diff --git a/6.3-advanced-usage-of-recurrent-neural-networks.ipynb b/6.3-advanced-usage-of-recurrent-neural-networks.ipynb new file mode 100644 index 0000000..8332215 --- /dev/null +++ b/6.3-advanced-usage-of-recurrent-neural-networks.ipynb @@ -0,0 +1,1670 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "6.3-advanced-usage-of-recurrent-neural-networks.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "metadata": { + "id": "ybBvkFULSFX-", + "colab_type": "code", + "outputId": "54deb908-1d5a-4b4f-bcab-fefabf785694", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "import keras\n", + "keras.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.4'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "u5jaqiFJSFYs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Advanced usage of recurrent neural networks\n", + "\n", + "This notebook contains the code samples found in Chapter 6, Section 3 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "---\n", + "\n", + "In this section, we will review three advanced techniques for improving the performance and generalization power of recurrent neural \n", + "networks. By the end of the section, you will know most of what there is to know about using recurrent networks with Keras. We will \n", + "demonstrate all three concepts on a weather forecasting problem, where we have access to a timeseries of data points coming from sensors \n", + "installed on the roof of a building, such as temperature, air pressure, and humidity, which we use to predict what the temperature will be \n", + "24 hours after the last data point collected. This is a fairly challenging problem that exemplifies many common difficulties encountered \n", + "when working with timeseries.\n", + "\n", + "We will cover the following techniques:\n", + "\n", + "* *Recurrent dropout*, a specific, built-in way to use dropout to fight overfitting in recurrent layers.\n", + "* *Stacking recurrent layers*, to increase the representational power of the network (at the cost of higher computational loads).\n", + "* *Bidirectional recurrent layers*, which presents the same information to a recurrent network in different ways, increasing accuracy and \n", + "mitigating forgetting issues." + ] + }, + { + "metadata": { + "id": "XnN0cyi7SFZW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## A temperature forecasting problem\n", + "\n", + "Until now, the only sequence data we have covered has been text data, for instance the IMDB dataset and the Reuters dataset. But sequence \n", + "data is found in many more problems than just language processing. In all of our examples in this section, we will be playing with a weather \n", + "timeseries dataset recorded at the Weather Station at the Max-Planck-Institute for Biogeochemistry in Jena, Germany: http://www.bgc-jena.mpg.de/wetter/.\n", + "\n", + "In this dataset, fourteen different quantities (such air temperature, atmospheric pressure, humidity, wind direction, etc.) are recorded \n", + "every ten minutes, over several years. The original data goes back to 2003, but we limit ourselves to data from 2009-2016. This dataset is \n", + "perfect for learning to work with numerical timeseries. We will use it to build a model that takes as input some data from the recent past (a \n", + "few days worth of data points) and predicts the air temperature 24 hours in the future." + ] + }, + { + "metadata": { + "id": "qTEU5dJhSFZY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a look at the data:" + ] + }, + { + "metadata": { + "id": "ulMyCBiaSFZb", + "colab_type": "code", + "outputId": "66d3126e-33b3-454a-e89b-7a05377706ac", + "colab": { + "resources": { + "http://localhost:8080/nbextensions/google.colab/files.js": { + "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7Ci8vIE1heCBhbW91bnQgb2YgdGltZSB0byBibG9jayB3YWl0aW5nIGZvciB0aGUgdXNlci4KY29uc3QgRklMRV9DSEFOR0VfVElNRU9VVF9NUyA9IDMwICogMTAwMDsKCmZ1bmN0aW9uIF91cGxvYWRGaWxlcyhpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IHN0ZXBzID0gdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKTsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIC8vIENhY2hlIHN0ZXBzIG9uIHRoZSBvdXRwdXRFbGVtZW50IHRvIG1ha2UgaXQgYXZhaWxhYmxlIGZvciB0aGUgbmV4dCBjYWxsCiAgLy8gdG8gdXBsb2FkRmlsZXNDb250aW51ZSBmcm9tIFB5dGhvbi4KICBvdXRwdXRFbGVtZW50LnN0ZXBzID0gc3RlcHM7CgogIHJldHVybiBfdXBsb2FkRmlsZXNDb250aW51ZShvdXRwdXRJZCk7Cn0KCi8vIFRoaXMgaXMgcm91Z2hseSBhbiBhc3luYyBnZW5lcmF0b3IgKG5vdCBzdXBwb3J0ZWQgaW4gdGhlIGJyb3dzZXIgeWV0KSwKLy8gd2hlcmUgdGhlcmUgYXJlIG11bHRpcGxlIGFzeW5jaHJvbm91cyBzdGVwcyBhbmQgdGhlIFB5dGhvbiBzaWRlIGlzIGdvaW5nCi8vIHRvIHBvbGwgZm9yIGNvbXBsZXRpb24gb2YgZWFjaCBzdGVwLgovLyBUaGlzIHVzZXMgYSBQcm9taXNlIHRvIGJsb2NrIHRoZSBweXRob24gc2lkZSBvbiBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcCwKLy8gdGhlbiBwYXNzZXMgdGhlIHJlc3VsdCBvZiB0aGUgcHJldmlvdXMgc3RlcCBhcyB0aGUgaW5wdXQgdG8gdGhlIG5leHQgc3RlcC4KZnVuY3Rpb24gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpIHsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIGNvbnN0IHN0ZXBzID0gb3V0cHV0RWxlbWVudC5zdGVwczsKCiAgY29uc3QgbmV4dCA9IHN0ZXBzLm5leHQob3V0cHV0RWxlbWVudC5sYXN0UHJvbWlzZVZhbHVlKTsKICByZXR1cm4gUHJvbWlzZS5yZXNvbHZlKG5leHQudmFsdWUucHJvbWlzZSkudGhlbigodmFsdWUpID0+IHsKICAgIC8vIENhY2hlIHRoZSBsYXN0IHByb21pc2UgdmFsdWUgdG8gbWFrZSBpdCBhdmFpbGFibGUgdG8gdGhlIG5leHQKICAgIC8vIHN0ZXAgb2YgdGhlIGdlbmVyYXRvci4KICAgIG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSA9IHZhbHVlOwogICAgcmV0dXJuIG5leHQudmFsdWUucmVzcG9uc2U7CiAgfSk7Cn0KCi8qKgogKiBHZW5lcmF0b3IgZnVuY3Rpb24gd2hpY2ggaXMgY2FsbGVkIGJldHdlZW4gZWFjaCBhc3luYyBzdGVwIG9mIHRoZSB1cGxvYWQKICogcHJvY2Vzcy4KICogQHBhcmFtIHtzdHJpbmd9IGlucHV0SWQgRWxlbWVudCBJRCBvZiB0aGUgaW5wdXQgZmlsZSBwaWNrZXIgZWxlbWVudC4KICogQHBhcmFtIHtzdHJpbmd9IG91dHB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIG91dHB1dCBkaXNwbGF5LgogKiBAcmV0dXJuIHshSXRlcmFibGU8IU9iamVjdD59IEl0ZXJhYmxlIG9mIG5leHQgc3RlcHMuCiAqLwpmdW5jdGlvbiogdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKSB7CiAgY29uc3QgaW5wdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaW5wdXRJZCk7CiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gZmFsc2U7CgogIGNvbnN0IG91dHB1dEVsZW1lbnQgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZChvdXRwdXRJZCk7CiAgb3V0cHV0RWxlbWVudC5pbm5lckhUTUwgPSAnJzsKCiAgY29uc3QgcGlja2VkUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBpbnB1dEVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcignY2hhbmdlJywgKGUpID0+IHsKICAgICAgcmVzb2x2ZShlLnRhcmdldC5maWxlcyk7CiAgICB9KTsKICB9KTsKCiAgY29uc3QgY2FuY2VsID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnYnV0dG9uJyk7CiAgaW5wdXRFbGVtZW50LnBhcmVudEVsZW1lbnQuYXBwZW5kQ2hpbGQoY2FuY2VsKTsKICBjYW5jZWwudGV4dENvbnRlbnQgPSAnQ2FuY2VsIHVwbG9hZCc7CiAgY29uc3QgY2FuY2VsUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBjYW5jZWwub25jbGljayA9ICgpID0+IHsKICAgICAgcmVzb2x2ZShudWxsKTsKICAgIH07CiAgfSk7CgogIC8vIENhbmNlbCB1cGxvYWQgaWYgdXNlciBoYXNuJ3QgcGlja2VkIGFueXRoaW5nIGluIHRpbWVvdXQuCiAgY29uc3QgdGltZW91dFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgc2V0VGltZW91dCgoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9LCBGSUxFX0NIQU5HRV9USU1FT1VUX01TKTsKICB9KTsKCiAgLy8gV2FpdCBmb3IgdGhlIHVzZXIgdG8gcGljayB0aGUgZmlsZXMuCiAgY29uc3QgZmlsZXMgPSB5aWVsZCB7CiAgICBwcm9taXNlOiBQcm9taXNlLnJhY2UoW3BpY2tlZFByb21pc2UsIHRpbWVvdXRQcm9taXNlLCBjYW5jZWxQcm9taXNlXSksCiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdzdGFydGluZycsCiAgICB9CiAgfTsKCiAgaWYgKCFmaWxlcykgewogICAgcmV0dXJuIHsKICAgICAgcmVzcG9uc2U6IHsKICAgICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICAgIH0KICAgIH07CiAgfQoKICBjYW5jZWwucmVtb3ZlKCk7CgogIC8vIERpc2FibGUgdGhlIGlucHV0IGVsZW1lbnQgc2luY2UgZnVydGhlciBwaWNrcyBhcmUgbm90IGFsbG93ZWQuCiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gdHJ1ZTsKCiAgZm9yIChjb25zdCBmaWxlIG9mIGZpbGVzKSB7CiAgICBjb25zdCBsaSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpJyk7CiAgICBsaS5hcHBlbmQoc3BhbihmaWxlLm5hbWUsIHtmb250V2VpZ2h0OiAnYm9sZCd9KSk7CiAgICBsaS5hcHBlbmQoc3BhbigKICAgICAgICBgKCR7ZmlsZS50eXBlIHx8ICduL2EnfSkgLSAke2ZpbGUuc2l6ZX0gYnl0ZXMsIGAgKwogICAgICAgIGBsYXN0IG1vZGlmaWVkOiAkewogICAgICAgICAgICBmaWxlLmxhc3RNb2RpZmllZERhdGUgPyBmaWxlLmxhc3RNb2RpZmllZERhdGUudG9Mb2NhbGVEYXRlU3RyaW5nKCkgOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnbi9hJ30gLSBgKSk7CiAgICBjb25zdCBwZXJjZW50ID0gc3BhbignMCUgZG9uZScpOwogICAgbGkuYXBwZW5kQ2hpbGQocGVyY2VudCk7CgogICAgb3V0cHV0RWxlbWVudC5hcHBlbmRDaGlsZChsaSk7CgogICAgY29uc3QgZmlsZURhdGFQcm9taXNlID0gbmV3IFByb21pc2UoKHJlc29sdmUpID0+IHsKICAgICAgY29uc3QgcmVhZGVyID0gbmV3IEZpbGVSZWFkZXIoKTsKICAgICAgcmVhZGVyLm9ubG9hZCA9IChlKSA9PiB7CiAgICAgICAgcmVzb2x2ZShlLnRhcmdldC5yZXN1bHQpOwogICAgICB9OwogICAgICByZWFkZXIucmVhZEFzQXJyYXlCdWZmZXIoZmlsZSk7CiAgICB9KTsKICAgIC8vIFdhaXQgZm9yIHRoZSBkYXRhIHRvIGJlIHJlYWR5LgogICAgbGV0IGZpbGVEYXRhID0geWllbGQgewogICAgICBwcm9taXNlOiBmaWxlRGF0YVByb21pc2UsCiAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgYWN0aW9uOiAnY29udGludWUnLAogICAgICB9CiAgICB9OwoKICAgIC8vIFVzZSBhIGNodW5rZWQgc2VuZGluZyB0byBhdm9pZCBtZXNzYWdlIHNpemUgbGltaXRzLiBTZWUgYi82MjExNTY2MC4KICAgIGxldCBwb3NpdGlvbiA9IDA7CiAgICB3aGlsZSAocG9zaXRpb24gPCBmaWxlRGF0YS5ieXRlTGVuZ3RoKSB7CiAgICAgIGNvbnN0IGxlbmd0aCA9IE1hdGgubWluKGZpbGVEYXRhLmJ5dGVMZW5ndGggLSBwb3NpdGlvbiwgTUFYX1BBWUxPQURfU0laRSk7CiAgICAgIGNvbnN0IGNodW5rID0gbmV3IFVpbnQ4QXJyYXkoZmlsZURhdGEsIHBvc2l0aW9uLCBsZW5ndGgpOwogICAgICBwb3NpdGlvbiArPSBsZW5ndGg7CgogICAgICBjb25zdCBiYXNlNjQgPSBidG9hKFN0cmluZy5mcm9tQ2hhckNvZGUuYXBwbHkobnVsbCwgY2h1bmspKTsKICAgICAgeWllbGQgewogICAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgICBhY3Rpb246ICdhcHBlbmQnLAogICAgICAgICAgZmlsZTogZmlsZS5uYW1lLAogICAgICAgICAgZGF0YTogYmFzZTY0LAogICAgICAgIH0sCiAgICAgIH07CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPQogICAgICAgICAgYCR7TWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCl9JSBkb25lYDsKICAgIH0KICB9CgogIC8vIEFsbCBkb25lLgogIHlpZWxkIHsKICAgIHJlc3BvbnNlOiB7CiAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgIH0KICB9Owp9CgpzY29wZS5nb29nbGUgPSBzY29wZS5nb29nbGUgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYiA9IHNjb3BlLmdvb2dsZS5jb2xhYiB8fCB7fTsKc2NvcGUuZ29vZ2xlLmNvbGFiLl9maWxlcyA9IHsKICBfdXBsb2FkRmlsZXMsCiAgX3VwbG9hZEZpbGVzQ29udGludWUsCn07Cn0pKHNlbGYpOwo=", + "ok": true, + "headers": [ + [ + "content-type", + "application/javascript" + ] + ], + "status": 200, + "status_text": "" + } + }, + "base_uri": "https://localhost:8080/", + "height": 242 + } + }, + "cell_type": "code", + "source": [ + "import os \n", + "from google.colab import files\n", + "\n", + "# --------- following update by eathon \n", + "# path = \"/content/sample_data\"\n", + "path = \"/content\"\n", + "os.chdir(path)\n", + "os.listdir(path)\n", + "pwd = os.getcwd()\n", + "files.upload() # 上傳檔案\n", + "os.listdir(path)\n", + "print (pwd)\n", + "!ls -a\n", + "\n", + "# --------- above updated by eathon\n", + "\n", + "!unzip jena_climate_2009_2016.csv.zip \n", + "\n", + "data_dir = \"/content\"\n", + "fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')\n", + "\n", + "f = open(fname)\n", + "data = f.read()\n", + "f.close()\n", + "\n", + "lines = data.split('\\n')\n", + "header = lines[0].split(',')\n", + "lines = lines[1:]\n", + "\n", + "print(header)\n", + "print(len(lines))" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Saving jena_climate_2009_2016.csv.zip to jena_climate_2009_2016.csv (1).zip\n", + "/content\n", + " .\t jena_climate_2009_2016.csv\t\t sample_data\n", + " ..\t 'jena_climate_2009_2016.csv (1).zip'\n", + " .config jena_climate_2009_2016.csv.zip\n", + "Archive: jena_climate_2009_2016.csv.zip\n", + "replace jena_climate_2009_2016.csv? [y]es, [n]o, [A]ll, [N]one, [r]ename: y\n", + " inflating: jena_climate_2009_2016.csv \n", + "['\"Date Time\"', '\"p (mbar)\"', '\"T (degC)\"', '\"Tpot (K)\"', '\"Tdew (degC)\"', '\"rh (%)\"', '\"VPmax (mbar)\"', '\"VPact (mbar)\"', '\"VPdef (mbar)\"', '\"sh (g/kg)\"', '\"H2OC (mmol/mol)\"', '\"rho (g/m**3)\"', '\"wv (m/s)\"', '\"max. wv (m/s)\"', '\"wd (deg)\"']\n", + "420551\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "bbHEr2uGSFZl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's convert all of these 420,551 lines of data into a Numpy array:" + ] + }, + { + "metadata": { + "id": "ucUNKPMbSFZp", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "float_data = np.zeros((len(lines), len(header) - 1))\n", + "for i, line in enumerate(lines):\n", + " values = [float(x) for x in line.split(',')[1:]]\n", + " float_data[i, :] = values" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "_FWhk5O7SFZ6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For instance, here is the plot of temperature (in degrees Celsius) over time:" + ] + }, + { + "metadata": { + "id": "SUsRR-jZSFZ9", + "colab_type": "code", + "outputId": "64f5c4bb-91c6-42ab-b76f-c1e56fefa563", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + } + }, + "cell_type": "code", + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "temp = float_data[:, 1] # temperature (in degrees Celsius)\n", + "plt.plot(range(len(temp)), temp)\n", + "plt.show()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFNCAYAAADRvRzfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XdgFGX6B/DvJptNT0jCJvQuvUmT\nIk04VOzegVwOPM+zcnJ6yimih/q7wwMsZzsOG1hORAEPPQtwKk0NvXcIQiCEsOm9beb3R7Kb7bsz\n887MO7PP5w8lm83su9OeedvzmgRBEEAIIYQQTUVoXQBCCCGEUEAmhBBCuEABmRBCCOEABWRCCCGE\nAxSQCSGEEA5QQCaEEEI4ICsg19TUYPLkyfjss8+Ql5eHWbNmITMzEw8//DDq6upYlZEQQggxPFkB\n+V//+heSk5MBAK+99hoyMzOxcuVKdO7cGWvWrGFSQEIIISQcSA7I2dnZOH36NCZMmAAA2LFjByZN\nmgQAmDhxIrKyspgUkBBCCAkHZql/uHjxYvzlL3/BunXrAADV1dWwWCwAgLS0NNhstqDbsNnKpX68\nXykpcSgurmK+XRIa2v/ao2OgLdr/2uP9GFitiT5flxSQ161bh8GDB6Njx44+fx9qNs6UlDiYzZFS\nihCQvy9L1EH7X3t0DLRF+197ejwGkgLy5s2bcf78eWzevBmXLl2CxWJBXFwcampqEBMTg/z8fKSn\npwfdjhJPMFZroiI1bxIa2v/ao2OgLdr/2uP9GDCtIb/yyivOf7/++uto37499u3bhw0bNuCWW27B\nxo0bMXbsWGklJYQQQsIQs3nIc+bMwbp165CZmYmSkhLceuutrDZNCCGEGJ7kQV0Oc+bMcf57xYoV\ncjdHCCGEhCXK1EUIIYRwgAIyIYQQwgEKyIQQQggHKCATQgghHKCATAghhHCAAjIhhBDCAQrIhBAS\nRk7kFOPcJX6zWIUzCsiEEBJGFq/ch+fe26V1MYgPFJAJIYQQDlBAJoQQQjhAAZkQQsJYoyBg64GL\nKK2o1booYY8CMiGEhLHdxy/jvW+O48VP9mtdlLBHAZkQHWlsFLQuAjGYorKmmnGurVLjkhAKyITo\nxFtfHME9Szahpq5B66IQQhRAAZkQndh+NB8AcPpCqcYlEU8QBJzIKUZtvV3rohDCLQrIhOhMUbn+\nBt/sPVmAxSv34e3/HtW6KMTDBVuF1kUgzSggE6Iz7dLitS6CaOcvN2WG2nvSpnFJiKc2qXFaF4E0\no4Ac5r7fewEfbjihdTGICFFm/V22Ao1F45Y5Un/nk1HRkQhz/954Epv25WpdDBImTFoXgHgx0UHh\nBgVkQghT9Q125OS7L14guPy/wd6oeplIE9cR+juP5cNWUo06HQ60a2wUkFdYCSFA00t9QyPKKutU\nLJV8Zq0LQAgxlqX/OYwD2YWY95sh6NmxldfvN+zMwQ2juqhfMILyqnrnv5d9fqSpxUKHNeQ/vfED\nyqvqcePoLrh9XDef71mwfCfyi6qw7LHxsERFqlxCaaiGTAA0pc8jhIUD2YUA4FVLdjibR0v/8UKA\nPvv3HQ8WX/501u978ouqAADVtfqZt08BmQAA7lm8CQebb6SEhDtBELDt4EUUlFZrXRSmQom9J8+X\n4HKJPr53WlJM0Pc45u/rAQVk4rR+xzmti0AMS1/VsFMXSrHi6+N4drn7usHlVXX4YP1xFJXVaFQy\nZTU2Clj00V7MW5aldVFC0q9rStD36GmqHQXkMEaDa4gmdNBn6RgMVOXR3LlmczY277+Id740ZoIT\nvXVdHTpTFPQ9p3SU2Y4CMkP2Rn0FOM+bjVGdPF+CddvOBByRqSeCTmqbJpf5NG67Xh/F96mqpuma\nKa+uD/JOffp002mtiyCKUa5pBwrIjNTV23Hvks3417rDWhcldMY6l/1a9NFefPHjWVxqHuShF4Ig\n4MDpAmcQINo7k1cGACjX2XSaUH27+4LWRQhrFJAZKWle3HvX8csal4T4Y7fr6wlkzwkbXl1zEEvX\nHXJ73aSHNl+DKm7OI15WpdMassFqlKHo0zl4PzMvKCCHsfC7NPXlYmHT+rRHzxZrXBLG6HmCMGIK\nIc2YnlKD6qekhBAA+ulDrm/Q15iKsBCGeTKP/Bx84BcvKCCHs3BrvtLbvUjnh2fPCeq+4U64XfPQ\n18hxCsgkfOjgurxgq8D5y8ZYn9be2LLDbS6JJvac0M+8UCPYd9KGUxdKtC4GCQEFZEI4suDdnXhm\n+c6mH/RWo/fgmse6tMKYo5L14PXPDuHv/96rdTFICCggh7FjOe6DhUIZIEFIqNJTYp3/PnFe3zW0\niup67D9doHUxZNNBI5EiPt10GqXNM2F4Rqs9hbG3vnDPNmS0SfZe9Pa84edw6GWwlJ5Pp3qPLHYv\nrdqPc34Wy9CTwyFktjKi9TtycOxsMZ753XCtixIQ1ZAJ4UBdvT3kOeyb911UuDRs6HlQV2Oj+9OE\nEYIxAMPm4A6FHo6hpBpydXU15s2bh8LCQtTW1mL27Nno3bs3Hn/8cdjtdlitVrzwwguwWCysy0uI\ndBrX2IrLa/HT4TxMGd4JUWb3Z+HVm7Px3R6PLEl+avRVNfpISnE8R7/N1PZGHVfvA9Brt9T/dp1H\n5zaJXutr2+2NWPXdKfTtkgprqxi0TYvXqIRsSArImzZtQv/+/XHvvfciNzcXd999N4YMGYLMzExc\nf/31ePnll7FmzRpkZmayLi+39Hb51tbZvV7T68WqF6+tOYhz+eWIiozAlBGd3H535mKZ9x/4Oan0\ndq7pkVFTSOrxEq+orsfH350CACyfd43b78qq6rFx13ls3HXe5+/1RlKT9dSpU3HvvfcCAPLy8pCR\nkYEdO3Zg0qRJAICJEyciK0sfy3ex8ubnR5z/1sOC2J59ZGFB45uRI/NWqUHzIBtJrs0YU8886TEg\nG7W1whdZfcgzZszA3LlzMX/+fFRXVzubqNPS0mCzhddcw7OXWvon/vCPrdjNeU7rSoOuVmMkFX6O\nkQlNS2f6+z2Rz7ghQIcROYzIGmW9atUqHDt2DH/+85/dRuiGOlo3JSUOZnOknCL4ZLUmMt+mWEvX\nHcZ/X7pF62K4EQQBFwsq0a51PKoavI9RYVkNk33Hw/73JTUlXtOyOW6FsbEWr3JERbk/G1utiShy\nqUm7vj/KYsaC5TtxqbAK65bchEgfuXp5OQb+ysFL+ULhr6zbDufjlvHdERnhHeR4/H5WayLi40Mf\n18PLdzDHtAxEC1Ymub/XmqSAfPjwYaSlpaFt27bo06cP7HY74uPjUVNTg5iYGOTn5yM9PT3odoqL\n2S+HZ7UmwmbjYzQdL+Vw+Hb3eaz89hTuuKYH+nVN9fr95eJq2WVWY//vPJaPCJMJw3oHP8dcFRVX\nIs6sfQ3h+NlCrP7fcUwY3N75Wn29exeCzVaOOpeuD9d9WlfXgEuFTddO3qUyRFvcH2r1cA24vi4I\nAtfjF/x9hxVfHoHZJGBUvzZur/O0/13ZbOWorgq9u4SX7+DaxROsTLkXS2CJivQbeHn5Tv7KJ6nJ\nevfu3Vi+fDkAoKCgAFVVVRg9ejQ2bNgAANi4cSPGjh0rsahEKftONSU22HvSBos58KF/+79HsWZz\nthrFEm3Z50ewVE/rTjdztEkcPVuMD9afCDgFxXPajVHtOXEZv1+8SbepHfW2LnIExw8+LOw9qe+u\nUkkBecaMGSgqKkJmZibuu+8+LFiwAHPmzMG6deuQmZmJkpIS3HrrrazLSmRyrNl86kIp/rcr8CjS\nrCOX8PX2c2oUS1H/+PSA1kXwqyHAwLraeu9R8Ea0ZssZAPCe8kWIBHp/jJXUZB0TE4OXXnrJ6/UV\nK1bILhBRTl5hSxfBd3vD4wZ46Eyh1kVg4oLLqF/X1Wv0shSjX3pO5wXoatjyu18dxblLfDTZEt8o\ndSbxopfEEw5VNfUor65HRkpcwPcFqpGqIdCt29d9/bDLOq4L3t3psh39BIFQ8dyHbBQ/HrqE6Cj2\ng2i5ovPnO0qdSbwUl/OfhN3VY0t/wpNvbg+a4/n/3tuNV1Yf0CwXtOe9Yt6b25Fb0DQ3WUxFkWIX\nkUqP544OiywZBWSiWwezm5qjHVnHykMYQXowuxAbd+UoWi4xvvjhZ9F/4xq8jVhb1pM6nfX167El\nQlSlV39fzw0FZJka7I04qfOl5fTqldXuA7bmLv0ppL8rKNUmwb6vkdOhLijhyrVfXA99yGU+HpTW\nbslGbZ1dB6UP7LOtZ3S1LKPd4Bn69L54BvUhiyQIAuyNAsyREdh5LB/LXFJmEn4s/mgv7JwNGAqn\nFICuynxMDfoq6xyqahpwubgaAD/TvBzXtxhZhy9hcI/WCpVIvMZGAQdOF6BPlxTEWNxv8XU6WbpT\nqrVbzuCGUV20LoZkVEMWacnKfbjvhc1oFASs38FP0ycrev9OjkUaTpwvwekLpT7fw2Orlg5bEkP2\nc56PhTMAbNqX6/y3lJYCJcxd+hPue2Gz1sWQZfP+XLz+2SG8981xrYvChNhLY98pG46f1ee6zxSQ\nAygqq/FaFelEc/M0L0/0rH266bTWRZDlbx/s1roIkkitzHPWCOA2Jcth3Tbx/eRa0duARl/OX26a\nIndCx8tfyvH62kP48+vbtC6GJBSQ/ahvsGPu0p8w7y3/q1Zp1RepOCNX14ii/te8DJ6rUHPbEzZo\nd+sXBWQ/aptzC5dW+B65W1Fdb9jVdho47mcKl5t7qM9EvD07uc6ddgiPI8aT5j0u89wIl2uNJxSQ\nJXr0jR+1LoJiso5c0roIfv1HR82fYngGVt3eC3VbcOl4/cZyn9V4/V5GRgGZeNE6o1UgPxy8KH8j\nvFUrZdBF/NNDGWUoLjdo1xVRHQVkQggznrH33KVyt+XzDMmoDxwcfq+yyjrYG/mtMMhF85D9yC9i\nv1azXnB4HTp5lk1qP1dRWQ1q6uxo1zpefqEY8PwaoVbis3NL0b9bGvsCMfLce7u0LoLieLteWLWa\nNCWd4as16ZHXf0CPDslaF0MxVEP24dCZQiz8cI/X62Jv/oVGHYVtAHOX/oSn39mhdTGcPOfqhnqq\n1bhMy6upa8DaLdkoLK1mWbSALhVV4dXVB3SfIUkO3roNHMXRY5rMUPjLL2AEFJB98Dd/70C2uKX8\nPtuazaI4qtu0Nzf4mzTieYspN+hI9z/8Y6vov/kq6xy+yjqHxSrOxX77v0dxILsQn3yv7/nrcjia\nUC+XVDvzqxsBbw8a4YCarEUoF9kXRie08h557QfRf1PikvxBEARd1yRcTzFHX62tWLnuFkEQsGlf\nLvp1TUVGSpxz5SzHQMBwPOdz8psSccxb1pSzYFj/tloWh+gY1ZAVlFcYvv3QSmFxv3ddDGDvSRuD\nLYaPUxdK8e+NJ/H02/w09/OmkqNWG1uJet0XRD4KyAo6l1+udREMY+9JG9796ijzETRGamJUgyPY\nhOtCGaEqLK3Blv25miTXcG3v2XpA+jRBblo79NuAJRo1WRvU4Z8L0SYlDq1bxWpdFCbe+OyQItv9\nOY8emsTg5R7Nu79+sBtllXVIS45B/67qjYKvqWvAtoN5jLbGydHmpBhqoBqyAVVU1+PlTw7g8WX+\n83CTJhdsFVoXQVfW7wy8GhilW2ziWHLS19KTStqw0zuXONEPCsgi1HOcwcoVT31YWqirtwd/k0Fs\n3JmjahA08pQTf3ILKkW931bc0m+r9vOJ67Uv9zqgZyv1UUAW4Zvt+lgr2KhTgUL1wEtbtC6CarIv\nluHspaZmd8focbVWIcvxMUaC5Yj1EznFqKrR/lxe9G/vnASBPP3mTwqVJDjXGFpZ0yBrW8fOFaO6\nVt42mGDYh7z/VAHOXeK3m4oCcgjyi6rw0qp9KJSQ/GDnsXwFShRYbDS7oQFaJHyorbdzcSNWy75T\n8kZ6O5KDnM5Vt/b67ArvLFzHzhUz2faZi2VYvHIfFq/cx2R7csgNbGrIL6pCFeNyvrrmIP6x+gDT\nbWrttbUHuc4eR4O6QvDBhhOSbzTLPj+CEX0yGJcosFhLJLNtffztKfzh9gHMtheKh/6xFfZGAcvn\nXaPq52rl9bXKDFjTs8slTVMGz1+mPv5gauvtePKt7YiPMWNkvzZMt61lF0VNXQNmv7wV8THhE6ao\nhhyCcB6oUtfQiG0HLiL7onoXpueUmnqO12fmAifnJxfNm5wpqahFo8JTxBwtJHqoyYuxdvMZAMb7\nXoGEfUDOK6zEKx65eD27wY77SaUZDmrr7VjxzXEs/EBcPxpLlxXMPGUE2objpk8vq6pDSUVtkPeG\nn7VbzuBfnx9W7fOMNGX3u70XtC6C6sI+IL/z5VEczC7EKpdcvJxUOJj5/Iefcfei7yX9rd1lZLlW\nU4T0MrpdKy+u2o+8QnEjgVm5YGv63OzcsiDv5EeDvRH7TtpUG42/54TC2eBcblgGu3WFnbAPyPUN\nTaew3cA3/c9/+JnJdha8uxMHswuCv5Exoz0gKWG30jf9EFximCrWpGBd7+vt5/D6Z4fwySZ2C2Ic\nPkMZ34h8YR2QBUFAfnNz6L5TygUaW0k13vrvEV026XnGwtMa1ITMkWF9moZM6+eWYzlsRlgDjrV4\nlXG2OTtbNsMBSy9/Gng0sqLjUHS8OEogXdsmaV0E1YX1nW7jrvNuA4ZOnm/qK2Z9fi//6hi2H8nH\npwZYoq5AxbV2a+oacPei77Hoo72qfSYrqg8EpGYErj32zx+V27jLsT9w2r1ioe8BkeF3Tod1QPbs\n21m37Ywi84Yd/Xuui8mzVFRWgwsKTQ85c9G9Rrz9iHrzqld9dwqA/kbvZh25hN8v3qR6AgKt60nV\nYTQaVqySCnVSaHomhdm4S34qzQaNuvPC8RkzrAOyp+M5JVj2+RHmJ0JZVVOSC6ValuYu/QkLlu90\n/rx2S7YyH6SyjNQ4rYsgycffNj1IbD0ofaUdsXi4ecXFRDHblpJ9yI4EP7W6rj2qJ+vwJU0+l4NT\nWnVhHZCV7KfSUpaKtVglrd5kjAcLNZzLL9f8bNbL9eRINpJf1DR+RG8tMGqrqK7Hhp05KFV5oYxw\nFNYB2R+larJKDhwj/FGzCVnp5BNqUyu4Hz9XjD/8Yyu+/Oms4vuwsVHQZZKh9Ttz8Mn3p/GmivOp\nAYRlFTl8cpIRopK6hqaxAqxzCwfCw73LbuehFOLsPdk0juSzrWfw2dYzin7WvS9sQq+OrfB45hBF\nP4e18uYut4siV70SSxAENAoCIiOa6ol6aXFhiWrIPthK1BtJTIynrr6pb3L7UXW7DmoVGjQYqk37\ncpltS8k+ZFdq3vIFIbyz/gXzxmeHcO+SzZoNIuOBrBrykiVLsGfPHjQ0NOD+++/HgAED8Pjjj8Nu\nt8NqteKFF16AxWJhVVbV7Dx2WesiEEKaFZfXIiUxWpFtZ6u8QpaeKf3w4ujSq6mzIyE2QrWHMp5I\nDsjbt2/HqVOn8Mknn6C4uBi33XYbRo0ahczMTFx//fV4+eWXsWbNGmRmZrIsLyEkzFwqqmISkLOO\nXMLb/z3q9poRBip9yjDjGNGW5Cbr4cOH49VXXwUAJCUlobq6Gjt27MCkSZMAABMnTkRWVhabUhJC\nwtYhRmkpPYOxURhlVgWREZAjIyMRF9c0T3TNmjUYN24cqqurnU3UaWlpsNm0z69LCNG39TtyFNt2\ncbn+0tkS45I9yvrbb7/FmjVrsHz5ckyZMsX5eijD+1NS4mA2R8otgherNTGk90Up8NnBhFo2VttW\n4vOCbVPJ76gEtY+JEg5mu9ci9XYMAPcyW2KK/P5O7/T6XSIiTM6yl1bUYuOOc7jp6m6IiWY7WSct\nLQFJ8RaYo5QbcxwbH41cWwV6dU5V7DOkkLUnt23bhmXLluGdd95BYmIi4uLiUFNTg5iYGOTn5yM9\nPT3g3xcrsM6t1ZoImy20lIWV1fXMPz+YUMvGattKfF6gbYrZ/7xQ+5ioQW/HAHAv8yWP8uvx+/ij\n1+9SWlHnLPvLn+7H4TNFKCyuwi/Hd2f6OYWFFaitikK9gstj/vGlTbCV1GDR/SORnqJ+RkB/D2WS\nH0HKy8uxZMkSvPnmm2jVqhUAYPTo0diwYQMAYOPGjRg7dqzUzavivEL5n41uxdfHtC4CMTjW+TN2\nHaeZEyw5spwVldUEead4aqztbStpKjdvXRaSA/LXX3+N4uJiPPLII5g1axZmzZqFBx54AOvWrUNm\nZiZKSkpw6623siwrCWK1SqMttx3MU+VzjGDNZkr/KQXrjFb/WqdylikiWR7DdbX1RnKT9R133IE7\n7rjD6/UVK1bIKhCR7psdOZg2sYfWxSAuvt5+Dr+awLZJLxz8eEibBQ1IaJTMAOp8GFMhawtvmUwp\ndabBfL39nNZFIB4ul1Qj1qL+AEI9u1QUvrUkPSip4Kup1ygoIBuMZxOpHpPZG828ZTQfnxhLQ3Pe\n8sM/FwV5p3QGWy8lJJTLmhDChS9++BnHzip3gyfsORaeUEJBqfJrCii1sp9UFJCJbIIgIPtiKep1\nvOB7o6DPpfGMZN0PP+OFVfu1LobitF4ERK58FboTqmoaUKPCfuLtkqeArHNa5eJ1XRFr1/HLWPjB\nHnyw/rgmZWFh7j9/xP+9t1vrYpAwUF3HZlnOj/53Ev/bdZ7JtsT44ZCysywEABds4TkllQKyztmD\nLFWm1APgUpdpJGculgEAdp+Unyq1VsFkAP6s23YGJRV1OJevz4QNJDx9t+cCPv7ulNbFIAxRQCaS\nnLukTPBau0X9ebtf/HhW9c8khGjv6LlirYvghgIykeXIz0XYyLDZ7ILG2dPqNKihE0K0wdsgQgrI\nRqfwoIWXPjHWIJxN+3K1LgIh3FJj4OO6rWewRqWWMs7GdFFA1jtH/60/7+l4oJUWjnHWhBWO9pyg\nvNO8EgDFRz+XVdXj9IVSRT/DgUZZE6aWBsnR+wPlnRbFcxlDor5//ofyTvuTk1+OB1/agqNaNbUK\nTYPJjIOviEwBmXDleE6J1kUghFtf/nQWtfV2vKjRfG2BswBmNBSQNVRbZ8faLdmKLGFGCGtlGs15\nB5qmpoUDQRBw9lIZGoJMZ9QKb028cv2cV47jHHVTUUDW0Dc7zuGrrHO6baLzepCQcbEKgsDtTSgc\n2RsbsfQ/h3DgdIHzNS2TNRhpalqgbI37ThXg/97bjfe+4XPsh9ECMgAs+Xif1kVwooCsobLmPLBq\n5GxVwj8+PcBsWy99sh/3vbCZ2faIPCfPl2L3CRteXXNQ66IYTqCYlp3bNJhp5zE+B7b9nOc9iFTP\nGfp4QwFZQ5zlNRftYkGl289ysmwdPctPsxHxPb1F7+erHjj2egSnO7u43HvZxc37L2pQEmOigMwB\nIzYDEQPibWkcA3I+CHG6q+saKHGOkigga4nTiy5U9BxBCFvOeMzpw4+vGjILtNJaEwrIhIQRQRDw\n56U/4YMNJwK+j89wYAyB9m3QCrLGgbqoLHhAtjc2Kha4jY4CMiFhpMEuoLCsBpslpAjVY5C+VFSl\nyYIlgVTWNPidUeCY58trDXnrgeD9xS+t2o/H/vkjTeeUwKx1AcKZ1Evu7KUyvPXFUcy+rT/T8hB5\nyirrcPQcX8nqvYXWNOjrXZzGiIDmv7Vd6yJ4efqdHQCA5fOu8fod513IQRWW1jiT++QXVyM1KUbj\nEukL1ZA5UFFdL+r9H244iUtFVfh002mFSkSkeHHVPrz1xVGti+Gmoroec17Zis37m2rE1FXHj6+3\nn/N+0dmHrG5ZWHnjs0POf/M6UpxnFJA1dEqlBOpEHRdslcHfpLKD2QWorGnAB+ub+oxDjcd0L1Xe\nms3eTemNnDdZB1Po0kwt5jto/ZzY2Cggv6hK41JQQNbUeZe1fytrxNWSAWh/FhuUoUd8+vlqm/fl\n4ghna8OGqri8Fl9lnUW9AabkCDqtIQuCgLzCSrfWvggdfYkPN57Ak29t13zhDArIKssvqsLK/530\nSqLxc5BlFIl6LhZq/6TMismjrutvcYAPNpzAS0EWLOC11vZ/7+/C2i1nsKI53WSDvRFv/fcITp7X\n4UIlQuAaMp9HoGmVtKfe3uH2mklH0WVLc3KTj/53UtNy0KAulT333i7U1NmRkhitdVGIPwauIRvp\nq5VU1OJ/u86jtKJp0YvtR/Jx3039sP9UAbYfycf2I/kalzA0DfZGnDhfgt6dWqHB3nSA/C3kwevh\n8/Xw41lDbrA3whzpO0pv2it+1L8R6egZxhgci3sXV0ifp8dpRcUwBDQ1wS37/DC2H72kdXHk8ThX\nfAVkNZvo27WOZ7atd748im925Hi93tCor0VKPttyBi+t2o/1O3Lw4yHjrF/uGpA37szBfS9sxs95\nZSgqq8Exl+6R7UcvaV4z5QUFZI145oEWw0i1HF5dLqnGzmOXuRs1LZ/3yaPm6TRjUg8m29lzwmaY\n/OeOqXInzpcEPRbcPov7KJhrxWHV900zQj7630nMXfoTXli1H+VVdSgsreHuGissrcH764+jvEr9\n5UYpIGskO8z6jD//4We886XvC69URmuBYgzy0ON5n/T5tXy8WOqjyVRuy0xaUjTiY6LkbaTZP/9z\nKPibdCInv2lw5+EzwQfVcds65uMc8jWo64zLfa+6zo6augYlSyXJO18exZb9FzVJKBNWAbmorAZV\nUkYzK6CuTvqIUG4vygA+/+Fn/HTYd/Pvlz/5mI9JFOGzydrH3XTjrvNer3kOEBPr2btHyPp7Q49+\nN6Dc5lZAvzNIOD2eZc0146oa9R8Wwiogz136Ex56ZZvWxQDg/UDZKOHc5PN0Dk19Q6MzfWAjpxem\np/2nCkJKHcgVrz5kH03WPna/Eg99cmvHdikXiUJG9EnXugh88XG+5BU2BeQ31vpuzeDnaPqhQc0n\nrAIyz0p4bLZV0P0vbsYjr/2gdTF883OneG3tQbz3je/F2GtltHio6Vx+uddrIT8P6bBlRimzru2l\ndRG455jTm+OSb8GNwDYopxkgTScFZE5oMYBAK/nFTfN8q2r56z8Cmh6OdhwTN2VGL2lMD2X76qdU\nr66ix+4WX/xN31FajYIPfu2t7EbAAy0tGnY/o95Zn3XWVjFoz3AUPwDYSqr9ll8JFJA5sXbLmZDf\nq7d7mmeT9JNvuif8563p6uVuGFrLAAAgAElEQVRPD2Ddtp9F/Y2vmqeWqmoaUFBSjfoG95uJr/5i\n31OhvF/T+rzjqWcjOioSv7+hj+qf65hzrYSRfTOYbs8xqMtu93/gTueySx/cuU0i05M0J78cTyzL\nwrJ1R9htNAhKDKJDHN2XQvL6moOB38DTndYgHnplq8/XfQ/q8uarJispvStDvAzq6pieAADo3SlF\n9c9W8sFPTia2jTt9DAJs3py/vn9BEJDNMCADbB8aLxdXAwD2nLQx3GpgVEMmijuQXah1EUgzn0HN\n5/3S+9b27W5t8/zyEY6B2OimeoxRmt8d5HwdX0HXEhUZ8G/yCquYH9ReHdV/SGJJVkA+efIkJk+e\njH//+98AgLy8PMyaNQuZmZl4+OGHUVfHZ7/olv25+GC978E5euDZDKl3vNxow4Hrvn7js0OwNzb6\nGeXu/ZpjVLxmODlRHGlvoy3eAeeRaYPULg47jB8wHP25vvYT0LSuO0uCAEy/pjvTbapNckCuqqrC\nX//6V4waNcr52muvvYbMzEysXLkSnTt3xpo1a5gUkrX315/A5v06m77iwrlKFCdNeGI0+niS3qLj\nY+Ggm8qSy+7fe9LmXEzem/c38v/e4KLMEc1blb6neJged+PozvjNL3oCaJrGlRDrPpWL9aAiNcmd\nZ+5jgwD8z0CIUmBgXJQ5cK2cd5L3iMViwdtvv4309Jb5eDt27MCkSZMAABMnTkRWVpb8EnLsn38a\np3URdCfriM5zQ/ujk4js1WQtqDcP2QhuH9fdLQj365qq+GdW1zbguz0X8NlWZTNHOR6amAny/NSj\nfTLbzzMAyYO6zGYzzGb3P6+urobFYgEApKWlwWZTrzNcTe88PhH2RoH9CSySHpuuyww6vetsHl+j\nrP3xPb4mtJHXWuOxTJ7PLXYFCvnJ96ew9YDyi07E+GlaVkpEhEk3D7JqUWyUdSgjIlNS4mBWoInB\nak1kvk1XGRlJimxXbLnPXmITBAb3tGI/w5GEgb5HQrz7spNKHqvnZ4/B/KU/yt6OZxl9lVnJLFJP\n/W4EFq7YCQCIjzGjUmJKP6s1EaYI94fIpORYpKUluL0HAKKiIrxek+O6UV1gtSaitFb6PNrjuaW4\ndmSXgO+xWhORlMh25K7n9l3FeDRZ97tCXAavQPvW8TtbqTpJg5KSYpluzxwVGfD7tWoVhxhGuc0B\nIC7OwuRcNfuoaCkdU5yfzXJjcXFxqKmpQUxMDPLz892as30pLma/ELzVmgibTdnailLbP3OuEIlx\nlpDfX8eohtxQb8ekIR3w3V42o2gD7Z8Kj4xkSh6rNkls1pz2LKPS55ensrJq579vHtMVH393StJ2\nbLZyHDlT4PbauQslSIk1u70HAOrrG71ek+qFB0cjJSkaNls5SmRc82+sPoAh3dMCvsdmK0dZeXXA\n98jhuS9qPR6OxO6rQO9vORbqZIGLFNi2uO0/aQv4/UpKqlBTzW4qXVVVHZNrs8HHfZX1Ne8vwDNt\ncx09ejQ2bNgAANi4cSPGjh3LcvOG97CGqSSvH9lJlc/5nlHQJ9J4drPYGxt9tmax7ENOS47xufLP\nrGt7YdLQDuw+SANy99OlouAPKJdLlHvAcNWncwruuVG9ZCff7rmAH/0sOKMlOfOx5ZIckA8fPoxZ\ns2bhP//5Dz744APMmjULDz30ENatW4fMzEyUlJTg1ltvZVlW0QRBwNYDF1FQqs4JrWdqpQIsLGPb\n/Da4R2um2+PFm3PHt/zgEi9TZebr7WBNcPs5wmTSbDZRv66pzhHLLOUVsG958ydVZivMnhOXg76n\nkmEtMhCTyYTR/duq8llA05rWYg1yaSHp3amV2+9Ydd/7qiGrRXKTdf/+/fHhhx96vb5ixQpZBWLp\n+LlivPfNcSTERuG1h9nU1tNb+e5n6dwmEecY9elqISnegnGD2uFETjF6dUrRzapGcTEtp3Dr5BjU\nNzT6XMtXjrsXfY/fTe3NdJvB+Ju+MaSnvAcQz9qw4PyP5/tkfYxfSfGhd8lI9e0e76xRShneO0PW\n8qG+pgF64mmVK61FmSPQp3MKjp0rxsh+bWRNxfNHrRYJXwydqau0eURvBcMnzCG9rG4/PzJtIGZO\n6YkFvx3G7DPUFBttxm3jugEA7rq+N/5+/yhVR1tesPlZCUaCa4Z0wHMy19z1Z8XXLYlktBzdLrc5\nzfPefrGgUtUasiOphhyXA/RDF5RWo1rGwDGxImS2bgaKtSwTZ/g7bR6d3pTI5LoR6nRZyZUUb8Fj\ndwzGq3+8WpWHO7UZOiArwuMCGti9Na4Z0kHTfgepurdLwj//NA5d2yozajwUf3t/N7NtCRBUmUax\n67i4laB44llD7tI20Wd1uKZOhZW4mj/37qni+i0Xr9zn93eP/0vd3AdtZSYCCVRD3nGU3Xnmb2nC\n/t3S8M4TEzH9mh7MPsvVe98cY7q928d1Q0SEyWvwa8+OrTA1wDiYPp31kVLT0AGZeeYZ+F4tR6/8\nZT7q0lb6EH+xzWusRooDgK94zKJG5inQ6jVKYPlpnofcHBHhs5aWV6heP2yHdHFBrbicn7XDfQ1W\nEyPQ/UStedee32Hile2ZbZv1/Ok4l2lSrqWe95shSE7wf63LbclQi6EDsitWzYyBUrOlp8ifx2dv\nbEROfrkqK9v4q9Vf1ScD834zRNI2N24/K6NE8vjaY/NnDkWn9AQfv5FuxTfHuQoKYng+hEVqeKdy\nlESJB2cldGvHviVJraV2PS/13/yiJ57IvNLne+Nj2c0NZqlnR/dBXGKehfTSghk2AfnnPDb9MdeN\n6Oj3d3+75yrZ2//421N4dsUu7DoefPSlXP5ivslk8jr5Q3XqPPtBFqESBMHrwktLjsGEIeye+B0e\n+2dLwhFWo/g7+nlwYPls5rmt4oraoA9/2RfFJ9qYNkHfSf493T6uG56aNZT5dgPl52YZQ1yvi8lD\nO2DS0A7o5Wf5yBF9xCU3UYt3ZsTQd1CEjAdPNWO5oQPyQQWW/YsLkFmGxdSh7/fmAgBOKhTY7ry2\nlyLb1YrnSjLRzUu+yZ2OIsbekwXB3xSC8YPbMdmOP5dLqnHojPs1URLCgvdlIbzHVcf0BAwMZTqa\njnp/bhzdJeRa1pDeoQe0QH3ILGt1ji2lJcXg15OvCPhez6lxvLh6gPuUrFB3T0JslKyuBTVbcAwd\nkF0XMmDRBJwYJ64pZ87tAyR/llJNLHoZ3BCKMf3b4Naru+KRaYPQrnU8xg5shyhzBF5+aAyev3ek\nauVgdagGNs+xdNQuuzb35WekxuLVP16NF2ePBtBUW5Ni7WbvxQk6ZyQw76tslRAdUp+dqflNvLcm\njhskbm7uwO6hT00LWEMW9alBNO/k5ASLbppvPV3VN8Pt51C+xXN3j8Dz942UdY6pubsUy2VN5CVx\nUOck0FEVxYff39gXQFMgG+iSMKCVx+AOpXdljZ/l5cRqnRyLd56Y6Hya//Ovr0R+UbVXjSU+Rtpl\nm5HqPcbhna+O4a9BpoqJPUvMkYH3+KPTB+HI2SJYk+UlOVHD72/ogzEDlEuWEShbpRI1ZB4X6JAs\nhN3j6AaSsy8pIDPg+eRZpPIgnJF9M0SPHnXlr5nELncUiMtmxw5Utok0XPxn6xlm23JtWouxmNG5\njY8R7xLvEJeKvPu6a+vsbgH3gq2CSZNlZIDum/7d0tC/W+Cc1P78eEj5VY9cjerfRtHtq9eHzG5b\nvIgU8aXkjV2kJmtZVm86jXsWb3J7LT+EnLHBiHm6nHVtL1l9D/7OtaNniyVv01NGahyzbTnw2BzW\nrZ0y66422PW1/OVuPwMFXU/rV1cf9P69hFqVNTkG1wxpjz/+aqD4Pw7g3a/YzmsNRkrfo5g/KSyr\nEb19KSzNYyu0XjKWpZ6dWmFEn3T8qTm5SSByHjLVvM6Nc3RcfLMjR+sieA02EsvfRS375BBxcx0u\nYnAKz5SYiwwAWRolxmf+yOMScVkEiPbWBJhMJsyc0iukXOM8PsRJ8RcJ2foCDTw9cJrdoNTfTO6J\nK69ojbtFpoD1lyqYB5EREXjglv4Y4Ke1xTVdcutW/HePAAYNyL6wSKcnemCYnIEEfv5Ybh+QmJHg\nd0jI3sPjvVWpMrFMyaollt2K997YFzeN7izqbzg8ZSRhnfGuXWt2LVipSdGY88uBSE8Rt80Hb+3P\nrAxqS3CZT63W4jlyGbYP2dO3u+UnnBd1Msu8y/kLIvtPS59i079bKtJcB9IYaoSH+jTbe4wjGMvT\nQFKfq1Eish/JCRaUipw6BgBt0+Sl5XQlthXi7ql9UF5dh1YJxssXzbOwCcgs7jmTh4lbu1XeUHvf\nf/zDQemDWh6dPljy34bqTK74JBJSiGlOV+p+v+v4ZUwdKa42yALr76NGVjg9SgtxLvuSB0ehNsBI\ne6lzYLU8LlcPbBpZbpSla+WmOFVL2ARksTJS4wBBQH5xywnpL0G7LwIERJikN5Oocf4ocblfuKzf\nJSjF0mq5zS5t2DaNBk8/rmxgUKqPX66E2NBqh62TPftZ2Vy8LOOx1PuJJUCqYD3RSTwOnz5ksXp1\nTPZayi+UdJJ3XtcLVw9oi8gIebvW8wS6XFyF4+fYjbBWiloP9X27GCPBiZTkMZ3bJDLN6vWvdYcD\n/r5c4b7y+JgovDLnakU/Q4rYaGMEI8DwvQJB6WXgINWQA3BMFQDglngikAmD22PCYPm5k7/86Rxu\nH9eSD3jem9tlb1MNaq2l7nN+rl/8XowWiaPxWY5+vVhQGfD3H6w/gRG9MwK+Ry6e1rb95fhuuFhQ\nhdvGdpX096zu/dUsl8DUSUBSitxvX1ZZp8o5argacgmjBCDtPAZUaNGdIzsJiIuJLgssXHdV07qh\n4oIaX8TM8dZyRSPFqPyVDsgYTKg3yfHRuPemvmjN6KFHaiz8dvcFJp8P8PxIyt6/HhuPT5+/we01\nx0pdko/FHnbHIhDD1ZCffYfNAuXXDHUfwKXFOsgsHwKG9bQ6/z19Yg/8akJ3ZQY6qPTkIuZ4RFsi\ncdf1vdGudTwiI0z46/u7FSyZOFKPAMuE9306p+BYkO6Q2gY26UH1QO5l4fn30VHSm76ZDewKo4gc\nHRWJ2GgzKlxeS06Ixlt/noCtBy7i3xtPala2YAxXQ86+wGaUr9e8NYMNRNXLqENWxg1qhx7tk5nP\nFdXKgG6pzLYVyqkQaBSx0XTKkNty1LJD3358gqz+y0sMMgwCMuKxgW4TepiLzH8JOREo52wgmUGW\nOuOZlBuJgKY+yQ83nAirm7ja2jNcIi+UU7u2PjyO5aL7R/pdl1qKyIgItJGRovapt3cwKYfUhwID\nxWMAcr6POjUyCsgh8p7aEJrJwzri+pGdGJdGHVKayxobBTz9zg5s2peLr7efY16mmVN6olNGArdr\ntuqR53H2tUZvg91gTUR+iM1k5Ytn7LvrenHpKllY/MAoJtsxyrQnh8FXNHXd8VpRooAcoiE9Q1/j\n1NMvx3cP/iYfWHbHStlUvUfe7GuGBB893sNlatjm/bkSPjWwa4Z0wLO/G6GL5qdQ8FgDuWfJJq/X\nLlyu8PHOFoN7tMai+9Vbg5pnjpv+lOEdAbincFRLmsfSllJbzeXm5GfBHBnBrFKTkhiNd5+YiMnD\nOor8S3WuVMMN6pKiXet4v1M/nr9vJPaetEleLg6Q018rYOW3J0NK0K+EjJQ4JMdbcPXAtrhtXDdE\nmEz4fm/gINurcwpONA8QiuB0dPNzd49ATn656isH+SSjf7FTegJyggTKUIQyVS1YytbZt/U3zEOS\nXJ3bJmHpo+MQY+Hn9srnlRiaZXPHMx3z4mi+f2TaILyy+kBIf1Ov0qBGfs4YDQU61G1S4zRJjwgA\nOZcr8O3uC0ymP0g9nf8hMmFDRVVLEonSirqgc1y10DE9AR3TE7gIyBYZy+FZZIzedTCZQDnNFcBT\nMAb4qOlKpdTDRKi5JQD1svLRIy3H6uvZzUNmdcsNNuDle49FPN764gijTzaG6RPdV9Dq1i4JN4zq\njKfuHCp6Wx0zmo6Fo2lUCkEA9LWqMxHr7ccnyM4cSNRBRwnNeas5ZOew5pKRIm5wm12t1F064UjK\n4mAymfDL8d3RvV2y6G1Nn9ADv7+hD24b101WmQQJx+jhXw3EvTf1lfW5REEuh1TvwZiHO4hat2J9\nHylGeM3kdOwsf7mrrwghnzdRR7QlEmMGtJWVeALwHrwXikE9WmNUPwlLLRIiUjjlTKCADKBTBp9T\naPIZJQUA2M1bFf2kyPG19JCEhR08GWHpQjmtGLNv7Y8bR3ehAV2cMZmAqwe09eoiIXzja+SBRiZe\n2QFrt5zRuhheWDT3xkWb8dIfxjAb1OFrjqpeDXFJJyrVUR2swBVMrk36wLthvdMxTMTa1EQdJpMJ\nd9/QR+tiEJHosRZNTdYvPDga82eKH1gjV6ABOVKzg7kSwHaEpdgaoZybvR7oYUlMQuSg1g/1+rFp\nTzdLS45Be2t88DcyFii+8VgbZfGQYCRSUhJe1bdpKcN0kQPkCDsdNLjWiY6pdN+jgIyWlYN4GzvA\n4whlisfupIwH5Ow0C0uUejV0vN0XjYwCsgs5q7Iogc2AIbYRVKusYbzi7ZwxEiVTTgpoGl8BAD06\niJ9yRogSKCCjZW1ZLW6t1lYxfn/XwKCGHMW4/ydeg7y8PJNyzjgWvm+XRs2mgSQnWLQuAiEAqA9Z\nVY4may1yL0+40v+CDQ0N8nIoDeqehj9NHyxrGySwqtoG0X9z46jO+PWkK5iOgu3XJYXZtrTi2frS\nKV3uusRE71ISo7UuAgAKyJrQovUx0AhGuUvePTxtEDq3oZuakjbuOh/8TR4sUZH4xfCOTJtk77+l\nPyYP68Bse1p48Nb+zn//bmpvzJzSU8PSEActO2W46RHSa6au559/HnfccQdmzJiBgwcPst68okyc\nDbdRa4URveDm4uRQQmwUMierE8CUmo0QGdlygMcObIfYaOXSJLiOz1DjtOKlpsdC2zQ+Uw1LwSIX\nAUtMA/LOnTtx7tw5fPLJJ1i4cCEWLlzIcvOK4+2Gz+vyhWp5IvNKzJ1BTe68iVMoUIb32c4xjwNz\nzRD1WmKUntURarY+QaUqMtOAnJWVhcmTJwMAunfvjtLSUlRUyF+vVS0mkwlLHhiFNx4Zy3zbvpqO\nxwwInAs43ANyr04p6NslteUFmnLFBaOMLHd8DR5y2V8zxP9YEq3dNLqLqp/3isglX42E6aNuQUEB\n+vXr5/w5NTUVNpsNCQm+5/ylpMTBbNZ+nc7WrROdzWNWqzJ9rv/403jc/sSXbq/Nu+uqgH8jd5C1\nEt8lQsV1Xj3L37ltkmLHBwAGdG+NQ9kFim0fUO78UlO0xaz491B6+xaL2Tkgr2uHVujZJRUj+rRh\n9rme23EE/aG90/GnXw/BzGfWu/0+LpbtiHKW+++umwdgeP92mPfPHwAAiQnKNr9375KGycM74dtd\nOYiMMEn+Liz3gdkcqcq1q+jdNdg82uJidosnyGGzlSvaXxXocwPJK5CXdjLY9qUoqaj1eu2RaYPw\nyuoDzD/Ls/yThrRX5Ds53DS6s+IBWcnyA0Cfzik4JjKdZ2JcFMqr6kN+f0ODXfHvofT2a2obnM2h\nu45cwpIHRzP7XKs10Ws7jiQ/sVGRqKuu8/qb6urQ938wv5vam/n+q6lque4rKr3vASzZbOWoqW3a\nH/ZGQdJ38XUM5KivZ3vO+wvuTKNQeno6CgpabmiXL1+G1apep/nhM4WqfRZpMbB7miqf4zroRwnB\n+kYnDemAqtp6ZB3JV7Qccgy+orXogCwmGAPSspOF6rWHx6qTntXlM/qqMGWsV8dW2H40Hx3SfbcW\n+nrQleKu63tj7MB2TLYlVUJsFCoYPmDwQJfrIY8ZMwYbNmwAABw5cgTp6el+m6uV8PKn7GtpxF1S\nvEWT1gQedO+QhDuv6611MQLq2iZJ8c9Qsg85ITYKSXHKJwQRhJZMYGosnnDndb3wh9v6Y9JQ333F\n+04p2zKjpkEqPaCrS4eDuoYMGYJ+/fphxowZ+Nvf/oZnnnmG5eYJByJMJsyfOcT5s1I3s3at+cti\nZeJuYpy3+NjQHpbkTMMxwqCulCR1pyHFWMwY2isdkRHKBn811ud2Pfq+Uulm/oLmj0vFvKozd+5c\n1pskHOvRXpka2Zj+PkagazzK2mQSH4ziY8yorBGfzUuqjNTQ5ojKGVlsMes/n5BrLZwG74vj+hAe\nH+MdQozYgqbLJmu9ohWMpFNq38X6uNB5ILZyeNOYrsoURKZQ51/6YoAKsjsOrn897VPXMSNipmY+\nf9/IoO/p3y016Hu0QAGZSPLUrKGKf4bZpYak1HnqqxbGwX1T9I0zxqLutL5Qijfjmh7olCF9CocR\n5scLgqBpELzremXGIgzopkz/rWvLkMnl+ItpackIsv73ssfG40/TBjV9hsjyKU2XiUH0SunRu770\n68ruSfAXwzo6/929vfJLyWWkKJ86j8fe2qQ4i+gmazX69FyFUr6oKHkPCWr2IS9+YBSGMkpvOMel\nVcA1T7wWD3rjBrmPhBbzgOTv3vHuExORmuR/9ThWyitbpm2JeTgLdt5YoiKd75k6qjNaJ8fg3hv7\nSiskY1RDFknOjS9a5g1KrDapcXjsDnYpIWdM6sFsW6Ea2TcDANBKoSXyXJ9IHSsZtdd4oNcVHZM5\nfEwQT25mKjUryNZWscwGCblmyzNH8vXIFxsd+j3I371DrQcl1z5ipVpLMlLisOTB0ejdWf+rmIlh\nmICs5sAZ3mgx6nXG5Ctw/VWdnDfLcYPaMt2+6/PVH381CH+75ypZzaxyvfPERERGRBhihLHcr6D2\nPkhJjJb0MPaX3w5z+9m19iigZQCcUg+VYsjdo79RcWRztEs3DKu0o7xfVVRDFkmVZALEKSnOgmkT\nezhHq06bqFwtPcocodg0qDuv7RXS+yIYBKHrruokexssyL2JanHz/Os9V+GX47t5vZ4WoIm2a1v/\nMwAEoWm5x9vGdcO1I/g4Lg6TRC7eYG0Vw/yBOBDX48+qhhzKgC8tqdWHzOdQVilC3F/d2yUh2hKJ\no2ebshndPZXdIvGhqvNYVnHBXcPwf+/tZrb9BXcNQ6yKOacBID6G3dq+appwZXt8sOEEgKauBFZ+\nNaE7UhOjUVvfcqynK/jQIobchwutWgl8lfuZ3w1HfnEVFn6wx+ffLLp/JHYcu+wcUNSjfTJO55ai\ndXIMWiVEq75wgj+ueeszUgMPfvK0+IHRjEvjzeTnJ1Y15FCn62lFrfqeYQJyqPtryohOuHC5whmQ\nWQ6uClWUx4IaXdokYXT/Nvjp8CXJ23xz7njnSdNFhWxNSkpLisGw3umqfy7L/rDrr+oEk8mELftz\nmW2TFbnfU7NWex+fmxAbhYRY/wMZ01Pi3ILunF8OwMHsQozqF3ilNS2JWVRGrTnh7VrHo1+XFIzo\nm4HY6Eh0b5eEAd3T0Ch3BRydUGtwpmGarEN9hLG2Un4UYtAyJHuXoUcHeaOjo8yRsKg8OE0p834z\nRPWBdqzx3Nccag3ZX45yrb4bi2FYiXEWjBnQluupW6EEueHND6xqXfMRESY8NuNKjB3YDiaTCU/d\nOQw3j+nqth+vHtAWj04fpEp5jMowATnU5xfP2qPa01IAYHgf79pfjM4DEEtpPh5Y9IKHtXUdnr5z\nGKYM74jOHoPhQg1G2bmlPl/nJZi9OXe81kWQxTV9qet9KJT+Skcebq1FudTQB/VIQ38J86D7qbC4\nh14YJyCLiKuuD/hajAXzNVewbxc+M9SQphWIQvXqH6/GkgdHKVia0HVrl4QZk67wCqChtj74m7nQ\ns6Pyc91D4dn1ozcL7hru8/UEl/EYwXLFa90Q49r030pCfvSeHZIxc0poAyuVMvvW/kHfo1bLvIEC\nsrQ9puYJ7Zi60cHHiOEoA+QHNiJzZISo2khcTBRaJ7cMyolpHlynZc3Z8xx3nY8rRbTOAyEvkuNb\nplu5dgP0cZl7m+ZnEYxRzbnebxvnPfJcTa0SovHXe67C7Fv7o3s78Q9q82YO1XxAV0gzOFSquRlm\nUJcYrjdHOaveiPWX3w5DaWUdkhO8P5PFtBoizeO/vhIlfhZdF3NY3nhknNdrw3pbce5SJ4z2tViG\nSlifWjz3j+uVW4XCdff62dc92ifj7ccnKL56VCjat473mid+5RWtDbWkJI2yFknMDrtmaAecPF+C\nW67upurNxRIVCWsrP1Ma6B6HtKRo3H9L8OYj1gJlAxJzesT5WBAjMiIC06/RdroT63NcTFYploz8\nHJBbUOnzdc+GlV9PvsL5bx6CsT/9u6YaKyBTLmtxxCQGiY+JwmMzrpQ9spklIyxpJ9ed1/VGDxVy\ncQdyVXNKUAe+EixKw/Ib/GpCd/Ts2IrhFqUJFpx5ntbki2s3R0piNKytYnzOkXbNW88zXgb+sUKZ\nukTSYrQ0S9QMCJg5uIjvv7kfls+7puUF7YskG8uvMHVkZy7O1Sdnuq9q9ofb+mNor5ZFKDg4lUSJ\ncUtHGYHFD4zGbePcW/CCDfDiCc+1d08cnM5OYdlkTUioUnz09+sOT3ccGVy/hWdLytBe6ejVKQV7\nTtgAAIN6tFaxZOrQU6UjKd73QEiTqele7fi/XhSU1qjyOYYJyDV19uBvIpp65q7heO69XVoXQ5SR\n/TKCv4lznuFYTzd2MVxrxVpkepOia9sk/JxX5vf3rsfOtQWAd638PMgue2w8GhsBe6OAmjr9LAjU\nwarOSnP6aVcIwt/B/cNtA3y+TtQnd7qNmq4e0JSsvxcH/aVyzQpxAQ3uBa3p668l4Kk7h+LNueP9\nfjXX1389Wb0VneTqlJGIB27p5/V6lDkS0ZZIxMWYVVm7mRWWee4DMUxA9jdXdGB3SrihFzzV2+66\nvjcW3T8SvTrpP4uQ5zxLnvazGEHDsf7iMSJMJkSZIwNMvzS5vFedMrEyoo8+Wpf8jYlw7ddXayCj\nYQKyXm8yhE8RESakp+ugW38AABIuSURBVPh+Kh6j4ZxiJfE+Fz5Y8XgvfyATBrcP+h6j5Krnjb+z\nZumj6qdmNUxA9hWRpwzvqKvRfkQf7r6hDxY/wEd6TF+euWck/vLbYf7f4OfpNTGupZXpGT9pHbUU\nbHS3juMxIiN9F97xndJbxep+wRVuhXDeqFXhM0y08txhGSmxmDHpCj12KxHOmUwmbpL7+zKsTwa6\ntpW3BGfnNomYMLgdoxKxMbxPOlISo3H/zd59k4C+A7K/+e6O7xRSekciieNaTnJJZaoVwwRkL81n\nso6v0bBD3Q7q8LefPV8f79GMeuUV2k4lSoqz4KU/jPFK3uLAw/xo1hyDidJ0NABKb+JjovC3e67C\n8/eO9P8mSp0pjudUDselacSLlGhPz4uB+L0kmq+hK5oz2Hm+T+tFAIIx4qU+c0ovdM5IxIQrg/cx\nE+l4aYHQ712FEA3pKWuSp6Q4301zjiXm/K1MFcX5dzZCmlNPCbFRuH5kZ8RGG6bupCsDuzet79wh\nPUGVzzPMUfbMdWDEp2VCWBrQLQ2HzhSG/H7ek6TQNU9Ym31rf1ywVaJbO3ljMkLF9yOvDEZvqvZc\n7owQsaaO7CTq/dzXkHV8zeu46IZmiYpULRgDRg7IWhdAYYGWDNTKpCEd5G2ARnWpSs8BjBAlaF3R\nMUxAVmu9Sl6Y/cxb1JLrWq1Ef+yNjQCAxkbf11J4XWEkHF2hcapcwwTk85cr3H6mh38NyN3ndMw0\nVV3btEDLyQulAKgGTcJPvy7aplo2TECuqKr3eIVuJmqTs8evvKK1IRZyMDK6oohYWs9dF8tfxjS1\nGCYge9Ljw/24QXxlRlLTnF8O1PVUIt6xyPNMTdbK6WBNwOAerXHvTX21LgpTemtl0bq0dAfkSFxM\n6LPQeJxzKebiy0iJVbAkxFOvTk2tDz2ak354evrOALmvieIiIkz4468GYlQ/Yy5cohd9OqfA2ipG\ns/EwhpmH7Bmf+AtXoTOZvOdVe0qI4zeXciiotqUuRyY71+vC9flJzakdJHzo7T5siYrE4gdGa/b5\nxq0h6+1MAJxRKpT5nmJq04Q4BLosejfXons6UmeqUB5CSAvJAXnnzp0YNWoUNm3a5Hzt+PHjmDFj\nBmbMmIFnnnmGSQFDZqQql5874XN3jwj2Fv0w0vHSAWeLi4huBc9DpPtzjhDOSQrIOTk5WLFiBYYM\nGeL2+sKFCzF//nysWrUKFRUV2LJlC5NChotgc6nbteY7ub8Yw3qna12EsOKMxy6v+RuHEOpqUIQQ\ntiQFZKvVijfeeAOJiYnO1+rq6pCbm4uBAwcCACZOnIisrCw2pQwTtfVNiRnqmv9vZLeN66p1EcKL\now85QDXXc1Ce51tpgQMiGjWriCIpIMfGxiIyMtLtteLiYiQltQwMSUtLg81mk1c6EYZ61Lh4HIUc\nTK6tIuDv9fidHB68tT8A4MmZQ/D7G/ogMsK4wxd45LN263E6OZb4mzjEe6m/v/x2mHMhd0KIMoI+\n8q5evRqrV692e23OnDkYO3ZswL/zXJ/Yl5SUOJjNkUHfFwqrNdHt56ioCK/XfL2PJ/26t8ap5ixJ\nvrR2KXtiYsuC5Tx/J4epY7sD8F9WPXyHYHj6Dp5lcVxnFovZ+bsGU9NDUWx0JKzWREy1JmLSyC6I\njmp6b2VDyzU8YqA+1uNd+OBo2O2C5sdC68/nRb295RxSe5/o8RgEDcjTpk3DtGnTgm4oNTUVJSUl\nzp/z8/ORnh64n7C4uCqEIkpT39AIm63c63Vfr/GiuroOABAdFYnaervX7wsKWspeUVHr/DfP38kh\nWBn18B2C4eU7WK2JXmWpbz6f6uvtzt+ZATw6fRDaWxN8lr24qNL5b16+WzBtk5seVLUsr6/9H64s\n5paWMDX3Ce/HwN/DArN2w6ioKHTr1g27d+8GAGzcuDFoLVpJv5rQ3fnvlMRoAPyv50qIUhwDBj37\nkPt3S3NeH4Swpt9ONm1IGqWxefNmvPvuuzhz5gyOHDmCDz/8EMuXL8f8+fOxYMECNDY2YtCgQRg9\nWrsJ1j3atWQk4nFlpEDCbeUqooLmU0pfVwLRO51lztScpIA8YcIETJgwwev1Hj16YOXKlXLLxES0\npaVvuoM1AbaSGliT+U7X6By05Sce07lNpHKeUmLukHTCEaKqsJjH8LupfdD3aD7GDmyrdVECCxyP\nCZHMMcaSaiyE8CssAnJCbBQmDe2gdTFk09vKKYQnjlzWdA4RwiuaDKpT8TFNc0Jjo9lMGyPGFsIs\nREKIxsKihqwXjrpLKDfPK3u2xi/Hd8OwXpSCkgQnIZU1IbJRq544VEPmifPcDR6RI0wm3DCqCzJS\n9Zvf2pERijJAKS+1eWpTqwSa4kQIryggExIGfntdb9wwqjOmTewe/M2EMNIpPUHrIugKBWRCwkBS\nvAW/HN/dOfaAEDX8YnhHrYugKxSQOeIYAUsDcAghRmCOpBAjBu0tjoTb+Icw+7q6Q8eHEHVRQCaa\nC2VlMEIIMToKyEQzlKSCb8nNI7Lb6HgkPyF6QvOQOWSECuPEK9tj075crYtBZEiIjcKSB0YhKd6i\ndVEICQsUkDlicuay1n9EjgihQ7ykeU3nypoGpYtDJGrdiu8FWQgxEgrIXDFOE67JBPTokIzTF0r9\nvudAdqGKJSKEaGHZY+MpY1eIqA+ZKMME3HNDn4BvGTeoafWtyAi6WAkxKktUJKLMFGpCQTVkHgVo\nsY6NNuOKDsnqlUUiE0yIMgde+MLa3BzavT3/34cQQpRGAZkjzsUlANw9tQ+Wf33M6z1vPDJWF80/\noRRx0tAOiIwwYUSfDOULRAghnKN2BI64BrGrB7b18x7+gzEQWkA2R0Zg8rCONIqXEEJAAZkrJ8+X\nuP389/tH4rm7R2hUGnlojjEhhIhDTdYcOZ7jHpAzUvSbkKFjekLYpQIlhBA5qIZMFNEpI8G5zvHo\n/m00Lg0hhPCPasiEqemTe+KrH84gPSUW5sgIvPvERN30exNCiJYoIHOkdXIMCkprtC6GLLOu74Pr\nhnVw/kzBmBBCQkNN1hyJjgo8b5fwpXVyjNZFIIQYCAVkjjQaYVWJMEKVf0IISxSQOULxWF9oahch\nhCUKyByxRNHhIISQcEURgCPXDOkQ/E2EH1RBJoQwRAGZI1RD1heKx4QQligCcKRv51QAwLSJ3TUu\nCQkJjeoihDBE85A5khRv8ZlIY1S/DMRG06HiDYVjQghLdJfnjK9EGvfe1E+DkpBgqIJMCGGJmqwJ\nIYQQDlBAJkQiSgtKCGGJAjIhhBDCAQrIhEjkWj++7+a+mpWDEGIMkgZ1NTQ04KmnnkJOTg7sdjse\nf/xxDBs2DMePH8ezzz4LAOjVqxeee+45lmUlhCuuLdYj+9Kaz4QQeSTVkD///HPExsbi448/xsKF\nC7Fo0SIAwMKFCzF//nysWrUKFRUV2LJlC9PCEkIIIUYlKSDffPPNePLJJwEAqampKCkpQV1dHXJz\nczFw4EAAwMSJE5GVlcWupIRwhwZ1EULYkdRkHRUV5fz3+++/jxtvvBHFxcVISkpyvp6WlgabzSa/\nhIRwigZZE0JYChqQV69ejdWrV7u9NmfOHIwdOxYfffQRjhw5gmXLlqGoqMjtPUIIawmmpMTBbI4U\nWeTQWK2JimyXBBcu+z49NQ7nL1cA4O8781aecEP7X3t6PAZBA/K0adMwbdo0r9dXr16N77//HkuX\nLkVUVJSz6dohPz8f6enpAbddXFwlocihsdnKFds28c9qTQybfd9ob3T+m6fvHE7HgEe0/7XH+zHw\n97AgqQ/5/PnzWLVqFd544w1ER0cDaGrG7tatG3bv3g0A2LhxI8aOHSuxuIQQQkh4kdSHvHr1apSU\nlOC+++5zvvbuu+9i/vz5WLBgARobGzFo0CCMHj2aWUEJ4c01Qzpg36kCrYtBCDEISQH50UcfxaOP\nPur1eo8ePbBy5UrZhSJED/p1TYUJQPDREoQQEhyt9kSIDEsfG48Gl75kQgiRigIyITJER0UiOkqZ\nmQKEkPBCuawJIYQQDlBAJoQQQjhAAZkQQgjhAAVkQgghhAMUkAkhhBAOGCogt02LAwAM7J6mcUkI\nIYQQcQwVkG8a0wUAMHloB20LQgghhIhkqHnII/u2wfVXd0dxUaXWRSGEEEJEMVQNGQDMkYb7SoQQ\nQsIARS9CCCGEAxSQCSGEEA5QQCaEEEI4QAGZEEII4QAFZEIIIYQDFJAJIYQQDlBAJoQQQjhAAZkQ\nQgjhAAVkQgghhAMUkAkhhBAOUEAmhBBCOGASBEHQuhCEEEJIuKMaMiGEEMIBCsiEEEIIByggE0II\nIRyggEwIIYRwgAIyIYQQwgEKyIQQQggHzFoXgJXnn38eBw4cgMlkwvz58zFw4ECti6RbJ0+exOzZ\ns3HXXXdh5syZyMvLw+OPPw673Q6r1YoXXngBFosFX3zxBd5//31ERERg+vTpmDZtGurr6zFv3jxc\nvHgRkZGR+Pvf/46OHTvi+PHjePbZZwEAvXr1wnPPPQcAeOedd7B+/XqYTCY89NBDGD9+vIbfnA9L\nlizBnj170NDQgPvvvx8DBgyg/a+i6upqzJs3D4WFhaitrcXs2bPRu3dvOgYqq6mpwY033ojZs2dj\n1KhR4bH/BQPYsWOHcN999wmCIAinT58Wpk+frnGJ9KuyslKYOXOm8PTTTwsffvihIAiCMG/ePOHr\nr78WBEEQXnrpJeGjjz4SKisrhSlTpghlZWVCdXW1cMMNNwjFxcXCZ599Jjz77LOCIAjCtm3bhIcf\nflgQBEGYOXOmcODAAUEQBOHRRx8VNm/eLOTk5Ai33XabUFtbKxQWFgrXXnut0NDQoMG35kdWVpZw\nzz33CIIgCEVFRcL48eNp/6vsq6++Et566y1BEAThwoULwpQpU+gYaODll18Wbr/9dmHt2rVhs/8N\n0WSdlZWFyZMnAwC6d++O0tJSVFRUaFwqfbJYLHj77beRnp7ufG3Hjh2YNGkSAGDixInIysrCgQMH\nMGDAACQmJiImJgZDhgzB3r17kZWVhV/84hcAgNGjR2Pv3r2oq6tDbm6us9XCsY0dO3Zg7NixsFgs\nSE1NRfv27XH69Gn1vzRHhg8fjldffRUAkJSUhOrqatr/Kps6dSruvfdeAEBeXh4yMjLoGKgsOzsb\np0+fxoQJEwCEzz3IEAG5oKAAKSkpzp9TU1Nhs9k0LJF+mc1mxMTEuL1WXV0Ni8UCAEhLS4PNZkNB\nQQFSU1Od73Hsc9fXIyIiYDKZUFBQgKSkJOd7g20jnEVGRiIuLg4AsGbNGowbN472v0ZmzJiBuXPn\nYv78+XQMVLZ48WLMmzfP+XO47H/D9CG7EigbqGL87Vsxr4vdRjj69ttvsWbNGixfvhxTpkxxvk77\nXz2rVq3CsWPH8Oc//9lt39AxUNa6deswePBgdOzY0efvjbz/DVFDTk9PR0FBgfPny5cvw2q1algi\nY4mLi0NNTQ0AID8/H+np6T73ueN1xxNmfX09BEGA1WpFSUmJ873+tuF4Pdxt27YNy5Ytw9tvv43E\nxETa/yo7fPgw8vLyAAB9+vSB3W5HfHw8HQOVbN68Gd999x2mT5+O1atXY+nSpWFzDRgiII8ZMwYb\nNmwAABw5cgTp6elISEjQuFTGMXr0aOf+3bhxI8aOHYtBgwbh0KFDKCsrQ2VlJfbu3Ythw4ZhzJgx\nWL9+PQBg06ZNuOqqqxAVFYVu3bph9+7dbtsYOXIkNm/ejLq6OuTn5+Py5cvo0aOHZt+TB+Xl5Viy\nZAnefPNNtGrVCgDtf7Xt3r0by5cvB9DUHVZVVUXHQEWvvPIK1q5di08//RTTpk3D7Nmzw2b/G2a1\npxdffBG7d++GyWTCM888g969e2tdJF06fPgwFi9ejNzcXJjNZmRkZODFF1/EvHnzUFtbi3bt2uHv\nf/87oqKisH79erz77rswmUyYOXMmbr75Ztjtdjz99NM4e/YsLBYLFi1ahLZt2+L06dNYsGABGhsb\nMWjQIDz55JMAgA8//BD//e9/YTKZ8Mgjj2DUqFEa7wFtffLJJ3j99dfRtWtX52uLFi3C008/Tftf\nJTU1NXjqqaeQl5eHmpoaPPTQQ+jfvz+eeOIJOgYqe/3119G+fXtcffXVYbH/DROQCSGEED0zRJM1\nIYQQoncUkAkhhBAOUEAmhBBCOEABmRBCCOEABWRCCCGEAxSQCSGEEA5QQCaEEEI4QAGZEEII4cD/\nA6DIhFKNU60xAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "-IaEn1_CSFaH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "On this plot, you can clearly see the yearly periodicity of temperature.\n", + "\n", + "Here is a more narrow plot of the first ten days of temperature data (since the data is recorded every ten minutes, we get 144 data points \n", + "per day):" + ] + }, + { + "metadata": { + "id": "ujopojEWSFaJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "83146a8e-8f1b-4ef2-a53d-0dd1569f6c3d" + }, + "cell_type": "code", + "source": [ + "plt.plot(range(1440), temp[:1440])\n", + "plt.show()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXmAG+V5/78zuncl7b1e7/q+wWBs\nY3MbzJmGAKFJ3NAQp4QkbZrWaX5JGhLShqQJLU0bmgNSmqM0TSAQp5D7IAFMHDA24Avf9vpc732v\nVuccvz9m3pG0klYjaUYz0j6fv7Szs6N3pNl55rm+DyfLsgyCIAiCICyFt3oBBEEQBEGQQSYIgiAI\nW0AGmSAIgiBsABlkgiAIgrABZJAJgiAIwgaQQSYIgiAIG+C08s0HBiYMP2ZDQw1GRsKGH9cu0PlV\nPtV+jtV+fkD1nyOdn7m0tASybq86D9npdFi9BFOh86t8qv0cq/38gOo/Rzo/azDcQ/7nf/5n7Nu3\nDxzH4f7778eqVauMfguCIAiCqDoMNci7du3CmTNn8PTTT6OzsxP3338/nn76aSPfgiAIgiCqEkND\n1jt27MBNN90EAFi8eDHGxsYQCoWMfAuCIAiCqEoMNciDg4NoaGjQfm5sbMTAwICRb0EQBEEQVYmp\nVdb55lY0NNSYklzPVcFWLdD5VT7Vfo7Vfn5A9Z8jnV/5MdQgt7a2YnBwUPu5v78fLS0tOfc3o+y8\npSVgSjuVXaDzq3yq/Ryr/fyA6j9HOj/z3z8bhoasr776avz2t78FABw8eBCtra3w+/1GvgVBEARB\nVCWGeshr167FypUrcdddd4HjODzwwANGHp4gCIIgqhbDc8if/OQnjT4kQRAEQVQ9VafURRAEQRCV\nCBlkgsjCgVND6KtiLV+CIOwHGWRiRhCOJvC/vzmCZ/7Qmbcdr380goef3ocvfe/1Mq2OIAjC4mlP\nxMwklhDhdHBw8OV7Hnz+jS5s29sNALhwfiNWzG/I2EeWZWx9sRMHTg0BACajAiRZBs9xZVsnQRAz\nF/KQibIiyTL++isv4d9/uLds7/nG0QE8u/2U9vP5wcm030fjAp783TG8eqgPv9l1Fl0Dyd/3DlHY\nmiCI8kAeMlFWzqvG7ui50bK8X8/QJB599k0AQF2tG2OTcQxPRNP2eWH3efz+jS7gjcy/P9Uzjvbm\n2nIslSCIGQ55yERZCYXjZX2/nYf6AABNQQ/+5k8vBgBMhBNp++w9Ppj28/oVrfjTDQsBAPs6h8qw\nSoIgCPKQiTITF6Syvt+bJ4fh4Dl84d7LIanFXJORBHYd7sPvX+9CQpBwpi8podcQ8OBDt18IB8/h\ntSMDeP1IP/qGw5jVWFPWdRMEMfMgg0yUlVSDLMsyOBMLpibCcZzuGcfSufWo8TohyTI4DhibjOP7\nvz2Kyaig7Xv5hbNw141LAQBOhxI4umndHPzPr49g34lB3HLZPNPWSRAEAVDImigz8YSYfG2yt3zw\n9DBkABcvagQA8ByHYI0bJ7vHMRkVcNkFrZg/SxF5X7O0GXW1btTVurW/v2RxEwAKWxMEUR7IQybK\nSqoRjsVFeFzGj99k7FcN6cWLmrRty+fVY9fhfgDAlSvbcPGiJpw4P4alc+oy/r7O78HC2QEcOzeK\ncFRAjTf3v8uxc6OYN8sPr5v+pQiCKA66exBl43evncP2/d3az9GEiGARxxFECY/99CCWzanLGko+\nenYEj//qCPpHI2it92Fua3Li2NplLdh1uB81HicuXNAAnuewbG59zve6ZHEzTvVM4G+/+gfcdcMS\n7f0EUcL2fd24/MJZ+PG2Tq3HeX5bABctbMQdVy+Ey6kEoEZDMbyw+zxuXNuBOr+niDMmCGImQAaZ\nKAuyLOOHzx9P2xaLizn2np69xwex+9gAdh8bwM3r52bkoR955k0tP/yWy9J/v35FKxoCHjT4PXA5\n83vn61a04id/VHqYn3rhBI53jeG9b1mOF97ows9fOY3vP3csbf8zvRM40zuB14704zN3r0Wgxo2v\n/mgfzvaHMDgawV/esbKocyYIovohg0yUhUgs0/hG40KWPfOz+9iA9jqekOBxJw3r0FhUM8YfufMi\nrFvRmva3HMdh6ZzcHvFU2ptr8cUPXo5z/RP41s8O4Y1jA3gj5f0BoCnoxdI5dTg3EMKd1yzCo8++\nif6RCP7fIy+n7ffqoT7csHZOzuHkBEHMbMggE2VhNBTL2FaMhyzJMvZ1JvuGYwlRM8jxhIh/+M5O\nAMBbL5+XYYyLpaO5Fh3NtVi5oBH/8J2dWh/zjWvn4O5blmXs/58fvw6/3nkG+zqHcKZ3An6fC+9/\n6wp845k38aNtJ3DF6g4AQN9wGPs7h3DlRW3w+1yGrJUgiMqFDDJRFiajiYxt0SIMcv9IJM3bjqlV\n25GYgB+/1IlYQsScFj9uWje3+MXmIFDjxr/99VXYtuc85rcFsLgjsxAMADxuB+7csAh3bliE412j\nqPN70Frvw5qlzdhzfBDvfeA3WNwexB5VkKSzewwffvtFhq+XIIjKggwyURayhaxjicIN8snusfRj\nqEb9F6+cxou7zwMA7rh6ARoC5hRPuV2OgnqSU8Pjt121AHuOD2J8Mq4ZYwB48+QQDbEgCIIMMlEe\nsuWLC/WQRUnCd35xGACwckEDDp4e0Yz6qZ5xbb8lWVqY7MDC2UHc/95LcbhrDOuXNaO1wYfv/PwQ\nXj3Uh4GRCKmBEcQMh4RBiLKQzfgWWtTVeV4xui31XixVW5X6RyPoHQ6jR53K9Om716Lexq1FS+bU\n4d7bV6KtsQY8x2F+m1LglSrfSRDEzIQ85CpjMppAV38Iy+dlzvu1kmwGudCQde+wYnRvu2oBomoI\n/Ns/P6T9fvWS5ml7iu3IAtUgn+6dwGUXzLJ4NQRBWAkZ5CohFElg34lBfPeXSkj3gXvWa96XHYjE\nSg9ZD4xGAAAtdb6MEYoAMG+WP2Ob3ZnbqnrIveQhE8RMh0LWVYAky/jo17ZrxhgA+kbCFq4oHUmS\n8VNVXCOV37/eVdBxBscUI9xc783aJnTBfHtFBfRQ43ViVoMPZ3onIKvTqAiCMI7t+7rxta37IErl\nnTRXDGSQq4DhsUxvcWg8c5tVhKd4x94UIY9B1evVw+BoBA6eQ2PAC7/PnfH7SgtXM5bOrUc4JuDA\nqWGrl0IQVcfjvz6CfZ1DGMpyn7QbZJCrgNFQPGObnUKg8Sm5Yr/PhTVLmwHof3CQZRndQ2G01PvA\n8xxmN2VWJJs5ytFMrl+jCIXsOtRn8UoIonop9yz2YiCDXAXsP5k5HnDfiaGi+nzNYOo6HDyntSZF\ndOaRh8aiiMQELU/s8zjx+fevx3Wr241drAXMaakFAAxPZKqZEQRRPKlpoGgWLQS7QQa5wpFkGb9+\n9UzatmtWzUYsIeLE+bEcf1Ve4on0J1Oe5+BVxy7qlc880xcCgLTJTfNmBbB2WYvyurXyCroYLqcD\ntV5nVnlRgiCKJzVdNjV1ZkfIIFc4w2NRiFJ6MdC65YqG85EzI1YsKYO4kOkhs7nBerz4s30TePTZ\nNwEAS6bIVV68qAkfufMifPyu1Qat1hqa6rwYHItWROEJQVQKI+PJh9xs8r12g9qeKpyuwUkAwJ9e\nuwjL59aj1utEY9ALDkCnjT1kNhAiX+vT0bMj+PIP9wAAmuuSgiCpGDVEwkrmtQZwti+E3qEwOloq\n19snCDsRiiSN8KmecVy5ss3C1eSHPOQK5w97uwEAc5prsWxuPTpa/PB5nJjb6seRs6P4r58dRNji\nJ0NW1HXtJe2Y1+rH+996gVZpPZ1alyzLePTZA5BlZcThJ969umr1nuenCIQQBGEMCTHpDJwfmLRw\nJfogg1zBCKKEw2dGUOt14uLFTWm/e9fGxXDwHHYe6sNTL5ywaIUKMTVkPb8tgM/fexnmtwXgciqX\nXmKaysfRUByhSALL5tThoQ9fUdVazyvmKZ7/d395GN2D9r9xEEQlkBqds5M2Qy7IIFcwu48NIJYQ\nsXpJM5yO9K/yokVNeOT/XQung8cf9/dgz/EBi1aZ/KdwO5NrZOudziCf61cKuVbMb4CDr+5LtaPF\nj+VqOP7gaepHJggjSIjJlNhYKA7J5uI71X2Xq2JkWcZjPz0IAGhp8GXdx+NyYPNblgEAHv/VEYxY\n1FbDQtYeV1IQxKUaZEHMbZBZDnxRuz2nNxnN3Tcr39X2fT1U3EUQBpBI8ZBFScZkxN6FXWSQK5Tx\ncPLCWjCNZvWGVe1425XzEYok8PrR/nIsLQPWkO92pXjIzvwGmbVtLe4Imrg6+9DeUgu/z4WugRB+\n9epZq5dDEBVPYsr95X9/e9SileiDDHKFsueYEoJubfDh4kVN0+57/ZoOOHgOz7/eBUGUMBlNlLXn\nlXnIbmfSQ3Y6lOKshJA9hCRKEk52j6O9uRa13kzd6mqE5zj87TsuBgD8dPspHD1rj7Y1gqhUWErs\n0uWKXsHxc6NWLicvZJArlM5uxXvc8s5VeSUjG4NeXLu6Hf2jEXzmv3Zgy1e34+OPvFw2bVcth1xA\nyPq/f3kYsYSI1vrs4fhqZdncerztyvmQZBn/+uQeHKJ8MkEUDYvOXbe6HTUeJwK1mRr4doIMcoXS\nNTAJp4NHW6M+g/XOaxehrbEGQymN8g//aK9Zy0uDVVkXErLefXwQALBqyfTefzVy54aFWm/1c6+d\ns3g1BFG5MA/Z7XTA5eKnLSK1A2SQKxBJktE9OIn2phrd1cc1Xhc+/d61uPvmZbjnrStQ63WiZyiM\n146Yn1fWQtau1JD19FXWC9W8+IZVs01enf1w8Dw+cudF6GiuxZEzI7a/iRCEXUmozoDLycPtJINM\nmED/aAQJQSpY0SlY48aNl87BtZe04yN/quQqn/zdMdPn8LKQtSel7SlfyDocE+BxO6q+3Wk6Vi5s\nRFyQ8Ps3yEsm7ElCENFv4/5eZoAVg+zImDxnN2bu3a6C6VL7c+e01hZ9jAvmN2D1kmaMTcYxPpk5\nvtFIsnnIPM+B57iMKkhGOCqgxjOzlV2vX9MBj9uBrS924ru/OGT1cggigx+90IlP/9erOGbTYqlU\ng+wiD5kwg64B1SCXqHnMDLrZylDZ2p4AwOt2ZGhZn+ubwC9eOY3BsShqvTPbIM9qrMEn71oNv8+F\nlw/0Yljn7GiCKBcvH+gBAOw42GvxSrKjGWSHErKOC5LpEcFSIINcgTBN1lINcnuTYpDPm22QEyKc\nDi4j/FzjdSIcTWpZ949G8JEvv4Bn/nASAFBn84rIcrC4vQ5vvWIeAOBk97jFqyGIdJgmvSTZz8iN\nhWJ49VAfACU651IjdNNpH1jNzHZBKoxfv3oGp/tDeOPYAGq9TtT7SzNY7c2qhzxkbg4olpDSepAZ\ntT4XetSHgVhCxH+pymMM+/2LW8Nc9cGrayBUFZOtiOqBGWIHb7+hL1/98X7ttcvBa3UrcRuHrckg\nVwhjoRi2buvUft64piNv/3E+ZjfVgOOUMLGZxAUxI1wNALVeJ+KChIQg4ZUDvTjVk+4B/umGRaau\nq1Jg0qhDFLImbAabxc7b0CCfSZmc5nLyKa2W9n3UJ4NcIZxUjZXLyWPN0ma8/ZqFJR/T5XRgcUcd\nOs+PoW8kjFkN5kxTiifEtIIuRlANSY+FYjhwcggA8A/vvwzHTg/jlvVzbflPbgWNAQ8AlE3IhbCW\np184jtlNtbj2knarl5IXNqzB7t0QPM/BpaoDCjb2kO39KVYJbxztL7iS+WzfBF7Y3aUVIOw5pghl\nfOFDV+LDb78oY7pTsVx1URtkGTh0yjxFqHiOkHVzneL5dQ1O4uDpYbQ2+HD5RbPxJ5fPI2Ocgsvp\nQFPQiyNnR0lOs8qJxAT8dtc5/M+vj1i9FF2INswdA9nzxE4dA22shgyyyRw+PYxHnz2QoYrVMzSJ\nX+44ndNQf/7x1/CD547hXH8I4WgCuw73oaXei5V5dKsLhQ2m6B40L48cF0R4soSsW+q8AICf/fEU\n4gkJlyxuNm0Nlc7qpcpnUyk3aqI4UieyCaKEibAyE9yusByy3Yq6pnZvACliRDY2yBSyNpnekQgA\n4GxfCL/eeQa3rJ8LWQY+991dECUZ2/Z04563rkA0LuDS5UrBTjia/Af8/OOvaa83ru4w3HOc3agU\ndj2/uwtv37AQfp+xgxxESYIgyllD1s2qTvVpNdez4ZKZp8qll3ffsASvHOhB30gEIxMxNKhhbKK6\nSB36MhqK4VP/uQMA8N+fvsGqJeVEECUtH2u3caGDY5GMbcwgizbOIZOHbDIHU0LBW1/sxMFTw/i7\nr/9RC/UMjUfxlaf34tFnD2h9pjvVUv2pbDAhp+RxJw3l70zQTdYGSzhze8iMtkZzctjVgNPBa0Vu\ne48PWLwawixSPTu7t7ml9sXbLXT9T//zuvaaPbw6neqEORt7yGSQTWR4PIrdx9Jvnj947hgiMaX3\n9qPvWpX2Ozb/d+ehPvAch4/ceZH2u4++a5Xh3ivjix+4DADwwu4uw/MrSVGQTA+5IegBr1aK13qd\nhuXFqxUWtn7jGBnkaiVV2vH3b3RZuJLpEUQJP/njKe3n7ft7Mrok7MDKBQ34wr3K/U2T66WirpnJ\nsS5FTi6YInAxqFbK/uNfrMPqJc1plZQDo0qYZWg8hvqAG+tWtOL+zZfiix+8HKuXmJdf7Wjx48ZL\n52AyKuC/f3nY0GMnZTMzLzUHz6MxqDy9mvWwUU001/mwuCOIw6dHqOK6SomlGORO9QEdsF8h0vb9\nPXj1YHok74vfez3H3tYxp9Wv3VscVNQ1s+nqV0Qv/uqOlbj75mXado/LgYWzgwCA996yDH+neso/\n2X4Kf9jXjaHxKEJhJY+8pKMOHc3Fa1br5Tr1weDVQ33oGTJOuSubjnUqrJXaO8N1q/Vy9UWzIQPY\ne2LQ6qUQJsBSPACQqvDIomp2YdLGhWap8ClaDcmBNvYKr6dCBtlEmOb03FbFA71l/VwAwPoUtSWn\ng8clS5rRXOeFKMlaFe0F8xvKutY5rX6841olR3m61zihEBay9mRpewKS0YPLSIFKFyvU6+JEivdE\nVA9xdVzgVOWrSJaqYStxZakJAexX3LVkTp322sn6kG3sIRvmljzzzDP42te+hnnzFN3dq666Cn/9\n139t1OErAkmSIUMGz3H43m+OYH/nEOr9bi1k8mc3LMGqxU1Y0lGX8bd33bgUjzzzpvbz+992QdnW\nzVjUrnjtfcPGtUBNF7IGgA/ddiF2HxvEzevnGPae1cysBh8CNS4cOj2cU3CFqFxiqoc8u6lWe6AH\ngKjNPORcBrl/JILZTeZH9PLhdvGIJySsWdqibWNKXXYu6jI0TnjrrbfivvvuM/KQFYMsy/jXJ3fj\neFe659Kaon7FcxwuXNCY9e9ZCBsAls2pQ7Cm/IMVWBsSy2UbAbvB5DIcrQ01+JPL5xn2ftUOx3FY\nv6IVL+w+j87u8bJHUghzYQ+wwVoXkFK7Z7eQtStHAWZqyN1qmMYCg4q6ZhBHz45mGGMAuPUKfcam\nIeDRwlRtTda0/zCJxlRxglLRPOQcT9RE4SxWIyznUzwoojpgKZ6pRY6P/fSgvaqYc8ghCDYIWcuy\njIQgZXjxjpkUsgaAXbt24QMf+AAEQcB9992HCy+8cNr9Gxpq4MyRWyyFlpZA/p0MZHA0gi//cE/G\n9i99+CpckhIyyced1y3Gjjd78K6blk97DmaeX63XiWhCMuw9PGeUSvOmxlrdxyz392cFpZzjxcsk\nAIcwFIrb9rOy67qMxIxz5FUvrnVK2HdsMo6vbt2HJ794q+HvmYvpzs9Xk12YJhDwWf7dC6IEWQZq\nfe60tTQ1KLUxXp8SfbR6ndkoyiBv3boVW7duTdv2tre9DVu2bMHGjRuxZ88e3Hffffj5z38+7XFG\nRoyXa2xpCWBgwNzpRVP5zc6z2us7rl6A61Z3YGg8ivZ6b0Fredvl8/A2NXyb6+/MPr9arwsjE1HD\n3mNoWB2vGI3rOqYV31+5KfUcPZxSoLL/+AD6+8dLnvplNPQdFs/YhNLOlu3GLEly2T7XfOc3Mpr9\n3j0wFMJAwNo55iy8L0tS2jmEJ5XI36iq4mXlNZrrYaAog7xp0yZs2rQp5+/XrFmD4eFhiKIIh6O6\ni07+9zdHsG1vNwClRem61R1oCHgqVtrQX+PCUG8UsiwbcqNnIetcVdZE4bicPC5a2IS9JwYxMhFD\nY9Cb/4+IioDlYAM1mX35dX773FNyyU+KNggHs6KtqSHrGVXU9e1vfxuzZ8/GbbfdhmPHjqGxsbFq\njfFrR/rxnz85kLZt7bIW/O07LrZoRcbh97kgSjLue2wH/ukDl8HrLu0SieXpQyaKY1F7EHtPDOJM\n7wQZ5CqCPcDWZhHKqbFRr36uPGxCsL7HlxVtZRhk3v45ZMMqbW6//XY8/fTTeO9734vPfe5zePDB\nB406tK0IRRIZxvjCBQ3YfMuyHH9RWbAn88GxKA6fLn3UX1I6k4q6jIRVkBrZM05YT1wQ4XbyWutQ\nq9r5AAA+mxrk996yDBtWKYNh7NCHnMhlkJ32FwYx7Btua2vD97//faMOZ1vO9WXeADesardVOKkU\nar3JJ/PB8dLlGTUPmULWhjJfNchnslyPROUST0hwuxyY2+rHxzatQlOdD/tPDGLrtk7YqVQgdZhE\nW2MNnA4e2/f3aMbQSjSDPCVCWwltT/Z55KoQ/u0pZa7xpusX44oL27DjYC/WrdBfSW13ZjUkn8gn\nwtlnNReCNu2JPGRDCdS40VznxbFzowhHBdR46V+5GoglRO1/ZZU6H3xWgw9bt3XawtgxUj1kr9up\nqWDZYepTzhwyaVlXF1KKuOz65a1oCHhw6xXz4eCr52O8bnUHNl2/GAAwPlm6Xi2TAvRQDtlwrlvd\njmhcxK7D2cd1EpVHXJAyokkOngMHexmS1LCvx+2wlbFjDy7OKQaZGWg7PdhMpXosiYlE4wIEUcKe\nY4qg/9xWv6ZqVW3wPIfrLukAB+Bkd+l6yfE8Sl1E8Vy0sAkAcI4EQqqGWELMeHjlOA5OJ28LY8dI\nraZ2ObikQbaBscuVQ2b3oJgN1pgLinPlISGI2PLV7QjWujUFq9uvWmDtokymxuvEsrn1OHpuFNG4\nUFKlNSl1mUdbYw0cPIe9xwdx983L0ibbEJWHLMuqPnnm/4rTwduigpmR6iH7fa7k4AY7hKy1HHL6\n5+hRP9fUmdN2g+6SedjfOQRRkjVjfPXFbbh0efXkjHMxW5XvHCxx7u7YZBwelyOnGD1RPB63A6uX\nNGNkIoZhmo9c8QiiDFnOHk1yOThb9c8yicwt77wYNV6XrTzkUVUAZOqDjeYh22xyVip0l8zD0XOj\naT+/56ZltlNGMgNt0MRIpOiciyzLGByLoLneOyM+MyuYN8sPAOg2cIY1YQ2s3iJbNMnl5G1h7BjM\nQ17cruiqawbZBm1PnepMgalT9XiOg9vJa50fdoQMch5CKYO4Vy1uslUvoJm0qAb5id8fw1/9+zb0\nFjGSMZ6QEImJFataVgm0NysG+fwgGeRKZ7p6C6fDnjlkFqrWBjfYIKweVT3gbPcdt8tBBrmSYQb5\nP7Zcg49tusTi1ZSPlnpF/Wl4XAn/vHG0H2OhGGRZ/z/cZFT57FJ7mwljmd+mGOR9xwctXglRKtG4\nosHsdWcxyDYq6jp2bhR71OvNoXrGLhtVWUcTuTs7PGSQK5tQOAGng0cwi7ZsNdNcl15FvvNQPz7+\nyMt4/o0u3ccIqyLv1CNrHs11PiycHURn9zgSgn1vNERuJqMJxOKi5tllM8guB2+bdp0fb+vUXic9\nZBaytt5DjiVEcFxmlTWg3IvsNls6FTLIeQhFEvD7nDMuB1rrdaaF57sGQpAB/PD3x3UfIxxVDfIM\nCfNbxfy2AERJRs+Q8dPTCHMRRAlbvrodX3l6L6Ix5iFn/r84nbxtirpSb4Wsst+lhaytX2MsrrSO\nZbtn+30uRGKibR5upkIGOQ+T0UTGsPCZAMdxaKnLHFogAxjXqeA1GaGQdTlgescDoxGLV0IUyqsH\nFVGXE+fH8nrIsmwPrehUQ8de26moK5YQ4cnyGQJJrX4jVAjNgAzyNAiiUpQ0Ew0ykDvUPDCi78Y/\nNqlc9HW11s5HrXZaVbnTfjLIFUfPcLIYL6LmkLMVjjKDZwfPjnnDqdip7SkWF+HNIUTE7uVjoVg5\nl6QbMsjTwAq6ZqpBlqbkg1YuaACg/8Y/ql70QT8ZZDNpTWlRIyoLVlkNQEs5ZLvfuGw0qYhVgV9z\n8WxtmyYMYoP1ZVM7Y7D/le4Be3YlUHJvGs6oo+3a1FFoM42b1s3Fsa4xvPeWZVjUHkQonMDB0yO6\nb/zjYeWBhjxkc2lp8MHBczjZPW71UogCSVWNOnhqGACwuD2YsR8zeHbwkNkAiffcvFTb5rBJlbUs\ny0oOOUfIuk0VPOrqn8Cy9kA5l6YLMsjTcPC08g+yYl69xSuxhnUrWvH1v9ugPbH3qOITescyshxy\nYIZGGMqFx+XAyoWN2N85hM7uMU2sgbA/qQZ2cCwKB88hmOUBlnmlcRtU0id7kJMBVru0PSUECTJy\nD7NhzlVXvz313ylkPQ1vdg7B43Zg2dyZaZCB9PBZrfo6EtXXNsBC/jVU1GU665a3AgAe+sFui1dC\nFEJqT2wokkCtz5W1OthrI9lHFpZ28Ml18jwHjrO+7UnrQc7hITcHveA4oK8IoaNyQAY5B5PRBPpG\nIljaUZf2JDiTYe1LYZ19fJPRBOlYl4n1FygGWZRkW9y0CX3Ep4Sga3MUUjIDYwdRC0GSlJGQUx4c\nXA7r5T3ZtZ/LQ+Z5DrVeF1VZVxospDG31W/xSuyD08HD7eL1G+SIgFofZUXKgcflwMbV7QD0pxQI\n65k6eejaS9qz7uexmYfsyFJp7XDwlhd15TPIgBLpI4NcATzx3DF87ru7MDgWQZdahTenhQxyKjUe\nJ8LRRP4doXjI1INcPur9inbvqE1bOohMUqusAeD6NR1Z97OThyyKEpx8lgEYDs7yHPKwOpWvfprO\nDr/PiYlwoiAZ4HJBBllFECU8v7sLXQMh/HF/D7rUoe9zyENOI1jrxlgonvdiFkQJ0biYMwRHGE+d\nehManSCDXClMLdLKNlgCSOaJ2MDJAAAgAElEQVSQozbxkJ05PWRrDfLgmNIBwqbVZaPB74EkyZpO\nv50gg6ySOs3odO8EOs+PwcFz2lxgQqGl3oe4IGmiH7lgspkztYfbCthnPamz6I6wnlQP+ca1c3Lu\nxwojJyP6olNmIkqS1uaUissGBnlcvS/VT9NqOb9NaXc6cGqoLGsqBDLIKudTGsX3dw6ha2ASKxc2\nUkHXFPTKNGqTnsgglw1209abUiCsJy6IaG3w4UO3X4h337gk535slOCIDdIRuT1kzvIccnKgTe77\nzpqlLQAyZ93bAbI2Kn0jmSo5bPg7kaRFp0EOkY512Sm0Cp6wnnhCgs/jxJUr26Z9+NcMsg3SEaIo\nZV2r08FbrrXNJjn5pkmVsXuYHVM7ZJBVJiYVA/KujYu1bbMaKFw9FXYx9+dR65qMKP8YVGVdPpj2\nuJ3Hy1UK4+E4frytE+cHzZNYlGUZ8YQIj462wGCtCxxnD4MsiDIcWYq6nA4eCcFiD1nHhDmXk0ew\n1o3RkP0qreluCSUn0quKvF+yuAluF494QsLiDlI8mkpLvTIBamB0+tYaLWRNHnLZYJNs7PjkX2l8\n8tGXIYgyugcn8dF3rTLlPQRRhgzANU2LDsPBK0bEFgZZkrKGrJ0ODqIoQZZly8bVah6yZ/rPtKnO\nix4TH7aKpeo85O6BEP7vpc6CWj9+vK0TB0+PAFBynl/6wOXY8s6L0dZIHvJUGlWlG1bNmAsavVh+\nvG4nGoMedNNc5JIYmYhpudBzJkosshYmt07hnAa/B6M6OhzMRszRh+xxOSAjU+yknEyEE6j1OrN6\n8Kk0Br2IxkXbRZOqziB/92cH8csdZ/CrV8/o/pvf7jqnvXY6eDTX+7TEP5GO08GjTseTekirsqYg\nTDlpb6rFyERMC90RhfPos29qr1PlIY0mOs24xWw0BDwQREmrz7ACWZYhSnLWPmSWMrHy2hsPxxGo\nyT/MpjGoRPrydYuUm6ozyGwAQiE9ZqxXdtXiJlPWVG00Br0YmYhBmuZJnaqsraG9WRHPP9M3YfFK\nKpfBsWQ6hjPTIMcUD9mbQ3d5KvU2KOxik56yhaytrvKXJBmhcEJL3UxHY51ikO2W3qk6g8x0k/WO\nKZNlGYIko8bjxF/dsdLMpVUNDQEPREnGm51DOasqKWRtDRcuaAQAHDhpvx7LSkCW5TSD0jccxutH\n+k15r0iBHnKT6tUNjVknjcr6jLP1IVtd5R9LiJAxfUEXg32WdlO1q1qDrLdBfTIqIBYXsWxuve5/\njJkOa8H42o/3Y9ue7qz7sLAahazLy9I5deAAnOqh2cjFEE9IEEQZFy1s1Ka8ffMnB0x5L6a6pddD\nZl0fvSPW1Qiw3Hq2tifWUREKW+Mhs9y1niK5Rs0gU8jaFCIxAf/z68M4pQ5p1ysx161W2rVMI7VG\npNMY8GqvX9qb3SBPhBPwuh1wOfXdbAhj8HmcmN1ci1O9E5AsHoVXifxhn3I9n+wex723rgBgXh45\nWRGs00OuU7XKJ6wzIslZyJmfCbsvDFsUBo4XUCSnhazJQzaHc/0h/GFfj/alsIKJ6ZAkGQ89ocyP\nXTqHWpz0Upci3D4RyX5zGA/HEdRRXEEYz8LZAcTiolZPQeiH9R2vmN+A1oYaNAQ8WkTIaJjT4HPr\nM8hW52iB1FnImaZDC6lbNG2Meci59MBTaapTHDA7tJGlUjUGeWrYR085+6HTw9prFp4i8pNqaMdC\n8Yw8siSrxRW1lD+2ggVtQQBU2FUMrJ3nzmsWAlAqh82qGmb3KG+enlmGXy0+tVKrXJBye8hNqtc5\nbJFBTgj6PeQ6vwe1XieOnhu1vI0slaoxyFMT+REdIesetV/zypVtCE4jRk6kM3XgRiSW/lmHowJE\nSSYP2SJY+sWO02zszoSa/2SVurUeJyIxYdqOgmLRDLJOD9nrcYJDsoPBCsRpcsh1tW44eM6yojM2\nqMPtym/WHDyHBW0BjE/GLR+IkUrVGOSp2qWxuJj3n4hNeLpl/VzT1lWNNAa9+MrfXI0rV7YByAyh\nseHfevoBCeNptEF7TCUSjQtaRbVfNcg1XhdkmCNHqoWsdXrIPMehud6Ls/0hLTVXbrQq6yx5dZ7n\n0FTnRe9w2BKvk42y1Fu3wh6EYgkyyIaTmodh4etYHi+58/wYXE4eHS21pq6tGmkIeLRBHKkesizL\nONOrhEr19AMSxtMYVAyyVaHDSiVVIIjlSJlGwRO/O2a4IIcmDKLTQwaAS5Y0IxYXcbrXmnREsg85\nu+mY2+rHZFSwxEtOMA9Zp/KZx81mTNtHRKdqDDKf8sTWoYojTPdUK8kyuofCaG+upRGLRcKUeUIp\nHvLTL5zAt35+CABIetQifB4nPC4HecgF8sZRxTu+YH6Dto0VUr16sA8/2X7S0PdjD7LeAtotl89V\n1rbrcJ+ha9FLsg85e+X5vFZlQt6nHttRdi+ZSZF6dLaReXQ6buWkqizRO65dhAsWNKKjRbkopssj\nD49HIYgSGY0SaFaLOJ5+/oS27bnXkl7GxYtI+cwKOI5DQ8BjWftJJTIWiqFrYBILZwfx93++Rtue\nmo80+gFHEwbRaUAARU2Qg7ka29MxXR8yACxsD2qv9baeGoVmkHVUWafuF7Uo/J+NqjLIt121AF/e\nskFrUP/H7+zE1hdPZN2X5Y9nNVD/cbGwUH/XQAj96nzkueoT8uffv54K5SwkWOPCZCRBvcg6YcPq\nL12ermG/IsVbNtrARGMiHDyniRnpweXk0RD0pMl7lpPp+pCB9OjCeLi8/dLM0/XqNMhsP/KQTSY1\nJ/PrnWezhq7Z+ECaeVw882cFtAjDiJqvjMQENAQ8mDcrYOXSZjyBGjdkpKcTiNwwA8e0wBkrFzTi\ngXvWAzBeEjISF+B1OwoeVdhc58PoREy3PLCRCFLuPmS2/a1XzAMAjJd5cAPzdN0UsrYXdVM8s2/8\n3/6MDz2sDT8gacdi4TgON6+bAwAYURVvJqOCVghDWAerErZKxrDSYMZj6r0DAOa3BVDvdyNicP9v\nNCbqbnlKpaXOCxnWCHDk85ABaMWe5e6XZiFrvR4yC1nHKGRtLvPb0r2zI2dH8eOXOrWf3zw5hP97\nSSnQKOYfgkhS70/K+cmyjGhMKKhIhTAHVuE+UeawYaXCwqu5eudrvC7DPeRQNKEVRhaClQIc+XLI\nQDJCWe5Zw8zp0p1DdlMOuSzMmxXAh26/EF/+8JXattQiiP/40T7ttV5hdyI7qSPhEoIEGfr/IQjz\n8PsUw2Ll7NxKgnnIwRzqcjUeRbHLqMrhSEwZalOMLGed+hA8ZsFghOn6kBlMmztaboNcYJV1ag55\ncDRii66EqjTIgKK+1Vzvw9c+eg0AoKs/pP0zpV5KZJBLg91QRkMxTUuWDLL1JD1kMsh6GJ9MwOfJ\nPQylxuuEJMuGhTfZzZ9FmAqhXg2rj06W34Dk60MGkkIn5R7DWKyHHIuL+NRjO/CJR182bW16qVqD\nzAjUuHHpshaEYwLG1ZtT6jMuhaxLI1jjBs9xGAnFtH8IPdJ1hLkwg1zuStdKZTwcn1ZZTpv1a1Be\ntE/t8mip9+bZMxO2TiuiH/n6kIGkhzxVUtdsmOKW7j5k1vaUUl9k5eAOYAYYZABoVi/6QbU1JxWa\ngVwaPM+hzu/G6ESs4D5Awjwa/CSfqRdJljERjk/bpsdyvUa1G7G2y/amwlUC2TCKaJkNHlBYDrnc\nOe5YXAAH/Upd7N4/kjKCcazMleFTmREGuUGd0/nLHWcyfldIDyCRnXq/ByMTMe1Jkwyy9bAB7DRg\nIj+hSAKynLugC0jevB96Yjf2nhgs/T1VTyxQRK8+89YjFkg+itNMe2Kwz+rVQ32aNng5iCUkuAto\nI2NRpP6RpKM2GbFWRnNGWKOg+sHvPTGo6SwTxtFS74UoyfjS/74OQN88UsJcfB4najxO0rPWwUt7\nuwFM3/6Sek2/drh0I8O820JUuhgszWZ0G5YetHnIOnLIAPDC7i7T18SIJsSCnIFanwscB/SPhLVt\nVvftzwyDnPIU+uKe89prpipFlAYb98fwUA7ZFjQGPZYNi68kdh5SdKGnXsepuFIMUDGV0VNhLUHF\npMxYyLrcbUUAMK5WdrumMcipdTlMC9xswlEBg6ORgr4bnuNQ63Wl9UtPWtyVMCPunKmG9w/7lKfh\n5jov/vEv1lm1pKqCCQEwyEO2B41BL6Jx0bBCpGqFRdA2bVycc5/UEK2M0lufSjHIPMchUOOyJN95\nrGsUTgePebNyOzOpg37KNWBicCwCUZKxKEVLWw9TZyGXW8xkKjPCIAdq3Pj2pzamJfs5bvrCBEI/\nNVNuKpRDtgdNQesEJCqJkVAcgRrXtMbRmXLvMMLGMIOstyJ4Ks11PgyNR/POfDeaiXAcDQF33u4U\n9nBTLnlP1nKpV6WLkWGQyUMuDw6ex8LZyaene956gYWrqS6mhqXIINsDNheZwtbTMzE5fYU1kB6i\nNcLIROIivG4H+AJ1rBlNQQ8EUcZEGb1kWZYRiiQ00ZnpeMvlip51vEwGudgOj6lpislKzSHv2rUL\nV155JV588UVt25EjR3DXXXfhrrvuwgMPPGDIAo1k/QWt2uvUqSREaUzVriaDbA/YzSa1ipRIRxAl\nhGPCtBXWQHo3RrHiIAlBwk+2n8Tp3nFEYkJJLZesOrucwi/RuAhBlDNSVNngOQ5OB4+EUJ7WrLim\ngVDYvefdNyzBuhWt+OIHLwdgvbJdUQb57NmzePzxx7F27dq07Q8++CDuv/9+PPXUUwiFQnjppZcM\nWaRRsFYQwlim5pNIGMQesElcPcPhPHvOXJhBYy0wuUhNb8WLNMj7O4fws5dP45+//0bpBtlXfq1y\n1taYWkU9HW4nX34PucAUwKrFzfjInRehSY0mlXuG81SKunO2tLTgkUceQSCQHOIQj8dx/vx5rFq1\nCgBw/fXXY8eOHcas0iAWzQ6io7kWb7lsrtVLqSpqvC48/LdXaz/reYImzGdWYw04AL1Dk1Yvxbaw\nlpd8HnK6QS7OyIypUpeCKGMyKug2bNlgal0TZfTomLerV7vB5eKRKPKzKpSkbG9xzoDH5QAH4HjX\nWEZeuZwU9Yjm82W2B4yMjCAYTOZom5qaMDAwMO1xGhpq4MyhHVsKLS3ZZ/G2tACPfeYmw9+v3OQ6\nPytpaQlg49o5eLNzEGtXzi54xuvUY1U75TrHlgYf+kcjZf9MK+U7vPehFwAADpdj2jW3pCh0yeql\nXeg5ikj/n3A5p3/P6ehoU+61Ms+b9llPPW5YUArIggGvrvf0eZxICFJZrgWXWmTW3OTX/X5T95Oh\nFNs9+fwJfOLuS41eoi7yGuStW7di69atadu2bNmCDRs2TPt3esrdR0aMD6W1tAQwMFC94h92Pr/3\n3bIMkrwUg4Oh/DvnwM7nZxTlPMfWeh8OnBrG2a6RssnEVuJ36OQw7ZonUyRIQ2ohVaHn2DuQ/n+x\nYl598Z+T6q12902Y8lln+w771J/FhKjrPR0ch4mYUJZrYUi1JbFIXNf7TXeNbtvdhffdsszQ9WV7\n/2zk/Q/dtGkTNm3alPcNGhsbMTo6qv3c19eH1tbWaf6CqEaKrRolzGF2Uy0OnBrG+cFJLOmos3o5\ntkKWZTh4DqIk47arFky77+KOIN57yzL84Llj2hCDQmGDPr7yN1ej8/wYVi1uKuo4QMo0rzKGrFnu\nXG+NiNvlQCwhQpblkiJmeqgWHX3Dqm9cLhcWLVqE119X5BOfe+65vF40QRDmMr9NKbgjydhMwjEB\noiTjksVNeW/kHMfhhrVzUO93F13UNTEZBwegrtaNdStaSxLQSVZZl6+oi7V75RpRORW/zwVBNG5k\n5XTMaIO8bds2bN68Gdu3b8fDDz+Me++9FwBw//334+GHH8Zdd92FefPm4aqrrjJ0sQRBFMYCNdd4\nsnvM4pXYjyE1L9xUp7/7wu1yIFZkK89YOAF/jStNyapY/F5Fh7mcfcha4ZTOoq5yzuRmhXaldHjc\n95412utITIAsy3jjaL82VrYcFJVU2rhxIzZu3JixfcmSJXjyySdLXRNBEAbR1liDhoAHOw/1Y+Oa\nDiydU2/1kmwDG6XYXJdbw3oqHpcD40UawYnJuCE62IAiT+n3uXCsawy7DvfhsgtmGXLc6YizKmud\nXqjflzTI0+mEG0HcAA95+bwG3HTpHPz+jS70DIVxpncc33/uGK5cOQsfun2lUUudFmoYJYgqhuc5\nfPC2CyHJMp5/o3yTdyqBYjxkn9uBWFxE33AYP3rhhG5ZUiZAkq/fuRCY5/nYTw+WRTN6YlLt2dbZ\n1sgEg8oxBCOWKE4YZCrtLcp86u7BSRw/r0SVjneVL7pEBpkgqpwV8+rh8zhxtq/46vdqhBVZ1RUw\nk9jncUIG8MEHf4ff7DqLT37zFV1/x4xnPonOQmhOeZDoHjJf/IVJsDYE9Xn5HrUVKVqGuc1JD7k0\nk8b030dCMW1EprdIvfFiIINMEFUOx3GYP8uPvuGwJSP77Aq74U4djjId2cK1kpTfO2Vh7nwCJIXw\niXevxuwmRY3twMkhw46bC3YODX59BpkZskefPYCRlLYxM0gIEjiUPjCIndvoREwL0XcNTJYtj0wG\nmSBmAHNbA5ABnB8k1S5GRPXcCvGAhsYyQ9QRHR4gq4YOGOghz2qswUffpSgjliP6kayy1mc2Uj/X\nZ/9w0pQ1MRKiBJeTL7m9SqtejyTSpnqd7h0v6bh6IYNMEDOADjU31mOiQR6ZiOH+b72KHW92m/Ye\nRsJ0i70FeMhXX9yWsU2P9zSmecjGysrWqx7deBnanxJi8QbZ7LBvXJB0r2s62PjGWFxMi3zMUnXh\nzYYMMkHMAFiV60AWD88ofvHKafQOh/H1p/ea9h5GwsL3hRiL69d0aK9ZFbGePlsth2xgyBpQqoo9\n7uIrvwuBaTzrDQunzkw2spgtGwlBSptZXSwuFw8OQCwuQJCU871i5SztwcdsyCATxAyATbMZMXE2\nMpslG4okMBoyN2doBNG4CJeTLyjvyHEc3nLZXHAcsHpJMwB9wyaYB2tkURejKehF/0ikaMESvbA8\nrUNnH3VjSvGXqCPPXgoJQYLbAIPMcxzcbgeOdY2h8/w4ar1O/GWZWp4AMsgEMSNoCCjVo0MmGuRU\nw7bzUJ9p72MU0bhQVCj13TcsxbP/ejvqA4pxzechnx+cxG92ngVgbA6ZsXJBI2IJEadNVmMTCszT\nNgaSVeBmj2FMCJJuBbF8eC1U+yKDTBAzAJeTR7DGhWETq12djuSNuhwh1FKJxAT43MUN3HA4eE2E\nIp9B/s3OM9pro3PIQHIeudkFewlBLiiawPMc3nndIuVvTR7DmBAkuEqssGakPm+Uob07DTLIBDFD\naAx6MTweM01EIvVmXQntVdG4WFKxkduZLACajjO9yQpob5EPANPBemdHzW4tEgvP065foQwYKlZu\nVC8Jg4q6rKbyz4AgCF00Br0QRMk0beHUUGY5pxAVgyTLJRtkj/q38TzGhql5/ftHzNH295dp8pNQ\nhBfKlLPMzG+LkgRJlg0zyAGDC+8KgQwyQcwQGlUd5eEJc/LIUornXY4JP6UQK6LlaSpskMF04xhj\nCRHhmICVCxrQGNQv0VkIzICETG59EorwkFmhlZ7Ct2IptD86H+97y3Lttd/k6vCpkEEmiBkCMwjD\n4+aENkUxaZDjZZyQUwxaD3IpHrIrd8j6K0/tweO/OowxtdrczLYZv095qHj96IBWPGYGcUEsuJJZ\n85BNDFnHDTbIizvq8KUPXo5Vi5uw5Z2rDDmmXsggE8QMgbWhmFVpnSqkMJ3XaAeYvrKvBA/ZkxKO\n/f3r5/DinvPa7w6eHsH2/T0YDSlea71BU56y4eB5zFGFX3704gn0DBlf3CVJMiIxURsYoX9tHHiO\nw6HTI/jNzrOm1C8IqkE2ou2J0d5ci49tugQdzbWGHVMPZJAJYobAPOQRszzkFINspkdkBBEDBgcw\ng9w9NIknf38c3//tUQDpDyajZfCQAeDv3nUJbliriJYcODls+PHDseIeYDiO00L7P3rxBHYd7jd8\nbUaHrK2k8s+AIAhdsGpcs3PITgdv+xyy5iGXUPXMDHKqkYnGhbRzZ0MVzDbITXVerF3WAsCcCndm\nkGu9hedUU0civmnCEAzNIDus6x82CjLIBDFDqKt1w8Fz5uWQVc+w1ucs23ScYjHCQ842R3lkIpZm\nkM/1Ky1PTETETJj3qmfYRaGEVRW2mgJD1kC6spcZ1dZaDrnE0Yt2oPLPgCAIXfA8h3q/2/Qcco3X\nhcmogId+8Ab6Rsyf01sond1jePTZNwEAtb7iq2h9Hic2rJqdti0cTfeQXznQC0D/yMJSYA8X7GHD\nSMJRxcgXMqqSMZFS/f360QG8eqjXsHUBQEJNjxglDGIllX8GBEHopjHoxWgoBlEyvuhKVIcPsMKf\nY11j+NbPDhr+PqXyr0/s1l43ldiK1KwO7WBEYkLW6IAZGtZTYR5y1BQPWQ3xF+EhX7igMe3nb/3s\nkCFrYrC0AOWQCYKoKBqDXsgyMBYyvmdVlJMeMsMsEZJSEFLasxqzhJ0LoXFK9XQ4JmgtVYxgjasg\nycliYflwUzzkWPEe8l03LsUdVy9I2xYyUMTkt6+dA89xuHhRk2HHtAoyyAQxg2AGxIywtaTlkJMG\nuZS2onIw1aAWytI5dWgMerR5ueGooM0+ZrjLNKzA7eLBcebkkI+cGQFQXFFXW2MN7tywKG3bsIHX\n3/hkHI1BD+a3BQw7plWQQSaIGYSZ4iDJHHLSCNvRIKd6q6V6rq0NNfj3j1yNu25YAkAJWU/VlB40\ncQZ1KhzHwed2ImpClfXAaAQAMLfVb8jxjBxykhCksj30mA0ZZIKYQbSoOU8zxCNESQbHpU/IMXtG\nb6HEEyIENde9+ZZlhh2XPYSEYwImIoqHfPfNywx/n3z4PA5TQtaxhASfx5m1srwYjJzLHU8UriBm\nV6rjLAiC0MV8dVTf2b5Qnj0LR5Rk8ByHyZT8oN36kVmLzJqlzbh+7RzDjstyq+FoMoe8dE4dHvvE\nddi4psOw98mH1+M0pagrUYRs5lRWL2nWXj/32rmM0H4xyLKMOHnIBEFUInV+D+pq3TjTZ/wwe0Ed\ngfeuG5dqk5DsZpCZd2x0RS4Lzb+457xWZe1xO+B2OdKmYJmNz+1EJCamDfowgrgB4w3/9h0X44F7\n1gMA+kYi+PqP95W8roQJsplWUh1nQRCEbha1BzEyEcPgWMTQ4yZE5aa9Yn4jHv3YtehorrWdQIig\nqToZe+tLLWRjleVeC7y2YK0bkiynRSmMwIg8Lc9zmN8WQJ3aAnaqZ0J7QCoWFvEgD5kgiIpk6Zx6\nAMDpHmO95NQh8TzPweN22M5DTqgGoNAxgvnwuBxoZfn5YUUMxVOCClix1PkVY2d0W1uiiFnIufjs\n5ku11wdPlaa7zWoUyEMmCKIiaVcn2HQbXNiVENNv2h6XA4Iol+wFGUnCJA8ZAK5YOQsA0KcaZCu8\ntma1it5IzWglTysaJk3ZXO/Dn1w+DwDw8ps9JR3LrAcsq6iOsyAIQjftTUrPbM+QsbKWgpA+wD51\nPKFdMPMG3pii+uVxO8CXMXfM2HBJOzxuB/5YoqFLZWQiBlk21gtlBV6vHx1A92DxD4ZM5KUcwivl\noDrOgiAI3TTWeeF28SXdCLMxNayZLOyyj4dsVg4ZSBcZ8RchoGEEfp8LzXVejBtQwcy4/1uvAjC2\nn5oJqQBJ6ctiYHKtTr78Dz9mQAaZIGYYPMdhdmMteofDabN7S0GW5bQcMpD0kM1owykWMz3keSlK\nUVYKogR8ynAPo1IFrHBKNrByuy5F23tssgSDLJGHTBBEhdPRUouEIBkmECJKMmSktxOx6UNTtZ2t\nRBCUG7gZHnKwxo2rL2oDAJwfML7PWy+BGsXYGa0jbrTRu/fWCwCU5iGzhw6HgzxkgiAqlOVzlUrr\nI2dHDTkeK5ZKvWnXqyMHzZq/XAwJk/qQGW+/ZiF8HodWtGQFzfVKLrvfhqMvU1mgRhRKuT5ENYfs\noJA1QRCVygXzGwAAh9WhAaXC2pu8Ka0+rQ1KG9DPXz5luFBFsQjag4M5N/Dmeh++9tEN2HT9ElOO\nr4c2NT/bO2ysQb7sglmGHq9ezbmPhkrwkKXMB8FKpjrOgiCIgmiq86Ih4MGxc6OG5Boj6kADrzuZ\nO12pzsE92x8ytMioFMz2kAHrjcPsRqWtzSiD7HLy4DkOt08ZoVgqRqQ0NA+ZQtYEQVQqHMdh/YpW\nhCIJ7DjYW/Lx2E3V50l6yB63AzddquhFmzF/uRiyhdarjTa1ra3XoLY2QZSwqCNoeBuX08HDwXOI\nC8UbZK3tia+O77M6zoIgiIK5Zf1cOHgO2/Z0l3ws5iH73OnVxUw5qpSwpJGYpWVtJ/w+F/w+lyEe\nsihJkGVziuAARTwlXkJbnCiZm4IoN9V7VRIEMS2NQS8Wzg7iVM84zvSWJqPJRv55p7T7sIrfyaix\nFb/FYqZSl51oa6zBwGi05HQEq0o3KyTsdvElCcckQ9bV8X1Wx1kQBFEUt6yfCwB45Jn9JfWZsl5j\n3xT9Zru1PjEDVc0ha0AxyJIsY2C0tAEirGjKrAcYj9OBvpEI7n3oBYSLeGjT2p6oypogiEpn3YpW\nrFvRiqHxGE6X4CVrIespHjIr8mK/txrNQ67ikDUAzGlRCrtK+U6BZFW6WR6oO0Uf+8T58YL/XpCo\nqIsgiCrimotnAwB+vK2z6BBnJM5C1vb2kBMzxENeqvaZl9rWxoqmXKaFrJPXy1e37is4fJ1Q9/c4\nafwiQRBVwMWLGrFiXj0OnxnBrsN9RR0jmqOoi3nM0Zg9DLLWh1zlHvK8WX7Uep3YeagP4Wjx0Qmz\nQ/yz1F51xquHCrv+WP+724JRl2ZQ3VclQRB54TgO775hKYDilbuSHvLUkLW99KzZDdxj0ChBu+Lg\neVx+4SwkBAldJch4mmYaofMAAB1xSURBVG2Q21KGTADA2b7CQuxscAl5yARBVA1zW/3weRw4fq44\ng5yrqIt5yBGbhKxZ6Nzrtm74Q7mYP0uRpiyl/cns8YauKYZ0tMB+dc1DrpIHrOo4C4IgSoLnOSzp\nqEffSARjRfQMs5B0ZlGXvTzkpEGuDo9qOhrrFE3rUoY3JHPu5uSQmYTrxjUdcPBcwf3qWsSjSr5P\nMsgEQQAA5qti///21N6C/5ZVUU+9MTodPJwOTutTtppoXITTwVV9UReQnM88NF78HGPR5JD1/LYA\n/v0jV+E9Ny2F3+fCye5x/OdPDugu7oprKQgyyARBVBHMW+kenMRYgdrTkbgAr9uRVV7R63bayEMW\nZkS4GgCa63xwOnic7pkousfczPnRjMagF04Hjxqv8r28dqQfP/jdMZwfzD8aNBYng0wQRBVywfwG\nrF7SDAA41aO/J3QymsDZvlBaC0sqPo8DYZv0IUfj4owIVwNKr/WFCxrQNRDCKweK0ytP5pDN7/Pt\nSdHe/uP+Hvzjd3bmDbfHyEMmCKJauX5tBwDgVLd+g/zU88cBIOdEp7paDyYmE5Ak60cwxmaQQQaA\nu29eBreLx0+2nyxqBKZg8TCOc/3TV13HEhKcDh48KXURBFFtLJwdBFCYhzw0puQo78gxnq8+4IEk\nyxgPWzvxSZZlRONi1RQA6aGl3of1qhJb5/mxgv++nFKjd9+8LGNb/8j00p/xhFhVLWzVcyYEQZSM\n3+dCa70Pp3rGdeUdRyZiOHJ2FC4njzuuXph1n3p14pPVIxgTggRJlmdMDpnB0hDHu4oxyOULWd94\n6Rz81yc3okEtRgPyK43FEtX1gFW0Qd61axeuvPJKvPjii9q2zZs3453vfCc2b96MzZs348CBA4Ys\nkiCI8rFgdgCTUUHXYIIfPHcUgGLIc4UN/T4XACBk8cSnmdTylMo8tR+5q79wgRBtXGWZQtYuJ49/\n+8hV+O9P3wAA2HN8EEfP5jbKsYRYNfljACjqUfHs2bN4/PHHsXbt2ozf/cu//AuWLcsMPRAEURl0\ntPiBw/3oHQ6jtaFm2n2ZkMP737oi5z61XsUg7z02iJULGo1baIGwSu+ZZpCbgl44eK6oyU9WTMea\nWqn//O7zaGuqRVd/CCsXKtdPLCHiH7+zExPhBBoD3rKtzWyK+pRbWlrwyCOPIBAIGL0egiAshskZ\n9g7nv4Gz/N0FCxry7vv87q6S5/OWQiiiGGT2gDBT4HkOjUEPugYntWlXehFE66YpbXnnxQCUXugv\nfu81fOXpvegZUlqhzvWFMKjWLsz4HLLP54PDkf0p8+tf/zruvvtufO5zn0M0WnxDOkEQ1sAE//um\nkVyUZRmhSAJHzo7C7eTh4HPfSi5MMdbxhHUGeXBMecBorqsej0ovfp8bsbiIf/nBGwX9HWtXq/GU\nP+++anETAOBk9ziGx5X2p4mwkvaIpQiHVMtgCUBHyHrr1q3YunVr2rYtW7Zgw4YNGfu+733vw/Ll\nyzFv3jw88MADeOKJJ/CBD3wg57EbGmrgNEEUvKWluj13Or/Kx87nGAgqBnk4FMu6zp0HevClx3dp\nP8cFKWO/1J9bWgK4atVsvLK/B8F6HxosCjHG1F7cRXMbDPn87fwdToWV553undC97paWANjj09z2\nekvO1+dxponUNDTUoL6hBsKpZF456PcUtTY7fn95DfKmTZuwadMmXQe7+eabtdc33HADfvWrX027\n/8hI8aLnuWhpCWBgoLSh3HaGzq/yqZRz3Hd8EPuP9GJ2U23a9id+czjt5+Y6b9r5ZD0/tQe5t28c\ngkXFXT2sqEmUSv78K+U7ZAym5I/1rJud36B6j45F4pacb43HqcmyAsA3nt6LkYkoLkitRZDkgtdm\n9feX62HAsOC7LMu45557MD6u9C/u3LkTS5cuNerwBEGUkVpVxvA7vzic8Tu/z629vuyCVnz67szi\nzqm4VOnFQnOYRsL6oIM1MyuHDAA3rZtT1N9NRpSHJ7/Pmlax+oA77eeugRAmowJeP9KvbXNV0Wzr\nos5k27Zt2Lx5M7Zv346HH34Y9957LziOw5/92Z/hnnvuwd13343e3l7cfffdRq+XIIgy8OCHrgCg\nCIRMnafL2pgA4M9vXIrGYP4QtJ0McqDGnWfP6uPWK+ZrtQGFFNZF4yIcPJcxJrFc6KmgtoMCnFEU\n9dizceNGbNy4MWP7rbfeiltvvbXUNREEYTHBWjeuuHAWXj3Uh0OnhjGnxa/9LlUkIlCrz7jZwSBP\nTCbgdvFVJSShF6eDx5wWP/pGIgjHBAR1PpRY3edb68sfzShGEtSuVI+vTxCEodxxjaK8daYv3UNm\nAhvzWv1ZpztlgwlLxK00yJG4bkNUjbBpSuGo/kEfVithLW5XpFynztlOpUlHhKZSmFkacgRB6Kal\n3gsOmfN0Q2pe8f7Nl+o+FpsEZZWHLMsyxicTmNvqz79zlcL6rycLKKqLJaRpjaHZXHVRGwI1biQE\nEY8+m678+KHbL8TLb/bglvVzLVqd8ZCHTBBEVhw8j0CtG2Oh5Ag8WZZxfiCEOr8757jFbLCwZ0zn\n4HmjicZFCKI0Iwu6GMxD/uHvj+v+m1jc2uENHMdh1eKmjD7oOjWl8sm71qCmioReyEMmCCIndbVu\n9Ke0zHR2j2M8nMBFiwqTwPR5FIMcsWgu8kwu6GK01CtFXSe7xzERjuf9LGRZVqcpWZ9zT334+/KH\nr4TP6wSnM11SSZCHTBBETmq9TsTiolbJ2j2oSBdeuqyloOPUeBQvppD8pZFMTCph2kBt9XhThbJm\nabP2uk+HLGpckCADtjPIgRp31cqfkkEmCCInbFQhK+Ri8pOtqrelFxYu/ekfTxm4Ov2EtH7a6ryR\n68HtcuCuGxVtiJ7hybz7s/SCHarSU8PmrirSrp5K9Z4ZQRAlw27GsYQIWZaxv3MIHAfMnVWY7CAz\nyFblkOOCalxs4O1ZCZtN/fivjqDzvDIf+di5Uew+NpCxbzxun88s1UPWW9lfiZBBJggiJ+xmHI0L\nONk9jrN9Iaxe0lywp9nRnJTfZN5qOWFDLdwWCVzYhcXtddrr3ccHIIgSHnpiNx555s20/XYf6ccz\nfzgJwB4GeaaMzKSiLoIgcsJuhNG4iONdikd1+YWzCj4Ox3Fw8BxEScYvXjmthU7LBfOQ3VUc7tRD\nU8qkqxqPM+3hSJJlzft84Ns7tO32MMhOfPrutVXVc5yNmX11EgQxLcwgx+KiNuCezUsulFuvmA8A\nsCLiSB5yEqY9PjYZTxNqGRmPYWQilrG/XR5ils2tT3ugqEbs8UkTBGFLPCke8qjaj6xHuzoba9XK\nbNEC7WHmIVdzQZBe5s8KwONy4OCpYSRScvp//5+v4BOPvpwhRWmHoq6ZAl2dBEHkRKuyTgiaN1Ws\nUAQr7IpY0PrEFMLcVTQZqFg8bgfmzfKjdziMcJa+8O6BSdT7PdrPqa8Jc6GrkyCInHhdSQ+ZeVNO\nR3G3DSbBOGmBQaaQdTqzm2ogy0BXfyjjd6FIIs0rrva8rZ0gg0wQRE5Sc8gJUYLLyRetkFTjdaLO\n78axc6OIl7n9iYq60pndpFS9HzozkvG7WEJEQkh+P6mTvghzoauTIIicME8pHFVC1qWEfHmOw5Ur\n2xCOCThydtSoJeqCPOR0ZjcphXlvHM3sP44lRMQSEhw8hy998HIt1UCYDxlkgiBywvKHh04PI5GQ\ntLnGxbJotjJOr2cov1KUkVBRVzrMQ85GLKGkJ+bN8qO9Ofd+hPHQ1UkQRE7am2sxq8GHroFJxASx\nZA+zTfXMeobCRixPN6yoy0MeMgClH/m61e1Zf/eT7acQFyRMRqzRHZ/JkEEmCGJa5rcFEEuIGAvF\nS/aQZzX4wHFAb7k95AR5yKnwHIe/+JMVePcNSzJ+x3qRU6d8EeWBrk6CIKblmotna6/7Rkq7Sbuc\nDrTU+dAzXF4POS5IcDq4qtZBLoa3XDYPn918adbfLWoPlnk1BBlkgiCm5aJFTfjw21cCAK69ZHae\nvfPT1lSDiXCirJrW8YREBV05mDcrexX1lndcXOaVEFQ+RxBEXi67YBaa6ryYa0ALTFtjDfZ3DqF3\nOIwlHXX5/8AAYgmBWp5y4MryoPL2axejjgRByg5doQRB6GJxe13aGLxima0VdpUnjyyIEobHY1Wv\ng1wKrL3tw29fiTuvWYj3377S4hXNTMhDJgiirLTU+wAAQ2PRsrzf8HgUoiRjVkNxQzFmAg/91ZUY\nHI1gsRqxcPCUa7cCMsgEQZQV5qkOlskgM6nOQmc4zyTqat2oq3VbvYwZD4WsCYIoK40BLziUz0Nm\nAxRIcYqwO2SQCYIoKy4njzq/G0Pj5THIbLoUG25BEHaFDDJBEGWnqc6LkYkYREky/b00D5kMMmFz\nyCATBFF2moJeiJKM0Ym46e8ViZGHTFQGZJAJgig7zXVKpfXWbSdwpnfC1PeKxRXZTK+bhEEIe0MG\nmSCIssMqrXcd7scX/uc1U98rqupYe8ggEzaHDDJBEGWnKVg+kQ7NQzZA1IQgzIQMMkEQZaecqlnR\nOHnIRGVABpkgiLLTXE4POcFyyFTURdgbMsgEQZSdcnqrsbhSZe2hkDVhc8ggEwRhOWb2I0cTIhw8\nB6eD9JkJe0MGmSAIS1i5oEF73TsUNuU9QpEEYnERHpcDHEcGmbA3ZJAJgrCEzW9Zrs1DPtsfMvz4\n2/d146Nf246ugUkq6CIqAjLIBEFYQmtDDd61cTEA4Fyf8Qb55Td7tNckCkJUAmSQCYKwjLmtfgDA\n2X7j1bo8KVXVVNBFVAJkkAmCsAyfx4lgjcuUUYypYepyCpEQRLGQQSYIwlKCtW6MhxOGHzdVmWux\nmqsmCDtDBpkgCEsJ1roRiQkYHI0Yetw6v1t77fe5DD02QZgBGWSCICylUQ0nHzozYuhxJVnWXlNR\nF1EJkEEmCMJSLl3WAkDpGTYSUUwa5IRonvAIQRgFGWSCICzFX6OEkyfCcUOPK6hGuCHgwZqlzYYe\nmyDMgAwyQRCWEqhRcr0hgwu7BNVD/vs/X0ODJYiKgAwyQRCWElALriYMD1krHrKTJ8lMojIgg0wQ\nhKWwgqv9nUPoGzFO01qQFA/Z4aDbHFEZ0JVKEISlpA592LbnvGHHZTlkmvJEVApkkAmCsBzWM2zk\nFEZWZe0kD5moEOhKJQjCcu57z1oAQDQuGHZM5iE7KIdMVAhkkAmCsByfmkeOxEXDjpkMWdNtjqgM\niuoFEAQBn/3sZ3H27FmIoohPfepTWLduHY4cOYLPf/7zAIDly5fjC1/4gpFrJQiiSvF6lFuRoR6y\nJIPjAJ48ZKJCKOrR8ac//Sl8Ph9++MMf4sEHH8RDDz0EAHjwwQdx//3346mnnkIoFMJLL71k6GIJ\ngqhO3E4ePMchGjPOQxZFibxjoqIo6mq944478JnPfAYA0NjYiNHRUcTjcZw/fx6rVq0CAFx//fXY\nsWOHcSslCKJq4TgOPo8DEUNzyDJVWBMVRVEha5crOTnle9/7Hm677TaMjIwgGAxq25uamjAwMFD6\nCgmCmBF43U5EY8YWdTl48pCJyiGvQd66dSu2bt2atm3Lli3YsGEDnnjiCRw8eBCPPfYYhoeH0/aR\nUyat5KKhoQZOp/FTWFpaAoYf007Q+VU+1X6OxZxfoNaNgdGIgZ8NB7fLYdpnTd9hZWPH88trkDdt\n2oRNmzZlbN+6dSteeOEFfPOb34TL5dJC14y+vj60trZOe+wRA1V5GC0tAQwMTBh+XLtA51f5VPs5\nFnt+TgeHcDSB/v7xNLGQYoknBPAcZ8pnTd9hZWP1+eV6GCgqnnPu3Dk89dRTeOSRR+DxeAAoYexF\nixbh9ddfBwA899xz2LBhQ5HLJQhipuFzOyHLQDyhtCt94//242Pf+GPRxxNEmWQziYqiqBzy1q1b\nMTo6ir/8y7/Utn33u9/F/fffj8997nOQJAmXXHIJrrrqKsMWShBEdePzsF5kAR63A3uODwIAJEku\nqnVJECUq6iIqiqIM8sc//nF8/OMfz9i+ZMkSPPnkkyUviiCImQcbkTg+GcfZvmQ4MSFK8PCF15oI\nkgwnFXURFQQNCSUIwhYwD/lffrAbsUSyH1kUJcBVuEEWyUMmKgx6fCQIwhb4VA851RgDQELM37Ex\nFVmWKYdMVBx0tRIEYQuYfOZURLHwEVCixCY9kYdMVA5kkAmCsAUNAU/W7YliDDKNXiQqEMohEwRh\nC1rrfVm3C4KE4fEonE4ewRp33uP0j4TxH1v3A6DRi0RlQY+PBEHYgjmttVm3j0/G8clvvoKvPLVX\n13H++5eH0TesiA6Rh0xUEnS1EgRhCxw8j/fctDRj+0v7ugEA5/pDuo6TGuKmHDJRSZBBJgjCNmTL\nI/cOFSaxG04Z4UhV1kQlQVcrQRC2YdXiJrz1inlp24YnYtrrfENrhsejWrgaoJA1UVnQ1UoQhG1w\nOR3YtHFJ2rZQJKG9FvJUXJ8fnEz72UlFXUQFQQaZIAjb0VLvzbo9NRydjfHJeNrP5CETlQRdrQRB\n2I7Pbl6H69d0ZGyPJzINciQm4Ivfex2/eOV0hkF2UFEXUUGQQSYIwnYEa91Yt7wlY3s2g3zw1DBO\n9YzjmT+cxBh5yEQFQ1crQRC2pMbrytgWFzJzyNF40khP9ZDdTrrFEZUDXa0EQdiS9uakUMiqxU0A\nsnvI0bigvZ7qIbvIIBMVBElnEgRhS1xOHh/btAouB4+TPePY3zmEuCAhGhfQPRjGovYggPTpUJGY\nALeLRzyheNLuIsY2EoRV0OMjQRC2ZdXiZlywoBFup2JY4wkJ3/i/N/Gl/30dJ86PAUgPWSdECa6U\nvDF5yEQlQR4yQRC2x+1SDGtcEHH4zAgA4GT3/2/vXmOjqvMwjn+nnU5rb7ZVpqFEiFs38KYUia7U\ntohY2hAiWcGW0gwu2RjjhVhWTS1mYtmYCCXV6NYYDOKbVqOlEC3RraRqTTcZmzRN6iXbmHoDivZG\noWVoSy//faFMwR1Yipc55+zzeTfnDOH35Ex4+P9n5swILR3HCI7PblkHxyYv+iCX3kMWO1Ehi4jl\nza6QZ1fD/2z/jtNnLn7PePTsJCmJs78IFePWlrXYh/77KCKWN7tCnv2U9dgFK+PzpmeMVshiW3q1\niojlxYRZIYf7ChSA2x0V+h3k668Nf8cvESvSlrWIWF7sTyvk5vaj//O57ugoKn3LCY5NcX3KNb/1\naCK/GhWyiFje+a8vBcNsU/9cTHQUmRnX/tYjifzqtGUtIpY3l68vuXX/arEpFbKIWN7/usHHhR/k\nOj4QvMwzRaxLW9YiYnmxF6yQkxM8rFqWwejYJIvSk/j3d8NsLvgj2//xLyD87TVF7ECFLCKWlxgf\ngwswQHK8hz/n/yF0bmV2BgAJcW6C41P8rSQ7MkOK/EIqZBGxvOioKK6JdXN2YorkhP/+FSiAv//1\nTxztO8Piham/83Qivw4VsojYQtRP3y1OjveEPZ+WHEdasr53LPalD3WJiC2cL2S37r4lDqVXtojY\nwpmzkwDE6icVxaFUyCJiC39ZuxiA1csXRHgSkd+G3kMWEVvIX5pBXtZ8XC7d+EOcSStkEbENlbE4\nmQpZRETEAlTIIiIiFqBCFhERsQAVsoiIiAWokEVERCxAhSwiImIBKmQRERELUCGLiIhYgApZRETE\nAlTIIiIiFqBCFhERsQCXMcZEeggREZH/d1ohi4iIWIAKWURExAJUyCIiIhagQhYREbEAFbKIiIgF\nqJBFREQswDGF/Oyzz7Jp0yZKS0v59NNPIz3OL7Jnzx42bdrExo0bOXLkCN9//z1btmyhrKyM8vJy\nzp07B0BTUxMbN26kuLiYAwcORHjquRkfH6egoIBDhw45Ml9TUxPr169nw4YNtLa2OipjMBhk27Zt\nbNmyhdLSUtra2uju7qa0tJTS0lKqqqpCz3311Ve59957KS4u5uOPP47g1Ffmyy+/pKCggPr6eoA5\nXbfJyUkef/xxNm/ejM/n49ixYxHLcTnhMm7duhWfz8fWrVsZGBgA7Jvx5/nOa2trY/HixaHHlsxn\nHKC9vd088MADxhhjenp6TElJSYQnunqBQMDcf//9xhhjTp48ae644w5TWVlp3nvvPWOMMc8995x5\n/fXXTTAYNIWFhWZkZMSMjY2ZdevWmeHh4UiOPifPP/+82bBhgzl48KDj8p08edIUFhaa0dFR09fX\nZ/x+v6My1tXVmZqaGmOMMT/88IMpKioyPp/PdHV1GWOMeeyxx0xra6s5evSoueeee8zExIQZGhoy\nRUVFZmpqKpKjX1YwGDQ+n8/4/X5TV1dnjDFzum6HDh0yO3fuNMYY09bWZsrLyyOW5VLCZayoqDDv\nvvuuMcaY+vp6U11dbduM4fIZY8z4+Ljx+XwmNzc39Dwr5nPECjkQCFBQUABAZmYmp0+f5syZMxGe\n6urceuutvPjiiwAkJyczNjZGe3s7d911FwB33nkngUCArq4usrKySEpKIi4ujuXLl9PZ2RnJ0a/Y\nV199RU9PD6tWrQJwXL5AIEBOTg6JiYl4vV6eeeYZR2VMTU3l1KlTAIyMjJCSkkJvby9Lly4FZvO1\nt7eTn5+Px+MhLS2NBQsW0NPTE8nRL8vj8bBv3z68Xm/o2FyuWyAQYM2aNQDcfvvtlryW4TJWVVVR\nVFQEzF5bu2YMlw9g7969lJWV4fF4ACybzxGFPDg4SGpqauhxWlpaaNvFbqKjo4mPjwegsbGRlStX\nMjY2FnohXXfddQwMDDA4OEhaWlroz9kpc3V1NZWVlaHHTst3/PhxxsfHefDBBykrKyMQCDgq47p1\n6zhx4gRr1qzB5/NRUVFBcnJy6Lxd87ndbuLi4i46NpfrduHxqKgoXC5XaIvbKsJljI+PJzo6munp\nad544w3uvvtu22YMl++bb76hu7ubtWvXho5ZNZ/7d/ubfkfGAXcDbWlpobGxkddee43CwsLQ8Utl\ns0vmt99+m2XLlnHDDTeEPW/3fOedOnWKl156iRMnTnDfffddNL/dM77zzjtkZGSwf/9+uru7eeSR\nR0hKSgqdt3u+S5lrLjvlnZ6epqKighUrVpCTk8Phw4cvOm/njLt27cLv91/2OVbJ54gVstfrZXBw\nMPS4v7+fefPmRXCiX6atrY29e/eyb98+kpKSiI+PZ3x8HIC+vj68Xm/YzD/fprGi1tZWPvjgA0pK\nSjhw4AAvv/yyo/LBjyupm2++GbfbzcKFC0lISCAhIcExGTs7O8nLywNgyZIlTExMMDw8HDp/qXzn\nj9vJXF6bXq83tAMwOTmJMSa0ura6HTt2sGjRIrZt2waE/zfVjhn7+vr4+uuveeKJJygpKaG/vx+f\nz2fZfI4o5NzcXN5//30AvvjiC7xeL4mJiRGe6uqMjo6yZ88eXnnlFVJSUoAf38s4n+/IkSPk5+eT\nnZ3NZ599xsjICMFgkM7OTm655ZZIjn5FXnjhBQ4ePEhDQwPFxcU8/PDDjsoHkJeXxyeffMLMzAzD\nw8OcPXvWURkXLVpEV1cXAL29vSQkJJCZmUlHRwcwm2/FihW0trZy7tw5+vr66O/v56abbork6HM2\nl+uWm5tLc3MzAB999BG33XZbJEe/Yk1NTcTExPDoo4+GjjklY3p6Oi0tLTQ0NNDQ0IDX66W+vt6y\n+Rzza081NTV0dHTgcrmoqqpiyZIlkR7pqrz11lvU1tZy4403ho7t3r0bv9/PxMQEGRkZ7Nq1i5iY\nGJqbm9m/fz8ulwufz8f69esjOPnc1dbWsmDBAvLy8njyyScdle/NN9+ksbERgIceeoisrCzHZAwG\ngzz11FMMDQ0xNTVFeXk58+bN4+mnn2ZmZobs7Gx27NgBQF1dHYcPH8blcrF9+3ZycnIiPP2lff75\n51RXV9Pb24vb7SY9PZ2amhoqKyuv6LpNT0/j9/v59ttv8Xg87N69m/nz50c61kXCZRwaGiI2Nja0\niMnMzGTnzp22zBguX21tbWhxs3r1aj788EMAS+ZzTCGLiIjYmSO2rEVEROxOhSwiImIBKmQREREL\nUCGLiIhYgApZRETEAlTIIiIiFqBCFhERsQAVsoiIiAX8B5UbhBdNe+x8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "n6Un8rewSFaq", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "On this plot, you can see daily periodicity, especially evident for the last 4 days. We can also note that this ten-days period must be \n", + "coming from a fairly cold winter month.\n", + "\n", + "If we were trying to predict average temperature for the next month given a few month of past data, the problem would be easy, due to the \n", + "reliable year-scale periodicity of the data. But looking at the data over a scale of days, the temperature looks a lot more chaotic. So is \n", + "this timeseries predictable at a daily scale? Let's find out." + ] + }, + { + "metadata": { + "id": "buXjxL8hSFay", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Preparing the data\n", + "\n", + "\n", + "The exact formulation of our problem will be the following: given data going as far back as `lookback` timesteps (a timestep is 10 minutes) \n", + "and sampled every `steps` timesteps, can we predict the temperature in `delay` timesteps?\n", + "\n", + "We will use the following parameter values:\n", + "\n", + "* `lookback = 720`, i.e. our observations will go back 5 days.\n", + "* `steps = 6`, i.e. our observations will be sampled at one data point per hour.\n", + "* `delay = 144`, i.e. our targets will be 24 hours in the future.\n", + "\n", + "To get started, we need to do two things:\n", + "\n", + "* Preprocess the data to a format a neural network can ingest. This is easy: the data is already numerical, so we don't need to do any \n", + "vectorization. However each timeseries in the data is on a different scale (e.g. temperature is typically between -20 and +30, but \n", + "pressure, measured in mbar, is around 1000). So we will normalize each timeseries independently so that they all take small values on a \n", + "similar scale.\n", + "* Write a Python generator that takes our current array of float data and yields batches of data from the recent past, alongside with a \n", + "target temperature in the future. Since the samples in our dataset are highly redundant (e.g. sample `N` and sample `N + 1` will have most \n", + "of their timesteps in common), it would be very wasteful to explicitly allocate every sample. Instead, we will generate the samples on the \n", + "fly using the original data.\n", + "\n", + "We preprocess the data by subtracting the mean of each timeseries and dividing by the standard deviation. We plan on using the first \n", + "200,000 timesteps as training data, so we compute the mean and standard deviation only on this fraction of the data:" + ] + }, + { + "metadata": { + "id": "z-5J1znLSFa3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "mean = float_data[:200000].mean(axis=0)\n", + "float_data -= mean\n", + "std = float_data[:200000].std(axis=0)\n", + "float_data /= std" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "JMazYbkESFbP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Now here is the data generator that we will use. It yields a tuple `(samples, targets)` where `samples` is one batch of input data and \n", + "`targets` is the corresponding array of target temperatures. It takes the following arguments:\n", + "\n", + "* `data`: The original array of floating point data, which we just normalized in the code snippet above.\n", + "* `lookback`: How many timesteps back should our input data go.\n", + "* `delay`: How many timesteps in the future should our target be.\n", + "* `min_index` and `max_index`: Indices in the `data` array that delimit which timesteps to draw from. This is useful for keeping a segment \n", + "of the data for validation and another one for testing.\n", + "* `shuffle`: Whether to shuffle our samples or draw them in chronological order.\n", + "* `batch_size`: The number of samples per batch.\n", + "* `step`: The period, in timesteps, at which we sample data. We will set it 6 in order to draw one data point every hour." + ] + }, + { + "metadata": { + "id": "x8uGRk3sSFbS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def generator(data, lookback, delay, min_index, max_index,\n", + " shuffle=False, batch_size=128, step=6):\n", + " if max_index is None:\n", + " max_index = len(data) - delay - 1\n", + " i = min_index + lookback\n", + " while 1:\n", + " if shuffle:\n", + " rows = np.random.randint(\n", + " min_index + lookback, max_index, size=batch_size)\n", + " else:\n", + " if i + batch_size >= max_index:\n", + " i = min_index + lookback\n", + " rows = np.arange(i, min(i + batch_size, max_index))\n", + " i += len(rows)\n", + "\n", + " samples = np.zeros((len(rows),\n", + " lookback // step,\n", + " data.shape[-1]))\n", + " targets = np.zeros((len(rows),))\n", + " for j, row in enumerate(rows):\n", + " indices = range(rows[j] - lookback, rows[j], step)\n", + " samples[j] = data[indices]\n", + " targets[j] = data[rows[j] + delay][1]\n", + " yield samples, targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kzU83lBdSFbb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Now let's use our abstract generator function to instantiate three generators, one for training, one for validation and one for testing. \n", + "Each will look at different temporal segments of the original data: the training generator looks at the first 200,000 timesteps, the \n", + "validation generator looks at the following 100,000, and the test generator looks at the remainder." + ] + }, + { + "metadata": { + "id": "5v1IB2kGSFbc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "lookback = 1440\n", + "step = 6\n", + "delay = 144\n", + "batch_size = 128\n", + "\n", + "train_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=0,\n", + " max_index=200000,\n", + " shuffle=True,\n", + " step=step, \n", + " batch_size=batch_size)\n", + "val_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=200001,\n", + " max_index=300000,\n", + " step=step,\n", + " batch_size=batch_size)\n", + "test_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=300001,\n", + " max_index=None,\n", + " step=step,\n", + " batch_size=batch_size)\n", + "\n", + "# This is how many steps to draw from `val_gen`\n", + "# in order to see the whole validation set:\n", + "val_steps = (300000 - 200001 - lookback) // batch_size\n", + "\n", + "# This is how many steps to draw from `test_gen`\n", + "# in order to see the whole test set:\n", + "test_steps = (len(float_data) - 300001 - lookback) // batch_size" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kaLgSbilSFbl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## A common sense, non-machine learning baseline\n", + "\n", + "\n", + "Before we start leveraging black-box deep learning models to solve our temperature prediction problem, let's try out a simple common-sense \n", + "approach. It will serve as a sanity check, and it will establish a baseline that we will have to beat in order to demonstrate the \n", + "usefulness of more advanced machine learning models. Such common-sense baselines can be very useful when approaching a new problem for \n", + "which there is no known solution (yet). A classic example is that of unbalanced classification tasks, where some classes can be much more \n", + "common than others. If your dataset contains 90% of instances of class A and 10% of instances of class B, then a common sense approach to \n", + "the classification task would be to always predict \"A\" when presented with a new sample. Such a classifier would be 90% accurate overall, \n", + "and any learning-based approach should therefore beat this 90% score in order to demonstrate usefulness. Sometimes such elementary \n", + "baseline can prove surprisingly hard to beat.\n", + "\n", + "In our case, the temperature timeseries can safely be assumed to be continuous (the temperatures tomorrow are likely to be close to the \n", + "temperatures today) as well as periodical with a daily period. Thus a common sense approach would be to always predict that the temperature \n", + "24 hours from now will be equal to the temperature right now. Let's evaluate this approach, using the Mean Absolute Error metric (MAE). \n", + "Mean Absolute Error is simply equal to:" + ] + }, + { + "metadata": { + "id": "W3JLp99-SFbq", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 168 + }, + "outputId": "1e0e0f50-c97c-486e-81ec-cecb26746690" + }, + "cell_type": "code", + "source": [ + "# np.mean(np.abs(preds - targets))" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpreds\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mtargets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'preds' is not defined" + ] + } + ] + }, + { + "metadata": { + "id": "2BwhPHRFSFcB", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here's our evaluation loop:" + ] + }, + { + "metadata": { + "id": "kFP2QR-vSFcD", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "67a92ed6-1b57-4d0f-dd35-fc24ba77d826" + }, + "cell_type": "code", + "source": [ + "def evaluate_naive_method():\n", + " batch_maes = []\n", + " for step in range(val_steps):\n", + " samples, targets = next(val_gen)\n", + " preds = samples[:, -1, 1]\n", + " mae = np.mean(np.abs(preds - targets))\n", + " batch_maes.append(mae)\n", + " print(np.mean(batch_maes))\n", + " \n", + "evaluate_naive_method()" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0.2897359729905486\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "IVHP8P8PSFcY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "It yields a MAE of 0.29. Since our temperature data has been normalized to be centered on 0 and have a standard deviation of one, this \n", + "number is not immediately interpretable. It translates to an average absolute error of `0.29 * temperature_std` degrees Celsius, i.e. \n", + "2.57˚C. That's a fairly large average absolute error -- now the game is to leverage our knowledge of deep learning to do better. " + ] + }, + { + "metadata": { + "id": "Fb_E_MNZSFcc", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## A basic machine learning approach\n", + "\n", + "In the same way that it is useful to establish a common sense baseline before trying machine learning approaches, it is useful to try \n", + "simple and cheap machine learning models (such as small densely-connected networks) before looking into complicated and computationally \n", + "expensive models such as RNNs. This is the best way to make sure that any further complexity we throw at the problem later on is legitimate \n", + "and delivers real benefits.\n", + "\n", + "Here is a simply fully-connected model in which we start by flattening the data, then run it through two `Dense` layers. Note the lack of \n", + "activation function on the last `Dense` layer, which is typical for a regression problem. We use MAE as the loss. Since we are evaluating \n", + "on the exact same data and with the exact same metric as with our common sense approach, the results will be directly comparable." + ] + }, + { + "metadata": { + "id": "TFuvhjIRSFdM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's display the loss curves for validation and training:" + ] + }, + { + "metadata": { + "id": "IkFAtsGBSFdQ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(loss))\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "m1xRhRxASFcd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 697 + }, + "outputId": "e0e72cbf-ef2d-41ea-97cf-eb4ec25fc29f" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.optimizers import RMSprop\n", + "\n", + "model = Sequential()\n", + "model.add(layers.Flatten(input_shape=(lookback // step, float_data.shape[-1])))\n", + "model.add(layers.Dense(32, activation='relu'))\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen,\n", + " steps_per_epoch=500,\n", + " epochs=20,\n", + " validation_data=val_gen,\n", + " validation_steps=val_steps)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "500/500 [==============================] - 12s 24ms/step - loss: 1.9599 - val_loss: 1.1921\n", + "Epoch 2/20\n", + "500/500 [==============================] - 10s 20ms/step - loss: 0.7021 - val_loss: 0.5628\n", + "Epoch 3/20\n", + "500/500 [==============================] - 10s 20ms/step - loss: 0.3491 - val_loss: 0.2983\n", + "Epoch 4/20\n", + "500/500 [==============================] - 10s 20ms/step - loss: 0.2826 - val_loss: 0.2991\n", + "Epoch 5/20\n", + "500/500 [==============================] - 10s 20ms/step - loss: 0.2647 - val_loss: 0.2995\n", + "Epoch 6/20\n", + "500/500 [==============================] - 11s 22ms/step - loss: 0.2545 - val_loss: 0.3039\n", + "Epoch 7/20\n", + "500/500 [==============================] - 10s 20ms/step - loss: 0.2450 - val_loss: 0.3135\n", + "Epoch 8/20\n", + "500/500 [==============================] - 10s 20ms/step - loss: 0.2401 - val_loss: 0.3084\n", + "Epoch 9/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2315 - val_loss: 0.3198\n", + "Epoch 10/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2270 - val_loss: 0.3338\n", + "Epoch 11/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2216 - val_loss: 0.3470\n", + "Epoch 12/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2195 - val_loss: 0.3219\n", + "Epoch 13/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2163 - val_loss: 0.3432\n", + "Epoch 14/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2124 - val_loss: 0.3214\n", + "Epoch 15/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2113 - val_loss: 0.3171\n", + "Epoch 16/20\n", + "500/500 [==============================] - 11s 21ms/step - loss: 0.2091 - val_loss: 0.3162\n", + "Epoch 17/20\n", + "500/500 [==============================] - 11s 21ms/step - loss: 0.2073 - val_loss: 0.3731\n", + "Epoch 18/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2052 - val_loss: 0.3292\n", + "Epoch 19/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.2024 - val_loss: 0.3472\n", + "Epoch 20/20\n", + "500/500 [==============================] - 10s 21ms/step - loss: 0.1998 - val_loss: 0.3364\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "rxVVn_rfSFdv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Some of our validation losses get close to the no-learning baseline, but not very reliably. This goes to show the merit of having had this baseline in the first place: it turns out not to be so easy to outperform. Our \n", + "common sense contains already a lot of valuable information that a machine learning model does not have access to.\n", + "\n", + "You may ask, if there exists a simple, well-performing model to go from the data to the targets (our common sense baseline), why doesn't \n", + "the model we are training find it and improve on it? Simply put: because this simple solution is not what our training setup is looking \n", + "for. The space of models in which we are searching for a solution, i.e. our hypothesis space, is the space of all possible 2-layer networks \n", + "with the configuration that we defined. These networks are already fairly complicated. When looking for a solution with a space of \n", + "complicated models, the simple well-performing baseline might be unlearnable, even if it's technically part of the hypothesis space. That \n", + "is a pretty significant limitation of machine learning in general: unless the learning algorithm is hard-coded to look for a specific kind \n", + "of simple model, parameter learning can sometimes fail to find a simple solution to a simple problem." + ] + }, + { + "metadata": { + "id": "5mDUN8LeSFdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## A first recurrent baseline\n", + "\n", + "\n", + "Our first fully-connected approach didn't do so well, but that doesn't mean machine learning is not applicable to our problem. The approach \n", + "above consisted in first flattening the timeseries, which removed the notion of time from the input data. Let us instead look at our data \n", + "as what it is: a sequence, where causality and order matter. We will try a recurrent sequence processing model -- it should be the perfect \n", + "fit for such sequence data, precisely because it does exploit the temporal ordering of data points, unlike our first approach.\n", + "\n", + "Instead of the `LSTM` layer introduced in the previous section, we will use the `GRU` layer, developed by Cho et al. in 2014. `GRU` layers \n", + "(which stands for \"gated recurrent unit\") work by leveraging the same principle as LSTM, but they are somewhat streamlined and thus cheaper \n", + "to run, albeit they may not have quite as much representational power as LSTM. This trade-off between computational expensiveness and \n", + "representational power is seen everywhere in machine learning." + ] + }, + { + "metadata": { + "id": "5FY4k4C-SFd0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 697 + }, + "outputId": "b39c065f-5555-428e-99bb-4d141eb51b9a" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.optimizers import RMSprop\n", + "\n", + "model = Sequential()\n", + "model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen,\n", + " steps_per_epoch=500,\n", + " epochs=20,\n", + " validation_data=val_gen,\n", + " validation_steps=val_steps)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "500/500 [==============================] - 290s 581ms/step - loss: 0.3051 - val_loss: 0.2684\n", + "Epoch 2/20\n", + "500/500 [==============================] - 289s 579ms/step - loss: 0.2828 - val_loss: 0.2679\n", + "Epoch 3/20\n", + "500/500 [==============================] - 291s 582ms/step - loss: 0.2756 - val_loss: 0.2691\n", + "Epoch 4/20\n", + "500/500 [==============================] - 291s 582ms/step - loss: 0.2683 - val_loss: 0.2611\n", + "Epoch 5/20\n", + "500/500 [==============================] - 292s 584ms/step - loss: 0.2642 - val_loss: 0.2634\n", + "Epoch 6/20\n", + "500/500 [==============================] - 292s 583ms/step - loss: 0.2590 - val_loss: 0.2690\n", + "Epoch 7/20\n", + "500/500 [==============================] - 292s 584ms/step - loss: 0.2571 - val_loss: 0.2675\n", + "Epoch 8/20\n", + "500/500 [==============================] - 292s 583ms/step - loss: 0.2520 - val_loss: 0.2694\n", + "Epoch 9/20\n", + "500/500 [==============================] - 290s 581ms/step - loss: 0.2464 - val_loss: 0.2664\n", + "Epoch 10/20\n", + "500/500 [==============================] - 291s 581ms/step - loss: 0.2426 - val_loss: 0.2724\n", + "Epoch 11/20\n", + "500/500 [==============================] - 292s 583ms/step - loss: 0.2391 - val_loss: 0.2710\n", + "Epoch 12/20\n", + "500/500 [==============================] - 292s 583ms/step - loss: 0.2355 - val_loss: 0.2771\n", + "Epoch 13/20\n", + "500/500 [==============================] - 292s 583ms/step - loss: 0.2322 - val_loss: 0.2802\n", + "Epoch 14/20\n", + "500/500 [==============================] - 291s 582ms/step - loss: 0.2295 - val_loss: 0.2839\n", + "Epoch 15/20\n", + "500/500 [==============================] - 290s 581ms/step - loss: 0.2269 - val_loss: 0.2840\n", + "Epoch 16/20\n", + "500/500 [==============================] - 291s 582ms/step - loss: 0.2216 - val_loss: 0.2863\n", + "Epoch 17/20\n", + "500/500 [==============================] - 291s 581ms/step - loss: 0.2189 - val_loss: 0.2914\n", + "Epoch 18/20\n", + "500/500 [==============================] - 291s 582ms/step - loss: 0.2171 - val_loss: 0.2996\n", + "Epoch 19/20\n", + "500/500 [==============================] - 291s 582ms/step - loss: 0.2145 - val_loss: 0.2882\n", + "Epoch 20/20\n", + "500/500 [==============================] - 291s 583ms/step - loss: 0.2110 - val_loss: 0.2955\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ZF62JpcJSFd_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let look at our results:" + ] + }, + { + "metadata": { + "id": "HDIwxJaISFeA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 362 + }, + "outputId": "a9a486ce-1cd6-4b77-f846-e9517fee45b7" + }, + "cell_type": "code", + "source": [ + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(loss))\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4FNXixvHvllQImoSEougPuVKC\ngnK9KlJCi4QmFxUJ0lSkKAgRLJALBAsICAhiQwEFsUQxQVQERQQBARWQS29eEQuSUAJpJLs7vz9W\nFkMqkGQL7+d5eMjO7MzOyezm3XPmzDkmwzAMRERExGOY3X0AIiIikp/CWURExMMonEVERDyMwllE\nRMTDKJxFREQ8jMJZRETEwyicxaclJiYSGxtLbGwsDRs2pHXr1q7HGRkZ57Wv2NhY0tLSin3OtGnT\neO+99y7mkMvcfffdR3Jycpnsq169ehw+fJgvv/yS0aNHX9TrffDBB66fS/O7La1Ro0bxyiuvlMm+\nRNzF6u4DEClPTz31lOvnNm3aMGXKFG666aYL2teyZctKfM7IkSMvaN/eJiYmhpiYmAvePjU1lTlz\n5nDPPfcApfvdilxKVHOWS1qfPn144YUX6NChA5s3byYtLY3+/fsTGxtLmzZtePPNN13PPVNr3Lhx\nIz169GDatGl06NCBNm3a8N133wH5a21t2rTh/fff5+6776Z58+ZMmjTJta/XXnuNpk2bctddd/HO\nO+/Qpk2bQo/vww8/pEOHDtx+++306tWL3377DYDk5GSGDRtGQkIC7du3p2PHjuzbtw+AQ4cO0b17\nd9q1a8fIkSOx2+0F9rt69Wq6dOmSb1nXrl355ptviv0dnJGcnMx9991X4ut99dVXdOnShfbt23Pn\nnXeya9cuAOLi4vj999+JjY0lNzfX9bsFWLBgAR07diQ2NpaHHnqIY8eOuX63L774Ivfffz+tW7fm\n/vvvJzs7u6hTC8Du3buJi4sjNjaWrl27smbNGgAyMzMZMmQIHTp0oG3btowZM4a8vLwil4tUNIWz\nXPK2b9/OZ599RpMmTXj11Ve58sorWbZsGfPnz2fatGn88ccfBbbZuXMnjRs35vPPP+fee+/l1Vdf\nLXTf33//PUlJSXz00UcsXLiQw4cPs2/fPubMmcPHH3/Mu+++W2St8ejRozz99NO8+eabfPHFF1x1\n1VX5mmu/+eYb7r33XpYvX84tt9zC/PnzAZg6dSpNmzZlxYoV9OvXj82bNxfYd9OmTTl8+DCHDh0C\nnAF7+PBhbrvttlL/Ds4o6vVsNhujRo3imWeeYfny5bRp04bJkycDMHHiRGrUqMGyZcvw9/d37evH\nH39k7ty5vP322yxbtoyaNWsybdo01/ply5bxwgsv8OWXX3Ls2DG+/PLLIo/L4XAwYsQIevfuzbJl\ny3j22WcZOXIkGRkZLF68mCpVqvD555+zfPlyLBYL+/fvL3K5SEVTOMslLzo6GrPZ+VEYM2YMY8eO\nBaBWrVpERETw66+/FtimUqVKtGvXDoCGDRvy+++/F7rvLl26YLFYqFatGuHh4fzxxx98//333Hzz\nzURGRhIQEMBdd91V6Lbh4eFs2rSJ6tWrA3DTTTe5whSgTp06XHfddQBERUW5AvSHH36gY8eOADRq\n1IhrrrmmwL79/f1p3bo1K1euBGDFihW0a9cOq9Va6t/BGUW9ntVq5dtvv+WGG24o9PgLs2rVKtq3\nb094eDgA3bt3Z926da710dHRXH755VitVurWrVvsl4Zff/2VtLQ0OnXqBMD1119PzZo12bZtG2Fh\nYWzZsoW1a9ficDh46qmnaNCgQZHLRSqarjnLJe+yyy5z/bxt2zZXTdFsNpOamorD4SiwTUhIiOtn\ns9lc6HMAKleu7PrZYrFgt9s5efJkvtesVq1aodva7XZefPFFVq5cid1uJzMzk9q1axd6DGf2DZCe\nnp7vdatUqVLo/tu3b8+CBQvo168fK1as4OGHHz6v38EZxb3e22+/TUpKCrm5ueTm5mIymYrcD8Cx\nY8eIjIzMt6+jR4+WWOai9hUSEpLvNatUqcKxY8fo1KkT6enpzJw5k59++ok77riD0aNH06FDh0KX\n/712L1IRVHMW+ZvHH3+c9u3bs3z5cpYtW0ZoaGiZv0blypXJyspyPT5y5Eihz1u6dCkrV65k4cKF\nLF++nGHDhpVq/1WqVMnXE/3MNdtztWjRgt27d/Pzzz/z888/c+uttwLn/zso6vU2b97MG2+8wauv\nvsry5ct59tlnSzz2qlWrcuLECdfjEydOULVq1RK3K0x4eDjp6en8fW6fEydOuGrlcXFxfPjhhyxd\nupQdO3awePHiYpeLVCSFs8jfHD16lOuuuw6TyURKSgrZ2dn5grQsNGrUiI0bN3Ls2DFyc3OL/ON/\n9OhRrrjiCsLCwjh+/Diff/45mZmZJe7/hhtucF2L3bx5M7/88kuhz/P396d58+Y8//zztG3bFovF\n4nrd8/kdFPV6x44dIzw8nJo1a5KdnU1KSgpZWVkYhoHVaiUrKwubzZZvX61ateLLL7/k+PHjALz/\n/vtER0eXWObCXHnllVSvXp2lS5e6ji0tLY1GjRrx8ssvs2jRIsDZcnHllVdiMpmKXC5S0RTOIn8z\nfPhwhgwZQpcuXcjKyqJHjx6MHTu2yIC7EI0aNaJbt25069aNvn370rp160Kf17lzZ06cOEFMTAwj\nR44kPj6ew4cP5+v1XZjHH3+cr7/+mnbt2vHOO+9w2223Ffnc9u3bs2LFCjp06OBadr6/g6Jer0WL\nFkRGRtKuXTseeOAB+vXrR0hICMOGDaNevXpcdtllNGvWLN/1+kaNGjFw4EB69epFbGwsp06d4tFH\nHy22vEUxmUxMnz6dhQsX0qFDB5599llmzpxJcHAwXbt25eOPP6Z9+/bExsbi5+dH165di1wuUtFM\nms9ZpOIZhuGqka1atYoZM2ao+VREXFRzFqlgx44d49Zbb+W3337DMAw+//xzV49mERFQzVnELd57\n7z3mzZuHyWTimmuuYcKECa6OSiIiCmcREREPo2ZtERERD6NwFhER8TAeM0JYauqpMt1faGgwx4+X\n7f2pnsAXy6UyeQ9fLJfK5D18rVwRESFFrvPZmrPVanH3IZQLXyyXyuQ9fLFcKpP38NVyFcZnw1lE\nRMRbKZxFREQ8jMJZRETEwyicRUREPIzCWURExMMonEVERDyMwllERMTDKJxFREQ8jM+Fc0qKlejo\nYKxWiI4OJiXFYwZBExERKRWfSq6UFCuDBgW5Hu/aZfnrcTbdutncd2AiIiLnwadqzjNm+Be6fObM\nwpeLiIh4Ip8K5717Cy9OUctFREQ8kU+lVt26jvNaLiIi4ol8Kpzj43MLXT58eOHLRUREPJFPhXO3\nbjZmz84mKsqO1QpRUXZmz1ZnMBER8S4+1VsbnAHdrZuNiIgQUlN9Z1JuERG5dPhUzVlERMQXKJxF\nREQ8jMJZRETEwyicRUREPIzCWURExMMonEVERDxMqW6lmjhxIlu3bsVkMpGQkECjRo1c6z744AMW\nLVqE2Wymfv36JCYmYjKZit1GREREilZiOH/33XccPHiQpKQkDhw4QEJCAklJSQBkZ2fz2Wef8c47\n7+Dn50ffvn3ZsmULNputyG1ERESkeCU2a69fv5527doBUKdOHdLT08nIyAAgKCiI+fPn4+fnR3Z2\nNhkZGURERBS7jYiIiBSvxHBOS0sjNDTU9TgsLIzU1NR8z3n99deJiYkhNjaWWrVqlWobERERKdx5\nD99pGEaBZQMHDqRv374MGDCAf/7zn6Xa5lyhocFYrZbzPZxiRUSElOn+PIUvlktl8h6+WC6VyT3W\nroUNG2DECDCXsnuyN5SrLJQYzpGRkaSlpbkeHzlyhIiICABOnDjBvn37+Ne//kVgYCAtW7Zk8+bN\nxW5TlOPHy3YcbOfY2qfKdJ+ewBfLpTJ5D18sl8rkHhs3WujePYicHBM2Ww79++eVuI03lOt8FPdF\no8TvKs2aNWP58uUA7Nixg8jISCpXrgyAzWZj1KhRZGZmArBt2zZq165d7DYiInJp273bTO/eQeTl\nQUiIwbPPBvDrryZ3H5ZHKbHm3KRJExo2bEhcXBwmk4nExESSk5MJCQkhJiaGIUOG0LdvX6xWK/Xq\n1aNt27aYTKYC24iIiPz6q4kePYJITzcxa1Y2hgHDhgXx+OOBvPtuNiZlNAAmozQXhCtAWTdV+Frz\nxxm+WC6VyXv4YrlUpopz7Bh06RLMvn0Wxo3LYejQPAwD7rkniNWrrbzySjZ3320rcntPLdeFuqhm\nbRERkYuVmQm9ejmDefDgXIYMcV5jNplg6tQcgoMNxowJIC1NVWdQOIuISDnLy4OBA4PYtMnCXXfl\nMX786XzN11dfbTB69GmOHTMzZkyA+w7UgyicRUSk3BgGjBgRyJdfWmnd2sbMmTmF3jb14IN5/POf\ndpKT/fjii7K9rdYbKZxFRKTcTJjgT1KSHzfeaGfu3Gz8/Qt/nsUC06fn4Odn8MQTgZzynUvLF0Th\nLCIi5WL2bD9efDGAa65x8M472ZR0R22DBg6GD8/l99/NPPPMpd28rXAWEZEyl5xsZezYQKpVc/DB\nB1lUrVq6G4OGD8+lXj07b73lz4YNl27ztsJZRETK1KpVFh55JJCQEIP338/mqqtKf8duQAC88EIO\nJpPBo48GkpNTjgfqwRTOIiJSZn780cz99wdhNsPbb2fTsKHjvPdx000OBgzI48ABM9OmFXGRugLZ\nbPD00/68++55T0dxwRTOIiJSJn76ycS99waRlQWvvprDbbfZL3hfo0adplYtBy+95M+2be6Lqrw8\nGDw4kJdeCmDdOoWziIh4kT//NHHPPcGkpZmZPPk0nTsXPdJXaVSu7BycxG438eijgdgubncXJC8P\nBg0KZMkSP5o2tTF5csW1sSucRUTkopw8CXFxQfzyi5nHHjvNffeVPMNUabRubadHjzz++18Lr75a\nsc3bubkwYEAgn37qR7NmNt59t+Te5mVJ4SwiIhcsJwf69Qtixw4Lffvm8vjjuWW6/6efzqFqVQfP\nP+/Pvn1luusinQnmpUv9aN7cxsKF2VSqVDGvfYbCWURELojdDkOGBLJunZVOnfKYPPl0mc8qFRoK\nzz13mpwcEwMGgOP8+5edl9xcePDBQD7/3I8WLdwTzKBwFhGRC2AYkJAQwCefOK/HvvpqDpZyui35\njjtsxMbmsXo1LFzoVz4vApw+Df37B7FsmR8tW9p4++1sgoPL7eWKpXAWEZHz9sIL/rz5pj8NGthZ\nsCCbwMDyey2TCSZPPk2VKvDUUwH88UfZz1x1+jQ88EAQy5dbiY52bzCDwllERM7T22/7MWlSALVq\nOUhKyuayy8r/NWvUMHj+eTh1ysSTTwZglH5ckxLl5MD99we5JudYsCCboKCy2/+FUDiLiEipLV1q\n5fHHAwgPdw7LWb16GaZkCR58EJo1s7FsmR9LlpTNPcc5OXDffUGsWGGlTRsb8+e7P5hB4SwiIqW0\nYYOFQYMCCQyEd97Jpk6digtmALMZpk3LITDQYPToAI4du7j9ZWdD375BrFxppV07G2+9Vb7N8+dD\n4SwiIiXaudNMnz5B2O0wb142TZqUc7fpIlxzjcHjj+eSlmYmMfHCk/RMMK9aZSUmxsabb3pOMIPC\nWURESrBypYW77w4iPd3EzJk5tGlz4cNyloWHHsqlUSM7SUl+rFx5/l3Es7KgT58gVq+20r69jXnz\nsgnwsBkqFc4iIlKozEx44okA4uKCSU83MWVKDt27u2EczXNYrc6ZqywWg8cfDyQjo/Tbngnmb76x\nEhubx9y5nhfMoHAWEZFCbNpkpm3bSrz1lvN2qeXLs8psWM6ycP31DoYOzeXQITOTJpUuXTMzoXfv\nINassdKhQx5z5uTg7/5JrwqlcBYREZe8PJgyxZ/OnYP53/9MPPxwLsuXZ3Hdde65xlyckSNzqVPH\nwRtv+PH998XHWWYm9OoVxNq1ztHMPDmYQeEsIiJ/2b/fROfOwUydGkCNGgbJydmMH3/aozpK/V1g\noLN52zBMjBgRyOnThT8vIwPuvTeIb7+10rlzHq+/noNf+Q00ViYUziIilzjDgHnz/GjbthJbtljo\n3j2PVasyadbMvR2/SuPWW+3cd18ue/ZYmDmzYFU4IwN69gxi/Xord9yRx+zZnh/MoHAWEbmkHT5s\nIi4uiFGjnPcvz52bzcsv51CliruPrPTGjj1NzZoOZs70Z9eus7GWkeGcynLjRiv//ncer73mHcEM\nCmcRkUvWkiVWoqMr8fXXztGxvvkmky5d3N8b+3yFhMDzz+eQl+ds3rbb4dQp6NEjmO++s3LnnXm8\n8koO1rIZVKxCeNGhiohIWUhPh9GjA1m0yI+gIIPJk3O47768Mp/usSLFxNi58848kpP9eOEFf1au\ntPLDDxbuuiuPWbO8K5hB4SwicklZu9bCI48E8ttvZm680c7LL2fzj39U7DCc5eXZZ0+zapWFKVOc\nt1Z1757Hiy+W31SW5UnN2iIil4CcHBg3LoA77wzm8GETjz12mk8/zfKZYAaoWtVg4sTTmEwGPXp4\nbzCDas4iIj5v2zYzQ4YEsnu3hWuucfDKK+4bG7u83XmnjRYtMqla1fDqZnrVnEVEfJTdDi++6E9s\nbDC7d1u4//5cvvoq02eD+YyICO8OZlDNWUTEJx08aGLo0EA2brQSGelg5sxs2rb1/PuWxUk1ZxER\nH+Kc0hFatarExo3OEbFWr85SMHsZ1ZxFRLxcVhasXm1l+XILX3xhJS3Nee/vSy9l0727zeubeC9F\nCmcRES+Ummriiy+cgbx6tZXsbGcCR0Q4GDAABg/OpFYt3+mJfalROIuIeIl9+8x8/rmV5cut/PCD\nGcNwBnK9enbat7cRG2ujSRMH1aqFkJqqYPZmCmcREQ9lt8P331tYtswZyAcOOLsJmc0Gt956NpCv\nuUZB7GsUziIiHiQz88z1YytffmkhLc0ZyMHBBp065dG+vY2YGDvh4QpkX6ZwFhFxsyNHzlw/trJ6\ntYWcHGdzdWSkgz59comNtdGihd1j51WWsqdwFhEphaNHTaSmmsjLg7w8yM01YbNBbi5/LTP9tRxs\nNtPfljvXOZc7tzu7HPbssbBp09nrx/Xr24mNtdG+vY0bb3Rg1g2vlySFs4hIMQ4cMDFjRgCLFlmx\n28v+niSz2aBp07OBXLu2mqtF4VwqKSlWZszwZ+9eM3XrOoiPz6VbN++b81RESm/PHjMvvODP4sVW\nHA4T9erZadrUjr8/+PmBn5+Bnx/4+4PVavxtuXOdczn4+xt/W+587FzufF54uMFll7m7tOJpFM4l\nSEmxMmhQkOvxrl2Wvx5nK6BFfND27c5Q/vRTK4ZhomFDOyNG5NKpk01NzFJhFM4lmDHDv9DlM2f6\nK5xFfMiPP5qZPt2fZcv8ALjhBjsjRpymfXu7RtiSCqdwLsHevYV/VS5quYh4l/XrYezYIL76yvnn\n8F//sjNy5Glat1Yoi/sonEtQt66DXbsKztZdt65vT7km4uu+/dbCtGn+rFkDYKVZMxsjRuTSvLlC\nWdxP4VyC+PjcfNeczxg+PNcNRyMiF8Mw4JtvnKG8YYPzz19MDDzySBa33qpZm8RzKJxL4LyunM3M\nmWd7aw8frt7aIt7EMOCrryxMmxbApk3OlrCYGBsjRpwmNrYSqakKZvEspQrniRMnsnXrVkwmEwkJ\nCTRq1Mi1bsOGDUyfPh2z2Uzt2rWZMGEC2dnZPPnkk6Snp5OXl8eQIUNo0aJFuRWivHXrZlMYi3gh\nhwOWLbPywgv+bN3qDOWOHfMYMSKXRo10aUo8V4nh/N1333Hw4EGSkpI4cOAACQkJJCUludaPGzeO\nBQsWUL16dYYNG8aaNWs4dOgQtWvXZuTIkfz555/069ePZcuWlWtBRETOsNvh00+tTJ/uz65dFkwm\ng65d83j00VyiohTK4vlKDOf169fTrl07AOrUqUN6ejoZGRlUrlwZgOTkZNfPYWFhHD9+nNDQUPbs\n2QPAyZMnCQ0NLa/jFxFxycqC5GQ/XnvNj717LZjNBnffnUd8fK46cYpXKTGc09LSaNiwoetxWFgY\nqamprkA+8/+RI0dYt24dw4cPJzQ0lOTkZGJiYjh58iSzZ88up8MXEYGDB028+aY/777rx4kTJqxW\ng3vvzWXYsFxNpyhe6bw7hBlGwTf60aNHGTx4MImJiYSGhvLxxx9Ts2ZN5s6dy+7du0lISCA5ObnY\n/YaGBmO1Frxl6WJERISU6f48hS+WS2XyHp5SLmcnL5g1Cz75xPk4MhLGjoVBg0xccYU/UPggQufy\nlDKVJV8sE/huuc5VYjhHRkaSlpbmenzkyBEiIiJcjzMyMhgwYADx8fE0b94cgM2bN7t+rl+/PkeO\nHMFut2OxFB2+x49nXXAhChMREUJq6qky3acn8MVyqUzewxPKlZEBSUl+zJvnx759zr8pTZrY6d8/\nlzvusBEQ4Hxeamrp9ucJZSprvlgm8L1yFfdFo8Rhrpo1a8by5csB2LFjB5GRka6mbIBJkybRr18/\nWrZs6Vp29dVXs3XrVgB+++03KlWqVGwwi4iU5MABE//5TwCNG1dm9OhAfv7ZzN1357FsWSbLlmXR\nvfvZYBbxdiXWnJs0aULDhg2Ji4vDZDKRmJhIcnIyISEhNG/enMWLF3Pw4EEWLVoEQOfOnenRowcJ\nCQn07t0bm83G+PHjy7scIuKDHA7n/clz5vjz9dfOP1fVqzt4+OFc+vTJIzJS15PFN5XqmvNjjz2W\n73H9+vVdP2/fvr3QbWbOnHkRhyUil7L0dHjvPT/mzfPn55+dDXy33GLjwQfz6NjRhp+fmw9QpJxp\nhDAR8Ri7dpmZO9ePRYv8yMoyERho0KtXLg88kMf11+tWKLl0KJxFxK1sNucoXvPm+bF2rfNPUq1a\nDkaOzKVXr1zCwtx8gCJuoHAWEbcwDFi40I8XXvDn11+dTdctWtjo3z+P9u1tqA+pXMoUziJS4XJz\nYfToAN5+25/gYIP77nM2Xdevr6ZrESjFrVRSflJSrERHB1OjRmWio4NJSdF3JfF9aWkm7r47iLff\n9ue66+ysXZvJlCmnFcwif6M0cJOUFGu+eaJ37bL89ThbM2CJz9qxw0zfvkEcOmSmS5c8Xnwxh0qV\n3H1UIp5HNWc3mTGj8GEFZ84s3XCDIt5m6VIrnToFc+iQmccfP80bbyiYRYqimrOb7N1b+PeiopaL\neCvDcH4Zfe65AIKDDebOzaZLF7UOiRRH4ewmdes62LWrYHdUTWsnviQrCx59NJCUFD+uuMLBggXZ\nul9ZpBRUTXOT+PjcQpcPH174chFv88cfJrp2DSYlxY9//cvO8uVZCmaRUlI4u0m3bjZmz84mKsqO\n1WoQFWVn9mx1BhPfsGmTmZiYYLZutdCzZx7JyVkaB1vkPKhZ2426dbMpjMXnfPihlREjAsnLg6ef\nzmHQoDxMJncflYh3UTiLSJmw22HiRH9mzQqgShWD+fOzadPG7u7DEvFKCmcRuWinTsFDDwXxxRdW\nrrnGwcKFWfzjH2rGFrlQCmcRuSg//2yiT58g9uyxEB1t4403srn8cncflYh3U4cwEblga9daaN++\nEnv2WBg4MJf33lMwi5QF1ZxFfIhhwEsv+ZOUZOWqq5x3ATRs6CAqykGdOg6sZfiJf/NNP/7znwBM\nJpg+PYfevfPKbucilziFs4iPyMyE+PhAPv7YD39/g717TaxYcfYjHhhoUK+eM6gbNrS7/g8NPb/X\nycuD//wngLfe8ic83MGbb+Zw663q+CVSlhTOIj7gl19M9OsXxI4dFm65xcbcuTlYLLBrl5kdO8zs\n3Glhxw4zu3eb2brVAvi5tq1Rw/FX7dpZy27Y0ME11xReyz56FHr0CGLtWisNGth5++1srrpKHb9E\nyprCWcTLrVtnoX//QI4dM9OvXy4TJpzG/6/5U5o3t9O8uR1wNjnbbHDgwJnANrNjh4WdO82sWGEt\nsZYdFGQwZAj89JOVDh3yePnlHCpXdkOBRS4BCmcRL2UYMHeuH2PHBmA2w9SpOfTtW/x1X6sV6tVz\nUK+egzvvPLv86FFTqWrZACNGnOaJJ3IxqzupSLlROIt4odOn4YknAnnvPT+qVnUwb97FXfcNDzdK\nrGX/739m+vXzo2VLjf8uUt4UziJe5vBhE/ffH8SmTRYaN7bz1lvZXHFF2V/3LayWHRHhR2pqmb+U\niJxDDVMiXuSHH5wTSmzaZOHuu/NYsiSrXIJZRNxL4SxSCtnZsHWrmcxM9x3De+9Z+fe/g0lNNfHU\nUzm8/HIOQUHuOx4RKT9q1naD7GzYv9/M/v1mfv7ZTNu2Nho1ujTnuTUM54QJniYvD7ZsMbN2rZW1\nay18/72F06dNVKli0L17Hn375tGgQcWcs7w8SEwMYM4cfy6/3OD117Np1coDf2kiUmYUzuXo2DHY\nt8/Cvn1m9u41s2+f89+hQyYM4+wcejNn+rNoURY33XTxf+xTUqzMmOHP3r1m6tZ1EB+f67HTUq5b\nZ2Ho0ECOHYPrrgumcWM7jRvbueEGB//4hwOLpeKOxW6H7dvNrFljYd06K+vXW8jKOnuOrrvOzvXX\nO1i50sLcuf7MnevPLbfY6Ns3jy5dbAQGls9xHT1q4sEHA1m3zkr9+nbmz8+mdm01Y4v4Op8M561b\nzXz7LVgsflx2mfHXP/72s0GlSpTJHLMOB/z2m8kVvHv3OmvE+/aZSUsreNWgalUHTZvaufZaB9de\n68BshrFjA+jVK5glS7KoV+/CAzolxcqgQWfbOXftsvz1ONujAtpud34hmTLFH7MZ6teHzZvNfP/9\n2TQODja4/no7jRs7XIFdp46jzG7fMQzYs8fM2rUW1qyx8O23VtLTz74h6ta1u3ov33abjbAw5/K8\nPPjiCyvz5/uxapWVjRutjBlj0KNHHv365VKnTtkF57ZtZu67L4hDh8x07JjHSy/pvmKRS4XJMAyP\n+BqemnqqzPY1aFAgKSl+xT7HYik8tIsK88suM/D3h59/zh/C+/eb89WwAEwmg6uvNlwB7PznDOTC\nhkp8/30rw4YFUaOGg08/zaJLiVP/AAAgAElEQVRWraJPSURESJG/q+joYHbtKljdjIqys2pVVrG/\nj4qSmmri4YcDWb3ayhVXOHj99Ww6dqzEL7+cYscO5321zn9m9uwx43Cc/d1WqmTQqNHfA9tO7dpG\nqQLbMOB//zO5mqnXrrXk+/J01VUOWrSwuQK5WrWSPxb/+5+JhQv9eO89P9e+WrRw1qb79g0iPf3C\n39OLF1sZPjyQ7GwTTzxxmhEjPOO+4uLef95KZfIevlauiIiQItf5ZDhnZsJPP4Vw8GA26ekm0tP5\n638TJ06YOHnSVGB5Ts75V6MDAw3q1DkbwHXrOptj69RxnHcz5yuv+DF+fCB16jj45JMsqlYt/LQU\n9+asUaMydnvBclitBr//nnF+B1QO1q2zMHhwIH/+aSYmxsasWdmEhRVdpqwsZ1Pzf/9r4ccfnYG9\nd6853yWBkJCzgX3DDXYaNXIGtsnkbNFwBrEzkH/77Wy6VavmoHlzOy1a2GjWzM7VV1/4x+D0afj8\nc2dtet06Z2NUZCTExZ2mT5+889q33Q6TJvkzc2YAlSoZvPJKDh06eE6rh6/9cQSVyZv4WrkuuXCG\n8z+JOTnOoD550sSJE7gC/EyYnzhhIifHWcOqW9cZxldeaZTpddFnnvFn1qwAGje2k5KSVWgTpjfW\nnB0OmDHD2YxtMsGYMad56KE8V03wfM5VRgZs3+4M6jM17P378wf2mZaOX345G8ZhYQ6aNbO7ArlO\nHaNMLmuca98+MwsW+PHBB/4cP+5sRWnVyk6/fnncfrut2FmhTp6EwYODWLHCSu3aDubPz6Z+fc/q\nKOhrfxxBZfImvlYuhbOXMAwYMSKAd97xp0ULG++8k12gBl5cuc695nzG7Nnuu+Z8bjP27NnZ3Hxz\n/sC52HOVkQHbtln48cezzeJHj5q4+WY7zZs7m6qjosruenVpVK4cwrx52cyf7++6ll69uoNevfLo\n3TuvwL3J+/aZ6ds3iAMHzLRqZeP11z1zXmRv/FyVRGXyHr5WLoWzF7HZoH//QD7/3I9OnfKYMycn\nX+28pHKlpFiZOfNsb+3hw93XW7uoZuxzeeu5Ks7fy7Rzp7M2/eGHfpw6ZcJsNrj9due16dat7Xz1\nlYWHHgri1CkTQ4bkMmbM6QrtqX4+fP1c+QpfLBP4XrkUzl4mJwd69gxi3TorffrkMnXqaVcTrDeU\n69xm7P/85zQPP5xXZM3VG8p0vgorU2YmLF7sx/z5fvz4ozN9a9RwcPiwiYAAeOGFHO66y3OuLxfm\nUjlX3s4XywS+V67iwtkD+n/KuQIDYcGCbK6/3s7bb/vz3HP+7j6kUktNNdGjRxCTJgVQvbrBxx9n\nMXRo0cF8KalUCXr1yuOLL7L48stM+vTJJT3dRM2aBp98kuXxwSwiFUd/Mj1USAi89142tWs7mDEj\ngNdeK/7WME/w7bcW2rQJZvVqKzExNlauzCxwfVmcGjd2MG3aaXbuzODbbzNp3Fi/JxE5S+HswSIj\nDT78MIvq1R2MGxdIUpJnjhnjcMALL/hz551BpKWZGDcuh7ffLvz6suQXHIzGxxaRAhTOHu6qqwyS\nkrK5/HKD+PhAPv3U3UeUX2qqibi4IJ57Ts3YIiJlRX9CvUCDBg4WLszC3x+6d4cNGyq+K29KipXo\n6GBq1KhMdHQwKSnO8afbtg1m1Sor7dqpGVtEpKwonL3EzTc7mDcvG5sNevcOYseOijt1Z+6f3rXL\ngt1uco3Z/e9/B5Ga6mzGXrhQzdgiImVF4exF2ra189ZbztHLevQI4uefy2GIq0LMmFF4b3GLBRYv\nzlYztohIGdOfVC/TqxdMmJDDkSNmuncP5s8/yz+g9+4t/G1iGHDLLZpXWESkrCmcvdCAAXmMGHGa\ngwfNxMUFkZ5efq/1yy8mwsMLH6fmYqa3FBGRonnmvTlSoiefzCUtzcSCBf706RNEUlJ2mdySYxiw\na5eZpUutLF1qZfv2ojufDR+ee/EvKCIiBSicvZTJBJMnn+bECRNLlvgxaFAg8+blFDvrUVEcDvjh\nBzNLl/qxdKmVn392Nqj4+Rm0aWOjY0cbhmHw5pueMWa3iIivUzh7MYsFXn45hxMnTCxb5seIETBz\nZk6ppkLMzYW1ay0sXWpl2TIrR444A7lSJYOuXfPo2NFG27Y2qlQ5u02/fgpjEZGKoHD2cgEB8NZb\n2dx1VzDvv+9HaKjB+PGnCw3ojAz4+msrn31mZcUKKydPOp8UHu6gV69cOna00aKFvcA0lSIiUrEU\nzj6gcmV4991s7rgjiFdf9Sc83GDYMOf14KNHTXzxhYWlS/1YtcrC6dPOQK5Vy0HPns4a8s032z12\nikIRkUuRwtlHhIc7h/ns3DmYZ58N4PffTezZY2b9egsOhzOQGzSw06GDjU6dbFx3naNUzd8iIlLx\nShXOEydOZOvWrZhMJhISEmjUqJFr3YYNG5g+fTpms5natWszYcIEzGYzS5YsYc6cOVitVoYNG0ar\nVq3KqwzylyuvNPjgA2cNet4858AhN91kp2NHZw35mms8YupuEREpQYnh/N1333Hw4EGSkpI4cOAA\nCQkJJCUludaPGzeOBQsWUL16dYYNG8aaNWto1KgRL7/8Mh999BFZWVnMmjVL4VxB6tZ1sGRJNps2\nmWnTxk61agpkERFvU2I4r1+/nnbt2gFQp04d0tPTycjIoHLlygAkJye7fg4LC+P48eOsX7+epk2b\nUrlyZSpXrswzzzxTjkWQc9Wt66BuXQ0QIiLirUocISwtLY3Q0FDX47CwMFJTU12PzwTzkSNHWLdu\nHdHR0fz666/k5OQwePBg7r33XtavX18Ohy4iIuKbzrtDmGEUbCY9evQogwcPJjEx0RXkJ06c4KWX\nXuL333+nb9++fP3115iK6YEUGhqM1Vq2XYYjIkLKdH+ewlfK9f77MHEi7NwJUVEhJCRAXJy7j6rs\n+Mp5Opcvlktl8h6+Wq5zlRjOkZGRpKWluR4fOXKEiIgI1+OMjAwGDBhAfHw8zZs3ByA8PJwbb7wR\nq9XKVVddRaVKlTh27Bjh4eFFvs7x41kXU44CIiJCSE09Vab79AS+Uq4z01CesW0b9OwJJ09m+8TI\nY75yns7li+VSmbyHr5WruC8aJTZrN2vWjOXLlwOwY8cOIiMjXU3ZAJMmTaJfv360bNnStax58+Zs\n2LABh8PB8ePHycrKytc0LlLUNJQzZxa+XETkUlJizblJkyY0bNiQuLg4TCYTiYmJJCcnExISQvPm\nzVm8eDEHDx5k0aJFAHTu3JkePXrQvn177rnnHgDGjBmDWRP+yt8UNQ1lUctFRC4lJqOwi8huUNZN\nFb7W/HGGr5QrOjqYXbsK9jGIirKzalXZXuJwB185T+fyxXKpTN7D18p1Uc3aIuUhPr7w6SYvdhrK\nlBQr0dHB1KhRmejoYFJSNAieiHgf/eUSt3B2+spm5kx/9u61ULeu/aKnoTy3k9muXZa/HvtGJzMR\nuXQonMVtunWz0a2b7a+mqotvyi6uk5nCWUS8iZq1xWeok5mI+Ar91RKfUdSQpRrKVES8jcJZfEZ5\ndTITEaloCmfxGd262Zg9O5uoKDtWq0FUlJ3Zs9UZTES8jzqEiU8508lMRMSbqeYsIiLiYRTOIiIi\nHkbhLCIi4mEUziIiIh5G4SwiIuJhFM4iIiIeRuEsIiLiYRTOIqWgqShFpCLpL4xICTQVpYhUNNWc\nRUpQ3FSUIiLlQeEsUgJNRSkiFU1/XURKoKkoRaSiKZxFSqCpKEWkoimcRUqgqShFpKKpt7ZIKWgq\nShGpSKo5i4iIeBiFs4iIiIdROIuIiHgYhbOIiIiHUTiLiIh4GIWziIiIh1E4i4iIeBiFs4iIiIdR\nOIu4ieaIFpGi6K+BiBtojmgRKY5qziJuoDmiRaQ4CmcRN9Ac0SJSHP0lEHEDzREtIsVROIu4geaI\nFpHiKJxF3EBzRItIcdRbW8RNNEe0iBRFNWcREREPo3AWERHxMApnERERD6NwFvEhGhJUxDfokyvi\nIzQkqIjvUM1ZxEdoSFAR36FwFvERGhJUxHfoUyviIzQkqIjvUDiL+AgNCSriOxTOIj5CQ4KK+I5S\n9daeOHEiW7duxWQykZCQQKNGjVzrNmzYwPTp0zGbzdSuXZsJEyZgNjszPycnh86dO/Pwww9z5513\nlk8JRMRFQ4KK+IYSa87fffcdBw8eJCkpiQkTJjBhwoR868eNG8eLL77I+++/T2ZmJmvWrHGte/XV\nV7nsssvK/qhFRER8WInhvH79etq1awdAnTp1SE9PJyMjw7U+OTmZ6tWrAxAWFsbx48cBOHDgAPv3\n76dVq1blcNgiIiK+q8Rm7bS0NBo2bOh6HBYWRmpqKpUrVwZw/X/kyBHWrVvH8OHDAZg8eTJjx45l\n8eLFpTqQ0NBgrFbLeRegOBERIWW6P0/hi+VSmTzb++/DxImwcydERYWQkABxce4+qrLjS+fqDF8s\nE/huuc513iOEGYZRYNnRo0cZPHgwiYmJhIaGsnjxYm644QZq1apV6v0eP551vodSrIiIEFJTT5Xp\nPj2BL5ZLZfJs5448tm0b9OwJJ0/6RmczXzpXZ/himcD3ylXcF40SwzkyMpK0tDTX4yNHjhAREeF6\nnJGRwYABA4iPj6d58+YArFq1ikOHDrFq1SoOHz6Mv78/1atX57bbbruYcoiIGxQ38pgvhLOIJyox\nnJs1a8asWbOIi4tjx44dREZGupqyASZNmkS/fv1o2bKla9mMGTNcP8+aNYsrrrhCwSzipTTymEjF\nKzGcmzRpQsOGDYmLi8NkMpGYmEhycjIhISE0b96cxYsXc/DgQRYtWgRA586d6dGjR7kfuIhUjLp1\nHezaVbA/iEYeEyk/pbrm/Nhjj+V7XL9+fdfP27dvL3bbRx555AIOS0Q8RXx8br5rzmdo5DGR8qN2\nKREpVv6Rx9DIYyIVQPM5i0iJzow85uwtW7Z3VohIQao5i4iIeBiFs4iIiIdROIuIW6SkWImODqZG\njcpERweTkqKrbCJn6NMgIhXu3FHHdu2y/PVYHc1EQDVnEXGD4kYdExGFs4i4gUYdEymePgkiUuGK\nGl1Mo46JOCmcRaTCxccXPrqYRh0TcVI4i0iFyz/qmKFRx0TOod7aIuIWZ0YdE5GCVHMWERHxMApn\nERERD6NwFhGfoVHHxFfonSsiPkGjjokvUc1ZRHyCRh0TX6JwFhGfoFHHxJfoXSsiPkGjjokvUTiL\niE/QqGPiSxTOIuITNOqY+BL11hYRn6FRx8RXqOYsIlIC3T8tFU3vMBGRYuj+aXEH1ZxFRIqh+6fF\nHRTOIiLF0P3T4g56d4mIFEP3T4s7KJxFRIqh+6fFHRTOIiLF0P3T4g7qrS0iUoLyuH86JcXKjBn+\n7N1rpm5dB/HxuQp8cVE4i4hUMN2eJSVRs7aISAXT7VlSEoWziEgF0+1ZUhK9E0REKphuz5KSKJxF\nRCqYbs+SkiicRUQqmG7PkpKot7aIiBtoekspjmrOIiIiHkbhLCIi4mEUziIiIh5G4SwiIuJhFM4i\nIiIeRuEsIiLiYRTOIiIiHkbhLCIi4mEUziIiPiIlxUp0dDBWK0RHB5OSonGmvJXOnIiID9Ac0b5F\nNWcRER+gOaJ9i8JZRMQHaI5o31KqZu2JEyeydetWTCYTCQkJNGrUyLVuw4YNTJ8+HbPZTO3atZkw\nYQJms5kpU6awadMmbDYbgwYN4vbbby+3QoiIXOrq1nWwa5el0OXifUoM5++++46DBw+SlJTEgQMH\nSEhIICkpybV+3LhxLFiwgOrVqzNs2DDWrFlDQEAA+/btIykpiePHj9OtWzeFs4hIOYqPz813zfkM\nzRHtnUoM5/Xr19OuXTsA6tSpQ3p6OhkZGVSuXBmA5ORk189hYWEcP36cLl26uGrXVapUITs7G7vd\njsVS8FudiIhcPGenr2xmzvRn714LdevaGT48V53BvFSJ4ZyWlkbDhg1dj8PCwkhNTXUF8pn/jxw5\nwrp16xg+fDgWi4Xg4GAAFi1aRMuWLUsM5tDQYKzWsg3viIiQMt2fp/DFcqlM3sMXy+UrZRo40PnP\nyQIUrElfiPffh4kTYedOiIqChASIiyuTXZ83XzlXJTnvW6kMwyiw7OjRowwePJjExERCQ0Ndy1es\nWMGiRYuYN29eifs9fjzrfA+lWBERIaSmnirTfXoCXyyXyuQ9fLFcKlPxzr1Fa9s26NkTTp6s+Fu0\nfO1cFfdFo8RufJGRkaSlpbkeHzlyhIiICNfjjIwMBgwYQHx8PM2bN3ctX7NmDa+99hpvvPEGISGX\nxjcdERFfo1u03KPEcG7WrBnLly8HYMeOHURGRrqasgEmTZpEv379aNmypWvZqVOnmDJlCrNnz+by\nyy8vh8MWEZGKoFu03KPEZu0mTZrQsGFD4uLiMJlMJCYmkpycTEhICM2bN2fx4sUcPHiQRYsWAdC5\nc2cAjh8/Tnx8vGs/kydPpmbNmuVUDBERKQ+6Rcs9SnXN+bHHHsv3uH79+q6ft2/fXug2PXr0uIjD\nEhERT6BbtNxD7RLFmDXrBYYOHci9997FnXd2YujQgSQkPF6qbZcu/YTVq78ucv3MmdP4/fffLvjY\nhg4dyE8/7b/g7UVESqNbNxuzZ2cTFWXHajWIirIze/bFdwY7M0lHjRqVNUlHIXzqt5GSYmXGDH/2\n7jUTFQVDh1ov6g30yCOPAs6g/emnAwwdGl/CFmd17Nil2PXDh4+84OMSEalI3brZyrRntibpKJnP\nhHNh3f3L62Rv3vwD77+/kKysLIYOfZQtWzaxatVXOBwOmjZtxgMPDGTuXGdnuNq165Cc/AEmk5mD\nB/9Hq1ZteeCBgQwdOpARI57g66+/IjMzg19+Ochvv/3KsGEjadq0GQsXvsWKFV9Qs+YV2Gw24uJ6\n0aTJTQWOJSMjgwkTxpORcQqbzUZ8/OPUq1efGTOeZ/fuXdjtdrp1u5uOHbsUukxEpKIV1wNc4ezk\nM+Fc0Sf7wIH9vPdeMv7+/mzZsolXXpmD2Wzmnnu60qPHvfmeu3PnDt599yMcDgfdu3fhgQcG5lt/\n5MifTJ36Ihs2fMvHH39Ew4bXkZz8Ie+99xGZmZnExd1JXFyvQo/jww/fo2HD6+jd+z52797JrFnT\nmTjxeb79di0ffPAxNpuNpUs/4eTJ9ALLRETcQT3AS+Yz4VzRJ/sf/7gWf3/nF4LAwECGDh2IxWLh\nxIkTnDx5Mt9z69WrT2BgYJH7atToBsB5T3lGRga//nqIa66pQ0BAIAEBgTRo0LDIbXfv3knfvv0B\nqF8/il9/PUSVKpdRq9bVjBo1gtat2xEb2wl/f/8Cy0RE3EE9wEvmM19Tijqp5XWy/fz8ADh8+A+S\nkt5h2rRZvPTS61SvXr3Ac0sauvTv6w3DwDDAbD57akymorc1mUz5Rm1zOJzlnTbtRe6/fyD79u3l\nyScfLXKZiEhFi48vvKe3eoCf5TPh7K6TfeLECUJDQwkODmbPnt0cPnyYvLy8i9pnjRo1+OmnA9hs\nNo4fP87u3buKfG79+lFs2fIDANu3b6N27Tr88cfvfPjh+9SrV5+hQ+NJT08vdJmIiDuUVw9wX+Iz\nzdr5Z2QxExVlYsiQ8j/Z115bl6CgYB566AGuv/4Guna9k2nTJtOoUeML3mdYWDgxMbEMGNCXq6+u\nTVRUwyJr3/fc05OJE59i2LDBOBwORox4kqpVI9i+fStfffUFfn5+dOp0R6HLRETcpax7gJ/x97t2\n6tZ1EB/vnTNzmYzCZrJwg7IezNzbB0hfuvQTYmJisVgs9O0bx/Tps4iMrOb15SqMyuQ9fLFcKpP3\nKKlc5961c4an1sqLm/jCZ2rOvubo0aMMHNgPPz9/br89lsjIau4+JBERj+ZLt2gpnD1Unz730afP\nfe4+DBERr+FLt2h53xGLiIgUoqLv2ilPCmcREfEJvnSLlsJZRER8gi/doqVrziIi4jPK6xatiqaa\nczEGDbq/wAAgr732Eu+9t7DQ52/e/ANjxjwBwKhRIwqs/+ijJObOnV3k6+3fv49ffjkIQGLiaE6f\nzrnQQ+fuu7uQlZV1wduLiIj7KJyLERPTnpUrv8y3bNWqlbRrd3uJ206aNP28X2/16pUcOvQLAE89\n9RwBAUWPxy0iIr5LzdrFaNv2dh56qD8PPzwMgN27dxEREUFERCTff7+ROXNew8/Pj5CQEJ5+elK+\nbTt1astnn33FDz98x4svTiMsLJzw8KquKSAnTBhPauoRsrOzeeCBgVSvXoOPP05m9eqVhIaGMm7c\naBYsSCIj4xTPPfc0eXl5mM1mpkyZxPHjWUyYMJ6aNa9g//591K1bj1GjxhZahiNH/sy3/ahRY4mM\nrMbTT4/l6NE0cnNz6d9/EDfddHOBZbfeelu5/45FRDydO0Yd85pwHj8+gE8+Kf3hms3gcFQq9jld\nutgYP/50ketDQ8OoWfMKdu7cTlTUdaxc+SUxMbEAnDp1isTEZ6lZ8wqeeWYcGzeuJzg4uMA+Zs9+\nibFjn+Haa+vy2GPDqFnzCk6dOsnNN99Khw6d+e23Xxk7dhTz5i3kllua0qpVW6KirnNtP2fOa3Tu\n3JW2bW/n669X8NJLL9Gr1wPs2bOLp56aSGhoGN26deTUqVOEhBQcbebc7efNe53u3XuSnn6Cl19+\ng1OnTrF+/ToOHNhfYJmIyKXu3FHHdu2y/PW4fDuaqVm7BDExsXz1lbNpe926b2jVqi0Al19+OZMn\nP8vQoQPZsmUTJ08WPpHEH3/8wbXX1gXghhuaABASUoVdu3bw0EMPMGHC+CK3BdizZxc33vhPAJo0\nuYmdO3cCcMUVtQgPr4rZbKZq1QgyMzNKtf2+fXu4+ur/Iysrk2eeGcvmzd/Trt3thS4TEbnUFTfq\nWHnyoprz6WJruedyjsGaedGvGx3dmgUL5hET055ata6iSpUqADz33DM8//wM/u//ajN9+uQit//7\n1I9nhjH/8stlnDx5kpdfnsPJkyd58ME+xRzB2Skh8/Jsrv2dOxFG0UOk59/eZDITGBjI7NlvsW3b\nf/n8809Yt24NCQmJhS4TEbmUuWvUMdWcSxAcXIk6da5lwYI3XU3aAJmZGVSrVp1Tp06xefOmIqeJ\nrFo1gl9++RnDMNiyZRPgnGayRo2amM1mVq9e6drWZDJht9vzbd+gQRSbNzunhPzxx01cd911nI9z\nt69fvwF79uzmyy+X0bjxDTz22Gh+/vl/hS4TEbnUuWvUMa+pObtTTEwszz6bSGLiM65ld97ZnYce\n6k+tWlfRq1df5s17nYEDHy6w7cCBDzNmzJNUr17DNXlFq1ZtGDVqBDt3bqdTpzuIjIzkzTffoHHj\nG5kx4/l8164ffHAwzz33DJ98shir1Y+pUyfz558nSn3s524/evRYAgICmT37ZT7+OBmz2cy99/ah\nRo2aBZaJiFzq4uNzC53pqrxHHdOUkV7GF8ulMnkPXyyXyuQ93FWulBQrM2ee7a09fHjZ9NbWlJEi\nIiIXyB2jjumas4iIiIdROIuIiHgYhbOIiIiHUTiLiIh4GIWziIiIh1E4i4iIeBiFs4iIiIdROIuI\niHgYhbOIiIiH8ZjhO0VERMRJNWcREREPo3AWERHxMApnERERD6NwFhER8TAKZxEREQ+jcBYREfEw\nVncfwMWaOHEiW7duxWQykZCQQKNGjVzrvv32W6ZPn47FYqFly5YMGTLEjUd6fqZMmcKmTZuw2WwM\nGjSI22+/3bWuTZs2VK9eHYvFAsDUqVOpVq2auw61VDZu3Mjw4cO59tprAahbty5jx451rffWc/Xh\nhx+yZMkS1+Pt27ezZcsW1+OGDRvSpEkT1+O33nrLdd480d69e3n44Ye577776N27N3/88QdPPPEE\ndrudiIgInn/+efz9/fNtU9xn0BMUVqbRo0djs9mwWq08//zzREREuJ5f0nvVE5xbplGjRrFjxw4u\nv/xyAPr370+rVq3ybePp5wkKlmvYsGEcP34cgBMnTnDDDTfwzDPPuJ6fnJzMzJkzueqqqwC47bbb\neOihh9xy7GXO8GIbN240Bg4caBiGYezfv9+455578q3v0KGD8fvvvxt2u93o2bOnsW/fPncc5nlb\nv3698eCDDxqGYRjHjh0zoqOj861v3bq1kZGR4YYju3AbNmwwHnnkkSLXe+u5+ruNGzca48ePz7fs\n5ptvdtPRnL/MzEyjd+/expgxY4y3337bMAzDGDVqlLF06VLDMAxj2rRpxjvvvJNvm5I+g+5WWJme\neOIJ47PPPjMMwzAWLlxoTJ48Od82Jb1X3a2wMj355JPGypUri9zG08+TYRRerr8bNWqUsXXr1nzL\nPvroI2PSpEkVdYgVyqubtdevX0+7du0AqFOnDunp6WRkZABw6NAhLrvsMmrUqIHZbCY6Opr169e7\n83BL7V//+hczZ84EoEqVKmRnZ2O32918VOXHm8/V37388ss8/PDD7j6MC+bv788bb7xBZGSka9nG\njRtp27YtAK1bty5wXor7DHqCwsqUmJhI+/btAQgNDeXEiRPuOrwLUliZSuLp5wmKL9dPP/3EqVOn\nPLK2X168OpzT0tIIDQ11PQ4LCyM1NRWA1NRUwsLCCl3n6SwWC8HBwQAsWrSIli1bFmgKTUxMpGfP\nnkydOhXDSwZ5279/P4MHD6Znz56sW7fOtdybz9UZ//3vf6lRo0a+5lGA3NxcRo4cSVxcHG+++aab\njq50rFYrgYGB+ZZlZ2e7mrHDw8MLnJfiPoOeoLAyBQcHY7FYsNvtvPvuu3Tp0qXAdkW9Vz1BYWUC\nWLhwIX379uXRRx/l2LFj+dZ5+nmCossFsGDBAnr37l3ouu+++47+/fvTr18/du7cWZ6HWKG8/prz\n33lLSJXWihUrWLRoEfPmzcu3fNiwYbRo0YLLLruMIUOGsHz5cmJjY910lKXzf//3fwwdOpQOHTpw\n6NAh+vbtyxdffFHg+lKlwAwAAAOlSURBVKW3WrRoEd26dSuw/IknnuCOO+7AZDLRu3dvbrrpJq6/\n/no3HOHFK83ny1s+g3a7nSeeeIJbb72Vpk2b5lvnje/Vrl27cvnll9OgQQNef/11XnrpJcaNG1fk\n873lPIHzC+6mTZsYP358gXWNGzcmLCyMVq1asWXLFp588kk++eSTij/IcuDVNefIyEjS0tJcj48c\nOeKquZy77s8//zyvZiB3W7NmDa+99hpvvPEGISEh+db9+9//Jjw8HKvVSsuWLdm7d6+bjrL0qlWr\nRseOHTGZTFx11VVUrVqVP//8E/D+cwXO5t8bb7yxwPKePXtSqVIlgoODufXWW73iXP1dcHAwOTk5\nQOHnpbjPoCcbPXo0V199NUOHDi2wrrj3qqdq2rQpDRo0AJwdRs99n3nreQL4/vvvi2zOrlOnjqvj\n24033sixY8d85hKgV4dzs2bNWL58OQA7duwgMjKSypUrA3DllVeSkZHBr7/+is1m4+uvv6ZZs2bu\nPNxSO3XqFFOmTGH27Nmu3pd/X9e/f39yc3MB5xv3TK9ST7ZkyRLmzp0LOJuxjx496uph7s3nCpyh\nValSpQI1q59++omRI0diGAY2m43Nmzd7xbn6u9tuu831Gfviiy9o0aJFvvXFfQY91ZIlS/Dz82PY\nsGFFri/qveqpHnnkEQ4dOgQ4vyie+z7zxvN0xrZt26hfv36h69544w0+/fRTwNnTOywszKPvhjgf\nXj8r1dSpU/nhhx8wmUwkJiayc+dOQkJCiImJ4fvvv2fq1KkA3H777fTv39/NR1s6SUlJzJo1i9q1\na7uW3XLLLdSrV4+YmBjmz5/P4sWLCQgIICoqirFjx2Iymdx4xCXLyMjgscce4+TJk+Tl5TF06FCO\nHj3q9ecKnLdPzZgxgzlz5gDw+uuv869//Ysbb7yR559/ng0bNmA2m2nTpo1H3+axfft2Jk+ezG+/\n/YbVaqVatWpMnTqVUaNGcfr0aWrWrMlzzz2Hn58fjz76KM899xyBgYEFPoNF/SF1h8LKdPToUQIC\nAlzhVKdOHcaPH+8qk81mK/BejY6OdnNJziqsTL179+b1118nKCiI4OBgnnvuOcLDw73mPEHh5Zo1\naxazZs3in//8Jx07dnQ996GHHuLVV1/l8OHDPP74464vwJ56i9iF8PpwFhER8TVe3awt8v/t1QEN\nAAAAwqD+ra3xOSgBwCM5A0CMnAEgRs4AECNnAIiRMwDEyBkAYuQMADEDiwgQg/dHU/MAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "dkxBp0Y0SFeP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Much better! We are able to significantly beat the common sense baseline, such demonstrating the value of machine learning here, as well as \n", + "the superiority of recurrent networks compared to sequence-flattening dense networks on this type of task.\n", + "\n", + "Our new validation MAE of ~0.265 (before we start significantly overfitting) translates to a mean absolute error of 2.35˚C after \n", + "de-normalization. That's a solid gain on our initial error of 2.57˚C, but we probably still have a bit of margin for improvement." + ] + }, + { + "metadata": { + "id": "fH5k3PrfSFeR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Using recurrent dropout to fight overfitting\n", + "\n", + "\n", + "It is evident from our training and validation curves that our model is overfitting: the training and validation losses start diverging \n", + "considerably after a few epochs. You are already familiar with a classic technique for fighting this phenomenon: dropout, consisting in \n", + "randomly zeroing-out input units of a layer in order to break happenstance correlations in the training data that the layer is exposed to. \n", + "How to correctly apply dropout in recurrent networks, however, is not a trivial question. It has long been known that applying dropout \n", + "before a recurrent layer hinders learning rather than helping with regularization. In 2015, Yarin Gal, as part of his Ph.D. thesis on \n", + "Bayesian deep learning, determined the proper way to use dropout with a recurrent network: the same dropout mask (the same pattern of \n", + "dropped units) should be applied at every timestep, instead of a dropout mask that would vary randomly from timestep to timestep. What's \n", + "more: in order to regularize the representations formed by the recurrent gates of layers such as GRU and LSTM, a temporally constant \n", + "dropout mask should be applied to the inner recurrent activations of the layer (a \"recurrent\" dropout mask). Using the same dropout mask at \n", + "every timestep allows the network to properly propagate its learning error through time; a temporally random dropout mask would instead \n", + "disrupt this error signal and be harmful to the learning process.\n", + "\n", + "Yarin Gal did his research using Keras and helped build this mechanism directly into Keras recurrent layers. Every recurrent layer in Keras \n", + "has two dropout-related arguments: `dropout`, a float specifying the dropout rate for input units of the layer, and `recurrent_dropout`, \n", + "specifying the dropout rate of the recurrent units. Let's add dropout and recurrent dropout to our GRU layer and see how it impacts \n", + "overfitting. Because networks being regularized with dropout always take longer to fully converge, we train our network for twice as many \n", + "epochs." + ] + }, + { + "metadata": { + "id": "nZ2naxTdSFeS", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 119 + }, + "outputId": "93094277-6136-4960-c81d-05c1206b4c53" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.optimizers import RMSprop\n", + "\n", + "model = Sequential()\n", + "model.add(layers.GRU(32,\n", + " dropout=0.2,\n", + " recurrent_dropout=0.2,\n", + " input_shape=(None, float_data.shape[-1])))\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen,\n", + " steps_per_epoch=500,\n", + " epochs=3,\n", + " validation_data=val_gen,\n", + " validation_steps=val_steps)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/3\n", + "500/500 [==============================] - 337s 675ms/step - loss: 0.3446 - val_loss: 0.2765\n", + "Epoch 2/3\n", + "500/500 [==============================] - 336s 672ms/step - loss: 0.3158 - val_loss: 0.2695\n", + "Epoch 3/3\n", + "500/500 [==============================] - 336s 672ms/step - loss: 0.3084 - val_loss: 0.2678\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "XBP1_16ASFe5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 362 + }, + "outputId": "df49cc23-4ba1-4b5c-bd4a-daa82d3dab98" + }, + "cell_type": "code", + "source": [ + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(loss))\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtclHXe//HXDMNBZVTQGRGlQkpN\nigxryzRNhdTSbd3NpMNih1s76Kqbda9xZ9iWrpa6mduWHX9abmKEVrcmm1tuZpgWrilqHrrDQxqg\ngAySCMzvD2IEmWFQOVyM7+fj4YO5vtdc3/l+Bi/ecx3mukxOp9OJiIiIGIa5uQcgIiIiNSmcRURE\nDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM7i05KTkxk2bBjDhg0jOjqaQYMGuaYdDsdZ9TVs\n2DDy8vLqfM68efN49913z2fIDe7ee+8lLS2tQfrq0aMHR44c4ZNPPuGJJ544r9dbvny563F93tv6\nmjZtGn//+98bpC+R5mJp7gGINKann37a9Xjw4ME899xzXHPNNefU15o1a7w+Z+rUqefUd0sTHx9P\nfHz8OS+fm5vL66+/zh133AHU770VuZBoy1kuaL///e/561//yvDhw8nMzCQvL48HHniAYcOGMXjw\nYN566y3Xc6u2Gr/66ivGjBnDvHnzGD58OIMHD2bTpk1Aza22wYMHs2zZMm6//Xb69+/P7NmzXX29\n8sor9O3bl9/97ncsXbqUwYMHux3fe++9x/Dhw7n55pu5++67OXToEABpaWlMmjSJpKQkhg4dyi23\n3MKePXsAOHDgAKNHjyYuLo6pU6dSXl5eq99///vfjBw5skbbbbfdxueff17ne1AlLS2Ne++91+vr\n/etf/2LkyJEMHTqU3/72t+zcuROAhIQEfvzxR4YNG0ZpaanrvQVYsmQJt9xyC8OGDePhhx/m2LFj\nrvf2xRdf5L777mPQoEHcd999lJSUePrVArBr1y4SEhIYNmwYt912G+vXrweguLiYCRMmMHz4cIYM\nGcKTTz7JqVOnPLaLNDWFs1zwtm/fzqpVq4iNjeXll1+ma9eurFmzhsWLFzNv3jwOHz5ca5kdO3Zw\n1VVX8fHHH3PXXXfx8ssvu+178+bNpKSk8P777/POO+9w5MgR9uzZw+uvv84HH3zAP/7xD49bjUeP\nHuXPf/4zb731Fv/85z+56KKLauyu/fzzz7nrrrtIT0/nuuuuY/HixQDMnTuXvn37snbtWsaOHUtm\nZmatvvv27cuRI0c4cOAAUBmwR44c4YYbbqj3e1DF0+uVlZUxbdo0nnnmGdLT0xk8eDBz5swBYNas\nWXTu3Jk1a9YQEBDg6us///kPb7zxBm+//TZr1qwhPDycefPmueavWbOGv/71r3zyySccO3aMTz75\nxOO4KioqePTRR7nnnntYs2YNzz77LFOnTsXhcLBy5Uratm3Lxx9/THp6On5+fuzdu9dju0hTUzjL\nBW/gwIGYzZWrwpNPPsn06dMBiIiIwGazcfDgwVrLtGnThri4OACio6P58ccf3fY9cuRI/Pz86NSp\nEx06dODw4cNs3ryZX/3qV9jtdgIDA/nd737ndtkOHTrwzTffEBYWBsA111zjClOAqKgorrjiCgB6\n9erlCtCvv/6aW265BYCYmBi6detWq++AgAAGDRrEp59+CsDatWuJi4vDYrHU+z2o4un1LBYLX375\nJb1793Y7fnfWrVvH0KFD6dChAwCjR49mw4YNrvkDBw6kffv2WCwWunfvXueHhoMHD5KXl8ett94K\nwJVXXkl4eDjbtm0jNDSULVu28MUXX1BRUcHTTz/N5Zdf7rFdpKnpmLNc8Nq1a+d6vG3bNteWotls\nJjc3l4qKilrLWK1W12Oz2ez2OQDBwcGux35+fpSXl3P8+PEar9mpUye3y5aXl/Piiy/y6aefUl5e\nTnFxMZGRkW7HUNU3QGFhYY3Xbdu2rdv+hw4dypIlSxg7dixr167lkUceOav3oEpdr/f222+zYsUK\nSktLKS0txWQyeewH4NixY9jt9hp9HT161GvNnvqyWq01XrNt27YcO3aMW2+9lcLCQhYsWMD333/P\nr3/9a5544gmGDx/utr361r1IU9CWs0g1jz/+OEOHDiU9PZ01a9YQEhLS4K8RHBzMiRMnXNM5OTlu\nn7d69Wo+/fRT3nnnHdLT05k0aVK9+m/btm2NM9Grjtme6cYbb2TXrl388MMP/PDDD1x//fXA2b8H\nnl4vMzOT1157jZdffpn09HSeffZZr2Pv2LEjBQUFrumCggI6duzodTl3OnToQGFhIdXv7VNQUODa\nKk9ISOC9995j9erVZGVlsXLlyjrbRZqSwlmkmqNHj3LFFVdgMplYsWIFJSUlNYK0IcTExPDVV19x\n7NgxSktLPf7xP3r0KF26dCE0NJT8/Hw+/vhjiouLvfbfu3dv17HYzMxM9u/f7/Z5AQEB9O/fn+ef\nf54hQ4bg5+fnet2zeQ88vd6xY8fo0KED4eHhlJSUsGLFCk6cOIHT6cRisXDixAnKyspq9HXTTTfx\nySefkJ+fD8CyZcsYOHCg15rd6dq1K2FhYaxevdo1try8PGJiYnjppZdITU0FKvdcdO3aFZPJ5LFd\npKkpnEWqmTx5MhMmTGDkyJGcOHGCMWPGMH36dI8Bdy5iYmIYNWoUo0aNIjExkUGDBrl93ogRIygo\nKCA+Pp6pU6cyZcoUjhw5UuOsb3cef/xxPvvsM+Li4li6dCk33HCDx+cOHTqUtWvXMnz4cFfb2b4H\nnl7vxhtvxG63ExcXx/3338/YsWOxWq1MmjSJHj160K5dO/r161fjeH1MTAzjx4/n7rvvZtiwYRQV\nFfHHP/6xzno9MZlMzJ8/n3feeYfhw4fz7LPPsmDBAlq3bs1tt93GBx98wNChQxk2bBj+/v7cdttt\nHttFmppJ93MWaXpOp9O1RbZu3TpeeOEF7T4VERdtOYs0sWPHjnH99ddz6NAhnE4nH3/8seuMZhER\n0JazSLN49913efPNNzGZTHTr1o2ZM2e6TlQSEVE4i4iIGIx2a4uIiBiMwllERMRgDHOFsNzcogbt\nLySkNfn5Dfv91OaiWozHV+oA1WJEvlIHqJa62GxWj/N8dsvZYvFr7iE0GNViPL5SB6gWI/KVOkC1\nnCufDWcREZGWSuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYw1yEREREfMfC\nhX/lu+92UliYT3HxCcLDu9C2bTtmzXre67KrV39EmzbBDBzo/l7nCxbMY/ToBMLDu5zT2CZOHM+j\nj/433bpdek7LNwWfC+cVKyy88EIAu3dD9+6tmTKllFGjypp7WCIihnb6b6eZ7t0rzvtv5x/+8EcA\n1q//hK1bs5g4cUq9l73llpF1zp88eeo5j6ul8KlwXrHCwoMPtnJN79zp98t0iQJaRMSDpvzbmZn5\nNcuWvcOJEyeYOPGPbNnyDevW/YuKigr69u3H/feP5403FtG+fXsiI6NIS1uOyWQmO/v/uOmmIdx/\n/3jXlu9nn/2L4mIH+/dnc+jQQSZNmkrfvv14553/x9q1/yQ8vAtlZWUkJNxNbOw1tcbicDiYOXMG\nDkcRZWVlTJnyOD169OSFF55n166dlJeXM2rU7dxyy0heeOF59u3bzc8/l7raGpNPhfMLLwS4bV+w\nIEDhLCLiQVP/7dy3by/vvptGQEAAW7Z8w9///jpms5k77riNMWPuqvHcHTuy+Mc/3qeiooLRo0dy\n//3ja8zPyfmJuXNfZOPGL/ngg/eJjr6CtLT3ePfd9ykuLiYh4bckJNztdhzvvfcu0dFXcM8997Jr\n1w4WLpzPrFnP8+WXX7B8+QeUlZWxevVHHD9eyJdffsFnn33K4cP5rF79UYO/J2fyqXDevdv9+W2e\n2kVEpOn/dl566WUEBFR+IAgKCmLixPH4+flRUFDA8ePHazy3R4+eBAUFeewrJqY3AHa7HYfDwcGD\nB+jWLYrAwCACA4O4/PJoj8vu2rWDxMQHAOjZsxcHDx6gbdt2RERczLRpjzJoUBzDht1KQEAAEREX\n8/DDD9Ov300MG3br+b4FXvlUanXvXnFW7SIi0vR/O/39/QE4cuQwKSlLmTdvIX/726uEhYXVeq6f\nX903m6g+3+l04nSC2Xw62kwmz8uaTCacTqdruqKist55817kvvvGs2fPbv70pz+62iZOnFijrTH5\nVDhPmVLqtn3yZPftIiLSfH87CwoKCAkJoXXr1nz33S6OHDnCqVOnzqvPzp078/33+ygrKyM/P59d\nu3Z6fG7Pnr3YsuVrALZv30ZkZBSHD//Ie+8to0ePnkycOIXCwkJXW3R0tKutsfnUbu3KYyMlLFgQ\nwO7dfnTvXs7kyTpbW0SkLjX/dlaerd0Ufzsvu6w7rVq15uGH7+fKK3tz222/Zd68OcTEXHXOfYaG\ndiA+fhjjxiVy8cWR9OoV7XHr+4477mTWrKeZNOkhKioqePTRP9Gxo43t27fyr3/9E39/f2699deu\ntoSEBMDMrbf++pzHV18mZ/Vt+maUm1vUoP3ZbNYG77O5qBbj8ZU6QLUYka/UAc1Ty+rVHxEfPww/\nPz8SExOYP38hdnun8+63oWux2awe5/nUlrOIiMjRo0cZP34s/v4B3HzzsAYJ5qamcBYREZ/y+9/f\ny+9/f29zD+O8+NQJYSIiIr5A4SwiImIwCmcRERGDUTiLiIgYjMJZREQa3IMP3lfrAiCvvPI33n33\nHbfPz8z8mief/G8Apk17tNb8999P4Y03Fnl8vb1797B/fzYAyclPcPLkz+c6dG6/fSQnTpw45+Ub\ngsJZREQaXHz8UD799JMabevWfUpc3M1el509e/5Zv96///0pBw7sB+Dpp/9CYKDn63G3BPX6KtWs\nWbPYunUrJpOJpKQkYmJiXPOWL19OamoqZrOZnj17kpycjOmXi5n+/PPPjBgxgkceeYTf/va3jVOB\niIgYzpAhN/Pwww8A/wPArl07sdls2Gx2Nm/+itdffwV/f3+sVit//vPsGsveeusQVq36F19/vYkX\nX5xHaGgHOnTo6LoF5MyZM8jNzaGkpIT77x9PWFhnPvggjX//+1NCQkJ46qknWLIkBYejiL/85c+c\nOnUKs9nMtGnTMZlMzJw5g/DwLuzdu4fu3Xswbdp0tzXk5PxUY/nnnpuNxRLMn/88naNH8ygtLeWB\nBx7kmmt+Vavt+utvOK/3z2s4b9q0iezsbFJSUti3bx9JSUmkpKQAUFJSwqpVq1i6dCn+/v4kJiay\nZcsWYmNjAXj55Zdp167deQ1QRETOz4wZgXz0UcNe1mLkyDJmzDjpcX5ISCjh4V349ttv6dw5kk8/\n/YT4+GEAFBUVkZz8LOHhXXjmmaf46qsMWrduXauPRYv+xvTpz3DZZd157LFJhId3oajoOL/61fUM\nHz6CQ4cOMn36NN588x2uu64vN900hF69rnAt//rrrzBixG0MGXIzn322ljfffJUHHniQ777bydNP\nzyIkJJRRo26hqKgIq7X21brOXP5vf/sbI0feTmFhAS+99BpFRUVkZGxg3769tdrOl9fd2hkZGcTF\nxQEQFRVFYWEhDocDgFatWrF48WL8/f0pKSnB4XBgs9kA2LdvH3v37uWmm24670GKiEjLEx8/jNWr\nVwOwYcPn3HTTEADat2/PnDnPMnHieLZs+Ybjx93fSOLw4cNcdll3AHr3rtzos1rbsnNnFg8/fD8z\nZ87wuCzAd9/t5Oqr+wAQG3sNe/Z8B0CXLhF06NARs9lMx442iosd9Vp+x44dXHzxJZw4Ucwzz0wn\nM3MzcXE3u207X14/SuXl5REdffp+mKGhoeTm5hIcHOxqe/XVV1myZAmJiYlEREQAMGfOHKZPn87K\nlSvPe5AiInLuZsw4WedWbmMZOHAQ48ePpV+/QUREXETbtm0B+MtfnuH551/gkksimT9/jsflq9/6\nseo2EJ98sobjx4/z0kuvc/z4cf7rv35fxwhO3xLy1KkyTKbK/s68EYbnW0zUXN5sNhMUFMSiRf+P\nbdu+5eOPP2LDhvUkJSW7bTsfZ72fw10R48ePJzExkXHjxtGnTx8OHDhA7969XUFdHyEhrbFY6r5v\n59mq66LiLY1qMR5fqQNUixH5Rh1WevToQUrK2/zud6NcNZWUFBMdfSllZWV8++0Weve+kvbtWxMY\n6I/NZsVkMmGzWencOYyiolwiIyPJytpK7969KSsr4dJLI+nUqR3r1q2hvLwMm81Kq1YBBAcHYLNZ\n8fMz07FjMFdffRV792bRs+cINm36nN69YwgNbYPFYnaNxWIxExrapsb77Wn5K664gpyc/ezdu5fb\nbruNgQOv5+6773bbdr6/P6/hbLfbycvLc03n5OS4dl0XFBSwZ88err32WoKCghgwYACZmZlkZWVx\n4MAB1q1bx5EjRwgICCAsLIwbbvB8gDw/v2FPW9ddXYzJV2rxlTpAtRiRr9QBMHLkSB5//L+ZNi3Z\nVdNvfnM7o0ePISLiIsaMuYeXX36F8eMf4eTJU+TmFuF0OsnNLeK++x5kwoSJhIV1JjS0A8XFJxk4\n8GamTXuUzZu/cd3O8bnn5tOjxxU8/fSfOXXKRHl5BXl5Du655wH+8pdnWLr0XSwWf554YjrHjhVT\nVlbhGktZWQXHjhUTGHj6/fa0/Ny5c3A4ykhNXcE77/wDs9nM6NF3ERTUvlZbfX5/dQW411tGZmZm\nsnDhQt566y2ysrJ49tlneffdd4HKXd5jxozhww8/pE2bNkyaNIlf//rXrmPUAAsXLqRLly5ez9bW\nLSM9Uy3G4yt1gGoxIl+pA1SLt/488brlHBsbS3R0NAkJCZhMJpKTk0lLS8NqtRIfH8+ECRNITEzE\nYrHQo0cPhgwZ0mADFxERuRB53XJuKtpy9ky1GI+v1AGqxYh8pQ5QLd7680RXCBMRETEYhbOIiIjB\nKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQM\nRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJi\nMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBWOrzpFmzZrF161ZMJhNJSUnE\nxMS45i1fvpzU1FTMZjM9e/YkOTmZn3/+mWnTpnH06FFOnjzJI488wqBBgxqtCBEREV/iNZw3bdpE\ndnY2KSkp7Nu3j6SkJFJSUgAoKSlh1apVLF26FH9/fxITE9myZQtHjhzhiiuuYNy4cRw6dIj7779f\n4SwiIlJPXsM5IyODuLg4AKKioigsLMThcBAcHEyrVq1YvHgxUBnUDocDm81GbGysa/nDhw/TqVOn\nRhq+iIiI7/Eaznl5eURHR7umQ0NDyc3NJTg42NX26quvsmTJEhITE4mIiHC1JyQkcOTIEV555ZUG\nHraIiIjvqtcx5+qcTmettvHjx5OYmMi4cePo06cPffr0AWDZsmXs3LmTxx9/nA8//BCTyeSx35CQ\n1lgsfmc7nDrZbNYG7a85qRbj8ZU6QLUYka/UAarlXHgNZ7vdTl5enms6JycHm80GQEFBAXv27OHa\na68lKCiIAQMGkJmZSWBgIB06dKBz585cfvnllJeXc+zYMTp06ODxdfLzTzRAOafZbFZyc4satM/m\nolqMx1fqANViRL5SB6gWb/154vWrVP369SM9PR2ArKws7Ha7a5d2WVkZ06ZNo7i4GIBt27YRGRnJ\n119/zZtvvglU7hY/ceIEISEh512IiIjIhcDrlnNsbCzR0dEkJCRgMplITk4mLS0Nq9VKfHw8EyZM\nIDExEYvFQo8ePRgyZAgnT57kf/7nf7jrrrv4+eefeeqppzCb9ZVqERGR+jA53R1EbgYNvdtDu1KM\nyVdq8ZU6QLUYka/UAarFW3+eaHNWRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIw\nCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGD\nUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgY\njMJZRETEYBTOIiIiBqNwFhERMRhLfZ40a9Ystm7dislkIikpiZiYGNe85cuXk5qaitlspmfPniQn\nJ2MymXjuuef45ptvKCsr48EHH+Tmm29utCJERER8iddw3rRpE9nZ2aSkpLBv3z6SkpJISUkBoKSk\nhFWrVrF06VL8/f1JTExky5YtlJaWsmfPHlJSUsjPz2fUqFEKZxERkXryGs4ZGRnExcUBEBUVRWFh\nIQ6Hg+DgYFq1asXixYuByqB2OBzYbDbCw8NdW9dt27alpKSE8vJy/Pz8GrEUERER3+A1nPPy8oiO\njnZNh4aGkpubS3BwsKvt1VdfZcmSJSQmJhIREQFA69atAUhNTWXAgAFegzkkpDUWS8OGt81mbdD+\nmpNqMR5fqQNUixH5Sh2gWs5FvY45V+d0Omu1jR8/nsTERMaNG0efPn3o06cPAGvXriU1NZU333zT\na7/5+SfOdih1stms5OYWNWifzUW1GI+v1AGqxYh8pQ5QLd7688Tr2dp2u528vDzXdE5ODjabDYCC\nggI2b94MQFBQEAMGDCAzMxOA9evX88orr/Daa69htfrOpyYREZHG5jWc+/XrR3p6OgBZWVnY7XbX\nLu2ysjKmTZtGcXExANu2bSMyMpKioiKee+45Fi1aRPv27Rtx+CIiIr7H627t2NhYoqOjSUhIwGQy\nkZycTFpaGlarlfj4eCZMmEBiYiIWi4UePXowZMgQli9fTn5+PlOmTHH1M2fOHMLDwxu1GBEREV9g\ncro7iNwMGvqYhI5zGJOv1OIrdYBqMSJfqQNUi7f+PNEVwkRERAxG4SwiImIwCmcRERGDUTiLiIgY\njMJZRETEYBTOIiIiBqNwFrlArVhhYeDA1lgsMHBga1asOOur+YpII9HaKHIBWrHCwoMPtnJN79zp\n98t0CaNGlTXfwEQE0JazyAXphRcC3LYvWOC+XUSalsJZ5AK0e7f7Vd9Tu4g0La2JIheg7t0rzqpd\nRJqWwlnkAjRlSqnb9smT3beLSNNSOItcgEaNKmPRohJ69SrHYoFevcpZtEgng4kYhc7WFrlAjRpV\nxqhRZb/caedEcw9HRKrRlrOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIi\nIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg6lXOM+aNYsxY8aQkJDAt99+W2Pe8uXL\nueOOO0hISGDGjBk4nU4Adu/eTVxcHO+8807Dj1pERMSHeQ3nTZs2kZ2dTUpKCjNnzmTmzJmueSUl\nJaxatYqlS5eybNkyvv/+e7Zs2cKJEyd45pln6Nu3b6MOXkRExBd5DeeMjAzi4uIAiIqKorCwEIfD\nAUCrVq1YvHgx/v7+lJSU4HA4sNlsBAQE8Nprr2G32xt39CIiIj7Iazjn5eUREhLimg4NDSU3N7fG\nc1599VXi4+MZNmwYERERWCwWgoKCGn60IiIiFwDL2S5QdUy5uvHjx5OYmMi4cePo06cPffr0OeuB\nhIS0xmLxO+vl6mKzWRu0v+akWozHV+oA1WJEvlIHqJZz4TWc7XY7eXl5rumcnBxsNhsABQUF7Nmz\nh2uvvZagoCAGDBhAZmbmOYVzfv6Js16mLjabldzcogbts7moFuPxlTpAtRiRr9QBqsVbf5543a3d\nr18/0tPTAcjKysJutxMcHAxAWVkZ06ZNo7i4GIBt27YRGRnZEGMWERG5YHndco6NjSU6OpqEhARM\nJhPJycmkpaVhtVqJj49nwoQJJCYmYrFY6NGjB0OGDGH79u3MmTOHQ4cOYbFYSE9PZ+HChbRv374p\nahIREWkwK1ZYeOGFAHbvhu7dWzNlSimjRpU16muanO4OIjeDht7toV0pxuQrtfhKHaBajMhX6oCW\nX8uKFRYefLBVrfZFi0rOO6DPa7e2iIjIheqFFwLcti9Y4L69oSicRUREPNi9231MempvKApnERER\nD7p3rzir9oaicBYREfFgypRSt+2TJ7tvbygKZxEREQ9GjSpj0aISevUqx2KBXr3KG+RkMG/O+gph\nIiIiF5JRo8oYNarslzPPG/aCWZ5oy1lERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIi\nYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAKZxER\nEYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDMZSnyfNmjWLrVu3YjKZSEpK\nIiYmxjVv+fLlpKamYjab6dmzJ8nJyZhMpjqXEREREc+8hvOmTZvIzs4mJSWFffv2kZSUREpKCgAl\nJSWsWrWKpUuX4u/vT2JiIlu2bKGsrMzjMiIiIlI3r7u1MzIyiIuLAyAqKorCwkIcDgcArVq1YvHi\nxfj7+1NSUoLD4cBms9W5jIiIiNTN65ZzXl4e0dHRrunQ0FByc3MJDg52tb366qssWbKExMREIiIi\n6rXMmUJCWmOx+J1rHW7ZbNYG7a85qRbj8ZU6QLUYka/UAarlXNTrmHN1TqezVtv48eNJTExk3Lhx\n9OnTp17LnCk//8TZDqVONpuV3NyiBu2zuagW4/GVOkC1GJGv1AGqxVt/nnjdrW2328nLy3NN5+Tk\nYLPZACgoKGDz5s0ABAUFMWDAADIzM+tcRkREROrmNZz79etHeno6AFlZWdjtdtfu6bKyMqZNm0Zx\ncTEA27ZtIzIyss5lREREpG5ed2vHxsYSHR1NQkICJpOJ5ORk0tLSsFqtxMfHM2HCBBITE7FYLPTo\n0YMhQ4ZgMplqLSMiIiL1Y3LW54BwE2joYxI6zmFMvlKLr9QBqsWIfKUOUC3e+vNEVwgTERExGIWz\niIiIwSicRUREDEbhLCIiYjDCI7evAAAWDElEQVQKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AW\nERExGIWziIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWz\niIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwVjq\n86RZs2axdetWTCYTSUlJxMTEuOZt3LiR+fPnYzabiYyMZObMmQAkJyezZ88e/P39mTFjBlFRUY1T\ngYiIiI/xGs6bNm0iOzublJQU9u3bR1JSEikpKa75Tz31FEuWLCEsLIxJkyaxfv16SktLKSoqYtmy\nZezfv5+ZM2eyaNGiRi1ERETEV3gN54yMDOLi4gCIioqisLAQh8NBcHAwAGlpaa7HoaGh5Ofnk5ub\n69q6vuiii/jxxx8pLy/Hz8+vseoQERHxGV6POefl5RESEuKaDg0NJTc31zVdFcw5OTls2LCBgQMH\n0r17d7744gvKy8v5/vvvOXDgAPn5+Y0wfBEREd9Tr2PO1TmdzlptR48e5aGHHiI5OZmQkBAGDhxI\nZmYmd999Nz169KBbt25ul6suJKQ1FkvDblnbbNYG7a85qRbj8ZU6QLUYka/UAarlXHgNZ7vdTl5e\nnms6JycHm83mmnY4HIwbN44pU6bQv39/V/sf//hH1+O4uDg6dOhQ5+vk5584q4F7Y7NZyc0tatA+\nm4tqMR5fqQNUixH5Sh2gWrz154nX3dr9+vUjPT0dgKysLOx2u2tXNsDs2bMZO3YsAwYMcLXt2rWL\nJ554AoDPP/+cXr16YTbrW1siIiL14XXLOTY2lujoaBISEjCZTCQnJ5OWlobVaqV///6sXLmS7Oxs\nUlNTARgxYgSjR4/G6XRy++23ExgYyNy5cxu9EBEREV9Rr2POjz32WI3pnj17uh5v377d7TKzZ88+\nj2GJiIhcuLSvWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iI\nGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURE\nxGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIi\nIgZjqc+TZs2axdatWzGZTCQlJRETE+Oat3HjRubPn4/ZbCYyMpKZM2dSUlLCn/70JwoLCzl16hQT\nJkzgxhtvbLQiREREfInXcN60aRPZ2dmkpKSwb98+kpKSSElJcc1/6qmnWLJkCWFhYUyaNIn169dz\n4MABIiMjmTp1Kj/99BNjx45lzZo1jVqIiIiIr/C6WzsjI4O4uDgAoqKiKCwsxOFwuOanpaURFhYG\nQGhoKPn5+YSEhFBQUADA8ePHCQkJaYyxi4iI+CSvW855eXlER0e7pkNDQ8nNzSU4OBjA9TMnJ4cN\nGzYwefJkQkJCSEtLIz4+nuPHj7No0aJGGr6IiIjvqdcx5+qcTmettqNHj/LQQw+RnJxMSEgIH3zw\nAeHh4bzxxhvs2rWLpKQk0tLS6uw3JKQ1Fovf2Q6nTjabtUH7a06qxXh8pQ5QLUbkK3WAajkXXsPZ\nbreTl5fnms7JycFms7mmHQ4H48aNY8qUKfTv3x+AzMxM1+OePXuSk5NDeXk5fn6ewzc//8Q5F+GO\nzWYlN7eoQftsLqrFeHylDlAtRuQrdYBq8dafJ16POffr14/09HQAsrKysNvtrl3ZALNnz2bs2LEM\nGDDA1XbxxRezdetWAA4dOkSbNm3qDGYRERE5zeuWc2xsLNHR0SQkJGAymUhOTiYtLQ2r1Ur//v1Z\nuXIl2dnZpKamAjBixAjGjBlDUlIS99xzD2VlZcyYMaOx6xAREfEZ9Trm/Nhjj9WY7tmzp+vx9u3b\n3S6zYMGC8xiWiIjIhUtXCBMRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGMxZX76z\nJdi508yyZdC2rYWIiAoiIipo1w5MpuYemYiIiHc+Gc7z5wfwwQcArVxtVquTrl0riIhwEhFRccZj\nJx07OhXeIiJiCD4Zzs8//zN33eVPVtbPHDxo5uBBMwcOmDhwwMzOne4TuFWryvDu2tX5y9Z2zRDv\n1MmJWQcBRESkCfhkOLdvD3fcAbm5p2q0O51QUMAvYV0Z2AcPmtm/3+QK8T173Id3QICT8HCnazd5\n9RDv2rWC8HAnFp98N0VEpKldUHFiMkFICISEVHDllRVun+NwwIEDZg4eNLF//+mt7qqf69e7f8v8\n/Jx07lxz13lVcEdEVNCli5PAwMasTkREfMUFFc71ERwMl19eweWXA5TXml9SAocOnQ7u0yFeGeBf\nfeXHxo3ut747dfJ8zLtr1wratGnc2kREpGVQOJ+lVq3g0kudXHppOe7Cu7QUfvzR5Nr6rtx9fvrx\nf/5j5uuv3d8+s0OH01vbXbs6ueiiyhC/6ipo0wbatm3k4kRExBAUzg0sIAAuucTJJZfUDm6A8nI4\ncsRU45h31clqlSesmfnPf9yFt5W2bU8f864d4k5CQ3XGuYiIL1A4NzE/P+jSxUmXLuVcf33t+RUV\nkJtrqhbcZvLyAtmzp4wDB0z83/+Zycpyv+XdurWzxslqp09aqwxzm01nnIuItAQKZ4Mxm6FTp8qv\nbl1zTeVJazZbILm5JUDlGef5+bi2tM/c+j540Mx337nffA4MdNKlS+UWd9XWduXjyp+dOzvxc5/7\nIiLShBTOLYzJBKGhEBpawVVXuT/j/PhxPB7zPnjQxOefu/+1WyyVXxerOlntzBDv0sVJQEBjVici\nIqBw9klt20J0dAXR0eDupLXiYjh0qPaZ5lWPv/zS/X8Lk8lJWJiz1u7y6mHeqpXbRUVE5CwonC9A\nbdpA9+4VdO8O7sL75MnKr4tVv1hL1Vb3wYNmMjPNbN7sfv93x441vyJW/aItF11Ugc3WuLWJiPgC\nhbPUEhgI3bo56dbN/dfFysrg8OGaV1erfsx7+3YzW7a4D++QEOjatXWt73lXfW2sfXvdoEREROEs\nZ81i4ZdgLadv39rzKyogJ8dU47KoVY8PH7awd6+Zbdvch3ebNs4ax7lrXue88oxzhbeI+DqFszQ4\nsxnCwiqPT//qVzVPWrPZrOTkODh61OT2THNvNygJCqp9g5LqW+GdOumMcxFp+RTO0uRMJujYsfI2\nnVdf7f6M88JC3F4iterY99697hPY37/6DUpqbn1X3aDE378xqxMROX8KZzGkdu3gyivrvkFJVXDX\n/L535eMvvnD/X9ts9n6DkqCgxqxMRMQ7hbO0SMHB0LNnBT17gruT1n7+ufKM8zO/510V4ps3+/HV\nV+53ndvtdd+gJDi4cWsTEVE4i08KCoKoKCdRUe7POD91qvIGJZ6OeX/7rZlvvnG/6zw0tILISAgL\nC6pxbfOqi7a0a9fIxYmIz1M4ywXJ3x8uvtjJxRd7vkHJTz+5v0HJwYMmsrLgm2/cH7y2Wj0f846I\ncNKhg844F5G61SucZ82axdatWzGZTCQlJRETE+Oat3HjRubPn4/ZbCYyMpKZM2fy/vvv8+GHH7qe\ns337drZs2dLwoxdpJH5+EB7uJDy8nOuuqz2/Y0crO3Y4auwur9r6PnjQRHa2mR073Cdw69anzziv\nfm3zqhC323WDEpELnddw3rRpE9nZ2aSkpLBv3z6SkpJISUlxzX/qqadYsmQJYWFhTJo0ifXr1zN6\n9GhGjx7tWv7jjz9uvApEmoHJBHZ7ZZDGxtY+ac3phIICalwW9cwT13bvdh/eAQGnb1BSfau7+g1K\nLNrnJeLTvK7iGRkZxMXFARAVFUVhYSEOh4PgX86KSUtLcz0ODQ0lPz+/xvIvvfQSc+fObehxixia\nyVR5NbSQkLrPOK++1V39Eqn795tYv9796unnV/sGJdVPYOvSxUlgYGNWJyKNzWs45+XlEV15BwWg\nMoBzc3NdgVz1Mycnhw0bNjB58mTXc7/99ls6d+6MrR4XVA4JaY3F0rBXj7DZrA3aX3NSLcZzvnXY\nbBAZ6Xn+iROwfz9kZ1f+++GHqscmfvjBxMaNZjIyai9nMkHnznDxxXDJJZU/z3zcunXD1mIkvlKL\nr9QBquVcnPXOMafTWavt6NGjPPTQQyQnJxMSEuJqT01NZdSoUfXqNz//xNkOpU42m5Xc3KIG7bO5\nqBbjaao6OnSo/BcbW3teaenpG5ScvlDL6V3nmzaZyMhwv+u8Y8fTV1nr2tWfiopSAgMrt7gr/1Xe\nHjQoqPJnVVtgIDXaz5xf9bi5TnjT/y/jUS119+eJ13C22+3k5eW5pnNycmpsCTscDsaNG8eUKVPo\n379/jWW/+uornnzyyXMZs4h4ERAAkZFOIiPdn3FeVgZHjtQ+07wqxHfuNPOf/1TtrWrYG3UHBDg9\nBnr1DwEBAZUXfanZXhX81fvxPL963+XlUFSEaxmdWCctlddw7tevHwsXLiQhIYGsrCzsdrtrVzbA\n7NmzGTt2LAMGDKix3E8//USbNm0ICGjYlV5E6sdi4Zczwsu5/vra8ysqIDfXhMkUzJEjxZw8CSdP\nmigthZ9/rvoJpaWmX+bVnl/VdvIkZ7TXXObECSgoMHPyZGWfFRWNuWl9emvE379+ewDq84Gh+vyz\n/RCh673L2fIazrGxsURHR5OQkIDJZCI5OZm0tDSsViv9+/dn5cqVZGdnk5qaCsCIESMYM2YMubm5\nhIaGNnoBInJuzGbo1MmJzVZ5VbSmVFaGK7xLS01uPwRUBf7poHf3gaHmMiaTP4WFp2rNr/rgcPIk\nHD9ucrWXlTXN/nc/v/odMqj62bYtQKCbQwbuP0TU90OGxaJbsrYUJqe7g8jNoKGPSeg4hzH5Si2+\nUgdc2LWUl+P2Q0DtDw41P0RUtbl/7tnvaSgtbZrENJvdhbe7Dw61DxnU97yDM+eHh7fB4XDUmO/v\n3zI/JBjqmLOIiK/y86s8c73y7PWq7ZSm316pqKBGeAcHB3P4sMPjYYIzP1C4/8Dg/kPGmXsiCgpM\nNfY0NI7aF6Q/c2v/fM478Hy4ovZeiTPnG/VDgsJZRKSZmc2VQVN5R7TKQw2tWztp6g8KTmfVXgL3\nW/vuzy+oew+B2RxAQcGpOvY0VLY7HHD0qNl16MLpbJrUrO8egsBAJ/fdBwMHNsmwFM4iIlLJZDp9\nprvVWv2Dwbl/SLDZAsjN/fmslnE6q5+X4O4wgefzDurzgeFcT15s317hLCIiFyiTqfK4tL8/BAc3\nzIeEc1X95MXu3a1U+2Zxo1I4i4iIeGCxVP5r06Zpj0/rK/oiIiIGo3AWERExGIWziIiIwSicRURE\nDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwZicTmfTX0lcRERE\nPNKWs4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYCzNPYBzNWvWLLZu3YrJZCIp\nKYmYmBjXvC+//JL58+fj5+fHgAEDmDBhgtdlmktdY9q4cSPz58/HbDYTGRnJzJkz2bx5M5MnT+ay\nyy4DoHv37kyfPr25hl9DXbUMHjyYsLAw/Pz8AJg7dy6dOnUy5O8EPNfy008/8dhjj7med+DAAaZO\nncqpU6dYsGABF110EQA33HADDz/8cLOM/Uy7d+/mkUce4d577+Wee+6pMa8lrStQdy0taX2pq46W\ntq54qqUlrivPPfcc33zzDWVlZTz44IPcfPPNrnlNvq44W6CvvvrKOX78eKfT6XTu3bvXeccdd9SY\nP3z4cOePP/7oLC8vd955553OPXv2eF2mOXgbU3x8vPPw4cNOp9Pp/MMf/uBct26dc+PGjc4//OEP\nTT5Wb7zVMmjQIKfD4TirZZpLfcd16tQpZ0JCgtPhcDjff/995+zZs5tymPVSXFzsvOeee5xPPvmk\n8+233641v6WsK06n91payvrirY6WtK54q6VKS1hXMjIynP/1X//ldDqdzmPHjjkHDhxYY35Tryst\ncrd2RkYGcXFxAERFRVFYWIjD4QAqP521a9eOzp07YzabGThwIBkZGXUu01y8jSktLY2wsDAAQkND\nyc/Pb5Zx1se5vL9G/J1A/ce1YsUKhg4dSps2bZp6iPUWEBDAa6+9ht1urzWvJa0rUHct0HLWF291\nuNNSfydVWsK6cu2117JgwQIA2rZtS0lJCeXl5UDzrCstMpzz8vIICQlxTYeGhpKbmwtAbm4uoaGh\ntebVtUxz8Tam4OBgAHJyctiwYQMDBw4EYO/evTz00EPceeedbNiwoWkH7UF93t/k5GTuvPNO5s6d\ni9PpNOTvBOpXC8B7773H7bff7pretGkTDzzwAGPHjmXHjh1NMlZvLBYLQUFBbue1pHUF6q4FWs76\n4q0OaDnrSn1qgZaxrvj5+dG6dWsAUlNTGTBggOvQQnOsKy32mHN1znO4Aum5LNPY3I3p6NGjPPTQ\nQyQnJxMSEsIll1zCxIkTGT58OAcOHCAxMZF//vOfBAQENMOIPTuzlkmTJnHjjTfSrl07JkyYQHp6\nutdljMLduLZs2UK3bt1cgXDVVVcRGhrKTTfdxJYtW/jTn/7ERx991NRDbRRG/b2401LXl+pa8rri\nTktbV9auXUtqaipvvvnmWS/bkL+XFhnOdrudvLw813ROTg42m83tvJ9++gm73Y6/v7/HZZpLXXUA\nOBwOxo0bx5QpU+jfvz8AnTp14pZbbgHgoosuomPHjvz0009EREQ07eDP4K2W3/zmN67HAwYMYPfu\n3V6XaS71Gde6devo27evazoqKoqoqCgArr76ao4dO0Z5ebnrk7cRtaR1pT5a0vpSl5a0rtRHS1pX\n1q9fzyuvvMLrr7+O1Wp1tTfHutIid2v369fP9WkyKysLu93u+lTWtWtXHA4HBw8epKysjM8++4x+\n/frVuUxz8Tam2bNnM3bsWAYMGOBq+/DDD3njjTeAyl0tR48epVOnTk07cDfqqqWoqIgHHniA0tJS\nADZv3sxll11myN8JeP+9AGzbto2ePXu6pl977TX+93//F6g8ezU0NNQQf2zq0pLWlfpoSeuLJy1t\nXamPlrKuFBUV8dxzz7Fo0SLat29fY15zrCst9q5Uc+fO5euvv8ZkMpGcnMyOHTuwWq3Ex8ezefNm\n5s6dC8DNN9/MAw884HaZ6v9hmounOvr378+1117L1Vdf7XruiBEjuPXWW3nsscc4fvw4p06dYuLE\nia5ja82trt/J4sWLWblyJYGBgfTq1Yvp06djMpkM+TuBumsBGDlyJG+99RYdO3YE4MiRIzz++OM4\nnU7KysoM81WX7du3M2fOHA4dOoTFYqFTp04MHjyYrl27trh1pa5aWtL64u130pLWFW+1QMtZV1JS\nUli4cCGRkZGutuuuu44ePXo0y7rSYsNZRETEV7XI3doiIiK+TOEsIiJiMApnERERg1E4i4iIGIzC\nWURExGAUziIiIgajcBYRETEYhbOIiIjB/H+Ka8oIvXTehAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "3EWLUA_FSFfC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Great success; we are no longer overfitting during the first 30 epochs. However, while we have more stable evaluation scores, our best \n", + "scores are not much lower than they were previously." + ] + }, + { + "metadata": { + "id": "8sPfzdcYSFfD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Stacking recurrent layers\n", + "\n", + "Since we are no longer overfitting yet we seem to have hit a performance bottleneck, we should start considering increasing the capacity of \n", + "our network. If you remember our description of the \"universal machine learning workflow\": it is a generally a good idea to increase the \n", + "capacity of your network until overfitting becomes your primary obstacle (assuming that you are already taking basic steps to mitigate \n", + "overfitting, such as using dropout). As long as you are not overfitting too badly, then you are likely under-capacity.\n", + "\n", + "Increasing network capacity is typically done by increasing the number of units in the layers, or adding more layers. Recurrent layer \n", + "stacking is a classic way to build more powerful recurrent networks: for instance, what currently powers the Google translate algorithm is \n", + "a stack of seven large LSTM layers -- that's huge.\n", + "\n", + "To stack recurrent layers on top of each other in Keras, all intermediate layers should return their full sequence of outputs (a 3D tensor) \n", + "rather than their output at the last timestep. This is done by specifying `return_sequences=True`: " + ] + }, + { + "metadata": { + "id": "xBETrUNqSFgT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 119 + }, + "outputId": "a2f390a0-6ea5-4763-d8d1-eccc3583c76d" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.optimizers import RMSprop\n", + "\n", + "model = Sequential()\n", + "model.add(layers.GRU(32,\n", + " dropout=0.1,\n", + " recurrent_dropout=0.5,\n", + " return_sequences=True,\n", + " input_shape=(None, float_data.shape[-1])))\n", + "model.add(layers.GRU(64, activation='relu',\n", + " dropout=0.1, \n", + " recurrent_dropout=0.5))\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen,\n", + " steps_per_epoch=500,\n", + " epochs=3,\n", + " validation_data=val_gen,\n", + " validation_steps=val_steps)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/3\n", + "500/500 [==============================] - 681s 1s/step - loss: 0.3376 - val_loss: 0.2867\n", + "Epoch 2/3\n", + "500/500 [==============================] - 680s 1s/step - loss: 0.3152 - val_loss: 0.2775\n", + "Epoch 3/3\n", + "500/500 [==============================] - 680s 1s/step - loss: 0.3070 - val_loss: 0.2691\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "a4V4nm1lSFgu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a look at our results:" + ] + }, + { + "metadata": { + "id": "Lk_mSWjpSFgz", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 362 + }, + "outputId": "e462d63c-e224-4d0a-8a46-1eb5ed58677c" + }, + "cell_type": "code", + "source": [ + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(loss))\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtclHXe//HXHEBEUAFnxAMWooBi\n1GpWhuEJEjO32zaLrRbbWu1gq+5W9xp3RW3pWmtubtuWHX+6eRdm2GE1SbODa+QhzBRPaHdkpgGK\n6CilzMzvD3Jg5DBoHC7G9/Px4AFzzVzf+X5mvObtdc31/V4mt9vtRkRERAzD3NodEBEREW8KZxER\nEYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWz+LWsrCzS0tJIS0sjISGBESNGeG47HI4zaist\nLY3S0tIGH/Pkk0/y2muv/ZwuN7lbbrmFnJycJmkrLi6OAwcOsHLlSu6///6f9XyLFy/2/N2Y17ax\nZsyYwT//+c8maUuktVhbuwMizemRRx7x/D1y5EieeOIJLr744rNqa8WKFT4fc88995xV221Namoq\nqampZ71+SUkJL774Itdffz3QuNdW5FyiPWc5p/3mN7/hb3/7G2PGjCE/P5/S0lJuu+020tLSGDly\nJK+88ornsaf2GtetW8cNN9zAk08+yZgxYxg5ciTr168HvPfaRo4cyeuvv851113H0KFDmT17tqet\n5557jiFDhvCrX/2KRYsWMXLkyDr798YbbzBmzBiuvPJKbrrpJvbt2wdATk4OU6dOJTMzk9GjR3PV\nVVdRWFgIwN69e5kwYQIpKSncc889OJ3OWu1+/PHHjBs3zmvZNddcwyeffNLga3BKTk4Ot9xyi8/n\n++CDDxg3bhyjR4/m2muvZfv27QCkp6fz3XffkZaWxokTJzyvLcDChQu56qqrSEtL48477+TQoUOe\n1/bvf/87v/3tbxkxYgS//e1vqaioqO+tBWDHjh2kp6eTlpbGNddcw5o1awA4duwYU6ZMYcyYMYwa\nNYoHHniAkydP1rtcpKUpnOWct3XrVpYtW8bAgQN59tln6dmzJytWrGDBggU8+eST7N+/v9Y627Zt\n48ILL+S9997jxhtv5Nlnn62z7Q0bNpCdnc2bb77Jq6++yoEDBygsLOTFF1/k7bff5n//93/r3Ws8\nePAgf/7zn3nllVd4//336dWrl9fh2k8++YQbb7yR3NxcLr30UhYsWADAnDlzGDJkCKtWrWLixInk\n5+fXanvIkCEcOHCAvXv3AlUBe+DAAS6//PJGvwan1Pd8lZWVzJgxg0cffZTc3FxGjhzJ448/DsCs\nWbPo1q0bK1asIDAw0NPWF198wUsvvcS//vUvVqxYQffu3XnyySc9969YsYK//e1vrFy5kkOHDrFy\n5cp6++VyufjjH//IzTffzIoVK3jssce45557cDgcvPXWW3Ts2JH33nuP3NxcLBYLu3fvrne5SEtT\nOMs5b9iwYZjNVZvCAw88wIMPPghAVFQUNpuNb7/9ttY6HTp0ICUlBYCEhAS+++67OtseN24cFouF\nrl27EhERwf79+9mwYQOXXHIJdruddu3a8atf/arOdSMiIvj888+JjIwE4OKLL/aEKUBMTAwDBgwA\noH///p4A3bhxI1dddRUAiYmJ9O7du1bbgYGBjBgxgtWrVwOwatUqUlJSsFqtjX4NTqnv+axWK59+\n+ikXXXRRnf2vy0cffcTo0aOJiIgAYMKECaxdu9Zz/7Bhw+jcuTNWq5XY2NgG/9Pw7bffUlpaytix\nYwG44IIL6N69O1u2bCE8PJxNmzbxn//8B5fLxSOPPEK/fv3qXS7S0vSds5zzOnXq5Pl7y5Ytnj1F\ns9lMSUkJLper1jqhoaGev81mc52PAQgJCfH8bbFYcDqdHDlyxOs5u3btWue6TqeTv//976xevRqn\n08mxY8eIjo6usw+n2gYoLy/3et6OHTvW2f7o0aNZuHAhEydOZNWqVdx1111n9Bqc0tDz/etf/2Lp\n0qWcOHGCEydOYDKZ6m0H4NChQ9jtdq+2Dh486LPm+toKDQ31es6OHTty6NAhxo4dS3l5OfPmzeOr\nr77il7/8Jffffz9jxoypc3nNvXuRlqA9Z5Ea7rvvPkaPHk1ubi4rVqwgLCysyZ8jJCSE48ePe24X\nFxfX+bjly5ezevVqXn31VXJzc5k6dWqj2u/YsaPXmeinvrM93RVXXMGOHTv4+uuv+frrr7nsssuA\nM38N6nu+/Px8XnjhBZ599llyc3N57LHHfPa9S5cuHD582HP78OHDdOnSxed6dYmIiKC8vJya1/Y5\nfPiwZ688PT2dN954g+XLl1NQUMBbb73V4HKRlqRwFqnh4MGDDBgwAJPJxNKlS6moqPAK0qaQmJjI\nunXrOHToECdOnKj3w//gwYP06NGD8PBwysrKeO+99zh27JjP9i+66CLPd7H5+fl88803dT4uMDCQ\noUOH8te//pVRo0ZhsVg8z3smr0F9z3fo0CEiIiLo3r07FRUVLF26lOPHj+N2u7FarRw/fpzKykqv\ntoYPH87KlSspKysD4PXXX2fYsGE+a65Lz549iYyMZPny5Z6+lZaWkpiYyDPPPMOSJUuAqiMXPXv2\nxGQy1btcpKUpnEVqmDZtGlOmTGHcuHEcP36cG264gQcffLDegDsbiYmJjB8/nvHjx5ORkcGIESPq\nfNzVV1/N4cOHSU1N5Z577mH69OkcOHDA66zvutx33318+OGHpKSksGjRIi6//PJ6Hzt69GhWrVrF\nmDFjPMvO9DWo7/muuOIK7HY7KSkp3HrrrUycOJHQ0FCmTp1KXFwcnTp1Iikpyev7+sTERCZPnsxN\nN91EWloaR48e5Q9/+EOD9dbHZDIxd+5cXn31VcaMGcNjjz3GvHnzCA4O5pprruHtt99m9OjRpKWl\nERAQwDXXXFPvcpGWZtL1nEVantvt9uyRffTRRzz11FM6fCoiHtpzFmlhhw4d4rLLLmPfvn243W7e\ne+89zxnNIiKgPWeRVvHaa6/x8ssvYzKZ6N27NzNnzvScqCQionAWERExGB3WFhERMRiFs4iIiME0\naoawWbNmsXnzZkwmE5mZmSQmJnruW7x4MUuWLMFsNhMfH09WVpbnLNQffviBq6++mrvuuotrr722\nwecoKTn6M8qoLSwsmLKyph2f2lpUi/H4Sx2gWozIX+oA1dIQmy203vt87jmvX7+eoqIisrOzmTlz\nJjNnzvTcV1FRwbJly1i0aBGvv/46X331FZs2bfLc/+yzz3pNU9iSrFZLqzxvc1AtxuMvdYBqMSJ/\nqQNUy9nyGc55eXmeCf5jYmIoLy/3TNXXvn17FixYQEBAABUVFTgcDmw2GwB79uxh9+7dDB8+vPl6\nLyIi4od8hnNpaanX3Lrh4eGUlJR4Peb5558nNTWVtLQ0oqKiAHj88ceZMWNGE3dXRETE/53xVanq\nGnk1efJkMjIymDRpEoMGDWLv3r1cdNFFnqBujLCw4CY/ZNDQ8fy2RrUYj7/UAarFiPylDlAtZ8Nn\nONvtdkpLSz23i4uLPYeuDx8+TGFhIYMHDyYoKIjk5GTy8/MpKChg7969fPTRRxw4cIDAwEAiIyMb\nnOO3qU8YsNlCm/wks9aiWozHX+oA1WJE/lIHqBZf7dXH52HtpKQkcnNzASgoKMBut3uu3VpZWcmM\nGTM8V8rZsmUL0dHRPPXUU7z55pssXryYCRMmcNdddzUYzCIiIlLN557zwIEDSUhIID09HZPJRFZW\nFjk5OYSGhpKamsqUKVPIyMjAarUSFxfHqFGjWqLfIiIifssw03c29WEPHUoxJn+pxV/qANViRP5S\nB6gWX+3V54xPCBMREfHl6af/xs6d2ykvL+PYseN0796Djh07MWvWX32uu3z5u3ToEMKwYXVf63ze\nvCeZMCGd7t17nFXf7r57Mn/843/Tu3efs1q/JfhdOC9dauWppwLZtQtiY4OZPv0E48dXtna3REQM\nrfqz00xsrOtnf3b+/vd/AGDNmpVs3lzA3XdPb/S6V101rsH7p02756z71Vb4VTgvXWrl9tvbe25v\n32756XaFAlpEpB4t+dmZn7+R119/lePHj3P33X9g06bP+eijD3C5XAwZksStt07mpZfm07lzZ6Kj\nY8jJWYzJZKao6P8YPnwUt9462bPn++GHH3DsmINvvili375vmTr1HoYMSeLVV/8fq1a9T/fuPais\nrCQ9/SYGDry4Vl8cDgczZz6Mw3GUyspKpk+/j7i4eJ566q/s2LEdp9PJ+PHXcdVV43jqqb+yZ88u\nfvjhhGdZc/KrcH7qqcA6l8+bF6hwFhGpR0t/du7Zs5vXXsshMDCQTZs+55//fBGz2cz111/DDTfc\n6PXYbdsK+N//fROXy8WECeO49dbJXvcXF3/PnDl/57PPPuXtt98kIWEAOTlv8Nprb3Ls2DHS068l\nPf2mOvvxxhuvkZAwgJtvvoUdO7bx9NNzmTXrr3z66X9YvPhtKisrWb78XY4cKefTT//Dhx+uZv/+\nMpYvf7fJX5PT+VU479pV98iw+paLiEjLf3b26dOXwMCq/xAEBQVx992TsVgsHD58mCNHjng9Ni4u\nnqCgoHrbSky8CKiak8PhcPDtt3vp3TuGdu2CaNcuiH79Eupdd8eObWRk3AZAfHx/vv12Lx07diIq\n6jxmzPgjI0akkJY2lsDAQKKizuPOO+8kKWk4aWljf+5L4JNfpVZsrOuMlouISMt/dgYEBABw4MB+\nsrMX8eSTT/OPfzxPZGRkrcdaLA3PHFnzfrfbjdsNZnN1tP10kcQ6mUwmr1kvXa6qep988u/89reT\nKSzcxZ/+9AfPsrvvvttrWXPyq3CePv1EncunTat7uYiItN5n5+HDhwkLCyM4OJidO3dw4MABTp48\n+bPa7NatG199tYfKykrKysrYsWN7vY+Nj+/Ppk0bAdi6dQvR0THs3/8db7zxOnFx8dx993TKy8s9\nyxISEjzLmptfHdau+m6kgnnzAtm1y0JsrJNp03S2tohIQ7w/O6vO1m6Jz86+fWNp3z6YO++8lQsu\nuIhrrrmWJ598nMTEC8+6zfDwCFJT05g0KYPzzoumf/+Eeve+r7/+18ya9QhTp96By+Xij3/8E126\n2Ni6dTMffPA+AQEBjB37S8+y9PR0wMzYsb886/41liYhaQNUi/H4Sx2gWozIX+qA1qll+fJ3SU1N\nw2KxkJGRzty5T2O3d/3Z7WoSEhERkbN08OBBJk+eSEBAIFdemdYkwdzSFM4iIuJXfvObW/jNb25p\n7W78LH51QpiIiIg/UDiLiIgYjMJZRETEYBTOIiIiBqNwFhGRJnf77b+tNQHIc8/9g9dee7XOx+fn\nb+SBB/4bgBkz/ljr/jffzOall+bX+3y7dxfyzTdFAGRl3c+PP/5wtl3nuuvGcfz48bNevykonEVE\npMmlpo5m9eqVXss++mg1KSlX+lx39uy5Z/x8H3+8mr17vwHgkUf+Qrt29c/H3RZoKJWIiDS5UaOu\n5M47bwP+B4AdO7Zjs9mw2exs2LCOF198joCAAEJDQ/nzn2d7rTt27CiWLfuAjRvX8/e/P0l4eAQR\nEV08l4CcOfNhSkqKqaio4NZbJxMZ2Y23387h449XExYWxkMP3c/Chdk4HEf5y1/+zMmTJzGbzcyY\n8SAmk4mZMx+me/ce7N5dSGxsHDNmPFhnDcXF33ut/8QTs7FaQ/jznx/k4MFSTpw4wW233c7FF19S\na9lll13+s14/hbOIiJ97+OF2vPtu037cjxtXycMP/1jv/WFh4XTv3oMvv/ySbt2iWb16JampaQAc\nPXqUrKzH6N69B48++hDr1uURHBxcq4358//Bgw8+St++sdx771S6d+/B0aNHuOSSyxgz5mr27fuW\nBx+cwcsvv8qllw5h+PBR9O8/wLP+iy8+x9VXX8OoUVfy4YerePnl57ntttvZuXM7jzwyi7CwcMaP\nv4qjR48SGlp7tq7T1//HP/7BuHHXUV5+mGeeeYGjR4+Sl7eWPXt211r2c+mwtoiINIvU1DSWL18O\nwNq1nzB8+CgAOnfuzOOPP8bdd09m06bPOXKk7gtJ7N+/n759YwG46KKBAISGdmT79gLuvPNWZs58\nuN51AXbu3M4vfjEIgIEDL6awcCcAPXpEERHRBbPZTJcuNo4dczRq/W3btnHeeedz/PgxHn30QfLz\nN5CScmWdy34u7TmLiPi5hx/+scG93OYybNgIJk+eSFLSCKKietGxY0cA/vKXR/nrX5/i/POjmTv3\n8XrXr3npx1OXgVi5cgVHjhzhmWde5MiRI/zud79poAfVl4Q8ebISk6mqvdMvhFH/JSa81zebzQQF\nBTF//v9jy5Yvee+9d1m7dg2ZmVl1Lvs5tOcsIiLNIji4A3FxcSxc+IrnkDbAsWMOunaN5OjRo+Tn\nf17vZSK7dLHxzTdf43a72bTpc6DqMpPdunXHbDbz8cerPeuaTCacTqfX+v369Sc/v+qSkF988Tnx\n8f3OqP+nrz9gwAB27tzBypUruPDCi7j33vv5+uv/q3PZz6U9ZxERaTbjxo3jvvv+m6ysRz3Lrr12\nAnfeeRtRUb246aYMXn75eSZPvqvWupMn38UDD/yJyMhunotXDB8+khkz/si2bVsZO/aX2O12Xnnl\nBS688Bc89dRfvb67/t3v7uAvf3mUd999C6s1gPvvf5DKysZfBvP09efMeRyHo5L585/h7bdzMJvN\n3Hjjb+jWrXutZT+XLhnZBqgW4/GXOkC1GJG/1AGqxVd79dFhbREREYNROIuIiBiMwllERMRgFM4i\nIiIGo3AWERExGIWziIiIwSicRUREDKZRk5DMmjWLzZs3YzKZyMzMJDEx0XPf4sWLWbJkCWazmfj4\neLKysvjhhx+YMWMGBw8e5Mcff+Suu+5ixIgRzVaEiIiIP/EZzuvXr6eoqIjs7Gz27NlDZmYm2dnZ\nAFRUVLBs2TIWLVpEQEAAGRkZbNq0iQMHDjBgwAAmTZrEvn37uPXWWxXOIiIijeQznPPy8khJSQEg\nJiaG8vJyHA4HISEhtG/fngULFgBVQe1wOLDZbAwcONCz/v79++natWszdV9ERMT/+Azn0tJSEhIS\nPLfDw8MpKSkhJCTEs+z5559n4cKFZGRkEBUV5Vmenp7OgQMHeO6555q42yIiIv7rjC98UddU3JMn\nTyYjI4NJkyYxaNAgBg2quv7l66+/zvbt27nvvvt45513MJlM9bYbFhaM1Wqp9/6z0dC8pW2NajEe\nf6kDVIsR+UsdoFrOhs9wttvtlJaWem4XFxdjs9mAqkt3FRYWMnjwYIKCgkhOTiY/P5927doRERFB\nt27d6NevH06nk0OHDhEREVHv85SVHW+CcqppsnVj8pda/KUOUC1G5C91gGrx1V59fA6lSkpKIjc3\nF4CCggLsdrvnkHZlZSUzZszg2LFjAGzZsoXo6Gg2btzIyy+/DFQdFj9+/DhhYWE/uxAREZFzgc89\n54EDB5KQkEB6ejomk4msrCxycnIIDQ0lNTWVKVOmkJGRgdVqJS4ujlGjRvHjjz/yP//zP9x44438\n8MMPPPTQQ5jNGlItIiLSGLqecxugWozHX+oA1WJE/lIHqBZf7dVHu7MiIiIGo3AWERExGIWziIiI\nwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRURE\nDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIi\nYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAKZxER\nEYNROIuIiBiMtTEPmjVrFps3b8ZkMpGZmUliYqLnvsWLF7NkyRLMZjPx8fFkZWVhMpl44okn+Pzz\nz6msrOT222/nyiuvbLYiRERE/InPcF6/fj1FRUVkZ2ezZ88eMjMzyc7OBqCiooJly5axaNEiAgIC\nyMjIYNOmTZw4cYLCwkKys7MpKytj/PjxCmcREZFG8hnOeXl5pKSkABATE0N5eTkOh4OQkBDat2/P\nggULgKqgdjgc2Gw2unfv7tm77tixIxUVFTidTiwWSzOWIiIi4h98hnNpaSkJCQme2+Hh4ZSUlBAS\nEuJZ9vzzz7Nw4UIyMjKIiooCIDg4GIAlS5aQnJzsM5jDwoKxWps2vG220CZtrzWpFuPxlzpAtRiR\nv9QBquVsNOo755rcbnetZZMnTyYjI4NJkyYxaNAgBg0aBMCqVatYsmQJL7/8ss92y8qOn2lXGmSz\nhVJScrRJ22wtqsV4/KUOUC1G5C91gGrx1V59fJ6tbbfbKS0t9dwuLi7GZrMBcPjwYTZs2ABAUFAQ\nycnJ5OfnA7BmzRqee+45XnjhBUJD/ed/TSIiIs3NZzgnJSWRm5sLQEFBAXa73XNIu7KykhkzZnDs\n2DEAtmzZQnR0NEePHuWJJ55g/vz5dO7cuRm7LyIi4n98HtYeOHAgCQkJpKenYzKZyMrKIicnh9DQ\nUFJTU5kyZQoZGRlYrVbi4uIYNWoUixcvpqysjOnTp3vaefzxx+nevXuzFiMiIuIPTO66vkRuBU39\nnYS+5zAmf6nFX+oA1WJE/lIHqBZf7dVHM4SJiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEo\nnEVERAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIueopUutDBsWjNUKw4YFs3TpGV9BVkSa\nibZGkXPQ0qVWbr+9vef29u2Wn25XMH58Zet1TEQA7TmLnJOeeiqwzuXz5tW9XERalsJZ5By0a1fd\nm359y0WkZWlLFDkHxca6zmi5iLQshbPIOWj69BN1Lp82re7lItKyFM4i56Dx4yuZP7+C/v2dWK3Q\nv7+T+fN1MpiIUehsbZFz1PjxlYwfX4nNFkpJyfHW7o6I1KA9ZxEREYNROIuIiBiMwllERMRgFM4i\nIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIG06hw\nnjVrFjfccAPp6el8+eWXXvctXryY66+/nvT0dB5++GHcbjcAu3btIiUlhVdffbXpey0iIuLHfIbz\n+vXrKSoqIjs7m5kzZzJz5kzPfRUVFSxbtoxFixbx+uuv89VXX7Fp0yaOHz/Oo48+ypAhQ5q18yIi\nIv7IZzjn5eWRkpICQExMDOXl5TgcDgDat2/PggULCAgIoKKiAofDgc1mIzAwkBdeeAG73d68vRcR\nEfFDPsO5tLSUsLAwz+3w8HBKSkq8HvP888+TmppKWloaUVFRWK1WgoKCmr63IiIi5wDrma5w6jvl\nmiZPnkxGRgaTJk1i0KBBDBo06Iw7EhYWjNVqOeP1GmKzhTZpe61JtRiPv9QBqsWI/KUOUC1nw2c4\n2+12SktLPbeLi4ux2WwAHD58mMLCQgYPHkxQUBDJycnk5+efVTiXlR0/43UaYrOFUlJytEnbbC2q\nxXj8pQ5QLUbkL3WAavHVXn18HtZOSkoiNzcXgIKCAux2OyEhIQBUVlYyY8YMjh07BsCWLVuIjo5u\nij6LiIics3zuOQ8cOJCEhATS09MxmUxkZWWRk5NDaGgoqampTJkyhYyMDKxWK3FxcYwaNYqtW7fy\n+OOPs2/fPqxWK7m5uTz99NN07ty5JWoSERFp00zuur5EbgVNfdhDh1KMyV9q8Zc6QLUYkb/UAarF\nV3v10QxhIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiItKApUutDBsWjNUKw4YFs3TpGc/fdcaa\n/xlERETaqKVLrdx+e3vP7e3bLT/drmD8+Mpme17tOYuIiNTjqacC61w+b17dy5uKwllERKQeu3bV\nHZP1LW8qCmcREZF6xMa6zmh5U1E4i4iI1GP69BN1Lp82re7lTUXhLCIiUo/x4yuZP7+C/v2dWK3Q\nv7+T+fOb92Qw0NnaIiIiDRo/vpLx4yt/mlu7aS9vXB/tOYuIiBiMwllERMRgFM4iIiIGo3AWEREx\nGIWziIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiI\nwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGY23Mg2bNmsXmzZsxmUxkZmaS\nmJjouW/x4sUsWbIEs9lMfHw8WVlZmEymBtcRERGR+vkM5/Xr11NUVER2djZ79uwhMzOT7OxsACoq\nKli2bBmLFi0iICCAjIwMNm3aRGVlZb3riIiISMN8HtbOy8sjJSUFgJiYGMrLy3E4HAC0b9+eBQsW\nEBAQQEVFBQ6HA5vN1uA6IiIi0jCf4VxaWkpYWJjndnh4OCUlJV6Pef7550lNTSUtLY2oqKhGrSMi\nIiJ1a9R3zjW53e5ayyZPnkxGRgaTJk1i0KBBjVrndGFhwVitljPtToNsttAmba81qRbj8Zc6QLUY\nkb/UAarlbPgMZ7vdTmlpqed2cXExNpsNgMOHD1NYWMjgwYMJCgoiOTmZ/Pz8BtepT1nZ8bOtoU42\nWyglJUebtM3WolqMx1/qANViRP5SB6gWX+3Vx+dh7aSkJHJzcwEoKCjAbrcTEhICQGVlJTNmzODY\nsWMAbNmyhejo6AbXERERkYb53HMeOHAgCQkJpKenYzKZyMrKIicnh9DQUFJTU5kyZQoZGRlYrVbi\n4uIYNWoUJpOp1joiIiLSOCZ3Y74QbgFNfdhDh1KMyV9q8Zc6QLUYkb/UAarFV3v10QxhIiIiBqNw\nFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiF\ns4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEo\nnEVERAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG\n4SwiImIwCmcRERGDUTiLiIiD5nTDAAAa90lEQVQYjLUxD5o1axabN2/GZDKRmZlJYmKi577PPvuM\nuXPnYjabiY6OZubMmQBkZWVRWFhIQEAADz/8MDExMc1TgYiIiJ/xGc7r16+nqKiI7Oxs9uzZQ2Zm\nJtnZ2Z77H3roIRYuXEhkZCRTp05lzZo1nDhxgqNHj/L666/zzTffMHPmTObPn9+shYiIiPgLn+Gc\nl5dHSkoKADExMZSXl+NwOAgJCQEgJyfH83d4eDhlZWWUlJR49q579erFd999h9PpxGKxNFcdIiIi\nfsNnOJeWlpKQkOC5HR4eTklJiSeQT/0uLi5m7dq1TJs2jS+//JIFCxYwceJEioqK2Lt3L2VlZXTp\n0qXe5wkLC8ZqbdrwttlCm7S91qRajMdf6gDVYkT+UgeolrPRqO+ca3K73bWWHTx4kDvuuIOsrCzC\nwsIYNmwY+fn53HTTTcTFxdG7d+8616uprOz4mXalQTZbKCUlR5u0zdaiWozHX+oA1WJE/lIHqBZf\n7dXHZzjb7XZKS0s9t4uLi7HZbJ7bDoeDSZMmMX36dIYOHepZ/oc//MHzd0pKChEREWfccRERkXOR\nz6FUSUlJ5ObmAlBQUIDdbvccygaYPXs2EydOJDk52bNsx44d3H///QB88skn9O/fH7NZo7ZEREQa\nw+ee88CBA0lISCA9PR2TyURWVhY5OTmEhoYydOhQ3nrrLYqKiliyZAkAV199NRMmTMDtdnPdddfR\nrl075syZ0+yFiIiI+ItGfed87733et2Oj4/3/L1169Y615k9e/bP6JaIiMi5S8eaRUREDEbhLCIi\nYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIGc8bTd7YFu3ebWLYMunUzExfnokOH1u6RiIhI4/ll\nOM+e3Y533gHogMnkJjraTf/+Tvr3d/3046RXLzeatExERIzIT8P5R375ywDWrTvBtm1mCgos/Pvf\nAfz739WP6dDBTb9+rlqh3bFj6/VbREQE/DScu3Rxc9tt8Mtf/giA2w0HDpg8Qb1tm5nt28188YWZ\njRu9L1MZFVUd1KdCOzrahdUvXykRETGicyJyTCbo1s1Nt25ORo1yepb/+CMUFprZts3Mtm2Wn36b\nyc21kptb/dIEBbmJi6sd2hERDV8GU0RE5GycE+Fcn3btYMAAFwMGuIBKz/KSEhPbt3uH9o4dZjZv\ntgABnsd17eryOiTev7+Lvn1dBAa2fC0iIuI/zulwro/N5sZmc5Kc7AROAlBZCV99ZfbsXZ8K7Q8/\ntPLhh9XrWq1u+vatDu2EhKrQ7trVjcnUOvWIiEjbonBuJKsVYmNdxMa6+K//ql5eXg7bt1soKKgO\n7e3bzWzfbuHNN6sfFx5eey87NtZFcHDL1yIiIsamcP6ZOnWCyy5zctll1d9lu1xQVGTy+h572zYL\na9da+M9/ql9ys9lN7961QzsqSnvZIiLnMoVzMzCbITraTXR0JWPHVi93OGDnTnOt0H7nHctP47Kr\nhIR4j8u+/HLo1g1CQ1u+FhERaXkK5xYUEgKDBrkYNMjlWeZ2w3ffmWqdMf755xbWr6/59oTSq1ft\ncdnR0W4sltrPJSIibZfCuZWZTNCjh5sePZykplYfGv/hh6phXgUFZr7+uj0bN1aybZuZFSsCWLGi\nev327U8N8/IO7fDwVihGRESahMLZoIKC4IILXFxwgQubDUpKKgAoLjbVOmN82zYzX3zhvfscGVl7\nXHafPhrmJSLSFiic2xi73Y3d7mT48OphXidPwp49tYd5rV5tZfXq6rc4IKDmMC/nT0O9XNjtOgFN\nRMRIFM5+ICAA4uNdxMe7uPba6uVlZVXDvGqG9o4dVb9rTqYSEVH3MK/27Vu+FhERUTj7tbAwuPxy\nJ5dfXv1dttNZNczr1Bzjp0J7zRora9ZUr2s2u4mJqR3aPXtqL1tEpLkpnM8xFgv07u2md+9Kxo2r\nXu5w8NOUpd6hXVho4e23qx8XGlr78pv9+rkICWn5WkRE/JXCWYCqYV6DB7sYPNh7mNe339Ye5rVh\ng4V167z/6Zx3nvfJZwkJTs47T8O8RETOhsJZ6mUyQVSUm6goJ6NHVx8ar6iAXbtqnzH+3nsBvPde\n9frBwW7i471D+4orWqEQEZE2RuEsZ6x9e7jwQhcXXlh9NS+3u+5hXlu2mMnP99597t69Q61hXjEx\nLgIC6ngyEZFzkMJZmoTJBF27uuna1cmIEdXDvE6c8B7mtXt3O774AlatsrJqVfU/v8BAN7Gxtcdm\n2+26ZraInHsUztKsAgOhXz8X/fq5+NWvwGZrR0nJMQ4dqnuY19at3sO8unTxPmM8IaHqmtlBQa1X\nk4hIc1M4S6sID4ekJCdJSd7DvL7+uupqXjUvwfnJJ1Y++aR6XYvFTZ8+tYd5de+uYV4i4h8UzmIY\nFgvExLiJifEe5nX0aN3DvHbutLB0afXjOnWqPcwrLk7DvESk7WlUOM+aNYvNmzdjMpnIzMwkMTHR\nc99nn33G3LlzMZvNREdHM3PmTCoqKvjTn/5EeXk5J0+eZMqUKVyh03TlLIWGwiWXuLjkEu9hXnv3\n1h7mtW6dhby86n/WJpOb889306+fd2iff74bs7k1qhER8c1nOK9fv56ioiKys7PZs2cPmZmZZGdn\ne+5/6KGHWLhwIZGRkUydOpU1a9awd+9eoqOjueeee/j++++ZOHEiK2peSknkZzKZoFcvN716OUlL\nqz40fvx47WFeBQUWli8PYPny6vWDg9306+d98lm/fk46d26FYkRETuMznPPy8khJSQEgJiaG8vJy\nHA4HIT8dK8zJyfH8HR4eTllZGWFhYezcuROAI0eOEBYW1lz9F/ESHAwXXeTioou8h3l9/73JE9Sn\n9rI3b666bnZNPXrUPmM8JsaFVV8AiUgL8vmRU1paSkJCgud2eHg4JSUlnkA+9bu4uJi1a9cybdo0\nwsLCyMnJITU1lSNHjjB//vxm6r6IbyYTREa6iYx0MnJk9V72iRNV18w+/dD4ypVWVq6s3jTatas9\nzCs5GZ18JiLN5oz3B9zu2uNODx48yB133EFWVhZhYWG8/fbbdO/enZdeeokdO3aQmZlJTk5Og+2G\nhQVjtTbtXI82W2iTtteaVEvz6NEDhg/3XlZSAlu2wJdfnvqpulDIli3ew7y6dg0lMRGvn379oF27\nFi2hSRjpPfm5/KUWf6kDVMvZ8BnOdrud0tJSz+3i4mJsNpvntsPhYNKkSUyfPp2hQ4cCkJ+f7/k7\nPj6e4uJinE4nlgYmWi4rO37WRdTFZgulpORok7bZWlRLy7vggqqfm26qul1ZCf/3f6dPpuJi5Uoz\nK1dWr2ex1LxmdvWedrduxh3m1Vbek8bwl1r8pQ5QLb7aq4/PcE5KSuLpp58mPT2dgoIC7Ha751A2\nwOzZs5k4cSLJycmeZeeddx6bN29m9OjR7Nu3jw4dOjQYzCJGZ7VC375VE6Bcc031ZCrl5bUnU9m+\n3cyOHRZqHizq3LnuYV4dOrReTSJiXD7DeeDAgSQkJJCeno7JZCIrK4ucnBxCQ0MZOnQob731FkVF\nRSxZsgSAq6++mhtuuIHMzExuvvlmKisrefjhh5u7DpFW0akTXHaZk8suq/4u2+WCb74x1RqXnZdn\n4dNPvYd5RUfXDu1evTTMS+RcZ3LX9SVyK2jqwx46lGJM/lLL2dRx7Bjs3Fl7MpXDh72Pd3foUHuY\nV//+Tjp2bMoKqvnLewL+U4u/1AGqxVd79dEAEZEW0qEDDBzoYuBA78lU9u+vPZnKpk1mNm70/ioo\nKqr2MK/oaA3zEvFH2qxFWpHJBN27u+ne3UlKSvWh8R9/rPua2bm5VnJzqzfboCA3cXG1QzsiwhAH\nxETkLCmcRQyoXTu44AIXF1xQPZkKVF0zu2qe8erQ3r7dzObNpw/zqn3GeN++LgIDW74WETlzCmeR\nNsRud2O3Oxk2rPqa2ZWV3tfMPhXaH35o5cMPq9e1Wr2HeSUkVIV2ly6tU4uI1E/hLNLGWa0QF+ci\nLs7F+PHVyw8fhh07vC+/uX27me3bLbz5ZvXjwsKgb9/2xMW5iI2t+omPdxEZadyx2SL+TuEs4qc6\nd657mFdRUfUwr4ICM7t3B7Bxo4X1670/DkJDq6YtjYtz/vS7Krh79NBQL5HmpnAWOYeYzRAd7SY6\nupKxY6uW2WwBfPutgz17zOzaZWbnzqrfu3bVfXGQ4GC3Zw+7Znj36uVGcw2JNA2Fs4jQrh2e76Jr\nOnmyatrSmoFdNVbbzBdfeCdxUJCbPn1cXnvZ8fFOzjvPreFeImdIm4yI1CsgAM8eck2VlVWzoO3Y\nYfHa2y4sNLN1q3doBwa6iYmpDuxTv6Ojdfa4SH0UziJyxqxW6N3bTe/elVx1VfVypxP27jX9FNgW\nr73t7dstp7XhpnfvmofHq37HxLgICmrhgkQMRuEsIk3GYoHzz3dz/vlOrrzS+0S0774zee1l79xp\n+elv79A2m92cf76b2Fin1952nz4ugoNbuiKR1qFwFpFmZzZDz55uevZ0MnJkdWi73fD99yZPYO/Y\nUR3cK1YEsGJFdRsmk5uoKDfx8S5iY6vPIO/b10WNC+WJ+AWFs4i0GpMJIiPdREaemlilitsNJSWm\nWmeP79xp5v33rbz/vvdHV8+eVXvYF10EUVEBnvDu1KmlKxJpGgpnETEck6l6NrShQ51e9x08aKKw\nsObh8arfq1dbWb0aoPoL68hI7++zq347CQ9v2XpEzpTCWUTalIgINxER3pOrAJSXQ0lJKOvW/eC1\nt/3JJ1Y++cS7jS5dXJ5Z1WqGd5cumhVNjEHhLCJ+oVMn6NMH+vQ56bXc4aDGYfHqoV9r11pZu9a7\njfDw2mePx8W56NpVoS0tS+EsIn4tJKTmdbSrr/B17FjVBUO8D49bWL/ewmefeX80duxY/1SmCm1p\nDgpnETkndegAiYkuEhO9J1j54QfqnMr0iy/MbNxoOa2N+qcy1fzj8nMonEVEaggKgoQEFwkJ3qF9\n4kTVVKbeY7XNbN1qZtMm79Bu377q8pzeh8erpjLV/OPSGApnEZFGCAysvjTnuHHVyysr4euvTV7f\nZ5/a2/7yS+8kbtfOeyrTU+EdHe0iIKCFCxJDUziLiPwMViv06eOmT5/qK31B1VSm33xTeyrTXbuq\nrq3t3UZVaJ8K7MGDITLSTEyMi3btWrggMQSFs4hIM7BYTl2e08no0d5Tme7bV3sq01O/q3XAYnET\nHe19eDw2tmoq0/btW74maTkKZxGRFmQ2Q1SUm6goJ6NGec+KduCAiR07zHz3XTD5+SfYubMqsHfv\ntrB8eXUbJpOb885zeyZVqTn/uKYy9Q8KZxERAzCZoFs3N926ObHZoKTkR6AqtIuLTV5TmJ76OzfX\nSm6u98d4VFTts8djY1107NgaVcnZUjiLiBiYyQRdu7rp2tXJFVd4z4pWWlr3VKYffGDlgw+82+nW\nrSqkqy4ccurHSVhYCxYjjaZwFhFpo7p0cdOli5MhQ7xD+/DhU7OiWX46NF4V2h9/bOXjj73bsNtr\nnz1+aipTaT0KZxERP9O5M1xyiYtLLvEeq330aO2pTHftMrNmjZU1a7zbiIioeypTu12zorUEhbOI\nyDkiNBQGDXIxaFDtqUx37z798pwWPvvMQl6ed0x06lR7KtO4OBfduim0m5LCWUTkHNehA1x4oYsL\nL/Te066oqJ7KtOZ32vn5ZjZs8B6rHRLirnF43On5OyKiJSvxHwpnERGpU/v2MGCAiwEDvEP7xx/h\nq69qnz3+5ZdmPv/cAlRPdxYcDH37BntdTzs21qWpTH1QOIuIyBlp1w769XPRr593aJ88CV9/7R3Y\ne/YEsGOHmc2ba09l2qeP98lo8fFOzj/fjVXJ1LhwnjVrFps3b8ZkMpGZmUliYqLnvs8++4y5c+di\nNpuJjo5m5syZvPnmm7zzzjuex2zdupVNmzY1fe9FRMQwAgKgb18XfftWh7bNFsCBAw6KikxeZ5Dv\n2mWmsNBMQYHltDaqQvv0k9F693YRGNjSFbUen+G8fv16ioqKyM7OZs+ePWRmZpKdne25/6GHHmLh\nwoVERkYydepU1qxZw4QJE5gwYYJn/ffee6/5KhAREUOzWKB3bze9eztJS/OeyvTbb2tOZVo99Gv7\ndstpbbjp3bvuqUyDglq6oubnM5zz8vJISUkBICYmhvLychwOByE/zRGXk5Pj+Ts8PJyysjKv9Z95\n5hnmzJnT1P0WEZE2zmyGXr3c9OrlJCXFCZwEqmZF++47U62zx6v2ti0sW1azjVNTmTq99rb79HHR\noUPr1NUUfIZzaWkpCQkJntvh4eGUlJR4AvnU7+LiYtauXcu0adM8j/3yyy/p1q0bNputqfstIiJ+\nymSCHj3c9OjhZORI7/nHi4tNtWZE27nTzIoVAaxY4d1Or17e19M+Fd5tYf7xM/7a3e2uPWvMwYMH\nueOOO8jKyiKsxlxwS5YsYfz48Y1qNywsGKu1aU/ds9lCm7S91qRajMdf6gDVYkT+Ugc0bS12OwwY\nUHt5SQls23b6j5mVK82sXOn92Kgo6N/f+6dfPxo1lWlLvS8+w9lut1NaWuq5XVxc7LUn7HA4mDRp\nEtOnT2fo0KFe665bt44HHnigUR0pKzve2D43is0WSknJ0SZts7WoFuPxlzpAtRiRv9QBLVvLqaCt\nqawMdu2yePawT+1t5+aayc31fmzXrrVnRKsaq+1ulloaCnqf4ZyUlMTTTz9Neno6BQUF2O12z6Fs\ngNmzZzNx4kSSk5O91vv+++/p0KEDgefS6XUiImIoYWFw6aVOLr3Ue/7xI0caP5Vply5VIT19Ogwf\n3jL99hnOAwcOJCEhgfT0dEwmE1lZWeTk5BAaGsrQoUN56623KCoqYsmSJQBcffXV3HDDDZSUlBAe\nHt7sBYiIiJypjh3h4otdXHyx91SmDsfpU5lWnUGel2fh/PNbLpxN7rq+RG4FTX3YQ4eFjMlfavGX\nOkC1GJG/1AH+U8uPP0KPHqGUlrbMYW1zkz2LiIiIn2rXjha9sIfCWURExGAUziIiIgajcBYRETEY\nhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYw1z4QkRE\nRKpoz1lERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjDW1u7A2Zo1axabN2/GZDKR\nmZlJYmKi575PP/2UuXPnYrFYSE5OZsqUKT7XaS0N9emzzz5j7ty5mM1moqOjmTlzJhs2bGDatGn0\n7dsXgNjYWB588MHW6r6XhmoZOXIkkZGRWCwWAObMmUPXrl0N+Z5A/bV8//333HvvvZ7H7d27l3vu\nuYeTJ08yb948evXqBcDll1/OnXfe2Sp9P92uXbu46667uOWWW7j55pu97mtL2wo0XEtb2l4aqqOt\nbSv11dIWt5UnnniCzz//nMrKSm6//XauvPJKz30tvq2426B169a5J0+e7Ha73e7du3e7r7/+eq/7\nx4wZ4/7uu+/cTqfT/etf/9pdWFjoc53W4KtPqamp7v3797vdbrf797//vfujjz5yf/bZZ+7f//73\nLd5XX3zVMmLECLfD4TijdVpLY/t18uRJd3p6utvhcLjffPNN9+zZs1uym41y7Ngx98033+x+4IEH\n3P/6179q3d9WthW323ctbWV78VVHW9pWfNVySlvYVvLy8ty/+93v3G63233o0CH3sGHDvO5v6W2l\nTR7WzsvLIyUlBYCYmBjKy8txOBxA1f/OOnXqRLdu3TCbzQwbNoy8vLwG12ktvvqUk5NDZGQkAOHh\n4ZSVlbVKPxvjbF5fI74n0Ph+LV26lNGjR9OhQ4eW7mKjBQYG8sILL2C322vd15a2FWi4Fmg724uv\nOurSVt+TU9rCtjJ48GDmzZsHQMeOHamoqMDpdAKts620yXAuLS0lLCzMczs8PJySkhIASkpKCA8P\nr3VfQ+u0Fl99CgkJAaC4uJi1a9cybNgwAHbv3s0dd9zBr3/9a9auXduyna5HY17frKwsfv3rXzNn\nzhzcbrch3xNoXC0Ab7zxBtddd53n9vr167ntttuYOHEi27Zta5G++mK1WgkKCqrzvra0rUDDtUDb\n2V581QFtZ1tpTC3QNrYVi8VCcHAwAEuWLCE5Odnz1UJrbCtt9jvnmtxnMQPp2azT3Orq08GDB7nj\njjvIysoiLCyM888/n7vvvpsxY8awd+9eMjIyeP/99wkMDGyFHtfv9FqmTp3KFVdcQadOnZgyZQq5\nubk+1zGKuvq1adMmevfu7QmECy+8kPDwcIYPH86mTZv405/+xLvvvtvSXW0WRn1f6tJWt5ea2vK2\nUpe2tq2sWrWKJUuW8PLLL5/xuk35vrTJcLbb7ZSWlnpuFxcXY7PZ6rzv+++/x263ExAQUO86raWh\nOgAcDgeTJk1i+vTpDB06FICuXbty1VVXAdCrVy+6dOnC999/T1RUVMt2/jS+avmv//ovz9/Jycns\n2rXL5zqtpTH9+uijjxgyZIjndkxMDDExMQD84he/4NChQzidTs//vI2oLW0rjdGWtpeGtKVtpTHa\n0rayZs0annvuOV588UVCQ0M9y1tjW2mTh7WTkpI8/5ssKCjAbrd7/lfWs2dPHA4H3377LZWVlXz4\n4YckJSU1uE5r8dWn2bNnM3HiRJKTkz3L3nnnHV566SWg6lDLwYMH6dq1a8t2vA4N1XL06FFuu+02\nTpw4AcCGDRvo27evId8T8P2+AGzZsoX4+HjP7RdeeIF///vfQNXZq+Hh4Yb4sGlIW9pWGqMtbS/1\naWvbSmO0lW3l6NGjPPHEE8yfP5/OnTt73dca20qbvSrVnDlz2LhxIyaTiaysLLZt20ZoaCipqals\n2LCBOXPmAHDllVdy22231blOzX8wraW+OoYOHcrgwYP5xS9+4Xns1VdfzdixY7n33ns5cuQIJ0+e\n5O677/Z8t9baGnpPFixYwFtvvUW7du3o378/Dz74ICaTyZDvCTRcC8C4ceN45ZVX6NKlCwAHDhzg\nvvvuw+12U1lZaZihLlu3buXxxx9n3759WK1WunbtysiRI+nZs2eb21YaqqUtbS++3pO2tK34qgXa\nzraSnZ3N008/TXR0tGfZpZdeSlxcXKtsK202nEVERPxVmzysLSIi4s8UziIiIgajcBYRETEYhbOI\niIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGMz/B48XocBWTJqvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "fmMaLRqKSFhP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We can see that the added layers does improve ours results by a bit, albeit not very significantly. We can draw two conclusions:\n", + "\n", + "* Since we are still not overfitting too badly, we could safely increase the size of our layers, in quest for a bit of validation loss \n", + "improvement. This does have a non-negligible computational cost, though. \n", + "* Since adding a layer did not help us by a significant factor, we may be seeing diminishing returns to increasing network capacity at this \n", + "point." + ] + }, + { + "metadata": { + "id": "GfTZh7ucSFhR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Using bidirectional RNNs\n", + "\n", + "\n", + "The last technique that we will introduce in this section is called \"bidirectional RNNs\". A bidirectional RNN is common RNN variant which \n", + "can offer higher performance than a regular RNN on certain tasks. It is frequently used in natural language processing -- you could call it \n", + "the Swiss army knife of deep learning for NLP.\n", + "\n", + "RNNs are notably order-dependent, or time-dependent: they process the timesteps of their input sequences in order, and shuffling or \n", + "reversing the timesteps can completely change the representations that the RNN will extract from the sequence. This is precisely the reason \n", + "why they perform well on problems where order is meaningful, such as our temperature forecasting problem. A bidirectional RNN exploits \n", + "the order-sensitivity of RNNs: it simply consists of two regular RNNs, such as the GRU or LSTM layers that you are already familiar with, \n", + "each processing input sequence in one direction (chronologically and antichronologically), then merging their representations. By \n", + "processing a sequence both way, a bidirectional RNN is able to catch patterns that may have been overlooked by a one-direction RNN.\n", + "\n", + "Remarkably, the fact that the RNN layers in this section have so far processed sequences in chronological order (older timesteps first) may \n", + "have been an arbitrary decision. At least, it's a decision we made no attempt at questioning so far. Could it be that our RNNs could have \n", + "performed well enough if it were processing input sequences in antichronological order, for instance (newer timesteps first)? Let's try \n", + "this in practice and see what we get. All we need to do is write a variant of our data generator, where the input sequences get reverted \n", + "along the time dimension (replace the last line with `yield samples[:, ::-1, :], targets`). Training the same one-GRU-layer network as we \n", + "used in the first experiment in this section, we get the following results:" + ] + }, + { + "metadata": { + "id": "nJeZzsF1SFhZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def reverse_order_generator(data, lookback, delay, min_index, max_index,\n", + " shuffle=False, batch_size=128, step=6):\n", + " if max_index is None:\n", + " max_index = len(data) - delay - 1\n", + " i = min_index + lookback\n", + " while 1:\n", + " if shuffle:\n", + " rows = np.random.randint(\n", + " min_index + lookback, max_index, size=batch_size)\n", + " else:\n", + " if i + batch_size >= max_index:\n", + " i = min_index + lookback\n", + " rows = np.arange(i, min(i + batch_size, max_index))\n", + " i += len(rows)\n", + "\n", + " samples = np.zeros((len(rows),\n", + " lookback // step,\n", + " data.shape[-1]))\n", + " targets = np.zeros((len(rows),))\n", + " for j, row in enumerate(rows):\n", + " indices = range(rows[j] - lookback, rows[j], step)\n", + " samples[j] = data[indices]\n", + " targets[j] = data[rows[j] + delay][1]\n", + " yield samples[:, ::-1, :], targets\n", + " \n", + "train_gen_reverse = reverse_order_generator(\n", + " float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=0,\n", + " max_index=200000,\n", + " shuffle=True,\n", + " step=step, \n", + " batch_size=batch_size)\n", + "val_gen_reverse = reverse_order_generator(\n", + " float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=200001,\n", + " max_index=300000,\n", + " step=step,\n", + " batch_size=batch_size)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9mgmQZAOSFho", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 119 + }, + "outputId": "4dfef7b9-3623-4bbe-c344-27496afd3ec0" + }, + "cell_type": "code", + "source": [ + "model = Sequential()\n", + "model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen_reverse,\n", + " steps_per_epoch=500,\n", + " epochs=3,\n", + " validation_data=val_gen_reverse,\n", + " validation_steps=val_steps)" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/3\n", + "500/500 [==============================] - 293s 586ms/step - loss: 0.4807 - val_loss: 0.4871\n", + "Epoch 2/3\n", + "500/500 [==============================] - 292s 584ms/step - loss: 0.4400 - val_loss: 0.4723\n", + "Epoch 3/3\n", + "500/500 [==============================] - 293s 586ms/step - loss: 0.3839 - val_loss: 0.4569\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "y6uBGXfhSFhx", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 362 + }, + "outputId": "d1a0d88d-1633-4171-f8b1-5fe4ff4c4c94" + }, + "cell_type": "code", + "source": [ + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(loss))\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVPX+x/HXsKUIKii4W2ipiSJZ\nWu4bKGberm1SbpU3WzSXvP1SfvmjbsU1k8q0W95Mf2XdomWs2y/T9KYtrpiK+4L35i6LLIJYCMzv\nD2JgZBZUhDPj+/l4+JA5c86Z72fGw9vzPd/5HpPFYrEgIiIihuFV2w0QERERWwpnERERg1E4i4iI\nGIzCWURExGAUziIiIgajcBYRETEYhbN4tPj4eGJiYoiJiSE8PJwBAwZYH+fn51/UvmJiYsjMzHS6\nTmJiIh999NHlNLnaPfjgg5jN5mrZV/v27Tl16hSrVq1i5syZl/V6n3zyifXnqry3VTVjxgz+9re/\nVcu+RGqLT203QORKev75560/Dxw4kDlz5nDLLbdc0r5WrFjhcp3p06df0r7dTXR0NNHR0Ze8fUZG\nBosWLeK+++4DqvbeilxNdOYsV7UxY8bw2muvMXToULZu3UpmZibjx48nJiaGgQMHsmTJEuu6ZWeN\nmzZtYuTIkSQmJjJ06FAGDhzI5s2bAduztoEDB/Lxxx9zzz330Lt3b2bPnm3d19tvv02PHj24++67\n+fDDDxk4cKDd9n366acMHTqUwYMHM2rUKI4fPw6A2Wxm8uTJxMXFMWTIEG6//XYOHjwIwNGjR7n3\n3nuJiopi+vTpFBcXV9rv999/z/Dhw22W3Xnnnfzwww9O34MyZrOZBx980OXr/etf/2L48OEMGTKE\nu+66i7179wIQGxvLiRMniImJobCw0PreArz//vvcfvvtxMTE8Pjjj5OVlWV9b9944w0eeughBgwY\nwEMPPcS5c+ccfbQA7Nu3j9jYWGJiYrjzzjv58ccfATh79iwTJ05k6NChDBo0iGeffZbz5887XC5S\n0xTOctXbtWsXX3/9NV27duWtt96iZcuWrFixgvfee4/ExEROnjxZaZs9e/bQpUsXvvnmGx544AHe\neustu/tOTk4mKSmJzz//nA8++IBTp05x8OBBFi1axJdffsk//vEPh2eNp0+f5i9/+QtLlizh22+/\npXXr1jbdtT/88AMPPPAAK1eu5NZbb+W9994DYO7cufTo0YPVq1czbtw4tm7dWmnfPXr04NSpUxw9\nehQoDdhTp07Rs2fPKr8HZRy9XlFRETNmzOCFF15g5cqVDBw4kJdffhmAhIQEmjVrxooVK/Dz87Pu\na/v27bz77rssXbqUFStW0Lx5cxITE63Pr1ixgtdee41Vq1aRlZXFqlWrHLarpKSEp556itGjR7Ni\nxQpefPFFpk+fTn5+Pl988QX169fnm2++YeXKlXh7e5OamupwuUhNUzjLVa9fv354eZUeCs8++yyz\nZs0CoFWrVoSEhHDs2LFK29SrV4+oqCgAwsPDOXHihN19Dx8+HG9vb5o0aUKjRo04efIkycnJdO/e\nndDQUK655hruvvtuu9s2atSIn3/+maZNmwJwyy23WMMUoG3btnTq1AmAjh07WgN0y5Yt3H777QBE\nRETQpk2bSvv28/NjwIABfPfddwCsXr2aqKgofHx8qvwelHH0ej4+Pqxfv57IyEi77bdn7dq1DBky\nhEaNGgFw7733sm7dOuvz/fr1o2HDhvj4+NCuXTun/2k4duwYmZmZDBs2DIDOnTvTvHlzdu7cSXBw\nMNu2beOnn36ipKSE559/nhtvvNHhcpGapmvOctVr0KCB9eedO3dazxS9vLzIyMigpKSk0jaBgYHW\nn728vOyuAxAQEGD92dvbm+LiYs6cOWPzmk2aNLG7bXFxMW+88QbfffcdxcXFnD17lrCwMLttKNs3\nQG5urs3r1q9f3+7+hwwZwvvvv8+4ceNYvXo1TzzxxEW9B2Wcvd7SpUtZtmwZhYWFFBYWYjKZHO4H\nICsri9DQUJt9nT592mXNjvYVGBho85r169cnKyuLYcOGkZuby7x58/j3v//NH/7wB2bOnMnQoUPt\nLq94di9SE3TmLFLB008/zZAhQ1i5ciUrVqwgKCio2l8jICCAgoIC6+P09HS76y1fvpzvvvuODz74\ngJUrVzJ58uQq7b9+/fo2I9HLrtleqE+fPuzbt49ffvmFX375hdtuuw24+PfA0ett3bqVd955h7fe\neouVK1fy4osvumx748aNycnJsT7OycmhcePGLrezp1GjRuTm5lLx3j45OTnWs/LY2Fg+/fRTli9f\nzu7du/niiy+cLhepSQpnkQpOnz5Np06dMJlMLFu2jHPnztkEaXWIiIhg06ZNZGVlUVhY6PCX/+nT\np2nRogXBwcFkZ2fzzTffcPbsWZf7j4yMtF6L3bp1K0eOHLG7np+fH7179+aVV15h0KBBeHt7W1/3\nYt4DR6+XlZVFo0aNaN68OefOnWPZsmUUFBRgsVjw8fGhoKCAoqIim33179+fVatWkZ2dDcDHH39M\nv379XNZsT8uWLWnatCnLly+3ti0zM5OIiAjefPNNPvvsM6C056Jly5aYTCaHy0VqmsJZpIIpU6Yw\nceJEhg8fTkFBASNHjmTWrFkOA+5SREREMGLECEaMGMHYsWMZMGCA3fXuuOMOcnJyiI6OZvr06Uyd\nOpVTp07ZjPq25+mnn2bNmjVERUXx4Ycf0rNnT4frDhkyhNWrVzN06FDrsot9Dxy9Xp8+fQgNDSUq\nKoqHH36YcePGERgYyOTJk2nfvj0NGjSgV69eNtfrIyIimDBhAqNGjSImJoa8vDymTZvmtF5HTCYT\nr776Kh988AFDhw7lxRdfZN68efj7+3PnnXfy5ZdfMmTIEGJiYvD19eXOO+90uFykppl0P2eRmmex\nWKxnZGvXruX1119X96mIWOnMWaSGZWVlcdttt3H8+HEsFgvffPONdUSziAjozFmkVnz00UcsXrwY\nk8lEmzZteOmll6wDlUREFM4iIiIGo25tERERg1E4i4iIGIxhZgjLyMir1v0FBfmTnV2930+tLarF\neDylDlAtRuQpdYBqcSYkJNDhcx575uzj413bTag2qsV4PKUOUC1G5Cl1gGq5VB4bziIiIu5K4Swi\nImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRjDTEIiIiKeY/7819i/fy+5udmcPVtA\n8+YtqF+/AQkJr7jcdvnyr6hXL4B+/ezf63zevETuvTeW5s1bXFLbJk2awFNP/Rdt2lx/SdvXBIWz\niIiwbJkPr7/ux4EDXrRrV8LUqYWMGFF0yft78slpAPz44ypSUnYzadLUKm97++3DnT4/Zcr0S26X\nu1A4i4hc5ZYt8+HRR+taH+/d6/3743OXFdD2bN26hY8//oCCggImTZrGtm0/s3btvygpKaFHj148\n/PAE3n13IQ0bNiQsrC1m8yeYTF4cPvwf+vcfxMMPT7Ce+a5Z8y/Ons3nyJHDHD9+jMmTp9OjRy8+\n+OB/Wb36W5o3b0FRURGxsaPo2vWWSm3Jz8/npZeeIz8/j6KiIqZOfZr27Tvw+uuvsG/fXoqLixkx\n4h5uv304r7/+CocOHeDXXwuty64kjwznffu8+OILaNnSi44dS/D3r+0WiYgY1+uv+9ldPm+eX7WH\nM8ChQ6l89JEZPz8/tm37mb/9bRFeXl7cd9+djBz5gM26e/bs5h//+JySkhLuvXc4Dz88web59PQ0\n5s59g40b1/Pll58THt4Js/lTPvroc86ePUts7F3Exo6y245PP/2I8PBOjB79IPv27WH+/FdJSHiF\n9et/4pNPvqSoqIjly7/izJlc1q//iTVrvuPkyWyWL/+q2t+TC3lkOCcm+vHllwD18PKycMMNJXTq\nVELnzsV07lz6d8OGtd1KERFjOHDA/thgR8sv1/XX34CfX+l/COrUqcOkSRPw9vYmJyeHM2fO2Kzb\nvn0H6tSp43BfERGRAISGhpKfn8+xY0dp06Yt11xTh2uuqcONN4Y73Hbfvj2MHTsegA4dOnLs2FHq\n129Aq1bXMmPGUwwYEEVMzDD8/Pxo1epaHn/8cXr16k9MzLDLfQtc8shwnjPnV/74R1/Wry9kxw4v\ndu3yZv9+bz7/3Ne6TuvWJXTqVB7WERElNGliwWSqxYaLiNSCdu1K2Lu38k0d2rUruSKv5+tb+rv4\n1KmTJCV9yOLFH+Lv78+YMfdVWtfb2/nNJio+b7FYsFjAy6v8PxXOfqebTCYsFov1cUlJab2JiW+w\nf/8+Vq1awYoVX/Paa2+SmPgG6elH+OQTs3XZleSR4RwUBA8+CMOG/QZASQn88ouJnTu92bnTix07\nvNm1y4vly31Zvrx8u8aNS6xhXfb3dddZ8NIXzkTEg02dWmhzzbnMlCmFV/R1c3JyCAoKwt/fn/37\n93Hq1CnOnz9/Wfts1qwZ//73IYqKisjLy2Pfvr0O1+3QoSPbtm2hU6fO7Nq1k7Cwtpw8eYKffvqB\ne++NpX37Djz88GjrsieeeIRJk1rz8MOjL6uNVeGR4XwhLy9o08ZCmzZF3Hln6TKLBU6dMrFzpxc7\nd3pbz7DXrPFhzZrytyUgwGJzht25cwnt2pXg6+vgxURE3EzpdeVzzJtXPlp7ypTLG61dFTfc0I66\ndf15/PGH6dw5kjvvvIvExJeJiOhyyfsMDm5EdHQMjzwylmuvDaNjx3CHZ9/33Xc/CQnPM3nyY5SU\nlPDUU8/QuHEIu3al8K9/fYuvry/Dhv3Buiw2NhbwYtiwP1xy+6rKZKl4Tl+LMjLyqnV/ISGBl7TP\n7GzYtcv2DDs11YuSkvK+kWuusdChg+0Z9pUceHaptRiRp9TiKXWAajEiT6kDaqeW5cu/Ijo6Bm9v\nb8aOjeXVV+cTGtrksvdb3bWEhAQ6fO6qOHO+GEFB0KdPMX36FAOl3SsFBbBnj5e1W3znTm/27vUi\nJaX8f2NeXhauv7504FlEhAaeiYjUltOnTzNhwjh8ff0YPDimWoK5pimcq8DfH265pYRbbikfHHH+\nfOlIxrKw3rmztFv8wAFvzObyPu9WrUoHnkVElJ9pN22qgWciIlfKmDEPMmbMg7XdjMuicL5Evr4Q\nHl5CeHgJsbGl12UuHHhW9vc33/jyzTfl22rgmYiIOKNwrkaOBp6lpZnYscP2DNvVwLNOnUpo314D\nz0RErkYK5yvMZIKmTS00bVrM4MHF1uUVB57t3Fk68GzzZm82biz/SPz8LNx4YwndusH11/taB57V\nq1cblYiISE1RONcSVwPPdu0q/XvPHi9SUgBKZ8ipOPCsYrd4UFCtlSIiItVMVzkNpGzg2UMPnScx\n8Te+/baA//wnn5QUeOONc0yYUMittxZz4oQXZrMvzz9fh3vu8ad9+0Buvrke48bVYe5cP1au9Obk\nSRPG+JKciFyNHn30oUoTgLz99gI++ugDu+tv3bqFZ5/9LwBmzHiq0vOff57Eu+8udPh6qakHOXLk\nMADx8TP57bdfL7Xp3HPPcAoKCi55++qgM2eD8/WFiAho1qwIsB14VrFbfMcO+wPPKp5hR0Ro4JmI\n1Izo6CF8990q+vTpbl22du13zJ//tsttZ89+9aJf7/vvv6NDh460bn0tzz//14ve3mgUzm6o4sCz\nP/w+UU3ZwLMLZzxbu9aHtWttB56Fh5eHtQaeiciVMGjQYB5/fDzw3wDs27eXkJAQQkJCSU7exKJF\nb+Pr60tgYCB/+ctsm22HDRvE11//iy1bNvPGG4kEBzeiUaPG1ltAvvTSc2RkpHPu3DkefngCTZs2\n48svzXz//XcEBQXxP/8zk/ffTyI/P4+//vUvnD9/Hi8vL2bMmIXJZOKll56jefMWpKYepF279syY\nMctuDenpaTbbz5kzGx+fAP7yl1mcPp1JYWEh48c/yi23dK+07Lbbel7W++dx4Vx+w3Bo187/sm8Y\n7i4qDjyLji4feJaTU3nGs+RkbzZtsh14Zm/GMw08E/EMzz13DV99Vb2/7ocPL+K5535z+HxQUDDN\nm7dgx44dNGsWxnffrSI6OgaAvLw84uNfpHnzFrzwwv+wadMG/O1Msbhw4QJmzXqBG25ox5//PJnm\nzVuQl3eG7t1vY+jQOzh+/BizZs1g8eIPuPXWHvTvP4iOHTtZt1+06G3uuONOBg0azJo1q1m8+O+M\nH/8o+/fv5fnnEwgKCmbEiNvJy8sjMLDybF0Xbr9gwQKGD7+H3Nwc3nzzHfLy8tiwYR2HDqVWWna5\nqvRpJSQkkJKSgslkIi4ujoiIiErrJCYmsn37dpYuXcrZs2d55plnyM3N5fz580ycOJE+ffpcdmNd\nqckbhruLhg2hd+9ieve2HXi2d2/lGc927LCd8axt28rfx9bAMxGpqujoGJYvX8748RNZt+4H3npr\nMQANGzbk5ZdfpLi4mBMnjnPzzd3shvPJkye54YZ2AERGduW3334jMLA+e/fu5p//NGMyeXHmTK7D\n19+/fy+PPTYJgK5db+F//3cRAC1atKJRo8YANG4cwtmz+XbD+cLtly5dzKRJ11FQcJYXXphF374D\niIoaTGFhYaVll8tlOG/evJnDhw+TlJTEoUOHiIuLIykpyWad1NRUkpOTrbcBW7ZsGWFhYUyfPp20\ntDTGjRvHihUrLruxrtT0DcPdlb8/3HxzCTffbDvj2cGDlWc8O3jQdsazli0rz3jWrJlmPBMxsuee\n+83pWe6V0q/fACZMGEevXgNo1ao19evXB+Cvf32BV155neuuC+PVV192uH3FWz+W3QZi1aoVnDlz\nhjffXMSZM2f405/GOGlB+S0hz58vwmQq3d+FN8JwfIsJ2+29vLyoU6cOCxf+Lzt37uCbb75i3bof\niYuLt7vscrgM5w0bNhAVFQVA27Ztyc3NJT8/n4CAAOs6s2fPZtq0aSxYsACAoKAg9u/fD8CZM2cI\nqqHTrZq+Ybgn8fWFjh1L6NixhJEjyweeHT5cOvCs4iQqK1b4UvH/Wo0aVT7DDgvTwDORq52/fz3a\nt2/P++8vsXZpA5w9m0+TJk3Jy8tj69afadv2BrvbN24cwpEjv9Cq1bVs2/Yz4eGdycnJoVmz5nh5\nefH9999ZbzFpMpkoLi622f7GGzuydesWoqNj2L79Zzp0uPGi2n/h9p06dWL//n388su/GTLkdsLD\nO/HEE3+yu+xyuQznzMxMwsPDrY+Dg4PJyMiwhrPZbKZ79+60aNHCus6wYcMwm81ER0dz5swZFi50\nPPy9OtX0DcM9nZcXhIVZCAsrYvjw8uUXzni2c2flgWf16tmf8UxEri7Dhw/n6af/i/j4F6zL7rrr\nXh5/fDytWrVm1KixLF78dyZMeKLSthMmPMGzzz5D06bNrDev6N9/IDNmPMWePbsYNuwPhIaGsmTJ\nO3TpchOvv/6KTff4n/70GH/96wt89dUX+Pj4MnPmLIqKqt6LeuH2c+e+TH5+EQsXvsmXX5rx8vLi\ngQfG0KxZ80rLLpfLW0bOmjWLfv36Wc+e77//fhISEggLCyMnJ4dJkyaxZMkS0tLSmDlzJkuXLuXL\nL79ky5YtvPDCC+zbt4+4uDjMZrPThhQVFePjY/+em1X18cdw//2Vl3/0EcTGXtauxYXsbNi+HbZt\nK/+zd2/p2XcZPz/o1Aluuqn8T5cuaOCZiMgFXJ45h4aGkpmZaX2cnp5OSEgIABs3biQrK4tRo0ZR\nWFjIkSNHSEhI4LfffqN3794AdOjQgfT0dIqLix3e8BogO/vyv/A9aBAsXOjz+w3DvWnXrpgpUwoZ\nNKiIjIzL3n2tcZd7u3bqVPpnzO//abxw4NmuXd7s3u3N1q3l25hMpTOede5cYnOmHRxcOzVUlbt8\nJlWhWozHU+oA1eJqf464DOdevXoxf/58YmNj2b17N6GhodYu7ZiYGGJiSq8jHDt2jJkzZxIXF8fi\nxYtJSUlhyJAhHD9+nHr16jkN5uo0YkQRI0YU/f4m1u4ML1c7ewPPGjYMZP36s9awLusWdzTwrCys\nIyI08ExErh4uw7lr166Eh4cTGxuLyWQiPj4es9lMYGAg0dHRdrcZOXIkcXFxjB49mqKiIp577rnq\nbre4KVcDzypOomJv4FnZjGdlo8U18ExEPJHLa841pbq7PdSVYkwXU0vFGc/KJlE5csQ2ievVsz/j\nmZ/9b9VVm6v1MzE6T6nFU+oA1eJqf4543Axh4jmaNLHQpEkxUVHlX4/IzbW91ebOnV5s2eLN5s22\nM561b2/71a7wcM14JiLuQ+EsbqVBA+jVq5hevcpnPDt3rnzgWdmc4mWPy5hMpTOeRUS418AzEbk6\nKZzF7dWtC127ltC1a/nAs6Ii+zOemc22A89atLA9w+7cuYTmzTXwTERql8JZPJKPD9x4Ywk33ljC\nffeVDjyzWEoHnlWcPMXRjGcVb7XZuXMxbdpo4JmI1ByFs1w1TCa47joL111XecazimG9c6c333/v\nw/fflx8e/v62M5717QuhoVzxgWcicnVSOMtVryoDz3bt8uLnn20Hnvn6BtjcarNTpxLCw4upMO28\niMglUTiL2OFq4Flqah2Sk0vYs8f+wLOysC4L7kaNDPGNRRFxEwpnkSqqOPAsJKQOGRkFlQae7dpV\n+veyZd4sW1a+bdnAs9LALv1OtgaeiYgjCmeRy+Bq4FlZWNub8Sw4uMQmrDXwTETKKJxFqpmzgWdl\nYV0249kPP/jwww/l6/j7WwgPL5uitLRLvCZmPBMRY1E4i9SQsoFngwaVDzw7c6byjGdbt3qRnFx+\nHdvXt2zGs/IpSjXwTMSzKZxFalH9+tCzZzE9e9oOPNu3z/arXXv2lE6i8tFHpROomEwW2rSxWMNa\nA89EPIvCWcRg6taFm24q4aabbGc8S031snaHlw8887UZeNa8eUmFwC4N7RYtNPBMxN0onEXcgI8P\ndOhQQocOJdx7b/nAsyNHXM94VnHgWdkZdps2JdTQLdZF5BIonEXclMkE115r4dpri7jjjvLl6eml\nA8927CgPbWcDz3r1grAwL9q3L8HXt/LriEjNUziLeJjQUAsDBxYzcKDtwLPdu0u/0nXhwLPFiwHq\nUadOaWBHRBTTpUsxERElCmyRWqJwFrkK1K8PPXoU06NH+cCzX38tnfHsP/+px7p1hWzfXhreP/9c\n3t99YWB36VIa2D76zSFyRekQE7lK1alTOvBs8GC4667fAPjtt9LATknxJiWl/G9HgR0ZWX6GrcAW\nqT46nETE6pprIDKyhMjI8pHiZYFddmbtLLBLz64V2CKXS4eOiDhlL7DLusRTUhwHdt26Fjp2VGCL\nXAodJiJy0cq6xCt+F/vCwN6+3XVgd+lSQrt2CmyRC+mQEJFq4SqwHV3DLgvsyMjyM2wFtlzt9M9f\nRK4YZ4Ht7Bp23bqVr2ErsOVqon/qIlKjHAX2nj2217C3b/diyxYFtlyd9M9aRGpdnTrQtWsJXbva\nD+yyLnFXgT1gADRqhAJb3J7+CYuIITkL7Ipd4tu2XRjYAYSHl/z+HezSQWc33KAzbHEv+ucqIm7D\nXmCfO1d+hn3gQB02bSqxE9gWOnUq+b07XIEtxqd/miLi1urWhZtvLuHmm0sICalDRkaBTWCXfa2r\nbC7xMmU3/ygL7MjI0sDW3brECBTOIuJxKgZ2mYqBXXYd21lgl30PW4EttUHhLCJXBdvALr35R1lg\nl17Ddh7YF17DVmDLlaRwFpGrlqPA3r27rEvccWB36lQa1ApsuRIUziIiFdStC7fcUsIttzgO7O3b\nSydN2by5/FfohYEdGVnC9dcrsOXSKJxFRFxwFdgVZzlzFNhl17AV2FIVCmcRkUtgL7ALCkoDu7Q7\n3HlgR0aWd4krsOVCCmcRkWri7w/dupXQrZvzwN6ypXJgd+5c3iU+YAAEB6PAvoopnEVEriBXgV02\n21lysjebNlUM7ABrYJd1ibdtqzPsq4XCWUSkhjkL7JQUb/bvr8PmzSV2Arv0DLtil7gC2zMpnEVE\nDKBiYJfNdFZQALt2lXeJ2z/DtliDWoHtORTOIiIG5e8P3buX0L17+Rn22bOVr2Fv3uzNxo3lv87r\n1bO9hh0ZWRrYXl61VIhcNIWziIgbqVfPeWCXXcN2FtgVr2ErsI1J4Swi4uacBXbZ97AV2O5F4Swi\n4oEcBfauXeX3wnYU2BERxUREKLBrk8JZROQqUa8e3HprMbfeWoyjwE5J8WLTJm82bCiPh4CA0jPs\nssCOjCymTRuLAvsKUjiLiFzFXAV22TVsZ4EdGVl6i00FdvWpUjgnJCSQkpKCyWQiLi6OiIiISusk\nJiayfft2li5dCsA///lPFi1ahI+PD5MnT6Z///7V2nAREbky7AV2fn7lLvGNG+0Hdvk17GIaNaql\nItycy3DevHkzhw8fJikpiUOHDhEXF0dSUpLNOqmpqSQnJ+Pr6wtAdnY2b775Jp9//jkFBQXMnz9f\n4Swi4sYCAuC224q57baLC+zAQOjcuW6Fa9g6w64Kl+G8YcMGoqKiAGjbti25ubnk5+cTEBBgXWf2\n7NlMmzaNBQsWWLfp0aMHAQEBBAQE8MILL1yh5ouISG1xFdjbt3uze7cvGzZ4s3697Rl2xUFnkZHF\nhIUpsCtyGc6ZmZmEh4dbHwcHB5ORkWENZ7PZTPfu3WnRooV1nWPHjvHrr7/y2GOPcebMGZ588kl6\n9OhxBZovIiJGcmFgh4T48p//5LNrV+lgs7Iz7AsDOzCwcpf41RzYFz0gzGKxWH/OycnBbDazZMkS\n0tLSbNbLyclhwYIFnDhxgrFjx7JmzRpMJpPD/QYF+ePjU73zzYWEBFbr/mqTajEeT6kDVIsReUod\nAGFhgYSFwfDh5cvy82HbNvj557I/JjZs8GH9+vJ16teHrl3h5pvL/1x/PbUa2DX1ubgM59DQUDIz\nM62P09PTCQkJAWDjxo1kZWUxatQoCgsLOXLkCAkJCbRv356bbroJHx8fWrduTb169cjKyqKRk5EB\n2dkF1VBOuZCQQDIy8qp1n7VFtRiPp9QBqsWIPKUOcF5Lhw6lf0aNKn1c1iVedoadkuLF9997sXZt\n+YldYOCF38OuuTPs6v5cnAW4M9lPAAAUT0lEQVS9y3Du1asX8+fPJzY2lt27dxMaGmrt0o6JiSEm\nJgYo7cqeOXMmcXFxpKWlMWPGDB555BFyc3MpKCggKCiomsoRERFP5OwadkpK+de61q/3Zt062y7x\nssAu+1rXdde5d5e4y3Du2rUr4eHhxMbGYjKZiI+Px2w2ExgYSHR0tN1tmjRpwpAhQ7jvvvsAePbZ\nZ/Fy53dJRERqhbPA3r69/Bq2o8CueA3bnQLbZKl4EbkWVXcXztXSLeRuPKUWT6kDVIsReUodUHO1\n5OfDzp22g85SU72wWGy7xLt0se0Sv5jANlS3toiIiNEFBECPHsX06GF7hl0W2GVd4uvWefPTT+XR\nV7++/WvYTsYv1wiFs4iIeCRngV2xS9xZYEdGFhMRURrYNUnhLCIiVw17gZ2XV7lL3F5g//d/w0MP\n1Uw7Fc4iInJVCwyEnj2L6dnTcWDv2uVFbm71zsXhjMJZRETkAvYCu3RAWM28vpsMKhcREbl6KJxF\nREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEs\nIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApn\nERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4\ni4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzC\nWURExGAUziIiIgZTpXBOSEhg5MiRxMbGsmPHDrvrJCYmMmbMGJtlv/76K1FRUZjN5stvqYhUq2XL\nfOjXzx8fH+jXz59ly3xqu0ki8juXR+PmzZs5fPgwSUlJHDp0iLi4OJKSkmzWSU1NJTk5GV9fX5vl\nb731Fg0aNKjeFovIZVu2zIdHH61rfbx3r/fvj88xYkRR7TVMRIAqnDlv2LCBqKgoANq2bUtubi75\n+fk268yePZtp06bZLDt06BCpqan079+/+lorItXi9df97C6fN8/+chGpWS7PnDMzMwkPD7c+Dg4O\nJiMjg4CAAADMZjPdu3enRYsWNtu9/PLLzJo1iy+++KJKDQkK8sfHx/ti2u5SSEhgte6vNqkW43Hn\nOg4ccLTc263rAvf+XCrylDpAtVyKi77IZLFYrD/n5ORgNptZsmQJaWlp1uVffPEFkZGRtGrVqsr7\nzc4uuNimOBUSEkhGRl617rO2qBbjcfc62rXzZ+/eyv8ZbteumIyM6j0Wa5K7fy5lPKUOUC2u9ueI\ny3AODQ0lMzPT+jg9PZ2QkBAANm7cSFZWFqNGjaKwsJAjR46QkJBAeno6R48eZe3atZw6dQo/Pz+a\nNm1Kz549q6EcEblcU6cW2lxzLjNlSmEttEZELuQynHv16sX8+fOJjY1l9+7dhIaGWru0Y2JiiImJ\nAeDYsWPMnDmTuLg4m+3nz59PixYtFMwiBlI66Osc8+b5ceCAN+3aFTNlSqEGg4kYhMtw7tq1K+Hh\n4cTGxmIymYiPj8dsNhMYGEh0dHRNtFFEroARI4oYMaLo96469+3KFvFEJkvFi8i1qLqvSeg6hzF5\nSi2eUgeoFiPylDpAtbjanyOaIUxERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAK\nZxEREYNROIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAKZxEREYNR\nOIuIiBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiM\nwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRg\nFM4iIiIGo3AWERExGIWziIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIG\no3AWERExGIWziIiIwVQpnBMSEhg5ciSxsbHs2LHD7jqJiYmMGTPG+njOnDmMHDmSu+++m2+//bZ6\nWisiInIV8HG1wubNmzl8+DBJSUkcOnSIuLg4kpKSbNZJTU0lOTkZX19fADZu3MjBgwdJSkoiOzub\nESNGMHjw4CtTgYiIiIdxeea8YcMGoqKiAGjbti25ubnk5+fbrDN79mymTZtmfdytWzfmzZsHQP36\n9Tl37hzFxcXV2W4RERGP5fLMOTMzk/DwcOvj4OBgMjIyCAgIAMBsNtO9e3datGhhXcfb2xt/f38A\nPvvsM/r27Yu3t7fT1wkK8sfHx/k6FyskJLBa91ebVIvxeEodoFqMyFPqANVyKVyG84UsFov155yc\nHMxmM0uWLCEtLa3SuqtXr+azzz5j8eLFLvebnV1wsU1xKiQkkIyMvGrdZ21RLcbjKXWAajEiT6kD\nVIur/Tnisls7NDSUzMxM6+P09HRCQkKA0mvLWVlZjBo1ikmTJrF7924SEhIA+PHHH3n77bd55513\nCAz0nP81iYiIXGkuw7lXr16sXLkSgN27dxMaGmrt0o6JiWH58uV88sknLFiwgPDwcOLi4sjLy2PO\nnDksXLiQhg0bXtkKREREPIzLbu2uXbsSHh5ObGwsJpOJ+Ph4zGYzgYGBREdH291m+fLlZGdnM3Xq\nVOuyl19+mebNm1dfy0VERDyUyVLxInItqu5rErrOYUyeUoun1AGqxYg8pQ5QLa7254hmCBMRETEY\nhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjB\nKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQM\nRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJi\nMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERER\ng1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMpkrhnJCQwMiRI4mNjWXHjh12\n10lMTGTMmDEXtY2IiIhU5jKcN2/ezOHDh0lKSuKll17ipZdeqrROamoqycnJF7WNiIiI2OcynDds\n2EBUVBQAbdu2JTc3l/z8fJt1Zs+ezbRp0y5qGxEREbHPZThnZmYSFBRkfRwcHExGRob1sdlspnv3\n7rRo0aLK24iIiIhjPhe7gcVisf6ck5OD2WxmyZIlpKWlVWkbR4KC/PHx8b7Y5jgVEhJYrfurTarF\neDylDlAtRuQpdYBquRQuwzk0NJTMzEzr4/T0dEJCQgDYuHEjWVlZjBo1isLCQo4cOUJCQoLTbRzJ\nzi641BrsCgkJJCMjr1r3WVtUi/F4Sh2gWozIU+oA1eJqf4647Nbu1asXK1euBGD37t2EhoYSEBAA\nQExMDMuXL+eTTz5hwYIFhIeHExcX53QbERERcc7lmXPXrl0JDw8nNjYWk8lEfHw8ZrOZwMBAoqOj\nq7yNiIiIVI3JUpULwjWgurs91JViTJ5Si6fUAarFiDylDlAtrvbniGYIExERMRiFs4iIiMEonEVE\nRAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4Swi\nImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcR\nERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiL\niIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERJxYtsyHfv388fGBfv38WbbM54q/5pV/\nBRERETe1bJkPjz5a1/p4717v3x+fY8SIoiv2ujpzFhERceD11/3sLp83z/7y6qJwFhERceDAAfsx\n6Wh5dVE4i4iIONCuXclFLa8uCmcREREHpk4ttLt8yhT7y6uLwllERMSBESOKWLjwHB07FuPjAx07\nFrNw4ZUdDAYarS0iIuLUiBFFjBhRREhIIBkZBTXymjpzFhERMRiFs4iIiMFUqVs7ISGBlJQUTCYT\ncXFxREREWJ/75JNP+Oyzz/Dy8qJDhw7Ex8dTUFDAM888Q25uLufPn2fixIn06dPnihUhIiLiSVyG\n8+bNmzl8+DBJSUkcOnSIuLg4kpKSADh37hxff/01H374Ib6+vowdO5Zt27axZ88ewsLCmD59Omlp\naYwbN44VK1Zc8WJEREQ8gctu7Q0bNhAVFQVA27Ztyc3NJT8/H4C6devy3nvv4evry7lz58jPzyck\nJISgoCBycnIAOHPmDEFBQVewBBEREc/iMpwzMzNtwjU4OJiMjAybdf7+978THR1NTEwMrVq1Ytiw\nYZw4cYLo6GhGjx7NM888U/0tFxER8VAX/VUqi8VSadmECRMYO3YsjzzyCDfffDPHjh2jefPmvPvu\nu+zbt4+4uDjMZrPT/QYF+ePj432xzXEqJCSwWvdXm1SL8XhKHaBajMhT6gDVcilchnNoaCiZmZnW\nx+np6YSEhACQk5PDwYMH6datG3Xq1KFv375s3bqVY8eO0bt3bwA6dOhAeno6xcXFeHs7Dt/s7Or9\n7ljp99HyqnWftUW1GI+n1AGqxYg8pQ5QLa7254jLbu1evXqxcuVKAHbv3k1oaCgBAQEAFBUVMWPG\nDM6ePQvAzp07CQsL49prryUlJQWA48ePU69ePafBLCIiIuVMFnv91BeYO3cuW7ZswWQyER8fz549\newgMDCQ6Ohqz2cyHH36Ij48P7du35/nnn6egoIC4uDhOnz5NUVERU6ZMoUePHjVRj4iIiNurUjiL\niIhIzdEMYSIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMBc9Q5hROLtT1vr163n11Vfx9vam\nb9++TJw40eU2tcVZmzZu3Mirr76Kl5cXYWFhvPTSSyQnJzNlyhRuuOEGANq1a8esWbNqq/k2nNUy\ncOBAmjZtav2++9y5c2nSpIkhPxNwXEtaWhp//vOfresdPXqU6dOnc/78eebNm0fr1q0B6NmzJ48/\n/nittP1CBw4c4IknnuDBBx9k9OjRNs+507ECzmtxp+PFWR3udqw4qsUdj5U5c+bw888/U1RUxKOP\nPsrgwYOtz9X4sWJxQ5s2bbJMmDDBYrFYLKmpqZb77rvP5vmhQ4daTpw4YSkuLrbcf//9loMHD7rc\npja4alN0dLTl5MmTFovFYnnyyScta9eutWzcuNHy5JNP1nhbXXFVy4ABAyz5+fkXtU1tqWq7zp8/\nb4mNjbXk5+dbPv/8c8vs2bNrsplVcvbsWcvo0aMtzz77rGXp0qWVnneXY8VicV2Luxwvrupwp2PF\nVS1l3OFY2bBhg+VPf/qTxWKxWLKysiz9+vWzeb6mjxW37NZ2dqeso0eP0qBBA5o1a4aXlxf9+vVj\nw4YNTrepLa7aZDabadq0KVB6w5Hs7OxaaWdVXMr7a8TPBKrermXLljFkyBDq1atX002sMj8/P955\n5x1CQ0MrPedOxwo4rwXc53hxVYc97vqZlHGHY6Vbt27MmzcPgPr163Pu3DmKi4uB2jlW3DKcnd0p\nKyMjg+Dg4ErPVeXuWjXNVZvKpklNT09n3bp19OvXD4DU1FQee+wx7r//ftatW1ezjXagKu9vfHw8\n999/P3PnzsVisRjyM4Gq1QLw6aefcs8991gfb968mfHjxzNu3Dj27NlTI211xcfHhzp16th9zp2O\nFXBeC7jP8eKqDnCfY6UqtYB7HCve3t74+/sD8Nlnn9G3b1/rpYXaOFbc9ppzRZZLmOTsUra50uy1\n6fTp0zz22GPEx8cTFBTEddddx6RJkxg6dChHjx5l7NixfPvtt/j5+dVCix27sJbJkyfTp08fGjRo\nwMSJE63ztTvbxijstWvbtm20adPGGghdunQhODiY/v37s23bNp555hm++uqrmm7qFWHUz8Uedz1e\nKnLnY8UedztWVq9ezWeffcbixYsvetvq/FzcMpyd3SnrwufS0tIIDQ3F19fX4Ta1xVkdAPn5+Tzy\nyCNMnTrVepevJk2acPvttwPQunVrGjduTFpaGq1atarZxl/AVS1//OMfrT/37duXAwcOuNymtlSl\nXWvXrrWZL75t27a0bdsWgJtuuomsrCyXd2Krbe50rFSFOx0vzrjTsVIV7nSs/Pjjj7z99tssWrSI\nwMDyO0bVxrHilt3azu6U1bJlS/Lz8zl27BhFRUWsWbOGXr16Od2mtrhq0+zZsxk3bhx9+/a1Lvvn\nP//Ju+++C5R2tZw+fZomTZrUbMPtcFZLXl4e48ePp7CwEIDk5GRuuOEGQ34m4PpzgdI7sHXo0MH6\n+J133uH//u//gNLRq8HBwYb4ZeOMOx0rVeFOx4sj7nasVIW7HCt5eXnMmTOHhQsX0rBhQ5vnauNY\ncdsbXzi7U1ZycjJz584FYPDgwYwfP97uNhX/wdQWR3X07t2bbt26cdNNN1nXveOOOxg2bBh//vOf\nOXPmDOfPn2fSpEnWa2u1zdln8t577/HFF19wzTXX0LFjR2bNmoXJZDLkZwLOawEYPnw4S5YsoXHj\nxgCcOnWKp59+GovFQlFRkWG+6rJr1y5efvlljh8/jo+PD02aNGHgwIG0bNnS7Y4VZ7W40/Hi6jNx\np2PFVS3gPsdKUlIS8+fPJywszLrs1ltvpX379rVyrLhtOIuIiHgqt+zWFhER8WQKZxEREYNROIuI\niBiMwllERMRgFM4iIiIGo3AWERExGIWziIiIwSicRUREDOb/ASYXO0JX2+JcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "VdCg8-O5SFh7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "So the reversed-order GRU strongly underperforms even the common-sense baseline, indicating that the in our case chronological processing is very \n", + "important to the success of our approach. This makes perfect sense: the underlying GRU layer will typically be better at remembering the \n", + "recent past than the distant past, and naturally the more recent weather data points are more predictive than older data points in our \n", + "problem (that's precisely what makes the common-sense baseline a fairly strong baseline). Thus the chronological version of the layer is \n", + "bound to outperform the reversed-order version. Importantly, this is generally not true for many other problems, including natural \n", + "language: intuitively, the importance of a word in understanding a sentence is not usually dependent on its position in the sentence. Let's \n", + "try the same trick on the LSTM IMDB example from the previous section:" + ] + }, + { + "metadata": { + "id": "v_gAlv8aSFh8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 187 + }, + "outputId": "7c2c067c-f1d1-4537-8ec9-51873f729b5f" + }, + "cell_type": "code", + "source": [ + "from keras.datasets import imdb\n", + "from keras.preprocessing import sequence\n", + "from keras import layers\n", + "from keras.models import Sequential\n", + "\n", + "# Number of words to consider as features\n", + "max_features = 10000\n", + "# Cut texts after this number of words (among top max_features most common words)\n", + "maxlen = 500\n", + "\n", + "# Load data\n", + "(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)\n", + "\n", + "# Reverse sequences\n", + "x_train = [x[::-1] for x in x_train]\n", + "x_test = [x[::-1] for x in x_test]\n", + "\n", + "# Pad sequences\n", + "x_train = sequence.pad_sequences(x_train, maxlen=maxlen)\n", + "x_test = sequence.pad_sequences(x_test, maxlen=maxlen)\n", + "\n", + "model = Sequential()\n", + "model.add(layers.Embedding(max_features, 128))\n", + "model.add(layers.LSTM(32))\n", + "model.add(layers.Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(optimizer='rmsprop',\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])\n", + "history = model.fit(x_train, y_train,\n", + " epochs=3,\n", + " batch_size=128,\n", + " validation_split=0.2)" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz\n", + "17465344/17464789 [==============================] - 3s 0us/step\n", + "17473536/17464789 [==============================] - 3s 0us/step\n", + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/3\n", + "20000/20000 [==============================] - 195s 10ms/step - loss: 0.5122 - acc: 0.7611 - val_loss: 0.3559 - val_acc: 0.8622\n", + "Epoch 2/3\n", + "20000/20000 [==============================] - 193s 10ms/step - loss: 0.3183 - acc: 0.8797 - val_loss: 0.3754 - val_acc: 0.8490\n", + "Epoch 3/3\n", + "20000/20000 [==============================] - 194s 10ms/step - loss: 0.2635 - acc: 0.9028 - val_loss: 0.3208 - val_acc: 0.8704\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "uDcLbaO_SFiF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "We get near-identical performance as the chronological-order LSTM we tried in the previous section.\n", + "\n", + "Thus, remarkably, on such a text dataset, reversed-order processing works just as well as chronological processing, confirming our \n", + "hypothesis that, albeit word order *does* matter in understanding language, *which* order you use isn't crucial. Importantly, a RNN trained \n", + "on reversed sequences will learn different representations than one trained on the original sequences, in much the same way that you would \n", + "have quite different mental models if time flowed backwards in the real world -- if you lived a life where you died on your first day and \n", + "you were born on your last day. In machine learning, representations that are *different* yet *useful* are always worth exploiting, and the \n", + "more they differ the better: they offer a new angle from which to look at your data, capturing aspects of the data that were missed by other \n", + "approaches, and thus they can allow to boost performance on a task. This is the intuition behind \"ensembling\", a concept that we will \n", + "introduce in the next chapter.\n", + "\n", + "A bidirectional RNN exploits this idea to improve upon the performance of chronological-order RNNs: it looks at its inputs sequence both \n", + "ways, obtaining potentially richer representations and capturing patterns that may have been missed by the chronological-order version alone." + ] + }, + { + "metadata": { + "id": "cdyGW3CoSFiG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![bidirectional rnn](https://s3.amazonaws.com/book.keras.io/img/ch6/bidirectional_rnn.png)" + ] + }, + { + "metadata": { + "id": "LBB882rxSFiH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To instantiate a bidirectional RNN in Keras, one would use the `Bidirectional` layer, which takes as first argument a recurrent layer \n", + "instance. `Bidirectional` will create a second, separate instance of this recurrent layer, and will use one instance for processing the \n", + "input sequences in chronological order and the other instance for processing the input sequences in reversed order. Let's try it on the \n", + "IMDB sentiment analysis task:" + ] + }, + { + "metadata": { + "id": "KHwTL2jMSFiJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import backend as K\n", + "K.clear_session()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "AOQzmcKgSFiZ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 136 + }, + "outputId": "9acf17a1-4fd0-4841-c87f-b3b691745355" + }, + "cell_type": "code", + "source": [ + "model = Sequential()\n", + "model.add(layers.Embedding(max_features, 32))\n", + "model.add(layers.Bidirectional(layers.LSTM(32)))\n", + "model.add(layers.Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])\n", + "history = model.fit(x_train, y_train, epochs=3, batch_size=128, validation_split=0.2)" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/3\n", + "20000/20000 [==============================] - 375s 19ms/step - loss: 0.5606 - acc: 0.7142 - val_loss: 0.3860 - val_acc: 0.8460\n", + "Epoch 2/3\n", + "20000/20000 [==============================] - 374s 19ms/step - loss: 0.3358 - acc: 0.8689 - val_loss: 0.3280 - val_acc: 0.8710\n", + "Epoch 3/3\n", + "20000/20000 [==============================] - 372s 19ms/step - loss: 0.2668 - acc: 0.9007 - val_loss: 0.3547 - val_acc: 0.8810\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "mlR8JZ5LSFih", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "It performs slightly better than the regular LSTM we tried in the previous section, going above 88% validation accuracy. It also seems to \n", + "overfit faster, which is unsurprising since a bidirectional layer has twice more parameters than a chronological LSTM. With some \n", + "regularization, the bidirectional approach would likely be a strong performer on this task.\n", + "\n", + "Now let's try the same approach on the weather prediction task:" + ] + }, + { + "metadata": { + "id": "xzPrZNgmSFil", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 119 + }, + "outputId": "bbf8ad15-f1f9-40c2-be8d-7bea3b15b88a" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.optimizers import RMSprop\n", + "\n", + "model = Sequential()\n", + "model.add(layers.Bidirectional(\n", + " layers.GRU(32), input_shape=(None, float_data.shape[-1])))\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen,\n", + " steps_per_epoch=500,\n", + " epochs=3,\n", + " validation_data=val_gen,\n", + " validation_steps=val_steps)" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/3\n", + "500/500 [==============================] - 569s 1s/step - loss: 0.2953 - val_loss: 0.2753\n", + "Epoch 2/3\n", + "500/500 [==============================] - 569s 1s/step - loss: 0.2750 - val_loss: 0.2690\n", + "Epoch 3/3\n", + "500/500 [==============================] - 566s 1s/step - loss: 0.2657 - val_loss: 0.2703\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "4ffp5wo3SFiv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "It performs about as well as the regular GRU layer. It's easy to understand why: all of the predictive capacity must be coming from the \n", + "chronological half of the network, since the anti-chronological half is known to be severely underperforming on this task (again, because \n", + "the recent past matters much more than the distant past in this case)." + ] + }, + { + "metadata": { + "id": "DJnaiikcSFiw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "## Going even further\n", + "\n", + "At this stage, there are still many other things you could try in order to improve performance on our weather forecasting problem:\n", + "\n", + "* Adjust the number of units in each recurrent layer in the stacked setup. Our current choices are largely arbitrary and thus likely \n", + "suboptimal.\n", + "* Adjust the learning rate used by our `RMSprop` optimizer.\n", + "* Try using `LSTM` layers instead of `GRU` layers.\n", + "* Try using a bigger densely-connected regressor on top of the recurrent layers, i.e. a bigger `Dense` layer or even a stack of `Dense` \n", + "layers.\n", + "* Don't forget to eventually run the best performing models (in terms of validation MAE) on the test set! Least you start developing \n", + "architectures that are overfitting to the validation set. \n", + "\n", + "As usual: deep learning is more an art than a science, and while we can provide guidelines as to what is likely to work or not work on a \n", + "given problem, ultimately every problem is unique and you will have to try and evaluate different strategies empirically. There is \n", + "currently no theory that will tell you in advance precisely what you should do to optimally solve a problem. You must try and iterate.\n", + "\n", + "\n", + "## Wrapping up\n", + "\n", + "Here's what you should take away from this section:\n", + "\n", + "* As you first learned in Chapter 4, when approaching a new problem, \n", + "it is good to first establish common sense baselines for your metric of choice. If you don't have a \n", + "baseline to beat, you can't tell if you are making any real progress.\n", + "* Try simple models before expensive ones, to justify the additional expense. Sometimes a simple model will turn out to be your best option.\n", + "* On data where temporal ordering matters, recurrent networks are a great fit and easily outperform models that first flatten the temporal \n", + "data.\n", + "* To use dropout with recurrent networks, one should use a time-constant dropout mask and recurrent dropout mask. This is built into Keras \n", + "recurrent layers, so all you have to do is use the `dropout` and `recurrent_dropout` arguments of recurrent layers.\n", + "* Stacked RNNs provide more representational power than a single RNN layer. They are also much more expensive, and thus not always worth it. \n", + "While they offer clear gains on complex problems (e.g. machine translation), they might not always be relevant to smaller, simpler problems.\n", + "* Bidirectional RNNs, which look at a sequence both ways, are very useful on natural language processing problems. However, they will not \n", + "be strong performers on sequence data where the recent past is much more informative than the beginning of the sequence.\n", + "\n", + "Note there are two important concepts that we will not cover in detail here: recurrent \"attention\", and sequence masking. Both tend to be \n", + "especially relevant for natural language processing, and are not particularly applicable to our temperature forecasting problem. We will \n", + "leave them for future study outside of this book." + ] + } + ] +} \ No newline at end of file diff --git a/6.4-sequence-processing-with-convnets.ipynb b/6.4-sequence-processing-with-convnets.ipynb new file mode 100644 index 0000000..34ae298 --- /dev/null +++ b/6.4-sequence-processing-with-convnets.ipynb @@ -0,0 +1,880 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "6.4-sequence-processing-with-convnets.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "cells": [ + { + "metadata": { + "id": "VnSol7zbnT44", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "9a8ef18a-4ab0-4b5c-ab8a-8022308c4b46" + }, + "cell_type": "code", + "source": [ + "import keras\n", + "keras.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.4'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "8eG-ORMjnT5G", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Sequence processing with convnets\n", + "\n", + "This notebook contains the code samples found in Chapter 6, Section 4 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "\n", + "## Implementing a 1D convnet\n", + "\n", + "In Keras, you would use a 1D convnet via the `Conv1D` layer, which has a very similar interface to `Conv2D`. It takes as input 3D tensors \n", + "with shape `(samples, time, features)` and also returns similarly-shaped 3D tensors. The convolution window is a 1D window on the temporal \n", + "axis, axis 1 in the input tensor.\n", + "\n", + "Let's build a simple 2-layer 1D convnet and apply it to the IMDB sentiment classification task that you are already familiar with.\n", + "\n", + "As a reminder, this is the code for obtaining and preprocessing the data:" + ] + }, + { + "metadata": { + "id": "omfZUEfRnT5H", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 153 + }, + "outputId": "343f587c-1974-4717-e448-2f201bc66f67" + }, + "cell_type": "code", + "source": [ + "from keras.datasets import imdb\n", + "from keras.preprocessing import sequence\n", + "\n", + "max_features = 10000 # number of words to consider as features\n", + "max_len = 500 # cut texts after this number of words (among top max_features most common words)\n", + "\n", + "print('Loading data...')\n", + "(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)\n", + "print(len(x_train), 'train sequences')\n", + "print(len(x_test), 'test sequences')\n", + "\n", + "print('Pad sequences (samples x time)')\n", + "x_train = sequence.pad_sequences(x_train, maxlen=max_len)\n", + "x_test = sequence.pad_sequences(x_test, maxlen=max_len)\n", + "print('x_train shape:', x_train.shape)\n", + "print('x_test shape:', x_test.shape)" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Loading data...\n", + "Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz\n", + "17465344/17464789 [==============================] - 2s 0us/step\n", + "25000 train sequences\n", + "25000 test sequences\n", + "Pad sequences (samples x time)\n", + "x_train shape: (25000, 500)\n", + "x_test shape: (25000, 500)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ooJVv0PGnT5M", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "1D convnets are structured in the same way as their 2D counter-parts that you have used in Chapter 5: they consist of a stack of `Conv1D` \n", + "and `MaxPooling1D` layers, eventually ending in either a global pooling layer or a `Flatten` layer, turning the 3D outputs into 2D outputs, \n", + "allowing to add one or more `Dense` layers to the model, for classification or regression.\n", + "\n", + "One difference, though, is the fact that we can afford to use larger convolution windows with 1D convnets. Indeed, with a 2D convolution \n", + "layer, a 3x3 convolution window contains 3*3 = 9 feature vectors, but with a 1D convolution layer, a convolution window of size 3 would \n", + "only contain 3 feature vectors. We can thus easily afford 1D convolution windows of size 7 or 9.\n", + "\n", + "This is our example 1D convnet for the IMDB dataset:" + ] + }, + { + "metadata": { + "id": "K3reayt3nT5N", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 697 + }, + "outputId": "2954fc20-c829-4a29-db39-96568d3585e7" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.optimizers import RMSprop\n", + "\n", + "model = Sequential()\n", + "model.add(layers.Embedding(max_features, 128, input_length=max_len))\n", + "model.add(layers.Conv1D(32, 7, activation='relu'))\n", + "model.add(layers.MaxPooling1D(5))\n", + "model.add(layers.Conv1D(32, 7, activation='relu'))\n", + "model.add(layers.GlobalMaxPooling1D())\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.summary()\n", + "\n", + "model.compile(optimizer=RMSprop(lr=1e-4),\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])\n", + "history = model.fit(x_train, y_train,\n", + " epochs=10,\n", + " batch_size=128,\n", + " validation_split=0.2)" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_1 (Embedding) (None, 500, 128) 1280000 \n", + "_________________________________________________________________\n", + "conv1d_1 (Conv1D) (None, 494, 32) 28704 \n", + "_________________________________________________________________\n", + "max_pooling1d_1 (MaxPooling1 (None, 98, 32) 0 \n", + "_________________________________________________________________\n", + "conv1d_2 (Conv1D) (None, 92, 32) 7200 \n", + "_________________________________________________________________\n", + "global_max_pooling1d_1 (Glob (None, 32) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 1,315,937\n", + "Trainable params: 1,315,937\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/10\n", + "20000/20000 [==============================] - 82s 4ms/step - loss: 0.8337 - acc: 0.5091 - val_loss: 0.6874 - val_acc: 0.5652\n", + "Epoch 2/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.6700 - acc: 0.6389 - val_loss: 0.6641 - val_acc: 0.6582\n", + "Epoch 3/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.6235 - acc: 0.7539 - val_loss: 0.6079 - val_acc: 0.7430\n", + "Epoch 4/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.5256 - acc: 0.8084 - val_loss: 0.4843 - val_acc: 0.8058\n", + "Epoch 5/10\n", + "20000/20000 [==============================] - 81s 4ms/step - loss: 0.4123 - acc: 0.8482 - val_loss: 0.4298 - val_acc: 0.8318\n", + "Epoch 6/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.3500 - acc: 0.8677 - val_loss: 0.4162 - val_acc: 0.8348\n", + "Epoch 7/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.3088 - acc: 0.8658 - val_loss: 0.4482 - val_acc: 0.8186\n", + "Epoch 8/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.2818 - acc: 0.8529 - val_loss: 0.4297 - val_acc: 0.8030\n", + "Epoch 9/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.2557 - acc: 0.8319 - val_loss: 0.4380 - val_acc: 0.7892\n", + "Epoch 10/10\n", + "20000/20000 [==============================] - 80s 4ms/step - loss: 0.2320 - acc: 0.8084 - val_loss: 0.4879 - val_acc: 0.7658\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-CQd1s57nT5T", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here are our training and validation results: validation accuracy is somewhat lower than that of the LSTM we used two sections ago, but \n", + "runtime is faster, both on CPU and GPU (albeit the exact speedup will vary greatly depending on your exact configuration). At that point, \n", + "we could re-train this model for the right number of epochs (8), and run it on the test set. This is a convincing demonstration that a 1D \n", + "convnet can offer a fast, cheap alternative to a recurrent network on a word-level sentiment classification task." + ] + }, + { + "metadata": { + "id": "2Z1MzoYVnT5U", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + }, + "outputId": "cdcbcaa0-6cba-4f00-d09d-f7268a7f2505" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VGXexvHv9JACJpDQFhSRImAo\nooihCYkg6KuoLCArIChIWUBBwCgbZaUtRcCKrIoCapRNXCvFAooiQUBUlEVREKUlBCLp094/RgZi\nGoFkMpncn+viMnNmzpnn/JzknvOcc57H4Ha73YiIiIjfMFZ2A0RERKQghbOIiIifUTiLiIj4GYWz\niIiIn1E4i4iI+BmFs4iIiJ9ROEuVkZCQQJ8+fejTpw+tW7fmuuuu8z7OzMws07b69OlDWlpaia9Z\nuHAhr7766oU0udwNHz6cpKSkctlWixYtOHLkCBs2bODBBx+8oPd7/fXXvT+fS21FpGTmym6AyLl6\n9NFHvT/37NmTf/3rX3Ts2PG8trV27dpSXzN58uTz2nZVExcXR1xc3Hmvn5qayr///W/++te/AudW\nWxEpmY6cJWDceeedPP7449xwww3s2LGDtLQ0Ro4cSZ8+fejZsycvvvii97Wnjxq3bt3KwIEDWbhw\nITfccAM9e/YkJSUFgOnTp/P0008Dni8Dr732GrfffjtdunRh7ty53m09++yzdO7cmdtuu43Vq1fT\ns2fPItv3xhtvcMMNN3D99dczZMgQfvvtNwCSkpKYMGEC8fHx9O7dm759+/LDDz8AcPDgQQYMGEBs\nbCyTJ0/G6XQW2u6mTZu46aabCiy7+eab+eSTT0qswWlJSUkMHz681Pf78MMPuemmm+jduze33nor\n33//PQCDBg3i0KFD9OnTh/z8fG9tAV5++WX69u1Lnz59GDNmDOnp6d7aLl26lLvuuovrrruOu+66\ni5ycnEJty8nJYdKkSfTu3ZuePXsyb94873MHDx5kyJAhxMXFcdttt7F79+4Sl/fs2ZMvv/zSu/7p\nx7/++itdunRh9uzZ/O1vfytxXwGee+45evXqRe/evZkzZw5Op5OYmBi++eYb72tWrVrF2LFjC+2P\nyLlSOEtA+fbbb3n33Xfp0KEDzzzzDH/5y19Yu3YtL730EgsXLuTw4cOF1vnuu+9o27Yt77//Pnfc\ncQfPPPNMkdvetm0biYmJ/Oc//2HVqlUcOXKEH374gX//+9/897//5ZVXXin2qPH48ePMnDmTF198\nkfXr19O4cWNv8AN88skn3HHHHaxbt45OnTrx0ksvAbBgwQI6d+7MBx98wLBhw9ixY0ehbXfu3Jkj\nR45w8OBBwBNOR44c4dprrz3nGpxW3Ps5HA6mT5/OP//5T9atW1cgKGfPnk39+vVZu3YtVqvVu62v\nvvqK559/npUrV7J27VoaNGjAwoULvc+vXbuWxx9/nA0bNpCens6GDRsKtefVV18lKyuLtWvXkpyc\nTFJSkjdgZ8yYQb9+/diwYQNjxoxh6tSpJS4vycmTJ7n88stZtWpVifv65ZdfsmbNGv773//y9ttv\ns337dtavX88NN9zAO++8493ehg0b6NevX6nvK1IchbMElO7du2M0ej7WDz/8MDNmzACgUaNGREZG\n8uuvvxZaJyQkhNjYWABat27NoUOHitz2TTfdhMlkom7dutSuXZvDhw+zbds2rr76aqKiorDZbNx2\n221Frlu7dm22b99OvXr1AOjYsaM3TAGaNm1KmzZtAGjVqpU3QL/88kv69u0LQHR0NJdeemmhbVut\nVq677jo++ugjAD744ANiY2Mxm83nXIPTins/s9nM559/Trt27Ypsf1E2btxI7969qV27NgADBgzg\ns88+8z7fvXt3LrroIsxmM82bNy/yS8OIESN4+umnMRgM1KpVi2bNmvHrr7+Sl5fH1q1bufHGGwHo\n1asXr7/+erHLS2O3271d+yXt6yeffEL37t0JDQ3FarWycuVKrr/+evr168d7772Hy+Xi5MmTfPvt\nt1x33XWlvq9IcXTOWQJKrVq1vD9/88033iNFo9FIamoqLper0DphYWHen41GY5GvAQgNDfX+bDKZ\ncDqd/P777wXes27dukWu63Q6Wbp0KR999BFOp5OsrCyaNGlSZBtObxsgIyOjwPvWrFmzyO337t2b\nl19+mWHDhvHBBx94u1TPtQanlfR+K1euJDk5mfz8fPLz8zEYDMVuByA9PZ2oqKgC2zp+/Hip+3y2\n/fv3M3fuXH766SeMRiNHjhzh1ltv5eTJk7hcLu82DAYDISEhHD16tMjlpTGZTAX2u7h9PXHiRIF9\nqlGjBgDt27fHYrGQkpLCkSNH6NKlC8HBwaW+r0hxdOQsAeuBBx6gd+/erFu3jrVr1xIeHl7u7xEa\nGkp2drb38bFjx4p83XvvvcdHH33EqlWrWLduHRMmTDin7desWbPAleinz9n+WdeuXdmzZw/79+9n\n//79XHPNNUDZa1Dc++3YsYPly5fzzDPPsG7dOh577LFS216nTh1OnjzpfXzy5Enq1KlT6npnmzlz\nJs2aNeP9999n7dq1tGzZEoDw8HAMBgMnTpwAwO12c+DAgWKXu93uQl+8MjIyinzPkvY1PDzcu23w\nhPXpx/369WPt2rWsXbvW2/sgcr4UzhKwjh8/Tps2bTAYDCQnJ5OTk1MgSMtDdHQ0W7duJT09nfz8\nfN58881i29KwYUMiIiI4ceIE77//PllZWaVuv127dt5zsTt27OCXX34p8nVWq5UuXbowf/58evXq\nhclk8r5vWWpQ3Pulp6dTu3ZtGjRoQE5ODsnJyWRnZ+N2uzGbzWRnZ+NwOApsq0ePHmzYsMEbXq+9\n9hrdu3cvdZ/Pdvz4cS6//HJMJhOfffYZBw4cIDs7G6vVSkxMDMnJyQB8+umnjBo1qtjlBoOByMhI\n9uzZA3i+LOXl5RX5niXta8+ePfnoo4/IyMjA4XAwbtw4Nm/eDMCNN97IBx98wM6dO8u8nyJ/pnCW\ngDVx4kTGjRvHTTfdRHZ2NgMHDmTGjBnFBtz5iI6Opn///vTv35+hQ4cWe57xxhtv5OTJk8TFxTF5\n8mQmTZrEkSNHClz1XZQHHniAjz/+mNjYWFavXs21115b7Gt79+7NBx98wA033OBdVtYaFPd+Xbt2\nJSoqitjYWEaMGMGwYcMICwtjwoQJtGjRglq1ahETE1PgfH10dDSjRo1iyJAh9OnTh1OnTnHfffeV\nuL9/NmbMGObNm8eNN95ISkoK48eP54knnmD79u3MmjWLjz/+mF69erF48WIWLFgAUOzysWPHsmLF\nCm688Ub27dvHZZddVuR7lrSv7dq1Y+TIkdxyyy3069ePVq1aec9vt2jRgosuuoguXboQFBRUpv0U\n+TOD5nMWuTBut9t7TnLjxo0sXry42CNoCWz33HMPf/vb33TkLBdMR84iFyA9PZ1rrrmG3377Dbfb\nzfvvv++9yleql+3bt/Pbb7/RtWvXym6KBABdrS1yASIiIpg0aRLDhw/HYDBw6aWXntN9tRJYHnzw\nQXbs2MH8+fO9t/KJXAh1a4uIiPgZfcUTERHxMwpnERERP+M355xTU0+V6/bCw4M5caJ872mVwlRn\n31CdfUe19g3VGSIjw4p9LmCPnM1mU2U3oVpQnX1DdfYd1do3VOeSBWw4i4iIVFUKZxERET+jcBYR\nEfEzCmcRERE/o3AWERHxMwpnERERP6NwFhER8TN+MwiJP3riicf53/++Jz39OLm5uTRo0JCaNWsx\ne/b8Utd97723CQkJpXv3ouf3XbJkIQMGDKJBg4bl3WwREani/Gbii/IYISw52czixVb27jXSqpWB\n8eNz6N/fccHbfe+9t/npp32MHz/pgrcVaCIjw8p9dDcprKrV+ezfxebNXUyalF8uv4u+UNVqXVWp\nziWPEBYwR87JyWZGj67hffzNN/zxuHwC+mw7dnzJa6+tIjs7m/Hj72Pnzu1s3PghLpeLzp1jGDFi\nFM8/v4yLLrqIJk2akpT0OgaDkQMHfqZHj16MGDGK8eNHcf/9U/n44w/Jysrkl18O8NtvvzJhwmQ6\nd45h1aoVfPDBeho0aIjD4WDQoCF06NDR24Zt27by738/i8ViISwsjJkz52KxWFi8eAHfffctJpOJ\nBx54kEsvvazIZSIV5c+/i99/b6qw30WRQBUw55wXL7YWuXzJkqKXX6h9+35k0aInadnycgCefvrf\nPPfcCt5//x2ysjILvPa773bz0EOP8OyzL/Kf/yQW2taxY0dZsGApEydO4a23kvj99wySkt5g2bIX\nmDJlOl99taPQOqdOnSIh4TGefPI5goND2Lp1C9u2beXYsaM899wKRo8ex4cfbihymUhF8vXvYnlJ\nTjbTvXswZjN07x5McnLAHLtIFRQwn769e4v+nlHc8gt12WXNsFo9f2yCgoIYP34UJpOJkydP8vvv\nvxd4bYsWLQkKCip2W9HR7QCIiooiMzOTX389yKWXNsVmC8JmC+Lyy1sXWueiiy5i3rzHcDqdHDr0\nG1deeRUnTqRzxRVtAWjXrgPt2nVg9eqXCi0TqUi+/l0sDzraF3/jv78tZdS8uatMyy+UxWIB4MiR\nwyQmrmbhwid48snnqFevXqHXmkwlD/B+9vNutxu3G4zGM/9rDIbC68yZ80/uu28qTz75HF26dAPA\naDThdhfc36KWiVQkX/8uloeqerQvgStgwnnSpPwil0+cWPTy8nLy5EnCw8MJDg7mf//bw5EjR7Db\n7Re0zfr16/PTT/twOBycOHGCPXu+L/SarKxM6tatx6lTp9ixYzt2u53LL2/Fjh1fArB37x4WLpxX\n5DKRilRZv4sXoioe7UtgC5hubU/XUw5Llpy5WnvcuIrvkmrWrDk1agQzZswIrriiHTfffCsLF84j\nOrrteW8zIqI2cXF9uOeeoVx8cRNatWpd6Oj71lsHMGbMSBo1asyQIUN54YXneOaZF7j44iaMHXs3\nAJMnT6dp08v49NNNBZaJVKQ//y42b+5i4kT/vlq7eXMX339fuIfLn4/2JbAF1K1UZ6vql+m/997b\nxMX1wWQyMXToIBYteoKoqLqV3axCqnqdqwrVuWL9+ZzzacuW6ZxzRdFnuprcShVojh8/zqhRw7BY\nrFx/fR+/DGaRQFHwaN9E8+ZOvz/al8CmI2e5IKqzb6jOvqNa+4bqXPKRs652EBER8TMKZxERET+j\ncBYRqaJOj2pWv36oRjULMOf0f3L27Nns2rULg8FAfHw80dHR3udWr17NW2+9hdFopE2bNjz00EMk\nJSWxZMkSGjduDMC1117LmDFjKmYPRESqIY1qFthKPXJOSUnhwIEDJCYmMmvWLGbNmuV9LjMzk+ef\nf57Vq1fz6quvsm/fPr766isA+vbty8qVK1m5cmWVDebRo+8qNADIs88+yauvriry9Tt2fMnDD08F\nYPr0+ws9/5//JPL888uKfb8ff/yBX345AEBCwoPk5eWeb9NFJMBpVLPAVmo4b9myhdjYWACaNm1K\nRkYGmZmeiR0sFgsWi4Xs7GwcDgc5OTnUqlWrYlvsQ3Fxvfnoo4ITRWzc+BGxsdeXuu7cuYvK/H6b\nNn3EwYO/APDoo3Ow2Yofj1uqB03GIMXRqGaBrdTf9LS0NFq3PjPxQkREBKmpqYSGhmKz2Rg3bhyx\nsbHYbDb69etHkyZN2LlzJykpKYwcORKHw8G0adNo1apVhe5IRejV63rGjBnJ2LETANiz53siIyOJ\njIwqcsrGs/Xr14t33/2QL79MYenShURE1KZ27TreKSBnzXqE1NRj5OTkMGLEKOrVq89//5vEpk0f\nER4ezj/+8SAvv5xIZuYp5syZid1ux2g0Mn36DAwGA7NmPUKDBg358ccfaN68BdOnzyjw/uvXv8+a\nNYmYTEYuuaQp06Y9hMPh4LHHEjh69DBWq42HH36U8PCIQssiI6N8VmMpnrotpSQa1Sywlflr+Nm3\nRWdmZrJs2TLWrl1LaGgow4YNY8+ePbRt25aIiAh69OjBzp07mTZtGm+//XaJ2w0PD8ZsLn6CiAce\ngDfeKGtri7+HDGDAAJg/v/jnIyPDuOSSizl8+Geio6NZsWITt956C5GRYRgMdpYseZxGjRoxdepU\n9uz5iosuCsFms/zxvIHIyDCef/4ZHn98ES1btuSee+4hJMSG1eqiV68e9O/fn4MHDzJx4kSSkpLo\n3r0bvXv3pnv3zphMRurUCeXZZxdzxx2D6Nu3L2vXruWVV17k73//O3v37uHJJ5dSu3ZtunXrhs3m\npmbNmt62m81uXnrpRWrWrMmQIUNITz/E119/zV/+Up+nnlrKu+++y1dfbcVisRRadscdd5SpyiXd\nqyfn78kni17+1FM1GDXKt22pbqrCZ/of/4DBgwsvnzHDVCXaD1WjzpWl1HCOiooiLS3N+/jYsWNE\nRkYCsG/fPho1akRERAQAHTt25Ntvv+X222+nadOmALRv35709HScTmeJszOdOJFdYjuys224XOf+\nXcJoNOJylfwNMjvbQWpqXomv6d49ljVr3qR+/SZs2PABzzzzAqmppzAag5g27UHvlI2tW7ejXr36\n5OXZSU09hdvtJjX1FAcP/krt2g1JTT1Fq1bRZGXlkZ9vJCVlO6tXv4LBYOT48XRSU0+Rm2snIyOH\n1NRTOJ0u0tIy2bXra4YPH01q6ikuu6w1S5c+QXp6Fg0a/AUI4vjxLCIi6nDgwBHq1TszfZXBYOWe\ne0YDsH//T+zff4gvv/yKjh2vIjX1FFdf7ZnJasGCuYWWlWVgAA0kUHG++y4UKDwl2XffuUlNzSy8\ngpSLqvKZ7tULli0zFxrDvFcvB6mpld260lWVOlekCxq+MyYmhieeeIJBgwaxe/duoqKiCA0NBaBh\nw4bs27eP3NxcgoKC+Pbbb+nevTvLly+nfv363Hjjjezdu5eIiIhSp00szSOP5PHIIyUH6dk8/+Oz\nLug9Abp3v46XX36BuLjeNGrU2Ht0OmfOP5k/fzGXXNKERYuKn+np7KkfT/c6bNiwlt9//52nnvo3\nv//+O3fffWcJLTB417PbHRgMnu39uZ5n92jY7XYWLfoXK1a8Qu3adZg6ddIf6xhxuQoOCFfUMvEP\n6raU0vTv79ApjgBV6pUDHTp0oHXr1gwaNIjHHnuMhIQEkpKS2LBhA3Xq1GHkyJEMHTqUwYMHc/nl\nl9OxY0duuukmEhMT+dvf/sY//vGPAld4VzXBwSE0bdqMl19+kbi4Pt7lRU3ZWJQ6dSL55Zf9uN1u\ndu7cDnimmaxfvwFGo5FNmz7yrmswGHA6nQXWP3vKx6++2k7LlpeX2ubs7CxMJhO1a9fh6NEj7Nnz\nPQ6Hg5YtW7FjxzYAPvvsU15++YUil4l/qIpTL4pI+TinfuIpU6YUeNyyZUvvz4MGDWLQoEEFnq9X\nrx4rV64sh+b5h7i4Pjz2WAIJCf/0LitqysZRo8YWWnfUqLE8/PA06tWr7528okePnkyffj/fffct\n/fr9H1FRUbz44nLatm3P4sXzCQ4O9q5/9933MmfOP3n77Tcxmy08+OAMHI6SvynXqnURV13Vibvv\nHspllzXjjjvuZOnSRbzwwiq+/DKF8eNHYTKZefjhR7joovBCy8Q/aDIGkepLE1/IBVGdfUN19h3V\n2jdUZ018ISIiUqUonEVERPyMwllERMTPKJxFRET8jAbqFZEyycuDrCzIzDT88c/zc1bWmZ8zMw3k\n5UHbti66dHEQpoGgRMpE4SwS4BwOCoTmn3/2hKqhyMAtarndXnjUspKYTG46dnTSvbuTHj0ctGvn\nwqy/PNVWcrKZxYut7N0LzZsHM2mSbg8sim6lkguiOlc8ux1+/DGMn3/OKXCUeiY0Sw7VvLyyhenZ\nzGY3oaEQGuomNNRNSAiEhLj/eHxmeVGvMRph61YTGzea2bnTiMvlaUetWm66dnV4w/rii/3iT5CX\nPtMV58+TuZy2bFn1nMylpFupFM5yQVTnipOeDitXWnnhBQuHD5/b5SFG45mg9IRo4Z+LCtOz/3v2\n8zYbGM4/271OnoTNm81s3OgJ619+ObM/TZq46N7dQY8eTrp0cXDW/C2VQp/pitO9e3CRQ9K2auVk\n48aS51cIRApnqTCqc/n73/+MPPechTVrLOTkGAgJcTN0qIH69XOLDNCzg7dGjfIJ04r2888GNm70\nhPXmzWZOnfI02mRyc+WVZ7rA27f3fRe4PtMVp379UJzOwh9Qs9nNoUPVbzIXhbNUGNW5fLhc8PHH\nJpYts7JxoyeNGjd2cc89+QwebKdp08Cts8MBO3YY/whrMzt2nOkCr1nTTZcunqPqHj0cXHJJxf+5\n0me64ujIuSCFs1QY1fnCZGXB669bWL7cwo8/ev5oxcQ4uOceO717Ozg9+Vh1qnNGRsEu8AMHznSB\nX3JJwS7wWrXK//2rU619TeecC1I4S4VRnc/Pr78aeP55K6tWWcjIMGC1urn1Vgf33JPPFVcUnhKy\nOtf5558NbNp0pgv89989R9VGo5sOHVz06OGgRw8HHTqUTxd4da61LyQnmzWZyx8UzlJhVOdz53bD\ntm1GnnvOyrvvmnE6DdSp4+Kuu+wMG2YnKqr4X0XV2cPhgJ07C3aBnz6HGRZWsAu8SZPz+9OmWvuG\n6qxwlgqkOpcuPx/eesvM8uVWdu709FO3aeNk1CjPEYPNVvo2VOei/f77mS7wTZvM/PzzmS7wxo1P\nH1U76dr13LvAVWvfUJ0VzlKBVOfiHT9u4OWXLbzwgoWjR40YDG769HEwerSdzp2dZbqqWnU+N/v3\nn+kC//TTgl3g7dufCesOHZxYLEVvQ7X2DdVZ4SwVSHUu7PvvjSxf7rkVKjfXQGiomyFD7IwcmX/e\nVxurzmXncMBXX3m6wDdtMvHllyZvF3hoaOEu8NNfllRr31CdFc5SgVRnD5cLPvzQcyvUJ594rkq6\n5BLPrVCDBtkveGxp1fnCnTrl6QLftMlzFfhPPxXsAj99Ffgtt9TA6VStK5o+0wpnqUDVvc6ZmZCY\naGH5cqv3j32XLg5GjconLs7pvRXqQlX3OleEX3450wX+ySdmMjI8h84GA0RHe85Td+3qpFMnJ8HB\nldzYAKTPtMJZKlB1rfMvv3huhVq92sLvvxuw2dzcdpude+6x07p14VuhLlR1rbOvOJ1nusC/+MLG\nli1u8vM9YW21eibu6NrVE9jt27uKPV8t506faYWzVKDqVGe32zORw3PPWXjvPTMul4HISBcjRtgZ\nOtROZGTF/SpVpzpXtsjIMA4cOMXWrSY+/dRzYdnXXxtxu8+cr7722jNH1pdf7qoSQ6b6G32mSw5n\nTdwmUor8fHjzTTPPPWfl6689/dRXXOFk9Oh8br753G6FkqolOBiuu87Jddc5gXxOnIDPPjPzySee\nsF6/3vMPoE4d1x9H1Z7A9rdZtqRqUjiLFCM11XMr1IsvWjh2zIjR6KZfPzujR9vp1Klst0JJ1RYe\nDjfe6ODGGx1AHocOGbxB/emnJpKTLSQne/q6T19c1rWrky5dnNSpo7CWslO3tlyQqlTnM5O8G2ne\n3FXsJO+7d3tuhfrPfyzk5RkICztzK1RlHRVVpTpXdWWttdsNP/5o5JNPTHzyiYnPPz9zcRl4JnXo\n2tVJt24OOnd2EhpaEa2ueqrSZ/pc/3aUlc45S4WpKnUubcB9lws2bDDx3HNWPv3U06HUpImLUaPy\nGTjQXul/UKtKnQPBhdba6YSvvzby6aeebvCUFBO5uZ6wNpvddOhwOqydXHmlE6u1vFpetVSVz3RF\nTtahcJYKU1XqXNxUdS1aOBk61M7y5Vb27/fcCtW1q4PRo/OJjXViNBZapVJUlToHgvKudW4ufPml\n5+KyTz4xs3PnmSkxg4PddOrkOVfdrZuTNm1cfvOZq2hV5TNdkdNcKpylwlSVOhc3yTu4Ac+tULff\n7rkVqlWr8r8V6kJVlToHgoqu9e+/w+efnzlfvWfPmT/84eGekctOd4OfPXJZoKkqn+ni/naYzW4O\nHcq8oG3ram2p9po3dxX57ddshilT8hg61K4Ld8QnataEPn2c9OnjBODoUQObN585sn77bQtvv+25\nuKxhQ5f3KvBu3ZzUravPqK8V97ejefOK/RKvI2e5IFWlzsWdN3rqqRwGDPD/uWSrSp0DQWXW2u32\nzF99+qh682YT6eln+rlbtHB6b9uKiXFQs2alNLNcVJXPtF+fc549eza7du3CYDAQHx9PdHS097nV\nq1fz1ltvYTQaadOmDQ899BB2u53p06dz6NAhTCYTc+bMoVGjRiW+h8K5aqoqdU5NNdCzZzBHj3pu\niWrRovyuuPSFqlLnQOBPtXa5PHcPnB4MZcsWE9nZZ2baatfORdeunqvAr7rKecFjuPuSP9W5NMnJ\nZpYsOXO19sSJFX+1dqnd2ikpKRw4cIDExET27dtHfHw8iYmJAGRmZvL888+zfv16zGYzI0aM4Kuv\nvuLnn3+mZs2aLFy4kM2bN7Nw4UIWL158wTsicj5OnoS//rUGR48aGT8+jxkz8gP2PJ4EFqMRrrjC\nxRVXuBg71k5+PuzYYfrjHmsT27eb2LHDxpIlnrC+/HIXV1/tGQ/86qud/OUvftExWuX17+/w+Rf5\nUsN5y5YtxMbGAtC0aVMyMjLIzMwkNDQUi8WCxWIhOzub4OBgcnJyqFWrFlu2bOGWW24B4NprryU+\nPr5i90KkGJmZMHhwMLt3mxg+PF/BLFWa1QrXXOPkmmucTJ3q+Xxv3Wpi61bPLVs7dpjYvdvEiy96\nXt+woSesT/9r1cpVbpOxSMUqNZzT0tJo3bq193FERASpqamEhoZis9kYN24csbGx2Gw2+vXrR5Mm\nTUhLSyMiIgIAo9GIwWAgPz8fa3W9oU8qRW4uDB1ag+3bTQwYYGfu3DwFswSU0FDo1ctJr16ei8vy\n8+Gbb4ykpJwJ7LNHLwsNdXPllWeOrDt00KAo/qrMV2uffYo6MzOTZcuWsXbtWkJDQxk2bBh79uwp\ncZ3ihIcHYzaX71e6kvrzpfz4Y53tdrj1Vti8Gfr3h1desWA2V+2phPyxzoGqKte6YUPo08fzs9sN\n+/Z5fg8++ww2b/ZMk7lpk+fHbM2VAAAgAElEQVRPv8kE7dpBTAx06eL5b4MGvmtrVa5zRSs1nKOi\nokhLS/M+PnbsGJGRkQDs27ePRo0aeY+SO3bsyLfffktUVBSpqam0bNkSu92O2+0u9aj5xIkLu5n7\nz6rSxQZVmT/W2emEMWOCeOcdCz16OFi6NIcTJyq7VRfGH+scqAKt1rVqQb9+nn8Ax48b2LbNc3Sd\nkmLiq69MbN9uYOlSz/ONGxfsCm/ZsmIGRgm0Op+PC7ogLCYmhieeeIJBgwaxe/duoqKiCP2jH6Rh\nw4bs27eP3NxcgoKC+Pbbb+nevTs2m421a9fStWtXPv74Yzp16lR+eyNSApcLpkyx8eabFjp1crBi\nRY5mjRI5S+3a7gL3Wefmwq5dJm9Yp6SYWLPGwpo1np6mWrU881mfvtCsXTsnwcGVuQfVQ6nh3KFD\nB1q3bs2gQYMwGAwkJCSQlJREWFgYcXFxjBw5kqFDh2IymWjfvj0dO3bE6XTy+eefM3jwYKxWK3Pn\nzvXFvkg153bDP/5hY/VqK23bOlm9Okd/RERKERQEnTp5ghc8X3B//PHMkfXWrSY+/NDMhx964sJs\ndtO2rYurrjpzdB0VpavCy5sGIZEL4k91njvXyqJFNlq0cPLmmznUru0XH+1y4U91DnSqdWHHjhnY\nts0T1Nu2mdi1y4jDcebqyiZNCt7C1ayZq9SLL1VnDd8p1cCTT1pYtMjGJZe4WLMmsIJZpLJFRbnp\n189Bv36ee32zs+Grr85cEb5tm4nERAuJiZ6u8PBwN1df7RkYpVMnJ23bOgkKqsw9qHoUzlLlrVhh\nYebMIBo0cLFmTbbGHxapYMHBcO21Tq699kxX+J49Z27h2rbNxLp1Ztat80SM1erpCu/UyfFHaLv4\n47piKYbCWaq0N94wM22ajTp1PMHcuLGCWcTXjEZo1cpFq1Yuhg+3A3D4sKHARWbbtxvZtu3M1Zmd\nO8PAgWZuvtlBSEhltdx/6ZyzXJDKrPO775q5++4gQkMhOTmbNm38b6rH8qLPs++o1hUjM9Mz9OjW\nrSa2bDHx2Wdm3G7PwCj9+9u58047bduWfq46kGg+Z6kwlVXnjz82ceedNTCbYc2abDp2DNxgBn2e\nfUm19o2cnDCeeCKPV16xcOiQ50bqNm2cDBli5/bb7dSqVckN9IGSwrkCbi0XqVhffGFi+PAaGAyw\nalVOwAezSCBq3BimTs1n+/YsXnklm7597Xz/vZEHHwwiOjqU8eOD+OILE/5x+Oh7CmepUnbtMjJk\nSA3sdnjhhRy6dHFWdpNE5AKYTBAb62TFily++iqLhx/Oo25dN6+/buH//i+YLl2CefppC2lp1ai/\nG4WzVCF79hgZOLAGWVnwzDO5xMUpmEUCSd26biZMyOeLL7JISsrm1lvtHDhg5JFHgmjbNoS77w5i\n40YTrmrQWaartaVK+PlnAwMG1CA93cjixTncfLNv51YVEd8xGqFLFyddujhJT4c1ayysWmXhrbc8\n/xo3dnHHHXYGD7ZTv35g9nvryFn83qFDBm6/PZijR4089lgud9yhYBapLiIiYNQoO5s2ZfPuu1kM\nHmwnLc3A3Lk22rcP4c47a7BunQlHgP1ZUDiLX0tNNXD77TU4eNDI9Ol5jBplr+wmiUglMBjgqqtc\nLFmSyzffZDJ/fi5XXOFi3Tozd94ZTIcOIcyZY+XAgcA4N61wFr918iT89a81+PFHE+PH53HfffmV\n3SQR8QNhYTBsmJ0NG7L58MMs7rorn+xsA48/buOqq0IZMKAG//2vmby8ym7p+VM4i1/KzITBg4PZ\nvdvE8OH5zJiRX60GJxCRc3PFFS7mzcvj668zeeKJHDp1crBpk5l77qlBu3YhJCTY+OGHqhd1Va/F\nEvByc2Ho0Bps325iwAA7c+fmKZhFpETBwTBwoIO3385h8+Ys7r03H7cbnnnGSkxMCDfdVIPERDPZ\n2ZXd0nOjcBa/YrfD3XfXYPNmM3372lmyJBejPqUiUgbNm7uYOTOPXbuyWL48h27dHGzdaubvf69B\ndHQo06bZ+OYb//7D4t+tk2rF6YRx44JYv95Mjx4Oli3Lxayb/UTkPNlscPPNDtasyWHbtkzuuy+P\n4GA3L75opVevEK6/PpiXXrJwyg9Ha1U4i19wuWDKFBtvvmmhUycHK1bkYLOVvp6IyLm4+GI3Dz6Y\nz44dWaxcmU3v3g6+/trIAw8EccUVoUyaZGPbNqPfDBeqcJZK53bDP/5hY/VqK23bOlm9Oofg4Mpu\nlYgEIrMZevd2snJlDjt3ZjF9eh516rh55RUr/fqF0L17MM89Z+HEicptp8JZKt28eVaee85KixZO\nXnsth5o1K7tFIlId1K/v5v7780lJyeL117P5v/+zs2+fkYcf9ky+ce+9QWzeXDmTb+iMnlSqJ5+0\nsGiRjUsucbFmTQ61a/tJn5KIVBtGI/To4aRHDydpaQZef93MqlUWkpI8/5o0cTFkiJ0778wnPNxH\nbfLN24gUtmKFhZkzg2jQwMWaNdnUratgFpHKVaeOm7Fj7Xz2WTZvvZXNX/9q5/BhA489ZuPvf6/h\ns3boyFkqxRtvmJk2zUadOp5gbtxYwSwi/sNggGuucXLNNU5mzYJ33rHQrJnvZsJTOIvPvfuumQkT\ngqhZE15/PYfLLlMwi4j/qlULhgzx7bj+6tYWn/r4YxOjRwdhs8Grr2bTpk01mJhVRKSMFM7iM198\nYWL48BoYDLBqVQ4dOyqYRUSKom5t8Yldu4wMGVIDux1eeimHLl18d+5GRKSqUThLhduzx8jAgTXI\nyoJly3KJi1Mwi4iURN3acl6Sk8107x6M2QzduweTnFz097yffzYwYEAN0tONLFqUy803O3zcUhGR\nqkdHzlJmyclmRo8+c7/f99+b/nicQ//+Z8L30CEDt98ezNGjRh57LJc77lAwi4ici3MK59mzZ7Nr\n1y4MBgPx8fFER0cDcPToUaZMmeJ93cGDB5k8eTJ2u50lS5bQuHFjAK699lrGjBlTAc2XyrB4sbXI\n5UuWWL3hnJpq4Pbba3DwoJHp0/MYNcq3tyGIiFRlpYZzSkoKBw4cIDExkX379hEfH09iYiIAdevW\nZeXKlQA4HA7uvPNOevbsybp16+jbty/Tpk2r2NZLpdi7t+izIaeXnzwJf/1rDX780cT48Xncd1++\nL5snIlLllXrOecuWLcTGxgLQtGlTMjIyyMzMLPS65ORkevfuTUhISPm3UvxK8+ZF3wLVvLmLzEwY\nPDiY3btNDB+ez4wZ+RgMPm6giEgVV2o4p6WlEX7WSN8RERGkpqYWet0bb7zB7bff7n2ckpLCyJEj\nGTZsGN999105NVf8waRJRR8Jjx2bz7BhNdi+3cSAAXbmzs1TMIuInIcyXxDmLmLurJ07d3LppZcS\nGhoKQNu2bYmIiKBHjx7s3LmTadOm8fbbb5e43fDwYMxmU1mbU6LIyLBy3Z54jBoFNWvCnDnw3XfQ\nqhU88AAkJtbg00+hf3945RULZrOlspsaUPR59h3V2jdU5+KVGs5RUVGkpaV5Hx87dozIyMgCr9m4\ncSOdO3f2Pm7atClNmzYFoH379qSnp+N0OjGZig/fEyeyy9z4kkRGhpGaeqpctyln9Orl+RcZGcaR\nI6cYMyaId96x0KOHg6VLcyp9ovJAo8+z76jWvqE6l/zlpNRu7ZiYGNatWwfA7t27iYqK8h4hn/bN\nN9/QsmVL7+Ply5fzzjvvALB3714iIiJKDGaputxumDLFxptvWujUycGKFTnYbJXdKhGRqq3UI+cO\nHTrQunVrBg0ahMFgICEhgaSkJMLCwoiLiwMgNTWV2rVre9e56aabeOCBB3jttddwOBzMmjWr4vZA\nKo3bDfffD6tXW2nb1snq1TkEB1d2q0REqj6Du6iTyJWgvLs31GVS8Z580sLMmUG0aOHkzTdzqF3b\nLz5KAUmfZ99RrX1Ddb7Abm2RouzaZWT2bBsNGsCaNQpmEZHypHCWMsvOhjFjgnA4DLz0EtStq2AW\nESlPCmcps0cftfHjjyZGj87nj/FpRESkHCmcpUw++MDEiy9aadnSyUMP5VV2c0REApLCWc5ZWpqB\niRODsFrdPP10LkFBld0iEZHApHCWc+J2w+TJNlJTjTz4YB5t2hQ9vraIiFw4hbOck1desfD++xZi\nYhyMGaPpH0VEKpLCWUr1888GHnrIRs2abp54IhejPjUiIhWqzBNfSPXicMDYsTXIzjbw7LM5/OUv\num1KRKSi6RhISrR4sZXt203cequdW291VHZzRESqBYWzFGvHDiMLF1pp2NDF3Lm5ld0cEZFqQ+Es\nRcrK8nRnu1zwxBO5XHRRZbdIRKT6UDhLkRISbPz0k5ExY+x06eKs7OaIiFQrCmcpZN06Ey+/bKVV\nKycPPqhRwEREfE3hLAUcO2bgvvuCsNk8o4DZbJXdIhGR6kfhLF5uN9x/fxBpaUYefjiPVq00CpiI\nSGVQOIvXyy9bWL/eTNeuDu65R6OAiYhUFoWzALBvn4GEBBsXXaRRwEREKptGCBPs9jOjgC1ZkkOD\nBhoFTESkMun4SFi40MrOnSYGDLBz880aBUxEpLIpnKu5bduMLF5spVEjF3PmaBQwERF/oHCuxjIz\nPd3Zbjc89VQuNWtWdotERAQUztXajBk2Dhww8ve/53PNNRoFTETEXyicq6l33zWzerWVK65wMnVq\nfmU3R0REzqJwroaOHjUwebKNoCDPKGBWa2W3SEREzqZbqaoZtxsmTgwiPd3InDm5tGihUcBERPyN\njpyrmRdesPDRR2auu87BiBEaBUxExB8pnKuRvXuNPPqojYgIF0uW5GIwVHaLRESkKOrWriby82Hs\n2CBycw08/XQu9eppFDAREX91TuE8e/Zsdu3ahcFgID4+nujoaACOHj3KlClTvK87ePAgkydPpk+f\nPkyfPp1Dhw5hMpmYM2cOjRo1qpg9kHMyf76Vr782MXiwnRtv1ChgIiL+rNRwTklJ4cCBAyQmJrJv\n3z7i4+NJTEwEoG7duqxcuRIAh8PBnXfeSc+ePXnnnXeoWbMmCxcuZPPmzSxcuJDFixdX7J5Isb74\nwsTSpVYuvtjFrFkaBUxExN+Ves55y5YtxMbGAtC0aVMyMjLIzMws9Lrk5GR69+5NSEgIW7ZsIS4u\nDoBrr72WHTt2lHOz5VydOgXjxgVhMMBTT+UQGlrZLRIRkdKUGs5paWmEh4d7H0dERJCamlrodW+8\n8Qa33367d52IiAjPGxiNGAwG8vM10EVliI8P4uBBI5Mm5XP11bptSkSkKijzBWFud+ELiXbu3Mml\nl15KaDGHZUWt82fh4cGYzaayNqdEkZFh5bq9quaNNyAxETp2hLlzbVgstgp5n+peZ19RnX1HtfYN\n1bl4pYZzVFQUaWlp3sfHjh0jMjKywGs2btxI586dC6yTmppKy5YtsdvtuN1urKUMQ3XiRHZZ216i\nyMgwUlNPles2q5LDhw2MGhVCjRqwdGkWJ09WzNXZ1b3OvqI6+45q7Ruqc8lfTkrt1o6JiWHdunUA\n7N69m6ioqEJHyN988w0tW7YssM7atWsB+Pjjj+nUqdN5NVzOj8sFEyYEcfKkgUceyeOyy3TblIhI\nVVLqkXOHDh1o3bo1gwYNwmAwkJCQQFJSEmFhYd6LvlJTU6ldu7Z3nb59+/L5558zePBgrFYrc+fO\nrbg9kEL+/W8LmzaZiY11MHy4RgETEalqDO5zOSHsA+XdvVFdu0z27DESFxdMWJibjRuziYqq2P+9\n1bXOvqY6+45q7Ruqc8nd2hohLIDk5cGYMUHk5RlYvjynwoNZREQqhsbWDiBz59rYvdvEnXfm06eP\ns7KbIyIi50nhHCA++8zE009baNLExaOP5lV2c0RE5AIonANARgaMHx+E0ahRwEREAoHCOQBMnx7E\nb78Zuf/+fDp21ChgIiJVncK5iktKMvOf/1i48kon992nIVJFRAKBwrkK++03A1OnBhEc7Oapp3Iw\n69p7EZGAoD/nVZTLBX//exC//25g4cJcLr1Ut02JiAQKHTlXUc8+a2HzZjN9+tj52980CpiISCBR\nOFdBu3cbmT3bRmSki0WL8jAYKrtFIiJSnhTOVUxuLowdG0R+voHFi3OpU0fd2SIigUbhXMXMnm3j\n++9NDB+eT1ycRgETEQlECucq5JNPTDz7rJWmTV088ohGARMRCVQK5yrixAnP1dlms5tnnskhOLiy\nWyQiIhVF4VwFuN0wdWoQhw8beeCBfNq10yhgIiKBTOFcBaxZY+a//7Vw1VVO/v53jQImIhLoFM5+\n7uBBA9OnBxESolHARESqC/2p92NOp2e2qVOnDCxZksMll+i2KRGR6kBHzn7sqaesbNlipl8/O4MG\nOSq7OSIi4iMKZz/1zTdG5s2zEhXlYsECjQImIlKdKJz9UE4OjBkThN1uYOnSXGrXVne2iEh1onD2\nQ489ZmPvXhN3351Pz54aBUxEpLpROPuZjz4ysXy5lebNncyYoVHARESqI4WzH0lPh4kTg7BY3Dz9\ndC41alR2i0REpDIonP2E2w2TJwdx9KiRadPyiY7WKGAiItWVwtlPJCaaefddC9dc42DcOI0CJiJS\nnSmc/cDRowZmzAgiNNTNk0/mYjJVdotERKQyaYQwPxAfbyMjw8Dcubk0bqzbpkREqjsdOVey9983\n8/bbnkkthg+3V3ZzRETED5zTkfPs2bPZtWsXBoOB+Ph4oqOjvc8dPnyY+++/H7vdTqtWrZg5cyZb\nt25l4sSJNGvWDIDmzZszY8aMitmDKuz332HaNBtWq5tFi3Ix6quSiIhwDuGckpLCgQMHSExMZN++\nfcTHx5OYmOh9fu7cuYwYMYK4uDgeffRRDh06BMDVV1/N0qVLK67lAeCxx2wcOWJk6tQ8WrTQ1dki\nIuJR6rHali1biI2NBaBp06ZkZGSQmZkJgMvlYvv27fTs2ROAhIQEGjRoUIHNDRxffGFixQorLVs6\nmTBBV2eLiMgZpR45p6Wl0bp1a+/jiIgIUlNTCQ0NJT09nZCQEObMmcPu3bvp2LEjkydPBuDHH3/k\n3nvvJSMjg/HjxxMTE1Pi+4SHB2M2l+9lypGRYeW6vfKSlwdTp4LBAC+8YKJhQ/9s57ny1zoHGtXZ\nd1Rr31Cdi1fmq7XdbneBn48ePcrQoUNp2LAho0aNYuPGjVx++eWMHz+eG264gYMHDzJ06FDWr1+P\n1WotdrsnTmSf3x4UIzIyjNTUU+W6zfIyb56VPXtsjByZz2WX5ZGaWtktOn/+XOdAojr7jmrtG6pz\nyV9OSu3WjoqKIi0tzfv42LFjREZGAhAeHk6DBg1o3LgxJpOJzp0788MPP1C3bl369u2LwWCgcePG\n1KlTh6NHj5bDrlR9339vZOlSKw0auHjoIY2dLSIihZUazjExMaxbtw6A3bt3ExUVRWhoKABms5lG\njRqxf/9+7/NNmjThrbfe4vnnnwcgNTWV48ePU7du3QraharD6YT77/dMBfmvf+XyRxlFREQKKLVb\nu0OHDrRu3ZpBgwZhMBhISEggKSmJsLAw4uLiiI+PZ/r06bjdbpo3b07Pnj3Jzs5mypQpfPjhh9jt\ndh555JESu7SrixUrLGzfbuKWW+xcf72mghQRkaIZ3GefRK5E5X3uwd/OZ/z6q4GuXUOwWGDz5iyi\novyi7BfM3+ocqFRn31GtfUN1vsBzznLh3G6YOjWIrCwDM2fmFgrm5GQz3bsHU79+KN27B5OcrFFV\nRUSqM6WAD7z5ppkPPjDTtauDgQMdBZ5LTjYzevSZiZu//970x+Mc+vd3ICIi1Y+OnCtYejo89JCN\nGjXcLFiQi8FQ8PnFi4s+F79kic7Ri4hUVwrnCvbII0GkpRl54IE8mjQpfJ55796i/xcUt1xERAKf\nEqACbdpk4rXXLFxxhZN77y16xqnmzYseU7u45SIiEvgUzhUkOxumTAnCZHLz+OO5mIs5uz9pUtHj\nak+cqPG2RUSqK4VzBZk/38aBA0buvddOdHTxR8H9+ztYtiyHVq2cmM1uWrVysmyZLgYTEanOdLV2\nBfj6ayPPPGPh4otdPPBA6UN09u/vUBiLiIiXjpzLmd0OkyYF4XIZWLgwl+Dgym6RiIhUNQrncvbs\ns1a+/dbE4MF2unXTEJ0iIlJ2Cudy9NNPBubPt1KnjotHHsmt7OaIiEgVpXPO5cTthgceCCI318DS\npbmEh1d2i0REpKrSkXM5ee01M59+aub66x3cfLMu7hIRkfOncC4Hx44ZSEgIIiTEzbx5hYfoFBER\nKQt1a5eDhx+2cfKkgTlzcmnYMDCmghQRkcqjI+cLtG6diTfftNCxo5O77ip6iE4REZGyUDhfgFOn\nYNq0ICwWN4sW5WJUNUVEpBwoTi7ArFk2Dh0yMnFiPi1baqIKEREpHwrn85SSYuTFFy00b+7UJBUi\nIlKuFM7nIS8P7r8/CLfbwMKFedhsld0iEREJJArn87B0qZW9e03cdVc+nTppiE4RESlfCucy+t//\njCxebKV+fRcPP1z6jFMiIiJlpXAuA5fL051ttxuYNy+XsLDKbpGIiAQihXMZrFhhYds2E//3f3b6\n9FF3toiIVAyF8zn67TcDjz1mo1YtN7NmqTtbREQqjobvPAdut2ewkcxMA4sX51C3roboFBGRiqMj\n53Pw1ltm1q8307Wrg8GDNeOUiIhULIVzKU6cgAcftBEU5Gb+fM04JSIiFU/hXIpHH7WRlmZkypR8\nLr1U3dkiIlLxzumc8+zZs9m1axcGg4H4+Hiio6O9zx0+fJj7778fu91Oq1atmDlzZqnrVBWffGLi\nlVestGnjZMwYDdEpIiK+UeqRc0pKCgcOHCAxMZFZs2Yxa9asAs/PnTuXESNGsGbNGkwmE4cOHSp1\nnaogJwemTAnCaHTz+OO5WCyV3SIREakuSg3nLVu2EBsbC0DTpk3JyMggMzMTAJfLxfbt2+nZsycA\nCQkJNGjQoMR1qooFC6zs32/k3nvttG2rGadERMR3Su3WTktLo3Xr1t7HERERpKamEhoaSnp6OiEh\nIcyZM4fdu3fTsWNHJk+eXOI6xQkPD8ZsNl3g7hQUGXl+Q3jt3AlPPw1NmsD8+VaCg63l2q5Ac751\nlrJRnX1HtfYN1bl4Zb7P2e12F/j56NGjDB06lIYNGzJq1Cg2btxY4jrFOXEiu6xNKVFkZBipqafK\nvJ7DAcOHB+N0mpg3L5usLCdZWeXatIByvnWWslGdfUe19g3VueQvJ6WGc1RUFGlpad7Hx44dIzIy\nEoDw8HAaNGhA48aNAejcuTM//PBDiev4u2XLLHz9tYmBA+306KEhOkVExPdKPeccExPDunXrANi9\nezdRUVHe7mmz2UyjRo3Yv3+/9/kmTZqUuI4/27/fwL/+ZaNOHRePPppb2c0REZFqqtQj5w4dOtC6\ndWsGDRqEwWAgISGBpKQkwsLCiIuLIz4+nunTp+N2u2nevDk9e/bEaDQWWsffud2eq7Nzcgw8/ngu\nERGV3SIREamuDO5zOSHsA+V97qGs5zNee83MhAk1iI11sHp1jkYCO0c6b+QbqrPvqNa+oTqXfM5Z\nI4QBqakGEhKCCA52869/aYhOERGpXJqVCpgxw8aJEwZmz87lL3/xi44EERGpxqr9kfOGDSaSkixc\neaWTu+6yV3ZzREREqnc4Z2bC1KlBmM1uFi3KxVS+Y6CIiIicl2odzrNn2/jtNyMTJuRz+eUaolNE\nRPxDtQ3nL7808vzzFpo1c3LffZpxSkRE/Ee1DOf8fLj//iDcbgMLF+Zhs1V2i0RERM6oluH8xBNW\n9uwxMWxYPtdcoyE6RUTEv1S7cN6718jjj1upV8/FjBl5ld0cERGRQqpVOLtcMHmyjfx8A/Pm5VGz\nZmW3SEREpLBqFc4vv2xh61YzN91k54YbHJXdHBERkSJVm3A+fNjAzJk2atZ0M3u2urNFRMR/VYvh\nO91umDbNRmamgUWLcqlbV0N0ioiI/6oWR87vvGNm7VoLMTEOhgzREJ0iIuLfAj6cT56EBx+0YbO5\nWbhQM06JiIj/C/hwnjnTxrFjRqZMyefSS9WdLSIi/i+gw/mzz0ysWmWlVSsnY8dqiE4REakaAjac\nc3Jg8uQgjEY3jz+ei8VS2S0SERE5NwEbzv/8J/z0k5FRo+y0b68Zp0REpOoIyHD+9lsj//oXNG7s\nYto03dMsIiJVS0CG89KlVpxOmD8/l5CQym6NiIhI2QTkICR3353PbbdZuO46zTglIiJVT0CG89VX\nu4iMhNTUym6JiIhI2QVkt7aIiEhVpnAWERHxMwpnERERP6NwFhER8TMKZxERET+jcBYREfEz53Qr\n1ezZs9m1axcGg4H4+Hiio6O9z/Xs2ZN69ephMpkAWLBgAfv372fixIk0a9YMgObNmzNjxowKaL6I\niEjgKTWcU1JSOHDgAImJiezbt4/4+HgSExMLvGb58uWEnDUU1/79+7n66qtZunRp+bdYREQkwJXa\nrb1lyxZiY2MBaNq0KRkZGWRmZlZ4w0RERKqrUo+c09LSaN26tfdxREQEqamphIaGepclJCTw22+/\nceWVVzJ58mQAfvzxR+69914yMjIYP348MTExJb5PeHgwZrPpfPejSJGRYeW6PSma6uwbqrPvqNa+\noToXr8zDd7rd7gKPJ0yYQNeuXalVqxbjxo1j3bp1tG/fnvHjx3PDDTdw8OBBhg4dyvr167FarcVu\n98SJ7LK3vgSRkWGkpp4q121KYaqzb6jOvqNa+4bqXPKXk1K7taOiokhLS/M+PnbsGJGRkd7Ht9xy\nC7Vr18ZsNtOtWzf27t1L3bp16du3LwaDgcaNG1OnTh2OHj16gbshIiJSPZQazjExMaxbtw6A3bt3\nExUV5e3SPnXqFCNHjiQ/Px+Abdu20axZM9566y2ef/55AFJTUzl+/Dh169atqH0QEREJKKV2a3fo\n0IHWrVszaNAgDAYDCTecmnkAAAbVSURBVAkJJCUlERYWRlxcHN26dWPgwIHYbDZatWpFnz59yMrK\nYsqUKXz44YfY7XYeeeSREru0RURE5AyD+88nkStJeZ970PkM31CdfUN19h3V2jdU5ws85ywiIiK+\npXAWERHxMwpnERERP6NwFhER8TMKZxERET+jcBYREfEzCmcRERE/o3AWERHxMwpnERERP6NwFhER\n8TMKZxERET+jcBYREfEzCmcRERE/o3AWERHxMwpnERERP6NwFhER8TMKZxERET+jcBYREfEzCmcR\nERE/o3AWERHxMwpnERERP6NwFhER8TMBF87JyWa6dw/GbIbu3YNJTjZXdpNERETKJKCSKznZzOjR\nNbyPv//e9MfjHPr3d1Rew0RERMogoI6cFy+2Frl8yZKil4uIiPijgArnvXuL3p3ilouIiPijgEqt\n5s1dZVouIiLijwIqnCdNyi9y+cSJRS8XERHxR+d0Qdjs2bPZtWsXBoOB+Ph4oqOjvc/17NmTevXq\nYTKZAFiwYAF169YtcZ2K4rnoK4clS6zs3WuieXMnEyfm62IwERGpUkoN55SUFA4cOEBiYiL79u0j\nPj6exMTEAq9Zvnw5ISEhZVqnovTv76B/fweRkWGkpmb75D1FRETKU6nd2lu2bCE2NhaApk2bkpGR\nQWZmZrmvIyIiIh6lhnNaWhrh4eHexxEREaSmphZ4TUJCAoMHD2bBggW43e5zWkdERESKVuZBSNxu\nd4HHEyZMoGvXrtSqVYtx48axbt26UtcpSnh4MGazqazNKVFkZFi5bk+Kpjr7hursO6q1b6jOxSs1\nnKOiokhLS/M+PnbsGJGRkd7Ht9xyi/fnbt26sXfv3lLXKcqJE+V7fthzzvlUuW5TClOdfUN19h3V\n2jdU55K/nJTarR0TE+M9Gt69ezdRUVGEhoYCcOrUKUaOHEl+vudWpW3bttGsWbMS1xEREZGSlXrk\n3KFDB1q3bs2gQYMwGAwkJCSQlJREWFgYcXFxdOvWjYEDB2Kz2WjVqhV9+vTBYDAUWkdERETOjcF9\nLieEfaC8uzfUZeIbqrNvqM7/3979hLL/B3Acf+07Odi+mGW0QnJRSigHLDkMB6UQWxqukoNyoKUo\npbaTQijcp82/g5Cy2mHLQVGK2EFYzPLxd3ZAv8OvvvX7lcPv+/vO+9O71+Nmp2efHV4+n4+8vw+v\n9ffgdf6fj7WJiIjoe3GciYiIVEY1j7WJiIjob7xzJiIiUhmOMxERkcpwnImIiFSG40xERKQyHGci\nIiKV4TgTERGpjJTjPDExAZvNBrvdjqOjI9E50nK73bDZbGhra8POzo7oHKklEglYrVasrKyITpHW\nxsYGmpub0draCr/fLzpHSq+vr+jv70dXVxfsdjsCgYDoJNX6z0dGqt3+/j4uLi7g8XgQDofhdDrh\n8XhEZ0knFArh7OwMHo8HiqKgpaUFDQ0NorOkNTs7i4yMDNEZ0lIUBTMzM/D5fIjH45iamkJdXZ3o\nLOmsrq6isLAQg4ODuL29RU9PD7a2tkRnqZJ04xwMBmG1WgEARUVFeHx8xMvLC0/F+sMqKytRWloK\nAEhPT8fb2xs+Pj6g1f7ZM7kJCIfDOD8/51gkUTAYRFVVFfR6PfR6PcbHx0UnSclgMOD09BQA8PT0\nBIPBILhIvaR7rB2Lxf7xhWdlZeHu7k5gkZy0Wi3S0tIAAF6vF7W1tRzmJHG5XBgeHhadIbWrqysk\nEgn09vais7MTwWBQdJKUmpqaEIlEUF9fD4fDgaGhIdFJqiXdnfO/8b+TJtfu7i68Xi+WlpZEp0hp\nbW0NZWVlyMvLE50ivYeHB0xPTyMSiaC7uxt7e3vQaDSis6Syvr4Os9mMxcVFnJycwOl08u8oviDd\nOJtMJsRisV8/R6NRZGdnCyySVyAQwNzcHBYWFvDz59dHn9Hv8/v9uLy8hN/vx83NDVJTU5Gbm4vq\n6mrRaVIxGo0oLy9HSkoK8vPzodPpcH9/D6PRKDpNKgcHB7BYLACA4uJiRKNRvg77gnSPtWtqarC9\nvQ0AOD4+hslk4vvmJHh+fobb7cb8/DwyMzNF50hrcnISPp8Py8vLaG9vR19fH4c5CSwWC0KhED4/\nP6EoCuLxON+HJkFBQQEODw8BANfX19DpdBzmL0h351xRUYGSkhLY7XZoNBqMjo6KTpLS5uYmFEXB\nwMDAr89cLhfMZrPAKqLfk5OTg8bGRnR0dAAARkZG8OOHdPcuwtlsNjidTjgcDry/v2NsbEx0kmrx\nyEgiIiKV4a+GREREKsNxJiIiUhmOMxERkcpwnImIiFSG40xERKQyHGciIiKV4TgTERGpDMeZiIhI\nZf4C+e7qUzl87TAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVPX+x/HXMMMqqICDe6b+MoOy\nUlvUSkVI1GtdTJMWteymlWaWt6v5y2hRWy1tt9L2Eiuo28+FNKNuamna4pqm6dXcQBTZYZbfH5Mo\nMSzqMAeG9/Px8KFzmHPmw4dx3pxzvud7TE6n04mIiIh4nZ/RBYiIiDRUCmERERGDKIRFREQMohAW\nERExiEJYRETEIAphERERgyiExSckJyeTkJBAQkICMTEx9O3bt+xxXl7eKW0rISGBrKysKp8za9Ys\nPvzwwzMp2eNuueUWUlNTPbKtc889lwMHDrBs2TIeeOCBM3q9hQsXlv27Jr2tqSlTpvDyyy97ZFsi\nRrEYXYCIJzzyyCNl/46NjeWpp56ie/fup7WtpUuXVvucSZMmnda265v4+Hji4+NPe/3MzEzeeOMN\nrr/+eqBmvRVpSLQnLA3CiBEjeO655xgwYADr168nKyuL2267jYSEBGJjY3nzzTfLnnt8L/D7779n\n+PDhzJo1iwEDBhAbG8uaNWuA8nthsbGxLFiwgKFDh3LFFVfwxBNPlG3r1VdfpUePHlx33XW8//77\nxMbGuq3vo48+YsCAAVx99dXcdNNN/PHHHwCkpqYyYcIEpk6dSv/+/Rk4cCDbt28HYM+ePQwbNoy4\nuDgmTZqE3W6vsN2vv/6awYMHl1t27bXX8s0331TZg+NSU1O55ZZbqn29L7/8ksGDB9O/f3+GDBnC\nli1bAEhKSmLfvn0kJCRQUlJS1luAd955h4EDB5KQkMCdd95JdnZ2WW+ff/55br31Vvr27cutt95K\nYWFhZT9aALZu3UpSUhIJCQlce+21/Oc//wEgPz+fcePGMWDAAPr168eDDz5IaWlppctFvE0hLA3G\nxo0bWbRoEV27duWVV16hTZs2LF26lLfffptZs2axf//+Cuts3ryZCy+8kCVLlnDjjTfyyiuvuN32\n2rVrSUlJ4ZNPPuG9997jwIEDbN++nTfeeIPPPvuMDz74oNK9wMOHD/Poo4/y5ptv8sUXX3DWWWeV\nO8z6zTffcOONN5Kens5ll13G22+/DcAzzzxDjx49WL58OaNGjWL9+vUVtt2jRw8OHDjAnj17AFeQ\nHjhwgJ49e9a4B8dV9no2m40pU6bw2GOPkZ6eTmxsLE8++SQAM2fOpGXLlixdupSAgICybf3000/M\nmzePd999l6VLl9KqVStmzZpV9vWlS5fy3HPPsWzZMrKzs1m2bFmldTkcDu677z5uvvlmli5dyvTp\n05k0aRJ5eXl8+umnNG7cmCVLlpCeno7ZbOa3336rdLmItymEpcHo3bs3fn6ut/yDDz7ItGnTAGjb\nti1Wq5W9e/dWWKdRo0bExcUBEBMTw759+9xue/DgwZjNZpo3b05kZCT79+9n7dq1XHrppURFRREY\nGMh1113ndt3IyEjWrVtHixYtAOjevXtZaAJ07NiR888/H4Do6OiyoPzhhx8YOHAgAF26dKFDhw4V\nth0QEEDfvn1ZsWIFAMuXLycuLg6LxVLjHhxX2etZLBZWrVrFRRdd5LZ+dzIyMujfvz+RkZEADBs2\njJUrV5Z9vXfv3jRt2hSLxUKnTp2q/OVg7969ZGVlMWjQIAAuuOACWrVqxYYNG4iIiODHH3/k22+/\nxeFw8Mgjj3DeeedVulzE23ROWBqMJk2alP17w4YNZXt+fn5+ZGZm4nA4KqwTFhZW9m8/Pz+3zwEI\nDQ0t+7fZbMZut3Ps2LFyr9m8eXO369rtdp5//nlWrFiB3W4nPz+f9u3bu63h+LYBcnJyyr1u48aN\n3W6/f//+vPPOO4waNYrly5dz1113nVIPjqvq9d59913S0tIoKSmhpKQEk8lU6XYAsrOziYqKKret\nw4cPV/s9V7atsLCwcq/ZuHFjsrOzGTRoEDk5OcyZM4edO3dyzTXX8MADDzBgwAC3y0/eWxfxBu0J\nS4N0//33079/f9LT01m6dCnh4eEef43Q0FAKCgrKHh86dMjt8xYvXsyKFSt47733SE9PZ8KECTXa\nfuPGjcuN/D5+TvWvrrzySrZu3cquXbvYtWsXl19+OXDqPajs9davX8/rr7/OK6+8Qnp6OtOnT6+2\n9mbNmnH06NGyx0ePHqVZs2bVrudOZGQkOTk5nHwvmqNHj5btZSclJfHRRx+xePFiNm3axKefflrl\nchFvUghLg3T48GHOP/98TCYTaWlpFBYWlgtMT+jSpQvff/892dnZlJSUVPohf/jwYVq3bk1ERARH\njhxhyZIl5OfnV7v9iy66qOxc6fr16/nvf//r9nkBAQFcccUVPP300/Tr1w+z2Vz2uqfSg8peLzs7\nm8jISFq1akVhYSFpaWkUFBTgdDqxWCwUFBRgs9nKbatPnz4sW7aMI0eOALBgwQJ69+5d7ffsTps2\nbWjRogWLFy8uqy0rK4suXbrw0ksv8fHHHwOuIxFt2rTBZDJVulzE2xTC0iDdc889jBs3jsGDB1NQ\nUMDw4cOZNm1apUF2Orp06UJiYiKJiYmMHDmSvn37un3e3/72N44ePUp8fDyTJk1i4sSJHDhwoNwo\na3fuv/9+vvrqK+Li4nj//ffp2bNnpc/t378/y5cvZ8CAAWXLTrUHlb3elVdeSVRUFHFxcYwePZpR\no0YRFhbGhAkTOPfcc2nSpAm9evUqdz69S5cujBkzhptuuomEhARyc3O59957q/x+K2MymXj22Wd5\n7733GDBgANOnT2fOnDmEhIRw7bXX8tlnn9G/f38SEhLw9/fn2muvrXS5iLeZdD9hkdrjdDrL9rAy\nMjKYPXu2DnuKSBntCYvUkuzsbC6//HL++OMPnE4nS5YsKRtBLCIC2hMWqVUffvgh8+fPx2Qy0aFD\nB2bMmFE2YEhERCEsIiJiEB2OFhERMYhCWERExCBenzErMzPXo9sLDw/hyBHPXt8p7qnX3qE+e4f6\n7B3qs4vVGuZ2eb3fE7ZYzEaX0GCo196hPnuH+uwd6nPV6n0Ii4iI1FcKYREREYMohEVERAyiEBYR\nETGIQlhERMQgCmERERGDKIRFREQM4vXJOkRExHe88MJz/PrrFrKzD1NUVESrVq1p3LgJM2c+Xe26\nixd/TqNGofTu7f5e23PmzGLYsCRatWp9WrWNHz+G++77Fx06/M9pre8N9TaE09IszJ4dwLZt0KlT\nCBMnlpCYaDO6LBGROu3EZ6cfnTo5zviz8+677wVcgbpz5w7Gj59Y43UHDhxc5dfvuWfSaddVX9TL\nEE5LszB2bHDZ4y1bzH8+LlQQi4hUwpufnevX/8CCBe9hs5UwZszd/PjjOjIyvsThcNCjRy9Gjx7D\nvHlzadq0Ke3bdyQ1dSEmkx+7d/9Onz79GD16TNme7FdffUl+fh7//e9u/vhjLxMmTKJHj168995b\nLF/+Ba1atcZms5GUdBNdu3avUEteXh4zZjxMXl4uNpuNiRPv59xzOzN79tNs3boFu91OYuJQBg4c\n7HZZbaqXITx7doDb5XPmBCiERUQq4e3Pzh07fmP58mXk5BTz44/rePnlN/Dz8+P6669l+PAbyz13\n8+ZNfPDBJzgcDoYNG8zo0WPKff3QoYM888zzfPfdKj777BNiYs4nNfUjPvzwE/Lz80lKGkJS0k1u\n6/joow+JiTmfm2++ha1bN/PCC88yc+bTrFr1LQsXfobNZmPx4s85diynwrLaVi9DeNs29+PJKlsu\nIiLe/+z8n/85h4CAAKCYoKAgxo8fg9ls5ujRoxw7dqzcc889tzNBQUGVbqtLl4sAiIqKIi8vj717\n99ChQ0cCA4MIDAzivPNiKl1369bNjBx5GwCdO0ezd+8eGjduQtu27Zgy5T769o0jIWEQAQEBFZbV\ntnqZWp06OU5puYiIeP+z09/fH4ADB/aTkvI+s2a9wIsvvkaLFi0qPNdsrvpGDyd/3el04nSCn9+J\nCDOZKl/XZDLhdDrLHjscru931qznufXWMWzfvo3Jk++tdFltqpchPHFiidvl99zjfrmIiBj32Xn0\n6FHCw8MJCQnh11+3cuDAAUpLS89omy1btmTnzh3YbDaOHDnC1q1bKn1u587R/PjjDwBs3LiB9u07\nsn//Pj76aAHnntuZ8eMnkpOT43ZZbauXh6Nd5y4KmTMngG3bzHTqZOeeezQ6WkSkKuU/O12jo73x\n2XnOOZ0IDg7hzjtHc8EFF3HttUOYNetJunS58LS3GRERSXx8ArffPpJ27doTHR1T6d709dffwMyZ\njzBhwh04HA7uu28yzZpZ2bjxZ7788gv8/f0ZNOgat8tqm8l58j66F2Rm5np0e1ZrmMe3Ke6p196h\nPnuH+uwdtdnnxYs/Jz4+AbPZzMiRSTz77AtERTWvldc6U1ZrmNvl9XJPWERE5PDhw4wZMwp//wCu\nvjqhzgZwVRTCIiJSL40YcQsjRtxidBlnpF4OzBIREfEFCmERERGDKIRFREQMohAWERExiEJYRERO\n29ixt1aYKOPVV1/kww/fc/v89et/4MEH/wXAlCn3Vfj6J5+kMG/e3Epf77fftvPf/+4GIDn5AYqL\ni063dIYOHUxBQcFpr+8JNQrhmTNnMnz4cJKSkvjll1/Kfe39999n+PDh3HDDDcyYMaNWihQRkbop\nPr4/K1YsK7csI2MFcXFXV7vuE088e8qv9/XXK9iz578APPLI4wQGVj7fdH1Q7SVKa9asYffu3aSk\npLBjxw6mTp1KSkoK4Lo91Lx58/jiiy+wWCyMHj2an376iYsuuqjWCxcREeP163c1d955G3fdNQGA\nrVu3YLVasVqjWLv2e95++3XAj7CwMB599Ily6w4a1I9Fi77khx/W8Pzzs4iIiCQyslnZrQlnzHiY\nzMxDFBYWMnr0GFq0aMlnn6Xy9dcrCA8P56GHHuCdd1LIy8vl8ccfpbS0FD8/P6ZMmYbJZGLGjIdp\n1ao1v/22nU6dzmXKlGluv4dDhw5WWD8qqjmPPjqNw4ezKCkp4bbbxtK9+6UVll1+ec8z6l+1Ibx6\n9Wri4uIA6NixIzk5OeTl5REaGoq/vz/+/v4UFBQQEhJCYWEhTZo0OaOCRETk9Dz8cCCff+7Z6R8G\nD7bx8MPFlX49PDyCVq1as3nzRqKjz2fFimXExycAkJubyzPPPENQUFMee+whvv9+NSEhIRW2MXfu\ni0yb9hjnnNOJf/5zAq1atSY39xiXXno5Awb8jT/+2Mu0aVOYP/89LrusB3369CM6+vyy9d9441X+\n9rdr6dfvar76ajnz57/GbbeN5ddft/DIIzMJD48gMXEgubm5hIVVnLnK3frDht1ATs5RXnrpdXJz\nc1m9eiU7dvxWYdmZqvZwdFZWFuHh4WWPIyIiyMzMBCAwMJBx48YRFxdH3759ufDCC2nfvv0ZFyUi\nIvVHfHwCX37pOiS9cuU39OnTD4CmTZvy4IMPMn78GH78cR3Hjrm/IcL+/fs555xOAFx0UVcAwsIa\ns2XLJu68czQzZjxc6boAv/66hYsv7gZA167d2b79VwBat25LZGQz/Pz8aNbMSn5+Xo3Xb9fubAoK\n8nnssWmsX7+WuLir3S47U6f8K9PJU03n5eUxd+5cli5dSmhoKKNGjWLr1q107ty50vXDw0OwWKq+\nZdWpqmxOTvE89do71Gfv8LU+v/SS649nBfz5p3JDhgzmuuuuY9iwRDp27EDHjq0BeOqp6bz22mt0\n7NiRRx99lLCwIJo2DSEw0B+rNQyTyYTVGobFYi77WYSEBGCxwHffZVBSUsjChSkcPXqUoUOHYrWG\nERTkT5MmwVitYZjNfjRrForFYiYiohFWaxhOZyH+/hYiIhqVvQ6AxeJHeHhIuZ95Veu3bWslNfUT\n1q9fT1paGuvWfcfjjz/udtmZqDaEo6KiyMrKKnt86NAhrFYrADt27KBt27ZEREQA0L17dzZu3Fhl\nCB854tmRaJqE3XvUa+9Qn71Dffass8/uyPPPv0S/fvFlfT12LPfPWw7uY+XK1bRq1Y5GjQooLi4l\nMzMXp9NJZmYuERHNWLduA23btuPbb1cRE3MBe/YcIDzcyuHD+Xz22ecUFRWTmZlLcbGN7Ow8MjNz\nsdsdZGXlcc45nVm2LOPPPfJv+J//OZfs7HxsNkdZLTabg+zsfAIDT/zMq1r/22/XsmvXTvr3H8j4\n8f/krrv+4XZZTd9Dp30Dh169evHCCy+QlJTEpk2biIqKIjQ0FIDWrVuzY8cOioqKCAoKYuPGjfTu\n3btGBYmIiO+Ij09g+vRkkpMfK1s2ZMgwbrjhBlq2bMNNN41k/vzXGDPmrgrrjhlzFw8+OJkWLVqW\n3YShT59Ypky5j82bNzJo0DVERUXx5puvc+GFFzN79tPlzi3/4x938Pjjj/H5559isfjzwAPTsNlq\nfntGd+sHBgYxd+5LfPZZKn5+ftx44whatmxVYdmZqtGtDJ955hl++OEHTCYTycnJbN68mbCwMOLj\n41mwYAGpqamYzWYuvvhi/vWvf1W5Ld3KsP5Sr71DffYO9dk71GeXyvaEdT9hqTH12jvUZ+9Qn71D\nfXapLIQ1Y5aIiIhBFMIiIiIGUQiLiIgYRCEsIiJiEIWwiIiIQRTCIiIiBlEIi4iIGEQhLCIiYhCF\nsIiIiEEUwiIiIgZRCIuIiBhEISwiImIQhbCIiIhBFMIiIiIGUQiLiIgYRCEsIiJiEIWwiIiIQRTC\nIiIiBlEIi4iIGEQhLCIiYhCFsIiIiEEUwiIiIgZRCIuIiBhEISwiImIQhbCIiIhBFMIiIiIGUQiL\niIgYRCEsIiJiEIWwiIiIQRTCIiIiBlEIi4iIGEQhLCIiYhCFsIiIiEEUwiIiIgZRCIuIiBhEISwi\nImIQS02eNHPmTH7++WdMJhNTp06lS5cuABw8eJB//vOfZc/bs2cPkyZNYvDgwbVTrYiIiA+pNoTX\nrFnD7t27SUlJYceOHUydOpWUlBQAmjdvzrvvvguAzWZjxIgRxMbG1m7FIiIiPqLaw9GrV68mLi4O\ngI4dO5KTk0NeXl6F56WlpdG/f38aNWrk+SpFRER8ULUhnJWVRXh4eNnjiIgIMjMzKzzvo48+YujQ\noZ6tTkRExIfV6JzwyZxOZ4VlP/74Ix06dCA0NLTa9cPDQ7BYzKf6slWyWsM8uj2pnHrtHeqzd6jP\n3qE+V67aEI6KiiIrK6vs8aFDh7BareWek5GRQY8ePWr0gkeOFJxiiVWzWsPIzMz16DbFPfXaO9Rn\n71CfvUN9dqnsF5FqD0f36tWL9PR0ADZt2kRUVFSFPd4NGzbQuXNnD5QpIiLScFS7J9y1a1diYmJI\nSkrCZDKRnJxMamoqYWFhxMfHA5CZmUlkZGStFysiIuJLTE53J3lrkScPS5SWwurVYURE5HPeeQ7M\nnj3VLH+hw0reoT57h/rsHeqzS2WHo095YFZd8vXXZm68EaARYWFOune3c9llrj8XX2wnJMToCkVE\nRCpXr0O4b187774LS5aU8P33Fr76yvUHwGJx0qWLg0svdYXypZfasVq9utMvIiJSpXodwmYz3Hwz\n9O9fDBSTmWli7Voz339vZs0aMz//7Mf69WZefdX1/A4dHGWBfNllNjp2dGIyGfotiIhIA1avzwlD\n1ecbCgrgp59OhPKaNWZyc0+kbmSka0/5+N5yly4OAgI8Wp5P0bkd71CfvUN99g712cUnzwlXJyQE\neva007OnHQC7HbZu9SsXykuW+LNkiT8AQUFOunY9Ecrdu9tp0sTI70BERHyZT4fwX5nNEBPjICbG\nwejRpQDs3WsqC+TvvzezerWZVatcbTGZnJx33onzypddZqdNmzM7cJCWZmH27AC2bfOjUycHEyeW\nkJhoO+PvTURE6p8GFcLutGnjpE0bG0OGuILw2DH44YcTobx+vZnNm8289Zbr+a1anTivfOmldqKj\na35pVFqahbFjg8seb9li/vNxoYJYRKQB8ulzwp5QUgIbN7oOYR8/jJ2VdWKisZMvjbr0Ujtdu1Z+\naVTv3iFs2VIxsaOj7WRkeHY6z9qgczveoT57h/rsHeqzS4M8J+wJAQHQtauDrl0d3HlnKU4n/P67\nqVwoV3Zp1PE/UVGu33O2bXM/S2hly0VExLcphE+RyQQdOjjp0MHGDTe4DiHX9NKoqCgn+/dXvCaq\nUyeHN78FERGpIxTCHmC1Ohk40MbAga5Qdndp1Icf+le6/j33lHirVBERqUMUwrWgqkujUlMtrFtn\nxm43YbE4GTGilGuv1aAsEZGGSCcjveD4pVGjR5fyf/9XyLZteUycWIzZDG++GUBCQgjffae7T4iI\nNDQKYQOEhcHUqSWsWpXPkCGl/PSTmWuuCWH06CB+/13zaIqINBQKYQO1bevk1VeLWLw4n+7d7fzf\n//lzxRWNSE4OJCfH6OpERKS2KYTrgO7dHSxaVMDrrxfSsqWTV14J4LLLGjFvnj+lpUZXJyIitUUh\nXEeYTHDttTa+/TafadOKKSkx8cADQfTpE8KyZWa8O6WKiIh4g0K4jgkKgrvvLuH77/MZNaqEHTv8\nuOmmEIYNC2bTJv24RER8iT7V6yir1cnTTxeTkVFAbKyNb76xEBsbwn33BXLwoAZviYj4AoVwHde5\ns4MFCwpZsKCAc8918N57AVx+eSOeey6AwkKjqxMRkTOhEK4nYmPtrFhRwNNPFxEc7OTxxwPp2bMR\nH39swaFZL0VE6iWFcD1iscCoUaV8910+d99dTGamibvuCmbgwBC+/16TfYiI1DcK4XqocWOYNq2E\nlSvz+fvfS1m/3szgwSH84x9B7Nql88UiIvWFQrgea9fOyWuvFbFoUT7dutn5979dk3088kggx44Z\nXZ2IiFRHIewDLrnEweLFBcydW0hUlJOXXnJN9jF/vj823RtCRKTOUgj7CJMJEhNtrFyZz//+bzFF\nRSamTHFN9vHll5rsQ0SkLlII+5jgYNf9ib//Pp8RI0r47Tc/brghhOHDg9m8+fR+3GlpFnr3DsFi\ngd69Q0hL0x0wRUQ8QSHso6KinMyaVcyKFQX07m0jI8M12cekSYEcOlTzwVtpaRbGjg1myxYzdjts\n2WJm7NhgBbGIiAcohH1cdLSDhQsL+eCDAjp2dPDuu67zxXPmBFBUVP36s2cHuF0+Z4775SIiUnMK\n4QbAZIK4ODsZGQU88UQRQUFOZswIpFevRqSlWao8X7xtm/u3SGXLRUSk5vRJ2oD4+8Po0a7JPsaN\nK+HgQRNjx7om+1i71v1boVMn99NxVbZcRERqTiHcADVpAsnJxXz7bT6DB5eybp2ZQYMaMWZMEP/9\nb/nzxRMnlrjdxj33uF8uIiI1pxBuwM4+28m8eUX8+98FXHyxnU8/9adXr0Y89lgAubmu5yQm2pg7\nt5DoaDsWC0RH25k7t5DERF2ALCJypkxOp3evIM3MzPXo9qzWMI9vsyFyOCA11cL06YHs2+dHs2YO\nJk8u4aabSrH8ORBavfYO9dk71GfvUJ9drNYwt8u1JywA+PnB0KE2Vq3K54EHiikoMHH//UHExoaw\nYoVuDiEiUhsUwlJOSAjce69rso+bby7h11/9SEoKISkpmN27ja5ORMS31CiEZ86cyfDhw0lKSuKX\nX34p97X9+/dzww03MHToUB566KFaKVK8r3lzJ88+W8yXXxZw5ZU2VqywMGAA5OUZXZmIiO+oNoTX\nrFnD7t27SUlJYcaMGcyYMaPc15944glGjx7Nxx9/jNlsZt++fbVWrHjf+ec7+PjjQsaOLWHLFrjr\nriAcujpJRMQjqg3h1atXExcXB0DHjh3Jyckh78/dIYfDwbp164iNjQUgOTmZVq1a1WK5YgSTyXVJ\nU2wsLF3qzzPPaLYsERFPqDaEs7KyCA8PL3scERFBZmYmANnZ2TRq1IjHH3+cG264gVmzZtVepWIo\niwVSUuCssxw880wgixZp7mgRkTN1yp+kJ1/R5HQ6OXjwICNHjqR169aMGTOGjIwM+vTpU+n64eEh\nWCyeHW1b2dBv8bzPP/ejRw+4++5gLrkEYmKMrsg36T3tHeqzd6jPlas2hKOiosjKyip7fOjQIaxW\nKwDh4eG0atWKs846C4AePXqwffv2KkP4yJGCMyy5PF2D5j1WaxgtW+by/PMW/vGPYAYPdpCenk/T\npkZX5lv0nvYO9dk71GeX075OuFevXqSnpwOwadMmoqKiCA0NBcBisdC2bVt27dpV9vX27dt7qGSp\nq665xsbEicX8/rsfY8YEY7cbXZGISP1U7Z5w165diYmJISkpCZPJRHJyMqmpqYSFhREfH8/UqVOZ\nMmUKTqeTTp06lQ3SEt82eXIJGzeaWb7cwowZATz0kOaSFhE5VZq2Umrsr70+dgz692/Ejh1+vPpq\nIUOGaD5pT9B72jvUZ+9Qn100baV4XOPG8M47hYSGOrn33iA2bNDbSUTkVOhTU87IOec4eOWVQoqK\nYNSoYDIzTdWvJCIigEJYPKB/fzuTJ5ewd68ft98eRGmp0RWJiNQPCmHxiHvvLeFvfytl1SoLDz0U\naHQ5IiL1gkJYPMJkguefL+K88+zMmxfABx9oRi0RkeoohMVjQkPhrbcKadrUyb/+FcQPP+jtJSJS\nFX1Kike1b+/k9dcLsdng1luDOXBAA7VERCqjEBaP693bTnJyMQcP+nHrrcEUFxtdkYhI3aQQllpx\nxx2lDB1ayrp1ZiZPDsS7U8KIiNQPCmGpFSYTzJpVxIUX2vnggwDmz/c3uiQRkTpHISy1JjjYNVCr\nWTMH06YFsmqVZ29hKSJS3ymEpVa1bu1k/vwiAG67LYg9ezRQS0TkOIWw1LrLL7czY0Yxhw/7ccst\nwRR49pbSIiL1lkJYvOKWW0oZMaKEDRvM3HdfkAZqiYigEBYvMZlg5sxiLrnETmqqPy+9pIFaIiIK\nYfGawECYP7+QFi0cTJ8eyIoVGqglIg2bQli8qnlzJ2+9VYi/P4wdG8zOnRqoJSINl0JYvK5rVwdP\nP11ETo6JUaOCycszuiIREWM8fpJ3AAAZMUlEQVQohMUQSUk2br+9hF9/NTNuXBAOh9EViYh4n0JY\nDPPww8VccYWNJUv8mTUrwOhyRES8TiEshvH3h9dfL+Kssxw8/XQgS5boHsQi0rAohMVQkZGugVrB\nwU7uuiuIX3/VW1JEGg594onhzj/fwZw5ReTnmxg5MpijR42uSETEOxTCUif8/e82Jkwo5vff/bjj\njmDsdqMrEhGpfQphqTMeeKCEfv1srFhhYeZMDdQSEd+nEJY6w2yGV18tpEMHBy+8EEhamgZqiYhv\nUwhLndKkCbzzTiGhoU4mTgxiw4bTe4umpVno3TuEli1D6d07RIEuInWSQljqnE6dHLz8ciGFha4Z\ntbKyTm1qy7Q0C2PHBrNlixm73cSWLWbGjg1WEItInaMQljopIcHO5MnF7N3rx+23B1FaWvN1Z892\nfz55zhydZxaRukUhLHXWvfeWMHBgKStXWkhODqzxetu2uX9bV7ZcRMQo+lSSOsvPD158sYjOne28\n8UYAH35Ys8PJnTq5n4i6suUiIkZRCEudFhoKb79dSJMmTu6/P4h166p/y06cWOJ2+T33uF8uImIU\nhbDUee3bO3nttUJsNrj11mAOHqx6oFZioo25cwuJjrZjsTiJjrYzd24hiYk2L1UsIlIzCmGpF/r2\ntTNtWjEHDvhxyy3BFBdX/fzERBsZGQXs25dHRkaBAlhE6iSFsNQbd91VypAhpaxbZ2bKlECcTqMr\nEhE5MwphqTdMJnj22SIuuMDO++8H8Oab/kaXJCJyRhTCUq+EhLgGajVr5uDBBwNZvdpsdEkiIqet\nRtd8zJw5k59//hmTycTUqVPp0qVL2ddiY2Np0aIFZrPrw/CZZ56hefPmtVOtCNCmjZN584q47rpg\nbrstiC++KKBNGx2bFpH6p9oQXrNmDbt37yYlJYUdO3YwdepUUlJSyj3n9ddfp1GjRrVWpMhf9ehh\nZ/r0YqZMCWLUqGA+/7yAkBCjqxIROTXVHo5evXo1cXFxAHTs2JGcnBzy8vJqvTCR6tx6ayk33VTC\nhg1m7rsvSAO1RKTeqXZPOCsri5iYmLLHERERZGZmEhoaWrYsOTmZP/74g27dujFp0iRMpsqv4wwP\nD8Fi8ex5PKs1zKPbk8rVtV7Pmwc7d0Jqqj89evjzz38aXZFn1LU++yr12TvU58qd8m1lnH/Z3Zgw\nYQJXXnklTZo0Ydy4caSnp5OQkFDp+keOFJx6lVWwWsPIzMz16DbFvbra69deMxEXF8LkySbati0k\nNtZudElnpK722deoz96hPrtU9otItYejo6KiyMrKKnt86NAhrFZr2eO///3vREZGYrFYuOqqq9i2\nbZsHyhWpuebNnbz1ViEWC4wdG8zOnad260MREaNUG8K9evUiPT0dgE2bNhEVFVV2KDo3N5fbbruN\nkhLXnLxr167lnHPOqcVyRdzr1s3B008XkZNj4pZbgtGwBRGpD6o9HN21a1diYmJISkrCZDKRnJxM\namoqYWFhxMfHc9VVVzF8+HACAwOJjo6u8lC0SG264QYbGzaU8MYbAYwfH8T8+UX46Up4ETkFeXmw\nf78f55zjnbuumZx/Pclbyzx9bkDnG7ynPvS6tBSuvz6YlSstTJ5czKRJ9e/OSfWhz75AffaO+tLn\n3FyYNy+AV14J4OhR+OWXfJo391w8nvY5YZH6xN8fXn+9iLZtHTz5ZCBvv+2PQ7cRFpFK5ObC7NkB\ndO8eysyZrjnpH3qomKgo7+yfKoTF5zRr5hqoFRLiugdxv34hfPWVprcUkRPy8iqG7wMPFLNuXR7j\nxpVSxZW2HqUQFp90wQUOvv02n+uvL2XzZj+GDw9h2LBgNmzQW16kIcvLgzlzAujWrWL43ntvCWFe\nvqRZn0jis9q0cfLii0UsX15Anz42vv7aQlxcCOPGBbFnjy5jEmlITg7fGTNc4TtlSjE//GBM+B6n\nEBafd8EFDhYuLCQlpYDoaAcffeRPz56NePjhQI4eNbo6EalNVYXvffeV0LixsfUphKXB6NvXzpdf\nFvDSS4VYrU5efjmASy8N5eWX/SkqMro6EfGkv4avw1G3wvc4hbA0KH5+MGyYjVWr8klOLsLphIcf\nDqJnz0Z89JFFI6lF6rnKwnfduroVvscphKVBCgqCceNKWbMmjzvvLOHQIRPjxgUTHx/C119rJLVI\nfZOXB88/H0D37o3qRfgepxCWBi08HB55pJhVq/IZOrSUDRvMDBsWwvXXB7Nxo/57iNR1J4fv9OmB\n2O0mJk+u++F7nD5lRICzznLy8stFLF+ez5VX2sjIsNCvXwjjxwexd69GUovUNVWF76RJdT98j1MI\ni5ykSxcHH39cyIIFBZx3noOFC/3p0aMRjz4aQE6O0dWJiK+E73EKYZG/MJkgNtY1kvqFFwpp1szJ\niy8Gcumlobzyij/FxUZXKNLw+Fr4HqcQFqmE2QzDh7tGUk+bVozdDsnJQfTq1YhPPtFIahFv8NXw\nPU4hLFKN4GC4++4S1qzJ4447SjhwwMSddwZz9dUhfPONRlKL1AZ34fuvf7mu8/WF8D1OISxSQxER\n8Oijxaxcmc+QIaX88ouZoUNDSEoKZtMm/VcS8YSqwvef/yyhSROjK/QsfXKInKJ27Zy8+moRy5a5\nRlKvWGEhNjaECROC+OMPjaQWOR1/DV+bzbfD9ziFsMhpuvDCEyOpO3d2sGCBayT19OkaSV2XOZ2w\ndasfq1a5PvjFWJWF77p1vh2+x5mcTqd37lz8p8zMXI9uz2oN8/g2xT31unJ2O3z0kYUnnghk3z4/\nwsOd3HdfMbfcUkpg4KltS332PIcDfvzRj0WLLCxa5M/vv5/Y/zj7bAcxMXZiYhycf77r7zZtnF67\nn6yvq+z9nJcHb74ZwMsv+3P4sB+NGzu5444Sbr/dN4PXanV/myaFsNSYel29wkJ4/fUA5swJIDfX\nxFlnOZg6tZi//92GXw2PO6nPnmGzwXffmVm0yMLixRb273f9AEJCnMTF2ejY0Z8ffrCxaZMf2dnl\nfzhNmjgrBPO55zpO+Rcqqfh+dhe+Y8eWMGaMb4bvcQphOWPqdc0dPmxi9uwA5s/3p7TUxIUX2klO\nLuaKK+zVrqs+n76iIvjmGzOLFvmTnm4uC9emTZ30729j0KBSeve2Exx8os9OJxw4YGLjRj82bTKX\n/b1zpwmn88TusMXi5JxzHERHnwjmmBgHVqtXP0LrneN9bqjhe5xCWM6Yen3qdu0y8fjjgaSl+QMQ\nF2fjwQeLiY6u/CJj9fnU5OXBl19aWLTIwrJlFvLzXcHZvLmDgQNtDBpko0cPO/7+5derrs/5+bBl\niyuQN23yY+NGM5s3+1FQUP44dfPmjnJ7zOef76BDBwdmXb0GQHBwGE89Vdxgw/c4hbCcMfX69P30\nkx+PPBLIypUWTCYnSUk2Jk8uplWriv/91OfqZWdDerqFxYv9ycgwU1zsCsZ27RwMGuTa4+3WzVHl\nKYDT6bPD4frF6uRg3rTJjz/+KP9CwcFOOnd2BbNrz9l13jk09JS/1TrN4YCjRyEry4/Dh01kZbn+\nHD5sKnu8cqU/WVk02PA9TiEsZ0y9PjNOJ3z5pZlHHw1k61YzQUGuD6W77y4/8YD67N7+/SYWL3ad\n3121yozd7gre886zl+3xxsQ4ajygypN9zs6GzZtPHMretMmPX3/1o7S0fDHt2p28x1z3BoEdD9XD\nh/3KBepfg/X439nZprKfQ2WaNIExY4obbPgepxCWM6Zee4bdDgsXukZS79/vR0SEg0mTShg1qpSA\nAPX5ZDt3mli0yJ/Fiy2sW3fi+G63bseDt5QOHU7vI6y2+1xSAtu3+5XbY67pILBOnRwEBZ15DSeH\n6uHDJjIzK4bpyXuwNQnV4zVHRrr+NGvmoFkzJ82anbzsxN+dO4dy9KjezwphOWPqtWcVFJwYSZ2X\nZ6JdOwf/+7/F/OMfwWRlNcw+O52wefPxS4ksbNniCl4/Pyc9e9oZNMjGgAE2t4fxT5UR7+fjg8BO\nDuaNGysOAjObnXTqVHEQWGSkk5ycqg//eipUTw7T4/9u1sxJRISTgICaf8/63HBRCMsZU69rR1aW\nieeeC+Ctt1wjqcPCoF07O2ef7eDssx20a+cs+3fr1k4sFqMr9iyHA9at82PxYn8WLbKwa5drTzEg\nwEmfPnYGDSrl6qvtREZ69qOqLr2fazoIzM/PicNRfag2bnxygLpGcP91LzUy0onVeuqheqrqUp+N\npBCWM6Ze167ffzcxe3Ygv/ziz86dTgoLK37YWixO2rY9Econh3S7dg4aNTKg8NNQWgqrV5+4hvfg\nwRPX8MbHu87v9utnI8z955ZH1PX3s7tBYEeOmIiMrPrwb2Rk7YbqqarrffYWhbCcMfXaO6zWMA4d\nyuXQIRO//+7Hrl0mdu3yY9cuP3bv9mP3bhNZWe6H/UZFHQ9n50kh7XrcrJmxA4CKiuDrr49fw2vh\nyBFXMeHh5a/h9cS50JrQ+9k71GeXykLYxw5sifgGkwmaN3fSvLmdyy+v+PXcXMqC2fXHVBbSP/xg\nZs2aimnbqNHJe9DOkwLaNUK3Ng5z5+bC8uWuvd1lyyxlh1dbtHAwenRp2TW8vnaIXaSm9NYXqYfC\nwuCCCxxccEHFST9KS2HPHlOFkN6924/ff3edd/wri8VJmzblD3OfHNSncpj78GET6emuPd6vvzZT\nUuIK3rPPdjBoUCmDBpXStWvV1/CKNBQKYREf4+8PHTo46dDBDpSfJtPphEOHTOX2nk8c6jaRkeH+\nI8FqLX+I++Tz0Vark/37TSxZ4hrRvGqVuWzwUHT0iWt4o6Nrfg2vSEOhEBapI9LSLMyeHcC2bdCp\nUwgTJ5aQmGjz6GucfJj7sssqfj0vjwqHuI8f5l6/3o+1ayvuRYeEOMuN4u3WzTWieeBA22lfwyvS\nUCiEReqAtDQLY8cGlz3essX85+NCjwdxVUJD4fzzXdMs/lVpKezd6/4wd2Skk4EDbQwcaKNlSwWv\nSE0phEXqgNmz3V9TMmdOgFdDuCr+/tC+vZP27Sse5haR06OhESJ1wLZt7v8rVrZcRHyD/oeL1AGd\nOrm/tWFly0XEN9QohGfOnMnw4cNJSkril19+cfucWbNmMWLECI8WJ9JQTJxY4nb5Pfe4Xy4ivqHa\nEF6zZg27d+8mJSWFGTNmMGPGjArP+e2331i7dm2tFCjSECQm2pg7t5DoaNfEFdHRdubO9e6gLBHx\nvmpDePXq1cTFxQHQsWNHcnJyyMvLK/ecJ554gnvvvbd2KhRpIBITbWRkFFBaChkZBQpgkQag2tHR\nWVlZxMTElD2OiIggMzOT0NBQAFJTU7n00ktp3bp1jV4wPDwEi6XitYZnorI5OcXz1GvvUJ+9Q332\nDvW5cqd8idLJ93s4evQoqampvPnmmxw8eLBG6x85UnCqL1klTQ7uPeq1d6jP3qE+e4f67FLZLyLV\nHo6OiooiKyur7PGhQ4ewWq0AfPfdd2RnZ3PTTTcxfvx4Nm3axMyZMz1UsoiIiG+rNoR79epFeno6\nAJs2bSIqKqrsUHRCQgKLFy9m4cKFvPjii8TExDB16tTarVhERMRHVHs4umvXrsTExJCUlITJZCI5\nOZnU1FTCwsKIj4/3Ro0iIiI+yeQ8+SSvF3j63IDON3iPeu0d6rN3qM/eoT67nPY5YREREakdCmER\nERGDKIRFREQMohAWERExiEJYRETEIAphERERgyiERUREDKIQFhERMYhCWERExCAKYREREYMohEVE\nRAyiEBYRETGIQlhERMQgCmERERGDKIRF5LSlpVno3TuEli1D6d07hLS0am9RLiIn0f8YETktaWkW\nxo4NLnu8ZYv5z8eFJCbajCtMpB7RnrCInJbZswPcLp8zx/1yEalIISwip2XbNvcfH5UtF5GK9L9F\nRE5Lp06OU1ouIhUphEXktEycWOJ2+T33uF8uIhUphEXktCQm2pg7t5DoaDsWi5PoaDtz52pQlsip\n0OhoETltiYk2ha7IGdCesIiIiEEUwiIiIgZRCIuIiBhEISwiImIQhbCIiIhBFMIiIiIGUQiLiIgY\nRCEsIiJiEIWwiIiIQRTCIiIiBlEIi4iIGEQhLCINSlqahd69Q7BYoHfvENLSNIW+GEfvPhFpMNLS\nLIwdG1z2eMsW85+PdfcnMYb2hEWkwZg9O8Dt8jlz3C8XqW012hOeOXMmP//8MyaTialTp9KlS5ey\nry1cuJCPP/4YPz8/OnfuTHJyMiaTqdYKFhE5Xdu2ud/vqGy5SG2r9p23Zs0adu/eTUpKCjNmzGDG\njBllXyssLGTRokW8//77LFiwgJ07d/Ljjz/WasEiIqerUyfHKS0XqW3VhvDq1auJi4sDoGPHjuTk\n5JCXlwdAcHAwb7/9Nv7+/hQWFpKXl4fVaq3dikVETtPEiSVul99zj/vlIrWt2hDOysoiPDy87HFE\nRASZmZnlnvPaa68RHx9PQkICbdu29XyVIiIekJhoY+7cQqKj7VgsEB1tZ+5cDcoS45zy6Gin01lh\n2ZgxYxg5ciS333473bp1o1u3bpWuHx4egsViPtWXrZLVGubR7Unl1GvvUJ9rz5gxrj8uZiC4imeL\nJ+j9XLlqQzgqKoqsrKyyx4cOHSo75Hz06FG2b9/OJZdcQlBQEFdddRXr16+vMoSPHCnwQNknWK1h\nZGbmenSb4p567R3qs3eoz96hPrtU9otItYeje/XqRXp6OgCbNm0iKiqK0NBQAGw2G1OmTCE/Px+A\nDRs20L59e0/VLCIi4tOq3RPu2rUrMTExJCUlYTKZSE5OJjU1lbCwMOLj4xk3bhwjR47EYrFw7rnn\n0q9fP2/ULSIiUu+ZnO5O8tYiTx+W0KEO71GvvUN99g712TvUZ5fTPhwtIiLGOj7fdcuWoZrv2sfo\nJykiUodpvmvfpj1hEZE6TPNd+zaFsIhIHab5rn2bfooiInWY5rv2bQphEZE6TPNd+zaFsIhIHVZ+\nvmun5rv2MRodLSJSxyUm2hS6Pkp7wiIiIgZRCIuIiBhEISwiImIQhbCIiIhBFMIiIuJxx+e7tljQ\nfNdVUFdERMSjNN91zWlPWEREPErzXdecQlhERDxK813XnDoiIiIepfmua04hLCIiHqX5rmtOISwi\nIh5Vfr5rNN91FTQ6WkREPO74fNdWaxiZmQVGl1NnaU9YRETEIAphERERgyiERUREODHLV8uWoV6b\n5UvnhEVEpMEzapYv7QmLiEiDZ9QsXwphERFp8Iya5UshLCIiDZ5Rs3wphEVEpMEzapYvhbCIiDR4\n5Wf5cnptli+NjhYREeHELF/epD1hERERgyiERUREDKIQFhERMYhCWERExCAKYREREYMohEVERAyi\nEBYRETGIQlhERMQgCmERERGDmJxOp9PoIkRERBoi7QmLiIgYRCEsIiJiEIWwiIiIQRTCIiIiBlEI\ni4iIGEQhLCIiYpB6HcIzZ85k+PDhJCUl8csvvxhdjs966qmnGD58ONdddx1ffPGF0eX4tKKiIuLi\n4khNTTW6FJ/273//m2uuuYYhQ4aQkZFhdDk+KT8/n/HjxzNixAiSkpL4z3/+Y3RJdZLF6AJO15o1\na9i9ezcpKSns2LGDqVOnkpKSYnRZPue7775j+/btpKSkcOTIERITE7n66quNLstnvfLKKzRp0sTo\nMnzakSNHeOmll/jkk08oKCjghRdeoE+fPkaX5XPS0tJo3749kyZN4uDBg4waNYqlS5caXVadU29D\nePXq1cTFxQHQsWNHcnJyyMvLIzQ01ODKfMsll1xCly5dAGjcuDGFhYXY7XbMZrPBlfmeHTt28Ntv\nvykQatnq1avp0aMHoaGhhIaG8thjjxldkk8KDw/n119/BeDYsWOEh4cbXFHdVG8PR2dlZZX7oUZE\nRJCZmWlgRb7JbDYTEhICwMcff8xVV12lAK4lTz75JFOmTDG6DJ+3d+9eioqKuOOOO7jxxhtZvXq1\n0SX5pEGDBrFv3z7i4+O5+eabmTx5stEl1Un1dk/4rzT7Zu1avnw5H3/8MfPnzze6FJ/06aefctFF\nF9G2bVujS2kQjh49yosvvsi+ffsYOXIkX331FSaTyeiyfMpnn31Gq1atmDdvHlu3bmXq1Kka6+BG\nvQ3hqKgosrKyyh4fOnQIq9VqYEW+6z//+Q+vvvoqb7zxBmFhYUaX45MyMjLYs2cPGRkZHDhwgICA\nAFq0aEHPnj2NLs3nREZGcvHFF2OxWDjrrLNo1KgR2dnZREZGGl2aT1m/fj1XXHEFAJ07d+bQoUM6\nleVGvT0c3atXL9LT0wHYtGkTUVFROh9cC3Jzc3nqqaeYO3cuTZs2NbocnzV79mw++eQTFi5cyLBh\nw7jrrrsUwLXkiiuu4LvvvsPhcHDkyBEKCgp0vrIWtGvXjp9//hmAP/74g0aNGimA3ai3e8Jdu3Yl\nJiaGpKQkTCYTycnJRpfkkxYvXsyRI0eYOHFi2bInn3ySVq1aGViVyOlr3rw5/fv35/rrrwfgwQcf\nxM+v3u6P1FnDhw9n6tSp3HzzzdhsNh5++GGjS6qTdCtDERERg+jXPxEREYMohEVERAyiEBYRETGI\nQlhERMQgCmERERGDKIRFREQMohAWERExiEJYRETEIP8P+c7Nw8DTxHAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PVve_gtqnT5Z", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Combining CNNs and RNNs to process long sequences\n", + "\n", + "\n", + "Because 1D convnets process input patches independently, they are not sensitive to the order of the timesteps (beyond a local scale, the \n", + "size of the convolution windows), unlike RNNs. Of course, in order to be able to recognize longer-term patterns, one could stack many \n", + "convolution layers and pooling layers, resulting in upper layers that would \"see\" long chunks of the original inputs -- but that's still a \n", + "fairly weak way to induce order-sensitivity. One way to evidence this weakness is to try 1D convnets on the temperature forecasting problem \n", + "from the previous section, where order-sensitivity was key to produce good predictions. Let's see:" + ] + }, + { + "metadata": { + "id": "nEN7K-zpnT5Z", + "colab_type": "code", + "colab": { + "resources": { + "http://localhost:8080/nbextensions/google.colab/files.js": { + "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7Ci8vIE1heCBhbW91bnQgb2YgdGltZSB0byBibG9jayB3YWl0aW5nIGZvciB0aGUgdXNlci4KY29uc3QgRklMRV9DSEFOR0VfVElNRU9VVF9NUyA9IDMwICogMTAwMDsKCmZ1bmN0aW9uIF91cGxvYWRGaWxlcyhpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IHN0ZXBzID0gdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKTsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIC8vIENhY2hlIHN0ZXBzIG9uIHRoZSBvdXRwdXRFbGVtZW50IHRvIG1ha2UgaXQgYXZhaWxhYmxlIGZvciB0aGUgbmV4dCBjYWxsCiAgLy8gdG8gdXBsb2FkRmlsZXNDb250aW51ZSBmcm9tIFB5dGhvbi4KICBvdXRwdXRFbGVtZW50LnN0ZXBzID0gc3RlcHM7CgogIHJldHVybiBfdXBsb2FkRmlsZXNDb250aW51ZShvdXRwdXRJZCk7Cn0KCi8vIFRoaXMgaXMgcm91Z2hseSBhbiBhc3luYyBnZW5lcmF0b3IgKG5vdCBzdXBwb3J0ZWQgaW4gdGhlIGJyb3dzZXIgeWV0KSwKLy8gd2hlcmUgdGhlcmUgYXJlIG11bHRpcGxlIGFzeW5jaHJvbm91cyBzdGVwcyBhbmQgdGhlIFB5dGhvbiBzaWRlIGlzIGdvaW5nCi8vIHRvIHBvbGwgZm9yIGNvbXBsZXRpb24gb2YgZWFjaCBzdGVwLgovLyBUaGlzIHVzZXMgYSBQcm9taXNlIHRvIGJsb2NrIHRoZSBweXRob24gc2lkZSBvbiBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcCwKLy8gdGhlbiBwYXNzZXMgdGhlIHJlc3VsdCBvZiB0aGUgcHJldmlvdXMgc3RlcCBhcyB0aGUgaW5wdXQgdG8gdGhlIG5leHQgc3RlcC4KZnVuY3Rpb24gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpIHsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIGNvbnN0IHN0ZXBzID0gb3V0cHV0RWxlbWVudC5zdGVwczsKCiAgY29uc3QgbmV4dCA9IHN0ZXBzLm5leHQob3V0cHV0RWxlbWVudC5sYXN0UHJvbWlzZVZhbHVlKTsKICByZXR1cm4gUHJvbWlzZS5yZXNvbHZlKG5leHQudmFsdWUucHJvbWlzZSkudGhlbigodmFsdWUpID0+IHsKICAgIC8vIENhY2hlIHRoZSBsYXN0IHByb21pc2UgdmFsdWUgdG8gbWFrZSBpdCBhdmFpbGFibGUgdG8gdGhlIG5leHQKICAgIC8vIHN0ZXAgb2YgdGhlIGdlbmVyYXRvci4KICAgIG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSA9IHZhbHVlOwogICAgcmV0dXJuIG5leHQudmFsdWUucmVzcG9uc2U7CiAgfSk7Cn0KCi8qKgogKiBHZW5lcmF0b3IgZnVuY3Rpb24gd2hpY2ggaXMgY2FsbGVkIGJldHdlZW4gZWFjaCBhc3luYyBzdGVwIG9mIHRoZSB1cGxvYWQKICogcHJvY2Vzcy4KICogQHBhcmFtIHtzdHJpbmd9IGlucHV0SWQgRWxlbWVudCBJRCBvZiB0aGUgaW5wdXQgZmlsZSBwaWNrZXIgZWxlbWVudC4KICogQHBhcmFtIHtzdHJpbmd9IG91dHB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIG91dHB1dCBkaXNwbGF5LgogKiBAcmV0dXJuIHshSXRlcmFibGU8IU9iamVjdD59IEl0ZXJhYmxlIG9mIG5leHQgc3RlcHMuCiAqLwpmdW5jdGlvbiogdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKSB7CiAgY29uc3QgaW5wdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaW5wdXRJZCk7CiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gZmFsc2U7CgogIGNvbnN0IG91dHB1dEVsZW1lbnQgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZChvdXRwdXRJZCk7CiAgb3V0cHV0RWxlbWVudC5pbm5lckhUTUwgPSAnJzsKCiAgY29uc3QgcGlja2VkUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBpbnB1dEVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcignY2hhbmdlJywgKGUpID0+IHsKICAgICAgcmVzb2x2ZShlLnRhcmdldC5maWxlcyk7CiAgICB9KTsKICB9KTsKCiAgY29uc3QgY2FuY2VsID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnYnV0dG9uJyk7CiAgaW5wdXRFbGVtZW50LnBhcmVudEVsZW1lbnQuYXBwZW5kQ2hpbGQoY2FuY2VsKTsKICBjYW5jZWwudGV4dENvbnRlbnQgPSAnQ2FuY2VsIHVwbG9hZCc7CiAgY29uc3QgY2FuY2VsUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBjYW5jZWwub25jbGljayA9ICgpID0+IHsKICAgICAgcmVzb2x2ZShudWxsKTsKICAgIH07CiAgfSk7CgogIC8vIENhbmNlbCB1cGxvYWQgaWYgdXNlciBoYXNuJ3QgcGlja2VkIGFueXRoaW5nIGluIHRpbWVvdXQuCiAgY29uc3QgdGltZW91dFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgc2V0VGltZW91dCgoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9LCBGSUxFX0NIQU5HRV9USU1FT1VUX01TKTsKICB9KTsKCiAgLy8gV2FpdCBmb3IgdGhlIHVzZXIgdG8gcGljayB0aGUgZmlsZXMuCiAgY29uc3QgZmlsZXMgPSB5aWVsZCB7CiAgICBwcm9taXNlOiBQcm9taXNlLnJhY2UoW3BpY2tlZFByb21pc2UsIHRpbWVvdXRQcm9taXNlLCBjYW5jZWxQcm9taXNlXSksCiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdzdGFydGluZycsCiAgICB9CiAgfTsKCiAgaWYgKCFmaWxlcykgewogICAgcmV0dXJuIHsKICAgICAgcmVzcG9uc2U6IHsKICAgICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICAgIH0KICAgIH07CiAgfQoKICBjYW5jZWwucmVtb3ZlKCk7CgogIC8vIERpc2FibGUgdGhlIGlucHV0IGVsZW1lbnQgc2luY2UgZnVydGhlciBwaWNrcyBhcmUgbm90IGFsbG93ZWQuCiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gdHJ1ZTsKCiAgZm9yIChjb25zdCBmaWxlIG9mIGZpbGVzKSB7CiAgICBjb25zdCBsaSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpJyk7CiAgICBsaS5hcHBlbmQoc3BhbihmaWxlLm5hbWUsIHtmb250V2VpZ2h0OiAnYm9sZCd9KSk7CiAgICBsaS5hcHBlbmQoc3BhbigKICAgICAgICBgKCR7ZmlsZS50eXBlIHx8ICduL2EnfSkgLSAke2ZpbGUuc2l6ZX0gYnl0ZXMsIGAgKwogICAgICAgIGBsYXN0IG1vZGlmaWVkOiAkewogICAgICAgICAgICBmaWxlLmxhc3RNb2RpZmllZERhdGUgPyBmaWxlLmxhc3RNb2RpZmllZERhdGUudG9Mb2NhbGVEYXRlU3RyaW5nKCkgOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnbi9hJ30gLSBgKSk7CiAgICBjb25zdCBwZXJjZW50ID0gc3BhbignMCUgZG9uZScpOwogICAgbGkuYXBwZW5kQ2hpbGQocGVyY2VudCk7CgogICAgb3V0cHV0RWxlbWVudC5hcHBlbmRDaGlsZChsaSk7CgogICAgY29uc3QgZmlsZURhdGFQcm9taXNlID0gbmV3IFByb21pc2UoKHJlc29sdmUpID0+IHsKICAgICAgY29uc3QgcmVhZGVyID0gbmV3IEZpbGVSZWFkZXIoKTsKICAgICAgcmVhZGVyLm9ubG9hZCA9IChlKSA9PiB7CiAgICAgICAgcmVzb2x2ZShlLnRhcmdldC5yZXN1bHQpOwogICAgICB9OwogICAgICByZWFkZXIucmVhZEFzQXJyYXlCdWZmZXIoZmlsZSk7CiAgICB9KTsKICAgIC8vIFdhaXQgZm9yIHRoZSBkYXRhIHRvIGJlIHJlYWR5LgogICAgbGV0IGZpbGVEYXRhID0geWllbGQgewogICAgICBwcm9taXNlOiBmaWxlRGF0YVByb21pc2UsCiAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgYWN0aW9uOiAnY29udGludWUnLAogICAgICB9CiAgICB9OwoKICAgIC8vIFVzZSBhIGNodW5rZWQgc2VuZGluZyB0byBhdm9pZCBtZXNzYWdlIHNpemUgbGltaXRzLiBTZWUgYi82MjExNTY2MC4KICAgIGxldCBwb3NpdGlvbiA9IDA7CiAgICB3aGlsZSAocG9zaXRpb24gPCBmaWxlRGF0YS5ieXRlTGVuZ3RoKSB7CiAgICAgIGNvbnN0IGxlbmd0aCA9IE1hdGgubWluKGZpbGVEYXRhLmJ5dGVMZW5ndGggLSBwb3NpdGlvbiwgTUFYX1BBWUxPQURfU0laRSk7CiAgICAgIGNvbnN0IGNodW5rID0gbmV3IFVpbnQ4QXJyYXkoZmlsZURhdGEsIHBvc2l0aW9uLCBsZW5ndGgpOwogICAgICBwb3NpdGlvbiArPSBsZW5ndGg7CgogICAgICBjb25zdCBiYXNlNjQgPSBidG9hKFN0cmluZy5mcm9tQ2hhckNvZGUuYXBwbHkobnVsbCwgY2h1bmspKTsKICAgICAgeWllbGQgewogICAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgICBhY3Rpb246ICdhcHBlbmQnLAogICAgICAgICAgZmlsZTogZmlsZS5uYW1lLAogICAgICAgICAgZGF0YTogYmFzZTY0LAogICAgICAgIH0sCiAgICAgIH07CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPQogICAgICAgICAgYCR7TWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCl9JSBkb25lYDsKICAgIH0KICB9CgogIC8vIEFsbCBkb25lLgogIHlpZWxkIHsKICAgIHJlc3BvbnNlOiB7CiAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgIH0KICB9Owp9CgpzY29wZS5nb29nbGUgPSBzY29wZS5nb29nbGUgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYiA9IHNjb3BlLmdvb2dsZS5jb2xhYiB8fCB7fTsKc2NvcGUuZ29vZ2xlLmNvbGFiLl9maWxlcyA9IHsKICBfdXBsb2FkRmlsZXMsCiAgX3VwbG9hZEZpbGVzQ29udGludWUsCn07Cn0pKHNlbGYpOwo=", + "ok": true, + "headers": [ + [ + "content-type", + "application/javascript" + ] + ], + "status": 200, + "status_text": "" + } + }, + "base_uri": "https://localhost:8080/", + "height": 137 + }, + "outputId": "d1c6c46e-1361-4595-abb7-c31871f55c88" + }, + "cell_type": "code", + "source": [ + "# We reuse the following variables defined in the last section:\n", + "# float_data, train_gen, val_gen, val_steps\n", + "\n", + "import os\n", + "import numpy as np\n", + "from google.colab import files\n", + "\n", + "# --------- following update by eathon \n", + "# path = \"/content/sample_data\"\n", + "path = \"/content\"\n", + "os.chdir(path)\n", + "os.listdir(path)\n", + "pwd = os.getcwd()\n", + "files.upload() # 上傳檔案\n", + "os.listdir(path)\n", + "print (pwd)\n", + "!ls -a\n", + "\n", + "# --------- above updated by eathon\n", + "\n", + "!unzip jena_climate_2009_2016.csv.zip \n", + "\n", + "data_dir = '/content'\n", + "fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')\n", + "\n", + "f = open(fname)\n", + "data = f.read()\n", + "f.close()\n", + "\n", + "lines = data.split('\\n')\n", + "header = lines[0].split(',')\n", + "lines = lines[1:]\n", + "\n", + "float_data = np.zeros((len(lines), len(header) - 1))\n", + "for i, line in enumerate(lines):\n", + " values = [float(x) for x in line.split(',')[1:]]\n", + " float_data[i, :] = values\n", + " \n", + "mean = float_data[:200000].mean(axis=0)\n", + "float_data -= mean\n", + "std = float_data[:200000].std(axis=0)\n", + "float_data /= std\n", + "\n", + "def generator(data, lookback, delay, min_index, max_index,\n", + " shuffle=False, batch_size=128, step=6):\n", + " if max_index is None:\n", + " max_index = len(data) - delay - 1\n", + " i = min_index + lookback\n", + " while 1:\n", + " if shuffle:\n", + " rows = np.random.randint(\n", + " min_index + lookback, max_index, size=batch_size)\n", + " else:\n", + " if i + batch_size >= max_index:\n", + " i = min_index + lookback\n", + " rows = np.arange(i, min(i + batch_size, max_index))\n", + " i += len(rows)\n", + "\n", + " samples = np.zeros((len(rows),\n", + " lookback // step,\n", + " data.shape[-1]))\n", + " targets = np.zeros((len(rows),))\n", + " for j, row in enumerate(rows):\n", + " indices = range(rows[j] - lookback, rows[j], step)\n", + " samples[j] = data[indices]\n", + " targets[j] = data[rows[j] + delay][1]\n", + " yield samples, targets\n", + " \n", + "lookback = 1440\n", + "step = 6\n", + "delay = 144\n", + "batch_size = 128\n", + "\n", + "train_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=0,\n", + " max_index=200000,\n", + " shuffle=True,\n", + " step=step, \n", + " batch_size=batch_size)\n", + "val_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=200001,\n", + " max_index=300000,\n", + " step=step,\n", + " batch_size=batch_size)\n", + "test_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=300001,\n", + " max_index=None,\n", + " step=step,\n", + " batch_size=batch_size)\n", + "\n", + "# This is how many steps to draw from `val_gen`\n", + "# in order to see the whole validation set:\n", + "val_steps = (300000 - 200001 - lookback) // batch_size\n", + "\n", + "# This is how many steps to draw from `test_gen`\n", + "# in order to see the whole test set:\n", + "test_steps = (len(float_data) - 300001 - lookback) // batch_size" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Saving jena_climate_2009_2016.csv.zip to jena_climate_2009_2016.csv.zip\n", + "/content\n", + ". .. .config\tjena_climate_2009_2016.csv.zip\tsample_data\n", + "Archive: jena_climate_2009_2016.csv.zip\n", + " inflating: jena_climate_2009_2016.csv \n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "fXGyHh-anT5d", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 697 + }, + "outputId": "0381e7c7-ac95-47f4-d7b0-fa7726a411fe" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.optimizers import RMSprop\n", + "\n", + "model = Sequential()\n", + "model.add(layers.Conv1D(32, 5, activation='relu',\n", + " input_shape=(None, float_data.shape[-1])))\n", + "model.add(layers.MaxPooling1D(3))\n", + "model.add(layers.Conv1D(32, 5, activation='relu'))\n", + "model.add(layers.MaxPooling1D(3))\n", + "model.add(layers.Conv1D(32, 5, activation='relu'))\n", + "model.add(layers.GlobalMaxPooling1D())\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen,\n", + " steps_per_epoch=500,\n", + " epochs=20,\n", + " validation_data=val_gen,\n", + " validation_steps=val_steps)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.4216 - val_loss: 0.4357\n", + "Epoch 2/20\n", + "500/500 [==============================] - 53s 105ms/step - loss: 0.3654 - val_loss: 0.4515\n", + "Epoch 3/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.3422 - val_loss: 0.4897\n", + "Epoch 4/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.3256 - val_loss: 0.4769\n", + "Epoch 5/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.3119 - val_loss: 0.4634\n", + "Epoch 6/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.3041 - val_loss: 0.4786\n", + "Epoch 7/20\n", + "500/500 [==============================] - 52s 105ms/step - loss: 0.2945 - val_loss: 0.4627\n", + "Epoch 8/20\n", + "500/500 [==============================] - 52s 105ms/step - loss: 0.2887 - val_loss: 0.5099\n", + "Epoch 9/20\n", + "500/500 [==============================] - 52s 105ms/step - loss: 0.2831 - val_loss: 0.4756\n", + "Epoch 10/20\n", + "500/500 [==============================] - 53s 105ms/step - loss: 0.2779 - val_loss: 0.4689\n", + "Epoch 11/20\n", + "500/500 [==============================] - 52s 105ms/step - loss: 0.2750 - val_loss: 0.4719\n", + "Epoch 12/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.2702 - val_loss: 0.4836\n", + "Epoch 13/20\n", + "500/500 [==============================] - 53s 105ms/step - loss: 0.2650 - val_loss: 0.4913\n", + "Epoch 14/20\n", + "500/500 [==============================] - 53s 105ms/step - loss: 0.2622 - val_loss: 0.4756\n", + "Epoch 15/20\n", + "500/500 [==============================] - 52s 105ms/step - loss: 0.2577 - val_loss: 0.4667\n", + "Epoch 16/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.2553 - val_loss: 0.4754\n", + "Epoch 17/20\n", + "500/500 [==============================] - 53s 105ms/step - loss: 0.2516 - val_loss: 0.4728\n", + "Epoch 18/20\n", + "500/500 [==============================] - 53s 107ms/step - loss: 0.2502 - val_loss: 0.4651\n", + "Epoch 19/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.2474 - val_loss: 0.4744\n", + "Epoch 20/20\n", + "500/500 [==============================] - 53s 106ms/step - loss: 0.2461 - val_loss: 0.4681\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "3dpjphoDnT5h", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here are our training and validation Mean Absolute Errors:" + ] + }, + { + "metadata": { + "id": "DATEL5fznT5i", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 362 + }, + "outputId": "3fea5178-c2f8-4b77-8138-6db79de6c6d2" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(loss))\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlYVNX/B/D3nY1dAwV3S000MTMt\nMylRBMUtv/wqRVPctyTF1FRS0TTSkhKzzD23EjVIywW3bDFcyiXXcCnXVBBB9tnu74/JUWJgWGa5\njO/X8/jIvTP3zvnMnZnPPeeee44giqIIIiIikgyZvQtAREREhTE5ExERSQyTMxERkcQwORMREUkM\nkzMREZHEMDkTERFJDJMzObTo6GiEhIQgJCQEfn5+6Nixo3E5Ozu7TPsKCQlBWlpaic+JjY3F119/\nXZEiW9ygQYOQkJBgkX01adIEN2/exO7duzF16tQKvd7GjRuNf5fmvS2tKVOm4PPPP7fIvojsRWHv\nAhBZ06xZs4x/BwYG4sMPP8Rzzz1Xrn3t3LnT7HMmTJhQrn1XNsHBwQgODi739qmpqVi+fDl69+4N\noHTvLdGjhDVneqQNGDAAn3zyCbp27YqjR48iLS0NQ4cORUhICAIDA7Fq1Srjc+/XGg8dOoQ+ffog\nNjYWXbt2RWBgIA4fPgygcK0tMDAQGzZswGuvvYaXXnoJc+fONe7riy++wIsvvohXX30V69evR2Bg\noMnybdq0CV27dkXnzp3xxhtv4Pr16wCAhIQEjB07FlFRUejSpQu6deuG8+fPAwCuXr2K119/HUFB\nQZgwYQJ0Ol2R/f7444/o2bNnoXW9evXCTz/9VOJ7cF9CQgIGDRpk9vX27t2Lnj17okuXLvi///s/\nnD17FgAQFhaGGzduICQkBGq12vjeAsCaNWvQrVs3hISEYPTo0UhPTze+twsXLsTgwYPRsWNHDB48\nGHl5ecUdWgDAuXPnEBYWhpCQEPTq1Qs///wzACAnJwdjxoxB165d0alTJ0ybNg0ajabY9US2xuRM\nj7xTp05h27ZtaNWqFRYvXoy6deti586dWL16NWJjY/HPP/8U2ebMmTN45plnsGPHDvTr1w+LFy82\nue8jR44gPj4e33zzDdatW4ebN2/i/PnzWL58ObZs2YKvvvqq2FrjnTt38N5772HVqlXYtWsX6tev\nX6i59qeffkK/fv2QlJSEF154AatXrwYAzJ8/Hy+++CL27NmDgQMH4ujRo0X2/eKLL+LmzZu4evUq\nAEOCvXnzJtq1a1fq9+C+4l5Pq9ViypQpmD17NpKSkhAYGIh58+YBAGJiYlCrVi3s3LkTKpXKuK/j\nx49jxYoVWLt2LXbu3InatWsjNjbW+PjOnTvxySefYPfu3UhPT8fu3buLLZder8fbb7+N/v37Y+fO\nnZgzZw4mTJiA7OxsfPvtt6hSpQp27NiBpKQkyOVyXLhwodj1RLbG5EyPvICAAMhkhq/CtGnTMH36\ndABAvXr14O3tjWvXrhXZxs3NDUFBQQAAPz8/3Lhxw+S+e/bsCblcjho1aqBatWr4559/cOTIEbRp\n0wY+Pj5wcnLCq6++anLbatWq4ffff0fNmjUBAM8995wxmQJAo0aN0Lx5cwBAs2bNjAn0t99+Q7du\n3QAALVq0QMOGDYvsW6VSoWPHjti3bx8AYM+ePQgKCoJCoSj1e3Bfca+nUCjw66+/omXLlibLb8r+\n/fvRpUsXVKtWDQDw+uuv48CBA8bHAwIC8Nhjj0GhUMDX17fEk4Zr164hLS0N3bt3BwA8/fTTqF27\nNk6ePAkvLy8cO3YMv/zyC/R6PWbNmoWnnnqq2PVEtsZrzvTIq1q1qvHvkydPGmuKMpkMqamp0Ov1\nRbbx8PAw/i2TyUw+BwDc3d2Nf8vlcuh0Oty7d6/Qa9aoUcPktjqdDgsXLsS+ffug0+mQk5ODBg0a\nmCzD/X0DQGZmZqHXrVKlisn9d+nSBWvWrMHAgQOxZ88evPnmm2V6D+4r6fXWrl2LxMREqNVqqNVq\nCIJQ7H4AID09HT4+PoX2defOHbMxF7cvDw+PQq9ZpUoVpKeno3v37sjMzERcXBwuXbqEV155BVOn\nTkXXrl1Nrn+4dk9kC6w5Ez1k0qRJ6NKlC5KSkrBz5054enpa/DXc3d2Rm5trXL59+7bJ523fvh37\n9u3DunXrkJSUhLFjx5Zq/1WqVCnUE/3+Ndv/evnll3Hu3Dn8/fff+Pvvv9G2bVsAZX8Pinu9o0eP\nYtmyZVi8eDGSkpIwZ84cs2WvXr06MjIyjMsZGRmoXr262e1MqVatGjIzM/Hw3D4ZGRnGWnlYWBg2\nbdqE7du34/Tp0/j2229LXE9kS0zORA+5c+cOmjdvDkEQkJiYiLy8vEKJ1BJatGiBQ4cOIT09HWq1\nutgf/zt37qBOnTrw8vLC3bt3sWPHDuTk5Jjdf8uWLY3XYo8ePYorV66YfJ5KpcJLL72Ejz76CJ06\ndYJcLje+blneg+JeLz09HdWqVUPt2rWRl5eHxMRE5ObmQhRFKBQK5ObmQqvVFtpXhw4dsHv3bty9\nexcAsGHDBgQEBJiN2ZS6deuiZs2a2L59u7FsaWlpaNGiBT777DNs3rwZgKHlom7duhAEodj1RLbG\n5Ez0kHHjxmHMmDHo2bMncnNz0adPH0yfPr3YBFceLVq0QGhoKEJDQxEeHo6OHTuafF6PHj2QkZGB\n4OBgTJgwAZGRkbh582ahXt+mTJo0CT/88AOCgoKwfv16tGvXrtjndunSBXv27EHXrl2N68r6HhT3\nei+//DJ8fHwQFBSEIUOGYODAgfDw8MDYsWPRpEkTVK1aFf7+/oWu17do0QIjRozAG2+8gZCQEGRl\nZWH8+PElxlscQRDw8ccfY926dejatSvmzJmDuLg4uLq6olevXtiyZQu6dOmCkJAQKJVK9OrVq9j1\nRLYmcD5nItsTRdFYI9u/fz8WLFjA5lMiMmLNmcjG0tPT0bZtW1y/fh2iKGLHjh3GHs1ERABrzkR2\n8fXXX2PlypUQBAENGzbE+++/b+yoRETE5ExERCQxbNYmIiKSGCZnIiIiiZHMCGGpqVkW3Z+npyvu\n3rXs/alS4IhxMabKwxHjYkyVh6PF5e3tUexjDltzVijk9i6CVThiXIyp8nDEuBhT5eGocZnisMmZ\niIiosmJyJiIikhgmZyIiIolhciYiIpIYJmciIiKJYXImIiKSGCZnIiIiiZHMICREROQ4Pv30E/z5\n51mkp99Bfn4+ateugypVqiIm5iOz227f/h3c3NwREGB6rvO4uFi8/noYateuU66yRUSMwNtvv4OG\nDZ8s1/a2wORMRERITFRgwQIVUlJk8PXVIzJSjdBQbbn399Zb4wEYEu2lSxcRERFZ6m27detZ4uPj\nxk0od7kqCyZnIqJHXGKiAiNHuhiXz56V/7ucV6EEbcrRo79hw4Z1yM3NRUTEeBw79jv2798LvV6P\nF1/0x5AhI7BixRI89thjaNCgERISNkIQZLh8+S90794NffoMNNZ8f/hhL3JysnHlymVcv34NY8dO\nwIsv+mPdui+xZ88u1K5dB1qtFmFhb6BVq+eKlCU7Oxvvvz8T2dlZ0Gq1iIychCZNmmLBgo9w7txZ\n6HQ6hIa+hm7deppcZ01MzkSloNcDmzcrEBSkhZeXvUtDZFkLFqhMro+LU1k8OQPAxYsX8PXXCVCp\nVDh27Hd8/vlyyGQy9O7dC3369Cv03DNnTuOrr76BXq9H796voE+fgYUev337FubPX4iDB3/Fli3f\nwM+vORISNuHrr79BTk4OwsL+D2Fhb5gsx6ZNX8PPrzn69x+Ec+fO4NNPP0ZMzEf49ddfsHHjFmi1\nWmzf/h3u3cssss7amJyJSmHTJgXeessFwcFarFuXB0Gwd4mILCclxXTf4OLWV9STTzaGSmU4IXB2\ndkZExAjI5XJkZGTg3r17hZ7bpElTODs7F7uvFi1aAgB8fHyQnZ2Na9euomHDRnBycoaTkzOeesqv\n2G3PnTuD8PChAICmTZvh2rWrqFKlKurVexxTpryNjh2DEBLSHSqVqsg6a2NvbSIzRBFYssTwQ7J7\ntwI7d/KclhyLr6++TOsrSqlUAgBu3vwH8fHrERv7KRYtWoqaNWsWea5cXvJkFw8/LooiRBGQyR6k\ntpJOpAVBgCiKxmW93hBvbOxCDB48AufPp2Dy5PHFrrMmJmciM5KT5Th1So7nntNBqRQxbZoTch1n\n1joiREaqTa4fN870ekvJyMiAp6cnXF1d8eef53Dz5k1oNJoK7bNWrVq4dOkitFot7t69i3Pnzhb7\n3KZNm+HYsd8AAKdOnUSDBo3wzz83sGnTBjRp0hQREZHIzMw0uc7aWAUgMuOLLwxn+bNm5WPnTgU+\n/dQJCxaoEBVl3R8uIlsxXFfOQ1zcg97a48ZVrLd2aTRu7AsXF1eMHj0ETz/dEr16/R9iY+ehRYtn\nyr1PL69qCA4OwfDh4Xj88QZo1syv2Np37959ERMzC2PHjoJer8fbb09G9ereOHXqBPbu3QWlUonu\n3V8xuc7aBPHhOr0dpaZmWXR/3t4eFt+nFDhiXFKO6a+/BLRt64Znn9Vjx45c5OYCL73khtu3Bfz4\nYw6efNL010fKMVWEI8bFmCqP0sa1fft3CA4OgVwuR3h4GD7++FP4+NSwQQnLxtvbo9jH2KxNVILl\ny1UQRQEjR6ohCICbGzB7dgE0GgFTpjhDGqe2RPSwO3fuYMSIgRg1agg6dw6RZGI2h83aRMW4dw/4\n6islatXSo0ePB8173btrERioxb59CmzdqkCvXtZt+iOishkwYBAGDBhk72JUSKmSc0xMDE6cOAFB\nEBAVFYUWLVoYHwsMDETNmjWNbfrz589HjRo1StyGqDJYv16JnBwB48er8W/nUgCG3p8xMfkICHDD\n9OlO6NRJC3d3+5WTiByP2eR8+PBhXL58GfHx8bh48SKioqIQHx9f6DnLli2Dm5tbmbYhkjKt1tCk\n7eIiYsCAoh2/GjYUERGhRmysEz76yAmzZhXYoZRE5KjMXnNOTk5GUFAQAKBRo0bIzMxEdna2xbch\nkpKdOxW4elWG3r018PQ0/ZyxY9WoX1+PpUuVOHuW3TeIyHLM/qKkpaXB86FfJy8vL6SmphZ6TnR0\nNPr27Yv58+dDFMVSbUMkZUuWGNqxR4wo/p5LFxfggw/yodMJmDLFiZ3DiMhiytwh7L93Xo0dOxYv\nv/wyqlatijFjxiApKcnsNqZ4erpCoSh5JJiyKqmbemXmiHFJKabffgMOHQK6dgXatXMr8bn9+gEb\nNwJbtiiwa5cH+vd/8JiUYrIkR4yLMVlenz59MH36dDRv3ty4LjY2Fp6enhgyZEiR5x86dAjr16/H\nwoULMXr0aCxevLjQ4+vWrcPdu3fx1ltvmXy9c+fOwcnJCQ0aNMD48ePxwQcflDjsZ0kCAwPx3Xff\nFbpca2tmk7OPjw/S0tKMy7dv34a3t7dx+X//+5/x7/bt2yMlJcXsNqbcvWvZIZce9fv8KhOpxTR3\nrjMAJQYPzkVqqs7s82fMELBrlxvefltE27Y5qFpVejFZiiPGxZiso0OHIHzzzRbUqPG4cd327Tvx\n6adfmCxbRkYuCgo0SE3NwnvvfVjkOdnZ+QCKHxPj22+/R9OmzeDuXh1RUe8hK0uDrKzyjTam0+mR\nlpaN3FzrDF96X4Xuc/b39zfWhk+fPg0fHx+4/9s1NSsrC0OHDoVabegwc+TIETRu3LjEbYik7OZN\nAVu2KNC0qQ4BAeYTMwDUqydi/Hg1UlNlmDfPycolJKocOnXqjJ9++sG4fO7cWXh7e8Pb2wdHjhzC\nyJGDERExAlOnTigyZGf37p0AAL/9dhjh4X0QGfkmzpw5DQDQarWYNWsaIiJGYOjQAThw4GdcvHgB\nW7YkYMmSRThz5hRee60ncnNzcfv2LYwfPwYRESMwduwo3LhxHf/8cwMRESMQEzMLQ4b0x9y5s4uN\nwdT2Wq0WM2ZMxZgxwzF8+EAcPPiryXUVZbbm3KpVK/j5+SEsLAyCICA6OhoJCQnw8PBAcHAw2rdv\njz59+sDJyQnNmjVDSEgIBEEosg1RZbBypRJarYARIzRlmnlq9Gg14uOVWLlSib59NQgMtF4Zicpq\n5kwnfPedZYe16NlTi5kzi79LwdPTC7Vr18GZM6fQrFlz7Nu3G8HBIQAMFbvo6DmoXbsOZs+egUOH\nkuHq6lpkH0uWLML06bPRuLEvJk4c+++299CmTVt07doD169fw/TpU7By5Tq88MKL6NChE5o1e9CM\nvnz5F+jRoxc6deqMH37Yg5Url2Lo0JH488+zmDUrBp6eXggN7YasrCx4eBStxZra/vXX+yIzMwOf\nfbYMWVlZSE4+gIsXLxRZV1GlOloTJ04stNy0aVPj3wMHDsTAgQP/u0mRbYikLjcXWLNGCS8vPV59\ntWzNYU5Ohs5hvXu74p13nHH4sJUKSVSJBAeHYO/e3WjWrDkOHPgJixevBAA89thjmDdvDnQ6HW7c\nuI7WrZ83mZz/+ecfNG7sCwBo2bIVAMDDowrOnj2NrVsTIAgy3LtX/CQUf/55FqNGRQAAWrV6Dl9+\nuRwAUKdOPVSrVh0AUL26N3Jysk0mZ1PbP/74E8jNzcHs2dPRvn1HBAV1hlqtLrKuojhCGNG/Nm9W\nIj1dhvHjC+DiUvbtO3TQ4ZVXNNi6VYlVq4BXrD82PlGpzJxZUGIt11oCAjpizZqVCA7ugnr16qNK\nlSoAgA8+mI2PPlqAJ55ogI8/nlfs9g9P/WjoWCxg9+6duHfvHj77bDnu3buHYcMGlFCCB1NCajRa\nCIJhf/+dCKP4TstFt3d2dsaSJV/i5Mk/sGPHdzhw4GdERUWbXFcRvDmTCIY5m5cuVUKpFDF4cPmn\nrHvvvQK4uoqYPBlIT7dgAYkqIVdXNzRq1Bhr1qwyNmkDQE5ONmrUqImsrCwcPfp7sdNEVq/ujStX\n/oYoijh27HcAhmkma9WqDZlMhh9/3GfcVhAE6HSF+4k89VQzHD1qmBLy+PHf0bTpU2Uqv6nt//zz\nHHbv3olnnmmJiROn4u+//zK5rqJYcyYC8MMPcqSkyPHaaxrUrFn+G5Zr1xYxaVIBZs1yxvvvOyE2\nliOH2Vp6OvDXXzK0bKlHMTMFkg0FB4dgzpxoREc/6Hj1f//3OkaPHop69erjjTfCsXLlUowY8WaR\nbUeMeBPTpk1GzZq1jJNXdOgQiClT3saZM6fQvfsr8PHxwapVy/DMM89iwYKPCjWPDxs2Ch98MBvf\nffctFAolpk6dDq229GPhm9reyckZS5Z8hi1bEiCTydCv3wDUqlW7yLqK4pSRlYwjxiWFmMLCXLBv\nnwK7d+fgmWcqdvuERgN07uyBM2dE7NiRi1atrHs7hi1J4ViZotEAe/fKER+vxK5dCmg0Ajp00OLz\nz/NRvXrJP3FSjakiHDEmwPHi4pSREqXXAzExKixbpkQZTubIwlJSZNi3T4G2bbUVTswAoFQCn30G\niKKAd95xhq50d2RRGYkicPKkDNOmOeGZZ9wQHu6KbduUePJJPfz9tdi/X4FOnVxx8CCrz1T5MDnb\n0ZYtCixY4IR333VGcLArfv+dh8Meli41DNU5cmT5rzX/V0AA8NprGvzxhxyrVyvNb0ClduuWgM8/\nV6JDB1d06uSGpUtVEEVg+HA19uzJwf79ufjmmzxMn16A27cFhIa6YNEiJfSO04BBjwA2a9uJWg34\n+7vhxg0BPXtqkZCghCCIGDhQg3ffLUDVqqa3k3pc5WHPmNLTgWefdYe3t4hDh3Isdo3S29sDp05l\no107N8hkwK+/5sDbWxJftQqx17HKzweSkhSIj1fihx/k0OkEKJUigoO16NNHi06dtFCpim538KAc\nI0Y44+ZNGbp00WLhwrwiE5nwO1V5OFpcbNaWoDVrlLh8WYbBgzX44ot8bNmSi8aN9fjySxX8/d2Q\nmKjgRAo2sHatCnl5AoYPV1u881CNGiKmTi1AZqaA2bM5clhZiSLw228yTJrkhKefdsfw4S7Ys0eB\np5/W44MP8vHHHzn48st8dO1qOjEDQNu2Ouzdm4v27bVISlIgKMgNR4/yZ4+kj59SO8jKAmJjVXB3\nFxEZaRj69MUXddi3LxdRUQW4d0/AyJEu6NPHBX/9VYZhqqhMNBpgxQol3N1F9OtnuSbthw0apEHz\n5jps2KDEoUO89lka168LWLBAhXbt3NCtmxtWr1bB2VlEREQBfvopB7t25WLoUA2qVSvd2au3t4j4\n+DxMmlSAa9cE9OzpiuXLlTz5JUljcraDzz5T4c4dGd56S12oJ6lKBURGqvHjjzno0MHQoSUgwA2f\nfKLCv8OXkwVt3arAzZsy9OungYnBgSxCoQDmzTMM2D95shM7/hUjJwfYuFGBV191QatWboiJccL1\n6wJCQzXYsCEXx47lYMYMNZo2Ld+FY7kcmDRJjY0b81C1qoioKGcMG+aMe/csHAiRhTA529itWwK+\n+EKFGjX0GDHCdMZt0MBwpr9kSR48PER88IETAgNdkZzMmpeliCKwZIkKgiBi2DDrnvk8/7web7yh\nxpkzcqxYwc5hDzt+XIaxY53RvLk7IiJc8PPPCjz/vA6xsfk4dSobS5bkIzBQB4WFRmQICDC0UL34\nohbffadEcLAbjh+3zL6JLInJ2cY+/FCF3FwB77yjRklThQoCEBqqxa+/5mDQIDXOn5ehVy9XDBkC\n3LnDpu6KOnxYjuPH5QgJ0eKJJ6zfvjltmhqeniLmzXPCzZs8fteuCRg1yhmdO7thwwYlvLxEvP12\nAQ4ezMb33+dhwAAN/h3p0eJq1hTxzTd5GDu2AH/9JUPbtsDatWzmJmlhcrah8+dl+OorJRo31qFv\n39Jd46xaFfjwwwJs354LPz8dVq0C/P1dsWEDO4xVxP3bp0aNss615v+qVk3Eu+8WIDtbwMyZj27n\nsOxs4IMPDNeTExKUeOYZHeLjc3HkSA6mTFGjYUPbfKgVCsMJ0/r1uXB1BSZMcMaYMc7IzrbJyxOZ\nxeRsQ3PmqKDTCZg2TV3mZrrWrfXYvTsX8+cD+fkCxo51QWioC86f5yEsqytXBGzbpsDTT+vQtq3t\nRgjp31+DVq10SEhQ4uefH61LFDodsH69Em3buuGTT5zw2GMiPv00D0lJuejYUQeZnT7GwcE6HDsG\ntG6tw+bNSoSEuOLPP/mdIvvjp9BGDh2SY8cOJdq00SIkpHy9ghQKYMIE4JdfchASosGvvyrQoYMr\n5s5VIS/PwgV2YCtWqKDXCxg5Ul2mOZsrSiYzdA4TBBFTpjg9Mp38fv5ZjqAgV4wf74ysLAETJxYg\nOTkHffpo7ZaUH/b448CWLbkYOVKNlBQ5unRxxcaNnHaA7EsCXw3HJ4rAe+8ZmjJnzCiocEKoW1fE\nmjX5+PLLPHh7i/j4YycEBLhh//7KVxtLSxNs2pSYnW2owfn46PG//9m+6/Qzz+gxaJAG58/L8cUX\nxdyc6yAuXhQQHu6MV191xenTcvTurcHBgzlm+1vYg0oFzJ5dgBUr8iCXAxERLpgwwYknvWQ3TM42\nsGOHAkeOyNGtmwZt2lhuDMFu3bT45ZccjBypxpUrAnr3dsWoUc64dUv6HY5EEfjqKwVat3ZDkyaw\n2fjHGzYoce+egCFDNMUOXGFtU6cWoHp1PT7+WIVr16R/rMrq7l1g2jQnvPyyG3buVKJtWy127crB\nokX5qFVL2h0levbUYs+eHDz9tA5r16rQrZsrLl1yvGNE0sfkbGVaLfD++yrI5SKmTbP89IHu7oYz\n/t27c/Hss4brmf7+bli9WrpjCWdlAaNHOyMy0gUKBXDrFhAa6oLPP7duj1m9Hli6VAUnJxHh4bbp\nCGbKY48ZWlBycwVMn+44ncM0GmDZMiVeeMEdS5eqUKeOiJUr87BlSx5atpToh9GEBg1EbNuWi/Bw\nNU6fliMoyA1bt7KZm2yLydnKvvpKifPn5XjjDQ2efNJ6mefpp/XYvj0XH3yQD1EEJk1yRmioi+TO\n+o8flyEw0NBT97nndNi/Pwf79hl6M8+c6YzBg603MMSuXXL8/bcMr72mMTuNoLX17q1FmzZabNum\nxN69le9yxMNEEUhKkqN9eze8+65hFq7o6Hz88ksOevTQ2vS6vqU4OwPz5xfg88/zoNcDw4a5ICrK\nCQWcnptshBNfWFFODvDCC27IzhZw6FAOatSo+Ftdmrhu3hQwebITduxQwtlZxOTJBRg5UmOxgRzK\nQ68HlixRYs4cwyhZY8eq8c47aiiVDyaJGDXKGQcOKPDEE3qsWJGHp5+2bG3r//7PBb/8osCPP+bg\nqaesW5MrzXE6fVqGoCBXCALg769Djx5adO2qhY+PJL6SJv03rlOnZIiOdsLPPysglxtaJCZNUtv9\n5KcszB2r8+dlGDrUGefOyVG7th6DB2vQv3/phw+1pfPnZVi1Sondu1WoUkWHevX0qFdPRL16etSt\na/i/fn19sRPrSJ0UftctqaSJL5icrejjj1WYO9cJb79dgClTLNM1t7RxiaJheMqpU52QlibDs8/q\n8Mkn+WjWzPbNi2lpAsaOdcaePQp4e+vx+ef5CAh4cAvT/Zi0WsMgLQsWOMHZWcTcufno188ynbZO\nnpShUyc3tG+vxebN1u/lU9rj9O23CixerMKxY4basyCIaNvWkKi7d9eidm1JfD2N7sd165aAuXNV\n+OorJURRQKdOWsycWYAmTSpP8/V9pTlWOTnAvHlOWLtWiZwcAc7OIl59VYNhwzTw87NvzDodsGuX\nAitWKPHTT4YzcE9PID9fRF6e6WYLDw/xP4n7wd/16onw8hIl2eJh7ljduiVg+XIlvv9eiaZNdejS\nRYugIJ1kTxaZnO0gLU1AmzZucHIScfhwjsXGbi5rXHfuGK5rbt6shFIpYtw4NSIj1TbrDPXLL3KM\nHu2MW7dk6NBBi0WL8ovUDP8b0+7dcowZ44KMDAF9+2rwwQf5cHWtWDnGjnXGhg1KfPVVLoKCrH9v\nc1mP09Wrhnuvv//e0HlQFA2/jK1b69CjhwY9emjx+OP2/6q6u3tgzpwCxMWpkJMjoEkTHWbNKkBg\noO3uF7e0shyre/eAr79WYvmbw+BDAAAgAElEQVRyFS5fNlwV9PfXYvhwDbp00Vp8ZrOS3LkjYP16\nJVavVuLqVUNZ2rXTYuhQDQYMcMHdu1lISxNw7ZqAq1dluHrV8P+1a4a/r1yRISfHdAZ2dS1c265b\nV0T9+no8/7wOderY73NY3LE6c0aGxYtVSEhQQKMR4OQkoqDAEJtMJuL553Xo3FmHkBAtnnxSL5kT\nDyZnO3j3XScsW6ZCTEw+hg2zXOej8sa1e7cckyY548YNGZ56SocFC/Lx7LPWO+PXaoH581X45BMV\n5HJg6lQ1xoxRm7yv1VRMV64IGDbMBcePy9GsmQ4rV+aVe/SoW7cEtG7thvr19fjll1yb3Ftbkc/f\nrVuGRL1tmwIHDsih1xt+SZ5+2lCj7tFDi8aNbVdby88H/v5bhqNHZfj4YxdcuQJUr67HO++o0b+/\nfS+XWEJ5jpVOB+zZI8eyZSpjbbV+fT2GDFGjXz8NHnvMGiU1OHFChhUrVEhMVKCgQICrq4jXX9dg\nyBCN8XJNaWISRSAjA7h2TYYrV2Qmk3hGRuEsJggiXnpJhz59NOjeXWvzW+IejksUgR9+kGPxYhV+\n/NFwDJ58UodRozR4/XUNrl8XsHOnAklJhhPe+9+jhg316NLFMN7E889bbtz28mBytrG//xbg7++G\nOnVE/PJLjkVrqRWJKysLmDXLCWvWqCCTiRg5UoPJkwsqXCv9r+vXDeMmHzqkQP36enzxRR6ee674\nZFJcTAUFwPTpTvjyS8P0mnFx+ejZs+zN3B9+qML8+U6YNy8fgwfbppe2pT5/d+4YfmC+/16Bn36S\nQ6Mx/MA0aaJD9+6GRO3nV/GagFoNXL4sw6VLAi5dkhn//fWXDNevC8aavEoFjBhRgMhItdXGvra1\nih6rc+dkWL5ciU2blMjLMyTL3r0NTd6+vpY5iSooAL77ToEVK1T4/XdD9bxhQ8PJQJ8+miLXkC31\n+cvKgjFh//23DNu2KXDwoCGbubmJ6NVLgz59tGjbVmeT2qi3tweuXctCYqLhctDZs4b3wt9fi9Gj\n1QgKMj3aXFqagD175EhKUuCHHxTIzTUU1tNTRKdOhkTdsaPWarPTFYfJ2cZGjnRGYqISS5fmWXyg\nC0vEdeCAHOPHO+Pvv2Vo0ECPTz7JR7t2lmmW3LFDgXHjnJGRIeCVVzSIjc032/nEXEybNyswcaIz\ncnMNo3rNmFEAZSknd8rPB1q1coNGI+D48Wybnelb4/OXmWm4tvjddwrs369Afr7hB6ZBAz26dzc0\nfT/7bPGJWqs1tEj89ZesUAK+eNFQa7pfs3hYzZp6NGxo+NeggYjBg53g7u44HXIAyx2ru3cNA9ys\nXKnCtWuGDNGhgxbDh6vRqVP5hii9cUPA6tVKrF2rRFqaDIIgIjhYhyFD1OjQofh9WvP376+/BGzc\nqMTGjQ+a0x9/XI/evTXo3Vtjtcsvd+8Cmzd7IC5Oj9u3ZZDLRfTqZUjKzzxT+pOg/Hzg11/lxlr1\nP/8YYlAqRfj7G65Td+miRd261k+NTM42dPy4DJ07u6FlSx127rR8E6ql4srNBebOdcLSpUro9QIG\nDjQkvfKeOebnG0ZBW75cBWdnEXPmFGDAAE2pzqZLE9Off8owZIgzzp+X4/nndVi2LK9UnaW+/lqB\nceNcEBFRgBkzbDdeprU/f9nZwN69hhr17t0PagJ16ujRvbsW7drp8M8/hRPxlSsCtNqiB8Tb+34C\nFh9KxIZ//z2ZsfflImuwdExaLbBzpwLLlimRnGyoZTZooMewYWqEhZmfO1wUDcljxQolduxQQKcT\n8NhjIvr102DQIHWpZlGzxXHS6w3ljI9X4rvvHnwG27XTIizMcLLo7l7x17l0ScDSpSps2KBEbq4A\nDw8RAwZoMHy4usLXv0XR0Fn0fqI+efJBp4HmzR8k6hYt9Fa5HMbkbCOiCLz2mmFO2oSEXLz0kuU7\nyVg6rt9/l2H8eMNtInXq6DF/fj46dSpbuS9eFDB8uAtOnZKjSRMdli7NL9OtSqWNKTvbMHtQYqIS\n1arpsXhxPjp0KL6sogh07GiYyOC333Js2pHFlp+/vDxg/35Dok5KUuDevaIJ2MvLUPO9n3wbNtSj\nUSNDAi7LCRmTc9mcPCnD8uWGjkoFBQLc3UX07avB0KFFZ+DKzgY2b1Zi5Uolzp0zJInmzXUYOlSD\n0FBNmS4/2fo4ZWcD33+vQHy8EgcOGE5IXF1F9OihRZ8+Gvj7l63lQBQN07ouXmw4QRFFAXXr6jF+\nvAz/+1+W1Zqfr18XsGuX4Xv0yy9yqNWG71LNmnp07qzFsGEaNG1quf4eTM42sm+fHGFhrujUSYuv\nv7bO7TrWiKugAFiwQIW4OBW0WgGvv67B7Nn58PIyv218vAKTJxuanAcMUGP27LJfwy5LTKIIrFql\nxPTphvulJ01S4+23TXc0+/lnOV591RX/+58GS5fml61QFWSvJKZWG3rI//GHHHXrPkjEluqgxORc\nPmlpAtauVWLVKiVu3nzQPD1smBp16+rx5ZcqfP21EllZAhQKET17ajFkiAZt2pTvWq49j9OVK4Zm\n7/h4pbFHe926D5q9S+rYqdUC27cbriffv7besqUOo0er0bOnFrVq2S6u7Gzghx8MiXrPHjnS02UW\n/21ncrYBnQ7o1MkVZ8/KsG9frtXufbRmXKdPyxAZ6YwTJ+SoXl2PuXML0LOn6RGesrOByZOdsWmT\nEh4eImJj88t9fb08MR09KsOwYS64dk2Gjh21+Pzz/CKDQgwY4IKkJAV27MhB69a2vRfVEZMY4Jhx\n2TImjcZQw1y2TIXffit831WNGnoMHKjBgAGaCg9YJIXjJIqG2fg2bFBgyxal8batNm20CAvT4pVX\nNMZOhdnZhtEUly5V4coVw8lLly5ajB6tKdTZzF5xabWGS5Z16ogWHR+eydkG4uMVeOstF/TurcGi\nRdarpVk7Lq0W+OILJT780An5+QK6ddNg3ryCQj8WJ0/KMHy4Cy5dMgxusmRJXqmugxWnvDGlpwNj\nxrhg714F6tTRY9myB73CL10S8OKLbmjVSo8dO3LLXbbyksKPozU4Ylz2iunYMUOTd3q6gLAwDbp1\n05a6o6M5UjtOOTmGGnF8vGEuc1EU4OIiomtXLWrUELF+vWFCGmdnEX36aDBqlBqNGhX9TZFaXBXF\n5Gxl+flAu3ZuSE0VkJycY9VefraK6+JFAePHO+PgQQWqVhUxe3Y+evfWYsUKJWbNcoJaLWDMGDWm\nTi2o8K1iFYlJrwfi4lSYN89wP/WsWQUYOlSDqCgnrFihwrJleejVy/ZTQzraj8h9jhgXY7Kta9cE\nbNpkaPa+dMnQ7F29uh5Dh2owaFDJw6JKOa7yYHK2ss8+U2LWLGe8+aYaM2dad2R8W8al1wNffqnE\n7NlOyMkxdMi4dk2G6tX1WLQo32KjQlkipp9+kmPUKGekpcnQo4cG+/Yp4Okp4siRHLsMMuBoPyL3\nOWJcjMk+RBE4ckSG27dlCArSwtnZ/DaVIa6yKCk5c1aqCsrIAOLinFC1qohx4xxryhqZDBgyRIOf\nfspBx45aXLsmw8sva/HDD7mSG66xfXsd9u7NxQsvaPH994ZbLoYOVVf60auIHJUgAG3a6NGjR+kS\n86OGP10VFBfnhIwMATNm5MPT096lsY569URs2JCHixcFNGwo2mT4y/KoVUtEQkIe5s0z9PQcMMB+\nczYTEVUEk3MFXLtmmAGlTh29RcfPliJBgFXno7YUpRKYNs12g40QEVmDROtAlcO8eU4oKBAweXIB\nm2WIiMhimJzL6cwZGTZuVOCpp3R4/XXb9wYmIiLHxeRcTnPmOEEUBcyYUWDTOVyJiMjxMTmXw4ED\ncuzZo8BLL2kl12uZiIgqPybnMhJFw+xLADB9eoFN5jAlIqJHC5NzGW3dqsCxY3L06qXBs8/adrxm\nIiJ6NDA5l4FaDbz/vhMUChFTpzrWgCNERCQdpbrPOSYmBidOnIAgCIiKikKLFi2KPCc2NhbHjx/H\n2rVrcejQIYwbNw6NGzcGAPj6+mL69OmWLbkdrF2rxN9/y0zOxUpERGQpZpPz4cOHcfnyZcTHx+Pi\nxYuIiopCfHx8oedcuHABR44cgfKhKVXatGmDhQsXWr7EdpKVBcTGquDmJuLttznIBRERWY/ZZu3k\n5GQEBQUBABo1aoTMzExkZ2cXes7cuXMxfvx465RQAi5fFhAa6oq0NBkiItTw9matmYiIrMdsck5L\nS4PnQ4NGe3l5ITU11bickJCANm3aoE6dOoW2u3DhAkaNGoW+ffviwIEDFiyybSUlyREU5IY//pCj\nb18NIiJYayYiIusq89jaD88wmZGRgYSEBKxatQq3bt0yrn/iiScQERGBrl274urVqwgPD8euXbug\nKmHiX09PVygUlh3No6TpuMzRaoFp04B58wBnZ2DFCmDIECUAC82GXgEViUuqGFPl4YhxMabKw1Hj\n+i+zydnHxwdpaWnG5du3b8Pb2xsAcPDgQaSnp+ONN96AWq3GlStXEBMTg6ioKHTr1g0AUL9+fVSv\nXh23bt1CvXr1in2du3dzKxpLIRWZ9/PWLQEjRjgjOVmBBg30WLEiD82b6/FQg4HdONp8pgBjqkwc\nMS7GVHk4WlwVms/Z398fSUlJAIDTp0/Dx8cH7u7uAICQkBBs374dGzduxKJFi+Dn54eoqChs3boV\nK1asAACkpqbizp07qFGjhiVisboDB+QIDHRFcrIC3btrsHt3Dpo35/3MRERkO2Zrzq1atYKfnx/C\nwsIgCAKio6ORkJAADw8PBAcHm9wmMDAQEydOxN69e6HRaDBz5swSm7SlQK8HFi1SISZGBZkMeO+9\nfIwcqeEIYEREZHOC+PBFZDuydFNFWZo/7t4F3nrLBbt2KVCrlh7LluWhTRtp1pYdrVkHYEyViSPG\nxZgqD0eLq6Rm7TJ3CHM0x4/LMGyYC65ckSEgQIvFi/NRvbokzleIiOgR9cgO3ymKwKpVSvTo4Yqr\nVwVMnFiADRvymJiJiMjuHsmac3Y2MGmSM775RgkvLz0+/zyfUz8SEZFkPHLJOSVFhiFDnJGSIkfr\n1josX56HOnVYWyYiIul4pJq1ExIU6NzZFSkpcowYocaWLblMzEREJDmPRM25oACYMcMJq1ap4O4u\nYvnyPLzyitbexSIiIjLJ4ZPzlSsChg1zwfHjcjz1lA4rV+ahUSPWlomISLocull7927DpBXHj8vR\np48GO3bkMjETEZHkOWTNWasF3n0XiIlxhZOTiE8+yUe/fhzti4iIKgeHTM4zZzph6VLgiScMk1Y8\n/bQ0R/siIiIyxSGbtZ95RocxY4A9e3KYmImIqNJxyJrz669r4e0NSUzxSEREVFYOWXMmIiKqzJic\niYiIJIbJmYiISGKYnImIiCSGyZmIiEhimJyJiIgkhsmZiIhIYpiciYiIJIbJmYiISGIcLjknJioQ\nEOAKhQIICHBFYqJDDoJGREQOzKEyV2KiAiNHuhiXz56V/7uch9BQrf0KRkREVAYOVXNesEBlcn1c\nnOn1REREUuRQyTklxXQ4xa0nIiKSIofKWr6+pqeHLG49ERGRFDlUco6MVJtcP26c6fVERERS5FDJ\nOTRUiyVL8tCsmQ4KBdCsmQ5LlrAzGBERVS4O1VsbMCTo0FAtvL09kJqaa+/iEBERlZlD1ZyJiIgc\nAZMzERGRxDA5ExERSQyTMxERkcQwORMREUkMkzMREZHEMDkTERFJDJMzERGRxDA5ExERSQyTMxER\nkcQwORMREUkMkzMREZHEMDkTERFJDJMzERGRxJQqOcfExKBPnz4ICwvDH3/8YfI5sbGxGDBgQJm2\nISIioqLMJufDhw/j8uXLiI+Px/vvv4/333+/yHMuXLiAI0eOlGkbIiIiMs1sck5OTkZQUBAAoFGj\nRsjMzER2dnah58ydOxfjx48v0zZERERkmtnknJaWBk9PT+Oyl5cXUlNTjcsJCQlo06YN6tSpU+pt\niIiIqHiKsm4giqLx74yMDCQkJGDVqlW4detWqbYpjqenKxQKeVmLUyJvbw+L7k8qHDEuxlR5OGJc\njKnycNS4/stscvbx8UFaWppx+fbt2/D29gYAHDx4EOnp6XjjjTegVqtx5coVxMTElLhNce7ezS1v\nDCZ5e3sgNTXLovuUAkeMizFVHo4YF2OqPBwtrpJONMw2a/v7+yMpKQkAcPr0afj4+MDd3R0AEBIS\ngu3bt2Pjxo1YtGgR/Pz8EBUVVeI2REREVDKzNedWrVrBz88PYWFhEAQB0dHRSEhIgIeHB4KDg0u9\nDREREZWOIJbmgrANWLqpwtGaP+5zxLgYU+XhiHExpsrD0eKqULM2ERER2RaTMxERkcQwORMREUkM\nkzMREZHEMDkTERFJDJMzERGRxDA5ExERSQyTMxERkcQwORMREUkMkzMREZHEMDkTERFJDJMzERGR\nxDA5ExERSQyTMxERkcQwORMREUkMkzMREZHEMDkTERFJDJMzERGRxDA5ExERSQyTMxERkcQwORMR\nEUkMkzMREZHEMDkTERFJDJMzERGRxDA5ExERSQyTMxERkcQwORMREUkMk3MpJCYqEBDgilq13BEQ\n4IrERIW9i0RERA6MWcaMxEQFRo50MS6fPSv/dzkPoaFa+xWMiIgcFmvOZixYoDK5Pi7O9HoiIqKK\nYnI2IyXF9FtU3HoiIqKKYoYxw9dXX6b1REREFcXkbEZkpNrk+nHjTK8nIiKqKCZnM0JDtViyJA/N\nmumgUIho1kyHJUvYGYyIiKyHvbVLITRUy2RMREQ2w5ozERGRxDA5ExERSQyTMxERkcQwORMREUkM\nkzMREZHEMDkTERFJDJMzERGRxDA5ExERSUypBiGJiYnBiRMnIAgCoqKi0KJFC+NjGzduxObNmyGT\nydC0aVNER0fj8OHDGDduHBo3bgwA8PX1xfTp060TARERkYMxm5wPHz6My5cvIz4+HhcvXkRUVBTi\n4+MBAHl5edi2bRvWr18PpVKJ8PBwHDt2DADQpk0bLFy40LqlJyIickBmm7WTk5MRFBQEAGjUqBEy\nMzORnZ0NAHBxccHq1auhVCqRl5eH7OxseHt7W7fEREREDs5szTktLQ1+fn7GZS8vL6SmpsLd3d24\nbunSpVizZg3Cw8NRr1493LhxAxcuXMCoUaOQmZmJiIgI+Pv7l/g6np6uUCjkFQilKG9vD4vuTyoc\nMS7GVHk4YlyMqfJw1Lj+q8wTX4iiWGTdiBEjEB4ejuHDh6N169Z44oknEBERga5du+Lq1asIDw/H\nrl27oFKpit3v3bu5ZS1Kiby9PZCammXRfUqBI8bFmCoPR4yLMVUejhZXSScaZpu1fXx8kJaWZly+\nffu2sek6IyMDR44cAQA4Ozujffv2OHr0KGrUqIFu3bpBEATUr18f1atXx61btyoaBxER0SPBbHL2\n9/dHUlISAOD06dPw8fExNmlrtVpMmTIFOTk5AICTJ0+iQYMG2Lp1K1asWAEASE1NxZ07d1CjRg1r\nxUBERORQzDZrt2rVCn5+fggLC4MgCIiOjkZCQgI8PDwQHByMMWPGIDw8HAqFAk2aNEGnTp2Qk5OD\niRMnYu/evdBoNJg5c2aJTdpERET0gCCauohsB5a+jlAZrk0kJiqwYIEKKSky+PrqERmpRmiotsRt\nKkNcZcWYKg9HjIsxVR6OFldJ15zL3CGMLCMxUYGRI12My2fPyv9dzjOboImIyLFx+E47WbDAdDN/\nXByb/4mIHnVMznaSkmL6rS9uPRERPTqYCezE11dfpvVERPToYHK2k8hItcn148aZXk9ERI8OJmc7\nCQ3VYsmSPDRrpoNCIaJZMx2WLGFnMCIiYm9tuwoN1TIZExFREaw5ExERSQyTMxERkcQwORMREUkM\nkzMREZHEMDkTERFJDJMzERGRxDA5ExERSQyTMxERkcQwORMREUkMk7ODSUxUICDAFbVquSMgwBWJ\niRwEjoiosuEvtwNJTFRg5EgX4/LZs/J/lzlmNxFRZcKaswNZsEBlcn1cnOn1REQkTUzODiQlxfTh\nLG49ERFJE3+1HYivr75M64mISJqYnB1IZKTa5Ppx40yvJyIiaWJydiChoVosWZKHZs10UChENGum\nw5Il7AxGRFTZsLe2gwkN1TIZExFVcqw5ExERSQyTMxERkcQwORMREUkMkzMREZHEMDkTERFJDJMz\nERGRxDA5U6lwtisiItvhLyyZxdmuiIhsizVnMouzXRER2RaTM5nF2a6IiGyLv65kFme7IiKyLSZn\nMouzXRER2RaTM5nF2a6IiGyLvbWpVDjbFRGR7bDmTHZz/95phQK8d5qI6CH8NSS74L3TRETFY82Z\n7IL3ThMRFY/JmeyC904TERWvVM3aMTExOHHiBARBQFRUFFq0aGF8bOPGjdi8eTNkMhmaNm2K6Oho\nCIJQ4jZEvr56nD0rN7meiOhRZzY5Hz58GJcvX0Z8fDwuXryIqKgoxMfHAwDy8vKwbds2rF+/Hkql\nEuHh4Th27Bi0Wm2x2xABhnunH77mfB/vnSYiKkWzdnJyMoKCggAAjRo1QmZmJrKzswEALi4uWL16\nNZRKJfLy8pCdnQ1vb+8StyEC/nvvNHjvNBHRQ8wm57S0NHh6ehqXvby8kJqaWug5S5cuRXBwMEJC\nQlCvXr1SbUMUGqrF/v250GiA/ftzmZiJiP5V5lupRFEssm7EiBEIDw/H8OHD0bp161Jt81+enq5Q\nKIpeg6wIb28Pi+5PKhwxLsZUeThiXIyp8nDUuP7LbHL28fFBWlqacfn27dvw9vYGAGRkZOD8+fN4\n/vnn4ezsjPbt2+Po0aMlblOcu3dzyxuDSd7eHkhNzbLoPqXAEeNiTJWHI8bFmCoPR4urpBMNs83a\n/v7+SEpKAgCcPn0aPj4+cHd3BwBotVpMmTIFOTk5AICTJ0+iQYMGJW5DZE33Rx2rVcudo44RUaVl\n9perVatW8PPzQ1hYGARBQHR0NBISEuDh4YHg4GCMGTMG4eHhUCgUaNKkCTp16gRBEIpsQ2RtHHWM\niByFIJbmgrANWLqpwtGaP+5zxLgsFVNAgKvJe6ebNdNh/37LXjYxxxGPE+CYcTGmysPR4qpQszZR\nZcFRx4jIUfBXixxGcaOLcdQxIqpsmJzJYURGmh5djKOOEVFlw+RMDqPwqGOiRUcdYy9wIrIl/sKQ\nQwkN1Vq8ZzZ7gRORrbHmTGQG554mIltjciYyg73AicjW+OtCZAZ7gRORrTE5E5nBXuBEZGtMzkRm\nWKsXOHuAE1Fx+GtAVAqW7gXOHuBEVBLWnInsgD3AiagkTM5EdsAe4ERUEv4SENkBe4ATUUmYnIns\nwFo9wNnJjMgx8JtLZAeGTl95iItTISVFBl9fPcaNU1eoMxg7mRE5DiZnIjuxdA/wkjqZMTkTVS5s\n1iZyENbsZHa/uVyhAJvLiWyAyZnIQVirk9n95vKzZ+XQ6R40lzNBE1kPkzORg7BWJzPek01ke0zO\nRA7CWsOM8p5sIttjuxSRA7F0JzPA0Cx+9qzc5Hoisg6e+hJRiXhPNpHt8dtARCUqfE+2HL6+Ot6T\nTWRlTM5EZNb95nJvbw+kpuZWeH+8J5uoZGzWJiKbYyczopLxm0BENseJP4hKxuRMRDZnrU5mRI6C\nyZmIbM5a92SzBzg5Cn5yicguLH1PNnuAkyNhzZmIHAKHGSVHwuRMRA7BFrNysbmcbIXJmYgcgm1m\n5RI4KxfZBJMzETkEzspFjoTJmYgcAmflIkfCTxcROYzQUC3278/FjRvZ2L8/1yK9tK3ZXM7r2FQc\nJmciohJYo7mc17HJHCZnIqISWKO5nNexyRwmZyIiMyzdXG6t69j3m8oVCrCpvJJjciYisjFrXMcu\n3FQONpVXckzOREQ2Zo3r2GwqdyxMzkRENmaN69i85cux8KgREdmBpa9jW3OObN72ZXulSs4xMTHo\n06cPwsLC8McffxR67ODBg+jduzfCwsIwdepU6PV6HDp0CG3btsWAAQMwYMAAzJ492yqFJyIiA2uN\nkGat276Y8Etm9t04fPgwLl++jPj4eFy8eBFRUVGIj483Pj5jxgysWbMGNWvWxNixY/Hzzz/D2dkZ\nbdq0wcKFC61aeCIiMjDUvPMQF6dCSoocvr46jBunrnCNvKRr2eXdN6f3NM9szTk5ORlBQUEAgEaN\nGiEzMxPZ2dnGxxMSElCzZk0AgJeXF+7evWulohIRUUnuN5VrNLDYCGnWuJbNzmvmma05p6Wlwc/P\nz7js5eWF1NRUuLu7A4Dx/9u3b+PAgQMYN24cUlJScOHCBYwaNQqZmZmIiIiAv79/ia/j6ekKhUJe\nkViK8Pb2sOj+pMIR42JMlYcjxsWYitesGXDypKn1QrlfIyWluPVys/s09/iGDUBMDHDmjKHsUVFA\nWFi5imlXZW7kF0WxyLo7d+5g1KhRiI6OhqenJ5544glERESga9euuHr1KsLDw7Fr1y6oVMWfFd29\nm1vWopTI29sDqalZFt2nFDhiXIyp8nDEuBhTySIiCjdB3zdmTB5SU8tXM/f1dcXZs0UrY76+OqSm\nFp8LzMX13+bykyeBvn2Be/cq1lyemKjAggUqpKTI4OurR2RkxS8XACWfaJhtl/Dx8UFaWppx+fbt\n2/D29jYuZ2dnY/jw4YiMjMRLL70EAKhRowa6desGQRBQv359VK9eHbdu3apIDEREZAfWuO2rMk3v\naa9x0M0mZ39/fyQlJQEATp8+DR8fH2NTNgDMnTsXAwcORPv27Y3rtm7dihUrVgAAUlNTcefOHdSo\nUcPSZSciIhuw9G1flWl6T3tdHzeb+lu1agU/Pz+EhYVBEARER0cjISEBHh4eeOmll/Dtt9/i8uXL\n2Lx5MwCgR48e6N69OyZOnIi9e/dCo9Fg5syZJTZpExHRoyU0VGvxntm+vvpimsvLf6+3vQZ3KVW9\nfOLEiYWWmzZtavz71CRxdWYAAAg8SURBVKlTJrf54osvKlAsIiKisomMVJu8Pl6R5nJrJPzS4Ahh\nRETkECrT9XFzOCQLERE5DEs3lxce3MXQW9sSg7uYw+RMRERUAmtcHzeHzdpEREQSw+RMREQkMUzO\nREREEsPkTEREJDFMzkRERBLD5ExERCQxTM5EREQSw+RMREQkMUzOREREEiOIoijauxBERET0AGvO\nREREEsPkTEREJDFMzkRERBLD5ExERCQxTM5EREQSw+RMREQkMQp7F6CiYmJicOLECQiCgKioKLRo\n0cL42K+//oqPP/4Ycrkc7du3x5gxY+xY0rL58MMP8fvvv0Or1WLkyJHo3Lmz8bHAwEDUrFkTcrkc\nADB//nzUqFHDXkUtlUOHDmHcuHFo3LgxAMDX1xfTp083Pl5Zj9WmTZuwdetW4/KpU6dw7Ngx47Kf\nnx9atWplXP7yyy+Nx02KUlJS8Oabb2LQoEHo378//vnnH7zzzjvQ6XTw9vbGRx99BJVKVWibkr6D\nUmAqpqlTp0Kr1UKhUOCjjz6Ct7e38fnmPqtS8N+YpkyZgtOnT+Oxxx4DAAwdOhQdOnQotI3UjxNQ\nNK6xY8fi7t27AICMjAy0bNkSs2fPNj4/ISEBcXFxqF+/PgCgXbt2GD16tF3KbnFiJXbo0CFxxIgR\noiiK4oULF8TevXsXerxr167ijRs3RJ1OJ/bt21c8f/68PYpZZsnJyeKwYcNEURTF9PR0MSAgoNDj\nHTt2FLOzs+1QsvI7ePCg+NZbbxX7eGU9Vg87dOiQOHPmzELr2rRpY6fSlF1OTo7Yv39/cdq0aeLa\ntWtFURTFKVOmiNu3bxdFURRjY2PF9evXF9rG3HfQ3kzF9M4774jbtm0TRVEU161bJ86bN6/QNuY+\nq/ZmKqbJkyeL+/btK3YbqR8nUTQd18OmTJkinjhxotC6b775Rpw7d66timhTlbpZOzk5GUFBQQCA\nRo0aITMzE9nZ2QCAq1evomrVqqhVqxZkMhkCAgKQnJxsz+KW2vPPP4+4uDgAQJUqVZCXlwedTmfn\nUllPZT5WD/vss8/w5ptv2rsY5aZSqbBs2TL4+PgY1x06dAidOnUCAHTs2LHIcSnpOygFpmKKjo5G\nly5dAACenp7IyMiwV/HKxVRM5kj9OAElx3Xp0iVkZWVJsrZvLZU6OaelpcHT09O47OXlhdTUVABA\namoqvLy8TD4mdXK5HK6urgCAzZs3o3379kWaQqOjo9G3b1/Mnz8fYiUZ5O3ChQsYNWoU+vbtiwMH\nDhjXV+Zjdd8ff/yBWrVqFWoeBQC1Wo0JEyYgLCwMq1atslPpSkehUMDZ2bnQury8PGMzdrVq1Yoc\nl5K+g1JgKiZXV1fI5XLodDp89dVX6NmzZ5HtivusSoGpmABg3bp1CA8Px/jx45Genl7oMakfJ6D4\nuABgzZo16N+/v8nHDh8+jKFDh2LgwIE4c+aMNYtoU5X+mvPDKkuSKq09e/Zg8+bN/9/e3YMk98Vx\nAP/eUCxNCg2FiF5wKIMIqUgTKwKjHHoZA2lxikyIymqo3KRyCAwqraAxaAhr0aWhJbCXoZehocWC\njGwoh16MnkG6/0rt7/P/8zzeG7/P5v05nMPvHH/3nnsOYnV19dN1m80Gg8GAvLw89Pf3w+/3o62t\nLUOtTE9paSmsViva29sRCoXQ29uLQCCQ8P6SrzY2NtDd3Z1w3W63o6OjAwzDwGw2o7a2FlVVVRlo\n4f+Xzvziyxx8fX2F3W6HVquFTqf7FOPjWO3s7ER+fj7UajU8Hg/m5+cxOTmZ8vt8yRMQv8E9ODiA\nw+FIiFVXV0Mmk6G5uRlHR0cYHR3F1tbW32/kH8DrJ2eFQoHb21v2883NDfvk8jUWDod/axko03Z3\nd7G4uAiv1wupVPop1tXVBblcDoFAgMbGRpyfn2eolelTKpUwmUxgGAbFxcUoKChAOBwGwP9cAfHl\nX41Gk3C9p6cHEokEYrEYWq2WF7n6SCwW4/HxEUDyvHw3B7lsfHwcJSUlsFqtCbHvxipX6XQ6qNVq\nAPENo1/HGV/zBADBYDDlcrZKpWI3vmk0Gtzd3f2YV4C8Ls56vR5+vx8AcHp6CoVCgdzcXABAUVER\notEoLi8vEYvFsLOzA71en8nmpu3h4QEzMzNYWlpid19+jFksFjw/PwOID9z3XaVc5vP5sLKyAiC+\njB2JRNgd5nzOFRAvWhKJJOHJ6uLiAkNDQ3h7e0MsFsPh4SEvcvVRQ0MDO8cCgQAMBsOn+HdzkKt8\nPh+EQiFsNlvKeKqxylUDAwMIhUIA4jeKX8cZH/P07vj4GBUVFUljXq8X29vbAOI7vWUyGadPQ/wO\n3v8rlcvlwv7+PhiGwdTUFM7OziCVSmE0GhEMBuFyuQAAra2tsFgsGW5tetbX1+F2u1FWVsZeq6+v\nR3l5OYxGI9bW1rC5uQmRSITKykpMTEyAYZgMtvjfRaNRDA8P4/7+Hi8vL7BarYhEIrzPFRA/PjU3\nN4fl5WUAgMfjQV1dHTQaDWZnZ7G3t4esrCy0tLRw+pjHyckJpqencXV1BYFAAKVSCZfLhbGxMTw9\nPaGwsBBOpxNCoRCDg4NwOp3Izs5OmIOpfkgzIVmfIpEIRCIRW5xUKhUcDgfbp1gsljBWm5qaMtyT\nfyTrk9lshsfjQU5ODsRiMZxOJ+RyOW/yBCTvl9vthtvtRk1NDUwmE/vdvr4+LCws4Pr6GiMjI+wN\nMFePiP0XvC/OhBBCyE/D62VtQggh5Cei4kwIIYRwDBVnQgghhGOoOBNCCCEcQ8WZEEII4RgqzoQQ\nQgjHUHEmhBBCOIaKMyGEEMIxvwBEeWujSQ84HgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "SdeWg1ZynT5m", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "The validation MAE stays in the low 0.40s: we cannot even beat our common-sense baseline using the small convnet. Again, this is because \n", + "our convnet looks for patterns anywhere in the input timeseries, and has no knowledge of the temporal position of a pattern it sees (e.g. \n", + "towards the beginning, towards the end, etc.). Since more recent datapoints should be interpreted differently from older datapoints in the \n", + "case of this specific forecasting problem, the convnet fails at producing meaningful results here. This limitation of convnets was not an \n", + "issue on IMDB, because patterns of keywords that are associated with a positive or a negative sentiment will be informative independently \n", + "of where they are found in the input sentences.\n", + "\n", + "One strategy to combine the speed and lightness of convnets with the order-sensitivity of RNNs is to use a 1D convnet as a preprocessing \n", + "step before a RNN. This is especially beneficial when dealing with sequences that are so long that they couldn't realistically be processed \n", + "with RNNs, e.g. sequences with thousands of steps. The convnet will turn the long input sequence into much shorter (downsampled) sequences \n", + "of higher-level features. This sequence of extracted features then becomes the input to the RNN part of the network." + ] + }, + { + "metadata": { + "id": "ZeoqaYNLnT5n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "This technique is not seen very often in research papers and practical applications, possibly because it is not very well known. It is very \n", + "effective and ought to be more common. Let's try this out on the temperature forecasting dataset. Because this strategy allows us to \n", + "manipulate much longer sequences, we could either look at data from further back (by increasing the `lookback` parameter of the data \n", + "generator), or look at high-resolution timeseries (by decreasing the `step` parameter of the generator). Here, we will chose (somewhat \n", + "arbitrarily) to use a `step` twice smaller, resulting in twice longer timeseries, where the weather data is being sampled at a rate of one \n", + "point per 30 minutes." + ] + }, + { + "metadata": { + "id": "zQ0O1kvbnT5o", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# This was previously set to 6 (one point per hour).\n", + "# Now 3 (one point per 30 min).\n", + "step = 3\n", + "lookback = 720 # Unchanged\n", + "delay = 144 # Unchanged\n", + "\n", + "train_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=0,\n", + " max_index=200000,\n", + " shuffle=True,\n", + " step=step)\n", + "val_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=200001,\n", + " max_index=300000,\n", + " step=step)\n", + "test_gen = generator(float_data,\n", + " lookback=lookback,\n", + " delay=delay,\n", + " min_index=300001,\n", + " max_index=None,\n", + " step=step)\n", + "val_steps = (300000 - 200001 - lookback) // 128\n", + "test_steps = (len(float_data) - 300001 - lookback) // 128" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "REdvEpN8nT5r", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is our model, starting with two `Conv1D` layers and following-up with a `GRU` layer:" + ] + }, + { + "metadata": { + "id": "bB2FalC1nT5s", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 986 + }, + "outputId": "cf12e2f2-c871-4423-dc87-bcd85ad708f1" + }, + "cell_type": "code", + "source": [ + "model = Sequential()\n", + "model.add(layers.Conv1D(32, 5, activation='relu',\n", + " input_shape=(None, float_data.shape[-1])))\n", + "model.add(layers.MaxPooling1D(3))\n", + "model.add(layers.Conv1D(32, 5, activation='relu'))\n", + "model.add(layers.GRU(32, dropout=0.1, recurrent_dropout=0.5))\n", + "model.add(layers.Dense(1))\n", + "\n", + "model.summary()\n", + "\n", + "model.compile(optimizer=RMSprop(), loss='mae')\n", + "history = model.fit_generator(train_gen,\n", + " steps_per_epoch=500,\n", + " epochs=20,\n", + " validation_data=val_gen,\n", + " validation_steps=val_steps)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv1d_6 (Conv1D) (None, None, 32) 2272 \n", + "_________________________________________________________________\n", + "max_pooling1d_4 (MaxPooling1 (None, None, 32) 0 \n", + "_________________________________________________________________\n", + "conv1d_7 (Conv1D) (None, None, 32) 5152 \n", + "_________________________________________________________________\n", + "gru_1 (GRU) (None, 32) 6240 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 13,697\n", + "Trainable params: 13,697\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Epoch 1/20\n", + "500/500 [==============================] - 95s 189ms/step - loss: 0.3411 - val_loss: 0.2851\n", + "Epoch 2/20\n", + "500/500 [==============================] - 94s 187ms/step - loss: 0.3051 - val_loss: 0.2815\n", + "Epoch 3/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2941 - val_loss: 0.2867\n", + "Epoch 4/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2864 - val_loss: 0.2775\n", + "Epoch 5/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2802 - val_loss: 0.2762\n", + "Epoch 6/20\n", + "500/500 [==============================] - 93s 187ms/step - loss: 0.2740 - val_loss: 0.2800\n", + "Epoch 7/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2687 - val_loss: 0.2811\n", + "Epoch 8/20\n", + "500/500 [==============================] - 94s 187ms/step - loss: 0.2625 - val_loss: 0.2831\n", + "Epoch 9/20\n", + "500/500 [==============================] - 94s 187ms/step - loss: 0.2580 - val_loss: 0.2791\n", + "Epoch 10/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2553 - val_loss: 0.2935\n", + "Epoch 11/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2500 - val_loss: 0.2834\n", + "Epoch 12/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2459 - val_loss: 0.2911\n", + "Epoch 13/20\n", + "500/500 [==============================] - 93s 185ms/step - loss: 0.2424 - val_loss: 0.2917\n", + "Epoch 14/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2417 - val_loss: 0.2864\n", + "Epoch 15/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2362 - val_loss: 0.2892\n", + "Epoch 16/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2363 - val_loss: 0.2931\n", + "Epoch 17/20\n", + "500/500 [==============================] - 93s 185ms/step - loss: 0.2315 - val_loss: 0.2875\n", + "Epoch 18/20\n", + "500/500 [==============================] - 93s 185ms/step - loss: 0.2297 - val_loss: 0.2924\n", + "Epoch 19/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2273 - val_loss: 0.2920\n", + "Epoch 20/20\n", + "500/500 [==============================] - 93s 186ms/step - loss: 0.2255 - val_loss: 0.2958\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "RiLqMOHInT5w", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 362 + }, + "outputId": "1802f5b5-2372-46de-deb4-cc1a15e42167" + }, + "cell_type": "code", + "source": [ + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(loss))\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XucjPX///HHNTN7tItddp2i5Jdj\nySGVyIaVJYfP5hOrciihUvikj1NYJaLwIfWR0oGoVlqqj1MkJTkVlUSkb6LIrl3seXdmr98fk2Hb\nM3uYHc/77eZmr2vmuub9mmvmes37fb2v99swTdNERERE3IalvAsgIiIiOSk5i4iIuBklZxERETej\n5CwiIuJmlJxFRETcjJKziIiIm1FyFo8WHR1NREQEERERNGvWjI4dO7qWk5OTi7WviIgI4uPjC3zO\nnDlzePfddy+nyCVu8ODBxMbGlsi+GjVqxMmTJ9m4cSMTJky4rNdbsWKF6++ivLdFNX78eP773/+W\nyL5EyoutvAsgUpqefvpp19+dOnXi+eef56abbrqkfa1fv77Q54wZM+aS9l3RdOnShS5dulzy9nFx\ncSxevJi+ffsCRXtvRa4kqjnLFW3AgAH85z//oVu3buzZs4f4+HiGDBlCREQEnTp14s0333Q993yt\ncefOnfTr1485c+bQrVs3OnXqxK5du4CctbZOnTrx3nvv8c9//pP27dszc+ZM175eeeUV2rZtS58+\nfVi+fDmdOnXKs3zvv/8+3bp148477+S+++7j999/ByA2NpaRI0cyceJEunbtSvfu3Tl8+DAAx44d\n45577iE8PJwxY8bgcDhy7ffzzz+nZ8+eOdb17t2bL774osD34LzY2FgGDx5c6Ot9+umn9OzZk65d\nu3L33Xdz4MABAKKiovjjjz+IiIggMzPT9d4CLF26lO7duxMREcEjjzxCQkKC67198cUXeeCBB+jY\nsSMPPPAAaWlp+R1aAA4ePEhUVBQRERH07t2brVu3ApCSksKIESPo1q0bnTt3ZtKkSWRlZeW7XqSs\nKTnLFe+HH35gzZo1tGrVioULF3LVVVexfv16lixZwpw5czhx4kSubX788UduvPFG1q1bx7333svC\nhQvz3Pfu3buJiYnhgw8+YNmyZZw8eZLDhw+zePFiPvzwQ9555518a42nT5/mmWee4c033+STTz6h\nXr16OZprv/jiC+699142bNjALbfcwpIlSwCYPXs2bdu2ZdOmTQwaNIg9e/bk2nfbtm05efIkx44d\nA5wJ9uTJk9x2221Ffg/Oy+/17HY748ePZ9q0aWzYsIFOnToxa9YsAGbMmEGtWrVYv3493t7ern19\n++23vP7667z99tusX7+e2rVrM2fOHNfj69ev5z//+Q8bN24kISGBjRs35luu7OxsnnjiCe6//37W\nr1/Ps88+y5gxY0hOTmb16tVUrlyZdevWsWHDBqxWKz///HO+60XKmpKzXPHCwsKwWJxfhUmTJjF5\n8mQA6tatS0hICMePH8+1TaVKlQgPDwegWbNm/PHHH3nuu2fPnlitVmrUqEG1atU4ceIEu3fv5uab\nbyY0NBQfHx/69OmT57bVqlXjm2++oWbNmgDcdNNNrmQK0KBBA66//noAmjZt6kqgX3/9Nd27dweg\nefPmXHvttbn27e3tTceOHdm8eTMAmzZtIjw8HJvNVuT34Lz8Xs9ms/HVV1/RokWLPMufly1bttC1\na1eqVasGwD333MO2bdtcj4eFhVG1alVsNhsNGzYs8EfD8ePHiY+P56677gLghhtuoHbt2uzbt4/g\n4GD27t3Ll19+SXZ2Nk8//TRNmjTJd71IWdM1Z7niValSxfX3vn37XDVFi8VCXFwc2dnZubYJDAx0\n/W2xWPJ8DkBAQIDrb6vVisPh4Ny5czles0aNGnlu63A4ePHFF9m8eTMOh4OUlBTq16+fZxnO7xvg\n7NmzOV63cuXKee6/a9euLF26lEGDBrFp0yYeffTRYr0H5xX0em+//TarVq0iMzOTzMxMDMPIdz8A\nCQkJhIaG5tjX6dOnC405v30FBgbmeM3KlSuTkJDAXXfdxdmzZ5k/fz6//PILvXr1YsKECXTr1i3P\n9RfX7kXKgmrOIhf597//TdeuXdmwYQPr168nKCioxF8jICCA1NRU1/KpU6fyfN7atWvZvHkzy5Yt\nY8OGDYwcObJI+69cuXKOnujnr9n+3e23387Bgwf59ddf+fXXX7n11luB4r8H+b3enj17eO2111i4\ncCEbNmzg2WefLbTs1atX58yZM67lM2fOUL169UK3y0u1atU4e/YsF8/tc+bMGVetPCoqivfff5+1\na9eyf/9+Vq9eXeB6kbKk5CxykdOnT3P99ddjGAarVq0iLS0tRyItCc2bN2fnzp0kJCSQmZmZ78n/\n9OnT1KlTh+DgYBITE1m3bh0pKSmF7r9Fixaua7F79uzht99+y/N53t7etG/fnhdeeIHOnTtjtVpd\nr1uc9yC/10tISKBatWrUrl2btLQ0Vq1aRWpqKqZpYrPZSE1NxW6359jXHXfcwcaNG0lMTATgvffe\nIywsrNCY83LVVVdRs2ZN1q5d6ypbfHw8zZs35+WXX2blypWAs+XiqquuwjCMfNeLlDUlZ5GLjBo1\nihEjRtCzZ09SU1Pp168fkydPzjfBXYrmzZsTGRlJZGQkAwcOpGPHjnk+r0ePHpw5c4YuXbowZswY\nRo8ezcmTJ3P0+s7Lv//9bz777DPCw8NZvnw5t912W77P7dq1K5s2baJbt26udcV9D/J7vdtvv53Q\n0FDCw8N58MEHGTRoEIGBgYwcOZJGjRpRpUoV2rVrl+N6ffPmzRk2bBj33XcfERERJCUl8a9//avA\nePNjGAZz585l2bJldOvWjWeffZb58+fj7+9P7969+fDDD+natSsRERF4eXnRu3fvfNeLlDVD8zmL\nlD3TNF01si1btjBv3jw1n4qIi2rOImUsISGBW2+9ld9//x3TNFm3bp2rR7OICKjmLFIu3n33Xd54\n4w0Mw+Daa69l+vTpro5KIiJKziIiIm5GzdoiIiJuRslZRETEzbjNCGFxcUklur+gIH8SE0v2/lR3\n4IlxKaaKwxPjUkwVh6fFFRISmO9jHltzttms5V2EUuGJcSmmisMT41JMFYenxpUXj03OIiIiFZWS\ns4iIiJtRchYREXEzSs4iIiJuRslZRETEzSg5i4iIuBklZxERETfjNoOQiIiI51iw4D/89NMBEhJO\nk56eTu3adahcuQozZrxQ6LZr135MpUoBhIXlPdf5/PlzuOeeKGrXrnNJZXvssWE88cRYrr32/13S\n9mXB45LzqlU25s3z5tAhaNjQn9GjM4mMtJd3sURE3NqFc6eFhg2zL/vc+fjj/wKcifaXX47w2GOj\ni7xt9+49C3x81Kgxl1yuisKjkvOqVTaGD/dzLR84YP1rOU0JWkQkH2V57tyz52vee28ZqampPPbY\nv9i79xu2bPmU7Oxs2rZtx4MPDuP11xdRtWpV6tdvQGzsCgzDwtGj/8ddd3WnX79BrprvZ599SkpK\nMr/9dpTffz/OyJFjaNu2HcuWvcWmTZ9Qu3Yd7HY7UVH30arVTbnKkpyczPTpU0lOTsJutzN69L9p\n1Kgx8+a9wMGDB3A4HERG/pPu3Xvmua40Fema84wZM+jXrx9RUVF8//33OR5bsWIFffv2JSoqiqlT\np3LxDJTp6emEh4cTGxtbsqXOx7x53nmunz8/7/UiIlL2584jR35m7tyXaNy4CQD//e9iXn31Ldat\n+x8pKck5nvvjj/t56qmpvPLKm7z99tu59nXq1J/Mnv0io0Y9yUcfxXLu3FliY99n0aI3ePLJ8Xz7\n7Z58y/H+++/SrNn1LFiwiFGjxrBgwVzOnTvLV199ySuvvMHCha9jt9vzXFfaCq0579q1i6NHjxIT\nE8ORI0eYOHEiMTExAKSlpbFmzRqWL1+Ol5cXAwcOZO/evbRq1QqAhQsXUqVKldKN4CKHDuX9WyO/\n9SIiUvbnzv/3/67D29uZ+H19fXnssWFYrVbOnDnDuXPncjy3UaPG+Pr65ruv5s1bABAaGkpycjLH\njx/j2msb4OPji4+PL02aNMt324MHf2TgwCEANG7clOPHj1G5chXq1r2a8eOfoGPHcCIi7sLb2zvX\nutJW6Du/fft2wsPDAWjQoAFnz54lOdn5y8bPz48lS5bg5eVFWloaycnJhISEAHDkyBF+/vln7rjj\njtIr/d80bJhdrPUiIlL2504vLy8ATp48QUzMcubMWcBLL71KzZo1cz3Xai14souLHzdNE9MEi+VC\najOM/Lc1DCNHa292tjPeOXNe5IEHhnH48CHGjftXvutKU6HJOT4+nqCgINdycHAwcXFxOZ7z6quv\n0qVLFyIiIqhbty4As2bNYvz48SVc3IKNHp2Z5/pRo/JeLyIi5XfuPHPmDEFBQfj7+/PTTwc5efIk\nWVlZl7XPWrVq8csvR7Db7SQmJnLw4IF8n9u4cVP27v0agB9+2Ef9+g04ceIP3n//PRo1asxjj43m\n7Nmzea4rbcXuEHbxr4zzhg0bxsCBAxk6dCitW7fm2LFjtGjRwpWoiyIoyP+ypwMbNgwqV4bnnoMf\nf4SmTWHCBIiK8it84wqkoDlAKyrFVHF4YlxXekylee4MDPTF39/bVZ6qVf3x8fEiJCSQ4ODWvPVW\nZR5/3Jk7+vePYsGC2bRu3ZqAAN8cz704Lm9vG0FBlahUyYeAAF9CQgJJTKyEt7eNRo2uoXfvXjzy\nyAM0aNCAFi1upFq1wBz7OL/9I48MZeLEiYwZMwLTNHn66SlcffXVvPnmKzz++FC8vLyIiupL48b1\nc60r7c+MYeaVbS+yYMECQkJCiIqKAqBz5858+OGHBAQEcObMGQ4fPkybNm0AeO211wDYv38/x44d\nw2q1cvLkSby9vXnmmWe47bbb8n2duLikkooJcB7Akt6nO/DEuBRTxeGJcSmmiqOoca1d+zFdukRg\ntVoZODCKuXMXEBpaowxKWDwFJfhCa87t2rVjwYIFREVFsX//fkJDQwkICADAbrczfvx4PvroIypV\nqsS+ffvo1asXQ4cOdW2/YMEC6tSpU2BiFhERKSmnT59m2LBBeHl5c+edEW6ZmAtTaHJu1aoVzZo1\nIyoqCsMwiI6OJjY2lsDAQLp06cKIESMYOHAgNpuNRo0a0blz57Iot4iISJ4GDBjMgAGDy7sYl6XQ\nZu2yombtovHEuBRTxeGJcSmmisPT4iqoWVs3AIuIiLgZJWcRERE3o+QsIiLiZpScRUSkxA0f/kCu\nAUBeeeUl3n13WZ7P37PnayZNGgvA+PFP5Hr8gw9iWLBgQb6v9/PPh/ntt6MAREdPICMj/VKLzj//\n2ZPU1NRL3r4kKDmLiEiJ69KlK5s3b8yxbsuWzYSH31notjNnzi32633++WaOHfsNgKeffg4fn/zH\n464IPGrKSBERcQ+dO9/JI48M4dFHRwJw8OABQkJCCAkJZffunSxe/ApeXl4EBgbyzDMzc2x7112d\nWbPmU77+ehcvvjiH4OBqVKtWneuuuxa73c706VOJiztFWloaDz44jJo1a/Hhh7F8/vlmgoKCmDJl\nAkuXxpCcnMRzzz1DVlYWFouF8eMnYxgG06dPpXbtOvz882EaNmzE+PGT84zh1Kk/c20fGlqDZ56Z\nzOnT8WRmZjJkyHBuuunmXOtuvfXyxvZQchYR8XBTp/rw8ccle7rv2dPO1KkZ+T4eFBRM7dp1+PHH\nH2ja9Ho2b95Ily4RACQlJREd/Sy1a9dh2rQp7Ny5HX9//1z7WLToJSZPnsZ11zXkySdH/rXtOW6+\n+Va6devB778fZ/Lk8bzxxjJuuaUtd9zRmaZNr3dtv3jxK/To0ZvOne/ks8828cYbrzJkyHB++ukA\nTz89g6CgYCIju5OUlERgYO7bmvLa/p57+nP27Blefvk1kpKS2L59G0eO/Jxr3eVSs7aIiJSKLl0i\n+PRTZ9P2tm1fcMcdzkGqqlatyqxZz/LYY8PYu/cbzp3LeyKJEydOcN11DQFo0cI5FXFgYGUOHNjP\nI488yPTpU/PdFuCnnw7QsmVrAFq1uonDh38CoE6dulSrVh2LxUL16iG55pAuaPurr76G1NQUpk2b\nzJ49uwkPvzPPdZdLNWcREQ83dWpGgbXc0hIW1pGlS9+gS5eu1K1bj8qVKwPw3HPTeOGFeVxzTX3m\nzp2V7/YXT/3oHC/LYOPG9Zw7d46XX17MuXPneOihAQWU4MKUkFlZdgzDub+/T0OZ/1hcubf39fVl\n0aK32Lfve9at+5ht27YycWJ0nusuh2rOIiJSKvz9K9GgwXUsXfqmq0kbICUlmRo1apKUlMSePd/k\nO01k9eoh/Pbbr5imyd693wDOaSZr1aqNxWLh8883u7Y1DAOHw5Fj+yZNmrJnj3NKyG+//YbGjZsU\nq/x5bf/TTwfZuHE9N97YgiefnMCvv/5fnusul2rOIiJSarp0ieDZZ6OJjp7mWnf33ffwyCNDqFu3\nHvfdN5A33niVYcMezbXtsGGPMmnSOGrWrOWavOKOOzoxfvwT/PjjD9x1Vy9CQ0N5883XuPHGlsyb\n90KOa9cPPfQwzz03jY8/Xo3N5sWECZOx2+1FLnte2/v4+LJo0ct8+GEsFouFe+8dQK1atXOtu1wa\nW7uC8cS4FFPF4YlxKaaKw9Pi0tjaIiIiFYiSs4iIiJtRchYREXEzSs4iIiJuRslZRETEzSg5i4iI\nuBklZxERETej5CwiIuJmlJxFRETcjJKziIiIm1FyFhERcTNKziIiIm5GyVlERMTNKDmLiIi4GSVn\nERERN6PkLCIi4maUnEVERNyMkrOIiIibUXIWERFxM0rOIiIibkbJWURExM0oOYuIiLgZJWcRERE3\no+QsIiLiZpScRURE3IySs4iIiJuxFeVJM2bM4LvvvsMwDCZOnEjz5s1dj61YsYKVK1disVho3Lgx\n0dHRGIbB888/zzfffIPdbmf48OHceeedpRaEiIiIJyk0Oe/atYujR48SExPDkSNHmDhxIjExMQCk\npaWxZs0ali9fjpeXFwMHDmTv3r1kZmZy+PBhYmJiSExMJDIyUslZRESkiApNztu3byc8PByABg0a\ncPbsWZKTkwkICMDPz48lS5YAzkSdnJxMSEgItWvXdtWuK1euTFpaGg6HA6vVWoqhiIiIeIZCrznH\nx8cTFBTkWg4ODiYuLi7Hc1599VW6dOlCREQEdevWxWq14u/vD8DKlSvp0KGDErOIiEgRFema88VM\n08y1btiwYQwcOJChQ4fSunVrWrduDcCmTZtYuXIlb7zxRqH7DQryx2Yr2QQeEhJYovtzF54Yl2Kq\nODwxLsVUcXhqXH9XaHIODQ0lPj7etXzq1ClCQkIAOHPmDIcPH6ZNmzb4+vrSoUMH9uzZQ+vWrdm6\ndSuvvPIKixcvJjCw8DczMTH1MsLILSQkkLi4pBLdpzvwxLgUU8XhiXEpporD0+Iq6IdGoc3a7dq1\nY8OGDQDs37+f0NBQAgICALDb7YwfP56UlBQA9u3bR/369UlKSuL5559n0aJFVK1atSRiEBERuWIU\nWnNu1aoVzZo1IyoqCsMwiI6OJjY2lsDAQLp06cKIESMYOHAgNpuNRo0a0blzZ1asWEFiYiKjR492\n7WfWrFnUrl27VIMRERHxBIaZ10XkclDSTRWe1vxxnifGpZgqDk+MSzFVHJ4W12U1a4uIiEjZUnIW\nERFxM0rOIiIibkbJWURExM0oOYuIiLgZJWcRERE3o+QsIiLiZpScRURE3IySs4iIiJtRchYREXEz\nSs4iIiJuRslZRETEzSg5i4iIuBklZxERETej5CwiIuJmlJxFRETcjJKziIiIm1FyFhERcTNKziIi\nIm5GyVlERMTNKDmLiIi4GSVnERERN6PkLCIi4maUnEVERNyMkrOIiIibUXIWERFxM0rOIiIibkbJ\nuQhWrbIRFuZPrVoBhIX5s2qVrbyLJCIiHkxZphCrVtkYPtzPtXzggPWv5TQiI+3lVzAREfFYqjkX\nYt487zzXz5+f93oREZHLpeRciEOH8n6L8lsvIiJyuZRhCtGwYXax1ouIiFwuJedCjB6dmef6UaPy\nXi8iInK5lJwLERlpZ9GiNJo2dWCzmTRt6mDRInUGExGR0qPe2kUQGWlXMhYRkTKjmrOIiIibUXIW\nERFxM0rOIiIibqZI15xnzJjBd999h2EYTJw4kebNm7seW7FiBStXrsRisdC4cWOio6MxDKPAbURE\nRCR/hSbnXbt2cfToUWJiYjhy5AgTJ04kJiYGgLS0NNasWcPy5cvx8vJi4MCB7N27F7vdnu82IiIi\nUrBCm7W3b99OeHg4AA0aNODs2bMkJycD4Ofnx5IlS/Dy8iItLY3k5GRCQkIK3EZEREQKVmhyjo+P\nJygoyLUcHBxMXFxcjue8+uqrdOnShYiICOrWrVukbURERCRvxb7P2TTNXOuGDRvGwIEDGTp0KK1b\nty7SNn8XFOSPzWYtbnEKFBISWKL7cxeeGJdiqjg8MS7FVHF4alx/V2hyDg0NJT4+3rV86tQpQkJC\nADhz5gyHDx+mTZs2+Pr60qFDB/bs2VPgNvlJTEy91BjyFBISSFxcUonu0x14YlyKqeLwxLgUU8Xh\naXEV9EOj0Gbtdu3asWHDBgD2799PaGgoAQEBANjtdsaPH09KSgoA+/bto379+gVuIyIiIgUrtObc\nqlUrmjVrRlRUFIZhEB0dTWxsLIGBgXTp0oURI0YwcOBAbDYbjRo1onPnzhiGkWsbERERKRrDLMoF\n4TJQ0k0Vntb8cZ4nxqWYKg5PjEsxVRyeFtdlNWuLiIhI2VJyFhERcTNKziIiIm5GyVlERMTNKDmL\niIjk4/ffDaZP96Zp00o8/rhvmb1usUcIExER8WSmCTt3WnntNS/WrrXhcBgEBZm0a2cvszIoOZej\nVatszJvnzaFDFho2zGb06EwiI8vu4IuIyAVpaRAb68XixV7s3+8cTrpZMwdDhzrPzX5+ZVcWJedy\nsmqVjeHDLxzpAwesfy2nKUGLiJSh48cN3nzTi2XLvElMNLBaTXr1yuKhh7K45RYHhlH2ZVJyLifz\n5nnnuX7+fG8lZxGRUmaa8NVXVhYv9mLdOhvZ2QbVqjlbMAcPzqJ27fIdn0vJuZwcOpR3X7z81osU\nVWIifPmlje7d7VhLdqI3kQovNRU++MDZdH3ggPML0ry5g4ceyuQf/7DjW3Z9vgqk5FxOGjbMdn0w\n/r5e5FKZJgwZ4seXX9oYMCCT2bMzyqVJTsrPvn0W9u2DDh0MrrrKLUZndgu//Wbw5pveLF/uxZkz\nBjabyT/+kcVDD2XSpk22231PlJzLyejRmTmuOZ83alRmOZRGPMV779n48ksbFovJ2297U6OGydix\n+kx5uqwsWLPGxuLFXuza5Tyt+/tX4oknMnn44Uy8876KVu5ME5KTwd+fUmnlMU348ktnr+tPPnE2\nXVevns0TT2QyaFAWtWq5748XJedy4ryunMb8+Rd6a48apd7acuni4gyio32pVMlk1apUhg71Y/Zs\nH0JDTQYPzirv4kkpOHXK4O23vViyxIuTJ52XxDp1stO1q40XXjB59lkfVqywMWtWBu3aOcq5tDlt\n2WJl2jQf9u1zZmV/f5OAAJPAQP76P/dyzZpgGF6u9YGBputfQIDzef7+zqbrlSu9eP11Lw4edO6/\nRQtn03Xv3nZ8fMoz8qJRci5HkZF2JWMpMZMn+3DmjMGMGem0aJFNTEwqPXr4M26cD9WqmfTs6Zmf\ntfO1rzNnDM6eNTh3ztk+ecstDo+95r5nj4XFi7356CMbmZkGAQEmQ4dm8uCDmTRoYBISEkhkZArP\nPefDW295ERnpT58+WUydmkGNGuVbW/z+ewvTpvnw+ec2DMOkfXv7X8fQICnJ4Nw5OHHCQmpqfu3M\nBV8UtlhMrFbIynI2Xd99t7PpunVr92u6LoiSs4gH+PRTK7GxXrRu7eCBB5y15GuvNXn33TT+8Q9/\nHnnEl+DgNLerPZ2XmelMrufOnf/fcCXbC//g7Fkjx+PnzjnXZ2fnPuvecIODGTMyuOUW94y5uDIy\n4KOPbLz+ujd79jh/dVx3nYMhQ7Lo2zeLgICcz69aFWbNyqB//yzGjvXlgw+cTbsTJ2YweHBWmf9w\n+fVXg5kzfYiN9QKgY0c7kyZlcMMNefezsdudP7qSkoy/EjdYrZU4fjzNtZyU5EzoKSkX/k5KgsxM\ng/BwO4MGZZX7j5FLpfmcKxhPjEsxXZ7kZAgLq8SJEwYbN6bSrFnOk93nn1u5914/fH3hww9Tuf76\nS+90WJJxJSXB6NG+bNpkIy2teFUaf3+TypVNqlY9/z85ln/91eJKAn36ZDFlSka+1xfd/fN38qTB\nW295sXSpF/HxFgzD5M47HQwZkklYWN734P49JocDli71Yvp0H86dM2je3MGsWem0bl36HVDj4w3+\n8x9v3nrLi6wsgxtvdDB5cgYdOhT/R5O7H6viKmg+Z9WcRSq455/34dgxC6NGZeRKzABhYQ5eeimd\n4cP9iIryY82aVK6+unx/k//2m8H99/tx8KCVa6/Npk4dB1WrmlSpYlKlCn/9b1607sJjlSubRbpm\nOGRIJhMnOmuM69bZeOKJTIYPz6wQ1xtNE3btsvL6617873827HaDKlVMHn00k8GDM7nmmuIdP6sV\nHnggi7vusvPMMz6sWOFF9+7+DBiQxVNPZRAUVPIxpKTAokXevPSSN8nJBldfnc1TT6XTq5cdi+4Y\nLZRqzhWMJ8almC7dd99Z6NrVn6uvNtmyJaXA4QVfe82Lp57y5dprs/nf/1KpXr34X/2SiGv3bguD\nBvkRH2/hoYcyeeaZDGylVE3IzoZ33/Vi+nRv4uMtXHNNNtOmpXPnnRdqnO70+UtLg9WrbSxe7O3q\nKNWkiYOHHsqiT58s/P2Ltp/CYtq+3cq4cT4cPGilWrVspkzJoF+/kkmaWVmwfLkXs2d7c+qUherV\nsxkzJpMBA7Iuu9e4Ox2rklBQzVm/X0QqKLsdnnjCl+xsg9mz0wsd93fo0CxGjszgl18s3HefH8nJ\nZVPOi61aZePuu/1JSDB47rmqWbUOAAAgAElEQVR0ZswovcQMYLHAffdlsX17CsOHZ3LsmMGAAf70\n7+/Hzz+7T++g48cNnn3Wm5YtKzFqlB8//mihR48sVq9OZcuWVAYMKHpiLoq2bR18+mkq0dHppKUZ\njBrlR69efuzff+kpwTTh449tdOhQibFjfUlONhgzJoNdu1IYMuTyE/OVRslZpIJatMiLffusREVl\ncfvtRbt+99RTmfTvn8XevVYefNCPzDK6Bdo04YUXvBk+3A9vb3jnnTSGDCm727uqVIFp0zLYsiWV\n22+3s3mzM4lMnerDuXNlVowc0tNh0yYrDzzgy003VeLFF53t7aNGZfD11ym88UY6t91WeuM6e3nB\niBFZbNuWQo8eWezaZSM83J8pU3yK/cNt+3Yr3bv7M2SIH0ePGjzwQCY7d6Ywblxmro5qUjRq1q5g\nPDEuxVR8v/5qEBZWiUqVTL78MoXg4KJva7fD4MF+fPKJjT59snj55fQiN2deSlzp6c6OX7GxXtSr\nl82yZWk0blx+I+GZJqxdayM62offfrNQowY89VQaffuW/rXQM2dg0yYb69bZ2LzZRkqKM/OW9PCR\nl3KcPv3Uyvjxvhw9aqFmzWyefTaDnj3tBf44+PFHC9On+7Bxo7P5o1evLCZOzODaa0snrXjauaKg\nZm0l5wrGE+NSTMVjmtCvnx9btthYuDCNPn2Kf/9yair885/+fP21lUceyeTppzOKtF1x44qLMxg8\n2I/du63cdJODJUvSCAlxi1MOaWmwcKE38+f7kJYGrVs7mDEjnZYtS/aHw++/G6xfb2PtWhvbt1ux\n253Z7pprsune3U6PHlklfg/upX7+0tJgwQJvFizwJiPDICzMzsyZ6TRokPOYHT9u8PzzPsTE2DBN\ng9tuszNlSgatWpXujy5PO1coOXsQT4xLMRXPypU2Hn3Uj06d7Lz7btoln9QTEqBXL38OHbISHZ3O\niBGFNzMXJ66DBy3cf78fv/1m4e67s5g3L91tJhW4WFpaIKNGZbF6tfPWq3vvzWTixExCQy/t1Gia\ncOCAhXXrnDXk77+/cENxy5YOunWzExFhp1Gj0hsU43I/f7/8YjBhgi+ffWbD29vksccyGTUqk/R0\nmD/fh9df9yIjw6BJEwdTpmTQqVPZTKvoaecKJWcP4olxKaaiO33aoH17f9LSDD7/POWyb4n6/XeD\n7t39OXHCwksvOZt2C1LUuDZvtjJ0qB9JSQZjx2YwZkym247OdD6mr76yMmGCDwcOWAkMNHnyyQwe\neigLL6/C92G3w+7dVtaudSbk335zto/bbCbt2zuIiHAm5LKahrAkPn+mCf/7n41Jk3w4ccJC3brZ\nfw36YnDVVdmMG5fBP/9ZtjOfedq5Qr21ryCrVtkIC/OnVq0AwsL8WbVKt7J7kqlTfTh92sLYsRkl\ncq9ynTomMTFpVKliMnq0L59+evln2jfe8OK++5ydzRYtSuPJJ903MV/sttucPZhnzkzHaoXoaF/u\nuMOfzz7L+z1JTYV162yMHOnL9ddXondvfxYt8iYhwaB37yxeeSWNAweSWbEijQcfLP/5gYvLMKBn\nTzvbtqXw6KOZ/PGHgWHA1KnpfPVVCv36aUrS0qSaczlKSXHeD9i8eTa33lq03rYFxbVqlS3Pma4W\nLUpz6zG8K8KxKq7SiOnzz63cc48/zZs7WL8+tURvQdq508o99/hhscAHH6TmO3JUQXHZ7TBlig+L\nF3tTvXo2S5ak0aaN+0+BmldMCQkwc6YPS5d6kZ1tEBGRxTPPZBAYCBs3OmvIn39+YWSz0NBsIiLs\ndO9up107R7kPdFIan78//jD+mmSiRHdbLJ52rlCztpvJzoYPPrDx7LPO5iIfH5MlS9Lo1KnwBF1Q\nXGFh/nnOEd20qYMtW1Ivu9ylxZ2P1aUq6ZhSU51DdB4/brBhQyrNm5d80lu/3srgwX5UrWryv/+l\n8v/+X+5TQ35xJSXBsGF+fPqpjcaNHSxblka9em5xailUQcdq3z4LTz3lw44dNry8TByOC+N4X3ed\n8/pxt252WrbMdqtRrzzxOwWeF5eatd3IN99YuOsuf0aM8CMhwWDAAOeNpoMH+/H555fXRnToUN6H\nM7/1UnHMmePN0aMWhg/PKpXEDBAR4WDOnAwSEiz07evPiRNFa4s+dsygRw9/Pv3URqdOdtasSa0w\nibkwN9yQzYcfprFoURoNGmTTsmU2kydn8NVXyWzblsqkSc7ZjtwpMYtn0EeqjJw4YfDoo75061aJ\nb76x0quX8+b/OXMyWLIkjexsGDjQj61bLz1BN2yY90k7v/VSMfzwg4X//tebevWy+fe/i3bL06W6\n774sJkzI4PhxC1FRfpw9W/Dzv/7aOXzogQNWhgzJZNmytHJt9iwNhuGc3vWLL1JZty6Vxx/PzLNV\nQaQkeWRy/vBDG488Ajt2WCnvRvvUVJg925u2bSuxcqUXN9zg4MMPU1m8ON1Vu+jUycFbb6Vht8OA\nAX589dWlJejRo/Me7mnUqDIaBkpKnMMBY8b44nAYPP98OpUqlf5rjh6dyZAhmRw4YGXAAD/S0vJ+\n3urVNiIjLwzF+dxzpTsUp8iVxCOT886dVl55xXkP5+23+7NwoRenT5dtd1HTdHbQateuEs8/70Ol\nSibz5qXxySeptG2b+9pyeLiDN95IIysL7r3Xjx07ip+gIyPtLFqURtOmDmw2k6ZNHW7fGUwK9vrr\nXuzda6VPn6wi9UkoCYYBzz6bQe/eWezYYePhh31xXPTSpun8wTlsmB9eXmU/FKfIlcAjO4RlZ8P+\n/YG89FIWa9bYyMw08PIy6d7dzv33O8chLs1rRN9+a2HSJB927XLewD98eCajR2cWqblv7VobDz3k\ni48PxMSkcvPNOZukPa1DBCim/Bw/btC+fSV8fODLL1PKfGStjAznD8WtW20MGJDJ7NkZVK4cyP33\nZ/HBB17UrescirNJk4p92USfv4rD0+K64uZztligUye44YZ0EhLg/fe9WLbMiw8/dP6rVy+b++7L\non//LGrWLLkT3smTBjNm+PDee85RC+66yznJe/36RX+N7t3tLFqUzrBhvkRF+bNiRSo33VSxT35S\nfKYJ48b5kppqMHNm+Qx56eMDb72VRu/e/rz9tjcBAfDdd/DVV160bu0civNSR9ESkYJ5ZLP2xYKD\nYfjwLL74IpU1a1Lo3z+L+HiD557zoWXLSgwc6MuGDVbsl9Hym54O8+Z5c+utlXjvPS+aNnUQG5vK\nm2+mFysxn9ezpzNBp6VBv37+7N3r8YfJ7Tkc8NtvRo7m3dL00Uc2Nm60cfvtdvr1K7/LEoGB8O67\nadSrl83Chd589RXcfXcWq1alKjGLlCKPbNaGgps/kpIgNtZZm/7uO+e13Zo1s7n3XmdtuqgjL50f\n3u7pp52z21Svns348Zncd19WiYycs2qVjUce8SUwEFauTOXGG7M9rlkH3LOpKjkZ9uyxsmuX8983\n31hJSjKoVy+bhx7K5N57s6hcOf/tLyemM2egXbtKJCUZbNmSUmoz/BTHL78YjBjhR2SklaFDkyrE\niF9F5Y6fv8vliTGB58WlQUgKsG+fhWXLvPjgAy/OnTMwDJMOHRwMGJBFRIQ93wnC9+1zXlfevt05\nOMHQoVk88URGgSfsS7FypY0RI3ypUsU5clOnTpU86sMJ5f+FM03nGNPnE/Hu3Vb277e4BpsAaNAg\nm+uuc7hGhQoIMLn33iyGDMnMs3XkcmJ64gkfli3zZtKkDEaOdK+e9uV9rEqDYqo4PC0uJeciSE2F\njz+2sWyZFzt3Oi/FV6uWTd++zk5k113nvO576pTBc8958847Xpimc1i/qVNLb/5SgJgY5/i9VavC\nZ58Z1K7tOR9OKPsvXFYW7N9vYffuCzXjEycuXDrw8TFp0cJBmzYObr7ZQZs22VSr5jy+CQnw9tve\nvP66FydPWjAMk4gIO8OHZ9G27YWZeS41pq++svKPf/jTtKmDjRtTizTpQlnytJMjKKaKxNPiUnIu\npkOHLCxf7sWKFTZOn3aetG+5xc5NN2WzZIkXyckGjRs7mDYtg7CwsrkI+e67NkaP9qVaNYMPPkip\n8D1kL1baX7gzZ+Drr62uZLx3r5XU1Au14urVs7n55vOJ2EHz5tmFjo2cleW8LrxokTfffuu8hnHD\nDQ6GDcskMtJOnTrFjyk9HTp2rMQvvxisW5da6nPjXgpPOzmCYqpIPC2uy07OM2bM4LvvvsMwDCZO\nnEjz5s1dj+3YsYO5c+disVioX78+06dPJy0tjXHjxnH27FmysrIYMWIEt99+e4Gv4U7J+byMDFi/\n3lmb/vxzZ206ODibceMyGTAgq8wHXFi2zIsnnvClevVsVq1Ko1Ej9zt5X4qS+sKZJsTFGRw/bnDo\nkLNmvHu3lYMHL3QAMAyTxo2zadPmQs34mmvMS76Gapqwa5eVV1/1Ys0aG9nZBqGh2Tz+uIU+fZKp\nXr3ov31nzvRm7lwfhg7NZPr00h0J7FJ52skRFFNF4mlxXVZy3rVrF6+//jqLFi3iyJEjTJw4kZiY\nGNfjd955J0uXLqVmzZqMHDmSPn36cOzYMf7880/GjBnDn3/+yaBBg1i/fn2BhXTH5Hyxo0cNvvnG\nSqdOdqpWLbHdFltsbCAPPwwhIdmsXp3mam4vbatW2Zg3z5tDhyw0bJjN6NGZJTa4SVGPVXq6c2ac\n48ct/P6783/nP+fff/xhkJGRM8v6+5u0auVw1Yxbt3ZQpUqJFDuX334zWLzYm+XLvUhKMvD1Nfnn\nP7MYOjSr0JaOgwctdO7sT2ioydatKQQElE4ZL5ennRxBMVUknhbXZd3nvH37dsLDwwFo0KABZ8+e\nJTk5mYC/zh6xsbGuv4ODg0lMTCQoKIiffvoJgHPnzhEUFHTZQZS3q682ufrq8h9pa/hwOHMmnfHj\nfYmM9GP16rxnDypJf5+K8sAB61/LJTf6mGlCYiL8/nvOhHv8uPHXOoNTp/K/pax69WyaNMnmqquy\nqVPH5JprsrnpJgfNmmWXWQtHvXomzzyTwdixGfzvf4HMnWuybJk3y5Z5ExZm5+GHM+nYMfcAONnZ\nziE6s7IMZs1Kc9vELCJlp9DTVnx8PM2aNXMtBwcHExcX50rI5/8/deoU27ZtY9SoUQQFBREbG0uX\nLl04d+4cixYtKqXiX5kefDCL7GyYONGXu+/2Z/Xq1FLtkDZvXt5d1ufP977k5GyasG2blWXLvDhw\nAI4eDchxHfhi3t4mtWubtG9v56qrTOrUyeaqq0yuusqZjGvXNvHLPY11uQkIgMcfh3vuSeGTT2y8\n+qrzssjnn9u47joHQ4dmcc89Wa5xspcs8WL3biu9e2dx551ldCO1iLg3sxCTJk0yN27c6FqOiooy\nf/nllxzPiY+PNyMjI82tW7eapmmaq1evNidNmmSapmkeOHDAjIyMLOxlzKwse6HPkZzmzjVNMM06\ndUzz559L73WsVufr/P2fzVb8fSUmmub8+abZpMmF/QQFmWaLFqbZq5dpPv64ab7wgmnGxJjmjh2m\n+ccfpulwlHxMZW3PHtMcNMg0vbwuxDx+vGnu3GmalSubZtWqpnniRHmXUkTcRaE159DQUOLj413L\np06dIiQkxLWcnJzM0KFDGT16NO3btwdgz549rr8bN27MqVOncDgcWAsYmSMxMfWSf2DkxdOuTZx3\ncVz33w9nz3rx9NO+hIVls3p1apEHUCmOhg2dUwLmXu8gLq5ox+377y289ZYXsbFepKYaeHub9Olj\nZ/DgLO66y5/4+PyP1enTl1z0cvP3z99VV8ELL8CTTxq8+aYXS5Z4MXOmhZkznY/PnZuO1ZpFXFw5\nFbiIPPF7pZgqDk+Lq6BrzoWOC9muXTs2bNgAwP79+wkNDXU1ZQPMnDmTQYMG0aFDB9e6q6++mu++\n+w6A33//nUqVKhWYmOXSjRiRxaRJGfz+u4W77/bn2LGSH7rpUqeiTEuD996z0a2bP+HhlVi2zJvq\n1U0mTcrg229TWLgwnVtucXjUaFOFqVHDZPz4TPbuTWHevDSaN3fQs2cW996rWZ1E5IIi3Uo1e/Zs\nvv76awzDIDo6mh9//JHAwEDat29PmzZtaNmypeu5PXr0oEePHkycOJHTp09jt9sZNWoUbdu2LfA1\n3L23trvIL67//Meb557zoV49Zw36qqtKtga9apWN+fMv9NYeNSr/3tq//GKwZIk3773nRWKic9S1\nLl0cDB7s7BD1999pnnisPDEm8My4FFPF4WlxaRASD1JQXLNne/P88z5cc40zQdeuXXaH1m6HTz6x\n8eabF+4Jr17dOfvXgAFZ1KuXf1k88Vh5YkzgmXEpporD0+K64qaMvFI9+WQmdjvMnetDp07+XH99\nNtdcc/6f6fq7JG/V+fNPg7ffdk4i8scfzqskt95q54EHsrjrrvzHJhcRkfwpOXuYceMy8fODxYu9\n+OILG198kfs51atnU7++eVHivpDAq1cvfLQs04Qvv7Ty1lterFtnw253TgTx4IOZDBpU+IAbIiJS\nMCVnD2MYzo5ao0ZlkpoKR49a+PVXC//3fwa//mpx/duzxzm85d8FBJhcfXU29evnVeM2WbnS2dP4\n8GHntk2bOnjggSz69MnS4BkiIiVEydmD+ftDkybZedZk7XY4ftzg//7PclHSNv5K5Bb278+/d723\nt3NYysGDM2nTJvuK6m0tIlIWlJyvUDYbf9WKHUDOUalM0zk1pjNxX6hxx8UZ3HGHg/79s4o1oYOI\niBSPkrPkYhjO+3Fr1HBw663lXRoRkStPoYOQiJSWVatshIX5Y7NBWJg/q1bpt6KICKjmLOWkLGa6\nEhGpqFRzlnJR0ExXIiJXOiVnKReHDuX90ctvvYjIlURnQikXDRvmPVBJfutFRK4kSs5SLi51pisR\nkSuBkrOUi8hIO4sWpdG0qQObzTnS2KJF6gwmIgLqrS3lKDLSTmSk/a+ZZlLLuzgiIm5DNWcRERE3\no+QsIiLiZpScRURE3IySs4iIiJtRchYREXEzSs7iUc5PplGrVoAm0xCRCktnLvEYmkxDRDyFas7i\nMTSZhoh4CiVn8RiaTENEPIXOWuIxNJmGiHgKJWfxGJpMQ0Q8hZKzeIyck2mYmkxDRCos9dYWj3J+\nMg0RkYpMNWcRERE3o+QsIiLiZpScRURE3IySs4iIiJtRchYREXEzSs4iIiJuRslZpAg025WIlCWd\nYUQKodmuRKSsqeYsUgjNdiUiZU3JWaQQmu1KRMqazi4ihdBsVyJS1oqUnGfMmEG/fv2Iiori+++/\nz/HYjh076Nu3L1FRUUyYMIHsbOcJ66OPPqJXr17cfffdbNmypcQLLlJWNNuViJS1QpPzrl27OHr0\nKDExMUyfPp3p06fneHzKlCm8+OKLvPfee6SkpLB161YSExN5+eWXeeedd3jllVf49NNPSy0AkdKm\n2a5EpKwV2lt7+/bthIeHA9CgQQPOnj1LcnIyAQEBAMTGxrr+Dg4OJjExke3bt9O2bVsCAgIICAhg\n2rRppRiCSOnTbFciUpYKrTnHx8cTFBTkWg4ODiYuLs61fD4xnzp1im3bthEWFsbx48dJT0/n4Ycf\n5t5772X79u2lUHQRERHPVOz7nE3TzLXu9OnTPPzww0RHR7sS+ZkzZ3jppZf4448/GDhwIJ999hmG\nYeS736Agf2w2a3GLU6CQkMAS3Z+78MS4FFPF4YlxKaaKw1Pj+rtCk3NoaCjx8fGu5VOnThESEuJa\nTk5OZujQoYwePZr27dsDUK1aNVq2bInNZqNevXpUqlSJhIQEqlWrlu/rJCamXk4cuYSEBBIXl1Si\n+3QHnhiXYqo4PDEuxVRxeFpcBf3QKLRZu127dmzYsAGA/fv3Exoa6mrKBpg5cyaDBg2iQ4cOrnXt\n27dnx44dZGdnk5iYSGpqao6mcRHRkKAikr9CzwatWrWiWbNmREVFYRgG0dHRxMbGEhgYSPv27Vm9\nejVHjx5l5cqVAPTo0YN+/frRtWtX+vbtC8CkSZOwWHRLtch5GhJURApimHldRC4HJd1U4WnNH+d5\nYlxXYkxhYf4cOJC7j0XTpg62bCnZSzwl6Uo8VhWRJ8YEnhfXZTVri0jJ05CgIlIQnQlEyoGGBBWR\ngig5i5QDDQkqIgVRchYpB6U1JKh6gIt4Bn1zRcpJSQ8Jqh7gIp5DNWcRDzFvnnee6+fPz3u9iLgv\nJWcRD6Ee4CKeQ99aEQ+hHuAinkPJWcRDqAe4iOdQchbxEKXVA1xEyp56a4t4kJLuAS4i5UM1ZxER\nETej5CwiIuJmlJxFRETcjJKziIiIm1FyFhERcTNKziJSqPMTathsaEINkTKgb5iIFEgTaoiUPdWc\nRaRAmlBDpOwpOYtIgTShhkjZ07dLRAqkCTVEyp6Ss4gUSBNqiJQ9JWcRKVDOCTXQhBoiZUC9tUWk\nUOcn1AgJCSQuLrW8iyPi8VRzFhERcTNKziJSLs4PbFKrVoAGNhH5G30bRKTMaWATkYKp5iwiZU4D\nm4gUTMlZRMqcBjYRKZi+CSJS5jSwiUjBlJxFpMxpYBORgik5i0iZyzmwiamBTUT+Rr21RaRcnB/Y\nRERyU81ZRDyG7p0WT6FProh4BN07LZ5ENWcR8Qilee+0auRS1vQJExGPUFr3TqtGLuVBNWcR8Qil\nde+0RjOT8qDkLCIeobTundZoZlIeivTpmjFjBv369SMqKorvv/8+x2M7duygb9++REVFMWHCBLKz\nL/xKTU9PJzw8nNjY2JIttYjI35TWvdMazUzKQ6HJedeuXRw9epSYmBimT5/O9OnTczw+ZcoUXnzx\nRd577z1SUlLYunWr67GFCxdSpUqVki+1iEgeIiPtbNmSyh9/JLNlS2qJXBPWaGZSHgpNztu3byc8\nPByABg0acPbsWZKTk12Px8bGUrNmTQCCg4NJTEwE4MiRI/z888/ccccdpVBsEZGyodHMpDwU2ls7\nPj6eZs2auZaDg4OJi4sjICAAwPX/qVOn2LZtG6NGjQJg1qxZTJ48mdWrVxepIEFB/ths1mIHUJCQ\nkMAS3Z+78MS4FFPF4YlxFRbTsGHOf05WwK+AZ7sHTzxO4Llx/V2xb6UyTTPXutOnT/Pwww8THR1N\nUFAQq1evpkWLFtStW7fI+01MTC1uUQoUEhJIXFxSie7THXhiXIqp4vDEuBRTxeFpcRX0Q6PQ5Bwa\nGkp8fLxr+dSpU4SEhLiWk5OTGTp0KKNHj6Z9+/YAbNmyhWPHjrFlyxZOnjyJt7c3NWvW5Lbbbruc\nOERERK4IhSbndu3asWDBAqKioti/fz+hoaGupmyAmTNnMmjQIDp06OBaN2/ePNffCxYsoE6dOkrM\nIiIiRVRocm7VqhXNmjUjKioKwzCIjo4mNjaWwMBA2rdvz+rVqzl69CgrV64EoEePHvTr16/UCy4i\nIuKpinTN+cknn8yx3LhxY9ffP/zwQ4HbPv7445dQLBERkSuXhrgRESkHpTGZxvl92mxogo4KTkdO\nRKSMlcZkGpqgw7Oo5iwiUsZKYzINTdDhWZScRUTKWGlMpqEJOjyLjpqISBkrjck0NEGHZ1FyFhEp\nY6UxmYYm6PAsSs4iImWsNCbTyLlPNEFHBafe2iIi5SAy0l7iifP8Pp1jUJfsfAVStlRzFhERcTNK\nziIiIm5GyVlERMTNKDmLiEiBSmOoUSmY3mEREcmXhgUtH6o5i4hIvjQsaPlQchYRkXxpWNDyoXdX\nRETyVVrDguo6dsGUnEVEJF+lMSzo+evYBw5YcTgM13VsJegLlJxFRCRfpTHUqK5jF04/U0REpEAl\nPdSormMXTu+EiIiUKU1vWTglZxERKVOa3rJwSs4iIlKmSuM69nme0gu8YpZaREQqtNKYMtOTRjNT\nzVlERDyCJ/UCV3IWERGP4Em9wCteiUVERPLgSaOZKTmLiIhH8KTRzJScRUTEI3jSaGbqrS0iIh7D\nU0YzU81ZREQkH+U1mpmSs4iISD7KazQzJWcREZF8lOZoZgXRNWcREZEClMZoZoVRzVlERMTNKDmL\niIi4GSVnERERN6PkLCIi4maUnEVERNxMkXprz5gxg++++w7DMJg4cSLNmzd3PbZjxw7mzp2LxWKh\nfv36TJ8+HYvFwvPPP88333yD3W5n+PDh3HnnnaUWhIiIiCcpNDnv2rWLo0ePEhMTw5EjR5g4cSIx\nMTGux6dMmcLSpUupWbMmI0eOZOvWrfj4+HD48GFiYmJITEwkMjJSyVlERKSICk3O27dvJzw8HIAG\nDRpw9uxZkpOTCQgIACA2Ntb1d3BwMImJifTs2dNVu65cuTJpaWk4HA6sVmtpxSEiIuIxCk3O8fHx\nNGvWzLUcHBxMXFycKyGf///UqVNs27aNUaNGYbVa8ff3B2DlypV06NCh0MQcFOSPzVayyTskJLBE\n9+cuPDEuxVRxeGJciqni8NS4/q7YI4SZpplr3enTp3n44YeJjo4mKCjItX7Tpk2sXLmSN954o/CC\nlHBiFhERqagKTc6hoaHEx8e7lk+dOkVISIhrOTk5maFDhzJ69Gjat2/vWr9161ZeeeUVFi9eTGDg\nlfFLR0REpCQUeitVu3bt2LBhAwD79+8nNDTU1ZQNMHPmTAYNGkSHDh1c65KSknj++edZtGgRVatW\nLYVii4iIeC7DzKud+m9mz57N119/jWEYREdH8+OPPxIYGEj79u1p06YNLVu2dD23R48eACxYsID6\n9eu71s+aNYvatWuXQggiIiKepUjJWURERMqORggTERFxM0rOIiIibqbYt1K5m4KGFv3qq6+YO3cu\nVquVDh06MGLEiHIsafEUNPxpp06dqFmzpuve8dmzZ1OjRo3yKmqR7Ny5k1GjRnHdddcB0LBhQyZP\nnux6vKIeq/fff5+PPvrItfzDDz+wd+9e13KzZs1o1aqVa/mtt95y68F4Dh06xKOPPsrgwYO5//77\nOXHiBGPHjsXhcBASEqLTc8QAAAZbSURBVMILL7yAt7d3jm0K+g66g7ximjBhAna7HZvNxgsvvJDj\nDpTCPqvu4O8xjR8/nv3797s64A4ZMoQ77rgjxzbufpwgd1wjR44kMTERgDNnztCiRQumTZvmen5s\nbCzz58+nXr16ANx222088sgj5VL2EmdWYDt37jSHDRtmmqZp/vzzz2bfvn1zPN6tWzfzjz/+MB0O\nh9m/f3/z8OHD5VHMYtu+fbv50EMPmaZpmgkJCWZYWFiOxzt27GgmJyeXQ8ku3Y4dO8zHH38838cr\n6rG62M6dO82pU6fmWHfzzTeXU2mKLyUlxbz//vvNSZMmmW+//bZpmqY5fvx4c+3ataZpmuacOXPM\n5cuX59imsO9gecsrprFjx5pr1qwxTdM0ly1bZs6aNSvHNoV9VstbXjGNGzfO3Lx5c77buPtxMs28\n47rY+PHjze+++y7Hug8++MCcOXNmWRWxTFXoZu38hhYFOHbsGFWqVKFWrVpYLBbCwsLYvn17eRa3\nyNq0acP8+fOBnMOfeqqKfKwu9vLLL/Poo4+WdzEumbe3N6+99hqhoaGudTt37qRz584AdOzYMddx\nKeg76A7yiik6OpquXbsCEBQUxJkzZ8qreJckr5gK4+7HCQqO65dffiEpKckta/ulpUIn5/j4+Bwj\nkp0fWhQgLi6O4ODgPB9zd0UZ/jQ6Opr+/fsze/bsPEdtc0c///wzDz/8MP3792fbtm2u9RX5WJ33\n/fffU6tWrRzNowCZmZmMGTOGqKgo3nzzzXIqXdHYbDZ8fX1zrEtLS3M1Y1erVi3XcSnoO+gO8orJ\n398fq9WKw+HgnXfeoWfPnrm2y++z6g7yiglg2bJlDBw4kH/9618kJCTkeMzdjxPkHxfA0qVLuf/+\n+/N8bNeuXQwZMoRBgwbx448/lmYRy1SFv+Z8sYqSpIoqv+FPR44cye23306VKlUYMWIEGzZsICIi\nopxKWTTXXHMNjz32GN26dePYsWMMHDiQTz75JNf1y4pq5cqVREZG5lo/duxYevXqhWEY3H///dx0\n003ccMMN5VDCy1eU71dF+Q46HA7Gjh3LrbfeStu2bXM8VhE/q71796Zq1ao0adKEV199lZdeeokp\nU6bk+/yKcpzA+QP3m2++YerUqbkeu/HGGwkODuaOO+5g7969jBs3jo8//rjsC1kKKnTNuaChRf/+\n2J9//lmsZqDydn7409deey3X8Kf/+Mc/qFatGjabjQ4dOnDo0KFyKmXR1ahRg+7du2MYBvXq1aN6\n9er8+eefQMU/VuBs/r14MJ7z+vfvT6VKlfD39+fWW2+tEMfqYv7+/qSnpwN5H5fChvd1VxMmTODq\nq6/msccey/VYQZ9Vd9W2bVuaNGkCODuM/v1zVlGPE8Du3bvzbc5u0KCBq+Nby5YtSUhI+P/t3L9r\n8kAcBvBHMUTtVgdB3BwUVwdBEaGQDv4Nbk6CCqJCF8EtFDMUHAraDh3dSujUxVUQXHR2UcEli7q0\nBuwgzftDbfu+ixd5PutluOMuPjG5+57NJ0Bbh/NXpUWDwSDW6zVmsxlM00Sv10MymTxld3/sq/Kn\nq9UKuVwO7+/vAHYL93NXqch0Xcfj4yOA3WtswzCsHeZ2nitgF1oXFxd7/6wmkwkqlQq22y1M08Rw\nOLTFXP0ukUhY99jr6ytSqdQf7d+V9xWRruuQJAmlUulo+7G1KqpisYjpdApg96D49zqz4zx9Go1G\niEQiB9s6nQ5eXl4A7HZ6X15eCn0a4l/YvkLYsdKiiqJgMBhA0zQAwPX1NXK53Il7+zPdbnev/Gk8\nHkc4HIaiKHh6esLz8zNkWUY0GkW9XofD4Thhj7+3Xq9RrVaxXC6x2WxQKBRgGIbt5wrYHZ+6u7vD\nw8MDAKDdbltlbZvNJvr9PpxOJ66uroQ+5jEej3F7e4v5fA6XywW/3w9N03Bzc4O3tzcEAgGoqgpJ\nklAul6GqKtxu9949eOyH9BQOjckwDMiybIVTKBRCo9GwxmSa5t5aTafTJx7JL4fGlM1m0W634fF4\n4PV6oaoqfD6fbeYJODyuVquFVquFWCyGTCZjXZvP53F/f4/FYoFarWY9AIt6ROx/2D6ciYiIzo2t\nX2sTERGdI4YzERGRYBjOREREgmE4ExERCYbhTEREJBiGMxERkWAYzkRERIJhOBMREQnmA2XMxy1T\nA/D6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "4nzxmEOnnT52", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Judging from the validation loss, this setup is not quite as good as the regularized GRU alone, but it's significantly faster. It is \n", + "looking at twice more data, which in this case doesn't appear to be hugely helpful, but may be important for other datasets." + ] + }, + { + "metadata": { + "id": "1VygvJtZnT53", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Wrapping up\n", + "\n", + "Here's what you should take away from this section:\n", + "\n", + "* In the same way that 2D convnets perform well for processing visual patterns in 2D space, 1D convnets perform well for processing \n", + "temporal patterns. They offer a faster alternative to RNNs on some problems, in particular NLP tasks.\n", + "* Typically 1D convnets are structured much like their 2D equivalents from the world of computer vision: they consist of stacks of `Conv1D` \n", + "layers and `MaxPooling1D` layers, eventually ending in a global pooling operation or flattening operation.\n", + "* Because RNNs are extremely expensive for processing very long sequences, but 1D convnets are cheap, it can be a good idea to use a 1D \n", + "convnet as a preprocessing step before a RNN, shortening the sequence and extracting useful representations for the RNN to process.\n", + "\n", + "One useful and important concept that we will not cover in these pages is that of 1D convolution with dilated kernels." + ] + } + ] +} \ No newline at end of file diff --git a/6_1_using_word_embeddings.ipynb b/6_1_using_word_embeddings.ipynb new file mode 100644 index 0000000..3ff8b90 --- /dev/null +++ b/6_1_using_word_embeddings.ipynb @@ -0,0 +1,1195 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "6_1_using_word_embeddings.ipynb", + "version": "0.3.2", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "F0FghNMW0sSx", + "colab_type": "code", + "outputId": "3c426bc0-75b9-40e0-af46-d597fdc8a206", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "import keras\n", + "keras.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.4'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "qhzfMcL40sS-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Using word embeddings\n", + "\n", + "This notebook contains the second code sample found in Chapter 6, Section 1 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "---\n", + "\n", + "\n", + "Another popular and powerful way to associate a vector with a word is the use of dense \"word vectors\", also called \"word embeddings\". \n", + "While the vectors obtained through one-hot encoding are binary, sparse (mostly made of zeros) and very high-dimensional (same dimensionality as the \n", + "number of words in the vocabulary), \"word embeddings\" are low-dimensional floating point vectors \n", + "(i.e. \"dense\" vectors, as opposed to sparse vectors). \n", + "Unlike word vectors obtained via one-hot encoding, word embeddings are learned from data. \n", + "It is common to see word embeddings that are 256-dimensional, 512-dimensional, or 1024-dimensional when dealing with very large vocabularies. \n", + "On the other hand, one-hot encoding words generally leads to vectors that are 20,000-dimensional or higher (capturing a vocabulary of 20,000 \n", + "token in this case). So, word embeddings pack more information into far fewer dimensions. " + ] + }, + { + "metadata": { + "id": "3UzhuWkt0sTB", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "There are two ways to obtain word embeddings:\n", + "\n", + "* Learn word embeddings jointly with the main task you care about (e.g. document classification or sentiment prediction). \n", + "In this setup, you would start with random word vectors, then learn your word vectors in the same way that you learn the weights of a neural network.\n", + "* Load into your model word embeddings that were pre-computed using a different machine learning task than the one you are trying to solve. \n", + "These are called \"pre-trained word embeddings\". \n", + "\n", + "Let's take a look at both." + ] + }, + { + "metadata": { + "id": "LQbNEu7K0sTC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Learning word embeddings with the `Embedding` layer\n", + "\n", + "\n", + "The simplest way to associate a dense vector to a word would be to pick the vector at random. The problem with this approach is that the \n", + "resulting embedding space would have no structure: for instance, the words \"accurate\" and \"exact\" may end up with completely different \n", + "embeddings, even though they are interchangeable in most sentences. It would be very difficult for a deep neural network to make sense of \n", + "such a noisy, unstructured embedding space. \n", + "\n", + "To get a bit more abstract: the geometric relationships between word vectors should reflect the semantic relationships between these words. \n", + "Word embeddings are meant to map human language into a geometric space. For instance, in a reasonable embedding space, we would expect \n", + "synonyms to be embedded into similar word vectors, and in general we would expect the geometric distance (e.g. L2 distance) between any two \n", + "word vectors to relate to the semantic distance of the associated words (words meaning very different things would be embedded to points \n", + "far away from each other, while related words would be closer). Even beyond mere distance, we may want specific __directions__ in the \n", + "embedding space to be meaningful. \n", + "\n", + "[...]\n", + "\n", + "\n", + "In real-world word embedding spaces, common examples of meaningful geometric transformations are \"gender vectors\" and \"plural vector\". For \n", + "instance, by adding a \"female vector\" to the vector \"king\", one obtain the vector \"queen\". By adding a \"plural vector\", one obtain \"kings\". \n", + "Word embedding spaces typically feature thousands of such interpretable and potentially useful vectors.\n", + "\n", + "Is there some \"ideal\" word embedding space that would perfectly map human language and could be used for any natural language processing \n", + "task? Possibly, but in any case, we have yet to compute anything of the sort. Also, there isn't such a thing as \"human language\", there are \n", + "many different languages and they are not isomorphic, as a language is the reflection of a specific culture and a specific context. But more \n", + "pragmatically, what makes a good word embedding space depends heavily on your task: the perfect word embedding space for an \n", + "English-language movie review sentiment analysis model may look very different from the perfect embedding space for an English-language \n", + "legal document classification model, because the importance of certain semantic relationships varies from task to task.\n", + "\n", + "It is thus reasonable to __learn__ a new embedding space with every new task. Thankfully, backpropagation makes this really easy, and Keras makes it \n", + "even easier. It's just about learning the weights of a layer: the `Embedding` layer." + ] + }, + { + "metadata": { + "id": "FbYlrD1Y0sTD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.layers import Embedding\n", + "\n", + "# The Embedding layer takes at least two arguments:\n", + "# the number of possible tokens, here 1000 (1 + maximum word index),\n", + "# and the dimensionality of the embeddings, here 64.\n", + "embedding_layer = Embedding(1000, 64)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "v6NwJPQ80sTG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "The `Embedding` layer is best understood as a dictionary mapping integer indices (which stand for specific words) to dense vectors. It takes \n", + "as input integers, it looks up these integers into an internal dictionary, and it returns the associated vectors. It's effectively a dictionary lookup." + ] + }, + { + "metadata": { + "id": "sDO8lCdf0sTI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "The `Embedding` layer takes as input a 2D tensor of integers, of shape `(samples, sequence_length)`, where each entry is a sequence of \n", + "integers. It can embed sequences of variable lengths, so for instance we could feed into our embedding layer above batches that could have \n", + "shapes `(32, 10)` (batch of 32 sequences of length 10) or `(64, 15)` (batch of 64 sequences of length 15). All sequences in a batch must \n", + "have the same length, though (since we need to pack them into a single tensor), so sequences that are shorter than others should be padded \n", + "with zeros, and sequences that are longer should be truncated.\n", + "\n", + "This layer returns a 3D floating point tensor, of shape `(samples, sequence_length, embedding_dimensionality)`. Such a 3D tensor can then \n", + "be processed by a RNN layer or a 1D convolution layer (both will be introduced in the next sections).\n", + "\n", + "When you instantiate an `Embedding` layer, its weights (its internal dictionary of token vectors) are initially random, just like with any \n", + "other layer. During training, these word vectors will be gradually adjusted via backpropagation, structuring the space into something that the \n", + "downstream model can exploit. Once fully trained, your embedding space will show a lot of structure -- a kind of structure specialized for \n", + "the specific problem you were training your model for.\n", + "\n", + "Let's apply this idea to the IMDB movie review sentiment prediction task that you are already familiar with. Let's quickly prepare \n", + "the data. We will restrict the movie reviews to the top 10,000 most common words (like we did the first time we worked with this dataset), \n", + "and cut the reviews after only 20 words. Our network will simply learn 8-dimensional embeddings for each of the 10,000 words, turn the \n", + "input integer sequences (2D integer tensor) into embedded sequences (3D float tensor), flatten the tensor to 2D, and train a single `Dense` \n", + "layer on top for classification." + ] + }, + { + "metadata": { + "id": "YB9XjoBC0sS_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![word embeddings vs. one hot encoding](https://s3.amazonaws.com/book.keras.io/img/ch6/word_embeddings.png)" + ] + }, + { + "metadata": { + "id": "S1YnzJ-N0sTI", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.datasets import imdb\n", + "from keras import preprocessing\n", + "\n", + "# Number of words to consider as features\n", + "max_features = 10000\n", + "# Cut texts after this number of words \n", + "# (among top max_features most common words)\n", + "maxlen = 20\n", + "\n", + "# Load the data as lists of integers.\n", + "(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)\n", + "\n", + "# This turns our lists of integers\n", + "# into a 2D integer tensor of shape `(samples, maxlen)`\n", + "x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)\n", + "x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "nvNwpEV50sTS", + "colab_type": "code", + "outputId": "ebcce962-8e74-4d2d-c3ee-00ed9a90bcac", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 595 + } + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Flatten, Dense\n", + "\n", + "model = Sequential()\n", + "# We specify the maximum input length to our Embedding layer\n", + "# so we can later flatten the embedded inputs\n", + "model.add(Embedding(10000, 8, input_length=maxlen))\n", + "# After the Embedding layer, \n", + "# our activations have shape `(samples, maxlen, 8)`.\n", + "\n", + "# We flatten the 3D tensor of embeddings \n", + "# into a 2D tensor of shape `(samples, maxlen * 8)`\n", + "model.add(Flatten())\n", + "\n", + "# We add the classifier on top\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])\n", + "model.summary()\n", + "\n", + "history = model.fit(x_train, y_train,\n", + " epochs=10,\n", + " batch_size=32,\n", + " validation_split=0.2)" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_2 (Embedding) (None, 20, 8) 80000 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 160) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 1) 161 \n", + "=================================================================\n", + "Total params: 80,161\n", + "Trainable params: 80,161\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/10\n", + "20000/20000 [==============================] - 4s 220us/step - loss: 0.6759 - acc: 0.6050 - val_loss: 0.6398 - val_acc: 0.6814\n", + "Epoch 2/10\n", + "20000/20000 [==============================] - 4s 182us/step - loss: 0.5657 - acc: 0.7427 - val_loss: 0.5467 - val_acc: 0.7206\n", + "Epoch 3/10\n", + "20000/20000 [==============================] - 4s 183us/step - loss: 0.4752 - acc: 0.7808 - val_loss: 0.5113 - val_acc: 0.7384\n", + "Epoch 4/10\n", + "20000/20000 [==============================] - 4s 184us/step - loss: 0.4263 - acc: 0.8077 - val_loss: 0.5008 - val_acc: 0.7452\n", + "Epoch 5/10\n", + "20000/20000 [==============================] - 4s 185us/step - loss: 0.3930 - acc: 0.8258 - val_loss: 0.4981 - val_acc: 0.7538\n", + "Epoch 6/10\n", + "20000/20000 [==============================] - 4s 185us/step - loss: 0.3668 - acc: 0.8395 - val_loss: 0.5014 - val_acc: 0.7530\n", + "Epoch 7/10\n", + "20000/20000 [==============================] - 4s 187us/step - loss: 0.3435 - acc: 0.8533 - val_loss: 0.5052 - val_acc: 0.7520\n", + "Epoch 8/10\n", + "20000/20000 [==============================] - 4s 184us/step - loss: 0.3223 - acc: 0.8657 - val_loss: 0.5132 - val_acc: 0.7486\n", + "Epoch 9/10\n", + "20000/20000 [==============================] - 4s 185us/step - loss: 0.3022 - acc: 0.8766 - val_loss: 0.5213 - val_acc: 0.7490\n", + "Epoch 10/10\n", + "20000/20000 [==============================] - 4s 184us/step - loss: 0.2839 - acc: 0.8860 - val_loss: 0.5303 - val_acc: 0.7466\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "5r1qLeJM0sTW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We get to a validation accuracy of ~76%, which is pretty good considering that we only look at the first 20 words in every review. But \n", + "note that merely flattening the embedded sequences and training a single `Dense` layer on top leads to a model that treats each word in the \n", + "input sequence separately, without considering inter-word relationships and structure sentence (e.g. it would likely treat both _\"this movie \n", + "is shit\"_ and _\"this movie is the shit\"_ as being negative \"reviews\"). It would be much better to add recurrent layers or 1D convolutional \n", + "layers on top of the embedded sequences to learn features that take into account each sequence as a whole. That's what we will focus on in \n", + "the next few sections." + ] + }, + { + "metadata": { + "id": "60G7ShOV0sTY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Using pre-trained word embeddings\n", + "\n", + "\n", + "Sometimes, you have so little training data available that could never use your data alone to learn an appropriate task-specific embedding \n", + "of your vocabulary. What to do then?\n", + "\n", + "Instead of learning word embeddings jointly with the problem you want to solve, you could be loading embedding vectors from a pre-computed \n", + "embedding space known to be highly structured and to exhibit useful properties -- that captures generic aspects of language structure. The \n", + "rationale behind using pre-trained word embeddings in natural language processing is very much the same as for using pre-trained convnets \n", + "in image classification: we don't have enough data available to learn truly powerful features on our own, but we expect the features that \n", + "we need to be fairly generic, i.e. common visual features or semantic features. In this case it makes sense to reuse features learned on a \n", + "different problem.\n", + "\n", + "Such word embeddings are generally computed using word occurrence statistics (observations about what words co-occur in sentences or \n", + "documents), using a variety of techniques, some involving neural networks, others not. The idea of a dense, low-dimensional embedding space \n", + "for words, computed in an unsupervised way, was initially explored by Bengio et al. in the early 2000s, but it only started really taking \n", + "off in research and industry applications after the release of one of the most famous and successful word embedding scheme: the Word2Vec \n", + "algorithm, developed by Mikolov at Google in 2013. Word2Vec dimensions capture specific semantic properties, e.g. gender.\n", + "\n", + "There are various pre-computed databases of word embeddings that can download and start using in a Keras `Embedding` layer. Word2Vec is one \n", + "of them. Another popular one is called \"GloVe\", developed by Stanford researchers in 2014. It stands for \"Global Vectors for Word \n", + "Representation\", and it is an embedding technique based on factorizing a matrix of word co-occurrence statistics. Its developers have made \n", + "available pre-computed embeddings for millions of English tokens, obtained from Wikipedia data or from Common Crawl data.\n", + "\n", + "Let's take a look at how you can get started using GloVe embeddings in a Keras model. The same method will of course be valid for Word2Vec \n", + "embeddings or any other word embedding database that you can download. We will also use this example to refresh the text tokenization \n", + "techniques we introduced a few paragraphs ago: we will start from raw text, and work our way up." + ] + }, + { + "metadata": { + "id": "AJlWyUGU0sTY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Putting it all together: from raw text to word embeddings\n", + "\n", + "\n", + "We will be using a model similar to the one we just went over -- embedding sentences in sequences of vectors, flattening them and training a \n", + "`Dense` layer on top. But we will do it using pre-trained word embeddings, and instead of using the pre-tokenized IMDB data packaged in \n", + "Keras, we will start from scratch, by downloading the original text data." + ] + }, + { + "metadata": { + "id": "EBL8eTHO0sTZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Download the IMDB data as raw text\n", + "\n", + "\n", + "First, head to `http://ai.stanford.edu/~amaas/data/sentiment/` and download the raw IMDB dataset (if the URL isn't working anymore, just \n", + "Google \"IMDB dataset\"). Uncompress it.\n", + "\n", + "Now let's collect the individual training reviews into a list of strings, one string per review, and let's also collect the review labels \n", + "(positive / negative) into a `labels` list:" + ] + }, + { + "metadata": { + "id": "XAoKZDje0sTi", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Tokenize the data\n", + "\n", + "\n", + "Let's vectorize the texts we collected, and prepare a training and validation split.\n", + "We will merely be using the concepts we introduced earlier in this section.\n", + "\n", + "Because pre-trained word embeddings are meant to be particularly useful on problems where little training data is available (otherwise, \n", + "task-specific embeddings are likely to outperform them), we will add the following twist: we restrict the training data to its first 200 \n", + "samples. So we will be learning to classify movie reviews after looking at just 200 examples...\n" + ] + }, + { + "metadata": { + "id": "aZy9n2S40sTb", + "colab_type": "code", + "outputId": "3bfe4e29-58a2-4773-f3b0-2a71f99d0aa1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 442 + } + }, + "cell_type": "code", + "source": [ + "import os\n", + "\n", + "\n", + "#--- following updated by eathon\n", + "!wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz \n", + "!ls -al\n", + "!tar xzf aclImdb_v1.tar.gz\n", + "pwd = os.getcwd()\n", + "os.listdir('/content')\n", + "print (pwd)\n", + "\n", + "# imdb_dir = '/home/ubuntu/data/aclImdb'\n", + "# train_dir = os.path.join(imdb_dir, 'train')\n", + "\n", + "imdb_dir = '/content/aclImdb'\n", + "train_dir = os.path.join(imdb_dir, 'train')\n", + "\n", + "#--- above updated by eathon\n", + "\n", + "labels = []\n", + "texts = []\n", + "\n", + "for label_type in ['neg', 'pos']:\n", + " dir_name = os.path.join(train_dir, label_type)\n", + " for fname in os.listdir(dir_name):\n", + " if fname[-4:] == '.txt':\n", + " f = open(os.path.join(dir_name, fname))\n", + " texts.append(f.read())\n", + " f.close()\n", + " if label_type == 'neg':\n", + " labels.append(0)\n", + " else:\n", + " labels.append(1)" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "--2018-11-26 03:49:40-- http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz\n", + "Resolving ai.stanford.edu (ai.stanford.edu)... 171.64.68.10\n", + "Connecting to ai.stanford.edu (ai.stanford.edu)|171.64.68.10|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 84125825 (80M) [application/x-gzip]\n", + "Saving to: ‘aclImdb_v1.tar.gz.2’\n", + "\n", + "aclImdb_v1.tar.gz.2 100%[===================>] 80.23M 26.8MB/s in 3.0s \n", + "\n", + "2018-11-26 03:49:43 (26.8 MB/s) - ‘aclImdb_v1.tar.gz.2’ saved [84125825/84125825]\n", + "\n", + "total 721928\n", + "drwxr-xr-x 1 root root 4096 Nov 26 03:49 .\n", + "drwxr-xr-x 1 root root 4096 Nov 26 02:20 ..\n", + "drwxr-xr-x 4 7297 1000 4096 Jun 26 2011 aclImdb\n", + "-rw-r--r-- 1 root root 84125825 Jun 26 2011 aclImdb_v1.tar.gz\n", + "-rw-r--r-- 1 root root 84125825 Jun 26 2011 aclImdb_v1.tar.gz.1\n", + "-rw-r--r-- 1 root root 84125825 Jun 26 2011 aclImdb_v1.tar.gz.2\n", + "drwxr-xr-x 4 root root 4096 Nov 20 18:06 .config\n", + "-rw-rw-r-- 1 root root 347116733 Aug 4 2014 glove.6B.100d.txt\n", + "-rw-r--r-- 1 root root 134409654 Nov 26 03:15 glove.6B.100d.txt.zip\n", + "drwxrwxr-x 2 root root 4096 Nov 26 03:17 __MACOSX\n", + "-rw-r--r-- 1 root root 5296488 Nov 26 03:45 pre_trained_glove_model.h5\n", + "drwxr-xr-x 2 root root 4096 Nov 20 18:17 sample_data\n", + "/content\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ci7JaELH0sTk", + "colab_type": "code", + "outputId": "69ce28fa-91d4-480c-ce7d-f1f1a9af01ac", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + } + }, + "cell_type": "code", + "source": [ + "from keras.preprocessing.text import Tokenizer\n", + "from keras.preprocessing.sequence import pad_sequences\n", + "import numpy as np\n", + "\n", + "maxlen = 100 # We will cut reviews after 100 words\n", + "training_samples = 200 # We will be training on 200 samples\n", + "validation_samples = 10000 # We will be validating on 10000 samples\n", + "max_words = 10000 # We will only consider the top 10,000 words in the dataset\n", + "\n", + "tokenizer = Tokenizer(num_words=max_words)\n", + "tokenizer.fit_on_texts(texts)\n", + "sequences = tokenizer.texts_to_sequences(texts)\n", + "\n", + "word_index = tokenizer.word_index\n", + "print('Found %s unique tokens.' % len(word_index))\n", + "\n", + "data = pad_sequences(sequences, maxlen=maxlen)\n", + "\n", + "labels = np.asarray(labels)\n", + "print('Shape of data tensor:', data.shape)\n", + "print('Shape of label tensor:', labels.shape)\n", + "\n", + "# Split the data into a training set and a validation set\n", + "# But first, shuffle the data, since we started from data\n", + "# where sample are ordered (all negative first, then all positive).\n", + "indices = np.arange(data.shape[0])\n", + "np.random.shuffle(indices)\n", + "data = data[indices]\n", + "labels = labels[indices]\n", + "\n", + "x_train = data[:training_samples]\n", + "y_train = labels[:training_samples]\n", + "x_val = data[training_samples: training_samples + validation_samples]\n", + "y_val = labels[training_samples: training_samples + validation_samples]" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 88582 unique tokens.\n", + "Shape of data tensor: (25000, 100)\n", + "Shape of label tensor: (25000,)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "THOKLjIA0sTo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Download the GloVe word embeddings\n", + "\n", + "\n", + "Head to `https://nlp.stanford.edu/projects/glove/` (where you can learn more about the GloVe algorithm), and download the pre-computed \n", + "embeddings from 2014 English Wikipedia. It's a 822MB zip file named `glove.6B.zip`, containing 100-dimensional embedding vectors for \n", + "400,000 words (or non-word tokens). Un-zip it." + ] + }, + { + "metadata": { + "id": "iA0KMR6M0sTp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Pre-process the embeddings\n", + "\n", + "\n", + "Let's parse the un-zipped file (it's a `txt` file) to build an index mapping words (as strings) to their vector representation (as number \n", + "vectors)." + ] + }, + { + "metadata": { + "id": "5IOmRvaW0sTu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Now let's build an embedding matrix that we will be able to load into an `Embedding` layer. It must be a matrix of shape `(max_words, \n", + "embedding_dim)`, where each entry `i` contains the `embedding_dim`-dimensional vector for the word of index `i` in our reference word index \n", + "(built during tokenization). Note that the index `0` is not supposed to stand for any word or token -- it's a placeholder." + ] + }, + { + "metadata": { + "id": "AFBQAAzS0sTq", + "colab_type": "code", + "outputId": "2979cd5d-3ae2-4c2e-9455-68994d008cae", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 170 + } + }, + "cell_type": "code", + "source": [ + "# --following updated by eathon\n", + "# glove_dir = '/home/ubuntu/data/'\n", + "\n", + "import cv2\n", + "import matplotlib.pyplot as plt\n", + "from google.colab import files\n", + "import os \n", + "path = \"/content\"\n", + "# os.chdir(path)\n", + "os.listdir(path)\n", + "pwd = os.getcwd()\n", + "files.upload() # 上傳檔案\n", + "os.listdir(path)\n", + "print (pwd)\n", + "!ls -a\n", + "!pwd\n", + "!unzip glove.6B.100d.txt.zip\n", + "\n", + "glove_dir = '/content/'\n", + "\n", + "# ---above updated by eathon\n", + "\n", + "\n", + "embeddings_index = {}\n", + "f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))\n", + "for line in f:\n", + " values = line.split()\n", + " word = values[0]\n", + " coefs = np.asarray(values[1:], dtype='float32')\n", + " embeddings_index[word] = coefs\n", + "f.close()\n", + "\n", + "print('Found %s word vectors.' % len(embeddings_index))" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/content\n", + ".\t aclImdb_v1.tar.gz .config\t\t __MACOSX\n", + "..\t aclImdb_v1.tar.gz.1 glove.6B.100d.txt pre_trained_glove_model.h5\n", + "aclImdb aclImdb_v1.tar.gz.2 glove.6B.100d.txt.zip sample_data\n", + "/content\n", + "Archive: glove.6B.100d.txt.zip\n", + "replace glove.6B.100d.txt? [y]es, [n]o, [A]ll, [N]one, [r]ename: n\n", + "replace __MACOSX/._glove.6B.100d.txt? [y]es, [n]o, [A]ll, [N]one, [r]ename: n\n", + "Found 400000 word vectors.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "IaQie5y90sTu", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "embedding_dim = 100\n", + "\n", + "embedding_matrix = np.zeros((max_words, embedding_dim))\n", + "for word, i in word_index.items():\n", + " embedding_vector = embeddings_index.get(word)\n", + " if i < max_words:\n", + " if embedding_vector is not None:\n", + " # Words not found in embedding index will be all-zeros.\n", + " embedding_matrix[i] = embedding_vector" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CmvzwovW0sTz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Define a model\n", + "\n", + "We will be using the same model architecture as before:" + ] + }, + { + "metadata": { + "id": "EFVVtnIe0sT1", + "colab_type": "code", + "outputId": "dcb0665c-2057-4a5c-c879-fc0cb223c78b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + } + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Embedding, Flatten, Dense\n", + "\n", + "model = Sequential()\n", + "model.add(Embedding(max_words, embedding_dim, input_length=maxlen))\n", + "model.add(Flatten())\n", + "model.add(Dense(32, activation='relu'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.summary()" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_3 (Embedding) (None, 100, 100) 1000000 \n", + "_________________________________________________________________\n", + "flatten_2 (Flatten) (None, 10000) 0 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 32) 320032 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 1,320,065\n", + "Trainable params: 1,320,065\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "QzexLfTw0sT7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Load the GloVe embeddings in the model\n", + "\n", + "\n", + "The `Embedding` layer has a single weight matrix: a 2D float matrix where each entry `i` is the word vector meant to be associated with \n", + "index `i`. Simple enough. Let's just load the GloVe matrix we prepared into our `Embedding` layer, the first layer in our model:" + ] + }, + { + "metadata": { + "id": "AhdS7Qbz0sT8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.layers[0].set_weights([embedding_matrix])\n", + "model.layers[0].trainable = False" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "DclEpPVb0sUB", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Additionally, we freeze the embedding layer (we set its `trainable` attribute to `False`), following the same rationale as what you are \n", + "already familiar with in the context of pre-trained convnet features: when parts of a model are pre-trained (like our `Embedding` layer), \n", + "and parts are randomly initialized (like our classifier), the pre-trained parts should not be updated during training to avoid forgetting \n", + "what they already know. The large gradient update triggered by the randomly initialized layers would be very disruptive to the already \n", + "learned features." + ] + }, + { + "metadata": { + "id": "3cyMjDio0sUF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Train and evaluate\n", + "\n", + "Let's compile our model and train it:" + ] + }, + { + "metadata": { + "id": "ucEX13WD0sUG", + "colab_type": "code", + "outputId": "57045b94-76dd-47e6-c2eb-519474bce613", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + } + }, + "cell_type": "code", + "source": [ + "model.compile(optimizer='rmsprop',\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])\n", + "history = model.fit(x_train, y_train,\n", + " epochs=10,\n", + " batch_size=32,\n", + " validation_data=(x_val, y_val))\n", + "model.save_weights('pre_trained_glove_model.h5')" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 200 samples, validate on 10000 samples\n", + "Epoch 1/10\n", + "200/200 [==============================] - 1s 4ms/step - loss: 2.3609 - acc: 0.4950 - val_loss: 1.5131 - val_acc: 0.5064\n", + "Epoch 2/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.6488 - acc: 0.6350 - val_loss: 0.7135 - val_acc: 0.5373\n", + "Epoch 3/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.4465 - acc: 0.8000 - val_loss: 0.7066 - val_acc: 0.5499\n", + "Epoch 4/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.2170 - acc: 0.9650 - val_loss: 0.7505 - val_acc: 0.5383\n", + "Epoch 5/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.1409 - acc: 1.0000 - val_loss: 0.7262 - val_acc: 0.5569\n", + "Epoch 6/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.1458 - acc: 0.9600 - val_loss: 0.7275 - val_acc: 0.5635\n", + "Epoch 7/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0810 - acc: 0.9950 - val_loss: 0.9478 - val_acc: 0.5217\n", + "Epoch 8/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.2459 - acc: 0.8550 - val_loss: 0.7777 - val_acc: 0.5583\n", + "Epoch 9/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0350 - acc: 1.0000 - val_loss: 0.7813 - val_acc: 0.5658\n", + "Epoch 10/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0275 - acc: 1.0000 - val_loss: 0.9800 - val_acc: 0.5414\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "s5Y2aWZI0sUQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's plot its performance over time:" + ] + }, + { + "metadata": { + "id": "aJSx7FDw0sUR", + "colab_type": "code", + "outputId": "35c5945b-21d1-4ac2-ba39-31cb20368050", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(1, len(acc) + 1)\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtcVHX+P/DXmRlQB1ABAQXvJBm6\nZmZtpIYiiKbuRl4gUystXauf2tZuxtbXyrQsbbU73ipvhRl02VUQVMo11xvlesEoSvIGDnKRm8LM\nnN8fJwaRgUFhzmdmeD0fDx7OOTNzzmfezsxrPp9zk2RZlkFERESq04huABERUWvFECYiIhKEIUxE\nRCQIQ5iIiEgQhjAREZEgDGEiIiJBGMLkcBYuXIjRo0dj9OjR6NevH0aMGGGZLisru65ljR49GgUF\nBY0+Zvny5fjkk0+a0+QW9/DDDyMpKalFlnXzzTcjLy8PaWlpeO6555q1vi1btlhuN6W2RNQ4negG\nEF3rpZdestyOiIjA66+/jsGDB9/QslJSUmw+5umnn76hZTubqKgoREVF3fDzDQYD1qxZg8mTJwNo\nWm2JqHHsCZPTmTZtGv75z39izJgxyMzMREFBAWbOnInRo0cjIiICH374oeWxNb3A/fv3IzY2FsuX\nL8eYMWMQERGBAwcOAAAWLFiA9957D4AS+p9++ikmTpyIoUOH4rXXXrMs64MPPkBYWBgmTJiATZs2\nISIiwmr7PvvsM4wZMwajRo3Cgw8+iLNnzwIAkpKSMHfuXMTHxyM6Ohr33nsvfvrpJwDA6dOnMWnS\nJERGRuLpp5+GyWSqt9xvvvkG48ePrzPvz3/+M7799ttGa1AjKSkJDz/8sM317dy5E+PHj0d0dDTu\nv/9+ZGVlAQDi4uJw7tw5jB49GlVVVZbaAsD69etx7733YvTo0ZgzZw4KCwsttX3rrbfwyCOPYMSI\nEXjkkUdQWVlZr22VlZWYP38+oqOjERERgaVLl1ruO336NB588EFERUVhwoQJOH78eKPzIyIicOjQ\nIcvza6bPnDmDoUOHYsmSJZg6dWqjrxUAVq1ahZEjRyI6OhqvvvoqTCYThgwZgqNHj1oes3HjRjz+\n+OP1Xg9RUzGEySkdO3YM//73vzFo0CC8//776Nq1K1JSUvDxxx9j+fLlOH/+fL3nnDhxArfeeiu2\nb9+OKVOm4P3337e67IMHDyIxMRGff/45Nm7ciLy8PPz0009Ys2YNvvzyS2zevLnBXuDFixfx8ssv\n48MPP8SOHTvQvXt3S8ADwLfffospU6YgNTUVf/zjH/Hxxx8DAJYtW4awsDCkp6fjoYceQmZmZr1l\nh4WFIS8vD6dPnwaghFBeXh7uvvvuJtegRkPrMxqNWLBgARYtWoTU1NQ6gbhkyRJ06dIFKSkpcHd3\ntyzrhx9+wNq1a7FhwwakpKQgMDAQy5cvt9yfkpKCf/7zn0hLS0NhYSHS0tLqteeTTz5BeXk5UlJS\nkJycjKSkJEuQvvDCCxg7dizS0tIwZ84c/P3vf290fmOKi4txyy23YOPGjY2+1kOHDmHr1q348ssv\n8fXXX+Pw4cPYsWMHxowZg3/961+W5aWlpWHs2LE210vUEIYwOaXw8HBoNMrb9/nnn8cLL7wAAOjW\nrRv8/Pxw5syZes/x8PBAZGQkAKBfv344d+6c1WWPHz8eWq0WAQEB8PX1xfnz53Hw4EHceeed8Pf3\nR5s2bTBhwgSrz/X19cXhw4fRuXNnAMDgwYMtoQkAwcHB6N+/PwAgNDTUEpSHDh3CvffeCwAYMGAA\nevfuXW/Z7u7uGDFiBHbt2gUASE9PR2RkJHQ6XZNrUKOh9el0Onz33XcYOHCg1fZbk5GRgejoaPj6\n+gIAJk2ahL1791ruDw8PR8eOHaHT6RASEmL1x8GMGTPw3nvvQZIkdOjQAX369MGZM2dw5coV7N+/\nH+PGjQMAjBw5Elu2bGlwvi3V1dWWIfnGXuu3336L8PBweHp6wt3dHRs2bMCoUaMwduxYbNu2DWaz\nGcXFxTh27BhGjBhhc71EDeE2YXJKHTp0sNw+evSopeen0WhgMBhgNpvrPcfLy8tyW6PRWH0MAHh6\nelpua7VamEwmXLp0qc46AwICrD7XZDLhrbfewq5du2AymVBeXo5evXpZbUPNsgGgpKSkznrbt29v\ndfnR0dFYv349HnroIaSnp1uGQptagxqNrW/Dhg1ITk5GVVUVqqqqIElSg8sBgMLCQvj7+9dZ1sWL\nF22+5qudOnUKr732Gn755RdoNBrk5eXh/vvvR3FxMcxms2UZkiTBw8MD+fn5VufbotVq67zuhl5r\nUVFRndfUrl07AMBtt90GNzc3HDhwAHl5eRg6dCj0er3N9RI1hD1hcnp/+9vfEB0djdTUVKSkpMDb\n27vF1+Hp6YmKigrL9IULF6w+btu2bdi1axc2btyI1NRUzJ07t0nLb9++fZ09v2u2qV5r2LBhOHny\nJE6dOoVTp07hrrvuAnD9NWhofZmZmVi9ejXef/99pKam4pVXXrHZ9k6dOqG4uNgyXVxcjE6dOtl8\n3tVefvll9OnTB9u3b0dKSgr69u0LAPD29oYkSSgqKgIAyLKM3NzcBufLslzvB1ZJSYnVdTb2Wr29\nvS3LBpRQrpkeO3YsUlJSkJKSYhlNILpRDGFyehcvXkT//v0hSRKSk5NRWVlZJzBbwoABA7B//34U\nFhaiqqoKX3zxRYNtCQoKgo+PD4qKirB9+3aUl5fbXP7AgQMt20ozMzPx22+/WX2cu7s7hg4dijfe\neAMjR46EVqu1rPd6atDQ+goLC+Hr64vAwEBUVlYiOTkZFRUVkGUZOp0OFRUVMBqNdZY1fPhwpKWl\nWULq008/RXh4uM3XfLWLFy/illtugVarxd69e5Gbm4uKigq4u7tjyJAhSE5OBgDs2bMHs2bNanC+\nJEnw8/PDyZMnASg/iq5cuWJ1nY291oiICOzatQslJSUwGo144okn8J///AcAMG7cOKSnp+P777+/\n7tdJdC2GMDm9efPm4YknnsD48eNRUVGB2NhYvPDCCw0G2Y0YMGAAYmJiEBMTg+nTpze4HXDcuHEo\nLi5GVFQUnn76acyfPx95eXl19rK25m9/+xt2796NyMhIbNq0CXfffXeDj42OjkZ6ejrGjBljmXe9\nNWhofcOGDYO/vz8iIyMxY8YMPPTQQ/Dy8sLcuXNx8803o0OHDhgyZEid7ekDBgzArFmz8OCDD2L0\n6NEoLS3FU0891ejrvdacOXOwdOlSjBs3DgcOHMCTTz6Jt99+G4cPH8bixYuxe/dujBw5EitWrMCy\nZcsAoMH5jz/+OD766COMGzcOOTk5uOmmm6yus7HXOnDgQMycORP33Xcfxo4di9DQUMv255tvvhkd\nO3bE0KFD0bZt2+t6nUTXkng9YaKmkWXZss0wIyMDK1asaLBHTK7tsccew9SpU9kTpmZjT5ioCQoL\nC3HXXXfh7NmzkGUZ27dvt+xVS63L4cOHcfbsWQwbNkx0U8gFcO9ooibw8fHB/Pnz8fDDD0OSJPTu\n3btJx6WSa3nuueeQmZmJN954w3KIHFFzcDiaiIhIEP6UIyIiEoQhTEREJIjq24QNhlK1V+mQvL31\nKCpq2WNZqT7WWR2sszpYZ3XYo85+fl5W57MnLIhOpxXdhFaBdVYH66wO1lkdataZIUxERCQIQ5iI\niEgQhjAREZEgDGEiIiJBGMJERESCMISJiIgEYQgTEREJwgs4AHj77X/ixx+zUFh4EZcvX0ZgYBDa\nt++AJUvesPncbdu+hoeHJ8LDrV9fduXK5Zg0KQ6BgUEt3WwiInJyTeoJZ2dnIzIyEhs3bqx333ff\nfYeJEyciNjYW7777bos30JrkZB3Cw/Xo0sUT4eF6JCc377fE//t/T+Gdd1Zh6tSHERERhXfeWdWk\nAAaAe+8d32AAA8C8eU8zgKlJWvp9TSSSM76fa9qs00G1NttcQ0VFBRYtWoSwsDCr97/yyitYu3Yt\nAgICMHXqVERHR+Omm25q8YbWSE7WYfbsdpbprCzt79OViIkxtui6MjMP4dNPN6KiogJPPvkUvv/+\nMDIydsJsNiMsbAhmzJiFtWsT0LFjR/TqFYykpC2QJA1yc3/F8OEjMWPGLDz55Cz89a9/x+7dO1Fe\nXobffsvF2bNn8MILzyM0dBA2bvwI6ek7EBgYBKPRiLi4BzFo0GBLGw4e3I81az6Am5sbvLy88PLL\nr8HNzQ0rVizDiRPHoNVq8be/PYfevW+yOo+cg5rvayJ7c8b3s6g22+wJu7u7Y/Xq1fD396933+nT\np9GhQwd06dIFGo0G4eHh2Ldvn10aWmPFCner81eutD6/uXJyfsabb76Dvn1vAQC8994arFr1EbZv\n/xfKy8vqPPbEieP4xz9exAcffIjPP0+st6wLF/KxbNlbmDfvGSQmJuLSpRIkJX2GhIR1eOaZBfjh\nh8x6zyktLcXCha/gnXdWQa/3wP79+3Dw4H5cuJCPVas+wuzZT2DnzjSr88h5qP2+JrInZ3w/i2qz\nzZ6wTqeDTmf9YQaDAT4+PpZpHx8fnD59utHleXvrm3VezuzshuZrGzxBdlN5ebWFXu9uWU7HjnqE\nht6CoCBfAECnTh3w1FNzoNPpUFJSDJ3OBA+PNvD0bIuOHfX4wx/6o1s3PwCAJEnw8/OCu7sO3t4e\n8PBog7CwP8LPzws339wLW7aUory8EH373oyuXf0A+OHWWwegY0d9ndfRs2cg3nzzVZhMJpw+fRrD\nhw/D2bPnEBZ2J/z8vBAVFY6oqHCsXr263jxSNPd9oQZ7vq/V4izt/PRTYMkS4MQJIDQUiI8H4uJE\nt6rpnKHOzvh+FtVm1Qfpm3tlipAQPbKy6od4SIgJBkPzll1aehkVFVWWKz0VF1dAliUYDKXIyzuP\ntWvXYd26TdDr9Zg2bTIKC8tRXn4Fbm6XUVxcAZNJtjxXlpXbVVVGFBXVPK4dDIZSFBWVAwAKC8th\nNJotz6muNqG4uKLOlaaeffY5vPHGCvTs2QtvvrkUpaWXUVlphCxX1XmctXmkfGE5Q03s+b5Wg7PU\n+dohx6NHgQceAC5dctxh0qs5S52d8f1s7zbb5SpK/v7+KCgosEzn5+dbHbZuSfPnV1mdP2+e9fkt\npbi4GN7e3tDr9fjxx5PIy8tDdXV1s5bZpUsX/PJLDoxGI4qKinDyZFa9x5SXlyEgoDNKS0uRmXkY\n1dXVuOWWUGRmHgIAZGefxPLlS63OI+ch6n3d2jjjMKkzcsb3s6g2N6sn3LVrV5SVleHMmTPo3Lkz\ndu/ejWXLlrVU26xSfq1WYuVKd2RnaxASYsa8eVV2/xXbp08I2rXTY86cGfjDHwbiz3++H8uXL8WA\nAbfe8DJ9fHwRFTUajz02HT169EJoaD9otXV/id1//yTMmTMT3bp1x4MPTse6davw/vvr0KNHLzz+\n+KMAgKefXoDg4JuwZ883deaR8xD1vm5tsrOt9zsamk83xhnfz3XbrEVIiEmVNkuyLMuNPeDYsWNY\nunQpzp49C51Oh4CAAERERKBr166IiorCwYMHLcE7atQozJw5s9EVOsNQihpqhpW2bfsaUVGjodVq\nMX16HN588234+weIbp7LcJbhO2fnLHUOD7c+5BgaakJGhmMOk17NWers7OxR54aGo232hPv3748N\nGzY0eP8dd9yBxMT6ewJT01y8eBGzZj0ENzd3jBo1mgFMZEfz51fV2SZcw5GHScm1Of7R0y5u2rSH\nMW3aw6KbQdQqOOMwKbk2hjARtSoxMUaGLjkM7o1AREQkCEOYiIhIEIYwERGRIAxhALNnP1LvRBkf\nfPAOPvmk/lWjAOXCDs8//3cAwIIFf613/+efJ2Lt2oQG1/fzzz/h119/BQAsXPgcrly5fKNNJyIi\nJ8YQBhAVFY1du+pe8CAjYxciI0fZfO5rr7153ev75ptdOHXqFADgpZdeRZs2ba97GURE5Py4dzSA\nkSNHYc6cmXj88bkAgJMns+Dn5wc/P3+rlxK82tixI/Hvf+/EoUMH8NZby+Hj4wtf306WSxMuXvwi\nDIYLqKysxIwZs9C5cxd8+WUS9u79Bs88E4//+7/nsH59IsrKSvHqqy+juroaGo0GCxa8AEmSsHjx\niwgMDMLPP/+EkJCbsWDBC3XWv2PHdmzdmgitVoOePYPx7LP/gNFoxCuvLER+/nm4u7fB88+/BG9v\nn3rz/Pzse4pRIiJqnMOF8IsvtsHXX7dss8aPN+LFF680eL+3tw8CA4Nw4sQxhIb2x65daYiKGg2g\n9lKCgYFBWLTo/7B//z7o9fp6y0hIeAcvvLAIffqE4Jln5iIwMAilpZdw5513YcyYcb9fQ3gB1q3b\niD/+MQx//vM4hIb2tzx/zZoPMG7cnzFy5Cjs3p2OdetWYebM2fjxxyy89NISeHv7ICbmXpSWlsLL\nq/bMK5WVlVi+/G14eXnhiSceQ07Ozzhx4hh8fX3x4ouLkZ6eiv/851vodLp682JiJrZglYmI6Ho5\nXAiLEhU1Gjt3piE0tD/27v0W77+/DgDQsWNHLF36CkwmE86dO4vbb7/DagifP38effqEAAAGDhyE\nK1euwMurPbKyjuOrr5IgSRpculTS4Pp//DELf/nLkwCAQYMG46OP1gAAgoK6wde3EwCgUyc/lJeX\n1Qnh9u3b47nnngYA5Ob+ipKSYvz440kMHnwHACAyMhoAsGzZa/XmERGRWA4Xwi++eKXRXqu9hIeP\nwPr16xAVFY1u3bqjffv2AIBXX11U51KCDdFoajev15yOOy0tBZcuXcK7767BpUuX8Oij0xppgWR5\nXnW1EZKkLO/aCzpcfarv6upqvPnm6/joo83w9e2Ev/99/u/P0cBsrntKcGvzXFlysg4rVrgjO1u5\nRNn8+TwrEhE5Hu6Y9Tu93gPBwX2wfv2HlqFowPqlBK3p1MkPv/12CrIs4/vvDwNQLn/YpUsgNBoN\nvvlml+W5kiTBZDLVef7VlyL84YfD6Nv3Fpttrqgoh1arha9vJ+Tn5+HkySwYjUb07RuKzMyDAIC9\ne/dg/fp1Vue5qpprxmZlaWEyAVlZWsye3Q7JyQ73m5OIWjmG8FWiokbj4MH9GDr0Hsu8mksJvv76\nYjz44HRs3PgRLl4sqPfcWbMex/PPP4tnn33KchGG4cMj8N13ezBv3hy0a9cO/v7++PDD1bj11tvw\nyiuv4NChA5bnP/roX5CSsg1z5/4F27b9CzNnzrbZ3g4dOuKOO/6IRx+djg8/XI0pU6bhrbfexMiR\no1BZWYknn5yFLVs+wZgx4xAZGV1vnqviNWOJyFnYvJRhS+NluBS8JJn9dOniCZNJqjdfp5Nx7lyZ\ngBa5rtphf+X6qxz2ty9+b6hDzUsZsidMLickxHxd8+nGcNifqPkYwuRy5s+3fm1YXjO2ZXHYn6j5\nGMLkcmJijEhIqERoqAk6HRAaakJCQiWHSVtYdrb1r4+G5hNRfRw3IpdUc81YZdtOhejmuKSQEDOy\nsrRW5xNR0/AnKxHdEA77EzUfQ5iIbgiH/Ymaj8PRRHTDOOxP1DzsCRMREQnCECYiIhKEIUxERCQI\nQ5iIiEgQhjAREZEgDGEiIiJBGMJERESCMISJiIgEYQgTEREJwhAmIiIShCFMREQkCEOYiIhIEIYw\nERGRIAxhIiIiQRjCREREgjCEiYiIBGEIExERCcIQJiIiEoQhTEREJAhDmIiISBCGMBERkSAMYSIi\nIkEYwkRERIIwhImIiARpUggvWbIEsbGxiIuLw//+978696Wnp2PChAl44IEHsHHjRrs0koiIyBXZ\nDOEDBw4gNzcXiYmJWLx4MRYvXmy5z2w2Y9GiRVi9ejU2bdqE3bt3Iy8vz64NJiIichU2Q3jfvn2I\njIwEAAQHB6OkpARlZWUAgKKiIrRv3x4+Pj7QaDS466678N1339m3xURERC5CZ+sBBQUF6Nevn2Xa\nx8cHBoMBnp6e8PHxQXl5OU6dOoWgoCDs378fd955Z6PL8/bWQ6fTNr/lLsDPz0t0E1oF1lkdrLM6\nWGd1qFVnmyF8LVmWLbclScJrr72G+Ph4eHl5oWvXrjafX1RUcb2rdEl+fl4wGEpFN8Plsc7qYJ3V\nwTqrwx51bijUbYawv78/CgoKLNMXLlyAn5+fZfrOO+/E5s2bAQDLly9HUFBQc9tKRETUKtjcJjxk\nyBCkpqYCAI4fPw5/f394enpa7n/00Udx8eJFVFRUYPfu3QgLC7Nfa4mIiFyIzZ7woEGD0K9fP8TF\nxUGSJCxcuBBJSUnw8vJCVFQUJk+ejBkzZkCSJMyaNQs+Pj5qtJuIiMjpSfLVG3lVwO0ZCm7bUQfr\nrA7WWR2sszrU3CbMM2YREREJwhAmIiIShCFMREQkCEOYiIhIEIYwERGRIAxhIiIiQRjCREREgjCE\niYiIBGEIExERCcIQJiIiEoQhTEREJAhDmIiISBCGMBERkSAMYSIiIkEYwkRERIIwhImIHFxysg7h\n4XrodEB4uB7JyTrRTaIWwv9JIiIHlpysw+zZ7SzTWVna36crERNjFNcwahHsCRMRObAVK9ytzl+5\n0vp8ci4MYSIiB5adbf1ruqH55Fz4v0hE5MBCQszXNZ+cC0OYiMiBzZ9fZXX+vHnW55NzYQgTETmw\nmBgjEhIqERpqgk4HhIaakJDAnbJcBfeOJiJycDExRsTEGOHn5wWDoUJ0c6gFsSdMREQkCEOYiIhI\nEIYwERGRIAxhIiIiQRjCREREgjCEiYiIBGEIExERCcIQJiIiEoQhTEREJAhDmIiISBCGMBERkSAM\nYSIiIkEYwkRERIIwhImIiARhCBMREQnCECYiIhKEIUxERCQIQ5iIiEgQhjAREZEgDGEiIiJBGMJE\nRESC6JryoCVLluDIkSOQJAnx8fEYMGCA5b5Nmzbhq6++gkajQf/+/fGPf/zDbo0lIiJyJTZ7wgcO\nHEBubi4SExOxePFiLF682HJfWVkZ1q5di02bNuGTTz5BTk4OfvjhB7s2mNSXnKxDeLgeXbp4Ijxc\nj+TkJv12IyIiG2x+m+7btw+RkZEAgODgYJSUlKCsrAyenp5wc3ODm5sbKioqoNfrUVlZiQ4dOti9\n0aSe5GQdZs9uZ5nOytL+Pl2JmBijuIYREbkAmz3hgoICeHt7W6Z9fHxgMBgAAG3atMETTzyByMhI\njBgxArfeeit69eplv9aS6lascLc6f+VK6/OJiKjprntcUZZly+2ysjIkJCQgJSUFnp6eeOihh3Dy\n5En07du3wed7e+uh02lvrLUuxs/PS3QTbMrObmi+1inaDzhHnV0B66wO1lkdatXZZgj7+/ujoKDA\nMn3hwgX4+fkBAHJyctCtWzf4+PgAAAYPHoxjx441GsJFRRXNbbNL8PPzgsFQKroZNoWE6JGVVf9H\nU0iICQaD4/9fOkudnR3rrA7WWR32qHNDoW5zOHrIkCFITU0FABw/fhz+/v7w9PQEAAQFBSEnJweX\nL18GABw7dgw9e/ZsoSaTI5g/v8rq/HnzrM8nIqKms9kTHjRoEPr164e4uDhIkoSFCxciKSkJXl5e\niIqKwsyZMzF9+nRotVrcdtttGDx4sBrtJpUoO19VYuVKd2RnaxASYsa8eVXcKYuIqAVI8tUbeVXA\noRQFh5XUwTqrg3VWB+usDocajiYiIiL7YAgTEREJwhAmIiIShCFMREQkCEOYiIhIEIYwERGRIAxh\nIiIiQRjCREREgjCEiYiIBGEIExERCcIQJiIiEoQhTEREJAhDmIiISBCGMBERkSAMYSIiIkEYwkRE\nRIIwhImIiARhCBMREQnCECYiIhKEIUxERCQIQ5iIiEgQhjAREZEgDGEiIiJBGMJERESCMISJiIgE\nYQgTEREJwhAmIiIShCFMREQkCEOYiIhIEIYwERGRIAxhIiIiQRjCREREgjCEiYiIBGEIExERCcIQ\nJiIiEoQhTEREJAhDmIiISBCGMBERkSAMYSIiIkEYwkRERIIwhImIiARhCBMREQnCECYiIhKEIUxE\nRCQIQ5iIiEgQXVMetGTJEhw5cgSSJCE+Ph4DBgwAAOTn5+OZZ56xPO706dN4+umnMX78ePu0loiI\nyIXYDOEDBw4gNzcXiYmJyMnJQXx8PBITEwEAAQEB2LBhAwDAaDRi2rRpiIiIsG+LiYiIXITN4eh9\n+/YhMjISABAcHIySkhKUlZXVe1xycjKio6Ph4eHR8q0kIiJyQTZDuKCgAN7e3pZpHx8fGAyGeo/7\n7LPPMHHixJZtHRERkQtr0jbhq8myXG/e999/j969e8PT09Pm87299dDptNe7Wpfk5+clugmtAuus\nDtZZHayzOtSqs80Q9vf3R0FBgWX6woUL8PPzq/OYjIwMhIWFNWmFRUUV19lE1+Tn5wWDoVR0M1we\n66wO1lkdrLM67FHnhkLd5nD0kCFDkJqaCgA4fvw4/P396/V4jx49ir59+7ZAM4mIiFoPmz3hQYMG\noV+/foiLi4MkSVi4cCGSkpLg5eWFqKgoAIDBYICvr6/dG0tERORKJNnaRl474lCKgsNK6mCd1cE6\nq4N1VodDDUcTERGRfTCEiYiIBGEIExERCcIQJiIiEoQhTEREJAhDmIiISBCGMBERkSAMYSIiIkEY\nwkRERIIwhImIiARhCBMREQnCECYiIhKEIUxERCQIQ5iIiEgQhjAREZEgDGEiIiJBGMJERESCMISJ\niIgEYQgTEREJwhAmIiIShCFMREQkCEOYiIhIEIYwERGRIAxhIiIiQRjCREREgjCEiYiIBGEIExER\nCcIQVllysg7h4XrodEB4uB7JyTrRTSIiIkGYACpKTtZh9ux2lumsLO3v05WIiTGKaxgREQnBnrCK\nVqxwtzp/5Urr84mIyLUxhFWUnW293A3NJyIi18ZvfxWFhJivaz4REbk2hrCK5s+vsjp/3jzr84mI\nyLUxhFUUE2NEQkIlQkNN0OmA0FATEhK4UxYRUWvFvaNVFhNjREyMEX5+XjAYKkQ3h4iIBGJPmIiI\nSBCGMBERkSAMYSIiIkEYwkRERIIwhImIiARhCBMREQnCECYiIhKEIUxERCQIQ5iIiEgQhjAREZEg\nTTpt5ZIlS3DkyBFIkoT4+HihlXo/AAAU9UlEQVQMGDDAct/58+fx17/+FdXV1QgNDcXLL79st8YS\nERG5Eps94QMHDiA3NxeJiYlYvHgxFi9eXOf+1157DTNmzMDWrVuh1Wpx7tw5uzWWiIjIldgM4X37\n9iEyMhIAEBwcjJKSEpSVlQEAzGYzDh8+jIiICADAwoULERgYaMfmEhERuQ6bIVxQUABvb2/LtI+P\nDwwGAwCgsLAQHh4eePXVV/HAAw9g+fLl9mspERGRi7nuSxnKslzndn5+PqZPn46goCDMmjULGRkZ\nGD58eIPP9/bWQ6fT3lBjXY2fn5foJrQKrLM6WGd1sM7qUKvONkPY398fBQUFlukLFy7Az88PAODt\n7Y3AwEB0794dABAWFoaffvqp0RAuKuI1dAH8fj3hUtHNcHmsszpYZ3WwzuqwR50bCnWbw9FDhgxB\namoqAOD48ePw9/eHp6cnAECn06Fbt244deqU5f5evXq1UJOJiIhcm82e8KBBg9CvXz/ExcVBkiQs\nXLgQSUlJ8PLyQlRUFOLj47FgwQLIsoyQkBDLTlpERETUOEm+eiOvCjiUouCwkjpYZ3WwzupgndXh\nUMPRREREZB8MYSIiIkEYwkRERIIwhImIiARhCBMREQnCECYiIhKEIUxERCQIQ5iIiEgQhjAREZEg\nDGEiIiJBGMJERESCMISJiIgEsXkVJSIiImtMJqCwUILBUPevoECCwaCBwSBBowHCw42IjDSid29V\nrxfkFBjCRNQkly8rX7gXLyp/hYWSZXrwYCA8HNDxG8XpVVcDFy/WBuqFC7WBqoRr7d/FixLMZsnm\nMtPSdHj+eaB3bzOioowYOdKIsDAT2rRR4QU5OH5kiFohoxEoKqobpNcG67X3VVQ0/mXbu7cH/vrX\nK7j/fiPD2MFcuYJreqvWQ9VgkFBYaHsrpZeXjE6dZPTqZYKfn2zlz2y5XVoqYedOHdLStPjmGx0S\nEtyRkOAOvV7GPfcYERVlwsiRRgQGts5eMq8nLAivC6qO1lBnWQZKS4GCgtrgtB6sGsvt4mJAlm33\nYNq2leHrK8PHR/m79ravrwwvLxk7d+qxbp0Mo1FC795mhrGdXP1+Li9HvVCtH6zK/EuXbP9fd+xY\nNzwbCtVOnWS0a3dj7b9yBfjvf7VIT9chPV2HnJzawO/Xz4TISCMiI00YPNgErfbG1tES1LyeMENY\nkNYQDo7AGetcWQlLWF4drNZ6qjX/Go22v2S12vpBenWYWgtavR6QbC8afn5eyMwsw8qV7vjkEzdU\nV0vo1UsJ4wkTGMbNdfq0hHXr3JGZ6Y5z58wwGGyPTEiS8n9ZE5xXh6q/f92w9fWV4e6u0ou5yi+/\nKL3k9HQd9u7VoqpKeU3e3jJGjFC2I48YYYKvr7q9ZIZwK+CM4eCMHL3OZWVAZqYWhw4pf5mZmiYN\nBwJAhw61gXltsHbqZK4Xqu3bAxo7HQ9xdZ1Pn5YYxi1AloEDB7RYtcoN//63DmazBK0W6NTJWm+1\n/jxfX1lob/J6lZcDe/bU9pLPnVPerJIk4/bbzYiMNCIqyoj+/c1N+mHYHAzhVsDRw8FVOFKdZRnI\nyZFw6JAWBw8qoXvypKbOsHD37mYEB5sbHPqtmfb2luHmJvDFXMNanc+cUcJ48+baMH7qqSuYOJFh\n3JiqKuCrr3RYtcodP/ygpOgf/mDCrFlVeOyxdrh0yTHez/Yky0BWlub3QFY+LyaT8jkJCDBbhq3D\nw43w9Gz59TOEWwFHCgdXJrLOpaW1vdzDh5W/oqLawG3XTsattyrbvwYPNuP2200ICHDOnVMaq/OZ\nMxLeessdmzYpYdyzp9IzZhjXVVAgYf16N3z4oRvy8zXQaGSMGWPErFnVuOsuEySp9X5vFBcDGRk6\npKXpsGuXFhcvKr1kNzcZd91lsvSSg4PlFuklM4RbAWf6MJWVAbm5Gnh7y+jcWbbbkKY9qFVnWQZ+\n/lmDw4c1jfZyBw824Y47lOANDTU7VG+2OZpSZ4axdSdOaLB6tRu2bnXDlSsSvLxkPPhgNWbOrEKP\nHnW/np3pe8NeTCbghx80SEvTYedOHY4cqR1z79FDOQQqMtKIu+82oW3bG1sHQ7gVcLQPU3U18Ntv\nEnJyNPj5Zw1ycmr/8vNrU7dtWxk9epjRq5cZPXrI6NlTud2zpxndujnWEClgvzpf3cut6ekWF9ft\n5Q4cWLeX6+/vnL3cprieOp89WxvGVVUSevSoDWNHe//Yi9kMpKVpsWqVO/bsUX6B9OxpxqxZVYiL\nq25wiNXRvjccQX6+hF27tEhL0yEjQ4eyMuVzqNfLGDZMOfwpMtKIrl2b/vljCLcCIj5MsgxcuCBZ\nwvXnnzX45Rfl39zc+nvYSpKMrl1lBAeb0aOHGcXFEk6d0uDXXzVWD3nQapXH14SyEtBKUPfoYYZe\nr9YrrdUSdTabgZwcDQ4d0lhC99pebo8e5t8D1/V6uU1xI3VujWFcVgZ8+qkbVq92x6+/Kj9uhw0z\nYvbsKkRGmmyOMjGEG1dVpezMpvSStcjOru0l33JL7SFQd9xhanT0hSHcCtjzw1RWBvz6a22PtiZs\nc3I0KC2tH54dOypBe9NNyk5BNX+9epmtHg8oy0BRkbKOmlCu/Vc5NtGazp1res3XBrUZHTq0dBUU\nN1Ln0lJYtuFa6+Xq9Uov9/bbW0cvtyma834+d04J440blTDu3l0J40mTXCeMc3MlrF2r/OAoLZXQ\npo2MiROr8dhj1QgNNTd5OQzh65ObK1n2tt67V4vLl5XPcYcOMoYPV3rII0ea0KmT/Yf9GcIOprn/\nyUajMnxc05O9evj4/Pn6IejuLqN3bzN69742bOUWPwavrAw4dapuMNdMnzkjWT1JhLd33WBW/pR5\n/v43vrOFrTpfby/3jjtMuOWW1tXLbYqW+NJytTCWZeXEFAkJbkhJUQ4xCggw45FHqjF9enW9L/6m\nYAjfuIoKYO/e2kOgTp+uPQTqtttq9rg2YsAAMwICGMIurykfJllW9pi8evg4J0eZPnVKg+rq+skU\nFFQbsFeHbdeujnHM4JUrynGk1nrQubnWX5NeL9cb3q7pQQcFNf66rq1zTS+39rhc673cmtC9/Xbl\n+EtqXEuGw7lzEt5+2x0bNtSG8VNPVWHy5GqnCOMrV4AvvlAOMTp6VHlz3nqrCbNnV+FPfzI266QY\nDOGWIcvAjz9qkJ6uhPL+/bWHQPn5mREXp8GCBaUt+n5jCDuYqz9MFRWwDBdfO3xcUlI/lNq3l+sE\n7E03mS29XBHbXVuKyaR8AV8bzjW3rZ0hyM1NRvfudXcQqwnrbt3MKCvzwo4dlZZh5Wt7uT171t+W\n25r31L1R9giH8+drw/jKFccPY4NBwscfK4cYGQzKIUZjxyqHGN15p8lhD50hoKQE+OYbneW45IoK\nDTIzS+Hj03LrYAg7iPPnJWzbpsPp021x9KgRv/yiwdmz9YeP3dyUodja4WPZErqdOrXMsXDORJaV\nL7maYK4JauWvaSed1+tl3HZbzbZc9nJbkj3DwVoYz59fhdhYxwjjo0c1WL3aHUlJOlRVSWjfXsbU\nqcohRt26tez7iyFsf2Yz0L69F8rKOBztMsrLge3bdUhMdMO332rr9MS6dKntyV7du+3WTWaP7DqU\nlNTfDv3bbxr07KlD//6XLdtyWVP7UCMc8vKUMF6/vm4YT55crfp5j00mYMcOHVatcsPevcqbKjjY\njMceU9pjj7M4AQxhtXDHLBdgNgP79mmRmOiGr7/WobxcCd7Bg02YOLEao0a1RceOpXb7sJKCX1rq\nULPO14Zxt261PWN7h3FpKbB5sxvWrHFHbq4y+hIerhxiFBFh+xCj5uL7WR0MYSeWkyPhs8/c8Nln\nbpa977p2NWPy5GpMmlSN4GCl3PwwqYN1VoeIOuflSXjnHXd8/LH9w/jXX5VDjDZvdkNZmYS2bWVM\nmqQcYtS3b9MPMWouvp/VwRB2MsXFwBdfuGHLFjccOqTsDenhIeNPfzJi8uRqhIXV/4XMD5M6WGd1\niKxzTRivX++Gy5cldO2qhHFcXPPCWJaB775TDjFKTdVBliV07mzGzJnVmDq1WvXL6wF8P6uFIewE\nqquBXbu02LJF+YBWVUmQJBn33GNCbGw1xowxwsOj4efzw6QO1lkdjlDn/PzannFzwvjyZSA5WYeE\nBHecOKH8qB40SLmK0fjxYo9ZdoQ6twYMYQcly8CxYxokJrohKUmHggKle3vzzSZMnmzExInV6NKl\naeXkh0kdrLM6HKnO1sJ43rwqPPBA42Gcny/ho4/c8PHHbigo0ECrlTF+vBGzZlVh8GD1hpwb40h1\ndmUMYQeTlydh61YdPvvMDVlZyi9jX18zYmKMiI2txoAB13+RaX6Y1ME6q8MR62wtjOfOVcK4TZva\nx/3vfxqsWuWO5GQdqqsldOwoY9q0KsyYUY2gIMc6hM0R6+yKGMIOoKICSElRDiv65hstzGYJbm4y\nRo1SgjciwsQz3zgB1lkdjlzn/HwJ776rhHFlpYSgIKVn3KmTjNWr3bBvn3KIUZ8+Jjz2mLIDZWOb\nkkRy5Dq7EoawIGYzsH+/Flu26PDll26WS2LdfrsJkyZV4777qlvsDCr8MKmDdVaHM9T52jCuERGh\nDDkPH27/Q4yayxnq7ArUDGGeugDAL7/UHlb022/KpzAoyIxHH1UOvL/pJscakiKi6xcQIOPll6/g\nySersGaNEsTTplUjJMQxtvdS69RqQ7ikBPjySzds2aLDgQNKGfR6GbGx1Zg8uRpDhjj+r2Iiun7+\n/jLi46tEN4MIQCsLYaMRyMhQzmKVkqLDlSs1hxUpx/Pee6+RZ7AiIiLVtIoQvvqwopoLzvfpY0Js\nrBETJjjeHpBERNQ6uGwI5+dLSEpS9m6uOeDex8eMmTOV7bwDB17/YUVEREQtyaVCuLISSE3VYcsW\nN+zerVyk2c1Nxpgx1YiNNSIysnkX1CYiImpJTh/CsqwcVvTZZ8phRZcuKd3b224zYfLkatx3n1HI\nOV6JiIhsceoQ/vVXCQ88oMcvvyjbeQMDzXjkkSpMmmTkYQdEROTwmhTCS5YswZEjRyBJEuLj4zFg\nwADLfREREejcuTO0WmW767JlyxAQEGCf1l6jvFyC0QhMmlSN2FjlsKLfm0FEROTwbIbwgQMHkJub\ni8TEROTk5CA+Ph6JiYl1HrN69Wp4CDjPW//+Zhw6VK76eomIiFqCzdNR7Nu3D5GRkQCA4OBglJSU\noKyszO4NIyIicnU2Q7igoADe3t6WaR8fHxgMhjqPWbhwIR544AEsW7YMap2KOjlZh/BwPbp08UR4\nuB7JyU69eZuIiFqh606ua0N27ty5GDZsGDp06IAnnngCqampGD16dIPP9/bWQ6dr3obbTz8FZs+u\nnc7K0mL27HZo3x6Ii2vWolXV0Am9qWWxzupgndXBOqtDrTrbDGF/f38UFBRYpi9cuAA/Pz/L9H33\n3We5fc899yA7O7vREC4qqrjRtlq8/LIeQP0gX7TIhJEjm798NfBqKOpgndXBOquDdVaHmldRsjkc\nPWTIEKSmpgIAjh8/Dn9/f3j+foLl0tJSzJw5E1VVysnQDx48iD59+rRUmxuUnW292Q3NJyIickQ2\ne8KDBg1Cv379EBcXB0mSsHDhQiQlJcHLywtRUVG45557EBsbizZt2iA0NLTRXnBLCQkxIyurfk+Y\nxwYTEZEzkWS19qT6XUt08ZOTdZg9u129+QkJlYiJMTZ7+WrgsJI6WGd1sM7qYJ3V4VDD0Y4oJsaI\nhIRKhIaaoNPJCA01OVUAExERAU582sqYGCNDl4iInJpT9oSJiIhcAUOYiIhIEIYwERGRIAxhIiIi\nQRjCREREgjCEiYiIBGEIExERCcIQJiIiEoQhTEREJIjq544mIiIiBXvCREREgjCEiYiIBGEIExER\nCcIQJiIiEoQhTEREJAhDmIiISBCGsMpef/11xMbGYsKECdixY4fo5ri0y5cvIzIyEklJSaKb4tK+\n+uor/OlPf8L999+PjIwM0c1xSeXl5XjyyScxbdo0xMXFYc+ePaKb5FKys7MRGRmJjRs3AgDOnz+P\nadOmYcqUKZg3bx6qqqrstm6GsIr++9//4qeffkJiYiLWrFmDJUuWiG6SS3v//ffRoUMH0c1waUVF\nRXj33XexefNmfPDBB9i5c6foJrmk5ORk9OrVCxs2bMDKlSuxePFi0U1yGRUVFVi0aBHCwsIs8956\n6y1MmTIFmzdvRo8ePbB161a7rZ8hrKI77rgDK1euBAC0b98elZWVMJlMglvlmnJycvDzzz9j+PDh\nopvi0vbt24ewsDB4enrC398fixYtEt0kl+Tt7Y3i4mIAwKVLl+Dt7S24Ra7D3d0dq1evhr+/v2Xe\n/v37MXLkSADAiBEjsG/fPrutnyGsIq1WC71eDwDYunUr7rnnHmi1WsGtck1Lly7FggULRDfD5Z05\ncwaXL1/GX/7yF0yZMsWuX1at2dixY3Hu3DlERUVh6tSpePbZZ0U3yWXodDq0bdu2zrzKykq4u7sD\nAHx9fWEwGOy3frstmRqUnp6OrVu3Yt26daKb4pK++OILDBw4EN26dRPdlFahuLgY77zzDs6dO4fp\n06dj9+7dkCRJdLNcypdffonAwECsXbsWJ0+eRHx8PPd1UIm9z+zMEFbZnj178MEHH2DNmjXw8vIS\n3RyXlJGRgdOnTyMjIwN5eXlwd3dH586dcffdd4tumsvx9fXFbbfdBp1Oh+7du8PDwwOFhYXw9fUV\n3TSXkpmZiaFDhwIA+vbtiwsXLsBkMnEkzU70ej0uX76Mtm3bIj8/v85QdUvjcLSKSktL8frrryMh\nIQEdO3YU3RyXtWLFCnz++efYsmULJk2ahMcff5wBbCdDhw7Ff//7X5jNZhQVFaGiooLbK+2gR48e\nOHLkCADg7Nmz8PDwYADb0d13343U1FQAwI4dOzBs2DC7rYs9YRVt27YNRUVFmD9/vmXe0qVLERgY\nKLBVRDcuICAA0dHRmDx5MgDg+eefh0bD3/YtLTY2FvHx8Zg6dSqMRiNefPFF0U1yGceOHcPSpUtx\n9uxZ6HQ6pKamYtmyZViwYAESExMRGBiI++67z27r56UMiYiIBOFPViIiIkEYwkRERIIwhImIiARh\nCBMREQnCECYiIhKEIUxERCQIQ5iIiEgQhjAREZEg/x/971OAZxzkSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlclWXex/HPWTgQCCoIKtpiTlbq\nmO2aKYkQqJnRJrk1aWmWo5jTZE6m5Taaa2pqLk1lmWVS04xKLliOmmn69GRpaj2Vu6igbHI4h/P8\ncUYSBVGB+4bD9/168YJz3duPSzzfc92rxePxeBARERHDWc0uQEREpLpSCIuIiJhEISwiImIShbCI\niIhJFMIiIiImUQiLiIiYRCEsPmHkyJHEx8cTHx9Ps2bNaN++feHrrKysS1pXfHw8x44du+A8kydP\nZvHixWUpudz96U9/YtmyZeWyruuvv57Dhw+zatUqXnzxxTJt78MPPyz8+WL69mINGzaMN954o1zW\nJWIWu9kFiJSHV155pfDn6OhoJk6cyG233XZZ61q5cmWp8wwdOvSy1l3VxMbGEhsbe9nLp6WlMX/+\nfB599FHg4vpWpDrRSFiqhV69ejF16lQ6duzItm3bOHbsGH379iU+Pp7o6GjeeuutwnnPjAI3b95M\nt27dmDx5Mh07diQ6Opqvv/4aKDoKi46O5oMPPuDhhx/m7rvv5u9//3vhuubMmUPr1q156KGHeO+9\n94iOji62vo8++oiOHTty77330qNHDw4cOADAsmXLGDRoEMOHDycuLo5OnTqxZ88eAPbt28cjjzxC\nTEwMQ4cOxe12n7feL774gi5duhRp69q1K19++eUF++CMZcuW8ac//anU7a1Zs4YuXboQFxfHgw8+\nyM6dOwFITEzk4MGDxMfH43Q6C/sW4J133qFTp07Ex8czYMAATpw4Udi3r7/+Ok888QTt27fniSee\nIDc3t6R/WgB27dpFYmIi8fHxdO3alfXr1wOQnZ3Ns88+S8eOHenQoQMvvfQS+fn5JbaLGE0hLNXG\njh07+Pe//80tt9zC7NmzadiwIStXruTtt99m8uTJHDp06LxlfvjhB2666SZWrFhB9+7dmT17drHr\n3rJlC0uWLOHjjz9m0aJFHD58mD179jB//nw+/fRT3n///RJHgcePH+fVV1/lrbfe4vPPP+eqq64q\nspv1yy+/pHv37qSkpHDnnXfy9ttvAzBp0iRat27N6tWrefzxx9m2bdt5627dujWHDx9m3759gDdI\nDx8+zF133XXRfXBGSdtzuVwMGzaM0aNHk5KSQnR0NBMmTABg3Lhx1K9fn5UrV+JwOArX9T//8z8s\nWLCAd999l5UrVxIZGcnkyZMLp69cuZKpU6eyatUqTpw4wapVq0qsq6CggOeee46ePXuycuVKxowZ\nw9ChQ8nKyuKTTz4hJCSEFStWkJKSgs1mY+/evSW2ixhNISzVRlRUFFar90/+pZdeYsSIEQBceeWV\nhIeHs3///vOWCQoKIiYmBoBmzZpx8ODBYtfdpUsXbDYbdevWJSwsjEOHDrFlyxbuuOMOIiIi8Pf3\n56GHHip22bCwML755hvq1asHwG233VYYmgCNGzemefPmADRt2rQwKLdu3UqnTp0AaNGiBddee+15\n63Y4HLRv3561a9cCsHr1amJiYrDb7RfdB2eUtD273c7GjRtp2bJlsfUXZ926dcTFxREWFgbAI488\nwoYNGwqnR0VFUatWLex2O02aNLngh4P9+/dz7NgxOnfuDMAf//hHIiMj+e677wgNDWX79u385z//\noaCggFdeeYUbb7yxxHYRo+mYsFQbNWvWLPz5u+++Kxz5Wa1W0tLSKCgoOG+Z4ODgwp+tVmux8wDU\nqFGj8GebzYbb7ebUqVNFtlm3bt1il3W73bz++uusXbsWt9tNdnY2jRo1KraGM+sGOHnyZJHthoSE\nFLv+uLg43nnnHR5//HFWr17NM888c0l9cMaFtvfuu++SnJyM0+nE6XRisVhKXA/AiRMniIiIKLKu\n48ePl/o7l7Su4ODgItsMCQnhxIkTdO7cmZMnTzJ9+nR+/vln7r//fl588UU6duxYbPvZo3URI2gk\nLNXS888/T1xcHCkpKaxcuZLatWuX+zZq1KhBTk5O4eujR48WO9/y5ctZu3YtixYtIiUlhUGDBl3U\n+kNCQoqc+X3mmOq52rZty65du/jll1/45ZdfaNWqFXDpfVDS9rZt28a8efOYPXs2KSkpjBkzptTa\n69SpQ0ZGRuHrjIwM6tSpU+pyxQkLC+PkyZOc/SyajIyMwlF2YmIiH330EcuXL+f777/nk08+uWC7\niJEUwlItHT9+nObNm2OxWEhOTiY3N7dIYJaHFi1asHnzZk6cOIHT6SzxTf748eM0aNCA0NBQ0tPT\nWbFiBdnZ2aWuv2XLloXHSrdt28Zvv/1W7HwOh4O7776b1157jQ4dOmCz2Qq3eyl9UNL2Tpw4QVhY\nGJGRkeTm5pKcnExOTg4ejwe73U5OTg4ul6vIuu655x5WrVpFeno6AB988AFRUVGl/s7FadiwIfXq\n1WP58uWFtR07dowWLVowa9Ysli5dCnj3RDRs2BCLxVJiu4jRFMJSLQ0ePJhnn32WLl26kJOTQ7du\n3RgxYkSJQXY5WrRoQUJCAgkJCfTu3Zv27dsXO999991HRkYGsbGxDB06lKSkJA4fPlzkLOviPP/8\n86SmphITE8N7773HXXfdVeK8cXFxrF69mo4dOxa2XWoflLS9tm3bEhERQUxMDH369OHxxx8nODiY\nQYMGcf3111OzZk3atGlT5Hh6ixYt6NevHz169CA+Pp7MzEyGDBlywd+3JBaLhSlTprBo0SI6duzI\nmDFjmD59OoGBgXTt2pVPP/2UuLg44uPj8fPzo2vXriW2ixjNoucJi1Qcj8dTOMJat24d06ZN025P\nESmkkbBIBTlx4gStWrXiwIEDeDweVqxYUXgGsYgIaCQsUqEWL17MwoULsVgsXHvttYwdO7bwhCER\nEYWwiIiISbQ7WkRExCQKYREREZMYfsestLRMozdZKdWuHUh6evlelyrnUz8bQ/1sDPWzMSqin8PD\ng4tt10jYJHa7zewSqgX1szHUz8ZQPxvDyH5WCIuIiJhEISwiImIShbCIiIhJFMIiIiImUQiLiIiY\nRCEsIiJiEoWwiIiISQy/WYeIiPiOGTOm8uOPOzlx4jinT58mMrIBISE1GTfutVKXXb78M4KCahAV\nVfyztqdPn8wjjyQSGdngsmobOLAfzz33V6699g+XtbwRqmwIJyfbmTbNwe7dVpo0KSApyUlCgsvs\nskREKrXyfu/885+HAN5A/fnnnxg4MOmil+3UqcsFpw8ePPSy66oqqmQIJyfb6d//isLXO3fa/vs6\nV0EsIlICI987t23bygcfLCInJ4eBA4ewffs3rFu3hoKCAlq3bkOfPv1YsGAutWrVolGjxixb9iEW\ni5Vff/0/7rmnA3369CscyaamriE7O4vffvuVAwf2M2jQUFq3bsOiRf9g9erPiYxsgMvlIjGxB7fc\nctt5tWRlZTF27CiysjJxuVwkJT3P9dffwLRpr7Fr107cbjcJCQ/TqVMXpk17jZ9+2s3p087CtopU\nJUN42jRHse3TpzsUwiIiJTD6vfOnn/ayePEyHA4H27d/wxtvzMdqtfLoo13p1q17kXl/+OF73n//\nYwoKCnjkkS706dOvyPSjR48wadLrfPXVRj799GOaNWvOsmUfsXjxx2RnZ5OY+CCJiT2KreOjjxbT\nrFlzevb8E7t2/cCMGVMYN+41Nm78Dx9++Ckul4vlyz/j1KmTbNz4H1JT13LoUDrLl39W7n1yrioZ\nwrt3F38+WUntIiJi/HvnH/5wHQ6HN/gDAgIYOLAfNpuNjIwMTp06VWTe66+/gYCAgBLX1aJFSwAi\nIiLIyspi//59XHttY/z9A/D3D+DGG5uVuOyuXT/Qu3dfAG64oSn79+8jJKQmV155NcOGPUf79jHE\nx3fG4XBw5ZVXM2DAANq0uYf4+M5l7YJSVcnUatKk4JLaRUTE+PdOPz8/AA4fPsSSJe8xefIMZs58\nk3r16p03r8124YcmnD3d4/Hg8YDV+nuEWSwlL2uxWPB4PIWvCwq8v+/kya/zxBP92LNnNy+8MKSw\nbeDAgUXaKlKVDOGkJGex7YMHF98uIiLmvXdmZGRQu3ZtAgMD+fHHXRw+fJj8/PwyrbN+/fr8/PNP\nuFwu0tPT2bVrZ4nz3nBDU7Zv3wrAjh3f0ahRYw4dOshHH33A9dffwMCBSZw8ebKwrVmzZoVtFa1K\n7o72HrvIZfr038/wGzxYZ0eLiFyIWe+d113XhCuuCGTAgD788Y8t6dr1QSZPnkCLFjdd9jpDQ8OI\njY3nqad6c/XVjWjatFmJo+lHH32MceNeYdCgpykoKOC5516gTp1wduz4ljVrPsfPz4/One8vbEtM\nTASsdO58/2XXd7EsnrPH6AZIS8s0cnOVVnh4sPrCAOpnY6ifjaF+Lmr58s+IjY3HZrPRu3ciU6bM\nICKibpnXWxH9HB4eXGx7lRwJi4iIHD9+nH79HsfPz8G998aXSwAbTSEsIiJVUq9ef6JXrz+ZXUaZ\nVMkTs0RERHyBQlhERMQkCmERERGTKIRFRERMohAWEZHL1r//E+fdKGPOnJksXryo2Pm3bdvKSy/9\nFYBhw547b/rHHy9hwYK5JW5v7949/PbbrwCMHPkieXmnL7d0Hn64Czk5OZe9fHlQCIuIyGWLjY1j\n7dpVRdrWrVtLTMy9pS77979PueTtffHFWvbt+w2AV14Zj79/yfebrgp0iZKIiFy2Dh3uZcCAvjzz\nzCAAdu3aSXh4OOHhEWzZspn58+fg5+dHcHAwr7769yLLdu7cgX//ew1bt37N669PJjQ0jLCwOoWP\nJhw7dhRpaUfJzc2lT59+1KtXn08/XcYXX6yldu3avPzyi7zzzhKysjIZP/5V8vPzsVqtDBs2AovF\nwtixo4iMbMDevXto0uR6hg0bUezvcPTokSLLT5z4d+z2Grz66giOHz+G0+mkb9/+3HbbHee1tWp1\nV5n6TyEsIuIjRo3y57PPyvdtvUsXF6NG5ZU4vXbtUCIjG/DDDzto2rQ5a9euIjY2HoDMzExGjhxD\nZGQDRo9+mc2bNxEYGHjeOubOncmIEaO57rom/OUvg4iMbEBm5inuuKMVHTvex4ED+xkxYhgLFy7i\nzjtbc889HWjatHnh8vPnz+G++7rSocO9pKauZuHCN+nbtz8//riTV14ZR+3aoSQkdCIzM5Pg4PPv\nXHXu8jNnzqRLl4c5eTKDWbPmkZmZyaZNG/jpp73ntZWVdkeLiEiZxMbGs2aNd5f0hg1fcs89HQCo\nVasWEyaMYeDAfmzf/g2nThX/QIRDhw5x3XVNAGjZ8hYAgoND2LnzewYM6MPYsaNKXBbgxx93cvPN\ntwJwyy23sWfPjwA0aHAlYWF1sFqt1KkTTnZ21kUt/8MPP3D11deQk5PN6NEj2LZtCzEx9xbbVlYa\nCYuI+IhRo/IuOGqtKFFR7XnnnYXExsZx5ZVXERISAsD48aN57bVpXHNNI6ZMmVDi8mc/kvDM4wxW\nrVrJqVOnmDVrPqdOneLJJ3tdoILfH1WYn+/CYvGu79wHOpT8qISiy1utVgICApg79x98993/smLF\nZ2zYsJ7hw0cW21YWGgmLiEiZBAYG0bjxdbzzzluFu6IBsrOzqFu3HpmZmWzb9k2Jjy+sUyec3377\nBY/Hw/bt3wDexx/Wrx+J1Wrliy/WFi5rsVhwu91Flr/xxqZs2+Z9VOH//M833HDDjZdU/7nLN2/e\nnB9/3MWqVSu56aaW/OUvL/LLL/9XbFtZaSQsIiJlFhsbz5gxIxk5cnRh24MPPsKAAX258sqr6NGj\nNwsXvkm/fs+ct2y/fs/w0ksvUK9e/cKHMNxzTzTDhj3HDz/soHPn+4mIiOCtt+Zx0003M23aa0WO\nLT/55NOMHz+azz77BLvdjxdfHIHLdfGPZzx3+UmTJpCV5WLu3Fl8+ukyrFYr3bv3on79yPPaykqP\nMjSJHklmDPWzMdTPxlA/G8PIRxlqd7SIiIhJFMIiIiImUQiLiIiYRCEsIiJiEoWwiIiISRTCIiIi\nJlEIi4iImEQhLCIiYhKFsIiIiEkUwiIiIiZRCIuIiJhEISwiImIShbCIiIhJFMIiIiImUQiLiIiY\nRCEsIiJiEoWwiIiISRTCIiIiJlEIi4iImMR+MTNNnDiRb775BpfLRf/+/bn33nsLp23cuJEpU6Zg\ns9lo164dzz77bIUVKyIi4ktKDeGvvvqKPXv2sGTJEtLT00lISCgSwmPGjGHBggXUrVuXnj17EhcX\nxx/+8IcKLVpERMQXlBrCt99+Oy1atAAgJCSE3Nxc3G43NpuNffv2UbNmTerXrw9AVFQUmzZtUgiL\niIhchFJD2GazERgYCMDSpUtp164dNpsNgLS0NEJDQwvnDQ0NZd++fRdcX+3agdjttrLU7DPCw4PN\nLqFaUD8bQ/1sDPWzMYzq54s6JgywevVqli5dysKFC8u0wfT0nDIt7yvCw4NJS8s0uwyfp342hvrZ\nGOpnY1REP5cU6hcVwuvXr2fOnDnMnz+f4ODfVxQREcGxY8cKXx85coSIiIgylioiIlI9lHqJUmZm\nJhMnTmTu3LnUqlWryLSGDRuSlZXF/v37cblcpKam0qZNmworVkRExJeUOhJevnw56enpJCUlFbbd\neeedXH/99cTGxjJq1CiGDh0KQKdOnWjUqFHFVSsiIuJDLB6Px2PkBnU8w0vHdoyhfjaG+tkY6mdj\nGHlMWHfMEhERMYlCWERExCQKYREREZMohEVEREyiEBYRETGJQlhERMQkCmERERGTKIRFRERMohAW\nERExiUJYRETEJAphERERkyiERURETKIQFhERMYlCWERExCQKYREREZMohEVEREyiEBYRETGJQlhE\nRMQkCmERERGTKIRFRERMohAWERExiUJYRETEJAphERERkyiERURETKIQFhERMYlCWERExCQKYRER\nEZMohEVEREyiEBYRETGJQlhERMQkCmERERGTKIRFRERMohAWERExiUJYRETEJAphERERkyiERURE\nTKIQFhERMYlCWERExCQKYREREZMohEVEREyiEBYRETGJQlhERMQkCmERERGTKIRFRERMohAWEREx\niUJYRETEJAphERERkyiERURETKIQFhERMclFhfDu3buJiYlh0aJF502Ljo6me/fu9OrVi169enHk\nyJFyL1JERMQX2UubIScnh9GjR9O6desS55k3bx5BQUHlWtjFOHTIwoQJDl54wUn9+h7Dty8iIlIW\npY6EHQ4H8+bNIyIiwoh6LsmePVbef9/B+PH+ZpciIiJyyUoNYbvdTkBAwAXnGTlyJI899hiTJk3C\n4zFuRHr33W6aNHHz0Ud2fvvNYth2RUREykOpu6NLM2jQINq2bUvNmjV59tlnSUlJIT4+vsT5a9cO\nxG63lXWzhV5+GXr2hPnzazB7drmt1hDh4cFml1AtqJ+NoX42hvrZGEb1c5lD+IEHHij8uV27duze\nvfuCIZyenlPWTRYRHQ3XXBPEwoUWBgzIrjLHhsPDg0lLyzS7DJ+nfjaG+tkY6mdjVEQ/lxTqZbpE\nKTMzk759++J0OgHYsmUL1113XVlWecnsdhg82InTaeGNNxyGbltERKQsSh0J79ixgwkTJnDgwAHs\ndjspKSlER0fTsGFDYmNjadeuHd26dcPf35+mTZtecBRcUR55JJ9Jkxy8844fgwc7qVOnaoyGRUSk\nerN4jDyTCipsV8qCBX68+GIAgwfn8be/OStkG+VJu5WMoX42hvrZGOpnY1SZ3dGVSffu+UREFLBg\ngYOMDLOrERERKZ3PhPAVV8AzzzjJyrIwf76ODYuISOXnMyEM0Lt3PqGhBbz5poOsLLOrERERuTCf\nCuEaNaB//3wyMiy89ZZGwyIiUrn5VAgD9O3rJCTEw+zZfuSU7yXJIiIi5crnQjgkxBvEx45Zee89\nP7PLERERKZHPhTBAv375BAZ6mDnTQV6e2dWIiIgUzydDOCzMw+OP53PokJUlSzQaFhGRysknQxi8\nlyv5+3t4/XUH+flmVyMiInI+nw3hunU99OiRz2+/WVm2rMzPqRARESl3PhvCAAMHOrHbPUyf7sDt\nNrsaERGRonw6hBs29NCtWz5799r41780GhYRkcrFp0MY4M9/dmK1epgyxUFBgdnViIiI/M7nQ/ja\naz0kJLjYudPG55/bzC5HRESkkM+HMEBSkvfRhlOn+mPsgxtFRERKVi1C+PrrC7jvvny2b7exbp1G\nwyIiUjlUixAGGDLkzGhYD3YQEZHKodqE8B//WEBsrIuvvrKzaZNGwyIiYr5qE8IASUneG0lrNCwi\nIpVBtQrh228voG1bF+vW2dm2rVr96iIiUglVuyR67jnvseFp0zQaFhERc1W7EL7rLjd33OFi5Uo/\nduyodr++iIhUItUuhSyW38+Unj5do2ERETFPtQthgOhoNy1auPnnP+3s2VMtu0BERCqBaplAZ0bD\nHo9Fo2ERETFNtQxhgI4dXdxwg5uPP7bzyy8Ws8sREZFqqNqGsNXqvae0221hxgyNhkVExHjVNoQB\nunZ1ce21BXzwgR8HD2o0LCIixqrWIWyzweDBeeTnW5g1S6NhERExVrUOYYCHH3bRsGEB777rx9Gj\nGg2LiIhxqn0I+/nBn//s5PRpC3Pm+JldjoiIVCPVPoQBHnssn7p1C3jrLQcnTphdjYiIVBcKYSAg\nAJ591kl2toV583RsWEREjKEQ/q9evfIJCytg/nwHp06ZXY2IiFQHCuH/CgqCp5/O5+RJC2+9pdGw\niIhUPIXwWfr0cVKzpoc5c/zIzja7GhER8XUK4bMEB8OTTzo5ftzKu+/qTGkREalYCuFzPPWUk6Ag\nD7NmOTh92uxqRETElymEzxEaCk884eTIESuLF2s0LCIiFUchXIynn84nIMDDzJkO8vPNrkZERHyV\nQrgYEREeevbMZ98+Kx9/bDe7HBER8VEK4RI8+6wTPz8P06b543abXY2IiPgihXAJGjTwkJiYz88/\nW/nnPzUaFhGR8qcQvoA//9mJzeZh2jQHBQVmVyMiIr5GIXwB11zj4cEHXezcaWPlSo2GRUSkfCmE\nSzF4sBOLxcPUqQ48HrOrERERX6IQLkWTJgV06eLi229tpKbazC5HRER8iEL4IiQlOQGYPNlfo2ER\nESk3CuGL0Lx5AXFxLrZssbFxo0bDIiJSPi4qhHfv3k1MTAyLFi06b9rGjRt5+OGH6datG7NmzSr3\nAiuLpKQ8AKZM0WMORUSkfJQawjk5OYwePZrWrVsXO33MmDHMmDGDxYsXs2HDBvbu3VvuRVYGt95a\nQFSUi/Xr7WzZoh0IIiJSdqWmicPhYN68eURERJw3bd++fdSsWZP69etjtVqJiopi06ZNFVJoZfDc\nc95jw9Om+ZtciYiI+IJSQ9hutxMQEFDstLS0NEJDQwtfh4aGkpaWVn7VVTKtW7tp1crFqlV2vvtO\no2ERESkbw+9AUbt2IHZ71T256ZVXIC4O3ngjiKVLy7au8PDg8ilKLkj9bAz1szHUz8Ywqp/LFMIR\nEREcO3as8PWRI0eK3W19tvT0nLJs0nQtW8LNNwfy8cc21q/P5oYbLu9+luHhwaSlZZZzdXIu9bMx\n1M/GUD9XLI8HVq608+uvV9C3byZ+5fhI+ZJCvUz7VBs2bEhWVhb79+/H5XKRmppKmzZtyrLKSs9i\ngSFDvGdKT5+uM6VFRKo6jwfWrLFx772BPP74FYwfD5kGfdYpdSS8Y8cOJkyYwIEDB7Db7aSkpBAd\nHU3Dhg2JjY1l1KhRDB06FIBOnTrRqFGjCi/abPfe6+bGG90kJ9t5/nkL116rO3iIiFRF69fbGD/e\nn61bvYdJH3ggn/Hj/TjrdKcKZfF4jL0HlK/sSvnkEzv9+l1Bjx5Opk7Nu+TltVvJGOpnY6ifjaF+\nLj9ffWVjwgQHGzZ4x6IdO+bz1786adasoEL6uUJ2R1dnXbq4aNy4gCVL/Ni/32J2OSJykX7+2cLT\nTwfQs+cVrFpl02NKq5nt261063YF998fyIYNdjp0cPH559m8/fZpmjUz/o9BIXyZbDYYPDgPl8vC\nzJk6NixS2Z08CSNH+tO2bRDLlvnx+ed2evQIpE2bIBYu9CM72+wKpSLt2GGld+8A4uKCSE2107at\ni3/9K5vFi3Np2dK8T2IK4TJ46CEXV11VwHvv+XHkiEbDIpWRywVvveVHq1ZBzJ7toH59DwsW5LJ2\nbTaPPZbPvn0Whg0LoGXLGrz6qoMDB/R/2Zf8+KOVJ58MIDo6iJUr/bjjDhfLluXw8ce53HGH+btB\nFMJl4OcHf/6zk7w8C7NnazQsUtmkptqIjg7khRcCyMuz8NJLefznP9l06eKiefMCpk8/zbZt2Tz/\nfB5+fh5mzvTnttuC6NcvgK1b9fZYlf38s4VnngmgXbtA/vlPP1q2dPPBBzl89lkud9/tNru8Qjox\nq4zy8uD224M4dcrCN99kExZ2cd2pEyyMoX42RmXr5z17rIwa5c+qVXYsFg89e+bzwgtOIiJK/v+Z\nlwfJyXbmzHHwww/eM2VvvdVN//5O7rvPhd3wWxudr7L1c2W0b5+FKVMcfPCBH263haZN3Qwblkdc\nnBvLRe7k0IlZVYi/Pwwc6CQnx8K8eeV4ZbeIXLL0dPjb3/yJigpk1So7d9/tYvXqHCZPzrtgAIP3\n/3JioovU1ByWLcshLs7Ftm1W+vW7gttvD2LGDAcZGQb9InLJDh2y8Ne/+tOqVRDvveegceMC5s/P\nZe3aHOLjLz6AjaaRcDnIyYHbbgsiL8/Ctm1Z1KxZ+jL6RGsM9bMxzO7n/Hx4+20/Jk70JyPDwjXX\nFPDKK3nEx7vK9Ob7888W5s938P77fuTkWAgM9NCtWz79+jlp3Nj4+wOY3c+V0dGjFmbMcPCPf/iR\nl+f9t3/++TwefNCF7TLvkKyRcBUTGAhPP51PZqaFhQt1bFjEKB4PrF5t4557Ahk+PAC3G0aNOs36\n9dl07Fi2AAa49loP48bl8e1yVV4sAAAVX0lEQVS3WYwadZrQUA9vveWgdesa9OhxBV9+acPYYYyc\nceIEjB7t4I47gpg710F4uIepU0+zYUM2jzxy+QFsNI2Ey0lmJtx6aw2sVg9bt2ZTo8aF59cnWmOo\nn41hRj/v2mVl5Eh/UlPtWK0eevf23myhTp2Ke0tzuWDFCu9x4y1bvO/yN97opl+/fB56KJ8SHjhX\nbvT3DKdOwezZDubOdZCVZaFevQKSkpz06JGPfzk9ZVYj4SooOBieesrJiRNW3nlHx4ZFKsrx4xZe\neMGf9u0DSU21ExXlPY47cWJehQYwgN3uvVHPv/+dw8qV2Tz4YD579lgZMiSAW24J4u9/d+hyxQqS\nlQXTpjm47bYaTJ7sT0CAh1dfPc3mzdn06VN+AWw0jYTLUXq6dzQcGOhhy5Zsrrii5Hn1idYY6mdj\nGNHPTicsXOjHpEn+nDploXHjAl599TQxMeaedHPwoIWFC/145x0HGRkW/Pw8JCS46N/fyR//WL7X\noVbHv+fcXO913jNmODh+3EqtWh4GDnTSt6+ToKCK2aZGwlVU7drQp4+To0etvP++RsMi5cH7eDkb\n7doF8fLLAVitMGbMab78MpvYWPPPeo2M9PDSS062b89i4sTTXH11AR9+6EeHDkE88MAVrFhhx115\nLkutMvLyYMECP+64I4hRowJwOi08/3weW7dmMWhQxQWw0TQSLmdpaRZuuy2I0FAPmzdn4yjhPK3q\n+InWDOpnY1RUP3//vZWXX/Zn/Xo7NpuHJ57I5y9/yTPsCTeXo6DAe5OQuXMdrFvnvbj4mmsKeOop\nJ489ll/q+SIXUh3+nvPz4YMP/JgyxcGBA1YCAz306+dkwAAntWsbU4NGwlVYeLj3BJEDB6x89JFG\nwyKXIy3NwtCh/nToEMj69XZiYlx88UUO48ZV7gAGsFqhQwc3H36Yy5dfZtOrl5PDhy387W8B3HRT\nDV5+2Z/fftNx43O53bBkiZ277gpi6NAAjh+3MGCAk61bsxk+3LgANppGwhXg0CELt98eRGSkh40b\ns4u90051+ERbGaifjVFe/ZyXB2++6WDqVO+Zr02auHn11Tyio6v2/txjxyy8+64fCxf6ceSIFavV\nQ6dOLvr1y+fOO829k5PZCgrg00/tvPaag717bTgcHnr1ymfwYCf16plz/ZdGwlVc/foeEhPz+eUX\nK598UgnudSdSyXk88Nlndu6+O4jRo/1xODyMH3+adetyqnwAA9Sp42HIECfffJPNrFm5NG9ewL/+\n5cf99wcSFxfI0qV2nE6zqzSWxwPLl9tp3z6Q/v2v4P/+z0qvXk6++iqb8ePzTAtgo2kkXEF+/dVC\nq1ZBNG5cwJdf5mA95+OOL36irYzUz8YoSz9/952Vl17yZ9MmO3a7h7598xk6NI9atcq5yErE44HN\nm23MmePHihV2PB7v9a59+uTTu7ezxF3uvvD37PHAmjU2Jkzw59tvbVitHh5+2MXQoXk0alQ5glcj\nYR9w9dXeP6zdu238+98aDYuc68gRC0lJ/sTEBLJpk534+HzWr89m9GjfDmAAiwVatXLzj394r3Pt\n399JVpaFceP8admyBkOH+rN7t++9Pa9fb6Nz50C6dw/k229tPPBAPuvX5zBz5ulKE8BG00i4Au3d\na6FNmyCaNStgzZqcIsd9fOETbVWgfjbGpfRzbi7Mnetg+nQH2dkWbrzRzejRebRrV/V3O5dFZia8\n/74f8+Y5+O03bwC3b++93rh9e+9x46r69/zVVzYmTHCwYYN3QNKxo/fuZs2amf883+IYORLWEK0C\n/eEPHrp2dfHJJ36sXm0jNrZ6v8lI9ebxeE/AGT3an337rNSp433IQo8e+VXmPr8VKTgY+vfP58kn\n81m50s6bb/qRmmonNdVOkyZunnoqnz59vLdtLCjwfrndlsKff2/zfvd4fp9etO3s+SzntXk8Raef\n33bufJYSlvV+rV/v/R0AYmJcvPBCHjfdVDnD1wwaCVew77+30r59ELfe6mb58t9Hw1X1E21Vo342\nRmn9vH27lREj/Pn6azsOh/e6z6QkJyEhBhZZBX37rZU333TwySd28vOr7mVNbdu6GDYsj9tvrxrh\nq5GwD2nWrID4+HxWrvRj/Xpbtd/lJtXLoUMWxozxL7xmvnPnfF5+ufKcgFPZ3XRTAbNmnWbECAv/\n+IcfP/7oj9udj8XivR7ZZvN+P/vL2+Ypps17LPrM9PPbzp3PU8Kyv08rednftxER4aFFi6oRvmZQ\nCBtgyBAnK1f6MXWqg3btcs0uR6TC5eTAG284mDnTQU6OhebNvcd927TRh9DLUa+eh2HDnISH+5OW\ndtrscqQcKYQNcPPNBbRv7yI11c7mzTbuvFNvROXB4/EeHztwwMrBg5bzvh86ZMXhgKCgQGrV8hAS\n4qFmTe+X92fO+vnMF4SEePDTzc4uS0EBLFtmZ8wYfw4etBIeXsC4cafp1q3qPN9VxEgKYYMMGeIk\nNdXOtGkOFi/WaPhiZGfDwYNWDhywFBuyBw5Yyc4u+ThZnToFeDyQkWHF7b6042mBgecH9rkhXqvW\n+W3e7xR7lzRft3WrlREjAvjmGxv+/h6SkvIYNMhZpnsli/i6avhWYY5WrdzcdZeLNWvsfPutlZgY\nsysyV16e9xFwv4fs+d8zMkoOzlq1PFx9dQENGniIjDz/e/36HgICvCdDHD2aRXY2nDpl4eTJM19w\n8qSlSNupU+e3HTliZfdu71milyIoqOTALhrcnBfiZ0bhHk/xX95plhLaL2bZkttKWnfJ83r/LRct\ngsWLvY+16do1nxEj8rjqKh33FSmNQthAQ4Y42bjRztSpDp8OYZcLDh8+e8R6fsgeO1byjQiCgjw0\naFBAy5be75GRZ3/3UL9+wSWNriwWqFEDatTwEBl56cHg8XhH5SdPWsjIOBPSxYW4t/3stkOHrOza\n5Q02X9eypfc+z61a6XCLyMVSCBuoXTv3fy9V8mPgQPB4/PHz82C3e3df+vl5zzr0fve+9vPzFP58\nZj67vegyZ7/2tp2/zLlt595G82IVFHifcHPgQPG7hw8etHDkiKXEkaO/vzcIb7jBdU64/v49JATT\nnxF7trNDvEGDSw/xggLIyuKcsC4a2Ge+Z2R4r7s88/tbLGCxeM76uehXae0lTT+z3nPnudzttGvn\nIDr6/NuzisiF6Tphg61dayMxMdDsMrBaLxzk5wa3zeYN30OHLCVer2i3e6hfv7jdw7+HbFjY72/8\nRtB1wsZQPxtD/WwMXSfsw6Kj3Xz9dRY2Ww2OHs3G5bLgclHkKz//3DYL+fneu9Dk53unn/n5zPcz\n6/m9rfh1nNt2ZpmzXzud3t2vbre1cJrbDWFh3uv9IiN/H7WeHbbh4R6dASsicgkUwia45hoP4eGQ\nlqYL2EVEqjMdwRERETGJQlhERMQkCmGDJSfbiYoKxG6HqKhAkpN1REBEpLpSAhgoOdlO//5XFL7e\nudP239e5JCS4zCtMRERMoZGwgaZNcxTbPn168e0iIuLbFMIG2r27+O4uqV1ERHyb3v0N1KRJ8Zck\nldQuIiK+TSFsoKQkZ7HtgwcX3y4iIr5NIWyghAQXc+fm0rSpG7sdmjZ1M3euTsoSEamudHa0wRIS\nXCQkuP57b9Ics8sRERETaSQsIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhLCIiYhKFsIiIiEkUwiIi\nIiZRCIuIiJhEISwiImKSi7pj1rhx4/j222+xWCwMHz6cFi1aFE6Ljo6mXr162Gw2ACZNmkTdunUr\nploREREfUmoIf/311/z6668sWbKEn376ieHDh7NkyZIi88ybN4+goKAKK1JERMQXlbo7etOmTcTE\nxADQuHFjTp48SVZWVoUXJiIi4utKHQkfO3aMZs2aFb4ODQ0lLS2NGjVqFLaNHDmSAwcOcOuttzJ0\n6FAsFkuJ66tdOxC73VbGsn1DeHiw2SVUC+pnY6ifjaF+NoZR/XzJT1HyeDxFXg8aNIi2bdtSs2ZN\nnn32WVJSUoiPjy9x+fR0PTkI+O9TlDLNLsPnqZ+NoX42hvrZGBXRzyWFeqm7oyMiIjh27Fjh66NH\njxIeHl74+oEHHiAsLAy73U67du3YvXt3OZQrIiLi+0oN4TZt2pCSkgLA999/T0REROGu6MzMTPr2\n7YvT6QRgy5YtXHfddRVYrpghOdlOVFQg9evXICoqkORkPYZaRKQ8lPpuesstt9CsWTMSExOxWCyM\nHDmSZcuWERwcTGxsLO3ataNbt274+/vTtGnTC+6KlqonOdlO//5XFL7eudP239e5JCS4zCtMRMQH\nWDznHuStYDqe4VVVju1ERQWyc+f5J9I1bepm3brKf3y/qvRzVad+Nob62RiV6piwVG+7dxf/J1JS\nu4iIXDy9k8oFNWlScEntIiJy8RTCckFJSc5i2wcPLr5dREQunkJYLighwcXcubk0berGbvfQtKmb\nuXN1UpaISHnQtSZSqoQEl0JXRKQCaCQsIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhLCIiYhKFsIiI\niEkUwiIiIiZRCIuIiJhEISwiImIShbCIiIhJFMIiIiImUQiLiIiYRCEsIiJiEoWwiIiISRTCIiIi\nJlEIi4iImEQhLCJSySUn24mKCsRuh6ioQJKT7WaXJOVE/5IiIpVYcrKd/v2vKHy9c6ftv69zSUhw\nmVeYlAuNhEVEKrFp0xzFtk+fXny7VC0KYfFJ2n0nvmL37uLfpktql6pF/4ric87svtu504bb/fvu\nOwWxVEVNmhRcUrtULQph8TnafSe+JCnJWWz74MHFt0vVohAWn6Pdd+JLEhJczJ2bS9Ombux2aNrU\nzdy5OinLV2j/nPicJk0K2LnTVmy7SFWUkOAiIcFFeHgwaWk5Zpcj5UhDA/E52n0nIlWFQlh8jnbf\niUhVod3R4pO0+05EqgKNhEXksul6bJGyUQiLVBJnAq1+/RpVItB0PbZI2SmERSqBooFmqRKBpuux\nRcpOISxSCVTFQNP12CJlp/8tIpVAVQw03U5RpOwq7/9wkWqkKgaarscWKTuFsEglUBUDTddji5Rd\n5T3rQ6Qa8QZXLtOnO9i920qTJgUMHuys9IGm67FFykYhLFJJnAk0qVjJyXamTfv9w05SUuX/sCO+\nSyEsItXGmUvBzjhzKRhoN7qYQ8eERaTaqIqXgolvUwiLSLVRFS8FE9+mvzwRqTaq4qVg4tsUwiJS\nbVTFS8Gqqqp2L3SzKIRFpNooem2zR9c2V5CqeC90MOepYBaPx+Op8K2cJS0t08jNVVre6yrVFxVN\n/WwM9bMxqko/R0UFsnOn7bz2pk3drFtXOa8nP/fM+TPK60NaeHhwse0aCYuISLmqiifAmXXm/EX1\nyLhx4+jWrRuJiYn87//+b5FpGzdu5OGHH6Zbt27MmjWrQooUEZGqoyqeAGfWB4dS1/7111/z66+/\nsmTJEsaOHcvYsWOLTB8zZgwzZsxg8eLFbNiwgb1791ZYsSIiUvlVxRPgzPrgUGoIb9q0iZiYGAAa\nN27MyZMnycrKAmDfvn3UrFmT+vXrY7VaiYqKYtOmTRVasIiIVG5V8QQ4sz44lHrq17Fjx2jWrFnh\n69DQUNLS0qhRowZpaWmEhoYWmbZv374Lrq927UDs9vMP2FdHJR2ol/KlfjaG+tkYVaWf+/XzfnnZ\ngPNPeqpM+vWDkBAYPx5++AGaNoUXX4TExIqt+5LPvy7rydTp6ZXzzDijVZWzHKs69bMx1M/GUD9X\nrA4dvF9n93NaWvms+7LPjo6IiODYsWOFr48ePUp4eHix044cOUJERERZaxUREakWSg3hNm3akJKS\nAsD3339PREQENWrUAKBhw4ZkZWWxf/9+XC4XqamptGnTpmIrFhER8RGl7o6+5ZZbaNasGYmJiVgs\nFkaOHMmyZcsIDg4mNjaWUaNGMXToUAA6depEo0aNKrxoERERX6A7ZplEx3aMoX42hvrZGOpnY1RE\nP+uOWSIiIpWMQlhERMQkCmERERGTKIRFRERMohAWERExieFnR4uIiIiXRsIiIiImUQiLiIiYRCEs\nIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhbLCJEyfSrVs3HnroIT7//HOzy/Fpp0+fJiYmhmXLlpld\nik/75z//yf3338+DDz7IunXrzC7HJ2VnZzNw4EB69epFYmIi69evN7skn7J7925iYmJYtGgRAIcO\nHaJXr150796dwYMH43Q6K2zbCmEDffXVV+zZs4clS5Ywf/58xo0bZ3ZJPm327NnUrFnT7DJ8Wnp6\nOrNmzeL9999nzpw5rFmzxuySfFJycjKNGjXi3XffZfr06YwdO9bsknxGTk4Oo0ePpnXr1oVtr7/+\nOt27d+f999/n6quvZunSpRW2fYWwgW6//XamT58OQEhICLm5ubjdbpOr8k0//fQTe/fu5Z577jG7\nFJ+2adMmWrduTY0aNYiIiGD06NFml+STateuTUZGBgCnTp2idu3aJlfkOxwOB/PmzSMiIqKwbfPm\nzXTo0AGA9u3bs2nTpgrbvkLYQDabjcDAQACWLl1Ku3btsNlsJlflmyZMmMCwYcPMLsPn7d+/n9On\nT/P000/TvXv3Cn2zqs46d+7MwYMHiY2NpWfPnrzwwgtml+Qz7HY7AQEBRdpyc3NxOBwAhIWFkZaW\nVnHbr7A1S4lWr17N0qVLWbhwodml+KRPPvmEli1bcuWVV5pdSrWQkZHBzJkzOXjwIL179yY1NRWL\nxWJ2WT7l008/JTIykgULFrBr1y6GDx+ucx0MUtF3dlYIG2z9+vXMmTOH+fPnExwcbHY5PmndunXs\n27ePdevWcfjwYRwOB/Xq1eOuu+4yuzSfExYWxs0334zdbueqq64iKCiIEydOEBYWZnZpPmXbtm3c\nfffdANxwww0cPXoUt9utPWkVJDAwkNOnTxMQEMCRI0eK7Koub9odbaDMzEwmTpzI3LlzqVWrltnl\n+Kxp06bx8ccf8+GHH/LII4/wzDPPKIAryN13381XX31FQUEB6enp5OTk6HhlBbj66qv59ttvAThw\n4ABBQUEK4Ap01113kZKSAsDnn39O27ZtK2xbGgkbaPny5aSnp5OUlFTYNmHCBCIjI02sSuTy1a1b\nl7i4OB599FEAXnrpJaxWfbYvb926dWP48OH07NkTl8vFqFGjzC7JZ+zYsYMJEyZw4MAB7HY7KSkp\nTJo0iWHDhrFkyRIiIyN54IEHKmz7epShiIiISfSRVURExCQKYREREZMohEVEREyiEBYRETGJQlhE\nRMQkCmERERGTKIRFRERMohAWERExyf8DjJqcxywDE6QAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "xrvsIc2m0sUY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "The model quickly starts overfitting, unsurprisingly given the small number of training samples. Validation accuracy has high variance for \n", + "the same reason, but seems to reach high 50s.\n", + "\n", + "Note that your mileage may vary: since we have so few training samples, performance is heavily dependent on which exact 200 samples we \n", + "picked, and we picked them at random. If it worked really poorly for you, try picking a different random set of 200 samples, just for the \n", + "sake of the exercise (in real life you don't get to pick your training data).\n", + "\n", + "We can also try to train the same model without loading the pre-trained word embeddings and without freezing the embedding layer. In that \n", + "case, we would be learning a task-specific embedding of our input tokens, which is generally more powerful than pre-trained word embeddings \n", + "when lots of data is available. However, in our case, we have only 200 training samples. Let's try it:" + ] + }, + { + "metadata": { + "id": "eS1J1MD_0sUZ", + "colab_type": "code", + "outputId": "bc0916b9-a2fd-4ef7-85ce-2b00a0f3f8de", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 629 + } + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Embedding, Flatten, Dense\n", + "\n", + "model = Sequential()\n", + "model.add(Embedding(max_words, embedding_dim, input_length=maxlen))\n", + "model.add(Flatten())\n", + "model.add(Dense(32, activation='relu'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.summary()\n", + "\n", + "model.compile(optimizer='rmsprop',\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])\n", + "history = model.fit(x_train, y_train,\n", + " epochs=10,\n", + " batch_size=32,\n", + " validation_data=(x_val, y_val))" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_4 (Embedding) (None, 100, 100) 1000000 \n", + "_________________________________________________________________\n", + "flatten_3 (Flatten) (None, 10000) 0 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 32) 320032 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 1,320,065\n", + "Trainable params: 1,320,065\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Train on 200 samples, validate on 10000 samples\n", + "Epoch 1/10\n", + "200/200 [==============================] - 1s 5ms/step - loss: 0.6972 - acc: 0.4600 - val_loss: 0.6916 - val_acc: 0.5250\n", + "Epoch 2/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.4948 - acc: 0.9900 - val_loss: 0.7023 - val_acc: 0.5126\n", + "Epoch 3/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.2752 - acc: 0.9950 - val_loss: 0.7241 - val_acc: 0.5175\n", + "Epoch 4/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.1282 - acc: 0.9900 - val_loss: 0.7033 - val_acc: 0.5257\n", + "Epoch 5/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0551 - acc: 1.0000 - val_loss: 0.7101 - val_acc: 0.5283\n", + "Epoch 6/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0285 - acc: 1.0000 - val_loss: 0.7066 - val_acc: 0.5338\n", + "Epoch 7/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0157 - acc: 1.0000 - val_loss: 0.7109 - val_acc: 0.5293\n", + "Epoch 8/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0092 - acc: 1.0000 - val_loss: 0.7313 - val_acc: 0.5291\n", + "Epoch 9/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0055 - acc: 1.0000 - val_loss: 0.7228 - val_acc: 0.5345\n", + "Epoch 10/10\n", + "200/200 [==============================] - 1s 3ms/step - loss: 0.0033 - acc: 1.0000 - val_loss: 0.7274 - val_acc: 0.5333\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "hMprUdk80sUd", + "colab_type": "code", + "outputId": "9296deb4-36b9-4e27-e141-dda548660785", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(1, len(acc) + 1)\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtclHXe//H3HAADBgRkTNRKLTUs\nM3/WZlomQmjqvWttSZZa2lqWD3PX2jXuuq0M09LWjtZ6qC3NaA3W9l6DNLXaMo/VnaYd3NU8oaCg\nnBSB+f0xMjBy8gDzhfH1fDx4cF3f6/SZr+O85/pew1wWl8vlEgAA8Dmr6QIAADhfEcIAABhCCAMA\nYAghDACAIYQwAACGEMIAABhCCKPJmTp1qgYOHKiBAweqW7du6t+/v2e+oKDgjPY1cOBA5eTk1LnO\n7NmztWTJknMpucHdc889SktLa5B9denSRVlZWVqxYoUee+yxczre+++/75k+nb4FUDe76QKAUz31\n1FOe6bi4OD333HPq1avXWe0rIyOj3nUmT558VvtubhISEpSQkHDW22dnZ2v+/Pm64447JJ1e3wKo\nG2fCaHZGjhypP//5zxo0aJA2b96snJwcjR07VgMHDlRcXJzefPNNz7oVZ4Hr1q3T8OHDNXv2bA0a\nNEhxcXFav369JGnKlCl67bXXJLlD/7333tNvf/tb9e3bVzNmzPDs6/XXX1fv3r112223afHixYqL\ni6uxvr/97W8aNGiQbr75Zt11113au3evJCktLU0TJ05UcnKyEhMTdcstt+inn36SJO3evVu33367\n4uPjNXnyZJWVlVXb76effqqhQ4d6tf3617/WZ599VmcfVEhLS9M999xT7/E++eQTDR06VImJibr1\n1lu1bds2SVJSUpL27dungQMHqqSkxNO3kvT222/rlltu0cCBAzV+/HgdPnzY07cvvfSS7r33XvXv\n31/33nuviouLq9VWXFysSZMmKTExUXFxcZo5c6Zn2e7du3XXXXcpISFBt912m7Zu3Vpne1xcnDZu\n3OjZvmJ+z5496tu3r6ZPn6677767zscqSX/5y180YMAAJSYm6tlnn1VZWZn69Omj7777zrPOokWL\n9OCDD1Z7PMDpIoTRLG3ZskX//Oc/1bNnT82dO1ft2rVTRkaG/vrXv2r27Nnav39/tW2+//57XXXV\nVfroo480YsQIzZ07t8Z9b9iwQampqfrggw+0aNEiZWVl6aefftL8+fO1bNkyvfvuu7WeBR46dEhP\nP/203nzzTX388ce66KKLPAEvSZ999plGjBihzMxM/epXv9Jf//pXSdKsWbPUu3dvrVy5UqNHj9bm\nzZur7bt3797KysrS7t27JblDKCsrS9dff/1p90GF2o5XWlqqKVOmaNq0acrMzPQKxOnTp6tNmzbK\nyMhQYGCgZ1/ffPONFixYoHfeeUcZGRmKiYnR7NmzPcszMjL05z//WStWrNDhw4e1YsWKavUsWbJE\nhYWFysjIUHp6utLS0jxB+sQTT2jw4MFasWKFxo8frz/+8Y91ttclLy9Pl19+uRYtWlTnY924caOW\nLl2qZcuW6R//+Ic2bdqkjz/+WIMGDdL//u//eva3YsUKDR48uN7jArUhhNEs9evXT1ar++n7+OOP\n64knnpAktW/fXtHR0dqzZ0+1bUJCQhQfHy9J6tatm/bt21fjvocOHSqbzabWrVsrKipK+/fv14YN\nG3TttdfK6XQqKChIt912W43bRkVFadOmTbrwwgslSb169fKEpiR16tRJV1xxhSQpNjbWE5QbN27U\nLbfcIknq3r27OnbsWG3fgYGB6t+/v1atWiVJWrlypeLj42W320+7DyrUdjy73a4vv/xSPXr0qLH+\nmqxZs0aJiYmKioqSJN1+++364osvPMv79eunli1bym63q3PnzjW+ORgzZoxee+01WSwWhYeH67LL\nLtOePXt0/PhxrVu3TkOGDJEkDRgwQO+//36t7fU5ceKEZ0i+rsf62WefqV+/fgoNDVVgYKDeeecd\n3XzzzRo8eLCWL1+u8vJy5eXlacuWLerfv3+9xwVqwzVhNEvh4eGe6e+++85z5me1WpWdna3y8vJq\n2zgcDs+01WqtcR1JCg0N9UzbbDaVlZXp6NGjXsds3bp1jduWlZXppZde0qpVq1RWVqbCwkJ16NCh\nxhoq9i1JR44c8TpuWFhYjftPTEzU22+/rdGjR2vlypWeodDT7YMKdR3vnXfeUXp6ukpKSlRSUiKL\nxVLrfiTp8OHDcjqdXvs6dOhQvY+5qp07d2rGjBn697//LavVqqysLN16663Ky8tTeXm5Zx8Wi0Uh\nISE6cOBAje31sdlsXo+7tseam5vr9ZguuOACSdLVV1+tgIAArV+/XllZWerbt6+Cg4PrPS5QG86E\n0ew9+uijSkxMVGZmpjIyMhQREdHgxwgNDVVRUZFn/uDBgzWut3z5cq1atUqLFi1SZmamJk6ceFr7\nDwsL8/rkd8U11VPdcMMN2r59u3bu3KmdO3fquuuuk3TmfVDb8TZv3qx58+Zp7ty5yszM1DPPPFNv\n7a1atVJeXp5nPi8vT61atap3u6qefvppXXbZZfroo4+UkZGhrl27SpIiIiJksViUm5srSXK5XNq1\na1et7S6Xq9obrCNHjtR4zLoea0REhGffkjuUK+YHDx6sjIwMZWRkeEYTgLNFCKPZO3TokK644gpZ\nLBalp6eruLjYKzAbQvfu3bVu3TodPnxYJSUl+vvf/15rLW3btlVkZKRyc3P10UcfqbCwsN799+jR\nw3OtdPPmzfrll19qXC8wMFB9+/bV888/rwEDBshms3mOeyZ9UNvxDh8+rKioKMXExKi4uFjp6ekq\nKiqSy+WS3W5XUVGRSktLvfZ10003acWKFZ6Qeu+999SvX796H3NVhw4d0uWXXy6bzaYvvvhCu3bt\nUlFRkQIDA9WnTx+lp6dLkj7//HONGzeu1naLxaLo6Ght375dkvtN0fHjx2s8Zl2PNS4uTqtWrdKR\nI0dUWlqqhx56SP/6178kSUOGDNHKlSv19ddfn/HjBE5FCKPZe/jhh/XQQw9p6NChKioq0vDhw/XE\nE0/UGmRno3v37ho2bJiGDRumUaNG1XodcMiQIcrLy1NCQoImT56sSZMmKSsry+tT1jV59NFHtXr1\nasXHx2vx4sW6/vrra103MTFRK1eu1KBBgzxtZ9oHtR3vhhtukNPpVHx8vMaMGaPRo0fL4XBo4sSJ\n6tKli8LDw9WnTx+v6+ndu3fXuHHjdNddd2ngwIHKz8/X73//+zof76nGjx+vmTNnasiQIVq/fr0m\nTJigl19+WZs2bVJKSopWr16tAQMGaM6cOZo1a5Yk1dr+4IMP6q233tKQIUO0Y8cOXXrppTUes67H\n2qNHD40dO1a/+c1vNHjwYMXGxnquP3fp0kUtW7ZU37591aJFizN6nMCpLNxPGDg9LpfLc81wzZo1\nmjNnTq1nxPBvv/vd73T33XdzJoxzxpkwcBoOHz6s6667Tnv37pXL5dJHH33k+VQtzi+bNm3S3r17\ndcMNN5guBX6AT0cDpyEyMlKTJk3SPffcI4vFoo4dO57W36XCvzz22GPavHmznn/+ec+fyAHnguFo\nAAAM4a0cAACGEMIAABji82vC2dn5vj5kkxQREazc3Ib9W1ZURz/7Bv3sG/SzbzRGP0dHO2ps50zY\nELvdZrqE8wL97Bv0s2/Qz77hy34mhAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEEIYAABD\nCGEAAAw5rRD+8ccfFR8fr0WLFlVb9uWXX+q3v/2thg8frldffbXBCwTOF+npdvXrF6w2bULVr1+w\n0tOb/k3OKmq229XsaqafGxf9fHrqPUJRUZGmTZum3r1717j8mWee0YIFC9S6dWvdfffdSkxM1KWX\nXtrghQL+LD3drvvvv8Azv22b7eR8sYYNKzVXWB2o2Teo2TdM1VzvmXBgYKDmzZsnp9NZbdnu3bsV\nHh6uNm3ayGq1ql+/flq7dm2jFAr4szlzAmtsf/HFmtubAmr2DWr2DVM113smbLfbZbfXvFp2drYi\nIyM985GRkdq9e3ed+4uICOb7T0+q7Qu9m5r33pOmT5e+/16KjZWSk6WkJNNVnb7m0M8//lhbu63J\n1k/NvkHNvmGqZp8P0nMHELfoaEezuKPUqUM0330n3XmndPRo0x1Wqqq59HPnzsHatq36m9POncuU\nnd00/89Qs29Qs280ds2Nchclp9OpnJwcz/yBAwdqHLZGpeb2AYvmOKwkNb9+njSppMb2hx+uub0p\noGbfoGbfMFXzOYVwu3btVFBQoD179qi0tFSrV69Wnz59Gqo2v1NxVrltm01lZZUX/ptyQPz4Y81P\nkdram4Lm2M/DhpXqjTeKFRtbJrvdpdjYMr3xRtMebfCuWc2wZvq5sdDPp8/icrlcda2wZcsWzZw5\nU3v37pXdblfr1q0VFxendu3aKSEhQRs2bNCsWbMkSTfffLPGjh1b5wGbw9BgY+nXr+bhjtjYMq1Z\n0zSHaKgZp6O5DPs3d/SzbzRGP9c2HF1vCDe08/kJ1KZNqMrKLNXa7XaX9u0rMFBR/U69JlyhKb+r\nbY793NwRDr5BP/uGL0O46Y4p+qHOncvPqL0paI7DSs2xnwGcnwhhH2qOH1aQ3EG8Zk2R9u0r0Jo1\nRU06gKXm288Azj+EsA81xw9YNEf0M4DmgmvChnBtxzfoZ9+gn32DfvYNrgkDAHAeIIQBADCEEAYA\nwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQB\nADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhh\nAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBC\nGAAAQwhhAAAMOa0Qnj59uoYPH66kpCT93//9n9eylStX6rbbbtOdd96pRYsWNUqRAAD4o3pDeP36\n9dq1a5dSU1OVkpKilJQUz7Ly8nJNmzZN8+bN0+LFi7V69WplZWU1asEAAPiLekN47dq1io+PlyR1\n6tRJR44cUUFBgSQpNzdXYWFhioyMlNVq1XXXXacvv/yycSsGAMBP1BvCOTk5ioiI8MxHRkYqOzvb\nM11YWKidO3fqxIkTWrdunXJychqvWgAA/Ij9TDdwuVyeaYvFohkzZig5OVkOh0Pt2rWrd/uIiGDZ\n7bYzPaxfio52mC7hvEA/+wb97Bv0s2/4qp/rDWGn0+l1dnvw4EFFR0d75q+99lq9++67kqTZs2er\nbdu2de4vN7fobGv1K9HRDmVn55suw+/Rz75BP/sG/ewbjdHPtYV6vcPRffr0UWZmpiRp69atcjqd\nCg0N9Sy/7777dOjQIRUVFWn16tXq3bt3A5UMAIB/q/dMuGfPnurWrZuSkpJksVg0depUpaWlyeFw\nKCEhQXfccYfGjBkji8WicePGKTIy0hd1AwDQ7FlcVS/y+gBDKW4MK/kG/ewb9LNv0M++0aSGowEA\nQOMghAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEEIY\nAABDCGEAAAwhhAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQ\nBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEEIYAABDCGEAAAwh\nhAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEEIYAABDCGEAAAyxn85K06dP17fffiuLxaLk\n5GR1797ds2zx4sX68MMPZbVadcUVV+i///u/G61YAAD8Sb1nwuvXr9euXbuUmpqqlJQUpaSkeJYV\nFBRowYIFWrx4sZYsWaIdO3bom2++adSCAQDwF/WG8Nq1axUfHy9J6tSpk44cOaKCggJJUkBAgAIC\nAlRUVKTS0lIVFxcrPDy8cSsGAMBP1BvCOTk5ioiI8MxHRkYqOztbkhQUFKSHHnpI8fHx6t+/v666\n6ip16NCh8aoFAMCPnNY14apcLpdnuqCgQG+88YYyMjIUGhqq0aNHa/v27eratWut20dEBMtut51d\ntX4mOtphuoTzAv3sG/Szb9DPvuGrfq43hJ1Op3JycjzzBw8eVHR0tCRpx44dat++vSIjIyVJvXr1\n0pYtW+oM4dzconOt2S9ERzuUnZ1vugy/Rz/7Bv3sG/SzbzRGP9cW6vUOR/fp00eZmZmSpK1bt8rp\ndCo0NFSS1LZtW+3YsUPHjh2TJG3ZskWXXHJJA5UMAIB/q/dMuGfPnurWrZuSkpJksVg0depUpaWl\nyeFwKCEhQWPHjtWoUaNks9l09dVXq1evXr6oGwCAZs/iqnqR1wcYSnFjWMk36GffoJ99g372jSY1\nHA0AABoHIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAA\nhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwA\ngCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggD\nAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCH201lp+vTp\n+vbbb2WxWJScnKzu3btLkg4cOKBHHnnEs97u3bs1efJkDR06tHGqBQDAj9QbwuvXr9euXbuUmpqq\nHTt2KDk5WampqZKk1q1b65133pEklZaWauTIkYqLi2vcigEA8BP1DkevXbtW8fHxkqROnTrpyJEj\nKigoqLZeenq6EhMTFRIS0vBVAgDgh+o9E87JyVG3bt0885GRkcrOzlZoaKjXen/729+0cOHCeg8Y\nEREsu912FqX6n+hoh+kSzgv0s2/Qz75BP/uGr/r5tK4JV+Vyuaq1ff311+rYsWO1YK5Jbm7RmR7S\nL0VHO5SdnW+6DL9HP/sG/ewb9LNvNEY/1xbq9Q5HO51O5eTkeOYPHjyo6Ohor3XWrFmj3r17n2OJ\nAACcX+oN4T59+igzM1OStHXrVjmdzmpnvN999526du3aOBUCAOCn6h2O7tmzp7p166akpCRZLBZN\nnTpVaWlpcjgcSkhIkCRlZ2crKiqq0YsFAMCfWFw1XeRtRFzPcOPajm/Qz75BP/sG/ewbTeqaMAAA\naByEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggD\nAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDC\nAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCGE\nMAAAhhDCAAAYQggDAGAIIQwAgCGEMAAAhhDCAAAYQggDAGAIIQwAgCH201lp+vTp+vbbb2WxWJSc\nnKzu3bt7lu3fv19/+MMfdOLECcXGxurpp59utGIBAPAn9Z4Jr1+/Xrt27VJqaqpSUlKUkpLitXzG\njBkaM2aMli5dKpvNpn379jVasQAA+JN6Q3jt2rWKj4+XJHXq1ElHjhxRQUGBJKm8vFybNm1SXFyc\nJGnq1KmKiYlpxHIBAPAf9YZwTk6OIiIiPPORkZHKzs6WJB0+fFghISF69tlndeedd2r27NmNVykA\nAH7mtK4JV+VyubymDxw4oFGjRqlt27YaN26c1qxZo5tuuqnW7SMigmW3286qWH8THe0wXcJ5gX72\nDfrZN+hn3/BVP9cbwk6nUzk5OZ75gwcPKjo6WpIUERGhmJgYXXTRRZKk3r1766effqozhHNzi86x\nZP8QHe1Qdna+6TL8Hv3sG/Szb9DPvtEY/VxbqNc7HN2nTx9lZmZKkrZu3Sqn06nQ0FBJkt1uV/v2\n7bVz507P8g4dOjRQyQAA+Ld6z4R79uypbt26KSkpSRaLRVOnTlVaWpocDocSEhKUnJysKVOmyOVy\nqXPnzp4PaQEAgLpZXFUv8voAQyluDCv5Bv3sG/Szb9DPvtGkhqMBAEDjIIQBADCEEAYAwBBCGAAA\nQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYA\nwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQBADCEEAYAwBBCGAAAQwhhAAAMIYQB\nADDEbroAAIB/KSuT8vOlo0ctOnbMIpvNJatVstslm63qj0t2u6ots1hMPwLfIYQBeLhcUmGhdOSI\nRUePWk7+rpyvaMvPd7dVtAcESEFBFygkxKXQUCk01HXyxz0dElLZVnU6NFQKCXGpRYvz64W3KXO5\npOJiVfn3lvLzqz4f3M+JyudC5XxFW0HBuf1jWq0u2Ww6JaBdpwS4Tq5Tc3ttAV+xn7r23aWLNHq0\nb56ThDDgR8rKVO0F8dTQzM+vaFeV6coX1/LyM3vlCQpySZKOHz/7lxObrXp4Bwd7B7l3qNcd8EFB\n52+ol5bK88ap4t/36NHK50DFc6NqwJ66TmnpmXWe1epSWJgUFubSJZeUKyzMdfJHatHCJZdLKi21\nqKxMXj+lpe7nW2mpalhmUXm5alhWuZ/jxyvmLVX2V7lvl+vsngQ2mzR0qEVRUa6z2v5MEMJAE1Fe\n7n5RKSioPPusKzTd0/I6QzmbM5CQEJfCw1268MJyde7sUni45HC428LDK19MK6cr2t0vui1aSNHR\nDu3bl6+CAnf9hYUWz7T7RyfbLCos9G6vmC4sdK+TnW3Rf/5jUUnJ2aeo3e4d3iEhOhncle2Bge6g\nrgjryt+uGtoqf5/aVqHmfdW9rO59uaqtHxgo7d8fWC1gq77xKio6834LDnb/u0ZFudShg6tKiFb8\ne1c+J8LCXHI4Kp8P4eHu/m2Kb3oqArlqQLtD3TvgK5e5w7xz5xAFBDR+AEuEMM5zLpd04oRUUiId\nP27R8eM6+WNRSYl07JhUUlIxXVObe7pim+PH69qX+3fV6arbnenZh+R+oa4IyEsuKVd4uOvki6Wq\nTHuHZtUwDQtzD8c1hIAAKSJCiohwSTr3F7CSEtUa6lWDvLZQLypyTx84YFVBgXTiRBNMibMS5DVn\nt1f+Wzqdlc+BiudF1fCs+hyoWCcszKWAAEMPpZFZre6f6o+vtuenuz06WsrObszKKjXrEC4pkVas\nsHtegGJi3Bf/cX4oL5dyc91nTgcPev/OzrYqO9sddIWFwXUE59kPWZ0pu909TBoU5P4dGOh+AQwM\ndJ+VtWjh/h0aWvEiKU+AVoapvM5GQ0Lkt8/5wEApMlKKjGyYUK8YZag4Ky8pcb8Jk7x/19Tm/m3x\nTFc4ve3qbjuTfbVqFazy8kKvgA0ObppnoTg9zTqEP//cpnvvvcAzHxTk0kUXlatDB3cod+hQrksu\ncf+0b+9+gUPT5nJJeXlSdra1WrAePGj1ms/JOb1rVy1aWBUYWBl+DocUFFTuCUR3AEqBgRUh6Z4+\nta1i3apBeur2VcP01MC12XzQgahVxb9HVJTUEKFugvsMrdx0GWhAzTqEb7yxTK+/XqwffrBq506r\n/vMf989PP1V/YbZaXWrXzuUJZXdAV86HhBh4AOcJl8v9QZFTQ7Ry2urVVt+w4QUXuBQd7dJVV5XL\n6SxXdLRLTqerym93W3S0S5dc4lBOToGPHikAnJlmHcIBAdKtt5ZWa8/NlSeUd+6sCGiLdu606rPP\n7Prss+r7cjorg7nqGXSHDuWKiPDBg2lmXC739bpTQ7TqcHDVtvo+ZNOihTs0u3cv9wpR74Atl9N5\nZh8CYZgOQFPWrEO4Nu4Ph5Tr6qurD9sUFkq7dlUEtMUrrDdssGnduuqv2uHhlcFc+dt9Ft26tavZ\nvtCXl7v7Iz/fcvLHPV1QUDlddVlOjne4HjtW9wMPDHQHaLdu5V5nqDWdtTocBCaA849fhnBdQkKk\n2NhyxcZWD+iSEmnPHsspZ9DusN62zapvvql+Ue+CC9xhfPHF1a9Ft2vnarBPnlZ14oT7LLRqSHrP\nVw3T2sP1bP6cJSDAHaBdulQGq3eoVp61hoURrABQl/MuhOsSGCh17OhSx45lksq8lpWXS/v3VwZ0\nxfB2RVBv21Y9oO12l9q3d51yBu3+kJjDIf3yi61aKHqfgapKkFbOFxefXbIFBLg/VRsaKl1ySbkc\nDncdoaGuk9PueYfDdbJNVdrdf0PYsiXBCgANhRA+TVar1LatS23blqlvX++AdrmkQ4csnmCuDGqr\ndu2yaPVqu1avrmmvwad17IpvDgoLk9q2La8xJENDvQOzpjANCqr/WAAA3yGEG4DFIrVq5VKrVi5d\nc031Ye78fHmdNe/ZY1HLloGy2Y57BWZNYRoa2nBfpgAAaFp4efcBh0O68spyXXllZUBHRwcqO7vE\nYFUAANNOK4SnT5+ub7/9VhaLRcnJyerevbtnWVxcnC688ELZTn4TwaxZs9S6devGqRYAAD9Sbwiv\nX79eu3btUmpqqnbs2KHk5GSlpqZ6rTNv3jyF8G0XAACckXq/dXbt2rWKj4+XJHXq1ElHjhxRQQHf\nQAQAwLmqN4RzcnIUUeUroyIjI5V9yu0lpk6dqjvvvFOzZs2S69RvJQcAADU64w9mnRqyEydO1A03\n3KDw8HA99NBDyszM1MCBA2vdPiIiWHY732Qvue/BisZHP/sG/ewbTbmfZ8yYoa1btyo7O1vFxcW6\n6KKLFB4erldeeaXebdPS0uRwOJSQkFDj8pSUFI0aNUrt27dv6LJr5Kt+trjqOXV9+eWXFR0draSk\nJEnSgAEDtGzZMoWGhlZbd/HixTp06JAmTpxY6/6ys/PPsWT/EB3toC98gH72DfrZNxq6n9PT7Zoz\nJ1A//mhV587lmjSpRMOGVf+AGOHpAAAMkElEQVQ+/jO1fPk/9O9/79CECZMaoErfa4znc22hXu+Z\ncJ8+ffTyyy8rKSlJW7duldPp9ARwfn6+Jk2apLlz5yowMFAbNmxQYmJigxYOAGh46el23X9/5a1g\nt22znZwvbpAgrmrz5o16771FKioq0oQJv9fXX2/SmjWfqLy8XL1799GYMeO0YMEbatmypTp06KS0\ntPdlsVi1a9d/dNNNAzRmzDhNmDBOf/jDH7V69ScqLCzQL7/s0t69ezRx4mT17t1Hixa9pZUrP1ZM\nTFuVlpYqKeku9ezZy1PDhg3rNH/+6woICJDD4dDTT89QQECA5syZpe+/3yKbzaZHH31MHTteqmee\neUabNn3t1dZY6g3hnj17qlu3bkpKSpLFYtHUqVO9hg1uvPFGDR8+XEFBQYqNja1zKBoA0DTMmVPz\nDdZffDGwwUNYknbs+FlLlqQpMDBQX3+9Sa+9Nl9Wq1V33PFrDR8+wmvd77/fqnff/UDl5eW6/fah\nGjNmnNfygwcPaNasl/TVV19q2bIP1K3bFUpL+5uWLPlAhYWFSkq6VUlJd3ltk5+fr6lTn1FMTFtN\nm/Y/WrdurYKCgnTw4AH95S9v6ZtvNuuTT1bo0KFDysrK8mozGsKS9Mgjj3jNd+3a1TM9evRojR49\numGrAgA0qh9/rPlzubW1n6tLL71MgYHu4G/RooUmTBgnm82mvLw8HT161GvdLl26qkWLFrXuq3v3\nHpIkp9OpgoIC7dmzWx07dlJQUAsFBbXQ5Zd3q7ZNy5YtNXPmMyorK9O+fXv1//7fNcrNPawrr7xK\nktSjR0/16NFTixf/VT179vRqa0x8YxYAnIc6dy6v8cYznTtX/+rdhhAQECBJysrar9TUxVq4cLGC\ng4M1cuQd1dat+PKn2lRd7nK55HJJVmvlm4eabjLz7LPT9Pzzc3TJJR30wgszJUlWq00ul/fjtVpt\nKi9vnD6oSeO85QEANGmTJtX8tbkPP9y4X6ebl5eniIgIBQcH64cftisrK0snTpw4p322adNG//73\nDpWWlio3N1fbt2+rtk5hYYFat75Q+fn52rx5k06cOKHLL4/V5s0bJUk//rhds2fP1OWXx2rdunVe\nbY2JM2EAOA+5r/sW68UXKz8d/fDDDfPp6LpcdllnXXBBsMaPH6Mrr+yhX//6Vs2ePVPdu1911vuM\njIxSQsJA/e53o3TxxR0UG9ut2tn0rbfervHjx6p9+4t0112jtHDhXzR37kJdfHEHPfjgfZKkyZOn\nqFOnS7Vp01qvtsZU758oNTT+jMGNP+nwDfrZN+hn36Cfa7d8+T+UkDBQNptNo0Yl6YUXXpbTeXb3\nMWhSf6IEAEBTd+jQIY0bN1oBAYG6+eaBZx3AvkYIAwCavZEj79HIkfeYLuOM8cEsAAAMIYQBADCE\nEAYAwBBCGAAAQwhhAECDuP/+e6t9Ucbrr7+iJUsW1bj+5s0b9fjjf5QkTZnyh2rLP/ggVQsWvFHr\n8X7++Sf98ssuSdLUqY/p+PFjZ1u6MYQwAKBBJCQkatWqFV5ta9asUnz8zfVuO2PGC2d8vE8/XaXd\nu3+RJD311LMKCqr9+6abqmb7J0qNdR9MAMDZGTDgZo0fP1YPPui+p/z27dsUHR2t6GhnjbcSrGrw\n4AH65z8/0caN6/XSS7MVGRmlqKhWnlsTpqQ8qezsgyouLtaYMeN04YVttGxZmj79dJUiIiL0P//z\nmN5+O1UFBfl69tmndeLECVmtVk2Z8oQsFotSUp5UTExb/fzzT+rcuYumTHnC6/gff/yRli5Nlc1m\n1eWXd9XEiX9UaWmpnnlmqg4c2K/AwCA9/vhTioiIrNYWHe086z5rliHsy/tgAkBz9OSTQfrHPxr2\nJX7o0FI9+eTxWpdHREQqJqatvv9+i2Jjr9CqVSuUkOC+vW1NtxIMDg6uto833nhFTzwxTZdd1lmP\nPDJRMTFtlZ9/VNdee50GDRqivXv36IknpmjhwkX61a9666abBig29grP9vPnv64hQ36tAQNu1urV\nK7Vw4V80duz9+uGHbXrqqemKiIjUsGG3KD8/Xw5H5bdYFRcXa/bsl+VwODRp0gPaseNnff/9FkVF\nRenJJ1O0cmWm/vWvz2S326u1DRv227Pu02YZwr6+DyYA4PQkJAzUJ5+sUGzsFfrii880d+5CSTXf\nSrCmEN6/f78uu6yzJPetBI8fPy6HI0zbtm3Vhx+myWKx6ujRI7Ue/4cftumBByZIknr27KW33pov\nSWrbtr2iolpJklq1ilZhYYFXCIeFhemxxyZLknbt+o+OHMnTDz9sV69e10iS4uMTJUmzZs2o1nYu\nmmUI+/o+mADQ3Dz55PE6z1obS79+/fX22wuVkJCo9u0vUlhYmKSabyVYk6q3JKy4tcGKFRk6evSo\nXn11vo4ePar77htZRwUWz3YnTpTKYnHv79QbOlS9bcKJEyf0wgvP6a233lVUVCs9/vgjJ7exqrzc\n+/YKNbWdi2aZWrXd77Kx7oMJADg9wcEh6tTpMr399pueoWip5lsJ1qRVq2j98stOuVwuff31Jknu\n2x+2aRMjq9WqTz9d5dnWYrGorKzMa/uqtyf85ptN6tr18nprLioqlM1mU1RUKx04kKUtW7aotLRU\nXbvGavPmDZKkL774XG+/vbDGtnPRLEPY1H0wAQD1S0gYqA0b1qlv3xs9bRW3EnzuuRTdddcoLVr0\nlg4dyqm27bhxD+rxx/+kP/3p956bMNx0U5y+/PJzPfzweF1wwQVyOp168815uuqqqzVnzvPauHG9\nZ/v77ntAGRnLNXHiA1q+/H81duz99dYbHt5S11zzK9133yi9+eY83XfffXrppRc0YMDNKi4u1oQJ\n4/T++0s0aNAQxccnVms7F832Vobp6Xaf3wezIXFLMt+gn32DfvYN+tk3uJXhaRg2rLRZhS4AAKdq\nlsPRAAD4A0IYAABDCGEAAAwhhAEAMIQQBgDAEEIYAABDCGEAAAwhhAEAMIQQBgDAEJ9/bSUAAHDj\nTBgAAEMIYQAADCGEAQAwhBAGAMAQQhgAAEMIYQAADCGEfey5557T8OHDddttt+njjz82XY5fO3bs\nmOLj45WWlma6FL/24Ycf6r/+67906623as2aNabL8UuFhYWaMGGCRo4cqaSkJH3++eemS/IrP/74\no+Lj47Vo0SJJ0v79+zVy5EiNGDFCDz/8sEpKShrt2ISwD3311Vf66aeflJqaqvnz52v69OmmS/Jr\nc+fOVXh4uOky/Fpubq5effVVvfvuu3r99df1ySefmC7JL6Wnp6tDhw5655139OKLLyolJcV0SX6j\nqKhI06ZNU+/evT1tL730kkaMGKF3331XF198sZYuXdpoxyeEfeiaa67Riy++KEkKCwtTcXGxysrK\nDFfln3bs2KGff/5ZN910k+lS/NratWvVu3dvhYaGyul0atq0aaZL8ksRERHKy8uTJB09elQRERGG\nK/IfgYGBmjdvnpxOp6dt3bp1GjBggCSpf//+Wrt2baMdnxD2IZvNpuDgYEnS0qVLdeONN8pmsxmu\nyj/NnDlTU6ZMMV2G39uzZ4+OHTumBx54QCNGjGjUF6vz2eDBg7Vv3z4lJCTo7rvv1p/+9CfTJfkN\nu92uFi1aeLUVFxcrMDBQkhQVFaXs7OzGO36j7Rm1WrlypZYuXaqFCxeaLsUv/f3vf1ePHj3Uvn17\n06WcF/Ly8vTKK69o3759GjVqlFavXi2LxWK6LL+ybNkyxcTEaMGCBdq+fbuSk5P5rIOPNPY3OxPC\nPvb555/r9ddf1/z58+VwOEyX45fWrFmj3bt3a82aNcrKylJgYKAuvPBCXX/99aZL8ztRUVG6+uqr\nZbfbddFFFykkJESHDx9WVFSU6dL8yubNm9W3b19JUteuXXXw4EGVlZUxktZIgoODdezYMbVo0UIH\nDhzwGqpuaAxH+1B+fr6ee+45vfHGG2rZsqXpcvzWnDlz9MEHH+j999/X7bffrgcffJAAbiR9+/bV\nV199pfLycuXm5qqoqIjrlY3g4osv1rfffitJ2rt3r0JCQgjgRnT99dcrMzNTkvTxxx/rhhtuaLRj\ncSbsQ8uXL1dubq4mTZrkaZs5c6ZiYmIMVgWcvdatWysxMVF33HGHJOnxxx+X1cp7+4Y2fPhwJScn\n6+6771ZpaamefPJJ0yX5jS1btmjmzJnau3ev7Ha7MjMzNWvWLE2ZMkWpqamKiYnRb37zm0Y7Prcy\nBADAEN6yAgBgCCEMAIAhhDAAAIYQwgAAGEIIAwBgCCEMAIAhhDAAAIYQwgAAGPL/ARQSOUa2KKsb\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtclHXe//H3wIiIDAo4o2LWmieC\nlnWpu800SYVEy3WpLdlK2+pe3dJbLdvfGr9aKoUOm6YdNt3M7soOlEHd+8skrdztbindbK3wbGWa\nGoMc5KQ4zPz+mBwYGQQPMxcMr+fjwYO5vnMdPn5l5j3f73XNjMnlcrkEAAACLsToAgAA6KwIYQAA\nDEIIAwBgEEIYAACDEMIAABiEEAYAwCCEMIJCdna20tPTlZ6ersTERI0ePdqzXF1dfUr7Sk9PV2lp\n6UnXWbhwoV599dUzKfms++1vf6v8/Pyzsq+hQ4fq4MGDWrt2re65554zOt7rr7/uud2Wvm2refPm\n6S9/+ctZ2RdgFLPRBQBnwwMPPOC5PWbMGD366KO6+OKLT2tfa9asaXWduXPnnta+O5q0tDSlpaWd\n9vZ2u13Lly/X9ddfL6ltfQt0JoyE0SlMmTJFjz/+uMaPH69NmzaptLRUt912m9LT0zVmzBg9//zz\nnnWPjwI//fRTTZ48WQsXLtT48eM1ZswYbdiwQZL3KGzMmDF67bXX9Otf/1ojR47Uww8/7NnX0qVL\nNXz4cF177bV6+eWXNWbMGJ/1vfHGGxo/fryuvPJK3Xjjjfr+++8lSfn5+Zo1a5aysrI0btw4TZgw\nQTt37pQk7d27V9ddd51SU1M1d+5cNTQ0NNvv3//+d02cONGrbdKkSfrHP/5x0j44Lj8/X7/97W9b\nPd7777+viRMnaty4cbrmmmu0detWSVJmZqb279+v9PR01dfXe/pWkl588UVNmDBB6enpuv3221VW\nVubp2yeeeEK33HKLRo8erVtuuUV1dXUt/ddKkrZt26bMzEylp6dr0qRJ+uijjyRJNTU1mjFjhsaP\nH6+xY8fq3nvv1bFjx1psBwKNEEan8dVXX+mdd95RcnKynnnmGZ1zzjlas2aNXnjhBS1cuFAHDhxo\nts2WLVv0s5/9TO+++65uuOEGPfPMMz73vXHjRuXl5enNN9/UypUrdfDgQe3cuVPLly/X22+/rVde\neaXFUeChQ4f04IMP6vnnn9d7772nc88912ua9R//+IduuOEGFRYW6he/+IVeeOEFSdJjjz2m4cOH\na926dbr55pu1adOmZvsePny4Dh48qL1790pyB+nBgwd12WWXtbkPjmvpeA6HQ/PmzdP8+fNVWFio\nMWPG6JFHHpEk5ebmqm/fvlqzZo3CwsI8+/r3v/+t5557Ti+99JLWrFmjuLg4LVy40HP/mjVr9Pjj\nj2vt2rUqKyvT2rVrW6zL6XTqrrvu0k033aQ1a9ZowYIFmjt3rqqrq/XWW28pKipK7777rgoLCxUa\nGqpdu3a12A4EGiGMTiMlJUUhIe4/+XvvvVf33XefJKl///6yWq3at29fs226d++u1NRUSVJiYqL2\n79/vc98TJ05UaGioevfurdjYWB04cEAbN27UJZdcIpvNpq5du+raa6/1uW1sbKw+++wz9enTR5J0\n8cUXe0JTkgYOHKgLL7xQkpSQkOAJyn/961+aMGGCJCkpKUnnn39+s32HhYVp9OjR+uCDDyRJ69at\nU2pqqsxmc5v74LiWjmc2m/XPf/5Tw4YN81m/L+vXr9e4ceMUGxsrSbruuuv08ccfe+5PSUlRz549\nZTabNWTIkJO+ONi3b59KS0t11VVXSZJ++tOfKi4uTl9++aViYmL0+eef63//93/ldDr1wAMP6IIL\nLmixHQg0zgmj0+jRo4fn9pdffukZ+YWEhMhut8vpdDbbxmKxeG6HhIT4XEeSIiMjPbdDQ0PV0NCg\nw4cPex2zd+/ePrdtaGjQE088oQ8++EANDQ2qqanRgAEDfNZwfN+SVFlZ6XXcqKgon/sfN26cXnzx\nRd18881at26d7rjjjlPqg+NOdryXXnpJBQUFqq+vV319vUwmU4v7kaSysjLZbDavfR06dKjVf3NL\n+7JYLF7HjIqKUllZma666ipVVlZqyZIl+vrrr/XLX/5S99xzj8aPH++zveloHQgERsLolP7whz9o\n3LhxKiws1Jo1axQdHX3WjxEZGana2lrPcklJic/1Vq9erQ8++EArV65UYWGhZs2a1ab9R0VFeV35\nffyc6okuv/xybdu2Td9++62+/fZbXXrppZJOvQ9aOt6mTZv07LPP6plnnlFhYaEWLFjQau29evVS\nRUWFZ7miokK9evVqdTtfYmNjVVlZqabfRVNRUeEZZWdmZuqNN97Q6tWrVVxcrLfeeuuk7UAgEcLo\nlA4dOqQLL7xQJpNJBQUFqqur8wrMsyEpKUmffvqpysrKVF9f3+KT/KFDh9SvXz/FxMSovLxc7777\nrmpqalrd/7BhwzznSjdt2qTvvvvO53phYWEaOXKk/vznP2vs2LEKDQ31HPdU+qCl45WVlSk2NlZx\ncXGqq6tTQUGBamtr5XK5ZDabVVtbK4fD4bWvK664QmvXrlV5ebkk6bXXXlNKSkqr/2ZfzjnnHPXp\n00erV6/21FZaWqqkpCQ9/fTTWrVqlST3TMQ555wjk8nUYjsQaIQwOqXZs2drxowZmjhxomprazV5\n8mTdd999LQbZ6UhKSlJGRoYyMjI0depUjR492ud6V199tSoqKpSWlqa5c+dqzpw5OnjwoNdV1r78\n4Q9/0IcffqjU1FS9/PLLuuyyy1pcd9y4cVq3bp3Gjx/vaTvVPmjpeJdffrlsNptSU1N166236uab\nb5bFYtGsWbM0dOhQ9ejRQyNGjPA6n56UlKRp06bpxhtvVHp6uqqqqnTnnXee9N/bEpPJpEWLFmnl\nypUaP368FixYoCVLligiIkKTJk3S22+/rXHjxik9PV1dunTRpEmTWmwHAs3E9wkD/uNyuTwjrPXr\n12vx4sVMewLwYCQM+ElZWZkuvfRSff/993K5XHr33Xc9VxADgMRIGPCrV199VStWrJDJZNL555+v\nnJwczwVDAEAIAwBgEKajAQAwCCEMAIBBAv6JWXZ7VaAP2S5FR0eovPzsvi8VzdHPgUE/Bwb9HBj+\n6Ger1eKznZGwQczmUKNL6BTo58CgnwODfg6MQPYzIQwAgEEIYQAADEIIAwBgEEIYAACDEMIAABiE\nEAYAwCCEMAAABiGEAQAwCCEMAIBBCGEAAAwS8M+OBgC0XU2NtGNHiLZvD5HDIZnNZkVHu9Szp378\n7f4JCzO6UpwOQhgA2oG6OmnXrhBt2+b+2b49VNu2hei7706csOzmc/vu3V2eUG4azo1tOmHZ/bub\n790hQAhhAAigo0el3bvdI9umgfvttyY5nSavdXv1cmrkSIfi450aOtSpgQPDtXdvncrLTaqoMDX7\nXVFh0p49IfrqK1MLR28uPLyl4FazwG76u3t3ydT2w5wxl0uqr5eOHJHq6kyqrZWOHDGprs69fLL2\n2lr3clvX79VLWr9e6tHD//8uQhg+HTningLbsiVExcWh2rkzRFarS/HxDbrgAqfi453q29cV0Ach\n0JEcOyZ9803ToHX//vrrEDU0eD9woqNd+sUvGjR0qDtsL7jA/Ts21uW1ntUaLrvd0aZjV1aaVFGh\nFgO7aXCXl5t08GCItm2TXK62PajN5sZA7tGj5cDu1q0xOL0D0d12PBxra73Dsen9x3+f+CLlTIWF\nuesLD3f/jo52qls3afDg0IDNEBDCnZzLJe3fb9KWLSHasiVUxcXu4N29u/kThVsXz62oKHcox8c3\nPmnExzvVq5fLx3ZAcGpokL791qRt20I9Qbt9e4h27QrRsWPejyGLxaXkZKfi4xs8j5ehQ52y2c7u\nC9ouXaRevVzq1UuS2v54dDqlw4dbDu7mbe51v/nGJIfj7PwDTCZ3IEZEuBQe7g73uDiXJyi7dfP+\nHR7uq62ldb2XQ1v4xkKr1SK7/az8c1pFCHciNTXS9u3usHWPcN23Kyu9HzyRkS5ddFGDEhOdSkhw\nKiGhQUOGOGW3m7R1a6jXq/rPPgvVhg3ef0a9ejk9o2X3jzuoLb6/0xroEJxO6bvvTNq+3T19vHVr\nY9geOeL9GIqIcOmnP3X+OLJt8DwW2vvsUUiI1LOn+9zxqYS3y+V+fvEV3nV1jUEZEeEdhL7aw8IC\nO81tNEI4CLlc7ieL42F7fEr5m29MXlNNJpNL55/vUkqKwxO2CQlO9e/v+4miRw+XBg1yaOLExraj\nR70vJtm2zf3k9NFHZn30kff255zT+Mr/+LT24MFOLgxBu+JySd9/7w5bd9C6R7g7doSottb7gREe\n7tKQIc4m08juEe4557gU0oneAGoySZGR7hfw/fszE3YqCOEOrrpanqnk44G7ZUuoqqu9nyx69nRp\n+HDv0e3QoU5FRJzZ8bt2lRITnUpMdDara8eOxmA+HtLr1pm1bl3jeiEhLv3kJ97T2vHxTp1/vlNd\nugjwG5dL+uEH0wnnbN2Be+LjJyzMpUGDmr6IdI9wzzvP1eKUJtAWhHAH4XS6zzsVF3uH7Z493i+3\nQ0PdTxYJCc4fA9c9ug30NFhkpJSc7FRyslNS44Uk5eXyTOU1HT2vXt1Fq1c3bt+lS+OTXtNp7fPO\n67gjjPp6qarKpMOHpepqk6qqTKqqkg4fdt92t7nDoWvX4z/u93+Gh7t/H2/r2lVe7S3d35Gn9Vwu\n90xL06tajxxpfuHOkSPNr2713ea9zf79Ic1OxZjNLg0c6PQ6Xxsf79SAAU6ZebaEH7Tpzyo3N1eb\nN2+WyWRSVlaWkpKSJEk//PCD7r77bs96e/fu1dy5czWx6XwlTlllpbR1a+NFUlu2uEPrxKmw2Fin\nLr/c8WPguke5gwc7FR5uUOFtEB0tXXppgy69tMHT5nJJJSWmJqHcOK29dav3MCMiwj391/Rcs7/P\ntR075h7ZNw3Lw4f1Y4iadPiwSdXV8tyuqtKP6zQGbVWVSUePBj4RGwPZff7NHdSuEwLefX/T4G/5\n/uYvALp2db+V48CBUB9h2fYAPXG9I0fafqXuqfZJeLj7wqURIxyevyH3W4CcfOgFAqrVEN6wYYP2\n7NmjvLw87d69W1lZWcrLy5Mk9e7dWy+99JIkyeFwaMqUKRozZox/Kw4iDQ3S11+HeJ233bIlRPv2\neQ/1unRxafBgpyds3dPJZ/+KSqOYTFLv3i717t2glJTGcHY6pX37TF6hvG2b+zzdv/8dqpNdqX38\nSdVslvbuNXkC83ggnjgiPR6ejes1LtfVnV4nR0S4ZLG436Zx7rkuRUa6l6Oi3FfJRka6FBXlksWi\nH9vd770MCXHp6FGTjh5Vk9/u2+73Sbp/N73fu71xm/p6d6Adb6+pkcrKQjz3n923fJzeuY3jLxDC\nw92/o6KcnitZj7c3vZCnaZuv3yfbJjy85StiASO0GsJFRUVKTU2VJA0cOFCVlZWqrq5WZGSk13oF\nBQUaN26cunfv7p9KT1BQYNbixWHasSNEQ4Y4NWdOvTIyWn//XKA4nVJZmUmlpSbZ7e6f47cPHgzR\nrl1ScXFks6sqe/d2avToxgulEhOdGjSoc746DwmRzj3XpXPPbdCVVzaGs8Phnpo/fqX28R9fV2q7\nRfpoa1m3bscDU4qLczYJTHdYNv40hmdkZONt9/pq99OXLpe7L70D3h3cLQW/r/uPHpUiI7vK6Tza\nYig2vRL2xCAlFNGZtfo0UVpaqsTERM9yTEyM7HZ7sxB+4403tGLFirNfoQ8FBWZNn954Se3WraE/\nLtf5NYjr66VDhxpD1f0T4hWwx28fOmRq4X22bl27SkOHOr2uSk5I4D22bWE2S4MGNb9S+8gR7yu1\nd+wIUVhYF3XteqxZcDYGppqMSN3h2Vle8JhM7veTduni7oNGp/43aLV2ld1ef/aKAzqJU36t7nI1\nf4B+/vnnOv/885sFsy/R0REym8/spe9TT/luf/rpbpo27dT2VVMj/fCD+6ek5OS3y8tb319UlGSz\nSYMHS717u2/37t389oAB+rEfvKdVcWb695dGjz6xlf4NBKuVN4IHAv0cGIHq51ZD2GazqbS01LNc\nUlIiq9Xqtc769es1fPjwNh2wvLz2FEtsbsuWSEnNR5lbtrhUUlKtigo1G6E2Hak2ve/Ei51OZDK5\nFBPjUu/eLl14oUu9erlktbp/3Ledntu9erX9w9DNZovs9qrT+NfjVLg/+YZ+9jf6OTDo58DwRz+3\nFOqthvCIESP05JNPKjMzU8XFxbLZbM1GvF9++aUmTJhwdiptgyFDnM2umj2uX7/IVj8+rUsXd2AO\nGuRsEqpOHwHrUmysq92f2wMAdEytxktycrISExOVmZkpk8mk7Oxs5efny2KxKC0tTZJkt9sVGxvr\n92KPmzOn3uuc8HE9e7p03nmNo9OmP03DtkePjv3+SQBAcDC5fJ3k9aOzNcQvKDBryZIwbd8eosGD\nnbrzzvZ1dXRrmFYKDPo5MOjnwKCfA6NdTUe3VxkZjg4VugAAnKiDfgAgAAAdHyEMAIBBCGEAAAxC\nCAMAYBBCGAAAgxDCAAAYhBAGAMAghDAAAAYhhAEAMAghDACAQQhhAAAMQggDAGAQQhgAAIMQwgAA\nGIQQBgDAIIQwAAAGIYQBADAIIQwAgEEIYQAADEIIAwBgEEIYAACDEMIAABiEEAYAwCCEMAAABiGE\nAQAwCCEMAIBBCGEAAAxCCAMAYBBzW1bKzc3V5s2bZTKZlJWVpaSkJM99Bw4c0F133aVjx44pISFB\nDz74oN+KBQAgmLQ6Et6wYYP27NmjvLw85eTkKCcnx+v+hx9+WLfeeqtWrVql0NBQ7d+/32/FAgAQ\nTFoN4aKiIqWmpkqSBg4cqMrKSlVXV0uSnE6nPvvsM40ZM0aSlJ2drbi4OD+WCwBA8Gh1Orq0tFSJ\niYme5ZiYGNntdkVGRqqsrEzdu3fXQw89pOLiYl188cWaO3fuSfcXHR0hszn0zCsPAlarxegSOgX6\nOTDo58CgnwMjUP3cpnPCTblcLq/bP/zwg6ZOnap+/fpp2rRpWr9+va644ooWty8vrz2tQoON1WqR\n3V5ldBlBj34ODPo5MOjnwPBHP7cU6q1OR9tsNpWWlnqWS0pKZLVaJUnR0dGKi4vTueeeq9DQUA0f\nPlw7d+48SyUDABDcWg3hESNGqLCwUJJUXFwsm82myMhISZLZbFb//v317bffeu4fMGCA/6oFACCI\ntDodnZycrMTERGVmZspkMik7O1v5+fmyWCxKS0tTVlaW5s2bJ5fLpSFDhngu0gIAACdncjU9yRsA\nnM9w49xOYNDPgUE/Bwb9HBjt6pwwAADwD0IYAACDEMIAABiEEAYAwCCEMAAABiGEAQAwCCEMAIBB\nCGEAAAxCCAMAYBBCGAAAgxDCAAAYhBAGAMAghDAAAAYhhAEAMAghDACAQQhhAAAMQggDAGAQQhgA\nAIMQwgAAGIQQBgDAIIQwAAAGIYQBADAIIQwAgEEIYQAADEIIAwBgEEIYAACDEMIAABiEEAYAwCDm\ntqyUm5urzZs3y2QyKSsrS0lJSZ77xowZoz59+ig0NFSS9Nhjj6l3797+qRYAgCDSaghv2LBBe/bs\nUV5ennbv3q2srCzl5eV5rfPss8+qe/fufisSAIBg1Op0dFFRkVJTUyVJAwcOVGVlpaqrq/1eGAAA\nwa7VEC4tLVV0dLRnOSYmRna73Wud7Oxs/eY3v9Fjjz0ml8t19qsMIgUFZqWkRMhsllJSIlRQ0KYz\nAgCAIHTKCXBiyM6aNUuXX365evTooRkzZqiwsFDp6ektbh8dHSGzOfTUKw0Cr70mTZ/euLx1a6im\nT++mqCgpM9O4uoKd1WoxuoROgX4ODPo5MALVz62GsM1mU2lpqWe5pKREVqvVs/yrX/3Kc3vUqFHa\nsWPHSUO4vLz2dGvt8B58MEJS8xcg8+c3aOzYztsv/mS1WmS3VxldRtCjnwODfg4Mf/RzS6He6nT0\niBEjVFhYKEkqLi6WzWZTZGSkJKmqqkq33Xab6uvrJUkbN27U4MGDz1bNQWfHDt/d3VI7ACC4tToS\nTk5OVmJiojIzM2UymZSdna38/HxZLBalpaVp1KhRmjx5srp27aqEhISTjoI7uyFDnNq6tflIeMgQ\npwHVAACMZnIF+EqqzjyVUlBg1vTp3Zq1L1tWp4wMhwEVBT+m7wKDfg4M+jkw2tV0NM6ejAyHli2r\nU0JCg8xmKSGhgQAGgE6M98cEWEaGQxkZjh9faXExFgB0ZoyEAQAwCCEMAIBBCGEAAAxCCAMAYBBC\nGAAAgxDCAAAYhBAGAMAghDAAAAYhhAEAMAghDACAQQhhAAAMQggDAGAQQhgAAIMQwgAAGIQQBgDA\nIIQwAAAGIYQBADAIIQwAgEEIYQAADEIIAwBgEEIYAACDEMIAABiEEAYAwCCEMAAABiGEAQAwCCEM\nAIBB2hTCubm5mjx5sjIzM/XFF1/4XGfhwoWaMmXKWS0OAIBg1moIb9iwQXv27FFeXp5ycnKUk5PT\nbJ1du3Zp48aNfikQAIBg1WoIFxUVKTU1VZI0cOBAVVZWqrq62mudhx9+WHfeead/KgQAIEi1GsKl\npaWKjo72LMfExMhut3uW8/Pzdckll6hfv37+qRAAgCBlPtUNXC6X53ZFRYXy8/P1/PPP64cffmjT\n9tHRETKbQ0/1sEHJarUYXUKnQD8HBv0cGPRzYASqn1sNYZvNptLSUs9ySUmJrFarJOmTTz5RWVmZ\nbrzxRtXX1+u7775Tbm6usrKyWtxfeXntWSi747NaLbLbq4wuI+jRz4FBPwcG/RwY/ujnlkK91eno\nESNGqLCwUJJUXFwsm82myMhISVJ6erpWr16t119/XU899ZQSExNPGsAAAKBRqyPh5ORkJSYmKjMz\nUyaTSdnZ2crPz5fFYlFaWlogagQAICiZXE1P8gYAUyluTCsFBv0cGPRzYNDPgdGupqMBAIB/EMIA\nABiEEAYAwCCEMAAABiGEAQAwCCEMAIBBCGEAAAxCCAMAYBBCGAAAgxDCAAAYhBAGAMAghDAAAAYh\nhAEAMAghDACAQQhhAAAMQggDAGAQQhgAAIMQwgAAGIQQBgDAIIQwAAAGIYQBADAIIQwAgEEIYQAA\nDEIIAwBgEEIYAACDEMIAABiEEAYAwCCEMAAABiGEAQAwiLktK+Xm5mrz5s0ymUzKyspSUlKS577X\nX39dq1atUkhIiOLj45WdnS2TyeS3ggEACBatjoQ3bNigPXv2KC8vTzk5OcrJyfHcV1dXp3feeUcv\nv/yyXnvtNX399df6/PPP/VowAADBotUQLioqUmpqqiRp4MCBqqysVHV1tSSpW7dueuGFF9SlSxfV\n1dWpurpaVqvVvxUDABAkWp2OLi0tVWJiomc5JiZGdrtdkZGRnra//vWvevHFFzV16lT179//pPuL\njo6Q2Rx6BiUHD6vVYnQJnQL9HBj0c2DQz4ERqH5u0znhplwuV7O2adOmaerUqfrd736niy66SBdd\ndFGL25eX157qIYOS1WqR3V5ldBlBj34ODPo5MOjnwPBHP7cU6q1OR9tsNpWWlnqWS0pKPFPOFRUV\n2rhxoyQpPDxco0aN0qZNm85GvQAABL1WQ3jEiBEqLCyUJBUXF8tms3mmoh0Oh+bNm6eamhpJ0pdf\nfqkBAwb4sVwAAIJHq9PRycnJSkxMVGZmpkwmk7Kzs5Wfny+LxaK0tDTNmDFDU6dOldls1tChQzV2\n7NhA1A0AQIdncvk6yetHnM9w49xOYNDPgUE/Bwb9HBjt6pwwAADwD0IYrSooMCslJUJ9+0YqJSVC\nBQWnfFE9AMAHnk1xUgUFZk2f3s2zvHVr6I/LdcrIcBhXGAAEAUbCOKnFi8N8ti9Z4rsdANB2hDBO\nascO338iLbUDANqOZ1Kc1JAhzlNqBwC0HSGMk5ozp95n++zZvtsBAG1HCOOkMjIcWrasTgkJDTKb\nXUpIaNCyZVyUBQBnA1dHo1UZGQ5CFwD8gJEwAAAGIYQBADAIIQwAgEEIYQAADEIIAwBgEEIYAACD\nEMIAABiEEAYAwCCEMAAABiGEAQAwCCEMAIBBCGEAAAxCCAMAYBBCGAAAgxDCAAAYhBAGAMAghDAA\nAAYhhAEAMAghDACAQcxtWSk3N1ebN2+WyWRSVlaWkpKSPPd98sknWrRokUJCQjRgwADl5OQoJIRs\nBwCgNa2m5YYNG7Rnzx7l5eUpJydHOTk5Xvf/6U9/0hNPPKHXXntNNTU1+uijj/xWLAAAwaTVEC4q\nKlJqaqokaeDAgaqsrFR1dbXn/vz8fPXp00eSFBMTo/Lycj+VCgBAcGk1hEtLSxUdHe1ZjomJkd1u\n9yxHRkZKkkpKSvTxxx8rJSXFD2UCABB82nROuCmXy9Ws7dChQ/r973+v7Oxsr8D2JTo6QmZz6Kke\nNihZrRajS+gU6OfAoJ8Dg34OjED1c6shbLPZVFpa6lkuKSmR1Wr1LFdXV+t3v/ud5syZo5EjR7Z6\nwPLy2tMsNbhYrRbZ7VVGlxH06OfAoJ8Dg34ODH/0c0uh3up09IgRI1RYWChJKi4uls1m80xBS9LD\nDz+sm2++WaNGjTpLpQIA0Dm0OhJOTk5WYmKiMjMzZTKZlJ2drfz8fFksFo0cOVJvvfWW9uzZo1Wr\nVkmSrr76ak2ePNnvhQMA0NG16Zzw3Xff7bUcHx/vuf3VV1+d3YoAAOgk+FQNAAAMQggDAGAQQhgA\nAIMQwgAAGIQQBgDAIIQwAAAGIYQBADAIIQwAgEEIYQAADEIIAwBgEEIYAACDEMIAABiEEAYAwCCE\nMAAABiGEAQAwCCEMAIBBCGEAAAxCCAMAYBBCGAAAgxDCCEoFBWalpETIbJZSUiJUUGA2uiQAaIZn\nJgSdggKzpk/v5lneujX0x+U6ZWQ4jCsMAE7ASBhBZ/HiMJ/tS5b4bgcAoxDCCDo7dvj+s26pHQCM\nwrMSgs6QIc5TagcAoxDCCDpz5tT7bJ8923c7ABiFEEbQychwaNmyOiUkNMhslhISGrRsGRdlAWh/\nuDoaQSkjw6GMDIesVovs9lqjaptrAAARAUlEQVSjywEAnxgJAwBgEEIYAACDtCmEc3NzNXnyZGVm\nZuqLL77wuu/o0aP64x//qGuuucYvBQIAEKxaDeENGzZoz549ysvLU05OjnJycrzuf/TRR3XBBRf4\nrUAAAIJVqyFcVFSk1NRUSdLAgQNVWVmp6upqz/133nmn534AANB2rV4dXVpaqsTERM9yTEyM7Ha7\nIiMjJUmRkZGqqKho8wGjoyNkNoeeRqnBx2q1GF1Cp0A/Bwb9HBj0c2AEqp9P+S1KLpfrjA5YXs7b\nRST9+NaZKqPLCHr0c2DQz4FBPweGP/q5pVBvdTraZrOptLTUs1xSUiKr1Xr2KgMAoJNqNYRHjBih\nwsJCSVJxcbFsNptnKhoAAJy+Vqejk5OTlZiYqMzMTJlMJmVnZys/P18Wi0VpaWmaNWuWDh48qG++\n+UZTpkzR9ddfr4kTJwaidgAAOjST60xP8p4izme4cW4nMOjnwKCfA4N+Dox2dU4YAAD4ByEMAIBB\nCGEAAAxCCAMAYBBCGAAAgxDCAAAYhBAGAMAghDAAAAYhhIF2oqDArJSUCPXtG6mUlAgVFJzy96sA\n6GB4lAPtQEGBWdOnd/Msb90a+uNynTIyHMYVBsCvCGFJTz75uLZv36qyskM6cuSI4uL6KSqqh3Jz\n/9zqtqtX/03du0cqJWW0z/uXLFmo667LVFxcv9OqbebMabrrrv+j888fdFrbo2NYvDjMZ/uSJWGE\nMBDEOmQIFxSYtXhxmHbsCNGQIU7NmVN/Rk9U//Vfd0pyB+rXX+/WzJlz2rzthAkn/7KK2bPnnnZd\n6Dx27PB9ZqildgDBocOFcCCn7TZt+pdee22lamtrNXPmnfr888+0fv37cjqdGj58hG69dZqee26Z\nevbsqQEDBio//3WZTCHas+cbXXHFWN166zTPSPbDD99XTU21vvtuj77/fp/uu+9eJSQka+XK/9a6\nde8pLq6fHA6HMjNvVHLyxc1qqa6uVk7O/aqurpLD4dCcOX/Q0KHxWrz4z9q2basaGhqUkfFrTZgw\n0Wcb2rchQ5zaujXUZzuA4NXhXmafbNrOH3bv3qVFi55SfPwFkqS//GW5/vrX/9a77/4/1dRUe627\nZUux/u//vV9Llz6vN9/Ma7avkpIf9NhjT2j27LuVl5enw4crlZ//hpYtW6G7756nf/97U4t1vPHG\nq0pMvFBPPrlMs2fP1ZNPLtLhw5X65z//V0uXrtAzzzwnh8Phsw3t35w59T7bZ8/23Q4gOHS4kXCg\np+0GDRqssDB3wIeHh2vmzGkKDQ1VRUWFDh8+7LXu0KHxCg8Pb3FfSUnDJEk2m01VVVXat2+vzj9/\noLp2DVfXruG64ILEFrfdtm2Lpk69TZIUH5+gffv2Kiqqh/r3P0/z5t2l0aNTlZ5+lcLCwpq1of1z\nz+LUacmSxtMss2ef2WkWAO1fhwvhQE/bdenSRZJ08OAB5eW9rBUrXlZERISmTLm+2bqhoc3rOtn9\nLpcUEtL44sFkanlbk8mkpl/97HS6/70LFz6h7du3ae3aNVqz5h09/vjTPtvQ/mVkOAhdoJPpcNPR\nRk3bVVRUKDo6WhEREdq+fZsOHjyoY8eOndE++/btq6+/3i2Hw6Hy8nJt27a1xXXj4xP0+ef/kiR9\n9dWXGjBgoA4c2K833nhNQ4fGa+bMOaqsrPTZBgBonzrcSNioabvBg4eoW7cI3X77rfrpT4dp0qRr\ntHDhI0pK+tlp7zMmJlZpaen63e+m6rzzBighIbHF0fT11/9GubkPaNas38vpdOquu/6oXr2s+uqr\nzXr//ffUpUsXXXXVL322AQDaJ5Or6RxnANjtVYE8XLtltVpkt1dp9eq/KS0tXaGhoZo6NVOLFj0p\nm6230eUFjeP9DP9ofLtgqIYMaTjjtwvi5Ph7Dgx/9LPVavHZ3uFGwsHm0KFDmjbtZnXpEqYrr0wn\ngNFh8ClfwJljJGwQXtEGBv3sPykpET4vkkxIaND69bUGVBT8+HsOjECOhDvchVkA2gc+5Qs4czxa\nAJyWlt4WyKd8AW1HCAM4LR31U774yki0J/z1ATgt3m8XdF8d3d4/5YuLydDeMBKWNH36Lc0+KGPp\n0qf06qsrfa6/adO/dO+9/0eSNG/eXc3uf/PNPD333LIWj7dr10598803kqTs7Ht09OiR0y1dv/71\nRNXWchEMjJGR4dD69bU6dkxav7623QdZoD97/mw5Pno3m8XoPcgQwpLS0sbpgw/WerWtX/+BUlOv\nbHXbhx9edMrH+/vfP9C3334rSXrggYfUtWvLnzcN4OzpiBeTHR+9b90aqoaGxtF7ew9ipv3bhl6R\nNHbslbr99tt0xx2zJEnbtm2V1WqV1WrTxo2favnyperSpYssFosefPBhr22vumqs3nnnff3rXxv0\nxBMLFRMTq9jYXp6vJszJuV92e4nq6up0663T1KdPX739dr4+/vjvuvvuLP3pT/foxRfzVF1dpYce\nelDHjh1TSEiI5s27TyaTSTk59ysurp927dqpIUOGat68+3z+G0pKfmi2vc3WWw8+eJ8OHSpVfX29\nbrttui6++JJmbZdeepnf+xhoDzriV0aebPTeXmceOuq0f+OHz0hDhkQE5MNn2hTCubm52rx5s0wm\nk7KyspSUlOS575///KcWLVqk0NBQjRo1SjNmzDijgu6/v6v+9rez+9pg4kSH7r//aIv3R0fHKC6u\nn7Zs+UoJCRfqgw/WKi0tXZJUVVWl7OwFiovrp/nz/6RPPy1SREREs30sW/aU7rtvvgYPHqK7756l\nuLh+qqo6rEsuuVTjx1/943cIz9OKFSv1i18M16RJVysh4ULP9suXL9XVV0/S2LFX6sMP12nFir/q\nttuma/v2rXrggVxFR8coI2OCqqqqZLE0f7+Zr+2vu+43qqys0NNPP6uqqioVFX2s3bt3NWsDOos5\nc+q9wuG49nwxWUccvfPCoe1a/V/csGGD9uzZo7y8POXk5CgnJ8fr/gULFujJJ5/Uq6++qo8//li7\ndu3yW7H+lJaWrvffd09Jf/zxP3TFFWMlST179tQjjyzQzJnT9Pnnn+nwYd9fiHDgwAENHjxEkjRs\nWLIkyWKJ0tatxbr99luVk3N/i9tK0vbtW/Xzn18kSUpOvlg7d26XJPXr11+xsb0UEhKiXr2szb7D\n+GTbn3feT1RbW6P58+/Tpk0blZp6pc82oLPIyHBo2bI6JSQ0yGx2KSGhQcuWte/RWUd8K1iwvXDw\np1aHnEVFRUpNTZUkDRw4UJWVlaqurlZkZKT27t2rHj16qG/fvpKklJQUFRUVadCgQadd0P33Hz3p\nqNVfUlJG68UXVygtbZz69z9XUVFRkqSHHpqvP/95sX7ykwFatOiRFrdv+pWExz+EbO3aNTp8+LCe\nfnq5Dh8+rP/8zyknqaDxqwqPHXPIZHLvr/nXH7b0AWfNtw8PD9eyZf+tL7/8Qu+++zd9/PFHysrK\n9tkGdBYd7SsjO+LovSNO+xv1wqHVEC4tLVViYuOXzcfExMhutysyMlJ2u10xMTFe9+3du/ek+4uO\njpDZfPLv3TWGRQkJFygv7yVde22G5yPG6upqlJg4SA6HQ1988bmGDfupevaMUNeuXWS1WmQymWS1\nWtS3bx9VVdk1YMAAFRdv1rBhw+Rw1GnQoAHq3buH1q9fo4YGh6xWi7p1C1NDQ4OsVotCQ0PUq1ek\nfv7zn2nXrmLFx1+tDRv+oWHDkhQT011mc4inFrM5RDEx3b0+/uxk25eUfKddu3Zp0qRJSkm5VDfe\neKPPtpY+Ti1YBPu/r72gn/1j2jQpKkp66CFpyxYpIUG65x4pM7N5MLcXf/qT9JvfNG+/777Qdvt3\nkpAgffmlr3aTX2s+5ZOvZ/pR0+Xl7fftNKNGpWrBgmzNm5ft+dzQX/3q17ruusnq3/9cTZ58k555\nZqmmTbtDR48ek91eJZfLJbu9SrfcMl0zZsxUnz59FRMTq5qao0pJuVLz5t2ljRs/83zN4KOPLtLQ\noRdqwYIFOnbMpIYGp0pLq3XTTbfpoYfm6+WXX5XZ3EX33HOfyspq5HA4PbU4HE6VldWoa9fGzzQ9\n2fZdu4Zr1aoCrVz5ikJCQnTddTcoPLxns7Zg/ixaPms3MOhn/xo71v3TtJ/tdoOLOomxY6Vly8zN\nvnJ27FhHu6175kyzzxmHGTPqZLef+cxJS0He6hc4PPnkk7JarcrMzJQkjR07Vm+//bYiIyO1b98+\nzZ07V3l5eZKkp556Sj179tRNN93U4v54oLrxpBUY9HNg0M+BQT/7V0GB2W8fPnPaX+AwYsQIFRYW\nSpKKi4tls9kUGRkpSTrnnHNUXV2tffv2yeFw6MMPP9SIESPOSsEAAASSER8+0+p0dHJyshITE5WZ\nmSmTyaTs7Gzl5+fLYrEoLS1N999/v+bOnStJmjBhggYMGOD3ogEACAZ8n7BBmFYKDPo5MOjnwKCf\nA4PvEwYAoBMghAEAMAghDACAQQhhAAAMQggDAGAQQhgAAIMQwgAAGCTg7xMGAABujIQBADAIIQwA\ngEEIYQAADEIIAwBgEEIYAACDEMIAABiEEA6wRx99VJMnT9a1116r9957z+hygtqRI0eUmpqq/Px8\no0sJav/zP/+jX/7yl7rmmmu0fv16o8sJSjU1NZo5c6amTJmizMxMffTRR0aXFFR27Nih1NRUrVy5\nUpJ04MABTZkyRTfccINmz56t+vp6vx2bEA6gTz75RDt37lReXp6WL1+u3Nxco0sKas8884x69Ohh\ndBlBrby8XE8//bReeeUVLV26VO+//77RJQWlgoICDRgwQC+99JKWLFminJwco0sKGrW1tZo/f76G\nDx/uaXviiSd0ww036JVXXtF5552nVatW+e34hHAA/cd//IeWLFkiSYqKilJdXZ0aGhoMrio47d69\nW7t27dIVV1xhdClBraioSMOHD1dkZKRsNpvmz59vdElBKTo6WhUVFZKkw4cPKzo62uCKgkdYWJie\nffZZ2Ww2T9unn36qsWPHSpJGjx6toqIivx2fEA6g0NBQRURESJJWrVqlUaNGKTQ01OCqgtMjjzyi\nefPmGV1G0Nu3b5+OHDmi3//+97rhhhv8+mTVmV111VXav3+/0tLSdNNNN+mPf/yj0SUFDbPZrPDw\ncK+2uro6hYWFSZJiY2Nlt9v9d3y/7RktWrdunVatWqUVK1YYXUpQeuuttzRs2DD179/f6FI6hYqK\nCj311FPav3+/pk6dqg8//FAmk8nosoLK22+/rbi4OD333HPatm2bsrKyuNYhQPz9yc6EcIB99NFH\nWrp0qZYvXy6LxWJ0OUFp/fr12rt3r9avX6+DBw8qLCxMffr00WWXXWZ0aUEnNjZWP//5z2U2m3Xu\nueeqe/fuKisrU2xsrNGlBZVNmzZp5MiRkqT4+HiVlJSooaGBmTQ/iYiI0JEjRxQeHq4ffvjBa6r6\nbGM6OoCqqqr06KOPatmyZerZs6fR5QStxYsX680339Trr7+u6667TnfccQcB7CcjR47UJ598IqfT\nqfLyctXW1nK+0g/OO+88bd68WZL0/fffq3v37gSwH1122WUqLCyUJL333nu6/PLL/XYsRsIBtHr1\napWXl2vOnDmetkceeURxcXEGVgWcvt69e2vcuHG6/vrrJUn33nuvQkJ4bX+2TZ48WVlZWbrpppvk\ncDh0//33G11S0Pjqq6/0yCOP6Pvvv5fZbFZhYaEee+wxzZs3T3l5eYqLi9OvfvUrvx2frzIEAMAg\nvGQFAMAghDAAAAYhhAEAMAghDACAQQhhAAAMQggDAGAQQhgAAIMQwgAAGOT/AysEaprV9PPQAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "qcownSb_0sUh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Validation accuracy stalls in the low 50s. So in our case, pre-trained word embeddings does outperform jointly learned embeddings. If you \n", + "increase the number of training samples, this will quickly stop being the case -- try it as an exercise.\n", + "\n", + "Finally, let's evaluate the model on the test data. First, we will need to tokenize the test data:" + ] + }, + { + "metadata": { + "id": "j7T5BgTa0sUi", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "test_dir = os.path.join(imdb_dir, 'test')\n", + "\n", + "labels = []\n", + "texts = []\n", + "\n", + "for label_type in ['neg', 'pos']:\n", + " dir_name = os.path.join(test_dir, label_type)\n", + " for fname in sorted(os.listdir(dir_name)):\n", + " if fname[-4:] == '.txt':\n", + " f = open(os.path.join(dir_name, fname))\n", + " texts.append(f.read())\n", + " f.close()\n", + " if label_type == 'neg':\n", + " labels.append(0)\n", + " else:\n", + " labels.append(1)\n", + "\n", + "sequences = tokenizer.texts_to_sequences(texts)\n", + "x_test = pad_sequences(sequences, maxlen=maxlen)\n", + "y_test = np.asarray(labels)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xvp7HVXP0sUl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "And let's load and evaluate the first model:" + ] + }, + { + "metadata": { + "id": "8j37K-xq0sUn", + "colab_type": "code", + "outputId": "0d643edc-6b1f-4a9f-8c79-281fd9b252f1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "model.load_weights('pre_trained_glove_model.h5')\n", + "model.evaluate(x_test, y_test)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "25000/25000 [==============================] - 2s 75us/step\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[0.9990547118091583, 0.5346]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "id": "jST7dz4d0sUr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We get an appalling test accuracy of 54%. Working with just a handful of training samples is hard!" + ] + } + ] +} \ No newline at end of file diff --git a/7_1_Keras_functional_API.ipynb b/7_1_Keras_functional_API.ipynb new file mode 100644 index 0000000..625b0a2 --- /dev/null +++ b/7_1_Keras_functional_API.ipynb @@ -0,0 +1,16149 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "7.1-Keras_functional_API.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "n5fjCj6d-2i0", + "fapYi3at-2jb" + ], + "toc_visible": true, + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "vju1DifR-2g8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Companion Notebook - 7.1 Keras Functional API\n", + "## Chap 7 «Advanced Deep-learning best practices»\n", + "## «Deep Learning with Python» book by François Chollet\n", + "\n", + "This notebook contains the code samples found in Chapter 7 of «Deep Learning with Python». Note that the original text features far more content, in particular further explanations and figures. \n", + "\n", + "修改與補充Claude COULOMBE的github :https://github.com/ClaudeCoulombe/deep-learning-with-python-notebooks (by Claude COULOMBE - PhD candidate - TÉLUQ / UQAM - Montréal.)" + ] + }, + { + "metadata": { + "id": "DASRlwQI-2hA", + "colab_type": "code", + "outputId": "b9f44346-7fa6-420b-833d-27d8e5b965b9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 72 + } + }, + "cell_type": "code", + "source": [ + "# sudo pip3 install --ignore-installed --upgrade tensorflow\n", + "import tensorflow as tf\n", + "import keras.backend.tensorflow_backend as KTF\n", + "config = tf.ConfigProto()\n", + "config.gpu_options.allow_growth = True\n", + "session = tf.Session(config=config)\n", + "KTF.set_session(session)\n", + "import keras\n", + "print(keras.__version__)\n", + "print(tf.__version__)\n", + "# To ignore keep_dims warning\n", + "tf.logging.set_verbosity(tf.logging.ERROR)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "2.2.4\n", + "1.12.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "OgFh1JBX6z7N", + "colab_type": "code", + "outputId": "edbfa5cc-95f6-4a39-b6c9-978bb7fc269b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3565 + } + }, + "cell_type": "code", + "source": [ + "!pip install graphviz \n", + "!apt-get install graphviz \n", + "# Install pydot to visualize the network structure\n", + "!pip install pydot\n", + "!pip install pydot-ng\n", + "\n", + "#After fininishing the installation, you have to restart the colab runtime!!" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting graphviz\n", + " Downloading https://files.pythonhosted.org/packages/1f/e2/ef2581b5b86625657afd32030f90cf2717456c1d2b711ba074bf007c0f1a/graphviz-0.10.1-py2.py3-none-any.whl\n", + "Installing collected packages: graphviz\n", + "Successfully installed graphviz-0.10.1\n", + "Reading package lists... Done\n", + "Building dependency tree \n", + "Reading state information... Done\n", + "The following additional packages will be installed:\n", + " fontconfig libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "Suggested packages:\n", + " gsfonts graphviz-doc libgd-tools\n", + "The following NEW packages will be installed:\n", + " fontconfig graphviz libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "0 upgraded, 30 newly installed, 0 to remove and 5 not upgraded.\n", + "Need to get 4,154 kB of archives.\n", + "After this operation, 16.1 MB of additional disk space will be used.\n", + "Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]\n", + "Get:2 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libann0 amd64 1.1.2+doc-6 [24.8 kB]\n", + "Get:3 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcdt5 amd64 2.40.1-2 [19.6 kB]\n", + "Get:4 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcgraph6 amd64 2.40.1-2 [40.8 kB]\n", + "Get:5 http://archive.ubuntu.com/ubuntu bionic/main amd64 libjbig0 amd64 2.1-3.1build1 [26.7 kB]\n", + "Get:6 http://archive.ubuntu.com/ubuntu bionic/main amd64 libtiff5 amd64 4.0.9-5 [152 kB]\n", + "Get:7 http://archive.ubuntu.com/ubuntu bionic/main amd64 libwebp6 amd64 0.6.1-2 [185 kB]\n", + "Get:8 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxpm4 amd64 1:3.5.12-1 [34.0 kB]\n", + "Get:9 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libgd3 amd64 2.2.5-4ubuntu0.2 [119 kB]\n", + "Get:10 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-0.7-5 amd64 0.7.6+darcs121130-4 [150 kB]\n", + "Get:11 http://archive.ubuntu.com/ubuntu bionic/main amd64 libpixman-1-0 amd64 0.34.0-2 [229 kB]\n", + "Get:12 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render0 amd64 1.13-1 [14.7 kB]\n", + "Get:13 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-shm0 amd64 1.13-1 [5,572 B]\n", + "Get:14 http://archive.ubuntu.com/ubuntu bionic/main amd64 libcairo2 amd64 1.15.10-2 [580 kB]\n", + "Get:15 http://archive.ubuntu.com/ubuntu bionic/main amd64 libltdl7 amd64 2.4.6-2 [38.8 kB]\n", + "Get:16 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai-data all 0.1.27-2 [133 kB]\n", + "Get:17 http://archive.ubuntu.com/ubuntu bionic/main amd64 libdatrie1 amd64 0.2.10-7 [17.8 kB]\n", + "Get:18 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai0 amd64 0.1.27-2 [18.0 kB]\n", + "Get:19 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpango-1.0-0 amd64 1.40.14-1ubuntu0.1 [153 kB]\n", + "Get:20 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangoft2-1.0-0 amd64 1.40.14-1ubuntu0.1 [33.2 kB]\n", + "Get:21 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangocairo-1.0-0 amd64 1.40.14-1ubuntu0.1 [20.8 kB]\n", + "Get:22 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libpathplan4 amd64 2.40.1-2 [22.6 kB]\n", + "Get:23 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvc6 amd64 2.40.1-2 [601 kB]\n", + "Get:24 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvpr2 amd64 2.40.1-2 [169 kB]\n", + "Get:25 http://archive.ubuntu.com/ubuntu bionic/universe amd64 liblab-gamut1 amd64 2.40.1-2 [178 kB]\n", + "Get:26 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxt6 amd64 1:1.1.5-1 [160 kB]\n", + "Get:27 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxmu6 amd64 2:1.1.2-2 [46.0 kB]\n", + "Get:28 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxaw7 amd64 2:1.0.13-1 [173 kB]\n", + "Get:29 http://archive.ubuntu.com/ubuntu bionic/universe amd64 graphviz amd64 2.40.1-2 [601 kB]\n", + "Get:30 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-bin amd64 0.7.6+darcs121130-4 [41.3 kB]\n", + "Fetched 4,154 kB in 0s (26.2 MB/s)\n", + "Selecting previously unselected package fontconfig.\n", + "(Reading database ... 22280 files and directories currently installed.)\n", + "Preparing to unpack .../00-fontconfig_2.12.6-0ubuntu2_amd64.deb ...\n", + "Unpacking fontconfig (2.12.6-0ubuntu2) ...\n", + "Selecting previously unselected package libann0.\n", + "Preparing to unpack .../01-libann0_1.1.2+doc-6_amd64.deb ...\n", + "Unpacking libann0 (1.1.2+doc-6) ...\n", + "Selecting previously unselected package libcdt5.\n", + "Preparing to unpack .../02-libcdt5_2.40.1-2_amd64.deb ...\n", + "Unpacking libcdt5 (2.40.1-2) ...\n", + "Selecting previously unselected package libcgraph6.\n", + "Preparing to unpack .../03-libcgraph6_2.40.1-2_amd64.deb ...\n", + "Unpacking libcgraph6 (2.40.1-2) ...\n", + "Selecting previously unselected package libjbig0:amd64.\n", + "Preparing to unpack .../04-libjbig0_2.1-3.1build1_amd64.deb ...\n", + "Unpacking libjbig0:amd64 (2.1-3.1build1) ...\n", + "Selecting previously unselected package libtiff5:amd64.\n", + "Preparing to unpack .../05-libtiff5_4.0.9-5_amd64.deb ...\n", + "Unpacking libtiff5:amd64 (4.0.9-5) ...\n", + "Selecting previously unselected package libwebp6:amd64.\n", + "Preparing to unpack .../06-libwebp6_0.6.1-2_amd64.deb ...\n", + "Unpacking libwebp6:amd64 (0.6.1-2) ...\n", + "Selecting previously unselected package libxpm4:amd64.\n", + "Preparing to unpack .../07-libxpm4_1%3a3.5.12-1_amd64.deb ...\n", + "Unpacking libxpm4:amd64 (1:3.5.12-1) ...\n", + "Selecting previously unselected package libgd3:amd64.\n", + "Preparing to unpack .../08-libgd3_2.2.5-4ubuntu0.2_amd64.deb ...\n", + "Unpacking libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Selecting previously unselected package libgts-0.7-5:amd64.\n", + "Preparing to unpack .../09-libgts-0.7-5_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Selecting previously unselected package libpixman-1-0:amd64.\n", + "Preparing to unpack .../10-libpixman-1-0_0.34.0-2_amd64.deb ...\n", + "Unpacking libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Selecting previously unselected package libxcb-render0:amd64.\n", + "Preparing to unpack .../11-libxcb-render0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-render0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libxcb-shm0:amd64.\n", + "Preparing to unpack .../12-libxcb-shm0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-shm0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libcairo2:amd64.\n", + "Preparing to unpack .../13-libcairo2_1.15.10-2_amd64.deb ...\n", + "Unpacking libcairo2:amd64 (1.15.10-2) ...\n", + "Selecting previously unselected package libltdl7:amd64.\n", + "Preparing to unpack .../14-libltdl7_2.4.6-2_amd64.deb ...\n", + "Unpacking libltdl7:amd64 (2.4.6-2) ...\n", + "Selecting previously unselected package libthai-data.\n", + "Preparing to unpack .../15-libthai-data_0.1.27-2_all.deb ...\n", + "Unpacking libthai-data (0.1.27-2) ...\n", + "Selecting previously unselected package libdatrie1:amd64.\n", + "Preparing to unpack .../16-libdatrie1_0.2.10-7_amd64.deb ...\n", + "Unpacking libdatrie1:amd64 (0.2.10-7) ...\n", + "Selecting previously unselected package libthai0:amd64.\n", + "Preparing to unpack .../17-libthai0_0.1.27-2_amd64.deb ...\n", + "Unpacking libthai0:amd64 (0.1.27-2) ...\n", + "Selecting previously unselected package libpango-1.0-0:amd64.\n", + "Preparing to unpack .../18-libpango-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangoft2-1.0-0:amd64.\n", + "Preparing to unpack .../19-libpangoft2-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangocairo-1.0-0:amd64.\n", + "Preparing to unpack .../20-libpangocairo-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpathplan4.\n", + "Preparing to unpack .../21-libpathplan4_2.40.1-2_amd64.deb ...\n", + "Unpacking libpathplan4 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvc6.\n", + "Preparing to unpack .../22-libgvc6_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvc6 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvpr2.\n", + "Preparing to unpack .../23-libgvpr2_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvpr2 (2.40.1-2) ...\n", + "Selecting previously unselected package liblab-gamut1.\n", + "Preparing to unpack .../24-liblab-gamut1_2.40.1-2_amd64.deb ...\n", + "Unpacking liblab-gamut1 (2.40.1-2) ...\n", + "Selecting previously unselected package libxt6:amd64.\n", + "Preparing to unpack .../25-libxt6_1%3a1.1.5-1_amd64.deb ...\n", + "Unpacking libxt6:amd64 (1:1.1.5-1) ...\n", + "Selecting previously unselected package libxmu6:amd64.\n", + "Preparing to unpack .../26-libxmu6_2%3a1.1.2-2_amd64.deb ...\n", + "Unpacking libxmu6:amd64 (2:1.1.2-2) ...\n", + "Selecting previously unselected package libxaw7:amd64.\n", + "Preparing to unpack .../27-libxaw7_2%3a1.0.13-1_amd64.deb ...\n", + "Unpacking libxaw7:amd64 (2:1.0.13-1) ...\n", + "Selecting previously unselected package graphviz.\n", + "Preparing to unpack .../28-graphviz_2.40.1-2_amd64.deb ...\n", + "Unpacking graphviz (2.40.1-2) ...\n", + "Selecting previously unselected package libgts-bin.\n", + "Preparing to unpack .../29-libgts-bin_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Setting up libpathplan4 (2.40.1-2) ...\n", + "Setting up liblab-gamut1 (2.40.1-2) ...\n", + "Setting up libxcb-render0:amd64 (1.13-1) ...\n", + "Setting up libjbig0:amd64 (2.1-3.1build1) ...\n", + "Setting up libdatrie1:amd64 (0.2.10-7) ...\n", + "Setting up libtiff5:amd64 (4.0.9-5) ...\n", + "Setting up libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n", + "Setting up libltdl7:amd64 (2.4.6-2) ...\n", + "Setting up libann0 (1.1.2+doc-6) ...\n", + "Setting up libxcb-shm0:amd64 (1.13-1) ...\n", + "Setting up libxpm4:amd64 (1:3.5.12-1) ...\n", + "Setting up libxt6:amd64 (1:1.1.5-1) ...\n", + "Setting up libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libthai-data (0.1.27-2) ...\n", + "Setting up libcdt5 (2.40.1-2) ...\n", + "Setting up fontconfig (2.12.6-0ubuntu2) ...\n", + "Regenerating fonts cache... done.\n", + "Setting up libcgraph6 (2.40.1-2) ...\n", + "Setting up libwebp6:amd64 (0.6.1-2) ...\n", + "Setting up libcairo2:amd64 (1.15.10-2) ...\n", + "Setting up libgvpr2 (2.40.1-2) ...\n", + "Setting up libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Setting up libthai0:amd64 (0.1.27-2) ...\n", + "Setting up libxmu6:amd64 (2:1.1.2-2) ...\n", + "Setting up libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libxaw7:amd64 (2:1.0.13-1) ...\n", + "Setting up libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libgvc6 (2.40.1-2) ...\n", + "Setting up graphviz (2.40.1-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n", + "Collecting pydot\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/c3/f1/e61d6dfe6c1768ed2529761a68f70939e2569da043e9f15a8d84bf56cadf/pydot-1.2.4.tar.gz (132kB)\n", + "\u001b[K 100% |████████████████████████████████| 133kB 7.9MB/s \n", + "\u001b[?25hRequirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", + "Building wheels for collected packages: pydot\n", + " Running setup.py bdist_wheel for pydot ... \u001b[?25l-\b \bdone\n", + "\u001b[?25h Stored in directory: /root/.cache/pip/wheels/6a/a5/14/25541ebcdeaf97a37b6d05c7ff15f5bd20f5e91b99d313e5b4\n", + "Successfully built pydot\n", + "Installing collected packages: pydot\n", + "Successfully installed pydot-1.2.4\n", + "Collecting pydot-ng\n", + " Downloading https://files.pythonhosted.org/packages/3c/5b/9a08333f2d70d404ffe42cea4f50159c4ad94feaa4d7585551c05cacef46/pydot_ng-2.0.0-py2.py3-none-any.whl\n", + "Requirement already satisfied: pyparsing>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from pydot-ng) (2.3.0)\n", + "Installing collected packages: pydot-ng\n", + "Successfully installed pydot-ng-2.0.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "dSP03XDi-2hO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 7.1 Going beyond the Sequential model: the Keras functional API\n", + "\n", + "Until now, we've seen neural networks implemented using the Sequential model which makes the assumption that the network has exactly one input and one output, and that consists of a linear stack of layers.\n", + "\n", + "Some networks require several independent inputs, others require multiple outputs, and networks have internal branching between layers that makes them look like graphs of layers like in the Inception and ResNET architectures." + ] + }, + { + "metadata": { + "id": "zEyy2tvn-2hR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 7.1.1. Introduction to the Keras functional API\n", + "\n", + "Fortunately there’s a more general and flexible way to use Keras: the functional API. In the functional API, you directly manipulate tensors, and you use layers as functions that take tensors and return tensors (hence, the name functional API):" + ] + }, + { + "metadata": { + "id": "6zuIl5rh-2hU", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import Input, layers \n", + "input_tensor = Input(shape=(32,))\n", + "dense = layers.Dense(32, activation='relu')\n", + "output_tensor = dense(input_tensor)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vz748XOC-2hf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let’s start with a minimal example that shows side by side a simple Sequential model and its equivalent in the functional API:" + ] + }, + { + "metadata": { + "id": "xh7Y3icp-2hg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential, Model \n", + "from keras import layers \n", + "from keras import Input \n", + "\n", + "seq_model = Sequential()\n", + "seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,))) \n", + "seq_model.add(layers.Dense(32, activation='relu'))\n", + "seq_model.add(layers.Dense(10, activation='softmax'))\n", + "\n", + "input_tensor = Input(shape=(64,))\n", + "x = layers.Dense(32, activation='relu')(input_tensor)\n", + "x = layers.Dense(32, activation='relu')(x)\n", + "output_tensor = layers.Dense(10, activation='softmax')(x)\n", + "\n", + "model = Model(input_tensor, output_tensor)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZZjnwoR2-2hm", + "colab_type": "code", + "outputId": "75f59300-6a11-4687-9a9d-6e1e8a9b2646", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 681 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_2 (InputLayer) (None, 64) 0 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 32) 2080 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 32) 1056 \n", + "_________________________________________________________________\n", + "dense_7 (Dense) (None, 10) 330 \n", + "=================================================================\n", + "Total params: 3,466\n", + "Trainable params: 3,466\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n139867764672384\n\ninput_2: InputLayer\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 64)\n\n\n\n139867764798352\n\ndense_5: Dense\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 32)\n\n\n\n139867764672384->139867764798352\n\n\n\n\n\n139867764800984\n\ndense_6: Dense\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 32)\n\n\n\n139867764798352->139867764800984\n\n\n\n\n\n139867764374552\n\ndense_7: Dense\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 10)\n\n\n\n139867764800984->139867764374552\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "Rn64ldmx-2hw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The only part that may seem a bit magical at this point is instantiating a Model object using only an input tensor and an output tensor. Behind the scenes, Keras retrieves every layer involved in going from input_tensor to output_tensor, bringing them together into a graph-like data structure—a Model. Of course, the reason it works is that output_tensor was obtained by repeatedly transforming input_tensor. If you tried to build a model from inputs and outputs that weren’t related, you’d get a RuntimeError:" + ] + }, + { + "metadata": { + "scrolled": true, + "id": "R3tOtgz1-2hy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "unrelated_input = Input(shape=(32,))\n", + "bad_model = Model(unrelated_input, output_tensor)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0tvEG5yT-2h9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This error tells you, in essence, that Keras couldn’t reach input_2 from the provided output tensor. \n", + "\n", + "When it comes to compiling, training, or evaluating such an instance of Model, the API is the same as that of Sequential:" + ] + }, + { + "metadata": { + "scrolled": true, + "id": "Zqd4dH7a-2h_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.compile(optimizer='rmsprop', loss='categorical_crossentropy')\n", + "\n", + "import numpy as np\n", + "x_train = np.random.random((1000, 64))\n", + "y_train = np.random.random((1000, 10)) \n", + "\n", + "model.fit(x_train, y_train, epochs=10, batch_size=128)\n", + "\n", + "score = model.evaluate(x_train, y_train)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FapBiqDA-2iN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.1.2 Multi-input models\n", + "\n", + "The functional API can be used to build models that have multiple inputs. Typically, such models at some point merge their different input branches using a layer that can combine several tensors: by adding them, concatenating them, and so on. This is usually done via a Keras merge operation such as keras.layers.add, keras.layers.concatenate, and so on. \n", + "\n", + "#### A question-answering model example\n", + "Let’s look at a very simple example of a multi-input model: a question-answering model. A typical question-answering model has two inputs: a natural-language question and a text snippet (such as a news article) providing information to be used for answering the question. The model must then produce an answer: in the simplest possible setup, this is a one-word answer obtained via a softmax over some predefined vocabulary (see figure 7.6).\n", + "\n", + "Following is an example of how you can build such a model with the functional API. You set up two independent branches, encoding the text input and the question input as representation vectors; then, concatenate these vectors; and finally, add a softmax classifier on top of the concatenated representations.\n", + "\n", + "#### Functional API implementation of a two-input question-answering model" + ] + }, + { + "metadata": { + "id": "10kVo7D4-2iP", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.models import Model\n", + "from keras import layers\n", + "from keras import Input\n", + "\n", + "text_vocabulary_size = 10000\n", + "question_vocabulary_size = 10000\n", + "answer_vocabulary_size = 500\n", + "\n", + "# The text input is a variable-length sequence of integers. \n", + "# Note that you can optionally name the inputs.\n", + "text_input = Input(shape=(None,), dtype='int32', name='text')\n", + "# Embeds the inputs into a sequence of vectors of size 64\n", + "# embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)\n", + "# embedded_text = layers.Embedding(output_dim=64, input_dim=text_vocabulary_size)(text_input)\n", + "embedded_text = layers.Embedding(text_vocabulary_size,64)(text_input)\n", + "# Encodes the vectors in a single vector via an LSTM\n", + "encoded_text = layers.LSTM(32)(embedded_text)\n", + "# Same process (with different layer instances) for the question\n", + "question_input = Input(shape=(None,),dtype='int32',name='question')\n", + "# embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)\n", + "# embedded_question = layers.Embedding(output_dim=32, input_dim=question_vocabulary_size)(question_input)\n", + "embedded_question = layers.Embedding(question_vocabulary_size,32)(question_input)\n", + "encoded_question = layers.LSTM(16)(embedded_question) \n", + "# Concatenates the encoded question and encoded text\n", + "concatenated = layers.concatenate([encoded_text, encoded_question],axis=-1)\n", + "# Adds a softmax classifier on top\n", + "answer = layers.Dense(answer_vocabulary_size, activation='softmax')(concatenated)\n", + "# At model instantiation, you specify the two inputs and the output.\n", + "model = Model([text_input, question_input], answer)\n", + "model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['acc'])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "rxLF6Jt6-2iX", + "colab_type": "code", + "outputId": "ccf5415f-6dff-4fe1-b223-fb86f649bb6b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 945 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "text (InputLayer) (None, None) 0 \n", + "__________________________________________________________________________________________________\n", + "question (InputLayer) (None, None) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_5 (Embedding) (None, None, 64) 640000 text[0][0] \n", + "__________________________________________________________________________________________________\n", + "embedding_6 (Embedding) (None, None, 32) 320000 question[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_5 (LSTM) (None, 32) 12416 embedding_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_6 (LSTM) (None, 16) 3136 embedding_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_3 (Concatenate) (None, 48) 0 lstm_5[0][0] \n", + " lstm_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_10 (Dense) (None, 500) 24500 concatenate_3[0][0] \n", + "==================================================================================================\n", + "Total params: 1,000,052\n", + "Trainable params: 1,000,052\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n139867401665560\n\ntext: InputLayer\n\ninput:\n\noutput:\n\n(None, None)\n\n(None, None)\n\n\n\n139867401665448\n\nembedding_5: Embedding\n\ninput:\n\noutput:\n\n(None, None)\n\n(None, None, 64)\n\n\n\n139867401665560->139867401665448\n\n\n\n\n\n139867401666008\n\nquestion: InputLayer\n\ninput:\n\noutput:\n\n(None, None)\n\n(None, None)\n\n\n\n139867401666288\n\nembedding_6: Embedding\n\ninput:\n\noutput:\n\n(None, None)\n\n(None, None, 32)\n\n\n\n139867401666008->139867401666288\n\n\n\n\n\n139867401666064\n\nlstm_5: LSTM\n\ninput:\n\noutput:\n\n(None, None, 64)\n\n(None, 32)\n\n\n\n139867401665448->139867401666064\n\n\n\n\n\n139867401245752\n\nlstm_6: LSTM\n\ninput:\n\noutput:\n\n(None, None, 32)\n\n(None, 16)\n\n\n\n139867401666288->139867401245752\n\n\n\n\n\n139867400437040\n\nconcatenate_3: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 16)]\n\n(None, 48)\n\n\n\n139867401666064->139867400437040\n\n\n\n\n\n139867401245752->139867400437040\n\n\n\n\n\n139867401245808\n\ndense_10: Dense\n\ninput:\n\noutput:\n\n(None, 48)\n\n(None, 500)\n\n\n\n139867400437040->139867401245808\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "Gt34QOV_-2id", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now, how do you train this two-input model? There are two possible APIs: you can feed the model a list of Numpy arrays as inputs, or you can feed it a dictionary that maps input names to Numpy arrays. Naturally, the latter option is available only if you give names to your inputs. \n", + "\n", + "#### Training the multi-input model" + ] + }, + { + "metadata": { + "scrolled": true, + "id": "YWUF6KOE-2ie", + "colab_type": "code", + "outputId": "d727fac0-650b-4579-8a98-e2c5f0305f81", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 5219 + } + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "num_samples = 1000 \n", + "max_length = 100\n", + "\n", + "# Generates dummy Numpy data\n", + "text = np.random.randint(1, text_vocabulary_size,size=(num_samples, max_length))\n", + "question = np.random.randint(1, question_vocabulary_size,size=(num_samples, max_length)) \n", + "# Answers are one-hot encoded, not integers\n", + "# answers = np.random.randint(0, 1,size=(num_samples, answer_vocabulary_size))\n", + "answers = np.random.randint(answer_vocabulary_size, size=(num_samples))\n", + "answers = keras.utils.to_categorical(answers, answer_vocabulary_size)\n", + "\n", + "# Fitting using a list of inputs\n", + "print('-'*10,\"First training run with list of NumPy arrays\",'-'*60)\n", + "model.fit([text, question], answers, epochs = 100, batch_size = 128, validation_split = 0.2)\n", + "print()\n", + "\n", + "# Fitting using a dictionary of inputs (only if inputs are named)\n", + "print('-'*10,\"Second training run with dictionary and named inputs\",'-'*60)\n", + "model.fit({'text': text, 'question': question}, answers, epochs = 50, batch_size = 128, validation_split = 0.2)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "---------- First training run with list of NumPy arrays ------------------------------------------------------------\n", + "Train on 800 samples, validate on 200 samples\n", + "Epoch 1/100\n", + "800/800 [==============================] - 5s 6ms/step - loss: 6.2147 - acc: 0.0000e+00 - val_loss: 6.2158 - val_acc: 0.0000e+00\n", + "Epoch 2/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 6.1995 - acc: 0.0488 - val_loss: 6.2169 - val_acc: 0.0000e+00\n", + "Epoch 3/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 6.1778 - acc: 0.0262 - val_loss: 6.2355 - val_acc: 0.0000e+00\n", + "Epoch 4/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 6.0905 - acc: 0.0050 - val_loss: 6.2820 - val_acc: 0.0000e+00\n", + "Epoch 5/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 6.0024 - acc: 0.0063 - val_loss: 6.3456 - val_acc: 0.0000e+00\n", + "Epoch 6/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.9337 - acc: 0.0100 - val_loss: 6.3444 - val_acc: 0.0000e+00\n", + "Epoch 7/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.8421 - acc: 0.0163 - val_loss: 6.4317 - val_acc: 0.0000e+00\n", + "Epoch 8/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.7476 - acc: 0.0100 - val_loss: 6.4055 - val_acc: 0.0000e+00\n", + "Epoch 9/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.6728 - acc: 0.0125 - val_loss: 6.5810 - val_acc: 0.0000e+00\n", + "Epoch 10/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.5924 - acc: 0.0200 - val_loss: 6.6028 - val_acc: 0.0000e+00\n", + "Epoch 11/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.5323 - acc: 0.0312 - val_loss: 6.9812 - val_acc: 0.0000e+00\n", + "Epoch 12/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.4925 - acc: 0.0450 - val_loss: 6.6309 - val_acc: 0.0000e+00\n", + "Epoch 13/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.4161 - acc: 0.0588 - val_loss: 6.6933 - val_acc: 0.0000e+00\n", + "Epoch 14/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.3627 - acc: 0.0625 - val_loss: 6.9190 - val_acc: 0.0000e+00\n", + "Epoch 15/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.3053 - acc: 0.0750 - val_loss: 7.1341 - val_acc: 0.0000e+00\n", + "Epoch 16/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.2591 - acc: 0.0825 - val_loss: 6.9876 - val_acc: 0.0000e+00\n", + "Epoch 17/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.2086 - acc: 0.0875 - val_loss: 7.3537 - val_acc: 0.0000e+00\n", + "Epoch 18/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.1494 - acc: 0.0900 - val_loss: 6.8444 - val_acc: 0.0000e+00\n", + "Epoch 19/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.1178 - acc: 0.0900 - val_loss: 6.9781 - val_acc: 0.0000e+00\n", + "Epoch 20/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.0481 - acc: 0.1025 - val_loss: 7.0655 - val_acc: 0.0000e+00\n", + "Epoch 21/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 5.0182 - acc: 0.0975 - val_loss: 6.9784 - val_acc: 0.0000e+00\n", + "Epoch 22/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.9711 - acc: 0.1000 - val_loss: 7.5750 - val_acc: 0.0000e+00\n", + "Epoch 23/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.9248 - acc: 0.1075 - val_loss: 7.2186 - val_acc: 0.0000e+00\n", + "Epoch 24/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.8839 - acc: 0.1250 - val_loss: 7.4885 - val_acc: 0.0000e+00\n", + "Epoch 25/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.8570 - acc: 0.1187 - val_loss: 7.4881 - val_acc: 0.0000e+00\n", + "Epoch 26/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.8026 - acc: 0.1275 - val_loss: 7.2914 - val_acc: 0.0000e+00\n", + "Epoch 27/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.7788 - acc: 0.1275 - val_loss: 7.7355 - val_acc: 0.0000e+00\n", + "Epoch 28/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.7253 - acc: 0.1437 - val_loss: 7.6481 - val_acc: 0.0000e+00\n", + "Epoch 29/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.6969 - acc: 0.1487 - val_loss: 7.7163 - val_acc: 0.0000e+00\n", + "Epoch 30/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.6561 - acc: 0.1387 - val_loss: 7.8323 - val_acc: 0.0000e+00\n", + "Epoch 31/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.6187 - acc: 0.1575 - val_loss: 7.6861 - val_acc: 0.0000e+00\n", + "Epoch 32/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.5710 - acc: 0.1575 - val_loss: 7.7402 - val_acc: 0.0000e+00\n", + "Epoch 33/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.5392 - acc: 0.1712 - val_loss: 7.5067 - val_acc: 0.0000e+00\n", + "Epoch 34/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.5088 - acc: 0.1762 - val_loss: 7.7743 - val_acc: 0.0000e+00\n", + "Epoch 35/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.4523 - acc: 0.1813 - val_loss: 7.7971 - val_acc: 0.0000e+00\n", + "Epoch 36/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.4274 - acc: 0.1875 - val_loss: 7.8004 - val_acc: 0.0000e+00\n", + "Epoch 37/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.4448 - acc: 0.1937 - val_loss: 7.6183 - val_acc: 0.0000e+00\n", + "Epoch 38/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.3629 - acc: 0.2038 - val_loss: 7.9349 - val_acc: 0.0000e+00\n", + "Epoch 39/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.3260 - acc: 0.2075 - val_loss: 7.8237 - val_acc: 0.0000e+00\n", + "Epoch 40/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.2881 - acc: 0.2275 - val_loss: 7.8490 - val_acc: 0.0000e+00\n", + "Epoch 41/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.2740 - acc: 0.2263 - val_loss: 7.7127 - val_acc: 0.0000e+00\n", + "Epoch 42/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.2075 - acc: 0.2500 - val_loss: 7.8697 - val_acc: 0.0000e+00\n", + "Epoch 43/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.1758 - acc: 0.2587 - val_loss: 7.7506 - val_acc: 0.0000e+00\n", + "Epoch 44/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.1799 - acc: 0.2475 - val_loss: 7.7119 - val_acc: 0.0000e+00\n", + "Epoch 45/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.1236 - acc: 0.2750 - val_loss: 7.5188 - val_acc: 0.0050\n", + "Epoch 46/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.1039 - acc: 0.2838 - val_loss: 7.8008 - val_acc: 0.0000e+00\n", + "Epoch 47/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.0500 - acc: 0.2913 - val_loss: 7.9903 - val_acc: 0.0000e+00\n", + "Epoch 48/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 4.0097 - acc: 0.2875 - val_loss: 7.9968 - val_acc: 0.0000e+00\n", + "Epoch 49/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.9957 - acc: 0.3000 - val_loss: 7.8153 - val_acc: 0.0000e+00\n", + "Epoch 50/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.9382 - acc: 0.3325 - val_loss: 7.7373 - val_acc: 0.0000e+00\n", + "Epoch 51/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.8909 - acc: 0.3613 - val_loss: 7.5930 - val_acc: 0.0000e+00\n", + "Epoch 52/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.8618 - acc: 0.3625 - val_loss: 8.2044 - val_acc: 0.0050\n", + "Epoch 53/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.8442 - acc: 0.3812 - val_loss: 7.9728 - val_acc: 0.0000e+00\n", + "Epoch 54/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.7879 - acc: 0.3775 - val_loss: 7.7614 - val_acc: 0.0000e+00\n", + "Epoch 55/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.7595 - acc: 0.3962 - val_loss: 7.9641 - val_acc: 0.0000e+00\n", + "Epoch 56/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.7542 - acc: 0.3788 - val_loss: 8.1169 - val_acc: 0.0000e+00\n", + "Epoch 57/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.6896 - acc: 0.4113 - val_loss: 7.9731 - val_acc: 0.0000e+00\n", + "Epoch 58/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.6459 - acc: 0.4200 - val_loss: 8.0190 - val_acc: 0.0050\n", + "Epoch 59/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.5995 - acc: 0.4462 - val_loss: 7.8960 - val_acc: 0.0000e+00\n", + "Epoch 60/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.5640 - acc: 0.4475 - val_loss: 7.6123 - val_acc: 0.0000e+00\n", + "Epoch 61/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.5325 - acc: 0.4425 - val_loss: 7.5098 - val_acc: 0.0050\n", + "Epoch 62/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.5401 - acc: 0.4662 - val_loss: 8.1275 - val_acc: 0.0050\n", + "Epoch 63/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.5108 - acc: 0.4488 - val_loss: 8.0963 - val_acc: 0.0050\n", + "Epoch 64/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.4383 - acc: 0.5000 - val_loss: 8.0095 - val_acc: 0.0050\n", + "Epoch 65/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.3911 - acc: 0.4925 - val_loss: 7.9107 - val_acc: 0.0000e+00\n", + "Epoch 66/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.3437 - acc: 0.5112 - val_loss: 8.0934 - val_acc: 0.0000e+00\n", + "Epoch 67/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.3098 - acc: 0.5125 - val_loss: 7.9073 - val_acc: 0.0050\n", + "Epoch 68/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.2783 - acc: 0.5200 - val_loss: 8.1934 - val_acc: 0.0000e+00\n", + "Epoch 69/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.2334 - acc: 0.5237 - val_loss: 8.0502 - val_acc: 0.0050\n", + "Epoch 70/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.2069 - acc: 0.5487 - val_loss: 8.0263 - val_acc: 0.0050\n", + "Epoch 71/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.1613 - acc: 0.5712 - val_loss: 7.7046 - val_acc: 0.0100\n", + "Epoch 72/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.1067 - acc: 0.5837 - val_loss: 8.1442 - val_acc: 0.0000e+00\n", + "Epoch 73/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.0771 - acc: 0.5787 - val_loss: 7.9102 - val_acc: 0.0100\n", + "Epoch 74/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 3.0854 - acc: 0.5500 - val_loss: 8.1277 - val_acc: 0.0000e+00\n", + "Epoch 75/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.9951 - acc: 0.6062 - val_loss: 7.9338 - val_acc: 0.0050\n", + "Epoch 76/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.9423 - acc: 0.5975 - val_loss: 7.9556 - val_acc: 0.0050\n", + "Epoch 77/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.9052 - acc: 0.6138 - val_loss: 8.0684 - val_acc: 0.0050\n", + "Epoch 78/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.9033 - acc: 0.6000 - val_loss: 8.0698 - val_acc: 0.0050\n", + "Epoch 79/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.8275 - acc: 0.6275 - val_loss: 7.5811 - val_acc: 0.0000e+00\n", + "Epoch 80/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.7767 - acc: 0.6350 - val_loss: 8.0833 - val_acc: 0.0000e+00\n", + "Epoch 81/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.7472 - acc: 0.6438 - val_loss: 8.1696 - val_acc: 0.0050\n", + "Epoch 82/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.7011 - acc: 0.6575 - val_loss: 7.9708 - val_acc: 0.0000e+00\n", + "Epoch 83/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.6459 - acc: 0.6625 - val_loss: 8.1383 - val_acc: 0.0000e+00\n", + "Epoch 84/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.6518 - acc: 0.6613 - val_loss: 8.0290 - val_acc: 0.0050\n", + "Epoch 85/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.5554 - acc: 0.6850 - val_loss: 7.9610 - val_acc: 0.0050\n", + "Epoch 86/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.5254 - acc: 0.6913 - val_loss: 7.9472 - val_acc: 0.0050\n", + "Epoch 87/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.4815 - acc: 0.7150 - val_loss: 7.5020 - val_acc: 0.0050\n", + "Epoch 88/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.4478 - acc: 0.7325 - val_loss: 8.1097 - val_acc: 0.0050\n", + "Epoch 89/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.3913 - acc: 0.7413 - val_loss: 8.0365 - val_acc: 0.0050\n", + "Epoch 90/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.3332 - acc: 0.7563 - val_loss: 8.0929 - val_acc: 0.0050\n", + "Epoch 91/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.3086 - acc: 0.7625 - val_loss: 7.5928 - val_acc: 0.0050\n", + "Epoch 92/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.2655 - acc: 0.7787 - val_loss: 7.9640 - val_acc: 0.0050\n", + "Epoch 93/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.2053 - acc: 0.7812 - val_loss: 7.9580 - val_acc: 0.0050\n", + "Epoch 94/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.1627 - acc: 0.7937 - val_loss: 8.3552 - val_acc: 0.0050\n", + "Epoch 95/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.1605 - acc: 0.7950 - val_loss: 8.0226 - val_acc: 0.0200\n", + "Epoch 96/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.0709 - acc: 0.8175 - val_loss: 8.0160 - val_acc: 0.0150\n", + "Epoch 97/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 2.0286 - acc: 0.8300 - val_loss: 8.0590 - val_acc: 0.0000e+00\n", + "Epoch 98/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.9785 - acc: 0.8400 - val_loss: 8.0939 - val_acc: 0.0200\n", + "Epoch 99/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.9497 - acc: 0.8475 - val_loss: 7.9773 - val_acc: 0.0000e+00\n", + "Epoch 100/100\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.9059 - acc: 0.8575 - val_loss: 8.0351 - val_acc: 0.0000e+00\n", + "\n", + "---------- Second training run with dictionary and named inputs ------------------------------------------------------------\n", + "Train on 800 samples, validate on 200 samples\n", + "Epoch 1/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.8732 - acc: 0.8550 - val_loss: 7.9335 - val_acc: 0.0050\n", + "Epoch 2/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.8556 - acc: 0.8663 - val_loss: 8.1583 - val_acc: 0.0100\n", + "Epoch 3/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.7786 - acc: 0.8750 - val_loss: 8.0299 - val_acc: 0.0100\n", + "Epoch 4/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.7666 - acc: 0.8775 - val_loss: 8.1522 - val_acc: 0.0100\n", + "Epoch 5/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.6972 - acc: 0.8850 - val_loss: 8.2442 - val_acc: 0.0100\n", + "Epoch 6/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.6584 - acc: 0.8938 - val_loss: 8.0858 - val_acc: 0.0150\n", + "Epoch 7/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.6301 - acc: 0.8950 - val_loss: 8.3307 - val_acc: 0.0100\n", + "Epoch 8/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.5878 - acc: 0.8987 - val_loss: 7.9909 - val_acc: 0.0000e+00\n", + "Epoch 9/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.5363 - acc: 0.9263 - val_loss: 8.0981 - val_acc: 0.0000e+00\n", + "Epoch 10/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.4972 - acc: 0.9175 - val_loss: 8.1427 - val_acc: 0.0000e+00\n", + "Epoch 11/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.4587 - acc: 0.9275 - val_loss: 7.9031 - val_acc: 0.0050\n", + "Epoch 12/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.4776 - acc: 0.9175 - val_loss: 8.0698 - val_acc: 0.0100\n", + "Epoch 13/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.4129 - acc: 0.9363 - val_loss: 7.9940 - val_acc: 0.0000e+00\n", + "Epoch 14/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.3578 - acc: 0.9375 - val_loss: 8.1230 - val_acc: 0.0000e+00\n", + "Epoch 15/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.3427 - acc: 0.9387 - val_loss: 7.7947 - val_acc: 0.0050\n", + "Epoch 16/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.2971 - acc: 0.9487 - val_loss: 8.3775 - val_acc: 0.0050\n", + "Epoch 17/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.2732 - acc: 0.9462 - val_loss: 7.9944 - val_acc: 0.0050\n", + "Epoch 18/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.2265 - acc: 0.9587 - val_loss: 8.2038 - val_acc: 0.0100\n", + "Epoch 19/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.1955 - acc: 0.9612 - val_loss: 8.0077 - val_acc: 0.0050\n", + "Epoch 20/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.1705 - acc: 0.9612 - val_loss: 8.1910 - val_acc: 0.0000e+00\n", + "Epoch 21/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.1698 - acc: 0.9575 - val_loss: 8.1159 - val_acc: 0.0050\n", + "Epoch 22/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.1181 - acc: 0.9625 - val_loss: 8.2847 - val_acc: 0.0000e+00\n", + "Epoch 23/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.0827 - acc: 0.9688 - val_loss: 8.0461 - val_acc: 0.0050\n", + "Epoch 24/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.0625 - acc: 0.9700 - val_loss: 8.3428 - val_acc: 0.0050\n", + "Epoch 25/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.0265 - acc: 0.9725 - val_loss: 7.7965 - val_acc: 0.0100\n", + "Epoch 26/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 1.0077 - acc: 0.9775 - val_loss: 8.1997 - val_acc: 0.0100\n", + "Epoch 27/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.9759 - acc: 0.9775 - val_loss: 8.2198 - val_acc: 0.0000e+00\n", + "Epoch 28/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.9408 - acc: 0.9838 - val_loss: 8.4032 - val_acc: 0.0000e+00\n", + "Epoch 29/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.9130 - acc: 0.9812 - val_loss: 8.2159 - val_acc: 0.0000e+00\n", + "Epoch 30/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.9437 - acc: 0.9688 - val_loss: 8.1062 - val_acc: 0.0000e+00\n", + "Epoch 31/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.8958 - acc: 0.9750 - val_loss: 8.4539 - val_acc: 0.0000e+00\n", + "Epoch 32/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.8561 - acc: 0.9800 - val_loss: 8.3927 - val_acc: 0.0000e+00\n", + "Epoch 33/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.8382 - acc: 0.9825 - val_loss: 7.9784 - val_acc: 0.0000e+00\n", + "Epoch 34/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.8219 - acc: 0.9825 - val_loss: 8.2902 - val_acc: 0.0050\n", + "Epoch 35/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.7871 - acc: 0.9862 - val_loss: 8.5562 - val_acc: 0.0000e+00\n", + "Epoch 36/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.7636 - acc: 0.9812 - val_loss: 8.2991 - val_acc: 0.0050\n", + "Epoch 37/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.7329 - acc: 0.9875 - val_loss: 8.2115 - val_acc: 0.0050\n", + "Epoch 38/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.7102 - acc: 0.9888 - val_loss: 8.2607 - val_acc: 0.0000e+00\n", + "Epoch 39/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.7784 - acc: 0.9700 - val_loss: 8.0899 - val_acc: 0.0000e+00\n", + "Epoch 40/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.6979 - acc: 0.9825 - val_loss: 7.9613 - val_acc: 0.0050\n", + "Epoch 41/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.6641 - acc: 0.9850 - val_loss: 8.3338 - val_acc: 0.0000e+00\n", + "Epoch 42/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.6385 - acc: 0.9875 - val_loss: 8.3399 - val_acc: 0.0050\n", + "Epoch 43/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.6215 - acc: 0.9913 - val_loss: 8.3168 - val_acc: 0.0050\n", + "Epoch 44/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.6019 - acc: 0.9888 - val_loss: 8.3182 - val_acc: 0.0000e+00\n", + "Epoch 45/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.5856 - acc: 0.9875 - val_loss: 8.2278 - val_acc: 0.0050\n", + "Epoch 46/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.5749 - acc: 0.9875 - val_loss: 8.2603 - val_acc: 0.0000e+00\n", + "Epoch 47/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.6198 - acc: 0.9788 - val_loss: 8.2954 - val_acc: 0.0000e+00\n", + "Epoch 48/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.5423 - acc: 0.9900 - val_loss: 8.3208 - val_acc: 0.0050\n", + "Epoch 49/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.5179 - acc: 0.9900 - val_loss: 8.2194 - val_acc: 0.0050\n", + "Epoch 50/50\n", + "800/800 [==============================] - 3s 4ms/step - loss: 0.5023 - acc: 0.9900 - val_loss: 8.3658 - val_acc: 0.0050\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "id": "G6nTCpjeCT8-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### 使用真實文本資料 -Training the multi-input model\n", + "\n", + "在使用模擬資料後, 來試試真實的文字資料吧! \n", + "\n", + "1. Facebook, The (20) QA bAbI tasks\n", + "\n", + "\n", + "> Sngle supporting fact (task #1)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "metadata": { + "id": "H0pA6DWmCTV7", + "colab_type": "code", + "outputId": "20423321-7bf3-4e86-e1d9-54acffc30345", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 7017 + } + }, + "cell_type": "code", + "source": [ + "#先下載文本資料\n", + "!wget http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz\n", + "!tar -xvzf tasks_1-20_v1-2.tar.gz\n", + "\n", + "#安裝自然語言處理的套件\n", + "!pip install -q nltk \n", + "import nltk\n", + "#安裝nltk所需的\n", + "nltk.download('punkt')" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "--2018-11-15 14:29:45-- http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz\n", + "Resolving www.thespermwhale.com (www.thespermwhale.com)... 69.65.3.210\n", + "Connecting to www.thespermwhale.com (www.thespermwhale.com)|69.65.3.210|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 15719851 (15M) [application/x-gzip]\n", + "Saving to: ‘tasks_1-20_v1-2.tar.gz.1’\n", + "\n", + "tasks_1-20_v1-2.tar 100%[===================>] 14.99M 7.11MB/s in 2.1s \n", + "\n", + "2018-11-15 14:29:48 (7.11 MB/s) - ‘tasks_1-20_v1-2.tar.gz.1’ saved [15719851/15719851]\n", + "\n", + "tasks_1-20_v1-2/\n", + "tasks_1-20_v1-2/hn/\n", + "tasks_1-20_v1-2/hn/qa16_basic-induction_train.txt\n", + "tasks_1-20_v1-2/hn/qa13_compound-coreference_train.txt\n", + "tasks_1-20_v1-2/hn/qa13_compound-coreference_test.txt\n", + "tasks_1-20_v1-2/hn/qa14_time-reasoning_test.txt\n", + "tasks_1-20_v1-2/hn/qa5_three-arg-relations_test.txt\n", + "tasks_1-20_v1-2/hn/qa17_positional-reasoning_train.txt\n", + "tasks_1-20_v1-2/hn/qa9_simple-negation_train.txt\n", + "tasks_1-20_v1-2/hn/qa12_conjunction_train.txt\n", + "tasks_1-20_v1-2/hn/qa6_yes-no-questions_train.txt\n", + "tasks_1-20_v1-2/hn/qa2_two-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/hn/qa20_agents-motivations_train.txt\n", + "tasks_1-20_v1-2/hn/qa7_counting_train.txt\n", + "tasks_1-20_v1-2/hn/qa18_size-reasoning_test.txt\n", + "tasks_1-20_v1-2/hn/qa1_single-supporting-fact_train.txt\n", + "tasks_1-20_v1-2/hn/qa18_size-reasoning_train.txt\n", + "tasks_1-20_v1-2/hn/qa1_single-supporting-fact_test.txt\n", + "tasks_1-20_v1-2/hn/qa16_basic-induction_test.txt\n", + "tasks_1-20_v1-2/hn/qa8_lists-sets_train.txt\n", + "tasks_1-20_v1-2/hn/qa15_basic-deduction_test.txt\n", + "tasks_1-20_v1-2/hn/qa11_basic-coreference_train.txt\n", + "tasks_1-20_v1-2/hn/qa12_conjunction_test.txt\n", + "tasks_1-20_v1-2/hn/qa10_indefinite-knowledge_test.txt\n", + "tasks_1-20_v1-2/hn/qa19_path-finding_test.txt\n", + "tasks_1-20_v1-2/hn/qa8_lists-sets_test.txt\n", + "tasks_1-20_v1-2/hn/qa4_two-arg-relations_train.txt\n", + "tasks_1-20_v1-2/hn/qa10_indefinite-knowledge_train.txt\n", + "tasks_1-20_v1-2/hn/qa19_path-finding_train.txt\n", + "tasks_1-20_v1-2/hn/qa20_agents-motivations_test.txt\n", + "tasks_1-20_v1-2/hn/qa5_three-arg-relations_train.txt\n", + "tasks_1-20_v1-2/hn/qa7_counting_test.txt\n", + "tasks_1-20_v1-2/hn/qa3_three-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/hn/qa14_time-reasoning_train.txt\n", + "tasks_1-20_v1-2/hn/qa17_positional-reasoning_test.txt\n", + "tasks_1-20_v1-2/hn/qa9_simple-negation_test.txt\n", + "tasks_1-20_v1-2/hn/qa4_two-arg-relations_test.txt\n", + "tasks_1-20_v1-2/hn/qa6_yes-no-questions_test.txt\n", + "tasks_1-20_v1-2/hn/qa15_basic-deduction_train.txt\n", + "tasks_1-20_v1-2/hn/qa3_three-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/hn/qa2_two-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/hn/qa11_basic-coreference_test.txt\n", + "tasks_1-20_v1-2/shuffled/\n", + "tasks_1-20_v1-2/shuffled/qa16_basic-induction_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa13_compound-coreference_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa13_compound-coreference_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa14_time-reasoning_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa5_three-arg-relations_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa17_positional-reasoning_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa9_simple-negation_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa12_conjunction_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa6_yes-no-questions_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa2_two-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa20_agents-motivations_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa7_counting_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa18_size-reasoning_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa1_single-supporting-fact_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa18_size-reasoning_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa1_single-supporting-fact_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa16_basic-induction_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa8_lists-sets_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa15_basic-deduction_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa11_basic-coreference_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa12_conjunction_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa10_indefinite-knowledge_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa19_path-finding_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa8_lists-sets_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa4_two-arg-relations_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa10_indefinite-knowledge_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa19_path-finding_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa20_agents-motivations_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa5_three-arg-relations_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa7_counting_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa3_three-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa14_time-reasoning_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa17_positional-reasoning_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa9_simple-negation_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa4_two-arg-relations_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa6_yes-no-questions_test.txt\n", + "tasks_1-20_v1-2/shuffled/qa15_basic-deduction_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa3_three-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa2_two-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/shuffled/qa11_basic-coreference_test.txt\n", + "tasks_1-20_v1-2/en-10k/\n", + "tasks_1-20_v1-2/en-10k/qa16_basic-induction_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa13_compound-coreference_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa13_compound-coreference_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa14_time-reasoning_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa5_three-arg-relations_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa17_positional-reasoning_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa9_simple-negation_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa12_conjunction_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa6_yes-no-questions_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa2_two-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa20_agents-motivations_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa7_counting_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa18_size-reasoning_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa1_single-supporting-fact_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa18_size-reasoning_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa1_single-supporting-fact_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa16_basic-induction_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa8_lists-sets_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa15_basic-deduction_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa11_basic-coreference_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa12_conjunction_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa10_indefinite-knowledge_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa19_path-finding_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa8_lists-sets_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa4_two-arg-relations_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa10_indefinite-knowledge_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa19_path-finding_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa20_agents-motivations_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa5_three-arg-relations_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa7_counting_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa3_three-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa14_time-reasoning_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa17_positional-reasoning_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa9_simple-negation_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa4_two-arg-relations_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa6_yes-no-questions_test.txt\n", + "tasks_1-20_v1-2/en-10k/qa15_basic-deduction_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa3_three-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa2_two-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/en-10k/qa11_basic-coreference_test.txt\n", + "tasks_1-20_v1-2/en-valid/\n", + "tasks_1-20_v1-2/en-valid/qa8_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa11_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa7_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa13_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa7_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa19_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa12_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa18_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa6_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa9_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa8_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa2_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa12_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa11_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa9_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa1_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa7_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa16_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa4_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa2_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa5_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa16_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa18_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa13_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa11_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa1_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa5_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa15_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa20_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa18_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa19_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa9_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa17_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa15_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa5_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa20_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa14_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa4_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa15_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa10_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa8_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa6_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa17_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa10_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa3_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa3_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa16_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa3_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa14_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa19_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa4_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa1_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa2_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa13_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa20_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa6_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa14_train.txt\n", + "tasks_1-20_v1-2/en-valid/qa12_valid.txt\n", + "tasks_1-20_v1-2/en-valid/qa17_test.txt\n", + "tasks_1-20_v1-2/en-valid/qa10_valid.txt\n", + "tasks_1-20_v1-2/hn-10k/\n", + "tasks_1-20_v1-2/hn-10k/qa16_basic-induction_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa13_compound-coreference_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa13_compound-coreference_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa14_time-reasoning_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa5_three-arg-relations_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa17_positional-reasoning_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa9_simple-negation_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa12_conjunction_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa6_yes-no-questions_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa2_two-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa20_agents-motivations_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa7_counting_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa18_size-reasoning_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa1_single-supporting-fact_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa18_size-reasoning_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa1_single-supporting-fact_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa16_basic-induction_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa8_lists-sets_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa15_basic-deduction_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa11_basic-coreference_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa12_conjunction_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa10_indefinite-knowledge_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa19_path-finding_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa8_lists-sets_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa4_two-arg-relations_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa10_indefinite-knowledge_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa19_path-finding_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa20_agents-motivations_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa5_three-arg-relations_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa7_counting_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa3_three-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa14_time-reasoning_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa17_positional-reasoning_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa9_simple-negation_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa4_two-arg-relations_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa6_yes-no-questions_test.txt\n", + "tasks_1-20_v1-2/hn-10k/qa15_basic-deduction_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa3_three-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa2_two-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/hn-10k/qa11_basic-coreference_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/\n", + "tasks_1-20_v1-2/shuffled-10k/qa16_basic-induction_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa13_compound-coreference_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa13_compound-coreference_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa14_time-reasoning_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa5_three-arg-relations_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa17_positional-reasoning_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa9_simple-negation_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa12_conjunction_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa6_yes-no-questions_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa2_two-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa20_agents-motivations_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa7_counting_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa18_size-reasoning_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa1_single-supporting-fact_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa18_size-reasoning_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa1_single-supporting-fact_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa16_basic-induction_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa8_lists-sets_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa15_basic-deduction_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa11_basic-coreference_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa12_conjunction_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa10_indefinite-knowledge_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa19_path-finding_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa8_lists-sets_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa4_two-arg-relations_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa10_indefinite-knowledge_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa19_path-finding_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa20_agents-motivations_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa5_three-arg-relations_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa7_counting_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa3_three-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa14_time-reasoning_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa17_positional-reasoning_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa9_simple-negation_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa4_two-arg-relations_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa6_yes-no-questions_test.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa15_basic-deduction_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa3_three-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa2_two-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/shuffled-10k/qa11_basic-coreference_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/\n", + "tasks_1-20_v1-2/en-valid-10k/qa8_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa11_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa7_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa13_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa7_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa19_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa12_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa18_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa6_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa9_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa8_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa2_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa12_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa11_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa9_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa1_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa7_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa16_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa4_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa2_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa5_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa16_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa18_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa13_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa11_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa1_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa5_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa15_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa20_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa18_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa19_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa9_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa17_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa15_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa5_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa20_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa14_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa4_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa15_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa10_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa8_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa6_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa17_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa10_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa3_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa3_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa16_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa3_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa14_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa19_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa4_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa1_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa2_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa13_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa20_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa6_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa14_train.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa12_valid.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa17_test.txt\n", + "tasks_1-20_v1-2/en-valid-10k/qa10_valid.txt\n", + "tasks_1-20_v1-2/en/\n", + "tasks_1-20_v1-2/en/qa16_basic-induction_train.txt\n", + "tasks_1-20_v1-2/en/qa13_compound-coreference_train.txt\n", + "tasks_1-20_v1-2/en/qa13_compound-coreference_test.txt\n", + "tasks_1-20_v1-2/en/qa14_time-reasoning_test.txt\n", + "tasks_1-20_v1-2/en/qa5_three-arg-relations_test.txt\n", + "tasks_1-20_v1-2/en/qa17_positional-reasoning_train.txt\n", + "tasks_1-20_v1-2/en/qa9_simple-negation_train.txt\n", + "tasks_1-20_v1-2/en/qa12_conjunction_train.txt\n", + "tasks_1-20_v1-2/en/qa6_yes-no-questions_train.txt\n", + "tasks_1-20_v1-2/en/qa2_two-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/en/qa20_agents-motivations_train.txt\n", + "tasks_1-20_v1-2/en/qa7_counting_train.txt\n", + "tasks_1-20_v1-2/en/qa18_size-reasoning_test.txt\n", + "tasks_1-20_v1-2/en/qa1_single-supporting-fact_train.txt\n", + "tasks_1-20_v1-2/en/qa18_size-reasoning_train.txt\n", + "tasks_1-20_v1-2/en/qa1_single-supporting-fact_test.txt\n", + "tasks_1-20_v1-2/en/qa16_basic-induction_test.txt\n", + "tasks_1-20_v1-2/en/qa8_lists-sets_train.txt\n", + "tasks_1-20_v1-2/en/qa15_basic-deduction_test.txt\n", + "tasks_1-20_v1-2/en/qa11_basic-coreference_train.txt\n", + "tasks_1-20_v1-2/en/qa12_conjunction_test.txt\n", + "tasks_1-20_v1-2/en/qa10_indefinite-knowledge_test.txt\n", + "tasks_1-20_v1-2/en/qa19_path-finding_test.txt\n", + "tasks_1-20_v1-2/en/qa8_lists-sets_test.txt\n", + "tasks_1-20_v1-2/en/qa4_two-arg-relations_train.txt\n", + "tasks_1-20_v1-2/en/qa10_indefinite-knowledge_train.txt\n", + "tasks_1-20_v1-2/en/qa19_path-finding_train.txt\n", + "tasks_1-20_v1-2/en/qa20_agents-motivations_test.txt\n", + "tasks_1-20_v1-2/en/qa5_three-arg-relations_train.txt\n", + "tasks_1-20_v1-2/en/qa7_counting_test.txt\n", + "tasks_1-20_v1-2/en/qa3_three-supporting-facts_test.txt\n", + "tasks_1-20_v1-2/en/qa14_time-reasoning_train.txt\n", + "tasks_1-20_v1-2/en/qa17_positional-reasoning_test.txt\n", + "tasks_1-20_v1-2/en/qa9_simple-negation_test.txt\n", + "tasks_1-20_v1-2/en/qa4_two-arg-relations_test.txt\n", + "tasks_1-20_v1-2/en/qa6_yes-no-questions_test.txt\n", + "tasks_1-20_v1-2/en/qa15_basic-deduction_train.txt\n", + "tasks_1-20_v1-2/en/qa3_three-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/en/qa2_two-supporting-facts_train.txt\n", + "tasks_1-20_v1-2/en/qa11_basic-coreference_test.txt\n", + "tasks_1-20_v1-2/LICENSE.txt\n", + "tasks_1-20_v1-2/README.txt\n", + "[nltk_data] Downloading package punkt to /root/nltk_data...\n", + "[nltk_data] Package punkt is already up-to-date!\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "id": "uVmnoIp4DsJx", + "colab_type": "code", + "outputId": "ec96e268-5370-4227-8aed-55c5903edbcf", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "cell_type": "code", + "source": [ + "#資料前處理所需的function\n", + "\n", + "from __future__ import division, print_function\n", + "from keras.layers import Input\n", + "from keras.layers.core import Activation, Dense, Dropout, Permute\n", + "from keras.layers.embeddings import Embedding\n", + "from keras.layers.merge import add, concatenate, dot\n", + "from keras.layers.recurrent import LSTM\n", + "from keras.models import Model\n", + "from keras import layers\n", + "from keras.preprocessing.sequence import pad_sequences\n", + "from keras.utils import np_utils\n", + "import collections\n", + "import itertools\n", + "import nltk\n", + "import numpy as np\n", + "import os\n", + "\n", + "def get_data(infile):\n", + " stories, questions, answers = [], [], []\n", + " story_text = []\n", + " fin = open(TRAIN_FILE, \"rb\")\n", + " for line in fin:\n", + " line = line.decode(\"utf-8\").strip()\n", + " lno, text = line.split(\" \", 1)\n", + " if \"\\t\" in text:\n", + " question, answer, _ = text.split(\"\\t\")\n", + " stories.append(story_text)\n", + " questions.append(question)\n", + " answers.append(answer)\n", + " story_text = []\n", + " else:\n", + " story_text.append(text)\n", + " fin.close()\n", + " return stories, questions, answers\n", + "\n", + "\n", + "def build_vocab(train_data, test_data):\n", + " counter = collections.Counter()\n", + " for stories, questions, answers in [train_data, test_data]:\n", + " for story in stories:\n", + " for sent in story:\n", + " for word in nltk.word_tokenize(sent):\n", + " counter[word.lower()] += 1\n", + " for question in questions:\n", + " for word in nltk.word_tokenize(question):\n", + " counter[word.lower()] += 1\n", + " for answer in answers:\n", + " for word in nltk.word_tokenize(answer):\n", + " counter[word.lower()] += 1\n", + " # no OOV here because there are not too many words in dataset\n", + " word2idx = {w: (i+1) for i, (w, _) in enumerate(counter.most_common())}\n", + " word2idx[\"PAD\"] = 0\n", + " idx2word = {v: k for k, v in word2idx.items()}\n", + " return word2idx, idx2word\n", + "\n", + "\n", + "def get_maxlens(train_data, test_data):\n", + " story_maxlen, question_maxlen = 0, 0\n", + " for stories, questions, _ in [train_data, test_data]:\n", + " for story in stories:\n", + " story_len = 0\n", + " for sent in story:\n", + " swords = nltk.word_tokenize(sent)\n", + " story_len += len(swords)\n", + " if story_len > story_maxlen:\n", + " story_maxlen = story_len\n", + " for question in questions:\n", + " question_len = len(nltk.word_tokenize(question))\n", + " if question_len > question_maxlen:\n", + " question_maxlen = question_len\n", + " return story_maxlen, question_maxlen\n", + "\n", + "\n", + "def vectorize(data, word2idx, story_maxlen, question_maxlen):\n", + " Xs, Xq, Y = [], [], []\n", + " stories, questions, answers = data\n", + " for story, question, answer in zip(stories, questions, answers):\n", + " print ('Story:',story)\n", + " print ('Question:',question)\n", + " print ('Answer:',answer)\n", + " xs = [[word2idx[w.lower()] for w in nltk.word_tokenize(s)]\n", + " for s in story]\n", + " xs = list(itertools.chain.from_iterable(xs))\n", + " xq = [word2idx[w.lower()] for w in nltk.word_tokenize(question)]\n", + " Xs.append(xs)\n", + " Xq.append(xq)\n", + " Y.append(word2idx[answer.lower()])\n", + " pad_sequences_Xs = pad_sequences(Xs, maxlen=story_maxlen)\n", + " pad_sequences_Xq = pad_sequences(Xq, maxlen=question_maxlen)\n", + " categorical_Y = np_utils.to_categorical(Y, num_classes=len(word2idx))\n", + "\n", + " return pad_sequences_Xs, pad_sequences_Xq, categorical_Y\n", + " \n", + " \n", + " \n", + "# Tensorboard\n", + "\n", + "#安裝tensorboard colab\n", + "!pip install tensorboardcolab\n", + "from __future__ import absolute_import\n", + "from __future__ import unicode_literals\n", + "from time import gmtime, strftime\n", + "from keras.callbacks import TensorBoard\n", + "from tensorboardcolab import *\n", + "\n", + "\n", + "import os\n", + "\n", + "\n", + "def make_tensorboard(set_dir_name=''):\n", + " tictoc = strftime(\"%a_%d_%b_%Y_%H_%M_%S\", gmtime())\n", + " directory_name = tictoc\n", + " log_dir = set_dir_name + '_' + directory_name\n", + " os.mkdir(log_dir)\n", + " tbc=TensorBoardColab()\n", + " #tensorboard = TensorBoard(log_dir=log_dir)\n", + " tensorboard = TensorBoardColabCallback(tbc,histogram_freq=1,embeddings_freq=1, embeddings_layer_names = ['embedded_text','embedded_question'], embeddings_data = [Xstrain, Xqtrain] ) #, embeddings_metadata = '/content/logs/' + meta_file\n", + " # ['embedded_text','embedded_question']\n", + " return tensorboard" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: tensorboardcolab in /usr/local/lib/python3.6/dist-packages (0.0.19)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "kwgmCfsRD4WX", + "colab_type": "code", + "outputId": "0c9583b0-5ecf-461d-bd71-27130f87e25b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 72 + } + }, + "cell_type": "code", + "source": [ + "\n", + "DATA_DIR = \"tasks_1-20_v1-2/en\"\n", + "\n", + "TRAIN_FILE = os.path.join(DATA_DIR, \"qa1_single-supporting-fact_train.txt\")\n", + "TEST_FILE = os.path.join(DATA_DIR, \"qa1_single-supporting-fact_test.txt\")\n", + "\n", + "# get the data\n", + "data_train = get_data(TRAIN_FILE)\n", + "data_test = get_data(TEST_FILE)\n", + "\n", + "print(len(data_train[0]), len(data_test[0]))\n", + "\n", + "# build vocabulary from all the data\n", + "word2idx, idx2word = build_vocab(data_train, data_test)\n", + "\n", + "vocab_size = len(word2idx)\n", + "print(\"vocab size: {:d}\".format(len(word2idx)))\n", + "\n", + "# compute max sequence length for each entity\n", + "story_maxlen, question_maxlen = get_maxlens(data_train, data_test)\n", + "print(\"story maxlen: {:d}, \"\n", + " \"question maxlen: {:d}\".format(story_maxlen, question_maxlen))\n", + "\n", + "meta_file = \"w2v_metadata.tsv\"\n", + "# 按照 id 排序\n", + "word2idx_sorted = [(k, word2idx[k]) for k in sorted(word2idx, key = word2idx.get, reverse = False)]\n", + "\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "1000 1000\n", + "vocab size: 22\n", + "story maxlen: 14, question maxlen: 4\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "kuxOTNwe-jKV", + "colab_type": "code", + "outputId": "3ae40434-2cf3-494f-9089-e317c7f215fe", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 417 + } + }, + "cell_type": "code", + "source": [ + "word2idx_sorted" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[('PAD', 0),\n", + " ('to', 1),\n", + " ('the', 2),\n", + " ('.', 3),\n", + " ('where', 4),\n", + " ('is', 5),\n", + " ('?', 6),\n", + " ('went', 7),\n", + " ('sandra', 8),\n", + " ('john', 9),\n", + " ('daniel', 10),\n", + " ('mary', 11),\n", + " ('hallway', 12),\n", + " ('kitchen', 13),\n", + " ('garden', 14),\n", + " ('office', 15),\n", + " ('bedroom', 16),\n", + " ('bathroom', 17),\n", + " ('journeyed', 18),\n", + " ('travelled', 19),\n", + " ('moved', 20),\n", + " ('back', 21)]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "PTKHA-UKFSKt", + "colab_type": "code", + "outputId": "b1e60063-5fb6-4b98-ad59-b48c285f9b4a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 109126 + } + }, + "cell_type": "code", + "source": [ + "# vectorize the data\n", + "Xstrain, Xqtrain, Ytrain = \\\n", + " vectorize(data_train, word2idx, story_maxlen, question_maxlen)\n", + "Xstest, Xqtest, Ytest = \\\n", + " vectorize(data_test, word2idx, story_maxlen, question_maxlen)\n", + "\n", + "print(Xstrain.shape, Xqtrain.shape, Ytrain.shape,\n", + " Xstest.shape, Xqtest.shape, Ytest.shape)\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Story: ['Mary moved to the bathroom.', 'John went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the hallway.', 'Sandra moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the office.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the hallway.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'John moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the office.', 'Sandra went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the garden.', 'John travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the bedroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went to the bedroom.', 'John travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went to the bedroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the hallway.', 'John journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the bathroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the bedroom.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the office.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the garden.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the office.', 'John moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went to the hallway.', 'Mary travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'John moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the kitchen.', 'John went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John moved to the office.', 'Daniel went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the hallway.', 'Mary went to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bedroom.', 'John travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John moved to the bedroom.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the bedroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the bathroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the garden.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bathroom.', 'Mary moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the kitchen.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bedroom.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the hallway.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra went back to the bathroom.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bedroom.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the garden.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the garden.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the bathroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the kitchen.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the garden.', 'John went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bathroom.', 'Mary moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went back to the hallway.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'John travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went to the office.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the office.', 'John went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went to the hallway.', 'Mary journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the hallway.', 'Mary travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the hallway.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'Sandra went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the hallway.', 'John moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Daniel went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the bedroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'Mary travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the garden.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the kitchen.', 'Mary travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the hallway.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the kitchen.', 'Sandra went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the office.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the kitchen.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra went to the garden.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the bedroom.', 'Mary journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the bedroom.', 'Daniel went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'Sandra went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the bathroom.', 'John travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the bedroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the bathroom.', 'John went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel moved to the bathroom.', 'Daniel went to the office.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'Daniel went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra went to the office.', 'Sandra went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'John journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bathroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the garden.', 'Sandra moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the kitchen.', 'Daniel moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the hallway.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the garden.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bedroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the office.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'John moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the hallway.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the office.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'Mary went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the garden.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John moved to the office.', 'John travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the hallway.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the bathroom.', 'John travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the office.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the hallway.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the kitchen.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bedroom.', 'John travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra went back to the kitchen.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the hallway.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the bathroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bedroom.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bathroom.', 'John went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the office.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the garden.', 'John travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the office.', 'Daniel went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John moved to the kitchen.', 'Daniel travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John moved to the bathroom.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'John went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went back to the hallway.', 'Mary travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the bedroom.', 'John went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the bathroom.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John went to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the garden.', 'Sandra went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the hallway.', 'Mary moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went to the kitchen.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the bedroom.', 'John went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went back to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the kitchen.', 'Mary moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the office.', 'John journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John travelled to the bathroom.', 'Daniel moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the office.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John moved to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the hallway.', 'Sandra went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the office.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'Daniel moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the bathroom.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'Mary went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the office.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bedroom.', 'John went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the kitchen.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the office.', 'John went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Sandra went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bathroom.', 'Daniel moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the kitchen.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the garden.', 'Sandra went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the bedroom.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary travelled to the hallway.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the office.', 'Sandra moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the garden.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John travelled to the bathroom.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bathroom.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went back to the hallway.', 'John travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'John moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the bathroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the kitchen.', 'Mary moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the office.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bathroom.', 'John moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the office.', 'John went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary moved to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the office.', 'Daniel moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary travelled to the hallway.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bedroom.', 'Mary went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the hallway.', 'John travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bathroom.', 'John journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the garden.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John journeyed to the office.', 'John travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the office.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John moved to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went to the bathroom.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the office.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Mary travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the garden.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the kitchen.', 'Daniel travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'John went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went to the office.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary went to the bathroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the office.', 'John went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John moved to the office.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the kitchen.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the hallway.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the bedroom.', 'Daniel travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the hallway.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bedroom.', 'John travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'John journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bathroom.', 'Mary moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bedroom.', 'John moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John journeyed to the hallway.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the office.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the bedroom.', 'Sandra went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went back to the hallway.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the kitchen.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the garden.', 'John moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the garden.', 'Daniel went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the kitchen.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the bathroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary moved to the hallway.', 'Mary went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bathroom.', 'Mary journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the garden.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went back to the hallway.', 'Mary went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the bathroom.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the office.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John travelled to the bathroom.', 'Mary moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bathroom.', 'Sandra went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the hallway.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John went to the bedroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'Mary went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bathroom.', 'Mary went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the office.', 'Mary went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went back to the garden.', 'John moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John travelled to the bathroom.', 'Mary moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the garden.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel went back to the bathroom.', 'John moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the kitchen.', 'Daniel travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the office.', 'Mary went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the bedroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the hallway.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John went back to the garden.', 'John travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'Sandra moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the garden.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the bathroom.', 'John went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the hallway.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the kitchen.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'John moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel moved to the hallway.', 'John moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the kitchen.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bathroom.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the hallway.', 'John travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bedroom.', 'Daniel went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the hallway.', 'Mary went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary journeyed to the garden.', 'John went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John journeyed to the bathroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the office.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bathroom.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the kitchen.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the bathroom.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the kitchen.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the kitchen.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Sandra went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the garden.', 'John journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the kitchen.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Mary travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bedroom.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went back to the kitchen.', 'Mary went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bedroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the hallway.', 'Sandra went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went to the office.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John travelled to the hallway.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bathroom.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the garden.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the bathroom.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the kitchen.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bedroom.', 'John went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John went back to the kitchen.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went back to the garden.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the hallway.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Mary went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went back to the bedroom.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the garden.', 'Mary went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bedroom.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the garden.', 'Daniel went back to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the bedroom.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the garden.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the office.', 'Mary moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'Daniel moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the kitchen.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went to the kitchen.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the kitchen.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the bedroom.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John went back to the office.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the bedroom.', 'Sandra went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the hallway.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the bedroom.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bedroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bedroom.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went to the hallway.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel moved to the hallway.', 'John went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the office.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bathroom.', 'Sandra went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the hallway.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John moved to the garden.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the garden.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the hallway.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the hallway.', 'Daniel went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the garden.', 'John moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the office.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the kitchen.', 'Sandra went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra moved to the bathroom.', 'John journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the hallway.', 'John moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the garden.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bedroom.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bathroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the kitchen.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John travelled to the office.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bedroom.', 'John went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bedroom.', 'John went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'Sandra travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the hallway.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the hallway.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the kitchen.', 'John went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the office.', 'Mary moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the office.', 'Mary went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the bedroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bedroom.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'Mary moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went back to the bathroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the office.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went back to the garden.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the bathroom.', 'Mary moved to the office.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went to the hallway.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Daniel went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the garden.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra moved to the hallway.', 'Daniel went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the garden.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Sandra went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the garden.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went to the bathroom.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the office.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John moved to the hallway.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the bedroom.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the office.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John travelled to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the office.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Sandra went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Mary journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bathroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bedroom.', 'Mary went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John travelled to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the hallway.', 'Mary went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'Mary went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the hallway.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the hallway.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John moved to the office.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the bedroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the office.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bathroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the bathroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'Sandra went to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the hallway.', 'Mary travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bedroom.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John moved to the bedroom.', 'Mary went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the bedroom.', 'Mary moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'Sandra went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the bedroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the garden.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bedroom.', 'John went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the kitchen.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the garden.', 'Daniel went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the office.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the office.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the bathroom.', 'John went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the office.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the garden.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the hallway.', 'John went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bedroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the garden.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Mary travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John went back to the bathroom.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John moved to the office.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went back to the bedroom.', 'Mary moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel went to the garden.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the office.', 'John moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bedroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the kitchen.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bedroom.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the hallway.', 'John went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the garden.', 'Mary went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John moved to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the hallway.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the hallway.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John went to the office.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John went to the bedroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bedroom.', 'Mary went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the bathroom.', 'Sandra moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the hallway.', 'John went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went to the hallway.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bathroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the bedroom.', 'John travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the hallway.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went to the kitchen.', 'John went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John moved to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra moved to the office.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the office.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'John moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the bathroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the kitchen.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the bedroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the kitchen.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the office.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the kitchen.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the kitchen.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the hallway.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the bedroom.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the bedroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Sandra went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the hallway.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the kitchen.', 'Daniel went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the office.', 'John travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra moved to the bedroom.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the office.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra moved to the office.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John moved to the office.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the kitchen.', 'Mary went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John moved to the bathroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bedroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the garden.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the hallway.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bathroom.', 'Mary went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the office.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went back to the garden.', 'Daniel went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the bedroom.', 'Mary went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the hallway.', 'Mary moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'John went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the hallway.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'Mary went to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the office.', 'Mary went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the kitchen.', 'John moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the garden.', 'John moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bathroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the garden.', 'Mary travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the kitchen.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went to the kitchen.', 'Sandra travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bedroom.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bathroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the office.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the hallway.', 'John moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary travelled to the bedroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the hallway.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the kitchen.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the garden.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'John went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the office.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the office.', 'Mary moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Mary journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the bathroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the kitchen.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John travelled to the bedroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John travelled to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the bedroom.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the hallway.', 'Mary journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the bathroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the bedroom.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the kitchen.', 'Mary moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the office.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the office.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the garden.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the office.', 'Mary went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John travelled to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the bathroom.', 'Mary travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Sandra moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went back to the hallway.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the bathroom.', 'Daniel went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra went to the kitchen.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went to the office.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the kitchen.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John moved to the hallway.', 'Sandra travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the garden.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary journeyed to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the office.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the office.', 'Sandra went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the bedroom.', 'Sandra went back to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the hallway.', 'Sandra went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went back to the bedroom.', 'Mary travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John journeyed to the kitchen.', 'Sandra went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the bedroom.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the garden.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John moved to the bedroom.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the garden.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the garden.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the office.', 'Mary journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the bedroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the bedroom.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the office.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the garden.', 'Mary went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the hallway.', 'Daniel moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the office.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Sandra went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went to the office.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John travelled to the garden.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the garden.', 'Mary went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John travelled to the kitchen.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the garden.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the office.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the bathroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the garden.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the bathroom.', 'John moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went back to the kitchen.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the office.', 'Mary went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra moved to the bedroom.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the garden.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the kitchen.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the office.', 'Daniel moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the kitchen.', 'John travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the kitchen.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went to the hallway.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel moved to the hallway.', 'Sandra went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the garden.', 'Sandra went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the garden.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra went to the bedroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'Sandra went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John journeyed to the hallway.', 'John moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the bedroom.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went to the office.', 'Daniel journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the bathroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the garden.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the garden.', 'Mary went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the kitchen.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the hallway.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the hallway.', 'John travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel travelled to the garden.', 'Mary moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the garden.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John went back to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the hallway.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the office.', 'Mary moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the garden.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John moved to the hallway.', 'Mary moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the garden.', 'Mary went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bedroom.', 'John went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra went back to the hallway.', 'John went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the office.', 'John travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the bedroom.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the hallway.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the office.', 'John moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John went back to the hallway.', 'Daniel moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bathroom.', 'Mary went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bathroom.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John went to the hallway.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John went to the kitchen.', 'Sandra moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the kitchen.', 'Mary moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the hallway.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the garden.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went back to the kitchen.', 'Sandra moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bedroom.', 'John travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the hallway.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went back to the office.', 'John journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the kitchen.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'John journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the hallway.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'Daniel went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel went back to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the bedroom.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bathroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the kitchen.', 'Sandra went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the bedroom.', 'Mary moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the kitchen.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bedroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the office.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the office.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John travelled to the office.', 'Sandra journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the garden.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the kitchen.', 'Sandra went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the kitchen.', 'John went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the garden.', 'Mary journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went to the hallway.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Mary moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra moved to the hallway.', 'John travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the kitchen.', 'John went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary went back to the kitchen.', 'John journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the office.', 'John journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the bedroom.', 'John went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John moved to the bedroom.', 'Mary travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went back to the kitchen.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the bathroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'John went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel went back to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary went to the office.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John moved to the bedroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the garden.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John went back to the office.', 'Daniel moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the hallway.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the kitchen.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the hallway.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Daniel went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the bedroom.', 'Mary went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bedroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the bedroom.', 'Sandra moved to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the bathroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the hallway.', 'John went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John moved to the kitchen.', 'John went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the bathroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'Sandra journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the garden.', 'Mary went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the kitchen.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bathroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bathroom.', 'Daniel went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Mary went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the office.', 'Mary went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the garden.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bathroom.', 'Mary went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the garden.', 'John moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the hallway.', 'John journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John travelled to the garden.', 'Sandra went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bedroom.', 'Mary went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the hallway.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went to the kitchen.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the garden.', 'Mary went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the hallway.', 'Mary went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the office.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the garden.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the office.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the bedroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the hallway.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Mary moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went back to the hallway.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'John went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the garden.', 'Sandra went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John travelled to the garden.', 'Daniel went to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the hallway.', 'Mary went back to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the kitchen.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'John journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the office.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the kitchen.', 'John went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went back to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the hallway.', 'John journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the garden.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the garden.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the office.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went to the bedroom.', 'John went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John moved to the garden.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went to the garden.', 'John journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary travelled to the bathroom.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary moved to the bedroom.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the office.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel went back to the office.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the bathroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the kitchen.', 'Mary went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the kitchen.', 'Daniel moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the hallway.', 'Mary moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the hallway.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the kitchen.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the garden.', 'John journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John moved to the garden.', 'Daniel went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'Daniel moved to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the hallway.', 'John went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the kitchen.', 'Mary travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bathroom.', 'John went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bathroom.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the garden.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the office.', 'Mary travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the garden.', 'John moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the bedroom.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John moved to the office.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'John travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the kitchen.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bedroom.', 'Daniel went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Daniel went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'Daniel went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the bathroom.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the hallway.', 'John went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the bedroom.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the garden.', 'John travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the hallway.', 'Sandra went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bathroom.', 'Mary went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the bathroom.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the bathroom.', 'John travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the hallway.', 'John journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the bedroom.', 'Daniel went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the office.', 'John went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the bedroom.', 'John went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John moved to the hallway.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the garden.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the hallway.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went to the kitchen.', 'John went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the office.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the hallway.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the bedroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John moved to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bedroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the office.', 'John went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John moved to the hallway.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the garden.', 'Daniel journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went back to the kitchen.', 'Daniel went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the bedroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the garden.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the hallway.', 'John went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the hallway.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel moved to the hallway.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the bathroom.', 'Daniel went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the garden.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the bathroom.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the bathroom.', 'John went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went to the hallway.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary journeyed to the bathroom.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the garden.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the office.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the hallway.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John travelled to the kitchen.', 'Daniel went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went back to the hallway.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary moved to the bedroom.', 'John travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went back to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary travelled to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the hallway.', 'Daniel went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went back to the hallway.', 'John went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bedroom.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the office.', 'Daniel moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the garden.', 'Mary moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra went to the kitchen.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the bathroom.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bedroom.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the bathroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the kitchen.', 'John journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the bathroom.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the kitchen.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the garden.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bedroom.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the hallway.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bedroom.', 'Daniel travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the garden.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bedroom.', 'Mary went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the bathroom.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'John journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the bedroom.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the office.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the office.', 'John went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the garden.', 'Mary went back to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel went to the hallway.', 'John travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went to the garden.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John moved to the kitchen.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John journeyed to the bedroom.', 'Mary moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Mary travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the bedroom.', 'Sandra went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the hallway.', 'Mary went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the kitchen.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went back to the bedroom.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the kitchen.', 'John journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the bedroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the bedroom.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the garden.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the hallway.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the bathroom.', 'John travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the office.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the garden.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went to the bedroom.', 'John went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the garden.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bathroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bedroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the garden.', 'John journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the kitchen.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bedroom.', 'John went to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John journeyed to the bathroom.', 'Sandra journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John moved to the garden.', 'Daniel went back to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the office.', 'Mary went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the hallway.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the bathroom.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the bathroom.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the office.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the office.', 'Mary travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the hallway.', 'John travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the garden.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bathroom.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John moved to the hallway.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went back to the office.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the bedroom.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'Mary went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the office.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'Daniel moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the office.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bedroom.', 'John travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the garden.', 'Mary travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the office.', 'Sandra went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went back to the office.', 'Sandra went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John journeyed to the bedroom.', 'Mary went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went back to the kitchen.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went back to the office.', 'Sandra went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the bedroom.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the office.', 'Mary went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the kitchen.', 'John went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the hallway.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary moved to the bathroom.', 'John went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the hallway.', 'Sandra moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the office.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the hallway.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'John moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the office.', 'Sandra went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the garden.', 'John travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the bedroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went to the bedroom.', 'John travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went to the bedroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the hallway.', 'John journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the bathroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the bedroom.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the office.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the garden.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the office.', 'John moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went to the hallway.', 'Mary travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'John moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the kitchen.', 'John went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John moved to the office.', 'Daniel went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the hallway.', 'Mary went to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bedroom.', 'John travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John moved to the bedroom.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the bedroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the bathroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the garden.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bathroom.', 'Mary moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the kitchen.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bedroom.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the hallway.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra went back to the bathroom.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bedroom.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the garden.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the garden.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the bathroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the kitchen.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the garden.', 'John went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bathroom.', 'Mary moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went back to the hallway.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'John travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went to the office.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the office.', 'John went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went to the hallway.', 'Mary journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the hallway.', 'Mary travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the hallway.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'Sandra went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the hallway.', 'John moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Daniel went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the bedroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'Mary travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the garden.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the kitchen.', 'Mary travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the hallway.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the kitchen.', 'Sandra went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the office.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the kitchen.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra went to the garden.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the bedroom.', 'Mary journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the bedroom.', 'Daniel went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'Sandra went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the bathroom.', 'John travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the bedroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the bathroom.', 'John went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel moved to the bathroom.', 'Daniel went to the office.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'Daniel went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra went to the office.', 'Sandra went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'John journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bathroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the garden.', 'Sandra moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the kitchen.', 'Daniel moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the hallway.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the garden.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bedroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the office.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'John moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the hallway.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the office.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'Mary went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the garden.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John moved to the office.', 'John travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the hallway.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the bathroom.', 'John travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the office.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the hallway.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the kitchen.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bedroom.', 'John travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra went back to the kitchen.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the hallway.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the bathroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bedroom.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bathroom.', 'John went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the office.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the garden.', 'John travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the office.', 'Daniel went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John moved to the kitchen.', 'Daniel travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John moved to the bathroom.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'John went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went back to the hallway.', 'Mary travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the bedroom.', 'John went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the bathroom.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John went to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the garden.', 'Sandra went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the hallway.', 'Mary moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went to the kitchen.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the bedroom.', 'John went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went back to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the kitchen.', 'Mary moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the office.', 'John journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John travelled to the bathroom.', 'Daniel moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the office.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John moved to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the hallway.', 'Sandra went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the office.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'Daniel moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the bathroom.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'Mary went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the office.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bedroom.', 'John went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the kitchen.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the office.', 'John went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Sandra went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bathroom.', 'Daniel moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the kitchen.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the garden.', 'Sandra went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the bedroom.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary travelled to the hallway.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the office.', 'Sandra moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the garden.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John travelled to the bathroom.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bathroom.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went back to the hallway.', 'John travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'John moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the bathroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the kitchen.', 'Mary moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the office.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bathroom.', 'John moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the office.', 'John went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary moved to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the office.', 'Daniel moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary travelled to the hallway.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bedroom.', 'Mary went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the hallway.', 'John travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bathroom.', 'John journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the garden.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John journeyed to the office.', 'John travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the office.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John moved to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went to the bathroom.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the office.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Mary travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the garden.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the kitchen.', 'Daniel travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'John went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went to the office.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary went to the bathroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the office.', 'John went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John moved to the office.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the kitchen.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the hallway.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the bedroom.', 'Daniel travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the hallway.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bedroom.', 'John travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'John journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bathroom.', 'Mary moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bedroom.', 'John moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John journeyed to the hallway.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the office.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the bedroom.', 'Sandra went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went back to the hallway.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the kitchen.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the garden.', 'John moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the garden.', 'Daniel went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the kitchen.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the bathroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary moved to the hallway.', 'Mary went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bathroom.', 'Mary journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the garden.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went back to the hallway.', 'Mary went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the bathroom.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the office.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John travelled to the bathroom.', 'Mary moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bathroom.', 'Sandra went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the hallway.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John went to the bedroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'Mary went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bathroom.', 'Mary went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the office.', 'Mary went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went back to the garden.', 'John moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John travelled to the bathroom.', 'Mary moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the garden.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel went back to the bathroom.', 'John moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the kitchen.', 'Daniel travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the office.', 'Mary went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the bedroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the hallway.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John went back to the garden.', 'John travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'Sandra moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the garden.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the bathroom.', 'John went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the hallway.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the kitchen.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'John moved to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel moved to the hallway.', 'John moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the kitchen.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bathroom.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the hallway.', 'John travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bedroom.', 'Daniel went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the hallway.', 'Mary went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary journeyed to the garden.', 'John went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John journeyed to the bathroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the office.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bathroom.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the kitchen.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the bathroom.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the kitchen.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the kitchen.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Sandra went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the garden.', 'John journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the kitchen.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Mary travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bedroom.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went back to the kitchen.', 'Mary went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bedroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the hallway.', 'Sandra went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went to the office.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John travelled to the hallway.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bathroom.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the garden.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the bathroom.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the kitchen.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bedroom.', 'John went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John went back to the kitchen.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went back to the garden.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the hallway.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Mary went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went back to the bedroom.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the garden.', 'Mary went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bedroom.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the garden.', 'Daniel went back to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the bedroom.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the garden.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the office.', 'Mary moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'Daniel moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the kitchen.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went to the kitchen.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the kitchen.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the bedroom.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John went back to the office.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the bedroom.', 'Sandra went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the hallway.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the bedroom.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bedroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bedroom.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went to the hallway.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel moved to the hallway.', 'John went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the office.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bathroom.', 'Sandra went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the hallway.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John moved to the garden.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the garden.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the hallway.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the hallway.', 'Daniel went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the garden.', 'John moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the office.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the kitchen.', 'Sandra went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra moved to the bathroom.', 'John journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the hallway.', 'John moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the garden.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bedroom.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bathroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the kitchen.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John travelled to the office.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bedroom.', 'John went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bedroom.', 'John went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'Sandra travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the hallway.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the hallway.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the kitchen.', 'John went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the office.', 'Mary moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the office.', 'Mary went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the bedroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bedroom.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'Mary moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went back to the bathroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the office.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went back to the garden.', 'John journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the bathroom.', 'Mary moved to the office.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went to the hallway.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Daniel went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the garden.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra moved to the hallway.', 'Daniel went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the garden.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Sandra went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the garden.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went to the bathroom.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the office.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John moved to the hallway.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the bedroom.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the office.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John travelled to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John travelled to the office.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Sandra went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Mary journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bathroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bedroom.', 'Mary went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John travelled to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the hallway.', 'Mary went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the office.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the office.', 'Mary went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the hallway.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the hallway.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John moved to the office.', 'Daniel travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the bedroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the office.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bathroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the bathroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'Sandra went to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the hallway.', 'Mary travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bedroom.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John moved to the bedroom.', 'Mary went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the bedroom.', 'Mary moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'Sandra went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the bedroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the garden.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bedroom.', 'John went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the kitchen.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the garden.', 'Daniel went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the office.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the office.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the bathroom.', 'John went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the office.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the garden.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the hallway.', 'John went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bedroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the garden.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Mary travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John went back to the bathroom.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John moved to the office.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went back to the bedroom.', 'Mary moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel went to the garden.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the office.', 'John moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bedroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the kitchen.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bedroom.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the hallway.', 'John went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the garden.', 'Mary went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John moved to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the hallway.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the hallway.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bedroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John went to the office.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John went to the bedroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the garden.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bedroom.', 'Mary went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the bathroom.', 'Sandra moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the hallway.', 'John went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went to the hallway.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went back to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bathroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the bedroom.', 'John travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the hallway.', 'Sandra went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went to the kitchen.', 'John went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John moved to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra moved to the office.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the office.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'John moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel went to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the bathroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the kitchen.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the bedroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the kitchen.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the office.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the kitchen.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the kitchen.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the hallway.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the bedroom.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the bedroom.', 'John journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Sandra went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the hallway.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the kitchen.', 'Daniel went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the office.', 'John travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra moved to the bedroom.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the office.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra moved to the office.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John moved to the office.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the kitchen.', 'Mary went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John moved to the bathroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bedroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the hallway.', 'John went back to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the garden.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the hallway.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bathroom.', 'Mary went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the office.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went back to the garden.', 'Daniel went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the bedroom.', 'Mary went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the hallway.', 'Mary moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'John went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the hallway.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'Mary went to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the office.', 'Mary went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Daniel moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the kitchen.', 'John moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the garden.', 'John moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bathroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the garden.', 'Mary travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the kitchen.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went to the kitchen.', 'Sandra travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bedroom.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bathroom.', 'Mary travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the office.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the kitchen.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the hallway.', 'John moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary travelled to the bedroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the hallway.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the kitchen.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the garden.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the garden.', 'John went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the office.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the office.', 'Mary moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Mary journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the bathroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the kitchen.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John travelled to the bedroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John travelled to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the bedroom.', 'Daniel moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the hallway.', 'Mary journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the bathroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the bedroom.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the kitchen.', 'Mary moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the office.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the office.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the garden.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the office.', 'Mary went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John travelled to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the bathroom.', 'Mary travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the bedroom.', 'Sandra moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went back to the hallway.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the bathroom.', 'Daniel went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra went to the kitchen.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John journeyed to the garden.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went to the office.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the kitchen.', 'Mary moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John moved to the hallway.', 'Sandra travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the garden.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary journeyed to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the office.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the office.', 'Sandra went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the bedroom.', 'Sandra went back to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the hallway.', 'Sandra went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the bedroom.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the bedroom.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went back to the bedroom.', 'Mary travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John journeyed to the kitchen.', 'Sandra went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the bedroom.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the garden.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John moved to the bedroom.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the garden.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the garden.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the office.', 'Mary journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the bedroom.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel journeyed to the bedroom.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the office.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel journeyed to the garden.', 'Mary went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the hallway.', 'Daniel moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the office.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the bathroom.', 'Sandra went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went to the office.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John travelled to the garden.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the garden.', 'Mary went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John travelled to the kitchen.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the garden.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the office.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the bathroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the garden.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the bathroom.', 'John moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went back to the kitchen.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the office.', 'Mary went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra moved to the bedroom.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Daniel went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary travelled to the garden.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the kitchen.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the office.', 'Daniel moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the kitchen.', 'John travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the kitchen.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the office.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went to the hallway.', 'Daniel journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel moved to the hallway.', 'Sandra went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the garden.', 'Sandra went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the garden.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra went to the bedroom.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'Sandra went back to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John journeyed to the hallway.', 'John moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the bedroom.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went to the office.', 'Daniel journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary travelled to the bathroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the garden.', 'John moved to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the garden.', 'Mary went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the kitchen.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the hallway.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the hallway.', 'John travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel travelled to the garden.', 'Mary moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the garden.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John went back to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the hallway.', 'John travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the office.', 'Mary moved to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the garden.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John moved to the hallway.', 'Mary moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the garden.', 'Mary went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the bedroom.', 'John went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra went back to the hallway.', 'John went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the office.', 'John travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the bedroom.', 'Daniel journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the kitchen.', 'Sandra went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the hallway.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John went to the office.', 'John moved to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John went back to the hallway.', 'Daniel moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bathroom.', 'Mary went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the garden.', 'Daniel moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bathroom.', 'Sandra travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John went to the hallway.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John went to the kitchen.', 'Sandra moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the kitchen.', 'Mary moved to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the hallway.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the garden.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went back to the kitchen.', 'Sandra moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bedroom.', 'John travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel went back to the hallway.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went back to the office.', 'John journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the kitchen.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'John journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the kitchen.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the hallway.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'Daniel went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the kitchen.', 'Daniel went back to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'John went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John went to the bedroom.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bathroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Sandra moved to the kitchen.', 'Sandra went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the bedroom.', 'Mary moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the kitchen.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bedroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the kitchen.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the office.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John travelled to the office.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the bedroom.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John travelled to the office.', 'Sandra journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the garden.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the kitchen.', 'Sandra went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the kitchen.', 'John went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the garden.', 'Mary journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John went to the hallway.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went to the hallway.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Mary moved to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra moved to the hallway.', 'John travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the hallway.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the kitchen.', 'John went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Mary went back to the kitchen.', 'John journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the office.', 'John journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bedroom.', 'Sandra travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the bedroom.', 'John went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John moved to the bedroom.', 'Mary travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the office.', 'Sandra went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went back to the kitchen.', 'Mary went back to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Mary journeyed to the bathroom.', 'Daniel travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the bathroom.', 'John went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel went back to the office.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the bathroom.', 'Daniel moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Mary went to the office.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['John moved to the bedroom.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the garden.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John went back to the office.', 'Daniel moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the hallway.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel moved to the kitchen.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel travelled to the hallway.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Daniel went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the bedroom.', 'Mary went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bedroom.', 'John journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the hallway.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went to the bedroom.', 'Sandra moved to the office.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel went to the bathroom.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the hallway.', 'John went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John moved to the kitchen.', 'John went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the bathroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the office.', 'Sandra journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary went back to the garden.', 'Mary went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bedroom.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the kitchen.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the kitchen.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bathroom.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the bathroom.', 'Daniel went back to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra moved to the bathroom.', 'Mary went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the office.', 'Mary went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'John moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the garden.', 'Sandra journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bathroom.', 'Mary went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the garden.', 'John moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the office.', 'Mary went to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went back to the hallway.', 'John journeyed to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John travelled to the garden.', 'Sandra went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the garden.', 'Mary journeyed to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the bedroom.', 'Mary went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the hallway.', 'Mary travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John went to the kitchen.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the garden.', 'Mary went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the hallway.', 'Mary went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the office.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the garden.', 'Daniel journeyed to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the office.', 'Mary travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the bedroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the hallway.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary moved to the garden.', 'Mary moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went back to the hallway.', 'John journeyed to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'John went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the garden.', 'Sandra went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John travelled to the garden.', 'Daniel went to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the hallway.', 'Mary went back to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary went back to the kitchen.', 'John went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the kitchen.', 'John journeyed to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the office.', 'John journeyed to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the office.', 'Mary moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Sandra went to the kitchen.', 'John went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra went back to the hallway.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the hallway.', 'John journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the garden.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary journeyed to the garden.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra moved to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the office.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went to the bedroom.', 'John went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['John moved to the garden.', 'Sandra journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went to the garden.', 'John journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary travelled to the bathroom.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary moved to the bedroom.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the garden.', 'John went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the office.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel went back to the office.', 'Mary travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the bathroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the kitchen.', 'Mary went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the kitchen.', 'Daniel moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the hallway.', 'Mary moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the hallway.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went to the bedroom.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the kitchen.', 'Sandra travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary moved to the garden.', 'John journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the bedroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John moved to the garden.', 'Daniel went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary went to the office.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went back to the garden.', 'Daniel moved to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went to the hallway.', 'John went back to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the kitchen.', 'Mary travelled to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bathroom.', 'John went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went to the bathroom.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the garden.', 'Mary went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went to the office.', 'Mary travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel journeyed to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['John went to the garden.', 'John moved to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the bedroom.', 'Mary went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John moved to the office.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the office.', 'John travelled to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the kitchen.', 'Sandra journeyed to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the kitchen.', 'Sandra went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went back to the bedroom.', 'Daniel went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the garden.', 'Daniel went back to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went to the kitchen.', 'Daniel went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the bathroom.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the hallway.', 'John went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the bedroom.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the garden.', 'Daniel moved to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the hallway.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went back to the garden.', 'John travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['John journeyed to the office.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the hallway.', 'Sandra went to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the hallway.', 'Daniel went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the bathroom.', 'Mary went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John travelled to the bathroom.', 'Daniel went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['John moved to the kitchen.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the bathroom.', 'John travelled to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: bathroom\n", + "Story: ['Daniel went to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the hallway.', 'John journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John went to the bedroom.', 'Daniel went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['John travelled to the office.', 'John went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the bedroom.', 'John went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John moved to the hallway.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the garden.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went to the hallway.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John went to the kitchen.', 'John went back to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the office.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the hallway.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary journeyed to the bedroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the garden.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['John moved to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the bedroom.', 'Sandra moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Daniel travelled to the office.', 'John went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John moved to the hallway.', 'Sandra went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the garden.', 'Daniel journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the bedroom.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went back to the kitchen.', 'Daniel went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary travelled to the bedroom.', 'Daniel moved to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the garden.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Sandra journeyed to the hallway.', 'John went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['John moved to the hallway.', 'Daniel journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Daniel moved to the hallway.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the bathroom.', 'Daniel went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the garden.', 'Sandra moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel journeyed to the bathroom.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Sandra went to the bathroom.', 'John went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra went to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went to the hallway.', 'Daniel travelled to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary journeyed to the bathroom.', 'Daniel journeyed to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Daniel went back to the garden.', 'Daniel travelled to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Mary went to the office.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['Mary went to the hallway.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['John travelled to the kitchen.', 'Daniel went to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John went back to the hallway.', 'John moved to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Mary moved to the bedroom.', 'John travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went back to the bathroom.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Mary travelled to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra journeyed to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the hallway.', 'Daniel went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary moved to the bathroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Mary went back to the hallway.', 'John went to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Sandra travelled to the bedroom.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the garden.', 'Daniel went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel moved to the garden.', 'Sandra travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the office.', 'Daniel moved to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the garden.', 'Mary moved to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the kitchen.', 'Sandra moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: garden\n", + "Story: ['Sandra went to the kitchen.', 'Daniel went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the bathroom.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra went back to the bedroom.', 'Mary went back to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary moved to the bathroom.', 'Mary went to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bathroom.', 'Sandra went back to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: bathroom\n", + "Story: ['Mary moved to the kitchen.', 'John journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary moved to the bathroom.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John went to the kitchen.', 'John went to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra moved to the garden.', 'Sandra went back to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['John moved to the bedroom.', 'Sandra went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the hallway.', 'Daniel journeyed to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Daniel travelled to the bedroom.', 'Daniel travelled to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the garden.', 'Daniel went back to the kitchen.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the bedroom.', 'Mary went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the hallway.', 'John went back to the bedroom.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Daniel journeyed to the bathroom.', 'John went back to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['John went to the kitchen.', 'John journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the bedroom.', 'John journeyed to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the office.', 'Mary went back to the bathroom.']\n", + "Question: Where is Mary? \n", + "Answer: bathroom\n", + "Story: ['John journeyed to the garden.', 'Sandra went to the bathroom.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the office.', 'John went back to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary journeyed to the bedroom.', 'Mary journeyed to the garden.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the garden.', 'Mary went back to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Daniel went to the hallway.', 'John travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: hallway\n", + "Story: ['Mary went to the garden.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John moved to the kitchen.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John journeyed to the bedroom.', 'Mary moved to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the bathroom.', 'Mary travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the bedroom.', 'Sandra went back to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the bathroom.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the hallway.', 'Mary went to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the kitchen.', 'Sandra moved to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary went back to the bedroom.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the bedroom.', 'Daniel went to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra journeyed to the garden.', 'Sandra travelled to the office.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Mary travelled to the office.', 'Mary journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: office\n", + "Story: ['Daniel journeyed to the kitchen.', 'John journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the bedroom.', 'Sandra journeyed to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary travelled to the bedroom.', 'John travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the garden.', 'Sandra went back to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Sandra journeyed to the bathroom.', 'Daniel moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra journeyed to the hallway.', 'Mary moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Mary went back to the office.', 'Sandra moved to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra moved to the kitchen.', 'Daniel moved to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra went to the hallway.', 'Mary journeyed to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: hallway\n", + "Story: ['John went back to the bathroom.', 'John travelled to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Sandra moved to the office.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John travelled to the garden.', 'Mary moved to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went to the bedroom.', 'John went back to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the garden.', 'John went to the office.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bathroom.', 'Sandra journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['Mary went back to the bedroom.', 'Daniel travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['Daniel went back to the garden.', 'John journeyed to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel moved to the kitchen.', 'Mary journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bedroom.', 'John went to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['John journeyed to the bathroom.', 'Sandra journeyed to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['John moved to the garden.', 'Daniel went back to the office.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the office.', 'Mary went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Daniel went back to the hallway.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra journeyed to the bathroom.', 'Sandra went to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra went to the bathroom.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['Sandra went to the bathroom.', 'John journeyed to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Daniel went to the office.', 'John went to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Daniel travelled to the kitchen.', 'Mary journeyed to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went back to the office.', 'Mary travelled to the garden.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the hallway.', 'John travelled to the office.']\n", + "Question: Where is Mary? \n", + "Answer: garden\n", + "Story: ['Sandra went to the kitchen.', 'John journeyed to the kitchen.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the garden.', 'Mary travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['Sandra went back to the bathroom.', 'Daniel journeyed to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "Story: ['John moved to the hallway.', 'Mary moved to the bathroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bathroom\n", + "Story: ['John went back to the office.', 'Mary went to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Sandra moved to the bedroom.', 'John travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the hallway.', 'Mary went to the hallway.']\n", + "Question: Where is Daniel? \n", + "Answer: hallway\n", + "Story: ['Mary travelled to the office.', 'Sandra moved to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['John went back to the hallway.', 'Daniel moved to the garden.']\n", + "Question: Where is Sandra? \n", + "Answer: kitchen\n", + "Story: ['Daniel moved to the office.', 'Daniel travelled to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: bedroom\n", + "Story: ['Mary went to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is John? \n", + "Answer: hallway\n", + "Story: ['Sandra went back to the bedroom.', 'John travelled to the kitchen.']\n", + "Question: Where is Mary? \n", + "Answer: kitchen\n", + "Story: ['Mary went back to the garden.', 'Mary travelled to the office.']\n", + "Question: Where is John? \n", + "Answer: kitchen\n", + "Story: ['John journeyed to the office.', 'Sandra went to the office.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Sandra journeyed to the kitchen.', 'John travelled to the hallway.']\n", + "Question: Where is Mary? \n", + "Answer: office\n", + "Story: ['Daniel went back to the office.', 'Sandra went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['John journeyed to the bedroom.', 'Mary went back to the bathroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel went back to the kitchen.', 'Mary travelled to the bedroom.']\n", + "Question: Where is Mary? \n", + "Answer: bedroom\n", + "Story: ['John went back to the office.', 'Sandra went to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: kitchen\n", + "Story: ['Daniel went to the bedroom.', 'John went back to the garden.']\n", + "Question: Where is John? \n", + "Answer: garden\n", + "Story: ['Sandra travelled to the hallway.', 'Sandra went to the bedroom.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Daniel moved to the office.', 'Mary went to the hallway.']\n", + "Question: Where is Sandra? \n", + "Answer: bedroom\n", + "Story: ['Mary journeyed to the kitchen.', 'John went back to the bedroom.']\n", + "Question: Where is Daniel? \n", + "Answer: office\n", + "Story: ['Daniel travelled to the kitchen.', 'Sandra travelled to the kitchen.']\n", + "Question: Where is John? \n", + "Answer: bedroom\n", + "Story: ['Sandra travelled to the hallway.', 'Daniel went to the garden.']\n", + "Question: Where is Daniel? \n", + "Answer: garden\n", + "(1000, 14) (1000, 4) (1000, 22) (1000, 14) (1000, 4) (1000, 22)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-mee_PSIFoxS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from os.path import exists, join\n", + "from os import makedirs\n", + "import keras.backend as K\n", + "K.clear_session()\n", + "# define network\n", + "EMBEDDING_SIZE = 64\n", + "\n", + "BATCH_SIZE = 32\n", + "NUM_EPOCHS = 400\n", + "log_dir = './logs'\n", + "if not exists(log_dir):\n", + " makedirs(log_dir)\n", + " \n", + "\n", + "meta_file = \"w2v_metadata.tsv\" \n", + "with open(os.path.join(log_dir, meta_file), 'w+') as file_metadata:\n", + " for word in word2idx_sorted:\n", + " if word[0] == '':\n", + " print(\"Emply Line, should replecaed by any thing else, or will cause a bug of tensorboard\")\n", + " file_metadata.write('' + '\\n')\n", + " else:\n", + " file_metadata.write(word[0] + '\\n')\n", + "\n", + "# inputs\n", + "story_input = Input(shape=(story_maxlen,), name='text')\n", + "question_input = Input(shape=(question_maxlen,), name='question')\n", + "\n", + "\n", + "\n", + "embedded_text = layers.Embedding(input_dim=vocab_size,\n", + " output_dim=EMBEDDING_SIZE,\n", + " input_length=story_maxlen, name='embedded_text')(story_input)\n", + "#embedded_text = Dropout(0.3)(embedded_text)\n", + "\n", + "\n", + "encoded_text = layers.LSTM(32)(embedded_text)\n", + "\n", + "\n", + "\n", + "#question_input = Input(shape=(None,),dtype='int32', name='question')\n", + "embedded_question = layers.Embedding(input_dim=vocab_size,\n", + " output_dim=EMBEDDING_SIZE,\n", + " input_length=question_maxlen, name='embedded_question')(question_input)\n", + "#embedded_question = Dropout(0.3)(embedded_question)\n", + "\n", + "encoded_question = layers.LSTM(16)(embedded_question)\n", + "\n", + "\n", + "concatenated = layers.concatenate([encoded_text, encoded_question],axis=-1)\n", + "answer = layers.Dense(vocab_size,\n", + "activation='softmax')(concatenated)\n", + "\n", + "model = Model([story_input, question_input], answer)\n", + "model.compile(optimizer='rmsprop',\n", + "loss='categorical_crossentropy',\n", + "metrics=['acc'])\n", + " " + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "LtqTzuP_m9Nu", + "colab_type": "code", + "outputId": "4c3c6730-832a-4033-c591-e03d2001e397", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 973 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "text (InputLayer) (None, 14) 0 \n", + "__________________________________________________________________________________________________\n", + "question (InputLayer) (None, 4) 0 \n", + "__________________________________________________________________________________________________\n", + "embedded_text (Embedding) (None, 14, 64) 1408 text[0][0] \n", + "__________________________________________________________________________________________________\n", + "embedded_question (Embedding) (None, 4, 64) 1408 question[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_1 (LSTM) (None, 32) 12416 embedded_text[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_2 (LSTM) (None, 16) 5184 embedded_question[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 48) 0 lstm_1[0][0] \n", + " lstm_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 22) 1078 concatenate_1[0][0] \n", + "==================================================================================================\n", + "Total params: 21,494\n", + "Trainable params: 21,494\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140556876168832\n\ntext: InputLayer\n\ninput:\n\noutput:\n\n(None, 14)\n\n(None, 14)\n\n\n\n140556876168720\n\nembedded_text: Embedding\n\ninput:\n\noutput:\n\n(None, 14)\n\n(None, 14, 64)\n\n\n\n140556876168832->140556876168720\n\n\n\n\n\n140556875818320\n\nquestion: InputLayer\n\ninput:\n\noutput:\n\n(None, 4)\n\n(None, 4)\n\n\n\n140556875820952\n\nembedded_question: Embedding\n\ninput:\n\noutput:\n\n(None, 4)\n\n(None, 4, 64)\n\n\n\n140556875818320->140556875820952\n\n\n\n\n\n140556875817928\n\nlstm_1: LSTM\n\ninput:\n\noutput:\n\n(None, 14, 64)\n\n(None, 32)\n\n\n\n140556876168720->140556875817928\n\n\n\n\n\n140556864648192\n\nlstm_2: LSTM\n\ninput:\n\noutput:\n\n(None, 4, 64)\n\n(None, 16)\n\n\n\n140556875820952->140556864648192\n\n\n\n\n\n140556875772760\n\nconcatenate_1: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 16)]\n\n(None, 48)\n\n\n\n140556875817928->140556875772760\n\n\n\n\n\n140556864648192->140556875772760\n\n\n\n\n\n140556875817760\n\ndense_1: Dense\n\ninput:\n\noutput:\n\n(None, 48)\n\n(None, 22)\n\n\n\n140556875772760->140556875817760\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "id": "JWXxhWwSq7Q0", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.utils import plot_model\n", + "plot_model(model, to_file='qa_model.png')\n", + "from google.colab import files\n", + "files.download('qa_model.png')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "lFP1NSjsC2W9", + "colab_type": "code", + "outputId": "b8032889-6420-4145-d7ae-bcfa88a266a1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + } + }, + "cell_type": "code", + "source": [ + "Xstrain[0]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 0, 0, 11, 20, 1, 2, 17, 3, 9, 7, 1, 2, 12, 3],\n", + " dtype=int32)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "id": "odPXHipCT540", + "colab_type": "code", + "outputId": "a71bd0ab-e39c-4ce6-c213-49e490f6683e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "cell_type": "code", + "source": [ + "Xqtrain.shape" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(1000, 4)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "qsfAW4MuQQRb", + "colab_type": "code", + "outputId": "2d1fdd74-9b08-4d65-b199-e15ad6cff08f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "cell_type": "code", + "source": [ + "Xstrain.shape" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(1000, 14)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "id": "Tu7Q4GxrJM_C", + "colab_type": "code", + "outputId": "d25bfae5-4e2a-4ac6-9741-aa9233ae50f3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 187 + } + }, + "cell_type": "code", + "source": [ + "for layer in model.layers:\n", + " print (layer.name)\n", + " if layer.name =='embedded_text':\n", + " embedding_input = model.get_layer(layer.name).output\n", + " print (embedding_input.shape[1:])\n", + " embedding_size = np.prod(embedding_input.shape[1:])\n", + " print (embedding_size)\n", + " " + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "text\n", + "question\n", + "embedded_text\n", + "(14, 64)\n", + "896\n", + "embedded_question\n", + "lstm_1\n", + "lstm_2\n", + "concatenate_1\n", + "dense_1\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ZvZ9dSobGrMX", + "colab_type": "code", + "outputId": "77d0956f-d616-4d4f-c9a6-038cdac6551d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 14635 + } + }, + "cell_type": "code", + "source": [ + "#啟動Tensobard\n", + "from keras import backend as K\n", + "\n", + "\n", + "tensorboard = make_tensorboard(set_dir_name='mem-network')\n", + "\n", + "#開始訓練模型\n", + "history = model.fit([Xstrain, Xqtrain], [Ytrain], batch_size=BATCH_SIZE,\n", + " epochs=NUM_EPOCHS,\n", + " callbacks=[tensorboard],\n", + " validation_data=([Xstest, Xqtest], [Ytest]))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Wait for 8 seconds...\n", + "TensorBoard link:\n", + "http://8882a16a.ngrok.io\n", + "Train on 1000 samples, validate on 1000 samples\n", + "Epoch 1/400\n", + "1000/1000 [==============================] - 4s 4ms/step - loss: 2.4402 - acc: 0.1660 - val_loss: 1.9202 - val_acc: 0.1660\n", + "Epoch 2/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.8571 - acc: 0.1780 - val_loss: 1.8116 - val_acc: 0.1730\n", + "Epoch 3/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.8007 - acc: 0.1890 - val_loss: 1.7768 - val_acc: 0.2610\n", + "Epoch 4/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.7562 - acc: 0.2650 - val_loss: 1.7292 - val_acc: 0.3040\n", + "Epoch 5/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.6956 - acc: 0.3290 - val_loss: 1.6507 - val_acc: 0.3390\n", + "Epoch 6/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.6333 - acc: 0.3710 - val_loss: 1.6238 - val_acc: 0.3610\n", + "Epoch 7/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.5776 - acc: 0.4200 - val_loss: 1.5708 - val_acc: 0.4530\n", + "Epoch 8/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.5138 - acc: 0.4380 - val_loss: 1.4906 - val_acc: 0.4370\n", + "Epoch 9/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.4688 - acc: 0.4510 - val_loss: 1.4896 - val_acc: 0.4500\n", + "Epoch 10/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.4286 - acc: 0.4630 - val_loss: 1.4418 - val_acc: 0.4240\n", + "Epoch 11/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.4070 - acc: 0.4660 - val_loss: 1.4214 - val_acc: 0.4940\n", + "Epoch 12/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.3735 - acc: 0.4890 - val_loss: 1.3908 - val_acc: 0.4930\n", + "Epoch 13/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.3678 - acc: 0.4970 - val_loss: 1.3699 - val_acc: 0.4910\n", + "Epoch 14/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.3375 - acc: 0.4930 - val_loss: 1.4139 - val_acc: 0.4160\n", + "Epoch 15/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.3335 - acc: 0.4860 - val_loss: 1.3133 - val_acc: 0.5420\n", + "Epoch 16/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.3154 - acc: 0.5000 - val_loss: 1.3307 - val_acc: 0.5100\n", + "Epoch 17/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.2949 - acc: 0.5310 - val_loss: 1.2627 - val_acc: 0.5260\n", + "Epoch 18/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.2672 - acc: 0.5240 - val_loss: 1.2578 - val_acc: 0.5490\n", + "Epoch 19/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.2565 - acc: 0.5300 - val_loss: 1.2481 - val_acc: 0.5390\n", + "Epoch 20/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.2388 - acc: 0.5320 - val_loss: 1.2193 - val_acc: 0.5490\n", + "Epoch 21/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.2231 - acc: 0.5380 - val_loss: 1.2107 - val_acc: 0.5390\n", + "Epoch 22/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.2089 - acc: 0.5350 - val_loss: 1.2051 - val_acc: 0.5700\n", + "Epoch 23/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1969 - acc: 0.5510 - val_loss: 1.2030 - val_acc: 0.5460\n", + "Epoch 24/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1905 - acc: 0.5540 - val_loss: 1.1993 - val_acc: 0.5510\n", + "Epoch 25/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1836 - acc: 0.5460 - val_loss: 1.1551 - val_acc: 0.5660\n", + "Epoch 26/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1766 - acc: 0.5570 - val_loss: 1.1748 - val_acc: 0.5690\n", + "Epoch 27/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1717 - acc: 0.5550 - val_loss: 1.1892 - val_acc: 0.5650\n", + "Epoch 28/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1655 - acc: 0.5530 - val_loss: 1.1288 - val_acc: 0.5730\n", + "Epoch 29/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1535 - acc: 0.5580 - val_loss: 1.1544 - val_acc: 0.5570\n", + "Epoch 30/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1553 - acc: 0.5670 - val_loss: 1.1746 - val_acc: 0.5620\n", + "Epoch 31/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1528 - acc: 0.5640 - val_loss: 1.1582 - val_acc: 0.5620\n", + "Epoch 32/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1448 - acc: 0.5720 - val_loss: 1.1355 - val_acc: 0.5790\n", + "Epoch 33/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1404 - acc: 0.5700 - val_loss: 1.1497 - val_acc: 0.5750\n", + "Epoch 34/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1345 - acc: 0.5770 - val_loss: 1.1235 - val_acc: 0.5780\n", + "Epoch 35/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1332 - acc: 0.5770 - val_loss: 1.1069 - val_acc: 0.5860\n", + "Epoch 36/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1306 - acc: 0.5760 - val_loss: 1.1181 - val_acc: 0.5910\n", + "Epoch 37/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1284 - acc: 0.5750 - val_loss: 1.1077 - val_acc: 0.5730\n", + "Epoch 38/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1237 - acc: 0.5750 - val_loss: 1.1004 - val_acc: 0.5900\n", + "Epoch 39/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1161 - acc: 0.5740 - val_loss: 1.1351 - val_acc: 0.5780\n", + "Epoch 40/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1205 - acc: 0.5720 - val_loss: 1.1360 - val_acc: 0.5520\n", + "Epoch 41/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1212 - acc: 0.5630 - val_loss: 1.0943 - val_acc: 0.5940\n", + "Epoch 42/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1117 - acc: 0.5760 - val_loss: 1.1291 - val_acc: 0.5510\n", + "Epoch 43/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1180 - acc: 0.5640 - val_loss: 1.0928 - val_acc: 0.5980\n", + "Epoch 44/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1070 - acc: 0.5850 - val_loss: 1.0902 - val_acc: 0.5860\n", + "Epoch 45/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1103 - acc: 0.5800 - val_loss: 1.0796 - val_acc: 0.6080\n", + "Epoch 46/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1062 - acc: 0.5780 - val_loss: 1.0918 - val_acc: 0.5990\n", + "Epoch 47/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0989 - acc: 0.5930 - val_loss: 1.0918 - val_acc: 0.5960\n", + "Epoch 48/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0977 - acc: 0.5830 - val_loss: 1.0753 - val_acc: 0.5910\n", + "Epoch 49/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0987 - acc: 0.5910 - val_loss: 1.0700 - val_acc: 0.5950\n", + "Epoch 50/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0886 - acc: 0.5970 - val_loss: 1.0752 - val_acc: 0.5900\n", + "Epoch 51/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0882 - acc: 0.5870 - val_loss: 1.0767 - val_acc: 0.5950\n", + "Epoch 52/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0842 - acc: 0.5820 - val_loss: 1.0596 - val_acc: 0.6060\n", + "Epoch 53/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0869 - acc: 0.5930 - val_loss: 1.0663 - val_acc: 0.5950\n", + "Epoch 54/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0774 - acc: 0.6000 - val_loss: 1.0502 - val_acc: 0.6130\n", + "Epoch 55/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0741 - acc: 0.5990 - val_loss: 1.0964 - val_acc: 0.5790\n", + "Epoch 56/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0771 - acc: 0.5920 - val_loss: 1.0516 - val_acc: 0.6090\n", + "Epoch 57/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0667 - acc: 0.5980 - val_loss: 1.0672 - val_acc: 0.5910\n", + "Epoch 58/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0659 - acc: 0.5960 - val_loss: 1.0638 - val_acc: 0.6000\n", + "Epoch 59/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0618 - acc: 0.5930 - val_loss: 1.0492 - val_acc: 0.6030\n", + "Epoch 60/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0642 - acc: 0.6030 - val_loss: 1.0539 - val_acc: 0.6090\n", + "Epoch 61/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0579 - acc: 0.5980 - val_loss: 1.0427 - val_acc: 0.5960\n", + "Epoch 62/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0572 - acc: 0.5970 - val_loss: 1.0244 - val_acc: 0.6220\n", + "Epoch 63/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0504 - acc: 0.5950 - val_loss: 1.0443 - val_acc: 0.6090\n", + "Epoch 64/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0501 - acc: 0.6050 - val_loss: 1.0306 - val_acc: 0.6120\n", + "Epoch 65/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0417 - acc: 0.6120 - val_loss: 1.0535 - val_acc: 0.6050\n", + "Epoch 66/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0436 - acc: 0.6150 - val_loss: 1.0208 - val_acc: 0.6170\n", + "Epoch 67/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0434 - acc: 0.6090 - val_loss: 1.0555 - val_acc: 0.5820\n", + "Epoch 68/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0344 - acc: 0.6130 - val_loss: 1.0376 - val_acc: 0.6040\n", + "Epoch 69/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0345 - acc: 0.6120 - val_loss: 0.9999 - val_acc: 0.6270\n", + "Epoch 70/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0282 - acc: 0.6180 - val_loss: 1.0077 - val_acc: 0.6260\n", + "Epoch 71/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0274 - acc: 0.6080 - val_loss: 1.0054 - val_acc: 0.6200\n", + "Epoch 72/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0223 - acc: 0.6160 - val_loss: 1.0165 - val_acc: 0.6240\n", + "Epoch 73/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0110 - acc: 0.6200 - val_loss: 1.0038 - val_acc: 0.6320\n", + "Epoch 74/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0118 - acc: 0.6130 - val_loss: 0.9855 - val_acc: 0.6390\n", + "Epoch 75/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0088 - acc: 0.6190 - val_loss: 0.9977 - val_acc: 0.6150\n", + "Epoch 76/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0042 - acc: 0.6250 - val_loss: 0.9787 - val_acc: 0.6400\n", + "Epoch 77/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9972 - acc: 0.6200 - val_loss: 0.9878 - val_acc: 0.6450\n", + "Epoch 78/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9965 - acc: 0.6280 - val_loss: 0.9909 - val_acc: 0.6330\n", + "Epoch 79/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9965 - acc: 0.6290 - val_loss: 0.9747 - val_acc: 0.6300\n", + "Epoch 80/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9900 - acc: 0.6290 - val_loss: 0.9715 - val_acc: 0.6300\n", + "Epoch 81/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9847 - acc: 0.6330 - val_loss: 0.9561 - val_acc: 0.6450\n", + "Epoch 82/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9750 - acc: 0.6410 - val_loss: 1.0113 - val_acc: 0.6180\n", + "Epoch 83/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9742 - acc: 0.6380 - val_loss: 0.9448 - val_acc: 0.6590\n", + "Epoch 84/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9685 - acc: 0.6530 - val_loss: 0.9451 - val_acc: 0.6520\n", + "Epoch 85/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9631 - acc: 0.6490 - val_loss: 0.9486 - val_acc: 0.6550\n", + "Epoch 86/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9665 - acc: 0.6450 - val_loss: 0.9302 - val_acc: 0.6670\n", + "Epoch 87/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9559 - acc: 0.6510 - val_loss: 0.9251 - val_acc: 0.6610\n", + "Epoch 88/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9471 - acc: 0.6510 - val_loss: 0.9344 - val_acc: 0.6590\n", + "Epoch 89/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9472 - acc: 0.6550 - val_loss: 0.9284 - val_acc: 0.6570\n", + "Epoch 90/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9439 - acc: 0.6460 - val_loss: 0.9150 - val_acc: 0.6700\n", + "Epoch 91/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9317 - acc: 0.6640 - val_loss: 0.9128 - val_acc: 0.6630\n", + "Epoch 92/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9297 - acc: 0.6590 - val_loss: 0.9077 - val_acc: 0.6610\n", + "Epoch 93/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9227 - acc: 0.6590 - val_loss: 0.9163 - val_acc: 0.6670\n", + "Epoch 94/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9258 - acc: 0.6590 - val_loss: 0.9087 - val_acc: 0.6760\n", + "Epoch 95/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9159 - acc: 0.6760 - val_loss: 0.9627 - val_acc: 0.6390\n", + "Epoch 96/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9113 - acc: 0.6680 - val_loss: 0.8829 - val_acc: 0.6790\n", + "Epoch 97/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9077 - acc: 0.6580 - val_loss: 0.8822 - val_acc: 0.6800\n", + "Epoch 98/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.9041 - acc: 0.6750 - val_loss: 0.8798 - val_acc: 0.6780\n", + "Epoch 99/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8986 - acc: 0.6720 - val_loss: 0.8802 - val_acc: 0.6780\n", + "Epoch 100/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8946 - acc: 0.6670 - val_loss: 0.8614 - val_acc: 0.6940\n", + "Epoch 101/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8894 - acc: 0.6770 - val_loss: 0.8900 - val_acc: 0.6700\n", + "Epoch 102/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8802 - acc: 0.6770 - val_loss: 0.8497 - val_acc: 0.7040\n", + "Epoch 103/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8797 - acc: 0.6880 - val_loss: 0.8567 - val_acc: 0.6960\n", + "Epoch 104/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8769 - acc: 0.6740 - val_loss: 0.8473 - val_acc: 0.7050\n", + "Epoch 105/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8686 - acc: 0.6810 - val_loss: 0.8793 - val_acc: 0.6860\n", + "Epoch 106/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8602 - acc: 0.6860 - val_loss: 0.8378 - val_acc: 0.6810\n", + "Epoch 107/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8589 - acc: 0.6880 - val_loss: 0.8451 - val_acc: 0.6980\n", + "Epoch 108/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8529 - acc: 0.6790 - val_loss: 0.8158 - val_acc: 0.7090\n", + "Epoch 109/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8482 - acc: 0.6970 - val_loss: 0.8185 - val_acc: 0.7120\n", + "Epoch 110/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8400 - acc: 0.6940 - val_loss: 0.8263 - val_acc: 0.7160\n", + "Epoch 111/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8356 - acc: 0.7000 - val_loss: 0.8160 - val_acc: 0.7050\n", + "Epoch 112/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8315 - acc: 0.7030 - val_loss: 0.8093 - val_acc: 0.7220\n", + "Epoch 113/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8243 - acc: 0.7130 - val_loss: 0.8119 - val_acc: 0.7010\n", + "Epoch 114/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8204 - acc: 0.7070 - val_loss: 0.7889 - val_acc: 0.7300\n", + "Epoch 115/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8132 - acc: 0.7020 - val_loss: 0.7890 - val_acc: 0.7230\n", + "Epoch 116/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8056 - acc: 0.7100 - val_loss: 0.7843 - val_acc: 0.7300\n", + "Epoch 117/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.8049 - acc: 0.7200 - val_loss: 0.7797 - val_acc: 0.7330\n", + "Epoch 118/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7981 - acc: 0.7200 - val_loss: 0.7732 - val_acc: 0.7220\n", + "Epoch 119/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7954 - acc: 0.7070 - val_loss: 0.8031 - val_acc: 0.7150\n", + "Epoch 120/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7946 - acc: 0.7210 - val_loss: 0.7722 - val_acc: 0.7250\n", + "Epoch 121/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7767 - acc: 0.7310 - val_loss: 0.7644 - val_acc: 0.7200\n", + "Epoch 122/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7792 - acc: 0.7240 - val_loss: 0.7548 - val_acc: 0.7420\n", + "Epoch 123/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7665 - acc: 0.7300 - val_loss: 0.7371 - val_acc: 0.7520\n", + "Epoch 124/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7614 - acc: 0.7380 - val_loss: 0.7456 - val_acc: 0.7380\n", + "Epoch 125/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7601 - acc: 0.7360 - val_loss: 0.7329 - val_acc: 0.7370\n", + "Epoch 126/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7483 - acc: 0.7340 - val_loss: 0.7305 - val_acc: 0.7470\n", + "Epoch 127/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7441 - acc: 0.7380 - val_loss: 0.7404 - val_acc: 0.7440\n", + "Epoch 128/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7383 - acc: 0.7310 - val_loss: 0.7112 - val_acc: 0.7620\n", + "Epoch 129/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7286 - acc: 0.7350 - val_loss: 0.7085 - val_acc: 0.7560\n", + "Epoch 130/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7205 - acc: 0.7540 - val_loss: 0.6952 - val_acc: 0.7590\n", + "Epoch 131/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7211 - acc: 0.7430 - val_loss: 0.6944 - val_acc: 0.7560\n", + "Epoch 132/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7146 - acc: 0.7540 - val_loss: 0.6798 - val_acc: 0.7630\n", + "Epoch 133/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7074 - acc: 0.7480 - val_loss: 0.7023 - val_acc: 0.7550\n", + "Epoch 134/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7003 - acc: 0.7620 - val_loss: 0.6654 - val_acc: 0.7810\n", + "Epoch 135/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6933 - acc: 0.7600 - val_loss: 0.6787 - val_acc: 0.7660\n", + "Epoch 136/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6926 - acc: 0.7620 - val_loss: 0.6646 - val_acc: 0.7750\n", + "Epoch 137/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6812 - acc: 0.7640 - val_loss: 0.6575 - val_acc: 0.7970\n", + "Epoch 138/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6701 - acc: 0.7780 - val_loss: 0.6631 - val_acc: 0.7650\n", + "Epoch 139/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6673 - acc: 0.7730 - val_loss: 0.6626 - val_acc: 0.7690\n", + "Epoch 140/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6641 - acc: 0.7770 - val_loss: 0.6410 - val_acc: 0.7860\n", + "Epoch 141/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6551 - acc: 0.7750 - val_loss: 0.6436 - val_acc: 0.7760\n", + "Epoch 142/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6548 - acc: 0.7710 - val_loss: 0.6268 - val_acc: 0.7900\n", + "Epoch 143/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6396 - acc: 0.7820 - val_loss: 0.6122 - val_acc: 0.8060\n", + "Epoch 144/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6368 - acc: 0.7850 - val_loss: 0.6055 - val_acc: 0.8070\n", + "Epoch 145/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6322 - acc: 0.7860 - val_loss: 0.6133 - val_acc: 0.7870\n", + "Epoch 146/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6248 - acc: 0.7890 - val_loss: 0.5942 - val_acc: 0.8120\n", + "Epoch 147/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6166 - acc: 0.7970 - val_loss: 0.5936 - val_acc: 0.7900\n", + "Epoch 148/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6130 - acc: 0.7880 - val_loss: 0.5912 - val_acc: 0.8040\n", + "Epoch 149/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.6028 - acc: 0.8000 - val_loss: 0.6012 - val_acc: 0.7950\n", + "Epoch 150/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5961 - acc: 0.7930 - val_loss: 0.5720 - val_acc: 0.8050\n", + "Epoch 151/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5906 - acc: 0.8060 - val_loss: 0.5691 - val_acc: 0.8150\n", + "Epoch 152/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5871 - acc: 0.8020 - val_loss: 0.5589 - val_acc: 0.8280\n", + "Epoch 153/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5828 - acc: 0.7980 - val_loss: 0.5546 - val_acc: 0.8180\n", + "Epoch 154/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5735 - acc: 0.8060 - val_loss: 0.5425 - val_acc: 0.8290\n", + "Epoch 155/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5664 - acc: 0.8060 - val_loss: 0.5541 - val_acc: 0.8180\n", + "Epoch 156/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5596 - acc: 0.8100 - val_loss: 0.5398 - val_acc: 0.8220\n", + "Epoch 157/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5548 - acc: 0.8180 - val_loss: 0.5528 - val_acc: 0.8170\n", + "Epoch 158/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5449 - acc: 0.8090 - val_loss: 0.5130 - val_acc: 0.8340\n", + "Epoch 159/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5424 - acc: 0.8170 - val_loss: 0.5239 - val_acc: 0.8300\n", + "Epoch 160/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5361 - acc: 0.8140 - val_loss: 0.5082 - val_acc: 0.8440\n", + "Epoch 161/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5311 - acc: 0.8240 - val_loss: 0.5036 - val_acc: 0.8420\n", + "Epoch 162/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5207 - acc: 0.8270 - val_loss: 0.4911 - val_acc: 0.8440\n", + "Epoch 163/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5178 - acc: 0.8240 - val_loss: 0.4926 - val_acc: 0.8430\n", + "Epoch 164/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5139 - acc: 0.8300 - val_loss: 0.4866 - val_acc: 0.8390\n", + "Epoch 165/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4999 - acc: 0.8340 - val_loss: 0.5350 - val_acc: 0.8280\n", + "Epoch 166/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4998 - acc: 0.8370 - val_loss: 0.4776 - val_acc: 0.8440\n", + "Epoch 167/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4916 - acc: 0.8330 - val_loss: 0.4628 - val_acc: 0.8490\n", + "Epoch 168/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4914 - acc: 0.8310 - val_loss: 0.4720 - val_acc: 0.8500\n", + "Epoch 169/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4780 - acc: 0.8430 - val_loss: 0.4621 - val_acc: 0.8460\n", + "Epoch 170/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4806 - acc: 0.8430 - val_loss: 0.5034 - val_acc: 0.8380\n", + "Epoch 171/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4691 - acc: 0.8540 - val_loss: 0.4445 - val_acc: 0.8490\n", + "Epoch 172/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4672 - acc: 0.8450 - val_loss: 0.4297 - val_acc: 0.8670\n", + "Epoch 173/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4575 - acc: 0.8480 - val_loss: 0.4377 - val_acc: 0.8550\n", + "Epoch 174/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4551 - acc: 0.8480 - val_loss: 0.4294 - val_acc: 0.8630\n", + "Epoch 175/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4470 - acc: 0.8600 - val_loss: 0.4348 - val_acc: 0.8610\n", + "Epoch 176/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4399 - acc: 0.8520 - val_loss: 0.4200 - val_acc: 0.8590\n", + "Epoch 177/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4338 - acc: 0.8670 - val_loss: 0.4344 - val_acc: 0.8640\n", + "Epoch 178/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4327 - acc: 0.8600 - val_loss: 0.4332 - val_acc: 0.8630\n", + "Epoch 179/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4275 - acc: 0.8620 - val_loss: 0.4042 - val_acc: 0.8830\n", + "Epoch 180/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4197 - acc: 0.8650 - val_loss: 0.4204 - val_acc: 0.8660\n", + "Epoch 181/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4124 - acc: 0.8730 - val_loss: 0.3943 - val_acc: 0.8800\n", + "Epoch 182/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4105 - acc: 0.8740 - val_loss: 0.3890 - val_acc: 0.8800\n", + "Epoch 183/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4030 - acc: 0.8750 - val_loss: 0.3805 - val_acc: 0.8860\n", + "Epoch 184/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3987 - acc: 0.8730 - val_loss: 0.3927 - val_acc: 0.8720\n", + "Epoch 185/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3955 - acc: 0.8720 - val_loss: 0.3818 - val_acc: 0.8790\n", + "Epoch 186/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3947 - acc: 0.8750 - val_loss: 0.4220 - val_acc: 0.8620\n", + "Epoch 187/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3829 - acc: 0.8820 - val_loss: 0.3742 - val_acc: 0.8810\n", + "Epoch 188/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3836 - acc: 0.8810 - val_loss: 0.3743 - val_acc: 0.8830\n", + "Epoch 189/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3841 - acc: 0.8820 - val_loss: 0.3478 - val_acc: 0.8910\n", + "Epoch 190/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3712 - acc: 0.8840 - val_loss: 0.3482 - val_acc: 0.8940\n", + "Epoch 191/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3661 - acc: 0.8810 - val_loss: 0.3474 - val_acc: 0.8900\n", + "Epoch 192/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3652 - acc: 0.8870 - val_loss: 0.3442 - val_acc: 0.8940\n", + "Epoch 193/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3596 - acc: 0.8870 - val_loss: 0.3641 - val_acc: 0.8780\n", + "Epoch 194/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3541 - acc: 0.8850 - val_loss: 0.3323 - val_acc: 0.8950\n", + "Epoch 195/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3520 - acc: 0.8880 - val_loss: 0.3374 - val_acc: 0.9000\n", + "Epoch 196/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3481 - acc: 0.8930 - val_loss: 0.3263 - val_acc: 0.8930\n", + "Epoch 197/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3406 - acc: 0.8940 - val_loss: 0.3178 - val_acc: 0.9050\n", + "Epoch 198/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3386 - acc: 0.8920 - val_loss: 0.3369 - val_acc: 0.8930\n", + "Epoch 199/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3315 - acc: 0.9000 - val_loss: 0.3589 - val_acc: 0.8950\n", + "Epoch 200/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3301 - acc: 0.9010 - val_loss: 0.3613 - val_acc: 0.8750\n", + "Epoch 201/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3266 - acc: 0.8960 - val_loss: 0.3345 - val_acc: 0.8960\n", + "Epoch 202/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3166 - acc: 0.9080 - val_loss: 0.3109 - val_acc: 0.9050\n", + "Epoch 203/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3157 - acc: 0.9020 - val_loss: 0.3163 - val_acc: 0.9040\n", + "Epoch 204/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3130 - acc: 0.8990 - val_loss: 0.2882 - val_acc: 0.9150\n", + "Epoch 205/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3066 - acc: 0.9080 - val_loss: 0.2959 - val_acc: 0.9130\n", + "Epoch 206/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3025 - acc: 0.9000 - val_loss: 0.2795 - val_acc: 0.9230\n", + "Epoch 207/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2962 - acc: 0.9140 - val_loss: 0.2758 - val_acc: 0.9190\n", + "Epoch 208/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2942 - acc: 0.9120 - val_loss: 0.2854 - val_acc: 0.9140\n", + "Epoch 209/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2864 - acc: 0.9170 - val_loss: 0.2795 - val_acc: 0.9110\n", + "Epoch 210/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2903 - acc: 0.9110 - val_loss: 0.2619 - val_acc: 0.9220\n", + "Epoch 211/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2807 - acc: 0.9150 - val_loss: 0.2653 - val_acc: 0.9270\n", + "Epoch 212/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2751 - acc: 0.9200 - val_loss: 0.2650 - val_acc: 0.9310\n", + "Epoch 213/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2723 - acc: 0.9190 - val_loss: 0.2740 - val_acc: 0.9170\n", + "Epoch 214/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2723 - acc: 0.9200 - val_loss: 0.2564 - val_acc: 0.9320\n", + "Epoch 215/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2634 - acc: 0.9240 - val_loss: 0.2562 - val_acc: 0.9340\n", + "Epoch 216/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2581 - acc: 0.9280 - val_loss: 0.2549 - val_acc: 0.9220\n", + "Epoch 217/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2592 - acc: 0.9270 - val_loss: 0.2414 - val_acc: 0.9350\n", + "Epoch 218/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2515 - acc: 0.9320 - val_loss: 0.2388 - val_acc: 0.9300\n", + "Epoch 219/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2514 - acc: 0.9300 - val_loss: 0.2391 - val_acc: 0.9330\n", + "Epoch 220/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2431 - acc: 0.9320 - val_loss: 0.2306 - val_acc: 0.9380\n", + "Epoch 221/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2426 - acc: 0.9330 - val_loss: 0.2536 - val_acc: 0.9250\n", + "Epoch 222/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2430 - acc: 0.9300 - val_loss: 0.2295 - val_acc: 0.9350\n", + "Epoch 223/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2316 - acc: 0.9310 - val_loss: 0.2327 - val_acc: 0.9400\n", + "Epoch 224/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2309 - acc: 0.9430 - val_loss: 0.2169 - val_acc: 0.9460\n", + "Epoch 225/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2265 - acc: 0.9400 - val_loss: 0.2146 - val_acc: 0.9380\n", + "Epoch 226/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2214 - acc: 0.9370 - val_loss: 0.2301 - val_acc: 0.9350\n", + "Epoch 227/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2188 - acc: 0.9360 - val_loss: 0.2113 - val_acc: 0.9400\n", + "Epoch 228/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2176 - acc: 0.9390 - val_loss: 0.2215 - val_acc: 0.9390\n", + "Epoch 229/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2156 - acc: 0.9440 - val_loss: 0.2117 - val_acc: 0.9490\n", + "Epoch 230/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2156 - acc: 0.9440 - val_loss: 0.1890 - val_acc: 0.9550\n", + "Epoch 231/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2046 - acc: 0.9440 - val_loss: 0.2307 - val_acc: 0.9360\n", + "Epoch 232/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2051 - acc: 0.9450 - val_loss: 0.2067 - val_acc: 0.9490\n", + "Epoch 233/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2024 - acc: 0.9440 - val_loss: 0.2367 - val_acc: 0.9410\n", + "Epoch 234/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2026 - acc: 0.9470 - val_loss: 0.1848 - val_acc: 0.9570\n", + "Epoch 235/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1950 - acc: 0.9540 - val_loss: 0.1730 - val_acc: 0.9590\n", + "Epoch 236/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1909 - acc: 0.9520 - val_loss: 0.1928 - val_acc: 0.9620\n", + "Epoch 237/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1938 - acc: 0.9530 - val_loss: 0.1697 - val_acc: 0.9650\n", + "Epoch 238/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1853 - acc: 0.9540 - val_loss: 0.1754 - val_acc: 0.9580\n", + "Epoch 239/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1840 - acc: 0.9480 - val_loss: 0.1822 - val_acc: 0.9530\n", + "Epoch 240/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1792 - acc: 0.9600 - val_loss: 0.1775 - val_acc: 0.9570\n", + "Epoch 241/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1817 - acc: 0.9600 - val_loss: 0.1627 - val_acc: 0.9650\n", + "Epoch 242/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1727 - acc: 0.9650 - val_loss: 0.1671 - val_acc: 0.9630\n", + "Epoch 243/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1729 - acc: 0.9590 - val_loss: 0.1655 - val_acc: 0.9630\n", + "Epoch 244/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1729 - acc: 0.9600 - val_loss: 0.1611 - val_acc: 0.9690\n", + "Epoch 245/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1624 - acc: 0.9630 - val_loss: 0.1695 - val_acc: 0.9560\n", + "Epoch 246/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1651 - acc: 0.9600 - val_loss: 0.1480 - val_acc: 0.9700\n", + "Epoch 247/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1613 - acc: 0.9650 - val_loss: 0.1567 - val_acc: 0.9670\n", + "Epoch 248/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1636 - acc: 0.9600 - val_loss: 0.1502 - val_acc: 0.9620\n", + "Epoch 249/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1542 - acc: 0.9670 - val_loss: 0.1651 - val_acc: 0.9650\n", + "Epoch 250/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1546 - acc: 0.9680 - val_loss: 0.1399 - val_acc: 0.9720\n", + "Epoch 251/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1542 - acc: 0.9710 - val_loss: 0.1385 - val_acc: 0.9760\n", + "Epoch 252/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1459 - acc: 0.9720 - val_loss: 0.1373 - val_acc: 0.9770\n", + "Epoch 253/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1439 - acc: 0.9690 - val_loss: 0.1392 - val_acc: 0.9700\n", + "Epoch 254/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1456 - acc: 0.9670 - val_loss: 0.1784 - val_acc: 0.9570\n", + "Epoch 255/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1462 - acc: 0.9710 - val_loss: 0.1267 - val_acc: 0.9780\n", + "Epoch 256/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1365 - acc: 0.9680 - val_loss: 0.1331 - val_acc: 0.9750\n", + "Epoch 257/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1342 - acc: 0.9750 - val_loss: 0.1294 - val_acc: 0.9740\n", + "Epoch 258/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1351 - acc: 0.9770 - val_loss: 0.1398 - val_acc: 0.9710\n", + "Epoch 259/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1309 - acc: 0.9740 - val_loss: 0.1419 - val_acc: 0.9630\n", + "Epoch 260/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1292 - acc: 0.9720 - val_loss: 0.1320 - val_acc: 0.9750\n", + "Epoch 261/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1258 - acc: 0.9710 - val_loss: 0.1308 - val_acc: 0.9750\n", + "Epoch 262/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1226 - acc: 0.9740 - val_loss: 0.1076 - val_acc: 0.9810\n", + "Epoch 263/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1222 - acc: 0.9720 - val_loss: 0.1205 - val_acc: 0.9800\n", + "Epoch 264/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1198 - acc: 0.9740 - val_loss: 0.1061 - val_acc: 0.9820\n", + "Epoch 265/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1178 - acc: 0.9740 - val_loss: 0.1111 - val_acc: 0.9820\n", + "Epoch 266/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1250 - acc: 0.9730 - val_loss: 0.1048 - val_acc: 0.9810\n", + "Epoch 267/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1090 - acc: 0.9780 - val_loss: 0.1304 - val_acc: 0.9750\n", + "Epoch 268/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1101 - acc: 0.9780 - val_loss: 0.0992 - val_acc: 0.9850\n", + "Epoch 269/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1145 - acc: 0.9770 - val_loss: 0.0988 - val_acc: 0.9830\n", + "Epoch 270/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1044 - acc: 0.9830 - val_loss: 0.1018 - val_acc: 0.9830\n", + "Epoch 271/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1072 - acc: 0.9790 - val_loss: 0.1155 - val_acc: 0.9780\n", + "Epoch 272/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1066 - acc: 0.9800 - val_loss: 0.0928 - val_acc: 0.9860\n", + "Epoch 273/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1046 - acc: 0.9780 - val_loss: 0.1023 - val_acc: 0.9820\n", + "Epoch 274/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0987 - acc: 0.9820 - val_loss: 0.1050 - val_acc: 0.9800\n", + "Epoch 275/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1014 - acc: 0.9790 - val_loss: 0.0931 - val_acc: 0.9840\n", + "Epoch 276/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0968 - acc: 0.9820 - val_loss: 0.1024 - val_acc: 0.9790\n", + "Epoch 277/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0939 - acc: 0.9790 - val_loss: 0.0825 - val_acc: 0.9870\n", + "Epoch 278/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0975 - acc: 0.9800 - val_loss: 0.0872 - val_acc: 0.9860\n", + "Epoch 279/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0900 - acc: 0.9830 - val_loss: 0.0827 - val_acc: 0.9870\n", + "Epoch 280/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0934 - acc: 0.9810 - val_loss: 0.0867 - val_acc: 0.9830\n", + "Epoch 281/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0881 - acc: 0.9850 - val_loss: 0.0807 - val_acc: 0.9860\n", + "Epoch 282/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0859 - acc: 0.9850 - val_loss: 0.0912 - val_acc: 0.9830\n", + "Epoch 283/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0869 - acc: 0.9820 - val_loss: 0.0804 - val_acc: 0.9870\n", + "Epoch 284/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0910 - acc: 0.9810 - val_loss: 0.0743 - val_acc: 0.9880\n", + "Epoch 285/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0841 - acc: 0.9830 - val_loss: 0.0773 - val_acc: 0.9860\n", + "Epoch 286/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0857 - acc: 0.9800 - val_loss: 0.0754 - val_acc: 0.9870\n", + "Epoch 287/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0853 - acc: 0.9810 - val_loss: 0.0786 - val_acc: 0.9880\n", + "Epoch 288/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0807 - acc: 0.9840 - val_loss: 0.0840 - val_acc: 0.9800\n", + "Epoch 289/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0790 - acc: 0.9860 - val_loss: 0.0759 - val_acc: 0.9890\n", + "Epoch 290/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0794 - acc: 0.9870 - val_loss: 0.0766 - val_acc: 0.9890\n", + "Epoch 291/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0745 - acc: 0.9840 - val_loss: 0.0802 - val_acc: 0.9860\n", + "Epoch 292/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0764 - acc: 0.9820 - val_loss: 0.0958 - val_acc: 0.9750\n", + "Epoch 293/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0745 - acc: 0.9860 - val_loss: 0.0696 - val_acc: 0.9870\n", + "Epoch 294/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0724 - acc: 0.9840 - val_loss: 0.0796 - val_acc: 0.9830\n", + "Epoch 295/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0717 - acc: 0.9880 - val_loss: 0.0785 - val_acc: 0.9820\n", + "Epoch 296/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0716 - acc: 0.9860 - val_loss: 0.0743 - val_acc: 0.9850\n", + "Epoch 297/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0798 - acc: 0.9840 - val_loss: 0.0566 - val_acc: 0.9880\n", + "Epoch 298/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0636 - acc: 0.9850 - val_loss: 0.0624 - val_acc: 0.9860\n", + "Epoch 299/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0716 - acc: 0.9820 - val_loss: 0.0652 - val_acc: 0.9890\n", + "Epoch 300/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0710 - acc: 0.9830 - val_loss: 0.0619 - val_acc: 0.9880\n", + "Epoch 301/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0622 - acc: 0.9890 - val_loss: 0.0563 - val_acc: 0.9900\n", + "Epoch 302/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0643 - acc: 0.9880 - val_loss: 0.0545 - val_acc: 0.9890\n", + "Epoch 303/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0651 - acc: 0.9840 - val_loss: 0.0573 - val_acc: 0.9910\n", + "Epoch 304/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0665 - acc: 0.9830 - val_loss: 0.0669 - val_acc: 0.9840\n", + "Epoch 305/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0604 - acc: 0.9840 - val_loss: 0.0686 - val_acc: 0.9850\n", + "Epoch 306/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0639 - acc: 0.9850 - val_loss: 0.0542 - val_acc: 0.9900\n", + "Epoch 307/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0602 - acc: 0.9870 - val_loss: 0.0709 - val_acc: 0.9860\n", + "Epoch 308/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0607 - acc: 0.9870 - val_loss: 0.0750 - val_acc: 0.9870\n", + "Epoch 309/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0616 - acc: 0.9870 - val_loss: 0.0554 - val_acc: 0.9890\n", + "Epoch 310/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0562 - acc: 0.9880 - val_loss: 0.0597 - val_acc: 0.9890\n", + "Epoch 311/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0638 - acc: 0.9880 - val_loss: 0.0699 - val_acc: 0.9860\n", + "Epoch 312/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0579 - acc: 0.9860 - val_loss: 0.0470 - val_acc: 0.9890\n", + "Epoch 313/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0528 - acc: 0.9870 - val_loss: 0.0718 - val_acc: 0.9860\n", + "Epoch 314/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0588 - acc: 0.9860 - val_loss: 0.0781 - val_acc: 0.9800\n", + "Epoch 315/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0601 - acc: 0.9860 - val_loss: 0.0471 - val_acc: 0.9910\n", + "Epoch 316/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0517 - acc: 0.9870 - val_loss: 0.0543 - val_acc: 0.9900\n", + "Epoch 317/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0633 - acc: 0.9830 - val_loss: 0.0461 - val_acc: 0.9930\n", + "Epoch 318/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0493 - acc: 0.9880 - val_loss: 0.0487 - val_acc: 0.9910\n", + "Epoch 319/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0542 - acc: 0.9850 - val_loss: 0.0640 - val_acc: 0.9850\n", + "Epoch 320/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0531 - acc: 0.9900 - val_loss: 0.0588 - val_acc: 0.9870\n", + "Epoch 321/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0495 - acc: 0.9870 - val_loss: 0.0501 - val_acc: 0.9900\n", + "Epoch 322/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0503 - acc: 0.9880 - val_loss: 0.0497 - val_acc: 0.9890\n", + "Epoch 323/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0511 - acc: 0.9850 - val_loss: 0.0406 - val_acc: 0.9930\n", + "Epoch 324/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0494 - acc: 0.9860 - val_loss: 0.0520 - val_acc: 0.9880\n", + "Epoch 325/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0516 - acc: 0.9870 - val_loss: 0.0455 - val_acc: 0.9900\n", + "Epoch 326/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0545 - acc: 0.9880 - val_loss: 0.0365 - val_acc: 0.9930\n", + "Epoch 327/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0437 - acc: 0.9850 - val_loss: 0.0545 - val_acc: 0.9900\n", + "Epoch 328/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0451 - acc: 0.9900 - val_loss: 0.0393 - val_acc: 0.9930\n", + "Epoch 329/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0449 - acc: 0.9920 - val_loss: 0.0536 - val_acc: 0.9880\n", + "Epoch 330/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0425 - acc: 0.9920 - val_loss: 0.0394 - val_acc: 0.9920\n", + "Epoch 331/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0529 - acc: 0.9880 - val_loss: 0.0522 - val_acc: 0.9910\n", + "Epoch 332/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0399 - acc: 0.9930 - val_loss: 0.0351 - val_acc: 0.9950\n", + "Epoch 333/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0447 - acc: 0.9890 - val_loss: 0.0468 - val_acc: 0.9910\n", + "Epoch 334/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0407 - acc: 0.9920 - val_loss: 0.0353 - val_acc: 0.9940\n", + "Epoch 335/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0445 - acc: 0.9880 - val_loss: 0.0346 - val_acc: 0.9950\n", + "Epoch 336/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0373 - acc: 0.9930 - val_loss: 0.0351 - val_acc: 0.9920\n", + "Epoch 337/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0389 - acc: 0.9940 - val_loss: 0.0389 - val_acc: 0.9910\n", + "Epoch 338/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0376 - acc: 0.9900 - val_loss: 0.0332 - val_acc: 0.9940\n", + "Epoch 339/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0404 - acc: 0.9910 - val_loss: 0.0452 - val_acc: 0.9900\n", + "Epoch 340/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0397 - acc: 0.9920 - val_loss: 0.0382 - val_acc: 0.9920\n", + "Epoch 341/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0387 - acc: 0.9930 - val_loss: 0.0318 - val_acc: 0.9950\n", + "Epoch 342/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0365 - acc: 0.9920 - val_loss: 0.0318 - val_acc: 0.9940\n", + "Epoch 343/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0338 - acc: 0.9920 - val_loss: 0.0391 - val_acc: 0.9920\n", + "Epoch 344/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0406 - acc: 0.9890 - val_loss: 0.0317 - val_acc: 0.9940\n", + "Epoch 345/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0389 - acc: 0.9910 - val_loss: 0.0450 - val_acc: 0.9880\n", + "Epoch 346/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0429 - acc: 0.9870 - val_loss: 0.0286 - val_acc: 0.9960\n", + "Epoch 347/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0319 - acc: 0.9930 - val_loss: 0.0291 - val_acc: 0.9960\n", + "Epoch 348/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0313 - acc: 0.9930 - val_loss: 0.2111 - val_acc: 0.9480\n", + "Epoch 349/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0629 - acc: 0.9840 - val_loss: 0.0337 - val_acc: 0.9930\n", + "Epoch 350/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0375 - acc: 0.9890 - val_loss: 0.0314 - val_acc: 0.9950\n", + "Epoch 351/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0382 - acc: 0.9920 - val_loss: 0.0272 - val_acc: 0.9960\n", + "Epoch 352/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0318 - acc: 0.9930 - val_loss: 0.0357 - val_acc: 0.9930\n", + "Epoch 353/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0318 - acc: 0.9930 - val_loss: 0.0286 - val_acc: 0.9950\n", + "Epoch 354/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0350 - acc: 0.9920 - val_loss: 0.0254 - val_acc: 0.9950\n", + "Epoch 355/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0311 - acc: 0.9920 - val_loss: 0.0423 - val_acc: 0.9930\n", + "Epoch 356/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0314 - acc: 0.9940 - val_loss: 0.0449 - val_acc: 0.9900\n", + "Epoch 357/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0317 - acc: 0.9920 - val_loss: 0.0266 - val_acc: 0.9950\n", + "Epoch 358/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0422 - acc: 0.9890 - val_loss: 0.0254 - val_acc: 0.9940\n", + "Epoch 359/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0275 - acc: 0.9930 - val_loss: 0.0254 - val_acc: 0.9940\n", + "Epoch 360/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0425 - acc: 0.9900 - val_loss: 0.0264 - val_acc: 0.9960\n", + "Epoch 361/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0273 - acc: 0.9930 - val_loss: 0.0330 - val_acc: 0.9950\n", + "Epoch 362/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0322 - acc: 0.9920 - val_loss: 0.0296 - val_acc: 0.9940\n", + "Epoch 363/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0283 - acc: 0.9930 - val_loss: 0.0228 - val_acc: 0.9970\n", + "Epoch 364/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0285 - acc: 0.9930 - val_loss: 0.0251 - val_acc: 0.9960\n", + "Epoch 365/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0320 - acc: 0.9910 - val_loss: 0.0514 - val_acc: 0.9890\n", + "Epoch 366/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0408 - acc: 0.9920 - val_loss: 0.0211 - val_acc: 0.9960\n", + "Epoch 367/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0234 - acc: 0.9940 - val_loss: 0.0231 - val_acc: 0.9970\n", + "Epoch 368/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0289 - acc: 0.9920 - val_loss: 0.0492 - val_acc: 0.9880\n", + "Epoch 369/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0288 - acc: 0.9940 - val_loss: 0.0228 - val_acc: 0.9960\n", + "Epoch 370/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0261 - acc: 0.9930 - val_loss: 0.0422 - val_acc: 0.9910\n", + "Epoch 371/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0302 - acc: 0.9920 - val_loss: 0.0199 - val_acc: 0.9960\n", + "Epoch 372/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0232 - acc: 0.9950 - val_loss: 0.0214 - val_acc: 0.9950\n", + "Epoch 373/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0293 - acc: 0.9890 - val_loss: 0.0291 - val_acc: 0.9950\n", + "Epoch 374/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0400 - acc: 0.9900 - val_loss: 0.0274 - val_acc: 0.9930\n", + "Epoch 375/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0231 - acc: 0.9940 - val_loss: 0.0214 - val_acc: 0.9940\n", + "Epoch 376/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0265 - acc: 0.9930 - val_loss: 0.0295 - val_acc: 0.9910\n", + "Epoch 377/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0245 - acc: 0.9920 - val_loss: 0.0202 - val_acc: 0.9970\n", + "Epoch 378/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0295 - acc: 0.9920 - val_loss: 0.0224 - val_acc: 0.9960\n", + "Epoch 379/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0280 - acc: 0.9900 - val_loss: 0.0218 - val_acc: 0.9960\n", + "Epoch 380/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0222 - acc: 0.9970 - val_loss: 0.0216 - val_acc: 0.9950\n", + "Epoch 381/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0260 - acc: 0.9920 - val_loss: 0.0188 - val_acc: 0.9950\n", + "Epoch 382/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0218 - acc: 0.9950 - val_loss: 0.0248 - val_acc: 0.9940\n", + "Epoch 383/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0293 - acc: 0.9930 - val_loss: 0.0287 - val_acc: 0.9930\n", + "Epoch 384/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0233 - acc: 0.9930 - val_loss: 0.0209 - val_acc: 0.9960\n", + "Epoch 385/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0247 - acc: 0.9930 - val_loss: 0.0185 - val_acc: 0.9980\n", + "Epoch 386/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0232 - acc: 0.9940 - val_loss: 0.0191 - val_acc: 0.9980\n", + "Epoch 387/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0231 - acc: 0.9930 - val_loss: 0.0193 - val_acc: 0.9970\n", + "Epoch 388/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0214 - acc: 0.9960 - val_loss: 0.0220 - val_acc: 0.9970\n", + "Epoch 389/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0209 - acc: 0.9940 - val_loss: 0.0195 - val_acc: 0.9960\n", + "Epoch 390/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0325 - acc: 0.9910 - val_loss: 0.0178 - val_acc: 0.9960\n", + "Epoch 391/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0199 - acc: 0.9940 - val_loss: 0.0172 - val_acc: 0.9960\n", + "Epoch 392/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0201 - acc: 0.9950 - val_loss: 0.0170 - val_acc: 0.9970\n", + "Epoch 393/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0224 - acc: 0.9950 - val_loss: 0.0192 - val_acc: 0.9970\n", + "Epoch 394/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0246 - acc: 0.9930 - val_loss: 0.0201 - val_acc: 0.9970\n", + "Epoch 395/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0206 - acc: 0.9950 - val_loss: 0.0210 - val_acc: 0.9960\n", + "Epoch 396/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0189 - acc: 0.9940 - val_loss: 0.0156 - val_acc: 0.9970\n", + "Epoch 397/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0241 - acc: 0.9960 - val_loss: 0.0165 - val_acc: 0.9960\n", + "Epoch 398/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0194 - acc: 0.9930 - val_loss: 0.0171 - val_acc: 0.9960\n", + "Epoch 399/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0254 - acc: 0.9920 - val_loss: 0.0178 - val_acc: 0.9960\n", + "Epoch 400/400\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.0190 - acc: 0.9950 - val_loss: 0.0157 - val_acc: 0.9970\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "JJcRUiHMUNPd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "AN-R557nImB2", + "colab_type": "code", + "outputId": "f284632d-35cf-4adb-a209-85dcc392382e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 191 + } + }, + "cell_type": "code", + "source": [ + "#針對測試集進行模型的測試\n", + "\n", + "ytest = np.argmax(Ytest, axis=1)\n", + "\n", + "# get predictions\n", + "Ytest_ = model.predict([Xstest, Xqtest])\n", + "ytest_ = np.argmax(Ytest_, axis=1)\n", + "\n", + "NUM_DISPLAY = 10\n", + "\n", + "for i in range(NUM_DISPLAY):\n", + " story = \" \".join([idx2word[x] for x in Xstest[i].tolist() if x != 0])\n", + " question = \" \".join([idx2word[x] for x in Xqtest[i].tolist()])\n", + " label = idx2word[ytest[i]]\n", + " prediction = idx2word[ytest_[i]]\n", + " print(story, question, label, prediction)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "mary moved to the bathroom . john went to the hallway . where is mary ? bathroom bathroom\n", + "daniel went back to the hallway . sandra moved to the garden . where is daniel ? hallway hallway\n", + "john moved to the office . sandra journeyed to the bathroom . where is daniel ? hallway hallway\n", + "mary moved to the hallway . daniel travelled to the office . where is daniel ? office office\n", + "john went back to the garden . john moved to the bedroom . where is sandra ? bathroom bathroom\n", + "sandra travelled to the office . sandra went to the bathroom . where is sandra ? bathroom bathroom\n", + "mary went to the bedroom . daniel moved to the hallway . where is sandra ? bathroom bathroom\n", + "john went to the garden . john travelled to the office . where is sandra ? bathroom bathroom\n", + "daniel journeyed to the bedroom . daniel travelled to the hallway . where is john ? office office\n", + "john went to the bedroom . john travelled to the office . where is daniel ? hallway office\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "tzJywFmLMHDX", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#儲存訓練好的模型\n", + "import h5py\n", + "model.save('qa_model.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "LEnHjjN-OCCn", + "colab_type": "code", + "outputId": "3bfd081a-cd6a-432f-da82-48ac4e175ccc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 191 + } + }, + "cell_type": "code", + "source": [ + "from keras.models import load_model\n", + "my_model = load_model('qa_model.h5')\n", + "\n", + "ytest = np.argmax(Ytest, axis=1)\n", + "\n", + "# get predictions\n", + "Ytest_ = my_model.predict([Xstest, Xqtest])\n", + "ytest_ = np.argmax(Ytest_, axis=1)\n", + "\n", + "NUM_DISPLAY = 10\n", + "\n", + "for i in range(NUM_DISPLAY):\n", + " story = \" \".join([idx2word[x] for x in Xstest[i].tolist() if x != 0])\n", + " question = \" \".join([idx2word[x] for x in Xqtest[i].tolist()])\n", + " label = idx2word[ytest[i]]\n", + " prediction = idx2word[ytest_[i]]\n", + " print(story, question, label, prediction)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "mary moved to the bathroom . john went to the hallway . where is mary ? bathroom bathroom\n", + "daniel went back to the hallway . sandra moved to the garden . where is daniel ? hallway hallway\n", + "john moved to the office . sandra journeyed to the bathroom . where is daniel ? hallway hallway\n", + "mary moved to the hallway . daniel travelled to the office . where is daniel ? office office\n", + "john went back to the garden . john moved to the bedroom . where is sandra ? bathroom bathroom\n", + "sandra travelled to the office . sandra went to the bathroom . where is sandra ? bathroom bathroom\n", + "mary went to the bedroom . daniel moved to the hallway . where is sandra ? bathroom bathroom\n", + "john went to the garden . john travelled to the office . where is sandra ? bathroom bathroom\n", + "daniel journeyed to the bedroom . daniel travelled to the hallway . where is john ? office office\n", + "john went to the bedroom . john travelled to the office . where is daniel ? hallway office\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "gtP7xJb_0LtH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### **來試試加入Google word2vec的embeddings 來做模型的訓練**" + ] + }, + { + "metadata": { + "id": "p3E8xaHd0Lpb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "" + ] + }, + { + "metadata": { + "id": "wBAYhF3dIRM_", + "colab_type": "code", + "outputId": "e940f2ed-805a-42a4-eec4-85dc4f3fb0a2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 666 + } + }, + "cell_type": "code", + "source": [ + "!pip install gensim\n", + "from __future__ import division, print_function\n", + "from gensim.models import Word2Vec\n", + "from keras.callbacks import ModelCheckpoint\n", + "from keras.layers import Dense, Dropout, Reshape, Flatten\n", + "from keras.layers.embeddings import Embedding\n", + "from keras.layers.recurrent import LSTM\n", + "from keras.layers.wrappers import Bidirectional\n", + "from keras.models import Sequential\n", + "from sklearn.cross_validation import train_test_split\n", + "import numpy as np\n", + "from gensim.models import KeyedVectors\n", + "import os\n", + "\n", + "\n", + "\n", + "#下載Google word embeedings\n", + "!wget --no-check-certificate -r 'https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz' -O GoogleNews-vectors-negative300.bin.gz\n", + "\n", + "\n", + "#https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing\n", + "WORD2VEC_BIN = \"GoogleNews-vectors-negative300.bin.gz\"\n", + "\n", + "#設定資料(word2vec)存放目錄\n", + "DATA_DIR = \"./\"\n", + "\n", + "word2vec = KeyedVectors.load_word2vec_format(\n", + " os.path.join(DATA_DIR, WORD2VEC_BIN), binary=True)\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: gensim in /usr/local/lib/python3.6/dist-packages (3.6.0)\n", + "Requirement already satisfied: scipy>=0.18.1 in /usr/local/lib/python3.6/dist-packages (from gensim) (1.1.0)\n", + "Requirement already satisfied: numpy>=1.11.3 in /usr/local/lib/python3.6/dist-packages (from gensim) (1.14.6)\n", + "Requirement already satisfied: six>=1.5.0 in /usr/local/lib/python3.6/dist-packages (from gensim) (1.11.0)\n", + "Requirement already satisfied: smart-open>=1.2.1 in /usr/local/lib/python3.6/dist-packages (from gensim) (1.7.1)\n", + "Requirement already satisfied: boto>=2.32 in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (2.49.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (2.18.4)\n", + "Requirement already satisfied: bz2file in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (0.98)\n", + "Requirement already satisfied: boto3 in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (1.9.45)\n", + "Requirement already satisfied: idna<2.7,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (2.6)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (2018.10.15)\n", + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (3.0.4)\n", + "Requirement already satisfied: urllib3<1.23,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (1.22)\n", + "Requirement already satisfied: s3transfer<0.2.0,>=0.1.10 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim) (0.1.13)\n", + "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim) (0.9.3)\n", + "Requirement already satisfied: botocore<1.13.0,>=1.12.45 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim) (1.12.45)\n", + "Requirement already satisfied: docutils>=0.10 in /usr/local/lib/python3.6/dist-packages (from botocore<1.13.0,>=1.12.45->boto3->smart-open>=1.2.1->gensim) (0.14)\n", + "Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= \"2.7\" in /usr/local/lib/python3.6/dist-packages (from botocore<1.13.0,>=1.12.45->boto3->smart-open>=1.2.1->gensim) (2.5.3)\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n", + " \"This module will be removed in 0.20.\", DeprecationWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "WARNING: combining -O with -r or -p will mean that all downloaded content\n", + "will be placed in the single file you specified.\n", + "\n", + "--2018-11-15 06:38:01-- https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz\n", + "Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.136.158\n", + "Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.136.158|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 1647046227 (1.5G) [application/x-gzip]\n", + "Saving to: ‘GoogleNews-vectors-negative300.bin.gz’\n", + "\n", + "GoogleNews-vectors- 100%[===================>] 1.53G 77.3MB/s in 20s \n", + "\n", + "2018-11-15 06:38:21 (76.7 MB/s) - ‘GoogleNews-vectors-negative300.bin.gz’ saved [1647046227/1647046227]\n", + "\n", + "FINISHED --2018-11-15 06:38:21--\n", + "Total wall clock time: 21s\n", + "Downloaded: 1 files, 1.5G in 20s (76.7 MB/s)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "GkjLMMWcLCuL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "WORD2VEC_EMBED_SIZE = 300\n", + "embedding_weights = np.zeros((vocab_size, WORD2VEC_EMBED_SIZE))\n", + "for word, index in word2idx.items():\n", + " try:\n", + " embedding_weights[index, :] = word2vec[word.lower()]\n", + " except KeyError:\n", + " pass # keep as zero (not ideal, but what else can we do?)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "M1dUlIq4L6iP", + "colab_type": "code", + "outputId": "9870bcff-5250-4a71-845d-2fb691eb1f18", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 945 + } + }, + "cell_type": "code", + "source": [ + "from keras.layers import Dense, Dropout, Reshape, Flatten\n", + "import keras.backend as K\n", + "K.clear_session()\n", + "# define network\n", + "EMBEDDING_SIZE = 300\n", + "LATENT_SIZE = 32\n", + "BATCH_SIZE = 32\n", + "NUM_EPOCHS = 400\n", + "\n", + "# inputs\n", + "story_input = Input(shape=(story_maxlen,), name ='story')\n", + "question_input = Input(shape=(question_maxlen,), name ='question')\n", + "\n", + "\n", + "#text_input = Input(shape=(None,), dtype='int32', name='text')\n", + "embedded_text = layers.Embedding(input_dim=vocab_size,\n", + " output_dim=EMBEDDING_SIZE,\n", + " input_length=story_maxlen, weights=[embedding_weights], trainable=False)(story_input)\n", + "#embedded_text = Dropout(0.3)(embedded_text)\n", + "\n", + "\n", + "encoded_text = layers.LSTM(32)(embedded_text)\n", + "\n", + "\n", + "\n", + "#question_input = Input(shape=(None,),dtype='int32', name='question')\n", + "embedded_question = layers.Embedding(input_dim=vocab_size,\n", + " output_dim=EMBEDDING_SIZE,\n", + " input_length=question_maxlen, weights=[embedding_weights], trainable=False)(question_input)\n", + "#embedded_question = Dropout(0.3)(embedded_question)\n", + "\n", + "encoded_question = layers.LSTM(16)(embedded_question)\n", + "\n", + "#Merge([qenc, aenc], mode=\"dot\", dot_axes=[1, 1])\n", + "concatenated = layers.concatenate([encoded_text, encoded_question],axis=-1)\n", + "answer = layers.Dense(vocab_size,\n", + "activation='softmax')(concatenated)\n", + "model = Model([story_input, question_input], answer)\n", + "model.compile(optimizer='rmsprop',\n", + "loss='categorical_crossentropy',\n", + "metrics=['acc'])\n", + "model.summary()\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "story (InputLayer) (None, 14) 0 \n", + "__________________________________________________________________________________________________\n", + "question (InputLayer) (None, 4) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_1 (Embedding) (None, 14, 300) 6600 story[0][0] \n", + "__________________________________________________________________________________________________\n", + "embedding_2 (Embedding) (None, 4, 300) 6600 question[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_1 (LSTM) (None, 32) 42624 embedding_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_2 (LSTM) (None, 16) 20288 embedding_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 48) 0 lstm_1[0][0] \n", + " lstm_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 22) 1078 concatenate_1[0][0] \n", + "==================================================================================================\n", + "Total params: 77,190\n", + "Trainable params: 63,990\n", + "Non-trainable params: 13,200\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140178357671136\n\nstory: InputLayer\n\ninput:\n\noutput:\n\n(None, 14)\n\n(None, 14)\n\n\n\n140178357672704\n\nembedding_1: Embedding\n\ninput:\n\noutput:\n\n(None, 14)\n\n(None, 14, 300)\n\n\n\n140178357671136->140178357672704\n\n\n\n\n\n140178357671528\n\nquestion: InputLayer\n\ninput:\n\noutput:\n\n(None, 4)\n\n(None, 4)\n\n\n\n140178357671864\n\nembedding_2: Embedding\n\ninput:\n\noutput:\n\n(None, 4)\n\n(None, 4, 300)\n\n\n\n140178357671528->140178357671864\n\n\n\n\n\n140178357671696\n\nlstm_1: LSTM\n\ninput:\n\noutput:\n\n(None, 14, 300)\n\n(None, 32)\n\n\n\n140178357672704->140178357671696\n\n\n\n\n\n140178358505032\n\nlstm_2: LSTM\n\ninput:\n\noutput:\n\n(None, 4, 300)\n\n(None, 16)\n\n\n\n140178357671864->140178358505032\n\n\n\n\n\n140178357796088\n\nconcatenate_1: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 16)]\n\n(None, 48)\n\n\n\n140178357671696->140178357796088\n\n\n\n\n\n140178358505032->140178357796088\n\n\n\n\n\n140178357672984\n\ndense_1: Dense\n\ninput:\n\noutput:\n\n(None, 48)\n\n(None, 22)\n\n\n\n140178357796088->140178357672984\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 24 + } + ] + }, + { + "metadata": { + "id": "AfdF-vd6IGg5", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def make_tensorboard(set_dir_name=''):\n", + " tictoc = strftime(\"%a_%d_%b_%Y_%H_%M_%S\", gmtime())\n", + " directory_name = tictoc\n", + " log_dir = set_dir_name + '_' + directory_name\n", + " os.mkdir(log_dir)\n", + " tbc=TensorBoardColab()\n", + " #tensorboard = TensorBoard(log_dir=log_dir)\n", + " tensorboard = TensorBoardColabCallback(tbc,histogram_freq=1,embeddings_freq=0, embeddings_layer_names = ['embedded_text','embedded_question'] ) #, embeddings_metadata = '/content/logs/' + meta_file\n", + " # ['embedded_text','embedded_question']\n", + " return tensorboard" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "EHkzv3j6P_gk", + "colab_type": "code", + "outputId": "206a8db2-fe21-4d76-bdea-002dfe86ff66", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 13685 + } + }, + "cell_type": "code", + "source": [ + "tensorboard = make_tensorboard(set_dir_name='network')\n", + "\n", + "#開始訓練模型\n", + "history = model.fit([Xstrain, Xqtrain], [Ytrain], batch_size=BATCH_SIZE,\n", + " epochs=NUM_EPOCHS,\n", + " callbacks=[tensorboard],\n", + " validation_data=([Xstest, Xqtest], [Ytest]))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Wait for 8 seconds...\n", + "TensorBoard link:\n", + "http://05f9b0a2.ngrok.io\n", + "Train on 1000 samples, validate on 1000 samples\n", + "Epoch 1/400\n", + "1000/1000 [==============================] - 4s 4ms/step - loss: 2.3178 - acc: 0.2010 - val_loss: 1.8685 - val_acc: 0.3140\n", + "Epoch 2/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.7379 - acc: 0.3840 - val_loss: 1.6171 - val_acc: 0.4190\n", + "Epoch 3/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.5276 - acc: 0.5070 - val_loss: 1.4546 - val_acc: 0.5230\n", + "Epoch 4/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.4010 - acc: 0.5500 - val_loss: 1.3965 - val_acc: 0.5120\n", + "Epoch 5/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.3299 - acc: 0.5460 - val_loss: 1.3570 - val_acc: 0.5220\n", + "Epoch 6/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.2821 - acc: 0.5450 - val_loss: 1.2508 - val_acc: 0.5660\n", + "Epoch 7/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.2381 - acc: 0.5460 - val_loss: 1.2589 - val_acc: 0.5390\n", + "Epoch 8/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.2136 - acc: 0.5500 - val_loss: 1.1760 - val_acc: 0.5620\n", + "Epoch 9/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1913 - acc: 0.5610 - val_loss: 1.1995 - val_acc: 0.5440\n", + "Epoch 10/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1741 - acc: 0.5590 - val_loss: 1.1693 - val_acc: 0.5700\n", + "Epoch 11/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1684 - acc: 0.5550 - val_loss: 1.1749 - val_acc: 0.5430\n", + "Epoch 12/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1611 - acc: 0.5550 - val_loss: 1.1780 - val_acc: 0.5410\n", + "Epoch 13/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1436 - acc: 0.5510 - val_loss: 1.1256 - val_acc: 0.5800\n", + "Epoch 14/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1335 - acc: 0.5760 - val_loss: 1.1417 - val_acc: 0.5850\n", + "Epoch 15/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1261 - acc: 0.5720 - val_loss: 1.1080 - val_acc: 0.5880\n", + "Epoch 16/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1213 - acc: 0.5860 - val_loss: 1.1072 - val_acc: 0.5930\n", + "Epoch 17/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1221 - acc: 0.5750 - val_loss: 1.0952 - val_acc: 0.5850\n", + "Epoch 18/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1064 - acc: 0.5770 - val_loss: 1.0805 - val_acc: 0.5960\n", + "Epoch 19/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.1002 - acc: 0.5760 - val_loss: 1.0853 - val_acc: 0.6080\n", + "Epoch 20/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0952 - acc: 0.5930 - val_loss: 1.0707 - val_acc: 0.6090\n", + "Epoch 21/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0909 - acc: 0.5910 - val_loss: 1.0756 - val_acc: 0.6000\n", + "Epoch 22/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0800 - acc: 0.5980 - val_loss: 1.0609 - val_acc: 0.6060\n", + "Epoch 23/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0760 - acc: 0.6070 - val_loss: 1.0539 - val_acc: 0.6230\n", + "Epoch 24/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0619 - acc: 0.6190 - val_loss: 1.0502 - val_acc: 0.6230\n", + "Epoch 25/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0639 - acc: 0.6100 - val_loss: 1.0410 - val_acc: 0.6190\n", + "Epoch 26/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0597 - acc: 0.6040 - val_loss: 1.0652 - val_acc: 0.6010\n", + "Epoch 27/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0508 - acc: 0.6180 - val_loss: 1.0230 - val_acc: 0.6230\n", + "Epoch 28/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0422 - acc: 0.6190 - val_loss: 1.0384 - val_acc: 0.6120\n", + "Epoch 29/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0408 - acc: 0.6120 - val_loss: 1.0124 - val_acc: 0.6340\n", + "Epoch 30/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0287 - acc: 0.6180 - val_loss: 1.0401 - val_acc: 0.6270\n", + "Epoch 31/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0207 - acc: 0.6140 - val_loss: 1.0301 - val_acc: 0.6080\n", + "Epoch 32/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0180 - acc: 0.6180 - val_loss: 0.9914 - val_acc: 0.6300\n", + "Epoch 33/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0067 - acc: 0.6460 - val_loss: 0.9857 - val_acc: 0.6420\n", + "Epoch 34/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.0050 - acc: 0.6370 - val_loss: 0.9732 - val_acc: 0.6470\n", + "Epoch 35/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9989 - acc: 0.6250 - val_loss: 0.9715 - val_acc: 0.6460\n", + "Epoch 36/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9859 - acc: 0.6320 - val_loss: 1.0002 - val_acc: 0.6350\n", + "Epoch 37/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9910 - acc: 0.6450 - val_loss: 0.9741 - val_acc: 0.6630\n", + "Epoch 38/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9757 - acc: 0.6490 - val_loss: 0.9579 - val_acc: 0.6520\n", + "Epoch 39/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9705 - acc: 0.6490 - val_loss: 0.9617 - val_acc: 0.6380\n", + "Epoch 40/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9641 - acc: 0.6500 - val_loss: 0.9263 - val_acc: 0.6700\n", + "Epoch 41/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9585 - acc: 0.6440 - val_loss: 0.9472 - val_acc: 0.6670\n", + "Epoch 42/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9543 - acc: 0.6510 - val_loss: 0.9530 - val_acc: 0.6460\n", + "Epoch 43/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9455 - acc: 0.6530 - val_loss: 0.9277 - val_acc: 0.6550\n", + "Epoch 44/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9349 - acc: 0.6640 - val_loss: 0.9089 - val_acc: 0.6830\n", + "Epoch 45/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9329 - acc: 0.6670 - val_loss: 0.8973 - val_acc: 0.6820\n", + "Epoch 46/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9222 - acc: 0.6760 - val_loss: 0.9277 - val_acc: 0.6700\n", + "Epoch 47/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9107 - acc: 0.6740 - val_loss: 0.9006 - val_acc: 0.6780\n", + "Epoch 48/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9156 - acc: 0.6830 - val_loss: 0.8825 - val_acc: 0.6830\n", + "Epoch 49/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9030 - acc: 0.6790 - val_loss: 0.9115 - val_acc: 0.6660\n", + "Epoch 50/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9043 - acc: 0.6830 - val_loss: 0.8698 - val_acc: 0.6890\n", + "Epoch 51/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8851 - acc: 0.6920 - val_loss: 0.8900 - val_acc: 0.6770\n", + "Epoch 52/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8815 - acc: 0.6930 - val_loss: 0.8533 - val_acc: 0.7080\n", + "Epoch 53/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8723 - acc: 0.7010 - val_loss: 0.8669 - val_acc: 0.6930\n", + "Epoch 54/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8643 - acc: 0.7100 - val_loss: 0.8514 - val_acc: 0.7030\n", + "Epoch 55/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8605 - acc: 0.6990 - val_loss: 0.8165 - val_acc: 0.7300\n", + "Epoch 56/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8521 - acc: 0.7090 - val_loss: 0.8247 - val_acc: 0.7130\n", + "Epoch 57/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8474 - acc: 0.7030 - val_loss: 0.8300 - val_acc: 0.7080\n", + "Epoch 58/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8304 - acc: 0.7200 - val_loss: 0.8689 - val_acc: 0.6890\n", + "Epoch 59/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8298 - acc: 0.7120 - val_loss: 0.8523 - val_acc: 0.6980\n", + "Epoch 60/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8212 - acc: 0.7130 - val_loss: 0.7881 - val_acc: 0.7300\n", + "Epoch 61/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8095 - acc: 0.7230 - val_loss: 0.8287 - val_acc: 0.7000\n", + "Epoch 62/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.8055 - acc: 0.7180 - val_loss: 0.7846 - val_acc: 0.7300\n", + "Epoch 63/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7950 - acc: 0.7310 - val_loss: 0.8152 - val_acc: 0.7060\n", + "Epoch 64/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7837 - acc: 0.7230 - val_loss: 0.7915 - val_acc: 0.7260\n", + "Epoch 65/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7810 - acc: 0.7360 - val_loss: 0.7717 - val_acc: 0.7360\n", + "Epoch 66/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7734 - acc: 0.7390 - val_loss: 0.7500 - val_acc: 0.7500\n", + "Epoch 67/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7659 - acc: 0.7390 - val_loss: 0.7371 - val_acc: 0.7600\n", + "Epoch 68/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7600 - acc: 0.7500 - val_loss: 0.7353 - val_acc: 0.7430\n", + "Epoch 69/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7519 - acc: 0.7550 - val_loss: 0.7214 - val_acc: 0.7530\n", + "Epoch 70/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7454 - acc: 0.7480 - val_loss: 0.7166 - val_acc: 0.7630\n", + "Epoch 71/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7268 - acc: 0.7520 - val_loss: 0.7231 - val_acc: 0.7500\n", + "Epoch 72/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7290 - acc: 0.7570 - val_loss: 0.7222 - val_acc: 0.7530\n", + "Epoch 73/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7133 - acc: 0.7570 - val_loss: 0.7188 - val_acc: 0.7540\n", + "Epoch 74/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.7105 - acc: 0.7510 - val_loss: 0.6868 - val_acc: 0.7660\n", + "Epoch 75/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6983 - acc: 0.7670 - val_loss: 0.6926 - val_acc: 0.7690\n", + "Epoch 76/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6928 - acc: 0.7630 - val_loss: 0.6580 - val_acc: 0.7810\n", + "Epoch 77/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6853 - acc: 0.7670 - val_loss: 0.6492 - val_acc: 0.7880\n", + "Epoch 78/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6737 - acc: 0.7750 - val_loss: 0.6853 - val_acc: 0.7590\n", + "Epoch 79/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6739 - acc: 0.7730 - val_loss: 0.6774 - val_acc: 0.7700\n", + "Epoch 80/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6706 - acc: 0.7790 - val_loss: 0.6495 - val_acc: 0.7950\n", + "Epoch 81/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6567 - acc: 0.7780 - val_loss: 0.6368 - val_acc: 0.7910\n", + "Epoch 82/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6559 - acc: 0.7840 - val_loss: 0.6439 - val_acc: 0.7790\n", + "Epoch 83/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6460 - acc: 0.7880 - val_loss: 0.6403 - val_acc: 0.7880\n", + "Epoch 84/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6401 - acc: 0.7860 - val_loss: 0.6158 - val_acc: 0.8030\n", + "Epoch 85/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6278 - acc: 0.7950 - val_loss: 0.5895 - val_acc: 0.8130\n", + "Epoch 86/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6240 - acc: 0.7940 - val_loss: 0.5941 - val_acc: 0.8130\n", + "Epoch 87/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6158 - acc: 0.8010 - val_loss: 0.6482 - val_acc: 0.7790\n", + "Epoch 88/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6119 - acc: 0.7950 - val_loss: 0.5745 - val_acc: 0.8150\n", + "Epoch 89/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6103 - acc: 0.7940 - val_loss: 0.5821 - val_acc: 0.8060\n", + "Epoch 90/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5981 - acc: 0.8050 - val_loss: 0.5915 - val_acc: 0.8040\n", + "Epoch 91/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5840 - acc: 0.8150 - val_loss: 0.5579 - val_acc: 0.8240\n", + "Epoch 92/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5862 - acc: 0.8000 - val_loss: 0.5594 - val_acc: 0.8160\n", + "Epoch 93/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5702 - acc: 0.8140 - val_loss: 0.5764 - val_acc: 0.8040\n", + "Epoch 94/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5729 - acc: 0.8200 - val_loss: 0.5900 - val_acc: 0.7910\n", + "Epoch 95/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5611 - acc: 0.8100 - val_loss: 0.5568 - val_acc: 0.8120\n", + "Epoch 96/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5580 - acc: 0.8120 - val_loss: 0.5525 - val_acc: 0.8200\n", + "Epoch 97/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5521 - acc: 0.8250 - val_loss: 0.5460 - val_acc: 0.8160\n", + "Epoch 98/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5477 - acc: 0.8150 - val_loss: 0.5082 - val_acc: 0.8430\n", + "Epoch 99/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5364 - acc: 0.8230 - val_loss: 0.4905 - val_acc: 0.8460\n", + "Epoch 100/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5301 - acc: 0.8280 - val_loss: 0.5005 - val_acc: 0.8270\n", + "Epoch 101/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5230 - acc: 0.8280 - val_loss: 0.5203 - val_acc: 0.8270\n", + "Epoch 102/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5189 - acc: 0.8280 - val_loss: 0.5336 - val_acc: 0.8220\n", + "Epoch 103/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5098 - acc: 0.8340 - val_loss: 0.4849 - val_acc: 0.8440\n", + "Epoch 104/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.5038 - acc: 0.8310 - val_loss: 0.4867 - val_acc: 0.8500\n", + "Epoch 105/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4962 - acc: 0.8310 - val_loss: 0.4911 - val_acc: 0.8420\n", + "Epoch 106/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4854 - acc: 0.8500 - val_loss: 0.4546 - val_acc: 0.8620\n", + "Epoch 107/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4845 - acc: 0.8460 - val_loss: 0.4988 - val_acc: 0.8390\n", + "Epoch 108/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4833 - acc: 0.8440 - val_loss: 0.4427 - val_acc: 0.8610\n", + "Epoch 109/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4675 - acc: 0.8490 - val_loss: 0.4672 - val_acc: 0.8420\n", + "Epoch 110/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4702 - acc: 0.8490 - val_loss: 0.4836 - val_acc: 0.8500\n", + "Epoch 111/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4586 - acc: 0.8510 - val_loss: 0.4827 - val_acc: 0.8430\n", + "Epoch 112/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4507 - acc: 0.8530 - val_loss: 0.4830 - val_acc: 0.8360\n", + "Epoch 113/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4485 - acc: 0.8530 - val_loss: 0.4426 - val_acc: 0.8590\n", + "Epoch 114/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4441 - acc: 0.8590 - val_loss: 0.4097 - val_acc: 0.8820\n", + "Epoch 115/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4344 - acc: 0.8590 - val_loss: 0.4031 - val_acc: 0.8700\n", + "Epoch 116/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4304 - acc: 0.8660 - val_loss: 0.3982 - val_acc: 0.8860\n", + "Epoch 117/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4172 - acc: 0.8710 - val_loss: 0.4385 - val_acc: 0.8490\n", + "Epoch 118/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4188 - acc: 0.8670 - val_loss: 0.3913 - val_acc: 0.8730\n", + "Epoch 119/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4153 - acc: 0.8670 - val_loss: 0.3989 - val_acc: 0.8790\n", + "Epoch 120/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.4037 - acc: 0.8720 - val_loss: 0.3842 - val_acc: 0.8820\n", + "Epoch 121/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3981 - acc: 0.8730 - val_loss: 0.3734 - val_acc: 0.8870\n", + "Epoch 122/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3975 - acc: 0.8730 - val_loss: 0.3744 - val_acc: 0.8780\n", + "Epoch 123/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3874 - acc: 0.8850 - val_loss: 0.4164 - val_acc: 0.8660\n", + "Epoch 124/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3837 - acc: 0.8740 - val_loss: 0.3789 - val_acc: 0.8700\n", + "Epoch 125/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3765 - acc: 0.8810 - val_loss: 0.3497 - val_acc: 0.9010\n", + "Epoch 126/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3681 - acc: 0.8880 - val_loss: 0.3492 - val_acc: 0.8960\n", + "Epoch 127/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3704 - acc: 0.8840 - val_loss: 0.3561 - val_acc: 0.8910\n", + "Epoch 128/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3602 - acc: 0.8930 - val_loss: 0.3625 - val_acc: 0.8830\n", + "Epoch 129/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3523 - acc: 0.8780 - val_loss: 0.3298 - val_acc: 0.9020\n", + "Epoch 130/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3419 - acc: 0.8910 - val_loss: 0.3655 - val_acc: 0.8880\n", + "Epoch 131/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3432 - acc: 0.8970 - val_loss: 0.3189 - val_acc: 0.9070\n", + "Epoch 132/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3471 - acc: 0.8910 - val_loss: 0.3215 - val_acc: 0.8990\n", + "Epoch 133/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3379 - acc: 0.8920 - val_loss: 0.3162 - val_acc: 0.9050\n", + "Epoch 134/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3249 - acc: 0.8970 - val_loss: 0.3072 - val_acc: 0.9150\n", + "Epoch 135/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3193 - acc: 0.9060 - val_loss: 0.3068 - val_acc: 0.9110\n", + "Epoch 136/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3237 - acc: 0.9010 - val_loss: 0.2891 - val_acc: 0.9160\n", + "Epoch 137/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3154 - acc: 0.8990 - val_loss: 0.4164 - val_acc: 0.8530\n", + "Epoch 138/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3130 - acc: 0.9080 - val_loss: 0.3138 - val_acc: 0.9030\n", + "Epoch 139/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3060 - acc: 0.9120 - val_loss: 0.3213 - val_acc: 0.8990\n", + "Epoch 140/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3009 - acc: 0.9070 - val_loss: 0.2981 - val_acc: 0.9140\n", + "Epoch 141/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3000 - acc: 0.9060 - val_loss: 0.3157 - val_acc: 0.8980\n", + "Epoch 142/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2990 - acc: 0.9150 - val_loss: 0.2931 - val_acc: 0.9150\n", + "Epoch 143/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2905 - acc: 0.9100 - val_loss: 0.2937 - val_acc: 0.9130\n", + "Epoch 144/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2800 - acc: 0.9160 - val_loss: 0.3241 - val_acc: 0.9070\n", + "Epoch 145/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2808 - acc: 0.9180 - val_loss: 0.2601 - val_acc: 0.9250\n", + "Epoch 146/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2769 - acc: 0.9190 - val_loss: 0.2610 - val_acc: 0.9290\n", + "Epoch 147/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2722 - acc: 0.9210 - val_loss: 0.2728 - val_acc: 0.9220\n", + "Epoch 148/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2678 - acc: 0.9220 - val_loss: 0.2387 - val_acc: 0.9320\n", + "Epoch 149/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2703 - acc: 0.9250 - val_loss: 0.2452 - val_acc: 0.9350\n", + "Epoch 150/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2529 - acc: 0.9310 - val_loss: 0.2594 - val_acc: 0.9230\n", + "Epoch 151/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2606 - acc: 0.9290 - val_loss: 0.2490 - val_acc: 0.9280\n", + "Epoch 152/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2500 - acc: 0.9330 - val_loss: 0.2436 - val_acc: 0.9370\n", + "Epoch 153/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2523 - acc: 0.9330 - val_loss: 0.2398 - val_acc: 0.9380\n", + "Epoch 154/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2472 - acc: 0.9280 - val_loss: 0.2253 - val_acc: 0.9440\n", + "Epoch 155/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2396 - acc: 0.9350 - val_loss: 0.2643 - val_acc: 0.9240\n", + "Epoch 156/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2422 - acc: 0.9350 - val_loss: 0.2214 - val_acc: 0.9520\n", + "Epoch 157/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2310 - acc: 0.9420 - val_loss: 0.2321 - val_acc: 0.9410\n", + "Epoch 158/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2321 - acc: 0.9380 - val_loss: 0.3210 - val_acc: 0.8970\n", + "Epoch 159/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2275 - acc: 0.9370 - val_loss: 0.2620 - val_acc: 0.9230\n", + "Epoch 160/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2188 - acc: 0.9470 - val_loss: 0.2129 - val_acc: 0.9510\n", + "Epoch 161/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2240 - acc: 0.9360 - val_loss: 0.2095 - val_acc: 0.9420\n", + "Epoch 162/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2138 - acc: 0.9500 - val_loss: 0.2124 - val_acc: 0.9470\n", + "Epoch 163/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2132 - acc: 0.9490 - val_loss: 0.2101 - val_acc: 0.9470\n", + "Epoch 164/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2063 - acc: 0.9500 - val_loss: 0.1912 - val_acc: 0.9570\n", + "Epoch 165/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2073 - acc: 0.9530 - val_loss: 0.2152 - val_acc: 0.9470\n", + "Epoch 166/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2048 - acc: 0.9490 - val_loss: 0.1815 - val_acc: 0.9610\n", + "Epoch 167/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1970 - acc: 0.9520 - val_loss: 0.1959 - val_acc: 0.9550\n", + "Epoch 168/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1926 - acc: 0.9560 - val_loss: 0.1993 - val_acc: 0.9510\n", + "Epoch 169/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1978 - acc: 0.9480 - val_loss: 0.1763 - val_acc: 0.9600\n", + "Epoch 170/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1846 - acc: 0.9570 - val_loss: 0.1718 - val_acc: 0.9610\n", + "Epoch 171/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1866 - acc: 0.9530 - val_loss: 0.1893 - val_acc: 0.9510\n", + "Epoch 172/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1785 - acc: 0.9620 - val_loss: 0.1785 - val_acc: 0.9550\n", + "Epoch 173/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1802 - acc: 0.9590 - val_loss: 0.1711 - val_acc: 0.9560\n", + "Epoch 174/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1739 - acc: 0.9560 - val_loss: 0.1766 - val_acc: 0.9540\n", + "Epoch 175/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1717 - acc: 0.9590 - val_loss: 0.1690 - val_acc: 0.9560\n", + "Epoch 176/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1730 - acc: 0.9610 - val_loss: 0.1590 - val_acc: 0.9600\n", + "Epoch 177/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1649 - acc: 0.9600 - val_loss: 0.1457 - val_acc: 0.9690\n", + "Epoch 178/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1662 - acc: 0.9630 - val_loss: 0.1642 - val_acc: 0.9600\n", + "Epoch 179/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1649 - acc: 0.9640 - val_loss: 0.1436 - val_acc: 0.9670\n", + "Epoch 180/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1560 - acc: 0.9650 - val_loss: 0.1539 - val_acc: 0.9650\n", + "Epoch 181/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1594 - acc: 0.9660 - val_loss: 0.1610 - val_acc: 0.9630\n", + "Epoch 182/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1546 - acc: 0.9610 - val_loss: 0.1482 - val_acc: 0.9680\n", + "Epoch 183/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1458 - acc: 0.9720 - val_loss: 0.1420 - val_acc: 0.9700\n", + "Epoch 184/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1477 - acc: 0.9680 - val_loss: 0.1329 - val_acc: 0.9730\n", + "Epoch 185/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1464 - acc: 0.9660 - val_loss: 0.1303 - val_acc: 0.9730\n", + "Epoch 186/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1418 - acc: 0.9680 - val_loss: 0.1800 - val_acc: 0.9530\n", + "Epoch 187/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1429 - acc: 0.9700 - val_loss: 0.1502 - val_acc: 0.9680\n", + "Epoch 188/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1435 - acc: 0.9730 - val_loss: 0.1227 - val_acc: 0.9790\n", + "Epoch 189/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1409 - acc: 0.9670 - val_loss: 0.1259 - val_acc: 0.9740\n", + "Epoch 190/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1327 - acc: 0.9730 - val_loss: 0.1210 - val_acc: 0.9720\n", + "Epoch 191/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1345 - acc: 0.9680 - val_loss: 0.1206 - val_acc: 0.9800\n", + "Epoch 192/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1280 - acc: 0.9730 - val_loss: 0.1263 - val_acc: 0.9780\n", + "Epoch 193/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1316 - acc: 0.9730 - val_loss: 0.1320 - val_acc: 0.9760\n", + "Epoch 194/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1190 - acc: 0.9740 - val_loss: 0.1351 - val_acc: 0.9690\n", + "Epoch 195/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1296 - acc: 0.9750 - val_loss: 0.1063 - val_acc: 0.9820\n", + "Epoch 196/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1147 - acc: 0.9790 - val_loss: 0.1644 - val_acc: 0.9620\n", + "Epoch 197/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1213 - acc: 0.9760 - val_loss: 0.1016 - val_acc: 0.9810\n", + "Epoch 198/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1123 - acc: 0.9770 - val_loss: 0.1109 - val_acc: 0.9780\n", + "Epoch 199/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1168 - acc: 0.9790 - val_loss: 0.1609 - val_acc: 0.9620\n", + "Epoch 200/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1212 - acc: 0.9740 - val_loss: 0.1117 - val_acc: 0.9800\n", + "Epoch 201/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1061 - acc: 0.9790 - val_loss: 0.1065 - val_acc: 0.9810\n", + "Epoch 202/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1163 - acc: 0.9820 - val_loss: 0.1085 - val_acc: 0.9830\n", + "Epoch 203/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1046 - acc: 0.9810 - val_loss: 0.1088 - val_acc: 0.9780\n", + "Epoch 204/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1060 - acc: 0.9810 - val_loss: 0.1270 - val_acc: 0.9740\n", + "Epoch 205/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1069 - acc: 0.9720 - val_loss: 0.1129 - val_acc: 0.9800\n", + "Epoch 206/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1023 - acc: 0.9780 - val_loss: 0.0864 - val_acc: 0.9850\n", + "Epoch 207/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0975 - acc: 0.9830 - val_loss: 0.0977 - val_acc: 0.9830\n", + "Epoch 208/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1138 - acc: 0.9760 - val_loss: 0.1416 - val_acc: 0.9700\n", + "Epoch 209/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1000 - acc: 0.9820 - val_loss: 0.0818 - val_acc: 0.9880\n", + "Epoch 210/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0948 - acc: 0.9810 - val_loss: 0.1021 - val_acc: 0.9780\n", + "Epoch 211/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0964 - acc: 0.9820 - val_loss: 0.0994 - val_acc: 0.9780\n", + "Epoch 212/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0991 - acc: 0.9840 - val_loss: 0.0792 - val_acc: 0.9880\n", + "Epoch 213/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0890 - acc: 0.9860 - val_loss: 0.0770 - val_acc: 0.9870\n", + "Epoch 214/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0925 - acc: 0.9790 - val_loss: 0.0846 - val_acc: 0.9850\n", + "Epoch 215/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0879 - acc: 0.9830 - val_loss: 0.0839 - val_acc: 0.9850\n", + "Epoch 216/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0850 - acc: 0.9850 - val_loss: 0.0940 - val_acc: 0.9820\n", + "Epoch 217/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0864 - acc: 0.9840 - val_loss: 0.0704 - val_acc: 0.9890\n", + "Epoch 218/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0881 - acc: 0.9820 - val_loss: 0.0844 - val_acc: 0.9860\n", + "Epoch 219/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0786 - acc: 0.9890 - val_loss: 0.0846 - val_acc: 0.9850\n", + "Epoch 220/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0797 - acc: 0.9840 - val_loss: 0.0686 - val_acc: 0.9880\n", + "Epoch 221/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0799 - acc: 0.9850 - val_loss: 0.0715 - val_acc: 0.9860\n", + "Epoch 222/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0791 - acc: 0.9850 - val_loss: 0.0782 - val_acc: 0.9860\n", + "Epoch 223/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0755 - acc: 0.9880 - val_loss: 0.0864 - val_acc: 0.9830\n", + "Epoch 224/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0944 - acc: 0.9780 - val_loss: 0.0629 - val_acc: 0.9910\n", + "Epoch 225/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0686 - acc: 0.9870 - val_loss: 0.0671 - val_acc: 0.9850\n", + "Epoch 226/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0764 - acc: 0.9860 - val_loss: 0.0777 - val_acc: 0.9820\n", + "Epoch 227/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0764 - acc: 0.9810 - val_loss: 0.0674 - val_acc: 0.9910\n", + "Epoch 228/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0716 - acc: 0.9860 - val_loss: 0.0630 - val_acc: 0.9900\n", + "Epoch 229/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0691 - acc: 0.9890 - val_loss: 0.0564 - val_acc: 0.9910\n", + "Epoch 230/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0767 - acc: 0.9800 - val_loss: 0.0681 - val_acc: 0.9860\n", + "Epoch 231/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0680 - acc: 0.9840 - val_loss: 0.0772 - val_acc: 0.9840\n", + "Epoch 232/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0620 - acc: 0.9870 - val_loss: 0.0525 - val_acc: 0.9900\n", + "Epoch 233/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0622 - acc: 0.9850 - val_loss: 0.0963 - val_acc: 0.9810\n", + "Epoch 234/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0678 - acc: 0.9860 - val_loss: 0.0555 - val_acc: 0.9890\n", + "Epoch 235/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0565 - acc: 0.9880 - val_loss: 0.0607 - val_acc: 0.9890\n", + "Epoch 236/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0598 - acc: 0.9900 - val_loss: 0.0577 - val_acc: 0.9920\n", + "Epoch 237/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0628 - acc: 0.9870 - val_loss: 0.0536 - val_acc: 0.9900\n", + "Epoch 238/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0595 - acc: 0.9880 - val_loss: 0.0494 - val_acc: 0.9920\n", + "Epoch 239/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0574 - acc: 0.9890 - val_loss: 0.0549 - val_acc: 0.9900\n", + "Epoch 240/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0541 - acc: 0.9880 - val_loss: 0.0949 - val_acc: 0.9780\n", + "Epoch 241/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0556 - acc: 0.9900 - val_loss: 0.0464 - val_acc: 0.9930\n", + "Epoch 242/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0539 - acc: 0.9890 - val_loss: 0.0537 - val_acc: 0.9880\n", + "Epoch 243/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0549 - acc: 0.9880 - val_loss: 0.0738 - val_acc: 0.9820\n", + "Epoch 244/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0524 - acc: 0.9900 - val_loss: 0.0637 - val_acc: 0.9900\n", + "Epoch 245/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0558 - acc: 0.9870 - val_loss: 0.0456 - val_acc: 0.9920\n", + "Epoch 246/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0509 - acc: 0.9890 - val_loss: 0.0460 - val_acc: 0.9920\n", + "Epoch 247/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0497 - acc: 0.9880 - val_loss: 0.0666 - val_acc: 0.9830\n", + "Epoch 248/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0506 - acc: 0.9900 - val_loss: 0.0480 - val_acc: 0.9920\n", + "Epoch 249/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0443 - acc: 0.9940 - val_loss: 0.0418 - val_acc: 0.9920\n", + "Epoch 250/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0574 - acc: 0.9890 - val_loss: 0.0646 - val_acc: 0.9850\n", + "Epoch 251/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0560 - acc: 0.9860 - val_loss: 0.0397 - val_acc: 0.9930\n", + "Epoch 252/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0414 - acc: 0.9890 - val_loss: 0.0366 - val_acc: 0.9930\n", + "Epoch 253/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0503 - acc: 0.9900 - val_loss: 0.0378 - val_acc: 0.9940\n", + "Epoch 254/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0462 - acc: 0.9890 - val_loss: 0.0415 - val_acc: 0.9920\n", + "Epoch 255/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0399 - acc: 0.9920 - val_loss: 0.0417 - val_acc: 0.9920\n", + "Epoch 256/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0450 - acc: 0.9900 - val_loss: 0.0334 - val_acc: 0.9930\n", + "Epoch 257/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0426 - acc: 0.9910 - val_loss: 0.0341 - val_acc: 0.9940\n", + "Epoch 258/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0465 - acc: 0.9880 - val_loss: 0.0352 - val_acc: 0.9940\n", + "Epoch 259/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0474 - acc: 0.9910 - val_loss: 0.0577 - val_acc: 0.9840\n", + "Epoch 260/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0434 - acc: 0.9890 - val_loss: 0.0361 - val_acc: 0.9910\n", + "Epoch 261/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0391 - acc: 0.9900 - val_loss: 0.0390 - val_acc: 0.9950\n", + "Epoch 262/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0387 - acc: 0.9930 - val_loss: 0.0390 - val_acc: 0.9910\n", + "Epoch 263/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0374 - acc: 0.9910 - val_loss: 0.0406 - val_acc: 0.9920\n", + "Epoch 264/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0500 - acc: 0.9860 - val_loss: 0.0302 - val_acc: 0.9940\n", + "Epoch 265/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0352 - acc: 0.9930 - val_loss: 0.0441 - val_acc: 0.9870\n", + "Epoch 266/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0385 - acc: 0.9920 - val_loss: 0.0317 - val_acc: 0.9930\n", + "Epoch 267/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0391 - acc: 0.9920 - val_loss: 0.0290 - val_acc: 0.9960\n", + "Epoch 268/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0356 - acc: 0.9900 - val_loss: 0.0465 - val_acc: 0.9890\n", + "Epoch 269/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0423 - acc: 0.9910 - val_loss: 0.0303 - val_acc: 0.9960\n", + "Epoch 270/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0374 - acc: 0.9910 - val_loss: 0.0307 - val_acc: 0.9940\n", + "Epoch 271/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0316 - acc: 0.9910 - val_loss: 0.0993 - val_acc: 0.9670\n", + "Epoch 272/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0450 - acc: 0.9920 - val_loss: 0.0371 - val_acc: 0.9920\n", + "Epoch 273/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0425 - acc: 0.9900 - val_loss: 0.0283 - val_acc: 0.9940\n", + "Epoch 274/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0311 - acc: 0.9920 - val_loss: 0.0259 - val_acc: 0.9950\n", + "Epoch 275/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0384 - acc: 0.9890 - val_loss: 0.0378 - val_acc: 0.9930\n", + "Epoch 276/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0319 - acc: 0.9910 - val_loss: 0.0257 - val_acc: 0.9960\n", + "Epoch 277/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0365 - acc: 0.9920 - val_loss: 0.0517 - val_acc: 0.9870\n", + "Epoch 278/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0390 - acc: 0.9880 - val_loss: 0.0255 - val_acc: 0.9980\n", + "Epoch 279/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0278 - acc: 0.9940 - val_loss: 0.0388 - val_acc: 0.9920\n", + "Epoch 280/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0406 - acc: 0.9890 - val_loss: 0.0278 - val_acc: 0.9950\n", + "Epoch 281/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0275 - acc: 0.9950 - val_loss: 0.0263 - val_acc: 0.9960\n", + "Epoch 282/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0324 - acc: 0.9920 - val_loss: 0.0443 - val_acc: 0.9870\n", + "Epoch 283/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0304 - acc: 0.9920 - val_loss: 0.0334 - val_acc: 0.9940\n", + "Epoch 284/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0310 - acc: 0.9950 - val_loss: 0.0224 - val_acc: 0.9960\n", + "Epoch 285/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0306 - acc: 0.9940 - val_loss: 0.0273 - val_acc: 0.9950\n", + "Epoch 286/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0297 - acc: 0.9940 - val_loss: 0.0321 - val_acc: 0.9930\n", + "Epoch 287/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0313 - acc: 0.9920 - val_loss: 0.0295 - val_acc: 0.9960\n", + "Epoch 288/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0307 - acc: 0.9930 - val_loss: 0.0227 - val_acc: 0.9950\n", + "Epoch 289/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0254 - acc: 0.9940 - val_loss: 0.0241 - val_acc: 0.9960\n", + "Epoch 290/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0311 - acc: 0.9920 - val_loss: 0.0208 - val_acc: 0.9970\n", + "Epoch 291/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0296 - acc: 0.9900 - val_loss: 0.0228 - val_acc: 0.9950\n", + "Epoch 292/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0256 - acc: 0.9950 - val_loss: 0.0246 - val_acc: 0.9950\n", + "Epoch 293/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0357 - acc: 0.9900 - val_loss: 0.0302 - val_acc: 0.9910\n", + "Epoch 294/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0316 - acc: 0.9890 - val_loss: 0.0228 - val_acc: 0.9940\n", + "Epoch 295/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0249 - acc: 0.9920 - val_loss: 0.0199 - val_acc: 0.9960\n", + "Epoch 296/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0273 - acc: 0.9910 - val_loss: 0.1381 - val_acc: 0.9610\n", + "Epoch 297/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0401 - acc: 0.9900 - val_loss: 0.0219 - val_acc: 0.9960\n", + "Epoch 298/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0229 - acc: 0.9940 - val_loss: 0.0313 - val_acc: 0.9930\n", + "Epoch 299/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0241 - acc: 0.9940 - val_loss: 0.0262 - val_acc: 0.9950\n", + "Epoch 300/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0327 - acc: 0.9930 - val_loss: 0.0219 - val_acc: 0.9960\n", + "Epoch 301/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0236 - acc: 0.9950 - val_loss: 0.0237 - val_acc: 0.9940\n", + "Epoch 302/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0257 - acc: 0.9920 - val_loss: 0.0252 - val_acc: 0.9940\n", + "Epoch 303/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0299 - acc: 0.9920 - val_loss: 0.0193 - val_acc: 0.9980\n", + "Epoch 304/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0234 - acc: 0.9940 - val_loss: 0.0451 - val_acc: 0.9900\n", + "Epoch 305/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0239 - acc: 0.9960 - val_loss: 0.0175 - val_acc: 0.9960\n", + "Epoch 306/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0241 - acc: 0.9930 - val_loss: 0.0299 - val_acc: 0.9940\n", + "Epoch 307/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0294 - acc: 0.9940 - val_loss: 0.0244 - val_acc: 0.9950\n", + "Epoch 308/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0205 - acc: 0.9940 - val_loss: 0.0206 - val_acc: 0.9960\n", + "Epoch 309/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0255 - acc: 0.9930 - val_loss: 0.0202 - val_acc: 0.9970\n", + "Epoch 310/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0219 - acc: 0.9950 - val_loss: 0.0221 - val_acc: 0.9980\n", + "Epoch 311/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0306 - acc: 0.9930 - val_loss: 0.0209 - val_acc: 0.9940\n", + "Epoch 312/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0374 - acc: 0.9860 - val_loss: 0.0215 - val_acc: 0.9970\n", + "Epoch 313/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0206 - acc: 0.9970 - val_loss: 0.0170 - val_acc: 0.9970\n", + "Epoch 314/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0201 - acc: 0.9950 - val_loss: 0.0182 - val_acc: 0.9970\n", + "Epoch 315/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0260 - acc: 0.9950 - val_loss: 0.0324 - val_acc: 0.9930\n", + "Epoch 316/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0210 - acc: 0.9950 - val_loss: 0.0164 - val_acc: 0.9970\n", + "Epoch 317/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0209 - acc: 0.9940 - val_loss: 0.0193 - val_acc: 0.9940\n", + "Epoch 318/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0420 - acc: 0.9910 - val_loss: 0.0173 - val_acc: 0.9970\n", + "Epoch 319/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0192 - acc: 0.9970 - val_loss: 0.0212 - val_acc: 0.9960\n", + "Epoch 320/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0249 - acc: 0.9950 - val_loss: 0.0198 - val_acc: 0.9950\n", + "Epoch 321/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0187 - acc: 0.9970 - val_loss: 0.0161 - val_acc: 0.9960\n", + "Epoch 322/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0320 - acc: 0.9880 - val_loss: 0.0511 - val_acc: 0.9920\n", + "Epoch 323/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0298 - acc: 0.9950 - val_loss: 0.0147 - val_acc: 0.9970\n", + "Epoch 324/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0230 - acc: 0.9940 - val_loss: 0.0451 - val_acc: 0.9900\n", + "Epoch 325/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0259 - acc: 0.9960 - val_loss: 0.0165 - val_acc: 0.9970\n", + "Epoch 326/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0186 - acc: 0.9940 - val_loss: 0.0261 - val_acc: 0.9940\n", + "Epoch 327/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0207 - acc: 0.9950 - val_loss: 0.0373 - val_acc: 0.9900\n", + "Epoch 328/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0261 - acc: 0.9920 - val_loss: 0.0259 - val_acc: 0.9950\n", + "Epoch 329/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0176 - acc: 0.9950 - val_loss: 0.0224 - val_acc: 0.9950\n", + "Epoch 330/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0289 - acc: 0.9890 - val_loss: 0.0297 - val_acc: 0.9950\n", + "Epoch 331/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0245 - acc: 0.9950 - val_loss: 0.0197 - val_acc: 0.9960\n", + "Epoch 332/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0185 - acc: 0.9970 - val_loss: 0.0198 - val_acc: 0.9950\n", + "Epoch 333/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0334 - acc: 0.9910 - val_loss: 0.0146 - val_acc: 0.9970\n", + "Epoch 334/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0158 - acc: 0.9960 - val_loss: 0.0142 - val_acc: 0.9970\n", + "Epoch 335/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0197 - acc: 0.9950 - val_loss: 0.0237 - val_acc: 0.9930\n", + "Epoch 336/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0195 - acc: 0.9950 - val_loss: 0.0255 - val_acc: 0.9930\n", + "Epoch 337/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0232 - acc: 0.9930 - val_loss: 0.0141 - val_acc: 0.9980\n", + "Epoch 338/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0178 - acc: 0.9950 - val_loss: 0.0181 - val_acc: 0.9980\n", + "Epoch 339/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0263 - acc: 0.9920 - val_loss: 0.0259 - val_acc: 0.9920\n", + "Epoch 340/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0257 - acc: 0.9930 - val_loss: 0.0277 - val_acc: 0.9930\n", + "Epoch 341/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0157 - acc: 0.9970 - val_loss: 0.0127 - val_acc: 0.9970\n", + "Epoch 342/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0177 - acc: 0.9940 - val_loss: 0.0283 - val_acc: 0.9950\n", + "Epoch 343/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0191 - acc: 0.9970 - val_loss: 0.0139 - val_acc: 0.9980\n", + "Epoch 344/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0248 - acc: 0.9930 - val_loss: 0.0287 - val_acc: 0.9910\n", + "Epoch 345/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0319 - acc: 0.9890 - val_loss: 0.0159 - val_acc: 0.9970\n", + "Epoch 346/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0171 - acc: 0.9960 - val_loss: 0.0127 - val_acc: 0.9980\n", + "Epoch 347/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0155 - acc: 0.9970 - val_loss: 0.0131 - val_acc: 0.9970\n", + "Epoch 348/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0240 - acc: 0.9920 - val_loss: 0.0419 - val_acc: 0.9880\n", + "Epoch 349/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0188 - acc: 0.9950 - val_loss: 0.0208 - val_acc: 0.9950\n", + "Epoch 350/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0176 - acc: 0.9960 - val_loss: 0.0137 - val_acc: 0.9980\n", + "Epoch 351/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0218 - acc: 0.9950 - val_loss: 0.0121 - val_acc: 0.9970\n", + "Epoch 352/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0170 - acc: 0.9950 - val_loss: 0.0190 - val_acc: 0.9980\n", + "Epoch 353/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0171 - acc: 0.9960 - val_loss: 0.0146 - val_acc: 0.9970\n", + "Epoch 354/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0192 - acc: 0.9950 - val_loss: 0.0122 - val_acc: 0.9980\n", + "Epoch 355/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0150 - acc: 0.9980 - val_loss: 0.0122 - val_acc: 0.9970\n", + "Epoch 356/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0226 - acc: 0.9910 - val_loss: 0.0131 - val_acc: 0.9980\n", + "Epoch 357/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0132 - acc: 0.9980 - val_loss: 0.0130 - val_acc: 0.9970\n", + "Epoch 358/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0150 - acc: 0.9960 - val_loss: 0.0139 - val_acc: 0.9970\n", + "Epoch 359/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0158 - acc: 0.9970 - val_loss: 0.0253 - val_acc: 0.9950\n", + "Epoch 360/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0161 - acc: 0.9970 - val_loss: 0.0131 - val_acc: 0.9960\n", + "Epoch 361/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0157 - acc: 0.9960 - val_loss: 0.0160 - val_acc: 0.9970\n", + "Epoch 362/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0201 - acc: 0.9960 - val_loss: 0.0111 - val_acc: 0.9970\n", + "Epoch 363/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0170 - acc: 0.9950 - val_loss: 0.0313 - val_acc: 0.9920\n", + "Epoch 364/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0207 - acc: 0.9940 - val_loss: 0.0138 - val_acc: 0.9980\n", + "Epoch 365/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0139 - acc: 0.9960 - val_loss: 0.0108 - val_acc: 0.9980\n", + "Epoch 366/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0148 - acc: 0.9960 - val_loss: 0.0150 - val_acc: 0.9960\n", + "Epoch 367/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0194 - acc: 0.9930 - val_loss: 0.0126 - val_acc: 0.9960\n", + "Epoch 368/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0137 - acc: 0.9950 - val_loss: 0.0108 - val_acc: 0.9970\n", + "Epoch 369/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0157 - acc: 0.9960 - val_loss: 0.0182 - val_acc: 0.9960\n", + "Epoch 370/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0143 - acc: 0.9960 - val_loss: 0.0129 - val_acc: 0.9980\n", + "Epoch 371/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0211 - acc: 0.9950 - val_loss: 0.0105 - val_acc: 0.9970\n", + "Epoch 372/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0144 - acc: 0.9950 - val_loss: 0.0291 - val_acc: 0.9920\n", + "Epoch 373/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0263 - acc: 0.9920 - val_loss: 0.0172 - val_acc: 0.9950\n", + "Epoch 374/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0203 - acc: 0.9930 - val_loss: 0.0131 - val_acc: 0.9970\n", + "Epoch 375/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0143 - acc: 0.9970 - val_loss: 0.0153 - val_acc: 0.9950\n", + "Epoch 376/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0131 - acc: 0.9970 - val_loss: 0.0145 - val_acc: 0.9970\n", + "Epoch 377/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0375 - acc: 0.9930 - val_loss: 0.0113 - val_acc: 0.9970\n", + "Epoch 378/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0121 - acc: 0.9970 - val_loss: 0.0103 - val_acc: 0.9970\n", + "Epoch 379/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0128 - acc: 0.9950 - val_loss: 0.0121 - val_acc: 0.9960\n", + "Epoch 380/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0281 - acc: 0.9910 - val_loss: 0.0115 - val_acc: 0.9970\n", + "Epoch 381/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0122 - acc: 0.9970 - val_loss: 0.0098 - val_acc: 0.9970\n", + "Epoch 382/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0152 - acc: 0.9950 - val_loss: 0.0113 - val_acc: 0.9980\n", + "Epoch 383/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0148 - acc: 0.9960 - val_loss: 0.0097 - val_acc: 0.9980\n", + "Epoch 384/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0125 - acc: 0.9970 - val_loss: 0.0107 - val_acc: 0.9970\n", + "Epoch 385/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0179 - acc: 0.9960 - val_loss: 0.0109 - val_acc: 0.9980\n", + "Epoch 386/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0121 - acc: 0.9980 - val_loss: 0.0097 - val_acc: 0.9970\n", + "Epoch 387/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0231 - acc: 0.9910 - val_loss: 0.0426 - val_acc: 0.9910\n", + "Epoch 388/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0200 - acc: 0.9960 - val_loss: 0.0116 - val_acc: 0.9970\n", + "Epoch 389/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0113 - acc: 0.9970 - val_loss: 0.0093 - val_acc: 0.9980\n", + "Epoch 390/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0211 - acc: 0.9950 - val_loss: 0.0163 - val_acc: 0.9960\n", + "Epoch 391/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0206 - acc: 0.9940 - val_loss: 0.0110 - val_acc: 0.9970\n", + "Epoch 392/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0145 - acc: 0.9950 - val_loss: 0.0106 - val_acc: 0.9970\n", + "Epoch 393/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0116 - acc: 0.9970 - val_loss: 0.0096 - val_acc: 0.9970\n", + "Epoch 394/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0125 - acc: 0.9950 - val_loss: 0.0102 - val_acc: 0.9970\n", + "Epoch 395/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0130 - acc: 0.9960 - val_loss: 0.0246 - val_acc: 0.9920\n", + "Epoch 396/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0307 - acc: 0.9910 - val_loss: 0.0102 - val_acc: 0.9980\n", + "Epoch 397/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0109 - acc: 0.9970 - val_loss: 0.0144 - val_acc: 0.9960\n", + "Epoch 398/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0162 - acc: 0.9950 - val_loss: 0.0140 - val_acc: 0.9970\n", + "Epoch 399/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0109 - acc: 0.9970 - val_loss: 0.0095 - val_acc: 0.9980\n", + "Epoch 400/400\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0124 - acc: 0.9970 - val_loss: 0.0257 - val_acc: 0.9920\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "puBXpJA71O45", + "colab_type": "code", + "outputId": "13797e58-4666-4772-87ca-3d3b41687159", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 706 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl4VNXhxvHvnZkkkAVIIGFJsCCy\nmFiK4EZRUUgAt1rcCOJSkUIVq/wqVaAiopK6UQFX6oILVlCbWKlIBAFFpYCAyhJAQRBZEyBA9szM\n/f1xySQhk41Mlhnez/PwJHNn5s45k5B3znLPMUzTNBEREZEGZ2vsAoiIiJyuFMIiIiKNRCEsIiLS\nSBTCIiIijUQhLCIi0kgUwiIiIo1EISxNzpQpUxgyZAhDhgwhISGByy+/3HM7JyenVucaMmQIWVlZ\nVT5m+vTpvPvuu3Upss/94Q9/IDU11Sfn6t69O/v372fx4sVMnDixTq/33nvveb6vyXsrIlVzNHYB\nRE42depUz/cDBgzgqaee4rzzzjulcy1atKjax9x///2ndG5/k5SURFJS0ik/PzMzk1dffZWbbroJ\nqNl7KyJVU0tY/M6tt97Ks88+yxVXXMG6devIysrizjvvZMiQIQwYMIA5c+Z4HlvSCly1ahXDhg1j\n+vTpXHHFFQwYMIDVq1cDMGHCBF588UXACv158+Zxww03cPHFF/PEE094zvXyyy/Tt29frr/+et55\n5x0GDBjgtXzvv/8+V1xxBYMGDWLEiBHs2bMHgNTUVO69914mTZrE4MGDufLKK/nhhx8A2L17Nzfe\neCOJiYncf//9uFyuCuf9/PPPueaaa8odu/baa/niiy+qfA9KpKam8oc//KHa1/vss8+45pprGDx4\nMNdddx0ZGRkAJCcns3fvXoYMGUJRUZHnvQV46623uPLKKxkyZAh33XUXhw8f9ry3s2bN4o477uDy\nyy/njjvuID8/v0LZ8vPzGTduHIMHD2bAgAE8+eSTnvt2797NiBEjSEpK4vrrr2fTpk1VHh8wYADf\nfPON5/klt3/55RcuvvhiUlJSuOWWW6qsK8A///lPBg4cyODBg/n73/+Oy+WiX79+bNiwwfOYuXPn\ncvfdd1eoj0hNKYTFL23cuJGPP/6Y3r1789JLLxEXF8eiRYt48803mT59Ovv27avwnM2bN/Ob3/yG\nTz75hJtvvpmXXnrJ67nXrFnD/Pnz+fe//83cuXPZv38/P/zwA6+++ir/+c9/+Ne//lVpK/DQoUM8\n+uijzJkzh08//ZQzzjjDE/AAX3zxBTfffDPp6elceOGFvPnmmwA888wz9O3blyVLlnD77bezbt26\nCufu27cv+/fvZ/fu3YAVQvv37+e3v/1tjd+DEpW9ntPpZMKECTz22GOkp6eXC8SUlBTat2/PokWL\nCA4O9pzr22+/5bXXXuPtt99m0aJFdOjQgenTp3vuX7RoEc8++yyLFy/m8OHDLF68uEJ53n33XXJz\nc1m0aBFpaWmkpqZ6gnTy5MlcddVVLF68mLvuuosHHnigyuNVyc7O5uyzz2bu3LlV1vWbb77hgw8+\n4D//+Q8LFixg7dq1fPrpp1xxxRX897//9Zxv8eLFXHXVVdW+rkhlFMLil/r374/NZv36PvTQQ0ye\nPBmAjh07Eh0dzS+//FLhOWFhYSQmJgKQkJDA3r17vZ77mmuuwW6307ZtW1q3bs2+fftYs2YNF1xw\nATExMYSEhHD99dd7fW7r1q1Zu3Yt7dq1A+C8887zhCZAly5dOOeccwCIj4/3BOU333zDlVdeCUDP\nnj0588wzK5w7ODiYyy+/nKVLlwKwZMkSEhMTcTgcNX4PSlT2eg6Hg6+//ppevXp5Lb83y5cvZ/Dg\nwbRu3RqAG2+8ka+++spzf//+/WnVqhUOh4Nu3bp5/XAwcuRIXnzxRQzDoGXLlnTt2pVffvmFwsJC\nVq1axdVXXw3AwIEDee+99yo9Xp3i4mJPl3xVdf3iiy/o378/4eHhBAcH8/bbbzNo0CCuuuoqFi5c\niNvtJjs7m40bN3L55ZdX+7oildGYsPilli1ber7fsGGDp+Vns9nIzMzE7XZXeE5ERITne5vN5vUx\nAOHh4Z7v7XY7LpeLY8eOlXvNtm3ben2uy+Vi1qxZLF26FJfLRW5uLp07d/ZahpJzAxw9erTc67Zo\n0cLr+QcPHsxbb73F7bffzpIlSzxdoTV9D0pU9Xpvv/02aWlpFBUVUVRUhGEYlZ4H4PDhw8TExJQ7\n16FDh6qtc1k7d+7kiSeeYMeOHdhsNvbv3891111HdnY2brfbcw7DMAgLC+PAgQNej1fHbreXq3dl\ndT1y5Ei5OjVv3hyAc889l6CgIFavXs3+/fu5+OKLCQ0NrfZ1RSqjlrD4vb/+9a8MHjyY9PR0Fi1a\nRGRkpM9fIzw8nLy8PM/tgwcPen3cwoULWbp0KXPnziU9PZ177723Rudv0aJFuZnfJWOqJ7vkkkvY\nsmULO3fuZOfOnVx00UVA7d+Dyl5v3bp1vPLKK7z00kukp6fz+OOPV1v2Nm3akJ2d7bmdnZ1NmzZt\nqn1eWY8++ihdu3blk08+YdGiRfTo0QOAyMhIDMPgyJEjAJimya5duyo9bppmhQ9YR48e9fqaVdU1\nMjLSc26wQrnk9lVXXcWiRYtYtGiRpzdB5FQphMXvHTp0iHPOOQfDMEhLSyM/P79cYPpCz549WbVq\nFYcPH6aoqIgPP/yw0rLExsYSFRXFkSNH+OSTT8jNza32/L169fKMla5bt46ff/7Z6+OCg4O5+OKL\nefrppxk4cCB2u93zurV5Dyp7vcOHD9O6dWs6dOhAfn4+aWlp5OXlYZomDoeDvLw8nE5nuXNddtll\nLF682BNS8+bNo3///tXWuaxDhw5x9tlnY7fb+eqrr9i1axd5eXkEBwfTr18/0tLSAFixYgWjR4+u\n9LhhGERHR7NlyxbA+lBUWFjo9TWrquuAAQNYunQpR48exel0MnbsWL788ksArr76apYsWcL69etr\nXU+RkymExe/dd999jB07lmuuuYa8vDyGDRvG5MmTKw2yU9GzZ0+GDh3K0KFDue222yodB7z66qvJ\nzs4mKSmJ+++/n3HjxrF///5ys6y9+etf/8qyZctITEzknXfe4be//W2ljx08eDBLlizhiiuu8Byr\n7XtQ2etdcsklxMTEkJiYyMiRI7n99tuJiIjg3nvvpXv37rRs2ZJ+/fqVG0/v2bMno0ePZsSIEQwZ\nMoTjx4/zf//3f1XW92R33XUXTz75JFdffTWrV6/mnnvu4bnnnmPt2rVMmzaNZcuWMXDgQGbMmMEz\nzzwDUOnxu+++mzfeeIOrr76a7du3c9ZZZ3l9zarq2qtXL+68805+//vfc9VVVxEfH+8Zf+7evTut\nWrXi4osvplmzZrWqp8jJDO0nLFIzpml6xgyXL1/OjBkzKm0RS2D74x//yC233KKWsNSZWsIiNXD4\n8GEuuugi9uzZg2mafPLJJ55ZtXJ6Wbt2LXv27OGSSy5p7KJIANDsaJEaiIqKYty4cfzhD3/AMAzO\nPPPMGl2XKoFl4sSJrFu3jqefftpziZxIXag7WkREpJHoo5yIiEgjUQiLiIg0kgYfE87MPO7T80VG\nhnLkiG+vCW0sqkvTpLo0TapL0xMo9QDf1yU6OsLrcb9vCTsc9sYugs+oLk2T6tI0qS5NT6DUAxqu\nLn4fwiIiIv5KISwiItJIFMIiIiKNRCEsIiLSSBTCIiIijUQhLCIi0khqFMLbtm0jMTGRuXPnVrjv\n66+/5oYbbmDYsGG88MILPi+giIhIoKp2sY68vDwee+wx+vbt6/X+xx9/nNdee422bdtyyy23MHjw\n4Er372yqnnvuWbZuzeDw4UMUFBTQoUMsLVq0JCXl6Wqfu3DhAsLCwunf3/v+sjNnTufGG5Pp0CHW\n18UWERE/V20IBwcH88orr/DKK69UuG/37t20bNmS9u3bA9C/f39WrlxZ7yGcluZgxoxgtm2zER8P\n99zjYOhQ5ymf789/tjYgX7hwATt2bOeee8bV+LlXXnlNlfffd9/9p1wuEREJbNWGsMPhwOHw/rDM\nzEyioqI8t6Oioti9e7fvSudFWpqDMWOae25v2MCJ2/l1CmJv1q37hnnz5pKXl8c99/wf69evZfny\nz3C73fTt24+RI0fz2muzadWqFZ07dyE19T0Mw8auXT9x2WUDGTlyNPfcM5q//OUBli37jNzcHH7+\neRd79vzCvffeT9++/Zg79w2WLPmUDh1isdth6NBh9O59nqcMa9as4tVXXyYoKIiIiAgeffQJgoKC\nmDHjGTZv3ojdbuevf53ImWee5fWYiEigKtsg69bNzbhxRRVyoCaPaUwNvnZ0ZGRonZYDe/5578df\neKE5o0ef8mkBiIhoRmhosGeNz1atQtm5cwfp6ekEBwfzww8bef/9+dhsNgYOHMjYsWMICwshPLwZ\nrVqFsnVrBp988glut5sBAwbw4IP3ExzsIDIyjLCwEPbu/Zk335zDF198wbx587j00ov48MMPSE9P\nJycnh0GDBnHHHXeUW2PUMIqZOfNZOnbsyAMPPMCWLd/SrFkzjh49RFrav1mzZg1fffU5Lld+hWMX\nXnhu3d6QOqpsrVR/pLo0TadLXZxOcDigqAiOHYNPP4W//x02b4aEBJg0CZKTIT8fFiyAjRvhww+t\n+88+GyZOhJtvhu+/h+xsuPRSmDcPUlJKH3PppbBihdWwcTis1wTo2BGeegpMEx57DLZuhR49YOBA\nWL7cen58vFWGK66A4OAIWraEmTOt5+3fD127QocOsG+f9fzgYKsuPXpYZbvlFiguhqAgMIzy9X7/\nfauumzZB9+7Qrx/8739WHcvKyLAzZkxzpk61XjM+Hvr3h7JTlUoes2EDfPYZZGRASAgUFlplKi6G\nTp3gmmtgxoyG+f2qUwjHxMSQlZXluX3gwAFiYmKqfE5dF8TevDkcMLwcN8nMzKnTuY8fLyAvr8iz\nyUR2dh6dO3fh6NFCoBCn02DYsOHY7XYOHz7Cjh17yM0tJCiogOzsPM46qxs5OdZvrmmaZGYep6jI\nyZEjueTmFtK9ewKZmccJCYng8OFsvvsug06dzuT48WIghJ49e5KdnVdukwubrRkPPjgRl8vF3r17\nSEjoxZEjh+nWzTpXp0496NSpB++882aFY77eLKM2oqMjGvX1fUl1aZpOrktGho02bUyio2u/RfpP\nPxmYJpx5ZuXPPXDAYP16G7GxJr/+tRuA3Fz48UcbPXq4Wb/eTu/eLj7+uHzL689/LuKMM9y0aWMy\nY0YIF1zg4tpri8nLM3j66WCuucbJV1+FMmeOm2PHDNq3N+nY0U2rVmAYJhde6OL554OJizPZuNGG\ny1X+79+GDTB8OAwfbp4Iz/L3b9wII0bAHXeYFBWVvcco95iyoeYs01Dcvds6f1mbN1v/Ti5DKbPc\n+bdutf6VKCy0vmZkwG23wW23lX/fIyNNoqJMtm+3lTtPRob1ryp793qvU1llG3MlZSl5b376CWbN\nsj6YXH+97/6vVBbodQrhuLg4cnJy+OWXX2jXrh3Lli3jmWeeqcspq9Wtm5uMjIot6W7d3PXyekFB\nQQDs37+P+fPf4fXX3yE0NJRbb72pwmPt9qpb+GXvN00T0wSbrXSCumFU/HDx978/xtNPz6BTp878\n4x9PAmCz2THN8vX1dkykKTt+HCJq2NDIyYGwMKuVlJVlsH+/wbp1cNZZdlJSgnG5DNats9GqFTz4\nYCEffuigXTuTp54qoFUrWLLETvPm0K+fi2PH4KOPgvjxRxvffGPjhx/sHDliYBhWEAQHQ6dObjIz\nrf+PQUGQk2OQmwslgTBkSDFbt9pxu2HXLhu/+pWbXbts2O1muZDMyLBz990lw2dWMM2bF8Rf/hKC\n3Q4ul8FbbwWfuN/6W7B3r8HevaV/FxYtsv4GHTpU3btklAvPkxUVVfz7Un9q+1rlH3/kiMGRI74r\nzam4916w2eo236gmqg3hjRs38uSTT7Jnzx4cDgfp6ekMGDCAuLg4kpKSeOSRR7j/fmvy0ZVXXknn\nzp3rtcDjxhWVGxMucd99RV4e7TvZ2dlERkYSGhrK1q1b2L9/P8XFxXU6Z/v27dmxYztOp5Pjx4+z\n0cvHttzcHNq2bcfx48dZt24tXbp05eyz45k79w1uvvk2tm3bwoIF/2HgwKQKx+6//8E6lU+kvrz7\nroP77mvOjTcWEx/vYuVKB2ed5WbjRhvFxXDJJS5GjSqiVSuYNSuIadNCMMs1lkr+aId6jsTGusnK\nMpgwoZnn2IcfOmjd2uTQISvUwsLMcmFqGCYln41N0zpWWAhbt9pPBGrZ1ypVEownnuk1gCsyyn1v\nnbs6ZSvdkCEqxcX1N9+orGpD+JxzzuHtt9+u9P7zzz+f+fPn+7RQVbHejHxmziyZHW0wdmz9vkkA\nXbt2o3nzUO66ayS//nUvrr32OqZPf5KePX9zyueMimpNUtIQ/vjH2/jVrzrTs2fPCq3p6667kbvu\nupOOHc9gxIjbeP31f/LSS6/zq1915u67RwFw//0T6NLlLFas+LzcMRFfKyiAo0cN2ratvNv2/fcd\nPPVUCDNmFNC2rZvNm+08/ngIzz+fz5dfOnj22WAKC40Tjw0CrED79NPSc6xc6eDdd4P41a/cfPml\n9z9TV14JCxfC2We7mDMnn7ZtTf71ryCeeCKY48dLWpIGhw6VhldubvkgM83KW49VB2pZRi0fXxsK\n3sY2c2ZwveaLYZpm7QdQ6sDX41H+Psa1cOECkpKGYLfbGTnyZp56aiYxMW0bu1h15u8/l7JOt7qY\nJieGSsof37jRxh13NOfAAYNFi/KIj7eGP/77Xwfvv+/g2WcLCA6G7t3DKS6uGB5BQSbFxQYhISaF\nhQb/+EcBLVta45RZWQazZwexd6+Ns85y07Wrm4ULHZ7WaRWlBayyut2g0BJfczhM9u6t23wjqKcx\nYam7Q4cOMXr07QQFBXPNNdcERACL/9mxwyA4GGJjTW65pTmrVtm56CIXF17oolMnN19+aeejjxye\nbt17723GBx/kceyYwT33NCMvz+DIEYPsbIPiYoPOnd3Y7SaGAT/8YOfXv3axYYOdgQOdvPBCPoYB\nkZHW5SOPPRZSbgx02zY727bV9AoKK3Tdmg4h9aS+5huVUEu4CVFdmiZ/q0tRkdUyLLm83zStsdFO\nndwMGhRWri7p6XZmzAhh7Vo7kZEmU6cWcO+95edcGIbpaZE+/XQB69bZPV3FnTq5+fxzB23auMnK\nsuFwmPzud04uu8zJSy8Fs3WrNWnpgQeKOOssN7/+tdvTwj75mn9pTCUx4K0nwaziOCcmmJUcMwDT\ny7GKzy17GVSpmvRkVHzd8q9X8bb3YzXrNZk92zfDnZW1hBXCTYjq0jT5S12+/trON9/Y+cc/grn5\n5mJSUgoxTfjTn5qRlhZEq1YmN99s0L59AWPGFLNpk42kpFDcbkhIcLNhQ2nr87PPcgkOhsGDQ8nL\nMwgNNck7cXVhhw4mZ5/t5rPPrJTv0sWFYcD27VZXcv/+Ll59NdhLCa0/NbGxJg8/XMijj4awZ4/2\nkClVWdjVD5vNpEcPN/fdV7p4RVqawzPfplu30vsqO36yk/+vVPZBq7JgS0tzMGFCCEeOVPy9iItz\nM3lyoc/GZ0+u029/6+KTTxzs2WP9DM44w+Bvf/PdfCOFsB9QXZqmplCXH380yM836NHDzWuvBXHh\nhS5+8xs3zz0XzOWXO2nZ0uSCC8I8LVabzeSxxwqx2WDixGYVzvfkkwWkpjpYtcrBv/6Vx4ABLv7w\nh2ZkZNi5554ibr+9+MTjgpk+PcRrmTp1crNzp0LUV0aNKqrkw0tFUVFusrMN3O7KQ7skZE8Ol7g4\n06dhVpa3/ys1DfC6PsfXfP3/XiHsB1SXpqmx6/K//9n53e+sS3H693fy+edWC3TMmCJmz7b+aP/p\nT0W8/HIwF17opEULWLy4/HSPf/yjgBkzgomKsrF9u0loqElmpkHv3m4WLqy4gE7JUn8ZGeUXSyiv\nYVtuTU3ZbvrK2Gwm7dubXlv8cXFu9u836NbNzeTJdgYOPO41fIBKA6nk8Vu22AgKsi6rObl125Aa\n+/+KLymEa0g/9KZJdam7DRtsJCS4+fOfm524lKd6K1fmsH27jVtuCS13fMeO49hs0LFjBL/+tYvN\nm62u58hIN088Ub5VdPqO1XpfcQqsVurXX9u9dtNa3eqlC3u4XBWDsLqWXaD8fwmUekDDhbD6koAx\nY+5gy5bya6G9/PLzvPtuxf2TwdrY4aGHHgBgwoS/VLj/3/+ez2uvza709X788Qd+/nkXAFOmTKSw\nsOBUiy4BJicHXnkliHnzHAwcGMYjj4Tw3/866NzZTffupbNK+vSxvg8NNenfv/SP+Zlnmlx8sYsO\nHdwMHVpMx45uRowoIjwcQkNh3Dg8AQxw5IiNMWOa07ZtODEx1r8xYyp2X/uT2Fg3sbHeZ7Refrmz\n0vtmzy5g794cZs/OJz7ehcNhEh/vYvbsfFJSClm+PI+9e3NYvjzPE6BDhzpZvz6XgwdzOHgwhz17\ncti/v/xjSh7n7fkiCmEgKWkwS5cuLnds+fKlJCYOqva5Tzzxj1q/3uefL2X37p8BmDr174SE+Pcf\nPfGdyZND+NvfmjFunPU78fLLweTnG9x8czF9+1rB27mzm7vvtropu3Z18/PPVissMtLNhx86CA2F\nyZMLyciwsWePwdKlDs49N4y2bcN57jnvr2t1q5b911jq3jH38MOFrF+f6zVM58/Pr/S+ssGqwJSG\nouuEgYEDB3HXXXdy9933ArBlSwbR0dFER8d43UqwrKuuGsjHH3/GN9+sZtas6URFtaZ16zZ06BCL\n0+lk2rRHyMw8SH5+PiNHjqZdu/b85z+pfP75UiIjI3n44Ym89dZ8cnKO8+CD95Gbm4/NZmPChMkY\nhsG0aY/QoUMsP/74A926dWfChMnlXv/TTz/hgw/mY7fb6NSpCw8++DecTiePPz6FAwf2ERwcwkMP\nTSUyMqrCsejoqjfbkPpnmvDii0G88EIw3bu7+eor67+k223QrJlJQYHB+ee7uOuuIv77XwdvvGG1\ngq+4wsm11xbzn/+UdlOXtGonTHCXm126b59/jNuOGlXEV1/Zva4NX1bJWGp8vMEFF3jvJgYrTCsL\n0KruE2lITS6EH3kkhAULal4sa6WcsCofc801Th55pLDS+yMjo+jQIZbNmzcSH38OS5cuJilpCADH\njx9nypTH6dAhlscee5hVq1YSGhpa4RyzZz/P5MmP0bVrN8aPv5cOHWI5fvwYF1xwEVdccTV79vzC\n5MkTeP31uVx4YV8uu2wg8fHneJ7/6qsvc8MNN3D++ZewbNkSXn/9n9x55xi2bs1g6tQUIiOjGDr0\nSo4fP05EmVXv8/PzmT79OSIiIhg79o9s3/4jmzdvpHXr1jzyyDSWLEnnyy+/wOFwVDg2dOgNNX6f\npX4891wwjz8egsNh8tVXDrp2dXHTTU6mTQvhmWcKaN/epE8fF8HBMGiQk+uuK2bUqCIcDti2zXtH\nlrfLOxpO1ZO1wsLcnqUjvY2fVjUeHRJiMmtWgSc8rTG7yv9fi/iDJhfCjSUpaQiffbaY+Phz+Oqr\nL3jppdcBaNWqFU8++bhnK8E+fc73GsL79u2ja9duAPTq1ZvCwkIiIlqQkbGJjz5KxTBsHDt2tNLX\n37o1g7/9bQKmCb17n8cbb7wKQGxsR1q3bgNAmzbR5ObmlAvhFi1aMHGitYHGrl0/cfRoNlu3buG8\n884HIDFxMADPPPNEhWPScJxO+OEHG2ef7cbphH//28Hy5Q4WLHAQE+Pms8+sGcoxMdYqU7fcUkzr\n1uW7ZsPD4eWXC0hLczByZHP27m0KLVyrjCWXvdx9d7NKNiYwmT27oNrW59ChTtas8X6pTtkAFgkU\nTS6EH3mksMpW68msT8O5dX7d/v0v5623XicpaTAdO55BixYtAO9bCXpTdkvCkgnnixcv4tixY7zw\nwqscO3aMUaNuraIEhud5xcVODMM638kbOpSdzF5cXMw//vEUb7zxL1q3bsMDD4w78Rwbbnf5P+De\njknDGTOmGQsWBLFwYS7ffmtn0iRrzLd5c5Nnny2osCFC69YmaWkOpk4N8YRtbKxJt25uli1rOv9t\nTw7WGTO8bzUaH++ucYCmpBRy/vmuRr9OVKQhaGLWCaGhYXTp0pW33prj6YqGilsJVrZ9YZs20fz8\n805M02T9+rWAtf1h+/YdsNlsfP75Us9zDcPAdVJz4eyz41m1ahUA3367lh49zq62zHl5udjtdlq3\nbsOBA/vZsiUDp9NJjx7xrFu3BoCvvlrBW2+97vWY+FZ2tnVZ0cmWL7ezYIE1drtgQRDffWeFVGpq\nHps25ZCUVLHpOGlSCGPGND+xprI1WWrPHlsTCeCKk5lKjBvnfUvR2m41qslRcrpoCv+jm4ykpCE8\n/vgUpkx5zHPM21aCo0ffXeG5o0ffzUMPPUi7du09mzBcdtkAJkz4C5s3b+Sqq35HTEwMc+a8wm9+\ncy4zZjxdrlt71Kg/MX16Cu+88y4ORxATJ07GWdUO3UDLlq04//wLGTXqNs46qys333wrs2b9g9df\nn8s336zmnntGY7c7eOihR2jVKrLCMfGtiROb8eGHDsaOLeLDD4O49tpiHnywiDffLJ08tXSpndBQ\nCA42uegil2d957LS0hw1XjmpMVTVrXzyVqNqxYpUTYt1NCGqS9OUlRXBjh25XHBBxetLd+40eP75\nYI4eNUhPd1BQUH6c9vrri0lPd9CmjclZZ7lZssRK3ZAQE6fT2qFl3LjyIdW/f2i1M4R9JTbWTcuW\nJtu22Wjb1hqPLlnFqbrVmhpbIP2OBUpdAqUe0HCLdaglLFKFgwcN+veHQ4fCGDOmiMmTC8nPh8xM\ng7POMnnkkRAWLqy4mtXAgU6ysw3+/W/rvuHDi+nRozSESza1z8iwM2ZMc+66y6R7dyuQt26tj1Ei\n77OWH364+jWEm0roigQihbBIFR5+OIRDhyAy0mT27GC++cbOkSMGO3bYuOQSJ1lZ5YOt5Nrem24q\n5pJLXFx5ZSg7d9pYtMjOa68dQJFsAAAgAElEQVRVvvSk2214Ark+xMdbrdgXXmjO5s1mk2vVipyu\nFMIilfjpJ4O0NAe9e8P77+fwwAPNPC3bsDCTFSscJ3aqcfHHPxazcKGDa68tJi0tiEGDnISFQd++\nTnbuDGb37vrpXrbZzCp30ilRErijR0NmZk69lEVEak8hLFLGkSPw3ntBfPBB6Szm8eMhIgJefLGA\nAQOc7N9vIycHnn02BLfbIC7O5NZbi7n1Vmv2e3Ky1bqcNCmEd9+t3wlW1g49FUPY4bCmeqjFK9K0\nKYTltGeaYJzIseuuC2XTJjsOh0lQkElsrMkNN9jIzrYec+ONVpi9917pf524uNIJWyVbAG7ZYqt2\nm7u6KFk96u67K193fO9etXhFmjqFsJy2XnstiJYtTV5/PZjISJOXXspn82YbCQku3nsvn5AQa7Zw\nUFDFWY1dupQGb1yc1epsyC0AS1aPqmxxjG7dvO8UJCJNi0JYTgsul7VqVd++Lu68s5g9ewwmTizf\nihw+PBTTNDj3XBfR0VVfuXfmmWVD2Pp+xoz66Xq+/HInBw4YXi8TGjeuyGvw13ZxDBFpHAphOS18\n/72Njz4K4qOPgkhIcJOeXvqrf+aZ1nrOa9ZYLcrOnau/dD4yEqKi3Bw+bGPHDhu9eoX5eC1n07Me\nc1XjuVocQ8S/KYQl4M2b5yi33OPvfle6UtnSpbmccYabhx5qxs8/W9fnduni9oztbttmIz4e7rnH\nUS7Y0tIc5OdbofvUUyE+L3NNNjsooW35RPyXQlgC2oEDBvfeW767NjbWzaFDBpdd5uScc6yu5D59\nXMybZ11+9Ne/hpCZWbpgxoYNMGZMc9asKWLhQseJFm/9TLqKi3NX2/oVkcChEJaAVFxs7dXbsmX5\nruWtW48TFgZFRVB2g6rzzivdRKFsAJdVf+s5m57FNBS+IqcXhbD4vZwcuPPO5sTFuZk4sYhly+y8\n/34Qy5eX//V+4418IiOt74NPytMePep3NvGoUdZEKW9BXpuuZxEJLAph8Uu5uTBtWgh33FHMTz8Z\nnjHf1avtbN1a8ZKdN97I58orKw86u73mq0/Vxsndy9onV0TKUgiLX5o1K5hXXw1m3To7V1xRGmIl\nATxmTBGff25nyxbrdmxs1S3dtDQHNhu4fdwgbtHCLBeymkQlImXVaLuWlJQUhg0bRnJyMt9//325\n+5YsWcL111/P8OHDmTt3br0UUuRkX35pfX48cMAgI8P6Nf7d76xlI1u0sC7tiY8vTdTY2MovOypZ\nZMPp9P1kq23b6mNHJBEJFNX+hVi9ejW7du1i/vz5TJs2jWnTpnnuc7vdPPbYY7zyyiu88847LFu2\njP3799drgeX09dVXdqZNCyYjw8a6ddavbna2webNNsLCTP78Z2vc9aqrnAQHly6o0ayZSevW3kM4\nLc3B2LGVL/1YV1q5SkSqUm139MqVK0lMTASgS5cuHD16lJycHMLDwzly5AgtWrQgKioKgIsuuoiv\nv/6a6667rn5LLaedr7+2M3SodX3vRx8F4XJZrdbcXIMtW+z06ePiN79xs2BBHmefbc10Lgnh9u1N\nPvyw9Lrfbt2sfXuBel9mUitXiUhVqg3hrKwsEhISPLejoqLIzMwkPDycqKgocnNz2blzJ7Gxsaxa\ntYoLLrigyvNFRobicPh2W7fo6Ipr+/or1cW7//2v9PuffrJawb//PXz4oXXs3HPtREdHcPXVpY87\n7zzra2iorVzY+mLf3tat4dChisfPOAP27oX4eJg4EZKTG2Yt6drQ71jTFCh1CZR6QMPUpdYTs0yz\ntFvPMAyeeOIJJk2aREREBHFxcdU+/8iRvNq+ZJWioyPIzDzu03M2FtWlvC1bbNx1VzNeeKGAFStC\nMAw77dub7N1rw+EwSU7O58MPrdbx8OG5ZGaWX+kqOtrEbjfYtAl8vbhGSko+QLUznTMzffqydabf\nsaYpUOoSKPUA39elskCvNoRjYmLIysry3D548CDR0dGe2xdccAH/+te/AJg+fTqxsbF1LasIAP/+\nt4NNm+zMmxfE+vV2und306ePi3feCeacc9xcfrmLl17Kp18/F+3amRV2Mdq/33fBGxfnZv9+o0LY\naqaziNRFtROz+vXrR3p6OgCbNm0iJiaG8PBwz/2jRo3i0KFD5OXlsWzZMvr27Vt/pZXTysqV1rDF\nG28EkZdncN55Lvr0KV1m0jDg+uudtGtn9c74chejuDg3DodJfLyLd9+Fdety2bs3h+XL8xS8IuIz\n1baEe/fuTUJCAsnJyRiGwZQpU0hNTSUiIoKkpCRuuukmRo4ciWEYjB492jNJS6QuCgrg22/tJ763\nWrR9+7pISnKyYoWdP/yhuMJztm6t6+VA3ncusrql6nhqEREvajQmPH78+HK3e/To4fl+0KBBDBo0\nyLelktPasmV2hg0LrXD82mutS49mzy6ocF9amqPOq13Fx7tZvty3cxZERKqilQSk0R06ZDBnThAF\nJ7L1rbeCPPdNnlxIUJDJnDn5FdZ7LuvRR+u+neBvf+uq/kEiIj6kZSul0U2fbi1BuWiRgxEjivn4\n4yC6dnWxYkUeNhvcfXdRuR2PSpTMhN6yxYZp1n0S1quvBnP++S6N+YpIg1FLWBqFacK+fVZwrltn\nJeyyZQ5GjbJmN19zjRPbid/OygJ4zJjmZGTYTzGAva+gNXNmfW1XKCJSkVrC0ijGjw9h7twglizJ\nY8sWK20TE52cdZabnTsNrxOvyvLlTOiytNaziDQkhbA0uP/9z87bb1shOnNmMHl5BiNGFPHss4U1\nPkfNZkKbVLZIR0gIFHp5Oa31LCINSR/7pcF99JGjzPfWJKyS63+9SUtz0L9/KG3bhtOxYzht24bX\naCb0qFGVt6ZvvdX7fVrrWUQakkJYGlzJSlYOhzUuaxgmAwZ4nwx18thvYaFRozHg2Fg3KSmFzJ6d\nf2IvYRPrOmA3s2fne+6Lj3d5FuWYPTtfk7JEpEGpO1oaTGqqg+efD8blArvd5I47innllWAefLCI\nDh28T5Q61bHfAwesoB461FlpsFZ1n4hIQ1AIS4P5059K13Vu187NhAmFXHaZk4EDK78+91RXwdLY\nroj4A4WwNAj3SZnYtq1JRAQkJVUewHVZBUtjuyLiDzQmLPUmNdXBjTc2Z9MmGz/8UP5XrW3b8t3P\nJZOv2rcPp3//UNLSHKe8CpbNZqqbWUT8glrCUm+efDKEn36yMWSInZtuKj8buW3b0qbxyVsQZmTY\ny92urR491BUtIv5BLWHxmaIiyM21vs/Kgp9+sn69nE481wWXiImxWsJpaQ7uvbeZT8uhrmgR8RcK\nYfGZ669vTufOERQVwaefWscmTSrkuecKuOwyJ6+8ks9ZZ1ljwG3bmp4WcGFh3dZ9DgkxdZmRiPgl\ndUdLnX35pZ2ffrKxapX16zR1agivvGLdd8klTvr0cXPDDVYwlqzNPGFCCEFBXk9Xa7NmFSh4RcQv\nKYSlzqZODeG770p3WVi82Pq1uummYnr1Kj/2u3Gj9Ti32/C6bGR1Ro0q4uuv7WzbZqNbNzf33Vek\nABYRv6UQljpxuytuerB3r0FQEDz3XAFGmZ7mumy6EBfnZvLkQgWuiAQUhbDUye7dBvn55cd0i4oM\n2rShXADDqS284XCYvPCCuptFJDBpYpbUSWXB2rJl+dt1WXhDASwigUohLKfswQdDuOWWUK/3tWpV\n/vapdkVr+UkRCWTqjpZamzEjmH37DObMKQ3WsDCT3NzSlu7JLeGTx41rStf8ikggU0tYaqW42Arh\nkwP4gQcKadmydCnKkpZwWpqDXr3CcFW+RPRJTGw2XfMrIqcHtYSlVtautZOXV9rinTixkOuvL+aM\nM0zOP9/FlVeGAVZL+OTlKGsiPt7N8uV5Pi2ziEhTpRCWWlmxwl7udmKikzPOsFrAERGlx99/H+bM\nqf1ylOp+FpHTiUJYasw04bPPHNhsJp06mRw+bHD22aUTp1q0KO2OzskBqN1s6NhYt7qfReS0ohCW\nKn3zjY2gIGtRjnffDWLdOjtJSU6efLKA//zHwcCBoZ7Vq/70p7q1Yh9++BSW0BIR8WMKYalUdjbc\ncEMowcFWK/joUatlO2FCIWvW2Jk6tbS7OSPDzn33NQdMat4CtlrOcXGmVsMSkdOSQlgqNXduEHl5\nBnll5kn9/e8F/PrXbu65p7Lx3uoC2FToioicoBCWSr35ZjChoSZOp7UE5eOPF/D668E89FBILS45\nKs/hgHXrcn1bUBERP1WjEE5JSeG7777DMAwmTZpEz549Pfe98847fPTRR9hsNs455xz+9re/1Vth\npeHs3Wuwa5eNIUOKueEGJ6tX2/jrX2t3uZE3WgFLRKRUtSG8evVqdu3axfz589m+fTuTJk1i/vz5\nAOTk5PDaa6/x6aef4nA4GDlyJN9++y29evWq94JL/bj//hDWrLHjOPGbcd55bn73OyfTp3tfnrK2\ndAmSiEipakN45cqVJCYmAtClSxeOHj1KTk4O4eHhBAUFERQURF5eHqGhoeTn59Py5PUKxW8cPGjw\n9tvl13g+7zyr3/lUl50EsNlMevTQ3r8iIierNoSzsrJISEjw3I6KiiIzM5Pw8HBCQkIYO3YsiYmJ\nhISEcNVVV9G5c+d6LbDUn7VrrYU44uLc/PKLFbq/+Y0Vwt26ucnIsFf63MrExrpZv15jwCIi3tR6\nYpZpll2QIYfZs2ezaNEiwsPDuf3229myZQs9evSo9PmRkaE4HLX/Y16V6OiI6h/kJxqzLhkZ1tcX\nX7Txu9/BBRdAp05WeR5+GIYPr/05n3nGFhA/n0CoQwnVpWkKlLoESj2gYepSbQjHxMSQlZXluX3w\n4EGio6MB2L59Ox07diQqKgqA8847j40bN1YZwkeO+HZd4OjoCDIzj/v0nI2lsevyxRfNMQw7CQk5\nZGQYBAWZZGZaa0BPnRpC6eVHlV2GZBIUBC4XnHOOwdix+Qwc6CQzs4EqUE8a++fiS6pL0xQodQmU\neoDv61JZoFc70NevXz/S09MB2LRpEzExMYSHhwMQGxvL9u3bKSgoAGDjxo106tTJR0WWhpSXB99+\na6dHDzcREdC6tUmLFqWbMOzda8MK38qvA46Pd7NnTw779+fw3Xdo/FdEpBrVtoR79+5NQkICycnJ\nGIbBlClTSE1NJSIigqSkJO68805uu+027HY75557Luedd15DlFt85OefDUJCrI0Z8vIMhgwpH5wz\nZgRX8syK6jJ5S0TkdFSjMeHx48eXu122uzk5OZnk5GTflkoaxJEj0L9/GPn50KKFdWzYsGLP/Wlp\nDjIyah6sugZYRKR21HQ5jS1a5CA316BNG5PsbINLLnFy5pnWxLvSvYBrvhOSrgEWEakdLVt5Gvvo\noyAAFizIw2aDqKjSAB47tuZ7AcfFubUWtIjIKVAIn6by8+GLL+ycc46Lzp1Lw3fq1JATk7CqYmKz\noQU4RETqSCF8GsnNhaSkUEaMKObaa50UFxt0726N45Z2P1fP4YC9e3Pqs6giIqcFhfBp5Pvv7fz4\no53Fi00uvdRaCevIEYP+/UM1AUtEpBEohE8jGzZYQbt9u43Dh60JV0uX1v5XQBOwRER8QyF8Gjh+\nHIYODeX7763lQg8csHnWhq4NTcASEfEthfBpYPlyhyeAS6xbV5sQNpk9u0DhKyLiY7pO+DSwYkXF\nDTO++abmm2jEx7sVwCIi9UAhHGCOH4frr2/Ol1/aKSoC04QVK6wOj+bNTc4915qQVZttCTUGLCJS\nP9QdHWCWL3ewYoX1LzTU5NprnWzfbmPQICevvZbPnj0GF10UXuYZJt5XxTKJj9d1wCIi9UkhHMDy\n8gzefddaFatTJxeDBoWydasNwzAxzaq3JYyPd7N8uW+3nRQRkfIUwgEmO7tiqJ5xhpt//jOkVudR\nF7SISP1TCAeYsiF8661FdOpk8s47tfkxaya0iEhDUQgHmOxs6+vDDxcwcmQxoaGQklLzPYE1E1pE\npOFodnSAKWkJDxrkIjTUOtaunVnj56sbWkSk4SiEA0ROjnU5UkkIt2pVujPSnj01+zGPGqWZ0CIi\nDUkhHAA2bLBx5pkRvPhiUIUQnjGjZl3RsbFuUlIK662MIiJSkcaEA0DJJgxTpzYDTAzD5MILw9i/\n38Dlqtk5Hn5YASwi0tDUEg4A27aVvSzJwDQN9uyx4XIZVHYdcImQEJPZs/PVDS0i0ggUwn7o6FGY\nODGEgwdPfTvCErNm6XIkEZHGohD2Mzk58MEHQbz2WjDvvWeFb8newDVnEh/vUgtYRKSRaUzYjyxd\naic5OZTYWDcAP/1kfYYKC7PCuaYcDrQkpYhIE6AQ9iMvvGDNdC655GjpUgd9+jjIyaldS7hbN7fP\nyyYiIrWn7mg/sH27wbBhzT1jwCX27LGxe3dlP8LKF+jQghwiIk2DWsJ+4KmnQli2rLY/Ku+tYy3I\nISLSdKgl7AciIyu2aps3r/lSlCW0IIeISNOiEPYDRWV6j/v0cdKhg5uCgtqf58CB2s6iFhGR+qTu\naD9w6FBpeK5de+o/Mk3IEhFpWtQSbqLcZfKy5DrguLgarkFZCU3IEhFpWmoUwikpKQwbNozk5GS+\n//57z/EDBw5w6623ev5ddtllLFiwoN4Ke7r4738ddO8ezqJFdsAK4dat3ezbdyqfmbQwh4hIU1Vt\n3+bq1avZtWsX8+fPZ/v27UyaNIn58+cD0LZtW95++20AnE4nt956KwMGDKjfEp8Gli2zc/SowW23\nhfL44wXs2GHD5YKQEGq8IUOJ+Hi3FuYQEWmiqm1arVy5ksTERAC6dOnC0aNHyfGyPFNaWhqDBw8m\nLCzM96UMcBs22HjggRDPBKy8vNIx4IceaubZiKGwsPYTq9QFLSLSdFXbEs7KyiIhIcFzOyoqiszM\nTMLDw8s97v333+f111/3fQlPAwMHWh9cevaE3NygCoty1JbNZtKjh5v77tM1wSIiTVmtp9qaZsXr\nU9evX8+ZZ55ZIZi9iYwMxeGw1/ZlqxQdHeHT8zWWJ5+EAweaAdCiBRw7Vvtz/PnPMGuWAdiB5j4t\nX20Fys8FVJemSnVpegKlHtAwdak2hGNiYsjKyvLcPnjwINHR0eUes3z5cvr27VujFzxyxLfjk9HR\nEWRmHvfpORuS9ZnG+kEfOFB6vKDAJCwMcnOrahWXfiCKizOZPLmQoUOdZGbWS1Frxd9/LmWpLk2T\n6tL0BEo9wPd1qSzQqx0T7tevH+np6QBs2rSJmJiYCi3eDRs20KNHDx8U8/Szd6/3kC0qMqoJYGvS\n1cGDORw8mMO6dbnqehYR8TPVtoR79+5NQkICycnJGIbBlClTSE1NJSIigqSkJAAyMzNp3bp1vRc2\nEG3deuqXamvSlYiIf6vRmPD48ePL3T651atrg0/dqYZwbKxbLV8RET+nFbMa2bp1pzZJ7eGHtRGD\niIi/Uwg3sIIC2L3bGustLoZlyxx07OimW7earcIREmJq9SsRkQChEG5gI0Y0p0+fcL7/3sZf/tKM\nY8cMEhOdXrcr9GbWrAIFsIhIgNAuSg3o6FFYscJ6y2+/vTl79lifgebMCQKqngntcJi88IICWEQk\nkKgl3IA+/DDI831JAFuqXyFLASwiEngUwg3os89ObRLWqFFaflJEJBCpO7oB7dhhIyjIpLgYatL6\nDQkxNQYsIhLA1BKuR3PnBvGnPzXD5bK2INyxw0ZxsbUjUk0ogEVEAptawvXoL3+xNmOIi3Pz8ccO\nnM6a746kLmgRkcCnEK4H339vY9++0sCdNSukxs+Nj3dpC0IRkdOEQtiH/vUvB/v22XjyyZqH7skU\nwCIipw+FsI+43fDYYyEcPlzzLmdvxoxpDmhFLBGR04EmZvnIpk02Dh2yYZonh3DNVsIqa+bMYN8U\nSkREmjSFsI+sWFHZNcC1bxlv26Yfi4jI6UB/7X3k/feDqn9QBd5byd26uetWGBER8QsKYR94/30H\nmzadympY3lvJ991XVLcCiYiIX1AI+8BTT/liDNekZ0+0TaGIyGlEs6N94Oef6/5ZxuGA776DzEwF\nsIjI6UIt4TpIS3PQq1cYZu0nQFegcWARkdOPWsKnKC3NceKaXt+wxoF9dz4REWn61BI+RTNm1GYc\n2ARM4uLczJ6dz+zZ+cTHu3A4TOLjXRoHFhE5TaklfAoWL7azdWvNP7/Ex7tZvjyv3DGFroiIKIRr\nye2GESNCa/UcXXIkIiLeqDu6lrZvr91bpi0JRUSkMmoJ19D48SG0a2eSmVn12tAOB7hccPbZbu2I\nJCIiVVII10B+Prz1VjA2m4nbfXIIW7c1uUpERGpL3dE18Npr1rrQFQO4lHY+EhGR2lJLuBqPPRbM\n669XH7BbtujzjIiI1I6SowouFzz3XAi5udVvR+h2G6Sl6TONiIjUXI1COCUlhWHDhpGcnMz3339f\n7r59+/YxfPhwbrjhBh5++OF6KWRjOX68do9Xl7SIiNRGtSG8evVqdu3axfz585k2bRrTpk0rd/8T\nTzzByJEj+eCDD7Db7ezdu7feCtvQjh6tvgVc1rZt6lgQEZGaqzY1Vq5cSWJiIgBdunTh6NGj5OTk\nAOB2u1m7di0DBgwAYMqUKXTo0KEei9uwjh2rXQhrEwYREamNakM4KyuLyMhIz+2oqCgyMzMBOHz4\nMGFhYfz9739n+PDhTJ8+vf5K2sBmzAjilltKN1Ro1ar6gNXKWCIiUhu1nklkltm3zzRNDhw4wG23\n3UZsbCyjR49m+fLlXHbZZZU+PzIyFIfDfkqFrUx0dIRPzzd3LqSklD+WnV3555WePWHiREhOrvsu\nSL6uS2NSXZom1aVpCpS6BEo9oGHqUm0Ix8TEkJWV5bl98OBBoqOjAYiMjKRDhw6cccYZAPTt25cf\nfvihyhA+ciSv0vtORXR0BJmZtZxBVY1HHw0FavZBIT7exZIlVp1OdBCcsvqoS2NRXZom1aVpCpS6\nBEo9wPd1qSzQq+2O7tevH+np6QBs2rSJmJgYwsPDAXA4HHTs2JGdO3d67u/cubOPityw0tIc9OoV\nRkxMOD/8UPMJVuqCFhGRU1VtS7h3794kJCSQnJyMYRhMmTKF1NRUIiIiSEpKYtKkSUyYMAHTNOnW\nrZtnkpY/SUtzMGZM7bqS4+LcTJ5cqKUqRUTklNVoTHj8+PHlbvfo0cPz/a9+9Sveffdd35aqAR0/\nDvff36zWz2vRwlQAi4hInZzWF7aaJtx5Z3Nycmp3KRLommAREam703KdRdOEjz920KKFyfLlp/YW\n6JpgERGpq9MuhL/91sa339p54IHad0GXpQlZIiJSV6dVCO/YYTBoUFitnxcZ6aZ9e5Nt22x06+bm\nvvuKNB4sIiJ1FvAh/NVXdn75xeDFF4PZuvXUxnGfeEKzoEVExPcCOoTXr7cxdGhonc+jABYRkfoQ\n0FN8d+2qe/X69lUAi4hI/QiYED5wwOCBB0LYs8dgxw6D8eNDWL26tmtUm0ydWuC5tWfPcVJT831b\nUBERkRMCojvaNOGqq0L5+WcbBw4YfPJJUMk9tTyTQWRk6XOCgqp4qIiISB0FRAivWGHn55+tRn1p\nAAPUfhGOl18O5qOP8mjXTtcBi4hI/QqIEN67t/ZhW5lt22xcdJHLZ+cTERGpTECMCa9a5bv9ibUS\nloiINJSACOElS3zXoNdKWCIi0lACIoQPHqx7d3RIiMns2fm6JlhERBpMQIRw69a1nQVd0axZBQpg\nERFpUAERwuefX9OJVCYvvpjP7Nn5xMe7cDhM4uNdagGLiEijCIjZ0Z061awl3KGDyQ03WGGr0BUR\nkcYWEC3hwsKaPW7vXhtpaQHxuUNERAJAQIRwUS0mNM+cGVx/BREREamFgAjhgoKaz47eti0gqiwi\nIgEgIBKpNi1hLcYhIiJNRUCE8M6dJdUwCQkxsdlMYmO9h60W4xARkabC72cpzZsH339fsmyl4Zmk\n9fDD1paEM2cGs22bjW7d3Nx3X5FmRYuISJPh9yGckuL9+MyZwSxfnqfQFRGRJsvvu6M3b/Z+XBOw\nRESkqfP7pIqP935cE7BERKSp8/sQnjTJ+3FNwBIRkabO70M4ORnatHHjcJhaC1pERPyK30/MArDb\noWNHk1Wrchu7KCIiIjXm9y1hgKIig2bN6r6doYiISEOqUUs4JSWF7777DsMwmDRpEj179vTcN2DA\nANq1a4fdbl2r+8wzz9C2bdv6KW0lCgshWEtCi4iIn6k2hFevXs2uXbuYP38+27dvZ9KkScyfP7/c\nY1555RXCwsLqrZDVUQiLiIg/qrY7euXKlSQmJgLQpUsXjh49Sk5OTr0XrKacTnC51B0tIiL+p9oQ\nzsrKIjIy0nM7KiqKzMzMco+ZMmUKw4cP55lnnsE0GzYMS5apVEtYRET8Ta1nR58csvfeey+XXHIJ\nLVu2ZOzYsaSnpzNkyJBKnx8ZGYrDYa/0/to6fNj62qKFg+joCJ+dt7EEQh1KqC5Nk+rSNAVKXQKl\nHtAwdak2hGNiYsjKyvLcPnjwINHR0Z7bv//97z3fX3rppWzbtq3KED5yJO9Uy+pVcXHJm1RMZmaB\nT8/d0KKjI8jMPN7YxfAJ1aVpUl2apkCpS6DUA3xfl8oCvdru6H79+pGeng7Apk2biImJITw8HIDj\nx49z5513UnRiQ981a9bQtWtXX5W5RtQdLSIi/qralnDv3r1JSEggOTkZwzCYMmUKqampREREkJSU\nxKWXXsqwYcMICQkhPj6+ylZwfSg40fgNCdHELBER8S81GhMeP358uds9evTwfH/77bdz++23+7ZU\ntVDSEg4JabQiiIiInBK/XzGrNITVEhYREf/i9yFc0h2tMWEREfE3fh/C6o4WERF/5fchrIlZIiLi\nr/w+hNUSFhERf+X3IawxYRER8Vd+H8LFxdbXoCB1R4uIiH8JoBBu3HKIiIjUlt+HsNNpfVUIi4iI\nv/H7EC5pCdt9tzGTiAgSJxUAAAz2SURBVIhIgwiYENaYsIiI+Bu/D+GS7mhHrXdGFhERaVx+H8Il\nLWGFsIiI+JuACWFNzBIREX/j9yFc0h1tt2tMWERE/Ivfh7BawiIi4q8CJoQ1JiwiIv7G70NYs6NF\nRMRf+X0Ib9lifb388lD69w8lLU1pLCIi/sGvQzgtzcHSpdb3brdBRoadMWOaK4hFRMQv+HUIz5jh\nff/CmTO1r6GIiDR9fh3C27Z5L35lx0VERJoSv06rbt3ctTouIiLSlPh1CI8bV+T1+H33eT8uIiLS\nlPh1CA8d6qRXL+t7u90kPt7F7Nn5DB3qbNyCiYiI1IDfTyOOjra+7tqVQ7DmY4mIiB/x65YwaMUs\nERHxXwERwjabic3vayIiIqcbv48up1ObN4iIiH/y+xAuLga7vbFLISIiUns1CuGUlBSGDRtGcnIy\n33//vdfHTJ8+nVtvvdWnhauJ4mK1hEVExD9VG8KrV69m165dzJ8/n2nTpjFt2rQKj/nxxx9Zs2ZN\nvRSwOlZ3tNkory0iIlIX1YbwypUrSUxMBKBLly4cPXqUnJycco954okn+L//+7/6KWE11B0tIiL+\nqtoLe7KyskhISPDcjoqKIjMzk/DwcABSU1O54IILiI2NrdELRkaG4nD4LjWLiyEkxEZ0dITPztmY\nAqUeoLo0VapL0xQodQmUekDD1KXWV9eaZmnXb3Z2NqmpqcyZM4cDBw7U6PlHjuTV9iWr5HRGEBTk\nJjMz16fnbQzR0RFkZh5v7GL4hOrSNKkuTVOg1CVQ6gG+r0tlgV5td3RMTAxZWVme2wcPHiT6xDJV\n//vf/zh8+DAjRozgnnvuYdOmTaSkpPioyDVTXAwOh8aERUTE/1Qbwv369SM9PR2ATZs2ERMT4+mK\nHjJkCAsXLuS9997j+eefJyEhgUmTJtVviU+i2dEiIuKvqu2O7t27NwkJCSQnJ2MYBlOmTCE1NZWI\niAiSkpIaooxVcjo1MUtERPxTjcaEx48fX+52jx49KjwmLi6Ot99+2zelqgW1hEVExF8FxIpZ2rxB\nRET8kV+HsGmCy6WJWSIi4p/8OoSdTuurWsIiIuKP/DqES/YS1piwiIj4I78OYZfL+qqWsIiI+CO/\nDuGSlrDGhEVExB/5dQg7nQag7mgREfFPfh7C1lct1iEiIv7Ir0NYE7NERMSf+XUIl0zMCgrSmLCI\niPgfvw7h4mJrTFjd0SIi4o/8PIStr+qOFhERf+TXIazrhEVExJ/5dQjrOmEREfFnfh3Cuk5YRET8\nmZ+HsPVV3dEiIuKP/DqES7ujG7ccIiIip8KvQ1gtYRER8Wd+HsLWmLAmZomIiD/y8xC2vmpiloiI\n+CO/DmGNCYuIiD/z6xDWmLCIiPgzvw7hEs2aaUxYRET8j1+HcGKik0cfhaQkZ2MXRUREpNb8OoSj\nomDyZGjZsrFLIiIiUnt+HcIiIiL+TCEsIiLSSBTCIiIijUQhLCIi0khqdIVtSkoK3333HYZhMGnS\nJHr27Om577333uODDz7AZrPRo0cPpkyZgmEY9VZgERGRQFFtS3j16tXs2rWL+fPnM23aNKZNm+a5\nLz8/n48//ph33nmHefPmsWPHDtavX1+vBRYREQkU1YbwypUrSUxMBKBLly4cPXqUnJwcAJo3b86b\nb75JUFAQ+fn55OTkEB0dXb8lFhERCRDVhnBWVhaRkZGe21FRUWRmZpZ7zD//+U+SkpIYMmQIHTt2\n9H0pRUREAlCtV102zYpLRI4ePZrbbruNP/7xj/Tp04c+ffpU+vzIyFAcDnttX7aCefMgJQU2b4b4\n+AgmTYLk5DqfttFFR0c0dhF8RnVpmlSXpilQ6hIo9YCGqUu1IRwTE0NWVpbn9sGDBz1dztnZ2fzw\nww+cf/75NGvWjEsvvZR169ZVGcJHjuTVudBpaQ7GjGnuub1hAwwfDseO5TN0qP8uYRkdHUFm5vHG\nLoZPqC5Nk+rSNAVKXQKlHuD7ulQW6NV2R/fr14/09HQANm3aRExMDOHh4QA4nU4mTJhAbm4uABs2\nbKBz586+KnOlZswI9np85kzvx0VERJqialvCvXv3JiEhgeTkZAzDYMqUKaSmphIREUFSUhJjx47l\ntttuw+Fw0L17dwYOHFjvhd62zftnh8qOi4iINEU1GhMe///t3W1Ik/sfBvBrucRWhmluUBRFOFxk\nT9QLe7QHBlkUDpSCIUH2wJh4AsthUu8yH4rCiJwoRAY9KIRQZJQEEWtggjQRZL2yGOU0XK7Nkzu/\n8+KcRuYdJf3xt9//XJ9X3rf3i+/Fxfy63bdVXj7pODs7O/61zWaDzWb73071E2bzX+jvn3pf2Wz+\na0bnICIi+h1KvnX8448/Nc+XlWmfJyIiSkRKLuGCggk0NkawcmUMej2wcmUMjY1qP5RFRET/PdP+\nE6VEUVAwgYKCiX+fYPv9J66JiIhmmpLvhImIiP4fcAkTERFJwiVMREQkCZcwERGRJFzCREREknAJ\nExERScIlTEREJAmXMBERkSRcwkRERJLohBBC9hBERET/RXwnTEREJAmXMBERkSRcwkRERJJwCRMR\nEUnCJUxERCQJlzAREZEketkD/I7z58+jt7cXOp0OlZWVWL16teyRfpnX60VZWRmysrIAAGazGSUl\nJTh9+jRisRgyMzNRV1eH5ORkyZP+2MDAABwOBw4fPgy73Y5AIKA5f0dHB27cuIFZs2ahqKgIhYWF\nskef4vssLpcLfX19SEtLAwAcOXIEeXl5SmSpra3Fq1evMDExgePHjyMnJ0fZXr7P0tXVpWQvkUgE\nLpcLw8PDGB8fh8PhQHZ2tnK9aOXo7OxUspOvotEo9u3bB4fDgdzc3JnvRCjK6/WKY8eOCSGE8Pv9\noqioSPJE0/Py5UtRWlo66ZzL5RIPHz4UQghx8eJFcevWLRmj/ZJwOCzsdruoqqoSN2/eFEJozx8O\nh4XVahWhUEhEIhGxd+9e8fHjR5mjT6GVpaKiQnR1dU25LtGzeDweUVJSIoQQYmRkRGzfvl3ZXrSy\nqNrLgwcPhNvtFkII8fbtW2G1WpXsRSuHqp18denSJWGz2UR7e7uUTpT9ONrj8WD37t0AgBUrVmB0\ndBRjY2OSp/o9Xq8Xu3btAgDs2LEDHo9H8kQ/lpycjKamJhiNxvg5rfl7e3uRk5OD1NRUpKSkYP36\n9ejp6ZE1tiatLFpUyLJx40ZcuXIFADB//nxEIhFle9HKEovFplynQpb8/HwcPXoUABAIBGAymZTs\nRSuHlkTP8dWbN2/g9/uRl5cHQM7PMGWXcDAYxIIFC+LH6enpGBoakjjR9Pn9fpw4cQKHDh3Cixcv\nEIlE4h8/Z2RkJHQevV6PlJSUSee05g8Gg0hPT49fk4g9aWUBgNbWVhQXF+PkyZMYGRlRIktSUhIM\nBgMAoK2tDdu2bVO2F60sSUlJSvby1cGDB1FeXo7KykplewEm5wDUfK0AQE1NDVwuV/xYRidK3xP+\nllDsX99ctmwZnE4n9uzZg8HBQRQXF0/6LV+1PN/70fyq5Dpw4ADS0tJgsVjgdrtx9epVrFu3btI1\niZzlyZMnaGtrQ0tLC6xWa/y8ir18m8Xn8yndy+3bt9Hf349Tp05NmlO1Xr7NUVlZqWQn9+/fx9q1\na7FkyRLN789UJ8q+EzYajQgGg/HjDx8+IDMzU+JE02MymZCfnw+dToelS5di4cKFGB0dRTQaBQC8\nf//+px+PJhqDwTBlfq2eVMiVm5sLi8UCANi5cycGBgaUyfL8+XNcv34dTU1NSE1NVbqX77Oo2ovP\n50MgEAAAWCwWxGIxzJ07V7letHKYzWYlO3n27BmePn2KoqIi3Lt3D9euXZPyWlF2CW/evBmdnZ0A\ngL6+PhiNRsybN0/yVL+uo6MDzc3NAIChoSEMDw/DZrPFMz1+/Bhbt26VOeK0bdq0acr8a9aswevX\nrxEKhRAOh9HT04MNGzZInvTnSktLMTg4COCf+0RZWVlKZPn06RNqa2vR2NgYf1pV1V60sqjaS3d3\nN1paWgD8cyvt8+fPSvailePs2bNKdnL58mW0t7fj7t27KCwshMPhkNKJ0v+LUn19Pbq7u6HT6XDu\n3DlkZ2fLHumXjY2Noby8HKFQCF++fIHT6YTFYkFFRQXGx8exaNEiVFdXY/bs2bJH1eTz+VBTU4N3\n795Br9fDZDKhvr4eLpdryvyPHj1Cc3MzdDod7HY79u/fL3v8SbSy2O12uN1uzJkzBwaDAdXV1cjI\nyEj4LHfu3EFDQwOWL18eP3fhwgVUVVUp14tWFpvNhtbWVuV6iUajOHPmDAKBAKLRKJxOJ1atWqX5\nek/kLFo5DAYD6urqlOvkWw0NDVi8eDG2bNky450ovYSJiIhUpuzH0URERKrjEiYiIpKES5iIiEgS\nLmEiIiJJuISJiIgk4RImIiKShEuYiIhIEi5hIiIiSf4GEVr8Rdqf9mAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4VFXixvHvnZlUCJBAQldR6cWy\nNkRAemhqWCkq2GBhBQQUC7IqKkUFQRAbAvpTcRVRsOzSBSyIiMIqCIiwq0KkJBAgZVJm5v7+GBMI\nmZAJCZm5w/t5Hp5k7sy9c05umDfn3HPPMUzTNBEREZEKZwt0AURERM5VCmEREZEAUQiLiIgEiEJY\nREQkQBTCIiIiAaIQFhERCRCFsISECRMmkJiYSGJiIs2bN6dDhw4FjzMyMkp1rMTERFJTU0/7munT\np/Puu++Wpcjl7s4772Tx4sXlcqzGjRtz4MABVq1axSOPPFKm93v//fcLvvfnZ+uvcePG8fLLL5fL\nsUQCxRHoAoiUhyeffLLg+44dOzJ16lSuuOKKMzrW8uXLS3zN2LFjz+jYVtOlSxe6dOlyxvunpKQw\nb948+vXrB/j3sxU5l6glLOeEQYMG8fzzz9O9e3c2b95MamoqgwcPJjExkY4dO/LGG28UvDa/Fbhx\n40b69+/P9OnT6d69Ox07duTbb78FCrfCOnbsyHvvvcfNN9/MddddxzPPPFNwrFdffZXWrVvz17/+\nlXfeeYeOHTv6LN+iRYvo3r07Xbt25bbbbiM5ORmAxYsXM2rUKMaPH0+3bt3o0aMHv/zyCwB79+6l\nb9++dO7cmbFjx+J2u4sc9/PPP6d3796Ftt1444188cUXp/0Z5Fu8eDF33nlnie/32Wef0bt3b7p1\n60afPn3YsWMHAAMGDOCPP/4gMTGR3Nzcgp8twFtvvUWPHj1ITEzknnvu4ciRIwU/2xdeeIG77rqL\nDh06cNddd+F0Oos7tQDs3LmTAQMGkJiYyI033siXX34JQGZmJiNGjKB79+506tSJRx99lLy8vGK3\ni1Q0hbCcM7Zt28a///1vLr/8cl555RXq1avH8uXLefPNN5k+fTr79+8vss/27du55JJLWLZsGbfe\neiuvvPKKz2Nv2rSJhQsX8uGHH7JgwQIOHDjAL7/8wrx58/j444/55z//WWwr8PDhwzz11FO88cYb\nrFy5kvPOO69QN+sXX3zBrbfeyooVK7j66qt58803AXjuuedo3bo1q1ev5o477mDz5s1Fjt26dWsO\nHDjA3r17AW+QHjhwgGuvvdbvn0G+4t7P5XIxbtw4Jk6cyIoVK+jYsSPPPvssAFOmTKF27dosX76c\n8PDwgmP95z//Yf78+bz99tssX76cOnXqMH369ILnly9fzvPPP8+qVas4cuQIq1atKrZcHo+H+++/\nn4EDB7J8+XImTZrE2LFjycjI4KOPPqJKlSosW7aMFStWYLfb2b17d7HbRSqaQljOGe3bt8dm8/7K\nP/roozz22GMA1K9fn/j4ePbt21dkn0qVKtG5c2cAmjdvzh9//OHz2L1798Zut1OzZk2qV6/O/v37\n2bRpE1dddRUJCQlERETw17/+1ee+1atX5/vvv6dWrVoAXHHFFQWhCXDRRRfRokULAJo1a1YQlN99\n9x09evQAoFWrVlx44YVFjh0eHk6HDh1Ys2YNAKtXr6Zz5844HA6/fwb5ins/h8PB119/zaWXXuqz\n/L6sW7eObt26Ub16dQD69u3L+vXrC55v37491apVw+Fw0KhRo9P+cbBv3z5SU1Pp2bMnAC1btqRO\nnTps3bqVuLg4tmzZwldffYXH4+HJJ5+kadOmxW4XqWi6JiznjKpVqxZ8v3Xr1oKWn81mIyUlBY/H\nU2SfmJiYgu9tNpvP1wBUrly54Hu73Y7b7eb48eOF3rNmzZo+93W73bzwwgusWbMGt9tNZmYmDRo0\n8FmG/GMDHDt2rND7VqlSxefxu3XrxltvvcUdd9zB6tWrGT58eKl+BvlO935vv/02S5YsITc3l9zc\nXAzDKPY4AEeOHCEhIaHQsQ4fPlxinYs7VkxMTKH3rFKlCkeOHKFnz54cO3aMWbNm8d///pcbbriB\nRx55hO7du/vcfnJrXaQiqCUs56QHH3yQbt26sWLFCpYvX05sbGy5v0flypXJysoqeHzo0CGfr1u6\ndClr1qxhwYIFrFixglGjRvl1/CpVqhQa+Z1/TfVUbdu2ZefOnfz666/8+uuvXHPNNUDpfwbFvd/m\nzZuZO3cur7zyCitWrGDSpEkllr1GjRocPXq04PHRo0epUaNGifv5Ur16dY4dO8bJa9EcPXq0oJU9\nYMAAFi1axNKlS/npp5/46KOPTrtdpCIphOWcdPjwYVq0aIFhGCxZsgSn01koMMtDq1at2LhxI0eO\nHCE3N7fYD/nDhw9Tt25d4uLiSEtLY9myZWRmZpZ4/EsvvbTgWunmzZv5/ffffb4uPDyc6667jmnT\nptGpUyfsdnvB+5bmZ1Dc+x05coTq1atTp04dnE4nS5YsISsrC9M0cTgcZGVl4XK5Ch3r+uuvZ9Wq\nVaSlpQHw3nvv0b59+xLr7Eu9evWoVasWS5cuLShbamoqrVq14qWXXuKDDz4AvD0R9erVwzCMYreL\nVDSFsJyTRo8ezYgRI+jduzdZWVn079+fxx57rNggOxOtWrUiKSmJpKQkbr/9djp06ODzdb169eLo\n0aN06dKFsWPHMmbMGA4cOFBolLUvDz74IGvXrqVz58688847XHvttcW+tlu3bqxevZru3bsXbCvt\nz6C492vbti0JCQl07tyZu+++mzvuuIOYmBhGjRpF48aNqVq1Km3atCl0Pb1Vq1YMHTqU2267jcTE\nRNLT07nvvvtOW9/iGIbBjBkzWLBgAd27d2fSpEnMmjWL6OhobrzxRj7++GO6detGYmIiYWFh3Hjj\njcVuF6lohtYTFjl7TNMsaGGtW7eOmTNnqttTRAqoJSxylhw5coRrrrmG5ORkTNNk2bJlBSOIRURA\nLWGRs+rdd9/l9ddfxzAMLrzwQiZPnlwwYEhERCEsIiISIOqOFhERCRCFsIiISIBU+IxZKSnp5Xq8\n2Nho0tLK9/7OQFFdgpPqEpxUl+ATKvWA8q9LfHyMz+2Wbwk7HPZAF6HcqC7BSXUJTqpL8AmVekDF\n1cXyISwiImJVCmEREZEAUQiLiIgEiEJYREQkQBTCIiIiAaIQFhERCRCFsIiISIBU+GQdIiISOmbP\nfp6ff97BkSOHyc3NoVatOlSpUpUpU6aVuO/SpZ9SqVJl2rf3vdb2rFnT6dt3AHXq1D2jso0cOZT7\n73+ICy+8+Iz2rwiWDeElSxzMnBnOrl3QqFE0Y8bkkpTkCnSxRESC2onPThuNGnnK/Nl57733Ad5A\nPXBgL3ffPdzvfXv06H3a50ePHnvG5bIKS4bwkiUOhg2LKni8Y4f9z8dOBbGISDEq8rNz8+bveO+9\nBWRlZTFy5H1s2fI969Z9hsfjoXXrNtx991Dmz59DtWrVaNDgIhYvfh/DsPHbb//j+us7cffdQwta\nsmvXfkZmZga///4bycn7GDVqLK1bt2HBgv9j9eqV1KlTF5fLxYABt3H55VcUKUtGRgaTJz9BRkY6\nLpeLMWMepHHjJsycOY2dO3fgdrtJSrqZHj16F2yz2aBXr6QS/1AoK0uG8MyZ4T63z5oVrhAWESlG\nRX927tmzm3ffXUx4eDhbtnzPyy/Pw2az0a/fjfTvf2uh127f/hP//OeHeDwe+vbtzd13Dy30/KFD\nB3nuuRf45puv+fjjD2nevAWLFy/i3Xc/JDMzkwED+jBgwG0+y7Fo0bs0b96CgQPvZOfO7cyePYMp\nU6bx9ddf8f77H+NyuVi69FOOHz9WsK1atUjeeuvdcv+ZnMqSIbxrl+/xZMVtFxGRiv/svPjihoSH\ne4M/MjKSkSOHYrfbOXr0KMePHy/02saNmxAZGVnssVq1uhSAhIQEMjIy2LdvLxdeeBEREZFERETS\ntGnzYvfduXM7t98+GIAmTZqxb99eqlSpSv365zNu3P106NCZxMSehIeHF2y74YZeJCb2LOuPoESW\nTK1GjTyl2i4iIhX/2RkWFgbAgQP7WbjwHaZPn82LL75GrVq1irzWbj/9ggknP2+aJqYJNtuJCDOM\n4vc1DAPTNAseezze+k6f/gJ33TWUX37ZxcMP31do286dOwu2nU2WDOExY3J9bh892vd2EREJ3Gfn\n0aNHiY2NJTo6mp9/3smBAwfIy8sr0zFr167Nf/+7B5fLRVpaGjt37ij2tU2aNGPLlu8A2LZtKw0a\nXMT+/X+waNF7NG7chJEjx3Ds2LFC2x5++GGOHTtWpjL6w5Ld0d5rF05mzQpn1y47jRq5GT1ao6NF\nRE6n8Gend3R0RXx2NmzYiKioaO65525atryUG2/sw/Tpz9Kq1SVnfMy4uOp06ZLI3/52O+ef34Bm\nzZoX25ru1+8Wpkx5klGj/o7H4+H++x+mRo14tm37gc8+W0lYWBg9e95QaFt0dCQ9e95wxuXzl2Ge\n3EavACkp6eV6vPj4mHI/ZqCoLsFJdQlOqkvwqeh6LF36KV26JGK327n99gHMmDGbhISa5XLs8q5L\nfHyMz+2WbAmLiIgcPnyYoUPvICwsnK5dE8stgCuSQlhERCxp0KA7GTTozkAXo0wsOTBLREQkFCiE\nRUREAkQhLCIiEiAKYRERkQBRCIuIyBkbNuyuIhNlvPrqi7z77gKfr9+8+TseffQhAMaNu7/I8x9+\nuJD58+cU+367d//C77//BsCECY+Qk5N9pkXn5pt7k5WVdcb7lweFsIiInLEuXbqxZs2qQtvWrVtD\n585dS9z3mWdmlPr9Pv98DXv3/g7Ak08+TURE8fNNW4FuURIRkTPWqVNX7rlnMMOHjwJg584dxMfH\nEx+fwKZNG5k371XCwsKIiYnhqaeeKbRvz56d+Pe/P+O7777lhRemExdXnerVaxQsTTh58hOkpBzC\n6XRy991DqVWrNh9/vJjPP19DbGwsjz/+CG+9tZCMjHSefvop8vLysNlsjBv3GIZhMHnyE9SpU5fd\nu3+hUaPGjBv3mM86HDp0sMj+1apdxOOPP8Lhw6nk5uYyePAwrrjiKp566rFC26655toy/fwUwiIi\nIeKJJyL49NPy/Vjv3dvFE0/kFPt8bGwcderUZfv2bbRv35o1a1bRpUsiAOnp6UyYMIk6deoyceLj\nbNy4gejo6CLHmDPnRR57bCINGzbigQdGUadOXdLTj3PVVdfQvXsvkpP38dhj43j99QVcfXVrrr++\nE82atSjYf968V+nV60Y6derK2rWref311xg8eBg//7yDJ5+cQmxsHElJPUhPTycmpujMVb72Hzp0\nMMeOHeWll+aSnp7Ohg3r2bNnd5FtZaXuaBERKZMuXRL57DNvl/T69V9w/fWdAKhWrRrPPjuJkSOH\nsmXL9xw/7ntBhP3799OwYSMALr30cgBiYqqwY8dP3HPP3Uye/ESx+wL8/PMOLrvsLwBcfvkV/PLL\nzwDUrVuf6tVrYLPZqFEjnszMDL/3v/DCC8nKymTixMfYvHkTnTt35fzzLyiyrazUEhYRCRFPPJFz\n2lbr2dK+fQfeeut1tm7dSv3651GlShUAnn56ItOmzeSCCxowY8azxe5/8pKE+csZrFq1nOPHj/PS\nS/M4fvw4Q4YMOk0JTixVmJfnwjC8xzt1QYfil0ooun9UVBRz5vwfW7f+yLJln7J+/ZeMHz/B57ay\nUEtYRETKJDq6Ehdd1JA5c+YUdEUDZGZmULNmLdLT09m8+ftily+sUSOe33//FdM02bLle8C7/GHt\n2nWw2Wx8/vmagn0Nw8Dtdhfav2nTZmze7F2q8D//+Z4mTZqWqvy+9v/pp59YtWo5l1xyKQ888Ai/\n/vo/fv55Z5FtZaWWsIiIlFmXLolMnjyBceNOtAz79OnLPfcMpn7987jtttv/vNY6vMi+Q4cO59FH\nH6ZWrdoFizBcf31Hxo27n+3bt9Gz5w0kJCTwxhtzueSSy5g5c1qha8tDhvydp5+eyKeffoTDEcYj\njzyGy+X/8oy+9q9btwbPPDONjz9ejM1m49ZbB1G7dh3mzHmp0Lay0lKGQUR1CU6qS3BSXYJPqNQD\nKm4pQ3VHi4iIBIhCWEREJEAUwiIiIgGiEBYREQkQv0ZHT506le+//x6Xy8WwYcPo2vXEDcpff/01\nM2bMwG63065dO0aMGHHWCisiIhJKSgzhb775hl9++YWFCxeSlpZGUlJSoRCeNGkS8+fPp2bNmgwc\nOJBu3bpx8cUXn9VCi4iIhIISQ/jKK6+kVatWAFSpUgWn04nb7cZut7N3716qVq1K7dq1AWjfvj0b\nNmxQCIuIiPihxBC22+0FN0V/8MEHtGvXrmAqsJSUFOLi4gpeGxcXx969e097vNjYaBwO+2lfU1rF\n3X9lRapLcFJdgpPqEnxCpR5QMXXxe8as1atX88EHH/D666+X6Q3T0sp3AWXdHB6cVJfgpLoEp1Cp\nS6jUAypusg6/QvjLL7/k1VdfZd68eYWWgUpISCA1NbXg8cGDB0lISChjUUVERM4NJd6ilJ6eztSp\nU5kzZw7VqlUr9Fy9evXIyMhg3759uFwu1q5dS5s2bc5aYUVEREJJiS3hpUuXkpaWxpgxYwq2XX31\n1TRu3JguXbrwxBNPMHbsWAB69OhBgwYNzl5pRUREQkiJIdy/f3/69+9f7PNXXnklCxcuLNdCiYiI\nnAs0Y5aIiEiAKIRFREQCRCEsIiISIAphERGRAFEIi4iIBIhCWEREJEAUwiIiIgGiEBYREQkQhbCI\niEiAKIRFREQCRCEsIiISIAphERGRAFEIi4iIBIhCWEREJEAUwiIiIgGiEBYREQkQhbCIiEiAWDqE\nXS748kvvVxEREauxdAgvW+agXTtYudIR6KKIiIiUmqVDODvb+/XwYSOwBRERETkDlg7hyEjv15yc\nwJZDRETkTFg6hMPDTUAhLCIi1mTpEI6I8H7NyVF3tIiIWE9IhHBubmDLISIiciYsHsLe7ujsbLWE\nRUTEeiwdwuHh3q9qCYuIiBVZOoQjIzUwS0RErMvSIZzfEtbALBERsSJLh/CJ0dGBLYeIiMiZsHgI\nqztaRESsy+Ih7P2am6vuaBERsZ6QCGG1hEVExIosHcI2GzgcGpglIiLWZOkQBu8iDmoJi4iIFVk+\nhAF+/tlG7dqVad8+miVLtLawiIhYg6UTa8kSBxkZAN7u6B077AwbFgU4SUpyBbJoIiIiJbJ0S3jm\nzHCf22fN8r1dREQkmFg6hHft8l384raLiIgEE0unVaNGnlJtFxERCSaWDuExY3wvnzR6tJZVEhGR\n4GfpEE5KctGsmfd7u92kWTM3c+ZoUJaIiFiDpUdHA5x3HmzfDnv2ZBAdHejSiIiI+M/SLWE4ef7o\nwJZDRESktCwfwpGR3q+aulJERKzG8iGsRRxERMSqLB/CagmLiIhVWT6E1RIWERGrsnwIn2gJB7Yc\nIiIipWX5ED4xOlrd0SIiYi2WD+H8lnB2dmDLISIiUlqWD2HdJywiIlZl+RDW6GgREbEqv0J4165d\ndO7cmQULFhR5rmPHjtx6660MGjSIQYMGcfDgwXIv5OlodLSIiFhViXNHZ2VlMXHiRFq3bl3sa+bO\nnUulSpXKtWD+ioryfnU61RIWERFrKbElHB4ezty5c0lISKiI8pRa1arer8ePB7YcIiIipVViS9jh\ncOBwnP5lEyZMIDk5mb/85S+MHTsWw6i4Vml+CKenqyUsIiLWUualDEeNGkXbtm2pWrUqI0aMYMWK\nFSQmJhb7+tjYaBwOe1nftsAff3i/5uVFEB8fUW7HDZT4+JhAF6HcqC7BSXUJTqFSl1CpB1RMXcoc\nwjfddFPB9+3atWPXrl2nDeG0tKyyvmUhVat6f0gHD+aRkmLtm4Xj42NISUkPdDHKheoSnFSX4BQq\ndQmVekD516W4QC/TLUrp6ekMHjyY3D9v0t20aRMNGzYsyyFL7UR3dIW+rYiISJmV2BLetm0bzz77\nLMnJyTgcDlasWEHHjh2pV68eXbp0oV27dvTv35+IiAiaNWt22lbw2VClivfr8eO6JiwiItZimKZp\nVuQblndXRXx8DJGR3iq4XNCokYcxY3JJSnKV6/tUBHXlBCfVJTipLsEnVOoBFdcdXeZrwoH23nuF\nZ8vascPOsGFRgNOSQSwiIucOy09bOWWK7+2zZoVXbEFERERKyfIhvH277+27dlm+aiIiEuIsn1TN\nmvne3qiRp2ILIiIiUkqWD+Hx431vHz1aaxuKiEhws3wIDxgAbdt6B2DZ7SbNmrmZM0eDskREJPhZ\nfnQ0QKtWHr78Ej79NIsrrlA3tIiIWIPlW8IAVap47xPWhB0iImIlIRXCWklJRESsJKRCWC1hERGx\nkpAI4apVvSF89KhCWERErCNEQtj79dixwJZDRESkNEIihKtVU0tYRESsJ6RCeMkSB7VrV6Z9+2iW\nLAmJu69ERCSEhUQIf/65HYD0dBtut1GwkpKCWEREgllIhPBLL/leMUkrKYmISDALiRAubsUkraQk\nIiLBLCRSqrgVk7SSkoiIBLOQCOExY3yvmKSVlEREJJiFRAgnJblo2dINaCUlERGxjpAIYYAmTbxd\nzxdc4OHnn23MnBmu0dEiIhLUQiaEDx/2TtSxZ49dtymJiIglhEwI//ij76roNiUREQlWIRPC+S3h\nU+k2JRERCVYhk1C1apk+t9es6Xu7iIhIoIVMCA8d6vt2pORkm64Li4hIUAqZEB4xIo+ICN+tXl0X\nFhGRYBQyIQyQl+d7u64Li4hIMAqpdLroIk1fKSIi1hFSIfzAA76vC197rZvPPrNz7FgFF0hEROQ0\nQiqEk5JcnH9+0VbvvHnh3HJLNH/7W1QASiUiIuJbSIUwQFZW8c+tW6dR0iIiEjxCLoSLm7TDS/cM\ni4hI8Ai5ED79ICyD8eMjKqwsIiIipxNyIXzffadfQ3jevHAaN66kCTxERCTgQi6Ek5JcDBly+iBO\nS7MxbFgUNWtWpn37aAWyiIgERMiFMMCUKTnUrVvyvcGmqSUPRUQkcEIyhAEefzynVK/X1JYiIlLR\nQjaEk5Jc3Hnn6bulT7Z9uxZ6EBGRihWyIQwwdWpOideHTzAYNixKo6dFRKTChHQIg/f68Jw5TqpV\n82/+6HnzwjVgS0REKkTIhzB4u6Z37cr0a7AWFB6wpZaxiIicLedECOcr7WAt8LaMFcQiInI2nFMh\nnJTkYs4cp98t4nya4ENERM6GcyqEwRvEW7ZkMmeOk6go/8M4f4IPtYpFRKS8nHMhnC8pycW6dVmU\ndlEHdU+LiEh5OWdDGKBBA5PPPsvi9tv9v58Y1D0tIiLl45wOYYCWLT0891wO99yTP2jLv5Zxfve0\nglhERM7UOR/C+R59NJeePfOYNi2HAQP8bxkPGxape4pFROSMKDn+FBYGb7yRDcAdd4DTabBihZ3s\n7JL+TjlxTzE4SUpynfWyiohIaFBLuBhz52azc2dmqfZRq1hEREpDIXwa0dEwaVI211zjb+tWSyOK\niIj/FMIlGDo0j08+cTJhQjaluZ1JSyOKiEhJ/ArhXbt20blzZxYsWFDkua+//pqbb76Z/v3789JL\nL5V7AYPFiBF5TJ2a7ffrt2+3cdlluo1JRESKV2IIZ2VlMXHiRFq3bu3z+UmTJjF79mzeffdd1q9f\nz+7du8u9kMHizjtd9O/v/9KIycm6jUlERIpXYgiHh4czd+5cEhISijy3d+9eqlatSu3atbHZbLRv\n354NGzaclYIGi9mzc+jePY+YGP+nvBw1KlJBLCIiRZQYwg6Hg8jISJ/PpaSkEBcXV/A4Li6OlJSU\n8itdkHrzzWz27MlkyBD/WsU5OYbmnRYRkSIqvHkWGxuNw2Ev12PGx8eU6/H8NXcudOoEgwaBy48B\n1PPmhTN/fjgtWsD48TBgQNHXBKouZ4PqEpxUl+AUKnUJlXpAxdSlTCGckJBAampqweODBw/67LY+\nWVpaVlnesoj4+BhSUtLL9Zil0akTjBoVzowZ/rVyTRO2boVbboHjxwtP7hHoupQn1SU4qS7BKVTq\nEir1gPKvS3GBXqZblOrVq0dGRgb79u3D5XKxdu1a2rRpU5ZDWtKoUbnYbKVbjQl0G5OIyLmuxJbw\ntm3bePbZZ0lOTsbhcLBixQo6duxIvXr16NKlC0888QRjx44FoEePHjRo0OCsFzrYREfDtde6+eqr\n0nUsbN9uY8kSh6a6FBE5RxmmaZa+CVcG5d1VESzdH4cOGUyYEMEffxhs2FC6MI6N9fDMMzkMHRoV\nFHUpD8FyXsqD6hKcVJfgEyr1gIrrjtZ9M+UkIcHklVe8k3ksWeJg5sxwduywAUaJ++Yvi1ilivca\ns4iInBs0beVZkJTk4vPPsxgzxv8lEQEefvgsFUhERIKSQvgsGjYsr+B7u73kXv/ff0f3EouInEMU\nwmdR9eomM2Zk07dvHk89lePXPvPmhdO4seacFhE5FyiEz7KBA/N46aVshgzJIyrKxDBKbhHnXyNW\nq1hEJLQphCuIYUCrVm5Ms+SBWvnmzQtXEIuIhDCFcAXq189F/foe2rb1/75gBbGISOhSCFegQYPy\n+P77TD780MmVV7r93m/evHBdIxYRCUEK4QC5447S3b40YoSWQxQRCTUK4QDp18/FgQPpXHihf+sS\nu1xaDlFEJNQohAPIZoOxY/27dSmfbmESEQkd+iQPsL59XZx/fiabNtl59dVIDh4seZ/8W5jAqcUf\nREQsTC3hIHDVVR5GjMijXr3S7aelEEVErE0hHEQaNy7d67dvt3HZZeqaFhGxKoVwEJk2DZ5+OptZ\ns5x+7mGQnOztmlYYi4hYj0I4iNSpA4MH53HLLS42bcpg8eIs+vXz71YmhbGIiPXo0zpInX++yfnn\nu2nTxs3SpWE4neB2Q0nrE+eHsQZtiYgEP7WEg5xhwDXXuHG7DRo29O+eYtCgLRERK1AIW8Bll3mn\nuPzLX/yf6nL7dpu6pUVEgpxC2AJuvjmPqlVNPvggjNat/e1i9s6wpSAWEQleCmELaNDA5P/+z4nL\nZbBhQ+lCddiwSNq3j1YYi4jYkN2lAAAf/ElEQVQEIYWwRbRp46ZPn7wz2NNgxw67WsUiIkFIn8oW\nMmlSDvXre1i50sGOHfZS7z9iRCSQrVHTIiJBQi1hC6lRw+Qf/8ilSxdviNar5/9oadBKTCIiwUYh\nbEGJiS7sdpMZM7L5178y6dmzdN3U8+aFq2taRCQI6JPYgq64wkNycga2P/+EWr26dC1iUNe0iEgw\nUEvYomwnnblq1cyC76tX9y+Q87um1SIWEQkchXAIuOkmF40auXn//Syuv947oUdCgn9h/NRTuj4s\nIhIoCuEQUKeOyVdfeQO4SRNv+B46ZKN37zwiIszT7pucbKNxYy36ICISCArhENOo0YkW8KefhpGT\nYxAefvogTkuzadS0iEgAKIRDTNu2Lnr1yuOqq04MuMrNPf3KS/nmzQtXEIuIVCCFcIipXBlefz2b\nd95x0rWri0GDvOsRd+zowuE4fYsYvEGs7mkRkYqhEA5RVavCggVOnn46hxo1PGzZYmfmzGy/9s3v\nnlYYi4icXQrhEBceDgMG5JGWZnDwoI02bfy/L1jXikVEzi6F8Dlg0KA8IiNNJk6MYP16b8u2pMFa\nJ9MMWyIiZ4dC+BzQoIHJqlVZtGrlLtj26qv+dU3n0/3EIiLlTyF8jmjc2MNrrzmJi/MwenQO553n\nvZWpWTN3CXt6JSfb1C0tIlLOFMLnkAsvNNm6NZN//COX887zYLOZHDpkMHJkDrGxJc+wpZHTIiLl\nSyF8jgkL836tVg0mT87h+HGDF1+M4O6785gzx1liGOcP1lIQi4iUnUL4HDZ4cB4rV2Zx/vkepk+P\nID7e5OefM6lbt+RW8bBhkVx2mVrFIiJloRA+xzVr5mHOHCd2u8ngwVH8+KONxx/P8WNPg+Rkb6tY\nYSwicmYUwsLll3t4/vlsjh6FAQOiuOQSN0OG5Pq9f34YK4hFREpHISwADBjgYurUHFJTbVx7bSWW\nL3dwySX+jZzOp9uYRERKRyEsBe64I4+ZM51cfbWbfftsbNtm45lnnH7NOQ1aFlFEpLQUwlLIrbe6\n+PhjJ889l43bbfD773buuivP7/3zR0+PGnUWCykiEiIUwuJTnz55VKli8vLL4cydG05EhEmtWh7A\nv1bx7NmoVSwiUgKFsPhUuTIsWZLFHXfk4nCY5OQYHDhg44YbSr8AREJCZY2gFhHxQSEsxWrZ0sO0\naTn88ksGNWp47x3+5JMwHnoox697iU8wNIJaRMQHhbCUqFIl+OSTLB591Hv/8LJlDsaOzaVjR/9b\nxfk0glpE5ASFsPjl4otNRo3K5ZZb8ti61c7990eyZo2DGTNKnuryZBpBLSJygkJYSuX557N54okT\nyyBGRMDmzZmlmtxD80+LiHgphKVUbDYYPjyPzz7LBGDEiCiuvbYSEybk8MgjWqNYRKQ0FMJyRlq0\nONEFvX+/jXXr7DRseOL2pchIKOl2puRkm0ZOi8g5za8QnjJlCv3792fAgAH8+OOPhZ7r2LEjt956\nK4MGDWLQoEEcPHjwrBRUgothwPz5Trp18w7OGjQomrvvjip4/vzzYc4cf1rGWghCRM5dJX7iffvt\nt/z2228sXLiQPXv2MH78eBYuXFjoNXPnzqVSpUpnrZASnHr3dtGrl4uWLStx6NCJv+fsdpPffze4\n6SYXmzblMm9euF/Hyw/jTZtymTLFn5WcRESsrcSW8IYNG+jcuTMAF110EceOHSMjI+OsF0yswTDg\nrbecPPLIidBs1cqD0wm//GJjypQc5szxf/5pgHnzwtUqFpFzQomfcqmpqTRv3rzgcVxcHCkpKVSu\nXLlg24QJE0hOTuYvf/kLY8eOxTCMYo8XGxuNw2EvY7ELi4+PKdfjBZIV69Ktm/ffoUPw1Vfw4IN2\nbr0VFi6sxL33QsOG8PbbcMst/h8zv1W8bRu88MLZK7u/rHheiqO6BKdQqUuo1AMqpi6lbmqYZuEW\nzahRo2jbti1Vq1ZlxIgRrFixgsTExGL3T0vLKn0pTyM+PoaUlPRyPWagWL0uU6Z4v7pcUK9eDLNn\ne+eQBli0KIshQxx+d03nmz0bnM7Adk9b/bycTHUJTqFSl1CpB5R/XYoL9BK7oxMSEkhNTS14fOjQ\nIeLj4wse33TTTVSvXh2Hw0G7du3YtWtXORRXrMgwvP/CwuD55+Evf3ETF+cdRd23bzTLljmYPDn7\nzykwS9c9ra5pEQlFJYZwmzZtWLFiBQA//fQTCQkJBV3R6enpDB48mNxc70QNmzZtomHDhmexuGIV\nN98My5ZlsXNnJoMGeX8/kpNt/OMfkaSm2gpdQ/bHqFGRCmIRCTklhvDll19O8+bNGTBgAJMmTWLC\nhAksXryYVatWERMTQ7t27QpuX4qLizttV7Scm6ZOzWHdukwM40Tr1+EwmDPHSbNmbvxpFefkGFqR\nSURCjmGeepH3LCvv6wW6BhGcfNXlxhuj2LDBG57durl4+20npgkffeRg2LAoX4c5rbp1PTz+eA5J\nSaVfSKI0Qv28WJXqEnxCpR4QRNeERcrLQw/l0rdvHvHxHr75xs68eWFcemklLrrIU9AqPrm1XJL8\nEdTjx2v6SxGxJoWwVJg2bdy89FI2nTq5OXbMYPz4SPbvt/HAA5HccIOLdeuyOHgwgzlznERElG7g\nVs2alWnfPlrd1CJiKQphqXD33ZfDJZe4CQszuewyN//5j52HHorgppui+PFHG0lJLl54oXSLQZim\nwY4ddoYNi9JSiSJiGfqkkgrXoIHJypVZZGRAerrB1VdX4u23vfcPDxhgY9WqLJKSSjfl5cnyl0oE\n51m/XiwiUhZqCUtAGAbExECdOiZ/+5v3Fqb27V2kptp4+OFITJOCKS/r1i3dfcX5Zs0qfYCLiFQk\nhbAE3Pjxuaxcmcn77zu57joXK1c6aNGiEl9+aScpycWWLZl+rshU2PbtNnVLi0hQUwhLwDkccOml\nHgwDXnwxm5tvzuPYMYM77ojinXfCuPrqSpgmZzCC2ntvce3alalVSwO3RCT4KIQlqNSpY/Lyy9nM\nnp1NRobBffdF8r//2Rg5MpK6dT0FI6iHDMn1+5hut4HHU3jgVu3aCmURCTyFsASlpCQXN9yQB3jn\noHa5DCZPPnE/cP714mbN3NhsJqW5ZpyWZsPtPhHKCmIRCRSFsAStZ5/N4b77cnj7bSedOrnYsMHB\ne+852L7dhsvlDep167I4cCCDpk09Z/w+w4ZFaipMEQkIhbAErerVTR55JJcaNUweeSSHyEiTUaOi\nuP76SvTpE8V//2tw552RbNhgZ8wY/7unizIKZt9SGItIRVIIiyW0auVh1aosbr01l7ZtXXzzjYNu\n3SqxdGkYN94YTdeuLubMcVKt2pm3iAGFsYhUKIWwWEbjxh5mzszh/fedXHCBh2PHjILnXnwxnMsu\nc5Oba9Chg4uoqPIL4/feK2vJRUR8UwiL5djt8Pe/e7ufe/bMo0YND6+9Fs6sWeFkZRmsXevA6bSR\nkODhvPP8WyqxOMnJNm65BS0SISJnhUJYLGnQoDwmTszmmWdyGDkyl/R0g3feCScy0hu4YWEmhw7Z\n+P13O927u8o08xZ4F4lISKis9YxFpFwphMWSwsJg2LA8atY0ueuuPPr0ycNmMxk9OpfVqzP5+utM\nWrRwA7BihYPERO/MW4cOZZQhkA00iEtEypNCWCwvKgpefTWb//43g/vvz6VVKw/nn2+yZk0Ww4fn\n4vEYbNhgL3h9WabCPJnWMxaRslIIS8iIjvYuDHGyLl28qyg980wEK1facbtPPJeU5Cr12sW+5HdV\nN25cicsu02xcIuI/hbCEtKuuctO5s4v//MfOwIHR9O4dzZo1dg4e9Kb1maxd7JtBWpqN5GTNxiUi\n/lMIS0gLC4N//tPJZ59l0rNnHt99Z2fAgGguu6wSw4dHsmuXjaQkF8895/xzD5Pw8NJNg3k6o0ZF\nKohFpFj6dJBzQsuWHl5/PZslS1z88ouNf/3LwQcfhLF0qYMWLdx8+23+fwWDdesy2LrV25Itq5wc\n70pOmzblMmVKTpmPJyKhRS1hOWcYBvTp4+Lhh3P54ossXnnFiccDmzbZC71u3TpHwfXiZs3cOBz8\nOZr6zOkWJxHxRSEs5yTDgL/+1cXXX2fy44+ZrF+fydKlmQCsWuXANE8sEJGXx5+jqUu7nnGRd+Xk\nW5y0zrGI6H++nNPq1fMGas2a3q+XXupm7VoH118fjcsFPXu6eP5572uTklwkJXlHWy9Z4uDeeyPJ\nzTV8Htcfbrd33/xBXOAsOL6InBvUEhY5yRtvOGnUyM2uXd6RzjNnRrBiBWzdamP9+hPd1t27nwjL\n22/PLdNsXPnuuSdStziJnGP0v1zkJHXrmnz5ZRY5ObB7t41OnaK57TaDo0ej8Xhg9OhcqlQxycoy\nClrBWVkGW7Zk0r59NDt22Et4h+J5PAbJyYVbx+PGeXjmmRy1kEVClFrCIqcwDIiMhBYtPDz+eA4u\nl7e7ukoVmDkzgqeeiuS5507MkvXFF3bS0ynjmsa+paV5rx83bqwWskgoUgiLnMaIEXmkpnoHZn32\nWSYvv+zk1VedBc8nJuZx6JCNK6+sxLff2nn66Wzq13djt5vExnqw2fLvOS5bV3VaWuFJQDTCWiQ0\nKIRFSuBweFvH551ncvPNLvr0cfHvf2cye7aTuXOzefDBHOx2mD8/nIkTI9i7186TT+bgdht4PAbh\n4bBpk3d0dWxs2W51yne6eauXLHHQvn20Ws4iFmCYplk+UwP5KSUlvVyPFx8fU+7HDBTVJTj5U5cj\nR+C66yqRmmrDMExM03ttNzzcJDfX4P77cxg3LpfJk8OZPTuc6tVNUlLK62/gU/8LFx2xPWeOd+T1\nuXZerCJU6hIq9YDyr0t8fIzP7WoJi5SDuDh4800nY8fmsHixk6ZN3cTEmKxcmUV0tMmiRWH83/+F\nMWtWBB6PQa9ernJsGRun/Ctq1qzwcngfESlvCmGRcnLllR4efjiXNm3crFuXxY4dGTRr5uGGG1zs\n3WvjoYciqV7dQ/XqHj75xEGvXi5+/jnzpJm5TOrW9VCpUvl0WZ9s+3YbjRtXwjDQrF0iQUQhLHIW\nGAaE/9n4fPzxHG66KY+aNT28+aa3W/jwYRvvvBMGnJiZ648/MtiyJZP//S+zzNNk+igRaWm2gu/z\nrymfHMS6lixS8XRNOIioLsGpvOuyb59Bp06VyMiApk09DB2aS1KSC48HsrOhalVvIJbHAhIlM3E4\nwO2m4Dr2yfKvJQcj/Y4Fn1CpB+iasEjIqlfP5LXXnFxwgYcdO2yMHBnFhRdWpn79GBo3rszkyeEc\nPWowdaqTatXyZ+IycTjKb4nFEwxcLsNnAAMMGxap+a1FziKFsEgAtG/vZv36LDZsyORvf8ulUSMP\nbdu6qFnTZNasCB5+OJJx4yI5etTGXXflcehQBs8+mwMYnH9++V8zLp73Nqv8+5P794+ifftoatas\nTP36vhegULe2iP/UHR1EVJfgVJF1+fVXgxkzIvjjD4MvvvCGl2GY/PhjJg8+GMHy5WFER5tMnJjN\nxIkRpKcbNG7sYfRo72xdTz0V8efUl2e+sMSZio31cOmlHtauLRq6Z6NbW79jwSdU6gHqjhY5J11w\ngckLL2Tz9ttOXnzRybBhuZimQcuWlVm+3DuQKyvLYNq0CI4etdG4sYd//SuL9evtVK1q/rnkYnZA\nyp6WZvMZwAAjRkSqRSzig/5XiAShqCjo189Fly4uDh0y+PFHO3v22LjiCjfffWfnwAHv38/bt9u5\n8spKHD5s4+OPw1i/PpNevVz06pXHDz/Y2LfPhs3mHXjlVfEtZACXy2DYsCiGDfN2vMXGer+mpXnL\nU7euyeOP5wAwc2Y4O3faCA+HvDxo3NjDmDG5QTtATKQs1B0dRFSX4BQMdXG74dtv7Vx+uZtFi8LY\nt8+gUSMPf/+7dwR19eoeDh+20aCBhzp1PKxff+Lv6zp1PGzYkMmQIZGsWhUWqCqUWd263gU18sM4\nPj6G115zMnNmOLt22WjUyLphHQy/Y+UhVOoBFdcdrRAOIqpLcArmumzebOPIEYPWrd1MnhzBm2+G\nkZdncMklbvbtMzh82NtirlLF5Pjxoq3g6GiT7Gyw2cD1Z3YZhu/blYJF3boeDhwwqFPHYO/eos/n\nX39essRhmYAO5t+x0giVeoBC2G866cFJdQmMo0chJcXGhRd6cLkgPd3guuuiOXLERtWqJg6HweHD\n3tdGR5tERZk88kguEREmDz0USXY2PPdcDpUrmwXdwsEcyL44HGaJ9z0HW0Bb6XfsdEKlHqAQ9ptO\nenBSXYLHwYMGy5Y5aNnSTcOGlbjrLhfNm3u7rZ94wjuXdb5KlUwyM723Qdnt8MorTl55JZyPPvLV\njZ3/0WGdkLbZvH94ZGYWHZNqs5k0buyhTRs369fbKzSgrf47li9U6gEKYb/ppAcn1SU4nVqXHTts\nbN5s58cfbdSv76FbNzd9+0Zx4IBRKJwdDpM6dTwkJ9uoU8cbTE89FcmxYwZ9+uTxxRd2UlNPvD42\n1iQ3F59hZ0WnXo/OV14t6lD5HQuVeoBC2G866cFJdQlO/tTl+HFwOg2++MLO2rUOYmJMFizwXmvO\nl99iPlX+0o3DhuUycWIODzwQwVtvhdIKTiUvG2kYJrVrmxgGHDjgHUBXUus6/7wEWzd5aZ1r/1dK\nezxfFMJBRHUJTqoLfP65nbfeCsNu9y5M8c033pHajRt7mD8/jC5d3Hz9tZ3ffrMREeFtBScludiz\nx8YPP9gLwjk62qRKFZOUFINatUySk0OjpXxmTOrWNene3cXGjeFs22b6vI7doYOLn3+28ccfhW/n\n8vfadkUGu/6vnP54viiEg4jqEpxUF//s22fw1Vd2GjXyMHp0JD//bAcgKsrE6TRwOExcrhMh07dv\nHpUrm3z6qYPDh41C9zPbbODxgN0Obrd1rjlXLBPf1+NPfKR7f44VtzBHef1+BUOPgELYT/qADE6q\nS3CqqLp4PLB1q43kZBstWrhZvDiMvn3z+Ne/HHz/vbdbdvt2e4nHye/29gb4qc8qnM+c92M//48d\noGA1rfBwyM31/gF08s/c4fC+tlYtE6ez6EQrSUmugnu3n3wyoqDlHhtrEh19omu+pNZ6zZomf/xR\ntIektH84lDXIFcJ+0gdkcFJdglOw1CU3F1audHDokMHFF3v43/9s/POfYSQmuggLM6lWzTs5yfr1\ndqpVM9m61U7lyibh4SZHjvjuwvZ2eXu/997rfPKzCuyzr7iWeVGGYZ4S8iXv53CY3HlnHuvX29m5\n01Zo//xu/fzr7sUFef4IeH+67R9/3E6nTgrhEgXLh0p5UF2Ck+oSWKYJ69bZad7cQ24u3H9/JNdd\n5yYzM4I2bbJYvdrBli02Nm4s3Sy8sbEe0tJ8Bbr/YSJWVvIguyFDcpkyJadc3q24ENbc0SIS1AwD\nOnQomPya9993AhAfH0FKipt27bzPbdxoZ+tWGzExJqmpBunpBlFRULu2hy1b7Bw8aNCqlYdOnVw8\n8kgE337rwDC8H8SFB0QVF8Alf2iLlZR8/ubNC+fKK91n9Xq0QlhEQsLVV7u5+mq3z+f69Sv8IfrJ\nJ0527bIRHW0SGQn//a+N887zsHOnjd27bTRs6OH77+3s3m0jMtLbdbp5sx2Xy/tHwR9/2Dh+3NsF\nnpcHkZHe27q81JIOJbNmhQc+hKdMmcIPP/yAYRiMHz+eVq1aFTz39ddfM2PGDOx2O+3atWPEiBFn\nrbAiIuXBZoMmTTwFjxMSvOFdp46bjh2935/c+j5VWhr8+quNSy7xYLN5u8x37PB2bTdt6mHHDhuL\nFjlYvDiMgwcNLrzQw6BBeXz3nZ3jxw1++cVGWpqB05l/RIMT4X1yiBc3K5mCvqLs2nV2b6MrMYS/\n/fZbfvvtNxYuXMiePXsYP348CxcuLHh+0qRJzJ8/n5o1azJw4EC6devGxRdffFYLLSISSLGx3mvK\n+QwDmjU78bhZMw8TJuQyYULuKXvm+TxefHwMe/dmcOCAQb16JhkZ3j8UKlf2Hvunn2zk5kJGhkFs\nrEnDhh4WLXIwdWoEBw8a2O3ekcv163uoWdNk0yZfH+0nd6crwP3VqJGn5BeVQYkhvGHDBjp37gzA\nRRddxLFjx8jIyKBy5crs3buXqlWrUrt2bQDat2/Phg0bFMIiIqUUGQkXXOANymrVCj/XokXRIBg0\nyMWgQb67SZcscTBr1omRvqNHFx4NfPLzNWuaf3axG4SFeUeuh4V513Ju2tTDNde4+fJLb9f8yfdy\nV67s3S89/dTr6SZVq5ocO1aaFmTRW6YKHzNwRo8+9Q+p8lViCKemptK8efOCx3FxcaSkpFC5cmVS\nUlKIi4sr9NxeX2uLiYhIhUlKcp32OmZJz58p7+j7DKBo0DudcOSIN1DDwrxh3qRJ0T8QTrVkiYOn\nnoogOflEGOfvX7t24eNC/gQv+Hx86nO+5N8P3aKFwYgRZ2dSk0LvV9odynpHU2xsNA5HyTfpl0Zx\nQ7+tSHUJTqpLcFJdgk9+PYYO9f7zKq41aweiTnu8wsc51dluJZ++bOWhxBBOSEggNTW14PGhQ4eI\nj4/3+dzBgwdJSEg47fHS0rLOtKw+WfG+x+KoLsFJdQlOqkvwCZV6QMXNmFVip32bNm1YsWIFAD/9\n9BMJCQlUrlwZgHr16pGRkcG+fftwuVysXbuWNm3alFuhRUREQlmJLeHLL7+c5s2bM2DAAAzDYMKE\nCSxevJiYmBi6dOnCE088wdixYwHo0aMHDRo0OOuFFhERCQV+XRN+4IEHCj1u0qRJwfdXXnlloVuW\nRERExD/n8mKeIiIiAaUQFhERCRCFsIiISIAohEVERAJEISwiIhIgCmEREZEAUQiLiIgEiGGWdTJo\nEREROSNqCYuIiASIQlhERCRAFMIiIiIBohAWEREJEIWwiIhIgCiERUREAsSvpQyD1ZQpU/jhhx8w\nDIPx48fTqlWrQBfJbxs3bmT06NE0bNgQgEaNGjFkyBAeeugh3G438fHxTJs2jfDw8ACXtHi7du1i\n+PDh3HnnnQwcOJD9+/f7LP8nn3zCm2++ic1mo1+/fvTt2zfQRS/i1LqMGzeOn376iWrVqgEwePBg\nrr/+ekvUZerUqXz//fe4XC6GDRtGy5YtLXteTq3LmjVrLHlenE4n48aN4/Dhw+Tk5DB8+HCaNGli\nufPiqx4rVqyw5DnJl52dTa9evRg+fDitW7eu+HNiWtTGjRvNoUOHmqZpmrt37zb79esX4BKVzjff\nfGPee++9hbaNGzfOXLp0qWmapjl9+nTznXfeCUTR/JKZmWkOHDjQfPTRR823337bNE3f5c/MzDS7\ndu1qHj9+3HQ6nWbPnj3NtLS0QBa9CF91efjhh801a9YUeV2w12XDhg3mkCFDTNM0zSNHjpjt27e3\n7HnxVRernpd///vf5muvvWaapmnu27fP7Nq1qyXPi696WPWc5JsxY4bZp08f88MPPwzIObFsd/SG\nDRvo3LkzABdddBHHjh0jIyMjwKUqm40bN9KpUycAOnTowIYNGwJcouKFh4czd+5cEhISCrb5Kv8P\nP/xAy5YtiYmJITIykssvv5zNmzcHqtg++aqLL1aoy5VXXsmsWbMAqFKlCk6n07LnxVdd3G53kddZ\noS49evTgb3/7GwD79++nZs2aljwvvurhS7DXI9+ePXvYvXs3119/PRCYzzDLhnBqaiqxsbEFj+Pi\n4khJSQlgiUpv9+7d/P3vf+eWW25h/fr1OJ3Ogu7n6tWrB3V9HA4HkZGRhbb5Kn9qaipxcXEFrwnG\n8+SrLgALFizg9ttv57777uPIkSOWqIvdbic6OhqADz74gHbt2ln2vPiqi91ut+R5yTdgwAAeeOAB\nxo8fb9nzAoXrAdb8vwLw7LPPMm7cuILHgTgnlr4mfDLTYrNvXnDBBYwcOZLu3buzd+9ebr/99kJ/\n5VutPqcqrvxWqdeNN95ItWrVaNq0Ka+99hovvvgil112WaHXBHNdVq9ezQcffMDrr79O165dC7Zb\n8bycXJdt27ZZ+ry899577NixgwcffLBQOa12Xk6ux/jx4y15Tj766CMuvfRS6tev7/P5ijonlm0J\nJyQkkJqaWvD40KFDxMfHB7BEpVOzZk169OiBYRicd9551KhRg2PHjpGdnQ3AwYMHS+weDTbR0dFF\nyu/rPFmhXq1bt6Zp06YAdOzYkV27dlmmLl9++SWvvvoqc+fOJSYmxtLn5dS6WPW8bNu2jf379wPQ\ntGlT3G43lSpVstx58VWPRo0aWfKcrFu3js8++4x+/fqxaNEiXn755YD8X7FsCLdp04YVK1YA8NNP\nP5GQkEDlypUDXCr/ffLJJ8yfPx+AlJQUDh8+TJ8+fQrqtHLlStq2bRvIIpbatddeW6T8l1xyCVu3\nbuX48eNkZmayefNmrrjiigCXtGT33nsve/fuBbzXiRo2bGiJuqSnpzN16lTmzJlTMFrVqufFV12s\nel6+++47Xn/9dcB7KS0rK8uS58VXPR5//HFLnpOZM2fy4Ycf8v7779O3b1+GDx8ekHNi6VWUnnvu\nOb777jsMw2DChAk0adIk0EXyW0ZGBg888ADHjx8nLy+PkSNH0rRpUx5++GFycnKoU6cOTz/9NGFh\nYYEuqk/btm3j2WefJTk5GYfDQc2aNXnuuecYN25ckfIvX76c+fPnYxgGAwcO5IYbbgh08QvxVZeB\nAwfy2muvERUVRXR0NE8//TTVq1cP+rosXLiQ2bNn06BBg4JtzzzzDI8++qjlzouvuvTp04cFCxZY\n7rxkZ2fzj3/8g/3795Odnc3IkSNp0aKFz//vwVwXX/WIjo5m2rRpljsnJ5s9ezZ169bluuuuq/Bz\nYukQFhERsTLLdkeLiIhYnUJYREQkQBTCIiIiAaIQFhERCRCFsIiISIAohEVERAJEISwiIhIgCmER\nEZEA+X+gzVWdoAAYXQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "yASbEzj3-2iq", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.1.3 Multi-output models\n", + "You can also use the functional API to build models with multiple outputs (or multiple heads). \n", + "\n", + "#### Example - prediction of Age, Gender and Income from social media posts\n", + "A simple example is a network that attempts to simultaneously predict different properties of the data, such as a network that takes as input a series of social media posts from a single anonymous person and tries to predict attributes of that person, such as age, gender, and income level (see figure 7.7, below).\n", + "\n", + "#### Functional API implementation of a three-ouputs prediction model" + ] + }, + { + "metadata": { + "id": "LTT9qaX2-2is", + "colab_type": "code", + "outputId": "ebdb95c5-f09b-4686-daeb-048205d6f4e2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "from keras import layers\n", + "from keras import Input \n", + "from keras.models import Model \n", + "\n", + "vocabulary_size = 50000 \n", + "num_income_groups = 10 \n", + "\n", + "posts_input = Input(shape=(None,), dtype='int32', name='posts')\n", + "# embedded_posts = layers.Embedding(256, vocabulary_size)(posts_input) \n", + "embedded_posts = layers.Embedding(vocabulary_size,256)(posts_input)\n", + "x = layers.Conv1D(128, 5, activation='relu', padding='same')(embedded_posts)\n", + "x = layers.MaxPooling1D(5)(x)\n", + "x = layers.Conv1D(256, 5, activation='relu', padding='same')(x)\n", + "x = layers.Conv1D(256, 5, activation='relu', padding='same')(x)\n", + "x = layers.MaxPooling1D(5)(x)\n", + "x = layers.Conv1D(256, 5, activation='relu', padding='same')(x)\n", + "x = layers.Conv1D(256, 5, activation='relu', padding='same')(x) \n", + "x = layers.GlobalMaxPooling1D()(x)\n", + "x = layers.Dense(128, activation='relu')(x) \n", + "\n", + "# Note that the output layers are given names.\n", + "age_prediction = layers.Dense(1, name='age')(x)\n", + "income_prediction = layers.Dense(num_income_groups, activation='softmax',name='income')(x)\n", + "gender_prediction = layers.Dense(1, activation='sigmoid', name='gender')(x)\n", + "model = Model(posts_input,[age_prediction, income_prediction, gender_prediction])\n", + "\n", + "print(\"Model is ready!\")\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Model is ready!\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "n5fjCj6d-2i0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Why put padding='same'\n", + "\n", + "https://stackoverflow.com/questions/50281564/why-i-cant-set-kernel-size-in-1d-convolution\n", + "\n", + "When I run it show error like this. InvalidArgumentError: computed output size would be negative\n", + "\n", + "If you use padding \"same\" this would just yield an output of one number (the input number multiplied by the middle number of your kernel), but with the default \"valid\" padding, this would make the output size negative." + ] + }, + { + "metadata": { + "id": "YmWVFMzr-2i3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Importantly, training such a model requires the ability to specify different loss functions for different heads of the network: for instance, age prediction is a scalar regression task, but gender prediction is a binary classification task, requiring a different training procedure. But because gradient descent requires you to minimize a scalar, you must combine these losses into a single value in order to train the model. The simplest way to combine different losses is to sum them all. In Keras, you can use either a list or a dictionary of losses in compile to specify different objects for different outputs; the resulting loss values are summed into a global loss, which is minimized during training.\n", + "\n", + "#### Compilation options of a multi-output model: multiple losses" + ] + }, + { + "metadata": { + "id": "V5ByWDIE-2i4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.compile(optimizer='rmsprop', loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'])\n", + "\n", + "# Equivalent (possible only if you give names to the output layers)\n", + "model.compile(optimizer='rmsprop',loss={'age': 'mse',\n", + " 'income': 'categorical_crossentropy',\n", + " 'gender': 'binary_crossentropy'})" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "fY838XJU-2i-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Problem with imbalanced loss contributions\n", + "\n", + "Note that very imbalanced loss contributions will cause the model representations to be optimized preferentially for the task with the largest individual loss, at the expense of the other tasks. To remedy this, you can assign different levels of importance to the loss values in their contribution to the final loss. This is useful in particular if the losses’ values use different scales. \n", + "\n", + "For instance, the mean squared error (MSE) loss used for the age-regression task typically takes a value around 3–5, whereas the cross-entropy loss used for the gender-classification task can be as low as 0.1. In such a situation, to balance the contribution of the different losses, you can assign a weight of 10 to the crossentropy loss and a weight of 0.25 to the MSE loss.\n", + "\n", + "#### Solution to imbalanced loss contributions" + ] + }, + { + "metadata": { + "id": "XeQ567BP-2jD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.compile(optimizer='rmsprop',\n", + " loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'],\n", + " loss_weights=[0.25, 1., 10.]) \n", + "\n", + "# Equivalent (possible only if you give names to the output layers)\n", + "model.compile(optimizer='rmsprop',\n", + " loss={'age': 'mse','income': 'categorical_crossentropy','gender': 'binary_crossentropy'},\n", + " loss_weights={'age': 0.25,\n", + " 'income': 1.,\n", + " 'gender': 10.})" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Jxadwlu1-2jL", + "colab_type": "code", + "outputId": "b0f5f425-0bd7-4af7-949b-e02de7041d70", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2047 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "posts (InputLayer) (None, None) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_2 (Embedding) (None, None, 256) 12800000 posts[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_6 (Conv1D) (None, None, 128) 163968 embedding_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "max_pooling1d_3 (MaxPooling1D) (None, None, 128) 0 conv1d_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_7 (Conv1D) (None, None, 256) 164096 max_pooling1d_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_8 (Conv1D) (None, None, 256) 327936 conv1d_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "max_pooling1d_4 (MaxPooling1D) (None, None, 256) 0 conv1d_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_9 (Conv1D) (None, None, 256) 327936 max_pooling1d_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_10 (Conv1D) (None, None, 256) 327936 conv1d_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_2 (GlobalM (None, 256) 0 conv1d_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_9 (Dense) (None, 128) 32896 global_max_pooling1d_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "age (Dense) (None, 1) 129 dense_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "income (Dense) (None, 10) 1290 dense_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "gender (Dense) (None, 1) 129 dense_9[0][0] \n", + "==================================================================================================\n", + "Total params: 14,146,316\n", + "Trainable params: 14,146,316\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140402024252808\n\nposts: InputLayer\n\ninput:\n\noutput:\n\n(None, None)\n\n(None, None)\n\n\n\n140402024252752\n\nembedding_2: Embedding\n\ninput:\n\noutput:\n\n(None, None)\n\n(None, None, 256)\n\n\n\n140402024252808->140402024252752\n\n\n\n\n\n140402026208952\n\nconv1d_6: Conv1D\n\ninput:\n\noutput:\n\n(None, None, 256)\n\n(None, None, 128)\n\n\n\n140402024252752->140402026208952\n\n\n\n\n\n140402024251744\n\nmax_pooling1d_3: MaxPooling1D\n\ninput:\n\noutput:\n\n(None, None, 128)\n\n(None, None, 128)\n\n\n\n140402026208952->140402024251744\n\n\n\n\n\n140402024251520\n\nconv1d_7: Conv1D\n\ninput:\n\noutput:\n\n(None, None, 128)\n\n(None, None, 256)\n\n\n\n140402024251744->140402024251520\n\n\n\n\n\n140402024251856\n\nconv1d_8: Conv1D\n\ninput:\n\noutput:\n\n(None, None, 256)\n\n(None, None, 256)\n\n\n\n140402024251520->140402024251856\n\n\n\n\n\n140402024244000\n\nmax_pooling1d_4: MaxPooling1D\n\ninput:\n\noutput:\n\n(None, None, 256)\n\n(None, None, 256)\n\n\n\n140402024251856->140402024244000\n\n\n\n\n\n140402023796808\n\nconv1d_9: Conv1D\n\ninput:\n\noutput:\n\n(None, None, 256)\n\n(None, None, 256)\n\n\n\n140402024244000->140402023796808\n\n\n\n\n\n140402023799664\n\nconv1d_10: Conv1D\n\ninput:\n\noutput:\n\n(None, None, 256)\n\n(None, None, 256)\n\n\n\n140402023796808->140402023799664\n\n\n\n\n\n140402023668816\n\nglobal_max_pooling1d_2: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, None, 256)\n\n(None, 256)\n\n\n\n140402023799664->140402023668816\n\n\n\n\n\n140402023488592\n\ndense_9: Dense\n\ninput:\n\noutput:\n\n(None, 256)\n\n(None, 128)\n\n\n\n140402023668816->140402023488592\n\n\n\n\n\n140402023193848\n\nage: Dense\n\ninput:\n\noutput:\n\n(None, 128)\n\n(None, 1)\n\n\n\n140402023488592->140402023193848\n\n\n\n\n\n140402022912408\n\nincome: Dense\n\ninput:\n\noutput:\n\n(None, 128)\n\n(None, 10)\n\n\n\n140402023488592->140402022912408\n\n\n\n\n\n140402022914592\n\ngender: Dense\n\ninput:\n\noutput:\n\n(None, 128)\n\n(None, 1)\n\n\n\n140402023488592->140402022914592\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "utmh5Xufueju", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model, to_file='model.png')\n", + "from google.colab import files\n", + "files.download('model.png')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "fapYi3at-2jb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Feeding data to a multi-output model\n", + "\n", + "Much as in the case of multi-input models, you can pass Numpy data to the model for training either via a list of arrays or via a dictionary of arrays." + ] + }, + { + "metadata": { + "id": "W70cdSuL-2je", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Training a multi-output model" + ] + }, + { + "metadata": { + "scrolled": true, + "id": "pm6uer1q-2ji", + "colab_type": "code", + "outputId": "8aaf076a-3045-4887-f66d-3f2c55e565d1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 919 + } + }, + "cell_type": "code", + "source": [ + "import numpy as np \n", + "\n", + "TRACE = False\n", + "\n", + "num_samples = 1000 \n", + "max_length = 100 \n", + "#產生模擬資料,用於訓練模型\n", + "posts = np.random.randint(1, vocabulary_size, size=(num_samples, max_length))\n", + "if TRACE:\n", + " print(\"*** POSTS ***\")\n", + " print(posts.shape)\n", + " print(posts[:10])\n", + " print()\n", + "\n", + "age_targets = np.random.randint(0, 100, size=(num_samples,1))\n", + "if TRACE:\n", + " print(\"*** AGE ***\")\n", + " print(age_targets.shape)\n", + " print(age_targets[:10])\n", + " print()\n", + "\n", + "income_targets = np.random.randint(1, num_income_groups, size=(num_samples,1))\n", + "income_targets = keras.utils.to_categorical(income_targets,num_income_groups)\n", + "if TRACE:\n", + " print(\"*** INCOME ***\")\n", + " print(income_targets.shape)\n", + " print(income_targets[:10])\n", + " print()\n", + "\n", + "gender_targets = np.random.randint(0, 2, size=(num_samples,1))\n", + "if TRACE:\n", + " print(\"*** GENDER ***\")\n", + " print(gender_targets.shape)\n", + " print(gender_targets[:10])\n", + " print()\n", + "\n", + "print('-'*10, \"First training run with NumPy arrays\", '-'*60)\n", + "# age_targets, income_targets, and gender_targets are assumed to be Numpy arrays.\n", + "model.fit(posts, [age_targets, income_targets, gender_targets], epochs=10, batch_size=64)\n", + "\n", + "print('-'*10,\"Second training run with dictionary and named outputs\",'-'*60)\n", + "# Equivalent (possible only if you give names to the output layers)\n", + "model.fit(posts, {'age': age_targets,\n", + " 'income': income_targets,\n", + " 'gender': gender_targets},\n", + " epochs=10, batch_size=64)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "---------- First training run with NumPy arrays ------------------------------------------------------------\n", + "Epoch 1/10\n", + "1000/1000 [==============================] - 11s 11ms/step - loss: 3411.8500 - age_loss: 13577.6849 - income_loss: 5.7806 - gender_loss: 1.1648\n", + "Epoch 2/10\n", + "1000/1000 [==============================] - 10s 10ms/step - loss: 149.7953 - age_loss: 554.7659 - income_loss: 3.8756 - gender_loss: 0.7228\n", + "Epoch 3/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 79.1326 - age_loss: 272.7328 - income_loss: 2.6991 - gender_loss: 0.8250\n", + "Epoch 4/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 293.9686 - age_loss: 1090.0484 - income_loss: 4.2947 - gender_loss: 1.7162\n", + "Epoch 5/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 183.9122 - age_loss: 612.1404 - income_loss: 5.3536 - gender_loss: 2.5523\n", + "Epoch 6/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 194470.8482 - age_loss: 777556.2353 - income_loss: 13.6860 - gender_loss: 6.8101\n", + "Epoch 7/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 24793.2322 - age_loss: 98804.4178 - income_loss: 14.3290 - gender_loss: 7.7799\n", + "Epoch 8/10\n", + "1000/1000 [==============================] - 10s 10ms/step - loss: 6296.9211 - age_loss: 24819.1727 - income_loss: 14.3290 - gender_loss: 7.7799\n", + "Epoch 9/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 617754.6789 - age_loss: 2470649.3766 - income_loss: 14.4958 - gender_loss: 7.7855\n", + "Epoch 10/10\n", + "1000/1000 [==============================] - 10s 10ms/step - loss: 12892.2840 - age_loss: 51197.3726 - income_loss: 14.3773 - gender_loss: 7.8564\n", + "---------- Second training run with dictionary and named outputs ------------------------------------------------------------\n", + "Epoch 1/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 19657.6511 - age_loss: 78256.2701 - income_loss: 14.3773 - gender_loss: 7.9206\n", + "Epoch 2/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 1702783.9155 - age_loss: 6810748.0868 - income_loss: 14.3615 - gender_loss: 8.2537\n", + "Epoch 3/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 631241.1053 - age_loss: 2524577.0897 - income_loss: 14.3282 - gender_loss: 8.2525\n", + "Epoch 4/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 307.4917 - age_loss: 842.3590 - income_loss: 14.3773 - gender_loss: 8.2525\n", + "Epoch 5/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 2020.8226 - age_loss: 7695.6823 - income_loss: 14.3773 - gender_loss: 8.2525\n", + "Epoch 6/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 890961.1814 - age_loss: 3563461.8121 - income_loss: 14.2922 - gender_loss: 8.1450\n", + "Epoch 7/10\n", + "1000/1000 [==============================] - 10s 10ms/step - loss: 5521347.0109 - age_loss: 22085003.4825 - income_loss: 14.2968 - gender_loss: 8.1867\n", + "Epoch 8/10\n", + "1000/1000 [==============================] - 10s 10ms/step - loss: 216445.6156 - age_loss: 865417.3913 - income_loss: 14.3290 - gender_loss: 7.6946\n", + "Epoch 9/10\n", + "1000/1000 [==============================] - 10s 10ms/step - loss: 2941107.6830 - age_loss: 11764055.2545 - income_loss: 14.3290 - gender_loss: 7.9571\n", + "Epoch 10/10\n", + "1000/1000 [==============================] - 9s 9ms/step - loss: 400.0139 - age_loss: 1231.5445 - income_loss: 14.3290 - gender_loss: 7.7799\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "collapsed": true, + "id": "6cYd-yN4-2jp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.1.4 Directed acyclic graphs of layers \n", + "\n", + "With the functional API, not only can you build models with multiple inputs and multiple outputs, but you can also implement networks with a complex internal topology. Neural networks in Keras are allowed to be arbitrary directed acyclic graphs of layers. The qualifier acyclic is important: these graphs can’t have cycles. It’s impossible for a tensor x to become the input of one of the layers that generated x. The only processing loops that are allowed (that is, recurrent connections) are those internal to recurrent layers. \n", + "\n", + "Several common neural-network components are implemented as graphs. Two notable ones are Inception modules and residual connections. To better understand how the functional API can be used to build graphs of layers, let’s take a look at how you can implement both of them in Keras." + ] + }, + { + "metadata": { + "collapsed": true, + "id": "vxcHjeSb-2jt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Inception modules \n", + "\n", + "Inception [3] is a popular type of network architecture for convolutional neural networks. It consists of a stack of modules that themselves look like small independent networks, split into several parallel branches.\n", + "\n", + "##### The purpose of 1 × 1 convolutions \n", + "\n", + "1 × 1 convolutions (also called pointwise convolutions) are featured in Inception modules, where they contribute to factoring out channel-wise feature learning and space-wise feature learning.\n", + " " + ] + }, + { + "metadata": { + "id": "JP24bbYo-2jy", + "colab_type": "code", + "outputId": "86ac56a5-a146-4e2b-c3e4-a8771704e4e9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "from keras import layers \n", + "from keras.layers import Input\n", + "\n", + "# This example assumes the existence of a 4D input tensor x:\n", + "# This returns a typical image tensor like those of MNIST dataset \n", + "x = Input(shape=(28, 28, 1), dtype='float32', name='images')\n", + "print(\"x.shape:\",x.shape)\n", + "\n", + "# Every branch has the same stride value (2), which is necessary to \n", + "# keep all branch outputs the same size so you can concatenate them\n", + "branch_a = layers.Conv2D(128, 1, padding='same', activation='relu', strides=2)(x)\n", + "\n", + "# In this branch, the striding occurs in the spatial convolution layer.\n", + "branch_b = layers.Conv2D(128, 1, padding='same', activation='relu')(x)\n", + "branch_b = layers.Conv2D(128, 3, padding='same', activation='relu', strides=2)(branch_b)\n", + "\n", + "# In this branch, the striding occurs in the average pooling layer.\n", + "branch_c = layers.AveragePooling2D(3, padding='same', strides=2)(x)\n", + "branch_c = layers.Conv2D(128, 3, padding='same', activation='relu')(branch_c)\n", + "\n", + "branch_d = layers.Conv2D(128, 1, padding='same', activation='relu')(x) \n", + "branch_d = layers.Conv2D(128, 3, padding='same', activation='relu')(branch_d)\n", + "branch_d = layers.Conv2D(128, 3, padding='same', activation='relu', strides=2)(branch_d)\n", + "\n", + "# Concatenates the branch outputs to obtain the module output\n", + "output = layers.concatenate([branch_a, branch_b, branch_c, branch_d], axis=-1)\n", + "\n", + "# Adding a classifier on top of the convnet\n", + "output = layers.Flatten()(output)\n", + "output = layers.Dense(512, activation='relu')(output)\n", + "predictions = layers.Dense(10, activation='softmax')(output)\n", + "\n", + "model = keras.models.Model(inputs=x, outputs=predictions)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x.shape: (?, 28, 28, 1)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "LNV2MTa4-2j6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Train the Inception model using the Dataset API and the MNIST data\n", + "\n", + "Inspired by: https://github.com/keras-team/keras/blob/master/examples/mnist_dataset_api.py" + ] + }, + { + "metadata": { + "id": "5eh1g8A_-2j8", + "colab_type": "code", + "outputId": "8d9e393c-3ea0-42c6-e21d-82e2fa59f2e1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 100 + } + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import os\n", + "import tempfile\n", + "\n", + "import keras\n", + "from keras import backend as K\n", + "from keras import layers\n", + "from keras.datasets import mnist\n", + "\n", + "import tensorflow as tf\n", + "\n", + "if K.backend() != 'tensorflow':\n", + " raise RuntimeError('This example can only run with the TensorFlow backend,'\n", + " ' because it requires the Dataset API, which is not'\n", + " ' supported on other platforms.')\n", + "\n", + "batch_size = 128\n", + "buffer_size = 10000\n", + "steps_per_epoch = int(np.ceil(60000 / float(batch_size))) # = 469\n", + "epochs = 5\n", + "num_classes = 10\n", + "\n", + "def cnn_layers(x):\n", + " \n", + " # This example assumes the existence of a 4D input tensor x:\n", + " # This returns a typical image tensor like those of MNIST dataset \n", + " print(\"x.shape:\",x.shape)\n", + "\n", + " # Every branch has the same stride value (2), which is necessary to \n", + " # keep all branch outputs the same size so you can concatenate them\n", + " branch_a = layers.Conv2D(128, 1, padding='same', activation='relu', strides=2)(x)\n", + "\n", + " # In this branch, the striding occurs in the spatial convolution layer.\n", + " branch_b = layers.Conv2D(128, 1, padding='same', activation='relu')(x)\n", + " branch_b = layers.Conv2D(128, 3, padding='same', activation='relu', strides=2)(branch_b)\n", + "\n", + " # In this branch, the striding occurs in the average pooling layer.\n", + " branch_c = layers.AveragePooling2D(3, padding='same', strides=2)(x)\n", + " branch_c = layers.Conv2D(128, 3, padding='same', activation='relu')(branch_c)\n", + "\n", + " branch_d = layers.Conv2D(128, 1, padding='same', activation='relu')(x) \n", + " branch_d = layers.Conv2D(128, 3, padding='same', activation='relu')(branch_d)\n", + " branch_d = layers.Conv2D(128, 3, padding='same', activation='relu', strides=2)(branch_d)\n", + "\n", + " # Concatenates the branch outputs to obtain the module output\n", + " output = layers.concatenate([branch_a, branch_b, branch_c, branch_d], axis=-1)\n", + "\n", + " # Adding a classifier on top of the convnet\n", + " output = layers.Flatten()(output)\n", + " output = layers.Dense(512, activation='relu')(output)\n", + " predictions = layers.Dense(num_classes, activation='softmax')(output)\n", + " \n", + " return predictions\n", + "\n", + " #使用MNIST資料集\n", + "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", + "x_train = x_train.astype(np.float32) / 255\n", + "x_train = np.expand_dims(x_train, -1)\n", + "y_train = tf.one_hot(y_train, num_classes)\n", + "\n", + "# Create the dataset and its associated one-shot iterator.\n", + "dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "dataset = dataset.repeat()\n", + "dataset = dataset.shuffle(buffer_size)\n", + "dataset = dataset.batch(batch_size)\n", + "iterator = dataset.make_one_shot_iterator()\n", + "\n", + "# Model creation using tensors from the get_next() graph node.\n", + "inputs, targets = iterator.get_next()\n", + "\n", + "print(\"inputs.shape:\",inputs.shape)\n", + "print(\"targets.shape:\",targets.shape)\n", + "\n", + "model_input = layers.Input(tensor=inputs)\n", + "model_output = cnn_layers(model_input)\n", + "\n", + "model = keras.models.Model(inputs=model_input, outputs=model_output)\n", + "\n", + "model.compile(optimizer=keras.optimizers.RMSprop(lr=2e-3, decay=1e-5),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'],\n", + " target_tensors=[targets])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "inputs.shape: (?, 28, 28, 1)\n", + "targets.shape: (?, 10)\n", + "x.shape: (?, 28, 28, 1)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "S_vmcbL4-2j_", + "colab_type": "code", + "outputId": "ffbaf25b-7dca-4752-c1fe-dac7998a540a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1626 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_1 (InputLayer) (None, 28, 28, 1) 0 \n", + "__________________________________________________________________________________________________\n", + "conv2d_5 (Conv2D) (None, 28, 28, 128) 256 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 28, 28, 128) 256 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "average_pooling2d_1 (AveragePoo (None, 14, 14, 1) 0 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_6 (Conv2D) (None, 28, 28, 128) 147584 conv2d_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_1 (Conv2D) (None, 14, 14, 128) 256 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_3 (Conv2D) (None, 14, 14, 128) 147584 conv2d_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_4 (Conv2D) (None, 14, 14, 128) 1280 average_pooling2d_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_7 (Conv2D) (None, 14, 14, 128) 147584 conv2d_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 14, 14, 512) 0 conv2d_1[0][0] \n", + " conv2d_3[0][0] \n", + " conv2d_4[0][0] \n", + " conv2d_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "flatten_1 (Flatten) (None, 100352) 0 concatenate_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 512) 51380736 flatten_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_2 (Dense) (None, 10) 5130 dense_1[0][0] \n", + "==================================================================================================\n", + "Total params: 51,830,666\n", + "Trainable params: 51,830,666\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140647098478264\n\ninput_1: InputLayer\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 28, 28, 1)\n\n\n\n140647080803856\n\nconv2d_5: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 28, 28, 128)\n\n\n\n140647098478264->140647080803856\n\n\n\n\n\n140647081501528\n\nconv2d_2: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 28, 28, 128)\n\n\n\n140647098478264->140647081501528\n\n\n\n\n\n140647081091480\n\naverage_pooling2d_1: AveragePooling2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 14, 14, 1)\n\n\n\n140647098478264->140647081091480\n\n\n\n\n\n140647081501472\n\nconv2d_1: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 14, 14, 128)\n\n\n\n140647098478264->140647081501472\n\n\n\n\n\n140647080903344\n\nconv2d_6: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 28, 28, 128)\n\n\n\n140647080803856->140647080903344\n\n\n\n\n\n140647081503320\n\nconv2d_3: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 14, 14, 128)\n\n\n\n140647081501528->140647081503320\n\n\n\n\n\n140647081202912\n\nconv2d_4: Conv2D\n\ninput:\n\noutput:\n\n(None, 14, 14, 1)\n\n(None, 14, 14, 128)\n\n\n\n140647081091480->140647081202912\n\n\n\n\n\n140647080997608\n\nconv2d_7: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 14, 14, 128)\n\n\n\n140647080903344->140647080997608\n\n\n\n\n\n140647081347224\n\nconcatenate_1: Concatenate\n\ninput:\n\noutput:\n\n[(None, 14, 14, 128), (None, 14, 14, 128), (None, 14, 14, 128), (None, 14, 14, 128)]\n\n(None, 14, 14, 512)\n\n\n\n140647081501472->140647081347224\n\n\n\n\n\n140647081503320->140647081347224\n\n\n\n\n\n140647081202912->140647081347224\n\n\n\n\n\n140647080997608->140647081347224\n\n\n\n\n\n140647080585312\n\nflatten_1: Flatten\n\ninput:\n\noutput:\n\n(None, 14, 14, 512)\n\n(None, 100352)\n\n\n\n140647081347224->140647080585312\n\n\n\n\n\n140647080585032\n\ndense_1: Dense\n\ninput:\n\noutput:\n\n(None, 100352)\n\n(None, 512)\n\n\n\n140647080585312->140647080585032\n\n\n\n\n\n140647080758856\n\ndense_2: Dense\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 10)\n\n\n\n140647080585032->140647080758856\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "id": "l64rIKuUwZgB", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model, to_file='model_Inception.png')\n", + "from google.colab import files\n", + "files.download('model_Inception.png')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "scC7bX8b-2kH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Train Inception model" + ] + }, + { + "metadata": { + "id": "rXO444Ym-2kK", + "colab_type": "code", + "outputId": "c5cbbaea-f939-4e42-8033-3505deb2beed", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 247 + } + }, + "cell_type": "code", + "source": [ + "model.fit(epochs=epochs,\n", + " steps_per_epoch=steps_per_epoch)\n", + "\n", + "# Save the model weights.\n", + "weight_path = os.path.join(tempfile.gettempdir(), 'saved_Inception_wt.h5')\n", + "model.save_weights(weight_path)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:Variable *= will be deprecated. Use `var.assign(var * other)` if you want assignment to the variable value or `x = x * y` if you want a new python Tensor object.\n", + "Epoch 1/5\n", + "469/469 [==============================] - 88s 187ms/step - loss: 0.1677 - acc: 0.9547\n", + "Epoch 2/5\n", + "469/469 [==============================] - 81s 172ms/step - loss: 0.0401 - acc: 0.9877\n", + "Epoch 3/5\n", + "469/469 [==============================] - 81s 172ms/step - loss: 0.0224 - acc: 0.9932\n", + "Epoch 4/5\n", + "469/469 [==============================] - 80s 171ms/step - loss: 0.0137 - acc: 0.9960\n", + "Epoch 5/5\n", + "469/469 [==============================] - 80s 170ms/step - loss: 0.0088 - acc: 0.9974\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "qoXjLLmX-2kP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Test the Inception model\n", + "\n", + "Second session to test loading trained model without tensors." + ] + }, + { + "metadata": { + "id": "_KKWU3yt-2kR", + "colab_type": "code", + "outputId": "0b1a00f8-a323-4b00-ffa3-9b862470834a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 856 + } + }, + "cell_type": "code", + "source": [ + "# Clean up the TF session.\n", + "K.clear_session()\n", + "\n", + "# Second session to test loading trained model without tensors.\n", + "x_test = x_test.astype(np.float32)\n", + "x_test = np.expand_dims(x_test, -1)\n", + "\n", + "x_test_inp = layers.Input(shape=x_test.shape[1:])\n", + "test_out = cnn_layers(x_test_inp)\n", + "test_model = keras.models.Model(inputs=x_test_inp, outputs=test_out)\n", + "\n", + "weight_path = os.path.join(tempfile.gettempdir(), 'saved_Inception_wt.h5')\n", + "test_model.load_weights(weight_path)\n", + "\n", + "test_model.compile(optimizer='rmsprop',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "test_model.summary()\n", + "\n", + "SVG(model_to_dot(test_model).create(prog='dot', format='svg'))\n", + "\n", + "loss, acc = test_model.evaluate(x_test, y_test, num_classes)\n", + "print('\\nTest accuracy: {0}'.format(acc))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x.shape: (?, 28, 28, 1)\n", + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_1 (InputLayer) (None, 28, 28, 1) 0 \n", + "__________________________________________________________________________________________________\n", + "conv2d_5 (Conv2D) (None, 28, 28, 128) 256 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 28, 28, 128) 256 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "average_pooling2d_1 (AveragePoo (None, 14, 14, 1) 0 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_6 (Conv2D) (None, 28, 28, 128) 147584 conv2d_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_1 (Conv2D) (None, 14, 14, 128) 256 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_3 (Conv2D) (None, 14, 14, 128) 147584 conv2d_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_4 (Conv2D) (None, 14, 14, 128) 1280 average_pooling2d_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_7 (Conv2D) (None, 14, 14, 128) 147584 conv2d_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 14, 14, 512) 0 conv2d_1[0][0] \n", + " conv2d_3[0][0] \n", + " conv2d_4[0][0] \n", + " conv2d_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "flatten_1 (Flatten) (None, 100352) 0 concatenate_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 512) 51380736 flatten_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_2 (Dense) (None, 10) 5130 dense_1[0][0] \n", + "==================================================================================================\n", + "Total params: 51,830,666\n", + "Trainable params: 51,830,666\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n", + "10000/10000 [==============================] - 10s 1ms/step\n", + "\n", + "Test accuracy: 0.9832999967932701\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "tLoWQDIe-2kY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Residual connections - ResNET\n", + "\n", + "Residual connections or ResNET are a common graph-like network component found in many post-2015 network architectures, including Xception. They were introduced by He et al. from Microsoft and are figthing two common problems with large-scale deep-learning model: vanishing gradients and representational bottlenecks. \n", + "\n", + "A residual connection consists of making the output of an earlier layer available as input to a later layer, effectively creating a shortcut in a sequential network. Rather than being concatenated to the later activation, the earlier output is summed with the later activation, which assumes that both activations are the same size. If they’re different sizes, you can use a linear transformation to reshape the earlier activation into the target shape (for example, a Dense layer without an activation or, for convolutional feature maps, a 1 × 1 convolution without an activation). \n", + "\n", + "###### ResNET implementation when the feature-map sizes are the same\n", + "\n", + "Here’s how to implement a residual connection in Keras when the feature-map sizes are the same, using identity residual connections. This example assumes the existence of a 4D input tensor x:" + ] + }, + { + "metadata": { + "id": "ulHHOdNT-2kZ", + "colab_type": "code", + "outputId": "a21aa830-ce43-437e-fb7e-c2720c3ee82f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 + } + }, + "cell_type": "code", + "source": [ + "from keras import layers \n", + "from keras.layers import Input\n", + "\n", + "# This example assumes the existence of a 4D input tensor x:\n", + "# This returns a typical image tensor like those of MNIST dataset \n", + "x = Input(shape=(28, 28, 1), dtype='float32', name='images')\n", + "print(\"x.shape:\",x.shape)\n", + "\n", + "# Applies a transformation to x\n", + "y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)\n", + "y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)\n", + "y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)\n", + "\n", + "# Adds the original x back to the output features\n", + "output = layers.add([y, x])\n", + "\n", + "# Adding a classifier on top of the convnet\n", + "output = layers.Flatten()(output)\n", + "output = layers.Dense(512, activation='relu')(output)\n", + "predictions = layers.Dense(10, activation='softmax')(output)\n", + "model = keras.models.Model(inputs=x, outputs=predictions)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x.shape: (?, 28, 28, 1)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "sOfwL02q-2kc", + "colab_type": "code", + "outputId": "1a3169d7-9f74-49cf-acc1-e8ffef4e27a4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1317 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "images (InputLayer) (None, 28, 28, 1) 0 \n", + "__________________________________________________________________________________________________\n", + "conv2d_7 (Conv2D) (None, 28, 28, 128) 1280 images[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_8 (Conv2D) (None, 28, 28, 128) 147584 conv2d_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_9 (Conv2D) (None, 28, 28, 128) 147584 conv2d_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "add_3 (Add) (None, 28, 28, 128) 0 conv2d_9[0][0] \n", + " images[0][0] \n", + "__________________________________________________________________________________________________\n", + "flatten_3 (Flatten) (None, 100352) 0 add_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_5 (Dense) (None, 512) 51380736 flatten_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_6 (Dense) (None, 10) 5130 dense_5[0][0] \n", + "==================================================================================================\n", + "Total params: 51,682,314\n", + "Trainable params: 51,682,314\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140300208374224\n\nimages: InputLayer\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 28, 28, 1)\n\n\n\n140300208742296\n\nconv2d_7: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 28, 28, 128)\n\n\n\n140300208374224->140300208742296\n\n\n\n\n\n140300208060568\n\nadd_3: Add\n\ninput:\n\noutput:\n\n[(None, 28, 28, 128), (None, 28, 28, 1)]\n\n(None, 28, 28, 128)\n\n\n\n140300208374224->140300208060568\n\n\n\n\n\n140300207958728\n\nconv2d_8: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 28, 28, 128)\n\n\n\n140300208742296->140300207958728\n\n\n\n\n\n140300208059056\n\nconv2d_9: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 28, 28, 128)\n\n\n\n140300207958728->140300208059056\n\n\n\n\n\n140300208059056->140300208060568\n\n\n\n\n\n140300207755616\n\nflatten_3: Flatten\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 100352)\n\n\n\n140300208060568->140300207755616\n\n\n\n\n\n140300207756008\n\ndense_5: Dense\n\ninput:\n\noutput:\n\n(None, 100352)\n\n(None, 512)\n\n\n\n140300207755616->140300207756008\n\n\n\n\n\n140300207855152\n\ndense_6: Dense\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 10)\n\n\n\n140300207756008->140300207855152\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "TVSBtb6N-2km", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "###### ResNET implementation when the feature-map sizes differ\n", + "\n", + "And the following implements a residual connection when the feature-map sizes differ, using a linear residual connection (again, assuming the existence of a 4D input tensor x):" + ] + }, + { + "metadata": { + "id": "jdm2a7wX-2kn", + "colab_type": "code", + "outputId": "56469c4f-af0f-4ec6-8d06-10e852428508", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 + } + }, + "cell_type": "code", + "source": [ + "from keras import layers \n", + "from keras.layers import Input\n", + "\n", + "# This example assumes the existence of a 4D input tensor x:\n", + "# This returns a typical image tensor like those of MNIST dataset \n", + "x = Input(shape=(28, 28, 1), dtype='float32', name='images')\n", + "print(\"x.shape:\",x.shape)\n", + "\n", + "# Applies a transformation to x\n", + "y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)\n", + "y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)\n", + "y = layers.MaxPooling2D(2, strides=2)(y)\n", + "\n", + "# Uses a 1 × 1 convolution to linearly downsample the original x tensor to the same shape as y\n", + "residual = layers.Conv2D(128, 1, strides=2, padding='same')(x)\n", + "\n", + "# Adds the residual tensor back to the output features\n", + "output = layers.add([y, residual])\n", + "\n", + "# Adding a classifier on top of the convnet\n", + "output = layers.Flatten()(output)\n", + "output = layers.Dense(512, activation='relu')(output)\n", + "predictions = layers.Dense(10, activation='softmax')(output)\n", + "model = keras.models.Model(inputs=x, outputs=predictions)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x.shape: (?, 28, 28, 1)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "mExOZ_Jm-2ku", + "colab_type": "code", + "outputId": "70bae303-db38-4143-be23-a7fb56eb235e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1354 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "images (InputLayer) (None, 28, 28, 1) 0 \n", + "__________________________________________________________________________________________________\n", + "conv2d_10 (Conv2D) (None, 28, 28, 128) 1280 images[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_11 (Conv2D) (None, 28, 28, 128) 147584 conv2d_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2D) (None, 14, 14, 128) 0 conv2d_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_12 (Conv2D) (None, 14, 14, 128) 256 images[0][0] \n", + "__________________________________________________________________________________________________\n", + "add_4 (Add) (None, 14, 14, 128) 0 max_pooling2d_2[0][0] \n", + " conv2d_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "flatten_4 (Flatten) (None, 25088) 0 add_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_7 (Dense) (None, 512) 12845568 flatten_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_8 (Dense) (None, 10) 5130 dense_7[0][0] \n", + "==================================================================================================\n", + "Total params: 12,999,818\n", + "Trainable params: 12,999,818\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140299896323936\n\nimages: InputLayer\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 28, 28, 1)\n\n\n\n140300208742240\n\nconv2d_10: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 28, 28, 128)\n\n\n\n140299896323936->140300208742240\n\n\n\n\n\n140299896320408\n\nconv2d_12: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 1)\n\n(None, 14, 14, 128)\n\n\n\n140299896323936->140299896320408\n\n\n\n\n\n140299896323544\n\nconv2d_11: Conv2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 28, 28, 128)\n\n\n\n140300208742240->140299896323544\n\n\n\n\n\n140299896323040\n\nmax_pooling2d_2: MaxPooling2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 128)\n\n(None, 14, 14, 128)\n\n\n\n140299896323544->140299896323040\n\n\n\n\n\n140299896320240\n\nadd_4: Add\n\ninput:\n\noutput:\n\n[(None, 14, 14, 128), (None, 14, 14, 128)]\n\n(None, 14, 14, 128)\n\n\n\n140299896323040->140299896320240\n\n\n\n\n\n140299896320408->140299896320240\n\n\n\n\n\n140300207280480\n\nflatten_4: Flatten\n\ninput:\n\noutput:\n\n(None, 14, 14, 128)\n\n(None, 25088)\n\n\n\n140299896320240->140300207280480\n\n\n\n\n\n140300207280200\n\ndense_7: Dense\n\ninput:\n\noutput:\n\n(None, 25088)\n\n(None, 512)\n\n\n\n140300207280480->140300207280200\n\n\n\n\n\n140300207274584\n\ndense_8: Dense\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 10)\n\n\n\n140300207280200->140300207274584\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "id": "C7uwDATrVfQD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Train and Save the ResNet model using the CIFAR10 data" + ] + }, + { + "metadata": { + "id": "5MvFWgjBqCtd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#法1\n", + "import keras\n", + "import tempfile\n", + "from keras.models import Model\n", + "from keras.layers import Input, Dense, Dropout, Flatten, Add, Concatenate, Lambda\n", + "from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation\n", + "from keras.optimizers import Adam\n", + "from keras import regularizers\n", + "from keras import backend as K\n", + "import numpy as np\n", + "import tempfile\n", + "from keras.datasets import cifar10\n", + "from keras import backend as K\n", + "from keras import layers\n", + "from keras.utils import np_utils\n", + "\n", + "import os\n", + "\n", + "def zeropad(x):\n", + " y = K.zeros_like(x)\n", + " return Concatenate()([x,y])\n", + "\n", + "def residualConvolution(x, num_filter, size, num_layer, reg, padding=False):\n", + " c = x\n", + " #ASSUME THE SIZE OF AXIS -1 DOUBLE\n", + " if padding:\n", + " x = Lambda(zeropad)(x)\n", + "\n", + " for i in range(num_layer-1):\n", + " c = Conv2D(num_filter, (size, size), padding='same')(c)\n", + " c = Dropout(0.1)(c)\n", + " c = BatchNormalization()(c)\n", + " c = Activation('relu')(c)\n", + "\n", + " c = Conv2D(num_filter, (size, size), padding='same')(c)\n", + " c = Dropout(0.1)(c)\n", + " c = BatchNormalization()(c)\n", + "\n", + " # add back residual before non-linearity\n", + " y = Add()([c, x])\n", + " return Activation('relu')(c)\n", + "\n", + "\n", + "# 19 layers network based on VGG architecture with residual connection\n", + "def generateModel(reg, dropout_p, input_shape, num_classes):\n", + "\n", + " inputs = Input(input_shape)\n", + "\n", + " # First Block: 1 128 3x3 convolutional filters (strides 2)\n", + " y = Conv2D(128, (3, 3), padding='same' )(x)\n", + " y = BatchNormalization()(y)\n", + " y = Activation('relu')(y)\n", + "\n", + " # Second Block: 2 128 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=128, size=3, num_layer=2, reg=reg)\n", + "\n", + " y = MaxPooling2D()(y)\n", + " y = Dropout(0.25)(y)\n", + "\n", + " # Third Block: 2 256 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=256, size=3, num_layer=2, reg=reg, padding=True)\n", + "\n", + " # Fourth Block: 2 256 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=256, size=3, num_layer=2, reg=reg)\n", + "\n", + " y = MaxPooling2D()(y)\n", + " y = Dropout(0.25)(y)\n", + "\n", + " # Fifth Block: 2 512 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=512, size=3, num_layer=2, reg=reg, padding=True)\n", + "\n", + " # Sixth Block: 2 512 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=512, size=3, num_layer=2, reg=reg)\n", + "\n", + "\n", + " y = Flatten()(y)\n", + "\n", + " for i in range(1):\n", + " y = Dense(512)(y)\n", + " y = BatchNormalization()(y)\n", + " y = Activation('relu')(y)\n", + " y = Dropout(dropout_p)(y)\n", + "\n", + " y = Dense(num_classes, activation='softmax')(y)\n", + "\n", + " \n", + "\n", + "\n", + " return y" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZtO740Q8ebad", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# 法2\n", + "import keras\n", + "import tempfile\n", + "from keras.models import Model\n", + "from keras.layers import Input, Dense, Dropout, Flatten, Add, Concatenate, Lambda\n", + "from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation\n", + "from keras.optimizers import Adam\n", + "from keras import regularizers\n", + "from keras import backend as K\n", + "import numpy as np\n", + "import tempfile\n", + "from keras.datasets import cifar10\n", + "from keras import backend as K\n", + "from keras import layers\n", + "from keras.utils import np_utils\n", + "\n", + "import os\n", + "\n", + "def zeropad(x):\n", + " y = K.zeros_like(x)\n", + " return Concatenate()([x,y])\n", + "\n", + "def residualConvolution(x, num_filter, size, num_layer, reg, padding=False):\n", + " c = x\n", + " #ASSUME THE SIZE OF AXIS -1 DOUBLE\n", + " if padding:\n", + " x = Lambda(zeropad)(x)\n", + "\n", + " for i in range(num_layer-1):\n", + " c = Conv2D(num_filter, (size, size), padding='same')(c)\n", + " c = Dropout(0.1)(c)\n", + " c = BatchNormalization()(c)\n", + " c = Activation('relu')(c)\n", + "\n", + " c = Conv2D(num_filter, (size, size), padding='same')(c)\n", + " c = Dropout(0.1)(c)\n", + " c = BatchNormalization()(c)\n", + "\n", + " # add back residual before non-linearity\n", + " c = Add()([c, x])\n", + " return Activation('relu')(c)\n", + "\n", + "\n", + "# 19 layers network based on VGG architecture with residual connection\n", + "def generateModel(reg, dropout_p, input_shape, num_classes):\n", + "\n", + " inputs = Input(input_shape)\n", + "\n", + " # First Block: 1 128 3x3 convolutional filters (strides 2)\n", + " y = Conv2D(128, (3, 3), padding='same' )(x)\n", + " y = BatchNormalization()(y)\n", + " y = Activation('relu')(y)\n", + "\n", + " # Second Block: 2 128 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=128, size=3, num_layer=2, reg=reg)\n", + "\n", + " y = MaxPooling2D()(y)\n", + " y = Dropout(0.25)(y)\n", + "\n", + " # Third Block: 2 256 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=256, size=3, num_layer=2, reg=reg, padding=True)\n", + "\n", + " # Fourth Block: 2 256 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=256, size=3, num_layer=2, reg=reg)\n", + "\n", + " y = MaxPooling2D()(y)\n", + " y = Dropout(0.25)(y)\n", + "\n", + " # Fifth Block: 2 512 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=512, size=3, num_layer=2, reg=reg, padding=True)\n", + "\n", + " # Sixth Block: 2 512 3x3 convolutional filters with residual connection\n", + " y = residualConvolution(y, num_filter=512, size=3, num_layer=2, reg=reg)\n", + "\n", + "\n", + " y = Flatten()(y)\n", + "\n", + " for i in range(1):\n", + " y = Dense(512)(y)\n", + " y = BatchNormalization()(y)\n", + " y = Activation('relu')(y)\n", + " y = Dropout(dropout_p)(y)\n", + "\n", + " y = Dense(num_classes, activation='softmax')(y)\n", + "\n", + " \n", + "\n", + "\n", + " return y" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "MuB7AxKdrJyL", + "colab_type": "code", + "outputId": "79b34a74-ba46-4cc7-8fa2-4f2d9610b5f9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "reg = 0.001\n", + "dropout_p = 0.5\n", + "lr = 0.00025\n", + "num_classes = 10\n", + "epochs = 40\n", + "\n", + "batch_size = 128\n", + "buffer_size = 10000\n", + "\n", + "steps_per_epoch = int(np.ceil(50000 / float(batch_size))) \n", + "\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "x_train = x_train.astype('float32') / 255\n", + "print(x_train.shape)\n", + "input_shape = x_train.shape[1:]\n", + "print (input_shape)\n", + "\n", + "y_train = np_utils.to_categorical(y_train, num_classes)\n", + "\n", + "\n", + "\n", + "#print(\"inputs.shape:\",inputs.shape)\n", + "#print(\"targets.shape:\",targets.shape)\n", + "\n", + "#model_input = layers.Input(tensor=inputs)\n", + "x = Input(shape = input_shape, dtype = 'float32', name = 'images')\n", + "model_output = generateModel(reg, dropout_p, input_shape, num_classes)\n", + "\n", + "\n", + "model = keras.models.Model(inputs = x, outputs = model_output)\n", + "\n", + "model.compile(optimizer=keras.optimizers.Adam(lr = lr),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'],\n", + " )" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3)\n", + "(32, 32, 3)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "c_c8bd2HeoCM", + "colab_type": "code", + "outputId": "dec2fea2-561d-4f44-cac5-b122998e90ac", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 8791 + } + }, + "cell_type": "code", + "source": [ + "#法2\n", + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "\n", + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model, to_file='model_ResNet.png')\n", + "from google.colab import files\n", + "files.download('model_ResNet.png')\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "images (InputLayer) (None, 32, 32, 3) 0 \n", + "__________________________________________________________________________________________________\n", + "conv2d_1 (Conv2D) (None, 32, 32, 128) 3584 images[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_1 (BatchNor (None, 32, 32, 128) 512 conv2d_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_1 (Activation) (None, 32, 32, 128) 0 batch_normalization_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 32, 32, 128) 147584 activation_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_1 (Dropout) (None, 32, 32, 128) 0 conv2d_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_2 (BatchNor (None, 32, 32, 128) 512 dropout_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_2 (Activation) (None, 32, 32, 128) 0 batch_normalization_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_3 (Conv2D) (None, 32, 32, 128) 147584 activation_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_2 (Dropout) (None, 32, 32, 128) 0 conv2d_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_3 (BatchNor (None, 32, 32, 128) 512 dropout_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "add_1 (Add) (None, 32, 32, 128) 0 batch_normalization_3[0][0] \n", + " activation_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_3 (Activation) (None, 32, 32, 128) 0 add_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2D) (None, 16, 16, 128) 0 activation_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_3 (Dropout) (None, 16, 16, 128) 0 max_pooling2d_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_4 (Conv2D) (None, 16, 16, 256) 295168 dropout_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_4 (Dropout) (None, 16, 16, 256) 0 conv2d_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_4 (BatchNor (None, 16, 16, 256) 1024 dropout_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_4 (Activation) (None, 16, 16, 256) 0 batch_normalization_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_5 (Conv2D) (None, 16, 16, 256) 590080 activation_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_5 (Dropout) (None, 16, 16, 256) 0 conv2d_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_5 (BatchNor (None, 16, 16, 256) 1024 dropout_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "lambda_1 (Lambda) (None, 16, 16, 256) 0 dropout_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "add_2 (Add) (None, 16, 16, 256) 0 batch_normalization_5[0][0] \n", + " lambda_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_5 (Activation) (None, 16, 16, 256) 0 add_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_6 (Conv2D) (None, 16, 16, 256) 590080 activation_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_6 (Dropout) (None, 16, 16, 256) 0 conv2d_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_6 (BatchNor (None, 16, 16, 256) 1024 dropout_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_6 (Activation) (None, 16, 16, 256) 0 batch_normalization_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_7 (Conv2D) (None, 16, 16, 256) 590080 activation_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_7 (Dropout) (None, 16, 16, 256) 0 conv2d_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_7 (BatchNor (None, 16, 16, 256) 1024 dropout_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "add_3 (Add) (None, 16, 16, 256) 0 batch_normalization_7[0][0] \n", + " activation_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_7 (Activation) (None, 16, 16, 256) 0 add_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2D) (None, 8, 8, 256) 0 activation_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_8 (Dropout) (None, 8, 8, 256) 0 max_pooling2d_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_8 (Conv2D) (None, 8, 8, 512) 1180160 dropout_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_9 (Dropout) (None, 8, 8, 512) 0 conv2d_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_8 (BatchNor (None, 8, 8, 512) 2048 dropout_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_8 (Activation) (None, 8, 8, 512) 0 batch_normalization_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_9 (Conv2D) (None, 8, 8, 512) 2359808 activation_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_10 (Dropout) (None, 8, 8, 512) 0 conv2d_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_9 (BatchNor (None, 8, 8, 512) 2048 dropout_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "lambda_2 (Lambda) (None, 8, 8, 512) 0 dropout_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "add_4 (Add) (None, 8, 8, 512) 0 batch_normalization_9[0][0] \n", + " lambda_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_9 (Activation) (None, 8, 8, 512) 0 add_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_10 (Conv2D) (None, 8, 8, 512) 2359808 activation_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_11 (Dropout) (None, 8, 8, 512) 0 conv2d_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_10 (BatchNo (None, 8, 8, 512) 2048 dropout_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_10 (Activation) (None, 8, 8, 512) 0 batch_normalization_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2d_11 (Conv2D) (None, 8, 8, 512) 2359808 activation_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_12 (Dropout) (None, 8, 8, 512) 0 conv2d_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_11 (BatchNo (None, 8, 8, 512) 2048 dropout_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "add_5 (Add) (None, 8, 8, 512) 0 batch_normalization_11[0][0] \n", + " activation_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_11 (Activation) (None, 8, 8, 512) 0 add_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "flatten_1 (Flatten) (None, 32768) 0 activation_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_2 (Dense) (None, 512) 16777728 flatten_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_12 (BatchNo (None, 512) 2048 dense_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "activation_12 (Activation) (None, 512) 0 batch_normalization_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_13 (Dropout) (None, 512) 0 activation_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_3 (Dense) (None, 10) 5130 dropout_13[0][0] \n", + "==================================================================================================\n", + "Total params: 27,422,474\n", + "Trainable params: 27,414,538\n", + "Non-trainable params: 7,936\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140178357568680\n\nimages: InputLayer\n\ninput:\n\noutput:\n\n(None, 32, 32, 3)\n\n(None, 32, 32, 3)\n\n\n\n140178278478232\n\nconv2d_1: Conv2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 3)\n\n(None, 32, 32, 128)\n\n\n\n140178357568680->140178278478232\n\n\n\n\n\n140178278477896\n\nbatch_normalization_1: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178278478232->140178278477896\n\n\n\n\n\n140178278480808\n\nactivation_1: Activation\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178278477896->140178278480808\n\n\n\n\n\n140178278479576\n\nconv2d_2: Conv2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178278480808->140178278479576\n\n\n\n\n\n140178279348824\n\nadd_1: Add\n\ninput:\n\noutput:\n\n[(None, 32, 32, 128), (None, 32, 32, 128)]\n\n(None, 32, 32, 128)\n\n\n\n140178278480808->140178279348824\n\n\n\n\n\n140178278570024\n\ndropout_1: Dropout\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178278479576->140178278570024\n\n\n\n\n\n140178280197592\n\nbatch_normalization_2: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178278570024->140178280197592\n\n\n\n\n\n140178280195016\n\nactivation_2: Activation\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178280197592->140178280195016\n\n\n\n\n\n140178278000400\n\nconv2d_3: Conv2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178280195016->140178278000400\n\n\n\n\n\n140178279421432\n\ndropout_2: Dropout\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178278000400->140178279421432\n\n\n\n\n\n140178280911592\n\nbatch_normalization_3: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178279421432->140178280911592\n\n\n\n\n\n140178280911592->140178279348824\n\n\n\n\n\n140178281927904\n\nactivation_3: Activation\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140178279348824->140178281927904\n\n\n\n\n\n140178281927512\n\nmax_pooling2d_1: MaxPooling2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 16, 16, 128)\n\n\n\n140178281927904->140178281927512\n\n\n\n\n\n140178277813384\n\ndropout_3: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 128)\n\n(None, 16, 16, 128)\n\n\n\n140178281927512->140178277813384\n\n\n\n\n\n140178281502424\n\nconv2d_4: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 128)\n\n(None, 16, 16, 256)\n\n\n\n140178277813384->140178281502424\n\n\n\n\n\n140178277811424\n\nlambda_1: Lambda\n\ninput:\n\noutput:\n\n(None, 16, 16, 128)\n\n(None, 16, 16, 256)\n\n\n\n140178277813384->140178277811424\n\n\n\n\n\n140180013803896\n\ndropout_4: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140178281502424->140180013803896\n\n\n\n\n\n140180013414104\n\nbatch_normalization_4: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180013803896->140180013414104\n\n\n\n\n\n140180013416176\n\nactivation_4: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180013414104->140180013416176\n\n\n\n\n\n140180013539224\n\nconv2d_5: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180013416176->140180013539224\n\n\n\n\n\n140180013348792\n\ndropout_5: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180013539224->140180013348792\n\n\n\n\n\n140180012955464\n\nbatch_normalization_5: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180013348792->140180012955464\n\n\n\n\n\n140180013085752\n\nadd_2: Add\n\ninput:\n\noutput:\n\n[(None, 16, 16, 256), (None, 16, 16, 256)]\n\n(None, 16, 16, 256)\n\n\n\n140180012955464->140180013085752\n\n\n\n\n\n140178277811424->140180013085752\n\n\n\n\n\n140180012488520\n\nactivation_5: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180013085752->140180012488520\n\n\n\n\n\n140180012490312\n\nconv2d_6: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180012488520->140180012490312\n\n\n\n\n\n140180010962448\n\nadd_3: Add\n\ninput:\n\noutput:\n\n[(None, 16, 16, 256), (None, 16, 16, 256)]\n\n(None, 16, 16, 256)\n\n\n\n140180012488520->140180010962448\n\n\n\n\n\n140180011951048\n\ndropout_6: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180012490312->140180011951048\n\n\n\n\n\n140180011952616\n\nbatch_normalization_6: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180011951048->140180011952616\n\n\n\n\n\n140180011773232\n\nactivation_6: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180011952616->140180011773232\n\n\n\n\n\n140180011514568\n\nconv2d_7: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180011773232->140180011514568\n\n\n\n\n\n140180011216736\n\ndropout_7: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180011514568->140180011216736\n\n\n\n\n\n140180010962056\n\nbatch_normalization_7: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180011216736->140180010962056\n\n\n\n\n\n140180010962056->140180010962448\n\n\n\n\n\n140180010010608\n\nactivation_7: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140180010962448->140180010010608\n\n\n\n\n\n140180010010216\n\nmax_pooling2d_2: MaxPooling2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 8, 8, 256)\n\n\n\n140180010010608->140180010010216\n\n\n\n\n\n140180009718168\n\ndropout_8: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 256)\n\n(None, 8, 8, 256)\n\n\n\n140180010010216->140180009718168\n\n\n\n\n\n140180009233488\n\nconv2d_8: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 256)\n\n(None, 8, 8, 512)\n\n\n\n140180009718168->140180009233488\n\n\n\n\n\n140180009721416\n\nlambda_2: Lambda\n\ninput:\n\noutput:\n\n(None, 8, 8, 256)\n\n(None, 8, 8, 512)\n\n\n\n140180009718168->140180009721416\n\n\n\n\n\n140180009412088\n\ndropout_9: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180009233488->140180009412088\n\n\n\n\n\n140180009413600\n\nbatch_normalization_8: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180009412088->140180009413600\n\n\n\n\n\n140180009142144\n\nactivation_8: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180009413600->140180009142144\n\n\n\n\n\n140180008718968\n\nconv2d_9: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180009142144->140180008718968\n\n\n\n\n\n140180008440104\n\ndropout_10: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180008718968->140180008440104\n\n\n\n\n\n140180008550128\n\nbatch_normalization_9: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180008440104->140180008550128\n\n\n\n\n\n140180008171896\n\nadd_4: Add\n\ninput:\n\noutput:\n\n[(None, 8, 8, 512), (None, 8, 8, 512)]\n\n(None, 8, 8, 512)\n\n\n\n140180008550128->140180008171896\n\n\n\n\n\n140180009721416->140180008171896\n\n\n\n\n\n140180008102264\n\nactivation_9: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180008171896->140180008102264\n\n\n\n\n\n140180007418736\n\nconv2d_10: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180008102264->140180007418736\n\n\n\n\n\n140180006551168\n\nadd_5: Add\n\ninput:\n\noutput:\n\n[(None, 8, 8, 512), (None, 8, 8, 512)]\n\n(None, 8, 8, 512)\n\n\n\n140180008102264->140180006551168\n\n\n\n\n\n140180007149864\n\ndropout_11: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180007418736->140180007149864\n\n\n\n\n\n140180007150032\n\nbatch_normalization_10: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180007149864->140180007150032\n\n\n\n\n\n140180006979288\n\nactivation_10: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180007150032->140180006979288\n\n\n\n\n\n140180006407752\n\nconv2d_11: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180006979288->140180006407752\n\n\n\n\n\n140180006800800\n\ndropout_12: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180006407752->140180006800800\n\n\n\n\n\n140180006548536\n\nbatch_normalization_11: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180006800800->140180006548536\n\n\n\n\n\n140180006548536->140180006551168\n\n\n\n\n\n140180005585976\n\nactivation_11: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140180006551168->140180005585976\n\n\n\n\n\n140180005588384\n\nflatten_1: Flatten\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 32768)\n\n\n\n140180005585976->140180005588384\n\n\n\n\n\n140178260577808\n\ndense_2: Dense\n\ninput:\n\noutput:\n\n(None, 32768)\n\n(None, 512)\n\n\n\n140180005588384->140178260577808\n\n\n\n\n\n140178260242160\n\nbatch_normalization_12: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 512)\n\n\n\n140178260577808->140178260242160\n\n\n\n\n\n140178260242384\n\nactivation_12: Activation\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 512)\n\n\n\n140178260242160->140178260242384\n\n\n\n\n\n140181529658088\n\ndropout_13: Dropout\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 512)\n\n\n\n140178260242384->140181529658088\n\n\n\n\n\n140178259974408\n\ndense_3: Dense\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 10)\n\n\n\n140181529658088->140178259974408\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 33 + } + ] + }, + { + "metadata": { + "id": "ZYsY7PPlgWrE", + "colab_type": "code", + "outputId": "efa38a59-2bca-40a7-d32e-794343c9462c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 714 + } + }, + "cell_type": "code", + "source": [ + "#法2\n", + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=5,\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath= os.path.join(tempfile.gettempdir(), 'saved_ResNet_wt.h5'),\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " )\n", + "]\n", + "\n", + "history = model.fit(x_train, y_train, batch_size = 128, validation_split = 0.2, epochs = 40, callbacks = callbacks_list)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 40000 samples, validate on 10000 samples\n", + "Epoch 1/40\n", + "40000/40000 [==============================] - 149s 4ms/step - loss: 1.5710 - acc: 0.4673 - val_loss: 2.0727 - val_acc: 0.3919\n", + "Epoch 2/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 1.0149 - acc: 0.6454 - val_loss: 1.2430 - val_acc: 0.5974\n", + "Epoch 3/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.7908 - acc: 0.7215 - val_loss: 1.0706 - val_acc: 0.6603\n", + "Epoch 4/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.6508 - acc: 0.7734 - val_loss: 0.8369 - val_acc: 0.7202\n", + "Epoch 5/40\n", + "40000/40000 [==============================] - 140s 4ms/step - loss: 0.5568 - acc: 0.8051 - val_loss: 0.6720 - val_acc: 0.7792\n", + "Epoch 6/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.4853 - acc: 0.8324 - val_loss: 0.7054 - val_acc: 0.7758\n", + "Epoch 7/40\n", + "40000/40000 [==============================] - 140s 4ms/step - loss: 0.4197 - acc: 0.8555 - val_loss: 0.8076 - val_acc: 0.7490\n", + "Epoch 8/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.3592 - acc: 0.8758 - val_loss: 0.6205 - val_acc: 0.8078\n", + "Epoch 9/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.3097 - acc: 0.8917 - val_loss: 0.8575 - val_acc: 0.7585\n", + "Epoch 10/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.2672 - acc: 0.9075 - val_loss: 0.6156 - val_acc: 0.8107\n", + "Epoch 11/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.2325 - acc: 0.9202 - val_loss: 0.5547 - val_acc: 0.8334\n", + "Epoch 12/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.1957 - acc: 0.9331 - val_loss: 0.8439 - val_acc: 0.7722\n", + "Epoch 13/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.1690 - acc: 0.9435 - val_loss: 0.9183 - val_acc: 0.7647\n", + "Epoch 14/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.1503 - acc: 0.9494 - val_loss: 0.6090 - val_acc: 0.8268\n", + "Epoch 15/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.1319 - acc: 0.9574 - val_loss: 0.5780 - val_acc: 0.8437\n", + "Epoch 16/40\n", + "40000/40000 [==============================] - 140s 4ms/step - loss: 0.1162 - acc: 0.9615 - val_loss: 0.5733 - val_acc: 0.8349\n", + "Epoch 17/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.0972 - acc: 0.9680 - val_loss: 0.6994 - val_acc: 0.8262\n", + "Epoch 18/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.0948 - acc: 0.9680 - val_loss: 0.5909 - val_acc: 0.8383\n", + "Epoch 19/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.0848 - acc: 0.9718 - val_loss: 0.9019 - val_acc: 0.7720\n", + "Epoch 20/40\n", + "40000/40000 [==============================] - 139s 3ms/step - loss: 0.0779 - acc: 0.9748 - val_loss: 0.7742 - val_acc: 0.8166\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "QjbpLoshsK-t", + "colab_type": "code", + "outputId": "744026e9-aaa4-4114-f51f-561df586d799", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "#法2\n", + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VNXWx/HvtDQSIIFEKTaQFoqI\nwBUREAgdXsUG6rWBggJSBL2KUiw0BQVFEVGwgBjUxC4IIti4VJUuiFeqQAKhhEzKzJz3j4FASAVm\nMiW/z/PwkDkzc2avaWv22fusbTIMw0BERERKndnXDRARESmrlIRFRER8RElYRETER5SERUREfERJ\nWERExEeUhEVERHxESVj8zpgxY+jcuTOdO3emfv36tG3bNvdyenr6Oe2rc+fOpKamFnmbKVOmMH/+\n/Atpssfdd999JCUleWRfderUYf/+/SxevJgnn3zygh5vwYIFuX+X5LkVkaJZfd0AkbM988wzuX+3\na9eOF154gaZNm57XvhYuXFjsbYYPH35e+w40HTp0oEOHDud9/5SUFN566y1uv/12oGTPrYgUTT1h\nCTh33303L7/8Ml26dGHdunWkpqbSt29fOnfuTLt27ZgzZ07ubU/1AleuXEmvXr2YMmUKXbp0oV27\ndqxatQqAJ554gtdffx1wJ/0PP/yQW2+9leuvv56JEyfm7uuNN96gRYsW3HLLLcybN4927doV2L6P\nPvqILl260LFjR+666y727t0LQFJSEoMHD2bkyJF06tSJrl27sn37dgB2797NbbfdRkJCAsOHD8fp\ndObb7/Lly+nRo0eebTfeeCM//PBDkc/BKUlJSdx3333FPt53331Hjx496NSpEzfffDNbtmwBoHfv\n3uzbt4/OnTuTnZ2d+9wCvPfee3Tt2pXOnTvz8MMPc/jw4dzn9pVXXuH++++nbdu23H///djt9nxt\ns9vtDB06lE6dOtGuXTsmTZqUe93u3bu566676NChA7fccgubNm0qcnu7du1Ys2ZN7v1PXd6zZw/X\nX38948eP59///neRsQK8+eabtG/fnk6dOjFhwgScTictW7Zkw4YNubeZO3cuAwYMyBePSEkpCUtA\n2rhxI1999RVNmjRhxowZVK9enYULF/Luu+8yZcoU/vnnn3z32bx5M1dddRXffPMNd955JzNmzChw\n36tXryYxMZFPPvmEuXPnsn//frZv385bb73FZ599xgcffFBoL/DQoUM8++yzzJkzh2+//ZZLL700\nN8ED/PDDD9x5550sWrSIf/3rX7z77rsATJ48mRYtWrBkyRLuvfde1q1bl2/fLVq0YP/+/ezevRtw\nJ6H9+/dz3XXXlfg5OKWwx3M4HDzxxBM899xzLFq0KE9CHD9+PFWqVGHhwoWEhITk7uu3337j7bff\n5v3332fhwoVUrVqVKVOm5F6/cOFCXn75ZRYvXszhw4dZvHhxvvbMnz+fEydOsHDhQpKTk0lKSspN\npKNGjaJbt24sXryYhx9+mMcff7zI7UU5cuQI9erVY+7cuUXGumbNGj7++GM+++wzvvjiC9auXcu3\n335Lly5d+PLLL3P3t3jxYrp161bs44oURklYAlKbNm0wm91v36effppRo0YBcMkllxAbG8uePXvy\n3adcuXIkJCQAUL9+ffbt21fgvnv06IHFYuGiiy6iUqVK/PPPP6xevZrmzZsTFxdHaGgot9xyS4H3\nrVSpEmvXruXiiy8GoGnTprlJE6BmzZo0aNAAgPj4+NxEuWbNGrp27QpAo0aNqFGjRr59h4SE0LZt\nW5YuXQrAkiVLSEhIwGq1lvg5OKWwx7Narfzyyy80bty4wPYXZNmyZXTq1IlKlSoBcNttt/Hzzz/n\nXt+mTRsqVqyI1Wqldu3aBf446NOnD6+//jomk4kKFSpQq1Yt9uzZQ1ZWFitXrqR79+4AtG/fngUL\nFhS6vTg5OTm5h+SLivWHH36gTZs2REZGEhISwvvvv0/Hjh3p1q0bX3/9NS6XiyNHjrBx40batm1b\n7OOKFEZjwhKQKlSokPv3hg0bcnt+ZrOZlJQUXC5XvvtERUXl/m02mwu8DUBkZGTu3xaLBafTybFj\nx/I85kUXXVTgfZ1OJ6+88gpLly7F6XRy4sQJrrjiigLbcGrfAEePHs3zuOXLly9w/506deK9997j\n3nvvZcmSJbmHQkv6HJxS1OO9//77JCcnk52dTXZ2NiaTqdD9ABw+fJi4uLg8+zp06FCxMZ/p77//\nZuLEifz111+YzWb279/PzTffzJEjR3C5XLn7MJlMlCtXjgMHDhS4vTgWiyVP3IXFmpaWliem8PBw\nAK6++mpsNhurVq1i//79XH/99URERBT7uCKFUU9YAt5jjz1Gp06dWLRoEQsXLiQ6OtrjjxEZGUlG\nRkbu5YMHDxZ4u6+//pqlS5cyd+5cFi1axODBg0u0//Lly+eZ+X1qTPVsrVq1YuvWrfz999/8/fff\nXHvttcC5PweFPd66deuYNWsWM2bMYNGiRTz//PPFtr1y5cocOXIk9/KRI0eoXLlysfc707PPPkut\nWrX45ptvWLhwIXXr1gUgOjoak8lEWloaAIZhsHPnzkK3G4aR7wfW0aNHC3zMomKNjo7O3Te4k/Kp\ny926dWPhwoUsXLgw92iCyPlSEpaAd+jQIRo0aIDJZCI5ORm73Z4nYXpCo0aNWLlyJYcPHyY7O5tP\nP/200LZUq1aNmJgY0tLS+Oabbzhx4kSx+2/cuHHuWOm6devYtWtXgbcLCQnh+uuv58UXX6R9+/ZY\nLJbcxz2X56Cwxzt8+DCVKlWiatWq2O12kpOTycjIwDAMrFYrGRkZOByOPPu64YYbWLx4cW6S+vDD\nD2nTpk2xMZ/p0KFD1KtXD4vFws8//8zOnTvJyMggJCSEli1bkpycDMCPP/5Iv379Ct1uMpmIjY1l\n69atgPtHUVZWVoGPWVSs7dq1Y+nSpRw9ehSHw8HAgQP56aefAOjevTtLlizh119/Pec4Rc6mJCwB\nb8iQIQwcOJAePXqQkZFBr169GDVqVKGJ7Hw0atSInj170rNnT+65555CxwG7d+/OkSNH6NChA8OH\nD2fo0KHs378/zyzrgjz22GN8//33JCQkMG/ePK677rpCb9upUyeWLFlCly5dcred63NQ2OO1atWK\nuLg4EhIS6NOnD/feey9RUVEMHjyYOnXqUKFCBVq2bJlnPL1Ro0b069ePu+66i86dO3P8+HGGDRtW\nZLxne/jhh5k0aRLdu3dn1apVDBo0iFdffZW1a9cybtw4vv/+e9q3b8/UqVOZPHkyQKHbBwwYwDvv\nvEP37t3ZsWMHV155ZYGPWVSsjRs3pm/fvtx0001069aN+Pj43PHnOnXqULFiRa6//nrCwsLOKU6R\ns5m0nrBIyRiGkTtmuGzZMqZOnVpoj1iC24MPPsi///1v9YTlgqknLFIChw8f5tprr2Xv3r0YhsE3\n33yTO6tWypa1a9eyd+9eWrVq5eumSBDQ7GiREoiJiWHo0KHcd999mEwmatSoUaLzUiW4PPnkk6xb\nt44XX3wx9xQ5kQuhw9EiIiI+UqKfctu2bSMhIYG5c+fmu+6XX37h1ltvpVevXrz22mseb6CIiEiw\nKjYJZ2Rk8Nxzz9GiRYsCr3/++ed59dVXmT9/Pj///DN//vmnxxspIiISjIodEw4JCWHWrFnMmjUr\n33W7d++mQoUKVKlSBXCXp1uxYkWhpwQApKQcv4Dm5hcdHUFammfPCfUHwRhXMMYEwRmXYgocwRhX\nMMYUGxtV4PZie8JWq7XQc+FSUlKIiYnJvRwTE0NKSsp5NvH8WK2WUn280hKMcQVjTBCccSmmwBGM\ncQVjTIUp9dnR0dERHn+CC/uFEeiCMa5gjAmCMy7FFDiCMa5gjKkgF5SE4+LiSE1Nzb184MCBPEXP\nC+LpQwyxsVEeP8TtD4IxrmCMCYIzLsUUOIIxrmCNqSAXdKJb9erVSU9PZ8+ePTgcDr7//ntatmx5\nIbsUEREpM4rtCW/cuJFJkyaxd+9erFZr7uLX1atXp0OHDowdO5bhw4cD0LVr1zzLtomIiEjhik3C\nDRo04P333y/0+mbNmpGYmOjRRomIiJQFqrsmIiLiI0rCIiIiPqIFHIBXX32ZP/7YwuHDh8jMzKRq\n1WqUL1+B8eNfLPa+X3/9BeXKRdKmTcHry06bNoXbbutN1arVPN1sEREJcKW+gIMnpp0nJ1uZOjWE\nbdvMxMebGDTITs+ejgve79dff8Fff+1g0KChF7yvCxWsU/SDLSYIzrgUU+AIxrh8FdOZuaV2bRdD\nh2Z7JLdA4acoBVxPODnZSv/+4bmXN2zg5GXPJOIzrVu3hg8/nEtGRgaDBg3j11/XsmzZd7hcLlq0\naEmfPv14++2ZVKxYkSuuqElS0gJMJjM7d/6PG25oT58+/Rg0qB+PPvo433//HSdOpLNr10727t3D\n4MHDadGiJXPnvsOSJd9StWo1HA4HvXvfRZMmTXPbsHr1St566w1sNhtRUVE8++xEbDYbU6dOZvPm\njVgsFh577Elq1LiywG0iIlK8s3PLli0Wr+WWMwXcmPDUqSEFbp82reDtF2rHjj956aXp1K1bD4DX\nX3+LN998h2+++ZITJ9Lz3Hbz5k089dRY3nhjDp98kn/G+MGDB5g8+RWGDBnB558ncezYUZKSPmLm\nzNmMGPEEv/22Lt99jh8/zpgxzzN9+ptERJRj5coVrF69koMHD/Dmm+/Qv/9AvvtucYHbRESCVXKy\nlTZtIqhSJZI2bSJITr6wPmVp55ZTAq4nvG1bwb8bCtt+oa68shYhIe4XISwsjEGD+mGxWDhy5AjH\njh3Lc9s6deoWWmcboFGjxoC70pi7yMluatSoSWhoGKGhYdSrVz/ffSpWrMikSc/jdDrZt28v11zT\njLS0wzRseBUAjRs3oXHjJsyb926+bSIiwcgbvdbSzi2nBFxPuHZt1zltv1A2mw2A/fv/ITFxHlOm\nvMr06W9y8cUX57utxVJ0TewzrzcMA8MAs/n0S2Ay5b/PhAnPMWzY40yf/ibXX98aALPZgmHkjbeg\nbSIi58LTvUtv7dcbvdbSzi2nBFwSHjo0u8DtQ4YUvN1Tjhw5QnR0NBEREfzxx1b2799PTk7OBe2z\nSpUq/PXXDhwOB2lpaWzduiXfbU6cSOeiiy7m+PHjrFu3lpycHOrVi2fdujUAbNu2lSlTJhW4TUSk\npE71LrdsseB0mnJ7lxeaML2xX2/0Wn2VWwLucLT7UIOdadNOz44eONC7A+cAtWrVJjw8gocf7kPD\nho258cabmTJlEo0aXXXe+4yJqUSHDp158MF7uOyyK4iPr5+vN33zzbfx8MN9ueSSS7nrrnuYPftN\nZsyYzWWXXcGAAQ8AMHz4E9SseSU//rg8zzYRkZIqqnd5Id+v3thv7doutmzJf+TxQnqtZ+eW2rVd\nDBniudnRhQnIU5TOFOjT87/++gs6dOiMxWLhnnt689JLrxIXd1HAx1WQYIwJgjMuxeT/Tp9OY6F2\nbecFn05TpUokTmf+MTGr1WDfvvQC7uG9/Rb3Wp09JnzKzJne75Cdr6A5RSnYHDp0iH797sVmC6Fj\nx87ExV3k6yaJiJ/zxsQkb/QuvbVfX/VavUE9YT8VjHEFY0wQnHEpJs/ydBGINm0iCkxs8fFOli07\nvzXbvdW7PJ/9Buv7ryDqCYuIeFGgnE7jrd5lMPVavUFJWETEiwJlYhK4E6Y3kqO39hsMAu4UJRER\nb/HGebLBdDqNeJ6SsIgI3jtP1htFIHr2dDBzpp34eCdWq3ss2J9nBkvhlISB/v3vz1co4403pjN/\n/twCb79u3RqefvpxAJ544tF813/ySSJvvz2z0Mf788/t7Nq1E4AxY54kKyvzfJsuIh7irdrB3uq1\n9uzpYNmyDHJyYNmyDCXgAKUkDHTo0ImlS/MueLBs2VISEjoWe9+JE18658dbvnwpu3fvAuCZZyYQ\nGlp4vWkRKZinDx17q3Zw3l6roV6r5KGJWUD79h15+OG+DBgwGICtW7cQGxtLbGxcgUsJnqlbt/Z8\n9dV3rFmzildemUJMTCUqVaqcuzThuHFjSUk5iN1up0+fflx8cRU++yyJ5cuXEh0dzejRT/Lee4mk\npx9nwoRnycnJwWw288ILE0lLy2DcuLFUrVqNP//cTu3adXjiiVF5Hv/bb7/h448TsVjMXH55Tf7z\nn6dwOBw8//wYDhz4h5CQUJ5++hmio2PybYuNjSu151jEkwLpPFnQxCQpnN8l4bFjQ/nii5I3y2wG\nl6tckbfp0cPB2LFZhV4fHR1D1arV2Lx5I/HxDVi6dDEdOnQGTi8lWLVqNZ57bjQrV64gIiIi3z5m\nzpzOqFHPUatWbUaMGEzVqtU4fvwYzZtfS5cu3dm7dw+jRj3B7Nlz+de/WnDDDe2Jj2+Qe/+33nqD\n7t1vpH37jnz//RKmT5/OXXf14Y8/tvDMM+OJjo6hZ8+uHD9+nKio0+eb2e12pkx5laioKAYOfJAd\nO/5k8+aNVKpUibFjx7FkySJ++ukHrFZrvm09e95a4udZxJ94Y8bx0KHZBZ7PqslO4k1+l4R9pUOH\nznz33WLi4xvw888/MGPGbKDgpQQLSsL//PMPtWrVBtxLCWZlZREVVZ4tWzbx+edJmExmjh07Wujj\n//HHFh56aBAATZo05f333Y9frdolVKpUGYDKlWM5cSI9TxIuX748Tz45HICdO//H0aNH+OOPrTRt\n2gyAhIROAEyePDHfNpFAFUjnyYoUxe+S8NixWUX2Ws/mrqxy4oIft02btrz33mw6dOjEJZdcSvny\n5QH3UoIvvjiVyy+/gpdeKnxlojOXJDxVhGzx4oUcO3aM1157i2PHjvHAA3cX0QJT7v1ychy5+zt7\nQYczC5zl5OTw0ksv8M47H1CpUmUef3zoyfuYcbnyFkIraJtIoAq082RFCqOJWSdFRJSjZs1avPfe\nnNxD0VDwUoIFqVw5ll27/sYwDH79dS3gXv6wSpWqmM1mli9fmntfk8mE0+nMc/8zlyL87be1NGjQ\ngOJkZJzAYrFQqVJlDhzYz9atW3A4HNStG8+6dasB+PnnH3nvvdkFbhMpDd4491bnyUqw8LuesC91\n6NCZ558fw5gxz+VuK2gpwX79BuS7b79+A3j66f9w8cVVchdhuOGGdjzxxKNs3ryRbt3+j7i4OObM\nmcVVV13N1Kkv5jms/cADDzFhwnN88cWnWK02Jk+exIEDR4psb4UKFWnW7F888MA9XHllLe68825e\neeUlZs+ey5o1qxg0qB8Wi5Wnnx5LxYrR+baJeJs3JlCBDh1L8NACDn4qGOMKxpggOOPyVEzeWGjg\nfAXj6wTBGVewxlQQHY4WEa/x1rm3IsFCnwQR8RpvlGwUCSZKwiLiNZpAJVI0JWERyXVqJrPVikdm\nMqtko0jRNDtaRADvzmRW0hUpmHrCIgJ4bxUhESmckrCIAJrJLOIL+nSJCKCZzCK+oCQsIoBmMov4\ngpKwSIDydE3mvDOZ0UxmkVKg2dEiAcjbM5ndZQNLt6ykSFmknrBIANJMZpHgUKIkPH78eHr16kXv\n3r1Zv359nuuWLFnCLbfcwh133MHcuXO90kgRyUszmUWCQ7Gf2FWrVrFz504SExMZN24c48aNy73O\n5XLx3HPPMWvWLObNm8f333/P/v37vdpgEdFMZpFgUWwSXrFiBQkJCQDUrFmTo0ePkp6eDkBaWhrl\ny5cnJiYGs9nMtddeyy+//OLdFouIZjKLBIliJ2alpqZSv3793MsxMTGkpKQQGRlJTEwMJ06c4O+/\n/6ZatWqsXLmS5s2bF7m/6OgIrNb864teiMLWaQx0wRhXMMYEpR9Xv35QvjxMmACbN0N8PDz5JPTu\nHV78nUsoGF+rYIwJgjOuYIypIOc8O9owjNy/TSYTEydOZOTIkURFRVG9evVi75+W5tkZl8G4+DME\nZ1zBGBMUH1dyspWpU0PYts1M7douhg7N9shpP+3bu/+dKSXlgncLBOdrFYwxQXDGFawxFaTYJBwX\nF0dqamru5YMHDxIbG5t7uXnz5nzwwQcATJkyhWrVql1oW0WChrdOJRKR4FDsmHDLli1ZtGgRAJs2\nbSIuLo7IyMjc6x944AEOHTpERkYG33//PS1atPBea0UCjE4lEpGiFNsTbtKkCfXr16d3796YTCbG\njBlDUlISUVFRdOjQgdtvv50+ffpgMpno168fMTExpdFukYCgU4lEpCglGhMeMWJEnst169bN/btj\nx4507NjRs60SCRK1a7vYsiX/RESdSiQioIpZIl6lU4lEpChKwiJelHdRBEOLIohIHlrAQcTLTi2K\nICJyNvWERc7g6eUBRUSKom8YkZN0Tq+IlDb1hEVO0jm9IlLalIRFTtI5vSJS2vTtInKSlgcUkdKm\nJCxyks7pFZHSpiQscpLO6RWR0qbZ0SJn0Dm9IlKa1BMWERHxESVhCVgqrCEigU7fWhKQVFhDRIKB\nesISkFRYQ0SCgZKwBCQV1hCRYKBvLAlIKqwhIsFASVgCkgpriEgwUBKWgKTCGiISDDQ7WgKWCmtI\noDh6FFautFC9ukHt2i6s+uaVk/RWEBHxAocDvv/ewoIFNhYutJKVZQIgLMygXj0XDRo4adjQRaNG\nTurVcxEeXswOJSgpCYuIeNCGDWYWLLDxySdWUlPdI361ajnp1s3BwYMmNmywsHGjmV9/teTex2Ix\nqFXLRYMGLho2dNKokTtJV6jgqyiktCgJi4hcoAMHTHzyiZUFC2xs3uxOrjExLvr2zeb223No3NiF\nyXT69tnZ8McfZjZsMLNhg4UNG8xs3Ghh61YLH39sy73dpZe6k/KpHnPDhi4uusgo7fDO27Fj8Msv\nFn74wcr69WaefDKbli2dvm6WX1ESFq9LTrYydWoI27ZB7doRDB2arbFcCXh2OyxaZCUx0cb331tw\nuUzYbAZduuTQq5eDhAQHIYXUjgkJgYYNXTRs6ALcnwWXC/73PxPr11tyk/PGjWa++srGV1+dvm9s\nrOvkfd095jZtIDISzH4wzTYrC9assfDjjxaWL7fy229mnM7Tvz4eesjM8uUniInxYSP9jMkwjFL9\nWZWSctyj+4uNjfL4Pv1BsMR1dnnJU4JpJnOwvFbgHsf88ksrFSuGc8MNwRHTKZ54nQzDPcFqwQIr\nn31m4/hxd4K5+mont9+ew003OahUyXNfqYYB//xjYv36vD3mPXvyZtzISCN3jLlBAycNGrioU8dV\n6I8AT3G5YNMmM8uXu3u7K1dasNvdz4nFYtCkiYvWrR20bu3kl18sTJoUyo035vDmm5l5jgycLZg+\nU6fExkYVuF09YfGqospLBksSDgYOB3zyiZWXXw7lr7/cX/DvvWehc2cdOgT4+28TH31kY8ECGzt3\nup+fKlVc3H9/Nrff7vBakRiTCapWNaha1ZnntTh8GDZutLB+vZk//wxjzRoXq1ZZ+O9/T3+l22wG\ndeq4chNzw4Yu6td3ElVwLigRw3A/Fz/+aOWHHyz89JOFw4dP/yCoV89Jq1ZOWrd20KJF3sdq3tzJ\n0qXuHy9duji4+WZ9/kE9Yb8VLHFVqRKZ53DUKVarwb596T5okecF8muVk3M6+f7vf2ZsNoOePR18\n/rmNsDCD7747wSWXBM4YZFHO9XU6dgw+/9zGggXW3OQWEWHQrZuDXr1yaNnSicVSzE5Kwam4MjJg\ny5bTh7E3brSwebOZzMy8n7/LL3cfyj41CaxhQxdxcUahPdOUFBM//eQ+xPzDD1Z27TqddKtVc9G6\ntZNWrRy0auUsdrz6f/8z0bZtOWw2WL78BFWrFnz7QP5MFUY9YfGJ2rVdbNmS/5tK5SV9KycHFiyw\nMXVqCDt3mgkJMbjvvmwGD86menWDhAQb/fqZ6NcvnM8/z8BmK36fwWLzZjPTpoXwzTdWMjNNmEwG\nrVo5uO22HLp3dxAZ6esWFiwiAq65xsU115z+bDkcsGOHOfcw9qn/v/jCxhdfnL5v5cqnx5kbNHAR\nEWHw009WfvzRwqZNpz+/FSoYdOuWQ+vW7t5ujRqFJ++CXHGFwbPPZjFiRBhDhoSRmGj3i7FsX1JP\n2E8FS1waE/Yv2dmQmGhj2rQQdu1yJ99//zuHRx7Jplq1018FlStHceutOSQl2RgwIJuxY7N82GrP\nKMnrdPCgibZtI0hJMVOzpotevXK49dYcqlf336MB5/r+MwzYt8+UJzFv2mTJ08M9JTTUoHlzJ23a\nuJNuw4auC+79Gwb8+9/hLF5sZcKETPr2zcl3m0D6TJVUYT1hJWE/FUxxJSdbmTYthG3bLNSu7WTI\nkOCaHR0Ir1V2Nsyf706+e/aYCQ01uPtud/KtUiX/V0BsbBT/+99xOnQox44dZubOzaBjx8AeHy7u\ndXK5oFevcJYvtzJ6dCYDB+acUy/PVzz1/jtyxD3OvHGjmaNHTbRo4aRZM6dXiogcOGCiTZsI7HYT\n3313giuvzPseDITP1LlSEg4wwRhXMMYE/h1XVhZ88IGNV14JYe9eM2FhBvfem8PAgdlcfHHhH/1T\nMW3caKZLlwgiIuC77074dY+wOMW9TtOmhTBuXCidOjl47z17QCRg8O/3X1G++MJK377hXH21ky+/\nzDvkEagxFaWwJFzGj8aLBKfMTHj7bRvNm5fjP/8J4/BhEw89lM3q1Sd47rmsIhPwmRo0cPH881mk\npbnHh3PyHzkMCitXWpg4MYQqVVxMmxY4CTiQ9ejh4NZbc/j1V0uhZ1GUBUrCIkHEbodZs9zJ98kn\nwzh61MSAAe7k++yzWedVbemee3Lo2TOHNWssTJgQfF+WaWnw0ENhGAbMnJmpQhKlaMKETKpWdfHS\nSyH89pt/pKPlyy08/ngojlIaMfOPqEXkgtjtMHOmjWbNyvHUU2EcO2Zi0KAsVq8+wdixWcTFnf9h\nZJMJJk/OpEYNF9Onh7J4sR+cl+MhhgFDh4axd6+Zxx7L5tprA3vcO9BUqACvvJKJ02li4MAw7Hbf\ntuerr6zceWc4CxbYSC+lMyiVhEUC2IkTMGOGjaZNyzFqVBgnTpgYPDiLtWtPMHp0NrGxnhnDjYqC\nWbPshIYaPPJIGHv3Bsfx2tnYyZaQAAAgAElEQVSzbXzzjY1WrRwMHZrt6+aUSa1bO+nXL5vt2y08\n/3yoz9rx2WdWHnggDJsNPvjATsWKpfO4SsIiAerPP020aFGOMWPCsNtNDBuWxdq16Tz9dLZHSyee\n0rChi+eey+LwYTP9+4cF/Pjwhg1mxowJpXJlF6+/nukXhTfKqqeeyqJWLSezZoWwfHnpvxAffWSl\nf/8wIiJgwYIMrruu9I6IKAlLHsnJVtq0iaBKlUjatIkgObns1XP5/HOr38d98KCJ3r0j2L/fzCOP\nuJPvk09me3088957c7jxxhxWrbIyaVLgjg+np8ODD4aTnW1i+vTMgFqZKBiFh8Nrr2VitRoMGRLG\nkSOl99jz51sZNCiMqCj4+OMMmjcv3UJCJUrC48ePp1evXvTu3Zv169fnuW7evHn06tWLO+64g3Hj\nxnmlkVI6ThXW2LLFgtNpYssWC/37h/t9QvKkb7+18MAD4fTvH86cOf5ZJurECXexg127zDz2WBaj\nRmUTHV06j20ywUsvZXL55S5eeSWU774LvO6jYcDjj4fx119mBg7Mpl07jQP7g8aNXTz6aDb79pkZ\nNKh0HvPdd20MGRJOxYqQlJTB1VeXfiW/YpPwqlWr2LlzJ4mJiYwbNy5Pok1PT+ftt99m3rx5zJ8/\nnx07dvDbb795tcHiPUUttlAW/P23iYEDwwkLM6hc2cUTT4SSlORfP0AcDujfP5zffrNwxx05jBhR\n+uOYUVHw9tt2QkIMBg0KY9++wBofTky08vHHNq65xsnIkYFfCSyYDB2aTZMmTubNcx+R8qa33rLx\n2GNhVK7sIjk54+SykqWv2CS8YsUKEhISAKhZsyZHjx4l/eS0MZvNhs1mIyMjA4fDgd1up0KFCt5t\nsXjNtm0Fvx0K2x5MMjLg/vvDOXrUxKRJmSQm2omMhEGDwliyxD96e4YBI0eG8u23Vm64wcHkyUUv\nB+dNDRu6ePbZLA4dco8Pl9bpHBdq+3YzTzwRRvnyBjNn2stUTexAYLXCa6/ZCQ+Hxx4L48AB77zB\nX3vNxsiRYcTFuUhOthMf77ta9sV+u6amphJ9xrGumJgYUlJSAAgNDWXgwIEkJCTQtm1brrrqKq64\n4grvtVa8qrBFFYJ9sQXDgP/8J4xNmyzcfXc2d9zhrpE7b577S7pPn3D++1/fJ+JXXw3hnXdCqF/f\nydtv+z6B3H9/Dv/3fzmsXBkY48N2Ozz4YBgZGSZefjmTSy/VOLA/qlnT4MUXIS3NxNCh7vO3Penl\nl0N45pkwqlRx8dlnGdSp4+PvN6MYTz/9tLF48eLcy7179zb++usvwzAM4/jx40bXrl2NQ4cOGVlZ\nWUbv3r2NLVu2FLm/nBxHcQ8pPjJ/vmG4U1Lef/Pn+7pl3vXGG+44mzY1DLs973VffWUYVqthlC9v\nGOvW+aZ9hmEY8+a521i9umHs2eO7dpztyBHDqFHD3baFC33dmqI9/LC7nQ8/7OuWSHFcLsPo0MH9\ner3xhuf2OXq0e5+XXWYYO3Z4Zr8XqtiD7nFxcaSmpuZePnjwILGxsQDs2LGDSy65hJiTUzKbNm3K\nxo0bqVu3bqH7S0vLuNDfDXkEY41R8E1c7dvDzJmnFlswU7u2iyFDsmnf3sHJgx8XxB9fq3XrzAwe\nHEFMjMHMmRkcP25w/IwmNmsG06dbefjhMDp2NPjiiwxq1izdYvO//GLh/vvDiYqCefMyCAlxeeT1\nKMq5xDRzpplu3SK46y6DpUszClwQwte++MLKjBnhxMc7eeKJDK8/f6XJHz9XFyo2NorJk9Np3boc\njz4KjRufoEaN839fGQY8/3wIr74aymWXuUhKyiAqyijV98F5145u2bIlixYtAmDTpk3ExcUReXJB\nzWrVqrFjxw4yMzMB2LhxI5dffrmHmiy+0LOng2XLMti3L51lyzKCarWjsx06ZKJvX3c95BkzMgtd\nvP7mmx1MnJhFaqqZ226LKNWJSH/8Yebee8MxDHjnHTv16vnf0MBVV7l45hn3+PBDD/nf+PDOnSaG\nDXOfAzprVqZXVgUSz6tSxWDSpEwyMkwMGhR+3u8rw4DRo0N59dVQatZ08fnnGYV+1n2h2CTcpEkT\n6tevT+/evXn++ecZM2YMSUlJLF68mMqVK9O3b1/uuece7rjjDurVq0fTpk1Lo90iF8TphP793eUK\n//OfbNq2Lfo0lfvvz2HkyCz27DFz++3hHDrk/UR84ICJO+5wTxabOjWTVq3891SaPn1y6N49hxUr\nrLz4ov+MD+fkwEMPhXPsmInXXoNatfzvR4wU7uabHdx0k7tu+Wuvnfv7yuWCJ54IZebMEOrUcfLp\np/53pEZLGfqpYIzLn2IaPz6EqVND6djRvWyduQQTwA0DxowJ5Y03Qmjc2ElSUgaRkd6JKz0dbrwx\ngg0bLIwcmVXqJRXPJ6Zjx6B9+3Ls2mXiww/txf6wKQ3PPhvC9Omh3HprDgsW2EhN9Y/3nyf50+fK\nU86MKS0N2rQpx6FDJhYuLPmpRC4XjBgRyty5IcTHO/n4YzuVK/suAWspQ5GTFi60MHWqe2zotddK\nloDBXajimWeyuOOOHH77zcI994RzciTGo3Jy4IEHwtmwwT1be8iQwKhpXL68u7601QoDB4axf79v\nzx9eutTC9Omh1Kjh4oUXfHc6l1yY6GiYOjWTnBz3Ig8l+cw5nTB4cBhz54bQqJH7B7MvE3BRlISl\nTPnrr9MFOebMsXOup7WbTDBlSiZdu+bw009W+vXz7Bio+3SpUJYutZKQ4GDSpKyASh6NG7vHh1NT\nfTs+vH+/iUGDwggJMZg1y33OtwSudu2c3H9/Nlu3WpgwoehFHnJyYMCAMBYssNGkiZNPPsnw6+Up\nlYSlzDhVkOP4cRMvvphJgwbnNz5otcIbb2TSqpWDhQttPPCA+9CXJ7z8ckjur/c333T3KgNN3745\ndOuWwy+/WJk8ufTHh51O95dwaqqZsWOzfFYJSTxr9OgsatRw8cYbNn75peDz9rOz3XM9kpNtNG/u\n4KOPMs75h3ZpUxKWfFJTTaxcaWH7djOpqSa/m+16PgwDRowIY8sWC/fem02vXhcWVFgYvPuunSZN\nnLz7rnus+EJnVyQmWpk4MZRLLnEXCgnU3pvJ5D58eOmlLl5+ufRXxZk6NYSffrLSpUsOffsG+FJP\nkqtcOZg+3Y7JBI88EpbnVEKArCzo2zecL7+00bKlgw8/tBNV8DCsXwnA39lySnKylalTT5/TO3Ro\n9gWfUrR9u5lOnSJIT897DLRCBYPoaIOYGPf/hf195raICPzmUOqcOTY+/th9eOr55z1TLzgyEj74\nIIObb45i5swQoqMNHn30/MZvf/jBwrBhYVSoYDB/vj3gV/WpUME9Pty9ewQPPxzG999nlEpMK1ZY\nePHFEKpXdzF1qsaBg03Tpu7vuZdeCuWpp8J45RX3ALHd7j7KtXSplTZtHLz7rp2ICB83toQ0O9pP\nFRfXqRWPzjZzpv28E3F6OnTuHMG2be4JQQCHD5tIS3P/O/V3dnbJvtlCQ/Mm6bp1rTz4YPoFnXR/\nPtasMXPjjRGUL2+wZEkG1ap59vGzs6O47joXu3aZmTAh85x7X5s3m+nRI4KsLPjoIzstWvh+VrGn\nPldvvmnj6afDuP56Bx99ZPfqmr2HD0PbtuU4eNDEp5/a+de/8j6PZfW7IhAVFVNODnTpEsH69Rbe\necdOmzYO7rknnB9/dM+jmD3bTlhYKTe4BAqbHa0k7KeKi6tNmwi2bMn/jRYf72TZsnOvSmYY7rGU\nTz+10a9fdqG9RcNwL6V3dmIuKFmf+fexY+7EHRJi8NBD2Qwdml0qh1tTUkwkJERw4ICJBQvstG7t\n+QQXGxvFypXp9OgRQUqKmddft3PrrSX7IbRvn4kuXSL45x/zBf2A8jRPfa4MA+67L4xvvrExYkQW\njz/unZnehgF33x3Ot99aCz2lq6x+VwSi4mL64w8zCQkRREUZ1KzpYuVKK5075zBrViahRc/b8hkl\n4QBTXFxVqkTidObvkVqtBvv2pZ/z482aZeOpp8Jo1sxJcnIGIR6eT5OTAz//HMWjj7rYs8fMxRe7\nGD06i1tucXjtkKHDAbffHs5PP1l56qksr53qc+q12rjRzE03RXDihHu8uGPHohP+8ePQo0cEmzdb\nGD06k0GD/Gf80pOfqyNHICGhHLt2malVy0mtWi7q1HFRu7b735VXui64itXMmTZGjQqjdWsHCxYU\nfNpZWf2uCEQliemNN2yMHu3u8v7f/+UwY0amzxc1KYqScIApzZ7wypUWevYMp2JFg+++815FmdjY\nKHbuPM706SFMnx5CZqaJZs2cTJiQSaNGnp/B+txz7lqxnTvn8M47mSU+H/hcnflarVxp4fbb3WUm\nExMLP7ScnQ133hnODz9Yuf/+bCZO9K9TkTz9udqwwcyoUaFs2mTh6NG8gZpMBpddZpxMzE5q13Yn\n6SuvdJXoaMlvv7lrV1eoYBQ59lxWvysCUUlicrng8cdDCQ+HMWOy/P5MAiXhAFNaY8IHD7oP16ak\nmPj4YzstW3pvPPLMmHbtMjF2bChffmnDZDL4979zePLJbI+dUP/111buuy+cK65wsXjxCcqX98hu\nC3T2a7V0qYW77w4nLAw+/TR/hR/DcBcSSEy00amTg3fe8e5Y6fnw1ufKMNzvuW3bzGzbZuaPP8y5\nf6em5v+VdMklp3vMdeo4c/8+9XoeP+6u0rVzp4nERDs33FD4+7esflcEomCNqSBKwn6qJHElJ+df\n8ehcErDDAbfdFs7PP1tL5XBoQTH98IOFp58OZetWC+XLGzz+eBb3359zQYeVduww0bFjORwO+Prr\nDOrX9+55ogXF9emnVvr3D6NSpfwrL02aFMKUKaFcfbW7kk+5cl5t3nnxxecqNdXE9u2nE/Mff5jZ\nvt3M/v35k/PFF7uT8YkTJtautTBkSBZPPVX0cENZ/q4INMEaU0GUhP1UacR1qq5u1645zJnj/dM5\nCospJwfeecfGCy+EcvSoiTp1nIwbl3Vek6hOnICuXd2H6l97zc5tt3l/olNhcb37ro3HHgujenUX\nX3zhnpU9b56NYcPCuOwyF19/nUFsrH+eiuRPn6ujRznZW7bk6Tnv2eNOzs2auQvzF/fDzZ9i8qRg\njCtYYyqInx9FF2/56itrbl3dV17x7fmUNhs8+GAOPXs6mDAhhLlzbdx6awTduuXwzDNZXHppyRKV\nYcDw4e6CHH36ZJdKAi7KvffmcOSIiXHjQrn99nCGDctmxIhQoqMNPvzQfxOwv6lQAZo1c9GsWd4j\nGunp8L//mbniCpdfT8gRKYoqZpVBO3aYeOSRMCIi3PWTvTleei4qVzaYMiWLxYszaNbMyVdf2bj+\n+nJMmhRCRgnmmr39to2kJBvXXOPk2Wc9U5DjQg0enM2AAdls325hwIBwrFZ47z17nsPTcn4iI6Fh\nw5JN3hLxV0rCZcyJE9CnTzjp6SYmT870y0XiGzVy8eWXGcyYYadiRYMpU0Jp2bIcn31mLbQ05KpV\nZkaPDqVyZRdvv233+ClW58tkcs/cvPvubGw2g9dfz8xXREJEyi4l4TLkzPrJffpkl7ighC+YTHDL\nLQ5++eUEQ4ZkkZJi4sEHw+nZM5xNm/K+bQ8eNPHAA+G4XDBzZiZVq/pXL9O98lIW27al06OH/z7n\nIlL6lITLkNmzbXzyiX8dri1OZCQ89VQ2P/xwgs6d3SvztG8fwX/+E8rhw+4Z3v37h7F/v5mnnsqm\nVSv/7WX64yxoEfEtJeEyYs0a9+HaSpX863BtSdWoYfDee5l8+GEGNWq4mDMnhBYtIrnnHvcpVl27\n5jBokHcqYomIeIuScBmQmmqib99wnE7/PFx7Ltq1c1cEGzs2k5wcWLLESs2avp/hLSJyPnSKUpBz\nOt2Ha//5x8xTT53fubf+JiQEBgzI4ZZbHMyfb+Omm3L8Zoa3iMi5UBIOchMnhvDjj+4VRh55JLgO\n1150kVHgajkiIoFCh6OD2DffWJk2LZTLL3fx6qveW8BARETOj76Wg9Rff7kLcoSHG8yebadCBV+3\nSEREzqbD0UEoI8NdkOPYMROvvmqnQQP/K8ghIiLqCQcdw4DHHw9j82YL99yTTa9eKg4hIuKvlISD\nzHvv2ViwwMbVV7tXIhIREf+lJBxEfv3VzFNPhRIT4y7IERrq6xaJiEhRlISDxKFDJvr0CScnB2bM\nyKR69cAtyCEiUlYoCQcBpxMeeiiMvXvNPP54Nm3bBn5BDhGRskBJuBQkJ1tp0yaCKlUiadMmguRk\nz05Kf/HFEJYvt9Khg4Nhw1S8QkQkUOgUJS9LTrbSv3947uUtWywnL9vp2fPCZy4vXmzhpZdCufRS\nF6+9ZldBDhGRAKKvbC+bOrXg5YqmTbvwZYx27jQxYEA4oaHughwVK17wLkVEpBSpJ+xl27YV/Dun\nsO0llZkJffuGc/SoialT7TRqpIIcIiKBRj1hL6tdu+DkWNj2kho1KpT16y3ceWc2d96pghwiIoFI\nSdjLClvlZ8iQ859A9dFHVt59N4T4eCcTJqggh4hIoFIS9rKePR3MnGknPt6J1WoQH+9k5szzn5S1\ndauZxx4LIzLSPQ4cHl78fURExD9pTLgU9Ozp8MhM6PR06Ns3jIwME2+/badGDRXkEBEJZOoJBwjD\ngOHDw9i+3UL//tn06KFxYBGRQFeinvD48eP5/fffMZlMjBw5kkaNGgFw4MABRowYkXu73bt3M3z4\ncHr06OGd1pZhc+bYSE620ayZk9GjNQ4sIhIMik3Cq1atYufOnSQmJrJjxw5GjhxJYmIiABdddBHv\nv/8+AA6Hg7vvvpt27dp5t8Vl0Lp1ZkaNCqVSJRezZtmx2XzdIhER8YRiD0evWLGChIQEAGrWrMnR\no0dJT0/Pd7vk5GQ6depEuXLlPN/KMiwtDR58MByHA15/PZOqVTUOLCISLIpNwqmpqURHR+dejomJ\nISUlJd/tPvroI2699VbPtq6Mc7lg0KBwdu82M2KEFmYQEQk25zw72jDy98R+/fVXatSoQWRkZLH3\nj46OwGq1nOvDFik2Nsqj+/MXs2dHsXgxdOwIEyaEYrEE/gLBwfpaBWNciilwBGNcwRhTQYpNwnFx\ncaSmpuZePnjwILGxsXlus2zZMlq0aFGiB0xLyzjHJhYtNjaKlJTjHt2nP9i4MYqnnzaoUsVg6tQM\nDh8O/MPQwfpaBWNciilwBGNcwRpTQYo9HN2yZUsWLVoEwKZNm4iLi8vX492wYQN169b1QDMFYP9+\nE717g9kMs2bZqVw58BOwiIjkV2xPuEmTJtSvX5/evXtjMpkYM2YMSUlJREVF0aFDBwBSUlKoVKmS\n1xtbFjgc0L9/GAcPwnPPZdG8uRZmEBEJViUaEz7zXGAgX6/3iy++8FyLyrgJE0JYscLKLbdAv345\nvm6OiIh4kSpm+ZGFCy28+mooNWq4mD0bTCZft0hERLxJSdhP/P23iUceCScszODtt+2UL+/rFomI\niLdpAQc/kJkJDzwQztGjJqZNs1O/vsaBRUTKAvWE/cCoUaGsX2/hzjuzueMOLcwgIlJWKAn72Ecf\nWXn33RDi451MmKCFGUREyhIlYR/autXMY4+FERVlMHu2nfBwX7dIRERKk8aEfSQ9Hfr2DSMjw8Ts\n2XZq1FBBDhGRskY9YR8wDBg+PIzt2y30759N9+4aBxYRKYuUhH1gzhwbyck2mjVzMnq0xoFFRMoq\nJeFStm6dmVGjQqlUycWsWXZsNl+3SEREfEVJuBSlpcGDD4bjcMCMGZlUrapxYBGRskxJuJS4XDBo\nUDi7d5sZMSKbG25w+rpJIiLiY0rCpWT69BAWL7Zyww0OHn0029fNERERP6AkXApWrzYzYUIIVaq4\neP31TCwWX7dIRET8gZKwlx09Cg89FI7L5R4HrlxZ48AiIuKmJOxFhgEjRoSxe7eZYcOyue46jQOL\niMhpSsJe9MEHNj77zEbz5g5GjNA4sIiI5KUkfJbkZCtt2kRQpUokbdpEkJx8fpU9t20zM3JkKBUq\nGMyYkYlVBUJFROQsSg1nSE620r//6VUUtmyxnLxsp2fPkpeWzMyEfv3CsNtNTJ9u55JLNA4sIiL5\nqSd8hqlTQwrcPm1awdsL88wzoWzebOGee7Lp0UN1oUVEpGBKwmfYtq3gp6Ow7QVZuNDC22+HULeu\nk2efVV1oEREpnJLwGWrXdp3T9rPt22diyJBwwsIMZs7MJCLCk60TEZFgoyR8hqFDC57BPGRI8TOb\nnU4YMCCMtDQTzzyTRb16JUvcIiJSdikJn6FnTwczZ9qJj3ditRrExzuZObNkk7KmTQvhl1+sdO2a\nw3335ZRCa0VEJNBpdvRZevZ0nNNMaICVKy28+GII1aq5ePnlTEwmLzVORESCinrCF+jIEXj44TAM\nw12WMjra1y0SEZFAoSR8AQwDHn00jD17zAwfns2116ospYiIlJyS8AV4/30bX35p49prHQwbprKU\nIiJybpSEz9PWrWaefjqUihVVllJERM6PUsd5sNuhf/8wMjNNvPGGnWrVVJZSRETOnXrC52Hs2FC2\nbLFw//3ZdO2qspQiInJ+lITP0VdfWZkzJ4R69ZyMHauylCIicv6UhM/B3r0mhg0LIzzcXZYyPLz4\n+4iIiBRGY8Il5HC4zwc+csTE5MmZ1K2rspQiInJh1BMuoZdfDuG//7XSvXsOd9+tspQiInLhlIRL\nYMUKC1OmhFC9uouXXlJZShER8Qwl4WKkpbkPQ5tM7rKUFSv6ukUiIhIslISLYBgwdGgY+/aZeeyx\nbP71L5WlFBERzynRxKzx48fz+++/YzKZGDlyJI0aNcq97p9//uHRRx8lJyeH+Ph4nn32Wa81trS9\n846Nb76xcd11jhKtKSwiInIuiu0Jr1q1ip07d5KYmMi4ceMYN25cnusnTpxInz59+Pjjj7FYLOzb\nt89rjS1NmzebGT06lOhog9dfz8Ri8XWLREQk2BSbhFesWEFCQgIANWvW5OjRo6SnpwPgcrlYu3Yt\n7dq1A2DMmDFUrVrVi80tHRkZ7rKUWVkmpk2zU7WqylKKiIjnFXs4OjU1lfr16+dejomJISUlhcjI\nSA4fPky5cuWYMGECmzZtomnTpgwfPrzI/UVHR2C1erZbGRsb5dH9PfQQ/PEHDBoEd98d4dF9nwtP\nx+UPgjEmCM64FFPgCMa4gjGmgpxzsQ7DMPL8feDAAe655x6qVatGv379WLZsGTfccEOh909Lyziv\nhhYmNjaKlJTjHtvfoUMmZs6MpE4dJ48/nkFKisd2fU48HZc/CMaYIDjjUkyBIxjjCtaYClLs4ei4\nuDhSU1NzLx88eJDY2FgAoqOjqVq1KpdeeikWi4UWLVqwfft2DzXZN9ascT8l//d/DsLCfNwYEREJ\nasUm4ZYtW7Jo0SIANm3aRFxcHJGRkQBYrVYuueQS/v7779zrr7jiCu+1thSsWeM+VN60qU5HEhER\n7yr2cHSTJk2oX78+vXv3xmQyMWbMGJKSkoiKiqJDhw6MHDmSJ554AsMwqF27du4krUC1Zo0Fk8ng\nmmuUhEVExLtKNCY8YsSIPJfr1q2b+/dll13G/PnzPdsqH3E44NdfLdSp46J8eV+3RkREgp0qZp1h\nyxYzGRkmHYoWEZFSoSR8htWrNR4sIiKlR0n4DKcnZWmtYBER8T4l4TOsWWOhQgWDK69UEhYREe9T\nEj4pJcXE33+bueYaJ2Y9KyIiUgqUbk5au9b9VGg8WERESouS8Ekq0iEiIqVNSfgkFekQEZHSpiSM\nu0jHb79ZqFvXRVTZWLhDRET8gJIwsHmzinSIiEjpUxLmdJGOZs2UhEVEpPQoCaNKWSIi4htKwrgn\nZUVHG9Ssafi6KSIiUoaU+SR88KCJXbvcRTpMJl+3RkREypIyn4R1frCIiPiKkvAaVcoSERHfUBJe\nY8FsNmjSRElYRERKV5lOwjk58Pvv7iIdkZG+bo2IiJQ1ZToJb9pkxm5XkQ4REfGNMp2ENSlLRER8\nSUkYVcoSERHfKPNJOCbGRY0aKtIhIiKlr8wm4QMHThXpcKlIh4iI+ESZTcI6FC0iIr5W5pOwJmWJ\niIivlOEkbMZsNmjcWElYRER8o0wm4exsd5GO+HgV6RAREd8pk0l440YzmZkq0iEiIr5VJpOwxoNF\nRMQfKAmLiIj4SJlNwpUqubjiChXpEBER3ylzSXj/fhN79php2lRFOkRExLfKXBJevVqHokVExD+U\nuSSs8WAREfEXZTIJWywq0iEiIr5XppJwdjasX28mPt5FuXK+bo2IiJR1ZSoJb9hgJitLRTpERMQ/\nWEtyo/Hjx/P7779jMpkYOXIkjRo1yr2uXbt2XHzxxVgs7rHWyZMnc9FFF3mntRdI48EiIuJPik3C\nq1atYufOnSQmJrJjxw5GjhxJYmJintvMmjWLcgFwfFdJWERE/Emxh6NXrFhBQkICADVr1uTo0aOk\np6d7vWHesGaNhcqVXVx+uYp0iIiI7xWbhFNTU4mOjs69HBMTQ0pKSp7bjBkzhjvuuIPJkydjGP6Z\n4P75x8TevWaaNnWqSIeIiPiFEo0Jn+nsJDt48GBatWpFhQoVGDhwIIsWLaJz586F3j86OgKr1XLu\nLS1CbGxUsbdZvtz9/w032IiNtXn08b2lJHEFmmCMCYIzLsUUOIIxrmCMqSDFJuG4uDhSU1NzLx88\neJDY2NjcyzfddFPu361bt2bbtm1FJuG0tIzzbWuBYmOjSEk5XuztvvsuFAihXr0MUlL8f0y4pHEF\nkmCMCYIzLsUUOIIxrmCNqSDFHo5u2bIlixYtAmDTpk3ExcURGRkJwPHjx+nbty/Z2dkArF69mlq1\nanmqzR61Zo0Fq9Xgqqv8PwGLiEjZUGxPuEmTJtSvX5/evXtjMpkYM2YMSUlJREVF0aFDB1q3bk2v\nXr0IDQ0lPj6+yF6wr9qRh78AAAyaSURBVGRluYt01K/vIiLC160RERFxK9GY8IgRI/Jcrlu3bu7f\n9957L/fee69nW+Vh69ebyc5WkQ4REfEvZaJils4PFhERf6QkLCIi4iNlJgnHxrq49FL/PIdZRETK\npqBPwnv3mvjnHxXpEBER/xP0Sfj0oWiXj1siIiKSV5lJws2aaTxYRET8S5lIwirSISIi/ihgk3By\nspU2bSKwWqFNmwiSk/Of8pyZ6T5HuEEDF+HhPmikiIhIEc55AQd/kJxspX//01l1yxbLyct2evZ0\n5G5fv95MTo6KdIiIiH8KyJ7w1KkhBW6fNi3vdo0Hi4iIPwvIJLxtW8HNPnu7inSIiIg/C8gkXLt2\nwacbnbndMNxJ+KKLXFSvriIdIiLifwIyCQ8dml3g9iFDTm/fu9fE/v0q0iEiIv4rIJNwz54OZs60\nEx/vxGqF+HgnM2fmnZSlQ9EiIuLvAnJ2NLgTcc+eDmJjo0hJych3/erVqpQlIiL+LSB7wiWxZo0F\nm01FOkRExH8FZRK222HDBjMNG7oIC/N1a0RERAoWlEn4998tOBwq0iEiIv4tKJPwmjXusJSERUTE\nnwVpEtbMaBER8X9Bl4RPFem4+GIX1aqpSIeIiPivoEvCu3ebOHhQRTpERMT/BV0S1qFoEREJFErC\nIiIiPhKUSTgkxKBRI1XKEhER/xZUSdhuh40bVaRDREQCQ1AlYRXpEBGRQBJUSfjUog3NmikJi4iI\n/wuqJKxKWSIiEkiCJgmfKtJRtaqLqlVVpENERPxf0CThXbtMpKSY1QsWEZGAETRJ+NR4sJKwiIgE\niqBJwirSISIigSaoknBIiEHDhirSISIigSEokvCJE7Bpk5lGjVyEhvq6NSIiIiUTFEn4998tOJ0q\n0iEiIoElKJLwqfFgFekQEZFAEiRJWEU6REQk8JQoCY8fP55evXrRu3dv1q9fX+BtpkyZwt133+3R\nxpXEqSId1aq5qFJFRTpERCRwFJuEV61axc6dO0lMTGTcuHGMGzcu323+/PNPVq9e7ZUGFuevvyA1\nVUU6REQk8BSbhFesWEFCQgIANWvW5OjRo6Snp+e5zcSJExk2bJh3WliMFSvc/2s8WEREAo21uBuk\npqZSv3793MsxMTGkpKQQGRkJQFJSEs2bN6datWolesDo6AisVst5Nje/U0m4Q4cwYmODaxHh2Ngo\nXzfB44IxJgjOuBRT4AjGuIIxpoIUm4TPZhinx12PHDlCUlISc+bM4cCBAyW6f1paxrk+ZJFWrIgi\nLMygWrV0UlI8umufio2NIiXluK+b4VHBGBMEZ1yKKXAEY1zBGlNBij0cHRcXR2pqau7lgwcPEhsb\nC8B///tfDh8+zF133cWgQYPYtGkT48eP91CTi3fiBKxfD40aOQkJKbWHFRER8Yhik3DLli1ZtGgR\nAJs2bSIuLi73UHTnzp35+uuvWbBgAdOnT6d+/fqMHDnSuy0+w2+/WXA6oWlTlaoUEZHAU+zh6CZN\nmlC/fn169+6NyWRizJgxJCUlERUVRYcOHUqjjYWyWsFmg06dHD5th4iIyPkwGWcO8pYCTx/nj46O\nIi0tuMYOIHjHRIItJgjOuBRT4AjGuII1poIEfMUs6zlPLRMREfEPAZ+ERUREApWSsIiIiI8oCYuI\niPiIkrCIiIiPKAmLiIj4iJKwiIiIjygJi4iI+IiSsIiIiI8oCYuIiPiIkrCIiIiPKAmLiIj4SKkv\n4CAiIiJu6gmLiIj4iJKwiIiIjygJi4iI+IiSsIiIiI8oCYuIiPiIkrCIiIiPWH3dgHMxfvx4fv/9\nd0wmEyNHjqRRo0a51/3yyy+89NJLWCwWWrduzcCBA33Y0pJ74YUXWLt2LQ6Hg/79+9OxY8fc69q1\na8fFF1+MxWIBYPLkyVx00UW+amqJrVy5kiFDhlCrVi0AateuzahRo3KvD8TX6qOPPuLzzz/Pvbxx\n40Z+/fX/27uzkCi/N4DjX3VcGjO3VIywwouyiLKyXHCrrBTabqKBwQIj0lQQaxyhUujCzAkSi0rb\nsyCwCFtAibqIULOFNi9MvLHNXLKcsMzh/C/EoWnGpX7/eueN87l7z/O+8Byeczzznnnf8Yn1eN68\neSxatMh6fPbsWWvdnFFraytZWVls3boVvV7Pu3fvMBgMWCwWgoKCKCsrw8PDw+aaseafM3DUp8LC\nQoaGhtBoNJSVlREUFGQ9f7xx6ix+7pfRaOTly5f4+fkBkJGRQVJSks01aqtVbm4uHz9+BKCvr4+F\nCxeyf/9+6/lXr16lvLycsLAwAGJjY8nMzFQk9/87oRJNTU1i+/btQggh2traxKZNm2ziqamp4u3b\nt8JisQidTidevXqlRJq/pKGhQWzbtk0IIURvb69ITEy0iScnJwuz2axAZv9NY2OjyMnJGTWuxlr9\nqKmpSRQXF9u0LV26VKFsft2XL1+EXq8Xe/bsERcuXBBCCGE0GsWtW7eEEEIcOnRIXLx40eaa8eaf\n0hz1yWAwiJs3bwohhKiurhalpaU214w3Tp2Bo34VFBSIO3fujHqNGmv1I6PRKJ4+fWrTduXKFXHg\nwIG/leJfpZrt6IaGBlauXAlAeHg4nz59wmw2A9DR0YGvry+hoaG4urqSmJhIQ0ODkulOSFRUFOXl\n5QBMmTKFgYEBLBaLwln9WWqt1Y+OHj1KVlaW0mn8Ng8PD6qqqggODra2NTU1sWLFCgCSk5PtajLW\n/HMGjvpUVFTE6tWrAfD396evr0+p9H6bo36NR421GtHe3k5/f7/T3bn/SapZhLu7u/H397ceBwQE\n0NXVBUBXVxcBAQEOY87Mzc0NrVYLQE1NDQkJCXZbmEVFReh0OkwmE0JFP27W1tbGjh070Ol03L9/\n39qu1lqNePbsGaGhoTbbmgCDg4Pk5+ezefNmzpw5o1B2E6PRaPDy8rJpGxgYsG4/BwYG2tVkrPnn\nDBz1SavV4ubmhsVi4dKlS6xdu9buutHGqbNw1C+A6upq0tPTycvLo7e31yamxlqNOH/+PHq93mHs\nwYMHZGRksGXLFlpaWv5kin+Vqr4T/pGaFqTx3L59m5qaGk6fPm3TnpubS3x8PL6+vuzcuZO6ujrW\nrFmjUJYTN3PmTLKzs0lNTaWjo4P09HTq6+vtvmNUo5qaGjZu3GjXbjAYWLduHS4uLuj1epYsWcL8\n+fMVyPC/m8jcUsv8s1gsGAwGoqOjiYmJsYmpdZyuX78ePz8/IiIiqKys5MiRI+zbt2/U89VSq8HB\nQR49ekRxcbFdbMGCBQQEBJCUlMSTJ08oKCjg+vXrfz/JP0A1d8LBwcF0d3dbjz98+GC9G/k51tnZ\n+UvbN0q6d+8ex48fp6qqCh8fH5vYhg0bCAwMRKPRkJCQQGtrq0JZ/pqQkBDS0tJwcXEhLCyMqVOn\n0tnZCai7VjC8bRsZGWnXrtPp8Pb2RqvVEh0drZpajdBqtXz9+hVwXJOx5p8zKywsZMaMGWRnZ9vF\nxhqnziwmJoaIiAhg+OHNn8eaWmvV3Nw86jZ0eHi49eGzyMhIent7/5mv7lSzCMfFxVFXVwfAy5cv\nCQ4OZvLkyQBMnz4ds9nM69evGRoa4u7du8TFxSmZ7oT09/dz8OBBTpw4YX3S8cdYRkYGg4ODwPAA\nHXmK09nV1tZy6tQpYHj7uaenx/pUt1prBcOLk7e3t92dUnt7O/n5+QghGBoa4vHjx6qp1YjY2Fjr\n/Kqvryc+Pt4mPtb8c1a1tbW4u7uTm5s7any0cerMcnJy6OjoAIY/FP481tRYK4Dnz58zZ84ch7Gq\nqipu3LgBDD9ZHRAQ4NRvH/wKVf0XJZPJxMOHD3FxcaGoqIiWlhZ8fHxISUmhubkZk8kEwKpVq8jI\nyFA42/FdvnyZiooKZs2aZW1btmwZs2fPJiUlhXPnznHt2jU8PT2ZO3cue/fuxcXFRcGMJ8ZsNrNr\n1y4+f/7M9+/fyc7OpqenR9W1guHXkg4fPszJkycBqKysJCoqisjISMrKymhsbMTV1ZXly5c79esT\nL168oLS0lDdv3qDRaAgJCcFkMmE0Gvn27RvTpk2jpKQEd3d38vLyKCkpwcvLy27+jfYHUwmO+tTT\n04Onp6d1AQoPD6e4uNjap6GhIbtxmpiYqHBPbDnql16vp7KykkmTJqHVaikpKSEwMFDVtaqoqKCi\nooLFixeTlpZmPTczM5Njx47x/v17du/ebf2g64yvXf0uVS3CkiRJkvQvUc12tCRJkiT9a+QiLEmS\nJEkKkYuwJEmSJClELsKSJEmSpBC5CEuSJEmSQuQiLEmSJEkKkYuwJEmSJClELsKSJEmSpJD/AVjU\nVk01vn7VAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmcTfX/wPHXuffOnZ1mmLErZMlY\nShuJCaMZJI0wYwspKrIrlEbZQ7YWIgphIpNkGTt9pSTKbiy/ZAkzjGXWu53fHzdjm425c7d5Px8P\nD3PPPefcz/su530+n/M5n4+iqqqKEEIIIZyGxtEFEEIIIcTtJDkLIYQQTkaSsxBCCOFkJDkLIYQQ\nTkaSsxBCCOFkJDkLIYQQTkaSs3BrMTExREREEBERQUhICE2aNMl6nJKSck/7ioiIICkpKdd1pkyZ\nwpIlSwpSZJvr3r07K1assMm+qlevzvnz59mwYQPDhw8v0Ot99913WX/n573Nr2HDhvH555/bZF9C\nOIrO0QUQojB9+OGHWX83bdqUjz/+mCeeeOK+9rVu3bo81xk8ePB97dvVNG/enObNm9/39omJicyd\nO5cOHToA+XtvhShKpOYsirSuXbsydepUWrRowZ49e0hKSqJnz55ERETQtGlT5s+fn7XujVrjb7/9\nRlRUFFOmTKFFixY0bdqUXbt2AbfX2po2bcrSpUtp164dzz77LBMmTMja16xZs2jQoAEvv/wy3377\nLU2bNs22fMuWLaNFixY8//zzdO7cmbNnzwKwYsUK+vXrx4gRIwgPD6dly5YcO3YMgNOnT9O+fXvC\nwsIYPHgwZrP5rv1u27aN1q1b37asTZs2bN++Pdf34IYVK1bQvXv3PF9v06ZNtG7dmvDwcNq2bcvh\nw4cBiI6O5ty5c0RERGAwGLLeW4AFCxbQsmVLIiIiePPNN7l8+XLWeztjxgx69OhBkyZN6NGjB+np\n6Tl9tAAcOXKE6OhoIiIiaNOmDT///DMAqamp9OnThxYtWtCsWTPef/99jEZjjsuFsDdJzqLIO3Dg\nAKtXr6ZevXp88cUXlC9fnnXr1vHNN98wZcoU/v3337u2OXToEHXr1mXt2rV06tSJL774Itt9//77\n78TGxvL999+zaNEizp8/z7Fjx5g7dy4rV65k8eLFOdYaL126xEcffcT8+fNZv349FStWvK25dvv2\n7XTq1In4+HiefvppvvnmGwAmT55MgwYN2LhxI926dWPPnj137btBgwacP3+e06dPA9YEe/78eZ55\n5pl8vwc35PR6JpOJYcOGMXr0aOLj42natCkTJ04EYNy4cZQpU4Z169ah1+uz9vXnn3/y1VdfsXDh\nQtatW0fZsmWZMmVK1vPr1q1j6tSpbNiwgcuXL7Nhw4Ycy2WxWBg0aBBdunRh3bp1jBkzhsGDB5OS\nksIPP/xAsWLFWLt2LfHx8Wi1Wo4fP57jciHsTZKzKPJCQ0PRaKw/hffff5+RI0cCUKFCBYKCgjhz\n5sxd2/j6+hIWFgZASEgI586dy3bfrVu3RqvVUqpUKUqUKMG///7L77//zlNPPUVwcDCenp68/PLL\n2W5bokQJ/vjjD0qXLg3AE088kZVMAapUqUKtWrUAqFmzZlYC3b17Ny1btgSgTp06VK5c+a596/V6\nmjRpwubNmwHYuHEjYWFh6HS6fL8HN+T0ejqdjl9++YVHH3002/JnZ+vWrYSHh1OiRAkA2rdvz44d\nO7KeDw0N5YEHHkCn01GtWrVcTxrOnDlDUlISrVq1AqB27dqULVuW/fv3ExgYyN69e/nf//6HxWLh\nww8/5JFHHslxuRD2JtecRZFXvHjxrL/379+fVVPUaDQkJiZisVju2sbf3z/rb41Gk+06AH5+fll/\na7VazGYz165du+01S5Uqle22ZrOZGTNmsHnzZsxmM6mpqVSqVCnbMtzYN8DVq1dve91ixYplu//w\n8HAWLFhAt27d2LhxI2+99dY9vQc35PZ6CxcuJC4uDoPBgMFgQFGUHPcDcPnyZYKDg2/b16VLl/KM\nOad9+fv73/aaxYoV4/Lly7Rq1YqrV68yffp0Tp48yYsvvsjw4cNp0aJFtstvrd0LYQ9ScxbiFkOH\nDiU8PJz4+HjWrVtHQECAzV/Dz8+PtLS0rMcXL17Mdr01a9awefNmFi1aRHx8PP369cvX/osVK3Zb\nT/Qb12zv1KhRI44cOcLff//N33//Tf369YF7fw9yer09e/YwZ84cvvjiC+Lj4xkzZkyeZS9ZsiRX\nrlzJenzlyhVKliyZ53bZKVGiBFevXuXWuX2uXLmSVSuPjo5m2bJlrFmzhoMHD/LDDz/kulwIe5Lk\nLMQtLl26RK1atVAUhbi4ONLT029LpLZQp04dfvvtNy5fvozBYMjx4H/p0iXKlStHYGAgycnJrF27\nltTU1Dz3/+ijj2Zdi92zZw///PNPtuvp9XqeffZZJk2aRLNmzdBqtVmvey/vQU6vd/nyZUqUKEHZ\nsmVJT08nLi6OtLQ0VFVFp9ORlpaGyWS6bV/PPfccGzZsIDk5GYClS5cSGhqaZ8zZKV++PKVLl2bN\nmjVZZUtKSqJOnTp89tlnLF++HLC2XJQvXx5FUXJcLoS9SXIW4hb9+/enT58+tG7dmrS0NKKiohg5\ncmSOCe5+1KlTh8jISCIjI3nllVdo0qRJtuu98MILXLlyhebNmzN48GAGDBjA+fPnb+v1nZ2hQ4ey\nZcsWwsLC+Pbbb3nmmWdyXDc8PJyNGzfSokWLrGX3+h7k9HqNGjUiODiYsLAwXn31Vbp164a/vz/9\n+vWjevXqFC9enIYNG952vb5OnTr06tWLzp07ExERwfXr1xk4cGCu8eZEURQ++eQTFi1aRIsWLRgz\nZgzTp0/Hx8eHNm3asHLlSsLDw4mIiMDDw4M2bdrkuFwIe1NkPmch7E9V1awa2datW5k2bZo0nwoh\nskjNWQg7u3z5MvXr1+fs2bOoqsratWuzejQLIQRIzVkIh1iyZAnz5s1DURQqV67M2LFjszoqCSGE\nJGchhBDCyUizthBCCOFkJDkLIYQQTsZpRghLTLxu0/0FBPiQnGzb+1OdgTvGJTG5DneMS2JyHe4W\nV1CQf47PuW3NWafTOroIhcId45KYXIc7xiUxuQ53jSs7bpuchRBCCFclyVkIIYRwMpKchRBCCCcj\nyVkIIYRwMpKchRBCCCcjyVkIIYRwMpKchRBCCCfjNIOQCCGEcB8zZ07l6NHDXL58iYyMDMqWLUex\nYsUZN25SntuuWbMKX18/QkOzn+t8+vQptG8fTdmy5e6rbH379mLQoHeoXPnh+9reHiQ5CyGEIC5O\nx7RpehISNFSrZmHAAAORkab73t/bbw8ErIn25MkT9O07IN/btmzZOtfn+/cffN/lchWSnIUQooiL\ni9PRu7d31uPDh7X/PU4vUILOzp49u1m6dBFpaWn07TuQvXv/YOvWTVgsFho0aMirr/biq69m88AD\nD1CpUhVWrPgORdFw6tT/0apVS6KiumXVfLds2URqagr//HOKs2fP0K/fYBo0aMiiRV+zceN6ypYt\nh8lkIjq6M/XqPXFXWVJSUhg7dhQpKdcxmUwMGDCU6tVrMG3aJI4cOYzZbCYysh0tW7bOdllhcsvk\nfPiwhn37oE4dR5dECCGc37Rp+myXT5+ut3lyBjhx4jhLlqxAr9ezd+8ffP75XDQaDR06tCEqqtNt\n6x46dJDFi7/HYrHQocOLREV1u+35ixcvMHnyDH799RdWrvyekJBarFixjCVLvic1NZXo6LZER3fO\nthzLli0hJKQWXbp058iRQ8yc+Qnjxk3il1/+x3ffrcRkMrFmzSquXbt617LC5pbJedw4T7ZsgYQE\n8PFxdGmEEMK5JSRk3zc4p+UF9fDDVdHrrScEXl5e9O3bC61Wy5UrV7h27dpt61avXgMvL68c91Wn\nzqMABAcHk5KSwpkzp6lcuQqenl54enrxyCMhOW575MghXnmlJwA1atTkzJnTFCtWnAoVHmTYsEE0\naRJGREQr9Hr9XcsKm1v21q5QwYLBAEeOuGV4QghhU9WqWe5peUF5eHgAcP78v8TGfsuUKTP59NMv\nKV269F3rarW5T3Zx6/OqqqKqoNHcPPYrSs7bKoqCqqpZjy0Wa7xTpsygR49eHDuWwLvvDsxxWWFy\ny+xVq5YZgP37i84MJkIIcb8GDDBku7x//+yX28qVK1cICAjAx8eHo0ePcP78eYxGY4H2WaZMGU6e\nPIHJZCI5OZkjRw7nuG6NGjXZu3c3AAcO7KdSpSr8++85li1bSvXqNejbdwBXr17Ndllhc8tm7dq1\nrWc/Bw645bmHEELYlPW6cjrTp9/srd2/f8F6a+dH1arV8Pb24c03X6V27Udp06YtU6ZMpE6duve9\nz8DAEjRvHsHrr7/Cgw9WombNkBxr3x06dGTcuA/p1+8NLBYLgwa9S8mSQRw48BebNq3Hw8ODVq1e\nzHZZYVPUW+v0DpSYeN1m+8rMhEqV/Klb18zate4zMTdYJ+e25XvlDCQm1+GOcUlMriO/ca1Zs4rm\nzSPQarW88ko0n3wyk+DgUnYo4b0JCvLP8Tm3rDl7ekJIiLXXttkMeVyyEEII4UYuXbpEr17d8PDQ\n8/zzEU6ZmPPilskZ4NFH4a+/FE6e1FC1auF0ahBCCOF8unbtTteu3R1djALJ10XZjz/+mKioKF5+\n+WXWr19/23O//PIL7dq1Iyoqis8++yxr+bhx44iKiiI6Opp9+/bZttT58Ki1dz3798t1ZyGEEK4l\nz5rzr7/+yrFjx4iNjSU5OZnIyEief/75rOfHjBnDV199RalSpejSpQvh4eFcvnyZU6dOERsby4kT\nJxgxYgSxsbGFGsidHnvM+v+BAxratrXrSwshhBAFkmdyfvLJJ6nz31BbxYoVIz09HbPZjFar5fTp\n0xQvXpwyZcoAEBoays6dO7l8+TJhYWEAVKlShatXr5KSkoKfn18hhnK7uv919jtwQC44CyGEcC15\nJmetVovPf8NsLV++nMaNG2d1S09MTCQwMDBr3cDAQE6fPk1ycjIhISG3LU9MTMw1OQcE+KDT2TaR\nPvQQHDyoo2RJ/1xvRHc1ufXwc1USk+twx7gkJtfhrnHdKd8dwjZu3Mjy5cuZN2/ePb9Ifu7WSk62\n7S1PQUH+1KxpZM0aDw4cSKF0aae4Y6zA3PEWCYnJdbhjXBJT4ejduwcDB75DjRqPZC2bNetTihd/\ngI4du9y1/p49u1mx4jvGjPmYYcMGMWHCJ7c9//33sRiN6URHd8/29Y4fP4Zer6dixQeJiRnOiBEx\neHrmPOxnbtq1a82CBbFZFdPCktuJRr56S/3888/MmjWLOXPm4O9/c2fBwcEkJSVlPb5w4QLBwcF3\nLb948SJBQUH3U/YCqVVLBiMRQghHaN48nM2bN9y2bOvWzYSFPZ/DFjfdmZjzY9u2zZw+/Q8AH344\n/r4Ts7PIs+Z8/fp1Pv74Y77++mseeOCB254rX778fwONn6F06dJs2bKFyZMnk5yczMyZM4mOjubg\nwYMEBwfb9XrzDbcO4xkWZrb76wshRFHVrNnzvPlmT956qx8AR44cJigoiKCgYH7//Tfmzp2Fh4cH\n/v7+fPTRhNu2bdWqGatXb2L37l3MmDGFwMASlChRkqpVK2MymRg7dhSJiRdJT0/n1Vd7Ubp0GVau\nXMG2bZsJCAjggw+Gs2BBLCkp1xk//iOMRiMajYZhw0aiKApjx46ibNlyHD9+jGrVqjNs2MhsY7h4\n8cJd2wcHl+Kjj0Zy6VISBoOBnj1788QTT921rH79Zwr0/uWZnNesWUNycjIDBtycKPvpp5+mevXq\nNG/enFGjRjF4sHXi65YtW1KpUiUqVapESEgI0dHRKIpCTExMgQp5v2QYTyGEgFGjPFm1yrbDWrRu\nbWLUqMwcnw8ICKRs2XIcOnSAmjVrsXnzBpo3jwCslb6YmDGULVuO0aM/4LffdmbbhDx79qeMHDma\nqlWrMWRIv/+2vcZTT9WnRYsXOHv2DCNHDmPevEU8/XQDnnuuGTVr1srafu7cWbzwQhuaNXueLVs2\nMm/el/Ts2ZujRw/z4YfjCAgIJDKyJdevX7+tVTi37du378jVq1f47LM5XL9+nZ07d3DixPG7lhVU\nnp9WVFQUUVFROT7/5JNPZnub1JAhQwpWMhsoW1YlIECVCTCEEMIBmjePYNOmDdSsWYsdO7bzxRfW\nPksPPPAAEyeOwWw2c+7cWR5//Mlsk/O///5L1arVAHj00XoA+PsX4/Dhg/z44woURcO1azlPQnH0\n6GHeeKMvAPXqPcHXX88FoFy5CpQoURKAkiWDSE1NyTY5Z7f9gw8+RFpaKqNHj6Rx4yaEhT2PwWC4\na1lBue0IYWCdKqxWLTM//6zj+nXI5r0XQgi3N2pUZq613MISGtqEBQvm0bx5OBUqVKRYsWIAjB8/\nmkmTpvHQQ5X45JOJOW5/69SP1o7FChs2rOPatWt89tlcrl27xmuvdc2lBDenhDQaTSiKdX93ToSR\nc6flu7f38vJi9uyv2b9/H2vXrmLHjp8ZMSIm22UF4fbtvTc6hR08KLVnIYSwJx8fX6pUqcqCBfOz\nmrQBUlNTKFWqNNevX2fPnj9ynCayZMkg/vnnb1RVZe/ePwDrNJNlypRFo9GwbdvmrG0VRcFsvr1v\n0SOP1GTPHuuUkH/++cdtPcfzI7vtjx49woYN66hb91GGDBnO33//X7bLCsqta85ws1PYgQMa6teX\nTmFCCGFPzZtHMGZMDDExo7OWtW3bnjff7EmFChXp3PkV5s37kl693rpr21693uL999+ldOkyWZNX\nPPdcU4YNG8ShQwdo1epFgoODmT9/DnXrPsa0aZNuax5/7bU3GD9+NKtW/YBO58Hw4SMxmfI/DWZ2\n23t6ejF79mesXLkCjUZDp05dKVOm7F3LCsotp4yEm/f5HTmioXFjXzp1MjBtmv2bdWzNGe5ftDWJ\nyXW4Y1wSk+twt7gKfJ+zK3v4YQuenqoM4ymEEMJluH1y1ungkUcsHDmiIYfLGkIIIYRTcfvkDFC7\nthmDQSEhoUiEK4QQwsUViWwVEiKDkQghhHAdRSJb3eyxLdedhRBCOL8ikZxr1rSgKKrUnIUQQriE\nIpGt/PygcmVrj23nuHFMCCGEyFmRSM5g7RR29arC6dOKo4sihBBC5KrIJOebczvLdWchhBDOrQgl\n5xtzOxeZkIUQQrioIpOpbk6AUWRCFkII4aKKTKYKDlYJDrZIs7YQQginV2SSM1hrz2fOaLh82dEl\nEUIIIXJWpJJz7drW684yt7MQQghnVqSS843rztIpTAghhDMrUllKhvEUQgjhCopUcq5UScXHR5Ue\n20IIIZxakcpSGo11hqqEBA3p6Y4ujRBCCJG9IpWcwdopzGxWOHq0yIUuhBDCRRS5DCXDeAohhHB2\nRTA5yzCeQgghnJsuPyslJCTw1ltv0b17d7p06ZK1/MKFCwwZMiTr8enTpxk8eDBGo5Hp06dTsWJF\nAJ555hnefPNNGxf9/tSoYUGrVaXmLIQQwmnlmZzT0tIYPXo0DRo0uOu5UqVKsXDhQgBMJhNdu3al\nadOmxMfH07JlS959913bl7iAvLygWjULBw9qMJtBKzlaCCGEk8mzbVev1zNnzhyCg4NzXS8uLo7w\n8HB8fX1tVrjCEhJiIS1N4e+/ZW5nIYQQzifPmrNOp0Ony7v1e9myZcybNy/r8a5du+jZsycmk4l3\n332XmjVr5rp9QIAPOp1tq7FBQf7ZLm/QAJYvh3/+8aN+fZu+pF3kFJcrk5hchzvGJTG5DneN6075\nuuacl71791K5cmX8/PwAqFu3LoGBgTz33HPs3buXd999l1WrVuW6j+TkNFsUJUtQkD+Jidezfe6h\nh7SADzt2ZNKkicGmr1vYcovLVUlMrsMd45KYXIe7xZXbiYZNkvPWrVtvuyZdpUoVqlSpAsBjjz3G\n5cuXMZvNaJ3kAq8M4ymEEMKZ2eR+ov3791OjRo2sx3PmzOGnn34CrD29AwMDnSYxAwQEQPnyFg4c\nkNuphBBCOJ88a84HDhxg4sSJnD17Fp1OR3x8PE2bNqV8+fI0b94cgMTEREqUKJG1TevWrRk6dChL\nly7FZDIxduzYwovgPtWqZWbdOg8uXFAoVUp1dHGEEEKILHkm51q1amXdLpWTO68nly5dOs9tHK1W\nLQvr1sHBgxpKlTI7ujhCCCFEliLbrivDeAohhHBWRTg5yzCeQgghnFORzUwVKqgULy7DeAohhHA+\nRTY5K4q19nzypEJKiqNLI4QQQtxUZJMzWK87q6rCoUNF+m0QQgjhZIp0VpLBSIQQQjijIp6cb/TY\nLtJvgxBCCCdTpLNStWoW9HrpFCaEEMK5FOnk7OEBNWpYOHxYg8nk6NIIIYQQVkU6OYP1unNmpsKx\nY0X+rRBCCOEkinxGql1brjsLIYRwLkU+I4WEWJPz/v1y3VkIIYRzkOQcYr2d6uDBIv9WCCGEcBJF\nPiP5+0OlShYOHNCiysyRQgghnECRT85g7RSWnKxw9qzi6KIIIYQQkpxBBiMRQgjhXNwuG8XF6QgN\n9UGng9BQH+LidHluU7u2DOMphBDCeeSduVxIXJyO3r29sx4fPqz973E6kZE5jzJyo+YsczsLIYRw\nBm6VjaZN02e7fPr07JffUKqUSsmSFg4elJqzEEIIx3Or5JyQkH04OS2/wTq3s4V//tFw5UphlEwI\nIYTIP7dKztWqWe5p+a1uTB8ptWchhBCO5lbJecAAQ7bL+/fPfvmtZBhPIYQQzsKtMlFkpInZs9Op\nWdOMTgc1a5qZPTv3zmA33OwUJjVnIYQQjuVWvbXBmqAjI00EBfmTmJiW7+0qV7bg46NKzVkIIYTD\nSSb6j1YLjzxiISFBQ2amo0sjhBCiKMtXck5ISCAsLIxFixbd9VzTpk3p1KkTXbt2pWvXrly4cAGA\ncePGERUVRXR0NPv27bNtqQtJrVpmTCaFo0flnEUIIYTj5NmsnZaWxujRo2nQoEGO68yZMwdfX9+s\nx7t27eLUqVPExsZy4sQJRowYQWxsrG1KXIhuHcazTp28e3gLIYQQhSHPKqJer2fOnDkEBwfne6c7\nd+4kLCwMgCpVqnD16lVSUlLuv5R2IsN4CiGEcAZ51px1Oh06Xe6rxcTEcPbsWR5//HEGDx5MUlIS\nISEhWc8HBgaSmJiIn59fjvsICPBBp7NtUgwK8r+n9Rs1Ao0GjhzRExSU+6hijnSvcbkCicl1uGNc\nEpPrcNe47lTg3tr9+vWjUaNGFC9enD59+hAfH3/XOmo+JkpOTs5/z+r8sPbWvn7P2z38sA9//qnh\nwoUUNE546fl+43JmEpPrcMe4JCbX4W5x5XaiUeD089JLL1GiRAl0Oh2NGzcmISGB4OBgkpKSsta5\nePEiQUFBBX0pu6hVy0JKisLff8vczkIIIRyjQMn5+vXr9OzZE4PBOgLX77//TtWqVWnYsGFWDfrg\nwYMEBwfn2qTtTGQYTyGEEI6WZ7P2gQMHmDhxImfPnkWn0xEfH0/Tpk0pX748zZs3p3HjxkRFReHp\n6UnNmjWJiIhAURRCQkKIjo5GURRiYmLsEYtN3DqMZ+vWDi6MEEKIIklR83NB2A5sfR3hfq9NJCUp\n1KzpR1iYicWL021aJltwt2suIDG5EneMS2JyHe4WV6Fec3Y3JUuqlCljkWE8hRBCOIxkoGzUrm3h\n/HkNiYnSKUwIIYT9SXLOxo1OYVJ7FkII4QiSfbIREnKjU5j02BZCCGF/kpyzcXMYT3l7hBBC2J9k\nn2xUrKji7y9zOwshhHAMyT7Z0GggJMTM8eMaUlMdXRohhBBFjSTnHNSubUFVFQ4flrdICCGEfUnm\nycHNHtvSKUwIIYR9SXLOQa1aN4fxFEIIIexJMk8Oqle34OGhSs1ZCCGE3UlyzoFeD9WqWTh0SIPJ\n5OjSCCGEKEokOeeidm0LGRkKJ0/K2ySEEMJ+JOvk4kansP375W0SQghhP5J1cnGzU5hcdxZCCGE/\nkpxzITVnIYQQjiBZJxfFikHFihYOHtSgqo4ujRBCiKJCknMeatUyc+mShvPnZW5nIYQQ9iHJOQ+1\na1uvO0vTthBCCHuRjJMHGcZTCCGEvUlyzsONmrMM4ymEEMJeJOPkoUwZlcBAC/v3S81ZCCGEfUhy\nzoOiQEiIhVOnNFy75ujSCCGEKAokOefDjabtgwel9iyEEKLwSXLOh5udwuTtEkIIUfjylW0SEhII\nCwtj0aJFdz3366+/0qFDB6Kjoxk+fDgWi4XffvuN+vXr07VrV7p27cro0aNtXnB7kmE8hRBC2JMu\nrxXS0tIYPXo0DRo0yPb5Dz74gAULFlC6dGn69evHzz//jJeXF0899RQzZsyweYEd4eGHLXh5qXKv\nsxBCCLvIM9vo9XrmzJlDcHBwts+vWLGC0qVLAxAYGEhycrJtS+gEdDp45BELR49qMBgcXRohhBDu\nLs/krNPp8PLyyvF5Pz8/AC5evMiOHTsIDQ0F4Pjx47zxxht07NiRHTt22Ki4jlOrlhmjUSEhQWrP\nQgghCleezdr5cenSJd544w1iYmIICAjgoYceom/fvrRo0YLTp0/zyiuvsH79evR6fY77CAjwQaez\n7TXdoCB/m+0rNBQWLoSpU31ZscJam3YUW8blLCQm1+GOcUlMrsNd47pTgVNMSkoKr7/+OgMGDODZ\nZ58FoFSpUrRs2RKAihUrUrJkSS5cuECFChVy3E9yclpBi3KboCB/EhOv22x/ERHQuLE3q1bp6NbN\nwNSpmSgOmAvD1nE5A4nJdbhjXBKT63C3uHI70ShwG+2ECRPo1q0bjRs3zlr2448/8tVXXwGQmJjI\npUuXKFWqVEFfyqH0evj663Tq1jWzeLGeceNybgUQQgghCiLPmvOBAweYOHEiZ8+eRafTER8fT9Om\nTSlfvjzPPvssP/zwA6dOnWL58uUAvPDCC7Rq1YohQ4awadMmjEYjo0aNyrVJ21X4+cHixem0bu3D\n9OmeBAWp9OpldHSxhBBCuBlFVVXV0YUAbN5UUZjNH6dOKbRq5cPFixpmzUqnbVtTobxOdtytWQck\nJlfijnFJTK7D3eIq1Gbtouiwj3YBAAAgAElEQVTBB1WWLk3H31/l7be92LJFBicRQghhO5Kc71Ot\nWhYWLUpHo4EePbzZu1feSiGEELYhGaUAGjQwM3t2BhkZ0KmTN8ePO6D7thBCCLcjybmAWrY0MWlS\nJpcuaYiK8uH8eUnQQgghCkaSsw107Wpk2LBMTp/WEBXlzZUrji6REEIIVybJ2UYGDjTQs6eBw4e1\ndO3qTXq6o0skhBDCVUlythFFgbFjM3npJSO//aajd28vTPa7w0oIIYQbkeRsQxoNzJyZQePGJtat\n82DIEE+c4y5yIYQQrkSSs415et4+zOf48a4/MpoQQgj7kuRcCG4M81m5soVp0zyZM8fD0UUSQgjh\nQiQ5F5KgIJXY2DSCgy28954XK1Y4cI5JIYQQLkWScyF68EGV2FgZ5lMIIcS9keRcyEJCZJhPIYQQ\n90YyhR3IMJ9CCCHuhSRnO2nZ0sTkyTLMpxBCiLxJcrajLl2MDB9+c5jPq1cdXSIhhBDOSJKznQ0Y\ncHOYzy5dZJhPIYQQd5PkbGcyzKcQQoi8SHJ2gDuH+fzgA09HF0kIIYQTkeTsIDeG+axRw8zcuXq2\nbZN7oIUQQlhJcnYgPz/49NMMtFqVgQO9uH7d0SUSQgjhDCQ5O1idOhb69zdw5oyGUaOkeVsIIYQk\nZ6cwaJCBmjXNLFyolyE+hRBCSHJ2Bnq9tYOYTmdt3r52zdElEkII4UiSnPMhLk5HaKgPZcr4ERrq\nQ1yc7WeYql3bwqBBBs6d00jvbSGEKOLylZwTEhIICwtj0aJFdz33yy+/0K5dO6Kiovjss8+ylo8b\nN46oqCiio6PZt2+f7UpsZ3FxOnr39ubwYS1ms8Lhw1p69/YulATdv7+B2rXNLF6sZ9Mmad4WQoii\nKs/knJaWxujRo2nQoEG2z48ZM4aZM2eyZMkSduzYwfHjx9m1axenTp0iNjaWsWPHMnbsWJsX3F6m\nTdNnu3z69OyXF4SHB8yYkYGHh7V5+8oVm7+EEEIIF5Bnctbr9cyZM4fg4OC7njt9+jTFixenTJky\naDQaQkND2blzJzt37iQsLAyAKlWqcPXqVVJSUmxfejtISMj+LcppeUGFhFgYMsTA+fMaRo70KpTX\nEEII4dzyzDA6nQ4vr+yTRGJiIoGBgVmPAwMDSUxMJCkpiYCAgLuWu6Jq1Sz3tNwW3n7bQN26ZmJj\nPYiPl+ZtIYQoamx/4TQbqqrmuU5AgA86nW0TUVCQf4H38cEH0LHj3ctHjtTaZP85WbQIHn8c3nnH\nh5Yt4ZZzoEJ9XUeRmFyHO8YlMbkOd43rTgVKzsHBwSQlJWU9vnDhAsHBwXh4eNy2/OLFiwQFBeW6\nr+TktIIU5S5BQf4kJhZ8yK1mzWD2bB3Tp+tJSNBQrZp10JBmzUwUZmNAqVLwzjt6xozxpHdvI59/\nngHYLi5nIjG5DneMS2JyHe4WV24nGgW6cFq+fHlSUlI4c+YMJpOJLVu20LBhQxo2bEh8fDwABw8e\nJDg4GD8/v4K8lENFRprYujWNc+dS2Lo1jchI+0wj9dZbBurVM7N8uQdr1tilkUMIIYQTyPOIf+DA\nASZOnMjZs2fR6XTEx8fTtGlTypcvT/PmzRk1ahSDBw8GoGXLllSqVIlKlSoREhJCdHQ0iqIQExNT\n6IG4I53O2nu7WTMfhg71pH59E3k0QAghhHADipqfC8J2YOumCndq/vj0Uw8++siLtm2NfP+9h9vE\ndYM7fVY3uGNM4J5xSUyuw93iKrRmbWEfb75p5PHHzaxY4cH33zu6NEIIIQqbJGcXoNXCzJnpeHmp\nvPkmJCUpji6SEEKIQiTJ2UU8/LDK8OGZJCbCsGEy9rYQQrgzSc4upFcvIw0bwo8/erBypfTeFkII\ndyXJ2YVotTB/Pnh7q7z7ricXL0rzthB3sliQ34ZweZKcXUzVqvDee5lcvqzhnXc8cY6+9kI4ntEI\n331nnd61dm1fmdlNuDRJzi7otdeM1K9vYs0aj0KZulIIV5KeDvPmedCggS99+3pz4oT1sDZ2rJy8\nCtclydkFaTQwfXoGPj4qw4d7ceGCNOGJouf6dZgxQ88TT/gybJgXFy8q9Oxp4LffUomMNHHggFZG\n1iuCjhzREBrqw6xZHi59cibJ2UVVqqQycmQmyckKQ4dKDUEUHUlJCuPH63nsMT/GjPEkI0Ohf/9M\ndu9OZfz4TCpUUBk82IBGo/Lxx3oshTeBnHBCY8d6cviwlg8+8OLtt73IyHB0ie6PJGcX1qOHkYYN\nTaxb58Hy5VJDEO7t7FmF997z5PHHfZk61RO9XuW99zLZuzeF994zEBx88wy1alULL79s4vBhLatX\ny2+jqPjzTw3x8ToefdTMY4+Z+e47D156yYd//3W91kVJzi5Mo4Fp06zN2yNGeHH+vOt9AYXIy4kT\nCgMGePLUU77MmaOnRAmV8eMz2L07lf79DRQrlv12gwdnotVaa89ms33LLBxj0iTrGBDvv5/JypVp\ntG9vZM8eLc8/78Pu3a6V7lyrtOIuDz6oMmpUJlevKgwZ4iXN28Jt7NunoWdPL555xpfFi/U89JCF\nGTPS+e23VHr2NOLjk/v2lSurtG9v4uhRLT/+KLVnd7dnj4YNG3TUr2+iUSMzXl7w6acZfPhhBomJ\nCi+95MPSpa7zPZDk7Aa6dTPSqJGJ9et1xMa6zpdPiDupKuzcqSUqypuwMF9WrfKgTh0L8+al8/PP\naURHm/DwyP/+Bg2y1p4nT5bas7u7UWt+5x0Dyn+NiIpinZtg8eJ0vL2hXz9vRo70xGSfWX8LRJKz\nG1AUa/O2r6/K++97ce6cNG+7AosFBg3ylPvVsSblDRu0tG7tTZs2PmzZoqNhQxOxsWmsX5/GCy+Y\n0NzH0eqhh1Q6djRy7JhWbjt0Y7t3a9i0Scczz5h49tm7z8KaNjUTH59KtWpmZs/WEx3tTXKyAwp6\nDyQ5u4kKFVQ++iiTa9cUBg2S5m1X8M03HixapOfrr/V8913RTBxmM8TF6Wja1IfOnX3YtUtHeLiJ\n1atTiYtLp0kTc1Yt6H4NGGDAw0Nl8mTXqDGJe3drrTknlSurrF2bRni4ie3bdYSH+3LkiPOmQOct\nmbhnXboYee45E5s361iypGge7F3F6dMKH33kSfHiKj4+KiNHehW5ISdVFbp29aZ3b28OH9bQtq2R\nrVtTWbgwnSeftN39TxUrWmvPJ09q5K4GN/T77xq2bNHx7LMmnnkm92sX/v7wzTfpDBiQyd9/a2jR\nwoe1a53zOyHJ2Y0oCkydmoG/v7V5e98++XidkarCwIFepKYqjBmTwciRmVy5ojBiRNGabWzDBi0b\nN+p4+mkTO3emMmtWBjVrFs5NyQMGGNDrVT75xBOjsVBeQjjIxx/nXWu+lUYDI0YY+PLLdCwW6NbN\nmylT9E7X2ihHbzdTrpzK1KkZpKZChw7eHD0qH7GzWbTIg+3bdYSFmejQwUSPHkaeesrEjz96FJl7\ncs1mGDPGE41GZdKkTCpVKtwjY/nyKl26GPn7bw3LlhWN97go+O03Ldu26WjUyET9+vfW4++ll0z8\n9FMa5ctbmDjRk9de8yIlpZAKeh/kyO2GXnzRxJQp1skx2rXz5v/+r2g1lzqzs2cVYmI88fdXmTw5\nA0WxnslPnZqJXm+dbezKFUeXsvB9952OI0e0REcbqVHDPkN49e9vwNPTWns25K+SJZzcxx/rgfzX\nmu9Uu7aF+Pg06tc3sWqVBy+84MM//zjH8VKSs5vq0sXI6NEZXLigoV07H86edY4vnL1kZjq6BHdT\nVRg82IuUFIXRozMoW/b2Ea0GDzZw8aKGDz907+bt9HSYONETLy/1vg+q96NMGZVXXjHyzz8ali69\nh/uxhFP69VctP/+sIzTUxNNP3/99ckFBKsuXp9Otm4FDh6wDluzY4fgZzSQ5O1BcnHV6uzJl/AgN\n9bH5rR69exsZNiyT06etCboodDg6flzhxRe9eeQRP/74w7m+3kuX6ti8WUeTJiY6dry723DfvgZq\n1jTz7bd6tm93/MGhsMyZo+fcOQ29ehluO0Gxh379DHh5qUybpnfKEziRfzdrzQX/IPV6mDQpk48/\nzuDaNYX27b2ZN8+xE2c419GrCImL0/3XS1WL2axw+LCW3r29bZ6gBw400LdvJidOaOjQwfnv7btf\nJpN1hqImTXz59VcdKSkK3bp5O02Lwb//Kowc6YWfn8qUKRnZ3h7k4WGdbUyjURk82IvUVPuXs7Bd\nvmz9nAICVN5+2/5ty6VKqXTvbuTMGQ2LF0vt2VX98ouW//3PeqJry5793bsb+f77dB54QGXYMC+G\nDHHcJRBJzg4ybZo+2+XTp2e//H4pCowcaaBHD2uTTceOPk7V6cEWDhyw3hIxZownxYqpfPVVOmPG\nZHDxooauXb0dHq+qwtChXly7pjBqVCbly+d8Ol63roW33jJw6pSGiRPdr3l7+nRPrl1TGDAgk+LF\nHVOGvn0NeHtba8+uOmNRUWfLWvOdGjQwEx+fRq1aZhYu1NO2rbdDWh0lOTtIQkL2b31OywtCUWD8\n+Ew6dLAOAt+lizdpaTZ/GbvLzIQJE/Q8/7wPf/2lpUMHI//7XyqtW5t4/XUjXbsaOHBAS58+Xg6d\nNnD5ch3r11t7lHbtmvd9PEOHGqhUycKXX3o4XdN8QZw+rfDVVx5UqGDh1Vcddz9TcLDKq68a+fdf\nDYsWSe3Z1fzvf1p++UVHs2YmHn+8cH7YFSqorFqVRps2xv8GxvGx+62p7vPLdzHVqmX/pcppeUHd\nmMHqhReM/PKLjp49vV26x+off2gIC/Phk088KVVKZcmSND79NIOAAOvzigITJmTSqJGJtWs9GDfO\nti0S+XXhgsJ773nh42O9xS0/o115e1vvV7dYFAYO9HLpz+lWEyZ4YjAoDBuWiaeDGwX69DHg46My\nfbqe9HTHlkXkn6rerDUPHVq4nQZ8feHLLzN4771Mzp1TeOEFH9ats19fkHwl53HjxhEVFUV0dDT7\n9u3LWn7hwgW6du2a9e+5555j1apVrFixgtDQ0KzlX3zxRaEF4KoGDMj+iNu/f+EdiXU6mDUrg2bN\nTGzapOONN7xcbjjDtDT44ANPWrXy4ehRLd27G9i+PZVmze7urenhAXPnplO5soUZMzztPimIqsI7\n73hy5YrCyJGZVKyY/94lzzxj5pVXDBw5orX5pQ5HOHDAOjpXSIiZl192/JeuZEmV1183cOGChtmz\nHV0akV+bN8Ovv+po3txEvXqF3xymKNZj8oIF6eh08O239vstKqqae3+0Xbt28dVXXzF79mxOnDjB\niBEjiI2NvWs9k8lE165dmTt3LvHx8Rw7dox333033wVJTLx+76XPRVCQv833aWtxcTqmT9eTkKCh\nWjUL/fsbiIzM/cBli7jS06FTJ2927NDRoYORGTMy7mtSAVvJb0w7dmgZONCLv//WUKmShalTM/Ic\nrg+sPbhbtPAlPR2WL0+/58EK7kdQkD9ffplO797ePPOMiRUr0u/5Pb52DRo18iUpSWHTpjS73Q+c\nm/v9/kVFebNli46lS9No2tQ5poe6fBmeeMIPX1+F3367nucUlK7EFY5/90pVoW1bf3bsgPXrU3n0\nUfv+Hq5etVZwfH1tt8+gIP8cn8vzcLFz507CwsIAqFKlClevXiUlmx42cXFxhIeH42vLkru5yEgT\nW7emce5cClu3puWZmG3F2xsWLkzn8cfNfPedB8OHO/esSNevw5AhnkRGWgcIeOstA1u2pOYrMQM8\n/LDK3LnpmM3Qo4eXXQYZuHgRhg/3zGrOvp+Tn2LF4OOPMzAarc3brjrl4fbtWrZssV5zb9LEeYII\nDIRevQxcuABffy3Xnp3dtm1aduyA8HCT3RMzQPHitk3MecnzkJGUlETAjQt5QGBgIImJiXett2zZ\nMtq1a5f1eNeuXfTs2ZNu3bpx6NAhGxVX2IqfHyxZkkbNmmbmz9czerTzjS0LsHGjlkaNfFmwQM8j\nj5hZuzaNUaMy77mWExpqZvz4TC5d0tClizfXC7lS0acPXL6sYcSIgg1NGR5upm1bI3/8oWXuXNdL\nIBYLjB5tvcD8wQeZBZ5hytbeeMNAsWLw6ad6h/fqFzmzXmu2fo8K+1qz01Dz8P7776sbNmzIehwd\nHa2ePHnytnX27Nmjvvvuu1mPjx8/rm7ZsiXruRdeeCGvl1GNRlOe6wjbO39eVatXV1VQ1dGjHV2a\nm5KSVLVzZ2u5PDxUNSZGVTMzC77ft9+27rNlS1U1FdJXbtky62s8+6yqms0F39/Fi6paooSq+vio\n6okTBd+fPS1ZYn0vOnZ0dElyFhNjLeOECY4uicjJunXWz6hNG0eXxH7yvOY8c+ZMgoKCiI6OBqBZ\ns2asXLkSPz+/rHWmTp1K5cqVadOmTbb7aNiwIdu3b0erzbmnW1G85nw/CiOuc+cUXnzRh3/+0TB6\ndAa9e9v3NpdbY1JVWLVKx7BhniQlaXjsMTNTp9putiKTCTp3tl7/7N3bwOjRtj0Lv3RJoVEjH1JS\nNGzdmkLlyrZpjli+XMdbb3nTqJGJ5cvTHVYDvZfvn8EADRv6cu6cwo4dqTz0kBM2zQAeHv489JCK\nRgN//JHCLYc2l+VOxz9VhRYtfNizR8vevVCunHvEBQW85tywYUPi4+MBOHjwIMHBwbclZoD9+/dT\no0aNrMdz5szhp59+AiAhIYHAwMBcE7NwrLJlVZYtS6NUKQsjR3o57N7PCxcUevTw4rXXvElJUYiJ\nyWD16jSbTiOo08GcOelUq2Zm9mw9CxfaNtYRI6wnFWPGYLPEDPDyyybCwkz8/LPrzNX9zTcenDql\noXt3o9MmZoAHHoA33zSQnKwwd67r94x3N5s2admzR0urVkYefdTRpbGfPGvOAJMnT2b37t0oikJM\nTAyHDh3C39+f5s2bA9C6dWvmz59PyZIlATh//jxDhw5FVVVMJhMjRoygTp06ub6G1JzzpzDjOnpU\nw0sveXP5ssIXX2TQtq19OqiVLOnPp5+mM3KkF1evKjRoYGLq1AybJrc7/d//KbRo4cO1awrLlqXT\nsGHBOyqtWaOje3dvHn/czG+/abl82baf09mzCs8+64tWCzt2pFKqlP0TXn6/f9evw1NP+ZKZqbBr\nVyolSzpvcg4K8ufkyes88YQfqgq7d6dQrJijS1Uw7nL8U1UID/fhzz+1bNmSynPP+bpFXDfkVnPO\nV3K2B0nO+VPYce3bp6FtWx9SU2H+/HQiIgq3d+3JkwoxMX7Ex4Ovr8oHH2TSrZvRLrd27dyppV07\nb/z8YO3a1AKdDCQnw7PP+nLtmvW2p4YNC+cgMn++B+++60WrVkbmz7f/2JP5/f5NmKDnk088GT48\nk4EDnXsUlRsxTZ+uZ+xYT955J5MhQ5y7zHlxl+Pf+vVaunTxoXVrI199leE2cd1QoGZtUbTUqWNh\n8eI0PD3htde82bbNdpcjUlKs9yrPnKmnRw8v6tb1pX59a2Ju2tTEzz+n0qOHfRIzWMfQnTQpg+Rk\nhS5dvLl69f739f77XiQmahg61FBoo7wBdOtmpH59E6tXe7BqlXM2b1+4oDBrlp5SpSz06uU6Sa5n\nTwMlSliYNUtfoO+Cu/rzT41dJ5JRVZg0yRNFUV3+ZOl+SHIWd3nqKQsLFlg7HXXr5s2vv957gjaZ\nrKNCLVjgwcCBnoSG+vDww35ERvowerQnq1d7YDJBRISRb7+FJUvSc50QorB06mTirbcMHD+u5bXX\nvO9rxLT167UsW+bBY4+Zeeutwj2IaDTWoT09PVWGDfN0ylnGPv5YT1qawjvvGOx6X2hB+flZh/W8\nds16ciGsLBaYOFHP88/70rChL998Y5+pFOPjtfz1l5YXXzTxyCOOH4DH3qRZ28XYM674eC09enjj\n7Q0rVqRRt272PxBVhTNnFPbu1fLHH1r27tWwb5+WtLSbZ9k+Pip165p57DELjz9u5rHHzJQrp6Io\njv+szGbrScj69TpefdXAhAn578F99ap1FK/LlxU2bEjLOogUdkwzZugZM8aT6GjrCG/2kldcx45p\naNzYh8qVLWzblobOOSv3t7k1ptRUePJJXzIyFP74I4VbhnhwKbb6/l27Bn36eBMfr6N8eQvXrytc\nvaoQFmbtF1JY/R5UFcLCfDhwQMP27WlUr26f35W95das7QI/HeEo4eFmPv88gzfe8CIqypsffkin\nRg0LV6/Cn39ae1Ba/2lITLzZCKPRqFSvfiMJW6hXz0z16hanPVBrtTBrVjqtWvkwb56eqlUt9OyZ\nv9vJPvjAi/PnNQwfnmnXs/s33zSwcqWOpUs9iIw0Os3IW2PG6DGbFd57z+C0n3dufH3h7bcNxMR4\n8cUXekaMKHrNqTccP67wyiveHD+upXFjE19+mU5GhkL//l5s3KgjNNSHSZMyad3a9h1H167VsX+/\nlshIY1ZiLmqk5uxiHBHX4sU6BgzwpmRJCwEBKseO3d7MXa6chcceM1Ovnpl69SzUqWO+p3tFneWz\nOn1aITzch+RkhcWL0/NMeJs2WefHrl3bzLp1aXjccleWPWLav1/D88/7ULasyrZtqXa5Pze3uHbt\n0vDCC748+aSZn35Kc7rRwHJyZ0xpadae5qmpCrt3p1KihFMcIu9JQb9/69drefNNb65fV3jzTQMj\nR2ZmnWxZLNaOiR9+6ElGhkL79kbGj8+wWQ93iwWaNfPh0CENP/+cdlsfDmc5VtiKdAgrQuLirGe0\nZcr4ERrqQ1xcwasvnTqZGDcug6QkDefPa2jUyET//pl88006+/ensHdvKvPmZdC3r5Fnnrm3xOxM\nKlRQ+frrdLRaeP11b44dy/nnce0aDB7shU6nMn16xm2J2V5q17bQt6+B06c1TJjg2DkYVRU++sha\nhpiY/E2N6ax8fKwzEaWmKnz+uesNmVoQFgt88omerl29MRrh88/T+fDDzNtaQTQa6NnTyKZNaTz6\nqJllyzwIDfXl559t03l0zRodBw9qiYw0FWrnSmcnNWcXk1tccXE6evf2vmv57NnpNplU49IlhYAA\n1ea9qZ3ts1q2TEefPt489JCFdetSCQy8e53Bgz1ZuFDP0KGZDB16d9OnvWLKyIAmTXw5eVLhp5/S\nePLJwj2Y5RTX2rU6unXzpkULI998Y/9bvAoiu5gyMqy152vXFH7/PZWgIKc4TObb/Xz/UlLg7be9\nWL3ag/LlLXz9dTp16uT+fTIaYepUPVOnWi9n9O5t4L33MvHyur9yWyzQpIkPR49q+N//Unn44dvf\nd2c7VhSU1JyLiGnTsu9haqv5gEuUsH1idkbt25sYMCCTv//W8Oqr3hjuyL3btmlZuFBPzZrmQp1/\nOz+8vKy9t1XVOnNVpgPmBDCZrNeaNRqV995zj2u0Xl7W2nNamsKnn7p/z+2TJxVatvRh9WoPGjY0\nsX59Wp6JGaxzpr/zjoHVq9OoUsXC7Nl6mjf3Yf/++ztQrF6t4/BhLW3bmu5KzEVNETjUFh0JCdl/\nnDktFzkbNsxAq1ZGfvlFx7vv3pxSMyUFBg70QqtVmTEjA70THLfr1zfTo4eBhAQtU6fav0BLlnhw\n7JiWzp2NbtUM2aWLkbJlLXz9tQcXLrhwO30eNm/WEh7uy5EjWl5/3cB336Xf84hu9epZ2LQplZ49\nDRw9qiU83IepU/X3dGuixQKTJ1tP8gYPLiIzT+VCjtpuJKcDozsdMO1Fo4FPP82gTh0z336rZ/Zs\n67XHjz7y5MwZDf37G/JVs7CX99/PpFw5CzNm6Dl40H4/67Q0633N3t5qts37rszTEwYONJCe7p61\nZ1W13pLXsaM3GRkwY0Y6Y8dm3nf/CR8fGD8+k9jYNEqWVBk/3pMXX/Th5Mn8ndisWmWtNbdrZ6JK\nlaJdawZJzm5lwIDsD46Obnp1Vb6+sGBBOqVKWYiJ8WTcOD1ff62nRg2z0w1J6e8PkyZlYDJZm7fv\nZzCV+/Hll3ouXNDwxhsGSpd2vwNqx45GKlSw1p7Pn3ef2nNqKvTq5cWYMZ6ULq2ycmUa0dG2+dI0\naWJm27ZUIiON7N6tpWnTvAcuMZuttWatVmXQIKk1gyRntxIZaWL27HRq1jSj06nUrGm2WWewoqps\nWZUFC9Lx9IRp0zzRaKy9sz0d2zk6W2FhZtq1M/Lnn1q+/LLwexlfuqQwc6aewEBrr3F3pNdba8+Z\nmQozZrhH7fnUKYVWrXxYudKDp5+2Xl+uV8+2rUABATB7dgazZ6fj4QFDh3rRubN3jpcHfvxRx9Gj\nWtq3NxXqhDeuRJKzm4mMNLF1axrnzqWwdWuaJGYbeOwxCzNnZuDhoTJokIHHHnOe5uw7jR6dScmS\nFiZM8OSDDzw5erTwfuJTp+q5fl1h0CAD/jl3OnV5UVFGKla0sGCBB+fOuXbteft2Lc8/78uhQ1q6\ndzfw/ffphTq7WWSkie3bUwkNNWUNXHLnmPC31poHDpRa8w2SnIXIhzZtTBw9msI77zh3DbFECZWZ\nMzPw8VGZNUtPo0a+tGzpw7ffepCSYrvX+ftvhfnzPahY0UK3bvkbTc1VeXjAkCGZGAwKzZr50LGj\nN+PH61m9Wsfp04pdxpkuKFWFWbM86NDBm5QUmDIlg48/zrRLh8YyZVRiY9MZPz6D9HSFnj296dPH\ni2vXrM//8IOOY8e0REUZqVTJBd5MO3HBAfaEcAxXGVylWTMzf/2VSny8jm+/9WDrVi27d3vx/vue\nvPSSkU6djDzxhKVAA4VMmOCJ0agwYoRzNvHbWrt2Jv7808D69To2bbL+uyEw0EKdOtaR8erWtVC7\ntpkHH1SdZiCW9HQYNMiL77/3IDjYwrx56Tz1lH1bf24MXBIaaqJPH2+WLfPgl1+0TJuWwZQpenQ6\n1en6cTiaDELiYtwxLompcJ0+rbB0qQdLlnhw5oy1sax6dTOdOhlp3950T7fNBAX5s2lTKmFhvtSt\nayY+Ps3l732/188qKY5xP4cAABOtSURBVElh/37r5C779mn46y8t//xz+5vwwAMqtWubqVPHQt26\nZurUMfPQQ/YbJ+BGTGfOKHTv7s2+fVoef9zM/PnpDu+4ZzRax2T45BPrwCUAXboY+OSTvJu0nel3\nZQu5DUIiydnFuGNcEpN9mM3Wa46LF3uwdq0Og0HBw0MlIsJE585GQkPNaPMYgTEoyJ/QUBPbt+tY\nvjyNxo2dY8KNgrDFZ3XlClnJ2vq/lpMnb8/E/v4qdeqYqV37RsK2UKWKpVASdlCQPytXpvHaa14k\nJWno3Nk625oztXLs3auhTx/rxDFbt6ZSsWLeqcgZf1cFIcnZjbhjXBKT/V26pLB8uY7Fiz04fNia\nkcuVsxAdbaRjR2OOB8q9e/0JD4fnnjPx3Xfp9ixyoSmsz+raNdi//2btev9+DcePa1DVm+3dvr4q\nlSpZ8PICLy8VvR48PVW8vLjjbxVPT+vIZZ6e1vW8vKzLsvv74EFfhg61foZjx2bSvbvRaZrZb2U0\nWgf2ye/UnM7+u7pXkpzdiKPiiovTMW2anoQEDdWqWRgwwGCznuDu+Fm5Skyqaq3BfPutB3FxHqSk\nKCiKSqNGZrp0MdKihSmrtmWxQESEP3/9pbJxYxq1aztvr/V7Yc/PKiUFDhy4mbD37dNw+rQGgwFM\nJttmz5IlLcybl0H9+q7funGDq/yu8kvmcxYFcueEGocPa/97LPdQuzpFsQ69WK9eJh99lMmqVdZO\nZNu369i+XUdAgEq7dkY6dzZy8KCGP/+0do5yl8Rsb35+1uFWrQnz9l7uJhNkZoLBAJmZChkZYDAo\nZGZyx98KBoN1WWbmjb+tz1n/KRQvric6Oo1y5Zyi7iXug9ScXYwj4goN9clq+rxVzZpmtm5NK/D+\n3fGzcvWYjh3TsHixB7GxOpKSrBdF9XoVUPjll5R8XR90Fa7+WWXHHWMC94tLZqUSBSITahQ9Vata\niInJ5K+/Upk/P53mzU2YTDB0KG6VmIVwVtKsLfJUrZol25qzTKjh/jw8oFUrE61amUhPhwoV/ElK\ncnSphHB/UvUReZIJNQSAtzdO2eNXCHckyVnkSSbUEEII+8pXs/a4ceP466+/UBSFESNGUKdOnazn\nmjZtSunSpdH+N3rB5MmTKVWqVK7bCNcTGWmSZCyEEHaSZ3LetWsXp06dIjY2lhMnTjBixAhiY2Nv\nW2fOnDn4+vre0zZCCCGEyF6ezdo7d+4kLCwMgCpVqnD16lVS8pje5n62EUIIIYRVnsk5KSmJgFvG\nVgsMDCQxMfG2dWJiYujYsSOTJ09GVdV8bSNEXJx1fledznovdVyc3DwghBBwH7dS3TlmSb9+/WjU\nqBHFixenT58+xMfH57lNdgICfNDp8hh1/x7ldoO3K3OHuJYuhd69bz6+MepYsWIQHe24ctmSO3xO\n2XHHuCQm1+Gucd0pz+QcHBxM0i03Nl68eJGgoKCsxy+99FLW340bNyYhISHPbbKTnFzwkaZu5W4j\nydzgLnF99JEPcPfJ2OjRZpo1s+13wRHc5XO6kzvGJTG5DneLq0AjhDVs2DCrNnzw4EGCg4Px+2/W\n+evXr9OzZ08MBuv9rr///jtVq1bNdRshQEYdE0KI3ORZc65Xrx4hISFER0ejKAoxMTGsWLECf39/\nmjdvTuPGjYmKisLT05OaNWsSERGBoih3bSPErWTUMSGEyJlMfOFi3CWuO2e6usFdBjdxl8/pTu4Y\nl8TkOtwtLpn4Qjid20cdQ0YdE0KIW8i9K8Jhbow6Zj0bdv1OYEIIYStScxZCCCGcjCRn4VZuDGxS\npsz/t3f3MVXVfxzA3xcuSFdRuXjvxVakY5LisrA0FQWfDXr0nwbbHbZRioqAkxBZCPtZokJOopZC\n9GDWYhE5ethgPW2OeMocBbYZujHK4lnzloXczu8PxonrfeLhnnvPOXu/trbOOZzr97vvOfdzz/d8\nvt/vDE5sQkSKxW8uUo3bk8xGJzYB+C6biJSFT86kGidOBDrcX1LieD8RkVwxOJNqcGITIlILfmuR\najibwIQTmxCR0jA4k2pkZg453J+R4Xg/EZFcMTiTathObCJwYhMiUixma5OqjE5sQkSkZHxyJhoH\njp8mIm/iNwyRGxw/TUTexidnIjc4fpqIvI3BmcgNjp8mIm/jtwuRGxw/TUTexuBM5AbHTxORtzE4\nE7nB8dNE5G3M1iYaBynGT3/8sRYnTgTi0iU/REb+i8zMIQZ8IgLA4EzkExyeRUSusFubyAc4PIuI\nXGFwJvIBDs8iIlf4TUDkAxyeRUSuMDgT+YBUw7M4BziROvDOJfKBkaSvmygp+S9bOyNjatnaTDIj\nUo9xBefDhw+jtbUVGo0Gubm5WLJkiXissbERx48fh5+fH+bPn4+XXnoJLS0tyMjIwIIFCwAAkZGR\nyMvLk6YGRArl6eFZrpLMGJyJlMVtcG5ubkZnZycqKytx+fJl5ObmorKyUjx+8OBBnD59GmFhYUhP\nT8e5c+cQFBSE5cuX45VXXpG08ET0HyaZEamH27u2oaEBGzduBABERETg+vXrsFgs4vHq6mqEhYUB\nAPR6PQYHByUqKhG5wiQzIvVwG5z7+voQEhIibuv1evT29orbM2bMAAD09PSgvr4ecXFxAICOjg6k\npqYiKSkJ9fX1ni43Ed1GyjnARxPNtFow0YzICyZ8hwmCYLevv78fqampyM/PR0hICObNm4e0tDTE\nx8ejq6sLycnJqKurQ2Cg8wkWQkJ00Gr9J1oclwyGYI9+nlyosV6s09Rt3w7MnAkUFgIXLwJRUcCB\nA0Bi4h3uT3bhgw+AHTv+2x5NNJs5E0hMnGKhZYLXn3KotV63cxucjUYj+vr6xO2enh4YDAZx22Kx\n4LnnnkNmZiZWr14NADCZTEhISAAAhIeHY86cOeju7sbdd9/t9N8ZHPxr0pVwxGAIRm/vDY9+phyo\nsV6sk+ds2DDy31hjOrom5X//0wGw/+F86JAVGzZ49r71BV5/yqG2ern6oeG2WzsmJga1tbUAgPb2\ndhiNRrErGwCOHDmCbdu2ITY2VtxXU1ODiooKAEBvby/6+/thMpkmXQEi8h0mmhF5n9sn56VLl2Lx\n4sVITEyERqNBfn4+qqurERwcjNWrV+Ps2bPo7OxEVVUVAOCxxx7Do48+iqysLHz55Ze4desWCgoK\nXHZpE5F8RUb+i59+sn9yZqIZkXTG9c45KyvLZnvhwoXi/7e1tTk85+TJk1MoFhHJRWbmkM3kJqM8\nMZsZl8wkcowpl0Tkku1sZv6IjLRyNjMiiTE4E5Fbo7OZjSTkTD0JjLOZEbnGjA4i8jommRG5xjuB\niLxOqtnMuCoXqQWDMxF5nRSzmY2+x/7pJ39YrRrxPTYDNCkRgzMRed3WrcM4deomoqKs0GoFREVZ\ncerU1JLBXL3Hnio+kZO38QojIp/w9JKZUr3HZmY5+QKfnIlIFaR6jy3lEzmRMwzORKQKUq3KJeUT\nObvKyRkGZyJSBSneYwPSPJEzeY3cYXAmItXYunUY33zzF65eteCbb/7yyDthKZ7Ipeoq57rb6sGW\nIyJywXb60pF5wKc6fakUXeVMXFMXBmciIjc8nVkuxUpfnBJVXditTUTkZVJ0lUs5JaoUyWtMiHON\nwZmIyMukSF6TckpUTyevSZkQp5agz+BMROQDnk5ek2oomRTJa1ImxEkR9H0R8BmciYhUwPZpHB4b\nSiZFd7lUXfBSBH1fDXtjcCYiUonRp/Fbt+CxoWRSdJdL1QUvRdD31QxxDM5EROSUFN3lUnXBSxH0\nfbX2OIMzERE5JUXymlSzuUkR9KV6yndHmWlsRETkNZ4e5y3lZ3p6wpjMzCGbyV1GTfUp3x0GZyIi\nUg1PB30pAv54MDgTERG5IMVTvjt850xERCQzDM5EREQyM65u7cOHD6O1tRUajQa5ublYsmSJeOzb\nb7/F8ePH4e/vj9jYWOzevdvtOUREROSc2+Dc3NyMzs5OVFZW4vLly8jNzUVlZaV4/MUXX0RFRQVM\nJhPMZjO2bNmCgYEBl+cQERGRc26Dc0NDAzZu3AgAiIiIwPXr12GxWDBjxgx0dXVh1qxZmDt3LgAg\nLi4ODQ0NGBgYcHoOERERueb2nXNfXx9CQkLEbb1ej97eXgBAb28v9Hq93TFX5xAREZFrEx5KJQjC\nhP+R8ZwTEqKDVmu/+PhUGAzBHv08uVBjvVgn5VBjvVgn5VBrvW7nNjgbjUb09fWJ2z09PTAYDA6P\ndXd3w2g0IiAgwOk5zgwO/jXhwrtiMASjt/eGRz9TDtRYL9ZJOdRYL9ZJOdRWL1c/NNx2a8fExKC2\nthYA0N7eDqPRKL47vuuuu2CxWPDLL79geHgYX3/9NWJiYlyeQ0RERK5phHH0ORcXF+O7776DRqNB\nfn4+Ll68iODgYGzatAktLS0oLi4GAGzevBkpKSkOz1m4cKG0NSEiIlKJcQVnIiIi8h7OEEZERCQz\nDM5EREQyw+BMREQkMwzOREREMsPgTEREJDMTniFMbiazYpYSHDt2DOfPn8fw8DB27NiBzZs3i8fW\nr1+PsLAw+PuPzKhWXFwMk8nkq6KOS1NTEzIyMrBgwQIAQGRkJPLy8sTjSm2rDz/8EDU1NeJ2W1sb\nLly4IG4vXrwYS5cuFbfffvttsd3k6NKlS9i1axeeeeYZmM1m/Pbbb8jOzobVaoXBYEBRURECAwNt\nzpH7CnSO6nTgwAEMDw9Dq9WiqKjIZpIkd9eqHNxep5ycHLS3t2P27NkAgJSUFKxdu9bmHLm3E2Bf\nr/T0dAwODgIArl27hgceeACHDh0S/766uholJSUIDw8HAKxatQo7d+70Sdk9TlCwpqYmYfv27YIg\nCEJHR4fw9NNP2xyPj48Xrl69KlitViEpKUn4+eeffVHMCWtoaBCeffZZQRAEYWBgQIiLi7M5vm7d\nOsFisfigZJPX2Ngo7Nmzx+lxpbbVWE1NTUJBQYHNvuXLl/uoNBP3559/CmazWXjhhReEd999VxAE\nQcjJyRE+//xzQRAE4eWXXxbee+89m3Pc3YO+5qhO2dnZwmeffSYIgiCcOXNGOHr0qM057q5VX3NU\np/379wtfffWV03Pk3k6C4LheY+Xk5Aitra02+z766CPhyJEj3iqiVym6W9vZilkAbFbM8vPzE1fM\nUoJly5ahpKQEADBz5kzcvHkTVqvVx6WSjpLbaqzXXnsNu3bt8nUxJi0wMBDl5eUwGo3ivqamJmzY\nsAEAsG7dOrt2cXUPyoGjOuXn52PLli0AgJCQEFy7ds1XxZsUR3VyR+7tBLiu15UrV3Djxg1ZPu1L\nRdHBeTIrZimBv78/dDodAKCqqgqxsbF2XaH5+flISkpCcXHxpBYj8YWOjg6kpqYiKSkJ9fX14n4l\nt9WoH374AXPnzrWbQ35oaAj79u1DYmIi3nrrLR+Vbny0Wi2CgoJs9t28eVPsxg4NDbVrF7mvQOeo\nTjqdDv7+/rBarXj//ffx+OOP253n7FqVA0d1AoAzZ84gOTkZe/fuxcDAgM0xubcT4LxeAHD69GmY\nzWaHx5qbm5GSkoJt27bh4sWLUhbRqxT/znkspQSp8friiy9QVVWFN99802Z/eno61qxZg1mzZmH3\n7t2ora3FI4884qNSjs+8efOQlpaG+Ph4dHV1ITk5GXV1dXbvL5WqqqoKW7dutdufnZ2NJ554AhqN\nBmazGQ899BDuu+8+H5Rw6sZzfynlHrRarcjOzsaKFSuwcuVKm2NKvFaffPJJzJ49G4sWLUJZWRle\nffVVHDx40OnfK6WdgJEfuOfPn0dBQYHdsfvvvx96vR5r167FhQsXsH//fnzyySfeL6QEFP3kPJkV\ns5Ti3LlzOHnyJMrLyxEcbLtyyVNPPYXQ0FBotVrExsbi0qVLPirl+JlMJiQkJECj0SA8PBxz5sxB\nd3c3AOW3FTDS/RsdHW23PykpCdOnT4dOp8OKFSsU0VZj6XQ6/P333wAct4ure1DODhw4gHvuuQdp\naWl2x1xdq3K1cuVKLFq0CMBIwujt15lS2wkAWlpanHZnR0REiIlv0dHRGBgYUM0rQEUH58msmKUE\nN27cwLFjx3Dq1Ckx+3LssZSUFAwNDQEYuXBHs0rlrKamBhUVFQBGurH7+/vFDHMltxUwErSmT59u\n92R15coV7Nu3D4IgYHh4GN9//70i2mqsVatWifdYXV0d1qxZY3NciSvQ1dTUICAgAOnp6U6PO7tW\n5WrPnj3o6uoCMPJD8fbrTIntNOrHH390unBSeXk5Pv30UwAjmd56vV7WoyEmQvELX0xmxSy5q6ys\nRGlpKebPny/ue/jhh3Hvvfdi06ZNeOedd3D27FlMmzYNUVFRyMvLg0aj8WGJ3bNYLMjKysIff/yB\nW7duIS0tDf39/YpvK2Bk+NSJEyfwxhtvAADKysqwbNkyREdHo6ioCI2NjfDz88P69etlPcyjra0N\nR48exa+//gqtVguTyYTi4mLk5OTgn3/+wZ133onCwkIEBARg7969KCwsRFBQkKxXoHNUp/7+fkyb\nNk0MThERESgoKBDrNDw8bHetxsXF+bgm/3FUJ7PZjLKyMtxxxx3Q6XQoLCxEaGioYtoJcFyv0tJS\nlJaW4sEHH0RCQoL4tzt37sTrr7+O33//Hc8//7z4A1iuQ8QmQ/HBmYiISG0U3a1NRESkRgzORERE\nMsPgTEREJDMMzkRERDLD4ExERCQzDM5EREQyw+BMREQkMwzOREREMvN/dx9Wj5yhN2UAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "eGq4v2ZIsl84", + "colab_type": "code", + "outputId": "d77c597c-61fa-4cbb-80ae-7396dbb762f7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "#法2\n", + "# 載入weights\n", + "weight_path = os.path.join(tempfile.gettempdir(), 'saved_ResNet_wt.h5')\n", + "model.load_weights(weight_path)\n", + "\n", + "# Evaluate \n", + "x_test = x_test.astype('float32')\n", + "x_test /= 255\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "scores = model.evaluate(x_test, y_test, verbose=1)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "10000/10000 [==============================] - 12s 1ms/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "tQWe-kwLsr7_", + "colab_type": "code", + "outputId": "6824afa4-a13b-4fbd-cb42-2b165423bc42", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "#法2\n", + "print('Test loss:', scores[0])\n", + "print('Test accuracy:', scores[1])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Test loss: 0.5754121539831162\n", + "Test accuracy: 0.8257\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "hPYY48GItsOS", + "colab_type": "code", + "outputId": "2e5a11e4-3476-44a7-8562-b2e868c98ea7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + } + }, + "cell_type": "code", + "source": [ + "! ls -al \"/tmp/\"" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total 321512\n", + "drwxrwxrwt 1 root root 4096 Nov 15 08:37 .\n", + "drwxr-xr-x 1 root root 4096 Nov 15 04:31 ..\n", + "-rw-r--r-- 1 root root 329217080 Nov 15 09:01 saved_ResNet_wt.h5\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "BIf4lJEWt-8A", + "colab_type": "code", + "outputId": "0f6f7254-f0f6-4ec2-e63e-a0ae70ff5d81", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "weight_path" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'/tmp/saved_ResNet_wt.h5'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 40 + } + ] + }, + { + "metadata": { + "id": "e4UzAMkjuLu-", + "colab_type": "code", + "outputId": "375dad34-65fd-47ba-f4c4-af32d5ef5ee2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "! date '+%A %d %m %Y %X'" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Thursday 15 11 2018 09:37:36 AM\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Ik-nYylStU0_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "" + ] + }, + { + "metadata": { + "id": "2WmFrFFXr0_N", + "colab_type": "code", + "outputId": "9aab96c2-b80f-4c1f-8c5c-63e22f80eec5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 8106 + } + }, + "cell_type": "code", + "source": [ + "#法1\n", + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "\n", + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model, to_file='model_ResNet.png')\n", + "from google.colab import files\n", + "files.download('model_ResNet.png')\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "images (InputLayer) (None, 32, 32, 3) 0 \n", + "_________________________________________________________________\n", + "conv2d_15 (Conv2D) (None, 32, 32, 128) 3584 \n", + "_________________________________________________________________\n", + "batch_normalization_18 (Batc (None, 32, 32, 128) 512 \n", + "_________________________________________________________________\n", + "activation_18 (Activation) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "conv2d_16 (Conv2D) (None, 32, 32, 128) 147584 \n", + "_________________________________________________________________\n", + "dropout_21 (Dropout) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_19 (Batc (None, 32, 32, 128) 512 \n", + "_________________________________________________________________\n", + "activation_19 (Activation) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "conv2d_17 (Conv2D) (None, 32, 32, 128) 147584 \n", + "_________________________________________________________________\n", + "dropout_22 (Dropout) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_20 (Batc (None, 32, 32, 128) 512 \n", + "_________________________________________________________________\n", + "activation_20 (Activation) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "max_pooling2d_7 (MaxPooling2 (None, 16, 16, 128) 0 \n", + "_________________________________________________________________\n", + "dropout_23 (Dropout) (None, 16, 16, 128) 0 \n", + "_________________________________________________________________\n", + "conv2d_18 (Conv2D) (None, 16, 16, 256) 295168 \n", + "_________________________________________________________________\n", + "dropout_24 (Dropout) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_21 (Batc (None, 16, 16, 256) 1024 \n", + "_________________________________________________________________\n", + "activation_21 (Activation) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "conv2d_19 (Conv2D) (None, 16, 16, 256) 590080 \n", + "_________________________________________________________________\n", + "dropout_25 (Dropout) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_22 (Batc (None, 16, 16, 256) 1024 \n", + "_________________________________________________________________\n", + "activation_22 (Activation) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "conv2d_20 (Conv2D) (None, 16, 16, 256) 590080 \n", + "_________________________________________________________________\n", + "dropout_26 (Dropout) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_23 (Batc (None, 16, 16, 256) 1024 \n", + "_________________________________________________________________\n", + "activation_23 (Activation) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "conv2d_21 (Conv2D) (None, 16, 16, 256) 590080 \n", + "_________________________________________________________________\n", + "dropout_27 (Dropout) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_24 (Batc (None, 16, 16, 256) 1024 \n", + "_________________________________________________________________\n", + "activation_24 (Activation) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "max_pooling2d_8 (MaxPooling2 (None, 8, 8, 256) 0 \n", + "_________________________________________________________________\n", + "dropout_28 (Dropout) (None, 8, 8, 256) 0 \n", + "_________________________________________________________________\n", + "conv2d_22 (Conv2D) (None, 8, 8, 512) 1180160 \n", + "_________________________________________________________________\n", + "dropout_29 (Dropout) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_25 (Batc (None, 8, 8, 512) 2048 \n", + "_________________________________________________________________\n", + "activation_25 (Activation) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "conv2d_23 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "dropout_30 (Dropout) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_26 (Batc (None, 8, 8, 512) 2048 \n", + "_________________________________________________________________\n", + "activation_26 (Activation) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "conv2d_24 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "dropout_31 (Dropout) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_27 (Batc (None, 8, 8, 512) 2048 \n", + "_________________________________________________________________\n", + "activation_27 (Activation) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "conv2d_25 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "dropout_32 (Dropout) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_28 (Batc (None, 8, 8, 512) 2048 \n", + "_________________________________________________________________\n", + "activation_28 (Activation) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "flatten_4 (Flatten) (None, 32768) 0 \n", + "_________________________________________________________________\n", + "dense_7 (Dense) (None, 512) 16777728 \n", + "_________________________________________________________________\n", + "batch_normalization_29 (Batc (None, 512) 2048 \n", + "_________________________________________________________________\n", + "activation_29 (Activation) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dropout_33 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dense_8 (Dense) (None, 10) 5130 \n", + "=================================================================\n", + "Total params: 27,422,474\n", + "Trainable params: 27,414,538\n", + "Non-trainable params: 7,936\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140282755681584\n\nimages: InputLayer\n\ninput:\n\noutput:\n\n(None, 32, 32, 3)\n\n(None, 32, 32, 3)\n\n\n\n140284940926648\n\nconv2d_15: Conv2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 3)\n\n(None, 32, 32, 128)\n\n\n\n140282755681584->140284940926648\n\n\n\n\n\n140282755681920\n\nbatch_normalization_18: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140284940926648->140282755681920\n\n\n\n\n\n140282755681416\n\nactivation_18: Activation\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282755681920->140282755681416\n\n\n\n\n\n140282755337576\n\nconv2d_16: Conv2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282755681416->140282755337576\n\n\n\n\n\n140282755230632\n\ndropout_21: Dropout\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282755337576->140282755230632\n\n\n\n\n\n140282754936504\n\nbatch_normalization_19: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282755230632->140282754936504\n\n\n\n\n\n140282754933592\n\nactivation_19: Activation\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282754936504->140282754933592\n\n\n\n\n\n140282754508560\n\nconv2d_17: Conv2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282754933592->140282754508560\n\n\n\n\n\n140282754229976\n\ndropout_22: Dropout\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282754508560->140282754229976\n\n\n\n\n\n140282753418184\n\nbatch_normalization_20: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282754229976->140282753418184\n\n\n\n\n\n140282753578432\n\nactivation_20: Activation\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 32, 32, 128)\n\n\n\n140282753418184->140282753578432\n\n\n\n\n\n140282753578040\n\nmax_pooling2d_7: MaxPooling2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 128)\n\n(None, 16, 16, 128)\n\n\n\n140282753578432->140282753578040\n\n\n\n\n\n140282753316960\n\ndropout_23: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 128)\n\n(None, 16, 16, 128)\n\n\n\n140282753578040->140282753316960\n\n\n\n\n\n140282752337568\n\nconv2d_18: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 128)\n\n(None, 16, 16, 256)\n\n\n\n140282753316960->140282752337568\n\n\n\n\n\n140282752514480\n\ndropout_24: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282752337568->140282752514480\n\n\n\n\n\n140282752111560\n\nbatch_normalization_21: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282752514480->140282752111560\n\n\n\n\n\n140282752249808\n\nactivation_21: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282752111560->140282752249808\n\n\n\n\n\n140282751829496\n\nconv2d_19: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282752249808->140282751829496\n\n\n\n\n\n140282751571952\n\ndropout_25: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282751829496->140282751571952\n\n\n\n\n\n140282751686528\n\nbatch_normalization_22: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282751571952->140282751686528\n\n\n\n\n\n140282750764928\n\nactivation_22: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282751686528->140282750764928\n\n\n\n\n\n140282750766720\n\nconv2d_20: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282750764928->140282750766720\n\n\n\n\n\n140282750247880\n\ndropout_26: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282750766720->140282750247880\n\n\n\n\n\n140282750249448\n\nbatch_normalization_23: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282750247880->140282750249448\n\n\n\n\n\n140282750086448\n\nactivation_23: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282750249448->140282750086448\n\n\n\n\n\n140282749823688\n\nconv2d_21: Conv2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282750086448->140282749823688\n\n\n\n\n\n140282749558624\n\ndropout_27: Dropout\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282749823688->140282749558624\n\n\n\n\n\n140282749312136\n\nbatch_normalization_24: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282749558624->140282749312136\n\n\n\n\n\n140282748393456\n\nactivation_24: Activation\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 16, 16, 256)\n\n\n\n140282749312136->140282748393456\n\n\n\n\n\n140282748393064\n\nmax_pooling2d_8: MaxPooling2D\n\ninput:\n\noutput:\n\n(None, 16, 16, 256)\n\n(None, 8, 8, 256)\n\n\n\n140282748393456->140282748393064\n\n\n\n\n\n140282757548632\n\ndropout_28: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 256)\n\n(None, 8, 8, 256)\n\n\n\n140282748393064->140282757548632\n\n\n\n\n\n140282748124744\n\nconv2d_22: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 256)\n\n(None, 8, 8, 512)\n\n\n\n140282757548632->140282748124744\n\n\n\n\n\n140282756763776\n\ndropout_29: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282748124744->140282756763776\n\n\n\n\n\n140282756765568\n\nbatch_normalization_25: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282756763776->140282756765568\n\n\n\n\n\n140282757000328\n\nactivation_25: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282756765568->140282757000328\n\n\n\n\n\n140282757331488\n\nconv2d_23: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282757000328->140282757331488\n\n\n\n\n\n140282756151840\n\ndropout_30: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282757331488->140282756151840\n\n\n\n\n\n140282748239488\n\nbatch_normalization_26: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282756151840->140282748239488\n\n\n\n\n\n140282746456328\n\nactivation_26: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282748239488->140282746456328\n\n\n\n\n\n140282745785928\n\nconv2d_24: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282746456328->140282745785928\n\n\n\n\n\n140282745532992\n\ndropout_31: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282745785928->140282745532992\n\n\n\n\n\n140282745533272\n\nbatch_normalization_27: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282745532992->140282745533272\n\n\n\n\n\n140282745385872\n\nactivation_27: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282745533272->140282745385872\n\n\n\n\n\n140282744851872\n\nconv2d_25: Conv2D\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282745385872->140282744851872\n\n\n\n\n\n140282745233024\n\ndropout_32: Dropout\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282744851872->140282745233024\n\n\n\n\n\n140282744468984\n\nbatch_normalization_28: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282745233024->140282744468984\n\n\n\n\n\n140282744034808\n\nactivation_28: Activation\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 8, 8, 512)\n\n\n\n140282744468984->140282744034808\n\n\n\n\n\n140282744035816\n\nflatten_4: Flatten\n\ninput:\n\noutput:\n\n(None, 8, 8, 512)\n\n(None, 32768)\n\n\n\n140282744034808->140282744035816\n\n\n\n\n\n140282743909792\n\ndense_7: Dense\n\ninput:\n\noutput:\n\n(None, 32768)\n\n(None, 512)\n\n\n\n140282744035816->140282743909792\n\n\n\n\n\n140282743088352\n\nbatch_normalization_29: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 512)\n\n\n\n140282743909792->140282743088352\n\n\n\n\n\n140282743090984\n\nactivation_29: Activation\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 512)\n\n\n\n140282743088352->140282743090984\n\n\n\n\n\n140282743090144\n\ndropout_33: Dropout\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 512)\n\n\n\n140282743090984->140282743090144\n\n\n\n\n\n140282743090424\n\ndense_8: Dense\n\ninput:\n\noutput:\n\n(None, 512)\n\n(None, 10)\n\n\n\n140282743090144->140282743090424\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 24 + } + ] + }, + { + "metadata": { + "id": "af33HEm3gO_7", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hOqDcmmmszJz", + "colab_type": "code", + "outputId": "b9ca7bac-3e09-4db4-989c-8305d29056aa", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 745 + } + }, + "cell_type": "code", + "source": [ + "#法1\n", + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=5,\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath= os.path.join(tempfile.gettempdir(), 'saved_ResNet_wt.h5'),\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " )\n", + "]\n", + "\n", + "history = model.fit(x_train, y_train, batch_size = 128, validation_split = 0.2, epochs = 40, callbacks = callbacks_list)\n", + " \n", + "\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 40000 samples, validate on 10000 samples\n", + "Epoch 1/40\n", + "40000/40000 [==============================] - 145s 4ms/step - loss: 1.7281 - acc: 0.4000 - val_loss: 2.3659 - val_acc: 0.3231\n", + "Epoch 2/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 1.1927 - acc: 0.5826 - val_loss: 1.2764 - val_acc: 0.5719\n", + "Epoch 3/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.9021 - acc: 0.6867 - val_loss: 1.1411 - val_acc: 0.6293\n", + "Epoch 4/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.7311 - acc: 0.7449 - val_loss: 0.8386 - val_acc: 0.7321\n", + "Epoch 5/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.6148 - acc: 0.7828 - val_loss: 0.7884 - val_acc: 0.7549\n", + "Epoch 6/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.5264 - acc: 0.8166 - val_loss: 0.7058 - val_acc: 0.7854\n", + "Epoch 7/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.4577 - acc: 0.8405 - val_loss: 0.7346 - val_acc: 0.7726\n", + "Epoch 8/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.3974 - acc: 0.8620 - val_loss: 1.0365 - val_acc: 0.7171\n", + "Epoch 9/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.3523 - acc: 0.8754 - val_loss: 0.6872 - val_acc: 0.7942\n", + "Epoch 10/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.3045 - acc: 0.8945 - val_loss: 0.7818 - val_acc: 0.7895\n", + "Epoch 11/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.2701 - acc: 0.9041 - val_loss: 0.6858 - val_acc: 0.8086\n", + "Epoch 12/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.2354 - acc: 0.9183 - val_loss: 0.7061 - val_acc: 0.8106\n", + "Epoch 13/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.2046 - acc: 0.9292 - val_loss: 0.6286 - val_acc: 0.8275\n", + "Epoch 14/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.1885 - acc: 0.9350 - val_loss: 0.5817 - val_acc: 0.8390\n", + "Epoch 15/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.1637 - acc: 0.9427 - val_loss: 0.7174 - val_acc: 0.8237\n", + "Epoch 16/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.1511 - acc: 0.9477 - val_loss: 0.7486 - val_acc: 0.8185\n", + "Epoch 17/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.1331 - acc: 0.9535 - val_loss: 0.6976 - val_acc: 0.8251\n", + "Epoch 18/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.1209 - acc: 0.9579 - val_loss: 0.7877 - val_acc: 0.8234\n", + "Epoch 19/40\n", + "40000/40000 [==============================] - 129s 3ms/step - loss: 0.1029 - acc: 0.9649 - val_loss: 0.8268 - val_acc: 0.8156\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "D9kBoSiwRsfJ", + "colab_type": "code", + "outputId": "3fe3b0bf-a774-42e4-c57e-50397a707916", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 708 + } + }, + "cell_type": "code", + "source": [ + "#法1\n", + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VFXixvHvnZl0AiSQ0EQFJCBR\npKiAqBFIqLKKNa4UVxRWYRF/sIisGBuICAo2RLCDCmJiWZEmoK7STBClCYIgFiChh9SZub8/hgyE\nVCDJlLyf5+FJ5t6ZO+fMZHjn3HPuOYZpmiYiIiJS5SyeLoCIiEh1pRAWERHxEIWwiIiIhyiERURE\nPEQhLCIi4iEKYREREQ9RCIvXSUpKomfPnvTs2ZPY2Fi6dOnivp2ZmXlGx+rZsycZGRml3mfq1Km8\n//7751LkCnfXXXeRnJxcIcdq0aIFe/fuZenSpTz88MPn9Hzz5893/16e11ZESmfzdAFETvf444+7\nf+/atSuTJ0/m8ssvP6tjLVq0qMz7jBo16qyO7WsSEhJISEg468enp6cze/ZsbrvtNqB8r62IlE4t\nYfE5AwYM4Pnnn6dXr16kpaWRkZHB4MGD6dmzJ127duXNN99037egFbhmzRpuv/12pk6dSq9eveja\ntStr164FYOzYsbzyyiuAK/Q/+OADbrnlFq6++momTZrkPtarr75Kp06duPnmm5k7dy5du3Yttnwf\nfvghvXr1onv37tx555388ccfACQnJzNixAjGjRtHjx496N27N9u3bwdgz5493HrrrcTHxzNq1Cgc\nDkeR43711Vf07du30LYbbriBr7/+utTXoEBycjJ33XVXmc/35Zdf0rdvX3r06MFNN93Eli1bAEhM\nTOTPP/+kZ8+e5OXluV9bgHfeeYfevXvTs2dP7rvvPg4ePOh+bV944QX+8Y9/0KVLF/7xj3+QnZ1d\npGzZ2dmMHDmSHj160LVrV5555hn3vj179nDnnXeSkJDAzTffzKZNm0rd3rVrV77//nv34wtu//77\n71x99dVMnDiR/v37l1pXgNdee41u3brRo0cPnn76aRwOB507d+ann35y32fOnDncf//9ReojUl4K\nYfFJGzdu5PPPP6ddu3bMmDGD8847j0WLFvH2228zdepU/vrrryKP2bx5M5dddhlffPEFf//735kx\nY0axx163bh3z5s3jo48+Ys6cOezdu5ft27cze/ZsPvnkE957770SW4EHDhzgiSee4M0332TJkiWc\nf/757oAH+Prrr/n73//O4sWL6dChA2+//TYAU6ZMoVOnTixbtoxBgwaRlpZW5NidOnVi79697Nmz\nB3CF0N69e7nqqqvK/RoUKOn57HY7Y8eO5cknn2Tx4sWFAnHixIk0aNCARYsWERgY6D7WDz/8wOuv\nv867777LokWLaNiwIVOnTnXvX7RoEc8//zxLly7l4MGDLF26tEh53n//fY4fP86iRYtISUkhOTnZ\nHaTjx4+nT58+LF26lPvuu48xY8aUur00hw8f5uKLL2bOnDml1vX7779nwYIFfPLJJ3z22Wekpqay\nZMkSevXqxX//+1/38ZYuXUqfPn3KfF6RkiiExSfFxcVhsbj+fB955BHGjx8PQOPGjYmKiuL3338v\n8piwsDDi4+MBiI2N5c8//yz22H379sVqtVKvXj3q1KnDX3/9xbp167jyyiuJjo4mKCiIm2++udjH\n1qlTh9TUVOrXrw/A5Zdf7g5NgGbNmnHJJZcA0KpVK3dQfv/99/Tu3RuA1q1b07Rp0yLHDgwMpEuX\nLixfvhyAZcuWER8fj81mK/drUKCk57PZbHz33Xe0adOm2PIXZ+XKlfTo0YM6deoAcOutt/Ltt9+6\n98fFxVG7dm1sNhsxMTHFfjm4++67eeWVVzAMg1q1atG8eXN+//13cnNzWbNmDddffz0A3bp1Y/78\n+SVuL0t+fr77lHxpdf3666+Ji4ujRo0aBAYG8u6779K9e3f69OnDwoULcTqdHD58mI0bN9KlS5cy\nn1ekJOoTFp9Uq1Yt9+8//fSTu+VnsVhIT0/H6XQWeUx4eLj7d4vFUux9AGrUqOH+3Wq14nA4OHr0\naKHnrFevXrGPdTgcvPDCCyxfvhyHw8Hx48dp0qRJsWUoODbAkSNHCj1vzZo1iz1+jx49eOeddxg0\naBDLli1znwot72tQoLTne/fdd0lJSSEvL4+8vDwMwyjxOAAHDx4kOjq60LEOHDhQZp1PtWvXLiZN\nmsTOnTuxWCzs3buXm266icOHD+N0Ot3HMAyDsLAw9u3bV+z2slit1kL1Lqmuhw4dKlSnkJAQANq2\nbUtAQABr165l7969XH311YSGhpb5vCIlUUtYfN6///1vevToweLFi1m0aBEREREV/hw1atQgKyvL\nfXv//v3F3m/hwoUsX76cOXPmsHjxYkaMGFGu49esWbPQyO+CPtXTXXPNNWzdupVdu3axa9cuOnbs\nCJz5a1DS86WlpTFr1ixmzJjB4sWLeeqpp8ose926dTl8+LD79uHDh6lbt26ZjzvVE088QfPmzfni\niy9YtGgRLVu2BCAiIgLDMDh06BAApmmye/fuErebplnkC9aRI0eKfc7S6hoREeE+NrhCueB2nz59\nWLRoEYsWLXKfTRA5Wwph8XkHDhzgkksuwTAMUlJSyM7OLhSYFaF169asWbOGgwcPkpeXx8cff1xi\nWRo1akRkZCSHDh3iiy++4Pjx42Uev02bNu6+0rS0NH777bdi7xcYGMjVV1/Ns88+S7du3bBare7n\nPZPXoKTnO3jwIHXq1KFhw4ZkZ2eTkpJCVlYWpmlis9nIysrCbrcXOtZ1113H0qVL3SH1wQcfEBcX\nV2adT3XgwAEuvvhirFYr3377Lbt37yYrK4vAwEA6d+5MSkoKAN988w1DhgwpcbthGERFRbF161bA\n9aUoNze32Ocsra5du3Zl+fLlHDlyBLvdzrBhw/jf//4HwPXXX8+yZctYv379GddT5HQKYfF5Dzzw\nAMOGDaNv375kZWVx++23M378+BKD7Gy0bt2afv360a9fPwYOHFhiP+D111/P4cOHSUhIYNSoUYwc\nOZK9e/cWGmVdnH//+9+sWLGC+Ph45s6dy1VXXVXifXv06MGyZcvo1auXe9uZvgYlPd8111xDdHQ0\n8fHx3H333QwaNIjw8HBGjBhBixYtqFWrFp07dy7Un966dWuGDBnCnXfeSc+ePTl27BgPPvhgqfU9\n3X333cczzzzD9ddfz9q1axk+fDgvvvgiqampTJgwgRUrVtCtWzemTZvGlClTAErcfv/99/PWW29x\n/fXXs2PHDi666KJin7O0urZp04bBgwdz44030qdPH1q1auXuf27RogW1a9fm6quvJjg4+IzqKXI6\nQ+sJi5SPaZruPsOVK1cybdq0ElvE4t/uvfde+vfvr5awnDO1hEXK4eDBg3Ts2JE//vgD0zT54osv\n3KNqpXpJTU3ljz/+4JprrvF0UcQPaHS0SDlERkYycuRI7rrrLgzDoGnTpuW6LlX8y8MPP0xaWhrP\nPvus+xI5kXOh09EiIiIeoq9yIiIiHqIQFhER8ZAq7xNOTz9WoceLiAjl0KGKvSbU2/h7Hf29fuD/\ndVT9fJ+/19HT9YuKCi92u8+3hG02q6eLUOn8vY7+Xj/w/zqqfr7P3+vorfXz+RAWERHxVQphERER\nD1EIi4iIeIhCWERExEMUwiIiIh6iEBYREfEQhbCIiIiHaAEH4MUXn+fnn7dw8OABcnJyaNiwETVr\n1mLixGfLfOzChZ8RFlaDuLji15edPn0qt96aSMOGjSq62CIi4uOqfAGHipgxKyXFxrRpgWzbZqFV\nK4Phw7Pp189+zsdduPAzdu7cwfDhI8/5WBUpKiq8wmca8yb+Xj/w/zqqfr7P3+tYnvqdmi0xMU5G\njsyrkGwpeP7i+FxLOCXFxtChIe7bP/3EidsVE8SnSkv7ng8+mENWVhbDhz/I+vWprFz5JU6nk06d\nOnP33UN4/fWZ1K5dmyZNmpGcPB/DsLB7969cd1037r57CMOHD+H//m8MK1Z8yfHjmfz2227++ON3\nRowYRadOnZkz5y2WLVtCw4aNsNvtJCbeSbt2l7vLsG7dGt5+exZgITw8nCeemERAQADTpk1h8+aN\nWK1W/v3vh2na9KJit4mISNlOz5YtW6yVli2n8rkQnjYtsNjt06cHVsoLtWPHL7z/fjKBgYGsX5/K\nK6/MxmKxcNttN3D77X8vdN/Nmzfx3nsf4XQ6ufXWvtx995BC+/fv38eUKS+wevV3fPLJR8TGXkJy\n8oe8//5HHD9+nMTEm0hMvLPQY44dO8aUKVMIDq7Nk08+ypo1qwgKCmL//n289tpb/PBDGl9+uZQD\nBw4U2aYQFhEpn6rOlgI+F8LbthU/lqyk7efqoouaExjoenOCg4MZPnwIVquVw4cPc/To0UL3bdGi\nJcHBwSUeq3XrNgBER0eTmZnJ77/voWnTZgQFBRMUFMzFF8cWeUzt2rV55JFHyMnJ488//6B9+ys4\ndOggl156GQBt2rSjTZt2zJ37dpFtIiL+qDJOG1d1thTwuRCOiXGyZUvRibhjYpyV8nwBAQEA7N37\nF/PmzeWNN+YSGhrKgAG3Fbmv1Vr6BOGn7jdNE9MEi+XkG2wYRR/z9NNP8vrrs6hZM5rnnnsGAIvF\nimkWrm9x20RE/E1lnTau6mwp4HOXKI0cmVfs9gceKH57RTl8+DARERGEhoby889b2bt3L/n5+ed0\nzAYNGrBz5w7sdjuHDh1i69YtRe5z/HgmDRo04NixY6SlpZKfn8/FF7ciLe17ALZt28rUqc8Uu01E\nxFNSUmzExYXSoEEN4uJCSUmpmDZfaaeNz4WnssXnWsKubzrZTJ9+cnT0sGGV23EO0Lx5DCEhodx3\n391cemkbbrjhJqZOfYbWrS8762NGRtYhIaEn9947kAsuaEKrVrFFWtM33XQrd9xxBw0anMeddw7k\njTdeY8aMN7jggibcf/89AIwaNZZmzS7im2++KrRNRMQTKnOQU2WdNj49W2JinDzwQMWNji6JT16i\ndCpfH1a/cOFnJCT0xGq1MnBgIs899yLR0fUK3cfX61gWf68f+H8dVT/fV5F1jIsLLfbUbqtWDlau\nzPLIsT39HpZ0iZLPnY72NwcOHGDIkEH885930717zyIBLCJSmQpOG9tsVNhp48oc5OSp08aVxedO\nR/ubAQPuYsCAuzxdDBGphnxxkJOnThtXFrWERUS8nAY5Fdavn52VK7P4889MVq7M8tkABrWERUS8\nmgY5+TeFsIiIF6vMmZwq+7SxQrdsOh0tIlJBKuO0sQY5+TeFMDB06D+KTJTx6qsv8f77c4q9f1ra\n9zzyyBgAxo79vyL7P/poHq+/PrPE5/vll+389ttuAJKSHiY3N+dsiy4iXqLgtPGWLVYcDsN92vhc\ng7ikVmlFtVZnzsymVSsHNpvrMp+ZMyt/3gU5SSEMJCT0YPnypYW2rVy5nPj47mU+dtKk5874+b76\najl79vwGwOOPP01QUMnzTYuIb/D1QU75+fj8ICdfpD5hoFu37tx332Duv38EAFu3biEqKoqoqGjW\nrVvD7NmvEhAQ4F5K8FR9+nTj88+/5Pvv1/LCC1OJjKxDnTp13UsTTpjwGOnp+8nOzubuu4dQv34D\nPvkkma++Wk5ERASPPvow77wzj8zMYzz99BPk5+djsVgYO3Y8hmEwYcJjNG16IRs3biYmpgVjx44v\n9PxLlnzBggXzsFotXHhhMx566D/Y7XaeeiqJffv+IjAwiEceeZyIiMgi26KioqvsNRbxFpW1ZqwG\nOcnZ8LoQfuyxID77rPzFsljA6Qwr9T59+9p57LHcEvdHRETSsGEjNm/eSKtWl7B8+VISEnoCrqUE\nk5KeomHDRu6lBENDQ4scY+bMlxg//kmaN49h9OgRNGzYiGPHjnLllR3p1et6/vjjd8aPH8sbb8yh\nQ4dOXHddN1q1usT9+NmzX+X662+gW7furFixjDfeeI3Bg4fy889beOmlF3A6A+nXrzfHjh0jPPzk\nzCvZ2dlMnfoi4eHhDBt2Lzt2/MLmzRupU6cOjz02gWXLFvO//32NzWYrsq1fv1vK/TqL+IPKHGms\nQU5yNrwuhD0lIaEnX365lFatLuHbb79mxow3ANdSgs888xQOh8O9lGBxIfzXX3/RvHkM4FpKMDc3\nl/DwmmzZsolPP03GMCwcPXqkxOf/+ect/POfwwFo1+5y3nprNgCNGjUmKiqK9PRj1K0bxfHjmYVC\nuGbNmjz88CgAdu/+lSNHDvPzz1u5/PIrAIiP7wHAlCmTimwTqW4qc6TxyJF5hQK+gAY5SWm8LoQf\neyy31Fbr6VzzgR4/5+eNi+vCO++8QUJCDxo3Pp+aNWsCrqUEn312Ghde2MS9lGBxTl2SsGA67qVL\nF3H06FFefnk2R48e5Z57BpRSAsP9uPx8O4bhOt7pCzqcOtV3fn4+zz03mbfeeo86deoyZszIE4+x\n4HQWnhK8uG0i1U1ljjTWaWM5GxqYdUJoaBjNmjXnnXfedJ+KBtdSgvXq1S+0lGBx6taN4rffdmGa\nJuvXpwKu5Q8bNGiIxWLhq6+Wux9rGAYOh6PQ409divCHH1Jp2fLiMsuclXUcq9VKnTp12bdvL1u3\nbsFut9OyZSvS0tYB8O233/DOO28Uu03EW1XWDFGVOdIY/GsmJ6kaCuFTJCT0ZN26NVx99bXubTfd\ndCv33TeYyZMncOedA5kz5y0OHMgo8tghQ+7nkUce4qGHHnQvwnDddV357rtveOCB+wgJCSE6Opo3\n35zFZZe1Zdq0Z/n++7Xux99zzz9ZtGghI0b8k4UL/8vgwUPLLG+tWrW54ooO3HPPQN58cxZ///sA\nXnjhObp16052djbDhw9h/vz36dXreuLjexTZJuKNKutSH9B1seJ9tJShD/D3Ovp7/cD/6+gry+CB\nK+TP9JSxv79/4P919HT9SlrK0Ov6hEWkeqvMflvQSGPxLjodLSJepbL7bUW8iUJYRLyK+m2lOlEI\ni8hZKxjFbLNRYaOYC89nbGo+Y/Fr5frETJw4kQ0bNmAYBuPGjaN169bufcuWLWPGjBkEBgbSp08f\n+vfvX2mFFRHvUZmzT6nfVqqLMlvCa9euZffu3cybN48JEyYwYcIE9z6n08mTTz7JrFmzmDt3LitW\nrGDv3r2VWmAR8Q6VtWCBSHVSZgivWrWK+Ph4AJo1a8aRI0fIzMwE4NChQ9SsWZPIyEgsFgsdO3bk\nu+++q9wSi4hXqOxRzCLVQZmfloyMDCIiIty3IyMjSU9Pd/9+/Phxdu3aRX5+PmvWrCEjo+hEFiLi\nOb46+5RIdXDGn8ZT5/YwDINJkyYxbtw4wsPDOe+888p8fEREKDZb0Qvxz0VJF0H7E3+vo7/XDzxT\nxw8+gKGnTL5W0G9bsyYkJp7bsR99FO64o+j28eOtfvl++mOdTufvdfTG+pUZwtHR0YVat/v37ycq\nKsp9+8orr+S9994DYOrUqTRq1KjU4x06dO4z3pzK07OgVAV/r6O/1w88V8cnnggFin7pffJJB926\nndtnsVs3mDmzYPYpKzExDh54II9u3eycOFnmN/Q36vs8Xb+SvgCUeTq6c+fOLF68GIBNmzYRHR1N\njRo13PvvueceDhw4QFZWFitWrKBTp04VVGQROVdVMfvUypVZ5OejBQtEzkKZLeF27doRGxtLYmIi\nhmGQlJREcnIy4eHhJCQkcNttt3H33XdjGAZDhgwhMjKyKsotIuVQmQvNi8i5K1ef8OjRowvdbtmy\npfv37t27071794otlYhUCC00L+LddC2BiB/T7FMi3k2rKIn4Oc0+JeK91BIW8RKVdT2viHgvfcpF\nvEBlzsMsIt5LLWERL6B5mEWqJ4WwiBfQPMwi1ZM+4SJeQPMwi1RPCmERLzByZPHX7ep6XhH/phAW\nOQOVNYJZ1/OKVE8aHS1STpU9glnX84pUP2oJi5STRjCLSEVTCIuUk0Ywi0hF0/8eIuWkEcwiUtEU\nwiLlpBHMIlLRFMIi5aQRzCJS0TQ6WuQMaASziFQktYRFREQ8RCEsfknLAoqIL9D/TOJ3tCygiPgK\ntYTF72hSDfEUpxP++MPA4fB0ScRXqCUsfkeTakhVycgwSEuzkJpqJTXVyvr1Vo4dM4iMdNKli4Nu\n3ex06eKgTh3T00UVL6UQFr8TE+NkyxZrsdtFzlZuLvz0k4W0NCtpaVa+/97Kb78V/mLXrJmTq6+2\ns369lY8+CuCjjwIwDJN27Zx062YnPt5O69ZOLPo+KCcohMXvjByZV6hPuIAm1ZDyMk3YtcsgNdUV\nuD/+CD/8UIO8PMN9n4gIk27d7LRr56B9ewdt2zqIiDj5+M2bLXz5pY0vv7Sydq2V1NQgJk8Oom5d\nJ127ulrJ111ndz9GqieFsPgd1+CrbKZPD2TbNgsxMU4eeCBPg7KkREeO4G7huk4rWzhw4GRz1WaD\nSy5x0r69wx26TZqYGEbxxzMMiI11Ehubx4gRruN//bWNZctcoTx/fgDz5wdgsZi0b+8kPt5Ot252\nLrlEreTqxjBNs0o7K9LTj1Xo8aKiwiv8mN7G3+vo7/UD/6+jr9Vv+3YL//uf9UTwWti+vXD3xfnn\nO2nX7mTgdu0axrFjFVM/pxM2bbK4A/n77604na40j4520q2bq5UcF2enVq0Kecpy8bX38Ex5un5R\nUeHFbldLWET8nmnCDz9YWLjQxuef2/jll5OhW6OGyTXX2N2t3HbtnERHF26bBAdDBWUwFgtceqmT\nSy/N48EH4dAh+OorVyt5+XIr778fwPvvB2C1mlxxhYP4eFcot2rlLLHl7W1M09X637PHwqFDBkFB\nEBxsEhQEQUEmISGun67tVOvWv0JYRPyS3Q6rV1v5/HMbX3xh488/Xf/Th4SY9O6dT3y8g8svd9C8\nuRNr0XF8VSYiAm680c6NN9pxOuHHHwtayTbWrLGyerWNp54KokEDJx06OKhf36RePSf16pmn/HNS\nsyZVFtKm6frysGeP5cQ/o8jvx46VvzABASbBwa5gdv0sGtYF+069X/36Tpo1c9K0qckFFzgJCqrE\nSlcShbB4TEqKjWnTAtm2DWJiQhk5Uv22cm5ycuCrr6x8/nkAS5ZYOXjQFby1apncdls+vXu7BkOF\nhnq4oCWwWKBNGydt2uQxenQeBw4YrFxpZdkyGytXWvn444ASHxscbBIdfTKUTw3oevVO7qtTxyyz\n5WmacOCAcUq4Fg3Z48eLD9mwMJPzz3fSuLHJeec5iYw0yc+HnByD3FzIzXX9zM4++fvJfa5tR49C\nbq7Ffbt8r53JeeeZJ0LZ6f7ZtKmrLN5KfcI+wB/rePqsVgX8dVUif3wPT+XJ+h09CkuX2li40NV6\nzMpy/addv76TXr3s9O5t56qrHASUnF9l8ob3z+GAvXsN9u0z2LfPwr59Bnv3Guzff/L2vn0G6emG\nu4+5ODabSVTUyVZ0dLSTqCiT7Owgtm2zs2ePwe+/W9yv4+nCw00aN3YWCtrGjQuC10nt2hXbInc6\nIS8Pd1jn5LiCOTsbfv/dwo4dFn791WDHDgs7d1rYv7/oN4yAAJNmzQwuuMBeKKCbNXNSv37JA+wq\nkvqExauUNquVP4awVKz9+w0WLXIF7zffWMnPd/0v2rSpk9698+jd2067dv410thqhUaNTBo1MoGS\nr3l3OFyTiLjCuXBAF9zev99g82YLP/xwevrYqF3bPNF6dHL++a7APe+8k8FblYPFwHV2oOA0dK1a\nBW1G18/LLiv6Ohw7Br/+anGHsiukLezYYWXr1qKRFxpq0qRJ4dZz27ZOWrSomnkFFMLiEZrVSs7U\n7t0GCxe6gnftWium6QqQSy910Lu3nT597LRo4TuDlyqL1Yq7lXvppQDFz6FpmnD4MOzbZyEjw6BZ\ns1DCwo5Rs2aVFrfChYdD69ZOWrcuHKJ164bz88+Z7NxpnBLMrqDeudPCpk0nBwYYhsnGjceJiqr8\nE8UKYfEIzWolJXH1H0JWlqs1t3ixa0RzwX+ShmHSoYMreHv3tnP++d7b3+fNDMM1KCwiwvWZi4qC\n9HQPF6oSGQbUqePqE7/iisL/z5gm7Nt38pS2YUDdulXzd6UQFo/QrFb+Y+tWC6tWwd69Nnd4Zme7\n+u9O/ZmV5erPy84++TM7++TPgvvZ7UWbsoGBrtmp+vSx06OHvUpaKFJ9GAbUr29Sv76Dzp2rdvUN\nhbB4ROFZrazExDg0q5UP+eMPg+TkABYssJ1yRqPol6rShISYJ/5BzZpQr56TkBDXKN/QUNfP8HCT\na65xEB9vJ7z4cS0iPq1cITxx4kQ2bNiAYRiMGzeO1q1bu/fNnTuXTz/9FIvFwiWXXMJ//vOfSius\n+Jd+/ez062c/MfI0y9PFkTIcOQL//W8AH31k49tvXX2yAQEmvXrl07VrAE5njjtUQ0Jc13Geersg\nYF0/q+6aVhFvVmYIr127lt27dzNv3jx27NjBuHHjmDdvHgCZmZm8/vrrLFmyBJvNxt13380PP/xA\nmzZtKr3gIlL58vLgyy9tLFhgY8kSm/uazY4d7dx8s52//S2fiAiIigogPT3fw6UV8T1lhvCqVauI\nj48HoFmzZhw5coTMzExq1KhBQEAAAQEBZGVlERoaSnZ2NrWqevy6iFQo04S1a60sWGDj008DOHTI\nFbzNmzu49VY7N92Ur8FQIhWkzBDOyMggNjbWfTsyMpL09HRq1KhBUFAQw4YNIz4+nqCgIPr06UOT\nJk1KPV5ERCg2W8XOEVfSRdD+xN/r6O/1A++v49atMGcOzJ0Lu3a5ttWvDw8+CP37Q9u2VgzDChQ/\nN6C31+9c+Xv9wP/r6I31O+OBWadOsJWZmcnMmTNZtGgRNWrUYNCgQWzdupWWLVuW+PhDhyq2788b\nZrKpbP5eR3+vH5S/jhkZBpmZEBVlEhZW+eXat8/g449tLFgQwIYNri/HYWEmt91m55Zb8rnmGod7\nXuWMjJKP4+/vob/XD/y/jp6u31nPmBUdHU3GKZ++/fv3ExUVBcCOHTto3LgxkZGRAFx++eVs3Lix\n1BAWkeLt2mXQrVuYe+L70FC8BfwwAAAgAElEQVSTunVdUwxGRTlP/Dy57dR9ZzJVYGYmfPGFK3i/\n+sq1jJ7VahIf7wreHj3sVfIFQETKEcKdO3fmxRdfJDExkU2bNhEdHU2NGjUAaNSoETt27CAnJ4fg\n4GA2btxIXFxcpRdaxN84HPCvfwVz7JhBz5755OW55gBOTzfYsMGC3V56F47NVlw4m9St63Rvy8+H\njz8O4IsvTs6v3L69g1tuyedvf9O1tyKeUGYIt2vXjtjYWBITEzEMg6SkJJKTkwkPDychIYHBgwcz\ncOBArFYrbdu25fLLL6+Kcov4lVdeCWTNGht9++Yze3ZOoVZtwfSCGRkW0tMNMjJOBnTBv4J9O3ZY\n+Omn0pvEF17o5JZb8rjllnyaNlXwiniSVlHyAZ6u48klBy3ExDgrdMnBTZss/PprGM2aHadFC/+a\ncP9Upb2HmzZZ6NEjlFq1TL7+Oos6dc7tI3n8uKtv+WRYu+YGzs2F+Hg77dtX/PzKnv4brWz+Xj/w\n/zp6un5aRUnOyulLDm7ZYj1x+9yWHNy/3+DppwN5770AXF8Dw4iIMOnQwU6HDg46dXJw6aXOc1p+\nzhfk5sL99weTl2cwbVr2OQcwQFiYa3DVBRcUHKtqp+ETkfJTCEupKnrJwdxcmDkzkGnTAsnMNGjZ\n0sHQoVZWr85n1SorixYFsGiRK3lDQ00uv9xBx46uUG7XzkHImc2M6PUmTw5kyxYrAwbkkZCgsBSp\nbhTCUqqKWnLQNOHzz208/ngQu3dbiIx08swzuQwYkE+DBuGkp+cA8OefBqtXW1m1ysqaNVa+/trG\n11+7/kwDAkzatHHSsaOdTp0cXHmlw6eXXVu92spLLwVywQVOHn8819PFEREPUAhLqSpiycGNGy2M\nHx/Et9/asNlMhg7NY9SoXGrXLnrfhg1NbrrJzk03uVrZBw4YrFljZfVq17+0NAvr1gXx4ouuJe1i\nY53ulnKHDg6io31joFFmJgwfHoxhwEsv5XDiggMRqWYUwlKqc1lyMD3dYNKkQObMCcA0DRIS7Dz+\neA4XXVT+oKxTx3SvGwuu8Fq3ztVKXrXKSlqalY0brcye7bp/s2aulnJBMHvr9IqPPhrEb79ZGDEi\nlw4ddBpapLpSCEupCi856BodXdaSg3l5MGtWAM89F8SxYwYxMQ6eeCKXrl3PPWxq1IAuXRx06eI6\nVm4urF9/sqW8dq2VuXMDmTvXdf/ExHyefz7HPeuTN1iyxMqcOYHExjoYM0brJ4tUZwphKVPBkoNl\nMU1YtMjGY48F8euvFiIiTJ5+OoeBA/MrbZRzUBB07OgavAVgt8PmzRZWrbLywQcBfPBBADabydSp\nuV6xdF5GhsGDDwYTGGjy8ss5BBY/7k1EqgmFsFSIzZtd/b7ffGPDajW59948Ro/OJSKiasths0Hr\n1k5at3aSmJjPzTeHMmdOICEh8NRTng1i04R//zuI9HQLjz6aQ6tW5e9XFxH/pBCWc5KRYfDMM4G8\n+24ATqdB1652nngi94wGblWWWrVg3rxs+vULYdasQEJCTP7znzyPBfH8+TY+/zyAjh3t3Hef1t4V\nEfDT+YmksuXlwYwZAXTsGMbbbwfStKmT997L4oMPsr0igAvUqWPy4YfZNG3q5IUXgnj+ec+c//3t\nNxg3LpiwMJMXX/SuPmoR8RyFsJwR03QNLIqLCyMpyXWJzVNP5fDVV1nEx3vnKN969Uw++iiLxo2d\nTJoUxIwZVTsNl9MJd90Fx44ZTJiQc8pMViJS3SmEpdy2brVw220h9O8fyq+/GvzjH3msXn2cIUMq\nb+BVRWnUyBXE9es7SUoK5s03q67As2YFsGIF9OyZzx13VMyc2yLiH9QnLGXavdvglVcCeeedABwO\ng7g4V7/vxRd7z2nn8rjwQpOPPsrmhhtCeOihYEJCTBITKzcUf/7ZwlNPBREVBVOmeMcIbRHxHgph\nKZZpwjffWJk9O4DFi22YpkHTpk4efzyb7t0dPhsmzZs7+fDDbPr1C2XkyGCCg3O48cbKCeL8fBg2\nLJjcXIPXXsNnZvMSkaqjEJZCjh+HDz8M4PXXA/j5Z9foobZtHdxzTx433GD3i+taY2OdzJuXxc03\nh3L//cEEB2fTs2fF92dPnRrIjz9aSUzM58YbA0hPr/CnEBEfpz5hP5GSYiMuLpQGDWoQFxdKSsqZ\nfb/avdsgKSmINm1qMGZMMDt2WLjppny++OI4ixdnceut/hHABdq2dfLee9kEBsI994SwYkXFDldO\nTbUwfXogjRs7mTAhp0KPLSL+Qy1hP3C2a/4Wd8o5KsrJqFF5DBqUT/36/n36tGNHB2+/nU3//iHc\ndVcIH3yQTadO594iPn4chg0LwemEF17IIbz4tbxFRNQS9gelrflbnOPH4a23Arj22lBuuSWURYsC\naNPGycsvZ5OWdpyHHsrz+wAuEBfn4I03srHb4e9/DyE19dw/Ek8+GcTOnRaGDs2nc2fvvGxLRLyD\nWsJ+oLxr/u7aZfDGG4G8914AR48a2GwmN92Uz7335tG+vW+NdK5ICQkOXn01h3vvDSYxMZTk5Cwu\nvfTsXo8VK6y88UYgLVs6GDdOawSLSOnUEvYDJc1QFRPjxDThq6+sDBgQQocOYbz6aiBBQSajR+ey\nfv1xXn01p1oHcIG+fe28+GIOR4/CbbeF8PPPZ/7ROHQIHnggGJvNtThDcHAlFFRE/Ipawn6gpDV/\n27RxcO21oUVGOf/tb3aCgqq6lN7v1lvtZGfnMnp0MLfcEsInn2TRtGn5T8uPHRvM3r0WHn4496xb\n0iJSvSiE/cCpa/7+/LOFWrVMsrMN3nsvkIAAnXI+EwMH5pOdDePHB3PLLaF88kkWjRuXHcQpKTZS\nUgJo397Bv/6lNYJFpHwUwn6iXz87v/xiYcuWQA4etBAV5WTYMNco53r1qscgq4oydGg+2dkGEycG\ncfPNoXz6aVapA9X++svgoYeCCQ01efnlbGz6VIlIOem/Cz+xc6fBc88F0qCBySOP5NC3r045n4uR\nI/PIzobnnw/illtC+PjjbOrWLRrEpgkjRwZz+LDB5Mk5Z3T6WkREA7P8xLPPBuFwGDz+eC633KIA\nrghjx+YxdGge27ZZufXWEA4fLnqft94KYMUKG1272hk0SGsEi8iZUQj7gS1bLCQn24iNddC3r1bp\nqSiGAU88kcvAgXls2mQlMTGUY8dO7t+50+Dxx4OIiDCZNi3HZ+fTFhHPUQj7gcmTAzFNg4cfzsWi\nd7RCGQZMnpzLrbfmk5Zm5c47Q8jKArvdNStWVpbrNHR1mdxERCqW+oR93IYNFj7/3DUqNyFBszNV\nBosFpk/PIScHPvssgEGDQmjf3kFqqpWbbsrnhht09kFEzo5C2MdNmuTq/H34Ya1VW5lsNpgxI4ec\nHIOlS2189ZWNBg2cTJqkxRlE5Ozp5KUPW7PGypdf2ujc2c4116gVXNkCA+H117O59lo7VqvJ9Ok5\n1K7t6VKJiC9TS9hHmSY8/bRrgQa1gqtOcDDMn59Nerqh669F5JypJeyjvv7aynff2YiPt3PllZoJ\nqypZLCiARaRCKIR9kKsV7OoLHjtWK/WIiPiqcp2OnjhxIhs2bMAwDMaNG0fr1q0B2LdvH6NHj3bf\nb8+ePYwaNYq+fftWTmkFgCVLrKSlWbn++nxat1YrWETEV5UZwmvXrmX37t3MmzePHTt2MG7cOObN\nmwdAvXr1ePfddwGw2+0MGDCArl27Vm6Jqzmn09UKNgyTMWO0UICIiC8r83T0qlWriI+PB6BZs2Yc\nOXKEzMzMIvdLSUmhR48ehIWFVXwpxe2zz2xs3mzl5pvttGypVrCIiC8rM4QzMjKIiIhw346MjCQ9\nPb3I/T788ENuueWWii2dFGK3wzPPBGK1mowerb5gERFfd8aXKJlm0VGh69evp2nTptSoUaPMx0dE\nhGKzWc/0aUsVFRVeocfzRlFR4bz9NvzyC9x7L3ToUPZr7Uuqy3voz1Q/3+fvdfTG+pUZwtHR0WRk\nZLhv79+/n6ioqEL3WblyJZ06dSrXEx46lHWGRSxdVFQ46enHyr6jD4uKCuePP47x6KNhBAYa3H//\ncdLT/ecSmeryHvpzHVU/3+fvdfR0/Ur6AlDm6ejOnTuzePFiADZt2kR0dHSRFu9PP/1Ey5YtK6CY\n/i8lxUZcXCgNGtQgLi6UlJTynYyYOzeA336zMGhQPo0a+U8Ai4hUZ2UmQLt27YiNjSUxMRHDMEhK\nSiI5OZnw8HASEhIASE9Pp06dOpVeWF+XkmJj6NAQ9+0tW6wnbmfTr1/JiwC4FpcPJDTUZMQIjYgW\nEfEX5WqGnXotMFCk1fvZZ59VXIn82LRpgcVunz49sNQQnjED9u618K9/5WqmJhERP6IZs6rQtm3F\nv9wlbQfIzISnn4bwcJPhw9UKFhHxJwrhKhQTU/x1vSVtB5g1K5CMDPjnP/M45UoxERHxAwrhKjRy\nZPEt2QceKH774cPw8suB1KnjCmEREfEvCuEq1K+fnZkzs2nVyoHNZtKqlYOZM0selDVjRiBHjxo8\n9BCEe9/lbSIico60nnAV69fPXuogrALp6QYzZwYSHe1k2DALx49XQeFERKRKqSXspV58MZCsLIMH\nH8wjNNTTpRERkcqgEPZCf/1l8OabAZx3npP+/fM9XRwREakkCmEv9PzzgeTmGowalUdQkKdLIyIi\nlUUh7GV27zaYMyeAJk2c3HabWsEiIv5MIexlpk4Nwm43GDMml4AAT5dGREQqk0LYi2zfbmH+fBsX\nX+wo1whqERHxbQphLzJ5ciBOp8GYMXlY9M6IiPg9/VfvJTZutPDJJwFcdpmD3r3VChYRqQ4Uwl7i\nmWdcw6AffjgXw/BwYUREpEoohL1AaqqFxYttdOhgp0sXh6eLIyIiVUQh7AWeftrVCh43Lk+tYBGR\nakQh7GHffmvl669txMXZ6dRJrWARkepEIexBpglPPx0IuPqCRUSkelEIe9Dy5VbWrrXRs2c+7do5\nPV0cERGpYgphD3G1gl19wQ89lOfh0oiIiCcohD3k889t/PijlRtvzCc2Vq1gEZHqSCHsAQ6Ha3Ys\ni8VkzBj1BYuIVFcKYQ9ISbGxdauV22+3c9FFpqeLIyIiHqIQrmL5+fDss0EEBJiMGqVWsIhIdaYQ\nrkKmCY88EsSvv1ro3z+f889XK1hEpDpTCFehZ54J5M03A4mNdTBunFrBIiLVnUK4irz6agDPPRdE\nkyZO5s3LplYtT5dIREQ8TSFcBT74wMajjwZTv76TDz/MIjpap6FFREQhXOkWLrQxcmQwEREm8+dn\nqx9YRETcFMKV6H//szJkSDDBwfD++1m0bKlJOURE5CSFcCX54QcLAwaEAPD229maG1pERIqweboA\n/mjbNguJiSFkZ8Ps2TnExWmJQhERKUohXMH27DG47bYQDh608PzzOVx/vd3TRRIRES9VrhCeOHEi\nGzZswDAMxo0bR+vWrd37/vrrL/7v//6P/Px8WrVqxRNPPFFphfV26ekGt94ayp9/WkhKyuHOO/M9\nXSQREfFiZfYJr127lt27dzNv3jwmTJjAhAkTCu2fNGkSd999NwsWLMBqtfLnn39WWmG92dGjkJgY\nws6dFkaMyGXYMAWwiIiUrswQXrVqFfHx8QA0a9aMI0eOkJmZCYDT6SQ1NZWuXbsCkJSURMOGDSux\nuN4pOxv69w/hp5+sDBiQx3/+o/WBRUSkbGWGcEZGBhEREe7bkZGRpKenA3Dw4EHCwsJ4+umnueOO\nO5g6dWrlldRL5efDvfeGsHq1jRtuyGfy5FwMw9OlEhERX3DGA7NM0yz0+759+xg4cCCNGjViyJAh\nrFy5kuuuu67Ex0dEhGKzWc+qsCWJigqv0OOVl9MJgwbBkiXQvTvMnx9AYGBApTyXp+pYVfy9fuD/\ndVT9fJ+/19Eb61dmCEdHR5ORkeG+vX//fqKiogCIiIigYcOGnH/++QB06tSJ7du3lxrChw5lnWOR\nC4uKCic9/ViFHrM8TBP+858g5swJ5PLLHcycmcWRI5XzXJ6qY1Xx9/qB/9dR9fN9/l5HT9evpC8A\nZZ6O7ty5M4sXLwZg06ZNREdHU6NGDQBsNhuNGzdm165d7v1NmjSpoCJ7tylTApk9O5CLL3Ywd24W\nYWGeLpGIiPiaMlvC7dq1IzY2lsTERAzDICkpieTkZMLDw0lISGDcuHGMHTsW0zSJiYlxD9LyZ7Nm\nBfDss0FccIGT+fOzOaXLXEREpNzK1Sc8evToQrdbtmzp/v2CCy7g/fffr9hSeVhKio1p0wLZts1C\nTIyTkSPz6NfPNenGhx/a+M9/gomOdq2IVK+eFmQQEZGzoxmzTpOSYmPo0BD37S1brCduZxMaajJi\nRDC1arlWRLrwQgWwiIicPYXwaaZNCyx2+8SJgezbZyEoCN57L4tWrbQgg4iInButonSabduKf0l2\n77bgcMAbb2RzxRUKYBEROXcK4dPExJQcsK+8kkPXrloRSUREKoZC+DQjRxY/5eSdd+Zzww1aEUlE\nRCqOQvg0/frZmTkzm5gYB2Ce2JbP88/nerZgIiLidxTCxejXz07jxiZgcP/9ebz6ao6niyQiIn5I\nIVyMnBz4+msrl1ziIClJCzKIiEjlUAgXY+NGC/n5Bh06OBTAIiJSaRTCxUhLc63y1K6dRkKLiEjl\nUQgXoyCE27dXCIuISOVRCBcjLc1K7domTZpoWkoREak8CuHTHDhgsGuXhbZt1R8sIiKVSyF8mvXr\nXS+J+oNFRKSyKYRPo/5gERGpKgrh0xSEcNu2WqRBREQql0L4FKYJ69dbueACJ3XqaFCWiIhULoXw\nKX791eDQIUOnokVEpEoohE+RmqpJOkREpOoohE+xfr1CWEREqo5C+BRpaVYCAkwuuUSDskREpPIp\nhE/IzXUt3BAb6yQ42NOlERGR6kAhfMLGjRby8gydihYRkSqjED5B/cEiIlLVFMInaGS0iIhUNYXw\nCWlpVmrVMmnaVJN0iIhI1VAIAwcPwq+/ulZOsugVERGRKqLIAX74QaeiRUSk6imEUX+wiIh4hkKY\nkysntWunSTpERKTqVPsQdq2cZOH8853UratBWSIiUnWqfQj/+qvBwYMWrZwkIiJVrtqHsCbpEBER\nT6n2IVzQH9y2rUJYRESqlq08d5o4cSIbNmzAMAzGjRtH69at3fu6du1K/fr1sVpdYTZlyhTq1atX\nOaWtBGlpVmw2k0sv1aAsERGpWmWG8Nq1a9m9ezfz5s1jx44djBs3jnnz5hW6z6xZswgLC6u0QlaW\n3Fz46SfXykkhIZ4ujYiIVDdlno5etWoV8fHxADRr1owjR46QmZlZ6QWrCps3a+UkERHxnDJbwhkZ\nGcTGxrpvR0ZGkp6eTo0aNdzbkpKS+OOPP2jfvj2jRo3CMIwSjxcREYrNZj3HYhcWFRV+Vo/bts31\nMy4ukKiowAosUcU72zr6Cn+vH/h/HVU/3+fvdfTG+pWrT/hUpln4WtoRI0ZwzTXXUKtWLYYNG8bi\nxYvp2bNniY8/dCjrzEtZiqiocNLTj53VY7/6KhgIoHnz46Sne2+f8LnU0Rf4e/3A/+uo+vk+f6+j\np+tX0heAMk9HR0dHk5GR4b69f/9+oqKi3LdvvPFG6tSpg81m49prr2VbQfPSB6SlWalZ06RZM+8N\nYBER8V9lhnDnzp1ZvHgxAJs2bSI6Otp9KvrYsWMMHjyYvLw8ANatW0fz5s0rsbgV59Ah2LlTKyeJ\niIjnlHk6ul27dsTGxpKYmIhhGCQlJZGcnEx4eDgJCQlce+213H777QQFBdGqVatST0V7E03SISIi\nnlauPuHRo0cXut2yZUv374MGDWLQoEEVW6oqcHLRBoWwiIh4RrU9EauVk0RExNOqZQibJqSluVZO\niorSykkiIuIZ1TKEd+92rZykU9EiIuJJ1TKEtWiDiIh4g2odwuoPFhERT6qWIZya6lo5qXVrtYRF\nRMRzql0I5+XBxo0WWrXSykkiIuJZ1S6EN2+2kJtrqD9YREQ8rtqFcGqqqz+4fXuFsIiIeFa1C2EN\nyhIREW9R7UJ4/XoL4eEmF12kEBYREc+qViF8+DD88ouVNm20cpKIiHhetYqigpWT1B8sIiLeoFqF\nsFZOEhERb1ItQ7htW/UHi4iI51WbEDZN16Cs885zUq+eVk4SERHPqzYh/NtvBhkZWjlJRES8R7UJ\nYfUHi4iIt6mGIaz+YBER8Q7VKoStVq2cJCIi3qNahHB+Pvz0k4WLL3YSGurp0oiIiLhUixDevNlC\nTo6h/mAREfEq1SKEtXKSiIh4o2oRwgXTVWpQloiIeJNqEcJpaRZq1NDKSSIi4l38PoSPHIHt2620\nbevAavV0aURERE7y+xA+eSpa/cEiIuJd/D6ENUmHiIh4K78PYbWERUTEW/l1CJsmpKZaaNRIKyeJ\niIj38esQ3rNHKyeJiIj38usQ1spJIiLizapFCLdvr0FZIiLifcoVwhMnTuT2228nMTGRH3/8sdj7\nTJ06lQEDBlRo4c5VWpoFq9Xk0kvVEhYREe9TZgivXbuW3bt3M2/ePCZMmMCECROK3OeXX35h3bp1\nlVLAkqSk2IiLC8Vmg7i4UFJSbIX25+fDjz9aadnSSVhYlRZNRESkXMoM4VWrVhEfHw9As2bNOHLk\nCJmZmYXuM2nSJB588MHKKWExUlJsDB0awpYtVhwO2LLFytChIYWCeMsWrZwkIiLercwQzsjIICIi\nwn07MjKS9PR09+3k5GSuvPJKGjVqVDklLMa0aYHFbp8+/eT2k/3BCmEREfFOtrLvUphpnrze9vDh\nwyQnJ/Pmm2+yb9++cj0+IiIUm+3cJnHetq2k7VaiosIB2LzZta1btxCios7p6bxCQb38lb/XD/y/\njqqf7/P3Onpj/coM4ejoaDIyMty39+/fT9SJVFu9ejUHDx7kzjvvJC8vj99++42JEycybty4Eo93\n6FDWORc6JiaULVuKBnlMjIP0dNfxv/sulLAwC3XrZnJKw90nRUWFk55+zNPFqDT+Xj/w/zqqfr7P\n3+vo6fqV9AWgzNPRnTt3ZvHixQBs2rSJ6OhoatSoAUDPnj1ZuHAh8+fP56WXXiI2NrbUAK4oI0fm\nFbv9gQdc248ehe3bLVo5SUREvFqZLeF27doRGxtLYmIihmGQlJREcnIy4eHhJCQkVEUZi+jXzw5k\nM316INu2WYmJcfDAA3kntsMPP1gxTQ3KEhER71auPuHRo0cXut2yZcsi9znvvPN49913K6ZU5dCv\nn51+/ewnTjEUPsVdMCirbVtN0iEiIt7LL2fMSktzVUsjo0VExJv5XQi7Vk6y0rChk/r1tXKSiIh4\nL78L4d9/N0hP18pJIiLi/fwuhNevV3+wiIj4Br8L4dRUzZQlIiK+we9COC3NgsVi0rq1QlhERLyb\nX4XwqSsnnZhPRERExGv5VQhv3WohO9vQqWgREfEJfhXCmqRDRER8iV+GsC5PEhERX+BnIWwhLMyk\nRQu1hEVExPv5TQgfOwbbtllo00YrJ4mIiG/wmxAuWDmpbVudihYREd/gNyF8sj9Yp6JFRMQ3+E0I\np6Zq5SQREfEtfhHCpulqCTdo4KRBA62cJCIivsEvQvjPPw3277eoP1hERHyKX4Sw+oNFRMQX+UUI\na+UkERHxRX4RwgUrJ112mUJYRER8h8+HsN3uWjmpRQutnCQiIr7F50N40ybIyjI0X7SIiPgcnw/h\nNWtcPzUoS0REfI0fhbBawiIi4lt8PoTXroXQUJOWLdUSFhER3+LTIZyZ6eoTvuwyrZwkIiK+x6dD\n2LVykvqDRUTEN/l0CAcEuP517273dFFERETOmM3TBTgXHTo4yMqCQ4c0KEtERHyPT7eEAWw+/TVC\nRESqM58PYREREV+lEBYREfEQhbCIiIiHlKtHdeLEiWzYsAHDMBg3bhytW7d275s/fz4LFizAYrHQ\nsmVLkpKSMAyj0gosIiLiL8psCa9du5bdu3czb948JkyYwIQJE9z7srOz+fzzz5k7dy4ffPABO3fu\nZP369ZVaYBEREX9RZgivWrWK+Ph4AJo1a8aRI0fIzMwEICQkhLfffpuAgACys7PJzMwkKiqqckss\nIiLiJ8oM4YyMDCIiIty3IyMjSU9PL3Sf1157jYSEBHr27Enjxo0rvpQiIiJ+6IyvsjVNs8i2IUOG\nMHDgQO69917at29P+/btS3x8REQoNlvFTvQcFRVeocfzRv5eR3+vH/h/HVU/3+fvdfTG+pUZwtHR\n0WRkZLhv79+/333K+fDhw2zfvp0rrriC4OBgrr32WtLS0koN4UOHsiqg2CdFRYWTnn6sQo/pbfy9\njv5eP/D/Oqp+vs/f6+jp+pX0BaDM09GdO3dm8eLFAGzatIno6Ghq1KgBgN1uZ+zYsRw/fhyAn376\niSZNmlRUmUVERPxamS3hdu3aERsbS2JiIoZhkJSURHJyMuHh4SQkJDBs2DAGDhyIzWajRYsWdOvW\nrSrKLSIi4vMMs7hOXhEREal0mjFLRETEQxTCIiIiHqIQFhER8RCFsIiIiIcohEVERDxEISwiIuIh\nZzxtpSeVtqTid999x3PPPYfVauXaa69l2LBhHizp2Zk8eTKpqanY7XaGDh1K9+7d3fu6du1K/fr1\nsVpdU35OmTKFevXqeaqoZ2XNmjU88MADNG/eHICYmBjGjx/v3u/r7+GHH37Ip59+6r69cePGQquK\nxcbG0q5dO/ftt956y/1+ertt27Zx//33c9ddd9G/f3/++usvxowZg8PhICoqimeffZbAwMBCjynt\n8+ptiqvfww8/jN1ux2az8eyzzxZanKasv2VvdHodx44dy6ZNm6hduzYAgwcP5rrrriv0GF9+D0eM\nGMGhQ4cA1+yObdq04cknn3TfPzk5menTp3P++ecDcNVVV3HfffdVfcFNH7FmzRpzyJAhpmma5i+/\n/GLedttthfb36tXL/P4GC4kAAAXtSURBVPPPP02Hw2Hecccd5vbt2z1RzLO2atUq85577jFN0zQP\nHjxoxsXFFdrfpUsXMzMz0wMlqzirV682//Wvf5W439ffw1OtWbPGfOyxxwptu/LKKz1UmnNz/Phx\ns3///uYjjzxivvvuu6ZpmubYsWPNhQsXmqZpmlOnTjXnzp1b6DFlfV69SXH1GzNmjPn555+bpmma\nc+bMMZ955plCjynrb9nbFFfHhx56yFy+fHmJj/H19/BUY8eONTds2FBo20cffWROmjSpqopYIp85\nHV3akop79uyhVq1aNGjQAIvFQlxcHKtWrfJkcc/YFVdcwfTp0wGoWbMm2dnZOBwOD5eq6vjDe3iq\nl19+mfvvv9/TxagQgYGBzJo1i+joaPe2NWvWuGfH69KlS5H3qrTPq7cprn5JSUn06NEDgIiICA4f\nPuyp4lWI4upYFl9/Dwvs3LmTY8eOeW0r3mdCuLQlFdPT04mMjCx2n6+wWq2EhoYCsGDBAq699toi\npyqTkpK44447mDJlSrGrWfmCX375hX/+85/ccccdfPvtt+7t/vAeFvjxxx9p0KBBkbW18/LyGDVq\nFImJibz55pseKt2Zs9lsBAcHF9qWnZ3tPv1cp06dIu9VeZZA9RbF1S80NBSr1YrD4eC9996jb9++\nRR5X0t+yNyqujgBz5sxh4MCBPPjggxw8eLDQPl9/Dwu888479O/fv9h9a9euZfDgwQwaNIjNmzdX\nZhFL5FN9wqfy1RAqy7Jly1iwYAFvvPFGoe0jRozgmmuuoVatWgwbNozFixfTs2dPD5Xy7Fx44YUM\nHz6cXr16sWfPHgYOHMiSJUuK9CX6ugULFtCvX78i28eMGcPf/vY3DMOgf//+XH755Vx66aUeKGHF\nKs9n0Rc/rw6HgzFjxtCxY0c6depUaJ8//C3fcMMN1K5dm4svvpjXXnuNl156iUcffbTE+/vie5iX\nl0dqaiqPPfZYkX2XXXYZkZGRXHfddaxfv56HHnqIzz77rMrL6DMt4dKWVDx93759+87otIu3+Oab\nb3j11VeZNWsW4eGFl7268cYbqVOnDjabjWuvvZZt27Z5qJRnr169evTu3RvDMDj//POpW7cu+/bt\nA/znPQTXqdq2bdsW2X7HHXcQFhZGaGgoHTt29Mn3sEBoaCg5OTlA8e9VaZ9XX/Hwww9zwQUXMHz4\n8CL7Svtb9hWdOnXi4osvBlwDP0//e/SH93DdunUlnoZu1qyZeyBa27ZtOXjwoEe6AH0mhEtbUvG8\n884jMzOT33//HbvdzooVK+jcubMni3vGjh07xuTJk5k5c6Z7tOKp+wYPHkxeXh7g+sMqGJXpSz79\n9FNef/11wHX6+cCBA+4R3v7wHoIrkMLCwoq0iHbu3MmoUaMwTRO73U5aWppPvocFrrrqKvfnccmS\nJVxzzTWF9pf2efUFn376KQEBAYwYMaLE/SX9LfuKf/3rX+zZswdwfXE8/e/R199DcC2v27Jly2L3\nzZo1i//+97+Aa2R1ZGSkR65W8KlVlKZMmcL333/vXlJx8+bN7iUV161bx5QpUwDo3r07gwcP9nBp\nz8y8efN48cUXC63H3KFDB1q0aEFCQgJvv/02H3/8MUFBQbRq1Yrx48djGIYHS3zmMjMzGT16NEeP\nHiU/P5/hw4dz4MABv3kPwXVZ0rRp05g9ezYAr732GldccQVt27bl2WefZfXq1VgsFrp2/f/27Rdl\nQiCOw/g3KP6pBsHqETyA8EbP4AWMBsFoGwTbBMFzeQXB4gEEwzbL7pa3DCvPJ0/54egzCPPn5jrE\nP6zrqnEctW2bPM9Tmqaapkl93+s8T2VZJmOMfN9X27YyxigMw7f39dvH0LVP8x3HoSAI7ujkea5h\nGO75rut628tlWTqe5LtPM9Z1rWVZFEWR4jiWMUZJkjzmGVprZa1VURSqqupe2zSN5nnWvu/quu4+\nGLu6gvVTEQYA4El+5nc0AABPQ4QBAHCECAMA4AgRBgDAESIMAIAjRBgAAEeIMAAAjhBhAAAceQGL\nwdx6PDcSQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8y/fjB/DXJ0nTS9HSUjMbpaoz\nzJxzlFLKZnSYY46NfZkxTM3KZmxurfvrN3Vtc8xsptvsa4pRNvcUG0odm/sodfROk3x+f2QN1aRn\nkk/yyev5eOwx/ST55P3OJ8kr7+Pz/giiKIogIiIim1NIXQAiIiJnxRAmIiKSCEOYiIhIIgxhIiIi\niTCEiYiIJMIQJiIikghDmGRhypQpCA8PR3h4OJ577jm0b9/e+Hd6enqJ9hUeHo47d+4Uep958+Zh\nw4YNZSmyxb355pvYvHmzRfZVt25d3Lx5Ezt27MDEiRPL9Hzffvut8d/FeW2LKyoqCv/3f/9nkX0R\nSUUldQGILOHTTz81/js0NBRz585FkyZNSrWvbdu2FXmfyMjIUu3b0YSFhSEsLKzUj09JScHKlSvx\n+uuvAyjea0vkTNgSJqcwcOBALFiwAF26dEFiYiLu3LmDoUOHIjw8HKGhofjiiy+M981rBR46dAh9\n+vTBvHnz0KVLF4SGhuLw4cMA8rfCQkND8c0336BXr15o3bo1Zs+ebdzXsmXL0LJlS/Ts2RPr169H\naGioyfJ999136NKlCzp16oQ33ngD165dAwBs3rwZo0ePxqRJk9C5c2d07doV586dAwBcuXIFvXv3\nRseOHREZGQmdTldgv3v27EG3bt3ybevevTv27t1b6GuQZ/PmzXjzzTeLfL5ff/0V3bp1Q+fOnfHa\na68hKSkJANC3b19cv34d4eHh0Gg0xtcWANasWYOuXbsiPDwcI0aMQGpqqvG1Xbx4Md566y20b98e\nb731FrKysswdWgDAmTNn0LdvX4SHh6N79+747bffAAAZGRkYOXIkunTpgg4dOuDjjz9Gbm6u2e1E\ntsYQJqdx8uRJ/O9//0Pjxo3x+eefo3r16ti2bRu++uorzJs3Dzdu3CjwmNOnT6Nhw4b45Zdf0L9/\nf3z++ecm933kyBFs3LgR33//PdatW4ebN2/i3LlzWLlyJX788Ud8/fXXZluBd+/exWeffYYvvvgC\n27dvR40aNfJ1s+7duxf9+/dHfHw8mjdvjq+++goAEBMTg5YtW2Lnzp0YPHgwEhMTC+y7ZcuWuHnz\nJq5cuQLAEKQ3b97ESy+9VOzXII+559NqtYiKisK0adMQHx+P0NBQzJkzBwAwc+ZM+Pv7Y9u2bVCr\n1cZ9HT9+HKtWrcLatWuxbds2VKtWDfPmzTPevm3bNixYsAA7duxAamoqduzYYbZcer0e48aNw4AB\nA7Bt2zZMnz4dkZGRSE9Pxw8//IDy5cvjl19+QXx8PJRKJc6fP292O5GtMYTJaYSEhEChMLzlP/74\nY0yePBkA8PTTT8PX1xdXr14t8BhPT0907NgRAPDcc8/h+vXrJvfdrVs3KJVKVKlSBZUqVcKNGzdw\n5MgRNGvWDH5+fnB1dUXPnj1NPrZSpUo4evQoqlatCgBo0qSJMTQBICAgAPXr1wcABAcHG4Pyjz/+\nQNeuXQEADRo0QK1atQrsW61Wo3379ti1axcAYOfOnejYsSNUKlWxX4M85p5PpVJh//79aNSokcny\nm5KQkIDOnTujUqVKAIDevXtj3759xttDQkJQsWJFqFQqBAYGFvrj4OrVq7hz5w5efvllAMDzzz+P\natWq4a+//oKPjw+OHTuG33//HXq9Hp9++inq1atndjuRrXFMmJxGhQoVjP/+66+/jC0/hUKBlJQU\n6PX6Ao/x8vIy/luhUJi8DwCUK1fO+G+lUgmdToeHDx/me84qVaqYfKxOp8PixYuxa9cu6HQ6ZGRk\noGbNmibLkLdvAHjw4EG+5y1fvrzJ/Xfu3Blr1qzB4MGDsXPnTrz77rsleg3yFPZ8a9euRVxcHDQa\nDTQaDQRBMLsfAEhNTYWfn1++fd29e7fIOpvbl5eXV77nLF++PFJTU/Hyyy/jwYMHWLRoES5evIhX\nX30VEydORJcuXUxuf7y1TmQLbAmTU/rggw/QuXNnxMfHY9u2bfD29rb4c5QrVw6ZmZnGv2/fvm3y\nflu3bsWuXbuwbt06xMfHY/To0cXaf/ny5fPN/M4bU31SmzZtcObMGfzzzz/4559/0KJFCwAlfw3M\nPV9iYiJWrFiBzz//HPHx8Zg+fXqRZa9cuTLu379v/Pv+/fuoXLlykY8zpVKlSnjw4AEevxbN/fv3\nja3svn374rvvvsPWrVtx6tQp/PDDD4VuJ7IlhjA5pbt376J+/foQBAFxcXHIysrKF5iW0KBBAxw6\ndAipqanQaDRmv+Tv3r2Lp556Cj4+Prh37x5++eUXZGRkFLn/Ro0aGcdKExMTcfnyZZP3U6vVaN26\nNaKjo9GhQwcolUrj85bkNTD3fKmpqahUqRKqVauGrKwsxMXFITMzE6IoQqVSITMzE1qtNt++2rVr\nhx07duDevXsAgG+++QYhISFF1tmU6tWro2rVqti6dauxbHfu3EGDBg2wdOlSbNq0CYChJ6J69eoQ\nBMHsdiJbYwiTUxozZgxGjhyJbt26ITMzE3369MHkyZPNBllpNGjQABEREYiIiMCgQYPQvn17k/d7\n5ZVXcP/+fYSFhSEyMhJjx47FzZs3882yNuWDDz7A7t270bFjR6xfvx4vvfSS2ft27twZO3fuRJcu\nXYzbSvoamHu+Nm3awM/PDx07dsSQIUMwePBgeHl5YfTo0ahbty4qVKiAVq1a5RtPb9CgAYYNG4Y3\n3ngD4eHhSEtLw/vvv19ofc0RBAHz58/HunXr0KVLF0yfPh2LFi2Ch4cHunfvjh9//BGdO3dGeHg4\nXFxc0L17d7PbiWxN4PWEiaxHFEVjCyshIQELFy5ktycRGbElTGQlqampaNGiBa5duwZRFPHLL78Y\nZxATEQFsCRNZ1YYNG7B69WoIgoBatWphxowZxglDREQMYSIiIomwO5qIiEgiDGEiIiKJ2HzFrJSU\nNIvuz9vbA/fuWfb8Tnsj9zrKvX6A/OvI+jk+uddR6vr5+nqZ3O7wLWGVSil1EaxO7nWUe/0A+deR\n9XN8cq+jvdbP4UOYiIjIUTGEiYiIJMIQJiIikghDmIiISCIMYSIiIokwhImIiCTCECYiIpKIzRfr\nICIi+ViyZAHOnk1CaupdZGdno1q1p1C+fAXMnBld5GO3bt0CT89yCAkxfa3tRYvmoXfvvqhW7alS\nlW3UqGEYN24CatWqXarH2wJDmIjIicTFqbBwoRrJyQoEBuoxdqwGERHaUu/vvffeB2AI1IsXL2DU\nqLHFfmzXrt0KvX3MmMhSl8tRMISJiJxEXJwKw4e7G/9OSlL++3cWhg2z7HMlJv6Bb75Zh8zMTIwa\n9T6OHTuKhIRfodfr0bJlKwwZMgyrVsWiYsWKqFkzAJs3fwtBUODSpb/Rrl0HDBkyzNiS3b37V2Rk\npOPy5Uu4du0qRo+ORMuWrbBu3ZfYuXM7qlV7ClqtFn37voHGjZsUKEt6ejqmTo3C3bv3oNVqMXbs\nB6hbNwgLF0bjzJkk6HQ6RET0Qteu3UxusyaHDuHMTOCrr4DQUMDNTerSEBHZt4UL1Sa3L1qktngI\nA8CFC+exYcNmqNVqHDt2FP/3fyuhUCjw+uvd0adP/3z3PX36FL7++nvo9Xr07t0NQ4bkL9Dt27cQ\nE7MYBw/ux48/fo/nnquPzZu/w4YN3yMjIwN9+76Gvn3fMFmO777bgIYNGyIioh/OnDmNJUvmY+bM\naOzf/zu+/fZHaLVabN26BQ8fPiiwzdocemLWrl0qvPmm4dcdEREVLjnZ9Fe+ue1lVbt2HajVhuB3\nc3PDqFHD8N57w3H//n08fPgw333r1g2Cm5sbPDw8TO6rQYNGAAA/Pz+kp6fj6tUrqFUrAK6ubvDx\nqYR69Z4zW44zZ06jefPmAICgoGBcvXoF5ctXwNNPP4OoqHH49dftCA9/2eQ2a3PoEK5WTQ8AOHXK\nPhfmJiKyJ4GB+hJtLysXFxcAwM2bN7Bx43rMm7cE//3vclStWrXAfZXKwr/HH79dFEWIIqBQPIow\nQTD/WEEQIIqi8W+93lDfefMW4623huHcuWR8+OH7ZrdZk0OHcN4bJynJoatBRGQTY8dqTG4fM8b0\ndku5f/8+vL294eHhgbNnz+DmzZvIzc0t0z79/f1x8eIFaLVa3Lt3D2fOJJm9b1BQMA4dOgQAOHny\nL9SsGYAbN67ju+++Qd26QRg1aiwePHhgcpu1OXQ/brlyQM2awJkzDGEioqIYZkFnYdGiR7Ojx4wp\n2+zo4qhTJxDu7h4YMWIInn++Ebp3fw3z5s1BgwYNS71PH59KCAsLx3/+MwjPPFMTwcHPmW1Nv/56\nP8ybNxMJCe9Ar9dj3LgPUbmyL06ePIFff90OFxcXvPzyqya3WZsgPt5Gt4GUlDSL7m/oUC9s2QKc\nPp2OypVtWhWb8fX1svjrZk/kXj9A/nVk/RyfI9Zx69YtCAsLh1KpxKBBfTF//hL4+VUxeV+p6+fr\n62Vyu0O3hAGgfn1gyxZDa7h1a53UxSEiIhu5e/cuhg0bDBcXNTp1CjcbwPbM4UP4+ecN/2cIExE5\nl4ED38TAgW9KXYwycfjB1Pr1Df/n5CwiInI0Dp9cdesCKpWIM2d4mhIRETkWhw9htRoICNDjzBkF\nbDvFjIiIqGwcPoQBIChIj7Q0AdevF3K2NhERkZ2RTQgDPF+YiMjWhg9/q8BCGcuW/RcbNqwzef/E\nxD/w8ccTAABRUeMK3P799xuxalWs2ec7f/4cLl++BACYMmUicnKyS1t09OrVDZmZmaV+vCXIIrXy\nQpiTs4iIbCssrDN27dqRb1tCwi507NipyMfOnj2/xM+3Z88uXLlyGQDw6aez4Orq2FfvcfhTlACg\nXj3DqUlJSUoAZVsKjYiIiq9Dh04YMWIo3n13NADgzJkk+Pr6wtfXD0eOHMLKlcvg4uICLy8vfPbZ\n7HyPffnlDvjf/37FH38cxuLF8+DjUwmVKlU2XppwxoypSEm5jaysLAwZMgxVq/rjxx83Y8+eXfD2\n9sYnn0zEmjUbkZ6ehlmzPkNubi4UCgWioiZDEATMmDEV1ao9hfPnz6FBg/oYOzbKZB1u375V4PF+\nflXw2WeTcffuHWg0GgwdOhxNmjQrsK1Fi5fK9PrJIoSfeUaEu7vI7mgicmpTp7piy5bSfa0rFIBe\n71lge7duWkydmmP2cd7ePqhW7SmcPn0SwcH1sWvXDoSFhQMA0tLSMGXKdFSr9hSmTfsEhw4dMHmV\npNjY/2Ly5GmoUycQ48ePRrVqTyEt7SGaNWuBLl1ewbVrVzF5chRWr16H5s1bol27DggOrm98/MqV\ny/DKK93RoUMn7N69E6tXL8fQocNx9mwSPv10Jry9fdCz58sYOnQkvLwKrlxl6vG9e/fDgwf3sXTp\nCqSlpeHAgX24cOF8gW1lJYvUUioNF3NITlZAx/U6iIhsKiwsHL/+auiS3rdvL9q16wAAqFixIubM\nmY5Ro4bh2LGjePjQ9AURbty4gTp1AgEAjRo1BgB4eZVHUtIpjBgxBDNmTDX7WAA4ezYJL7zwIgCg\nceMmOHfuLADgqaeeRqVKlaFQKODn54eMjPRiP/6ZZ55FZmYGpk2bjMTEI+jYsZPJbWUli5YwYBgX\nPnFCiX/+ERAQwHOViMj5TJ2aU2irtTCGtZUzSvXYkJD2WLNmNcLCOuPpp2ugfPnyAIBZs6YhOnoh\nnn22JubPn2P28Y9fkjDvcgY7dmzDw4cPsXTpSjx8+BBvvz2wkBI8ulRhbq4WgmDY35MXdDB/qYSC\nj3dzc0Ns7Jf4668/8csvW7Bv32+YNGmKyW1lIYuWMAAEBT0+LkxERLbi4eGJgIA6WLPmC2NXNABk\nZKSjSpWqSEtLQ2LiUbOXL6xc2ReXL/8DURRx7NhRAIbLH/r7V4NCocCePbuMjxUEAbonujzr1QtG\nYuIfAIDjx48iKKheicpv6vFnz57Bjh3b0LBhI4wfPxH//PO3yW1lJZuWcL16j05TeuUViQtDRORk\nwsLCMX36FEyZMs247bXXemPEiKF4+ukaeOONQVi9ejmGDXu3wGOHDXsXH3/8IapW9TdehKFdu1BE\nRY3D6dMn8fLLr8LPzw9ffLECDRu+gIULo/ONLb/99juYNWsatmz5ASqVCyZOnAyttviXZzT1eFdX\nN8TGLsWPP26GQqFA//4D4e9frcC2snL4SxnmXZ7q+nUBjRqVw6uv5mLlytKfN2aPpL4El7XJvX6A\n/OvI+jk+uddR6vqZu5ShbLqj/f1FlC/PGdJEROQ4ZJNYgmAYF75wQYGc0s1LICIisinZhDBgmCGt\n0wk4d05W1SIiIpmSVVo9PjmLiIjI3skqrXghByIiciSySqtHIcxzhYmIyP7JKoQrVRLh56dnS5iI\niByC7NIqKEiPy5cVSDe9RCgREZHdkF0I503OOntWdlUjIiKZkV1ScVyYiIgchQxD2LCwN8eFiYjI\n3skuqerWNbSET5+WXdWIiEhmZJdU5coBNWpwhjQREdk/WSZVUJAeKSkK3LkjSF0UIiIis2QZwvXq\nGcaFOUOaiIjsmSxTistXEhGRI5BlSuWFcFKSLKtHREQyIcuUql1bD6VSZEuYiIjsmixTytUVCAjQ\n48wZJURR6tIQERGZJssQBgxd0g8fCrhxgzOkiYjIPsk6hAGOCxMRkf0qVkLNnTsXffr0Qc+ePbF9\n+/Z8t+3fvx+9evVCnz59sHTpUqsUsjQYwkREZO9URd3h4MGDOHfuHDZu3Ih79+4hIiICnTp1Mt4+\nffp0rFq1ClWqVMGAAQPQuXNn1K5d26qFLo68c4UNF3LIlbYwREREJhQZwk2bNkWDBg0AAOXLl0dW\nVhZ0Oh2USiWuXLmCChUqwN/fHwAQEhKCAwcO2EUIP/usCDc3zpAmIiL7VWQIK5VKeHh4AAA2bdqE\ntm3bQqk0XCYwJSUFPj4+xvv6+PjgypUrhe7P29sDKpVlLzPo6+tlcntwMHD6tBI+Pl5QOviVDc3V\nUS7kXj9A/nVk/Ryf3Otoj/UrMoTz7Ny5E5s2bcLq1avL9IT37mWW6fFP8vX1QkpKmsnbatd2Q2Ki\nC/74Ix21ajnuuUqF1VEO5F4/QP51ZP0cn9zrKHX9zP0AKFZf7W+//YZly5ZhxYoV8PJ6tCM/Pz/c\nuXPH+PetW7fg5+dXxqJaTt61hZOSHLwZTEREslRkCKelpWHu3LmIjY1FxYoV891WvXp1pKen4+rV\nq9Bqtdi9ezdatWpltcKWVL16XEOaiIjsV5Hd0Vu3bsW9e/cwduxY47bmzZujbt26CAsLw9SpUxEZ\nGQkA6Nq1K2rWrGm90pYQT1MiIiJ7VmQI9+nTB3369DF7e9OmTbFx40aLFspSqlUT4eXFGdJERGSf\nZJ1OgmBoDV+4oEBOjtSlISIiyk/WIQwYJmfpdALOn5d9VYmIyMHIPpmCgzk5i4iI7JPskylvchZD\nmIiI7I3sk6lu3bwQ5rnCRERkX2QfwpUri/D11fM0JSIisjtOkUxBQXpcvqxAerrUJSEiInrEKUI4\nb+Wss2edorpEROQgnCKVHk3O4rgwERHZDycJYcOFHDhDmoiI7IlTpBLXkCYiInvkFKlUrhxQo4ae\nLWEiIrIrTpNKQUF63L6twN27gtRFISIiAuBUIWwYF+YMaSIishdOk0gcFyYiInvjNInENaSJiMje\nOE0i1a6th1IpsiVMRER2w2kSyc0NqFVLjzNnlBBFqUtDRETkRCEMGLqkHz4UcOMGZ0gTEZH0nC6E\nAY4LExGRfXCqNMq7kAPHhYmIyB44VRrVq5e3hjQv5EBERNJzqhB+9lkRrq4iu6OJiMguOFUaKZVA\nYKAeyckK6HRSl4aIiJydw4ZwXJwKISEeUKmAkBAPxMWpivW4oCA9srIEXLrEGdJERCSt4iWXnYmL\nU2H4cHfj30lJyn//zkJEhLbQxz5avlKJWrUKvy8REZE1OWRLeOFCtcntixaZ3v64R5OzHLLqREQk\nIw6ZRMnJpottbvvjeK4wERHZC4dMosBAfYm2P+6pp0R4eXGGNBERSc8hk2jsWI3J7WPGmN7+OEEw\ntIYvXFAgJ8fSJSMiIio+hwzhiAgtYmOzEBysg0oFBAfrEBtb9KSsPEFBOmi1Ai5ccMjqExGRTDjk\n7GjAEMQREVr4+nohJSWzRI/NW77yzBkFgoOL7sImIiKyBqdsCnJyFhER2QOnTCGGMBER2QOnTKHK\nlUVUrqzH6dO8kAMREUnHKUMYMIwLX76sQHq61CUhIiJn5bQhnNclXZwFPoiIiKzBaROI48JERCQ1\np02gvDWkk5I4LkxERNJw2hCuW5ctYSIikpbTJpCXF/D003qGMBERScapEygoSI9btxRITZW6JERE\n5IycPITzri3McWEiIrI9Jw9hw7hwUpJTvwxERCQRp04fnqZERERScur0qVNHD4VCZAgTEZEknDp9\n3NyAWrX0OHNGCVGUujRERORsnDqEAcMa0g8eCLh5U5C6KERE5GScPoQ5OYuIiKTi9MnDyVlERCQV\np0+evDWkea4wERHZWrFCODk5GR07dsS6desK3BYaGor+/ftj4MCBGDhwIG7dumXxQlrTs8+KcHUV\n2R1NREQ2pyrqDpmZmZg2bRpatmxp9j4rVqyAp6enRQtmKyqV4VSl5GQFdDpAyQYxERHZSJHNP7Va\njRUrVsDPz88W5ZFEUJAeWVkCLl3iDGkiIrKdIlvCKpUKKlXhd5syZQquXbuGF198EZGRkRAE82Hm\n7e0BlcqyzU1fX68yPb5JE2DTJuDGjXJo3txChbKwstbR3sm9foD868j6OT6519Ee61dkCBdl9OjR\naNOmDSpUqICRI0ciPj4e4eHhZu9/715mWZ8yH19fL6SkpJVpH08/rQTggUOHctCqlcYyBbMgS9TR\nnsm9foD868j6OT6511Hq+pn7AVDm2Ug9evRApUqVoFKp0LZtWyQnJ5d1lzbH05SIiEgKZUqdtLQ0\nDB06FBqNofV45MgR1KlTxyIFs6Xq1UWUK8c1pImIyLaK7I4+efIk5syZg2vXrkGlUiE+Ph6hoaGo\nXr06wsLC0LZtW/Tp0weurq4IDg4utCvaXgmCoTV8/LgCGg2gVktdIiIicgZFhnD9+vWxdu1as7cP\nHjwYgwcPtmihpFCvng5//KHEhQsK1Kunl7o4RETkBNj/+i+uIU1ERLbGxPkXJ2cREZGtMXH+xRAm\nIiJbY+L8y9dXROXKeiQlcd1KIiKyDYbwY4KC9Lh0SYGMDKlLQkREzoAh/Ji8LunkZL4sRERkfUyb\nx+SdmsRxYSIisgWmzWOCgnQAwHFhIiKyCYbwYzhDmoiIbIlp8xgvL6B6dT0X7CAiIptg2jwhKEiP\nW7cUSE2VuiRERCR3DOEn5I0Lnz3LcWEiIrIuhvATuIY0ERHZCpPmCTxNiYiIbIVJ84TatfVQKESG\nMBERWR2T5gnu7kCtWnqcOaOEKEpdGiIikjOGsAlBQXrcvy/g1i1B6qIQEZGMMYRN4OQsIiKyBaaM\nCXmTsxjCRERkTUwZEx4tX8lzhYmIyHoYwibUrKmHWi3ixAkFdDqpS0NERHLFEDZBpQKaN9chKUmJ\nnj3dce0aJ2gREZHlMYTNWLEiC1265GL/fhXat/fEzz+rpC4SERHJDEPYDB8f4MsvsxEdnY2cHGDI\nEHdERroiM1PqkhERkVwwhAshCMDgwbnYvj0TwcE6rF2rRliYB/76iy8bERGVHdOkGOrW1WPbtkwM\nG6bBuXNKdOnigdhYF66oRUREZcIQLiY3N2D69Bx8/XUmypcXMXmyG/r3d8ft25y0RUREpcMQLqGO\nHXXYvTsT7dpp8euvKrRv74Fdu3g+MRERlRxD2IS4OBVCQjzg718OISEeiIvLPzO6ShUR33yThU8/\nzcb9+wL69vXAJ5+4IidHogITEZFDYgg/IS5OheHD3ZGUpIROJyApSYnhw90LBLFCAYwYkYtt2zJR\nu7YOy5ap0aWLB86d40tKRETFw8R4wsKFapPbFy0yvf355/XYsSMTb7yhwcmTSoSFeWDdOk7aIiKi\nojGEn5CcbPolMbcdADw9gQULcrByZRZcXIBx49zw9ttuuH/fWqUkIiI5YAg/ITBQX6Ltj3v1VS12\n785AixZabNnigvbtPXHwICdtERGRaQzhJ4wdqzG5fcwY09ufVL26iLi4LHz4YQ5u3hTQo4c7Zs9W\nQ6u1ZCmJiEgOGMJPiIjQIjY2C8HBOqhUIoKDdYiNzUJERPFTVKkEIiM1+PHHTFSvLmL+fFe8+qoH\nLl/mOcVERPQIQ9iEiAgtEhIycf16OhISMksUwI9r1kyPXbsyEBGRiz/+UKJ9e88Cs6yJiMh5MYSt\nrHx5YNmybCxenAWdDhg+3B3vveeGjAypS0ZERFJjCNuAIAB9+2qxa1cGGjXSYeNGF3zyiavUxSIi\nIokxhG2oVi0RP/+ciXr1DFdkOnSIM6eJiJwZQ9jG1GogOjobADBhgitycyUuEBERSYYhLIFmzfQY\nOFCDpCQlPv/c9EpcREQkfwxhiUyenIPKlfWYN0+NS5d46hIRkTNiCEukYkXgs89ykJUlYOJEN641\nTUTkhBjCEurZU4s2bbTYuVOFn3/m+cNERM6GISwhQQDmzs2GWi3io49ckZYmdYmIiMiWGMISCwgQ\nMWaMBjdvKjB7Ns8dJiJyJgxhOzB6tAYBAXqsWuWCEyd4SIiInAW/8e2Aq6vh3GG9XsD48W7Q6aQu\nERER2QJD2E60bq1D7965OHFCidWrXaQuDhER2QBD2I5MnZqDihVFzJrlihs3eO6wvdqxQ4lBg9zw\n4IHUJSEiR8cQtiO+viI++SQH6ekCPvqIk7TsUWoqMHq0G7Ztc8GSJVztjIjKplghnJycjI4dO2Ld\nunUFbtu/fz969eqFPn36YOnSpRYvoLPp3z8XzZpp8fPPLtixgxd4sDeffeaKu3cVUCpFLF+uZo8F\nEZVJkSGcmZmJadOmoWXLliY7BZecAAAgAElEQVRvnz59OpYsWYINGzZg3759OH/+vMUL6UwUCiA6\nOgcqlYioKDdkZkpdIspz8KASX3+tRnCwDrNn5yA7W0BMDFvDRFR6RYawWq3GihUr4OfnV+C2K1eu\noEKFCvD394dCoUBISAgOHDhglYI6k3r19BgxQoMrVxSYN49f8vZAowHGj3eFIIiIicnGG2/kIjBQ\nh/XrXXDuHEd1iKh0ilwrUaVSQaUyfbeUlBT4+PgY//bx8cGVK1cK3Z+3twdUKst2s/r6ell0f/Zg\n9mxgyxbg889dMWwYUL++/Or4OHs/hjNnAsnJwIgRQJcungCAuXOBHj2AmBhPbN5c9D7svY5lxfo5\nPrnX0R7rZ/MFi+/ds2z/qq+vF1JS5Lne48yZSvTv74Hhw4HNm9OgkGmDy96P4d9/C5g2zRN+fiLG\njctASophe8uWQNOmHoiLU+KXXzLQpIne7D7svY5lxfo5PrnXUer6mfsBUKavdT8/P9y5c8f4961b\nt0x2W1PpdOyoQ7duudi/H1i/nucOS0EUgagoN2RnC5g2LQcVKjy6TRAMl6QEgGnTXHklLCIqsTKF\ncPXq1ZGeno6rV69Cq9Vi9+7daNWqlaXKRgCmT8+Bl5fhSz4lhTNxbe2HH1TYvVuFdu206NFDW+D2\nFi106NxZiwMHVPj1V85mJ6KSEUSx8N/vJ0+exJw5c3Dt2jWoVCpUqVIFoaGhqF69OsLCwnDkyBHE\nxMQAADp16oShQ4cW+oSW7g6QuovBFjZs8MKYMUCvXrn4v//Llro4Fmevx/DBA+CllzyRliZgz54M\n1Kxp+qOSlKRAu3YeCArSY9euTChNZLG91tFSWD/HJ/c6Sl0/c93RRY4J169fH2vXrjV7e9OmTbFx\n48bSl4yKNHIksHq1Dps2uaBv31y0bcvFpW1hxgxXpKQoMHFijtkABgyz2fv00eKbb1zw/fcqvP56\nwRYzEZEpMp3qIy9KJRATkw2FQsSECW7Ill9j2O4cParAV1+5IDBQh5EjNUXef8KEHLi6ipg925XH\nh4iKjSHsIBo21GPo0FxcvKjgcolWptUC48e7QRQFREfnQF2Ml7t6dRFDhuTi6lUFvvySk+iIqHgY\nwg4kKioHVavqsWiRGhcucJKWtSxf7oJTp5To31+Dli2L3/U/ZkwOvLxELFyoxsOHViwgEckGQ9jG\n4uJUCAnxgL9/OYSEeCAurvinant5ATNm5ECjETBhghtPibGCK1cEzJ3rikqV9Pjkk5wSPdbHBxg9\nWoPUVAWWLmVvBREVjSFsQ3FxKgwf7o6kJCV0OgFJSUoMH+5eoiB+5RUtwsK0+O03FTZtsvlaK7Im\nisCkSW7IzBQwZUoOHlsMrtj+8x8NqlTRIzZWjVu32FtBRIVjCNvQwoWmW0eLFhW/1SQIwKxZ2XB3\nFzFliivu3bNU6WjrVhXi41Vo1UqLPn1KN8PZwwP44AMNMjN5cQciKhpD2IaSk02/3Oa2m1OjhojI\nSA3u3FFg+nRed9gS0tOBSZNc4eIiYu7cHAhlaMT275+LgAA91q1z4dg9ERWKIWxDgYGm1xY2t70w\nI0ZoUK+eDmvXqnH4MA9jWc2Z44obNxR47z0N6tQp+fF4nEoFTJqUA51OwKxZ/JFERObx29uGxo41\nfb7pmDFFn4f6JBcXIDracELqBx+4ITe3TEVzan/+qcCKFS6oWVNv9hiV1CuvaNG4sQ4//eSCY8f4\nMSMi0/jtYEMREVrExmYhOFgHlUpEcLAOsbFZiIgo3fhjs2Z6DByoQVKSEsuWcfyxNHQ6wznBer2A\nuXOz4eZmmf3y4g5EVBwMYRuLiNAiISET16+nIyEhs9QBnOfjj3NQubIeMTFqXL7M8ceS+vJLFxw/\nrkTPnrkICbHscqCtWunQoYMWv/+uwvbtFt01EckEQ9jBeXsDn36ag6wsARMn8tzhkrh5U8CMGa6o\nUEHEp5+W7Jzg4vrooxwIgoioKEBftqFmIpIhhrAM9OqlRZs2WuzYocLPP/Pc4eL66CNXpKcLmDw5\nB35+1vn1Ur++Hj17anH8OEp0PjgROQeGsAwIAjBnTjbUahGjRrlhwAB3LF/ugrNnFWwZm7FzpxJb\ntrigaVMdBgyw7qy2Dz/MgYsLMGuWKzSWmfdFRDLBEJaJ2rVFLFyYjWrVRGzfrsLHH7uhTRtPNGzo\niVGj3PDddyqu4PSvzEwgKsoNKpWI6OhsKKz8KXjmGRHvvgtcvqzAmjW8uAORPXr4ENi7V4nFi9WI\njlZDZ6MrxgqiaNu2kqUvqiz1hZptoaR1vHpVwN69Suzdq8LevUrcufMoZYKCdAgJ0aFtWy1attSh\nXDlrlLhkbH0Mp01TY8kSV7z3Xg4mT7ZV09QLtWqJcHMTcfhwhl287pYk98+h3OsHyL+Oj9cvOxs4\neVKBY8eUOHZMiePHFTh/Xmm8r7u7iKNHM1C5suXi0dfXy+R2hrADKEsd9Xrg9GkF9uwxhPLBg0pk\nZRlaxCqViCZNHoXyCy/ooZJg2NKWxzApSYEOHTxQrZqIvXsz4OFhk6eFr68XoqJyMGeOK8aPz8GE\nCfLql5b751Du9QPkW0etFjh7VoELFzyxd68Gx44pkZSkgFb7qGewfHkRDRvq8MILOjRqpEezZjqL\nzxNhCDswS9YxJwc4ckSJvXuV2LNHhePHFRBFw5vRy0tEq1ZahIToEBKiRUCAWKblG4vLVsdQrwe6\ndfPAkSNKfP11Jjp2tFF/Ewx1/PvvNDRv7omMDAGHD2dYbTKYFOT+OZR7/QB51FEUgX/+EfK1cP/6\nS4nMzEdfZK6uIurX16NxYx0aNTIEb61aotWHpcyFMKdrOhlXV6B1ax1at9Zh0iQN7t0Dfv9dZQzl\nbdtcsG2bYdzyqaf0aNvWEMht2ujg6+vYobF+vQuOHFGiW7dcmwZwnnLlgMhIDaKi3LBggRqzZlnn\ntCgiZ3HrloBjxxQ4flyJxEQlTpxQ4t69R4GrUIioW9cQuG3aqFGnTgaCgvRwsaOpGWwJOwBb1vHS\nJcE4lvzbb0qkpj76ediunRbvvKNB+/Y6i7aQbVG/27cFtGrlCZ0O2L8/A1Wr2vYHRV4dc3OB1q09\nceWKgH37MlCzpm3KodUCd+4IqFLFOr0bcv8cyr1+gOPUMTsb2LDBBbGxaly8mL/5+uyz+n+7lHV4\n4QU9nn9eB09Pw21S148tYSqWZ54RMXBgLgYOzIVeb5i8sGePCvHxSiQkqJCQoEJgoA7/+U8uevfO\ntdmYallNmeKKBw8EzJyZbfMAfpyLCzBxYg6GDXPHnDmuWLYs26rPp9MBmzerMH++Ky5cUKBlSy2i\nojRo2dL2PQFEZZGeDqxZ44LPP1fj1i0F3NxEdO6sNYZuo0a6Ul0DXGpsCTsAe6njn38qEBurxg8/\nqJCbK8DbW8SgQRoMGZILf//Sv42sXb89e5To3dsDjRrp8MsvmVAqi36MpT1eR70e6NzZAydOKLFz\nZwYaNLD8Ulo6HfDDDyrMm6fG+fNKqFQiGjbU4+hRQ+XbttUiKioHTZpY5rnt5T1qLXKvH2C/dbx/\nH1i1So3ly9W4d09AuXIi3npLg+HDc0s0r0Lq+plrCfM8YSq2Bg30WLo0G4mJGRg3LgcKhYhFi1zx\n4oueGDHCDceP29/bKTsb+PBDNygUImJisiUJ4CcpFIY1vwHDxR0sSa83rMwVEuKBESPc8c8/CgwY\noMHBgxn45ZdMbN2agXbttNi7V4WuXT3Rv787Tpywv+NGlJIiYPp0NRo3Loc5cwyfkwkTcpCYmI7J\nkzWymdjITx+VWJUqIqKiNEhMzMD8+dmoXVuP7793QadOnujWzR1btqhsdqJ7URYtMowb/ec/uVZp\ncZZW3gz0PXtU2LOn7L8M9Hrgxx8N4Tt8uDsuXFCgf38NDhzIwPz5OahRw/CF1aSJHt9+m4WffspE\nq1Za7NypQliYJwYNcsOpU/w6cEbp6cBffynw8KHUJTG4dk3ApEmGH/eLF7vCw0PElCnZOHo0HePH\na1CxotQltCx2RzuA4tQxLk6FhQvVSE5WIDDQcF3csl6hqbhEEUhIUGL5cjV+/dUwzaBGDT3efluD\n/v1zUb584Y+31jE8f15Au3aeqFxZxO+/S7tAhqk6/vmnAh07eqJhQx3i4zNLdYqEXg/8738qxMSo\nkZSkhFIpondvLd5/P6dYk75++02J2bNdceSI4YfAq6/m4oMPNKhbt2Q/WOT+OZRD/dLSgORkBc6e\nVeDsWeW//1fg2jXDG0+pBJo0MZyi2K6dFo0a2XbdgIsXBSxZosa337ogN1dA9ep6jBpl+A6xxCVG\npT6GPE/YgRVVx7g4FYYPdy+wvSzXKi6t5GQFli93wXffuSAryzB+079/LoYO1ZgNBUsew/R04Px5\nBc6fV2DlSjUSE5X44ossvPyybV+HJ5mr4/DhboiLc8GKFVno3r34ZRRFYOtWFaKj1Th9WgmFQkSv\nXlqMG5eDWrVK9pEWRWD3bkMYHz+uhCCIeO01LT74oPj7kvvn0JHql5ZmWJwiOVmBM2eUxuDNC9vH\nVa2qR2CgHs8+q0dyshqHD4vQ6w3T5ytUENGmzaNQfuYZ60RFUpICixYZ5pro9QICAvQYMyYHPXtq\nLXoqkdTHkCHswIqqY0iIB5KSCnZpBgfrkJCQac2imZWaCqxdq8aqVS64eVMBQRARHq7FO+/kokWL\n/Kc4lfQY6nTAlSsCLlxQGAM3779bt/J/0bz8ci5Wr862yaIjhTFXx4sXBbRu7Ymnnza01ov60hFF\nYNs2Q/iePGkI39de0yIyMgcBAWX7KIsiEB+vxJw5rjh1ytCqfv11Q7AX9QUs98+hPdbv4cO8lu2j\nVu3Zswpcv246bOvWffw/HQID9fm6dn19vXDuXBp++02FhATDugGXLz/aV82aeoSEaNGunQ6tW2uL\n7OEqyrFjCixYoDauS/DcczqMHavBK69orTJ3Q+pjyBB2YEXV0d+/HHS6gimjUom4fj3dmkUrUm4u\n8NNPKsTGqnH8uOGT9fzzOgwfrkGPHlqo1ebr9+DBo1ZtXuBeuKDAxYsK5OTkr68giKheXURAgB61\na+sREKBHnTp6vPSSTpKlOJ9U2DGMinLF6tVqzJmTjbfeMn1FJ1EEtm9XIjraFX/+aWitRkRoERmp\nQZ06lh3rzuvinjtXjbNnDTOr+/XLxbhxGjz1lPV7M+yRPdTvyBEFfvrJxdiyNRW2/v75wzYwUIe6\ndfWoUKHo/T9ZR1EE/v5bQEKCYd7C77+rkJZm+NwplSIaN9ajXTst2rUr/pK3oggcOKDEggVq7Nlj\neMCLL+rw/vs5CAuz7PoDT5L6GDKEHZgjtoSfJIrA4cNKxMa6YOtWQ7eTn58eQ4bkon9/V/z5Z2a+\nsD1/XoGUlIJfMp6eIurU0RvDNi9wa9XS2/U5y4Udw9u3BTRr5glPTxGHDuUfuxZFw2UXo6MfdRX3\n6GEI38BA6040yzvNKTraFRcvKqBWG84hHztWgypV8n9tWONzmJtrGF7w9rbobktFyu8ZrRaIiVFj\nwQK1cYnZatUM3chPtmyLE7bmFFXH3FwgMVGJPXsMawYkJiqMXdfly4to3drQSg4J0RYYehJFYNcu\nQ/gePmwI3zZttBg7VoPWra0bvnmkzgqGsANzpDHh4rh0ScCqVWqsX+9i/GX9OEEQ8fTTImrX1hcI\nXGut+GRtRR3DOXPUmDfPFR9+mIPISI3xSys62hWJiYYfWN275yIyUoOgINvO8tZqgU2bVIiJccXl\ny4ZFEt58MxfvvacxLmVa0s9hRgZw86aA69cVuHFDwI0bCly/Lhj/feOGgJQUAaIooGlTHd56S4Nu\n3bRwtewZXcUm1ffM5csC3nnHHX/8oUSNGnrMmZONpk11Ze4KNqWkdXzwwLDkbUKCIZQvXXr0o/mZ\nZwyt5JAQHfR6YPFiNf780/A+7tRJi7FjLXeOenFJnRUMYQdW3NnRixY9mh09ZoztZkeXVloa8M03\nLjh/3g1Vq+YYg7ZmTb1FZkPak6KOYVoa0Ly5J7KzBSxYkI1ly9TGhTW6dcvF+PEa1Ksn7SlWubmG\n4zV/vhrXring4SHi7bc1ePddDerWNdRPFA2LK1y/rjCG7PXrgvHfef9/8MD8Lyk3NxH+/iL8/Q31\nPXBACVEUUKmSHv3752LQoFyrTRIyR4rvmbg4FcaPd0NamoCIiFxER2dbJXzzlLWOf/8tYM8eQyj/\n/rsKDx8+OsaCIOLVV7UYM0aD+vWleR9LnRUMYQcm9zrKvX5A8eq4YoULPvro0a+Pl182hO9zz9nP\n+c2A4Upc69a5YOFCw/KB5cqJePFFAZcv63HjhoDsbPMBW6GCIVzzQtbfX0S1ao//2zBZ6PHejr//\nFrBmjRpff+2Ce/cECIKIDh0MrePQUJ1NFmCx5Xs0PR2YNMkN33zjAg8PEbNnZ6NPH63Ve4AsWUet\n1jDxKiHBMI48aJAGtWtLu7iG1N8zDGEHJvc6yr1+QPHqmJMDDB7sDnd3EePGafD88/YVvk/KygK+\n+soFixerceeOAr6+j4LUELKGcM0L2apVxTKdq52dbZjk98UXj3oJatTQY9CgXPTvn2vRC7A/yVbv\n0T//VGDYMHdcvKhAgwY6xMZmlXnWe3HJ/XModf0Ywg5M7nWUe/0AeddRpwN8fLzw4IHt6vfXXwp8\n+aULvv/eBZmZAtRqEd26afHWWxo0baq3eKvR2sdPrweWLXPBjBmuyM0VMGKEBh99lAO12mpPWYCc\n36OA9PXj2tFEZBVKJWwaFgDw/PN6zJuXgxMn0jFjRjZq1DAsnfrKK55o394DX33lgnRpz84rtlu3\nBPTt646pU91QsaKIb77JxKef2jaASToMYSJyWBUqAP/5Ty727cvE5s2Z6NYtF2fPKvDBB25o0KAc\noqJcceaM/X7N/fqrEu3beyAhQYUOHbRISMhEaKidLLxONmG/704iomISBKB1ax1WrcrGsWMZmDAh\nB+XKiVi9Wo22bT3Ro4c7fvhBBY1G6pIa5OQAkye7ol8/Dzx8KGDatGysX59lPOWLnIcdrCVERGQ5\nVauKGD9egzFjNIiPV+GLL1zw228q7N+vgq+vHgMH5mLgwFyzq39Z27lzCgwf7oaTJ5WoXVuH2Nhs\nu5+ER9bDljAVKe/6tP7+5RAS4oG4OP52I/vn4gK88ooW33+fhf370zF8uAY5OQLmzzdcJq93b3cs\nXqzG0aMK5JpeLdSiRBFYv94FYWEeOHlSiTfe0GDHjkwGsJPjtykV6snVuJKSlP/+bZ+rcRGZUru2\niGnTchAVlYMffnDBV1+5/HstZxUAwzVrmzfXoVUrHV56SYuGDfUWvYLPgwdAZKQbfvrJBeXLiyW+\nahbJF0OYCrVwoekpmosWqRnC5HA8PYE33sjFG2/k4tYtAQcOKLFvnxL79yuxe7cKu3ebDuWOHUv/\nnIcOKTFihBuuXlWgaVMdli3LwtNPc+yXDBjCVKjkZNMjFua2EzmKKlUMF8Po0cPwY/LWLQEHD5oO\nZU9PoFkz9xK1lLVaYMECNebNM/yQjYw0rAtuD1f1IvvBtwMVKjBQb/IKTda+gg+RrVWpIqJ7d62x\nm/jxUD50SF2gpdys2aOWcqNG+UP56lUBI0a44dAhFZ56So/PP89GixY89YgKYghTocaO1Zi8QtOY\nMXZyrgeRlTweyr6+apw6lZ6v+zohQYWEhIKh7O0tYto0Vzx4IOCVV3Ixf342KlaUujZkrxjCVCjD\nuG+Ww12hicjS/Pzyt5Rv387fff0olAF3dxHz5mVjwIBch7z0JtkOQ5iKFBGhZegSPcHPz3B5vldf\nzR/KZ88q0L27lkM2VCwMYSIiC8gLZaKS4BRXIiIiiTCESTJ5K3GpVOBKXETklPitR5LgSlxERGwJ\nk0QKW4mLiMhZFKslPHPmTJw4cQKCIGDSpElo0KCB8bbQ0FBUrVoVSqVhQYeYmBhUqVLFOqUl2eBK\nXERExQjhw4cP49KlS9i4cSMuXLiASZMmYePGjfnus2LFCnh6elqtkCQ/XImLiKgY3dEHDhxAx39X\nLw8ICMCDBw+Qnp5u9YKRvI0da3rFLa7ERUTOpMgQvnPnDry9vY1/+/j4ICUlJd99pkyZgn79+iEm\nJgaiyKuDUNEiIrSIjc1CcLAOKhUQHKxDbCwnZRGRcynx7OgnQ3b06NFo06YNKlSogJEjRyI+Ph7h\n4eFmH+/t7QGVqmA3ZFn4+npZdH/2SI51HDbM8J+BEkDBNarlRI7H8HGsn+OTex3tsX5FhrCfnx/u\n3Llj/Pv27dvw9fU1/t2jRw/jv9u2bYvk5ORCQ/jevczSltUkX18vpKSkWXSf9kbudZR7/QD515H1\nc3xyr6PU9TP3A6DI7uhWrVohPj4eAHDq1Cn4+fmhXLlyAIC0tDQMHToUGo1hHO/IkSOoU6eOpcpM\nVGp5C4H4+5fjQiBEZLeK/GZq3LgxnnvuOfTt2xeCIGDKlCnYvHkzvLy8EBYWhrZt26JPnz5wdXVF\ncHBwoa1gIlvgQiBE5CgE0cYzqSzdHSB1F4MtyL2Olq5fSIiHydOfgoN1SEiw7HBIcfEYOja51w+Q\nfx2lrl+pu6OJHA0XAiEiR8FvJZIdcwt+cCEQIrI3DGGSHS4EQkSOgiFMspN/IRCRC4EQkd3ieRsk\nSxERWquEblycCgsXqpGcrEBgoB5jx2oY7kRUagxhomLiqU9EZGnsjiYqJl4DmYgsjSFMVEw89YmI\nLI3fHkTFxFOfiMjSGMJExWTtU5+43jWR8+GnnKiYDJOvsrBo0aPZ0WPGWGZ2NCd9ETknhjBRCVjr\n1KfCJn0xhInki93RRHaAk76InBM/4UR2gJO+iJwTQ5jIDnC9ayLnxBAmsgPWXO+as66J7Bc/jUR2\nwhqTvjjrmsi+sSVMJGNcapPIvjGEiWSMs66J7Bs/iUQyZu1Z13njzSoVON5MVAoMYSIZs+as67zx\n5qQkJXS6R+PNDGKi4mMIE8mYNWddc7yZqOz4k5VI5qy11CbHm4nKjp8WIioVa44389xmchYMYSIq\nFWuNN+cfaxY41kyyxhAmolLJP94Mi403c6yZnAl/WhJRqeWNN/v6eiElJdMi++RYMzkTvquJyK7Y\n6txmjjeTPWAIE5Fdsd25zRxvJukxhInIrjjyuc1sZVNJ8R1CRHbHEc9t5hWrqDTYEiYip2HN8WbO\n6qbSYAgTkdOw5niztVvZ7OaWJ4YwETkNa443W6uVbe3JZLwSlrT4ahORU7HWePPYsZp8Y8J5ytrK\nLqybu6z14Di29NgSJiKyAGu1sq3Zzc1xbOkxhImILCQiQouEhExcv56OhIRMu+7mBjiObQ8YwkRE\ndsyak8kcfRxbDgHPECYismPWnExmrYC3Zje33FY9YwgTEdk5a3Rz5+3XGlfCctRxbCla2I7504GI\niCzCGlfCCgzUIylJaXJ7WVkr4KWaKc6WMBERWZQjjmNLNVOcIUxERBbliOPYUl3Hmt3RRERkcdZa\nFMWwzywsWqRGcrICgYF6jBmjKfNzWbMLvTAMYSIicijWCHhrrXhWFHZHExGR07NmF3ph2BImIiKC\n9brQC8OWMBERkUQYwkRERBJhCBMREUmEIUxERCSRYoXwzJkz0adPH/Tt2xd//vlnvtv279+PXr16\noU+fPli6dKlVCklERCRHRYbw4cOHcenSJWzcuBEzZszAjBkz8t0+ffp0LFmyBBs2bMC+fftw/vx5\nqxWWiIhITooM4QMHDqBjx44AgICAADx48ADp6ekAgCtXrqBChQrw9/eHQqFASEgIDhw4YN0SExER\nyUSRIXznzh14e3sb//bx8UFKSgoAICUlBT4+PiZvIyIiosKVeLEOURTL9ITe3h5QqQquz1kWvr5e\nFt2fPZJ7HeVeP0D+dWT9HJ/c62iP9SuyJezn54c7d+4Y/759+zZ8fX1N3nbr1i34+fkVuj9LBzAR\nEZGjKjKEW7Vqhfj4eADAqVOn4Ofnh3LlygEAqlevjvT0dFy9ehVarRa7d+9Gq1atrFtiIiIimRDE\nYvQvx8TE4I8//oAgCJgyZQpOnz4NLy8vhIWF4ciRI4iJiQEAdOrUCUOHDrV6oYmIiOSgWCFMRERE\nlscVs4iIiCTCECYiIpIIQ5iIiEgiJT5PWEozZ87EiRMnIAgCJk2ahAYNGhhv279/P+bPnw+lUom2\nbdti5MiREpa0dObOnYujR49Cq9Vi+PDh6NSpk/G20NBQVK1aFUql4RSvmJgYVKlSRaqilsqhQ4cw\nZswY1KlTBwAQGBiIyZMnG2939GP43Xff4aeffjL+ffLkSRw7dsz493PPPYfGjRsb//7yyy+Nx9Pe\nJScn491338Wbb76JAQMG4MaNG5gwYQJ0Oh18fX0RHR0NtVqd7zGFfV7tjan6TZw4EVqtFiqVCtHR\n0cZTM4Gi38v26Mk6RkVF4dSpU6hYsSIAYOjQoWjXrl2+xzjyMRw9ejTu3bsHALh//z4aNWqEadOm\nGe+/efNmLFq0CDVq1AAAvPTSSxgxYoTtCy46iEOHDonDhg0TRVEUz58/L77++uv5bu/SpYt4/fp1\nUafTif369RPPnTsnRTFL7cCBA+Lbb78tiqIopqamiiEhIflub9++vZieni5BySzn4MGD4nvvvWf2\ndkc/ho87dOiQOHXq1HzbmjVrJlFpyiYjI0McMGCA+PHHH4tr164VRVEUo6KixK1bt4qiKIrz5s0T\n169fn+8xRX1e7Ymp+k2YMEH83//+J4qiKK5bt06cM2dOvscU9V62N6bq+OGHH4q7du0y+xhHP4aP\ni4qKEk+cOJFv2/fffy/Onj3bVkU0y2G6o+W+hnXTpk2xaNEiAED58uWRlZUFnU4ncalsRw7H8HFL\nly7Fu+++K3UxLEKtVmPFihX5FuI5dOgQOnToAABo3759gWNV2OfV3piq35QpU9C5c2cAgLe3N+7f\nvy9V8SzCVB2L4ujHMJHqSuYAAARNSURBVM/FixeRlpZmt614hwlhua9hrVQq4eHhAQDYtGkT2rZt\nW6CrcsqUKejXrx9iYmLKvHyoVM6fP4933nkH/fr1w759+4zb5XAM8/z555/w9/fP130JABqNBpGR\nkejbty+++OILiUpXciqVCm5ubvm2ZWVlGbufK1WqVOBYFfZ5tTem6ufh4QGlUgmdToevv/4a3bp1\nK/A4c+9le2SqjgCwbt06DBo0CO+//z5SU1Pz3eboxzDPmjVrMGDAAJO3HT58GEOHDsXgwYNx+vRp\naxbRLIcaE36co4ZQUXbu3IlNmzZh9erV+baPHj0abdq0QYUKFTBy5EjEx8cjPDxcolKWzrPPPotR\no0ahS5cuuHLlCgYNGoTt27cXGEt0dJs2bUJERESB7RMmTMCrr74KQRAwYMAANGnSBM8//7wEJbSs\n4nwWHfHzqtPpMGHCBLRo0QItW7bMd5sc3svdu3dHxYoVUa9ePSxfvhz//e9/8cknn5i9vyMeQ41G\ng6NHj2Lq1KkFbmvYsCF8fHzQrl07HDt2DB9++CG2bNli8zI6TEvY0mtY26PffvsNy5Ytw4oVK+Dl\nlX+h8R49eqBSpUpQqVRo27YtkpOTJSpl6VWpUgVdu3aFIAioUaMGKleujFu3bgGQzzEEDF21L7zw\nQoHt/fr1g6enJzw8PNCiRQuHPIZ5PDw8kJ2dDcD0sSrs8+ooJk6ciGeeeQajRo0qcFth72VH0bJl\nS9SrVw+AYeLnk+9HORzDI0eOmO2GDggIME5Ee+GFF5CamirJEKDDhLDc17BOS0vD3LlzERsba5yt\n+PhtQ4cOhUajAWB4Y+XNynQkP/30E1atWgXA0P189+5d4wxvORxDwBBInp6eBVpEFy9eRGRkJERR\nhFarRWJiokMewzwvvfSS8fO4fft2tGnTJt/thX1eHcFPP/0EFxcXjB492uzt5t7LjuK9997DlStX\nABh+OD75fnT0YwgAf/31F4KCgkzetmLFCvz8888ADDOrfXx8JDlbwaGWrZTzGtYbN27EkiVLULNm\nTeO25s2bo27duggLC8NXX32FH374Aa6urggODsbkyZMhCIKEJS659PR0jB8/Hg8fPkRubi5GjRqF\nu3fvyuYYAobTkhYuXIiVK1cCAJYvX46mTZvihRdeQHR0NA4ePAiFQoHQ0FBpTocohZMnT2LOnDm4\ndu0aVCoVqlSpgpiYGERFRSEnJwfVqlXDrFmz4OLigvfffx+zZs2Cm5tbgc+ruS9DqZmq3927d+Hq\n6moMnYCAAEydOtVYP61WW+C9HBISInFNzDNVxwEDBmD58uVwd3eHh4cHZs2ahUqVKsnmGC5ZsgRL\nlizBiy++iK5duxrvO2LECHz++ee4efMmPvjgA+MPY6lOwXKoECYiIpITh+mOJiIikhuGMBERkUQY\nwkRERBJhCBMREUmEIUxERCQRhjAREZFEGMJEREQSYQgTERFJ5P8BJDRe7SIKaSIAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "y8gOu3DoSQa8", + "colab_type": "code", + "outputId": "a427b786-4708-4f5a-acd2-fb6c16145be7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 + } + }, + "cell_type": "code", + "source": [ + "#法1\n", + "# 載入weights\n", + "weight_path = os.path.join(tempfile.gettempdir(), 'saved_ResNet_wt.h5')\n", + "model.load_weights(weight_path)\n", + "\n", + "# Evaluate \n", + "x_test = x_test.astype('float32')\n", + "x_test /= 255\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "scores = model.evaluate(x_test, y_test, verbose=1)\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "10000/10000 [==============================] - 11s 1ms/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "OyVob51uTjti", + "colab_type": "code", + "outputId": "ad797160-ed73-4bcb-fce7-30e307b38306", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + } + }, + "cell_type": "code", + "source": [ + "#法1\n", + "print('Test loss:', scores[0])\n", + "print('Test accuracy:', scores[1])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Test loss: 0.617426807975769\n", + "Test accuracy: 0.8281\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "bW_C0MW2-2lV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.1.5. *Layer weights sharing*\n", + "\n", + "One more important feature of the functional API is the ability to reuse a layer instance several times where instead of instantiating a new layer for each call, you reuse the same weights with every call. This allows you to build models that have shared branches—several branches that all share the same knowledge and perform the same operations. \n", + "\n", + "#### Example - semantic similarity between two sentences\n", + "\n", + "For example, consider a model that attempts to assess the semantic similarity between two sentences. The model has two inputs (the two sentences to compare) and outputs a score between 0 and 1, where 0 means unrelated sentences and 1 means sentences that are either identical or reformulations of each other. Such a model could be useful in many applications, including deduplicating natural-language queries in a dialog system. \n", + "\n", + "In this setup, the two input sentences are interchangeable, because semantic similarity is a symmetrical relationship: the similarity of A to B is identical to the similarity of B to A. For this reason, it wouldn’t make sense to learn two independent models for processing each input sentence. Rather, you want to process both with a single LSTM layer. The representations of this LSTM layer (its weights) are learned based on both inputs simultaneously. This is what we call a Siamese LSTM model or a shared LSTM.\n", + "\n", + " Note: Siamese network is a special type of neural network architecture. Instead of learning to classify its\n", + " inputs, the Siamese neural network learns to differentiate between two inputs. It learns the similarity.\n", + "\n", + "Here’s how to implement such a model using layer sharing (layer reuse) in the Keras functional API:" + ] + }, + { + "metadata": { + "id": "8_eud_Pszu2z", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "在這裡, 我們將使用真實文本資料來訓練Siamese network\n", + "\n", + "文本資料來自Quora這個問答網站\n", + "\n", + "[https://www.kaggle.com/quora/question-pairs-dataset](https://www.kaggle.com/quora/question-pairs-dataset)\n", + "\n", + "![alt text](https://cdn-images-1.medium.com/max/1000/1*8inl5NyNsmEcqKOPMewgjA.png)\n" + ] + }, + { + "metadata": { + "id": "ovSXfKZ5TTfT", + "colab_type": "code", + "outputId": "5f2b0bbf-6725-40ea-c512-7c499d8c844b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 423 + } + }, + "cell_type": "code", + "source": [ + "#下載資料集\n", + "\n", + "!wget --no-check-certificate -r 'https://docs.google.com/uc?export=download&id=1Ey3PnfSV2SnBHFFiAwjUh2M49WEa9-Al' -O questions.csv.zip\n", + "\n", + "import zipfile\n", + "with zipfile.ZipFile(open('questions.csv.zip', 'rb')) as f:\n", + " f.extractall()\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING: combining -O with -r or -p will mean that all downloaded content\n", + "will be placed in the single file you specified.\n", + "\n", + "--2018-11-04 10:11:52-- https://docs.google.com/uc?export=download&id=1Ey3PnfSV2SnBHFFiAwjUh2M49WEa9-Al\n", + "Resolving docs.google.com (docs.google.com)... 108.177.111.139, 108.177.111.101, 108.177.111.138, ...\n", + "Connecting to docs.google.com (docs.google.com)|108.177.111.139|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Moved Temporarily\n", + "Location: https://doc-00-ac-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/2jk9jikrj7fv65v030uitsne2khsqn9e/1541325600000/05881448651423052326/*/1Ey3PnfSV2SnBHFFiAwjUh2M49WEa9-Al?e=download [following]\n", + "Warning: wildcards not supported in HTTP.\n", + "--2018-11-04 10:11:54-- https://doc-00-ac-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/2jk9jikrj7fv65v030uitsne2khsqn9e/1541325600000/05881448651423052326/*/1Ey3PnfSV2SnBHFFiAwjUh2M49WEa9-Al?e=download\n", + "Resolving doc-00-ac-docs.googleusercontent.com (doc-00-ac-docs.googleusercontent.com)... 173.194.198.132, 2607:f8b0:4001:c1c::84\n", + "Connecting to doc-00-ac-docs.googleusercontent.com (doc-00-ac-docs.googleusercontent.com)|173.194.198.132|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: unspecified [application/zip]\n", + "Saving to: ‘questions.csv.zip’\n", + "\n", + "questions.csv.zip [ <=> ] 21.38M 63.7MB/s in 0.3s \n", + "\n", + "2018-11-04 10:11:55 (63.7 MB/s) - ‘questions.csv.zip’ saved [22418615]\n", + "\n", + "FINISHED --2018-11-04 10:11:55--\n", + "Total wall clock time: 2.9s\n", + "Downloaded: 1 files, 21M in 0.3s (63.7 MB/s)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "y3c7ku9NCx5y", + "colab_type": "code", + "outputId": "94d31d83-a22e-4fee-9c79-ea9a5b21852b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 302 + } + }, + "cell_type": "code", + "source": [ + "#下載Google word embeedings\n", + "!wget --no-check-certificate -r 'https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz' -O GoogleNews-vectors-negative300.bin.gz\n", + "\n", + "\n", + "#https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING: combining -O with -r or -p will mean that all downloaded content\n", + "will be placed in the single file you specified.\n", + "\n", + "--2018-11-04 10:12:09-- https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz\n", + "Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.229.141\n", + "Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.229.141|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 1647046227 (1.5G) [application/x-gzip]\n", + "Saving to: ‘GoogleNews-vectors-negative300.bin.gz’\n", + "\n", + "GoogleNews-vectors- 100%[===================>] 1.53G 82.9MB/s in 19s \n", + "\n", + "2018-11-04 10:12:29 (82.0 MB/s) - ‘GoogleNews-vectors-negative300.bin.gz’ saved [1647046227/1647046227]\n", + "\n", + "FINISHED --2018-11-04 10:12:29--\n", + "Total wall clock time: 19s\n", + "Downloaded: 1 files, 1.5G in 19s (82.0 MB/s)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "NVG7wa5LVbJz", + "colab_type": "code", + "outputId": "70330377-40b3-4e31-8e11-fcf800af078a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 339 + } + }, + "cell_type": "code", + "source": [ + "# 安裝word2vec所需的套件\n", + "\n", + "! pip install gensim" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: gensim in /usr/local/lib/python3.6/dist-packages (3.6.0)\n", + "Requirement already satisfied: six>=1.5.0 in /usr/local/lib/python3.6/dist-packages (from gensim) (1.11.0)\n", + "Requirement already satisfied: smart-open>=1.2.1 in /usr/local/lib/python3.6/dist-packages (from gensim) (1.7.1)\n", + "Requirement already satisfied: scipy>=0.18.1 in /usr/local/lib/python3.6/dist-packages (from gensim) (0.19.1)\n", + "Requirement already satisfied: numpy>=1.11.3 in /usr/local/lib/python3.6/dist-packages (from gensim) (1.14.6)\n", + "Requirement already satisfied: boto3 in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (1.9.37)\n", + "Requirement already satisfied: boto>=2.32 in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (2.49.0)\n", + "Requirement already satisfied: bz2file in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (0.98)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim) (2.18.4)\n", + "Requirement already satisfied: s3transfer<0.2.0,>=0.1.10 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim) (0.1.13)\n", + "Requirement already satisfied: botocore<1.13.0,>=1.12.37 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim) (1.12.37)\n", + "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim) (0.9.3)\n", + "Requirement already satisfied: idna<2.7,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (2.6)\n", + "Requirement already satisfied: urllib3<1.23,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (1.22)\n", + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (3.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->smart-open>=1.2.1->gensim) (2018.10.15)\n", + "Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python_version >= \"2.7\" in /usr/local/lib/python3.6/dist-packages (from botocore<1.13.0,>=1.12.37->boto3->smart-open>=1.2.1->gensim) (2.5.3)\n", + "Requirement already satisfied: docutils>=0.10 in /usr/local/lib/python3.6/dist-packages (from botocore<1.13.0,>=1.12.37->boto3->smart-open>=1.2.1->gensim) (0.14)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "iVcvnKJ6VUlF", + "colab_type": "code", + "outputId": "60cf1703-c641-4c36-9f20-db57ea16cb86", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 50 + } + }, + "cell_type": "code", + "source": [ + "import re\n", + "\n", + "from tensorflow.python.keras import backend as K\n", + "from tensorflow.python.keras.layers import Layer\n", + "from tensorflow.python.keras.preprocessing.sequence import pad_sequences\n", + "\n", + "from nltk.corpus import stopwords\n", + "from gensim.models import KeyedVectors\n", + "\n", + "import gensim\n", + "\n", + "import numpy as np\n", + "\n", + "import itertools\n", + "\n", + "#安裝nltk所需的停用詞集\n", + "import nltk\n", + "nltk.download('stopwords')\n", + "\n", + "\n", + "\n", + "\n", + "#以下為資料前處理的functions,請大家課後再細看\n", + "\n", + "def text_to_word_list(text):\n", + " # Pre process and convert texts to a list of words\n", + " text = str(text)\n", + " text = text.lower()\n", + "\n", + " # Clean the text\n", + " text = re.sub(r\"[^A-Za-z0-9^,!.\\/'+-=]\", \" \", text)\n", + " text = re.sub(r\"what's\", \"what is \", text)\n", + " text = re.sub(r\"\\'s\", \" \", text)\n", + " text = re.sub(r\"\\'ve\", \" have \", text)\n", + " text = re.sub(r\"can't\", \"cannot \", text)\n", + " text = re.sub(r\"n't\", \" not \", text)\n", + " text = re.sub(r\"i'm\", \"i am \", text)\n", + " text = re.sub(r\"\\'re\", \" are \", text)\n", + " text = re.sub(r\"\\'d\", \" would \", text)\n", + " text = re.sub(r\"\\'ll\", \" will \", text)\n", + " text = re.sub(r\",\", \" \", text)\n", + " text = re.sub(r\"\\.\", \" \", text)\n", + " text = re.sub(r\"!\", \" ! \", text)\n", + " text = re.sub(r\"\\/\", \" \", text)\n", + " text = re.sub(r\"\\^\", \" ^ \", text)\n", + " text = re.sub(r\"\\+\", \" + \", text)\n", + " text = re.sub(r\"\\-\", \" - \", text)\n", + " text = re.sub(r\"\\=\", \" = \", text)\n", + " text = re.sub(r\"'\", \" \", text)\n", + " text = re.sub(r\"(\\d+)(k)\", r\"\\g<1>000\", text)\n", + " text = re.sub(r\":\", \" : \", text)\n", + " text = re.sub(r\" e g \", \" eg \", text)\n", + " text = re.sub(r\" b g \", \" bg \", text)\n", + " text = re.sub(r\" u s \", \" american \", text)\n", + " text = re.sub(r\"\\0s\", \"0\", text)\n", + " text = re.sub(r\" 9 11 \", \"911\", text)\n", + " text = re.sub(r\"e - mail\", \"email\", text)\n", + " text = re.sub(r\"j k\", \"jk\", text)\n", + " text = re.sub(r\"\\s{2,}\", \" \", text)\n", + "\n", + " text = text.split()\n", + "\n", + " return text\n", + "\n", + "#建立word2vec embeedings \n", + "\n", + "vocabs = {}\n", + "\n", + "def make_w2v_embeddings(df, embedding_dim=300, empty_w2v=False):\n", + " #vocabs = {}\n", + " vocabs_cnt = 0\n", + "\n", + " vocabs_not_w2v = {}\n", + " vocabs_not_w2v_cnt = 0\n", + "\n", + " # Stopwords\n", + " stops = set(stopwords.words('english'))\n", + "\n", + " # Load word2vec\n", + " print(\"Loading word2vec model(it may takes 2-3 mins) ...\")\n", + "\n", + " if empty_w2v:\n", + " word2vec = EmptyWord2Vec\n", + " else:\n", + " word2vec = KeyedVectors.load_word2vec_format(\"GoogleNews-vectors-negative300.bin.gz\", binary=True)\n", + " #若有下載Google的word embeeding(GoogleNews-vectors-negative300.bin.gz)可執行此行\n", + " # word2vec = gensim.models.word2vec.Word2Vec.load(\"./data/Quora-Question-Pairs.w2v\").wv\n", + "\n", + " for index, row in df.iterrows():\n", + " # Print the number of embedded sentences.\n", + " if index != 0 and index % 1000 == 0:\n", + " print(\"{:,} sentences embedded.\".format(index), flush=True)\n", + "\n", + " # Iterate through the text of both questions of the row\n", + " for question in ['question1', 'question2']:\n", + "\n", + " q2n = [] # q2n -> question numbers representation\n", + " for word in text_to_word_list(row[question]):\n", + " # Check for unwanted words\n", + " if word in stops:\n", + " continue\n", + "\n", + " # If a word is missing from word2vec model.\n", + " if word not in word2vec.vocab:\n", + " if word not in vocabs_not_w2v:\n", + " vocabs_not_w2v_cnt += 1\n", + " vocabs_not_w2v[word] = 1\n", + "\n", + " # If you have never seen a word, append it to vocab dictionary.\n", + " if word not in vocabs:\n", + " vocabs_cnt += 1\n", + " vocabs[word] = vocabs_cnt\n", + " q2n.append(vocabs_cnt)\n", + " else:\n", + " q2n.append(vocabs[word])\n", + "\n", + " # Append question as number representation\n", + " df.at[index, question + '_n'] = q2n\n", + "\n", + " embeddings = 1 * np.random.randn(len(vocabs) + 1, embedding_dim) # This will be the embedding matrix\n", + " embeddings[0] = 0 # So that the padding will be ignored\n", + "\n", + " # Build the embedding matrix\n", + " for word, index in vocabs.items():\n", + " if word in word2vec.vocab:\n", + " embeddings[index] = word2vec.word_vec(word)\n", + " del word2vec\n", + "\n", + " return df, embeddings\n", + "\n", + "\n", + "def split_and_zero_padding(df, max_seq_length):\n", + " # Split to dicts\n", + " X = {'left': df['question1_n'], 'right': df['question2_n']}\n", + "\n", + " # Zero padding\n", + " for dataset, side in itertools.product([X], ['left', 'right']):\n", + " dataset[side] = pad_sequences(dataset[side], padding='pre', truncating='post', maxlen=max_seq_length)\n", + "\n", + " return dataset\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "class EmptyWord2Vec:\n", + " \"\"\"\n", + " Just for test use.\n", + " \"\"\"\n", + " vocab = {}\n", + "word_vec = {}" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", + "[nltk_data] Package stopwords is already up-to-date!\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "vLlvWoKZRuAJ", + "colab_type": "code", + "outputId": "650c2f0b-c928-420a-f253-e7046e7de4c6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 6821 + } + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "TRAIN_CSV = 'questions.csv'\n", + "\n", + "# Load training set\n", + "train_df = pd.read_csv(TRAIN_CSV)\n", + "for q in ['question1', 'question2']:\n", + " train_df[q + '_n'] = train_df[q]\n", + "\n", + "# Make word2vec embeddings\n", + "embedding_dim = 300\n", + "max_seq_length = 20\n", + "\n", + "#不使用word2vec訓練好摸word embeedings, 使用隨機初始化的embeedings, 交由神經網路來train其權重\n", + "use_w2v = False\n", + "\n", + "train_df, embeddings = make_w2v_embeddings(train_df, embedding_dim=embedding_dim, empty_w2v=not use_w2v)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Loading word2vec model(it may takes 2-3 mins) ...\n", + "1,000 sentences embedded.\n", + "2,000 sentences embedded.\n", + "3,000 sentences embedded.\n", + "4,000 sentences embedded.\n", + "5,000 sentences embedded.\n", + "6,000 sentences embedded.\n", + "7,000 sentences embedded.\n", + "8,000 sentences embedded.\n", + "9,000 sentences embedded.\n", + "10,000 sentences embedded.\n", + "11,000 sentences embedded.\n", + "12,000 sentences embedded.\n", + "13,000 sentences embedded.\n", + "14,000 sentences embedded.\n", + "15,000 sentences embedded.\n", + "16,000 sentences embedded.\n", + "17,000 sentences embedded.\n", + "18,000 sentences embedded.\n", + "19,000 sentences embedded.\n", + "20,000 sentences embedded.\n", + "21,000 sentences embedded.\n", + "22,000 sentences embedded.\n", + "23,000 sentences embedded.\n", + "24,000 sentences embedded.\n", + "25,000 sentences embedded.\n", + "26,000 sentences embedded.\n", + "27,000 sentences embedded.\n", + "28,000 sentences embedded.\n", + "29,000 sentences embedded.\n", + "30,000 sentences embedded.\n", + "31,000 sentences embedded.\n", + "32,000 sentences embedded.\n", + "33,000 sentences embedded.\n", + "34,000 sentences embedded.\n", + "35,000 sentences embedded.\n", + "36,000 sentences embedded.\n", + "37,000 sentences embedded.\n", + "38,000 sentences embedded.\n", + "39,000 sentences embedded.\n", + "40,000 sentences embedded.\n", + "41,000 sentences embedded.\n", + "42,000 sentences embedded.\n", + "43,000 sentences embedded.\n", + "44,000 sentences embedded.\n", + "45,000 sentences embedded.\n", + "46,000 sentences embedded.\n", + "47,000 sentences embedded.\n", + "48,000 sentences embedded.\n", + "49,000 sentences embedded.\n", + "50,000 sentences embedded.\n", + "51,000 sentences embedded.\n", + "52,000 sentences embedded.\n", + "53,000 sentences embedded.\n", + "54,000 sentences embedded.\n", + "55,000 sentences embedded.\n", + "56,000 sentences embedded.\n", + "57,000 sentences embedded.\n", + "58,000 sentences embedded.\n", + "59,000 sentences embedded.\n", + "60,000 sentences embedded.\n", + "61,000 sentences embedded.\n", + "62,000 sentences embedded.\n", + "63,000 sentences embedded.\n", + "64,000 sentences embedded.\n", + "65,000 sentences embedded.\n", + "66,000 sentences embedded.\n", + "67,000 sentences embedded.\n", + "68,000 sentences embedded.\n", + "69,000 sentences embedded.\n", + "70,000 sentences embedded.\n", + "71,000 sentences embedded.\n", + "72,000 sentences embedded.\n", + "73,000 sentences embedded.\n", + "74,000 sentences embedded.\n", + "75,000 sentences embedded.\n", + "76,000 sentences embedded.\n", + "77,000 sentences embedded.\n", + "78,000 sentences embedded.\n", + "79,000 sentences embedded.\n", + "80,000 sentences embedded.\n", + "81,000 sentences embedded.\n", + "82,000 sentences embedded.\n", + "83,000 sentences embedded.\n", + "84,000 sentences embedded.\n", + "85,000 sentences embedded.\n", + "86,000 sentences embedded.\n", + "87,000 sentences embedded.\n", + "88,000 sentences embedded.\n", + "89,000 sentences embedded.\n", + "90,000 sentences embedded.\n", + "91,000 sentences embedded.\n", + "92,000 sentences embedded.\n", + "93,000 sentences embedded.\n", + "94,000 sentences embedded.\n", + "95,000 sentences embedded.\n", + "96,000 sentences embedded.\n", + "97,000 sentences embedded.\n", + "98,000 sentences embedded.\n", + "99,000 sentences embedded.\n", + "100,000 sentences embedded.\n", + "101,000 sentences embedded.\n", + "102,000 sentences embedded.\n", + "103,000 sentences embedded.\n", + "104,000 sentences embedded.\n", + "105,000 sentences embedded.\n", + "106,000 sentences embedded.\n", + "107,000 sentences embedded.\n", + "108,000 sentences embedded.\n", + "109,000 sentences embedded.\n", + "110,000 sentences embedded.\n", + "111,000 sentences embedded.\n", + "112,000 sentences embedded.\n", + "113,000 sentences embedded.\n", + "114,000 sentences embedded.\n", + "115,000 sentences embedded.\n", + "116,000 sentences embedded.\n", + "117,000 sentences embedded.\n", + "118,000 sentences embedded.\n", + "119,000 sentences embedded.\n", + "120,000 sentences embedded.\n", + "121,000 sentences embedded.\n", + "122,000 sentences embedded.\n", + "123,000 sentences embedded.\n", + "124,000 sentences embedded.\n", + "125,000 sentences embedded.\n", + "126,000 sentences embedded.\n", + "127,000 sentences embedded.\n", + "128,000 sentences embedded.\n", + "129,000 sentences embedded.\n", + "130,000 sentences embedded.\n", + "131,000 sentences embedded.\n", + "132,000 sentences embedded.\n", + "133,000 sentences embedded.\n", + "134,000 sentences embedded.\n", + "135,000 sentences embedded.\n", + "136,000 sentences embedded.\n", + "137,000 sentences embedded.\n", + "138,000 sentences embedded.\n", + "139,000 sentences embedded.\n", + "140,000 sentences embedded.\n", + "141,000 sentences embedded.\n", + "142,000 sentences embedded.\n", + "143,000 sentences embedded.\n", + "144,000 sentences embedded.\n", + "145,000 sentences embedded.\n", + "146,000 sentences embedded.\n", + "147,000 sentences embedded.\n", + "148,000 sentences embedded.\n", + "149,000 sentences embedded.\n", + "150,000 sentences embedded.\n", + "151,000 sentences embedded.\n", + "152,000 sentences embedded.\n", + "153,000 sentences embedded.\n", + "154,000 sentences embedded.\n", + "155,000 sentences embedded.\n", + "156,000 sentences embedded.\n", + "157,000 sentences embedded.\n", + "158,000 sentences embedded.\n", + "159,000 sentences embedded.\n", + "160,000 sentences embedded.\n", + "161,000 sentences embedded.\n", + "162,000 sentences embedded.\n", + "163,000 sentences embedded.\n", + "164,000 sentences embedded.\n", + "165,000 sentences embedded.\n", + "166,000 sentences embedded.\n", + "167,000 sentences embedded.\n", + "168,000 sentences embedded.\n", + "169,000 sentences embedded.\n", + "170,000 sentences embedded.\n", + "171,000 sentences embedded.\n", + "172,000 sentences embedded.\n", + "173,000 sentences embedded.\n", + "174,000 sentences embedded.\n", + "175,000 sentences embedded.\n", + "176,000 sentences embedded.\n", + "177,000 sentences embedded.\n", + "178,000 sentences embedded.\n", + "179,000 sentences embedded.\n", + "180,000 sentences embedded.\n", + "181,000 sentences embedded.\n", + "182,000 sentences embedded.\n", + "183,000 sentences embedded.\n", + "184,000 sentences embedded.\n", + "185,000 sentences embedded.\n", + "186,000 sentences embedded.\n", + "187,000 sentences embedded.\n", + "188,000 sentences embedded.\n", + "189,000 sentences embedded.\n", + "190,000 sentences embedded.\n", + "191,000 sentences embedded.\n", + "192,000 sentences embedded.\n", + "193,000 sentences embedded.\n", + "194,000 sentences embedded.\n", + "195,000 sentences embedded.\n", + "196,000 sentences embedded.\n", + "197,000 sentences embedded.\n", + "198,000 sentences embedded.\n", + "199,000 sentences embedded.\n", + "200,000 sentences embedded.\n", + "201,000 sentences embedded.\n", + "202,000 sentences embedded.\n", + "203,000 sentences embedded.\n", + "204,000 sentences embedded.\n", + "205,000 sentences embedded.\n", + "206,000 sentences embedded.\n", + "207,000 sentences embedded.\n", + "208,000 sentences embedded.\n", + "209,000 sentences embedded.\n", + "210,000 sentences embedded.\n", + "211,000 sentences embedded.\n", + "212,000 sentences embedded.\n", + "213,000 sentences embedded.\n", + "214,000 sentences embedded.\n", + "215,000 sentences embedded.\n", + "216,000 sentences embedded.\n", + "217,000 sentences embedded.\n", + "218,000 sentences embedded.\n", + "219,000 sentences embedded.\n", + "220,000 sentences embedded.\n", + "221,000 sentences embedded.\n", + "222,000 sentences embedded.\n", + "223,000 sentences embedded.\n", + "224,000 sentences embedded.\n", + "225,000 sentences embedded.\n", + "226,000 sentences embedded.\n", + "227,000 sentences embedded.\n", + "228,000 sentences embedded.\n", + "229,000 sentences embedded.\n", + "230,000 sentences embedded.\n", + "231,000 sentences embedded.\n", + "232,000 sentences embedded.\n", + "233,000 sentences embedded.\n", + "234,000 sentences embedded.\n", + "235,000 sentences embedded.\n", + "236,000 sentences embedded.\n", + "237,000 sentences embedded.\n", + "238,000 sentences embedded.\n", + "239,000 sentences embedded.\n", + "240,000 sentences embedded.\n", + "241,000 sentences embedded.\n", + "242,000 sentences embedded.\n", + "243,000 sentences embedded.\n", + "244,000 sentences embedded.\n", + "245,000 sentences embedded.\n", + "246,000 sentences embedded.\n", + "247,000 sentences embedded.\n", + "248,000 sentences embedded.\n", + "249,000 sentences embedded.\n", + "250,000 sentences embedded.\n", + "251,000 sentences embedded.\n", + "252,000 sentences embedded.\n", + "253,000 sentences embedded.\n", + "254,000 sentences embedded.\n", + "255,000 sentences embedded.\n", + "256,000 sentences embedded.\n", + "257,000 sentences embedded.\n", + "258,000 sentences embedded.\n", + "259,000 sentences embedded.\n", + "260,000 sentences embedded.\n", + "261,000 sentences embedded.\n", + "262,000 sentences embedded.\n", + "263,000 sentences embedded.\n", + "264,000 sentences embedded.\n", + "265,000 sentences embedded.\n", + "266,000 sentences embedded.\n", + "267,000 sentences embedded.\n", + "268,000 sentences embedded.\n", + "269,000 sentences embedded.\n", + "270,000 sentences embedded.\n", + "271,000 sentences embedded.\n", + "272,000 sentences embedded.\n", + "273,000 sentences embedded.\n", + "274,000 sentences embedded.\n", + "275,000 sentences embedded.\n", + "276,000 sentences embedded.\n", + "277,000 sentences embedded.\n", + "278,000 sentences embedded.\n", + "279,000 sentences embedded.\n", + "280,000 sentences embedded.\n", + "281,000 sentences embedded.\n", + "282,000 sentences embedded.\n", + "283,000 sentences embedded.\n", + "284,000 sentences embedded.\n", + "285,000 sentences embedded.\n", + "286,000 sentences embedded.\n", + "287,000 sentences embedded.\n", + "288,000 sentences embedded.\n", + "289,000 sentences embedded.\n", + "290,000 sentences embedded.\n", + "291,000 sentences embedded.\n", + "292,000 sentences embedded.\n", + "293,000 sentences embedded.\n", + "294,000 sentences embedded.\n", + "295,000 sentences embedded.\n", + "296,000 sentences embedded.\n", + "297,000 sentences embedded.\n", + "298,000 sentences embedded.\n", + "299,000 sentences embedded.\n", + "300,000 sentences embedded.\n", + "301,000 sentences embedded.\n", + "302,000 sentences embedded.\n", + "303,000 sentences embedded.\n", + "304,000 sentences embedded.\n", + "305,000 sentences embedded.\n", + "306,000 sentences embedded.\n", + "307,000 sentences embedded.\n", + "308,000 sentences embedded.\n", + "309,000 sentences embedded.\n", + "310,000 sentences embedded.\n", + "311,000 sentences embedded.\n", + "312,000 sentences embedded.\n", + "313,000 sentences embedded.\n", + "314,000 sentences embedded.\n", + "315,000 sentences embedded.\n", + "316,000 sentences embedded.\n", + "317,000 sentences embedded.\n", + "318,000 sentences embedded.\n", + "319,000 sentences embedded.\n", + "320,000 sentences embedded.\n", + "321,000 sentences embedded.\n", + "322,000 sentences embedded.\n", + "323,000 sentences embedded.\n", + "324,000 sentences embedded.\n", + "325,000 sentences embedded.\n", + "326,000 sentences embedded.\n", + "327,000 sentences embedded.\n", + "328,000 sentences embedded.\n", + "329,000 sentences embedded.\n", + "330,000 sentences embedded.\n", + "331,000 sentences embedded.\n", + "332,000 sentences embedded.\n", + "333,000 sentences embedded.\n", + "334,000 sentences embedded.\n", + "335,000 sentences embedded.\n", + "336,000 sentences embedded.\n", + "337,000 sentences embedded.\n", + "338,000 sentences embedded.\n", + "339,000 sentences embedded.\n", + "340,000 sentences embedded.\n", + "341,000 sentences embedded.\n", + "342,000 sentences embedded.\n", + "343,000 sentences embedded.\n", + "344,000 sentences embedded.\n", + "345,000 sentences embedded.\n", + "346,000 sentences embedded.\n", + "347,000 sentences embedded.\n", + "348,000 sentences embedded.\n", + "349,000 sentences embedded.\n", + "350,000 sentences embedded.\n", + "351,000 sentences embedded.\n", + "352,000 sentences embedded.\n", + "353,000 sentences embedded.\n", + "354,000 sentences embedded.\n", + "355,000 sentences embedded.\n", + "356,000 sentences embedded.\n", + "357,000 sentences embedded.\n", + "358,000 sentences embedded.\n", + "359,000 sentences embedded.\n", + "360,000 sentences embedded.\n", + "361,000 sentences embedded.\n", + "362,000 sentences embedded.\n", + "363,000 sentences embedded.\n", + "364,000 sentences embedded.\n", + "365,000 sentences embedded.\n", + "366,000 sentences embedded.\n", + "367,000 sentences embedded.\n", + "368,000 sentences embedded.\n", + "369,000 sentences embedded.\n", + "370,000 sentences embedded.\n", + "371,000 sentences embedded.\n", + "372,000 sentences embedded.\n", + "373,000 sentences embedded.\n", + "374,000 sentences embedded.\n", + "375,000 sentences embedded.\n", + "376,000 sentences embedded.\n", + "377,000 sentences embedded.\n", + "378,000 sentences embedded.\n", + "379,000 sentences embedded.\n", + "380,000 sentences embedded.\n", + "381,000 sentences embedded.\n", + "382,000 sentences embedded.\n", + "383,000 sentences embedded.\n", + "384,000 sentences embedded.\n", + "385,000 sentences embedded.\n", + "386,000 sentences embedded.\n", + "387,000 sentences embedded.\n", + "388,000 sentences embedded.\n", + "389,000 sentences embedded.\n", + "390,000 sentences embedded.\n", + "391,000 sentences embedded.\n", + "392,000 sentences embedded.\n", + "393,000 sentences embedded.\n", + "394,000 sentences embedded.\n", + "395,000 sentences embedded.\n", + "396,000 sentences embedded.\n", + "397,000 sentences embedded.\n", + "398,000 sentences embedded.\n", + "399,000 sentences embedded.\n", + "400,000 sentences embedded.\n", + "401,000 sentences embedded.\n", + "402,000 sentences embedded.\n", + "403,000 sentences embedded.\n", + "404,000 sentences embedded.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "dQyXyWfKjbWm", + "colab_type": "code", + "outputId": "3d766260-1e28-4fa4-b9a5-bb70737749d7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "#embeedings的維度為300\n", + "embeddings.shape" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(85875, 300)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "9W_F67xnjg7I", + "colab_type": "code", + "outputId": "4399d53b-1ff2-4ed1-cf47-ee91b6d8a392", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1025 + } + }, + "cell_type": "code", + "source": [ + "#觀查其中一個詞的embedding向量內容\n", + "embeddings[1]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([-0.38364957, -0.26879586, -0.06596126, -1.39757429, 0.76987036,\n", + " -1.02234309, 0.94062954, -0.64016138, -1.82078856, -1.00352242,\n", + " -0.26517278, 0.70722258, 0.26891933, -0.61799643, -1.27027618,\n", + " -0.81611625, -1.15383747, -0.47841508, -1.04315984, 1.96259416,\n", + " -0.47600498, -0.30744685, 1.27818641, 0.6605044 , -0.41666049,\n", + " 1.01230792, 0.52803812, 0.1990174 , -0.41910872, -1.33454405,\n", + " 0.96383357, 0.28256065, -0.27146935, 1.63116663, -0.93793926,\n", + " -1.34437249, -0.68198521, 0.34336885, -1.11959809, -0.81809045,\n", + " 0.26940654, -0.5268423 , -0.85947327, 0.67620704, -1.96643059,\n", + " 1.15625116, 0.78262689, 1.26832895, -0.72577582, -0.52806436,\n", + " -0.27662911, 0.20934806, -0.18836113, -1.51751348, 0.62678425,\n", + " 1.14168914, 0.43046918, -1.00209276, 0.78647026, -0.18222903,\n", + " 0.19076548, 1.56551737, -1.23003002, -1.93593086, 0.27761621,\n", + " -0.19357746, 0.49919449, 0.01041363, 0.1477327 , 0.80024119,\n", + " -0.14855582, -0.69293203, -0.13389674, -1.40678903, -0.18644331,\n", + " -0.27179153, -0.25452032, 0.24646248, -0.87219356, -0.86777681,\n", + " -0.37544562, 0.68601288, -0.75107745, 0.13514107, -0.32789078,\n", + " 0.24630145, 0.4717079 , -0.03834549, -0.78492045, 0.2886409 ,\n", + " -1.55994306, 1.26745345, 1.42104419, -0.01891604, -0.93138956,\n", + " 0.4992123 , 0.65150651, 1.26456715, 0.0501327 , -1.46452731,\n", + " 0.70943515, 1.43456062, 0.82830875, -0.5738368 , 0.46615064,\n", + " -0.335301 , -0.30194814, 0.13731558, -0.77303823, -1.17083098,\n", + " 0.41676387, -1.1675969 , 1.77020518, -2.15518796, -0.50623065,\n", + " -1.02281428, -0.12850099, -0.70332337, -0.21905062, 0.05235 ,\n", + " 1.0648541 , -1.14515225, -0.03165414, -0.37785447, 1.63611374,\n", + " -0.52896121, 0.95418122, -1.04338533, -1.34487859, -1.08803294,\n", + " -0.26217754, -1.35944879, -1.02439021, -0.9939938 , -0.51321312,\n", + " 0.68622045, -2.09994347, -1.802156 , 0.93309169, -0.68335624,\n", + " -0.07972068, -0.16872152, 1.28285022, -1.79328792, 0.05605324,\n", + " 1.15593132, 0.917637 , 0.39932587, -0.37600421, -2.80368574,\n", + " -0.97064389, -0.07849343, -0.64008617, -0.4571833 , 0.6162836 ,\n", + " -0.59510603, 1.86441971, 0.63243093, 0.60454764, -0.48083943,\n", + " 0.51783783, 1.17746437, 0.8064767 , -0.35664402, 0.91215352,\n", + " -0.19316094, 0.78275121, -2.18263931, 0.68393001, 0.39395341,\n", + " 0.12529744, -0.88950538, -0.23822104, 0.23557295, -0.71563141,\n", + " -1.58365869, -0.23543819, 1.51720636, -0.48084071, 0.49408817,\n", + " -0.41306746, 0.85545139, -0.94970123, 0.78434026, 0.93210262,\n", + " -0.40126348, 1.63355455, 1.83070222, 0.84700768, 0.08588319,\n", + " -0.17541519, 0.49261122, 1.32566474, 1.00879553, 0.35063779,\n", + " -1.1995514 , -0.75896867, 0.62402848, -1.38460162, 0.14276113,\n", + " -0.40498692, -0.50110617, -0.67884733, -0.10752473, 2.47448962,\n", + " -0.39632695, -0.46675741, 0.00848674, 0.20060689, -1.38466548,\n", + " 0.23084956, 1.14740696, -0.14912632, 1.08519648, -0.0588106 ,\n", + " -1.05921857, -0.09502027, 0.35176625, -1.07312017, 1.48407937,\n", + " -0.77879058, -0.44417062, -0.93570129, -0.66242449, -1.25282845,\n", + " -2.25171586, 0.85752526, -0.49687969, 0.69183321, -0.3089423 ,\n", + " -0.82019013, -0.81259979, 1.98742732, -1.1931137 , 0.89565195,\n", + " 0.39972123, -0.39942337, 1.09596312, -0.26275171, -1.15283706,\n", + " 0.38161656, 0.45878829, 0.44984333, 1.61846182, 1.23062413,\n", + " 0.68466569, -2.54199713, 0.05166435, 0.83091673, -0.41540914,\n", + " 1.75624072, -0.12878745, 1.33585177, -1.42490763, 0.10092061,\n", + " 1.17219427, -0.7855709 , -0.21695802, -1.34505084, -0.99133197,\n", + " 0.17923009, -3.20828133, 0.2782283 , -0.75245943, 0.45251129,\n", + " -1.30940694, -0.43487232, 0.35182794, -0.26418175, -0.49434699,\n", + " -0.64241155, -0.16930032, 0.04230733, 0.30835857, -1.14860071,\n", + " 1.93273348, 0.8482403 , -0.76825438, -0.4385675 , 0.08281999,\n", + " 0.5314479 , -1.05466079, -0.9733742 , -0.14545164, 0.010342 ,\n", + " -0.12708814, -1.02160103, 0.60021469, 0.6120531 , 0.32048092,\n", + " -0.28627652, 1.94761891, 0.23395374, -0.8055362 , -1.48127528,\n", + " -0.53080923, -0.14342351, -0.24092919, -1.35810992, 0.0276056 ])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "dTBHlrmKXOJH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Split to train validation\n", + "from sklearn.model_selection import train_test_split\n", + "validation_size = int(len(train_df) * 0.1)\n", + "training_size = len(train_df) - validation_size\n", + "\n", + "X = train_df[['question1_n', 'question2_n']]\n", + "Y = train_df['is_duplicate']\n", + "\n", + "X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y, test_size=validation_size)\n", + "\n", + "X_train = split_and_zero_padding(X_train, max_seq_length)\n", + "X_validation = split_and_zero_padding(X_validation, max_seq_length)\n", + "\n", + "# Convert labels to their numpy representations\n", + "Y_train = Y_train.values\n", + "Y_validation = Y_validation.values" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZEhC1YtzZ03B", + "colab_type": "code", + "outputId": "989f0ec4-bc64-4c81-face-808947f0ec6e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2705 + } + }, + "cell_type": "code", + "source": [ + "#觀察一下,經前處理的training資料,詞都已轉成整數數字\n", + "train_df.head(100)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idqid1qid2question1question2is_duplicatequestion1_nquestion2_n
0012What is the step by step guide to invest in sh...What is the step by step guide to invest in sh...0[1, 1, 2, 3, 4, 5, 6][1, 1, 2, 3, 4, 5]
1134What is the story of Kohinoor (Koh-i-Noor) Dia...What would happen if the Indian government sto...0[7, 8, 9, 10, 10, 11, 12][13, 14, 15, 16, 17, 8, 9, 10, 10, 11, 12, 18]
2256How can I increase the speed of my internet co...How can Internet speed be increased by hacking...0[19, 20, 21, 22, 23, 24][21, 20, 25, 26, 27]
3378Why am I mentally very lonely? How can I solve...Find the remainder when [math]23^{24}[/math] i...0[28, 29, 30][31, 32, 33, 34, 35, 36, 33, 37, 36, 34]
44910Which one dissolve in water quikly sugar, salt...Which fish would survive in salt water?0[38, 39, 40, 41, 42, 43, 44, 45, 46, 47][48, 13, 49, 43, 40]
551112Astrology: I am a Capricorn Sun Cap moon and c...I'm a triple Capricorn (Sun, Moon and ascendan...1[50, 51, 52, 53, 54, 55, 54, 56, 57][58, 52, 53, 55, 59, 52, 57]
661314Should I buy tiago?What keeps childern active and far from phone ...0[60, 61][62, 63, 64, 65, 66, 67, 68]
771516How can I be a good geologist?What should I do to be a great geologist?1[69, 70][71, 70]
881718When do you use シ instead of し?When do you use \"&\" instead of \"and\"?0[72, 73][72, 73]
991920Motorola (company): Can I hack my Charter Moto...How do I hack Motorola DCX3400 for free internet?0[74, 75, 51, 76, 77, 78, 79][76, 74, 79, 80, 21]
10102122Method to find separation of slits using fresn...What are some of the things technicians can te...0[81, 31, 82, 83, 23, 84, 85][86, 87, 88, 89, 90, 91, 92]
11112324How do I read and find my YouTube comments?How can I see all my Youtube comments?1[93, 31, 94, 95][96, 94, 95]
12122526What can make Physics easy to learn?How can you make physics easy to learn?1[97, 98, 99, 100][97, 98, 99, 100]
13132728What was your first sexual experience like?What was your first sexual experience?1[101, 102, 103, 104][101, 102, 103]
14142930What are the laws to change your status from a...What are the laws to change your status from a...0[105, 106, 107, 108, 109, 110, 111, 112, 113, ...[105, 106, 107, 108, 109, 110, 111, 112, 113, ...
15153132What would a Trump presidency mean for current...How will a Trump presidency affect the student...1[13, 117, 118, 119, 120, 121, 122, 123, 124, 109][117, 118, 125, 123, 126, 112, 127, 128, 112]
16163334What does manipulation mean?What does manipulation means?1[129, 119][129, 130]
17173536Why do girls want to be friends with the guy t...How do guys feel after rejecting a girl?0[131, 132, 133, 134, 135][136, 137, 138, 139]
18183738Why are so many Quora users posting questions ...Why do people ask Quora questions which can be...1[140, 141, 142, 143, 144, 145, 146, 147][148, 149, 141, 144, 146, 150, 147]
19193940Which is the best digital marketing institutio...Which is the best digital marketing institute ...0[151, 152, 153, 154, 155][151, 152, 153, 156, 157]
20204142Why do rockets look white?Why are rockets and boosters painted white?1[158, 159, 160][158, 161, 162, 160]
21214344What's causing someone to be jealous?What can I do to avoid being jealous of someone?0[163, 164, 165][166, 165, 164]
22224546What are the questions should not ask on Quora?Which question should I ask on Quora?0[144, 149, 141][167, 149, 141]
23234748How much is 30 kV in HP?Where can I find a conversion chart for CC to ...0[168, 169, 170, 171][31, 172, 173, 174, 175]
24244950What does it mean that every time I look at th...How many times a day do a clock’s hands overlap?0[119, 176, 177, 159, 178, 179][140, 180, 181, 178, 182, 183]
25255152What are some tips on making it through the jo...What are some tips on making it through the jo...0[184, 185, 186, 187, 188, 189][184, 185, 186, 187, 188, 190, 191]
26265354What is web application?What is the web application framework?0[192, 193][192, 193, 194]
27275556Does society place too much importance on sports?How do sports contribute to the society?0[195, 196, 168, 197, 198][198, 199, 195]
28285758What is best way to make money online?What is best way to ask for money online?0[151, 200, 97, 201, 202][151, 200, 149, 201, 202]
29295960How should I prepare for CA final law?How one should know that he/she completely pre...1[203, 204, 205, 206][38, 207, 208, 203, 204, 205, 209]
...........................
7070141142What are the types of immunity?What are the different types of immunity in ou...0[469, 470][471, 469, 470, 472]
7171143144What is a narcissistic personality disorder?What is narcissistic personality disorder?1[473, 474, 475][473, 474, 475]
7272145146How I can speak English fluently?How can I learn to speak English fluently?1[476, 477, 478][100, 476, 477, 478]
7373147148How helpful is QuickBooks' auto data recovery ...What is the quickbooks customer support phone ...1[479, 480, 481, 482, 406, 483, 66, 327, 410, 4...[480, 486, 483, 66, 327, 487]
7474149150Who is the richest gambler of all time and how...Who is the richest gambler of all time and how...1[488, 489, 177, 490, 491][488, 489, 177, 490, 491, 489]
7575151152If I fire a bullet backward from an aircraft g...Do bullets travel faster than the speed of sou...0[492, 493, 494, 292, 495, 496, 497, 493, 495, ...[499, 241, 496, 20, 500, 501, 250, 454, 250, 1...
7676153154How do I prevent breast cancer?Is breast cancer preventable?0[504, 505, 506][505, 506, 507]
7777155156How do I log out of my Gmail account on my fri...How can I know who logged in to my Gmail accou...0[508, 402, 509, 392, 66][207, 401, 402, 509, 510, 511, 512, 513, 514]
7878157158How can I make money through the Internet?What are some different ways to make money onl...0[97, 201, 21][471, 411, 97, 201, 202, 515, 516, 86]
7979159160What is purpose of life?What's the purpose of life? What is life actua...1[517, 518][517, 518, 518, 519]
8080161162When will the BJP government strip all the Mus...Why India does not apply the \"Burma-Rohingya m...0[520, 16, 521, 522, 523, 15, 524, 525, 526, 10...[6, 388, 528, 10, 527, 529, 530, 531, 532]
8181163164What is the right etiquette for wishing a Jeho...How important is it to be the first person to ...0[533, 534, 535, 536, 537, 538, 539][449, 101, 540, 541, 164, 538, 539]
8282165166If someone wants to open a commercial FM radio...I want to make a travel commercial/clip video ...0[164, 279, 542, 543, 544, 545, 546, 547, 6, 16...[132, 97, 241, 543, 549, 67, 550, 6, 318, 551,...
8383167168Why do Swiss despise Asians?Why do technical employees despise sales peopl...0[552, 553, 554][555, 556, 553, 557, 148, 168]
8484169170What are some of the high salary income jobs i...What are some high paying jobs for a fresher w...1[558, 559, 560, 561, 562, 563][558, 564, 561, 565, 566, 563]
8585171172How can I increase my height after 21 also?Can height increase after 25?1[19, 567, 568, 569][567, 19, 570]
8686173174What were the major effects of the cambodia ea...What were the major effects of the cambodia ea...1[571, 572, 573, 574, 572, 113, 575, 576, 577][571, 572, 573, 574, 572, 113, 578, 574, 579]
8787175176What is the difference between sincerity and f...What's the difference between honest and sincere?0[580, 581, 582][580, 583, 584]
8888177178Which is the best gaming laptop under 60k INR?Which is the best gaming laptop under Rs 60000?1[151, 585, 586, 587, 588][151, 585, 586, 589, 587]
8989179180What is your review of The Next Warrior: Provi...What is your review of The Next Warrior: Provi...0[455, 261, 590, 51, 591, 592, 10, 593, 594][455, 261, 590, 51, 591, 592, 10, 593, 595]
9090181182What is the best reference book for physics cl...Which book should I choose for reference for p...0[151, 596, 432, 98, 597, 598][432, 268, 596, 98, 599, 597, 600, 601, 602]
9191183184National Institute of Technology, Kurukshetra:...National Institute of Technology Karnataka (NI...0[603, 156, 604, 605, 51, 606, 518, 607, 608][603, 156, 604, 609, 607, 608, 51, 610, 611, 5...
9292185186What are some of the best romantic movies in E...What is the best romantic movie you have ever ...1[151, 615, 616, 477][151, 615, 617, 375, 618]
9393187188What causes a nightmare?What causes nightmares that seem real?1[428, 619][428, 620, 621, 622]
9494189190What is abstract expressionism in painting?What are some of the major influences of abstr...0[623, 624, 625][571, 626, 623, 624]
9595191192How does 3D printing work?How do 3D printing work?1[627, 628, 629][627, 628, 629]
9696193194What was it like to attend Caltech with Jeremy...Who are some notable folks who attended Caltech?0[104, 630, 631, 632, 633][634, 635, 636, 631]
9797195196Why did harry become a horcrux?What is a Horcrux?0[430, 259, 637][637]
9898197198What are the best associate product manager (A...What are the general requirement to become a P...0[151, 638, 639, 640, 641, 389, 164, 642, 643, ...[647, 648, 259, 639, 640, 361, 640, 639, 649, ...
9999199200Why is the number for Skype at 1-855-425-3768 ...How could I get Skype to work on an android 4....0[327, 651, 652, 10, 653, 10, 654, 10, 655, 369...[657, 280, 651, 629, 658, 659, 652, 652, 66]
\n", + "

100 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " id qid1 qid2 question1 \\\n", + "0 0 1 2 What is the step by step guide to invest in sh... \n", + "1 1 3 4 What is the story of Kohinoor (Koh-i-Noor) Dia... \n", + "2 2 5 6 How can I increase the speed of my internet co... \n", + "3 3 7 8 Why am I mentally very lonely? How can I solve... \n", + "4 4 9 10 Which one dissolve in water quikly sugar, salt... \n", + "5 5 11 12 Astrology: I am a Capricorn Sun Cap moon and c... \n", + "6 6 13 14 Should I buy tiago? \n", + "7 7 15 16 How can I be a good geologist? \n", + "8 8 17 18 When do you use シ instead of し? \n", + "9 9 19 20 Motorola (company): Can I hack my Charter Moto... \n", + "10 10 21 22 Method to find separation of slits using fresn... \n", + "11 11 23 24 How do I read and find my YouTube comments? \n", + "12 12 25 26 What can make Physics easy to learn? \n", + "13 13 27 28 What was your first sexual experience like? \n", + "14 14 29 30 What are the laws to change your status from a... \n", + "15 15 31 32 What would a Trump presidency mean for current... \n", + "16 16 33 34 What does manipulation mean? \n", + "17 17 35 36 Why do girls want to be friends with the guy t... \n", + "18 18 37 38 Why are so many Quora users posting questions ... \n", + "19 19 39 40 Which is the best digital marketing institutio... \n", + "20 20 41 42 Why do rockets look white? \n", + "21 21 43 44 What's causing someone to be jealous? \n", + "22 22 45 46 What are the questions should not ask on Quora? \n", + "23 23 47 48 How much is 30 kV in HP? \n", + "24 24 49 50 What does it mean that every time I look at th... \n", + "25 25 51 52 What are some tips on making it through the jo... \n", + "26 26 53 54 What is web application? \n", + "27 27 55 56 Does society place too much importance on sports? \n", + "28 28 57 58 What is best way to make money online? \n", + "29 29 59 60 How should I prepare for CA final law? \n", + ".. .. ... ... ... \n", + "70 70 141 142 What are the types of immunity? \n", + "71 71 143 144 What is a narcissistic personality disorder? \n", + "72 72 145 146 How I can speak English fluently? \n", + "73 73 147 148 How helpful is QuickBooks' auto data recovery ... \n", + "74 74 149 150 Who is the richest gambler of all time and how... \n", + "75 75 151 152 If I fire a bullet backward from an aircraft g... \n", + "76 76 153 154 How do I prevent breast cancer? \n", + "77 77 155 156 How do I log out of my Gmail account on my fri... \n", + "78 78 157 158 How can I make money through the Internet? \n", + "79 79 159 160 What is purpose of life? \n", + "80 80 161 162 When will the BJP government strip all the Mus... \n", + "81 81 163 164 What is the right etiquette for wishing a Jeho... \n", + "82 82 165 166 If someone wants to open a commercial FM radio... \n", + "83 83 167 168 Why do Swiss despise Asians? \n", + "84 84 169 170 What are some of the high salary income jobs i... \n", + "85 85 171 172 How can I increase my height after 21 also? \n", + "86 86 173 174 What were the major effects of the cambodia ea... \n", + "87 87 175 176 What is the difference between sincerity and f... \n", + "88 88 177 178 Which is the best gaming laptop under 60k INR? \n", + "89 89 179 180 What is your review of The Next Warrior: Provi... \n", + "90 90 181 182 What is the best reference book for physics cl... \n", + "91 91 183 184 National Institute of Technology, Kurukshetra:... \n", + "92 92 185 186 What are some of the best romantic movies in E... \n", + "93 93 187 188 What causes a nightmare? \n", + "94 94 189 190 What is abstract expressionism in painting? \n", + "95 95 191 192 How does 3D printing work? \n", + "96 96 193 194 What was it like to attend Caltech with Jeremy... \n", + "97 97 195 196 Why did harry become a horcrux? \n", + "98 98 197 198 What are the best associate product manager (A... \n", + "99 99 199 200 Why is the number for Skype at 1-855-425-3768 ... \n", + "\n", + " question2 is_duplicate \\\n", + "0 What is the step by step guide to invest in sh... 0 \n", + "1 What would happen if the Indian government sto... 0 \n", + "2 How can Internet speed be increased by hacking... 0 \n", + "3 Find the remainder when [math]23^{24}[/math] i... 0 \n", + "4 Which fish would survive in salt water? 0 \n", + "5 I'm a triple Capricorn (Sun, Moon and ascendan... 1 \n", + "6 What keeps childern active and far from phone ... 0 \n", + "7 What should I do to be a great geologist? 1 \n", + "8 When do you use \"&\" instead of \"and\"? 0 \n", + "9 How do I hack Motorola DCX3400 for free internet? 0 \n", + "10 What are some of the things technicians can te... 0 \n", + "11 How can I see all my Youtube comments? 1 \n", + "12 How can you make physics easy to learn? 1 \n", + "13 What was your first sexual experience? 1 \n", + "14 What are the laws to change your status from a... 0 \n", + "15 How will a Trump presidency affect the student... 1 \n", + "16 What does manipulation means? 1 \n", + "17 How do guys feel after rejecting a girl? 0 \n", + "18 Why do people ask Quora questions which can be... 1 \n", + "19 Which is the best digital marketing institute ... 0 \n", + "20 Why are rockets and boosters painted white? 1 \n", + "21 What can I do to avoid being jealous of someone? 0 \n", + "22 Which question should I ask on Quora? 0 \n", + "23 Where can I find a conversion chart for CC to ... 0 \n", + "24 How many times a day do a clock’s hands overlap? 0 \n", + "25 What are some tips on making it through the jo... 0 \n", + "26 What is the web application framework? 0 \n", + "27 How do sports contribute to the society? 0 \n", + "28 What is best way to ask for money online? 0 \n", + "29 How one should know that he/she completely pre... 1 \n", + ".. ... ... \n", + "70 What are the different types of immunity in ou... 0 \n", + "71 What is narcissistic personality disorder? 1 \n", + "72 How can I learn to speak English fluently? 1 \n", + "73 What is the quickbooks customer support phone ... 1 \n", + "74 Who is the richest gambler of all time and how... 1 \n", + "75 Do bullets travel faster than the speed of sou... 0 \n", + "76 Is breast cancer preventable? 0 \n", + "77 How can I know who logged in to my Gmail accou... 0 \n", + "78 What are some different ways to make money onl... 0 \n", + "79 What's the purpose of life? What is life actua... 1 \n", + "80 Why India does not apply the \"Burma-Rohingya m... 0 \n", + "81 How important is it to be the first person to ... 0 \n", + "82 I want to make a travel commercial/clip video ... 0 \n", + "83 Why do technical employees despise sales peopl... 0 \n", + "84 What are some high paying jobs for a fresher w... 1 \n", + "85 Can height increase after 25? 1 \n", + "86 What were the major effects of the cambodia ea... 1 \n", + "87 What's the difference between honest and sincere? 0 \n", + "88 Which is the best gaming laptop under Rs 60000? 1 \n", + "89 What is your review of The Next Warrior: Provi... 0 \n", + "90 Which book should I choose for reference for p... 0 \n", + "91 National Institute of Technology Karnataka (NI... 0 \n", + "92 What is the best romantic movie you have ever ... 1 \n", + "93 What causes nightmares that seem real? 1 \n", + "94 What are some of the major influences of abstr... 0 \n", + "95 How do 3D printing work? 1 \n", + "96 Who are some notable folks who attended Caltech? 0 \n", + "97 What is a Horcrux? 0 \n", + "98 What are the general requirement to become a P... 0 \n", + "99 How could I get Skype to work on an android 4.... 0 \n", + "\n", + " question1_n \\\n", + "0 [1, 1, 2, 3, 4, 5, 6] \n", + "1 [7, 8, 9, 10, 10, 11, 12] \n", + "2 [19, 20, 21, 22, 23, 24] \n", + "3 [28, 29, 30] \n", + "4 [38, 39, 40, 41, 42, 43, 44, 45, 46, 47] \n", + "5 [50, 51, 52, 53, 54, 55, 54, 56, 57] \n", + "6 [60, 61] \n", + "7 [69, 70] \n", + "8 [72, 73] \n", + "9 [74, 75, 51, 76, 77, 78, 79] \n", + "10 [81, 31, 82, 83, 23, 84, 85] \n", + "11 [93, 31, 94, 95] \n", + "12 [97, 98, 99, 100] \n", + "13 [101, 102, 103, 104] \n", + "14 [105, 106, 107, 108, 109, 110, 111, 112, 113, ... \n", + "15 [13, 117, 118, 119, 120, 121, 122, 123, 124, 109] \n", + "16 [129, 119] \n", + "17 [131, 132, 133, 134, 135] \n", + "18 [140, 141, 142, 143, 144, 145, 146, 147] \n", + "19 [151, 152, 153, 154, 155] \n", + "20 [158, 159, 160] \n", + "21 [163, 164, 165] \n", + "22 [144, 149, 141] \n", + "23 [168, 169, 170, 171] \n", + "24 [119, 176, 177, 159, 178, 179] \n", + "25 [184, 185, 186, 187, 188, 189] \n", + "26 [192, 193] \n", + "27 [195, 196, 168, 197, 198] \n", + "28 [151, 200, 97, 201, 202] \n", + "29 [203, 204, 205, 206] \n", + ".. ... \n", + "70 [469, 470] \n", + "71 [473, 474, 475] \n", + "72 [476, 477, 478] \n", + "73 [479, 480, 481, 482, 406, 483, 66, 327, 410, 4... \n", + "74 [488, 489, 177, 490, 491] \n", + "75 [492, 493, 494, 292, 495, 496, 497, 493, 495, ... \n", + "76 [504, 505, 506] \n", + "77 [508, 402, 509, 392, 66] \n", + "78 [97, 201, 21] \n", + "79 [517, 518] \n", + "80 [520, 16, 521, 522, 523, 15, 524, 525, 526, 10... \n", + "81 [533, 534, 535, 536, 537, 538, 539] \n", + "82 [164, 279, 542, 543, 544, 545, 546, 547, 6, 16... \n", + "83 [552, 553, 554] \n", + "84 [558, 559, 560, 561, 562, 563] \n", + "85 [19, 567, 568, 569] \n", + "86 [571, 572, 573, 574, 572, 113, 575, 576, 577] \n", + "87 [580, 581, 582] \n", + "88 [151, 585, 586, 587, 588] \n", + "89 [455, 261, 590, 51, 591, 592, 10, 593, 594] \n", + "90 [151, 596, 432, 98, 597, 598] \n", + "91 [603, 156, 604, 605, 51, 606, 518, 607, 608] \n", + "92 [151, 615, 616, 477] \n", + "93 [428, 619] \n", + "94 [623, 624, 625] \n", + "95 [627, 628, 629] \n", + "96 [104, 630, 631, 632, 633] \n", + "97 [430, 259, 637] \n", + "98 [151, 638, 639, 640, 641, 389, 164, 642, 643, ... \n", + "99 [327, 651, 652, 10, 653, 10, 654, 10, 655, 369... \n", + "\n", + " question2_n \n", + "0 [1, 1, 2, 3, 4, 5] \n", + "1 [13, 14, 15, 16, 17, 8, 9, 10, 10, 11, 12, 18] \n", + "2 [21, 20, 25, 26, 27] \n", + "3 [31, 32, 33, 34, 35, 36, 33, 37, 36, 34] \n", + "4 [48, 13, 49, 43, 40] \n", + "5 [58, 52, 53, 55, 59, 52, 57] \n", + "6 [62, 63, 64, 65, 66, 67, 68] \n", + "7 [71, 70] \n", + "8 [72, 73] \n", + "9 [76, 74, 79, 80, 21] \n", + "10 [86, 87, 88, 89, 90, 91, 92] \n", + "11 [96, 94, 95] \n", + "12 [97, 98, 99, 100] \n", + "13 [101, 102, 103] \n", + "14 [105, 106, 107, 108, 109, 110, 111, 112, 113, ... \n", + "15 [117, 118, 125, 123, 126, 112, 127, 128, 112] \n", + "16 [129, 130] \n", + "17 [136, 137, 138, 139] \n", + "18 [148, 149, 141, 144, 146, 150, 147] \n", + "19 [151, 152, 153, 156, 157] \n", + "20 [158, 161, 162, 160] \n", + "21 [166, 165, 164] \n", + "22 [167, 149, 141] \n", + "23 [31, 172, 173, 174, 175] \n", + "24 [140, 180, 181, 178, 182, 183] \n", + "25 [184, 185, 186, 187, 188, 190, 191] \n", + "26 [192, 193, 194] \n", + "27 [198, 199, 195] \n", + "28 [151, 200, 149, 201, 202] \n", + "29 [38, 207, 208, 203, 204, 205, 209] \n", + ".. ... \n", + "70 [471, 469, 470, 472] \n", + "71 [473, 474, 475] \n", + "72 [100, 476, 477, 478] \n", + "73 [480, 486, 483, 66, 327, 487] \n", + "74 [488, 489, 177, 490, 491, 489] \n", + "75 [499, 241, 496, 20, 500, 501, 250, 454, 250, 1... \n", + "76 [505, 506, 507] \n", + "77 [207, 401, 402, 509, 510, 511, 512, 513, 514] \n", + "78 [471, 411, 97, 201, 202, 515, 516, 86] \n", + "79 [517, 518, 518, 519] \n", + "80 [6, 388, 528, 10, 527, 529, 530, 531, 532] \n", + "81 [449, 101, 540, 541, 164, 538, 539] \n", + "82 [132, 97, 241, 543, 549, 67, 550, 6, 318, 551,... \n", + "83 [555, 556, 553, 557, 148, 168] \n", + "84 [558, 564, 561, 565, 566, 563] \n", + "85 [567, 19, 570] \n", + "86 [571, 572, 573, 574, 572, 113, 578, 574, 579] \n", + "87 [580, 583, 584] \n", + "88 [151, 585, 586, 589, 587] \n", + "89 [455, 261, 590, 51, 591, 592, 10, 593, 595] \n", + "90 [432, 268, 596, 98, 599, 597, 600, 601, 602] \n", + "91 [603, 156, 604, 609, 607, 608, 51, 610, 611, 5... \n", + "92 [151, 615, 617, 375, 618] \n", + "93 [428, 620, 621, 622] \n", + "94 [571, 626, 623, 624] \n", + "95 [627, 628, 629] \n", + "96 [634, 635, 636, 631] \n", + "97 [637] \n", + "98 [647, 648, 259, 639, 640, 361, 640, 639, 649, ... \n", + "99 [657, 280, 651, 629, 658, 659, 652, 652, 66] \n", + "\n", + "[100 rows x 8 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "id": "KDM0EC0fgjKQ", + "colab_type": "code", + "outputId": "e79d325d-bbe3-465b-ffb2-7dae9e4d937d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "train_df.iloc[0]['question1']" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'What is the step by step guide to invest in share market in india?'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "metadata": { + "id": "sb_p53E2gvsf", + "colab_type": "code", + "outputId": "beb31b8a-1e30-40c6-8654-ff4303d21e4d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "train_df.iloc[0]['question2']" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'What is the step by step guide to invest in share market?'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "id": "pYO-IqO4XgLu", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Make sure everything is ok\n", + "assert X_train['left'].shape == X_train['right'].shape\n", + "assert len(X_train['left']) == len(Y_train)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bOtG9AU4iyOc", + "colab_type": "code", + "outputId": "5952b186-aa01-4637-9e9f-2fb0802dc0db", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 50 + } + }, + "cell_type": "code", + "source": [ + "X_train['left'][0]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 140, 5061, 259, 1072, 4614], dtype=int32)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "21MgqbQ7i6I1", + "colab_type": "code", + "outputId": "6a297f88-f69f-43cf-c0dd-a2e2efcca079", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67 + } + }, + "cell_type": "code", + "source": [ + "X_train['right'][0]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 5832,\n", + " 2005, 15007], dtype=int32)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "id": "-e-o85fn-2lW", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import layers\n", + "from keras import Input\n", + "from keras.models import Model\n", + "from keras.layers import Embedding\n", + "# Instantiates a single LSTM layer, once\n", + "lstm = layers.LSTM(32)\n", + "\n", + "#使用上面處理建好的embeedings來建立embeeding layer\n", + "\n", + "\n", + "embedding_layer = Embedding(len(embeddings), embedding_dim, weights=[embeddings], input_length=max_seq_length, trainable=True)\n", + "\n", + "left_input = Input(shape=(max_seq_length,), dtype='int32')\n", + "right_input = Input(shape=(max_seq_length,), dtype='int32')\n", + "# Building the left branch of the model: \n", + "# Embedded version of the inputs\n", + "\n", + "encoded_left = embedding_layer(left_input)\n", + "left_output = lstm(encoded_left)\n", + "\n", + "\n", + "\n", + "# Building the right branch of the model:\n", + "# when you call an existing layer instance, you reuse its weights.\n", + "# Embedded version of the inputs\n", + "\n", + "encoded_right = embedding_layer(right_input)\n", + "right_output = lstm(encoded_right)\n", + "\n", + "\n", + "\n", + "\n", + "# Builds the classifier on top\n", + "merged = layers.concatenate([left_output, right_output], axis=-1)\n", + "predictions = layers.Dense(1, activation='sigmoid')(merged)\n", + "\n", + "# Instantiating the model\n", + "model = Model([left_input, right_input], predictions)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "o6temtgKXxQM", + "colab_type": "code", + "outputId": "a7061dbe-6435-40ea-c801-cd423c6f0697", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 706 + } + }, + "cell_type": "code", + "source": [ + "gpus = 1\n", + "batch_size = 1024 * gpus\n", + "n_epoch = 20\n", + "n_hidden = 50\n", + "\n", + "model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['acc'])\n", + "\n", + "from time import time\n", + "training_start_time = time()\n", + "\"\"\"\n", + "malstm_trained = model.fit([X_train['left'].reshape(X_train['left'].shape[0],1,max_seq_length), X_train['right'].reshape(X_train['right'].shape[0],1,max_seq_length)], Y_train,\n", + " batch_size=batch_size, epochs=n_epoch,\n", + " validation_data=([X_validation['left'].reshape(X_validation['left'].shape[0],1,max_seq_length), X_validation['right'].reshape(X_validation['right'].shape[0],1,max_seq_length)], Y_validation))\n", + "\"\"\"\n", + "malstm_trained = model.fit([X_train['left'], X_train['right']], Y_train,\n", + " batch_size=batch_size, epochs=n_epoch,\n", + " validation_data=([X_validation['left'], X_validation['right']], Y_validation))\n", + "\n", + "training_end_time = time()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 363916 samples, validate on 40435 samples\n", + "Epoch 1/20\n", + "363916/363916 [==============================] - 60s 165us/step - loss: 0.5485 - acc: 0.7235 - val_loss: 0.5210 - val_acc: 0.7402\n", + "Epoch 2/20\n", + "363916/363916 [==============================] - 57s 157us/step - loss: 0.4862 - acc: 0.7672 - val_loss: 0.4970 - val_acc: 0.7621\n", + "Epoch 3/20\n", + "363916/363916 [==============================] - 56s 154us/step - loss: 0.4556 - acc: 0.7862 - val_loss: 0.4924 - val_acc: 0.7654\n", + "Epoch 4/20\n", + "363916/363916 [==============================] - 55s 152us/step - loss: 0.4306 - acc: 0.8013 - val_loss: 0.4914 - val_acc: 0.7661\n", + "Epoch 5/20\n", + "363916/363916 [==============================] - 55s 151us/step - loss: 0.4082 - acc: 0.8138 - val_loss: 0.4911 - val_acc: 0.7692\n", + "Epoch 6/20\n", + "363916/363916 [==============================] - 55s 151us/step - loss: 0.3878 - acc: 0.8252 - val_loss: 0.4936 - val_acc: 0.7746\n", + "Epoch 7/20\n", + "363916/363916 [==============================] - 56s 153us/step - loss: 0.3684 - acc: 0.8356 - val_loss: 0.5001 - val_acc: 0.7711\n", + "Epoch 8/20\n", + "363916/363916 [==============================] - 57s 156us/step - loss: 0.3503 - acc: 0.8453 - val_loss: 0.5073 - val_acc: 0.7704\n", + "Epoch 9/20\n", + "363916/363916 [==============================] - 56s 154us/step - loss: 0.3329 - acc: 0.8542 - val_loss: 0.5138 - val_acc: 0.7732\n", + "Epoch 10/20\n", + "363916/363916 [==============================] - 55s 152us/step - loss: 0.3161 - acc: 0.8629 - val_loss: 0.5247 - val_acc: 0.7731\n", + "Epoch 11/20\n", + "363916/363916 [==============================] - 56s 155us/step - loss: 0.3004 - acc: 0.8704 - val_loss: 0.5355 - val_acc: 0.7713\n", + "Epoch 12/20\n", + "363916/363916 [==============================] - 57s 155us/step - loss: 0.2849 - acc: 0.8782 - val_loss: 0.5497 - val_acc: 0.7692\n", + "Epoch 13/20\n", + "363916/363916 [==============================] - 57s 157us/step - loss: 0.2701 - acc: 0.8854 - val_loss: 0.5622 - val_acc: 0.7704\n", + "Epoch 14/20\n", + "363916/363916 [==============================] - 56s 153us/step - loss: 0.2563 - acc: 0.8923 - val_loss: 0.5776 - val_acc: 0.7681\n", + "Epoch 15/20\n", + "363916/363916 [==============================] - 56s 154us/step - loss: 0.2427 - acc: 0.8987 - val_loss: 0.5963 - val_acc: 0.7638\n", + "Epoch 16/20\n", + "363916/363916 [==============================] - 57s 156us/step - loss: 0.2297 - acc: 0.9050 - val_loss: 0.6086 - val_acc: 0.7687\n", + "Epoch 17/20\n", + "363916/363916 [==============================] - 56s 154us/step - loss: 0.2176 - acc: 0.9107 - val_loss: 0.6278 - val_acc: 0.7628\n", + "Epoch 18/20\n", + "363916/363916 [==============================] - 56s 153us/step - loss: 0.2059 - acc: 0.9164 - val_loss: 0.6449 - val_acc: 0.7630\n", + "Epoch 19/20\n", + "363916/363916 [==============================] - 55s 152us/step - loss: 0.1947 - acc: 0.9212 - val_loss: 0.6630 - val_acc: 0.7653\n", + "Epoch 20/20\n", + "363916/363916 [==============================] - 55s 152us/step - loss: 0.1842 - acc: 0.9260 - val_loss: 0.6788 - val_acc: 0.7655\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "mJdMiK6OdVja", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.save(\"Siamese_model.h5\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "q1I9b0-Jf8re", + "colab_type": "code", + "outputId": "99542d33-1d31-4970-ecb0-e7df6b765fea", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 906 + } + }, + "cell_type": "code", + "source": [ + "from keras.models import load_model\n", + "model = load_model(\"Siamese_model.h5\")\n", + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_1 (InputLayer) (None, 20) 0 \n", + "__________________________________________________________________________________________________\n", + "input_2 (InputLayer) (None, 20) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_1 (Embedding) (None, 20, 300) 25762500 input_1[0][0] \n", + " input_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_1 (LSTM) (None, 32) 42624 embedding_1[0][0] \n", + " embedding_1[1][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 64) 0 lstm_1[0][0] \n", + " lstm_1[1][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 1) 65 concatenate_1[0][0] \n", + "==================================================================================================\n", + "Total params: 25,805,189\n", + "Trainable params: 25,805,189\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n139806200486488\n\ninput_1: InputLayer\n\ninput:\n\noutput:\n\n(None, 20)\n\n(None, 20)\n\n\n\n139806200486768\n\nembedding_1: Embedding\n\ninput:\n\noutput:\n\n(None, 20)\n\n(None, 20, 300)\n\n\n\n139806200486488->139806200486768\n\n\n\n\n\n139806200486600\n\ninput_2: InputLayer\n\ninput:\n\noutput:\n\n(None, 20)\n\n(None, 20)\n\n\n\n139806200486600->139806200486768\n\n\n\n\n\n139806200486880\n\nlstm_1: LSTM\n\ninput:\n\noutput:\n\n(None, 20, 300)\n\n(None, 32)\n\n\n\n139806200486768->139806200486880\n\n\n\n\n\n139806200486936\n\nconcatenate_1: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 32)]\n\n(None, 64)\n\n\n\n139806200486880->139806200486936\n\n\n\n\n\n139806200487608\n\ndense_1: Dense\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 1)\n\n\n\n139806200486936->139806200487608\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 38 + } + ] + }, + { + "metadata": { + "id": "OIpQPLvYePq-", + "colab_type": "code", + "outputId": "dc7cacf0-a86b-4f7a-fad8-527485591705", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print (training_start_time, training_end_time)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "1541327867.2606907 1541328993.6600316\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "aKTcFfssSips", + "colab_type": "code", + "outputId": "f1c807ac-dd1f-4998-aa9d-9cb77dc2e752", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 706 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = malstm_trained.history['acc']\n", + "val_acc = malstm_trained.history['val_acc']\n", + "loss = malstm_trained.history['loss']\n", + "val_loss = malstm_trained.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFZCAYAAAC173eYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlYlXX+//HnWQBFUAEP7qYyooGD\nS06TK4qQmrbQpm3aaKPjWGrjlEVTZI3aoo1Wv8zKaTUlDaamBdRRqxn9uusk6lDMhEupoKAiKJzl\n98eJo8iuIJzb1+O6uDj3fe7tfQ6c1/ncy+c2uVwuFyIiItLgmet7A0RERKR6FNoiIiJeQqEtIiLi\nJRTaIiIiXkKhLSIi4iUU2iIiIl5CoS1eLTExkeHDhzN8+HAiIyMZMmSIZzg/P79Gyxo+fDg5OTmV\nTjN//nyWLVt2KZtc6+6//36Sk5NrZVldu3bl8OHDrF69mscff/yS1vfRRx95HlfntRWRqlnrewNE\nLsWsWbM8j2NiYnjhhRfo06fPRS0rNTW1ymlmzJhxUcv2NnFxccTFxV30/NnZ2bz11lvceeedQPVe\nWxGpmlraYmj33Xcff/nLXxgxYgTbt28nJyeHCRMmMHz4cGJiYnj77bc905a0Mjdt2sTo0aOZP38+\nI0aMICYmhs2bNwPw2GOP8dprrwHuLwnLly/n9ttvZ8CAATz33HOeZb3++uv07duX2267jaVLlxIT\nE1Pu9q1YsYIRI0Zw/fXXc88993Do0CEAkpOTmTp1KgkJCQwbNowbbriB7777DoADBw5wxx13EBsb\ny4wZM3A4HGWW+9VXX3HjjTeWGnfzzTfz9ddfV/oalEhOTub++++vcn3/+Mc/uPHGGxk2bBi33nor\ne/fuBWDMmDH8+OOPDB8+nKKiIs9rC/Dee+9xww03MHz4cCZPnszx48c9r+3LL7/Mb37zG4YMGcJv\nfvMbCgsLy2xbYWEh06dPZ9iwYcTExPD88897njtw4AD33HMPcXFx3HbbbaSnp1c6PiYmhq1bt3rm\nLxk+ePAgAwYMYM6cOdx7772V1grwxhtvMHToUIYNG8bcuXNxOBz079+fb7/91jPNBx98wO9///sy\n9YjUhEJbDG/37t18/vnn9O7dm0WLFtGuXTtSU1N59913mT9/Pj/99FOZefbs2UOPHj348ssvufvu\nu1m0aFG5y96yZQtJSUl8/PHHfPDBBxw+fJjvvvuOt956i08++YQPP/ywwlbmsWPHeOaZZ3j77bdZ\ntWoVHTp08HwhAPj666+5++67SUtL49e//jXvvvsuAPPmzaNv376sWbOGcePGsX379jLL7tu3L4cP\nH+bAgQOAO7QOHz5Mv379qv0alKhofXa7nccee4xnn32WtLS0UgE6Z84cWrduTWpqKr6+vp5l7dy5\nkyVLlvD++++TmppKmzZtmD9/vuf51NRU/vKXv7B69WqOHz/O6tWry2zPsmXLOH36NKmpqaSkpJCc\nnOwJ3ieffJKRI0eyevVqJk+ezKOPPlrp+Mrk5eVx9dVX88EHH1Ra69atW1m5ciWffPIJf//739m2\nbRurVq1ixIgRfPbZZ57lrV69mpEjR1a5XpHKKLTF8KKjozGb3X/qf/rTn3jyyScBaN++PTabjYMH\nD5aZp0mTJsTGxgIQGRnJjz/+WO6yb7zxRiwWCy1btiQkJISffvqJLVu2cO211xIaGoqfnx+33XZb\nufOGhISwbds2WrVqBUCfPn08IQsQFhZG9+7dAYiIiPAE69atW7nhhhsAiIqKonPnzmWW7evry5Ah\nQ1i7di0Aa9asITY2FqvVWu3XoERF67NarWzYsIGePXuWu/3lWb9+PcOGDSMkJASAO+64g3/961+e\n56Ojo2nevDlWq5Xw8PByv0yMHz+e1157DZPJRLNmzejSpQsHDx7k7NmzbNq0iVGjRgEwdOhQPvro\nowrHV6W4uNhziKCyWr/++muio6MJCAjA19eX999/n+uvv56RI0fyxRdf4HQ6ycvLY/fu3QwZMqTK\n9YpURse0xfCaNWvmefztt996WpZms5ns7GycTmeZeQIDAz2PzWZzudMABAQEeB5bLBYcDgcnT54s\ntc6WLVuWO6/D4eDll19m7dq1OBwOTp8+TadOncrdhpJlA5w4caLUeps2bVru8ocNG8Z7773HuHHj\nWLNmjWfXbHVfgxKVre/9998nJSWFoqIiioqKMJlMFS4H4Pjx44SGhpZa1rFjx6qs+Xw//PADzz33\nHP/9738xm80cPnyYW2+9lby8PJxOp2cZJpOJJk2acOTIkXLHV8VisZSqu6Jac3NzS9XUuHFjAHr1\n6oWPjw+bN2/m8OHDDBgwAH9//yrXK1IZtbTlivLII48wbNgw0tLSSE1NJSgoqNbXERAQQEFBgWf4\n6NGj5U73xRdfsHbtWj744APS0tKYOnVqtZbftGnTUmfGlxwTvtDAgQPZt28fP/zwAz/88APXXXcd\nUPPXoKL1bd++nTfffJNFixaRlpbGn//85yq3vUWLFuTl5XmG8/LyaNGiRZXzne+ZZ56hS5cufPnl\nl6SmptKtWzcAgoKCMJlM5ObmAuByucjKyqpwvMvlKvOF7MSJE+Wus7Jag4KCPMsGd4iXDI8cOZLU\n1FRSU1M9eytELoVCW64ox44do3v37phMJlJSUigsLCwVsLUhKiqKTZs2cfz4cYqKivjb3/5W4ba0\nbduW4OBgcnNz+fLLLzl9+nSVy+/Zs6fnWO/27dvZv39/udP5+voyYMAAXnzxRYYOHYrFYvGstyav\nQUXrO378OCEhIbRp04bCwkJSUlIoKCjA5XJhtVopKCjAbreXWtbgwYNZvXq1J9SWL19OdHR0lTWf\n79ixY1x99dVYLBb+9a9/kZWVRUFBAb6+vvTv35+UlBQAvvnmGyZOnFjheJPJhM1mY9++fYD7S9TZ\ns2fLXWdltcbExLB27VpOnDiB3W5nypQp/POf/wRg1KhRrFmzhh07dtS4TpHyKLTlijJt2jSmTJnC\njTfeSEFBAaNHj+bJJ5+sMPguRlRUFPHx8cTHxzN27NgKj2OOGjWKvLw84uLimDFjBtOnT+fw4cOl\nzkIvzyOPPMK6deuIjY1l6dKl9OvXr8Jphw0bxpo1axgxYoRnXE1fg4rWN3DgQEJDQ4mNjWX8+PGM\nGzeOwMBApk6dSteuXWnWrBn9+/cvdT5AVFQUEydO5J577mH48OGcOnWKhx9+uNJ6LzR58mSef/55\nRo0axebNm3nwwQd55ZVX2LZtG7Nnz2bdunUMHTqUBQsWMG/ePIAKx//+97/nnXfeYdSoUWRmZvKL\nX/yi3HVWVmvPnj2ZMGECt9xyCyNHjiQiIsJz/Lxr1640b96cAQMG0KhRoxrVKVIek+6nLVL7XC6X\n55jn+vXrWbBgQYUtbjG23/72t9x7771qaUutUEtbpJYdP36c6667jkOHDuFyufjyyy89Zx3LlWXb\ntm0cOnSIgQMH1vemiEHo7HGRWhYcHMz06dO5//77MZlMdO7cuVrXBYuxPP7442zfvp0XX3zRc8mh\nyKXS7nEREREvoa9/IiIiXkKhLSIi4iUa9DHt7OxTtb7MoCB/cnNr97rc+mbEmsCYdakm72HEuoxY\nExivLpstsMLnrriWttVqqe9NqHVGrAmMWZdq8h5GrMuINYFx6yrPFRfaIiIi3kqhLSIi4iUU2iIi\nIl5CoS0iIuIlFNoiIiJeQqEtIiLiJRTaIiIiXqJBd67SEL3yyl/4z3/2cvz4Mc6cOUObNm1p2rQZ\nc+a8WOW8X3zxd5o0CSA6uvz7Ky9cOJ877hhDmzZta3uzRUTEAAwf2ikpVhYs8CUjw0x4uJOnnoKh\nQy9+eQ899DDgDuD//jeTBx+cXu15b7jhxkqfnzZtxsVvmIiIXFYX5sv06UXEx9vrdJ3VCu05c+aw\na9cuTCYTCQkJREVFeZ5bs2YNixYtwtfXl5EjR3LvvfcC8MILL7Bt2zbsdjuTJk3i+uuv57HHHiM9\nPZ3mzZsDMGHCBAYPHlz7Vf0sJcXKpEmNPcN791q46y5YvNha6y/s9u1bWb78AwoKCnjwwYfZsWMb\n69f/A6fTSd++/Rk/fiJLliymefPmdOoURnLyR5hMZrKy/sfgwUMZP34iDz44kT/84VHWrfsHp0/n\ns39/FocOHWTq1Bn07dufDz54hzVrVtGmTVvsdjtjxtxD7959PNuwZcsm3nrrdXx8fAgMDOSZZ57D\nx8eHBQvmsWfPbiwWC4888jidO/+i3HEiIlI95eWLe7iwToO7ytDevHkzWVlZJCUlkZmZSUJCAklJ\nSQA4nU6effZZUlJSaN68Ob/97W+JjY3lhx9+4LvvviMpKYnc3Fzi4+O5/vrrAfjDH/7AkCHl7x6u\nbQsW+JY7fuFC3zp5UTMzv2fZsmR8fX3ZsWMbr732FmazmTvvvJnRo+8uNe2ePel8+OHHOJ1O7rjj\nRsaPn1jq+aNHjzBv3sv83/9t4JNPPiYysjvJyStYtuxjTp8+zZgxtzJmzD2l5jl16hSJiX+mTZu2\nPPvsU2zatBE/Pz+OHj3CG2+8w86d2/nHP1Zz7NixMuMU2iIi1Xe586VElaG9ceNGYmNjAQgLC+PE\niRPk5+cTEBBAbm4uTZs2JTg4GIDrrruODRs2cPPNN3ta402bNqWwsBCHw1FnRVQkI6P88+wqGn+p\nfvGLLvj6ut/IRo0a8eCDE7FYLOTl5XHy5MlS03bt2o1GjRpVuKyoqJ4AhIaGkp+fz8GDB+jcOQw/\nv0b4+TXi6qsjy8zTvHlznn/+zzgcDn788RDXXPMrcnOP88tf9gCgZ8/e9OzZm6VL3y0zTkREqu9y\n50uJKpeek5NDUFCQZzg4OJjs7GzP49OnT/PDDz9QXFzMpk2byMnJwWKx4O/vD8DKlSsZNGgQFou7\nQ/cPPviAsWPH8vDDD3P8+PG6qMkjPNxZo/GXysfHB4DDh38iKWkp8+e/wquvvkGrVq3KTFvyelTk\n/OddLhcuF5jN594uk6nsPHPnPsvDDz/Kq6++wYABgwAwmy24XKXrLW+ciIhU3+XOlxI1PhHN5XJ5\nHptMJp577jkSEhIIDAykXbt2paZds2YNK1eu5K9//SsAN998M82bN+fqq6/mjTfe4NVXX+Wpp56q\ncF1BQf6XdPeWp56Cu+4qO/7JJy2V3vqsOgIDG+Hv7+tZTvPm/vj5+WCzBXLkSBY2Wwuuuqol6enp\nHDlymMBAX5o08SMgoFGpacH9Otpsgfj6WgkKauKZzmYLJDe3Cb6+Vrp370JW1v9o3rwRp06dIiNj\nH82b+3uWYbMFUlh4msjIX2C32/n3v3fQs+cviYjowxtvvIHNNoU9e/awYsUKbrjhhjLjEhMTL+n1\nqCuX+j41RKrJexixLiPWBJe/rrrMl8pUGdqhoaHk5OR4ho8ePYrNZvMMX3vttXz44YcAzJ8/n7Zt\n3ZcrffPNN7z++uu89dZbBAa6C+jbt69nvpiYGJ5++ulK132p90cdOtR90tnChefO7nvySQtDh57i\n550FF+3UqTMUFBR57vmdl1fA2bPFZGefokWLdvj4+HH77Xfwy1/25KabbuWJJ54iKqoHPj5nSk0L\n7i9C2dmnKCqyk5t7mtOnz+Ljc4bs7FPk5p6mqMiOy+VHTMz1xMffylVXdaJbtwhOnTpLdvYpbLZA\nsrNPccstt3PHHaNp374Do0ffy6JFr7No0V9p3bo9d9wxGoAZMx6jY8dflBlXF/cuv1QldRmJavIe\nRqzLiDVB/dRVXr5Mm1bE0KH2S86XykLf5Dq/6VyO7du388orr/D222+Tnp7On//8Z5YtW+Z5/oEH\nHuD555+ncePG3Hnnnbz33nv4+Phw991388477xASEuKZ9qGHHuLRRx+lffv2LF26lO+//77SFl5d\nvAne/Ef7xRd/Jy5uOBaLhbFjx/DSS68QGtrSq2uqjBHrUk3ew4h1GbEmqLqu+rg061JUFtpVtrR7\n9+5NZGQkY8aMwWQykZiYSHJyMoGBgcTFxXHnnXcyfvx4TCYTEydOJDg42HPW+PTp565hfv7557nn\nnnuYPn06jRs3xt/fn7lz59ZOhVeIY8eOMXHiOHx8fLn++uGEhras700SEWnQ6uvSrLpSZUu7Pqml\nXT1GrAmMWZdq8h5GrMuINUHldUVH+7N3b9lzoyIiHKxff2mHYOtKZS1t9T0uIiKGVV+XZtUV79xq\nERGRaqivS7PqikJbREQMa/r0onLHT5tW/viGTqEtIiINRkqKlehof1q3DiA62p+UlEu7r1V8vJ3F\niwuJiHBgtbqIiHCweLF3noQGCu0amzTpN+zbt7fUuNdff5Vlyz4od/rt27fypz89CsBjj/2hzPMf\nf5zEkiWLK1zf999/x/79WQAkJj7O2bNnLnbTRUQatJIzvffuteBwmDxnetdGcK9fX8CPP+azfn2B\n1wY2KLRrLC5uGGvXri41bv36tcTGXl/lvM8991KN1/fVV2s5cGA/ALNmzcXPr+L+ykVEvFllN+EQ\nN8PfT7u2DR16PZMnT+D3v58KwL59e7HZbNhsoeXeGvN8I0cO5fPP/8HWrZt5+eX5BAeHEBLSwnOr\nzdmznyY7+yiFhYWMHz+RVq1a88knyXz11VqCgoJ46qnHee+9JPLzTzF37jMUFxdjNpt54YXnyM0t\nYPbsp2nTpi3ff/8d4eFdeeyxJ0utf9WqL1m5MgmLxUzHjmHMnPkEdrudP/85kSNHfsLX148//WkW\nQUHBZcbZbKGX7TUWkSuT0c70rgteHdpPP+3H3/9esxLMZnA6m1T4/I032nn66bMVPh8UFEybNm3Z\ns2c3ERHdWbt2NXFxw4Hyb41ZcuOU8y1e/CpPPvksXbqE88c/TqVNm7acOnWSa6+9jhEjRnHo0EGe\nfPIx/vrXD/j1r/syePBQIiK6e+Z/663XGTXqZoYOvZ5169bw6quvcs894/nPf/Yya9YcgoKCiY+/\ngVOnTnm6kAUoLCxk/vxXCAwMZMqU35KZ+T179uwmJCSEp5+ezZo1afzzn19jtVrLjIuPv71Gr7OI\nSE2FhzvLvabaW8/0rgteHdr1JS5uOP/4x2oiIrrzr399zaJF7huilHdrzPJC+6effqJLl3DAfWvM\ns2fPEhjYlL170/n002RMJjMnT56ocP3/+c9efve7BwHo3bsP77/vXn/btu0JCWkBQIsWNk6fzi8V\n2k2bNuXxx2cAkJX1P06cyOM//9lHnz6/AiA2dhgA8+Y9V2aciEhdmz69qFTvZSW89UzvuuDVof30\n02crbRWXx91zzulLWm909BDee++vxMUNo337DjRt2hRw3xrzxRcX0LFjJ1566fkK5z//FpslHdKt\nXp3KyZMn+X//7y1OnjzJAw/cV8kWmDzzFRfbPcu78Haf53d2V1xczEsvvcA773xISEgLHn10+s/z\nmHE6S3eKV944EZG65j5BrLDMTTi8+cSx2qYDBRfB378JYWFdeO+9tz27xgFOn86nZctWnDp1iu3b\nt1FcXFzu/C1a2Ni//wdcLhc7dmwDIC8vj9at22A2m/nqq7WeeU0mEw6Ho9T8V18dwfbtWwHYuXMb\n3bt3pyoFBaexWCyEhLTgyJHD7Nu3F7vdTrduEWzfvgWAf/3rG95776/ljhMRuRyMdKZ3XVBoX6S4\nuOFs2bKJAQMGecbdeusdTJ48gRdemM0994zlgw/e4dixnDLzTpz4e/70p5nMnPmw56YfgwfHsGHD\nN0ybNpnGjRsTGhrK22+/SY8evViw4EW2bt3smf+BB35HauoXTJ36O7744jOmTp1a5fY2a9acX/3q\n1zzwwFjefvtN7r77Pl5++SWGDr2ewsJCHnxwIh99tIwRI0YRGzuszDgRkfPV9vXUUj26YYgBGLEm\nMGZdqsl7GLGu2qrpwjtnlaivTkuM9l7phiEiIlJrdD11/VFoi4hIjeh66vqjV1hERGrEaHfO8iYK\nbRERqRGj3TnLmyi0RUSkRox25yxvonP0RUSkxuLj7QrpeqCWtoiIwZVcU221omuqvZzeORERA7vw\nmuqSe1SDdmd7I7W0RUQMTNdUG4tCW0TEwHRNtbHoXRMRMTBdU20sCm0REQPTNdXGUq0T0ebMmcOu\nXbswmUwkJCQQFRXleW7NmjUsWrQIX19fRo4cyb333lvhPD/99BOPPvooDocDm83Giy++iK+vjquI\niNSV0veothAe7tA9qr1YlS3tzZs3k5WVRVJSErNnz2b27Nme55xOJ88++yxvvvkmS5cuZd26dRw+\nfLjCeV5++WXuvvtuPvzwQ6666ipWrlxZd5WJiAhw7h7VxcXoHtVersrQ3rhxI7GxsQCEhYVx4sQJ\n8vPzAcjNzaVp06YEBwdjNpu57rrr2LBhQ4XzbNq0iaFDhwIwZMgQNm7cWFd1iYh4Jd2nWipT5V9D\nTk4OkZGRnuHg4GCys7MJCAggODiY06dP88MPP9C2bVs2bdrEtddeW+E8hYWFnt3hISEhZGdnV7ru\noCB/rFbLxdZWocruVeqtjFgTGLMu1eQ9Lnddy5fDpEnnhkuuqW7aFMaMqZ116L3ybjX+CudyuTyP\nTSYTzz33HAkJCQQGBtKuXbsq56ls3IVycwtqunlVMtrN0sGYNYEx61JN3qM+6nrmGX+gbEPl2Wcd\nDB166Z+Heq+8Q2VfQKoM7dDQUHJycjzDR48exWazeYavvfZaPvzwQwDmz59P27ZtOXv2bLnz+Pv7\nc+bMGRo1asSRI0cIDQ29qIJERIxI11RLVar8S+jfvz9paWkApKenExoaSkBAgOf5Bx54gGPHjlFQ\nUMC6devo27dvhfP069fPM37VqlUMHDiwLmoSEfFKuqZaqlJlS7t3795ERkYyZswYTCYTiYmJJCcn\nExgYSFxcHHfeeSfjx4/HZDIxceJEgoODCQ4OLjMPwEMPPcTMmTNJSkqiTZs23HLLLXVeoIiIt5g+\nvahUP+EldE21lDC5qnNwuZ7UxTEKox37AGPWBMasSzV5j/qqKyXF+vM11WbCw521ek213ivvcEnH\ntEVE5PLRfaqlMjq7QURExEsotEVELoI6QZH6oL8yEZEaSkmxljphrKQTFCjUrm2pU2ppi4jU0IIF\n5d/oaOFC3QBJ6pZCW0SkhtQJitQX/YWJiNSQOkGR+qLQFhGpoenTy+/sRJ2gSF1TaIuI1FB8vJ3F\niwuJiHBgtbqIiHCweLFOQpO6p7PHRUQugjpBkfqglraIiIiXUGiLiOGpIxQxCv3lioihqSMUMRK1\ntEXE0NQRihiJQltEDE0doYiR6K9WRAxNHaGIkSi0RcTQ1BGKGIlCW0QMTR2hiJHo7HERMTx1hCJG\noZa2iIiIl1Boi4iIeAmFtog0KOq9TKRi+m8QkQZDvZeJVE4tbRFpMNR7mUjlqtXSnjNnDrt27cJk\nMpGQkEBUVJTnuaVLl/Lpp59iNpvp3r07TzzxBIsWLWLDhg0AOJ1OcnJySEtLIyYmhlatWmGxWACY\nN28eLVu2rIOyRMQbqfcykcpVGdqbN28mKyuLpKQkMjMzSUhIICkpCYD8/HyWLFnCqlWrsFqtjB8/\nnp07dzJ58mQmT54MQEpKCseOHfMs780336RJkyZ1VI6IeLPwcCd791rKHS8i1dg9vnHjRmJjYwEI\nCwvjxIkT5OfnA+Dj44OPjw8FBQXY7XYKCwtp1qyZZ1673c6yZcu4995762jzRcRI1HuZSOWqbGnn\n5OQQGRnpGQ4ODiY7O5uAgAD8/PyYMmUKsbGx+Pn5MXLkSDp16uSZdtWqVQwYMIBGjRp5xiUmJnLo\n0CGuueYaZsyYgclkquWSRMRbuU82K2ThQl8yMsyEhzuZNq1IJ6GJ/KzGZ4+7XC7P4/z8fBYvXkxq\naioBAQGMGzeOffv20a1bNwA+/vhjZs2a5Zl+6tSpDBw4kGbNmjFlyhTS0tIYPnx4hesKCvLHai27\nq+xS2WyBtb7M+mbEmsCYdammyk2c6P5xswCNK5m6bum98h5GretCVYZ2aGgoOTk5nuGjR49is9kA\nyMzMpH379gQHBwPQp08fdu/eTbdu3SgoKODw4cO0a9fOM+8tt9zieTxo0CAyMjIqDe3c3IKaV1QF\nmy2Q7OxTtb7c+mTEmsCYdakm72HEuoxYExivrsq+gFR5TLt///6kpaUBkJ6eTmhoKAEBAQC0bduW\nzMxMzpw5A8Du3bvp2LEjAPv27aNz586e5Zw6dYoJEyZQVOQ+NrVlyxa6dOlycRWJiIhcgapsaffu\n3ZvIyEjGjBmDyWQiMTGR5ORkAgMDiYuLY8KECYwdOxaLxUKvXr3o06cPANnZ2Z4WOEBgYCCDBg1i\n9OjR+Pn5ERERUWkrW0QatpQUKwsW+JKRAeHh/kyfrmPPInXN5Dr/IHUDUxe7O4y2GwWMWRMYsy6j\n1HRhz2UljHTLS6O8V+czYk1gvLouafe4iMiF1HOZSP1QaItIjannMpH6of8wEamxinooU89lInVL\noS0iNaaey0Tqh0JbRGosPt7O4sWFREQ4sFohIsJhqJPQRBoq3U9bRC5KfLyd+Hj7z2fu1n5HSCJS\nllraIiIiXkKhLSIi4iUU2iJXgJQUK9HR/rRuHUB0tD8pKToyJuKN9J8rYnAX9l62d6/l52GdOCbi\nbdTSFjE49V4mYhwKbRGDU+9lIsah/1oRg1PvZSLGodAWMTj1XiZiHAptEYMr3XuZS72XiXgxnT0u\ncgUo6b1MRLybWtoiIiJeQqEtIiLiJRTaIiIiXkKhLSIi4iUU2iINjPoJF5GK6NNApAFRP+EiUhm1\ntEUaEPUTLiKVUWiLNCDqJ1xEKqNPApEGRP2Ei0hlqnVMe86cOezatQuTyURCQgJRUVGe55YuXcqn\nn36K2Wyme/fuPPHEEyQnJ7Nw4UI6dOgAQL9+/Zg8eTL79u3j6aefBqBr167MmjWr9isS8WLTpxeV\nOqZdQv2EiwhUI7Q3b95MVlYWSUlJZGZmkpCQQFJSEgD5+fksWbKEVatWYbVaGT9+PDt37gTghhtu\nYObMmaWWNXv2bE/oz5gxg6+++oro6Og6KEvEO7lPNitk4UJfMjLMhIc7mTatSCehiQhQjdDeuHEj\nsbGxAISFhXHixAny8/MJCAiT5rhDAAAgAElEQVTAx8cHHx8fCgoK8Pf3p7CwkGbNmpW7nKKiIg4d\nOuRppQ8ZMoSNGzcqtEUuoH7CRaQiVYZ2Tk4OkZGRnuHg4GCys7MJCAjAz8+PKVOmEBsbi5+fHyNH\njqRTp07s2LGDzZs3M2HCBOx2OzNnziQkJISmTZt6lhMSEkJ2dnal6w4K8sdqtVxCeeWz2QJrfZn1\nzYg1gTHrUk3ew4h1GbEmMG5dF6rxddoul8vzOD8/n8WLF5OamkpAQADjxo1j37599OjRg+DgYAYP\nHsyOHTuYOXMmb731VoXLqUhubkFNN69KNlsg2dmnan259cmINYEx61JN3sOIdRmxJjBeXZV9Aany\n7PHQ0FBycnI8w0ePHsVmswGQmZlJ+/btCQ4OxtfXlz59+rB7927CwsIYPHgwAL169eL48eMEBQWR\nl5fnWc6RI0cIDQ292JpERESuOFWGdv/+/UlLSwMgPT2d0NBQAgICAGjbti2ZmZmcOXMGgN27d9Ox\nY0fefPNNPvvsMwAyMjI8od65c2e2bt0KwKpVqxg4cGCdFCUiImJEVe4e7927N5GRkYwZMwaTyURi\nYiLJyckEBgYSFxfHhAkTGDt2LBaLhV69etGnTx/atWvHI488wvLly7Hb7cyePRuAhIQEnnrqKZxO\nJz169KBfv351XqBIXUlJsbJgwbmzvKdP11neIlK3TK7qHFyuJ3VxjMJoxz7AmDVBw67rwj7CSyxe\nXHkf4Q25potlxJrAmHUZsSYwXl2XdExbRMpSH+EiUh8U2iIXQX2Ei0h90CeMyEVQH+EiUh8U2iIX\nYfr08vsCVx/hIlKXFNoiFyE+3s7ixYVERDiwWl1ERDiqPAlNRORS1bhHNBFxUx/hInK5qaUtIiLi\nJRTaIiIiXkKhLSIi4iUU2iIiIl5CoS0iIuIlFNpyRUhJsRId7U/r1gFER/uTkqILJ0TE++iTSwzv\nwpt77N1r+XlY11WLiHdRS1sMTzf3EBGjUGiL4enmHiJiFPrUEsPTzT1ExCgU2mJ4urmHiBiFQlsM\nTzf3EBGj0NnjckXQzT1ExAjU0hYREfESCm0REREvodAWERHxEgptERERL6HQFhER8RLVOnt8zpw5\n7Nq1C5PJREJCAlFRUZ7nli5dyqefforZbKZ79+488cQT2O12nnjiCfbv34/D4eDRRx+lT58+3Hff\nfRQUFODv7w/AzJkz6d69e91UJiIiYjBVhvbmzZvJysoiKSmJzMxMEhISSEpKAiA/P58lS5awatUq\nrFYr48ePZ+fOnWRmZtK4cWOWLVvGd999x+OPP87KlSsBmDt3LuHh4XVblXi1lBQrCxb4kpEB4eH+\nTJ9epMu1RESoRmhv3LiR2NhYAMLCwjhx4gT5+fkEBATg4+ODj4+Pp/VcWFhIs2bNuOmmmxg1ahQA\nwcHB5OXl1W0VYhi6I5eISMWqPKadk5NDUFCQZzg4OJjs7GwA/Pz8mDJlCrGxsQwZMoQePXrQqVMn\nfHx88PPzA+Ddd9/1BDjAyy+/zD333MNTTz3FmTNnarse8XK6I5eISMVq3COay+XyPM7Pz2fx4sWk\npqYSEBDAuHHj2LdvH926dQPcx7vT09N5/fXXARg7dixdu3alQ4cOJCYmsnTpUiZMmFDhuoKC/LFa\nLTXdxCrZbIG1vsz6ZpSaMjIqGm8xTI1GqeN8RqwJjFmXEWsC49Z1oSpDOzQ0lJycHM/w0aNHsdls\nAGRmZtK+fXuCg4MB6NOnD7t376Zbt26sWLGCtWvX8tprr+Hj4wNAXFycZzkxMTF88cUXla47N7eg\n5hVVwWYLJDv7VK0vtz4ZqabwcH/27i37RS083EF2du3/PVxuRnqvShixJjBmXUasCYxXV2VfQKrc\nPd6/f3/S0tIASE9PJzQ0lICAAADatm1LZmamZzf37t276dixIwcOHGD58uW8+uqrnt3kLpeL+++/\nn5MnTwKwadMmunTpcmmVieHojlwiIhWrsqXdu3dvIiMjGTNmDCaTicTERJKTkwkMDCQuLo4JEyYw\nduxYLBYLvXr1ok+fPrz00kvk5eUxceJEz3KWLFnCnXfeyf3330/jxo1p2bIlDz30UJ0WJ97HfbJZ\nIQsX+pKRYSE83MG0aTp7XEQEwOQ6/yB1A1MXuzuMthsFjFkTGLMu1eQ9jFiXEWsC49V1SbvHRURE\npGFQaIuIiHgJhbaIiIiXUGiLiIh4CYW2iIiIl1Boi4iIeAmFtoiIiJdQaMtFS0mxEh3tT+vWAURH\n+5OSUuOu7EVEpAb0KSsXRbfQFBG5/NTSlouiW2iKiFx+Cm25KBkZ5f/pVDReREQunT5h5aKEhztr\nNF5ERC6dQlsuim6hKSJy+Sm05aLEx9tZvLiQiAgHVquLiAgHixfrJDQRkbqks8flosXH2xXSIiKX\nkVraIiIiXkKhLSIi4iUU2iIiIl5CoS0iIuIlFNoiIiJeQqEtIiLiJRTaIiIiXkKhLSIi4iUU2iIi\nIl5CoX2FSEmxEh3tT+vWAURH+5OSos7wRES8TbU+uefMmcOuXbswmUwkJCQQFRXleW7p0qV8+umn\nmM1munfvzhNPPEFxcTGPPfYYP/74IxaLhblz59K+fXv27dvH008/DUDXrl2ZNWtWnRQlpaWkWJk0\nqbFneO9ey8/D6itcRMSbVNnS3rx5M1lZWSQlJTF79mxmz57teS4/P58lS5awdOlSli1bRmZmJjt3\n7uSzzz6jadOmLFu2jN/97nfMnz8fgNmzZ5OQkMDy5cvJz8/nq6++qrvKxGPBAt9yxy9cWP54ERFp\nmKoM7Y0bNxIbGwtAWFgYJ06cID8/HwAfHx98fHwoKCjAbrdTWFhIs2bN2LhxI3FxcQD069eP7du3\nU1RUxKFDhzyt9CFDhrBx48a6qkvOk5FR/ttc0XgREWmYqvzUzsnJISgoyDMcHBxMdnY2AH5+fkyZ\nMoXY2FiGDBlCjx496NSpEzk5OQQHB7tXYDZjMpnIycmhadOmnuWEhIR4liN1KzzcWaPxIiLSMNX4\nbCSXy+V5nJ+fz+LFi0lNTSUgIIBx48axb9++SuepbNyFgoL8sVotNd3EKtlsgbW+zPpWWU1PPQV3\n3VV2/JNPWhr8a9HQt+9iqCbvYcS6jFgTGLeuC1UZ2qGhoeTk5HiGjx49is1mAyAzM5P27dt7WtV9\n+vRh9+7dhIaGkp2dTbdu3SguLsblcmGz2cjLy/Ms58iRI4SGhla67tzcgosqqjI2WyDZ2adqfbn1\nqaqahg6FxYutLFzoS0aGmfBwJ9OmFTF0qJ2GvLPjSnyvvJERawJj1mXEmsB4dVX2BaTK3eP9+/cn\nLS0NgPT0dEJDQwkICACgbdu2ZGZmcubMGQB2795Nx44d6d+/P6mpqQCsW7eOX//61/j4+NC5c2e2\nbt0KwKpVqxg4cOClVSbVFh9vZ/36An78MZ/16wt01riIiBeqsqXdu3dvIiMjGTNmDCaTicTERJKT\nkwkMDCQuLo4JEyYwduxYLBYLvXr1ok+fPjgcDjZs2MBdd92Fr68vzz33HAAJCQk89dRTOJ1OevTo\nQb9+/eq8QBEREaMwuapzcLme1MXuDqPtRgFj1gTGrEs1eQ8j1mXEmsB4dV3S7nERERFpGBTaIiIi\nXkKhLSIi4iUU2iIiIl5CoS0iIuIlFNoiIiJeQqEtIiLiJRTaIiIiXkKhLSIi4iUU2iIiIl5Cod3A\npKRYiY72p3XrAKKj/UlJqfHdU0VExKCUCA1ISoqVSZMae4b37rX8PFyou3KJiIha2g3JggW+5Y5f\nuLD88SIicmVRaDcgGRnlvx0VjRcRkSuL0qABCQ931mi8iIhcWRTaDcj06UXljp82rfzxIiJyZVFo\nNyDx8XYWLy4kIsKB1eoiIsLB4sU6CU1ERNx09ngDEx9vV0iLiEi51NIWERHxEgptERERL6HQFhER\n8RIKbRERES+h0BYREfESCm0REREvUa1LvubMmcOuXbswmUwkJCQQFRUFwJEjR/jjH//ome7AgQPM\nmDGDgwcPsmHDBgCcTic5OTmkpaURExNDq1atsFgsAMybN4+WLVvWdk0iIiKGVGVob968maysLJKS\nksjMzCQhIYGkpCQAWrZsyfvvvw+A3W7nvvvuIyYmhiZNmjB58mQAUlJSOHbsmGd5b775Jk2aNKmL\nWkRERAytyt3jGzduJDY2FoCwsDBOnDhBfn5+melSUlIYNmxYqUC22+0sW7aMe++9txY3WURE5MpU\nZWjn5OQQFBTkGQ4ODiY7O7vMdCtWrOD2228vNW7VqlUMGDCARo0aecYlJiZy1113MW/ePFwu16Vs\nuxhUfj78858WDhyo7y0REWlYatyNaXlBu2PHDjp37kxAQECp8R9//DGzZs3yDE+dOpWBAwfSrFkz\npkyZQlpaGsOHD69wXUFB/litlppuYpVstsBaX2Z98/aaCgrgiy8gKQk+/xwKC93j27YNpG9fPD+9\ne4OfX/1u66Xy9veqPEasCYxZlxFrAuPWdaEqQzs0NJScnBzP8NGjR7HZbKWmWb9+PX379i01rqCg\ngMOHD9OuXTvPuFtuucXzeNCgQWRkZFQa2rm5BVVXUEM2WyDZ2adqfbn1yVtrOnMG1q618sknVtLS\nrBQUmAAIC3MSG2vnyBFf/vUvJytXmlm50j2Pr6+LX/7SSZ8+Ds9P27bes8emqvcqJ8fEnj1mvvvO\nTHExmExgNrt/n//4/N9ms8vz/Llx5c/btKmLdu2ctGnjqrUvP97691cVI9ZlxJrAeHVV9gWkytDu\n378/r7zyCmPGjCE9PZ3Q0NAyLepvv/2WG264odS4ffv20blzZ8/wqVOnmD59OosWLcLX15ctW7Yw\nbNiwmtYiXq6oCNavt/DJJz6kplo5dcod1Fdd5eSWW4q46SY73bs7MZnAZvPl6NHT7N9vYutWi+dn\n1y4z27ZZWLzYvczWrUuHeFSUs8G3xs+ehYwMM3v2mNmzx8KePWb27jVz9OjluwozNNRJu3Yu2rZ1\n/27Xzknbtu7f7do5CQpyh72INBxVhnbv3r2JjIxkzJgxmEwmEhMTSU5OJjAwkLi4OACys7MJCQkp\nNV92djbBwcGe4cDAQAYNGsTo0aPx8/MjIiKi0la2GEdxMXzzjTuov/jCyokT7iRo397J2LHF3Hxz\nMT16OMsNCJMJrrrKxVVX2bntNvfdzwoK4N//trBli4WtW81s3Wrh73/34e9/9wFKt8Z/9St3kLdp\nUz+tcZcLDh0y/RzKFjIzYccOf77/3ozDUbrgDh2cDBtmJyLCQdeuTho3BqfTvYySH6fz3LgLf7sf\nm8pMV/LjcEBenolDh8wcPGji4EEzu3eb2b69/ENQ/v7uQG/b1kX79u7f5wd869YufH0vx6soIiVM\nrgZ8Nlhd7O4w2m4UaJg12e2wYYOFTz6x8vnnVo4fd7cgW7d2ctNNdm6+uZhrrik/qEtUty6XC09r\nfNs2d2t8924zdvu5hZe0xjt2dOLv7w6kC383aXL+43PPWap5WkV+Puzd6245u3+7H588WbrIgAD3\nvdKvvtpJRIT75+qrHTRtWr311CanE7KzTRw8eC7MDx0yc+CA+/ehQybPe3chk8lFy5YuOnUy07p1\nMR07OrnqKufPX7KctGrlqvZr1xA1xP+rS2XEmsB4dV3S7nGR6nI4YNMmC3/7m5XPPrOSk+P+sA8N\ndfLAA+5d39de68Bcy3uAa9Iavxh+fqUD/cLfRUWwd6+FrKzShZnNLsLCnAwZci6YBw70x98/v8Hs\ndjaboWVLd/hec42z3GlOn4Yffywd5AcPnmutb9kCdnvZ19bHx0X79q6fg9z906GDyxPutf0lxeVy\nb+vx46Zyf44dM+HjA506OT0/7dtrb4F4F4W2XBKnE7ZssfDpp1Y+/dTKkSPu4GrRwsm4cUXccoud\n665zXPYWl78/XHedg+uucwDuD/QDB0wcPWqioMBEQQGcPn3u8YW/K3ru+HETBw6YKCwsnbotWjgZ\nONBORISTyEgHERFOunRx7+I+n80G5Vwx2aA1aQJdujjp0gXAUeb54OBAdu3KJyvLTFaWmf37TZ7H\nWVkm1q0r/2MmKMj1c5CXbqFfdZV7V7zdTqnAPf9xbm7Z8cePmzh7tmbfhsxmF+3auejc2VkqzDt1\nctXLng+Rqii0pdocDvj+ezO7dpn59luL5/fp0+4PyqAgF/feW8TNN9vp39+BtQH9dZlM0KGDiw4d\naudokNOJJ8jNZmjRosEeZapzFgu0b++ifXsHAwaUDfX8fNi//1yInx/ue/ea2bnz0r7RBQS4CA52\nERHhJDjY5fkJCXERFHTucXCwi7Nn4YcfzPzvf2b++18z//ufif/9z8z69VbWry+9XJMJ2rVrQseO\n58K8c2cXnTq5v1hc+IWsIXM6Yft2M76+EBFBg/rflJrRW3cJUlKsLFjgS0aGmfBwJ9OnFxEfb6/v\nzaoVdrv77OZ//9vMv/9tYdcuC+npZs9lWeA+ptmli/tY8U032Rk40IHPxe2B9jpmMwQEuANDKhcQ\ngOfY/YWcTjh61MQPP7gDvSTcDxww4edHqcC98HFwsDuUa3qlQI8eZbcjP/9cmLt/TBw86EtGBnzz\njZVvvim7nDZt3EEeFuakXz8HgwY5GtSXt8JC+PprC6mp7ksqSw5X2WxNuO02O6NHFxMZWf4hEWm4\ndCLaRUpJsTJpUtmv2osXF1724L7UmoqK4D//KQlnd+s5Pd3MmTPnAtpicREe7qRHDydRUQ5++Usn\n3bs7qMtu5I12cgmoJm9SUldBAWRllbTO3S3zkoA/dMiEy3Xu/yQqykF0tJ3Bgx1ce63jsl96mJNj\nYvVqd1B/9dW5vg9atHBy/fV2mjf3ZdkyF7m57vHduzsYPbqYW2+1Y7M12CioktH+Bis7EU2hfZGi\no/3Zu7fsbr2ICAfr19d+pzCVqUlNZ8+6z3DetcviaUXv3WumqOjcB4/V6qJbNyc9erjDuUcP9zHa\ny7070Gj/iKCavEl16jpzBvbtM/P111bWr7ewebPF87/UuLGLvn0dDB7sDvGuXSu/WuJi/fe/Jr78\n0kpqqpUtWyw4ne6V/OIXDoYPtzN8uJ1rrnFisbhrOnjwFKtXW0lK8uEf/7Bgt5uwWl3Extq58047\ncXH2Bt/PwYWM9jeo0D5Pbb25rVsHlLnOFtyB9+OPZW+ocrHsdsqcIOU+SercOIulMUeOnKGgoOxz\n5//OzzeRlWUqdSmUr6/7WOAvf+nwtKKvvrphdE5itH9EUE3e5GLqOn0a/u//LKxfb+Wrryzs23fu\ni32rVk6io90t8UGDHISGXtxHr9MJ27aZSU11B/V337nXYTK5+NWvzgX1L35RdvkX1pSdbSI52R3g\nu3e7lxMU5CI+vpjRo4vp2bNuvmjUtvr4Gyzp+wBq/xwBhfZ5GmJLu6QDjh07LOzY4T4xZ+9eM6dO\nmUq1gC+F+xIlF1dd5SIqyt1rWFSU+9t/Q73kxYhhoJq8R23U9dNPJr76yh3iX39t8RxXBveu6eho\nd0v81792cN59lcqo6Ph048YuoqPdIR0X56hyF3dlNaWnm0lK8uHjj61kZ7uXHx7u4M477dxxRzGt\nWzfYqChTl9MJR46YSp2j8N//msnOdjdanE534NrteB47HKaff5/7cT9nKmdaPHs0fH1dLFtWyMCB\nZU/CvJR6KqLQvkiXckz72DETO3e6e6LaudMd1Of/M5tMLjp2dJ9kU/r64NLXCJc816pVI+z2gnI6\nC3H/btyYWr82+nIwYhioJu9R23U5ne5gXLfO3QrftOncrvRGjVxcd507wKOj3Yejjh1zH5/+8kv3\n8emSywxLjk8PH+5usfv7125NdjusW2chKcnd1XBRkQmz2cWgQe7j3yNG2Gu0zrridLq/FP3vf2ay\ns/3597+LPFcD/PCDucxlmeD+bLVa3Vc8mM14HlssLsxm92OrFc9ji8X18+9zP+7nXJ5pmzRxMWvW\nWTp1qr0oVWifpzb/EVNSrCxceO7s8WnTyp49np/v7uRjxw4zO3a4Q3r//tIJ2q6dk169HPTs6f7d\no4eDwBrcsEYfmt5DNXmPuq6roKD0rvTz99wFBzvJyzNVenz6YtS0prw8+NvffEhK8mHbNvdKAwNd\n3HRTMaNHu/cQ1OXuc4cDfvzR9PPleedazSXBXN51+U2alL3uvuRSvdBQl9fs7q+IQrsWnT0Le/ac\nC+cdO8xkZJhLnV0aEuKkZ08nPXs66N3bfRz5Yo9tldCHpvdQTd7jctd1+PC5Xen/938W2rRxMXy4\nnREjiss9Pn0xLqWm77838dFHPnz0kQ8//uhueFx1lZP4+GKaNnXhdJqw28/tPnY/Nnl2K5//3IXj\nzz0+tyv68GH3Nf3lHSIMDHQHc0k4R0X5ERJSQKdOTmw27wjmyii0z1Pb/4j//reZpUt92LnTfZnU\n+X9g/v4uevRw0KtXSUvaQYcOtf8HpQ9N76GavIcR66qNmhwO+Oc/LXz0kQ+ff24t1XdDbQoKcreO\nSzq3Odd6dl+jf/7nqNHeK/U9Xkf27zdx663+nDxpwsfHRWTkuRZ0z57ubiy9+YYJIiIXslj4+Sx4\nB88/797F73SeOxZ8/nHic4/PHS8+/3jwufFljx1fKR011ZRC+yLZ7TB5cmNOnjQxe/YZxo4tbhCX\nSYmIXC4BARAbW3tnTUvVFNoXad48X7ZssXDLLcU88ECx1x9DERGRhs8LLwSqfxs2WPjLX3zp0MHJ\niy+eUWCLiMhlodCuoePH4fe/b4TZDIsWFdKsWX1vkYiIXCkU2jXgcsHDDzfixx/NPPpoEb/6le6Q\nIyIil49CuwbeeceHL7/0oX9/O1OnFtX35oiIyBVGoV1Ne/eaSUz0IyjIxWuvndGlXCIictnp7PFq\nKCyESZMaceaMicWLCxt0x/kiImJcamlXQ2KiH/v2WRg/vogRIyq/GYiIiEhdUWhX4fPPrbzzji9X\nX+0gMfFsfW+OiIhcwRTalTh0yMTDDzeicWMXb7xxhsZl78QpIiJy2eiYdgUcDvf12Hl5Jl588Qxd\nu+ryLhERqV/VCu05c+awa9cuTCYTCQkJREVFAXDkyBH++Mc/eqY7cOAAM2bMoLi4mIULF9KhQwcA\n+vXrx+TJk9m3bx9PP/00AF27dmXWrFm1XE7tWbDAl40brYwcWczYscX1vTkiIiJVh/bmzZvJysoi\nKSmJzMxMEhISSEpKAqBly5a8//77ANjtdu677z5iYmJIS0vjhhtuYObMmaWWNXv2bE/oz5gxg6++\n+oro6Og6KOvSbNpk4cUXfWnb1slLL6mbUhERaRiqPKa9ceNGYmNjAQgLC+PEiRPk5+eXmS4lJYVh\nw4bRpEmTcpdTVFTEoUOHPK30IUOGsHHjxkvZ9jpx4gRMntwIgEWLzhAUVM8bJCIi8rMqQzsnJ4eg\n85IrODiY7OzsMtOtWLGC22+/3TO8efNmJkyYwLhx49izZw+5ubk0bdrU83xISEi5y6lPLhfMmNGI\ngwfN/OEPRVx3nW45JyIiDUeNT0Rzucp2LLJjxw46d+5MQEAAAD169CA4OJjBgwezY8cOZs6cyVtv\nvVXlci4UFOSP1Vr7XY/ZbIHljn/rLfj0UxgwAObO9cNq9Z4bZFdUk7czYl2qyXsYsS4j1gTGretC\nVYZ2aGgoOTk5nuGjR49is9lKTbN+/Xr69u3rGQ4LCyMsLAyAXr16cfz4cYKCgsjLy/NMc+TIEUJD\nQytdd25uQfWqqAGbLZDs7FNlxmdkmJk61Z9mzeDll0+Tm+s9vZ5VVJO3M2Jdqsl7GLEuI9YExqur\nsi8gVe4e79+/P2lpaQCkp6cTGhrqaVGX+Pbbb+nWrZtn+M033+Szzz4DICMjg+DgYHx9fencuTNb\nt24FYNWqVQwcOLDm1dSBM2fc3ZQWFpp46aUztGvnPYEtIiJXjipb2r179yYyMpIxY8ZgMplITEwk\nOTmZwMBA4uLiAMjOziYkJMQzz4033sgjjzzC8uXLsdvtzJ49G4CEhASeeuopnE4nPXr0oF+/fnVU\nVs08+6wf6ekW7ruviBtvVDelIiLSMJlc1Tm4XE/qYnfHhbtRVq2ycO+9/oSHO1i1qgB//1pfZZ0z\n2q6hEkasSzV5DyPWZcSawHh1XdLucSM7fNjEtGmN8PNzsXjxGa8MbBERuXJcsd2YOhwwZUojjh0z\nM3fuGSIj1U2piIg0bFdsS/v//T9fvvnGyrBhdsaPVzelIiLS8F2Rob1tm5m5c31p1crJggXqplRE\nRLzDFRfaJ07ApEmNcTrhtdfOEBLSYM/DExERKeWKCm2XCyZPhv37zUybVsSAAeqmVEREvMcVFdpJ\nSVaWLYNrrnHwyCNF9b05IiIiNXLFhHZBATz2WCOaNoXXXy/Ex6e+t0hERKRmrpjQ9vODu+4qZuVK\nuOoqHccWERHvc8Vcp22xwNy5Z7HZfGlgdwQVERGpliumpS0iIuLtFNoiIiJeQqEtIiLiJRTaIiIi\nXkKhLSIi4iUU2iIiIl5CoS0iIuIlFNoiIiJeQqEtIiLiJRTaIiIiXkKhLSIi4iUU2iIiIl5CoS0i\nIuIlFNoiIiJeQqEtIiLiJap1P+05c+awa9cuTCYTCQkJREVFAXDkyBH++Mc/eqY7cOAAM2bMYMSI\nETzxxBPs378fh8PBo48+Sp8+fbjvvvsoKCjA398fgJkzZ9K9e/c6KEtERMR4qgztzZs3k5WVRVJS\nEpmZmSQkJJCUlARAy5Ytef/99wGw2+3cd999xMTE8Mknn9C4cWOWLVvGd999x+OPP87KlSsBmDt3\nLuHh4XVYkoiIiDFVuXt848aNxMbGAhAWFsaJEyfIz88vM11KSgrDhg2jSZMm3HTTTTz++OMABAcH\nk5eXV8ubXXMpKVaio/2xWiE62p+UlGrtZBAREWkwqkyunJwcIiMjPcPBwcFkZ2cTEBBQaroVK1bw\n17/+FQAfHx/P+HfffQsmR4oAAAnUSURBVJdRo0Z5hl9++WVyc3MJCwsjISGBRo0aVbjuoCB/rFZL\n9aupwPLlMGnSueG9ey1MmtSYpk1hzJhLXnyDYLMF1vcm1Akj1qWavIcR6zJiTWDcui5U4+amy+Uq\nM27Hjh107ty5TJAvXbqU9PR0Xn/9dQDGjh1L165d6dChA4mJiSxdupQJEyZUuK7c3IKabl65nnnG\nHygb/s8+62Do0NpZR32y2QLJzj5V35tR64xYl2ryHkasy4g1gfHqquwLSJW7x0NDQ8nJyfEMHz16\nFJvNVmqa9evX07dv31LjVqxYwdq1a3nttdc8Le+4uDg6dOgAQExMDBkZGdWv4hJkZJRfZkXjRURE\nGqIqU6t///6kpaUBkJ6eTmhoaJkW9bfffku3bt08wwcOHGD58uW8+uqr+Pn5Ae4W+v3338/JkycB\n2LRpE126dKm1QioTHu6s0XgREZGGqMrd47179yYyMpIxY8ZgMplITEwkOTmZwMBA4uLiAMjOziYk\nJMQzz4oVK8jLy2PixImecUuWLOHOO+/k/vvvp3HjxrRs2ZKHHnqoDkoqa/r0IiZNalxm/LRpRZdl\n/SIiIrXB5CrvIHUDUZvHKFJSrCxc6EtGhoXwcAfTphURH2+vteXXJ6MdzylhxLpUk/cwYl1GrAmM\nV1dlx7SvmOue4uPtxMfbf35zvf/kMxERufLoTCwREREvodAWERHxEgptERERL6HQFhER8RIKbRER\nES+h0BYREfESCm0REREvodAWERHxEgptERERL9GguzEVERGRc9TSFhER8RIKbRERES+h0BYREfES\nCm0REREvodAWERHxEgptERERL2Gt7w2oK3PmzGHXrl2YTCYSEhKIioryPLdhwwZeeuklLBYLgwYN\nYsqUKfW4pTXzwgsvsG3bNux2O5MmTeL666/3PBcTE0OrVq2wWCwAzJs3j5YtW9bXplbLpk2bmDZt\nGl26dAEgPDycJ5980vO8N75XK1as4NNPP/UM7969mx07dniGIyMj6d37/7d3byFRdW0Ax//juTFf\nT6kYYYUXZRDlW5YHPFVWCp1uooHBgolIU0EsHaFS6MLMCRKLSjtnQWARdgAl6iJCJztQqRcm3tjJ\nPGQ5YdkM67uI5mua0azvq5k9rN/dXs/e8CyetVwza+89/ms9PnPmjLVmrqirq4vc3Fy2bNmCVqvl\n9evXFBcXY7FYCAsLo6qqCh8fH5trJpp/rsJRv0pLSzGbzXh5eVFVVUVYWJj1/J+NVVfwY5/0ej0d\nHR0EBQUBoNPpSEtLs7lGibUqKCjg3bt3AAwPD7Nw4UL27dtnPf/KlStUV1cTFRUFQGJiIjk5OU7J\n/f9OuCGj0Si2bdsmhBCiu7tbbNy40SaemZkpXr16JSwWi9BoNOL58+fOSPOXtbS0iK1btwohhBga\nGhKpqak28fT0dGEymZyQ2e9rbW0V+fn548aVWqtvjEajKC8vt2lbsmSJk7L5dR8/fhRarVbs3r1b\nnD9/XgghhF6vFzdv3hRCCHHw4EFx4cIFm2t+Nv9cgaN+FRcXixs3bgghhKivrxeVlZU21/xsrDqb\noz6VlJSI27dvj3uNUmv1Pb1eL548eWLTdvnyZbF///6/leJf5Zbb4y0tLaxYsQKA6Oho3r9/j8lk\nAqC3t5fAwEAiIyPx8PAgNTWVlpYWZ6Y7aXFxcVRXVwPwzz//MDo6isVicXJWf46Sa/XNkSNHyM3N\ndXYav83Hx4e6ujrCw8OtbUajkeXLlwOQnp5uV5OJ5p+rcNSvsrIyVq1aBUBwcDDDw8POSu+3OOrT\nzyi1Vt/09PQwMjLikrsDf4pbLtoDAwMEBwdbj0NCQujv7wegv7+fkJAQhzFX5+npiVqtBqChoYGU\nlBS7bdWysjI0Gg0GgwGhkB+76+7uZvv27Wg0Gu7du2dtV3KtAJ4+fUpkZKTNFivA2NgYRUVFbNq0\nidOnTzspu8nx8vLCz8/Ppm10dNS6HR4aGmpXk4nmn6tw1C+1Wo2npycWi4WLFy+yZs0au+vGG6uu\nwFGfAOrr68nOzqawsJChoSGbmFJr9c25c+fQarUOY/fv30en07F582Y6Ozv/ZIp/ldve0/6eUhav\nybp16xYNDQ2cOnXKpr2goIDk5GQCAwPZsWMHTU1NrF692klZTs6sWbPIy8sjMzOT3t5esrOzaW5u\ntrtHqkQNDQ1s2LDBrr24uJi1a9eiUqnQarUsXryY+fPnOyHD/91k5paS5p/FYqG4uJj4+HgSEhJs\nYkocq+vWrSMoKIiYmBhqa2s5fPgwe/fuHfd8JdVqbGyMhw8fUl5ebhdbsGABISEhpKWl8fjxY0pK\nSrh27drfT/IPcMtv2uHh4QwMDFiP3759a/2282Osr6/vl7aTnO3u3bscO3aMuro6AgICbGLr168n\nNDQULy8vUlJS6OrqclKWkxcREUFWVhYqlYqoqCimTZtGX18foPxaGY1GYmNj7do1Gg3+/v6o1Wri\n4+MVUafvqdVqPn36BDiuyUTzz9WVlpYyc+ZM8vLy7GITjVVXlZCQQExMDPD1QdUfx5qSa9XW1jbu\ntnh0dLT1gbvY2FiGhobc5laiWy7aSUlJNDU1AdDR0UF4eDhTp04FYMaMGZhMJl68eIHZbObOnTsk\nJSU5M91JGxkZ4cCBAxw/ftz6NOj3MZ1Ox9jYGPB1QH97ytWVNTY2cvLkSeDrdvjg4KD1iXcl16qv\nrw9/f3+7b2E9PT0UFRUhhMBsNvPo0SNF1Ol7iYmJ1vnV3NxMcnKyTXyi+efKGhsb8fb2pqCgYNz4\neGPVVeXn59Pb2wt8/RD541hTaq0Anj17xty5cx3G6urquH79OvD1yfOQkBCXfkPjV7jtf/kyGAw8\nePAAlUpFWVkZnZ2dBAQEkJGRQVtbGwaDAYCVK1ei0+mcnO3kXLp0iZqaGmbPnm1tW7p0KXPmzCEj\nI4OzZ89y9epVfH19mTdvHnv27EGlUjkx458zmUzs3LmTDx8+8OXLF/Ly8hgcHFR8rdrb2zl06BAn\nTpwAoLa2lri4OGJjY6mqqqK1tRUPDw+WLVvm0q+itLe3U1lZycuXL/Hy8iIiIgKDwYBer+fz589M\nnz6diooKvL29KSwspKKiAj8/P7v5N94fV2dx1K/BwUF8fX2ti1Z0dDTl5eXWfpnNZruxmpqa6uSe\n/JejPmm1Wmpra5kyZQpqtZqKigpCQ0MVX6uamhpqampYtGgRWVlZ1nNzcnI4evQob968YdeuXdYP\nx676KtvvcNtFW5IkSZLcjVtuj0uSJEmSO5KLtiRJkiQphFy0JUmSJEkh5KItSZIkSQohF21JkiRJ\nUgi5aEuSJEmSQshFW5IkSZIUQi7akiRJkqQQ/wE8po3CxQFO6QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xt8zvXj//HHddqYDZs2p+iDT2gT\npaPkNBtDEhWrkCgdSEKFX7VOpKIP6fCh01eUlkwlh0WoPiWEjxwjfRJy2DA2G7sO798fl13Mrm0O\n265d157322237Xpf7/f7er2u03Ov9/v1er1NhmEYiIiISJkz+7oAIiIiFZVCWERExEcUwiIiIj6i\nEBYREfERhbCIiIiPKIRFRER8RCEsASEpKYmEhAQSEhKIiYmhQ4cOnttZWVnnta+EhATS09OLXGfS\npEnMnj37Yopc4gYMGEBKSkqJ7KtJkybs37+fJUuWMGbMmIt6vM8++8zz97k8t+dq9OjRvP322yWy\nLxFfsfq6ACIl4fnnn/f8HRsby6uvvsq11157QftavHhxseuMHDnygvbtb+Lj44mPj7/g7dPS0njv\nvffo3bs3cG7PrUhFopawVAj9+vXjX//6F126dGHdunWkp6czaNAgEhISiI2N5cMPP/Ssm9cKXLVq\nFX369GHSpEl06dKF2NhYVq9eDeRvhcXGxvLpp59yxx13cPPNNzNhwgTPvv7973/TqlUrbr/9dj7+\n+GNiY2O9lm/OnDl06dKFTp06cc8997B3714AUlJSGDZsGGPHjqVz58507dqVHTt2ALB7927uvPNO\n4uLiGDlyJE6ns8B+v/vuO7p3755vWY8ePfj++++LfA7ypKSkMGDAgGIf79tvv6V79+507tyZXr16\nsXXrVgASExP5+++/SUhIIDc31/PcAnz00Ud07dqVhIQEHn74YQ4fPux5bt944w3uu+8+OnTowH33\n3UdOTk5hLy0A27ZtIzExkYSEBHr06MEPP/wAwPHjxxkyZAhdunShY8eOPP3009jt9kKXi5Q1hbBU\nGJs2bWLBggW0bNmSd955h0svvZTFixczY8YMJk2axL59+wpss2XLFlq0aMGiRYu4++67eeedd7zu\ne82aNSQnJzN37lxmzZrF/v372bFjB++99x5ffvkln3zySaGtwEOHDvHCCy/w4Ycf8s0331C/fv18\nh1m///577r77blJTU7nhhhuYMWMGABMnTqRVq1YsXbqUe++9l3Xr1hXYd6tWrdi/fz+7d+8G3EG6\nf/9+brrppnN+DvIU9ngOh4PRo0fz4osvkpqaSmxsLK+88goA48ePp3bt2ixevJigoCDPvv773//y\n/vvvM3PmTBYvXkydOnWYNGmS5/7Fixfzr3/9iyVLlnD48GGWLFlSaLlcLhcjRoygb9++LF68mJde\neomRI0eSlZXFF198QdWqVVm0aBGpqalYLBZ+//33QpeLlDWFsFQY7dq1w2x2v+WffvppnnnmGQDq\n1atHZGQke/bsKbBNlSpViIuLAyAmJoa///7b6767d++OxWKhZs2a1KhRg3379rFmzRquv/56oqKi\nCA4O5vbbb/e6bY0aNVi7di21atUC4Nprr/WEJkCjRo1o1qwZANHR0Z6g/OWXX+jatSsAzZs3p2HD\nhgX2HRQURIcOHVi2bBkAS5cuJS4uDqvVes7PQZ7CHs9qtfLTTz9x1VVXeS2/NytWrKBz587UqFED\ngDvvvJMff/zRc3+7du2oXr06VquVxo0bF/nPwZ49e0hPT6dbt24AXHnlldSpU4eNGzcSERHB+vXr\n+c9//oPL5eL555/niiuuKHS5SFnTOWGpMKpVq+b5e+PGjZ6Wn9lsJi0tDZfLVWCbsLAwz99ms9nr\nOgChoaGevy0WC06nk2PHjuV7zJo1a3rd1ul08sYbb7Bs2TKcTifHjx+nQYMGXsuQt2+Ao0eP5nvc\nqlWret1/586d+eijj7j33ntZunQpjzzyyHk9B3mKeryZM2cyb948cnNzyc3NxWQyFbofgMOHDxMV\nFZVvX4cOHSq2zoXtKywsLN9jVq1alcOHD9OtWzeOHj3KlClT+OOPP7j11lsZM2YMXbp08br8zNa6\nSFlQS1gqpCeeeILOnTuTmprK4sWLCQ8PL/HHCA0NJTs723P74MGDXtdbuHAhy5YtY9asWaSmpjJs\n2LBz2n/VqlXz9fzOO6d6tjZt2rBt2zb+/PNP/vzzT2688Ubg/J+Dwh5v3bp1vPvuu7zzzjukpqby\n0ksvFVv2Sy65hIyMDM/tjIwMLrnkkmK386ZGjRocPXqUM69Fk5GR4WllJyYmMmfOHBYuXMjmzZv5\n4osvilwuUpYUwlIhHTp0iGbNmmEymZg3bx45OTn5ArMkNG/enFWrVnH48GFyc3ML/ZI/dOgQdevW\nJSIigiNHjrBo0SKOHz9e7P6vuuoqz7nSdevW8ddff3ldLygoiJtvvpnXXnuNjh07YrFYPI97Ps9B\nYY93+PBhatSoQZ06dcjJyWHevHlkZ2djGAZWq5Xs7GwcDke+fbVv354lS5Zw5MgRAD799FPatWtX\nbJ29ufTSS6lVqxYLFy70lC09PZ3mzZvz1ltv8fnnnwPuIxGXXnopJpOp0OUiZU0hLBXSY489xpAh\nQ+jevTvZ2dn06dOHZ555ptAguxDNmzenZ8+e9OzZk/79+9OhQwev691yyy1kZGQQHx/PyJEjGT58\nOPv378/Xy9qbJ554guXLlxMXF8fHH3/MTTfdVOi6nTt3ZunSpXTp0sWz7Hyfg8Ier02bNkRFRREX\nF8fAgQO59957CQsLY9iwYTRp0oRq1arRunXrfOfTmzdvzuDBg7nnnntISEggMzOTxx9/vMj6FsZk\nMvH6668za9YsunTpwksvvcSUKVMICQmhR48efPnll3Tu3JmEhARsNhs9evQodLlIWTPpesIipccw\nDE8La8WKFUyePFmHPUXEQy1hkVJy+PBhbrzxRvbu3YthGCxatMjTg1hEBNQSFilVs2fP5oMPPsBk\nMtGwYUPGjRvn6TAkIqIQFhER8ZFzGic8fvx4NmzYgMlkYuzYsTRv3hyAAwcOMGrUKM96u3fvZuTI\nkQWmyRMREZGCig3h1atXs2vXLpKTk9m5cydjx44lOTkZcHftnzlzJuCeuq5fv36Fzo0rIiIi+RUb\nwitXrvRM29eoUSOOHj1KVlZWvplzAObNm0fnzp2pUqVKkftLS8u8iOIWFB4ewpEjJTu+szwIxHoF\nYp0gMOulOvmPQKxXINYpMjLM6/Jie0enp6fnm0knIiKCtLS0AuvNmTOHO+644yKKeGGsVkuZP2ZZ\nCMR6BWKdIDDrpTr5j0CsVyDWqTDnPXe0t35c69evp2HDhgVax96Eh4eU+BNc2H8Y/i4Q6xWIdYLA\nrJfq5D8CsV6BWCdvig3hqKgo0tPTPbcPHjxIZGRkvnVWrFhBq1atzukBS/oQQ2RkWIkf4i4PArFe\ngVgnCMx6qU7+IxDrFah18qbYw9GtW7cmNTUVgM2bNxMVFVWgxbtx40aaNm1aAsUUERGpOIptCbds\n2ZKYmBgSExMxmUwkJSWRkpJCWFgY8fHxAKSlpWkCAhERkfN0TueEzxwLDBRo9c6fP7/kSiQiIlJB\naO5oERERH1EIi4iI+Mh5D1EKRFOn/ovfftvK4cOHOHHiBHXq1KVq1WqMH/9asdsuXDifKlVCadfO\n+7Vip0yZxJ13JlKnTt0LKtvQoYMZMeJJGjb85wVtLyIi5ZdfhvC8eVYmTw5i+3Yz0dEwdKiVnj0d\nF7y/Rx91X0x84cL5/PHHToYOHX7O23btWvQ82Y89NvKCyyUiIoHN70J43jwrDz5Y2XN740ZO3c65\nqCD2Zt26X/j001lkZ2czdOjjrF+/lhUrvsXlctGqVWsGDhzM++9Po3r16jRo0IiUlM8wmczs2vU/\n2rfvyMCBgz0t2eXLv+X48Sz++msXe/fuYdiwkbRq1ZpZs/6PpUu/oU6dujgcDhIT76Fly2sLlCUr\nK4tx454jKysTh8PB8OFP0KRJUyZPfo1t27bidDrp2fMOunbt7nWZiIiUP34XwpMnB3ldPmVKUImH\nMMDOnb8ze3YKQUFBrF+/lrfffg+z2Uzv3j3o0+fufOtu2bKZTz6Zi8vl4s47uzNw4OB89x88eICJ\nE9/g559/4ssv5xIT04yUlDnMnj2X48ePk5jYi8TEe7yWY86c2cTENKNv3wFs27aFqVNfZ/z41/jp\np//w2Wdf4nA4WLhwPseOHS2wTEREzs1//2vmzz/N9OjhwGQq/cfzuxDevt17X7LCll+sf/7zcoKC\n3MFfqVIlhg4djMViISMjg2PHjuVbt0mTplSqVKnQfTVvfhXgnoUsKyuLPXt207BhI4KDKxEcXIkr\nrogpdNtt27bQv/8gAJo2jWbPnt1UrVqNevUuY/ToEXToEEdCQjeCgoIKLBMRkcIdPw7z5tmYMcPG\nhg0WTCaDVq2OU7NmwWmaS5rfhXDjxi62bi0493Tjxq5SeTybzQbA/v37SE7+mA8++JiQkBD69etd\nYF2Lpeg5sc+83zAMDAPM5tP/PBT1X5fJZMo3b7fL5a7vpElv8Ntv21iyZDGLFy/gX/96y+syERHJ\nb9s2MzNm2PjsMxuZmSYsFoMuXewMHmwvkwAGPxyiNHx4rtfljz3mfXlJycjIIDw8nJCQEH77bRv7\n9+/Hbrdf1D5r167NH3/sxOFwcOTIEbZt21rouk2bRrN+/S8AbNq0kQYNGrFv39/MmfMpTZo0ZejQ\n4Rw9etTrMhERcTt5EubOtXLrrZVp27YK778fRJUqBqNGnWTt2uPMmHGC1q2dZVYev2sJu8/75jBl\nSl7vaBNDhpR8p6yzXX55YypXDuHhhwdy5ZVX0aNHLyZNeoXmzVtc8D4jImoQH5/AAw/057LLGhAd\nHVNoa7p377sYP/55hg17CJfLxYgRT3HJJZFs2rSBb7/9BpvNRrdut3pdJiJS0f3vfyZmzrQxe7aN\nQ4fc7c/27R0MGGCnUycHVh+locnwdm3CUlTSV8bw96ttLFw4n/j4BCwWC/37J/L661OJiqrp9/Xy\nJhDrBIFZL9XJfwRivUqqTg4HfPONlRkzbCxf7k7ZiAgXd93loH//XBo0KLv4K+wqSn7XEg40hw4d\nYvDge7HZgujUKYGoqJq+LpKIiF/bt8/ErFk2Zs2ysW+fu9V7ww0O7r3Xzi23OCii/2yZUwj7WL9+\nA+jXb4CviyEi4tdcLvjuOwszZthITbXidJoIDTUYODCX/v3tREeXTufdi6UQFhERv3XokInZs618\n9FEQf/7pbvVeeaWTAQPs9OxpJzTUxwUshkJYRET8zpYtZt56K4gvv7SSm2uiUiWDu+6yc++9uVx9\ntatMJtooCQphERHxC4YBP/9sYerUIJYudcfXP//pbvX27m2nenUfF/ACKIRFRKRcc7lg8WIrU6cG\nsXatexjnDTc4ePTRXOLinJj9bsaL0/y46CXnwQfvKzBRxr///SazZ8/yuv66db/w9NNPAjB69IgC\n98+dm8z7708r9PF+/30Hf/21C4CkpDGcPHniQovOHXd0Jzs7+4K3FxEpr3Jz4ZNPrLRpE8KAAZVZ\nu9ZCQoKdr78+zvz5OXTq5N8BDAphAOLjO7Ns2ZJ8y1asWEZcXKdit50w4fXzfrzvvlvG7t1/AfD8\n8y8THFyO+suLiPhYZia8/baNa6+twvDhlfnf/8z06WPnhx+O89FHJ7j++vLZ0/lC6HA00LFjJx5+\neBCPPDIMgG3bthIZGUlkZBRr1qzivff+jc1mIywsjBdemJBv227dOrJgwbf88stq3nhjEhERNahR\n4xLPpQnHjXuOtLSD5OTkMHDgYGrVqs2XX6bw3XfLCA8P59lnx/DRR8lkZWXy8ssvYLfbMZvNvPrq\nBI4cyWbcuOeoU6cuv/++g8aNmzB69DNe63Dw4IF8248e/QxRUTV54YVnOHQondzcXAYNepBrr72+\nwLIbb7yp1J9jEZHiHDxo4r33bPzf/0FGRiVCQgwefDCXhx7KpW7dMp1XqsyUuxB+7rlg5s8/92KZ\nzeByVSlyne7dHTz33MlC7w8Pj6BOnbps2bKJ6OhmLFu2hPj4BAAyMzNJSnqJOnXq8uKLz7Jq1UpC\nQkIK7GPatDd55pkXufzyxowaNYw6deqSmXmM66+/kS5dbmHv3j0888xoPvhgFjfc0Ir27TsSHd3M\ns/177/2bW27pQceOnVi+fClvvvkm99wzkN9+28rzz48nPDyCnj27kpmZSVhYwZlXzt7+gw+mc+ed\nd3H0aAZvvfUumZmZrFz5Izt3/l5gmYiIL/3vfybefjuITz+1cfKkichIGD36JPfdl0t4uK9LV7p0\nOPqU+PgEvv3WfUj6xx+/p337jgBUr16dV155iaFDB7N+/VqOHfN+QYR9+/Zx+eWNAbjqqpYAhIVV\nZevWzTz88EDGjXuu0G0BfvttK1dffQ0ALVtey5YtWwCoW7ceNWpcgtls5pJLIjl+POuctt+x4zcu\nu+wfZGcf58UXn2HdujXExXXyukxExBd+/dXMAw9UolWrKsyYEUTNmgYTJpxg1y4YMSLwAxjKZUv4\nZJGt1rO55xg9ftGP265dBz766APi4ztTr159qlatCsDLL7/Ia69N5h//aMDrr79S6PZnXpIwbzru\nJUsWc+zYMd566z2OHTvG/ff3K6IEpy9VaLc7PPs7+4IOhU/1nX97k8lMpUqVmDbt/9i48VcWLZrP\njz/+wNixSV6XiYiUBcOAH36w8MYbQXz/vTuCmjVz8uijuXTv7r6QQuXKlcjy3t4IOGoJnxISUoVG\njS7no48+9ByKBjh+PIuaNWuRmZnJunVrC7184SWXRPLXX39iGAbr168F3Jc/rF27Dmazme++W+bZ\n1mQy4XTmv1TWFVdEs26d+1KF//3vWpo1a8b5OHv7pk2v8FxTuEWLqxg1agx//vk/r8tEREqb0wlf\nfWWlU6cQ7rgjhO+/t9KmjYPk5Gy+/Tabnj19dyUjX6qAVS5cfHwCL72URFLSi55lvXrdycMPD6Je\nvfrcc09/PvhgOoMHP1Jg28GDH+Hpp5+iVq3anoswtG8fy+jRI9iyZRPdut1KVFQUH374Li1aXM3k\nya/lO7d8//0P8fLLLzJ//hdYrTYmTnyFAwcyzrnsZ28/ZswzBAdXYtq0t/jyyxTMZjN3392P2rXr\nFFgmIlJasrIgOdnG9OlB/O9/Zkwmg+7d7Qwd6p7ZqqLTpQzLqUCsVyDWCQKzXqqT/yiv9dq928T7\n7wcxa5aNY8dMBAcb9O5t55FHcmnUqOjYKa91uhi6lKGIiJQqw4A1a8xMmxbEggVWXC4TkZEunnrK\nfSWjyMjAHGZ0MRTCIiJyUXJzYf58K9OnB7F+vbszabNmTh58MJfbbnMQHOzjApZjCmEREbkghw/D\nzJlBvP++jf373ed7u3Sx8+CDdlq1cvrNlYx8SSEsIiLn5bffzEyfbuPzz23k5JgIDXXPbDVoUC7/\n+IcOOZ8PhbCIiBTL5YIVKyxMmxbE8uXu6Khf38UDD5zk7rvteJnIT86BQlhERAqVnQ1z5tiYPt3G\njh3u872tWjkYPNhOQoKDs+YTkvOkEBYRkQL+/tvEBx/YmDkziCNHTNhs7iFGgwfn0ry5xveWFIWw\niIh4/PqrmbffDuKrr6w4HCZq1HAxYkQu991np2ZNne8taQphERFh/XozkyYF88037li44gr3EKNe\nvRxU0iXPS41CWESkAlu71szEicF8+607Dq6/3sHIkbm0b68hRmVBISwiUgGtXu0O3xUr3DFw000O\nRo3KpXVrhW9ZUgiLiFQgP/9s4bXXgvjhB/fXf5s27pbvTTc5i9lSSoNCWESkAvjxRwsTJwbx44/u\nr/127dzhe+ONCl9fUgiLiAQow4AffrAwaVIQK1e6v+5jYx2MHHmS667TMKPyQCEsIhJgDMM9u9Wk\nSUGsXu3+mo+PdzBixEmuuUbhW54ohEVEAoRhwLJlFiZODGbtWvdUVgkJdkaMyOWqqxS+5ZFCWETE\nzxkGLFliYdKkYM+lBLt2tTNyZC5XXqnwLc8UwiIifsow4Msv4dlnQ/j1V3f4du9u5/HHc2nWTOHr\nDxTCIiJ+xDBg0yYzCxdamT/fyvbtYDKZue02d/hecYXC158ohEVEyjmnE1avtrBwoZVFi6z89ZcZ\ngOBgg7vvhocfzqZJE4WvPzqnEB4/fjwbNmzAZDIxduxYmjdv7rlv3759jBgxArvdTnR0NC+88EKp\nFVZEpKI4ccI9vGjhQiupqVbS093BGxZm0KuXna5dHcTGOmjQIIy0NAWwvyo2hFevXs2uXbtITk5m\n586djB07luTkZM/9EyZMYODAgcTHx/P888/z999/U6dOnVIttIhIIMrMhKVLrSxcaGXpUivHj7vn\nj4yMdNGvXy7dujlo3dpJcLCPCyolptgQXrlyJXFxcQA0atSIo0ePkpWVRWhoKC6Xi7Vr1/L6668D\nkJSUVLqlFREJMAcPmli82B28P/xgwW53B+9ll7no39/d4r32WicWi48LKqWi2BBOT08nJibGczsi\nIoK0tDRCQ0M5fPgwVapU4eWXX2bz5s1ce+21jBw5slQLLCLi7/7808TChe7gXbPGgmG4gzcmxknX\nrg66dnUQHe3ShRQqgPPumGUYRr6/Dxw4QP/+/albty6DBw9mxYoVtG/fvtDtw8NDsFpL9l+6yMiw\nEt1feRGI9QrEOkFg1kt1Klm//gopKTBvnvtvAJMJWreGnj3httugYUMLYAHO73izXiv/VWwIR0VF\nkZ6e7rl98OBBIiMjAQgPD6dOnTrUr18fgFatWrFjx44iQ/jIkeyLLHJ+kZFhpKVllug+y4NArFcg\n1gkCs16qU8kwDPjuOwv/+tfpuZuDggzi4twt3k6dHERFnW7YpKWd/2PotfIPhf1TYS5uw9atW5Oa\nmgrA5s2biYqKIjQ0FACr1Uq9evX4888/Pfc3aNCghIosIuKfDAMWL7aQkBBC794hrFxppUMHB9On\n57B1axaffJJD3772fAEsFVOxLeGWLVsSExNDYmIiJpOJpKQkUlJSCAsLIz4+nrFjxzJ69GgMw6Bx\n48bExsaWRblFRModpxPmz7cyeXIQW7acnj7y8cdzadFCw4ikoHM6Jzxq1Kh8t5s2ber5+7LLLmP2\n7NklWyoRET9it8PcuVamTAlm504zZrN7LO9jj2kGKymaZswSEblAJ07A7Nk23nwziN27zdhsBvfc\nk8ujj+bSsKEONUvxFMIiIufp+HGYOdPGW28FceCAmeBgg0GDchkyJJdLL1X4yrlTCIuInKNjx+CD\nD4KYNs3GoUNmQkIMhgzJ5aGHcqlZU+Er508hLCJSjEOHTLz7ro333gvi2DET1aoZjBx5kgceyCUi\nwtelE3+mEBYRKcSBAybefjuIGTNsZGebqFHDxdNP53LffbmEVYy5JKSUKYRFRM6yZ4+JN98M4uOP\nbZw8aaJWLRdjxpykb187Var4unQSSBTCIiK4J9hYudLCzJk2vvzSisNhon59F48+epLERLuuXCSl\nQiEsIhVaerqJ5GQrs2YFsXOnexLByy93MmxYLr16ObDZfFxACWgKYRGpcFwu+P57C7Nm2Vi0yIrd\nbiI42OD22+3062enVSunrmAkZUIhLCIVxoEDJmbPtjFrlo2//nK3eps2ddK3r50777QTHu7jAkqF\noxAWkYDmdMLy5RY++wzmz6+C02micmWDxEQ7/frlcu21um6v+I5CWEQC0t69Jj75xMYnn9jYu9fd\n6m3WzEW/fnZuv91O1ao+LqAICmERCSB2OyxZYmXWLBvLlllwuUxUqWLQr18uw4YFUb9+tlq9Uq4o\nhEXE7+3aZeLjj23Mnm3jwAF3q7dlS/e53ttusxMaCpGRQaSl+bigImdRCIuIX8rKgqVLrXz8sY3v\nvnN/lVWt6r6QQt++dmJidAlBKf8UwiLiNzIy4JtvrHz9tZUVK6ycOOE+tnzDDQ769rXTvbuDkBAf\nF1LkPCiERaRcS0szsWiRO3j/8x8LDoc7eJs0cdKtm4OePR00aaJWr/gnhbCIlDt795pYsMDKggVW\nVq1yd7ACaNHCHbzdujm4/HIFr/g/hbCIlAt//GHi669tLFhgZf16CwAmk8F11zm55RYHXbs6qF9f\n1+yVwKIQFhGfMAzYutXMggXuQ81bt7qD12IxaNvW3drt2tVBzZoKXglcfhvC8+ZZmTw5iO3boXHj\nEIYPz6VnT4eviyUiRTAMWL/efOpQs40//nAPJwoONujc2UG3bnY6dXIQEeHjgoqUEb8M4XnzrDz4\nYGXP7a1bLadu5yiIRcoZw4B168ykpNhYuNDqmb0qJMTg1lvt3HKLg7g4B6GhPi6oiA/4ZQhPnhzk\ndfmUKUEKYZFy4q+/THz+uY05c2yeSwRWq2bQu7edbt0ctG/voHLlYnYiEuD8MoS3bzef13IRKRvH\njsFXX9mYM8fKypXur5fKlQ169bJzxx122rZ1EuT9f2iRCskvQ7hxY5enE8fZy0WkbNnt7qsUzZlj\nY/FiKydPuocT3XyzgzvvdB9uDgvzcSFFyim/DOHhw3PznRPO89hjuT4ojUjFYxiwYYOZOXNszJtn\nJT3dfRTq8sud9O7t4Pbb7Vx6qXo1ixTHL0PYfd43hylTgti+3ULjxk4ee0y9o0VK2549JubOdR9u\n3r7dfTSqRg0XDzyQy5132mnRQtfmFTkffhnC4A7inj0dREaGkZaW7eviiASszEz4+msrc+bY+PFH\nC4ZhIjjY3bO5d287HTo4sdl8XUoR/+S3ISwipcfhgG+/dZ/nXbTISk6Ou3l7440Oevd20L27nWrV\nfFxIkQCgEBYRwH1pwP/8x8Ly5VYWLoQDB9yXI2rY0MWdd+Zyxx12LrtM53lFSpJCWKSCcrlg40Yz\ny5dbWbHCwurVp69QFBEB993nPs97zTU6zytSWhTCIhXIgQMmVqxwt3a//97i6dVsMhm0aOGiQwcH\nHTo4SUgIISPjpI9LKxL4FMIiAezkSVi1yuJp7W7efHp8fc2aLhIT7XTo4KBtWyc1apw+1KyOViJl\nQyEsEkAMA3buNLF8uZXly602iIXFAAAcOklEQVT89JOF7Gz3seTgYPfVifJau1dcocPMIr6mEBbx\nc0ePwvffu1u6K1ZY2b379PStjRs76dDBSYcODm680UlIiA8LKiIFKIRF/IzL5Z6tatkyK8uWWVm3\nzozT6W7SVqtm0L27e+xu+/YOzVolUs4phEX8wMGD7g5Vy5ZZ+e47C4cOuVu7ZrNBy5Yu2rd3H2a+\n+moXVn2qRfyGX39c9+41MWIE9OhhoV07p6+LI1Ji7Hb45RcLy5a5g3fjxtMdqmrVcnH33bnExjpp\n29ZB9eo+LKiIXBS/DuGDB0188gnMmhVCr152nn/+JDVr6vCb+Kfdu90dqpYts/D991aystyHmG02\ngzZt3C3d2Fh1qBIJJH4dwldf7eKXX+D++52kpNhYutTKmDEnGTDAjqXglQ5FypWcHFi50nKqJ7PF\nc0EEgMsuc9G7t53YWAc33eQkNNSHBRWRUuPXIQxw9dWwYEE2M2faeOmlYMaMqURyso2JE0/QvLmu\nLyzlR97wobwOVT/9ZOHECXeTNiTEID7eQWysu8XbsKGO6IhUBH4fwgAWCwwYYKdrVwdJScHMnWuj\nU6cQBg2yM3r0SV1QXMqc3Q5//GHmt9/MbNvm/v3f/1ryDR+64gr38KHYWAc33OAkONiHBRYRnwiI\nEM4TFWXwzjsnuOsuO089VYl33w3iq6+svPTSSW691aHzaFLiHA7Ytg1++snKb7+ZPT87d5qx2/O/\n4apXdw8fio11j9utU0etXZGKLqBCOE/btk5WrDjOm28GMXlyEA88UJlPPnEwYcIJGjTQF5+cP6cT\ndu0ysW2bxRO0W7e6wzY3F6CyZ90qVQyaN3fRpImTJk1cNGniomlTF7VrG/pHUETyCcgQBggOhpEj\nc+nZ087o0ZVYvtxK27ZVGD48l6FDc3XoT7wyDPjrLxNbt5r57TeL51Dy77+bPedv84SEGERHu2jR\nwsJll52gaVN34F56qcJWRM5NwIZwnoYNDZKTc/jqKytPPx3MK68E8/nnNl599QRt2mhscUWWkwO/\n/WZm0yYLmzebT/1YyMzMn6CVKxs0buw6o1XrbuHWq2dgNkNkZBhpaXYf1UJE/Nk5hfD48ePZsGED\nJpOJsWPH0rx5c899sbGx1KpVC8upMUETJ06kZs2apVPaC2QyQY8e7p6nEyYE8/77Nm6/PYTbb3eP\nLY6K0iHqQHfggMkTsnmBu2OHGZfrdOCazQb//KeLuDgX0dGnDyfXr29oyJuIlIpiQ3j16tXs2rWL\n5ORkdu7cydixY0lOTs63zrvvvkuVKlVKrZAlJSwMxo07SZ8+dkaNqsTcuTaWLLHy//7fSfr319ji\nQOBwwM6dZjZtcgdtXis3Lc2cb73QUIPrrnMSE+MiJsZFs2buwNUFDkSkLBUbwitXriQuLg6ARo0a\ncfToUbKysgj149kDmjd3sWhRNjNm2Bg3LpinnnKPLX7ttRNceaXGFvuLI0dg27bTLdtNm9ydps4+\nd1uvnouEBHu+wK1f330oWUTEl4oN4fT0dGJiYjy3IyIiSEtLyxfCSUlJ7N27l2uuuYaRI0di8oNe\nKRYLDBxop1s399jilBQb8fEh3H+/naee0tji8iQjg3y9kvPG3p7dug0KMmja9HTQxsS4iI52am5l\nESm3zrtjlmHkP386bNgw2rRpQ7Vq1RgyZAipqakkJCQUun14eAhWa8ke942MvPDEjIyEuXNh6VJ4\n5BET06cH8fXXQQwcCJdd5v6pX9/9U7ly8fsrSRdTr/KqqDplZMDmzbBli/t33s++fQXX/cc/4Prr\nIToaWrRw/zRpYsJmswAWwFZaVfCqor1W/ioQ6wSBWa9ArJM3xYZwVFQU6enpntsHDx4kMjLSc/u2\n227z/N22bVu2b99eZAgfOZJ9oWX1yt0zNfOi99OiBXz7LUydGsQbbwTx0ksFW/OXXOKibl2DSy91\nD0OpW9f9+9JL3csvuaTkhqaUVL3Kk7w6HTvGqRatJd+MUvv3Fzw+XK+ei44d8/dKvvxyl9e5lDMy\nyqASXgTyaxVIArFOEJj1CtQ6eVNsCLdu3ZqpU6eSmJjI5s2biYqK8hyKzszMZPjw4bzzzjsEBQWx\nZs0aOnfuXLIlL0OVKsETT+QyYICdbdvM7N1rYs8eM3v2uH/v3esOiw0bvLfkK1UyqFvXHc716hUM\n7Kgog0qVCKgOYIYB2dlw7JiJjAwTR4+aOHqUU7/z/xw+DJs2VeHvvwuGbd26LmJjHfnCtnFj72Er\nIhIoig3hli1bEhMTQ2JiIiaTiaSkJFJSUggLCyM+Pp62bdvSp08fgoODiY6OLrIV7C8iIw0iI72P\nITYMSE83sXevid273UG9d6+Z3bvdv/fuNbFzZ9FPq8ViEBwMQUHu85gF/zYIDQWTqXK++4ODjVPr\n5f/bYnF3Mjrzx2TirGUF1/G+rnu9nBx3cGZkmDh2jFO/Tfl+54Xt2dMzFqVOHejQ4XTY5o2/1Tl4\nEamITMbZJ3lLWUkfYijpwxbz5lmZPDmI7dvNNG7sYvjwXHr2dJzXPrKz4e+/81rR7pb03r1m0tJM\n5ObCyZPu32f+ffIk5Oae/vvM8avlTVCQQbVqeT9QrZpB9eoGVau6f5+5/Mz7mjYN5cSJwDrEBIF7\n6Ex18g+BWK9ArZM3AT9j1vmYN8/Kgw+e7n21davl1O2c8wrikBD45z8N/vlPJ3Bhs3KFh4exZ0/m\nqbA2ceKE+7c7rE//bbeDy5X3Y8LlcrfWTy87+8dUYNnZ6zudJipXzh+0p8PVfUj9Qs59h4XBiRMX\n9HSIiAQkhfAZJk8O8rp8ypSg824NXyyrFapUcf9A3sEKzewlIhJINF3BGbZv9/50FLZcRETkYihd\nztC4sffZsgpbLiIicjEUwmcYPjzX6/LHHvO+XERE5GIohM/Qs6eDadNyiI52YrUaREc7mTbt/Dpl\niYiInCt1zDpLz54Oha6IiJQJtYRFRER8RCEsIiLiIwphERERH1EIi4iI+IhCWERExEcUwiIiIj6i\nEBYREfERhbCIiIiPKIRFRER8RCFcBubNs9KuXQi1a4fSrl0I8+ZpojIREdG0laVu3jwrDz5Y2XN7\n61bLqduak1pEpKJTS7iUTZ4c5HX5lCnel4uISMWhEC5l27d7f4oLWy4iIhWHkqCUNW7sOq/lIiJS\ncSiES9nw4blelz/2mPflIiJScSiES1nPng6mTcshOtqJ1WoQHe1k2jR1yhIREfWOLhM9ezoUuiIi\nUoBawiIiIj6iEBYREfERhbCIiIiPKIRFRER8RCEsIiLiIwphERERH1EI+zFdnUlExL/pW9tP6epM\nIiL+Ty1hP6WrM4mI+D+FsJ/S1ZlERPyfvrH9lK7OJCLi/xTCfkpXZxIR8X8KYT+lqzOJiPg/9Y72\nY7o6k4iIf1NLWERExEcUwiIiIj6iEBYREfERhbCIiIiPKIQlH81HLSJSdvQNKx6aj1pEpGypJSwe\nmo9aRKRsKYTFQ/NRi4iUrXP6dh0/fjx9+vQhMTGRX3/91es6kyZNol+/fiVaOClbmo9aRKRsFRvC\nq1evZteuXSQnJzNu3DjGjRtXYJ3ff/+dNWvWlEoBpexoPmoRkbJVbAivXLmSuLg4ABo1asTRo0fJ\nysrKt86ECRN4/PHHS6eEUmY0H7WISNkqtnd0eno6MTExntsRERGkpaURGhoKQEpKCtdffz1169Yt\nvVJKmdF81CIiZee8hygZhuH5OyMjg5SUFD788EMOHDhwTtuHh4dgtVrO92GLFBkZVqL7Ky8CsV6B\nWCcIzHqpTv4jEOsViHXyptgQjoqKIj093XP74MGDREZGAvDzzz9z+PBh7rnnHnJzc/nrr78YP348\nY8eOLXR/R45kl0CxT4uMDCMtLbNE91keBGK9ArFOEJj1Up38RyDWK1Dr5E2x54Rbt25NamoqAJs3\nbyYqKspzKDohIYGFCxfy2Wef8eabbxITE1NkAIuIiMhpxYZwy5YtiYmJITExkZdeeomkpCRSUlJY\nsmRJWZRPAkDeVJhWK5oKU0TkDCbjzJO8ZaCkDzEE4mELCJx6nT0VZp5A6nUdKK/VmVQn/xGI9QrU\nOnmjqZCkVGkqTBGRwimEpVRpKkwRkcLpm1BKlabCFBEpnEJYSpWmwhQRKZxCWEpV/qkw0VSYIiJn\n0FgRKXV5U2G6ezyW7GQtIiL+TC1hERERH1EIi4iI+IhCWERExEcUwuK38qbDrF07VNNhiohf0reW\n+KWzp8PcutVy6rZ6XouI/1BLWPySpsMUkUCgEBa/pOkwRSQQ6BtL/JKmwxSRQKAQFr+k6TBFJBAo\nhMUv5Z8O09B0mCLil9Q7WvxW3nSYIiL+Si1hERERH1EIi4iI+IhCWOQMmoVLRMqSvmFETtEsXCJS\n1tQSFjlFs3CJSFlTCIucolm4RKSs6dtF5BTNwiUiZU0hLHKKZuESkbKmEBY5RbNwiUhZU+9okTNo\nFi4RKUtqCYuIiPiIQliklGkCEBEpjL4NREqRJgARkaKoJSxSijQBiIgURSEsUoo0AYiIFEXfBCKl\nSBOAiEhRFMIipUgTgIhIURTCIqVIE4CISFHUO1qklGkCEBEpjFrCIiIiPqIQFhER8RGFsIif0kxc\nIv5Pn1oRP6SZuEQCg1rCIn5IM3GJBAaFsIgf0kxcIoFBn1gRP6SZuEQCg0JYxA9pJi6RwKAQFvFD\nmolLJDCod7SIn9JMXCL+75xawuPHj6dPnz4kJiby66+/5rvvs88+o3fv3iQmJvLcc89hGEapFFRE\nSl/e2GOrFY09FikDxX7CVq9eza5du0hOTmbnzp2MHTuW5ORkAHJycliwYAEff/wxNpuN/v37s379\nelq2bFnqBReRkqWxxyJlr9iW8MqVK4mLiwOgUaNGHD16lKysLAAqV67MjBkzsNls5OTkkJWVRWRk\nZOmWWERKhcYei5S9YkM4PT2d8PBwz+2IiAjS0tLyrTN9+nTi4+NJSEigXr16JV9KESl1GnssUvbO\n+4SPt3O+gwcPpn///jzwwANcc801XHPNNYVuHx4egtVqOd+HLVJkZFiJ7q+8CMR6BWKdIDDqFR0N\nGzd6W24KiPpBYLxO3gRivQKxTt4UG8JRUVGkp6d7bh88eNBzyDkjI4MdO3Zw3XXXUalSJdq2bcu6\ndeuKDOEjR7JLoNinRUaGkZaWWaL7LA8CsV6BWCcInHoNHZr/nHCeIUNySEvz/3PCgfI6nS0Q6xWo\ndfKm2ONMrVu3JjU1FYDNmzcTFRVFaGgoAA6Hg9GjR3P8+HEANm7cSIMGDUqqzCJShvKPPUZjj0XK\nQLEt4ZYtWxITE0NiYiImk4mkpCRSUlIICwsjPj6eIUOG0L9/f6xWK02aNKFjx45lUW4RKQV5Y4/d\nLZGSPWolIgWd0znhUaNG5bvdtGlTz9+9evWiV69eJVsqERGRCkDdHkWkVOVNAFK7dqgmABE5iz4N\nIlJqNAGISNHUEhaRUqMJQESKphAWkVKjCUBEiqZPgoiUmsaNXee1XKSiUQiLSKkZPjzX6/LHHvO+\nXKSiUQiLSKnJPwGIoQlARM6i3tEiUqryJgARkYLUEhYRv6TxxxII9K4VEb+j8ccSKNQSFhG/o/HH\nEigUwiLidzT+WAKF3rEi4nc0/lgChUJYRPyOxh9LoFAIi4jf0fhjCRTqHS0ifknjjyUQqCUsInKK\nxh5LWdM7TEQEjT0W31BLWEQEjT0W31AIi4igscfiG3p3iYigscfiGwphERE09lh8QyEsIoLGHotv\nqHe0iMgppTX2eN48K5MnB7F9u5nGjV0MH56rcBdAISwiUqo09EmKosPRIiKlSEOfpCgKYRGRUqSh\nT1IUvQtEREqRhj5JURTCIiKlSEOfpCgKYRGRUqShT1IUhbCISCnr2dPBihXZ/P13FitWZJdIAOdd\n8clqRVd88mN61URE/IyGPQUOtYRFRPyMhj0FDoWwiIif0bCnwKFXTETEz2jYU+BQCIuI+BkNewoc\nCmERET+Tf9gTGvbkxxTCIiJ+KG/Yk91OiQ97ql07VMOeyoieYRER0bAnH1FLWERENOzJRxTCIiKi\nYU8+omdXREQ07MlHFMIiIqJhTz6iEBYRkVK92pN6XRdOz4SIiADuIC7pntDqdV00tYRFRKTUqNd1\n0c6pJTx+/Hg2bNiAyWRi7NixNG/e3HPfzz//zOuvv47ZbKZBgwaMGzcOs1nZLiIi6nVdnGKfhdWr\nV7Nr1y6Sk5MZN24c48aNy3f/s88+yxtvvMGnn37K8ePH+eGHH0qtsCIi4l/U67poxYbwypUriYuL\nA6BRo0YcPXqUrKwsz/0pKSnUqlULgIiICI4cOVJKRRUREX+jXtdFKzaE09PTCQ8P99yOiIggLS3N\nczs0NBSAgwcP8uOPP9KuXbtSKKaIiPij0up1HSg9rs+71IZhFFh26NAhHnroIZKSkvIFtjfh4SFY\nrZbzfdgiRUaGlej+yotArFcg1gkCs16qk/8o7/UaPNj942YBKhextltRdfr0U3jwwdO383pcV60K\niYkXVdQyV2wIR0VFkZ6e7rl98OBBIiMjPbezsrJ44IEHGD58ODfffHOxD3jkSPYFFtW7yMgw0tIy\nS3Sf5UEg1isQ6wSBWS/VyX8EYr2Kq9MLL4TgDvP8XnzRSceOJZsxJaWwfyqKPRzdunVrUlNTAdi8\neTNRUVGeQ9AAEyZM4N5776Vt27YlVFQREZHCBVKP62Jbwi1btiQmJobExERMJhNJSUmkpKQQFhbG\nzTffzBdffMGuXbv4/PPPAbjlllvo06dPqRdcREQqpsaNXWzdWrAl7I89rs/pnPCoUaPy3W7atKnn\n702bNpVsiURERIowfHhuvlm48vhjj2v/a7uLiEiFFkg9rv2zT7eIiFRoJT3Pta/muFZLWEREKjxf\nzXGtEBYRkQrPVz2uFcIiIlLh+WqOa4WwiIhUeL6a41ohLCIiFV5p9bgujnpHi4iIUPI9rs+FWsIi\nIiI+ohAWERHxEYWwiIiIjyiERUREfEQhLCIi4iMKYRERER9RCIuIiPiIQlhERMRHFMIiIiI+YjIM\nw/B1IURERCoitYRFRER8RCEsIiLiIwphERERH1EIi4iI+IhCWERExEcUwiIiIj5i9XUBzsf48ePZ\nsGEDJpOJsWPH0rx5c899P/30E6+//joWi4W2bdsyZMgQH5b03L366qusXbsWh8PBgw8+SKdOnTz3\nxcbGUqtWLSwWCwATJ06kZs2avirqOVu1ahWPPfYYl19+OQCNGzfmmWee8dzvj6/VnDlz+Oqrrzy3\nN23axPr16z23Y2JiaNmypef2//3f/3let/Jo+/btPPLIIwwYMIC+ffuyb98+nnzySZxOJ5GRkbz2\n2msEBQXl26aoz1954K1OY8aMweFwYLVaee2114iMjPSsX9z7tLw4u16jR49m8+bNVK9eHYBBgwbR\nvn37fNv422s1bNgwjhw5AkBGRgZXXXUVL774omf9lJQUpkyZQv369QG46aabePjhh31S9hJn+IlV\nq1YZgwcPNgzDMH7//Xejd+/e+e7v0qWL8ffffxtOp9O46667jB07dviimOdl5cqVxv33328YhmEc\nPnzYaNeuXb77O3ToYGRlZfmgZBfn559/Nh599NFC7/fH1+pMq1atMp577rl8y66//nofleb8HT9+\n3Ojbt6/x9NNPGzNnzjQMwzBGjx5tLFy40DAMw5g0aZLx8ccf59umuM+fr3mr05NPPmksWLDAMAzD\nmDVrlvHKK6/k26a492l54K1eTz31lLFs2bJCt/HH1+pMo0ePNjZs2JBv2dy5c40JEyaUVRHLlN8c\njl65ciVxcXEANGrUiKNHj5KVlQXA7t27qVatGrVr18ZsNtOuXTtWrlzpy+Kek+uuu44pU6YAULVq\nVXJycnA6nT4uVeny19fqTG+99RaPPPKIr4txwYKCgnj33XeJioryLFu1ahUdO3YEoEOHDgVek6I+\nf+WBtzolJSXRuXNnAMLDw8nIyPBV8S6Yt3oVxx9fqzx//PEHmZmZ5a7lXpr8JoTT09MJDw/33I6I\niCAtLQ2AtLQ0IiIivN5XnlksFkJCQgD4/PPPadu2bYFDmElJSdx1111MnDgRw48mN/v999956KGH\nuOuuu/jxxx89y/31tcrz66+/Urt27XyHNQFyc3MZOXIkiYmJfPjhhz4q3bmxWq1UqlQp37KcnBzP\n4ecaNWoUeE2K+vyVB97qFBISgsViwel08sknn9C9e/cC2xX2Pi0vvNULYNasWfTv35/HH3+cw4cP\n57vPH1+rPB999BF9+/b1et/q1asZNGgQ9957L1u2bCnNIpYpvzonfCZ/CqTiLF26lM8//5wPPvgg\n3/Jhw4bRpk0bqlWrxpAhQ0hNTSUhIcFHpTx3//jHPxg6dChdunRh9+7d9O/fn2+++abAOUZ/9Pnn\nn9OzZ88Cy5988kluvfVWTCYTffv25dprr+XKK6/0QQkv3rl8tvzl8+d0OnnyySe58cYbadWqVb77\n/PV92qNHD6pXr84VV1zB9OnTefPNN3n22WcLXd9fXqvc3FzWrl3Lc889V+C+Fi1aEBERQfv27Vm/\nfj1PPfUU8+fPL/tClgK/aQlHRUWRnp7uuX3w4EFPa+Ts+w4cOHBeh2986YcffuDf//437777LmFh\nYfnuu+2226hRowZWq5W2bduyfft2H5Xy/NSsWZOuXbtiMpmoX78+l1xyCQcOHAD8+7UC92Hbq6++\nusDyu+66iypVqhASEsKNN97oN69VnpCQEE6cOAF4f02K+vyVZ2PGjOGyyy5j6NChBe4r6n1anrVq\n1YorrrgCcHfePPu95q+v1Zo1awo9DN2oUSNP57Orr76aw4cPB8ypO78J4datW5OamgrA5s2biYqK\nIjQ0FIBLL72UrKws9uzZg8PhYPny5bRu3dqXxT0nmZmZvPrqq0ybNs3T0/HM+wYNGkRubi7gfoPm\n9eIs77766ivef/99wH34+dChQ55e3f76WoE7nKpUqVKgpfTHH38wcuRIDMPA4XCwbt06v3mt8tx0\n002ez9c333xDmzZt8t1f1OevvPrqq6+w2WwMGzas0PsLe5+WZ48++ii7d+8G3P8Unv1e88fXCmDj\nxo00bdrU633vvvsuX3/9NeDuWR0REVGuRx+cD7+6itLEiRP55ZdfMJlMJCUlsWXLFsLCwoiPj2fN\nmjVMnDgRgE6dOjFo0CAfl7Z4ycnJTJ06lQYNGniW3XDDDTRp0oT4+HhmzJjBF198QXBwMNHR0Tzz\nzDOYTCYflvjcZGVlMWrUKI4dO4bdbmfo0KEcOnTIr18rcA9Lmjx5Mu+99x4A06dP57rrruPqq6/m\ntdde4+eff8ZsNhMbG1uuh09s2rSJV155hb1792K1WqlZsyYTJ05k9OjRnDx5kjp16vDyyy9js9l4\n/PHHefnll6lUqVKBz19hX5i+4K1Ohw4dIjg42BNAjRo14rnnnvPUyeFwFHiftmvXzsc1yc9bvfr2\n7cv06dOpXLkyISEhvPzyy9SoUcOvX6upU6cydepUrrnmGrp27epZ9+GHH+add95h//79PPHEE55/\ndMvjsKsL5VchLCIiEkj85nC0iIhIoFEIi4iI+IhCWERExEcUwiIiIj6iEBYREfERhbCIiIiPKIRF\nRER8RCEsIiLiI/8feifPNIazScIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Ds61zJRJ7yQm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### 使用word2vec" + ] + }, + { + "metadata": { + "id": "-hyX7nGGeCLA", + "colab_type": "code", + "outputId": "e2cbc84e-e855-421e-e9ba-0dd5fbabbfd5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 6821 + } + }, + "cell_type": "code", + "source": [ + "# train一版: embedding_layer = Embedding(len(embeddings), embedding_dim, weights=[embeddings], input_length=max_seq_length, trainable=False)\n", + "\n", + "use_w2v = True\n", + "\n", + "train_df, embeddings = make_w2v_embeddings(train_df, embedding_dim=embedding_dim, empty_w2v=not use_w2v)\n", + "\n", + "\n", + "\n", + "\n", + "from keras import layers\n", + "from keras import Input\n", + "from keras.models import Model\n", + "from keras.layers import Embedding\n", + "# Instantiates a single LSTM layer, once\n", + "lstm = layers.LSTM(32)\n", + "\n", + "#使用上面處理建好的embeedings來建立embeeding layer\n", + "#trainable設為False\n", + "embedding_layer = Embedding(len(embeddings), embedding_dim, weights=[embeddings], input_length=max_seq_length, trainable=False)\n", + "# Building the left branch of the model: \n", + "# inputs are variable-length sequences of vectors of size 128.\n", + "#left_input = Input(shape=(None, max_seq_length))\n", + "\n", + "# The visible layer\n", + "left_input = Input(shape=(max_seq_length,), dtype='int32')\n", + "right_input = Input(shape=(max_seq_length,), dtype='int32')\n", + "\n", + "\n", + "# Embedded version of the inputs\n", + "encoded_left = embedding_layer(left_input)\n", + "\n", + "\n", + "left_output = lstm(encoded_left)\n", + "\n", + "\n", + "\n", + "# Building the right branch of the model:\n", + "# when you call an existing layer instance, you reuse its weights.\n", + "#right_input = Input(shape=(None, max_seq_length))\n", + "\n", + "# Embedded version of the inputs\n", + "encoded_right = embedding_layer(right_input)\n", + "\n", + "right_output = lstm(encoded_right)\n", + "\n", + "\n", + "\n", + "\n", + "# Builds the classifier on top\n", + "merged = layers.concatenate([left_output, right_output], axis=-1)\n", + "predictions = layers.Dense(1, activation='sigmoid')(merged)\n", + "\n", + "# Instantiating the model\n", + "model = Model([left_input, right_input], predictions)\n", + "\n", + "gpus = 1\n", + "batch_size = 1024 * gpus\n", + "n_epoch = 20\n", + "n_hidden = 50\n", + "\n", + "model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['acc'])\n", + "\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Loading word2vec model(it may takes 2-3 mins) ...\n", + "1,000 sentences embedded.\n", + "2,000 sentences embedded.\n", + "3,000 sentences embedded.\n", + "4,000 sentences embedded.\n", + "5,000 sentences embedded.\n", + "6,000 sentences embedded.\n", + "7,000 sentences embedded.\n", + "8,000 sentences embedded.\n", + "9,000 sentences embedded.\n", + "10,000 sentences embedded.\n", + "11,000 sentences embedded.\n", + "12,000 sentences embedded.\n", + "13,000 sentences embedded.\n", + "14,000 sentences embedded.\n", + "15,000 sentences embedded.\n", + "16,000 sentences embedded.\n", + "17,000 sentences embedded.\n", + "18,000 sentences embedded.\n", + "19,000 sentences embedded.\n", + "20,000 sentences embedded.\n", + "21,000 sentences embedded.\n", + "22,000 sentences embedded.\n", + "23,000 sentences embedded.\n", + "24,000 sentences embedded.\n", + "25,000 sentences embedded.\n", + "26,000 sentences embedded.\n", + "27,000 sentences embedded.\n", + "28,000 sentences embedded.\n", + "29,000 sentences embedded.\n", + "30,000 sentences embedded.\n", + "31,000 sentences embedded.\n", + "32,000 sentences embedded.\n", + "33,000 sentences embedded.\n", + "34,000 sentences embedded.\n", + "35,000 sentences embedded.\n", + "36,000 sentences embedded.\n", + "37,000 sentences embedded.\n", + "38,000 sentences embedded.\n", + "39,000 sentences embedded.\n", + "40,000 sentences embedded.\n", + "41,000 sentences embedded.\n", + "42,000 sentences embedded.\n", + "43,000 sentences embedded.\n", + "44,000 sentences embedded.\n", + "45,000 sentences embedded.\n", + "46,000 sentences embedded.\n", + "47,000 sentences embedded.\n", + "48,000 sentences embedded.\n", + "49,000 sentences embedded.\n", + "50,000 sentences embedded.\n", + "51,000 sentences embedded.\n", + "52,000 sentences embedded.\n", + "53,000 sentences embedded.\n", + "54,000 sentences embedded.\n", + "55,000 sentences embedded.\n", + "56,000 sentences embedded.\n", + "57,000 sentences embedded.\n", + "58,000 sentences embedded.\n", + "59,000 sentences embedded.\n", + "60,000 sentences embedded.\n", + "61,000 sentences embedded.\n", + "62,000 sentences embedded.\n", + "63,000 sentences embedded.\n", + "64,000 sentences embedded.\n", + "65,000 sentences embedded.\n", + "66,000 sentences embedded.\n", + "67,000 sentences embedded.\n", + "68,000 sentences embedded.\n", + "69,000 sentences embedded.\n", + "70,000 sentences embedded.\n", + "71,000 sentences embedded.\n", + "72,000 sentences embedded.\n", + "73,000 sentences embedded.\n", + "74,000 sentences embedded.\n", + "75,000 sentences embedded.\n", + "76,000 sentences embedded.\n", + "77,000 sentences embedded.\n", + "78,000 sentences embedded.\n", + "79,000 sentences embedded.\n", + "80,000 sentences embedded.\n", + "81,000 sentences embedded.\n", + "82,000 sentences embedded.\n", + "83,000 sentences embedded.\n", + "84,000 sentences embedded.\n", + "85,000 sentences embedded.\n", + "86,000 sentences embedded.\n", + "87,000 sentences embedded.\n", + "88,000 sentences embedded.\n", + "89,000 sentences embedded.\n", + "90,000 sentences embedded.\n", + "91,000 sentences embedded.\n", + "92,000 sentences embedded.\n", + "93,000 sentences embedded.\n", + "94,000 sentences embedded.\n", + "95,000 sentences embedded.\n", + "96,000 sentences embedded.\n", + "97,000 sentences embedded.\n", + "98,000 sentences embedded.\n", + "99,000 sentences embedded.\n", + "100,000 sentences embedded.\n", + "101,000 sentences embedded.\n", + "102,000 sentences embedded.\n", + "103,000 sentences embedded.\n", + "104,000 sentences embedded.\n", + "105,000 sentences embedded.\n", + "106,000 sentences embedded.\n", + "107,000 sentences embedded.\n", + "108,000 sentences embedded.\n", + "109,000 sentences embedded.\n", + "110,000 sentences embedded.\n", + "111,000 sentences embedded.\n", + "112,000 sentences embedded.\n", + "113,000 sentences embedded.\n", + "114,000 sentences embedded.\n", + "115,000 sentences embedded.\n", + "116,000 sentences embedded.\n", + "117,000 sentences embedded.\n", + "118,000 sentences embedded.\n", + "119,000 sentences embedded.\n", + "120,000 sentences embedded.\n", + "121,000 sentences embedded.\n", + "122,000 sentences embedded.\n", + "123,000 sentences embedded.\n", + "124,000 sentences embedded.\n", + "125,000 sentences embedded.\n", + "126,000 sentences embedded.\n", + "127,000 sentences embedded.\n", + "128,000 sentences embedded.\n", + "129,000 sentences embedded.\n", + "130,000 sentences embedded.\n", + "131,000 sentences embedded.\n", + "132,000 sentences embedded.\n", + "133,000 sentences embedded.\n", + "134,000 sentences embedded.\n", + "135,000 sentences embedded.\n", + "136,000 sentences embedded.\n", + "137,000 sentences embedded.\n", + "138,000 sentences embedded.\n", + "139,000 sentences embedded.\n", + "140,000 sentences embedded.\n", + "141,000 sentences embedded.\n", + "142,000 sentences embedded.\n", + "143,000 sentences embedded.\n", + "144,000 sentences embedded.\n", + "145,000 sentences embedded.\n", + "146,000 sentences embedded.\n", + "147,000 sentences embedded.\n", + "148,000 sentences embedded.\n", + "149,000 sentences embedded.\n", + "150,000 sentences embedded.\n", + "151,000 sentences embedded.\n", + "152,000 sentences embedded.\n", + "153,000 sentences embedded.\n", + "154,000 sentences embedded.\n", + "155,000 sentences embedded.\n", + "156,000 sentences embedded.\n", + "157,000 sentences embedded.\n", + "158,000 sentences embedded.\n", + "159,000 sentences embedded.\n", + "160,000 sentences embedded.\n", + "161,000 sentences embedded.\n", + "162,000 sentences embedded.\n", + "163,000 sentences embedded.\n", + "164,000 sentences embedded.\n", + "165,000 sentences embedded.\n", + "166,000 sentences embedded.\n", + "167,000 sentences embedded.\n", + "168,000 sentences embedded.\n", + "169,000 sentences embedded.\n", + "170,000 sentences embedded.\n", + "171,000 sentences embedded.\n", + "172,000 sentences embedded.\n", + "173,000 sentences embedded.\n", + "174,000 sentences embedded.\n", + "175,000 sentences embedded.\n", + "176,000 sentences embedded.\n", + "177,000 sentences embedded.\n", + "178,000 sentences embedded.\n", + "179,000 sentences embedded.\n", + "180,000 sentences embedded.\n", + "181,000 sentences embedded.\n", + "182,000 sentences embedded.\n", + "183,000 sentences embedded.\n", + "184,000 sentences embedded.\n", + "185,000 sentences embedded.\n", + "186,000 sentences embedded.\n", + "187,000 sentences embedded.\n", + "188,000 sentences embedded.\n", + "189,000 sentences embedded.\n", + "190,000 sentences embedded.\n", + "191,000 sentences embedded.\n", + "192,000 sentences embedded.\n", + "193,000 sentences embedded.\n", + "194,000 sentences embedded.\n", + "195,000 sentences embedded.\n", + "196,000 sentences embedded.\n", + "197,000 sentences embedded.\n", + "198,000 sentences embedded.\n", + "199,000 sentences embedded.\n", + "200,000 sentences embedded.\n", + "201,000 sentences embedded.\n", + "202,000 sentences embedded.\n", + "203,000 sentences embedded.\n", + "204,000 sentences embedded.\n", + "205,000 sentences embedded.\n", + "206,000 sentences embedded.\n", + "207,000 sentences embedded.\n", + "208,000 sentences embedded.\n", + "209,000 sentences embedded.\n", + "210,000 sentences embedded.\n", + "211,000 sentences embedded.\n", + "212,000 sentences embedded.\n", + "213,000 sentences embedded.\n", + "214,000 sentences embedded.\n", + "215,000 sentences embedded.\n", + "216,000 sentences embedded.\n", + "217,000 sentences embedded.\n", + "218,000 sentences embedded.\n", + "219,000 sentences embedded.\n", + "220,000 sentences embedded.\n", + "221,000 sentences embedded.\n", + "222,000 sentences embedded.\n", + "223,000 sentences embedded.\n", + "224,000 sentences embedded.\n", + "225,000 sentences embedded.\n", + "226,000 sentences embedded.\n", + "227,000 sentences embedded.\n", + "228,000 sentences embedded.\n", + "229,000 sentences embedded.\n", + "230,000 sentences embedded.\n", + "231,000 sentences embedded.\n", + "232,000 sentences embedded.\n", + "233,000 sentences embedded.\n", + "234,000 sentences embedded.\n", + "235,000 sentences embedded.\n", + "236,000 sentences embedded.\n", + "237,000 sentences embedded.\n", + "238,000 sentences embedded.\n", + "239,000 sentences embedded.\n", + "240,000 sentences embedded.\n", + "241,000 sentences embedded.\n", + "242,000 sentences embedded.\n", + "243,000 sentences embedded.\n", + "244,000 sentences embedded.\n", + "245,000 sentences embedded.\n", + "246,000 sentences embedded.\n", + "247,000 sentences embedded.\n", + "248,000 sentences embedded.\n", + "249,000 sentences embedded.\n", + "250,000 sentences embedded.\n", + "251,000 sentences embedded.\n", + "252,000 sentences embedded.\n", + "253,000 sentences embedded.\n", + "254,000 sentences embedded.\n", + "255,000 sentences embedded.\n", + "256,000 sentences embedded.\n", + "257,000 sentences embedded.\n", + "258,000 sentences embedded.\n", + "259,000 sentences embedded.\n", + "260,000 sentences embedded.\n", + "261,000 sentences embedded.\n", + "262,000 sentences embedded.\n", + "263,000 sentences embedded.\n", + "264,000 sentences embedded.\n", + "265,000 sentences embedded.\n", + "266,000 sentences embedded.\n", + "267,000 sentences embedded.\n", + "268,000 sentences embedded.\n", + "269,000 sentences embedded.\n", + "270,000 sentences embedded.\n", + "271,000 sentences embedded.\n", + "272,000 sentences embedded.\n", + "273,000 sentences embedded.\n", + "274,000 sentences embedded.\n", + "275,000 sentences embedded.\n", + "276,000 sentences embedded.\n", + "277,000 sentences embedded.\n", + "278,000 sentences embedded.\n", + "279,000 sentences embedded.\n", + "280,000 sentences embedded.\n", + "281,000 sentences embedded.\n", + "282,000 sentences embedded.\n", + "283,000 sentences embedded.\n", + "284,000 sentences embedded.\n", + "285,000 sentences embedded.\n", + "286,000 sentences embedded.\n", + "287,000 sentences embedded.\n", + "288,000 sentences embedded.\n", + "289,000 sentences embedded.\n", + "290,000 sentences embedded.\n", + "291,000 sentences embedded.\n", + "292,000 sentences embedded.\n", + "293,000 sentences embedded.\n", + "294,000 sentences embedded.\n", + "295,000 sentences embedded.\n", + "296,000 sentences embedded.\n", + "297,000 sentences embedded.\n", + "298,000 sentences embedded.\n", + "299,000 sentences embedded.\n", + "300,000 sentences embedded.\n", + "301,000 sentences embedded.\n", + "302,000 sentences embedded.\n", + "303,000 sentences embedded.\n", + "304,000 sentences embedded.\n", + "305,000 sentences embedded.\n", + "306,000 sentences embedded.\n", + "307,000 sentences embedded.\n", + "308,000 sentences embedded.\n", + "309,000 sentences embedded.\n", + "310,000 sentences embedded.\n", + "311,000 sentences embedded.\n", + "312,000 sentences embedded.\n", + "313,000 sentences embedded.\n", + "314,000 sentences embedded.\n", + "315,000 sentences embedded.\n", + "316,000 sentences embedded.\n", + "317,000 sentences embedded.\n", + "318,000 sentences embedded.\n", + "319,000 sentences embedded.\n", + "320,000 sentences embedded.\n", + "321,000 sentences embedded.\n", + "322,000 sentences embedded.\n", + "323,000 sentences embedded.\n", + "324,000 sentences embedded.\n", + "325,000 sentences embedded.\n", + "326,000 sentences embedded.\n", + "327,000 sentences embedded.\n", + "328,000 sentences embedded.\n", + "329,000 sentences embedded.\n", + "330,000 sentences embedded.\n", + "331,000 sentences embedded.\n", + "332,000 sentences embedded.\n", + "333,000 sentences embedded.\n", + "334,000 sentences embedded.\n", + "335,000 sentences embedded.\n", + "336,000 sentences embedded.\n", + "337,000 sentences embedded.\n", + "338,000 sentences embedded.\n", + "339,000 sentences embedded.\n", + "340,000 sentences embedded.\n", + "341,000 sentences embedded.\n", + "342,000 sentences embedded.\n", + "343,000 sentences embedded.\n", + "344,000 sentences embedded.\n", + "345,000 sentences embedded.\n", + "346,000 sentences embedded.\n", + "347,000 sentences embedded.\n", + "348,000 sentences embedded.\n", + "349,000 sentences embedded.\n", + "350,000 sentences embedded.\n", + "351,000 sentences embedded.\n", + "352,000 sentences embedded.\n", + "353,000 sentences embedded.\n", + "354,000 sentences embedded.\n", + "355,000 sentences embedded.\n", + "356,000 sentences embedded.\n", + "357,000 sentences embedded.\n", + "358,000 sentences embedded.\n", + "359,000 sentences embedded.\n", + "360,000 sentences embedded.\n", + "361,000 sentences embedded.\n", + "362,000 sentences embedded.\n", + "363,000 sentences embedded.\n", + "364,000 sentences embedded.\n", + "365,000 sentences embedded.\n", + "366,000 sentences embedded.\n", + "367,000 sentences embedded.\n", + "368,000 sentences embedded.\n", + "369,000 sentences embedded.\n", + "370,000 sentences embedded.\n", + "371,000 sentences embedded.\n", + "372,000 sentences embedded.\n", + "373,000 sentences embedded.\n", + "374,000 sentences embedded.\n", + "375,000 sentences embedded.\n", + "376,000 sentences embedded.\n", + "377,000 sentences embedded.\n", + "378,000 sentences embedded.\n", + "379,000 sentences embedded.\n", + "380,000 sentences embedded.\n", + "381,000 sentences embedded.\n", + "382,000 sentences embedded.\n", + "383,000 sentences embedded.\n", + "384,000 sentences embedded.\n", + "385,000 sentences embedded.\n", + "386,000 sentences embedded.\n", + "387,000 sentences embedded.\n", + "388,000 sentences embedded.\n", + "389,000 sentences embedded.\n", + "390,000 sentences embedded.\n", + "391,000 sentences embedded.\n", + "392,000 sentences embedded.\n", + "393,000 sentences embedded.\n", + "394,000 sentences embedded.\n", + "395,000 sentences embedded.\n", + "396,000 sentences embedded.\n", + "397,000 sentences embedded.\n", + "398,000 sentences embedded.\n", + "399,000 sentences embedded.\n", + "400,000 sentences embedded.\n", + "401,000 sentences embedded.\n", + "402,000 sentences embedded.\n", + "403,000 sentences embedded.\n", + "404,000 sentences embedded.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "JjaJeiiBTw9w", + "colab_type": "code", + "outputId": "8f64ab4f-abf7-4bb2-8aa2-9b3bcc45f630", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 906 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_3 (InputLayer) (None, 20) 0 \n", + "__________________________________________________________________________________________________\n", + "input_4 (InputLayer) (None, 20) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_2 (Embedding) (None, 20, 300) 25762500 input_3[0][0] \n", + " input_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "lstm_2 (LSTM) (None, 32) 42624 embedding_2[0][0] \n", + " embedding_2[1][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_2 (Concatenate) (None, 64) 0 lstm_2[0][0] \n", + " lstm_2[1][0] \n", + "__________________________________________________________________________________________________\n", + "dense_2 (Dense) (None, 1) 65 concatenate_2[0][0] \n", + "==================================================================================================\n", + "Total params: 25,805,189\n", + "Trainable params: 42,689\n", + "Non-trainable params: 25,762,500\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n139805257037584\n\ninput_3: InputLayer\n\ninput:\n\noutput:\n\n(None, 20)\n\n(None, 20)\n\n\n\n139808604345456\n\nembedding_2: Embedding\n\ninput:\n\noutput:\n\n(None, 20)\n\n(None, 20, 300)\n\n\n\n139805257037584->139808604345456\n\n\n\n\n\n139805257037640\n\ninput_4: InputLayer\n\ninput:\n\noutput:\n\n(None, 20)\n\n(None, 20)\n\n\n\n139805257037640->139808604345456\n\n\n\n\n\n139805257039208\n\nlstm_2: LSTM\n\ninput:\n\noutput:\n\n(None, 20, 300)\n\n(None, 32)\n\n\n\n139808604345456->139805257039208\n\n\n\n\n\n139805257039488\n\nconcatenate_2: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 32)]\n\n(None, 64)\n\n\n\n139805257039208->139805257039488\n\n\n\n\n\n139805257038928\n\ndense_2: Dense\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 1)\n\n\n\n139805257039488->139805257038928\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "id": "StC6KwjOT6F4", + "colab_type": "code", + "outputId": "836ff966-34d2-4721-b0cc-d429b52ea520", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 706 + } + }, + "cell_type": "code", + "source": [ + "from time import time\n", + "training_start_time = time()\n", + "\n", + "malstm_trained = model.fit([X_train['left'], X_train['right']], Y_train,\n", + " batch_size=batch_size, epochs=n_epoch,\n", + " validation_data=([X_validation['left'], X_validation['right']], Y_validation))\n", + "\n", + "training_end_time = time()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 363916 samples, validate on 40435 samples\n", + "Epoch 1/20\n", + "363916/363916 [==============================] - 47s 128us/step - loss: 0.5727 - acc: 0.7008 - val_loss: 0.5532 - val_acc: 0.7178\n", + "Epoch 2/20\n", + "363916/363916 [==============================] - 44s 121us/step - loss: 0.5417 - acc: 0.7281 - val_loss: 0.5439 - val_acc: 0.7221\n", + "Epoch 3/20\n", + "363916/363916 [==============================] - 44s 120us/step - loss: 0.5272 - acc: 0.7371 - val_loss: 0.5335 - val_acc: 0.7317\n", + "Epoch 4/20\n", + "363916/363916 [==============================] - 44s 120us/step - loss: 0.5164 - acc: 0.7447 - val_loss: 0.5249 - val_acc: 0.7389\n", + "Epoch 5/20\n", + "363916/363916 [==============================] - 45s 124us/step - loss: 0.5082 - acc: 0.7495 - val_loss: 0.5135 - val_acc: 0.7484\n", + "Epoch 6/20\n", + "363916/363916 [==============================] - 44s 122us/step - loss: 0.5006 - acc: 0.7541 - val_loss: 0.5083 - val_acc: 0.7521\n", + "Epoch 7/20\n", + "363916/363916 [==============================] - 44s 122us/step - loss: 0.4944 - acc: 0.7580 - val_loss: 0.5064 - val_acc: 0.7551\n", + "Epoch 8/20\n", + "363916/363916 [==============================] - 44s 120us/step - loss: 0.4893 - acc: 0.7610 - val_loss: 0.5168 - val_acc: 0.7450\n", + "Epoch 9/20\n", + "363916/363916 [==============================] - 43s 119us/step - loss: 0.4843 - acc: 0.7642 - val_loss: 0.5062 - val_acc: 0.7540\n", + "Epoch 10/20\n", + "363916/363916 [==============================] - 43s 119us/step - loss: 0.4799 - acc: 0.7666 - val_loss: 0.5006 - val_acc: 0.7590\n", + "Epoch 11/20\n", + "363916/363916 [==============================] - 43s 118us/step - loss: 0.4755 - acc: 0.7694 - val_loss: 0.5021 - val_acc: 0.7593\n", + "Epoch 12/20\n", + "363916/363916 [==============================] - 43s 118us/step - loss: 0.4710 - acc: 0.7717 - val_loss: 0.4985 - val_acc: 0.7604\n", + "Epoch 13/20\n", + "363916/363916 [==============================] - 43s 118us/step - loss: 0.4678 - acc: 0.7737 - val_loss: 0.4994 - val_acc: 0.7604\n", + "Epoch 14/20\n", + "363916/363916 [==============================] - 43s 119us/step - loss: 0.4648 - acc: 0.7753 - val_loss: 0.4983 - val_acc: 0.7623\n", + "Epoch 15/20\n", + "363916/363916 [==============================] - 43s 118us/step - loss: 0.4609 - acc: 0.7780 - val_loss: 0.4976 - val_acc: 0.7628\n", + "Epoch 16/20\n", + "363916/363916 [==============================] - 43s 119us/step - loss: 0.4578 - acc: 0.7792 - val_loss: 0.5016 - val_acc: 0.7639\n", + "Epoch 17/20\n", + "363916/363916 [==============================] - 43s 119us/step - loss: 0.4554 - acc: 0.7805 - val_loss: 0.5056 - val_acc: 0.7622\n", + "Epoch 18/20\n", + "363916/363916 [==============================] - 43s 119us/step - loss: 0.4523 - acc: 0.7822 - val_loss: 0.4962 - val_acc: 0.7629\n", + "Epoch 19/20\n", + "363916/363916 [==============================] - 43s 119us/step - loss: 0.4499 - acc: 0.7833 - val_loss: 0.5033 - val_acc: 0.7644\n", + "Epoch 20/20\n", + "363916/363916 [==============================] - 44s 120us/step - loss: 0.4469 - acc: 0.7859 - val_loss: 0.5022 - val_acc: 0.7587\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "7kxIJ1ESeve3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.save(\"Siamese_emb_not_trainable_model.h5\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "L3rKsJPk9Luo", + "colab_type": "code", + "outputId": "14933a32-50fd-47ee-ce6c-a1de1b26e5a0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 706 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = malstm_trained.history['acc']\n", + "val_acc = malstm_trained.history['val_acc']\n", + "loss = malstm_trained.history['loss']\n", + "val_loss = malstm_trained.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVFXjx/HPMMOwq4DgUmZqLmGZ\n+Vi5ZLiRaPoUT1m02GZpLqmljylm2OZS7lZm2eJWmSXtYZqaVuaGj5mamv4yKxdQUdmZ5ffHxCgy\nLCoww/h9v168ZO7cufecGfDLOffccwx2u92OiIiIeAwfdxdAREREClM4i4iIeBiFs4iIiIdROIuI\niHgYhbOIiIiHUTiLiIh4GIWzVAmJiYnExsYSGxtL8+bN6dSpk/NxRkbGOR0rNjaWtLS0EveZMmUK\n77///oUUudw9+OCDLF26tFyO1bRpUw4dOsTy5csZPXr0BZ3vww8/dH5flvdWREpncncBRMri2Wef\ndX7fuXNnXnrpJVq3bn1ex0pOTi51n+HDh5/XsauamJgYYmJizvv1qampzJ07lzvvvBMo23srIqVT\ny1m8Qp8+fZg2bRrdu3cnJSWFtLQ0+vbtS2xsLJ07d+add95x7lvQaly/fj133XUXU6ZMoXv37nTu\n3JkNGzYAMGrUKF577TXA8cfABx98wB133MGNN97IxIkTncd6/fXXadu2LbfffjuLFi2ic+fOLsu3\nZMkSunfvzs0338y9997LX3/9BcDSpUsZMmQICQkJdOvWjR49erBnzx4ADhw4QO/evenatSvDhw/H\narUWOe53331Hr169Cm279dZbWbNmTYnvQYGlS5fy4IMPlnq+b7/9ll69etGtWzf+85//sHPnTgDi\n4+P5+++/iY2NJS8vz/neAsyfP58ePXoQGxvLgAEDOHbsmPO9nTlzJg899BCdOnXioYceIjs7u0jZ\nsrOzGTZsGN26daNz585MmjTJ+dyBAwe49957iYmJ4fbbb2f79u0lbu/cuTObNm1yvr7g8Z9//smN\nN97I+PHjue+++0qsK8Abb7xBly5d6NatGxMmTMBqtdK+fXu2bdvm3GfhwoUMHDiwSH1EzoXCWbzG\nL7/8wpdffkmrVq2YPXs2l156KcnJycybN48pU6Zw8ODBIq/ZsWMH11xzDV9//TX33HMPs2fPdnns\njRs3snjxYj7++GMWLlzIoUOH2LNnD3PnzuXTTz/lvffeK7bVePToUZ577jneeecdvvnmGy677DJn\n8AOsWbOGe+65h2XLlnHDDTcwb948ACZPnkzbtm1ZsWIFDzzwACkpKUWO3bZtWw4dOsSBAwcARzgd\nOnSIdu3alfk9KFDc+SwWC6NGjeL5559n2bJlhYJy/Pjx1KlTh+TkZMxms/NY//vf/3jrrbdYsGAB\nycnJ1K1blylTpjifT05OZtq0aSxfvpxjx46xfPnyIuV5//33yczMJDk5maSkJJYuXeoM2LFjx3LL\nLbewfPlyBgwYwMiRI0vcXpL09HSuvPJKFi5cWGJdN23axEcffcSnn37K559/zubNm/nmm2/o3r07\nX3zxhfN4y5cv55Zbbin1vCIlUTiL14iOjsbHx/Ej/fTTTzN27FgA6tWrR0REBH/++WeR1wQFBdG1\na1cAmjdvzt9//+3y2L169cJoNFKrVi3Cw8M5ePAgGzdu5PrrrycyMhI/Pz9uv/12l68NDw9n8+bN\n1K5dG4DWrVs7wxSgUaNGXHXVVQBERUU5A3TTpk306NEDgBYtWtCwYcMixzabzXTq1ImVK1cCsGLF\nCrp27YrJZCrze1CguPOZTCZ+/PFHWrZs6bL8rqxevZpu3boRHh4OQO/evfnhhx+cz0dHR1OjRg1M\nJhNNmjRx+UfDww8/zGuvvYbBYKB69eo0btyYP//8k9zcXNavX0/Pnj0B6NKlCx9++GGx20uTn5/v\n7Novqa5r1qwhOjqa4OBgzGYzCxYs4Oabb+aWW27hq6++wmazkZ6ezi+//EKnTp1KPa9ISXTNWbxG\n9erVnd9v27bN2VL08fEhNTUVm81W5DUhISHO7318fFzuAxAcHOz83mg0YrVaOXnyZKFz1qpVy+Vr\nrVYrM2fOZOXKlVitVjIzM2nQoIHLMhQcG+DEiROFzlutWjWXx+/WrRvz58/ngQceYMWKFc4u1bK+\nBwVKOt+CBQtISkoiLy+PvLw8DAZDsccBOHbsGJGRkYWOdfTo0VLrfKbff/+diRMnsm/fPnx8fDh0\n6BD/+c9/SE9Px2azOY9hMBgICgri8OHDLreXxmg0Fqp3cXU9fvx4oToFBAQAcO211+Lr68uGDRs4\ndOgQN954I4GBgaWeV6QkajmLV/rvf/9Lt27dWLZsGcnJyYSGhpb7OYKDg8nKynI+PnLkiMv9vvrq\nK1auXMnChQtZtmwZQ4YMKdPxq1WrVmgkesE127N16NCBX3/9ld9//53ff/+dNm3aAOf+HhR3vpSU\nFN58801mz57NsmXLeOGFF0ote82aNUlPT3c+Tk9Pp2bNmqW+7kzPPfccjRs35uuvvyY5OZlmzZoB\nEBoaisFg4Pjx4wDY7Xb2799f7Ha73V7kD68TJ064PGdJdQ0NDXUeGxxhXfD4lltuITk5meTkZGfv\ng8iFUDiLVzp69ChXXXUVBoOBpKQksrOzCwVpeWjRogXr16/n2LFj5OXl8cknnxRblksuuYSwsDCO\nHz/O119/TWZmZqnHb9mypfNabEpKCn/88YfL/cxmMzfeeCMvv/wyXbp0wWg0Os97Lu9Bcec7duwY\n4eHh1K1bl+zsbJKSksjKysJut2MymcjKysJisRQ6VseOHVm+fLkzvD744AOio6NLrfOZjh49ypVX\nXonRaOSHH35g//79ZGVlYTabad++PUlJSQCsXbuWfv36FbvdYDAQERHBr7/+Cjj+WMrNzXV5zpLq\n2rlzZ1auXMmJEyewWCwMGjSI77//HoCePXuyYsUKtmzZcs71FHFF4SxeaejQoQwaNIhevXqRlZXF\nXXfdxdixY4sNuPPRokUL4uLiiIuL4/777y/2OmPPnj1JT08nJiaG4cOHM2zYMA4dOlRo1Lcr//3v\nf1m1ahVdu3Zl0aJFtGvXrth9u3XrxooVK+jevbtz27m+B8Wdr0OHDkRGRtK1a1cefvhhHnjgAUJC\nQhgyZAhNmzalevXqtG/fvtD1+hYtWtCvXz/uvfdeYmNjOXXqFE888USJ9T3bgAEDmDRpEj179mTD\nhg0MHjyYWbNmsXnzZl588UVWrVpFly5dmD59OpMnTwYodvvAgQN599136dmzJ3v37uWKK65wec6S\n6tqyZUv69u3Lbbfdxi233EJUVJTz+nbTpk2pUaMGN954I/7+/udUTxFXDFrPWeT82e125zXJ1atX\nM3369GJb0OLdHn30Ue677z61nKVcqOUscp6OHTtGmzZt+Ouvv7Db7Xz99dfOUb5ycdm8eTN//fUX\nHTp0cHdRxEtotLbIeQoLC2PYsGE8+OCDGAwGGjZsWKb7asW7jB49mpSUFF5++WXnrXwiF0rd2iIi\nIh5Gf+aJiIh4GIWziIiIh/GYa86pqafK9XihoYEcP16+97W6mzfWCbyzXt5YJ/DOeqlOVYe31Ssi\nIqTY57y25WwyGd1dhHLnjXUC76yXN9YJvLNeqlPV4a31csVrw1lERKSqUjiLiIh4GIWziIiIh1E4\ni4iIeBiFs4iIiIdROIuIiHgYhbOIiIiH8ZhJSDzRrFnT2LVrJ8eOHSUnJ4e6dS+hWrXqjB//cqmv\n/eqrzwkKCiY62vUavzNmTKF373jq1r2kvIstIiJVnMcsfFEeM4QlJZmYPt3M7t0+REUZGDw4m7g4\nywUf96uvPmffvr0MHjzsgo91ISIiQsp9JjVP4I318sY6gXfWS3WqOtxVrzOzpUkTG8OG5ZVLtpQ0\nQ5jXtJyTkkz07x/gfLxtG/88Lp+APlNKyiY++GAhWVlZDB78BFu2bGb16m+x2Wy0bduehx/ux1tv\nzaFGjRo0aNCIpUs/xGDwYf/+/6Njxy48/HA/Bg/ux5NPjmTVqm/JzMzgjz/289dffzJkyHDatm3P\nwoXvsmLFN9StewkWi4X4+Hvp1u10K3zjxvXMnfs6vr6+hISE8NxzE/H19WX69Mns2PELRqOR//53\nNA0bXuFym4iIlO7sbNm501hh2XImrwnn6dPNLrfPmGGukDdw797feP/9pZjNZrZs2cxrr83Fx8eH\nO++8lbvuuqfQvjt2bOe99z7GZrPRu3cvHn64X6Hnjxw5zOTJM/nppx/59NOPad78KpYuXcL7739M\nZmYm8fH/IT7+3kKvOXXqFImJL1C37iU8//wzrF+/Dj8/P44cOcwbb7zL//6XwrffLufo0aNFtimc\nRUTKprKzpYDXhPPu3a7HthW3/UJdcUVjzGbHh+bv78/gwf0wGo2kp6dz8uTJQvs2bdoMf3//Yo/V\nokVLACIjI8nIyODPPw/QsGEj/Pz88fPz58ormxd5TY0aNZg06QWsVit///0X//rXdRw/foyrr74G\ngJYtW9GyZSsWLZpXZJuIiJRNZWdLAa8J5yZNbOzcWXRS9CZNbBVyPl9fXwAOHTrI4sWLePvtRQQG\nBtKnz51F9jUaS56s/czn7XY7djv4+Jz+4A2Goq+ZMOF5Xn55Opdf3oCpUycB4ONjxG4vXF9X20RE\npGwqO1sKeM2tVMOG5bncPnSo6+3lJT09ndDQUAIDA9m161cOHTpEfn7+BR2zTp067Nu3F4vFwvHj\nx/n1151F9snMzKBWrdqcOnWKlJTN5Ofnc+WVUaSkbAJg9+5fmTJlksttIiJSNu7KFq9pOTv6/rOZ\nMeP0aO1Bgyr2gj1A48ZNCAgIZMCAh7n66pbceut/mDJlEi1aXHPexwwLCycmJpZHH72f+vUbEBXV\nvEjr+z//6c2AAX2pV+8y7r33ft5++w1mz36b+vUbMHDgIwAMHz6KRo2uYO3a7wptExGRsjk7W5o0\nsTF0aPmM1i6JV91KdaaqfivBV199TkxMLEajkfvvj2fq1Fk0b35Fla5Tcar6Z+WKN9YJvLNeqlPV\n4W31uihupfI2R48epV+/B/D1NXPzzbFERtZyd5FERKSSKJw9VJ8+D9Knz4PuLoaISJVRUZOFuIPC\nWUREqjx3TRZSUbxmtLaIiFy8SpospCpSOIuISKVLSjIRHR1InTrBREcHkpR0YR257pospKJUzVKL\niEiVVdAFvXOnEavV4OyCvpCALm5SkIqeLKSiKJxL0L//Q0UmAHn99Vd4//2FLvdPSdnE00+PBGDU\nqCeLPP/xx4t56605xZ7vt9/28Mcf+wFITBxNbm7O+RZdRMRjVUQXtLsmC6koCucSxMR0Y+XK5YW2\nrV69kq5dby71tRMnTj3n83333UoOHPgDgGefnYCfX/HzcYuIVFUV0QUdF2dhzpxsoqKsmEx2oqKs\nzJlTNQeDgUZrl6hLl5sZMKAvAwcOAeDXX3cSERFBRESkyyUbz3TLLV348stv2bRpAzNnTiEsLJzw\n8JrOJSBffHEcqalHyM7O5uGH+1G7dh0+/XQp3323ktDQUJ55ZjTz5y8mI+MUEyY8R35+Pn5+vgwf\nnoDBYODFF8dRt+4l/PbbHpo0acqoUWMLnf+bb77mo48WYzT6cPnljXjqqTFYLBZeeCGRw4cPYjb7\n8fTTzxIaGlZkW0REZKW9xyJy8amo+arj4ixVNozPVmXCedw4Pz7/vOzF9fEBmy2oxH169bIwblxu\nsc+HhoZRt+4l7NjxC1FRV7Fy5XJiYmIB10s2BgYGFjnGnDmvMHbs8zRu3IQRI4ZQt+4lnDp1kuuv\nb0P37j35668/GTt2FG+/vZAbbmhLx45diIq6yvn6uXNfp2fPW+nS5WY2b/6Bt99+g759+7Nr106e\nfXY8oaFhxMX14NSpU4SEnJ5tJjs7mylTZhESEsKgQY+yd+9v7NjxC+Hh4Ywb9yIrVizj++/XYDKZ\nimyLi7ujzO+ziMi5GjYsr9BtTwWqahd0Ragy4ewuMTGxfPvtcqKiruKHH9Ywe/bbgOslG12F88GD\nB2ncuAngWLIxNzeXkJBq7Ny5nc8+W4rB4MPJkyeKPf+uXTt57LHBANxwww3MnDkLgEsuqUd4eE0A\nataMIDMzo1A4V6tWjdGjhwOwf///ceJEOrt2/Urr1tcB0LVrNwAmT55YZJuIyJnKe3IPd81XXZWU\nKZzHjx/P1q1bMRgMJCQk0KJFCwAOHz7MiBEjnPsdOHCA4cOHc/3115OQkEBeXh42m43Ro0dz1VVX\nFXf4Mhk3LrfEVu7ZHHOwZl7QOQGiozsxf/7bxMR0o169y6hWrRrgeslGV85c+rFgGvPly5M5efIk\nr746l5MnT/LII31KKIHB+br8/HwMBsfxzl4I48wp0vPz85k69SXeffc9wsNrMnLksH9e44PNVngq\ndVfbREQKVNTkHt7UBV0RSr36vmHDBvbv38/ixYt58cUXefHFF53P1apViwULFrBgwQLeeecd6tSp\nQ+fOnXn33XeJiYlhwYIFDB8+nGnTplVoJSpSYGAQjRo1Zv78d5xd2uB6yUZXataM4I8/fsdut7Nl\ny2bAscxknTp18fHx4bvvVjpfazAYsFqthV5/5pKPGzdupFmzK0stc1ZWJkajkfDwmhw+fIhff92J\nxWKhWbMoUlI2AvDDD2uZP/9tl9tERAp42+QeVUWpLed169bRtWtXABo1asSJEyfIyMggODi40H5J\nSUl069aNoKAgQkNDSU9PB+DkyZOEhoZWQNErT0xMLC+8kEhi4vPOba6WbOzXb2CR1/brN5Cnn36K\n2rXrOBev6NixM6NGPcmOHb9wyy3/JjIyknfeeZNrrrmW6dNfLtQ9/sgjjzFhwvN8/vknBAb6M3x4\nAhZLyX9tVq9eg+uuu4FHHrmfK65ozD339GHmzKm8/fZCNm3awODB/TAaTTz99Dhq1Agtsk1EpIC3\nTe5RVZS6ZOTYsWOJjo52BvQ999zDiy++SIMGDQrtd+edd/L2228THBxMXl4ed9xxB3l5eWRkZPD+\n++9Tr169EgtisVgxmYqO3hMRkbL54AMYPx527ICoKEhIgPj4CztmixawbZvr7Vu3XtixpXjnPCDM\nVZZv2bKFhg0bOlvTc+fOpXv37gwYMIBVq1YxadIkXnnllRKPe/x41rkWpUTetu4neGedwDvr5Y11\nAu+sl7fU6exrw9u2wd13w8mTF3ZtePBgk8uR1YMGZZOaWrnXjL3lsypQ0nrOpfZLREZGkpaW5nx8\n5MgRIiIiCu2zevVq2rZt63yckpJChw4dAGjfvj2//PLLORdaRETKrqKuDXvb5B5VRanh3L59e5Yt\nWwbA9u3biYyMLHK9edu2bTRr1sz5uH79+mz9p7/j559/pn79+uVZZhEROUtFXhuOi7OwenUWf/+d\nwerVWQrmSlBqt3arVq1o3rw58fHxGAwGEhMTWbp0KSEhIcTExACQmppKeHi48zX9+/dnzJgxJCcn\nAzBmzJgKKr6ISNVU3vcOV9SsW+IepQ4IqyzlfR3B265NgHfWCbyzXt5YJ/DOermjTmdfHy5wId3F\nFXFMT+NtP38XdM1ZRETKV0VcHy58bRhdG67iNH2niEglq6jrwwWzbjlamOV7B4xULrWcRUQqWXHX\ngXV9WAoonEVEKtmwYa5XX9KqTFJA4SwiUsl077CURtecRUTcQKsySUnUchYRKUVSkono6EDq1Akm\nOjqQpCS1a6Ri6SdMRKQEFbWesUhJ1HIWESmB1jMWd1A4i4iUQOsZizvop0tEpAS6J1ncQeEsIl6j\nIgZu6Z5kcQcNCBMRr1BRA7ccr81mxozTK0gNHXphK0iJlEbhLCJeoaSBWxcapLonWSqburVFxCto\n4JZ4E/3UiohX0MAt8SYKZxHxChq4Jd5E4SwiXkGLSYg30YAwEXGLpCQT06efHgE9bNiFj4DWwC3x\nFgpnEal0mq9apGTq1haRSqf5qkVKpnAWkUqn255ESqbfBBGpdLrtSaRkCmcRqXS67UmkZApnEal0\nuu1JpGQKZxEpVcFqTyYT5bbaU1ychdWrs/j77wxWr85SMIucQbdSiUiJdNuTSOVTy1lESqTbnkQq\nn8JZREqk255EKp9+u0SkRLrtSaTyKZxFpES67Umk8imcRaREhW97Qrc9iVQCjdYWkVIVrPYUERFC\namqWu4sj4vXUchYREfEwCmcRL1IwWUidOsHlNlmIiFQ+/eaKeAlNFiLiPdRyFvESmixExHsonEW8\nhCYLEfEe+q0V8RKaLETEeyicRbyEJgsR8R4KZxEvoTWSRbyHRmuLeJGCyUJEpGpTy1nETXRPsogU\nR/8biLiB7kkWKV9HjhjYtMnIxo1GDh82MGRIHs2aVd3BkApnETco6Z5khbOcr9xc+O03H6xWuPxy\nqFbN3SWqGBYL7Nzp4wzjjRuN7N9fuCN42TITc+dm06mT1U2lvDAKZxE30D3JciFycmDvXh927fJh\n924ffv3Vh127jPz+uwGr1QCAj08w115ro0MHCx06WLnuOiv+/m4u+HlKT4fNm41s3w7ffRdASoqR\nzEyD8/kaNex07WqhdWtHPf/+28CIEf7cc08AEyfm8sAD+W4s/flROIu4QZMmNnbuNLrcLlIgJ8fR\nEt692xHEv/7qw+7dRv7v/wzYbIZC+1avbudf/7LStKmNunXNrFplZfNmI5s3+zF9Ovj727n+eis3\n3WSlQwcLLVrYMBb9EXQ7m83xh8fGjT5s3Ghk0yYju3adWVATTZo4Qvi666y0bm3jiits+Jz1d+3l\nl2fz4IP+/Pe//uzd60NiYq5H1rc4CmcRNxg2LK/QNecCuif54lQQwrt2nfnlaAmfHcI1ati57jor\nTZrYaNbMRtOmjq/ISDuGf3aNiDCTmppNRgasW2dkzRoTa9c6/l2zxgT4Ub26nXbtLP+EtZXGjW3O\n11emjAz43/9Od09v3mzk+PHTBQkMtNOhg4XrrrPStasfjRqdIjS09OPecIOVr77K4r77Anj9dTO/\n/25g9uwcgoIqsDLlSOEs4gaO68rZzJhhZvduH5o0sTF0aJ6uN3sRmw1OnICjRw2kpflw7JiBo0dP\nf6WlOf794w+fEkO4aVNHCDdpUjSESxMcDDExVmJiHNddU1MNfP+90RnUX3/ty9df+wJQu7aNDh0c\nreqbbrJSt679gt+D7Gw4dMjA4cM+HDpk4OBBA4cOOb53PPbhwIHTXfEA9evb6NzZ4mwZX3mlDdM/\nSRUR4UdqatnP36CBnS+/zKJv3wCSk3257TYfFizIpnbtC69bRTPY7XaPKGVq6qlyPZ5jUfjyPaa7\neWOdwDvr5Y11Au+sV1nrZLFQKFyPHTsdsK62HztWOHSKExpqp2lTq7MF3LSpI4jPJYTPt0779xtY\nu9bEmjVGvv/eSFra6b7hRo1s3HST43p1+/aWQq1Vq9UR9AUBWxC2hw75cPCggcOHHdvT04uvgMFg\nJyLCzuWX22jd2vZPF7WVWrWKj6Tz/fnLy4ORI/147z0zdevaWLgwm6uucv8lpIiIkGKfU8tZRMQF\nux127PBh1Sojq1aZWL/eSF5e6WlZvbqd8HBH6ISH2wgPtxf6qlnTTljY6ceBgZVQmWLUr2+nfv18\n7rsvH5vNMQJ67Voja9ea+PFHI++8Y+addxxBetVVjhbswYMGjhwp2tI/U7VqdurUsdGihZ06dezU\nrm2jdm07tWs7tteubScy0u5sEVc0sxmmTculYUM7L7zgR69egbzxRrazR8ETKZxFRP5x9KiB775z\nhPHq1UYOHz7dkmze3ErDhrZCIXt28IaF2fH1dWMFLoCPDzRvbqN5cxuPPZZPfj6kpBj/CWvHwCyD\nAWrXttO6tfWf0D0dvAUhXKuW3SOv6xoMMGRIHg0a2Bg0yJ8+fQJ44YVcHnnEM0dyK5xFyiApycT0\n6aevDw8bpuvD3iA/H9auhaQkM6tWmdi61Qe73dEirFnTxu2359Opk4WOHa1ERnrEFcBK4+vrGFR1\nww1WRoxwvFcmE24ZNFaeevWycMklWfTpE0BCgmMk9/PP51ZaK76sPKw4Ip5Hs3l5l/37DaxaZWLV\nKiPff2/i1CkAP3x97bRrZ6VTJysdO1q46qqit+dczKpqj4ArrVrZSE7O4t57A3jrLTP79/vwxhvZ\nBAe7u2SnKZxFSqHZvKq2jAz44YeCrmoT+/adTtwGDWzcf7+BNm2yaN/e6lH/OUvFqlfPzhdfZPHo\nowGsWGGiV69AFi7M5pJLPKOHpEzhPH78eLZu3YrBYCAhIYEWLVoAcPjwYUaMGOHc78CBAwwfPpxe\nvXrx1ltv8dlnn2EymUhMTHS+RqSq0WxeFSczEzIyyr+f9PBhA6tXO1rHGzYYyc93nCMoyE5sbD6d\nOlnp1MnC5Zfb/xkB7LkDg6TiVKsGixZlM3q0H/PmmYmNdQT0Nde4fyR3qeG8YcMG9u/fz+LFi9m7\ndy8JCQksXrwYgFq1arFgwQIALBYLffr0oXPnzuzZs4cvv/ySjz/+mF27dvHtt98qnKXK0mxeFy49\n3fHHzO7dRnbt8mHPHsesV3/+WfF/4FxzjSOIO3Vy3KrjTd2zcuFMJnjppVwaNbKRmOjHrbcG8tpr\nOfTo4d5esVLDed26dXTt2hWARo0aceLECTIyMgg+q/8nKSmJbt26ERQUxKpVq+jevTsmk4nmzZvT\nvHnziim9SCXQbF5lY7c77n11hLDja88ex2xXR44UDWHHpBcWatYs/27EoCA77dtbiY62VsjxxbsY\nDPDYY/nUr29nwAB/HnrIn8TEXAYMyHfbALhSwzktLa1QuIaFhZGamloknJcsWcLbb78NwF9//YXR\naKRv375YLBZGjx5Ns2bNSjxPaGggJlP5Tnxa0g3eVZU31gk8u179+jm6vyZMgB07ICoKRo+G+Pii\ngX0mT67ThahZM4Q//3S8Fzt3Ov4t+P7YsaL7X345dO/ueN+iouDKKx1fNWr44ClLynvjZ+WNdYKK\nrdf998NVV0GvXjBunD8HD/oza5Z7BsOd84AwVxOKbdmyhYYNGzoD2263Y7VamTt3Lps3b2bMmDF8\n/PHHJR73+PGscy1KiS7mmYyBkJ2PAAAgAElEQVSqmqpQry5dHF9nKmkaQU+uk80GWVmQmWkgKwuy\nsgxkZjr+PfP709sc+548aeCPP3zZscNeaEUgAB8fOw0aOBZWKJjhqkkTx4IEru55zc8v+f2rTJ78\nWZ0vb6wTVE696tWDr74ycO+9AcyZY2TXLgtz52ZXyPKbFzRDWGRkJGlpac7HR44cISIiotA+q1ev\npm3bts7HNWvWpGHDhhgMBlq3bs1ff/11PuUWkfPw6acmPv7Y9E/4Fg3Z7Ozz76fz9YUrrrDRuPHp\nuZ4bN7bRqJENP79yrISIG9Wta+fzz7N47LEAvvnGRM+ejoFil11WeZdISg3n9u3bM2vWLOLj49m+\nfTuRkZFFurS3bdtGjx49nI9vuukmPvjgA3r27MnevXupU6dO+ZdcxIWLebKQnBwYM8aPBQtO3/pl\nNjumhwwMtBMaaueSS+wEBZ3eFhTk+PfM709v4599Hd8HB9u55prgcu/lEvFEwcEwb142zzzjx5tv\nOkZyL16czdVXV85A0FLDuVWrVjRv3pz4+HgMBgOJiYksXbqUkJAQYmJiAEhNTSU8PNz5mpYtW7Jm\nzRruuusuAJ555pkKKr7IaRfzZCH79hl45JEAfvnFSPPmVl5/PYeGDW3lfq3M02ZREqlIRiO8+GIu\nDRvaGDPGj0WLfJk4MbdSzq1VqaoQb6wTlF+9oqMDXd7yFBVlZfXqym3tVeZn9fnnJoYO9Scjw0Cf\nPnm88EIuASWPVTtv3vgzqDpVHe6s1/79BiIiynehEq1KJReFi22ykLw8ePZZR5dbYKCdV1/Npndv\n7+4hEHGX+vUrtx2rcBavcTFNFnLggIFHHw0gJcVI06ZW5s7NoWlT76unyMXKO5sUclEaNsz1pCDe\nNlnIN98Y6dIliJQUI71755OcnKVgFvEyajmL13AM+spmxozTo7WHDvWe0dr5+TBhgplXXvHD39/O\ntGk53HOP+2YwEpGKo3AWrxIXZ/GaMD7TwYMG+vXzZ/16Ew0b2pg7N5urrlJrWcRbqVtbxMOtWmWk\nc+dA1q83ceut+SxfnqlgFvFyajmLeCirFSZPNjN1qhlfX5g4MYeHHlI3tsjFQOEs4oGOHDEwYIA/\na9eauOwyRzd2y5ZqLYtcLNStLeJhfvjB0Y29dq2J2Nh8VqzIVDCLXGQUzuI1LBbHbFn//ncAsbGB\nZGS4u0TnxmaD6dPN3H57AMeOGXj22RzmzcuhRg13l0xEKpvCWdwmKclEdHQgJpNj6s2kpPO7ypKe\nDq+84sv11wfRt28AP/1kIiXFyHPPVZ1lko4dg3vvDWD8eD9q17bzySdZbl3oXUTcS+EsblGwSMXO\nnUas1tOLVJxLQO/Z48PIkX60bBnMc8/5c+yYgYcfzmP16kyaNbPy7rtm1q4tOmOYp9m40YcuXYL4\n9lsTnTtb+PbbLK6/Xt3YIhczhbO4xfTpZpfbZ8xwvb2A3Q4rVxqJjw+gffsg3n3XTHi4nXHjcti6\nNYOJE3OJirIxY0YOPj52nnjC36O7t+fO9eXWWwM5eNBAQkIu772XTXi4R6xFIyJupNHa4hbnukhF\nZiYsWeLLm2/6smePozXcpo2FRx/Np3t3S5GlDK+91sbgwXnMnOnHiy/6MWFC5Szzdi4+/9xEQoI/\nkZE25szJoX17q7uLJCIeQuEsblHWRSr+/NPA22/7snChmfR0A76+dnr3zqdfvzyuuabkrt8RI/JI\nTjbx1ltmevWy0K6d54Tf/v0GnnjCn8BAOx9/nK25sUWkEHVri1uUtEiF3Q4bNvjw6KP+XHddEK+8\n4ofJZGf48FxSUjJ59dWcUoMZwN8fZ/f20KH+ZGaWdy3OT14e9O8fwMmTBiZO1GpSIlKUWs7iFoUX\nqTDSpImVQYPysFohNjaQLVscreqoKCv9+zsWr/D3P/fz/OtfNgYMyOfVV81MmODHCy+4v3v7xRf9\nnCtK3XWX980DLiIXTuEsbnN6kYoQpk618Nxzfhw+7IPBYCc2Np/+/fNp1856wbcTjRyZy7JlRt58\n05eePS20aeO+7u1vvjEye7aZK66wMmlSjm6VEhGX1K0tbnPwoIHhw/2oVw8mTvQjM9NA//55/PRT\nJvPnOwZIlUd4BQQ4urcBhg71Jyvrwo95Pv76y8Djjwfg52fnzTdzCA52TzlExPMpnKXSZWTAxIlm\n2rQJYsECM5deCi++6LgV6vnnc2nQoPxvJbruOhuPPZbP//2fDxMmVP7kJBYL9O/vz/HjBl54IZfm\nzXWdWUSKp3CWSmO1wsKFvrRpE8TUqX6EhNiZNi2HXbvg0UfzCQmp2POPGpVLw4Y23njDlw0bKvdH\n/6WXzGzY4Fjy8f778yv13CJS9SicpVIUrEn85JP+nDplYPjwXH76KZN7783HWEmTeAUEwPTpBd3b\nAWRnV855V60yMmOGmfr1bUyZouvMIlI6hbNUqF9/9SE+PoC77gr85/t8fvopk6eeynPLNdc2baz0\n65fP3r0+TJpU8d3bhw8bGDTIH5MJ5s7Nplq1Cj+liHgBhbNUiCNHHIO9OnYMZOVKEx06WFixIouZ\nM3OoU8e901OOHp3L5ZfbeP11XzZtqrhfAasVBgzwJy3Nh3Hjcst0b7aICCicpZxlZcHUqWZuuMEx\n2OuKK2wsWpTFRx9lc/XVnhFOgYGO0ds2m4GhQ/3JyamY80ydaub77x1rMj/yiK4zi0jZKZylVAVL\nO9apE1zs0o42GyxebKJduyAmTvQjIMDOpEk5rF6dRUxM+dwSVZ7atrXyyCN57Nlj5OWXS15s43ys\nWgWTJ5u59FLHIhyeVn8R8WwKZylR4aUdDS6XdvzhByM33xzI448HcPSogaFDc1m/PpOHHsovsiCF\nJxkzJpf69W28+qqZlJTy+1VITTVw771gNMIbb2QTGlpuhxaRi4TCWUpU0tKOv/1m4P77/YmLC+Tn\nn43cfns+69ZlMmZMXoXfFlUegoIco7cLurdzy2FmT5sNBg/25+BBSEjIpXVrz+jKF5GqReEsJSpu\nCcedO3246aYgkpN9adPGwrJlmcyencOll1attYjbt7fy8MN57NplZMqUC+/efuUVM6tWmejeHQYO\n1HVmETk/Cmcp0dlLOBaw2w3Uq2fnnXey+fTTbK69tuq2EJ9+OpfLLrMxa5aZ//3v/H8l1q83MmGC\nmdq1bcybBz767RKR86T/PqRExS3teNddeaxdm8ktt1iq/GCn4GCYNi0Hq/X8u7ePHYPHHvPHboc5\nc3KIiCj/corIxUPhLCWKi7Mwc2Y2ZrMdsBMWZmPq1GxmzcrFXP6DnN2mQwcrDzyQx86dRqZNO7eK\n2e2OGcf++suHkSPzaNvWfateiYh3UDhLqTZtMpKXZ2DgwHx+/TWT++7zzjWIExNz/7n1yczPP5f9\nV2POHF+WLXNMtDJ0qOueBhGRc6FwlhItW2Zk/nwzUVFWRo8uh+HMHiw4GKZOdXRvDxniT14ZcjYl\nxYfnn/cjIsLGa6/lVNo84SLi3RTOUqwjRww88YQ/fn52Zs/Owa/yV1qsdB07WunTJ48dO4zF3kZW\n4MQJ6NcvAIsFXnsth1q1qtZIdRHxXApnccluhyeecMwLPXZsLldeWXVHY5+rceNyueQSG9Onm/nl\nF9e/IgXvzx9/+PDEE3lER+s6s4iUH4WzuDRvni/Ll5uIjrZcdPNCh4TAlCk5WCyO7u18F9V/5x1f\nvvjCcY/3iBG6ziwi5UvhLEX89puBxEQ/QkPtzJqVc1Her9u5s5V77snjl1+MzJxZuHt72zYfnnnG\nj7AwG6+/nuPRU5SKSNV0Ef63KyXJz4cBAwLIzjYweXIOtWtfvNdRn302lzp1bEydambHDsevSkYG\nPPpoAHl5Bl55JYe6dS/e90dEKo7CWQqZPNnM1q1G7rorn169vPOWqbKqXt3RvZ2ff7p7e8QIf/bt\n82HQoDy6dtV1ZhGpGApnL1OW5R2L89NPRmbMMHPZZTbGj6+gRY6rmK5drcTH5/Pzz0Z69w5g6VJf\n/vUvKwkJ3n1bmYi4l8LZi5RlecfinDrlWE0J4JVXcqrEqlKV5bnncqhVy8aPP5qoXt3OnDnZ+Pq6\nu1Qi4s0Uzl6kpOUdSzNmjOO2oKFD82jTRt21Z6pRA2bOzPln7edsLrtM15lFpGJpnKkXKW55x+K2\nF/j8cxMffOBLy5ZW3RZUjE6drGzcmOnuYojIRUItZy9S3PKOxW0HOHjQwIgR/gQE2HntNXXXioh4\nAoWzFyluecfiFmOw2WDIEH+OHzfw7LO5XHGFumtFRDyBwtmLxMVZmDMnm6goKyaTnagoK3PmZBMX\n5/qWqLlzffnuOxMxMRYeeODimgVMRMST6Zqzl4mLsxQbxmfaudOxmlLNmjamTcvBYKiEwomISJko\nnC9CubkwYIA/ubkG3nwzm8hIdWeLiHgSdWtfhCZM8GPHDiN9+uQRG6vbpkREPI3C+SKzdq2R2bN9\nadjQxnPPaZYrERFPpHC+iKSnw+OP++PjA6+9lk1QkLtLJCIiriicLyKjRvnz998+jBiRR6tWxd/7\nLCIi7qVwvkh8/LGJpUt9ad3aWux9zyIi4hnKFM7jx4/nrrvuIj4+np9//tm5/fDhw/Tp08f51bFj\nRz7//HPn82lpaVx33XWsX7++/EsuZXbggIGnnvInKMjOq69mY9IYfRERj1bqf9MbNmxg//79LF68\nmL1795KQkMDixYsBqFWrFgsWLADAYrHQp08fOnfu7HztSy+9RL169Sqo6FIWVqvjOvPJkwamT8+m\nQQPdNiUi4ulKbTmvW7eOrl27AtCoUSNOnDhBRkZGkf2SkpLo1q0bQf+MMlq3bh1BQUE0adKknIss\n5+K118z8+KOJHj3yufvu0icnERER9ys1nNPS0ggNDXU+DgsLIzU1tch+S5Ys4Y477gAgLy+PV199\nlSeeeKIciyrnats2HyZONBMZaWPKlFzNAiYiUkWc89VHu71ot+iWLVto2LAhwcHBALzxxhv07t2b\natWqlfm4oaGBmEzGcy1OiSIiQsr1eJ6grHXKzobBgyE/H+bPN9CsWXAFl+zCXMyfVVXjjfVSnaoO\nb63X2UoN58jISNLS0pyPjxw5QkRERKF9Vq9eTdu2bZ2Pv//+e2w2G4sWLeKPP/7g559/ZsaMGTRu\n3LjY8xw/nnU+5S9WREQIqamnyvWY7nYudUpI8GPnTjOPPJJHq1a5uOjs8BgX+2dVlXhjvVSnqsPb\n6lXSHxqlhnP79u2ZNWsW8fHxbN++ncjISGcLucC2bdvo0aOH8/EHH3zg/H7UqFHExcWVGMxSvlau\nNDJ3rpkmTayMHatZwEREqppSw7lVq1Y0b96c+Ph4DAYDiYmJLF26lJCQEGJiYgBITU0lPDy8wgsr\npdu504cBAwLw9bUze3YOAQHuLpGIiJyrMl1zHjFiRKHHzZo1K/T4zHubzzZx4sTzKJacj99/N3Dn\nnQEcP25g5sxsrr5as4CJiFRFmiHMSxw+bKB370AOH/bhhRdyiI/XbVMiIlWVwtmNkpJMREcHUqdO\nMNHRgSQlnd/UXcePw513BrB/vw8jRuTSr19+OZdUREQqkyZydJOkJBP9+5++ILxzp/Gfx9nExZW9\n1ZuRAffcE8jOnUYeeSSP//5X82aLiFR1ajm7yfTpZpfbZ8xwvd2V3Fx44IEANm82cued+bzwgiYa\nERHxBgpnN9m92/VbX9z2s1ks0L+/P2vXmoiNzWf69Bx89GmKiHgF/XfuJk2auB5JXdz2M9ls8OST\n/nz1lS8dOlh4440crTQlIuJFFM5uMmyY62vDpa21bLdDYqIfH3zgS6tWVubNy8bfvyJKKCIi7qJw\ndpO4OAtz5mQTFWXFZLITFWVlzpzSB4NNmWJmzhwzTZtaee+9LII9e8psERE5D+oMdaO4OMs5jcye\nORNeesmPyy6z8eGH2YSFVWDhRETEbdRyriI+/NDE0KEQGWljyZIs6tQpujqYiIh4B4VzFfD11yaG\nDvUnNBQ+/DCbBg0UzCIi3kzd2h7u+++N9Ovnj58ffPUVNGqk+bJFRLydWs4eLCXFhz59ArDbYd68\nbNq0cXeJRESkMqjl7KF+/dWHu+8OJDsb5s7NITra6u4iiYhIJVE4e6D9+08v/ThjRjY9e2qFKRGR\ni4m6tT3M4cMG7rgjkEOHfHjuuRzuvlvBLCJysVE4e5Azl3588slcHntMSz+KiFyMFM4e4uylH596\nSks/iohcrBTOHiA3Fx56yLH0Y+/eWvpRRORip3B2M4sFHnvMn+++09KPIiLioBhwI7sdhg/358sv\nfbnxRsfSj76+7i6ViIi4m8LZjebN8+X9931p2dLK/Pla+lFERBwUzm6yd6+BceP8qFHDzrx52Vr6\nUUREnDQJiRvk58PAgQFkZRmYOTNbK0yJiEghajm7wdSpZrZscYzM/ve/NcmIiIgUpnCuZJs2+TB9\nupl69WxMmJDj7uKIiIgHUjhXoowMR3e2zQavvJJDtWruLpGIiHgihXMlSkz04/fffRg0KI+2bbXK\nlIiIuKZwriTJyUYWLDDTvLlVU3OKiEiJFM6V4MgRA08+6Y+fn53Zs3Pw83N3iURExJMpnMsgKclE\ndHQgdeoEEx0dSFJS2e9As9vhySf9SUvz4emnc2nWzFaBJRUREW+g+5xLkZRkon//AOfjnTuN/zzO\nJi6u9NugFizw5ZtvTHToYOHRR7UEpIiIlE4t51JMn252uX3GDNfbz7Rvn4FnnvGjenU7s2ZpQQsR\nESkbtZxLsXu360QtbnsBiwUGDXLMAvbGG9nUratZwEREpGzUlitFkyaurxEXt73AtGlmNm82cvvt\n+dx2m2YBExGRslM4l2LYMNe3PQ0dWvztUJs3+zB1qplLLrExcaJmARMRkXOjcC5FXJyFOXOyiYqy\nYjLZiYqyMmdO8YPBMjMd3dkFs4BVr17JBRYRkSpP15zLIC7OUqaR2eCYBWzfPh8GDsyjfXvNAiYi\nIudOLedy9M03RubPNxMVZWX06Fx3F0dERKoohXM5SU01MGyYP2azndde0yxgIiJy/hTO5cBuh+HD\n/UhL82HMmFyiojQLmIiInD+FczlYtMiX5GRfOnSw0L+/ZgETEZELo3C+QPv2GXj6aT+qVbMzc6Zm\nARMRkQun0doX4MxZwGbPzuaSSzQLmIiIXDi18y7AjBmOWcDi4vK5/XbNAiYiIuVD4XyetmzxYfJk\nM3Xr2pg0SbOAiYhI+VE4n4fMTBg4MACr1cDMmTnUqOHuEomIiDdROJ+HZ5/1Y+9eH/r3z+OmmzQL\nmIiIlC+F8zlascLIu++aufJKK2PGaBYwEREpfwrnc5CWZmDoUMcsYK++moO/v7tLJCIi3kjhXEYF\ns4ClpvowalQuV12lWcBERKRi6D7nMsjNhYkT/fj6a1/atbMwYIBmARMRkYqjcC7Fpk0+DBvmz+7d\nRi691MasWTkYje4ulYiIeDN1axcjMxPGjvXjllsC2b3byMMP57FmTSb16mkWMBERqVhqObuwZo2R\nJ5/0548/fGjY0Mb06dm0aaNbpkREpHKUKZzHjx/P1q1bMRgMJCQk0KJFCwAOHz7MiBEjnPsdOHCA\n4cOH0717d8aMGcMff/yB1Wpl5MiRtG7dumJqUI5OnHDcw7xwoRmj0c7jj+cyYkQeAQHuLpmIiFxM\nSg3nDRs2sH//fhYvXszevXtJSEhg8eLFANSqVYsFCxYAYLFY6NOnD507d+bTTz8lICCA999/nz17\n9jB69Gg++uijiq3JBUpONjJypD+HDvkQFWVlxowcrrlGI7JFRKTylRrO69ato2vXrgA0atSIEydO\nkJGRQXBwcKH9kpKS6NatG0FBQfz73/+mZ8+eAISFhZGenl4BRS8faWkGEhL8+OQTX8xmO6NG5fL4\n43n4+rq7ZCIicrEqdUBYWloaoaGhzsdhYWGkpqYW2W/JkiXccccdAPj6+uLn5wfAvHnznEHtSex2\n+PhjEzfeGMgnn/jyr39Z+fbbLJ58UsEsIiLudc4Dwuz2oqOVt2zZQsOGDYu0phctWsT27dt5/fXX\nSz1uaGggJlP53qMUERHicvuff8Jjj8GXX0JgIEyfDoMHGzEag8r1/BWhuDpVdd5YL2+sE3hnvVSn\nqsNb63W2UsM5MjKStLQ05+MjR44QERFRaJ/Vq1fTtm3bQtuWLFnCypUree211/AtQ1P0+PGsspa5\nTCIiQkhNPVVom80GCxf68uyzfpw6ZaBDBwtTpuRw+eV2jh0r19NXCFd18gbeWC9vrBN4Z71Up6rD\n2+pV0h8apXZrt2/fnmXLlgGwfft2IiMji7SQt23bRrNmzZyPDxw4wAcffMArr7zi7N52t337DNx+\newAjRvhjMMC0aTl89FE2l1+u+5ZFRMSzlNpybtWqFc2bNyc+Ph6DwUBiYiJLly4lJCSEmJgYAFJT\nUwkPD3e+ZsmSJaSnp9OvXz/ntrfeeguz2VwBVSiZ1Qpz5vgyaZIf2dkGYmPzeemlXGrXViiLiIhn\nMthdXUR2g/LuqoiICGHNmkyeeMKflBQjNWvaGD8+l1tvtWAwlOupKo23dekU8MZ6eWOdwDvrpTpV\nHd5Wrwvq1q6K8vLg2Weha9dAUlKM3HFHPmvXZnHbbVU3mEVE5OLhldN39uvnz1dfQd26dl5+OZuY\nGE29KSIiVYdXhvN111mJivJlwIBMQi6OUfciIuJFvDKcBw3KJyLCHxdzpYiIiHg8r7zmLCIiUpUp\nnEVERDyMwllERMTDKJxFREQ8jMJZRETEwyicRUREPIzCWURExMMonEVERDyMwllERMTDKJxFREQ8\njMJZRETEwyicRUREPIzCWURExMMonEVERDyMwllERMTDKJxFREQ8jMJZRETEwyicRUREPIzCWURE\nxMMonEVERDyMwllERMTDKJxFREQ8jMJZRETEwyicRUREPIzCWURExMMonEVERDyMwllERMTDKJxF\nREQ8jMJZRETEwyicRUREPIzCWURExMMonEVERDyMwllERMTDKJxFREQ8jMJZRETEwyicRUREPIzC\nWURExMMonEVERDyMwllERMTDKJxFREQ8jMJZRETEwyicRUREPIzCWURExMMonEVERDyMwllERMTD\nKJxFREQ8jMJZRETEwyicRUREPIzCWURExMN4XTgnJZmIjg7EZILo6ECSkkzuLpKIiMg58arkSkoy\n0b9/gPPxzp3Gfx5nExdncV/BREREzkGZwnn8+PFs3boVg8FAQkICLVq0AODw4cOMGDHCud+BAwcY\nPnw4sbGxjBo1ir///huj0ciECROoV69exdTgDNOnm11unzHDrHAWEZEqo9Rw3rBhA/v372fx4sXs\n3buXhIQEFi9eDECtWrVYsGABABaLhT59+tC5c2e++OILqlWrxpQpU/j++++ZMmUK06dPr9iaALt3\nu+6lL267iIiIJyo1tdatW0fXrl0BaNSoESdOnCAjI6PIfklJSXTr1o2goCDWrVtHTEwMAO3atSMl\nJaWci+1akya2c9ouIiLiiUoN57S0NEJDQ52Pw8LCSE1NLbLfkiVLuOOOO5yvCQsLc5zAxweDwUBe\nXl55lblYw4a5PsfQoRV/bhERkfJyzgPC7HZ7kW1btmyhYcOGBAcHl/k1ZwsNDcRkMp5rcQrp1w+q\nVYMJE2DHDoiKgtGjIT4+oPQXVxERESHuLkKF8MZ6eWOdwDvrpTpVHd5ar7OVGs6RkZGkpaU5Hx85\ncoSIiIhC+6xevZq2bdsWek1qairNmjUjPz8fu92O2ex6sFaB48ezzrXsLnXp4viKiAghNfUUAC4a\n+lXSmXXyJt5YL2+sE3hnvVSnqsPb6lXSHxqldmu3b9+eZcuWAbB9+3YiIyOLtJC3bdtGs2bNCr0m\nOTkZgFWrVnHDDTecV8FFREQuRqW2nFu1akXz5s2Jj4/HYDCQmJjI0qVLCQkJcQ76Sk1NJTw83Pma\nHj168OOPP3L33XdjNpuZOHFixdVARETEyxjsZbkgXAnKu6vC27o/wDvrBN5ZL2+sE3hnvVSnqsPb\n6nVB3doiIiJSuRTOIiIiHkbhLCIi4mEUziIiIh5G4SwiIuJhFM4iIiIexmNupRIREREHtZxFREQ8\njMJZRETEwyicRUREPIzCWURExMMonEVERDyMwllERMTDlLpkpKcbP348W7duxWAwkJCQQIsWLZzP\n/fjjj0ydOhWj0chNN93EoEGD3FjSc/PSSy+xefNmLBYL/fv35+abb3Y+17lzZ2rXro3RaARg8uTJ\n1KpVy11FLZP169czdOhQGjduDECTJk0YO3as8/mq+lktWbKEzz77zPn4l19+YcuWLc7HzZs3p1Wr\nVs7H7777rvNz80S7d+9m4MCBPPjgg9x3330cPHiQkSNHYrVaiYiI4OWXX8ZsNhd6TUm/g57AVZ1G\njx6NxWLBZDLx8ssvExER4dy/tJ9VT3B2nUaNGsX27dupUaMGAH379qVjx46FXuPpnxMUrdeQIUM4\nfvw4AOnp6bRs2ZLnn3/euf/SpUuZMWMGl112GQDt2rVjwIABbil7ubNXYevXr7f369fPbrfb7b/9\n9pv9zjvvLPR89+7d7X///bfdarXa7777bvuePXvcUcxztm7dOvsjjzxit9vt9mPHjtmjo6MLPd+p\nUyd7RkaGG0p2/n766Sf7448/XuzzVfWzOtP69evt48aNK7Tt+uuvd1Npzl1mZqb9vvvusz/99NP2\nBQsW2O12u33UqFH2r776ym632+1TpkyxL1q0qNBrSvsddDdXdRo5cqT9yy+/tNvtdvvChQvtkyZN\nKvSa0n5W3c1VnZ566in7ypUri32Np39Odrvrep1p1KhR9q1btxba9vHHH9snTpxYWUWsVFW6W3vd\nunV07doVgEaNGnHixAkyMjIAOHDgANWrV6dOnTr4+PgQHR3NunXr3FncMrvuuuuYMWMGANWqVSM7\nOxur1ermUlWcqvxZnR6iNtgAAAU0SURBVOnVV19l4MCB7i7GeTObzbz55ptERkY6t61fv54uXboA\n0KlTpyKfS0m/g57AVZ0SExPp1q0bAKGhoaSnp7ureOfFVZ1K4+mfE5Rcr3379nHq1CmPbO1XlCod\nzmlpaYSGhjofh4WFkZqaCkBqaiphYWEun/N0RqORwMBAAD766CNuuummIl2hiYmJ3H333UyePBl7\nFZnk7bfffuOxxx7j7rvv5ocffnBur8qfVYGff/6ZOnXqFOoeBcjLy2P48OHEx8fzzjvvuKl0ZWMy\nmfD39y+0LTs729mNHR4eXuRzKel30BO4qlNgYCBGoxGr1cp7771Hr169iryuuJ9VT+CqTgALFy7k\n/vvv54knnuDYsWOFnvP0zwmKrxfA/Pnzue+++1w+t2HDBvr27csDDzzAjh07KrKIlarKX3M+U1UJ\nqbJasWIFH330EW+//Xah7UOGDKFDhw5Ur16dQYMGsWzZMmJjY91UyrK5/PLLGTx4MN27d+fAgQPc\nf//9fPPNN0WuX1ZVH330EXFxcUW2jxw5kn//+98YDAbuu+8+WrduzdVXX+2GEl64svx+VZXfQavV\nysiRI2nTpg1t27Yt9FxV/Fm99dZbqVGjBldeeSVvvPEGr7zyCs8880yx+1eVzwkcf+Bu3ryZcePG\nFXnummuuISwsjI4dO7JlyxaeeuopPv/888ovZAWo0i3nyMhI0tLSnI+PHDnibLmc/dzhw4fPqRvI\n3dauXcvrr7/Om2++SUhISKHnbrvtNsLDwzGZTNx0003s3r3bTaUsu1q1atGjRw8MBgOXXXYZNWvW\n5PDhw0DV/6zA0f177bXXFtl+9913ExQURGBgIG3atKkSn9WZAgMDycnJAVx/LiX9Dnqy0aNHU79+\nfQYPHlzkuZJ+Vj1V27ZtufLKKwHHgNGzf86q6ucEsHHjxmK7sxs1auQc+Hbttddy7Ngxr7kEWKXD\nuX379ixbtgyA7du3ExkZSXBwMACXXnopGRkZ/Pnnn1gsFlatWkX79u3dWdwyO3XqFC+99BJz5sxx\njr4887m+ffuSl5cHOH5wC0aVerLPPvuMt956C3B0Yx89etQ5wrwqf1bgCK2goKAiLat9+/YxfPhw\n7HY7FouFlJSUKvFZnaldu3bO37FvvvmGDh06FHq+pN9BT/XZZ5/h6+vLkCFDin2+uJ9VT/X4449z\n4MABwPGH4tk/Z1Xxcyqwbds2mjVr5vK5N998ky+++AJwjPQOCwvz6LshzkWVX5Vq8uTJbNq0CYPB\nQGJiIjt27CAkJISYmBg2btzI5MmTAbj55pvp27evm0tbNosXL2bWrFk0aNDAue2GG26gadOmxMTE\nMG/ePD755BP8/PyIiopi7NixGAwGN5a4dBkZGYwYMYKTJ0+Sn5/P4MGDOXr06P+3b8coDkJRFIYP\nokRtLQJpXYEEa8HSNbiBlCmElHaPYIqAhSAuyAVkC4E0LiCQIsWAUyTTTJNn+L/a5nDV83hwFz8r\n6Wd96nw+axgGSVLf90rTVEmSqGkajeMox3GU57nVax6Xy0XH41HX61Wu62q9Xut0OulwOOh+v2uz\n2cgYI8/ztN/vZYyR7/sv3+BfP9JPeJdpmiatVqu5nOI4Vl3Xc6bH4/HyrmZZ9uEkv95lKstSfd8r\nCAKFYShjjKIoWsycpPe52rZV27babrcqimJ+drfbqes63W43VVU1H4BtXRH7j8WXMwAA32bR19oA\nAHwjyhkAAMtQzgAAWIZyBgDAMpQzAACWoZwBALAM5QwAgGUoZwAALPMEJcwQNta/ltQAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X18zfXj//HHudilDRsbm/L5RFZt\npVIfKSFjGZJcxFwrnyiE8qnkR0suSlEUZUlKqLnYom+yT0j5lKvSRxGJPpVrG8NmZ7Zz8fvjZJmd\nXWDbOTue99ttt+39Puf9Pq/XOTvned7v9+vC4HA4HIiIiIjHMLq7ACIiIlKYwllERMTDKJxFREQ8\njMJZRETEwyicRUREPIzCWURExMMonMWrJSYmEh8fT3x8PDExMbRu3bpgOTs7+6L2FR8fT0ZGRon3\nmT59Oh9++OHlFLncDRw4kJSUlHLZ13XXXceRI0f4/PPPefbZZy/r8ZYsWVLwd1me27IaM2YMb775\nZrnsS8RdzO4ugEhFmjBhQsHfsbGxvPzyy9x+++2XtK/Vq1eXep/Ro0df0r6rmri4OOLi4i55+/T0\ndN555x169OgBlO25FbmS6MhZrmj9+vXjtddeo3379mzbto2MjAwGDRpEfHw8sbGxzJ8/v+C+544a\nN2/eTM+ePZk+fTrt27cnNjaWLVu2AIWP2mJjY/noo4/o3r07d999Ny+99FLBvubMmcOdd95Jt27d\nWLRoEbGxsS7Lt3TpUtq3b8+9995Lnz59OHjwIAApKSmMGDGCsWPH0q5dOzp06MAvv/wCwP79+3nw\nwQdp27Yto0ePxmazFdnvl19+SadOnQqt69y5M1999VWJz8E5KSkpDBw4sNTHW7t2LZ06daJdu3Z0\n7dqVXbt2AZCQkMChQ4eIj48nLy+v4LkFWLBgAR06dCA+Pp7HHnuMEydOFDy3r7/+Og899BCtW7fm\noYcewmKxFPfSArB7924SEhKIj4+nc+fObNiwAYAzZ84wbNgw2rdvT5s2bRg3bhz5+fnFrhepbApn\nueLt2LGDTz/9lCZNmvDWW29x1VVXsXr1at5//32mT5/O4cOHi2zz008/cfPNN/PZZ5/Ru3dv3nrr\nLZf73rp1K8nJySxfvpyFCxdy5MgRfvnlF9555x1WrFjB4sWLiz1qPH78OC+88ALz58/n3//+N/Xr\n1y90uvarr76id+/epKWlcccdd/D+++8DMG3aNO68807WrFnDgAED2LZtW5F933nnnRw5coT9+/cD\nzoA9cuQId911V5mfg3OKezyr1cqYMWOYOHEiaWlpxMbGMnXqVACmTJlCREQEq1evxtfXt2Bf//3v\nf5k3bx4ffPABq1evJjIykunTpxfcvnr1al577TU+//xzTpw4weeff15suex2O08++SR9+/Zl9erV\nTJo0idGjR5Odnc3HH39M9erV+eyzz0hLS8NkMrF3795i14tUNoWzXPFatWqF0eh8K4wbN47x48cD\ncPXVVxMWFsaBAweKbFOtWjXatm0LQExMDIcOHXK5706dOmEymahTpw61atXi8OHDbN26laZNmxIe\nHo6fnx/dunVzuW2tWrX47rvvqFu3LgC33357QZgCNGzYkBtvvBGA6OjoggD99ttv6dChAwCNGzem\nQYMGRfbt6+tL69atWbduHQBr1qyhbdu2mM3mMj8H5xT3eGazmW+++YZbbrnFZfldWb9+Pe3ataNW\nrVoAPPjgg3z99dcFt7dq1YqaNWtiNpuJiooq8UvDgQMHyMjIoGPHjgDcdNNNREZG8uOPPxIaGsr3\n33/Pf/7zH+x2OxMmTOCGG24odr1IZdM1Z7ni1ahRo+DvH3/8seBI0Wg0kp6ejt1uL7JNcHBwwd9G\no9HlfQCCgoIK/jaZTNhsNk6fPl3oMevUqeNyW5vNxuuvv866deuw2WycOXOGa665xmUZzu0b4NSp\nU4Uet3r16i73365dOxYsWMCAAQNYs2YNQ4cOvajn4JySHu+DDz4gNTWVvLw88vLyMBgMxe4H4MSJ\nE4SHhxfa1/Hjx0utc3H7Cg4OLvSY1atX58SJE3Ts2JFTp04xc+ZMfv31V+6//36effZZ2rdv73L9\n+Uf3IpVBR84i53nqqado164daWlprF69mpCQkHJ/jKCgIHJycgqWjx075vJ+q1atYt26dSxcuJC0\ntDRGjBhRpv1Xr169UEv0c9dsL9SiRQt2797Nb7/9xm+//UazZs2Ai38Oinu8bdu2MXfuXN566y3S\n0tKYNGlSqWWvXbs2J0+eLFg+efIktWvXLnU7V2rVqsWpU6c4f26fkydPFhyVJyQksHTpUlatWsXO\nnTv5+OOPS1wvUpkUziLnOX78ODfeeCMGg4HU1FQsFkuhIC0PjRs3ZvPmzZw4cYK8vLxiP/yPHz9O\nvXr1CA0NJTMzk88++4wzZ86Uuv9bbrml4Frstm3b+OOPP1zez9fXl7vvvptXXnmFNm3aYDKZCh73\nYp6D4h7vxIkT1KpVi8jISCwWC6mpqeTk5OBwODCbzeTk5GC1Wgvt65577uHzzz8nMzMTgI8++ohW\nrVqVWmdXrrrqKurWrcuqVasKypaRkUHjxo2ZPXs2y5YtA5xnLq666ioMBkOx60Uqm8JZ5DwjR45k\n2LBhdOrUiZycHHr27Mn48eOLDbhL0bhxY7p06UKXLl3o378/rVu3dnm/++67j5MnTxIXF8fo0aMZ\nNWoUR44cKdTq25WnnnqKL774grZt27Jo0SLuuuuuYu/brl071qxZQ/v27QvWXexzUNzjtWjRgvDw\ncNq2bcvDDz/MgAEDCA4OZsSIEVx33XXUqFGD5s2bF7pe37hxYwYPHkyfPn2Ij48nKyuLJ554osT6\nFsdgMPDqq6+ycOFC2rdvz6RJk5g5cyaBgYF07tyZFStW0K5dO+Lj4/Hx8aFz587FrhepbAbN5yxS\n+RwOR8ER2fr165kxY4ZOn4pIAR05i1SyEydO0KxZMw4ePIjD4eCzzz4raNEsIgI6chZxiw8//JB3\n330Xg8FAgwYNmDx5ckFDJRERhbOIiIiH0WltERERD6NwFhER8TAeM0JYenpWue4vJCSQzMzy7Z/q\nCbyxXqpT1eGN9VKdqg5vq1dYWHCxt3ntkbPZbHJ3ESqEN9ZLdao6vLFeqlPV4a31csVrw1lERKSq\nUjiLiIh4GIWziIiIh1E4i4iIeBiFs4iIiIdROIuIiHgYhbOIiIiH8ZhBSERExHu88cZr/PzzLk6c\nOE5ubi6RkfWoXr0GU6a8Uuq2q1Z9QrVqQbRq5Xqu85kzp/PggwlERta7pLINHz6YJ598mgYNrr2k\n7SuD14VzaqqZGTN82bMHoqICGTUqjy5drO4uloiIR/vrs9NIVJT9sj87H3/8CcAZtL/+uo/hw0eV\nedsOHTqVePvIkaMvuVxVhVeFc2qqmSFDAgqWd+0y/blsUUCLiBSjMj87t237lo8+WkhOTg7Dhz/B\n999/x/r1a7Hb7dx5Z3Mefngw8+YlUbNmTa65piEpKUswGIz8/vv/6NixAz17Dig48v3ii7WcOZPN\nH3/8zsGDBxgxYjR33tmchQvfY82afxMZWQ+r1UpCQh+aNLm9SFmys7OZPPl5srOzsFqtjBr1FNdd\ndz0zZrzC7t27sNlsdOnSnQ4dOrlcV5G8KpxnzPB1uX7mTF+Fs4hIMSr7s3Pfvr18+GEKvr6+fP/9\nd7z55jsYjUZ69OhMz569C933p592snjxcux2Oz163E/PngMK3X7s2FGmTXudTZu+YcWK5cTE3EhK\nylI+/HA5Z86cISGhKwkJfVyWY+nSD4mJuZG+fQeye/dPvPHGq0yZ8grffPMflixZgdVqZdWqTzh9\n+lSRdRXNq8J5zx7X7duKWy8iIpX/2XnttY3w9XV+IfD392f48MGYTCZOnjzJ6dOnC933uuuux9/f\nv9h9NW58CwDh4eFkZ2dz4MB+GjRoiJ+fP35+/txwQ0yx2+7e/RP9+w8C4PrrozlwYD/Vq9fg6qv/\nxpgxT9K6dVvi4zvi6+tbZF1F86rUioqyX9R6ERGp/M9OHx8fAI4cOUxy8iKmT3+DWbPepm7dukXu\nazKVPNnF+bc7HA4cDjAa/4o2g6H4bQ0GAw6Ho2DZbnfWd/r013noocH88ssennnmiWLXVSSvCudR\no/Jcrh850vV6ERFx32fnyZMnCQkJITAwkJ9/3s2RI0fIz8+/rH1GRETw66/7sFqtZGZmsnv3rmLv\ne/310Xz//bcA7NjxI9dc05DDhw+xdOlHXHfd9QwfPopTp065XFfRvOq0tvPaiIWZM33Zs8dEVJSN\nkSPVWltEpCSFPzudrbUr47OzUaMoAgICeeyxh7npplvo3Lkr06dPpXHjmy95n6GhtYiLi+eRR/rz\nt79dQ3R0TLFH3z169GLKlAmMGPEodrudJ598htq1w9ixYztr1/4bHx8fOna83+W6imZwnH9M70bp\n6Vnlur+wsOBy36cn8MZ6qU5VhzfWS3WqOspar1WrPiEuLh6TyUT//gm8+uobhIfXqYQSXpywsOBi\nb/OqI2cREZHjx48zePAAfHx8uffeeI8M5tIonEVExKv06zeQfv0GursYl8WrGoSJiIh4A4WziIiI\nh1E4i4iIeBiFs4iIiIdROIuISLkbMuShIgOAzJkziw8/XOjy/tu2fcu4cU8DMGbMk0VuX748mTfe\neKPYx9u79xf++ON3ABITn+Xs2dxLLTrdu3ciJyfnkrcvDwpnEREpd3Fx7Vi37vNC69avX0fbtveW\nuu1LL7160Y/35Zfr2L//DwAmTHgRP7/ix+OuCtSVSkREyl2bNvfy2GODGDp0BAC7d+8iLCyMsLBw\ntm7dzDvvzMHHx4fg4GBeeOGlQtt27NiGTz9dy7ffbuH116cTGlqLWrVq06hRA6xWK5MnP096+jEs\nFgsPPzyYunUjWLEihS+/XEdISAjPPfcsCxYkk52dxYsvvkB+fj5Go5ExY8ZjMBiYPPl5IiPrsXfv\nL0RFXceYMeNd1uHYsaNFtg8Pr8MLL4zn+PEM8vLyGDRoCLff3rTIumbN7rqs50/hLCLi5Z5/3o9P\nPinfj/tOnaw8//zZYm8PCQklMrIeP/20g+joG1m37nPi4uIByMrKIjFxEpGR9Zg48Tk2b95IYGBg\nkX0kJc1i/PiJNGoUxb/+NeLPbU/TtGkz2re/j4MHDzB+/BjefXchd9xxJ/fc04bo6BsLtn/nnTnc\nd19n2rS5ly++WMO7777NoEFD+PnnXUyYMIWQkFC6dOlAVlYWwcFFR+tytf2DD/bi1KmTzJ49l6ys\nLDZu/Jp9+/YWWXe5dFpbREQqRFxcPGvXOk9tf/31V9xzTxsAatasydSpkxg+fDDff/8dp0+7nkji\n8OHDNGoUBcAttzQBIDi4Ort27eSxxx5m8uTni90W4Oefd3HrrbcB0KTJ7fzyy88A1Kt3NbVq1cZo\nNFK7dhhnzmSXefu//e3v5OScYeLE8WzbtpW2be91ue5y6chZRMTLPf/82RKPcitKq1atWbDgXeLi\n2nH11fWpXr06AC++OJFXXpnB3/9+Da++OrXY7c+f+tE5DYSBzz9fzenTp5k9+x1Onz7NP//Zr4QS\n/DUlZH6+FYPBub8LJ8IofoqJotv7+/uTlPQeP/74A5999glff72BsWMTXa67HDpyFhGRChEYWI2G\nDRuxYMH8glPaAGfOZFOnTl2ysrLYtu27YqeJrF07jD/++A2Hw8H3338HOKeZjIiIxGg08uWX6wq2\nNRgM2Gy2QtvfcEM027Y5p4T873+/4/rrb7io8rva/uefd/P556u5+eZb+Ne/nuW33/7nct3l0pGz\niIhUmLi4eCZNSiQxcWLBuq5dH+SxxwZx9dX16dOnP++++zaDBw8tsu3gwUMZN+4Z6taNKJi84p57\nYhkz5kl++mkHHTveT3h4OPPnz+Xmm29lxoxXCl27/uc/H+XFFyfyyScfYzb78Oyz47Fayz4Npqvt\n/fz8SUqazYoVKRiNRnr37kdERGSRdZdLU0ZWMd5YL9Wp6vDGeqlOVYe31aukKSN1WltERMTDKJxF\nREQ8jMJZRETEwyicRUREPEyZWmtPmTKF7du3YzAYGDt2LI0bNy64LTY2lrp16xb0G5s2bRp16tRh\n5cqVvPPOO5jNZkaMGME999xTIRUQERHxNqWG85YtW/j9999JTk5m3759jB07luTk5EL3mTt3LtWq\nVStYzszMZPbs2SxfvpycnBzeeOMNhbOIiEgZlXpae+PGjbRt2xaAhg0bcurUKbKzXQ91dv42d955\nJ0FBQYSHhzNx4sQS7y8iIiJ/KTWcMzIyCAkJKVgODQ0lPT290H0SExPp1asX06ZNw+FwcODAAXJz\nc3n00Ufp3bs3GzduLP+Si4iIeKmLHiHswjFLRowYQYsWLahRowbDhg0jLS0NcA6xNmvWLA4dOkT/\n/v354osvMBgMxe43JCQQs9lU7O2XoqQO3lWZN9ZLdao6vLFeqlPV4a31ulCp4RweHk5GRkbB8rFj\nxwgLCytYfuCBBwr+btmyJXv27KFevXrceuutmM1m6tevT7Vq1Thx4gS1atUq9nEyM3MutQ4uedtI\nMud4Y71Up6rDG+ulOlUd3lavyxohrHnz5gVHwzt37iQ8PJygoCDAOSfnoEGDyMvLA2Dr1q00atSI\nu+++m02bNmG328nMzCQnJ6fQqXEREREpXqlHzk2aNCEmJoaEhAQMBgOJiYmkpKQQHBxMXFwcLVu2\npGfPnvj5+REdHU18fDwGg4F27drRo0cPAMaNG1do6i8REREpnia+qGK8sV6qU9XhjfVSnaoOb6uX\nJr4QERGpQhTOIiIiHkbhLCIi4mEUziIiIh5G4SwiIuJhFM4iIiIeRuEsIiLiYRTOIiIiHsYrw/l/\n/zPwn/+4uxQiIiKXxivD+cUX/WjRApKSfNxdFBERkYvmleE8enQeEREwfrw/06f74hkDlIqIiJSN\nV4bzddfZ2bAB6te3M3WqHxMm+CmgRUSkyvDKcAZo2BBWrszh2mttvPmmL0895YfN5u5SiYiIlM5r\nwxkgMtLBihUWbrzRxoIFvgwb5k9+vrtLJSIiUjKvDmeAsDAHqak53H67jZQUHwYN8ic3192lEhER\nKZ7XhzNAjRqwZEkOLVpYWb3ahz59AsjOdnepREREXLsiwhkgKAgWLbIQH5/Phg1mevQI5NQpd5dK\nRESkqCsmnAH8/WHevFy6ds3n229NdOkSSHq6wd3FEhERKeSKCmcAHx94881c+vfPY8cOE507B3Do\nkAJaREQ8xxUXzgBGI7zyylmGDs1j714TnToF8r//KaBFRMQzXJHhDGAwQGLiWcaMOcv+/Ubuvz+Q\n3buv2KdDREQ8yBWdRgYDPPlkHpMm5XL0qJHOnQP573+v6KdEREQ8gJIIGDw4nxkzLJw6BV27BrJp\nk8ndRRIRkSuYwvlPvXtbSUrKJTcXevYMYN06BbSIiLiHwvk8nTtbWbDAgsMB/foF8MknZncXSURE\nrkAK5wu0bWvjww8t+PrCI4/489FHCmgREalcCmcXmje3sXx5DtWrw4gRAcyb5+PuIomIyBVE4VyM\nJk3sfPxxDmFhdp591p+ZM33dXSQREblCKJxLEB1t55NPcrjqKjuTJ/sxaZIvDoe7SyUiIt5O4VyK\nBg0crFyZQ4MGdl5/3Y8XXvBTQIuISIVSOJfBVVc5WLEih4YN7cye7ctrr+kUt4iIVByFcxmkpprp\n0SOA//3PgI+Pg5de8iMpSY3ERESkYqifUClSU80MGRJQsGy3O3+PH+9PtWrQt2++m0omIiLeSkfO\npZgxw/UpbJPJwejRfqSk6PuNiIiUrzIly5QpU9i+fTsGg4GxY8fSuHHjgttiY2OpW7cuJpNzuMtp\n06ZRp04dAHJzc7nvvvsYOnQoXbt2rYDiV7w9e4r//hIcDMOG+RMQkEv79tZKLJWIiHizUsN5y5Yt\n/P777yQnJ7Nv3z7Gjh1LcnJyofvMnTuXatWqFdn2rbfeokaNGuVXWjeIirKza1fRcbavu87Oyy/n\n0qNHII884s/ChRbuucfmhhKKiIi3KfW09saNG2nbti0ADRs25NSpU2RnZ5e643379rF3717uueee\nyy6kO40aledy/ciReTRtamfBAgsGAwwcGKDZrEREpFyUGs4ZGRmEhIQULIeGhpKenl7oPomJifTq\n1Ytp06bh+LMT8NSpUxkzZkw5F7fydeliJSnJQnS0DbPZQXS0jaQkC126OE9jt2xp4513LOTlQZ8+\nAWzfrsv4IiJyeS66NZPjghE4RowYQYsWLahRowbDhg0jLS2N3NxcbrnlFq6++uoy7zckJBCzuXyP\nPMPCgstlP4MHO3+cTEBAodv79gUfH+jdGxISqvHllxATUy4P7VJ51cuTqE5VhzfWS3WqOry1Xhcq\nNZzDw8PJyMgoWD527BhhYWEFyw888EDB3y1btmTPnj38+uuv7N+/n/Xr13PkyBF8fX2pW7cud911\nV7GPk5mZc6l1cCksLJj09Kxy3WdJYmPh1VfNjBoVQGys/c9Rxcp/KLHKrldlUJ2qDm+sl+pUdXhb\nvUr6olHqOdjmzZuTlpYGwM6dOwkPDycoKAiArKwsBg0aRF6e87rs1q1badSoETNmzGD58uUsWbKE\nBx98kKFDh5YYzN6id28rkyfncuyYke7dAzlwwODuIomISBVU6pFzkyZNiImJISEhAYPBQGJiIikp\nKQQHBxMXF0fLli3p2bMnfn5+REdHEx8fXxnl9liPPJLPmTMGpkzxo3v3QFasyKFOHQ3GLSIiZWdw\nXHgR2U3K+1SFu09/TJ7sy8yZftxwg43U1BxCQ8tnv+6uV0VQnaoOb6yX6lR1eFu9Luu0tlyasWPz\n+Oc/89i1y0RCQiBZ3vP/JCIiFUzhXEEMBpg06SwJCfn8978m+vQJIKd827yJiIiXUjhXIKMRXnst\nl86d89m0yczAgQGcPevuUomIiKdTOFcwkwlmz84lLs7K+vVmhgzxx6phuEVEpAQK50rg6wvvvGPh\n7rutrFrlw+OP+xdMPSkiInIhhXMlCQiABQss3H67jeXLfXj6aT88o528iIh4GoVzJQoKgg8/zOHG\nG20sWODL888roEVEpCiFcyWrUQOWLLHQqJGNt97yZdo0X3cXSUREPIzC2Q1q13awbJmF+vXtvPKK\nHzNm+OoIWkRECiic3SQiwsHy5TlERtqZMsWPp57yUytuEREBFM5u9be/Ofjss7+uQfftG0B2trtL\nJSIi7qZwdrOICAcrV+bQpo2VdevMdOoUyOHDms1KRORKpnD2AEFB8MEHFgYMyGPnThPx8YHs2KGX\nRkTkSqUE8BBmM7z88lmeey6Xw4eNdOoUyNq1JncXS0RE3EDh7EEMBhg+PJ958yzYbNC3bwALFvi4\nu1giIlLJFM4eqFMnK8uX51CzpoN//cufF17w1XCfIiJXEIWzh/rHP+ysWpVDw4Z2Zs3yY/BgfywW\nd5dKREQqg8LZg11zjYNPPz1Ds2ZWVq70oVu3QNLT3V0qERGpaApnDxcaCkuXWujaNZ9vvzVx552w\nb5+6WomIeDOFcxXg5wdvvZXLk0+eZd8+6NChGps2qSW3iIi3Uji7UWqqmVatAomICKJVq0BSU83F\n3tdggDFj8pg3D7KyoHv3AFJSir+/iIhUXQpnN0lNNTNkSAC7dpmw2Qzs2mViyJCAEgMa4OGH4cMP\nLfj5waOPBmjSDBERL6RwdpMZM1xPFTlzZulTSLZqZeP//i+HevWck2Y8+aQf+fnlXUIREXEXhbOb\n7Nnj+qkvbv2FbrjBzurVOTRubGPRIl969w7g9OnyLKGIiLiLwtlNoqJcjypS3HpX6tRx8PHHOdx7\nr5Uvv3ROmnHggFpyi4hUdQpnNxk1Ks/l+pEjXa8vTlAQvP++hUGD8ti1y0T79oH88INeVhGRqkyf\n4m7SpYuVpCQL0dE2zGYH0dE2kpIsdOliveh9mUwwZcpZJk7M5dgxA/ffH8i//62uViIiVZX64rhR\nly7WSwpjVwwGGDIkn6uucjB0qD8DBgSweLGF1q1t5bJ/ERGpPDpy9jIdO1pJTrZgNsOgQQH89JNe\nYhGRqkaf3F6oWTMbs2blkp1toHfvAI4cUSMxEZGqROHspTp3tjJ+/FkOHTLSu3cA2dnuLpGIiJSV\nwtmLDR+eR//+eezYYeKRRwKwls/lbRERqWAKZy9mMMBLL50lNtbK2rVmnn3WT0N9iohUAQpnL2c2\nwzvvWLjxRhvvv+/L7Nk+7i6SiIiUQuF8BQgKgkWLLERG2nnhBX9WrFAPOhERT1amT+kpU6awfft2\nDAYDY8eOpXHjxgW3xcbGUrduXUwm56AX06ZNo06dOrz88st89913WK1WhgwZwr333lsxNZAyiYhw\nsGiRhU6dAhk+3J+6dS3ccYf6QIuIeKJSw3nLli38/vvvJCcns2/fPsaOHUtycnKh+8ydO5dq1aoV\nLG/atIlffvmF5ORkMjMz6dKli8LZA8TE2Jk3z0Lv3gEMGODPqlU5NGigi9AiIp6m1NPaGzdupG3b\ntgA0bNiQU6dOkV1Kv5x//OMfzJw5E4Dq1atjsViw2XSU5glat7bxyitnOXHCSK9egRw/rj7QIiKe\nptQj54yMDGJiYgqWQ0NDSU9PJygoqGBdYmIiBw8e5LbbbmP06NGYTCYCAwMBWLZsGS1btiw47V2c\nkJBAzObyHQ86LCy4XPfnKS63Xk88ARkZMGWKkUGDgli7Fvz9y6lwl8gbXytvrBN4Z71Up6rDW+t1\noYtuGeS4oC/OiBEjaNGiBTVq1GDYsGGkpaURHx8PwJo1a1i2bBnvvvtuqfvNzMy52KKUKCwsmPT0\nrHLdpycor3qNHAm7d/uTkuJDz575vP12LkY3NQ/0xtfKG+sE3lkv1anq8LZ6lfRFo9SP4/DwcDIy\nMgqWjx07RlhYWMHyAw88QK1atTCbzbRs2ZI9e/YAsGHDBubMmcPcuXMJDr4yvulUJQYDzJyZS7Nm\nVlau9GHSJF93F0lERP5Uajg3b96ctLQ0AHbu3El4eHjBKe2srCwGDRpEXp5zDuKtW7fSqFEjsrKy\nePnll0lKSqJmzZoVWHy5HH7SMssFAAAgAElEQVR+zrmgr73WxqxZfrz3nvpAi4h4glJPazdp0oSY\nmBgSEhIwGAwkJiaSkpJCcHAwcXFxtGzZkp49e+Ln50d0dDTx8fEsWbKEzMxMRo0aVbCfqVOnEhkZ\nWaGVkYsXEgKLF1vo0CGQMWP8uOoqO23bqvGeiIg7GRwXXkR2k/K+juBt1ybOKa1eqalmZszwZc8e\nI1FRdkaNyivTnNHffmuka9dAjEb45JMcbrrJXp7FLpE3vlbeWCfwznqpTlWHt9Xrsq45S9WRmmpm\nyJAAdu0yYbMZ2LXLxJAhAaSmlt7u7/bb7bz5Zi4WC/TuHcDBg+pidb7Dhw2MGuXH5s3l26NARMQV\nhbMXmTHDdaOumTPL1tjrvvusTJhwlqNHndNMnj5dnqWrujIyDHTvHsDixb4kJATw/fd624hIxdKn\njBfZs8f1y1nceleGDMln0KA8du0yMWhQAPn55VW6qunUKejRI4BffjERF2fFYoGEhEB279ZbR0Qq\njj5hvEhUlOvrxMWtd8VggEmTztKunZUvvzTz1FNX7jST2dnQq1cgO3aY6Ncvj4ULLbz2Wi6ZmQZ6\n9Ajg99916l9EKobC2YuMGpXncv3Ika7XF8dkgjlzLNx8s43Fi32LPV3uzXJzYcCAAL791kTXrvm8\n/PJZDAbo1cvKxIm5HDlipHv3QI4eVUCLSPlTOHuRLl2sJCVZiI62YTY7iI62kZRkKVNr7QtVqwYL\nF1q4+mo7L77ox7JlV840k/n58MgjAWzYYCY+Pp833sjl/NFnhwzJZ/Tos/z+u5EePQLIzHRfWUXE\nO105n7hXiC5drJcUxq7UqeOcZvK++wIZNcqfyEgLd93l3X2gbTYYNsyftDQzLVtaefvtXHxcjM3y\n9NN5nD5tYO5cX3r1CmTZshzOG25eROSy6MhZSnT99Xbmz7dgt8PAgQF88YXJa69B2+3wr3/58fHH\nPjRtauX99y3FTghiMMDEiWfp2TOfbdtMDBgQQG5u5ZZXRLyXwllK1aKFjddey+XUKejZM5CuXQP4\n9lvv+tdxOOC55/xYtMiXxo1tLF5s4bwpyl0yGuG113Jp3z6fDRvMDB7sj7V8TlqIyBXOuz5hpcL0\n7GllzZoc2ra18vXXZjp0qEb//v7s2uUd/0JTp/ry9tu+XHedjeRkC9Wrl207sxmSknJp0cLK6tU+\njBzpj73yBlcTES/lHZ+sUiluusnO4sUWVq7M4Y47nGF0zz2BDB3qz2+/Vd1Wy2+84curr/rx97/b\nWbbMQq1aF3fe3t/fOYHIbbfZWLrUh3HjrtzuZyJSPhTOctGaNbOxcqWFxYtziI62s2yZD82bV+OZ\nZ/yqXNeid9/1YeJEPyIj7SxfnkOdOpeWqkFBsHhxDjfcYOOdd3xJTCzngorIFUXhLJfEYIC2bW2s\nXZtDUpKFq65yMH++L02bVmPSJF9OnnR3CUuXnGxmzBh/atd2BvPVV1/e4W5ICCxZYuHvf7czcSK8\n9Zam4BSRS6NwlstiNDq7b/3nP2eYNi2XmjUdvP66H7ffHsSMGb6cOePuErr2ySdmRo70p2ZNB0uX\nWmjYsHzOQ9ep42Dp0hwiIyEx0Z/Fi9VbUUQunsJZyoWPD/Tvn8+mTWd4/vlczGYHU6b40bRpNebN\n8yHv4gYpq1Br15p49FF/AgLgo49yiIkp3xZcf/ubg88/h9BQO08+6c8nnyigReTiKJylXAUEwNCh\n+WzdeobRo8+Sk2Pg2Wf9ueuuaiQnm7G5eQyTb74x8dBDAZhMsGiRhSZNKqZpdXQ0fPSRhcBAePRR\nf9at01STIlJ2CmepEMHB8MwzeWzZcoYhQ/I4csTA448H0Lp1IKtWmd3SmnnbNiN9+gRgs8H8+RU/\n2tktt9j54AMLRiM8/HAAW7bo7SYiZaNPCymT1FQzrVoFEhERRKtWgaSmlu1UbViYg4kTz7Jp0xl6\n985jzx4jAwcG0KFDIBs2VN7R5M6dRhISArFYYM6cXNq0qZxD+ObNbcybZyEvD3r3DmTHDr3lRKR0\n+qSQUqWmmhkyJIBdu0zYbAZ27TIxZEhAmQMa4KqrHMyYcZYNG3Lo1Cmf774z0a1bIN27B/Dxx3Do\nkKHCjqb37TPw4IMBnDxpYMaMXDp1qtxhvO6918Ybb+SSleWcG3rfvqrV3UxEKp9aqkipipsycuZM\n34ueZKNRIzvz5uWyfXsekyf7sX69ma++Agiidm07jRvbadzYxk03OX/Xr+/AcBlZtn+/ge7dA8nI\nMPLSS7kkJLhnfM1u3aycPn2WZ57x58EHA/nkkxzq1dNIJSLimsJZSrVnj+sTLMWtL4ubb7azZImF\nrVuNfP99NTZuzOfHH02sW2dm3bq//i1r1HAUCuvGjW00aODAWIaHPnrUQLdugRw8aGTcuLM8/HD+\nJZe3PDz0UD6nTxuYPNmPBx8MYMUKC2FhCmgRKUrhLKWKirKza1fR68NRUZff0vkf/7DToQOkpzun\ndMrMhB9/NPHDD8Y/f5vYsMHMhg1/bVOtmoMbb7TRuLGdm25y/o6KsmM+77/5+HHnqezffjPy5JNn\nGTHCM/pyjRiRx8mTBmbP9iUhIYDU1Jwyj+MtIlcOhbOUatSoPIYMCSiyfuTI8g+8kBBo2dJGy5Y2\nwHmkm5UFO3c6A/uHH0z8+KORrVtNbN7817+vv7+D6Oi/wnrBAh927zYxeHAezzzjGcEMzpHVnnvu\nLKdPwwcf+NKnTwDJyc4uVyIi5yicpVTO68oWZs70Zc8eI1FRdkaOzLvo682XKjjYOZ53s2Z/BXZO\nDuza9VdYn/u9bdtfR/h9+uQxceLZy7pmXREMBnj55bNkZRn4+GMfevQIYOrUs+U+GIqIVF0KZymT\nLl2slRbGZREYCLfdZue22/4KtLw8+PlnZ1CbTA4efNDqccF8jskEs2blYrfDypU+tGljok+ffMaM\nydN1aPE4P/9sZMkSM7feaue++zznc8CbKZzFa/j6Oqe1vOmmqnEE6usL77yTy7p1+Tz3nB8ffODL\nxx/78MQTZ3nkkXz8/NxdQrmSnT0Ln35q5v33fdi48a+omDo1l4cecm/jyiuB+jmLuFlsrI3163N4\n8cVcfHwcvPCCP3ffXY3/+z/3jKQmV7ZffzUwYYIft9xSjUcfDWDjRjMtW1p5+eVcate288wz/sye\nrRnXKprCWcQDmM0waJBz4pAhQ/I4eNDAww8H0KVLAD/+qLepVKz8fOdMbQ8+GECzZkHMnu2LwwFD\nh+axaVM2y5ZZGDgwn5Urc4iMtDNhgj8vv+yrL48VSKe1RTxIzZowceJZBg7MY8IEP1av9qFtWxMJ\nCVbGjj1LnTr6NJTyc+CAgYULfVi40Idjx5xfAps1szJgQD4dO1rx9y98/2uvdbByZQ7dugUybZof\n2dkGJkzwvEaX3kDhLOKBGjZ0sGBBLl99lc/48X58+KEPK1aY/+zWlkdA0Z5tImViszmnTV2wwJc1\na0zY7QaqV3fwyCN59OuXz/XXl9xmo359Z0B37x7AnDm+5OQ4ex+UZWCgynD0qIH5833w9YXISDsR\nEQ7q1XP+rlbN3aUrO4WziAdr2dLGunU5LFrkw0sv+TJlih8LFvjw3HNn6dzZc1uji+c5etTAokXO\no+QDB5xJ2qSJjQED8ujc2XpRfe0jIhysWGGhR48AFizwxWIxMHNmbqGBgNwhLc3EqFH+HD/u+ptC\njRoOIiPtREY6igT3uXVBQZVc6GIonEU8nMkE/fvn88AD+cyY4cvbb/syeHAAc+famDgxt8LmpJaq\nz26Hr74ysWCBD6tXm7FaDQQGOujfP48BA/Ivq2dD7doOUlNzSEgIZOlSH3JynDO+uaOXQU4OPP+8\nH++954ufn4MXXsglKsrO4cNGDh40cPiwgUOHjBw+bODAASO7dhX/rbZ6ddfBHRFhp2lTW6WFt8Hh\n8IxL+unpWeW6v7Cw4HLfpyfwxnqpThfnf/8z8MILfnz6qbPFbPfu+Ywbd5bIyPJ5K9tszglDfv3V\nyL59xoLf+/cbadLEyH33WWjTxoqv6/lQqhxv/P+DYGbNymXBAl9++815FBkTY2PAgHy6dcsnOLj8\nHik7G/r3D+A//zETG2vl3XcrbsQ7V6/Vjh1GHn3Unz17TFx/vY05c3KJji75S0dWFhw+bOTQIcOf\nP8aCAD+3fOpU0QC/914rCxdayrU+xVE4VzHeVK/UVDMzZviyZ4+JqCgbo0ZV3qhjFa0yXqdvvjEx\nfrwfP/5oIiDAwbBheQwbllem62oOBxw5YigUvr/+auTXXw389puR/PyiH0zVqzs4fdq5vmZNB506\n5dO9u5U77rB5zPXGS+Et7ymHAzZvNvHeez783//5kJfnHNb2gQes9O+fx2232SvsMojFAoMGBbBm\njZm77nIGWEUcYZ7/WtntMHeuDxMn+pGXZ2DQoDyee+5subXHyM52vkcOHnQG9+HDRpo3t9K0afmd\nqbrscJ4yZQrbt2/HYDAwduxYGjduXHBbbGwsdevWxWRyDps4bdo06tSpU+I2riicy8Zb6nVujugL\nJSVZvCKgK+t1stlgyRIzkyf7ceyYkYgIO+PGnaVbNytGI5w4Afv2OcP3f/8zFvo7J6foJ3WNGg6u\nvdZOgwbOn4YNnT/XXGOnWjU4cCCYuXPzSE01c/SoM5Hr1bPTtWs+3bpZSz1i8URV/T116hQsXerD\n++/78PPPzs/h66+Hvn1z6dEjn5o1K6cceXnw2GP+fPKJD7fdZuPDD3PK/bHPvVZHjxoYMcKfL74w\nU7u2nZkzc4mLs5Xvg1WCywrnLVu2MG/ePJKSkti3bx9jx44lOTm54PbY2Fg++eQTqp33db20bVxR\nOJeNt9SrVatAlzNdRUc7B+So6ir7dcrOhjfe8OXNN305e9ZA/fp2Tp82cPJk0QAODHRwzTXO0D0/\nhBs0cBAaWvL82efqZbPB11+bWL7ch//7PzNZWc6NbrjBRrduVrp2zeeqqzzipFypquJ7yuGA//7X\nyPvv+5Ca6oPFYsDHx8F991kZODCfTp0Cycio/DpZrTBqlD9LlvgQE2NjyZLynRY1LCyYxYtzGDnS\nn4wMI7GxVmbOzK2yXQxLCudSG4Rt3LiRtm3bAtCwYUNOnTpFdnY2QSWcs7iUbeTKUhFzRF/JgoLg\n2Wfz6Ns3n0mT/EhLMxMZaeeOOxxFjoLr1i05gMvCZPpr9rCXXoI1a8wsW2Zm7Vozkyb5MWmSH82a\nWenWzcr99+cTElI+9bzSZWdDaqrzKPmHH5xfbuvXt9O/fx69euUXBKG7WvGbzfD667kEBjp47z1f\nOncOYPlyCxERlx+eFgs8/jjMmhWIr6+DiRNzeeSR/Cp9SaUkpYZzRkYGMTExBcuhoaGkp6cXCtrE\nxEQOHjzIbbfdxujRo8u0zYVCQgIxm4seSV2Okr6VVGXeUK/oaPjxR1frDV5RP3DP6xQWBikp55bK\n9/3012MUrdfDDzt/MjNh2TJYtAi+/NLMpk1mxo71p3176NMHOnWiwvtoOxzOU6wX02rY0//nfvwR\n5syBDz5wNmYymeCBB+DRRyEuzojR6AcUrrA76/Tuu87/xVdeMfHAA0GsXQvXXHPp+9uxA3r1cv6O\njobFiw3cfLM/4F/qtlXVRXeluvAs+IgRI2jRogU1atRg2LBhpKWllbqNK5mZ5XsqsyqeqioLb6nX\n8OGurzkPG2YhPV3XnD1VWer1wAPOn4MHDaSmmlm+3IeVK02sXAlBQQ46drTSrVs+d99tK1O/WJsN\nMjMNnDhh4PhxAxkZzt/n/2Rk/HX7iRMG8vKcA2tERNipU8dBRITz77p1//o7IsJB7doO6tb1zNcq\nNxdWrjTz/vu+bN3q/KIVEWHn0Ufz6dMnv6B1/vHjRbf1hP+/f/0LjEZfpk71o3lzO8uWWWjU6OLa\nJDgcMG+eDxMm+HH2rIGhQ+Hpp7MIDIT09AoqeCW6rNPa4eHhZGRkFCwfO3aMsLCwguUHHnig4O+W\nLVuyZ8+eUrcRKTxHtLO1dmXOES0Vr149B8OH5zN8eD67dxtZvtxMSooPycnOn7AwO126WLn1VltB\nsLr6ycw0YLeXfp62WjUHtWo5uPFGO9WqOcjIcLaw/fnn4rc1mRxEREB4eCB169r/DG7HeX87A70y\nr8jt22fg/fd9SU72ITPTgMHgIDbWOaRmXJzV7QN9lJXBAKNH5xEY6CAx0Z/OnQNITraUuW91erqB\nkSP9WbPGTK1adubOtdCvX6BXhHJZlPoyN2/enDfeeIOEhAR27txJeHh4wenprKwsRo0axVtvvYWv\nry9bt26lXbt21KlTp9htRM45N0e081t+1W8EJsW7/no7/+//5fHss3ls2WJi+XIzK1f68PbbxXeW\nDglxUKuWnWuvtVOrlsPlT+3azt+hoY4i40Cfk5Pj7BJz5Mi5LjHn/20kPd3Ejz8a2bat+MsAwcHO\nwK5d20HNmg5CQhzUrMmfvx0uf1erVvZrv3l5sHq1c3rGDRucH8u1a9sZMcLZjuDvf6+aDZ4AHnss\nn8BAePppP7p2DeSjj3IKzcPuyrp1Jh5/3J/0dCOtWlmZNavqNvq6VKWGc5MmTYiJiSEhIQGDwUBi\nYiIpKSkEBwcTFxdHy5Yt6dmzJ35+fkRHRxMfH4/BYCiyjYiI0QjNmtlo1szG5Mln+fJLE/v3G6ld\n2xmw50I3NNRRbkeIgYHQoIGDBg1cd7UJCwvm6NFsjh83cOSIoSC0nSHu/Pvc719+KXtLK7O55CA/\n9/fu3UYWLfIhPd3Zsql5c+dRcocO3jPQy4AB+QQGOhgxwp/u3QNZuNBC8+ZFX4/cXJg82Y+kJF98\nfBxMmJDLkCHe2+irJBqEpIrxxnqpTlWHN9brYupkszn7FZ886TzdXtJv589f97XZig/2GjUcJCTk\n079//kVfl73cOlWmTz81M3iwPyYTzJ9voU2bvwL655+NDBniz08/mWjUyDnS14WnwD21Xpfqsq45\ni4iIk8kEoaEQGuoAyn5c43A4u0G5CvLq1R20b2+9ImYa69jRygcfWBg4MID+/QOYMyeX++6z8t57\nPiQm+pGba6B//zxeeOFshQ0BWlUonEVEKpjBAMHBzmvX9et7xMlKt4mNtfHRRxb69AngkUf8uf12\nG1u2mAkJcTBnjoUOHdQoFOAKPJMvIiLudNddNpYtyyE4GLZsMdOihZX1688omM+jcBavkppqplWr\nQCIigmjVKpDUVJ0cEvFEt91mJy3tDHPnWli6tHxGEfMm+uQSr3HhZBq7dpn+XPaOyTREvI2zFb3e\nm67oyFm8xowZrvudzJzpJf1RROSKoXAWr6HJNETEW+hTS7xGVJTr/qHFrRcR8VQKZ/Eao0bluVw/\ncqTr9SIinkrhLF6jSxcrSUkWoqNtmM0OoqNtJCWpMZiIVD1qrS1e5dxkGiIiVZmOnEVERDyMwllE\nRMTDKJxFREQ8jMJZRETEwyicRcpAY3aLSGXSJ4xIKTRmt4hUNh05i5RCY3aLSGVTOIuUQmN2i0hl\n06eLSCk0ZreIVDaFs0gpNGa3iFQ2hbNIKTRmt4hUNrXWFikDjdktIpVJR84iIiIeRuEsIiLiYRTO\nIm6iUcdEpDj6NBBxA406JiIl0ZGziBto1DERKYnCWcQNNOqYiJREnwQibqBRx0SkJApnETfQqGMi\nUhKFs4gbaNQxESmJWmuLuIlGHROR4ujIWURExMOUKZynTJlCz549SUhI4IcffnB5n+nTp9OvXz8A\nzpw5w/Dhw+nXrx8JCQls2LCh/EosIiLi5UoN5y1btvD777+TnJzM5MmTmTx5cpH77N27l61btxYs\np6amcs011/DBBx8wc+ZMl9uISPnTqGMi3qHUcN64cSNt27YFoGHDhpw6dYrs7OxC93nppZd44okn\nCpZDQkI4efIkAKdPnyYkJKQ8yywiLpwbdWzXLhM2m6Fg1DEFtEjVU2o4Z2RkFArX0NBQ0tPTC5ZT\nUlJo2rQp9erVK1jXsWNHDh06RFxcHH379uWZZ54p52KLyIU06piI97jor9QOh6Pg75MnT5KSksL8\n+fM5evRowfoVK1YQGRnJvHnz2L17N2PHjiUlJaXE/YaEBGI2my62OCUKCwsu1/15Cm+sl+p0+fbs\nKW69qVzLoteqavDGOoH31utCpYZzeHg4GRkZBcvHjh0jLCwMgE2bNnHixAn69OlDXl4ef/zxB1Om\nTOHs2bPcfffdAFx//fUcO3YMm82GyVR8+GZm5lxuXQoJCwsmPT2rXPfpCbyxXqpT+YiKCmTXrqLv\nsagoG+np5fP+0mtVNXhjncD76lXSF41ST2s3b96ctLQ0AHbu3El4eDhBQUEAxMfHs2rVKpYsWcKs\nWbOIiYlh7Nix/O1vf2P79u0AHDx4kGrVqpUYzCJy+TTqmIj3KPXIuUmTJsTExJCQkIDBYCAxMZGU\nlBSCg4OJi4tzuU3Pnj0ZO3Ysffv2xWq18vzzz5d3uUXkAs4BTSzMnOnLnj1GoqLsjByZp4FORKog\ng+P8i8huVN6nKrzt9Mc53lgv1anq8MZ6qU5Vh7fV67JOa4uIiEjlUjiLSKnODW5iNqPBTUQqgd5h\nIlKic4ObnHNucBPQLFoiFUVHziJSIg1uIlL5FM4iUqI9e1x/TBS3XkQun95dIlKiqCj7Ra0Xkcun\ncBaREmlwE5HKp3AWkRJ16WIlKclCdLQNsxmio20kJakxmEhFUmttESlVly5WunSx/jkIRPmOgy8i\nRenIWURExMMonEVERDyMwllE3OLcqGMREUEadUzkAno3iEil06hjIiXTkbOIVDqNOiZSMoWziFQ6\njTomUjK9E0Sk0mnUMZGSKZxFpNJp1DGRkimcRaTSFR51zKFRx0QuoNbaIuIW50YdK0+pqWZmzPBl\nzx4jUVF2Ro3KU+BLlaRwFhGvoO5Z4k10WltEvIK6Z4k3UTiLiFdQ9yzxJvqvFRGvoO5Z4k0UziLi\nFdQ9S7yJwllEvIK6Z4k3UWttEfEaFdE9C9RFSyqfwllEpATqoiXuoNPaIiIlUBctcQeFs4hICdRF\nS9xB/10iIiVQFy1xB4WziEgJ1EVL3EHhLCJSAnXREndQa20RkVJUVBctkeLoyFlExA1SU820ahVI\nREQQrVoFkpqqYyX5S5nCecqUKfTs2ZOEhAR++OEHl/eZPn06/fr1K1heuXIl999/P127dmX9+vXl\nUlgREW9wru/0rl0mbDZDQd9pBbScU2o4b9myhd9//53k5GQmT57M5MmTi9xn7969bN26tWA5MzOT\n2bNns3jxYubMmcPatWvLt9QiIlWY+k5LaUoN540bN9K2bVsAGjZsyKlTp8jOzi50n5deeoknnnii\n0DZ33nknQUFBhIeHM3HixHIutohI1aW+01KaUv8TMjIyCAkJKVgODQ0lPT29YDklJYWmTZtSr169\ngnUHDhwgNzeXRx99lN69e7Nx48ZyLraISNWlvtNSmou+wOFwOAr+PnnyJCkpKcyfP5+jR48Wut/J\nkyeZNWsWhw4don///nzxxRcYDIZi9xsSEojZbLrY4pQoLCy4XPfnKbyxXqpT1eGN9arsOj33HPTq\nVXT9+PGmciuLN75O4L31ulCp4RweHk5GRkbB8rFjxwgLCwNg06ZNnDhxgj59+pCXl8cff/zBlClT\nuO6667j11lsxm83Ur1+fatWqceLECWrVqlXs42Rm5pRDdf4SFhZMenpWue7TE3hjvVSnqsMb6+WO\nOrVpA0lJZmbO/Gumq5Ej82jTxsp5JyYvmTe+TuB99Srpi0app7WbN29OWloaADt37iQ8PJygoCAA\n4uPjWbVqFUuWLGHWrFnExMQwduxY7r77bjZt2oTdbiczM5OcnJxCp8ZFRK50XbpYWb8+h0OHslm/\nPqdc+lGf655lNqPuWVVcqa9ckyZNiImJISEhAYPBQGJiIikpKQQHBxMXF+dymzp16tCuXTt69OgB\nwLhx4zAa1dBBRKSiaGpL72JwnH8R2Y3K+1SFt53+OMcb66U6VR3eWC9vqVOrVoHs2lW03U50tI31\n68v3sqG7eMtrdc5lndYWERHPp+5Z3kWvmoiIF1D3LO+icBYR8QIVObWlxgGvfHqGRUS8gLPRl+XP\n7lkmoqJsjByZd9mNwdTQzD0UziIiXuLc1JbOhlPl0wispHHAFc4VR6e1RUSkWGpo5h56dkVEpFhq\naOYeCmcRESlWRTY0k+IpnEVEpFhdulhJSrIQHW3DbHYQHW0jKenyG4OpBXjJ9GyIiEiJzjU0Ky9q\nAV46HTmLiEilKqkFuDgpnEVEpFKpBXjp9EyIiEilUgvw0imcRUSkUqkFeOkUziIiUqkqqgU4eE8r\n8KpZahERqdLKuwU4eFcrcB05i4iIV/CmVuAKZxER8Qre1Aq86pVYRETEBW9qBa5wFhERr+BNrcAV\nziIi4hW8aRxwtdYWERGv4S3jgOvIWUREpBjuagGucBYRESmGu1qAK5xFRESK4a4W4ApnERGRYrir\nBbjCWUREpBgVOQ54SdRaW0REpAQVMQ54aXTkLCIi4mEUziIiIh5G4SwiIuJhFM4iIiIeRuEsIiLi\nYRTOIiIiHkbhLCIi4mEUziIiIh5G4SwiIuJhDA6Hw+HuQoiIiMhfdOQsIiLiYRTOIiIiHkbhLCIi\n4mEUziIiIh5G4SwiIuJhFM4iIiIexuzuAlyuKVOmsH37dgwGA2PHjqVx48YFt33zzTe8+uqrmEwm\nWrZsybBhw9xY0ovz8ssv891332G1WhkyZAj33ntvwW2xsbHUrVsXk8kEwLRp06hTp467ilommzdv\nZuTIkTRq1AiAqKgoxo8fX3B7VX2tli5dysqVKwuWd+zYwffff1+wHBMTQ5MmTQqW33vvvYLXzRPt\n2bOHoUOHMnDgQPr27cvhw4d5+umnsdlshIWF8corr+Dr61tom5Leg57AVZ2effZZrFYrZrOZV155\nhbCwsIL7l/a/6gkurObuZ/8AAAatSURBVNOYMWPYuXMnNWvWBGDQoEHcc889hbbx9NcJitZrxIgR\nZGZmAnDy5EluueUWJk6cWHD/lJQUZs6cSf369QG46667eOyxx9xS9nLnqMI2b97sGDx4sMPhcDj2\n7t3r6NGjR6Hb27dv7zh06JDDZrM5evXq5fjll1/cUcyLtnHjRsc///lPh8PhcJw4ccLRqlWrQre3\nbt3akZ2d7YaSXbpNmzY5Hn/88WJvr6qv1fk2b97seP755wuta9q0qZtKc/HOnDnj6Nu3r2PcuHGO\nDz74wOFwOBxjxoxxrFq1yuFwOBzTp093LFq0qNA2pb0H3c1VnZ5++mnHp59+6nA4HI6FCxc6pk6d\nWmib0v5X3c1VnZ555hnHunXrit3G018nh8N1vc43ZswYx/bt2wutW758ueOll16qrCJWqip9Wnvj\nxo20bdsWgIYNG3Lq1Cmys7MB2L9/PzVq1CAiIgKj0UirVq3YuHGjO4tbZv/4xz+YOXMmANWrV8di\nsWCz2dxcqopTlV+r882ePZuhQ4e6uxiXzNfXl7lz5xIeHl6wbvPmzbRp0waA1q1bF3ldSnoPegJX\ndUpMTKRdu3YAhISEcPLkSXcV75K4qlNpPP11gpLr9euvv5KVleWRR/sVpUqHc0ZGBiEhIQXLoaGh\npKenA5Cenk5oaKjL2zydyWQiMDAQgGXLltGyZcsip0ITExPp1asX06ZNw1FFBnnbu3cvjz76KL16\n9eLrr78uWF+VX6tzfvjhByIiIgqdHgXIy8tj9OjRJCQkMH/+fDeVrmzMZjP+/v6F1lksloLT2LVq\n1SryupT0HvQEruoUGBiIyWTCZrOxePFiOnXqVGS74v5XPYGrOgEsXLiQ/v3788QTT3DixIlCt3n6\n6wTF1wtgwYIF9O3b1+VtW7ZsYdCgQQwYMICffvqpIotYqar8NefzVZWQKqs1a9awbNky3n333ULr\nR4wYQYsWLahRowbDhg0jLS2N+Ph4N5WybP7+978zfPhw2rdvz/79++nfvz///ve/i1y/rKqWLVtG\nly5diqx/+umnuf/++zEYDP+/vbuHZXeLAzj+rbQprSaiUokIkQ5UItIgWuIlEoYurJJunSRIxPuA\nbg06SCpBy2C0CRYWg0VSL4OXwWBBgqgBg5eKOzT//lFc/3tzb59Hfp+tz+8ZzsnvnP6e5/ScFLfb\nTXl5OSUlJUlo4b/3nfmlljn4/PxMX18fDocDp9P5JqbGsdrc3ExGRgY2m41gMMjk5CTDw8Of3q+W\nPEHsAXd7exuv15sQKy0tJTMzk/r6enZ3d+nv72d5efn/b+R/QNVvzhaLhaurq/jny8vL+JvL+9jF\nxcUfLQMl28bGBtPT04RCIUwm05tYS0sLZrMZrVZLbW0tR0dHSWrl92VnZ+NyudBoNOTl5ZGVlcXF\nxQWg/lxBbPnXbrcnXG9tbcVoNGIwGHA4HKrI1WsGg4H7+3vg47x8NQeVbHBwkPz8fNrb2xNiX41V\npXI6ndhsNiC2YfT9OFNrngDC4fCny9lWqzW+8c1ut3N9ff1jfgJUdXGurq5mdXUVgIODAywWC+np\n6QDk5uZyd3fH6ekp0WiU9fV1qqurk9ncb7u9vWVsbIyZmZn47svXMY/Hw+PjIxAbuL92lSrZ0tIS\nc3NzQGwZOxKJxHeYqzlXECtaRqMx4c3q+PiY7u5uXl5eiEaj7OzsqCJXr1VVVcXn2NraGjU1NW/i\nX81BpVpaWkKn09HZ2flp/LOxqlQdHR2cnJwAsQfF9+NMjXn6ZW9vj6Kiog9joVCIlZUVILbTOzMz\nU9GnIf6E6v+Vyu/3s7W1hUajYWRkhMPDQ0wmE42NjYTDYfx+PwBNTU14PJ4kt/Z7FhYWCAQCFBQU\nxK9VVlZSWFhIY2Mj8/PzLC4uotfrKS4uZmhoCI1Gk8QW/727uzt6enq4ubnh6emJ9vZ2IpGI6nMF\nseNTExMTzM7OAhAMBqmoqMButzM+Ps7m5iYpKSk0NDQo+pjH/v4+o6OjnJ2dodVqyc7Oxu/3MzAw\nwMPDAzk5Ofh8PnQ6HV1dXfh8PlJTUxPm4GdfpMnwUZ8ikQh6vT5enKxWK16vN96naDSaMFbr6uqS\n3JPfPuqT2+0mGAySlpaGwWDA5/NhNptVkyf4uF+BQIBAIEBZWRkulyt+b1tbG1NTU5yfn9Pb2xt/\nAFbqEbF/QvXFWQghhPhpVL2sLYQQQvxEUpyFEEIIhZHiLIQQQiiMFGchhBBCYaQ4CyGEEAojxVkI\nIYRQGCnOQgghhMJIcRZCCCEU5i963fxjQ38RDQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ft61ohe3hnYx", + "colab_type": "code", + "outputId": "5309896e-7f80-48ef-ec57-035bd448b1f2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 101 + } + }, + "cell_type": "code", + "source": [ + "! ls -al '/content/'" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total 16\n", + "drwxr-xr-x 4 root root 4096 Nov 1 16:42 .\n", + "drwxr-xr-x 1 root root 4096 Nov 5 13:25 ..\n", + "drwxr-xr-x 4 root root 4096 Nov 1 16:29 .config\n", + "drwxr-xr-x 2 root root 4096 Nov 1 16:42 sample_data\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "9KjjxpcGgfqw", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.models import load_model\n", + "model = load_model(\"Siamese_emb_not_trainable_model.h5\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RTv1FpZlgbHX", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "predict_results = model.predict([X_validation['left'][0:20],X_validation['right'][0:20]])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "y86Y9OOoGIDe", + "colab_type": "code", + "outputId": "cdec8ef6-e548-44d1-dc8d-4056e42b3de4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 353 + } + }, + "cell_type": "code", + "source": [ + "import numpy\n", + "numpy.round(predict_results,2)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[0.22],\n", + " [0.57],\n", + " [0.66],\n", + " [0.06],\n", + " [0.11],\n", + " [0.51],\n", + " [0.61],\n", + " [0.19],\n", + " [0. ],\n", + " [0.94],\n", + " [0.1 ],\n", + " [0.21],\n", + " [0.62],\n", + " [0.15],\n", + " [0.31],\n", + " [0.68],\n", + " [0.45],\n", + " [0.99],\n", + " [0.11],\n", + " [0.55]], dtype=float32)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 28 + } + ] + }, + { + "metadata": { + "id": "ZBcNAhfnGiKA", + "colab_type": "code", + "outputId": "0a6f7f60-8637-45b7-9be5-ec64e2b8aaab", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 50 + } + }, + "cell_type": "code", + "source": [ + "#觀察測試集中相似度高的 question pair-> 第9筆,相似度為0.94\n", + "X_validation['left'][9]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 151, 200, 166, 8054], dtype=int32)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 34 + } + ] + }, + { + "metadata": { + "id": "-KpAp5NzHjoF", + "colab_type": "code", + "outputId": "0d713b3a-f24c-46b6-8c7f-66ea6b6f9db1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67 + } + }, + "cell_type": "code", + "source": [ + "X_validation['right'][9]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 657,\n", + " 166, 14025], dtype=int32)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 35 + } + ] + }, + { + "metadata": { + "id": "P1-m7qc4J0WE", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "inv_vocabs = {}\n", + "for key in vocabs:\n", + " inv_vocabs[vocabs[key]] = key" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "E6qUkuwzKEHA", + "colab_type": "code", + "outputId": "c898d81b-122b-4878-e4fa-506b1ba2c16d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84 + } + }, + "cell_type": "code", + "source": [ + "#印出question的文字(pair的左邊)\n", + "for x in X_validation['left'][9]:\n", + " if x != 0:\n", + " print (inv_vocabs[x])\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "best\n", + "way\n", + "avoid\n", + "procrastination\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "O2hLe9R2Kot8", + "colab_type": "code", + "outputId": "8c88606a-bb5b-4a6f-b5d3-9f8d87028968", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67 + } + }, + "cell_type": "code", + "source": [ + "#印出question的文字(pair的右邊)\n", + "for x in X_validation['right'][9]:\n", + " if x != 0:\n", + " print (inv_vocabs[x])\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "could\n", + "avoid\n", + "laziness\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-CsvP4HyJyTw", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "BnbPnupJeMD6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "1CX8OrIf-2lb", + "colab_type": "code", + "outputId": "92f88bf1-9f5d-429d-8760-c87a6219e600", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 655 + } + }, + "cell_type": "code", + "source": [ + "#使用亂數模擬資料\n", + "import numpy as np\n", + "\n", + "num_samples = 100\n", + "num_symbols = 10\n", + "\n", + "TRACE = True\n", + "\n", + "left_data = np.random.randint(0,num_symbols, size=(num_samples,1,128))\n", + "if TRACE:\n", + " print(type(left_data))\n", + " print(left_data.shape)\n", + " print(left_data)\n", + " print('-'*50)\n", + "\n", + "right_data = np.random.randint(0,num_symbols, size=(num_samples,1,128))\n", + "if TRACE:\n", + " print(type(right_data))\n", + " print(right_data.shape)\n", + " print(right_data)\n", + " print('-'*50)\n", + "\n", + "matching_list = [np.random.randint(0,num_symbols) for _ in range(num_samples)]\n", + "targets = np.array(matching_list)\n", + "if TRACE:\n", + " print(type(targets))\n", + " print(targets.shape)\n", + " print(targets)\n", + " print('-'*50)\n", + "\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "(100, 1, 128)\n", + "[[[4 1 1 ... 4 4 7]]\n", + "\n", + " [[8 7 6 ... 9 8 7]]\n", + "\n", + " [[6 6 3 ... 7 4 2]]\n", + "\n", + " ...\n", + "\n", + " [[7 7 5 ... 8 0 6]]\n", + "\n", + " [[7 9 7 ... 0 9 5]]\n", + "\n", + " [[6 7 1 ... 2 6 7]]]\n", + "--------------------------------------------------\n", + "\n", + "(100, 1, 128)\n", + "[[[2 3 3 ... 5 3 0]]\n", + "\n", + " [[2 1 6 ... 0 7 8]]\n", + "\n", + " [[8 9 3 ... 6 0 4]]\n", + "\n", + " ...\n", + "\n", + " [[4 9 7 ... 7 9 5]]\n", + "\n", + " [[7 3 0 ... 7 8 3]]\n", + "\n", + " [[9 4 8 ... 4 3 4]]]\n", + "--------------------------------------------------\n", + "\n", + "(100,)\n", + "[0 8 3 4 5 0 1 0 3 1 1 4 7 4 6 7 4 0 8 0 2 6 5 3 2 3 5 7 5 7 7 4 1 1 0 8 1\n", + " 9 5 2 8 9 1 5 3 0 0 7 9 4 2 5 4 3 6 0 4 0 0 9 4 8 7 7 6 8 5 2 5 0 5 8 0 6\n", + " 3 1 7 9 8 4 0 9 5 3 9 2 4 4 5 2 0 0 4 6 2 3 5 9 7 7]\n", + "--------------------------------------------------\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "HBuMbQNjdW-9", + "colab_type": "code", + "outputId": "88925619-2564-45df-9851-f83a0a84f526", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "#書上的範例程式, 並未使用Embedding layer\n", + "from keras import layers\n", + "from keras import Input\n", + "from keras.models import Model\n", + "\n", + "# Instantiates a single LSTM layer, once\n", + "lstm = layers.LSTM(32)\n", + "\n", + "# Building the left branch of the model: \n", + "# inputs are variable-length sequences of vectors of size 128.\n", + "left_input = Input(shape=(None, 128))\n", + "left_output = lstm(left_input)\n", + "\n", + "# Building the right branch of the model:\n", + "# when you call an existing layer instance, you reuse its weights.\n", + "right_input = Input(shape=(None, 128))\n", + "right_output = lstm(right_input)\n", + "\n", + "# Builds the classifier on top\n", + "merged = layers.concatenate([left_output, right_output], axis=-1)\n", + "predictions = layers.Dense(1, activation='sigmoid')(merged)\n", + "\n", + "# Instantiating the model\n", + "model = Model([left_input, right_input], predictions)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + } + ] + }, + { + "metadata": { + "id": "ImWzdhm1Grff", + "colab_type": "code", + "outputId": "b05150bb-dc28-4bbc-9e2d-1de82f5a94ac", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 746 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_1 (InputLayer) (None, None, 128) 0 \n", + "__________________________________________________________________________________________________\n", + "input_2 (InputLayer) (None, None, 128) 0 \n", + "__________________________________________________________________________________________________\n", + "lstm_1 (LSTM) (None, 32) 20608 input_1[0][0] \n", + " input_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 64) 0 lstm_1[0][0] \n", + " lstm_1[1][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 1) 65 concatenate_1[0][0] \n", + "==================================================================================================\n", + "Total params: 20,673\n", + "Trainable params: 20,673\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140658436107456\n\ninput_1: InputLayer\n\ninput:\n\noutput:\n\n(None, None, 128)\n\n(None, None, 128)\n\n\n\n140658436107344\n\nlstm_1: LSTM\n\ninput:\n\noutput:\n\n(None, None, 128)\n\n(None, 32)\n\n\n\n140658436107456->140658436107344\n\n\n\n\n\n140657393087768\n\ninput_2: InputLayer\n\ninput:\n\noutput:\n\n(None, None, 128)\n\n(None, None, 128)\n\n\n\n140657393087768->140658436107344\n\n\n\n\n\n140657393087208\n\nconcatenate_1: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 32)]\n\n(None, 64)\n\n\n\n140658436107344->140657393087208\n\n\n\n\n\n140657393087040\n\ndense_1: Dense\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 1)\n\n\n\n140657393087208->140657393087040\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "rEGypXHxG9fa", + "colab_type": "code", + "outputId": "31221ec2-fb2d-4d0f-d227-28511d89fc14", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67 + } + }, + "cell_type": "code", + "source": [ + "# 使用模擬資料進行training\n", + "# We must compile a model before training/testing.\n", + "model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['acc'])\n", + "\n", + "# Training the model: when you train such a model,\n", + "# the weights of the LSTM layer are updated based on both inputs.\n", + "model.fit([left_data, right_data],targets)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/1\n", + "100/100 [==============================] - 3s 31ms/step - loss: -3.0247 - acc: 0.0900\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "KGJ0nkWX-2lh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.1.6. Models as layers\n", + "\n", + "Importantly, in the functional API, models can be used as you’d use layers—effectively, you can think of a model as a “bigger layer.” This is true of both the Sequential and Model classes. This means you can call a model on an input tensor and retrieve an output tensor: \n", + "\n", + " y = model(x)\n", + "\n", + "If the model has multiple input tensors and multiple output tensors, it should be called with a list of tensors: \n", + "\n", + " y1, y2 = model([x1, x2])\n", + "\n", + "When you call a model instance, you’re reusing the weights of the model—exactly like what happens when you call a layer instance. Calling an instance, whether it’s a layer instance or a model instance, will always reuse the existing learned representations of the instance—which is intuitive." + ] + }, + { + "metadata": { + "id": "ojA1GoJb-2lh", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import layers\n", + "from keras import applications \n", + "from keras import Input\n", + "\n", + "nbr_classes = 10\n", + "\n", + "# The base image-processing model is the Xception network (convolutional base only).\n", + "xception_base = applications.Xception(weights=None,include_top=False)\n", + "\n", + "# The inputs are 250 × 250 RGB images.\n", + "left_input = Input(shape=(250, 250, 3))\n", + "right_input = Input(shape=(250, 250, 3))\n", + "\n", + "left_features = xception_base(left_input)\n", + "# right_input = xception_base(right_input)\n", + "right_features = xception_base(right_input)\n", + "\n", + "merged_features = layers.concatenate([left_features, right_features], axis=-1)\n", + "\n", + "predictions = layers.Dense(nbr_classes, activation='softmax')(merged_features)\n", + "\n", + "# Instantiating the model\n", + "model = Model([left_input, right_input], predictions)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RiTOYosP-2lj", + "colab_type": "code", + "outputId": "afbd7590-0616-43a1-c1e0-e4a0d34f2c8f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 746 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_4 (InputLayer) (None, 250, 250, 3) 0 \n", + "__________________________________________________________________________________________________\n", + "input_5 (InputLayer) (None, 250, 250, 3) 0 \n", + "__________________________________________________________________________________________________\n", + "xception (Model) multiple 20861480 input_4[0][0] \n", + " input_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_2 (Concatenate) (None, 8, 8, 4096) 0 xception[1][0] \n", + " xception[2][0] \n", + "__________________________________________________________________________________________________\n", + "dense_2 (Dense) (None, 8, 8, 10) 40970 concatenate_2[0][0] \n", + "==================================================================================================\n", + "Total params: 20,902,450\n", + "Trainable params: 20,847,922\n", + "Non-trainable params: 54,528\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140657273414712\n\ninput_4: InputLayer\n\ninput:\n\noutput:\n\n(None, 250, 250, 3)\n\n(None, 250, 250, 3)\n\n\n\n140656954947512\n\nxception: Model\n\ninput:\n\noutput:\n\nmultiple\n\nmultiple\n\n\n\n140657273414712->140656954947512\n\n\n\n\n\n140657232134664\n\ninput_5: InputLayer\n\ninput:\n\noutput:\n\n(None, 250, 250, 3)\n\n(None, 250, 250, 3)\n\n\n\n140657232134664->140656954947512\n\n\n\n\n\n140656955306448\n\nconcatenate_2: Concatenate\n\ninput:\n\noutput:\n\n[(None, 8, 8, 2048), (None, 8, 8, 2048)]\n\n(None, 8, 8, 4096)\n\n\n\n140656954947512->140656955306448\n\n\n\n\n\n140656955083520\n\ndense_2: Dense\n\ninput:\n\noutput:\n\n(None, 8, 8, 4096)\n\n(None, 8, 8, 10)\n\n\n\n140656955306448->140656955083520\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "q28xgEGt-2lm", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/7_2_Inspecting_and_monitoring_DL_models.ipynb b/7_2_Inspecting_and_monitoring_DL_models.ipynb new file mode 100644 index 0000000..0daa735 --- /dev/null +++ b/7_2_Inspecting_and_monitoring_DL_models.ipynb @@ -0,0 +1,1966 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "7.2-Inspecting_and_monitoring_DL_models.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "r3dnK4h7vCs1" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "22U4wtacvCrZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Companion Notebook - 7.2 Inspecting and monitoring DL models \n", + "# using Keras callbacks and TensorBoard\n", + "## Chap 7 «Advanced Deep-learning best practices»\n", + "## «Deep Learning with Python» book by François Chollet\n", + "\n", + "This notebook contains the code samples found in Chapter 7 of «Deep Learning with Python». Note that the original text features far more content, in particular further explanations and figures.\n", + "\n", + "修改與補充Claude COULOMBE的github :https://github.com/ClaudeCoulombe/deep-learning-with-python-notebooks (by Claude COULOMBE - PhD candidate - TÉLUQ / UQAM - Montréal.)" + ] + }, + { + "metadata": { + "id": "3khujC1uvCrb", + "colab_type": "code", + "outputId": "e8031b79-c66c-4921-ca12-a5bee5271b4b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + } + }, + "cell_type": "code", + "source": [ + "# sudo pip3 install --ignore-installed --upgrade tensorflow\n", + "import tensorflow as tf\n", + "import keras.backend.tensorflow_backend as KTF\n", + "config = tf.ConfigProto()\n", + "config.gpu_options.allow_growth = True\n", + "session = tf.Session(config=config)\n", + "KTF.set_session(session)\n", + "import keras\n", + "print(keras.__version__)\n", + "print(tf.__version__)\n", + "# To ignore keep_dims warning\n", + "tf.logging.set_verbosity(tf.logging.ERROR)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "2.2.4\n", + "1.12.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "tcrWMnMwxLib", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Install some packages to visualize the network structure\n", + "\n", + "\n" + ] + }, + { + "metadata": { + "id": "BDNuWfzUw5Lc", + "colab_type": "code", + "outputId": "57ff7aea-5ce4-45ee-c392-2d4cb8c57c83", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3140 + } + }, + "cell_type": "code", + "source": [ + "!pip install graphviz \n", + "!apt-get install graphviz " + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting graphviz\n", + " Downloading https://files.pythonhosted.org/packages/1f/e2/ef2581b5b86625657afd32030f90cf2717456c1d2b711ba074bf007c0f1a/graphviz-0.10.1-py2.py3-none-any.whl\n", + "Installing collected packages: graphviz\n", + "Successfully installed graphviz-0.10.1\n", + "Reading package lists... Done\n", + "Building dependency tree \n", + "Reading state information... Done\n", + "The following additional packages will be installed:\n", + " fontconfig libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "Suggested packages:\n", + " gsfonts graphviz-doc libgd-tools\n", + "The following NEW packages will be installed:\n", + " fontconfig graphviz libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "0 upgraded, 30 newly installed, 0 to remove and 5 not upgraded.\n", + "Need to get 4,154 kB of archives.\n", + "After this operation, 16.1 MB of additional disk space will be used.\n", + "Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]\n", + "Get:2 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libann0 amd64 1.1.2+doc-6 [24.8 kB]\n", + "Get:3 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcdt5 amd64 2.40.1-2 [19.6 kB]\n", + "Get:4 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcgraph6 amd64 2.40.1-2 [40.8 kB]\n", + "Get:5 http://archive.ubuntu.com/ubuntu bionic/main amd64 libjbig0 amd64 2.1-3.1build1 [26.7 kB]\n", + "Get:6 http://archive.ubuntu.com/ubuntu bionic/main amd64 libtiff5 amd64 4.0.9-5 [152 kB]\n", + "Get:7 http://archive.ubuntu.com/ubuntu bionic/main amd64 libwebp6 amd64 0.6.1-2 [185 kB]\n", + "Get:8 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxpm4 amd64 1:3.5.12-1 [34.0 kB]\n", + "Get:9 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libgd3 amd64 2.2.5-4ubuntu0.2 [119 kB]\n", + "Get:10 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-0.7-5 amd64 0.7.6+darcs121130-4 [150 kB]\n", + "Get:11 http://archive.ubuntu.com/ubuntu bionic/main amd64 libpixman-1-0 amd64 0.34.0-2 [229 kB]\n", + "Get:12 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render0 amd64 1.13-1 [14.7 kB]\n", + "Get:13 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-shm0 amd64 1.13-1 [5,572 B]\n", + "Get:14 http://archive.ubuntu.com/ubuntu bionic/main amd64 libcairo2 amd64 1.15.10-2 [580 kB]\n", + "Get:15 http://archive.ubuntu.com/ubuntu bionic/main amd64 libltdl7 amd64 2.4.6-2 [38.8 kB]\n", + "Get:16 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai-data all 0.1.27-2 [133 kB]\n", + "Get:17 http://archive.ubuntu.com/ubuntu bionic/main amd64 libdatrie1 amd64 0.2.10-7 [17.8 kB]\n", + "Get:18 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai0 amd64 0.1.27-2 [18.0 kB]\n", + "Get:19 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpango-1.0-0 amd64 1.40.14-1ubuntu0.1 [153 kB]\n", + "Get:20 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangoft2-1.0-0 amd64 1.40.14-1ubuntu0.1 [33.2 kB]\n", + "Get:21 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangocairo-1.0-0 amd64 1.40.14-1ubuntu0.1 [20.8 kB]\n", + "Get:22 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libpathplan4 amd64 2.40.1-2 [22.6 kB]\n", + "Get:23 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvc6 amd64 2.40.1-2 [601 kB]\n", + "Get:24 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvpr2 amd64 2.40.1-2 [169 kB]\n", + "Get:25 http://archive.ubuntu.com/ubuntu bionic/universe amd64 liblab-gamut1 amd64 2.40.1-2 [178 kB]\n", + "Get:26 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxt6 amd64 1:1.1.5-1 [160 kB]\n", + "Get:27 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxmu6 amd64 2:1.1.2-2 [46.0 kB]\n", + "Get:28 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxaw7 amd64 2:1.0.13-1 [173 kB]\n", + "Get:29 http://archive.ubuntu.com/ubuntu bionic/universe amd64 graphviz amd64 2.40.1-2 [601 kB]\n", + "Get:30 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-bin amd64 0.7.6+darcs121130-4 [41.3 kB]\n", + "Fetched 4,154 kB in 2s (2,285 kB/s)\n", + "Selecting previously unselected package fontconfig.\n", + "(Reading database ... 22280 files and directories currently installed.)\n", + "Preparing to unpack .../00-fontconfig_2.12.6-0ubuntu2_amd64.deb ...\n", + "Unpacking fontconfig (2.12.6-0ubuntu2) ...\n", + "Selecting previously unselected package libann0.\n", + "Preparing to unpack .../01-libann0_1.1.2+doc-6_amd64.deb ...\n", + "Unpacking libann0 (1.1.2+doc-6) ...\n", + "Selecting previously unselected package libcdt5.\n", + "Preparing to unpack .../02-libcdt5_2.40.1-2_amd64.deb ...\n", + "Unpacking libcdt5 (2.40.1-2) ...\n", + "Selecting previously unselected package libcgraph6.\n", + "Preparing to unpack .../03-libcgraph6_2.40.1-2_amd64.deb ...\n", + "Unpacking libcgraph6 (2.40.1-2) ...\n", + "Selecting previously unselected package libjbig0:amd64.\n", + "Preparing to unpack .../04-libjbig0_2.1-3.1build1_amd64.deb ...\n", + "Unpacking libjbig0:amd64 (2.1-3.1build1) ...\n", + "Selecting previously unselected package libtiff5:amd64.\n", + "Preparing to unpack .../05-libtiff5_4.0.9-5_amd64.deb ...\n", + "Unpacking libtiff5:amd64 (4.0.9-5) ...\n", + "Selecting previously unselected package libwebp6:amd64.\n", + "Preparing to unpack .../06-libwebp6_0.6.1-2_amd64.deb ...\n", + "Unpacking libwebp6:amd64 (0.6.1-2) ...\n", + "Selecting previously unselected package libxpm4:amd64.\n", + "Preparing to unpack .../07-libxpm4_1%3a3.5.12-1_amd64.deb ...\n", + "Unpacking libxpm4:amd64 (1:3.5.12-1) ...\n", + "Selecting previously unselected package libgd3:amd64.\n", + "Preparing to unpack .../08-libgd3_2.2.5-4ubuntu0.2_amd64.deb ...\n", + "Unpacking libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Selecting previously unselected package libgts-0.7-5:amd64.\n", + "Preparing to unpack .../09-libgts-0.7-5_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Selecting previously unselected package libpixman-1-0:amd64.\n", + "Preparing to unpack .../10-libpixman-1-0_0.34.0-2_amd64.deb ...\n", + "Unpacking libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Selecting previously unselected package libxcb-render0:amd64.\n", + "Preparing to unpack .../11-libxcb-render0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-render0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libxcb-shm0:amd64.\n", + "Preparing to unpack .../12-libxcb-shm0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-shm0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libcairo2:amd64.\n", + "Preparing to unpack .../13-libcairo2_1.15.10-2_amd64.deb ...\n", + "Unpacking libcairo2:amd64 (1.15.10-2) ...\n", + "Selecting previously unselected package libltdl7:amd64.\n", + "Preparing to unpack .../14-libltdl7_2.4.6-2_amd64.deb ...\n", + "Unpacking libltdl7:amd64 (2.4.6-2) ...\n", + "Selecting previously unselected package libthai-data.\n", + "Preparing to unpack .../15-libthai-data_0.1.27-2_all.deb ...\n", + "Unpacking libthai-data (0.1.27-2) ...\n", + "Selecting previously unselected package libdatrie1:amd64.\n", + "Preparing to unpack .../16-libdatrie1_0.2.10-7_amd64.deb ...\n", + "Unpacking libdatrie1:amd64 (0.2.10-7) ...\n", + "Selecting previously unselected package libthai0:amd64.\n", + "Preparing to unpack .../17-libthai0_0.1.27-2_amd64.deb ...\n", + "Unpacking libthai0:amd64 (0.1.27-2) ...\n", + "Selecting previously unselected package libpango-1.0-0:amd64.\n", + "Preparing to unpack .../18-libpango-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangoft2-1.0-0:amd64.\n", + "Preparing to unpack .../19-libpangoft2-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangocairo-1.0-0:amd64.\n", + "Preparing to unpack .../20-libpangocairo-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpathplan4.\n", + "Preparing to unpack .../21-libpathplan4_2.40.1-2_amd64.deb ...\n", + "Unpacking libpathplan4 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvc6.\n", + "Preparing to unpack .../22-libgvc6_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvc6 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvpr2.\n", + "Preparing to unpack .../23-libgvpr2_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvpr2 (2.40.1-2) ...\n", + "Selecting previously unselected package liblab-gamut1.\n", + "Preparing to unpack .../24-liblab-gamut1_2.40.1-2_amd64.deb ...\n", + "Unpacking liblab-gamut1 (2.40.1-2) ...\n", + "Selecting previously unselected package libxt6:amd64.\n", + "Preparing to unpack .../25-libxt6_1%3a1.1.5-1_amd64.deb ...\n", + "Unpacking libxt6:amd64 (1:1.1.5-1) ...\n", + "Selecting previously unselected package libxmu6:amd64.\n", + "Preparing to unpack .../26-libxmu6_2%3a1.1.2-2_amd64.deb ...\n", + "Unpacking libxmu6:amd64 (2:1.1.2-2) ...\n", + "Selecting previously unselected package libxaw7:amd64.\n", + "Preparing to unpack .../27-libxaw7_2%3a1.0.13-1_amd64.deb ...\n", + "Unpacking libxaw7:amd64 (2:1.0.13-1) ...\n", + "Selecting previously unselected package graphviz.\n", + "Preparing to unpack .../28-graphviz_2.40.1-2_amd64.deb ...\n", + "Unpacking graphviz (2.40.1-2) ...\n", + "Selecting previously unselected package libgts-bin.\n", + "Preparing to unpack .../29-libgts-bin_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Setting up libpathplan4 (2.40.1-2) ...\n", + "Setting up liblab-gamut1 (2.40.1-2) ...\n", + "Setting up libxcb-render0:amd64 (1.13-1) ...\n", + "Setting up libjbig0:amd64 (2.1-3.1build1) ...\n", + "Setting up libdatrie1:amd64 (0.2.10-7) ...\n", + "Setting up libtiff5:amd64 (4.0.9-5) ...\n", + "Setting up libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n", + "Setting up libltdl7:amd64 (2.4.6-2) ...\n", + "Setting up libann0 (1.1.2+doc-6) ...\n", + "Setting up libxcb-shm0:amd64 (1.13-1) ...\n", + "Setting up libxpm4:amd64 (1:3.5.12-1) ...\n", + "Setting up libxt6:amd64 (1:1.1.5-1) ...\n", + "Setting up libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libthai-data (0.1.27-2) ...\n", + "Setting up libcdt5 (2.40.1-2) ...\n", + "Setting up fontconfig (2.12.6-0ubuntu2) ...\n", + "Regenerating fonts cache... done.\n", + "Setting up libcgraph6 (2.40.1-2) ...\n", + "Setting up libwebp6:amd64 (0.6.1-2) ...\n", + "Setting up libcairo2:amd64 (1.15.10-2) ...\n", + "Setting up libgvpr2 (2.40.1-2) ...\n", + "Setting up libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Setting up libthai0:amd64 (0.1.27-2) ...\n", + "Setting up libxmu6:amd64 (2:1.1.2-2) ...\n", + "Setting up libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libxaw7:amd64 (2:1.0.13-1) ...\n", + "Setting up libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libgvc6 (2.40.1-2) ...\n", + "Setting up graphviz (2.40.1-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ikjjtc_lvp7v", + "colab_type": "code", + "outputId": "2054ccbd-2726-4c7e-de50-4febdb488ba0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 191 + } + }, + "cell_type": "code", + "source": [ + "# Install pydot to visualize the network structure\n", + "!pip install pydot" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting pydot\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/c3/f1/e61d6dfe6c1768ed2529761a68f70939e2569da043e9f15a8d84bf56cadf/pydot-1.2.4.tar.gz (132kB)\n", + "\r\u001b[K 7% |██▌ | 10kB 21.4MB/s eta 0:00:01\r\u001b[K 15% |█████ | 20kB 2.9MB/s eta 0:00:01\r\u001b[K 23% |███████▌ | 30kB 3.3MB/s eta 0:00:01\r\u001b[K 31% |██████████ | 40kB 3.1MB/s eta 0:00:01\r\u001b[K 38% |████████████▍ | 51kB 3.4MB/s eta 0:00:01\r\u001b[K 46% |███████████████ | 61kB 4.0MB/s eta 0:00:01\r\u001b[K 54% |█████████████████▍ | 71kB 4.2MB/s eta 0:00:01\r\u001b[K 62% |███████████████████▉ | 81kB 4.1MB/s eta 0:00:01\r\u001b[K 69% |██████████████████████▍ | 92kB 4.5MB/s eta 0:00:01\r\u001b[K 77% |████████████████████████▉ | 102kB 4.7MB/s eta 0:00:01\r\u001b[K 85% |███████████████████████████▎ | 112kB 4.7MB/s eta 0:00:01\r\u001b[K 93% |█████████████████████████████▉ | 122kB 5.9MB/s eta 0:00:01\r\u001b[K 100% |████████████████████████████████| 133kB 5.9MB/s \n", + "\u001b[?25hRequirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", + "Building wheels for collected packages: pydot\n", + " Running setup.py bdist_wheel for pydot ... \u001b[?25l-\b \bdone\n", + "\u001b[?25h Stored in directory: /root/.cache/pip/wheels/6a/a5/14/25541ebcdeaf97a37b6d05c7ff15f5bd20f5e91b99d313e5b4\n", + "Successfully built pydot\n", + "Installing collected packages: pydot\n", + "Successfully installed pydot-1.2.4\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "vR2KUIrbwHXC", + "colab_type": "code", + "outputId": "6727c5d5-fe3c-4c76-a681-9007b2a9f2d0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 124 + } + }, + "cell_type": "code", + "source": [ + "! pip install pydot-ng" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting pydot-ng\n", + " Downloading https://files.pythonhosted.org/packages/3c/5b/9a08333f2d70d404ffe42cea4f50159c4ad94feaa4d7585551c05cacef46/pydot_ng-2.0.0-py2.py3-none-any.whl\n", + "Requirement already satisfied: pyparsing>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from pydot-ng) (2.3.0)\n", + "Installing collected packages: pydot-ng\n", + "Successfully installed pydot-ng-2.0.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Qk_sxXLQxzDb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### After fininishing the installation, you have to restart the runtime!!" + ] + }, + { + "metadata": { + "id": "kzRenJDNvCro", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 7.2. Inspecting and monitoring DL models using Keras call-backs and TensorBoard \n", + "\n", + "In this section, we’ll review ways to gain greater access to and control over what goes on inside your model during training. Launching a training run on a large dataset for tens of epochs using model.fit() or model.fit_generator() can be a bit like launching a paper airplane: past the initial impulse, you don’t have any control over its trajectory or its landing spot. If you want to avoid bad outcomes (and thus wasted paper airplanes), it’s smarter to use not a paper plane, but a drone that can sense its environment, send data back to its operator, and automatically make steering decisions based on its current state. The techniques we present here will transform the call to model.fit() from a paper airplane into a smart, autonomous drone that can self-introspect and dynamically take action. \n", + "\n", + "### 7.2.1. Using callbacks to act on a model during training \n", + "\n", + "When you’re training a model, there are many things you can’t predict from the start. In particular, you can’t tell how many epochs will be needed to get to an optimal validation loss. The examples so far have adopted the strategy of training for enough epochs that you begin overfitting, using the first run to figure out the proper number of epochs to train for, and then finally launching a new training run from scratch using this optimal number. Of course, this approach is wasteful. \n", + "\n", + "A much better way to handle this is to stop training when you measure that the validation loss in no longer improving. This can be achieved using a Keras callback. A callback is an object (a class instance implementing specific methods) that is passed to the model in the call to fit and that is called by the model at various points during training. It has access to all the available data about the state of the model and its performance, and it can take action: interrupt training, save a model, load a different weight set, or otherwise alter the state of the model.\n", + "\n", + "Here are some examples of ways you can use callbacks: \n", + "\n", + "* **Model checkpointing** — Saving the current weights of the model at different points during training. \n", + "* **Early stopping** — Interrupting training when the validation loss is no longer improving (and of course, saving the best model obtained during training). \n", + "* **Dynamically adjusting the value of certain parameters during training** — Such as the learning rate of the optimizer. \n", + "* **Logging / Visualizing training and validation metrics during training** or visualizing the representations learned by the model as they’re updated — The Keras progress bar that you’re familiar with is a callback!\n", + "\n", + "The keras.callbacks module includes a number of built-in callbacks (this is not an exhaustive list):\n", + "\n", + "https://keras.io/callbacks/\n", + "\n", + "* keras.callbacks.ModelCheckpoint\n", + "* keras.callbacks.EarlyStopping\n", + "* keras.callbacks.LearningRateScheduler\n", + "* keras.callbacks.ReduceLROnPlateau\n", + "* keras.callbacks.CSVLogger\n", + "\n", + "### The ModelCheckpoint and EarlyStopping callbacks\n", + "\n", + "You can use the `EarlyStopping` callback to interrupt training once a target metric being monitored has stopped improving for a fixed number of epochs. For instance, this callback allows you to interrupt training as soon as you start overfitting, thus avoiding having to retrain your model for a smaller number of epochs. This callback is typically used in combination with `ModelCheckpoint`, which lets you continually save the model during training (and, optionally, save only the current best model so far: the version of the model that achieved the best performance at the end of an epoch)" + ] + }, + { + "metadata": { + "id": "QQl57IvlvCrr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "```Python\n", + "\n", + "import keras\n", + "\n", + "# Callbacks are passed to the model via the callbacks argument in fit, \n", + "# which takes a list of callbacks. You can pass any number of callbacks.\n", + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=1,\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath='my_model_callback.h5',\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " )\n", + "]\n", + "\n", + "# You monitor accuracy, so it should be part of the model’s metrics.\n", + "model.compile(optimizer='rmsprop',\n", + " loss='binary_crossentropy', \n", + " metrics=['acc'])\n", + "\n", + "# Note that because the callback will monitor validation loss and validation accuracy,\n", + "# you need to pass validation_data to the call to fit.\n", + "model.fit(x, y,\n", + " epochs=10,\n", + " batch_size=32,\n", + " callbacks=callbacks_list,\n", + " validation_data=(x_val, y_val)\n", + " )\n", + "```" + ] + }, + { + "metadata": { + "id": "bKIknm9rvCrs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Train a CNN model using the Functional API and the MNIST data\n", + "### with EarlyStopping and ModelCheckpoint callbacks\n", + "\n", + "Inspired by: \n", + "https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py" + ] + }, + { + "metadata": { + "id": "0f7t6LeGvCrv", + "colab_type": "code", + "outputId": "9c1be191-e2a2-43b8-901e-dcb50afada2d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 104 + } + }, + "cell_type": "code", + "source": [ + "'''Trains a simple convnet on the MNIST dataset.\n", + "Gets to 99.25% test accuracy after 12 epochs\n", + "(there is still a lot of margin for parameter tuning).\n", + "16 seconds per epoch on a GRID K520 GPU.\n", + "'''\n", + "\n", + "from __future__ import print_function\n", + "import keras\n", + "from keras.datasets import mnist\n", + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.layers import Dense, Dropout, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras import backend as K\n", + "\n", + "batch_size = 128\n", + "num_classes = 10\n", + "epochs = 12\n", + "\n", + "# input image dimensions\n", + "img_rows, img_cols = 28, 28\n", + "\n", + "# the data, split between train and test sets\n", + "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", + "\n", + "if K.image_data_format() == 'channels_first':\n", + " x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n", + " x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n", + " input_shape = (1, img_rows, img_cols)\n", + "else:\n", + " x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n", + " x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n", + " input_shape = (img_rows, img_cols, 1)\n", + "\n", + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "x_train /= 255\n", + "x_test /= 255\n", + "print('x_train shape:', x_train.shape)\n", + "print(x_train.shape[0], 'train samples')\n", + "print(x_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "\n", + "def cnn_layers(inputs):\n", + " x = layers.Conv2D(32, (3, 3),\n", + " activation='relu', padding='valid')(inputs)\n", + " x = layers.MaxPooling2D(pool_size=(2, 2))(x)\n", + " x = layers.Conv2D(64, (3, 3), activation='relu')(x)\n", + " x = layers.MaxPooling2D(pool_size=(2, 2))(x)\n", + " x = layers.Flatten()(x)\n", + " x = layers.Dense(512, activation='relu')(x)\n", + " x = layers.Dropout(0.5)(x)\n", + " predictions = layers.Dense(num_classes,\n", + " activation='softmax',\n", + " name='x_train_out')(x)\n", + " return predictions\n", + "\n", + "model_input = layers.Input(shape=(28, 28, 1), dtype='float32', name='images')\n", + "model_output = cnn_layers(model_input)\n", + "model = keras.models.Model(inputs=model_input, outputs=model_output)\n", + "\n", + "model.compile(loss=keras.losses.categorical_crossentropy,\n", + " optimizer=keras.optimizers.Adadelta(),\n", + " metrics=['accuracy'])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz\n", + "11493376/11490434 [==============================] - 1s 0us/step\n", + "x_train shape: (60000, 28, 28, 1)\n", + "60000 train samples\n", + "10000 test samples\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "FmRWzHWPvCr5", + "colab_type": "code", + "outputId": "05cb43bc-c604-4173-fc26-247ad743c69a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1293 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "images (InputLayer) (None, 28, 28, 1) 0 \n", + "_________________________________________________________________\n", + "conv2d_1 (Conv2D) (None, 26, 26, 32) 320 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 11, 11, 64) 18496 \n", + "_________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 1600) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 512) 819712 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "x_train_out (Dense) (None, 10) 5130 \n", + "=================================================================\n", + "Total params: 843,658\n", + "Trainable params: 843,658\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140397339618440\n\nimages: InputLayer\n\n\n\n140397339616424\n\nconv2d_1: Conv2D\n\n\n\n140397339618440->140397339616424\n\n\n\n\n\n140397339617880\n\nmax_pooling2d_1: MaxPooling2D\n\n\n\n140397339616424->140397339617880\n\n\n\n\n\n140397339618776\n\nconv2d_2: Conv2D\n\n\n\n140397339617880->140397339618776\n\n\n\n\n\n140397234210576\n\nmax_pooling2d_2: MaxPooling2D\n\n\n\n140397339618776->140397234210576\n\n\n\n\n\n140397234211304\n\nflatten_1: Flatten\n\n\n\n140397234210576->140397234211304\n\n\n\n\n\n140397234329528\n\ndense_1: Dense\n\n\n\n140397234211304->140397234329528\n\n\n\n\n\n140397233919480\n\ndropout_1: Dropout\n\n\n\n140397234329528->140397233919480\n\n\n\n\n\n140397233919760\n\nx_train_out: Dense\n\n\n\n140397233919480->140397233919760\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "pufcBwRWvCsD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Training the model" + ] + }, + { + "metadata": { + "id": "XfXxwJpIvCsF", + "colab_type": "code", + "outputId": "220c920e-b7c2-4d48-c854-e915a4dc9395", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 173 + } + }, + "cell_type": "code", + "source": [ + "# Callbacks are passed to the model via the callbacks argument in fit, \n", + "# which takes a list of callbacks. You can pass any number of callbacks.\n", + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=1,\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath='my_model_callback.h5',\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " )\n", + "]\n", + "\n", + "history = model.fit(x_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1,\n", + " callbacks=callbacks_list,\n", + " # C.COULOMBE, in order to keep a test dataset\n", + " # just create a validation dataset by splitting\n", + " # the training dataset\n", + " validation_split=0.2\n", + "# validation_data=(x_test, y_test)\n", + " )" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/12\n", + "48000/48000 [==============================] - 8s 170us/step - loss: 0.2664 - acc: 0.9168 - val_loss: 0.0859 - val_acc: 0.9728\n", + "Epoch 2/12\n", + "48000/48000 [==============================] - 5s 107us/step - loss: 0.0779 - acc: 0.9757 - val_loss: 0.0519 - val_acc: 0.9852\n", + "Epoch 3/12\n", + "48000/48000 [==============================] - 5s 105us/step - loss: 0.0540 - acc: 0.9829 - val_loss: 0.0418 - val_acc: 0.9879\n", + "Epoch 4/12\n", + "48000/48000 [==============================] - 5s 104us/step - loss: 0.0436 - acc: 0.9871 - val_loss: 0.0408 - val_acc: 0.9879\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "1WevHvzIvCsM", + "colab_type": "code", + "outputId": "fa1e1aaa-5f0e-4d55-fe20-6da6c808351e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 897 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# acc = history.history['acc']\n", + "# val_acc = history.history['val_acc']\n", + "# loss = history.history['loss']\n", + "# val_loss = history.history['val_loss']\n", + "\n", + "acc = history.history['acc'][1:]\n", + "val_acc = history.history['val_acc'][1:]\n", + "loss = history.history['loss'][1:]\n", + "val_loss = history.history['val_loss'][1:]\n", + "\n", + "# epochs = range(len(acc))\n", + "epochs = range(1,len(acc)+1)\n", + "\n", + "plt.figure(figsize=(10,7))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(10,7))\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAG4CAYAAAD1zMvGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XtclHXe//H3MAMeYAjGwBVM1zBT\nKS23SEJvExm1sG2p9VDayVU2zV/Z7ZbFremmmdXaam1rbsct0+wAa+2qCEplaZhppiYd3NWSUgE5\n44E5/P6YHGRTsHTgkuv1/Guu65rruj6fsXy8/X6vg8Xr9XoFAAAAwwlq7gIAAABwYgQ1AAAAgyKo\nAQAAGBRBDQAAwKAIagAAAAZFUAMAADAoghrQAs2YMUNDhw7V0KFDFR8fr4EDB/qXq6qqftKxhg4d\nquLi4ga/M2/ePC1duvR0Sj7jbrvtNmVmZp6RY1144YXat2+fcnJy9MADD5zW+V5//XX/51P5bQGY\nm625CwBw5v3xj3/0f05OTtZjjz2myy677Gcda9WqVY1+Z8qUKT/r2Gcbp9Mpp9P5s/cvKirSc889\npxEjRkg6td8WgLkxogaY0M0336w///nPuvrqq7V582YVFxfrd7/7nYYOHark5GS9+OKL/u8eG03K\nz8/XyJEjNW/ePF199dVKTk7Wxo0bJUn333+//vrXv0ryBcPXXntNv/3tb9WvXz/NnTvXf6xnnnlG\niYmJuuGGG/Tqq68qOTn5hPW98cYbuvrqqzV48GCNHj1ahYWFkqTMzEzdddddysjI0JAhQ3TNNdfo\nq6++kiR9++23Gj58uFJSUjRlyhS53e4fHfe9997TtddeW2/dddddp/fff7/B3+CYzMxM3XbbbY2e\nb82aNbr22ms1ZMgQXX/99dq5c6ckadSoUfruu+80dOhQHT161P/bStLLL7+sa665RkOHDtWECRN0\n8OBB/2/75JNP6vbbb9fAgQN1++2369ChQz+q7dChQ5o8ebKGDBmi5ORkPfroo/5t3377rUaPHi2n\n06kbbrhBO3bsaHB9cnKyNm3a5N//2PLevXvVr18/zZkzR2PGjGmwV0n629/+pkGDBmnIkCF65JFH\n5Ha7lZSUpG3btvm/s3jxYk2cOPFH/QDwIagBJrV9+3b961//Up8+fbRw4UJ17NhRq1at0t///nfN\nmzdP33///Y/2+fzzz9W7d2+tXLlSN910kxYuXHjCY3/88cdatmyZ3nrrLS1evFj79u3TV199peee\ne07Lly/XkiVLTjqaVFJSooceekgvvviiVq9erU6dOvlDoCS9//77uummm5Sdna0rrrhCf//73yVJ\nf/rTn5SYmKjc3Fzdeuut2rx584+OnZiYqH379unbb7+V5Asq+/bt05VXXnnKv8ExJzufy+XS/fff\nr1mzZik7O7teaJozZ446dOigVatWKSQkxH+sTz/9VM8//7xeeeUVrVq1SjExMZo3b55/+6pVq/Tn\nP/9ZOTk5OnjwoHJycn5Uz9KlS1VdXa1Vq1YpKytLmZmZ/rA1ffp0paamKicnRxMmTNB9993X4PqG\nlJWVqUePHlq8eHGDvW7atElvvvmmli9frnfeeUeffPKJVq9erauvvlr//Oc//cfLyclRampqo+cF\nzIqgBpjUgAEDFBTk+ytg2rRpmj59uiTpvPPOU1RUlPbu3fujfUJDQ5WSkiJJio+P13fffXfCY197\n7bWyWq1q37692rVrp++//14ff/yxEhISFB0drVatWumGG2444b7t2rXTJ598ol/84heSpMsuu8wf\nrCQpLi5OF110kSSpZ8+e/jC1adMmXXPNNZKkXr166fzzz//RsUNCQjRw4ECtXbtWkpSbm6uUlBTZ\nbLZT/g2OOdn5bDab1q9fr0suueSE9Z/Iu+++qyFDhqhdu3aSpOHDh+vDDz/0bx8wYIAiIiJks9nU\nrVu3EwbIsWPH6q9//assFovOOeccXXDBBdq7d6+OHDmi/Px8DRs2TJI0aNAgvf766ydd35ja2lr/\n9G9Dvb7//vsaMGCAwsLCFBISoldeeUWDBw9WamqqVqxYIY/Ho7KyMm3fvl0DBw5s9LyAWXGNGmBS\n55xzjv/ztm3b/CNIQUFBKioqksfj+dE+drvd/zkoKOiE35GksLAw/2er1Sq3262Kiop652zfvv0J\n93W73XryySe1du1aud1uVVdXq0uXLies4dixJam8vLzeecPDw094/CFDhujll1/WrbfeqtzcXP+0\n26n+Bsc0dL5XXnlFWVlZOnr0qI4ePSqLxXLS40jSwYMHFR0dXe9YJSUljfZ8vN27d2vu3Ln697//\nraCgIO3bt0/XX3+9ysrK5PF4/MewWCwKDQ3V/v37T7i+MVartV7fJ+u1tLS0Xk9t2rSRJF166aUK\nDg7Wxo0btW/fPvXr109t27Zt9LyAWTGiBkD33nuvhgwZouzsbK1atUqRkZFn/BxhYWGqqanxLx84\ncOCE31uxYoXWrl2rxYsXKzs7W3fdddcpHT88PLzeHa3HrvH6b/3791dBQYF2796t3bt3q2/fvpJ+\n+m9wsvNt3rxZzz77rBYuXKjs7GzNnj270drPPfdclZWV+ZfLysp07rnnNrrf8R566CFdcMEFWrly\npVatWqXu3btLkiIjI2WxWFRaWipJ8nq92rNnz0nXe73eH4Xw8vLyE56zoV4jIyP9x5Z8we3Ycmpq\nqlatWqVVq1b5RyUBnBhBDYBKSkp00UUXyWKxKCsrS4cOHaoXqs6EXr16KT8/XwcPHtTRo0f1j3/8\n46S1xMbGyuFwqLS0VCtXrlR1dXWjx7/kkkv8125t3rxZ33zzzQm/FxISon79+unxxx/XoEGDZLVa\n/ef9Kb/Byc538OBBtWvXTjExMTp06JCysrJUU1Mjr9crm82mmpoauVyuese66qqrlJOT4w8yr732\nmgYMGNBoz8crKSlRjx49ZLVa9eGHH2rPnj2qqalRSEiIkpKSlJWVJUlat26d0tPTT7reYrEoKipK\nBQUFknzB+ciRIyc8Z0O9Jicna+3atSovL5fL5dKdd96pDz74QJI0bNgw5ebmasuWLT+5T8BsCGoA\ndPfdd+vOO+/Utddeq5qaGo0cOVLTp08/adj5OXr16qW0tDSlpaXplltuOel1ScOGDVNZWZmcTqem\nTJmiyZMna9++ffXuHj2Re++9V3l5eUpJSdGrr76qK6+88qTfHTJkiHJzc3X11Vf71/3U3+Bk5+vf\nv7+io6OVkpKisWPH6tZbb5Xdbtddd92lCy+8UOecc46SkpLqXd/Xq1cvpaena/To0Ro6dKgqKyt1\nzz33NNjvf5swYYIeffRRDRs2TBs3btSkSZP01FNP6ZNPPtHDDz+svLw8DRo0SPPnz9ef/vQnSTrp\n+okTJ+qll17SsGHDtGvXLnXt2vWE52yo10suuUS/+93v9Jvf/Eapqanq2bOn/3q4Cy+8UBEREerX\nr59at279k/oEzMbi9Xq9zV0EAHPwer3+a5jeffddzZ8//6Qja2jZxo8frzFjxjCiBjSCETUATeLg\nwYPq27evCgsL5fV6tXLlSv/dgjCXTz75RIWFherfv39zlwIYHnd9AmgSDodDkydP1m233SaLxaLz\nzz//lJ7bhZblgQce0ObNm/X444/7Hw8D4OSY+gQAADAo/jkDAABgUC1y6rOoqLJJzhMZ2ValpWf2\nEQZnCzP3Lpm7f3o3Z++Sufs3c++Suftvit6jouwn3caI2mmw2azNXUKzMXPvkrn7p3fzMnP/Zu5d\nMnf/zd07QQ0AAMCgCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABhU\ni3wzgRE99dSf9cUXO3XwYIkOHz6smJhYhYefozlzHm903xUr3lFoaJgGDBh4wu0LFszT8OGjFBMT\ne6bLBgAAzYigdhJZWTbNnx+iL78MUrduHk2efFRpaa6ffbz/9//ukeQLXf/+9y5NmjT5lPe95ppr\nG9x+991TfnZdAADAuAIa1ObMmaOtW7fKYrEoIyNDvXr18m/Lzc3VwoULFRISotTUVI0ZM0bV1dWa\nOnWqysvLVVtbqzvvvFP9+/dXdna2XnjhBQUHB6t9+/Z65JFHFBISErC6s7Js+v3v2/iXd+60/rB8\n6LTC2ols3rxJr722WDU1NZo06R5t2fKJ3n13jTwejxITkzR2bLqef36RIiIi1KVLnDIzX5fFEqQ9\ne/6jq64apLFj0zVpUrr+93/vU17eGlVXV+mbb/aosHCv7rprihITk7R48UvKzV2tmJhYuVwujRo1\nWn36XOav4eOP8/Xcc88oODhYdrtdDz00V8HBwZo//0/6/PPtslqtuvfeB3T++V3961q3DtHkyffp\n/PO7ntHfAwAA1AlYUNu4caP27NmjZcuWadeuXcrIyNCyZcskSR6PR7NmzVJWVpYiIiI0fvx4paSk\nKDc3V126dNGUKVO0f/9+3XrrrVq1apVmz56tFStWyG63a/r06crJyVFqamqgStf8+ScOgQsWhJzx\noCZJu3Z9raVLMxUSEqItWz7RX//6nIKCgjRixHUaOfKmet/9/PMdWrLkLXk8Hg0ffq3Gjk2vt/3A\ngf3605+e1Ecfrdfy5W8pPv4iZWa+oaVL31J1dbVGjbpeo0aNrrdPZWWlZsyYrZiYWM2a9aDy8zeo\nVatWOnBgv/72t5f06aebtWZNjkpKSvzrdu8uUE5ODkENAIAAClhQ27Bhg1JSUiRJcXFxKi8vV1VV\nlcLCwlRaWqrw8HA5HA5JUt++fbV+/XpFRkbqiy++kCRVVFQoMjJSkhQREaGKigrZ7fZ66wPlyy9P\nfI/Fydafrq5dL/CPELZu3VqTJqXLarWqrKxMFRUV9b574YXd1bp165Meq1evSyRJ0dHRqqqq0t69\n3+r88+PUqlVrtWrVWj16xP9on4iICD366Gy53W59912hfvWry1VaelAXX9xbknTJJX10ySV99Oqr\nf/evu/zyy/XLX3Y/I/0DAIATC1hQKy4uVnx8XShwOBwqKipSWFiYHA6HqqurtXv3bsXGxio/P18J\nCQlKT09XZmamnE6nKioqtGjRIknStGnTlJaWJrvdrp49e+rKK69s8NyRkW1P6233PXtK27adaL1F\nUVH2euv+e7kxdntrtW0b4t8vIqKtwsLaKirKrsLCQr355lJlZWUpNDRUw4YNk8MRqtDQVgoLa62I\niLZq27a1f1+LxVdPSIhNkZG+751zTqiiouwqLQ1VcLBVERFt1bp13flatbIpIqJtvbofe2y2/va3\nvykuLk4PPfSQ7PbWcrvbyuPx1PteeHj9dT+195bGzP3Tu3mZuX8z9y6Zu//m7L3Jbibwer3+zxaL\nRXPnzlVGRobsdrs6duwoSVq+fLliYmL0/PPPq6CgQBkZGXrzzTc1e/ZsvfnmmzrvvPM0efJkrVmz\nRoMGDTrpuUpLa06r1kmT6l+jdsyddx5SUVHd1GdUlF1FRZU/6diVlYdVU3PUv19ZWY2OHKlVUVGl\n/v3vQoWHn6OaGo+2bPlYe/cWav/+MlVXH1Fw8OF635V8v2lRUaWOHnWptLTa/72iokqVllbr6FGX\nWrc+RwUFX+j770tVWVmpzz7bprKymnp1V1RUKjjYrn//+zt9+OEGxcR0VufOcVq8+CVdd91Iffll\ngd55Z7kGDXL61xUVfauXX16iKVOm/pyf+Kz3c/7sWwqz9r5/v0V79oSprOz0/n45m51zTluVl5uz\nfzP3Lpm7/+TktrLZAvt3XkNBMGBBLTo6WsXFxf7lAwcOKCoqyr+ckJCgJUuWSJLmzZun2NhYbdy4\nUf369ZMkde/eXQcOHNDBgwclSZ06dZIkJSYmavv27Q0GtdPluw7tkBYsqLvr8+67T++uz1NxwQXd\n1KZNW02YMFYXX3yJrrvues2b96h69er9s4/pcLST0zlU48ffos6du6hnz3hZrfVHG6+/frgmTPid\nzjuvk0aPvkUvvPA3LVz4gjp37qKJE8dJkqZMuV9xcV21bt17mjhxnIKDrbrrrntPq1/AyDweadu2\nIK1ebdPq1TZt3Xrs/5u2zVpX8zNz/2buXTJr/ykp0g9xpVlYvMcPdZ1Bmzdv1lNPPaUXX3xRO3bs\n0OzZs7V06VL/9nHjxunRRx9VmzZtNGLECL388sv6xz/+oeLiYt13330qLCzU2LFjtWLFCg0cOFD/\n+Mc/5HA49H//93+6/PLL9Zvf/Oak526qf+2fLSMLK1a8I6dzqKxWq265ZZSeeOIpRUe3P61jni29\nB4qZ+2/JvVdXS+vWWbV6tU05OTbt3++7LtVm8yox0a3Bg21yuQ43c5XNJyystaqqzNm/mXuXzN3/\ndde1VseOLXBErU+fPoqPj9eoUaNksVg0Y8YMZWZmym63y+l0asSIERo7dqwsFovS09PlcDg0cuRI\nZWRkaMyYMXK5XJo5c6asVqsefPBB3XHHHQoJCVHHjh0DesdnS1RSUqL09FsVHByiwYOHnnZIA1qS\nvXst/mD2wQdWHTlikSS1a+fRiBG1GjzYpauucik8/FhIrW3miptPVFRr0/Zv5t4lc/fv6735zh+w\nEbXmxIha4Jm5d8nc/Z/tvbvd0ubNQcrJ8U1pfv553aUAPXq4NXiwS4MHu9Snj0f/dZXAWd/76TJz\n/2buXTJ3/03Re7OMqAGAUVRWSu++6wtma9ZYVVzsm9IMCfEqOdklp9MXzs47r8X9uxXAWY6gBqBF\n+s9/LP5Rsw0brKqt9U1pRkd7NHr0UQ0e7Fb//i6FhTVzoQDQAIIagBbB5ZI+/vjYjQBWffll3bxl\nr151U5q9enkUFJhnVwPAGUdQA3DWKiuT1q71jZqtXWtTWZlv1KxNG6+GDPEFs5QUlzp0YEoTwNmJ\nf1c2kd///nYVFOyst+6ZZ/6ipUsXn/D7mzdv0rRp90mS7r//f3+0/a23lun55xed9Hxff/2Vvvlm\njyRpxowHdOSIOW+rRsvi9UpffRWkp58O1nXXtVGPHmG64442yswMVmioV7fddlRLltSooKBKr7xy\nSDffXEtIA3BWY0StiTidQ7R2bY66d+/hX/fuu2v11FPPNLrv3LlP/OTzvffeWnXv3lOdOnXWH//4\nyE/eHzCKo0eljz6y+h88u3u379+XFotXffp4NHiw72aA+HiPLJZmLhYAzjCCWhMZNGiwJkz4nSZO\nvEuSVFCwU1FRUYqKitbHH+frueeeUXBwsOx2ux56aG69fVNTB+lf/1qjTZs26skn58nhaKd27c5V\nTEysXC6XHn54poqKDujQoUMaOzZdv/hFBy1fnqn33luryMhIPfjgA3r55WWqqqrUI488pNraWgUF\nBen++6fLYrHo4YdnKiYmVl9//ZW6dbtQ998/vd75V69eqTffXCarNUi//GWcpk79P9XW1mrmzP/T\n/v3fKySklaZN+6MiIx2aPXtGvXVRUdFN9huj5Sgutig316qcHJvy8myqqvIlsNBQr4YN8z3bLDnZ\nrehoRssAtGymDGozZ7bSO++cfutBQZLHEypJuvZal2bOPHLS70ZGOhQTE6vPP9+unj0v0tq1OXI6\nh0qSKisrNWPGbMXExGrWrAeVn79Bbdv++FUdixb9RdOnz9IFF3TTH/5wl2JiYlVZWaGEhL66+uph\nKizcq+nT79cLLyzWFVck6qqrBqlnz4v8+z/33DMaNuw6DRo0WHl5uXrhhb/pd7/7vb74Yqf++Mc5\niox0KC3tGlVWVspur3umy6FDhzRv3lOy2+26887x2rXra3377ddq166dZs58WLm52frgg/dls9l+\ntC4t7ben/Tuj5fN6pc8/r3u22SefBMnr9YWzTp08uvHGWjmdLiUmutWqVTMXCwBNyJRBrbk4nUO1\nZk2Oeva8SB9++L4WLnxBkhQREaFHH50tt9ut774r1K9+dfkJg9r333+vCy7oJkm65JI+OnLkiOz2\ncO3cuUNvv50piyVIFRXlJz3/F1/s1B13TJIk9elzmV566TlJUmzseWrX7lxJ0rnnRqm6uqpeUAsP\nD9cDD0yRJO3Z8x+Vl5dpx44duvjiSyRJKSlDJEl/+tNcXXbZ5fXWASdz+LD04Yd1r2vau9c3pRkU\n5NUVV7jldLo1ZIhLF1zAlCYA8zJlUJs580iDo1+nyve04upT/v6AAQP18ssvyOkcovPO66Tw8HBJ\n0iOPzNLjj8/XL3/ZRU888ehJ9w867pkCx14okZOzShUVFXr66edUUVGhceNubqACi3+/2lqXLBbf\n8f77Je3Hv6yitrZWTzzxmF56aYnatTtX99032b+Px1N/2slqDfrROuB4+/cfe7aZVe+/b1NNjS+B\nhYd7lZbmGzUbNMilyMhmLhQADMKUQa25tG0bqri4C/Tyyy/6pz0lqbq6Su3b/0KVlZXavPkTxcVd\ncML9zz03St98s1vnnddZW7Z8ovj4i1VWVqYOHWIUFBSk995bq9pa37vYLBaL3G53vf179OipzZs3\nyekcqk8//aTejQ0nU1NTLavVqnbtztX+/ftUULBTLpdLF198sTZs2Kjk5BR9+OE67dr1lbp376nN\nmz+ut+6WW8aexi+Gs53HI23bFuQfNfv007p/FHTtWjdqdvnlbgUHN2OhAGBQBLUm5nQO1ezZMzRj\nxiz/uuuvH64JE36n887rpNGjb9ELL/xN6ekTf7RvevpETZs2Vb/4RQf/i9WvuipZ99//v/r88+1K\nTf21oqOj9eKLz6p370s1f/7j9aZQx427Q488MkvvvPMP2WzBeuCB6XK5XA3We845Ebr88is0btwt\n6tr1At1008168skn9M47y7V27XuaNCldVqtN06bNVEREpDZt2lhvHcynulpat87qv95s/37fyK3N\n5lX//i7/XZrnn8/oKwA0hpeynwZeUmvO3iVz93+i3vfurXtd0wcfWHXkiG9K0+HwKCXF91aAq65y\n6YfZ/rOWmf/cJXP3b+beJXP3z0vZAZx13G5pyxbfXZrZ2TZ9/nndlGaPHm7/qNmvfuXRf10CCQD4\nCQhqAE5JZaX07rs2vf++9K9/haq42DelGRLiVXKyL5g5nS516tTiBukBoNkQ1ACc1O7dFv8bATZs\nsKq21jelGRUljR59VE6nW//zPy6FhTVzoQDQQhHUAPi5XNLHHx97tplVX35ZN2/Zq5dbTqdLI0e2\nUqdO1QriTcEAEHAENcDkysqktWt9o2Zr19pUVuYbNWvTxqshQ+qmNI+93DwqqpWKipqzYgAIvKws\nm+bPD9GXX0rdurXV5MlHlZbW8JMSAoGgBpiM1yt9/XWQVq/2PUIjP98qt9sXzmJiPLruuloNGeJS\nUpJbbdo0c7EA0Ayysmz6/e/r/gLcudP6w/KhJg9rBDXABI4elT76qO7ZZv/5j2/e0mLxqk8fj/8u\nzfh4XtcEAPPnh5xw/YIFIQQ1AGdGcbFFa9b4rjfLy7OpqsqXwEJDvRo2rFaDB7uUnOxWdDR3aQLA\n8b788sQX4Z5sfSAR1IAWwuuVdu6se7bZJ58Eyev1hbNOnTy68UbfuzQTE91q1aqZiwUAA+vWzaOd\nO3/8EMhu3TxNXgtBDTiLHT4srV9vVXa2712ae/f6/rUXFOTVFVf43qU5eLBL3boxpQkAp2ry5KP1\nrlE75u67jzZ5LQQ14Cyzf/+x1zVZ9f77NtXU+BJYeLhXaWm+UbPkZJccjmYuFADOUr7r0A5pwYIQ\nffmlVd26uXX33dz1CeAEvF5p27Yg/6jZp5/WDcd37Vo3apaQ4FZwcDMWCgAtSFqaS2lprh/e9VnT\nbHUQ1AADqqmR3n/fd5dmTo5N+/b5pjRtNq/69/fdoTl4sEvnn8+NAADQkhHUAIPYu9fiD2YffGDV\n4cO+KU2Hw6Phw33PNrvqKpfCw5u5UABAkyGoAc3E45E2bw7yP9tsx466Kc0ePdz+Z5v96lceWX98\n8xEAwAQIakATqqyU3n3XN2qWm2tVcbFvSjMkxKuBA13+cNapE1OaAACCGhBwu3db/M8227DBqtpa\n35RmVJRHo0cfldPp1v/8j0thYc1cKADAcAhqwBnmckmbNh17tplVX35ZN2/Zq5fbfyNA794eBTX9\nQ64BAGcRghpwBpSVSWvX+q41W7vWprIy36hZmzZeDRnim850Ol3q0IEpTQDAqSOoAT+D1yt9/bXF\n/2yz/Hyr3G5fOIuJ8ei663zv0uzXz602P364NQAAp4SgBpyio0eljz7yPdtszRrp6699F5VZLF71\n6ePxj5pddBGvawIAnBkENaABxcUWrVnjC2d5eTZVVvoSWFiYlJrqGzUbNMit6GimNAEAZx5BDTiO\n1yvt3Fn3bLNNm4Lk9frCWadOHo0c6Qtnv/51W1VUHG7magEALR1BDaZ3+LC0fr1Vq1f7rjf79lvf\nrZhBQV4lJLg1eLDv4bPdutVNabZq1YwFAwBMg6AGU9q/36LcXJuys616/32bamp8CSw83Ku0tFo5\nnS4lJ7vkcDRzoQAAUyOowRS8XmnbtiCtXu2b0vz007pnm8XFeTR4sG9KMyHBreDgZiwUAIDjENTQ\nYtXUSOvW1U1p7tvnm9K02bzq37/u2WZxcdwIAAAwJoIaWpTCQos/mH3wgVWHD/umNB0Oj4YP942a\nDRzoUnh4MxcKAMApIKjhrObxSFu21E1p7thRN6XZo4f7h1Ezty67zC2rtYEDAQBgQAQ1nHUqK6V3\n3/WNmuXmWlVc7JvSDAnxauBA33s0nU6XOnViShMAcHYjqOGssHu3xf9ss/Xrraqt9U1pRkV5dNNN\nRzV4sFv/8z8uhYU1c6EAAJxBBDUYksslbdpk1erVvrcCfPFF3bzlxRf7pjSHDHGpd2+PgoKasVAA\nAAKIoAbDKCuT8vJ8o2Zr19pUWuobNWvd2qvBg31TmikpLsXEMKUJADAHghqajdcr7dpl8d8IkJ9v\nldvtC2cxMR79+te+uzSTktxq27aZiwUAoBkQ1NCkjh6V8vOt/nD2n//UzVv26eP23whw0UV1r2sC\nAMCsAhrU5syZo61bt8pisSgjI0O9evXyb8vNzdXChQsVEhKi1NRUjRkzRtXV1Zo6darKy8tVW1ur\nO++8U/3791dlZaXuuecelZdj8qsPAAAgAElEQVSXq3379nriiScUEhISyNJxBpWUWLRmjS+c5eXZ\nVFnpS2ChoV6lpvpGzQYNcis6milNAACOF7CgtnHjRu3Zs0fLli3Trl27lJGRoWXLlkmSPB6PZs2a\npaysLEVERGj8+PFKSUlRbm6uunTpoilTpmj//v269dZbtWrVKi1cuFD9+vXTbbfdpr/85S8qKCio\nF/pgLF6vVFBQ92yzTZuC5PX6wlmnTh6NHOl7l+aVV7p5uTkAAA0IWFDbsGGDUlJSJElxcXEqLy9X\nVVWVwsLCVFpaqvDwcDl+eON13759tX79ekVGRuqLL76QJFVUVCgyMlKSlJeXp8WLF0uSJk2aFKiS\ncRoOH5bWr697XdO33/qmNIOCvEpIcMvp9E1rXnghU5oAAJyqgAW14uJixcfH+5cdDoeKiooUFhYm\nh8Oh6upq7d69W7GxscrPz1dCQoLS09OVmZkpp9OpiooKLVq0yH+spUuXav369erataumTZvW4NRn\nZGRb2WxN8xj6qCh7k5zHiFwuu1askP75TyknR6qu9q0/5xxp5Ehp2DDp6qstatfOJt9/ai1r+MzM\nf/b0bl5m7t/MvUvm7r85e2+ymwm83rrrjywWi+bOnauMjAzZ7XZ17NhRkrR8+XLFxMTo+eefV0FB\ngTIyMpSZmakjR44oKSlJkyZN0rRp0/TGG29o9OjRJz1XaWlNwPuRfH9wRUWVTXIuI/B6pW3bgn64\n1qyVPv64bltcnMf/bLOEBLeCg33rPR6pqKh56g0ks/3ZH4/ezdm7ZO7+zdy7ZO7+m6L3hoJgwIJa\ndHS0iouL/csHDhxQVFSUfzkhIUFLliyRJM2bN0+xsbHauHGj+vXrJ0nq3r27Dhw4ILfbrQ4dOujS\nSy+VJCUlJSk/Pz9QZeO/1NRI69bVTWnu2+eb0rTZpH796l7XFBfHjQAAAJxpAXume1JSkrKzsyVJ\nO3bsUHR0tMKOe7/PuHHjVFJSopqaGuXl5SkxMVGdO3fW1q1bJUmFhYUKDQ2V1WrVFVdcoY8++sh/\nrC5dugSqbEgqLLTopZeCNXp0G3XvHqabb26rV14J0dGj0vDhtXr22UMqKpIyMw/pjjtqCWkAAARI\nwEbU+vTpo/j4eI0aNUoWi0UzZsxQZmam7Ha7nE6nRowYobFjx8pisSg9PV0Oh0MjR45URkaGxowZ\nI5fLpZkzZ0qSJk+erD/84Q968sknde6552rixImBKtuUPB5py5Yg5eTYlJ1t044dddf3de9+7Nlm\nbl12mVvWHzZFRLTMKU0AAIzE4j3+4rEWoqnm0c/mOfuqKundd32Pz8jNtaq42De4GhLiVVKS2/+6\nps6dT/yfx9nc+5lg5v7p3Zy9S+bu38y9S+buv8Veowbj2b3bopwcXzhbv96q2lrfczKiojy66aaj\ncjrdGjDApeNmqAEAQDMiqLVgLpe0aZNVq1dblZNj0xdf1E1pXnyxW06n72aASy7xKChgVysCAICf\ni6DWwpSVSXl5vlGztWttKi31jZq1bu3136HpdLoUE9PiZrwBAGhxCGotwNdfW/yPz/joI6vcbl84\n69DBo1tu8b1Ls18/t9q2beZCAQDAT0JQOwvV1koffVT3bLN//7tu3rJPn7opzYsu4nVNAACczQhq\nZ4mSEovWrPFda7Z2rU2Vlb4E1ratV9dcU6shQ1xKTnarfXumNAEAaCkIagbl9UoFBXXPNtu0KUhe\nry+cderk0ciRtXI6XbrySrdataxXaAIAgB8Q1Azk8GFp/fq6Kc1vv/VNaQYFeZWQ4JbT6Xu+2YUX\nMqUJAIAZENSa2f79FuXm2rR6tVXvvWdTTY0vgYWHe/Wb3/hGzZKT3WrXjilNAADMhqDWxLxeadu2\nIP+o2ZYtdc82i4vzyOn03aV5xRVuBQc3Y6EAAKDZEdSaQE2NtG5d3ZTmvn2+KU2bzat+/Vz+uzR5\nuTkAADgeQS1ACgt9r2vKybFp3TqrDh/2TWlGRnr129/6Rs0GDnTpnHOauVAAAGBYBLUzxOORtmwJ\n8r9Lc/v2uinN7t2PPdvMrcsuc8tqbeBAAAAAPyConYbKSumf/7T9MHJmVXGxb0ozJMSrq65yacgQ\nl1JSXOrcmSlNAADw0xHUfobDh6UJE1orJ0c6erSNJOnccz268UbflOaAAS6FhTVzkQAA4KxHUPsZ\nDh+WNm+2qmdPKTn5iAYPdumSSzwKCmp8XwAAgFNFUPsZIiKkrVurFRVlV1HR0eYuBwAAtFCMAQEA\nABgUQQ0AAMCgCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABgUQQ0A\nAMCgCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABgUQQ0AAMCgCGoA\nAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABgUQQ0AAMCgCGoAAAAGRVAD\nAAAwKIIaAACAQRHUAAAADCqgQW3OnDkaOXKkRo0apc8++6zettzcXN1www268cYbtXjxYklSdXW1\nJk2apJtvvlmjRo3SunXr6u3z2muvKTk5OZAlAwAAGIYtUAfeuHGj9uzZo2XLlmnXrl3KyMjQsmXL\nJEkej0ezZs1SVlaWIiIiNH78eKWkpCg3N1ddunTRlClTtH//ft16661atWqVJKmkpEQ5OTmBKhcA\nAMBwAjaitmHDBqWkpEiS4uLiVF5erqqqKklSaWmpwsPD5XA4FBQUpL59+2r9+vWKjIxUWVmZJKmi\nokKRkZH+4z3++OO66667AlUuAACA4QQsqBUXF9cLWg6HQ0VFRf7P1dXV2r17t2pra5Wfn6/i4mKl\npqbqu+++k9Pp1JgxYzR16lRJUn5+vlq1aqXevXsHqlwAAADDCdjU53/zer3+zxaLRXPnzlVGRobs\ndrs6duwoSVq+fLliYmL0/PPPq6CgQBkZGXrttdf05JNP6q9//espnysysq1sNusZ7+FEoqLsTXIe\nIzJz75K5+6d38zJz/2buXTJ3/83Ze8CCWnR0tIqLi/3LBw4cUFRUlH85ISFBS5YskSTNmzdPsbGx\n2rhxo/r16ydJ6t69uw4cOKCdO3equLhY48eP9x/nnnvu0Z///OeTnru0tCYQLf1IVJRdRUWVTXIu\nozFz75K5+6d3c/Yumbt/M/cumbv/pui9oSAYsKnPpKQkZWdnS5J27Nih6OhohYWF+bePGzdOJSUl\nqqmpUV5enhITE9W5c2dt3bpVklRYWKjQ0FD17t1b2dnZev311/X6668rOjq6wZAGAADQUgRsRK1P\nnz6Kj4/XqFGjZLFYNGPGDGVmZsput8vpdGrEiBEaO3asLBaL0tPT5XA4NHLkSGVkZGjMmDFyuVya\nOXNmoMoDAAAwPIv3+IvHWoimGp5lKNicvUvm7p/ezdm7ZO7+zdy7ZO7+W+zUJwAAAE4PQQ0AAMCg\nCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABgUQQ0AAMCgCGoAAAAG\nRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABgUQQ0AAMCgCGoAAAAGRVADAAAw\nKIIaAACAQRHUAAAADIqgBgCNyMqyacCAtrLZpAED2iory9bcJQEwCf62AYAGZGXZ9Pvft/Ev79xp\n/WH5kNLSXM1XGABTYEQNABowf37ICdcvWHDi9QBwJhHUAKABX3554r8mT7YeAM4k/qYBgAZ06+b5\nSesB4EwiqAFAAyZPPnrC9XfffeL1AHAmEdQAoAFpaS4tWnRIPXu6ZbNJPXu6tWgRNxIAaBrc9QkA\njUhLcyktzaWoKLuKimqauxwAJsKIGgAAgEER1AAAAAyKoAYAAGBQBDUAAACDIqgBAAAYFEENAADA\noBoNart27WqKOgAAAPBfGg1qd911l2688Ua99dZbOnToUFPUBAAAAJ3CA2//9a9/6csvv9TKlSt1\n8803q0ePHho+fLh69erVFPUBAACY1ildo9atWzfdfffduv/++7Vr1y5NnDhRo0eP1u7duwNcHgAA\ngHk1OqJWWFiorKws/fOf/1TXrl11xx13qH///tq2bZvuvfdevfHGG01RJwAAgOk0GtRuvvlm/fa3\nv9Xf//53tW/f3r++V69eTH8CAAAEUKNTn2+//bZ++ctf+kPa0qVLVV1dLUmaPn16YKsDAAAwsUaD\n2gMPPKDi4mL/8uHDh3XfffcFtCgAAACcQlArKyvTLbfc4l++/fbbVVFREdCiAAAAcApBrba2tt5D\nb7dv367a2tqAFgUAAIBTuJnggQce0MSJE1VZWSm32y2Hw6HHHnusKWoDAAAwtUaDWu/evZWdna3S\n0lJZLBZFRERo8+bNTVEbAACAqTUa1KqqqrR8+XKVlpZK8k2FvvXWW/rggw8aPficOXO0detWWSwW\nZWRk1HucR25urhYuXKiQkBClpqZqzJgxqq6u1tSpU1VeXq7a2lrdeeed6t+/vwoKCvTQQw8pKChI\n4eHhmjdvntq0aXMabQMAABhfo9eoTZ48WV988YUyMzNVXV2tvLw8zZw5s9EDb9y4UXv27NGyZcv0\n8MMP6+GHH/Zv83g8mjVrlp599lm9+uqrysvL0759+5SVlaUuXbrolVde0YIFC/z7zJ49W/fff78W\nL16szp07KzMz8+d3DAAAcJZoNKgdOXJEDz30kGJjYzV16lS9/PLLWrlyZaMH3rBhg1JSUiRJcXFx\nKi8vV1VVlSSptLRU4eHhcjgcCgoKUt++fbV+/XpFRkaqrKxMklRRUaHIyEhJ0jPPPOMfjXM4HP7v\nAAAAtGSNTn3W1taqpqZGHo9HpaWlioyM1LffftvogYuLixUfH+9fdjgcKioqUlhYmBwOh6qrq7V7\n927FxsYqPz9fCQkJSk9PV2ZmppxOpyoqKrRo0SJJUlhYmCSppqZGy5cv14IFCxo8d2RkW9ls1kZr\nPBOiouxNch4jMnPvkrn7p3fzMnP/Zu5dMnf/zdl7o0Htuuuu0+uvv67hw4frmmuukcPhUOfOnX/y\nibxer/+zxWLR3LlzlZGRIbvdro4dO0qSli9frpiYGD3//PMqKChQRkaGf5qzpqZGEyZM0NixYxUX\nF9fguUpLa35yfT9HVJRdRUWVTXIuozFz75K5+6d3c/Yumbt/M/cumbv/pui9oSDYaFAbNWqULBaL\nJCkxMVElJSXq0aNHoyeNjo6u90aDAwcOKCoqyr+ckJCgJUuWSJLmzZun2NhYbdy4Uf369ZMkde/e\nXQcOHJDb7ZbX69XEiRM1bNgwXX/99Y2eGwAAoCVo9Bq1499K0L59e/Xs2dMf3BqSlJSk7OxsSdKO\nHTsUHR3tn8KUpHHjxqmkpEQ1NTXKy8tTYmKiOnfurK1bt0qSCgsLFRoaKqvVqmeffVYJCQkaPnz4\nT24QAADgbNXoiFqPHj20YMECXXrppQoODvavT0xMbHC/Pn36KD4+3j8iN2PGDGVmZsput8vpdGrE\niBEaO3asLBaL0tPT5XA4NHLkSGVkZGjMmDFyuVz+u0tfffVVdezYURs2bJAkXXHFFZo0adJptA0A\nAGB8Fu/xF4+dwM033/zjnSwWvfzyywEr6nQ11Tw6c/bm7F0yd//0bs7eJXP3b+beJXP3b/hr1F55\n5ZUzWgwAAABOTaNB7aabbjrhNWmvvvpqQAoCAACAT6NBbfLkyf7PtbW1+uijj9S2bduAFgUAAIBT\nCGoJCQn1lpOSkjR+/PiAFQQAAACfRoPaf7+F4Pvvv9d//vOfgBUEAAAAn0aD2q233ur/bLFYFBYW\nxqMxAAAAmkCjQW3t2rXyeDwKCvI9G7e2trbe89QAAAAQGI2+mSA7O1sTJ070L48ePVqrVq0KaFEA\nAAA4haD24osv6vHHH/cvv/DCC3rxxRcDWhQAAABOIah5vV7Z7XVPzA0LCzuld30CAADg9DR6jdpF\nF12kyZMnKyEhQV6vV+vWrdNFF13UFLUBAACYWqNBbdq0aXr77bf12WefyWKx6Ne//rWGDh3aFLUB\nAACYWqNB7dChQwoODtb06dMlSUuXLtWhQ4cUGhoa8OIAAADMrNFr1KZOnari4mL/8uHDh3XfffcF\ntCgAAACcQlArKyvTLbfc4l++/fbbVVFREdCiAAAAcApBrba2Vrt27fIvb9u2TbW1tQEtCgAAAKdw\njdoDDzygiRMnqrKyUh6PR5GRkXrssceaojYAAABTazSo9e7dW9nZ2fr++++Vn5+vrKwsTZgwQR98\n8EFT1AcAAGBajQa1Tz/9VJmZmVqxYoU8Ho9mzZqlwYMHN0VtAAAApnbSa9SeffZZXXPNNbrnnnvk\ncDj01ltvqVOnTkpNTeWl7AAAAE3gpCNq8+fPV9euXfXggw+qb9++ksSrowAAAJrQSYPau+++q6ys\nLM2YMUMej0dpaWnc7QkAANCETjr1GRUVpfT0dGVnZ2vOnDn65ptvVFhYqDvuuEPvvfdeU9YIAABg\nSo0+R02SLr/8cs2dO1fr1q3TVVddpaeffjrQdQEAAJjeKQW1Y8LCwjRq1Ci9/vrrgaoHAAAAP/hJ\nQQ0AAABNh6AGAABgUAQ1AAAAgyKoAQAAGBRBDQAAwKAIagAAAAZFUAMAADAoghoAAIBBEdQAAAAM\niqAGAABgUAQ1AAAAgyKoAQAAGBRBDQAAwKAIagAAAAZFUAMAADAoghoAAIBBEdQAAAAMiqAGAABg\nUAQ1AAAAgyKoAQAAGBRBDQAAwKAIagAAAAZFUAMAADAoWyAPPmfOHG3dulUWi0UZGRnq1auXf1tu\nbq4WLlyokJAQpaamasyYMaqurtbUqVNVXl6u2tpa3Xnnnerfv78KCgo0c+ZMSdKFF16oP/7xj4Es\nGwAAwBACNqK2ceNG7dmzR8uWLdPDDz+shx9+2L/N4/Fo1qxZevbZZ/Xqq68qLy9P+/btU1ZWlrp0\n6aJXXnlFCxYs8O/z8MMPKyMjQ6+99pqqqqr03nvvBapsAAAAwwhYUNuwYYNSUlIkSXFxcSovL1dV\nVZUkqbS0VOHh4XI4HAoKClLfvn21fv16RUZGqqysTJJUUVGhyMhIHT16VIWFhf7RuIEDB2rDhg2B\nKhsAAMAwAjb1WVxcrPj4eP+yw+FQUVGRwsLC5HA4VF1drd27dys2Nlb5+flKSEhQenq6MjMz5XQ6\nVVFRoUWLFvlD3THt2rVTUVFRg+eOjGwrm80aqNbqiYqyN8l5jMjMvUvm7p/ezcvM/Zu5d8nc/Tdn\n7wG9Ru14Xq/X/9lisWju3LnKyMiQ3W5Xx44dJUnLly9XTEyMnn/+eRUUFCgjI0MLFy486XFOprS0\n5swWfxJRUXYVFVU2ybmMxsy9S+bun97N2btk7v7N3Ltk7v6boveGgmDApj6jo6NVXFzsXz5w4ICi\noqL8ywkJCVqyZIkWLVoku92u2NhYbd68Wf369ZMkde/eXQcOHKg3HSpJ+/fvV3R0dKDKBgAAMIyA\nBbWkpCRlZ2dLknbs2KHo6GiFhYX5t48bN04lJSWqqalRXl6eEhMT1blzZ23dulWSVFhYqNDQUIWE\nhOj888/Xpk2bJEmrV69W//79A1U2AACAYQRs6rNPnz6Kj4/XqFGjZLFYNGPGDGVmZsput8vpdGrE\niBEaO3asLBaL0tPT5XA4NHLkSGVkZGjMmDFyuVz+R3JkZGTowQcflMfjUe/evXXllVcGqmwAAADD\nsHhP5aKvs0xTzaMzZ2/O3iVz90/v5uxdMnf/Zu5dMnf/LfYaNQAAAJweghoAAIBBEdQAAAAMiqAG\nAABgUAQ1AAAAgyKoAQAAGBRBDQAAwKAIagAAAAZFUAMAADAoghoAAIBBEdQAAAAMiqAGAABgUAQ1\nAAAAgyKoAQAAGBRBDQAAwKAIagAAAAZFUAMAADAoghoAAIBBEdQAAAAMiqAGAABgUAQ1AAAAgyKo\nAQAAGBRBDQAAwKAIagAAAAZFUAMAADAoghoAAIBBEdQAAAAMiqAGAABgUAQ1AAAAgyKoAQAAGBRB\nDQAAwKAIagAAAAZFUAMAADAoghoAAIBBEdQAAAAMiqAGAABgUAQ1AAAAgyKoAQAAGBRBDQAAwKAI\nagAAAAZFUAMAADAoghoAAIBBEdQAAAAMiqAGAABgUAQ1AAAAgyKoAQAAGBRBDQAAwKBsgTz4nDlz\ntHXrVlksFmVkZKhXr17+bbm5uVq4cKFCQkKUmpqqMWPG6I033tDbb7/t/8727du1ZcsWZWdn64UX\nXlBwcLDat2+vRx55RCEhIYEsHQAAoNkFLKht3LhRe/bs0bJly7Rr1y5lZGRo2bJlkiSPx6NZs2Yp\nKytLERERGj9+vFJSUjR8+HANHz7cv//KlSslSbNnz9aKFStkt9s1ffp05eTkKDU1NVClAwAAGELA\npj43bNiglJQUSVJcXJzKy8tVVVUlSSotLVV4eLgcDoeCgoLUt29frV+/vt7+Tz/9tCZOnChJioiI\nUEVFhSSpoqJCkZGRgSobAADAMAIW1IqLi+sFKofDoaKiIv/n6upq7d69W7W1tcrPz1dxcbH/u599\n9pk6dOigqKgoSdK0adOUlpamQYMGyePx6MorrwxU2QAAAIYR0GvUjuf1ev2fLRaL5s6dq4yMDNnt\ndnXs2LHed998802lpaVJ8k2Tzp49W2+++abOO+88TZ48WWvWrNGgQYNOeq7IyLay2ayBaeS/REXZ\nm+Q8RmTm3iVz90/v5mXm/s3cu2Tu/puz94AFtejo6HqjZAcOHPCPkElSQkKClixZIkmaN2+eYmNj\n/dvy8/M1bdo0SdLBgwclSZ06dZIkJSYmavv27Q0GtdLSmjPXSAOiouwqKqpsknMZjZl7l8zdP72b\ns3fJ3P2buXfJ3P03Re8NBcGATX0mJSUpOztbkrRjxw5FR0crLCzMv33cuHEqKSlRTU2N8vLylJiY\nKEnav3+/QkND/Xd1RkZGqry83B/Ytm3bps6dOweqbAAAAMMI2Ihanz59FB8fr1GjRslisWjGjBnK\nzMyU3W6X0+nUiBEjNHbsWFksFqWnp8vhcEiSioqK/J8lyWq16sEHH9Qdd9yhkJAQdezYkTs+AQCA\nKVi8x1881kI01fAsQ8Hm7F0yd//0bs7eJXP3b+beJXP332KnPgEAAHB6CGoAAAAGRVADAAAwKIIa\nAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABgUQQ0AAMCgCGoAAAAGRVADAAAwKIIaAACAQRHU\nAAAADIqgBgAAYFAENQAAAIMiqAEAABgUQQ0AAMCgCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqg\nBgAAYFAENQAAAIMiqAEAABgUQQ0AAMCgCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAE\nNQAAAIMiqAEAABgUQQ0AAMCgCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMi\nqAEAABgUQQ0AAMCgCGoAAAAGRVADAAAwKIIaAACAQRHUAAAADIqgBgAAYFAENQAAAIMiqAEAABiU\nLZAHnzNnjrZu3SqLxaKMjAz16tXLvy03N1cLFy5USEiIUlNTNWbMGL3xxht6++23/d/Zvn27tmzZ\nosrKSt1zzz0qLy9X+/bt9cQTTygkJCSQpQMAADS7gAW1jRs3as+ePVq2bJl27dqljIwMLVu2TJLk\n8Xg0a9YsZWVlKSIiQuPHj1dKSoqGDx+u4cOH+/dfuXKlJGnhwoXq16+fbrvtNv3lL39RQUFBvdAH\nAADQEgVs6nPDhg1KSUmRJMXFxam8vFxVVVWSpNLSUoWHh8vhcCgoKEh9+/bV+vXr6+3/9NNPa+LE\niZKkvLw8XXvttZKkSZMmEdIAAIApBGxErbi4WPHx8f5lh8OhoqIihYWFyeFwqLq6Wrt371ZsbKzy\n8/OVkJDg/+5nn32mDh06KCoqyn+spUuXav369erataumTZvW4NRnZGRb2WzWQLVWT1SUvUnOY0Rm\n7l0yd//0bl5m7t/MvUvm7r85ew/oNWrH83q9/s8Wi0Vz585VRkaG7Ha7OnbsWO+7b775ptLS0vzL\nR44cUVJSkiZNmqRp06bpjTfe0OjRo096rtLSmjPfwAlERdlVVFTZJOcyGjP3Lpm7f3o3Z++Sufs3\nc++Suftvit4bCoIBm/qMjo5WcXGxf/nAgQP+ETJJSkhI0JIlS7Ro0SLZ7XbFxsb6t+Xn5+vSSy/1\nL3fo0MG/nJSUpK+++ipQZQMAABhGwIJaUlKSsrOzJUk7duxQdHS0wsLC/NvHjRunkpIS1dTUKC8v\nT4mJiZKk/fv3KzQ0tN7U5hVXXKGPPvrIf6wuXboEqmwAAADDCNjUZ58+fRQfH69Ro0bJYrFoxowZ\nyszMlN1ul9Pp1IgRIzR27FhZLBalp6fL4XBIkoqKivyfj5k8ebL+8Ic/6Mknn9S5557rv8kAAACg\nJbN4j794rIVoqnl05uzN2btk7v7p3Zy9S+bu38y9S+buv8Veo9aSZWXZNGBAW9ls0oABbZWV1WT3\nZAAAABMhYfxEWVk2/f73bfzLO3daf1g+pLQ0V/MVBgAAWhxG1P5/e/cbU2X5x3H8fTgndBSZBwVd\n5EICigeVNW0lQbCkzNpyVpPNsoaVIoRLMLOIepAdHGNqTyK01lhqZVn2b7VabP4BQsco/2xkWwuK\nUM4pEdPiwPV74M+zHz/hHET+3Nzn83rEfV1wvL5c5yvf+7rvc18XaePG/p/ftmmTtrQSERGR4aVC\n7SI1N/f/KxuoXURERGSoVF1cpOTk3otqFxERERkqFWoXadWqf/ttLyzsv11ERERkqFSoXaSFC/1U\nVp4hNbUHlwtSU3uorNQHCURERGT46VOfQ7BwoZ+FC/3/fbbK6OwrKiIiIuFHK2oiIiIiFqVCTURE\nRMSiVKiJiIiIWJQKNVuOVEEAAAlmSURBVBERERGLUqEmIiIiYlEq1EREREQsSoWaiIiIiEWpUBMR\nERGxKBVqIiIiIhalQk1ERETEolSoiYiIiFiUCjURERERi3IYY8xYD0JERERELqQVNRERERGLUqEm\nIiIiYlEq1EREREQsSoWaiIiIiEWpUBMRERGxKBVqIiIiIhalQk1ERETEolxjPQAra25uJi8vj8cf\nf5wlS5b06du/fz8VFRU4nU7S09NZuXIlAOvXr6epqQmHw8G6deu48cYbx2LolyxY7HV1dVRUVBAR\nEUFCQgKvvvoqDQ0NFBYWkpSUBEBycjIlJSVjMfRLFiz2rKwspk2bhtPpBKC8vJy4uDjbzDsMHH97\neztFRUWB45aWFlavXk13dzebNm1ixowZANxxxx2sWLFi1Mc9HDZs2MDBgwfx+/08/fTTZGdnB/rs\nnvPBYrd7zkPw+O2e9wPFHg45f+bMGdauXYvX6+Wff/4hLy+PzMzMQL8l8t5Iv06fPm2WLFliXnzx\nRVNdXX1B//z5883vv/9uenp6TE5Ojvnpp59MfX29eeqpp4wxxhw7dsw88sgjoz3sYREq9nnz5pm2\ntjZjjDEFBQWmpqbG1NXVmYKCgtEe6rALFXtmZqbp6urq02aXeTcmdPzndXd3m8WLF5uuri7z4Ycf\nGo/HM4qjHBm1tbVm2bJlxhhjfD6fycjI6NNv55wPFbudc96Y0PHbOe9DxX6eHXPeGGM+//xz8+ab\nbxpjjGltbTXZ2dl9+q2Q91pRG0BkZCRVVVVUVVVd0NfS0sKkSZOYPn06ABkZGdTW1uLz+bj77rsB\nSExM5OTJk3R1dXHFFVeM6tgvVbDYAT766KNATG63mz///DPwuxjvQsXen9raWlvMOww+/l27dnHP\nPfdw+eWXj9LIRt7s2bMDZ8VXXnklZ86coaenB6fTafucDxY72DvnIXT8/bFL3g82djvmPMB9990X\n+LqtrY24uLjAsVXyXveoDcDlcjFx4sR++06cOIHb7Q4cu91uTpw4QUdHB5MnT76gfbwJFjsQeDMe\nP36cffv2kZGRAcCxY8dYvnw5OTk57Nu3b1TGOtxCxQ5QWlpKTk4O5eXlGGNsM+8wuPgBPvjgAx56\n6KHA8ffff09ubi5Lly7lyJEjIznEEeN0OomKigJg586dpKenB/5Y2T3ng8UO9s55CB0/2DfvBxM7\n2DPn/9fixYspKipi3bp1gTar5L1W1EaQsfE2ql6vl+XLl1NaWsrkyZO59tpryc/PZ/78+bS0tPDY\nY4/x9ddfExkZOdZDHVbPPPMMd955J5MmTWLlypV89dVXF3yPnecdoLGxkZkzZwb+eN9000243W7u\nuusuGhsbee655/j000/HeJRD980337Bz507eeuuti/7Z8T73wWIPh5wfKP5wyPtgc2/3nAfYsWMH\nR48epbi4mN27d+NwOAb9syM99yrUhiA2NpaOjo7AcXt7O7GxsVx22WV92o8fP87UqVPHYogjqqur\niyeffJJVq1aRlpYGQFxcXGAJecaMGUyZMoX29nauueaasRzqsHvwwQcDX6enp9Pc3HzB+8Gu835e\nTU0Nt99+e+A4MTGRxMREAGbNmoXP5wt52ciq9uzZwxtvvMGWLVuIjo4OtIdDzg8UO4RHzgeL3+55\nHyx2sHfOHzp0iJiYGKZPn84NN9xAT08PPp+PmJgYy+S9Ln0OQXx8PF1dXbS2tuL3+/nuu++YO3cu\nc+fODZxpHT58mNjY2HF3v8JgeDweli5dSnp6eqBt9+7dbN26FTi3XOz1evtc67eDU6dOkZuby7//\n/gtAQ0MDSUlJYTPv5/34449cf/31geOqqio+++wz4NwnRt1u97j8D/vUqVNs2LCByspKrrrqqj59\nds/5YLGD/XM+WPx2z/tQcw/2zXmAAwcOBFYROzo6+PvvvwOXNa2S9w4z3tdrR8ihQ4coKyvjt99+\nw+VyERcXR1ZWFvHx8cybN4+GhgbKy8sByM7OJjc3Fzj3se0DBw7gcDgoLS3t8+YeL4LFnpaWxuzZ\ns5k1a1bg+++//34WLFhAUVERnZ2ddHd3k5+fH7iPZTwJNe/vvPMOH3/8MRMmTCA1NZWSkhIcDoct\n5h1Cxw/wwAMP8PbbbzNlyhQA/vjjD4qLizHG4Pf7x+1jCt577z1ef/11EhISAm233XYbKSkpts/5\nYLHbPech9NzbOe9DxQ72zXmAs2fP8sILL9DW1sbZs2fJz8/nr7/+Ijo62jJ5r0JNRERExKJ06VNE\nRETEolSoiYiIiFiUCjURERERi1KhJiIiImJRKtRERERELEoPvBWRsNDa2sq9997b5zETcG7/vmXL\nll3y69fX17Nx40a2b99+ya8lInKeCjURCRtut5vq6uqxHoaIyKCpUBORsJeamkpeXh719fWcPn0a\nj8dDcnIyTU1NeDweXC4XDoeDl156ieuuu45ffvmFkpISent7mTBhAq+99hoAvb29lJaWcvToUSIj\nI6msrARg9erVdHZ24vf7yczMZMWKFWMZroiMI7pHTUTCXk9PD0lJSVRXV5OTk8PmzZsBWLNmDc8/\n/zzV1dU88cQTvPLKKwCUlpaSm5vLu+++y6JFi/jyyy8B+PnnnykoKOD999/H5XKxd+9e9u/fj9/v\nZ9u2bezYsYOoqCh6e3vHLFYRGV+0oiYiYcPn8/Hoo4/2aSsuLgYIbDZ+yy23sHXrVjo7O/F6vYGt\ncebMmcOzzz4LwA8//MCcOXMAWLBgAXDuHrWZM2cGttmZNm0anZ2dZGVlsXnzZgoLC8nIyODhhx8m\nIkLnyCIyOCrURCRsBLtH7X9303M4HDgcjgH7gX5XxfrbmDomJoZPPvmExsZGvv32WxYtWsSuXbuY\nOHHiUEIQkTCj0zoREaCurg6AgwcPkpKSQnR0NFOnTqWpqQmA2tpabr75ZuDcqtuePXsA+OKLL6io\nqBjwdffu3UtNTQ233nora9asISoqCq/XO8LRiIhdaEVNRMJGf5c+4+PjAThy5Ajbt2/n5MmTlJWV\nAVBWVobH48HpdBIREcHLL78MQElJCSUlJWzbtg2Xy8X69ev59ddf+/03ExISWLt2LVu2bMHpdJKW\nlsbVV189ckGKiK04zP+v54uIhJmUlBQOHz6My6VzVxGxFl36FBEREbEoraiJiIiIWJRW1EREREQs\nSoWaiIiIiEWpUBMRERGxKBVqIiIiIhalQk1ERETEov4DKihezgkCLn4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAG4CAYAAAD1zMvGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlYlXX+//HngQOyHFxADqJmmWkp\nZuq3HBUNUYjFzHCDr3s537Jc02Yyy7SRtMY0c5myyZwxS3EBtRkV92ySNNMslzLtl2G5HFRUFoUD\n5/cH05kxwXA5cON5Pa6L6/Le3+9j6cvP5z73bXI4HA5ERERExHA8KrsAERERESmdgpqIiIiIQSmo\niYiIiBiUgpqIiIiIQSmoiYiIiBiUgpqIiIiIQSmoiYjTxIkTiY2NJTY2lrCwMCIjI53LOTk513Su\n2NhYsrKyrrrP9OnTWbx48Y2UfNMNHjyY1NTUm3Kuu+++mxMnTrBhwwaef/75G7re0qVLnb8uz2db\nXuPGjeMvf/nLTTmXiNx85souQESM4+WXX3b+unPnzvz5z3/m/vvvv65zrVu37jf3GTt27HWdu6qJ\njo4mOjr6uo+32Wy8++679OnTByjfZysitwaNqIlIuQ0YMIA33niDuLg4du/eTVZWFkOGDCE2NpbO\nnTuzYMEC576/jCbt2LGDxMREpk+fTlxcHJ07d2bnzp3A5aM5nTt3ZsmSJfTq1YsOHTrw6quvOs/1\n9ttv065dO3r27MkHH3xA586dS61v2bJlxMXF8dBDD9GvXz9++uknAFJTUxk5ciTjx48nJiaG+Ph4\nvvvuOwAyMzPp3bs3UVFRjB07lqKioivO+/HHH9OtW7fL1nXv3p1t27Zd9TP4RWpqKoMHD/7N623a\ntIlu3boRExNDjx49OHjwIABJSUn8/PPPxMbGUlBQ4PxsARYuXEh8fDyxsbE89dRTnDlzxvnZzpo1\ni8cee4zIyEgee+wx8vPzy/qtBeCbb74hKSmJ2NhYunfvzieffAJAbm4uw4YNIy4uji5duvDiiy9S\nWFhY5noRuXkU1ETkmuzbt49//vOftG7dmrfeeov69euzbt06/v73vzN9+nSOHz9+xTEHDhzgvvvu\nY+3atfTt25e33nqr1HN//vnnpKSksGLFChYtWsSJEyf47rvvePfdd1m1ahUffvhhmaNJp0+f5k9/\n+hMLFixg/fr1NGjQ4LIpvW3bttG3b1/S09P53e9+x9///ncAXn/9ddq1a8fGjRsZNGgQu3fvvuLc\n7dq148SJE2RmZgIlYevEiRO0b9++3J/BL8q6nt1uZ9y4cUyePJn09HQ6d+7Ma6+9BsCUKVMIDQ1l\n3bp1eHt7O8/15ZdfMn/+fN5//33WrVtH3bp1mT59unP7unXreOONN9iwYQNnzpxhw4YNZdZVXFzM\nmDFj6N+/P+vWrSM5OZmxY8eSk5PDypUrqV69OmvXriU9PR1PT08OHz5c5noRuXkU1ETkmkRERODh\nUfJHx4svvsiECRMAuO222wgODubYsWNXHOPv709UVBQAYWFh/Pzzz6Weu1u3bnh6ehISEkJQUBDH\njx/n888/p02bNlitVqpVq0bPnj1LPTYoKIgvvviCOnXqAHD//fc7gxVAo0aNaN68OQDNmjVzhqld\nu3YRHx8PQIsWLbjzzjuvOLe3tzeRkZFs3rwZgI0bNxIVFYXZbC73Z/CLsq5nNpvZvn07LVu2LLX+\n0mzdupWYmBiCgoIA6N27N59++qlze0REBDVr1sRsNtOkSZOrBshjx46RlZVF165dAbj33nupW7cu\nX3/9NYGBgezZs4d//etfFBcX8/LLL9O0adMy14vIzaN71ETkmtSoUcP566+//to5guTh4YHNZqO4\nuPiKYwICApy/9vDwKHUfAIvF4vy1p6cnRUVFnD9//rJrhoSElHpsUVERs2bNYvPmzRQVFZGbm0vD\nhg1LreGXcwOcO3fusutWr1691PPHxMSwcOFCBg0axMaNG3n66aev6TP4xdWu9/7775OWlkZBQQEF\nBQWYTKYyzwNw5swZrFbrZec6ffr0b/Zc1rkCAgIuu2b16tU5c+YMXbt25dy5c7z55pt8//33PPLI\nIzz//PPExcWVuv6/R/1E5MZoRE1Ertsf/vAHYmJiSE9PZ926ddSqVeumX8NisZCXl+dcPnXqVKn7\nrVmzhs2bN7No0SLS09MZOXJkuc5fvXr1y77R+ss9Xr/WsWNHvvnmG3744Qd++OEH2rZtC1z7Z1DW\n9Xbv3s1f//pX3nrrLdLT00lOTv7N2mvXrk12drZzOTs7m9q1a//mcaUJCgri3LlzOByOy873y2hd\nUlISy5YtY82aNezfv5+VK1dedb2I3BwKaiJy3U6fPk3z5s0xmUykpaWRn59/Wai6GVq0aMGOHTs4\nc+YMBQUFZQaB06dPU69ePQIDAzl79ixr164lNzf3N8/fsmVL571bu3fv5scffyx1P29vbzp06MC0\nadPo0qULnp6ezutey2dQ1vXOnDlDUFAQdevWJT8/n7S0NPLy8nA4HJjNZvLy8rDb7Zedq1OnTmzY\nsIGzZ88CsGTJEiIiIn6z59LUr1+fOnXqsGbNGmdtWVlZtGjRgrlz57J8+XKgZESzfv36mEymMteL\nyM2joCYi123UqFEMGzaMbt26kZeXR2JiIhMmTCgz7FyPFi1akJCQQEJCAgMHDiQyMrLU/R5++GGy\ns7OJjo5m7NixjB49mhMnTlz27dHS/OEPf2DLli1ERUXxwQcf0L59+zL3jYmJYePGjcTFxTnXXetn\nUNb1OnbsiNVqJSoqiscff5xBgwYREBDAyJEjufvuu6lRowbh4eGX3d/XokULnnjiCfr160dsbCwX\nLlzgmWeeuWq/ZTGZTMyYMYNFixYRFxdHcnIyb775Jn5+fnTv3p1Vq1YRExNDbGwsXl5edO/evcz1\nInLzmBz/Pc4tImJADofDOVKzdetWZs6cqSk2EXELGlETEUM7c+YMbdu25aeffsLhcLB27VrnNyNF\nRG51GlETEcNbvHgx7733HiaTiTvvvJNXXnnFeZO7iMitTEFNRERExKA09SkiIiJiULfkA29ttgsV\ncp1atfw4e/bmPoqgqnDn3sG9+1fv7tk7uHf/7tw7uHf/FdF7cHBAmds0onYDzGbPyi6h0rhz7+De\n/at39+XO/btz7+De/Vd27wpqIiIiIgaloCYiIiJiUApqIiIiIgaloCYiIiJiUApqIiIiIgaloCYi\nIiJiUApqIiIiIgaloCYiIiJiULfkmwlERETEGGbPfoNvvz3ImTOnuXjxInXr1qN69RpMmTLtN49d\ns+Yj/P0tRERElrr9zTen07t3EnXr1ruu2oYPf4IxY/7InXfedV3HVwQFNREREXFKSzMzc6Y3hw55\n0KRJMaNHF/DEE9d/vhEjngFKQtf33x9h+PDR5T42Pr7bVbePGjX2+gurIhTUREREBCgJaU8+6etc\nPnjQkyef9KV6dejS5eZea/fuXSxZsoi8vDyGD3+GPXu+YOvWTRQXF9OuXTiPP/4E8+fPo2bNmjRs\n2IjU1KWYTB4cPfr/6NSpC48//oRzRGzLlk3k5ubw449H+emnY4wcOZZ27cJZtOhvbNy4nrp162G3\n20lK6kfr1vdfUUtOTg6vvDKJnJwL2O12Ro/+A3fffQ8zZ07jyJFDXLxYQEJCL+LjuzFz5jS++eYg\nRUVFznWupKAmIiIiAMyc6V3q+qlTb35QAzhy5DCLF6fi7e3Nnj1f8Je/vIuHhwd9+nQnMbHvZfse\nOLCfDz9cQXFxMb17d+Pxxy8f5jt16iSvvz6Lzz7bzqpVKwgLa05q6jIWL15Bbm4uSUk9SErqV2od\ny5YtJiysOf37D+abbw4we/YMpkyZxvbt/2LLls0cP36WNWs+4vz5c2zf/i+WLl2F3W5nzZqPbv6H\n8isKaiIiIgLAoUOlf8fwwAHXXO+uuxrj7V0SDn18fBg+/Ak8PT3Jzs7m/Pnzl+1799334OPjU+a5\nWrRoCYDVaiUnJ4djxzK5885GVKvmQ7VqPjRtGlbmsd98c4CBA4cAcM89zTh2LJPq1Wtw222389RT\nTxEe3onY2K54e3tz2223M27cGCIjo4iN7XqjH8Fv0rc+r0NampmICD/MZoiI8CMtTXlXRESqviZN\niktd36yZa67n5eUFwIkTx0lJ+YDp02czZ8471KlT54p9PT09r3qu/97ucDhwOMDD4z8xx2Qq+1iT\nyYTD4XAuFxeXfA7Tp89i+PDhfPfdIZ577hnnuscee+Kyda6koHaNfpm/P3jQk6Ki/8zfK6yJiEhV\nN3p0Qanrn3/etdfNzs6mVq1a+Pn58e2333DixAkKCwtv6JyhoaF8//0R7HY7Z8+e5ZtvDpa57z33\nNGPPnl0A7Nv3NQ0bNuL48Z9ZtmwJYWFhDB8+mnPnzjnX3X33Pc51rqZ0cY3Kmr9/801vEhLsFVyN\niIjIzVPy91g+b775n299jhpVQFKSLzab667buHETfH39eOqpx7n33pZ0796D6dNfo0WL+677nIGB\nQURHx/J//zeQ229vSLNmYWWOyvXp879MmfIyI0cOpbi4mDFjnqN27WD27dtLUlIS4EHXro84123a\ntB4vLy+6dn3kuusrL5Pjv8f6bhE22wWXnTs01EJR0ZXjp2azg59/znHZdY0mODjApZ+z0blz/+rd\nPXsH9+7fnXuHqtv/mjUfER0di6enJwMHJjFjxmys1pBrOkdF9B4cHFDmNo2oXaMmTYo5ePDKRF7W\nvL6IiIhUjtOnT/PEE4Pw8vLmoYdirzmkGYGC2jUaPbrgsmfM/GLUqNLn9UVERKRyDBgwmAEDBld2\nGTdEXya4RgkJdubNy6dZsyLMZmjWrIh58/J1f5qIiIjcdBpRuw4JCXYSEuz/nrfOq+xyRERE5Bal\nETURERERg1JQExERETEoBTURERFxmSeffOyKh82+/fYcFi9eVOr+u3fv4sUX/wjAuHFjrti+YkUK\n8+fPK/N6hw9/x48/HgVg4sTnuXTp4vWWTq9e3cjNzb3u428GBTURERFxmejoGDZv3nDZuq1bNxMV\n9dBvHvvqqzOu+Xoff7yZzMwfAXj55alUq1b2+0GrAn2ZQERERFymS5eHeOqpITz99EgAvvnmIMHB\nwQQHW/n88x28++7beHl5ERAQwJ/+9Oplx3bt2oV//nMTu3btZNas6QQGBhEUVJu6detht9t55ZVJ\n2GynyM/P5/HHn6BOnVBWrUrl4483U6tWLV566XkWLkwhJ+cCU6f+icLCQjw8PBg3bgImk4lXXplE\n3br1OHz4O5o0uZtx4yaU2sOpUyevON5qDeFPf5rA6dNZFBQUMGTIk9x/f5sr1rVt2/6GPj8FNRER\nETcxaVI1Pvro2v/q9/CA4mL/Urd162Zn0qRLZR5bq1YgdevW48CBfTRr1pzNmzcQHR0LwIULF5g4\nMZm6desxefJL7NiRgZ+f3xXnmDdvDhMmTKZx4yY8++xI6tatx4UL52nTpi1xcQ/z00/HmDBhHO+9\nt4jf/a4dnTp1oVmz5s7j3333bR5+uDtdujzEli0bee+9dxgy5Em+/fYgL788hVq1AklIiOfChQsE\nBFz5loDSju/d+385dy6buXP/yoULF8jI+JQjRw5fse5GaepTREREXCo6OpZNm0qmPz/9dBudOnUB\noGbNmrz2WjLDhz/Bnj1fcP586S85P378OI0bNwGgZcvWAAQEVOfgwf089dTjvPLKpDKPBfj224O0\navU/ALRufT/fffctAPXq3UZQUG08PDyoXTuY3NzSXwVZ2vG3334HeXm5TJ48gd27Pycq6qFS190o\njaiJiIi4iUmTLl119KssJc8Nvf6b6iMiIlm48D2io2O47bYGVK9eHYCpUyczbdpM7rijITNmvFbm\n8R4e/xlX+uUV5Rs2rOP8+fPMnfsu58+f5/e/H3CVCkzO4woL7ZhMJef79Uvay379+ZXH+/j4MG/e\n3/j6669Yu/YjPv30E8aPn1jquhuhETURERFxKT8/fxo1aszChQuc054Aubk5hITU4cKFC+ze/QWF\nhYWlHl+7djA//vgDDoeDPXu+ACA7O5vQ0Lp4eHjw8cebnceaTCaKioouO75p02bs3r0LgC+//IJ7\n7ml6TfWXdvy3337Dhg3ruO++ljz77PP88MP/K3XdjdKImoiIiLhcdHQsyckTmThxsnNdjx69eeqp\nIdx2WwP69RvIe++9wxNPPH3FsU888TQvvvgcdeqEOl+s3qlTZ8aNG8OBA/vo2vURrFYrCxb8lfvu\na8XMmdMuu9ft978fytSpk/noo5WYzV48//wE7Pbyv/qxtOOrVfNh3ry5rFqVioeHB337DiA0tO4V\n626UyVH2OF+VZbNdqJDrlAwFV8y1jMadewf37l+9u2fv4N79u3Pv4N79V0TvwcFXfoHhF5r6FBER\nETEoBTURERERg1JQExERETEoBTURERERg1JQExERETEoBTURERERg1JQExERETEoBTURERERg3Lp\nmwmmTJnC3r17MZlMjB8/nhYtWji3bd++nRkzZuDp6cmDDz7IsGHDWLZsGatXr3bus2/fPvbs2cOA\nAQPIy8tzPmX4ueeeo3nz5q4sXURERKTSuSyo7dy5k6NHj5KSksKRI0cYP348KSkpzu3JycnMnz+f\nkJAQ+vfvT0xMDL1796Z3797O49euXevcf+rUqTRp0sRV5YqIiIgYjsumPjMyMoiKigKgUaNGnDt3\njpycHAAyMzOpUaMGoaGheHh4EBERQUZGxmXHz507l6efvvJ9XyIiIiLuwmUjallZWYSFhTmXAwMD\nsdlsWCwWbDYbgYGBl23LzMx0Ln/11VeEhoYSHBzsXDdr1izOnj1Lo0aNGD9+PD4+PmVeu1YtP8xm\nz5vcUemu9n6uW5079w7u3b96d1/u3L879w7u3X9l9u7Se9T+27W8+3358uUkJCQ4lwcOHMjdd99N\ngwYNmDhxIh988AFDhgwp8/izZ/NuqNby0ktq3bN3cO/+1bt79g7u3b879w7u3f8t+1J2q9VKVlaW\nc/nUqVPOEbJfbzt58iRWq9W5vGPHDlq1auVcjo6OpkGDBgB07tyZQ4cOuapsEREREcNwWVALDw8n\nPT0dgP3792O1WrFYLADUr1+fnJwcjh07ht1uZ8uWLYSHhwMloc3f3x9vb2+gZCRu8ODBnD9/HigJ\ncY0bN3ZV2SIiIiKG4bKpz9atWxMWFkZSUhImk4mJEyeSmppKQEAA0dHRTJo0ibFjxwIQHx9Pw4YN\nAa64f81kMtGnTx8GDx6Mr68vISEhjBgxwlVli4iIiBiGyXEtN49VERU1j645e/fsHdy7f/Xunr2D\ne/fvzr2De/d/y96jJiIiIiI3RkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU\n1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERE\nxKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFN\nRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQM\nSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1EREREQMSkFNRERExKAU1ERE\nREQMyuzKk0+ZMoW9e/diMpkYP348LVq0cG7bvn07M2bMwNPTkwcffJBhw4axbNkyVq9e7dxn3759\n7Nmzh2+++YZJkyYBcPfdd/Pyyy+7smwRERERQ3BZUNu5cydHjx4lJSWFI0eOMH78eFJSUpzbk5OT\nmT9/PiEhIfTv35+YmBh69+5N7969ncevXbsWgFdeecUZ9MaOHcvHH39MRESEq0oXERERMQSXTX1m\nZGQQFRUFQKNGjTh37hw5OTkAZGZmUqNGDUJDQ/Hw8CAiIoKMjIzLjp87dy5PP/00BQUF/PTTT87R\nuMjIyCv2FREREbkVuWxELSsri7CwMOdyYGAgNpsNi8WCzWYjMDDwsm2ZmZnO5a+++orQ0FCCg4M5\nefIk1atXd24LCgrCZrNd9dq1avlhNnvexG7KFhwcUCHXMSJ37h3cu3/17r7cuX937h3cu//K7N2l\n96j9N4fDUe59ly9fTkJCwnWf5+zZvHJf60YEBwdgs12okGsZjTv3Du7dv3p3z97Bvft3597Bvfuv\niN6vFgRdNvVptVrJyspyLp86dYrg4OBSt508eRKr1epc3rFjB61atQJKRtuys7PL3FdERETkVuWy\noBYeHk56ejoA+/fvx2q1YrFYAKhfvz45OTkcO3YMu93Oli1bCA8PB0qCmL+/P97e3gB4eXlx5513\nsmvXLgDWr19Px44dXVW2iIiIiGG4bOqzdevWhIWFkZSUhMlkYuLEiaSmphIQEEB0dDSTJk1i7Nix\nAMTHx9OwYUOAK+5fAxg/fjwvvfQSxcXF3HfffbRv395VZYuIiIgYhslxLTePVREVNY+uOXv37B3c\nu3/17p69g3v37869g3v3f8veoyYiIiIiN0ZBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpB\nTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURERMSgFNRERERE\nDEpBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURERMSgFNRE\nREREDEpBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURERMSg\nFNREREREDEpBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURERMSgFNREREREDEpBTURE\nRMSgFNREREREDEpBTURERMSgzK48+ZQpU9i7dy8mk4nx48fTokUL57bt27czY8YMPD09efDBBxk2\nbBgAq1ev5t1338VsNjNy5Eg6derEuHHj2L9/PzVr1gRgyJAhdOrUyZWli4iIiFQ6lwW1nTt3cvTo\nUVJSUjhy5Ajjx48nJSXFuT05OZn58+cTEhJC//79iYmJISgoiLlz57JixQry8vKYPXu2M5CNGTOG\nyMhIV5UrIiIiYjguC2oZGRlERUUB0KhRI86dO0dOTg4Wi4XMzExq1KhBaGgoABEREWRkZBAUFES7\ndu2wWCxYLBYmT57sqvJEREREDM9lQS0rK4uwsDDncmBgIDabDYvFgs1mIzAw8LJtmZmZ5Ofnc/Hi\nRYYOHcr58+cZMWIE7dq1A2DRokUsWLCAoKAgJkyYcNnxv1arlh9ms6erWrtMcHBAhVzHiNy5d3Dv\n/tW7+3Ln/t25d3Dv/iuzd5feo/bfHA5HufbLzs5mzpw5/PzzzwwcOJAtW7bQvXt3atasSdOmTXnn\nnXeYM2cOL730UpnnOHs272aVfVXBwQHYbBcq5FpG4869g3v3r97ds3dw7/7duXdw7/4roverBUGX\nfevTarWSlZXlXD516hTBwcGlbjt58iRWq5WgoCBatWqF2WymQYMG+Pv7c+bMGdq1a0fTpk0B6Ny5\nM4cOHXJV2SIiIiKG4bKgFh4eTnp6OgD79+/HarVisVgAqF+/Pjk5ORw7dgy73c6WLVsIDw+nQ4cO\nfPbZZxQXF3P27Fny8vKoVasWI0aMIDMzE4AdO3bQuHFjV5UtIiIiYhgum/ps3bo1YWFhJCUlYTKZ\nmDhxIqmpqQQEBBAdHc2kSZMYO3YsAPHx8TRs2BCAmJgY+vTpA8CLL76Ih4cH/fr1Y/To0fj6+uLn\n58fUqVNdVbaIiIiIYZgc5b15rAqpqHl0zdm7Z+/g3v2rd/fsHdy7f3fuHdy7/1v2HjURERERuTEK\naiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIi\nYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAm\nIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIG\npaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIi\nIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGpaAmIiIiYlAKaiIiIiIGVa6gtm/fPrZs\n2QLAG2+8waBBg9i1a9dvHjdlyhQSExNJSkriq6++umzb9u3b6dWrF4mJicydO9e5fvXq1TzyyCP0\n6NGDrVu3AnD8+HEGDBhA3759GTVqFAUFBeXtT0RERKTKKldQS05OpmHDhuzatYuvv/6aCRMmMGvW\nrKses3PnTo4ePUpKSgqvvPIKr7zyyhXnnD17NosXL+bTTz/l8OHDnD17lrlz5/Lhhx/y9ttvs2nT\nJgBmzZpF3759+fDDD7n99ttZvnz5dbYrIiIiUnWUK6hVq1aNO+64g02bNtGnTx/uuusuPDyufmhG\nRgZRUVEANGrUiHPnzpGTkwNAZmYmNWrUIDQ0FA8PDyIiIsjIyCAjI4N27dphsViwWq1MnjwZgB07\ndtClSxcAIiMjycjIuO6GRURERKoKc3l2ys/PZ+3atWzcuJFhw4aRnZ3N+fPnr3pMVlYWYWFhzuXA\nwEBsNhsWiwWbzUZgYOBl2zIzM8nPz+fixYsMHTqU8+fPM2LECNq1a0d+fj7e3t4ABAUFYbPZrnrt\nWrX8MJs9y9PaDQsODqiQ6xiRO/cO7t2/endf7ty/O/cO7t1/ZfZerqA2ZswYFi5cyDPPPIPFYmH2\n7NkMHjz4mi7kcDjKtV92djZz5szh559/ZuDAgc57467lPGfP5l1TbdcrODgAm+1ChVzLaNy5d3Dv\n/tW7e/YO7t2/O/cO7t1/RfR+tSBYrqDWtm1bmjdvjsViISsri3bt2tG6deurHmO1WsnKynIunzp1\niuDg4FK3nTx5EqvViq+vL62b92uKAAAgAElEQVRatcJsNtOgQQP8/f05c+YMfn5+XLx4ER8fH+e+\nIiIiIre6ct2jNnnyZNauXUt2djZJSUksWrSISZMmXfWY8PBw0tPTAdi/fz9WqxWLxQJA/fr1ycnJ\n4dixY9jtdrZs2UJ4eDgdOnTgs88+o7i4mLNnz5KXl0etWrVo376981zr16+nY8eON9CyiIiISNVQ\nrhG1AwcOMGHCBBYvXkxCQgLDhg1j0KBBVz2mdevWhIWFkZSUhMlkYuLEiaSmphIQEEB0dDSTJk1i\n7NixAMTHx9OwYUMAYmJi6NOnDwAvvvgiHh4ejBgxgueee46UlBTq1q3Lo48+eiM9i4iIiFQJ5Qpq\nv9wXtnXrVkaPHg1QrmeZPfvss5ct33PPPc5fP/DAA6SkpFxxTFJSEklJSZets1qtLFiwoDylioiI\niNwyyjX12bBhQ+Lj48nNzaVp06asXLmSGjVquLo2EREREbdWrhG15ORkDh06RKNGjQC46667+POf\n/+zSwkRERETcXbmC2sWLF9m8eTNvvvkmJpOJli1bctddd7m6NhERERG3Vq6pzwkTJpCTk0NSUhJ9\n+vQhKyuLF1980dW1iYiIiLi1co2oZWVlMWPGDOdyZGQkAwYMcFlRIiIiIlLOEbX8/Hzy8/Ody3l5\neVy6dMllRYmIiIhIOUfUEhMTiYuLo3nz5kDJA2xHjRrl0sJERERE3F25glqvXr0IDw9n//79mEwm\nJkyYwPvvv+/q2kRERETcWrmCGkBoaCihoaHO5a+++solBYmIiIhIiXLdo1aaX95WICIiIiKucd1B\nzWQy3cw6RERERORXrjr1GRERUWogczgcnD171mVFiYiIiMhvBLUPP/ywouoQERERkV+5alCrV69e\nRdUhIiIiIr9y3feoiYiIiIhrKaiJiIiIGJSCmoiIiIhBKaiJiIiIGJSCmoiIiIhBKaiJiIiIGJSC\nmoiIiIhBKaiJiIiIGJSCmoiIiIhBKaiJiIiIGJSCmoiIiIhBKaiJiIiIGJSCmoiIiIhBKaiJiIiI\nGJSCmoiIiIhBKaiJiIiIGJSCmoiIiIhBKaiJiIiIGJSCmoiIiIhBKaiJiIiIGJSCmoiIiIhBKaiJ\niIiIGJSCmoiIiIhBmV158ilTprB3715MJhPjx4+nRYsWzm3bt29nxowZeHp68uCDDzJs2DB27NjB\nqFGjaNy4MQBNmjRhwoQJjBs3jv3791OzZk0AhgwZQqdOnVxZuoiIiEilc1lQ27lzJ0ePHiUlJYUj\nR44wfvx4UlJSnNuTk5OZP38+ISEh9O/fn5iYGADatGnDrFmzrjjfmDFjiIyMdFW5IiIiIobjsqnP\njIwMoqKiAGjUqBHnzp0jJycHgMzMTGrUqEFoaCgeHh5ERESQkZHhqlJEREREqiSXjahlZWURFhbm\nXA4MDMRms2GxWLDZbAQGBl62LTMzkyZNmnD48GGGDh3KuXPnGD58OOHh4QAsWrSIBQsWEBQUxIQJ\nEy47/tdq1fLDbPZ0VWuXCQ4OqJDrGJE79w7u3b96d1/u3L879w7u3X9l9u7Se9T+m8Ph+M197rjj\nDoYPH05cXByZmZkMHDiQ9evX0717d2rWrEnTpk155513mDNnDi+99FKZ5zl7Nu9mll6m4OAAbLYL\nFXIto3Hn3sG9+1fv7tk7uHf/7tw7uHf/FdH71YKgy6Y+rVYrWVlZzuVTp04RHBxc6raTJ09itVoJ\nCQkhPj4ek8lEgwYNqF27NidPnqRdu3Y0bdoUgM6dO3Po0CFXlS0iIiJiGC4LauHh4aSnpwOwf/9+\nrFYrFosFgPr165OTk8OxY8ew2+1s2bKF8PBwVq9ezfz58wGw2WycPn2akJAQRowYQWZmJgA7duxw\nfitURERE5FbmsqnP1q1bExYWRlJSEiaTiYkTJ5KamkpAQADR0dFMmjSJsWPHAhAfH0/Dhg0JDg7m\n2WefZdOmTRQWFjJp0iS8vb3p168fo0ePxtfXFz8/P6ZOneqqskVEREQMw+Qoz81jVUxFzaNrzt49\newf37l+9u2fv4N79u3Pv4N7937L3qImI3CrS0sxERPhhNkNEhB9paRX2PSwRcXP600ZE5CrS0sw8\n+aSvc/ngQc9/L+eTkGCvvMJExC1oRE1E5CpmzvQudf2bb5a+XkTkZlJQExG5ikOHSv9jsqz1IiI3\nk/6kERG5iiZNiq9pvYjIzaSgJiJyFaNHF5S6ftSo0teLiNxMCmoiIleRkGBn3rx8mjUrwmyGZs2K\nmDdPXyQQkYqhb32KiPyGhAQ7CQn2fz9PqWLeJSwiAhpRExERETEsBTURERERg1JQExERETEoBTUR\nERERg1JQExERETEoBTURERERg1JQExERETEoBTURERERg1JQExERETEoBTURERERg1JQExERETEo\nBTURERERg1JQExERETEoBTURERERg1JQuw4OB/Tr58ujj8I//2mmoKCyKxIREZFbkbmyC6iKTCa4\neBE2bIBVq3wJDCymRw87SUmF3HtvMSZTZVcoIiIitwKNqF2nFSvy+fJLePLJAjw84N13vYmK8qdT\nJz/mzvXi5EmlNREREbkxCmo34L77YPLkS+zdm8v77+fRtWshhw978PLLPrRs6U/fvr6sXm3m4sXK\nrlRERESqIk193gReXhATU0RMTBFnzkBamhcpKV5s3Ghm40YzNWo4SEgoJDGxkNatNTUqIiIi5aMR\ntZssMBCGDClk/fo8tm3LZdiwAnx8HPztb97ExfnToYMfs2Z5c/y40pqIiIhcnYKaC91zTzETJ15i\nz55cFi/O49FHC/nxRw+Sk6vRqpU/ffr4kppqJj+/sisVERERI9LUZwUwm6FLlyK6dCkiOxtWrfJi\nyRIvtm41s3WrmYAAB48+WkifPnbatCnS1KiIiIgAGlGrcDVrwqBBhaxdm8f27TmMGnWJgAAH77/v\nTbdufrRt68+MGd5kZiqtiYiIuDsFtUp0110OXnihgC++yGXZsjx69izkxAkTr75ajf/5Hws9e/qS\nkmImN7eyKxUREZHKoKlPA/D0hIiIIiIiirhwAVav9iIlxcwnn5T8jBvnoFu3kgfqtm1bhIfitYiI\niFvQX/kGExAA/foVsnp1Pjt25DB27CUCAx0sWeLFo4/60aaNP3/+szc//KCpURERkVudgpqBNWzo\n4LnnCvj881zS0vJITCwkK8vE669Xo00bC927+/Lhh2Zyciq7UhEREXEFBbUqwMMDwsOLmD37Ivv2\n5TBrVj4dOtjJyDAzerQvzZtbePppHz7+2JPi4squVkRERG4WBbUqxmKBpCQ7qan57NqVw3PPXSI4\n2MHy5V707u3H//yPP1OnevP995oaFRERqeoU1KqwBg0cjB1bwM6duaxenUe/fgWcO2fijTeq0bat\nhfh4PxYu9OLcucquVERERK6HS7/1OWXKFPbu3YvJZGL8+PG0aNHCuW379u3MmDEDT09PHnzwQYYN\nG8aOHTsYNWoUjRs3BqBJkyZMmDCB48eP88c//pGioiKCg4OZNm0a3t7eriy9SjGZoG3bItq2LeKV\nVy6xdq2ZJUu82LbNk127fHjhhWrEx9tJTCwkIqIIT8/KrlhERETKw2VBbefOnRw9epSUlBSOHDnC\n+PHjSUlJcW5PTk5m/vz5hISE0L9/f2JiYgBo06YNs2bNuuxcs2bNom/fvsTFxTFjxgyWL19O3759\nXVV6lebnBz172unZ085PP5lYvrzkUR9paV6kpXlRp04xvXoVkpho5+67dUObiIiIkbls6jMjI4Oo\nqCgAGjVqxLlz58j599cTMzMzqVGjBqGhoXh4eBAREUFGRkaZ59qxYwddunQBIDIy8qr7yn/Uq+dg\n1KgCPv00jzVrchk0qIC8PBNz5lSjY0d/YmL8eO89L86erexKRUREpDQuG1HLysoiLCzMuRwYGIjN\nZsNisWCz2QgMDLxsW2ZmJk2aNOHw4cMMHTqUc+fOMXz4cMLDw8nPz3dOdQYFBWGz2a567Vq1/DCb\nK2Z+Lzg4oEKuc6Pi4kp+3n4bVq+Gv/0N0tM92bPHk5de8uGRR2DQIIiNLXk3aXlUld5dxZ37V+/u\ny537d+fewb37r8zeK+zNBA6H4zf3ueOOOxg+fDhxcXFkZmYycOBA1q9ff83nOXs277rrvBbBwQHY\nbBcq5Fo3U2Rkyc/JkyaWLTOzdKkXy5d7snw5BAcX07Nnyf1sYWFlT41W1d5vFnfuX727Z+/g3v27\nc+/g3v1XRO9XC4Ium/q0Wq1kZWU5l0+dOkVwcHCp206ePInVaiUkJIT4+HhMJhMNGjSgdu3anDx5\nEj8/Py5evHjZvnLjQkIcDB9eyMcf57F+fS5DhhRgt5t4+21vIiP96dLFj7/+1YusLD3qQ0REpDK4\nLKiFh4eTnp4OwP79+7FarVgsFgDq169PTk4Ox44dw263s2XLFsLDw1m9ejXz588HwGazcfr0aUJC\nQmjfvr3zXOvXr6djx46uKtstmUzQsmUxU6de4quvcnjvvXxiYws5cMCDF17woUULfwYO9GHNGjMF\nBZVdrYiIiPswOcozl3idXn/9dXbt2oXJZGLixIkcOHCAgIAAoqOj+fzzz3n99dcBeOihhxgyZAg5\nOTk8++yznD9/nsLCQoYPH05ERASnTp3iueee49KlS9StW5epU6fi5eVV5nUranj2Vh8KttlMpKaW\nPOpj//6Se/6Cgorp0cPO0KHe1K9/AZObDrbd6r/3V6Pe3bN3cO/+3bl3cO/+K3vq06VBrbIoqN18\nX3/twdKlXqxYYSYrq2QgtmnTIhITC+nZ005IyC33n9FVudPv/a+pd/fsHdy7f3fuHdy7/8oOanoz\ngZTLvfcWM3nyJfbuzWXhwjx69IDDhz2YNMmHli396dfPl48+MnPpUmVXKiIicuuosG99yq3Bywti\nY4sYMAC+/TaHtDQvUlK82LDBzIYNZmrWdJCQUEhiYiGtWhW77dSoiIjIzaARNblugYEwZEgh69fn\nsW1bLsOGFeDt7WDBAm9iY/3p0MGPWbO8OX5caU1EROR6KKjJTXHPPcVMnHiJL7/MZfHiPLp3L+TH\nHz1ITq5Gq1b+JCb6kpZmJj+/sisVERGpOjT1KTeV2QxduhTRpUsR2dmwcmXJ1OiWLWa2bDFTvbqD\n7t1LpkYfeEBToyIiIlejETVxmZo1YfDgQtauzWP79hxGjbqEv7+D99/35uGH/WnXzp833vDm2DGl\nNRERkdIoqEmFuOsuBy+8UMDu3bksXZpHjx6FHD9uYurUavzP//jTs6cvS5eayc2t7EpFRESMQ1Of\nUqE8PaFTpyI6dSriwgVYvdqLJUvMfPJJyc9zzzl45BE7SUmF/O53RXjonxIiIuLG9NegVJqAAOjX\nr5CPPsrns89yGDPmErVqOVi82Ivu3f1o08afadO8OXpUU6MiIuKeFNTEEO6808G4cQXs2pVLamoe\niYmFZGWZmDatGg88YKF7d18WLzaTk1PZlYqIiFQcBTUxFA8P6NChiNmzL7JvXw6zZuUTHm4nI8PM\nqFG+NG9uYdgwH7Zt86S4uLKrFRERcS0FNTEsiwWSkuykpeWza1cOf/zjJYKDHSxb5kWvXn7cf78/\nU6d68/33mhoVEZFbk4KaVAkNGjh49tkCdu7MZfXqPPr1KyA728Qbb1SjbVsLXbv68f77Xpw/X9mV\nioiI3DwKalKlmEzQtm0Rb7xxiX37cvjLX/KJiLCza5cHY8f60Ly5haFDfdi82ZOiosquVkRE5MYo\nqEmV5ecHvXrZWbYsn927c3nhhUvUq+cgNdWLpCQ/WrXyZ/Jkbw4d0n/mIiJSNelvMLkl1KvnYNSo\nArZvz2XNmlwGDiwgL8/E7NnV6NDBn9hYP957z4uzZyu7UhERkfJTUJNbiskE999fzOuvl0yNvvNO\nPl262PnySw/GjfPh3nstDBniw4YNntjtlV2tiIjI1enNBHLL8vGBRx+18+ijdk6cMLF8uZmUFC8+\n+qjkJzi4mF697CQmFtKsmZ71ISIixqMRNXELdeo4GD68kG3b8li/PpfHHy/Abjfx1lvedOrkT1SU\nH3/9qxenT+tRHyIiYhwKauJWTCZo2bKYV1+9xFdf5TB/fj4xMXb27/fghRd8aNHCn0GDfFi71kxB\nQWVXKyIi7k5Tn+K2qlWDbt3sdOtm59QpE6mpZpYs8WLt2pKfoKBievYsmRpt3rwYkwbbRESkgmlE\nTQSwWh0MHVrI1q15bNqUy5NPFmAywTvveNOliz+RkX689ZYXp04prYmISMVRUBP5lXvvLWby5Evs\n3ZvLwoV5xMcX8t13Hkyc6MN99/nTv78vy5fDpUuVXamIiNzqNPUpUgYvL4iNLSI2tojTp02kpZV8\na3T9ejPr10PNmhYSEgpJSiqkZUtNjYqIyM2nETWRcggKcvD73xeyYUMeH3+cy7PPgre3gwULvImJ\n8adjRz9mz/bmxAmlNRERuXkU1ESuUdOmxUybBl9+mcuHH+bRvXshP/zgweTJ1WjZ0p+kJF/S0szk\n51d2pSIiUtVp6lPkOpnNEBVVRFRUEdnZsHKlFykpXmzebGbzZjPVqzvo3r1kavT++zU1KiIi104j\naiI3Qc2aMHhwIWvX5vHpp7mMHHkJf38H77/vTdeu/rRr58/Mmd789JPSmoiIlJ+CmshN1rhxMS++\nWMDu3bmkpOTRo0chP/9sYsqUarRu7U+vXr4sW2YmN7eyKxUREaPT1KeIi3h6QmRkEZGRRZw/D6tX\ne7FkiZlt20p+/P1LpkYTE+20bVukqVEREbmCRtREKkD16tC/fyH/+Ec+n32Ww5gxl6hVy8GHH3rT\nvbsfbdr4M22aN0ePKq2JiMh/KKiJVLA773QwblwBu3blkpqaR58+hdhsJqZNq8YDD1h49FFfliwx\nk5NT2ZWKiEhlU1ATqSQeHtChQxFz5lxk374cZs3KJzzczvbtZkaO9KV5cwvDh/vwySeeFBdXdrUi\nIlIZFNREDMBigaQkO2lp+Xz+eQ5//OMlgoMdLF3qRc+eftx/vz+vvurN999ralRExJ0oqIkYzO23\nO3j22QJ27sxl9eo8+vYtIDvbxIwZ1Wjb1sLDD/uyaJEX589XdqUiIuJqCmoiBmUyQdu2RcyceYmv\nv85h7tx8HnzQzuefezJmjA/Nm1sYOtSHLVs8KSqq7GpFRMQVFNREqgB/f+jd287y5fns3p3L+PGX\nqFfPQWqqF4mJfrRu7U9ysjfffaf/pUVEbiX6U12kiqlXz8Ho0QVs357LP/+Zy8CBBeTmmpg1qxrh\n4f7ExfmxYIEX2dmVXamIiNwolwa1KVOmkJiYSFJSEl999dVl27Zv306vXr1ITExk7ty5l227ePEi\nUVFRpKamAjBu3Di6devGgAEDGDBgAFu3bnVl2SJVgskEDzxQzOuvl0yNvvNOPp0729mzx4PnniuZ\nGv39733YuNETu72yqxURkevhsjcT7Ny5k6NHj5KSksKRI0cYP348KSkpzu3JycnMnz+fkJAQ+vfv\nT0xMDHfddRcAb731FjVq1LjsfGPGjCEyMtJV5YpUab6+8Oijdh591M6JEyaWLfNi6VIzq1d7sXq1\nF1ZrMb162UlMLKRpUz3rQ0SkqnDZiFpGRgZRUVEANGrUiHPnzpHz7yd4ZmZmUqNGDUJDQ/Hw8CAi\nIoKMjAwAjhw5wuHDh+nUqZOrShO5pdWp42DEiAK2bcsjPT2Xxx8voKDAxF/+4k1EhD/R0X68+64X\np0/rUR8iIkbnshG1rKwswsLCnMuBgYHYbDYsFgs2m43AwMDLtmVmZgLw2muvMWHCBFauXHnZ+RYt\nWsSCBQsICgpiwoQJlx3/a7Vq+WE2e97kjkoXHBxQIdcxInfuHapG/w89VPLzl7/AP/4Bf/87rFnj\nyd69nkycCA8/DIMHQ1wceHmV/7xVoXdXcefewb37d+fewb37r8zeK+yl7A6H4zf3WblyJS1btuS2\n2267bH337t2pWbMmTZs25Z133mHOnDm89NJLZZ7n7Nm8G663PIKDA7DZLlTItYzGnXuHqtn/gw+W\n/Jw6ZSI11cySJV6kpXmSlga1axfTo0fJ1Oi99159arQq9n6zuHPv4N79u3Pv4N79V0TvVwuCLgtq\nVquVrKws5/KpU6cIDg4uddvJkyexWq1s3bqVzMxMtm7dyokTJ/D29qZOnTq0b9/euW/nzp2ZNGmS\nq8oWueVZrQ6GDi1k6NBCvv7ag5QUL1asMPPOO9688443zZoVkZRUSM+edoKDf/sfWCIi4jouu0ct\nPDyc9PR0APbv34/VasVisQBQv359cnJyOHbsGHa7nS1bthAeHs7MmTNZsWIFS5cupXfv3jz99NO0\nb9+eESNGOKdGd+zYQePGjV1VtohbuffeYpKTL7F3by5//3s+8fGFfPedBy+95EOLFv4MGODLRx+Z\nuXSpsisVEXFPLhtRa926NWFhYSQlJWEymZg4cSKpqakEBAQQHR3NpEmTGDt2LADx8fE0bNiwzHP1\n69eP0aNH4+vri5+fH1OnTnVV2SJuydsb4uLsxMXZOX3aRFpaydRoerqZ9HQztWo5SEgoJCmpkH9/\nR0hERCqAyVGem8eqmIqaR9ecvXv2Du7T/4EDJVOjy5ebsdlKBuCbNYNevS7Su7edkJBb7o+Pq3KX\n3/eyuHP/7tw7uHf/lX2Pmt5MICJlatasmJdfLpka/fDDPB55pJDDh+FPf/Lhvvv8+d//9WXlSjMX\nL1Z2pSIit6YK+9aniFRdZjNERRURFVWEp6cX7757kaVLvdi0ycymTWZq1HDQvXshiYmF3H9/MSY9\nok1E5KbQiJqIXJPAQHjssULWrs3j009zGTnyEr6+DhYu9KZrV3/at/dn5kxvfvpJaU1E5EYpqInI\ndWvcuJgXXyxgz55cUlLy6NGjkJ9+MjFlSjVat/anVy9fli83k1cxjzYUEbnlKKiJyA3z9ITIyCLe\nfvsi+/blMH36RR54oIht28w8/bQvzZtbeOaZanz2mSe33teXRORWlJZmJiLCD7MZIiL8SEurnLvF\nFNRE5KaqXh0GDCjkH//I57PPchgz5hI1ajj44ANvHnnEj9/9zp/XX/fmxx81NSoixpSWZubJJ305\neNCToiI4eNCTJ5/0rZSwpqAmIi5z550Oxo0r4IsvclmxIo/evQs5dcrEn/9cjfvvt5CQ4MuSJWZy\nciq7UhGR/5g507vU9W++Wfp6V1JQExGX8/CAjh2LmDu3ZGp01qx82re38+mnZkaOLJkaHTHCh3/9\ny5Piq79qVETE5Q4dKj0elbXelRTURKRCWSyQlGRn5cp8Pv88hz/84RK1aztISfGiRw8/HnjAn1df\n9eb77zU1KiKVo0mT0v/FWNZ6V1JQE5FKc/vtDv7whwJ27sxl1ao8+vYt4MwZEzNmVKNtWwvduvmy\naJEXF9zzgegiUklGjy4odf2oUaWvdyUFNRGpdB4e0K5dETNnXmLfvhzmzs2nY0c7O3d6MmaMD82b\nWxg61IetW0tu7BURcaWEBDvz5uXTrFkRZjM0a1bEvHn5JCTYK7wWvZlARAzF3x9697bTu7edY8dM\nLFvmRUqKF6mpJT+hocX06VPyFoS77tKzPkTENRIS7CQk2P/9rs/KexikRtRExLDq13fwzDMFZGTk\n8o9/5DJgQAG5uSbefLMa7dtbiIvz429/8yI7u7IrFRFxDQU1ETE8kwnatClm+vRLfP11DvPm5dO5\ns509ezz44x99uPdeC//3fz5s2uSJveJnJkREXEZTnyJSpfj6/mdK4sSJX6ZGzaxa5cWqVV5YrcX0\n7m0nMbGQe+7Rsz5EpGrTiJqIVFl16jgYMaKATz7JIz09l8ceK6CgwMTcud48+KA/0dF+zJ/vxZkz\nlV2piMj1UVATkSrPZIJWrYp57bWSqdH58/N56CE7+/Z58PzzJVOjjz3mw7p1nhQWVna1IiLlp6lP\nEbmlVKsG3brZ6dbNzqlTJlasMLNkiRf//GfJT+3axfTsWTI12ry5pkZFxNg0oiYityyr1cFTTxWy\ndWsemzbl8sQTBTgcMG+eN507+xMZ6ce8eV7YbHoLgogYk4KaiNzyTCa4995ikpMv8f/bu/eYqus/\njuPPcwERIQIEtNRCUku3Upu2REFMLLQ291MTnWYOK0XJltcswrb0h80507UytdZY3vKW3X66nGxe\n8DqnednPcKugELmoiHKUA9/fH/w8ScIBlQOH73k9Nqff7/ecw+ftl7e++HxvJ05c46uvKkhKquS/\n/7WSnh7AU0+145VXAvj+ezs3m//G4yIi9dKhTxHxKf7+kJTkJCnJSXGxhW3b7Gzc6Md//lPzKzTU\n4F//qiQ5uZInn6zGosk2EWlBmlETEZ/Vvr3Ba69V8vPP18nOvsa0aTex2w3WrvUnMbEd8fGBfPKJ\nH4WFSmsi0jIshmGY7hksRUXN8wTnmsdK+ObTon25dvDt+s1eu9MJe/bY/j/LZufmTQtWq0FCQhWT\nJtkJDLxOQIBB27YQEAABAQYBAdC2bc3vdhMfpzD7vnfHl2sH366/OWqPiAiud5uJ/0kREbl7djsk\nJlaRmFjFpUuwfXvNs0Z377azezdAYAPvN1wBribM3Vqua92dy7eHvsa8p00bdHhWxMQU1ERE6hEa\nCpMnVzJ5ciXnzlk5fLgdFy7cwOEAh8NCRUXN77eWHQ6oqLi1XLPu0iWLa11VVdMnKouldqhrqgBY\n13vatoWqKrDZmrwMEamHgpqISCN0715NbCwUFd37ZaGVlfwjzNUd7twHwFvLdb/m+nUoLbXicMCN\nG56YagvGz6+hcOcu8N19aPT316yh+C4FNRGRZuLnV/MrOPjWqcGePUW4uppaAdB9SKw7NN6+rrra\nj7Iy5x3vKSmx3Paapk9UVmvd4c59ALx9JrCxofHv91h1qZ14CQU1ERGTslohMLDm19+h8N7DYUSE\nH0VFFfVuN4zGzxo6HFS4WngAAA1rSURBVHD9uvvQ+PfsYu11ZWVw8WLNrGFlpWem2tq0qR3egoLA\nzy+wjlk/d4HvzvMU6wuJfn4eKUNMQEFNRESahMVSc5jS3x8eeKB5Zg2rqv55GNhd4KtvueH3FBRA\nRYWVigrPBEObrfEzgvUfKr670KjDya2DgpqIiLRaNlvNbFdQ0O2BsOnDYc0tGsoxDLhxo/7zCZsi\nNDocFi5ftrjWOZ2eSVQNnUd4e7gLDQXDaNOoi1B88dY1nqS/NhERkUayWHDNSDXF4eTGcDrrO5x8\n9wHQ3YUqly9bXevr5n9fdejWNfdGQU1ERMSL2e3/nDX0/EUo/5w1DAwM4q+/rtUKd7eHPncXodS3\nXFrq2YtQmurWNc89Bw8/3OTDazQFNREREXGxWmtusdK2LdwKhRER0KFDtUe+3t1ehNJQAKzvNdeu\nQUlJzazhzZuND4YxMZCT45HSG0VBTURERFpMS12E0phw53DAs8+29ehYGqKgJiIiIj7FZoN27aBd\nu4YvQomIgKKi5hlXXXRLPxEREREvpaAmIiIi4qU8GtQWL17M2LFjSU5O5uTJk7W2HThwgNGjRzN2\n7Fg++eSTWtscDgdDhw5l69atABQUFDBx4kTGjx/PzJkzuXnz3p+1JyIiItJaeCyoHT58mN9//52N\nGzeyaNEiFi1aVGv7hx9+yMqVK1m/fj379+8nNzfXte3TTz8lJCTEtbxixQrGjx/PunXreOSRR9i8\nebOnhi0iIiLiNTwW1HJychg6dCgAMTExXLlyhfLycgDy8vIICQmhY8eOWK1W4uPjyfn/ta/nz58n\nNzeXwYMHuz7r0KFDPPfccwAkJCS4XisiIiJiZh676rO4uJhevXq5lsPCwigqKiIoKIiioiLCwsJq\nbcvLywNgyZIlpKens337dtf2iooK/P1r7ogcHh5OUQOXX4SGBmK325qynHpFRAQ3y9fxRr5cO/h2\n/ardd/ly/b5cO/h2/S1Ze7PdnsMwGr4nyvbt2+nduzedO3e+r8+5dOn6XY3tXtU8++1qs3wtb+PL\ntYNv16/afbN28O36fbl28O36m6N2d0HQY0EtMjKS4uJi1/LFixeJiIioc1thYSGRkZFkZ2eTl5dH\ndnY2Fy5cwN/fnw4dOhAYGIjD4SAgIMD1WhERERGz89g5arGxsezcuROA06dPExkZSVBQEACdOnWi\nvLyc/Px8nE4ne/bsITY2luXLl7NlyxY2bdrEmDFjSE1NZcCAAQwYMMD1Wbt27WLQoEGeGraIiIiI\n1/DYjFrfvn3p1asXycnJWCwWMjIy2Lp1K8HBwSQmJrJw4UJmzZoFwPDhw4mOjq73s9LS0pg3bx4b\nN27koYceYuTIkZ4atoiIiIjXsBiNOemrlWmu4+g6Zu+btYNv16/afbN28O36fbl28O36W/ocNT2Z\nQERERMRLKaiJiIiIeCkFNREREREvpaAmIiIi4qVMeTGBiIiIiBloRk1ERETESymoiYiIiHgpBTUR\nERERL6WgJiIiIuKlFNREREREvJSCmoiIiIiXUlATERER8VL2lh6ANzt37hypqam8+uqrTJgwoda2\nAwcOsGzZMmw2G3FxcUyfPh2AxYsXc+LECSwWCwsWLODJJ59siaHfN3e1Hzx4kGXLlmG1WomOjmbR\nokUcOXKEmTNn0q1bNwC6d+9Oenp6Swy9Sbirf8iQIXTo0AGbzQbA0qVLiYqKMv2+LywsZPbs2a7l\nvLw8Zs2aRWVlJR9//DFdunQBYMCAAUybNq3Zx90UPvroI44dO4bT6eSNN95g2LBhrm1m73lwX7/Z\n+95d7Wbv+fpq94Wer6ioYP78+ZSUlHDjxg1SU1NJSEhwbfeKvjekTteuXTMmTJhgvPfee0ZWVtYd\n25OSkoy//vrLqKqqMsaNG2f8+uuvxqFDh4zXX3/dMAzDyM3NNV5++eXmHnaTaKj2xMREo6CgwDAM\nw0hLSzOys7ONgwcPGmlpac09VI9oqP6EhASjvLy81jpf2fe3VFZWGsnJyUZ5ebmxZcsWIzMzsxlH\n6Rk5OTnGlClTDMMwjNLSUiM+Pr7WdjP3vGE0XL+Z+76h2s3c8w3VfosZe94wDOOHH34wPv/8c8Mw\nDCM/P98YNmxYre3e0PeaUauHv78/q1evZvXq1Xdsy8vLIyQkhI4dOwIQHx9PTk4OpaWlDB06FICY\nmBiuXLlCeXk5QUFBzTr2++WudoCtW7e6agoLC+PSpUuuvwszaKj+uuTk5PjEvr9l27ZtPP/887Rr\n166ZRuZ5/fr1c/1U/MADD1BRUUFVVRU2m830PQ/u6wdz931DtdfFLD3f2NrN2PMAw4cPd/25oKCA\nqKgo17K39L3OUauH3W4nICCgzm1FRUWEhYW5lsPCwigqKqK4uJjQ0NA71rc27moHXN+MFy9eZP/+\n/cTHxwOQm5vL1KlTGTduHPv372+WsXpCQ/UDZGRkMG7cOJYuXYphGD6z72/55ptvGD16tGv58OHD\npKSkMGnSJM6cOePJIXqMzWYjMDAQgM2bNxMXF+f6z8rsPQ/u6wdz931DtYN5e74xtYM5e/52ycnJ\nzJ49mwULFrjWeUvfa0bNgwwTP0a1pKSEqVOnkpGRQWhoKI8++igzZswgKSmJvLw8XnnlFXbt2oW/\nv39LD7XJvfnmmwwaNIiQkBCmT5/Ozp0773iNmff98ePH6dq1q+s/7qeeeoqwsDAGDx7M8ePHmTdv\nHt99910Lj/Le/fzzz2zevJkvvvjirt9rhv3urn6z9319tftCz7vb72bveYANGzZw9uxZ5syZw44d\nO7BYLI1+r6f3vYLaPYiMjKS4uNi1XFhYSGRkJH5+frXWX7x4kYiIiJYYokeVl5fz2muv8dZbbzFw\n4EAAoqKiXFPIXbp0oX379hQWFtK5c+eWHKpHjBw50vXnuLg4zp07d8f3hFn3PUB2djbPPvusazkm\nJoaYmBgA+vTpQ2lpaYOHjbzV3r17+eyzz1izZg3BwcGu9b7S8/XVD+bve3e1m73n3dUO5u75U6dO\nER4eTseOHXniiSeoqqqitLSU8PBwr+l7Hfq8B506daK8vJz8/HycTid79uwhNjaW2NhY109ap0+f\nJjIystWdr9AYmZmZTJo0ibi4ONe6HTt2sHbtWqBmurikpKTWsX6zuHr1KikpKdy8eROAI0eO0K1b\nN5/Z9wC//PILjz/+uGt59erVfP/990DNFaNhYWGt8h/sq1ev8tFHH7Fq1SoefPDBWtt8oefd1Q/m\n7nt3tZu95xva72Dengc4evSoaxaxuLiY69evuw5rekvfW4zWPl/rIadOnWLJkiX8+eef2O12oqKi\nGDJkCJ06dSIxMZEjR46wdOlSAIYNG0ZKSgpQc9n20aNHsVgsZGRk1Prmbi3c1T5w4ED69etHnz59\nXK9/8cUXGTFiBLNnz6asrIzKykpmzJjhOoeltWlo33/11Vds376dNm3a0LNnT9LT07FYLKbf94mJ\niQC89NJLfPnll7Rv3x6ACxcuMGfOHAzDwOl0ttrbFGzcuJGVK1cSHR3tWvfMM8/Qo0cP0/c8uK/f\n7H3f0L43c883VDuYt+cBHA4H7777LgUFBTgcDmbMmMHly5cJDg72mr5XUBMRERHxUjr0KSIiIuKl\nFNREREREvJSCmoiIiIiXUlATERER8VIKaiIiIiJeSje8FRGfkJ+fzwsvvFDrFhNQ8/y+KVOm3Pfn\nHzp0iOXLl7N+/fr7/iwRkVsU1ETEZ4SFhZGVldXSwxARaTQFNRHxeT179iQ1NZVDhw5x7do1MjMz\n6d69OydOnCAzMxO73Y7FYuH999/nscce47fffiM9PZ3q6mratGnDv//9bwCqq6vJyMjg7Nmz+Pv7\ns2rVKgBmzZpFWVkZTqeThIQEpk2b1pLlikgronPURMTnVVVV0a1bN7Kyshg3bhwrVqwAYO7cubzz\nzjtkZWUxefJkPvjgAwAyMjJISUnh66+/ZtSoUfz0008AnD9/nrS0NDZt2oTdbmffvn0cOHAAp9PJ\nunXr2LBhA4GBgVRXV7dYrSLSumhGTUR8RmlpKRMnTqy1bs6cOQCuB4337duXtWvXUlZWRklJievR\nOP379+ftt98G4OTJk/Tv3x+AESNGADXnqHXt2tX1mJ0OHTpQVlbGkCFDWLFiBTNnziQ+Pp4xY8Zg\ntepnZBFpHAU1EfEZ7s5Ru/1pehaLBYvFUu92oM5ZsboeTB0eHs63337L8ePH2b17N6NGjWLbtm0E\nBATcSwki4mP0Y52ICHDw4EEAjh07Ro8ePQgODiYiIoITJ04AkJOTQ+/evYGaWbe9e/cC8OOPP7Js\n2bJ6P3ffvn1kZ2fz9NNPM3fuXAIDAykpKfFwNSJiFppRExGfUdehz06dOgFw5swZ1q9fz5UrV1iy\nZAkAS5YsITMzE5vNhtVqZeHChQCkp6eTnp7OunXrsNvtLF68mD/++KPOrxkdHc38+fNZs2YNNpuN\ngQMH8vDDD3uuSBExFYvxz/l8EREf06NHD06fPo3drp9dRcS76NCniIiIiJfSjJqIiIiIl9KMmoiI\niIiXUlATERER8VIKaiIiIiJeSkFNRERExEspqImIiIh4qf8Bb9xA0ffIa0oAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "YcecS39JvCsT", + "colab_type": "code", + "outputId": "3bce65e4-4e4b-4ae8-83de-a60214594d65", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "score = model.evaluate(x_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "print('Test accuracy:', score[1])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Test loss: 0.031877049914028614\n", + "Test accuracy: 0.9893\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "tgOjOZwmvCsY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### The ReduceLROnPlateau callback\n", + "\n", + "You can use this callback to reduce the learning rate when the validation loss has stopped improving. Reducing or increasing the learning rate in case of a loss plateau is is an effective strategy to get out of local minima during training. The following example uses the ReduceLROnPlateau callback:\n", + "\n", + "```Python\n", + "callbacks_list = [ \n", + " keras.callbacks.ReduceLROnPlateau(\n", + " # Monitors the model’s validation loss\n", + " monitor='val_loss',\n", + " # Divides the learning rate by 10 when triggered\n", + " factor=0.1,\n", + " # The callback is triggered after the validation loss \n", + " # has stopped improving for 10 epochs.\n", + " patience=10,\n", + " ) \n", + "] \n", + "\n", + "model.fit(x, y,\n", + " epochs=10,\n", + " batch_size=32,\n", + " callbacks=callbacks_list,\n", + " validation_data=(x_val, y_val)\n", + ")  \n", + "```" + ] + }, + { + "metadata": { + "id": "JnYaRmjbvCsb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Train a CNN model using the Functional API and the MNIST data\n", + "### with ReduceLROnPlateau callback\n", + "\n", + "Inspired by: \n", + "https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py" + ] + }, + { + "metadata": { + "id": "RUrmEOYzvCsc", + "colab_type": "code", + "outputId": "5168ae6f-fc0a-49cf-bfeb-9ae6416fb396", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + } + }, + "cell_type": "code", + "source": [ + "'''Trains a simple convnet on the MNIST dataset.\n", + "Gets to 99.25% test accuracy after 12 epochs\n", + "(there is still a lot of margin for parameter tuning).\n", + "16 seconds per epoch on a GRID K520 GPU.\n", + "'''\n", + "\n", + "from __future__ import print_function\n", + "import keras\n", + "from keras.datasets import mnist\n", + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.layers import Dense, Dropout, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras import backend as K\n", + "\n", + "batch_size = 128\n", + "num_classes = 10\n", + "epochs = 12\n", + "\n", + "# input image dimensions\n", + "img_rows, img_cols = 28, 28\n", + "\n", + "# the data, split between train and test sets\n", + "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", + "\n", + "if K.image_data_format() == 'channels_first':\n", + " x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n", + " x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n", + " input_shape = (1, img_rows, img_cols)\n", + "else:\n", + " x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n", + " x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n", + " input_shape = (img_rows, img_cols, 1)\n", + "\n", + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "x_train /= 255\n", + "x_test /= 255\n", + "print('x_train shape:', x_train.shape)\n", + "print(x_train.shape[0], 'train samples')\n", + "print(x_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "\n", + "def cnn_layers(inputs):\n", + " x = layers.Conv2D(32, (3, 3),\n", + " activation='relu', padding='valid')(inputs)\n", + " x = layers.MaxPooling2D(pool_size=(2, 2))(x)\n", + " x = layers.Conv2D(64, (3, 3), activation='relu')(x)\n", + " x = layers.MaxPooling2D(pool_size=(2, 2))(x)\n", + " x = layers.Flatten()(x)\n", + " x = layers.Dense(512, activation='relu')(x)\n", + " x = layers.Dropout(0.5)(x)\n", + " predictions = layers.Dense(num_classes,\n", + " activation='softmax',\n", + " name='x_train_out')(x)\n", + " return predictions\n", + "\n", + "model_input = layers.Input(shape=(28, 28, 1), dtype='float32', name='images')\n", + "model_output = cnn_layers(model_input)\n", + "model = keras.models.Model(inputs=model_input, outputs=model_output)\n", + "\n", + "model.compile(loss=keras.losses.categorical_crossentropy,\n", + " optimizer=keras.optimizers.Adadelta(),\n", + " metrics=['accuracy'])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x_train shape: (60000, 28, 28, 1)\n", + "60000 train samples\n", + "10000 test samples\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "psDCyUVwvCsg", + "colab_type": "code", + "outputId": "add52be3-63f5-4004-c3f6-be176543424a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1285 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "images (InputLayer) (None, 28, 28, 1) 0 \n", + "_________________________________________________________________\n", + "conv2d_5 (Conv2D) (None, 26, 26, 32) 320 \n", + "_________________________________________________________________\n", + "max_pooling2d_5 (MaxPooling2 (None, 13, 13, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_6 (Conv2D) (None, 11, 11, 64) 18496 \n", + "_________________________________________________________________\n", + "max_pooling2d_6 (MaxPooling2 (None, 5, 5, 64) 0 \n", + "_________________________________________________________________\n", + "flatten_3 (Flatten) (None, 1600) 0 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 512) 819712 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "x_train_out (Dense) (None, 10) 5130 \n", + "=================================================================\n", + "Total params: 843,658\n", + "Trainable params: 843,658\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140397179234008\n\nimages: InputLayer\n\n\n\n140397219354496\n\nconv2d_5: Conv2D\n\n\n\n140397179234008->140397219354496\n\n\n\n\n\n140397179233784\n\nmax_pooling2d_5: MaxPooling2D\n\n\n\n140397219354496->140397179233784\n\n\n\n\n\n140397179234232\n\nconv2d_6: Conv2D\n\n\n\n140397179233784->140397179234232\n\n\n\n\n\n140397179405648\n\nmax_pooling2d_6: MaxPooling2D\n\n\n\n140397179234232->140397179405648\n\n\n\n\n\n140397179408168\n\nflatten_3: Flatten\n\n\n\n140397179405648->140397179408168\n\n\n\n\n\n140397179494640\n\ndense_3: Dense\n\n\n\n140397179408168->140397179494640\n\n\n\n\n\n140397178920520\n\ndropout_3: Dropout\n\n\n\n140397179494640->140397178920520\n\n\n\n\n\n140397178919680\n\nx_train_out: Dense\n\n\n\n140397178920520->140397178919680\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "zFxFe1KlvCsl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Training the model" + ] + }, + { + "metadata": { + "scrolled": true, + "id": "li174WegvCsl", + "colab_type": "code", + "outputId": "659b880d-db10-4d77-ddea-ac62bd7e6133", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 816 + } + }, + "cell_type": "code", + "source": [ + "# Callbacks are passed to the model via the callbacks argument in fit, \n", + "# which takes a list of callbacks. You can pass any number of callbacks.\n", + "callbacks_list = [ \n", + " keras.callbacks.ReduceLROnPlateau(\n", + " # Monitors the model’s validation loss\n", + " monitor='val_loss',\n", + " # Divides the learning rate by 10 when triggered\n", + " factor=0.1,\n", + " # The callback is triggered after the validation loss \n", + " # has stopped improving for 1 epochs.\n", + " patience=1,\n", + " verbose=1\n", + " ) \n", + "] \n", + "\n", + "history = model.fit(x_train, y_train,\n", + " # C.COULOMBE More epochs in order to \n", + " # get more learning rate changes\n", + " epochs=15,\n", + " batch_size=32,\n", + " verbose=1,\n", + " callbacks=callbacks_list,\n", + " # C.COULOMBE, in order to keep a test dataset\n", + " # just create a validation dataset by splitting\n", + " # the training dataset\n", + " validation_split=0.2\n", + "# validation_data=(x_test, y_test)\n", + " )" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/15\n", + "48000/48000 [==============================] - 17s 347us/step - loss: 0.1576 - acc: 0.9495 - val_loss: 0.0540 - val_acc: 0.9839\n", + "Epoch 2/15\n", + "48000/48000 [==============================] - 16s 337us/step - loss: 0.0547 - acc: 0.9831 - val_loss: 0.0451 - val_acc: 0.9868\n", + "Epoch 3/15\n", + "48000/48000 [==============================] - 16s 339us/step - loss: 0.0403 - acc: 0.9879 - val_loss: 0.0398 - val_acc: 0.9881\n", + "Epoch 4/15\n", + "48000/48000 [==============================] - 16s 338us/step - loss: 0.0312 - acc: 0.9903 - val_loss: 0.0383 - val_acc: 0.9891\n", + "Epoch 5/15\n", + "48000/48000 [==============================] - 16s 341us/step - loss: 0.0264 - acc: 0.9918 - val_loss: 0.0342 - val_acc: 0.9904\n", + "Epoch 6/15\n", + "48000/48000 [==============================] - 16s 339us/step - loss: 0.0220 - acc: 0.9931 - val_loss: 0.0337 - val_acc: 0.9910\n", + "Epoch 7/15\n", + "48000/48000 [==============================] - 16s 333us/step - loss: 0.0181 - acc: 0.9943 - val_loss: 0.0339 - val_acc: 0.9904\n", + "\n", + "Epoch 00007: ReduceLROnPlateau reducing learning rate to 0.1.\n", + "Epoch 8/15\n", + "48000/48000 [==============================] - 16s 338us/step - loss: 0.0118 - acc: 0.9963 - val_loss: 0.0289 - val_acc: 0.9922\n", + "Epoch 9/15\n", + "48000/48000 [==============================] - 16s 338us/step - loss: 0.0102 - acc: 0.9971 - val_loss: 0.0288 - val_acc: 0.9924\n", + "\n", + "Epoch 00009: ReduceLROnPlateau reducing learning rate to 0.010000000149011612.\n", + "Epoch 10/15\n", + "48000/48000 [==============================] - 16s 328us/step - loss: 0.0087 - acc: 0.9973 - val_loss: 0.0289 - val_acc: 0.9926\n", + "\n", + "Epoch 00010: ReduceLROnPlateau reducing learning rate to 0.0009999999776482583.\n", + "Epoch 11/15\n", + "48000/48000 [==============================] - 16s 328us/step - loss: 0.0092 - acc: 0.9974 - val_loss: 0.0289 - val_acc: 0.9926\n", + "\n", + "Epoch 00011: ReduceLROnPlateau reducing learning rate to 9.999999310821295e-05.\n", + "Epoch 12/15\n", + "48000/48000 [==============================] - 16s 332us/step - loss: 0.0088 - acc: 0.9973 - val_loss: 0.0289 - val_acc: 0.9926\n", + "\n", + "Epoch 00012: ReduceLROnPlateau reducing learning rate to 9.999999019782991e-06.\n", + "Epoch 13/15\n", + "48000/48000 [==============================] - 16s 341us/step - loss: 0.0084 - acc: 0.9975 - val_loss: 0.0289 - val_acc: 0.9926\n", + "\n", + "Epoch 00013: ReduceLROnPlateau reducing learning rate to 9.99999883788405e-07.\n", + "Epoch 14/15\n", + "48000/48000 [==============================] - 16s 340us/step - loss: 0.0093 - acc: 0.9970 - val_loss: 0.0289 - val_acc: 0.9926\n", + "\n", + "Epoch 00014: ReduceLROnPlateau reducing learning rate to 9.99999883788405e-08.\n", + "Epoch 15/15\n", + "48000/48000 [==============================] - 16s 339us/step - loss: 0.0092 - acc: 0.9973 - val_loss: 0.0289 - val_acc: 0.9926\n", + "\n", + "Epoch 00015: ReduceLROnPlateau reducing learning rate to 9.999998695775504e-09.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "jznAtu8uvCsq", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc'][1:]\n", + "val_acc = history.history['val_acc'][1:]\n", + "loss = history.history['loss'][1:]\n", + "val_loss = history.history['val_loss'][1:]\n", + "lr = history.history['lr'][1:]\n", + "\n", + "# epochs = range(len(acc))\n", + "epochs = range(1,len(acc)+1)\n", + "\n", + "plt.figure(figsize=(10,7))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(10,7))\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(10,7))\n", + "\n", + "plt.plot(epochs, lr, 'b', label='Learning Rate')\n", + "plt.title('Learning Rate')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Learning Rate')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4pVoGPWEvCsv", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "score = model.evaluate(x_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "print('Test accuracy:', score[1])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bqUcqsB8vCsy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Writing your own callback (先跳過, 大家短期內還不會用到)\n", + "\n", + "If you need to take a specific action during training that isn’t covered by one of the built-in callbacks, you can write your own callback. Callbacks are implemented by subclassing the class `keras.callbacks.Callback`. You can then implement any number of the following transparently named methods, which are called at various points during training: \n", + "\n", + "```Python\n", + "# Called at the start of every epoch\n", + "on_epoch_begin\n", + "# Called at the end of every epoch\n", + "on_epoch_end\n", + "# Called right before processing each batch\n", + "on_batch_begin\n", + "# Called right after processing each batch\n", + "on_batch_end\n", + "# Called at the start of training \n", + "on_train_begin\n", + "# Called at the end of training\n", + "on_train_end  \n", + "```\n", + "\n", + "These methods all are called with a logs argument, which is a dictionary containing information about the previous batch, epoch, or training run: training and validation metrics, and so on. Additionally, the callback has access to the following attributes: \n", + "\n", + "* `self.model` — The model instance from which the callback is being called \n", + "* `self.validation_data` — The value of what was passed to fit as validation data \n", + "\n", + "Here’s a simple example of a custom callback that saves to disk (as Numpy arrays) the activations (weights ?) of every layer of the model at the end of every epoch, computed on the first sample of the validation set: \n", + "\n", + "```Python\n", + "import keras\n", + "import numpy as np\n", + "from keras import layers\n", + "\n", + "class ActivationLogger(keras.callbacks.Callback):\n", + "\n", + " def set_model(self, model):\n", + " # Called by the parent model before training, \n", + " # to inform the callback of what model will be calling it\n", + " self.model = model\n", + " layer_outputs = [layer.output for layer in model.layers]\n", + " # Model instance that returns the activations of every layer\n", + " self.activations_model = keras.models.Model(model.input,layer_outputs)\n", + " \n", + " def on_epoch_end(self, epoch, logs=None):\n", + " if self.validation_data is None:\n", + " raise RuntimeError('Requires validation_data.')\n", + " # Obtains the first input sample of the validation data\n", + " validation_sample = self.validation_data[0][0:1]\n", + " activations = self.activations_model.predict(validation_sample)\n", + " # Saves arrays to disk\n", + " f = open('activations_at_epoch_' + str(epoch) + '.npz', 'wb')\n", + " np.savez(f,*activations)\n", + " f.close() \n", + "```" + ] + }, + { + "metadata": { + "id": "M2aCGBg0vCsz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is all you need to know about callbacks—the rest is technical details, which you can easily look up. Now you’re equipped to perform any sort of logging or preprogrammed intervention on a Keras model during training." + ] + }, + { + "metadata": { + "id": "r3dnK4h7vCs1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Train a CNN model using the Functional API and the MNIST data\n", + "### with custom ActivationLogger callback\n", + "\n", + "Inspired by: \n", + "https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py" + ] + }, + { + "metadata": { + "id": "x7Bmx8GUvCs2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "'''Trains a simple convnet on the MNIST dataset.\n", + "Gets to 99.25% test accuracy after 12 epochs\n", + "(there is still a lot of margin for parameter tuning).\n", + "16 seconds per epoch on a GRID K520 GPU.\n", + "'''\n", + "\n", + "from __future__ import print_function\n", + "import keras\n", + "from keras import layers\n", + "from keras.datasets import mnist\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras import backend as K\n", + "import numpy as np\n", + "import tensorflow as tf\n", + "\n", + "batch_size = 128\n", + "num_classes = 10\n", + "epochs = 12\n", + "\n", + "# input image dimensions\n", + "img_rows, img_cols = 28, 28\n", + "\n", + "# the data, split between train and test sets\n", + "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", + "\n", + "if K.image_data_format() == 'channels_first':\n", + " x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n", + " x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n", + " input_shape = (1, img_rows, img_cols)\n", + "else:\n", + " x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n", + " x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n", + " input_shape = (img_rows, img_cols, 1)\n", + "\n", + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "x_train /= 255\n", + "x_test /= 255\n", + "print('x_train shape:', x_train.shape)\n", + "print(x_train.shape[0], 'train samples')\n", + "print(x_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "\n", + "def cnn_layers(inputs):\n", + " x = layers.Conv2D(32, (3, 3),\n", + " activation='relu', padding='valid')(inputs)\n", + " x = layers.MaxPooling2D(pool_size=(2, 2))(x)\n", + " x = layers.Conv2D(64, (3, 3), activation='relu')(x)\n", + " x = layers.MaxPooling2D(pool_size=(2, 2))(x)\n", + " x = layers.Flatten()(x)\n", + " x = layers.Dense(512, activation='relu')(x)\n", + " x = layers.Dropout(0.5)(x)\n", + " predictions = layers.Dense(num_classes,\n", + " activation='softmax',\n", + " name='x_train_out')(x)\n", + " return predictions\n", + "\n", + "model_input = layers.Input(shape=(28, 28, 1), dtype='float32', name='images')\n", + "model_output = cnn_layers(model_input)\n", + "model = keras.models.Model(inputs=model_input, outputs=model_output)\n", + "\n", + "model.compile(loss=keras.losses.categorical_crossentropy,\n", + " optimizer=keras.optimizers.Adadelta(),\n", + " metrics=['accuracy'])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "SlgY29u1vCs6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "OvIDzWjfvCs_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Training the model" + ] + }, + { + "metadata": { + "id": "A4GMA1SSvCtA", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "class ActivationLogger(keras.callbacks.Callback):\n", + "\n", + " def set_model(self, model):\n", + " # Called by the parent model before training, \n", + " # to inform the callback of what model will be calling it\n", + " self.model = model\n", + " # Here the model has 9 layers\n", + " layer_outputs = [layer.output for layer in model.layers]\n", + " # Model instance that returns the activations of every layer\n", + " # self.activations_model = keras.models.Model(inputs=model.inputs[0],outputs=layer_outputs)\n", + " self.activations_model = keras.models.Model(model.input,layer_outputs)\n", + "\n", + " def on_epoch_end(self, epoch, logs=None):\n", + " if self.validation_data is None:\n", + " raise RuntimeError('Requires validation_data.')\n", + " # Obtains the first input sample of the validation data\n", + " validation_sample_x = self.validation_data[0][0:1]\n", + " validation_sample_y = self.validation_data[1]\n", + " # predict(self, x, batch_size=None, verbose=0, steps=None)\n", + " # x: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple outputs).\n", + " activations = self.activations_model.predict(validation_sample_x)\n", + " # Saves arrays to disk\n", + " f = open('activations_at_epoch_' + str(epoch) + '.npz', 'wb')\n", + " # Since we have several arrays of different dimensions, we expand the arguments:\n", + " np.savez(f,*activations)\n", + " f.close()\n", + " \n", + "# Callbacks are passed to the model via the callbacks argument in fit, \n", + "# which takes a list of callbacks. You can pass any number of callbacks.\n", + "callbacks_list = [ \n", + " ActivationLogger() \n", + "] \n", + "\n", + "history = model.fit(x_train, y_train,\n", + " epochs=12,\n", + " batch_size=batch_size,\n", + " verbose=1,\n", + " callbacks=callbacks_list,\n", + " # C.COULOMBE, in order to keep a test dataset\n", + " # just create a validation dataset by splitting\n", + " # the training dataset\n", + " validation_split=0.2\n", + " )" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7yX5gbEBvCtG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Recover the layers activation weights" + ] + }, + { + "metadata": { + "id": "OVdBeKMJvCtH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# For example, recover the arrays of weights for the last epoch 12 => 11 \n", + "# and the last layer 9 => 8\n", + "last_epoch_activations = np.load('activations_at_epoch_11.npz')\n", + "activations = [last_epoch_activations[key] for key in last_epoch_activations]\n", + "print(len(activations))\n", + "print(activations[8])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "collapsed": true, + "id": "XsDmFBSivCtK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is all you need to know about callbacks—the rest is technical details, which you can easily look up. Now you’re equipped to perform any sort of logging or preprogrammed intervention on a Keras model during training." + ] + }, + { + "metadata": { + "id": "C5XwW1-uvCtL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.2.2. Introduction to TensorBoard: the TensorFlow visualization framework \n", + "\n", + "To do good research or develop good models, you need rich, frequent feedback about what’s going on inside your models during your experiments. That’s the point of running experiments: to get information about how well a model performs—as much information as possible. Making progress is an iterative process, or loop: you start with an idea and express it as an experiment, attempting to validate or invalidate your idea. You run this experiment and process the information it generates. This inspires your next idea. The more iterations of this loop you’re able to run, the more refined and powerful your ideas become. Keras helps you go from idea to experiment in the least possible time, and fast GPUs can help you get from experiment to result as quickly as possible. \n", + "\n", + "But what about processing the experiment results? That’s where TensorBoard comes in.\n", + "\n", + "This section introduces TensorBoard, a browser-based visualization tool that comes packaged with TensorFlow. Note that it’s only available for Keras models when you’re using Keras with the TensorFlow backend. \n", + "\n", + "The key purpose of TensorBoard is to help you visually monitor everything that goes on inside your model during training. If you’re monitoring more information than just the model’s final loss, you can develop a clearer vision of what the model does and doesn’t do, and you can make progress more quickly. TensorBoard gives you access to several neat features, all in your browser: \n", + "\n", + "* Visually monitoring metrics during training Visualizing your model architecture\n", + "* Visualizing your model architecture\n", + "* Visualizing histograms of activations and gradients \n", + "* Exploring embeddings in 3D \n", + "\n", + "Let’s demonstrate these features on a simple example. You’ll train a 1D convnet on the IMDB sentiment-analysis task. \n", + "\n", + "The model is similar to the one you saw in the last section of chapter 6. You’ll consider only the top 2,000 words in the IMDB vocabulary, to make visualizing word embeddings more tractable. \n", + "\n", + "#### IMDB Text-classification model to use with TensorBoard" + ] + }, + { + "metadata": { + "id": "ArAK6lrGvCtL", + "colab_type": "code", + "outputId": "7549f559-1242-428a-d30b-30410f665df0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "import keras \n", + "from keras import layers \n", + "from keras.datasets import imdb \n", + "from keras.preprocessing import sequence \n", + "import keras.backend as K\n", + "K.clear_session()\n", + "\n", + "# Number of words to consider as features\n", + "max_features = 2000\n", + "# Cuts off texts after this number of words (among max_features most common words)\n", + "max_len = 500\n", + "\n", + "(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) \n", + "x_train = sequence.pad_sequences(x_train, maxlen=max_len) \n", + "x_test = sequence.pad_sequences(x_test, maxlen=max_len) \n", + "\n", + "model = keras.models.Sequential()\n", + "model.add(layers.Embedding(max_features,128,\n", + " input_length=max_len,\n", + " name='embed'))\n", + "model.add(layers.Conv1D(32, 7, activation='relu'))\n", + "model.add(layers.MaxPooling1D(5))\n", + "model.add(layers.Conv1D(32, 7, activation='relu'))\n", + "model.add(layers.GlobalMaxPooling1D())\n", + "model.add(layers.Dense(1))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz\n", + "17465344/17464789 [==============================] - 1s 0us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "kpGdx8EovCtN", + "colab_type": "code", + "outputId": "450e3fc9-a04d-4819-de0d-3bc3c769470f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 988 + } + }, + "cell_type": "code", + "source": [ + "model.summary()\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embed (Embedding) (None, 500, 128) 256000 \n", + "_________________________________________________________________\n", + "conv1d_1 (Conv1D) (None, 494, 32) 28704 \n", + "_________________________________________________________________\n", + "max_pooling1d_1 (MaxPooling1 (None, 98, 32) 0 \n", + "_________________________________________________________________\n", + "conv1d_2 (Conv1D) (None, 92, 32) 7200 \n", + "_________________________________________________________________\n", + "global_max_pooling1d_1 (Glob (None, 32) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 291,937\n", + "Trainable params: 291,937\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140397177584832\n\nembed: Embedding\n\n\n\n140397183418208\n\nconv1d_1: Conv1D\n\n\n\n140397177584832->140397183418208\n\n\n\n\n\n140397218972056\n\nmax_pooling1d_1: MaxPooling1D\n\n\n\n140397183418208->140397218972056\n\n\n\n\n\n140397228813560\n\nconv1d_2: Conv1D\n\n\n\n140397218972056->140397228813560\n\n\n\n\n\n140397179012992\n\nglobal_max_pooling1d_1: GlobalMaxPooling1D\n\n\n\n140397228813560->140397179012992\n\n\n\n\n\n140397218621424\n\ndense_1: Dense\n\n\n\n140397179012992->140397218621424\n\n\n\n\n\n140397183230808\n\n140397183230808\n\n\n\n140397183230808->140397177584832\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "vVGfGRCKk26K", + "colab_type": "code", + "outputId": "e692a782-0d3b-4dd7-cf22-799a3da421c9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "x_train.shape" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(25000, 500)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "metadata": { + "id": "MQvpv5afvCtP", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.compile(optimizer='rmsprop',\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Kxjz3rLOvCtV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Before you start using TensorBoard, you need to create a directory where you’ll store the log files it generates.\n", + "\n", + "Creating a directory for TensorBoard log files\n", + "\n", + " > mkdir my_log_dir\n", + " \n", + "Let’s launch the training with a TensorBoard callback instance. This callback will write log events to disk at the specified location.\n", + "\n", + "#### Training the model with a TensorBoard callback" + ] + }, + { + "metadata": { + "id": "5lVy_E2_qNdQ", + "colab_type": "code", + "outputId": "5fccddff-2436-4c41-9b7f-c0745fda819e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 289 + } + }, + "cell_type": "code", + "source": [ + "!/opt/bin/nvidia-smi" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Fri Nov 16 05:43:06 2018 \n", + "+-----------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 396.44 Driver Version: 396.44 |\n", + "|-------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", + "|===============================+======================+======================|\n", + "| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 49C P0 57W / 149W | 331MiB / 11441MiB | 0% Default |\n", + "+-------------------------------+----------------------+----------------------+\n", + " \n", + "+-----------------------------------------------------------------------------+\n", + "| Processes: GPU Memory |\n", + "| GPU PID Type Process name Usage |\n", + "|=============================================================================|\n", + "+-----------------------------------------------------------------------------+\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "scrolled": false, + "id": "yoszxAwivCtW", + "colab_type": "code", + "outputId": "364261f4-8c53-4c46-ab6a-d6a8baa06dab", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 323 + } + }, + "cell_type": "code", + "source": [ + " \n", + "# Tensorboard\n", + "\n", + "#安裝tensorboard colab\n", + "!pip install tensorboardcolab\n", + "import numpy\n", + "from tensorboardcolab import *\n", + "tbc=TensorBoardColab()\n", + "\n", + "callbacks = [\n", + " TensorBoardColabCallback(tbc,histogram_freq=1,embeddings_freq=1, embeddings_layer_names = None, embeddings_data=x_train[0:100])\n", + " \n", + "] \n", + "\n", + "history = model.fit(x_train, y_train,\n", + " epochs=3,\n", + " batch_size=64,\n", + " validation_split=0.2,\n", + " callbacks=callbacks)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting tensorboardcolab\n", + " Downloading https://files.pythonhosted.org/packages/73/3d/eaf745e162e471c5bb2737a407d8626fb8684a88cf085045456aeb841d3c/tensorboardcolab-0.0.19.tar.gz\n", + "Building wheels for collected packages: tensorboardcolab\n", + " Running setup.py bdist_wheel for tensorboardcolab ... \u001b[?25l-\b \bdone\n", + "\u001b[?25h Stored in directory: /root/.cache/pip/wheels/ab/74/02/cda602d1dc28b2f12eab313c49b9bfa14d6371326bc2590e06\n", + "Successfully built tensorboardcolab\n", + "Installing collected packages: tensorboardcolab\n", + "Successfully installed tensorboardcolab-0.0.19\n", + "Wait for 8 seconds...\n", + "TensorBoard link:\n", + "http://7ede96b8.ngrok.io\n", + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/3\n", + "20000/20000 [==============================] - 5s 228us/step - loss: 0.5853 - acc: 0.7074 - val_loss: 0.4344 - val_acc: 0.8296\n", + "Epoch 2/3\n", + "20000/20000 [==============================] - 4s 203us/step - loss: 0.4524 - acc: 0.7820 - val_loss: 0.7156 - val_acc: 0.7102\n", + "Epoch 3/3\n", + "20000/20000 [==============================] - 4s 197us/step - loss: 0.3904 - acc: 0.7394 - val_loss: 0.7184 - val_acc: 0.6624\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "0NSQiKQnvCtb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "At this point, you can launch the TensorBoard server from the command line, instructing it to read the logs the callback is currently writing.\n", + "\n", + "The tensorboard utility should have been automatically installed on your machine the moment you installed TensorFlow (for example, via pip): \n", + "\n", + " > cd \n", + " > tensorboard --logdir=my_log_dir \n", + "\n", + "You can then browse to http://localhost:6006 and look at your model training (see figure 7.10). In addition to live graphs of the training and validation metrics, \n", + "\n", + "
Figure 7.10. TensorBoard: metrics monitoring
\n", + "\n", + "\n", + "you get access to the Histograms tab, where you can find pretty visualizations of histograms of activation values taken by your layers (see figure 7.11).\n", + "\n", + "
Figure 7.11. TensorBoard: activation histograms
\n", + "\n", + "\n", + "The Embeddings tab gives you a way to inspect the embedding locations and spatial relationships of the 2 000 (or 10,000) words in the input vocabulary, as learned by the initial Embedding layer. Because the embedding space is 128-dimensional, TensorBoard automatically reduces it to 2D or 3D using a dimensionality-reduction algorithm of your choice: either principal component analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE). \n", + "\n", + "In figure 7.12 below, in the point cloud, you can clearly see two clusters: words with a positive connotation and words with a negative connotation. The visualization makes it immediately obvious that embeddings trained jointly with a specific objective result in models that are completely specific to the underlying task—that’s the reason using pretrained generic word embeddings is rarely a good idea.\n", + "\n", + "
Figure 7.12.a TensorBoard: interactive 3D word-embedding visualization - PCA
\n", + "\n", + "\n", + "
Figure 7.12.b TensorBoard: interactive 3D word-embedding visualization - T-SNE
\n", + "\n", + "\n", + "The Graphs tab shows an interactive visualization of the graph of low-level TensorFlow operations underlying your Keras model (see figure 7.13). As you can see, there’s a lot more going on than you would expect. The model you just built may look simple when defined in Keras—a small stack of basic layers—but under the hood, you need to construct a fairly complex graph structure to make it work. A lot of it is related to the gradient-descent process. This complexity differential between what you see and what you’re manipulating is the key motivation for using Keras as your way of building models, instead of working with raw TensorFlow to define everything from scratch. Keras makes your workflow dramatically simpler. Figure 7.13. TensorBoard: TensorFlow graph visualization\n", + "\n", + "
Figure 7.13. TensorBoard: TensorFlow graph visualization
\n", + "\n", + "\n", + "Note that Keras also provides another, cleaner way to plot models as graphs of layers rather than graphs of TensorFlow operations: the utility keras.utils.plot_model. Using it requires that you’ve installed the Python pydot and pydot-ng libraries as well as the graphviz library. Let’s take a quick look: from keras.utils import plot_model plot_model(model, to_file='model.png') This creates the PNG image shown in figure 7.14." + ] + }, + { + "metadata": { + "id": "RDps-x_mvCtc", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### A model plot as a graph of layers, generated with plot_model" + ] + }, + { + "metadata": { + "id": "sfWr2bMkvCte", + "colab_type": "code", + "outputId": "022bd272-4e0e-4e73-c740-fb65e58c6327", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 665 + } + }, + "cell_type": "code", + "source": [ + "from keras.utils import plot_model \n", + "plot_model(model, to_file='model.png')\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140397177584832\n\nembed: Embedding\n\n\n\n140397183418208\n\nconv1d_1: Conv1D\n\n\n\n140397177584832->140397183418208\n\n\n\n\n\n140397218972056\n\nmax_pooling1d_1: MaxPooling1D\n\n\n\n140397183418208->140397218972056\n\n\n\n\n\n140397228813560\n\nconv1d_2: Conv1D\n\n\n\n140397218972056->140397228813560\n\n\n\n\n\n140397179012992\n\nglobal_max_pooling1d_1: GlobalMaxPooling1D\n\n\n\n140397228813560->140397179012992\n\n\n\n\n\n140397218621424\n\ndense_1: Dense\n\n\n\n140397179012992->140397218621424\n\n\n\n\n\n140397183230808\n\n140397183230808\n\n\n\n140397183230808->140397177584832\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "id": "M-q8GpIuvCti", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### A model plot as a graph of layers with shape information" + ] + }, + { + "metadata": { + "id": "8YLIXjBUvCtk", + "colab_type": "code", + "outputId": "06709c12-1383-4f5f-cba3-3430dacd649a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 745 + } + }, + "cell_type": "code", + "source": [ + "from keras.utils import plot_model \n", + "plot_model(model, to_file='model.png')\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140397177584832\n\nembed: Embedding\n\ninput:\n\noutput:\n\n(None, 500)\n\n(None, 500, 128)\n\n\n\n140397183418208\n\nconv1d_1: Conv1D\n\ninput:\n\noutput:\n\n(None, 500, 128)\n\n(None, 494, 32)\n\n\n\n140397177584832->140397183418208\n\n\n\n\n\n140397218972056\n\nmax_pooling1d_1: MaxPooling1D\n\ninput:\n\noutput:\n\n(None, 494, 32)\n\n(None, 98, 32)\n\n\n\n140397183418208->140397218972056\n\n\n\n\n\n140397228813560\n\nconv1d_2: Conv1D\n\ninput:\n\noutput:\n\n(None, 98, 32)\n\n(None, 92, 32)\n\n\n\n140397218972056->140397228813560\n\n\n\n\n\n140397179012992\n\nglobal_max_pooling1d_1: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 92, 32)\n\n(None, 32)\n\n\n\n140397228813560->140397179012992\n\n\n\n\n\n140397218621424\n\ndense_1: Dense\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 1)\n\n\n\n140397179012992->140397218621424\n\n\n\n\n\n140397183230808\n\n140397183230808\n\n\n\n140397183230808->140397177584832\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "id": "SI4nJ9HMIdsY", + "colab_type": "code", + "outputId": "cd35886a-c0b0-44de-e08c-be1c5e2d9bd4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "model_json = model.to_json()\n", + "with open(\"imdb_cnn_model.json\", \"w\") as json_file:\n", + " json_file.write(model_json)\n", + "# serialize weights to HDF5\n", + "model.save_weights(\"imdb_cnn_model.h5\")\n", + "print(\"Saved model to disk\")" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Saved model to disk\n" + ], + "name": "stdout" + } + ] + } + ] +} \ No newline at end of file diff --git a/7_3_Getting_the_most_out_of_your_models.ipynb b/7_3_Getting_the_most_out_of_your_models.ipynb new file mode 100644 index 0000000..c163603 --- /dev/null +++ b/7_3_Getting_the_most_out_of_your_models.ipynb @@ -0,0 +1,2126 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "7.3-Getting_the_most_out_of_your_models.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "uBHic00A-j51", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# 7.3 Getting the most out of your models \n", + "## Chap 7 «Advanced Deep-learning best practices»\n", + "## «Deep Learning with Python» book by François Chollet\n", + "\n", + "This notebook contains the code samples found in Chapter 7 of «Deep Learning with Python». Note that the original text features far more content, in particular further explanations and figures. \n", + "\n", + "修改與補充Claude COULOMBE的github :https://github.com/ClaudeCoulombe/deep-learning-with-python-notebooks (by Claude COULOMBE - PhD candidate - TÉLUQ / UQAM - Montréal.)" + ] + }, + { + "metadata": { + "id": "3hHC6NWB-j55", + "colab_type": "code", + "outputId": "cfe317f4-1144-4e57-ca94-e2973406ebd5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 79 + } + }, + "cell_type": "code", + "source": [ + "# sudo pip3 install --ignore-installed --upgrade tensorflow\n", + "import tensorflow as tf\n", + "import keras.backend.tensorflow_backend as KTF\n", + "config = tf.ConfigProto()\n", + "config.gpu_options.allow_growth = True\n", + "session = tf.Session(config=config)\n", + "KTF.set_session(session)\n", + "import keras\n", + "#import tensorflow as tf\n", + "print(keras.__version__)\n", + "print(tf.__version__)\n", + "# To ignore keep_dims warning\n", + "tf.logging.set_verbosity(tf.logging.ERROR)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "2.2.4\n", + "1.12.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ozweuJUQRRWI", + "colab_type": "code", + "outputId": "ba9fe757-6915-4f61-8d20-6e68068fed41", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 185 + } + }, + "cell_type": "code", + "source": [ + "!pip install graphviz \n", + "!apt-get install graphviz \n", + "# Install pydot to visualize the network structure\n", + "!pip install pydot\n", + "!pip install pydot-ng\n", + "\n", + "#After fininishing the installation, you have to restart the colab runtime!!" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: graphviz in /usr/local/lib/python3.6/dist-packages (0.10.1)\n", + "Reading package lists... Done\n", + "Building dependency tree \n", + "Reading state information... Done\n", + "graphviz is already the newest version (2.40.1-2).\n", + "0 upgraded, 0 newly installed, 0 to remove and 3 not upgraded.\n", + "Requirement already satisfied: pydot in /usr/local/lib/python3.6/dist-packages (1.2.4)\n", + "Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", + "Requirement already satisfied: pydot-ng in /usr/local/lib/python3.6/dist-packages (2.0.0)\n", + "Requirement already satisfied: pyparsing>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from pydot-ng) (2.3.0)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "collapsed": true, + "id": "RosbCio0-j6I", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 7.3. Getting the most out of your models\n", + "\n", + "In this section, we’ll go beyond “works okay” to “works great and wins machine-learning competitions” by offering you a quick guide to a set of must-know techniques for building state-of-the-art deep-learning models. " + ] + }, + { + "metadata": { + "id": "cHmdlAFn-j6K", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.3.1. Advanced architecture patterns \n", + "\n", + "We covered one important design pattern in detail in the previous section: residual connections. There are two more design patterns you should know about: normalization and depthwise separable convolution. " + ] + }, + { + "metadata": { + "id": "0t_2j_Lu-j6N", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Normalization\n", + "\n", + "Normalization is a broad category of methods that seek to make different samples seen by a machine-learning model more similar to each other, which helps the model learn and generalize well to new data. The most common form of data normalization is one you’ve seen several times in this book already: centering the data on 0 by subtracting the mean from the data, and giving the data a unit standard deviation by dividing the data by its standard deviation based on the assumption that the data follows a normal (or Gaussian) distribution:\n", + "\n", + "```Python\n", + " normalized_data = (data - np.mean(data, axis=...)) / np.std(data, axis=...)\n", + "```\n", + "\n", + "#### Batch normalization \n", + "\n", + "Data normalization should be a concern after every transformation operated by the network: even if the data entering a Dense or Conv2D network has a 0 mean and unit variance, there’s no reason to expect a priori that this will be the case for the data coming out. \n", + "\n", + "Batch normalization is a type of layer (`BatchNormalization` in Keras) introduced in 2015 by Ioffe and Szegedy that can adaptively normalize data even as the mean and variance change over time during training. It works by internally maintaining an exponential moving average of the batch-wise mean and variance of the data seen during training. The main effect of batch normalization is that it helps with gradient propagation and allows deeper networks. For instance, BatchNormalization is used liberally in many of the advanced convnet architectures that come packaged with Keras, such as ResNet50, Inception V3, and Xception. \n", + "\n", + "The `BatchNormalization` layer is typically used after a convolutional or densely connected layer:\n", + "\n", + "```Python\n", + " conv_model.add(layers.Conv2D(32, 3, activation='relu'))\n", + " # Batch normalization used after a Conv layer\n", + " conv_model.add(layers.BatchNormalization())\n", + "\n", + " dense_model.add(layers.Dense(32, activation='relu'))\n", + " # Batch normalization used after a Dense layer\n", + " dense_model.add(layers.BatchNormalization())\n", + "```\n", + "The `BatchNormalization` layer takes an axis argument, which specifies the feature axis that should be normalized. This argument defaults to -1, the last axis in the input tensor. This is the correct value when using Dense layers, Conv1D layers, RNN layers, and Conv2D layers with data_format set to \"channels_last\". But in the niche use case of Conv2D layers with data_format set to \"channels_first\", the features axis is axis 1; the axis argument in BatchNormalization should accordingly be set to 1." + ] + }, + { + "metadata": { + "id": "8brFj4yO-j6Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Batch renormalization \n", + "A recent improvement over regular batch normalization is batch renormalization, introduced by Ioffe in 2017. It offers clears benefits over batch normalization, at no apparent cost. At the time of writing, it’s too early to tell whether it will supplant batch normalization. Even more recently, Klambauer et al. introduced self-normalizing neural networks,which manage to keep data normalized after going through any Dense layer by using a specific activation function (`selu`) and a specific initializer (`lecun_normal`). This scheme, although highly interesting, is limited to densely connected networks for now, and its usefulness hasn’t yet been broadly replicated." + ] + }, + { + "metadata": { + "id": "rYNwchcC-j6U", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Depthwise separable convolution \n", + "Depthwise separable convolution layer can make a model lighter (fewer trainable weight parameters) and faster (fewer floating-point operations) and cause it to perform a few percentage points better on its task. The For example, SeparableConv2D layer performs a spatial convolution on each channel of its input, independently, before mixing output channels via a pointwise convolution (a 1 × 1 convolution). This is equivalent to separating the learning of spatial features and the learning of channel-wise features. It requires significantly fewer parameters and involves fewer computations, thus resulting in smaller, speedier models. And because it’s a more representationally efficient way to perform convolution, it tends to learn better representations using less data, resulting in better-performing models. \n", + "\n", + "These advantages become especially important when you’re training small models from scratch on limited data. For instance, here’s how you can build a lightweight, depthwise separable convnet for an image-classification task (softmax categorical classification) on a small dataset:\n", + "\n", + "When it comes to larger-scale models, depthwise separable convolutions are the basis of the Xception architecture, a high-performing convnet that comes packaged with Keras. " + ] + }, + { + "metadata": { + "id": "-Wi9V_Fr-j6V", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Training a Depthwise separable convolution\n", + "##### on the CIFAR10 dataset\n", + "![alt text](https://storage.googleapis.com/kaggle-competitions/kaggle/3649/logos/front_page.png)\n", + "\n", + "The original code above requires an imges dataset in the format 64 height x 64 width x 3 channels. Furthermore, in order to work, depthwise separable convolution needs multichannel data, so MNIST dataset is not appropriate (28x28x1) since that has only one channel. Fortunately, KERAS has the CIFAR10 dataset which is in the format (32x32x3), so 3 channels. \n", + "\n", + "Therefore, we will adapt a code example from the KERAS GitHub repo: https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py" + ] + }, + { + "metadata": { + "id": "kmFFkgCG-j6Z", + "colab_type": "code", + "outputId": "3ce788e9-6e3a-4986-c13c-eba23af27cc7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 100 + } + }, + "cell_type": "code", + "source": [ + "# https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py\n", + "\n", + "'''Trains a Depthwise separable convolution on the CIFAR10 dataset.\n", + "'''\n", + "\n", + "from __future__ import print_function\n", + "import keras\n", + "from keras.datasets import cifar10\n", + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.layers import Dense, Dropout, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras import backend as K\n", + "\n", + "batch_size = 128\n", + "num_classes = 10\n", + "epochs = 50\n", + "\n", + "# input image dimensions\n", + "img_height = 32\n", + "img_width = 32\n", + "channels = 3\n", + "\n", + "# the data, split between train and test sets\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "print('x_train shape:', x_train.shape)\n", + "print (K.image_data_format())\n", + "\n", + "\n", + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "x_train = x_train/255\n", + "x_test = x_test/255\n", + "\n", + "print(x_train.shape[0], 'train samples')\n", + "print(x_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "\n", + "model_a = Sequential()\n", + "model_a.add(layers.SeparableConv2D(32, 3,\n", + " activation='relu',\n", + " input_shape=(img_height, img_width, channels,))) \n", + "model_a.add(layers.BatchNormalization())\n", + "model_a.add(layers.SeparableConv2D(64, 3, activation='relu'))\n", + "model_a.add(layers.BatchNormalization())\n", + "model_a.add(layers.MaxPooling2D(2))\n", + "model_a.add(Dropout(0.25))\n", + "model_a.add(layers.SeparableConv2D(64, 3, activation='relu'))\n", + "model_a.add(layers.BatchNormalization())\n", + "model_a.add(layers.SeparableConv2D(128, 3, activation='relu'))\n", + "model_a.add(layers.BatchNormalization())\n", + "model_a.add(layers.MaxPooling2D(2)) \n", + "model_a.add(Dropout(0.25))\n", + "model_a.add(layers.SeparableConv2D(64, 3, activation='relu')) \n", + "model_a.add(layers.BatchNormalization())\n", + "model_a.add(layers.SeparableConv2D(128, 3, activation='relu'))\n", + "model_a.add(layers.BatchNormalization())\n", + "model_a.add(layers.GlobalAveragePooling2D())\n", + "model_a.add(layers.Dense(32, activation='relu'))\n", + "model_a.add(layers.BatchNormalization())\n", + "model_a.add(Dropout(0.5))\n", + "model_a.add(layers.Dense(num_classes, activation='softmax')) " + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x_train shape: (50000, 32, 32, 3)\n", + "channels_last\n", + "50000 train samples\n", + "10000 test samples\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "TWh0ok2t-j6h", + "colab_type": "code", + "outputId": "02bf226b-4ab1-4434-9617-6ee382ddecfc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3435 + } + }, + "cell_type": "code", + "source": [ + "model_a.summary()\n", + "from keras.utils import plot_model \n", + "plot_model(model_a, to_file='model.png')\n", + "\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot\n", + "\n", + "SVG(model_to_dot(model_a,show_shapes=True).create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "separable_conv2d_1 (Separabl (None, 30, 30, 32) 155 \n", + "_________________________________________________________________\n", + "batch_normalization_1 (Batch (None, 30, 30, 32) 128 \n", + "_________________________________________________________________\n", + "separable_conv2d_2 (Separabl (None, 28, 28, 64) 2400 \n", + "_________________________________________________________________\n", + "batch_normalization_2 (Batch (None, 28, 28, 64) 256 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64) 0 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 14, 14, 64) 0 \n", + "_________________________________________________________________\n", + "separable_conv2d_3 (Separabl (None, 12, 12, 64) 4736 \n", + "_________________________________________________________________\n", + "batch_normalization_3 (Batch (None, 12, 12, 64) 256 \n", + "_________________________________________________________________\n", + "separable_conv2d_4 (Separabl (None, 10, 10, 128) 8896 \n", + "_________________________________________________________________\n", + "batch_normalization_4 (Batch (None, 10, 10, 128) 512 \n", + "_________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2 (None, 5, 5, 128) 0 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 5, 5, 128) 0 \n", + "_________________________________________________________________\n", + "separable_conv2d_5 (Separabl (None, 3, 3, 64) 9408 \n", + "_________________________________________________________________\n", + "batch_normalization_5 (Batch (None, 3, 3, 64) 256 \n", + "_________________________________________________________________\n", + "separable_conv2d_6 (Separabl (None, 1, 1, 128) 8896 \n", + "_________________________________________________________________\n", + "batch_normalization_6 (Batch (None, 1, 1, 128) 512 \n", + "_________________________________________________________________\n", + "global_average_pooling2d_1 ( (None, 128) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 32) 4128 \n", + "_________________________________________________________________\n", + "batch_normalization_7 (Batch (None, 32) 128 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 32) 0 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 10) 330 \n", + "=================================================================\n", + "Total params: 40,997\n", + "Trainable params: 39,973\n", + "Non-trainable params: 1,024\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140068496967664\n\nseparable_conv2d_1: SeparableConv2D\n\ninput:\n\noutput:\n\n(None, 32, 32, 3)\n\n(None, 30, 30, 32)\n\n\n\n140068496967440\n\nbatch_normalization_1: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 30, 30, 32)\n\n(None, 30, 30, 32)\n\n\n\n140068496967664->140068496967440\n\n\n\n\n\n140068496968168\n\nseparable_conv2d_2: SeparableConv2D\n\ninput:\n\noutput:\n\n(None, 30, 30, 32)\n\n(None, 28, 28, 64)\n\n\n\n140068496967440->140068496968168\n\n\n\n\n\n140068496968392\n\nbatch_normalization_2: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 28, 28, 64)\n\n(None, 28, 28, 64)\n\n\n\n140068496968168->140068496968392\n\n\n\n\n\n140068387083824\n\nmax_pooling2d_1: MaxPooling2D\n\ninput:\n\noutput:\n\n(None, 28, 28, 64)\n\n(None, 14, 14, 64)\n\n\n\n140068496968392->140068387083824\n\n\n\n\n\n140068386629728\n\ndropout_1: Dropout\n\ninput:\n\noutput:\n\n(None, 14, 14, 64)\n\n(None, 14, 14, 64)\n\n\n\n140068387083824->140068386629728\n\n\n\n\n\n140068386629448\n\nseparable_conv2d_3: SeparableConv2D\n\ninput:\n\noutput:\n\n(None, 14, 14, 64)\n\n(None, 12, 12, 64)\n\n\n\n140068386629728->140068386629448\n\n\n\n\n\n140068386870384\n\nbatch_normalization_3: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 12, 12, 64)\n\n(None, 12, 12, 64)\n\n\n\n140068386629448->140068386870384\n\n\n\n\n\n140068385907768\n\nseparable_conv2d_4: SeparableConv2D\n\ninput:\n\noutput:\n\n(None, 12, 12, 64)\n\n(None, 10, 10, 128)\n\n\n\n140068386870384->140068385907768\n\n\n\n\n\n140068385159768\n\nbatch_normalization_4: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 10, 10, 128)\n\n(None, 10, 10, 128)\n\n\n\n140068385907768->140068385159768\n\n\n\n\n\n140068385118024\n\nmax_pooling2d_2: MaxPooling2D\n\ninput:\n\noutput:\n\n(None, 10, 10, 128)\n\n(None, 5, 5, 128)\n\n\n\n140068385159768->140068385118024\n\n\n\n\n\n140068384160344\n\ndropout_2: Dropout\n\ninput:\n\noutput:\n\n(None, 5, 5, 128)\n\n(None, 5, 5, 128)\n\n\n\n140068385118024->140068384160344\n\n\n\n\n\n140068384160064\n\nseparable_conv2d_5: SeparableConv2D\n\ninput:\n\noutput:\n\n(None, 5, 5, 128)\n\n(None, 3, 3, 64)\n\n\n\n140068384160344->140068384160064\n\n\n\n\n\n140068384394544\n\nbatch_normalization_5: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 3, 3, 64)\n\n(None, 3, 3, 64)\n\n\n\n140068384160064->140068384394544\n\n\n\n\n\n140068383437992\n\nseparable_conv2d_6: SeparableConv2D\n\ninput:\n\noutput:\n\n(None, 3, 3, 64)\n\n(None, 1, 1, 128)\n\n\n\n140068384394544->140068383437992\n\n\n\n\n\n140068383036192\n\nbatch_normalization_6: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 1, 1, 128)\n\n(None, 1, 1, 128)\n\n\n\n140068383437992->140068383036192\n\n\n\n\n\n140068382442776\n\nglobal_average_pooling2d_1: GlobalAveragePooling2D\n\ninput:\n\noutput:\n\n(None, 1, 1, 128)\n\n(None, 128)\n\n\n\n140068383036192->140068382442776\n\n\n\n\n\n140068382442496\n\ndense_1: Dense\n\ninput:\n\noutput:\n\n(None, 128)\n\n(None, 32)\n\n\n\n140068382442776->140068382442496\n\n\n\n\n\n140068382207504\n\nbatch_normalization_7: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 32)\n\n\n\n140068382442496->140068382207504\n\n\n\n\n\n140068381335224\n\ndropout_3: Dropout\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 32)\n\n\n\n140068382207504->140068381335224\n\n\n\n\n\n140068380956936\n\ndense_2: Dense\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 10)\n\n\n\n140068381335224->140068380956936\n\n\n\n\n\n140068496967552\n\n140068496967552\n\n\n\n140068496967552->140068496967664\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "6BI-J_PB-j6r", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model_a.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " # Adding accuracy metrics \n", + " metrics=['accuracy'])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Obu20RfxoROn", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=5,\n", + " verbose=1\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath='depthwise_separable_model.h5',\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " verbose=1\n", + " ),\n", + " keras.callbacks.ReduceLROnPlateau(\n", + " # Monitors the model’s validation loss\n", + " monitor='val_loss',\n", + " # Divides the learning rate by 10 when triggered\n", + " factor=0.1,\n", + " # The callback is triggered after the validation loss \n", + " # has stopped improving for 1 epochs.\n", + " patience=3,\n", + " verbose=1\n", + " ) \n", + "]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "K8rxpQnUdsqx", + "colab_type": "code", + "outputId": "d3dcd716-60d9-4c18-a58f-a0985570a5fa", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3901 + } + }, + "cell_type": "code", + "source": [ + "# Tensorboard\n", + "\n", + "#安裝tensorboard colab\n", + "!pip install tensorboardcolab\n", + "import numpy\n", + "from tensorboardcolab import *\n", + "\"\"\"\n", + "tbc=TensorBoardColab()\n", + "\n", + "callbacks = [\n", + " TensorBoardColabCallback(tbc,histogram_freq=1)\n", + " \n", + "] \n", + "\"\"\"\n", + "\n", + "history = model_a.fit(x_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1,\n", + " callbacks=callbacks_list,\n", + " validation_data=(x_test, y_test))\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: tensorboardcolab in /usr/local/lib/python3.6/dist-packages (0.0.19)\n", + "Train on 50000 samples, validate on 10000 samples\n", + "Epoch 1/50\n", + "50000/50000 [==============================] - 30s 590us/step - loss: 1.9846 - acc: 0.3106 - val_loss: 1.4570 - val_acc: 0.4753\n", + "\n", + "Epoch 00001: val_loss improved from inf to 1.45696, saving model to depthwise_separable_model.h5\n", + "Epoch 2/50\n", + "50000/50000 [==============================] - 27s 538us/step - loss: 1.4492 - acc: 0.4874 - val_loss: 1.2846 - val_acc: 0.5368\n", + "\n", + "Epoch 00002: val_loss improved from 1.45696 to 1.28457, saving model to depthwise_separable_model.h5\n", + "Epoch 3/50\n", + "50000/50000 [==============================] - 27s 531us/step - loss: 1.2724 - acc: 0.5587 - val_loss: 1.2897 - val_acc: 0.5512\n", + "\n", + "Epoch 00003: val_loss did not improve from 1.28457\n", + "Epoch 4/50\n", + "50000/50000 [==============================] - 26s 526us/step - loss: 1.1575 - acc: 0.6012 - val_loss: 1.0142 - val_acc: 0.6481\n", + "\n", + "Epoch 00004: val_loss improved from 1.28457 to 1.01422, saving model to depthwise_separable_model.h5\n", + "Epoch 5/50\n", + "50000/50000 [==============================] - 27s 531us/step - loss: 1.0734 - acc: 0.6337 - val_loss: 1.0011 - val_acc: 0.6485\n", + "\n", + "Epoch 00005: val_loss improved from 1.01422 to 1.00107, saving model to depthwise_separable_model.h5\n", + "Epoch 6/50\n", + "50000/50000 [==============================] - 27s 540us/step - loss: 1.0131 - acc: 0.6547 - val_loss: 0.9146 - val_acc: 0.6866\n", + "\n", + "Epoch 00006: val_loss improved from 1.00107 to 0.91464, saving model to depthwise_separable_model.h5\n", + "Epoch 7/50\n", + "50000/50000 [==============================] - 27s 549us/step - loss: 0.9717 - acc: 0.6719 - val_loss: 0.9471 - val_acc: 0.6768\n", + "\n", + "Epoch 00007: val_loss did not improve from 0.91464\n", + "Epoch 8/50\n", + "50000/50000 [==============================] - 27s 546us/step - loss: 0.9235 - acc: 0.6861 - val_loss: 0.8520 - val_acc: 0.7059\n", + "\n", + "Epoch 00008: val_loss improved from 0.91464 to 0.85196, saving model to depthwise_separable_model.h5\n", + "Epoch 9/50\n", + "50000/50000 [==============================] - 28s 551us/step - loss: 0.8946 - acc: 0.6983 - val_loss: 0.8555 - val_acc: 0.7084\n", + "\n", + "Epoch 00009: val_loss did not improve from 0.85196\n", + "Epoch 10/50\n", + "50000/50000 [==============================] - 27s 547us/step - loss: 0.8626 - acc: 0.7098 - val_loss: 0.7978 - val_acc: 0.7246\n", + "\n", + "Epoch 00010: val_loss improved from 0.85196 to 0.79782, saving model to depthwise_separable_model.h5\n", + "Epoch 11/50\n", + "50000/50000 [==============================] - 27s 546us/step - loss: 0.8316 - acc: 0.7189 - val_loss: 0.7917 - val_acc: 0.7225\n", + "\n", + "Epoch 00011: val_loss improved from 0.79782 to 0.79168, saving model to depthwise_separable_model.h5\n", + "Epoch 12/50\n", + "50000/50000 [==============================] - 27s 541us/step - loss: 0.8139 - acc: 0.7274 - val_loss: 0.7837 - val_acc: 0.7306\n", + "\n", + "Epoch 00012: val_loss improved from 0.79168 to 0.78372, saving model to depthwise_separable_model.h5\n", + "Epoch 13/50\n", + "50000/50000 [==============================] - 26s 529us/step - loss: 0.7903 - acc: 0.7364 - val_loss: 0.7734 - val_acc: 0.7355\n", + "\n", + "Epoch 00013: val_loss improved from 0.78372 to 0.77344, saving model to depthwise_separable_model.h5\n", + "Epoch 14/50\n", + "50000/50000 [==============================] - 27s 536us/step - loss: 0.7704 - acc: 0.7409 - val_loss: 0.7459 - val_acc: 0.7432\n", + "\n", + "Epoch 00014: val_loss improved from 0.77344 to 0.74594, saving model to depthwise_separable_model.h5\n", + "Epoch 15/50\n", + "50000/50000 [==============================] - 27s 537us/step - loss: 0.7573 - acc: 0.7495 - val_loss: 0.7320 - val_acc: 0.7540\n", + "\n", + "Epoch 00015: val_loss improved from 0.74594 to 0.73202, saving model to depthwise_separable_model.h5\n", + "Epoch 16/50\n", + "50000/50000 [==============================] - 27s 550us/step - loss: 0.7440 - acc: 0.7507 - val_loss: 0.7276 - val_acc: 0.7563\n", + "\n", + "Epoch 00016: val_loss improved from 0.73202 to 0.72761, saving model to depthwise_separable_model.h5\n", + "Epoch 17/50\n", + "50000/50000 [==============================] - 27s 547us/step - loss: 0.7249 - acc: 0.7602 - val_loss: 0.7626 - val_acc: 0.7415\n", + "\n", + "Epoch 00017: val_loss did not improve from 0.72761\n", + "Epoch 18/50\n", + "50000/50000 [==============================] - 27s 549us/step - loss: 0.7132 - acc: 0.7619 - val_loss: 0.7331 - val_acc: 0.7542\n", + "\n", + "Epoch 00018: val_loss did not improve from 0.72761\n", + "Epoch 19/50\n", + "50000/50000 [==============================] - 28s 551us/step - loss: 0.7028 - acc: 0.7674 - val_loss: 0.7269 - val_acc: 0.7561\n", + "\n", + "Epoch 00019: val_loss improved from 0.72761 to 0.72688, saving model to depthwise_separable_model.h5\n", + "Epoch 20/50\n", + "50000/50000 [==============================] - 27s 549us/step - loss: 0.6944 - acc: 0.7707 - val_loss: 0.6889 - val_acc: 0.7672\n", + "\n", + "Epoch 00020: val_loss improved from 0.72688 to 0.68888, saving model to depthwise_separable_model.h5\n", + "Epoch 21/50\n", + "50000/50000 [==============================] - 27s 542us/step - loss: 0.6846 - acc: 0.7737 - val_loss: 0.6950 - val_acc: 0.7670\n", + "\n", + "Epoch 00021: val_loss did not improve from 0.68888\n", + "Epoch 22/50\n", + "50000/50000 [==============================] - 27s 537us/step - loss: 0.6750 - acc: 0.7770 - val_loss: 0.6659 - val_acc: 0.7753\n", + "\n", + "Epoch 00022: val_loss improved from 0.68888 to 0.66587, saving model to depthwise_separable_model.h5\n", + "Epoch 23/50\n", + "50000/50000 [==============================] - 27s 536us/step - loss: 0.6646 - acc: 0.7808 - val_loss: 0.6990 - val_acc: 0.7689\n", + "\n", + "Epoch 00023: val_loss did not improve from 0.66587\n", + "Epoch 24/50\n", + "50000/50000 [==============================] - 27s 534us/step - loss: 0.6564 - acc: 0.7818 - val_loss: 0.6802 - val_acc: 0.7746\n", + "\n", + "Epoch 00024: val_loss did not improve from 0.66587\n", + "Epoch 25/50\n", + "50000/50000 [==============================] - 27s 536us/step - loss: 0.6477 - acc: 0.7857 - val_loss: 0.6733 - val_acc: 0.7729\n", + "\n", + "Epoch 00025: val_loss did not improve from 0.66587\n", + "\n", + "Epoch 00025: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513.\n", + "Epoch 26/50\n", + "50000/50000 [==============================] - 27s 549us/step - loss: 0.5946 - acc: 0.8039 - val_loss: 0.6122 - val_acc: 0.7940\n", + "\n", + "Epoch 00026: val_loss improved from 0.66587 to 0.61217, saving model to depthwise_separable_model.h5\n", + "Epoch 27/50\n", + "50000/50000 [==============================] - 27s 549us/step - loss: 0.5873 - acc: 0.8055 - val_loss: 0.6122 - val_acc: 0.7943\n", + "\n", + "Epoch 00027: val_loss did not improve from 0.61217\n", + "Epoch 28/50\n", + "50000/50000 [==============================] - 27s 546us/step - loss: 0.5785 - acc: 0.8097 - val_loss: 0.6083 - val_acc: 0.7969\n", + "\n", + "Epoch 00028: val_loss improved from 0.61217 to 0.60831, saving model to depthwise_separable_model.h5\n", + "Epoch 29/50\n", + "50000/50000 [==============================] - 27s 547us/step - loss: 0.5746 - acc: 0.8111 - val_loss: 0.6072 - val_acc: 0.7987\n", + "\n", + "Epoch 00029: val_loss improved from 0.60831 to 0.60721, saving model to depthwise_separable_model.h5\n", + "Epoch 30/50\n", + "50000/50000 [==============================] - 27s 546us/step - loss: 0.5755 - acc: 0.8097 - val_loss: 0.6087 - val_acc: 0.7993\n", + "\n", + "Epoch 00030: val_loss did not improve from 0.60721\n", + "Epoch 31/50\n", + "50000/50000 [==============================] - 27s 536us/step - loss: 0.5690 - acc: 0.8121 - val_loss: 0.6047 - val_acc: 0.7977\n", + "\n", + "Epoch 00031: val_loss improved from 0.60721 to 0.60466, saving model to depthwise_separable_model.h5\n", + "Epoch 32/50\n", + "50000/50000 [==============================] - 26s 528us/step - loss: 0.5654 - acc: 0.8154 - val_loss: 0.6137 - val_acc: 0.7965\n", + "\n", + "Epoch 00032: val_loss did not improve from 0.60466\n", + "Epoch 33/50\n", + "50000/50000 [==============================] - 27s 530us/step - loss: 0.5663 - acc: 0.8132 - val_loss: 0.6087 - val_acc: 0.7988\n", + "\n", + "Epoch 00033: val_loss did not improve from 0.60466\n", + "Epoch 34/50\n", + "50000/50000 [==============================] - 26s 528us/step - loss: 0.5652 - acc: 0.8138 - val_loss: 0.6088 - val_acc: 0.8000\n", + "\n", + "Epoch 00034: val_loss did not improve from 0.60466\n", + "\n", + "Epoch 00034: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05.\n", + "Epoch 35/50\n", + "50000/50000 [==============================] - 27s 545us/step - loss: 0.5541 - acc: 0.8168 - val_loss: 0.6068 - val_acc: 0.7999\n", + "\n", + "Epoch 00035: val_loss did not improve from 0.60466\n", + "Epoch 36/50\n", + "50000/50000 [==============================] - 27s 547us/step - loss: 0.5557 - acc: 0.8159 - val_loss: 0.6068 - val_acc: 0.7994\n", + "\n", + "Epoch 00036: val_loss did not improve from 0.60466\n", + "Epoch 37/50\n", + "50000/50000 [==============================] - 27s 547us/step - loss: 0.5592 - acc: 0.8152 - val_loss: 0.6063 - val_acc: 0.7999\n", + "\n", + "Epoch 00037: val_loss did not improve from 0.60466\n", + "\n", + "Epoch 00037: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06.\n", + "Epoch 38/50\n", + "50000/50000 [==============================] - 27s 545us/step - loss: 0.5530 - acc: 0.8169 - val_loss: 0.6057 - val_acc: 0.8003\n", + "\n", + "Epoch 00038: val_loss did not improve from 0.60466\n", + "Epoch 39/50\n", + "50000/50000 [==============================] - 27s 544us/step - loss: 0.5564 - acc: 0.8160 - val_loss: 0.6060 - val_acc: 0.8001\n", + "\n", + "Epoch 00039: val_loss did not improve from 0.60466\n", + "Epoch 40/50\n", + "50000/50000 [==============================] - 26s 527us/step - loss: 0.5570 - acc: 0.8156 - val_loss: 0.6064 - val_acc: 0.7994\n", + "\n", + "Epoch 00040: val_loss did not improve from 0.60466\n", + "\n", + "Epoch 00040: ReduceLROnPlateau reducing learning rate to 1.0000001111620805e-07.\n", + "Epoch 41/50\n", + "50000/50000 [==============================] - 27s 534us/step - loss: 0.5551 - acc: 0.8165 - val_loss: 0.6063 - val_acc: 0.7998\n", + "\n", + "Epoch 00041: val_loss did not improve from 0.60466\n", + "Epoch 42/50\n", + "50000/50000 [==============================] - 26s 525us/step - loss: 0.5545 - acc: 0.8169 - val_loss: 0.6063 - val_acc: 0.7996\n", + "\n", + "Epoch 00042: val_loss did not improve from 0.60466\n", + "Epoch 43/50\n", + "50000/50000 [==============================] - 27s 534us/step - loss: 0.5508 - acc: 0.8175 - val_loss: 0.6061 - val_acc: 0.7991\n", + "\n", + "Epoch 00043: val_loss did not improve from 0.60466\n", + "\n", + "Epoch 00043: ReduceLROnPlateau reducing learning rate to 1.000000082740371e-08.\n", + "Epoch 00043: early stopping\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Tvxu7U0uyKxT", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model_json = model_a.to_json()\n", + "with open(\"depthwise_separable_model.json\", \"w\") as json_file:\n", + " json_file.write(model_json)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vfcHSVSt-j6-", + "colab_type": "code", + "outputId": "48bf5e26-bf9e-40ce-90a6-7927087a53a9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 58 + } + }, + "cell_type": "code", + "source": [ + "model_a.load_weights('depthwise_separable_model.h5')\n", + "score = model_a.evaluate(x_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "print('Test accuracy:', score[1])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Test loss: 0.6046573032855987\n", + "Test accuracy: 0.7977\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "9eL1Lo3wZYey", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model_a, to_file='model_a.png')\n", + "from google.colab import files\n", + "files.download('model_a.png')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "lw344gA5Tn_y", + "colab_type": "code", + "outputId": "2d8e56fe-e02f-4613-f9d1-4cd649ca3717", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "K.image_data_format()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'channels_last'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "99O7NKlcRx8s", + "colab_type": "code", + "outputId": "d0bfde57-d98f-4e92-c948-6d709a8e8d45", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 706 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VNXBx/HvnZlMFhIhgYStKIss\nJhQpYhVBg5AICLw2WjVKRQsKBalgVYqoxaosKlQWW40iomI1VBOtryyCiPpaBAGrEkAQlD0kYQmE\nrLO8f4wZCJkkE0hyM8nv8zw8M3Pnzr1n7iH55dx77jmG2+12IyIiInXOYnYBREREGiuFsIiIiEkU\nwiIiIiZRCIuIiJhEISwiImIShbCIiIhJFMJS70ybNo3BgwczePBg4uLiuPbaa72v8/LyqrWtwYMH\nk5OTU+k6c+bM4a233jqfIte4u+66i7S0tBrZVteuXcnMzGTVqlU8/PDD57W/pUuXep/7c2xFpHI2\nswsgcra//vWv3ucDBgzgmWeeoXfv3ue0rRUrVlS5zgMPPHBO2w40iYmJJCYmnvPns7OzWbhwIbfc\ncgvg37EVkcqpJSwB54477uC5555jyJAhbN68mZycHEaPHs3gwYMZMGAAr776qnfd0lbg+vXrufXW\nW5kzZw5DhgxhwIABbNiwAYApU6bwj3/8A/CE/ttvv81vf/tb+vXrx6xZs7zbevHFF+nTpw833XQT\nb775JgMGDPBZvn/9618MGTKE6667jhEjRnDgwAEA0tLSuO+++5g6dSqDBg3i+uuvZ+fOnQDs27eP\nm2++mYSEBB544AGcTme57X766acMHz68zLIbbriBzz77rNJjUCotLY277rqryv19/PHHDB8+nEGD\nBnHjjTeybds2AJKTkzl48CCDBw+muLjYe2wBXn/9da6//noGDx7MuHHjOHr0qPfYzp8/n9///vdc\ne+21/P73v6egoKBc2QoKCpg0aRKDBg1iwIABPP3009739u3bx4gRI0hMTOSmm24iIyOj0uUDBgxg\n48aN3s+Xvt6/fz/9+vVjxowZ/O53v6v0uwK89NJLDBw4kEGDBjFz5kycTid9+/blu+++866zZMkS\nxo8fX+77iPhLISwBacuWLXz44Yf06tWLF154gV/84hesWLGC1157jTlz5nDo0KFyn9m6dSuXXnop\ny5cv5/bbb+eFF17wue2vvvqK1NRU3n33XZYsWUJmZiY7d+5k4cKFvP/++/zzn/+ssBV45MgRnnji\nCV599VU++ugjLrzwQm/AA3z22WfcfvvtrFy5kiuuuILXXnsNgNmzZ9OnTx9Wr17NnXfeyebNm8tt\nu0+fPmRmZrJv3z7AE0KZmZlcddVVfh+DUhXtz+FwMGXKFJ588klWrlxZJhBnzJhB69atWbFiBXa7\n3but//73v7zyyiu88cYbrFixgjZt2jBnzhzv+ytWrOC5555j1apVHD16lFWrVpUrz1tvvcWpU6dY\nsWIF6enppKWleYP0scceY+jQoaxatYpx48YxefLkSpdX5vjx41xyySUsWbKk0u+6ceNG3nnnHd5/\n/30++OADNm3axEcffcSQIUP43//9X+/2Vq1axdChQ6vcr0hFFMISkOLj47FYPP99H330UR577DEA\n2rVrR3R0NPv37y/3mSZNmpCQkABAXFwcBw8e9Lnt4cOHY7VaadmyJc2bN+fQoUN89dVX/PrXvyYm\nJobg4GBuuukmn59t3rw5mzZtolWrVgD07t3bG5oAnTp1onv37gDExsZ6g3Ljxo1cf/31APTo0YOO\nHTuW27bdbufaa69lzZo1AKxevZqEhARsNpvfx6BURfuz2Wz85z//oWfPnj7L78vatWsZNGgQzZs3\nB+Dmm2/miy++8L4fHx9Ps2bNsNlsdOnSxecfB6NGjeIf//gHhmHQtGlTOnfuzP79+ykqKmL9+vUM\nGzYMgIEDB7J06dIKl1elpKTEe0q+su/62WefER8fT3h4OHa7nTfeeIPrrruOoUOHsmzZMlwuF8eP\nH2fLli1ce+21Ve5XpCK6JiwBqWnTpt7n3333nbflZ7FYyM7OxuVylftMRESE97nFYvG5DkB4eLj3\nudVqxel0cuLEiTL7bNmypc/POp1O5s+fz5o1a3A6nZw6dYoOHTr4LEPptgFyc3PL7PeCCy7wuf1B\ngwbx+uuvc+edd7J69WrvqVB/j0Gpyvb3xhtvkJ6eTnFxMcXFxRiGUeF2AI4ePUpMTEyZbR05cqTK\n73ymn376iVmzZrF7924sFguZmZnceOONHD9+HJfL5d2GYRg0adKEw4cP+1xeFavVWuZ7V/Rdjx07\nVuY7hYaGAvCrX/2KoKAgNmzYQGZmJv369SMsLKzK/YpURC1hCXgPPfQQgwYNYuXKlaxYsYLIyMga\n30d4eDj5+fne11lZWT7XW7ZsGWvWrGHJkiWsXLmS++67z6/tX3DBBWV6fpdeUz3b1Vdfzfbt2/np\np5/46aefuPLKK4HqH4OK9rd582ZefvllXnjhBVauXMlTTz1VZdlbtGjB8ePHva+PHz9OixYtqvzc\nmZ544gk6d+7M8uXLWbFiBd26dQMgMjISwzA4duwYAG63mz179lS43O12l/sDKzc31+c+K/uukZGR\n3m2DJ5RLXw8dOpQVK1awYsUK79kEkXOlEJaAd+TIEbp3745hGKSnp1NQUFAmMGtCjx49WL9+PUeP\nHqW4uJj33nuvwrK0bduWqKgojh07xvLlyzl16lSV2+/Zs6f3WunmzZvZu3evz/Xsdjv9+vXj2Wef\nZeDAgVitVu9+q3MMKtrf0aNHad68OW3atKGgoID09HTy8/Nxu93YbDby8/NxOBxlttW/f39WrVrl\nDam3336b+Pj4Kr/zmY4cOcIll1yC1Wrliy++YM+ePeTn52O32+nbty/p6ekAfP7554wZM6bC5YZh\nEB0dzfbt2wHPH0VFRUU+91nZdx0wYABr1qwhNzcXh8PBvffey//93/8BMGzYMFavXs3XX39d7e8p\ncjaFsAS8iRMncu+99zJ8+HDy8/O59dZbeeyxxyoMsnPRo0cPkpKSSEpKYuTIkRVeBxw2bBjHjx8n\nMTGRBx54gEmTJpGZmVmml7UvDz30EJ988gkJCQm8+eabXHXVVRWuO2jQIFavXs2QIUO8y6p7DCra\n39VXX01MTAwJCQmMGjWKO++8k4iICO677z66du1K06ZN6du3b5nr6T169GDMmDGMGDGCwYMHc/Lk\nSe6///5Kv+/Zxo0bx9NPP82wYcPYsGEDEyZMYMGCBWzatInp06fzySefMHDgQObOncvs2bMBKlw+\nfvx4Fi9ezLBhw9i1axcXX3yxz31W9l179uzJ6NGj+c1vfsPQoUOJjY31Xn/u2rUrzZo1o1+/foSE\nhFTre4qczdB8wiL+cbvd3muGa9euZe7cuRW2iKVhu+eee/jd736nlrCcN7WERfxw9OhRrrzySg4c\nOIDb7Wb58uXeXrXSuGzatIkDBw5w9dVXm10UaQDUO1rED1FRUUyaNIm77roLwzDo2LGjX/elSsPy\n8MMPs3nzZp599lnvLXIi50Ono0VEREyiP+VERERMohAWERExSZ1fE87OPlmj24uMDOPYsZq9J1Sq\nR3VgPtWBuXT8zVff6yA6OsLn8oBvCdtsVrOL0OipDsynOjCXjr/5ArUOAj6ERUREApVCWERExCQK\nYREREZMohEVEREyiEBYRETGJQlhERMQkCmERERGTaAIHYMGC5/j++20cPXqEwsJC2rRpywUXNGXG\njGer/OyyZR/QpEk48fG+55edN28ON9+cTJs2bWu62CIiEuDqfAKHmhgxKz3dxty5dnbssBAbazBh\nQgFJSY7z3u6yZR+we/cuJkyYdN7bakyioyNqfCQ0qR7Vgbl0/M1XE3VwZrZ06eJi0qTiGsmW0vL5\nEnAt4fR0G2PHhnpff/cdP7+umSA+0+bNG3n77SXk5+czYcL9fP31Jtau/RiXy0WfPn0ZNWoMr7yS\nQrNmzejQoRNpaUsxDAt79vxI//4DGTVqDBMmjOFPf5rMJ598zKlTeezdu4cDB/Zz330P0KdPX5Ys\nWczq1R/Rpk1bHA4Hyckj6NWrt7cMX321noULXyQoKIiIiAieeGIWQUFBzJ07m61bt2C1WnnooYfp\n2PFin8tExHy1+cv9fPdZk2WryX1Wf1vQpUvYOe/z7GzZts1aa9lypoAL4blz7T6Xz5tnr5UDtWvX\nD7z1Vhp2u52vv97EP/6xEIvFwi233MCtt95eZt2tWzP45z/fxeVycfPNwxk1akyZ97OyDjN79ny+\n/PI/vP/+u8TFdSct7V+89da7nDp1iuTkG0lOHlHmMydPnmTatKdo06YtTz75F9avX0dwcDBZWYd5\n6aXF/Pe/m/n441UcOXKk3DKFsIj5avqXu78B5s8+q7NeXe6zNspf1Xp1nS2lAq5j1o4dvotc0fLz\ndfHFnbHbPZUTEhLChAlj+OMfx3L8+HFOnDhRZt2uXbsREhJCWFiYz2316NETgJiYGPLy8ti/fx8d\nO3YiODiEqKjmXHJJXLnPNGvWjKeffooJE8bw9debOHEilx07tvPLX14KQM+evbjnnnE+l4lI7UpP\ntxEfH4bNBvHxYaSnl2/XVPbLvaLttW4d7nN7pWGybZsVp9PwhsnZ6/m7T3/WM2OfNbktf9er62wp\nFXAh3KWLq1rLz1dQUBAAmZmHSE19kzlzFvD88y/RqlWrcutarZUPIH7m+263G7cbLJbTVWAY5T8z\nc+aT3H//ZJ5//iX69bsGAIvFittd9vv6WiYi5VUVdNXZzulwosJw8veXuz9h52/o+LtPf9YzY581\nuS1/16vrbCkVcCE8aVKxz+UTJ/peXlOOHz9OZGQkYWFhfP/9djIzMykpKTmvbbZu3Zrdu3fhcDg4\nduwY27dvK7fOqVN5tGzZipMnT7J58yZKSkq45JJYNm/eCMCOHduZM+dpn8tEGhN/wtXfVp0/2/M3\nnPz95V6TrTV/9+nPembssya35e96ZmVLwIVwUpKDlJQCYmOd2GxuevSAlJTavXAO0LlzF0JDwxg3\nbhQff/wRN9xw43kHXVRUcxITB3PPPSOZN282sbFx5VrTN954M+PGjeaZZ6YzYsRIlixZzC9+cSEX\nXdSB8ePvZu7c2fzmNzfRs2evcstEGouaPmXqz/b8DSd/f7nXZGvN3336s54Z+6zJbfm73tnZEhvr\nrJNsCchblM4U6LcGLFv2AYmJg7FarYwcmczf/raAmJiWZherWgK9DhqChl4HVXUMio8PY9u28peD\nYmOdrF17eqL31q3DcTrLX/ex2dwcPJhXre35u8/S8s+bd7r8EyeW79jkz/bO7mBUyldY+LNPf9Yz\nY5/nti0rXbo4z2uftamiW5QUwiZ7443FrFnzEUFBdvr1u4aRI0eZXaRqC/Q6aAgCtQ7OpddtqTND\noCbD1d/tVSec/OHv9swIE7MDzB/1/WfgvEJ4xowZfPPNNxiGwdSpU+nRo4f3vTfffJN///vfWCwW\nunfvziOPPFLpthTCDY/qwHyBWAf+hk5Ntkprcp+l2/OnFeavQAi7+qq+/wxUFMJVXhPesGEDe/bs\nITU1lenTpzN9+nTve3l5ebzyyiu8+eabvPXWW+zatYv//ve/NVdqEWmwarLXrb/XBv297led7a1d\nm09JCaxdm3/egVm6vYMH82pke1L/Vdk3f926dSQkJADQqVMncnNzycvLIzw8nKCgIIKCgsjPzycs\nLIyCggKaNm1a64UWkcBXnV63vlqlZ3YM8oRVgV+tyKQkR5XhVp3t1TW3G06dgrw8w3tbo8XiucXR\nYnH//Oh5bRhgtUJwsOfxfPZZXOz5V1ICJSVGuecOBxQXG5SU8PPtl559Wizunx8p82i1QkiIm9BQ\nCA31PJ5PGQNVlSGck5NDXNzpQSSioqLIzs4mPDyc4OBg7r33XhISEggODmbo0KF06NChVgssIg2D\nP+EKnlapr1PIvlqlFYWk2w0nT0JmpoXDhw0yMw1OnDAoKICiIoPCQigsPP1YVASFhdCypZvOnR20\naOHmxx8tvPFGEC1auImOdhEd7aZFCzdNmpzHQfhZbi7s3Wth714L+/cbHD1qcPy4QW6uwbFjnkfP\na8jNNXA4fAwqUAWr1U1wsCeQ7Xa399FuB7u9NEQ9x6M0cE8/r/7+zoXdXjaUQ0M95fSEvaccpeU8\n+7Un+MO9AX9m2Futbu/roCAIDvZ8b8/xOP289HhceKGLKVOKsdTB/UPVvkv9zEvIeXl5pKSksGLF\nCsLDw7nzzjvZvn073bp1q/DzkZFh2Gw1++dORefape6oDswXaHXwl7/AbbeVX/7YY9Yy32XMGLjg\nApg5E7ZuhdhYePhhSE4+HcynTsEPP8DOnfDjj3DwoOffoUOnH/Pzy++rJjRpAjExEBkZQVQUREb6\n/hcV5Qn2H3/0/Pvpp9PPjx+vfB92u2cb0dHQpYvneUSEp6XrcnkCyNejy+UJ16IiT6B6Hk8/P3HC\n87q4GGw2vCEdGgrNmp1+fTq8Tz8GBeEN8LOfWyzgdJb953KVX1ZY6KmX0/+MMo/HjnnKFxRUdh8R\nEWX3e3qfRgX7PL28uNhzvE8fi/LHOzgYHn00mObNa+W/TBlVhnBMTAw5OTne11lZWURHRwOwa9cu\n2rVrR1RUFAC9e/dmy5YtlYbwsWM1+5NQExfjx479PfffP5lu3S7xLnvxxedp2rQZt932u3Lrb968\nkbS0pTz11DNMmfInZs36W5n33303lePHjzN69Fif+/vhh53Y7XYuvPAipk17mKlTpxEcHHJe38FM\n9b1DRGMQiHUwcCCkpJTviDRwoIPs7NPruVzQrx+89x7s22dh924LW7dauOMOg927Pa8zM303WSwW\nT2v14ovdtGzpplUrFy1bep5HRroJCXETElIaPJ5WV+mykBBPq+jECYPs7LP/WcjJOf366FEr27a5\nKSioXosxNNTNhRe66N3b83jhhS7atXMTHe2maVM3zZp5HkNDfY+oJ6ed68+A213aqj7d8m/SxI3L\nRZn/hzVRPl+qDOG+ffuyYMECkpOTycjIICYmhvDwcADatm3Lrl27KCwsJCQkhC1bthAfH19zpa4j\niYmDWLNmVZkQXrt2DQsWvFjlZ88OYH98+ukaunWL5cILL+Kvf51Z7c+LNBQ33OBg3TorR48aZGUZ\nTJkSwoMPelpvpf/c7orTxzDctG3r5uqrHXTs6KJjRxft27tp3dpFq1aeALad5zQ1oaGe0K6MJwDy\nKCrCexr5+HHOOI3seQwKolzYKlzNZRinW9jh4XV6xy7gRwj36tWLuLg4kpOTMQyDadOmkZaWRkRE\nBImJiYwePZqRI0ditVr51a9+Re/evavaZL0zcOB1jBs3mvHj7wNg+/ZtREdHEx0d43MqwTMNHTqQ\nDz/8mI0bNzB//hyioprTvHkL79SE06c/TnZ2FgUFBYwaNYZWrVrz/vtpfPrpGiIjI/nLXx7m9ddT\nycs7ycyZT1BSUoLFYmHKlMcwDIPp0x+nTZu2/PDDTrp06cqUKY+V2f9HHy3nnXdSsVottG/fiT//\n+REcDgdPPTWNw4cPYbcH8+ijfyUyMqrcsujomDo7xiK+PPlkMIsX22nRwkVkpBubzdOJx2Yr/ecJ\n0dJrea1bu+jQwUXHju6fA9dFSD06iRQcjLelLeIPv/5GfPDBB8u8PvN0c3JyMsnJyTVWoMcfD+aD\nD/z/09ViAZer8p4Rw4c7ePxxHyf+fxYZGUWbNm3ZunULsbHdWbNmFYmJgwHfUwn6miUpJeV5Hnvs\nSTp37sKDD95HmzZtOXnyBL/+9ZUMGTKMAwf289hjU1i0aAlXXNGH/v0HEhvb3fv5hQtfZNiwGxg4\n8Do++WQ1ixa9xOjRY/n++2389a8ziIyMIinpek6ePElExOnTGgUFBcyZs4CIiAjuvfcedu36ga1b\nt9C8eXMef3w6q1ev5P/+7zNsNlu5ZUlJv/X7OItUhz+DcLzxRhB//7udiy92smxZPs2amVRYERMF\n3HzCtSUxcTAff7yK2NjufPHFZ7zwwiLg9FSCTqeTgwcPcNlll/sM4UOHDtG5cxfAM5VgUVEREREX\nsG1bBv/+dxqGYeHEidwK9//999v4wx8mANCrV28WL14IQNu27WjevAUALVpEc+pUXpkQvuCCC3j4\n4QcA2LPnR3Jzj/P999vp3ftyABISBgEwe/ascstEaoM/c7d++qmVyZODiYpy8eabBQpgabTqXQg/\n/nhRpa3Ws3muxZw67/3Gx1/L668vIjFxEO3aXcgFF1wAeKYSfPbZubRv34G//a3iCRvOnJKwtAf5\nqlUrOHHiBH//+0JOnDjB3XffUUkJDO/nSkocGIZne2dP6HBm7/SSkhL+9rdnWLz4nzRv3oLJkyf9\n/BkLLlfZ02G+lonUhqomR//+ewujR4ditcLixYV06KD/l9J4BdwsSrUlLKwJnTp15vXXX/Weigbf\nUwn60qJFNHv3/oTb7ebrrzcBnukPW7dug8Vi4dNP13g/axgGTqezzOfPnIrwv//dVKaTWEXy809h\ntVpp3rwFhw9nsn37NhwOB926xbJ581cAfPHF57z++iKfy0TO5O88u1WtV9kgHFlZBiNGhHLihMG8\neYVceaXT57oijUW9awmbKTFxME89NY1p0570LiudSrBduwsZMWIkixa9xJgx48t9dsyY8Tz66J9p\n1aq1dxak/v0HMGXKn9i6dQtDh/4PMTExvPrqy1x66a+YO/fZMqe17777D8yc+SQffPAeNlsQDz/8\nGA5H5aPzNG3ajMsvv4K77x7JxRd35vbb72D+/L+xaNESNm7cwIQJY7BabTz66OM0axZZbplIKX9O\nIfu7XkWDcFx8sYs77wxl714LkycXcdNN5o8+JWI2zaIk5011YL7K6sCfTlL+TlhwPtPtXXaZg02b\nbPz2tyX8/e+FDerWHP0MmK++18E53ycsIoHL3xauv+M4+7Oer3GXL7rIxfLlQVxxhYPnnmtYASxy\nPnRNWCSAlV6ftdnweX3W35mKzh6vuaLl/q535mxAf/hDMcuXB9G+vYvFiwsJDq70K4k0KgphkXrI\nn05Spa3cbdusOJ2nW7lnrutvC9ffqfsqWm/EiBIKCsov/+ILKw88EEKzZm7eeiuf5s3VE1rkTDod\nLVLP+HsKuapbgXbutBAe7iY3t/y5X6sVnn8+iBtvdNCmjbvSqfvcbtiyxcKHH9pYvtz3r4xHHgnh\nkUdCiIhwExPjpmVLFzExbtau9ay/eHEBnTopgEXOpo5Zct5UB/6ryU5SrVuH43T6Clg3iYkOVqwI\nqrAcFosbl8vAMNxcdZWTm25yMHx4CaXTgTudsGGDlWXLPMG7d6+n5Rwc7CY+3sngwQ6aNHGTlWVw\n+LBBVpbn9qPSf0eOGLjdBhaLm7lzC0lObtg9ofUzYL76XgcVdcxSCMt5Ux34p6JewykpZVu4FYWr\nzebm4ME87+uKwrrUZZc5mTChmMJCWLCgbAs3Pt7Bv/8dxLvv2li/3tNatdvdJCQ4iIx0s3KljZwc\nT/BGRHhC/frrHQwY4ODn+VsqVVICR44YWCwQE9PwW8D6GTBffa8DhbDUGtWBf873NqDoaBdjx5Z4\nJyjPyLCwdGn5U9K//KWT6dOLuOIKp1+9kPfuNUhP9wTy9u1W774GD3YwdKiDfv2c2H2f+Zaf6WfA\nfPW9DhTCUmtUBx5VnWr2t4X78stBPPJI9acGatrUs8977/U9qltV3G7Yts1CQQH07OnCWnEjW86i\nnwHz1fc60H3CIufIn+u45zOSVOntPSUl8MILdubM8TQ7w8LcFBZCu3YukpIcXHmlE5fLc73W6TRw\nOj3B6XbDkCGh2O3nN4a6YUBsrO9bkESkdiiERSpRUz2VwXN7j69rwhMnFvPll55ZhbZvt9KihYtn\nny3k5psdfg9qER0N2dn+fy8RqR90n7BIJfwd7MLfkaRSUgqIjXVis7mJjXUyZ04Ba9fa+J//CeP7\n7y2MHFnMf/5ziltu8T+ARSRwqSUsUgl/B7uo6lRzqaQkB0lJDlwuePttG3/9awjHjhnExTl59tlC\nevfW6WCRxkQhLI1KXh7s3Wth716Dffss7N1robAQ/vjHYi68sHwfRX/DtbJTzXl5kJlpcOiQhUOH\nDDIzLXz0kZUNG2w0aeLmiScKufvuEmz6aRRpdPRjLw2SwwHvv29jyxYr+/YZ3uA9etR3y3bJkiAm\nTSrmz38uP0xjReF6pqQkByUlBTzxRDDZ2QZhYZ77ax98MISTJ32fVx42rISnniqiTZuGfx+tiPim\nEJYGZ/16K+PGhbB//+nAtdncXHSRm0svddCunYuTJz33xpZyOg3mzAkmM9PgueeKvMsrG87xTBkZ\nFp5/3k5Wlmefp06B3Q6/+IWL1q3dtG7tolUrt/d5+/ZuOnfWqWeRxk4hLA1GVpbBk08Gk5pafrhG\nh8Ng8uRCb3jGx4f53Mabb9oJDoYnnywi6OfNlF7H9cXlgpSUIKZPD6a42OD3vy9m7NhiWrd2E1q+\nAS0iUoZ6R0vAczhg4cIgrrqqCampQQQH+z69e2aP5oo6XIGbRYvsJCeHcvRo5fs9eNDg5ptDmTYt\nhAsucPPmm/k8/XQRHTsqgEXEPwphCWhffmklISGMqVNDMAyYObOQkgoGjDozeCuaF7drVxeDB5fw\n+ec2Bg1qwvbtvn9E/v1vG/37N+Hzz21cd52DTz/NJzHRed7fR0QaF4WwBJTSeXZbtQqnc+cm/M//\nhLF1q5Xbb/fcXzt6dAldu1Y98XxF8+L+6U/FLF5cyJ/+VMSePRaGDAlj5crTvaNPnoQJE0K4++5Q\niorg2WcLeeONAqKj1blKRKpPISwB48xJ7F0ug9xcz3/fyZOLmDu3yBuE/kxQ72vgjNLZjCwWmDKl\nmJdeKsDlgpEjQ5k/386XX1q59tomLF0aRM+eTj7++BR33lmiQTVE5JxpAgc5b3VRB1u2WEhKCvUG\n75nOnoUIPIFdVY9mf3zzjYU77wzl4EHPfi0WNxMnFvPgg8Xejlv1gX4OzKXjb776XgeawEHqNV+T\nJAwf7mD5chsLFwaxbl3F/1XefFidAAAdPUlEQVR9dbKqrEdzdVx6qYuVK/MZOzaEQ4cszJtXyJVX\n6tqviNQMhbCYrqJJEqZMcXHsmCdg+/d38MMPBvv3Vz16VU1r2dLNe+8V4HajU88iUqN0TVhMV9Ek\nCbm5BqNGFfPFF6dYurSAxx6r+lpvbVIAi0hNU0tYTOFywbffWvj0Uxvbtvn+W9AwYNas6o9eJSIS\nKBTCUmf27zf49FMba9da+fxz6xnjOPvuG+jrVqOautYrIlIfKISlVhUUwCOPBPOvfwVRVHT6fG7b\nti5GjCgmPt7JyZPwwANVT5IgItLQKISlVmRnG7z6ahApKXafswg99lgRN954ukUbHq7TzCLS+CiE\npUbt3GnhxReDWLrU0/K1WHyfap4/314mhHWaWUQaI4Ww+LRtm4WFC4No0sRz6rhtWze/+IXnsUUL\nd5mewm43fPGFlRdesPPRR57/Uhdd5OIPfyjikUeCfW6/4gkUREQaD4WwlPOf/1gZOTKUEyd835MT\nHOymbVs3QUFuMjMNcnMBPFMDXn65k3HjihkyxIHVCq+/HsS2bXV/b6+ISCBQCEsZH3xgY9y4ENxu\nmD+/gC5dXBw4YGH/foMDBywcOOB53LXLwsmT5Vuzd99dzLBhp08rT5pUXGYgjlLqdCUiohCWM7zy\nShBTpwYTFgaLFxcQH+8ZnrFXr/Kt1vj4MJ8t3Hnz7GWu7ereXhGRiimEBbcbZs60M3duMNHRLt56\nq4AePSo/XVzRNd3aHMdZRKShUe+YRq6kBCZNCmHu3GA6dHDx4Yf5VQYwVHxNV9d6RUT8pxBuxE6d\ngjvvDOWtt4L41a+c/O//5tO+vZv0dBvx8WG0bh1OfHwY6enlT5j4M2eviIhUTqejG6kjRwxGjAhl\n82Yr117r4JVXCggPr3hGIyio5FqvlS5dnLrWKyJSTWoJN0J79hgMGxbG5s1Wbr65hCVLPAEMFc9o\nNG9e+eVJSQ7Wrs2npATWrs1XAIuIVJNawg2UywUHDxr89JOFH3+08OOPp5/v3m2hoMDgj38s4tFH\ni8sMvFGdDlciInJ+FMINyJo1VhYtsvPjjwZ791rKTJhQKjTUTfv2Ln7/+xLuuquk3Ptdurg0uIaI\nSB3xK4RnzJjBN998g2EYTJ06lR49egBw+PBhHnzwQe96+/bt44EHHmD48OG1U1qp0P79BqNGhZKf\nb9CsmZvYWBft27vo0MHz2L69mw4dXMTEuCudnF6Da4iI1J0qQ3jDhg3s2bOH1NRUdu3axdSpU0lN\nTQWgZcuWvPHGGwA4HA7uuOMOBgwYULslFp+mTg0mP99g7twCbr+94muz6ek25s49PXDGpEnFGlxD\nRMQkVYbwunXrSEhIAKBTp07k5uaSl5dHeGlPnp+lp6czaNAgmjRpUjsllQotX25jxYogrrrKwW23\nVR7A/vZ8VuiKiNS+KkM4JyeHuLg47+uoqCiys7PLhfC//vUvFi1aVOUOIyPDsNnKX3M8H9HRETW6\nvUCSlwePPgpBQbBwoY2YmIqPxfPP+17+97+HMmbM+ZWjMddBfaE6MJeOv/kCsQ6q3THL7S4/P+zX\nX39Nx44dywWzL8eO5Vd3l5WKjo4gO/tkjW4zkDz+eDD79tm5//4iWrQoJju74nW3bg0Hyl8Q3rrV\nTXZ23jmXobHXQX2gOjCXjr/56nsdVPQHQpX3ncTExJCTk+N9nZWVRXR0dJl11q5dS58+fc6ziFJd\nW7ZYSEkJ4qKLXBWOYHUmDTUpIlK/VBnCffv2ZeXKlQBkZGQQExNTrsX73Xff0a1bt9opofjkcsFD\nD4XgdBo8/XQhoeU7NJejoSZFROqXKk9H9+rVi7i4OJKTkzEMg2nTppGWlkZERASJiYkAZGdn07x5\n81ovrJz2xhtBbNpk5YYbShgwwOnXZ9TzWUSkfjHcvi7y1qKaPmdf368D1IasLIO+fZvgcsEXX5yi\nVSt3lbce1abGWAf1jerAXDr+5qvvdVDRNWGNmGWy3bs9g2tERfn/mWnTgsnNNZg5s9AbwP7ceiQi\nIvWLBgQ20e7dBtdc04TevcP529/snDpV9Wc++8zKu+8G0bOn0zvsZHUmXRARkfpDIWyiv//dTnGx\ngcsFs2YFc+WVTXj99SAcFTReCwth8uQQLBY3s2cXYv35dmtNuiAiEpj0W9okmZkGqalBdOjg4ptv\n8vjTn4o4edLgwQdDiI8PY9kyG2dfrV+wwM7u3RbuvruEHj1O31akW49ERAKTQtgkL7zgaQVPmFBM\n06YwZUox69ef4o47itm928Jdd4UyfHgoX33lqaJduwzmzbPTurWLKVOKymxLtx6JiAQmdcwywbFj\n8NprQbRq5eKWW05PJ9iypZs5c4r4wx9KeOopO8uXBzF0qI3rry/hyBGD4mKDp54q5OyByXTrkYhI\nYFIIm+CVV+zk5xtMnlxEcHD59zt3dvHaa4WsX1/CxInBLFsWBEB4uJuS8lMAA5p0QUQkEOl0dB07\ndQoWLgyiWTM3I0dWkKg/O3jQYPfu05Nd5OUZ/OEPoaSn628nEZGGQCFcx5YsCeLoUQujRxeXO618\nNt16JCLSsCmE61BxsadDVliYm3vuqbrTlG49EhFp2PTbvA69846Ngwct3HFHiV8jZOnWIxGRhk0h\nXEecTliwIJigIDfjxvl365BuPRIRadgUwnVk2TIbu3ZZuOWWEtq08W/OjKQkBykpBcTGOrHZ3MTG\nOklJ0XjQIiINhbrZ1gG329OZyjDcTJhQvVasbj0SEWm41BKuA2vXWvn2WyvDhzvo1KlOZ44UEZF6\nTCFcB+bP99xSpGu5IiJyJoVwLdu40cIXX9i49loHv/xl2V7N6ek24uPDaN06nPj4MA3CISLSyOi3\nfi2rqBWcnm5j7NhQ7+tt26w/v1bHKxGRxkIt4Vq0bZuFFSuC6N3bSZ8+zjLvaTQsERFRCNeiBQtK\nW8FFGEbZ9zQaloiI6Dd+LdmzxyA93cYllzhJTHSWe1+jYYmIiK4JV9PhwwZPP20nN9egpARKSgyK\ni8HhgOLi0mVw5IiB02lw333FWHz8qTNpUnGZa8Kl1INaRKTxUAhXU2pqEEuW+L5ua7e7sdnAboeg\nIDf9+zu44Qbfnaw8na8KmDfPzo4dFrp0cTFxYrE6ZYmINCIK4WrKyPA0a1etOkX79i5v6NpslLvu\nWxWNhiUi0rgphKspI8NCRISbHj1c1Q5dERGRM6ljVjUUFMAPP1iIi3MqgEVE5LwphKth+3YLLpdB\nXJx6MIuIyPlTCFfDli1WALp3rzyENRyliIj4Q+lQDVu2eP5m6d69/H2/pTQcpYiI+Est4WrIyLBg\ntbrp2rXilrCGoxQREX8phP3kckFGhpXOnV2EhFS8noajFBERfykZ/LRnj8GpUwaxsZVfD9ZwlCIi\n4i+FsJ9Od8qq+HoweIaj9EXDUYqIyNkUwn4qHSmrqp7RSUkOUlIKiI11YrO5iY11kpKiTlkiIlKe\nekf7KSPD0xL25x5hDUcpIiL+UEvYT1u2WGjZ0kV0tNvsooiISAOhEPbDsWNw4IBFI2WJiEiNUgj7\nofRUdFWdskRERKpDIewHfztliYiIVIdC2A+ltyfpdLSIiNQkhbAftmyxEBrqpmNHhbCIiNQchXAV\nios9Q05ecokLq9Xs0oiISEOiEK7Cjh0WSkoM4uLUKUtERGqWQrgK6pQlIiK1xa8QnjFjBrfeeivJ\nycl8++23Zd47dOgQt912G7/97W/5y1/+UiuFNNPpTllO0tNtxMeH0bp1OPHxYaSna8AxERE5d1WG\n8IYNG9izZw+pqalMnz6d6dOnl3l/1qxZjBo1infeeQer1crBgwdrrbBmyMiwYBhudu2yMHZsKNu2\nWXE6DbZtszJ2bKiCWEREzlmVIbxu3ToSEhIA6NSpE7m5ueTl5QHgcrnYtGkTAwYMAGDatGm0adOm\nFotbt9xuz0Ad7du7efFFu8915s3zvVxERKQqVYZwTk4OkZGR3tdRUVFkZ2cDcPToUZo0acLMmTO5\n7bbbmDNnTu2V1AQHDxocO2bQvbuTHTt8H6qKlouIiFSl2udS3W53meeHDx9m5MiRtG3bljFjxrB2\n7Vr69+9f4ecjI8Ow2Wr2Xp/o6Iga3V6p9es9j1dcEcRPP8F335VfJzbWqLX9BxIdA/OpDsyl42++\nQKyDKkM4JiaGnJwc7+usrCyio6MBiIyMpE2bNlx44YUA9OnTh507d1YawseO5Z9nkcuKjo4gO/tk\njW6z1Bdf2IFg2rfPZ8IEg7FjQ8utc++9BWRnN+5pC2uzDsQ/qgNz6fibr77XQUV/IFR5LrVv376s\nXLkSgIyMDGJiYggPDwfAZrPRrl07fvrpJ+/7HTp0qKEim2/LltO3JyUlOUhJKSA21onN5iY21klK\nSoHmDRYRkXNWZUu4V69exMXFkZycjGEYTJs2jbS0NCIiIkhMTGTq1KlMmTIFt9tNly5dvJ20GoKM\nDCuRkW5at/acgk9Kcih0RUSkxvh1TfjBBx8s87pbt27e5xdddBFvvfVWzZaqHsjLgx9/tHD11Q4M\nw+zSiIhIQ6SuvRXYutVzaGJjNVKWiIjUDoVwBUpHyureXWNGi4hI7VAIV0BjRouISG1TCFcgI8NK\nUJCbzp0VwiIiUjsUwj44nbBtm4WuXV3YNSqliIjUEoWwD7t3WygoMIiLUytYRERqj0LYh9ODdKhT\nloiI1B6FsA/qlCUiInVBIexD6e1JcXFqCYuISO1RCPuwZYuFX/zCRbNmZpdEREQaMoXwWbKyDLKy\nLOqUJSIitU4hfJbS68E6FS0iIrVNIXwWdcoSEZG6ohA+izpliYhIXVEI/yw93UZ8fBhpaTYsFjeb\nN1vNLpKIiDRwfs0n3NClp9sYOzbU+9rlgnHjQrFYCkhKcphYMhERacjUEgbmzvU9QPS8eRo4WkRE\nao9CGNixw/dhqGi5iIhITVDKAF26+O4JXdFyERGRmqAQBiZNKva5fOJE38tFRERqgkIYSEpyMG9e\nARaLG3ATG+skJUWdskREpHapdzSwe7fBiy/acbkMxowp5qmniswukoiINAKNviW8Zo2VQYOasG2b\nldGji5k2TQEsIiJ1o9G2hN1umD/fzowZdux2mD+/gORknX4WEZG60yhDOC8PJk4M4YMPgmjTxsWr\nrxbwq1+pJ7SIiNStRhfCu3cb3HVXKNu3W+nTx8HChYVER7vNLpaIiDRCjeqa8Mcfe67/bt9u5e67\ni3nnnQIFsIiImKZRtITdbs8QlDNn6vqviIjUH40ihJ980s7zzwfTtq2LxYsLuPRSXf8VERHzNfgQ\ndjrhn/8MIibGxUcf5ev0s4iI1BsN/prw5s0Wjh61MGiQQwEsIiL1SoMP4dWrPY39hASnySUREREp\nq8GH8KpVNux2N1dfrY5YIiJSvzToED50yGDLFitXXeUkPNzs0oiIiJTVoEO49FR0YqJawSIiUv80\n6BBetcoKQEKCQlhEROqfBhvCRUXw2Wc2Lr7YSYcO6hUtIiL1T4MN4f/8x0p+vqFe0SIiUm812BDW\n9WAREanvGmQIu92eW5PCw91ccYVawiIiUj81yBDetcvgp58s9O/vwG43uzQiIiK+NcgQXrVKp6JF\nRKT+a5AhXHo9eMAAnYoWEZH6q8GF8MmTsG6dlZ49nbRsqVuTRESk/mpwIbx2rQ2Hw9AAHSIiUu/5\nNZ/wjBkz+OabbzAMg6lTp9KjRw/vewMGDKBVq1ZYrZ7RqWbPnk3Lli1rp7R+0K1JIiISKKoM4Q0b\nNrBnzx5SU1PZtWsXU6dOJTU1tcw6L7/8Mk2aNKm1QvrL5YLVq620aOHi0ktdZhdHRESkUlWejl63\nbh0JCQkAdOrUidzcXPLy8mq9YOfi228tZGdbGDjQiaXBnWgXEZGGpsqoysnJITIy0vs6KiqK7Ozs\nMutMmzaN2267jdmzZ+N2m9cZSrcmiYhIIPHrmvCZzg7Z++67j6uvvpqmTZty7733snLlSgYPHlzh\n5yMjw7DZrNUvaSWioyMAWLsWbDb47W9Dadq0RnchVSitAzGP6sBcOv7mC8Q6qDKEY2JiyMnJ8b7O\nysoiOjra+/o3v/mN9/k111zDjh07Kg3hY8fyz7WsPkVHR5CdfZKsLIOvvgqnb18HxcUFnNVYl1pU\nWgdiHtWBuXT8zVff66CiPxCqPB3dt29fVq5cCUBGRgYxMTGEh4cDcPLkSUaPHk1xcTEAX331FZ07\nd66pMlfLmjWaO1hERAJLlS3hXr16ERcXR3JyMoZhMG3aNNLS0oiIiCAxMZFrrrmGW2+9leDgYGJj\nYyttBdem09eDy46SlZ5uY+5cOzt2WOjSxcWkScUkJSmoRUTEfIa7jntS1fTpgujoCA4ePEm3buFE\nRrr56qtTGIbnvfR0G2PHhpb7TEpKgYK4BtX300CNgerAXDr+5qvvdXDOp6MDwfr1Vk6eNEhMdHgD\nGGDuXN9TKM2bp6mVRETEfA0ihCu6NWnHDt9fr6LlIiIidalBpNHq1VbCwtxcdVXZ68FduvgeNaui\n5SIiInUp4EN4927YudPK1Vc7CQkp+96kScU+PzNxou/lIiIidSngQ/jDDz2Pvm5NSkpykJJSQGys\nE5vNTWysU52yRESk3qj2iFn1TWUhDJ4gVuiKiEh9FNAt4VOnPENVxsY6advWvDGrRUREzkVAh/D6\n9VaKijRhg4iIBKaADuFOnVzccAPccUeJ2UURERGptoC+JnzRRW7eew+ys3UqWkREAk9At4RFREQC\nmUJYRETEJAphERERkyiERURETKIQFhERMYlCWERExCQKYREREZMohEVEREyiEBYRETGJQlhERMQk\nCmERERGTKIRFRERMohAWERExiUJYRETEJAphERERkyiERURETKIQFhERMYlCWERExCQKYREREZMo\nhEVEREyiEBYRETGJQlhERMQkCmERERGTKIRFRERMohAWERExiUJYRETEJAphERERkyiERURETKIQ\nFhERMYlCWERExCQKYREREZMohEVEREyiEBYRETGJQlhERMQkCmERERGT+BXCM2bM4NZbbyU5OZlv\nv/3W5zpz5szhjjvuqNHCiYiINGRVhvCGDRvYs2cPqampTJ8+nenTp5db54cffuCrr76qlQKKiIg0\nVFWG8Lp160hISACgU6dO5ObmkpeXV2adWbNmcf/999dOCUVERBooW1Ur5OTkEBcX530dFRVFdnY2\n4eHhAKSlpfHrX/+atm3b+rXDyMgwbDbrORbXt+joiBrdnlSf6sB8qgNz6fibLxDroMoQPpvb7fY+\nP378OGlpabz66qscPnzYr88fO5Zf3V1WKjo6guzskzW6Take1YH5VAfm0vE3X32vg4r+QKjydHRM\nTAw5OTne11lZWURHRwPw5ZdfcvToUUaMGMGECRPIyMhgxowZNVRkERGRhq3KEO7bty8rV64EICMj\ng5iYGO+p6MGDB7Ns2TKWLl3K888/T1xcHFOnTq3dEouIiDQQVZ6O7tWrF3FxcSQnJ2MYBtOmTSMt\nLY2IiAgSExProowiIiINkuE+8yJvHajpc/b1/TpAY6A6MJ/qwFw6/uar73VwzteERUREpHYohEVE\nREyiEBYRETGJQlhERMQkCmERERGTKIRFRERMohAWERExiUJYRETEJAphERERkyiERURETKIQFhER\nMYlCWERExCQKYREREZMohEVEREyiEBYRETGJQlhERMQkCmERERGTKIRFRERMohAWERExiUJYRETE\nJAphERERkyiERURETKIQFhERMYlCWERExCQKYREREZMohEVEREyiEBYRETGJQlhERMQkCmERERGT\nKIRFRERMohAWERExiUJYRETEJAphERERkyiERURETKIQFhERMYlCWERExCQKYREREZMohEVEREyi\nEBYRETFJwIZwerqN+PgwbDaIjw8jPd1mdpFERESqJSCTKz3dxtixod7X27ZZf35dQFKSw7yCiYiI\nVENAtoTnzrX7XD5vnu/lIiIi9VFAhvCOHb6LXdFyERGR+iggU6tLF1e1louIiNRHfoXwjBkzuPXW\nW0lOTubbb78t897SpUu55ZZbSE5O5vHHH8ftdtdKQc80aVKxz+UTJ/peLiIiUh9VGcIbNmxgz549\npKamMn36dKZPn+59r6CggA8//JA333yTt99+m927d/P111/XaoEBkpIcpKQUEBvrxGaD2FgnKSnq\nlCUiIoGlyt7R69atIyEhAYBOnTqRm5tLXl4e4eHhhIaG8tprrwGeQM7LyyM6Orp2S/yzpCQHSUkO\noqMjyM7Or5N9ioiI1KQqW8I5OTlERkZ6X0dFRZGdnV1mnZdeeonExEQGDx5Mu3btar6UIiIiDVC1\n7xP2dc13zJgxjBw5knvuuYfLLruMyy67rMLPR0aGYbNZq7vbSkVHR9To9qT6VAfmUx2YS8fffIFY\nB1WGcExMDDk5Od7XWVlZ3lPOx48fZ+fOnVx++eWEhIRwzTXXsHnz5kpD+Nixmj117DkdfbJGtynV\nozown+rAXDr+5qvvdVDRHwhVno7u27cvK1euBCAjI4OYmBjCw8MBcDgcTJkyhVOnTgHw3Xff0aFD\nh5oqs4iISINWZUu4V69exMXFkZycjGEYTJs2jbS0NCIiIkhMTOTee+9l5MiR2Gw2unbtysCBA+ui\n3CIiIgHPcNfFjb1nqOnTBfX9FERjoDown+rAXDr+5qvvdXDOp6NFRESkdiiERURETKIQFhERMUmd\nXxMWERERD7WERURETKIQFhERMYlCWERExCQKYREREZMohEVEREyiEBYRETFJtacyrE9mzJjBN998\ng2EYTJ06lR49ephdpEZhx44djB8/nrvuuovf/e53HDp0iMmTJ+N0OomOjubZZ5/FbrebXcwG7Zln\nnmHTpk04HA7Gjh3LL3/5S9VBHSkoKGDKlCkcOXKEoqIixo8fT7du3XT8TVBYWMiwYcMYP348ffr0\nCcg6CNiW8IYNG9izZw+pqalMnz6d6dOnm12kRiE/P58nn3ySPn36eJfNnz+f22+/nX/+859cdNFF\nvPPOOyaWsOH78ssv2blzJ6mpqSxcuJAZM2aoDurQJ598Qvfu3VmyZAlz585l1qxZOv4meeGFF2ja\ntCkQuL+HAjaE161bR0JCAgCdOnUiNzeXvLw8k0vV8Nntdl5++WViYmK8y9avX++dPevaa69l3bp1\nZhWvUbj88suZN28eABdccAEFBQWqgzp0/fXXc8899wBw6NAhWrZsqeNvgl27dvHDDz/Qv39/IHB/\nDwVsCOfk5BAZGel9HRUVRXZ2toklahxsNhshISFllhUUFHhP+zRv3lz1UMusVithYWEAvPPOO1xz\nzTWqAxMkJyfz4IMPMnXqVB1/Ezz99NNMmTLF+zpQ6yCgrwmfSaNv1g+qh7qzevVq3nnnHRYtWsR1\n113nXa46qBtvv/0227Zt46GHHipzzHX8a997771Hz549adeunc/3A6kOAjaEY2JiyMnJ8b7Oysoi\nOjraxBI1XmFhYRQWFhISEsLhw4fLnKqW2vH555/z4osvsnDhQiIiIlQHdWjLli00b96c1q1bc8kl\nl+B0OmnSpImOfx1au3Yt+/btY+3atWRmZmK32wP2ZyBgT0f37duXlStXApCRkUFMTAzh4eEml6px\nuuqqq7x18dFHH3H11VebXKKG7eTJkzzzzDOkpKTQrFkzQHVQlzZu3MiiRYsAz2Wx/Px8Hf86Nnfu\nXN59912WLl3KzTffzPjx4wO2DgJ6FqXZs2ezceNGDMNg2rRpdOvWzewiNXhbtmzh6aef5sCBA9hs\nNlq2bMns2bOZMmUKRUVFtGnThpkzZxIUFGR2URus1NRUFixYQIcOHbzLZs2axaOPPqo6qAOFhYU8\n8sgjHDp0iMLCQiZMmED37t3585//rONvggULFtC2bVv69esXkHUQ0CEsIiISyAL2dLSIiEigUwiL\niIiYRCEsIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhLCIiYhKFsIiIiEn+H6ecp3BeuRDCAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVdXC//HPGTggggoKKk6ZhYZm\n3R4bKAsHcCqfLk3SpGWlN+tJb9ZNvZrmlFqWNvs4dG9pDte0nn6ZpBVlZVlqt1DM4aY5C85wQDjD\n748TKHIOHOTAZvi+Xy9ecPZ0lnvJ+bL2Xnstk9vtdiMiIiJVzmx0AUREROoqhbCIiIhBFMIiIiIG\nUQiLiIgYRCEsIiJiEIWwiIiIQRTCUiuMHz+ePn360KdPHzp27Ej37t2LXmdnZ5frWH369CErK6vU\nbWbOnMnixYsrUuSAe+CBB1ixYkVAjtW+fXsOHTrEmjVrGD16dIXeb9myZUU/+3Nu/TVq1CjeeOON\ngBxLxChWowsgEgjPPfdc0c89evRgxowZdOnS5YKOtXr16jK3GTly5AUdu6ZJSkoiKSnpgvfPzMxk\n3rx53HXXXYB/51akLlFLWOqE+++/n5dffpm+ffuyadMmsrKyeOihh+jTpw89evTg7bffLtq2sBX4\n/fffM2DAAGbOnEnfvn3p0aMHGzZsAIq3wnr06MGSJUu444476Nq1K9OmTSs61ltvvUV8fDy33347\nixYtokePHl7L969//Yu+ffvSq1cv7r33Xvbv3w/AihUreOKJJxgzZgy9e/emX79+7NixA4C9e/dy\n5513kpiYyMiRI3E6nSWO++WXX9K/f/9iy2699Va++uqrUs9BoRUrVvDAAw+U+X6fffYZ/fv3p3fv\n3tx2221kZGQAkJKSwoEDB+jTpw/5+flF5xbgnXfeoV+/fvTp04dHH32UY8eOFZ3bV155hQcffJDu\n3bvz4IMPkpub66tqAdi2bRspKSn06dOHW2+9lXXr1gGQk5PDY489Rt++fenZsydjx46loKDA53KR\nqqYQljojPT2djz/+mKuuuoo333yTli1bsnr1av75z38yc+ZMDh48WGKfrVu3csUVV/DJJ59wzz33\n8Oabb3o99g8//MDSpUt5//33WbhwIYcOHWLHjh3MmzePDz/8kPfee89nK/Do0aNMnDiRt99+m08/\n/ZTWrVsXu8z61Vdfcc8995Camsq1117LP//5TwBefPFF4uPjWbt2LYMGDWLTpk0ljh0fH8+hQ4fY\nu3cv4AnSQ4cOcf311/t9Dgr5ej+Hw8GoUaOYNGkSqamp9OjRg+nTpwMwdepUmjdvzurVq7HZbEXH\n+umnn5g/fz7vvvsuq1evJiYmhpkzZxatX716NS+//DJr1qzh2LFjrFmzxme5XC4XTz75JPfddx+r\nV69m8uTJjBw5kuzsbD744AMaNGjAJ598QmpqKhaLhZ07d/pcLlLVFMJSZyQkJGA2e/7Ljx07lnHj\nxgHQqlUroqKi2LdvX4l96tevT2JiIgAdO3bkwIEDXo/dv39/LBYLTZs2pXHjxhw8eJAffviBa665\nhujoaIKDg7n99tu97tu4cWM2btxIs2bNAOjSpUtRaAK0a9eOTp06ARAXF1cUlD/++CP9+vUDoHPn\nzlx88cUljm2z2ejevTuff/45AGvXriUxMRGr1er3OSjk6/2sVivffvstV155pdfye5OWlkbv3r1p\n3LgxAHfeeSfffPNN0fqEhAQaNWqE1WolNja21D8O9u3bR1ZWFjfffDMAl19+OTExMfzyyy9ERkay\nefNmvv76a1wuF8899xyXXXaZz+UiVU33hKXOaNiwYdHPv/zyS1HLz2w2k5mZicvlKrFPeHh40c9m\ns9nrNgBhYWFFP1ssFpxOJ6dOnSr2nk2bNvW6r9Pp5JVXXuHzzz/H6XSSk5ND27ZtvZah8NgAJ0+e\nLPa+DRo08Hr83r1788477zBo0CDWrl3LsGHDynUOCpX2fu+++y4rV64kPz+f/Px8TCaTz+MAHDt2\njOjo6GLHOnr0aJn/Zl/HCg8PL/aeDRo04NixY9x8882cPHmS2bNn85///If//u//ZvTo0fTt29fr\n8nNb6yJVQS1hqZOefvppevfuTWpqKqtXryYiIiLg7xEWFobdbi96feTIEa/brVq1is8//5yFCxeS\nmprKE0884dfxGzRoUKznd+E91fPdeOONbNu2jd27d7N7926uu+46oPznwNf7bdq0iblz5/Lmm2+S\nmprK5MmTyyx7kyZNOHHiRNHrEydO0KRJkzL386Zx48acPHmSc+eiOXHiRFErOyUlhX/961+sWrWK\nLVu28MEHH5S6XKQqKYSlTjp69CidOnXCZDKxcuVKcnNziwVmIHTu3Jnvv/+eY8eOkZ+f7/ND/ujR\no7Ro0YLIyEiOHz/OJ598Qk5OTpnHv/LKK4vulW7atInff//d63Y2m42uXbvywgsv0LNnTywWS9H7\nlucc+Hq/Y8eO0bhxY2JiYsjNzWXlypXY7XbcbjdWqxW73Y7D4Sh2rG7durFmzRqOHz8OwJIlS0hI\nSCjz3+xNy5YtadasGatWrSoqW1ZWFp07d+b1119n+fLlgOdKRMuWLTGZTD6Xi1Q1hbDUScOHD+ex\nxx6jf//+2O12BgwYwLhx43wG2YXo3LkzycnJJCcnM3DgQLp37+51u1tuuYUTJ06QlJTEyJEjGTFi\nBIcOHSrWy9qbp59+mi+++ILExEQWLVrE9ddf73Pb3r17s3btWvr27Vu0rLznwNf73XjjjURHR5OY\nmMjgwYMZNGgQ4eHhPPHEE7Rv356GDRtyww03FLuf3rlzZ4YMGcK9995Lnz59OH36NH/9619L/ff6\nYjKZeOmll1i4cCF9+/Zl8uTJzJ49m9DQUG699VY+/PBDevfuTZ8+fQgKCuLWW2/1uVykqpk0n7BI\n5XG73UUtrLS0NGbNmqXLniJSRC1hkUpy7NgxrrvuOvbv34/b7eaTTz4p6kEsIgJqCYtUqsWLF7Ng\nwQJMJhMXX3wxU6ZMKeowJCKiEBYRETGILkeLiIgYRCEsIiJikCofMSsz83RAjxcREcrx44F9vlPK\nR3VgPNWBsXT+jVfd6yAqKtzr8hrfErZaLUYXoc5THRhPdWAsnX/j1dQ6qPEhLCIiUlMphEVERAyi\nEBYRETGIQlhERMQgCmERERGD+PWI0owZM9i4cSMOh4OhQ4fSq1evonXffvstL730EhaLhZtuuonH\nHnus0gorIiJSm5QZwt999x07duxg6dKlHD9+nOTk5GIhPHnyZObPn0/Tpk2577776N27N5dcckml\nFlpERKQ2KDOEr776ajp37gxAgwYNyM3Nxel0YrFY2Lt3Lw0bNqR58+YAJCQksH79eoWwiEgd8eqr\nL/PrrxkcO3aUvLw8YmJa0KBBQ6ZOfaHMfVet+oj69cNISPA+1/bs2TO5884UYmJaXFDZHn98CE8+\n+Tcuvrj6ZlKZIWyxWAgNDQVg+fLl3HTTTVgsnoeiMzMziYyMLNo2MjKSvXv3lnq8iIjQgDxUvWQJ\nTJ0KW7dCXFw4Y8ZASkqFDysXyNdoMFJ1VAfGqinnv/hnJxX+7Jw48VkAVqxYwY4dO3jmmWf83nfQ\noHtKXT958oRyleX8OrDZrERE1K/WdeP3sJVr165l+fLlLFiwoEJvGIhhxVautDJ0aL2i17/8Anff\nDadO5ZKc7Kjw8aV8oqLCAz4cqZSP6sBYNeX8V+Zn5+nTedjt+UXnYdOmH1myZCF2u53HH/8rmzdv\nJC3tM1wuF/HxNzB48BDmz59Do0aNaNu2HStWLMNkMrNnz29069aTwYOHFLVkv/jiM3Jysvn99z3s\n37+PJ54YSXz8DSxc+A/Wrv2UmJgWWCyQnDyAq67qUlSm/HwHx4/n8NtvB5kyZQLZ2adxOByMGPE0\n7dt3YNasF9i2LQOn00ly8h3069ff67JA8PWHgF8hvG7dOt566y3mzZtHePjZA0VHR5OVlVX0+vDh\nw0RHR1ewqGWbNcvmdfns2TaFsIiID1X92blr104WL16BzWZj8+aNvPHGPMxmM3fddSsDBhRvBW/d\nuoX33nsfl8vFnXf2Z/DgIcXWHzlymBdffIXvvvuWDz98n44dO7Fixb9YvPh9cnJyuPvu20hOHuC1\nHP/612I6duzEffc9wLZtW3n11ZeYOvUFvv32a5Yt+xCHw8GqVR9x6tTJEssqW5khfPr0aWbMmME/\n/vEPGjVqVGxdy5Ytyc7OZt++fTRr1owvvviCF198sdIKW2j7du9PVvlaLiIiVf/Zeckll2KzeYI/\nJCSExx8fgsVi4cSJE5w6darYtu3bdyAkJMTnsTp3vhLwNP48ubOXiy9uR3BwCMHBIUV9l7zZtm0r\nAwc+BECHDnHs27eXBg0a0qpVG0aNepLu3RPp0+dmbDZbiWWVrcwQXrVqFcePH2fEiBFFy6699lra\nt29PUlISEyZMYOTIkQD069ePtm3bVl5p/xAb6yIjo+R95dhYV6W/t4hITVXVn51BQUEAHDp0kKVL\nF7FgwSJCQ0O5//67Smxb2NfIl3PXu91u3G4wm8/+8WAymXzuazKZcLvdRa9dLs+/d+bMV/j1122s\nWbOa1as/5uWXX/e6rDKVGcIDBgxgwADvTXzw9J5eunRpQAtVlhEj8ovd1yg0fHh+lZZDRKQmMeqz\n88SJE0RERBAaGsqvv27j0KFDFBQUVOiYzZs35z//2YXD4eD06dOkp6f73LZDhzg2b/6RTp0uJz39\nF9q2bcfBgwf4+uuvuPPOFNq378Dgwfd5XVbZqnw+4UDw3LvIZfZsG9u3W4iNdTJ8eL7uB4uIlKL4\nZ6eZ2FhXlXx2XnppLPXqhfLoo4O5/PIrufXW25g5czqdO19xwceMjGxMUlIfHnlkIG3atKVz584+\nW9N33XU3U6c+xxNP/AWXy8WTTz5DkyZRpKf/m88++5SgoCBuvvm/vS6rbCb3uW30KhDoHoQ1pVdi\nbaY6MJ7qwFg6/8ZYteojkpL6YLFYGDz4HmbMmE10dFOji+VVhXpHi4iIVDdHjx5lyJBBBAXZ6N+/\nf7UN4NKoJSwVpjownurAWDr/xqvudeCrJaxnekRERAyiEBYRETGIQlhERMQgCmERERGDKIRFROSC\nDR36INu2ZRRb9tZbr7F48UKv22/a9CNjx/4NgFGjniyx/v33lzJ//hyf77dz5w5+/30PAOPHj+bM\nmbwLLTp33NEfu73ikwpVhEJYREQuWFJSbz7/fE2xZWlpn5OY2KvMfadNe6nc7/fll5+zd+/vADz3\n3PMEB/seb7om0HPCIiJywXr27MWjjz7EsGFPALBtWwZRUVFERUXzww/fM2/eWwQFBREeHs7EidOK\n7XvzzT35+OPP+PHHDbzyykwiIxvTuHETYmJa4HA4mDJlApmZR8jNzWXw4CE0a9acDz9cwZdffk5E\nRATPPjuad95ZSnb2aZ55Zjg5ObmYzWZGjRqHyWRiypQJxMS0YOfOHcTGtmfUqHFe/w1Hjhzm+ecn\nUlBQULR/dHRTJk4cx9GjWeTn5/PQQ0Pp0uWaEsuuu+76Cp0/hbCISC0xYUIwH30U2I/1/v0dTJhw\nxuf6iIhIYmJasHVrOnFxnfj88zUkJfUBPLPwjR8/mZiYFkya9Czff7+e0NDQEseYM+c1xo2bxKWX\nxvLUU08QE9OC06dPcc0119G37y3s37+PceNGsWDBQq69Np5u3XoSF9epaP95897ijjvu4Oqrb+SL\nL9ayYMH/8tBDQ/n11wyee24qERGRJCf34/Tp08Wm4z13/1tuuZWePXsV7X/nnXdz8uQJXn99LqdP\nn2b9+m/YtWtniWUVpcvRIiJSIUlJffjsM88l6W+++Ypu3XoC0KhRI6ZPn8zjjw9h8+aNnDp10uv+\nBw8e5NJLYwG48sqrAAgPb0BGxhYefXQwU6ZM8LkvwK+/ZnDNNdcAcNVVXdix41cAWrRoRePGTTCb\nzTRpEkVOTrbP/f/0p/8qtn+bNhdht+cwadI4Nm36gcTEXl6XVZRawiIitcSECWdKbbVWloSE7rzz\nzgKSknrTqlVrGjRoAMDzz0/ihRdmcdFFbXnppek+9z93SsLCQRzXrFnNqVOneP31eZw6dYqHH76/\nlBKcnaqwoMCByeQ53vkTOvgeILLk/iEhIcyZ8w9++eVnPvnkI775Zh1jxoz3uqwi1BIWEZEKCQ2t\nT7t2l/LOO28XXYoGyMnJpmnTZpw+fZpNmzb6nL6wSZMofv99N263m82bNwKe6Q+bN4/BbDbz5Zef\nF+1rMplwOp3F9r/ssji+//57AH76aSMdOlxWrvJfdlkcmzb9WGz/wjmFr7jiSp56ajS7d//mdVlF\nqSUsIiIVlpTUh8mTxzN+/KSiZbfddiePPvoQrVq15t57B7Jgwf8yZMiwEvsOGTKMsWOfoVmz5kWT\nMHTr1oNRo55k69Z0br75v4mOjubtt+dyxRV/YtasF4rdW3744b8wc+ZUFi1ajNUaxOjR43A4/J+e\n8eGH/8Lzz0/io48+KNo/ODiEOXNe58MPV2A2m7nnnvtp3jymxLKK0gQOUmGqA+OpDoyl82+86l4H\nmsBBRESkmlEIi4iIGEQhLCIiYhCFsIiIiEEUwiIiIgZRCIuIiBhEISwiImIQhbCIiIhBFMIiIiIG\nUQiLiIgYRCEsIiJiEIWwiIiIQfwK4e3bt5OYmMjChQtLrFu0aBEDBgzg7rvvZsqUKQEvoIiISG1V\nZgjb7XYmTZpEfHx8iXXZ2dnMnz+fRYsWsXjxYnbt2sVPP/1UKQUVERGpbcoMYZvNxty5c4mOji6x\nLigoiKCgIOx2Ow6Hg9zcXBo2bFgpBRUREaltrGVuYLVitXrfLDg4mMcee4zExESCg4O5+eabadu2\nbanHi4gIxWq1XFhpffA1T6NUHdWB8VQHxtL5N15NrIMyQ7g02dnZzJkzh9WrVxMWFsagQYPYtm0b\nHTp08LnP8eP2irxlCdV9Iue6QHVgPNWBsXT+jVfd68DXHwgV6h29a9cuWrVqRWRkJDabjS5dupCe\nnl6RQ4qIiNQZFQrhFi1asGvXLvLy8gBIT0/noosuCkS5REREar0yL0enp6czffp09u/fj9VqJTU1\nlR49etCyZUuSkpJ46KGHGDhwIBaLhT/96U906dKlKsotIiJS45ncbre7Kt8w0Nfsq/t9gLpAdWA8\n1YGxdP6NV93roFLuCYuIiMiFUwiLiIgYRCEsIiJiEIWwiIiIQRTCIiIiBlEIi4iIGEQhLCIiYhCF\nsIiIiEEUwiIiIgZRCIuIiBhEISwiImIQhbCIiIhBFMIiIiIGUQiLiIgYRCEsIiJiEIWwiIiIQRTC\nIiIiBlEIi4iIGEQhLCIiYhCFsIiIiEEUwiIiIgZRCIuIiBhEISwiImIQhbCIiIhBFMIiIiIGUQiL\niIgYRCEsIiJiEIWwiIiIQRTCIiIiBvErhLdv305iYiILFy4sse7gwYPcfffd3HHHHTz77LMBL6CI\niEhtVWYI2+12Jk2aRHx8vNf106ZNY/DgwSxfvhyLxcKBAwcCXkgREZHaqMwQttlszJ07l+jo6BLr\nXC4XGzdupEePHgCMHz+emJiYwJdSRESkFrKWuYHVitXqfbNjx45Rv359nn/+ebZs2UKXLl0YOXJk\nqceLiAjFarVcWGl9iIoKD+jxpPxUB8ZTHRhL5994NbEOygzh0rjdbg4fPszAgQNp0aIFQ4YMIS0t\njW7duvnc5/hxe0XesoSoqHAyM08H9JhSPqoD46kOjKXzb7zqXge+/kCoUO/oiIgIYmJiaN26NRaL\nhfj4eHbs2FGRQ4qIiNQZFQphq9VKq1at2L17NwBbtmyhbdu2gSiXiIhIrVfm5ej09HSmT5/O/v37\nsVqtpKam0qNHD1q2bElSUhJjxoxh1KhRuN1uYmNjizppiYiISOlMbrfbXZVvGOhr9tX9PkBdoDow\nnurAWDr/xqvudVAp94RFRETkwimERUREDKIQFhERMYhCWERExCAKYREREYMohEVERAyiEBYRETGI\nQlhERMQgCmERERGDKIRFREQMohAWERExiEJYRETEIAphERERgyiERUREDKIQFhERMYhCWERExCAK\nYREREYMohEVERAyiEBYRETGIQlhERMQgNTqE8/LgvfcgP9/3NitXWklICKV58zASEkJZudJadQUU\nEREpRY0O4S++sHLvvbBwYZDX9StXWhk6tB4ZGRacThMZGRaGDq2nIBYRkWqhRodw585OAD791Huo\nzppl87p89mzvy0VERKpSjQ7hFi3cXHEFfP21hezskuu3b/f+z/O1XEREpCrV+DS65RbIzzexbl3J\n1nBsrMvrPr6Wi4iIVKUaH8I33+z5vnatpcS6ESO899gaPryUnlwiIiJVpMaH8DXXQOPGLj791Irb\nXXxdcrKDOXNyiYtzYrW6iYtzMmdOLsnJDmMKKyIico4a303YYoGePZ0sWxbEL7+Y6dy5+KXm5GSH\nQldERKqlGt8SBkhK8oTsmjU1/m8KERGpQ/wK4e3bt5OYmMjChQt9bjNz5kzuv//+gBWsPLp1c2C1\nuhXCIiJSo5QZwna7nUmTJhEfH+9zm507d/LDDz8EtGDl0bAhXHedk02bLBw5YjKsHCIiIuVRZgjb\nbDbmzp1LdHS0z22mTZvGX//614AWrLwSEz2XpD/7rGQvaRERkeqozOu3VqsVq9X3ZitWrOCaa66h\nRYsWfr1hREQoVmtggzIqKpyUFJgwAb76qh5PPBHQw4sfoqLCjS5Cnac6MJbOv/FqYh1U6CbqiRMn\nWLFiBW+//TaHDx/2a5/jx+0VecsSoqLCycw8TUQEtG1bn9WrTezfn41NI1NWmcI6EOOoDoyl82+8\n6l4Hvv5AqFDv6O+++45jx45x77338vjjj7NlyxamTp1akUNeMJMJevVykJNjYv16XZIWEZHqr0Ih\n3KdPH1atWsWyZct47bXX6NixI2PGjAlU2cqt8L7w2rXqJS0iItVfmWmVnp7O9OnT2b9/P1arldTU\nVHr06EHLli1JSkqqijL6LT7eSf36blJTrUyceAaTOkqLiEg1VmYId+rUiXfffbfMA7Vs2dKv7SqT\nzQbduzv4f/8viF27TFxyibvsnURERAxSK0bMOpdGzxIRkZqi1oVwz55OQCEsIiLVX60L4ehoN1dd\n5eS77yycOmV0aURERHyrdSEMnl7SDoeJtDS1hkVEpPqqlSHcq5fnvvCnnyqERUSk+qqVIXz55S6a\nNXPx2WcWnE6jSyMiIuJdrQxhk8lzSfroUTObNtXKf6KIiNQCtTahkpI8TWCNniUiItVVrQ3hG290\nEBzs1n1hERGptmptCIeFwfXXO9myxcL+/Rq/UkREqp9aG8Jwtpe0LkmLiEh1VKtDuHBWJY2eJSIi\n1VGtDuE2bdy0b+9k3ToLublGl0ZERKS4Wh3C4JnQITfXxDffWIwuioiISDG1/jptr15OXnvNM3pW\nYqIThwMyM00cOmTi8GEThw+bOXTIxJEjJjIzTdx7bwG9e2uEDxERqXy1PoS7dHHSqJGbJUuC+Phj\nK1lZJtxu372lV6+2ctllLkaMyCc52VGFJRURkbqm1oew1QoDB+azYIGNsDC45BInTZu6//hy0ayZ\nmx07zLz8cvAfe5jIyLAwdGg9IFdBLCIilabWhzDA2LH5jB2b73N9QkKo1+WzZ9sUwiIiUmlqfccs\nf2zf7v00+FouIiISCEoZIDbWVa7lIiIigaAQBkaM8H6pevhw35ewRUREKkohDCQnO5gzJ5e4OCfg\nJijIzZw56pQlIiKVSyH8h+RkB2lpdrp3d1JQYKJbNwWwiIhULoXweTp18gzUsXWrRtgSEZHKpRA+\nT8eOns5Y6ek6NSIiUrmUNOfp1MkTwlu2qCUsIiKVSyF8nosvdhES4mbLFp0aERGpXEqa81it0KGD\ni19/NVNQYHRpRESkNlMIe9Gpk5P8fBM7duj0iIhI5fErZbZv305iYiILFy4sse67777jrrvuIiUl\nhdGjR+Ny1fxRpgo7Z+mStIiIVKYyU8ZutzNp0iTi4+O9rn/22Wd55ZVXWLJkCTk5Oaxbty7ghaxq\nZ3tIq3OWiIhUnjJD2GazMXfuXKKjo72uX7FiBc2aNQMgMjKS48ePB7aEBvCMnKWWsIiIVK4ypzK0\nWq1Yrb43CwsLA+DIkSN88803DB8+vNTjRUSEYrUGtoUZFRUe4ONB27awdauVJk3CMZkCevhaKdB1\nIOWnOjCWzr/xamIdBGQ+4aNHj/KXv/yF8ePHExERUeq2x4/bA/GWRaKiwsnMPB3QYwJcdlkIq1YF\nkZ6eTbNm7oAfvzaprDoQ/6kOjKXzb7zqXge+/kCo8PXW7OxsHnnkEUaMGEHXrl0rerhqQ52zRESk\nslU4YaZNm8agQYO46aabAlGeakOds0REpLKVeTk6PT2d6dOns3//fqxWK6mpqfTo0YOWLVvStWtX\nPvjgA/bs2cPy5csBuOWWWxgwYEClF7yyFU7koJawiIhUljJDuFOnTrz77rs+16enpwe0QNVFq1Zu\nGjQoPnzlypVWZs2ysX27mdhYFyNG5GvOYRERuWAB6ZhVG5lMnkeVNmywYLdDaqqVoUPrFa3PyLD8\n8TpXQSwiIhdE11pL0amTC5fLxLZtZmbNsnndZvZs78tFRETKohAuxbmds7Zv936qfC0XEREpixKk\nFOd2zoqN9T4mtq/lIiIiZVEIl6J9excWi6dz1ogR+V63GT7c+3IREZGyKIRLERICl1ziYssWC7fe\n6mDOnFzi4pxYrW7i4pzMmaNOWSIicuHUO7oMHTu6+PVXC3v2mEhOdih0RUQkYNQSLoNGzhIRkcqi\nEC5Dx44aOUtERCqHkqUMnTp5WsJbt+pUiYhIYClZyhAd7SYqyqXL0SIiEnAKYT906uRi3z4zJ04Y\nXRIREalNFMJ+KLwvvHWrWsMiIhI4CmE/nO0hrdMlIiKBo1TxQ2HnrC1b1BIWEZHAUQj7oV07F8HB\nbr9bwitXWklICKV58zASEkJZuVJjooiISElKBz9YrdChg4uMDDMFBRAU5HvblSs177CIiPhHLWE/\nderkJD/fxM6dpZ8yzTssIiLfuxv0AAAeYElEQVT+Ugj7yd/OWZp3WERE/KVk8JO/nbM077CIiPhL\nIeynuDjPs8JltYQ177CIiPhLIeynBg2gdWsXW7eacbt9b5ecrHmHRUTEP+odXQ4dOzr55JMgjhwx\n0bSp7yTWvMMiIuIPtYTLQSNniYhIIClNyqEwhDVyloiIBIJCuBw6dfJ0ztqyRadNREQqTmlSDq1b\nuwkP93/4ShERkdIoTcrBZPJ0ztq1y4zdXvHjaYxpEZG6za8Q3r59O4mJiSxcuLDEum+//ZY77riD\nAQMG8Prrrwe8gNVNx44uXC4TK1YEkZ194ccpHGM6I8OC02kqGmNaQSwiUneUGcJ2u51JkyYRHx/v\ndf3kyZN59dVXWbx4Md988w07d+4MeCGrky5dPPeFn3wyhNjYMG65pR7Tptn45hsLeXn+H0djTIuI\nSJnNLpvNxty5c5k7d26JdXv37qVhw4Y0b94cgISEBNavX88ll1wS+JJWE7fd5iAqys5XX1n4+msr\nP/5oYcMGKy+9BCEhbq6+2smNNzrp2tXBlVe6sPo4wxpjWkREygxhq9WK1UeSZGZmEhkZWfQ6MjKS\nvXv3Bq501ZDJBDfd5OSmm5xAPqdOwfr1nkBet87CunVW1q2zAsFceqmT1FQ7YWEljxMb6yIjo+Sj\nThpjWkSk7qjyG5AREaFYrYF9zjYqKjygxyvfe0O7dnDffZ7XmZmQlgYLF8L//Z+FN98MZ8aMkvs9\n+yzcfXfJ5ePGWQz991yomljm2kZ1YCydf+PVxDqoUAhHR0eTlZVV9Prw4cNER0eXus/x4wHoVnyO\nqKhwMjNPB/SYFdWtG1x7Lfz0U31mzTKRnJzDJZcUH+ayZ0+YM8fK7Nk2tm83ExvrYvjwfHr2dJCZ\naUy5L1R1rIO6RnVgLJ1/41X3OvD1B0KFbkC2bNmS7Oxs9u3bh8Ph4IsvvuCGG26oyCFrjXr14Lnn\nzlBQYOLvfw/xOulDcrKDtDQ7Bw5kk5Zm9zretB5jEhGpvcr8RE9PT2f69Ons378fq9VKamoqPXr0\noGXLliQlJTFhwgRGjhwJQL9+/Wjbtm2lF7qm6NfPQUKCgy++sLJ6tZW+fcs3qUPhY0yFCh9jAs3K\nJCJSG5jc7tIm5gu8QF8uqO6XIHbsMJOQEEpMjJt163KoV6/sfQolJIR67bwVF+ckLS2wl/UrorrX\nQV2gOjCWzr/xqnsdVMrlaCnbpZe6eOSRAn7/3cwbb5TvGWA9xiQiUrvp07wKPPXUGaKjXbzyio29\ne01+7+frcSU9xiQiUjsohKtAeDiMG3eG3FwTEyYE+73fiBH5XpcPH+59uYiI1CwK4Spy550OunRx\n8tFHQXz1lX/PSScnO5gzJ5e4OCdWq5u4OCdz5qhTlohIbaEQriJmM0yblofJ5Obvfw+moMC//f78\nZwdPPJFPz55O/vEPBbCISG2iEK5CnTu7uO++An791cKCBUFlbr93r4l77qnHX/5Sj9RUK+PH+38p\nW0REqj+FcBUbMyafRo3czJgRzJEj3jtpOZ0wZ04QN95Yn88+s5KQ4OBPf3LyySdB/PCDqkxEpLbQ\nJ3oVa9zYzTPPnOH0aRNTppRs2aanm+nXL5Rx40IICXHz6qu5LFuWy8SJZwCYPDnY6+hbGllLRKTm\nUQgbYNCgAuLinCxeHMTGjZ4qyM2FKVNs9OoVyubNFm6/vYCvv7YzYIADkwmuvdZJ794O1q+38tln\nxTt2FY6slZFhwek0FY2spSAWEaneFMIGsFrh+ec9LdsxY0L46isL3brVZ/bsYJo3d7NkiZ0338yj\nSZPiTd4xY85gMrmZPDkY1zmPCs+a5X0QkNmzyzc4iIiIVC2FsEHi453cdlsBmzdbuOOOUPbsMfGX\nv+Tz1Vc59Ojh9LrPZZe5uOsuB1u3Wnj//bOtXI2sJSJSM+lT2kDjx5+hSRMXHTs6Wb3azsSJZ6hf\nv/R9/va3M9hsbqZPD+aMpzGtkbVERGoohbCBmjd3s3lzDp9/bufKK/0LzFat3Dz4oGcs6n/+0/OY\nU3lG1lIHLhGR6kMhbLDgYDD5P5w04And8HA3L79s4/Rp/0fWUgcuEZHqRSFcAzVu7Oaxx/I5evTs\nzEzJyQ7S0uwcOJBNWprd68ha6sAlIlK9KIRrqKFD84mKcvHmmzafg36cTx24RESqF3361lD168PI\nkfnY7SZeftm/lqw6cImIVC8K4Rrs/vsLuOgiF++8E8Rvv5XdGtbUiCIi1YtCuAYLCoLRo89QUGBi\n+vSyJ3coTwcu9aAWEal8Jrfb20jElScz83RAjxcVFR7wY9YkLhckJYXyyy8WPvssh8svr9il5cIe\n1OcrbR7jul4H1YHqwFg6/8ar7nUQFRXudblawjWc2Qzjxp2d3KGi1INaRKTq6DpjLdCtm5Mbb3Tw\nxRdWvv7aQteunmEvXS44dQpOnDBx4oSJ48c937OzTfTs6SAmpuRFEPWgFhGpOgrhWmLcuDP06mXl\nkUdCaNDAE7wnT4LL5b3DVrNmLj75xE6LFsWDODbWRUaGpcT26kEtIhJ4CuFa4sorXQwcmM+yZUFY\nrW6io13ExrqJiHDTqBE0auQu+tq928xbb9m4++56fPSRnYYNzx5nxIh8r/eE1YNaRCTwFMK1yIsv\nnuHFF8+UuZ3bDQ4HzJtn44EH6rFkSS7Bf9xO9nS+ymX2bBvbt5uJjXUxfHi+105ZK1damTXLxvbt\nEBsbyogR3rcTERHv1Du6jnI64eGHQ/j44yCSkwt48808zOW47Xshvail8uj3wFg6/8ar7nWg3tFS\njMUCb7yRx9VXO1m5MojJk8vX+1m9qEVEKk4hXIfVqwfvvmunXTsXr70WzPz5QX7vW55e1Br8Q0TE\nO4VwHRcZCUuW2ImKcjFmTDAff+xfQPo7DrWmTxQR8c2vEJ46dSoDBgwgJSWFn3/+udi6RYsWMWDA\nAO6++26mTJlSKYWUytWmjZv33sulXj149NEQNmwo+7+Fv+NQ67K1iIhvZX7abtiwgT179rB06VKm\nTJlSLGizs7OZP38+ixYtYvHixezatYuffvqpUgssleOKK1zMn59LQQHcf38oO3eWPiFE8XGo8TkO\ntQb/EBHxrcxPwvXr15OYmAhAu3btOHnyJNnZ2QAEBQURFBSE3W7H4XCQm5tLw3MfOpUapWdPJzNn\n5nH8uImUlNAy5ylOTnaQlmanoADS0uxee0Vr+kQREd/KDOGsrCwiIiKKXkdGRpKZmQlAcHAwjz32\nGImJiXTv3p0rrriCtm3bVl5ppdLdc4+Dp58+w++/m7nnnnosWeIZCvO330zkX8B4Hf5etlbnLRGp\ni8r9SXfuY8XZ2dnMmTOH1atXExYWxqBBg9i2bRsdOnTwuX9ERChWa8lhESvC1/NXcmGmT4djx2D+\nfAtPPHH2WWCTCZo3hzZtoHVrz/c2baBtW+jQIZw2bSjxrPGQIdCgATz/PGzdCnFxMHo0pKScPe6S\nJTB06Nl9CjtvNWgAKSmV/a+tPfR7YCydf+PVxDooM4Sjo6PJysoqen3kyBGioqIA2LVrF61atSIy\nMhKALl26kJ6eXmoIHz9ur2iZi6nuD2jXVFOmQP/+Fn77zczevSb27TOzb5/n+w8/mFi/vuSl6pAQ\nNxdf7OLSS11cconn+6WXurjuOhdr1xbf9o+LKQBMnBgKlPzDbNIkJz17Bvb/S22l3wNj6fwbr7rX\nga8/EMoM4RtuuIFXX32VlJQUtmzZQnR0NGFhYQC0aNGCXbt2kZeXR0hICOnp6SQkJAS25GIIsxmu\nv97J9dc7S6xzOuHwYRN793qCOTOzHj/9VMDOnWZ27jSzdWvJQG3Z0kXHji46d3Zy5ZVOrrjCRXS0\n56qKOm+JSF1VZghfddVVdOzYkZSUFEwmE+PHj2fFihWEh4eTlJTEQw89xMCBA7FYLPzpT3+iS5cu\nVVFuMZDFAjExbmJinFx7LURFQWZmHuCZPvHgQRM7dngCufD79u1mUlOtpKae/S/XvLmLK65wEhnp\nJjOzZMvaW+ets+NVe8a11njVIlKTaexoqTB/6+DwYRM//2zmp58s/Pyzhc2bzRw54ru1e/4jTxqv\n2jf9HhhL59941b0ONHa0GK5pUzdJSU6efjqfd9/NJT09h59/zubdd+3cfHMBYWFuwPM3YVSUC5PJ\n07IuVJ6BP9TbWkRqAoWwGKpZMze9ezt5++08/vOfbLZsyeHhh/M5ccLEkCH16N07lK++8txj9vfe\ncaCHyszOhtGjg3nwwRDdpxaRgNInilQrUVFupk49w9df53DbbQX8+98W7rgjlLvuqkfr1v4N/BHI\noTLXr7fQrVt95s+38fHHQSQkhDJ2bDAnTpT7UCIiJSiEpVpq29bNW2/lsXZtDgkJDtLSrPz2m/fn\ny88f+KM8LWZfl6zz8mDChGD+/Od67NtnYsSIM7z9di6tWrn53/+1ER9fn3/+Mwhnyc7jIiJ+UwhL\ntda5s4t//SuXZcvsdO5cmHhuTCY3LVs6mTWrZKcsf4bKLO2S9c8/m+nVK5Q33rBx0UVuPvrIzpgx\n+dx8s4N163IYN+4MeXkmnn46hMTEUL79NrCDz4hI3aEQlhqhWzcnn35qZ86cXNq0ceN2m9i3z8LI\nkSHccks9XnzRxo8/mnE4/Bsq09cl67Fjg+nTJ5Rt2yw8+GA+n3+ew9VXnw3v4GD4n//J57vvckhJ\nKWDLFgt//nMoDz8cwt69pY+1LSJyPj2iJBVW1XXgcMDGjRbS0iykpVnZvNmMy+UJwIYN3XTt6qBR\nIzfff+8Z8at9exfDhxd/nrh58zCcTu+h2by5i1mz8uje3dPyLu3Z5E2bzPz97yFs3GghJMTNsGH5\n3HVXAS1auAkOruQTcQ79HhhL59941b0OfD2ipBCWCjO6Dk6cgHXrrKSlWfjySyu//372Ak9IiJuo\nKDdNmpz75WLp0iCvzyg3bOjihx9yaNTI89qfZ5NdLnj/fSuTJgVz6NDZYzZt6qJlSzetWrlo1ers\nz4Xf69cP3Dkwug7qOp1/41X3OrjgYStFqrtGjaB/fwf9+ztwu8/w228m0tKsrFtnYd8+M1lZJrZu\nNXPmTNmXi2fMOFMUwFB6T+vCEDab4c47HTgcMGVKMJmZJurV8wzv+e9/m9m4seQ9Y5vNzahRZxg2\nrKDEpBciUncohKVWMZng4ovdXHxxAYMHFxQtd7s9z/tmZprIyjKRlWVmzRoLn35qJSvLxCWXuHjq\nqZJDYJanp/Xw4WdbzHY72O0m3nwzl/h4J3v3np0IY+9eE6mpViZODGH9eiuvvJJH48ZVekFKRKoJ\nhbDUCSYThIdDeLibiy92Ay769XMAZ0rdLzbWRUZGyZasv88mv/qqjdtvtxeNs71ypZWVK21kZZmo\nX9/NmjVWevYM5a238rjuOj3vJFLX6EKYSCn86WkN/rWYz30syuUykZPjuTx+8KCJ5OR6zJ5tKzZM\np4jUfgphkVIkJzuYMyeXuDgnVqubuDin1wkj/Hk22VdruXVrz7SOU6YEc/fd9cjMNGnsa5E6Qr/Z\nImVITnaUOUvTiBH5XntRn9ti9tVa3r/fzC+/5PD44yF89pmV66+vz8mTZzuRFQ4kApU7W1RODrzy\nio2DB838+c8F3HSTE6s+IUQqlX7FRALAE465zJ599nni859NLu3+cuPGbhYtyuX1121MmuS9xTxl\nio3cXNi718y+fWb27zexbZuZo0dNuN1w8cWhPPPMhc2v/OWXnoFPCh/vWrIkiOhoF7ff7mDAgALi\n4nSdXKQy6DlhqTDVgX/8nQ+5WbOwosFHLsRLL+Vy333+BfGJE54xst97z4bF4uaxx/JJSnKyYoWV\nlSuDOHHCU45OnZzcdVcBt93mIDpaPbnPp98B41X3OtB8wiIG8/f+cvv23ludTZq4mDUrl+XL7Xz3\nXTbt23vvTf300yEsWBCE44/D+rq//PHHVrp2rc9779no1MlJaqqdsWPzufZaJ9Onn+GXX7JZsCCX\nPn0K2LbNzLPPhnDFFfW59956fPihlcOHPS1wEblwaglLhakOAsvfFrPvoTfdgIkOHZz07u1g9uyS\n42f+13852LjRSnCwm6eeymfYsHyCgnyXKSvLxAcfWFm2LIiffjp7Sb1ePTetW7u46CI3bdq4uOgi\nF23auGjTxrM8JKQ8//KaS78DxqvudaBhK6XSqA4Cb+VKa6n3lwESEkJ93GN2cu21ThYuDMLt9n1Z\n++qrncyalcell7qK3tPXGNnn2rbNzIcfWtm+3czu3Z6v06e9v8+llzqZOzev1t9T1u+A8ap7HSiE\npdKoDoxRVov5l1/M9OwZCpQMSLPZzYED2UVDZvrb+i7c9tywHj48n27dHOzZ4wnkPXvM7Nlj4rff\nzHz7rZVWrVysXm0nKqr2XrvW74DxqnsdKISl0qgOjHO2xWwhNtZZosV8002eaRnPFxfnJC3NXvTa\nV6v6/O3KE9YAM2famD49mGuucfD++7lVOrNUVdLvgPGqex2oY5ZILZSc7CAtzU5BAaSl2UsE4V//\nGrgRv6D0CS3OVdgZ7IUXbDRo4GLDBitPPRWijlwi51EIi9RigRzxCy5seM5Tpzzrli4N4vXXS+n9\nJVIHKYRFarnC1vKBA9leW8vg/xjZFRme02p1M2lSMKtXl7zsLVJXKYRFxO8Wsz9h7au17HZDSAg8\n+mg9tmzRR48IKIRF5A/+tJj9CWtfreX27V289loeOTkm7r/fM1GFSF2nEBaRcikrrEtrLffv7+CZ\nZ86wb5+ZBx8M4Uzp0zmL1HoKYREJqLJay08+mU9ycgEbNlgZOVI9pqVu0yxKIhJwpU3/aDLBrFl5\n7N5tZtmyINq3d/E//+O99SxS2/kVwlOnTuXf//43JpOJMWPG0Llz56J1Bw8e5Mknn6SgoIC4uDgm\nTpxYaYUVkdqhXj14551cevUKZfJkGyEhblq1Kntoy/BwiIx0ExnpJiLCjc17R+xqw+GA334zk5Fh\nZutWM7m5Jpo2ddG0qZumTd00a+b5OSzM88eJ1D1lhvCGDRvYs2cPS5cuZdeuXYwZM4alS5cWrZ82\nbRqDBw8mKSmJ5557jgMHDhATE1OphRaRmq9pUzfvvptL//6h/P3vFzbTQ1iYuyiUC4O5USNPONts\nbqxWsNn44/vZ10FBnmvgeXkm8vPPfj9zBs6cMXHmDOTnQ36+qeg9mjQp/l6NG3u+h4R4en4fPmxi\n61ZP4GZkWMjIMPPrr2bOnCk7XUND3URHu2na1EV0tKf8516mL/zZ7T77s8nk+WOmXj130ffQUM/P\nhd/r1XOXOjHH+SwWz5fZXPjlLnp97nLPdu5zfj673moFk8mNy2XC5Tpb5sKfXa7iP3u+m4qtO3e/\nc8/DuX+onP9HS2QkHDtW8g6rt9sdhfuaTN6/mjTx1G9VKDOE169fT2JiIgDt2rXj5MmTZGdnExYW\nhsvlYuPGjbz00ksAjB8/vnJLKyK1yq5dZpo1c7F7t5moKDc33eTk8su9T9HodsOpUyaOHzdx7NjZ\nr+PHTWzbZiYvz5imZP36ntA8fjys2PKQEDft27u47DIXcXFOLrvMRXi4m8OHzRw+bDrn6+zrH36w\nVGguaakfkKMEBbn5+eecKgniMkM4KyuLjh07Fr2OjIwkMzOTsLAwjh07Rv369Xn++efZsmULXbp0\nYeTIkZVaYBGpHc4fh/rIERPLl5tJSip5P9mfGZ7sdjh2zMTJkyYKCjwtWYfD9Md3T6u2oICiL4Dg\n4MIvN8HBnlZySIgnVIODPa3I7GwTR496At/b96NHTTgcFq67ruCPwPWEbtu2nlZkSb4vuzsccPSo\nCecff4cUtswKfy5kMnlai3l5YLebyM2F3Nyz3+32s9+9T3fppVQucDrPfne7z31tKlpe+FW4vPhr\nispuNnvKWdh6LlxWuNxkOtuaPnfdufud++/31qI99wpBaKiN3NyzfQtKu7x/bivb21fTpp6rKlWh\n3B2zzp3vwe12c/jwYQYOHEiLFi0YMmQIaWlpdOvWzef+ERGhWK2BHTHH18DYUnVUB8araXXw2mve\nl7/+ej2GDDn7eskSGDr07OuMDAtDh9ajQQNISSm+b5s2gS+n/wIzJGfz5gE5TB0VyE4CVTPbSJkh\nHB0dTVZWVtHrI0eOEBUVBUBERAQxMTG0bt0agPj4eHbs2FFqCB8/bve57kJU95kz6gLVgfFqYh1s\n3RqGt2kWt251k5mZXfR64sRQoOQf7pMmOenZs/gMT/7Mh1wZauL5r22qex1c8CxKN9xwA6mpqQBs\n2bKF6OhowsI89z6sViutWrVi9+7dRevbtm0boCKLSG1WWZNGOJ2motbyypUl2xmFMzw1bx5GQkKo\n123Ks51IRZQZwldddRUdO3YkJSWFyZMnM378eFasWMGaNWsAGDNmDKNHjyYlJYXw8HB69OhR6YUW\nkZqvKiaN8DbFoj9hXZ7tEhJCsVoJSKD7s53+OKhdTG531Y5XE+jLBdX9EkRdoDowXk2tg5Urrcye\nffYS8vDhJS8hn9+Bq9C5o3A1bx7mtQOS1ermwIGzl7YTEkLJyCh5aTsuzklamr1c2/lTrkBv5++x\n6qLq/jtwwZejRUQqS2VPGnEhl7b93c7f1ncgt/P3WOVhROs7kO/p79WI6kohLCLVXkUmjTiXv2Ht\nz3aBDHR/t/P3WOB/0JV12T3Q99sD+Z7FtyMgZavqS/0KYRGp8QI5H7K/2wUy0P3dzt9j+RtigWx9\nG/GegSxbef7YCCSFsIjUCoG6tO3vdoEMdH+38/dY/oZTIFvfRrxnIMtWGZf6/VGzLp6LiFRQaTM8\nlWc7z7rcPzqWWYiNdXrtWFZ8O98d0PzZzt9j+RtOsbEurx3Qzm99l7WNUe8ZyLKV51J/IKklLCJy\ngQpb3wUF+Gx9n7tdaa10f7fzZxt/L1sHsvVtxHsGsmz+lj/QFMIiIrWMv+Hkz2X3QN9vD+R7Ft+O\nCpXN3/IHmp4TlgpTHRhPdWCs6nj+/XkGuza8Z6Gy6sDfZ9Irq/y+nhNWCEuFqQ6Mpzowls6/8ap7\nHWiwDhERkWpGISwiImIQhbCIiIhBFMIiIiIGUQiLiIgYRCEsIiJiEIWwiIiIQRTCIiIiBlEIi4iI\nGKTKR8wSERERD7WERUREDKIQFhERMYhCWERExCAKYREREYMohEVERAyiEBYRETGI1egCVMTUqVP5\n97//jclkYsyYMXTu3NnoItUJ27dvZ9iwYTzwwAPcd999HDx4kL/97W84nU6ioqJ44YUXsNlsRhez\nVpsxYwYbN27E4XAwdOhQLr/8ctVBFcnNzWXUqFEcPXqUM2fOMGzYMDp06KDzb4C8vDxuueUWhg0b\nRnx8fI2sgxrbEt6wYQN79uxh6dKlTJkyhSlTphhdpDrBbrczadIk4uPji5a98sor3HPPPbz33nu0\nadOG5cuXG1jC2u+7775jx44dLF26lHnz5jF16lTVQRX64osv6NSpEwsXLmTWrFlMmzZN598gb775\nJg0bNgRq7udQjQ3h9evXk5iYCEC7du04efIk2dnZBpeq9rPZbMydO5fo6OiiZd9//z09e/YEoHv3\n7qxfv96o4tUJV199NbNnzwagQYMG5Obmqg6qUL9+/XjkkUcAOHjwIE2bNtX5N8CuXbvYuXMn3bp1\nA2ru51CNDeGsrCwiIiKKXkdGRpKZmWlgieoGq9VKSEhIsWW5ublFl30aN26seqhkFouF0NBQAJYv\nX85NN92kOjBASkoKTz31FGPGjNH5N8D06dMZNWpU0euaWgc1+p7wuTT6ZvWgeqg6a9euZfny5SxY\nsIBevXoVLVcdVI0lS5aQkZHB008/Xeyc6/xXvg8++IArr7ySVq1aeV1fk+qgxoZwdHQ0WVlZRa+P\nHDlCVFSUgSWqu0JDQ8nLyyMkJITDhw8Xu1QtlWPdunW89dZbzJs3j/DwcNVBFUpPT6dx48Y0b96c\nyy67DKfTSf369XX+q1BaWhp79+4lLS2NQ4cOYbPZauzvQI29HH3DDTeQmpoKwJYtW4iOjiYsLMzg\nUtVN119/fVFdfPrpp9x4440Gl6h2O336NDNmzGDOnDk0atQIUB1UpR9//JEFCxYAnttidrtd57+K\nzZo1i/fff59ly5Zx5513MmzYsBpbBzV6FqUXX3yRH3/8EZPJxPjx4+nQoYPRRar10tPTmT59Ovv3\n78dqtdK0aVNefPFFRo0axZkzZ4iJieH5558nKCjI6KLWWkuXLuXVV1+lbdu2RcumTZvG2LFjVQdV\nIC8vj7///e8cPHiQvLw8Hn/8cTp16sQzzzyj82+AV199lRYtWtC1a9caWQc1OoRFRERqshp7OVpE\nRKSmUwiLiIgYRCEsIiJiEIWwiIiIQRTCIiIiBlEIi4iIGEQhLCIiYhCFsIiIiEH+P/olP+vG2PUZ\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ZY7l0VXb-j7Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Regular Training with a simple ConvNet \n", + "##### on the CIFAR10 dataset" + ] + }, + { + "metadata": { + "scrolled": true, + "id": "sAEClUbg-j7S", + "colab_type": "code", + "outputId": "424d898b-2bf7-42f6-ad60-c8dde3bcf39b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1990 + } + }, + "cell_type": "code", + "source": [ + "'''\n", + "Trains a simple convnet on the CIFAR10 dataset.\n", + "with rmsprop optimizer\n", + "'''\n", + "\n", + "from __future__ import print_function\n", + "import keras\n", + "from keras.datasets import cifar10\n", + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.layers import Dense, Dropout, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras import backend as K\n", + "\n", + "batch_size = 128\n", + "num_classes = 10\n", + "epochs = 50\n", + "\n", + "# input image dimensions\n", + "img_height = 32\n", + "img_width = 32\n", + "channels = 3\n", + "\n", + "# the data, split between train and test sets\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "if K.image_data_format() == 'channels_first':\n", + " x_train = x_train.reshape(x_train.shape[0], channels, img_height, img_width)\n", + " x_test = x_test.reshape(x_test.shape[0], channels, img_height, img_width)\n", + " input_shape = (channels, img_height, img_width)\n", + "else:\n", + " x_train = x_train.reshape(x_train.shape[0], img_height, img_width, channels)\n", + " x_test = x_test.reshape(x_test.shape[0], img_height, img_width, channels)\n", + " input_shape = (img_height, img_width, channels)\n", + "\n", + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "x_train /= 255\n", + "x_test /= 255\n", + "print('x_train shape:', x_train.shape)\n", + "print(x_train.shape[0], 'train samples')\n", + "print(x_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "\n", + "model_b = Sequential()\n", + "model_b.add(Conv2D(32, kernel_size=(3, 3),\n", + " activation='relu',\n", + " input_shape=input_shape))\n", + "model_b.add(layers.BatchNormalization())\n", + "model_b.add(Conv2D(64, (3, 3), activation='relu'))\n", + "model_b.add(layers.BatchNormalization())\n", + "model_b.add(MaxPooling2D(pool_size=(2, 2)))\n", + "model_b.add(Dropout(0.25))\n", + "model_b.add(Flatten())\n", + "model_b.add(Dense(128, activation='relu'))\n", + "model_b.add(layers.BatchNormalization())\n", + "model_b.add(Dropout(0.5))\n", + "model_b.add(Dense(num_classes, activation='softmax'))\n", + "\n", + "model_b.compile(loss='categorical_crossentropy',\n", + " # replace by rmsprop for comparison\n", + " optimizer='rmsprop',\n", + " # Adding accuracy metrics \n", + " metrics=['accuracy'])\n", + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=5,\n", + " verbose=1\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath='model_b.h5',\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " verbose=1\n", + " ),\n", + " keras.callbacks.ReduceLROnPlateau(\n", + " # Monitors the model’s validation loss\n", + " monitor='val_loss',\n", + " # Divides the learning rate by 10 when triggered\n", + " factor=0.1,\n", + " # The callback is triggered after the validation loss \n", + " # has stopped improving for 1 epochs.\n", + " patience=3,\n", + " verbose=1\n", + " ) \n", + "]\n", + "\n", + "model_b.fit(x_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1,\n", + " callbacks=callbacks_list,\n", + " validation_data=(x_test, y_test))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x_train shape: (50000, 32, 32, 3)\n", + "50000 train samples\n", + "10000 test samples\n", + "Train on 50000 samples, validate on 10000 samples\n", + "Epoch 1/50\n", + "50000/50000 [==============================] - 13s 267us/step - loss: 1.4793 - acc: 0.5057 - val_loss: 1.2769 - val_acc: 0.5463\n", + "\n", + "Epoch 00001: val_loss improved from inf to 1.27690, saving model to model_b.h5\n", + "Epoch 2/50\n", + "50000/50000 [==============================] - 12s 245us/step - loss: 0.9980 - acc: 0.6520 - val_loss: 0.9947 - val_acc: 0.6450\n", + "\n", + "Epoch 00002: val_loss improved from 1.27690 to 0.99474, saving model to model_b.h5\n", + "Epoch 3/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.8459 - acc: 0.7068 - val_loss: 1.4733 - val_acc: 0.5679\n", + "\n", + "Epoch 00003: val_loss did not improve from 0.99474\n", + "Epoch 4/50\n", + "50000/50000 [==============================] - 12s 243us/step - loss: 0.7521 - acc: 0.7387 - val_loss: 0.9695 - val_acc: 0.6720\n", + "\n", + "Epoch 00004: val_loss improved from 0.99474 to 0.96953, saving model to model_b.h5\n", + "Epoch 5/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.6752 - acc: 0.7660 - val_loss: 1.0508 - val_acc: 0.6562\n", + "\n", + "Epoch 00005: val_loss did not improve from 0.96953\n", + "Epoch 6/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.6172 - acc: 0.7873 - val_loss: 0.9907 - val_acc: 0.6721\n", + "\n", + "Epoch 00006: val_loss did not improve from 0.96953\n", + "Epoch 7/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.5637 - acc: 0.8054 - val_loss: 1.0558 - val_acc: 0.6768\n", + "\n", + "Epoch 00007: val_loss did not improve from 0.96953\n", + "\n", + "Epoch 00007: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513.\n", + "Epoch 8/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.4325 - acc: 0.8540 - val_loss: 0.7704 - val_acc: 0.7445\n", + "\n", + "Epoch 00008: val_loss improved from 0.96953 to 0.77045, saving model to model_b.h5\n", + "Epoch 9/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.4049 - acc: 0.8622 - val_loss: 0.7662 - val_acc: 0.7477\n", + "\n", + "Epoch 00009: val_loss improved from 0.77045 to 0.76620, saving model to model_b.h5\n", + "Epoch 10/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3898 - acc: 0.8658 - val_loss: 0.7610 - val_acc: 0.7485\n", + "\n", + "Epoch 00010: val_loss improved from 0.76620 to 0.76100, saving model to model_b.h5\n", + "Epoch 11/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3785 - acc: 0.8704 - val_loss: 0.7559 - val_acc: 0.7501\n", + "\n", + "Epoch 00011: val_loss improved from 0.76100 to 0.75595, saving model to model_b.h5\n", + "Epoch 12/50\n", + "50000/50000 [==============================] - 12s 246us/step - loss: 0.3681 - acc: 0.8745 - val_loss: 0.8011 - val_acc: 0.7495\n", + "\n", + "Epoch 00012: val_loss did not improve from 0.75595\n", + "Epoch 13/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3561 - acc: 0.8793 - val_loss: 0.8246 - val_acc: 0.7469\n", + "\n", + "Epoch 00013: val_loss did not improve from 0.75595\n", + "Epoch 14/50\n", + "50000/50000 [==============================] - 12s 245us/step - loss: 0.3496 - acc: 0.8805 - val_loss: 0.7981 - val_acc: 0.7492\n", + "\n", + "Epoch 00014: val_loss did not improve from 0.75595\n", + "\n", + "Epoch 00014: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05.\n", + "Epoch 15/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3289 - acc: 0.8894 - val_loss: 0.7744 - val_acc: 0.7518\n", + "\n", + "Epoch 00015: val_loss did not improve from 0.75595\n", + "Epoch 16/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3256 - acc: 0.8895 - val_loss: 0.7801 - val_acc: 0.7515\n", + "\n", + "Epoch 00016: val_loss did not improve from 0.75595\n", + "Epoch 17/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3280 - acc: 0.8883 - val_loss: 0.7807 - val_acc: 0.7510\n", + "\n", + "Epoch 00017: val_loss did not improve from 0.75595\n", + "\n", + "Epoch 00017: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06.\n", + "Epoch 18/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3256 - acc: 0.8893 - val_loss: 0.7746 - val_acc: 0.7517\n", + "\n", + "Epoch 00018: val_loss did not improve from 0.75595\n", + "Epoch 19/50\n", + "50000/50000 [==============================] - 12s 244us/step - loss: 0.3314 - acc: 0.8874 - val_loss: 0.7740 - val_acc: 0.7515\n", + "\n", + "Epoch 00019: val_loss did not improve from 0.75595\n", + "Epoch 20/50\n", + "50000/50000 [==============================] - 12s 245us/step - loss: 0.3278 - acc: 0.8883 - val_loss: 0.7754 - val_acc: 0.7513\n", + "\n", + "Epoch 00020: val_loss did not improve from 0.75595\n", + "\n", + "Epoch 00020: ReduceLROnPlateau reducing learning rate to 1.0000001111620805e-07.\n", + "Epoch 00020: early stopping\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "id": "6ZrzrV8VD01Y", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model_b.load_weights('model_b.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gUAJdc2z-j7c", + "colab_type": "code", + "outputId": "24c18084-ab30-44ba-9c28-93428453e5ab", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 58 + } + }, + "cell_type": "code", + "source": [ + "score = model_b.evaluate(x_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "print('Test accuracy:', score[1])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Test loss: 0.7559461263656616\n", + "Test accuracy: 0.7501\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "A3OdeUXNchoH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model_b, to_file='model_b.png')\n", + "from google.colab import files\n", + "files.download('model_b.png')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "_aV-PjPR-j7p", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The results are not very convincing. Depthwise separable convolution gives an accuracy of 55% that is inferior to the 70% of the simple ConvNet model. Probably that the model is not big /deep enough. " + ] + }, + { + "metadata": { + "scrolled": true, + "id": "lNoUROqR-j7q", + "colab_type": "code", + "outputId": "3f2b1116-ba73-49cc-9aaf-32e8b02f5e0e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1948 + } + }, + "cell_type": "code", + "source": [ + "'''\n", + "Trains a simple convnet on the CIFAR10 dataset.\n", + "with Adadelta optimizer\n", + "'''\n", + "\n", + "from __future__ import print_function\n", + "import keras\n", + "from keras.datasets import cifar10\n", + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.layers import Dense, Dropout, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras import backend as K\n", + "\n", + "batch_size = 128\n", + "num_classes = 10\n", + "epochs = 50\n", + "\n", + "# input image dimensions\n", + "img_height = 32\n", + "img_width = 32\n", + "channels = 3\n", + "\n", + "# the data, split between train and test sets\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "if K.image_data_format() == 'channels_first':\n", + " x_train = x_train.reshape(x_train.shape[0], channels, img_height, img_width)\n", + " x_test = x_test.reshape(x_test.shape[0], channels, img_height, img_width)\n", + " input_shape = (channels, img_height, img_width)\n", + "else:\n", + " x_train = x_train.reshape(x_train.shape[0], img_height, img_width, channels)\n", + " x_test = x_test.reshape(x_test.shape[0], img_height, img_width, channels)\n", + " input_shape = (img_height, img_width, channels)\n", + "\n", + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "x_train /= 255\n", + "x_test /= 255\n", + "print('x_train shape:', x_train.shape)\n", + "print(x_train.shape[0], 'train samples')\n", + "print(x_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "\n", + "model_c = Sequential()\n", + "model_c.add(Conv2D(32, kernel_size=(3, 3),\n", + " activation='relu',\n", + " input_shape=input_shape))\n", + "model_c.add(layers.BatchNormalization())\n", + "model_c.add(Conv2D(64, (3, 3), activation='relu'))\n", + "model_c.add(layers.BatchNormalization())\n", + "model_c.add(MaxPooling2D(pool_size=(2, 2)))\n", + "model_c.add(Dropout(0.25))\n", + "model_c.add(Flatten())\n", + "model_c.add(Dense(128, activation='relu'))\n", + "model_c.add(layers.BatchNormalization())\n", + "model_c.add(Dropout(0.5))\n", + "model_c.add(Dense(num_classes, activation='softmax'))\n", + "\n", + "model_c.compile(loss='categorical_crossentropy',\n", + " # The model_c is optimized with the Adadelta optimizer\n", + " optimizer='Adadelta',\n", + " # Adding accuracy metrics \n", + " metrics=['accuracy'])\n", + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=5,\n", + " verbose=1\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath='model_c.h5',\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " verbose=1\n", + " ),\n", + " keras.callbacks.ReduceLROnPlateau(\n", + " # Monitors the model’s validation loss\n", + " monitor='val_loss',\n", + " # Divides the learning rate by 10 when triggered\n", + " factor=0.1,\n", + " # The callback is triggered after the validation loss \n", + " # has stopped improving for 1 epochs.\n", + " patience=3,\n", + " verbose=1\n", + " ) \n", + "]\n", + "\n", + "model_c.fit(x_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1,\n", + " callbacks=callbacks_list,\n", + " validation_data=(x_test, y_test))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "x_train shape: (50000, 32, 32, 3)\n", + "50000 train samples\n", + "10000 test samples\n", + "Train on 50000 samples, validate on 10000 samples\n", + "Epoch 1/50\n", + "50000/50000 [==============================] - 15s 295us/step - loss: 1.5036 - acc: 0.4956 - val_loss: 1.2605 - val_acc: 0.5521\n", + "\n", + "Epoch 00001: val_loss improved from inf to 1.26049, saving model to model_c.h5\n", + "Epoch 2/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.9988 - acc: 0.6508 - val_loss: 0.9233 - val_acc: 0.6757\n", + "\n", + "Epoch 00002: val_loss improved from 1.26049 to 0.92332, saving model to model_c.h5\n", + "Epoch 3/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.8544 - acc: 0.7023 - val_loss: 0.8934 - val_acc: 0.6903\n", + "\n", + "Epoch 00003: val_loss improved from 0.92332 to 0.89340, saving model to model_c.h5\n", + "Epoch 4/50\n", + "50000/50000 [==============================] - 13s 264us/step - loss: 0.7499 - acc: 0.7388 - val_loss: 0.8779 - val_acc: 0.6930\n", + "\n", + "Epoch 00004: val_loss improved from 0.89340 to 0.87791, saving model to model_c.h5\n", + "Epoch 5/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.6713 - acc: 0.7662 - val_loss: 0.9324 - val_acc: 0.6831\n", + "\n", + "Epoch 00005: val_loss did not improve from 0.87791\n", + "Epoch 6/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.6059 - acc: 0.7895 - val_loss: 0.9847 - val_acc: 0.6717\n", + "\n", + "Epoch 00006: val_loss did not improve from 0.87791\n", + "Epoch 7/50\n", + "50000/50000 [==============================] - 13s 264us/step - loss: 0.5506 - acc: 0.8080 - val_loss: 0.8596 - val_acc: 0.7103\n", + "\n", + "Epoch 00007: val_loss improved from 0.87791 to 0.85965, saving model to model_c.h5\n", + "Epoch 8/50\n", + "50000/50000 [==============================] - 13s 264us/step - loss: 0.5042 - acc: 0.8237 - val_loss: 0.8399 - val_acc: 0.7241\n", + "\n", + "Epoch 00008: val_loss improved from 0.85965 to 0.83995, saving model to model_c.h5\n", + "Epoch 9/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.4623 - acc: 0.8376 - val_loss: 0.8491 - val_acc: 0.7138\n", + "\n", + "Epoch 00009: val_loss did not improve from 0.83995\n", + "Epoch 10/50\n", + "50000/50000 [==============================] - 13s 262us/step - loss: 0.4242 - acc: 0.8513 - val_loss: 0.8808 - val_acc: 0.7195\n", + "\n", + "Epoch 00010: val_loss did not improve from 0.83995\n", + "Epoch 11/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.3976 - acc: 0.8596 - val_loss: 1.0904 - val_acc: 0.6955\n", + "\n", + "Epoch 00011: val_loss did not improve from 0.83995\n", + "\n", + "Epoch 00011: ReduceLROnPlateau reducing learning rate to 0.1.\n", + "Epoch 12/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.3076 - acc: 0.8930 - val_loss: 0.8179 - val_acc: 0.7450\n", + "\n", + "Epoch 00012: val_loss improved from 0.83995 to 0.81793, saving model to model_c.h5\n", + "Epoch 13/50\n", + "50000/50000 [==============================] - 13s 264us/step - loss: 0.2845 - acc: 0.9035 - val_loss: 0.8147 - val_acc: 0.7480\n", + "\n", + "Epoch 00013: val_loss improved from 0.81793 to 0.81472, saving model to model_c.h5\n", + "Epoch 14/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.2758 - acc: 0.9054 - val_loss: 0.7933 - val_acc: 0.7489\n", + "\n", + "Epoch 00014: val_loss improved from 0.81472 to 0.79331, saving model to model_c.h5\n", + "Epoch 15/50\n", + "50000/50000 [==============================] - 13s 264us/step - loss: 0.2688 - acc: 0.9072 - val_loss: 0.7994 - val_acc: 0.7509\n", + "\n", + "Epoch 00015: val_loss did not improve from 0.79331\n", + "Epoch 16/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.2580 - acc: 0.9125 - val_loss: 0.8217 - val_acc: 0.7497\n", + "\n", + "Epoch 00016: val_loss did not improve from 0.79331\n", + "Epoch 17/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.2510 - acc: 0.9136 - val_loss: 0.8004 - val_acc: 0.7472\n", + "\n", + "Epoch 00017: val_loss did not improve from 0.79331\n", + "\n", + "Epoch 00017: ReduceLROnPlateau reducing learning rate to 0.010000000149011612.\n", + "Epoch 18/50\n", + "50000/50000 [==============================] - 13s 262us/step - loss: 0.2395 - acc: 0.9195 - val_loss: 0.8134 - val_acc: 0.7489\n", + "\n", + "Epoch 00018: val_loss did not improve from 0.79331\n", + "Epoch 19/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.2400 - acc: 0.9189 - val_loss: 0.8123 - val_acc: 0.7489\n", + "\n", + "Epoch 00019: val_loss did not improve from 0.79331\n", + "Epoch 20/50\n", + "50000/50000 [==============================] - 13s 263us/step - loss: 0.2418 - acc: 0.9163 - val_loss: 0.8130 - val_acc: 0.7484\n", + "\n", + "Epoch 00020: val_loss did not improve from 0.79331\n", + "\n", + "Epoch 00020: ReduceLROnPlateau reducing learning rate to 0.0009999999776482583.\n", + "Epoch 00020: early stopping\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "id": "AZRQJ7RVExAC", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model_c.load_weights('model_c.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "etC2i0qm-j7z", + "colab_type": "code", + "outputId": "55375c10-2def-4bcf-c94d-b053515a6c58", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 58 + } + }, + "cell_type": "code", + "source": [ + "score = model_c.evaluate(x_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "print('Test accuracy:', score[1])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Test loss: 0.7933071930885315\n", + "Test accuracy: 0.7489\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ayepsEfOdFk_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model_c, to_file='model_c.png')\n", + "from google.colab import files\n", + "files.download('model_c.png')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "scrolled": true, + "id": "idFiEnrV-j79", + "colab_type": "code", + "outputId": "2b270e3d-9a42-462f-c6ff-e824d1f81f3b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3019 + } + }, + "cell_type": "code", + "source": [ + "'''Trains a simple deep NN (MLP: Multi-Layer Perceptron) \n", + " on the CIFAR10 dataset.\n", + "'''\n", + "from __future__ import print_function\n", + "\n", + "import keras\n", + "from keras.datasets import mnist\n", + "from keras.models import Sequential\n", + "from keras import layers\n", + "from keras.layers import Dense, Dropout\n", + "from keras.optimizers import RMSprop\n", + "\n", + "batch_size = 128\n", + "num_classes = 10\n", + "epochs = 50\n", + "# epochs = 12\n", + "\n", + "# the data, split between train and test sets\n", + "# (x_train, y_train), (x_test, y_test) = mnist.load_data()\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "print(x_train.shape)\n", + "print(x_test.shape)\n", + "\n", + "# x_train = x_train.reshape(60000, 784)\n", + "x_train = x_train.reshape(50000, 3072)\n", + "# x_test = x_test.reshape(10000, 784)\n", + "x_test = x_test.reshape(10000, 3072)\n", + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "x_train /= 255\n", + "x_test /= 255\n", + "print(x_train.shape[0], 'train samples')\n", + "print(x_test.shape[0], 'test samples')\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "\n", + "model_d = Sequential()\n", + "# model_d.add(Dense(512, activation='relu', input_shape=(784,)))\n", + "model_d.add(Dense(512, activation='relu', input_shape=(3072,)))\n", + "model_d.add(layers.BatchNormalization())\n", + "model_d.add(Dropout(0.2))\n", + "model_d.add(Dense(512, activation='relu'))\n", + "model_d.add(layers.BatchNormalization())\n", + "model_d.add(Dropout(0.2))\n", + "model_d.add(Dense(num_classes, activation='softmax'))\n", + "\n", + "model_d.summary()\n", + "\n", + "model_d.compile(loss='categorical_crossentropy',\n", + " optimizer=RMSprop(),\n", + " metrics=['accuracy'])\n", + "callbacks_list = [\n", + " # Interrupts training when improvement stops\n", + " keras.callbacks.EarlyStopping(\n", + " # Monitors the model’s validation accuracy\n", + " monitor='val_acc',\n", + " # Interrupts training when accuracy has stopped \n", + " # improving for more than one epoch (that is, two epochs)\n", + " patience=5,\n", + " verbose=1\n", + " ),\n", + " # Saves the current weights after every epoch\n", + " keras.callbacks.ModelCheckpoint(\n", + " # Path to the destination model file\n", + " filepath='model_d.h5',\n", + " # These two arguments mean you won’t overwrite the model file \n", + " # unless val_loss has improved, \n", + " monitor='val_loss',\n", + " # which allows you to keep the best model seen during training\n", + " save_best_only=True,\n", + " verbose=1\n", + " ),\n", + " keras.callbacks.ReduceLROnPlateau(\n", + " # Monitors the model’s validation loss\n", + " monitor='val_loss',\n", + " # Divides the learning rate by 10 when triggered\n", + " factor=0.1,\n", + " # The callback is triggered after the validation loss \n", + " # has stopped improving for 1 epochs.\n", + " patience=3,\n", + " verbose=1\n", + " ) \n", + "]\n", + "\n", + "history = model_d.fit(x_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1,\n", + " callbacks=callbacks_list,\n", + " validation_data=(x_test, y_test))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3)\n", + "(10000, 32, 32, 3)\n", + "50000 train samples\n", + "10000 test samples\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_11 (Dense) (None, 512) 1573376 \n", + "_________________________________________________________________\n", + "batch_normalization_20 (Batc (None, 512) 2048 \n", + "_________________________________________________________________\n", + "dropout_12 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dense_12 (Dense) (None, 512) 262656 \n", + "_________________________________________________________________\n", + "batch_normalization_21 (Batc (None, 512) 2048 \n", + "_________________________________________________________________\n", + "dropout_13 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dense_13 (Dense) (None, 10) 5130 \n", + "=================================================================\n", + "Total params: 1,845,258\n", + "Trainable params: 1,843,210\n", + "Non-trainable params: 2,048\n", + "_________________________________________________________________\n", + "Train on 50000 samples, validate on 10000 samples\n", + "Epoch 1/50\n", + "50000/50000 [==============================] - 6s 130us/step - loss: 1.9234 - acc: 0.3471 - val_loss: 2.1850 - val_acc: 0.3013\n", + "\n", + "Epoch 00001: val_loss improved from inf to 2.18501, saving model to model_d.h5\n", + "Epoch 2/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.6605 - acc: 0.4179 - val_loss: 1.8731 - val_acc: 0.3393\n", + "\n", + "Epoch 00002: val_loss improved from 2.18501 to 1.87314, saving model to model_d.h5\n", + "Epoch 3/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.5743 - acc: 0.4418 - val_loss: 1.6982 - val_acc: 0.3987\n", + "\n", + "Epoch 00003: val_loss improved from 1.87314 to 1.69823, saving model to model_d.h5\n", + "Epoch 4/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.5293 - acc: 0.4577 - val_loss: 1.7252 - val_acc: 0.3858\n", + "\n", + "Epoch 00004: val_loss did not improve from 1.69823\n", + "Epoch 5/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.4976 - acc: 0.4704 - val_loss: 2.3747 - val_acc: 0.2739\n", + "\n", + "Epoch 00005: val_loss did not improve from 1.69823\n", + "Epoch 6/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.4766 - acc: 0.4747 - val_loss: 1.6059 - val_acc: 0.4403\n", + "\n", + "Epoch 00006: val_loss improved from 1.69823 to 1.60592, saving model to model_d.h5\n", + "Epoch 7/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.4493 - acc: 0.4875 - val_loss: 1.5147 - val_acc: 0.4629\n", + "\n", + "Epoch 00007: val_loss improved from 1.60592 to 1.51466, saving model to model_d.h5\n", + "Epoch 8/50\n", + "50000/50000 [==============================] - 5s 105us/step - loss: 1.4325 - acc: 0.4906 - val_loss: 1.5417 - val_acc: 0.4454\n", + "\n", + "Epoch 00008: val_loss did not improve from 1.51466\n", + "Epoch 9/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.4175 - acc: 0.4955 - val_loss: 1.5175 - val_acc: 0.4683\n", + "\n", + "Epoch 00009: val_loss did not improve from 1.51466\n", + "Epoch 10/50\n", + "50000/50000 [==============================] - 5s 106us/step - loss: 1.4088 - acc: 0.4995 - val_loss: 1.5493 - val_acc: 0.4505\n", + "\n", + "Epoch 00010: val_loss did not improve from 1.51466\n", + "\n", + "Epoch 00010: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513.\n", + "Epoch 11/50\n", + "50000/50000 [==============================] - 5s 106us/step - loss: 1.3382 - acc: 0.5262 - val_loss: 1.3138 - val_acc: 0.5369\n", + "\n", + "Epoch 00011: val_loss improved from 1.51466 to 1.31377, saving model to model_d.h5\n", + "Epoch 12/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.3193 - acc: 0.5320 - val_loss: 1.3080 - val_acc: 0.5397\n", + "\n", + "Epoch 00012: val_loss improved from 1.31377 to 1.30805, saving model to model_d.h5\n", + "Epoch 13/50\n", + "50000/50000 [==============================] - 5s 103us/step - loss: 1.3091 - acc: 0.5379 - val_loss: 1.3018 - val_acc: 0.5442\n", + "\n", + "Epoch 00013: val_loss improved from 1.30805 to 1.30182, saving model to model_d.h5\n", + "Epoch 14/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.3029 - acc: 0.5384 - val_loss: 1.3077 - val_acc: 0.5376\n", + "\n", + "Epoch 00014: val_loss did not improve from 1.30182\n", + "Epoch 15/50\n", + "50000/50000 [==============================] - 5s 103us/step - loss: 1.3002 - acc: 0.5396 - val_loss: 1.3024 - val_acc: 0.5435\n", + "\n", + "Epoch 00015: val_loss did not improve from 1.30182\n", + "Epoch 16/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.2930 - acc: 0.5409 - val_loss: 1.2989 - val_acc: 0.5394\n", + "\n", + "Epoch 00016: val_loss improved from 1.30182 to 1.29890, saving model to model_d.h5\n", + "Epoch 17/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.2851 - acc: 0.5428 - val_loss: 1.3028 - val_acc: 0.5388\n", + "\n", + "Epoch 00017: val_loss did not improve from 1.29890\n", + "Epoch 18/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.2870 - acc: 0.5452 - val_loss: 1.2897 - val_acc: 0.5451\n", + "\n", + "Epoch 00018: val_loss improved from 1.29890 to 1.28973, saving model to model_d.h5\n", + "Epoch 19/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.2807 - acc: 0.5451 - val_loss: 1.2937 - val_acc: 0.5445\n", + "\n", + "Epoch 00019: val_loss did not improve from 1.28973\n", + "Epoch 20/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.2795 - acc: 0.5456 - val_loss: 1.2891 - val_acc: 0.5424\n", + "\n", + "Epoch 00020: val_loss improved from 1.28973 to 1.28909, saving model to model_d.h5\n", + "Epoch 21/50\n", + "50000/50000 [==============================] - 5s 103us/step - loss: 1.2757 - acc: 0.5471 - val_loss: 1.2863 - val_acc: 0.5471\n", + "\n", + "Epoch 00021: val_loss improved from 1.28909 to 1.28630, saving model to model_d.h5\n", + "Epoch 22/50\n", + "50000/50000 [==============================] - 5s 105us/step - loss: 1.2672 - acc: 0.5533 - val_loss: 1.2858 - val_acc: 0.5479\n", + "\n", + "Epoch 00022: val_loss improved from 1.28630 to 1.28582, saving model to model_d.h5\n", + "Epoch 23/50\n", + "50000/50000 [==============================] - 5s 103us/step - loss: 1.2708 - acc: 0.5469 - val_loss: 1.2854 - val_acc: 0.5481\n", + "\n", + "Epoch 00023: val_loss improved from 1.28582 to 1.28542, saving model to model_d.h5\n", + "Epoch 24/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.2676 - acc: 0.5519 - val_loss: 1.2858 - val_acc: 0.5434\n", + "\n", + "Epoch 00024: val_loss did not improve from 1.28542\n", + "Epoch 25/50\n", + "50000/50000 [==============================] - 5s 103us/step - loss: 1.2610 - acc: 0.5530 - val_loss: 1.2882 - val_acc: 0.5433\n", + "\n", + "Epoch 00025: val_loss did not improve from 1.28542\n", + "Epoch 26/50\n", + "50000/50000 [==============================] - 5s 103us/step - loss: 1.2613 - acc: 0.5542 - val_loss: 1.2897 - val_acc: 0.5443\n", + "\n", + "Epoch 00026: val_loss did not improve from 1.28542\n", + "\n", + "Epoch 00026: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05.\n", + "Epoch 27/50\n", + "50000/50000 [==============================] - 5s 103us/step - loss: 1.2499 - acc: 0.5591 - val_loss: 1.2777 - val_acc: 0.5463\n", + "\n", + "Epoch 00027: val_loss improved from 1.28542 to 1.27766, saving model to model_d.h5\n", + "Epoch 28/50\n", + "50000/50000 [==============================] - 5s 104us/step - loss: 1.2469 - acc: 0.5591 - val_loss: 1.2756 - val_acc: 0.5476\n", + "\n", + "Epoch 00028: val_loss improved from 1.27766 to 1.27556, saving model to model_d.h5\n", + "Epoch 00028: early stopping\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "6v5EgVK_G5cP", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model_d.load_weights('model_d.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0PU0Xcgy-j8E", + "colab_type": "code", + "outputId": "9ad4b6b2-ce90-4519-f69f-2d8978370a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 58 + } + }, + "cell_type": "code", + "source": [ + "score = model_d.evaluate(x_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "print('Test accuracy:', score[1])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Test loss: 1.2755645107269287\n", + "Test accuracy: 0.5476\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-b9Azd6cdWsG", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#下載模型的視覺化圖檔\n", + "from keras.utils import plot_model\n", + "plot_model(model_d, to_file='model_d.png')\n", + "from google.colab import files\n", + "files.download('model_d.png')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "qhDKhQIC-j8W", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.3.2. Hyperparameter optimization \n", + "\n", + "When building a deep-learning model, you have to make many seemingly arbitrary decisions: How many layers should you stack? How many units or filters should go in each layer? Should you use `relu` as activation, or a different function? Should you use `BatchNormalization` after a given layer? How much dropout should you use? And so on. These architecture-level parameters are called hyperparameters to distinguish them from the parameters of a model, which are trained via backpropagation. \n", + "\n", + "In practice, experienced machine-learning engineers and researchers build intuition over time as to what works and what doesn’t when it comes to these choices—they develop hyperparameter-tuning skills. But there are no formal rules. If you want to get to the very limit of what can be achieved on a given task, you can’t be content with arbitrary choices made by a fallible human. Your initial decisions are almost always suboptimal, even if you have good intuition. You can refine your choices by tweaking them by hand and retraining the model repeatedly—that’s what machine-learning engineers and researchers spend most of their time doing. But it shouldn’t be your job as a human to fiddle with hyperparameters all day—that is better left to a machine. \n", + "\n", + "Thus you need to explore the space of possible decisions automatically, systematically, in a principled way. You need to search the architecture space and find the best-performing ones empirically. That’s what the field of automatic hyperparameter optimization is about: it’s an entire field of research, and an important one.\n", + "\n", + "The process of optimizing hyperparameters typically looks like this: \n", + "\n", + "* Choose a set of hyperparameters (automatically).\n", + "* Build the corresponding model.\n", + "* Fit it to your training data, and measure the final performance on the validation data. \n", + "* Choose the next set of hyperparameters to try (automatically). \n", + "* Repeat. \n", + "* Eventually, measure performance on your test data. \n", + "\n", + "The key to this process is the algorithm that uses this history of validation performance, given various sets of hyperparameters, to choose the next set of hyperparameters to evaluate. Many different techniques are possible: Bayesian optimization (https://en.wikipedia.org/wiki/Bayesian_optimization), genetic algorithms (https://en.wikipedia.org/wiki/Genetic_algorithm), simple random search (https://en.wikipedia.org/wiki/Random_search), and so on.\n", + "\n", + "The key to this process is the algorithm that uses this history of validation performance, given various sets of hyperparameters, to choose the next set of hyperparameters to evaluate. Many different techniques are possible: Bayesian optimization, genetic algorithms, simple random search, and so on. \n", + "\n", + "Training the weights of a model is relatively easy: you compute a loss function on a mini-batch of data and then use the Backpropagation algorithm to move the weights in the right direction. Updating hyperparameters, on the other hand, is extremely challenging. Consider the following: \n", + "\n", + "* Computing the feedback signal (does this set of hyperparameters lead to a high-performing model on this task?) can be extremely expensive: it requires creating and training a new model from scratch on your dataset. \n", + "* The hyperparameter space is typically made of discrete decisions and thus isn’t continuous or differentiable. Hence, you typically can’t do gradient descent in hyperparameter space. Instead, you must rely on gradient-free optimization techniques, which naturally are far less efficient than gradient descent.\n", + "\n", + "Because these challenges are difficult and the field is still young, we currently only have access to very limited tools to optimize models. Often, it turns out that random search (choosing hyperparameters to evaluate at random, repeatedly) is the best solution, despite being the most naive one. But one tool I have found reliably better than random search is Hyperopt (https://github.com/hyperopt/hyperopt), a Python library for hyperparameter optimization that internally uses trees of Parzen estimators to predict sets of hyperparameters that are likely to work well. Another library called Hyperas (https://github.com/maxpumperla/hyperas) integrates Hyperopt for use with Keras models. Do check it out.\n", + "\n", + "** Note ** \n", + "> One important issue to keep in mind when doing automatic hyperparameter optimization at scale is validation-set overfitting. Because you’re updating hyperparameters based on a signal that is computed using your validation data, you’re effectively training them on the validation data, and thus they will quickly overfit to the validation data. Always keep this in mind.\n", + "\n", + "Overall, hyperparameter optimization is a powerful technique that is an absolute requirement to get to state-of-the-art models on any task or to win machine-learning competitions. Think about it: once upon a time, people handcrafted the features that went into shallow machine-learning models. That was very much suboptimal. Now, deep learning automates the task of hierarchical feature engineering—features are learned using a feedback signal, not hand-tuned, and that’s the way it should be. In the same way, you shouldn’t handcraft your model architectures; you should optimize them in a principled way. At the time of writing, the field of automatic hyperparameter optimization is very young and immature, as deep learning was some years ago, but I expect it to boom in the next few years." + ] + }, + { + "metadata": { + "id": "EJzVm2NB-j8e", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### 7.3.3. Model ensembling \n", + "Another powerful technique for obtaining the best possible results on a task is model ensembling. Ensembling consists of pooling together the predictions of a set of different models, to produce better predictions. If you look at machine-learning competitions, in particular on Kaggle, you’ll see that the winners use very large ensembles of models that inevitably beat any single model, no matter how good. \n", + "\n", + "Ensembling relies on the assumption that different good models trained independently are likely to be good for different reasons: each model looks at slightly different aspects of the data to make its predictions, getting part of the “truth” but not all of it. You may be familiar with the ancient parable of the blind men and the elephant: a group of blind men come across an elephant for the first time and try to understand what the elephant is by touching it. Each man touches a different part of the elephant’s body—just one part, such as the trunk or a leg. Then the men describe to each other what an elephant is: “It’s like a snake,” “Like a pillar or a tree,” and so on. The blind men are essentially machine-learning models trying to understand the manifold of the training data, each from its own perspective, using its own assumptions (provided by the unique architecture of the model and the unique random weight initialization). Each of them gets part of the truth of the data, but not the whole truth. By pooling their perspectives together, you can get a far more accurate description of the data. The elephant is a combination of parts: not any single blind man gets it quite right, but, interviewed together, they can tell a fairly accurate story. \n", + "\n", + "Let’s use classification as an example. The easiest way to pool the predictions of a set of classifiers (to ensemble the classifiers) is to average their predictions at inference time:" + ] + }, + { + "metadata": { + "id": "bn7cNVrL-j8g", + "colab_type": "code", + "outputId": "de9b65cf-7160-4ddb-dd9c-092577c3d95f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "x_test.shape" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(10000, 3072)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 33 + } + ] + }, + { + "metadata": { + "id": "IkVekl8E-j8r", + "colab_type": "code", + "outputId": "e0b2f933-423b-42d4-dd1f-c108b07ed64a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "x_val = x_test.reshape(10000, 32, 32, 3)\n", + "# Use four different models to compute initial predictions.\n", + "preds_a = model_a.predict(x_val)\n", + "preds_b = model_b.predict(x_val)\n", + "preds_c = model_c.predict(x_val)\n", + "preds_d = model_d.predict(x_test)\n", + "\n", + "# This new prediction array should be more accurate than any of the initial ones.\n", + "final_preds = 0.25 * (preds_a + preds_b + preds_c + preds_d)\n", + "\n", + "import numpy as np\n", + "final_preds_one_hot = np.zeros_like(final_preds)\n", + "final_preds_one_hot[np.arange(len(final_preds)), final_preds.argmax(1)] = 1\n", + "\n", + "from sklearn.metrics import accuracy_score\n", + "accuracy_score(y_test, final_preds_one_hot)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.7977" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 34 + } + ] + }, + { + "metadata": { + "id": "bF1cRgOu-j87", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This will work only if the classifiers are more or less equally good. If one of them is significantly worse than the others, the final predictions may not be as good as the best classifier of the group. A smarter way to ensemble classifiers is to do a weighted average, where the weights are learned on the validation data—typically, the better classifiers are given a higher weight, and the worse classifiers are given a lower weight. To search for a good set of ensembling weights, you can use random search or a simple optimization algorithm such as Nelder-Mead.\n", + "\n", + "With a homemade one_hot_encoder and accuracy_score from Scikit Learn:" + ] + }, + { + "metadata": { + "id": "ej3jM8hPIMNn", + "colab_type": "code", + "outputId": "219a86a7-82da-4e35-9d06-8be3f8db7a08", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "final_preds = 0.40 * preds_a + 0.35 * preds_b + 0.15 * preds_c + 0.1 * preds_d \n", + "final_preds_one_hot = np.zeros_like(final_preds)\n", + "final_preds_one_hot[np.arange(len(final_preds)), final_preds.argmax(1)] = 1\n", + "\n", + "from sklearn.metrics import accuracy_score\n", + "accuracy_score(y_test, final_preds_one_hot)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.8045" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 40 + } + ] + }, + { + "metadata": { + "id": "r7clzEGl-j9C", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "With a Keras one_hot encoder and accuracy_score from Scikit Learn:" + ] + }, + { + "metadata": { + "id": "-HOUgqei-j9D", + "colab_type": "code", + "outputId": "6ac37831-bd44-4c38-b249-912e1a63d21b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "from keras import backend as K\n", + "final_preds_one_hot = K.one_hot(K.argmax(final_preds,axis=1),10)\n", + "\n", + "from sklearn.metrics import accuracy_score\n", + "accuracy_score(y_test,tf.Session().run(final_preds_one_hot))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.8045" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 41 + } + ] + }, + { + "metadata": { + "id": "Ig1Cda2PKK3Z", + "colab_type": "code", + "outputId": "00a7fa5e-0964-468f-95be-11455c937381", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "final_preds_one_hot" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 42 + } + ] + }, + { + "metadata": { + "id": "AmQtFYFrKU1m", + "colab_type": "code", + "outputId": "e2fc0039-7a34-41cb-da24-bfaedc10973e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "final_preds.argmax(1)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([3, 8, 8, ..., 5, 1, 7])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 44 + } + ] + }, + { + "metadata": { + "id": "YNtm-UciKnCw", + "colab_type": "code", + "outputId": "692dc233-1202-44a8-ed89-d1d888393ee4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 37 + } + }, + "cell_type": "code", + "source": [ + "np.arange(len(final_preds))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 0, 1, 2, ..., 9997, 9998, 9999])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 46 + } + ] + }, + { + "metadata": { + "id": "h2qfk8Yz-j9I", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "There are many possible variants: you can do an average of an exponential of the predictions, for instance. In general, a simple weighted average with weights optimized on the validation data provides a very strong baseline. \n", + "\n", + "The key to making ensembling work is the diversity of the set of classifiers. Diversity is strength. If your models are biased in different ways, the biases will cancel each other out, and the ensemble will be more robust and more accurate. \n", + "\n", + "For this reason, you should ensemble models that are as good as possible while being as different as possible. This typically means using very different architectures or even different brands of machine-learning approaches. One thing that is largely not worth doing is ensembling the same network trained several times independently, from different random initializations. If the only difference between your models is their random initialization and the order in which they were exposed to the training data, then your ensemble will be low-diversity and will provide only a tiny improvement over any single model. The point of ensembling. It’s not so much about how good your best model is; it’s about the diversity of your set of candidate models. \n", + "\n", + "In recent times, one style of basic ensemble that has been very successful in practice is the wide and deep category of models, blending deep learning with shallow learning. Such models consist of jointly training a deep neural network with a large linear model. The joint training of a family of diverse models is yet another option to achieve model ensembling. " + ] + }, + { + "metadata": { + "id": "yoHsAv8J-j9J", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/8.2-deep-dream.ipynb b/8.2-deep-dream.ipynb new file mode 100644 index 0000000..e5a93d4 --- /dev/null +++ b/8.2-deep-dream.ipynb @@ -0,0 +1,584 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "8.2-deep-dream.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "cells": [ + { + "metadata": { + "id": "2vkNyLI6BxUV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "409bcb6b-92ec-48db-b0d2-c68e9038d027" + }, + "cell_type": "code", + "source": [ + "import keras\n", + "keras.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.4'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "qfpLkKKJBxUi", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Deep Dream\n", + "\n", + "This notebook contains the code samples found in Chapter 8, Section 2 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "----\n", + "\n", + "[...]" + ] + }, + { + "metadata": { + "id": "i5LRHmtKBxUj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Implementing Deep Dream in Keras\n", + "\n", + "\n", + "We will start from a convnet pre-trained on ImageNet. In Keras, we have many such convnets available: VGG16, VGG19, Xception, ResNet50... \n", + "albeit the same process is doable with any of these, your convnet of choice will naturally affect your visualizations, since different \n", + "convnet architectures result in different learned features. The convnet used in the original Deep Dream release was an Inception model, and \n", + "in practice Inception is known to produce very nice-looking Deep Dreams, so we will use the InceptionV3 model that comes with Keras.\n" + ] + }, + { + "metadata": { + "id": "7NJbI8iLBxUl", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "88f13824-af3a-4f05-fdfe-57c5a2b4b6fa" + }, + "cell_type": "code", + "source": [ + "from keras.applications import inception_v3\n", + "from keras import backend as K\n", + "\n", + "# We will not be training our model,\n", + "# so we use this command to disable all training-specific operations\n", + "K.set_learning_phase(0)\n", + "\n", + "# Build the InceptionV3 network.\n", + "# The model will be loaded with pre-trained ImageNet weights.\n", + "model = inception_v3.InceptionV3(weights='imagenet',\n", + " include_top=False)" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "87916544/87910968 [==============================] - 12s 0us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "IHF7REnvBxUq", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Next, we compute the \"loss\", the quantity that we will seek to maximize during the gradient ascent process. In Chapter 5, for filter \n", + "visualization, we were trying to maximize the value of a specific filter in a specific layer. Here we will simultaneously maximize the \n", + "activation of all filters in a number of layers. Specifically, we will maximize a weighted sum of the L2 norm of the activations of a \n", + "set of high-level layers. The exact set of layers we pick (as well as their contribution to the final loss) has a large influence on the \n", + "visuals that we will be able to produce, so we want to make these parameters easily configurable. Lower layers result in \n", + "geometric patterns, while higher layers result in visuals in which you can recognize some classes from ImageNet (e.g. birds or dogs).\n", + "We'll start from a somewhat arbitrary configuration involving four layers -- \n", + "but you will definitely want to explore many different configurations later on:" + ] + }, + { + "metadata": { + "id": "plWngl_BBxUt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Dict mapping layer names to a coefficient\n", + "# quantifying how much the layer's activation\n", + "# will contribute to the loss we will seek to maximize.\n", + "# Note that these are layer names as they appear\n", + "# in the built-in InceptionV3 application.\n", + "# You can list all layer names using `model.summary()`.\n", + "layer_contributions = {\n", + " 'mixed2': 0.2,\n", + " 'mixed3': 3.,\n", + " 'mixed4': 2.,\n", + " 'mixed5': 1.5,\n", + "}" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jcQyKvkXBxUz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now let's define a tensor that contains our loss, i.e. the weighted sum of the L2 norm of the activations of the layers listed above." + ] + }, + { + "metadata": { + "id": "u6rjtwSaBxU1", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + }, + "outputId": "8b861bda-b31f-45eb-ffd3-5ab1e5450251" + }, + "cell_type": "code", + "source": [ + "# Get the symbolic outputs of each \"key\" layer (we gave them unique names).\n", + "layer_dict = dict([(layer.name, layer) for layer in model.layers])\n", + "\n", + "# Define the loss.\n", + "loss = K.variable(0.)\n", + "for layer_name in layer_contributions:\n", + " # Add the L2 norm of the features of a layer to the loss.\n", + " coeff = layer_contributions[layer_name]\n", + " activation = layer_dict[layer_name].output\n", + "\n", + " # We avoid border artifacts by only involving non-border pixels in the loss.\n", + " scaling = K.prod(K.cast(K.shape(activation), 'float32'))\n", + " loss += coeff * K.sum(K.square(activation[:, 2: -2, 2: -2, :])) / scaling" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING:tensorflow:Variable += will be deprecated. Use variable.assign_add if you want assignment to the variable value or 'x = x + y' if you want a new python Tensor object.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "pbv4MufiBxU7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now we can set up the gradient ascent process:" + ] + }, + { + "metadata": { + "id": "jvtwDQtvBxU9", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# This holds our generated image\n", + "dream = model.input\n", + "\n", + "# Compute the gradients of the dream with regard to the loss.\n", + "grads = K.gradients(loss, dream)[0]\n", + "\n", + "# Normalize gradients.\n", + "grads /= K.maximum(K.mean(K.abs(grads)), 1e-7)\n", + "\n", + "# Set up function to retrieve the value\n", + "# of the loss and gradients given an input image.\n", + "outputs = [loss, grads]\n", + "fetch_loss_and_grads = K.function([dream], outputs)\n", + "\n", + "def eval_loss_and_grads(x):\n", + " outs = fetch_loss_and_grads([x])\n", + " loss_value = outs[0]\n", + " grad_values = outs[1]\n", + " return loss_value, grad_values\n", + "\n", + "def gradient_ascent(x, iterations, step, max_loss=None):\n", + " for i in range(iterations):\n", + " loss_value, grad_values = eval_loss_and_grads(x)\n", + " if max_loss is not None and loss_value > max_loss:\n", + " break\n", + " print('...Loss value at', i, ':', loss_value)\n", + " x += step * grad_values\n", + " return x" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RkAsZCtOBxVD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Finally, here is the actual Deep Dream algorithm.\n", + "\n", + "First, we define a list of \"scales\" (also called \"octaves\") at which we will process the images. Each successive scale is larger than \n", + "previous one by a factor 1.4 (i.e. 40% larger): we start by processing a small image and we increasingly upscale it:" + ] + }, + { + "metadata": { + "id": "3z-qH4CKBxVE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![deep dream process](https://s3.amazonaws.com/book.keras.io/img/ch8/deepdream_process.png)" + ] + }, + { + "metadata": { + "id": "cSAqq1-RBxVG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Then, for each successive scale, from the smallest to the largest, we run gradient ascent to maximize the loss we have previously defined, \n", + "at that scale. After each gradient ascent run, we upscale the resulting image by 40%.\n", + "\n", + "To avoid losing a lot of image detail after each successive upscaling (resulting in increasingly blurry or pixelated images), we leverage a \n", + "simple trick: after each upscaling, we reinject the lost details back into the image, which is possible since we know what the original \n", + "image should look like at the larger scale. Given a small image S and a larger image size L, we can compute the difference between the \n", + "original image (assumed larger than L) resized to size L and the original resized to size S -- this difference quantifies the details lost \n", + "when going from S to L." + ] + }, + { + "metadata": { + "id": "vaJI0i32BxVI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code above below leverages the following straightforward auxiliary Numpy functions, which all do just as their name suggests. They \n", + "require to have SciPy installed." + ] + }, + { + "metadata": { + "id": "AEy0GBtxBxVK", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import scipy\n", + "from keras.preprocessing import image\n", + "\n", + "def resize_img(img, size):\n", + " img = np.copy(img)\n", + " factors = (1,\n", + " float(size[0]) / img.shape[1],\n", + " float(size[1]) / img.shape[2],\n", + " 1)\n", + " return scipy.ndimage.zoom(img, factors, order=1)\n", + "\n", + "\n", + "def save_img(img, fname):\n", + " pil_img = deprocess_image(np.copy(img))\n", + " scipy.misc.imsave(fname, pil_img)\n", + "\n", + "\n", + "def preprocess_image(image_path):\n", + " # Util function to open, resize and format pictures\n", + " # into appropriate tensors.\n", + " img = image.load_img(image_path)\n", + " img = image.img_to_array(img)\n", + " img = np.expand_dims(img, axis=0)\n", + " img = inception_v3.preprocess_input(img)\n", + " return img\n", + "\n", + "\n", + "def deprocess_image(x):\n", + " # Util function to convert a tensor into a valid image.\n", + " if K.image_data_format() == 'channels_first':\n", + " x = x.reshape((3, x.shape[2], x.shape[3]))\n", + " x = x.transpose((1, 2, 0))\n", + " else:\n", + " x = x.reshape((x.shape[1], x.shape[2], 3))\n", + " x /= 2.\n", + " x += 0.5\n", + " x *= 255.\n", + " x = np.clip(x, 0, 255).astype('uint8')\n", + " return x" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZFnIer4YBxVP", + "colab_type": "code", + "colab": { + "resources": { + "http://localhost:8080/nbextensions/google.colab/files.js": { + "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7Ci8vIE1heCBhbW91bnQgb2YgdGltZSB0byBibG9jayB3YWl0aW5nIGZvciB0aGUgdXNlci4KY29uc3QgRklMRV9DSEFOR0VfVElNRU9VVF9NUyA9IDMwICogMTAwMDsKCmZ1bmN0aW9uIF91cGxvYWRGaWxlcyhpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IHN0ZXBzID0gdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKTsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIC8vIENhY2hlIHN0ZXBzIG9uIHRoZSBvdXRwdXRFbGVtZW50IHRvIG1ha2UgaXQgYXZhaWxhYmxlIGZvciB0aGUgbmV4dCBjYWxsCiAgLy8gdG8gdXBsb2FkRmlsZXNDb250aW51ZSBmcm9tIFB5dGhvbi4KICBvdXRwdXRFbGVtZW50LnN0ZXBzID0gc3RlcHM7CgogIHJldHVybiBfdXBsb2FkRmlsZXNDb250aW51ZShvdXRwdXRJZCk7Cn0KCi8vIFRoaXMgaXMgcm91Z2hseSBhbiBhc3luYyBnZW5lcmF0b3IgKG5vdCBzdXBwb3J0ZWQgaW4gdGhlIGJyb3dzZXIgeWV0KSwKLy8gd2hlcmUgdGhlcmUgYXJlIG11bHRpcGxlIGFzeW5jaHJvbm91cyBzdGVwcyBhbmQgdGhlIFB5dGhvbiBzaWRlIGlzIGdvaW5nCi8vIHRvIHBvbGwgZm9yIGNvbXBsZXRpb24gb2YgZWFjaCBzdGVwLgovLyBUaGlzIHVzZXMgYSBQcm9taXNlIHRvIGJsb2NrIHRoZSBweXRob24gc2lkZSBvbiBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcCwKLy8gdGhlbiBwYXNzZXMgdGhlIHJlc3VsdCBvZiB0aGUgcHJldmlvdXMgc3RlcCBhcyB0aGUgaW5wdXQgdG8gdGhlIG5leHQgc3RlcC4KZnVuY3Rpb24gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpIHsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIGNvbnN0IHN0ZXBzID0gb3V0cHV0RWxlbWVudC5zdGVwczsKCiAgY29uc3QgbmV4dCA9IHN0ZXBzLm5leHQob3V0cHV0RWxlbWVudC5sYXN0UHJvbWlzZVZhbHVlKTsKICByZXR1cm4gUHJvbWlzZS5yZXNvbHZlKG5leHQudmFsdWUucHJvbWlzZSkudGhlbigodmFsdWUpID0+IHsKICAgIC8vIENhY2hlIHRoZSBsYXN0IHByb21pc2UgdmFsdWUgdG8gbWFrZSBpdCBhdmFpbGFibGUgdG8gdGhlIG5leHQKICAgIC8vIHN0ZXAgb2YgdGhlIGdlbmVyYXRvci4KICAgIG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSA9IHZhbHVlOwogICAgcmV0dXJuIG5leHQudmFsdWUucmVzcG9uc2U7CiAgfSk7Cn0KCi8qKgogKiBHZW5lcmF0b3IgZnVuY3Rpb24gd2hpY2ggaXMgY2FsbGVkIGJldHdlZW4gZWFjaCBhc3luYyBzdGVwIG9mIHRoZSB1cGxvYWQKICogcHJvY2Vzcy4KICogQHBhcmFtIHtzdHJpbmd9IGlucHV0SWQgRWxlbWVudCBJRCBvZiB0aGUgaW5wdXQgZmlsZSBwaWNrZXIgZWxlbWVudC4KICogQHBhcmFtIHtzdHJpbmd9IG91dHB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIG91dHB1dCBkaXNwbGF5LgogKiBAcmV0dXJuIHshSXRlcmFibGU8IU9iamVjdD59IEl0ZXJhYmxlIG9mIG5leHQgc3RlcHMuCiAqLwpmdW5jdGlvbiogdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKSB7CiAgY29uc3QgaW5wdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaW5wdXRJZCk7CiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gZmFsc2U7CgogIGNvbnN0IG91dHB1dEVsZW1lbnQgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZChvdXRwdXRJZCk7CiAgb3V0cHV0RWxlbWVudC5pbm5lckhUTUwgPSAnJzsKCiAgY29uc3QgcGlja2VkUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBpbnB1dEVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcignY2hhbmdlJywgKGUpID0+IHsKICAgICAgcmVzb2x2ZShlLnRhcmdldC5maWxlcyk7CiAgICB9KTsKICB9KTsKCiAgY29uc3QgY2FuY2VsID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnYnV0dG9uJyk7CiAgaW5wdXRFbGVtZW50LnBhcmVudEVsZW1lbnQuYXBwZW5kQ2hpbGQoY2FuY2VsKTsKICBjYW5jZWwudGV4dENvbnRlbnQgPSAnQ2FuY2VsIHVwbG9hZCc7CiAgY29uc3QgY2FuY2VsUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBjYW5jZWwub25jbGljayA9ICgpID0+IHsKICAgICAgcmVzb2x2ZShudWxsKTsKICAgIH07CiAgfSk7CgogIC8vIENhbmNlbCB1cGxvYWQgaWYgdXNlciBoYXNuJ3QgcGlja2VkIGFueXRoaW5nIGluIHRpbWVvdXQuCiAgY29uc3QgdGltZW91dFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgc2V0VGltZW91dCgoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9LCBGSUxFX0NIQU5HRV9USU1FT1VUX01TKTsKICB9KTsKCiAgLy8gV2FpdCBmb3IgdGhlIHVzZXIgdG8gcGljayB0aGUgZmlsZXMuCiAgY29uc3QgZmlsZXMgPSB5aWVsZCB7CiAgICBwcm9taXNlOiBQcm9taXNlLnJhY2UoW3BpY2tlZFByb21pc2UsIHRpbWVvdXRQcm9taXNlLCBjYW5jZWxQcm9taXNlXSksCiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdzdGFydGluZycsCiAgICB9CiAgfTsKCiAgaWYgKCFmaWxlcykgewogICAgcmV0dXJuIHsKICAgICAgcmVzcG9uc2U6IHsKICAgICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICAgIH0KICAgIH07CiAgfQoKICBjYW5jZWwucmVtb3ZlKCk7CgogIC8vIERpc2FibGUgdGhlIGlucHV0IGVsZW1lbnQgc2luY2UgZnVydGhlciBwaWNrcyBhcmUgbm90IGFsbG93ZWQuCiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gdHJ1ZTsKCiAgZm9yIChjb25zdCBmaWxlIG9mIGZpbGVzKSB7CiAgICBjb25zdCBsaSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpJyk7CiAgICBsaS5hcHBlbmQoc3BhbihmaWxlLm5hbWUsIHtmb250V2VpZ2h0OiAnYm9sZCd9KSk7CiAgICBsaS5hcHBlbmQoc3BhbigKICAgICAgICBgKCR7ZmlsZS50eXBlIHx8ICduL2EnfSkgLSAke2ZpbGUuc2l6ZX0gYnl0ZXMsIGAgKwogICAgICAgIGBsYXN0IG1vZGlmaWVkOiAkewogICAgICAgICAgICBmaWxlLmxhc3RNb2RpZmllZERhdGUgPyBmaWxlLmxhc3RNb2RpZmllZERhdGUudG9Mb2NhbGVEYXRlU3RyaW5nKCkgOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnbi9hJ30gLSBgKSk7CiAgICBjb25zdCBwZXJjZW50ID0gc3BhbignMCUgZG9uZScpOwogICAgbGkuYXBwZW5kQ2hpbGQocGVyY2VudCk7CgogICAgb3V0cHV0RWxlbWVudC5hcHBlbmRDaGlsZChsaSk7CgogICAgY29uc3QgZmlsZURhdGFQcm9taXNlID0gbmV3IFByb21pc2UoKHJlc29sdmUpID0+IHsKICAgICAgY29uc3QgcmVhZGVyID0gbmV3IEZpbGVSZWFkZXIoKTsKICAgICAgcmVhZGVyLm9ubG9hZCA9IChlKSA9PiB7CiAgICAgICAgcmVzb2x2ZShlLnRhcmdldC5yZXN1bHQpOwogICAgICB9OwogICAgICByZWFkZXIucmVhZEFzQXJyYXlCdWZmZXIoZmlsZSk7CiAgICB9KTsKICAgIC8vIFdhaXQgZm9yIHRoZSBkYXRhIHRvIGJlIHJlYWR5LgogICAgbGV0IGZpbGVEYXRhID0geWllbGQgewogICAgICBwcm9taXNlOiBmaWxlRGF0YVByb21pc2UsCiAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgYWN0aW9uOiAnY29udGludWUnLAogICAgICB9CiAgICB9OwoKICAgIC8vIFVzZSBhIGNodW5rZWQgc2VuZGluZyB0byBhdm9pZCBtZXNzYWdlIHNpemUgbGltaXRzLiBTZWUgYi82MjExNTY2MC4KICAgIGxldCBwb3NpdGlvbiA9IDA7CiAgICB3aGlsZSAocG9zaXRpb24gPCBmaWxlRGF0YS5ieXRlTGVuZ3RoKSB7CiAgICAgIGNvbnN0IGxlbmd0aCA9IE1hdGgubWluKGZpbGVEYXRhLmJ5dGVMZW5ndGggLSBwb3NpdGlvbiwgTUFYX1BBWUxPQURfU0laRSk7CiAgICAgIGNvbnN0IGNodW5rID0gbmV3IFVpbnQ4QXJyYXkoZmlsZURhdGEsIHBvc2l0aW9uLCBsZW5ndGgpOwogICAgICBwb3NpdGlvbiArPSBsZW5ndGg7CgogICAgICBjb25zdCBiYXNlNjQgPSBidG9hKFN0cmluZy5mcm9tQ2hhckNvZGUuYXBwbHkobnVsbCwgY2h1bmspKTsKICAgICAgeWllbGQgewogICAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgICBhY3Rpb246ICdhcHBlbmQnLAogICAgICAgICAgZmlsZTogZmlsZS5uYW1lLAogICAgICAgICAgZGF0YTogYmFzZTY0LAogICAgICAgIH0sCiAgICAgIH07CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPQogICAgICAgICAgYCR7TWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCl9JSBkb25lYDsKICAgIH0KICB9CgogIC8vIEFsbCBkb25lLgogIHlpZWxkIHsKICAgIHJlc3BvbnNlOiB7CiAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgIH0KICB9Owp9CgpzY29wZS5nb29nbGUgPSBzY29wZS5nb29nbGUgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYiA9IHNjb3BlLmdvb2dsZS5jb2xhYiB8fCB7fTsKc2NvcGUuZ29vZ2xlLmNvbGFiLl9maWxlcyA9IHsKICBfdXBsb2FkRmlsZXMsCiAgX3VwbG9hZEZpbGVzQ29udGludWUsCn07Cn0pKHNlbGYpOwo=", + "ok": true, + "headers": [ + [ + "content-type", + "application/javascript" + ] + ], + "status": 200, + "status_text": "" + } + }, + "base_uri": "https://localhost:8080/", + "height": 919 + }, + "outputId": "e81a691e-b4cb-4358-e106-1e7d705bc1c0" + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "# Playing with these hyperparameters will also allow you to achieve new effects\n", + "\n", + "step = 0.01 # Gradient ascent step size\n", + "num_octave = 3 # Number of scales at which to run gradient ascent\n", + "octave_scale = 1.4 # Size ratio between scales\n", + "iterations = 20 # Number of ascent steps per scale\n", + "\n", + "# If our loss gets larger than 10,\n", + "# we will interrupt the gradient ascent process, to avoid ugly artifacts\n", + "max_loss = 10.\n", + "\n", + "# Fill this to the path to the image you want to use\n", + "#base_image_path = '/content/original_photo_deep_dream.jpg'\n", + "\n", + "import cv2\n", + "import matplotlib.pyplot as plt\n", + "from google.colab import files\n", + "import os \n", + "# path = \"/content/sample_data\"\n", + "# os.chdir(path)\n", + "# os.listdir(path)\n", + "# pwd = os.getcwd()\n", + "files.upload() # 上傳檔案\n", + "\n", + "\n", + "\n", + "base_image_path = '/content/conan_s_head.png'\n", + "\n", + "# Load the image into a Numpy array\n", + "img = preprocess_image(base_image_path)\n", + "\n", + "# We prepare a list of shape tuples\n", + "# defining the different scales at which we will run gradient ascent\n", + "original_shape = img.shape[1:3]\n", + "successive_shapes = [original_shape]\n", + "for i in range(1, num_octave):\n", + " shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])\n", + " successive_shapes.append(shape)\n", + "\n", + "# Reverse list of shapes, so that they are in increasing order\n", + "successive_shapes = successive_shapes[::-1]\n", + "\n", + "# Resize the Numpy array of the image to our smallest scale\n", + "original_img = np.copy(img)\n", + "shrunk_original_img = resize_img(img, successive_shapes[0])\n", + "\n", + "for shape in successive_shapes:\n", + " print('Processing image shape', shape)\n", + " img = resize_img(img, shape)\n", + " img = gradient_ascent(img,\n", + " iterations=iterations,\n", + " step=step,\n", + " max_loss=max_loss)\n", + " upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape)\n", + " same_size_original = resize_img(original_img, shape)\n", + " lost_detail = same_size_original - upscaled_shrunk_original_img\n", + "\n", + " img += lost_detail\n", + " shrunk_original_img = resize_img(original_img, shape)\n", + " save_img(img, fname='dream_at_scale_' + str(shape) + '.png')\n", + "\n", + "save_img(img, fname='final_dream.png')" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Saving conan_s_head.png to conan_s_head.png\n", + "Processing image shape (102, 102)\n", + "...Loss value at 0 : 0.05672854\n", + "...Loss value at 1 : 0.06764512\n", + "...Loss value at 2 : 0.07886186\n", + "...Loss value at 3 : 0.09080141\n", + "...Loss value at 4 : 0.1007776\n", + "...Loss value at 5 : 0.11270758\n", + "...Loss value at 6 : 0.12449451\n", + "...Loss value at 7 : 0.13273\n", + "...Loss value at 8 : 0.14406079\n", + "...Loss value at 9 : 0.15394562\n", + "...Loss value at 10 : 0.1592715\n", + "...Loss value at 11 : 0.1675991\n", + "...Loss value at 12 : 0.17778799\n", + "...Loss value at 13 : 0.1835095\n", + "...Loss value at 14 : 0.19081298\n", + "...Loss value at 15 : 0.19838008\n", + "...Loss value at 16 : 0.20527472\n", + "...Loss value at 17 : 0.21564783\n", + "...Loss value at 18 : 0.22248232\n", + "...Loss value at 19 : 0.23289306\n", + "Processing image shape (142, 142)\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: DeprecationWarning: `imsave` is deprecated!\n", + "`imsave` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.\n", + "Use ``imageio.imwrite`` instead.\n", + " from ipykernel import kernelapp as app\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "...Loss value at 0 : 1.2460743\n", + "...Loss value at 1 : 1.8180659\n", + "...Loss value at 2 : 2.3891492\n", + "...Loss value at 3 : 2.8878164\n", + "...Loss value at 4 : 3.3012815\n", + "...Loss value at 5 : 3.7063985\n", + "...Loss value at 6 : 4.1241307\n", + "...Loss value at 7 : 4.5743103\n", + "...Loss value at 8 : 4.9482\n", + "...Loss value at 9 : 5.296378\n", + "...Loss value at 10 : 5.731557\n", + "...Loss value at 11 : 6.0180187\n", + "...Loss value at 12 : 6.392795\n", + "...Loss value at 13 : 6.648444\n", + "...Loss value at 14 : 7.1082554\n", + "...Loss value at 15 : 7.6336107\n", + "...Loss value at 16 : 8.10447\n", + "...Loss value at 17 : 8.4254875\n", + "...Loss value at 18 : 9.094452\n", + "...Loss value at 19 : 9.552766\n", + "Processing image shape (200, 200)\n", + "...Loss value at 0 : 2.528348\n", + "...Loss value at 1 : 4.3752565\n", + "...Loss value at 2 : 6.571014\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "6ts6JNlbBxVY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + }, + "outputId": "2577aba2-b2a1-4471-90fc-20b1b8294780" + }, + "cell_type": "code", + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "plt.imshow(deprocess_image(np.copy(img)))\n", + "plt.show()" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWuwJdd13/fbe3f3Ofc978EMHiRe\nBGhQkEyRMinaEkmzFKsk2yQtm1KkfJEqpcRlJYxKqUqxSg/ngxSrKknZshxSkViRFSpCpFCxJJPi\nWxIfIEFSAAmAAIkZPAfzft259557TnfvvfNhr/04d+4dDGZGBbhyFmpwzz23e3f37u611+O//kt5\n7z0zmclMZjKTaxL9Sp/ATGYyk5n8pywzJTqTmcxkJtchMyU6k5nMZCbXITMlOpOZzGQm1yEzJTqT\nmcxkJtchMyU6k5nMZCbXIdWNHvBXf/VX+cY3voFSig984APcf//9N/oQM5nJTGbyqpEbqkQfeugh\nnnvuOR544AGOHj3KBz7wAR544IEbeYiZzGQmM3lVyQ115x988EHe9a53AXDnnXeyurrK+vr6jTzE\nTGYyk5m8quSGWqJnz57lvvvuS7/v2bOHM2fOsLi4uO32ZbGUAryKf4Cyjkqp/EFxPeLjgfOg3uev\nUXjvUVqBJ/x8GeJ6G34Ww4PHO/lkwblwsLox6PrlrWHeeVzn8Z3D2zioQ5vwUdceP4y3tH7ZK6Rz\nYcxuswcrk2IMGCXjh18BNBqu627I+aNxfThWOW9KK/RVXYDLH72XU9KAoy/ua3yglFcomRnrwMXr\ndBa5fOpGUzfXbl/EM7ITRy8nYSpFVSv63mOtxfswfj0w1OY6DwRXZw558i3rLd5ZqCoUHXGyHRpH\nOCGFT8PufKe3/sUXP9W22/htPpdbqKsapRjDU7zD4T257CyVAuUvH0dt+3HLF1d+zm94TLSUq6ko\nVVnbTJ2zuj5tudPR4kHLE8hfA6r85WWKrsLD9zeVrVNaYQYKBjsf4XqmTcuLNFhormOUqz5a/lSp\nLd9c2zjTF2+otr6ZW8QYoI5/uHGvQjwjPdDUg+m/NY3ihj0hL3eYcg4qgyJq73ySemrYa3maXkrl\nXa4wr22UYlvF1DvMjsbP34hSubFK9MCBA5w9ezb9fvr0afbv3/+S+3nvUWra+izV77aK9ppkB6We\nDNRgNepKTy+BVzWmw3Xhc+98cSSPdtkK0io8oroypLf8ZVyUnTjoHL7t5LAWVLCAzVCjFuILcSVF\nuL0JE8+6H/e4zR6Aznviu2YaTSXnbOparNGXI3muktnnFLaXa/OgTBhTGZ2s3nJ6HGBlnivlUFVp\ns8StKyw9Tr5zTiWLs9KGSo5hO+jbXj5bJl2Yx/mlAcPhtZqH5cl6urGVa/MMF2om456q0iDnYK7l\ngY6X2hefK3ZWqvF2O59/cV1wjQYL0K/j5R1zugKV1YKW2Vf4wjwsrJzLrJ3tbEjS563f+su22H60\ny37x2UgrHUvEm9y602U6ZKfTL+UqLdEbajS97W1v4xOf+AQAjz/+OAcOHNjRlS9FwWWzqeWfQjxu\nH8x07x3eu+0HIg5U/nPybyerWEUTNDxI6uUrtjyO/HMW18u/rsdah7XhHLQWz0nl474c0YD2Hk38\n5zDKYpRFmfJ6rzRH2x9Yxf+MwaFwciOccjjlaCctk94y6S39Fe9BIXIbnPdYHBaHcy7dRwc4Ff6h\nFM778O8KT6btbfjX9WBt+OfC/MaFIIwcrlNrhak1ptYoo9KTUdWgax3CKlpBXUFd4XR+eq5Wyicu\niVbBXR8YKrF4daVRlU7P98uWDpjEfy4o0p4r3+5oXirCPDknsSVZvfo2fHY9ynUoehQ9OgS4ggIt\nL9KRn/UdRVE+Zz79t/1WVxolvf/e45z88x7nw7rgi23KOxBOUU0p0DToDZQbaom+8Y1v5L777uPH\nf/zHUUrxy7/8y1fcfmeju1g1io2czbfBVOWaVqySzlMGcrZ7ERQeVwZg4yelUC97WSlPUFbG3tN3\n4QH1zlLVMs2miCNe48wreSFUjNk5VbxANphXICZOLd9vvaiXiPHUmjZaa97i0spuUeLyd86iTJWO\nsJ3YHmw8lPHJ01Deo8Qy9Di83AvrfIhfUnjZW8V7tLz83vZxytGNximFVwYDKFEB4WoVprCESjEy\nj11vUgy2dT5d15Wur7CrEeOYWiXDXQ4gylOHG+6NvnonJ47voRuHA0w2OoZES1ylEFKIXcsOOw2u\nyTdE63wFtp9SlDFmHM7d5J1V3EbhrRzqMoN9u4O/tCe59fv4SE/ZlIW76lx+57WZVtbbjrr1ACo+\nf9evU294TPQXfuEXbvSQM5nJTGbyqpW/0cTSS8qW1Jva9g/FJlolq8g6j47Zti1mfErzq2zVbt1k\nOn+Uj2WtR1eK3jOdmHgJcVZh+7B+euezBa0VqgrT7NBXdrsuH7X4LNZBrcM/q/P30Xz20a0F6zvE\n+EGxJbuRZOcLnF8OMdWJc4xbiZV2eXylPJae+gqPkK7ApivJloxTHi/XVhfGjtYqISJ0cfVTZ9m3\nGN/J9z1aZUtMK00rw9k8LBU6xUfLR6AvPg/mTZqli5fGrItpuTJfJ/QD5OtRFAmk4hx3cmR88Zx7\nAjIAQPUpPBqcqMLwi6KLeFff9UzE/HZGY+RBqzF5wnYK5ypFggJ4B7XEzQdVQmMoV4S+NPnZQmUr\n1qcwPN68tCW3NbhUbr/TqU7nRMod5I3dgtSZio++hOUbtEupbcqsfRFbL8PsV5BXVolG8Vs+eJjS\ncikInOEpXvnkBqpC6Xql8nDOFxPgUUm55ikMyrWIo8jHq00rlC6dkwfO6op+Cq8lozkNzctJWLid\nzyQ93DbBU4JvK+EOq6bf7KtYEMpnJuUrtKaWF6/voGvl+8qj9JVXhFLR9MFxD8fxLp1O611KUBmj\nJK57+Slb2df2PREz1gwqiO6s0gLIia+CTkrS4tFR/VmFkYxVObtl1HygVYi3Aq6vxF3M17TddRq1\n89/D9Wfl7snhCl0khLRleuXYxhtVBpSJz7qX2C9hATVX8WypbR4KpfM74BU+KlRNniALxYTmXQ1T\nj2gMlSs9nWLaeh3xDMpt4mezZfvt5rTSU8E8vMsqcErp7hDYTqGlGxAfndXOz2QmM5nJdcgraolO\nOe3OFd9nW0gVfn4w7mTFcUjGe0tCyGRL1Lu8MpaZUO+yexXgEWLRep/co6tdoFzxM4K7e2Xo0gAq\nRd/rRl85U7FVvN55qbTFT1NsH5dYrUm3t/RbK3a8uAx/L/N0uVjAGJ2TQJ0L5peePoWt46RLSXYo\n9N4nf1YrRZ0sK9LJuXz24i2Ei+h7m8ZpBjWlU62KMw855WyGuC4cz6BTMmSrBdHLPBmvMPLAVFve\nkLjPVht8J2tEUFO0wMCEW1Hny7zct93JhZRMjhaUAYCyFiVJNodPcKSrso1UYYnqKvnn1ueQilIq\nJUvxqozNTFuo5bu1w+mXfy8vfScExNSzUwy63ZWpeDlbj+VhG7TTZec77Ze+fNP0VaFEo7qM1Tyo\nrNjKWKaTv4HcU5d9n0pcWkMxDVoVNyB/LhJ7eJW94ZDFTUO+vGvxhb5TpIy81xolivNqvK0puRJU\nQDT2ZNPhxAUeGMG4AgHrV/pZ8rMjP4lTkwWmUEDpyErRxOCw1zjr8ra9hwZ62+MjvhOdFExPdsMd\nOsVBwQdFCiivUobcaLNtWM/jc8yrMvh0coZSiVoUHQEha1EpO288WIkhmyqPXN5iRUBVALjOU+dh\ntxXnoN2ImEuLng/3u9kCK9iUeLLTgFH0bVCsRp4JvfUNLN5nGyMQFvpY4bRQMWgkbmx7rOCFnXY5\nZLGjE7xV8gPr5P75ShcPajm/lFO9PRJAMbW65Ehavn+mGM568j1SMSwnB5CV2/usx7W5isWhPJ0y\nnrTducKUgrksFHCVMnPnZzKTmczkOuTVkVhSUJYseZ/xoMpnG14V5rzSChXxl96nhcW5vNopCrc9\n/U+SR9sYaZevKDltFKuIS+/F+uzuKBR1Fa1hlXJJfZkYu8IU+HVxyzQhak7GMF4mk542ZsxNhRnG\n8+9zZswlx1HSwfK1L6yfqvRwIjj98uB/T8Q4erSJFoKl6y2DJlQERePFT7mVxX0E+ug59I5K7nXd\nGBpJSW9NKFgxaxw2VRYZ5XFiJnZk69nRYdF0Yl5b74l5L+WhkeRYtUOJkO9J2eeqMtQqJmzU1ITE\nS2hHfXJhTFPTbBOm6QA7kUTZgliSTZjTHaM6Mv6kgz7W9WtFPSchoSKhgqkwc/GXMmZztZK9Fl0J\n9laeBMhzm2Q7P3wn/9z7RL/gfBniyR6JtS6FijAKY7a3RJW69nLql7Isd0QBvAx5hd35fAeUImVB\nrc0QoctMchFNzlIqsgJ2zicCAq/VFJShVMbbZQXj/iEe5om3PgDOI7lI3tkrnbP5SqMLeE50OUvP\nZ8qbd+QgXN/TbkjMa1BRVVf2+23vE1RlONSZqMN6EPgPnSO8xtC3il4UhKlNUgSqJ1X4BRd++6co\nlaoWMTLnQTfxJnks+dqjGFxRNphjlM6BkmyqMVV6CMt9O8DGF8k5ejluM9QYXe4RY6g+vJQApgKX\nQ0JaQVyPLKHYJx0v6ilcvk6j0UXsJYUnHPRRKRrNYCghjC0xtqjOJpvQVHHM8F3DlV+6TjRP70Cl\nKqeczb/8DpV+aQlR3+5ehmUnXnGe8Ybs0roilly8HeViUkInigXaFwaDp0j4O5/i0K78Hp9CVs57\ndJkxj++q36bi6EqXeLWyUzD2GmTmzs9kJjOZyXXIKwy2n0aSqURV5acBZ8WSUybYplaAmFVXlohC\ntK1LJkBdXKneYjmkpKMLJCJmYGhHLSZaaVVOmxqti9Vz6gTyol18X7PDgjn2IEmBbtIz2Qw7zQ+H\nqGbnJdYBrqmp6zwPSYyBTuws39EJNd9korAuzEPjairTpJ1tsfrvtKKmEIozGCV2VmUwdcyql1XR\n0+ceyy0NLpd6+nz3tFbbHteSrTJl+4SHrPQAI+Qqlg4VQw0YOteHWlNToZSnlhtdUrEYYHUtfK4b\naOQeV5UmeZNK5zejLDHvwcqYg8E02DvagOMW2s1oQWt2C3VE9Ey24wlJQSNrcbKh0iqFCK4O5put\nxpY+JWwGCZ0qF7NtICGT3nkcSrwur1TCVpcY3KlXskTSq+zZxAgdyD2WebM+e4oUXp3zJD6Gpg73\nE7gMVJ/EwbTp+nIlh5mmvrqGoV5ZJZoUX/QBfPo6ZdKdy7HMYrICkYy8iKUro1RWxoZURWSNTnNe\nVoYoiknQHhsVp1bJhVQ23yelfaqaCuxT8tAX2fmX8MZlI4+N9dC9Qw1CvYyZu/LOGtBXDKhFPJLD\nuBjj8ymb7zpLtxnTvhVO3M25uZd2SlSlwSU8VQBla8B6fHzxDKmKqIQc4SASLllHgkqF+KWccvEA\nDyEp7M62VFW4aFOMOcFSxconauq6oa/DPgOtp97zNKse7Fj2aXTG6lNQqHpwcS3yGb1RG5Ji2+oN\njscSRrE+waN0DTHNX3rC5f6OHGfVmLRwa301BR85ZIO19CbGh11CRRg01VVAn+IWlXXp/cF64sri\nTY6VVlvd+TiGI+trXAj/AGVxi3M+Vzuh8uriHTZV5bFtaMnbbFvhPTpj74qNCvxiQXN52cluvfDr\nkJk7P5OZzGQm1yGvqCW6pfo1f9TZzFeebLa7Yjvn8GIFepP3dapg7zE5seSdS26+LkpDy5JRnEvb\n18OMSvfWplpnZ33KGqtipXvZceoqZ/B1Y2jmgyWqrpcPOdVG2+RCDXGMZdV2usrziceYaM3vvCTn\nnKlP7FG+twmn6zXpWFAMr4rEnvOJN9Q7EmC8Zjq80hPqSl3b4134XNWOOgE3bc7uOh/q+QlZ90HV\nMJBHuiYbRR3Z2nOdS6z1ldli7cWMUEVOVBZzVNYplGD7Ds9oJBbwsKGZj0gAdpTkYNuMBzWQEjBb\nILw7SPHsGoMVz8Nq0rPeedJ7Ul/RthWvayrb7unk5Lw2+FS3XsxbmTkta2cLjxDlC5iMSy6b0Tp3\nffA6bw8JVzqVVCo/qnyN2rmiKMBl1+FyJHDx9VWYoNtHqC6TV9id3/Ih/Sh8YzJ8yescT1EqZ+cD\nLMMVW8fvKfDqOrmLwSHML4mOmUlfoAIKaLjSiiq+6YVi8IArMpPRM7kqD0E7VCQ4RlMNb4BfUT7R\nqkjpGs1AfKi2zy+wVz5BfizTWOpSCgc+I6g8KImJ6MoQI5s7KWPnfKhykn0bCVJPVaYAbSeIgoml\nrsPBhvU0pUSXGUvoo+bzOikeLddTKiophUcbzeJK+FxRoDQKZaZUdmNRTBGQpLPwAoAAJq3Dyqtk\n5kyuiy+27wiKfeJFp0SoVOcTcmJhPqMIrl7yXYvPukPgd4BrPU40s9Wa4Y5vfOECJ/iGTcrMOp3i\nSLaIn0+FI0sjB6BUoi4/OLGDgtI6kUFvJQ6xfY5ZJpSFyYuM97l4xlqXSjwyW6xIyWGxVadeJtcW\nFJ258zOZyUxmch3y6gDbJ8kWYbZKC7p/rzHbgMmctznLrDPescwQ5q2nj6V8zis7qd2MFk0CihfW\npytWOY+admW2Kxrf4Rrp+4SLberq6mmjrig6u6RdsRqT3SldN3jJXnSQaNXseJIzuvMN89tkPA2K\nSArgrcaIJa2sSj68Vypls03xdBmvk4XjvcGJ9TWpc4cfBQwFIT/WNY0UrgfrInxuqekKTOrcQCzA\neNmE8XoLfiL14NYneEZdTT/0bhR+2t7nRIhXaHmg9E79rLqeXgoevIWVxWClVerKt79rgxU6FJD8\nfKWSxfzyIzn5HgWWrMIzk9YAvgMrLpIpGJcGW3MuKSxAzrA5R1UUM8QWK0432dMtXXjIFqct/mA8\nLrpsSucCFe1TGMgzjWqJlqh3Ppmfw/nikn1GTWilssWpy6yXmh705RqZV7n9K6xEC7ebXOs81aHI\n+0wQsoXjqpMbY50rknwuud41Jdg+1++G+u+URkzbaDyd7TG6pveW6dr17I5EN1aRKy6c01fR7sGD\nxPy873ESv1TGvOz7W0obP0w8SrLKyqpcnVO0zalNgNJAgICNu3E4/7ZNFHG6AgaXc5AqdKoG884H\nRHgNvu8YDIqMfHqqfIolj1qHFRKBwbBhMEyblPSvOROuc7gAFK0o3dYVcCHDFFA/0szFL1zBNFIV\ncKF0dn3hZSqVOA56nQsMqi0a0UlcoHcOJydb1RXDQgPGdcz77Bl7wtxXTYgBXw0PTVrcbYkusEQy\nFo9N70prFVau12tDLLjC5vzCFND9MiUapfiDtomzt1IqhQimKuo1Wfv34GXxDu2cBCGgcsZf44v3\n2KUwkKLwvAnvcfhDXpWmwrUqUCcCqXAjHCCH88IO21zl1FdbsxlXGQgtZObOz2QmM5nJdcirJLEU\nxBd/yFb4dOmmS6WABSlzZZILH8DCcRUrDuJsMv+9yzXgqCL+XQC/XdejS9BetIZ1qMtOI0fM6NQK\nu5N0qdTTKZ86W17eNTNefCYgDlbx5fZLT06a+N4nM60yNVosXV27nCixUMsqP7Ye30pAvicdy417\nbMStbjletNDwll4sWq2KZmb0lI9VnxJ+5DksoiC6oCtUJgNyjckAcIemi8kRV1gjBZl7mUgK+4Ae\npFPNPZts9lZtW1iKpsjgO9i2GUALm1L2aQYaLSGCrexc8W5ubuawlK7CRWu1JZxAQcFX/KH30I7z\nRkqQCoaO3B/IpZCK1k2RdVHJEtVGTReF+OlzvPysVc6WFkiIEK3KycApe02u0VqfLUiTXWlrXaqL\nV5c1g9whBhaxtjqXNfe2MJJV9lp8uX95clvlRuRut5FXVUxUFYowvXDF3wNhgVCxGZ3cz/IVVhi0\njz14XVKcYBMwfgp+QeZPROvcxVjldh9Wh4oWCDXykcHeY3NnDufZ2Z9PjlmiW1O1Ru0YCBUANW0m\nKTVNek7K5o49AUAfjqLRg6Bo6+H2lUD0Y7SkledVhVkM2sJZi5uE4/p1i50TBdlMhxqSO680vfjq\n7abNbnhVRvYUWmKlg8bQb4ZYg3JgZEGoSmb0gkNDWU0bs98anAxrBsVDa2EiGrjrPN4pBoMQTtCq\n6EitSZQCfkxgkCe4+HFcb/I2VbU9beFoUmTSmyop7R6Q0CrzZHUwmM8A9Qjv6rvpYglLPi5VvvOT\n1jEZC2yqVikA2NuOeij3eNDkUJTXyb2tCzrCulho+iJxvZUDdlsN432+xyicnJ2vm1wJyHTFfuzE\nO9Wyx+d2MIEPoAhsykLslMfLImAUmKaIdcswXZ8NJ2MKJNPWB11t+RnHuKIbf+0yc+dnMpOZzOQ6\n5BW2RGNKqfydqdh2yf7jvc/YUK0p2WZycoiEQ8M7VPRrFLmu0E+DpSMZtC5Yn6q6SqteyQzlTK4T\n905lYmjvcRHPdplFKr/3GpeC4HrrX0VabEw+tR2qj8F5I65KyCInrGfRl6dqVEqg7JjsNwMYhjFr\nr6jFXJtcgs2NYCl2YwsL0WLecoLpci3RZ+y9pYuN8yqdgg5jfKp/N8Yzvxget0FligfP5WyHcWle\nrPP0MleuzwmqEvFee5I7axRoq+i7sI0vCIvmdAYrOAtWkm9VXVgzDi6J+zxcnr7kiAftepeaDpaU\niDWZGWqUD0tpcyXiKTP97Cko6OwCxwCAaTzjC/IcdDC3IK50XaOl9tQrnd1nb1I8QymoJX6hiudD\ne1KrY6/ZYkIVbrUW87wvukegU5txp3y24MtrqRTe5xr8+B4olZPG0zhOn8JztkgCGaNTzQiAQIeD\nxxh3Lc79qrz0yzbaaqZe9UiXyStcsbS9TNOy+RQ0U8oXCXNX7K/KiE4xUJnuKwC/OrvSJbTCu9w6\nIrQlkZil8gU5Sv5/IN6Q7XXuPnr5lUWl63IPd2tRJma0FdHx6+noxXWzE8sgpqKNZL1dUPNlLXgf\nyRr8VbgWpTtVNhwbO7QokabX1JPoQzGFvYlubqV9oqrT+BTJKJV37wvqOO2ZH0ZeyCJw5V3WcCoH\nPNs+x0RrVcSqCz/U4AJ0CkApdJWVhG7JGep5qKKu0UX5/1aW/xSbLQMwcElccTVnmB/mqSsDFzES\n4WyOsdfV5fej0dMg/x7wkRtWdzgJkNqOUBkBuMqkMKWpKyLpirMeJbALXeniOc7X0rUU1T8eXcUI\nYvnGlAEisD6+GyaB4Z3T9C4SS+RA1FR3kHLVUKqgqizFUwYA4iLgHbkh4BYG+/hsOZfzDqU+/RsK\ndV61zNz5mcxkJjO5DnlVJZaiqKnPOcMZauGDOHw2IdlC3NqXa1SshfP4Pga3DV7nVS+CrL3LNNGu\nKDfFF3Az79EpI19ahAWrTFEDHEYrqMjEVLJdxjtSVWk167A4yai4VmWsZNnzm4JOoCCtcS4facpa\n3UkUCWTajWxKcAzQqEnssFZviwI3iny9vUPL3Opi24H1OPneOdDDEl0QJzSnxb112Jhg1ib1Q6qr\nvHVL4ZI6nZNEehrA0DgSsz3j6Yy+jhjVLW2Atzali8fbkHlZGOakfYlJneKULyzaiF2FPIXxEOnZ\nmjj6kWB1+zaxYVmrGCS6QI2TcImuK2wfQ1cqP8dTVmCeI9tnjKYyjipmySPyQ80Bk2T195iEhNBO\nBa4FwKsKHT97lRrwYfK1eeXTs6+0LhKtBVrbFiG2giIvJCHLiSxSxSkm4osQAYHhLR4r7lVEC1Q5\nJ5fJjbNjX0UEJPn3EAXNiii69o7cM9LhciwTcjwFRS9KqNpCktnFuGbbZ+b5KpNheJUr7533uBiM\ncT55GKEbqDwoHrT4WQqX74tRKf7qgX4imdVJmxq9+Uqn8+9rRy0cosp5jFSbDAeGFD0UH9RvwqhQ\nwF5nBngM9DHe1+ipGu5tb7QntaP0xmHF5504GFbxxdtux8DDaSXc0Y67dI+a+QxxqitNLVpnc20C\nI3nzmjprrJLExYMV13YwRyZoIT/qDeAKvZHijzL3kfRjqgGcZnvI0ijEgiEou/l94XNPVn4tJKU4\nNEWMk3y7rXMFd6lipyKnKP24Te1OXN/jU0e6PoPSFQxk0fEFut2jQwWW/BZDIYF4J7vJJhkYNlX5\nKd+jEgQpaps5KHhZNSYt3B11iuFrY2gkFlvqpsADKsfqbdKbIT6acxlx0bc2v9mm0ugqZuG3PGiu\nCPDGsJe3SXE6B1620dqkTgQBa381ilFt8/naMvYzd34mM5nJTK5DXhUtky//vuRJL7PYuR43WJ/h\ne+0JJYgi2XJVCRCNdylw7XpXePmegkmP3nkaDV6pFBXQKHy0ILXKNeOlC1JkPl2RxHLO5wynC3i+\nsLlJfrhqfTKvqsrkq3cmsPMDtu1oFivGaz2drvCFf+iKznwRMetbm2qmm0pt66piwMV5qFSiedde\noZpB2mY7UbrCCEN+rWuqWFfaqemaAKnvnBsDYpEz3GoWuvQz1kwb71Cx/lspxIOlUonnGFc6GmrL\nzyLjvaM0Fky0OesELDXkUtqqh2WZ6/liVw24iEdue4zUjHptrljT6azHGEUfzVWjiYDYSuvcKlxr\nzFyYJ09FR65bjagR7worXmXPIBzIpXPz4j5PuctOEjwVAauZCj9sIvMGnZKfuq6maCISOsRlT0gb\nXTBr64QZ9TZ0jABCYYxsE1A0O9hxxXsVnw9Nbn6nrEqXaD054Xyt3eauQ15lMdGcAc+uPQXESWWS\niCJrj3WY5Mk4dLysLYjc5PopTRcxM96nYYxWgZBDg3Uq8TA6yArPq5zZVCrdM2f9VGfReM7Wu9St\nsCqqOEoEglIq+efOkmOuvaIXFnrv8otjhuBilrjKrr1SJGVsW1I8svImucZbn7HID2rmayoJKZjO\nM1WwHGWqoMAwGARNNRjMUZv8/bYyNwgtUWD6be77hGFx1qYXz6mcxfVOp7YcVdYb4X0tYnNXL9H3\nHzNYEkXtM+q/DBN0m46VpVzfXY5hxZ10QC3KxrzEG2Wtom6q5L76Wqdij9rp0H4G8HWdCv5doWgs\n+bHHTc9F1H3Og+/jOStcXJgqHypH0ll7UaI+VbQpPFXi5tSpS0EZUnFQ0HcWppBRU0ZPhDtZ61OR\nSd3UifkfOeL2Eh9qP3XB8d0ORzulAAAgAElEQVTz5FxAGQd9JeSaleiv//qv8/Wvf52+7/nZn/1Z\nPvvZz/L444+za9cuAH7mZ36Gt7/97TfqPGcyk5nM5FUp16REv/zlL/PUU0/xwAMPcOHCBd7znvfw\nlre8hZ//+Z/nHe94x1WPs9MaNE3BW0DqC0Au6LyiWTIoUOlcV1dPuwqJNdwo+uhW2w4n+SMzyOut\ndSq5Ms6G4DVIrbOMVylwYuI5lS2KqcZtyqbSR1ORA+Za5eSQyqWnvVPYPlqf4CJjlFglemBgHlTM\nMJMXap+jHWHFjq2jbfbutpYzOsk+VfMVJuIhx8VFTig6+fUwX9Ahyb7D+UG+Yzu5spWClJ3P1kvf\nTegmm+GztfTEREaTrF5nXSZM9hWDWBKc8f4ZiBHzWs6BjolBikyTYiolP5QMLxXbmbPO+unnNKXk\nuzS/yhh8pFnY4fKTEd/Ec5Br0A1VpPNzNmXGFDqVgLqtg8WkqJ6OYuRUEumemUqlaaAnAea9VyFJ\nOoQUK5GBYshJORJio2h1RudIPZwCpVPMJuUyVzyJ7tB5kxivBltpsXZMksf30NFJEs4UrFJK5fdf\nGT1NuHbNUs7i1efvr0mJvvnNb+b+++8HYHl5mc3NTWx8yq9ZypPPFUiOIiOqdFFd5ItWlWTbvtIp\nvnPfbYdTXLN3niPHToTNFbleHpOo4brOc+ehAxw/f4G7Dx6krnNlSKyCCsQH0ZfJ5+1R0kQtnEoC\n1TuHlwy4sgU8SmWkgdcqjd92NtXCu87TxMykqnh2/RT33nEIPV8FQkhCTHMiMbXe+qQth5WiWw9v\nwOLcgImEL3btXUqkIE9856kc56pI0DDtbRGTqgrUAYVrVcSqa0UXYVkbffLWq6ri7MlTADz7nad4\n8ZkjAJw8fSy5jy88fYRzJ4+H+fc+cc8tHl6mlkCuG7vUubT3KjZJpR1ZFqqwmlT0HDp8kH0rB/nZ\nX/4l/tcP/Pe84btfB8BNh27inu86BECz93Bx7p78ChQhDHR6/paWtyjW+MxN+hRHGQynKWT+9n13\nA3D63Dqxa0IzrDn67Au88b7bqWrHRJ6D+cGQVjBU3djSymvUKY2rM1+g0RkAH9Vrozwb6+tAcOdX\nFsP2p89eYu+gSducPnMxnGdlWByGbVaWBlzcWOOxU6vcfvgQddPI+FWqPuvbXGmEUhlN4jx33LI3\nnKe3jOX9WRtvJn2qrWZRSGzOr46o5F2aXx4kRbp+aZ1a3tW61nQSfnriheOUy4OWbYwpIVE6hbiU\nviEalK0xgauNriqfGI+vTR544AG+9rWvYYzhzJkzdF3H3r17+cVf/EX27NlzPUPPZCYzmcmrXq5L\niX7605/mQx/6EB/+8Id57LHH2LVrF69//ev5rd/6LU6ePMkv/dIvvcQIZX4+R4dDS7m8EpUcTXE1\n9HhM4vgqLsEoIrvufbccSu7hk8eO00vK1U5sbmU7zCVsCo/tPE2tuW3f/hzk1xVa3KyqUmm1De5z\nxOmZHPRW+Zy895mrzrnkjjhPcnGUytl5a3tcZOxxmqGcp7aep86e4rV7D6IK/KWqNGOxAic9iaZv\n0Bi6jTDO8vyAx55/Pmyvs71VJlDCAeXnRpfRDnUVAJIAbjPhXPVCRd+3VNUSD37pSzz88KMAPPK1\nhzj+/FEAxmvnUkvjIYpGfMO9Sw3DocyVa9kUYH/ngblgGS7dtEQVmdQ3HRPbyTV6hNyISetpnLBB\nVZo54+k2LB/+q0f4L99xP70PIPamqei7YI2N7QYH77wdgJtuvo2bbw3W6r33v5Hvfevbwz1ggd5H\nS25uW4ukH00SQ1g9qFGDnPCIdfSd9dxz52EA5oY1R598nvvufw2V6lMWe2FukbWRMCV1ik3JYvdK\no+poHfqM6ugVWvplDY1ivLEGgHKWXfNh+9NnzrNfGh8Oas3JMwEM25iKJUFGLC8POb+xwePHzvDa\nffNURvoneU3bRVxmTn46VIpEWW+569YAqu36llb+cGlzM9NKOs2iIDPOr20yENbqwVyTMNdrayOG\nTXyvSMneJ54/nubZeVew4tsUVtPT1NA3SLbqoyhXtkmvObH0+c9/ng9+8IP89m//NktLS7z1rW9N\nf3vnO9/Jr/zKr1zFKNufnCpjRlN/yTXsQKrrVc4XqUOVNIMrYoS+A7spfcw3O6ol6a7pc4bdoISq\nC545cZq7D+4HmGo/4JxONcElQMADNlVrFPR6kHhDvSLDPpQKcBjZN9YQO6VxorC10Smr3sfKn9qi\nlM29yq3JIQKtE6KgN5pvnz0l15XjarbLc2Kq3BjNQH4alipYC+RumxvrrJ5aBeAb33iIr3/jawA8\n9sQ3WNu4wJ9+/Gv86v/488w1mZGibsJqtfvwUl7oxpsgVHuWHi9BxKaIQxsULkLSWp/gThSggApL\nHWFAJr/YXa+w1oCPJUsLLM8thjmqHG4zjLvIEpOzQaGeXl/jhcceA+Av//SjrArTyNJN93Hn/d8H\nwLve/Y/4nju/W84bVERR6AFGvG3VkGKQvuBWNQaef/ZEnl+gbVts3zEXqd6MS8zsfdUwiXF1rajF\n7bWdoxMOgm4zA/sHCxW1nIRSbcqAO2uppHBiMKwZzAl1nqmoRZnVcwOMFYITY7Ayp71VCUJVGZM6\nnU4hBGw+N4XGSwyi9i7tq/FUEvaqlE9tRmj7VGXlbA5TaOWm3vVkHhVVULZ3RZVfgZLZsl/RYnIK\n5fNS4tla/nN1ck2qfG1tjV//9V/nQx/6UMrG/9zP/RwvvPACAF/5yle4++67r2XomcxkJjP5T0qu\nyRL92Mc+xoULF3j/+9+fvnvve9/L+9//fubm5pifn+fXfu3XXnKc0ngOnyQB44GSEamIOKR+S8X/\nw1JQJplkY+v59vFgCbiOYqVWdAL8VlpRz+WUsi5+enEnbZHECs2ZI7YwH6uzmfR50BQsN71NdHDO\n+5C0IbhNrooWqi7wjopK+hX13jGJYQGxkFvjqLWhEwvB9h7bSiigNnznxRdl39RTLgDDZfh2nCnK\nXFHO2tPTErLkzzzzHA/+2WcB+KtP/DmnToRQwL79i+zaHSyfxcWGueXdAMzPD7GJnt2nVtC9bVNY\nwOFoxFXvUWzICTkMjbSL9g4uCS62bTcZDHKjOtVYOZZmQcCYE18x2ZR58RWtNfRi6a8rTS30cZVx\njLpggbUTxyRaTr1ij9DzNXXDivQTrrtVjn790wA8/IWPoxcCzP6u17+Zt33fDwPwhrvvZ3F3uH5j\nVEY2KEVlIn3cNC0ewFNPngA63nL7zeHclEdH9umBS+WwDtBiufejcWoS53tPK4kfVy8mImOlKpxk\n3Gznk5dTVRWVuMzKGJQgJIaLA+ZcCDzUjUm1+Uqp9EwoTQ5jGZOgHV2rMtZXmVTv73225OpaYcTN\nUSaEqQBcb6nECq8ak5AJwaW4DIcAZH4Aa/uU8Q919zkpGK3Pvkj2amWuYCVebe79peWalOj73vc+\n3ve+9132/Xve857rO5up6Gxx+UVv6gR6V6rIFJe7qR11a+5frXjooa8A8PA3v8p//d/9NwAs1Hk6\nVK145vxZAF53682Jzd56Tx9d1AK57gq6vEnnUv1+3/aJZxQNTRX3zdR5FkcrGc75gUrxws0+hylU\nRARoj9cus+vrDCs5evzFpIu3UprG3SvjUwx19dw5Jt15AD7x6T/lC3/x52Gj0Sr7mgUAFhc13Boy\nsXVdcWkcX4Y2AfW97fEx7ktm/ujGY2qJ6S4uGBp5mTur2RxF8hKPlutVlULLQmedYzQKL/lk0zK/\nLNVXy3PMLYRQzLCqORuVd6+xPcwvhXs4XKpYi33uO3BV2KfzGu/C57HzDOVF1FYxiWVK1jMUQsuF\nwTDxC6w9+nV+9zOfB2B91PAD/+hHAPiRd/8T9qyEOdq7b5Fa7uuAsudCrM4JKIAvP3M63Zs333kH\nAKadoGNNvc/x7e7iKMXJvVd0rSxGg4b5hXCeQ1PT9AL4P1+lzHXbeyKXTF0p+th2ozY0osycUznT\nXdJHOp9q7bVRiVMX75IO1Uqn7LjWJmfndQYnWp9hfiiFj+Et6xMfr3Y+LRTh2HGcYiGqi9nU2W13\nuNyFV+nk5usrKEh/A5RnlBsdmZ3JTGYyk/9fySvL4jTtz2c0fMlsm7i+ZdMSTFBarmVDHZHHT56k\nRCwnN1Y5vvAXwV371Cf/X976d98GwNu+/+9Mn2Cs8R1UqUeOsyr1/tF1lWvVtU+lcN2kT9RwuB4v\nK77SKgTKkZa7PvaX0bicOUmYW4XDmZx8AvCqxjonbFJw9PmTkbt3Ci4+NbV9wPMBnDx7kq89+FUA\nPvr/fIQXn/0GADfvn+PgoWUABrsWcULQvLpm6SNLem2YyMHatTZhIOc1qSWz7T1tHy1Ri5NKhuFK\nk9y79VHPRTGPVNdxSazSrvdMBEJh+wn9RjiJ8ciyKAXs+tY9bIwk3FHNsboRjtvqGofhwLK0Za47\nRuvC8jOo6CLBdtMwJwUDa6MJ59bD9TTecHhJ5q6H0Vqwgo2Hedleac9Ny2GjbsHznS8Ey/0TH/19\nDtzxBgB+4sf+MW/+O98DwKHDB7JL4A1U8+FmbAH1f/Xo0wDce+utaOELMF6jxDNqrWOymZs0NXXw\nEmrtmJdtBopUv181w9R3vu0cnVjkunL5XTIqNR08cuxcdpMdiXbRO0cda/wLTXHn/kMp/GQtqdRT\nGxMa8kGwDCN7lAFtIr47f3adxSYPJmOcAVSBs47jVJWhxI/Gq7H45KFqRbJEt0tUvZQUgcOka16q\nHP9VRkCS4x0pHln0fzelEe6L1LgmK+CtZnqMJblMQPKtbz3Go1/9IgC3HdjFQw9+GdhGiYo8+czz\n3H3LbWE4p+hcbKjVUMfac++w0R/UuuiNXiclSuVyz3fjk2Lz+BS3stqnqiJV6dDuAtLPrq8wXnH0\nhRfT1abhmYaRx8fzuZMn+dxnPgnAX3z2P3D+2HcAuOWmXey/J4DQ+8kIPwoaqTeO1galNUHhBbjd\nVoZ+U85nnJXc0I4ZShxwNO44fzEooI21DbQOWf5xZ5mIZr6w7jh1IabVdbqPDsPySlAQpr2UKm0W\nGhiNwoGfPbbKpjzpZ9qKtQvhKrUyLA0XaV4TlNy5My+kuPHC0jyVCZn6xjQs1KI4a0Ub35BRxx5R\nGBNPivPVVsEkXP/FTZ8KFQ7sUmhZWV93cAXfh9j7//6v/yW/txTO4Z/+2Pt421t/EICbb3stLM1D\nK4UM49gVzwQYGfDk0RcS6/7tt95MLwUV3bwBCUdwSTOUuOZirZmLMfbWYaVJYK81rTz3c85yTPIC\nVBqnigZwIrrgpPBkO8WV5XkxGgF854UT2GiceKiF7EUV1WpvuPvWFEPVVZXCOkYVoQBnE5O/0R6j\nCmZWF+OsDi9KNCrocNhcFahRSdMpctugq8m17wRkUvDS2lNk5s7PZCYzmcl1yCtqiTofPGbvBHCe\nFL9KXrl2JdQeCsc2L6dmhxWj85mSTkErruUXv/g5KhM+z80NeeKxhwF44cQZbj20f9uhomVidEUl\nFo7yKlF8OWsTa5L3Di1F3co4VGw8Zz29MBap2id3yimdyXjx+XKcwwrzkWvDxT5z/DgNqdNsMMij\nte0z5d2J4+f48l//FQB/9NHfo109A8DykuLm2/bJ9h29XJeuNH0XrTpyByulc8llN6YbB4twPN5k\nvB5A3EePn6Hug5W5sbHGpVQC7JPFtboheEpgbl5z820hdLC2ZlhfDWNqXeOiNdVVAZROIB6KxQVj\nVDK9l0zFfil11M6gvGEiCZjRxiaX5Nin1tdAXZA5VSgb9j940xILUlq5PF9xcS2GWiqqJUEh1Dp5\nmZu6QkcQgurxY7mv2jBYCubY7Yd3o2S+Pv6RD/MHH/5dAP7zn/ppfuyf/wtOHfkOB2+/Ixdg+Cqx\nNeFBS3LoueeOJW6CA3tvYiQhj3HnmKwGS7+dGzKWundjdKImePH0MeQ2sVQXBANT3luB+6TIyGej\nLpQiy/euz9+7sv+73t5ge+ypFy7/Erjv8N6EYdX0gdmMUKntCnc+JieVz8z8wYuLITmVKr2N0imk\nUFqWZcn4Vnf+MqtTNtpWk7ya3XlhFBEG7Oyqe58z3SGkVKTYU4bQF3a0Yrsr9Z4Ua7QevvXtJwF4\n8AufYt/uBdlVc+FscI2/+KUv8t5/8u7Ank7hGnuf3HB00cxOZT4RfM5e2gL8bxXkLuCOXsbx2iee\nFFNpGnFVvILNyDbvLV7iU09LDXr0qhIZuoN+HH5Zv3iRR7/5dQD+8Pf/DzYuPgPALXfuo10MLubF\ni6s4ybDb3gX2f2BxropeJZ2bMO4kHtlbRvLCr2/0XJQ67NHFjURh9+LZcwzlBVhsFAd3B43XzMPm\nRpiscxfH6f11TtPIcXcvV8wNFmV+DEOB1FzoayYjUYh96NgJsBnp2wBbKcwgTOJuU7EyqFHzAY7U\nLCzjYnb/Qs9AXMLOT7gwCspvbXyBbi3M3f65ZXYLcF2bIbe8JsCXhs0w+al79gy5sBrmZW00xlc5\nlmvXQijEuy6xzS/PL7Ao0KyPfeS3+LF//i/4H/7b/4p/+M/+GW/63rcAcNudd2f/2YY5CAM1yc0/\nfeYkNy3cFOYOSycBSTvp8EJf+NDTz1BKbLOCNlnL9S5nw4dFK8gCRThVv1jQLHrAt3mblCUvqRgh\nudIeV5BPpovj0WdfJEGQasV9rw1QL6eU0B/GgeVn0eNDuby4ezQ2se6XkdLLFelWuUxTXG3AdAeZ\nufMzmclMZnId8spaomkpdAVnfZBUJqaKZQ+VXffAlBwHmB43EQ1lk79tO/5SMvKDusfqyEQe+hEB\nPPjgF3nXP/jP2LcwR+d8wvv1Fr7z4kkA7rr15oR5cyHlH87MkUlijUm4tc75wmC2tJKMqBtSb21j\nNEZW6onKwOcjz5zCJsybbAswCasvBIv04a+GUsyPf+yjPPKVkEC645bd6KXgGm9urGMikLwBtyGo\ngN6zvh7Mi/aiw4qp0bLO2bFYoq5nsCBZXzR7dwkusVmiuzRK8zOS7HE/7phbDNssDSqWFiQp5eHi\nxTB+3yqsHHdlsWb3geDaD7WmlgzaxllYlyJ01Yd/AOsLObSimwFerNXlRc3Some4K1jBc/MLOGmh\nNjp1njWxFPUe0HuDxdl2Y4RvmY2LG4zHweXv6gHnu1Dqum9+yOJiCPHs2+dpagltQOqldOnsmPPP\nhhr23fsXWBLrWLncW+jAnmAhH15x/Mc//Hd87I//TwB+4id/mre9LSSfhgsH8VriFo3LdIcajp8J\nz9+J4+vp+vfunWNu3zZdBNnSPCCWlaJTeacKw2KAzdZiJTSxeuFSKg6h0swvhvNe2b2IkzBFo0zq\nn2RVZphX1mXgfaMLpEgmsMa59P4oZXj0uZNyiZ67Dx3I57wNt53SJrO7+UAbCSGTX0X2/qIYtNQK\nO32+EfLqYLZX0majyBBORTO26+euSJRxWqsMcSop2rxKJBFHnnqKL3z6YwAcOrDAOHJ2eseCBJOO\nfusbfPWhr/LD7/gBlFKJezFznkONRglAe6KqBBxWxuCl2qYb94kDUTtSRU5tDANRKlVtk+KsrE8x\nMl0NOPJ8iF9W5DYVMW/ZTsCvWVYvBrf6k5/8GB/9yIcAuGl/xX0x225bTh8XmrQNzeJKeKuWVjTr\nk6Cd1s9d4sK5oFy6jU0mbVCcVaNpxZVcmK9oYjO+fkwnL1u9YTECUxp2G4muszNwTr4fX7AJzjLq\nFRuyOFhd0QspwNrxTfypOFeeSs5tbX3MLsn6rgwV440wTnsR2nWJl630tEJgujmnOT9ybB4NivC5\nI+foRuF4+1ccqxI6Wb7JcODO8MvqiRYjNel2qBi0QWstzNVcklDAk8+dp9WhIOGmPXPce1coc55b\nGlDLwrR7n8YKgcfComZyMVz/2dMtQ9G0u/aF+V/vGhaX9+NtCFr+xr/5V3z8M38JwDv/wXv4/ncF\nAL+uFRJwwgCdKNR6oNBtTJ+3bNuKlYK21sDqRngOnjt9jpNnwrPVbW5w8sVj/MxP/RT/9jd+g8lm\nuPenXjyOlYXMaMPcUljgDt50EC/hm+X5ZW65NTxni8vLzC+GG7V/31727w/MbQvNEp08tdb7RA05\nqFXRBUGh5B1w1vHUC5l4JEsZqsu18JXKsDq8S1E+lMcU9YxlTLR07YvNp74s7bVtPm4rM3d+JjOZ\nyUyuQ15ZsH3KAsZfLje6L8OSFiC2uLo5C1VsMq7JoF0b2vkCfO6TH2dYCYtT3xOrBb3LJZUD3/Gt\nh/+aH37HD2C77DKrOC7w1PEXuOP21wNQlfjgSlOLOWY19LGk03tGm7nuu16IlqsqEi0q9Ug/+vzJ\ndL0NARsbLiVnMZ986lt85IP/GwCPfe0z3PO6g+EUBtAKS7ypNcsLwXwZjTc5fym4m+f7lksvhiTV\nuVPnGUp2eqEJZZQAI+sTQXO/3uLEmtzc6DHCOWCsYs9cOKfbVxI+mwsKVuX87QZsrLUy5wYtjde6\nZshY3K/NC+vMick1bEwqIrhlt2bPvJRwDirOyD2ajDdTgmNzpGhWgiW2ZhX+fM/Fi4ISuNSzKCD5\n5QMVi2K2NHM9++owR7sOWVrJei/PD1i5JK76aMI5ud/tXpO8gVqvc+LEOQDOPG9ZXAlW6YH9B9i3\nW0D+3ZhLQiU3sT4hJxaF5q3vPa3riKRXd9++n0vHHwHgN/+nL/OdpwPw/p3vfTf3vu5vAbFkOWw/\nt6Tw4/DLcKGiiF0R5fiFEUceD0nUF54/wqNPBprCp58/yoljz4Z50BXD2vAzP/VTPPKlTySXf6Aq\ntItWo+HMiTCfz3+zS80aN8ebtOI5OWdZXAqJwdte+1oO33orAHfd93r2Hwzu+aHbXsOhm28Jc9iU\nyaaMFtCOnDSuIFWQmMyKD+TSU62LtvbTBZ5TxTmF7AS+jypl+/T0S8srqkTLSaDgEw1VtxL7cJkN\nXsVATtgo1exa67Hi2htlQ8qaAIw/fipALT7753/MLQfDzd5sbcrseasSPd3u+SHffOhLwPt59pmn\nueuOUNNcZuoBhrGSpPVM5CXpJ7k7ZW0MTl6SMWCF8GLUeWqf0qa5QEA5jp6MsaHyRrrEYq6lHumh\nz3+a/+uDv8no+HMA/K079jC3GPa4tNElVv96CG0fYpbHjp1K5CJqHvr18H3TDFgUaI6ZTOjaGB4h\n0Zu1NuNZNi5ZluTzQqVZllXmlrmKcWzVYC0XzwvwvgchXscpnera9XydCg02G83conB3Dmtqmbhl\nLE5c7bGqmZPY3OK6pt+Q+N0EGnEHL17qGXWOS2clNrvRMb9b7tduj9kdM8KO9clYriF03gQwpmff\ngriWA5jbJQviYsV6rK7CclYU7alLcK4SpEIzoZeChMXNAQsLYVG7Y2U35yWbb8UVnqxvYE3HUEIB\nXnn2Sqhl18oiD33m9wF44okv86Pv/QkAfuQf/3gqwBjuMnTrEtqA1Cn0a49+kyNHggL+ypce5Mlv\nhko07Jg9BwIyY3HXkDtvlyx/Z7ESFhgOh6HnB4FnYNxFQ6Wnjs37GsVICE6GcwssCqCiMTkeOT73\nHN8+HboXPP6VT7IuxRi33P16Dr32LgC+6/X3cN8b7gPgrnvvIVIXTrWwgcLCIiF1ghqIxTM+g/mZ\nljJTUmbtt1OQvjjUtcrMnZ/JTGYyk+uQV0diCQjrRO5sHRcHU4IincrmqzboWBqmSPjLdtJngLB2\nPPLIlwBYXrT0sn3fu9RgDudTNrI2cHH1GABPPPYodwm7jkr/i+ck+DTvULJv16tAFxZOLfcZ0iAV\nlDjf0cVG7z6Pc+Tpk6kGP+ZRATrbYySb/yd/+BHe/ZM/zf/9G/+Se/ZXXJQyxmPnJ5iIE93oWRsF\n029woWV0Mbieup8wrMP4C3XDhpQT9l4xjv2cWoeSOaw01LG4oKj327tsWBRUw6IyDMXq7e2AVqy7\nORwDqWcfDGHv/hAusLZiQ7Lty61maSGcw8W79rIk1nC33nLxVLCSn1/vWbskxQiu4/57wzZ7V1qs\nWOfVrgqnw3HPXBpzZgOaJszL4pJlnxxjYXMdtRj2Obcyz9F1YX1/ccTGRNAP59d5xoTvD+811FJH\nr5c0u/eEuZtbHLB+IhIQ9yzE8Y3j7Hmx+lfHHF4JY960V1NJuGROvI6mCx7XfMzEeceGuOe+8rzm\npnD+bXec//CbvwjA2sUX+dEf/y/C3A320Qo/wGc+/hm+9PlQvvyVRx5hdDGwju3fu8w+GQc3n6gJ\nR+OOWrw6g6KSxGnf2lSb3447xhJ+agaGhYUQsqgHAwbiMQwXFpIFXxkS9V9tHKP1cA6m75mXZNXp\n547w3FPfAuCLfzZheSW4CG9445u45/WB8Pq7vudNvP67/zZJEqNaQaysfELnWBe6UEDoM5YMV5XZ\no9QWE3MnIH0Jtr8WeRUp0VK21BOYZtu/qUgr53t8bDbXd6mi5dJogz/6aHCPDu5dTG0ojCG5/9b6\ndAMm3rG0O7ysn//C53jL3wvQkwP7dk2d3aNPfhOAO265h0lsbdHHbqHg6yp1ClXWUcXaf1VJT/eg\nlp55IbjwsQkE6WeEa3R85Hd/B4BP/dHv8e6f/GnmaRlvKqxUXylvGY0kXDBe5bnnw5j75jp2CX/n\n7gW4KLFMZzULolAnbY+RYKxZ8FgB4SvnGQyie67pJeDZO8tpAadf0oYD85EeMANLvLIpSrG8OOTQ\nvuCGj9cc5y5JG5Nzm5w5HTTqaa9ZnAtad3N1xOkzcp7AsJbWIruXeL4KSuqmvRW37gsHWJ5b4+vh\n3cSuwWQCN0uI4XsWDTdLe5DTz3cIwTzf2TXimbNBCc2d7RgLFshtrHChDXfihVMTFhbDsVf2aKqV\nMNd7BnMcPCiKxKwiXTc4d9pjV+VcBw0vng1R4VPnNhjqoI33DcJztaQ8Bw4MOSXwsLWxQwnWbW7O\ngUC/Kqe495aQGf/cn6v2coEAACAASURBVPwef/1kiHH+0Lv/KV/5q78G4OFP/SXj9RDrPnBoL3pv\ncNW90VySZ2LQ2VT1dmk0ohOO0oWFIXt2B+jWrv23s7ArKLbbbj7M8mLIsO/Zv4vd+8I2TTNg0Mg1\nLO9K70xdaaTIjOEAzp4KhSvj9RHrF8O5nXrxWKJ9PHv8RU5LY8KjR77Nl7/4UJifmz7OHffcC8Av\n/9q/YmMtTO7C0grTefWYG9CJUKh3PsVKvVKp88RWF3464xKNlqLCfqeNX0Jm7vxMZjKTmVyHvMIs\nTjvxrJSZ+itFfSVRUbvUyEtXil72/frDX2WyGTB+/fyuBAozFcmVCSVs4pJby4Kw5Tz2zQd55OEA\nYv+hH3rX1FHjutjbcY6Gdzn9pPQcRizRyrsUgTBeYcSqe+7ksVxQQE+mtvfQB5f8d/7db/KFT/4x\nALccCClsay0vnutYnpesfb/G8dVVOa8JjVAfjTpDHWumzYRG2PI3N8asCJv4hGzttb5nXazkGqgl\nTDGwLQuNNDFTjjVpfrfeetY2g9V0Zm2MlvLGNQWS92BgPBuC+2z1gEo8h+OrLRc2QqLLzWUKt871\nCGk9fQ+bKzKHdy3xbBWs1Yut5bb5MIfzGi5Jjfh4Es579yhYeCtrawwKL+GkhBI2GujmJPG4dwG1\nEMiUq/Uhm2JZPnv6HF7q+Q+s9swLncLq5piDe8IJzpl5dsdijN7SSiKuGijGEpYatZ7ehHvTboTn\n8NHnjvF6sy8XPwwr5qWYwXVtSu51HfR9+H5l1wKPPBYstm8fOcKikDLvmRuy0YvbbhVjYRE7P9rk\nxKlw/rvnag7fHBjI3vCG72P3LiGP3ruHu+8MLXx+7X/51yxFJiZ2llboszbbLiFjqsokXoNhrVm5\n457wi+9w0gpav/FNIMgMvEsg1hPHjnPqdPCcXjz2Ik8/l0tX/+Df/3sAfvhHf5TDr3lNcRYlZjSI\n0Sr3Wyu2yKlq+TAFCn2JbNJWsNAV5JWFOF3FNr7o/FmyUZf7aiqUKAM9V9FJLOYzn/gzDu4O7lQf\nCUEBU2VSE+c9bRez+Y5Wsqi7FyqefCLUob/9nW9JfbNBMZG+G0888zR3CIzDGIWKOJ+xw7j4YvQ0\nVTb4n5FWGwNIfJzQCXAa3MYlPvhv/2cAHv3qZ7n91hBKGK3HOKlndW2DM2fCSzmZrLEhxCf7ds+x\nVzLSp85vwiiMPz8PtSj70xcsS4fCbZ8fKDYFPG/mM6D/0ioIGoxblmHfQti30o51Abo/c7bnBVFM\nT651NMFr5/waXJSY6KaesCm8nIf2KXZLVOTomREXhK/0pt2wsC+8wQuDRe6SKeyUYlWUy/klxUnJ\n1J887zkakuK8zsDJWJEGHDawJBxtZ16wnJPrsffCrqBH6Pc21LvCM9GeW2T/XKjd7tYW2TgV3M/R\nsOfMc2GctfURizL39bOeM3vCOd1yxyL7pBqgouO83PtxS4LtVLVOhRy9zO6La+dYPzLmnnvDc3PT\ngX0MpWJu9ULPpI8hp4pzl8I+F82I10pV1+LKLoY2jPnEN87y8DcDXG3X3nlW9hbHkhhnvbjI4lIY\nc/dSh+nDNZ58+gwnvvNtfugH38Tv/Ma/YTgXfPJdu3azb1dYNVZ2LXDnnXcCsHffPhofW+q4iIAD\n36Mj0sU5lCzc3WabeE90XZNWR1qchJZ27dvNodeGG/M9byl49IB733C/zGGTSwHJes1akvaqYFtl\n4nzBbQHJzd/a9WHr2HmHqR87ysydn8lMZjKT65BXGSlzKZG+yxUrgplq3Zr3LTLv2nBWeiM9/c1H\nuP1gsBbGXR7Ha4ORYH7lSL3sFT7RcS0tDXnoK58D4B++50e5+zV3yM4eb7NV6mPrWFPRtxHP5hJy\noNYuJWkgZxEdPpV9hj+EfX/7d36HBz/9CQBuPrjCpdVgEUWm8oVFy/lzpzgpluieoacWJt/zZ3Vq\nGGc3HJ1YQesjT78eWXRVsiabBcVZcYf3AosxwTbJ1HMXrGbjdNh+F7BLgPH7NZwRa/LsvopGTNd+\nGaTlOSu1wq1FFqcJq3KetyxWHN4rltvNjpEA1U/3UJ8OoYzJXM3qSBiTzp6H710Jg75hhU6QACee\nHXHh8XhVcNjC98sT/ffnQInl+9AhGN8eLK1TTYMzUgAwUhw/G7Ln9cpBJvuCGb9nYZElYZY6ceQk\nzgWXfN23rJ4L83hi4yK3Hwj3b64ZYAfBFF/zHYMmzMXepQYjSZ12FK7x0L45MJ4njwac7wsnznHH\noVBCuXfPAoM9Oc3YXghzsX+omBc85drmBXZJY8X77jGo5ZAEOnZqjBXmrUGtObgYtjl48wLDJoxz\n6plvcPGFiFu16f156HN/wmQ8Sd9HVq3hoGFFCgp2797LrWI13nb33bzlB0PStRnOJ9NOQSBSANpx\nn3ocpWZ0slWsna+1I9Vl62lL9G1v+3vhg3d4KZixzuKlaMJToeR58jXp3XZu2mtPCfoC2LNV52zn\ntb8c6OgrqkSt81Q6VM9uBZlHUVNxDJdcYIcmtmhz5A6W9J5HHw7tLw4ua/pY+WAdPtbsGoWUOtP1\nPrfp8J4qNt2qoL0Q6rC/9fhj3P2a28MwbU+lw4NulU5KPQQdimIBASYbPAMdxj9y5hSRErybtHn2\njefTf/QHADz+Fx/jzsPhxVgb90wk1LCxGXzYp595lnYySqGNzS6jQTY3x1hx7ecblQDa4xGsSVfM\nxSXD6RPCpbpSJfjV2iUYylTvbmBRXMwLvebY+XD+p3s4LG4xK4qbb5d6/NcMWN+UxaRWxNaXF89Z\nnLjCJ4+FnvEAd++eZ0XGH2209BJnHDUevyjjrMCawJ04BakPiNHgZWFRmYpzH+EZio1b5xdAhWnE\nORDkF6PeI6fEcLVidE7aa2xW9BIGOnF+wt4mXNvBu/azIYX3/WiTC5I1Xh13PH9CQhUHakwkch1k\nCjs9P0TFOnQlqIYNj6eD2Alg4xJPHAlK/d67X8vBQ0FpaTchEhLUtmUiGf9qfkJ3KdzLPQdXeNP3\nhtDE8PmKi+fCithuOITelYkHCV3TWE0zDIvGxLYJULg4HDIvE+l6mxRhZddZPxkW69Xnn+Sph/8y\njLN7D5/42EfDORy+lTf+3aDw/v47304t72Fjiq7wU3y/PlUmVQqSz09Pdox14hOlzzFU7/rQGRem\nYpa+JA5100oxbr61FnJ7Jbm1fd3VqdKZOz+TmcxkJtchryyzvXOgTViYVCYvVpcR46VwMnF10MH5\nlu8VtYATx27M5z/1HwHYv3eJ1dVgzfhiuTLGo2Sl0zXJKlX4BJL33nFwX/Bdv/hXn+X73/z9AOxe\n3JX6p7cOjp4Kgf3XHDiE6woLOgL4FRw5FjKQbLaghQWpnaRMztc//xd86oHfBWDPfPX/sffm4ZKd\nZbn3b0011649jz3tnrvTSQhkYoYwBiJBBD5BDqAJCIggg0ScADlHEfgAFYzoYVJAOAQQRHKIhCRA\nJjInne4kPe7e81R711y1xu+P56lV1SFRCV4Sr2+/16VU71St9a53rfW8z3A/902oYUrahuVV8QRO\nnJImgKW5CgMF6FMt9JWyT0bP69Vdktqbn3UMWtr+Wmn6NKttsL2PHba9QLA15G+1AvK6zoMpk7yS\n/YbNiFW9llUfKMlv05bFoG7zOcugmRfPzTciTMXsLq9DUj3g0DJxA0mtLJfz1DVt4gUuZcWAVhMm\nOV2U3ppPWgtIjRpwXPMOZR/Ui00YMKRPcC+QAgytMq9GUFQy+9UQ1jxZdyMZgeJB840M6Xk5d/nw\nKaqReJaG42PulHXZfUY/FQ3F14pVBqoS6h49OEXRk+83ZyM2D2vr6lCOWkruTXm5QbqhGFOtxmf7\n0qyvrDGmYH7Pg2JV3MZjJ6ZwFZkxMdJHM2hzFrgxxVzeBFMjGyuyyClWtzDs0TLa+l0hnhZCy2tV\nwjWZZy6VJm1oo4HjxHLIXmDEzGSRZXQYoAxwtJ01lXI6XBKpiPKytHdOTx3mgUOCYvneN77M+RcI\n2fSLn3cxPX2CBJDHqhMRxlWp0OjE3lEXXT4dRn26FC9EJlmH1SXJ7IdxC7hhGKeF8HH9K+rqkX8U\nB9P4qZL8fwQh9IvOibavxogUjqDhcBR0rjjqMqhmV785HZCDmkYASuV1FmYEKrF1vIdQQwnfA0Or\npg4Bluo8hDZxn3vLCyBqq2tGZDQ2PP7gPUxNSV/y0LlPjs/vmB0xUQODZlsRNApw1MBPL6/QVGRA\n0nMx1IgSeEyfPALAZz75UTYPKj1bM8JVuJbrVqnUS3r89kOeo04Ya4mX/ZABpVlL5nwi2hAcg6yG\naNmEwUBOXiTbCQkzEtJVQkNkIgG33qCgchR9VoTlyRxGUmmSE3KclabBQk0r2IsuKc1VzT9Upax5\nUN8ETS1SME22a+X9iefkqa2K5ZhecZhZFePlzS0RrIgRyWWgnT6rZiRVAUA/xLxww0b81Lo1WFdY\nUgBsAdqZtajXJlDDPpCr4SljfoIIU4lKrdoyhqNGrj/DHu00Mvr78LJyktwAmLtVsqScIROldS0q\nVI6KwQsJaC0psz0p6sppulyP2JzUxgbNnTvJBLmMQy4j86nVfdIp+bxSbLBe082yVOTMM3bpvcwS\nKFTMNo2YNrFYLBNZmpd1DHpzSnaSShD5co9n7i6yvq65+myexIhU3gcG0kpgAumeNJ6+V2EQQZtk\nxnCJ2umnKBBVTSRFZeuch9IpfDXelZUprv/nkwDc8q/f48CBJwLwhre/Q9qK5EDgd0lDeF3heafU\nQGy4LIO2RbWMDkt/SEez3m/5mGrhLceJQ3jDjIESp4X5Rlfu8GfJfT7a2AjnN8bG2Bgb4+cYjwsq\nPANhfzejn04mCylzl62P6bL9OAHe/ffbfvwjCimV+617sZAcYRSHDkErxNTd08aIPdQoDDHVxXOa\nvjSRA6NJk7tv+SEA5559jtDDI7tYm918sTjHRM+4TN/zcTQcdnJmDOw3QktonQCvWedjf/5+AAq2\nS0NDzGZosKiV96WlWXrUw1OQAcNZk2zeZL0tVhb4WBqq9w1YzKuEcN1O4Gldxo5MenokxPRsKHtt\nXJ9FstnWCUpSV++/kup4wzU3oqlrW7EcGtq+mOrPkxxQFqC0QaCY1DCAAaWLL/o20ysyz4m0SaBz\nXlxLkUnKOm+asDmpCISVEmjkyfgOqIzpWhkZ6NGLySRp32xzqoU6kqSBbBoUO0/Z8nmoJGtRaoEz\nqExMLiS0X97PNwnGZS08z8fX8HyxWKWiuO+VVRN7t3jQPQM2vcraf2BigIe0kNNYi1jTolmPL4z+\nAOFQPyUlvS6tyTo/sOTTm8liaHqhJ5OkoOkhJ5Ok6uv3m03uPCyY4gP7RkkrjtOtuNTbIoUNl2Td\n0HvgkNDilpc0aCgqIJk34+c+DENK7e4EIyTliuvXbHn46skZkRFTVRgJh6AtXe6FMWWkbRr47fbl\nKMTV8NyxTZLtqK66xI3XfhsQHoqLLr4EgEte+eqYaYwwwNfAzLINDLvLK41dRTM+L1ZHPsKIRBEC\nILJNoja9ht8VtptdzJlRl2Za/P/0ez+nO/qLpcLrWjOTrqRF0KngQdTBJkTEhtP3Qyy/Df41CdQo\n3nvrTWQVvtRqdHrqhSBfQwE/JFQKMdtQZnkkJG+TGlhugKlA9D7H5MdajXzJS3+F4U3742voXsDe\ndhdRZHBscUnORbfGd0SgnTqf/exf4dXkO/lCDy0Fa6+srTM1KyFdq94gqb38PcqNmTSgse7jKpg6\nZVqUlsWSRMkMhhJVetjUXDXkgRFr0xsGcXrKCcJ4E3BxKOuL1wxCXAVQV4jwNCQNUgaWYpwaOQND\nm2XSyRQJZWpv1cGpaW677OH6cuKS6zF9SlIBUwGM6IoMX5iiR6vt9XJn7/RGO6kz1uqduMv3wVUD\nX4aedlHcAzcN6wprKmVhTYlNl1uQUxtcLIHXkPmVMmXWtYvKLuRolmR+qycDvFX5zkrLJtMUy7xj\nc5LRs+WEQ1t7qWuHzVrNZ7ptDEp10rrjJVsGqrJCQnfDkh0R2AaLultM9iWY0MSu5dmYLc35JwNO\nzkquovJgiz2bZMUKmDhqyEPDJ9BeeMOyyWjDSavp0lAlADsVMq91gdXVMqbKnqRtE9Np0+gdwtX3\nIZVIkE9p80MhRVIJVBJWAqtNSWcYMZTODKMYlWIFEV670cA0ySmfbXVlmm/+498BcN999/KGt7wN\ngMHh0Vgh1zLMzjtvIo5U+3OMju9iGgk7zSq2ZRB0dSC2SyVhl6GMIjqie4/SiWR0G++fYWyE8xtj\nY2yMjfFzjMfkid566628/e1vZ9cuSXzv3r2byy+/nPe85z0EQcDQ0BAf+chHSCQS/+Zx2loo6pR3\nudhdtj0MY9Zt0VLRZHLYIWK2zYiWxq533PADJjeL5xCEQSzDajrdvj0xma1NFLetJ7Fw2zuaGxFq\n8clMm6QV+3jPvffwnE37dJan71pHFtoaMR7t7VAA9R0Uwb33CjXfrT/4DmP94jbV6hFrdfXkKots\nH9IMe81ltSbXdbgsf5taqBIGPnZaCyUpizUBCFAp+mQ3S1UnG9bjSnql6lFXsL1RsLE03WEEIfWK\nYm3NBG08fr0JaWWtL1sRgVat/UwCsyBpAd+2qWphqXqygZIJ4SSkMg5g90SEWvh4MIiY7sq+LLQ/\n9KRxlKaulAtoaDxYDV24u+vL7Xpe3oJAXOCWWSLsCufne2F9UP7dGodIi1GLi1DWNEGxDKvaotry\nAlD8LXmoOorFNBMwqj/emaCuHvTKT05gj8tFjA9kaPXL5xMrsK7zWA/qZObFLR07dyuW4iDLSlBc\nGwjJbu9j4W7Vs6p59GQlhF9aBVPTQKNZn81j8nmhXOchbRd+0p5NDG2SuU1Pl1jXKGRkMI2jhSWv\nFZBShMfeM0fYskf+vjLf4sFDAllIDY5x5nmC73zGK97I0dsEW33/7TfRSMszZ1cifNXF8lwj1osa\nHexhsE+bH0Izxv8mzYCUhhKtMMLzNRJybFIJmcPJQ7fw+78jjFQve+XreeGLXiLHCbpQ8rYVy3Fj\nmh1FR6NTbjfa/wZMy4xp78IuuGkYxvzskgXoCm7p+njaW/wYQvvHHM6ff/75/OVf/mX87/e+9728\n+tWv5uKLL+ZjH/sYV111Fa9+9av/zWMYegntGnvUVu/D7pTVoqgT9zvE3Q4pA3DlYY0wwJIQZGT3\nmVTWtT89YRJpBS8MQoIYWhFhay9vgBHLIRDRqfIlbNAb7yUN+jcLcvtb13yT/c95DgCjyaFYvoPT\nYFkdI0qXEa1XFvjkR/9U5lnIxFrzjWaDuVnlagtbNPR607ZJS8OaZjuHNpDCwcPXv0cEjEj7N27O\nxjLk4ZtbrFOe11wVIW3xx2zaIKUwKCedpKlL2woT1LQ3utJoYqi8pm94omoKRK0atQXdWFJJAoVW\n1Rtm3L+f9UFl3RnZBE5eu50SIWlpw6Y01yEOmblnHSqaLqgBvfLj/BkOliY815vAj/QC1iMY0EnP\ndNARM0CzB+5SZMDNIdTa6aIEFJf156vQKuqP+mlLymPMVjBP6i1YceN7Ty0Ba0rVV4Oqbr5belLs\nfuY2uTejJ2gWxbCdvKdGuaJ961MLpBTh4RV1IypW8XvSbOmXXnij4XFcY/7p5To9GU1+J5OMbZPf\nppJNqmVZl/tnF4jyEtqncjlSKi7YaAX4dVkNvxlhOJruqSRI6r0ZS0RktyvYPtFg8YTk+W+741pe\n8qKXAvCJv/sk60XZWG6+8QZu/OGtAFz93e8RleVcxWqJnmVJRQ3nC2waEmcgmUph6IbbbDRx1Yi2\nrICMPtOZdILAlc3qi5/+KHOzojzx6298E4GiDuxkkvj9MYlfq9APY5VRAKsrh9pO1UVGTHgvP+tq\nfGznTaMuy3laPvThCKf/oEH9Twvnb731Vp6jxuXZz342N99883/WoTfGxtgYG+NxO4woerQ066OP\nW2+9lQ984ANs2bKFUqnEW9/6Vt797nfHhvPUqVO85z3v4Stf+cq/c6RHb8DaGBtjY2yM/w7jMYXz\n27Zt461vfSsXX3wx09PTvPa1ryUIOgmvx2CXTx8unTgNOiDcEDDa7RRBB+FkGjGTfGCa3HfXXQD8\n0Tt+k+3DEr40XRfXa/fgQkLDC9s0SGlYYAURbgSf/M7NvP2Xn0wiod1FCR9X4RSlZkD/Xulees8f\n/R4DVqZr0u0Q3ux8jExmbpWOjj9815vZuknytX7TZHZG4srpk/P09cpxspksqLrmSsWn4Uvcm7YC\n/uVkg2f2p1iuhjF1SU8hwYE9EkrWaq1OEihwmJ3VvGwU0Z+VUGlozKDuy7VU6xGVimxiJ8MkvnZB\n9Q/Z7MhKyFWqrjAtfC4srnb4Iuwk9CXh2ELEs/dlGW73vHseR2ckpLuvDK6IP2JsSzCmJCXDx0MG\ndJrLTVCkDUdKEGgVnTMgq8+AMw/jmqLMng1GJPOcvbuOAhlgEiae5rDrOQmue12Vbe83mGoHQ9dx\n+vPUHiniZ6tgw/h+CbEP31h+hC9DJgWvu0SSs8t7UoSaZ60fW+An3zwMwI4d/TgpOdnBUxX27lbQ\ne6nJ7JGI/KgBJRjfLM+rg4DjAfp39nDX4bb+O2waUdb9Vp3QkpNlBi28inyn34LdE0Kpd2DHCOV2\nd57vMtKjnJ12jjVfFVFLIcm6HCc73IOfSvLZK2/muRefQVskwm9Cqynr+8znPpe3XPE+AKxsCgWW\nEAXQUkma6aMnuOU6Icy59p++QmNVmlKyOYMhzZsO9RbiNFwYGERtmJJhkND3amG9zpb95wHw4U9d\nCQo3w+x0LGFC1KabDLs6k6KISMH8XujELPqGacToSN/rUP9GRkfJ1zS7UELGI4T3/Ptu3mMK50dG\nRnjRi16EYRhs2bKFwcFBSqUSTc3tLC4uMjw8/FgOvTE2xsbYGP+txmPyRL/97W+zvLzMZZddxvLy\nMqurq7zsZS/je9/7HpdeeinXXHMNT3/60/8DR3oULhWjq7uz28yHxKxJRtSp5oeh0QHkG3D2OSJ4\n9ccf+iTv/53LAZgc7YlJh0MjIgjau6FU+gEMy+iCpIV46l37rk+gO2k6aXL7Td8FYGX5tQyMtmmN\nAsL4DBBqVcOuufzdpz4OwNbhnlggb3m9ysFj4kY5ho2rwPBEs05KK+OGGZB2ZA41BcUHpkHvYI6W\nspiHJFhWIHe5CU3tlUw7Ntl+9cJrLUptHGA5xNG1SjQCwnWVLm55OPU2ObXJsiXFhWQaxrVY09ML\nS1rMjgLQrkGCyKepPa+hH8aeZbavw6qUbvg0FuT4q6twSp29do0HIHdmlmpBCngDYy3GVsUbKU2X\nOCa1QiYtqIXa7z7T+a11ArL9HrOGB6+DXqOPkfPUyxmsMXejbPCFOjT1pLUmcfNDCcgvKYNSb0i4\nrrRPXdWGsa3j5BWvW1r3wBaPzbR6aemzPH2syORu8SA3bTJYWJQT7JiUgtH2bb2szjVY10JTIgIr\nKS7ewGiLPnWNU4MJdu7VCnjJYnlZ7ndtqcWufr1/g1mWtIV1tVwllRV3fb3ksb4ia121fQpDKsnc\nbzE3L0UyI21iaaVlpM/G1WYJ3zTIqkrByftv5Nd/VUDyv/0HH+JJF54LQNqERI88x7uHd/KMp4gc\n8tvf+maOHhKp5q9+5TNcf42A7edWi0xuFf2nQq5A2I4IAV/XbWgwz4nDt8X3c2VJKLUHBvuEGUxW\nOrYLEcQYU9MkFuNLGMSNAFEUxsXqyDBjkA+cjiGNu8q7/vvPkmR8TEb0oosu4t3vfjfXXnstnufx\n/ve/n3379nHFFVfw1a9+lfHxcV760pc+lkPLiDi9vaAdGlvElHdR19QjOigowyBegSc9+Xwue+cf\nAvCFv/ifTAxJuOb5fpc6YKdnPySKpUW8yCehFdrQNPHbcawR0NcvP77hxu+x+Vd+DYAMNg0NsqO6\ngaM9wd/71neZPyKQjvGRPtaV0v3IzCKG0q2l0yZuXY7fCMIYLkToYbRJJRRqEkUGI7kUw8o4vlqr\nU1wXaxJYQFbB9qbNwKBAgRI1A29NDI/faOG0F7cethnZyOJiBcobUDbwUnKNuSQowTxOEopV+XvV\nNWgozMpPgafid64Lx7U6X0sp3RnQmAtxp+RzFehXmrqthZiEHTsVYmiDQ+3WNYqqgplopmiptZs5\n0WHgzwE9sk+QT8GmuolvSJtTvjHOiZMCpKrYfWzdLYYqUXIxN6sgXaNBoirruzLvs6yV8Z27t1Ce\nFksbuAkSu2W9dmzfTHJSes8ztQa4ev2tJk01fjVc3FkxbKlRmBPdNjxNy7ilGlvG0szPyVXU6gFr\nGibXXIexPp3bTMDicfnxcD6Jo+mqdA6Sk3Jfay2YekAgS26lxNadgu8a7Mvhl9qolBZBXeafxCSt\n749b9TEVH5bLJKircXJbxI0ohukzUpDr+vgH38kzXvSrALztt9+CLjsmHSOSLpicc544MLv2f4i3\nv+cKAL78pc/znW/+IwDW4km2bxKDmk5n4vQQGAwPFNr/4B8+93kA3nHF73ZZtC4YZBjFPMBmN8Le\njGIS/cgw6ALexCPqLs//W2WZuNn+Uf67jsdkRHO5HH/zN3/zU3//3Oc+91gOtzE2xsbYGP9tx+NS\nMtmw6ei2BV2ud0jsobbxfaCQ0i7y1S7HlRe9/JUArK0t882//2sAtgz3xPhRmygW3fIwCRUcHRoR\noW5FfhDF/b62A6MF8QS+/92v86IXv1jmk+qnrsTEtp8gUs/yyj//KAfGtFWyFLKwJAWberFFVlvq\nMo5DKiOeVmSZVDR0X6t67Z4AchpGDg0NsWdyK/kBCT0rx0/E5NQJyyKppLvNBqRVnM40kwQ1BSbX\nO5QDtcjE6ZXfjtgJGu0+ejcik1XPB49Ac/yNJoTad97wHRKhPD7NqotKxDNbJS5AkIJQU+NRV9xu\nZWByp/x2/65Rq/2UwgAAIABJREFU7npQQrdD0w3GVdBs/ZQX14IcTNRxJQ0oDQBmBtaH5TjDAyOc\nmxmioqoDuftrDC/JEdxUiuRqWzPJJave3vbeDNkBWffB0RwPDMpFNJshY7vFqxvyHaZ65bcp32F5\nTc7XcJMMKHu83WdQUOHrIi5F5Y/uXY/pF5jX7oK5Bzwyu0IGesTramVN5qYkR3J0JqRPKfWsbIvj\nM5JSyE+a9PcqcXUyQVHBvdVTFXoVAF9rBRw5LhVAf7vH5gFZpNCNCNsyyYkEI9pGvFAKYwxyqx5h\namOMkwZTC4BeMyBSLPbEQJrbrvsaAH84Pc2HPvxnMjdOH0o8j+MkGeiXm//2d/4ub3rbWwH41lXf\n4Euf+VsAkuVVJgYG4x/67aIocNO//pMcvzfP5b/1JvljZMbVIQMDM+atDKVVHCAM49C+m3LDNDo4\nUYF0P4Kb+RgwovA4NaLdNPdB2Gmj9bva6G1OK4B36Afp2F+fThXu5f/jtSwtSth73w+/QyHb5r+E\nsJ0iMDschaERxX30RhjhaOiasm2aCtpvrq0wpXnNgTM2EdSU5KJlc9VnRO8+2YqwtTparXmsLosR\nHc71MaCUaV4Ia0Gn99fRnmbPCEipxdi/Q8rcezaP4fgBUVlevAGvgq0Aezuboqms6iUvICxL4nFx\npcHCor4M+QSFnLxI6dEEeSXgSNd8yiuaZ1336U/qHKpQVMW3qSKsap64TkC4ppX9Y8RjrfORxGbo\n0/76kckc+fPF8NsVj/qMrMNtN8xwUHObEbCMXFcVaOMe0iQ4S/vRB3b3Yo/Lup3MrDNtyqZRc3ZS\nLaeprQh4O7PeYrPmLP3FImsPimWvAOtqtDbbMLZNzrF1r42ZkTyK15Mj3SMG0my5rJyQ7487w9x5\nm7SHlVoWZ58vSIu+/gSj2oxRnG7nUqG+ChcozUJNeykSwJ1HAgYs2VWS2wrkRxRdkQjIqsBhf3+C\nB5Vqb2axwaTTFj4MWTml1XnbYP+5MoeZcokHpmS3O/VAiXMOyHpNDPeQUgYZExs3lDs0N18hnZPU\nxMq0h91WUC04pHVzIAzw1diEUcCECvOtHLyd337tmwF438c/wrYBuckd0jpwLIdImzdME7IpSaW9\n9BWv45JLpQnnK//wWb7+uc8AMNyXJ59Nx2s3OirXdfU/fZXJ3bsBeM5zntc5g2W0if/FOuqO67vE\nXpfliPovCAVtu9fGfxg1R7tRyjD4mQRB22Ojd35jbIyNsTF+jvH49ETp6voMOxtCKt3xRENi7liw\nYoasR+3cymTz/NobZff801PHqc0KIXI6k6QNPTMtk0hDCtc3iNSNdQyL0BBvsu6ZrLXDI/r5x09K\niHPGh59CxpEdOWp4fPMLXwVgc2EMQ6tey2uruKHstmbTYmVVPVfDw1JPN/JCwpZ8nugdZnRMvIWe\nZJu+LsBwDKpl8Zr8UglXe9iX59apanHISSeoNrSSXK7GBLZVoKW6U0NhhKEVhdZSi9qaohHqFnn9\n/so6aCGZIJJwGqAPm9GcXO9oLst8VWLY8SRccIaSRPdnuOc+8XymZ6u0topnZRkG/U1tP6xJgQgk\nckhoxWJ3H3jtsJgWe4bFSzaLdY4vSxBZTfbw/Auk5zVo5LnjcI2pebm2Ox4cYL9S2J01abFQEc/v\n7rlTrCLzOOTDA0LQTv/RCkZe1tQu9FFQ8mLXr/EEZVDalM+ytCTXk8sZ7CrIPdnaazP+Ailo/e8v\nzjKtGMoQOHVCr0EcMS7cB+4azCnfwdpUifU29dxQH9maHL9nvMCeLeKhVtdcikVtd86YRCofncgY\nNFdlXdKux56tsu4zYcj9R6XPNVdxqHjy97WkiWXLREKjTKMp50rnHHTKuF1sZ03TxlTP2PLAj9o9\n8lCelWLpu9/6m3z2S18CoNDlkjlJIGhThwWxelEiaZFUqsA3veW3uORSSbd96IP/ixP3d6rzvrYU\nD+RSfOHTkobbtGUbe/bu6ZwkjsjNmFzcThoxfV9EgBF2mKeMjhMbF1TNqJuS87G1/jxujWi72h4Y\nXQxZ3T2vdCq/YdgV2nd45+Q7XcccGxM40rv+6E/5yB9L5bBRmsFWnrjIMEQjG4gsOzY8Rkis8Bm4\nVix6libNQ3fdB0C1FDDSJw/9P37lC2R1oj3ZApWGhNUrxTp2RkLM9XpIVXk0k45PryZ5nUSWEQ1l\n6vUKoVZ1cymtXBoGrSBieVVegOJaiZbGKbUoxFDSFNyOAmohCQW1fqEVsVBq6hygXJNrrxZbNDWX\nmSBBlJJrb3iwrOtvIYJwAKO5NJPDMs+zt+0hX1SY1docQUmbCFbWWNUwdi0E1KBkUzY1W0xnEERo\nsRaXJic0dziWhqE2wD6KaKrhcFstUjnBXD1hdAvjWsFfrq1y/ZEFfFURyGXzVItikY1Wiv5dcrCh\nhsFqWyKUznOzAvRrSOiWQ5qW/COfsBkJZa6DqQz9k3K+IB2S1DkZLpy5Q1bmwM4h5g/KRWSABV1T\nxbgzNQvbemHzhDyoGd9kbUHVLOs1wj5JeQRVg015OdfhBY9SSQX10in6EwpXc0OaS3IvrRQkdDdK\nhSELC3LvV40Vhgc3AeBhkM3Il7ZvHeL+B+WGLCzNUhiQjSIykrht8UXHBF1f2zdiGlDTNrAyMp+1\n9Vn++PfeA8BHPvxhTqMcar+LoUISgYQZxWwZABMTsll9/MpPcOMPb4n/3iZsyWedGJP2f77yRd51\nxe/JuqWzHcMQhp3ks9ERaAQjbvyJjM55u3XzjC4n7bE2UG6E8xtjY2yMjfFzjF+wJ/rIpj8iwtC4\n3UpAoLhD34P2Vmd2sbXggq9eo9sKsLSSbdNFhE/H+9+8dQdveOfvA/C+97yVQadN9xXh6DZlWA6m\n2WG8d2M2eANHNcCNMMHooOzgV//Td7nstW8A4Nqrf8DIgOyw2BZTRXHHWjjUlZZ83YtIpbqKSQkJ\nPUf6e1nVgpBXWWHnJvGee7NtIa6Q9arL8WmJB5dKET26Fdp2JzQZTftk8+J1hFFIU9d5ru5RVaD7\nEnBSQ/gEHRmjguFSU68smYKUhtWpdI49Y3K9kxMFDPX6EkGFY3PC6rNKiXUtNPVlDLJOO5vfedjc\npkcNDTdJsfdAuxV2neMLcrLEHIzt0/MOQFmLW80gR2pEMLI7n3ERR/5FGh/unDrBWrVCQisMTnqV\nJb1n01MZxs8Wr3TsaXnK94kn21pbI9Dy8uh4ku3j8rQcO5GAmraojvaRSWv74mgviR1C/0itSPOE\nFMfKpTqjBXE5d4ynOSyZIvIm3KeeqHI882BZIqqJPrlpqTBga6/Mc81wsZDr3zuxjaQqKJxcqLKg\n83GrAcMpRRF4IW6jjaJw6PHk8wghK0pBuBo06M2rWoNlECqZcn9Pji0jEtrX/TJlbdgYTo7Rl5ci\nmR10hb1hRKSNHLZhEen7WUhZTD8oTE+fuPLjvOfN7yAeXZjOdvXcMMMOs73ZkVV2DIOnPePC+KcH\nnvZ8AG6//rsMawH29uu/y48vuACA51/84rjC7rs+hjJGWeluX9g4rY3zESnvHp7/ewzjF2xEfTqN\n8Z1rCfAx2ubPNLESna+3+SMjk1haIPQ7tFhJ24yPuO/AXk4clNxNSKdqbwZw9hNEROtd7/swH36/\nhPZ9aRNfYRORYcaa9wnLjCUTQgxyCk2KPIOkSoXecvX32dYjVcTa1Ar5tJikpUqL6QW5Y/lCjkQg\nFqzHCslrr/rk5m0x9OTQkaOcmBKDlMBiNi8vVZu6z7QjQq9C1pSFGAJ628VUD9b1oT81B01dUcdJ\n0zsg8WTB9VDmPFLAmj7FPTmDlIqPles+69rDftamHvYoCHqx6rNeFhjNLfcep1GS4990+Ai+3i8D\nk0KvWKZ0LqCQ0QmV62xp8/HVLQ4tqyIoTQ7fJuFvPwFqN5l0YVmNfWXYIaHKqzsGR9m0Xb51eHWQ\nh+ZlbVfWIs47excPPig97HcfPgEJrUpnh2guyvptGR7k7P1nAzAzdZRKpDnOpMVEUubt51tYOted\nY0lapizwjdfPMHhcFmbrjgR9aW3eWKpz+33SUpWYDtisofvmbXDuWbKZfuP7smm4wFIFDH2Qe9Jw\njqYIfnAXzCjt3tKpKS5701NlblWTnrqEtH7LY0k5YJOJLD36vNbLTVZWZG4DvREvUlTAUg7olfxT\n4Peyelw+p1MpIk2ppFMO69oBd+LYKXy992NDQ7GhCg1oaI7NMhNdunM+KQ3tv/fNL7FVN/1XXvLL\nGO2XJgiId2WHWK2VhBnjkIzOGw8kePfvyTt544UX8Lkr/wKAvozL5/9aPu/du5ctk9sBkfiJ2tSQ\nTRcjdZriXXz8R4zVHyOsqXtshPMbY2NsjI3xc4zHQTgPXWUhQMiaja4too2pDQ2IOt2XMYtOGEax\nyJ2TsOKd4aGDD7Bzt/T1PvjQ0dgVtejgwZ72lKdx5FUShn/1f3+ScZX4NSLitrLIiOLqf8PrIAcS\nmFjKIB5Vylz58b8CYNtQfxzyP3CqRNMWD8cLQxIqmTwyWMBKiiczv1Ll6ENSJs6nPUaUoTyVSpNX\n0LtfFffAbPjYXi3GxeUc0EIyzSZE6kWUgyxRS25v0auzoBWOMaBNlNRrwPiEhLY7zxjHzIu3t1h2\n+cmND8kaLtYoa/w/u0as655wwNBy7AJgOHItQ4P9ZMbFw6lXK5SaUvF2kjamL5/TUcC5WgSZqRFr\nqpeAXXr8raMQpLXA0eoj0VLc5vgkI71ywTfceYQjJ0VNoBa1aM0sks20IfoeaCohzDdYQLzp4vEW\ne3fK742+UaKisvMv+8zqNWwdgbAm98lfq3D2PvHeVko17CW5hvVKncywFJMSpXnWjkqRJtPqZZdi\nLh9cinj5iKzv2EUSvYyYUA9BVaIJDBjSAtW+SYsTbQ+9XuWfvi5sZL/0sifxtR/LZ6tapakSyPZQ\nFk9D/p50hmBZC6GVBts1eltagMUFiWxy2QRj6j03vJAoki8lDIe0Vmktx2RW9cEcM0Vfr8w/MiFo\nt1maVtzD7vsWtnZvTPTk+czHPgLARRc+jaGhNpA+IlLGfiNtsn+LpIQOzS7TbQPaenQYwoYP8Kzn\nPZd9Bw4A8PE//1/85IZ/BeCG667jVROCnba70DlBEOL8PPH5Y/BGHyfV+XZv0E8bUZOOiSXquM4m\nxLRvYejFmthGSBxamsADapwiOk0KBh1GvSiEV73qtQAszK5wy79Kj69Nx3gHkdGW+ibwQyK/A8i3\nNT9V6MmwuipvhtlboKoqjMtuI07emqZJJi0P0PjgIFPzEho/MHOKfiUa6UkbDBfk+6MjWQaH5OUr\nr0iY51Ya+K0m5bYAmgmWJkWNtB3LhvSbKQpKKjG17NMmd2vR6TLZNLKFrXulcjs4kmOmqfR3q8us\nqdFeAxSbjx92ukAyvTkixSPldw/QUCO1Elj42maVaCaI1lVfvVTB03s0DGwZlUfvCTtzrJ2Ui6m2\nArafpSQaC3Va6/KSZ5I5ejPyQu7atIlFNerF9VPUovaVmVRWfcyUKtUlM7BVLbXfAkUPuGGG5QU5\n9+7tW2IqtplD86xp909vb4LePrl/B293GR2R+3TBZMDMlKzLQyfXCEsCwk+XT9GrKrFnjiWpjUrC\n5MidM9z0L9JJ8LuXnQ/Am1+wiQ9fPRN3jVWrcFwRCVt3JNjRrw/piSb3nxJj9pT7l3ndWUL+8dUb\n7mS1Ic/CStXCUYXPoZ6QyWG9XtcQghSgOO2hPRQ4o6v07BCj6FciokY7gE7g2DKhbC6Nrbx4J+fm\n8dQ69ffougKG1el6iTCJ2lVyI2KsT/IgH/zj9/KJK6UzyTRNjDYTjWVxaFZSKPt3DmO78tt7j88S\nW7CHxccjYwLf+NDH/oqP/bl0Sn3jq1dx/pOF5GjHrsk4zxpGHS4M4zSL+J8Qtz/K2AjnN8bG2Bgb\n4+cYj5tw/vQ9oxPMRwTEOuNOxzuMmuCqmJVnBEQKtg2tEFO/b3EaTTJ+m7gl7IKwdbWS/vobL6NW\nl/BwvVplqCCekO8TS8oSmCQ1lsmYYGqF+tR8iXGNq/2EydKiFAL6ewwcPVvfQD+OFpMOPnCYlYoU\nG8b6Mgyk250DLi31XK3efsy0uIGWJd6a4xrY1Qbamk8TSPjiva01XBarbZyox9NU6OzCvn5CBd7b\na0UO1uXz8lKNu26QMLF3a4EoK95Icb4Z34sEkM/JcbJZhwHV7jH7U6ympIobErI+JWS8tCCl7IAD\nDYjUC1pEimAAbibNYUVEHHtwnQNawZ5Mw7jqw990KyypMtREK0HhiWfKfGqj3HNEijgnT9agXYoa\nTuL0mJTXVSeZLGRVuJ51KOg1tTyaSzN6Db242thgTvSzoqJ1g/Yg1ax41v5ghm/8XxWJOy/N/rxc\n0IO7h7nxbskn1Y+6PFmf4DP9FmeeId7eS/Zv4auH5Lc/uX+K84DXXLqTmdkZfnKvrgUwrb2ywWyD\nkTF55vbuyjI2JR7nt/71Tt71GmFF23vmAVaq8uN6q4LWdLDWVxjUtas6FjcfU8rFlkdV13charBj\nQguMvcNUXfGq67UEfkILXQmDRAx7CVlUZIkZBeT1fmSSOQxb01i+gdfGy5qQ0fTC1PGHuPFGYcV+\n+lOfRkyt1DU8z6CpEduOgXGOraz81HdkGp2e+ndecYXOv4cbrpXQfmjsVfRq2sGwDELFR1vdwPKH\nI4G6W+cfKfr/79c7b3T9X9s9Nrv+qy6iYcR5yiAIsNKaBLANQg3FTMsQBU9ETbSrRTbuow+tLrLs\nACKlmRvoy/H2dwhEY9POMyifkoc1m03haLgQeAZmuxLohpQq8vDNLq1S0JwigclCSV7UTBLG+iUU\nNZ0Mi1UxrguVIoYes4VJU0WxU2mLjMbPRtLB05RFWiFO2R6T43Mu7Q7tJNDQjiXXN7C1rByYeepN\n+Ty5uR9XoQxrZpW1lvz6pOfH8LHFWZtAQ66FShiv/mDWxm3JcXpSCRxDfrC8HHKsqb35R0poFoGd\nm2GbguebizCnAnFZYLduSsNb08y25GU+3AB9/kll4PiUKmsCKd3dBvIOeaWdO3JwgeOHhFPPKXuE\ng2LIo5RNnxFSbrbxcAMc2CEKBAdrM1B+UH4T1Kisyz148MdTDPbJKzDZG7J8SiZb7PMwJgR29aQL\nhrnqpDxFh6+e5yJF5Ft7M+Q0hN+cKlBwZcXW7DxFTRy/6fIzmL5SjPo1B0/yW0DFTPHbl/8Sn/n8\nnQDcdt+sQPcAvwKLDZl/f0/EyIAC2usR1yrK5LLXPIf6ksz/6pvuZUTvU2skTdlUUvRylVndM/o3\npTG1ta+46nFkXtZ3795xhsckPzo8bHFqQakSywYDGW3ecENs3exKtQXMlBCKJKI0pt/uTzdjEnoi\nk0hrBBnb4e8//VkAnnLB0x/JhnJkapVdw3IFgRGxW8P2h1ZWOu+tD5HCsizTiMP2y974Jj71ceHp\n/eerruI1l/2GfMdIdNHTd1nHgNMJQ7tHN9xpA2y/MTbGxtgY/7XjF+yJGg/7/PB/tz+1P3fIlElA\nKiXTP3z0AY5PS3W0b7CXycltAIzkh+OKX+SbWIrpNM3OHmVb8n8ANg49wxIC/s47f5eP/OE7AfBq\nK/RpS2fLt/CUyLeFSbkp2/CWsSSWKXHT8nqdNa1K9w2PU9cqwvLyCUp1CVmGCiG2FpMs2yAZam+4\nH5LT6+pJ21iuuClNdVdmyk2OddHKjeUdClnxKBJJ2KxIgPlinntmJTydn5/DUo2eprfOlNLlLXk2\neUt2+XI9pFKvxCu/c0LC2YlkgBUmdQ5Z1tSDLNWbVH0JN82+NBMJ+TxWgIIWTZarHeb6zcCmXsXy\nlqtkaio9nMpjO/LbRTvk7oOda+sJxYsbHJgkr6Hnoakmc3WZz5YzMqwn5b5YgUcLg2aPYAf3v/CV\nTIzIWhy87yjYiu1dWsdXFv4qeXJamCp4LimljVo8tMimXinSJEsz7FD9KN9xaBYl9j51yyLJUK4u\nxMLTyn7PeJYlLcY4mTwXveBJALzvqh8AcPuxEpc88Qn8xuvEq3O/dC3X3XlS5uZZMU9hzfWI1ENN\npWBqQToYHjqyk0ueL1pEVx+cZ7Esa7Syo4eRXvHKZ+cfitm0hgppsm1Mp1mjtC73r1JtMjwq3zcT\nEPny94HBbVjIM9pYqMToTcf0WFiTCpjRkyKn7ct5y4opCwMvoum3WetN1uYllXHTjbfw9Gd2gPSn\nD22jxTgtbI/bNenSozeirhDS5C3v+B0APvt3n+baa64B4PkvuAQeqaAUGaeH8I/kcT7GetPjyIiG\nj/KdbmfZxmwX+ZzO5GeWjnHjTdcCUFyew9KbsXfrXraPyEs1NrydyV2CQB7eMhr/+KfXTR6abVv2\n8Lpfl5t05Sf+J56GREnHwtZOo4RlM7cihmrXWAFX86PlpTJDA/JSNa2IqVkJPxfXZ5jQ6uVQ1ien\n/elurUlQFiORMdMMaONAvxmyVJVH9JTCV+5f8XFTNjv0OBfu3cQOPdf6yRMsrwgb+my9h/uUDT4K\nq/GaOEBRjYiRTjIxKiF240SDnJbeR0aTbNsqxmmrFdIsS3h626kUrTZhSatOBjG6F4z1s0mpBZvF\nIg+oISxCzAO6awBWlM39hOejGVT2ZnpJKLfmA0trLGrHzgXAsMpC9LkeJ+4RlMWKm8VQGpRMs8zm\nAXkz6ks1ZhcSeBeIbPczX/xqvnefSFUQ9MO6GsIZl36960WylJXAo1gxueBZkrW979qTOA+W9Rw1\nnj0o1fYTp2osKq/+kbAY59WPE7DuyXMwdjTB+Da56vpyniftE2G7mikcCzfOGpx3Zp69k7Lul738\nItb8GwFYminSbDR0PlVW404xSKTFyN1y1yFef85eAJ7ywidw0z//EIB7ijU29Uo4/PTzL+Tvr5E+\ndK8nS6ogD/tEX5rgmBzfMZugGvGnFstEkebcCylG9gvI/7a563GaCs7PWEQa5s8Xl9hmjct6ulGM\ncIiiDmenYxtYhqzV//nyFzpGNIJQu5dCIh6ck5zr5oH+mOsBiBtdDBuMtope1MUWguQ/Af7H5W/g\nk5/4GADVeo2X/fIr29/gUduRHik9ugG23xgbY2NsjP/68TjxRB9pxwi7/ttPbxHdE3/xUy/lxU+9\nFIA7Tt7Gt770DwD88AfX8rWjnwMgbWQ5/8nipZxzwTM441zZGfc9YQd2F0t+iIGJaBSd+8yLAHhN\nGPDXH/kgAJuGLGyN/xutiLIWF5qBSVpp3EbHM7S0j7nlVWkVpWDRn0uS1fbOlt+g0RTvs1oPqGtf\ncn8ySUGZc0wzgZ1QgTWlUtszETG4Z5xMSjxF181y/wPiBZlzRUoNWbdso8k5it08Tppp9fD6gDHd\nOzcPpdmudHGLuQbLqsNUbrjcdZvMuTLQjxWIl1lcC0nqfRpIwGYNf3dGyyxMyTyPLcKUrmUKUDVn\nKi24ScG2Lp0W3HJ9nbUpW9eqFt/pwniOoCrYxB/fE1BFPMbB/ogdWsBrpuskx+Xm+UmDwWArr79Y\neqtf9yt7uP3B6+T650pgLOmRW2QdmWvTq2ErrrRmOUyHctzU/s3QJwWPZKZF2dPGiZbNA6ouVLOb\nDLTZxQKo6d9XkxZ9rgTTrbUFNp0nUIWXPEH+tzq3TqHaxNTw+dzRHK/aLaDxz59aIaWNFg0PNqsq\nQCmEE8qGVbp3DrRF8+J9Q9x0jcyterzIaq+E9h/9wG8QaLvt9295CLSfvMeBQkK1oJbXqK/JM3fX\nXcso3QQeN/LuS+Vdqj4l5LpvfxOApVKAqaTJUaKJV2hTbA0Ree2QPIrvK0aIre2dleIMxVV9BwaG\niNrqEb6PpSB/0woIo0406vltQmcDOy4IPTxa1eKWAW98g7Dff+xDH+KiZzwXgHw+R9x6Y1j/vmbS\nY2RxepxU501ON6Ldne4R3f31/944a9u5nPUH0ht9auYk13xLFAcfuv1uThy6A4AT993Jv1wloc8Z\nF17Atn3S1TS2YzNj27aye2wTHqYwegDPed4lFBU6c9VnPsVmBTU3G00G2iBi18VJy/cLBYeKIo3m\nZ5fJDatsiG3SVoyvez4tNcBWGiy9xkYQsK6qm1U/hZ9UOrs++d9tg0msCCo1eQnXlhusqSBb0ApR\n7TsGhpNkNPSMloToA2AQG1uTZGM5h7wuezlt4arGx2LRI9C4bHbNold10QcyIa4SqKSMFNvG9HPB\nwlUVUMeA/XrMEjA0ogqaYYYtOufRqMmEsvEPbsnwjSkxCrPABbqcvak6t7fF3DDp06fbLuYwFYnR\n6M9T6dOuL8/lWZfs5/W/JHyT3vEVstqxhdkLp3SCDDHniZELaIFKouR6bIrH5PO5EzuZCLXJYX6a\nsN1HvzvNyhENe/0O8/4QkNLnd644R0J5NOdKZUYnxPBc/mwJwesnZlk4tsS2M+WZq68scenTzwLg\npsMr3HZKtqDcADhZWa/WnB+/Do2gzk9uk/zo05+2hwv3iQG+9eYi5aKE3m4r4H1vEkP4jS//CZ6q\nBbSSCRrKwF9aLdKbVQIZ0tihhPl2PeDbXxCO3He994MsqPW+59abaCpnbGo0z9ElyZs6k33kHTWu\nfkioz00YgqO5/Sho8sXPfwGAt73r3ViWhuqGEeNnLCOKeUxBmmag3dxhdP2jw7ARdtHTp9SD+b0/\neD/1qnIFtALQc5lWhwujOz/abXUio4vZ/mcwphvh/MbYGBtjY/wc43EUzsPp7np7S/C7Pp9G+Xra\naEPVm66HqfxdmzZN8sbfejcA1WqD678tFbw7b/gR994mLNr3/vD73HHjvwAQZFIUtm7jc1d+jk9+\n6mNs3yYtkfv37eIVr5DW0GqlyF0qolUtlxnJyg6YDoOYacmwLKYXZAefLZXp79EwMQW24j7rTRNb\nPbwogpTqKiUjA1txos1EFi1ix6TKWcNmuVplalYqw8snm23pdHp6emLZ5v5UyJiGfb0DNisKlM6a\nFo32Luxcxmr6AAAgAElEQVRGlOaUNSiIWNfKez3qJPijpENOqdoS1Rozyi7c4xuMFcQXq3khy+pB\nFiZgvy/r4Od7OeNM8cCOTJXIafHizKDEWQkpSo2NVVhZkB//cwvUuSWxHlLUK8uxKNVbYJIapXnx\nYqcSQ0zNSQXY2LyV/a8ZZ8uILNj04WMEJbm2dCFNo9XmC6wTZJXHqpQinZZ5hGGF+gk5ee/wAXbs\nFQ960A84qZHBpkSLs4RSgCN00habs7C9T9baWQUjIU9jPShCWrzAfRdOAjDhpPjx7Se54Gyp2lt5\nXx4M4PW/dD73/4Os74lomZrif8vlTquuj82NP5Ii1W9e+mSet1vQJMduv4+EVsYXFko85TxpEz13\nfDv/d06YrSZbLnVNMy0Xm+DL5wvO2o1bk6vxauvc9yMpSrV+J+SK90mb5dsuex1HD8nFB7UQU1Ed\nx1eXOWdcvGrD9Qg1umq5Iel0m9kr4NDdd+kVdFQlzS71OMswBAeqwzbb1I8PT/V1GnSCLk80VsLA\nJJVSzziMCI12lT/CbNuXyOy0rXaF8KZxejz/H3VKH2dG9BGMaRiC1xXat+NVo/M1z+sY0SiwYk36\nyOo42oVcmktfLSHO8y+5lO98W6r5d9z+Yx64/yYALBq0VuVh+vH3v8n3NW+1fXIz+3ZJmJixM0xp\naNhaLbJtu1QpMxkbT8P52cVVFtaEADORdiiW5ThLSy5JbdrfMpgjmVcBu6pLXanCMjmHwrAYlXTB\noK7XUlnRqvD0OjPFJbSIS27IiUlH7JEkNbWQi8kQC/lSMmXiaMfVesuirpRmtfWAckLmM1eus1Tt\ndCq1c659g9CXkUp1o7pOWgEthVREVJY5TZ9ooNpvhCHs3Sdr8ssXPZlbDgrv6fyJiN3bpfodFS0O\nL8q57j1VjmVengRMaO73SJFY23zVClH+CuYNP0ZB+F6NwJVrfPr4ZoacDMUH76T/ic/m3pPX8tBR\nMTZ96zM0QlXDCz1QZn+D3SSUkGNi+xYSB+V+uOzB1YrwwM49lE4IQWh9ydfMskiatPlXyyYcVPTE\nZhcUHUbvaKKjQrlDNuTnPv887j+2TCUrf+85Zz+sS3phX0/Im+uSivqjL32PEyoumASGVQU1ly9Q\n17DaaMIzd0qu9UuBRUKr280wggm5B7/6Wy/m1j+VDb1vWxo0n1ypJ6nX5V7umOhlZFy+/9DBm0mu\nyMby//7RB/jOD38EwJ988EO87TJxJEIiIjXw1VMLVJLSTJJyMvE7V1kLSGs435tLYhlyn06emGLb\npGwoUVyBgGNLq+wb0yQwYNjdpqm7PtIxnIby/QZ+EPfvR0RYTpeRVpsShh1DC2GXnpDxsKp8x3T+\nRyP6jXB+Y2yMjbExfo7xC/VET3eeDTo2PSLefcyOCBUep/vW2m4W+WGH9SkKY7E5L7QxHO1D79Je\nSvfAS18llfoXvvI53HyT9PjedvsN3Hzz9+XQgcvwkLgUtl/h6H2C5XPLTUytFGeySVIasmSzFtMV\nSWjPT89iaFtcywtJ6XyyKUgqm22j6uN24eVyij01TIdEUsJkw7AwtEVzaUHD99UmrRqoA8ZyEMZU\ncmun1gm0r79k+sxog30WqCm2Mp3IEmm6YKlcoezKIi7HkGlwcOhXFIEftFhQVvls4LFDddF78z4n\nVWC9VgJVi2a/CR+/REmTj6/z0PUSAmbMUZbW5XG7+7hLFQmXJ0myqCz3eUDVibFyItcMEAYdIuk7\nWActlBjlDGcGEs5eOj5GTwBLi4v0A5mBJTYXxIMeKefxTAlvl8MstpaEokwfbl4Qq+Uxg1xavLHt\nTxugR+n8ZpoRtZQswLHVFdqd+Q7wav38kj1Jbg9kvY4cXWdNVJs5dp/Hgft1XXfUYAxe+dy9/MWi\nx10qRD+YiZifkuM/cPWdlPUZ6g2NuHC1ZxQGsh3C7LL2m3/5mkP80lOFCDyTLjCrpMxzyy5U5Bm9\n6IKtvPy5Em7f+8BdpLX7ZLA3AsUL+5TZe64wyc+urRHVxIM/OHWI624X1vqLLrmU81/4YgBu+N43\nSCrVY08+y6qiT3Zt3a7hNzQcm7rmohJmSNKRuf3guh/w+snL5L5ixDppGAb5nnbs8fDxCG2cEFft\nTRtCDf/DwNKwXH4Xh/mGGatlGGb7/z3s6FH0iKf69/Cjv2Aj+nCXOW5HIDaoYdD5s/Owq2mr90Xg\nq1yh7/sxj6RlmOBYPOLQPyctePazBBD9rGc9mZvvezYAz/2V1/Gj64TgYGHqJDtGxKD2F/JENTm+\n37RIZpVxPu0wc0JCxrrvxxkI07HIaTU5lwDblf9QXnPxVNHQsg1s3TTMROdyZ6ZO4VYlHA5dBc6T\nxDZt0rZ8v+YHtAnjrcAj1Jek3vRpg3p6AVePP+96GBW5+Hros6IBaohFSnPOW4byWCntnGlBoIa/\nrydBTslIptda3KcUbvf6sEOftA/82lPoH5DPX/zwj1jVq9nbt5M13XzmExZzug55IrbG6IuOsZwJ\nQSN7KnQ+r9DhQ93arPOs80Uq5Nxd/bgZj+X5JfYC9UPH2V6RaytXhiFUqncOEI6LeUqnaxR2yedE\n/wNs02hybGiB3dulij1TyVGfFUO40grx9ZkbMh0s7SI7JzEBtsqSDCaZV0vbqhc6UgPtlzKd4PDR\nVW5cuRqAZE+CM7aKIbSaBo5Kz17+3HP40nV3A1DIrYMKEJarTRqRGJvv3PQQgQoortXDmN+xXGlR\nnRLDNj6R5VeeKkb04N23k44kVM85AXHJP6hx1hMFYH/nPQ/RPCR9+qm8w/U3Sjh/4IlP5N0f+EMA\nHjp0DyuzsvkEIdSqcky31SJhy2aSTSfinnevFcl7DBw6dLCjMPGwDsXoUY3Vv91eZJqmhu7gW1bM\ntREGEWH7oKYR50EN0zjtkI8RY985/8/5+42xMTbGxvj/9fiFeqJBGGGaRle9rpvhvg2SDcFrU8l3\neZXdX6FDuOy6HQai/dtH6FVm8UNHj51+bv1fm9MX4clnClj7N1/3Vi588jPlt/fewV3KqH3f/Xdg\nKgXfnvF+nJx4Ap5tMqtExs2Ug6WVkIHBLD26C7eWKqwrls8KHPpz4kOGCZtWoJXxcpVTytZeLTZi\n8uIhDa+HemyauXRcza83bEJtzfOsVBx7BHmDQWVAd11olSX+N/wqZc2DOEk/1tPptTOctV+KFKa7\nStnvNBFYGgFEmTTzTQml719soaUaEmR40yufBcBznjbBzTcJQ9HXqWFo+eXM1irn5cQz3NU7x11L\n4pVObs6yp0e8wS35SRorco8/fvSO+L6cC7xEHE6+cwx+on8fHcrx1IuEqSnXP0amN8PiusTSxlRI\n9Yis2amsx7IW2exkL7t2CZC+Yfdz1hlynX3ZQyzdJvObzx4kCMUT9ZwMx+4Xz2xlNUT13Oif2M7O\nISkCHWz6HDsmaI+znrSTA3oPDpy5A5Ri7r7vXsuZZ7+Td37y69x5zzH+nxduA+BXLz6fic3iKfKC\nFAtHpG038D0GRiXlceW3rmVNWbhPVUySqr7QAHZsk7bm7dsnuf+YeK6rpRUaquGUa1R5ktJqnb19\nmFMl8VAzoUOg+uJO4DGalfr/WbufwA3fFWz1QAEO3fJjOdflv8ETtkma5vf/5M94y2ulyFRfaVHI\nyBs3O7PEjq1SNOorpKhX5R5HQUhTvdLi/AItTSHlEkm6i8q3PaQdBY86Hl6pb/+2Wyc9iok1I9Po\ninWN+N2IHu6FGl2fH8N4TEb0a1/7Gt/+9rfjfx88eJADBw5Qr9fJKDHBFVdcwQGl9X+00XbBfzo7\nEcbuv1BVdxPadX1Vvx6aRpz7TDspkiorkcknSSrh4v59e7EUgnTPwYOxue6AecSE+wiQKgT27hAO\nyyfuPsBzL3wWAPffcRuf+/SnAeFzXG+1u21Cylr1Jm2RyqoxC5rMqTRHfb5CrSRnzKQCGm1YUN5g\nqEe+X1n3cVResyfbYk4ZPHKq1jffapDPgp+U8w4MZOLccLGWoNkGZYcttk0o1KgZUtHukcPzLeaU\nuyzopEHZPT7M5JC8SEdmVilXZD6ul4wB9l6xxva8vMz9EYwPy0v+vuedybN2SCz8lW89wNe/K00N\ny8BmndxkaooLt0nO8WBjhCNLEvPuHStwRq8E608/9xze8c8KtaFztx8EPqN7YAVoc6z3j2R40qBc\no53r5frZJDdeNcPTXw4/nIO7i5Jv2GZXYI9Ux/1ameaqnO/k/BxJzete+szt7Nkr6IGmdYoTa8op\nEORoLsnnzckkOZUfGYuK/OYbnwDAoR/cwsE7xXiXT1UY6JeNu3Sogn1QQOlfOzHLP7wX1ksmv/qS\nS3n5+dsAmNj5RGjoc5P3GN0ln2dXprlw71YAfriwl89/S7aOlmUxqoQtE31NXvAMAdtPrZ/BiS+K\nsZ9dKPI3f/ktAP7o8mfQNylG9Mwn7OabV0qSZ0fBRdOsuCtlXCVWecaFT+XL/fL9ulvk1D1ChBAt\nNyEvc3vexS/hxa99IwBf/9u/JdSGkNVyiU2a4jAMg0RSuVojs5OJ8xucOipoh937dmIabRtg8tMo\nnYeP06FOUTvhGfod98uwY9Lh7rA9DHlkY/nwf/xXdSy94hWv4BWveAUAP/nJT7j66qs5evQof/Zn\nf8bu3bsfyyE3xsbYGBvjv+X4ucP5T33qU3z0ox/lne9858/8259OyD7STtRFPR9FnX4wzE5hKWXg\nqCeaMIl74dMpm6RqIHlhQKCu16bNO2Mv7OjC0UeE+gMxjV5QNxjvkx1/2wsmuOcnwg40f/B6KorL\nXAkCDKVbM1wXlOau2WjQUNA3ZoA1pL3eaYeagu0NK2JAvWfbTFHSwtXAcJrVGYm3Q63SL/ot5hdD\nBvrE4x9NmIzm5HPGSJBSr90JQwpKPbc6W2GuLBf8/7H33lGWlVXe/+eEmyvnqq6uzjnR0E3TpCZL\nFEWSwIgzGGZQx2Fw1OFVHAfHMPhDhdcwEsY0Cgqi6DDkICB003SGzt3Vobor55tP+P2x9zn3dtsY\n4F2L912r9lrQt6rOOfc5z3nOfnb47u/ew5HW97QOsXYuOmkaL7wkJNQJx6OuGGDtbIYUPtpVzGGr\nVXri1EauOEc8jRPaUmzYKs791x/dGtLfzaKC45slyz13iU+XogV+1+nxe531SyIdnHOxZM7z+Sjf\n3SxICYx2UgrOj9FPwHleBDoUeT559kxc9S6mRfM89etOXn9FkhzOtgGSiHtb1wu1UelPP9TVgzn3\nRgBOXzCHlx8Qj+qVRIxpi+TeZrZmMLPyOdEJyxT7mB0bJ61tjK66dBEskWRj64BPhYLwc4ksb2hN\n+msb9tKuhNOX/5WEhu7+178ln27k0Gti4eV2juMrJjeR8qFOU2hOnKJanOevnMWLazsB2HNwmGjQ\nDN5Ns26vFBvUtlbQ1irjef+5C3l1o1h7Tz/yPGe/V0Ie0xonYSsmd6AH4jqPgwNFBgbFY1h84mwm\ntcla39s1RlHJvDt3d1I/vZ1A/uGfPw/AC48+R3ZEaCgNp0DPqIR7mqpriQaepg+2qhrXLdK1T46f\nP382RzarDN7AN0kGH7FyrbCM0/O9kBnKNwx8Myj1tEK0gJSY/nF5i6Xzb0+Jbtq0idbWVhobxQ26\n8847GRoaYsaMGdxyyy3E428GWRA5sjbAOOovQVatVF1QXmNfdCAS0NmZpc/lErXBUmC2ZfghK7Zv\n+LhKDdfeMJWk1r+v27WTSBmWP7immwFb07KGDUklnnStOI4qm6GhUWxtjWC4Hl5G4T8D40RU8aca\nYxSq5S0cN42wP7brgBvVB29YHNK2EE7RJFUj8S9XSUnyts+WgTx12qVySjZPRhVqXTJKNFg0ZozO\ng/K9u3pd1gco8TKZkkjwnY+dAcCzv12L3SPxsiqjgjlt8vaPexHe0BDEdlx6deda0NHG/CaZrGgs\nwm/XSlVML8O06LM7a1ozxy2T61TPMHj0fyTe90R+nEEF8Fx51dnQLErkf9+zBRDKO/xKLCVQaYtZ\npKoFpbBnEKbUyfUX1beEL0lvbw9rVq9nfJ8olbHCfubofa4E9h8MyPcOk90nsczWhQ7Ta0V59PSN\ns/1FUWwfvtxgcZ3cW+G1CAPrZF4c4MwmGffyT58PzbK+k8MxZkgYm6hRy/MviyKZsWQy//IJmd+W\nZVqhNG8GyXwL+9ZI2MItmiglKi1Fh5yGP7x4Db2a9a6tjnHTVdKU7fNff5Siboi9VoaXXpf7mjq1\nmoYaGduqi5ew6jSBfq375RrW/lritTUVNbQ2SDBkR/cwhlye7iGbkays3Ug0xSkrT5Xr/2YvBVdh\nU4P9TNbjayqhtUE08D/88+f4/D99CADDc+jtk+2upaqmDKVoUHSCYniX4ZFgm7UpKcY/rUSdfBE7\nWvbSq5i2has97r2iD2aIawrp8ky/LBhQ5rUbb1Vzlonh+77/pw87ttx6661cdNFFrFixgieffJI5\nc+bQ0dHBF77wBTo6Orjhhhv+xBX+D9zBhEzIhEzIOyhvyxJdvXo1n/ucYMfOPffc8PdnnXUWjz76\n6J9xhaMVaFl2PmC59j2wyneoYMhljC4+YdmXUVbquXR6G64tO2zON4klg2QBFPJyzdF0gUiAMcsX\nyZsmmZ791LVPo+eguB25LMT0q6JRuOP2rwGwae0zGDqc7uFeugZlhzX8PJbu4IXhDJXxoLWzxYAn\n1kLRTlBRKSc3V1nUaK9yI5eha7+4sZlhl0mzJEs8XDB4efV+VsxvYuPWHHklRK4G5kwSq8N3CrhZ\nsbxHciaG9qDakxvBywd7ZYxJuovffu1JXLZcEkIf/7cHKI7KGGqMOmYcNxWAl7cP8cSggMEHcJjX\nJEmHG1fN4IJ5jcz44k/4ysmL+dLLYokarbXUaXFBbWaAKZPEops7fwk/eViy9jVU872PSQnu6R9d\nDsPyvRef8y36ChK2WMOB8DlSATOV3bl5EC4/VxAUp37wcpa0yzh/PjrGZ36zma57NuCPPINhnAcI\nouLdwEvqYQzkp9GIgMb76Gf6dPEGPrgwxQsHxLLcHs8yuVIswhOZSewJKRGu5XU+fdv5cqHPfZhg\nvf784fuwH/4vANqnr+S1N8QqmpKczIXXyVgLdRVEj/8whzf/gtb4TF54SEqNZzU1EFWPJBodItqi\nDF7ZDAf3i5WZMkZpVvzlt362g4fWS5iiWJVg5myBLdx87SoeffhxAL787Q9BQmMwO4bggKyJV7py\n3PwfwtD0+017pXLa92k1Grnv3p8CcMFlZ7H5VZm3f73tcxwelkTUpTf8E5d98BMAVEdKoa68C9de\nJc9y/441pGIyhwumTyelNeymaYWY0PHsGCeddyEAN37i5rBZuoFbZrnaR1Z6BuWshRymWpaRqB2y\n7ksBqSJR8j6Grj/TNDCDKhujTNWVEvWl7yj/lz/0i/+YvGUl2tPTQyqVIhqN4vs+f/3Xf82dd95J\nVVUVq1evZtasWW/hqkErT09IAuBIDALGsVkBfO+YVQX+EfTVPkaQ8S964XViMYjpg8nmHRxtCVpl\nl0AB8cSRDoYZ07imaYXfMDiSpaCtPGyrFLuJxiN4qtjTBZN8XhZZvCpJlWbYa6tM7IBjMe/QMUmO\n77Ycug5LZt8ytHbaStCUsjmQFiU6AvSPicKuSBUZ1Z4Ss+fOpv+wKKIW06dbB9oUj/PhVYI6uOSU\nOdz/K4GwxOMmZlGhM2kYHhJltmtwgAGt06mvaeDiM+WlXb5iNoeHR5gBPLNlF5mAveBwmnRMNqsD\nech3Kv1dUz8ndoh7/sl3nczpszTH3u3w2vNSIbNspsVNM0XpzHrkgNYxAeNwUCu0KpNxJicljjvy\n+1Ey88WP7u7eRl3qAF3tGuxe2Qib5D4fSb8Oce38mY9wxQJ5sN95/TB7xKvm1zGboic14KdNaic2\nJM8mkh3C1XZwZ7ZMhRUCSufp+3l0s8RI/uM/H+P0OvHJi36E2Q0SSDh71gmg9+8XZH7imQK4o2hj\nAmpjFrEq/aFgCzkmUBd3qWuUDSs3mKMwJmvqugvO5gcvS7wzVxxln3Y+zfb1cNosjVkOO7BO4ws5\ngyFXNu7Xu3ro7ZOJNCnpqYp4DbZWC3mWy4wThJrPjCZwtU5/ZN8+Erq+LTsSetM1SfjUZ28B4GPX\nvy98x9K5MaoqJXTle0bIwWtkYFS7ehpIM0nCEZUkSLwbZUl7wzZD+rt83gtjn5GIodl9sGwLI8ib\n+CUfXkjxA4VdVuZTpjjeqkv+lpVoX18fdXV1Og6DK6+8kg9+8IMkEgmam5v5xCc+8VYvPSETMiET\n8v+MvGUlunDhQu65557w5wsvvJALL7zw/8igMExCdlTf54hmU+Xilx1zjHaojlkqLDNMH0+Dz37R\nBa0xxwdLd/+G+hRZrSeOGUbYyjYeLe1SRSCn7kLO9UM3JZfLgxWQLJv4415weUY0IF/wo8SiYu3V\n16RQeCS+W8TVa7pEw7FV1cbo3yZWYJ9eb8+hMYjbUJYoGh+VGvGOOp+/+6vTAdi8J81Yn4xnhpVi\nRlzua3pLGx8+Vyy0ghPhnsffAKCt0Q4zqLXxCClbLCgzAKECZy5u5NJTxQo0MPj5C2s5FRjKZ2nV\nc3uByrwkVoaBvXp6/e5efvL37wZgWk1tyfD43Q4e/9mzAHz04oVUTxPr5cOPQBAQ2gBEFHO4ZO5U\nahvF4ho8VE3elVbIG954kTf2bIZtepK7k4a5YhH3v7YSEAty+YoqnlwdYJzXhHmNWS3ncP9OCd8s\n2jIP3xRg6prcShYpNmD55y4DTeTknt1IZFRWhbtpiHWLpGA15uboWKQp+boWGJBrxpoU1G/mwM2Q\n0Sx2obaamPaYwk5BPJjvKIzI2opX13Fol6AfDmSHmNskeNuXdnYTU8TDf9z9DHZWzv3t/2yjJ6Oo\nEQzSpszDSLZId6/2nQcUuMKC5XNonSWWupMwiFbKeOKV9WSU+jCfLxJT+jvfsDC1D5htwPJTxXs4\nbtkpdG4Uz2Y8PUakRYo3Cq6HrRZfxDXJj5bWVEmOwuqUu/P6flqmiaucFE7Bx9MiHNM1QlfRsGwM\nLcg3fL/EolX2DUc7t283LfPOUuH9OXklz4eAHMOIHrt3tGVwLMCUa5lYmmL3HQ8vUFSFPDlPXHLP\nsvHUN3EjHrbClJx4BFfpSx1AqTbJ5V2GtQXHYCZHdYU8vepqA0O/y3AyjGkpUN6zyBmatbchGZNz\nk6kiUVterMJ4mtFhgZIYVUnyigRorK5k8XQ5vq9L65MHhzkUiUAkaOHokVEVP78uwt9eIwryrmc3\n0+OI693W65LsEUX7weULMBUv9JVfvcJ6Pbezz2G+IgRmt1vMmSL3snigghlReRnOX7SCWks0/3d/\n8QS/eHYrdwJ+ooKptTIPqyIZVum6/VKXsNUDrMs1cWBA5nbavGrQ8dzzpQeZ2SFKoXXRIih0ArDC\nhKn6Iv0aGFLI0clzZ9A+Xyp89q1NsS4t8cGfDezAHaUka16ln2n6w1kwIjf96urnKdU8leT+Z58C\njZU+abazXNdT++TFXPQugfywIAm/lCBDvK+Z7l0SK778sqv5oSnhjz1bNrJkn9wDbfMhJ+42jirW\nQg7yGaZqkYBnZxjtkrBLYXgffYfk8/59B9n0nGTV12GxZ0zWUN9wJeNKwBLDxVBm/ie3HCCmO0IN\n/bQ0ypzmGuI4rqwdd2yEiBoizVXVtNbKezV1aQN1s+oBMO0IWa3uapo3l5GXtRHe9k7SSgiRjJR0\nXC4ClarA/uGWW7jx4gsAyJo5Ruu0MimRwgzIJLIeuaADn8MRdBmBvrMo2Uflb7uNhaGcEb7jgSpU\nw3FLbnmEsGLJDIn2VDsEuuNNdM7R9VB/rkzUzk/IhEzIhLwNeWct0T9qheqeYBrglSWZzLK/h8Sq\n5hFnheB51yemMfsiHqaWg5mGHV7G9SCrhMiu7RNRMl6v6IXsSAZg6w8xy6BDy/G274hRqWn78UyU\nsTHt7T4KeU/c9oJn4Sp+1MIkEvQwtxzGxrV9baZAVVR32GyWRFGOH+geJKJN1ebUa7Z4YQ1r+or0\nKK7Ppci4lnGeecK5PPNrSSi8+MwuRgbluyZFIpy9fCoALc2V+NqVbMPWVzmvTW5sOF0g4YuF0DmQ\nZeeTmuiybYZMsSJu+95jzFsgrl7/wDDJmLjeTUtm0tclJZb7+kfp0mKHpEXoLucG97Pq9gcAOOd2\nWKHxiK8Dzfvlif32pvtZmZDxJ9shpzDjTHeEqmXiLldefwHZlFii1ZkD1ObFf3d/nJcufEdI8ItZ\nNCBWYz8HoIw1ipAHuB16xcru9f6brsi7AFg6I827Fut1HnyZLXu1Yd6y2UxdJcmxlw4f5NAWQdsP\nZkdxhqSE8uEfPcK8SrEmx15Icetlt/LRz/8EM2MRr1buAyrY3imX793fR31EnuWkyDCprFic27KE\nWIUoeRbUyDOIRSpwimJ+L2tr5DMfEoRMrCpGXaNYlslp9ew7IPd++/9+mEeeEhxu2m4lbch3zZo2\nnbZkbTAjjCuMc+miZTzX+HMACoVB7Ihirm0XQ+kXY0TCfhMnLFrEoqXCiLZ3y2qyYxKKqqtIYUeC\nxE+cbEbmMN0zTkr7lWEdSVcZvNK+50vmHvAtn6Kidhw8zICp2zRDPKhHKcRmhf87Wo5Vf3/kT/4R\nx/1xd/mdpcLz/whX3xHxT6Psd+UZ92OcVnaEYWhcBIFyOAHnaMSEQgCDKHMFPD/M4Fm2H85/EULI\nVcTyUAJ7khGXuBYFOy4MD8vDzuYMDIVWeZ4X9kCMJyxq67WCyskxOqjVSNkijVUaCshHsAx5yQ3f\nwlfgcL9mSZ3RDK2WRaOGEXrSBRY2iVI5ddkSvvADqZn+3WuHSBaU87GlivnnS8zLils8+ppkw5OV\nPtNnyvcO9/iMaA/2nf0uYwFgvr2B684VcPrDrw+wQ13VouMzqF1Ae8fTDChbvDni06NUeNesmsOw\nhgoC5tkAACAASURBVE1Gx00OvSbzYPp72Kpz2wbsRYgnfjx+mN8oh+htl0GfMpwM7ChSOyIbzmMv\nrmdNlbjmm599hgtG1gKwpB02BvHQUBQXNa+ZfzxTlMSae6v51dUaHvphHyFfIAcJNOp7qabVkYFc\nUVELNXrQzCjbx0RBfvV/OunRTqxepcNUbQ/y8v4+9vz+d3rNaihhDLgV+P6z25heU02VghOaapqw\nTQGuL5nZTosqtlOnzuGMZbKL1LdaDGqIZ1ffCIsXHQ/A4cN5/ubW/5Rzl3cwY5GEXYZG0zRrQzra\nG4j0y9oZyxWJ2zLOBHk8V9ZQUypoPgL5jENOuyy2NTUTjwjqwDbBUG6ISMwOjZlyVzZumVz6PikH\n//KrL5FNi4KPRyaFDRpN28bVTSxT9EkFLSlMjuQR0X99v9QF1KPEo2HZZpjLsMqCnIbvl+mUo5XL\nsZz1N1eof65MuPMTMiETMiFvQ95hKjywLQlS/0GSLLQOy/5iGGVZO1+TTgA+fhg0LnPtPY9MTrPM\nthlGBfyIEX7G98IN0PX8kBnexTkiQegHGFM8li0W9p7nHjYwNOnl5CArmzxFbNxc8EOB6pTsvDX1\nEXwlJs70jTKiBpGfSpLUfuDVxDDzYsWmEjGGC3K8bcq4iqN5rKz0JQeIe/DJq6U2ur4G1m6X7HF3\nAVI6toZEA4M5uX7bpCS/WS3JmIwNw4rHHXWgolnKd8+cN5mdu8SKuOn6U4hUi8X5i627iPkynn1j\nDiOOWIfbOvfja+31CfE6LrtQxnPiiirqThC3kpYovCzW3X993WV0h5RxPnTFiZCXxMejW3Zzr+RD\n2Bvv5g31YXcAydfk+ONPGOMDZwvJzYM//TYPiSHKRo4l4kp/1DuVVwalzv8RPyoW6DGlS8/K8cgM\n6V2++Iom/nv9l2R8uzby2BqxRPfsGgEteFg4PcGZJ8j158RqGFPLMls7hQKS3Du9WRAFr3/1eqZ3\nTOGep6XE9KEXt/DcdgWr4oKGHe7bPMaM38i8/9U5VcyfKy78iuXTibfLWpxW30ztFLGezeoUh7UP\nV/9gkdYp8lwjIz57tV1AZ2cvcS1cafAOkfIl5PT8ww+ycumZAFROmo6nWf6W2jZsDWqZLni6pG2z\nBHOXZIyak67DaWcLR0CipolMRp635xcx1Jq0YjZWUq7pmxae1gSYeUraqALw5JqGXSqgcT0HKwzJ\nWWUWoFdyvMuUiFeGB31zG/PI7PZbSSy9o0rUoVQ9W8ZlDz5hzAW8snv0OZImxC39miAmUoI1eYVi\nOKmGZ2Io4300YpLQ2GSh6IVQCcPwsTT+57uFUsMMzwndfNM0mKpdQPPpAnZEVpbpFPE1hW9jklRX\no6IhSU1NENPNc3iHxImK40Wi1RorrbIYVPiV6zgkVFE11Jjs186WMQUrp5PQnYUBnYa/veAUVp0s\nHTW3du0mXSw1mws8peNOn86rA/LC3/7YE7x2SBRBtBbiel9ZK8HUGRoWWDib6gZxmYejVXzqG1Ll\nMujmKXp6jxU5ahXtUJHNc/Epggq4fOUcampEiRxO2qT65fhYFGiWl3l+Rx9Lb7pM56QCVsnLfOHm\nWfz+K9KR9d8e4wi5aaG0c/nnk8+hMi7x0aeLszguLgrx982U2m+GInPdsXQDz99/n/5u/9EHlclv\nAbiy9ktMP0VCLV/8xhfZpdn80aZuan3ZOM5YMg9fq4J+t7GLhq2ySd121gc49XRl0Z/bJHA0AE/+\nndTeyN/9fz/lha2yQ0yf3cHf3SAucHVTO4N9EtoY7uth+4bX5ZpPrcZ+Su5zSdsuVq6SOEdL4wzm\nzRDkQDFdpEOJaMyRIj27JLAZSxscPCQbUF+2n/ZWGUeDkZcuEMCmLVt4Y5tsOOctnUWyTsIIg8NR\nfC0sybs5MGRdWpSiykAYrrItaKyXuPJ733cVv/jhtwEYGBqkuUXDC56Bp50eHNMIDY+Ikydq6RtX\nUQGRoHzJItAMrudiqUK1sAh0gahBQz8boYYQFk19bzHC5LzJscOIf6hA/zz3fsKdn5AJmZAJeRvy\nzrrz+q/DUWWVR1icZewuphUSrsq2obhPz8MNjL0/wOMHbVX9ErezZ4YH+jZhKMB3fQp5zdQ7DnMn\niyu690APVtlURQIwr22VAQQsDDPIwvsk1IU3rTx9ao2lRwtYev14PEZcj3fTBqmk4k3jJoVhcYOG\nDw/j1Moxo9rDZ38KurthVot88Q3vXkDlUnHD123aQE6TnQkfTlooyaRfrX+N2VXi9jVNrsPfXmoM\nZ2jv5fppbaw4XSzsvrEx5i0TC+fDdz1E38CITrlJtdZ5N6RyzJgmY/639y7gxDlSoliRdElMkvFk\nUlnMqGICvRg7f/EMAEtXnQSViuFcOw7jCsId8Gg7KPcbBQ18iGQrZJyVM6eF+aLPbuxmSXDAPqTH\nco4/kF/f/6uwR9MfFzn5Q8M1PL1OkkNf3/wEV80QF/vmyy7k5E+IFfzqeoffPi3lAL/P5pijhNOn\nLjleeigDDLpQJdd86hsPc87tF/CRW3/C2Rddxj/dIizxRcOjY7qEP+xEK2NKJDgeG2ObKXO9d/MB\nelYLTeG2Rx/lqQ2SQRt1thFXl/z0BW3ENdM903DY061dFrr6GO0UwP/MCp/KOuWSSEfpGxdLtDvt\n8chv5dksWXUWzZNl3VQ1J1i0SoD0+7ZuJlkh74DlF0E9J+wIRlCibVrEtAfXRRdfwI/vvhOA/oF+\n6urFOyn4BjW1kqxqbk/gDuh18gVcX7P/UCrOL4PkxG2rrJTbxw9z6F7o0Lu+H/K5G4aJYQTMbQal\n4J9xhNn5Zr2d/tw00zvcqE4McceV0GfwLCJeCUIhWfEA7lR254ZMDMi5ZSyjodRUJcsm16AYFDiZ\nhJCIuGEQtBw0XXAysugrIzZxVYSiKkrkKKZec8myZezaJPyXdjQJcTk3EjUwFEifGRslrTpieAyq\nlKChrraKuMY5sw5YjnxO2i5JU9THgb4sw3rNoD/8WEyABZeuWgDAvJm1UC1/G/SLpJRRvzHic+l5\n4p4vqK5ifq1kbj9zz/1Ua4FMbQyai7JwLz5rAXOnyf3+4JH1HNBi+939vQypNqvHCqEw156xlL+5\nRJTlJXMrqVbFFm+rhXqJeY16aSL64mV/9zJOXA9qmA3rtYyrM83qZyWOu72rhxc6xSefQxAdhEPA\nN18Rwo51Z32aa1bKHK5kD588Rcb50Es+PzuGAgWB1j+/SsZ06a48w5foH7535HE+8tLzi5N49Db5\nPM4AF54uoYd57cdhOxKSyPUc4uB22VyWNlawaoW06aCmEg5py9Lfd7P5xQcB2DQI5wBf/vatzFg4\nF3ql0mrv7kFqs0pW0z1MqlUhPDMrOGRKCr8pYVNTI5vg5MYFPP6sQMW8kTRrn5d5qbBNGFOCgeoE\n0S7ZvDLjOUyNTbYnfDIajtk3buHE5Jp5P86vH5WqMavmS8xYIRvc7OUnk2rQpn6VKZLaHcHN5nHz\nsm4iFWWFH2Vv38w501hx+hkAdL6+GqeoYS8DKhWdbwFWXBVhwaOsMTzHZAXBLnPWXTw/4BD1cDQ/\n4np+qEgswwhtLoNSESRltHh+eUy07Kv+kjz9hDs/IRMyIRPyNuSdBduXyxHqvJygtViyt0237EAL\nxyjtPsEm5holl35wJBuWejmWjRduRV64i3mmH1qiFYkIY9pmd3AsE5TsIgGHUnghSDhNmbOYHVs2\n6PeOYWm03bdgWHGT6b4sVW1iUUxuq8cOaPcLZljKmXMKGL48iqFckaSCiKdMjmIqMN7LiLXS5MOy\nlfW852xxs4hV4W4T93zjizvwD8p9nbusgU+cImxC+UwGNJPuuUMs0r5odh7mNQhD0aVzp/LKFskY\nv/7aTraqMTVQ5lNXVM3iP75wJQALl9gwLvfevGQKNCvwMVEF9eKuuetfZ/dOSaB880drOTgqrufQ\nvf/JqPZFn49Lb40cP0oET8maa0grJbO0kAqGcfyqGFFHrNW1wFVpmat/+sdL+M4dT3OjgvgnAav0\nnATwnyNiQQ93dVOrFuhQ6dbwuRGeUpq7VCdrZ8g8No9MpvEGoXqrb18AVWLVmRsfYSAp4Z7lszq4\nbNVSObejCebJ7x/71+d4rVMCCTfedhMARc/n/i9/kQPrXwJgcKSGKTPF3W5uO5emU8RjqG+sJtOq\nmM6GadQJwRQvPfNbPnmLdJGoSNXy1c/8LwCeeuRhbvjywwB841NXYGr5cl/PAGs3SWLp8MECnZrJ\nGTEtbvqCMPxfd/37uedu4cF44Nf/jf2SjHn21Ke56PyLAei0ovSnZQ2aJDHVi2o+uiW5vhzJ2mrO\nebdwaXxn+xoKSo7uOg4Jo8zi1EZPhhkF51j239G14foOux6GWp+O5eMFZOS2RVBKY5cnmV03pMss\nI3eSzP+bWKB/HtT+HVaiAVjWtIKum0EmrcyF97wyohG7zCYnhDP5nhfeqG0d2fjO8wOiEUvY7QH8\nUnzUxKBYCIp2/ZAWzwYK2vGyiFeWjfSJqEKdMXc2P1b3n7gddi4pjOZx0rJYk/FIGPz1hjIhw7fh\nW/hKLdZcZTJJX5K+Pti+X37vJR3GtWOikpzTvx/+1+dPYfnZkgHO7erhRz+QkILXnSGrwzl13kLM\nQ6I4ExU220YEslRRmyKRloOavSifPP0kAIYfWcfDWqudqjIYVXKNNgsuOEEij9e8+yzy3QI8/+WL\nuykWx7nqYvjKv+3GT4pr218cp1/p/pLGIRJKZNJlVNBrSszOS1Uwr11U5OLaUdJK6zd1ciPdWmX1\nzO/TIUz9o03wb499FoAHPvIcV6+VqqZ7rp/Ck9Mkjmsui/Od71lM0u6lXZTCAQaQ2iUVVZfOrMbe\nJWN9CPCn/r0cdNJeuPN2uW4V3P9LoZv7+JVXcFqjxC+pi0Nafv/G9q3UxOU5XbOqjtgUBeR397Dj\nbuFN3bI3z/mXXQXAXV/7Nrc+ciHXXf1hrI4mMj2yDk5bsIQZK4S1fvOLr7J7XPrRX3PutaQQhVqp\n/wF8+HOfZWBQxl9dbfPP//ufATiwex2/fVa+d2p9A1deciIAA/4wmwcEumWZEFHXu8IzWTJN6CpX\nLF3Cb1rlG8ykDVo917d/P1bgJuddIdYF4s012FZQp1SSYtGHvALykyZnnStVX9/+1r+TUSrAQjpP\nzEyVnaVvbixyFC9Gme99RBfgEhmRr2+64ZenSqyyTH2JWxTXCAtv5PQ/7YT/uS79hDs/IRMyIRPy\nNuSdtUT13yhHVX2ZlID0limofICiC9HSbhL01zGNktl+BN4UM8wcmh4hi5PvenhaxmnEbSJ6tpv1\nSSmhsO2Bo7QyM6Y0sn9fYBeVwP+L58zD1VBDJBIJ3X+34ITloJW1FeR9uWamawBfmWdi0QgR7RdT\nNGwKGdnlY5bHjCni9lLpMHRATCtHjA+mTYZzVy2gqH1qfv747/nQpdITZ+v2x5V/B06aPQ9Pa7jN\n2gbW7hCXsacf4r3yvQsnTQG9/v3/uZpK8aTx3UjQ9oh6AzLDYsX97IlnMIdlbMOjVYz2+1wF/GqN\nTUe73OPxM6s5aaZYUF4Gli4VnoHU5MlUVYpLXZWaAkq3RrIUasBxYJ+4nlveuJMxDSm0zgJeF0v6\n82tfQQEIPLCvlyd/KK79By5txP9oA9435Lgk8IT2vG87Ic0HtOHSrk0Z/nGe1Hc/uHUQ3qu1pYdM\nmCVXXv37zQSZ+ssXLIEaTYjFMhS0md/2vduZ3CAr9uTTJoOrlQGb9tBzQB7WghXn8/MXJPGzfo9c\nr/Hk99NXF6H3oByTW/EuxupkLk57z/n86CdfAOCH3/w65371/wNgMigttFSp5qplDVVZ0KaZ9E99\n7WY+cPH1ADzx+41cdL6EF9KMMOrJM26sglha3ofJbbOYouemUjHq2yRJOJIZximqh9TcwIJFUkTw\n0vOv4I/LPSTbLIKiaBcoFOT5+UWLWOCzOT4VKZnP5StPY6hTSo0tolSmdD5dSi+9b+L7ZcD44P03\ny935Mr4M2yKA2xtYZekmEy/4ySlR4fl+WaM6gyM/v7Vqz1DeUSUafHnJVQ6yZFapJYjhhe6w65SR\nFFiEMQ7tcwD6T+AVWGU4Bt/3ySqdWj7vhPAIswiWxkTzhkFdrYwqFY9g5AOqrSIl6HppxuMYLJwp\nQPdd2zYS1+xlsi6BbYlLm3dcMgUF0lcmqNP+8j0DeZxRhe24Hvm0HDPUnSeuvd1b6xPoOmRYkULv\nueQ08p7Ffb8U1/v0RQsxVwocaUPvPha1yueIG8dMiIvm9uVZ/Ywom+1r00qkBtv3b2fPywKXOS5B\nWEHVYLRzzXnygjX7DolKuRerpZ3KorzOmd5KOmKiFB+67YO0z9F5meXDy8JRyszlMFcgQTRXl+BH\nZhy0RpzOTsKVkDEYj0ps9cT3LcJbJy/e/jg8+gOptt8JLNTLTKKdm24Ul7T9DI9ZZ+e5t1cy/aI2\nZNK6XoOvvCbnNLYdx7/8SOK6YzvXUZkWJbczm2OHJc9jsLMLwUvBidNOhGFddP3DPPqKKHnDGuF9\nK2WzYEFdifLuYB/RueL+x9urOe44UWw3XSwR2q89dg+HgNv+7SkAYtOmUbVA5nHrbx6iZvF75fOh\nYaauljqsZSt0DpHq/sPKW+tiktBxnnbRUk48QRACvZv207lOlL1TO05CPe9YghAp0jprOuu3bmTR\nyafw1bu+w/4Bufdi0aEyKifccdcdzJ29HID7vvV9LNU2sbI3azidppgOKO/iWAGxhOuF7UFOPel0\nHtkl4zGNCKkKuV+/6GG4cs2C4xH0sksCrkJprIhXZhUZJR7gMjHLY5+Ap9f0XI6oajyCzD5MyJd+\neKu6dMKdn5AJmZAJeRvyjlqigQY/Zu18MDTTwA9orkwDP0wOuSH5que6eJoEsnwDU1nQfUOrxgDb\nNim6ck2n6OPq8V7GDbP2BdehytZGcq5NUXcxywCXANtm4Gqu2MDkhOWSmOk7uJeCJyV7OQeKI2K5\nZvsz5DzZ5aMNFrUKVp/UFCfVKjPgeSadWt9cWRfFc+X6hw5mUDge1VqCfuK8GUxJVXH9mZKdN3I5\nAr83S5YbVkr5ZUfMpmtIxnzHQ8/xxgaxlNqAmELPjwMuqZL7XXz8ArZrIfPxHzkfJou1kO43ePAZ\nwTTu25WiTiEIb6ztp9nNswx46IGDVCvB71DmDW76G+EWoKUNivocxw3QJnSkzLD5GFU1kFZLy01R\nkZUEzWUnzeDBX4glun49eCnBMd5pEQLnv/LcTsaek0RP5juScrgQ4CfSnE7L6tFuQ/KcDr3KzX8l\n9/Dxq7Nc/I2glbJPiUIapmnNeHRsX9jorW/fdpysWPTRujGWnarY0P2dMFUpBavfy449kiWM2tOZ\nd70w6ncDLQjb/0nA314vtflbfrmR2pysg75slrgrll9qYIgfvu9bALx/z1kQLbUfn62+28b0PgZS\nskZbGOTM98u5j/Tez4groRxvaICUWp/ZIvhFeWc2rX6Jrdu28IEbbqR3eIjqKlkrYzmTf/78rQDM\nmXES4wphsCLV5AL4iaRjAbDzebLKBoUZFbonAMvE1LW75LgV3PvNOwBoq6igIaHtuLuGiGuzRrsu\ngWWXklVBH7Mjkklv2o++JCalPDSGga8ZJ9+3y3oscQTHRlmw4C1Zo/9XQJz+cODmEZ+VGQ7T8Ur9\npSnLsJUhaT3fww3Kl/xSfYNlmsTjarZ7kMtoHBQXX2MojusznJbPBcekoL3eo1ELs2yqgqygD5x+\n1lkAPHz/f2Fq/CU/VsBNB60UTBJajZSI+vQfFEVSbRpYKY19eiaFnNYfxz20TJ6RjPTUA1ixQCpi\nJqfqIZ4i3qjx3cE8B/ZKHDDmWJyxUPBLu/cOcOtDqwE4kDGp1vjggkQHpy8UN/TSU6bBVFVJwwkO\nabxv/MVDfP1FcTc3DVbhJsSFL5JjZoUcb6ZreGb3Ib4A/PuWNaSUVbINm86uF2TMJxm8+wwhC6k4\neTbM0Pt1h0MqQkxgVOa2f7fHoU6Z85bWmWxQpvpxwNNwxkcmQVrnZ9d+OF5J50fSsGMQVuszmgY0\n6ud7OVKeOSzx4blbq3kzyokhbYtSzA1gKdogZfXRc0jr1uuqYI5CKtI9YMlABma8i1xG5qt9cX0Y\nwTiIbFr9wPPAcu0pt8avwXUF9H54KEYhL/HROdXDDB8SRfX9z9zL5Z/7MAB19VESuo1MTlWydrQT\ngOoqm+Muloz8mkfvp0oLMEZHR6jXWHffKBjaZSFv12DE5DottUkshRqNdOWor5fx+0UDWxXb9Nnz\n8eOyhhwMgiBcJBYjppV3fuTIjppBnK6iuoZkjYSHXNdlwXwpFHHyRVxdEhEzMKWC08tNrPKLHluO\neIplZEQlDWCE8dQyqo23DLA/4uve4nkTMiETMiETwjtuiZbzrxwt5lHHgWk6oQsv/KxBP3e3xNZi\n+LiaefdcH9sOkk8+MQUGmwkDW92OguNR1P4vUdMj7wYWqklU6en8oscsbQ62q/dw2NDNxaVFUdDJ\nihR1cWVaGvYxNJofa44TU/JeNztEl4IXc47PsCXpD4tSsnos62Oq+eKakNFkz9zpYmG2t02CQQcq\nZQs3KlzGt0my47ITl9NWJ/bXTd99lDFDLI1ZLRbjhphy/37zFVinat366AjsEPf556/t4dYnxX0e\neGWYjpPFDb3yhqs5QUME7VPAV4830QeV6up948avURGRDFj/0CjrXxWs4+Orn+SRF6WH+QlLNvBP\nn1A3/5Q5MBg0K7PCcr9iNs3uLi1vrZmC3aBufn9XiPkcW5rk5ONk3i55AJ7QDsb+KPBLCJzzx4BP\n6edngUvUUt7LAh5RCrsnVw+Bqaz13iglNgfIqOUeBxgQJER6bJADmgz8wk2ngqug1OYq6BJrtbPQ\nQd37ZC7q60utnrGBCGSBniJUqJWWrZ+Cp/mp/lg93UMynqHdG2lMybPcsvN1LtT11LOlh3kLxVKc\nRBO7K+TZ58li6z36rkXfsLBwWUaGFjWYnTzsz8t9pf0qVkyX+b14+Ww2KL/DKxs76TskSBQ7ESOi\n3ts57zqXuJI3Fyg51kYqRaW+YvabmHIV9bXMWypE0jvXrSNVo3hhpxA2lcPwWDJbsvYbdwzyl5Al\nlzv8wBGJqHIqvNDNP7bz8Zbpmd9hJepxZJzjWDUCZZAmszwPF8HURV8o+KFC9R2vxC3qeRS1NtwH\nIprVtIFEQpVlJEpBj094UVx15+MRi6TGVnNjhZDZHqdU4VReU3/CosV0bpCMeUXCIForCsyI2Iz1\nyEvrp90w2z5SBB0atgOtutDzLmjZPV27QYnhmTdfMDoVi2bB/j4puAcO9zns7pcxXHrxWYwOyXd1\nDuaYVCeK9q6PXshPnxYgtnXmEshofn5PH//xC6F5+9wr21l6tlTmfPzjN9F6qcT7Rg/DaJdcf/+m\nDNFD+jy2DuNu38fs95/K8uF9jKZFSdtGHSetlI6jDa2LGBqVGOK93/8vHnr6PwG45ebTefc1cgyJ\nLLRoYz6/hrlDsmsMZEaYmZBM/V66uCQoX9qV4W5N/r++AjL6+/MXwvUvwhsBCT0B26e01mjSViGL\nl8To6pYJrlhYzVRFYBzuLZLv1guP2kTUF921c4iZDRKjjlZ6vPsC2cwSJ9UKJAsgF+fBNfIqDZxZ\nQa3Gr5+h9Cwnp4EGqM5CU6IEVPDmw70bZY42jzlUVMpcd25Yz3StNz/w9DY+FtDT1lm4Go80iTLN\nFOKXPJuosOWq9fWNPP6aQK4qI6MkNdTY3mRwaI8MaF6lyXmLBH522cWn8cTXfgzA0KjDBm2cdyEG\nqkNZsux4HCXBKVBSHN5QgWXTZFOONVWyeccftBcgETc58zwJew319GIoPWBlMoKh7jwGRIvFsrMC\nNMzRqs046mcwSqYVHBF4O/LsAB3ll+H3jWOpn6PlT2jUCXd+QiZkQibkbcg7bIm+iYr33dLfykFd\nZeZ5BCPs/14OH3N9D0O3nEK+gO9o9s9xw70NzysxbScieOrm+xGTCt16q+M+tgL1C1YEN0AF2DFK\nW5ZDUCx86unv4t7vfh+ArJlhNCvXGet3cIYEWF3TECGqpLiTkyYJJYDODOfpUwsqPw5Vmoj1LZin\nGMIFM9XkyvXCyBBoqWrccJg/XY6ZWp3ghdfFEqiusTl3mmzzFSfN4j0F9b3tLMWdkhy59luPsmGP\nOMpnfODvuerT4gCnOsTTB8j0F3Gi2kJ3kkPXTsnUv/Lcb3ltzS+5kq3c8NO/Z7fa5e+K30CHkhLv\n2PUr6pZK0uSOh2/mf9bJ2P7xxz9ms/MrAD5y3jy8ajHPc/k2ZnTInGz83SHyB2XMc6020iOSY39s\nBC2GhMuusHhku9z7T2fXkjluJweE05l6II8kMy7lMDfNFas2cWIH0bxYmQOntPBGQtzbA/0+7k7B\nnD539ybmJmXcu2yXWFHWwaNbOvnoTYKKGHltPdV12uUuWsm8SZLU6W4rWZnWDhhQw6wS4N0wsAbG\n26FSCO+Zezw8+dhzAGyqN2nTpk/7nPU0KkKgK9fPaLfY1fVzU+zVkopJxKlFXJgC0xmbLit86Xmn\nMrhNnvFTv95Igy7XxlQl582VLz5l6SyGu8Tl39PbR0r5DogaGDWybkrBDWFKcvOKgImUkN2OZ5BT\ngKczdmwaLdPwaWsXi3nKzGl4GkrzIzZGwMxWLJIbL7dEJbzgF8HTRLEVLaPCBEp6oRTm8zCwj6FX\nyvHjmCWr1DjKsD1GvulPyjvcd944ynMPyAVKwNgyFhDwpS2AfgwVqmWa4bmub4SMeeLiB1lyS2iy\nEBC+p66YkXXwC+oWRG2SSn+XtF1y6tqbvrQXKUlpqjMKleqYPpf6NsnQjhzciKXjLGaKIZwqloyF\nYYRCJsu4xmJjDuivydrQq+HCYhzmzpbFN61N4wCjA5DPhbtG0nKJay97qny2KYt52s9wzfuU0Pyu\nugAAIABJREFUFGNshOywpLrzmw/xoe9JzPK13nE+cKPAWZZ/9AZ69a0pZAnp74YKBq2NMifpsd3c\n86BsFF2btzGjTVz+g8xhv9J5jM0/i/nXS0VQz64KNhflZc4ePMD8q94NwGcuupjf/EBabqRe2sVV\n50u2NmVkieob/+xzzzOnWrOpYwmm14lCHB88zEnHy73f/KUvcu1LoshqrLXUpg36n5Cumx3Au44X\nd/Vy2yBxhdKRVMU4W2/u1115Js2QWHfDiTOoWihzvXtDjO5OiXfurGhg3cuycZy2qg2aVbG94lKd\n0527toEFcwWFsGMf/E7QWKzsgEKAs5oq/9Q3QrpRsvUAL+1/jc5JUhFmnn8CB1+WeKTTMMhYTu6t\nsuiHELIYNocIPsdo1ld4nDi+ITHFRSfMp26WpOS/e88rjKrOmzZ1GidMk+IQYjbnrpAQUevkJhKB\nU5owSKqRoGFceQZxE08RauW/nzV3CpYWmeRy+RCS53tgqqFiGi4BT0lDYzWxAJBvmlJBA1D0KeTL\n1HZO7tF3DUI15ZdxapT53g5u0IIe1/AxdHRmWb7F9I9UmG/GIfpWZMKdn5AJmZAJeRvyDvedL20H\nvu9jBMmb8l7KPqGV6XlG0KoGD7ADH9708dW1t7FCImYPIzzXxAsTQpGITVBkbjpFgl0tm/XI6fEj\nwzkK6pJbPiH11/zmVl49KKD6rFukqEz1nudy9d9cB8BX//U1ktrrKNYYp9CuJaBjGfq2ye/HsiV7\ntrkBmoPeNxGHUcVEHhqCOu0xbiqDeX6giOfHKSrVmW8VKOpuHhvL8/wucXvdaB5maoYjUmD4sNzw\ntbf/ktVFSWR87lN/z/VX3wDAsy/BeNAjvhoMMSapmWzTu1FwlS89+j2K7WLd/fXHbuL4hVNlTu78\nJju/JETBXLJS28PBvv4pnPlx6YU+7MD9awSH+tFrljL/mw8B8F/f/RKHB8VymNcU4SUtdRzvXkdS\nrc9D8VbG6yRR95GLJ/Pui5XTyJ7P6slaOts8m6lulAsbxFJcbs2jrUIY4yvbT4ZDQd7eokKTcuNP\n9VGnrmLHwmbqauRaO+Y3cd/LYkI2tEzl378mxMoff/9VYaaoZUYH+V0yplhqErTIXPzXj+Glx+Wb\nzvkHSCpGU3sPMlQBVlWp3f14h8eeTqU7tOvhOC0NOL2GA+vl5FS6gpGcuPM9FBlDQhMpIrQi5mGB\ncVwNwUxtmcKsNgkLJFsgr9jQHUWb/evlWa48ZT4zG5uZCvT3Z2hUcHKL41I7JGu0upjDjsg6M4Ci\nEmxHgHlzxAupnlSJn5N3Lz+UwVOXfGggS0D0lKywQ4a21tYqoil9iYseIVP60Ukjr9RiOUz7Wx6+\nYrFzxbJyUIPQnS96HqayUEWMUiLagDfltvP/4MMfHvPH5P8KsD0ImYgfMngQViAZpo+ntrprmGHn\nP8sAU+MjhhkJWe4dzwiVsWkaYabe8QzcgAnbd/DV7/AcB1vpwTzLwwmOsTyiKY2J5n2GFTxf9E20\nawN1kQSeZhrTbppLrxB39a67vky+ILHGZKUbVk15Oahu1l7frovyNpArQnenXH90rLR/VLbAkumi\ntGpaBY5i5ioZG/cwTVGqKTtJdZUolUx3D11aXTOpogZ2aIyqMcHLW8Sdf6m4gZOOl9rx6278LFnx\n/kkPQF2LjrMFkoqCihTgZ2sEeF9fV8V1X/wEANXV9SjOnUs+MZ9diz4jz2gWjCu/xFM7ZtPztHye\nG4f/vkMa3p1ZNZ1ZJ0l44oprbqHz8Z/InA+mWTMkju7CC07HsmVA7bkEW17dBcDUKcdxoFfuccqa\nDOPPCfxob4PD1I4pbJ5TzSrguQUp4meKspk3rYWkEqHQ3ctgp6ATqudVY3iiqGr3jTBJYWNXnXI8\n990rCn9eXSM3vE84NfsHYiR0TutmzqGwQePMewbgJNmYTqaKrc56AHqyZzFLWfQDpIAfl+KB5/Xn\n1Zv68F7SBZIBhuV+6Mngp2QTXLTgTOoj2pDOy9FiykZh4DOksKZmWjFVOSWGdvPEBtGoAx7UVCjk\nqq2SYr/GNVM+qaQc39pcz+IlgjpoeOUNsqOiCNMjDlWKGokC1aouisCY8lAUB4tEgnfStfGULzdR\nYWNrY8h41Ke5RWBZFcmVpWBr0QRDVZBtEYnFCCURfDbwVdFmxvK4AelINEIsrp1I8fE0VGf6HhH1\n1e1y/90sAWx8t1TJeHSy/614+RPu/IRMyIRMyNuQP8sS3bFjBzfeeCMf/OAHue666zh8+DCf/vSn\ncV2XxsZGbr/9dqLRKI888gg//OEPMU2TK6+8kiuuuOIvGkxIpmoYJSJj16eQL5UIBuW1pnEEghSs\nP7wVwwJXrVvHKGuZavlEtBTTz3uhheq4HumMJB3yjkssGjDJ+ESLwfZpMbVFQNA93X2huxCzbGwF\nI19+/Q386O6vA0KpVxzWWvu0T0EZnaa0RsgpKfPefhhVpr08hDfWnIfWpLYffqOH1kmwrTvP5MYm\nooOSWe3acpDxvOyFL67dxJAmkM6e1Az9av9YCdZtEzdxljGPv/7UvwCwbRDyihdPTYG8Gmv1UyCr\nBtG+1S+QjkpiZdmnzyKjS8ZDmOEXAqPAe84Qi+5BH0Y3y8l9A3U8oybXM1t+juWJq37vHV/kvm8J\nAXL9IpOe5VJHntv6BO87T/CjyXiCnDaw2/r8XtauFxanvV4PnqfEcJt9zmiSjHptJM3weJ6qxWKx\nzzx1ChVq9WcbYzBJjstnD5BMiVU7d1KUYcViRkeyJJNi+U6vq6ZeCfd2bniDy85fBkB33x4qBuT3\nTe1Jopr0k7JVSQ6d1lTN3VViAd/w5Xv5x7/7GwAuWaXlrE3w8gj85ic/knPTOXhDM4ljm6Bf7tPq\nn05zUhI/KxdfiOnIM45lkiiYgSEMhvR5VJOgzhfXvtjXyY4d4mJYFszoEDzDeasWsHunrI9UfZzK\nKrEa7UiUimZJsJn4VOmas10Xw9Gx2bEQ0T0GZAJaScfB0QSsRYQpTWIx7z10gGSlEY4hojjdZE0t\nKDbXdw0MNQnntTdiR8uIngML1XdwiwErvoevMYKIZYcM9gZgqplpOX7JMoxwZFlnECE8qo4nPOQt\nJpv+pBLNZDLcdtttrFy5MvzdnXfeyTXXXMMFF1zAHXfcwYMPPsh73vMevv3tb/Pggw8SiUS4/PLL\nOffcc6mpqfkLhhPUvJsEDak8pxQHwfDDGOfRdU4Btyg24Sy5loETQJ9MA08PiURNYqpR41Ej7Duf\nKbhk06LYsvkCkaicXBV3wuz5eMGhNwTw5wl6CMYwyOv4//pvbuBn90mf86GDfRgau7UtK1Raw9ki\nWnJMTSPky1z+onqJ+Rxsf0Nehk3bhrnlXOguFGlysvz0Z9IKYu2aXRzIi8+1rXcvWZ23JVOPhyZ5\nGXau2cm6MVGi//gPt7Fgkfjq67phq3ihnD0boqpErVrwNezYPivOYoX7xDFp0WByHJsDJAGDWgTc\nDvC0kWN7UVpfUH8W7Notn/tvwNX43UvPvsC+DV8AoLqxgqmT5AV2MtOxihJvTlUVKI7KJuB2RLng\nHMl+v5Y+xOmnCJyoc20l9XXi8kYiVaRjLnPnCIQnsztPvycTGZ87j7QtL/fBfJrqAXlm85IVHMjI\nfNXXJDDyshHku8f512uFcO+V3z3LgjkyGVZNBYeG5BnXbMsSnaUkpbvT0CPu8xQrT1O1XGfbo7u5\n4yGJ/W7Y0MQZXzyd737/dX414kJM7pmIDVoEQg1E0xIDP7XjGrxDgjQ4e8kyCv16SEVA0iewKS+o\n8aefVFrjvpZLiyvPaU5TLdectljONWMMDytXaIsVru+ib9AzLNcZHB5jcrvMVRIHxgPSmDxEJAY8\npa0FTQUQ8RysQsBV6eIEqtYuo608Spzg3fUIjRCXEkGISIn/IuATjtqE5EJ2xCphZFwwgtYirhHm\nR1zHx9RQnRExQiV6TAL9tyF/UolGo1Huvvtu7r777vB3q1ev5otf/CIAZ555Jvfddx/Tpk1j0aJF\nVFbKgjv++ONZt24dZylBx18ihlnCg5quEUKTHMMI4UKOYXME/4ieawGe/sGK2bhBrNSFvLYoyOYc\ngqLD6qhJUhdTqirKsMI1skWX4S6JfzVVQzwI3dhQHbRMplD2zUUy2oMm5sW58mohjPju7V9iynQx\nHSKVkfANODCQC9uJJFLQ1iYvXkVDhHyfvJCVhWqe3iBKaFK7KMpzTmjml794nu888iIAO4oGxTIe\nmria8PUzWkF5Ru/94XNEYmKhrTj3IroVy2RnLJp0/S9eCtq9g7FsCYJzaE4bi2bLBrqUEUYIIEQD\ndDALWMj1pDG0THKALl7JdMrJ/5IidrkwbeQX6csIwDDf+ZnEQc+yP8LH3q/E2Q1JfnufsE0tmp2i\nTpNJjUsbqFFGqjVr92N7mgRJGCS1LvbgwXG6iz69+SZOBLoL05hdI7ye0aYWUmq+zZlex+7HRcHM\nOGcqqTfEgow3xTA0dji6vZtLp8jnr/53P2kl5O44o5HaKbLzHdp6iKnGDn2AFnRLPWydv5erm2R8\nncsK7B8S6/uZLQI3+9UTm2HKKXC1KDZqgRPk49R+WK60pOnv7uRdswX6deokMFTnBu2iQXpHlVCp\naajW4tjJdVToxj3dTGKOymrv7OnDH5U12rM/S/eBIg3zID3kMNSnrbMbW6mtFavRcNxSVZbvQa0s\n2MRYgYwaG5geCVVs5B2KqsCm1jbQm9PS06OUaUjWZMD0Flmjhh3FLev2WQytzCimwg7jlkkJXGXi\n5dSidYI264i5GXALFzw8NcAihh0WRx6hrI/4+NaCoobv+3+WLr7rrruora3luuuuY+XKlbz8svT1\n2b9/P5/+9Ke59tpr2bx5M7fccgsA3/zmN2ltbeWqq676y0c1IRMyIRPy/4i87ez8m+ngP1M3H1tc\nl7C4tejhBCDciBlm232/RCJiGFbYR94ri5VOnd5EUXefQtGnEDTLyhexlIotZZskguZdqQhRy2Pj\nriHmt6co5mUHtyw3jLPYEUKYFb7Nlk6xUjxcxnNiFRRdg5Fx2dn/9q+upL9b4lxGzCanmcbx4XFs\nvY4RjxJRFvB40me4W+JW7piNXZCDPvLek/jsPc+y4Qd/z813/Te7XleTJZ+gV6tWahkiprz1z91y\nA1PmSSzs3A/8Bx0nSpr4yk9+j5zWK/cb0CjFRUyZJXyTIPSkB5VHbju7WKRA+msZQirRAdqBd/EH\nMjTK0vu/A8CGi6+CnB7/V6tKPHXA5DqJFX708//K//qHgLm9h9U/ewSA1oRNx0wlB6mPsP4ZAU51\nZQ6zao4Axs3eOlItYun2HyqyY7fDyxtWc/MDt/GT9/8T110ssczhOoOahWr5JbN0flcgS1OPrwmb\nrxWMONEpUwHYeyBHYUQs5/3bu2lsFqhVxbQU04+T8IGZAQYU2tBSgJgGtXuqw8n77oO93PhjDW0s\nvhp/42UYXygI3inAOEVBoxxU5qH2t4JvO6XvNf79exIfbj+b8vYPlOjhegjY++E5SHfrM3DY8ZgQ\nvzz9epb2+WLq7u01efQ3Et9euWwR1112MjPOej/7nv0+9/9OOrcePDzGJz8kCIxprR1Yge8bj0K1\neJn1VjWDyqmbwKClVcxj1/HJq2fgOT5Rfa+iCZs9vT3h6OdO0pqzIiUIYtTCU7Kgbfv2UQxT+B6R\ncixTIC5QDIKc5QmSUmNL3/VxQ/IiAzMgI7Iog1caoX/vGwbH6hXyp4zTt6REk8kkuVyOeDxOT08P\nTU1NNDU10d/fHx7T29vLcccd91Yuf0Tsk4iBHfgDroOrys837BDiBH7Yn8WPlG7aNMGw/PBztCwm\n4upRji+RTRAikKQ++JpUBE9d72whF7oahmWSUHfedWHxFHkbNu3rIaqQC8OFxri457d+5UvccI1Y\n40auiKGhg4qWivChZogxPKRxn8EcOU3qjI041Bmi+Md6RZHd88ALrD84xKI2Sa5Mq6li6x75W8q2\niYzL2zalPsp6rbSxEz6nniwdJcdzUKMUotVTAMm3MJIHX9/H5sbwvaaFMZLhgh6CUXUf+zpBSxcB\nUGwkv9zOub4kXDJnRdlRfF1+32HCZn35M2C3yFy1NRdD+E8lJisulXP7XhwDJXGhtZqZ1fIwli6d\nAxrX6x87QEoJO+ob4swsxHjycQmFdFRGQAk5agYsOKB4snmVtJ0oMWG3ewTrHInmRl85AIqPzCyo\nontUe0adNImYxrFHHZMB7UbaWFcPyoxF5WGo1LXoNEFRdqm/u+Ycdg3J/dy16RHgMvjNl6DxRqjX\npNQYsFE/Hu7kohMkLPL5fz+d9vN5EwkavPTBqBDL0LsRYhrIHneZqnjZBXNT7NbN/dXXh0hpX6/W\n6iRNjXL8eHqM8THZuM9adSptrbqD2obEbAGiEcgFmsoLcZ82JqkKuV/HMvFiakgM58L2PcUCdLSJ\n4oxapf3AMsHU99yywYuWMj52SO/zh2xu8gevrAS03A03Ieyo62MGbZId78jzg3MNA98vfT52kPSP\nq9G3BHE6+eSTefxxeWueeOIJTjvtNJYsWcLmzZsZHR0lnU6zbt06li1b9lYuPyETMiET8v+M/ElL\ndMuWLXzta1+jq6sL27Z5/PHH+frXv85nP/tZHnjgAdra2njPe95DJBLh5ptv5oYbbsAwDD72sY+F\nSaa/WExKHovph6z1FKWrNCBo+7Iy2oCLBLusLtYoBZzjloER14RTKobhyediARzlEM3mS428Cq6J\nqel807AxjADAb5LQjqAFD3CCfShB5P9n7z2jLLuqe9/fTieHylVdoVN1VLe6WzmjBEhgIXIWAgO2\nscDm+nEND/sO28P2vcY2fsYDG79r8AVbYMMFY65AREmAJFBuhe5WS63Oqborh5N3WO/DnHuf00Ii\n6XmAx6j5papO7bP32muvPdcM//mftIH6cdfDy897GTe//3cA+Mw//G1SfZHvcagqgH9xKmDmhJg7\n3mJA3JV7zIUuPf29D0qlyX2PzZNvwGsvE47P11+wjclpybzfv2sXRxRszzl9eNPiYuZ7Pc67Qiyu\nsXMgUGPSz8HTyg9qFaCoSYsCQuABMEOT0eMCCWK0AhV1xY5vgceA1wIvBuXK4OHTFrNvlTr18sYR\nOKhm9QkLArVBUnk2vULO89o3r07sqig6TDnX5kCgGgOuu8nEPPVRgO+J1XTYn+HRXdpZc3yQ4Ss3\nM3SrWJxOYIEmpuZzWWZ71LKZmGfdBeI9PP3PVTYuKLHLeWUqOndWaBgblqfQO9DD4oRSwJ3wMQux\nhxQy/YhYon2lGlyhbsuqcVD3lsjhrzbKfb53n5iVH395no//4C72HVEoRG2csSGxSl958Wre9Tb5\neLOC9J9bYsTLbiiJ9xc85XByQiux5lo4NSV1qfscOSjHvHzzZmqjmvhZPUA6K2P+4e5Zdj5xGICX\n3fAmct16fitqW6I4jORl3vL5LBkj342MTVqB8a5l04qrl0wTRz1I23Zx2jEw/LiQhohMKq4iBPMs\nYny5ats69EOfuEjeDiVx3D64M/XeVgAJiseYNuumA2danIr4sUwHE/5PLz9RiW7dupVbb731Rz7/\n9Kc//SOfXX/99Vx//fP6ID/bsNSNJQwTDWkCg6UVEbiesBbDmVivqM3oZGHhOPExVhIKCPwQR+Op\nfmgRWnH7V0OcdKy2LFKxEk15yaXqIaA9cUJIKjS2bF/Hnsclp+1gzmA4fOevvw+AO+++jwNPi++W\nm25g1C0NTzfp0la2A90FhvslFDDW79CakWOOTIrLtHC6wc3Xns27rtRePCN9rHjVdgBOfCLgbnXt\n6Rlg/SpRoiaf4ZGD0otozbkXJZVSTgir9X2ppSGm7CwCBzXm1Tt1lGwU9x5aBfdondKutbAfUaK7\nAEXA3fVIhZMr5EwH3wDcqzHRiZCUsla1gnk2K2zKos0cOWdvo6zXDUoFTh2RgfbMPMGheSlj7K9Z\ndHfLhnP+pVUefVr5QEND70IvexclELFUqyYvTdfoGk7oPdeqBrqV4Posj5lDogx6X1yk8OhuADbN\n5LC1fTJDOUoj8own3EW0spKRwbPpU8Yl7nsGvqS9TPpKkNEwxJgHZ8t3V66RuO8Ff/oB3rvP5bRG\nAvwArlayl5fsADfeQWm/5idYZFY35W6OMxRJ+xUvPA6ezJ57jsfKsrb+OObw6S/pPNRdtimh99nj\nK/nhYVkf6f4sqX5ZU0cPTtJbltjyplUbSdhCFuoQu9i2RUVxzfnQoagGSVfGTkiZjZcipZn0+mQr\nydrnC2lc7S0WVOoEcUWhFZFVLLZlQlqtH6/APMdtt/Ixph2+NAa7k6jIi7GMDpaRMVj1gAQOg2m7\n888iJmnjXH56Wa5YWpZlWZZleQHyS1M7/yMSVyw4duLah3SQjnSCzwKTgN4jYyW7SBSCURPStu3E\nKg2DgEh3KNuxsWNcqRcl/a6D0Caln6ddBzsvLktobPyaNssLfSJ1U6wOX8TFSqyrEEOvK87xf/u9\nP+QNN0gdtgmrNJTxo7EIw+qarOkrsUIt0XRIgumMk03rUi5vvfoc8hu101m9CtrkrlDIsndaTenp\niPT5YqFm3bt54H5Jjd9ww02JJbpQAaPmZ5QhCSMUgFIkFzQVnwcelsz41pVXw1WaLJxHLFGAV8AX\n/kV+/TSzDD4iptX87Vl4QDPGp2DTdnFz55tFrrtRLOkpSDC7/UwT2wL9Yxkas/Lgq06d/DqZk1q6\nCVpV1uNVGS3KtxeaAdWlCYoFubl8ugUpDSdlhqjsExuyu7eAsnuSX5clelytyZkCpCXhZNseOLFd\nvoKYrabc3eSrX5YG9pvfNE7qLEUVzI7A4TjkFFGdEWtv8XTAirXq2tdOQv8V9LXu4foNV8f8Nzh6\nBfjRl3Fem6K0eAZPf09RwQsUVH+kDgtx19QImrJG0ymHxXl1e4M0m5T39OjELFoWT09XF0Tyh9+s\ncc2LrpLPR1e2uwLa9hkJmMSxtyCrCareYibBYvotkvCWZ6Vw9P2xHAdHw1jGaTd6DUJDFBfPGEP0\nE/npLKyYLyMleHIQD78jgvfsr4h4TrsHvYHEfrSeZYo+33l+jPzyKtFE7HZJp2MlSXvLmDPpV+Ii\nCGMl4VTBCWvpWdrFyWrb44whVFJj27KJYgYox8JXcHEY2e3MYOiS0r4edjZFpMBk02riK/wqaIVs\nuFDS1XsfPIDRwbVoEu8C2zZv54P/VXg0P/T+9yV3eM6KHlYrW9PaNf3kdHE8tXOGJ2clYtitoOqV\nUZNNPSUYUwVR9aEix5ys+exZEKVy27cOcONvCgTpVVdfyv/zecniHt1bI6vA/vkSGA1+WsSFi4L/\nvtCWf0yuuZRHnpK2Gf905xfZpOTDF50NLUcQOn9agb9SrVDhJZRWyxyWj0wwOyMtpbf/5g2crcS/\n9Se/xLodAl9KIa2EAXLNPTAlyiI9up70aC4ZUbcGXacP7+PgYxID7ipa9Gc1u7vYYPf3dnKJIgYu\n2NwH2tGVU5CuyPV6RgqwqJ9XsyxV5ffc95Zwhjbr9ZZoHdJ+WY0sQVaUynwUMKKsRgcem2DzWTq+\n9RulTzbA2jHyd0kY5el7DuKflnjk4Hk53JfA+NwhGFykXeM1CkbT/1aEbCsAp+lW3tACDVyFmVkM\nQkq/6x8meFI+P32iwsj5GjdO2YwOCnpjPFvm5HFZH4+cXGSmR8mpM0Vax2ZJdcPWLRt5ya/8ConE\nfWtyacnKA1sHB8gomsRN26Ry8jwypTxa1czCQoOKloCmHEfi2kC1FtCI5CDPMrTU9W4EFp4fg+Fp\nt/V5lsTK1bYi4gob12obS8YyScHJsyo92+JaGC1fNFGUcA4L3KnzwOehevoxsuzOL8uyLMuyvAD5\nJWhU95P1eBSb255NoNk5LzJ09pGOKewi2kB/E5oka28bk7QNcTMpWprxz7o2uTi4HQQ4ihN1cJLe\n9M35ALcu1kJ50KKoVmmmK0OzLibYfK3OSa0hHtwywP49UgMu/KYqoeHFV4l1uGPTNt73CnG3d6zu\nY9UKsfz6RkrCWgJMf/8Qf3erNJK77VGpEJvwp4iaS9gxMv5YnT3HxVW1R8qkFE+559AMN06KBfK6\nGy/jtn+U89z6/t/jA1//GADBSjismfqeLHGahDQN1sadIytjFC2Bqn3p6E4ejtuG3NWk+Hia4++G\nrxZh/a/K5/tmimyViAVLjTKjkczPi84f4lN/9v8C8J5338xTTQlHeOmE9J316VHo1gFVTnPsgOJo\nGy4bL1I0adMwqB6FPbEEW8Rd7ply+NdP3cvrr5c5zVy4HuJuBIdOsmWlOM1BppIQYNCfZWiFWJMz\np2z61yoCvmDh7pLZcJ7cT6CJ9x8++gDvfLsgDw7cPQkzGlLKL8Aetd6GfdgqXzh3fIyH75Oy3ZkH\nWpzzEtj7L7vY1DvB7CWC241G1iVcntg+OHqfliYIgSaLVHxJXPneHANxxmxDDneVWJYjXz8OSppy\n5FTEYe30urU/T2tJqe3mF3FScnwQ5vnCN+7lbdtew1nnXsHgWkkYNnxopGVOurwCsWWWSRtKSp2X\nzXiUFTiRiZqEyj+wOOUzr8nb4mCJQMlLwsU6Zk5+7x7uxmjnvMgNqCoBjBNEOE5nj/m2xAZqWPeF\nXxTAc2mFCuz3HemGAUTGkNaEltVZoGCB0fUQBW0d4TyHKw9nJpb+Q8D2/3HSOYlW+zNVeMYyCeFy\ny4Cns3sGjNZqn8cEIYEqTr8eJOdxC3ZCKNhqRu3wawAZZZJJpVIJAaFjR7Rq8pLMnaoQaQ0xfS6O\nVv+4YRiHmNi35xShAtRDgoSFqrrk8/3v/RCAd1x/IW99ubSRzeSBQT1RGEFdFEnfql7e/2552V57\nRFDx733DpbjZOsyJ2zc312B2XhT8dResYrP2x1mam4ODqhb7cnzmo8Ihuu2WT/Bfa9LnUMybAAAg\nAElEQVRL6aziKMeWpJKkSIYudZlXUiUu8h8MIraMSoXQ5+95kFOOEoReca2QFwEPFmh7oV2gXYXJ\nP3ocR2Or999+iAHt+bTtVa+kpC9hN23ADk0DpyWrPHPCojYvz6IvG8EBJX2ZCeiNQeXdYzAn314K\nc5A7wsBKiWuS7Ybj8gyOnpxl5avkHjxqHHhEGh/1TgcsTsk6aEYZ+iOdr2gCHHHha4stvvG/5Znd\nu38P7/y1l+lzakCkI8+WYVRc6aP3T9DbI88j79Xpy8uuMzsnb/SxRUPQWMSakLCFP+uxUJaJXJ23\ncL24B0cD+mTdFGgQr+naTIPqvNxXvpoCJedm4yrMpISEDp2apbogx5/KBqzokvMPD7qEWgS298Fd\n/I9P3MXbPvQHLC6VkjglHhjiMApcsUOL9h1Ip+VdSqUg1C8sVA0LNXmvllpNmjrOkhtJ7T2AZbD1\nXXUsO3HJQ9tK4pp+K8IPO1XXj0oQmCSg6th28l3HtZJwZ+gbVI/jcmYv4VhfWm4HuWiH/Lw1lsvu\n/LIsy7IsywuQXxJLtF1OduZP+V9MhWewsLy23o+tUmN1QGQt067bjyKM7lyhr32ugMD4uHG/a9sk\nzNleEFDsFouhkLNwNKgetMDXRFQjiJiaFUujZTnkc3JSP4yw1E10aNfs+oT4WlY2Mb3Et78mFHaf\n/sDLyCjWjuYi9SNSCz8/VSevVmC6YtE1JAPtWisZk+tfdSG4huYzYkEuLdmMaJC/nMtw9WZxk+dm\nFzl9VKzAwSjC3i6W0t/82kvo6xYX06WbbFaSNL2UGdD8vNW5t3a5XNUlrvCbXrqOe//X38rni9OQ\nVXKZ2SqUNbdvL3DsmFhx2RNP0Nx1PwBDQ0f47X/+ewA2DLVLxyMgdVDCDsFSHTcQc753zRi9Mfp/\neolDD8v8tEyVwko1Yzdu4ql75Pgnd1bIdw+xdavS03kOzZqcd8/BKVYmNaoe0QnB8+7Zs8DCoow7\n09PD4KyMu7Q0wawvFuG/7DrAx77yVQDefsNFsCDnLJZt6FGLrasIl8jzPvDRe5lw5NmsGwtZ1LLj\nro1iteYGPPYcTrFaLe4wPUld+REWFwIKWbmfnpJNX5/yplIES55l7nSVyilZ7TOzYLRAt++CFViW\n3EvhZAOjySE3nWbPMUluFXrKNDR09eCTe9m0WfgEAquLlkZRrPyZz79RVzc5BMdq17M3FNPZaEYs\nVeWYJmFS0pn1Aox6e34qQxApusW3ErhmGjs5JrJCosQcfm4xrtNmsI9C3Jgvw7XarPWRkzStsznT\nEo3FshDUj3wjSQIbfj5K0V9wt09zhvt95i20FWkcK3Fsm1jhRkEAYUxJ1/5eGFqgx9sOZBV4a2Ud\nwri9QQSRpfEUxyaK3X8CWnWJ0YStOiZ+Mtk0OY3j2JHFoi7QiYaf0IxZ9SqOpyQiOLRoA/g9ramf\nau7n8sulUqW6tMA//bu4iVlT51euFEV18PHTfPVOwQ5FixEf+f1XyXU3aKXQeC8cnmLqqMTOGnaG\nDdepgqg0WDMqL95f/+AB3qPj7K7WSOnx157fRW2fkFO01hUY0vrySfbQUuhWT72Prpqm7cd6icuR\n3nXl1fTvEFf6c3/3Rb750G3A52D+UzCkfG6NCg9NHpYxH/kBH36xzPkff/z9NLoKyXOKvf8jj+0l\nd1LifbbbItOr85ZtsuDps2icpqcgbnFzoMipQTlPtmeIO++T4oXv33of1+8YgEF1b6dO4GqYcnKg\nxMKUzHW5P8f6lbIm5j87zZStG1ZviqNLMqpq8wAf+hMpJhkZvoRpXV8bhro59V0JBUzlVpLXcEM+\nZcNZMi9Xv7yf/feLq767vsT3tBJtVV+LtUCxXGHdVaOk1bfs68tQGhNl7OV8yGo74aUWHFYAfyqE\nvGqGsTIFjd0WjjWJJmOihWnQNjFdvRH+nHxeGlnF3oo8v7t3n2TFanHPd1y6kZwvEK1NF44T49wD\npEsJgF2B2dPyDDIu5DVEFdX8xP1v1l1q6j97OBTSSuYTtSiXdJPJ5JiyZAzzR+ewm0qE7RmsrKjd\nVNbFipKm5nSULCafeNkUka5py2+1lZ/jtLsCh+0Cxx+nEJ8PVP+z5+aX3fllWZZlWZYXJL8k3T6f\n/fO5DesoMoRhXHdrEe8BlmUlzPa21Qbkuk47+IwVEWo2z0QmYbN3PQvXiTN1IQ3F+zWbjaQBVxgY\nQqOfB4a8WgtEITU9vr4UcnhBkJY+4CfuvIUTJ8OWTnPtxZL46M7YvPwaqX/vz1jQJcec3Uhz36NH\nAJhenOfPPyNW402nL2FsK2C6IGszukHua7oJ9GqipRde+WphZP/Q525nMRRrJFXKSHcugPESM+rO\nuscf5KxRoVubwGFFTu8r58JpTbIcnIMRdXnTvbysLJbMa3/vDziAWEqv+eBxvn3XVwCoVFJcdq3w\n6/3KR36LV624MHl+cfbfUCON0AOOzX+PIe0cyXgfaALGa05x7GkpGT206zSX9sqzGxgZAaOsvkdc\nrj9fGO8zh+a4ZlOfUFABmBazR6Rcdb0F1UfkHso7NoOyiw1sqjNxSK3dE0c4XZWQwYc/8tfccLF4\nBpE3Q9YSC/Xycwq0LLEy83395Ac0g1Zvwj1aGutYrNsuIZVcM0+6X9ztBa1fb+05xcj6Al5B7rN/\nLARPwe1OFVy13rpTbZdzsQan1N9uudCrhQBdWWxXQh5Hjy2Qris7/UyT+qLc1+R8hW/+UJi0Lti4\njptfeREAP9hzmFVjsv6K6XbvuIC2ZbWif4iihrQ8z0vIlE0IloLqU45NqB6MH1lJyXUE1NVqbAV1\n5pUKf26hTkrDbV2Om1jkWM+yCuOWQA4JysIBHK3lj5x2otix2oosnU0S9Vh03FerrW5sp4MAKjny\n55dfcEzUetbvbdqBthji6TUmOkPvWjGUKYralQy2lbQHibCTOGhE1AHaNdiqVLwgwlYcVESU9Gpp\nNX2iuGw4dAhU0aZdG0sB+ZUln4ZWCwXpHI04rkSEldHjjZ1ANHJBQC6Qxd2VLWEPaHbXCWFGVMz+\nk/NceZ4o2s3XFZlXZf9/fvAU7wW+86kHecllm6AoLm1foQUzmtFd6bHiLDnn6284i72nJN55xY41\nRIsKC8LB0jYPk48+xeCoXMtjFWjdOvTBQAy1CSEdL+9KEvNq4LJB+31+4rJXceAyiY/upky/Lt2V\nbFK4uLjvSeXy3D68Q1+WK3kWdMWcmLZQ7AGkI9aXJTxSWJuh4KirtzQHk6Jopp5q8IzSL67d0c3q\nGy6FhQUYA/wANxSlMsAcXVOalj7VgCF5INn+DFum5PvTcyG3fEy6kW6kQHFS3M/v7TvCtgFRqNmM\nR6lPFFg12wJP7259Eb4pkKRvf+UeXvpSicu6FZ8LS0qvp3HcXGAIpgJ6y/p615egGtPNNWA+5s4t\nQEnDH7kMPKOLq2ZBWq/bmwMl+Wk1l1iak03txOFZHn5SNqDsgMvvvFFgWZdu3cySGhKLfpYbrpCq\nMTcP9dguMO0H1WwZclpH76Q8bO1LFvrtYpW0HZBTjonFWoCW11NrgEbGaPoB9VCB7sYQ6bvkd9BT\nWpik6AUgUCUaOSZReG6H5rPtTvzSmdJZRh9HCEwQtYmJjJUQAVkdyrRTG/0s8dFld35ZlmVZluUF\nyC84sWSJuo9AmFU6w7qdLr6a864THywB5rjznDFJEshYbszJSrNp4dsxts1Kyu1dLEwcFvADInXV\nIyI8TUoFzUZynkI+haM7X8uHOSUmXljwcbSGuNibYsNaSersO34a4g6Ijk1GEQWbhs/inlvFAtv2\nphdBKr7fJkzKOGfnmmR1bIURm4IRC+atRXGR9xxboP69Xdx4nSZyihHPPCJu6PowDxvFevmLP30V\nH/qTrwPwtlSBVJw8m6ySLUih5eJClSfu2QXAhrUp/IL0AXIK3dh9EhZg8ShUxVWN8jUe1WZuU8eb\nrK3X2bp1Jf6ETbRCrNJRBtmid5WlnaQ4DZSVfrm193FmToj1ueasUQjVXNi5l8XHpCigdMV22CTz\nuWKlDQf1TNNNwlPyIP/tzmdwRmWu3n7jJdCdhj1z0oK00qR7WDtDHjXkjqi1bp2EipSxlp0GAyvE\n2v23f7iDI1rFf9X4Kp6ck+Nvm9jPR1/zbgAmazZd2oiqv6sMJ3TcTh1eJVbdSytL3Hb7dwHozmZp\naIfDWs5iE0CxSFePRzrufOj5EKrJ5rvQUOTBYqZtlYYBxNjNoQJU1K+eiqAgc7Eyl+azX38CgN//\n2DeZVoLBP97+Ys7XRFSzWePxZw7Lc1p/AWNDYlU3bMFdA/hVaMbsYlGLuo6naRxCTZDiRDhaxpl2\n2h0RAgM1deEbMw0so9ailcbNyjz3dKUwaomGtqGuLBOmFUKrnVgKNcUeBFECq3ELncjPM/PucZIp\nDE1C1m7TtkqN2y7vNmGHV+paiTUaq6OfVX7BShRVotKhL4YmWbaVMMCLdA5Tb95rkxdgrIR6LoyS\npD1rRgZRL4JU1klCAa4NVlMemBOG2HbMJxiSVVd0+6YxfNWiTR+qviyIZgj5AXmR1q32EiXqpmwi\nJcZwiRI/wvcN8xVZZY2GzaP71C07sUTCH99nw7gs9K4nTjE/p/c1a2ho1Ue8GH7txpV8//HdfOXu\nuwC44kXnc3Razuk94TOki6O8dgWXjYvifeDAPFeMS3Z/6WSF7jGJD25eXWbeaMVIs86pZyT+Opc7\nxbYLBZxfzWXB0bbNFEil5cUbH19BXzz9XefiawZ/AXhUn1SKuJkazB7fQ3RAXF5zyDBoyf1u6B+C\n7lgZtSg56sIunGTXP0mIY95P0a+VTIPlFfg6J/vtA5y3RjaE1Pl5aC5AScMQpprAkQpuBdQNJ6wy\nf0AgSF1bh2Ba3qAH80d5/eUS720VFvHil3RyFRfcfBUAbhixNKfZ6vxCu+3mqdm2ItwyxI1rXgnA\n4s4n+eqdisAo9bAJCKopGksOrRnNzpdciNsSNz2qoSjLyikLf0qhYi0/GU+66NPQjf7wXIXvPybd\nC2YXZqhMy3q69sJhxlbJJvvSa8chkvM/tPcQu07JWvz1d19DS5+R3xGPjFo+m8Zi8hVDVVuFn54z\n1DUU4ISQj/k70hFz+i7N+SFVYshfg5K+kz1decq9sj7yOUNVj5+vBgn9nfFN0hYaSHIcho5GlUGU\ntAT6EXUXVyz6EVHchQIrociz7TbIP+qg0XuegqXnvsbzyLI7vyzLsizL8gLkF2+JIta6MWDUPTfG\n4GhChQ5wvcS8Y2yojbFiF/5MrGj82+ETU4RxjyXPSujyUo6Fo6a9HbbB+RERtroUew/PYuvsNEOH\nlrbpDbBxNLOa9yOiulgLjaVGsht6XjtwbYcRxiiZbSHFms1S233w5CRr1+iOX6kkPeKznstdWne/\nsbyeRb3Hnh6PIpBOw/UXb+Yzdwpe8e+/eD8bVwurz3ovRW1expOfmuIdLxbH+pY/+jdKr3iJnKeY\nI/DFKkhZGXq7xVa06z5pvVYw+zRPHf5nAEKrilWWRFQlmyNIi0XbSxeNhSx0gVc39KjJ6dNOIHVH\n+zFPCuZ1VdZwRAmEB87Ncdl6ZSLKpgGldgtPs1TVdtF2lR51N4tj/SzMyQUmTvr84B4pFvB6DW9+\n75V6tZaER2y19OcbJHTPq7JwnuJsqyWCI2r5lVug/AK/+abzuHOPkDIfmFxiqS4P/2/+7xvZMqyg\n/zkfu6k8/AUPdK5pViHQdsX5QWlYBZTOHuetLxK87eGviX1+78MPMDU9h1OQOR0/q58N6yQZOLR2\nNS1LLNqJExYn9wsqIGzU2TcrVuaeap0Vw4JAWDc0xPUXSunwmrF+du0Rq/RfbruHX3uNoC4wUeIO\nPD03w5ZLhdggsGyWwoghx6ZhtcEbrmPRndDfRUlCFXzq2onBDm08rU9vOpY0TgLSeYdA39uw5WPF\n6JYoxNfsvEnZ7fR5aIjU0rWNlXiEAF5O3jHHRIQ6uCgICGIr03US9nUbEpPSTTkJNZ8FWDEdX4er\nbneYn2dYoh3ZpJ/Frf+lqFiSG7GSftDGGAKdXCKDiZnqbbujjt5OlCLGJHEN224TFniehWO3zxlp\n3DSKIFkbYTsrGBgg0EoM3yKr8I58LkVGoRV22sFS4L1pRfgLCuOYb+CVxL/bvGaE/cdFEaYwOJ68\nVCmvwA1vElfv4S/8GWu3ygvA6VZCh2ZCi4WmXOv2XfM0bPnui8+2WAFYQYvT1SYvvVxiln/xhZ0c\nWZSX/+wN59Fnawhi5iSOJeP5qw+/iN/9hLjq5593MevzMqGjnsOqEa09P3SUXFGOHx3J8f26xFnN\nkEf9kMREu0/Mk/ckFHA66sdbKLLqTb/B0FOfxOtZDUAltYKmtvLIzx0msyhKsTRi42vP9nNHStgJ\n+OQYKM3b4twMUy15kMUdeUa6VukxoxxoyNg++/6vUd8nCusj//gW2ks4BfUAlOPAX7Dxiop+GKzB\neoVRVVzSE0r611iQEACwYVU/W3dIT46+7gJOpGGF0Q3gxm1KauBoALBs4JBeayrAK2rMdsSHgi7G\nhUnoEqW++hIBtr/3Ny+HeYtdj8v6OOjX+OJdUjBg37kf35E5qs5EbBkT5MTakW6uu1Kqi244Zz1D\n3TIXw24BnDg+6rP3mNzL5g3jpGI8khPy2EGBzJU3n8dlV14LwOxik1Y5B1kIXZL29ZuGBykrwUsm\nZSehsVrYhv/h27SUoCZMp8kVZDxuwcGLO/MuBVgagmiGEWZB5ydMJ7Epx7JxVEHahHQy4Vlap+/g\n4Khx0qr5tFQvGCvEUYpMN+PgxArVJqnTlwP1R9ShGJ8n9vnzAp2W3fllWZZlWZYXIL9gsH37p+WQ\nmOHGmKSXiomixOa2O1ioLdrBcGNIWKtdp22JphyDH/dzce3YyCQIIwI/xrlZpLMyDbm0nTS2c4se\njQS3FpEryjGZnEeklHeTpxZZnBaXzm828YpiuWbSTjsxAVhunOaPKPaJhXOMbo49Je5a2XUoKdnv\n8KpRegYk8XF4eoEBJTJ+5KkTbAXueORRnjm2CGnBPV6+bpQfTgge9KuPPc5rr9ee7K6htFnG4NZC\nfvtNEkb4nU99gzdnrgJgYHQcusVqnJ+y6Fdre2CoSPS4uK2lbpf+fnGrN5d6CJfUKphOJyWBjz9e\nozkuFvNcsZqw9+zffYKhtFgvpXI3l2yI+ZoqUBXX8wf/fjfrtso95sq9jF+lte9U4ahYVt/57mPs\nV0am3uM+73vXq+WQoy2oqhvdV4bDFq0nM6SuB29oHfTFT+AgxBRqww7FTWoVOS4UxQTLBT69K7Wi\nf3AYupS9qLCSJCyQOg1KSUcwA0V59ktHljimPAXbowHYrD2WBntI8AnZmIHege5uzu4XNMPZaXhp\nRcigU3aWauyAtRy6VukYci50KzdBIU8CYK5FCbLh5NNHeeZRCZ380W/9CuTk2Tz9zFF+eFgOv+UP\n3kPLj9nmbQJ1t1s+nNUt954xFqF+7uUcUlo2HfkRdXXVo7Cjc4Nl4ThxUtcQqaeYL6Zp1RWE70eJ\nt+e1PFLqyXnZFK7SADZrDYKgs+yzQ5RmLZUxRPUYwG+Sd95xTbsP87MkLk8NOyxRy+ZMt/2FYe1/\nOdx5DV4kxAe2YyUtO6IwxMTQBCPtPAAsx0rKDhxMO5sXQRRXTURRO2tn2uxXUWQlXKRRYLDV88mk\nbHJatTPQn0pch2bL0FAcR6PWojUvlSqNuSaWQjH6ekukC+L2eXbABVtlUT60+wSNuLkWhqInT/uC\n867mi1+R+uybX30JoVKa9awpcPYGcW8fXHyKLQqG78nIeK897yIuOKvJHT+QxnP33vcEuQ0CBt95\n8CTTX5eX/N2v3taGUFV8xnrkUf/BO1/CX35FYESmxyWTl5etPGKTWaGuausolxbk5Z/eM8NUXTLG\nT5oUg11yj12ZFOUxURbH6wXp5gl4PREDJYnflS5YybhWGlGcggkJO3D8BPiipL0tw3Rt0HYomRI0\nYyV1kDvvEsD4R/74ft62WubhHb/3Ltkpgco9B2lq9U7v9ghsmxN751kDVI82ycdVL+sy8IPH5Pe0\nA6EqpBNHMbbMXW8pA33ahG/JhYpm24Mj0NA3dOkIHNf47VAECnfqGV9BlBJlPndsge64+cd6D+y4\n/l1+0EzBfBa6YrTAAlktnMDLUepTKNNcvc14X85BjyqYokUCd5qO4JBsNN98/AhXXKPhoYJFXYH3\n3350hotukBais9MODeUEbeTb3TKiSpg0pHMdm0CtkHraSzg4aybEaOmEbdvgyQ35XpqmvljVmk9T\nESrdAykCdbeb1Ratmr4/zYgwZsh3Ldy4KZ5tJ0RDcmK9X69DRTkeGX0/7WZIGG8mlp1AnDqzI5Hp\n6AIckaCiLOs5YqGc+Znp+PwnKdlld35ZlmVZluUFyC/WEo1VeIKIjW3ssF0L39GEPjKd2TYr8dsF\nL5o494RhjCsLn8XtrO6tA55mFD2ixB0xkUlAvkK5pQDeSHoogbgH9SX9PbLJF2RH7u8uYKXjAHiA\nqcQFjyF5HUQrDAi17POsjZt5eFCsqyCTpqbA5GLgsXZMMsmPPjbH/Jx8d/UGsVwOnI6oRz4rB8Wd\nf9/GFexsKKB7Ar50hzRSG8zY/F9rhdCZlkNWSwj77Ax/+eFfBeBTX/8+j/yTWGivu2otO9TKLHR5\njG1XS+mgy9ReGfNjhwyDg7JkNgy5DCuIu7hhFYERq7Svv8xIWbCaxZX9oJYu0Qzs1fryxkzC3n/h\nOdtIzDQzxaGvSZJl5/HHePCIuNr//fdv5OKYNjBVAaVeu/uRY4xfoC2Pj1ehaNOYVbD3IuQVSI+p\nw24JkeA6sFH9/OoCVkmfk1uCPWJB1hcsso76gSdmQPuzUzgKB/fJMVMFUjnBqDoDEX3rZe6WdlYw\ni/IsrUoeNGyEMk+xaRR2l0lApuUSlOIa/BDKyoPgGphQhqZ0HgoxUbLVritvNDm6V5JGR+frvOWm\nawA4dXg/t98pVv+FN76T7TuEv2ByvkVVqe3CwBJHrgBbe7vo6pHrWha0Yro528WJISpuiK1lrkFo\n8DWR49sefhDjoNvk5XaU7mSbI1SvzrfbLdCJTOxU4Lg2prNeMz7Ge1b3C/U+U2kIY1yp1XbbI9Nh\nvJoOI9LmDGxo/PuzWZxiscxPT9L8y+HOq8TWuYmsjviFk7j2NvYZhbHxRDiORaB0XKEFgc6oH0Q4\nGguzIivJ5qVTLgWNX7quLWh6oDJXZXpGXtz9x+q4ugrSaZdcUbN/roNRsHOpx6WsLrxjIirKMI/v\nJ1nHF60ocfdJAY2nmhHktcVC3zDXvf7lAPzgh5/n5ecKMcT8nM/acSGwWLNmkSOaGb/4LHFBPaeL\nudAhXVTFWYezRkWhjvT0cn5RFNsd3/shdwyL63nFi7ZiVOn6fSW8uiiXt99wJXd961sA/I+PfJFL\nXiMZ7CvfsI3tJTl+bO0Osmtlrmbv9rE8mZ9GuUxVeUw3v2Q1XlqgPF14oN3ZG7gk9fi2BQOq1LaM\nIJz2AP2A1K9/4ZM/5F8/czcA556zkt9//2tknjesJYlLHgt48hOiOG77wQzv2qxxzFYEQTejaySO\n6BZ6oKLL+xkfcpLdpq8Ajij8E0FAdkFbq/QW2Dkh66A/yDOkJTwnH5llpE+LImpHCAIZa3mLxfwx\nZchvVuHlsj6KHkkYtDUfkNJGePQpMcr4NhhZAfu1KCDtwgrVJGEddEMkciGISU262y1RpxZAW20w\nN8u9u4Vc5OZXv5QHnxDo1x33PsnKcamguui6S4llKHA5dlLi8PUZw1nnDGNMSMYYitqWIexgnvci\nW40YaSIXqAtvYRLoYSrvYWuyYWmhTkNd+5mZJq4iRfyGT6AwP9cKsC15lp7Vbp7jeOBm2uooqaNp\nBIlytS2ElR7AtnFS7RCe78cgf5PU2Ns2xCX2phO+1IkCMB2q8lndRn/aUOmyO78sy7Isy/IC5JfK\nEk1qWLHblMztJJz8qd6X43XsAJaAbAEiP0zcc9uxCduxZ2wrptGDhm7mVktYsgH8MEjCCK7jkM7I\nNpazLDKx12eBmxdXrNlqUauIZebkHDLqoYW2leBNzRmuiGlDBwhZtVnIlO/4dpqlSbFwBrr6qM6K\ne3ftRZv4yoKc//b7DnML0HQcQsfDViKAlBuxeVis1F1PTbBamfn/y1uv4rPfFNf4qSmXG998ldxL\nP1SUwb2QqfKem4UO7Z0X9vPZh6Wm/G/+5l7GV4ubf/GOLawakBr2K4ZWM+ErNq/bppWWSTx2/HF8\nbTbluC6rRxVrOxFRrovlU+w+ARW5R3/fSZ7aK4mYTz48z7Ze+e5lFw3yxns+BEBw924O3ScZ/OZT\n0/TvEHB+9e4GkZEx3HLLBWxTK5nqEpV7p3ngwAgvBvzHnoBeGZ8ZSmENKeZ0MmD2pLj2tZSbeDbW\n6Rm6j+vx9T4qabnn4Uu30DeqD79Zgsn9+vQy1NSAXDjmk/9fYjW66+tQFhRCqncEuqX0Fm3mxt4K\nlJcgrZao78BhXThWBI24+V0aVmhf+5YPE2IN1043SWsDxXsfeIpsVryBicVZbntKEpIv+fVbuO5C\nRTkstpmMyNt07RDL/ay+HlI6zmxXmaomfkyzlRSZuK6HiWvb/QC/oYmllJuUVjYX61JcAmRsizAG\n6gc+OS1KcTIZmkoTFRqLQAtaaqZBqAUeac8mlW6ro4SVLQwxJg7nRTgxaNx1QNdBFJnEzXfdM5mZ\nEuszhDPYmp/TzHxe5/55Pteh/Nj//geLkYYfmllrNyUw9pmKM86qW5DUy1vRs0C1cYwjAiumuXIs\njLodbsbFUmIPQ0AtXtTG4FkxgNeQVhehlGuzZUf1CN+XBeRlHbq0y1q16ZDSB1PMGqpNva5rYxSl\nHAY2lw1LBvgHJ053rOg6hYzEoS6+8mq+/L8/D8B73vYyHI2n9pZzXHWhuNj/+DjtDR4AACAASURB\nVH8kJHDPvpOsGi3Rasli6s3ZUFB+xrJD5GmNctHw7ldILOwvvvEw/aMSB7ziss2E2rHTcQFLxpDq\ntrjhEonxXXl1yNySwKa+9u3H+Pa0KNTx3EpOB1qAMNrL2pVZtr7xLTx++3eoKXqhbrusP19c++q+\nOrYvF1u1pslSU5T3qZkZilk55n3veC0bRtXNH7WIUd/u0CDr/ZhLzSU8pIpjZ5WuvMRrL7pmHQSa\n/X7CsHeygR2DwJsh8c5nFbNQVmVbzNLji7+91AzYd1LG1JqaZLguc7p2e558HCvdVKZRVD7VBsxr\nNdL+70+xYUCU39JUN9U5CTEM1xuwQRdvXx5CjYUGMR9oAPUZiLTaKZ2BxZjmz5L2pwDZJsQkJTNz\n+Dp3WRNx/Jgo7C9+dxfnXiqkMZmBHfzZRy4Hzmyug4FIbz0qoA1goHuohKMWRrknT03r9FvNFk2N\n26dauQTyZwcBYbOhp/QS2FHQMriqRlIuRLmYg9dPxpHyHFwdRNSKkqKXsBkkVUqu0wbMA+33uSM2\nabASN9/qcL2jDuYQ13k+lRc9F1n+Tyqe/6lk2Z1flmVZlmV5AfJTWaL79u3jlltu4R3veAc33XQT\nExMTfPjDHyYIAlzX5S//8i/p7+9ny5YtnHvuucn3PvOZz+A4zvOe1yh2PrZEY3Fo/2ksEkq6sAPs\n6fvtNJzbsRWIdfujjPeua2PFeM1mQEPrgE1k8NWlKOQtMhoWyKcdAh1ELTSEcV18GNGlmLpUKpXg\n0yqVBqenlB4sZVAoHDYOTpzptUncjshvYnly3R0Xnceu+x8A4OiR46zsleTIwokKq9aL+/WaG4SN\nfarR4ODOKTZpoiibKxCqxeZmLYq6m5cLadJqdvy3Gy/gf35d2IS8BZ8Lldk9OuljFHxtBvtJjYm1\nkPUM412CmTxnfCUHtETx6INzHFAv9Ni+OSYPTMIboXxsgtWuhCCWWhGDM4qOGCiwao0gEEY3d0Na\nrTEyQNyErQ8qynm/5yRBTTLS7sAwXKo164tNHK137xpyGSzEy9aCrCZsNmVZM59j8pQSTntZ0rOK\nEihXODwjSbbiaI6q8h08cnyK/Sfl3opRjVyPWI2Lbi97F+W7R3dO8mRdLM783CTTd0iI4dF7d3LN\niIQI+npWcdlqaWlN9QjMqPW5pgxanMAptTxLQD6Caa3Bj9JQ1HvIZiGjayVblXJgIJqZxDEyd5Yb\n8ZXvS/O/D/zhh1hzmdbI8zzOaPnMl3zVBhlzMZ8hp9R2vX1FQkWfNJsNGpqkzZiItJ7VsUMsZaoy\nrQhHMciOYyXOlWODp55frWkSprTQahMqG6IEDxoR0U7PtxvMQQemm/Y77Lh2O7HU4bNbYfvP59U2\nxrSzVRFtC9R+nhrQn0F+ohKt1Wr8yZ/8CZdcckny2cc+9jHe8IY38PKXv5zPfe5zfPrTn+aDH/wg\nhUKBW2+99ae/uhUrTwMmTOKHlmUlkxGRtIgnCkwSHwnDqE1hZ+wETuF6DkbdfM+2EnB+1AoSBntC\nK4GeWGGUdOZsuTaNqrhxp0/WSCvJQlcpSyEn50y5TjKGyXpARcHF06eXknr/UtYir2EBz7Fx1bXf\nMTbCY+qK2U6GeNmnrW6ufLUww3/67/+a37hKSUGCDPVpudb52yU+dvO15/K3//4Ah6fFTS6UfHoV\nCjRzvMLktCzcfFeebVtF0a7rc/jgG88H4Pc/u5vBFeJKj/T2c3S/KKf+oTyeMsnXFhrsf1jil+su\nddkwLMf3b3GZ3SPusnM8IH1E4pozYYnRMVH2K8sZijm57sBFK6E3rjt3IQahY3X8Pg9xs7UmuErZ\nx6yhcq8onukjS6zOyrUuurCbmEzhqQefYHVGXe1wmr5j+7FPiPKfe/ooj0xIPHbH5YMcXZDwRP9Y\nlr1z8v16/yApW1z7sl+nX+fu4Gee4QkjbUe+3wq543Hh6ZwJvtwxbsM3Togyu/ZEnnNdqUlnbQBZ\nDUPMzUNFN4uqzsOsA04TmprCn1uE7jickQFLlWu1DvOaZU7VwZW5+N43d3LlG28GYM1l7cx7PKs/\nTs4f7cdTboJWy8Lpkk2zqz+Pr99uYFObkGMCLFxd6ynXkOlWJIoNZeUxLXkOkzNqkBg7IQhqGovm\nkiI5KhZdRYFoVSu+8gJDvpQlk4+JRkyiyKFtOFlYQjYCZ3T67RT3+Unu2xJ2UGdaJLkJ+/8HX/wn\nniKVSvHJT36SgYGB5LM//MM/5LrrrgOgu7ub+fn5Fz6SZVmWZVmW/4RiGWOe0wt4tnz84x+nu7ub\nm266KfksDEPe/va38973vpdLLrmEc845h2uuuYYTJ05w3XXX8au/+qs/9pzGtMs1l2VZlmVZ/jPK\nz52dD8OQD37wg1x88cWJq//BD36QG2+8EcuyuOmmmzj//PM5++yzn/cchkjoskxLsohxSt7Y2F5H\n3CuWyBApHMl27HbgxHaTKqXIWAnRyNrhfmwNTjoYgiiuQGrHcWzHJqNQDM+1sJoRzxydYMOq4TYc\nKQwp5tX89ywcjSMuzFSoVpQOzYoSMgU7Y2Mp7KNUzBLEHbt8n6ySnTyyf5ZFBeS3Ash77WjOwzsF\ncP7tWz/HWy4Wt3LNQD+Zq2/m1Jf/gRpNhhV2lOlPs/uhnQDc/dAhCgp5sV2H+ilxGcfK3Qz0yj2O\n7uhhz+MCfbr77j3cdP1l8vm549Q0ntrdmyJu2r73qTly6m2ObFzBkXk5vx9ZZHJpVq9/C6cX/p7w\ntEBwht0iaAyRgXXQr2QcnAYkg031JJwU76V2HHJXr9FjumBCwhTVB/dT09YoqVSRcjEGoWe5/7vC\nG3Dn7Tv5wIslTHHgUJOFvUuszGxk9IE/5slr/pTH/JiH8gRXnCf3dnjqFLtPiUu+PypS6pdwwEAz\nYv28uJzlVD/H8jKmpUydJ/dKPPl/Pvkv2uDkTLlwTYm/uUp4Oi/e3oCzdcKmixzeL+iK1StXw02v\nh3u/DUePQkbDAltHoCToDSYt/KMSo21U5iiu0CqoU0f5/J0CP/u1//4x8ASdEJpWAjXyNJ4LsGls\nbdLDPUoZojgvkPPwNaZ4atKn4bsEU/sZXLmdUV0fBFUqpySUsxgFhLqmwyjC1mstzjRIqRPb76ap\n6AvXROjwAHr6sswqlC4IfMqx2267NJXN3m9BVt8TN4pwFJz/zNxU25/voLC0PbvD/36W8RVTlDbb\nTSttlzN97eSU7RyMZdGGPv2IWGf8eD75uSMCH/7wh1m1ahXve9/7ks/e/OY3k8/nyeVyXHzxxezb\nt+/nPf2yLMuyLMt/Cvm5LNHbbrsNz/P47d/+7eSzgwcP8nd/93d89KMfJQxDdu7cyfXXX/9jz9Nu\nf2yBZbCV2T6ITLLrYTlJ2+OY7enMLwOhwdbtwnTQXAmwVKwRx7WShJBl26SKqeQ8cUSjutgipbtq\n1ApJZRXb5rrtXvaWlTBjF9MpPE0aLfkt5jUpVUq7rB4W/GX/QJ6jz8h1pxeaCVZ17VA/e45J4sPz\nIdsRHL9gq+D9Su8a446vShvfrocf421X38zC6RZWfy9BTb8wa9g6JiWNG1edz4kpyXTv2X0AX63z\nfCHPUSWPvuvLx9g6LlbsRRek+NqjUrr4znNXkleLeXL3NANXSYKmcMUaDh9XwujFiD7FWz5xqsWh\nWpPV62F/VKBXE2zpSkCvFiMwUYWWWlyZGcJIMJ2O70NB5id39SbanZgq3PUlsYL6cxFnb9N7HM/D\nQUlSzD9WYSGUz2950yiZHWI9bjkSwgoHf48AzqOcz2hZ/nfHt+psXCPJMSud4+RJuUZY8hmIqdtc\nhwnFC584MsdURUipA6fBTlvKKZ/LCgXYfsFquha1NHTFGqjrGvLB69U6/bj2f2IS5iuwQv+eqstn\nQKOZI9Mjc+eNdsP8cQD++Z59vP2/SBECntPupe44mHQMYofRLsH5eqFNTsuLLcdLUteh71GPk5le\ngKWe0OxSjcH+uLOCRVYRKpVGSF2xz40mmIZYlhZWgg0NApuCklY7UZRYhMWUQ13LRFtGMKEAXb15\nPPUO5/1WUmppO1bCiwGcAbmJS0+jVgvbi99/u4Nro10Yb6dsoiQr9SwbMf4zstpkzXRgTs+wSH/6\nMONPVKK7d+/mz//8zzlx4gSu6/Ktb32LmZkZ0uk0b3ubUGyNj4/zR3/0RwwNDfG6170O27a55ppr\n2LZt24899xnDNFYbomFAdY0Awu32Me2JtvSfQNi+fxN2NgG1MDG0wmp39fPsNuN9ZMDX3vF+LcDW\ncg0TRlgxB6Jrk1bgvefBvJI+zlcgpaDjvt4sfStk0bhZg6+wo92PTrE4r6QMliGvGf+cHZL1dNDe\nmQ8sZgdf2zfG+K/LRvWlz3wOgHv2HODKl5YpFMWlq89XmVkQRTWwIsVq7WW/+txxZldJ1cpi2MJU\n5Jhw4SRTvtKY1RvsOa5dIf/5a/z6jeIaD5VdHnpEoDypdd1k06K0Ts+lCbVlR3p1mv4l7UkeukxX\nxS2emUox7gpkZ2g4CwN6b14/TjOue+4HT+FLpGFRKO/qu6cpK5P/2Vt7QOcT24ceeRZdqwzjtry0\n3V1pOCnHtw5YTOzOcOdel3cCj53K0O+IQvJzRZ5Qqr6xUYeyVlrNnPI5NScbRD4qMjwqimTDlhRD\nEzIv97Zc0rbAgkZPzjCFoCt63CFsVzbNt62+kuGiKGnCFhwQJMGuY3W271DlqkXc1fk6bgrS8a7Z\nDKCux7Sa0K1rujrNN+6T6qjXvesWCkNavVTzsT3dsDIOvvI+bu0fwdT1GXtZ6g2Zr7xtJZVAbmQR\n1NsNFGPy0nSzQTQnc53KWWQysqktVSxijZ3xPIwaGMWSR1rDbU5gEShawm+FhPoitnyXHs3IN2s2\n83OigMNaRE7HYxdTyctq024w96MSK8gUoRa9RJ3Vhel2F1DLVre//bW2xO58RBsP9mxu0Z9DfqIS\n3bp1608NW/rd3/3dn3MYy7Isy7Is/znll6N23ujuELvkkLjwnd55aIl1Cc8aeAfC1o7oALobTEzu\nbDvJP8IwkrJAoNU0CY2WbZykJt3YToJ5c2w7OU8YtFm6G4EhpcwzqVS7cZZpBSwqqe+pkxVstVbL\nxTR5TSxZWJy3SmBjjxyZat+ADyjDdxqfllqQb3/bWwC48qbf4KHHH2T3I/cAcOn4OoqlvI4hBTWx\nsian6li2WI2r1w2zWqnOxtcMM1ET1/iZCYctjrTW3XvqGW79ppR3vuaCNfT0iqVYOTBPqkssk8Wq\nT3NKKeVyefpGxFUt93XhKlFw0zRYCGUMGQNdSZjCh7RO9GIAXoy3rMGkJJOyqYDzdij7/UqvTWQ8\nUYW4b3wjxYAjJz0+l+P27xwC4LL0MCv786A96WdCaBlNfmweYMEXnGg6mGNko3oSj84yfUQsm6ko\nzz7F2x4cLrFJia7LUY3Ly4J7Ha6swjkuoZD1F/dxWPtHXXHWBqhrIcHMIsen5JypcpFIPZ6ZEzX6\ngYOnqwz0BAxoIzwrDJIa50xfFmZkLXzxu09w+aveCsDgxg0JSXEYglPW1W87rB+S8aScHFlt353O\nWPhKE+dXQ7wo8WMx2vbY8wMi9Za8VpNwQebXGDcJV4V1sOOxpWzSSg6Rz7sJhtqOLNSRwzSsmBAN\nv2HIq0UY4mIseWaNpknKstNpj8iPO1gYovAn2YIWjiZgozDCeu7yAiwdsxTzxKB62uTLEckfz4tN\n+hnM0l98t0/F2rcVKZioHcsIw3ZRg0FjnoiX8VzVCY7d9v7TrkXkxVReTtJ0y1gRdV30ftMkNbtZ\n20lq9m3XJVWStzidsmm24j71AWlXVk25aKMcJVh2wPSk8lEGIfW6uIl1IlYo52ihlCOr2cuo0UrI\nFC5eO0pFQnk8uvdpWvrdfNYlpaD9SOkB15+3ifUXb+L2fxUKu8/efjsvPkdcve1DFyVs9tneXoKs\nKMLFliE6LBcIFyvkcqJQzzn3PNKutBO58NQ67n7oIQA+f8dTvPRsaYS3accoc/Nyv7nAJjgobm55\nbUQrI5l3GwOOvISFcpOWL/PQLAxAoBhidxEmJfPMTMjiYVHMud4ybpe+hcMuKEcnlXk4pFHIkz6L\ne7TefXaRVFk2h2emHR56UEIB52woUxpLcZFmxnNnFzitL3o+SjOh52rMTTFcloW2akVEf16y2tOz\nETPKqj9Xgb0PSAGAcatsWy2b1LpCL+vOkbkbWtfFd6ZVcfZUYUbimtNzNaa1AKCwYpgfKnC9errJ\ndUDo2hT6UlgaiooWatgrdOMwFb7ziMSoL3nFG1kxLsgMHDth17eMDSlZT2sGh3HT2hGhu0BGSUQy\nWZf5JWWwX/AJdL/yrChpEBg2WqTUMMjaEFZlfhvGIlLDoOE3k64bdt0hW1KSmdC0Qfiek0TVItwk\nDNdYbEoXASTemVU+1EYYoUx4GtqKNwdD0Mba/xhRHuBU2KEBz4x9xh1EQ7/NRep10OxZkHzX6ggj\nGjpSLWcWUf5YWa6dX5ZlWZZleQHyC3bnY1PbxrJMu7Q1CpNOKb5vksC13THa57NEQ9pkLREOttaM\nBsYmaHXywcTUWREpdeE9x0nclFTKSbCkKQ8qylJUrTcx+o/AwFxNztkILZaUGarRCpMdLe+4lEox\nY3yaQLOp1bpJXC7PdsmV5TznbRnliYOSGaaQkvgEYMdM6GoaXHH5lTL+2Sx+j1h49z/+OGsUL9hV\n7KYYu31BnVpFLA2nDtUlHX/VY+VKsRBGulfyyivku3c/8BBf+J7Uml+XL7Bju5RiWqHFvJbyLc7b\npBfqUIYcVQoFMXei0hKTp8QqTVcrbe5lItDMM70lMi2x6NzsIEkpZeUE7D8MwN57DlOdkzk5f9Mw\nJS1hLZ2sQp9Yblc7Ja7eoBjcdBHumuDhx06yBTi27wmclWIRjgxGHIvEEj8yUcfMy8NZZZUY0FDI\ncDriwCl94F191Bti7ZW7KixqGWd5oEBFe2Tdf/wp+rUOvdFqsVCVuT406yQN4Bqnq8wuiFU01C+h\nj/VbBsh3gZmXc9qDHrt2Cgv9vU+e4oa3vAmA0S3jMK90W34WCmJ92/15Ng3IdS3Hpag9k1b3ukzr\nmmu0WjjqUnkZQ8qLyyxdPLU+6/VmEjbq6bKw1c03rkHhueTKLnVd07N+SKDHhLMBriaQcimHlCIB\nAscjjJvWESS9l1KeQ07bMNd9K0k+NfwAE8ZY6bCNE4cf098odhXtDku0g9EpaPPBWVbHISEdJqPp\nuEDnt3+UFe6nkV+wO2864EiWdPMEXNskLPeRIekeabnOGXMbN+BwORPVlJyedgdRogjTiqnwDOmY\nfzS0Ercm43jkYlCw41Bb0Be0ahIqvHqtSV77imdzTtvNjyLyGVX2fgujytvKpBOiFMuJmFuUcy5V\nQoz2he/PuxR1IeaysGPDagAem5h53ofZrIp7unrlSja+XEgoWoeO88N77wPg0BO72b5RFMS5m8fI\nDSlFXNXn9AklLIksurOizJZaDrbSlb3iirMZLorS+tpDR5iqyf1e99ILyHQr3CnbxLGUS5Ua3baS\nZRRanMrL5zWnRpcdk68Bjj6L2RaONvtjVRVMHE+swYS41JvP7YN6J3ekxkT9JXD1nHNZDmhX0v7q\nBKVchou2yH2e3T3DnmmBMtVdKBfiJnxppiblepFp0q/14GP9eXb0yHnTK/qYntWM9kyAlZPNpeh4\n1DOy6Txy/BQf2CZ8sBMzLepaYDCx1CBXkPP0FHJs2CQhlbE+UYK1VpqJp+fJaijk9BNP8p0ndgFw\n02+9n5H1ygMatJJOtV5kQDffizasxVb4T3fRIWdpl9X5JeYWlSQ3sgi0hUoLyOm8ey2LKOaViCwa\nCjvKehY13dCjIKKpQU6vkKOpb1lUaVHRMFMYmSRfsFT38Zra5bZs42mogYLbjlnabaUVmShpPOn7\nJjlGYIYd2fkO2rpAQwe2HZ7hOodxt08nTOBO0l9eXfU4VAiY0LRZ7O3OQGiH3/5zpueX3fllWZZl\nWZYXIL8k2Xm1SGOCVtckgGIsSzBtCG6+k7c1rvr0O5JJFh2/W2DiaLWxkx0qMgbPjam5LDw7duft\nJDDutyJ83amrjYiUJmxyGY9uxfKFJkpA/q1qkFw5tBwC/b2nnMNWXNxMNWBW++OYwCKtzdoiy8XL\na9C+YSX9ty8bOYuBAdnZ//3xx9o3Xg0INbzQ3+clJnmqe5CrXvt6ADZNT3D8pCQpvv7QTsyUlhOe\naNDbKyWNm0dX42qmtJzJosl8UnaJG9ZKueLoyH6+/qCAzb9/935ufOUWALr7GpAVa7hcWQLtL29S\noeA6gXoQQFWt+XwI2sSM2QpOPe4s5sJkzPIeQVYbsm0fBSVMZt8cePr7TI3JY4cBKI1v5HhFvnvb\nN/bynjdeRLlf5nfNiiUa2pRtYqZBpF5I1ljMqMHWslrYRv4YdXJs2yJhgrqTYrAsz68SuqzsFyuz\nlE1xl7JnvfaVl5L7/9h782jNrrO887f3PsM33bHmKklVJak02BIaLCzJE5Y8SDYNCeCBJAoxGALY\nkHYMpmkwhDQkhE4gdLNMr7YhTA4xwThGNsZDbEkYYUuWJdmapZJUpZrHO37DmfbuP/Z79jm3VJKF\nnbWszrr7D+mr757vDPuc8+53eJ7n7fjtHztQ4UrBC2+ZYZOoZHV7A9JI5PXGEX28NvPGjRt46CmP\nN/3iUxP+8Y/+rwDsuPjy0L+O3KBqD73X49o9PoR30YA4EenGngkY52MrJYuiPD9IOiGdNJnkuI7f\nvhcZxrJ9mVehh55WCiXV86yqGK/6babmdRApVx1HIWQMFcVUIuhcOEdZ7yir0EbopsYRyUmoVhtj\nYyCz9fvcpL0UjrbGeoDMONC1iHNV1AJeHi8uEaR/x1W4lqaXUhPpOlut4ec0RkKv9UC/CW/022tE\n2+yjNtBWgdE1vEiFP1WlDdJ20GQ1qqLZVRQ1FxXhOb+A8IebXEkkRrTT1QJ5AFcpllb8g7J4ahTa\niSSxYVYa283MdBiJkTt4tCDPW7qk8mDZfkI0JVqN2/vhwV05PiHLRTVcJXTkWqa6EZGgCPYfyDi+\nJFCsacVAwNQ3X3QRn378cd7zxtfy2x/+PHMCWUi2xM2L18mo84tbkwGbNnhNA3fepXzuE58A4Od+\n+RfZLE3otp2zmU0X+6Z423ZM8/LLfO7znNke37HNh/nbu1NskZzx7bc9xNcf9Yb5X/yTl7HzkhnY\nAGlVkJ/24fbqwgpqnwebm+mIUhq1RdNArQNajagV7FnJoVa2X02ZnPLn3zm2DMfE2h0YgzCi7rzr\nBI+m3jB97/Uxr3qD1/F8YHGJL45PcsVGv69t58dI81WWvjLC9HyInZ/KmJmWxdFNcVhy2vFpw6ZT\nfiIHac6523y4PdPfDLk/1ywr2LHNPyxXv2o3Bw75eck3d1FSkd810yXp+7nLckNHEvnLC6LYr2Nu\nu/sZHhaZu5/5uV+js0Ue3llCXz8Wx5jYPzcvu3AnHWFfFZMJW0U9fjgsOCL57QUNg1l/3MnEBe2G\ncpShinqVTdC1sbRDVsVVWR5W9KTp4HgccVLSWM7kDBL/29lZhRa2WmfQp1B+cV9chaOyKi0uF4wF\nIZD2FJ26l32kqcUtk0SH9zkrbGAX6TYbEajkPTHGV/cByklBWWuLJhFGUhyuapkSo3C2ZiY2pCXl\nVFNEOZPVyFk+/z3Geji/PtbH+lgf38L4NnuiZ/yj5m4a1WropqjF8V3lPEnY/ysECabVn0m3WqlU\npWsKUQbipAbeK5ykDkoHlSh5Z5OSShLUKlIkUgnXzjIRj1MtF5yUBH6WVaHHddKNGYpXk6aGTkf4\n+KdXOCUr9XCcoaTaHncMifRGGhVjFo57r+DEah6U9q12LImnManFn8cVr7zuUu68T8L71EImRRcz\naeZQGcx0jfJL+cif/B4Ap1jgiIDEH334IL2FfYBHDnz5Ie99JZnl8u/w6vc/8O6f5OY3e6D/9asR\nRx7zdNCPfeFWRn/6GX7xAz/G/n2LbBFPfelUwUh5r2xuMCASTCqrFZyq3ayY2uUq7zlE9HJRMer2\n6WwU1acHThGUtl++CR7wRY14wwyv2ek96U2jRZjxhIXXf+dF3HnPA2yLE7YA4zLllPRD2tBPGAjL\ndCmO2DDn8xYqWebocfHkxhWffcR/3rltI4difw2XzWsmS57DfseJIT/8z30b54NHMh7d7+/TtnN6\nDOakZfTMNFq45NnKmKGkMOZFT+Cxpx/m6FzKe97vQ/hOD1gSkPAoba55A1y51V9bdxCRSKtq3d9I\nNvKA/IWlkqF4+lOb+szVnlmeM1mR+UoiSkGHnNApq7lU4Z2lIxjNfJITp34bqzSJRDmTpQlKSWHJ\nVKTyucgj9IzfPp3pMp/I9Q4zrHSAdEUeQPhKa7SpSSk6VORdVQbETBQp4paSmapfeqN8d0ggSh2l\nvP9OGVQtuF5VgQBjnA3EGK3V2m6WwaS0CkvP6X06zmyh/FzjxZETDaOGPK3JbGKi+mKayp6v5kl4\njloDkq2v3bXQs0qpEDKrWAVyflZWQfG6rApiuXlpquh1an5wxaowh5ZWVeDmd2IT1LadU0jBn6mu\nQokhXFnKQ241VRVGwjurFWMJs7ISshpEkPj0BEBhHKL/wFLhjdSDT55gcVywRTpBPnHiWFgQprRF\nO6mSlybIAL7/p36Uh5/wcnk7zp1iLMbe2ZzI+Vzj8lLBrte/HoAffsvb2bHLh/mbz9sTWp7Th52X\neT2E6y48j/0HbwTg03cXnH74TgBe/R0XcM4lPsQe9KcZ58KTXs5xSwIG3zENkTf8K8sVc8+Icd2W\nggDPn7zvNOdtllz1VMpE5u2iK3cwKxV1FicgPPpLXnoJzxxf4s/u2cvlwN6DBXMD/7dz5g3G+YXD\ndg1WGE9RqXjpRR56dGSxxzMH/TNxsopJS1HPX13lnhUPvP/Bt9/ASRFLMNmBuAAAIABJREFUOZzB\nYNpvs7HbY+uglgg0LC0KFGhSYJW/tj/+7N/yru95E4/EA37yfe9izZiRB6dw4Y28bvtG2OSNqK1O\nM5LmcSMFo8UaXRDRFyJHpxeTiwGzlWWllLB6KkFLXmO1dIzG0voj0XREy8AqyOUdiBLNdE8cgOWC\nXJ4nVToKCf/daoWS3GdMSSrOSUzTUqfMFJmwkcrKtirjNjC0XEUIvY0ytDsJ6aT1j1pcJDZB88K/\n4yp8rt2lyrV0RzSsTbTWDgYvbARj+/w/WA/n18f6WB/r41sYLyLaZ8vdPgNGX1fVDa0+KazlvSp1\nlu/QISntUBhRdDKxZixhQeFKQmUpdmgtGLnEUkliwEQuYNJKCx3hesYdhZPlc5JBt1dzgj31E2A5\n9+ozAFWuA8U0Mgmm9oi6HZZrMH9liWtgshnBpO4CJuH+wgLZJOPB/b7avrhYMbtDejKREmh0dsz7\n3uNDxtu+9LcU0z6sHrqYkVxvfzDDD//YDwPwXTffxO4dnnK5fcMcdeFnki2QTfy8HXtmxMxGIQ5s\nneUlm14LwLt/7H/nx/7JTwDwQ//yNm68zgP1f+xHb+LSy7xXOj89YVkKFp1TBQhiYW7DLByVxzAv\n4Qqponct8Vb5fmDpXOzPv7NhBk7781+9/xRdCT1NqXnjK67BCiX0448d5JXS0uaGPVs4vlKrBSmU\n4GG7SUIv9gWbS3Z32bDV73c00eTWRx7xJsObbvhOfxrnbeSpA4KT7STMdn2IbiPDWLqsLZxaoZB7\nP1w5zZ/eeQ8Au6/17av/2fv8PNXDvwKSwojhFbu8Ala5+WIm45rYcJhMno886lMIRbM7GBCnAm5P\nYVzUHmTGohQYL+h3iAUnmk/KgHTpJIq4I7TmQRIaz0VRhUlqoguUIus3wqGF6eEqRSWpEpYKBkJl\n7qUwkDbPUS/lpGwzzJr3tqhUUIZylSMO/dDWNpwM4svOEviguik4W6BsF5DEALg1dkS1MPVu7fdr\nxjdZUZLx4jGiNOH5GZ2zW/F502te6UZP0LVotMq2UhlWB7K9VjroErpKhYeyqsqwz04vDsD+ymhy\nidsno4y8ZjtZiOTB1RUYuXlZpUh7tdSbJRMjvTKaBLX5ZCpFCa93oFQ4rsFSSIhWViqA0ifDnGUx\nilpyaycnKxx45hkKYQI5E4eH0q89/hze+3Pv447//nn/tY7DPFxxyZW84c1ehf3lr7mRLbP+Be4n\nfWblpSKKQOAy6TgD6Yy6IbJUogOKqtVB4MGvfpW7nvQg+QNTl/FHklv8yM9+hmsu/AIAP3rL1Xz/\nKzw4fXX/CRYf9kD4rRfNEc2IEakMPO2vffvOi0A6iDI0cNpvb1cXOSwN5dKZQVjcZjoWBl1u3u6N\n9r/+F6/hE//9PgA+f/gJrp7zOc5tXcUGedHPnY95RpBT3WmD3iIA+KMlatob1+SCDZwrKnRLrsDJ\nvVfDIbk09hv3NUYk/MYDx8njngDwnz5zO2/4576dzs03vcnvT+6PtKljOLakI58TfeU5FzCYl1zj\nYCvLp71ois4iIsllVlFMzWhfzR01GqOIFYNIziEqQxVeGc1EsiXjxYKq8gZv5AidbStU0O/VCiKB\nUM11HZlsMyxjJoIUMSbByaJRTTJWRcxnkmq6QlbZNJOS9vwik6uKXJ57rXQjTm8UnaR5B2ookx9n\nCb1bFXytmpScR+zUaTVw9buq3XN3ontOg/r3H+vh/PpYH+tjfXwL40VSWKpXnYai2QzV2so1OFFN\ncFhVizGmVOOJKkuL/97yXG2jlq2UDq2XtbPk4qGOhllYxVxeNQlwrYjrdsixwUrBIzKWuG69PCoY\nixSezSvSab+f2X7M6oLwiY0OoclotSCTUDfux0R1CkIRMhtVHa6kHdx8P9BTe0TUTYkdjv/tX70H\ngNu+cCtF7r3F61/xJv7pO0RA+6LzmRKPM1IaLUUvKkVZSBFo7JgsiEeeFVRS9ZodaGZEaLc9Pvnn\nn2Al855e1DeUK4JeGCc8etrv567lc7n3T7xn6B74Cldt8Nv/s5fcCJIGwUQg3g47NoR+S0QWtvpC\n1+F9Rzgsc3v1FTMcfcxjUscnczZXCS7PMcCWDVO8462eDrtcQLzkvcOlk2OeOeILRcuxZsM2Hz53\nNs6x6TyPEpg6bclE020wG3Mq81HCsWHJSFzI+UGCmZZ7kuRokf+7/6G9fOER7zX/+L/+Na6+bPea\nuaoKMC1ob1VpVOnv4AOHT8Bcq8VB2Xy8bIeXvCsHG+kI8WCSl4xFIm+0OMGJB1k5jYv9PkeFpivF\nT+scViKSJNa4muNfETzLbqqJ4xqL2XSVyCKNURJR6ThI5NlYhX70WVGyuOR/kCqD6frnrNdVIbY0\nRmPq+jGNCppR4M6qLK8aK+XKVs/6ppikWxQbpRTKNED9Z++vHmc7ljtjuzU7eM7x4oA4KbXGErqq\namHvG8Pp8fItbtJzeeq1TVYtVK1rGuFVuWvSApEJbRLKSU4hsU81ygM7wpaWrlQge72IroDGtTEs\n1aIjDgZyg7PVgkI48htTw8aeqIZjWBaOcukiEJ3RSVYSSd50qquxIcRRZIUIqMi1pTN90n43SG3W\nBhTg/b/6s3z0kx8D4C0/8m7+0f/i2Usb57cxJ2DzajykHK3K/ks68qBEU13K0j/Ri0sFy6JaH3Vn\nmdriX/lenNOe9Hu/8FdcfeN3c/cDCwyUD20HwxMsTuSx6ies7veQKJbhnEu+C4DDbOM3//h3AfjE\nA/fx9puuBeAH33gtbPJtSSiGTZn1SAEXewjRxhNLnJYFZbkTMZIHpcgqsqWK4UrBS4AjI8Mm4auX\nqyUTYSBNbVRM7z5P7pPjwt3eOB09NeHEIVHP39Bl81aRs+tHHJY+9VmWBX2EmZ5BJxJOuoy/+vzd\nADx2cgO//fv/DxC0YgDIlyCZgeHBEdPn9kLRuJ+CEzm+Z73ndWlAwYPHjnHm2LNxI8nIn8PCsAz8\nd6U0iaSEShR5PY/dGFVX5zumEfxRKvSFK0pXi/BjkgSV1wI4itTU+fzGEJqepu4MWSxaJnI+i4sF\nMwJrijqNsI9yKuQ+k0iT1jBCoDyrYWtPRElZ1eylRsHe64a2KukBExn+I6TIs0B41tCYvrlc6Xo4\nvz7Wx/pYH9/CeHGoODmLZI0BXzSqFwhrm6qaB9eefXUInHrXqtAbjZJlr3KKqqxxaxVtEe2wqmpI\n0qZKWbdqjbRiqu99v9mplERwqyujPMjfDa3ByCqpigrpwkwvTXES8i/mmlxwjWXUJZcCZ1FUbJvz\nYXIaOZakiOSISEV6LRcw9IFjB9Cs9XKOLR0F4HXf/Tp+5L0+nO/3z2FzLSeYWbLVWuHHYkUiywzi\nUCTLnCavUwZRzKDvPT9nFUY49SMbIx958Cu382v/5x/zsRu/myMrUI18uGyyMfS2yLxNsEN/pidu\n+xwX7fBA9V1XXMiP/OovA3Doc5/mc5/5qr+2p0aMlS9c3Xj1+Vx/zUsA0LZpFNhJNOdI6kMfLZiZ\n9bjS1aggSQwHRFX+8HIMm/w9e2rBkkmqotOLGEmoe+rQMhulB9Ts7Bxp5cP2zgZFJSLCQzrMpv6+\nzm/oMitRSK9nOSQIiX/3wU9y6+1evnDbeTv4hZ9/LwDXveEGXnb9pQBM2+3M02N5uSBZgo60ZNJn\n03OUIdR/us/hED1x8mQQXJ4bbCSSSC5JXYjGKq0CVZJIU0jUpXRJIjhiHVVU8kKMJi5UveejmKSW\nYpxUWKG/jvFkEYCpQUKvL8VbkhDVjcYFRiKSbqJJpaNDMakCGCYyGlvVvcs9gubsoyGQxLXQc2Gp\ngldqg2fv2yQ3Hmo7M1g75DpEvs95JL/9c5zNmePFEc6DaN7VM9GQXrVzgeGgOLsRdTSTZauA5aW0\nlqjOlWjQMunaVShbtyWwAaxuUVT1DYhU4LZr5wKP3pYlVrbJcoeTHFOkDUVYBOLQ67sqI9xIYBml\nopf4sFdVmkqsaBQR8B3DSRFEUxJbEk8J51gUzOPMBzdxK47fMuOhSVuufvPaialbrCiNq5lVUUwk\nKAITRRR1OJwrnFDYk1bjvLHzAG/wC9UzC95Y/NbvfICHToiGwOoIG0medWqK3XN+nwvDmOG8P7cH\nvvYw17/5JgB2bN1JMu8pRDvedAsnrroBgDtu/RivucRf56HFFf7N7/8FAC/ZsoG3jL0CP50ppktv\n4KKBDqtntmLZsnGKoSxque5w4Ki/r0kyy9bN3jjnxYQpaSq3c2qeJWmg1p1Nmdkuk6QqSsl95mim\nRAqvUxToZb/9R//zl/jXH/86AHuHHfrKG/MDc6/hI0/5m/NnH36Ycz5+u5/rp57mi3/1MX78ve/i\n8j3ncuN3vQKAG976vYH11h4lvlsosDZnwxqVOLQkV48OT4auDy/dvTks6EQGJwcoyipITOauIhZn\nwKqyaaNTWjJBAkxPG7ppk0+t9UdXxjnjugJeZWjRrU26hoGE3uOsoJALiEvVSOS1ukpaZ7G1zKVS\nZwDjz9a0rvm7MU3xQykVNq8y28TXWqPqfaozIvfnMpEvDF+/ZqyH8+tjfayP9fEtjBeHsj3IClCv\nGi2Ps8Hm4irlVyDWWn+rGkp92fLHrWsqeK712WioBLdW2qbNq9IurIZRrBEsNZ2IUNnJC8tYku3j\nTDWhsTHB+7Q6DhxoHUcYqYarUpHKyj4ZFiChTNpVDIWyN1rJmOlLAr+jMdJWuSdqOlecv4uHn9xX\nCwuR1GXesw2ZpDiBSOTKtS5QEkNOKkUlwHM9MMFLcTQPRl/BMyu+f9Dv/uZv8vHPedHn8digIw9W\nHZsypE2mz9nGvGBY1YGjaHFjTx4pyY57LOnsS/rkubRhHmtmz/Oe4fe956V89e98A74Hvvo3vOU1\nFwKwZy7h07d5r++L9x3gkot8uuCfvvM6KKVfetJBzw3YIq2Ct2/q4qSwoXSX4cgfmwqmJCTcdU6X\nh1a8Z3lsccQGoXFWI0sifbQ6ZY61frI/+3cP8vv/zdNnv7h3muHWVwPQ23SSdMUTDPqzDrfFV/xX\nMsuBif88Iwr6hwZ7eGSf5dav/TUA5t//Hpde6vGpr77uJVz7Kq+8ddVV15KmdfOiKniB6AqiGiGR\nBO+q12mcqMcPHOW8jX5O4z5o8ThNLw6pKKoJmcjNmcgG8ajhpCAT+cKZOGa25+/TdEeTtsLkFSGB\nrI5Kj1UGpuc6dEVDIVlWKFOD4StiqZiXugwvq61cQL0AGNd6q+vKsoKzuodKtQrOUYg+i7IKKRKv\nANX66TfyMtt4/DML9c8zXhwQJ6dwTvkmXNAkKWUoYaUUWRWk7dA6aDXg1uYy6uKcf3hqnniL7aSd\nN5h4LcKwT9NIiJmIAGWam43RhT/YyormkDTnzCsTwgXlKiz1Q6mlF7bvGxeL4TQzHUzNHhmOsJKD\ngzToJw6iouEZo9GVT3rlwnNW3YJSNTqmL+ROT3JYFdjRbE9jOjX/OCKXp6yjGxW2VQeZhLm3/uUf\n8cGP+Ir/6eRiqs3XAWD3fxllPZQnn+0RrUgYXYKe8UYuP7hMIS0uEqZ55FZvOPbsvBy7eRcAS1mH\nMvPnsH37FD/wL7xe6d2ffTl/+qn/4r/PDnKOyLy9/vrL2bTDv6j/7XN3c88Tfg7P33Uxb516aVhU\npvolvSk/Z2kCjxz0vxmdKjACbmfHgDnRaz18OmOy6OdlabFC5T6e//znH+Qv7nwIgKf0RcQbXuX3\nuWtEjfbq9nZitL/OXf29JN/pO6ieqgxf/1uvxdox/sTGk4qhq5g533P252ZnOCwJ7t+7+zj/6Ut/\nCkC18m955UUeHvXKl17ADdf7lMeOnTvRpu6O2BAeoHkHClTo4e6yLDzHnUFKKumkyQjGgtdKOgQ1\n+1FRYgUXuHB6TCy50o0zCRvn626iKYeW/PcHF3MyEcdR/YhZwSx1+iqwBePEEWkhjZhKGshBWblQ\nqY8UQW/Cn3gNHXDNlSkIlXrXjs9VKLZb3byTut3yguaza1Xt1RphEtYakhcY2q+H8+tjfayP9fEt\njG+vJ2oB4z13Z10DnrVrMaC1o6i0bvCdpimwORoFMRM1C5SJVAjznXVUUjm0VYGS1TZJHCauE9Sa\nvhRy5uZTrACuTy/klBO/o9HQMJFQ1MRRw9m30JcqZa9jQkOwKrfk9UqdF6xK2F6sZqEHuA3oBEhT\njUSknFotmZZe4j1BByTTXa546W4e2rsf8FFeVINIW6G9w/P2wXOgc5mgBRvTk7As1s00FxVMRFD3\nr//yv/D//ifvET3DFrobrvLXOxoRS4imZ+cZZcK9ntqOFZWh0qa4oifzvwMdeW8n68V8ZdlX8G8Y\nqCBLOB5rVoV6uZpPqEQ5a9vu8znvx98HwD1/cxt/8okPA/AP041cM7MdgPl4mu+/xvPjP/+VA7zn\n17/G/mNDPn/3u/jl//vT3PIPvJzfuZt2kAipYNCzjGqx52fGOJE4HB1Z4sCqx2J++BMPsuB8OLzn\nqu/kDT/ulav+r48+gNnmPbn+/Ea6EqIuH1nl2Irnhi7vO0V6hw/5u5deg5ObEs+IR3f+NFP5iEKe\nrRVSZjf7+Tq5WmIiaQo4/1I+fsCnID639zi/9kf/HoArdiluedsPAPBdr/sepjsN+aGOXCOt2HvE\nz/XO2RnyFVEsmy4ZzNZqU47SNi5YV1ApM9Oaxcrfg9NFSbbqPf0la9koKBOdpqRCT52JHPlE2o9P\nNEPxJrtpjKtx2ZllVToLVJULgHltaV5io9dWftoSdrVounNNmC/RK/gCctWOYuWjei4P0rm1fztr\nof6F1+m//dz5+v+qgThULa/e2mYzrRRnISz5URf2VbN9ZaFqhQKBgl/ahqUUO7Spc6I2hNtKVeQ1\nW2MMToxoltlwrChVoaBYlTmpGLzUOLTc1Ly0rIomaC8iqIyXlSVJ6jYjLtz45UzTkQ6OU/0Y1RFj\nLJXabNVhS83u7ef7/UxyDh7wepdxa05GgC7qsN2hpDxfWI2QshjEIS3LVz57B7/7u15z9N4Tlmrz\n5X6briGNvIGcxBVOoCpaVfTktZ0dzLFY+hdpdcFy8ljNDNdMnb8LgJUThzlceuP1la89xNWv9KGq\nJQkNBFcXSw4f9kSATVGGHfrPl191GTuu/EUAntr/FP/29s8AML14iDdd48H5OzfHzMxOc+13embT\nebs7fP7uLwPwwP2rZPLgvGT3HB3lQ+mjf3GYGekpf+cjC0yd7/c1/7Lv5dxNPpe5bfc0u7b6VMLq\nX99P7gRTVDomohs6me5TbvbGbykbET/8hJ/3mctAGDxHT/qVoigSElWxvOJvwslKk0m+dLg8QVKx\nzG+N6XX8cauJgY3+3B7RHX7xw37/8x/8KX773/l5ufLSC6hHClBD10pDlskCV1RNakwrbE3kGBNk\nIqfSGCW54dFqHpyQYeUwkn1KjQ755kFfM64r40VJtiqL1cBgxaCWzuLE+CnXkq2kcR6sa/SBnzXC\nS+YhdyA1Dgn5rW3eH2Oex3jWQz1fwvOFsZTWnN7f+xfrY32sj/WxPsJ4UeBElfYrVKjCO6/MBGCt\nDS1i20LVChcUlCysod83XZIbzJgyKiSrlSEIPRsD9ZGtq5hktRxawSSvsZuOqKxdYBOOG8WKuMa8\nYUmVqN87zUjwiuOxCwo2rtKksuJXOGoV5zSK6Qh4OZuYABY2pWVy2ntvqxLjLx/LieKYXErprrOd\n3bsvAuDg8cfX6GBp63+rc0skvOciCS2DeGzvAf79L/4fANz1UIbZJGLK8xVFz3uBUVeR1y16phMB\ntYLTPVLZpxtrjFT5ozgjK7wnOjUHaB/+5rPnc/ygL9vf9/VHuexlNwMwN9/DrvpjVeWI0096j62/\nxbAqTeHiTs7gAj/nOzdfwDkv/2kAnvzqo/zuJ+8AYHt0gM1duPQKn2K48KWb2DblvdI438en9/p9\n6cvfyKte74tDd37qEbZKE7rN18Pq2HuZE6eoJMVz7p5NnP+Snf46y8OMx95DHZ1eINnmufbT8/Ns\n2uzvz9LiTtyib0KXPfQI0zM+YjgkPZb27Ye5qZTDp2umRUxnSbzAbpdTx/z1q6OOua2e2nDkrtuZ\nnvetlFN1AVniz+dgZzO/9OsfAOBjf/xbwbfSQEf+sffUQijKuXEJw1qlLPYdHoHJEnQHDZmh7hW4\nWEEl3GcVRYyzmowB3TpaSiOUpKvGozJEFVFH42pBdK0DhrVqesp5lbv6nbQqCC6vHSr8QOlWNO/A\n1sUho6lrbUa3Alx3pld6lqqRCv/5ZpxQ4AUa0ccff5x3vetdvOMd7+CWW27h53/+53nooYeYFbbI\nO9/5Tl772tdy66238kd/9EdorXnb297GW9/61uff8ZqqWCvfoXSoUGvV+r5dSWu547pJm1DaVgcR\nXGhIh3at7qAqMGDAhW6fnYjQfqDINSHLZJtioVEKJxY+VgZRuUNFimwsUmQlDKVjorOaSMDOpVL0\np/1L2xlXIUrp9hISyQXqOGJlWRTvV/OgTVkLnRDHOJ2APKyP77078OizAqL6YXIE2TMdRSH/+uQD\n+/jIH/wxAJ/8wpNMb/QgdjNXEYmGfSdxQY0/XxzRmxaI1kyPxWWZk4WSgSwIw1OaTM4ZO0FtFDbL\n9pSJkKPNsEMUixHdez+vPuxTEDu3bcPM1pzsiPy0N2TVWKEGohvqstBBw27soaTavPWKPdx0zuVy\nzor7H3yIP/zynfw8cNf+ET3j93WgeyFv/CceOjSXpkwE1pTO9EJYve28jYwWZFEuNEVfPk/6LB+X\nc1pcgUKYWaeGdBORESRioxghyhni+vO4Ion8NgNhpC0dMWzr9+nKwq1WSvK9vmPpxh09Jh1pGLeU\ns+diH+Zn33ETZv/fAOCGHWLj88D9TsRh5Q3tZz/3eV73+tf546omPT41BT15SHVlqRuIOmtxhb/G\n0VATx7W4iMbENdatsULaRMHGJJGhJzntjlaoGiygbGBEFauEQoWKQXdqDQgXwnBvT4UhqNUZ8Pr2\nktAyFDUfogVH0rrtXDXfW2vDsVp9KuUfZ0G3nFmdf4HjGxrR0WjEr/7qr3L99dev+f69730vN9xw\nw5rtPvCBD/DRj36UOI55y1vewhve8IZgaNfH+lgf6+N/xvENjWiSJHzoQx/iQx/60PNu97WvfY3L\nL7+cqSkfOlx99dXce++93Hjjjc/zqxbOy7nA11TK+vAbQKvgBernA8zWqYE1sC/bcIhdA6TXxjRX\nrlzA1FVOUwiIeDyqKMuGEqnFE4zjiG6907wkl+JNN1EMV2sVKu9V+R9olIDtxyUBwzY12yWTylXu\nNJNhc9y8Ls9jSDu1Jy2eahTz+NFH16y8RpzAagRj8VALA4WEWacXTvNf/rOvtn/wv34Zs/u1/gc7\ntlCJazK70VIKh3BSDXFdH4aPXIyTsL07HhBLpbeT95k2fptpq0Nao7QFXfHmc2sZCV02jyuM9CHK\n5s7n/js9qH7D930fKhVPN+pTzXhvdSEf0ZVe9mlkWJailLUVRS6FjxWLlbh11cGeq/bgxCN+6Jk5\nrn6J597fcM0eDu/zeM1iOuUZ8WS7GxKefNRjXZcfXyA/4UP+k0dXKUufYnj0STjS9d+/NXmK1X0P\nAr6X/ZGdHj1gx0uUm0VY+uBxTOodh15xClaeBmBus+fQ65mUYemYluZxZVFSVCJtZ6MQSWhdMlnw\ngOS5+R7jKS+kvXr0MEYwrL35WcaZP9ZffOSjvO4V3qlxRgdXNNVweMlf48VbNpHI81eNHUX9fDvH\n6oI0oRtpEiEjVAU4U9NHLbGokTmtyOqOC7YMMnqxarpH5OMqRAxGG0zNO8bh2j6nFJ+cc2sVMM8y\nylaRuc3NaSFJzzALzV+cUkH9fm0By/HcDeleGNr+GxrRKIqIomdv9uEPf5g/+IM/YMOGDfzSL/0S\nJ0+eZF740ADz8/OcOHHi+Xden6ORy6obWDmHVjXnXbUqe61JtK7hxbZ2pdRar71253GNATNaByVv\npVTI3WSloizrkM5h5eEwRMQSknfTiJ5EtMNhxkSMlnJxEz7jFx+ASmtUzxubroWRGLb+pj6ZsFCy\nlRwjYZArDVGdaqhAyYOupNr69NHHfL6zfd21bgDgrN//U0/t56//6rMA/P6ffppyxhsUtetm4ll/\nbnHkcCJdVqR5yE9VpcWJwXPdGSYCpO9UPbpW8p2RoS854I6eEPX8Z6McRpqYjcc2QF6yvKLK6g58\nCXvvfwCAl73+RkaSdDWpIhajni0dYaJ8mGvMCgtyXF0OyMTALw8NebJZjrXM4ftuxz3pf7N1sIPl\nk94Q3v3Vv+aRu32bjj3XfwfnvcE35BuTc/+df+mP8ei97Bx5nVF1CrbJDG/dEvPKi7xFetNsypOy\n2P153OdQ7ren26Oc8mF1ZScMD3thkkE8RksobVTd0gNWlpfYfK53Nkb5BC2LpoptMC9R5Di2X4zo\nzp04I4tIt0PfibxgtDVI2z1+DA48/ggAO3ZeQCVJHtPRpDX7KqqYFRJIUdigidBB4yS9kGUuIDZ0\n0lTSDS7k85W1ZGP/nOW5Czq6nbhB2KyOWpV0azCSW9XKBt1QpTVK3kPbtoqs/WzFyFWtv7br67Zd\nFKGNwV8LpD9r9d/R5OqeVxbvuYdywco8//id3/kd5ubmuOWWW/jSl77E7Owsl156KR/84Ac5evQo\nV111FQ888AC/8Au/AMB//I//ke3bt/P2t7/9uXf67Mzv+lgf62N9/P9qfFPV+XZ+9MYbb+RXfuVX\nuOmmmzh58mT4/vjx41x55ZXPv6MzEa+1qHFeYaQHddTqXuVs44paR+hH3Y7yq9aSsGf79rVuaR0Z\nxw5n63WtpBLg/WRc4grHyYURWzf0iereS0lCZESlyCkGgiVdWcko6lAmjhmF9q+gpVg1KixKes1o\nozl9yhcp+jM9MgHETiY5UuzEWEVU19csxFLBf/r0IRSQO9+7rq72r6IvAAAgAElEQVR2atuE88cO\nHeSuL/lq9W984A/ZX3hsoZrayZTspzszTTrnQ0+tLZNlabxmhxQTf27OFagNcr3dAZNl8UBcn8HI\nh57Ty88wbRb468/+IW/6oV8OylbFcJXTgp4/oWHYlaZ+3S5qLIWog4rRw17l/u2v20IkeNl4kJCI\nx9Y59HWKsQ+jSztk0fl7VEZdysjPp5vbwBM9z68/fPwk581u4LLte/jIf/gVvucdPwGHHvbXeXiV\nx44KCPzcDXzn274HgIcev49z7/BKUVcmcN52701OTlS4ob+vWzYmnLNJUBdlwbEV74F9Mprjb3b8\nY79/FaGFq37868cYHvMg+ekoIpaW1OXMNp76u19l53d/iOFoia27vTJUYSesLvnrnN44zUCivqQs\neOYR32Np5pxz0F1fZOpPR6QnvwLAyfQ6hsvec0+X9vEOzzblZ3/+/YxE/b8/azASOr1k+xamRRAi\nLg22irjz8EGuOedcVqRqP6lckM7T2pFLQVJpx8yMRDDGhahislKEZnPdWBGJl7k8tlSi7IUxGHn+\nTESgWVelDdJ51roQEe47fjoQb2woPa3Fj7dVmZRzLVU2F+imnphTI3hciyrN2uL8WXMB6qwfzza+\nKSP60z/90/zcz/0c5557LnfddRd79uzhiiuu4P3vfz/Ly8sYY7j33nuDV/rco3bKW6wF6kZwqrVV\nc8Vh4mzDZHItWIM6o8KmahFBpYLhVJUNk17mBaWE1apwRHKA1OiQj+wmmlL4vnmmyOpdll7eDryy\nvZMK+9halIQyeQFOmEBxHNGR/GhVliH3pLTBiCHXvh+lP4B1PHpI4DKFD5eKQvKgEnI9vX/M3Xfe\nDsCf/9mf8dBRYUTNXYcxUpWNNa5+eToKlfkwtywmlMKZNgxxoh2pygxz0htU3Xd0S8mVjjSVhIYr\nJiWTx2fVWkph/oyXR5xc8p9PVTlWuNS92ZgoEShDYjDn+w6aT97+e7znQh/azm1I6HUldaBOMyl9\nJXw8yVgo6hDQoGNvgCI75jMC7P8b5tl9+VVsvcAvHN1Tj3PjqhcF2WJW+c+lN2bz1/4kTzzijVDn\ngdvZKW1WRoXFjSQ/3E2DbmVcwWToP1urOO38/fu7fAPj+jmwY6rTPrTPupr+JR5aNTPYDI/8LQD5\n0EsIdu0quVth5ZQ/lukr6sR9dnxIR/rIJ31FZ4efl6VxTqduEpf0WFkUmNJsSb+WuevP8dX9Pv9a\nKoeu6lQU1O/Sw4dPsWejh2UlGEwdwucWK06LilUQ7dAGjHDnnbPkVa2v2xL20DaQUlypSMSAqVhj\nagdIQVnWjeqC74MxTfoMmlRA+BFnVNtVI3OpHK00X1Oq10Y9Z3DbtpVhm+eMw/8HMpYefPBBfuM3\nfoNDhw4RRRGf+cxnuOWWW3jPe95Dt9ul1+vx67/+63Q6HX7mZ36Gd77znSilePe73x2KTOtjfayP\n9fE/6/iGRvSyyy7jT/7kT571/U033fSs726++WZuvvnmb+I01tKwjD7D8lvX2lJWKEVwRR0NUGyN\nI+pUqLxp1YQFLqtQNW+9KINXGqFIZPVMEh0A+U5BJoD5SUZo8GXQYXUeFxVJ13+/Wji6UghKBmkQ\nPnba0RW8XFHaIIvXSWOKrD5phZXV//FjB4MCmnO+4FpYiA08+oCn/v273/wQX9rrvUbbuwQ16z2c\nxJSYpJbj66ClOpqNSlwxkX1OKCRMtsMRdVmjl5RoV7fojYjSGgxbsCQep3YJSJHsyKklYlHsd5Mx\nhdAM86LplbUUF9R6/NFMQjTw3u2T5mL2p97bTlwZuOx9Y0nFq7FWM1XTXiuNOIN0uwmvkPTC+OA+\nHtMRk4cy+Odv57rjD3DZvE9bmDjnp2ROb/vbP+WpWQ+Yv7kXsXrcz1E2sRQiO5hqS0eiCmNVCD+H\nVvP1wh/80d7FpFLRVq5kkAixIeqSiezg2BmmNvhzSCbHZd9H6fYiirK+IBPIJJGzFNIUb6xh4yY/\nXwefHFJIQzo1oxmNhHo6ZYnkvrq4w8HcF9zuvuduXnbpNX4bnUBNFCFCqPCUeRkILUdOZGiRvIv6\nEQg1VMeEqnpVlhRB68GFMBzd0KBz67DUz1yCDerxDlt3fTA6hNtrfD3disBY6zW2o8yAx3c2/KXt\nWSp15j6eDbB/ll8ZBDDO9sdvPL7NUnjtsz77FTjXAGbbJTBtYE1Pabfmf4Cf0CBy7VzdptqHxC3h\n0Tiq+eAqcIid0lRyPq6CcVkbS8uk1vKkse+TymJkOrtdFaAbndkeVlpzaKDTldBw7M8JIEpN0+pA\nmZBfRDXNL+uupcrA048/wc/+S9+CYn91IYMtHjA/nGRUclzVSYmExhEphZvU/OkRw6E3PFk1YjAt\nzcTcKECrVofDcCvSmQ0UshANV8ZBR9J2BqQyD6cXlumJun5SOqLcv+TGGUpVv2xFeNrKOdUsMlsu\n57/v8wvCplxh8jrWK4ll/8WSYlB/X0UUAp2Z2IzaMH/Xpg30D97PcN7P6Vw/JV8VJEGe0U38dt9X\nlVTHfNh7OpmiP/b7Gi9rTo/9tRVdQzLrz7vXTcgkNXNSl9wmAHU2XsJILJIeOZhI87/Yoqe8oZ2k\ny3TO2Q1AfMIbUaLjxJ2dlEv+HtjMYqZ9eiLVitFp//0oc1x6no/kxlOWsRhOrfuUIvaSjW14BZI0\n5cTEG+xPfepTXHOllyzMiVHCbrMOChEXWa4KChHJPUVOR+QOehFBG9aqlrF0DfvPYUM1H2PDc5yX\nFYUcq5u2lBwcoTuFs+L0cIZJa0GQzhwBxCNHrnfaNq4NfEk3GsJtjcy26Mizcp8vPHQ/21jnzq+P\n9bE+1se3ML7NKk6C4xKB1bYLX9WY0cqF1dY5F1qjtnLJZ9bdAsBeO9d0nVUNTxfXVALTNA3ep7UW\nK3vKS1XrJGPLirH0Xq+cIpHfJomiIx5Vr7IIJp20G3N6ScLhoiAOHV8dTrj5ZeHIBWNqcheS8ybR\nPP2ML4homlbJAd8/LPnQ73yIY8ves+qqo6QiN2cHO8n6W+QSc9yK/74oC5SE2ImySNaBbKQpRn4/\ng04XJw3ZchKsUEDHQ0eVi6aedUEqUEWWSIpS/f4UdD1IfpKV6MRTHHu6IJOLz+h47T0AVVFov38z\ns4GDQoV9fLLKKyu/zemRwi5KqL2oSeVOurRPhd//ymqfvA75TcnL9YBH6xTDyYKdNWicmEJ6Aq1O\n4PrIV7o/uOx4OT4EjiNYkvvR63UoqNtiayrpKnDKwsG+TwX0zCKZ4KKdGzM8vSzzOGK6L9c27JJH\nvmq/PPHneWqUU8WAYF01oOpmh6OMyagu7kWc2l9Pe6dRX1rRTEuRZnWSU9QprdIyyqXo9cgCx5Y9\nXrZPgtQXibvw9MjL/Z07cw6VKIrN93s4qVRm5QQrz26n04D/o6TRm5gUTWHWdDzIHrwSVJ1+MpQt\nxSUV9CaUUmvU2oIPqM54h8P/G4lM5Vyggzug3fZ4TTvkVljq2u98e99nrSytSR7wQse31YgGmKha\ne+IOcBLeWmsxdauNqGEv2ZaWv2rNWwvVgEI1moZOoWTSTavFook0WtdGtArtRcaVDjx65wh5q26k\n6ErOthdpdK1mbzQT+XGZO9K4DtvLIN9XlhVZ3aO7bHj6unQhdaBatA0vItL6B3D37Xdwx71HKed9\no7NUD1HZPgCi4RGK3Fe07eBcjKip62rcqJ4XvssiQK8TM6kxYb2YhBoQXTFZkZCrUBgBaKuOCRKC\nTkUhnRLhUKbWWO1i5anqJR2SmrgVdVitG5pHBiUGNXOG2YGvqFdXbebpT3mCwDb6KAkBZ7pQiPr9\nxKQUQtZOcIGBc6iquHc5ZywT1is1k1i0T60lF8Mzco5lEZZZGMMTWnLdKuECMcjdThIENvo9SybX\nf99QY7sC7l/YR7R9i8yLppD8c5FUjIbeoHZWlpkIVGrU9VJ5K5MS544TD/x+UlVhRCimGI1ACBsq\nj1gSLL8zaXgH3MhiKtFxtRVKoEZRGqF6Ppw/7bbwpa/5Dqo3vv5NuLo1rGk0R/V0FyOA/HRjj0rO\noRrnVOPae6gC6UWrxiBVtnFbtFbUrPfYgJb3TbsqaHw6p0Oe1QPnxYjC2neVZoTuDqrlLLl2/b6B\n6rRJN+0UgVIuGNpn5UfdWYzlGom8F54gXQ/n18f6WB/r41sYL57CUqtq5FecOiltAx7URCYkln07\n+nol4gxsaP3/BjNWlQ2VNI5MSHTbSoX9l5Uik+/zAgrxGuNYkQpYOFFgaoxpVeEkftFahap9WTg6\n4omOJhVSAKcovBgziNpUTdfUDi3r2ZNH9gVvoS0JWI0sdDWf/qvPsaw2EEvztCrqsTz/KjnAadLJ\nPv/b5SeoSqH+Te8K87C8OMaKmHB3ustYquGZMkRyja4sQ+toHXWIekJdNBFVWZ9QI5CtXEwqj1Kn\n02HkJHXgNE7or0mSokVPwMaNjNnqyKCXvMe8++pX8uTTnrAx++heolgI4CYilznPlGMikcvBPGMo\n13VqOOae4RglbnBWOkpJhkxswaQuuCWazyz5uctzwzNyTlOqYoc0Wds8EzMnwsTduOJEHRVlOVvy\nowCc2PwyuoVXolLTc5RzvvCjjCNbFbTE0oTxSAgD23f6Y67mqMlpiH1aIIpd0zaICid42KooWZHw\nudeLAnnDmSakNVVJLBzNCB2wngt5jzvu8439bvqHb2oUzmiNThLouaZncKXgYp1B1Q3stCWSyMMo\nRVUrnBUuyNZFpiG4GFrt0SqLboXbtTJUUTXhvFNtv9KXhJ5vPKsEVFPDW9+1PU6FWhO1h+3aucD/\nAePbakQbOToFznn9T+Qa67+VjqKG1UQmVOE0Z0j8t1AK9XCqyaEq3dw80GH7LLMUgebkKAWTo50K\nYa9SLnTIxDnGwhs2zpHIw2EiFdICRdWE6lXpQhsDGyWhzzZViRM+sYU1iv3BuOYgHSh44K7befWb\nb+Texw6R9PYErEdlc0YrPu6Lex2i7Z62ko73YRc9h3uyuJdixgtgOGMoYjGcgy5jCb/6ekIswHiV\nE3JwE5ugC1Hs73WJhS+fj0dUwkzSBcSSy4zHFeURyQn2ExJhF+mpTdI2FYb5KhMBtpfDmKWJz6d+\n6nP3s/Ni34rktvv28kZh6SyMxkzwhilJKyIp258crnBC4Dv9qmTW5uweeEGO7Ykjlyp2kVeB+fbI\npOSIwIsujgwbRKqvj2a3tGCZTUD6qpEVkEnF+VVO0bU+13i/VUQrPmmpd12AS32Os1zJKcZet68o\nFxBkEsnKsszzNJFdZmUkRILuTLj5xqQ41RhsO/Q57TKGKq67tVoS6QdjVR6MnCtyENRUGQ+4/7Bf\njFYtTD0bxMLepx7i0j1eDT9SOYm0B6mUopAXq5qUWMkla2twuoactUNsqB9prWjSDraBKjqlwvtT\nWBXqDkq3uflnWLU1Ocs6JG+l85yi5tGcaXrr7GArs+e3acACayv1aw7998+Jrofz62N9rI/18S2M\nF0fLZADVWrla/yWCUpRqqrwKAPLnwpSZ1meFCytXFKmgTlNWjjUi2gGH6ho5vsqRxHXyXBPLCtuN\nNYmqvcxGV8ZFCpQUYJyixlIrfOgOEBsjlFYojaas8XJac/DEfvltswZGEYykyvqxWz/Jq998I8ft\nNOm0plbaK0tHVKsgOV94ACjSnVQD7+GVpx5GFb7i3920M/SUrrqa6Xo1X9EUIiRN6UgEoDqeVKD8\n/pOZhE5XvNjlCSdPeO9qvLJMNC0IgbJAievjEsOw9o5GpfiSkHmdK/+PPKZa9d7gvY/B9gNebSnu\ndXlM5u3CSJHJvE3NwqxQQ69LNHtP+/N5dDxmuT/HcMZjKxfHFUoKQosTxbRAEv4yV2hxSVwcsyLR\nwKZORC6FweEoxwou1WkXcJAbrGaPFGC2nngSN+2b0+kDT5Fs9MrzllW0KMl3ppIAhlfybExtvhB3\n+MusLsjcFVPkotA0MA7TleKkdjiZ9zh1xKI2rxMTqLe5skQS8pcaqjqaSfucmvj7cc+Xv8yNr/CY\n0Yi1XpObCP99cUwiehCJdvQiSZklTQ8uFMET7XZjD1gGyrKgEiJDZQi94CtsU8DVBhXXRcsmLWBd\nC1ej3Bm+37NDew/ID5s3PdM402+sMaMNTlTR3ugFepkvcLMXjxFFBb1PCRoAMDrClI3RClG1bkC1\ntJtftS7ctrQCI9VMemkb4+pad0BrhZMYIYp06EhptAt6mUoRyL/G6Cb/iqIq68q1lp73woWvGiNd\n84kr69DyILo4Imk93aEBYgSf+twnAPjC170YhR1sxaiCuEYaOIcTPr6JaUDQq6exdYi9/WWw5AU/\nVGd7CK1spFECA3LDEVZk3lSliOSlT1yBExaNyWIKJXAnpTDptFxvwVgk+OKpDkZe1clySSGAd11p\nYteTc1AUslhN8opIQsZqYtiz5CE4O2dSnlmRLpJOYWWCcu3oi8bltmnDsoD/H3JTXP+DP8K0vMSf\nynKuEVLBzrTHAyLUMXXpZZweeaOVP/UM3aJmSEUcF53S3liFxU7piuW6vUtp6cr1X14e42t9nyLh\nyJPorv+cTCx0fBpCmZS0vveSX490hE02Ey96cH7BKtXAb29TTd2qxlGFvI41Fiuog8paCuO3d/lJ\nSuNhVlYbarE4V5Usjvx1ff4zt3GDGFFN88JbCB0askkeHjoTOSSNTeQcWh5wZ5scpolNq92Hwgmh\noqJhFFmtUfVKb6LwXintah6KoHNqK/ecbeqasTYhumZFaAfhTSbg+SBLz5F//SZypevh/PpYH+tj\nfXwL40XiiXowWE2h9IlfqQ7jSKVNb1lWbXztmqZVQSLPNJ+dtWEFdM41PesdgcvrlAteo9LNatjp\nmDrqJdKEg5WFDauwrRqPFq0p2qGDjMrZkABXtsG0VXJsgKeO7A3bR2t2UPD1x/zfFjs+dMxMRGoL\nEvHUO7FChOEpnQ2hUlUVROIhqG6fsivh5tITWPGaVAmpFCwKleCiGmzriASL2XNV4HmrrAjrd1Sl\n9Od2+znszTPpe++o7HXpCh90tHQKht7r6wJz0kvJGkUm3uRKEWGlsd2O40+ydSBh3/KEnUIQGCpF\nV54B6xwrQnyY0RVZ7r3NC697A//4PT/F/ffdBcAVP/HjzCz7As9X/uzDFLu9stL3/MM3U3V8EegT\n/+Y/8JLgCWlOCI41LQ09+T5VFaMa25uD1F/Y1VnlLmn81HHTlPtEdq+/DSsPxTjSIRXgRv7/2Yol\nSs+lN7rdH7YzTdX3ykpxMkbZmo/vQ2LwnqXN/DwqY3GC/3XZMoURRf0W4URVo9AJ4cCRYUgt6Qji\nOuoCnjjoNQtKo9Cykc4sAp0l0hpra62HRrkpTRpqstaKoE5fVeSSu9JahYZf2uiAMdUaYnFXC+sa\nuqY60wls/6spONdFqbYYvWOtN6jWOJlnqT4/yws9y4v79xgvEiPqR42ZLVxbOsuRBmvWksJCB7+9\nrVfSbjHgFA043DWQC20UZc2I0oTwXEc6QI3iqOHdKxSlhH15XoZe8HHUwKyqyobwXOnGqrf1DT2c\nWOAjaWNEE9bmcltXw9tv+UEAZi73KufbN/VYPjmhqlEEqBBCmaqkEgNTTCyJiJ1ERUkZ+TxdfuQw\n1blXyHlautP+QXdpQi6oA5tbnIijVDppuPPLln5X8mJpSme7B8nnJiIf++PGaYepnv/tYH4UuPwa\njXF1uiAKaui9ylI4b9QuOHGQUeaNejRwGFl9plKFk7e/xJHJCz8qK46Isd947cs5b8cWvvaQNzZv\n+J6buOgSr+Z/36uuZ2qDD3vPu/gSvnKPz7u+4X0/y+Hf/aA/15VGpHWSFcRC84lNI0rT6xim5F7u\nKkpmKp/XjKZ301/d5+coPo9SdFkT16j5191WTVngTjwYcoq9mTn0oA51o9Ag0BlPEgCIyzFxXeYv\nHOR1dtlg6oUvslh5tqb6Xb7/9dcC8NpLt1HLF1gNkrFYU5TuTydoqTtEZRlqBFbppkGi0ShVSwJG\n4T1TxGi5xxUqPJcoHRhLqAYOFymQFCpW1e/EWgP57PHsvGnLb3qWmQzfPz9i6tn7/yYVSNbD+fWx\nPtbH+vgWxovKE63HmtXKWoJuq1bUdl+1+WA0WP02BswjQ9srnfw2an4bRRpXe4pKBSCzdS0Pt4Vb\nNbEJWNLSEhLvHvNWe8ZNoSuKVQjvqspSSbhjjKLu3bXnwp08s3d/awaaNfaSi84H4Pw9PnT+7ff9\nA+756hN8/HO+UHT81AqdGkiORrSjKbTBSnGoHFmKQrxMtqJXPX6Ujec2WgRlFZSkXKzoz3rPyaoY\nNfT5guFKEYoCM0nMYONGAHqRQUkz+7iKSAWHqrsJRVHjYr2n5ecnCteYGoXpeS/x3IgAqi+sJhKs\nauQstQSXKnIWM++J3Xt8Ffty3zL52n/wJrokzMx5nOjC6QWmRLD45u/9ASZO2kGrKW49+UkAvu+H\nfojP4K/z6f/6CR7fewCA6dl5Tj/+uFynDcSAXkezceA939xlTKce8TDafi1kHoSfLD8JHR+eG1uF\nJn+RFKSihXsYD0/BFp9e6cxOI9wHStX0N3K4gMnVuSWqJcicRU8ktI97WMEpz0x3+f6bfCeJ1117\nMZfv9umfSaYIPeVUE5Ib4OJLdnDs0UOkcYOL1c7jk/1GEbpWAkua4tCkUoEjrxRNmgwTqvNtcWQF\nDY2z5ULqVgzv3PP5c88Ow5/XX2xV7UOk3nZR11BM11SrznrUbzRelEZUAZGpgegOW9WhvQmGTdNc\nZKMsiP8UDBtrGtUFC2BM0000bgIb5VwQSkARjIrvSiLV+TTCCBzE89zrFIEJ4aByClfDOKwLOp1t\nDURtXOCYW1eFJlxRuCK/paSzKFEkwGUX7eCq3Vu44WUeKH3/owf4y9t8B8rHDi6SC5Sk0BFjOYd4\nUoYbHc1cgFr1+Tu27AyMK1dkIEyjKI3piBgJ3RQn7SVG5ZhMAOzWaHp9//bPJiVRKbJwVYEVxo52\nikTyYlZpbE0uKHWAy5SFDcZ1cz9iOq4XqIq9Q//5RJlhBeIzuOACZvf4MH3Hhk1c9RqvkH/lniso\nKNi9cw8Aw6Uhex/zHT7P37k7sBZcqjl+4pS/Tq35wZ98NwCHbnwzv/UbvwXAW//RjzBckCZ5icXW\nSjSTIX9zxx0AfPwrJ0inPP/dRFEQLFHLTxEPdvnvdUq06vOOxQnfRG5cZNj53fS2ed59MqUxiQi/\n5LZRay8rjNybmCjkLJ1zGCHDn7tpwA/84GsAePW1F3Hx+VvruxzoSYVbG9a2Q+CoTi1hQ57SOtti\nFMVokYlUOsJJtT2bNJJ0CdUa4xTA863qudGNEbVWrcmD2rMatucaZ/TpbF3Mmup8/fcznayzWMU1\nX6/5x1pBpOcb6+H8+lgf62N9fAvjReWJ1jWhyjY0yMiYIItHWRdtvJe5RpG6zme3o3ylQ2VcvvDH\nUSqsgBoVwhEq14gjVzbw2SyE2F5XLiw9nkrYVPxrXryzrrkY3dDcKjRl4Bw7TN0u1lacd54PjZ9+\n5lgreDHYWgIueOAeMn3RLh+uvfT8rbzmZbsAuO/pk/z5HT4M/eKDhygFMK4iHXpHRUmKXvV8bpuN\nqUTRyGU5Rk7aFhXLixKeE2ElKohi1fSsoiIvhS+udWj5XCyvsrC0HOY2rUNyY4Jgry0J/ZzyvCCV\nWPL+RPHljm8WdyqeZs85vvLcnd/Od7/V912f374der5IlvSmOWdzX87GUJCzZaOvwhdLY04f9sW4\n3Tv2BFnDSVSwrefD7QNfe4pXXOc9wgN5xRtv/m4AXnXj9UG+MKOJBibLE55Y9Od65L6vsnnWH6vj\nMqIZf/+MHqOMv347WqU46tMuq86nGYpkG2Z6A4Wg54usxI7rrgkFSijOcWHRdU4rVpTiBV5+6Xm8\n7aa3AXDdS89hl6AO6mq8v5mEN7uTNB5b0dpkz+5tpLX3ObEhitImDiF5YQloD61scGl1rEIkp1ti\nx9rZkLoqqiq0/lZaE8n5l1mDqlFatZTqG8m75x5NTK5oSBDQtD23TSD6bK59+/OZTTLP3ODvMV5U\nRjTMiWs+21Z4fuZVnn3Km22ca1xyrVvhglahp7wrK5q9N70FlapQpj4JFyqNqnKhMllFvod92G3r\nDEy4kYq6SKm1DhcW2ZJaZKUsLEYM1cUXbAsv/BP7jgZbXMcaCocyBJ4+2rFzl3+Bd+7axsuv9DnU\np4+t8Jdf9Ab11s8/xljA19YpEFk2dWoflYSeoFFxza7RoX0K2Rgr7UTicUHo/l3E5KJFWhYTrHR2\nrIzvYAmQdFLoS4LCmBAmWmOapoQVKKnsP7DxGlY3+O6dY+tIo2cAeNPLruS1N3sjWuUZmSQOh5gA\nT4MKCovLEhjAaLHEbvFzmkY9ykrSEGPFZRf71hnH9+5neZfPTX7kDz/Cj/7UT/jrySsKuYGlLQLU\nCDtiTvRUdXYc9f+19/3BdlX1vZ/vWvucc3PzO5CEHzZAQSASIsRog31VAau1vkQF+aW3TGZwSAch\n6OAAcVrJdF6roL4ZUee1ZaytqG8cGavp6Btaf7yW54M8Cy0lVKAYKQwqJCQhMbn3nrP3+r4/1q/v\n2mfvc8/NDffGdn8ymXvOPmuvtfba68f399fYICJcTEJ3rFw3mzyI7Kf/CwAw0ZuPSbJeY9SyfxfM\nWwx0lqDrdjRTMKjnQ/ZpKOWTC2q03JzY9NY12HTpWgDAq888GSefuDy8M4iwjkEmJORbGQCn/Mdp\nrzoN3REn4tEK5CgJU6gQAlK7VIkA0M5EdgdQCE8Jiik+iCm45JFomCmKwApjYvAZJf3ffWddtVOl\nTxe7IsnyJLbfUh1Ve2Xp41Fvnh4NO9+gQYMGM8DxEZTZIVCEhBBMWTq9iniuYCmU5v467GWCEUnu\nSOSjDmIBcEx4VxShMioMlHD19KenJgrG9gQElkIRV1Kiio04ybsAACAASURBVAxMiDwVT0/FKrq/\n5RzDerEKN5/9qkXonnopAGD3zm8BcParhkOEqfIAnLzU5us5aelCnPUqSx2Nvf21ePhxq5H/mx/u\nxv99xEWheuGfoEZPD8/lZR9KWwNvAOhNTMITpZkp4MmdYrzAhNPcEopAmRTKoHC2i9kiQjbqo/oY\nGBfVnwgxoHOHAGcbOjlp0O5YtrfodrF33LK8Z7zqlKAoKbq9EDdgJENwMeXxAjzOllpaACycfwIm\nnYF7b5zRcq6Y3QJYfe46AMA3/s+D+H87n3L3H8GJC1y0eS4wMemsAVQO5RwDRkYzrD77NPseuvvQ\ncS9QcwFyop+ifQrMElt/a9/TUBM/c9dt3Z3FJ6PIRtDzRvUGQfNOpHDeWVZZddmbX42L155i3+lJ\ni7Fg2QL3hnUM8yWpUKldNQgE3rlv+jD0T/4nAGDevHlQPraiocBdmYJQ+ARzFAwh0NIhICUMTBSr\nEQdOKFMxELNda9Eaxi9Qpkh9koqhJ5lMWOfDEIMpOx4/Wx5tCjVQ3+U60cH0ydLjhp2XxrMKHAzR\nAWlrhDB6RgwbyyIl8j2EoeP4sArRc8Nuaq5MboIWUZkipCVRRDbACKxM1nsdSQ8nYxgcHASEBhII\nicIICi1XT1FoOA4TignkPEPyCRPYx4wJHdfCOe/9HJ6970ac/a678MyO2xDZoCheUCqadBUFY9S1\ndfrKBThjpfVSesvrzsYLB6yJzAP/+wF871+tFvpf/+2X4cAhcIy3OkkhvFlbFTDO6DsvGCDnU68X\nQE1aOSDrEXRdeDmMKiBznRvvhSj9xHkw0KaORnfUsbwHnoR2aU9bJkOu7Cay7+d7fBQ90EgHhTPa\n58kcxjkXqEKhQy1rvgbg7DPPxLPPWHHAvpdexqln2Lp6Ey6ABoA9L04i//EzdoxOWIwFTh7ZVePw\nKdM54+Ab3tYai+dbbyFtTDzIeoTcmXIp1QYtOsP2deGpoNz6yHecWVn2i78HLXkNsgVWlnnGKYux\n6Y3WouDiDWfi1JV2sz/hhBEE1yFbs/vLgNgI4Swe0Ith68/e+BkYsvVkIqWGMgYdn3UTHGT1ba3D\n3GVEfURRmLAOGfGQhTAdzDIKQVBgKOzvZJAQMIUgWvy60oqCuMAYjpY0AxBZ/qhKp0Samqrhky2x\ntPFW/nAUaNj5Bg0aNJgBjgt2ngFLcIaQdCayxkQxZbJUtQvlE0EopSC0c8rmkgcAlRF00PZQjLrN\nJpxuOmuFnEmtlk4OKE8YFyay/6SExzJTQrnGZ4w2dUwGxmk78y7ATqFAjFCnViqIEbjL4COe6vLK\nDY2zLv/vIMffFkUXT//1LfYnQV30iEPqW61V6NOKZSM4abGlpl5z1Tvw/nFL+b3wi/144J+t8fgD\njz+Lv99lP+eG0PKRrTQF9tn0cpjxw64MgCNWE95ZtBDFoqXh2XsuFp6a6GHEh0wrcuTOkFwvXoDM\n+bJDd8Djri0GDriwfvf/w49x/RZbpNs1wb6x6HKIRNRSGu2WCsq6N7z+Ajz56CMAgOd++hO86lRL\niaoe0HKE8pKFHRx4wUanv/QNa9Dxir6JiZBTi5QCOXa+o1pYNM+KHs76tcU47DTiOuuAnTawoE7I\noMBqAdiJJ4wzwD/30jFcvGYp3rjuPADAry0/ActcGm3MH7HxDO3gIdA4SmhUOI9RkNnAL+Hz3vkJ\ndNu2b3mnHVJtFyoHe/sC0wrKJKVMGLuiiK6ehJAOCYqBzAdiBqHw81LYa3PBkSVnCush0xQi6RuK\nEghbU+TSIoE9HCUaIalHFcbHGBbPErX2SpXvlhRtxHR64HF8pAfhEhfOJNh5lAQg4uHdZ5t3Otwc\nBkiTEYFMEEeI46ZITFYO6eE3SFJCXCACjbCJzAMjmHTYcHxOdquixp8NgleQIkLhVfWMIEdEwei6\nDbWVqcAeEcU0GiGWQF6gIAobrQLjrI2fsNUQ4em/2WbrVEqIOGJU/1YW523W0Whru4EtWZXhzFPt\n5vfet78WB7o2KMi/Prsf//CPPwUA/POju/GLX+wLffMa76K1GDzPGdsfeBIddknMF56MYv5Zrg9t\neBEEmSLENFDGhvNzD4Bez72vgpC5rJ4vHsrw2EPWVGjNurUwzqWGweiFmK6FnQ9uE2plQNvHni16\nmDxs78kNoLW1JHjdhtfhzv/2RwCALdf9D2sPBMB087iYGEEeyxmgnRz4xCWL8UufVI5aMG6eGaVx\n4hIrv/yN1afi4jdY1n79GitL/cIfj2HhCMUJ3y2ArncpMlEuxSTMliiMHciEZ1z9G5tBJ651w9sC\nu+sFchi2G6dBLxAGmeJUFxDmsbBKgTQRinF3rTefCkMSYvCamJkXHL0CjUYigfCsvUw2J/PCsVxX\nQyBl2uOmqBUCoSLjAzOqw2WWke5DU5cHGna+QYMGDWaE40OxxO5k8ZSc0IaTUNKYAuFUUBTZZ6vA\nj6pJH39JcYwLQyamTAZUrF9qtDhSikUetfAMRN9fqQdMKNTIRjBzOJ6sU4AKRXyUKFYUiAurWPWs\nUgwPliklXNccu1/k6OZR2ZFpRttRrl0Gfv2/3mn7T4RnHFWai0dsAT4AP/ICwQfakAI7F7/RtvJp\n0XHKhYvxlvNXubb/CybHrYH9j3/yCzzwT5ZCfc2ZJ2PXM86lc8GpyCcstTq57xm0fvF3AIARlaGY\nZ1lqXnI2tGM9yTDI5a/Pxg+4lLqWOtUuUd1LL09ix19b28u1Gy6EcXalmWLotmPj8hy9SQOVMTpY\nDJguui5JnMYEiq4VW0xM5CDnx/7rq1+NM1fbZ1OL2jjixn1CK7Cz0VRQwf6ymAQcgYf5mcJrVlkW\nfd2Zy3Hh2db5Ye05J2PRPJecjxgjzmW23bYU7MKFVCJ3CMGQOCOgLZzbRcHT3mW5DcUFqLDPko20\noHxeLFAM71gwjHFiIC6gnRIv05zkJQrzLFOgEBVMxJswReCElCIovyAUYDxVaqKVjGGFIi7cSOgS\nokiOTVQ4cVTSAiZh53tOPKJAiS321KBgtGByE2NqRA9tCF1yYv3TX9NwmFuZqPtrHG0eWGCisJiI\no7ZQeiPJZzcGwb8eAMipgfPChAElsYHZieIngRCuModOybBcLNoChOwmESMgmTRh8lHUHRpxOlgp\nl7tZU5DdasQ+5KxAbjG3nAvNiGaoyR6M97E2JpwfmRJyEa1x1rvvAgAUTPjJt+KG6jeFPEdwOkCH\nwD7SPgjkc5oYxogLWDqvzdBL7e560orFeOOF1rD/i390TXiXLx2ZxL/vs0nYnnzqGTz1xDMAgCee\n+He88G9PAgAOPvt3yOZbryO0XoWRgzZmKi1cHnKwcy+a0UwWjCd/5kQEZhyZ60/v8JHwrlsdAnU0\nVOC9J3H+WmuRsHfPHhw59CIAYOHSE5G17QAsOXkZTneeX5lCEJFoTSHbKZkMbTeJRlttnLHKsuXf\nuPdusAvDhwLBXC2TK8rkIYWM6eZQWdumxszE8mwreJstgzh3CYzTNn4K7kty0If31GrBtF2Dk0Vw\n0lBMYXPqMoUYn6ZXYNTNJ9IEds/Irdh/LhiF38CKIrD/1hLAdyfKNdkgBOchCNmjktIzwagrEeTH\ncDQ0YCEWQJyX9lH7+WqqvIrkilIkxG3VwgIbyKimpiF30Yadb9CgQYMZYChK9KmnnsINN9yAzZs3\nY2xsDFu3bsX+/Taq94EDB3DBBRdgy5Yt2LhxI9asWQMAWLp0Ke6+++6B9RrnI89OSSRPipg7XlyL\nSrhEsEwqCpaNiQa8RVGEqDiaFNj7CssM1/GAtbUGR2DJdslTLJKfLM0CBGnMihL7uih3j0bHKekN\neAk+E6JLpNKBSvHPpxhogaOVqCH4+HfUjj7NWhPIk/AGOGvTx22ZQsO42Gg//ZuPonDls44K4Qd7\nPQ55zo2NdWbv1RQobNOKSrXOwnYISL1wyShOO8UqqC46bxW6R2x+n2K8h/mOcMsBPPuCZbV//Mg/\n4qXDbwMAPH9ABzvUZ392EEecRYLRK9Hr2txL3/32t/DWjTZQdWukGzTMed4DmJG1CD65wXkX2DB5\nP378cSxeaqnXBSd0EEhx0rjkd34HALD4xGXQLmwdMUJUdjIapudDw6vgV04Uo4sZQyE2QTBAtqMK\n7TiqvGfN2YvJHAqtIFKxL8vWedo7/hjE3t6UgqukMgjJ3bkwkX0uVIitAE0hMhZxjHFAgiLMCw7s\ntlIQGvw4LxU4sPZMUdljXajjhA2rlYS9ttDwsvsNcCy/iRR2sBAQQ8AGUIbE9xjJzNtNW3tl6dIy\nBZSC8s9S0vyn370it6yuGg7EU9gVHDlyBFu2bMHpp5+Oc845B2NjY8nv27ZtwzXXXINly5Zh69at\n+MY3vjF0493coJ0pm/edI3tbtq2nKIqphQ83l+d59HZCNDdqZVrsyNMjwIvkW+TbVeImQqHe0nGQ\nVlaxextxgIg9q3SfsQOR5wiOzv66F2WMaAQrcWShbUZk0ajQ8cApAB/uU88Xi40B5fzl80IHkcK8\ntorWAjDoFQUW6TYOmgItt+mK7Cxg5MhdpPb8SA8LXYoPPTKSjksRTW100EJngPECPAW0/eFWMTYA\n0B0H5zmoo+zDYAKRRojxS6WvNooe4A33YUP0AUDXxA1Mq1Y4EDNlZa+2r12w65+GQubZah+5xMPt\nv0U3h56fYfLlSWTz2tBtOS/8oR/jKSg/BoCdFH4STvaCAwnNaycpEaqY0h5HiyjDjE7Li43c2Q2g\nC8AnyFPIoauc8MX8tpJ13/Bwa8nXKOiFpJ9WJGd/aLUJ44edtQchHFytNnn+HhCE0MBtL1h+mFJK\nkXh3kMtSJFZSDN5YpxyBdruNe+65BytWrOj7bffu3Th06BDWrl07VTUNGjRo8B8SU7LzWZYhy6qL\nfelLX0oo071792Lr1q148cUX8b73vQ+bNm0aWHfLsZL+70zglUZtF03oWCKlLaRq7yhEytT/eaha\nPDmeZdNWBxIImbc5FI2pVnVVHQLQHqmsS3t7U2jMcxTqIqUrywIZ4HK/o1Ndn63UUbG6rp4h0J5n\nTVEDyu0FjVtfu/5X75M/r6/y+NK007JrtIbrlyumXYSszuJORSEvghlQZyCqO7V0UdX1Flmb2aoS\n/ptLuO2+zeAdDEBSa0VHtUZ0hgEwb/6A+VJfTUUhb/mgq5beMcFRa+e73S4efvhhbN++HQCwZMkS\n3Hzzzdi0aRMOHTqEK664Ahs2bKikYD0M21gbRWESUyY2aWyFQXq49HcAyENKChbZBFuZFpWWty2h\nnQ/2DxwDnEh5p1TDl9pmGZnEGy8LjkgyRIAKMkVG7BqBgxwXMDEvNwBQx9nYqOgCUhgU7nn1SBbd\nTRDFI0VRwDiD7jxXwagcIoUDkzDCR4x6nucxOAVlcTF02SBng4Uqw2ExJppNTJkiRkdBBQuEBIYx\n6fLA53kR5IOqPQLt2CwuEEQYWYug5T7kAnlw3sXEZG77tGgpJovD6ISCGWxkUKAwRZS3M6Po+Yjx\nCjpz22fWqj7Yih56TmardRGM8JW0yWtlQNtvhirIMicnuujMH8Ghl4+g1WlhZCRumJ61nJiYRK/r\nxQsKnfm2PyOSyJjoYuKg67MitJw5VTZfLGVjwD4DJ2nBSht4npadNGkECkcgw0FGa5VMsLfknwfu\nGovr0o4oiCwZ8Yt0ZkEQ35iiEOInCmI43c7QcylQTDRWQatF0IGgmy4BIz2iOF3CIgDpK8LO1+FH\nP/pRwsYvWLAAl19+OVqtFpYtW4Y1a9Zg9+7dR1t9gwYNGvxK4Kgp0cceewznnntu+P7QQw/hBz/4\nAbZt24YjR47giSeewBlnnDGwjijPdf9queSpiO+U5tGOejMUc83XRmdNYK0EfHVKUKLCsy30J9Xm\nUdJGICaFGypDGCYbDpQoKQo3kDGimlIn/HOIGIIGMamftYUVT+M1nHmBwn02NvGUHSmmmHZKmUD5\nKVCgdJXRcbSK+FwZUUih2wLB+Hzj4KCJRYugySuc0ncY7FxzQRlqJRICxjS7RltbV9t/ttkFXPlg\nOZApZDmhN+ntMgvwPKdMg7LaewCTk71AKbc7GXTmc3nFlMC1s00rqCL6MnrKxhQI4eCsxsazHrFM\nbhgduNTaRTr/wvzINPKuezaKlhYJMoJy7p15kYfI85lcyorBLhcWdFQkMlOwuiBQUMZqcOBaWFCZ\nBZGgRCmYU7JBmMgKCMb8IEZqrSIovwpmmkhaqyCuVSAoM5WJlHpRiOj6esB7qkHguphQaxt6FJhy\nE921axfuvPNOPP/888iyDPfffz8++9nPYs+ePVi1alUot379enzzm9/EVVddhaIocP3112PlypWD\nK5ebphj/o0OUeamYcyBo9lI3BQnxgq17Uak+VJP+fWU4fmURmKR8j3+RMSIDWGw8CpxkGU0ceN1e\na0P/eVlPFrWLmQYHlst4Thd5L8aCVFnUn2vYQB8AoAsT82AYFTZvMhRYeC4A49OJakKr40QlwrLC\n9EzYyNBSUPNsf6zi223qhmG6wo/ebWQtivEEZLhUrawkwzZApdfoo2VotFoG3Um3QAsEdhsZR4uG\nnIMpEBcU2EkF6dFWA0Y0DgdFd3YGlI9qMtKGPMq8Zt8fArkBdE1mS51l0F6uK4wIki1IMYLYP+eQ\ngK8PLghskecw3jifMrTafhPlcLB1oJB70Y94Ri6i154iBGP+VKIlRDlanuKSsJFrDIn5iRdXUcks\nhaJ8K5TJcwb7w7qIWns9lE5FbNB9xWe2kU65ia5Zswb33ntv3/U//MM/TCvKMnziE5+YUWcaNGjQ\n4FcNc+r2GQzIqURd1FGkRpxoA6W50SB6auPc0nXjbjFpEVXRLItibKIvf9J/XUrz6u28MxV0QFJ0\nDxRBUWQMI2t5o2lHQah+9YynckCR/iXE0GWGVHgA1SJoXyeiwbimIh7RigIpaJUI8bm8uywMYpBl\nIZA3hVBGMNBzhv0GRVB2FLkBO8qwpSPL2O5ktRp6r3/o5kbkOZdoAy1Gyyl1slYrpGIGFLRqhzZ8\nGmDLytdwFh6MEGDAFDFQN3QGDpkSVEo6yxq1F0M4ipwVlInOEsl8KkzIV2QKBGrdtFXUbisNjNi7\nTC86SGhBWQIM450lCsSg3TAgb1OsCDHIsooBy8nGYACAbjeGViQVszVkmaD+mAIXVRQx6lOWQdRf\n4sT8vJdjJqlbipwWUxykltJBnGQMghKuEGIgpQn1hKlk8WbOxnscH6Hw6n4Kn028poZ4eOG5MVRb\nHtK2GGlxedkkm4pr0t/vywruRcoU/YSmrKY3wttEaQqTo+7UMAZpeD1fqVEoHC9miKKW38REZIQY\nugxCcwvhOYKYMcXe40VeUqwkDhyb2dGukoIMCsf+G8MgLzswEAbOMWlgrgwyvzHVPK9KtKzlDTca\nsWvdjsb6OcPzwErFdwDDQQ5cB2uL78Yr01FOSQomZCCstx/xHHBwGNE22WDwHBK8pWYT3OpzQrTA\nMCRevwI5WyzOo2w5Z7YpXgAAGajlEgfmBUzXe0FxjFcKEkL0An4sFYS/QEbeuCBRvCvJtWuEQ4m5\nABm5CPxkB/rfVQmlgRNB9CPhoaJhvKS7mKN4rDAkDjeqVYVQ34ejR+M736BBgwYzwJxHcZryIBCR\nlSokwjXw1EJU2JA0hESalcVTXiQ06eWOJoGeBCkaffwjz09IlZQmCOrjIxCExt8A5DWcJrLuakAI\nME+cF0WMOKU4pXo958YclW1GUJkKCNHvYUpusd7nuDQOIfyg5IQF6U1ah37neR4lBBogF75PZyqU\nYRNzRJmcg1JKadGWUKRFpWEVCEEzQ5H1KwTFqRCtGXoThc3ZDGsNEJaD4UAdG4Mo/hB8IiMS7kUR\n33e7tKICke7bz8h+9FRmFpWZihBycCmimMOJUysQcqIJnSkUXtSQE6T9v3Ym9OBumK8MCnarIPdf\nwQaGDvy8Cqy61nEO5b1oKKIFB5boTEkJSldMRha8+tBrOHbTrxMlXT0JYXyKwoTrhg2Me8HWGsFT\nrpYD8Dh2uvk5Z+fTR4hjHo3kpznmCQxz0Eonki+VeM4GvtQnvAssuAmFRCdNNEdiFmIlodmnaDpk\ncgqLmQjwTilsbKAPWyjK2khRSC8x+NliPZLhD1wQxf4rFbXeZe41iq0o+haryOaz8SwtwEUR0kWQ\nJqTCJ7fpqFgPkQoBOAAOS0C3dIgR2esa9Ho+SERctCAOYeQ0Ylukha/zAOTy4COVTHTPMk8SI3fG\n8woxA6zJOZgOGRDYRerIdJQ6GgCFz0CaxxQzXU1hjDVE3AXvndfWaCkFHcLhyY2ZQlqSrKXCBlAS\nF8bn0ArM3kQrtiUZ51aWgfzBaQxy77QgzgwwCzkTEP3To1OX1ojWDhwPccMIG6ftrpi78pAdZteq\n+o3iASpFSGXTqLDRmmgpIkL8plXWiOmOdqtp2PkGDRo0mAGOK8VStbA3Zb2HOS1iEGSphKBw7JQP\np3DS6VRxEsoTAiugFERQXc8TOZjIkgd7QgMY9pp1AgmzvqAIUCo0RgYxgV2mao85afwf0vLk4tlM\nzF2kFcHpGfqrE04B4VfB2Rdd6zbqG1BB1KBjZSIgdqYUohmkCveyiWNoYyXYQq0WhOUBJQYCIaeP\nERHKC4i8PwjDb4x7FD8WJPRjpUkT1FJCJFEYju9eURA3aKKgeWcxX3s9g7wbNWpBPJFTaDdXCAqk\nzJlijHSsS2nVPM60ToKBewimIlkxpFQIAm2iHXpSOSuFrOXFPQVUiNwsymmK5CsxqmlahPctFVpM\nYnVmVJpfkTObEd9MFZ+FSAEU22Ud89r3m2cn8qfK6o8Gx0d6kACu/BwffRDxXSUroxA2LLWyqHor\n7pNgaf2spESm43+sbM4i50SGqoI8LJWJprw3hRvCvp9z3LBL7sdVI0GCzQKbkC8+y2p6bEwwQmfF\nIWe75L6MeHarHXU/aCrNSc9PxTIKCOPPUnssdgKlFNp1/FCITamigYYB2HssEUd5M+xG4DlRIaZN\nLSSA4MlFQBqEJBwQ1fPDOkV4v+80Wrs/yVh4k1ERc6yHOUBpf9JZLNsS8lSOz2zYylVDs960Rzh7\nSOs8EIL4Q0McfDJerlJiB+Ygry3YRA8nKWKi8nrgMCZeblztgy6frv+Z61Al3SKxWKns6FIiwgbW\nPWXrU6Nh5xs0aNBgBjguKNGYxKpfCeRKuOt1bEENeS611aCEvve2knWsVVIRsXB6R6LlT/vgqBES\n2nlNqI3OF9jhtFGSFFup+sKkkW0kV22ptSL0QfkwbH1v2Y93DFSrsnieGgj2kRDYc61UoG6TR9eS\ndxZPIobcMKJx9RCKs6S3gmpSKlK3Ni9PVIhIV1sSIhgyJlU2yDS6fh5kqtY2NdQpxEOZRnBXZRLR\nsEykhKxYIHTPtZn+zYVmvzwRpal6eGbDUSQkDSo0JXVXfbaFJYseuYfw2RiwU+jlBYPdu9JKh3dP\nOtoaG0Qi1lLq7LtWs06qvh8FStQmib3DTEnnHxsK1GNuN1Ep4BH5qBOVWq3Pez0SY3jJzofrQvY2\nsHP9qkAumUqInTaRuYY0HVlJrlTXVtgV6+WggBXPFUW0VLGz2PVAZE/MFMW05TUgqGTDFjb7YpOm\nEME9SZko312mUh5SKHpDpsZMhcAZde+TS78koyyGWXxMvV7kbyq+e62ELw9FlpOB8PxDbeuCx1ZK\nBYsHCUOICzo589178Z+kfF5aMsnSQUYbxRSKKHVyENPLiL9x44yHoIEw7k86IdhhZRP+AUCrMFFc\nwlEurRhBTiwDy9jgJVJgHX8pPdmxQeUEYUCsearZUNMMk4Orn6rHDTvfoEGDBjPAccHOB9SFcZrS\nWDSSmeyjzZbulSwReFCVjh4yRhxFJAzpU+F/bJeT8vW2jKJziWZcPMo0YATZqEkqsdKK0lPV9ZkQ\nx0cUN1x6dE9xGYq2oeXjV3iPhkcRdWodqb6hngvl3Fay//GzJAYls6FF++k9NPV0quoMbOXBTbRE\nhfoiWjBOkmORs0e+AyIIUYNwvYWIxQApIojOG4bZBoSODQQEpkvMD4PowNCnbUs0qu6TLoJzg48e\n1tdAafxrRTWVFOoMwJVdKEvtUtneNJqup0/7MccBSNxfr5Euc/G+UEJ514xEWdgEuGj5/e0NhttE\nheyMkiyDsQljogyIxQJLIurBRN67z/pXsJWqejGUETZNUU2oUlG0kx4wTJwMaP9UJI5R/cU+a9ng\nqXiX0uIMr3HICew3o8LEz3JdytGrkmf3bwXHAII3jodj2nLluu2rRBzB/oNhJLEhQoxZlZwCVUci\nc4xJq0hVtsuMIN8yyctE6eVULThCsFDR0QSsfwee6ukHbEnD8sxliPJ9tNcQdQ229LElhkXDzjdo\n0KDBDHBc+M4z0E+h9R3ZAyD5T6klR0rRykOv+pzhRMgebONKLErIa5+bQIkCHCKjKyUoDsPCCD9S\noglFqFQlq8tCosDsfJl7QnGGlIiQ/uaDEMLWicjilmtzVAdiXnFrf2nL6z5WzYs+kBIyVYNbc/Ab\noaxhtraJgFXgRdtLxPkhRTHDRPQ6FvBSIKoXBSTMUp86Kf2U3iiix7Oxz+3LVzAMwvYfdU4o0XUD\nybj390A6DFf1r/S+qXrV1K9RwR5KtjowZqVYFXWDW2e+UD+kovnqe+uqTCsfjho9PmSigU2PcqKE\n7fAG2yg9s2Rpq9hSoNKVt/w5gSGn8SwLV8S9IRiGCpHLZcqOpKMEEUkjCgx9ShTAbRhVbYnV4F+6\n1bzGBkSGDGTTTZlQGpC4T8VNVKm6+Ixi8Kv2VojXCvd40Zk9eVs+TQWLg5SEWZNN3he3p2g8PkuQ\nzzBc0cpvlSUVI5GdhJ/laSF3UcRo8KlZPbzfTppVQdQPBvtgO0rOuWFnzXTYXq75TRApfT9VyU2r\nN+BENFKHZNNPdw/5qf5oGG5cGna+QYMGDWaA44MSD7QspwAAC8hJREFUDQdu1ZGfnhQJS16hTJIX\nUlYhbW8q4iqhRDktEvqgKWpHJSVartw7e7N0r4v1S51tH2ouK5+wS1HwXByC7ulXJYVHjL9IwlhT\nOTygHPSKFjk1Ga0e55THlOy51Nsk7KqYGlF3Jvsgn0zBZtXzHIxkw49CBDCNW4YrWpqwiQKpYg1I\nN0tAcDTllRHnvbRzT7ilvtd3LEQiFbSctD2tgzVNGL5OIKVKj0nfp2hmCBwXmyhBhGFDafhqZGn9\nQxwXU2STY0i98v1JTUkbNRuh3HlEESUXp+BGKtm6ZNLWCxeSpcHpNS8qDP7pxKjWy9ZDbjt13YzR\n7wnpyhssTGJTvhD/SCZebsyePZe1W3FWWfibunz33yE2UY5eSslLG9D3uP0PYtCqn39ab6A8p/1h\nqhD7XFshp5NhigYI6Rqo5nBTKiFdDlUHaF1zw8kQxck9BGo2gFK7A0oN7IL8eLTbcsPON2jQoMEM\ncFwEZeb0a3LC1p4wUvOW/BBJFRlwubrlqi/yWkJGiZ+o6rIgYstt1p3mU597gtO1fz3rTvF69WjV\nt8PiuSg5h6fqVq1gRdxbov6rqJQaolDSiwwITTUnZeppYVlZ4knfVzLWOxWFOkyZYeDr4b4hS5RG\nlU9HqHpNKUqUsVxUQREl1oNfP0ToN7SUdQ5BLlZwY4PvEyzbYMZm0A/hWepTrdfcW0fQorrXU73x\n44Kdn1LtWceGV1yXHDNDfCktxGm1VVroDDEpRX+GW15VG2o1a8hA0MT6XxSx5ABL9ZQ/y2v9W0pd\nmvU6rWRN8pS0fmHeZbNaTCXbmv7P1frU8h2DvteNV91qrGuPRQkv/hiWpa2uMW2zZjImh0tFGSHZ\n6CcWasonxYRIYahNbqr3MYioOHr0EV/TQomAq6186vobdr5BgwYNZoDjghKtPMumkq9XCIb7i8xA\ng0eIpFqJmqpmn48eXEMpJr7XZMuoWoPnqVspY/DI+JN6UHtU+ltqqcwWTOtVHA1lP8z1tI2py9WV\nKY8LD10jMGyhanIoGooPsGRMrMnlYqoRF0zZlRqRwiCOfyoF2LFZPgOrraeHa0jso+jTcbGJBkxr\nkQ0pr5nBm6qJ7TCgneEfoL9X3PdpCoZjWpi6lmF4t+oggEP1cOih4cqPtZWJj1LIwjXLp1pwMqiT\n9QKMOkzJAU8XHGvj0vhw1f4I1G9cU7lcTdmP9CPxEKKMYZfp1JKGaWPa9x/FS2vY+QYNGjSYAY4v\nSnRaR/grxAscdRvHjO6oqXcmzzts34anxIDhaO/p9X4GXMOQV2cg4JmVGVcNKepJEzdO8/bq632/\nDx6hYVRx/5lwXGyi/5lexHSetU5S+quCwVI3eWIe7QwYpAE+9rNquj2dyYY9VT98/bUdmnbDU98w\n1bMzylkfZt78TGbHcJj5W2rY+QYNGjSYAYi53lS1QYMGDRoMRkOJNmjQoMEM0GyiDRo0aDADNJto\ngwYNGswAzSbaoEGDBjNAs4k2aNCgwQzQbKINGjRoMAM0m2iDBg0azABz5rH0J3/yJ3j00UdBRPjo\nRz+KtWvXzlVXcNddd+Hhhx9GnufYsmULvv/97+Pxxx/HkiVLAADXXXcd3vKWt8xaf3bu3Imbb74Z\nr371qwEAZ599Nj7wgQ/g1ltvRVEUWL58OT75yU+i3W7PWp8A4Otf/zp27NgRvu/atQtr1qzBkSNH\nMDo6CgC47bbbsGbNmlnpz1NPPYUbbrgBmzdvxtjYGH7+859XjtGOHTvwV3/1V1BK4corr8QVV1wx\nq33atm0b8jxHlmX45Cc/ieXLl+O8887DunXrwn1/+Zd/Ca1fmfyl5T7dfvvtlfN7Nsepql9bt27F\n/v37AQAHDhzABRdcgC1btmDjxo1hTi1duhR33333K9qvaYPnADt37uTrr7+emZmffvppvvLKK+ei\nG8zM/OCDD/IHPvABZmbet28fv/nNb+bbbruNv//9789Znx566CG+6aabkmu33347f+c732Fm5k9/\n+tP8la98ZS66FrBz507evn07j42N8ZNPPjnr7R8+fJjHxsb4D/7gD/jee+9l5uoxOnz4ML/tbW/j\ngwcP8vj4OL/zne/k/fv3z1qfbr31Vv72t7/NzMxf/vKX+c4772Rm5je84Q2vSB+G6VPV/J7Ncarr\nl8Ttt9/Ojz76KD/33HP8nve85xXrx7HAnLDzDz74IN761rcCAM4880y8/PLL+OUvfzkXXcHrX/96\nfOYznwEALFq0COPj4yiKYk76Mgg7d+7EpZdeCgC4+OKL8eCDD85pfz7/+c/jhhtumLP22+027rnn\nHqxYsSJcqxqjRx99FOeffz4WLlyIkZERrFu3Do888sis9emOO+7A29/+dgCWijpw4MAr0vZ0+lSF\n2Rynqfq1e/duHDp0aE650+lgTjbRvXv3YunSpeH7smXLsGfPnrnoCrTWgRW977778KY3vQlaa3z5\ny1/Gtddeiw9/+MPYt2/frPfr6aefxu///u/jmmuuwQ9/+EOMj48H9v2EE06Ys/ECgH/5l3/BySef\njOXLlwMA7r77brz//e/Hxz72MUxMTMxKH7Isw8jISHKtaoz27t2LZcuWhTKv5Fyr6tPo6Ci01iiK\nAl/96lexceNGAEC328Utt9yCq6++Gl/84hdfkf7U9QlA3/yezXEa1C8A+NKXvoSxsbHwfe/evdi6\ndSuuvvrqRJx0vOD4iOJ0HLjvf/e738V9992Hv/iLv8CuXbuwZMkSrF69Gn/+53+Oz33uc/jYxz42\na305/fTTceONN+Id73gHnnvuOVx77bUJdTzX43XffffhPe95DwDg2muvxTnnnINVq1bhjjvuwFe+\n8hVcd911c9o/oH6M5mLsiqLArbfeig0bNuCiiy4CANx6663YtGkTiAhjY2NYv349zj///Fnpz7ve\n9a6++X3hhRcmZeZqjnW7XTz88MPYvn07AGDJkiW4+eabsWnTJhw6dAhXXHEFNmzYMCVlPZuYE0p0\nxYoV2Lt3b/j+4osvBqpmLvDAAw/gT//0T3HPPfdg4cKFuOiii7B69WoAwCWXXIKnnnpqVvuzcuVK\n/O7v/i6ICKtWrcKJJ56Il19+OVB5L7zwwpxOop07d4ZF99u//dtYtWoVgLkZK4nR0dG+Maqaa7M9\ndtu2bcNpp52GG2+8MVy75pprMH/+fIyOjmLDhg2zOm5V8/t4GCcA+NGPfpSw8QsWLMDll1+OVquF\nZcuWYc2aNdi9e/es92sQ5mQT/c3f/E3cf//9AIDHH38cK1aswIIFC+aiKzh06BDuuusu/Nmf/VnQ\nVt5000147rnnANgNw2vJZws7duzAF77wBQDAnj178NJLL+Gyyy4LY/a3f/u3+K3f+q1Z7ZPHCy+8\ngPnz56PdboOZsXnzZhw8eBDA3IyVxBvf+Ma+MXrta1+Lxx57DAcPHsThw4fxyCOPYP369bPWpx07\ndqDVamHr1q3h2u7du3HLLbeAmZHnOR555JFZHbeq+T3X4+Tx2GOP4dxzzw3fH3roIXz84x8HABw5\ncgRPPPEEzjjjjFnv1yDMCTu/bt06nHfeebj66qtBRLjjjjvmohsAgO985zvYv38/PvShD4Vrl112\nGT70oQ9h3rx5GB0dDS9xtnDJJZfgIx/5CL73ve+h1+th+/btWL16NW677TZ87WtfwymnnIJ3v/vd\ns9onjz179gTZGRHhyiuvxObNmzFv3jysXLkSN91006z0Y9euXbjzzjvx/PPPI8sy3H///fjUpz6F\n22+/PRmjVquFW265Bddddx2ICB/84AexcOHCWevTSy+9hE6ng9/7vd8DYBWp27dvx0knnYT3vve9\nUErhkksuecWUKFV9Ghsb65vfIyMjszZOdf367Gc/iz179gTOBgDWr1+Pb37zm7jqqqtQFAWuv/56\nrFy58hXr19GgiSfaoEGDBjNA47HUoEGDBjNAs4k2aNCgwQzQbKINGjRoMAM0m2iDBg0azADNJtqg\nQYMGM0CziTZo0KDBDNBsog0aNGgwAzSbaIMGDRrMAP8fXAd1sOPAs6YAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file diff --git a/README.md b/README.md index 374f40b..c3dd690 100644 --- a/README.md +++ b/README.md @@ -1,135 +1,44 @@ # Machine Learning Study Group: Deep Learning with Python ## 目的: -協助想要往 Data Science 領域發展的 Women Who Code 成員學習 Deep Learning。 +協助想要往 Data Science 領域發展的成員學習 Deep Learning。 ## 方法: 成立 Machine Learning Study Group。透過導讀、實作和討論,讓 members 共同來學習。 ## Deep Learning with Python 讀書會 + Machine Learning Study Group - + 系列活動,為期十次 - + 採用台北與加州灣區連線方式舉行 - + 跨國志工導讀、實作及討論 -+ 什麼是讀書會 - + 參考 : [認識HPX讀書會][1] - + 讀書會屬於大家,是大家相互學習的形式,並非教學。 - + 讀書會成員認領導讀 (非強迫性) - + 每章節獨立,歡迎新成員加入 + + 系列活動,為期九次 + 本次用書: [Deep Learning with Python][2] - + [Github: fchollet/deep-learning-with-python-notebooks][13] - + 請自行準備 + Chapter in the book: - + [進度 台北時間 灣區時間] - - [x] [第一週][9] 9/15 9/14 - + **導讀** 第一章 [What is deep learning][10] - - Milla Shih - + **實作** 主題 [在 Google Colab 使用 Keras][11] - + Sidney Lin - + **分享** 主題 [Fast Track your Career in Data Science][12] - + Chu-Cheng Hsieh - - [x] 第二週 9/22 9/21 - + **導讀** 第二章 [Before we begin: the mathematical building blocks of neural networks][14] - + Sidney Lin - - [x] 第三週 9/29 9/28 - + **導讀** 第三章 [Getting started with neural networks][17] - + Katy Chou - + **補充** [But what *is* a Neural Network? | Deep learning, chapter 1][18] - + Gomax 推薦 - + **補充** [How Deep Neural Networks Work][19] - + Roger 推薦 - - [x] 第四週 10/13 10/12 - + **導讀** 第四章 [Fundamentals of machine learning][20] - + Noah Chen - - [ ] 第五週 10/20 10/19 + + [進度 台北時間] + - [x] [第一週] 9/28 + + **導讀** 第一章 [What is deep learning] + - Maxey / Weber + - [x] 第二週 10/5 + + **導讀** 第二章 [Before we begin: the mathematical building blocks of neural networks] + + Ryan / Blanca + - [x] 第三週 10/19 + + **導讀** 第三章 [Getting started with neural networks] + + Bina / Lucy + - [x] 第四週 11/2 + + **導讀** 第四章 [Fundamentals of machine learning] + + SP / Ronald + - [ ] 第五週 11/16 + **導讀** 第五章 [Deep learning for computer vision][21] - + 曾韋霖 - - [ ] 第六週 10/27 10/26 - + **實作** 第五章 - + 曾韋霖、張仲樸 - - [ ] 第七週 11/3 11/2 + + Lucy / Bina + - [ ] 第六週 11/30 + **導讀** 第六章 Deep learning for text and sequences - + Hsin-Wei Tsao, Alicia Yi-Ting Tsai - - [ ] 第八週 11/10 11/9 - + **實作** 第六章 - + Hsin-Wei Tsao, Alicia Yi-Ting Tsai - - [ ] 第九週 11/17 11/16 + + Ronald / SP + - [ ] 第七週 12/14 + **導讀** 第七章 Advanced deep-learning best practices - + Yu-Hsuan Chen - - [ ] 第十週 12/9 12/8 - + **導讀** 第八章 Generative deep learning - + Jay Tao + + Blanca / Maxey + - [ ] 第八週 12/28 + + **實作** 第八章 Generative deep learning + + Weber / Ryan + - [ ] 第九週 11/17 11/16 + **導讀** 第九章 Conclusions - + Jay Tao - -## 課程時間與地點: -+ 台北: - + 三創 11 F - + Start time: 9:40 -+ 灣區: - + Santa Clara University Library Room 133 (500 El Camino Real, Santa Clara) - + Start time: 18:40 - -## 資訊與工具 -+ 資訊發布以 Facebook 和 Meetup 為優先 - + [台北Meetup][Women Who Code Taipei][3] - + [灣區活動頁][Machine Learning Study Group : Deep Learning with Python][8] - + [FB粉絲頁][Women Who Code Taipei][4] - + [FB社團][Women Who Code Taipei][5] - + [FB社團][Girls in Tech-Taiwan/Taipei Women in Tech][6] - + [FB社團][Data Science Meetup 台灣資料科學社群][7] -+ 提問討論有2種方式 - + Github 的 [Issue][15] - + [Slack][16] - -## 學習資源 -+ [womenwhocode:提供豐富的學習資源][49] - + Women Who Code 推薦 -+ **政大MOOC**[成為python數據分析達人的第一課][50] - + Enzo 推薦 -+ **Udemy**[机器学习 A-Z (Machine Learning A-Z in Chinese)][51] - + Enzo 推薦 -+ **Fb粉絲頁** [ccClub][54] & Medium:[Coding & Co-working Club][53] - + Winni 推薦 -+ **書籍** [練好機器學習的基本功][55] - + Winni 推薦 - - - - - - - - - + + Eathon -[1]:https://hpx.tw/archives/18982 -[2]:https://www.manning.com/books/deep-learning-with-python -[3]:https://www.meetup.com/Women-Who-Code-Taipei/ -[4]:https://www.facebook.com/wwcodetaipei/ -[5]:https://www.facebook.com/groups/wwcodetaipei/?ref=group_header -[6]:https://www.facebook.com/groups/420817431404071/?ref=group_header -[7]:https://www.facebook.com/groups/datasciencemeetup/?ref=group_header -[8]:https://www.facebook.com/events/1901939603261051/ -[9]:https://github.com/WomenWhoCodeTaipei/DeepLearningwithPython/tree/master/Session%231 -[10]:https://ppt.cc/fflBlx -[11]:https://lihi.cc/iaAoO -[12]:https://github.com/WomenWhoCodeTaipei/DeepLearningwithPython/blob/master/Session%231/Data-sciencist-at-SF-Bay-area.pdf -[13]:https://github.com/fchollet/deep-learning-with-python-notebooks -[14]:https://lihi.cc/UUnLP -[15]:https://github.com/WomenWhoCodeTaipei/DeepLearningwithPython/issues/1 -[16]:https://goo.gl/forms/7hFI7tEf6Z4exCT82 -[17]:https://lihi.cc/eaHoT -[18]:https://youtu.be/aircAruvnKk -[19]:https://www.youtube.com/watch?v=ILsA4nyG7I0&feature=youtu.be&t=852 -[20]:http://bit.ly/deep_learning_with_python_ch4 -[21]:https://drive.google.com/file/d/1oZsvDgy73Gd4jjG9UqwE2kwWhgjjebNv/view?fbclid=IwAR2AqvFtM_Q5dUDJmz9J6Q2kqGUTUHAVah84NLcB-jbhl_LCf7atkfV8jlQ -[49]:https://www.womenwhocode.com/resources -[50]:http://moocs.nccu.edu.tw/course/123/section/lecture -[51]:https://www.udemy.com/machinelearningchinese/ -[52]:http://moocs.nccu.edu.tw/course/132/section/lecture -[53]:https://medium.com/ccclub -[54]:https://www.facebook.com/ccclub.io/?__xts__%5B0%5D=68.ARCnhjk8stSyaFt_vriAHC14KT_e9rrZyhmEmIeymdpbi1DLM-wgJVITp3zXb9dRjT6aK95i-mgLRi8bG-ezFy7hunCpy-ZGYC0GkJEPvTmfjm5yOXlYXO7_0tUsMCv-h3SUlOdVvc63dyU8T7HpL2tktySLN0dLGl1AjfR0o4ZRyvplknijGkEYuWVqyacA4FkOfpqO2jBUxnC4psEQp4Vp1lI-F621xi71ssw -[55]:https://www.books.com.tw/products/0010797283 diff --git a/SN.ipynb b/SN.ipynb new file mode 100644 index 0000000..6fd7513 --- /dev/null +++ b/SN.ipynb @@ -0,0 +1,73 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "normalization.ipynb", + "version": "0.3.2", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "-e8KREF0LT65", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "6149fb2c-18a6-4f65-b0ae-2a21f81dcd15" + }, + "cell_type": "code", + "source": [ + "import re\n", + "\n", + "pattern = re.compile(r'hello.*\\!')\n", + "\n", + "match = pattern.match('hello, hanxiaoyang!how are you?')\n", + "\n", + "if match: \n", + " print match.group()" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "hello, hanxiaoyang!\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "l6s-3zFDHUdS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git "a/cv2\345\257\246\344\275\234\350\252\262\347\250\213.ipynb" "b/cv2\345\257\246\344\275\234\350\252\262\347\250\213.ipynb" new file mode 100644 index 0000000..8ff97ce --- /dev/null +++ "b/cv2\345\257\246\344\275\234\350\252\262\347\250\213.ipynb" @@ -0,0 +1,431 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "cv2實作課程.ipynb", + "version": "0.3.2", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "-WilzXD2D49l", + "colab_type": "code", + "outputId": "e4e6013b-c7f8-4bef-dd32-11c308f69cd9", + "colab": { + "resources": { + "http://localhost:8080/nbextensions/google.colab/files.js": { + "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7Ci8vIE1heCBhbW91bnQgb2YgdGltZSB0byBibG9jayB3YWl0aW5nIGZvciB0aGUgdXNlci4KY29uc3QgRklMRV9DSEFOR0VfVElNRU9VVF9NUyA9IDMwICogMTAwMDsKCmZ1bmN0aW9uIF91cGxvYWRGaWxlcyhpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IHN0ZXBzID0gdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKTsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIC8vIENhY2hlIHN0ZXBzIG9uIHRoZSBvdXRwdXRFbGVtZW50IHRvIG1ha2UgaXQgYXZhaWxhYmxlIGZvciB0aGUgbmV4dCBjYWxsCiAgLy8gdG8gdXBsb2FkRmlsZXNDb250aW51ZSBmcm9tIFB5dGhvbi4KICBvdXRwdXRFbGVtZW50LnN0ZXBzID0gc3RlcHM7CgogIHJldHVybiBfdXBsb2FkRmlsZXNDb250aW51ZShvdXRwdXRJZCk7Cn0KCi8vIFRoaXMgaXMgcm91Z2hseSBhbiBhc3luYyBnZW5lcmF0b3IgKG5vdCBzdXBwb3J0ZWQgaW4gdGhlIGJyb3dzZXIgeWV0KSwKLy8gd2hlcmUgdGhlcmUgYXJlIG11bHRpcGxlIGFzeW5jaHJvbm91cyBzdGVwcyBhbmQgdGhlIFB5dGhvbiBzaWRlIGlzIGdvaW5nCi8vIHRvIHBvbGwgZm9yIGNvbXBsZXRpb24gb2YgZWFjaCBzdGVwLgovLyBUaGlzIHVzZXMgYSBQcm9taXNlIHRvIGJsb2NrIHRoZSBweXRob24gc2lkZSBvbiBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcCwKLy8gdGhlbiBwYXNzZXMgdGhlIHJlc3VsdCBvZiB0aGUgcHJldmlvdXMgc3RlcCBhcyB0aGUgaW5wdXQgdG8gdGhlIG5leHQgc3RlcC4KZnVuY3Rpb24gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpIHsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIGNvbnN0IHN0ZXBzID0gb3V0cHV0RWxlbWVudC5zdGVwczsKCiAgY29uc3QgbmV4dCA9IHN0ZXBzLm5leHQob3V0cHV0RWxlbWVudC5sYXN0UHJvbWlzZVZhbHVlKTsKICByZXR1cm4gUHJvbWlzZS5yZXNvbHZlKG5leHQudmFsdWUucHJvbWlzZSkudGhlbigodmFsdWUpID0+IHsKICAgIC8vIENhY2hlIHRoZSBsYXN0IHByb21pc2UgdmFsdWUgdG8gbWFrZSBpdCBhdmFpbGFibGUgdG8gdGhlIG5leHQKICAgIC8vIHN0ZXAgb2YgdGhlIGdlbmVyYXRvci4KICAgIG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSA9IHZhbHVlOwogICAgcmV0dXJuIG5leHQudmFsdWUucmVzcG9uc2U7CiAgfSk7Cn0KCi8qKgogKiBHZW5lcmF0b3IgZnVuY3Rpb24gd2hpY2ggaXMgY2FsbGVkIGJldHdlZW4gZWFjaCBhc3luYyBzdGVwIG9mIHRoZSB1cGxvYWQKICogcHJvY2Vzcy4KICogQHBhcmFtIHtzdHJpbmd9IGlucHV0SWQgRWxlbWVudCBJRCBvZiB0aGUgaW5wdXQgZmlsZSBwaWNrZXIgZWxlbWVudC4KICogQHBhcmFtIHtzdHJpbmd9IG91dHB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIG91dHB1dCBkaXNwbGF5LgogKiBAcmV0dXJuIHshSXRlcmFibGU8IU9iamVjdD59IEl0ZXJhYmxlIG9mIG5leHQgc3RlcHMuCiAqLwpmdW5jdGlvbiogdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKSB7CiAgY29uc3QgaW5wdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaW5wdXRJZCk7CiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gZmFsc2U7CgogIGNvbnN0IG91dHB1dEVsZW1lbnQgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZChvdXRwdXRJZCk7CiAgb3V0cHV0RWxlbWVudC5pbm5lckhUTUwgPSAnJzsKCiAgY29uc3QgcGlja2VkUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBpbnB1dEVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcignY2hhbmdlJywgKGUpID0+IHsKICAgICAgcmVzb2x2ZShlLnRhcmdldC5maWxlcyk7CiAgICB9KTsKICB9KTsKCiAgY29uc3QgY2FuY2VsID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnYnV0dG9uJyk7CiAgaW5wdXRFbGVtZW50LnBhcmVudEVsZW1lbnQuYXBwZW5kQ2hpbGQoY2FuY2VsKTsKICBjYW5jZWwudGV4dENvbnRlbnQgPSAnQ2FuY2VsIHVwbG9hZCc7CiAgY29uc3QgY2FuY2VsUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBjYW5jZWwub25jbGljayA9ICgpID0+IHsKICAgICAgcmVzb2x2ZShudWxsKTsKICAgIH07CiAgfSk7CgogIC8vIENhbmNlbCB1cGxvYWQgaWYgdXNlciBoYXNuJ3QgcGlja2VkIGFueXRoaW5nIGluIHRpbWVvdXQuCiAgY29uc3QgdGltZW91dFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgc2V0VGltZW91dCgoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9LCBGSUxFX0NIQU5HRV9USU1FT1VUX01TKTsKICB9KTsKCiAgLy8gV2FpdCBmb3IgdGhlIHVzZXIgdG8gcGljayB0aGUgZmlsZXMuCiAgY29uc3QgZmlsZXMgPSB5aWVsZCB7CiAgICBwcm9taXNlOiBQcm9taXNlLnJhY2UoW3BpY2tlZFByb21pc2UsIHRpbWVvdXRQcm9taXNlLCBjYW5jZWxQcm9taXNlXSksCiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdzdGFydGluZycsCiAgICB9CiAgfTsKCiAgaWYgKCFmaWxlcykgewogICAgcmV0dXJuIHsKICAgICAgcmVzcG9uc2U6IHsKICAgICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICAgIH0KICAgIH07CiAgfQoKICBjYW5jZWwucmVtb3ZlKCk7CgogIC8vIERpc2FibGUgdGhlIGlucHV0IGVsZW1lbnQgc2luY2UgZnVydGhlciBwaWNrcyBhcmUgbm90IGFsbG93ZWQuCiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gdHJ1ZTsKCiAgZm9yIChjb25zdCBmaWxlIG9mIGZpbGVzKSB7CiAgICBjb25zdCBsaSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpJyk7CiAgICBsaS5hcHBlbmQoc3BhbihmaWxlLm5hbWUsIHtmb250V2VpZ2h0OiAnYm9sZCd9KSk7CiAgICBsaS5hcHBlbmQoc3BhbigKICAgICAgICBgKCR7ZmlsZS50eXBlIHx8ICduL2EnfSkgLSAke2ZpbGUuc2l6ZX0gYnl0ZXMsIGAgKwogICAgICAgIGBsYXN0IG1vZGlmaWVkOiAkewogICAgICAgICAgICBmaWxlLmxhc3RNb2RpZmllZERhdGUgPyBmaWxlLmxhc3RNb2RpZmllZERhdGUudG9Mb2NhbGVEYXRlU3RyaW5nKCkgOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnbi9hJ30gLSBgKSk7CiAgICBjb25zdCBwZXJjZW50ID0gc3BhbignMCUgZG9uZScpOwogICAgbGkuYXBwZW5kQ2hpbGQocGVyY2VudCk7CgogICAgb3V0cHV0RWxlbWVudC5hcHBlbmRDaGlsZChsaSk7CgogICAgY29uc3QgZmlsZURhdGFQcm9taXNlID0gbmV3IFByb21pc2UoKHJlc29sdmUpID0+IHsKICAgICAgY29uc3QgcmVhZGVyID0gbmV3IEZpbGVSZWFkZXIoKTsKICAgICAgcmVhZGVyLm9ubG9hZCA9IChlKSA9PiB7CiAgICAgICAgcmVzb2x2ZShlLnRhcmdldC5yZXN1bHQpOwogICAgICB9OwogICAgICByZWFkZXIucmVhZEFzQXJyYXlCdWZmZXIoZmlsZSk7CiAgICB9KTsKICAgIC8vIFdhaXQgZm9yIHRoZSBkYXRhIHRvIGJlIHJlYWR5LgogICAgbGV0IGZpbGVEYXRhID0geWllbGQgewogICAgICBwcm9taXNlOiBmaWxlRGF0YVByb21pc2UsCiAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgYWN0aW9uOiAnY29udGludWUnLAogICAgICB9CiAgICB9OwoKICAgIC8vIFVzZSBhIGNodW5rZWQgc2VuZGluZyB0byBhdm9pZCBtZXNzYWdlIHNpemUgbGltaXRzLiBTZWUgYi82MjExNTY2MC4KICAgIGxldCBwb3NpdGlvbiA9IDA7CiAgICB3aGlsZSAocG9zaXRpb24gPCBmaWxlRGF0YS5ieXRlTGVuZ3RoKSB7CiAgICAgIGNvbnN0IGxlbmd0aCA9IE1hdGgubWluKGZpbGVEYXRhLmJ5dGVMZW5ndGggLSBwb3NpdGlvbiwgTUFYX1BBWUxPQURfU0laRSk7CiAgICAgIGNvbnN0IGNodW5rID0gbmV3IFVpbnQ4QXJyYXkoZmlsZURhdGEsIHBvc2l0aW9uLCBsZW5ndGgpOwogICAgICBwb3NpdGlvbiArPSBsZW5ndGg7CgogICAgICBjb25zdCBiYXNlNjQgPSBidG9hKFN0cmluZy5mcm9tQ2hhckNvZGUuYXBwbHkobnVsbCwgY2h1bmspKTsKICAgICAgeWllbGQgewogICAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgICBhY3Rpb246ICdhcHBlbmQnLAogICAgICAgICAgZmlsZTogZmlsZS5uYW1lLAogICAgICAgICAgZGF0YTogYmFzZTY0LAogICAgICAgIH0sCiAgICAgIH07CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPQogICAgICAgICAgYCR7TWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCl9JSBkb25lYDsKICAgIH0KICB9CgogIC8vIEFsbCBkb25lLgogIHlpZWxkIHsKICAgIHJlc3BvbnNlOiB7CiAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgIH0KICB9Owp9CgpzY29wZS5nb29nbGUgPSBzY29wZS5nb29nbGUgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYiA9IHNjb3BlLmdvb2dsZS5jb2xhYiB8fCB7fTsKc2NvcGUuZ29vZ2xlLmNvbGFiLl9maWxlcyA9IHsKICBfdXBsb2FkRmlsZXMsCiAgX3VwbG9hZEZpbGVzQ29udGludWUsCn07Cn0pKHNlbGYpOwo=", + "ok": true, + "headers": [ + [ + "content-type", + "application/javascript" + ] + ], + "status": 200, + "status_text": "" + } + }, + "base_uri": "https://localhost:8080/", + "height": 86 + } + }, + "cell_type": "code", + "source": [ + "import cv2\n", + "import matplotlib.pyplot as plt\n", + "from google.colab import files\n", + "import os \n", + "path = \"/content/sample_data\"\n", + "os.chdir(path)\n", + "os.listdir(path)\n", + "pwd = os.getcwd()\n", + "files.upload() # 上傳檔案\n", + "os.listdir(path)\n", + "print (pwd)\n", + "\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Saving conan_s_head.png to conan_s_head (1).png\n", + "/content/sample_data\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Ph-M4R9FKD4Z", + "colab_type": "code", + "outputId": "fe2bea92-93ee-4c58-eb41-c84a66327a61", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 187 + } + }, + "cell_type": "code", + "source": [ + "import cv2\n", + "import matplotlib.pyplot as plt\n", + "from google.colab import files\n", + "import os \n", + "path = \"/content/sample_data\"\n", + "os.chdir(path)\n", + "print (path)\n", + "os.listdir(path)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/content/sample_data\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['california_housing_test.csv',\n", + " 'README.md',\n", + " 'anscombe.json',\n", + " 'mnist_test.csv',\n", + " 'california_housing_train.csv',\n", + " 'mnist_train_small.csv',\n", + " 'conan_s_head.jpg',\n", + " 'conan_s_head (1).png',\n", + " 'conan_s_head.png']" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "c23FMWwGm_PR", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "rNiTAtd1OvJH", + "colab_type": "code", + "outputId": "d93474bd-3719-4aff-fc6d-7e9100dce2eb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1104 + } + }, + "cell_type": "code", + "source": [ + "from google.colab import files\n", + "import os \n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.image as mpimg\n", + "path = \"/content/sample_data\"\n", + "os.chdir(path)\n", + "pwd=os.listdir(path)\n", + "print (pwd)\n", + "image=cv2.imread('conan_s_head.png')\n", + "plt.imshow(image)\n", + "plt.show()\n", + "image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB) #因opencv讀入時是BGR,而matplot是以RBG顯示\n", + "\n", + "plt.imshow(image)\n", + "plt.axis('off') #取消秀圖時之座標軸\n", + "plt.show()\n", + "cv2.imwrite(\"conan_s_head.jpg\",image) # 將轉換後的圖檔保存\n", + "plt.axis('off')\n", + "plt.imshow(mpimg.imread('conan_s_head.png'))\n", + "\n", + "print (\"width:%d pixels\" % (image.shape[1]))\n", + "print (\"height:%d pixels\" % (image.shape[0]))\n", + "print (\"channel:%d pixels\" % (image.shape[2]))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['california_housing_test.csv', 'README.md', 'anscombe.json', 'mnist_test.csv', 'california_housing_train.csv', 'mnist_train_small.csv', 'conan_s_head.jpg', 'conan_s_head (1).png', 'conan_s_head.png']\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXeAXGXZ9n/nTK/b+2azSdg0QoBA\nCL0EUAEBQQReVMQPO2DhRVBUxNeCIJYXG/BiQ1SCCAoKhFBDSINU0nuyvZfZ2elzvj+e5zwzm+wm\n2wKbcK4/YHYyc+Y57T53ue7r1gzDMLBgwYIFCyOC/l4vwIIFCxaOZFhG1IIFCxZGAcuIWrBgwcIo\nYBlRCxYsWBgFLCNqwYIFC6OAZUQtWLBgYRSwj/UGf/SjH7Fu3To0TePOO+9k9uzZY/0TFixYsDBu\nMKZGdOXKlezdu5cFCxawc+dO7rzzThYsWDCWP2HBggUL4wpjGs4vW7aMCy64AIApU6bQ3d1Nb2/v\nWP6EBQsWLIwrjKkRbWtrIy8vT/2dn59Pa2vrWP6EBQsWLIwrHNbCktVRasGChaMdY2pEi4uLaWtr\nU3+3tLRQVFQ0lj9hwYIFC+MKY2pEzzjjDBYuXAjAxo0bKS4uxu/3j+VPWLBgwcK4wphW5+fMmcOx\nxx7Ltddei6ZpfPe73x3LzVuwYMHCuINmSeFZsGDBwshhdSxZsGDBwihgGVELFixYGAUsI2rBggUL\no4BlRC1YsGBhFLCMqAULFiyMApYRtWDBgoVRwDKiFixYsDAKWEbUggULFkYBy4hasGDBwihgGVEL\nFixYGAUsI2rBggULo4BlRC1YsGBhFLCMqAULFiyMApYRtWDBgoVRwDKiFixYsDAKWEbUggULFkYB\ny4hasGDBwihgGVELFixYGAUsI2rBggULo4BlRC1YsGBhFLCMqAULFiyMApYRtWDBgoVRwDKiFixY\nsDAKWEbUggULFkYBy4hasGDBwihgGVELFixYGAUsI2rBggULo4BlRC1YsGBhFLCMqAULFiyMAvaR\nfvG+++5j1apVJJNJPv/5z/PKK6+wceNGcnNzAbjxxhs599xzx2qdFixYsDAuMSIjunz5crZv386C\nBQvo7Ozkiiuu4NRTT+XWW2/lvPPOG+s1WrBgwcK4xYiM6Ny5c5k9ezYAwWCQSCRCKpUa04WNBYrL\njun3d0vjjiF9p6VxxwHfHQ8YzrpsDiepRBwAp9tLPBoBwO5wkkzE1PbGAoZhkE6nAUin06TThngf\ng7a2dgD27atj3746AGrr6tX10tzSRmtHz6jXkIgnKCvJZ0JlOf/9tZv4/g9/wvRpNQAUFhYwYUIF\nABUV5dh0GwCaBpomMlq6rqHrY5PdqppyIgCR3m60rG1mnz/DEMfI7fWTiIvzgaZhpJLq3212JwCp\nZHy/X9AAcS4T8ah67fGLKDDU2YzHnweAzeEg1N4kPuN04Zaf8QbyCHe3sXfb2xSWTEKXx2QoMAyD\ngvJJACTjMZIxcW319Xapz+i6Dbc/CEC4ux1Nrlm3O7A5HADEI2Fsdofap3QyIY5T084hr2U8QDPM\nszlCLFiwgLfffhubzUZrayuJRIKCggK+853vkJ+fP1brtGDBgoVxiVEZ0ZdeeomHHnqI3//+92zY\nsIHc3FxmzJjBww8/TFNTE3fddddYrnXYyPbahut1HW2eaN3u9aP+/VQqpTzIZDJFqLeXkuIiXnt9\nCZs2bwVg9dqN7KltBKCprQtDenput1d5HQ6PH03TRr2ewbDkmYc489LPEY/1AWCkkkT7wgAk4hGO\nqa4EoLK0kCmTJwJw7MzpnH7aPACcLgd2uwjSHHb7qNa6/zVoeaJHnyc64sLSG2+8wYMPPsgjjzxC\nIBDgtNNOU/82f/587r777rFY33uG8RrSDwejCdfjcXHjRqMxOrtEuP3WW2+z4q014vWajbR09rJp\n5fN87a6f4wmIm9Zud2LYcwDIK81R2xM2Y1RBz/CgaTjdPvWnSxoPDegWdoru+j7W7VkLwOP/XkIk\ndB8ANZMqmTN7BgAfuPA8ZkyfCoDD4cDtdgFgsw3N6IxVysTC+MWIkkChUIj77ruPhx56SFXjb7nl\nFmprawFYsWIFNTU1Y7dKCxYsWBinGJEn+txzz9HZ2clXv/pV9d6VV17JV7/6VTweD16vl3vuuWfM\nFjkaDOYJJBLCHUmlkrjd7ndzSYcVI/V8YrEYPaFeAPbu3cfiN5YDsOjVJdQ2dQLgCeTi8gYA0L1F\nFLgLAfDnFqnwNJ0ebYFxsNB5lF6sYRa7st9LYbOJW8AbzMMbFDn8jgS8sGwLAE+/uByvQxTNTph5\nDBd96EIATjttLj6vBwCPxzPkZZjnp6h0yoh3xcL4woiM6DXXXMM111xzwPtXXHHFqBf0bmH5ipUA\nLF22kpu++FkA/H5fv8+YF/yREtYP14B2dHTS3inyWM888xzPPP8KAG3dEQK5RQC4fHnklYncFoaR\nMZZZbIyDpdUPlU80srYJgxthczu6pilDqGnaoNvXNO2g6xpoHcrEGqh8ZCC/RP3G+r3dvPnj34r3\nXQ/xoQtOB+CjV1xGSbE4Xrm5OUOq8rdm5f1KK6cPeZ0Wxh+sjiULFixYGAVGXFg6EjCYZxZPJHjx\n5TcA+Ps/n+fUeXMBOOfsM961tY0Vhup9JpPCw2tra2Ptug0APPrXv7Nm4y4AgvmluP3lABR4UxiG\nCGFTsmI6MISHlu0NZnuAhmGQTJrV5jSG5I+mjbT6TDweI5lIqM/3RcID/pJDeoYul0txUu12O06X\nS/6ujq7rai2JRFxVnLPfF2s21weDpwky+6AcWs1GsLBM/d7zb4qQ/2//fJnZ06oAuPZjH2HOiccD\nUFJchNPp4FBoqhPbKZ0w45CfPRxoa949rM9bqYj+OKqN6GBYu2Y9i5evAyCnuIply98G4KwzTxsw\nFBuPlfqhGE+TjlRb18Crry8B4LmFr7JtXxsAgdwiiiZIyk06PQCVRmB/IwmSYC+3n0gkVBieTqdJ\nyMp+MhGnLypoRrFYVL2fSCSIS2qO2N6B2z8Q2YYv855J7LfZbDidThwOYWzravfg9ngBcLvcOF3i\nfZtuR5d5ULvNhs2euQWyjf9gazBUI0EaTW6nsHwydT3i/bt/8gg5MsV+3dWXc8H8swGoqpqA3X7w\nin5T7Wb1eiyvt7aWPWO2LeifihgMpRXTxvQ3xzOscN6CBQsWRoH3lScal2HjS68uIZoWu+50+1j1\njiCK76uto3pi1Xu2vqFgqOF7XV0Dr7wmUhaPPv5POsMiBPbm5JNTUAqIsDo9QLvu/gWblAzJk6mk\n8m7jsRhR2UraUL+XWEx4luFwr/qMrmuKZM1+27TbDx3mDgXZdM1EIkFCNhh0dXVgdIqWU8MwMH/a\n6XTh9fkB8Hn96rXd7lBrstvtKiLZv/DVD/L9lCTIA/gLSknLH/u/BS/y58f/CcANH7+SGz/9CbZt\n38ExUyYfsviUfZ6H65W2Nu0a1ucPB5rqtw74/tFYRHtfGdGNG0W49PzLS3EHisWbhkFtcwcAby5d\nMW6N6FCMZ1dXNytWrgLgkT/+je11Yr+ChaX47BkKUrZJMA1bdi4zkYirXGY8FiMiu336Ir2E5et4\nLKq+29HRihmS67o+Zj3ow0V2amCwNSSTSbq7BGWrq7Nd5Vc9Hi9+v2gO8Pp8eDyCqeFwOHE6nXKb\nNpUrHsywGqmkOr5ufxBNEzzqB//yPDd++hN87uZvct1VH+a8c88EoKbm0PnFoaSTGrNSAeMZZv7X\nRGnlkR/2W+G8BQsWLIwC7xtPNB6Ps3DR6wDENBcuFcYaYBOexpvLVnH5pRcfwBeF94YzOtTQfc1a\n0Rf/+BP/5D8vC5J8XskEggUlAKSTmXBz/1A9Lvu24/G48jh7wyH6woJ4H+kLo+la1nfFczc7HB9O\n3/V7jf77r6t0QCKRoL29BYC2NkP1zvsDQXKCoqXV6/XhdImqkcPpzBSZpHe6P4xUCgNxnXkCwss1\nfKX89rF/89SzCwG48VP/xblni5bpoqLCQdd9ONtHY7EY8bhIdYVCIZJZKR6PbEQJBDJ6By7JiBgL\nNNVlwv7iI7Tq/74xolu37eDZhYsB8OaUkpS5MzRUj/X6zbtYvnwlF1zw3mqiDuWG6egQIenzC1/i\nwT88AUBC95IvhSHS6RSGvBk0LSPzlkgkiJmCEeEw4bDoi+8NhYjISrqu29Tn7Y6xyV2Od2ia1q8f\n3gzXe7o76e4SaRGn001OjjCogUAQj1fkU91uDyZ7wEwP7A8z95xKxgkWlBCWedTv//T/eG3xmwB8\n9IpLmH/uWWO8Z5lrpampmZY2sS+RWIKGhkZu/NS1/PQXvyUSFQ/TxuZW4onMQzc3KPaxpLgIXT5M\n83NzqZggRFz8Xg8+rzC0xcWFFBUWAOD1eoe9ziNNeMSEFc5bsGDBwihw1HuisZh4wj6/8BWSNtHj\nrGdXpLPqAzHDwdur3+GCC84jHk8MSJQ+3JzRoXihmzZt4ZE//AWARUvXkVskvAInkJYejqZp6DIk\njUejisQeCnUT6ukGoLe3px8h3eRYWsguuGW802QyQUuLkPlrbW0iJ1d4pXm5Bfh8QlPA5XarlMdg\nLaypZAKTLpBfVs2qbUKq7s1v38unr9kEwEUfPJ+pU0d2nTU1NbNr914Adu6uVemerTv3sru2GQCH\nw4XD7eHGT13Ls6+vU/vrcHoU/1UDdjW3ijVvbsg0MsSjJGUaKJWIkeMXXueU6gqqKgTzY9rUyZSW\ninRS9cRKJlTKa3QIzQdHGo56I1pbVw/AU8++hKdgAkAmlJcwQy23P4clK4TU285du5gx/d2rHA41\n57XopVd54Ld/pCUkrH9e8YR+N6spqBGPRwnLKnR3VwfdPZ3y/bgK1S2jOTxomqZypYAK87u7OgnI\nnGcwJ5fcXDOH6u+n+N8PMl2QTMRwuMTD3eWdxKNPvQzA4jff5vrrhBbF5ZddfMi1rVm7no2btwPw\n+pLlbNiyB4BoEjySdeB0Bymq9MufN9QaHE6PMuqGYWCkzC41DbtD5D8dLre6b2w2O0ghGrQMjW1X\na4xtktr0/JL1xMIhAGbWTKBmkrj3Zs6o4diZ4r6aNq0Gl/PIvwatcN6CBQsWRoGj2hONJxK8sURU\nqxO6G+egc6DEE1nXbTS0iULLO+9sftc80aF4oX99/Emuu/Yqvnfvr0k7c3D5RDI/nUoqzzKdTtPd\nJQjmnZ3tdHYKTymVSqiwPduTsjA6mF4/iDSJ+H8XPd3C688vKCInV8jruZxmj/+B6lKG9FJT6Tj+\nPMFfbgxF+O69QjFq1+69fOK6jwH9K/ivvPoGi5csA2Dlmk00tgtGhTeQhytP9Pg7Uin1e6lUsh8v\nWJPXhGGkScq0VzIRVx6n3a6THxRFV6/ThdsvQvGcgG9AHm46bdDepcl98RKLie9u39fKxq17AHji\nnwvJyxHe8MlzZnHi7GMBOGnO8Zxw/KyBDvO4x1F9R/V096iOEV9OMenUwcQ0IJ1K4JF0ltfeWM75\n54u+54L9ZkWNFd3pUMYzEonwu98/BsBjT7/IdddeBd4C7Lpd5T5tNjuRiKiqt7e30CFpOtlhe/bN\nbuHwILuyr3LO4RC58nVBvjR+hvjsYIMdTcEXm91JTolo/Hjsn6+yaZvoQrrikgtYukI0VCxe8Q7h\nuDDAvpxCgoUyxDYMZZg1XceQ24xF+kgnhbF0OWwU5AmJw8nFHoJ+cY1XVE4gX76fmxOkpFDcD36/\nj9w80ThQVFg4oMaBYRjUyfRZLBYjJrUS6huaSUgBnPqGZhqbRF52287dLF/xFgClRQVMPWYyAD/7\n6Y/o7BISjXlS9H08wwrnLViwYGEUOCpdFPMpv+KtVbT3iqdhjvvQAr2GYYgkO7B87WZWrxZKTxce\nBt7owbzQkFSY/8lPH+Bfi0S4FpQVeE3TwUijywpwR3srbW3N8nvdahtDnQFkYeyhlKEMg452Ud0O\n94o0UX39HgqLSlRbaTqdHrCF1DDSpNPC23O6/SxeKpTG1m3YSkoX16g/r5iAX6ZyUgliYXH+o31h\nNTzO63FQWSK84CkzplBeJtIFuTkBpkyuBuDXP//BgA0mI8HMmUPvjW9qamb3nn0A7Ny5hx07MzzR\nP/3pb4Aoqk2aNHFM1na4cFQa0UhEiGE8+59FBHLFRTPUsRWmmITDk8OadRsBoTPqHKCKOBK606FC\n+J6eEPfc+zMA/v3K2+QUV8p/kXlbTScej9EqqTbtbc0kpLCKbhnO8YWsar55jpqbG+ntDVFYLKhA\nhQXFKjTOruBrmkbUNIqhbjW6xBksQJfdYtG+EH3dbfLzGc3UZCpBSkoNxrWUCquj8QRdPYLq1tTa\nydad+zj77DP59cOPKqZGXq6fwjxRzc/JCTC1RlzfJl1pLFFaWqK2e9qpc/v922yZK3UcAZQoK5y3\nYMGChVHgqPREzcT16vVb8RSJUCCVGFhweH+YCXm3N8ii10QofdmHP8j0aYd3eqk5ovg3D/6O514T\noVtucaXSK9Yl6buvr5emxnq6ujIyb5YHOv6RKfLZCPeGlGZBX7iX0tIKQLSVmhGTYRiKUeEJ5uLy\nmnOu0qqoqGu64nFquq5SUbrd3q8K3yXrqau3NQGC2I+mKX70k88vyZJENAjINk6Py0FhrqikFxXk\nUD1RcD1rJk/knHPEFIiRtHcOBfPPO/uwbPdw4KgzoslkiqXLxBA6wxVUF9xwYQDtPeJCX//OpjEx\nogcL5f/6+D8A+NfCpQQKzfynpnQwe3pEtXLfvl2Ee0OZwW3vkezc+xG6rqt8+6EG8B0MNrtdabS2\ntTYTk7qsZWUTCASEsUyl0zjd0kBpGsYA6Si700nALcNsI1ueb2gD+nRd3P5uX05mtoCG0kMNGxo9\nzSL831bXwetvCRm7XL+LBU+/AEBVZQlnnnYSAPPPO/eQ6v1HI6w70IIFCxZGgaPOE41Go/zz2RcB\n0e42Uk80nU7izRGKNIteeYPzzxPqOgUFw+eMHqqYtPDFl3nkz08BYA8UZtTgMWhvF4WDxgZRxTS9\n0NF4QhaGC7MZQycQELzFzs7WUUkAajKC0MiwKuLxOMWy4FRUXKbmSRmDKEOJFs2hFUwHhpTy20+o\nOxtmqshp9+HyiNA+ocHWOhEZbdhRz9JVQhD6sQXPctZpcwC44vJLKJSKTkc7jjoj2tzSys59Iiea\nWzYKaoRhYJMVy1Xrt7F5yzYAzjzj1GFt5mAGdNMmER7d89MHwS1IzZqmqZ7mjo426urEJMaklCez\nwvd3H6Yx03Vd9cV3draN2fZNYxyLRWhsrJOvo5RXiOt3oC6nQ6H/dFMTA2/jYNtX7xtGv2+bEokO\nZz4x+S/b6rrYsUDopD6/aDGnzBEV9ttu/fJRHeZbd6QFCxYsjAJHjSdqzlVfvPhN3DLkGiwMGioM\nmQpwBgpZLHvw55w4e8CK5HA5o93dPdx51z0AxO1BHJL7ZxhpOuSAtfq63ZYHOo5gGIZSdS8uLqO5\nWbQ4jlVbra5n2kHb2loUY6OiciJO2Xs/FI/UMDJjq41UEk0WkNCz15kZwJdMJtX2+3ulmZHU+6v3\nZ8ZLZ9IJDpcHTRP3RmNPhH8sFPfM2ne2celFomHl49ddfcj1H2k4aoyoSWZetnI1LinTNdwQaH+Y\n5GeXx8fT/3kVgKuuvJSpQxwuNhCiUUGC/vkDD1IvuSeegF9RW7o62/uF8JbxHD8wDLDZxMMuv6CI\ntrYm+b4xZjnq7O10SyGTRCLOxIniAe32eAZVz8/aCilpRCOhDsJSBjEWCeM0O6XQiUsDuXPnZpAU\nOqfDiUuOQHG5XHjl530+f5ZcXnrANRhGWqU+7A43dqfYzt62GA/++V8ArF67ga99+QsAVFaWD+WQ\njHtYd6gFCxYsjAIj8kRXrFjBV77yFWpqBHdy6tSpfOYzn+H2228nlUpRVFTET37ykwFbJQ8XzNa2\nN5avpWii6N81RliZ3x+GkSapiX1ZvXodx0wRc4z29xKHImm3ZOkKAJ558U38hRXmD9Anh8Q1NtaS\nNNs4j6ABcO8XmNGN0+kkV7I32jtaD4tWgemV9vWF2bVLiB1PmDCZQFBwSQfzSDVNw+UVHqTd5cIn\n5fXifb1EQsIrLcr3c/qpgt/5tU9fxcYtQtD5tSUr6OwS941hd6BLz9vhcKo0VsCfQyAoUma6rg84\nRtow0qqOZXe6MBD3z5K1u9l8yzcA+Pynr+Hyyy4Z4dEZPxhxOH/KKafwwAMPqL+/+c1vct1113HR\nRRfxs5/9jCeffJLrrrtuTBY5FDhltXD2jEns6xAGye50jzqkB6HZGcgvAuCpZxaqmeElJcXD2k5D\nYxPf/9EvAPDll6u6aSQaZt9eIb4Qi8Us4zlOoWmaEhex2x3kFYhrorOzDV3mBtPa4TGmsZhIA+3b\nt5OyctE5VFBQNKiknqkV6rDZVRju9Pjw5giKnm7TWLVhDwBLlr3FRy+/CID7f3w3+/YJhsBri5ew\n4q21ALzyxlJiYRGed3V24JAOUjCYS67UTPV6fcqwH2BQyayhW+b5733gj9TWirzyzTd9bmQHZxxg\nzML5FStWcP755wNw3nnnsWzZsrHatAULFiyMW2jGCFy1FStW8L3vfY+qqiq6u7u5+eabue2225Th\n3LdvH7fffjuPP/74mC/YggULFsYTRhTOV1dXc/PNN3PRRRdRW1vL9ddf3y+sGIsQejR4663VAHzh\nK9/CV5yZwz5ULHnmIc687PP93jPzU6lkkrOOF4rj3/rG1wgGA4fc3kq5ns999S6CReK7qVSSdqkD\nWle3Z0ghfM/e1QQnzhnyfrwbGK9rClSdqP4eq8p5MJjDlGNmAEKz1pCb7Whtpm63aJyw212kFJWo\n/30w1sfKZrNRIsVLSkrKBw3tD4YlzzzEWZd/ITNCJJlAT4h02MnHTebb3/xvQIwlMUP1SCSqWCa7\ndu9l4YtiuN4//vkfaltF95XLFySvQKS78nILUN1R2bZB05Qubl9PK/NmVQPw6wd+Muz9eC8xonC+\npKSEiy++GE3TqKqqorCwkO7ubnVgm5ubKS4eXr7QggULFo5EjMgTfeaZZ2htbeXGG2+ktbWV9vZ2\nrrzyShYuXMjll1/Oiy++yFlnnTXWax0yTjrpBAB+fu93+PxX7wKgsHJqP2LwcGE+Qe1OFy+9IaTq\nvvT5rkN6opFIhJ/8Qgwc8+WXqUpmpK+PhoZaYGREetO7stsdSkj60PzBox+mpFsgmIvbnSmEJKQU\n4ki8UvM7Lre3nydlk16Ux+tXikupeBRDz8xtP5xIpVI0NzWov4uLBe9yOFEX9PcObQ4nyMaPlZsa\nuOyqTwPw4/+5g3POEQVVn8+Lzyf2t6Agn9nHzQTgpi99lm3bRJX/L3/7O88sfB2AjpYGSspFBBYM\n5mY8ZsMgLe8HT7CIZet3q3W0t3eo7Y93jMiIzp8/n9tuu42XX36ZRCLB3XffzYwZM7jjjjtYsGAB\n5eXlfOQjHxnrtQ4ZplE64/R5fOu/RVh+768eJU8O/hqpKAmISqPmFPSRRS+/xvWfvBbIsANMmAbt\nhYUvs6NW9FkH8kuJyamKDY37lEHVtKEbUSOdxun2UFlZDUC4t5u21ma5trEjfR9pMPe9tEzICObn\nF9DcLAxMIhEb1jHeH+Z3PW5vvwDdND4ul5ug7JLraGsc8e+MBEk5hK6luUGlhAoLS4ZtSBWyDarT\njeYShvnWb/+Eay8Xaakv3/J51bkFqNcul4t5p5wMwAnHH8ed3xCh/e//8GceWyDI9ntaGiipqAbA\n7c40DhjpFL7cTPT6yO/+DMAdt39lZPvxLmJERtTv9/Pggw8e8P4f/vCHUS/IggULFo4kHDVtnwPB\nZrNx9VWXA9DV1c3Dj4nxyXmlE5Uo7nBhpNP4JNfuiaee47IPfwiA4uKifp8zPc77fvEQ/nyR/E+l\nUnTLvvhQT/eQCNqmt2N+tqi4jOLiMjySTN3W2kTSVDof1/zSjMC0pmmKrG2320nKc9Eb6h52ccRQ\nrbkeyssn4pYti+1trURkA8Noj4vp3bs9nn6emnluHA4HXumJtrY0YEOq0x+k5KCZUQgGaeUljzzV\nkEgkVGjvdrnxBw5OyB8qzN315pXxt2cXA7B9115+dt//AAw64M7lclEqedR3fP2r3PSlzwLwj6ee\n5TcPPwpAa5edvCJxb9h0vZ/w9IL/vAGAx+vhpi/eKD4zTic4HNVGFFBdU9d/4hqam8XkxYVvbsDt\nF8O4RhL2GLLnuKmzj63bpJ7ofkb08SeeBiBh82GXF2I0GqFJhphDyYMahoHXJzQcy2SYWlE5EU3T\n1PRIkesbXyF8dkrBPP7+QK4ycPF4TCn1myTykcAw0uTmia6hisqJ2OwO6mtFXi0U6h6Th4oY0yH2\nx+fzD2LkNRwypHU6XSova9hsDCY/Z5LyHamoMrUpmxNjhOdS0zTicjhdY2MdE12i197hcChjr+s2\nNVYmmUyQn1808MYGgIGBN1dMDV23o4XP33wbAPf96C4qyssO+l2bzUaO7LL69Keu45qPXQHAQ//3\nBx7+498BCBRW4PYF1Xf8ssvq0Sf+o6aSXnzRheMyXWX1zluwYMHCKHDUe6ImgsEAn/vs9QDs2vtD\ndjSI2e5Or2/YknlmRdGfV8Kjj4kn6YknzFahTTwe5/ePPgmAx1+svJf2tmZVCBjcEzXU7Jv8/EKK\nS0Ri3+EwpfIMdF0nEu0DhIzZe/V0zp7zZBZfvD4ffulReNxe+iIhADq7Omlva5HfHK26ljiewWAu\nlZVCuNjhdNPSXE+nTJeMpaqS3y/252DCxU6pWOQLBOmRazBsg8cImjwGSZsb3ZBjupMRUjbh0aY0\nneFGGOY+h8MhmppE6+aECZMy68TA4xFV9fraPfSFRbojlUqp0c4H5Xib6Qu3V90/X7rlDv7254cA\n8Ho9Q1qjWdm/9as3cfVVwiv9wY/u562Nmeq8KQHtzinmVw+LItPkSROZMWPaIX/j3cb7xogCTKgU\n+Zfv33U7t3/rhwDUd0eVZNeQjalJd7LbWbpajEbo7OxSRvSvf3uScFKEa17DoK9PXHDt7a0DGk9R\nWRavvT4/RcUiPIr0hensECla57mJAAAgAElEQVQIk1QNspdacnJNo3y4kH1T6bqu1m+32VVetqKy\nWolT9IXDtMkmgsZIrfr+WBk1wzBwSO3L/MJiPF6R7mhra6GlpWlMBsllQ9N0vL5DSSsaOGU47/UF\nCMkKvV23kdQdcjuD/YJBWhO3YVJLkuMV24kloU+K6jBMZoFhGHR3CaERn89HYaEYOZJKpZQRDebk\ns2ePoCPt3rmVygnVgKBr7a8dOhAcktLVFOrj69+4G4Cf3vc9RSsbKkw5vAd/8zPeWJJpFU9GhYF3\nePx09In6wp8ee4I77/iqWP8QmlzeLVjhvAULFiyMAu8rT9TE5MnV3HHrFwG4+ba7MeziaTjcWTaG\nkSaQJ5Lzjz/xFF+5RXBSn33hZXy5ouCRSqUUX/HA72cq76YSTl5+Ie2S99nd00lV1RS5tuznnUZf\npE9tf6yqlv1I13Kbuq5jl+Rrvz9Ijpwx5HA6VfW7q7Od2n27AEF2V972YRqoZx6rosIywmGRLmhv\nayIWi4yZyrwJEc4f3OtJpVLq/LhcbmTdEbeexqYJry5mHOw4yJZLm4twn4gwjjnuFBr2CPm7rp4e\nGEaRTNM01VzQ1tqs0iuuLF6mz+8nmCMYBd09XSR2C690QlW1GsY3lHvB4faxYsNeAO67/5d8846v\nifcdwz8PZ515mnr94XOOB+DfL6/A6ctXr+fNFQyByy+7aNwIlh/VRrS47JhBNT7nzhU9zPf+z+18\n4+6fAuAIlAzrpjcMA6dU0X/x1TepnigkyvY0duMJCiMai0Xp6RaV6GxjZxgGbrfIIRWXVOB2izBu\n376d9IaEYQjm5OOSYVOGmK8R6QuTHEUHTvYaTNhsNlXNdrpc5OQIY+n3BXHJtfX1hensEPm+ru4O\nEnERZvX0dGXyo4eJhmLuv8fjo6hQzFpPpZK0t4s8a2dnh8rr7Q9NDGUX29E0hpNrdDideGXaYv/K\nvLnP0WiU3pA4x16XE5dHnFevL4eg7B9vkgPo0unUoKwBDYjJ4LBu+0aOP/dSADa++Twd3YK4zhAf\nEhkt0j6VXqmcMFnlkz0eL14Z2utZUnt7du+gQpLh8/KHMq3TUEyXf7ywhJkzpwJw1ZWXD2mdg+Fb\nsmf/tHmL+cVvBP88mVvIbx75CwAnHD+LSZNGMYhyDDE+TLkFCxYsHKE4qj3RlsYdFJcL9f2Whu0D\nfubcc87kCzeIcOS3f3oaZ0CE50MN7c1iVGsoyY9/8ksA3EXV6rutrU0q7BCVdeGF5OTkKHHdSKSP\nHdtFgSqVFQ67nJl5N5kCjU40FlEzpYbqiGYPH9NNjqLTiUOOhc7JzSPgz4R9cdks0NXVTufedrXO\nTEVeU6Hzu8EOMMPlYDBXhaEtLU2q5dV2kNBON1KKEJAapmiyzx8clLBuvt/T00mXnLfkLC4mr0AU\ncjoa91A5Q7RBlk6eBYBL14gdzBuV+9kVDlG7RQgiz7nwat5etACAzp5eNbNewDyv/c+BeU7S6TRd\nXaIP3R/IVSOfNU3DI+cnORwOUnJfUqkUtbU71bbz8gvV5w91PwTySrn3Zw8DcPaZpx/AnTZhDnQc\nyiSI+fPPZuZMUZH/wY9/wStLhG7F628spapKcKffaxL+UW1EYXDjmY0bPvVxALq7Qzz2tJD10nRb\npoPiIBePGWa6PH56woIA79ZtakpnV9Z8cofDSb5UQy8uLqNbXtz7ZD4RRA4ymZTVf4dLUZvMKrym\naSSTiazujoENmLjgMzeYuR2Hw4lPVpvz84twyZRCMpmgt1eEjA0NtYQkGT5tpNUN/15drIaRoeYU\nFpXS1yfywV2d7Woi5oGhvKY0EhzpGCm7WTXWGQrFyjRCwUHyoYLcnnnQmE8zm26joFwyKTSdpt0b\nADjzSjGc7YSzL+HtV54mZc6yt9kHXI9ud7FzyxoAyo45llM/fAMAr//jQfriKbknBjYpqpPU7Qx0\nLei6TjQaAaCzo41gMEe+b8MtGQVuh51wRITzms2mjGXtvt1qZfnSmB4UGtikE3L7nd/jdw/9rzgm\n+103pvEsqZiKGQw3128ZdLOlpSJ986tf3MN994tpGk8++S/OOet0gPc8rLfCeQsWLFgYBY56T3Q4\n+MyNn6S+UYSH0d4uXL6Dk6wBFVqFO1sIyjBOA8XvTKcNFTaVlpWTJ1vnGpvqaJaEaMgOiQ3sdnN8\nbX9lKPNz8XhMyd9lwzAys8TtdjsOh/A0PB4PObI9MieYoz4TjUSor9sDiDbJSCTTa26mFGzj4Dmr\n67rqtfd6fbRItkNnZ9uAHihAOpUgIFtmSUBfwsj+5yH9JoA/EBz0/Jtc3d5QiKAkkGt2O27p6U+Y\ndgLbVr0GQO2WNcBVzDjtQ/S01rFt/VtinZq2X3huwkD3iutv9UtPctGN3wFg9mkf4u3XngEgpdvR\n0iJCsSfjJGwmJ7X/9jSZwujt7VFjmAsKirHL68OlQzQlvOq0zaOuRcMwqJNttLquk5trFpoGvx/M\nbW7a1cybS8Xc+bPPOmPAz4pUmIjkisum0NK4c8DPZeP2274MQE5OgJdefg2Aq6++QrWVvhewjGgW\nfD4fX/uyoCnNmlTEhj0iF+j2+gfNi5k3WDzaR47DlAfTVB7K5/NTWSm6RgLBHGUAGhtq1cWanVM0\njAw9xOF0HnADi6FlMRJJU3REVzeJy+VSnTOBYI5UFBe0G7P62tHRRo+8kXp6MoIf2VSm8YLMZE03\nJbIBoa+vl4528wGVxmbT9/uOOE+6kWL6HHHzNu/bQc+ubQDYnEO75E3mhM1mP0CNHUSnmGmQss+f\npumYwWvV9BMIy6p93TYhI5eIx5j74RtIp8Q6d2xei3lp7W9MNfNhl9Z4Z7GQkjvzYzfTWi/SPzu2\nrCMpz5k7FcXmFIY8Eov3y7mavf/RaIRQj0jZ5OUXYpf5cMPpRTPEtW5PJ0jqLrWr5r7X1+9Vw+n8\nvsCgDxbzWDi8ufzf7/8KwBmnnzpgKqilcYfKjwKUVoopvU11g4f2Jj7/2U/zwC+FktyTT/6L6z/5\nX+J3R0CtGi3eezfDggULFo5gHBWe6JYt29i9R1TYg8Eg1dVCfLm0pHjYxZCyMhGS3/7fN3H7t+8B\noLU3it0lPJNsuS40jagke3uCecpLiUYjKmqsmjgFr2xNbG5uoL5ut/zqwER0wzCUR+hwHOiJJpMJ\nUomECjd9viA+Gbbm5OQSzDGVwPvPsu+WXNVQqEt9V9P097yyeTCYx8fn8+OWhaWWlga6e4QHeCCx\nXiMVFS22U2bMIbdINFHs2b4RhknMHqxf3jxjiUScLumJ2nQN0ma7qU6fnO3ucrmZNudsAF58VMwN\naty5gWmnfICTPig8p77eHmr37ZTfdQxIt9BsdvZsWyf2a8c6TrjgarGt3Zvpk1kd3RdkguR3bt+2\nScnrZV9juq4TlsXP3lA3AVk003RdtZ4eU15MfZvwVvuSWVJ7sZgK7auraxRrZH9kt/nubhDX3BtL\nlnGuVMU/GIY7m+3Lt4hi3cP/90deXCQKwpdc/MFhbWMscHQY0a3befkVMYqgobFJEb6Pm3UsM6YL\n8u/EqkomSeNaVHToSuP0aTXcepMYjfC9e39NPCUOla5nqpe6phPuEqFlsLBc5aLisShVE0Wnkdfr\nV6F9fd1uVeg/GC1I5SP1jJSaupjjMTxen+pbLywqUUY6lU7R1yuMend3Jx0yLyuoSbLn/T0K2Q00\n7DJ/l9ZskvR+kM8bhmIU5OXnZ1WY2xk4samRiPVRINkPJ5x3Jc17BW2sq70JbRgPC8MwVGfW/jDT\nOqFQNzG5Jofdhl0/8DN2XWfaicJ4vP4PIdLR1bCTVDyMr0BU8GeffSk9zwgyeXdPCH2QhoGUNHJb\nlj7P+Z/6JgDTTzmft14V+dGEOx9/jkjfnHzmB1jyktDOdQXyFLtE13XFbOjt7cUrGzlIREnrIlT3\nBQKcXiXWtnTNFvoSMt1jsynBkqbGOiZUTVbbHAiarpOUYip/euzvgxpRs1JfXHZMfwdlGPjcZ2/g\n/p8JemFPT4irpdTeu+UgWOG8BQsWLIwCR4Un+pHLL+Ejl18CwPIVb7PgSZGEf/m1N/nzAvGkdrlc\nnHWaID7PnXMcxx0rktgzZ07D5xtYnfvcc8WwvUg0ynd//GuxnWD/1tBUUvAUs596Pn9QkdjD4RB1\nsgJuGIcmpmd7YM6BCks2G6VlldjNyr2hqf7x7u6M3FxfX6/yPse6n3zo0EinhPdpM5LYpacRd7iB\nQ3sJ5hPeqetEpFZAKDTwRIB0OoXLrnPcGRcBUFw9nfVviHMf7Q1h9w5d9cfhdKlWz3Q6c/xFT7rY\nn462FuWFuT1eRWLPnt+VSiUomyg4jJNnnSLW31aPLR2XUndQPu0kZp9WD8DKl58mljYLffvto/x8\nW0sDdimdN/mEs9i0fBEA4d6QKnRd9aVb2LttPQB1DfVqiB4Yqjmkt7dHcT+ddhtIvum6bXv49leE\nkrzH6+U/r68U+2Vo6rh3drYr5fzCwpIBw3CDTAvwvuYu9uzdB0D1xKoDPjsW+NIXPgPAj378U/r6\nRIQQCPgPy2/tj6PCiGbj1Hknc+o8YSz37avlX88uBGDF6g0sWyMEHZas2kSuX+Q4T597HNOnitB7\n4oQKJk+qorq6P3n3og9dSFubqF7+78NP4MkX/dDxaDijxq1pmKG33W4nkRCUkfq6vSrsG6qavWaS\n2+2ZyrCiLtns2Gx24rLaHurpob1DGM7u7k4V6I6V4dSybpBDheCZL8kKdjRCXoG8UVNRuqWkmTGE\nriHNABsZRkRXp6nInhywRz4VCzN19qlMPkE8+Npqt9Mj0xma3TEsZc6cnNx+xtNEOm3QKycK9EXC\n6th4vX6KJogqc2djRhMznUoiU7nMOOkcANpbm4h0tzFxliCK79u9nZpTxYiZ1todbNssupQMQx/w\ngRtNpqnduAKASSfNZ8JUIdSxef1KlaNNxKJ86OOCCvSHe7+GYYhrXdMyhq031E1UNgv4PB4cmjCi\nCc3Dc4uEyMedt91Ec5tIRa3ckKEf6bpOs9QCCPiDOAfKjxoZXdxYIsnfHv8HgBIoGWuYWqbf/963\niERGPi1hJLDCeQsWLFgYBY46TzQbVVUTuOUm4eb/V1s7z78gKnhvrlzDcumVvrpiMy8v2wiA2w6T\nKov48+/+l/t//iATKgU3cWrNJD75CTEaub2jk6cWChJxb2crPkmezw6/DMNQqj09PZ3D8go1LdOi\nabPZlaRZpqKu0dPdmaVe1K64nmOZSNcl39KWTpCQRYchQdOJSzX7gvwiph47F4D63ZtJRUUjw8Ha\naDPbMUSYCWhON+3Sq7Tvt48p6fHn5RUx5fjTCRSIc9a8ayPd0kPX7ENbv+ntmxoCaimqDz1JW2uT\n3E0byFSF2+0hIBstelrqQIkaa8jlMeX4eQB4fUH2bFzFcadeCAjNgu4e4d0eP/+jdMoe/Ja2FhjA\nY08baTaseAmA0y67gYppwhPduOp11QLb09FCzfHC0515wumsW71UrNOfq4r/8XhcSRmWV1QQk6yG\n+s4+1mzcLvfX4LvfEJ7jjTffQVNXWK3D5Ck3NtYxsbrGPIL7H1EAUmhs2LKLdwOapg1JYX8scVQb\n0WwUFhbwyU8IashHLr+YFxe9AsCKt9exYq0g98Zxsq9TGKS/P7+UaFhQPaoqiphRUw1A0Ocm1iUu\n9EgoRLBQDunSNCWC0dzcQKspjDHMsNpms6kKejbdyaxONzfW09berP7WdduYVyE1DGxpcUOKSrqu\n3h8M5mfioU6KSgW1aN4HrqFxxzsAtLY2ZkjlB0kLKOZDvA+77ALq7OwgafbIZ3VxGWSmZk6aeRLl\n004kEZNV/NYG+mTorbu8DAXmcTSV7PdfUzjcSzgsjI2GpmQKSyomYZPnSdP1fkfJHDxQICdf1hx/\nKl3N9fRJnYLqmhns2iEe6P68IuZd/AkAXnvyIUIyD5zdgWQYBm2y2SDR18skKXDicrpIZzd+FIqH\n+5xzL2XT2qXqu+ah13WdsGRy2BwOVSMIrd1Mj0y73PvTX/HCv4Xwyf/c+VW+9HUx4TOp2dQ57Orq\noFDm5E2qnVqrOq4OOnrEedm+fQc1NcewP1oad1BUOuWA948EWOG8BQsWLIwC7xtPNBuBgJ+PXnkZ\nICr7ry8WT+plK1fxymJRjUwl4+SViQJT2LCxZN0eAGJ9vaQMcdjsTle/ymSvfLI3NdUPW3XbbFd0\nODLyd5oGHe1CBapVhpENjbUYRvowVdxl8SoZzRqk5jmoBwqi4JSQXntFZTVnXvk5AMLdrezctAqA\neCKpvLXBf93ALqvEFZOm09cjihrtbU3YBiomxSMUFYlIoHrWKdhdXkKt9cDxdLY1kZLFoaEwYw0D\n/AGhcLS/Z2+mSxob6jKhfTKB1ycq8lXHzqOjwQxXBz5WqYQBaMycdz7L//MYO9aLlJA/J58dG0VL\naP2uTRkZRLtGr0wXYHdicmM1TScpX6997Z/MkGyE/OIKIpLTqZEZyzT52JOYIdtf169ehlv24wt1\nJ6mG1d3F/ItE4aupvYs1W/cAsGbjdlauFOfv2ms+ykuSi/335xdnohNNo6VZsAsmTZ7ef/9N4r1N\nJyQV+196+fUBPVEAl2doEcN4w/vSiGbDZrMx/zxR0Z1/3lmcf44QhrjhqgtY9Lq40Pc2dBCQFfmc\nwjKiYUF/MWztKtTSNU3lywTNZWQam8LQiIuvsbGO5iZxgZqya5qWEZQYSxiGgZ4QIZfTYafPGAKT\nwGwA6O2karIIB0+/7EY8Uul82b//RFiKdNgOkpdUD6JElGNk7jAdjym1+Hg02q+v3Py4DZgweSYA\nhVXTSKdTtO7dClxER0sdunPoQ9MMI63U/PdPN4TkOsLhHvXwstl0SivEQ7agYjKNO9bK79r62RFz\ntw05HkQH2hv28p/f/Uj9Voms7NtdPmwy9XDihdey7jVB1WvtaO93OaWSwlhuXvUaTml40smEYnXo\nNhuJuFhEQdlEjjvlPADWLX8FpBE1NRhASECecfqpAGzasoN1m+WoF5uD1xe/CcApc+dw17e+DsA7\nm3eweW+TWo/pPESjfXikqv/+ae+E1Ap4Z9M2BoMxACPiSIAVzluwYMHCKHBUe6Il5VOxS+HZ+t3v\nDOk7p54qqsk3f+kznHeuaFVbs/YdXpZe6eoN25VXGMgtUrw7TcuQ3kfihZreTzKRoLlJKD3FohGS\nqvJunqqxVZFXaQRdo1h6Vq1NdaRNWbVBwlND00j0Cl7ixMnTmSdFgwuraljyhGjBa2msRRtK2iEl\nikYz5pzBMSeKXvOX/vBD0i5Z4NnPM0wlhHdbVFTKBFlY8XgD2O02WuqEFxXqbEP3DJ1gb7PZlFh1\nv99KJdWgQZvNpiQIc4JBTjhLNHgYyTh9IZHOcHq8pCUh3+nx0Ssr2m/883dc/9Mv89Svvs2+rWuZ\nOEPM+Jr3oeuoPvYkAAL5ZbTIGVbJRBKnW0Q8L/31F8SMzHVmnrOe7i5KJojKeHnVFLZuEQT77vZm\nfEE5g75LZ6Lkkk6ZcQJ7dgu+pzNraF04HCIvT0gNzjv5BJ55aQkAfYk0ry8R6a0b/18XVVViEsP3\nv3Mbn/y8mIEUSWUU79vbWlQ7qGFktXAaoMtUTltHD1EZnew/Xrl+74YDjv+RgBEZ0b///e8888wz\n6u8NGzYwa9Ys+vr61PzxO+64g1mzZo3NKscAJeU16NIwNNZuGtJ3jp05Xf3/3LMFZWT1mvX89qHf\nAdCRyOhuRqNRksmR9f4KmBJrCUVr0jTt8E40NAzMWnJxcTnegAhnYw11gw6XNEP4ZG8XEyeJsQ2n\nXPwpyqeeAMDWZc+za5PI8SUNsB1iZnoqEaO8TIx5mH3OFTTuEIYgGotj2A6cIW8YBnZ5TMqrp1Mh\nDUQwEKCrtZ6OVmHw0mhD6InKpBJ8/kA/Er/5m22tzURkv7mu64pgX1ZexXFnCpL8O8tfwzAfdnYn\nmgzwdq1fxvolzwGw8vm/wk+/jIHBKR+8himSgjT3A9eo6QKpRJy4nIjQUL+X4snHAjBz3nzWLBW0\nJuyZLrZ4MkVRlUgF1Jx4Jju3imPX1drAqwseA+DMyz9BmUx5zDz5HHZKQ4vbq55NqVSKUEiwDs45\n+3QqpITd9rpW3tkq6E6RSEQdmw9cOJ/rrrwYgN8/8R+VH+3p6SQpqU82m57VKJJWRrQvnmL3biEW\nNGPGtMFPzBGEERnRj33sY3zsYx8DYOXKlTz//PPs2LGDe+65h6lTp47pAi1YsGBhPGPU4fyvf/1r\n7r//fm699daxWM+7guLSKSpEHMqwLIDKygr1/5VviYrlK6t2qWA3EY8ylNk9h8JgEnkj2pZcjzHY\nHCYM8uXQt+pj57Hq1afF9+wuBtoXQ9NIRYTHUjV5OvMuuR6AoonTad0tvPuNS1+kL2YWk1wHbENt\nS1aeS0srOPVSoZblCRaw4c3/iO86Xaq/PHst6VRC9XxPmD6HgFx/Tn4hm5a/SFuj8HKGWlQyQ9q8\nvIJ+x93s1W/LGjSYTqVUpHXSWRfjkkWgdNpQaR3dpitWwdJnX1Qjis++UjR93HDXIyQTceq2y9C7\ntYG8YnFtpVJJ8vKFlGFXV7vipM48/RKadgsuc2NLsyq9J1Ip9mwU4bbb61MTFGbMu5B9m0U08Oaz\nj3PaJaJRpHrabIpKxG919YYz3FZNU62Sx88+lrIiEZHsrG0mKuc57d69l0lZ7dDf+PpXAFiy7G22\n1gneajKZpKtLsEn276m3ydAmEouxfYdIubyvPVET69evp6ysjKIiIT/2wAMP0NnZyZQpU7jzzjsP\nyHmMRxSVTsblESThut3rh/Qdh9QW1XUNTRqoWCw2pEacdxOOpLgxEnZ3P0NqXtxeh40TLxARxe71\nywjHJKHd6aG/EZW0nliE/Dxxg80662LyK0Qo6bDBtpUi3Gyo3Yl2CANmpJJ4pHbcvEs+RV5pNQBN\n21fR0bgHALc/j6QpA0im2qsZaQqkIZh47CkEzDxmOknzvh2E5E1ss2VYDoOuwzCUErrfn6OYFpqG\nGpuSTKUyxtVIUyS1AE664HJicpxKOp0kKsnz3kAOHU1CbCOvZAIf+KTo+Jk573wASqpqSCUT7Nsi\njFws0jughmhpaTm7dopKtsPt47RLBAn/md//mKQmjF88nmDvZjHMrnTSNLUv0046jaJKQVzftHwR\nG5eJxpKi8moKSkXqpH3Lxn6Us7TZoWazMfdEkSJ5652dxOTQxJbWdvXA0XWdEtk88M3bbubGL98J\nQEp30Nkhjr+gnmW0Dwx5LmKJFM2t7Qfs75EMzRiuEmoW7rrrLi655BLmzZvHokWLmDZtGlVVVXz3\nu9+lqqqKG2+8cSzXasGCBQvjDqPyRFesWMG3v/1tAC688EL1/vz583nuuedGt7IxQHZ1PhmLqsJS\nKhFTT3/DSCtPFCCVTNBYu5mS8hqaBxm3fPcP7gfgpeWb0OUo3pbWJhrr96ltHg707F1NcOKcg37G\nkEUNWzyk5g8lbFm9xIaBnhTsgjM+/Anyy6oBeObh/yEtZ/TsN8FcyaTp0RDHnSnI3bMvvI6yymq+\nfWk5H7/9t7zwuJh3E00bgzYCmKK7bh3OuFw8YCfMnEuRbFH8yw+/gFPyGPuiEZpbBBdR13UVFnvd\nHk4+98MAzLvkeiZUCK+0dts7PPnwD9m+eR3Rlm2HPE4gQvnCQuFRlVdUK0+uvm6vqshrmpb12y6u\n++J3AZj7wUtoaRAe1QuP/4badaKiHSgoISWLK6dd/HGOP1scr3QyyedOc/KbxSE8vgCvPfUIAFVT\nT2DC1NkAJGVBEYTgd60cpd3V1alGRq9/6XGWLX5BfMZmZ1K1iAbOvvQTLHv+bwB8+RePE4uIazDS\n201K9p5Ge7t5/DffA2Dz+rdxenyE9q6i+tjTefShn4ntnHkqzz33IgBf+9Y9NHYID/uOL36CW7/y\nRQDFBQWIJxJ85KOfBGDJum2qOFdTM1OpOwllMnEtxsIhrviA4AJ/8+u3HOoUHREYsRFtbm7G5/Mp\nzctPf/rTPPDAAwSDQVasWEFNTc2hNzLOkE5nZqx71ZiNg8OMxKJ94cNmPIcMTSfZK4jh5ZVVtHWL\nG4AsErOeTnHcqSK0nHz8Gbz1b6GqnsA24MWgaQapsNzmpGlMOUl8t6JqCm271gHlLH/xSfri4kYV\nqY6BZOTSuGWK84yPfIYKWc2vqKxizaInAIiEQ8y5+FMAvPjn+9G1zIoMaQj8wXKmHC+oZz6PG6dH\nnK+Wul007NmKzXlo8YnsERaFhWKmucNhp1PK7bW1tfSbvmqTg94mT57G1JMEBWv1q4toqxeyd2sX\n/pVC2d0W7eulbNIMAGbMu4CUpDsJQyY6j9JpQ01izZY77He8DIPiUvGACIV6iMvtnH/Nl9j41msA\ndEfjdLY1itedLUyeNU+uGBp2iRyq3elUeqK1OzbS1SY0HXS7Qz0tXU4HDnuGy3DyyScCUJAXoLFD\n6A80N7cNyD5xOhx88+tCdu+y//qsymN393RRLIcLGoaRuSQ0jVZpmI8WjNiItra2ki+T4JqmcfXV\nV3PDDTfg8XgoKSnhlluOjqeMBQsWLBwMIzais2bN4pFHHlF/X3zxxVx88cVjsqh3FVlegMefmTF+\nqD7v/ZFOHzgH/t1GItLLvHNF+Ni8ZyvJAdroCguLmXXORwDhyW1ZK5oIbE4f2R6kCunjEQJBUUyq\nnn0W1ccKcns63MHSFx6HWz5AQ2M99iz19GyoIpZd48yPiJ76simzqJggPLdYqJ2lz/4JgOPOv4qq\nGsGNjIZD2Pz5chtp7DJFkF9URmF5NQA5OXl0tQjvcdem1YRCvbgDuYc8TmbEUFhYojiakb4wDfWi\nsp/OmvVjpNN45Jjli2/4Or3d4vf2bl5NqFNOEehqwTFJcIptDhcFJULFyutz0Sf5l9nQdY2wHLaX\nTCSwO13yfZsKezVdx5biD7IAACAASURBVGsT1faK6qns2S6I6N1dnRwj5QXXvLWYsJx79NZzj6Gl\nBJdz35qFxMOdWb8nFbbiMRKd4vNOm4u0PMtV5aUU5GdmShUXi0JxWVEhG3YKSUfRbjwwy2PuXJE6\nOePk41m8Wsy16u7upFQWsbLHjeu6jXg0cuBGjmAc1R1LB4NSine4FD0lmYgpGxCX4gwDQelcZv13\nrDuJhgNzX3J8XmbOEToAe7dvUsZA021ocbE/J1/8ZfLyxU2y9uUFJMwc6n7GT5ND5UhEKD/+NABO\nuvBqnIiHxevP/IENq0Rftd3pGXTvHSmRf519zhV4pIGbNHUmhXJY4O/v/gF5FaKSPO+ij+P3yDxa\nv/1L45DGrnTCFHx+kcN2uhzs3Sgq2Ds2vI0+xFDerMJn03Bq63arTjSRBzYnCeicceGVABRVHsO+\nraIaHsgrYo9sKph9/sfoahIGOJBbqChLNhs4JFPBNI4ujw+nF/JKhIHpC3WzY514kHU019It9UT7\nOuoJtYtQPdRaSywqjJ+dJImYfG2kSaTFLdxatxs9LgxnZ4OT/AqRTnO4XERlj3ws1E2OTQ7XMxJ0\npkT+ORAM4PEcyKioOaaal5aL/d2xa6/qtff7+4/TMVk4t996E0uu+7z4rViMPtnBJx5UakIjkei7\nqzx/uGH1zluwYMHCKPC+9UQzauUpxffLDu1jqg/+QEyqFl6EY8VmRtPoOSbQdCKdwmP56Fd+qOYK\nhaPRjB5aOsX0E4WHWlw1FZ9U/l7x0tPYBuB0akYah6zgp3WduneEVODj3/80miyydPeGMexydo/e\n3w9VYrzxMJrczqY3nmGTHBy38qnfqHRJV1sDeWWi33rJgl/ikQPQ7I4s1ad0Gp9Um5947Fw8LvFv\n8WicPZK0vnfnZlzBgkMerlQqSYXUCHB7/NTuE80W4d5esqMJs1GhomwC5197MyBkEJtkxdxTMpk5\nlwqGQdPOd2jbKws5Lg8O6RGvenUhbY2CsRFur+czp9zNgnu/SKitlk7FPEhjl969loyoJoRILEFS\nFpNismgH4MkpJrdE9LAX2CK0dIvrdML0OVz+hbvFfnm9aLo4vg6Xi9Y6UQB7/i//S/0mcS4LvHES\nmohOqirKVH0jGyedMBv/02JGWXNbB6nUwQunc+acwDmniqLU4lVb6JX3kNvj68dDjcTE/nZ1dZOb\nm3PQbR4JeB8YUdNYpjEMeTHu14s9EEv+YPRZReEx0mKi2nuIeCTESadfAMCccy7lyV9/BxCyZOZ+\nOjWDGaeLXGlubj5b334VgFjK6N8jb4qRGAl80pgFiyqYNFMIZNRtXcuWjaJby+bPVxSqbKSTCfwe\nYeQqp83DJ/vxfX4fDmk4d21cScMukTszUila5Xz49tptioZmczjUA0rXdeKSdbBm0eM0bBKD2mx2\nO6vfFHQcu9c/EGc9sy6Zlwvm5FEgK/IN9bvp6uoY8PN+t8hTXnrjN5UGZ9ropld2Ee3Z+m9CzcI4\npdJpPEFhhBo2L6VtgzA8GgaGTIvEEyngbnYsf5ZkKkEyIVMwZZNw5ogcakXNbOyykaOgrFppGRRW\nTsYtp5Xu3rWdKVNFL3zzvp389tuia6ywajpVMwTjIRaJqmva4fYoQ97T3U0IkQrxpeP4bCKsriwv\nwuc7UMuzamIlfpej3/E7GLxeD/8lZ76/vuJ79MixJ0VFZf2q8yZSI5wzP95ghfMWLFiwMAoc1Z6o\nkU6pmTta1kjj0WKObItz/PVZEkN4Qh8OmJ6Bx27njEuuE+txOmk2K8zJpEpZ1Jx4uhKVzi8o5OnX\nRX+65siE8kY6hd8vvJ3JU48jGRdeytlXfJZURHgUK199Ftxm+JXt9mmkZOGjomIiJ1/0cfFb5ZOo\nmCDmjPt9AVWFfv6P9+LwiO2c91+3qPHEu95ZQdNu4ZVuWrdcZSM0TSPSJcdCt9Yzc64QGd62+g16\ne4VnaHqwA8EwDHRzznt5FS0tIv3R3t46YMRhS8X5wDUihC8oq+KJnwvZtz2rXsSuy8GBqRjRmPAy\n9WAVuRWiOp9weskpFgT4QFGl8sTNYtNHv/koOYUl7JTK9huWL6Jhp9AdqNu7KyOsrNvUEZ448yTK\npRJTac2J2F2isFNcUU1QMifQNBVQpVMZpoiGkAUEaG+uVcW33rROni6O3ZtvvMbll4kGhppjJqvv\n1hwzBb9XXCOmuv/BoOu6EjgvL8yhJRyR300oIfFx1hk9JjiqjSiaNmCoPlpUVYmcqJFKYrwnh1Aj\nLsdxnHflDUw+9hQAWup2EpXiH4am4XWIC3f6aR8i3C46cB5d8Avqa0VeT9MdmfylrlNRJarkk084\nm3CbCAFtpFjwm7sBCEWj/ahfZj+0Fg8z62RBgJ951qUUlgrDWVpagccrbnib3U7TXjGQbduapZx/\nvVBJnzRttjL2gbxCUqZ82po3VXrB6XRz/FniQTHr7MtUxd/lz6G7R4T5Lu/g2qGpVIqqqkkA9PX1\n0iWNSjqd7kfb0WU+8twPX8tsqRX61x98hr76dWI7SbAFRSqgdPappDSRtqjd8jZumWc+/6Z7qJQT\nOJOJhDLeuuzkicdj/O3+/6ZL9tdPmFDGpR8Uhsfn9Wb1p2vs3SumGuzYs5Ul65eJY22zUyBzoiUT\nazjmOEF3MpIms6A/NB0ifcJYhno68RaI1EEs7SIiUw0b165h1SrBNMg2ovn5efjlfnX3DF4jyIaZ\n47zh41dx32//DEBfOKxGrxyNsMJ5CxYsWBgFjm5PlNGF8MVlIizbXy7P6RQeiG4kFXFbt9mVVzMK\nTZchIZWMUyaFjE848yICkii9ccUiYrKiSzpNZZXQdn3nlb9TMUm8LplYw45d27M3BkBOXj6TjxcD\nzaI9bZROEF7pX3/2dTp6Raiu2x3KszdSSdXzfsG1N1NyjOj/9vuDlFcIT8nlcqtAwG538OKfRX/2\nnA9eR80sQdq36bo6hsUl5UyqEWHrq6kk2OX4ZLsdv2zDLS6vortOcEPXL38F+0HGIadlCFpYVKIm\nBHS0t5KQxyjbC9XSSeacKtIE5131Rbauek18fu86ciqEuPgFH7uJGXPnAxDuDbFk4ZMA7Fj1KnlF\nwsObevLpREKi6u10eYn2CQ/u1b/9ki+d9W1e/8uP+fil51NzjFBl6uuLMGO6ONbBgL9fASdzHRns\n3F0LwJP/WsgLL70BQGv9LnIKhGdcPXNuv303uc+9ne007d0hj6NLiUobmo1IWkrhGSnefENs8/z5\n55Ivrydd15k+VXim6zZsURX2g8G8Nz70wfP5yS9FM05vXy9BOb8qHk3gc4vfNRXBjnQc1UbUHJg2\nsu8euvPlxONn8oacAurxeOlUWazDaUQ1kpEQc68QVdmSiTWY6apIb7fKXempGJNmiTC/YuYp1MjK\n7R9/8EWlRI5h4JbCFifPv4KgDPXe+tfDrJEhYEconBnxYRg4JB3n5HMvYvb8j4rtzziZvFxp5IpL\nVcifTiWxyx7xFS/8jeJqkTc88YwLlaJ+LBJm3xZB6I6Gu9m3TYTONl0HSVBPhbtY+8yvAHjn3/+f\nvfcOjKM8175/s027WvUuWbKKLVfZcm9gXMDGEDqmBdMhECAkISd+QxKSnEOS9+OFJARCmhMILUAg\nFFNNqMbY2Lh3W3KVZVm9ly0z8/1xPzuSjWWr2GA4c/0jaTXlmdmde+96XY/SbsoxOzRfF7KTw++5\nYRjExsl76HS6LIq2UCjYhdrORFPkKuMmz+DCW38GiIrrTmVEPdEJXPp9Mf7JmbnWAENDXRUNh/YC\nkJiWTeoASReYumYZsI7WZl5d9CsAfE3yxfWb+/6L/NxstmyVvxsam6zWIU3TLKXRI7+IhwyW4990\nzWW0t0vo3tTSzJq1MskU5Y+lUc3FR8fEWe1tgbZWix5Q3sfIiIhBqiJf8cXE8cnHSwH4v/f/lpQU\naRUbOXwYDtW+FuXpXmjwaMjJGcDM08Wwr9i077AvLI/KjZ8o3twvG3Y4b8OGDRv9wNfaE21XvYUn\na98xo4bz2dYDfT5HXxAMtFE4Yiyjp50NgDc6jrZGWevO9StoU+TABYVFjFWeIg4HHarxeW/JJjSH\n8ioMg0w15z1s8hy2fCIUa7u2rMGRIF6K0+1BUwWXnJw85n5TiGXiMwuorJBrT4qLJzFBvL5AeysO\n1T96aM92WpplFPHTN54iQVWoX3noe1Ttl+b0YGs9kV59j9uF4mrG4Yq3KH0dTgf+aIkqwmGdUKt4\nw4bLhcbRQ0xN0yxRucaG2sNC+Ej6QDN0xk4WvfWLvvUzi+3IMEIcUhLI+ePnkqK8TEMPYygPsaG2\nikO7xQvMyCmgSL0foWDQoiN8919/IaZFQunv3nULANXVdTz57Cvs2CnFPXdUFJMmSCFq7sypZGbI\nffdGRVmFO9MwLM/0Xy+9yW03XQFASnIyv37wTwC888EnvPbX/wHg6h89RCQr0NbcQO0hNf/eRbba\nYRrcfotQ2F148XyeeEL4C9566Wk8StsqeUAhZ807H4Dyisoe9YpGEOOPYc4sYbxatvov6Ean3pLH\n273iwVcRX2sjerJRVDQC/alXAAk/u0SJJwFqaKCjlaJJZ5KeKznOqgO7WLXkeUDo+FwqPB07/Rzc\nKmxyeTwcLJEw2dRclhFJjE/gzCtuA2D35pV8+taTcqa4FExlgGJ9XkZMFEMzZNzp1B6UBvPV778s\n+dQ7Z/DOop+gh6X1p7qshFBbo7onToKatMgkxThoaJR9TYeTKEXq4fVlYar2l6zBY60pnbqtm2hU\n7Us5g4bxvQeeA+DTd17gid/8HwCiEzt5YD93tzSNji5EF1a+2tBxRu7R5JlWCO+J9mMqI9HW1ECL\nmvwaPG6m9Tp0tvrU11YRVlIpmblDSFDqDqGgziqVK3XXbeEb54tx/eOiZzjr3Au56a6f4HY6ae+Q\nkPyqKy7lpptvBODd95eydKVMYF15xSWkpUqKpKOliUCb5KW/f+f1VvjvcGjcfafsu6NkF9tXS15z\n1ZIXOf2iqwBobWmgtlKMqLNLG5hDgxHDZb5+zPjxPPtPEbYzDB3DlHu1f88e3KqrIMrVO1PhdruY\nc+ZMAH75wB8JqPfCNA2SE+J6daxTHXY4b8OGDRv9gO2J9gBpmYOPKmg3cuRwXGo40eP2nNREeSgk\nnktW7mDyh4+hskwKExuWvsHpF0iR6f1/P0a5EjQbOWUOkZnOmJg49m2X8FTXNFxqnbl5BbQ2ytjj\nu0//hg6lp+MijM8Uz8HVWsuuT0XAbvfKl/C4xZvxRnkwHfLxaa3ejeYUrzc2MQW3moU3HW5yRwpR\ncFxyhtXwH5+ahU/1daYNHGSxKmGatCmKuOr//hZ1OyRc9nh9FgXdx689iccq+vXc5Y+Ew1EOjTPO\nlZ7TM6+8E48lNqeDKlLVHNyLpjyv3GFjDyPbbmuWwYOKXVuIVoXLoRNmEplgPFC6jfYDcq/Hjcjj\nrfeE6aq5XTzs886Zy+Yt2yjZKfrv2TlZpCvquSuvnM/d10nV/oE9pfziV/cBkJKRTVBJFjfVHiIc\nbldrhrhY6cO99YaruPueXwOwbeX7zLxUQv62liZqq6Xf1BObat2xIYMGkpUhlX2Xy0N8vHiHDfW1\nhHV5P/xxiYwePQqATZu39rrrJC5O3uPp08azZZ9EJ3F+L6kpPSM8/6rANqL9xLBBQmaxYvO+k3qe\nsGqVGTN1LqFgBzs+kmrqxDmXMWCwrOFA6SYKFd+nJ8pHSD379TWHOFC6BRCz4wxJGLpr1VtsXP4f\nAPzJmUS5xFCnJMYT5VHtL65oNDUh40tIJzFN2pc8vhhSsyVXeOHCx0nJkt+jvD6WvSJs+UMnzCBT\n8WzqehizS14skvMIHRFyRyREMrLz2aE00sOBdnZtElXLXds34U/OVHv08KE2TXzqk37Gud9kwpmS\nK25rrKcxKNNLRjgo3HVAc301vngx+DHxyVZuFTRqq8QgVexcy6AiqT4XFI2mrVWMZH15Celuea98\nsblceoVsE5kpf/7Zx1m7bgO33CpqmR63B7f6Yvp01TrOGS2tayUlJbzyoqSKrr3hWtxKaiMpI5d6\nFZ4H2lssSZOikUMpyJf3pmLfTvZuk5xroLWVcEh90WualUPOzcpg5arVDB8+lN888CBNdfIlZaDh\njRej/tvf/5bTpk0B4Jl/Pt9rIxqrjOiZM05jy+OvqOuNJskO523YsGHDRgS2J9pPTJooldVNe6qO\nySLUV0Tmyn2K+DZ3SBEpAwrIVLPUMQkpRPTNAi2NDFEibh6vn/ItnwHw/jMPsEc12DtcXuJUfcGd\nVEB+gTTJDy2eSKVqyj7jklsIqPAxbELJ5tWyQyiA2ynrqSwrUeOE36B81xYOlErovW3lB4ybdSEA\n8SkZVqEI0+ji0XWPSI9pVsEwHMa/AairKucTJcIWFZ9CTz1Qh1Ib8GphcnKkiFJXtp1/PyDFNEMP\n0dooPZQtNeUWLaAnJpmUPLkvhtk5GhoMhTikRmaNUBuTzxa56fbWMG0qLTJucBL1YQmTY1LSuOIy\nuRcNjY0kxMdT39DAuLHF/PxnUhwrLd1NmyIpLi3ZxfBo8WtaUpJ44M/SrD733HlkD5AuCjRIVJLR\n9ZUHCCrOgtgYP3NmybDEc699xL5t8p7V1Rw8TMJaU57+R8tWsGbFh1x/3dUc2rcVA0VMbjj48b0i\nPjlr5hnWfl6vt9cV00jqZ9rUSTz0V3n/PK4UBgzIPNZuXznYRrSfOHP2TAAWPfVqZ27vBLKMhgIy\n/TJylNDRpWbmkpZdQEAx7+uhIKYprSu+aD+DiqcBcHD3Vhb/Xkg0aD2E5pQHOysrhyFjZc596KTZ\npOaJHIfLCPBx7WMAbF/zMWv+IxX/9pp9xEZLvtPt8Vh5tPgoDzs3fQj8iPce+x88Kvz3RftZ/YYY\nlJKNyxk2QSZ8sgePsKZrjHCYo4n6maaJU/GIZhcW41I0g23NTZRsk+4CV1R0tw+zSSczocsIEovc\nI58zSNs+oc9r2xu2mvg1NNzqPUtK6Jx8MvVa6sq2WttEJnUaaitpKJdcZu7QseQOl3vXUNdCcoys\ne1x2OlU+GWwwvYmEunCBgqQsGhsb+ca5cwG4/4Hf06g4QesP7CGkyZfXvrpWmpS0yL9efJm77hDG\neJfLadHJJaQNoPbgXgD8PgfjRotA3jOvfmgpM9RWlFlz+2jgiOSGw414HPI5dcemEq2GIuprK0lP\nT/3cvc3Py7WmkXqL+Lg4slIkhHc7DEaPKurTcU5V2OG8DRs2bPQDX2tPNKJrcyL2TR8gfZmV5TsP\nez0rKwOAxDgvfr8k0hsa6jlRo5+6oqQbUCBeRkp2HsGO9sN6F0MB8SiKZ5xPdIzMI7/19//BpTR3\nnMn5eBqkaHTOtT9g5GlC4tze2k7tQSmI7Vj9IcvfeAYAvyPAlCkyMnr2LRczfox4DhkZqQQCkjuI\n8rhpbROv6d57vkeMX7E1ORxs3ylpgc9Wr+WTJz8CIL5gPGNmSUGncPQUazTSOIJiLXLfE1LSyRiQ\nB0BNVQUOj9L1OcILjRQ79FAQl8Mk2in3JdnZhM+ljq1pmKYc19Sd1iHCuo7mUD2XRpc5eocTPdAp\nMBdWOvKtTQ0EmsXLnnP1d2ltimgFOXCicirBVorHCrt7TGI6baq/s2vnhol4uAD+aB9h9V621FRC\nspyrpjVoyXcv/+RT7rhNWPRdXaSNNYeTuBT5/LXUVpCUJF0LifFxtCvy6Ma66k6aQAOikDV7zDZS\nC4UroHD6VZi1wrBVW1lGbY0qMhmGJXI3e/YZxMR035d7LMTHx1pe8o6SXZ/TaIqgO66KUx1fcyPq\nPP5GJ2jfqRNHs3m3VG5PFAOfYZj4lEBb5kD5gEXHxdLSeLiCZKBdQrdZl91C1QGhWGs8sI22gDyc\n8676ERs+EmmOoRNmEmyXB75850aWvix5t7Xvv8y8syX0vum6KxhfLDnXjkDQMpyHKqutsL26poOy\ngxVkF46ira3DIshIS01l9GgxutNPn0KLUqN8663/8NkLDwJQf+gKis+Q3G2U13dYaB+5b5rmICZe\nZrgPVVUfFjJFDGco0I5HhaoDsnPRWqpxtMqXgt+jEwqJQQoGgmguyQtGx6fhUjyqUTFJhEJy78xQ\nJ5VcoL2FaG+qda5Io3i4rZkBhXJtqTn5tDdH6OGcoBr4Y2L8RPkldG1vb++27S2iIz+kcBA7SiTP\nGmO244+S66loaLPUOHft2ttNZdzErZjwvTEJVkfF4EG5NCuKwIbaShyqdcsMdxCJ7OMGjGPI6fMB\nOO28a3jh4XvkGkNBdu2SlEU4HLZC+MmTJhz1OqDT+MHRDWB0dDRnzxGD3fE1U/oEO5y3YcOGjX7h\na+2JGpGy9Rew7zfOOZvHnnm1z+c7GvRwkAHZeQAkq4psKPB5jyTi7YQCOrs3Sz+lFm4nbYj0+BWf\n/g3am8UzMfQwB0o2AfDCQwupU4WSW2++lu/cKrPUTqeD+gZpKhcPSM7p9/s5cFCYgp7912L+/do7\nHLxwPnct/CUozfPrbriRREXT98qbr5KfIemFW25awMGDIs72+FPPsbpV1jP5vOtxRkLULi783m1r\n2blVmtad/gSruBPuaMelhu2zc/IYono1J8+dz85V77Dsuf8HQGt7CH+SVIGTUvJJzB4KQPqgYryq\nWT8zbygtiuGotbnRKths+vgNktKkGq45NEtOevfG5cy7Tsik21tbrO1NE6sPVQu2UFMn9y45KR5d\n76YIpq4nJSWFV954T67HB36veH7l9W3WvHl9fX23PZqR9IcvJp4oJeA3ICuLQ2FZUEtjveXdez1u\nCkaJ/PWwiWcS7BBPOtBWR0KK3KsywGUVok5cu0mWqsgX5OedsGOeKvhaG9F+fQh6ue+oUSMoyJX8\nVOXGnrGAHw96KEhqpjTSJym2eF0Pdbu9y+OkfIcwlDc31jHrW0J6YZomIZVbrT20n1f+/HMAqg/s\nYuH3pd3npmsvo6FRHv5AQLceWofTSbQSrauqqeeZF94E4OPla0lRfKLJyQnUVklYXDx6JNddfbmc\na88Oyle9C8Bf9u3lxm9Lhfn++37MH/4ic/obP36Ncar5HdOgQU3X/Oe5P6K7FGVaOEC0ouxLzBjA\noOHSVjZp9kXkj56o1iltXft2SIO+L2MUE86TufKRU88mMS0lcgprukgPB0lVeVeHw2F9GbXUHqSp\nVgx+OBRk53qZOkrPLcSpwlujS1hqGqYl7Ldjz6eUVYvEyU03XEN9g0zqHPlxcqsuhJ0lpRw8KNc8\nPi2K5g5JQbQHe9fhoTmd+HySa8wpKMQMSiqkpvIAXiWiN3DwGAaPmabul2alVAYVF7F+qQwXuLxx\nvWqq7xrKHwuR3Gp3+dCvMuxw3oYNGzb6ga+3J3oS0N0cPcCCK2S079P1v7aYifoGcVv0YLsVxidm\nSHh5NE804uXo4TDVeyVU14liQIH0MTqcTsJBKZy8++wj7N4kTfjXX3s51y+4BID6hsbDqM48yvOL\nT0yhokZC7yUfrmT4KDnmVVdfQTAgx7z5xmt5UlGp5RfkElIsQw0H93FOsYT2y3dU8PfHpeH6u9/9\nNt+742YA/r+HH6O5Xpq6ff44Pvz3IgB2blxFRr6E4E4NMjJlpPHi2+8la5DMcxu6SZvqpTRNk4FD\nB1M4/kwAhkw8m7Gq6d8T5aOt6fBi3NEQ8UST0geyZYVIMRuhMDtXfwjA5Xc/SCjQcZQ9TZxKAK6x\nw6SkVFIkbW3tuBS332Ga7aaJS3UnNLW0YQak+OZzaZTXi0cf1g2L4js+Pq57XgaL/N4kPlmKYUUT\nMmjcGUnHGHjUaKgL0/LUh0+cRXKGRE5tLRClvFiX29OjvpKeeqAROFWh1ufz9Wq/rwJsI3oCcfFF\nwr346wf/wIG61j4fJ5Ivi/L6SFa5OX+ckiTRnITNEE6Vt3K63LgVrVxdVRWBRglDk3OGWeqamsNh\nzaiv+/BVpk+XkO6u266jSRkXwzBwqAfVGxtvNca3tgdY9ok0qhcOzuOySy4CIBQOWbmzX973U2IU\nEYau66zfIiQoqX6Xxa2ZPyCNPzwlqYAZc89mxtRxANx67XyWlkvbUEtjiAY1mz73itsoUGz8DVXl\nlG5YDsDAYaNobRBD01WuQtM0QkEItInxcEdFWfnVcOjoIm6fv+/yM2VAHlUHpGJuYlhhr8PpwjjK\nsRwatERy1dGplO2TDoGPli7jnHlz5BoaG9U5TBLi49i4VVqKmjp03EH5rERpXhpU50R7UKc9KKH9\nuHFDrHD4KKtW1w9RsRK2h1r8NFRtsbZwq3l5T3Q8ulM6E8K6TtcBsgRFQOJ0eayuhhPJ6ZiaKumU\nqap17usEO5y3YcOGjX6gR57ozp07uf3227n++utZsGABFRUVLFy4EF3XSU1N5YEHHsDj8bB48WKe\neOIJHA4Hl19+OZdddtnJXv+Xgu6agv1+CYFvWHAZv/y9jFBaeka9QGTGPCk1k6R0CYfLSvbBsFxq\nK8tIzymgtUk8m7qqXQSUHtLuTSsJtopXN2DIVKvJ2tDD7N8hle6EhAR+oIh8XU6nxfjucDiISZRw\n0B+fRLS6lk9Xrqa6RirYN1x/NU2qN9JQbOuJCQmE9TA33CAUbm+8voR12yUULvI7SVAs5ku2VeFQ\ns9T/ePJZzlKEvdkF0Qz3yPWuKQtz/i0yt52RW4jXLx/Pfdt3sGuTeMN7Nm8iQ2k1Hc0rNNS8fHxK\nBv5YGX5oazl+KC8QzysuKd3qUa05uIdR088BoKOl+agFR4cDalvkPg7OG05htnhdD//298QrHaMp\nir0+MSGBzbv289ijD8sZm2vpqBEmqdW7YthySLzS9HgfmbFy/TOnT7Ua77uHgzbkessaQtQfEm/Y\n4/aQrdI6I2ZdSkOVMEAJW37n3qlJsq9uuoiPj2hT9T4ldbxnI/Kzu/2+ijiuEW1ra+O+++5j6tSp\n1msPP/ww3/zmWEHZswAAIABJREFUNznnnHP47W9/y4svvshFF13Eo48+yosvvojb7Wb+/PnMmTOH\nhITjC7593XDj9Qv4q8r/VTb3LJTsikhuMj4xhaYa0Yvfu20NnP8TmuuqSM4cyLJXxUgf2Pgh4Q4J\nYWuqKqFD8pcDCoZLSAtsXfkue7askbVdcylDC/MAaGtvt4xCbGIa/kQxHFLNF6OQkpLCGNU873a5\n6OjozAlG8nTt7R0MyJQWlkAwRFmpTHVNzjMtZcfSyiYMFfh8tmoNB8olbC/IzycjQULY2BYfLqWa\nGQoFCTXI6/74JIZPPsu6lpyhkhM9epiuFAD0ML1QszgMpmkwcY44ANtWfUC2UjLtrmNDA1o6VDU9\nI5WR4yRk/ezdd/j46UcB2Lv1NL557XX8bdHfKd+5mcQqyV172qqJVVSDhumnMF1xcBam8ske+UI8\n//xzOtuOjshYWvlwAypaZRuHw7AE+JLTsxh/jrSuJaRlU1Eq543vkpt0uiT/DtDS0kp2tuThuzOi\nX2WDdzJwXCPq8XhYtGgRixYtsl5buXIl//3f/w3ArFmzeOyxx8jPz2fUqFHEqm//cePGsXbtWmbP\nnn2Sln7qIjk5ibtuux6Ae//fHzF6W2RST39cUprlgenKbUjLKWTNO/9i+ct/BsATqCTaFxnriyas\nnuWYxDSrWLDitSdJViOBV17yDdraI4ZQw6tGVf2JyZ2tLaZpeaiDBuVTUJAHQHM3Hp2maQRVX+3g\nIYNZ+8mHAHQ0Q4sa19xf20ZY9T2GgkFKSyXnODAnm9Q4+RiGw7rFJ9oVPn88GQOFhWnt+y9bo6Ki\nl3T0MdD+5vNGTBGjvfz1J3u0fUQnam9VgIFDxeGYfc5cWjaKZEd7qAauvY4D7z3PoJRocovy5PWO\nDFxKkyo62k9avNyv/2zYy6iZ4gEPyMk+rvRMQzvsFpuLE50oVRjMHzmZ+AwpyoU62oiKltFNl8dt\nHbO9pZ0WRTadmpZsETT3B8cqwB653VcdmtnDprBHHnmExMREFixYwNSpU1mxYgUA+/fvZ+HChVx9\n9dVs2rSJH//4xwA89NBDZGZmcsUVV5y81duwYcPGl4x+V+e7s8G9ZcE+Gejrt1xVRWmP9+3u27ap\nSXKH51+8gHWlZb06vxEWLzAzI4v2JiGDKDrtXN7+x//wvd+9xcf//BWHdgtVm8/rsELmFj2K9hbx\nKG7+zdskKBb6391xDqdPkpD8f37y3U6hM6eLZNVs7nK5j/qeaZpmhe1HU3tMiI+nobHRYmc/UFHF\nn355LwCnJXWAkg2596V1VDWLB2zqOv9noTC733LzdRZPwWvbHbQEI7ronXA4XTTXVcnxSzcyuFio\n/Fzuw9ccHRvDkqce5tnf3sWtv3yWyfNErK2jrac50S7Xrarh9ZVlJKZJXronn+mQDsOyxZvUDn3G\nkr//DoDJsW1c/sirlDx8B81BnfZQp9a8W3mifrfG4k+lUb88ZhDfvecnAKSmJh/9vVHnA/hkv4N9\njUqzPtDMls+E+KW+sYncIpFoaaw+yI7lbwBQNGkGU+ZdyrXF8ODrB9jw5l8BMJrK+dm9PwJg6NDC\no15jX56rrs/J8fb/X0FAEh0dTUdHB16vl8rKStLS0khLS6NGFSAAqqqqGDNmzAlb6KmK7hLpEX2Z\nn/3kbuZfewcAujOK47M7aVYPYW3Ffouwoa1FjPKG9/5JQ9lGkrOluBIVl0rtHplS0o1262GLTUql\ndKNEC6FgB6dNET5SMaBionyx8ZYi6JFsShGYptkj4xFhF9pfXkGKT35P9HtZuU9ytIGwboW8hga1\ntfXW8SMGM9oDLUeZtjX0MP54ad8pHDvdimmPXJceNolTOk7+uCTRTeojIixZKVn5hHsxAuxyQGmF\nmt7KHsP8b38fgMVPPsblwKL3NzM+N5HcVNFncmgOtu2X52b9wRYSRkoq4JpLLyctMmV1xHVG7qND\ng81V8kdZo4ZbZY2CaJacSHSck+p9kqPet3mFdV2aqUUkuGhuqLImtObNnEJGZnqPr7en+DqE7d2h\nTy1O06ZNY8mSJQC88847TJ8+neLiYjZt2kRTUxOtra2sXbuWCRO6Z36xYcOGja8DjuuJbt68mfvv\nv5/y8nJcLhdLlizhwQcf5Ec/+hHPP/88WVlZXHTRRbjdbn7wgx9w0003oWkad9xxh1Vk+t+MmTNO\n59s3XAnAo0+82IOWJxNThc+6KwqnV96isi1SoKgrXUHIcDLqTFGsHD71XHZvENG6NW8/RdUemUgx\nDYOWhmp1SJP0lGTrDE5FjRYTn3RMDxTA7XZbnnF7R0e3kzNRyqPdvHUnSW5pM0qN81NaKamMQEi3\nODRNE3y+qKNdeqej/rnTyAtOl9sSvDvSqzcN0yqUebzRJySl1BsvFKRaHiEO2XIwxPiBwi165R3f\nA2D8/Jup3r+b8hZpUQsGQqQOEdrBKbMGMXGKhN7pqcmEgnLurtfhckDk8jcc0thS2fl5smRMAu1W\nWqepvp76g1LEyx4+ET0oXnJUdLR1j4NNVRxS8/v5BZcTH3f0wtLX2ZvsD45rRIuKinjqqac+9/rj\njz/+udfmzZvHvHnzTszKvmLorhrpdDq583YZcVy2fCXrSw+o/3RPcBIJcE3NgdspRs7RKr2ETfXV\nFM25ifFzxDAnpmWQWSC5q4Olm6jeu1kdxMSlJB9wONi1T847qmgoHlW1d7jch5E7d0VERbKsrJzG\nJnkgJ04YR5P6vasxdTgcdKgpl43r1nGaSx7UGF8ie2okHxkIGxjKGATDYQYOzLb2jSDRB5Ut3d0d\nFcIb3RtGh8thSS53tDZ3kWs5MdA0hzUFFuxo6/YLRaU4CYRNPtsnbVijsgcBcNaF82mqO0RtvVxo\nMKSTkSEpiAEZqZYmVTAQsMJ2l6PzmAebYEeN/LG/USPCU+LUOt8TPRyiUoXwbR0B0lWfaFpBEYd2\nfKZWaaI4UKjYt5vsdGHbKhw8qE/35n8z7IklGzZs2OgH7Nn5LwBZmUL08H/v+ynnXy7TQmGX1/IC\nZUKpq1cjv7s1nXineHUeJX6n+TMZOuUcEtLkmO2tLfj80vuXWTiGrcteAiQEzB8pNHFGOMTST4Rn\n9JLz5+CNFk+0Oy8UpFoPcLC8gldffwuAlORkBg/KA6Chsclqxo6LjeWfz74AwIH1n7ApXdYTNF3s\nr5UJnLqmDkbkJKqri2LaVAlbnU6n1T/aGuofe6Gh66C8T83p5ERJtEQ82nCwg5J1klYZNmEW4fCx\nQ32XA8LqFm8sC3B6vpt3dxrkJmUwcKBcaFqMiUO9t6FQm/VAuj3Q0C7b1LRJ4QigugUaOzpvkvMo\n98sEQkoF1OtPIrNQCryN1QesVE5SxkBam8KAiwN7dnLuNBkQyMsb2MO7YiMC24ieQBxPI+a0aZN5\n+H7h8rz97p9YjdOZ2QUYatRT0zR0lafsqCvDaJPKbaNL8lQhT6Iw7XQJa8PqSY2JT8apODhrDu5l\nkGoFGjPrAjYuE/KP1tY2EjOO/7ZH1jAwLwdXWFqTfvqjH3PzdyW3d+bpk6moqSc2Bh7649/Y9KZM\naE2Kb8VUecT95UEuGith+8CkGDITpGK85AAkJSVa54rYgba+c2jjdLmoPbjPmtJKysjBCB9fovn4\n0Kz35tD+EkuTyuF0Qg8OHzFykXerstmkoU2nRDq28LpMK2w/MjAM6vKPQFi+YEDyoZHtu/u+MXWd\n2FSZIEvJH2vlVDtaGnGoSaa4pExqyg/C+IGkxbqZO1fYr+wppd7DDudt2LBhox+wPdGTgGONvJ0z\nT8YJxz35AuMvEKb3xPQcq8EesITFGqvL2bFSWslWvPcaAM0Ntejhw8N/U5FuJKQNwOURb6+lsc7q\nk5x3zX9xYKfMTP/71bf54T0yC36sYDcy9pmTk82kaUKd99Y//kDJy38BYNm/HsONwU8eXkR0yYdc\nVCTFEfQ4SxLDFeXD65X1pMX5eHOVFDsu/eZduBVDvGmaBJRH19ihHaPcdmw4XR4O7t6KU6Uh0rIH\nqfvUP2iaRlCpAqxa8hwzL/kWAOFw9woDRz2O+hkJ8RvU5K1pdn/Fkf9oWmea42jh+5F76OEQYUWj\n541LwFQctIG2ZuKUYmdKZhLvv/AGXHAN0yeNYPjwYb26HhudsI3oSUB3BlTXdT5W3Jyjz7ySEZOE\nV8AwjM5Kcpfm9pSsXAYo8otRs0SZ8YIbFxKflIre5SGOPNC5w0YR5ZV8Z/muzQybJAbbH5/M/Lvu\nB+CNP9/DZVdKSJo/aNBRp5AOW3M4zOTppwGwb9tmWkqF13NaQQbtalxmaJKHKFXND+md8g8OTcOj\nSIlLDlRTnSBdBEVjxlptU6ZpUtaoco4GXULb3sHpdBAOBnBECIjdHgK9NHRdEZlYcmgO9myWinZ9\nZZlFFB1RWO3TsTWwguYTJ2NkwaRzuszUdZxO+cIKtjbjihUjum/HdjZ99BJwDUMG59thfD9gh/M2\nbNiw0Q/YnugXiIaGRp579X0Azrr1V+iKcqmptpJq1RDt88eRkpUvv8fEWx5qTqHQv00861I0zXF4\nE7jyXJ1uD+mDxHOtLd+NrqjiDN1HZr6Ea+d/+9c0hdyH7XcshEIhMpJl5HLGBRfx2O9E+sJXXsOs\nYukpdDmdliQIdPYrRrmd7Dsks/8fVbu5/u5vA5CQEG9526YJ26pl+754oZHUR31VBaFwkBRFpdef\nkU9N02hT6qil6z9h9bvS8TC4+HTMPtLrfeHQOocTag6UAEokTt3jHauXMXGSdG8MHlzwpSzx6wLb\niH6B2LOvjIR8mWEPdgRY+/4rALQ01pI3QkZkG6oOsvmTtwEwMZk4V1iwIqqULrdH2b7PG0A9qFMw\ndiYAK15dZJE7o3W2M6XnD6fWJQbYpZkEe9AFFFT50RFDC/n+z4UC8elFi/jDkuX86XvQ2NxKWoKE\niYZpUtMkoe7ibYcIpg8B4Lrvf5tC9bAahmHl9laWO2jtR1XepTrGy0o24HK5yRsusiOhYO95XCMW\nJhQM8uLv7wEgd+wZeONk2mvYxJndtzUdj6vui4b68g0FOwg2ywBC7b5teAbLl3F67hDSdbl3OTnZ\nX84avyaww3kbNmzY6AdsT/QE4lgFJYADByrIHBRR4HRRNO1sQIor0THC6lO+ews1y4TNPhAM8vbT\nQqU2dvq5MPEcXO4owqHAUR2eUCjI8IlSrFry5AOW6Jtf6Y6DeKRVigF93SGT4kzxUMPHiH67zm5n\nKYaf79+zkK2bRQytNHUyb22TcVO3ZpIzWJq7L/qv08jJzQUgNjbWKnZomJQ1iee2u67vlRXN4SDY\nIV5vR2szHm80zsgsYx88wkj6Y/Gf/5shp10AgMfnJ9wu3ARZBSMOT6NEKALDIUKK8d8d5cWpaAG/\naDrISBolFAxaha+68l2seftpAMZMP48JirF/x5ql5OQLUXd3Inh2UalnsI3oFwhd1wkFhNpOczgt\n5nmH02nl4A7uKyF1sOjxpA0cQiggD8PGle8B57DslceZOPcya4a7a+7PNHTilErnkHEz2bNFqsrp\nucOssBdMa4pma6UGpjxAI9M7JXq7e/RN07SMk8ftYdRoyb9ecc03Cat2Io1OghOPx4NDxe2m0Ul5\nV96k8en+zop8X+GJ8rF+qbR+NVQf5IyLbyEYaAeOruNzLLjcbj544U8AJBeMxp8oLVsNlXvJzJOU\nBN3M4rs8HnZvlomwsh3rOe386wGhGtT70SHQaygj6nJ7qNov7WTtDZXMXSADEmNnnkd7i5pkaitj\n0oTzvri1fY1hh/M2bNiw0Q/YnugJRHdjn5EevLFjilj8t/8AkDdiAnqok+rMjOgGAR5vJ8uSR5OC\nzdBp4jVUVh5k7UevMfaMbwDgivIeNgMfVgWVGZd+i1f/9DMAJpw1v0tze+e6QgZsqhTvpbLVycQB\nSiDPa3IMsiQg0tuqdOqjoiDq89R2pmla46kuB2yuku/szYc62Yf6gkhDffWBPZbSaeHY6Thd7h5r\nzB95rNXvvkSbop7LLRxkDTAc3LGOed9UpNpHHlvdTMOAwaNlIEFD452nfwPAsImzhURaNu7VunqM\nSD1LNyxF1w+e+wMtNUJB+I1rv0fuMKHjc3s8bFgrRcsx2XEMHJhzctb0vwxfayOaltP3nE5/9u0O\n8fHx+ILC8ek4cvREhYq6bhBWD7MGGGanjATA0KnnsGvtB7z/okwOTT3nSuKSZU5aFC7FOqXnDGKo\nauYvK9nY+ZAfkf+KGMuKZni7RP6XHWsyKFn+kRFrYnUvaUfvDf+cWFzn5hZZxmflDqpbI9sf7e70\nDJrDQXursPyXrl+GSxnv3GFjCbS39vpYrY2i7rbuo9cYOeNS9Q+tc+4+1EFiuhgbvTtuUdO0bsyg\nMdPIHSEdAjvWfMQbf/8VAIPHnAbTzyUcDODsImsi8ivdBISRNjBEgbTzNTlZa2MdO9ZJvrauYh+R\nwDImMZV8JQlSMGqSNblVvms7/lZppbv81pu6pfKzc6G9gx3O27Bhw0Y/8LX2RKvK+i541Z99u0OM\n38eoQeI1lu/aSlq2fOPr4ZBVEIpLSKZsnWgjZRSMxDSk6hvxIPVwkMKJc9iy9FUAPnn9aU47b4Hs\nm5xhMdWHwyFmXCxk0P+8/y5Ss6RHMyEt66hr6yp6tqdBY0+DeCn+KMiMUWOoPpNEVbPxe0zrGzis\nQyQ6bwlo1LTKvnvqNeqljtb/YDbirRkmJWvF+2qur+bMq74DYFXpewPTMIiOlQr13AXfZa8qxJXt\n2URYhfPjz7rEYnHq2UE7ybBHTZvH0PEzAdi7dTUAH7/ydwIdbSQolqWkjIHWexOTmGx5pZpDo+bA\nXgA6WhupOiBDDpVlu/CqgqQ/Polh42cBMGXeVVTs3Q7A+g8Wc/qFNwDSLxtJFR3atpyLzpDQPq4b\n9nobvcfX2oh+WeiOgCQqKopzz5YP/b1/XEyWYhzXwyErvPP6/HjU/Hdt+S7aGoQKLyZZ+EPDoSDB\njjaGTTsXgK3LXmP5m88AMO3cBcQliTE2DN1qx7nkzl/x7j9/D8DU8661HuDumva7ojUAJQExiiWm\n9rmt75wBz23qnLs+jBX1BM2FOxwOgkqwb/tnH9BUWwnAmVd9x6p+97WdKJL+yB5URLZqRO+6bMnr\n9q2FwDAMqyuicIzwD8y+8k6cThf1VaI00FxfS+nGTwDoaGmyvixNs1N0LzF1AEPHzwBg8rxvYnZ5\nFywawZZGDu3dAUDO0GJckRw4sEN96QxJMjhz9sxjrtkO5XsPO5y3YcOGjX7A9kS/YCQkSFN9pqeZ\n5jopMvn8sVbImJiWhc/nA6Du4G7iU2Ukr7ZM5p83f/BvDCNMTJJ4pvljplOySir+K958hqnfuAaA\n2MQUy4NyeaKYfdVdALz/7MNMOTcS/qd3NoYfw9vSuvxyNOeyr8xLx4KEteJxtTTUsH216Kg31hxi\n7jV3A8I0f6Ia2rv2wJ6MOrrFFWAYhI2gFTHEJWWQXVikttKO3Emtx+zSCXB4W0PEc22urbQ80Qtv\n+ynBDolCKnZvQy9fA8BN93632/XZHmjfYRvRk4Tu2p0SEyUHd8E5s3jszZcBmH7pt6xWncSMHNKz\nJUe2p3SHJTKWkiM0cuPOuQan20P1Psl/bVv2GnEqPD+wr5SlLy0CYOb8b+GPl5lv0zCI8ophnnXF\nnbz1hNDiFU2bR06hNMz7/HFdSEG+HJYNTXN0KlZ2tFFTIZR9G5YuJn2gUNCdd8sPaW1s+VLWdyLR\nafxNzD62e2maRofqVNi9eRVDxp8BQDhk0NIgxC/VWz/g5isk9RMd3fshBBvHhx3O27Bhw0Y/YHui\nXxKGDx9K8hIpKLQ3N1lN3wBpyhOt2L+LeqXpE582AJAilB4OkZCRB8CEgUNpUkWKcDDAxuXSTB2X\nlMakeSKrHOX1W96l1x/Dxbf/EoBlr/yNqv2SJhg2YRaxSamyTXSstb2hG5yMADficWqOTkG5jtZW\nWhslxbF/5wYOlAgb//SLbrZYrFobmk9cxeorDtM0qSqTqn1LQx2zLxdPtKaiku1LXwTgijljGDOm\n+JjHsUP5/sE2oicZ3VXqU5KTOG/OVACeW/oak8+9GoD2lhYGqCpx9YHd7N4pJB+xqgVKczgwDQNT\n5cZCHW1EJ6QAMGL6BQwcOQWQqn3syvcAGDl1rtV2I7lPMUIzLr2NMjXlsmrJc+QqGrkBg4usVpvY\nxFSrwmyaRmejvGlaVeIjG/i7orOhWzusuTvSktRcX21dS8We7ZSXCpFJ4bgzmHKufAkEWts7G+lt\nA2rdx7amekpUZf+086+lfLc00pcuf42xufJ+H6safywZGxs9hx3O27Bhw0Y/YHuiXyKKRgrbfMx/\nVtBcJ+OHUdHRVn/n0AkzaayX8LZs60pAeg0j3mgEkd9DHe14FaXe1ItvY8N7ogWvh0KMO/Ni2VjT\nrEpvOBQgZ6iEejlDi9m5VjTVV771LNFxImlcMHIiUdGxch7TxOlSDE1RPpyeKCCajtamo1+g5iCk\nKNlCocBhTetNqjNh/7Y1Ij8MZA0ayQW33ivbB4O0NzdHDnScO9k7WB5xL73avvaLnmhEilKlG5YT\nFSXFovqybVRt/RCABRfMZubMM455DDuEP3GwjegXgO4q9SnJUj0/d/YknnzznwDMuvpOWpuk+uyL\niWfYOCGwWPGW6Lof2L6G7GHjLVmMI6dpIg96R2sTI04TkpJVi/9GgpLNGDz2tMP26eTH1KyG7mET\nZ1J9QELDPZtX0aia2z1eL063qHdGx8Th9cfD3DkW8cWR0DQnLfUisB4KdlghvGHopGaLtMgZl3wL\nr19IVnQ9THtr18p774ycpjksbkyny31YmsHKwWqdrPeBjpZO8oBjnErythAdk4jDGREU7LzX4XAI\nQ49Q3p3cdIPD4aBSTdNtX/oixeNE4mNcWhsX3vyLk3puG0eHHc7bsGHDRj/QI090586d3H777Vx/\n/fUsWLCAiooK7rnnHsLhMC6XiwceeIDU1FRGjhzJuHHjrP3+8Y9/dCvFaqMTkyaOY+mKdQBUlu0j\nJWMgAO2tzQwYPByAsdPFqww1VVG29TOrf9Tnj+8y+nh4uBlh1J90wS2s+eBF9VqIEZNFSjmk9NQF\n5mF/JynmotTsQZ3M5xoE2mX8su7Qfqu3NdI4fiRMwyBDERonpmbh6NKBEPGGw8Fg79mXuoiwRVIB\nJibB9laaG+qAfKrLSwkqtnnTAF0xY2FqtLdImqCtqakzRO/OgTQhFJZr9sZG442Ot/7hi5E0R3Jm\nLn6V/uiPQN6xELnmQHsrG5c8AcB///i7nHHGab06jh3Gn3gc14i2tbVx3333MXXqVOu1hx56iMsv\nv5xzzz2XZ555hscff5yFCxcSExPDU089dVIX/FVGd9XQmJgYLjpXaOse+sfTTLpUSDW8/lhaGyXf\nWFAs1GZnXHgjaz9cTMV2IbTwxqWQpNRBvf44yzjJwyyhqm6EGTJ1HgCfLnmWuBQxejmFxd0Sd0RE\n7vQj0gWRhzklK9eq4GcVjDjqMTRNsyRBQsEA9Ek87nMHtdZUe2g/zbWSLtCDBh0tLTRUVcL5N7Ph\nnXdpbWgEwAxBu0qRGCETt0cGD2LjMnE4Io/A0du4TKChfi8Aa1Y9RVubEvlzuUlIk5awMy65hnNv\nkCmqtuaTMwgQSSls/vg1brlS3kvbgJ4aOG447/F4WLRoEWlpadZrP//5zzn7bNEHSkxMpKGh4eSt\n0IYNGzZOYWhmD4ePH3nkERITE1mwYIH1mq7rXHfdddxxxx1MnTqVsWPHMnv2bMrLyzn77LO54YYb\nTtrCbdiwYeNUQJ+r87qus3DhQqZMmWKF+gsXLuSCCy5A0zQWLFjAhAkTGDVq1AlbbG/R1/ClqqL0\npIc+x2py/vjj5QA8/sJ/yJsirUlZg0Zy82Qnf1keQA+H8KmKtqHrbPlUCEgq9pWAS5qsQ6GQxUif\nlJWHP14a8h0uF43VMuG097N3mXWpcI5mDS7qEtr3vMJ8+xkx/HHpFzfL7o7yUrJe+FbXL36PwkES\n2upmAMPQMUydv/1xDjfdtoQTNWkVSVuYpsH6ddJFsWPrSmKUiuqMyy5n3nXfB6D9GOF8b+9VRIyw\n+sAu9i+VNNmfHrqvW3XOCHrz2f0iPuu9xVdtAKDP1fl77rmH3Nxc7rzzTuu1q666Cr/fT3R0NFOm\nTGHnzp0nZJE2bNiwcaqiT57o4sWLcbvd3HXXXdZru3fv5tFHH+XBBx9E13XWrl3LvHnzTthCv244\n1sjd9Omih5SYmMDTL7wBwJq927l58uWYpkFUdExnP6WmMXKq5KeLps2jvFTmzfdvX0djvTD5NB3a\nQ1OlCJcFwyGSM/MAyBg+ic8+EIb82cnpxKjx0VBH+6k7XmmauBVptTvaQ1iXCnzkZ5cNT+ApIzpX\nTgoL5wBQtm89TrcUe2ITkzhxxFeybrfHR5Pqsd2z7Dl+cve3gO414gFSMwrUOu3OxS8SxzWimzdv\n5v7776e8vByXy8WSJUuora0lKiqKa64R7spBgwbxi1/8goyMDObPn4/D4WD27NmMVrrkNvqGoqIR\n3DdUKPCeeEqa7de+voj8ieeQniuvhwKBw1qE0nOFMi57yCg6WuX1Azs3Ul99EIDmxjoCjdI8Hw6F\nqa2qAOCNx+7n7Gt+AAinafAUnVU3TROPTxr+o2K8BAOSgnC4nf1TwOsRDKL9MiAxZMgsDjVsBKCg\naCrh4InQlzdxqwmk5voq9i57DoC7v3Ul+Xm5x9yzYNjkE3B+G33BcY1oUVFRj9uWfvjDH/Z7QTZs\n2LDxVYI99vklortx0K5wK+b5m2+8FoDrL5jC2x+8w6ebVwJQPONCfH5p+g60t1ljnOFQ0Bp7zCua\nxCDVlB4OBqjcL7nqqgO7SUqU4sjBXVvY/MlbAIyYcibJmfnqmC3dSut+GTB0nTilNxWfmkr9zj0A\npA0Yhq4JObOAAAAgAElEQVSfCG+we5imidMpxZ6MrNEQIymVjLxCAq29F8rrelyAKG80zUpTa+8n\nz/OtKyVNM2LEsG73zciWyCM6JqHP57fRP9hG9BRA1+ro8SqT06ZOonh0ES+/+joAS197lMQhkkMd\nOq6TdCLQ3tpJTBJox5rs1jTSc+WhzBo0yorW25ob2LVJDPO2Ve8zfKI0/6cMyKdDTSadCsbUMAxi\nVKdBbEoy+9cJH2qGVoTOyTWicn6ZSHJ53GQPUcJ2Du0w8bjewDRNomPlS7Cptpo9H0sIf9PlZzJq\n1Mhj7puWOdia2LLx5cHOQNuwYcNGP2B7oqcYekKU6/dHs+CblwMwqmgTS5evBWDlS+tJGTwJgEHF\nU6xuz2AgcJi0cDgk45eRnwDuKB9DFWNU6aZP2bpKETpPmUNqdh4ghNFfPkxrBDIq1osrWq7S+AJo\n6jRNE+YnoKWtnPHzJNwOdfTeA46E8DEJsezeJO9f9eZ3rZHO4tHd91efan2d/9thG9FTECnpko+s\nqdxz3G2LR4+yHrj1GzazfJXQ0q1/bR2GXwTsBhdPI1GN7ephCIdC6veg9TDr4RAOZZwKiibjUG0y\na95/iYKRUvktHHcaAcUP+mVya+phmZ1PSM8kLk2q5Y315cQlZmAY4WPt2k9oGIYiMvG1MbBwDIB1\nT3oK0zSJiZcQfu+WDexZKiH89799NWPHHLujxTagpx7scN6GDRs2+gHbEz2FkT90EpoSdd+9beVx\ntx9TXETxaClGbNtRwrr1ole0deWz7NPUmKgvlcx8oddLzy3EqdjpDF2kdgGcTodF0Bwdl8i+LcIY\nFehoY+TkM2V70yAUOLLB/YtBJDWRmjWIuExZ294VO0hOKyAQaDzh54sU1ELBDqprRfNq8uXnYei9\np70zTZPYpFj2b98KQEfJe9zz/ZsAES/sDsfzQI+lc2Xj5MI2ol8RJCZnU197gOHjzmTb2ve63S7y\nwI8YNoQRw4TLs66unreXvAvAvb96AF+yhPkJCUkkKFq8xJRM0nNk4kXXdYs5H02jsfYQALs+e4fS\ndSIhcsalt5I6QBRIXW5PF4b8LwAqBeHQnOSOlJC6YkcpVRXbSUkviGzEiWKZj6Q8mlsO4suQb53c\nYRO7pRE8FvxxsWxdsZTwfpn//+F3biA9Pe2Y+3Q1oLoJzi6XFUmrtLc0nhLdE/8bYX992bBhw0Y/\nYHuiXxko78vpZNDIaezasrzHe8bGxvLE0/8CoLKuFr1GGrpNQ8ejmIKifDH4FVO7Fg5QPFw0kK5Z\ncBXXnylyzg7jUpqahCT645Vv8tZ/mrnuobtpqqsiJSsbgEB7ZyfAyUYo0EGm6nkdNGkcm//zMV6f\nMM+7XFGEw/33jjXNQWuLcBDUtWzkwhtFSK+nnnfEO/TH+QHYsuJ9XIc+4+7bZXjiWF5oSoZ4oI4u\nDmaqz6Suo/OFiJccCgZsT/RLgm1ET2FomsPKiUbC64aqgyL0liFGrvrQrm73b1dSHjfe+j0+3SRN\n6Q63F4cKc00AU6rZoZYGZs0QaZdrr76S/HyRKMnrZmZ7VNFIdpTIuUPbX+eDpZIfLJpxCSmZki4I\ndgTRT2KYb2JaLPcjp5xFU20VJR+/B1xKW3MD0bEi2REO951Rv72tnoM1nwIwa8EtxCaI0QsG2o+5\nMgCny2O9bx/9+wmuLb6OpNbN3Pq9b5GUlHjM8yalDybZq9IIIc3S0/N288TaBvTLgx3O27Bhw0Y/\nYHuipyAidGdtLQ1WacSpyugRD+hYHihAIBDgptuEKPjNDz/F0DrfaqfyPhP9Udy44CoAzvvGXHKy\npVCUkpJ83DXGxPgZP1Z6Gv/rrpv54Q+EfOatXy/AP1jGUMd/4zoGFkhIaug6oYB4hEcK6vUHkQq5\n0+Vm4pz5JKSIF7y/8iOSmlUXwoDhljfak3ObpokRluPGpicy4ywJvTMLRh7HA0Wo+qJEwykYaGft\n6/8AYPxAef++8+0biYmJ6Xb3SAhfEG+imiVo6pIdOelEVTZ6DduInpJQUzh6qJMW09JN14450dSh\nFC5vufW7vPGhhKGmw4lLl7B6UvEILr3oXADmnDWTdNWEHx3t6/Nq3/vwY/at/hCAtLpd6I3SvvPZ\nttdZmjEBgLzxZ1E0RdqjYhOSMMKRhv8Tkz/VwyFcHh/DJs4E4Oybb2fFa9LEvn7NOvLypGXLH5N0\n2Jy7pY7TRUfeG+cjfYTkeBMHpuCNkXvTk9SEJ9pPS73knD995U9cc758ocw5U85/LAOaNWCwFbb7\n3BA6Abp+Nk4+7HDehg0bNvoB2xM9paH1utXxhz/6OQCvfbAcp3JrzptzGjdcJ2F70cjhxCdIBdvj\ndh/9ID1EVXUNaakpvPT0P/A0iW6TL8qNYYg37G7YjuGQcwwOpbPtRemNrHOkkDda5H6Hjz8DQ4XY\nejjUr3FSQw9brO5JmQOZ9U1hg68p24dTl+q42eGgsUrUaY1gCH9KHADOKBfxmUIL6I334fZ6AHC4\nHMefy9c0PCqEP7BjA3uXvwjAD2++jDHFMpLr7AHb0sHy7iMMe9zz1IVtRL9G+OH/+RmvvLYEgO/c\neBXzL7kAgLy8gcTHxZ3w8/37hRf59u23Edz5Mck+MdhNHVhz916vl9pymf9P9sGwCVLpbw3oPP/m\nowAsfelvDB4ts/mjps0jNTvS8B+2aOd6kwiM5DwNXSfaLxyb2UNiLeNsGpCmZ1mHdThlrZoGDpcY\nOs2hWWG+aXR/bouGTtNY/9Frcp0dpfzxwZ8AEB0d3eN1Hw9HS+HYhvXUgB3O27Bhw0Y/YHuiXzEc\nzSPZtm0HAKefNoU7b78FgPT0VLxe70lbxwdLP+HTxU/y7dtvY0SySX2LhL9twSC68t50HKR7pBiz\ncVspc2bKiGlqgpcbVMFl2dptfLxuGQB1NdVophSaCkZMYIii5vPFJWKoftDehPuWJ0vnbLnmxBKY\ng65ydqb1x7G8zwhcHg9N9XUAfPTPB2ld9xIAyamp/KK2XF3DKMaNlbHUMaNH4ImK6vHae4KunwXb\nK/3yYBvRrwEKCwdbP12uk8t0fqBMcp9P//XPpIVE5M6pmcT7xYi2Bw3qWhR3KZDkk6Tulk2bOW3K\neAC8UbFWN8DsKcUMyZeJoOffXUtikahpNgVCvPyXXwKQkjGAgiLhSc0bMRGnusY+cYia9JmFXnM4\nCKtugk0fLGbXW5KSSGrfgxr8YrK/kkCJKKiW73ydDc/LfWnQo3j2wzXccsXFDBg+nvGT5HrmzDod\nr6//Yb9tUL882OG8DRs2bPQDtif6FcPRmO9PpvdpmiaVlaJ//ujDf2Tdey8DkOBowxenwvYujl1G\notfy8+pbQlYYrdcfpLZGPM6E2Bis0Uing9ysVAC+c8Uslq0Vqrk1GzQGT5V+Vo/Hx+7S7QCs/uBV\n0rOFtHr4xFlk5MnsvB4KnhR5Z9NU/bpA6bqP2b7kbwDkt29mTrx4wjVu2NMk11kXMEmKUgMA6ER7\nJZ2RYwojfn7zOozPNvLux08C8PSv3PiV51hQPJVJU6TINmP6VNwe8WI1TevVWGdVRantjX6BsI2o\njc/BMAxalBTI008/z9vP/BmAoug6ZqaK8dtap1HdJg+2U4OuacSsJMnFmiY0tooByvTpfLxKdNqz\nsjKJVi1EZpfKuy/Kw1lTigAYXdvEq8ueBSCQNILcoikApA8aRbCtGYBP3n6BjiYxzEPHnMawiTPx\nxsSra9CtyS9wdLaKdRfJa535VsPQMRVD/oalr7PjkzcAGN6+htkJahtX55dHWjQ0Bjvvy4xs+T0c\n7jxtxAY6NHCgk+kVQ5vhDULbBgD0FZtY/J4Y6YebnQwcLXnjkROmMHfuWYB0WkTapRw2h+gpAftd\nsGHDho1+wPZEv4LoiZhdb2GaJo2Nwgr/8suv8fpTfwUgjwPMSFJ0a0anR+U61tev8tAyE6MI61bJ\nmz27JSQPBmZanuiRiIStGakJ3HLhVAA27tjLktcfASCucCoDhsoo6aAJc6w+z4bKMt569lEcRpg7\nZjzAqreft4pRiWlZECGZNozDwn6ti2taW74bgC3L38bfXgbAyNxkJl90OgCbnv0ETVMhdpc16yZk\n+uU4HbpGab38Nz/eJHy8Pv0uB3NhkO2XHbL9YbSqDwDY//KH/PzJ+2WjzJGcf4XM8p911iyL5+DI\ncD/y+bDD+pMP24h+RRF5ODQNKg/23aA2NUlovHbteh77w0MAeCrWMjlRNZubWEQYkfMBhA0wlSE9\nMlsXMUsOTWNAioT25TUm3lqZFFq/pYTTJxcD4OwmJDVN05o+GjtiMGMVv2nJnv18+OFfAOiIKyBl\nsLQQxSZnEJc6wCL/cCdksvJDCcPbG2vRkPA5ymGSlJoBgBFqI9ohOUu9uZKcFJlqurhoIMmJQgvo\ncEUR8kvOdl033QCGCbFq+MvrNClvkTsyMM48bhbhWIjs43eZjE5RfLLhTaxetBCA5/+cwU8elA6B\niRPH9eEMNk4E7HDehg0bNvoB2xP9iiJSyEmOMskaIF7psWavu6KlpRWAnSWlPPDrXwMQXf4Zo5KU\np5V4eMW9KyJ1IJejU+unOy/LBFzKdc1OjkYzxOvdvqOEyeOkgOTyOo471dm1H7QwfyAjhypC6to6\nPlol3ubuOvAPLCZxoIi9uX0x5Kr5/Na6Q9RvEY2puSPTGJYv46CaMxGLGU8rsNZhmJ36TGnZuXgV\nvV55o0GhKqyFDe2wYlrEW8+LMwnpsu+OOo0i5UEGe69pZ93fFYec5MfJCQbEmKSrEdtEs4JH/r/7\nAPj7cy/gdn/+cbYr9ScfPTKiO3fu5Pbbb+f6669nwYIF/OhHP2LLli0kJMiH8aabbmLmzJksXryY\nJ554AofDweWXX85ll112UhdvA3bsPTavaARtbcKDWVq6i6efeAKAfUv/TbEyCu4ks1vD2RU9Cee7\nInJIpwOy04QGbue+PdSr/Ks3KqVH64/AME06AhKCx8XGcunZMtWk6wbbS3ex/LO1wPns+vR1dMX9\nWRDdzE1zx1r7BIKKfi9s4rAoBkHTOvO3YWUh3dF+SwokhJPGoDwyumES51GV+s5hJ9wO8Lnlr/oO\naA+r1/vQfRV5P6YP0PmkXCryTs0gJ0b+4QISWuSL86233+WC8+f1/iQ2+o3jGtG2tjbuu+8+pk6d\netjrd999N7NmzTpsu0cffZQXX3wRt9vN/PnzmTNnjmVobdiwYePriOMaUY/Hw6JFi1i0aNExt9uw\nYQOjRo0iNlbEzsaNG8fatWuZPXv2iVmpDQs9rcwHFJN8dWUlTz35NAAf/utvnKH6GCdldFaPe+KF\nQu/C+cP2A5xKL2psusHmHVIJz0xLtV4HLLe2p45buEuoX5CXi8sjhaVsYz/DholOVNHQEbS2izfZ\n1hHAZfVZarS0SmqjtT1IICSPQ31TK3WNsv3y7cs5VCPblBpT2Vkq+7rMCu4s2iv7hjsfo7ABA5Wn\n2BJ0sEccbkYk952S3gHMzpF8QGNAo0OlBrwuSNIlRfLGS89364nalfqTi+MaUZfLhcv1+c2efvpp\nHn/8cZKTk7n33nupqakhKSnJ+n9SUhLV1dUndrU2emxA9+8v4/XFQs/29jN/ZrhfHrZ5eaaVnwv1\nnboTh9ZpPHvA13HYdmnRsLpMWojaw+MJd7SqLUyLvCQQcnZrSDtTBCZejxi12sZWlq3egsvl4HZg\n1PBCAkEJ5z9atZ5DNaJSOjQvh+LhQrdnGDqLPxAW/tVbOiivFfE4hyMap0upcJpuXO4hAHiiRhHW\nZAghRXuFDl1SKRoua00mEtIDRLtN2lTmIHKvNfpWqY/s73OZbKiRE4xLM/BE2PgObaN0l9AODh6U\n34cz2OgrNNPsGVnjI488QmJiIgsWLGDFihUkJCQwfPhw/vrXv3Lo0CHGjh3Lpk2b+PGPfwzA7373\nO7KysrjiiitO6gXYsGHDxpeJPlXnu+ZHZ8+ezS9+8QvOPvtsapSeOUBVVRVjxozp/wr7gb6GL6di\nRbMnHmhZWRmrV60G4Jm/PExWQDyTvHjQexm2d4dIk31Fq0ZDQOPvn+zm52fn4Vd9kj3xSh0afHZQ\n3GH3iItpbYjoLJm0tMvvVfXROLrx2Qzlo/o8AbKShY6uuvYgGWmpFA/L52f/7yFuv+FaNuwQ79vh\n9JIU0wZAtM/J1LEiYLdt1wHeWCFem+EYjsuaIDDpLNubQOR3B2FdvOZUbTELBsm9Dhuew1YaKb4F\ndSipl2MmeE0e/nAPvzk/r18RgG7Cigo55owBnQeqCXmImno9AP/zix8fdd+jfaa/qp/1Uwl9MqLf\n+c53WLhwITk5OaxcuZLCwkKKi4v56U9/SlNTE06nk7Vr11peqY2+43gfqPID5Xy6QgTp3nj+SdyH\nZD59WpKJqejZ+tJe0x0icUuUExyqmh3upWE2TSjOkDj0Dx/sRou53vpfZPLG6TjWQWWb6pYA9S0S\njmfGtzB1zGDys4WzdHOpwY6KMwBwuZIIt78FwK3z01m9aRsAH62PB7eE9i5N5/9v70yjo7quRP3d\nmkvzgCQEshBmFBIYMCHgGYxtbBpsY4MhUWjy8IM0NoIsshiy0jZ/OgQ7eWsFx6sTszJ5SD+/8NIO\nie3gxCSOB8AEAkYkGIPMPGhAQlOphlunf5xbVxJIaCiQhNf+/qjq6g77nrq1a++z99kbqwvq1XAa\neoogw3kCl0Pfw+VKMTZGyZ6W+6gPtZY8PryWrm89QglGiDP/+BiAYCiE13PlirD+qDC/CHSqRMvK\nyti0aRNnzpzB5XKxfft2SkpKWLVqFX6/n4SEBDZu3IjP52P16tUsWbIEwzB46qmn7CCTIAjCF5VO\nlWhxcTGvvPLKFdsfeOCBK7bNnDmTmTMlV+1acTUr9MCBgwC89H++R+jYRwAUpSsMK7YXNnsWwOiM\n2Dm9TuzIfjACDsvw6YqnqgCPZU0NTz3MSaWDTA7nwC6eQeP0OAipcQDsLw/i8XyGGT3JY0vhH6du\nITmlQF9PhTDdDwPw2tsfkZ6gl5+6vPcTicYsts7N9agy8XECgJGpZwlHE6+6vxmFJGuaozaobdC6\nECS4ux6Ma4/Wh8asXo8DPI1nAfho1x6m3XV7zy8gdAtZsXQDcvjTz1i/cgUAw9VxinUNCiLRa+u6\nt0fsy5/qbUlUbwobrRLVu3ae2Je/KMPks5PvAuBNmo/D0Z3aqFH7ugOy7+CT417MiK68n5SYgorG\nGreb9hp9ZUznbI32rd2uclzeImsfTyvhL78JfWxUBXBG/g7A8HQv4U7uNRyFIVbN1dpKPVYVTQbD\n01Vcn1NrBRx76XJCakjPD7/9+zdFifYisnZeEAQhDsQS7YdczY1vDgb55Us/IbHxpN4XBxebtT2S\nlwxZ/pZq8/G4jJ0RbX3+HkRLYofmJUOqWzfaazbLwDnZ2iHY/oEdnClqBkhMuY1I8x4AzEgFLo/O\n+1TKJDZNYBgBEpLv1derewWXd6R1HidYTfIwLg/KWMsso+fJcH4GwNkGN7lJnQfWYgsSYusJAqZB\nxIyvulN7Ex5KgdfQgbGKz/bZ1blSUtrGJSTx/tojSvQG44MPdlFZ9h53DtJfpcoAHKrWDsXJejiv\nM3m4OUXZaUfxpNR0hW60hb8Ct0ORl65XGeUUBvnj+3rOMTk5D9VhtDy2rMmDrVKiFzGDx4ipJYcz\nx1Ke7RxrbTcMCAf/ad1DFKdbr3ByurJaroGBspSrM7yXzBS9/dglg8FJnd94bOyHWAVEIlGoatYL\nDmLvu0t76/CjCvzWtznNvMgHH+0G4KGZM7p/AaFbiDsvCIIQB2KJ9jM6cuWbg0F8Xi9/eft3ZEcr\n7aBGigem3aTNmbMNcKRW/y7+86JBuk/vdHOqspPtr4eHH09/OKXAbWrXffLkQs6e15Zh+ZmcVgWb\n26SyA9oyjIaPY4b10uKoGUWZJ3C6Ui2ZHC2CtT7c4SPUqMviRSJeVPCEJYcLX1rMxW19QwoV1Qvg\ng1GDc82DARifeZrP6/TXZ0hKtEOLMjblkaWNbSJRRU3QQU5Cz92DDttExSrkN19k51/fA8QS7Q1E\nid4g7Ny5h2n33EFF2XuM9EHE8lQVYPWCI9MHd1hu/qc1BhVNLdHz0RnX3qe3Y9nxaGYDEp36ZvZ9\n9D5jRumq84eP7MKfcrd1gVCr/Q2Uqd+HAseJBK36DMZgoqTj9+nVSIYzC2XVLwUDw9BzG5HQMcLW\nMSpaAA6/tYfC6Wwvr1lhGFbGgOd2GtDzt06OUW4p0aGpnd9m0Pq8shOguhlqrSnfZE/P564v/+2K\n1WLxOyKcPbofgEuX6khNTbniWEm8v3aIOy8IghAHYon2Ezpy42NV6P/4u/9m2j13kBmpxHC379JF\nVIuFOipd2c3TDlY7OGw1TyvMUPFZjq2IRZydRnwufTSqhW787GP2f6ZLJzpdPqIhvaTT4Rndakmm\nwnDo9axO9xjMSA0AzYFzZGRcwuO/AEAoWI/b47MOCaGsRz0S2EEoqK1Pl9uBoZr1a3+23dOpLQaG\nQyfiuh0urM7IfF6XSF6yNv2O1joYZvWg7yiIF7EDTIozDVAf0gOW5lNEu5kzGqt/cLkFG7t0ghuS\nmvU47Pz4b8y8T8pRXk9EifZz3nz7jwCc/btOSB/g71pEN2hCgvXpThgQZdd5rSCaIwpvd/LZO6D1\nqqNw1CBo5fkYDro98WrP5RlRKmtGA+DzZxGNnGx1tdhLBZZr7vZmEbUKBKR6z/P1RRNobtY311z/\nBg3orqApaWMIBsoAGDMymcZ67eafON2MUonWuTLpOFcrpuUUQaVd46pIIWO92mX+tMbLqPTYWHRy\ns0rPjzZavwmBsIHbWl/flWEzwJ7rrgm2zHu3/mE0AGdTNQAf7HhXlOh1Rtx5QRCEOBBLtB/QkSsf\niZh89sleAHIctfb2rhp6MbfP7dTuPcCnNQ5uGRDt1nnaI9pqXbhCEbSDGt07r4Fu+gZwojEPn29Q\nTHocbivwEUuCj2GVqTMcbgJB7Y7PuLOA0hWL2fHnDwH4t/9dTGNA93T61et/YsRQHYyaN3cGhpWU\n/tz336LZ1In3DoePziWPYqAt34AxivqgrpqU5ffyua75TF7S1T0FU8FNKbDzrLZfktxRBmsxu+Rh\nGOhgFOiAYkZsxqL1NaKQ6NLWc1P1KWIlgzvqTS/EhyjRfoxhwMKv6KLWVcW693lCVh6XLpzu1nmi\nCjKtlUz7Kw27Jmg8SfgKSLIasoWVgVUGlER31xretSbJmheoqBuNy9Vq/frlytNGK4Oo8uJx6vXi\nkyYMJCM9l7oGrSzvnT6dCeN158/bJn9Mbq5uiDd8+FD+8hetaJc+eRf/+bNzADQ3D8Dr0659JBLG\n447NebS9GYdTf2VC0XxqQjqaX5BicrTWab1uP90pNuZRDMoqFU5rjjfJbXSj5Ip1jliLlg5mHzzJ\naUyduQCAQZOuLBQkXFvEnRcEQYgDsUT7Adm5w9t1rZxOJ8MKdX/22N9H1r3Isb/9mU/eeR2Auspz\nXbpGzGjJTVKcqjfs1z2N1EcVJFpupVLKbp7WkyB9qicW5s+jJcZsQCw/E6edAxkOQzik+xxdrC5j\nyq36wvfNuBWAjDSdtFlTcwmnU1uWjz/+EOGwtvw8bi8nTmlLft7jDxMKbwfg9384zPnz2qpNz0jl\nyJFqS4yWdfSGYeBP0L63ciuOmrqT7eScSi40aVmPXzLIS7Ys9Cj4rFtoCGt7ZddZg4t1AYqsylsJ\nLi8q2r1Rs0sWtDrMl5TKuPt0i/IRU+9n8OiJQIvl3B4dPXdC9xAleoORO/IWBg4vZvhkPZd36tAe\nPnnn/wFQefxwp8ffnKo4UKG/0IOTVBeqaHZMzJ00oy3zeT1RonazT0caJknWOQNEm3Wd0XDoLC6X\nnvscMSyFotG5AGRnF/DlybqAyKhRRQSaAxSN0cn2TY1NHLMat40cOYyQ1WvemeyiukorSMNw842l\njwFw/31nefE/fwrA1/91FnV1sWIkLQ3zAsEQ77+rsyUu/m0bOcl69FwOB16nVm3H6wyGpenXbgec\natRa9OAFPUCNDU0MSTTJTNJzq4bD6N4PmdFS1MSXmcftc7X8BRPvInuovne319+NEwrxIu68IAhC\nHIgl2k+ILcHrintlOJwMHD4WgIHDx3LzrXp55NlP91P27v8H4MSBj9o91uuEJitHMd5SeS2tiyG2\nzL0np1SWC+8IvUea9TotMUDSKG1lDsz08sgjcwHIG5xJaqq2tJKTU/H5dDmkaBQikRBDhuQB0BwM\nUVGpGycWFo4ktt7eNE2G3ayb0507f4Fbb9XNFJ2cYNbMewC4beoEvB63LV0sqh0IhjEadZvkvWXn\nyEvRUwfhqEGGFbhrCBtUaaOZxrCD/ee1teozdXmtAe4Q2SleEn2uHg1Y7ohxTJ+mx2JQ0RQGFQzT\n8rvcVzvsCmTJ57VDlGg/o/XD3dX5qsy8YfbfIeNuA6Dm3HGOfPQHAA7t+G+aG+vs/Qusausn6x3k\nWyXaejI3GnNzzWhLc8yeLVzSB0/O2M/INL2o3HQ4+FxpxTD2lpnM+RedMN4cDGGaWjFFo4poNCa/\n/uty6UfaNE37f61Te8LhCOPH6x+g8vLjjBxeAMDW/3qdZaW6W0AoFCEUainDFzs+HDFx+3VEvjrg\nZKDS200FA6xUo7qg4u3jWoYkI8QAh1aePivlKD3RTVqip0v1RA2ryn/hXf/CmLtmAzBgyEjScm6K\nCXaVo69EFOf1Qdx5QRCEOBBLtB+TOGA4M/K1NfXbfeVdOiYlK9f+G3P5J876GicP6iK9//zrNsL7\n9et9FYZdgai7bY+hbZTYrlrXA1M00XoKLzpMBvj1iRrDioRGnXmQO+gmQmFtyTU3X73ivWmaOFwO\n0tNTCYe1C9/UFLCtyUgkwpgiHYB574NdHNmn2003hyMkJiZa92PYCeqA/drr9VBQoKcCagLRNrca\nm6lDSbEAAA31SURBVBrJS1LEwnVHqp2cDOgAUn6itmwHpnnwu40Oc3Rzbh4DQOHdcxg64U5Af5b+\nlIyr3ndH/K/bhvJ/j2iLNql7Hr/QRUSJ3iC88EgBK944zvdmFbDuzeNdOsZrpeN4E4aTMVh/+UdM\nuY+GGl0K7r0/v0fjQd2PvfLowW7PZ8YUR7oXApb32xiC2HRfV+dcU716x/JLDiKWi+w2ouR5dY/3\niguVOBxdc5oikQhul5uCIfl8/rmuFVp9sYbsLJ1sb5omfr/2vRtqLnL0sJ7mSMtsXc2+fQzDwOfz\n2ddpjZ0A74ACK8UpJ8GgLqg116l6nSq146yHMRnKrnSfljuUUXc8CMDwL88gOVP/CCamZeJ0X9k7\nvit8b1ZBq/oI16LTvXA1xJ0XBEGIA7FEb0C+N6ugzfuuWKaxIEVSRjZJGdkAPJo3nHBgPgAN1ecp\n3/tXAI7//X1OHNRu7tUiTrF/+V2K84369zjTB8keq4FblC4tAXW0Yyw5nE7MJl0v4OD7b2EuXdz5\niYBQKIzf52fcuCL27jsAwOnTZxiUq4s9tw44eRISOX1OJ96PvfV23G6XdV8dCK0Uhktbhwk5Q+yK\n99BSFqu19Z3gUi19j7RXzxPTisksvpsJt+mMioGD8vAm6cpQ8eR3Xv5MCL2HKNEvAK2/QF119QE8\nXi8er/52J6YNYEC+Tima8OBXCAZ0HdOK8n9w9GNdhu/E/g+pvXDKPj6mIDN8ELAmVQ/XGOyr0NsH\nJrYUPvE4WxRMR25+m6YcCnxWAntq8zl27tH93r88oYhgsON50ZgCdLvd+Hz63hyX1eczLVd80qQJ\n/MeG3wHw+NeX4fFoBRlTslecG3C6tMJMTk1HRXUtUxxtawsmZeQAcFPxZIZNugeAwYV6RdW/fvcX\nOD1+PF5fh/fQVRZPvZkxmde5C6HQKeLOC4IgxIFYol8wemqVAnYgw+n24EvW68JTsnIpmHAHAGYo\nSHOTLmh84dghTn6iXf6BI25BHTsEQHaCScUlbSmeqI3yh2odWPF5neQla1tzRLqyly4q1fJLXhc2\nbGs0Cvg9+vFsarjAO7/7LQD3TL31qpZoawIBnfUeMSNX5IoCjB4xjCHDRgDg9XfRMoyt5/cmkZ2r\nI+k5oydxU/GXAb0s15+ix87p8uC2LM7YdIo/Ob1r17mM1p9rS5UosYH6A6JEv8DEo1BjGIbDnqtz\ne/22ck3NHszwL+kE+IUb/8t2gRtrKrhwQq/qOX38c05/rhcMnPnsH3x6VEfL3z5ai9+rH738ZDjR\noJVBbqJqmyFgKT4j3EjjcT2/WVVbh9dyqWNJ9+0RCoUpKtJV8isrqqio0KuX0tPT7OMG5uZw8zCd\nteB0ONvU3YxlAzidTrvrqNPlYmiB7k3/o1e34rImcx1OFw6nlslwXIO2ARYyz3ljID9lgiAIcdAl\nS/TIkSMsX76cxYsXU1JSQmlpKTU1elK9traW8ePHs2zZMmbPnk1xsS7Zlp6ezubNm6+f5EK3aG3V\nxBK9//3t4z0+n2E4bPffba1fB52bmj5IW3ejpkRRsWWZ0agdUGpuaqDytL72vrIjeJp1VSVv/Rmi\nSluJtedOEApY682jJqfrtQv+29+/w+KvPApAfX1DG5kchoFhWY0qGqVwtC7KHAqGcFhWrcfjsS1R\nt8vN7FkzAcjJycZrBZYwjA6zK13OmKXp7cIodQ+xPG9MDNVhPoemqamJZcuWUVBQwKhRoygpKWnz\n//Xr17Nw4UIyMjIoLS3lN7/5zXUVWBAEoT/RqTvv8XjYsmUL2dnZV/yvvLyc+vp6xo0bd12EEwRB\n6O90qkRdLpe91O1yXn755TaWaVVVFaWlpSxYsIBt27ZdOykFQRD6KT2OzodCIfbu3cuGDRsASEtL\nY+XKlcyZM4f6+nrmzZvHlClT2rVgBUEQvij0ODq/Z8+eNm58UlISjz32GG63m4yMDIqLiykv71rl\nIUEQhBuVHivRgwcPMnr0aPv9rl272LhxI6CDUYcPH2bo0KHxSygIgtCP6dSdLysrY9OmTZw5cwaX\ny8X27dt54YUXqKysJD8/395v0qRJvPHGGzzxxBOYpsnSpUvJycm5rsILgiD0NZ2mOAmCIAgdIyuW\nBEEQ4kCUqCAIQhyIEhUEQYgDUaKCIAhxIEpUEAQhDkSJCoIgxIEoUUEQhDgQJSoIghAHokQFQRDi\nQJSoIAhCHIgSFQRBiANRooIgCHEgSlQQBCEORIkKgiDEgShRQRCEOBAlKgiCEAeiRAVBEOJAlKgg\nCEIciBIVBEGIA1GigiAIcSBKVBAEIQ5EiQqCIMSBKFFBEIQ4ECUqCIIQB6JEBUEQ4kCUqCAIQhyI\nEhUEQYgDUaKCIAhxIEpUEAQhDkSJCoIgxIEoUUEQhDgQJSoIghAHokQFQRDiQJSoIAhCHIgSFQRB\niANRooIgCHEgSlQQBCEORIkKgiDEgauvLvzd736XAwcOYBgG3/72txk3blxficJzzz3H3r17iUQi\nLFu2jB07dnDo0CHS0tIAWLJkCffcc0+vybN7925WrlzJiBEjABg5ciRPPvkka9aswTRNsrKyeP75\n5/F4PL0mE8Cvf/1rtm3bZr8vKyujuLiYpqYmEhISAFi7di3FxcW9Is+RI0dYvnw5ixcvpqSkhHPn\nzrU7Rtu2beOXv/wlDoeD+fPnM2/evF6Vaf369UQiEVwuF88//zxZWVkUFRUxceJE+7hf/OIXOJ3O\nXpFp3bp17T7fvTlO7clVWlpKTU0NALW1tYwfP55ly5Yxe/Zs+5lKT09n8+bN11WubqP6gN27d6ul\nS5cqpZQ6evSomj9/fl+IoZRSaufOnerJJ59USil18eJFdffdd6u1a9eqHTt29JlMu3btUitWrGiz\nbd26deqtt95SSin1gx/8QL322mt9IZrN7t271YYNG1RJSYn69NNPe/36jY2NqqSkRH3nO99Rr7zy\nilKq/TFqbGxU999/v6qrq1OBQEDNmjVL1dTU9JpMa9asUW+++aZSSqlXX31Vbdq0SSml1OTJk6+L\nDF2Rqb3nuzfHqSO5WrNu3Tp14MABderUKfXoo49eNzmuBX3izu/cuZMZM2YAMGzYMC5dukRDQ0Nf\niMKXvvQlfvjDHwKQkpJCIBDANM0+keVq7N69m3vvvReAadOmsXPnzj6V58UXX2T58uV9dn2Px8OW\nLVvIzs62t7U3RgcOHGDs2LEkJyfj8/mYOHEi+/bt6zWZnn32WR544AFAW1G1tbXX5drdkak9enOc\nOpOrvLyc+vr6PvVOu0OfKNGqqirS09Pt9xkZGVRWVvaFKDidTtsV3bp1K3fddRdOp5NXX32VRYsW\n8c1vfpOLFy/2ulxHjx7lG9/4BgsXLuTDDz8kEAjY7ntmZmafjRfAJ598Qm5uLllZWQBs3ryZr371\nqzzzzDM0Nzf3igwulwufz9dmW3tjVFVVRUZGhr3P9XzW2pMpISEBp9OJaZr86le/Yvbs2QCEQiFW\nr17NggUL+PnPf35d5OlIJuCK57s3x+lqcgG8/PLLlJSU2O+rqqooLS1lwYIFbaaT+gt9NifaGqVU\nX4vAn/70J7Zu3crPfvYzysrKSEtLo7CwkJdeeokf/ehHPPPMM70mS0FBAU8//TQPPvggp06dYtGi\nRW2s474er61bt/Loo48CsGjRIkaNGkV+fj7PPvssr732GkuWLOlT+aDjMeqLsTNNkzVr1jBlyhSm\nTp0KwJo1a5gzZw6GYVBSUsKkSZMYO3Zsr8jz8MMPX/F8T5gwoc0+ffWMhUIh9u7dy4YNGwBIS0tj\n5cqVzJkzh/r6eubNm8eUKVM6tax7kz6xRLOzs6mqqrLfV1RU2FZNX/D+++/z4x//mC1btpCcnMzU\nqVMpLCwEYPr06Rw5cqRX5cnJyeGhhx7CMAzy8/MZMGAAly5dsq28Cxcu9OlDtHv3bvtLd99995Gf\nnw/0zVi1JiEh4Yoxau9Z6+2xW79+PUOGDOHpp5+2ty1cuJDExEQSEhKYMmVKr45be893fxgngD17\n9rRx45OSknjsscdwu91kZGRQXFxMeXl5r8t1NfpEid5+++1s374dgEOHDpGdnU1SUlJfiEJ9fT3P\nPfccP/nJT+xo5YoVKzh16hSgFUYsSt5bbNu2jZ/+9KcAVFZWUl1dzdy5c+0xe+edd7jzzjt7VaYY\nFy5cIDExEY/Hg1KKxYsXU1dXB/TNWLXmtttuu2KMbrnlFg4ePEhdXR2NjY3s27ePSZMm9ZpM27Zt\nw+12U1paam8rLy9n9erVKKWIRCLs27evV8etvee7r8cpxsGDBxk9erT9fteuXWzcuBGApqYmDh8+\nzNChQ3tdrqvRJ+78xIkTKSoqYsGCBRiGwbPPPtsXYgDw1ltvUVNTw6pVq+xtc+fOZdWqVfj9fhIS\nEuwPsbeYPn063/rWt3j33XcJh8Ns2LCBwsJC1q5dy+uvv86gQYN45JFHelWmGJWVlfbcmWEYzJ8/\nn8WLF+P3+8nJyWHFihW9IkdZWRmbNm3izJkzuFwutm/fzve//33WrVvXZozcbjerV69myZIlGIbB\nU089RXJycq/JVF1djdfr5Wtf+xqgA6kbNmxg4MCBPP744zgcDqZPn37dgijtyVRSUnLF8+3z+Xpt\nnDqS64UXXqCystL2bAAmTZrEG2+8wRNPPIFpmixdupScnJzrJldPMFRfT7AJgiDcwMiKJUEQhDgQ\nJSoIghAHokQFQRDiQJSoIAhCHIgSFQRBiANRooIgCHEgSlQQBCEORIkKgiDEwf8Aq7R+FAuW5r4A\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXeAHnWZ+D8z8/Z9993eW3oDCQmB\nQOhNKSKCIgp6olhP5dSznXfncefZlZ93etazewiKUhSR3iGUVEivm+29ve++dWZ+fzzfmX037Cab\nbELCMp9/8ubdeafPM09/NNu2bTw8PDw8Dgv9WO+Ah4eHx2sZT4h6eHh4TANPiHp4eHhMA0+Ienh4\neEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4\nTANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhM\nA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwD\nT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANP\niHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+I\nenh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwDT4h6eHh4TANPiHp4eHhMA0+Ienh4eEwD37He\ngaPJvJrKcf/f2dF9yL95rRLwG2SyJgCRUIBkKqO+95HO5oCpnY+pYNs2lmUBYFkWtvpsY9PX2wtA\n6759tO7bB0BbawumKfvW293FcH/PtPchm8lSWlVDbX0DAKOjo8xfuAiAsvJy6hrk+9q6OgzdkB9p\nGrqmyUddR9ePjE6xbG4jAEPxJLquTbiMbdsARCMh0pmsszvkTNv9e8An+5nJmeN+66wx4PeRUr8N\n+H0UR8MAdA2MUKI++/0GnX0jAAQDPoqjIQBKCiP0DiUA6BtKYBzCsdu2zezaMgDSmRzJtNxPg/FR\ndxlD14mpbfUNJdDUXvt9On6/HFcimcGvjlEDsjnLPQ9H6t58NfA0UQ8PD49pMKM10Xym+mZzlpsp\nGqnDjiPwZjdN09UgzVyOeFw0nG1btrBty2YANq1fS0fLXgAGezvRNdGsIqGQq3VEw340bWINbTr0\nDrfRu+NFAGwbNjz+Z0C0u8RoCoBkJkv9rHkAlFfX0zRnLgCLlpzAyjNWAeAPBvD55NHw+Q59X9ft\n2ud+nmn3kccred0I0UNlZ0f3a/4BmI5JlMmI+Z9OpRgeHADgxRdeYN0LzwGwad0LxAdk/ZFwkJJC\nMR8DPh9FPhGcRdUlYyu0bezD3ptDR9OgIBRw/18cDTp/gdwQAKNtQ6zfuwGAp/5yG98cSQJQP3s+\ni09aDsD5F7+RBYsWA+D3+wmGxEQ1DGNK+5F/DV7r95PHxHjmvIeHh8c0mPGa6GTaWC4rDvmcaRJS\n2sVM4HC1z3Q6TXxkGIB9zc2sfvIJAJ569EEGOlsAKC4MUxgRja4iolMekuCCzVigxFRBpcNlMsN5\nulqs7a5gbE2mDT6lUZbEIpTGIvKHbD9bn/0bAKsfuBPLL9/PW3IyF19yKQCnnnEG4UgBAOFweEr7\nkH9t5lZXHO6heBxnzHghOhnPP7da/n32GT740Y8BUBCNjlvmteYfPVQBOtDfz+BAHwB/veceHrnv\nHgCSQ71UFBcCUFIQJFYjZrlt5wlLc2rC8mD+RNu23XXC5ELYWY+m6TiCUNO0A64/f70Hw853N9i4\nkfGq0kJ3G0PNG/nh158G4MfBQlZddAkAb7nqbVRUVgFQVFw8pSj/rs6xjIRF9dVT3k+P4w/PnPfw\n8PCYBjNaE51MM8tmMzz58AMA3HfXHzh15ekAnHnOua/avh0ppqp9mjnJ5evt7eXlDesB+MOtv2b3\npnUAVJfGqFV5fWakDEtpcdn9chTzcXXAPG1Q0zRXA7Rtm5zarmXb2JatPlvuMulMhqzKW7Vtm0Ry\nLNcwn4DPD0AwGHRzUn0+H8GgBI90TUPX9TyNVXNzH8d9T55Bf4Bgl+0uYru+AEODmvKYu72tT98H\nwMN3/Y7GhScB8NZr3snSZRKUqqiswh8IcDC2tnYCsLjh2Gike7p6D2l5zxUxnhktRCdj47r1bFgt\nPr/GyiJeXP0sAGecdfaEptjxGKmfivB00pHaW1t46vFHAXj0/r/Su287ABXFhcxrkAfCsuxXJHU7\naPsJSRDh4pj0lpVzzXDLssioBPBMNsdoSoRiKp12v89ms6RU9F/TtHF+0MnM83zBl/+dk9hvGAaB\nQICAX4RtwO8nEpaXQigYIqCErU838Bm6+o0Pn28syp4v/CfbB/dFgI3PkH2dU1uOPdwKwP9+62YI\nFQFw5Tuu45wLLgKgobERw3fgx21LS6f7+Ujeb3u7D01IHox8V8RkLKx7/bgoPHPew8PDYxq8rjTR\nbFa0n6cefQifJcnXBaEA215aA0Bryz4am2Ydq907KIcSOGpvbeXJxx4B4K7bfo2VkFzP0qII1WWi\nKVm2NWGAaP+ATU5pqDkz52q36XSGZErO4WgqRSqdBiCeSLjLaLrulvtp2ngt038QrWzK5OVrZrNZ\nMirrAtumbyBPs1TbDgYCRAsk2h6NFLif/T6fu08+n8+1SPYPfOXjfJ0zxzT46rIomibn9IHbf8pd\nt/0GgKuvv4HTzzobgDlz5x00+DSd/NLdU9AUjzbb2jon/H4mBtE0+1BCmK9xNq4X/99XPncTlYXO\nQwL9cREAV73vE1zzrusn/O2xNuenIkCHBgdZ87wkw//ul/9Lf+sOAKrLY9hKVu4f/c73ITq3Qiab\ndX2Z6XSGxKgkoceToyRGpd46lc6M+60jHo9U/fnRIl8oWnk1/5FwmCKVnVFQEKFApS0F/H4Cyq9p\n6LrrK57KY2MYY7X5A8NJMoakRL357ddx1nnnAzB3/vwp7Xf+/TdR7fxUTOzjkYVKqHq18x4eHh6v\nU143mmgmk+HH/3ULAC889CeiYUkat4FkWt7m1fOX869f/SbwypxRh1dTI53q29jRsO/6/W2sfvhe\nABqqSjBU4CPfZN/fVE+rAE8mM6ZxjiTixBMSEEqMJtH0MY1Tz9M+ZxL5nahs23Zr52OFUUpi4v4o\niEQIqQBVIODPyzaYilaqY6hz1tk3jL9I8krf9d4bOeOc8wAorzg2Ue90Ok1W3QcjIyOYZs79Wygk\nGnm0cCxfNhgMvnIlR4C51fJsvdY00deNEN388kv82yc/AkB1kZ+MSqtBA58yQXviFh/9/M0AnH/R\nRROu59UQolO5gQb6+wF46P77+P0vfgRARM8SDctDblqW67PTVPoPiN8wqfyXicQowwkxz0dG4oym\nRIgaeW3hZpqwnCr5Jr/zORQIUFIkAjVWWEg0IgImHAq52QPWFCq2/D6DnHqxtfcMseRU8ZVeftXb\nOPu8C47kYQBj90pXZyf9vXJvZdNJOtrbAejs7CKtrn1PVwc5FTsAiMaKAUnX0tQ9UVxcSn1DHQDh\nSJSQqtwqr6ykrFxeBJFI5Igfx/GKZ857eHh4TIMZr4mmldb10+//F88/8EcAouEApjV22E7e4OBI\nkpVvfBsAH/3kpydNlD6a2uhUtNCtmzfzf7/4XwA2PPMg9RXF6i+aGzjSNA1DHVcqlXGT2IdGRhga\nlhZ2w/H4hAnpHhMjubEq80DTKCkWrbSsuITCAtHGQqGg6/I4UB8B51QHfD6GVZu+3pEUV1z7PgAu\nfNOlzFuw4LD2s6uzk+Y9uwFo2bPLdfc079pGV8seAIJ+P+GQ5NSGgmPt/sIBv5v/CpobuMrmTHeZ\nVCZLOqMCj1mTSFTOQ92suVTXSUPqOQsWUlUtQaP6plnUq2bZUyk+eK0x44Xo7l07Afj0je+moUyS\nr11TXjEWWdZIGnJDfOEr32KhaoG2P0dDiE5FeD760IMA/PKH/409IssXFgTzHtaxKp1UJkM8LqZ6\n/+AQA8PS/i2Tybim+vEeST/ecVKbNKCoUHoNFBfFKCmWl1o0EhnX8X8ynO73PkOnqz8OQFHVLK66\n7u8AuOwtVx50XzauX8eOLZsAWP3U4+zd+rLayRRFqst9JBQYl12Q/+Q7Qt22cR8IDdz7SdM197mx\nrLHlNY1xaWwpR7hmsowkRIFpmL+EhtmShTB/8RIWLjlBPi9cSCBwdPyrrybeU+Th4eExDWZ0sn02\nm2H1U08CENKzmObEpoTzQjZ0neFecbZveemlSTXRI81UtNA7bruV2372AwCKAhahAnmD50zL1Sgt\ny6JvUDTOvoEB+gckwT5rmq5G4TtSSe4ebhs9EDcJwODICAND0lKwoqyUUmXyBwNB1xWwv/FnKddS\nxjKpLJGskORIBz/8xr8B0LxnN9dc925gfAT/yUcf4dmnpHx587rnifd1ADI/qaZE7g/T9Lvby5km\n43sLyOdMziSt5iRlsjlX49R9PgpipWr/I/hVb4WCwqIJrRjbstAGpStYxDIpUK60nn072LtNtOT7\n7/o90SLpCnbi8hWccNIyAJYuP4UTl5484Xk+3pnR5nxfby8ffc87AKgM5cgepH2bpmnklNlVPnsp\nn7v5ywCUlpZNuPx0zfqDCc9kMslvf/4zAB6487eUFqiKGl13o7s+w2A0KZHV7r4+uvskEptvtnu+\nzlcXp8JLNzTKlGlfXlpGSUw1LzF0V6BOhq5p6Mqn3TMQp2mJNDW56PKrWPPcMwC89NwTWBlx2ZQX\nFbhugf3NdCeJfTSZJq0+G/4gsRK5r8OFJYSjsm8N9XXESkRwxoqKKSmXVKyCaJTiEnUs5RUT3lO2\nbdPWKj0E0uk0mYwI0a72Nsxc1v3c1SnCfs+u7bS0itJSVlHNnHniAz55+XLeePnlABQXl3C845nz\nHh4eHtNgRtp2zlt+zQvPkYmLeWGrzjoHwrZtwgGJWG5Zv5oNa9cCcP5FFx/xfTyQFhpXpuF/f+db\nPPvg3QDUV8Tcv1s26JrSUvr66VJjiR2TEqY+A8jjyON0hrJtuT4Aw/EEZSWiVVVVlLtlpZZlTVhC\natk2mrKKoqEALz4jZvu2lzcQ1uX+riyJokcloJU1LYZUICcxmnLHGPvDEcqr6gGYu3gulTW1ABQW\nFTNLDelbtnz5pMUlh8qiJUumvGxXZyf79kq2wN5du9ilgsDbtm5xR21f9pYraZo9+4js29FiRprz\nibhEOG/+wmcYapYopa6PN3MmwzGJEskMp6l0pw994pNu/fT+HKpJfzATfmR4mFu+8TUAXnzkL9RX\nivC3NQ1DCc50JkNHt9RKd/X2kVVNN5yUJo/jj3xhGS0ooLqyHIDKsvJxyzhomsaISn0aGkkRDIq+\nUxYrwO+T65xIpukdktQ1Pa8SLWvmSKVF0PqDISprJDG+afYcipWpnkmn3BB7SUmJ20IwWlxCUYns\nU2FREfPmi4ntpCu9GgwODrBxnaRlzVuwgNq6+ldt24eD99R5eHh4TIMZqYnu3indiz75/utpqhCz\nKZM9sCN/f/yGwUBOtM+bv/095i9cNOFyR0oTdUYU/+C7t/Dw3b8DoL485ubs6ZpOfFS0jraOTvoG\nBwFxQXj5nq8tcjmTgHIblZUUU6e0vFAgMC5B3+npYNk2MTUg0Mqbc5XNmgwlRFvVdc11Rfl84zv8\nT4SmjfVUSGdz7mcbCEXEReAPhokWi1ZaVFZBg2oT2TRnPmeeK1MgXk/lnZMx43yiZi7H889K9DIW\ntN0o9qFjkx4Wf+rmlzZOKkQPhQOZ8n+87VYAnrn/burL5SbWpAknAIPDw+xTtc4j8YT7cHgC9NVD\n1/VxFUuHi89nuBH8rp5ekimVlF5TQ0wl7VuWSSQUUNtiXIWdQyDgoyoky5MnXKeqFTk9I0IBH/kZ\n9k4/VM1OkOiSdK3+1u1sfeFxAILRYv525+0AVNU3csoZZwFw3vkXHLR7/0zEewI9PDw8psGMM+cT\n8TifeP97AAhn+w5bE9W0sUBUYf1ivvjlrwNQWnboOaMHCyY9/MD9/OhbkpNaXqC5ZXQ20Ks68Oxr\n73D7ABxsVLDHkcV5QPw+HzFVI98zMOAWMEwXx4QPB4NUV8p9VFNZ4d6AU2m1d7QYcwuMlXeiQVq5\nGhKpLOFCyR8tqqhl+RmqI9WVV1FWXv7KFc5AZpzu3dPdRde+XQA01RQfZOnJsW0I+CVVZfvGNWzf\nugWA088865DWcyABunXzZgB+9J2vUSLFIKrDvHzu7e9nj0pezmVznul+rFAXRNd1ty6+V1WDHQkc\nYZxMp2ntkET0VDpNU52kI+VPHZgq+dNNHQ60hslHoDi19uPX4PeL6CgN+LGRl/tg63buv13SlJ54\n8D5OWH4aADd9+jMz2sz3nkoPDw+PaTBjXg/OXPWnn3iC4kJR66wJnPGHQs6U35cXBlitapRPWrZ8\nwojkoY5VHh4a4mtf+iIAMV8Gv5qrbtk2fQNiwu9pbSPn1DF7Wugxx7Ztt6t7TWUlbV1dwPga+ulg\n5AWuunt73YyNpvo6gipPeSoaqWXb7njqnGnjc7pE5d1Cdt66DMNw15+v9eaPpN7fpeAsY+Z9Hw76\niSgNODncwer7pfXk9pfWc/6lVwDwjusmnmH2WmbGCFEn4Xzt889SqNJBpuvudZKfC8JBHr33TgCu\nuPrtzJ1/8D6Pk5nxKTUh80f//f/IDrYBEC0Mu36xvoFBz4Q/XrFt/EpgVpSV0qmqamzbPmI+6vz1\nDAyp9oXZLPOamgAIh0MH7Z6vAZmMCOP+kSQDw1Jfn0imKVCTD3QsbEuEtM+wcVqIBvwBQupFEQwG\nKQiryagFBW77u/wBf/lYtu26PkJ+n4r6Q7q3mbt/I9MXXl6/lo/c9CkAauuP7yT6qeI9oR4eHh7T\nYMZook7HmPWrn2RRk7QLc8zx6WLZNgFNzOoNa9cye+484JUm9lRa2j33zFMAPP3APdSVS72ybUNC\nJdK3dHSQVSb8kYr+ehw5HOsmEAhQViRBpp7+vqPSq8DRShOjo2zbLZ3q5zQ0EIs5uaQTa6SaplEQ\ncbRJH5UlklEQH80wMCIdv6KlFZxy+ipAOiXt2Cqt6p576jFygxI08/ts/KqUOOD3u26somghxWof\n9EnGSItWKp+DAR8B9Z8965/iC5+QIO217/swl0+h4fTxzoxJcUoqIfSJD76PXP8+QJKIj9ThOXXp\nZqSaL9/yPQAqq6oOaR2dHe189D3vAqC6wHIHfyWSSXbslkYMyVTKS186znDuoWAgwIkLxZXj9/sZ\nVOb2lp27sTURooZ2uMUdU9+HhtoaACrKyg7aUk/S4cbW4c52N3xkbfHDZ40Ql14pfSLedNlltO6T\n5+epJx5j/QvPAfDMk48QUipX0Ke5FVfFsRilKmOhIK+T//7PnXtHa5qbdjiUsrn4qusA+NDHPj71\nk3Gc4ak6Hh4eHtNgxmiizmG0tbTwb58VxzXxDvxuW7LpHaaznr2dg3zha/8FwFnnnjel3zpJ8t/+\n6pfZ/Mz9ABRFI+7M972tbfSppHovkHT8ka8FLj9R5gNZtk1auZB2NrfRNyjBm5D/6Gii+fviVx2X\naqoqqVPW0ME0UocxI0dzs1csy8I0xPz3FVby/o+IVrjyzDMZGZGyz5GhITa//BIAjzz4AC+uFrdU\nT1szQdkdiqIRKlWCfVEsNrlWmmdpDY5KQPikVRfzyc99AYCIKmh4rTBjhGg+a194AYB//oePMLtS\nLsiBJi9OBefC53ImjUulKuNTX/hnCmOxA/1M7c/zAHzpkx+iUfUFzZkmXb1Sm7+3tdXzfx5h8m/r\nI+UeKYrFWDxPenCapgmabKOrp5+teySjIujz4VP9Po/2g2UYBnXVIkRrq6qmLEj3Jz+tKZszSWTl\nXpzzhhX84z/9CyBjSRyhmEom3SyT5j27efgBUQzuveuPDPW0ABArCFJZJv1Ty4pL3HMx/rrk9cUd\nHmXWiSsB+OLNX6aktPSwjuVY4D25Hh4eHtNgRmqizhtz9dNP8aVPfhiABfXl4xKDDxefodPSK6bb\n//z2TzSo/L3JSCaT3PQBGX3LcLurccbjCTbvlBK5vCm1U8bRrvw+nzu692D5g68HnJZupcUxQiEp\nuugfGCSj8ogPRyt1flNdUU5jnTQ4tqyxAYEj8TibdzUDkMqYhH2OJnr0A4ROon9tdRW1qu5+OlZX\nfs+IVMakX4L5fP4/vs5Zqv3d/jjuqlRylB3btwPwh9/9H4/ff4/so52hsVY05uJYbJzGnD+uvFu5\nRGafdAb/9G//AUzeq+J4YkYKUQfTNPnT7dKb89ff/waNVWJeHH57PLnYgypN5LLrP8I73yMC0u8f\n3/neEWh/vedufnaL3BDVpYXuDbezuZlhNRden+KD7fiwwqEAs1Si8lA8QVdPr/q7+bqN7DsJ7zVK\nkITDIdpVRdFoMjXlczwRzotvVn095cpEtSw7z8WTY3dLJwAdvf1E/E5vzqN/LZzH1+/301AjfUmr\nysun7b5yUcfY2T/KhVe+E4APf+Imt3JrMtLpNEMqVeo3v/g5d9/+WwD0XIJZdSJQw6HxhQPO9NGu\n/jjnvFm29Q+f+/yROY6jiGfOe3h4eEyDGa2JwljH+F//70+467c/AaCpusRtins4OIPI+jNB/vvn\n8oatqBxfN59UY4zfcekF1BVLgp1lWnT1OMGkliklaOfXN1coZ3tNZSUFEenY//K27fSrfMXjOTil\ngavVaJrmJmv7fD5yqu/B0Ej8kIMjrnYeDtJUW0soKCb8npYWBtXgvumeF8dkXjRvLhE1YC7/sdF1\n3b2um3c1EwrK8voBQkuW7bQ71NCdJsjT2Efbtgmp+vc5TU3ECqWQ40i5eDQ0eofEcmo6YQX/8c1b\nAKY04M40TRIJmXv25z/9kV//5AcA+KwEdRWi2eu6MXav6zrdA7L8G6+5gRs/+jH5/jgdvjhjKpYm\nwxkwd+27/44eZd69/PT9FEXlYTscs8dWD+7oQCc7t28DXilE7/z9bQAUGFmw5TQnUynau8Tsm0oq\nk23bRAukSqS+poaiwrGO944rIJPNvgpG46GR71Jwzn9xYdQVcOlMhsFhSZ1JKffG4WDZNmVqFnpT\nfR1+n8GeFulHMDQyckReKrZtu0UR0YKCCYW8BgRVnk8wEHD9soZhTypGnaT8lOnHMQgDhol2mDF9\nTdNIKYWhtaODeUHx1fv9/nHCyRkrk83l3JfyVLCxKS+We7F75wY+83GJNXzpq9+kprbugL81DINY\nTAYuXvfe93HVNdcC8Iuf/pg//FIUm7ryQmIFY89kZYkI53t//2t3KunFl152XLqrjl/VxcPDw+M1\nwIw35/Npa5Uctq/8yxeIt0tkvCASOOSWeW43G9MiWi/J11/+9v9zTZtMJsM7L70QgMroWCJ0c1s7\n3arzz2SaqM3Y7Jvy0lJqq0TDHadRGAY9Tsf71rZpRZ6nQ/4wNCdwU1AQIVYg5yESCjOSlHLcgcEB\nUmqW0HRvOMd6KI7FmKuyI0IBP21d3W5TY8uyjtj5cObFz5vVNKF5rGuaq1HvbOmgb0C07LDfOmhw\nSQNythqFbfoIGqZapzktC6OiTLTM2Q0N7n2j6xqptCrwaGkjoBorN9TW4FNNk6cqDkZT6p4rrObH\nv5Hgbfgwhta1q45l3/7qf7Jnk+R3lxUG3eKWnGmTMsQC+5ev3cLCxYsPeRtHm9eVEHXYu3s3X/nn\nzwGQG2pzW3YdqjA1dJ097eIL+98//o26hgYAbv3VL7nz5/8NQGlRhOG4+He27tw14YNt27YrmaMF\nERkNASRGkxi63Ex11VXuA+zz+djXJkPr2jo73Rv/aAjR/X1/jvD3GT7XL1scK3SbUyQSo3SpF8Vo\nMnnE900qduR6NdXXUVMhL5nu3l72tLS6VWBHqvJL1zQaVYf5yvLyCYWMHJt8v6+jh+3N4jYK+zX8\nes5ZaNJtOH9JmToFUTF7yaXJZJyZ8oe2z7Zt41dCsb6ulmpVRWSapissO7u62bF3LwBFhTFmNUi2\nRzQSPqRxJKOpLLWLVgDw79/8jptWdjg8+9STAPzwlm/CqNxD0bCf+Ki8oOavOJ9Pfl568E6lyOXV\nwjPnPTw8PKaBcfPNN998rHfi1aa4pIT6ptmcesZZ3HfvvRQGdbAPT1sK+H0UhIMMpyyWrTgV0zT5\n3re/StTIEgkFsCyLva2tjCQSpDOZcdvIN8/LS0ooCIepqaygp2+AZDJNT38/FaWl+AyDaCTiagiG\nrtPR3UU2lyUxOoqu60dE08vXsgzDQNM0fD4foWAQv99PaXExdTXVlJUUU1VRhmEYhEMh+voHaGlv\np7u3j76BQXI5k2w2J8PNjsJQvYqyUsKhELNq6xgZHSWTzdLa2cVIIuHu95FC13Xqa2oIBgKudrc/\nlmWJNmlDJmfS1TsA2Bj+ILpmYGs+sHMH3S+fbpHJWuSyWZYvmcNIMkswGCKVSh2SNqppGjnTxLQs\nMtkcsWiUbC5HQLmEJFgmLohQKMjg0BAjiQT9g4OEwiHCweCUz2HAZ9DV2sxQdxstHb2sPGOVFCIc\nRiS9obGJhsYm3nz1NTS391A9awE7tm4lFvHj9xlseWkjlXWzaN6zh3kLFh43QaYZbc7Pq6k8aI/P\npx5/jO/cLI0Pqgr9rm011dPiUy3y+rJB3nnDhwD47fe/TllMTN3RZJKNW7YC41M0bNsmrEyfuqpK\ngurzrn37GBkR87+0KMZs5SKIRCLuPqXTGXY2S4XMSDx+2Kbr/kLTiWYHgwFKisSsjBVECYYksTox\nOkr/gER3+4cGSasRFMYREuIHwnmBFITDzJs1S30O0dwubo2WtnbXVN0fm7Hhf5p2aCnw4VCQpUuW\nAK9s8uH2+0wkGFTXLBCMsL1ZMgSKCgqoLBOzs7Wjk3RazPMDZQ04xxkOFXHFeUsBuO/pTQwNiQ/c\nN0XZlH9tnQmicxrqXX+ypmnsaRF/ZHtnF7ozQsTnY5aqyiorLZnaxhSd/SO8/9P/CsCVV7/9kH47\nGU888gi/+MF3AbDjPWR84m9rdbNRAAAgAElEQVT/2vd+QtPs2UdkG9PFM+c9PDw8psGM1kQB5tfK\nW3hH++Qa6f/96pcA3PmrH1JRqAaCMTVt1IlK9wyOMJASNWFWRcidWbOnpYXe/rHxuo4WUhSLuc11\nR5NJdjVLI1zTNF1tpLKsjLmNoolquu5uq39oiL1Ki0hlMlMqacwfPmaozjl+v4+AaqtWUlxELCpR\n0HAoSFpFcfsGB+lT44FHk8mxiLyuH5P81JrKSubNngVAZ3e3e95yOdPVpvYnZxtuSoChH1rUu6q8\nlKZ6uQb73w/O/9u7uujsFQ29srKarNPisKOfy1ctAiAWjXDPY2vkd1b6oDmsmZzFkrlzADh7+Txu\nf/BFAOLDA+OO09mjyY7Jsiy3RHNOQ7078lnTNDq7e2Q/W9uwrDwtW13jOQ0NlCttdEpjm21oHZAg\n0C//dO8rcqcdnIGOU5kEAdDVKbnV3/36f/LiU48A8P6bPsc7rn8PcOyT8Gd8sv2BhKfD9e+9AZCe\niQ/fKRVIlcVhTCt/5vbEOAIvGg4ynJDUFkMPuVM6e5X5CzJiwUk9qamspH9QKo12q07iID44W1Xw\nBP0+t3dkNpdzk76zuZy7b5M9PLZtj3vAnPUE/H4KVb/GitJSwspUz+ZyDKksgpb2dgaHR9TxWe4D\nf6xuVtu23Uqh6opyRtUUg76BQbcibX9TXmOsR0La8hNSTUF0ppZi5bwsCqMTR4E1TXMzAfoGB93g\nu6Eb1NVK0wxdg5f3iAD4yNVnYSpBdecjL4Itn33GxHVNQZ/Ouq27ADhhXg03vPl0AH70x8cxVdTe\nRse05Zr49NyE94Ku6yRV27re/gGKVFTb0HWCqvjB5w+RSkrxhmGMCcs9+1pwzlb5VBLzNagolP35\n9y9+jv/68c/UOsffN47wXFBX5ZrCW9u6Jl1tVbX0BPjad7/Pf3/7mwDcfccdrDpbGqIca7PeM+c9\nPDw8psGM10QPhffc+AG6OiQosP3Fx4gVHHz0smNadQ8kqC5ztBaNHmXC25ZFgdKiamuqKS8W86i1\ns4PWzrG3r6P52IChtKr9O0M5y6QzGbf9XT5O5BVEMwsq7TMcDlNWIoGioliRu0wymWJv61iZZELV\n+xt5+aA6x75eWdd1t9a+IBKhvUs0md6BgQk1UICsaREtKFT/ATs7On6BKWwTIFYYnfT6O8UDIyNx\nIgVy7X0+jUJVvnjywgYeWyOt4dZtbeGSVZIo3tozzAsb5XtNsyZ0Q9hALCL7cMdDa/nXGy8F4JIz\nTuKex8S09+kmWUt+m8n58BsS6NvfvWOo/w/H4+4Y5sqyMoIq3xY9SNoUbTVsjBUp2LbtBp90XadM\nuQIOpMk76+zavZnVzzwNwJlnnzPhspZl45QuzK2pZNcUzPubPiP53YVFRTz28EMAXPWOd7hlpccC\nT4jmUVBQwIfVTOyv/1svfXtfBiAamXzWt/OAjaYyBP1yITWgX9UoRwsKmK3a1hXFCl0B0NLeMa7i\nJ2+F+BzTO+Af9wC7QjSdJpdTD4yuuw9JMBh0m1AUxQopUwI7FAy6FTW9/f0MDInbYWh42I0467o+\naQrPscI59lAgQE2ltE+Lj47S0yeR6olSaRz3imnrnLlc/JE793Wxfbccsy8wtZeCkznhM4z9roH8\nm8vlXIGUf/1EgMk2Tl7UyOCImMlrt7dy/gqZEnvDm0/FUq6G9Vt2grq39hemtmpSolkp7n5CRnN8\n/Jqz2N0mvswNW3fi94nrJ2WGiKhjy6ST43yujhsomUoxpNw05aUlbsVSJGDTp7aVtXwE8woEnGNv\nbmtzh9MVFkz+YnHORXHEz60//ykAp686c0JX0M6Obtc/CrCovtr9vLW1c8L1O7zvgx/mR9+Tgpa7\n77iDd6mWlM6z82rimfMeHh4e0+D4Uj0Ok+1bt9K8V0YOx2IxGlUeYWVV9SEHQ6prJGL+sX/8HF/7\nFzEdUvEewkE5VaY1XisZSYgZVBILu1qKOPLlP3ObGomqksj2ri72KPN5siT0/JK9gH+8JppVAads\n1hwzNwsKiKpAUXFREaVFYlbajJ9l74z3HRwZGTPVNe2YRzYPhHN+ogUFRMKiGbZ3dzMwLMfi22/f\nNSCeEs165UkLqa0Q83PTjr0caiptTPVBeKXGpcznbJaBIbE2NN3A6fOtaxoDI3LeQ8Eg5yxfCMC3\nfv0AL++Suv43nraQd73pFACG46Ps2ic9Hfx5443z8RkaG7bvBWDDzrm846KTAdiypwNysq1Ygc6s\nOski2Lx9x1h7vXwtWdcZTohmPDQSpzDqzI7X8KnlK2vnMdQr9yi50TzrJ+ua9vNnzSI0SVPm/DLf\nwXZ5Jp996skpDXU81EShj3ziJgB++dOf8PCDDwDwpssuP6R1HAlmhBDdsW0rjz/yMCCz3Z0Z8Sec\n+AYWLBI/VH1jE42zJIpXXlFx0HXOX7iI933s0wD8zzf+HZ8pkVhD18caOmg6PWqkQW15zPVFpdIZ\n5jY1AhCNRFzTfk9rmxvqP1ByuiPkDN0Yi7BrmpvcXhAJu3XrVRXlrpA2LZORuGr4MTTkNikZTSbd\nfTtWJruGTdaSbRuahaYd+IHJn2pZWlriRpj7+gcmdGtqwGg6S4UaJ3H1+SezRdWwd/YNYhiTn++J\ntl1SPLGPzXHrDI2MkFQ+UcPnB933imV03cdZy0SI/viPj7OrXe6DRMakrkxefFeccxK/uEdN1Bwe\nwuebWNr7NHk53PfMVv7pvdLc5sLTFnHPo9K0ozSUpaxIBP8bz1rBXQ/JNM6SwqCbXaLrupvZEI/H\niYTkvkllIaDLPhcWFlDXuAqAreuewVS+ZMPQSSTkc2tHJ3NU6t1khR66rhE05KX/h9/+alIh6kTq\n59VUjlNQDoUbPvghvnfLtwEYGR7mqmveofb51VEQPHPew8PDYxrMCE308ivfyuVXvhWAF59bzd13\n3A7A0489zD23/waQoMuKM2TU8RuWn8qiE94AwMIlSyiYZM712eedB0AqleR/vv5vAFTFxtcVZ1SH\n/Py3Xixa4CaxjyQS7FXtvrDtA2qgssiYBhYIBPYrzZTf1tdUu52MNFu2AaJ9dqsxzPHRUVf73N/s\nfbXQkCg5SMK7qTTRkD8zxZi/cjvoAUZV5sDQyMiEGoZpWei+IJeeKdd10axK7nlyIwAj8RSFkanf\n6sGAnwKl3dt5AUVN08iqtoPdvf2uFhYJh9wk9vz5XVnTpKlJ3EOnnTiH3R2SsZGxDHSlWZ6ysJa2\nM04C4M6Hn8e0lHa7n4bnxJzau3vJqSbfZ588hwdXb1bHmHADXZ/4+7ezcbuUBbe1txIJjRWQOJ3K\nhuNxN/fT8AUw1W22d/sGbvwHGZMciYR5/vF75dhtyz3vfQMDbuf8qkk6W4HtWoSDXfvY17wXgMam\nWRMsO30+8JG/B+A7X/8qSaVtR1UT86PNjBCi+axYeTorVkpicsu+fdz/57sBeHntc2xb9ywAm9c8\nRTgqN/0bTl3F3AUSxa1raKJxtlSJNCm/KsDFl1xKn2rv9vuf/BeVpWJKJ1IZtxu3po2lfvh8PtLq\nYWtubXPNvql2szfcOuaxyLBt2/gMuVw+w3D7Qg4Pj9DdL4JTHqIjKzidCDFwUBN8bDn5N5nKuYPd\nUmaA9KgaYzKV9dgaVp6o7VNFC7lcbsIa+UTa5PSTFnD2yXL9drT00tMvZrLfp3EowzeKi4rGCU93\nlyzLbWuYSI665yYaiTCvQVxEezrGqtNypgXK7XLuKYt55hd/BqB3KMmqE6UP6o49+7jk9PkA7Gzp\nYf0WSX3SJ3nhWrkUz20SH+oFp8xm6QIxq5/fuMX10abSWW66/hIAPvWNXxAeaxzgCrahkTjpjEpr\nChdgaiodTsvyxIN/BeBjn/ki/b3iEtn18vPuPui6TmuHfB+LFhIKjk/FA/FaOX1xc9k0f7xNeo5+\n6vP/9IpljwROL9N//vcvk1Iv3FcLz5z38PDwmAYzThPNp6GxkQ987BMA9PW+i4f/dh8A655/mm3r\nVgOw5blH2fSsBKXwhaiol+DT4hOXUqNqpmfPX8A73y11ugP9fay+/08A9AzEKS8WV0C++WXbNq0d\nkuc2MDx8SFqhpmmuOe8zDLdrfb4WOzA0THefaJ99AwNurueRdKRbqtt61jII6Nkp/07XYCQpWnJF\naRmnnrAAgC172uhSkfOpBGFtTcxMgFBAo0dp24Yx/pZNZ2WdFSUlrFo6l5oyMeGe2dhMd79ovgHf\n1LRQR+t3egg4uKORLYtONZ7a0DXUpgmHQlSr7bZ2D+PERzTZQQBWLp1LTM3LWrNpLxefLm6HkuIi\nhlW2wdsuWEpnr2iy3b3dTBQLs2yLh56T/OUb3nIGSxdKx6XH12xyS2C7+4dZtVS021UnL+GZtRsA\nKI6GXDMhk8mQGBWNra5uDnFlLY0OtLFj0zo5H5bFp74gbqzPf/xGEoNjuZtOnnJrRwfzZ4lWvf9l\nHSs7Ntm99eVXHsxRQNO0w+qwPx1mtBDNp6y8nHcoQXjZlW/lEZUSseHF59i6/jkAAmQwB6SO/Zn7\ntjOk0pcq6hqZNV+i/KGCGJ2DTqVKkppySSnSNJlYCJLK1NUjCdGHalYbhuFG0PPTnZKpFD198oB1\n9fW60WpD1494FNJGI2PJOg3NQtds9/vJcJYZGMlQWy2m7bVvXMlLOyWtp6Onx00qP5Bf2C1eyOhE\nCuTY+wcGyGQk0uv4gp09daZmnrJkNssW1pJUQqu9Z4BhlakQCU7N4HLOY2HB+IfQ2ad4IkFc+Z81\nNCKq78Dsuip3nIUkzOeJE9VDobKqjNOVYGvrGmRI7dvi+bPYtnM3ABUlUd592UoAfnzHY4wmJTE+\nvwLJtm16+kSQx0ezrFgsL/1gIIhty/kdTWUoL5fsgivOW84z6zePHYdal67rjKhhhxX1hhsj2LJ+\nhPSouEG+/51vcPtf/gbAJ7/4H/zHZ8XvaGhjvVH7BwcZSUjn/OgrYgtyHvyGQXJYMkV27tjBvPnz\n2Z+dHd3MrT541szxiGfOe3h4eEyD140mmk+0sJC3XP02QCL7zzzxOABrnn+W55+QVltWzqSpRoIi\nhp1g7wbJu4uPpvGpDjzBgG9cZHJEBR3aOjsPuVGyU64Y8PvHEpk1jV5V4tjZ08PQyIi77NGIuDtH\nksr5XK0zbOQOPmxNsxlKiAY4q76OD119FgA9QwnWbJZORLlsxtXWJt++jakiz4tm19E/LNpaZ28f\nvgl+m8yY1Kic39NOnEUk6KOtZ0T9ZgDbbe82hVJA26ZIRZz31+wdd0lrXqluNmdRojTWlSc0sru9\nXx3DJKvPmly4Upo7//be1azeKIMSS4uirN0knzfvbnPvG80XJGuqRs++sbCYrmloiHZ712PrufRM\nsZDqKksxs05ARXPD+aecMIczl8syz67dSCwigVBd1xlV1szg0CDnXnqBfO7rZO82Med3bFrHmucl\noPS2a9/J449IrfoT9/3BtTw0TaNNlTIvmjN73PG7+amGRmpUrsvjDz80oSYKEAlPnMB/vPO6FKL5\nGIbB2efLDXT2+RfwwrmSyLxh7YusfvxBAPrbm6ksFZ9XTXkRBcrM7zNs19TSNN31l+VM67B7bfp9\nYwn2rR0dtKkmJelMxn24jYOkSR0Otm2TzKohdP4Auj160N840fqBeJZFc6S44Ma3rKIoKhHpX/3l\nWVIpMRkDBxCgzosolYWVS6W+PJ2x3G7xqVRmfF25++IyWDJH/NYLG8sxLYttzeJGae3uJxSY+ovM\nsm23m//+7oZB9fIaTiTcl5duGDTVSa33nLoy1iu3hZGfpiEHLuu0bRzDr7m9j6/+7F53W/MapC9A\nQdBHJCjrf+fFy7j7MfFl9vX3jEsuMFVa3WNrthAJi984m7PcrA7D0LFVYUZTTRnnnyam+iOrNxBT\nngpN00irfgojQ0OcvupMAHZu3czuLbJdv2HxtFIwlp96Gp/95y/JMlteorN5i7s/jvIwmkoRVs12\n9nd8W6bsz/bNLzEZ9mEm2x9rPHPew8PDYxrMaE10QW0VQVXz/tKetin95tTTT3f/Peu88+W369ex\n+nGJ4O94ea3bjLeiuNDNu9M0zU16Pxw90TUTsznalfaZTKUxTTHdjlbCvONG0HQ/TXXSUae1swe/\nIUGKyUx5TbMZiIt2sWhOEze8WQIi8xvL+d7vxfXR0tGNbwrllhlldZ+5fDHnLBNN9Cu/eIjCoBOI\nGr98SoXFqysqWLFYNNHCSBjD52N3q9Mmb4TC8NR1BMMw3GbV+eRMk/auLncZpwVhLFbE5WdLDXsm\nZzOk6uUj4QDZrOx3QThAYlC0tJ/d9SR/fEg626/fto/liyWifd0lKznlhFkA1JQW0tcv+5/L5ihQ\nSfLfvfUhDDutzoXmXrPBoWHmKy12bmMtG7duA6CrbwgtJseiDyZYukC2dfLiuezasxeAsBqiCFKs\nUVwirquTV6zkqYfuAcDKjvL8U6KJDr7/Rhoaxdr4zL9+mX/8sARpNXNsLHZ3b59bDmrma6I2+FU5\n63B/LynlRth/vPLLajbVay3ANKOFaD7za6vwK4G3uaVjSr9ZtOQE999V55wHwMZ1a/nZj38IgJEd\nq1pJpVKYqkHI4eD2wczl3LQmTdOO2Pz0ibBt6Y4OUFtZSUmh2Hqt7WkwJt6uY8IPxnMsnC0P53sv\nO42TF8hs9vue3cbazbvVBnLo2oGFfzprUl8jv73q3JPYqMziTDqFabyyz4Bt2+iqTn3RrFqWLpAU\nn8LCGG09g7T3iG9Sw4Ip1EU5AqAwWjAuid/ZZldPL6MqFUjXdTfBvrG2hkvOEjP5sdUvYaqSn4DP\nwBmc8uzG3fz1KamauvW+5zlpgbREvPZNp7Fq6Vz5/MZT3ekCmaxJLisv6Oa2dk6YIy+1C1Yu4aFn\n1qn1j+2zmcswr1EEzlnL5rNxm/if23sG+e3tjwLw7ivPYskcqZo6d8USNqpu+ZEQ7tvJNE3iymWx\n6pxzufXnck57WnewY5uY38m8BPYLLn4jl119HQD3/v7nY5kZw8Pk1DOg57UQtGzbFaJmZpTmPdKY\nZOHixZNclWMxeObw8cx5Dw8Pj2nwutFE85lbXemaiFMdllWnGivX1dez5gWJWO5e8whOFCGVyU5p\nds/BOJJz2h1TXJtkz2xsioukfnrlCbO481ExN4O+iX+haTbxpJizi+Y08neXiwm/qLGczXskoPPA\nM5tIqdHAwQMEk7JKc6urruZ9V4gLpSwW5t6nJSk7GBirL7fH/c5ya76XL2qguEgCfuWlRTywejPN\nHRLcm2pQyTFpy0pKxp13p1a/s6fXtQZM0yKiErkvO/sUIiqLwrYs162jG7qbVfDAn59xRxR/4Opz\n+NDV0uE9k82xcYcaV9wzRF2lmNI506RUDYbrGxx0c1IvX7WErWpWU1d3h1tHb5pZnt+0F4CCSMid\noHDxysWs3SL5zrf9+WneefkZAJy0cBZ1VaK5JuKDbraEpmluqeQJJy2lpEI0166WXZiqNLR5zx6a\nZo3NMvqHz8qY8ReffYqeVnEj5HI5elXHsv1r6g2VQ51OJ9m9cwcwuSbqm8QKOl55XQrRfOZUVxBV\nqRUb97RO6TfhoKTMyMTLsW7zUyrFeRVJ5WQ/Q77sOEHq3NyGP8I1Fy0D4NmNe8ik5aENB3zjBJcj\nWpJpi5ISEWCXnX0i8+rU8DLDz0PPS833rpZ2QoEDvwRypo3ukwf+vZevZFa1CI41OzrZ2yHmeEk0\nhI3jHtHcc2vZGnVV0u7utBOaKFQjQHKWdLDvHRSztDQaOOhLzc6bIlAUjY4ltWuaOzbFNMcSyy0b\nystECF150Skkkmm1bYuhuAibosII+zrlGBqqSvjUe94IwIUrl7jukmzOZO1WEXLxZHrCHqK11dVs\n3yVukYKQn3crQfj1n9+DX1N9ZTMZ1m2RRiMLZ1e7x3LGKQuZWy/7+eDqzTzy7CYAZtVWUF8t527T\n1r5xKWeWStQ3DIOly04FYNdLL2Dn5Bj7errzWvzpVFaJL/bjn/knvnjTjQD4ddOdbFtTUUF+9wFn\nbKKZTdPXM/lQOsDN7nit8NoS+R4eHh7HGa97TTSfk2bXk1U5eDnTYkf7xG/Msc5K+d+9cnDcscAZ\nwDuSMdCdwMw4LRTSOdFA3n3JCkpjkmC+ZvMed0bP/lqo0yYtbfpZsURMumXzqqmpknK/u5/cwpNr\npLQw4LPRtYnfze6YZyPEjW+Rxr9z6sooK5f1/OnH93Pq4lkAJFOjdHY7AR3NjfbGCiIsni2BqJKi\nKCWl0o3rpe0t7GjpxK+Uq6nYBLZtu8PX/D6fO6+pubXNzX3UNM01ycORCH//josBKCyO0qfGcb+8\nq43+YdlXv9/H3Do5nusvO4NLz1kKQC5nEVeaa2FB2A0eZrO5VwTOQDpDFau81YHBQRY3iWZ56dmn\n8rcnnlUn1GTrbunotOKE2VSXi2Wg+wwqS6Uc+c3nLHXv6aF4iqA6Qda4e9cedzMvP/U0AO6/63fk\n+iXQt2f3Ljev1M0FBS5585v5v1+Ilrx9w1PuLK9EMuV2d8o363PZDAOqbHUy/P6jk4lytPCEaB6W\nNTZjPRYNHWRphXoAEqMpN/XkWKFrEjUHaKyvZWhIblY7z64yLZ0LVfOLM5fO4Rd/kc7oBlkmuh1s\nTWMwIQ/hwtm1XHiKRJXnNtaxYbes/44HVpNVs9DDQf+EAsyyLNDlnH7grWdysoqqN9bX8fsHJfI8\nkkjy3suWA/Dt3zyAL08YZ3Oy1tpYlLNUZDsULsBQyea7W7vZtred8BQG0eWPsKhSAtzn99M34DT/\n6B03fVVT/ryFc+ZwzinSUOXBR9eyp02O/9b719NUI+uJj6ZYPFt8ihetXExWpWNlc6brFrEty53E\nmt/ucPw+WtRVS3R+eGSErIra//21F/LYC2KeZ1JDdDgNSwaGWHniHOfXbN3dDkAg4HP7iW7a2UJX\nr/gs/T7d9dP4A0Hpzq9YtmIFAIUlZQwrIdrb1TVh9onfH+Cmz0p7uw++6y2uH3tweIiaysqx8z3W\njY+h/p5XrCefaPiVrfWOZzxz3sPDw2MavO410XwlIBYNjwVdDjFCmJtkpPKrSTyZ5dLzJGK+bW8X\ntvVKzaGyvJy3nnsiIJrc6vVbASgIGPtpkKKmJDNQoma+n33SLFaoxPD+hMVtf3sGgLaOdiIh1Xlq\nv+25Wp8vwofeKjX1J86toalBNNG+kTS/+rOs5+0XvoET5ktC90giRWnUMT3HGlLXVJQyq1a0vpKi\nIvq6RbNau3k38ZERigsPbkE4FkNVebmbo5kYTdLcJtqbmXctLcvGFxDz9bM3XEbfkJj5a7c00z0g\nQazuwVEWzRZNLug3qFWBr2BBhPjIK8tnNV1nYFiCeNlsjqAqDTV03S1v1XWNAkMCUQtm1fHyjr0A\nDAwOceoJUpDwxAvrSKgI/m//+gJJU357/7p9DCQy7vac7IJ0JkNiQNwIQSOgcmmhuraRktIyd/kK\npUGWV9TQuku1sDtA1sjyUyUQtXTFmWxZ+4Ts59AQ9dXV6hyOnU9D10mmMq9cSR6t6pq+VnjdClHn\n4Q76fa7ATGdzrhSws5Mnzjt9LnFj88c2Pdg5lkhBEWcvlyYXm3c0u8LA0DVGM7KHN122ggqVRnP7\nw+vRkYfK3i8xPWspIZqFM5aKD/IdF59CDjn2X9zzOE+vkQcsEvAx2RlImyJcrjr3JIoLRRgtWTCb\n8goRhP9588+ZWyf7c/2lKwmFo85RueuwbJtwSNYzt6GaaFSqcfzBANs3SXT6xZd3Ep5CWpNtj/U7\nyE/D2dPa4laiaeQ3z/Bx9cVSVz6vvoJ12ySqXlFSyNrNewG45sKTaO6UB7+8uNBNWcIwCKlZ7bqe\nJ4QiAeqrZJmhkVFWb5AGJC1d/XT2Sm/Rtv5ROvpESLf0jJBQ/T5z+Eiodn+W7cNnZdX+9zCQkeMP\ntA8wX2VOBIN+0umU2laapCF+1qztJ2aKK6AwVkgo/MqI+Kx581m3WpqONO/e6fpEC6LRccs5lUcf\n+/Tn+PB1Uq2WTqcZUYPtwqFg3sBFGbdzIFLpqfevPR7wzHkPDw+PafC61UQdrcC0LDffb6pxoXqV\ndLzlOT9wbKPyugYdA/Jm/8o/vM2dK5RKJcaSsi04e5nMkVrQWEk4IprcnQ89R2iCQIxla6RzjgZl\n8cxLkj/7vi/fhqZWmogPEfY5dff7v4vl+0TGIJ2T5e95cjP3PCkR/B/86Xk3R7G9d5A5quXg925/\nipjSVgN5zZctS4b/AZx6QhOBoCyTSWXYqMzcLbuaKYsdvJVazjRpqhNXQjQcYqea+R6PJ8bp0k6h\nQkNNHR9/p3T2io+m2b1Pkt7nVIW58QoJgr20q5OtzRJkCgd9hJX2ef+ja9inkv/b+hJ0Dojp3dI7\nQme3aIGWrpNTj2Eyp7lFCNl0kmzWyQdNu/tVWRSmoUoyCpJGGSNDkiGwfFEDN3/kSgAikRB+dZ2C\nQT97WiWQ81//dx/PbJb810ykjFFNNL6aukZKVQFDPiedfAr33ylaZ39vF5Z54Hv95OXLWXb6uQBs\nXfMEIwlxfRSEQ+PyUHNpNXRwcJAilR2Rz67OAweejjdmvBB1HgzLssi6Udmxv9u2fcg58k4zEMuW\nMRbHkpFkhotWnQLAFecu51//5w5A2pI5x2lrAS5dJdUhpcXFPPqiVJjY5vgaeSftJWv7iRWK0Kqr\niHGKSmtav62VNZvEh1oaNdyUoHyyOYuAMslXLqynRK2nIFqAX0WAn9+0my0qemyaNltU+7rtLX1u\nfwNJc5GHVtd1BuNiat/24Dqe2yy/9fkMHnh6LQDRiO+VnUrycPxyJUUxqsrF/7enrZ3+wYn9b8GQ\nHMM/3XiF24NzyLaIK8Hwl2172dOl+rtaJqUxEezPbGnn/pdVVgQaWctJMs9gOmlNZs51F82uKaK2\nSFwkJ82vI6wa5syqKVLueS4AACAASURBVHOT8+fUl1Oo9mHH7j0sWSDZCbv2dfF3/yJ9HBY1lnPy\nYvEnp5Jp954Oh/yuIB8aGiaK7HPGKiBlyLWpqK0nMkHzlfqmRvzB6LjzdyDCkQhXXfMuAP79uccZ\nHpYXek1FxbjovINpHR9pgdPFM+c9PDw8psGM1kRNy3Zn7mjaZBXkh87SZWLG/flWP5Z1bJzgjmbg\n84W57nIJfAQCfprbpEAgl7Ncl8WqZfPdptLlZaXc+/idAIT8Y2qBadkUqoDBGxbMIaVmGn3wqnMY\nVvXyf370eYpU8Dtf59OAhBpC11RXx/WXSp7h7NpSGlUUvrAg6kahv/HL+ygKi1b6iXed744nfu6l\n3WxRNeKrN2x2u7Nrmkb3oJiAbT1DnH+qBM+eXLuduEqK9x8gm0KCSfL3xtpaOrrFBO7p65swRzNj\nGnz8WinXbKwp4x//3+8BeGDNXjKqg1Ta1MmqgE1jTGdRnZilkUCWeZUSvKmvKHQ18brKEhoqZZmq\n8iJWb5RuSg+ufpnNu0Sz3t3cOtZYWdfds3zKkiaWzJHg3rL51RQ42mpdJSWxsRlfjvqZM/O1Ro1e\nlUXQ0tXnBt90K05cFzfKY08+zZvfIq6AOfPGus7PnTefUETuCfMgpjyIxeA0OC8qryWZkPOcNc28\nRuLHV2n0kWBGC1FNm7qf81CoV30Vc6aN7xjcFBowpFJYbrj6fE47QZKsd7V2k1IPtqbZGH4xBy85\nYxHtfeKP++7tv2Z3i/jF/HlD1XTdYG6jCLxzTp7Dvl5Z3sTg5h/cDkAqNTKu3tqphx7N6Jy1QtKm\nrjh7CY3VEnmvq66mQM1d9/kMtjWLgHxm3XY++3fiZzxp4WxX2JeXFLqVX0+vs133QigQ4LqzpfLn\nLeec6Eb8i6JBBtWkzMLI5P5Q0zSZra5ZfHSUXjXD3rKscWk7WVMEzDvffB6Xn30SAB/4z1vZ0KbS\nlHImVTE5/tNPqiagEstf3NpCWJnbX/vYhSxdKM1qstmcK7x9Pp3HlRvlH7/9O/apaH5NQwNnv+kK\nACKRAvflqOk6bc2SebBt706e3ShRb5+h0aBSqOY3VXHqG9QkgNwk96GuEVet/AaGR6gtk3siaKXJ\nWvL9uvWbWLtGms/kC9GS0lLCSoiOqPN8MBwf59uvv4Hf/PCbACQSo+7olZmIZ857eHh4TIOZrYky\nPeNhXo0kHe/fLi8QkEBAztbdxG2foY+VCh7l8s9MzqS+RkoLLz3rZEqUqf7gc5vIZiWSa1mwoFE0\noj888hILZouWOb+pih27d7rrUmXVlJYUceZS0Wh7h1PMbZBE6c/eciuJuHQl8vt0V7PPmTbl5VLP\nfeMFyzhpnnT1iUWjNNSJ6RkKBl1TwO/zcctvZEz1dW9azooTRePRdcM9h7VVlSyZP1ut/1HUzDp8\nPp3SItFkGmsr2d4qWtEjqzcSCU5+C5vKrK2qKHcnBPT09ZPNa3rtngdL4/zTxU3z0befz2NrRGvc\n0NzPiXVinn/smou44FQJ0I3EE9xxv2iHj67ZSW2FmMarVixgdEQ0vEgwwMioWAbf+92jPLBWNMsL\nr7iedyuNLzk6ytxFss5oYWxcAMft0QC07BHz//677+DJh2SM8e62HqrKZN9OXTJr3LE7uc99A3F2\nKgsg6BtrKm1oNn6liaa1CE8++TQA511wISUqUq/rOnMWSFbH1pc3uBH2A+E8Gxe+6RL+93vfAiA+\nGqekSNwO2VQGf0hcHE5HsNc6M1qIHu2WWkuWLmPvhicBiITDaEjaytESoc4jP5LM8XdXSZXI/KYq\nMJ0GE0nXd5U2dU47UQTSaUvqOHmxPLQf/c9fjs2RtyESFjP0qgtWUFsmN/pP7n6B+KjUsydG+t0R\nH7YNOTU589LzVvC2C8Tktc00pcUiRKorK12TP2daBFWq0u/+9hyLZslL6eIzl7kd9RPJNOtUW7ih\nRIoN2+Wzrhs4mVODCZPv37MegP/5y0sEbXn4w1rKzZTY/5xblkWxqrTyGYbboi2Tzea97MBUQuXc\nlcv50ofFLxgM+HhsjbT2K44EuOVTMhm2qabMLWDo7h9krzLJ6ytLmF0nLxTNtF0BNpJI8ZWf3g3A\njuEwn/nyd2T5ptns2Cz178NDg27qkKZp7jDC/V/Es+dJzf4177mRtOr9ORIf5uW1YoYXFgTpUon6\nsWjETW9LjKbd9oA+Y6w4xEKjUr0E9WyQJ5QQveUbX3MbwixafIKbvhYIHNokzrqGBk496zwAml96\ndtwLK6gE7WQVUAtqq9g+SfOf4xHPnPfw8PCYBjNaEx2MH7i8bLosfsPJtG5+4ahuI5/RtASTli2Z\nz5tWiRYYi4QYHJLAx7PrtzMUl88nzp/D2y6Qhsu6LloRwEs79hJQaoplQW2VuAUuXrmIvz0t2tGa\nTbuoLFYaiN8gq2qyZzU08InrJGo9p6aI1g7RFirLKyhWmmgimUZXmtjWPZ0MqLHHv7l3NXUqOv3J\n797F1n3iIhlIZMAJvvgDoKLfRT4dVG23bugUqQIBM5cjp2bc+3wWkw2n1jTNHSrXNzg0zoR33Aem\npXHuSjlHX/rQW91uR1nLYv1OMYHfeMpsZqvWdjnTwlYmbXffIC/vVon3DdW8aZUE1jKZrNuO8Me/\nf4idcXFDfPCmf6C/R/Jh7/rdr9m9XdwFwaCfpSuk9dwZ572Ryuoa9X3IDdxZlu1qpn/90++59saP\nAFBWVs4Pv/1VAJ5+9AH+4yd/BuC7X7heLi4wODJKa2efXEvf2LmybJ33fPDvAWjp6OVXv/oVAL/9\n032YhpyH+XVlXHHJRQB0dbRNKVfUIVoQ5ZzzpW3gj198ClvlhFq2TTB04C5Ns2pfW2b+jBaiR5sl\nJ57IXb9xEsKNsUzio+ATlTQiuYkvPO1EFjSJD3JXaze33y/jShKjKUzlSLz07GUEVeVMIOBjww6V\noK7ZrhApLirhI9dKlPy5l3fz6/tWA1Ae08ipyplQuJBzVUrRWcsXsKddHsg7H3nR9af2xrNk1H92\ntPQwNCoCy9ANQpoIfj1ayp6hQfW9jU+Zh7XhEIZyLyybV+tW6by0uZ94XMzTRXMbuO1bnwTgDw+s\n5vPfkQc+WhKZ/HxpGkk1VdL5P0gql2mLyXzeymWuCV8QCWCpdIDB4VF6+kX4n7d8nvs9jKX6dPcN\nEE/Kvi5oqqGiQl4QZibLHep6bOr386YrLgfg/376A55+9H45fsNPWtWPv+3ad/H+D0hn+CceeYiN\nz0kDj6uvfSelFaoVXjxFYlR83Td8/FNj5r+u8/6PfxqAXTu28eSLUghxx/3P8y7V7GUwnqC1S66Z\nP784QtOZv1iua2XtML+99f+z9+aBVdznuf9n5uw62neBAEmIRexgdsxmjLfYWbwncZzYie2k2dOb\n3qZtmtvbNr+mye1N8mvapM3qOLETO3G87zYGGwwYjNk3AUIIAdqlI511Zu4f73fmCKwjJAQ2OPP8\nAYfDzJxZ33mX533eB9X5MdHUi+Lw4aN4vbZk3/DCea/Px4pVYkT/47v/RFT1/puWRW5+0WCr0hdz\ne+dduHDh4s8Gric6BNRWlA440K5u6lQMdQr9Pv95GzA3EOLJJLXjpOo9q66aA40SSj+19m3u/KB4\nHT//w8vsPSwc0NULpzodnbnZ2WzbK5VhTTPQNNnnmqpxtHcJH/T/PPAiVko8txReopYU5dp6vTz6\nhlSG/7jxED6fhGL+QBCvrsYE6xYBT5rrWVMh3otPt1gwVcYqlxflOoT/USV55Cj+6PixpY6qkmVB\nhxrydu8/tLBzn7ACQkG/I0F3/xPryM9WiunDOH+OJJ8e4GPXycC4L9y+iiylvm6YJjYF9sjxVrwq\n9J09edxpYtvdStpuV30zedniCa+YO0kECoA9B4+x7Zh4mVVT5vD6S88AkIz2cNW118syu3ZSv1+G\ntY0aU0lJqUQVN99+O3d8UjzLg4e/yz/+8/8CoLK8mGhUPPoTbd1EbXFk0yScI8XAj951H9/+hqz7\n8sY93HbTCtnfSB9NLeKJluT4nbM2dvxEysrlfor29pGrVPTbOjrRFZOhIDfM9BmSNtq9c8ewWSc5\nqhHgssVL6WqQVFEwnEth8eBz5U9vFrj44RrREWLceKGANOzccEF/p6cvxR2LZgEyWXTtq5JTu2X1\nPMbVCn1px8FjzJ0qVfhQwA+qm+pEawe7DtpD+CwiSbEWz2yq54X1Mhe9oihMXIVseQXF+FS4neXV\nCAeUdFx+iDFK5i075KdaDUMbVZJPtdL4DAUD/OJPQv1ZPncSk5XKe8owsMz0HHL7eYz2C91kFIf8\nR3VlOdv3yjFG4yk27RBDvmNvPRVFYXUkQ4NlAWow3seuW8ZNq6SjqqOrj+aEpAwSKRM72m3p6KE0\nT5Yvyst2cqsa0HRKDNLW/c3MmyY97DOm1ZBUsm8Hmjro8YlRHJcTYt5tUtm3e8oB3n5rK1++7x5A\nXr4+pXL/1qY3qJxxrWznwAH+9MifALjzrjsJquGI48oLOXZSmAaRaNwZTjdp6jTGVAtFbX9DM4f2\nHAGgtzeOoVIkmuZ3csjlo8bx5qaNAPzy57+kTQnXaJiUqLa0f/vBv7FwsXTD/e63vzkHIyovzSXL\nV/GnX4gRzfL5yc0fPOfZ1XNhaxnnG24478KFCxcjgOuJjhAz1VCvU4d3DKoidK6w+8qDwRDTJkpo\nXDO6mCk14uEV52dDQry5rkic61cInzAc9LN5l4T23/3Nyxw4dFi249XBJ2FWTaGPGTXCJZ03cxIH\nGyRFcM+Ny4gqeUCsFG/ulNAzngTLI57PgcaT/doJe9mpPN1XNu7hQyuFtF5enOcUikwLx6MbDDbH\ndHLNKP5gyju+6VQ7Dz4jPMbivMCQPdCUWj+lBZkwZgwAexvb+ex3/wDIDPtWlc5oao04soBF2X5m\nVBWr/U63hiaTCQ41SkW+L2lyy9UyRSDVG6VdMSQKa+dQlhJPsbQ4mw/dchsAXV2djic3c/Yc/uff\nfwuAQwcPEovJuvUHDqJnKbWt4gg//bGQ1a+57ipGjZbGCTQYrQSdj53soFepxIezc1iiquGvPvEQ\nb6pRysdb208bYW0ose0Nr73Kmg3CMe01vHhsJoSZ4u+++TcALFux0lkvGAwOu15qp37mL1rMg//1\nfQCKvX4qlBRhJiSGcJ9cTHCN6Aix4gqpbj/26/92cnvn8xboUwIql02fyrgKCZ9rKkvpU9XORNLA\nr+7ucFaIxWqI2+5Dx/nCDx4H4EQvlKmc5ZhRo7h8thjaK+ZPYmqVbDNuevl5mzQOrNuyl9+9IA9Y\nQ2uUQJaEZX6/z8mj+QN5rNkhhPSuzm34FIE6nBWi/ak3AVi//QBXzJV0x5TaSqe7JpUyBxzqZ1kW\nfjXpceaESiyVu+3u6ePtPWLIswLeQR7mtDZhwvLSh+x3whNiY4MYqtSRPofEr6Gha/JSyOoXYrYZ\nFrsb251l7E6dk22d1DcJw2D2pHFMrZOXWqS9E3+2VJzLKucwKyT584KgRTJxeroCoKuri6uuk6r9\nD777HXq6JKVw+FgHUaXx2dveQKRHQuxHH/k9933+SwB4vF7nXT26NJ8jii2hh8LUzZCX15rHfkOf\nMq6NzW14vc4BY1nyuSsVwNDlmpXkeAgonYWTbR2UqJny/TGuqtrpRhoucnPzyC2W+8bUfUybPmPQ\n5d9jdclhww3nXbhw4WIEeF97ovbQr/OBiaPl7by/6fR2tPJRqk88t4AcJWzb0dl53lo/Ywnxa+tq\nRlNVKSFmNJY4nbuovNUbls+kQFWM//fPnqEjIZe3ushDvFO8iL+881quXDJVttMbpUF5Mmve3Mdv\nnpKBcXE9zPyFCwH4yD1XM22WiD6XlJeTUHN2fP4A0T4Jhde99BzhsJDKdd3Dwf3CV9z65mZevV/C\n8Mtq8rhppRTGFs6Y4LRGGmdUYu1rVlacT9Vo6d9vPtVKWEm4nemF2iFyImlg6V5MNdytz5ODoYpJ\nmga6PYDQSM9YN4wUpi23Z6b9CY+uEYmn44mUqoZ3dvfS3iPH/+WPryamhs3pQELNqOpNwOzZojhV\nVpBNb1+f2oczdfPl36GsMKYaKHiyNUJKUSgTva3O+O43Xl/Ppz/7edk3b/qR9ega5cWSmmlui5Cv\net5z8wqI9EqqpaW9Ky0TaEIMKRj2WX5WTpAoZO74Iva1yTlpPNlGW6vcE6ZpOkPull1xBdnZ56bE\nlJOX53jJ9Qf2vWNGkw1bq+JSw/vaiHrOoxE9G2bMW0TTofRkxPNBuLdMk1BQDEHt2ApycsVARBTd\nx0afyl/ec8tKjh6TUHLPsS7MuDzAf/3Ra3j81bcBoeMkFF1m+/4mfvqokLsffXkrV1x9DQC3ffLT\nTJkphjMRjzmGs+XkCSdsj7W20HxcRmvE+vocgYySklKmKVrMwsuX0quU4F945hm+97B0d912ooPr\nl4mhCQUDp4f26rOuaRQp0ZGWUyfoHzTZhjMaT+JVQwPHVY6mJaLR0KuU8f1BUqpLKRFPEFSUpdK8\nLIKqn78wO0CfWiaeTO9DJBqnJJjl/JZNFO/pSzFtguTzqseU0KOqyB5A9SYQzs4mNyyGKhqNZqS9\n2XPkx0+YyKEDioVgZeMNyIu4r7PZmcZ5pL5+4Nn0QEhV7fOzgw6jYtz4Wjq7pV/+ZFsnXmVEYykL\nlBGeMzqXmy+XtM7SyybzjR8+LOcqmaK+Xq5lKpVyQvi58xcMeBxwuvEbiAqYlZXFytVXyzH2a4B4\nv8AN5124cOFiBHhfe6KJ5LtH2r362g/w2G9+fl63mUgZVFWK5zO6rAgrwyhZp6UxnmTTzkOADD1b\nOFE8hA9cPpNO5TWlDJMdB6SS/lfff5j6Jimg3PmZ+/jEfV8EQPd46O5UilSW5aQmwuEwJ4/Luo//\n/kGef0Kq3C3NzSjxe+6+65NUqsFzjz39JwrKpfp/x6fv4cRxaT196Ne/oLNXik+fun4BHlWR7+/A\nb91zhG27lZJS2OMUd6KxFJrqr68aU8m8aeJN3XzVAp7ftJ9/fUg4qknLoKJQvLrq4kImVco+zRxf\nRn628CAnVVXQ2imecldPr1OweWrdDkaVSmis6ZozTnr99kN8/ZPirUd6o2kyhmU5PNRIQqO7XWYa\n5RUWYWWoNNved3FxMS89JXxQQpX4lUxcX0eT02/e0dGRkaNppz/yskP4A6qVdtRovClhEXR0RdJy\nhP4gi6YLl3TVvMn0qOJTe1+cimJ7YFwjXuWtnk+ySYWSR6xSXNb3E97XRvQCNhC9A1OmT6d8nNwg\nPdvPj4xXImk4Ffmx5YUkz0L98Pi9bN0ntKb2rh7uuVcoKpZlEVNV4qMn2vjWj+WhrT/Wwme/+lcA\n3HLnp+lWve1GPO48tB6PTq4amNbReoqnH/4NAFvXr6NYSaYlEwn6FAl96oyZ3PrxTwKw73AbL26S\n/TnS8BPu+9zdAPzNP36H+3/y7wA8sW47N62SfJlpQVOL7MN/PPQCAa+S9UtpZIVkH0aXFzCzThgI\nH75iPvNmVKuD1wkH/WzfZ1N7urn7eiHVX71oKsX2LHjTcrqLEimDKiVhp+tpPdjjbRFOtHWra5Di\n9W1izCeMK8OvaFDRWD/dT9NyBvu9cXgfe1okzfGJuz5Nl3oZnXkz+hVJ/uCB/TSpl0ug9DJSMQnD\njcTwCOcej0ZYzY6fUDOGooRcv2MnWynMlZfGrNqxLJ4lSviaR3dSKuU1oyhdK1KDuUHvsEj1Q81j\n2rnVTPnQSxluOO/ChQsXI8D72hO9EMjURw/wkdvuAODb295wlInOBbbPEk0YjFbzdEaVF5zGOTx9\nBVkjlTLYcUTk1gIYTK2RVIDHoxNXg+f+/wdfZPMOCflvvfNT3HjHpwDo6uw4TeosKyQFheKCPDpb\nmwHYuOY5pk4XMvhtH/8ocSXN98rzz/OrX90PwLiaakxD9rPheCeVM6WNsXnfeh78xc8A+NyXv8xn\nPi+qTD//4b+wTA1Syw2H+O8/rAFg0/b9TKouV8fnYUyFfP7mX3yE6eMlNLQMk4jqZbcsi9pJY1l1\nmbS9nmrv4UMrReYuFPATUT35g8H2RMeWFfL8BmlTTCVN1rwpnuj3vnYrsQFSKhYQUh6qFeui/qBw\nWqN9fegqNO4/s92ywOOR7/si3fTGVV+/N0RfR5NaPoV9J+Tm5WXWZbDS2yxRPNzyudPo3i/cU9Oy\nRGIQsPA6nvrKeXWUlysqQKSPcEhSAX6fN73RQTDcSrpHl/MTCl1YofT3Aq4RPY+44cMfAeDfv/dt\netuPnWXpzLDzZaFggFGlcqP7c8OYKsRMWim8Ko/o83rwKsm7U6faOdElleTJY4qc6Zq6rjk96o+t\neYvFS5cC8MnPfomImg0uQ9skMMnLCTrE+Hi0l42vS56xqnYCH77xFtmHVNLJnS1ZuoxwTnoq5N5d\nEhp6wyWOtmbp6Gqe/rWE8FdftZw5i5YDcPOd99HeJAyBZFeEplMSzn/2tquYVSfpkaZTnax/W0aa\nTJ88lr7OXnWe0kZf0zRIJOlWknGBgM/Jr8ZV19RZoVaoGl3MIcVyMLGcsNfr0YkPlGfXdKy45FZL\nsqChQcL519a+yupr5CXSv2MpNy+ffbtFs8CIddObkOsX1AIkoiqlkoiSUiH9xDlznHD4HbucPgEU\n5oghDEeS7FLnUY5BDfbL8hP0iDE3jFR6Nowu+wTg93ocVsP5VHQsLpG0yfyFi87fRi8SuOG8Cxcu\nXIwArid6Dsg0wC5Lke1vueMufv6DfwJw5hkNB3aPeUVJIZVlUiVuONBIQnlUNWPK6FJE7/pT7USU\n97VxxyHa1SjlRRNHOyTrlGGybZ/MLsrPz+fuL/wlICGlrfiu6zolBeJNFuaFyQpLIefNjW/Q2iop\ngo9/6i56etKeq+1ZBUMh7rjrLgCee/Ipnt8r85k84WkEguLhnNrzHD6f7M+D9/+SFatEMT2rppKU\nX1IEqcYt/N09Mj54wrhyvGEpiOzb28BGW8Vp52EmV0loP5BXmFIpidEl+eSoYk8kcvZQHtJeXVlh\nrsNRPXy8lWuXTgegJxIbuFip6yQjUlirq6qluFJSCj/4tx9SWiwe/cy5C7F9lqP1O/nhj4TJ0dZj\n0dwq3Mns+jfpPSFphFBeGd4c0UdYtHSFQ7zPBB3IQY4z2dlIwwkpaPl9fqbWSN/9TSuncOyUPS7a\n6udqauQUiqfotQzylSyep7+I8xBxtmfD/jvTepciXCN6AXDHp+7mwV/8FwDxnuFX6u3cZHFBHsdb\nxWht2XOEFaoPfWxFET9/TELsNduP0R1THS+nWulUXOa6mtEEFBH7xY272bJLBEhu+sTdVE2YBEA0\n2ucYhdKCHIoKlMScle75Li4uZtoM6TTyen3EBlCLj0WjVFRI/jWZiLP/oISzVtUCZ7Jj98mD6Io8\nvmXTZpqaJN1RXV1DIl+MYiiSw6gSuSUTySSJTtmHwrwwVy6oc45l+iQRExkoTLdtXMownREZw4Vp\nWdyyWgYBvrJpDzNqK9XxZlpDw4ipcL4c5s+RjrDnX9zMjx4QPYIlu4+QUs0PO/c3seOUsAVa+vyE\nA9LjH7ZMcsrEAJdMWEr7Yen2uvaGG5zUyTteyfZOmQbeXsldm7ruDOAbVVbEJ66VxonK0nx2HJRl\nQqG89Da8HqKqM643EmF0pRxvJiN6KRu8CwHXiF4AFBYV8anPimDEf/zrN/Fow3uY7We/tDDX8cAs\ny2DCGLl5f//8Fn78qLRonoz78Sn6T5YJKEHd0oJsp1hw/xMbyC+U3OoHbrydWFS1IgI5ytsrKgin\nR/RaOB5q9fjxVNVIbjIS6RlwfzVNI6E6cGon1rLm9a3yHz0xwn4xLn1tR7FUe2MikeTQQclxVo4Z\nizdXvCAjlXL0RPsjLxxiwlgxtI++vNVpFdU07R10nP7HMBJcuVBGZ9z/5PqhraDyyfFTR1g0aSwA\nV117Beu2y/G3JqNE2uTFkVU8nqppSqw6FkVXRaZwVhbhPLnGR95+gWtXiAdcOWb02UfPRDuhXQqG\nBh6y1LVfMLWaMeViMPtiSbKz5Huf3+tsMxqJ0q1mYRWVljgCzSPBYAXYM5e71OHmRF24cOFiBHA9\n0RFgsLftx+4UwvnTjz5C48G3hrVdO3Q73NRKW7dUaK9bMo0tu4We8pMnt9DeJx5JIKg7GpxeQ8NS\nnuiYsgJOqWr+waMnmTZfRojk5Oc5dBuvR6esSEJJyxrYyelPQh9s2qNd0a2uqUEPiCcTM0Brk31O\nJdJ5Sa/X63iiS1esxFIdSFYwFy1h6wL0n0xpORM3r1w0hR5Fa/L53nn72n3iHs/IOi0KlE7Bjasu\nc2bNDwpNrkGyt5PRBeI133LVdI41ynC6Pj2HCYs/DoCR6MFMynUNBXLQlUar5guzY530sI/PbuKm\nG78MiKjLwAR4DVIqp31yBySV3J8p4icAoQmjHInG1s4IOw/J/bq8uBR7Hkpbcw8NTfJ93bSZFJec\nH+8wU0/9+8H77A/XiI4QmRLp9nyZr/3t3/P5O28GIOAxzsrA00hzCI82tzmCDT2RPn77koiIbG/s\nZHKlhOcluQG2HpaiRtQ0nIetpDCHDdvFUMUSSS5bKGMeTMNwzFNeTsiZCHqmmpINy7KG1MFiqws1\nNx3FExKDFwwX0NkgIyiMVNwJedFMOtranO07BtOfBYnTxVVA8puFeZJbXTp7gmPs3xHKpwxKC+W8\nF+SGh2b8MsBWyaoeVewU9IYE3Utfs5z3WZUz+ern5Nr//P7H2fmytLoWjLuMvBIJ53VNp/XoHgAi\nx7exaKoU4m696RMUl8q99Y7z75xHHe2UiN5oXY1gG2MSzjgRT24W+xukMLhhZ4NzXJqlYQ/hOtXZ\n43RoLVxxDWWKk3s+8X4znP3hhvMuXLhwMQK4nugFxuXLV3D7XZ8D4JFf/eislCcL0NQyAa+BNygh\n17pdjXRa4mV5a1vEoAAAIABJREFUzCQfWyVFh+sW1bH2bSko/PrZLWw/rEjipkWLEtewLCgqTquV\ne1XVtTAve1APFMDn8zmecSyWWdotoGTY9u/eScontKxwbgmNJ8UrM5JxR0MTyyIwUOeKRbr8fMbP\n2P/0eT3OwLszz6RlWk6hLCvoH/ZgtYEwLC8UQNMc4ZDk8V3MHiuV8a98/nY2bxWd1UNHW+iKSGdS\nMp5gykQprI1fuZAFC4UVUFRSRiJhk977HYfuBdVkoJ14G/3krn4/rQpF8QTdETW6paObQ8eF7jSv\nrpI+VYXPygo4J/VUd4Km4yJYcmtNNbm5AxeW3s/e5EjgGtHzhEz5UY/Hw2f+4gsAbFz/GscOSjfP\nYBk7DVtT08JQIVpzr04kLiHXp1dP4/bV8nCWlxYwQc1b2nHwODtV26dlQcBndyzBsQap8k+aNp2w\naun0efXTxJ37w54i2dTYSHe3tBDOmTuPbtXh1N+Y6rpOKilph7fe2k6fV1IHBaFsIq1CrTJTcSz1\n8KdSCSrHjnXWdRAqgIhNCTv9DNl7aWXYXwDdqzsjl2X0x/lVoNE1zekC64slMrdiqhZHKxUn3iAa\nquMrpzPuQ8KNPdHeTaRD0hlGMkFpuYTPJeWjnZlU8XgiHbbrXmebdB9HbxX9Ua3rKBjCikDzpGdB\npQz2q3lZ8VgfU2vkBTqtppTN+8RYWgAqlXOooZmCMqE1ja+dcG4n588YbjjvwoULFyOA64m+Cyiv\nEMGMv/vH/4+7b5WOnKA35XiBqX7FHkj7YIbmo88joZWBn4qwdCZdu3AS5aVSgIj0RskOS2g8a0IF\nf3xtNyAh4LypIhOXTJlsel3601ffcCPhLAl5M3mhAD6nUHScZ558DICiomKqxouUWndXp0PGzs7O\n4eEHfwvA69uOkV22AwCvlaC3TTqlYt3tFIwR7mUAjQWLFgPiqdv8UZK9I9IvNAwTe5iBx6OdtxEt\ntkcbS6RY95aIi6ycO5lE6iyhvu4FdWzxxu1o7RLClxeOQ1OeuJVdiqF8GVHZV4+k34em+ujpa5XC\nEUCkBS3Wlf4NbSBCvEWv0kooDAeZNUEilWMtXU4qZ2x5ISnV9bb/8DHmL75Ovq+qGvyYXLwDrhE9\nj8hUqbexYPESvvWdHwLwt1/7C4dTVFNZIR02SJhsKApSY3uM1j75PtfbRUGePAB+n/e0sNZUD3NR\nXjYBRVs5cryVy9Xkzw+unMXTr4ngRV9vL97ygrMei70PY6rGEkvJbfI3f/13fOXLn5FjuXwVHUrd\n6af3/4wHnxbD2Zs3n4QatZFoOkrl7A8DkF04lmC+PMwce46CwvR0Tee1kRhae+ZA8Ho9NBxvc7q0\nxpQXkkqNXJRbA+faHDh6wplJ5fHoMJR0qWPkLCzVvWb0dcIpMcaWN+iE7WeGhZodqqfi8oIByYfa\nYX6GpJBhWFSUCHVtdnWxk1PtisQw1LTPisJcjjeJeLQvp5RVV12ljsvtUhou3HDehQsXLkYA1xO9\nABiMhH+lkkZ7+P453PdBKQ6NKSsg2c9rsgnjTS1dPLdRighPvLSBtk5Fpk6dHv6nlFc6ujSfoCp8\ntHdFHJ7k//jENezYLy2Hzz72B2Z84+tqzcwBr932WTlmDIsXzwfg33/5DD95VDyon//+NUdiLeop\noXSaeJy5Bs5IjFDASzAoqYNQbin7Nz0NwJc+dhN+VdSwLEs8LVBh6rmF836vh92HjjuNB+MrS0ml\nBp8EMBRomkYsIR7hQ89t4t4bVwCQPFso/84tSXgPEuLHJFTXBmUQaPZOpNMcA4bvpy1NMmWQUvqx\n+blBkmqKXk9fnOxsYXgUVhTz1MMvAzBl/lIm19UN83hc2HCN6AVAJgNqGAYbXxdBittXzeCK+ZIj\nNE3TybtJ55Dc9ONGFTOjVoQ9bl45ne37JS9WUphHsp+BsB/o6ZPHEQ4K1WhnfRNXzhfBkqK8MN/5\nkpC+v/Hjp2i4XTRBx4+vHrQLCcRgL1kqkx537mlg/UGhTZXXLMawu26y8/H6lJalkRYt1jQdXU3j\nbDl2gAn5whyYPWuaQ5uyLAvdzveZqX6h6vCgezzEEym8SinK7/OSVMb5nLankqu6prN5pzAMGk92\nOELR9oTVc4KmgZrbdI7vjLPAcq6rYVj4VYje05sgO0fO+959DfzxVUnBfPnvPuqG8SOAG867cOHC\nxQjgeqLvIro6O3n5sYcA+Of7rsRQ3uTJtm4OHRcvLTcconqUtE3mZYccD3X6hDGOkpGuaaeRwO2I\n0O/zMGO8cAIPNbURT6qw2jCZXC1FnW9/7gZ8ye7T1hsMyWSSwiL53Q9/cDn1/1d0MFubQoyfKYPw\nEn2dzkgQSHNIPb4AbSekd97X8iqf+9qn5Ljy89MEcstCa9mjVhz+O91OfTSf6iCRSjKqRM7dSFo+\nNU2jU/Xnv77tIH98Udo1L59ZK4PuLgHY0b/P6+HAMSkghbOzHc/3tTf3MW++EPtramvfi11838A1\nou8iGhsOc1m1UJPisQR/elkk49q6IsydUgXA8VOdPPu69ENbWNx2ldzoVaNL0pSkfmOM+8NIGKyY\nLbJ1//3YBkfcGS1NZ6qrLiPhVX3rmhesxFn3O6lk7iZMmsI/fOursv3/foD1z8m4jzGzbiA73+7z\nNunrlof2xJ7HmVgm637uq5+kRhG5TdN0cnt600ZI9J51HzLBrxoK3j7QiM/rZU5dFQDxTPOoBoEd\nWScSSb7xg0cAWDZ7HEVqWuaKeZlpTWdTqnu3YVO9YokkHT1yDfY0tDG9VtIrE8eV4TfkhVs5Zsx7\nso/vF7jhvAsXLlyMAK4neh4xWEEJoPnYMaaOl7Da69G5evE0QIoredkivbbrUBPHXxNPLpGI838f\neBaA65bOZvUCKUTFk6kBXZ5EMskV86TK+t37n3OGvhXmpkcymKaFt1f20zrxFmbFTLWTmavN/Xu3\ny1TjwF9946vs2inE/rfe3MbOPc/IspqPWbXi2Sz5Hx9m3Dj5nJOT4xQ7LDS0bikmaUpI+Fyg6xp9\nMfGyenpjZAX9+H1Kkm7Y1XOc9Mc//PhxPrhkIgDhkJ+1UdnWlJpRp6VRbO8zmTKJKXJ7MODDp/bh\nfPTuDwd2GiWRSDqFr/qmdh54dgsA1y+dxS2r5wKwdss+8qvl2mQagucWlYYG14i+izAMg6gauevR\nNUd53uPRnRzcgYbjzKwVQYqJY0vpU8u/tHE7x5rbAbjlqnlOD3f/3J9hWpQVCYVlxZyJbFYjQSaP\nK3PCXgucLhrt5G509ZybZVNJB7QDP/wiiyef/T4/M2aICEpd3SRSjtHSnK4Yv9+PpnKW0hwg29e6\nm9CPvqF+ePjGzkYo4OeJtaJFcLylk3s+soxo/OzpiYHg83n5z4dfAWBGTRGlalTKkZOdTKySF5+e\noZLu93vZtFNeBtv2NfKpG0Q7IC8ndBqL4kLDNup+n5f9R+VFebIzylfuECL99Stm06uESRr7glw/\nd/67tm/vZ7jhvAsXLlyMAK4neh6Rqe3T5uBNmzWbF376OABzp1SRUOGjZVkYRloDLhxMqyxla/L5\n+sWTeGWLeDtPvLqVDyybDUAw4D2tBz6uSNb33rScv/9P6Xm/+cq5Drn9tDSAmUQ7KVxBT+9JzNFS\nxLKCeY7cWibInHpxfQKBIIHAO5exLCvdnqp70W0B4RM70+pD5wCbUH/4WIsz6XTp7An4vJ6hz5g/\nY1t/fPFNEqrtdPyEcU4Dw1v7jvP5j10DpMN9G86pNE0Wz5AKt4bG/3ngeQCumDeZpbOlmGZxgcJ7\nZ06d5Ux0/feHXqGxVfi8X7nzA8yeLALQfr+PZ7eKsHdu5SzGqP59FyPD+9qI1o65uHI6eXl5tCRE\nLMQOc23ozsNgkEikQ2PTSvfUX7tIpnS+srWenzwi3Sa3X7uIChXCpwzTCe/Hjynjivmy/PYDjc5D\nrp8Zk9rGsqcZ/YDkX62cSqyi8epzOZjpKv9A7PB3Gof0C8EWy9CbNkNvi73CO0/OEKHrGj29EpK+\ntu0ggYDcwrMnj6N3mAR4Xddo7xJmwBOvvsVNy2VKp6bh9N3HktJRBjgvvTPRX5x/8azxzJkiRuvV\nLfv45589BcCSWbUsmCbMCZ8vPe5D0zJL9qVPk4XZbwCfvXR7Vy9r35KOtobmdiesLCnIZsE0EZ+Z\nP73G6dzaW9/EoV5JU3z6vlszSvm5udDhwQ3nXbhw4WIE0Kx3u4T4LuK9eqNmqtLH43Ee/MVPAZhX\n2E5tpexfMmWQpUL4FzbsZMNbolb+gSVTHEkzXU97LFkBH4+tlWW8gRB3XC+FjPKi3NOU6u1i0pe+\n81u+pooLo5SE3pARCGNlS2HFChVDlnhllj/M6e9g8Xa0eAStV9gFWsdhiHao/x/ZbaY7PEyN5zZI\nWuBwUytf/OgqQM7hudzKHlWZ3n6wkc27jgDQ2tZNShW8VsybwuKZ4sUPJh044D7rOjFV6Hpz9xG2\n7RNGQl8sTkWJXIex5YXUjJJCYlFBtnONNV3jiCLJd/XGqD8m91R940nCIeGtFuaFWXmZtPbWjClh\n7xFR1Xr8lW385Z1Xq+3gpIp+t2Y3NUtE42DFFasy7vfF4IkOZdzyxQLXiF4gZLoJGg5Lxfzx//gm\nX7xNOn4ifXFCSsJtw9v1rNksecra0QW0KtGR8qJsCtUEypRhkqfGYDzx2m6CYZnseMd1iylTg9r6\nV+3jiRQ/+O2LANx5/SLnAc5E2n8nrH5/DWXUnv3x/DSG67pOVFGZXtm8l5NqqNo9Ny1zqt8jvY01\nTeu3u+n9HuqgvuFs3+vxcOyUvFzaOnrYUS86o92RmJNusSzLGbo3uqTAefmNLsnn9Ksmy/dGY6x5\nU0L7oN/HdUtn2EfAS5vk+6PaOD7z+S8Oup8XgwGFS8uIuuG8CxcuXIwA7+vC0sWIvHzxKHr8FbS0\n9wCQEw45wr+jSgsIqSFuh463U1kiyvYHGts4dkqq8ynTpLxQvM+ls6p5YZPI0/3m6Q184gOLACgu\nyHHCz4Dfy5c+egUAP3zwZe64biEAZUW5DjF88FBV6/fXBZEdegd0La1M39oZ4dU3ZcjbidYuvvYJ\nSU3EEqnzVvHuz4EdaerhbNtPmCknYigvzGXaBJlvdOaZdeQFSK97piaA7bmebOth3xGZn/R3n/0Q\nCeW57znUzJYm8da//M1PZ9y/i8UDvRThhvMXGJnCkg2vrWPH0yLmce9NSx2qTsDn4cm1QkPZd/Aw\nqxdI50wiaTjVVL/Pw141S3z99iNUlMgDebCxhcpy6Ye+9+YVFKlZ7aZpOev29sX4zq+ku+iaxdOY\nMUG6VnLDIccgme/RLaFrmrOffbEEDc2SE3x87dtMGivH9dEPLiHSde699u8naJrm3DdPrXub2rFy\nv18+a4KT8vjda4dYeYtMI5g5a1bGbV0Mz0p/uOG8CxcuXPyZwA3n3yNMqqvj9eeKAOjuiTqkb4Aa\nVbWvP9pMg5oZPro0j4QqoiRTBlXlkhaYNHYux06J1xFPpHh2vcxSKi3M5fZrpK0vHAw43mV2OMg/\n/cVHAPjpn17jgGoPXDl3MiWFMpcnJyvoLG8a5gUIbvvJ5enpsL23N0aL8jLf3n+UHQdEjf8zH15K\n1WipYPd09p6vetUlD8uyqG+U69feGWHZrZKyOdncyiNrJf0xa/Vtg3qgcPF5oZca3HD+XUCm0OT1\ntWsAOLL2IT5+najHRyJRh+702Jpt7NovedCVc2rS3Sln5C/tvFjA7+VUu3SqPPHabpbPk972qxZN\ndWbQ9+OF4/d5HdrNk+veZk6dkMSn1Y52qDYlBTkOVcoU2X3ZjgVDqe3bxlLr9xlwhENaOnow1PHs\nPdzMzoNSqV42ZwLLF4iYSrQ3PiJ90Pcb7PPY0d3Hg8+JBsGdH1hCbzQGwBPrDxIYJx1tn/385zNu\n52J5PgaCG867cOHCxZ8JXE/0XUCmt2pbmxROfvH9f+Hu5dLHnJUVcLy9aDzJwy9sAiDS082CqWnx\n3EzVdNsrzQ4FePglKVBNqqniI6vmAELd7H/FbS8TYN3W/QBs2F5PgeKkzptaQ06WNMZbloVXpR1C\nAT8Bv6rsZ7iDdA36otIsEE8mHQYCQEu7pCC27Dkq44eBqeNHsXqRyAMmEkmnD/58R++OdzzMDQ+X\nbH+h8fRrO2jpEIbH1EnjWbNb7rMrPngby1asGHTdi+XZyIRLyRN1jei7iEw3xtpXXmb70/cD8IWP\nryTSLXnBrKCffQ0yq/zBZzZQrIaMXTa50gm3+xumM2FL0v308U187LrLAVgyu3bAdTQgoERKNF3j\n0DGp/m/aeZiTbdL/Hgz6CSpKVG52lkP4NzLcQh5N41SHpBdiiaQTwhumyfhKyXGumDOJbLWdlGE4\nAirnAl3THG1MTTtdJ8BJJWiao3rfG4undVYGMagetZ2C7Cx0W/PAShvVZCpFUp3TC52u1XWdg41y\nT/zTr9Ywb47owU5duJLrPvihIW/nYns2zsSlZETdcN6FCxcuRgDXE30XkentGolE+NkPvwfAh6dn\nMbZchq319EbJVVzPjdvqeWKtzGQqzvYytUZ4k3nhtPDvmfxO2yvyejw88oq0kl65eBZXKoX82CBz\niBxhZZ8nrXyuQVQpJR090e5wFN+hDKVgmhbFBdIUMKqkAJ83/c62veFEIjVsXqrtVfq8HicVYGHR\nG03Qrrz4vliCmPJ8MS0SCdXbb0GPEibu7u5Lh+iZXEgLoik5T1k5QfKygvbX5GRLU8S4iiIK1PSA\nC1UA68+f/ZffrAXgxru/zJJly4a1nYvtmciES8kTdY3ou4xMN8eObaLQ/vgvv88XbxJqUk4wQE+v\nVFxzc7M4pOhIj6/ZSjQqPfXFuUGqRxXKMuGgY5z6P8yaJt09AA8+v50vfFw6fmZOGOOE2EOFQ03y\n6E5KIdMtpGmaMxJksLTD8H4/va3jLZ2capOcoJkwiERinFQjUXp743R1KlJ+0iLSLYbTSpqEVNqi\nIjcHr24b4UywONIh2/z1pi0k+uS8+7xeSlQ/+yduXMbX7roOgIiaUHC+YU81/e1zWxiz+CYAVl9z\nzbC2cTE+D5lwKRlRN5x34cKFixHAJdtfJJiuCNG9t3yGnz72KwA+tmoK5UXSOx+JRB1x4K/ccTV/\neEmGjx040kzymBDyNUxGFUv4XFaY6xREkinDUYm6aeUU/vTSZgBSKYu5SkA40hcfUrXa9jpT7+Ls\noP7weT00NMvI5z88sYm+E+JtGokUJeFsKgvkfFVm5RAoKXDW0yrT/f+Z+tAHggbUqPRKIOTjkc1y\n3kOGRU+nFM32H24GnyfTJkaMYMDH2i3CnOjKqubuYXigl5L3eanCNaLvMjKNELGxcMnlTp7uJw//\ngo8srAKE/mPPkY/0xbjpSpnaaBgmL7wh2qIHGpo52Sl5ymMtxx1F+qpRhRSr3GpZYQ5zJorxuP/x\ndQ7FaVrtKCe0v5gbgnRdp03Reoz2OB+qE0J+3DIwTBNDldtN0yJu9jP0I8gm2GmLBWPGUN8qBnzj\n7n0U5skLa9L4UTDMsSRDgT2M8GDjKV7aK5Swf/z+d866nms431244bwLFy5cjACuJ/oeobaiNKM3\nunjpUgDyCwp46uEHANh7ZAs3LBdOYHZWgIiaM6RpcPUimQ10zeJp7FBtk2/tPUpbh/A7D5/opvGk\neDLJVIKqCunZn19XzmOvSGhfVnQFxfniWUVjyYu2P92ywOuT1IQ/y0fMEA/Q/vtCwGYPeDSN1RNk\n8Ny2hkY8KoQvLMjJ3HEwTNhbCfl9nOqQa/bQa4e592t/C2SeEQ9QUy7c20wzm1xcGLjV+fcQQ6lA\nJpNCr3nw17+i84B0L107r5oJ44TiFI8nT5ttbofn/oCPXlXZ377/GMdbJG/a3tWDpmLbVDLB2wfE\n6AaDWfzlJ2SkxKjSAnqjKrS/yJ5Hv8/LLjUG45Xn32ayR3KgHp8+kvl3Q4KmaU4e9bk9+9neKfqd\nP/nW3VSPkrzpcKeN9oeFjH4BONXRw4PrZArCdR//HJOnTBl03QWTa2jplDTH+8GIutV5Fy5cuPgz\ngeuJXgQY6lt304b1AGx+5VnyUuIFfWj5THLCQvrui8ZPI6476k4+Lx5Fno8nUuw/Km2Dh46dIq4G\nqe2qP05lmfBNVy2cQrUK+SPReMbRuu8FPLpOZ5+kMl58cTvd+8XDnjy6lKRx4RkDPhVOH2nvYH23\nXIOf/uPd9PVKQW+oU6v6w34Es4IBWpU3+eBrh1l96z0ATJ0+PeO6kyrLAcjPznI90fcIbk70IkB/\nYz/YzTN/0WIAps2YyZOPPQrAj55Yy+KJQuVZNmeSs2xvNO5U+aPxJCBpAU3TmKxSAdPHj3Li9c6e\nPjbuqAfg5U17uGKeVL2rRxcT6Ys5677XME2TYlUVLyrO4cBbRwGYppWT5MIbUTuc9/m9TJ+oxnro\n2jkZTxADmpMjYi8tbd08pEL4Vbd+elDjCXLf2B1bLt47uFfAhQsXLkYA1xO9yDBY1d5GVjjMrR+7\nA4Ad06azdb30Um/740bm10qBY+HM8diMz3g8cdpoYbv40b8IEgr4WKo82Td2HOSlTbsBWL1wKlVK\ncSmies7fS1ikVZWCOQG0LCUY/S6INmuaRiQmYXtTX4Srr7kMgGQsswZBJtghfE5+Nlt3iPD2iztb\nuOZ2CeGnz5iZcd1LJU315wLXiF6EqC4TQ3j4ZOtZl50+Y6bzwO18exvbNkne9K0ntlERFsOyeGYt\npaWqeydlkFTGM5EynIc5mTLwqHzfgmk16Jp8/uPLW1gwtQaAJXMm0KcESN5LbU27W6qiLJ+iUhnS\n19TRRXlBLqkLaEw1IKG23xeCWRNEA9Y+J0OFZVnkqJTE27uO8NBaCeE//rmvMmPW7EHXdQ3oxQc3\nnHfhwoWLEcD1RC9izJ9UjaZC1417Dp11+WkzZzFVeaUH9u1h57a3AHhw426ytQYASkImddUVAMI1\ntXu+DRNTeai6x8PyyyS0L8jN4s1dsm5fLM6qBULsNy2TWHz4Yez5gJ2aGD+qhDcrxBPdt+EINaVF\ndMXFKzyfJTC7oBZLJNnVJmLV19+6AGOYylROCF+Yw+69UhB76UCMT3/1G4AML8yEs3mgmeQIXVx4\nuEb0EkFlUQGTxgmd5aWtezIuZz/wEydPYeJkIWh3tLfz4nPPAvDdf/4mFUVCiSrMz6esWOTcKooL\nqBkjVXvDMBzpNU2DE0rZ/vnN9ax76yAA9920jNFqAmciGidxAXrHM8FmcXk0nVlTRUDl4L5m9jaf\nokalQqLJ5HkzpLbxOx7pwVcu527e5HHDlhHMUZqjazfsZsNROV93ffHrlJaVDbreaQbUMkBLi53Y\naZWuSPSiYE/8OcIN5124cOFiBHA90UsEFjicwMVTx7N+V/2Q183JyeH3D4i8Xlv7SVpbJRw2TIuA\nX8YzZ4cC5GSLpxRPaYyvk7TAR+/4BB9f9SkAbjJ1uruln/vpjevoeeEZAG5dPZdKu+0xGj+tDfVC\nIhZPMnmcpCbmzB/Puhd2khcS5fmCnDCJ1Mi9Y13TaIuI3N72SDvfvFvmGA3V87a9w3BumJdfl+kC\nm094ufMvvgYwqBdaqyT40NK+jhUqQYu1p/+tvOR4Iul6ou8RXCN6EUPXNCcn6vXoHFeq7YZpMl6J\nTdSfaMm4fjQqlKSv3Hc3B3bIfPKgT0dzAhCLlAqNOyNJ5ixfCcDtH7+TsdXVAIyrqhpw21OnTaf+\nwD4Annz5eYy1rwBw4/JpVFTIw5+IJUgkL5xBtbAcecArF07lVFs3L607IP+uGU+BIrHHR2BMO/qi\nvNF6HIB77lhJaX4OANF45lDe5i34vR4nLfKrP7xKV04tAPd+5T4KCgsH/d3askKsoHSNackenIl6\n3uCAy7sG9L2DG867cOHCxQjg9s5fhLAviM+jY9eZU4Zx2iyjwTxQgHg8zpfvvQuADa88hVdLV5JT\nlhQmAuECbr3jbgCu+sD1jK6UufZFxcXD2t9UMsnX//LrAGzfup3FtZIW+OQHLqO2RriUhmESV9X8\n4Q6mGwp8Xg998SSvvyWe6AvPb6MuS7y9utFljjc6lN+2LAsjJefLXxSkaLrcR9NrR5/Vs7YsnCkC\n0XiC3z4nwwV9Yy/j1jvuBCA7Ozvj+nYIb+VWgaladftOONU0K1yB1tt81mO41OH2zrsYEezALGmY\njkXVtHTINtgNFotJn/uX77uHN9Y8BYBHt0gYcqmnzJzPdR+WQWcrrlxNaank5EJZWee8v+vWvMSa\nN4UGVd9eyu4uMTRP7tnM3HLpprrysipWLZwGQGF+DkllpM5X/jSZMgj5vayYNxmACWPLeOiJDQC8\ntWUby1VaojA7fFqfu/Ni6jdHPpQbpHKKnJfisQWEsiWEHkpqIpzlp7VDxob855/eYPENnwBg+arV\n+FX+ORNqR49Kh+2+ELxHFDIXw4Mbzrtw4cLFCOB6ohcxNOePoeNbfy1h9fpXnsAyJWxfsvp6PvpJ\nCe3rpk4jL1+EjH2+wT2js6G1RTziXz7wR451y7Z8gRAx1Rq5t9OHT5fPZclaNjwi/NZivZ0lM6oA\nWHZZHaaV9kpH0k6aMkxHBm5sRSH3fkwKZQ2NrYQNORd6zKLzlPBekwmT3GJJPXgDHgor5LyE8oL4\ngxKS6179rH35mgahgBz/2/uO8cj6IwDc8pmvM32mDCC0pQgHw8Gm4xn/71JNTf05wDWi7yP8/f/8\nOs898ScAPnr3F/ngjTcDMLaqitzcvPP+e488/AcA1u1PYIWkkkys2+m7DwaDHG6SwW6Eihg3V0Jt\nI97Lj57+HQA//eNaFsyQqvU1i6dTo8ROUobhyM4NJ4Xq5DwNi/ywpChyJlamjbNpMcpQBsmy0G0p\nOU3D41UNBrrmhPnWIEbd068h4YlXtwFwMFbE337vPwDIGkGK5EwMlMJxDevFATecd+HChYsRwK3O\nX0LIVFC6WcM2AAAbVElEQVTat0fC5PoD+53wsaSsjGBwYE7h+cDra1/h69/+JQDN3qnEI6Iwn+ho\nxrJHFWs6qT4hhl+7aCxLVqwGwOsPEu0TAvuera/RtX8dAJPGFJG0JByfO6WGpXMmAlCQGyJlpEch\njwgaaKflSKz0n8PYtN/vpV0Nkvveb1/lj2/J8ZSUFLFkpnBsp0+pYdbsOQBMmTGLQGBk6ZPB8Ody\nr1+McI3oJYRMN5bRj0zu8V7YDM2xxmMAfOMb3+K1ZqEQWVnlDh0n1nGCZCTdUWMoo1jpaeCT99wL\nQE5eoRMuG6kUbSdlm1tf/B2rp4lkX1F+mPXbGwEYXV7M/GkixzdvShUer+QX3w0N0f7QdY2kOtcv\nbNjNj56RrrHD0ULn+KlYhMcSERSPFcMfFznDgNHJ2DKhNl1WN5r580WL9PKVq8kKnd+X3fvhvr+U\njKgbzrtw4cLFCOB6opcg3s23tGVZnDopg+3+44c/4tGXRF6vT88nlSveIb7sNL8RiHUIGTwZ6cCy\n+74767n37lsBGFc9fsDIORGPsm/rawBoJ7Zw3SIpOIX8fvYdleaCfY3tVFcKh3PlvDomV4myVSJp\nXJjxzpYlfF1g3VsH+elzewHYGa3GzBsvy0Rb0btFWNnKr8UKqJZOK4WTI+j3mHk0E09MjscXO0Ft\nhTAEFs2sYcHC+fJ56XL8fmEIaJo27LbOS/3ev5Q8UdeIXoK40DeYaZpEIkIY/90DD/Dj34iMXnvW\nNMdAaO27wRMAxHA44Sw4w+9ibU0ke4VOZCSiLFY25+oP34Y/KJXrM28/+9/dbafY+dpjAEwpjLNw\nmkje+X06PX3St75+x1HauqW5YMmsSayYN5k8RYw3LQtdKfXrkKaKZbrbtXS+1TBNUurzk2vf5qnX\nRSNgS7QOM79Wbcd0jhPdh9YpnVJa3wnMyuXyfWooiveWs086BnqfTBD19Bxh8Qzp9lo4dypXXnUV\nIEwLmy5lH99AuNTv/UvJiLrhvAsXLlyMAK4neonifL+pLcuiq0u8xicefZT/+vWTAByjCis8ShYy\nk6CrELNjnyMO/A5PVLl9lmUSa5XiUCLaS0FKQt7Pfv5z5OTlO787EDRNc3iiR/Zt5+Cm5wBYNCGX\nuZNGA+DVcXiejSc72XHoJClT/j1hbLlTjBpVWoCqRWH2cyABrH6V+kOK0/rs+l00RiXELho3lYoy\n2dfvPLgDf8EYtWK/opamQ0oUs/Tuw1heWdfKqwZzJHJ8sm9avB2tR87j1Aq487YbAFh55ZWOzkGm\ncP9SfQYuJU/UNaKXOjSNg8dPnvPqPUofdNvWrXz/338OwNZmP1aB0Iskl9fvFvEITUdr3Qm6MqIF\ndWAOJA2nYVliRKKtTaTaRBX/pqtmM3PB5QDo+tk7eXRdd1KKRw8foH7rGgBqcmPMUtNNS/NCeHTN\nEf842d7L9oPSAdTWFcWwDbseoLxEUhJ9SZOELmmFkz0G4WIxkGPH15FXIM0DAa9OSVheEPd8+0mC\nRdXqvJzBDNDVeencj9YrIbk5alG/UzeCx8xIOOcdTUfrk+tdbtTzo+/9LQBz5s0bcNVL9Rm4lIyo\nG867cOHCxQjgeqKXKpQnZAWLRLSXwXuv+6NXFY0OHtjPt7/9XQA2N2VhFk7ut/0MikVDCuf7Q4WZ\npkFPSxMA03OP8ZGPfhIAXzA0rL5OTdPxKTWk9rYWdmx6Vf6j/RAzx4aZNFZ4ptkBrxO2n2jv5cVd\n0gxQOv0qKqvlODWPBqqApGmk5eYs0wmPJ1SVU1EsxaoVN/4VodoVsryZOsMbTVeu9I4D6pOFVSzK\nVRjDm8ekdhAAz7GXMXPFA7ayR4PmUz+VYHZoPwAPP/QzvD7fgJu5FJ+DS8kTdXvnL3HUH9k3pOWi\nfX2y/MGD/OpXDwDwh7UNWCUyBsQq9GU2nP1hWyYzBbpt/Aaj39ilZw/ZpZUAHG7YT1eXGLXiwPCI\n5pZlkohLRT4nJ5elV4usn2kY1B/cy9bN6wGo8LYRjcvx9GTVMPuqTzvrJBNSNbdSYpTt47LUsZkW\nWCqXGc7yOaNAPCTxJiRvbJkGpj9X7ZTZ7zh9WD4ZZkesw8mViuEbZnOAuh7G6KV4ml6XfdM8WNkq\nL4uXgxHJ17747DNcc8MHh7d9F+cFbjjvwoULFyOAG85fghhqqBNXM9hPnmzhgft/DcBPf78Gq3IZ\nAJYn2K96PMTbYNjhfD8or8/sa+WK8bL8gqWr0foXl7R3fDgL0qLKqVSSU8dlnvuetzczdryE7dWT\nppGISm+7PxjC4/Gq3dHp7ZXURiLaizcp56u3u4NEl7SuFod1elulUPTW2nV4lJh0s+XlyLQvAOBN\n9fY/SGff9fbdWLr8llU05dxCehv2eY93OdvEG4SkRBgrRzXzi1/8ZNBNXErPgxvOu7ggGM6N1Xj0\nKE88LjSlH//mWXrCdQBYVdekH+ahGL5M0HTSBmyIYaq9XFYpjY1vAnBZKkpvTAy5BY54iScZJ7Mh\nVblL3YPHL+mA3q42dr35GrrSDphQN5OoCtu3bXqVbmUIx1RNokZNMjVMk92vPA5AbNebFLRJzjZL\n1ylVnCifBRN9ss3pAT8RTfb1T1ox9YakFbxo6XOB5Rg8y5flGDk512dj/A8Cda0sbwi99W35qnSO\nU7Xfc0LjcL2wH6rH1w5/+y7OGW4478KFCxcjgOuJXiIYihfa2NjIm5vEw/vhT37D4bgiyZesAFue\nzhhKK+JgUF6UL4wWlxHOVjICvrD677N7pTom+0/J/hx4+Q8kO3udLSejEl5ndZzCyvCO11SBJu4P\n0V4kx3i8rYWS0nKqa8TLPNZwkJ594rEFPTrxbOGGHj6wk2C2jD0+Vr+H6q0y6rlON9EL8539MNNZ\nAuyEhwnElDeZQE8Xpc48Zkt5jeEKp1JPpAkrZ5za0EhmJ5mQjDhnwvZ625N5PPjr+wH4m//1v0ew\nfRfDhWtEL3KczXg2HWvijQ0yU/7+3z3F9hMqlCxcDAFb5X0EubgzYafQPYG0uIg1zK4cy8JTLsbu\n0Cv/zqey02G7TS2yBiHh20vHIy3sVjqmkbwKamctoqxSqECtG15kWbMwFwq9Xp6Jyj6W3Xwfe3bI\niyZv26vUKFaQoXlJDSHKjqo8cIOnEI+dmzzTKNrnyJ+TPo5ED0PP854FesD+IeerhJbFpt2Sjkgk\n4vj9gXesdrD51CWVF71U4IbzLly4cDECuJ7oRYzBvNAdb0uo+i//9l+srxdP0yqYCoXK2zGSjKjV\nMCPSnqhT2U/FwW+/j4dSZLKcNsm9ebU0WlJRL/fow2JS6n4PMyw59vihbRzw+zmq0hbzG3dTlSth\ne8Ky+JBPvl//zG/ozBJC/lUBL351DEMZ3GxYJg1IIet43kTCZwvLTUNkAgEt3omVkBZbfFlDL8YN\niH7X1fZ6dT/He+Wcbn5jPUuWrRzB9l0MB64RvQRxYN9evvjlbwBwxKqFItUVY6bOb+g+EOxOqUCe\nkxPUkn0OUX3IdttWti+cyktHJW94a3YAzyDybmfCBOd3Ly8tJnBkO8fUHPvc3BzitrQd6R79KzSL\nRId0dh3y+pgakEfA32/XzzwEe4+ilslbKdlOoKDWyX1m3sEkVq7kQbWWTrQ+eSlaBbUju06nGWD7\npealPSHDCJ968hnXiL6LcMN5Fy5cuBgBXE/0IkSmMD6u2h1/8l+/4mivVMN1TmHF1EyjnEqskIwc\nxjJGGDKeBZaZ3v451UuUB5VTyT6feFA7jRjzVR0mPkSP1l4sapgszg2zWXFOT6UMCvxyexuW5aQJ\noprGqhxRbvp1d4yJyhP1AEm7HnTG8di/ccL0csAjVX5f5DhWdoVaYJDCmipEoelohrSAWkaKEXFG\nB0p6WBYpTYpJWw+cctS5cnJzT1vMvrfcAtP5g2tELyG88ZqMznh1ZwvmqKXyZbQFvW2XfO45CkoZ\n3cqtSdOORkSpGQJG0PRm6T5CBdJTH68ro2HdCwBU5uSQyqQ1qv72a2lz0m5CfdxwTFKZR8cYYH0N\nMJyWf409cTk3pmUx1icGr8TrcX5DA5JqO1uSHrRckcjTuupFDORsUOfezB2H3iV6qsRaIUsZsXPR\nG9UGEBqxTPBKz367kc/G9XKvXHnNdcPfvothwQ3nXbhw4WIEcD3RiwyDhfJPPLMGgBazNF3U8Odi\njlFFhMhx9E6RRtPa92AFpQpt5dWkyfYXomI/kglxlkXcEM+qbv589pyQok9Z0yGnGNR/jzXA9quP\nJE1aknJcpmHSYFjkqXbNyixPerf6bSCow4u9UtQJpFI0qLyB17KozQ86v0G/VbtsuTwzzuiYDOE7\nVjQLrxpOZ+aOy+xR2imPUAmWIt7r8Q7MrLKznZlBkOEaqgNuj3l5de0GwPVE3w24RvQSweYNG3h1\npzKwwYlg9BMOSSoBjGAR5ihRjNc69jnVYC3Zd7pW6HnDOydZDhsaGB5JO6xbv5XySVMAeGP/Xpbn\nSnia6Ld5TYOEisePRBO0xOU8jNagAJO6oKxT4tHosY0f4FMGpj6RokWF8FWmRcjuF0Ajx/NOgr8F\neNS6S/ywD+kWqseDt/uQLJRXffbjNOLpED7WBqrbC3/OCHLXZ7y81DiVlB5im1L17+7qIjcv7x1r\nusT78wc3nHfhwoWLEcD1RC8SZArjbRX6R594gZaUFDXw9VcN6gcr5XioVsEkrLBUj/W2HWgdMi/d\nKqwbmefYH46gsWdEIb09kG7TgV6uOLANgKDXw+6EfD/ZrzstmRYQ0OW3pvg8dCheaHM0RldhISdD\nQjgfFe8jqOa2JyzwqvP1cjRFKC7hvO7zErNkW6UhL/oAx6ABRer3vLoPFLk/3H0YM0cKYnrnwfQM\n+kxFPDPlcEaJNKElZBqBFcwH49zEmt/pwap/+7I4GROS/5ubNnDF6muGt30Xw4JrRC9yvPDMUwC8\n9NZxCE+XL4dS0TXi4BUqj1k8G/2E9NdbqZgzL35kSHcdaWYSy56xrmvDT7vaivKal8kdLQCUhIIc\nVdqd/TdnWeodApQEfASUITkRyGP2nXfhiQkN7E+//G/mqtB7Sn4uO6OyfzkTp9DTI+mP2LEGwuqF\nUhTwZWRq9c8m51qynbpUK9sCcj0CHfugYJIsNBgTwj6QUAkoDVItGcXSfWcsMBg0J9etxTucz6e/\nGDXa+iQ18dLLr7lG9ALDDedduHDhYgRwPdGLAJlCeSOVYst2qeh26v2ruUNloisfyuPDUp6S3rEP\ns3jm8LYzEEzT6Qu3Et1g2p5oaJjb1WToG1DZ28CooFTIDaDWJ+/45Bmbs2XqfLpGLC4E9qqlV/Kp\nL36J1195GYCEz0u2UrN/8Xe/JVE9AYArb7yFlPJ8n/7ev7JKCSsHdf2se20CAeWvTtKibIpLSB4I\nlYCq1JNdOUilXl2P3DHox6V6bvqyweabDokzqkkxCqSgGCy0N95vRw0MrxTrGtv6sIdXnDmb3iXe\nnx+4RvRihqZx28c+CkDJtFZ+/9xWAI6d7BrediwTK6RI4i3bIJOE2/A2iqWMqB5vg6TqxvGFhzbw\nrh90v2xncvcpLKVMb/FO42nDNgUBy6RdKbuXz55LRUEhiYh06lxxxSomzZoNwKb5iymukPxwdW0t\nr69ZA8Cyz9xL88//E4DiWIxwUNIcyVQKj8/v7Ed/eD1i2MeaCXISIsNn5Fbh6RRVeTO3amBjqHvR\n1HmxWnaSsiTc1nzZDH+And0pNvDjm5/j5/ZrFgFw9dxRw9u2i2HDDedduHDhYgRwPdGLALUVpQOG\n9B6Ph2l1UvWdVjee5bPHAvDKm/X87vntADS3dA/xV5TYcXYFWk+j8/mcK/WWCX4JGS3LAhUWn0sj\nveYXHmOlJ+2TaYBHbcoDDgeSZJJIQjzonW3tGJctBOCyK1cDkJcv4W1XRwdhxfu87uabSSVlnYDP\nz7HGBgA+dPMtPJeUavveZ5+k/YS0zOYVFtC2X5oW+vfRa5pGdpbwUC2fRb4h3mdL2Xw8fSdlma4j\nWKpqj5kEj6Qn9GQETkokEe1uh6Kpsj/eLDRzuNfAsnfI+SYvO8gtq2cAcNWiCcyZLCkC23MeCG4Y\nf37gGtFLCDMnSkg6rbacVfNlGNnmXY38XhnUvUdazroNK68G/ZRokUrv9/BC79Ngh5Om0S+EPQeq\nk6JK5euQrfYnaho0xsRwHk8kiakwP3f8BComiwGqKi1l4vwFAEydNIloLErdFPm/zRs3cri+HoDx\nEyeSTIix9OZ4aGttA4SAf9O9n5XfWH0VP/vPHwHwgU/eRVIJeIghVyNB4lFeeGkdAI+/2Y6RI3lq\nXfdiKcaD1n0EK1/RnXQfnl55YZkndxBV3VFGeByBbJVe0bXhvcg0HFGTyqIgN924BIBlc6qoqxaj\nGAoM0Fvv4oLBDedduHDhYgRwPdGLBHZoNZSBdB5dY3ptOQDTa8tZflkNANv2HecPL+0EYP3bDRlW\nDkBKjfEdsVSeraruAUdMefjpAVOt82pCx0SGxUXD+UycJAWnQFE5N374wwAUja4kpNoY83JyyFLV\nfEyTRCpF5TghtL++9lVaW+RcTqyrc/rtDcOgukY8xZMnmpl12WUANOBhxTUfAGD2osX41Iwii3RV\nOxmPUt8rn5t3biEvV8J2zUxihSSNoCUjotIE6MlejBPSPNBnBEn5RJYukFuKN2gP9hveuZoxoYIb\nV14BwMKpoxhfJYUjnzfzTKqB4Iby5w+uEb3I0P/mHuqc+fGVRc7fi2eIETnS3MGz6yWv9+jLu+ju\njTnLW7lVAOg9RzFzx6ovzyU3qkJ300jzjs4hnLdN+bbC+cTzJ8q+6QY+S2hD18yczhXXfxCARDyG\nYagqt2liqlypqfbfq8J+wzCc/+tP7Uklk0yfNQuAI4cOUVUrv/e7Bx/hi1+6T5ZJJEgl0srz9vpG\nKklOSEJlT7QNzZIXGZYBwWL5GO/Ge+QZ2Vctmz5dvje8QfxZQk3yh/P7nafM592jOqWuX1bHDctE\nU2DiuGLGlP2/9u7lN66zjOP478yZmTP2OPHYju1MLu64iWluVDIJpC1FqVCRqCIQlRCLSkiBBfwL\nbJDYIHUPfwILFmxCgaBKCKUFKQXVaTEtbcjFVh1MnLh247s9FxbPe8ae1E6cPAE14fvZOJZ9jueM\n4995L8/7nlJ4XVseuimC87+D7jwAONAS/Qw7uKuo+sCLkqSrI2e3dUy5d2fzY9rl/+7pL+itUXsY\n3K/f+Ifeesc6t9HUyPoORPf72GM7yD5E0Xp3/kGW0IfC8FrmY2XaQotubUGTC7Zsdf+esmphFn1l\neXnzcwRpK7Wzq0trYUZ+aXGx2ZqsVqs6fDTsFPWn87owYq316tqyisViuJyoWaAuqfnvfJJosFKR\nJNWXZlovNn32VMc+pVtDx9OXlCzZ+14tDihfsoL/KNe2ZY3ukSdtsuqbpw7rK8P2uyn37lR32NHq\nfg0+933Fl35pn4S6XjxchOgjovKtnzW3vBv77Y+2dUxHu43rHWxPNLjXxuy+9syQbs7YmvLzfzyv\nc6N2ztHLN3XfA3TpmGrSJVWt2F6rC1K20Pr1e50msTHOzCdXFYUwr0c5LSU25njzxpQy23yAXbVq\nxw88UdH4NRsOmPl4Wrt6rStbq9VUaAs7wM/M6/YHVqbU21O6Z/5HUaRCGINNf876RYRrzWTV2FGx\n72/vV27FZvnzcx8p8y9bTdXoPmJ7kEoaLJf00vO2muzFkwdV7rEuf0+pqHzu/sY5U5XTrzb3R3hI\nT7rHXdCdBwAHWqKPoMrpV1s+307LNJ2k6OvuUF+3desO7ntZ31mybuW/p+f1xtu2yfCbF8d0YdRm\n9+863xS+2Mi2KbNgheoq9KiRru2uV7e3BDT69L08jjOaXbRjf/fmqM78YHv1rGk96NGnn9a7I29L\nkq5PTGh32WaxN044FdvzmpickCR9+fjnlc3lwmVtftGNhpTP2vv4RH97c8f7lvbihtZ3I9vefO6R\nkpKODVlr+NSxHp16zpak7tuzWzs7rNXoqe+88/8E/ncI0cfAxj+g7Xb1JSlJ8koSWyO+q1TU5wZs\nPPKVl4a1ELaOe//qlP7wF+vy/vmdcX10Y3b9BGlAFrrVCN35aOYDacpW5qi4u7nxieL8esBs2c3f\nOMbYUCOs9plc7tTFv9qGHUeHT2plZWXLa0oDMJfLKQld70zUurlINexBOnzihF77yU8lST/83reV\nz9t7kYbsJmdXHEqJujp3aCYN0TvuAf3hJvWlY/v1wgkrpzp+eK86d9jracvHKoT33ePJZ8+o3nPE\nfR740J0HAAdaoo+ZB22VSmpOZORzsUqh1VTu3annhyuSpJXVmuYWbXb8vSs3dOFvNvN88cNJvXcl\nLGls79PKJ1bfWp8dV27695KkOCkoCmvKG11D689jbzSU3sujtdtab43Wlc1bV/jG/KLOvva6JOn4\nsy/ctSW60fKStY6rteqnakUl6cDQIQ0dsAmeQtv2NqpO1/N3JNKRUHd54lC/Th7bL8mW5pbCTHo+\nG6sQuujpcMqDaumuhyW2tIA+GwjRx5gnUFOZKGqO1bUluWa47u3r1Fe/aOv3q7X1ovepmQVdGbfN\nOK6NTejyNRtzfP+f1zV++UNJ0uzlc8omYaxwx4Ay82H8tVjWxgqBNPcW1iK9O2ZVBLdnbynOWuCl\n5UybWVtd1aGjto7+1tRN3ZqyYC91dTWP6y/v1uABW+0VZ+KWfTfTaoA4jptPHc1mYw1UrOzoV7/4\nuaKwpWA2zigOfXpvWG7EOOejgZsZADjQEv0/0dodtO7s2LkfP/D5MlHU0v1PdbQnGtxjz/2pP/OU\n6mHypV5vNCeU5heXNTZhO05d+vuIppdtkuX6XKJa+J7xyVktLtlMe62+S9U5a9G+/puzevmVM3ae\nubmW1xRFGWVCS7Beb+ipQ4clSasrq4pCBUA+n2+2RHPZnL5++huSpL7+fuXDevlow85Nd4pj+5N5\nGE+puhMtz0dT1NiqngMAcE905wHAgRAFAAdCFAAcCFEAcCBEAcCBEAUAB0IUABwIUQBwIEQBwIEQ\nBQAHQhQAHAhRAHAgRAHAgRAFAAdCFAAcCFEAcCBEAcCBEAUAB0IUABwIUQBwIEQBwIEQBQAHQhQA\nHAhRAHAgRAHAgRAFAAdCFAAcCFEAcCBEAcCBEAUAB0IUABwIUQBwIEQBwIEQBQAHQhQAHAhRAHAg\nRAHAgRAFAAdCFAAcCFEAcCBEAcCBEAUAB0IUABwIUQBwIEQBwIEQBQAHQhQAHAhRAHAgRAHAgRAF\nAAdCFAAcCFEAcCBEAcCBEAUAB0IUABwIUQBwIEQBwIEQBQAHQhQAHAhRAHAgRAHAgRAFAIf/AL+n\ns8NPyIuBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "width:200 pixels\n", + "height:200 pixels\n", + "channel:3 pixels\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXeAJGWZ8H9V1XlmenJOmyOy7LKw\nsOQoQURQBMGAYjyVU898d4pnTnx63unpnWLgUBQleIjkDMvCBjbnODM7OXX3dK76/njequlZdpfZ\nnV12Wd7fP9vT2131VnXVU09+DMdxHDQajUZzSJhHewEajUbzekYLUY1Go5kAWohqNBrNBNBCVKPR\naCaAFqIajUYzAbQQ1Wg0mgmghahGo9FMAC1ENRqNZgJoIarRaDQTQAtRjUajmQBaiGo0Gs0E0EJU\no9FoJoAWohqNRjMBtBDVaDSaCaCFqEaj0UwALUQ1Go1mAmghqtFoNBNAC1GNRqOZAFqIajQazQTQ\nQlSj0WgmgBaiGo1GMwG0ENVoNJoJoIWoRqPRTAAtRDUajWYCaCGq0Wg0E0ALUY1Go5kAWohqNBrN\nBNBCVKPRaCaAFqIajUYzAbQQ1Wg0mgmghahGo9FMAC1ENRqNZgJoIarRaDQTQAtRjUajmQBaiGo0\nGs0E0EJUo9FoJoAWohqNRjMBtBDVaDSaCaCFqEaj0UwALUQ1Go1mAmghqtFoNBNAC1GNRqOZAFqI\najQazQTQQlSj0WgmgBaiGo1GMwG0ENVoNJoJ4DvaC9C8/nEcB9u2AbBtG0e9dnDo6+0FoG3XLtp2\n7QKgvW03+XwegN7uLob7eya8hmwmS0VtPQ1NzQCMjIwwfeYsACqrqmhslvcbGhuxTEu+ZBiYhiEv\nTRPT1DqF5uDRV41Go9FMAMNxHOdoL0Lz+iCfz3saZD6XIx6PAbBx/Xo2rl8HwNqVy9mzewcAg72d\nmIZcXpFQCL9PNMDisB9DaYBHCseBkXQGgFzeITGSAiCZydI0aRoAVXVNtE6ZCsCsOXNZdPpiAPzB\nAD6fGGk+35Ffq+b1jRaimn2SyYgASqdSDA8OAPDSiy+y4sUXAFi74kXiA90ARMJBykvCAAR8Pux9\nXVKOw9G80Ebl4KhANA1IZ3MAxEcy9MeSADRNns7sExcAcN5FFzNj1mwA/H4/wVAIAMuyXpuFa455\ntDmv0Wg0E+ANq4nmsln5N58npLSLNzLpdJp4bBiAXTt3suTppwB45vGHGejcDUBZSZiSSBAAyzJx\nbLl0HCS4dDjYn+F8pC9SwzAoVFbTGdFQB2NJbH8EgGlzTuKiSy4F4JTTTyccKQIgHA4f4dVpjmXe\nsEL0uWeeBmDp88/xoY99HICi4uKjuaTXnIH+fgYH+gD423338dgD9wGQHOqluqwEgJKiIHk32u4c\nvLB8NX+i4zhjtulG+fe3HcMwcUWqYRgH3P5ELm13q4X7yOZtegbED2wGS1h84SUAvPWqt1NdUwtA\naVmZjvK/wdC/tkaj0UyAN6Qmms1muPVbXwfggXv+xDd//HMAzjj7nKO5rCNKPifmaW9vL2teXgnA\nn+74LdvWrgCgriJKabG4NfK24wWHDnR5jJq/o9qgYRjedxzH8aL5tuN45r/t2N5n0pkMWRXccRyH\nRHJkn/sK+PwABINBT1v1+XwEgwEATMPANM0CjdXAUhrhmPcpcA0cZLDLAAzT8PaXzsqxtfcM0jLz\nRADeds11zJsvQanqmlr8gcBB7EHzeuQNKUSXLV3KD7/6OQB8doqTL7gKgE9+9vPHlSnmCrCOtt08\n8+TjADz+4N/o3bUJgOqyEiyfHK9tO/sVmMZeQhJcAekm2Oc9k9+2bTIZ8TdnsjlGUiIUU+m09342\nmyWlov9jfJHs3/wvFHyF77mJ/ZZlEQgECPhF2Ab8fiJheSiEgiECStj6TAufZarv+PD5RqPszjge\nHIW4S7VMC8eRdXT1xyFUCsCV77yes8+/EIDmlhYsn65tOR45fiSGRqPRHAXeUJpoNivaz09v/QHL\nHrsXgKJQACNaB8AXv/F9WlonHa3lHVY62tp4+onHALjnD7/FTkiuZ0VpBFf3E7P6ld/dO2CTy4lG\nm8vnPO02nc6QTEkC+0gqRSqdBiCeSHifMUzT25dh7FujPZw4heZ5QcDKcRxPbQwGAhQXSbS9OFLk\nvfb7fPi9BHufZ5HsHfh6NXzW6LkbjCUZcUQbvvqGGzntzLMAmDJ12nFl8bzReUMJ0VUrxf/3zc/f\nTE2Je5NAf1wEwFXv/yTXvOuGo7a+iTI0OMiypZIM//tf/w/9bZsBqKuKoqxNz+x2KfQhupdCJpsl\np3yo6XSGxIgkoceTIyRGEgCk0pkx33VF4rEuHAqFol1Q8x8JhylV2RlFRRGKVNpSwO8noPyalmmO\ny1fsYlmjtfkDw0kylqREveUd13PmuecBMHX69MN1aJqjxLF9xWs0Gs0xzhtGE81kMvz8x7cC8OIj\nf6E4LEnjDpBMS8CjbvoC/vVb3wNeXzmjroZ9zx//wJJH7wegubYcyxItyA0AwStN9bQK8GQyoxpn\nLBEnnpCAUGIk6UWkjcKuR8dZPXlhJyrHcbza+WhJMeVRCRQVRSKEVIAqEPAXZBuMRys1sdQ56+wb\nxl8qeaXvet9NnH72uQBUVVcfvgM6CNLpNFl1HcRiMfL5nPd/oZBo5MUlJd5vHgwGX/tFHsO8YYTo\nujWr+eqnPgpAXamfjEqrwQCfMkF74jYf+8ItAJx34YVHY5njZqC/H4BHHnyAP972XwBEzCzFYbnJ\n8/aov9NQ6T8gkfGk8l8mEiMMJ8Q8j8XijKREiFoFbeGON2E5XgpNfvd1KBCgvFQEarSkhOKICJhw\nKOT5YvdXLFCI32eRUw+2jp4h5pwivtLLr3o7Z517/uE8DGD0Wunq7KS/V/odZNNJ9nR0ANDZ2UVa\n/fY9XXvIqdgBQHG0DJB0LUNdE2VlFTQ1NwIQjhQTUpVbVTU1VFbJgyASiRz24zhW0ea8RqPRTIDj\nXhNNK63rv//jxyx96M8AFIcD5O3Rw3bzBgdjSRZd/HYAPvapzxyzidIb1q3jf2/7HwBefu5hmqrL\n1P8YXuDIMAwsdVypVMZLYh+KxRgaltLF4Xh8nwnpmn1TWDxgGAblZaKVVpaVU1Ik2lgoFPRcHnsH\n8QpxT3XA52NYtenrjaW44tr3A3DBmy9l2owZh7TOrs5Odm7fBsDu7Vs9d8/OrRvp2r0dgKDfTzgk\nObWh4Gi7v3DAj8/yil5Jubm9ubz3mVQm6/UWSGfzRIrlPDROmkpdYwsAU2bMpLZOsl6aWifRpJpl\nH6v31EQ47oXotq1bAPjMTe+muVLSTTxTXjEaWTZIWnJBfPGb32emaoF2rPD4Iw8D8Ouf/TtOTMyy\nwtp2GK3SSWUyxONiqvcPDjEwPASI79MsEJyaQyfnClSgtER6DZSVRikvk4dacSQypuP//jCVz9ln\nmZKsD5TWTuKq698LwGVvvfJV17Jq5Qo2r18LwJJnnmTHhjVqkSlKi8XtEAkFxmQXFN75rlB3HLwb\nwgDvejJMw7tvbHv084bBmDS2lCtcM1liCVFgmqfPoXmyZCFMnz2HmXPmyuuZMwkEXv/+VX0XaTQa\nzQQ4ruvQstkMS1S3ppCZJZ/ftynhPpAt02S4V5zt61evPqY00bv+cAd/+OVPASgN2ISK5Amey9ue\nRmnbNn2DonH2DQzQPyAJ9tl83tMofLr08LDhK2jMPBQTF8lgLMbAkLQUrK6soEKZ/MFA0HMF7G38\n2cq1lLHz1JRLVkgytoeffferAOzcvo1rrn83MDaC//Tjj/H8M9KycN2KpcT79gBQXhKhvlyuj3ze\n7+0vl88ztreAvM7k8qTTokFmsjlP4zR9PoqiFWr9Efyqt0JRSek+rRjHtjEGpStYxM5TpFxpPbs2\ns2OjaMkP3vNHikvLAThhwULmnjgfgHkLTuaEeSft8zwf6xzX5nxfby8fe887AagJ5cjmDxw5NQyD\nnDK7qibP4/O3SJOSiorKI7vQ/ZBMJrn9V78E4KG7b6eiSFXUmKYX3fVZFiNJiax29/XR3SeR2EKz\nXfs6X1vcCi/TMqhUpn1VRSXl0ah63/QE6v4wDQNT+bR7BuK0zpGmJhdefhXLXngOgNUvPIWdEZdN\nVWmR5xbY20zP5uRaGUmmSavXlj9ItFyu63BJOeFiWVtzUyPRchGc0dIyyqskFauouJiycnUsVdX7\nvKYcx6G9rQ2QWEQmI0K0q6OdfC7rve7qFGG/fesmdreJ0lJZXceUaeIDPmnBAi6+/HIAysrKD3ie\njgW0Oa/RaDQT4LjURN2n/KMP/Z2ffuvLADRWlXra24EI+EXb29UzzKe+8l0AzrvwoiO00n0TV6bh\nv//w+zz/sNT4N1VHCz5heD6IvoEButRYYtekBB00OhZwHLzE9WAwSGW5aFW11VVeWalt2/stIXXN\n7VQ6x/ZOsTBKoqWETbm+a8qLPe0zm7eJJyW/MzGSIqnMc384QlVtEwAtk6dSU98g2yktY5Ia0jd/\nwYKjUlzS1dnJrh2SLbBj61a2qiBwNpulSuWbXvbWK2mdPPk1X9vBcFw6yFLKvH34/r9Sozq0Hyjd\npBA34loa9rP2ZUkNOePsc7z66SNNbHiYW7/7bQBeeuz/aKoRn5oDWIYIxnQmw55umdXe1dtHVo06\ncVOaNMcGhjHqg85ms+zp6gIgFo9TV1MFQE1llWcaF0bwDcNgKCGpT0OxFBVRSV6vjAbwq/aFsZEU\nvUOSumaO6cCfI5VRU1mNjGdWZzMpEsODAAz0dLJr60YAVr/0vNdCsLisnNJyWVtJaSnTpouJ7aYr\nHU5q6+q87Z5y2une+4ODA6xaIfeeP+A/7Ps93Oi7TqPRaCbAcWnOb9si3Ys+9YEbaK0WsymTPbAj\nf2/8lsVATrTPW37wE6bPnHV4F7kX7ojin/7oVh699/cANFVFvZw90zCJj4jW0b6nk75B0Sgcx9Gm\n++uMXC5PQGlYleVlNCptLBQIjLGY3J4OtuMQVQMC7YI5V9ls3tNWTdMgrLbp843t8L8vDGO0p0I6\nm/NeO0AoItabPximuEy00tLKappVm8jWKdM54xyZAvFGKu/cH8edOZ/P5Vj6vEQvo0FnXH7QfeOQ\nHpZ0jXWrVx1xIfrnP9wBwHMP3ktTlVzEhjThBGBweJhdqtY5Fk94N4cWoK8dpmmOqVg6VHw+y4vg\nd/X0kkyppPT6eqIqad+280RCAbUvxlTYuQQCPmpD8nkKhOt4tSK3Z0Qo4KMww94wVNWbkyDRJela\n/W2b2PDikwAEi8v4+913AlDb1MLJp58JwLnnnf+G7N6v70CNRqOZAMedOZ+Ix/nkB94DQDjbd8ia\nqGGM5tuVNM3my1//DgAVlYc/Z/TRhx7kv74vOalVRYZXRucAvaoDz66OPV4fgFcbFaw5vLg3iN/n\nI6pq5HsGBrwChonimvDhYJC6mhoA6muqvQtwPK32jhSjboHR8k4MSCtXQyKVJVwi+aOl1Q0sOF11\npLryKiqrql77BR8Fjjvdu6e7i65dWwForS97lU/vH8eBgF8qUjatWsamDesBOO2MMye+SMWGdesA\n+K8ffptyKQZRHebldW9/P9tV8nIum9Om+9FC/SCmaXp18b2qGuxw4ArjZDpN2x5JRE+l07Q2SjpS\n4dSB8VI43dTlQFvY3/ZHR6yM3YJfpQJWBPw4yMN9sG0TD94paUpPPfwAcxecCsDNn/nscW3m67tS\no9FoJsBx83hw56o/+9RTlJWIWmfvwxl/MOTy8v2qkgBLVI3yifMXHJaI5PDQEN/+ihQCRH0Z/Gqu\nuu049A2ICb+9rZ2cW8estdCjjuM4Xlf3+poa2lXeZ2EN/USwCgJX3b29XsZGa1MjQZWnPB6N1HYc\nbzx1Lu/gc7tEFVxCTsG2LMvytl+o9RaOpN7bpeB+Jl/wfjjoJ6I04OTwHpY8KK0nN61eyXmXXgHA\nO69//c4w2x/HjRB1E86XL32eEpUOMlF3r5v8XBQO8vj9dwNwxdXvYOr0Q+vzCJBSEzL/69//H9nB\ndgCKS8KeX6xvYFCb8McqjoNfCczqygo6VaWY4ziHzUdduJ2BIdW+MJtlWmsrAOFw6FW75xtARiXb\n98eSDAxLfX0imaZITT4wsXFsEdI+y8FtIRrwBwipB0UwGKQorCajFhV57e8KB/wVYjuO5/oI+X0q\n6g/p3p3c+zuZvrBm5XI+evOnAWhoahrPKTnm0XeoRqPRTIDjRhN1S9tWLnmaWa1Sd+ua4xPFdhwC\nhpjVLy9fzuSp04BDM7FfeO4ZAJ596D4aq6Re2XEgoRLpd+/ZQ1aZ8Icr+qs5fLjWTSAQoLJUgkw9\n/X1Yh8mkL8TVShMjI2zcJp3qpzQ3E426uaT71kgNw6Ao4mqTPmrKJaMgPpJhICYl0cUV1Zx82mJA\nOiVt3iCt6l545glygxI08/sc/KqUOOD3e26s0uISytQazP2MkRatVF4HAz4C6o/tK5/hi5+UIO21\n7/8Il4+j4fSxznGT4pRUQuiTH3o/uf5dgCQRH67Dc+vS85E6vn7rTwCoqa09qG107ungY+95FwB1\nRbY3+CuRTLJ5mzRiSKZSOn3pGMO9hoKBACfMFFeO3+9nUJnb67dswzFEiFrGoRZ3jH8NzQ31AFRX\nVr5qSz1JhxvdhtsWz7B8ZB3xw2etEJdeKWNx3nzZZbTtkvvnmaeeYOWLLwDw3NOPEVIqV9BneBVX\nZdEoFSpjoaigk//e9513RRuGl3Y4lHK46KrrAfjwxz8x/pNxjKFVHY1Go5kAx40m6h5G++7dfPVz\n4rgmvge/zxrz/4eKu50dnYN88ds/BuDMc84d13fdJPkffOvrrHvuQQBKiyPezPcdbe30qaR6HUg6\n9ijUAhecIPOBbMchrVxIW3a20zcowZuQ/8hoooVr8auOS/W1NTQqa+jVNFKXUSPH8LJXbNsmb4n5\n7yup4QMfFa1w0RlnEItJ2WdsaIh1a1YD8NjDD/HSEnFL9bTvJKgaLZUWR6hRCfal0ej+tdICS2tw\nRALCJy6+iE99/osARFRBw+uF40aIFrL8xRcB+Od//CiTa+QHGW8rvP3h/vC5XJ6WeVKV8ekv/jMl\n0eiBvqbWsxSAr3zqw7SovqC5fJ6uXqnN39HWpv2fh5nCy/pwuUdKo1FmT5MenPl8HgzZR1dPPxu2\nS0ZF0OfDp/p9Hukby7IsGutEiDbU1o5bkO5NYVpTNpcnkZVrccqbFvJPX/oXQMaSuEIxlUx6WSY7\nt2/j0YdEMbj/nj8z1LMbgGhRkJpK6Z9aWVbunYuxv4s01gHoGR5h0gmLAPjyLV+nvKLikI7laKDv\nXI1Go5kAx6Um6j4xlzz7DF/51EcAmNFUNSYx+FDxWSa7e8V0+8/b/0Kzyt/bH8lkkps/KKNvGe7w\nNM54PMG6LVIiVzCldty42pXf5/MaSb9a/uAbAbelW0VZlFBIii76BwbJqDziQ9FK3e/UVVfR0tgI\nyLl2XS+xeJx1W3cCkMrkCftcTfTIBwjdRP+GuloaVN39RKyuwp4RqUyefgnm84V/+w5nqvZ3e+O6\nq1LJETZv2gTAn37/vzz54H2yRidDS4NozGXR6BiNuXBcebdyiUw+8XS+9NV/A45Mr4rDzXEpRF3y\n+Tx/uVN6c/72P75LS62YF4feHk9+7EGVJnLZDR/luveIgPT7x3a+dwXa3+67l1/eKhdEXUWJd8Ft\n2bmTYTUX3hznje36sMKhAJNUovJQPEFXT6/6//wbNrLvJrzXK0ESDofoUBVFI8nUuM/xvnAffJOa\nmqhSJqptOwUunhzbdncCsKe3n4jf7c155H8L9/b1+/0010tf0tqqqgm7rzzUMXb2j3DBldcB8JFP\n3uxVbu2PdDrNkEqV+t1tv+LeO28HwMwlmNQoAjUcGls44I5D6eqPc/ZbZF//+PkvHJ7jOIJoc16j\n0WgmwHGticJox/jf/s8vuOf2XwDQWlfuNcU9FHwqUt+fCfLvv5InbLXSgFySas7TOy89n8YySbCz\n8zZdPW4wafe4ErQL65urlbO9vqaGooh07F+zcRP9Kl/xWA5OGeBpNYZheMnaPp+PnOp7MBSLH3Rw\nxNPOw0FaGxoIBcWE3757N4NqcN9Ez4trMs+aNpWIGjBXeNuYpun9ruu27iQUlM+bBwgt2Y7b7tDA\ndJsgT2CNjuMQUvXvU1pbiZZIIcfhcvEYGPQOieXUOnch//a9WwHGNeAun8+TSMQB+Otf/sxvf/FT\nAHx2gsZq0exN0xq91k2T7gH5/MXX3MhNH/u4vH8EChoOB8dNxdL+cAfMXfvu99KjzLs1zz5IabHc\nbIdi9jjqxh0Z6GTLJhn2tbcQvfuPfwCgyMqCI6c5mUrR0SVm33hSmRzHobhIqkSa6uspLRnteO+6\nAjLZ7GtgNB4chS4F9/yXlRR7Ai6dyTA4LKkzKeXeOBRsx6FSzUJvbWrE77PYvlv6EQzFYofloeI4\njlcUUVxUtE8hbwBBlecTDAQ8v6xlOfsVo25SfirvxzUIA1Ye4xBj+oZhkFIKQ9uePUwLiq/e7/eP\nEU7uWJlsLuc9lMeDg0NVmVyL3Vte5rOfkFjDV771PeobGg/4XcuyiEZl4OL173s/V11zLQC3/ffP\n+dOvRbFprCohWjR6T9aUi3C+/4+/9aaSXnTpZceku+rYVV00Go3mdcBxb84X0t4mOWzf/JcvEu+Q\nyHhRJHDQLfO8bjZ5m+ImSb7++g/+n2faZDIZrrv0AgBqikcToXe2d9CtOv/sTxN1GJ19U1VRQUOt\naLhjNArLosfteN/WPqHI80QoHIbmBm6KiiJEi+Q8REJhYkkpxx0YHCClZglN9IJzrYeyaJSpKjsi\nFPDT3tXtNTW2bfuwnQ93Xvy0Sa37NI9Nw/A06i2799A3IFp22G+/anDJAHKOGoWd9xG08mqb+QlZ\nGNWVomVObm72rhvTNEilVYHH7nYCqrFyc0O9N9p5vOJgJKWuuZI6fv47Cd6GD6FFZIfqWPaDb32D\n7Wslv7uyJOgVt+TyDilLLLB/+fatzJw9+6D3caR5QwlRlx3btvHNf/48ALmhdq9l18EKU8s02d4h\nvrD/+fPfaWxuBuCO3/yau3/17wBUlEYYjot/Z8OWrfu8sR3H8SRzcVFERkMAiZEklikXU2NdrXcD\n+3w+drXL0Lr2zk7vwj8SQnRv358r/H2Wz/PLlkVLvOYUicQIXepBMZJMHva1ScWO/F6tTY3UV8tD\npru3l+2727wqsMNV+WUaBi2qw3xNVdU+hYwcm7y/a08Pm3aK2yjsN/CbOfdD+92H+z+pvElRsZi9\n5NJkMu5M+YNbs+M4+JVQbGpsoE5VEeXzeU9YdnZ1s3nHDgBKS6JMapZsj+JI+KDGkYyksjTMWgjA\n1773Qy+t7FB4/pmnAfjZrd+DEbmGisN+4iPygJq+8Dw+9QXpwTueIpfXCm3OazQazQSwbrnllluO\n9iJea8rKy2lqncwpp5/JA/ffT0nQBOfQtKWA30dROMhwymb+wlPI5/P85AffotjKEgkFsG2bHW1t\nxBIJ0pnMmH0UmudV5eUUhcPU11TT0zdAMpmmp7+f6ooKfJZFcSTiaQiWabKnu4tsLktiZATTNA+L\npleoZVmWhWEY+Hw+QsEgfr+firIyGuvrqCwvo7a6EsuyCIdC9PUPsLujg+7ePvoGBsnl8mSzORlu\ndgSG6lVXVhAOhZjU0EhsZIRMNktbZxexRMJb9+HCNE2a6usJBgKedrc3tm2LNulAJpenq3cAcLD8\nQUzDwjF84ORedV0+0yaTtcllsyyYM4VYMkswGCKVSh2UNmoYBrl8nrxtk8nmiBYXk83lCCiXkATL\nxAURCgUZHBoilkjQPzhIKBwiHAyO+xwGfBZdbTsZ6m5n955eFp2+WAoRDiGS3tzSSnNLK2+5+hp2\ndvRQN2kGmzdsIBrx4/dZrF+9iprGSezcvp1pM2YeM0GmN6Q5X8gzTz7BD2+Rxge1JX7PthrvafGp\nFnl92SDX3fhhAG7/j+9QGRVTdySZZNX6DcDYFA3HcQgr06extoager111y5iMTH/K0qjTFYugkgk\n4q0pnc6wZadUyMTi8UM2XfcWmm40OxgMUF4qZmW0qJhgSBKrEyMj9A9IdLd/aJC0GkFhHSYhfiDc\nB0hROMy0SZPU6xA7O8Stsbu9wzNV98ZhdPifYRxcCnw4FGTenDnAK5t8eP0+EwkG1W8WCEbYtFMy\nBEqLiqipFLOzbU8n6bSY5wfKGnCPMxwq5Ypz5wHwwLNrGRoSH7hvnLKp8Ld1J4hOaW7y/MmGYbB9\nt/gjOzq7MN0RIj4fk1RVVmVF+fh2pujsj/GBz/wrAFde/Y6D+u7+eOqxx7jtpz8CwIn3kPGJv/3b\nP/kFrZMnH5Z9TBRtzms0Gs0EeMNrogD/+5tfA3D3b35GdYkaCMb4tFE3Kt0zGGMgJWrCpOqQN7Nm\n++7d9PaPjtd1tZDSaNRrrjuSTLJ1pzTCzefznjZSU1nJ1BbRRA3T9PbVPzTEDqVFpDKZcZU0Fg4f\ns1TnHL/fR0C1VSsvKyVaLFHQcChIWkVx+wYH6VPjgUeSydGIvGkelfzU+poapk2eBEBnd7d33nK5\nvKdN7U3OsbyUAMs8uKh3bVUFrU3yG+x9Pbh/d3R10dkrGnpNTR1Zt8Xhnn4uXzwLgGhxhPueWCbf\ns9OvmsOaydnMmToFgLMWTOPOh18CID48MOY43RXt75hs2/ZKNKc0N3kjnw3DoLO7R9bZ1o5tF2jZ\n6jee0txMldJGxzW22YG2AQkC/fov978id/pQ6eqU3OoffecbvPTMYwB84ObP884b3gMc/ST84z7Z\nfjzc8L4bAemZ+OjdUoFUUxYmbxfO3N43rsArDgcZTkhqi2WGvCmdvcr8BRmx4Kae1NfU0D8olUbb\nVCdxEB+coyp4gn6f1zsym8t5Sd/ZXM5b2/5uHsdxxtxg7nYCfj8lql9jdUUFYWWqZ3M5hlQWwe6O\nDgaHY+r4bO+GP1oXq+M4XqVQXXUVI2qKQd/AoFeRtrcpbzDaIyFt+wmppiAm40uxch8WJcX7jgIb\nhuFlAvQNDnrBd8u0aGyQphlKCF6YAAAgAElEQVSmAWu2iwD46NVnkleC6u7HXgJHXvusfdc1BX0m\nKzZsBWDutHpufMtpAPzXn58kr6L2DiZ5R34Tn5nb57VgmiZJ1baut3+AUhXVtkyToCp+8PlDpJJS\nvGFZo8Jy+67duGerajyJ+QZUl8h6vvblz/Pjn/9SbXNi101tnfQE+PaP/oN//8H3ALj3rrtYfJY0\nRDnaZr025zUajWYCaE20gPfc9EG69khQYNNLTxAtevXRy65p1T2QoK7S1VoMepQJ79g2RUqLaqiv\no6pMzKO2zj20dXZ523E1HwewlFa1d2co9zPpTMZrf1eIG3kF0cyCSvsMh8NUlkugqDRa6n0mmUyx\no220TDKh6v2tgnxQk6Nfr2yapldrXxSJ0NHVDUDvwMA+NVCAbN6muKhE/QFOdmTsB8axT4BoSfF+\nf3+3eCAWixMpkt/e5zMoUeWLJ81s5oll0hpuxYbdXLJYEsXbeoZ5cZW8bxj2Pt0QDhCNyBruemQ5\n/3rTpQBccvqJ3PeEmPY+M0/Wlu9mcj78lgT69nbvWOrv4XjcG8NcU1lJUOXbYgZJ50VbDVujRQqO\n43jBJ9M0qVSugANp8u42u7atY8lzzwJwxllnH+AbB8fNn5X87pLSUp549BEArnrnO72y0qOBFqIF\nFBUV8RE1E/s7X+2lb8caAIoj+5/17d5gI6kMQb/8kAbQr2qUi4uKmKza1pVGSzwBsLtjz5iKn4IN\n4nNN74B/zA3sCdF0mlxO3TCm6d0kwWDQa0JRGi2hUgnsUDDoVdT09vczMCRuh6HhYS/ibJrmflN4\njhbusYcCAeprpH1afGSEnj6JVO8rlcZ1r+QdkzMWiD9yy64uNm2TY/YFxvdQcDMnfJa1128g/+Zy\nOU8gFf5+IsBkHyfNamEwJmby8k1tnLdQpsTe+JZTsJWrYeX6LaCurb2FqaOalBh2inufktEcn7jm\nTLa1iy/z5Q1b8PvE9ZPKh4ioY8ukk2N8rq4bKJlKMaTcNFUV5V7FUiTg0Kf2lbV9BAsKBNxj39ne\n7g2nKyna/4PFPRdlET93/Oq/ATht8RmH3RX0/g99hP/6iRS03HvXXbxLtaR0753XEm3OazQazQQ4\ntlSPQ2TThg3s3CEjh6PRKC0qj7Cmtu6gn4B19RIx//g/fZ5v/4uYDql4D+GgnKq8PVYriSXEDCqP\nhj0tRRz58sfU1haKVUlkR1cX25X5vL8k9MKSvYB/rCaaVQGnbDY/am4WFVGsAkVlpaVUlIpZ6TB2\nlr073ncwFhs11Q3jqEc2D4R7foqLioiERTPs6O5mYFiOxbfX2g0gnhLNetGJM2moFvNz7eYdHGwq\nbVT1QXilxqXM52yWgSGxNgzTwu3zbRoGAzE576FgkLMXzATg+799iDVbpa7/4lNn8q43nwzAcHyE\nrbukp4O/YLxxIT7L4OVNOwB4ectU3nnhSQCs374HcrKvaJHJpEbJIli3afNoe71CLdk0GU6IZjwU\ni1NS7M6ON/Cpz9c0TGOoV65RciMF1k/WM+2nT5pEaD9NmQvLfAc75J58/pmnxz3U8WD46CdvBuDX\n//0LHn34IQDefNnlh30/r8ZxIUQ3b9zAk489Cshsd3dG/NwT3sSMWeKHampppWWSRPGqqqtfdZvT\nZ87i/R//DAD/+d2v4ctLJNYyzdGGDoZJjxpp0FAV9XxRqXSGqa0tABRHIp5pv72t3Qv1Hyg53RVy\nlmmNRtgNw0tuL4qEvbr12uoqT0jn7TyxuGr4MTTkNSkZSSa9tR0tk93AIWvLvi3DxjAOHCMvnGpZ\nUVHuRZj7+gf26dY0gJF0lmo1TuLq805ivaph7+wbxLL2f773te/ysn372Fy3zlAsRlL5RC2fH0zf\nKz5jmj7OnC9C9Od/fpKtHXIdJDJ5GivlwXfF2Sdy231qoubwED7fvqW9z5CHwwPPbeBL75PmNhec\nOov7HpemHRWhLJWlIvgvPnMh9zwi0zjLS4Jedolpml5mQzweJxKS6yaVhYApay4pKaKxZTEAG1Y8\nR175ki3LJJGQ1217OpmiUu/2V+hhmgZBSx76f7r9N0dEiLrc+KEP85NbfwBAbHiYq655p1rza6Mg\naHNeo9FoJsBxoYlefuXbuPzKtwHw0gtLuPeuOwF49olHue/O3wESdFl4uow6ftOCU5g1900AzJwz\nh6L9zLk+69xzAUilkvznd74KQG10bF1xRnXIL3zqRYuLvCT2WCLBDtXuC8c5oAYqHxnVwAKBwF6l\nmfLdpvo6r5OR4cg+QLTPbjWGOT4y4mmfe5u9rxUGEiUHSXjPK0005M+MM+av3A5mgBGVOTAUi+1T\nw8jbNqYvyKVnyO86a1IN9z29CoBYPEVJZPyXejDgp0hp905BQNEwDLKq7WB3b7+nhUXCIS+JvXB+\nVzafp7VV3EOnnjCFbXskYyNjW5hKszx5ZgPtp58IwN2PLiVvK+12Lw3PjTl1dPeSU02+zzppCg8v\nWaeOMeEFuj75D+9g1SYpC27vaCMSGi0gcTuVDcfjXu6n5QuQV5fZjk0vc9M/ypjkSCTM0ifvl2N3\nbO+89w0MeJ3za/fT2QoczyIc7NrFrp07AGhpnbSPz06cD370HwD44Xe+RVJp28WqifmR5rgQooUs\nXHQaCxdJYvLuXbt48K/3ArBm+QtsXPE8AOuWPUO4WC76N52ymKkzJIrb2NxKy2SpEmlVflWAiy65\nlD7V3u2Pv/gxNRViSidSGa8bt2GMpn74fD7S6mbb2dbumX3j7WZveXXMo5Fhx3HwWfJz+SzL6ws5\nPByju18Ep9xEh1dwuhFi4FVN8NHPyb/JVM4b7JbKB0iPqDEm49mOY2AXiNo+VbSQy+X2WSOfSOc5\n7cQZnHWS/H6bd/fS0y9mst9ncDDDN8pKS8cIT29Jtu21NUwkR7xzUxyJMK1ZXETb94xWp+XyNii3\nyzknz+a52/4KQO9QksUnSB/Uzdt3cclp0wHYsruHlesl9cnczwPXzqV4Ya34UM8/eTLzZohZvXTV\nes9Hm0pnufmGSwD49HdvIzzaOMATbEOxOOmMSmsKF5E3VDqckeWph/8GwMc/+2X6e8UlsnXNUm8N\npmnStkfejxaXEAqOTcUD8Vq5fXFz2TR//oP0HP30F770is8eDtxepv/8ta+TUg/c1wptzms0Gs0E\nOO400UKaW1r44Mc/CUBf77t49O8PALBi6bNsXLEEgPUvPM7a5yUohS9EdZMEn2afMI96VTM9efoM\nrnu31OkO9Pex5MG/ANAzEKeqTFwBheaX4zi07ZFyv4Hh4YPSCg3D8Mx5n2V5XesLtdiBoWG6+0T7\n7BsY8HI9D6cj3Vbd1rO2RcDMjvt7pgGxpGjJ1RWVnDJ3BgDrt7fTpSLn4+nW4BhiZgKEAgY9Stu2\nrLGXbDor26wuL2fxvKnUV4oJ99yqnXT3i+Yb8I1PC3W1freHgIs3Gtm26VTjqS3TQO2acChEndpv\nW/cwbgKHIQsEYNG8qUTVvKxla3dw0WnidigvK2VYZRu8/fx5dPaKJtvd282+YmG2Y/PIC5K/fONb\nT2feTOm49OSytV4JbHf/MIvniXa7+KQ5PLf8ZQDKikOemZDJZEiMiMbW2DiFuLKWRgba2bx2hZwP\n2+bTXxQ31hc+cROJwU5vHW6ectuePUyfJFr13j/raNlxnm0b1rzyYI4AhmEcUof9iXBcC9FCKquq\neKcShJdd+TYeUykRL7/0AhtWvgBAgAz5Aaljf+6BTQyp9KXqxhYmTZcof6goSuegW6mSpL5KUooM\nQyYWgqQydfVIQvTBmtWWZXkR9MJ0p2QqRU+f3GBdfb1etNoyzcMehXQwyNiyTcuwMQ3He39/uJ8Z\niGVoqBPT9tqLF7F6i6T17Onp8ZLKD+QX9ooXMiaRIjn2/oEBMhmJ9Lq+YHel7tTMk+dMZv7MBpJK\naHX0DDCsMhUiwfEZXO55LCkaexO6a4onEsSV/9nAIKL6DkxurPXGWUjCfIE4UT0UamorOU0Jtvau\nQYbU2mZPn8TGLdsAqC4v5t2XLQLg53c9wUhSEuMLK5Acx6GnTwR5fCTLwtny0A8GgjiOnN+RVIaq\nKskuuOLcBTy3ct3ocahtmaZJTA07rG6yvBjB+pUx0iPiBvmPH36XO//v7wB86sv/xr99TvyOljHa\nG7V/cJBYQjrnF78itiDnwW9ZJIclU2TL5s1Mmz6d4wltzms0Gs0EeMNoooUUl5Tw1qvfDkhk/7mn\nngRg2dLnWfqUtNqyc3la6yUoYjkJdrwseXfxkTQ+1YEnGPCNiUzGVNChvbPzoBslu+WKAb9/NJHZ\nMOhVJY6dPT0MxWLeZ49ExN09klTO52mdYSv36sPWDIehhGiAk5oa+fDVZwLQM5Rg2TrpRJTLZjxt\nbf/7d8iryPOsyY30D4u21tnbh28f301m8tSrnN9TT5hEJOijvSemvjOA47V3G0cpoONQqiLOe2v2\nrrukraBUN5uzKVca66K5LWzr6FfHsJ/NZ/NcsEiaO99+/xKWrJJBiRWlxSxfK6/XbWv3rhvDFySb\nV42efaNhMdMwMBDt9p4nVnLpGWIhNdZUkM+6ARXDC+efPHcKZyyQzzy/fBXRiARCTdNkRFkzg0OD\nnHPp+fK6r5MdG8Wc37x2BcuWSkDp7ddex5OPSa36Uw/8ybM8DMOgXZUyz5oyeczxe/mplkFqRH6X\nJx995LjTRN+QQrQQy7I46zy5gM4673xePEcSmV9e/hJLnnwYgP6OndRUiM+rvqqUImXm91mOZ2oZ\nhun5y3J5+5B7bfp9own2bXv20K6alKQzGe/mtl4lTepQcByHZFYNofMHMJ2RV/2OG60fiGeZNUWK\nC25662JKiyUi/Zv/e55USkzGwAEEqPsgSmVh0TypL09nbK9bfCqVGVtX7j24LOZMEb/1zJYq8rbN\nxp3iRmnr7icUGP+DzHYcr5v/3u6GQfXwGk4kvIeXaVm0NkqLtimNlaxUbgurME1DDly26Ti4ht/O\njj6+9cv7vX1Na5a+AEVBH5GgbP+6i+Zz7xPiy+zr7xmTXJBXaXVPLFtPJCx+42zO9rI6LMvEUYUZ\nrfWVnHeqmOqPLXmZqPJUGIZBWvVTiA0NcdriMwDYsmEd29bLfv2WzbNKwVhwyql87p+/Ip9Zv5rO\nneu99bjKw0gqRVg129nb8W3nZT2b1q3meEOb8xqNRjMB3vCa6N6cctpp3r9nnnseAKtXrmDJkxLB\n37xmudeMt7qsxMu7MwzDS3o/FD3RMxOzOTqU9plMpcnnxXQ7UgnzrhvBMP20Nkon8rbOHvyWBCn2\nZ8obhsNAXLSLWVNaufEtEhCZ3lLFT/4oro/de7rxjaPcMqOs7jMWzObs+aKJfvO2RygJuoGosZ9P\nqbB4XXU1C2eLJloSCWP5fGxrc9vkxSgJj19HsCzLa1ZdSC6fp6Ory/uM24IwGi3l8rOkhj2TcxhS\n9fKRcIBsVtZdFA6QGBQt7Zf3PM2fH5HO9is37mLBbIloX3/JIk6eOwmA+ooS+vpl/blsjiKVJP+j\nOx7BctLqXBjebzY4NMx0pcVObWlg1YaNAHT1DWFE5VjMwQTzZsi+Tpo9la3bdwAQVkMUQYo1ysrF\ndXXSwkU888h9ANjZEZY+I5ro4AduorlFrI3P/uvX+aePSJDWyI+Oxe7u7fPKQfOFmqgDflXOOtzf\nS0q5ESYyXvlYQgvRAzBrzlzv38VnnwvAqhXL+eXPfwaAlR2tWkmlUuRVg5BDweuDmct5aU2GYRy2\n+en7wnGkOzpAQ00N5SVi67V1pMHa935dE34wnmPmZLk533fZqZw0Q2azP/D8Rpav26Z2kMM0Diz8\n09k8TfXy3avOOZFVyizOpFPkrVf2GXAcB1PVqc+a1MC8GZLiU1ISpb1nkI4e8U0a2DCOuihXAJQU\nF41J4nf32dXTy4hKBTJN00uwb2mo55IzxUx+Yslq8qrkJ+CzcAenPL9qG397Rqqm7nhgKSfOkJaI\n1775VBbPmyqvLz7Fmy6QyebJZeUBvbO9g7lT5KF2/qI5PPLcCrX90TXncxmmtYhP+Mz501m1UfzP\nHT2D3H7n4wC8+8ozmTNFqqbOWTiHVapbfiSE93TK5/PElcti8dnncMev5Jz2tG1m80Yxv5MFCezn\nX3Qxl119PQD3//FXo5kZw8Pk1D1gFrQQtB3HE6L5zAg7t0tjkpmzZ+/3d3k9oc15jUajmQBaEx0n\njaqxcmNTE8telIjltmWP4UYRUpnsuGb3vBqHc067a4ob+1mZg0NZqdRPL5o7ibsfF3Mz6Nv3NwzD\nIZ4Uc3bWlBbee7mY8LNaqli3XQI6Dz23lpQaDRw8QDApqzS3xro63n+FuFAqo2Huf1aSsoOB0fpy\nZ8z3bK/me8GsZspKJeBXVVHKQ0vWsXOPBPfGG1RyTdrK8vIx592t1e/s6fWsgXzeJqISuS8762Qi\nKovCsW3PrWNappdV8NBfn/NGFH/w6rP58NXS4T2TzbFqsxpX3DNEY42Y0rl8ngo1GK5vcNDLSb18\n8Rw2qFlNXd17vDr6fD7L0rU7ACiKhLwJChctms3y9ZLv/Ie/Pst1l58OwIkzJ9FYK5prIj7oZUsY\nhuGVSs49cR7l1aK5du3eSl6Vhu7cvp3WSaOzjP7xczJm/KXnn6GnTdwIuVyOXtWxbO+aekvlUKfT\nSbZt2QwcP5qoFqKHQDgoKTMy8XK02/y4SnFeQ1I5WWfIlx0jSN2L2/JHuObC+QA8v2o7mbTctOGA\nb4zgckVLMm1TXi4C7LKzTmBaoxpeZvl5ZKnUfG/d3UEocOCHQC7vYPrkhn/f5YuYVCeCY9nmTnbs\nEXO8vDiEg+seMbxzazsGjbXS7u7Uua2UqBEgOVs62PcOillaURx41YeaUzBFoLS4eDSp3TC8sSn5\n/Ghiue1AVaUIoSsvPJlEMq32bTMUF2FTWhJhV6ccQ3NtOZ9+z8UAXLBojucuyebyLN8gQi6eTO+z\nh2hDXR2btopbpCjk591KEH7nV/fhN1Rf2UyGFeul0cjMyXXesZx+8kymNsk6H16yjseeXwvApIZq\nmurk3K3d0Dcm5cxWifqWZTFv/ikAbF39Ik5OjrGvp7ugxZ9JTa34Yj/x2S/x5ZtvAsBv5r3JtvXV\n1RR2H3DHJuazafp6ujie0Oa8RqPRTACtiR4Co52VCt975eC4o4E7gDeWsTDdwMwYLRTSOdFA3n3J\nQiqikmC+bN12b0bP3lqo2yYtnfezcI6YdPOn1VFfK+V+9z69nqeXSWlhwOdgGvt+Nntjnq0QN71V\nGv9Oaaykskq285efP8gpsycBkEyN0NntBnQML9obLYowe7IEospLiymvkG5cqzftZvPuTvxKuRqP\nTeA4jjd8ze/zefOadra1e7mPhmF4Jnk4EuEf3nkRACVlxfR1SCR9zdZ2+odlrX6/j6mNcjw3XHY6\nl549D4BcziauNNeSorAXPMxmc68InIF0hipTeasDg4PMbhXN8tKzTuHvTz2vTmieDduko9PCuZOp\nqxLLwPRZ1FRIOfJbzp5HVuWVDsVTBNUJssdcu86Yi3nBKacC8OA9vyfXL4G+7du2enmlXi4ocMlb\n3sL/3iZa8qaXn/FmeSWSKa+7U6FZn8tmGFBlq8cLWohOFHUDJEZSXurJ0cI0JGoO0NLUwNCQXKxO\ngV2Vt00uUM0vzpg3hdv+TzqjW2TZ1+XgGAaDCbkJZ05u4IKTJao8taWRl7fJ9u96aAlZNQs9HPTv\nU4DZtg2mpLR88G1ncJKKqrc0NfLHhyXyHEsked9lCwD4we8ewlcgjLM52WpDtJgzVWQ7FC7CUsnm\n29q62bijg/A4BtEVjrCoVQLc5/fTN+A2/+gdM33VUP68mVOmcPbJ0lDl4ceXs71djv+OB1fSWi/b\niY+kmD1ZfIoXLppNVqVjZXN5zy3i2LY3ibWw3eHYNdo01kl0fjgWI6ui9v9w7QU88aKY55nUEHvc\nhiUDQyw6YYr7bTZs6wAgEPB5/UTXbtlNV6/4LP0+0/PT+ANB6c6vmL9wIQAl5ZUMKyHa29W1z+wT\nvz/AzZ+T9nYfetdbPT/24PAQ9TU1o+d7tBsfQ/09r9jO6xltzms0Gs0E0JroYSK3n5HKryXxZJZL\nz5WI+cYdXTj2KzWHmqoq3nbOCYBocktWbgCgKGDtpUGKmpLMQLma+X7WiZNYqBLD+xM2f/j7cwC0\n7+kgElKdp/ban6f1+SJ8+G1SU3/C1Hpam0UT7Yul+c1fZTvvuOBNzJ0uCd2xRIqKYtf0HG1IXV9d\nwaQG0frKS0vp6xbNavm6bcRjMcpKXj2B27UYaquqvBzNxEiSne2iveULfkvbdvAFxHz93I2X0Tck\nZv7y9TvpHpAgVvfgCLMmiyYX9Fs0qMBXsChCPPbK8lnDNBkYliBeNpsjqEpDLdP0yltN06DIkkDU\njEmNrNm8A4CBwSFOmSsFCU+9uIKEiuDf/rcXSebluw+u2MVAIuPtz80uSGcyJAbEjRC0AiqXFuoa\nWiivqPQ+X600yKrqetq2qhZ2B8gaWXCKBKLmLTyD9cufknUODdFUV6fO4ej5tEyTZCrzyo28jtFC\n9BBw+1zixeYPrUrpcOEKqkhRKWctkCYX6zbv9ISBZRqMZGSFN1+2kGqVRnPnoysxkZvK2SsxPWsr\nIZqF0+eJD/KdF51MDjn22+57kmeXyQ0WCfjY3xlI50W4XHXOiZSViDCaM2MyVdUiCL9xy6+Y2ijr\nueHSRYTCxe5ReduwHYdwSLYztbmO4mKpxvEHA2xaK9Hpl9ZsITyOtCbHGe13UJiGs71tt1eJZlDY\nPMPH1RdJXfm0pmpWbJSoenV5CcvX7QDgmgtOZGenCPOqshIvZQnLIqRmtZtmgRCKBGiqlc8MxUZY\n8rI0INnd1U9nr/QWbe8fYU+fCOndPTESqt9nDh8J1e7Pdnz47Kxafw8DGTn+QMcA01XmRDDoJ51O\nqX2lSVriZ806fqJ5cQWUREsIFfg5XSZNm86KJdJ0ZOe2LZ5PtKi4eMzn3Mqjj3/m83zkeqlWS6fT\nxNRgu3AoWDBwUcbtHE9oc16j0WgmgNZED4EmlXS8/gU/cHSj8qYBewbkyf7Nf3y7N1colUqMJmXb\ncNZ8mSM1o6WGcEQ0ubsfeYHQPgIxtmOQzrkalM1zqyUx/P1f/wOG2mgiPkTY59bd7/0slvcTGYt0\nTj5/39PruO9pieD/9C9LvRzFjt5BpqiWgz+58xmiSlsNFDRftm0Z/gdwytxWAkH5TCaVYZUyc9dv\n3UlldN+z0AvJ5fO0NooroTgcYoua+R6PJ8bo0m6hQnN9I5+4Tjp7xUfSbNslSe9TasPcdIUEwVZv\n7WTDTgkyhYM+wkr7fPDxZexSyf/tfQk6B8T03t0bo7NbtEDbNMmp2zCZM7wihGw6STbr5oOmvXXV\nlIZprpWMgqRVSWxIMgQWzGrmlo9eCUAkEsKvfqdg0M/2Ngnk/Ph/H+C5dZL/molUMmKIFlvf2EKF\nKmAo5MSTTubBu0Xr7O/tws4f+Fo/acEC5p92DgAblj1FLCGuj6JwaEweai6thg4ODlKqsiNez2gh\negi4zUBsR8ZYHE1iyQwXLj4ZgCvOWcC//uddgLQlc61Hxwhw6WKpDqkoK+Pxl6TCxMmPrZF3016y\njp9oiQitxuooJ6u0ppUb21i2VnyoFcWWlxJUSDZnE1Am+aKZTZSr7RQVF+FXEeCla7exXkWP83mH\n9ap93abdffjVevx+C/cBZZomg3Extf/w8ApeWCff9fksHnp2OQDFEd8rO5UU4Prlykuj1FaJ/297\newf9qsJmb4IhOYYv3XSF14NzyLGJK8Hwfxt3sL1L9Xe181RERbA/t76DB9eorAgMsrabZJ4h76Y1\n5XM4SkBOri+loVRcJCdObyQclFtyUn2ll5w/pamKErWGzdu2M2eGZCds3dXFe/9F+jjMaqnipNni\nT04l0547Ihzye4J8aGiYYmTNGbuIlCW/TXVDE5F9NF9pam3BHywec/4ORDgS4apr3gXA1154kuFh\neaDXV1ePic675O1jIy1womhzXqPRaCaA1kQPgXnzxYz76x1+bHv8Q9wOJ65m4POFuf5yCXwEAn52\ntktJXS5ne4GMxfOne02lqyoruP/JuwEI+UfVgrztUKICBm+aMYWUmmn0oavOZljVy//18aWUquB3\noc5nAAk1hK61sZEbLpU8w8kNFbSoKHxJUbEXhf7urx+gNCxa6SffdZ43nviF1dtYr2rEl7y8zuvO\nbhgG3YNiArb3DHHeKRI8e3r5JuIqKd6/n65T4AaT5P9bGhrY0y0mcE9f3z5zNDN5i09cK+WaLfWV\n/NP/+yMADy3bQUZ1kErnTbIqYNMSNZnVKGZpJJBlWo0Eb5qqSzxNvLGmnOYa+UxtVSlLVkk3pYeX\nrGHdVtGst+1sG22sbJreWT55Titzpkhwb/70OopcbbWxhvLo6IwvV/3M5Qu1RoNelUWwu6vPC76Z\ndpy4KW6UJ55+lre8VVwBU6aNdp2fOm06oYhcE/lXMeVBLAa3wXlpVQPJhJznbD5f0Ej82CqNPhxo\nIXoINKm+irm8g+8oXBQGMKRSWG68+jxOnStJ1lvbukmpG9swHCy/mIOXnD6Ljj7xx/3ozt+ybbf4\nxfwFQ9VM02Jqiwi8s0+awq5e+Xwei1t+eicAqVRsTL21Ww89kjE5c6GkTV1x1hxa6iTy3lhXR5Ga\nu+7zWWzcKQLyuRWb+Nx7xc944szJnrCvKi/xKr+eXeF47oVQIMD1Z0nlz1vPPsGL+JcWBxlUkzJL\nIvv3h+bzeSar3yw+MkKvmmFv2/aYtJ1sXgTMdW85l8vPOhGAD37jDl5uV2lKuTy1UTn+006sI6AS\ny1/asJuwMre//fELmDdTmtVkszlPePt8Jk8qN8o//eD37FLR/PrmZs568xUARCJF3sPRME3ad0rm\nwcYdW3h+lUS9fZZBs10hY8AAACAASURBVEqhmt5ayylvUpMAcvu5Dk2DuGrlNzAco6FSromgnSZr\ny/srVq5l+TJpPlMoRMsrKggrIRpT5/nVcH2c77jhRn73s+8BkEiMeKNXjke0Oa/RaDQTQGuih0Ag\nIIGAnGN6ids+yxwtFTzC5Z+ZXJ6meiktvPTMkyhXpvrDL6wlm5VIrm3DjBbRiP702GpmTBYtc3pr\nLZu3bfG2pcqqqSgv5Yx5otH2DqeY2iyJ0p+79Q4ScelK5PeZXsAil3eoqpJ67pvOn8+J06SrT7S4\nmOZGMT1DwaBnYvp9Pm79nYypvv7NC1h4gmg8pml557ChtoY50yer7T+OmlmHz2dSUSqaTEtDDZva\nRCt6bMkqIsH9X8J5ZdbWVld5EwJ6+vrJFjS99s6DbXDeaeKm+dg7zuOJZaI1vryznxMaxTz/+DUX\ncv4pEqCLxRPc9aBoh48v20JDtZjGixfOYCQmGl4kGCA2IpbBT37/OA8tF83ygitu4N1K40uOjDB1\nlmyzuCQ6JoDj9WgAdm8X8//Be+/i6UdkjPG29h5qK2Vtp8yZNObY3dZ8fQNxtigLIOgbbSptGQ5+\npYmmjQhPP/0sAOeefwHlKlJvmiZTZkhWx4Y1L3sR9gPh3hsXvPkS/ucn3wcgPhKnvFTcDtlUBn9I\nXBxuR7DXO1qIToA58+az4+WnAYiEwxhI2sqREqHuLR9L5njvVVIlMr21FvJug4mk57tK501OPUEE\n0qlzGjlptty0H/vGr0fnyDsQCYsZetX5C2molAv9F/e+SHxE6tkTsX5vxIfjQE5Nzrz03IW8/Xwx\neZ18mooyESJ1NTWeyZ/L2wRVqtLv//4CsyZJJcxFZ8z3OuonkmlWqLZwQ4kUL2+S16Zp4WZODSby\n/Md9KwH4z/9bTdCRmz9spLxMib3PuW3blKlKK59leS3aMtlswcMO8kqonLNoAV/5iPgFgwEfTyyT\n1n5lkQC3flomw7bWV3oFDN39g+xQJnlTTTmTG+WBYuQdT4DFEim++d/3ArB5OMxnv/5D+XzrZDav\nk/r34aFBL3XIMAxvGOHeD+LJ06Rm/5r33ERa9f6MxYdZs1zM8JKiIF0qUT9aHPHS2xIjaa89oM8a\nLQ6xMahRD0EzG+QpJURv/e63vYYws2bP9dLXAoFXTx8rpLG5mVPOPBeAnaufH/PACipBe7j65h5t\ntDmv0Wg0E0BrohNg9ptOom3di6/Z/kbSEkyaP2c6b14sWmA0EmJwSAIfz6/cxFBcXp8wfQpvP18a\nLpumaEUAqzfvIKDUFNuGhlpxC1y0aBZ/f1a0o2Vrt1JTpjQQv0VW1WRPam7mk9dL1HpKfSlteyQT\noKaqmjKliSaSaUyliW3Y3smAGnv8u/uX0Kii05/60T1s2CWR24FEBtzgiz8AKvpd6jNB1Xablkmp\nKhDI53Lk1Ix7n89mf8OpDcPwhsr1DQ6NMeFd90HeNjhnkZyjr3z4bV63o6xts3KLmMAXnzyZyaq1\nXS5v4yiTtrtvkDXbVOJ9cx1vXiyBtUwm67Uj/PkfH2FLXNwQH7r5H+nvkXzYe37/W7ZtEndBMOhn\n3kJpPXf6uRdTU1ev3g95gTvbdjzN9G9/+SPX3vRRACorq/jZD74FwLOPP8S//eKvAPzoizfIjwsM\nxkZo6+yT39I3eq5sx+Q9H/oHAHbv6eU3v/kNALf/5QHylpyH6Y2VXHHJhQB07WkfV66oS3FRMWef\nJ20Df/7SMzgqJ9R2HIKhwIG++rpDC9EJMOeEE7jnd25CuDWaSXwEfKKSRiQX8QWnnsCMVvFBbm3r\n5s4HZVxJYiRFXjkSLz1rPkFVORMI+Hh5s0pQNxxPiJSVlvPRayVK/sKabfz2gSUAVEUNcqpyJhQu\n4RyVUnTmghls75Ab8u7HXvL8qb3xLBn1x+bdPQyNiMCyTIuQIYLfLK5g+9Cget/Bp8zDhnAIS7kX\n5k9r8Kp0Vq/rJx4X83TW1Gb+8P1PAfCnh5bwhR/KDV9cHtn/+TIMkmqqpPs3SCpX3hGT+dxF8z0T\nvigSwFbpAIPDI/T0i/A/d8E0730YTfXp7hsgnpS1zmitp7paHhD5TJa71O+xtt/Pm6+4HID//e+f\n8uzjD8rxW37Sqn787de+iw98UDrDP/XYI6x6QRp4XH3tdVRUq1Z48RSJEfF13/iJT4+a/6bJBz7x\nGQC2bt7I0y9JIcRdDy7lXarZy2A8QVuX/Gb+wuIIw2T6bPldaxqGuf2O36vzY2OoB8X27bvw+dyW\nfQdnzvv8fs69QIToT7//DZKq9t92HKJllQf66usObc5rNBrNBNCa6ASYPXcueXUKA/7AEXWUp7NZ\nprVK1Puk2ZPZvFtM6fufepn3vlW0jl/9+TE2bJcc0ItOm+tVdEaLi1m5QSLDhpHHMGTNUya10j8k\n+aA/vP0RnJxobjl8JB3J7+xL+Lh7iUSG//LCNvx+McUCwRA+U40JNh2C1miu55R60V78psOiuTJW\nua4y6iX8N1SXUqLyR6e21HhdlRwHBtSQtw9/rYc1GyUrIBwKeC3ofvvXpykrVh3TD+L8eS35zCDX\nXyYD4z5x3QVEVPf1vG3jpsDu6OjFp0zf+bNaxzTbHlat7dZu3UNpsWjC5y6cKQ0KgPVb2ljZJlrm\npDkLePbRBwDIJmNcfOlb5DNr17B1kwxra2huorpGrIp3XHcd736faJZbtn+fr3/zFgCa6qpIJkWj\n7+wbJuk2R7ZtikokGPiu93+Eb31JvvvYC+u59u3nynrjI7T3iCZaXRLwzlrL1BnU1sn1lEyMEFVd\n9PsGBjFVJkN5tIg3nShuo3VrVh901kmJKgQ4efFZDO0UV1GoKEqFCmgdL2ghOkFap0oKyM41zx/R\n/cRGcrz79JMAmSz61JPiU7vmolNonSbpS6u3tLFwrkThw8EAqGqqzt4B1m5pU1tyiGdFWjywdCsP\nPydz0esri0grk620vAq/MrcjPoOioGodVxamWbV5Kw4HmKyGoTVUlzFZ9fgMh4Lcdo+k/pyzcCaz\nVJf3XD6PY4/OIXfvx2RqtOJLRnHIf0xuqmPVBjnGZDrH0tUiyFdv2Ep9ZZE6kvHhOIAajHf9/2fv\nvQPjOK9z79/MVmDRO0iQBECwgL1XsUpUly2rukiyJFuSHcf9OrlO7PjemxvfOPGXG/uLEztxlS3L\ntmTLkqze2ESKpNh7AUkQBEH0toutM3P/OO/MghRBAgSpQs/zh7ha7Lz7zuzumVOe85wbl3L71dJR\n1dndR1NCUgaJlIkd7bZ29lKSK68vzM1ycqsa0NgiBmnboSbmTpEe9mlTqkkq2bfDjZ30+sQojsnO\nYO7dUtm3e8oBdm7fxhcfeQiQm69Pqdxv3/wWFdNukHUOH+aPT/4RgPseuI+gGo44pqyAk83CNAhH\n485wugmTpzCqSihqh+qbOLr/OACRSBxDpUg0ze/kkMtGjOHtzZsA+PlPf067Eq7RMClWbWn/8r1/\nYcEi6Yb77a8fuwgjKjfNxcuu5o8/EyOa6fOTk3dlUJtsuOG8CxcuXAwDric6TExXQ71aju0+r4rQ\nxcLuKw8GM5gyXkLj6pFFTKoWD68oLwsS4s11h+PcvFz4hKGgny17JbT/58de5/DRY7KOVwefhFnV\nBT6mVQuXdO70CRyplxTBQ7ctJaqGqmGleHuPhJ7xJFge8XwONzT3ayeMsEd5um9s2s+HVwhpvawo\n1ykUmRaOR3c+2BzTidUj+L0p9/jGlg4ef0F4jEW5gUF7oCl1fEoLMm7UKAAONHTwmX/+PSAz7NtU\nOqOxLezIAhZm+ZlWWaT2nW4NTSYTHG2Qinxf0uTO62SKQCoSpUMxJApqZlGaEk+xpCiLD995NwDd\n3V2OJzd95iz++u++BcDRI0eIxeTYusNH0DOV2lZRmB//UMjq1994LSNGSuMEGoxUgs4nmzuJKJX4\nUFY2i1U1fM2zv+FtNUr5VFvHGSOsDSW2vXH9GlZvFI5pxPDisZkQZopvfPNvAFi6fIVzXDAYHHK9\n1E79zFu4iMf/818BKPL6KVdShFcKXCM6TCxfKdXtp3/5X05u71IKfPUpFfPZUyczplzC5+qKEvpU\ntTORNPCrb3coM4NFaojbvqOn+MvvPQPA6QiUqpzlqBEjuGqmGNqV8yYwuVLWjJteftoujQPrth7g\nt6/ID6y+LUogU8Iyv9/n5NH8gVxW7xZCenfXDnyKQB3KzKDjubcB2LDrMCvnSLpjUk2F012TSpnn\nHOpnWRZ+NY1y+rgKLJW77entY+d+MeSZAe95fsxpbcKE5aUP2XfCk8GmejFUqeN9DolfQ0PX5KaQ\n2S/EbDcs9jV0OK+xO3Wa27uoaxSGwcwJY5hcKze1cEcX/iypOJdWzGJGhtC38oMWycSZ6QqA7u5u\nrr1Rqvbf++fv0NstKYVjJzuJKo3PSEc94V4JsZ968nc88rkvAODxep179ciSPI4rtoSeEaJ2mty8\nVj/9GH3KuDY0teP1OieMZcnj7lQAQ5fPrDjbQ0DpLDS3d1KsZsr3x5jKKqcbaajIycklp0i+N6bu\nY8rUaRe1zvsVbjjvwoULF8OA64kOE2UjVJ94Tj7ZSti2s6vrkrV+xhLi19ZWj6SyQkLMaCxxJndR\neau3LJtOvqoY/6+fvEBnQj7eqkIP8S7xIr563w1cs3iyrBOJUq88mdVvH+Sx52RgXFwPMW/BAgA+\n8tB1TJkhos/FZWUk1Jwdnz9AtE9C4XWvvUQoJKRyXfdw5JDwFbe9vYU1j0oYPrs6l9tXSGFswbRx\nTmukYZxJ4LYHtZUW5VE5Uvr3m1raCCkJt7O9UDtETiQNLN2LqYa79XmyMVQxSdNAV6/zGOkZ64aR\nwrTl9sy0P+HRNcLxdDyRUtXwrp4IHb1y/l/8xCpiaticDiTUjKpIAmbOFMWp0vwsIn19ag9n6+bL\n/2dkhjDVQMHmtjApRaFMRNqUHB689eYGPvWZz8nevOmfrEfXKCuS1ExTe5g81fOek5tPOCKpltaO\n7rRMoAkxpGDYZ/lZMU6ikDljCznYLtekobmd9jb5Tpim6Qy5W7pyJVlZF6fElJ2b63jJdYcPvmNG\n0wcdrhG9RJg2dyGNR9OTES8F4d4yTTKCYghqRpeTnSMGIqzoPjb6VP7yoTtXcOKkhJL7T3ZjxuUH\n/N8/dj3PrNkJCB0noegyuw418uOnhNz91OvbWHnd9QDc/clPMWm6GM5EPOYYztbm007YHmtrpemU\njNaI9fU5AhnFxSVMUbSYBVctIaKU4F954QW++4R0d919upObl4qhyQgGzgzt1WNd0yhUoiOtLafp\nHzTZhjMaT+JVQwPHVIykNaxRH1HK+P4gKdWllIgnCCrKUkluJkHVz1+QFaBPvSaeTO8hHI1THMx0\n3ssmivf2pZgyTvJ5VaOK6VVCIx5A9SYQysoiJySGKhqNDkh7s+fIjx03nqOHFQvBysIbkBtxX1eT\nM43zeF3duWfTAxmqap+XFXQYFWPG1tDVI/3yze1deJURjaUsUEZ41sgc7rhK0jpLZk/k699/Qq5V\nMkVdnXyWqVTKCeHnzJt/zvMYDDIzM1mx6jo5x34NEFcK3HDehQsXLoYB1xO9RLjuhpt4+rGfXtI1\nEymDygrxfEaWFmLFz62i77Q0xpNs3nMUkKFnC8ZL2+BNV02nS3lNKcNk92GppP/Vvz5BXaMUUO77\n9CPc+8jnAdA9Hnq6lCKVZTmpiVAoRPMpOfaZ3z3Oy89Klbu1qQklfs+DD3ySCjV47unn/0h+mVT/\n7/nUQ5w+Ja2nv/nlz+iKSPHp/pvn41EV+f4O/Lb9x9mxTykphTxOcScaS6Gp/vrKURXMnSLe1B3X\nzuflzYf4p98IRzVpGZQXiFdXVVTAhArZ0/SxpeRlCQ9yQmU5bV3iKXf3RpyCzXPrdjOiREJjTdec\ncdIbdh3la58Ubz0ciabJGJbl8FDDCY2eDplplFtQiDUAI8H2vouKinjtOeGDklGBX8nE9XU2Ov3m\nnZ2dA3I07fRHblYG/oBqpR0xEm9KWASd3eG0HKE/yMKpwiW9eu5EelXxqaMvTnmRPTCuAa/yVi8l\n2aRcySNWKi7rlQTXiF4iTJo6lbIx8gXp3dV8SdZMJA2nIj+6rIDkBShCHr+XbQeF1tTR3ctDDwtF\nxbIsYqpKfOJ0O9/6ofxo60628pkv/xUAd973KXpUb7sRjzs/Wo9HJ0cNTOtsa+H5Jx4DYNuGdRQp\nybRkIkGfIqFPnjaduz7xSQAOHmvn1c2yn+P1P+KRzz4IwN/8/Xd49Ef/BsCz63Zx+9WSLzMtaGyV\nPfz7b14h4FWyfimNzAzZw8iyfKbXCgPh1pXzmDutSp28TijoZ9dBm9rTw4M3C6n+uoWTKbJnwZuW\n012USBlUKgk7XU/rwZ5qD3O6vUd9Bine3CHGfNyYUvyKBhWN9dP9NC1nsN9bxw6yv1XSHPc+8Cm6\n1c3obIvkVyT5I4cP0ahuLoGS2aRiEoYbiaHNZvd4NEJqdvy46lEUJuTzO9ncRkGO3DRm1Ixm0QxR\nwtc8upNSKaseQclakRrMCXovix6unVu90vKh4IbzLly4cDEsuJ7oJcRH7r4HgG/veMtRJroY2D5L\nNGEwUs3TGVGWfwbn8MwD5IhUymD3cZFbC2AwuVpSAR6PTlwNnvv/H3+VLbsl5L/rvvu57Z77Aeju\n6jxD6iwzQwoKRfm5dLU1AbBp9UtMnipk8Ls/8THiSprvjZdf5he/eBSAMdVVmIbss/5UFxXTpY2x\n6eAGHv/ZTwD47Be/yKc/J6pMP/3+P7JUDVLLCWXwX79fDcDmXYeYUFWmzs/DqHJ5/M2/+AhTx0po\naBkmYdXLblkWNRNGc/VsaXtt6ejlwytE5i4j4CesevLPB9sTHV1awMsbpU0xlTRZ/bZ4ot/9yl3E\nzpFSsYAM5aFasW7qjginNdrXh65C4/4z2y0LPB55vi/cQySu+vq9GfR1NqrXp7C/CTm5uQPrMljp\nNYsVD7dszhR6Dgn31LQskRgELLyOp75ibi1lZYoKEO4jlCGpAL/Pm170EsKjy/XJUN7ylQTXiF5C\n3HLrRwD4t+9+m0jHyQu8emDY+bKMYIARJfJF9+eEMFWImbRSeFUe0ef14FWSdy0tHZzulkryxFGF\nznRNXdecHvWnV29n0ZIlAHzyM18grGaDy9A2CUxys4MOMT4ejbDpTckzVtaM49bb7pQ9pJJO7mzx\nkqWEstNTIQ/sldDQGyp2tDVLRlbx/C8lhL/u2mXMWrgMgDvue4SORmEIJLvDNLZIOP+Zu69lRq2k\nRxpbutiwU0aaTJ04mr6uiLpOaaOvaRokkvQoybhAwOfkV+Oqa+qCUAdUjiziqGI5mFhO2Ov16MST\n59DU1HSsuORWizOhvl7C+fVr17DqermJ9O9YysnN4+A+0SwwYj1EEvL5BbUAiahKqSSipFRIP37W\nLCccfseW0xeAgmwxhKFwkr3qOso5qMF+mX6CHjHmhpFKz4bRZU8Afq/HYTVcyqi+qFjSJvMWLLx0\ni75P4IbzLly4cDEMuJ7oJUSmItvfec8D/PR7/xvAmWc0FNg95uXFBVSUSpW4/nADCeVRVY8qpVsR\nvetaOggr72vT7qN0qFHKC8ePdEjWKcNkx0GZXZSXl8eDf/lVQEJKW/Fd13WK88WbLMgNkRmSQs7b\nm96irU1SBJ+4/wF6e9Oeq+1ZBTMyuOeBBwB46U/P8fIBmc/kCU0hEBQPp2X/S/h8sp/HH/05y68W\nxfTM6gpSfkkRpBq28o2HZHzwuDFleENSEDl4oJ5NtorTnmNMrJTQ/lxeYUqlJEYW55Gtij3h8IVD\neUh7daUFOQ5H9dipNm5YMhWA3nDs3BVrXScZlsJabWUNRRWSUvjev3yfkiLx6KfPWYDts5yo28P3\nfyBMjvZei6Y24U5m1b1N5LSkETJyS/Fmiz7CwiXLHeL9QNCBbOQ8k10N1J+Wgpbf52dytfTd375i\nEidb7HHRVj9XUyO7QDxFr2WQp2TxPP1FnIcJ+7dh/3slwTWilwH33P8gj//sPwGI9w69Um/nJovy\ncznVJkZr6/7jLFd96KPLC/np0xJir951kp6Y6nhpaaNLcZlrq0cSUETsVzftY+teESC5/d4HqRw3\nAYBotM8xCiX52RTmK4k5K93zXVRUxJRp0mnk9fqInUMtPhaNUl4u+ddkIs6hIxLOWpXzncmOPc1H\n0BV5fOvmLTQ2SrqjqqqaRJ4YxYxwNiOK5SuZSCZJdMkeCnJDXDO/1jmXqRNETORcYbpt41KG6YzI\nGCpMy+LOVTII8I3N+5lWU6HOd6AjNIyYCufLYN4s6Qh7+dUt/OBXokeweN9xUqr5Yc+hRna3CFug\ntc9PKCA9/iHLJLtUDHDxuCV0HJNurxtuucVJnbzjlmxvyjTwRiR3beq6M4BvRGkh994gjRMVJXns\nPiKvycjITa/h9RBVnXGRcJiRFXK+l9KIXslwjehlQEFhIfd/RgQj/v2fvolHG9qP2f7tlxTkOB6Y\nZRmMGyW8z9+9vJUfPiUtms1xPz5F/8k0ASWoW5Kf5RQLHn12I3kFklu96baPEouqVkQgW3l7hfmh\n9IheC8dDrRo7lspqyU2Gw73n3K+maSRUB07N+BpWv7lN/tAbI+QX49LXfgJLtTcmEkmOHpEcZ8Wo\n0XhzxAsyUilHT7Q/ckMZjBsthvap17c5raKapr2DjtP/HIaDaxbI6IxH/7RhcAeofHK85TgLJ4wG\n4NobVrJul5x/WzJKuF1uHJlFY6mcosSqY1F0VWQKZWYSypXP+PjOV7hhuXjAFaNGXnj0TLQLOqRg\naOAhU3328ydXMapMDGZfLElWpjzv83udNaPhKD1qFlZhSbEj0OxicHBzoi5cuHAxDLie6GXCx+8T\nwvnzTz1Jw5HtQzrWDt2ONbbR3iMV2hsXT2HrPqGn/OhPW+noE48kENQdDU6voWEpT3RUaT4tqpp/\n5EQzU+bJCJHsvFyHbuP16JQWSihpWed2cvqT0M837dGu6FZVV6MHxJOJGaC1y55TiXRe0uv1Op7o\nkuUrsFQHkhXMQUvYugD9J1NazsTNaxZOolfRmny+d3597T5xj2d47Tb5SqfgtqtnO7PmzwtNPoNk\npIuR+eI133ntVE42yHC6Pj2bcYs+AYCR6MVMyueaEchGVxqtmi/E7nXSwz42q5Hbb/siIKIu5ybA\na5BSOe3m3ZBUcn+miJ8AZIwb4Ug0tnWF2XNUWAfLikqw56G0N/VS3yjP106ZTpEakOdicHCN6GWC\nPV/mK3/7d3zuvjsACHiMCzLwNNIcwhNN7Y5gQ2+4j1+/JiIiuxq6mFgh4XlxToBtx6SoETUN58dW\nXJDNxl1iqGKJJLMXyJgH0zAc85SbneFMBD1bTcmGZVmD6mCx1YWaGk/gyRCDFwzl01UvIyiMVNwJ\nedFMOtvbnfUdg+nPhMSZ4iog+c2CXMmtLpk5zjH27wjlUwYlBXLd83NCgzN+A8BWyaoaUeQU9AYF\n3Utfk1z3GRXT+fJn5bP/6aPPsOd1aXXNHzOb3GIJ53VNp+3EfgDCp3awcLIU4u66/V6KSsSYveP6\nO9dRR2sR0RutuwFsY0zCGSfiycnkUL0UBjfuqXfOS7M07CFcLV29TofWguXXU6o4uS4GBzecd+HC\nhYthwPVELzOuWracjz7wWQCe/MUPLkh5sgBNvSbgNfAGJeRat7eBLku8LI+Z5ONXS9HhxoW1rN0p\nBYVfvriVXccUSdy0aFXiGpYFhUVptXKvqroW5Gad1wMF8Pl8jmcciw0s7RZQMmyH9u0h5RNaViin\nmIZm8cqMZNzR0MSyCJyrc8UiXX4+623s//V5Pc7Au7OvpGVaTqEsM+i/JD3gQ/JCATTNEQ5JntrL\nzNFSGf/S5z7Klm2is3r0RCvdYelMSsYTTBovhbWxKxYwf4GwAgqLS0kkbNJ7v/PQvaCaDLTTO9Gb\n9/Z7a1UoiifoCavRLZ09HD0ldKe5tRX0qSp8ZmbAuagtPQkaT4lgyV3VVeTkuIWlocA1opcZHo+H\nT//FXwKwacN6Th6Rbp7zZew0bE1NC0OFaE0RnXBcQq5PrZrCR1fJj7OsJJ9xat7S7iOn2KPaPi0L\nAj67YwlO1kuVf8KUqYRUS6fPq58h7twf9hTJxoYGenqkhXDWnLn0qA6n/sZU13VSSUk7bN++iz6v\npA7yM7IItwm1ykzFsdSPP5VKUDF6tHOsg4x8CNuUsDOvkL1La4D9Auhe3Rm5LKM/Lu3MK13TnC6w\nvlhi4FZM1eJopeLE60VDdWzFVMZ8WLixpzt6CHdKOsNIJigpk/C5uGykM5MqHk+kw3bd66xJzyn0\nNtEf1bpPgCGsCDRPehZUyuCQmpcVj/UxuVpuoFOqS9hyUIylBaBSOUfrm8gvFVrT2JpxF3dx/ozh\nhvMuXLhwMQy4nui7gLJyEcz4xt//Hx68Szpygt6U4wWm+hV7IO2DGZqPPo+EVgZ+ykPSmXTDggmU\nlUgBIhyJkhWS0HjGuHL+sH4fICHg3MkiE5dMmWx+U/rTV91yG6FMCXkH8kIBfE6h6BQv/OlpAAoL\ni6gcK1JqPd1dDhk7KyubJx7/NQBv7jhJVuluALxWgki7dErFejrIHyXcywAa8xcuAsRTt/mjJCPD\nErE0DBMlr4nHo10yGQ3bo40lUqzbLuIiK+ZMJJG6QKive0GdW7xhF1qHhPBlBWPQlCduZZVgKF9G\nVPbVT9LvQ1N99PS1SeEIINyKFutOv4d2LkK8RURpJRSEgswYJ5HKydZuJ5UzuqyAlOp6O3TsJPMW\n3SjPV1ae/5xcvAOuEX0XMX/RYr71ne8D8Ldf+QuHU1RdUS4dNkiYbCgKUkNHjLY+eT7H201+rvwA\n/D7vGWGtqX7MhblZBBRt5fipNq5Skz8/tGIGz68XwYu+SARvWf4F92rvYVTlaGIp+Zr8zX//Bl/6\n4qflXK66mk6lL+EPvQAAIABJREFU7vTjR3/C48+L4YzkziOhRm0kGk9QMfNWALIKRhPMkx8zJ18i\nvyA9XdO5bSQG1555Lni9HupPtTtdWqPKCkilLr46339n9mdz+MRpZyaVx6PDYNKljpGzsFT3mtHX\nBS1ijC1v0Anbzw4LNTtUT8XlBgOSD7XD/AGSQoZhUV4s1LWZVUVOTrU7HMNQ0z7LC3I41Sji0b7s\nEq6+9lp1Xm6X0lDhhvMuXLhwMQy4nui7jGuUNNoTj87ikQ9JcWhUaT7Jfl6TTRhvbO3mpU1SRHj2\ntY20dykyderM8D+lvNKRJXkEVeGjozvs8CT/273Xs/uQtBy++PTvmfb1r6kjBw547bbPilGjWLRo\nHgD/9vMX+NFT4kH99HfrHYm1qKeYkiniceYYOCMxMgJegkFJHWTklHBo8/MAfOHjt+NXRQ3LssTT\nAhWmXlw47/d62Hf0lNN4MLaihFTq/JMABgNN04glxCP8zUubefi25QAkLxTKv3MlCe9BQvyYhOra\neRkEmr2JdJrjnOH7Ga8mmTJIKf3YvJwgSTVFr7cvTlaWMDwKyot47onXAZg0bwkTa2uHeD4ubLhG\n9F2EYRhselMEKT569TRWzpMcoWmaTt5NOofkSz9mRBHTakTY444VU9l1SPJixQW5JPsZCPsHPXXi\nGEJBoRrtqWvkmnkiWFKYG+I7XxDS99d/+Bz1HxVN0LFjq87bhQRisBcvkUmPe/bXs+GI0KbKqhdh\n2F03WXl4fUrL0kiLFmuajq6mcbaePMy4PGEOzJwxxaFNWZaFbuf7zFS/UHVo0D0e4okUXqUU5fd5\nSSrjfFHrqeSqruls2SMMg4bmTkco2p6welHQNFBzmy7ynnEBWM7nahgWfhWi90YSZGXLdT9wsJ4/\nrJEUzBe/8TE3jB8G3HDehQsXLoYB1xN9F9Hd1cXrT/8GgH945BoM5U02t/dw9JR4aTmhDKpGSNtk\nblaG46FOHTfKUTLSNe0MErgdEfp9HqaNFU7g0cZ24kkVVhsmE6ukqPPtz96CL9lzxnHnQzKZpKBQ\n3vfWDy2j7v+KDmZbYwZjp8sgvERflzMSBNIcUo8vQPtp6Z33ta7hs1+5X84rLy9NILcstNb96sCh\n39Pt1EdTSyeJVJIRxXLthtPyqWkaXao//80dR/jDq9KuedX0Ghl09wGAHf37vB4On5QCUigry/F8\n1799kLnzhNhfXVPzXmzxioFrRN9FNNQfY3aVUJPisQR/fF0k49q7w8yZVAnAqZYuXnxT+qEtLO6+\nVr7olSOL05SkfmOM+8NIGCyfKbJ1//X0RkfcGS1NZ6qtKiXhVX3rmhesxAX3nVQyd+MmTOJ/fuvL\nsv5//YoNL8m4j1EzbiErz+7zNunrkR/t6f3PML5Ujv3slz9JtSJym6bp5Pb0xk2QiFxwDwPBrxoK\ndh5uwOf1Mqu2EoD4QPOozgM7sk4kknz9e08CsHTmGArVtMzlcwemNV1Iqe7dhk31iiWSdPbKZ7C/\nvp2pNZJeGT+mFL8hN9yKUaPekz1eKXDDeRcuXLgYBlxP9F2AzblsOnmSyWMlrPZ6dK5bNAWQ4kpu\nlkiv7T3ayKn14sklEnH+769eBODGJTNZNV8KUfFk6pwuTyKZZOVcqbL+86MvOUPfCnLSIxlM08Ib\nkf566/R2zPLpapMDV5v7926XqsaBv/r6l9m7R4j929/ewZ79L8hrNR8zasSzWfzfbmXMGHmcnZ3t\nFDssNLQeKSZpSkj4YqDrGn0x8bJ6IzEyg378PiVJN+TqOU7643/+8Bk+tHg8AKEMP2ujstak6hFn\npFFs7zOZMokpcnsw4MOn9nA55refD3YaJZFIOoWvusYOfvXiVgBuXjKDO1fNAWDt1oPkVclnM9AQ\nPBeDg2tE30UYhkFUjdz16JqjPO/x6E4O7nD9KabXiCDF+NEl9KnXv7ZpFyebOgC489q5Tg93/9yf\nYVqUFgqFZfms8WxRI0Emjil1wl4LnC4arXkfuvqdm6WTSQe05/7xiyyePPb7/EybJiIotbUTSDlG\nS3O6Yvx+P5rKWUpzgKyv9TSin3hLvfHQjZ2NjICfZ9eKFsGp1i4e+shSovELpyfOBZ/Py3888QYA\n06oLKVGjUo43dzG+Um58+gCVdL/fy+Y9cjPYcbCB+28R7YDc7IwzWBSXG7ZR9/u8HDohN8rmrihf\nukeI9Dcvn0lECZM09AW5ec68d21vVzLcW5ALFy5cDAOuJ/ouwObgTZkxk1d+/AwAcyZVklDho2VZ\nGEZaAy4UTKssZWny+OZFE3hjq3g7z67Zxk1LZwIQDHjP6IGPK5L1w7cv4+/+Q3re77hmjkNuPyMN\nYCbRmoUr6Ik0Y46UIpYVzHXk1gaCzKkX1ycQCBIIvPM1lmWl21N1L7otIHx6T1p96CJgE+qPnWx1\nJp0umTkOn9cz+BnzZ631h1ffJqHaTseOG+M0MGw/eIrPffx6IB3u23AupWmyaJpUuDU0/r9fvQzA\nyrkTWTJTimkWlym8d+bUWc5E13/7zRs0tAmf90v33cTMiSIA7ff7eHGbCHvnVMxglOrfdzE8uEb0\nXURubi6tCRELscNcG7rzYzBIJNKhsWmle+pvWChTOt/YVsePnpRuk4/esJByFcKnDNMJ78eOKmXl\nPHn9rsMNzo9cPzsmtY1lbxP6Ycm/WtkVWIVj1eMyMNNV/nOxw99pHNI3BFssQ2/cApFW+4B3XpxB\nQtc1eiMSkq7fcYRAQL7CMyeOITJEAryua3R0CzPg2TXbuX2ZTOnUNJy++1hSOsoA56Z3NvqL8y+a\nMZZZk8Rordl6kH/4yXMALJ5Rw/wpwpzw+dLjPjRtYMm+9GWyMPsN4LNf3dEdYe126Wirb+pwwsri\n/CzmTxHxmXlTq53OrQN1jRyNSJriU4/cNbCUn4shwQ3nXbhw4WIY0Kx3u4T4Z4x4PM7jP/sxAHML\nOqipEG5lMmWQqUL4VzbuYeN2USu/afEkR9JM19MeS2bAx9Nr5TXeQAb33CyFjLLCnDOU6u1i0he+\n82u+oooLI5SE3qARCGFlSWHFyiiCTPHKLH+IM+/B4u1o8TBaRNgFWucxiHaqvw/va6Y7PEyNlzZK\nWuBYYxuf/9jVgFzDi/kqe1RleteRBrbsPQ5AW3sPKVXwWj53Eoumixd/PunAc+5Z14mpQtfb+46z\n46AwEvpiccqL5XMYXVZA9QgpJBbmZzmfsaZrHFck+e5IjLqTUiiqa2gmlCG81YLcECtmS2tv9ahi\nDhwXVa1n3tjBV++7Tq2Dkyr67ep9VC8WjYPlK68e0rm4GBiuEX2XUX9MKubP/Ps3+fzd0vET7ouT\noSTcNu6sY/UWyVPWjMynTYmOlBVmUaAmUKYMk1w1BuPZ9fsIhmSy4z03LqJUDWrrX7WPJ1J879ev\nAnDfzQudH/BApP13wur3z2BG7dkPL024qOs6UUVlemPLAZrVULWHbl/qVL+H+zXWNK3fdtP7Huyg\nvqGs7/V4ONkiN5f2zl5214nOaE845qRbLMtyhu6NLM53bn4ji/M481OT10eiMVa/LaF90O/jxiXT\n7DPgtc3y/AltDJ/+3OeHfS4uzoQbzrtw4cLFMOAWlt5l5OaJR9HrL6e1oxeA7FCGI/w7oiSfDDXE\n7eipDiqKRdn+cEM7J1ukOp8yTcoKxPtcMqOKVzaLPN1jz2/k3psWAlCUn+2EnwG/ly98bCUA33/8\nde65cQEApYU5DjH8/KGq1u+fd6cYoWtpZfq2rjBr3pYhb6fbuvnKvZKaiCVSl6zi3Z8DO9zUw4XW\nT5gpJ2IoK8hhyjiZb3T2lXXkBUgfe7YmgO25Nrf3cvC4zE/6xmc+TEJ57vuPNrG1Ubz1L37zU5fy\nlFwouOH8e4SN69ex+3kR83j49iUOVSfg8/CntUJDOXjkGKvmS+dMImk41VS/z8MBNUt8w67jlBfL\nD/JIQysVZdIP/fAdyylUs9pN03KOjfTF+M4vpLvo+kVTmDZOulZyQhmOQTLfo6+ErmnOPvtiCeqb\nJCf4zNqdTBgt5/WxDy0m3H3xvfZXEjRNc743z63bSc1oybFfNWOck/L47fqjrLhTphFMnzHjvdno\nFQ43nHfhwoWLYcAN598jTKit5c2XCgHo6Y06pG+AalW1rzvRRL2aGT6yJJeEKqIkUwaVZZIWmDB6\nDidbxOuIJ1K8uEFmKZUU5PDR66WtLxQMON5lVijI//6LjwDw4z+u57BqD1wxZyLFBTKXJzsz6Lze\nNMzLENz2k8vT02F7JBKjVXmZOw+dYPdhUeP/9K1LqBwpFezersilqld94GFZFnUN8vl1dIVZepek\nbJqb2nhyraQ/Zqy62/VALzPccP49xJtrVwNwfO1v+MSNoh4fDkcdutPTq3ew95DkQVfMqk53p5yV\nv7TzYgG/l5YO6VR5dv0+ls2V3vZrF052ZtD344Xj93kd2s2f1u1kVq2QxKfUjHSoNsX52Q5VyhTZ\nfVnHgsHU9m1jqfV7DDjCIa2dvRjqfA4ca2LPEalUL501jmXzRUwlGokPSx/0SoN9HTt7+nj8JdEg\nuO+mxUSiMQCe3XCEwBjpaPvM5z733mzyzwhuOO/ChQsXw4Drib6HaG+XwsnP/vUfeXCZ9DFnZgYc\nby8aT/LEK5sBCPf2MH9yWjx3oGq67ZVmZQR44jUpUE2oruQjV88ChLrZ/xO3vUyAddsOAbBxVx35\nipM6d3I12ZnSGG9ZFl6VdsgI+An4VWV/gG+QrkFfVJoF4smkw0AAaO2QFMTW/Sdk/DAweewIVi0U\necBEIun0wV/q6N3xjoe48FDJ9pcbz6/fTWunMDwmTxjL6n0S2q/80N0sXb78PdzZnxdcI/o+wNo3\nXmfX848C8JefWEG4R/KCmUE/B+tlVvnjL2ykSA0Zmz2xwgm3+xums2FL0v34mc18/MarAFg8s+ac\nx2hAQImUaLrG0ZNS/d+85xjN7dL/Hgz6CSpKVE5WpkP4Nwb4Cnk0jZZOSS/EEkknhDdMk7EVkuNc\nPmsCWWqdlGE4AioXA13THG1MTTtTJ8BJJWiao3oficXTOivnMagetU5+Via6rXlgpY1qMpUiqa7p\n5U7X6rrOkQb5TvzvX6xm7izRg528YAU3fujDl/ndXZwLbjjvwoULF8OA64m+DxAOh/nJ978LwK1T\nMxldJsPWeiNRchTXc9OOOp5dKzOZirK8TK4W3mRuKC38eza/0/aKvB4PT74hraTXLJrBNUohP3ae\nOUSOsLLPk1Y+1yCqlJJOnO5wOIrvUIZSME2LonxpChhRnI/Pm75n295wIpEaMi/V9ip9Xo+TCrCw\niEQTdCgvvi+WIKY8X0yLREL19lvQq4SJe3r60iH6QC6kBdGUXKfM7CC5mUH7abKzpCliTHkh+Wp6\nwOUqgPXnz/7jY2sBuO3BL7J46dLL8n4uBg/XiL5PsHuHKLQ/8/N/5fO3CzUpOxigNyIV15ycTI4q\nOtIzq7cRjUpPfVFOkKoRBfKaUNAxTv1/zJom3T0Aj7+8i7/8hHT8TB83ygmxBwuHmuTRnZTCQF8h\nTdOckSDnSzsM7f3Ta51q7aKlXXKCZsIgHI7RrEaiRCJxursUKT9pEe4Rw2klTTJU2qI8Jxuvbhvh\ngWBxvFPW/OXmrST65Lr7vF6KVT/7vbct5SsP3AhAWE0ouNSwp5r++qWtjFp0OwCrrr/+sryXi6HB\nDedduHDhYhhwPdH3Gd56cz0bnv4FAB+/ehJlhdI7H+6LOVxPn8/L71+T4WOHjzeRkynPa5iMKJLw\nubQgxymIJFOG42l1h6Ns2i+SaTcvm8McJSAc7ot/IEjsfp+HI4pg/vtnN9N3WrxNI5GiOJRFRb5c\nr/zMDOd6gRTL5AED9qGfCxpgqUPfPF7Pk1vkumcYFr1K5m7Zipn88P88DEBY6SFcSgQDPtZuFebE\nzp58vvzf/+aSv4eLi4fbsfQ+w4LFVzl5uh898TM+sqASEPqPPUc+3Bfj9mtkaqNhmLzylmiLHq5v\norlL8pQnW085ivSVIwooUrnV0oJsZo0X4/HoM+scitOUmhFOaP9+tqW6rtOuaD1GR5wP1wohP24Z\nGKaJocrtpmkRN/sp0Q8jm2CnLeaPGkVdWzsAm/YdpCBXblgTxo6AIY4lGQzsYYRHGlp47YBQwv7+\nX79zyd/HxfDghvMuXLhwMQy4nuj7EIuWLAEgLz+f5574FQAHjm/llmXCCczKDBBWc4Y0Da5bKLOB\nrl80hd2qbXL7gRO0dwq/89jpHhqaxZNJphJUlkvP/rzaMp5+YwsApYUrKcoTzyoaS75vQ3vLAq9P\nCkP+TB8xQzxA+9/LAZs94NE0Vo2TwXM76hvwKM5sQX72wB0HQ4S9SobfR0unfGa/WX+Mh7/yt4A7\nI/79CDcn+j5HMin0msd/+Qu6Dkv30g1zqxg3RihO8XjyjNnmdnjuD/iIqMr+rkMnOdUqQiYd3b1o\nKrZNJRPsPCxGNxjM5Kv3ykiJESX5RKIqtH+fGVO/z8teNQbjjZd3MtEjOVCPTx/O/LtBQdM0J4/6\n0v5D7OoS/c4ffetBqkYILW2o00b7w0JGvwC0dPby+DqZgnDjJz7LxEmThrFzF5cT7m3NhQsXLoYB\n1xP9AGHzxg0AbHnjRXJT4gV9eNl0skNC+u6Lxs8grjvqTj4vHkWejydSHDohbYNHT7YQVxXmvXWn\nqCgVvunVCyZRpUL+cDT+vhqt69F1uvoklfHqq7voOSQe9sSRJSSNc480vpTwqXD6eEcnG3rkM/jx\n3z9IX0QKeoOdWtUf9k8wMxigrUuKZo+vP8aqux4CYPLUqcPet4vLB9eIfgDRF4nwp6efAuDotrUs\nGi8TOJfOmuC8JhKNn5MEr2kafiUi4vN6nHi9q7ePTbvrAGho7mTlXKl6V40sItwXc459r6EhqQqA\nV9bs5q1XhJlw9YRxTmfR5YQdup3ui9Ah9xy+9MnrCPdGL2o9y7LIzhaxl9b2Hn69Rj6DlXd9iqnT\npg93uy7eBbjhvAsXLlwMA64n+gHH7l072bZBeqm7T+xhXo0UOBZMH4vN+IzHE2cUn84Fn9fjiCO/\ntfsIdQ2i4rRqwWQqleJSOHxx3talRmaGiFavfvsga14UJf/lI8ecyQu9DNA0jUhMwvaDvZ1cd9ts\nAKZWjRxyQcn+2WXnZbFttwhvv7qnles/KiH8tBkzL9W2XVxmuEb0CsKenTvYsVnypr2NBygPSSV5\n0fQaSkok5CdlkFQ/+ETKOCPk96h8n2mZbNl7HIBtB+qZP7kagMWzxtGnBEjeS21Nv6IW1TW18coL\nojlQENYpy88hdRkV8HVNo0PlY/ea3fzPL8iYFfuaDBaWZZGtiPo79x3nsdUSwn/is19m+kzXeH7Q\n4IbzLly4cDEMuJ7oFQb74zx8cD97dmwHoOHwPrI0URcqzjCprSoHEK6p8uowTEzloeoeD5by6HYd\nbuDtvfUAjC7L5+r5Quw3LZNY/PIXcs4Fu77l83n57fObADi08Tg3TJpAd1y8wktZArMLavFEki3N\nSnfgrvnMGj/aeX4wcEL4gmz2HTgBwIv7Itx0132ADC908cGDa0T/DNDZ0cGrL70IwPf/4ZuUFwol\nqiAvj9IikXMrL8qnepQQ+A3DcKTXNA027RbS966jbUyokNc/cvtSRqoJnIlonMRl6B2/EDICfvYd\nPwXAk394izFWJtWlkhOOJpOXXAPgeGcnLdmSd/3Gw7cMWUYwS1Xh1245wMYTcr0e+PzXKCktvbQb\ndfGuwg3nXbhw4WIYcD3RPwOkkkk+duvNAOzd/iaWqmIbpkXAL5XurIwA2Vmi9BRPaYytFY7ix+65\nl3HjxwMQM3V6eqSfe+emdfQeE6X9u1bNocJue4zGL8gEuFTQ0PArpaPn39zFulf2sLB0JAD52SES\nqeF7x7qm0R4Wub11HU188wsyxyg/K2NQQtN2KiCUE+L1N2W6wJbTXu77zOcBKB8xYth7dPHewjWi\nVzCiUakkf+mRB9m0+nkAdM3qF+ZapJRYZiKps/ImqTZ/9BP3MbqqCoAxlZXnXDsSDlN3+CAAG15/\nGaPlAAC3LZtCebkY1EQsQSJ5eQ2qPR7EBH793Ea2rzsMwDXVY8lX4XN8GMa0OxpjQ8tJAO6/ZwXT\naioAiMYHDuXtH5Tf63HSIr967i26s2sAuPdTj5BfUHDRe3Lx/oIbzrtw4cLFMOB6olco4vE4X3z4\nAQA2vvEcXi0deqYsqcgHQvncdc+DAFx7082MrJC59oVFRUN6r1Qyyde++jUAdm3bxaIaSQt88qbZ\n1FRLBdswTOKqmj/UwXSDgc/roS+e5M3t4om+8vIOajPF26sdWep4o4N5b8uyMFJyvfyFQQqnlgAw\ntWbkBT1ry4IM1ZYajSf49UuS8vCNns1d90gVPisra6in5+J9DNeIXmGIxaTP/YuPPMRbq58BwKNZ\nJA0xnJOmz+PGW2XQ2fJrVlFSIpXhjMzMi37PN155ka9860cA1HUECPnE0JRl9jGnTFIK18yu5OoF\nUwAoyMsmqYzUpcyfej06KdUE0NjcyW+e3QjAqcOtLFNpiYKs0BkiIc7Xv98c+YycIBWT5LoUjc4n\nI0smfJqDIPJnZvhp6wwD8B9/fItFt9wLwLKrV+FX+WcXVxbccN6FCxcuhgHXE73C8Ndfkqrv83/4\nJZYp98ilq27mY5+U0L528hRy80TI2OcbnmfU1ioD4776377B81tFRd/0ZDoeWyyRZGqBSNVde80S\nws3CNy3SO1g8rVL2NrsW00p7pcNtJ7XnIWm6RldYGgzqG9oIKU9cj1l0tchekwmTnCJJPXgDHgrK\n5bpk5AbxByUk17061gX2pGnCWQXYeegkT244DsCdn/48U6fPAHCkCF1ceXCN6BWEv/vrr/HMk78B\n4K577+dDt90BwOjKSnJyci/5+/3w3/8DgH/65SZ6UpIOsGI9oKmKuebF27kHgEc+8ykKi4Scb8Qj\nvPXSbwEIxJqZP02q1tcvmkq1EjtJGYajIn+x31BbC8AwzbRxNi0Mm5pkWeiqeo6m4fGqBgNdOyPM\nH3D9fg0JL70p53kkVshnv/rXAGQOI0Xi4oMDN5x34cKFi2HA9USvABzcvx+AusOHnPCxuLSUYDB4\n2d7zzbVv8LVv/xyAJu9k4mEJ2xOdTQ6ZH00n1dcBwA0LR7N4+SoAvP4g0T4hsO/ftp7uQ+sAmDCq\nkKTirc6ZVM2SWULyz89JE9uHrR6lCUk/DSv93yEs7fd76VCD5L776zX8YbucT3FxIYunC8d26qRq\nZsycBcCkaTMIBNzC0pUI14heATD6kck93ss7wPVkgxDPv/71b7G+SShEVmYZmEJfinWeJhnuSO9N\nGcUKTz2ffOhhALJzC5xw2UilaG+WNbe9+ltWTRHJvsK8EBt2NQAwsqyIeVNEjm/upEo8Spl/MNXy\nSwld10iqa/3Kxn384AWRsDsWLXDOn/KFeCwRQfFYMfzxNgACRhejS4XaNLt2JPPmiRbpVStWkZlx\n+W52Li4/3HDehQsXLoYB1xN1cV5YlkVLswy2+/fv/4CnXhN5vT49j1SOeIf4ssBKe4WxTpGLS4Y7\nsVSRia46Hn7wLgDGVI09Z+SciEc5uG09ANrprdy4UApOGX4/B0+I0v7Bhg6qKoTDuWJuLRMry+TY\npHF5xjtbFkmVSli3/Qg/fknaW/dEqzBzx8prom3oPcI8sPJqsAKqpdNK4eQI+otfayaemJyPL3aa\nmnJhCCycXs38BfPk8ZJl+P3CENA07X0x38rFueEaURfvgGmahMNCGP/tr37FDx8TGb2OzCmOgdA6\n9oEnAIjhcMJZcAQ/Y+2NJCNCJzISURYpm3PdrXfjD6pq/llfP/v/e9pb2LP+aQAmFcRZMGUMAH6f\nTm+f9K1v2H2C9h5pLlg8YwLL504k1ybGWxa6qs7rkBYYHejbrqXzrYZpOqT9P63dyXNvikbA1mgt\nZl6NWsdMC5vqPrQu6ZTS+k5jViyT51ODUby3nD3pGOh9MkHU03ucRdOk22vBnMlcc+21gDAtbLqU\nfX4u3lu4n4ILFy5cDAOuJ+oCEA+wu1u8xmefeor//OWfADhJJVZIybWZSdBViNl5EDTxiN7hiSq3\nz7JMYm1SHEpEI+SnJOT9zOc+S3ZunvO+54KmaQ5P9PjBXRzZ/BIAC8flMGeCyN15dRyeZ0NzF7uP\nNpNSDQbjRpc5xagRJfmoWhRmPwcSoL+m1dHGdgBe3LCXhqiE2IVjJlNeKnv9zuO78eePUgf2K2pp\nOqSkvVXvOYbllWOt3CowhyPHpxoH4h1ovXIdJ5fDfXffAsCKa65xdA7ccP+9g2tE/8zRq/RBd2zb\nxr/+208B2Nbkx8oXepHk8vp9RTxC09Ha9oCujGh+LZjnkobTsCwxItG2RlLtRwC4/dqZTJ9/FQC6\nfuFOHl3XnZTiiWOHqdu2GoDqnBgz1HTTktwMPLrmiH80d0TYdURU79u7oxi2YdcDlBVLSqIvaZLQ\nJa3Q3GsQKhIDOXpsLbn5hQAEvDrFIblBPPTtPxEsrFLX5SxmgK6uS9chtIiE5OaIhf0u3TB+ZkbC\nue5oOlqf5KjLjDp+8N2/BWDW3LkXv76LYcEN5124cOFiGHA90T9DRFTR6MjhQ3z72/8MwJbGTMyC\niekXWQOoKw0qnO8PFWaaBr2tjQBMzTnJRz72SQB8wYwh9XVqmo5PqSF1tLeye/Ma+UPHUaaPDjFh\ntPBMswJeJ2w/3RHh1b3SDFAy9VoqquQ8NY8GqoCkaTj7sCzTCY/HVZZRXiTFquW3/RUZNcvl9Wbq\nLG80XbnSOw+rRxZWkShXYQxtHpPaIACek69j5ogHbGWNBM2n3irBzIxDADzxm5/g9fmG/h4uho3L\ny8x28b5BtE/EOOqOHOEXv/gVAL9fW49VLGNArALfwIazP2zLZKZAt43f+fJxdunZQ1aJqMIfqz9E\nd7cYtaKdTY5OAAAUPUlEQVTA0IjmlmWSiEtFPjs7hyXXiayfaRjUHTnAti0bACj3thONy/n0ZlYz\n89pPOcckE1I1t1JilO3zstS5mRZYKpcZyvQ5Q/g8JPEmJG9smQamP0dtyux3nj4snwwCJNbp5ErF\n8A2xOUB9HsbIJXga35S9aR6sLJWXxcuRsORrX33xBa6/5UNDW9/FJYEbzrtw4cLFMOCG81cw4moG\ne3NzK7969JcA/Ph3q7EqlgJgeYL9qseD/BoMOZzvB1vdqa+NlWPl9fOXrELrX1zS3vHgAkirLaVS\nSVpOyTz3/Tu3MHqshO1VE6aQiEpvuz+YgcfjVdvRiUQktZGIRvAm5XpFejpJdEvralFIJ9ImhaLt\na9fhUWLSTZaX41P+EgBvKtL/JJ296x37sHR5L6tw0sWF9Dbs6x7vdtbEG4SkRBgrRjTxs5/96OLX\nd3HRcMP5KxQNJ07w7DNCU/rhYy/SG6oFwKq8Pv1jHozhGwiaTtqADTJMtV+XWUJDw9sAzE5FicTE\nkFvgiJd4knEGNqQqd6l78PglHRDpbmfv2+vRlXbAuNrpRFXYvmPzGnqUIRxVOYFqNcnUME32vSHq\n/7G9b5PfLjnbTF2nRHGifBaM98maUwN+wprs9Y9aEXWGpBW8aOlrgeUYPMuX6Rg5udYXYvyfB+qz\nsrwZ6G075amSWU7Vfv9pjWN1wn6oGlsz9PVdXDTccN6FCxcuhgHXE72C0NDQwNubxcP7/o8e41hc\nkeSLl4MtT2cMphXxfFBelC+EFu+SZ5Jh8IXUny/sleqYHGqR/Rx+/fckuyLOysmohNeZnS1YA9zj\nNVWgifsz6CiUczzV3kpxSRlV1eJlnqw/Qu9B8diCHp14lnBDjx3eQzArW15Tt5+qbW8AUKub6AV5\nzj7MdJYAO+FhAjHlTSbQ00Wps8/ZUl5jqNyp1BNuxMoeoxYaRgSACcmwcyVsr7cjmcvjv3wUgL/5\nH/9rGOu7GCpcI/oBR+PJRt7a+BYAj/72OXadVqFkwSIIKEswnFzc2bBT6J5AWlzEGmJXjmXhKRNj\nd/SNf+P+rHTYblOLrPOQ8O1Xx8Ot7FM6puHccmpmLKS0QqhAbRtfZWmT9LwXeL28EJU9lt7xCPt3\ny40md8caqhUryNC8pAYRZUdVHrjeU4DHzk2ebRTta+TPTp9HopfB53kvAD1gv5HzVELLZPM+SUck\nEnH8/sA5DnRxOeCG8y5cuHAxDLie6AcUu3dKqPqP//KfbKgTT9PKnwwFytsxkgyr1XBApD1Rp7Kf\nioPfvh8PpshkOW2SB3JraLCkol7m0YfEpNT9HqZZcu7xozs47PdzQqUt5jXsozJHwvaEZfFhNcZ5\nwwuP0ZUphPxrA1786hwGM7jZsEzqkULWqdzxhC4UlpuGyAQCWrwLKyEttvgyB1+MOyf6fa6216v7\nORWRa7rlrQ0sXrpiGOu7GApcI/oBxOGDB/j8F78OwHGrBgpVV4yZurSh+7mgfvxWINfJCWrJPoeo\nPmi7bSvbF0zmtROSN7wrK+AMlxsMTHDe96qSIgLHd3FSzbHPyckmbkvbke7RX6lZJDqlp/6o18fk\ngPwE/P22fvYp2DuKWibbU7JOIL/GyX0OvMEkVo7kQbXWLrQ+mY5q5dcM73M6wwDbNzUvHQkZRvjc\nn15wjei7CDecd+HChYthwPVEP0CIq3bHH/3nLzgRkWq4TgtWTM00yq7AypCRw1jGMEPGC8Ay0+tf\nVL1EeVDZFRz0iQe1x4gxT9Vh4oP0aO2XRQ2TRTkhtijOaUvKIN8vX2/Dspw0QVTTuDpblJt+2RNj\nvPJEPUDSrgeddT72e5w2vRz2SJXfFz6FlVWuXnCewpoqRKHpaIa0gFpGimFxRs+V9LAsUpoUk7Yd\nbnHUubJzci5ifRdDgWtEP0B4a72MzlizpxVzxBJ5MtqK3r5XHveeAKWMbuVUp2lHw6LUDALDaHqz\ndB8Z+dJTH68tpX7dKwBUZGeTGkhrVP3r19LmpMOEurjhmKRSj45xjuM1wHBa/jX2x+XamJbFaJ8Y\nvGKvx3kPDUiqdbYmPWg5IpGnddeJGMiFoK69mTMGvVv0VIm1QWaJ+vtF6I1q5xAasUzwSs9+h5HH\npg3yXbnm+huHvr6LIcEN5124cOFiGHA90Q8I4vEYz76wGoBWsyRd1PDnYI5SRYTwKfQukUbTOvZj\nBaUKbeVWp8n2l6NiPxxVdcsibohnVTtvHvtPS9GntPGoUwzqv2MNsP3q40mT1qScl2mY1BsWuapd\nsyLTk95WvwWCOrwakaJOIJWiXuUNvJZFTV7QeQ/6Hdpty+WZcUbGZAjfycIZeNVwOjNnzMAepZ3y\nyCjGUsR7Pd6JmVl6oStzHgzwGaoT7oh5WbN2I+B6ou8GXCP6AcGWjRtZs0equwTHg9FPOCSpBDCC\nhZgjRDFe6zzoVIO1ZN+ZWqGXDO+cZDlkaGB4JO2wbsM2yiZMAuCtQwdYliPhaaLf8poGCRWPH48m\naI3LdRipQT4mtUE5ptij0WsbP8CnDExdIkWrCuErTYsMu18AjWzPOwn+FuBRxy72w0GkW6gOD96e\no/Ki3KoLn6cRT4fwsXZQ3V74s4eRuz7r5qXGqaT0DHYoVf+e7m5ycnMvcn0Xg4Ebzrtw4cLFMOB6\nou9z2Cr0Tz37Cq0pKWrg668a1A9WyvFQrfwJWCGpHuvtu9E6ZV66VVA7PM+xPxxBY8+wQnp7IN3m\nwxFWHt4BQNDrYV9Cnp/o152WTAsI6PJek3weOhUvtCkao7uggOYMIZyPiPcRVHPbExZ41fV6PZoi\nIy7hvO7zErNkrZIML/o5zkEDCtX7eXUfKHJ/qOcYZrYUxPSuI+kZ9AMV8cyUwxkl3IiW6JXzCeaB\ncXFize/0YNX/+zJpjgnJ/+3NG1m56vqhre9iSHCN6Pscr7zwHACvbT8Foany5GAqukYcvELlMYtm\nop+W/norFXPmxQ8P6a4jzUxi2TPWdW3oaVdbUV7zMrGzFYDijCAnlHZn/+UsS91DgOKAj4AyJKcD\nucy87wE8MaGB/fHn/8UcFXpPysthT1T2lz1+Er29kv6InawnpG4ohQHfgEyt/tnkHEvWqU21sSMg\nn0eg8yDkT5AXnY8JYZ9IRjEoDVItGcXSfWe94HzQnFy3Fu90Hp95Y9Ro75PUxGuvr3eN6GWGG867\ncOHCxTDgeqLvYxipFFt3SUW3S+9fzR0sE135UB4flvKU9M6DmEXTh7bOuWCaTl+4legB0/ZEM4a4\nriZD34CKSD0jglIhN4Aan9zjk2ctZ8vU+XSNWFwI7JVLruH+z3+BN994HYCEz0uWUrN/9be/JlE1\nDoBrbruTlPJ8n//uP3G1ElYO6voFd20CAeWvTtCibI5LSB7IKAZVqSer4jyVevV55IxCPyXVc9OX\nBTbfdFCcUU2KUSAFxWCBvXi/jRoYXinWNbT3YQ+vcGfTXx64RvT9DE3j7o9/DIDiKW387qVtAJxs\n7h7aOpaJlaFI4q07YCAJt6EtiqWMqB5vh6TqxvGFBjfwrh90v6wzsacFSynTW7zTeNqwTUHAMulQ\nyu5lM+dQnl9AIiydOitXXs2EGTMB2DxvEUXlkh+uqqnhzdWrAVj66Ydp+ul/AFAUixEKSpojmUrh\n8fmdffSH1yOGfbSZIDshMnxGTiWeLlGVN3Mqz20MdS+aui5W6x5SloTbmi+LoQ+wszvFzv3zzcv2\n89HrFwJw3ZwRQ1vbxZDhhvMuXLhwMQy4nuj7GB6Phym1UvWdUjuWZTNHA/DG23X89uVdADS19gxy\nNSV2nFWO1tvgPL7oSr1lgl9CRsuyQIXFF9NIr/mFx1jhSftkGuBRS3nA4UCSTBJOiAe9p70DY/YC\nAGZfswqA3DwJb7s7Owkp3ueNd9xBKinHBHx+TjbUA/DhO+7kpaRU2w+8+Cc6TkvLbG5BPu2HpGmh\nfx+9pmlkZQoP1fJZ5BnifbaWzsPT1yyv6T6Opar2mEnwSHpCT4ahWSKJaE8HFE6W/Xgz0cyhfgaW\nvSHnmdysIHeumgbAtQvHMWuipAhsz9nF5YNrRD9AmD5eQtIpNWVcPU+GkW3Z28DvlEE9cLz1gmtY\nudXoLaJFKr3fQwu9z4AdTppGvxD2IvJuiiqVp0OW2k/UNGiIieE8lUgSU2F+zthxlE8UA1RZUsL4\nefMBmDxhAtFYlNpJ8rctmzZxrK4OgLHjx5NMiLH0Zntob2sHhIB/+8OfkfdYdS0/+Y8fAHDTJx8g\nqQQ8xJCrkSDxKK+8tg6AZ97uwMiWPLWue7EU40HrOY6Vp+hOug9PRG5YZvNuoqo7ygiNIZCl0iu6\nNrQbmYYjalJRGOT22xYDsHRWJbVVQubPCJyjt97FZYN7m3LhwoWLYcD1RD+A8OgaU2vKAJhaU8ay\n2dUA7Dh4it+/tgeADTvrBzg4ACk1xnfYUnm2qroHHDHloacHTHXMmoSOiQyLi4byGD9BCk6BwjJu\nu/VWAApHVpCh2hhzs7PJVNV8TJNEKkXFGCG0v7l2DW2t0vY6vrbW6bc3DIOqavEUm083MWP2bADq\n8bD8+psAmLlwET41o8giXdVOxqPUReRx056t5OZI2K6ZSawMSSNoybCoNAF6MoJxWpoH+owgKZ/I\n0gVySvAG7cF+Q7tW08aVc9uKlQAsmDyCsZVSOPJ5B55J5eLywjWiVwDGVhQ6/y6aJkbkeFMnL26Q\nvN5Tr++lJxJzXm/lVAKg957AzBmtnryY3KgK3U0jzTu6iHDeNuU7CuYRzxsve9MNfJbQhq6fPpWV\nN38IgEQ8hmGoKrdpYqpcqan271Vhv2EYzt/6U3tSySRTZ8wA4PjRo1TWyPv99vEn+fwXHpHXJBKk\nEmnleft4I5UkO0NCZU+0Hc2SGxmWAcEieRjvwXv8BdmrlkWfLs8b3iD+TKEm+UN5/a7TwNfdozql\nbl5ayy1LRVNg/JgiRpXmqX0NeKiLdxFuOO/ChQsXw4DriV5hKC/Ocf61Q/57b5rFpt0yDO6ZtfvZ\ntEOCW61lW1qBaKhjj+Ug+UfT0uH8xXhHihhu6B3oGcqjS0Zoikjb6qgR5Riqih6Pxc69hoLtpebm\n55NUFfloX5/jTaZSKWonK6Wo9Wt4a5t466lkjFAopE5HcwjqgPPYHwhQVVkJgBntPPNk7dlTWRXY\n0tCe9kMEonLdU6HR+POE8K/5Mgbk6E6qlmLVh5bVsmSmfDblxTkUKEUrF+8/uEb0CkZWpuT1ajID\nVI2UnN2qBeNo7ZSe8jVvrOGF3dLVs/tIK0NO0Nk51UA+pIRsTyIC3uCZf7/QMgHJcerdR9GUMTc1\nH9GA5Bxbm1vQBznALpWS40ePqaT+mKQDOjvaKSqWyrVhGAQzlAJ8Z5ieA0JTKi7Mu6D91zSNoMrB\n2u+TPgl1rroXK7tSXp9Zii8uVX5/bwP6KemmsgomiQYpUFWexw1XSTfZNfNrKC+UkL8wL4Tf5+Y5\nPwhww3kXLly4GAZcT/TPBHaRoqQgi5ICqXrXVHyEu6ISVp5uD7N2q4gMr9t+nLd2S3X/vPUm9UfL\nm4EeEaI6wUIsu7fbTA2uBVR7573c49Hp6pNjn1+3m/sfHhyf1eaDTp42jZ3btgLQePIkZeVSxe5f\ncApl+jnZdBKAxbOn4vX51Gmd+6QtC/xeuY5jSjMdxfsz/MV+3rflzXTmHhHIY8o48YaXTSlk2SJp\nSa0YUUZOlkQMLr/zgwnXiP4ZIxDwEwhIj3hRXojxoyUf+fEbZhJR0nH7jrbw2mYJed/cUU9Dc1d6\nAdtABguwVDivdR6AFunMIVTmCJ/g8acNzIBhfv8co4Wlun2aYrls3yKCHZNnzicejw94TrYB9Pl8\nBFTorWtniouklAbpzDlzePZ//AMAjzxwB36/XAvbyJ5jdTyKSpSfm02nbUTPugeUqpvUvCmjWD5H\n6FSza0eSmy37yfB7CKrr7uKDDzecd+HChYthwPVEXTiwCxl+n4c85TWVF+dw1cxKAOIJg94+qY7v\nrWvmrV1Sed5+sIm9daqlMbOEeLeQ3M2uenztLwLgCQTRVE+5lT8uPY/dsrDv5Vqyh7Q3auL1Syjc\nHO7j6WdfBmD2wuXn9UT7IxYV7zhlpN7BFQUYO24i48ZKgSeYMTiharufPysAk8olPJ8zsZT5U0YB\n0pqbpyrpfq+HoArR7XSKiysPrhF1cV7omubk6jICPse4jizJZeVc6d9PGWnSe0tnhLp6EeM4dvwk\nR45JznHf4UbqjxwEoOvIC3gDKleYPRo9rPKvoXL6MwRsuxdJauw8LiyCnq42PF4xeDad6VxIJhJM\nnCx99G0trbS1iGHPy893jistL6NqrHR7eXTPGbqbNhvA4/E4U0e93v/Xzh2jRAxFYRi9yci4Am0E\nsRJF3IUbsLXSPbkES9eiDFpZKShWgjA6TjMZi0TRQgT/0nPqkDTh4z1u8ka1udV/dnR+dlrNcKTg\nyqit0bCnF8v/x3YeINAsfxpFwh99vFLdclndMHzpuuXnQOllNq/b+/7EqZvri3qa90OWh+lqLYZr\n7h6fa/bWT9oXXVfNtF/Rnhxs1OHRcX+f6fTbc5umrXZYCbbtqGav/fewV5NJbe/sVlXV2vra50p0\nPF6tyWU/BNvb36/x8L988+XkJviNiAIEbOcBAiIKEBBRgICIAgREFCAgogABEQUIiChAQEQBAiIK\nEBBRgICIAgREFCAgogABEQUIiChAQEQBAiIKEBBRgICIAgREFCAgogABEQUIiChAQEQBAiIKEBBR\ngICIAgREFCAgogABEQUIiChAQEQBAiIKEBBRgICIAgREFCAgogABEQUIiChAQEQBAiIKEBBRgICI\nAgREFCAgogABEQUIiChAQEQBAiIKEBBRgICIAgREFCAgogABEQUIiChAQEQBAiIKEBBRgICIAgRE\nFCAgogCBd2jNFx/4nVtQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "GFk0Xs53VmqU", + "colab_type": "code", + "outputId": "186b9d79-4c01-44ce-f9ca-faeff602ddb7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 387 + } + }, + "cell_type": "code", + "source": [ + "pwd=os.listdir(path)\n", + "print (pwd)\n", + "image1=cv2.imread('conan_s_head.jpg')#將存入的 jpg \n", + "plt.imshow(image1)\n", + "plt.axis('off')\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['california_housing_test.csv', 'README.md', 'anscombe.json', 'mnist_test.csv', 'california_housing_train.csv', 'mnist_train_small.csv', 'conan_s_head.jpg', 'conan_s_head (1).png', 'conan_s_head.png']\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXmcJVdd9/8+p5Z7e99munt69sxM\nyEZIyMIWDIgowRCQRWVTQV7+BFF4RFkU/MEPEBRkUdQHH5cHBEVAQUAIYUkgISELSViyZzJLT0/P\n0vt2+96qOuf3xzl16tye7qSHniQzoT6vF6Tmdt26p06d+p7v+vkKrbWmRIkSJUr8VJCP9gBKlChR\n4lRGKURLlChRYg0ohWiJEiVKrAGlEC1RokSJNaAUoiVKlCixBpRCtESJEiXWgFKIlihRosQaUArR\nEiVKlFgDSiFaokSJEmtAKURLlChRYg0ohWiJEiVKrAGlEC1RokSJNaAUoiVKlCixBpRCtESJEiXW\ngFKIlihRosQaUArREiVKlFgDSiFaokSJEmtAKURLlChRYg0ohWiJEiVKrAGlEC1RokSJNaAUoiVK\nlCixBpRCtESJEiXWgFKIlihRosQaUArREiVKlFgDSiFaokSJEmtAKURLlChRYg0ohWiJEiVKrAGl\nEC1RokSJNaAUoiVKlCixBpRCtESJEiXWgFKIlihRosQaUArRn3Eo+78SJUr8dCiFaIkSJUqsAeGj\nPYASJw6+Rrma3XE1WqjUaxiP+Om/uxqcEA1ghfvzx77s76xmXkTziflcy+KPJxb5T3mXfrDnu9L8\nNX9n+Rs9/rl/mBfDo4hSE/0Zh2T5RSD1KgSooHg3ljn2r3vcx/qhj08IBM1jh9W974KVv7v0s5MQ\nD/bi+2tiueNSaDSjnI8SJUqUWAOE1vpE7+2nLFYyfR6zO82qTdKHuoBAecdyVRdezQ/rFY4Nln9e\nxW9L77yVjo/9TXON1Zm64phrPhiOZx2tNObHHFZaKie5Ju+jFKIefuaEqA+NL0NWsYibl02zv++R\ngUIc88yK33+wZf3Q3uPlPl3qQ9YrTJL/6UruitWMbCU8ptbjY0CIPqaeR4kSJUo80viZic6firmQ\nD4dmfKwOZlUBIZY/XhHNqsLDuxsvHYv5bbmMxuwCT2KpKuNf4/hGeyLWzjG/aIfz02QwrEpbfbjt\ny5XGvYrfVasI4p1K2t3PjBA9FSE5zrSlVZnhS7+w/PFxC/DlXp5HwiSzv7uskGr6/eV8FQ92bLCy\nu+BYV8LScaxWEEhPoK7leFms5Fp+FPGQYz7FcCoJ/BIlSpQ46VAGlk5qrOHRaLHK4NCx+lTzJ9L7\nt1gxp7TpksXpy2obUhefr2h2rkZL+WmmZ4lmdrymurv/4/3tR03rOu6I4U/3E7BSEsVjHqU5v1o8\n1Mu+WivxeI7XilUtaF8sKvuJXFG4rCoK/1DjX1Vi+4NIKX2cE7T09FXM9YpulJWGtWTzeMi/P6TL\nWRf3udrjZdwRxyZInaBwuFtbD7KQH3LMx/eTJytKc75EiRIl1oDHtjmvdRGlTTMIg2PPUQqkbP43\ngBTFsR/p1br5/Icb/hiaxuGNJ/9cKQiWGZv/iIUs/q0pvptlEObfFSj7u1JKMnu+EALtHTcP03we\n+p+LFZaWP2YUD60yr6Ayas8dISSoDGS45O/5PR47L1mmEEGxJnLtU2mFFF4IybvMiu6HJpdGvoZk\n8xz441HeOTnSFMJ8/J4GqTMgH2dWfC508zki8L7r39Vymqgw8+XGEBRj9J9hmpr/hkvnNV9zCQj7\nN6nN8Mgv9xDlDkvfvcx+OQg4ldTUx7QQ3b5pM/V6HYAoitg3PAyARje9PNo+PBEEbNywAQCJJvAe\nsE7NOXEc02g0zPlCNPn2TvQxQGDHqbWGTBXHFkopoigqxpn/LZBunO0dHczPz5vri8Bd/8DIweYJ\nc5aYL3QfxPbU5gXTShRCVSnSxMx5GAjGxo4AMLxvH/v37wfg6NGjzM7OAjA5Ocn4xJi9d+HyAqQI\nnADSCncslEDpzM1NLuvm5ubYtn07fX3rAFhcXOTMM88EoLunj81btwIwsGGjm6OopQ2dJuYCUiJy\nQSKlJ+/Eyj4/J6t8gac42/7u3NwcSqXHTJsQxXzFQUiWFWurtmieUyilO0cI4c5xY8JscPlmFwQB\ncRzbe6+547a2Ng4fPgxAtVqlpaUVgPbOTrcmpqam3HWiKCJpZO76S8cNZo1t2jgIQKPRcOtscnqa\nKF+vQtBSqQAwOz/vriWEILQCuVavE9vjTGt0ap9xGLB36do8iVGa8yVKlCixBjymA0v1et1pk/tG\nRtznApxWhwThTGDNyKjZAbdt3EhqTZkAQWiv01hcdNeRYaEySk97PFHHAEnd7PJBECCseiSFcBqq\nkFWnbUOhPQRSFrs/cODQoeKinmKZTwPaWlGwJFFdW3MS899cI1Ips7PTAOy5/wFuv+1WAH784x8z\nOmw0zrHDo1StphHHsRtzGIZUrJYihKDRqNt7DNHWFJZaOC3T10SlCJy2mpA5rVprzZ23HSEKzXXT\nLOPG734bgHqSsmif22IjZcu2bQCsW9/Prl27ADj78Y/nwgsuAqDa2oqI2ux96sJMFjSb5O5hNUfK\nfnznT9y9bdm0ycxzllGx2mGapi50F0cxqTDHKms4rUanGZUWcy+Li4tNWqnMj9Eoa5KHUUglMnPd\nqGkqdt5llhDnc6cz8iUrsxSRWS05TYhj81uNet1ZNkKAUL7Vo91cZw2jwYdSsGCfXxRIlKfZt1Y7\nAZidnXFLKpABgTvG8SyIoNC2M6U5lcL8j2lzfsuGIbfo9x88uEwVCyv77ZRiq30BZKaaTKhcOKVZ\n48QPeunwljHd/EeWeaa0lJLUCqE4jrl/3z57UmEK+v4mrYpAqYRivaoMZU3yRr3GzNQEALfefBO3\n3XqLOb7lJqYmzOet1RY6OjrM70aBk8yR0GgrgH0TNr+PfMzuWDffWw6tdZMQyc/RElIrRKQVGvl5\nWaqKTTCOUJn9jhBoUQjz2qK5z1qtxrR1MWzfsYszz3w8AL942S9zxhlnmHHLgGpHux2VILVCKAxC\n++IbIaFzwYBoErqbBgbcPedCtBrHbpxhGDrhZDYcc06apk0+6Pw4CAJnSlerVVpbjak+PTFJZ0er\nO3dhYcGdH1fM5x3dXYVLZWrKzU8URU6YSSndcRAEKGtuB5FkcNCY87XFBTf+mZmZwk0Rx26jnJmZ\ncWOPosiZ8wuLi03mv7LXSTTsO3TEzfPJjtKcL1GiRIk14DFtzmdZxoh1qoNqjpraXa+eJFSqVfO5\nH3mXuKBAHIVut00bDbeTPhI7kFa5qacK53+14rSxRpIQVqyZqBT7c7fF0oyCPLrqRYCFFGRWk5FS\nMDU5DsDePbu59abvA3D1t7/FkYPmmj2d7UbTBLqqEb02uIDKPDNco0VhojkNEE0grQvC0yYznbnj\n0NfiPM0VDcppqJos1z61csGLJEmatTUtqMTGLG2kKUGurQcB2n4/qS3Saueipa1Cf5fRMtOFOW79\n/rUAXHvNt9w1zzjn8Tzn8l8G4IkXXERnT7cdknD3BsqZvcb0Np+rNOVArl0JzdD6PgDa29upJ4l7\nNrn7aXFxkdia1YEM3RwppZB2foOguF9fu/e1+QDRpFm6+RGCxP6ucTWYdyDVChGY382Uclp7pgWB\nzd5I08R9NwpDVB6YNT9uxqAUqT0nDAI3PkGhWwqt3flSCGfAn2qa3WNaiAo/lSRoThG68cYbAbjm\nu9/ljW98IwCVlha0ffAiChi2fsRtGzY4P1RcqTiBujTN54SPnyI6n2aZi7gu1GqE9jisxKR2ER8Y\nHV3eZRGGS9JHzJzMT447U+sLn/sPvnHV1wFYrM3TWjXX72htYfNAD2CyGIL8BUaTL/tMK6QuTNhc\n4GVp5lKuTKqUGYPSqvDdIpzFm6nUc1n44W/pBIaUIYFNYwqEJEvt+UogvIh2EEGamN+LPN910lh0\nftO4WqGRp/AIc09mfCltsZn3tmoryr7WI3vu5YPv/YEZR1zlWb/wbABe/JJfo3tdPwDtHZ0EQex+\nL8/8kH6KUKY5eHTc/kOxc/PmYo5yF0QQEFohmjQaTWvNTzNbKhjNl6VLOwriwAlpBbR0mM/TLHNO\n8CCKqFlfphACrQrTPheEwgzQ/L4oMgEWFuaWdc8opaha5WTRiyP4WKnm4uF+r040TjWhX6JEiRIn\nFR7TmuiBQ14wydt5syThqm9+E4AvfOELPPWpTwXg6ZdeUuQre1BeUnCGRssiOvqwQgun9eJpHXEc\nk9rdf9+hETwDCZWb1Xiat9ZupBNHjvCj201w6PP/9gl233MnAN0dHfR3dQGgWgMXNU3qNSJrFsug\nGI9Smcu1FUK4OUEIZzqjg8INkqRNJmmuvaRp6oIjaZo601Nl2kXhBZLQuhHCIGoKpOXajhCCOI7R\nNtijUYXGKqVzwQRaumfZSFM3vjiOSZIiEyJ35WiVEVvNMgoFcbcJoMkw5pZrvwPAV7/4RXY+7iwA\nXviSX+Pc884HoK9/kCCquMfZqButLq5EuOhzprl/2LhLtg4MelkXgsRq0kKGaFVYP6r4qosMalUY\nXUprEuuyyBqalnYTJc+yjHp+v4Eks+kPuw+MLF+kYO70mM83bRhg0c5VFMc0ck1Xa6d5x3FcuGyy\nzD0L7XnV0KJp/LowPE4pPKaj8wbWR5NlCGsS3n7zzbz9T98GmBfxGT//8wD84ZvfgqvcyDLwfE5b\nbGQ18vw7wWqsDi1WzgBYAfllpQicUNHgTOMky9jvfL1eBVKTGaRcRcqB/fv43rXGx/ftr1/Fvj33\nATDY20Ek8nspqpSK1WySvhH557IobFGCxAqsLMvQeVQ8y6jZlCuVpszZyHBSrzvTOW00nIkpPD90\nQJFdsLQAIRfSUuPOEUj3okopiaLI+e3a29sJrZDo6OhA2odVqVTci16tVl06T8Pzdas0Q1D4EZ0w\nUMVGphGovD2IDMky8/nE9AzSpgv92stewc8945kAbNy61fgYwFbq2IlUXoWQztxcbNmwgcieo7MM\nYV0hvn8xiiLnmwzCkHYrLMenxmlvN/7dMI657Uc/sg9ziaB068UrKsmKzbFpnPm/oTkPT2dNm3V+\nvGNoyI1hdnbWVXoFQeDmuV6vF5sGFBu0FDxwMPcfc9LjFJP5JUqUKHFy4dHVRP1fXtWOs5qhFhfK\ntC527UBCahzcf/vBv+Daa4w5H0URnT3rAfjTd7+foS3b7WWEZ05qtgyawEEoAgL7G5lXoyw9ZqGm\nW9GFJpcp5XZepbNCq/Ec84GnaYB0ZpkUIQ+Mjtprau9HvPpsrd3x0ZFhd4//9ZnPUJszAaSutlYq\ncR4xToqcS63dePxghVKKzJqSaaZJUmPG1RcbzqSr1+vUajXA5FsuWvM8lNJpqBLccSAKQmP/2Ceh\nXs3xUmitm+/H+zxHpVKhrc0k0re2ttLS0uI+zzWkKJAuf1GlWZO2689LDhmE7t6STBHaSPf03Byp\ntb1//ZWv4JJLLgVgw2m7QBdmvjMkJLg1rpRTcTYNDBDnz0aDtOZAEATUc7O6UqG13bgabrvjjmJS\nBMcWTxwzcTRpk9qznITXjE+4/FfZ/F3/eCXKK3uT2zdvpsVq6vPz88SR/UKmvPxfwe6Rw8X4HwJ+\nHvGjgcekEHVEEnjPNE24747bAHjXW95EW9W8MGEYcnTKJB2//NWv4wW/9nLzXSk9317CaZs224sq\nl0wufXveF6J6eQU/jIvkaCG9WmSlmqKa+ahTgYsM7z9woCgpWkoSYU3P+alpbv2ByTr45D/9Iwf3\nm2T7TYProG42kEgKFus1O55KURfimfNJkjhBmCSJM7Mmpqfc+BcbjRXruU+26Kq/QUAhALMsc2Ot\nVCrO/GxraaG91QjX1mrVRaJRGm3nOvDuUWtN5nwPwvUK1VKQ2oU9Nz+PDM11fuXFv84ll/4iABs3\nb0faFDXtbYJiyQuxxXI6CKXdb1erVRZsscDekZFCGntEO6lSboP312uWZcU9COE2cmPKe1VKnmun\nIGUpfONSBEjPvNfed/O5TbOEMFjG55pl7NxuOA2CIKCW8zsEMXutwrDSG38yrbHSnC9RokSJNeAx\nHVjKtHbBH1Wv8Q8f+zAA377yy3TZumSkpNYwu+2W08/iHe95HwAt7d3FhbRyGsKOoSHH6LSSJtq8\nNxU7ucoyZzL6pmcQFkw+Gdrl+O0ZOegF3gX+vpyldffdu35o6tb/8z/+g6u/dRUAQ+v6aLMaTm1+\nnjgPrFSbo6aZ1UAajQazVhOYnZ11DD/1et25FKIoKiLsFNrAarWCR3KpLR2Tn9u7bAmp9zwkuKBU\nd3c33T0ma8HXSuMwarp2UylmYjMqpERYDcy0WzbXnJyapq3LuJBe/huv4mlPfzoAXf39FM84cIEc\nRXM+aBE9F00FJIX7qbkktVhERXK7b8noJHEWxsTERJNV1FI1ZaKdnZ1FJkNr1ft+EcD0g1Aa3aRN\n5wUSpihhed1t69CQPZLsOziy7DknIx7TQhRwD3j3XT/kzX/4BgDWdbSibW14mqZkNmo6s5jxh2/5\nEwCe/oxfKBaKDMAmI+/Yug2tbERU44Sr9oSo8hZJc3ONwpSseEn7SZo6P1qqFHsO2AXkm6BauZck\nkIIFS/7x1a98kU/9yz8DEEtot4IzFpLEmu3VSsUJ/Ln5effC+PXi09PT7vMwDJFRYX75/r/iHpcX\nno+kf+p4fsv5opVqEubLJbE3+VPTzD3jarVKZ6eJgPd0dbladV+gZlmG8IWJKASSkOY8LQVpan73\n6MQkT7zoQgAuu/x5PO3Zz8lHRiFslm+Kp7Os2cfuzO0MjwiB2clJAA4fPsz40aOAefaHDxqTeXR0\nlMxG+Q+M7Edb14TKMne/Q0ND7re6u7sZGDCbQEdHB+2dxhfb09dH93pDRRi3dFAoEM2crdLel8/b\nqrMM4dKgsiaqypWw0nN8pFGa8yVKlCixBjwmNNGlu7TbGVQGNrL8vz/6Qa75xtcAqEjtaMMAl3Q8\nNj3HL13+fABe94Y3QWhr6n0nf5qwa9sWe1wEVvxJVKI5mpznyEnPfEwTRRAVpl7DRnEPHD7sfk5l\n2jntTamkOb7nzh/xqU8a7fP7113DxnXr7H3hNGbllYk2Gg1mrMY5NTPjqPOmp6dd7mng7fy+aQtF\nVN03f1eCX4roB54ebbja7SWlkr726cNlKnifZVlGauc3CgJ6ekw5bF9PD122UMEwNBXaZ14Ca0o6\nizHkea9BpcLcvHkeU7Pz/OpLXwHAM571bLbaBH4QKC/6HwTF2ISXQZKvuvHREQ7s2wPAgX17ue02\nE1C99667OXLYUD2GYUhL1bi0KpWKCzK1VCJHTi3IimKJtCiWqC8mpJk5v7bYoKPb3PvGLVsY2mre\nje07d7F+yATDNm/exobN5vMgCJy7ytyD925l7kVx70CTm+WR7ChxHHhsC1E0B3ffC8DrXvOb9Pea\n6Ktq1F0XDa2gnqcRRS0Im37xjnf9OdvzRSzjJim5bYMh3ghduvWDC1GHTDnBlmVFknk9U+x36Ute\nywQNyvq2ZBBy3beNv/PvPvYh6gtGKHa2VRD2xQ7RBHZDaDQazC0Yv+bMzAzj1qRrpJkTKH5ViVJq\n2Qh7tiRtyPcn+kzny9H0nUyL3h/rSkvevzdf6OZcsmYTKSL7roUKONq3jRs20N5mzNv2traiWEJr\nlxqkdFH4kSQJga3lJ4w5dMTQCw5s2srLXvlbADzzOc+lqZTOWeqZ26Hv+fGPuO8uk9p03Xev5l7L\naRpJ4dZctRo7Ttomn7woNrwoihwlnfB4a7XWbjNN04xGWtTdO55Rindpbr5GzaZfbd+xi23bdwBw\n9uPP4Qz7Xu163OMIozif/OIlUnrZSpaTxXxfipNnlZcoUaLEKYhTVhNdKeE6L8oDIKnz2U9/AoDP\nfOL/sK7TJFkHaFcuJ4PQObFlFDJyyPT7+Z0/+EMuf8nL7VUDGnmPpSBgkyWkrYrCnGrWRFfSdGQR\n4Yyq1Cxr/YGjR8kLorUoGN2NpmEOv/ipT/Ovn/gnANqqEaG0M5DWHT1dlmUsLMwBMD41ydFxwxSU\nJgphcwelCFbULFcybZcLvvifL/2sOef1wXGitIuVGugtd55vHi6XP6r8oogVAlHSa0Lns7+njYYz\n7Qf7++m0pZiVSsWtOSFwBRhCQmZN40wJ4opZo7MLDcYmpwB4yctewa/a/OXOgQH33e9f/W1uuuF7\nANx6042MHTasY+vX9VAN82KBgjhcS8968CyJJNNF/m89cUTXQkbuXlra2h0TVUdXJ8LmvKZZ4uj+\nJDB2xJRrhjJybqPRg4ecdjs9M093r3GDXPzkJ3P6GaYf1fkXXMDZ555rBhrIpr5nPpZ7zj/byfZr\nwGqE6PzYYX77t14GQGugiGyitEoz1yAryVRThUbuH92082ze9LY/A6Br/ZAjfdAUlsa2wUHC5Ubi\nXc//q9a4CG2SKUe11wSNM9HU/Az//qlPAvD5z/w7HTYBPJKKQOdEDyFzc8a0H5sYZ2LamINTc3PE\nLcanqzzXpMBrgOb7PZcIipUEZ9NtrhDZPplMrYfCcgLyoTYNsAJXFMI4N4dbK1Xm5sxGFgUB/X0m\nit3d3U13t0mbExKU8oSbK0mPXJZHpiTCkpeMTU5x1jmGaf/yK67guuuuA+DmW24iXTQZGN3tHbRV\nzNqqNxZdKl2iEoSNts/Xai5dTciQ3nWG07SjvYt2G4UfHNpIR7cRcj19fXT3Gn97taWNPht57+nr\nc4pCEAQush/JgMMjxi21uLBAo2YKPI4eHnN0eEePHmV45AAA9+3ezbBtSLeuv5/TdhiT/7wLnsgv\nP+95ALS0tCzbiPFkEqKlOV+iRIkSa8CjrIked93nivD7pOcR6mu/8VU++P7/D4DBng50ZhPUPU0r\nU82/G9jA0oGjk/zJO98LwJOfeRkNq2mEYZEEfdrmTSibWB0J7XbMer1W7J5CkOTBBSHJ7L41PHKw\nKYDkI50zZtzffOQv+Mb/fAWAoQ0Drty0EghH1TY1NcUhy+g0MzdHXnGaHlMzncMvT13mzw+Cn6Ud\ndyWNR3sujCbtJ9dK/e943QiqcUyf1ep6+3pob7V5wWnqauHthcx1ROCaCNazjJFRY7W0d3a6QFFH\nZztRXtuepmQNo+1Nzy0wa9sex22tbFhv3E/bd+5wvZE6OrvZsWsnAOeeey6B7ZHVlJ/axOIklyTM\n2zlZklS/ZBLdd5s/N9cZGxtjzx6TRXDXvfewz/YES5KEdVaDv/zyyznttNPs5fSx1gCPfgDzlBOi\n/uJebhKVUqQ1Y069861vYnj33QC0xcK1VdBe6o3ShXkrhSKxC7eWCp72LJP4/No3vgVsQrWiSFlC\nKbZu3ghAoDNXyRSGxTU1OBKKFOmZ8H61k3LtSlRjkfe9510AXP+dq9jQ32vOyQo/XZYkDA8PA6a3\neU49R1Ck9gshlvXN6lKIrgquGWGaOtM4TVPnF/Tr7oUQXtGFl52A5xfOFKFdQ1EUstHWwvf397t5\nbSzWi9QqLViwfAdz8/NENvrf1tnhrtloNKjNmQwMobVrLdLIlBOiQaWFoYFCiHZ3GVO9Vi9+q6ev\n12UOdHZ309XTZz/v4zQbVV9nxwuYTjv5exg0UxKv5JtuqnTLV6mQjtTE9EkwY56cmuSHPzD0fWee\neSb9/Yb8JwiCFRn+H038LL0XJUqUKHHCcdJron5gRqyozvtaneaAJR3+vVe9jI3rjDM/TepFYq+X\nE4kojoXSNHInf6WFWmY0v3e974NsP/McwPTEduaMVmzZZDRRqTNnWklZ5N0pBTqPlIqA3Xv2Atge\nSU6ldS6Iv/vQB/nqf/8XAP19bVQrNk9PCSamjJk/OTlV5H3WE8funkdAvQk7Zg6btFN9fDv4z9KO\nmyefK6VchDhNU3e8NMqvOFYTDURzEE/lPaaUoq1qgoTtLW0M2ZrxttYqWVI8Qz/RvdJiTHgRBiS2\ndXGapi5gE3g5nWEYFtkFFM9N4REoqeL9STJd8HCLgMiWIFfbWunoNO9PT+86tm41jEtbd+zk6c8w\nROZRSws6yzMNZJMLKV+Pfn8ppYqikUxl7l3SXs8uM49Fbu5yUB7z2aONU6o9iJ+GY1JpPNU+T4mQ\nku/Ztg2tldj5X6C5asUlyR+TQG5/S2tmZ4yguuMnP2T7WWcDxqTQzhqRRTdLpcGmHcUiNAsKs1Ck\nXRD79g8XNGVKFQzhOuO/P/cZAL75ta/Q12P8U5VIUrf177PzCxy03SJn5xaK5HYpHK9nKKR7YQw1\npbuZpnl86MSjErkAi6LItWIJgqDJJ5rDJNIbCClduppfwCCEcD5wKSVz1gxPkpS63UA3Dm6gp7vT\nfl4ntLyvcbUgfsnSxPkg40pIFHW4a/o94kVm+R0MfYk7x3kpvXYgWapcmlLqS91GjelDpjPBkX17\nuOMHNwFQrbbylS+YjX7dwAC/YBv2XXzJJUVRgJTIvKIF7fQFKSUqLdj4i0EoR/WoKd7JpZtVGZ0v\nUaJEiccYTnpz/phv5DuRXx4JoK3ps1jnNTY3NG7MoW3EMohCr0GWdo3YNJmjPVNIsnzHR5LaPWbD\n1p28410mUt/a118EHZVyjD07Nm0ky9mdRNHrO4yq3L/XRCCRYaF9eon0N3zr67z/z98NQG9blTjK\nI64J01Yb3j980GmcSVrU3Ztabbtrp6pZE82HuULeaomVkZveoUdTGMexo4abmppqSrx3ASSPzDtd\nkqjvo+K5CHKzNIoi+vtNVHqwv99b68uz62dolwMcRFFTiWmUa5qqYP/SWjujRHrj1Fp7jHqyKaiW\nv5dB4BVpEJBZbXtydp5WW+a6YfMmzr/oYgCu+JUX0WI5HZoZqXDXXFGDVEve7RVwspSBnlLmfJMf\nxGQsm2Np/w0cGBlmeN9+AHYMdBHYnuNZ6teka2dqSF2kCylMBVN+jrCmyZ0/vo17bV3yeU9bjxDe\nGHJShjRxfqiGSpH2+P7h/YWfSIuCtCSU7LnzxwB86AN/SWer7YUeCdexcnp6mgf2mntJkoTA1hnH\nsedjypRLv4qCwJnwTX7Qh5ze9K2fAAAgAElEQVTZEksRelF4HznpyOzsbNPfnOGqdUE6As6to31X\n1BITNW/gl2nNQVt11Gg0nK80lKFpnAgIXQjsUAakeUM9pdw6U0K4CrtKFBHYjVv79f5Suix/rTWR\ndTMlSeKo8AIpPRdnhsyFVqAdE/76njYnpA/u383wsFEYvvntq3jihU8C4LV/8EbIa+S1XMKib2HC\n9gaiWYD6/LeusZ0nNMvofIkSJUqcwniUNdGHjsg3GQFLdxzhmcbW/Lrxhhtoazcml0Y5Bp5GqlyN\ns5+/FwWBYVSyw2lu3GbOaW2pcuP3rwfgnAsuJqyY65sSTasBHz7MRttWWQaCzEWfhPXW2x+wO2lt\ncpI/e/vbAYjDgCAw408bdWZmTFO5vfuHUTYoFQYxqS2vq1QqrtY5rsakzlzXLInPHwO/od5xJ4r+\nDMG5dbRuMnvbbGO7vp4exi03AUo5l1BGM0uUH8DEmcNF7yIppUueT7KMhu01P3p0jEXbP2nLxk1U\nbfGGRDjKuDgICB2zkkLkCf8CErvW5xYW3HjiMHQ0eouLiy5fs1qtkuYtqasVZ7ClaUqWs4hJWZQj\nq8yx2Skyl5Bvy+kBmJ0c46or/weAH93+Q37puZcD8IKXvsJp53aCyQedK/Z+myc/yBSGy+ekLu2h\n9UjjlDLnmxLsBYUQEJLEdpv8/ve/T7tlHJfUaTTMQoyCqiOuE0KQ2M/DMETnBApSOuHnd+Bsb63y\npS9+AYDLnv9ituw8w/4uRc6IwAnUTAgOHjyI+4NntqiaiXZ+/G8/ytykITvp6WpDaCMgp2anGD5g\nEukbiS54JxFUbOpJkhQ90tN6w3GCmp/LV59YKThfYhXQnovErTldbOQD69YzYwlCTHcEb5Kb+Epz\nAdycnJ8L5kSlLpofBIGXGqeYXzD+/Ace2MPO7aZqJ2pt9Zq7ane+lIWQqSeJa0Y4X6sxM2m6INTr\ndSewtee3F0K47wohqNrWOdVq1TXsa2trI5A54YpCKY/iz3WkFS7Nr9IS0arMPEyNHeTTljzn9ttu\n4ff+4A8BWL9pi4sRaO2FC8DtPtorMvGfiwiColvuo0z/UZrzJUqUKLEGnFKaKPjRSY3T+bOCgfvG\nG29k+0ZTJqZV6tiaGlnmeh9pAmRkdtiFep1KmOd0Jo7xPk0VKbn5Hzsz+Ie3/IAtOx7nDagI5Oyz\n9c2Swhw0jE+5aa+56fprAPjWlV9mQ7+JXgrVYMYyMY0ePsp83dL0iQDpIsCCuqU1MxpznkgvCCh2\n5KaofG4p+RP4CKqlmV6+VbFfX74atvwHw0rsU37EOf9b8Y/lf8+fp8D1+9GOsyCqBC6rQ0YBXTan\n8/DRMcdmr4V0zf+EEIi8XTGyyJUUuNxTgSxsfqWa2hinWd6lIOHe3aaAZOvWrfRYerp60nCDDmVB\nsygDnAbZ0lKl07aCThuayWnjKuruWceFT3oyAF09vdx9ryEvv+Y7V3PE9u+KghlsoghtLRFtlhWs\ns73djUFI4ZLtEcoFnySKmtWGe1pbqNky1Dtvv4k/fuNrAfj1V/wmz3n+S+ztyqZcHWfgBUHRgE+D\n8HNPvXnOkc/qUsilj/wExqJOSiq8lXyizcnLzd9IF42Z/JpXv5rZSZOUvr6i0bYrpgwqpLlppYrG\nX1Iol/8udYqw0U6thKsLriWgA+MiqHT28pcf/AgAnQOD5G+GEsJ06sQEPcPcxwQu/Wr60AFe/Zu/\nAUBXNQJLiKLShPv37AZgvlF3Cd3oQsD48+AnHfucncExi+nRRVNE2o+metHp4+Uf9eHPw9L/moKK\nouql6dqrEKLuVCGcEA2jgHPOMqzsURQ5vtY9+/a59i4yCF10G4p3VfrtC4U+/udjx9/a2sqApaTr\n6+szGRlA2kiQOUdpELgMAYUsMjaUdm09hIwQtpY/E5LnXm58lle84Pk8sHcvADdcfx03XG/4Sm+6\n/jpHARkGAVWbIdLT1cU6yw9ajWMCinUppOdXtg7TxTQj1WbM9UTznOeZdjyv+p3fd/wUWlMQ6aQp\nceiZ8zknq0eP1zRN4PWbKJ7pwylES3O+RIkSJdaAUy7Z3kFlhToqtGMePnhgmD972x8DkEwfpSUo\nEofz0jattdNGglDSsGaH37xOa8hDkFkGwkbkh0eP8s73vh+AJz3zF1xOW7okQbhIeteoRcMq9eG/\nfB83fOcaAHo620kaRnseGd7P5My0HWfi2hXrJeqKo+/z8hPDJXXJJxNWYshfWrL301Ka+VkWMgxN\nwDDvWOAljTcajWMiuw85djuVQRGUJgxDznvC4909LNi69Qf27nVmshlH4V4paueVI8EWYvkWyA91\nr2DWcV53PzAwwPp1ve5+VZq54yLgJJ22mmVFJF1rQc26jXQYOK20vbuXV736NQBceOkzqE2bdTkx\nMcU999wDwLe/eRXfv/5aAA4d2O/ua11fL4N2PO3t7U5zTZN6E09DbuE1EkXdau0XPuUSXv+mNwNQ\n7ehy2qT2siOU8rT5Jc0GtVhefjwSWuIpJUSbSQeWDjsXLIIf33wDAG9+w+8z0Gd8N5EMwPoUg8Cr\nkacQSH6drrBVxwbSEZM0lOas802f8De++U9p67ZUdVqQW3FZpohcJ7wGd/3wBwD8r9e+lk22X3dS\nX2TSkog8sO8BYstKLrTyhOUSwex10fSrZfx+8ScTAi+yfTzs+KuFT0ijllzL31D8qqNVQ3svsX0E\nnW3tnHnG6YARzHnU+NCRI+wbPmC/Jpw/NdVZ0eTOE6JaiCaTczUIvXWQNYzwi+PY8MwC69atc+NJ\nG4lbK4b4xLiTQo8QRUtBYLssNFTm3BGJktTqZq7OOu88/vitJg2vc92gc7LPz8+RJUbxGNn/AFdd\neSUAX/nSlxkdNsUh3V3t9NguoP3regnyGAHCperFlQp1m+I0Mb/IjjNNq5B3vvcvaOvosXNV3PdK\na2UlAQqPjBAtzfkSJUqUWANOek10pSCTIcvNm3GlTXRbucZ5yw3X85Y3vQGAofW9VGzyfChA5z1u\nMkVYKbKEG0luWgYuMJFmmWv0poCxWWOG/8Mn/4OBzdvtrQjXOpZAoG0pqU7med1vv8pce3aKwEZc\n5xfqPLBvL2Dy+vK6+2pYNOkKothpUFmWObZ8v/zNN4EbS6nwHgIrze3xYqXvJn5ZpJROU9Zau0gy\nFBr08bojoiBw5nsYhjY53Pxmb28vsaUIHB8fP+5r5xqQ1Lik9KGBQTZtNOTEjUbDPY/Z+Xnu2/0A\nAIue6yDLMmdKa12Yon7w41iNtHgn/Hn1A2a5VpqmKRVrhm/YsIF16/uO+Z7QOLLjQAjDOYG16my8\nJkl1kUMdVFBWQ52arbNoH+E73vkennzpM7wrFxknmXVrLNTm2W/n4dOf+gTf+IbRUAOdsWnAZMz0\ndXWgGnmTSOHYpGoqY8YWF+w68/H82TvfB0BbT19TGWiWFn6WlRRQF0Rq+vvDF1k6ZYUo+AuLoo4e\n8Eou+NJ/fhaAj/3VX7J5yKYUJYtUY1sJJKTjZBRB5EwDpXThQ6V4jkmWMTFvaMx+/Td/h5e87NXm\nJ6OKS/VQQrv8+iv/+3P83Uc+AEB/VzvKdvi8Z/cDzMwt2O9G5B0cq0IjbPVVPcmIrf8rTVMneFpb\nW9m40fCYLiwscNi2BzleP9vDLUT9jpJKqWWTu6GgnfNJLlYDlaau33vu9xywVWNhGDrO1QWvamfV\n186JNxBOiJ62dRu9XZ3unDzdJkkS9u035vzY5MSyLhhU1pQcfrxC1P3V8xECLnOgWq0yMGgEVX9/\nv2seZ3zD+RAyt46FztzzaKlUQBjBOTe/6Dp5ahlTT8x4jk7P8fxfMelIv/v7r0faeT8G9j3MGovM\nzxk/8f/9p4/zuc/8OwARGRutS6ulUmkqLsgVoYnZBZ512RUAvP7Nf1JUNQnp5lZRfIxurjeRy4qV\nh0+IluZ8iRIlSqwBJ70m6sM3Y48hvPXh0ZI15k1k/HOf/iSf/OePA7BtaJ2jyIslXs4lbjdMlXZJ\n05VKhbo9vxKHpDZqP6ciPvK3/wjA+g2bm26lPm9KAl/8/F+iu8Xs8hWtXL318MHDKJlHKVNHMB3p\nBoHjKwuduRpHFddrpnf9Osdmv3v3bo7YXt/BCrlzK2Etmuhqzvf7t+f/BsPq39Zm+qv7QZ8py9wP\nqwsySbQL1rRUWxkcHHRtokdHRzkyZspqo9XOi18y61HD5VrOGbtOpyU21zJBs6IW/ui4aVW9d//+\nYl4DL/lfpW4uDNOToyxaMojlNVHfbeNnIOTugiRJ3JxuHtpIV6dJsFdKFTnRUjrTHjyNTReJ69VK\nK4s129Axil1udSPNmF0wnz/unHN5zwc+ZL4bVd26O4ZtPp9EnZDUjPX2X5/7DP/48b8HIJaCAUuX\nFwntepQhQw5PGyvtihf9Kr/9+t8vpirPmNF4BNm4Vn/HrMsVTfoTp4meXOHch4D/Qq6UDtP0IDXE\nLWZhvfjXX8roYWNy3XDNt1jXYVKW0rRBmBMohEVnThkEriooSRuFSZSmziQaO3yUA5YrdP3QpqJE\nSAi+8J+fAyASZrEA1BdqTuAlSWKcs+Rs+R4ruTXnM6XospUhA/2DdNre4BmahQWzyBYWFgpf46pm\n8ZFDGIauVru9vd0J/sVGg2mbOrO4uPhTpTaBiTznc7J1yzbCMGTP/n0ATE5OFnXix6snCO3eMYEi\nDsx1WqtV18JCKeWEaFyp0GKJSQCXpRF4vjyli+olM5zje4ldNZLnW/aLCIQQLktjdHSU9rbT3OdO\n2QgCxibMRpUkCRv6jetDpakba5IkhY86S4lyrtOKJLJm/p777+D3f/f/AeA9H/gQvesH3Nhyga1U\nQf6DiInazDV/7bdewwtf+lIA/vkfPs4n/9HU1A+t66Ovtc3+rqLHPtcvfP6z7Nxl7uXSyy53hSuB\nCKnn/e6j6Nhk+mVwotxXS1Ga8yVKlCixBpyUZZ+rwUpBFHnMSUUB+aEDewF419vfysSo0Up7qzE6\nzWvVi1rvRGtn72RoR6MXCoG2xsOCClm/cRsAf/GhjxK2WhOqscgLLv9Fc/22EGmzBUYO7GXSagJK\nRrieZCJwJmNA4oik1/eup6/PRFwrLS1NZlyuid57/+4iF3NJHfpK7g6/RHIlQtum8knvOk7zWVIX\nn1sJra2tzqysVqtunLOzs9Qs01aSZctqn76LJgzDZfNfVZq6c7o62tm1a5cZrzJR+P0jB9y1cnPP\nLw9dCr/W3i8HzfkIlFL0dZucxZ07thcJ7RSBjSAMma0Zd8/wyChjExPucxdY00U2glwScHNk3o1G\nU8GH647gXSdJkhU199x6jqVgsM/kL2/atKkIYomiH9e+4WE3r5s3bqQlLwFNU5ckbybIW1v2rct0\nwPSCufn2nn7+6ZP/au6rpc3NiRZi+cAYaVMp7BHLWPaX730Pe++4y1yzrcW5CBbTBGITxHrfX36A\nLaefaS+kXTDMXnh5ePfycGmij20hqv1DDZZu7vDBEf7kTW8EYGH8CL3txhRTSQNpV1CqU+cTlVFY\nVK0ojbZekIYIGT5ifJyf+uwXWL9lKwD/+al/5R/+/qMAbF7Xxdy08c3tH97HvBUkcaU9D6waujT7\nj/bOKhsGTfRyZnLGmYnr+vuLnuRSsm+fMVsPHx1rmpPlhKJfRIB3jt/W4tiGfUV1VFP1i13clShy\n5nlnZyetln5wfn6eCStEarXassn2ftS+qcBhheZjzR00i8j+lk0b3SYzPTXDAw88QOqXeXnR8FUt\nc0+IijyTBsGWzSYTYmB9EfUOgqAQGICyL/T+0YPss90IKi1V0rTggM39kdmS9C6/EKCjzcxjlmXU\n63V37D+z5TveFk0TpdC02sySrVs20bPe+NJri4tElpjkwMGDDNtxdnS2s3HQpG6t6+0ltYJW4gqc\naGQJYZinVoFSxrSfXUxdE8d3/8UHiFttoz2fwi7T+JI5sel/gQwIvTf5tmuuAeDv/vojTE+bNdTe\n1cb0nNmgzrvwAt78tneY+ezoKqqghHxIIbpUXpTmfIkSJUqcJAje+c53vvPRHsRPA+H9r4lCCz81\nTLv6eq01Sgi0kHR29bBzx06eesnP8fWvfo1KHJnNUgrSLEVpTRiFyEAQBJK0kRBHEVIIVGZySLXW\nBFFIqjVxHJJkGRc86SLQGX/1vvfSVgnpaGtFZA0OjgyzsLDAwsI81ZZWoiimkWQkiUkOb620sG59\nL+3tbfT19TE1Mclirc5irUZnZydSStrb2lBZBloThCGHDh0iTVNqi7VCa1SFmX7MfFntLxDCzVtq\nzer8b34vm/zfcRzT0tJCpVKht7eXgYEBuru7Wd/fj5CSSrXKxOQko4cOMTY+zsTkJIv1Oov1esFn\nhtU+bV9y/7eWo7LL3Qb5ffljFkLQ29tLtVplaOMmFusN0kxxYGSE+YWFotxRCNRqNdBlVpUUZukE\ngWTj0BCVSoUojMwzwAY27VgTpVCWcaueJExPTZsAUBQRSGkDh4o0baCyjDAMXW2/oS80LZelEKg0\nJUtTHnf66SzMzxFHEQJNIIXpeQQkqemVFIahaYYHKK1NzyIpXMaCQrPYqNPe3mZ6dIWBeR20IopC\nanPzVOKYhfk5Gos15mZnqFRiYtsPKbONGDVmLpMkI8s0cVxFaIUUmkoUceDgKBNHj3Bo/CgXP+XJ\naJ0iZYDU0sTopECovEmesE3yDJ2jFgEKic40Q6edxoZt27niRS9k7NAo20/bwb333kUUVwmCgDvv\nvpuhjZvZu3cvO3fshCA0DynnrRBGAuRE2L5R5jd0yJ/0icIpa877WElV37pxiH0jI/ZfzaQP0rY9\nuOk71/D+9/y/AHS1hOQuqSxtEASFAA5tFYdKiuqlNFUImww/30j4zVf9NgB/85GPut7x6cIs99x9\nJwBBHLjovyB0TPUDAwOO93T0yCGmp43ftKOlhdNPN7Xa1WrVRSOzLGOvpSubnp31oq/hssIJPP+o\n93m2xCfq+zXzqHdbW5uLci8sLLio+tTUlPNZAk3Cy6/bzqHgIV0HS1NkXJfNsLivIAia5mTEPt+R\nkRHiOHZRbL/Puy+QVwMhhOPRjOOYs05/nLtHZa9vNgUzX3MLC8zYPvJhXGX3HpOx0dHRwXrrbjh8\neJRFm+YTBIFz5aRauSqiSqXi3AWtra0885nPAOA73/mOm/cwDN3epD0iE9MiwzZx08oxzKssoX9w\nEIBt27Y1PbM8U2Tfvn1U8vYjUrJ5s0nX6+vra27G51JUtIu815OUJDQ+y+Ej47zxLW8D4IpfeQno\n0J3vaOuxnBCACGWRRy880h6VgTS/e8vV3+KvP/YxAKbn5pE2Q+Bjf/v3bNx2GgU8V5DXmUct89hl\nk6a1dpTmfIkSJUqsAY8JTXRFqMyVRw6PHHSaSRPLksr4zCf+GYDP/9snaLOJ8VWpyWxUPQ4jp+GE\nInC7m8YQ2gKMT0672vWB9etdNH/vnvuYmjblh0IIl3va29vL0JAZ2/z8vOvJtLi46LSuwXV9TivA\na2g2NjbG/gMmCp2mqdPwUlVEzIMVgjc+giBwgavOzk6Xk1qpVFxQY3x83LFNLXg5nU19b5YEh3zN\nciUsy77kMy95EXU/B3BgYIBt27YBMHrkMPv3m+BIw0btfQ3XZ71a7rcfLGIfUjynbZs2L3++ffYj\no6McHjsKwOZNW5iyjQanpya48PwnAibifP33DH1cI8kQeQthETgGe1PSaT5O05QzrMZ9zjnn8J3v\nfAeAyelpgqDopZS3HQ7DkLqtSQ+kcHMpA+Ga6O3atYsOmzmhlHLPde/evUVWSpIQBuYd2L51q2sR\nrZQiygtR0pTA8lBoAup5gDSsMDpmrKjP/9eX6Fg/aCdKFq4drdmyaRMA+w+OOFecEMK9P4aEOb+o\nYnbCBG/f9+fv59s2+PSGN/wvXvryl+dfLiJgHhQ/E1R4Dze8W1O6mcjAmhRBKMlp9D7+0b/ia//9\neQD62tqoWpsuqzdQNgE+qlSdSSS9Wu9GmrpI+eDgoDvn3nvvdd+tVqt0dLS7c/Kunnv27HXjEkI4\nAbxxaND1Hk+tDwzg8NGjDA8PF3fptQpx1/F4OoUQLqqe+zfBCCS/Amx21rQoGR8fZ25uzl3bNcXz\nhNxKbTmUUk2m90ooxlwcR0FQ1NF7Ufi03nCZAGeeeaZ74ffs3+dM0qhSaRLafvJ5EATLug+W3kcO\nn6hj+/bt9HZ3m7GmWVOGRM0SZtx///1ug+7o7mLrZiMk9u7di7CR6F95/hWM2IyKr33jGyTW1E00\nVKpGoKZpit8ko2E5Ha644go6Oox76Morr3TcpWFcENSIICBJi5So3KYNZFHhtL63j+1btgHmN2em\nzfPet3+vc0dUq1WXihbHMVs2mntZ19tL4NwjmaOQtDVo5l6UdIQlg5u38eG//wfsQJsn2DootwwN\nOpKffQcPuPfTMAvkmorGbwP6kQ9+EIDrb7iB97/f8Pqedvrp5Pb5wxmFXwmlOV+iRIkSa8CjW/Z5\n3KWsq1GavRw6cDuylEHxdY3rv+3n4//2776Ow4dMoOKeW39AaJPqpRBIledNpsi8sV1WsAgdPXKY\nDetMECEMJEdsHXiSZU7T6O/vZ32vOWf00EFGRkfNcLRyJprWuonmztHfNRqF2Z6myybM+517Ahk4\n7a2trc1pMp1t7W7M09PTjFtteHJy0pnwSjQHijKvFHaptufm2kv4l3mNuKeV+liaz+qzGy2nJQZB\nwDpbY12JIg5Z7XNmZsbdcc6rkGuySim6u4wp2mg03L2ZMPixeanQrFHkJY5tre3FXPvRXq2Zmzea\n3EJt3tHutbVUscuDMx+3gzt+eBsAe+6/myddYMi8Dx48wM0/ucfee+ioDytRROq18o6sq+WbV13F\nb73asIWdf/753HDjjYANStl1aagho3xwjulJpxlRTjc3t8DsrLEw4rjXnZ9pXC3/fL1Oxf5ufXGR\nPfv3mrmSMNBnnoEmQ9uc2jiOyaw9r3RGe8XMw9777+MG6754yqXPJMvLmr33MJQ4V8O2wX72HjYu\nkSIXwxQISI+i6Y1/ZNjvW//u77juWtP/af3AIG12fesllsYjgVOqdv54oTUEIk/49VjiReGiyQCR\n952PK/z+G98EwHvf/ieM7jXN47paq+6aJm0mN5sC93Im9XrRKTTLmJky/qb21lY2bdkCQGdHG5Nj\nloBkZKSozqnEjicxpFgEFY8qTGhNZH2iiwsLLkoceE3JqnHsBGRnZxfd1gxtaWlxpu30xKSL9M7N\nz7psAa0hsFkHoSiS/xHa+ZvSJUnfeXK6Vp6fES8BHC8rwBNRvrCXdk4BEi86L4OAxqIZc0dbmxOi\ni/Ua0zNmg1pcXHR+YmRAkiYuowKd8cQnnAPA/n3D7N1v3R9CuM6tQoDvLXVEHVq7eYyiCKW8iL9F\nmqbMWyrDTOFY4kMR5JQInL1zB8m82aT27r6fi+14nn/5L7qmhj+6815SFbhr5qz4Warc/Aoh+O61\n1wDwohe9iEMHjT/87nvvJ7BCSyGcz9LwEZhrBrJI5m80Euey6enpQUbmnGpLG1PzlpYxiF1nziiK\nnTviyKGDrituV1cXmX0H0iQzHVHtXCU2Ub+tWuE//u2TADzlkksIAq+6yD7jBw6Msm29KSyJ45DT\nbVFDogX3DxtlJtParEcApR1Rz++87nV87G/+GoDP/9d/8cpXvtJd+5EWoqU5X6JEiRJrwKOriR7v\nhqF0oU0q5bJp77n7bg7YaHVbtYVtO0z+2ODgoGeDNf9YvllJ/y8iomfARGJ/74/eyrvf8VYApmcm\naY+tliY1WZab0oKa1ZY6e3ppWMe+CRAYbN221ZVEjoyOOgJlZOC8CyorTF6llDPD4zh2tdpC43II\nsyRxeX3VapUWG3Ht7u52ZnsgQxccOnDggKOZq9Vq6DzoEAq0NW2VDpx6Hqqir5CpmM7N2SLsEWrl\ntL56liGDvEeUH5X3ykf99s+BAJ3flyDMewPZBGwAkWRENv+wtdpBNTLHE7NjjE8Yc74SVYtnISQK\nTaNuAiQXPOEchvqNJr73vnsKbUFLlwOaZgqda65SkNkSzVBKV/+PUi4CjkrdHDUaiQvMKB3QSHMX\nhiS1QZqOaoXznvAEAD79b5/iwLDJH73ggvP55V94KgDzsxPsHh6z4xFuvYZRSCPLS0w1u3ffD8Ce\n++/jl551KQCHRkaYWDDntLR3snWTCULec9dd7j1JVVFworRmdsGsiem5GTo7O+znWd7nkS3btzJ6\nyI6nPu/mqlGvu3esWq0S2ueRee4n0Egbta+gOWwDprd+7zqe+HPPtOdI0jwAFoTovGldqqhaSy5r\nNFzrZSGFy85QorgXgNe9/vUA/Mu//Avf+MY3ALjsssvc37VXbHMMTd8JxKllzkvZxBWaL+gH7ruf\nq666CoDDhw+7h3r2WWdx7rnnAoaIYci2dlg3OFRcEu0oylJdmAvbH3cmr3md4TH8+w99kFpmIpZt\nQUCat+8IAqZmjbnW095Bq33xxo4edWk4rS0tjNta8qNHj1Kz5r8IgmUfqvaIPZbWSWeWsaS9tY22\nFiOY+9avc4nxSimm8wj72AQT0wXtWVN9eh6Rx+NkLeKhaFGw+kkhi66jShHYfuONRoPQnlMJKyza\n9BpERGj9iSotEru1Eoa/ACtEc2+BKjp06kC6apMgiNBWQA6sX+98naOjB5t4OfNBZ1mDNGmwvs8I\nzmde+jQO7jUm4cTEeBM9oo+8ICDNVJNv1qX2CI22JmoURY6sZrE2x+yCTZ6PWpzQSrR2G0EYBZx3\nphGiX/ryFxw5yrnnns16W4zxnGf9HJ/47FcAmF1QrhNmpgrhlKWp29RuuOEGfue3TGrPBeedzdev\nMf5RldTpsXX3z3rG0/nK18z70NHVRZZnAmQNx91Qqy3Qauvotee+COMq5z/xAgBuu/UHpHWzvoUU\n1BrmGezZf4DTdxjiF93rtzYAACAASURBVKUyVKDdOKth7taQLuXqM5/6VydElS6yTFCw79AhAHZu\nHHJZAUJKF8sQSCcIhacI+dzCr3rVq/jwhz8MmCKQX/3VXzXPZQl15nL8EScCpTlfokSJEmvAqaWJ\nQrM5b48ve97lXPa8ywG47eZb+Nzn/gOA66+9ms/92ycA4wy/+EkmOnr+Ey/izHMM88zpZ55Ftc1o\ncqHA5XRKBE+99FkANBYW+JDNSQu7K4SW3Ryp3e45tL7faVTVlhZnDs7Pz7vSRJ+AWCwpb/Sj4XlE\nPo5jZ0pnKkPZ3Xlo00a3m0spXb7p+OSkO56fW3CMRlLKpr4/Lqrm5c2GHuuA0oK8rZpSwgU4KrGm\nYVvlVipVF7DQKqGS9xtCsmj7SLXEAYt1c74MijzOtJEVJbWAtNqLJiO2wY7FuUU6LLUgooiEz87O\nOW1YZ9KRCaf1RToqEZc++UkAbN+0mRu/dxMAU7PzVCy7kNZFKaD2Sg1FpgjtdYMgoNJmA1ZKOWYv\nUGjbUPDIkcNkVp1uaa3SYYN4ichI7LOZSxM2WuvnrDPO4PAhE33OdEjVWjzbNm/i0qddDMDXr76e\nWrJon0FAbO8tDGIXABwfnySyFFNPfMLjuOX2H5r5aixSmzUWzytf+mL27LkPgLvu20O1vcfeV0yj\nYQJIczMzLv81QFK3z+z+e+7jBVe8EDBE2td865sANLI6sbXtJ2ZmXYbE0OBg8c54/e6R0GIbQI4e\nPMDoPuPK2LB1Bw4eo35mOQXMLOPWq699+iZ54DUpjKKI1772tQC8733vc+9ke3u791Mr0z6uFaec\nEF2ONs2READnX3QR519shOWR4X38z5e/BMCtP7iJ22+/HYCbbr7Rpb9cePHFnLbTVIZs3LKVHTvM\nQx4aGjIEB8Aznvs8JmxU/f/8w/9mne2nrdIFejrtMaCtyVmtVp0/ct/wMHM1s3CjKPJ8Vc3pP351\njZ/ilN+niRLbCH4YOp7O+fl51wZjdraItgdB6IgkUqWaEu/9lJ3lTBGFROuiu6lj2l/au92a3pnK\nkHmmQSBd99TawoxrHFdPYcEubq0WHdWcFrjEdshIG0XjNUdAEgjXdC7NQKWFqZdHj4VqcNaOM3mS\nrRA6dGCUw4ds25Q4dBuBEhrreDCJ97npLaUrcujq6igqfqR0aURonLtkdmGe2PJcVqoRp203vvSR\n4b000jxpPKPdVsBddP55fPJTpmnixNQ0F51t1tnefXt4+sXnm+8ePMQtP7kXMFVyuQdaZcp1xVxc\nbPCTn/wEgAsveAKnbd8KwK233sGsrYzTWZ0XXWF8gx/86N+iVM5DG7t2IvPz89StP7+rq4uJGSO8\n65nia1d+FYA3/eEfOR/+j3/0Q1JHYSfd553t7bS2GbdAIKQrkc9801nDZz/zbwC84S1/mrvDja9Z\nF2s9sz5g31WnwVsHzY0M/bYveRzh3e9+t3s3kiRx5/jr/kQL09KcL1GiRIk14JTSRJdG2HxCWmeu\nau1aF/dv3sqrbHDoBWOH+ebXTR/sW75/PT+61SRB33Td97j5e9cDZqfbsNFoFOedfz79GwyZ7c6d\nO3nhb5g8tOm5aa76mtmppyYmGLAM4kII5wBPleKgdZjPzMw0NyjLW8R6ASSxJMCUfx6FBStRkhXa\n5OzcNGOe9lnzErSDvH+4EK5Ms0mDlEWEfWlfmjzhWnuMV541T5IpKtaVkWaZC+ooEbl7FLpBzbaU\nHhrs5/THGS3/7t37mbcagkC6XNtKKB07FbJgsU/qCW1W0xMSxseNKRxEsdNypBSoxNz7+p4Onnz+\nE1hnXQB33v5jpmcts1JUdd9RoogtBQgi+69ACup23fR0drsE0lCEJFlBojw6ZrW9MHIxzo62Vtbb\nxnAzcUBoNetYKdqFudCF557Jp22e5V133cWzn/J4AAZ72xibNRr6sy99Moft9UdGj7qmiQLhrIEo\nirjh5lsAuOzyX+b0XYZh6tZb73C5wJPjYzztIhPQ+u55Z3HtLUa7DaqSaj6/SeICY/1DG5mYM989\nOjHOnT8270YQaN72NsPK9Lrfey31GeMukKog6h4ZHeVxp+8EbOBT5J0PJDbtmJnFGvffe6+bw6Xr\nHZYkyXua4kpao98LyudJSNPUZcMshd8p4ETilBKiPhM7LJlgL2qfp6QsphmhfZI96wZ5yctMVPMl\nL3wxV371fwD40W0/4OabbwbM5B45YoTfl7/8BedbGRwc5KyzTVuCOI6ZmjACLP87WHoz+5DGxsZc\nV88wDJ1vMnuQ6KC/IURVIzwUuBYXaZo6f+fRo0eZsV1MoTBr/M6OApxJlHNX5td0c+hXHOHRhmnc\nyyApWMxkEDbVz7t7kbFjQ08X5ti6xZjwlzz9Uu7ba5Lcp6YnvPYmmkoehc4y4ki6+Uly1vdMuhYR\n41MTrq2FrLQhyatxEktWAY8/Yxe7tm1G2/GNHR1n2qYg6bgCtqBCSOGS+5UXqtdaE9sxtbS0EFrz\nOWmkLp1nbHKMmVmzERBAaCdm68YhYjtf1VAS5WQYSlG3gmrj+nU8+WLj+zx05Ajj0+bz7aefzbQ1\n4bds7eeZzzRR7C995UoW7GYkZUBqBXySZIzabgrztYSdO40Aa2upoO14aovz9Pea6P8vPP3J3Hzb\nfd792sKGLGPB1uaHYYXTzz4LgIXbb2dx3hRj/NVffYDPfsX4RN/61nfw9re8AYDIS12bmZlhxrqu\nOtraUDaDJAxC8tXY2lJhYty8M8O772PzaafbWS926AeG97NlyBCWCKWa/PU5fFeXb8r7/s6lxDi+\n4DzRwjNHac6XKFGixBpwUmqiD9Y/aaXcyiYTweYXVmVQXEwBeW1xNeI5LzK5ZM95wQu47jpT43v9\nDddxww2mHnex1mBggyk1jMn4yU0mH08nDdrzzS6KmnoR5ZrpyKFRpxX4PX8Cr/Y8WNLfKEcljotS\nRnB0ZRMTEy4ntdFouF01DENHISaEcEw72stXBJb9Lb8YXGtt+dVzFh2DPHnafC7JrLoa4LFEBaBt\n0OG0ret54RXPBeDITI27774bMIGMinX+C0DYaH691iC2wQVE5hbkxm2nMWnLUyemppGWwDpP1AZQ\njTpbNpuywfPPPoO2asikLSo4fHQcG38ilGFTqal/z8XFNF3dRnuLg4hcv1Ba00jMb44eOurKKVVa\nZ2DQBCfPPeM0jh4ygRaVpI4eMQwil2OrhHI5y/uvupob7jAUfp3DU/zkhyZQtH94BG2DgTKosNAw\nGl6lItG5ZRCEZJbT4ZvfuZ6fe9KTAVjX212wi6GpWF/NeWft4sJzzwDglp/c4zgapJQuZ3l8Zppf\nfO7zATgyPsHe+03DuJtv/QG33PB9AF7w0ldw7XevBuBrX/oiUVDQFB4cMRwQu3aeVrSpVoIkH09Y\nBZtf+82rruRVr91pJ1043gARBK5QxHc/NRoNd82lgSXtWVqZl7udQ3hMYEBTNP9E4qQUog+GVSXM\n5vanoihHkniJ1kU6D0HMJZcaE+ppl17KLbeYRXPbLTdz/dVm0Rw9PEp3u3nArS2d1GtePb5FEASO\nls03L/I2DtAcJfeTf316Nn8RjI6OMmpJSmqNuvubX1OfrsDannkcn0sTjXNWcuHJlcwzSoRQbrI8\nQnKXLG/+EFhhAzMz05y+zdQ9//oLL6OlxQi8L37tamfqtbW0FNVIChp5dVBUNHBTaZ0nnGsi1fVG\nyOSMMWcnZ8ad56ESt5LZtKlKKDnN0s5t3TyEkHDfngcAOHDksIvYNpRXh+79v9bKsdMrlCtakFI6\nt0AYSo5OGsE8NTtDS9U8y0iGDKwzQnTLpgH23r/bfjdE2qZ1jUwiK632OHN17sOHRrnj/5potdCw\nc4u5h2olJgzMZvScZz2Nq681G/ehsXGEtyk3GuZebr7lR3TmtfNZ5urxw7hCmpjxbxgY5JKnGUF7\n7fd/TNybCyTBgu1QOjk9w1OeegkAP7njLu66w6RNtbS0cN111wFw/oUX88dvfTsAd95xN8N77nXz\nk/tW52s1oo42+/xqVKvmOFGa+px5ZsY3au8lSwmDvJVE5oQculiLvkIBze/8cl0ZVurooLU+4cIz\nR2nOlyhRosQacEppogpcMMSX/sdoYvafWzdvcNrIPbv3NJG7Fgnnwl1NABddaGqaL7rwKTz70p8H\n4Ee33cr1dkf+ye23uYhwb1cb1bjIxczz03xiYhEEztyWtmkZLKGw83bPRpo6iryclBeaI4qpxxtg\nJwWADNVktjf1Ospp5Xyt1Nu0o0DSZUsdJ6cmyKx5bsqP7ThVinQBGsmUZap6/K4tPO+yXwRMfu3n\nv/BlAA6MHnJljKiM/5+9946z6yrPhZ+1djllzvTR9KZR77IsWZZkS3LvBhuwHTAQIHEoSbjhwk3y\n5d5wk++XkJCE9pFLaAFTTTW2AePeZGzZlotkWcWj0cxoNNL0etoua31/vO9e+4yxv4Q4/D7knPcP\nGB3vs8+u73rL8z6PE3VQdQghomaSoEYCgC2bNuCsjRsBAF/52o8QCo6a3KTp5gdewehjtTXV4qxV\n1KSoSJFW+fFTpBAwOTcP4dC9ty1pAOEQApaha5Imybds23R1hYjxCYFSODkyxMch4StKUWsrE7j0\nkp0AAN/LIc/3ynEqzDy/m6jCyBxt/8Pbf4j791CWc/DQSWxYRdHnlReej63rqanTUFOB0XG696Fw\nUJGia/eN2243uN1A0zUDgNn5LNoZTdLW1oYXDlMD6dT4FASjFIL5LLq6aZu16xbj5T66PqHlmt5N\nMeuhqpLu/bZzz8PD995N3w08PL7nYQDAe973PjR3dgMA/sdf/iX++Bai5vODgmFZGh2fQBUD3J1E\nAkFEiu24SPIQxdT4mMkk7EQKxqTEUW5CdjU34z9qr5Wd/iaZnc4oJ/rvt8hhKCAgh9fT2gibX6qj\n/QOxE9KIFRwtC7HKlcTiVQRDWbxqLc7bSQ71hef34Stf+gJtk88ah+T7fjzBo+MKXCkd3Cvt1eQ7\nfN83sKZfN00oRS+Ulgh8zzMOwvM8s99SCY6mRQ2oZT7UsdFTsQO27JiZ33FRYGdRyOWwbgXVtt50\n2U6sXE7g8cef3IfnDlBNrRgCKQZiF/M5g6BwHNekbkJptDVTN3/njvNxrK/fHCeirn2gDVzGEsJM\nziztasfyJYsBEGB8eGwcw6MEhVKWNE5bK2U4KcMwNAuBVkDANY10OuZZpS4wbX9qbBQeL5qW1BBc\nwuloasL2zQTsf+bpfcjmaRvpVBgHfODQYTzyywcBAPc/vBfdiwkyd80V52LTakJ7XH3RLtSnI0aU\nPCxQCtw3eApL22n73du34IHHyAFr4Rpxt0KhgKYWmojasmULDh4lkpKJiQn86Mc/AQBce81VWL6M\nrtHZG9fhwCGaHEpkkga54heKJgDYunUr2lm+Y/jkAA4eoAGV7Pw0qhvoPl1w0WW49jqaarrj+7ch\n5MOfmp6N0RthgASjGrwggMv9CC9fwAAL+fWsXBW/J6/CL3um2Jl1tGUrW9nK9ltmb9BIlE0FsDhq\nkULCZ1ahJW2thrbuxPBpA2oGYPCEAIAIZG1ZqGexsgtbWvHMMwR2Prh3j9m0WCwuiAJLNddLyX4j\nWxChlkSEukQbyaiWAfgV4exo36XTr6E2GErbjlneUwmXIkEsbEppFZhmypq1q/EQN9KUUrAZ6K6F\nNGN6+aIHm/+xZmkbrrh4BwCgp6MZxzm6eHzvPmSLUdd+4XxzROWnlDJCcE21abzpcuIoSGVq8NgT\n+/iSSNhORJGnEHI0CA001NGo7bqVy1BfzYz91bV4+OnnMHiKcL5KxvdUCLFAEE3G/wFFxjUuWtRo\nrrvrupjm6zU0NmoyFUeFqElRieGKXTuxqJLn8f3QXC8nlcboKWowPnHnHbBs2uebrtmJG6+/jo4t\nn0PfMWpEzU6NIQXKkBwbqK0jREhmcg4qS7977sY16Ds2AADoG56AxazPWgJHernB41ior6T9bN24\nFkP9lNr/7M6f4KqrCC2xfvVStLfS/sdmcvGorq3gFSjFXrVmNerrKbUfGngZLkeFQ/3H0Nq93Fy3\nP+Um09NPPYmh473Rx2Y8t6m+Fp5HWYu0XDhcO/ACD718zD0rV2GBlTRCzyR7QztR27bhcE1uLp9F\niruF+UJgZAl6ujpipu2+PsB08JShjCPjG2tJUxYQtmWqAqHvG4emSmqNpdrupW5wQRfxFSqVZpvX\nBHu9upV+1/d9IxGxgNwhCBCN46SSSVxyMZUpnj9w0KRiyWTKzOArlMz4hyFqaslxXLD9HPR0UO3K\ntm08wxNg/SeGoS2G6UiYFF5rmHS5UCggzU3XG6+/Cq0tlCbuO3Icp5iko6KiAkUmO9FWPJPtCKCl\nkRzB6hVLkMlQuSDUwPGBk5ibpxdXuCkzqAClTMdXCAGD2rJi+ZVkOm2uUdH3cfwEQZCUBhKcigov\nQGcLnfPFO3dhlHk3RQl3q6ssjI1R3bG9dRHe+Y63AQDO3bweDdGMORROvEzyILm5WThNdE09LwfB\nzr+5uRmzL9PCVFuZxuUXE4Lky9/8HkI+l2w2ixdePAAAWLeiB0lX829txEgblQJeOvgCnt9HRCzt\nzY1oWkQlm+HRSaPYKa1KeEx8AsfBug2EkDj44n6zeI2OjppoQGmgahHdsz/+k4/hTz/yYb7MRQwz\n1Ku5oS7mgBCxym0YBBiLOHVfaXy/oj7GmWJnlssvW9nKVrbfMvutjET/szy7VwyQYHZ0aImAQdNC\niFg4KxRweR58zerlBrDseR4GuEtOLFHRwS0cPTW/5XkL/m22KI1ESzFuCzYuAbQvYKf6t8+xdP5d\n6dBEVn6uADvSCSpJq6XQBjB+0QW7kWFc36FDh6D4c22JuKsehqaqIITE+tUE3F62uMM0hB56/Gk8\n8QwBxpW0zKCBQIwQCD0fDIFEKmHhumupm9/RVIfqKmp6Pf7YY1i+jPY/l502YHsFwOanIiUFlnC3\nua6uCvX1FFk9e2QAx4dGTOfaRpwWBkoZtqbSBCAMQ9TXE1jfltJQ7J3oH0IuyyO9GgiZBak6lcJb\nrqOUPJ2pMiTFh44cRy5LkZzrJNHDDaGrLr0Au3YSRlMEeVge4Skr0inooMDHo+FzZKmtFHxOY1Lp\nKtTXElXdyPgUlvUQkfglF+7AHfc8SsdspQyOePP6FahjdrGUY6OVo/VM4mwIQcc5lfXM8yEdabrz\nofKho84dBM4+dxsA4I4778T4GGUGgwOnUMjRM+6mEqa8dOU11+IbX/9XAMCLzz9tsrp80YcbaXAh\nNJFo0QsxySTlQPyeaGhYfB3S6QqcSfZb6UT/s8y2Y/o413bNVJOlNcD1Nh2GkNyh9QpepMmG6prM\nazgxAc1Pnwo1BHuYUvb41zJVAoyXr+jYv5p6569rth2nlZ3t7ZibJifkFfMLJBw2bCDUwZo1a/Cz\nXxCcRVgWEklyZtlsLAAnlEbIqd6y7g5sZA6Brq4unBiitPWnv7gfBQZ3a8teUL6I6rIJ20aSu+1X\nXrELa1aQhEtbaysefoRqy4W5aVz5ZnKu3/nhD+MUMAyhGVpU19yILZuIXKMi7Zouet/gEPr7h2Dz\nAIAtLQQRz6UljASLlNLMzmul0cgCeKlUCiMjVE+dmJoqmdEQRqBtxdIebDqLrt2eXz6G/pNU+/z5\n/Y+gvom65MXCPFYuocGDc7eshx1yLTcomll7AbVAYK/oMxxOCiP65oUharkbPjFXQMDDCVdffSUe\n+uUL/HkOw1xSODUxj5UbyGHPeBaOH6djcx0Bl4//YO9JDIzQ4EAoktD8PrjpCgjBHK0QOHsz7ae6\ntg4TE+TwBoeGTE1bpjkwASCdJD7CCpzvevvbMMfSKOOTk+hopsUEISB5/yj4mOWpMrK43BOZhRKW\nmN8cMuk/zcrpfNnKVrayvQ57Q0eiUscRX6iUYQiSUiLkTr3rOBCgzxsaqo0GTTKVAHRE3+sAXPDX\nCgvG0iIr1YIvbRS90kzECRjaOvUa2y8YsxQlf79Gp76Yz2PneTS+NzQwaKJA13VjesCmJly4azcA\nat5EBL9SuijkWUsokTS/rJVCDafbm9ctw6YNpAgwMx/gRz99AABwcnQKgnWVHMdZMMsfpdSu4+Ca\ny6mJtXpFGxZ3UuQ2Pevjx3cSReElF+zAWasoVf8/09NIVFGX2JYWXI4kWxrr0VxPjZj6umqMT1G6\n2dvbh5nZeaQqIjZ8AY/RFVpKE9BQKUfx9+tMEyM/n8PwMAPRlQ/J8YXUISqSFN2+/ca3YnqaIr+X\n+3rRd5qjrmwRbZkKvjU+6hbRcVdWpRHOz/A5CHM/QgjD4lRfDOEk6ZhV4MHhzrvtuPBZhrmuKKjp\nCSDMFrBkBUXiI0/vw2SWzuXO+5402cAvnjqGIrN8SRkizSTZs9kcThH9AnxZDcUs90sWdaC2jqJe\nKImaBoogFzU0Ggq7hGsh6UbYagVdEn+dcy5Fruds3Yr9zxCt5OzsLAQ3DDUWsixlcxEDmQKYB0AI\nYTqyUTZ1ptgb2okqpUwX3isR4yoU80hERAlaw5Yx23dEv5adnQdE1KkvJeoALDdmy45KBP9fM7uR\nvXKG3UwXlQyoa5QSsMQD/1Is3H8pmD96nKsyFTh3M4mM3Xasz5A7aEiokBzkZRfsRB3TpD34yKPw\nI1iWLWBzuh2EMHXawA+xbAnppZ+3+0JEFCE//unPsfdZcsBC2kYv3Qt9WHw+KlQGIbDtnK2oriHu\n1Z4ly1HHafT/+crnUN9M7OyXXHIFHBZPcxwn1kv3i8hU0L3r7mxHDctaCOlg4ASlrc++cJBkRqLz\n0TAAbz8MaZACVHaJGFVbWlrM/ejt64vvjVJm0UklHFy663wAwKplXTh8hAYJUhUZjIxR93z7eTsx\nOkISMK0tDahaRB38gnAgEywiGIaQCeZQSGbgLiJA++i8wvwBgiONnx7G7CTR3I1PTOH0FHm88alJ\n5PJE6xdqB7NF5tGUMAKBQ8OnkM9R2WU8kUBbKzkw23UwPUvOcjbvQcs032MPlqRrnaluMKUcMi5f\nrFiBp54gp3jk8CH4Ie3fkqlY1BAw5DAf+vB/w3ve/gQAIOcFyPLxpN2EgRe6dlyfJx15I9CC6Fmf\nzc6fEWl8ZOV0vmxlK1vZXoe9oSNRLQXpboMaJ1E6ZVmWSe0dx0GOR/YAQCHqsgvE1O0wy42UQFcX\npZwv2JK0sEFd9Sg9h4jn5bWMad9CVZoEadMdLY0+FQS0jldnQ6as8hD8W5aTgFeINNIdzDHL0Ec+\n/D7MT1Nk5uUKkCyVa0Nh/UZKw3u6G1FdRVH4Aw8/AMkg8RBAyOmvBWkK+0pZePEwpZIf/7vPm2Oe\nn5mFcGJm8ajcoEPAisYJA8+wIT3+xJN4Yi/hFW+7626DBJgZn0dzI6WPt/74XiPjqwC40WWwLFRU\nUud52cq1gEOp81zRwXMvEmi9d2CIBAcjeWPXRaAjVIQ02N1AKfR0UCkh5UgMsIxxrpiH5vNPuq75\nu6OlGe++gTry3twMBvoJP9rY1IYrLqVo7+XjJzA0xLhSOw3fpmP96SMvYIJxkxMTE0YLa3J+HidP\nTfB5SqQ5hRcqMPPmnueZRo5XyEMyaL+yphINHMVbVgrjE1QWWNbTiY/e8h4AQHVaQjAG1E6kcGyQ\nSh5fve1OPH2EImYrkYZSdP+aWjpQyyUILTWEpnPfuGETfpL6LgBScSjwYEKiRD6uJAvHhs1bcc72\nXQCAfb/cgwK/VynHhbSiTCqmjMzOZ5HIRCxN2ohTDDIx+plib2gnCr2Qs7NUoM1souJxeQAx95uW\nsWcrmWLy/cCofQrbgs/d19L9o4T8Q70iDf91LeSubCLhQDEpiO/7cLns4GVz2L2LICkX796Fz3zm\nM/S5XzTpuSMUtm0h8b7auhrs27ePtwmh+NQ8r4BKVijVRR+VlVSna1jcgaUrCXZ0qPdlvHjwIACq\np0Y+ToahmW23oZFgtMPaNctQz6QmVRWVKDLE6cWBfvT2UipsK43TJ2ka5/RwH2wus7hOYkGXP8ss\n7/fddx+OHqJjENLGnqefpb8tUhCoSNGiEHie4d0UgOnU19XUoKmBYE0jIyMYYQgPpAUnoiwMPdTy\nJNS7bn47rIjSTUtMzNN+9h15CqdHyCmGEEilyPn3vvwyjhw+ZO6fYlhdsViE5sU0Vwwx79G5tbW2\nI8H11O6uDqR4eKCztQ0Zl/7u7mxDuoK+29/3ElauIp6CoaFT+PP/+QkAwJKuVqxfQmUEGcwZlIlw\nkzg1Qs/g3PQ4hEcOzHITpu7d2t4Ox2VgPGJW+ZaWFqRT/ExovWBgIZ4o0QaWl05X403XE0/vvief\nwGnmMWhe1ACfYWLK98y7obV+BUoldrRnkmsqp/NlK1vZyvY67Mxx9/8BU0qRbjqwACC/oOtdQhMX\nKgWLcYZaw3xeWuS2LAtnnUVjcbd/S0BF5YKSDrtaQHOnzAL7WrVyWcIRDU0s6ABFdRbntEUvF7PZ\nawt2xJDvWrhoNzU+XMcxAnZ+6JvmyOaNqwwesrahHfc99FXaj0yZMcNE0kaSj2H95rUo5Cnyu/76\n6zDLwPOH9twHm5sjxVCZxo0jHRRz1ARZ0tGKq6+gLnx7Sy26mDTZdZKwK6jJ8i/f+C4qXQpL3/Hm\na5DkMPb5lw7hCNOhPfHsoVgszgLy2YjlPonzziNt+af2HcAoN1+cVBoaQD4ie7YsEk4DjZtavK/W\n5maMjFOENHx6FIqjLh2S8B0AOADe+maSHG7raMH//Vm6Xs+88BIEd8yllMhl6berKlPoaKXoVhTn\n0NhK5Ymmhno01FEkXldXh+paBsDXN2PfASqRPPbkPvS+TH8f7+uHnYwiQkAz+fKm9euwYgmVDpb0\ntKE6RVEyGhUaqihSdBEimaLvenMeVCT/LlKYYpnn0dERVDL9XKg8+BwZP7LnEVzz5msAAD2Le2Aa\nS2vWIlUZjaQGEEZviQAAIABJREFUphymlIIUcckp4haAUEYjqrauAX6W5ujnczkz7y8d2zQMwzA0\nr1gQKCRcUyTAmWRvaCcKvIYshnj17rnrxuqakHY8Ox8qgB84KYWhCvOCAE70fUsugDi9moyB+Hc+\nHFH32BJAyFR+rusiZL0LSwBFfoHf+uYrse1slp0YHESuQNsHQYCKJKXGF+w+D5Msrvftv7kTJ4bG\n+Thts09HAMtXUdq+ft0azExNRqeCL335iwCAubks0ml6gYsFj+fwiVRix2biAb1wxzloa6bueUdr\nHaqqWPJBW+gborT9yP69uPkdvwMA2LZ+mbk+tbWVyHH6+8vnDpsySjqRwLbzqGSxa9vmuPzipjDH\n7OzCcaG0Ni9rKAUcRmPk83n0dHUDINq3qDapBAx6wHEsKCbheNM1V+L882lh+uu/+3sMj9KCkvdC\nZNhRbVi7BnmPjnVo8GVD/vHeG9+F5T2Uboe+D9/M6SfwzAsklfLpT/8zBkbIwbR3L8flV5EDS2cy\nKCg6BiklhvppGqm/7xheZLZ5WxbQ0kiOuburC+vX03UPgwDFIhN+lC7oIXX6ASCXz6OSgfJFVYRw\nqCP/wnPPYR+LNfZ0L0Fk6UwNHCfF5z5v6mBSyHjKTmDBIEdEoPKOd96Mf/3nTwMAPD9ABTPw62Bh\nectMw7kSseenfZkf+C23cjpftrKVrWyvw97QkagoiQhL178FxewS5vZSLeuiH6CzkVKowZHRkp0C\nkps6rptEUGAxLmEZslxLCtOVlpb8FQyp2dGrfqxNpztUQcy+pKQZCQy0h/YWmhm/8NyNWFRFx/Po\nYD8KfBCpVAqLO2n88N777sHiJRRhtLZ34HDfEO8njo0rqzJYu5oY1qens2hsJezmP372SxibiebC\nUxDcMU4oD108I37x+duwrItmu+sr0uhiIL2TSKDgRWWHJL77Xer0vuni3ThnNRE6px2Beb6GzY1t\nWL6UjsHz74UtebxQWahIU3Tb1rkMg0N0/E/uew4WR5tKabiOA58HJ0LfNzyBbc2t8Dm1n5mZjocB\nJGBHYURhHpfvoGj3LVdfgSeeo6jx5f4RLO5sNZ9fuoNKCSMTU7jjASJKPnrwabQ10Bjrtg3L4Oco\nmvRhYSagbODrP7gbDzzxEgDgyuvfjbcv6QQA5AoFLF9Oo6SZ6ioEmjCdlm1DhqyfVPQw1E/f/cXP\nf4yHH7wPADBw+gAaquk5OGfdUlgWIy28LCzuLM3Oz+E0z9fbArC4ruEIgVkGvdsVGaOltPvCi1Ff\nS6UJKSRWrqUs57nnnjMaTgRckebvWCsMEPy8XnzppfjS5z4FgIQGq+vo/nnZWSNIV11ba4QHbTtu\n3p5p9oZ2oplMBjY7JFXiyIQsufGlipeIHWqFtBcQ0UXAdUhp6O96li7FsUMEOLfdZMwGL4QhvBAQ\nUWnv329R2mS58PjlV9BwGBWQncph15uJy3PVsm4InivP5vPwuQ6anZ3BmpVUn9q0dglWraEX9WP/\n+5OG8k5KwGEvcuklFxkyjzvv+jnm2BGMTkzDZTC1jRj+svuC83HphZTyFnMzaGqhF6+1vsHMhXsB\noJkA5q4HHkVDOznys7ach5A5NE9NF3GEO/WTcyH2H6X6oLAcs5jkigXcez9NRz348MPIctqtJQyC\nIsWTUg7Droo6RD3XIFUIzM6Rw8jn8xBOhMDwIfnm7NpxDv7w995J1yWRwosHCAFQVVWFj/7hLQCA\npe2LIIsEJ/NmxzB6iuBCTY0N6GLqOVdqBPyA5H3gn77wNQDAWF7iL//2HwEAbV1LcKiX9j9TyKPI\nddy01nCSlD4XCoX45bRc9KymKaW31NVjOhfwPZ7GweeIeT6TGsCJEe6G1yXMM5rNFTA9xVNTlmWG\n7cLARzsvlNlA49FHidTkE3/3SdSxEz1rwwYD5k8mk4a8hN6dGDkR8z7EdeW2ji5sZfG73sMvmv1o\nWaLAGSrYdtyDiPxyZ0sLBk+9Bl3eb6GV0/myla1sZXsd9oaOROfn52FFLDEln5dGoqWYTikseJyu\nhlpAlGpYLyBoptX2nK3novcwpVmWUzJfr8MFksmm8f7vZGeKImA/0NCRWJttY3qGmj1nr1uOnZxW\nJtOOoYw7+MJBzIxTpLR+9XJccRlFoi48zPEMd39/v5EJliigs4Oikc2bzsJjLKT20qHDSLNEdEUi\nYQr+PW3NuOFtbwUAtHe2YJgjsfqGNtgZanZMBhbycxQpnjo5ggmWPb7tpw9jUTOl+c9/8fvo51lw\nv+AZLXthO5DMrmW5FqAijGzKjOnm/RDg6EWGPhJ21EAJ4ECYiMexbCP0F0LCY+C3Zdnwg2gbYPsW\nGpP9g/e8y7BMhaqIvqMUKW5duxJdjdShTpQMPExMTGCYywrNzYtw/nk0Pz45O4/QpvHWL3z3+xgr\n0HG/94N/hPl5un+f+uQ38FIvjXpKx8Y5zJp00UUXoa6ZosBkImXm9wMoFDhi/tYPfoIbfpci4+ZF\nDfj8pyi63fvQz/DFb94GAPifH/0AVED3YC6XxegoNdK0tFCMmjdWAr/73t8DAJwcmcCXvnkrAOD2\nO+8wZZR77rkHb778MgDA6dOnEfIgwwLyb6XMMIkEzHhnuqoGF1x0MQDg2af3GnVxKZ04ErXthWoQ\nbM2vQ6ju/w97QzvRUhOv6JhHVvpZEATGoTqWg0LUqQcWNgv5gVi2fCX8MCoXLNynAdvrMObU/Deo\n8kqOlvYjJDTiem3Ulj53yyZ0dxFC4NhAHx5+mOab5+dzSDFZxs7tW+Ewj2TCTeBoH0GHQkjzQDc0\n1OH660lw7PkXDuK+Bx8GANjpShQVHXMmlcRZ62jaafvZZ2GUAdSP7nnMsN/P5nPwGEVw+sQpM3Wj\nFaAZMuZWVuPYsd7oAqGC1Sh1Mp7KWtzTZYYT9j3/FLyQnF1rUwc+8bd/BwD4xUMP4dOf/iwAoKmm\nKkZfKLpsdjT2Ii0jqmdZFmyb68mehyTDxnaccw7e/15K4asyCVN4mZqcxiwTjWzfchMqoomiMIAf\n0N+TU3OYmyWneP6Os1FVRVNKgVK44xdUXxyeKeLia2ja6ctfvxUP3vszAEDSdTDPKIobbrgBH7zl\nfQCAe+5/AI/yrPrbbrgJjdyFn5/LYYbLKx/60IcNokBohfd94A8BAL2HD+DRp6m0dMc9D+PGay6h\nezN3DMeHmRc3kTBlrRDAuo0E1asbmYTzve8DAPLFIgTzqg4ODkJyuSeVLmWbj9P5iIoQoIDBsWNl\niAsupmP41D/8IwpF5kFQIWpq6813zOy8UqYRH01qnSlWTufLVrayle112Bs+EjWx36vgNoGFzEo0\nAx6l4QHAoPfO1mYMRiz3Goa9e8ma9YYSzHZdE2lKEQOQbddGwBGVLF2ztIgbV68xGiqljOnTlI9l\nnRR9rl7eg2Ge1X700T24/Io3AQDGc/eiv78fALBr29lwuGtSkcngpSM0Y+6FgLYoqmhqXYqJKYoa\nb/vhncjxXKYHy5yjl/Ox55n9AICnn92PqCeTqUzTIAEAaWu4HJE01tUg5UYaSxIrVpC4WX1THepq\nKVprqm1ANXdoW1paYBkmH40xLk38r08O4KVDRMNWk3LhzxLW8aG7f4YqxjpqJaG5hFIIPdiJuOTi\neR4STAEX+AUzl12RsnH1JTQM8I4brkcmTZFTGObB0u4YGhmGm6DPly5ZTFwCALSyMDZDDaqjxwfR\nUE3R9Jaz1sHnyP1w7yCOn6IIddna9XjgAWqIFXJZXH71VQCAlw6+iNzLdD+WdXahuYHS/5tuugk3\n//4fAwBe/uRn8YmP/zkAoK25GVV5eoZGTo9BBnGrsrqSvvuO99yCv//fHwUA7HnqAG667moAwMx8\nFsMThCl2K2qQ4LJUd/dSVHIDCVM5ZHgQIggmDQY0U5nGhg3U0Hrp0EGEpZkZm1LaNJNsWaIYIQUy\nldSRP2f7Dpzop/NNpVIl6XosyiilBLhpGYHxzxR7wzvRX8d0yfSStCwjvaFU/Dm1EGOn172YoC1H\nDr1o6OBU6EMyitjzPPNCRsD2f8sisH2ofAh2VGEuj+3nkM65pQM8secxAMBlF1+C7k6Cy/T1HsVK\nnnOHlGZWe2wmZzTJ04k0ZljM7cDzB7Bv714AQHVVLdKsZNnaUA/F/KC2bZtue31VtRGJS6YS6Gij\nGmdTYwPaWSok4zq4+2d3AKCyQ09XC1/cAiS/JNpTcdqtZhEywN6WEilBTr2nswX795MT9X0f+5n3\n9MiRXiQzBBL3lQ+XFwQ7YaNYLMJhNEAykUa2SHAh101A8f248LLLsHs3kWSMz+RwcoRqtsIhNnkA\nODVXRCJNv1FXWwmvSE4o4SZxapyc+UuHjmDzJqII3LBmOeZ5tr93aAwe1xQbqurwlrdSyvyWt73N\nIMtffOFZfOD33s/3yYbLpY0HH/4lVqyn+ujx48dx+x13AgBuec/NSPCkUUdrC+aZbT6Xyxkil5Vr\n16OxjWBjR/tHcPAQOa2ZuXmDDvG1AkK67l3dPUa19l/+9VbM8OKllUCmhs79c5/5NHZso+O57Xvf\nNQsRADOpJy1hhi6ELQ20ClojyXX183fuxtdYmK+6NoVUBU9clRDs0D/p+szxhNWZYuV0vmxlK1vZ\nXoeVI9ESkyUidEopM86mQ5hVckGfXymcw1i4vpePGnYoSk1C83eUkuuFCf2rW0lqn3BsBNyAqMu4\nWL9iGQCgsbYGyy6jov2i+nqANZD8Yg5nX7CbfreiBgcOEpvQrbf9AMf7qZOsfY3makrdKtIuursI\n3H72po3oG6SxzIsuuwIeg/aKgcZz+wmBgDBOvybGRjE/SxHa3Nwc+o4R1nPvL/fi8osp0qusqUQQ\nMmuQysPi0L6IwGghwddxxC+EieA721oiGSwMjU3i9nsfpONPpGEzEzyCPCB47DMEUgkXKogyAIVQ\nMGu9dNHe2Q0AeG5gDE/wLDyCEHNcJhifmoTg9D/tAhuXEMBeI4DLjZaCX8TAyVN8XTxceAGB8wv5\nOUzM0XF0r9iICUlUbunqBrzlrSSZnJ2bg8/PzqoNZ+Ev/uqvAABHjvZiZJZKBIeOnYSToVS3os7D\n5z7/LwCAa6+6FIuaqZRj2xZaGqkxc+JEDh5H91VV1dh9AXXSH7jrNrx0lO7H6MSMaf44dgIhdxXv\nufd+PPQYZSFeqIx4YcEv4K8+/g8AYCJ2gJ7jiL0MWkNG9I5hWAKU5+5etA1Hz+eedz7+5Qv/TMfv\nJNDJmRMgTXPSljKqnr2qEORvs5WdaImV1kqFEChylznSmeeNYocqHezgGetvf/2rBqYRhiGiiqeT\ncGImb2ABgP/fcqhB4JlO9+r1q9HdRi/Ysu4WhKwcqb0CXJa4yCQEVnEN8tCxIXz6iwRbmZ7PGiTz\nmmUdWMvbnLttC1ra2VlIgZOj5CD2HzyIXzxA4OvhsUmkM1TbctwUWpoobXdtBwPHCaZz9wOPIumQ\nA6qsrMIPfkYTNS8c3I/N68nxn7V6MRpryfnZroRivk5HCkhWFvW1MiWFtStXRHQFmJqZwamorpdM\nGT7KhAtTb7aEC60Ank2AthIGCuVD4ugAgbeV0kjzZI8jNDSnt1ZlE/L83aQDDA4TCiHUBNwHiDrv\n9DAtRmtWL8eG1SsAAKfHx+CmybF1dyxGzqVrJNyKBaPf0fM1OzOHS64ggpN9B/4B09PkRIdPjUEl\naMrs9PAYPOYF+MH3bsMtf/RHdJy2C59rou2dLTg8SKiLVCqJlWtpoOLu22/DXI6uy6lTYxBhVHfU\nKPIwf9J1kHZoP5lkAiJJKfapsXE0Ni2KDtg86ytWrDCj7boE1mRZFsD30gzC04+ZElgynUFLKy0C\nEBZW8+CH+T74MkUolkDHfJW//aPz5XS+bGUrW9lej72hI1EpXyN9LkmZX7nQiUgOWRHxMADk8h46\nWyliGxwejhlspERTG7HcV1ZVI80dznl/1BTYgyAoYYxa+FulOkmvZlprMC4cK5ctRmsTRTthft6k\nuloqeHmKZC7dvQM1NXQM/8+tX8ckS6fX1TQgN0kp5s03XIfztxFB81w+hyHGfT6y93ncfi/hG0O7\nAus3UUPhxt+/AhvP2gIAqKmrM9LDqUQCuRw1bh689x5kKtN8PTX6jlNT4+knHscz36M0fFVXEy6/\n4BwAwOY13ajmmfewGAPYHcuB5v3XpNPo6aTIu39oEhU8DplwJHIRNlRY0JIi12KgEQYawqZoN5AJ\niGiksESkAEIhy0xC2i8iwyk8AkCFtFEu7yPr0m/klYDNEVi2kEVQoKbH77zlOhSYScsSwlDkFUMY\nqsTqukWYm6FygWVZcAxRN0y5p7IiDclNmrmJSVRzpI9CHg6n/089uQcf+PAH+Vx8aM6qQxlgEXMo\njE2Mo35RNf9uDSZZV2l0YgY1TPpc8Atwbc6qhI8VbfRML1+xBsfHORoeOYURxpVSxEkP2vbzzkeG\nsbDCsmMJakvEbGdQZjxaWLaJYqvr6rFqDTXhDh8+jESGyzFaI+DtXdtGF3ftLevMmqMvO9GSj0s1\n3y0rrmU6jhNxWUQ7BhDBO+jvLVu3ovco1SBJeE6bfcYUea/9cKhX/H90bOk07b+tqQF1VeRIgnwI\n32eiCtc2yqVvuvYa9A7Tiz06Mo75LG3zoffdjOefIGe25ewNKBapznqotx/fuf0uAMA9jzyNC68k\nqNSbb3o31p9FDq9YDMwU0OjknBH+O52fwPAQpZKTs3MYOEF/V9dVY9kqemE2b9uN/Bwdz/0/vR3f\n+tHDAICTp1fhsvNoUqgxkzITUb4XAMzmnkylY9iNmoTgexFoBYfv2vzcLFx2rh0trZibDzGZpX2l\n0kkUuVasC3kDsK+trobF51Bd1YAwT9dICAEv4DpwYR7VTK5qWy7ms9P8ezlDRrK0qx3zM0zs4aTh\nsVPJJFLIcLd9bmYGGQapF7y8YdqHkKbEs3L5cqOoKQFkuJwxNnzCgP/7+/pKOuCW4YAt+KFBTlRW\nZJBi6sOeJd2YYwTG+MSM+S1hSViCp8/a23DJTpp627BxE/7m898AACi/iBODVE8NwxA2l1q2bttm\nnmOl1IKuenvk+KEwxPP7AAwhTyKVwsWXXE7XtliECRsE4uklwNRlg6AMti9b2cpWtv8y9oaORIMg\nIM2YV9prRKKl87thGBgi5iBUsazxK4D6URR12aVX4Pvf+SZ/NzTs+Y4bzweHr9F0VFrg1QD3RU9h\nFYvidbY2IWSdcE+FEA6lw9miB5fF5jzPx8EDRN4rQx8blxOG9aIdG+HkT/I2RRwbIH31v/3s13B8\nhPCBb3vvB3HLhz5Mx6ltzMzTbwV+aCLyqupKw1x05w+/hzt+/CMAwNTEOAoc3b793e/ComZiNLrz\nO99CM8/Lv/f9/x1DJyjN/+63v4KZAuk83XzZNmRYVM11E2AJI7xw+Dj2MU40UVltopr5+SxSrAe0\nanE31q8jdMFFuy/C3mcP4Ku33U7H7fmoz9B12bK8DZ2N1BxbuWSxid5WrliKaZYonp6dg888BXse\nfxKtzQRiTyBEgaOugy8dwu++82YAgJ+bRYK79jO+j0QFlTM8PzA4x6rqauSL3AAUMRdDoDQCPqH6\nugbc/sjdtH1VlZGGzudmobmBND2VNUTUIpRQHIlawobNz1lDZTXS3Nxrb2mHZmzrzOycIap2HRtr\n19D1Ov/cLdBZihqD4gza+HydF5SJ1GFJwwpmWbHmGKFP6G8oBcc0lCwTMUvbMf1XrYCODurId3b1\nABFo37bNfdXQBmQfsUWdKfaGdqK/ri1IvSEM9EaixHe+gkQkcq5L1603HciZiTFoTSlJ4IeGfqzU\nZZeWB2SJ/yxNDVQQYFEDpUrNzY3Q/BT7KoTFpQHLceHxg16RyeDQEeqY52en8J533gQAcHWAkFnP\nR6am8Okvfh0AcHRoHB/8yF8AAG54582YmGbAtQ5LuqMajQ1cdxs7hR98/zsAgKceewxN7CyVn0dh\njJzols1n4eabydEc6TuFF18kR/iJT30BH3g/EV78xSc+g1v/mQTWHtjzDK69iKBCudDH6ASlzt/6\n9g8A7qLnPR+pJP29alk31q0kSr2Ld5+HtatXAQAcIVGZTuDAEeIBHZuawvVX7AYA7DxnA7q54yyC\nollYC4UCEq3dAIBQSHhgCr/p0xhnZv+wmMf+52hh6uzoMAqknhdARAqWWiKTIif60uAA+n5JIPbf\n/f1bUPDpugjLqJ0gDENUMOP/wUNHcGqEHHlr5zIUGXkwPzdrJrl0GEKoqLzgIAjih8cQNmqFmgoq\nHazo6YLPcio/Oj2JTA05pVVLl+DsDeREbV3Art1U925t78bdD5HgX1U6FiAMAwWHB0UUYOBnJaPz\n6GhpNSQwgVKQESywpLOvJRDwC1RRVQnYEVFPCbO9jufwVckc/Zlg5XS+bGUrW9leh/3XjERfQcS8\n4D9F0aeUJr1wHQceY+F6WprQx3P0ChIhp+qOtHDDTRSBffzAAaNbbtuWYV8SQiCMhO0gS8oHoSFx\ndmWc888XQ7S0UDpc09AITzErkZaQKmJ6UlAc6s7lA4NvVKGH1UsXAwAqHBcFJvK99baf4KmXKFp9\nyzvfj7e8nbSO5ubyMehAa6TTEe4zg9kZipQefeg+rON08N03vxO5eero3v/Affjut78FAOju7obn\n07mcGMlh5QbC0R47eBBf+io1Lz72sffjDz5IM+I/+tI/YGicBd8ySXz/hz8BABw6fAINrdStDS0L\n3cyi/99vuRGrexhzqBSKeWJbCkKFDSvasX0TMU5NTk7i2l3UHKtICOTnJvjcAM3S07ZjoViImy4e\nN6Jamxfhib2kORSGGvufpSjtI3/8Afi8jbRAs6IAwiBEJb9JqpjFiQFqzOTmsrDdKJouQHLJJmFJ\nCH7y5vPzmGGAaluiEiMjhGdN2MJEb1WVNXAiyj8dIgpEpZQIucvvwkdrA3XPrbPXoI9lpaUGUtyR\nt4XA0aM0PrvtnHVobqUR3mx2BpkUbZO0JSxugNlSQkUNUiKNoB8WQA+jVaQKocKoYSpN9CkgDGOU\nEAJgsmyZSMIQOgtAmIdOLMBZn0n2X9OJvoaVOs7o3wCxoScYkgOgJLdX8axwGOLaNxPt2af+4e8x\nO8Wa5GE+pgsrkf5YMPgkAJsfrFBr41Ar0hYW1VGHOpPJwJtnKRIZTw456QpInh/vP53F6BTV47o7\n201HulgMMF+k7e9+ZC/O3kEEHO99/wcxzYzvQRBPaFVXVmJRA9UQlZ/H3Y88DABYtqQH17+V+ESL\nfmhY5Hfu3o2qKlaFLBTx0kGak5aJGniajq21vQO3fvVzAICrrtqBS3YSzOr6t78HEwO0vcgVMDlB\nTuQt1+zCsrUkwjZ8ehy9hw8AANYuX4wgS9dWKAEHUR1NQvtZ+DzDnnFdJCXX3jwPgtlFLNs2UCYB\nZWopWmuTlrY1LcLQCar9hgrYuYtUBGxHGFx5GGqzFruuC6kobU+KECcG+gEAj+7Zg0uvoCkiLwhM\nvbCipgbPv0hIjrmcQo4hV2EIIzQ4M5uFxcD4LVvWGOVWR6JEmUAa4TcpNGoyzLmatMx1FAAsHYHq\nXaS5nuxIhYAVAhJOGk3MiWBZFvKsTe+rADYv0JaQUBGRjrSguUzh2jYikftQqwW4vYiyT4HgcQBw\n/q5dpsZu2zYQ9RpChYAXKKf0XTsDrJzOl61sZSvb67ByJFpiYRgTKAdBLBJXUVFhsHZKKSzroI75\ny4yTBABICZvlhG+++V347D99EgCQcB3YVjSPHxpguUJoCJcBIDDdfwvgqKalqRYdnMYOD/Yj5E5v\nZ0urEXc73DuAMcZGPrX/OMaz9N01y3vgcATsw8FLfVSCcDOL8IE/+VP6LZE0zSrbBRo4WqiqSKIy\nRdHAo08+jukJSoX/4JZbMMvNpwDCMPUnXQfve8/vAgDu/+ld+OkdhD2tqOmAU0HEwkdfeAyuxbR7\n3/xXXH0JRXcVnSuQ4O7C5LGn8N8+8C4AQFt7J6RNzZrDR4fwxcPUrDl2+AgWd1MqGSovxtBHpNsc\nddXX1SGVIgypn4/ZsKJto/shSzC/EaKivr4elUwcfOL0KZy7nYYNCrkZhEx5Z1uuGUtFsYjsDIkZ\nrlnVhS4WCPzMZz6Dat7PlnPONpRxR4/149Ofp5HcuWyI2RmK/Hp7+3BikMZK6xrbAI+i+B27LjKZ\nkIUAFofAOtAmg0lIx2CHczPjGOMR3mSKmnEAsHvbVszOEfhfF3wkOG0vFn1UVNC18kIflbWUhbiJ\npGEblyIezwXirEVKiQKPJisAXTxGPHDyJEJGF1iOgyoG2BMFYpSGaTO40tPRYe7XPA9xnClWdqKv\nYY7jmJTZ87wFnKNxyi/i6aWSetC73/s+fJvlFqYnT0EVWY7ChnGigDZs+BrC1GmVEibdzFRVGY30\nuw4ewLYt9DI3NLr43l0Ei9mz/zCmPXqbB4enYfFxtre1GBG6x59+Hk/tp5T5mnf+Hto6qFaaL/qG\nAKK5scHAa2yLlEYBoK6+3kzgaKXiDio0wcBAKK9FLeTss14RvX3EdZrpWQKboVhjp0/AlvSyPbX3\ncZw8Seny4u6lxmE5TY2otOgF8otzCFiNsqnaxU6mAdy7dy+WLSPUgfIDw2nqhyHsEvUCy7KMsxRC\nGFBFqAIzIaRLaipCaJMyCxu45MKdAIDnnnkSm1cz/6UK4XB90fND2BF0yLZRyNPikkl2Y/MGmg3/\n+f1P4gffJzq7/S8NoMgL8UtHj2NsjlLvqekChE0LTT5wUd9MC/Satatx4jiJ0F1wyaXGYeswQDIR\nHUPsRIVW8FgCxtK+qck31FXgikupfNPe0oS9TxPJTHWqLi4vVNSYxSSXy6G9vd1cFwOq1zBlrCXt\nrWbxIoVcrg2X8koAsKKJsTCM5XW0fgWuUJr9RO9A4gxL58tOtMQsyzIOMgxDJJnYo1AomBtLGNDI\ntKkHAcIbIJRbAAAgAElEQVQ43VR1Ld73fhrT++Tf/C8kOaKVCGLGIoRQHAkowESlQlkARztVDS14\n5gA5v1Tg47JGcn7fu/dpfOH7DwEAZrQD7UQPnYCVJcfT0tRopGnvuPdBuDUElbr6urehEMRqn7WV\nFCE01FcaDR2tCFYEAB1Ll6BzOUGKprOzBuZiCQWbGZqlCuBzNNKxfBVmHiXWp4QfwJun6Hlq7JQZ\nYywEGseY37SrvROVVTSWOOf7KHDdLRSOeTmrMwJLWIb5vj0vwy/B2xqmLRWwyipPPxXzC4hfTIZR\nMm2joRcsjqbRF/rYvpkc4YMPnIbm2mHasWJ5jTAwo56WAlJ8HNPDJ7FxBfF6XnvZldh7kGqTs8EI\nBkdoQaxpbEPrcnKW9V5gziGTctHSSPdj/9MPYts2mihauqQL0qIMQ4XKRIeuBGzGKednx5FjRqqU\nLVCZpqhu04b1WFRPDSevmDUYTEvacJllaWpqFuPT1Nyrrq1DbTVFohKIxzilZRxkGGi4dikcibGk\ngrDKANDV1oaBAXLYwnEQA11FKV4QXbz4WnYcnMhXwAh/261cEy1b2cpWttdh5Ui0xEpn513XXTA7\nX9q1j6KX9pYWDJ2iWlgAmJl6CYkb3v4OAMBdt/8AvUcIrG0LK9qSLCJQ1Bak6YLCSF4cHxxC6FHH\n8ryztuDZw/0AgNvvfhhTFJhAJVzDeg4dIszRPhsaGjDOpYDDLx/Dhh2XAgCqahtQjDgcLaCmmqLA\n0PeQ4ChF+fG0lhbKNFwt2zZpotIKViSoZ1nwOLpdvHQF3BRFU36hiDmOBnXgI2JTcSUxtwOAH2qk\nOT1NpSsgokwgCGFxlBUECi2sa3/u1i0GcpVJuGbeWmmKZNKpiNnegc01yKDknknAdISFjqMfIW0T\nZctQY1ENRW8X7NiONF9fHQYoetyFd9xYgDAI4LBS6OzcJKqZE/Tqi7bjYB+l85AS23fSPZguKBQ8\nrkUnbbgc0buWjwcfIDG72rSP664j+JmwNBS/qlrCyHSkXQnhU+YxNTqIgEsKOiiivpqyEKunCzaz\n1UxMTGFwkEotLc2Nht90ZHoK/SeoFnv2Oeeijmvj9NuxdEuUgpXy7koZw/yEENStBwXL3TylpLXG\nQCSvA6Czqdl87iZ4e6V+ZZDlTLGyEy2xUida2lgqZWKSJTyJlrDR0kpp5onh0yZLKeoQ6Wqqc33s\nz/7cTA5ZtjTOUpemjwBEVMDXAg47htGREcwz2e+alSF+/gApQR4/cRKdbSzHUZnGcSb/yHshEkyQ\nW1tThUOHDpnz2rqVUkMVxlyNlZUZpFkGQ/shfNbxSTg2/KiO61gQXPvzVWAWCks4KPI2CenAtsnR\nHD82aJoIVZkKHO89zPsvIsEpoBfAOHgv0FBMnOEJF9IjB5FKCIBTewgH9Q3kRNelHSSTUQofIgji\n1NDzPFRV0qJQVVmxQLY60sIqVX3VWpjPUXLvSx1DS3M7Cgw7khBG1kQgNPVkJ+EAiqWCXaAwHekn\nrcSH30+kLl/6wUN48MEfAAA6Fq9DYxM1YJQfYOQkpb2jw71Yu5TS25veeh062mqjU8MMayYnkymk\nGLol/DkUJ+m74fxJpGy6XsVQIZ3iOiUyGGIO1GeffRaSR1uVUgjYK87kcxhl7ajN51+G9nYmTVbK\n5KoaGuI1CHSiEpUAoFjmWkEbqRYAWMx4ZyklEgyz8jzP1GUty4If3ZczjJS5nM6XrWxlK9vrsHIk\n+hpWGrEsENMqMQvCULTZiOfhLRFPKZ27+2K8530fAAB8+9YvI+DkWPD3yTQ0Ih5GGd8UK4UgTf96\n8rnDSEUwF+Hjqoto7vm8rZvxzPNULrjrwcdxcoCiIKFDjE3S9JLWGk1MV6a1hsONjKpMxpQsLAjT\n4FBKm9n8hJNAwM2aol+E5NTQVwEsTv/9UMHl6PDo4T6kHIpuG2orsG+MomQvlwVvAoUYUC3dJIpc\nspDShsPRvwhi+JKUEh43rioqKkiJFYCQEiEzWLiuCy0lMtxQSSVck3IKIcyEkJCWOWch4nMu5U0o\n5X1VOjSNDq0UHB5g8MPQIANCpUoEDoEwpGba5MlDWLuYBgY+8ntX45HnKWrsHZjE/ARNjXmeh9Vd\nBHS/YsdFOP9cUtdsWhRDgQpeAJevtaMUXPB8/Wg/8iNUFnF0Di7fm5nZPOZ4dn58ahbjI0Q4s2bN\nGhSzdO6VlZWEawNwemIKgzwpdf2S5UhGQnISiIs5Al0cTUZtUr5Cr0BBcIfdss31DIK4eQatEURZ\njhsjYHzfN8Qwfnli6cy20m5tqVxI6X+PnJ/yfGRYd6a7uQX9DNuBgEl7oTX+4IMk7bBnzx70cnor\nhELAzsASCpYVpZ6B6fgHAWC5NAk0lQsxNUu1wBuvOA/XXUh8nB2NdVi3+GIAQP/gIEYGaP+WVEgy\naYdlWejtpW74slVnIcGoA9e2EcnUWkIYHCNCDYc7/gP9Q5jiru/mrWdhem6Sj19DsXN17ApDHr13\n7/OoqyeITHXGwfhpesmlDswLkw98dCzupvPVAVx2TNUZF8V8VCcWkKKknMKaTJ6nIETUYQYE82MW\nij7SmSTyDIuyrYX1NXMvVbDAcZbW9mLeV40wql0LYW6lsABYEadmAJhRTA1wpz4IAlgRGiMoYPwY\njY8u616LFdfTwjc8mscIM2YXQ43GRZS2t7U2Gjxr0ctD80KWtiWSFp/n9CnMTlBdszh9GnZI5+sI\nEDYLQK7oYXCIUvj5XB7dLLW9uKsbfYf76NhCQDKh9YnhUdQ3Eba1s6fHTGJpHROBSJSUnF6jdqm1\nXrDgREb3gom0UUK6HCrjiqW0zrhxz8jK6XzZyla2sr0OK0ei/wGL1uGE40BHhCJaxdHngo0tVDdQ\nN/Kv/+bvcOMN1wMALKXizcPApP9KBSZCUCoBi4vwyZTLRG3A2RtXoaeNOqje9CTSGfp79eIO7GM6\ntFAFWL6M+ERVUMDTvyTpj2vf9BZUs1yEFNrQrYVeAYIjGQFpugX9g4P4+T2/AADUNtShe0kXAGA+\nO2ciRSdVge989+cAgOcP9aNhEUVx0yEwMkX4w+mJApb10HVYlAiwhRtdCduBUMxd6hUNznOhkIA2\nwn8cNwJgyj42x3GoMRh9X4cL0swo+ikUCnD4mpY29kqjUsdxTHqulDKcmjoM8dwLNMO/ZcsW+AE1\nnAIVz7MDloFEJmzA4RB94vgBOOOUSdTVtaJ1KbPBJypIGQ8AgjmAU13XtaC4zDE/NY75aeZiyE7B\n8ihVt1GAY85BmFl117ZRKNB3q6oqsWwp4Vanx0cNvrOxuRmzs7TNkZf7seUcYp7vWbYUIsIsQ0JF\nJ6NDUwaSSkPhPxY1Cvwq6c+ZbmUn+jpMKVUisRxiSTulRMeGTiJkaI9lO0aDZuO2HfjEJ4hH86N/\n8kEkeBx0cVcLQobOJCyJkIurI2NZzOaIXzOQLmprqd5XlXbh8UtiScfUCxtqqiC5oz0yMoING6i+\ndsmuc/Hg48/RfnIzsBU5XakEwCWFdDIRnwsAxU9GW89i5FhC82N//pf4wz8m9qVt27ZidIxe5s9/\n+Rv42T3kpN2GLmR5XPPI4BSWb7oIANBx+Y1oqef08fiTWLSoiY8f0Lz/Yj6PiI6XHEJgthGC65ga\nRmZFCW1eeAAYHh42QxGtLc2GMEPrVyf8LXqB2V6K2IkGnm8WF6klQl6+jg/0YfQUlTYQWNBF5vi0\nHUSZqOW4UEEE6wqR5AmnUCvkpkjnqpidwdwolTm0EGayzIJANMohhIBk5x16RTjssG2/aLrkluXS\nggeeMOP6sA58NNRQiaBnyVIjgTo3MwPNV7iisgrDo3T/qmqacQWrj1pamSkiaGHQJEtaO8xIbaDD\n1+wTvB6LpbP/03f9G7VyOl+2spWtbK/DypHof8CidCRUvtF8F6FEnqm82pubMTRCUUegtAF9QwW4\n9pqrAQB3fv/ruOqS3bR9Ux0ERxqWEEYyYXx8Bk89S+njzx94GN4sRQ4uQtglRCbRwt20qA5pbibN\nzc6bscf3/s6bcexl6gb/4iffw0f+r7+iY4MyMhVBEJgIIFAKmoHuXT0d2LqdGiK33vpd3PVTErz7\nzvd+AUiKjGWiBms37QIA5JQDhnrCdV0kmLSio7Eez++9FwDwjht/x6SVtoBpbnmeZ5jOtRCGNZCy\n1GjeXZlASUAayRXHdtA/MASbweFdnW0I+JqWttst20bAfKe2bZsI1QtD0922JBCRdgZaYiZP+7nr\n3gdx05uuMrt0uLvtBQFcxkQGYWDY5qW0zTyFhI20HQ0P5OBzCUNAG8RGqEqwqojZ4GVJKi0sC0JG\nvJsami+ShRiBAD8wEhy1lVVGyLDgBcjwmG9dUwvu+8k9AICNZ23H0pWr+aJKmLBa2nFYGGrwDAg9\ncb/pnDyG//7WW9mJvg4Tto0ip9IhtCFZOHHq9ALOR/NEhEXs3UMz7xdu24ILmFRDefPIRM4vm0MF\nE+SiK49NqwiUfdmuTThylDrvdRU2LK5JaaHgsfbS6qU9qK6gl+Ro3wDO2kTwmpZaG3/2R+8GAPzT\nV25Hfy+B/7uWrIDFcKRi4ENGsg2iaM5Rh0XsPI+c6NEjAxgYpPJCU/sazBUYzlLdAMEOxdYeAm7v\nhnBQmSCndmrgIOor6Jps3bTBkIAgKGJummqFYRhCs9P1IUz6aCN2LkoIRAmU0NpIXEspkcvl4tlw\nyzJSPhCWIUQmeFPMQFTkVNcu6c4Xix4ch5VVhcT+I4RsODk+iY4e4i/w8rMAsxS5CQe+Zq5XFcKN\n+AUsB3laV6G0hsNO2rUlNC8cUloQhiQ8gBUtuCKurSo4hudGCAFpoFiBWXSkJQ0sTUAaYpLcXBap\nDN3juXwByUra0ZG+Y7j34ccBAH/219dgQVJq0nlgZSvN+NuWBcVN9SAIePpuobQNf+W/nJXT+bKV\nrWxlex1WjkRfhwWhbwDnCEJYVty0WFh45zQuP4+f/oRG//7w3TdCBgTKzs1MofcAYf9qFjVCVRM2\ntL4miXSSbtGa5V1YvpiiUhc+EFLkA6FNY0K4Eku6CRPYd3wQXsTnqIA1y2iU75Z3vw0JBmvbIkSe\nU1stpKFqgxCweRa8kMuiuZFGLq+89BJ86nNfAwCcHB7C6vUkMDeVDUoA0goVPMYphMbMGAHMZ0/3\n4n/8EXGFNtRWIsncopYqYGiYBgQqSiLOUMdNI63jUVstrDg91xoO43RHRkagtUZzEwHXVeAvoMWL\nJEGEsKAiFYGS0V5bCtOISqYqjGDevgNH8LMHHgMArF+71oDPldBIJCNwuGfGRx3XMlhPL/QgubEk\npQWweKHveXAS9N0wjDlmbds2HfaiFxqqRMt2oe1IKdSHI2M2e4PL1CHCkpHi6NyTFWkMDNHcejpT\nYzKkfc8+i63nk3RLU3sXTK4OEafQKh4C8f0QIZ+75TgESfgN2ZkW2ZWd6Osw13HM9EvCdpEtFH9l\nG1UCZRroO4qeToL5yCCHPY89AACYnhzHcq5JnTx5Evc//Ah9FwqXXkqkFa2NVbC4wOZqz9TdCiqE\n5h+wgzy2nEUUbj+86z5kC5yq1lWhWKCUf/3SVmhNsCPLVib9klJCeex0bccA77Ww4LMc8qYNK/Dx\nv6Du/Ne+9SPc97OvAwA2b7sA1ZXsvLSFqQkaOug9/Axa6smJ/MmHbsKGdZQKF/M5WFwfnBo4gEo5\nz+cVGAlgmmovoQfkc7dFCbxGxDpVx/oGIKU0XJilPAhKqRJnE0ObtJCwI+hTvnTiZx5f+DItFj3L\n16Cukha1rWefvYAqMYjA9lKQ7DWICCUqVSgBCFmMj4fvmZty4fkMxSrlOg00NA8PSEuYzruvA+PM\nlFZmUiqa4qf/s8zfngKxywAo+D4mZune9/f34+wNKwAAHZ1tmFREedexdLlZWLQ28wSABHQ0BKJh\nFhzf9+AiKh0sTOF/3c56aTngDCh/vqqdaU6/bGUrW9l+q+yNHYkK9RutdL9STmRo7DT/F206y1JK\ngJlthocGsWIpAeBdKbDlbGKMT9gWUhnWIe8dwBgzHBV8D9/8Num879y+AzvPpVFPeD4C7p5bloVQ\nxE2aszesBwD867e+j5kpwjTmapJIWJGsRYBcnho5U0NHUNuxDACQ931UcHOr4Ct4xYipSsYSGqGP\n7g5K7f/so7dg/0Hq+D/5zAEcOEApr7CSWNpDpYMbPvweLO2m7Rvr0hAhRUQVrkJ+glLMwsxppFjF\n1JHCEA6LUnFzgDjgQCOySsUliAKTAM/PzyOTyaCiggYJCrmsiSwDv8gNKVDDxjRmYvyo5bjwGd/5\n1a9/C+vWU9OvsqYeB1+kht7izjaE3PFPJB34xQLv0kY2H6mA2khwicGWwiAPJLTJSJQKYHMDTatY\nuxCypISBOGKWWhnSbtu2DIbV931z76UQZhs/CDHJAoSDw6fx8COEqNi+fTu27SBZlr37X8KixSv5\ntzRCHQ0mRP8DtDc1wuI4y3IseIxldlwbCP4rtpBe3d7YThSlchz/eaaj7nMoDGmCUl4JH2Jgusah\nEnHKEmiELNErhWU0ZSrSNiamyeEd7+/FsiXdAIDGxkZTI3vyiScwO07cpZdccD5SKZ5fCn3ICCSv\nFerrCUi/acMa9B4m2dyVHYvM5EnCspDU9MIXTh9Dll/yio6lRuo4IdOG/T7URPQBENQmah5nEhJb\nN1JquH7NUnjc5YaWsDjNTbkOXB4ocBDAFlQHzU2MYPIkdbwtvwDJ9VetApPCQouYK5QuOh1PoCB5\nTl0kKrDncaIHHB0bx/nnn498nuq9jiUMtMeWcdofhNqk8IEKzbw5hMCP7/gpAKCtowf19VSemJiY\nQDfXmW1Lw45Saa3Ahw1p2eg9RgoELx05hisvo+mfuuoqCD8mnEk4UYrtGUEErRWkeUB0nA7rEgIc\nIF5cNNElAoAjY57bQGrDh6ptCwNDtKBPzOZx8400JXf+zvMwyUoDWS/EpTw1JnQIS5QkpYbaTi6Y\n6oq2EOpXNo23eR2v25nqlsvpfNnKVrayvQ57w0eivwmL1uZS9nutNXpaqGnUd+qUmYWnqImixg0b\nNuO2L1HktGl5p2H7CYK4cZBKpVDwqPFTmUog4I759nO3Yv/+/QCABx/9Jc5j7GZl2jWjm6QZRNu/\n9bpr8aWvfgUAcNkF5yHDaS60B4vLC67IY46p1Aq5LOo7KbW3HQKKA4B0XHhF7qTbJbPmSsDi2CHl\nhEg5ETZSxsMFoQebI11bBMiOEC3e9Kl+SJ8iIkv7EJp/S0r4fsS67xi0QMSWDpCQX5QKnzg5jOlZ\nJhPevJkaHxyZaR0rUkKFpqEvpWWQBJZlIeQI7+FHH8M0R2kbly43qWtv78v/L3vvHW3JdZ13/s45\nVTe8/Pr16+7Xr3NARiODACGSAAgSFECKFIMYREqWR5Rsa9myx0G2x6M1M9aamaUZjxy0ZCtny6Ak\niqJIikQiciISAaJBoIHOOb94762qc878sU+dqkcCI4rNxqDhu/kHbz/cW+FU1a4dvv19fOSjEslZ\nV6BCGUVbSxLWyFq45GIpo+Q24Y7PfV6O6fLLuPZK+btWnsWiZNFvUURGJB11mzw2RnJeUUXlSseb\nzntPllVExi4yXcGuoGl0x5/+BbOnZDDj05/6FBdfKLPzSdrkqW8Kq9ToimmWrd4QVjWJ0ZREv6F0\noKto2OYFg225hzqdhWptz4KdW5TMb3EnumbNmvignw1z1sebySSaTgDe43yEjBRZRiPUyAbGVnAq\ndMydTmIabl3FnD833wVVQaVsAJzrNOGatwuk6PHHnuBwSD1vu/XdTIwPh91aTHBaa1at5Nqrrgbg\nWy+/ymXbpPs/bHxt4ienFWqls8d3YbsC60kHxxmblBRWjS1HmxKyoyGQo6ga+7smWUovl4sDGkgd\ndOWFcPzVl+kFWeGmzjE6vDTSJtaWctQVUYg2ilZwlovdLo1AzecTw4k5cXbPffPZyKK/eeNa8u48\npoR7eRsdpPCJVrR1KnSus9wytyB12ocffZSrr31bOM88psaF6zG5QtRIna1oCpM0pehVaIzSDW27\n8GIu3nohAM9v/xb/+Xd+H4CLLr2IC7fJ8EOSmDjn3jKaJnL+iTYRRZAXjl6JsNcJWZBlSZIkvnBP\nHT/B9hdEvWDvgSPkvpT4nuDWd0u985ptFzMXUCMv7djLqa4c/2c/+ncoH39X67FrZVk3JVC6VKnK\nuRpDJ6xVq9UmLyF2feun833rW9/6diam/GsxD5/zJqe0aWrlWY1EFTq2Vp0rcGEUbuehw9TK8PH7\nrtvjz//gvwCwfiTjgjWC02toSxLE0O558GmefEb0xt91w7VkPWmUWBJ8CCEHBgZ48EHphrcaKR94\nvzQyxkcH414T3YxT9b/87/8TH//4jwGweXoyAvVz75dEkHlRzuMnMapxzSFaIxKJNYfHSFtynGmj\nVUvpdGxwdBa75IsSKc4f2Qc9iURbiY2sVdp1SWrdiZIrAKXieGM9pUsaDTqhpJCkDR55REoiB/cf\n4JMf/7j81Ds8LpY2kiShCI2lepnAGEMWujcmaaDDgMT2F1/ihRelOTQ7O0seRmmvuPIyrrr8qrAP\n8IU05RKjKhwrmqxkcUoaMWp03kcxuG9t387Lr4bSSafHsjG59uumV7N2lSAYRodaDIZmYy8rOHxc\nmo0nTs9y6KA0ig4eOsBAEHdbtmwZF10q0e3kqml27hMlg4cfuI+f/vGPxDXtKNnmF+56kOtv+REA\nLn/HTeQ2HL8xEZ8Llo3TEomSF7FkoZSiCE2yJEm+byq878UKBbsPHg3Hf9Z28wOzt74TPZtn5yw6\nLWtSGTqknFlh2XNI5BZQGltOd2jNsT0CC7rjP/+v/A8fE+fnFmdil//p7Xt49AmpW62emmBmRmpb\ny1esphUcrbUZQyGNffSxx6PY3Idufx/jQb1TYSvphcLwJ3fIpNQtt9zMVJAKUc6ig7tKjKr02JWi\nCA9Ybh0ER1O4SizCYSsVAIjcotqr2L1tpDoSpXiXRahXs6ExofiXZVnkHPAk8UXklY7TNc4T6f6e\neuYZTp0QCNjHPvxhsqAJ773HKF9NNlHTl6+9LERUskzVqWbn02ZUAXXOxRl2DeiighGVNHdpIyEP\n56O0jgM8XqmolCrOO1Ai6gQfvpTqlOMnRSHg6NGj7D8o8h3zC7OU4w8ew8iIgPynVqxi5XJ5kU1O\nTFTkM97TC9CvhcLzyJMiE9PQiltukFJOkjS58zFBaXSbY3zis/9YfqurSp7yoML12DC1Ek0Jb6uI\nBrWu7mPnXERsnA0715xoP53vW9/61rczsLd0Y8k7JSneWbLEVMUCkzQio1OSpEtAb6V2d+FheEIi\nCt0a5tAJSXXXjLaiJs3E+DiNhlyWQ4cOMRXEwfbs3s2JEyfCeWWMjgvp7sWXbuOZZ4Rw+fNf/Gs+\n+IHbwnbakfl9oJXwsQ+LdO/n/vzz3H77BwBYPlbtK+vOkoaGi4bIoq+8i9GqVx5XUq+peoOKiArA\nVRLLRVGgY5TpSUIaaoscG1LD9kCbTsDOWhwuNG6sdWQhz19c6PDU008CcPrUcT71SWGhyjrdmFKj\nwJgkYkONroTSjDY4W0VRZYQuWlNluurirLp3Fh/2bZIkdvaVh1agPuz2OvgIinSRv8B6R5HLMfhU\no0KZo2l0bTCjx4pxiTJXTIyy9bzN4fx1jMqVUihXMUyZSOnkIg+AMSlpiINOHz7Igd2S5fzMz/wM\nrifliBde2c2uQxK5//z/9E+rhqcLukwIvHntpEg1NxuV1lFR2Hh/9Hq9GM0naXrO6iGdDXtLp/Ob\np1ZHB3B2dlOxoVsVuq6Aci5ChF7ac4iiBFYrgfQAbH/sbh740h0A/MQH3o12QWrCJzz82BPy2x07\nuOxymYXXNXIOnSTs2Ssp4PbtLzI8Ko557+FjrJyUz5/5sY8wOhAmZ1RGKzwMJ2bm+f3flymoa667\ngfM2C/xlxbIhXJjGcTajGQgycudlFlvOLJ564supIqGkc6oSIvMhFU6VpohwojRCi5JaKpj1OjRC\nmcJ5RRH20etZDh0JNb6HH2Z6SkoQP/Ijt7EwczqsMzF9bzQa5HlODRuOr0GZKrJ2FR2AUqomylap\nfUrNT6zILWkJZSoqFIUxOm7TujwORdhaGUEpFeFLNreoMG/eaDTIw/W23qN8Go5NYyjLDgW6dJzK\nx3Qb5StavMQImgN44MGH2bpJIGobzzufI6cF+vW1h57iRz/zcwCsu+gqvKtNJpXmLFvXrfuuddBQ\nOeykQmMID0A/nS+tn873rW9969sZ2Fs7nfcefza788rE7rzWChXf4C6C5NG1MTlTNTW2XHw5X/+a\nYD1PLWSMBfJirTxrpiS12rl7N6fC/PuKidGYqhZFwfRK6eiun57i6ElpPmVFwRNPPAXAxNgE73/f\nzfJ5OKXTkfRufHiAf/gPfgaAv/jiX3PkkDAuXXX5ZUwul45xs9WkF465cL5KZxVRLlopYgvdo2Jo\n44kTimTexoi8Z10c48xryU+zPRyB5wudHjMzUuJ46aVXoszzBz/4QVaFDvbC6ZlqhDWphh26vR5p\nmgqWE1nnpFHRzbmi0qA3SRntOXxI85NUY2PKX8RZcmMMLgDskzSN0XdRFHFUUiLMsmmUxIi7Hu2l\nSZMiIAQKZ5fmRyUVHj7S8SnvI4O90ipiQz1ga8z2e/bL9VtY7HLxNtHUOnDsNF97WMofN33go6w7\nXzDCwmBV2284r61rVtdGmS0mKdctj0oBzjlpmoVjOAvT1OesvaXT+U2rps5SOh9uLF/VXLVBVDuB\ndmriHHqXlL2HJfVGeVwAVmvg+UeEGOLJu77AJ35EtOOz2WOx7vbX9z/Ozl0Ci7ny0q0V67mtUi5q\n+urN5iBHjokTuuehJ3nbddcC8M5rL2OkHVJs3yPmg6bJjld3A3DfI4+y9UJ52KbXbSAJDm9y2QgD\nYXN/6EQAACAASURBVOZb2SI6Ee997GbjFbZ2G5Xz3x6NDQ6vrLeW3y9n3E+dmqNUH9+zZw87vi0w\no6uvvoLrrr0GgIW5uXgdnXOxLquNwvkiblYpRapLffosUreVv4OlPK91errvVP4sU9ckSSoBu6Kg\nmbaq4ygB6rVt1tfBu6p04V11DMYY8lDWSZIkXo96muyVWkLlV11vHRnvT83O89V7hDbx5lt+OFIf\nPvTUN5ncLGD7T/7dvw9qIBwbsewAno1hiKCRplhbXctqQav1QfkaqEmd0Yz832T9dL5vfetb3/47\nsn4k+n1YGTmhq05mQ3vKlK7oZTSbErHk3vDqQUm5UMWSfKp3Whonv/3v/w9uuU4aSKuGfWRGn8sM\nX73zLgC68zNcfKE0DjTE7yhdRUK+cGQ+dFAHJ/j6fQ8AsHnDem59t1CgGddhMOic53lBoyV409mu\n5cnnvgXAiy++THtAjv/qy7bRCkFkK9ExokwaaQSqO0XVCUfFxpJF08sk4sy6PQpbYSaPHxOc5Cu7\ndkcg/NYt58Xos8gWsWHQIE0MLiAN0qSBLVNb7bG2NkfuXKVJ53XUW8qzYglmNDZOauxOzrlaaUbH\niC3LMtKwXqItFCjsbEVPZ6nws6oWQSpXMS5pXQ0kKE2VGnsf9Z9UjZHeex+Jni0+jr12sgIbqnAP\nP/Ek+49IuWfzBZfxwks7Abjltg9x1U03hwNqkIXtJEqjwnqtXztFuyyv5Dm6NmpcmqrudJzyWF+x\naiVnsWF7rkWifSf6fVh5a+VOkYR0WtluVLDUphlB1tY5TJid37F/fzy2uj17/918/SvSqf/7n7iV\nfCF0nxst9u4V3s2v/vVdDA/LjPwFF2yK+807izFl1EbFlFHphNzJ37/4lbt53/sE2P+2a7bR68wB\n0EyTWKczukGjKUB9rxS7QhlhxysvcfKkQKuMSSr6vsER2m1JE7XWUR3UUFC+THSacOTYsbBojm5X\nOslZlrFhk/CqXnjBxYyMSi22yDNsBKe7ErMO3kanlueVoJ5wDpQOyOAcNBoh3bY+KpmmabO6C7yi\nFwDzvV6vtl46dq6tq3Tnwcei9vjYCNpVIPwS8jPfWYjSGU65Cn1gq1Qv0Sbuy2Ej1Mg5twStoFxV\n0y0drVOGXgD893zK3qNyf/zWH9zBRVe8HYBrrn8n77hVoGvoNDofBxVnqtHxedi4djqWEZxzsYyg\nIU75LU3ZFXnpRBW1Cacf/PN1rjnRfjrft771rW9nYP1I9Puw14pEG9rGue3C6djtVDVQ+isHDhLp\nzWvvL7cwy6/9yr8F4F3b1rJ5tQDpu/MLjIwKyfLj33iWx78h46BpAlsDQ/746HhkWPfYUloHVfTQ\nSUhnaXP3fQ8BcMMPvZ2rg5QytlP1pQoijtE5F5tblmq01SRNTp0WJMDxk6dZXAza6c5HguJE2dhs\ny4qC5cuF3HjZ8snY6PE1fG2WZdVAhK3o64wmRvNa1cY2ixyTlkxSCc1a5HlqZoY8NFcWOxndhcA7\n4GMjmqIoWJiX456fn4/dfZWYOLoqqX3ZMFTMdSVyHxoaohXo4JRStNqSYq9dt5qxMfm7tVm855T3\nGFeNgJZNMK985EEAIjbUWxfHYROtyEqaRZ3SU3LOp3qK3/gjodr7xE/+Pa68UTIMn3lUKZSoqCJR\nVbvTnGXtGhnewFdDB2nSiFHpkkgUFxUFHApfS+e16keipfWd6Pdh9ZqoDzUmbbPoeBa6OWkzULfZ\nPNbarNLsCkQSeOKUkkKx6yWZOvrcb/0Kn/oRqWcta4qOOYAZGGZXANg//OCDzAUezYHRMVaGWfiR\nkSF0AMw3VIYN9cik2WKuJ8f5pa89wKc//eMAXLBxCh3mv7OiAomnNa7IvJdVtUVbVBM1xsTap3I+\nPoSJ8jE9VcbQ6Qosy3kVHYdzLs5nJ0ZVHXLv4/a7vUpJVWsd0/xmI2FhQc7x0NF5Tp0SB5dlOVkn\n50QoH8zPzJF15HtZN2d+Rr6ngXbQlB8aGIi1xnoHXGtNER7ezFuOzEn99oEnHueQvENoDMDoMtnO\nh3/0fXz2M0KEYjunMSUkSvnohJSqYEpKEwk8FAZny6EFXa29K8hCDdknTToEEpF7HuGyG24F4Lr3\nfBBKohhfS78VcSLMNDSEevKGtdOxRFI4F/drjKmunyeWSGR7oaQAUdGU+JezY+eaE+2n833rW9/6\ndgb2lgbbny2Ls+RexbQmbVQUaCatRhy1ipOJaDQUkTMNpauIb+OFApS+/WOf4fN/8d8A+MBN1zI5\nKhHI3OnTTK2Q1P5TH/8Y990nVHjf3rmbQ+FtffjwYSbCTPbUxDDtESkL5L1OTKVvuukm7rn363I8\n73o7F5wnZQHterGrnOe9eNBJmlAE6rw0SbAhyiryvOpCqwo3WHgf8ZPWU4HwvYmhUiOpUA22yCIT\nvvMVMiFJdPytNL/KEgqcDNHnPXc+xImAi+3MLzAxNsH46CgAI4PjDAxJlKkcNNaHZlRexMgh1WnV\nnS+KCoupdRwAKDSsXCkE1U61eeAZYUpa9Dmn5yXS3/HqPpIylfYK7ctmnYk0f84Tu/naVzpdSlcY\nVaV1bIY5p0gaUiLITYtvPCnIidbwJNe9RxpIhasY71EVbBfnMKG+smblSlIta9pKk1iCSRqNWCIp\nckcdxltiRSX6rNu5xjn/xljfiZ6BKYqoz54VttLltjk+1LmsSuKETeosW8KM8isHDkbnavGRt/GS\n62+hZLb/0z/5fW6+XpzrhetX4nJxHtZ2efe7BAp0043X8+AjjwGwZ+/+OOE0NzdHpyu8ntOrplg2\nKbXJkVSxYZMQXnz+L+/iYx8WfsktG6bBBqZ2rUlNSahBhDLlhaJ0ZkapWE8VOE45paPxZfnCehqh\nfunyHJuXnKBpRdhh02r8pT5S4xxJnY0+rI8xLU4cFcfZO77ANZsvkbVNU1xR4MqXlHP4QPKpvI9j\nVIlSUn4AMttdksKX5oqcVgDV+yyjHTzMleddwqGjks8/t+PbTIyIw75o41aapayJc1T+yIfRCrBK\nVVNQnsi0LxCoipe0V5aHkgYdJ2v3yv7jbN8p1Ir/4v/5Ncpag050nA5L5EQB2LhmOk5ftUyCVgEp\nknUZbMk2iwrRJVCvuvhcrbNf/lkrh1bletZSe38O5Ntn2frpfN/61re+nYH1I9EzsPo7WBh7KlCz\ni0Ds6k1ljMGGjuv6qWn2BBC+crURSgyXvO1GAIaHx/nL//a7ALyycye3vlOiT5MUZCHFdnmXd14v\n453ccD2v7NoDwLde3BFxmUeOneDocWmO9PKcqSlJTzdtvYC773sYgPEPfYDxEUl/TU2PvXAOVEmR\nZ2I05T2ocr5T+SgR7fAxOjHaVN1vpSKTlLVFbGpI17rqANflemN3Hh1BDTbv0Q5Nu+HmIMYFvaS5\nDkapSFhMjYgZV9Oq9xUwXpAV4Tr5Sq5YJTUyZdk7AHkv56oLZJzywL69sbG2cmw8NhiVd3HmvZ4K\nO2pDEc5idIlUsPHYlNb4sNYuaXP4pJQL7nnkaT77T/5V2FITb6rYJ2oHOsu6VdJgNLXxV7yNnA5G\n62r81euYIeEq7oPvtiq170dcr2397vxZNle/9ZyjGRxAJy/YvX+//N2YqnAKNYdayVH8+R/+Oodf\nFYbyt126lYs2TctPix55YHdvpCamWWmrTacnjuD5F15gZk5S4GPHT+LCA7awWLB7rxxDagw/FTrM\n05Oj5B35flIjTdEqIQugb+t0BIMnxsfcMLNFLGuYGuWk0xVsyOCXALnLF05O9fJRDhpBqM5nvZj+\nG6PYt1tS2wfvfIbB5rJ4nFpBu+RuzXLSSFtnqlrj67R7raqcqAMUJf1dBYbXScJiJtfjmR3b2XFE\nXoL/+hf/GeunZRCiqfKKmwAoSrrARMUXSlqrhee5pZGWEi0Gn8oAw74TC9zzuNRBP/DJn2J9qJm7\nWtwjCAfZ1+Xnn8/c7EI4AVfjAqidcZ01xKvXGPv4bov3r6oQFeXvz5b1u/N961vf+vbfkfUj0bNg\n9ZdnHVvnXIXFzK2lEXClO3bvjro8AckMCBN+eXFSVfDNR4Wx58kH7iTJpMl003VXsCIAvfOFWerx\nRSQQbjbi9gsPO3ftBWDfwWMRc/nqzt2sDsTHb7tqGxvXBh2mfJEijEk6b6L4XdJoYrMKDF9ixwtX\n03uvCJaEeUmXo6FVJKohEjEXXkVme6wnCRs1zsahBm08M6ellPHg3c9wYK+wtm+YXoPLMxJb0uSZ\nqGnka6nqkkjUVzyFHih0Ga0S1fOaSTOWNrIsozkkaIk9xw6yL0hA/8v/5Z9jc2nouWKRRjgHhVlC\n+lziLz0OXabtjlgGKkg5PieLdv83nue2j/8kANMXXIYLYHuLp5pyd2wKygfLRsc4eTJIXqdplKE+\nF+1ci0T7NdGzYK8HC6nTqiVJEsXXNq5ZQx6gQ/uPHKk6yfhqwslpLrv+RgAu2nYFd335CwD8t7se\n5ZKNktpff+XFDAfNh2zhVJSpSL2jCF3rTtZj/bpVAFy4aT2dMOHTe+cNPPWswHe+8cyzKL0NgA3T\ny8gLKRfkGHTJL9lbxIRzazYaFLmkualSEJyOV0mE9bga8FzXCDvk38S/l/VHryu4E1qT+aqM0ApT\nXIPLl3HqhVdlDf00xmp02Ie3GhcnkGyV3tbb0MrFl5wDAhKIBIf2snYtpchKCFIrpRteKO12mwuX\nS225rTLmCcqixuPC2yM1mt5iyUXaiEiOwvawSr5jSWgMCBTt2MkOdz8mSq/v/+inmb4wTJaRxFTa\nOxtfspumpyt+V0CHE7C2Rz/JfOOsv9J961vf+nYG1o9E30ArioqSzVpLYqpZ9TJ13Ty9hlcPhIaT\nVxVNvNaVBtDAOLf92E8AcN7F23j6YUnzf//zX+Wy8zcCcPUl59FsSxQ0P386zqcnSRpT6V53NuoH\nea+4Mug5vfBiwtPPSkSUmEvZsE4irpm5Tjx+nSgaJX40z2NjrN1q0Q0jpgqHfY33dBVvhtNTNWJk\nXw4pVPpEDl2lvNaTtuSY2yMDqKAIYHGCAY1D46amapBAXSc9ptVUMbHXmJK2TkEjNN9cUUT5aJpN\nFroCVj8+c4Lb3vVOOaZsIQrJWeVJQkMszwuRYgbyzGJCK90bE0XuGu1hnnlRGLOefH437//4TwGw\n7tJrKXNZKQWEppxWbFy9OpyGF1FEoLDV8IPWMRno2xtgfSd6Jqb+5m5l/a9ah0kcgMJhAyGF1kms\n2+V5zvqVkm7vOXwAao5ALYGhiAPecvEVbLlIUu+d27/JU4/cB8Aff+UBxgeljva2q7YxPiy1POML\nbLEYtxBTZteNjuPyi7bwXPjOA/c/ytHzhcf0qsu2keVBYI2EXlCw08qQBiKQ2cVelM1YoluOWtL9\njkm1kv9aft+GWf6GTtCqpGrLo8yI9lAExMKyFaMsWymA91NzJ1g1MkmxUOnI5wHilTaS6vKoCkng\nVEWwoT3RtWuvsaFmWXhVfoXcO+YDtEwNpGwO61IUs5FtPk0adHtlrTiN55amhiSR/S5mPVpjQv/3\n7Iu7ufNheWH95M/+MzZdInC1Qqlqm1pR/mPd1CqaQb6j0+nQDE600WxiZ2bCennUa/CD9u3sWD+d\n71vf+ta3M7B+JPoGmtYViNt7H4l/bQ1X2EgSstCkufqiC2P6/MRzz0ciX5Sqgfk1JkRNmy6+kk0X\nC55w38vP8+KzIlZ2z6PP0AxR3WDTcN6mtQBsXruCVlMiFlO4yLiUpinXvO0dcjxDK3n1FWFM72Qv\ncNUV0uzQypOFaLWhfdRMStJmRdfrq/PS3xG1uyWBu4p/j5K+porBNbX+moPcyvqsnp5g9VoZZ332\n4WdYPj4BAXOZ25w0LfGYljL2daoiWXaqhletf/aqmnlXCToMCXSzRQ4fFyatW3/kFoow1NnLswpc\nUTjSJIyMeh8fsF43IxArMTQ2ybMvh6GInUf42X/0C3I+W7dR1JAZjdoabZyWkkpTm4iKGB4YjHwN\nuXWYkmrQ1dt2fTvb1neiZ2BLOsyvk9ovmVqxNtY1G41G7NTXwdnKWxpJyS/ZQ4cUe+OqSabWyNz9\nI08+gzblpVPxQUpMEi/o2vMuZe1Wma5hfpa7v/JXAPzyL/1bli8TkpIVE0OMjQo8avWK5axfv14O\np1C4kA5mNNlxWJzWVx9/hLueEAXOT3/kVrauka6yz+bQIYX39ePRqoKYKV+bKVfVZ1ebNFeetOTW\ndJWyudNVP1/4MUP9tanZulWO+aXt3+bQ7FEm2qIKaqxlMNQjbWap7byOvIr7EFaAOCkenXzhHYs9\nKTAemj3O5CopH1y6bQvdngwkpInGlLIhTgD6IMz7Ogk13hSGJqSWedfDT7HrgFAZ/sTP/VMGVk6H\n/Zo4c5HoCi2wYWqKpCzdKk8anOViZ4FmUBeYm5uL6b8xaYRl9e3sWz+d71vf+ta3M7B+JPoGWp0p\nKMuyCEr33i8RUit1zo2ucKXWVixRl2+7hGdfeFE25Hwcj5SGTQi5PDE6pDXMb//h5wDYf2KG/UdF\nM0lR0Ays9cODTQYHA2g/95wfxgw//uN/h8++58MA9HJP1pXo61uP3c2d99wJwAdvvYnVK0V+d2Gx\ni9Il9rKImXqdaU0iyTp+tOw4VeugvIvddaVrmvBUM/F5p8OG9RLFXXXt1dx3zyMk05JKT7TGyLNS\nr6mWEXhFnAz4jjGTerNL6XLfMLcoUePxuWN89jOfBqBwixV9nANfitChI5CeWhe+OTzGX94jPAWH\nZiyf/uw/BmBgxfqYnVhc5CAweNaHFF47jwnxTrs9wEIvNAbTRsQaa13N+BeFe/1R+L79wK3vRM+G\nvV5qXxsOM1pHWJBWNdJRiJ3owlUd+UZjgMOHhRXfGs/0KqkFHjh8NGpfKEzt4THYMFP/9376p3nm\nmwKkN8bEGl9hFWHamoXZjNtuvAmAj37iM2zcfD4Aq9eurZFTVAyT5190Hvt3S2p/z19/hZP3PgXA\n7Te/k6nlUi5Q+SKE+mVd8M1BhC95Va1LwxhcqQhqfG26q6K/MCrBR0Z2TZFJcn7l1Vdy/PhpnnpU\nFAIu3nAhq4ak3OAKjw8tdltYyZXDWrgAnleAD5At7/KYo80unmbPod0AfOzTH2NiUs4t783FQq1z\nLta3vXORK5S0RS+k+X/4Z1+jOSmlh8/83M8yPL4qLouL3ARAqLOunVrNcEvm8W03qwhbTAOtxXFa\nt5TT1ZdEJkrxXW+Ivp0166fzfetb3/p2BtafnT8Dc7WI83XfRt8DfnTJ12uf07QZo7RulgmuEfBG\ns+/godqeVfXjkvKtyPnZz/40APfc/VWMCcTQqaIXwPDDY5N88lOSnt7+/ttYt34DAO2hsShL7CCy\n2Te0rx13RdDss4J/8wv/AoBnn3iISwPg/0PvfRcb10iaP9pOWJyX+XJDgQ6z8LZwlYCdtZHASitX\nlTXSBrbswXkVozJsQdqQ5lGhUxYWemx/7iUAHvv6IyxrChZz07oNEEiTvfdRdQCqEoumEs9DeXIk\ngm6PDbH6QlmX9VvXUcRmElX06X0cWujlHqvlmBZtwhfufgCAFRsv5PYfEyB9Y2hZxP4rRax1KArW\nTMss/PKxcVwWcKVzC5TXeGRwiFOzQVJbQxIY7F1eYEIkLedx7nboz7XZ+b4TfRPYd90npVAYrnrg\nTQMXHpIdO/dEJ6frv1dAV+p3f/9nf4Z777kLgCQ1FMEhXXrZZXzgR6XGedPNP8zYMnFyIyMjVC68\nRuVWeHRS8onWoEJUju2uex7i3/ziLwGwsODRgWhkWdOxfqXUKN915Xm88+qLAFi/YhCfS13P2orv\n0lsdnYKiAsV3eos0AhRL1wjZjEnpBViWSRp4r8hy+a+zJ2e56yv3ArDn5Z1csEnKE2ODo5VyqHPx\nxZQXWayDDowMsW6jpN6Ta5bTHguigxTo0NtvGi0ihIDXim4RQPWDYxw5KUWS3//zL3PLRz4DwNtv\nvh0VoU8Vs721UroAWLtmGhfo8latWkU3CO3Nzc3Hl+PkxAQnjh2N19UVVU20tDrRzblo55oTPXdX\num9961vf3gTWbyy9iU15F8Hw3UKY1YGIE5QvUZuvh1/4V8KAft/992JDzvjeW97LJz4pMsmXXnYZ\nI+PSlHKmuSRO9yG0VHXm9ERVDTGlIBCxFc5z9IREXL/5B3/K0YWQkyZjMS3udGbIjoYIuBjhjq9I\nd7rpZrnsItF5uuG6a7GhuYPKK+Yp7SgZ9dqtVtRwAuL2vXKxpJJi0dpAKv9etnyE93/0NgAO7z1E\ni6At1Okxe1LKCt08Y2RMGkVDo0MMjgzFz81BGZP1xmFdiHa1i2m4V5BHoucUWtLEeuT5V3jsKSFT\n/ql/9C9Ze74MJ9ikRRKXsQqvTEIs+ezbdzBGXq6wMQPwHqYD5V0n71W0hrmlGcoZ3luKEBmnjTRi\nVft29q3vRN8E9p31lNgL1yYCqG2e0W62wg9cBdBPEkrFuH/1C7/An/2lgOo//ZN/l09+XJjq16xZ\nw9DoWLWD8NPcOkwctbGV83QKFxjsdVJ76L2JDltrxR/+scCmXnz1MOmQ8I/OzWfxhIwZZOchmfBx\ng9Ns2LBFNpPN8Lm7vgzA73zxPq6+RIYC3v32q9kyLTR3TVNQZOKkvQUToFi9rsME8bvcFjEFRzls\nnYQjTRgZl/UaHN6ACvXFxCm0k1Tdex/XzmofZ+RNqilsJ3xOcL1A/mESdJiC6uQZJAJ0z/Qgf/V1\nQT/M5gn/8pd/U74/MEQWLqBewmNa1ZlF8z2OTcWv6MRQ+Gqt9x85FLZDXN/1q1bRDRAnpWvQL2uX\n7q9vZ9X66Xzf+ta3vp2B9RtLb2JzviITTpKEl/YFijxVdcYBtn9L0seXX3mVK666CoCpqak4z210\nElmA6ijsohatJPiIVfX+O+KY2j/Kkcmv3f0Y/+e//w0A9PA6dh8QIby52fnIDJWanO6cMM/fdN3l\nvPem6wEYHTTMnBadpBeee4qdLwq284LVE4ymkpJeef4arrnyYgDGxkfIAqIgK3RckzQlyvhSWBKt\nIrm1MSkLmTRmGmkrSBODsh5D2ShzFL4kkFaokqpOV0J9Sqn4/bxnsUaiYN8YZu9RiZR/+44v8/h2\nibiTsVVcHq7Bhq1buPoKoRe86vJLGKoRK0UlAGtpmWoUoaxsJGlF3ienWzYbqaUuKjbfNq2eRoVf\nWGsjteK5aOdaY6nvRM+yude5CfT3sOpKmao7rzW7D4isB8Ys+V6ZGmqdRPiPqX+nGhDC1UTMvFIV\n077idSd58rJ0oDU7dgvg/5/94i+z96ikvKo5QTcPae7MPDOz4lCbqcUEqFCaz/EP/55AfMZGGrTb\nobba7XD6qAi+3f+Vz3PdJZLyrxiCHd9+GoD1a6c4/3zprl94wcUMhjqgzTskwYlqo8iyLu0gueKc\niy+M3FnKyX3vfRSeMzX+Uu99NZ+PpO4g1ITthtRHO7niVCbb//JDL/D5e+XldTxrcrori7buvAuY\nWeiE5dKoLKgCdGZZs0KQEBdcsJ4brhXn+t53v5PhtjhmTaVR6K2rnHr4X/m5ZB6wRU4aEBtSEpDv\nbF23LiIHzkU715zoufu66lvf+ta3N4H1I9GzbN9fJFoyImkKX7K+E7uyEpGW52ViJKqUiXPb1lfz\n6vUr7GuvzboErvf1BlK19dzBwWNC9vvv/sOv8dV7pcOeJ8O0R2W2WyXjOFeSJltOnpBUfWH+BEOh\nFzZ7dDc/+1OfBOCi87dgi17YV0GrPNBsgeeeeAiAmcO7+aFrhWx6qOk4tE/o+E4cPsja1UFQ7+or\n2bBOaP2sy1G6Ipn2NidNJUqz1kbpX69UTHuBmPZ6HAFiildpZLN3qkEnzOA//NTL/MW9zwFwLB+B\nEYmaD88XnDwp0ffosmU0hqWJl+c5Jf4h1R4CoXMrcWRd4S/oLc4yPbkCgMsuuYC3XyelgFtuvqFk\n9SNJvnNmI2QbqOoaek89Jto0FcZKlfuesp43k51rkWjfiZ6B1a/v97KIr+dQ66Z99T2PiVrlrSTB\nhku18/CBWo0zqaaU0PFhKxyRIEO76mBd7cDruuWg45NqPczNy35//Xf/K793xxcBaI6vwaVCUnLi\nyCFUIpCg5uga8kJ+29aeJIiwnTx5mN6iOAtjZ9i0RpzFJz/8IQaDxAfeoU0JFcqj8Nr88RM8dPdX\nAFi/ssFVF4rDHkstNnTtn/vWdhYXBbR/8cUXc+3VVzI8OhDPzQW4VDNNI4EHzkdSEKV8hG/1rEcF\nzffTizm5l89fue8x7vmGkL3MMYYfEDrCmWKArpY0PzEp80elXj3fWWTlBoFvLea2IlSxKmrkaQ0u\nrJHRChNEBFOVUwTn2pk5yqUXynbefs2V3HrrjQBs2rCaZriuaQL4Oj9tI5wjbFgrtHs279GoQeKU\nq+7U8nb08gblb7K/7f3+/dq55kT76Xzf+ta3vp2B9SPRM7CzFYmWVnhHoyHRhcurhlDXO/YFRiec\nExr48iDKiFMRZZIbxsS/28Khktq8ePgPWQEzcxK5/fEdX+D3/vBP5bdDE+hBaYic7KZxVn326G5U\naL40R9eTW9lmU3uUL8HzlpNH98l2/ByLp4NO+8//HBMjEukZ48lDE8QZHSWMk0LRDvP+u779OM8/\nISOsl29dw/lbJBrUWpMGnOfJI0fZu/uVqMu0ZnolV195JQBjI2OUkGjnVTz/goqGz6ctXnpVGncP\nP/kCM4uynRXrLyRZLrjSP/j810mWia7SXC/FhrXTFAwEQP6JowdhQKL18RUr6fQCzZ1VJLo6hjyU\nFBKjaPiS/s5i1EL43GMkHGdv8STzs8cAmF41zic+/CEAbr/1JiaWt8I1VuiyeWYrzO/GNavJe1I6\naTUa+KJWyqiNv34v928/En1t6zvRN7EpqJFiqFjXQ+vYfbd5zq4jAq/B+5jmW29Q8SHxUfNcv8D1\nMQAAIABJREFUY0W7HFA65eSMdI8feHw7v/Kf/wiAA8c7jCyXWmPuE+YDvMjqhIGQMXaO7YipamNs\nAz1b4XfKY1aJR4c64MKRA/ROB2mNG6/glgB38oWNtV6vFEVINxPSWO9LdUaqxdEe2v0Szz4hddmx\nQcNl520CYGLAMJIqWqmc58zpU7z8stRRZ3sF817WoqcbjEzIxFYntyRanNDMbJdlK8RZTm3YzMSk\nTAj5tEWu5KR/+Vd/Bz8qKfZ8L4kkKg1taIfa6ukTR5hfFFjXyulVFEpeFr0CmkkzfM6jYKG3FhMH\nGHQE/3uf0Q7dedtdYFB+SqId2YKUMPLOcf7jv/vXAPzQtduWTs4E1MHaqamYzruiiC9pVRMR7Kfz\nZ2b9dL5vfetb387A+pHom9DKl2+idYzqCu9RQTOo18tiQ2RoaIg8NFBePbDnO7YUsI7WxfTOeUen\nI1Hdi9/ezf/8v/07AA6eKmgvk+bNqY7GmzDSaB2ulBU2MJBKVNo9/kpMpZPxDXRtAKE7hQ1rbnG0\nQ4u5mRf0TkpqP96a5yc+9UEABgYGK8JhreM8OspEILl1eWTgT/EMt+R45o7v47lvSFQ6d3g/W9at\nYmMgqx4YbONDo2XPkWM8tUP2fek1b2cqUP6hUpLIBWDoFgGEb1KKEEFv2LCeyQnRbbr9oz/O5Jar\n5fvpKHMdWQtPQisqCvSYOyVlAZ0aRkNE38s9tmTqr8cuztIMkaJ1jsWQbafNJoQyx/5dO1i1TAia\nJ8ZGYwmipToMJdKI+qs/+23aZcOMosL8IuOhINFnow7Cj8MVvp/On4H1Z+ffxOZtNVNkdNWpVzpB\nhTrot3fuquhEbYGK6WBRTfZow4kZSQFf3nuEX/vt/wrAfY88z/JVkp6qkYTZLMCUkiZZmVabakLI\n+Ypz0zlDbspanonTT857VCgdpIZIioHTDCwTaNKBXTs5PTsn32k1aYU6q8t8nN7JXS41SyBJU7Iw\ndFA4hSsZ3AdXceUtH5Fj8I59r77Enc89GVasoJsHZMPoMt52m8CrWkPjzHflmJqNhMUsMO8rMKH+\nnHc7sR67vAGDmUC8ppIOK7SQlxzvLFKk4lwXC0U3rMtgmtIekpro7OlT+CIMGyQt8uB0G81mnIgy\nRkW1V+s9SViLTi+LL5HpDVs4vOuVcF4NhobHyyXFduUafP6L9/DxH3237Kv+WDsXwfmJSci6ch+k\naYoN95P5juGN17O3YLT1A7F+Ot+3vvWtb2dg/XT+TWhl9JkaTTek6l4bbIgw9h44GOcDK9WjsicR\nMJfO0w3o8SPH5/jV35Km0R/96ZdYu0lA7F01SDc0hByKkj1NUUWfRhElkI1OSAPh8uKpvbXG0hoy\nV44iOkxomiiVR7mphAZDQT7Yz+3h/A0STd104/WY0ARpm4FIStxoabp5GCs1aYWBzGyFozUqXl3n\nHHl3MY6QfvPZJ9myVaLsTedfxOlOGG9tDtAIukdtDWpRokzXWYhic/MnjuLm5O9jAw1OBRLk+x96\njOOBDeowowxf/j4AjmWNOJvfSjyqEGLsk8cPk6aCJV2+cppON5RmMHHtiiKPeF7rPZZS5A90Eoio\nnaUdUAdFL6NUs282LG0lEf3UONzxu/9XWEfiEL6uYUTXTq6g2ZCdpdqQha59mqYUbyKJ5X4637cz\nttIpdnOHCg9h5j379h/8ru8W1Bqr3kfG9D37jvPHfyZg9d/83Jdojwr4es2WG8gCC3sXTa8EgCsV\nt6O1iqUDax1JM8CsrBfOTkCpNCpwYh1GlY4TTIko8I400NZl3ZxO8NJjI6t5eZeA06+7LiMN8/V5\nZ4E0eN3sdAeNPOTaa6wrSUeadMPDb5sal8j25+c7PPLYY7Qa4ni2XXo53TlJvV/4xuPsDI5w7frN\nXHapKJm2ejnb75I1Orr9OWaO7gJg1fAgA8EpnnKeoQHp4F/TaHAsbH974ZgJdVNMCxvKFpnSNFP5\nftoepTcnciKul5EaSfOLLKdwsr5JkuBVKaKX0WyEl6NzFHGqywdyA5FNOXxYaq5bNm8gy+X+2H3o\nCHv2CirgvPUTJMEBy83k4r5KnlHnc3zJy/pWjKPeQOun833rW9/6dgbWj0TfhFamq66mt77v4KE4\n9658RZPmVSmyC/v2HuORIBn8G7/5x3S8RCljqy+iU0hkMp+l2NCYcUaBKsntVEwxsyyLIH9vqmaS\ndR4fUmG0iak3NicNXXinq/KJR8coxyQ6DgXMZxmnT0oa+uS996JnhXB41BvyeUmjO/MnMFHPKMGH\nCKpw4EOn3qYJjWVC4vzK4ZNMrlnP5vUCxD+64yVO7tohv8l7tMeFwf7UK13mhiUi3Ln9RU49LY2o\nTQOKwdXS2W/6jFY4T1X4ErrJDDkL4eLovKg63UU1COGcoxcwqa2BYWxPShKzczO0ApGATpI4FJDn\nOSpE00oZXBl9AmnAsFpryUPUO9BqRLLqIu/FMkqrOc6v/8bvAvAr//s/r9IZ72Kn3qmKH0FrHa+Z\nLYrvCSfat9e2vhM9A6tPIH2vJA+lQ9I1+JIxJjqbuma4U459h4TMw/ua59RV6r1331EefEwc5+/+\n8Rc5fEoewtGJzWR50G3PTSTUSJTCUUFhGqUWvCJCXpJEx46xwGmqB88Gxvtmo00RWNW9KyIw3ntX\n6bGjKMrzVdXhO2XYMC1wqpfu/jzXr5CO9ApvGfSlwqevdbBNDQaVkAfaud5CwYlZSdlXDy/nhisu\nZf2kdMzvfOIBlh8O01IaXt79MgC3f+JT7H7mCQD2PPUUVwwKlGvc9WqELSpKqyRGyzkBuW9wktA9\nT4fRRj6bnhf8V7hOpWTJQHuImeNSRnC9Hu2JcD16OWlIsU1SrZFXSqQEkBn38gXqlcaGF1COoxEG\nCoyWgQmATneeHa/sBqQcWmbzzjmSgKLYs/8gG1ZPxePM86o730/pv3/rp/N961vf+nYG1o9E30Cr\ny9hqreO/83wpbVvZed974ABl/KZUgo+hEjz51AsA/N//8b/w3CsSrY6uvIBGkPedydKI9XTekoYU\nOM/yqPPusOgSSO+XRtaxV1U/Ae8iabBKGxGEnxUFaauMaB2lOr3F1H7qiTRGSuMDmfDkylWYQhoi\ny3XORCgvKOcxoW3d7fXizH5W9PC63L5lWWhcHdm9g1fu1ewP/63Yv5MLhiXKbGjHSEvo6Z7/8hfw\nLUnnN44M0OpJU2sgNfRCypwkOkYXzjnKcfN5oznhA4HyxGrmQyTXTAYp8pKJClSIArt5FjGjvc4C\n86HR1R4cxpUbVaYiyYYoQw0K7ZPwd0c5g2Cdi/hR7yuKv6QxQLcnaf699z3MLe+5QY4zSYg/1tUF\n1lpHnfperxfvib797a2/cm+g5XnlwKy1Fat8sxHTZ6dqqI7aTW9xkZzjxRde5Z/+j/8GgKwxzsQq\nYX2ftQMshIaxJOEly72isJLmm6aiFwDmWjUjiYaRR1iOp/bZ1WplvpbamzSN/JvkBa2Sx1RVumse\nFadrlFZRTVR7x0K50fEpvrlTYEnTEwkTYfuJ9fieHEPLa0oVkAxiet02JjLH3zw1wf59r3KyI1ve\nuGqSZtBkb1hYEWBXrZZi/4yk2HmS0BiQWmnu8ji3rrxD2RLilWCDo57JDfsCMcnQ+WvoBdKV3NrI\n4+qdi3R+3jrag+JEu505XFfqwK3hATqqpB1UFY+rUxS+RD+oCvHgPCoN+6KokYvqyDWgdcpsJn//\n0tfu56ZbxIkq2Vi52tUEnHORyb/VakU0Rt/+9tZP5/vWt7717QysH4m+gZamaUWy3GrRCUJqWZbF\nCFUpxc5Dh+JvSk12n7SYX5TPv/pbf8SpTuh0z2b0TklklQ4tpzk0Wv02RCy5LTABZF24LI6GOqdi\nOu9wxCS2pudez+eN9lGqWddGBfMaUNujcCW9nLcRV4o3Zb8JhacInY98bBWnGxKtvbJ4molRQRQM\n5j1aIYJSJiULUZPHRfakwtuol0TWZcPocGSZojNPox0ImrMezUy+t3yghV0ma33k5GkWwnnmuIgN\nxRtM2Ec3L+iGU5j3irwpx3d4dhY1KmvtMkuiS2C8w4fhBG10XCdlTEURWGToMDzgrY4NPaUhd+Uo\nbb224mLpxztfsXkpgw81mAJNFhijXth1iFNzsq/lI+kSwPreI3KvrF+1MmKKsyxbUmrq29/O+k70\nDbYydZvvLMY6qPc+dmhFhzx8WRtUqAvmBdz/0FMAPPPqYUbWXghAcbrHzFEhoUjMMRYW5SEZXDZJ\noy2patFLKbM1rwxJLPjVmO1VxS3qvKlJilRoAaXABd5MrXRUEwWPUZW3VZEIQ6j3YCmjulWWIqSq\nWTKEG5FBgLWXX872h4U3dFt7kFb4yaK3Ed6lrcMFx9xB4YMznl3IoNdjMdQaRweaVF47JfXyvVMz\nBXYgdNhJ2LkgKfaQV6wJgw2jxpB7WbAi1Sw4cUizvYzWmLDzHz51hPEx4QLQqcGH75gaTEMpFTkF\n2kPD9E5K7Tdb7KBDrRTvY3kCreMLAgeeIm4zD4450apCL9UmywoMRUOu92xe8MBDjwHwwVvfESei\nZPFLUUMdX4hJkuB8bWJpqRZJ3/4G679++ta3vvXtDKwfib6BVgexq8RUmNEkiTi9nfv3R3C0tRYX\nGhZZAV/62gOAUNW1QlqpB1psPF9A4gunDnMs4BKzk0fRTWm6DI9MRpyhUkmck07wNSb8Gh2aV1VU\nCujX6NU7VwmgKQM6RKKqxq5vVNVlMmrpeGEIrOhaRRbGIae3XUdn/24Ajh/aH1Pq3FvCyD6tJGEx\ndMVP24KZADzvWYPLC4aDFLO2ntyF2XBXnU97aJRdJ4QlvpPn+KLkGrCoJIDhcREnqnTV1CLL0aGR\nNb5sZcSAjixfR6dTMmyZyEKXuwppMTA0wuKxsN9Oh3YIszU66i3hHaYsfygbRfeMgiIcj1Ymlkis\n97U11eRluG419z30CAAfet87KtRFbtFJhWctManWFpzDMvX/v1vfiZ6B/W1VFBuNRtUFrVHMWeei\nCJ3IbpapfUSz8OBDz/D0C8LUng5PMpfJQ5U5WAgPcGtoJavHJcU8tH8PnRlRoDR5xmRgal/IITWh\nHocjeoi696snKF7VIDWVZrv2KpJuaBQ6MtKrKCnqnUfFmXolThUBzPswO268oxcA7Pc+/k2uOO8i\nAHa9uoP2qDjXFpqkJDLRjTiitTDfZTaX47epJu/lTAbw/GijxVBZ78xzFoITOrFwim4u6ITBtEES\nNjacKFITapmJjs4s7xaMhI75uvYgJwLCQOE5EdLzdNkU3fCSEi4D2W/hPdoF3gEHA8OSbnfnOqRh\nkiltDhKAAOQuDygJuQQ2lBS0Mqiya18XmvNVjdprRVZWBdDs2rkbgNnZOcZGRVAwSUz8/u79+zlv\nwwY5TpujltRgazf2ktS+7mnPPWKfs2X990/f+ta3vp2BvaUjUUlF3zzmnIuNImttpCkrrGX/kSPV\nF8tGg4fFIHR2xxe+RscF8mJSXJjt9h6KEDXNZQVpAFavWLUaE8DjB/ft49gRwWKOr1hPt+yma1/r\nwqslXdwyddfKxzX0WFTZJa6l54ZKw14pLcB6Sgb3Mud3FHloZJg0dpVTbShDsT2v7sXvlCbZuDYs\nBPTCgGnEqD/P8xgNj7QHmPUS0R1Z6DIysYzZwLKksxxXNlSUYi6s9b5Tp5kLzae2VgyEkxsymoFW\nOS+fU4Swrp00Ig3fRGGYCgeycPoIq4ZFk+nk8WM0x6U5VjhFYctMIsGH69HLLWMTkiXsPrWDRji3\noVYLUw4IWL80CAz/75Q08gDyIls6JhqyFqUqou5Gc4DFTBpmDz/+NB+49V0AWGcrAmavK5JvZSJC\nAOX/PxpLb2D0eQ71tt7SThS+N4XN79f+tum8xVcAap2ShYc5SZuU7t4VRY0D0vOFv/prAB59/hUa\nEyLKVuQOFx7URDXi0+YTH7vh1il8EFhbsXo9e/cKfdpAtkjSkNpf7kFROnIXa21aawippFEWH6em\nTIUi0LqacvE5vihR/q1Yx1VVJQDnXHyAcy8z/CDPSis8nMu1o31aCEi2jI3CKUmXk8EWRpd14oxG\neBEtaxoWQingSGOAd33yM3Go4C9/77fZHPaxYmKCnfOSwg9tPp8iTCktHDrAaHihjA0MofKS1yCt\nSbQkdEPq3TBNVnipwR7PLQzI+b967BSrJsWJuowIdyq6Gc2mrLVXMF+qbo6N0itkO4O2QaLlHBpK\nk9c4FEoZEaVUhJGZRNMYlHr47OIMg4PCFbDQrU2i+ZTZAIH76t2Pctv7xIkao+OAROLBh4ky5W0F\nyPcOF0oHGlC1cs+Smvk55OTOtr2ZArW+9a1vfTvn7C0fiZZWnw0/08/frxljyCJgU8fZ8N179lTH\nmaQ1HSPH0998HoBmq4ULUYqzOQMNaRacnu3SDs0UC5FNKCt8nJlupW2Wr5wG4OiRg6zbuEG+n6uK\nGEqb2BByzsXAxNQikMITCYQLr1FhHNLnWWRcckkVohTeRZJlfNVwkdA5NKukOAFAY+4UU4GUOM1z\nlo0LzZ3r5WSB4b/RMOQh6jVpg25gkrr4uhv5zM//E752v+BM32MUk4sS7f3V5/+C1jo55xs/+cn4\nmz/51f+AdyESV5peWF9bVHjeTp6RhBLBgFIsC5Hucgwngl5RuznAieNSjhlbtgqbVQMVZcpstKvE\n9kaGOLBnNwC9djNS4Xmll7J5hei7lxWYtCzfOFotiW6LooiCes1GKhElQFGhQE6dOlVCQ/EqQ4eo\n1yvYtV+Isc9buybiRN3rxlW14pjysanoVPVM/CA/n0v2lnaimurCqB/g57offa0L/nqOtg7xMcZU\nHfn6tIizNQgLfPrTIrC2+bL9/OVdjwJw+FiPxQDtGRsaYa4j6alPfSQFSZIWLqTkC7mj2ZSHp+jO\n0w54oVypSHihVRpB3955Kl44HeFB1puYAnornWWATm+RXuD79GnsL6O9q0T0NJGCT2PjXD8KmgH9\nn5w+xeREqGnmGYsdcRAtbWg0w2CCsxGaU2BYCBCla6+6GsZGOH5apDmuueW9XHvN5QBMvP0axlcK\n9d6G8y7g3q9/HYDb/s5P8Y0/+D0ATjkNjfA49DoMtsN69TKKcv4fz1jgS51sar7dk+MbWzbFoeNS\ny22uWMZsVsKjEgolTrdhNO3wcjxwcF9cXq2SKAlCkqLDMENR5JhwnjLpFr4vbXvZvvIxhe92OzQC\numByWZOPvOd2AK6/cmsE2yc0qnvOVuvobIEz9Zv2tRzpaztXXaHkfnCfoXrIzgGH2k/n+9a3vvXt\nDOwtHYnC0hfZD/rzknf360Sf9chV+4DtI2AuQ4q2ZtWqpd358IvUaC6+QDrAm7as5+orLgXggcef\n4857BEx95PgsYwOBmNfDYkglnVWRWaiRNKJe0djYCCdOSNTUGJmMXXJlqhQW5SsmIu8pE3pXQxM6\nC43QoCqcJ88Fb9louwjO95gKaUClu1727WVRNO0QJY80W9gQYSdJkw4SlbkkjYJ9WVGwULL9Hz/C\nxEWXAHDVLe8GkzA2IYMHR2ZmmA9rffNHPh7n+a2H3YcF9P7xj/4YI6GZ9NRXv8zBw6JhtWbFJI9s\nlzLK4ECbIojcpTqhFSLU/Uqxp3Fa1nT1RbRSaYjNHj9Gc1S68LntMTYYhiuyDnt2vAoI9dzwcvlO\n0mqTBzRDlvcoe3VJksRVstaTmIAcyHMaYU0T7WggTa/lkwO856ZrAHjHtZdyxVYZTx1MiQMPhS9I\nAv0diWHr1FS4HI7yrnZAQomFrcyztDf/WiLLP6jn61yzt7wTPZu2JM1Xr+1Fl/B0emiEh8E5S9YR\nx9ZutaDUZw+dXQBsj0a46RuJ4sotAta+ZPMP8d7rLwbg6Wdf5s4HhKn9W3uPo1tBO73QkQ0eX+Cc\npJjjy1aw/6DAnabGpvGqnNjxEQyvlIogfO9t1JFPnI/fV/jYJVfexdnxVDusrUgxyk6vopqucUrH\n1L7hHTqA/3NSijC9NNPrshDIV2a6p8lDqr1i42Y2XCiOc/PEci667u0ALN+6lZnFRc6/WP7bN596\nkr2vCCJh63lbogb98NAoxw8IwYs2Ld73058F4OofvpXf/E//AYCP/eRnuDV0872vBgYWFy1fvVtK\nKkde2E97YE04zwF0qK325hZZNiEvF2dyesflGE4eOUinI+fcHBwjGZRriW7EF5nRjjSiECxFTNtV\nTOEH0gS0nMv0imFuf/9NAFxz1SWct1E69UPtyskpamQmOiW+0m0euQ9yW/EmvK59FwSub6X10/m+\n9a1vfTsDe8tHovX69A/qc91e6+X8nal9+W/rfcQ7OqAd2Nqd96wPqdWew8eqrZqk1oBxlOhFb+Gi\njaLbfsH6t3HdNSIB/NiLu7jz/hCVfmtnTcNcUc5NJiT0uhLh2TwPGFUochs7tFrV9J/qrEG+BrxX\nPoJAZTK9BN77+Fk5HVNAozW21HOientnzrEQzmv3osIjkXdrZIzlU5Kar5oc4n0f/RAAI1NrSUck\nihscHcUEurtF78FaNmwQLO2DX/86J47K2OtFF7XoBQ175zwXbT4PgIOHjnHJNVcAcPTgQS7/YdGR\n3/iOd6JVKSpXUcnNdgueWZCo+cSrX8IMy/HlTjE6KlHgqeOHyRZlvzbrcOqIdMC9c7QGhTpveNkK\nmoEMeqGXxc67MZqsV4rzKULlAF90MWElL9u6llt/6GYArrhkM+s3BHG9FNLYPPeRPUorlubhAau6\ndcO6KMCnTYXScFRZlfYsiVDr93X9Fq+Xt34Qn881e0s7UQfxypwViNPrpPCvB9Hw3kWlTaX0Ejbx\nkhbvvPVr6AQnt+/oMVzJTZmYeDLaVDex0bBpSh74dWsu5MYrNwCwd/9JHnlSJETuuv8Jjp0OXPIm\nYdmESGXMz51gbNlk3GYpZucBG3gtlamIUuopnTYqdv9RFRWeqfy11FBDLTLBYUItT2kVSTcy7ziZ\niLfordhCa/lIWB/P4QAnet+l13LJbT8q2+w5erYUjsvpBnVMozXO2Ujzl+iUvChp/gxF2HeW9di2\nbRsAO17dxeQGWa/f+5M7+Oc//w8A6PQsWkkNNl/sUETOUU1zRI719OxxJpdvkePuaZLAidoaGmHv\njqcBSLWlFRAMmDY6OE7VbmNDiaTZatAL9V7vNYMtAdIXi6cZCyQlN77jUm684WoAtq5fxfqVYZuA\nWwrskO1oRS+cutHQDv994+opkvJFiY+1UmVqk2Us/VhOolWvSflr6ZnPCsQJzimP2k/n+9a3vvXt\nDOwtHYnWrR4d/qA+f6dVM+avbcaYCJhXVKNzzSSlF5ooSilMAHdPTKxgU2A1uu+h++qKydGaQMgG\nSb1j/aTEHWsmpjl/owDs3/vud/KtHbtkO/c/zDefEyzl3v2HaY5LOpyYBj1KHR9dnacyUf9JQYy+\njfKC2QzH7PV3L4zRlR4SVDhZhUeXOu3K0An66gvJEIMDobOdZehCOt6D05vIwiz7fDfHlhGtshUj\nlbU0tI5KbyMjQ2RhTecXF2KKaq3lkkuk+fTAQ4/w4vaXAOh2ctohUnToSEPncbGxlJoma6dlvBNX\nYEMzMCtAh4bh0OgYDS3rfvrkEU7OSAbQHm6ydvkEADpN6DlpXDlrGW2WFHaOzetk++995/u49tK1\nAKxfNcjEqAnrDrrkETQmptu9Wsqe20h0xQ/f/KPselaQHKOpj5DkROs4IOF9BdJ8vahKUzWfPGfn\neTrXQPalveWd6JlMGL2elRf79Tuar4u2r5WnfATZC++kjr+0toSkGGYLcXLv/cQvshDgOF/43C/R\nLutfCpoRIaDjTD1aMx4awAODLbYEJvz3XLuJo8dmAbj7vkd4drvQ672y7wgE2jZLxVlZOB+hUuAE\nQA9o70nCdFGr3Yh69AudLkmjnKAqouRIL3dRiiRJKpIO5zSNoMR5+Ngxeon8tlM0GG7Kfg/9v+3d\nW2xcRxkH8P/Muaw3vsSO49RW2iR1mhYQaZsLvQhRoUgICVSBKC2UIPUFISEk3spDkYAXeOIBiVck\nXluo1Aregbci0RQKSpo0aeqQVnHixGlsr7N7LjM8zO2cxmlTJi619f89rTeb3bN7dr8zM9/MN5cW\nkbtdAHqrSFJXjk/6KWNSaAjUqEvTvd9z926ceNMEyMVrV7F90oxH6qpCasdRl1dWcPr4CQDAzm3b\nIV2Zu8bwhFZhLTlUgonOqLm/H4ZitNAoldsSJEdnbBcAYHp0BuOrZlXTe5cv4tKcOZ7xiVFM7DAB\ndXpmCo/ZrvrDBx/A5LhZpbV9XGCLfdlOFoY1q7pC5mZ4aDOtDQAKDdi1Cfj2d5+Fso9ZKjJIO86c\niMqfP621X30GCH+/fUP+phRuJRMQtptdn9+Vs9GCKbvzREQRNnVLdL2uELdrja+8yW2/240WgDCJ\njFU97Eu4feWJ57C1a7PnVQ8vv/AbAMBQglAEuYLvonUbe5V1RxNMj5tk0r7dX8Piil2KuHDNF33+\n8yv/wskz5wCYdduZzeBrhC4gAAhbjk/KDNd6Zk/1bMsosszONy37cLmdTt6FcomrSiG36+6VqFG6\n9eVJjlXbbVeyi8UVU87tL399BT/83lH7GBmGCLT2ibe8k6EuShS2I/vAgQN49Z//AADMzc1hZuog\nAKCSGq4/IDOJ+Qsme3748OHWZoGF7aonQiKxZ0drYNjOV52aGPVJlywTvhWrtfILDNJE+sn2O0Zn\ncO9uMwF+//77cOgh0/q8c+cdGLNNzi1D4XuQIqwG1o2udJ2kfhv5QgEr9nQ8+fSz6Fe2SpZKIe3M\njxJd/3+lUH6vJonELxGGFKGKE+BrKECoVmL/47LRln1u6iAKrM85cOc31e1AGro4a7+qwK0Edukn\nSqfQEDZDnYvwda5EBxd7duuLdApHnvqpua2W8KcXfw0AGJGAWw5daY3Mz5rye3oiT4B0H6paAAAI\nlklEQVSZbeavmW0T+OzsIQDAE18+hOVV8+s8eWoOr75uurx/e+0NvLNguqcFchS2qvzw6BgKW9Tj\n6sI83j13GgAwvW0ck1MmcFSywMBn/yVKO9VG5AJDdlgAdYncfnZ9pdCxme2yVvj7sTcAAAcP34NB\ntWI/nwzCTnLvF4Up8GK79x2EegFCaX+eBqr2XdfPPfIQfvnzXwAAjh79Djp2oUJRF0iFXfQgUwxs\nYJeiQGbrDuyYHMMVu6JK1tqfn26uMbXVjPHe/6m9+MJDZgrVvr13Ydxm9oc6AsN2PlIqfDlVUzrQ\nTRUT8Cu8KkjYkRwMlC9Oj0cfO4qR6b0AgOXBELLUTZVK/K6hNRJ/4ZNS+gsfZAJlH1NVlVtGb86P\nG67S0nfnzT/47Vo3Qmz72LA7T0QUYXO2RBsD4+s92X6tAfYPukp/6BVchytbIjVSm/UWOmSJa5n6\nwse9OkWvMI8ZGxrH4996DgDQUT289KJZxphp4VsyqRT+pOdh6imAGiOZedBQmmBy2Dz/7sm9eORB\n09r5/jOPY9702nFq7gJeP25ah3Nnz2Du7HV7/Ftw9bI5zquLl3DmkhkWSLvDGBkzwwiTE9NIt9iM\nfNGDrxUgKl8MWmjpy/pdu67w/It/BAA8+vmfoN83WfsKAtINKaQphJRQbu5jmmB52QwHSCkh3P7v\nQqDXNxnzPbOz2HO3SQKNbx1p7FSd+yWzqla+X51kGaT7jLIa+2fNTIIdu/bhwP1mGe7srh3YucO8\nt+EMvnJ+lsJX2k8Q5tJCh6RRrQHtsu2Nie4DDXz9yR8BAAqVQtimq5Kj6Fe26LNMUdk5oMVggK5t\nVTf3r9dao7DdeaUUhK3Yn+QZat/Nh68zIEVIhGqBxsx40UhKhfTqbZtsrzdW225zBlGfPQdcSArT\ng+Nvf6jWhPybjCrdyhdFSv+l10KirHTr3wBTeV7acbqlgUaZmuyxKnMc+ebPAACZ6OHlP/wKANCp\ngWG3oaRovh8JbQNzc3eITALbR8LfU+Y3i0/vnMGXDtkCFskRv/R/4fIy3rUFPt46dw5n3jJd+7Nn\n3sT582bN/vlTp5HbmphbpyZwccGs8Nk6fIevpC5TDW2DxXIJnJ83xT6uXl3C+LA5oP6g9sGx1+8h\nT1M/4bwoCnzGTmW6eHkBC5dMlfyRrWNwZTfv3H0XZmfvNp+Xqv2iAi0Ectu/TdMcSoYK8zv3mGlH\nv3/hd+iX9hzkft468jwML2bQyCs3VBHGukUC/4cGbGkYoF8DhRt20MA3nvoxAKBCB7UyK5OkUMhq\nMz2qrBU6jZPl3nuephiyn2ONvh8DVhJ+excB6Xd91WVtdjOwQngMfzW/xe1vrmw9/nbd3kjjBRsr\n5BMRfcII3awUvMnsmple1/lsN9O6Mv0PLVHXQbrWL7HzHpOYmJp9GIsD0zoqUUImLtNd+C6t2VPe\n3J8IAen2SZJ95MK0XrqJwpBNiLz0/G9h92aDaiQyai38uurMvIh9L+87fje8oLXPvAtpJnsDwKoy\n2z67j6G2YwpVAbxtq/kfP/lvXLeJm0vv1VCJaWW+/c4F9PvmmHNdoVw2Zeq++sX9eOZps45+aXWA\ngasi3+2Y1pRbGCAEBn3zPo8dO4Z779sHALhjZsbvV5SnKU689joA4MDBB6FsYqaGRuZaYLX2Cwma\nLfSqqpHbN6eUH3mAhkINO2MASejDa/gvhmr0AJQCevbjfeLpH+C6tudY5xgMbLc67/rkVjeTQGXm\n+V65cgXbZkytgFLJUOU+1dhixwuW5k9j/qSpPDWSlaikWworoGu3R1boqwttuvH+3dhEmgb8ts2m\nqv36/bCUAP5zYX7dnv9229RBdD1PtNGKKrf/6bWAm9LdL8LvsdDh1TpJGJetapPtdYfjV1A1xj6l\nBtzvqJMCjRE5v4NoCeE3f0wVfGV0QMOXWE+zxhBH473X8P3Z1mqUMLQIhZBhFiK8F62BgavgLkO3\nWDeCjpkN5LZYScKD3Av4r7NonRJfwk8IaDtEIpLmLpcClRsXbBR+MRVUbfCH8jUFEpkgbb1AeJ7m\nXcKn3tGoHl+jtOMfWZJDwS1sCIdcqTDWVqn2NTdp3C4b594tGpONpfAZgCG3+2hHh88OGtC5vS3X\nrigC3W4ENCbb36xuxO2zcfrz7M4TEUVgSzSKaC/j/Ahu5erVPDOicWWuGhfpFLrRCnpfi8Lv4RRa\nZc0BfPN/wjxAlxypRWhxJLr5eB1amYBPxKQC7cna/gnRaFCELqDWAqJ5ELpxf3POt82U6CTxWfe0\nffA3Zvzc+1fKDzc0GzUaOnyWQocmMdBYehs+RNGq6S59q1EBvpB22mwamo2G28fiDskVum7URNIQ\nZiYCYEoQ+m518zh9TWabDAxLMSufSZe+R1ADUPZLkshG70TUCOktCV+6WTda7c3TeENrc63W4Xr9\nxjZOS3STB9HN6eaZ0ltwQ7ftxn5c6/lbc0/W2Zpdyv+3tQNJ+2L0AQfeCk43+6l91DcbnqdV79Pf\n17b2cb7vdTfQCqFPGnbniYgisCVKRBSBLVEioggMokREERhEiYgiMIgSEUVgECUiisAgSkQUgUGU\niCgCgygRUQQGUSKiCAyiREQRGESJiCIwiBIRRWAQJSKKwCBKRBSBQZSIKAKDKBFRBAZRIqIIDKJE\nRBEYRImIIjCIEhFFYBAlIorAIEpEFIFBlIgoAoMoEVEEBlEioggMokREERhEiYgiMIgSEUVgECUi\nisAgSkQUgUGUiCgCgygRUQQGUSKiCAyiREQRGESJiCIwiBIRRWAQJSKKwCBKRBSBQZSIKAKDKBFR\nBAZRIqIIDKJERBEYRImIIjCIEhFFYBAlIorAIEpEFIFBlIgoAoMoEVEEBlEioggMokREERhEiYgi\nMIgSEUVgECUiisAgSkQUgUGUiCgCgygRUQQGUSKiCP8Fs9++9athWo4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "CHJl_7MNJX1D", + "colab_type": "code", + "outputId": "82cf39f1-ebc1-4bd7-ced4-c94bd7f2e053", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 400 + } + }, + "cell_type": "code", + "source": [ + "import cv2 \n", + "import matplotlib.pyplot as plt\n", + "image=cv2.imread('conan_s_head.jpg')\n", + "(h,w,c)=image.shape\n", + "print(image.shape)\n", + "\n", + "(b,g,r)=image[0,0]\n", + "print(image[0,0])\n", + "\n", + "image[0,0]=(0,0,255)\n", + "(b,g,r)=image[0,0]\n", + "print(image[0,0])\n", + "cX,cY=(w//2,h//2)\n", + "tl=image[0:cY,0:cX]\n", + "plt.imshow(tl)\n", + "plt.axis('off')\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(200, 200, 3)\n", + "[255 255 255]\n", + "[ 0 0 255]\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFMCAYAAABCsp4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXmcltV99p/9mX1gGJhhBoYBRGUR\nRdG4i1vUNIu1SZqmpnmTtGmaftqkzZs379umTT+ftkmatFnapq02S02MMVFjEjUYV1QQWQRkEVCW\ngRm2gdnXZ73fP4BzXcfcB84TBgS8vv/48+Z+7ufcy5znvs5viwZBEESEEEIck9ibPQAhhDgT0GQp\nhBAeaLIUQggPNFkKIYQHmiyFEMIDTZZCCOGBJkshhPBAk6UQQniQOBVfEo3CVgi8EOJMRG+WQgjh\ngSZLIYTw4JTIcElvIcSZjt4shRDCA02WQgjhgSZLIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggP\nNFkKIYQHmiyFEMIDTZZCCOGBJkshhPBAk6UQQnigyVIIITzQZCmEEB5oshRCCA80WQohhAeaLIUQ\nwgNNlkII4YEmSyGE8ECTpRBCeKDJUgghPNBkKYQQHmiyFEIIDzRZCiGEB5oshRDCA02WQgjhgSZL\nIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggPNFkKIYQHmiyFEMIDTZZCCOGBJkshhPBAk6UQQnig\nyVIIITzQZCmEEB5oshRCCA80WQohhAeaLIUQwoPEmz0AId4qFMnWW8qZh+6ZEEJ4oMlSCCE8kAwX\nb2mKju1j9RZRdNilEgtOdCS/GcXom/O9Y8VYvg3qzVIIITzQZCmEEB5Ihgtxiij1zWTMpDdL6aC0\n7Txmlzf/pGyn8fBSQKnbxxK9WQohhAeaLIUQwoNoEARvkp9NHKVUL6l+4c4gToaUPqFB4EBFx/bY\nmA36RDiBtQNiLP+29HcnhBAeaLIUQggP5A0X4mTiks+/ubL0xCWlw7efHtKbKW387u287HB8JMOF\nEOIE0WQphBAeSIafACeS6yv8KeU6v1m//n455iQVow7t7dpeMsfX8Gfmm5LPNSHP/pgta5yp10sI\nIU4xmiyFEMIDyXBx2uPKHw7795IZQ5l2/C8obftJT1YoTdGe+dD5Oq/VMc5Xb5ZCCOGBJkshhPBA\nueHiDOBNeEQD0mNjFhx+fGHt3iPm2CcasocbZ9m348d0e5U+8ymh5sVYyf8x/F69WQohhAeaLIUQ\nwgN5w890TkRmlJqf/GZtf7MZs3G53k2KtIdLbh+fMetLfiLn6Ppsycc8gaWX4OQ8PHqzFEIIDzRZ\nCiGEB/KG+xA4cnfzBdiJ+PGPUyShFHP8Tln7RMO3Rx0yg8fpOv6ZztHrwNfAeT3YdtxDvq5xj2vm\n+nOJxsL3sSQ8fW+Bnx3+XiopRmOL0f0s0PGjdMzAsd1FsYj9E679oyVOD67rbC0SnMi6RomfDRzR\nCHy/inQvYmnnoc7SvyghhBhbNFkKIYQHkuEeTJ8y1diZTMbYyWTS2Lva240dkFSIxsPleUAyjPdp\nnjzZ2Fy9Ou6Q1QEtBaRSKWNns1kcn+TQifRgfrO2M/Ej18p6bAuQV67HmSUt3zfG+ixJcr6WVdXV\nxh4aGsLYo7iHPPaOPXtDv8vCighwyfwTKN0W5GHS4KKO5Yh8Ds94Io59Dh3qNHb7rl3G3r17t7EP\nHjxo7IGBAWP39PQYu6v7kLFj5LkOOCqAricvBQSs5ml7lM6rGOBvIk5/W6y8BwcHjd06fbqxP/+P\nX4+40JulEEJ4oMlSCCE8UFC6Byy9WQ7v2rMndH9LQRbYu037WJ5XyIk9+yDbWpubjZ3PQ0rF6RsS\nNJ7s6GjoeGKJcE0bc0jd0207k8sclsSWvCLpGiNpaUuwMmPz/bS+n64l32fezkPs2L8/fJAOlVxw\nOIStlRqnF5s97IVwmz3sRTwvAwN9xt65bYex161dY+wNGzYYe187ZPWhA/uMXZbAdMFLPnydE7RP\nOg3PMkv+bJb+nuLYPyCNzfLcCjRwyHCW7SzncxFcE14e4SWXV9dieeFY6M1SCCE80GQphBAeSIZ7\nwNLCDjh2BeAS7MUuMcC3jTzs06ZMwSEd3l/28rJ0zBfgzXX9Op4p29NHzpHPjz3dfD14eyFP18Ah\nsfOk8ThIu53ldsEhe1lLc6C4Iw7aOj8rdptkI3mls5kRY/f3dht7zaqVxl67ZjW2r8b23m7sX1FW\nbuxq8uynkhh/igY9raEe50KSn2W1FW3BQf5FjJ+vc3mSG4rhmBxF4oo3D9gDbo2BPOb0DHC8f56u\nbYz/pj3fGfVmKYQQHmiyFEIIDyTDPSiQ3Npz4AD9C0mOwJH3TV7sTC5n7HQZvLPOnG5OXyXvZiqJ\n28Ze8jwFT/PSwdn0ixgckXlFWoqwAs7L4IFlOZala59Iw5Obp8/u5ugGn/x7lnJ0H3h7lFz8hSwv\nBWB7b0+Xsdt2bjf2mpUvGfvZZ542dudejHN8TZWxWUrXlmFJpq65EWMjKWp7n0nGstSloPRigfax\nEiYo6sCRq15guW3JZPZiuyQ2u7HpVKwAfvoultt0juXknc/R8+CTRx+JnF1/R0IIcdLQZCmEEB5I\nhnvgyqGNkERxybYVK1YYe8nzzxv705/+tLHT5fBQBiwPSFaxR7aV88fpe1MkM1ie+8qM0xUe/dEA\n6HwhPCd+eARe4wRtt6Q3fbZjH4Ku3QHhBEtvlzeclmeGSGL39/cb++EHfmzsJ5/4lbFHR5BvXlGG\nMVdX4BmZ2jDe2FxjIE7yOc6SliWqQ3pHuTQcy2cuQxgPjyJgiV0MwsvKcSKFndaP59SOanCVd6Nj\n0t9fLIb7EmebQhAKeTo+58h7ljPUm6UQQnigyVIIITyQDPegYz+V2XJVuyYZViAp/cRTTxn74Ycf\nNvaVV15p7GuuuxqH9yq4Hu55L5DcCsjbGj2R5k+nAyTJzPJClCUYrgFLcvZ079rPefzRUNuSkBHH\nEgt7jeko3Z3IL16/DsHhD953j7G3b33V2OMoIHxSbS3GUIEHgEv05SgoPZmi5IN4yLWJRCLFYngJ\nQMtbHQs/x7h1vvisFXmRo7JvjkQAtvmzXPKOt3PUie15x3Gi9H6XoGWqRBzXJOp4NsooAoX34Wfm\nWOjNUgghPNBkKYQQHkiG+8BJvZFwGRYlqbBhHUpfrVj2nLGnNCLPdtWKZcZmGR6JURVvS+ZDNuym\nwPiWhgaMxxEQPGY9uNlDWWojqxLhIbOUOnpe/O3ZAqRcjq7ZbiuBwNFQjCu1W/eZc5xx/I7dqBC+\n7IUXjP3Mr54w9q6drxu7sQ5ye+qkCcZmqVvMDGM4tBTA51iW5D9VDvAm73CKArzJ25srhEtdfl54\n+wiVsCuSTB4cxjhztE/WkRjBSRhRR+JFnO5L3vLUY3dXNX1eRuDtfByW7fw3wc+Uq3L+G9GbpRBC\neKDJUgghPDg1Mtyl2MYsVnqsJGH4gAoOb1+SA5HzqFK+7OnHjV0VgxTh1/3tG18x9t5dqEzd1ILm\nSRGuIm15BFlGOkpTcTCuFdQLYkH4+TpvSxAuUwt0TbhqNjeOsqR0MXw81mfZq0rnlT9y7rEors2O\nPRRY7urZbXm3aXMQfi0P7kF5vBeWIKLhp/ffb+yRQQSZ11ZWGHt6wziMPY/7b+VKO3qCx+LhkpD3\nL5CnOM9LECMkgUdhj+ZoO8nnEQrgZ3uUawzwfWMvM40tcHnSKe+bkyfcHcTJa29tD7ddf/Uxxzug\n67nOFnKOf3njcYUQQhwXTZZCCOGBvOEOLKngaILFEuv1TWj4tGwJymlVU6ksLpt2YC+k94plS419\n+5RpOD57Da2uTVRujGWbJdVIAsdLXO8IPH5DaZ90GmOw+pV7dCCzcozZ+89eUpLHxSN5v20dHdjV\n9TXOXtv4nqE+NPNa8zLy+L//nW8bey95wDmioTKCfO0kXbLRYfSkTqSQr+8KpOclh1FqOsdymEuK\ncSB3d1+vsfna82ft68rDOX5gvw+uq+zK7o6cwu0+qESbEEKMIZoshRDCg1Mjw096hbCx/wLL22f1\npcb2InnRnn3qSWPn2btWJDlJ8qmM5NmqlcuNfeu7323s8ip4VW2wFLCDqnvPbGrCmB2f9MHhJI+4\nxE5mlJYFEtwHmjz1RSofloBsZ4lYsDzWOMe2PZybf/S/DvHHgdZ56k9N49r8CpIGHvoxSqU9+zQC\ny5vqEUDOweQjA5DYKV7eSEK6psvhGbfynUlus2QeGEJZtoGBAWMP0Xb2Yuco75sjLKxEBILvycko\n1+f63rMNvVkKIYQHmiyFEMIDecM9sAJtSQLt3LbF2E8+gUD0eiq5FVDv5zx5NFmKbn51k7FXr0CT\nqmsW3YTvdQT7RsgjH6FA7UicqmBbLsrw3HbG5Vl0/bJyhADLzrSjcjtL0ESKGreRTN3ZcezmYVZV\nbRpxnNZJMiPIZf7loz8z9r3f+66xU3RS0xonYjtFH+SoenlVOc6JowwGSTLz+XGwdx9J7D7ywmdd\njeYoHzyaoHJklCxdqgR27c/bz/TK+sxYnpfeLIUQwgNNlkII4cFbUob7BLBavyIkvblc15OPLzZ2\nkuQtByWnSUolElyxmg6Zg1TbQFW2r7nuOuwUJ7nKkJzfvqvN2LNaW7APN51yu7pBlPKyHbvELAd0\neHDzyDB5o1lSUiD9CFXc7uCSatbKB5fW+vXxc9/qra+uN/a934fcfmnpEmM31yOwPM03mpY0uFFX\nGTUOy2ZxTv3dkNW91IyMPdcst7nhFy9dpMpxb11VxxlOknD16S5VcFr56c5EgTOPsVxS0JulEEJ4\noMlSCCE8eEvK8JIhWbJ3Z5uxH3/0EWNPqqsydpGkGldQpwLOkXwRkq+utsbYq1e8aOydr7/T2NPP\nm0Pjodxddm6SvM3lqVwb7TJWoqRoyeTwHt6WG56uYb6AC9FxAP3QrQsUZVlI5b2OlCSLUfm6pRRM\n/h///jVjZ4Yhk6dQYHk0D++zFSxP35mnpZdD3YeMzb2/u3p6jJ3Nhwef8/WwSrTRNXMtY9i9ubn0\nXLhUjzrkuUuqu5qLWXUFPHtqvxXQlRBCCA80WQohhAdntQwvtWyT/ctBsocCy5e+sIT2hyeXPalJ\nko1cWoulYxnlEseS2H/PPuRBb9oIz+702ReEjjnLEpg8rKTCrarpfleFvM8ee3PA9AgtQaSS8PKO\nZCB9Ow4epOFQkDyN01ou4IrricP/8rN7v2+2/eCe7xi7kkrilZVRebQMj4uD6HE9+ofgue7qhcQ+\n2NVl7HyOZC+dd4zzr7myu0sm070KHPu78JHYrmBsV1C6S/67PPKl4vreNysA/jfJZ9ebpRBCeKDJ\nUgghPDirZfhYMUTVqH/6IEp6jauBBzxK1bfz5BlNUwmtHEk+Lu/Gdv149JleuRyecc4Tr52IUmwJ\nzsumMbOXubWxEftHjo/rF9RZpZobliUgfUfpOljS2/oykpSWMiKv7QiC/H90RH4/eP+PzLbqCqpY\nTlchzksUlKc+OAgv+aFuSOzuvm5j9w5SKTYOGifpzcN1yV6XyHTJW5fEZkqVtKXK9rGS3j5je7P4\nTcajN0shhPBAk6UQQnhwimT4SW8cHorPL4ElOTgAl0qKrVmFRlYjA/CY1pJkDqh/c4JKdwWR8ODj\nqOPck+QlX7d6pbE3b0Cf8cuvhwzPk9Tk3HPrvCgnOUveXM5n54rbmcxI6Hbu/Zyj72Uvdp4Cy9v3\nhVQ4j0S8Hoc8Xed/+8Y/GfvJxx6NRCKRSNPkBuxMyxvpeLgnt4s82vspB72f5Db3aePScUWOwHc8\nspYkj3jkaLsktvU/x/fY+jzjPp7f000mn47ozVIIITzQZCmEEB6cdd5wl1eSJZlPAG6epOjiXz5q\n7JpKNKPivG9uiBWwRLUkULhXMkYl0XJZ9I3m71q75mVjX34tPOMpKtHGPswYSeO23eixPW1qM40N\n4+SyYlytm3GdS4HKvrXv3xe6jw0nyWP5okjn/k9f/Htjv/gcNRJrrDvyOSr/RhEBmSwiC9rb2409\nSHJ7hM6Vlyj4+sVp7EWP9m9vjZZdb230ZimEEB5oshRCCA/OKBnuCpWNltyUyJEfSx/tPAA5uWk9\n+kw316OXd55yxu3S3seX25ZnnPKj+SQrKRh6+QvPG/vWd6C3+PTZ84zN5caspmY0ND5zvp5JbpRF\nP6F232v6AOdFU4/vPMngBJdrs3p7s42D/te3/tXYy59/1tgNdM1TR/LoA8qz7+5F0kBPD+yuAZRT\ny2YwrrIy8nTTMgBdMWu4Ppn1xeibE/EhTh16sxRCCA80WQohhAdnlAx34WzaZFWgdgQBc8Vq0p/L\nXnjO2BVprkwe3sDJWbGav8uVP2zZ2J+XFwb6UTJs00YEqE+fM9fY7BW2i46Tx5eaf9mynap7U/9x\n/myBqofHKIJ71254nVmeW7qdrz9dw58/cL+xn1qMqIMJFPCfTuK7jgbMDwyhJ/je/Z3GHhjEdqu3\nOH3/aI76dHNFdozQfosIrJsSOR5jn1ktTgf0ZimEEB5oshRCCA/OKBle8szO/b4djZei1AA7PwoJ\nx4Ho1ZUoAZbLIHCae2G7c3odnnfLAU4Vwknm5clTW1tVaexlz2OJ4IYb327sigmTcFBL9VKDsP0o\n3TZzCgLUC9RArUBj5kriyRSuw7a2nXQyrjsTfh2WP/OUsb/77buMXVeN46eoenyeqtAPDBwOLt/d\njrxzltX5PCUK0P2JcyICXZwgP0aimaS63kDOTnRfhRDCA02WQgjhwRklw1248r6597TtmY2E7tOx\nB17d9l27jT2zodbY8QTlROcd5d1Ihsco9zhGUq1YpJxoGg43NYtY3nN4mV/dsNbYr23eZOyLrppI\n+zuuAx0zQ/KWPelZGluMtm9rxzWx3PbsLabq6JEEvnfnqxuM/bWvfsXYNRWoYM7Sm0ve9fWhXNuO\ntsNj4EZwcSprl0qFP9JFWk7gJm9JOj8+D2fwuWO7OPvRm6UQQnigyVIIITw4RTK8tPxYl9Rxzexe\n+eC8D3vJKUB6xfLlxq6sQnm0gEaUILmdJRnO+d1WLjHJf5Z8hQLnR9NwHE2kYhQ0XkE54yteQlOz\neZdchnGmMX7LKU3j76CK4c0NqDweo0rvBSu6neU23yXaTuc40oNA+r/9/OeNnaLA9XicGr1Rz/H+\nfuR1t1HQe/FIMHwiDumdJ0mepsZk2Sy85Kky2j8a7qWnLvAlw0ssFh5B7OLMQG+WQgjhgSZLIYTw\n4KzwhjsrorMyssqC4TciN4KK6C+99JKxqyogY2MRyMMsScVknEp9Oaqg57LhFcgD8m6zB59lb+Do\n31xVge/9xc8eNvZt73mvsVvOOR8fsBPUw7fzGGj8e/dS0zGH3GaKIwjsv+tb3zT2YM8hY4+vRYB9\nNICE7h1AebX2DkjvbI6WJo7cVK5knqbmYjnO+6brnc9gO1dHt+BnhGR1ianh4ixFb5ZCCOGBJksh\nhPDgrJDhjBWU7shNjlBQMudfr1iB/uDTm5FnHVCQdoqkHQc3c353QDW3Y0nkOw9To6w0BWxzXnaa\n8pk5zzkfYW87PLvshX1lNZqatcw8LxJKLDzwetc+5IzzFSyQbI9bDl/2kmOflS8uMfbTjz9i7MmT\n6rF7EZK4f3DA2PsOHDT2EFU250rsR3uXc8m9TB7Hs5c0MC5eJonzvQrCoxgYq5KdY5+zVZ8XrIiM\n8LO3lr5ou6sMoU8f85OB63t9e6brzVIIITzQZCmEEB6cFTLcWaXcerum3wVy5CaT6Lt97rnnGnug\nB9W3q9PYJ2f1q0YAdMDeU1KoPDbOv7aGEw2X5Ox95oB27ntdP6HO2I89Btl73fU3GrumoRGHtLzh\nNGYOzqbxJxwV5lmG9+1DX/KvfuXLxp5YR83dMkP4ZD68t/cIRxrQfbE800fG79MH3qeHfNwhwax8\n/dA93hr4XE/eJ+pIqnAds+iI+BgrXOP/TZYC3srPgRBCeHOK3ixLaxNa6gzuWni20hqt5jYwEym8\nHX7xy3gr+tv/91ljj/TB8VBOsZU5cg6xE4JfLeO08B+n+L5sBvGdaauIMDuK+FzYQUGnQlWQdm1/\nzdibX11v7Lc1cFHg8F917rUTdd4AcpjQ+L/933fjs1QtKM7Xim7Fnn1oMzxKrXMDqlgU42vCbzQh\no+K3HHbYMRxzyZzsN5szHn5GeLtXP6lwpw7fI+ff7lhRDI9bjtHzIAePEEKMIZoshRDCg7POwWO9\n1jtf8em1m5rhNLW0GvtTn/5LY/+fT/2ZsRsmoBBwMgGZGVCsXzzukCVU4agshVhJ18JzlAS3FevH\nlY+oJ1DduCpjP/XU48aed/Elxq4cB4cQt4FlMcp9d7h4cYRSE7du2WjsJxf/0thTGlCAODsKqd7T\ng1TGfQeR+pgi5xk7wDhssWAVbv71e+ojAxmuRuSS5+IwfH2s1sIOB4lPLKPVsvkkx1wGjjhRl1P4\nWOjNUgghPNBkKYQQHkSDU5J7VJo33EWpRYHZ65aggrNF9sa5ZBjJ6tXLUWD3c5/5lLGbJkLSpqk4\nLzmoIwGl9kVI3ibSkOFMNsdLCiRL6SzzlGYZ5fOi4xwaQPWfu7//Y2M3TJ1Og+PYQ7pHcY4ZxbUK\ncoiV/OTHPoIxU7WgeAFSfWgYcZM7drUZO0PFejmutIxSQAM6R+6xUziyvcB9dCgmk7ez3HN5XbMO\n7/lYUeoze7Ip9XtzdD2t49D1tKppObzejEvanww4Ppn7NlkVqWica9sHncfSm6UQQnigyVIIITw4\nq12BLnlgSW+XDEhA+i284mpjf+oznzP2v/8LWrpObUJVnXwOHuqyFCRiIoXfptFR7BONh3uEWRqz\nw87yGluthSiomzrKLHn6V8Z+3wc/in2SCMjnNDVuG8ue/ccfX2zs/Xt2GXtSLbzwRQpKb+/APiNU\nZDlGsjlO94ID+KP0vRny+KfKUMXpKOzdrqCizc3NzcYeHsayxAHqPSSOTcIRvM3yma8/7+OKNGDZ\ne7I94xmu9OXoz+QbEaE3SyGE8ECTpRBCeHBGyXDXzO7ygLoDTzkoPbyXjCXPE5CNt77zPcYe6Osz\n9ve/e5exW0mSZ7OQkJFYeAUiqwqO1acHH82TV5rlRCbLkh+fnZQeb+xf/Pxnxr7h7e809sTJU40d\npeBzLvKbGYKn+1v/9nVjj6siOUxVhHp6u/FZkkBJlkA5zg2mvG4KemdJzt7uo4HuKVpCaGqeYuy6\nibj2ZWVIGujtxXmwVzTO1Y3OIsbqLYijEmL0zHK1Jq4rkKBki8pK9Fpiqct/r3xfTkaBYDsKBve9\nugJja2xsjPigN0shhPBAk6UQQnhwRslwF3FHW9ZSyz85c8xJEaTK8fr+3g/8nrH3HUAB3OVLnjZ2\nfTW8s3kKdE+Q/E9QFHvOIXu4F0rO6jlD4ycvI5dZO0S9bTradhp7YhPkq5V8TnLo4YceMHaS5HmK\ne+AMw9Pd2YmiySx3OVLf8oAWw5dQOI+ec8Nraw/n5jdMgnSqqanBvnSz2APOthUlERHHgq9ViiR2\nVRUiIHi5Y5S8zH20TMXRHye7LJvVB4j+bvg5mUZ1IOQNF0KIMUSTpRBCeHCKZHhpOeBjRalZp055\n4NBq6Rr0mLnzI39k7O3btxu7m/rT1JVBxuTz3OqVcsZpDLlieHB4gc4s6pDPLKsbJsBDfO893zP2\nBRdehO+toMByqoJ+3w/uwfgr4QHnknSdBxHkncuRBzzFvYu4dS4FLls9UmgJgryYk+tQ9m3ChAmR\nSCQSSZdjLCz3rVa4OYyRg5Bd+JQX8ynnZZXZc1QU98HV88Zlu0qouZ5rXvbgYH72YrPE5qWMgQG0\nMO7q6jK2tYzE1fcdnm5XxApLY58Acl6CKtJxaqvxXM+cORNjoMfx0CGUDDwWerMUQggPNFkKIYQH\nZ4U3/KQTDf8flhMNTchD/sI/oPHZX33m08bu6YKnuI6Cuou5cIkYRMgjTDKWm3lxUHeMpHdA42TP\n9cZX1tB4ID8mkvR6+IGfGDszjLJsiQpUiR8c7Dc2S7IMyfMUlaHjgAWrMjydV1kNpODkRkjv/h58\n11EPaz0FuXPQOks/Dnh2SVoW3j5eWp92qq6q4C6Z7JLV1pICyVtXwy++DmmyWUqzR5il99AQ7nN3\nNxILOI/ep1K6j/T2WSJw5Y+7SrrxPizVJ06cGLpP3wCeqb1794Ye843ozVIIITzQZCmEEB6c1TLc\n9Uvg8pLzduuzQbjH2fLqUd/wximtxv7M5z5v7L/6iz83doYKUCfjuA25Ann+KNc7RqPLZuD95Zxr\nbjTGwd6JNI5TVQlJ9vBDqKD+8U9hueCXjyKXfPLECThmHoHFBw8i0N0ukQY5P5qBlGJveFU5PJTj\nJkIWVtdge083PKwZKu9WXV19+JwcEjVKUosDoYvFcC+tXQavNK+3JZkd+7jkpMuL7apzwAHhLDM5\nOJwlNkvvwUFU/+4iib27A5EaPE5+ruOOaxK4vPMR4LNkwbiuibWs4ZE/Pm4colQmTJxkbH4e9nVi\neSFDkSnHQm+WQgjhgSZLIYTw4KyW4WPFtKnwdO/as8fYsWj4bw3L+bkXLjD2X3/h74395X/4grFr\ny3EbklQOjuUtB6XbudXcXAzfy43M8hkcp64WUo0rqE9rQZ74gT2QZxPGVxubZUxfHzzgcZKIGStA\nHOdVUwXPa0NDg7FTJCn3HdhPx4cnu5oC0I/KcJZmnDefpcBpl+eU5Zurmn6psjHi4Rl3HZPHwB5q\nltUcKM6SnAPF2fvPtisgn5cjXHbUMWa+sqV6+b3kNtdFoKUJ1/3i/SdNgvTmz3Ldgp6eHmPz9TwW\nerMUQggPNFkKIYQHp6hv+BkOeVK5CVb7HgpmtbyzkBZJqkDOx7n/nu8a+8H7kH9dWU7BxDHcmgIH\ne5NUt3qjk0e+yAqRTqVASwddPSihxf2zGyiQl3PP23a+buzePsgYlySuq0Nf9SYK2ucAaA4IZpnP\nj2VjPTzyU6ceqe5O15tlFOf5ury9LP3yxfAAaacXuESpzvKwnJYTWGIfLTsXibyhCj5Vmuf8a5aQ\nw47SZ66yha7x+8jkUrGO49jJ9xceAAAgAElEQVTuahho1wyge+S45Ly009raamz2eu/evdvY/Lzz\neNbtxvLSG9GbpRBCeKDJUgghPJA33AeSBHv27cN2Lo8W8O4kySkYO04e6g98BP27+/ohqxb//EFj\nJ7hUVgpBxgXybrMLPEq52AXygHLF9RgtBdRSgPqBg5CvQQEe7Qwdp38Q8pkbvaUpALqaSmJxI6j+\nfuTi7tzZFgnD8sLStWVpetQbmif5xlIx58ihZmyva/j7Aks/K+idPsu52CyxebwsD105zpxb397e\nbmwOJnd58J0lyxzy1pV7XnRcT5ec98G1TMHHT9LxXUslfI4c2cGB93ydefmCq7W7Guj5LjXozVII\nITzQZCmEEB6cGhnuchqOWQH1sXLohw/Iekkn2RvjnuM8BLJZ5tnHgfmxT3zS2Af2I+h965qXjZ2I\nkJRmKUVu70KBSnclYqHbWSIeJE/hZPI4J2jMndxvm+Romqq+cxDwxDocZ99+eLp5+SIIWOYdP8g4\nrAwZLzNY3m1HjrO7RJuj5BfdW5Z7HBx+NEA+EolEaiqx/MDXmGVgFy1FsEeb5SFHMbjKnRUcTe18\npDdjBZPzM2UlPRy/LJt1TI/vjTk83a79Xc9FfT06AHBJuv0UfM7LPzw2Vw7+sdCbpRBCeKDJUggh\nPJA33ANWH3EK/I5Q8LnVwNuRMkxV2SJROk4sBdn2Z5/+jLH/8fN/Zex9bWiCVlsBWcgULdnJ+bT4\nLpZ8ObLTVH09TxKlvxdysYrylqe0tBi7phrStOcQgqfbKY/eakbFXnuKFkhEwgOj01YZusNj45zl\nJAWlj3JuuKvaNn22jD7L31NTg0BxLvnFXm/Oue7rxnVi6T04BE83L2NYzxTdnwRLUX6+ohxuQR5k\nh6feqkBOn7XqBzgqxrM8t3pwW6XYHFEEjmUN3puvPzfls/LT6X5lR3Gdq2kZhGX4KDXZ6+vH0hEn\nOlg54HQNcyrRJoQQY4cmSyGE8ODUyPCT3Ta8aEWE0/bwXtVbt2wxdgflD1eWQWK1zpxhbA6ujgR8\nMj7VtGlork9G4ckb3zDV2H/6v/+vsf/+b2BzEHtViiQc55IXWJLj20ZI0tSMR+52Nu9oiEXDnNY6\nzdhcSow93dzgiqWOJfMKxw9WZg80y6di/qgMx+cKVBaObVfTrnKSciyx2bsdp/JyHBzOzwuXQRuh\nau6Wtz9BUpfuTzGwOrgZM0HPctxa2aHPkh1Qrj9f1YQVcYAxZCxPOq4PX0/bqx6+NFKgZ8rK3Y7z\nGhQtEdD+CQ5Ep/FzXYFoDp9NJrA8UlGGe1SWxPbuASRVdHXDG55OUjJHIfy6FT2jafRmKYQQHmiy\nFEIID84Ob7hLevN2esXf8fo2Yz/xxBPGZgnJ3tO5c+YYe/78+caeMgXVxZuaJxu7vrEpfJj0us+y\nJG/1Ucb26efNNvYffvLPjP2fX/tnY48UIP8q4+FeUj6XXuqXPL4KkqaCpOkhakbG5a4qyBPMja+4\nedkIedijjsByF65+0q7g7KMUclg2qKKGaZXlWCqYMBGeUy6PxpKzj3K0uw7h/LqpanuOZL4zoJo9\n7+Qdtr3JjiZfXL2MV5dYbttlyvG11OCOPfUJOk6aJO1olrzAtBSUSPCyh6OnPVfojzhkOK+C0f7W\nNYxzgDrn7GM8AclnLh/Iy0X79iEBwuokYDUbhFmgxoD5XPg5vhG9WQohhAeaLIUQwoOzu1K6hyRn\n1q5abewHHkBP7Y3r1hh7TzuqLXOF68vettDYCy6+1Niz58019rmzIefLKiEFrSFz7rkl0LB9yeJH\njP21L3/Z2PXjkJ+cIDkfJS/s69teM/bMFni3Wbpw4DrnQnOF89e2YSljaJQ8wSw1XdW6C+E9vGMU\nhD1+/HhjT29t+bX9ObeXpbSrvzZ/D+cLd1GONm8fGkRwez4ID5yOOJYWbOkX/qzZFb+porgVbREL\n307HTJPGzuYQgJ3gkn7c8Iu1cYDj5yLUKI+WNcop2oIDv2Px8BJn8Tgv/7BnnKSx5cEPb0Y2OkiB\n6BV4rmdNbzV2oYh9tmzbjO+l5YigwEs4sDMZXKs0neOqNipD+Ab0ZimEEB5oshRCCA/ODm844VPy\nKeJomLTgUsjnBZdBVne27zL2Y4/8wthrXl5p7HXr1hl75aoVxh5XCzm58LLLjD3jnHON3UxyeObM\nmcZuaiKvOpUyW/SOdxm7m3Kx//vu/zJ2/TgsERTzkJTjKeeZnaoBeRY5gJsDsndxFe8RHJMrhrM0\nzXuU97Kqyjs8+GHecP5OV1Vt7qnNSwid1NSMq5TnrO/HcVJJSHtXhXZnUzNHUoKLYoS9w+xVB1EK\n9uZr5oQGUaBK+Vzqj8vyce7+yDCWJqxq5FSEfpgD8ouQt1FW/NYqglUszVj5bHhSgl3ZHjYvoVBO\nRaRI9QY4hz1apCZlJOHnzETUybHQm6UQQnigyVIIITw4K2R40VHmyWsfh5c8IM/spKmQyR+h4PDb\nDyGI/alfPW7s1S+9aOz1a9Yae+XSZcZetQz7sOSc3Izc8IsWLMAYJqMa+TnnnGPsO/7gQ8buG0Rp\nsCcW/9LYvRRA3jAB+eDWMgXZLDX37t9vbPYWuwJ/i+yldgSZRz0C1K3q6BQkfTQQOVcIl8MDdA0O\nOeT2SBbefpbtcUceNF8Pp+zl6t+82SPWhD3dAXvGeZ9wZ7h1HdIp6ifP4+RVJwo+53sYDSBLR2jJ\noqkRz92552HpaMt2RIUM0XJH1FpGoMr6VLk/Q0Hp/LrG9yKXwT6VVMKQHNqRri4kQ8RpqaTgSPIo\n5nDfJ45HQsblCy6M+KA3SyGE8ECTpRBCeHBWyHBX/2PG6Rl3BK5zQPVoPrzq+Ph6lG573wd/H/Yd\n7zX24798zNjr16IB2apVq+iYuA2dnZC9jzzysLG5BBiXjJszF548Dsju7YYE5c8yLMNYXrJ87eqC\nt93q30wezYLD0+285oRreSRZRkHPtP/RoHfOC+blAc5T7x+CJ59xedLDC5NFrOUZV866na4dXhqQ\ncUlsS8OTO5nfamLsYSevfd6j/3U0RksalBOdH8a1mtYCr/fV11xn7NfbEA3R24elHc71jtG6Q5rG\nxs9XKhleli3Hfd4pmDxO96urF987SuOPpZE8wckcAVVBT9Hf7gXnzzL2rFYsfR0LvVkKIYQHmiyF\nEMKD01KGH19M2FgSpcRSYE7PLJWFKuP+4JZ+IjtBgdllsG/9nffDvv12Yy9d+oKxX1y+1NjLl8Nj\nPjoCmdEwGSXGUhTIu3ElAuADkiVVnJZNMsbVf5ql+p791OObNF8+CL8zcUfv6rhjecQVoJ6mZQSr\nuRRxtN92N3n4ueycVZqMlg3YzpLcswKeHf2sXcsMPudkV9anzRx5wbKRS7rR/rFY+LUP6OkvkJ6P\nc2V1Dp7nAu0UpD1jGkqf3fHudxi7sx/PxRbqMMBB/mkOIKexRSnQPUPPcoqrxEc5bx00t6JTQQ81\ngOvuhR2j/Pd8PjxKoUiRDy1TcY4L5p5v7Moyv2lQb5ZCCOGBJkshhPDgtJThJ4JLDvl4Zi3Y5ehy\nk/JPjfW1lksTZhzS8urrrjf2VdfB47h69UvGXrsaHvMXn33W2AcPQCaP42rn5Sj7lhlx9DcnWD53\ndqLJkyu/3pWD7cqXjjlkrVUx3Mr7DS/pto8aoh21ObCcPxfWY/yNY/R5Flh6uyq4u561BEdVONaU\nCo73lKj1Afpex5ADV7MtWjpKUdXx/n7I2HNbm439gTtuM3Z5OeTtzxbjueunOgGVVDXfajRGw8+S\nJzpBzcW4LFsxj/t44XwkYWSyeL56+ofIRnQG38Z0ClXxC1RKjoPhZ0xFZ4NpU1F3Ier5yqg3SyGE\n8ECTpRBCeHBWyHBL6dC7ueuXwEuS0y7TpqIZGZeO2rp9J3biXFyWk1bV7HANz1svXXgl2VcY++br\nbjD2+rWo3P7iUnjSN65DHjrnwdbVImC3LBVebozLmbm8vByozx5llqaunHFXCTOGj8m9yLOjo7+2\nLy8DMHlXQLj9kBirEAlfQnBJ7yiPnWyXJ92lkpPkKa6lqvA9FHRdIG+1/RjRtaR9YuTq5iiP3l6U\nMrtgFqrOv+u2txubywE++DAq8XfsQ5JElILMI1TqLcll+bhXuNUTnJZe6DpfejHyshdcdJGxv/29\nh/DZKJ7ZOHnAOfc8n8UzEivgmjQ34NoumI3cdl5G4KD3Y6E3SyGE8ECTpRBCeHBWyPCTA0ss0nDk\nvZvRhPJViSTkwWttqKxuSUGSUlzKLGbJdpaR+C2bPvsCsucZ++prIc9fWYfc82/f/Z84zgi8iSwR\nOaeXPcdWyTUcxfplLTW6wFlJ3DEezv0+mb/orroCLo99joLeKyrggeVgeB5vwiHPG6iP+fj6CcY+\n2InlB0v+kwQukvwso9Jko7RcMUrLKhech5J+77nlWmOffy6q8i97Cc/O2g1o/pWh1aXySkjXDFXK\n5/oKSRoP388oNUFvbkTu+bVXXWPs7TvajM3XM8K55Hkch1K9I3G6R6kk7HOmwQN+7szpxuZmg3sP\nohbCsdCbpRBCeKDJUgghPJAM94E8jnF6xY+RTM7lIRtmNsOzmKWc1fa98CzGHN5cK3mXIQ8fe9sn\nTEF5qRsm43tXr0YP9E0r4DFnuD+4S4K6eqxb8tzVjIxs65gOaWrJf/Zqx0MkvyPn2kXRsXuUagBw\naS8uxcdLAuXUzIulqCsYnr3VNTVIGpg7Dz3kn6WEAyvwnyqEW722SRqPZCgXnv5h7jkIOL/tpquM\nPWMqyvvt3IlojmUrIMOHMpxLjuvAsprL3BVouzV+WndqGI8li/fceqOxy6vGGfuF5RgDL0EkknQv\nKOq9QBEfvMRVXweJzaXYJtQigaOGGgkuWYUoEqSH/Dp6sxRCCA80WQohhAeS4R5wAHSSvJID5GUu\nL0Pg98gopFeC5NOMaVSRmWTGjh07sN0KkGUp6pDn/HvHvZ/JOx8lSclq2JJPHL/tCKQuuPK7HSNz\nli1zeJpdHvag5KJ9/ri+kyVn3FHWjp+LIlf5ptznckpiuPkmRC6s27DJ2BxIX1YGjzP3MS9GwgPm\nORli3HjI/OuvpB71JL15zKupmV5b+14cn2oYWBUMraB9bOYlCPbIV1CVvd+947eM3TQZ3vCXt2Ip\nYN9+VLmvrMTfUyZHfcnpGed8eVodi0yehEiDOefB419Vxfns2H/nrj0RH/RmKYQQHmiyFEIID05L\nGX66zeDZDCRWOgHJEQkoJzbHObEk2yiHNl6gwFnq8Tx3DnJWORiX7V2UK+3MefZo3MZYgb8OrKN4\nlFljnP5qx9gCV6B7idX1wnD17+YAb/bw5oYhJxMkM5MO73CMmnnHqDzajdcvMnZVNaTl5s0I/C7S\n/gF5/q1cbJLbHBzA+dfz56D696zpWPLhIPBnl6Hs3/LVG8PHEOMllvAc+UKWliloBaI8jeP89ruR\nez61Af3qa2vgGV/2AjoGnDsL4x8Y6jU2V0q3mhPQTFFOY55JDcjq6rA0MWECgv/XbEXiyM6OAxEf\nTrd5SQghTks0WQohhAenpQw/3UgkwvtMpxJw93FJrDi7CimgNuB8cAquzY5SXjE5vWvHVeF/vKQo\n5V+TPCuS6y9KGo5lpNNz7YEroD3mkT/uCkovubL9bwh7hwepEnjLFOQUD1CTrCxV4bYru2PsF16I\nPP65c+ca+7HHFxubg73TZZClQ0OQ/9y0jXOrCznswz2vL6Ie8tOmTTN2ewc83Y8+/pSxR3Pk3SbJ\n74p04OD8NF23MsrdfsdtCOueex6ajjVTCbglzyFJYnQAcvsdt0O23/fgg8bmKAw74B9/N3WNqNPA\nZd8qySUfJ0/6jt0dxm5rg30s9GYphBAeaLIUQggPJMM9YE9qzPJ0Q8bkHJXDC5QznuL+3RHsX1+P\nXNYh6t9dVs6ed0jmSIQC12O4hVZb7+D4v4MsqwJHRfdS5bDdDxvESdAVSzx+aFOuqGPZoMSc8Qxd\n72uvvtrYHbt2G5uvE0vjgBrBTWqAx/mG6xYZm4OrN26E9zkWo9Jq1FM7maZK4DTOgJ61ceRNXngB\ncp8vvhCSv28QY37o0aeNvacTVdOjtIzEkQCuvur8XPOz/K5bEWw/5zzkpE9vQYeB3n48vz/9xePG\nvvl65K0vmI0lhf/ohTxP1yCPO8GN2Gh5afIkeLobJ5AHnPLED/Ug6H3bNiSC9PVj+eVY6M1SCCE8\n0GQphBAeSIZ7YJWdIi9zliSnlR/LfYtZttH+LCeGhpBjzs2ThlgeRDln3JFDTbotTkHvlnfTo+81\n49NozKeXttUMzNEEmz9ph63/eoP2mEuGO44Rc9g1VZDJly+8xNj3b4dM4yiGIMJRBpDPt1yPCuR1\ndSgF9sxzzxs7x1EDCSoHR95kquhnBe9z0sOsmVQpfxEkcIH+nH/66C+NvWIN5H+Ulm3iZGcLFGRO\n96dISw2cI3/FZW8zdu04BJzPmIkEi7p65Gj/x7f/1dgTGuGpv/lm9CtPViB32yoBR9c/S2XZqirx\nN9faguiFceNQ9i0aw3F2tXcae80ryM2PJdSwTAghxgxNlkII4YFkuAcsG/NFDvAOr6bNwcrsJWdp\nMTxCVZ6JYoTztaPhtkNfcjmtaVQO7pUESUeSr5yLzd5qrtbOnlF2sEcpwLdA18T+9aVrFQvbap9K\nkYPqLW/+r3tki0UsdUTpnOJJSLPsKKRlguTYQA88rX/5qY8Ze7AXMi1LueGxAH8mCRrx/IvgfZ7R\niqDo2hosvTy9BJ7oGFU+Z7VdoCr48Uj4hSoWcU82bsESwRe+/O/G5ms82NeP7cnwgHOOKODq6/EE\nP794Htkjv2z5S8ZevmKlse9/BIH3nG/edwhLSo2TcK3u+ekTxq4gGc7PRYofBfrbqqyGp3vW+Via\niCSxtDKQwX1fu3G7sbftQiB6WSW858dCb5ZCCOGBJkshhPBAMtwHkoSWV9eR1+yKi+ag8cBVQY09\nxSxFeX9HU7Ncjiq0szecZVUB8t81fnarW321PTzQJ5tC/rC0Tqc5Xx/nzfnuHDidHUJzsUXXXWHs\nmxYhl/kb3/gG9ievK3urk5TTf8WlC409vg4e2JdfRuOtLHmxSUlHslnI/GoKXA8yGH91NWoD1FPJ\ntXPORymzzdteN/bGTfDwcjC8FQnAld5pPNxcLE3nOG8uNfwaj+Dwmkp4/KmCYWTjrjZjb9uGKugJ\nWqrZvwfl0fbvxZJCgiJHUrSc4spV5yiSJ5980tivbcZ1YO//0lVrsJ1y4fPOP0YbvVkKIYQHmiyF\nEMIDyXAPWHoXqbOXqxp5aC5zJGJHjXPZKTpOPJ4M3d36H4fMZy/8ggULjP3wvTzm41c7LzpKpQXW\nOsJxh+PEqlrOH2bvL0lBlojxI67RTBaymsusJQJcgwRf1xRVL190jbFZqh86dMjYOQrS5hzwhReh\nDNokCroeX4+g6Cef/Q7GEIOHlyVhuoxKnNE1mL8QXt1Raoh3xx2/bez+IUQCPLsU8jORxjEzNOYU\nBV0nKSogMwyP+cypKKH2ztsQ6D5lMqT3tKk4xxQ1xEuQN/m/vv8jY1enoM9///Z3GbuM9P+6V1Ex\nfmtbu7GXr8F2Dh3gpYORIZTO6+7FeK6+GgHzK1/eYOzOHpxvshz59b6LS3qzFEIIDzRZCiGEB5Lh\nJeLyhltYDaWOn1vNZb84uJ3Lr1l9w0lica/wGHnSp1Clbw4sT1oJ5I6cbo8xW1XNx6Kj2BuIsfTm\nXuf5w15qvmaFfDF038wQZNd7b3+Hsa+4ZL6xd+9GKbbhUXjA+T5UluG7rl+EMm7d3ZDtP/zHXxi7\nvQPbI1HcQx4n97k+dza82/MvoDJrPd04DO1/93/fZeyBAUj1igryUFP1fe5pnqUg86sWXmTsG65C\nn/HmRnj2pzYh77umBscv0HLHjg54t7euX2HsO3//94x9xXx41fnZGT8exxymyIEX124xNkd/VFAN\nhiuuRlTDdVcgMsFybqewDDIwggiEaBL3tOjZJUBvlkII4YEmSyGE8EAy3AOXlHa9vDsbdVlKN7xx\nGHt2MxRk3jIJlbh3H0AOsz1QGgN5eVMpeArz3ByN5E3BUud0vrTsEHPJdiccYO+zexBqFyjo/Oj1\nKRZpLOThzwc4vymTUT37hsshOSfW4No8v7vN2KN0EcrLId+mt6D69xNP/grbZ840dtMUBI1v2YG8\n43wQHlBdXYOA83lz5hi7txeyelITSpn98zfvNvbBPmpqliRvOz1HaWrmNW0KcrFvugbSddY0eMAn\nVMI7PI0qnCe59GCWowvwTP3oR/CAv+emRca+bM45xq6gdYdBegYbJ+HannsOrkM2h5zxRIw6BlBk\nf2UFlguaWyDzd3fg+r/08lqMmc6Fo0I4IuJY6M1SCCE80GQphBAeSIZ7UFUFyZQgeejyolnlyNhr\n7Egat2K0SZ5Xkjfclb3KVby5RhuvBMw4B3Jo+2ZUzU6QlIpZnyXp6PB6c4mxkwJdq1gcnsvskaWJ\nIl21JOXBD/UgWP2629EMa/asVmNHSaJyg7gcRRkM9SPgee751xv74nmQ3rPnoj/4Z//uK8bO89IF\nPQtJKpX39ptvNPaECVgu+MUjqHA+MIyxdXahrBwvq3DAfjTAcsWi6xF4//YbYGeGcV4Nkycau2kC\nAuw50iBLwRlBAjL2kadRAb5+Cq7JgksRLVCIYJz7ehFpsJVyxrsH8CStfw154lFKzuAlmeEMliCe\neArl755ZssTYQ6O4blalP/ojKnc0aDsWerMUQggPNFkKIYQHkuEeDA6iynOc3uVdDl6XDHeVPmOv\ndJY8mgX2pMbDy7K5trPv9bK3XW7sbVteNTY3R7P6j1PZbCtnnBtu0TcFJfYW94GXHXJ5Ln93WCLG\nKWqgtw/B25dcgIZZ116FHOGyCpxrTx+k6CZqXNV3CFJ3/hwc57ZbIMNTVMl+YBDHaWtrM3aUKoTH\nIpCNLVPh3V54MXL3X1iKquOvbkYwdkUVArYr0+wRxv2Z0dxo7Pe/773GnkIe7b379hh7Qj28z4kq\n5H135zHmkQHI2H17Dhi7qx+e+vsfXWLsiY34rnV3/cTYbTsgq3PkAS9QfYUo5a3HkhgD5/JHiuTl\nT8P7z80AR3KcQE7HpBz/NDWJK1J1+qRnUoXeLIUQwgNNlkII4YFk+Angk/fNuPbhPGSW50nyCI66\nPHaucmekY2edi9zjXIG9+ccfp1UpneQ5by945taWBl1bWtcIjmznQH5OBr780ouN3ToN+fHbd0ES\nLlnyorEHB+E9Ly/D9b72Skj4ZBTXPk1Nx17bgZJiBXrv4NT9+nrkVt9xxx3GXkfy/8lnlhg7wfnd\nFHhfVQ7P8gLKH7/yEsj5zs6Dxn5+6QvGzlHERP8Izjebh4d6f/s+Y+ez3KQM5xLQ85iiZmHbt2+j\nnfAsVFYgiiSgOnT87EyfgaUJrsT/8jo0QeOe5k0NCP7/0he/bOzHn33W2F//+jeN3TAO5eOsug5W\n54GIF3qzFEIIDzRZCiGEB5LhJWIJTo/yZQzLj8BRjTxieZ9JelPl8JYmeEB374N8sgZH3zVz7nza\nBdu5QRRLac5tL3KDqxQ1eSJpFHP95pI33wqqL7HxGV+3o0sWBfKQzmqB3J5z7gxj7+1A+bXnn19q\n7Ftve4+xDw0jB5k92tddcYmxkzFcg0pKUHh1K/pQZ8kZG8QhmRuakBDQ1QN5e/+DKOk2TB2/shHy\nAtN5Z4dxvktXrzf2qjWwuexbVTVVAifNGUtQTjTl+k+ihmvl9FzwtT/vPEQITGjA8kLdeEjyhvEI\nbq+txpLC5MnwmMc5Up8e2oMUpfA3X0HZt1c3v2bsceUYW66/x9jPLn7M2DUVWCoJuIYARXyMFnAv\nEmlXRImN3iyFEMIDTZZCCOGBZPhpgDNwnQLOuckXl5eyG5mFyxumdTpk6lbKE49zHjpLbCo9niUv\naYr6dnMF8LGCK6Wz5I4ekZQFypu+8jJ4wOOUH72cPMK33HSzsVtbWoy9Yxsk3vnUj5slcEBy9WAf\nvMmbXoMXuCIN2ds3iED0DevQMOvlFagiXluDgPAKkpZN9cgTLyawnUv3ce72hBpI4MmTIIHLyiFF\npzZDAjfQPlMaUfavivLrFz/2c2NzdMGMaThOJMA5xuiaB1TGLcFyu4iq9QUKIOd9yqN4vmZQUP36\n9bhHHAWxfiOe361bcS/KqnAvcvTspGh5xGrulkFUwLHQm6UQQnigyVIIITyQDD8NsAK/rR7l3E8c\nkjzg+mhWXrbDy0zHuexKlNDa8TrkDVeP4/FEHIHoHEjPHvYT+vV1eMnTSfLCH2kqVlcFKTr/PFTJ\nnjQeXt1Zt0B6T6QyaJEcJGQuA1l9yfWLjB2rxHE2bEIP63vuf8DYO9tQkTvIYeyNtQiErqzAOFun\noRL4JRejcvuO3fD83njLbcbO0rJKhvLj165Hfj+XuOfnpesgqukP9kMCDwwM4Hu3o1TaihexRHDr\nTdcZu3ocPNr5ApY+4kWyaY0oE6Gq9lxmja6PtaQU5VJ8sFto6YBSxiMdB1EH4OEnnjF2QMsgiTJE\nLETyGGckSg3L6G+oPI17dCz0ZimEEB5oshRCCA8kw08DXEHsHKyeIU90IlkWtvsbPONW9zJjXnUN\nqmb/8H++E/pdBQpEj1I4eZI84FZuNuHyi5/Ir3Keel0fzVueMx+StpXKlM1qhXwrZFFSLMhSk68y\nXL+qNM57NgVdb94Oif31u+4xdu8gjsnRB3NnIWd5Hh3n8isuNfbkKWgQFlBTuD2dSCxYvwk5449T\nNfK9JD8rqrBEkKS+2JMb4N1OUZmyXTtfN/ZiOmYZ9c6ursbSwQOPPWnsVzYh6H0h9f5eMGe6sSeN\np04CKVpS4jJoMZbbmHZyFDDPUQHzzj/P2BSMYJXX29eF5YVUGa7DCFW/Z4XNiRTxKP4h8Azm0Jul\nEEJ4oMlSCCE8kAz3wO42M7kAAAmvSURBVKpq7vMBh1fXpxJUNMqecWyvrKw09vAIZGlLE6Td7r17\n8QH+MI2/oRlysZoCmisqIcMGc/CkxqnqN3vA7fJ04efCsNIp9RealynyR5TU+bMgA5sa4OkujKCq\nPXtRgxhGkKV93r4ITc3GUTmvf7vnf4zdTQ7VunEI6h7u3m/sO9//28a+5oqFxh6gkmgdVELtuRXr\njP3wE8hbLyRwn+dfjAr3v/tH8JJftADSflwdcrSL3PecKqsPD2MMzzyBvuecPx6lSIodO5Hzvmr5\nMmOv/jG8z7OnQfLfev1lxl44t9XYtTSGQgYXMUp/H1yGMKDxj6vA2Ga0YJmlrQPLEZUkvdNJPFXD\nXIqNuhAEMUhvji4o5P1qFejNUgghPNBkKYQQHkiGe3CyZbirXFs8Hh4EnqRGY0XXQa1A9/DK55e+\nDdXAt72GwGv21HKgO4/T8uBH/UpchVF02AyPpqLi8PibGyCH62ogx/Ij8OTncpCfcSovVyDv+nve\n/S5jb9sL72rngUPGHhzCcf70Y3cae91yyNJLL7nQ2JxrvHlbm7Hve/gRY//quVXGvuEdKBl3+wc+\nbOz5CyBvM1TGbTQLr25nN4LME7SEs3+ky9h7O1DRvbsf++9qx/baOizJzJo9z9gLr1hk7JEBXJ+n\nHn3Y2Pc+tMTYe/bPNvYtV6PM3aQq3CNuuJbjxuTk2S8rhwyvoiWifBEyPEp/E3lyaXMDssGBcI/5\n1MlYvhoY5CwPN3qzFEIIDzRZCiGEB5LhHlgNxZxikShRhkcdfbcLFNTLkbl56ohlSWaPCu0sgW55\nOzysP7nvB/S92CcgGZ4kKct5yIUSK7QVORHdo2p6hsp+zZ522Jvf0gRvbCFLTbjo/KJJeGOHMlRe\njpqOZUnSbtrwirG53/RFVH39xquQ050cQT/ubBbSe/suRCV88ZvfM/bOAwioft9HP2nsj//pp3Au\nAa5xHzVTy1NZM34ea2qRu91J/cF/8eCPjf3znz5k7J4uLC+M0nLBBz/8B8ae2DgJx7nvXmM3Un/w\nj37iM8buaIf3/Ec//DbGP/qyse+85QpjV1FkAt8LVsOvbEHe+stUoi1NjdLIeR4ZpGSBcuo5Pnt6\nq7HnX4BEhhsX3WjsFWtQRu9Y6M1SCCE80GQphBAeSIafBji9zCTcuayVVQ/d2v34Ye8s28+5AI3M\nJjeh6VdfF4KngwBylKVgYP3Mhn+vy1Mfcyhv1y93kWTnxPrD8ruRpGJASyM5kuFx8tLHKQ86S+sG\n3IBs81bkUI9QM6yPfOgDxk5RVfBCBvnmB3qw/9fv+h9jv9YB2fvJv/xrY7//Q/Cqd/VCngdcf8+x\nXDGJqqkfPIi88gd+cp+xV76AKvENdK2KOQSHjx6EDL90IfqP33knxrZ1B46/cSPk8Je+9p/G/pNP\n/KGx//pL3zD2Pd/6krGfXrra2O++EZJ8mJY7Ort6jX3vD1EKLxKHVB+hZZPyMmyfPavV2BecP9PY\nNy1CScJ5c+CpT1LkQDU1ODsWerMUQggPNFkKIYQHkuEngyBcf/pkoLKsZi82e6hTFJSeJY/5jMnw\nEO+gfuJF+k0skBc7SXnf7/8ApNcXNsA7GNDxEwlOtsZxrPJuFAAfpe+1Pf7ksaYTTsXC3eqDGex/\ntP/0uHpIy2wRcjhO6wMxWgcIqO96kfYZGMH57d6L5Yci9ZWecw7y0CtJzo8O47P33P8zY698FXL+\ndz70Cdgf/D187wDksJXGT9ejooJLqGG5oL8PAefPP4tyahfMhbf3w3d+yNjDg8iFf+pp7P+jH8LT\n3draauwsVTVvPwCP/PkXorzfdiold/d3vm/sz34W5/vHn/xzYz9091eN3XEIgeI1VSiX95MHcQ03\nb0HAfH0TcsML1DGgdQqegc98/HeNPWcGlpT44mZGsCTCESUXnkf7HwO9WQohhAeaLIUQwgPJ8NMA\nl9x27WNVgk47PHmWm5wan5H0jtB3vft2lBj72lf/ydj9PYdod2pSxeWrObCcbVf/NFLkCfKkFzhH\nnuzKCox5Yt3hPOEq8mJnByGZY+Rq58D5ZAVKn8Wof3TbfgQzd/Ygb7q1BdKsjKp/c472YAbHX/wc\nGn5dctUNxv7oJxB83jsAOZynXuvcjK62GkHmE+tREZ292IufW2LsWTMRMH/He9+LcVLkQpIavl27\naJGxa2qQc50dhWf81U1bjR1LYwzZANetaQpK/d3znX819m/9Fkre3XwtStXd8cGPGLtrF44fHcYS\nSnfXAWP/zrvQNG3WPCQC7N2P53HbFiwXzTsXSyX5IewTpYctGeFrQn3hc1T9/hjozVIIITzQZCmE\nEB5Ihp8GsPR29eZOJHCruGo6Nw5j2TlrKmTS61Siy4K+K1EB+XfnncgT/ua/fMXY6RS88Ik49zcn\n7zbJ8GKEc8zDIwTyVm47LREUIQsnN4w39tQjHtC9u9vMtkIGMqqFSm8NjkKeb9mG3twHhzCuleuR\ng3xoCN85l/LBk7TkkIvgGrxKAdupqonG/pO/+BzOIwrpysHzCWqkVU/VzmsqsX91OZZYnn8JFct7\nu+AN/+OPf9zY/RTcno9wJADsMrqHH/vI/zL2U4+ifNyjP4ddOQ7PUbIS9+G1VxD0norjOt//g+8a\n+503Q5JXtqABWZr6g3dvX2nsT/8JnrvmKS3GjiVQrm3La2gkd9cWBLpv3wJpP70Vz0ChiLHxE2hX\n+leldCGEGDM0WQohhAeS4acxVkV0kthZ6iHuqrJue9VJgHAENP9W0mc//NGPGfuHP6Ce2d0U6J6B\n/CdnqyXD2R1etJzkLL1hF8lzWSzAriKvbeehw57ORzbBE3rFpWjgVT8J+vbHjyw29tL1W3AeWZz3\n7r3IR47TtZzSjHJkyQT2X7YKjcZWrof0e9eHkB/dPBWe2RG6Tjm6J42TUOm9qhJym+P+C0Usw9RN\nQD74ggXI4w6K7FWn6vh07bnUH62YRCZORlD3EJWY27ZjN8Y2A3nWCSp5d3A/lnYSMTyPK1dguWDP\nHpSMm956jrGrx+Nckg0YQ3UcAfC5DCIT8sOIImioxf299rKLjb1iBaIRZs1CLn8xh3MPKJGC70XC\no6ZCJKI3SyGE8EKTpRBCeBANfF1BQgjxFkZvlkII4YEmSyGE8ECTpRBCeKDJUgghPNBkKYQQHmiy\nFEIIDzRZCiGEB5oshRDCA02WQgjhgSZLIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggPNFkKIYQH\nmiyFEMIDTZZCCOGBJkshhPBAk6UQQnigyVIIITzQZCmEEB5oshRCCA80WQohhAf/H4iaayT2XTDf\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "FwnKqFDunDuW", + "colab_type": "code", + "outputId": "fb151b67-23dd-42bc-e0a5-c7a6ba6cd303", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1345 + } + }, + "cell_type": "code", + "source": [ + "tr=image[0:cY,cX:w]\n", + "bl=image[cY:h,0:cX]\n", + "br=image[cY:h,cX:w]\n", + "\n", + "def show(image):\n", + " plt.imshow(image)\n", + " plt.axis('off')\n", + " plt.show()\n", + "show(tl)\n", + "show(tr)\n", + "show(bl)\n", + "show(br)\n", + "\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFMCAYAAABCsp4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXmcltV99p/9mX1gGJhhBoYBRGUR\nRdG4i1vUNIu1SZqmpnmTtGmaftqkzZs379umTT+ftkmatFnapq02S02MMVFjEjUYV1QQWQRkEVCW\ngRm2gdnXZ73fP4BzXcfcB84TBgS8vv/48+Z+7ufcy5znvs5viwZBEESEEEIck9ibPQAhhDgT0GQp\nhBAeaLIUQggPNFkKIYQHmiyFEMIDTZZCCOGBJkshhPBAk6UQQniQOBVfEo3CVgi8EOJMRG+WQgjh\ngSZLIYTw4JTIcElvIcSZjt4shRDCA02WQgjhgSZLIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggP\nNFkKIYQHmiyFEMIDTZZCCOGBJkshhPBAk6UQQnigyVIIITzQZCmEEB5oshRCCA80WQohhAeaLIUQ\nwgNNlkII4YEmSyGE8ECTpRBCeKDJUgghPNBkKYQQHmiyFEIIDzRZCiGEB5oshRDCA02WQgjhgSZL\nIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggPNFkKIYQHmiyFEMIDTZZCCOGBJkshhPBAk6UQQnig\nyVIIITzQZCmEEB5oshRCCA80WQohhAeaLIUQwoPEmz0AId4qFMnWW8qZh+6ZEEJ4oMlSCCE8kAwX\nb2mKju1j9RZRdNilEgtOdCS/GcXom/O9Y8VYvg3qzVIIITzQZCmEEB5Ihgtxiij1zWTMpDdL6aC0\n7Txmlzf/pGyn8fBSQKnbxxK9WQohhAeaLIUQwoNoEARvkp9NHKVUL6l+4c4gToaUPqFB4EBFx/bY\nmA36RDiBtQNiLP+29HcnhBAeaLIUQggP5A0X4mTiks+/ubL0xCWlw7efHtKbKW387u287HB8JMOF\nEOIE0WQphBAeSIafACeS6yv8KeU6v1m//n455iQVow7t7dpeMsfX8Gfmm5LPNSHP/pgta5yp10sI\nIU4xmiyFEMIDyXBx2uPKHw7795IZQ5l2/C8obftJT1YoTdGe+dD5Oq/VMc5Xb5ZCCOGBJkshhPBA\nueHiDOBNeEQD0mNjFhx+fGHt3iPm2CcasocbZ9m348d0e5U+8ymh5sVYyf8x/F69WQohhAeaLIUQ\nwgN5w890TkRmlJqf/GZtf7MZs3G53k2KtIdLbh+fMetLfiLn6Ppsycc8gaWX4OQ8PHqzFEIIDzRZ\nCiGEB/KG+xA4cnfzBdiJ+PGPUyShFHP8Tln7RMO3Rx0yg8fpOv6ZztHrwNfAeT3YdtxDvq5xj2vm\n+nOJxsL3sSQ8fW+Bnx3+XiopRmOL0f0s0PGjdMzAsd1FsYj9E679oyVOD67rbC0SnMi6RomfDRzR\nCHy/inQvYmnnoc7SvyghhBhbNFkKIYQHkuEeTJ8y1diZTMbYyWTS2Lva240dkFSIxsPleUAyjPdp\nnjzZ2Fy9Ou6Q1QEtBaRSKWNns1kcn+TQifRgfrO2M/Ej18p6bAuQV67HmSUt3zfG+ixJcr6WVdXV\nxh4aGsLYo7iHPPaOPXtDv8vCighwyfwTKN0W5GHS4KKO5Yh8Ds94Io59Dh3qNHb7rl3G3r17t7EP\nHjxo7IGBAWP39PQYu6v7kLFj5LkOOCqAricvBQSs5ml7lM6rGOBvIk5/W6y8BwcHjd06fbqxP/+P\nX4+40JulEEJ4oMlSCCE8UFC6Byy9WQ7v2rMndH9LQRbYu037WJ5XyIk9+yDbWpubjZ3PQ0rF6RsS\nNJ7s6GjoeGKJcE0bc0jd0207k8sclsSWvCLpGiNpaUuwMmPz/bS+n64l32fezkPs2L8/fJAOlVxw\nOIStlRqnF5s97IVwmz3sRTwvAwN9xt65bYex161dY+wNGzYYe187ZPWhA/uMXZbAdMFLPnydE7RP\nOg3PMkv+bJb+nuLYPyCNzfLcCjRwyHCW7SzncxFcE14e4SWXV9dieeFY6M1SCCE80GQphBAeSIZ7\nwNLCDjh2BeAS7MUuMcC3jTzs06ZMwSEd3l/28rJ0zBfgzXX9Op4p29NHzpHPjz3dfD14eyFP18Ah\nsfOk8ThIu53ldsEhe1lLc6C4Iw7aOj8rdptkI3mls5kRY/f3dht7zaqVxl67ZjW2r8b23m7sX1FW\nbuxq8uynkhh/igY9raEe50KSn2W1FW3BQf5FjJ+vc3mSG4rhmBxF4oo3D9gDbo2BPOb0DHC8f56u\nbYz/pj3fGfVmKYQQHmiyFEIIDyTDPSiQ3Npz4AD9C0mOwJH3TV7sTC5n7HQZvLPOnG5OXyXvZiqJ\n28Ze8jwFT/PSwdn0ixgckXlFWoqwAs7L4IFlOZala59Iw5Obp8/u5ugGn/x7lnJ0H3h7lFz8hSwv\nBWB7b0+Xsdt2bjf2mpUvGfvZZ542dudejHN8TZWxWUrXlmFJpq65EWMjKWp7n0nGstSloPRigfax\nEiYo6sCRq15guW3JZPZiuyQ2u7HpVKwAfvoultt0juXknc/R8+CTRx+JnF1/R0IIcdLQZCmEEB5I\nhnvgyqGNkERxybYVK1YYe8nzzxv705/+tLHT5fBQBiwPSFaxR7aV88fpe1MkM1ie+8qM0xUe/dEA\n6HwhPCd+eARe4wRtt6Q3fbZjH4Ku3QHhBEtvlzeclmeGSGL39/cb++EHfmzsJ5/4lbFHR5BvXlGG\nMVdX4BmZ2jDe2FxjIE7yOc6SliWqQ3pHuTQcy2cuQxgPjyJgiV0MwsvKcSKFndaP59SOanCVd6Nj\n0t9fLIb7EmebQhAKeTo+58h7ljPUm6UQQnigyVIIITyQDPegYz+V2XJVuyYZViAp/cRTTxn74Ycf\nNvaVV15p7GuuuxqH9yq4Hu55L5DcCsjbGj2R5k+nAyTJzPJClCUYrgFLcvZ079rPefzRUNuSkBHH\nEgt7jeko3Z3IL16/DsHhD953j7G3b33V2OMoIHxSbS3GUIEHgEv05SgoPZmi5IN4yLWJRCLFYngJ\nQMtbHQs/x7h1vvisFXmRo7JvjkQAtvmzXPKOt3PUie15x3Gi9H6XoGWqRBzXJOp4NsooAoX34Wfm\nWOjNUgghPNBkKYQQHkiG+8BJvZFwGRYlqbBhHUpfrVj2nLGnNCLPdtWKZcZmGR6JURVvS+ZDNuym\nwPiWhgaMxxEQPGY9uNlDWWojqxLhIbOUOnpe/O3ZAqRcjq7ZbiuBwNFQjCu1W/eZc5xx/I7dqBC+\n7IUXjP3Mr54w9q6drxu7sQ5ye+qkCcZmqVvMDGM4tBTA51iW5D9VDvAm73CKArzJ25srhEtdfl54\n+wiVsCuSTB4cxjhztE/WkRjBSRhRR+JFnO5L3vLUY3dXNX1eRuDtfByW7fw3wc+Uq3L+G9GbpRBC\neKDJUgghPDg1Mtyl2MYsVnqsJGH4gAoOb1+SA5HzqFK+7OnHjV0VgxTh1/3tG18x9t5dqEzd1ILm\nSRGuIm15BFlGOkpTcTCuFdQLYkH4+TpvSxAuUwt0TbhqNjeOsqR0MXw81mfZq0rnlT9y7rEors2O\nPRRY7urZbXm3aXMQfi0P7kF5vBeWIKLhp/ffb+yRQQSZ11ZWGHt6wziMPY/7b+VKO3qCx+LhkpD3\nL5CnOM9LECMkgUdhj+ZoO8nnEQrgZ3uUawzwfWMvM40tcHnSKe+bkyfcHcTJa29tD7ddf/Uxxzug\n67nOFnKOf3njcYUQQhwXTZZCCOGBvOEOLKngaILFEuv1TWj4tGwJymlVU6ksLpt2YC+k94plS419\n+5RpOD57Da2uTVRujGWbJdVIAsdLXO8IPH5DaZ90GmOw+pV7dCCzcozZ+89eUpLHxSN5v20dHdjV\n9TXOXtv4nqE+NPNa8zLy+L//nW8bey95wDmioTKCfO0kXbLRYfSkTqSQr+8KpOclh1FqOsdymEuK\ncSB3d1+vsfna82ft68rDOX5gvw+uq+zK7o6cwu0+qESbEEKMIZoshRDCg1Mjw096hbCx/wLL22f1\npcb2InnRnn3qSWPn2btWJDlJ8qmM5NmqlcuNfeu7323s8ip4VW2wFLCDqnvPbGrCmB2f9MHhJI+4\nxE5mlJYFEtwHmjz1RSofloBsZ4lYsDzWOMe2PZybf/S/DvHHgdZ56k9N49r8CpIGHvoxSqU9+zQC\ny5vqEUDOweQjA5DYKV7eSEK6psvhGbfynUlus2QeGEJZtoGBAWMP0Xb2Yuco75sjLKxEBILvycko\n1+f63rMNvVkKIYQHmiyFEMIDecM9sAJtSQLt3LbF2E8+gUD0eiq5FVDv5zx5NFmKbn51k7FXr0CT\nqmsW3YTvdQT7RsgjH6FA7UicqmBbLsrw3HbG5Vl0/bJyhADLzrSjcjtL0ESKGreRTN3ZcezmYVZV\nbRpxnNZJMiPIZf7loz8z9r3f+66xU3RS0xonYjtFH+SoenlVOc6JowwGSTLz+XGwdx9J7D7ywmdd\njeYoHzyaoHJklCxdqgR27c/bz/TK+sxYnpfeLIUQwgNNlkII4cFbUob7BLBavyIkvblc15OPLzZ2\nkuQtByWnSUolElyxmg6Zg1TbQFW2r7nuOuwUJ7nKkJzfvqvN2LNaW7APN51yu7pBlPKyHbvELAd0\neHDzyDB5o1lSUiD9CFXc7uCSatbKB5fW+vXxc9/qra+uN/a934fcfmnpEmM31yOwPM03mpY0uFFX\nGTUOy2ZxTv3dkNW91IyMPdcst7nhFy9dpMpxb11VxxlOknD16S5VcFr56c5EgTOPsVxS0JulEEJ4\noMlSCCE8eEvK8JIhWbJ3Z5uxH3/0EWNPqqsydpGkGldQpwLOkXwRkq+utsbYq1e8aOydr7/T2NPP\nm0Pjodxddm6SvM3lqVwb7TJWoqRoyeTwHt6WG56uYb6AC9FxAP3QrQsUZVlI5b2OlCSLUfm6pRRM\n/h///jVjZ4Yhk6dQYHk0D++zFSxP35mnpZdD3YeMzb2/u3p6jJ3Nhwef8/WwSrTRNXMtY9i9ubn0\nXLhUjzrkuUuqu5qLWXUFPHtqvxXQlRBCCA80WQohhAdntQwvtWyT/ctBsocCy5e+sIT2hyeXPalJ\nko1cWoulYxnlEseS2H/PPuRBb9oIz+702ReEjjnLEpg8rKTCrarpfleFvM8ee3PA9AgtQaSS8PKO\nZCB9Ow4epOFQkDyN01ou4IrricP/8rN7v2+2/eCe7xi7kkrilZVRebQMj4uD6HE9+ofgue7qhcQ+\n2NVl7HyOZC+dd4zzr7myu0sm070KHPu78JHYrmBsV1C6S/67PPKl4vreNysA/jfJZ9ebpRBCeKDJ\nUgghPDirZfhYMUTVqH/6IEp6jauBBzxK1bfz5BlNUwmtHEk+Lu/Gdv149JleuRyecc4Tr52IUmwJ\nzsumMbOXubWxEftHjo/rF9RZpZobliUgfUfpOljS2/oykpSWMiKv7QiC/H90RH4/eP+PzLbqCqpY\nTlchzksUlKc+OAgv+aFuSOzuvm5j9w5SKTYOGifpzcN1yV6XyHTJW5fEZkqVtKXK9rGS3j5je7P4\nTcajN0shhPBAk6UQQnhwimT4SW8cHorPL4ElOTgAl0qKrVmFRlYjA/CY1pJkDqh/c4JKdwWR8ODj\nqOPck+QlX7d6pbE3b0Cf8cuvhwzPk9Tk3HPrvCgnOUveXM5n54rbmcxI6Hbu/Zyj72Uvdp4Cy9v3\nhVQ4j0S8Hoc8Xed/+8Y/GfvJxx6NRCKRSNPkBuxMyxvpeLgnt4s82vspB72f5Db3aePScUWOwHc8\nspYkj3jkaLsktvU/x/fY+jzjPp7f000mn47ozVIIITzQZCmEEB6cdd5wl1eSJZlPAG6epOjiXz5q\n7JpKNKPivG9uiBWwRLUkULhXMkYl0XJZ9I3m71q75mVjX34tPOMpKtHGPswYSeO23eixPW1qM40N\n4+SyYlytm3GdS4HKvrXv3xe6jw0nyWP5okjn/k9f/Htjv/gcNRJrrDvyOSr/RhEBmSwiC9rb2409\nSHJ7hM6Vlyj4+sVp7EWP9m9vjZZdb230ZimEEB5oshRCCA/OKBnuCpWNltyUyJEfSx/tPAA5uWk9\n+kw316OXd55yxu3S3seX25ZnnPKj+SQrKRh6+QvPG/vWd6C3+PTZ84zN5caspmY0ND5zvp5JbpRF\nP6F232v6AOdFU4/vPMngBJdrs3p7s42D/te3/tXYy59/1tgNdM1TR/LoA8qz7+5F0kBPD+yuAZRT\ny2YwrrIy8nTTMgBdMWu4Ppn1xeibE/EhTh16sxRCCA80WQohhAdnlAx34WzaZFWgdgQBc8Vq0p/L\nXnjO2BVprkwe3sDJWbGav8uVP2zZ2J+XFwb6UTJs00YEqE+fM9fY7BW2i46Tx5eaf9mynap7U/9x\n/myBqofHKIJ71254nVmeW7qdrz9dw58/cL+xn1qMqIMJFPCfTuK7jgbMDwyhJ/je/Z3GHhjEdqu3\nOH3/aI76dHNFdozQfosIrJsSOR5jn1ktTgf0ZimEEB5oshRCCA/OKBle8szO/b4djZei1AA7PwoJ\nx4Ho1ZUoAZbLIHCae2G7c3odnnfLAU4Vwknm5clTW1tVaexlz2OJ4IYb327sigmTcFBL9VKDsP0o\n3TZzCgLUC9RArUBj5kriyRSuw7a2nXQyrjsTfh2WP/OUsb/77buMXVeN46eoenyeqtAPDBwOLt/d\njrxzltX5PCUK0P2JcyICXZwgP0aimaS63kDOTnRfhRDCA02WQgjhwRklw1248r6597TtmY2E7tOx\nB17d9l27jT2zodbY8QTlROcd5d1Ihsco9zhGUq1YpJxoGg43NYtY3nN4mV/dsNbYr23eZOyLrppI\n+zuuAx0zQ/KWPelZGluMtm9rxzWx3PbsLabq6JEEvnfnqxuM/bWvfsXYNRWoYM7Sm0ve9fWhXNuO\ntsNj4EZwcSprl0qFP9JFWk7gJm9JOj8+D2fwuWO7OPvRm6UQQnigyVIIITw4RTK8tPxYl9Rxzexe\n+eC8D3vJKUB6xfLlxq6sQnm0gEaUILmdJRnO+d1WLjHJf5Z8hQLnR9NwHE2kYhQ0XkE54yteQlOz\neZdchnGmMX7LKU3j76CK4c0NqDweo0rvBSu6neU23yXaTuc40oNA+r/9/OeNnaLA9XicGr1Rz/H+\nfuR1t1HQe/FIMHwiDumdJ0mepsZk2Sy85Kky2j8a7qWnLvAlw0ssFh5B7OLMQG+WQgjhgSZLIYTw\n4KzwhjsrorMyssqC4TciN4KK6C+99JKxqyogY2MRyMMsScVknEp9Oaqg57LhFcgD8m6zB59lb+Do\n31xVge/9xc8eNvZt73mvsVvOOR8fsBPUw7fzGGj8e/dS0zGH3GaKIwjsv+tb3zT2YM8hY4+vRYB9\nNICE7h1AebX2DkjvbI6WJo7cVK5knqbmYjnO+6brnc9gO1dHt+BnhGR1ianh4ixFb5ZCCOGBJksh\nhPDgrJDhjBWU7shNjlBQMudfr1iB/uDTm5FnHVCQdoqkHQc3c353QDW3Y0nkOw9To6w0BWxzXnaa\n8pk5zzkfYW87PLvshX1lNZqatcw8LxJKLDzwetc+5IzzFSyQbI9bDl/2kmOflS8uMfbTjz9i7MmT\n6rF7EZK4f3DA2PsOHDT2EFU250rsR3uXc8m9TB7Hs5c0MC5eJonzvQrCoxgYq5KdY5+zVZ8XrIiM\n8LO3lr5ou6sMoU8f85OB63t9e6brzVIIITzQZCmEEB6cFTLcWaXcerum3wVy5CaT6Lt97rnnGnug\nB9W3q9PYJ2f1q0YAdMDeU1KoPDbOv7aGEw2X5Ox95oB27ntdP6HO2I89Btl73fU3GrumoRGHtLzh\nNGYOzqbxJxwV5lmG9+1DX/KvfuXLxp5YR83dMkP4ZD68t/cIRxrQfbE800fG79MH3qeHfNwhwax8\n/dA93hr4XE/eJ+pIqnAds+iI+BgrXOP/TZYC3srPgRBCeHOK3ixLaxNa6gzuWni20hqt5jYwEym8\nHX7xy3gr+tv/91ljj/TB8VBOsZU5cg6xE4JfLeO08B+n+L5sBvGdaauIMDuK+FzYQUGnQlWQdm1/\nzdibX11v7Lc1cFHg8F917rUTdd4AcpjQ+L/933fjs1QtKM7Xim7Fnn1oMzxKrXMDqlgU42vCbzQh\no+K3HHbYMRxzyZzsN5szHn5GeLtXP6lwpw7fI+ff7lhRDI9bjtHzIAePEEKMIZoshRDCg7POwWO9\n1jtf8em1m5rhNLW0GvtTn/5LY/+fT/2ZsRsmoBBwMgGZGVCsXzzukCVU4agshVhJ18JzlAS3FevH\nlY+oJ1DduCpjP/XU48aed/Elxq4cB4cQt4FlMcp9d7h4cYRSE7du2WjsJxf/0thTGlCAODsKqd7T\ng1TGfQeR+pgi5xk7wDhssWAVbv71e+ojAxmuRuSS5+IwfH2s1sIOB4lPLKPVsvkkx1wGjjhRl1P4\nWOjNUgghPNBkKYQQHkSDU5J7VJo33EWpRYHZ65aggrNF9sa5ZBjJ6tXLUWD3c5/5lLGbJkLSpqk4\nLzmoIwGl9kVI3ibSkOFMNsdLCiRL6SzzlGYZ5fOi4xwaQPWfu7//Y2M3TJ1Og+PYQ7pHcY4ZxbUK\ncoiV/OTHPoIxU7WgeAFSfWgYcZM7drUZO0PFejmutIxSQAM6R+6xUziyvcB9dCgmk7ez3HN5XbMO\n7/lYUeoze7Ip9XtzdD2t49D1tKppObzejEvanww4Ppn7NlkVqWica9sHncfSm6UQQnigyVIIITw4\nq12BLnlgSW+XDEhA+i284mpjf+oznzP2v/8LWrpObUJVnXwOHuqyFCRiIoXfptFR7BONh3uEWRqz\nw87yGluthSiomzrKLHn6V8Z+3wc/in2SCMjnNDVuG8ue/ccfX2zs/Xt2GXtSLbzwRQpKb+/APiNU\nZDlGsjlO94ID+KP0vRny+KfKUMXpKOzdrqCizc3NzcYeHsayxAHqPSSOTcIRvM3yma8/7+OKNGDZ\ne7I94xmu9OXoz+QbEaE3SyGE8ECTpRBCeHBGyXDXzO7ygLoDTzkoPbyXjCXPE5CNt77zPcYe6Osz\n9ve/e5exW0mSZ7OQkJFYeAUiqwqO1acHH82TV5rlRCbLkh+fnZQeb+xf/Pxnxr7h7e809sTJU40d\npeBzLvKbGYKn+1v/9nVjj6siOUxVhHp6u/FZkkBJlkA5zg2mvG4KemdJzt7uo4HuKVpCaGqeYuy6\nibj2ZWVIGujtxXmwVzTO1Y3OIsbqLYijEmL0zHK1Jq4rkKBki8pK9Fpiqct/r3xfTkaBYDsKBve9\nugJja2xsjPigN0shhPBAk6UQQnhwRslwF3FHW9ZSyz85c8xJEaTK8fr+3g/8nrH3HUAB3OVLnjZ2\nfTW8s3kKdE+Q/E9QFHvOIXu4F0rO6jlD4ycvI5dZO0S9bTradhp7YhPkq5V8TnLo4YceMHaS5HmK\ne+AMw9Pd2YmiySx3OVLf8oAWw5dQOI+ec8Nraw/n5jdMgnSqqanBvnSz2APOthUlERHHgq9ViiR2\nVRUiIHi5Y5S8zH20TMXRHye7LJvVB4j+bvg5mUZ1IOQNF0KIMUSTpRBCeHCKZHhpOeBjRalZp055\n4NBq6Rr0mLnzI39k7O3btxu7m/rT1JVBxuTz3OqVcsZpDLlieHB4gc4s6pDPLKsbJsBDfO893zP2\nBRdehO+toMByqoJ+3w/uwfgr4QHnknSdBxHkncuRBzzFvYu4dS4FLls9UmgJgryYk+tQ9m3ChAmR\nSCQSSZdjLCz3rVa4OYyRg5Bd+JQX8ynnZZXZc1QU98HV88Zlu0qouZ5rXvbgYH72YrPE5qWMgQG0\nMO7q6jK2tYzE1fcdnm5XxApLY58Acl6CKtJxaqvxXM+cORNjoMfx0CGUDDwWerMUQggPNFkKIYQH\nZ4U3/KQTDf8flhMNTchD/sI/oPHZX33m08bu6YKnuI6Cuou5cIkYRMgjTDKWm3lxUHeMpHdA42TP\n9cZX1tB4ID8mkvR6+IGfGDszjLJsiQpUiR8c7Dc2S7IMyfMUlaHjgAWrMjydV1kNpODkRkjv/h58\n11EPaz0FuXPQOks/Dnh2SVoW3j5eWp92qq6q4C6Z7JLV1pICyVtXwy++DmmyWUqzR5il99AQ7nN3\nNxILOI/ep1K6j/T2WSJw5Y+7SrrxPizVJ06cGLpP3wCeqb1794Ye843ozVIIITzQZCmEEB6c1TLc\n9Uvg8pLzduuzQbjH2fLqUd/wximtxv7M5z5v7L/6iz83doYKUCfjuA25Ann+KNc7RqPLZuD95Zxr\nbjTGwd6JNI5TVQlJ9vBDqKD+8U9hueCXjyKXfPLECThmHoHFBw8i0N0ukQY5P5qBlGJveFU5PJTj\nJkIWVtdge083PKwZKu9WXV19+JwcEjVKUosDoYvFcC+tXQavNK+3JZkd+7jkpMuL7apzwAHhLDM5\nOJwlNkvvwUFU/+4iib27A5EaPE5+ruOOaxK4vPMR4LNkwbiuibWs4ZE/Pm4colQmTJxkbH4e9nVi\neSFDkSnHQm+WQgjhgSZLIYTw4KyW4WPFtKnwdO/as8fYsWj4bw3L+bkXLjD2X3/h74395X/4grFr\ny3EbklQOjuUtB6XbudXcXAzfy43M8hkcp64WUo0rqE9rQZ74gT2QZxPGVxubZUxfHzzgcZKIGStA\nHOdVUwXPa0NDg7FTJCn3HdhPx4cnu5oC0I/KcJZmnDefpcBpl+eU5Zurmn6psjHi4Rl3HZPHwB5q\nltUcKM6SnAPF2fvPtisgn5cjXHbUMWa+sqV6+b3kNtdFoKUJ1/3i/SdNgvTmz3Ldgp6eHmPz9TwW\nerMUQggPNFkKIYQHp6hv+BkOeVK5CVb7HgpmtbyzkBZJqkDOx7n/nu8a+8H7kH9dWU7BxDHcmgIH\ne5NUt3qjk0e+yAqRTqVASwddPSihxf2zGyiQl3PP23a+buzePsgYlySuq0Nf9SYK2ucAaA4IZpnP\nj2VjPTzyU6ceqe5O15tlFOf5ury9LP3yxfAAaacXuESpzvKwnJYTWGIfLTsXibyhCj5Vmuf8a5aQ\nw47SZ66yha7x+8jkUrGO49jJ9xceAAAgAElEQVTuahho1wyge+S45Ly009raamz2eu/evdvY/Lzz\neNbtxvLSG9GbpRBCeKDJUgghPJA33AeSBHv27cN2Lo8W8O4kySkYO04e6g98BP27+/ohqxb//EFj\nJ7hUVgpBxgXybrMLPEq52AXygHLF9RgtBdRSgPqBg5CvQQEe7Qwdp38Q8pkbvaUpALqaSmJxI6j+\nfuTi7tzZFgnD8sLStWVpetQbmif5xlIx58ihZmyva/j7Aks/K+idPsu52CyxebwsD105zpxb397e\nbmwOJnd58J0lyxzy1pV7XnRcT5ec98G1TMHHT9LxXUslfI4c2cGB93ydefmCq7W7Guj5LjXozVII\nITzQZCmEEB6cGhnuchqOWQH1sXLohw/Iekkn2RvjnuM8BLJZ5tnHgfmxT3zS2Af2I+h965qXjZ2I\nkJRmKUVu70KBSnclYqHbWSIeJE/hZPI4J2jMndxvm+Romqq+cxDwxDocZ99+eLp5+SIIWOYdP8g4\nrAwZLzNY3m1HjrO7RJuj5BfdW5Z7HBx+NEA+EolEaiqx/MDXmGVgFy1FsEeb5SFHMbjKnRUcTe18\npDdjBZPzM2UlPRy/LJt1TI/vjTk83a79Xc9FfT06AHBJuv0UfM7LPzw2Vw7+sdCbpRBCeKDJUggh\nPJA33ANWH3EK/I5Q8LnVwNuRMkxV2SJROk4sBdn2Z5/+jLH/8fN/Zex9bWiCVlsBWcgULdnJ+bT4\nLpZ8ObLTVH09TxKlvxdysYrylqe0tBi7phrStOcQgqfbKY/eakbFXnuKFkhEwgOj01YZusNj45zl\nJAWlj3JuuKvaNn22jD7L31NTg0BxLvnFXm/Oue7rxnVi6T04BE83L2NYzxTdnwRLUX6+ohxuQR5k\nh6feqkBOn7XqBzgqxrM8t3pwW6XYHFEEjmUN3puvPzfls/LT6X5lR3Gdq2kZhGX4KDXZ6+vH0hEn\nOlg54HQNcyrRJoQQY4cmSyGE8ODUyPCT3Ta8aEWE0/bwXtVbt2wxdgflD1eWQWK1zpxhbA6ujgR8\nMj7VtGlork9G4ckb3zDV2H/6v/+vsf/+b2BzEHtViiQc55IXWJLj20ZI0tSMR+52Nu9oiEXDnNY6\nzdhcSow93dzgiqWOJfMKxw9WZg80y6di/qgMx+cKVBaObVfTrnKSciyx2bsdp/JyHBzOzwuXQRuh\nau6Wtz9BUpfuTzGwOrgZM0HPctxa2aHPkh1Qrj9f1YQVcYAxZCxPOq4PX0/bqx6+NFKgZ8rK3Y7z\nGhQtEdD+CQ5Ep/FzXYFoDp9NJrA8UlGGe1SWxPbuASRVdHXDG55OUjJHIfy6FT2jafRmKYQQHmiy\nFEIID84Ob7hLevN2esXf8fo2Yz/xxBPGZgnJ3tO5c+YYe/78+caeMgXVxZuaJxu7vrEpfJj0us+y\nJG/1Ucb26efNNvYffvLPjP2fX/tnY48UIP8q4+FeUj6XXuqXPL4KkqaCpOkhakbG5a4qyBPMja+4\nedkIedijjsByF65+0q7g7KMUclg2qKKGaZXlWCqYMBGeUy6PxpKzj3K0uw7h/LqpanuOZL4zoJo9\n7+Qdtr3JjiZfXL2MV5dYbttlyvG11OCOPfUJOk6aJO1olrzAtBSUSPCyh6OnPVfojzhkOK+C0f7W\nNYxzgDrn7GM8AclnLh/Iy0X79iEBwuokYDUbhFmgxoD5XPg5vhG9WQohhAeaLIUQwoOzu1K6hyRn\n1q5abewHHkBP7Y3r1hh7TzuqLXOF68vettDYCy6+1Niz58019rmzIefLKiEFrSFz7rkl0LB9yeJH\njP21L3/Z2PXjkJ+cIDkfJS/s69teM/bMFni3Wbpw4DrnQnOF89e2YSljaJQ8wSw1XdW6C+E9vGMU\nhD1+/HhjT29t+bX9ObeXpbSrvzZ/D+cLd1GONm8fGkRwez4ID5yOOJYWbOkX/qzZFb+porgVbREL\n307HTJPGzuYQgJ3gkn7c8Iu1cYDj5yLUKI+WNcop2oIDv2Px8BJn8Tgv/7BnnKSx5cEPb0Y2OkiB\n6BV4rmdNbzV2oYh9tmzbjO+l5YigwEs4sDMZXKs0neOqNipD+Ab0ZimEEB5oshRCCA/ODm844VPy\nKeJomLTgUsjnBZdBVne27zL2Y4/8wthrXl5p7HXr1hl75aoVxh5XCzm58LLLjD3jnHON3UxyeObM\nmcZuaiKvOpUyW/SOdxm7m3Kx//vu/zJ2/TgsERTzkJTjKeeZnaoBeRY5gJsDsndxFe8RHJMrhrM0\nzXuU97Kqyjs8+GHecP5OV1Vt7qnNSwid1NSMq5TnrO/HcVJJSHtXhXZnUzNHUoKLYoS9w+xVB1EK\n9uZr5oQGUaBK+Vzqj8vyce7+yDCWJqxq5FSEfpgD8ouQt1FW/NYqglUszVj5bHhSgl3ZHjYvoVBO\nRaRI9QY4hz1apCZlJOHnzETUybHQm6UQQnigyVIIITw4K2R40VHmyWsfh5c8IM/spKmQyR+h4PDb\nDyGI/alfPW7s1S+9aOz1a9Yae+XSZcZetQz7sOSc3Izc8IsWLMAYJqMa+TnnnGPsO/7gQ8buG0Rp\nsCcW/9LYvRRA3jAB+eDWMgXZLDX37t9vbPYWuwJ/i+yldgSZRz0C1K3q6BQkfTQQOVcIl8MDdA0O\nOeT2SBbefpbtcUceNF8Pp+zl6t+82SPWhD3dAXvGeZ9wZ7h1HdIp6ifP4+RVJwo+53sYDSBLR2jJ\noqkRz92552HpaMt2RIUM0XJH1FpGoMr6VLk/Q0Hp/LrG9yKXwT6VVMKQHNqRri4kQ8RpqaTgSPIo\n5nDfJ45HQsblCy6M+KA3SyGE8ECTpRBCeHBWyHBX/2PG6Rl3BK5zQPVoPrzq+Ph6lG573wd/H/Yd\n7zX24798zNjr16IB2apVq+iYuA2dnZC9jzzysLG5BBiXjJszF548Dsju7YYE5c8yLMNYXrJ87eqC\nt93q30wezYLD0+285oRreSRZRkHPtP/RoHfOC+blAc5T7x+CJ59xedLDC5NFrOUZV866na4dXhqQ\ncUlsS8OTO5nfamLsYSevfd6j/3U0RksalBOdH8a1mtYCr/fV11xn7NfbEA3R24elHc71jtG6Q5rG\nxs9XKhleli3Hfd4pmDxO96urF987SuOPpZE8wckcAVVBT9Hf7gXnzzL2rFYsfR0LvVkKIYQHmiyF\nEMKD01KGH19M2FgSpcRSYE7PLJWFKuP+4JZ+IjtBgdllsG/9nffDvv12Yy9d+oKxX1y+1NjLl8Nj\nPjoCmdEwGSXGUhTIu3ElAuADkiVVnJZNMsbVf5ql+p791OObNF8+CL8zcUfv6rhjecQVoJ6mZQSr\nuRRxtN92N3n4ueycVZqMlg3YzpLcswKeHf2sXcsMPudkV9anzRx5wbKRS7rR/rFY+LUP6OkvkJ6P\nc2V1Dp7nAu0UpD1jGkqf3fHudxi7sx/PxRbqMMBB/mkOIKexRSnQPUPPcoqrxEc5bx00t6JTQQ81\ngOvuhR2j/Pd8PjxKoUiRDy1TcY4L5p5v7Moyv2lQb5ZCCOGBJkshhPDgtJThJ4JLDvl4Zi3Y5ehy\nk/JPjfW1lksTZhzS8urrrjf2VdfB47h69UvGXrsaHvMXn33W2AcPQCaP42rn5Sj7lhlx9DcnWD53\ndqLJkyu/3pWD7cqXjjlkrVUx3Mr7DS/pto8aoh21ObCcPxfWY/yNY/R5Flh6uyq4u561BEdVONaU\nCo73lKj1Afpex5ADV7MtWjpKUdXx/n7I2HNbm439gTtuM3Z5OeTtzxbjueunOgGVVDXfajRGw8+S\nJzpBzcW4LFsxj/t44XwkYWSyeL56+ofIRnQG38Z0ClXxC1RKjoPhZ0xFZ4NpU1F3Ier5yqg3SyGE\n8ECTpRBCeHBWyHBL6dC7ueuXwEuS0y7TpqIZGZeO2rp9J3biXFyWk1bV7HANz1svXXgl2VcY++br\nbjD2+rWo3P7iUnjSN65DHjrnwdbVImC3LBVebozLmbm8vByozx5llqaunHFXCTOGj8m9yLOjo7+2\nLy8DMHlXQLj9kBirEAlfQnBJ7yiPnWyXJ92lkpPkKa6lqvA9FHRdIG+1/RjRtaR9YuTq5iiP3l6U\nMrtgFqrOv+u2txubywE++DAq8XfsQ5JElILMI1TqLcll+bhXuNUTnJZe6DpfejHyshdcdJGxv/29\nh/DZKJ7ZOHnAOfc8n8UzEivgmjQ34NoumI3cdl5G4KD3Y6E3SyGE8ECTpRBCeHBWyPCTA0ss0nDk\nvZvRhPJViSTkwWttqKxuSUGSUlzKLGbJdpaR+C2bPvsCsucZ++prIc9fWYfc82/f/Z84zgi8iSwR\nOaeXPcdWyTUcxfplLTW6wFlJ3DEezv0+mb/orroCLo99joLeKyrggeVgeB5vwiHPG6iP+fj6CcY+\n2InlB0v+kwQukvwso9Jko7RcMUrLKhech5J+77nlWmOffy6q8i97Cc/O2g1o/pWh1aXySkjXDFXK\n5/oKSRoP388oNUFvbkTu+bVXXWPs7TvajM3XM8K55Hkch1K9I3G6R6kk7HOmwQN+7szpxuZmg3sP\nohbCsdCbpRBCeKDJUgghPJAM94E8jnF6xY+RTM7lIRtmNsOzmKWc1fa98CzGHN5cK3mXIQ8fe9sn\nTEF5qRsm43tXr0YP9E0r4DFnuD+4S4K6eqxb8tzVjIxs65gOaWrJf/Zqx0MkvyPn2kXRsXuUagBw\naS8uxcdLAuXUzIulqCsYnr3VNTVIGpg7Dz3kn6WEAyvwnyqEW722SRqPZCgXnv5h7jkIOL/tpquM\nPWMqyvvt3IlojmUrIMOHMpxLjuvAsprL3BVouzV+WndqGI8li/fceqOxy6vGGfuF5RgDL0EkknQv\nKOq9QBEfvMRVXweJzaXYJtQigaOGGgkuWYUoEqSH/Dp6sxRCCA80WQohhAeS4R5wAHSSvJID5GUu\nL0Pg98gopFeC5NOMaVSRmWTGjh07sN0KkGUp6pDn/HvHvZ/JOx8lSclq2JJPHL/tCKQuuPK7HSNz\nli1zeJpdHvag5KJ9/ri+kyVn3FHWjp+LIlf5ptznckpiuPkmRC6s27DJ2BxIX1YGjzP3MS9GwgPm\nORli3HjI/OuvpB71JL15zKupmV5b+14cn2oYWBUMraB9bOYlCPbIV1CVvd+947eM3TQZ3vCXt2Ip\nYN9+VLmvrMTfUyZHfcnpGed8eVodi0yehEiDOefB419Vxfns2H/nrj0RH/RmKYQQHmiyFEIID05L\nGX66zeDZDCRWOgHJEQkoJzbHObEk2yiHNl6gwFnq8Tx3DnJWORiX7V2UK+3MefZo3MZYgb8OrKN4\nlFljnP5qx9gCV6B7idX1wnD17+YAb/bw5oYhJxMkM5MO73CMmnnHqDzajdcvMnZVNaTl5s0I/C7S\n/gF5/q1cbJLbHBzA+dfz56D696zpWPLhIPBnl6Hs3/LVG8PHEOMllvAc+UKWliloBaI8jeP89ruR\nez61Af3qa2vgGV/2AjoGnDsL4x8Y6jU2V0q3mhPQTFFOY55JDcjq6rA0MWECgv/XbEXiyM6OAxEf\nTrd5SQghTks0WQohhAenpQw/3UgkwvtMpxJw93FJrDi7CimgNuB8cAquzY5SXjE5vWvHVeF/vKQo\n5V+TPCuS6y9KGo5lpNNz7YEroD3mkT/uCkovubL9bwh7hwepEnjLFOQUD1CTrCxV4bYru2PsF16I\nPP65c+ca+7HHFxubg73TZZClQ0OQ/9y0jXOrCznswz2vL6Ie8tOmTTN2ewc83Y8+/pSxR3Pk3SbJ\n74p04OD8NF23MsrdfsdtCOueex6ajjVTCbglzyFJYnQAcvsdt0O23/fgg8bmKAw74B9/N3WNqNPA\nZd8qySUfJ0/6jt0dxm5rg30s9GYphBAeaLIUQggPJMM9YE9qzPJ0Q8bkHJXDC5QznuL+3RHsX1+P\nXNYh6t9dVs6ed0jmSIQC12O4hVZb7+D4v4MsqwJHRfdS5bDdDxvESdAVSzx+aFOuqGPZoMSc8Qxd\n72uvvtrYHbt2G5uvE0vjgBrBTWqAx/mG6xYZm4OrN26E9zkWo9Jq1FM7maZK4DTOgJ61ceRNXngB\ncp8vvhCSv28QY37o0aeNvacTVdOjtIzEkQCuvur8XPOz/K5bEWw/5zzkpE9vQYeB3n48vz/9xePG\nvvl65K0vmI0lhf/ohTxP1yCPO8GN2Gh5afIkeLobJ5AHnPLED/Ug6H3bNiSC9PVj+eVY6M1SCCE8\n0GQphBAeSIZ7YJWdIi9zliSnlR/LfYtZttH+LCeGhpBjzs2ThlgeRDln3JFDTbotTkHvlnfTo+81\n49NozKeXttUMzNEEmz9ph63/eoP2mEuGO44Rc9g1VZDJly+8xNj3b4dM4yiGIMJRBpDPt1yPCuR1\ndSgF9sxzzxs7x1EDCSoHR95kquhnBe9z0sOsmVQpfxEkcIH+nH/66C+NvWIN5H+Ulm3iZGcLFGRO\n96dISw2cI3/FZW8zdu04BJzPmIkEi7p65Gj/x7f/1dgTGuGpv/lm9CtPViB32yoBR9c/S2XZqirx\nN9faguiFceNQ9i0aw3F2tXcae80ryM2PJdSwTAghxgxNlkII4YFkuAcsG/NFDvAOr6bNwcrsJWdp\nMTxCVZ6JYoTztaPhtkNfcjmtaVQO7pUESUeSr5yLzd5qrtbOnlF2sEcpwLdA18T+9aVrFQvbap9K\nkYPqLW/+r3tki0UsdUTpnOJJSLPsKKRlguTYQA88rX/5qY8Ze7AXMi1LueGxAH8mCRrx/IvgfZ7R\niqDo2hosvTy9BJ7oGFU+Z7VdoCr48Uj4hSoWcU82bsESwRe+/O/G5ms82NeP7cnwgHOOKODq6/EE\nP794Htkjv2z5S8ZevmKlse9/BIH3nG/edwhLSo2TcK3u+ekTxq4gGc7PRYofBfrbqqyGp3vW+Via\niCSxtDKQwX1fu3G7sbftQiB6WSW858dCb5ZCCOGBJkshhPBAMtwHkoSWV9eR1+yKi+ag8cBVQY09\nxSxFeX9HU7Ncjiq0szecZVUB8t81fnarW321PTzQJ5tC/rC0Tqc5Xx/nzfnuHDidHUJzsUXXXWHs\nmxYhl/kb3/gG9ievK3urk5TTf8WlC409vg4e2JdfRuOtLHmxSUlHslnI/GoKXA8yGH91NWoD1FPJ\ntXPORymzzdteN/bGTfDwcjC8FQnAld5pPNxcLE3nOG8uNfwaj+Dwmkp4/KmCYWTjrjZjb9uGKugJ\nWqrZvwfl0fbvxZJCgiJHUrSc4spV5yiSJ5980tivbcZ1YO//0lVrsJ1y4fPOP0YbvVkKIYQHmiyF\nEMIDyXAPWHoXqbOXqxp5aC5zJGJHjXPZKTpOPJ4M3d36H4fMZy/8ggULjP3wvTzm41c7LzpKpQXW\nOsJxh+PEqlrOH2bvL0lBlojxI67RTBaymsusJQJcgwRf1xRVL190jbFZqh86dMjYOQrS5hzwhReh\nDNokCroeX4+g6Cef/Q7GEIOHlyVhuoxKnNE1mL8QXt1Raoh3xx2/bez+IUQCPLsU8jORxjEzNOYU\nBV0nKSogMwyP+cypKKH2ztsQ6D5lMqT3tKk4xxQ1xEuQN/m/vv8jY1enoM9///Z3GbuM9P+6V1Ex\nfmtbu7GXr8F2Dh3gpYORIZTO6+7FeK6+GgHzK1/eYOzOHpxvshz59b6LS3qzFEIIDzRZCiGEB5Lh\nJeLyhltYDaWOn1vNZb84uJ3Lr1l9w0lica/wGHnSp1Clbw4sT1oJ5I6cbo8xW1XNx6Kj2BuIsfTm\nXuf5w15qvmaFfDF038wQZNd7b3+Hsa+4ZL6xd+9GKbbhUXjA+T5UluG7rl+EMm7d3ZDtP/zHXxi7\nvQPbI1HcQx4n97k+dza82/MvoDJrPd04DO1/93/fZeyBAUj1igryUFP1fe5pnqUg86sWXmTsG65C\nn/HmRnj2pzYh77umBscv0HLHjg54t7euX2HsO3//94x9xXx41fnZGT8exxymyIEX124xNkd/VFAN\nhiuuRlTDdVcgMsFybqewDDIwggiEaBL3tOjZJUBvlkII4YEmSyGE8EAy3AOXlHa9vDsbdVlKN7xx\nGHt2MxRk3jIJlbh3H0AOsz1QGgN5eVMpeArz3ByN5E3BUud0vrTsEHPJdiccYO+zexBqFyjo/Oj1\nKRZpLOThzwc4vymTUT37hsshOSfW4No8v7vN2KN0EcrLId+mt6D69xNP/grbZ840dtMUBI1v2YG8\n43wQHlBdXYOA83lz5hi7txeyelITSpn98zfvNvbBPmpqliRvOz1HaWrmNW0KcrFvugbSddY0eMAn\nVMI7PI0qnCe59GCWowvwTP3oR/CAv+emRca+bM45xq6gdYdBegYbJ+HannsOrkM2h5zxRIw6BlBk\nf2UFlguaWyDzd3fg+r/08lqMmc6Fo0I4IuJY6M1SCCE80GQphBAeSIZ7UFUFyZQgeejyolnlyNhr\n7Egat2K0SZ5Xkjfclb3KVby5RhuvBMw4B3Jo+2ZUzU6QlIpZnyXp6PB6c4mxkwJdq1gcnsvskaWJ\nIl21JOXBD/UgWP2629EMa/asVmNHSaJyg7gcRRkM9SPgee751xv74nmQ3rPnoj/4Z//uK8bO89IF\nPQtJKpX39ptvNPaECVgu+MUjqHA+MIyxdXahrBwvq3DAfjTAcsWi6xF4//YbYGeGcV4Nkycau2kC\nAuw50iBLwRlBAjL2kadRAb5+Cq7JgksRLVCIYJz7ehFpsJVyxrsH8CStfw154lFKzuAlmeEMliCe\neArl755ZssTYQ6O4blalP/ojKnc0aDsWerMUQggPNFkKIYQHkuEeDA6iynOc3uVdDl6XDHeVPmOv\ndJY8mgX2pMbDy7K5trPv9bK3XW7sbVteNTY3R7P6j1PZbCtnnBtu0TcFJfYW94GXHXJ5Ln93WCLG\nKWqgtw/B25dcgIZZ116FHOGyCpxrTx+k6CZqXNV3CFJ3/hwc57ZbIMNTVMl+YBDHaWtrM3aUKoTH\nIpCNLVPh3V54MXL3X1iKquOvbkYwdkUVArYr0+wRxv2Z0dxo7Pe/773GnkIe7b379hh7Qj28z4kq\n5H135zHmkQHI2H17Dhi7qx+e+vsfXWLsiY34rnV3/cTYbTsgq3PkAS9QfYUo5a3HkhgD5/JHiuTl\nT8P7z80AR3KcQE7HpBz/NDWJK1J1+qRnUoXeLIUQwgNNlkII4YFk+Angk/fNuPbhPGSW50nyCI66\nPHaucmekY2edi9zjXIG9+ccfp1UpneQ5by945taWBl1bWtcIjmznQH5OBr780ouN3ToN+fHbd0ES\nLlnyorEHB+E9Ly/D9b72Skj4ZBTXPk1Nx17bgZJiBXrv4NT9+nrkVt9xxx3GXkfy/8lnlhg7wfnd\nFHhfVQ7P8gLKH7/yEsj5zs6Dxn5+6QvGzlHERP8Izjebh4d6f/s+Y+ez3KQM5xLQ85iiZmHbt2+j\nnfAsVFYgiiSgOnT87EyfgaUJrsT/8jo0QeOe5k0NCP7/0he/bOzHn33W2F//+jeN3TAO5eOsug5W\n54GIF3qzFEIIDzRZCiGEB5LhJWIJTo/yZQzLj8BRjTxieZ9JelPl8JYmeEB374N8sgZH3zVz7nza\nBdu5QRRLac5tL3KDqxQ1eSJpFHP95pI33wqqL7HxGV+3o0sWBfKQzmqB3J5z7gxj7+1A+bXnn19q\n7Ftve4+xDw0jB5k92tddcYmxkzFcg0pKUHh1K/pQZ8kZG8QhmRuakBDQ1QN5e/+DKOk2TB2/shHy\nAtN5Z4dxvktXrzf2qjWwuexbVTVVAifNGUtQTjTl+k+ihmvl9FzwtT/vPEQITGjA8kLdeEjyhvEI\nbq+txpLC5MnwmMc5Up8e2oMUpfA3X0HZt1c3v2bsceUYW66/x9jPLn7M2DUVWCoJuIYARXyMFnAv\nEmlXRImN3iyFEMIDTZZCCOGBZPhpgDNwnQLOuckXl5eyG5mFyxumdTpk6lbKE49zHjpLbCo9niUv\naYr6dnMF8LGCK6Wz5I4ekZQFypu+8jJ4wOOUH72cPMK33HSzsVtbWoy9Yxsk3vnUj5slcEBy9WAf\nvMmbXoMXuCIN2ds3iED0DevQMOvlFagiXluDgPAKkpZN9cgTLyawnUv3ce72hBpI4MmTIIHLyiFF\npzZDAjfQPlMaUfavivLrFz/2c2NzdMGMaThOJMA5xuiaB1TGLcFyu4iq9QUKIOd9yqN4vmZQUP36\n9bhHHAWxfiOe361bcS/KqnAvcvTspGh5xGrulkFUwLHQm6UQQnigyVIIITyQDD8NsAK/rR7l3E8c\nkjzg+mhWXrbDy0zHuexKlNDa8TrkDVeP4/FEHIHoHEjPHvYT+vV1eMnTSfLCH2kqVlcFKTr/PFTJ\nnjQeXt1Zt0B6T6QyaJEcJGQuA1l9yfWLjB2rxHE2bEIP63vuf8DYO9tQkTvIYeyNtQiErqzAOFun\noRL4JRejcvuO3fD83njLbcbO0rJKhvLj165Hfj+XuOfnpesgqukP9kMCDwwM4Hu3o1TaihexRHDr\nTdcZu3ocPNr5ApY+4kWyaY0oE6Gq9lxmja6PtaQU5VJ8sFto6YBSxiMdB1EH4OEnnjF2QMsgiTJE\nLETyGGckSg3L6G+oPI17dCz0ZimEEB5oshRCCA8kw08DXEHsHKyeIU90IlkWtvsbPONW9zJjXnUN\nqmb/8H++E/pdBQpEj1I4eZI84FZuNuHyi5/Ir3Keel0fzVueMx+StpXKlM1qhXwrZFFSLMhSk68y\nXL+qNM57NgVdb94Oif31u+4xdu8gjsnRB3NnIWd5Hh3n8isuNfbkKWgQFlBTuD2dSCxYvwk5449T\nNfK9JD8rqrBEkKS+2JMb4N1OUZmyXTtfN/ZiOmYZ9c6ursbSwQOPPWnsVzYh6H0h9f5eMGe6sSeN\np04CKVpS4jJoMZbbmHZyFDDPUQHzzj/P2BSMYJXX29eF5YVUGa7DCFW/Z4XNiRTxKP4h8Azm0Jul\nEEJ4oMlSCCE8kAz3wO42M7kAAAmvSURBVKpq7vMBh1fXpxJUNMqecWyvrKw09vAIZGlLE6Td7r17\n8QH+MI2/oRlysZoCmisqIcMGc/CkxqnqN3vA7fJ04efCsNIp9RealynyR5TU+bMgA5sa4OkujKCq\nPXtRgxhGkKV93r4ITc3GUTmvf7vnf4zdTQ7VunEI6h7u3m/sO9//28a+5oqFxh6gkmgdVELtuRXr\njP3wE8hbLyRwn+dfjAr3v/tH8JJftADSflwdcrSL3PecKqsPD2MMzzyBvuecPx6lSIodO5Hzvmr5\nMmOv/jG8z7OnQfLfev1lxl44t9XYtTSGQgYXMUp/H1yGMKDxj6vA2Ga0YJmlrQPLEZUkvdNJPFXD\nXIqNuhAEMUhvji4o5P1qFejNUgghPNBkKYQQHkiGe3CyZbirXFs8Hh4EnqRGY0XXQa1A9/DK55e+\nDdXAt72GwGv21HKgO4/T8uBH/UpchVF02AyPpqLi8PibGyCH62ogx/Ij8OTncpCfcSovVyDv+nve\n/S5jb9sL72rngUPGHhzCcf70Y3cae91yyNJLL7nQ2JxrvHlbm7Hve/gRY//quVXGvuEdKBl3+wc+\nbOz5CyBvM1TGbTQLr25nN4LME7SEs3+ky9h7O1DRvbsf++9qx/baOizJzJo9z9gLr1hk7JEBXJ+n\nHn3Y2Pc+tMTYe/bPNvYtV6PM3aQq3CNuuJbjxuTk2S8rhwyvoiWifBEyPEp/E3lyaXMDssGBcI/5\n1MlYvhoY5CwPN3qzFEIIDzRZCiGEB5LhHlgNxZxikShRhkcdfbcLFNTLkbl56ohlSWaPCu0sgW55\nOzysP7nvB/S92CcgGZ4kKct5yIUSK7QVORHdo2p6hsp+zZ522Jvf0gRvbCFLTbjo/KJJeGOHMlRe\njpqOZUnSbtrwirG53/RFVH39xquQ050cQT/ubBbSe/suRCV88ZvfM/bOAwioft9HP2nsj//pp3Au\nAa5xHzVTy1NZM34ea2qRu91J/cF/8eCPjf3znz5k7J4uLC+M0nLBBz/8B8ae2DgJx7nvXmM3Un/w\nj37iM8buaIf3/Ec//DbGP/qyse+85QpjV1FkAt8LVsOvbEHe+stUoi1NjdLIeR4ZpGSBcuo5Pnt6\nq7HnX4BEhhsX3WjsFWtQRu9Y6M1SCCE80GQphBAeSIafBji9zCTcuayVVQ/d2v34Ye8s28+5AI3M\nJjeh6VdfF4KngwBylKVgYP3Mhn+vy1Mfcyhv1y93kWTnxPrD8ruRpGJASyM5kuFx8tLHKQ86S+sG\n3IBs81bkUI9QM6yPfOgDxk5RVfBCBvnmB3qw/9fv+h9jv9YB2fvJv/xrY7//Q/Cqd/VCngdcf8+x\nXDGJqqkfPIi88gd+cp+xV76AKvENdK2KOQSHjx6EDL90IfqP33knxrZ1B46/cSPk8Je+9p/G/pNP\n/KGx//pL3zD2Pd/6krGfXrra2O++EZJ8mJY7Ort6jX3vD1EKLxKHVB+hZZPyMmyfPavV2BecP9PY\nNy1CScJ5c+CpT1LkQDU1ODsWerMUQggPNFkKIYQHkuEngyBcf/pkoLKsZi82e6hTFJSeJY/5jMnw\nEO+gfuJF+k0skBc7SXnf7/8ApNcXNsA7GNDxEwlOtsZxrPJuFAAfpe+1Pf7ksaYTTsXC3eqDGex/\ntP/0uHpIy2wRcjhO6wMxWgcIqO96kfYZGMH57d6L5Yci9ZWecw7y0CtJzo8O47P33P8zY698FXL+\ndz70Cdgf/D187wDksJXGT9ejooJLqGG5oL8PAefPP4tyahfMhbf3w3d+yNjDg8iFf+pp7P+jH8LT\n3draauwsVTVvPwCP/PkXorzfdiold/d3vm/sz34W5/vHn/xzYz9091eN3XEIgeI1VSiX95MHcQ03\nb0HAfH0TcsML1DGgdQqegc98/HeNPWcGlpT44mZGsCTCESUXnkf7HwO9WQohhAeaLIUQwgPJ8NMA\nl9x27WNVgk47PHmWm5wan5H0jtB3vft2lBj72lf/ydj9PYdod2pSxeWrObCcbVf/NFLkCfKkFzhH\nnuzKCox5Yt3hPOEq8mJnByGZY+Rq58D5ZAVKn8Wof3TbfgQzd/Ygb7q1BdKsjKp/c472YAbHX/wc\nGn5dctUNxv7oJxB83jsAOZynXuvcjK62GkHmE+tREZ292IufW2LsWTMRMH/He9+LcVLkQpIavl27\naJGxa2qQc50dhWf81U1bjR1LYwzZANetaQpK/d3znX819m/9Fkre3XwtStXd8cGPGLtrF44fHcYS\nSnfXAWP/zrvQNG3WPCQC7N2P53HbFiwXzTsXSyX5IewTpYctGeFrQn3hc1T9/hjozVIIITzQZCmE\nEB5Ihp8GsPR29eZOJHCruGo6Nw5j2TlrKmTS61Siy4K+K1EB+XfnncgT/ua/fMXY6RS88Ik49zcn\n7zbJ8GKEc8zDIwTyVm47LREUIQsnN4w39tQjHtC9u9vMtkIGMqqFSm8NjkKeb9mG3twHhzCuleuR\ng3xoCN85l/LBk7TkkIvgGrxKAdupqonG/pO/+BzOIwrpysHzCWqkVU/VzmsqsX91OZZYnn8JFct7\nu+AN/+OPf9zY/RTcno9wJADsMrqHH/vI/zL2U4+ifNyjP4ddOQ7PUbIS9+G1VxD0norjOt//g+8a\n+503Q5JXtqABWZr6g3dvX2nsT/8JnrvmKS3GjiVQrm3La2gkd9cWBLpv3wJpP70Vz0ChiLHxE2hX\n+leldCGEGDM0WQohhAeS4acxVkV0kthZ6iHuqrJue9VJgHAENP9W0mc//NGPGfuHP6Ce2d0U6J6B\n/CdnqyXD2R1etJzkLL1hF8lzWSzAriKvbeehw57ORzbBE3rFpWjgVT8J+vbHjyw29tL1W3AeWZz3\n7r3IR47TtZzSjHJkyQT2X7YKjcZWrof0e9eHkB/dPBWe2RG6Tjm6J42TUOm9qhJym+P+C0Usw9RN\nQD74ggXI4w6K7FWn6vh07bnUH62YRCZORlD3EJWY27ZjN8Y2A3nWCSp5d3A/lnYSMTyPK1dguWDP\nHpSMm956jrGrx+Nckg0YQ3UcAfC5DCIT8sOIImioxf299rKLjb1iBaIRZs1CLn8xh3MPKJGC70XC\no6ZCJKI3SyGE8EKTpRBCeBANfF1BQgjxFkZvlkII4YEmSyGE8ECTpRBCeKDJUgghPNBkKYQQHmiy\nFEIIDzRZCiGEB5oshRDCA02WQgjhgSZLIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggPNFkKIYQH\nmiyFEMIDTZZCCOGBJkshhPBAk6UQQnigyVIIITzQZCmEEB5oshRCCA80WQohhAf/H4iaayT2XTDf\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFMCAYAAABCsp4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztvXeAXWd95337nT6aGfVeLclFkm1Z\n7paNCzYuFIOpTjBk2VACWZZQNmWTl81CgADhJSHJLoEASShZisNSbVzBYBuMseUiydKoa9Snz9z6\n/iH7+X4O3PP6qHgso+/nr5+vz73nOc858+h8n19L1+v1esoYY8z/L5nnewDGGPNCwIulMcYkwIul\nMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYk\nwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIul\nMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYk\nwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIul\nMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYk\nwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkwIulMcYkIPd8D+C4UD+yw2vpxp8n+pfjCM8V\nS2QMjX+0Bjs6tpgLONHgZcUMudb442flSP+Vjz/Pkd3Q5/7t4gVyb09C/GZpjDEJ8GJpjDEJ+O2Q\n4XHKJYEMPG7neq7Pa1Kp1NH/687vxW1vxG97GONnwhhjEuHF0hhjEpCu1+vHy78bSy3G43gs0iiZ\nF5UaWGM4fp7UdMNjjte/QM/Fv2SWoL9lHOlfr7eFjhr/XRhjTAK8WBpjTAImSIaTYzldnCA+sjU/\nydG1GJvUj1DTxB0dN57j9S/Z0QZ+/zr+l/UExDJ8wvDzb4wxCfBiaYwxCZiQoPRMJEj7SKO6I790\nHEYTz/GSq8fCkeanx+W5PxccNzn/nG/8PIcc6Xwfp2uNvc9HOB6/HR09njtjjEmAF0tjjEnAxOeG\nJ8qbbhxMfvw+F0mkZVx5tCP/7rN/fixkYuT58/V5Io7+1p1UHNMcm+OC3yyNMSYBXiyNMSYBExKU\nfkwyKoFMe6692JF/UZ7r2TrpJNaRbqecoPyWXIaJx2+WxhiTAC+WxhiTgBOnUnoSiXKc5M0RZ5gf\nqfSOO/5Y4vGPl3c4jS/X08/t54kGnaQ43JFc8HOsdSOXdwwRGcc0x4lGao4zfrM0xpgEeLE0xpgE\nTIwMT1cbf16PkyvPvoZXa5Jv6Wy24TGRMmt1/Vcm3fj3OZxEKexHCsacymAM6RiZGTc/9ZjfIZWK\n7BxvM77LeajzHmVjPue5OFkxv5PmfYnb/EgSy9BgHmo4T2QOOPYENzR2nnj6mPtQLeNjfJf3k5fH\n6Yg8gzH3JO7zuOeIVDE/kb8Pa/ijxW+WxhiTAC+WxhiTgAmR4Z/5+IeDPTY2Fuzly5cHe1JXT7Dn\nzJsX7GkzZgWb8fP55lZ9XtFvUpbkqHvwOX8nfaR6m4dHFGSMVxeS+TRc79DQkL5ZgxSMOy3GSbuQ\n1S2sQnoVCoVgj44NBzuHeYj7Tf5O3Bgy+J0aZGEWko9jGBsbbfh5a6vuY19fX7CbmpqC3dzcEuy2\njo5UKpVKDQ/rmg4dOtRwLPl8Ptjlkq4pEyddAa+Vz8vsWdODXSqVGtoH+/s1BsxHHb/ZXCwGexDX\nkom5PzlsEYyOjwe7gM+rGGe9gmc8pzH07tiZMkeH3yyNMSYBXiyNMSYBEyLDf3rnbcGuQOL97O4f\nBXu8LClKqT5W0udz588P9uQpU4O9ZMmSYJ92xhnBXn32OcFuapGUS+cl/VI1ekwh2yOxxDFe1QwP\nevZS1o889ih+Rp/PnT072JTARcjVCry2GUj+Qh7HpPV5rVrC8aJewe83SwpyzuPkeYafw0Ndg2c6\nl9cjVYRdGtXxRUjHDDzKBXiRM/Cq5zjl1cPzkK5i66KC3yjomkqQq5TkvIXpWuNIhBo+pwyvlnSu\nHO7/SAnnymKLAmPjVlBLU0ewBwcHGo4tm9HzmI18jp/EfUhnG2+lVCPX6GT1o8VvlsYYkwAvlsYY\nk4AJkeFNWclDeuwq8Fy2tkk+1ZolLelBrI+PBPvQ7u3Bvrv3qWB//9ZvBLt/cDDYCxZJqi9fLql+\n1TXXBnvZsmUaAyRQU3sbrkbjqUAK5uiVhuyhlKJXMo3f2bYTHkpc7+xp04Id9eBCFlJuwab3NIeA\n5mxBY6jh+EyM9I6AexcZD6MLcDh/M1WFxxwSu1bR50VI5Sy9wpjPZ66L/58eeMrkJmxRcG7S+C4/\n5+9weyaX1/GU86NjI40/H5Xnn/PEKIBymXK+8VxmMX+0WTU98lTElTCcgCqMJwN+szTGmAR4sTTG\nmARMTN9weDzTKDVVLEi6lODtjUgOBvXC61oelfe2BZKzuVVyfmqn5HNlREHgv/jpPcG+587bG455\n2emS6ldfJ6l+FjzsHV2T9AVcF6U3g9XpYY16mSGNMQ/bd+/Rz8BTPHOKAvjb2nSN45B2zHmmZKXX\nuxCRvZpDen8Z5J3BGLLZxlKdx5O4gvzZVGMPblzg+DPzRhkbjSBQMHulzvoBulbWFahj7qu8hzmd\nvwKPNs+bx3PHLY3IzDBQHOetUIbjGef8xcVapDmX3BrhlhWO9xvR8cHzaIwxCfBiaYwxCZgQGZ5G\njjbUUKpSlnTJ5xrLunJpDMdIYheaEHzMMlsM3mXgdF3HtMIj3NqkYPUa/u3YsXl9sD/2lz8PdgYy\n7/Irrgz2K1/16mBPmqyA+bZ2BR9ns/KGkjrlZ1yZsKquZefe/fgfkm2L58zR79DjS0kOyZeL5E4r\niD3OGx6XU/9skvnwiVmSTtdI7zy3ESjmm9t1fEhqyPKZgicakjmS340tEHquKYcjV81aAunG+e4j\nI8zvb7z9EJdDz9x3bo0k4dnTH37t8+ek3uDJh98sjTEmAV4sjTEmARMiw0cRKFyHwKIHlh5bBlRn\n60yElU3pzbzpaOCvpGU24nHU8fSwFyCTuS1QmNSuIeR0zIP33BXs73zzm8FevPTUYL8C8nzFqjOD\n3TNVpb6yeW0pkNI4cp6L2L+grxPyfOO2HcGeNw2/j2tPI5+5XGagNrzhmB9KuFrj00YiAVjEncqU\ngdFlzHm1pM+b27RlQQ/3OO/v03K+ikD7p7brulOZJNXOScz7AsuyzVBywBieqTyetRK3EOgBjymb\nF8k3Z2B85D6kGtqR5mUxc1+PqRhojh5PozHGJMCLpTHGJCBdj4sWPo6cv2RysBlEzZzl9nZIXQQ8\nF1FRmpKG3kR6N1mxmnK+VmHQcOPg54g0qjX29tbhc6zRzrBiuY4/0K/yWxmUD3v1694Q7EsuvSzY\ns1AlPhI6EGlS1TiHOVLfi43DMP65M2YEO4/f4dymWR4tJmA6UoUcEjSLOW+DrN5/aD8+xzMAafrQ\nr36lMT9b87CIhzemAR2vKZL3HTOXJHJMXK48m7Nx7hvfk0UzZwabczCIGgbM+45ELmA+xlF6LrLF\ngqFxa6qG8W/ayUSHlDkC/GZpjDEJ8GJpjDEJmBAZvnKOJAdPFy0v1XgYlOFsbtWCyufNzc0Nj6d0\nYfVqNpGiPK/HlSADscHHKNHGsnJllCbLIaC9Hw3LKpDSr7lZ8vyii9YGe8ZClZhL1Rt7zyPqLzJ8\n9rGmvJTJcnAFXHu0HBgCwbMMJoeHGPPf0qatlYfWrWs45mjSc5wufJZHNFKarLEcrsf0Zk9HtlX4\nOcvOxXnME4wn9nXk2XvFL0CSQTO2cNisrYDycSyDx2e5Dhn+1A41hTteMvyYGgC+gPCbpTHGJMCL\npTHGJGBCZPiZ8zqe9ZgjlcCRytfpxt5zehxbIdXbWmS3wKvOoGF6mevwnmcT5E3Tk05Pah3/NlEa\nVaCHhthDGgHwL3/la4J90dqrgj1rzgIdX2wc9MzybukE2osec1Yp57UzGmFkTN7Z3h0IEOcYco29\nzqyWn0GAdSamBNwz9z1yHyI54CzLxnPGNCarx2yrRPYxcK/YOA4545kYj3k95rx8ZitVlmtLEFSP\nZ3/xAkVPcGtklM8Rki16d+3C2I6M32aJnQS/WRpjTAK8WBpjTAImXIYneZWn1InrYR0pv0XPX4zN\nfxUYDD9pkqqdT+rqDHacPC/kmKP97GOmNCqhNzoDxdOQXhSFLBl38FB/sFs7pwT79b9zS7AvvPji\nYHdOVZm4qOBqHJzNAPu4bZDYjliUspEAflb9fvZGb7/WrL3xeRs8P3UExTMp4cCBAxhW41JpzSjR\n19Gh5zRSb6BFz0L0/Ex+ZxJA4y2HeurZt0OqNeaJ83eO7L1mHgLg+d0tO3f85sEmEX6zNMaYBHix\nNMaYBJww3nCSjclHjhtqksrescHwFeb36hh6eynPujoh1REYHyfPo/2qY+RZurFETGf0mxHveUX2\n3gMHg33WOauDfc111wf7wiuvxtnicqobB2fHUY/pt11DvnTUo4x5TjWWsoMHdS19fQqe3r93b7Cf\n6cndt1Ne3V3w8FYhybfv2KrxIkKBzcV4b2dCuvKauFUzbZq2QFjPoK1DdlePGspNmqK6CIVmHROd\n5cbPRbTKGp4RbHtwjiO58JFSbzE58sfAkf4t/jbgN0tjjEmAF0tjjEnACSnDI1I0QWOsOLkdB38n\n7l8Lymf2jWZeeVdXV7B7YHdCqkfP1Vhu12IC8quVxvNASZ5FEP7QsILDDw0qKPmm1yrf/NLL1WRt\nHiq6R2R4TG57Ntt43tIRrzfnX5/v3yUv7PYtm2H3Bvuhhx4K9vrHnwj2nr6dwX4m378ZDeuYiMBg\n9WZUl2fTPJboq8RU3OdzND6m+1+p6vdHx+R5b5+kez5r7txgz5wne8Fi5fdPmanA/zlz5gd7xhwd\nz60ANnkjmbgkA5ayZ8B8JHU+ZpsqLhriJMezYowxCfBiaYwxCTghZXiSgPMj/Z1I460YmZ9joHhk\nDI1z0vk7/FeHsnAW8qzbWuE9Rbk5/mak3FXEA0qPJpuOsUo5Srchr3z3HgVnT5utXOLX3fzGYF92\n9Uv03XSMxzTixGYQtsb85COqdr7hcZVlu/fuO4K9/rFHg52HRGTwf1OT7HSDZ4DzxDRyziWrudcS\nJA1EnjXmbiNiolRp3K+8FqklIMYxT0PDo8EeRVm7BYskz+cvWBTs0844PdjLsGWyZOnSYOfyqGcQ\nKU+HQbCafkzOPTkZPd1J8JulMcYkwIulMcYk4ISU4SSJxy5JSTfaxxL0HjkXS5/VGn+3glxlesmn\nI3e7A429KOEpsSMKKM3AdX1chaeWZeIKRUn+wRGNZ9/BQ8F+FRqo3fTq12tsqKDO8/70jh8F+/77\nfhzsX9z/M/1+3+5gT5msaIGmHCvVazyEHv/IlsjTdjrisdfcMzd8DH3XKwzMRrA/70lzq0r6ZVBl\nv70TtQ2wvcHSapFybbiOfXvUICyH87Lp2K6dmiduF/QPKKJhUrfmb8155wX7lGXLg33m2WcH+7QV\nKzSIbEzgeoIA9SRV0F0p3RhjTMCLpTHGJOCEl+FJSCKfk0iIuO+SSMOydONtAXpkW4rKMR9CkzIG\nt0/tUb5xpGQcbMrtWi1GukZaXSOvvE55Do9/XpKfkvzU088I9nU33BDse++9N9gPPHh/sCtj8vJO\nQpOyVgSFj5fGgs1GcuUathqwdTA8OopjfjPnuXuy8q/b2ySl25DrPX3mLB0zSTI2krvdrdztpmZt\nV/Qgp5vH13DPuZ3DnHT2Y+/bobz1sZGRYJdGNR97+/bpmDF8jpz4bTu2B3vDU0/hcwXsT8bWzsJF\n8qqvOvusYF97vWoGsNEfIweIZbjwm6UxxiTAi6UxxiTgt0KGHylHKi3qMUHysZKD8pwf8/hqY099\nEwKzeyARu3skI9tQuTvSQCum1Bejyem1xRBS49g62LFL3lnKWgaNt3fIc5xnXjnGU4X07h+SBB0s\n6VyFVpW5mzFlerAXLJaMnD5dn7d3HN6aWLRkcfhsBTy/2XaWQYspRxfpnd64Gnl8xXKRpPJ5LJE/\nuwTvLEhK2LdPsn3zZuXZP77+yWBv2bIl2IyqmIwtn+uuuy7YCxcuxNCe/RmPJGScJLnkJ8dVGmPM\nMeLF0hhjEnBSynDKBspYemkj8hafx/Urj8iVdONA+sgYYEc87NDGOVRfz+c1BuabT4UHlL9ZQi/v\nSAA/POMj45LJ7FeeR2B8KyqAc5wM/h4d0neZx53FeUu4LsrwbFEe2ZnTGsvwSZ3aghh9Opib19TV\n063zYxY6EE3Q2dWD42UvRC72ZMxrBNyeiESN6/ENjtRTzONZKZ1l8BgawZJ4dWwFsNf9wUOqQP/w\nz5W7v3y5Atr5HNHLf7J7wInfLI0xJgFeLI0xJgEnpQzPxpVrg/yI9AGPK+MVk6teSz27DM9SSlHO\nU4bVG5eDa22SdG1DIDUbbrXCY15lv3IQVyW82IzyaMjjLlfqDY9nIHU2pvwZtzgiufkYT2RrAjan\n8Bk1z/lgbng9ol11nnxB89EED/wz3vVUKpXqQvTBvHkqZTdvkTzvF1/6Iv0mgrrrVebrs35AjDc5\nZpsnckzE48zEgsae+qh3vvFzV683fu6ScDJ6wMnJd8XGGHMUeLE0xpgEnJQyvB5TTbsSU0G9HiPb\nE3kE2Syq1lieJ/GqkyoaZbGkG/uYz5ouz27XJM1/uRzjJYfNsVVrkos1eFsjWxPI6Y7LkY94WFHa\nLBVpdhYzHhydyfymZGVjNwbdVyIav3GPdG4tsGxaBfeqqUnzOmX2nGBPRvm6K65QI7g1F12EUyGg\nnWPgn11chXM+d2iaFyfb48qvReV54/sct6WUpHbCyeIZ95ulMcYkwIulMcYk4KSU4fQy52ICzpkH\n3QwZduiQSpnFVVCPBJnjc3qKKwkqtMdRjPHacwzcXpg6VfnArNAekU/1xk3T4ryeVUg79i5jE6+4\nRmx5SmnOQypmi4MtsJ8eTzZGBkbK1MVsM3DOKMljm5elmE+vzw+iN3sLmtHNmDM72GeesybYN7z8\nxmA3T5bnPTaHPcIxyN6Y5/FYOBmbmvnN0hhjEuDF0hhjEnBSyvAMeidTKhLK8JkzVHF769atDb9L\nCReRlglkSZznPSpF2Se78TElyMtIQHhe9uQu5VEziJ090+lVZfB8XFAym4HFBZzTrsIDXYRsZ+B1\nPaY/+zP55mnobf5/VqCPNnxrvGUSJxsjDejQ8KtMzzty9/lHNIxGaVXMXwuqtZ+1+txgv/Wdf6gv\nsw84AsjrGE9so7FoMnljYj6PREDERTGchB5w4jdLY4xJgBdLY4xJwEkpw6FuopIDcoLe5FMWLQn2\nHvSB3r9/f8Pfz0F6VRPkiVPGRHOi48q7xQQQ47zlmO0FnqsLVcXnzpIHtwnXzmthPjO3KSiD6eVn\ncy9UhkuNVxpLPl5vIZJLjut6WlqzZFlTk/K+4yQ2ncD0hvP8mZig8RolZ9zrBXK0K5j6Ct5HSihN\nN45jpk/X3L/4Jape/rLXqpd7ZAKpeqsMFeD2kj6OU+2RYPVjyBMnv80547+9V2aMMccRL5bGGJOA\nk1KGMyg94r2FtCjC07lkySn6MkpxbdiwIdiRQOds43+DYj3jkFgcW1zOOLcLysjd5u/QYxondZvQ\nN5yB7osXqHlVK/LNKcNzkHyRcna4dOYwj8Mz3Y+e4OwPPnCwX8cjT5uS/5k5jKtYzyQDft7UrGul\nbG9rUZm11laVu8tmIMO5tVBrPJdRGcuK5ZrXTIbB7Zqo0ZLmplLXMaetWBnst7/z3cGeMnuuTlWn\nhxpDgM1tJ0r4elw0R6rxMXFe+JPFM+43S2OMSYAXS2OMScCEyPCz5ncGOy6PNzKoBP24kxCbZRsT\nXFutSk62QX6ypzK9fTt37gx23171cqb8pIe6GlMCLg2dlEk1nhQq++pzcMs4V9yCYMXwrk7dx0q5\nlGpELiZHvg5ZW2Z/NgbVU46WkIPdPxDsSV2Hc6pXn3te+KwTgfZPrF8f7DvvuiPY4+hhnkdSQh6P\nWmtzHrakekebeqRzDiLPEZuwpxG4znuLuRnFNkMTtgJG4TEfLul5bOlQQPtr3vC7wb76pa/SeSPl\n1/QpHekxFeAi0QXpuIMIveGRH2oc2REfJS8ySR7r51Hl+83SGGMS4MXSGGMSMCEyfNVcBT9H5Geq\ncQBxXMDr8ZLhkZ+khGDPbuRTn37qqcFmsPpeBKVv3rIl2CXk8WbQW5oVxSNjiIwZEi5yUON+0s8J\nmH9WX582RWXFetB7m/nYFUjpDOQoPakM8q7xKhkVgDmsVPHMZA7PfxpbBcy/fsl1Cuq+4WUvDfam\n3t5g3/eTe2H/ONj343Mo9VQOY28q6H5Skk/u7sIx8t5nU4296mloTm5FZHP67hii2+klHy/r+Kuv\n1zXe8pY/wKCRtx7jGWcUQyEX4+lmfj2e/SREawM0fvb5jFuGG2PMbwET8ma5co42yOMKspZKchjk\nYnqMHC/oWKLjhP+ycQyrVp4RbL6JjqAFLN9c6JDIROL+Gvc2iTp7uNHe+Jjn+s2S/4Ly7YMteKeh\n/8yUyXKwRIogVxqnEsalGOZjYkOZSlh/+u1zFJV96ngr4htn2ySN65Y3/V6wV6+9NNij/YrtPHBA\nhZ2ffPLJYP/oth8E+6c/uSfYu7erAhXv1eQenXc65qYNjiK+uVbQFynijQFpKJQSPGTjUCurz1fv\nn3f81/cGu6ldb8C1mCLCce2hI29TMamMEaftEcZZvpDe1l5IYzXGmOcNL5bGGJOACY+zjHPexPXC\neU6ox0gR/NPR0SrJtHyZ0h25XcAUsd2oRrRl23acCmmK6D1TYR8gVsqJkeGRdrzP8S53Lq7vDpw3\n0eLIkuST0VsmG+f4iVwvq/sgnTLd2PlXfzrNMpuR3C4hBZHOtTJTClHm59RVq4L9R+//k2B3TJ4e\nbLYtHh4eCna1rPTMHVs3BfsH3/tesL99638Ee9c2SfVJnYjXnKS/iamQ6lk+j7jPFThaCmh/PI6q\nQweGtS20aPnyYP/5X/5VsFvb5Yiqx5RQiotzjlsqjlR6kxfS29oLaazGGPO84cXSGGMSMCEyfMVM\neVG7uyU5Cqj+wkK6sXGWxwnKD3rAmfI1c5ok2exZM4JNGc6Yy8FhtUXd8JTk2ViMl59bDflIC9bG\nnsi4mLVkkjyuiHDM0TFe+FxMO1mmR86YobmaPEWxmLGpp4wBTDUuxNyo3w4c5KlyhXGbrLwkuVqD\nbD80KO/zGHZ8/vTP/0ewz4PHPArT/BAriciIkVE9C1vxLPzLl/452D/8oWR7Flsys6epVXFPp+KT\na9zGgCs9g62dUWxHDIzpGpcsVzTHn/35h4Ld2qX7E1fVuFppHDpypMo7EkMZ+90TO9DSb5bGGJMA\nL5bGGJOACZHh154rbzKl6P6DB4M9MjIS7Od6SJRq9DhShi+cNz/Y3Z2NixenG/SGSaVSqS1b5Q3f\nd/CAvhDjZY70Lak1Dtiu1xtLzedChke+GRO4HAFpoiysO226JOXUqbKr5cae8eg0oOgsPk8/LVm5\njdEM73AqLbk9BO9wGmmE9Yxspg7u7ZfX+6UvVzWf3/+Dd2iMPFcSsKVUReWj4SElLnz+s/8Q7K99\n+d+Cnce2xKxpU4LN663GtAxmMsSBQf1tXX7NDcF+x3v/m8bJXj6RCs5IMkg1PpyPV0zd6/hUxsgj\nZRlujDEveLxYGmNMAiZEhr/+xWuCvWvXrmDv2aeCufkjrGiSiIirFYHN0BOUgZQQy9B3p7mgsUV7\n9iBoHKfdu1/Su3ergpIjPn54NCNB1+ipk414yRm83bjfSzxHJsPj2pmWY+Qzvfk8hj1t5sycFezO\nDgVnR/rbxIyBXvLw/yMyEP+B32sqqmLS2Ki8w9m8ZHgFc1lCLvvgiI5fevqKYP+Pj35c58pryyGL\n5zcih+Naw/IhrGvOyvCkf/1rXw72//6HzwS7gP5H05AEkGfrYfbjhce8r1+S/IYbbwr2m9+BikWR\nxwsRHJE/p8a9f1i7KNGb2BF7xi3DjTHmhMaLpTHGJGBCZPgVq9THhcHn6RiZedyIKRYcKdHGdqmQ\nZyz4m4YkiMhhyHDm67JE2+Mo9VWBgohrPco+QHEy/MilyJHJ8DgZGdeaN1X7zaDxVCoa+dBSlGRd\nslg9jSJbELDpzd17QM/MMzJ/xlTlo7NFb5aSMKbQdKxMxj5MCV7mIfTF6Z42P9iU5N1TNJ5UhtEK\nIjI3EXnO+xPxOQerPC55/k//KO/5F/73Z4M9c7KCzHtatAXC85YQnL8Pz+kffeD9wV57jQooRzR2\nmq2NNefcQktUwJfEtfiJfWYtw40x5oTGi6UxxiRgQmT42fMU1B1pj0rZFROAnYS41rZxMjwbI8l6\nJql81eJFC3QMK37jd+gdzEI2Do4q+HjbDnn/9x040PD4SBV0lCkjmRgJzPFTtjOHvZhvXHmeAc25\nmPHEecCTwO0OenCno5L47Nmzgx0JtscYxtB2d8u2bb8x3jmz5GlvZm8eyvM49ZZu/DzWIYer6H/T\nP6Kb3talQPvPfuGLwc40SwLHeZATJQSkNP64Pk17tm8L9kf+Urntvese1zhbVZuBXvuxiu5tqqBt\npA995KPBnnuKSr1FJXlM9Mpxk+GNeT7f7vxmaYwxCfBiaYwxCZhwGR4hRnoftyHFyPA0veHQAXPn\nSM5Nm9I4l5lSNyKx8Ps1SJStu3YGe0uvAtSLzfIOVyCHivCqMxibkpIkqTDf3trS8Jjx8fGGn6dj\ntkfiKmjHeZdrmKAM7kVLWnM4b65keBfmfBQlz/ItkpHbdx6ez22Yy3YEuc+ajhJxKAdYgZSPtF9F\nUEKpqvuQy7EcnY6p1RQxMTim/7Hg1NOC/cG/kowttOjZL1cbb5lE93Maz3GZyQoYdC5GsD50553B\n/rtPfTLY/f3aCmrr1HZB/5BjodWrAAAgAElEQVTme9Xqs4P93g/8abCLaHwWaazGXPJjkOFJCjNa\nhhtjzAmOF0tjjEnAhMtwSrnqc3/qhmSgFRgcvHzp0mC3oEd2JabaOb23DGKupxBQfUhl6DY9tTnY\nhSaU+oLbmLejUm1clZ1Eqpqz2RkbpcFejkZWvb0aDyV53JYIc6fZsKwUs0WQgVzMoPRcHvPWgu2I\nBQsUgZCFB58B6qNPj3PzRlUgHx5RabW2Fm05zJkzB583DtLm/azUJMO5LVEs6lmoVZjLjnKDyCW/\n6Kqrgv2u97wv2GmUhsvAwx7xCLPeQKRRmw6psJo+G7thzFkWOqhobJ/56IeDfccd6oeeLWje9qKs\n4Hve98fBvvolCFZHyTsmJUT2NSLPEaM5Ug2pJYg3tww3xpgTHC+WxhiTgAmR4WfOkbcy4lHNNA4O\nj/O6Hgv8zTx+nnLy1FMkwyNeXchMSqM0JMcQKr0PDCmPN1eQzHxqs2Rve7uaUU3pUU5vX5+C2MdQ\nrivihYfqqUT6jMumV53e/BbI1MsuuzTYd911V7D7+/s1fsjUekyANb2YfJwowzk2yvAaPNBTp6tJ\n3Pz584PNAPtn2MM+7Vu2BLvIPGXcQ0ryHsx3XARBtHp9420b5keXc5rvbXuUy/6H7/tAsG9A9fVU\nHYkC+H3mlZMqbnoanvpIgXP+aeG73AJJZWQ/eMftwf7Upz8d7H48vxnI7U//rcrEzZqv/P4oMT3H\n2eeNHvAk0vtYyiIcR/xmaYwxCfBiaYwxCZgYGR7jDafUiZNDJDYHPAGR/tfwhrOP+fzZkmqJfh+e\nyB2oAN+3b2+w58yeG+xDAyqJ1X9IHsfVZ54VbObx/uTH9wS7VEbQOErJpRDgXYGkjTYa0+Hs973s\nFFWDP/3004NNSX4QkjybZYkunYul9ijbx9HrOkt5ySB2DC6H+VyyZEmw21t/05N9EM3uent79Xt4\nppjXnstKni+Yp5KBXV2qB8CtoDy95MwxzyByAXXBx1n4HJJ8175Dwf73r9+qa5qiLYfIO0tkr0P2\nXOTQb925A2MQfMYZoVDIsRwgByp7EGXwPvQ/5TH/EYLb3/Wu/xLs177+9Tyx7Ezj0oMkUhH/WY8+\ncXghjdUYY543vFgaY0wCnlcZTi8nvb1xFbnjvORJLiFSNRvyg4HQ3ZMmBTtSli3S21r26JiCfTdu\n3JjCQcFsn6R82nlzJKUoHdPI+335S9XXeQe8vN/94Q+DXYYnFW2vU8UmNOKCDMvEJOyWkH99ww06\nLz313/ve94LNCvA5RBFE8srZvKzSuAQc5R9jpymbp3TLY71g7vxgP3ONA/2D4bMtW3uDzUgE9jAf\nHR0NNiMg5s7SPWEueTYSqYHrQ75+NJcZ96Sm745hd2n6HF3HJz7zj/gqtlXiQFD33JmS8KwAv2Wn\n+tVzi4jl5tJ0J/PvhttguIef/NjHgv2T++4L9oc/LKm+ENs5qVTjKIk4Xkhvay+ksRpjzPOGF0tj\njElA4xLax5laTEOrSZ3yRFKSM085WiIaedAJAtfj/iXIQ/a0tihgPpITHfPzPGZoWFJwBAHkBci/\nVuQ+I5Y4tXzpomCve/ihYG/e+ESwzz17dbB3QmI98KiaoGXQE7rOfGYEZ1dKmk/K4XyzPO+3/UB5\nwm9805uCfeaZZwb7vp/9TL/JYHhEFlP+51C1PBXxziOqAVI9j2sZHVKQ/+Cgcr8Lhe7f+G0GZrOn\n+jCeoyKudRzbD5sh4VlpbFqP+nGzVF4dpeYo56twh9fqOr4Njdp6N24I9n2IdDh/7WX6HUj+bCTP\nWiafI0YQzJ+uEne9fYrISEcbgWucjEzJNv5r+cP3vDfYLX/3d8G+954fB3vKNG0LtGILp55gC+2F\nhN8sjTEmAV4sjTEmARMiwxl4nIJEOWulAqG3blHjpd6tshnwmokp8xQXzh4JfoUMZN40S5/V4JWO\nkw2UmcOQiszXzqI3cw5B4zn85GmLJcPLw/Iy9z4lr/oazM9Lr1PZryo02a8eW6+x1RCgHgmkRjX1\nCpN0G29r3H3PncG+8cYbg70bWwFPrNc4s5CaLFvHwO4xSF/mjEfGhm2EEgLaBwe13fFMEHkmr99o\nQoOwQ8O6J5msZPIoen/nEdTPSIQ9u1XVvgit29mpiIYqnt8KEgXqyO/mM1VGhfZWlOX7yr9+Idjn\nX3RRsLPZmEZg8M5v2q4EiPlTpgS7UNBcnoKq/2X83WzcpoB2lkjMRRK2md+vz9/ytrcF+9P/76eC\n/e9f/3qwb7755oZjtgw3xpiTBC+WxhiTgAmR4aPj8maeDWk5c6qCwHs3wMPLL6NENEurVaB765T5\nkA1VNAJjaa1W5BozT5kB1SnIM3pyKQ8ZGF1D5etSRXYdAcoVBEy3Q5KtWrky2P/yr18K9vZtKul2\n9tnySl97xQXBHh5UjvlT2/bpXFVufSD/GhXI2aArm9U1PoWtgM3w4L748rXB3r1Dcu7AiH6nuU0J\nCPNmzwz2k4+rjzXlWYXlySL90/X5ICqh9w8d3rLo6GjHsQgUx57M3AXKAd+1G3MzrvvAZ6oE7/n2\n7dpyYHB7Lo/Sd/Tw89lJUcaibB4+79vcG+xf/PjeYJ91iTzj/EuoMMAfOfp12CVssTThPleZ/IEx\npDPc4tJZa+nG94S87R3vCPbnPve5YP8QyRPXXHNNw+9Gkkh4z2Ma350onHgjMsaYExAvlsYYk4AJ\nkeFTeiS3L1t7YbB39kLKoURU5BU8SaW0SJOvxq/yfPWPlOWC5KiXGzcIq0POj41KEg6OoJJ5XkHP\nlJllnDfifYQ3d9VyyfBb/+Mbwd66Q1JwxQr1pZ7SJQl69eWXBPufv/ptjI3bC5BktcbSsRrxnutS\n7kM+8FveqLJcZ6/SeL5/p4LVa2VJ2S70K7/80ouD/e3vKgC+PeJpRn41mrUNI697dPSwt7sFvcTr\nMZEOrFJ/5lnqhf3QL34e7Mq4IhEoS0dLmo/NW3UfTlmk0nHMGa9hG4Nz2ZRjZASqrGM758tf+mKw\nKcNrCPyP5NYjoGHL7t3BXjxL2x7MhU9H/p6YJ47PGUAeU468GmmIpmfnlltuCfYnPvGJYB86pPJ0\nN910U8Pvkri/V/J8etX9ZmmMMQnwYmmMMQmYEBm+9rxzg70A1ch/9uP7g31oUJK22CKPaj3ipZPN\n3G2u+GnI8ByCdPnqX2xt3PM4EjwPrVNHP+k9e/qCXcUxzS2SfO0o9VZOS7qUIaWGIO1nzZoR7FOX\nLQt2327l91KiNkEuzkfZt7UXrgn29+/4SbBHywoIp9e+AFmYQwB3GXJr/35VJM+ndb1nrVRztwd/\n+XCwx0o61yg89Te/9pXB3rxZHvbHN8jj39Sm7ZEsxlMqKdB86Olq8yynl8UTMD4u+b7xSZ3nZTe8\nIthtbaoHcOftt+k8VW0hFOAmPzCgqIfdaJQ2Ew3W6JGP7QCAB7W5qOvbhWD/XVs0HzPmKXEhQuSP\nQveE54r2twcMFI+R23Feaf4NsZwet6ze+ta3BvtDH/pQsLktwPknlN4nYhC73yyNMSYBXiyNMSYB\nEyLDz0VDrt3Ia+3bLUmThWRmzjK91Xrx/7UK6vQyU2bA89vZKQ9yKkZmpCM6X2Y/cpPpAS8U5Hkt\nNkmKLFygrYYd23qDXaqwejXKeDXru+ecuSrYX/jSV4N94JAah51zmuRZL2TbxWsUuL5jp7ykDz6q\n/PECvLOsoF6LRBEwp1uy9tFHHw326rPlwV+I4O9f/GJdsAf7JeHrkLg33qBg5Y/9zd9qDNjuyGQk\nU/OQf8PDh+d/HONi7vaBAW0DjOOavvu97wT7v777PcHu69O2yiO/0nZCpcbogEzD4zsgJ1vQaC6L\n7Q32aavGeXjx8Ve//K/Bftf7/jjYUPnR5Alsq0TlP/5aIt5wRH9wDPh7otyO80pTehMG8H/wgx8M\n9siItlLiJHxcQ8ITRZL7zdIYYxLgxdIYYxIwITJ8MqqRP/bLR4LdDw94Lq/Xd8qVGGWcyrIUGP4P\n+1NThnV1yHvKmm65NAOhkQ8Odu2DnMyxpJuOaUcA9pQOXe9AASXaEBBcwJfb4DFfvWJ5sP8FZcIe\nR271leefEezp3cpz3zcoj+OVa88Ldh/Gv2OXPOwZeEzpGU3XWc5M13vfAw8G+5rrrg32KUvkGacM\nZ/X7g/uVm33hOZLwd686Ndj3PKjtgmyTrr0J43xGwnE7ZOpMlSM7MKRz7kWiw2OPqBo98+A/8IEP\nBPttb5cnd3xAnvwMgs/pcWav+KWnLNYxZTxHiCBI1xl9oEMGxnTfNq7XHJB0glzp2MrkMTL2SOVt\npA87nx2WUWTeP4LzW1r095GEOM/+84nfLI0xJgFeLI0xJgET8n5bh+Tct1fSqB8lzurwLKdQXZz5\nuizbVYtJGqcXrYCc6GY0rMrB21tGDjDLb+07KNk4MChPXgryKYexzUNebgHSqwlSOs8GVJiTcUjK\nWVPUKOu8NQoyZzD0/n4dv+AU5Wj3w+s9d56aV112mfKNb/22+oCPDOt3WL2c+fVlVAPftUf3bnhU\nkmzxYknQ1mbNYZ251mOQzd2KTLjiYm0XPPCQgsij9xcREU/LsxFUXs/ldM5TTpOsH/nlL4M9Nqxo\ngr/+648G+6vfVlD6+9//p8H+k/e9K9j5VGN5OzCgvPKBIdUMaEcJwBokOUur1RAq3oI5O4Dtim1P\naT7mLGzcm5uu9E3btgY70luc+0XpZ38/issBj/OAx3mu43LAeXyc3D5RpDfxm6UxxiTAi6UxxiRg\nQt51WaqpDzKcvbMojevRbNaGxAXLstlS5yTJvUKkEVQGh6MKOiUn8rIpUWsVBVdPm65c5hXLFgZ7\n724FLlOGVSO52CgBh8utQcKvWLEi2Ft/cEew71snudWxTXP76MMKGt+KxlR1NOjKZCX5RkqSjsUi\nAubTzJdHeTfsQdx2l3LPLzlXUnpyt6IO6A1nAHwRZblXnaqSZ6tXKC/+QfRGz2IMz3hbR1HVfP+A\nJPZVL3lpsPfsl0e7d6OiCR5AibYH7/tpsF/22jcE+567Nd/fvfWbwc7Dk87q4jt3yDO+ZLGeBfYW\nryO0o8y5ySkSJIWaAbf9QFsmt7xVWx2U4ewVz2D1dvTvjuSnA94fjjNJUDo/j8uFj5PhlOpxcjsu\ncP35xG+WxhiTAC+WxhiTgAmR4Rs2bwr2dpQ4Yx5pKeKxg3ct8kvMHUWwL2UyJHxHh0q9Raow41w5\neKv3HpSkPTQoT2dzk6Ypj+2CaZMlw+fOnhbs3o1P4byQkGnJiVIV+cPFFnwOGYN+3Nt2S+at+7zy\nh5lXvHiuyrU1oQRYLqutgKsvV6X6O+5RhfPd+7Q9wgiECua5VNLJHnjwV8HuYN9wjJ/9zXOIdqiU\n9Zszpslre9GFkvP3/FTJC4VuSsTDYxsZlTf8YL/u1fkXqAf3o+skvR9fp7xvRkbce6+ahZ25WtEH\nf/T+Pwn2Y+ueCPa2zYo44LPDIHlWds+3yzM+XtLnTU36vIyto/GhuAB13JNqYw97CnNPGcumf4TS\nO464wPW4z5NI+Ljf4fEnivQmfrM0xpgEeLE0xpgETIgM37xrZ7APDMoDm0Y+eC5LDzXrUSHIlU5y\nyGp+nIV3jfmo6Yi01zcqkOQ7+lSxOltA07GavIZd7ZKTV12pZmFlVPMeRcB0Pi+5Va0iYL6oLYK+\nQf3+v3/j34N9273y1K57XN7tlcslt1/yIjUCO3eFArInT9J59+yThK9iK6C1WXP1hS+rUVodZb8q\nUFJVlKcfQA/02bNUkm7WLOVpP/yEgqqZX59GrQD2Up83X79z+hkLgr1hk56f6tMV1BlbPT6s+eto\n19bI+edJkt/5g+/qnBUd/+N77wz2LW9+c7Cnz50f7Pf+2Z8F+51veVOwyxUExuM53YMtDZZxy6OZ\nWoW9vBGt0IRGdgf3oVL+uOR5rojmeAR/E+t7twV7Hiq6TyRHmnt+opRii8NvlsYYkwAvlsYYk4AJ\nkeE790hO1LLMlW7soc5kGwe5ZpAzzkDuCoKoWyDx2EM6Giyr39+1VznXJfS8ziLimE3Q5kyT1/uC\n1aoA/+ADCnQeHtXvZCDDKf8feVwe1rt+8qNg34Ye3PMXKL/7+mvkKT7rVJVxu+7ytcHuaYGMqUi2\nZVMaw6atkuSLZ+v3L73gnGDffo/kfz0tiYhdhNQYthqmzVDDtXPO0e+sW78x2Pv3S5r+n68ryPuG\n61nqTdL77FUqQ/fI46oGX2w7vHWTQ42z8pjmmxW5zz1XjfJmz9bWxc4dWzTGR5Q/PjykaIjOybrP\nl13+Yo335Wp89q2vfjnYVUz9wUPyznObJwUvdhF1CEooZcZK9iV4/Lds1hwsXKb7H9mZipGxmQTl\n3cyz41k0xpgEeLE0xpgETIgM37pLzbNqmcanjASnxnweWdnx+Tjyr6dMkbRk/2MG4B4alVTbDhnO\ngOo8qmNPatZ3r1krD/iUdvQ3R145A7DzzfLI79mlc91367eCnc1pnC+9Xr//6le8XGPDmDc9paD3\ngYPa4mhOKbogj2nu6lbZt7YDKotXG9aYz1ulUm+bnpJM3bRT8jmbwz3CzXhyIwK14c3tadd4zl11\nerC398pL/n+Rd33ttS8J9opTlQs9e6bGv7f/8DxkIvnFCJxH1fHlKNfW0yMv+fYtOn8BEnV7r+Z1\n5nyURMO53odg9Qfu13bF9s0bGx2e2n9QUQDTMIYS+qtn0CM9Dzd/CV77jZhjyvBYYnK3zdHjWTTG\nmAR4sTTGmARMiAwfHJLkSBcUUMsGS5HuX9B4ERkeiT6HVx15pE0IRGf5p3Hkym5GRWmk5aaK8ESm\nUUF97gwF9V5xibzPe3arqnUa2wtDqJpdqEmW7t2r4OrZM6cE++bXvyrY561WWbbJ7EUNv+e2DSpf\nNoIc9vw0bQuUECTPsU1HgPLABnlYu9o1b1dfocrq/+uLXwl2FfdlGFXWH35UedxnLFV5sqaCJve8\n1eqH3jdLWyWPIWf7lz+/P9izp+uYaVN6gr1zz+Gya9kMoydUjqxU1rOWwnNxxkr1VF/3qPLaq4iA\n2INq9HQz8xnpmCIv+Tv/yx8F+33vVmX1Wk2/uRPl+qZP7g42c6i5pcBmfVV4yfeiX3ki8JuswWCO\nHr9ZGmNMArxYGmNMAiZEhjOnmCeM9BiGDE9DisRVeWKQeU+PJG0Ov5kt6GzbepX3PTIsjyld79Wa\npHonynjd+HJ5pVvaJHVHIdUff1KSdmRYUrCA/PeFCAK/9ipJ3bWXKOA8zWDykqRuawu2L5CTzLJW\nZcjkelbHswRYc4vG39OlqubsLb5koZqvXfkilXT71vfvDnYOv78L/bNXr1AP8e5JnTov3PMzp8I7\nXzw72Om05vMg8r25zZLJH75G5obzvtXZkBtlzc4+73xdx623BnvfXkUTbN2i6xgbQRVxNBRL4Vl+\nyfU3BPsLn/+nYD/6ywd0PJ7H0XGNs4BaBXU0sqcMHy/p8wMHVPWdcGeqjoc5i2ehpaU1ZY4dv1ka\nY0wCvFgaY0wCJkSGszlXjv2pUYotk0V/8GrjgFo2F6tDWk6dLFnHKth9fQqGZ3AwM2gz+K8iKl8v\nRdOps85UnvK9P7kn2L075D39zm13BbtnmnKlx8fkGV+2SOXLzjtHXu9cVd7TFBqisS8588ojFa4x\nn+Nl5LPju5wrVmLvQv7z/kFJ+wqaZl13nQLF7/jJwzhe3vadiArYtR/Xu1LbC/0ljXPzZs1bIa9x\nFjD/6zaqJN2WPuVsV9OHtzXqeC4KkJnpNBvfQYav1lg6u+SV3o+mZlu3a6umiuiJTAtkOMhgi+Xd\n73lvsH/ndYpuGEQJun2Q0nPg7YcKT2Uw/tSYxjCApn9R9FzEbVll+cRHMj5iftI0xG+WxhiTAC+W\nxhiTgAmR4cUcZCOCZUsoWUVZRXXAoPQqPOY93ZJSDLodHYI83IkK2/CYZvBvRAZbAa1N2i543atf\nGexDhyQzN2xSDvCm3ZBYw5LPs9okC+tpnbd7inKD2zsUBF4dUt9rSu8KgpKrmJX9/Tpvzzjy2ZtU\nnq6GvOI8crpzqMpdzuh6u8d1zKZNajBXhWd/0dKVwe5DSboDw7ovt/5Q+dJjaEz2vfuVdz0+LKme\nyWj8LWiyNjCs+7hLcfepcuawh72GoPtFU1RhvatbWwupmu7zpMmSvVNgsylYsaCtgqYCpSukbsz7\nxZrzJPPXoDTcrx5Uf/WBAV1IeobGSS82n3cGrg+PaM5+rTdAw+8ykp5JEubo8ZulMcYkwIulMcYk\nYEJkeCoScK6PWRW6zIrokB/sf5yBXJmB6twMzN4ICRnpW4wx1FH5vLmoMVy1Vs2/li+ZF+wnnlT/\n6eZWSd2+vQpEv+AilVbb0ydP7swZ8tR3TFFe9hgah2XQvIxl4jJF3Z4KJHZhiqp+7xnStQw9otJj\n+3ZrC2LggMqs7duvqIDdByUL9x2Up3ZkVGXcqnWNc2Bc42FQ+FhJ92j7TgV2j45Iwu9D1fpZMyVB\ncwX9/qEBSeuBUW0j1DPasqhUD3+ezSjqoa1Tc1xs0rFREOmwVIHz998nmfzkE7rP5arGznNxi4iO\n5UxBW0Fvf9cfBvuW190X7BEkMQxjblpQ0q+M7ZNCrvHfASV2tPxa49ENYNvDHvCjx2+WxhiTAC+W\nxhiTgAmS4fDYIqC6gjzbdJrB5/oqc8YXzpH0bs7r+C07kPeN/sp1eNubcF5+Pgfl1373JuWAlwbl\nod7Sq5JuU6cpsPyaqyQnN2xWn+bt21ECLidZWM4pV/rbdyHAG2W82Nhrzz554Q/Ao7ljl46p4d+7\nFni90zVdI3tUl2Az8JoVxjOoPN4+SeXPJiP4P4vc8H375Z1fsnBusN/zlluC3dmCaAeUV2MP7Ke2\nKk/7s19W/vYDT2pbI1s8PJ+1mh7daTPgDUfEQZ1N5+qaj1Ur1Wjum83/FuxDCBofQ/X9YorJASLG\n+ZxauVre8DUXqKTfz39yr34fTe2aEaGQyVLc6+9mdFT3ZxiB7sU2RJqkKM/16dY9u1Pm2PGbpTHG\nJMCLpTHGJGBCZDhLXFESVhlQi+OZM949SWXEpk1WKbY+VI7uQ5kt5krnUSn9GS9qKpVKdXVKWv7O\nG14X7GyTgslZ7mz/kMbz8ydVzXt3n2Qyg8aZn75xgzzU9LaSGpqdjY9LntVRDX4EwedDJZ1r1kx5\nxosIhp8/T9K0uU3jmTtT2whtqFo/f64+b2nVeXs3PRbsZcsXBXv7dnm9P/AnHwr2onkq77ZikbY4\nMhV52HGLUml4kXf1SUYOIhEgXULZuqc9xxSrM9ETPI/A8gyDt7HNw0iKlmYkEDB6IqZaf0RvYxSs\n+t/Sou2Wl77ipmD//KfyjO/eo2d2+hRtb5SRPFEr65ml15vjjOsVHp0hJJ9P0M7bbyN+szTGmAR4\nsTTGmARMyDv5KEp+5RBwXqXHEUHLWaiGmWiw1bdP0mXnbvT7hsSqs9wV8qwV+pxKvfJl1wR7Fjzs\nH/ybzwb7wYclP9PIoaYcGhlWUHdHuyTtHDQjS49Lfk6diSZck9WEa3K3PLjdyHnv7EJF8R7Nw88f\nUeD9PT9VjvbGDfp886beYOeaKE1FvSSpdtYKlaFbukhe/kULJc87m7V9kZoqiTu5Q1K2AMnX1Kzz\nlgYlKWuRkmSat4ODmqs9e7TN0g6PebV2+HfK2KK4616Vx7v+ZdcHe+ECldmLBKWfph7mze1s8oYI\nAuTls/98Jt04CJzJBKm0jr/sMlXEZ//28rCSA4ZGFIzP3uwZVJdnZwDa3DmoVHTeYiHit0+ZY8dv\nlsYYkwAvlsYYk4AJkeE1llmjNIb0ZtDtwnnzg10eQ19nBGnXoCyy+P18XtKvhkDrl16vit8XX6wc\n8P/nw38V7J17FOw7imZRbZCTK08/reEx27fK693TLg/vm179O8E+ZaG8yQwIL0cqbmlOHnz4iWB/\n4hN/G+wtfZJws+efEuyrr5UEbWlTLvlYDQHn2EbY3iuPdu8mlVB7FL28cxnlMM+Yqu2C+fOUO79i\nhXqCs9f1+Li+S68tvcuU5MxbH8Hz0I5K5eNP9+RO5xXs//BDDwX75w+oWdjC+Zpv0tKmCIt8XhJ/\ntIQcaiRMRKQ3+9vzGcyyUZq0MaX3629+Q7D/6W8/EewStqNai3p26pWY0ucADQZS6QLHyb0OfsOl\n0o8Wv1kaY0wCvFgaY0wCJkiGy65GSk0huHq6gpnLkCX9/WrUVILEozLKcclHg7CrL1Sv6Buvkwf8\nvockbzf0yuu6YO7MhsdfdaFyffsgFb91u6qCr18n+Tdrsryw569cEuzyiKRlGQH5/RXl937+a98N\n9u33ySP/klf8brBft0j51yNjkrqnnCKPdlunvLyVOr2tuuWZqiRfbVze6u29Ou/3vvP1YN/5ox8G\ne8vuR4I9uVOe/TVnLNa5sKVQRQ/0LKLSB4bkAd+N/uO5iMRFbYGnJfwAKofnUDbv3nuVf33pi64I\ndk+XIhQoq5edrsZxD0HOVylXI47lTMPPGSjOOPE05vuKq64K9j9+6uPBPnBIdQg6u7VFUEK0RXu7\nIhE6u7QdUqlobnKRnunmeOM3S2OMSYAXS2OMScCEyPB8RqcZR9R4D4Ku6bwbGJTEopc8nafuQQV1\nfHfthWuC/Y7fu1nHILD50UfWBbujQ3L1Pe94S7AXz4ZsG8dWwIAC4/fsUumwaVN1LfNmKfi8gDJh\nFeizUexG/PVnPhfsvaP69+vP/ufHgj1rnjy7j2/U+Pvh8R9H8H8LZGG+Sdc+BtkeuflZbQUsPFWN\nyW7slsQ+NIJK3wOak3UP/TLYbc1bgr2tD/nP3ZLklKmsGH7oIBq3wbuMNO1U9elrnD1T3vhheI3v\nvvvuYH/owx8Jdjdk+JkrdX2s8s7Gd/m8EhEiOeMx5dp4DA9nYsSsORrzuRdcFOyNTzzacDx1fDcH\nOZ9Cpf9cjuPEKDFncy0XIfUAABAhSURBVJELv3WXtp3MkeE3S2OMSYAXS2OMScCEyPAKpEU+q1OW\nIAmrWLdLqCKdxfHlCn9Hv3/BOWcH+z/foiDwJlRTr9b0m5vWS8aee/qyYM+bKkleRCB3Gl3WWMl8\n53ZVaJ8+XTLv4ovUQ/rAgLYUqjnlfX/m374a7L1jksBvetsfBHtoSJW7P/6RLwT7sY0KgGf+8JrV\nOu/ll18e7G6MrQnbEeyfXkE5szFsa3zpa98M9k1v1DYFy4p9+uPaLvjZHf832P/wxS8H+0/e89Zg\n1yqa28ERecn37FHSQR0e83Hu0TztYX/jm34vfLSjT/fkH7/4z8H+xq3fCnYuo22A73//+8F+2dUv\nDvbu3aooXkV5tHRMGbQyG/EhV51vIGxA1tIhT/dll8tT/4sHfqbzIuY9g5oEERkOm3nrceOcjvoK\n5ujxm6UxxiTAi6UxxiRgQmR4jt2TIK/omWVubS4HDzIqqzch9/XCNfJ6//6b5PXuaIPXFeXCDh6Q\n93YAVbgvOOc1wW5lwy80NStX9PmBgwqiHhyQTL74Qm0FdHSoUjYbrn3rewqY3tmvbYErrlejtP/1\necnIH/1AkrYJ/bWHkC9/002qxP22t7w52N+/7fZg343e2K+6Sdc7FbneQ4MKXO9H8Pzb3/6uYDMH\nP13Xdb35re8I9sYnFKx+9wPy8n7r+3cG+9XXXxnsgUHlpG9Gz/EU6gbU4OZ95o6eserM8Fl3n+5D\n/iva3hhF1fl0QY/61q1qKJdBRkNzi7zhURp7w7PZxu8alMb5HIsDonTbFZqDj39U2xhjqIhfwvbD\npC5FJZBI3/CYvPVIIog5avxmaYwxCfBiaYwxCZiY7kWQ3uxbXSyih3gZ5bywhLc2a4jXXfmiYL/+\nplcEu61FUqdaRd9weMy39+0MdqGo4xcvWhDsLP7tqNf05b398miv3ywJN7lTOcnnnKm87HJNv/PE\nRh2/eZfk4hLkJN9+uyTzGLzDV193bbAfWydJO7JB0nXJXAU6T58sb/trXiO5/Yb/9M5gb/jI3wT7\nQ//9A8GeBY9pByLm+3YrsDxTYeMr0dmu877+FnnM/+rP3xPse++XPH/Ny68Ldj96YO/cr1zoQqs8\nx0Vs0cyffzj3vB1B5qmD2kJoa0VOfEXzTYna1q7ybisRoP7Y44qSYKm5OGpoXsbg8xzsKqR0Fp+3\ntev61lxwYbC39eresvFd1KOt80aquPMPB33SWVndHD1+szTGmAR4sTTGmARMTIk2qICmoiTQ8Ljk\nU6EA7yfKP7/oxQoavvTStcHe16/v7uiTlEvD+ViC/Ng1KM9osUVj6O5S6avSuGRgkf2s96ks22OP\nPxns1Wep8dXK01SxfGhY49m4XTK2hMDoyR2Srje+Up7dG1/1Kl0A5uHRh38R7Lf+3u/rGOTdF1q0\nLfCjO+UBX7pCweqbN28O9je+dWuw33KLqngXi2y+prziof2StSNoslXDNgtLnk2dpXJt61EKb93j\nkpr9qANAsViGtz1V1b/p8+YfLn/34IMPhs/+/p8UQdDfr/zyOkoAtk3SPf/UJ1Wl/MLzNTdf/sq/\nBTsT8xoRkd64PzWWD4SHneXomLzd1Kbn7uJLLg325zbo+ers0n1obkWzOLi6M3EDReTCIBrBmaPH\nb5bGGJMAL5bGGJOACZHhGTR/KpUkr6ppSd3RjDzjs+fOD/ZDWyRj70Nf7xQ8s4MDksn7DkoqpuFt\nb5GZWrVIFdHrKcmnAgKXx8qS7Vt2KFh6HLm+L7pMldjHRiV19g/Ksz9/qZp57c8o97ilU7nVN75S\n0nsYkqkMr+fylZLqf/wXfxHsJ9dvDHYf8tAff0rl4/Jt8qS2dmv8n/r03wf7hmtVxXvK9NnBZvXt\nGVMVGL1tm2R4CZ5XBuRfepm2UG7/D+WJP7ZeWwF79ks2M8g7n0OVdSRMf/8Ht6VSqVTqjnuUT12q\n0iOMpAdEWPzFf/+oxoXtHEJJm0MSAOVzBmOklzlapZwd6CLl1PU72Oo47yI10Pv7z6gxXS6vOZg7\nV9Xx+Y5T5hgwfrQuj3jMzdHjN0tjjEmAF0tjjEnAhMhw9B9L1dHEKoW82TLW7fVb5Dml97EF382j\nbFod3tJs+7Rgj+K8TVBVW3dK2leR9ssq7n19GsPunSrFdtqp8nqvPHWpjtmn3yy0SK7On6Og95GC\nxpYutOrEMe2bWX17oF/y/Mpr1Ezt549IXh46JBm+c5fGUyvOwrXAOz8qmfq1r0gmv+UPVCYum9P+\nRRlbH7Pnykv+xNZtwW5u1tbKstMVqP/db+j3B0cU9L4L40xH5LSufRyN1Z/JkW/Jo697E+oBNMlr\nvGuvagBMnYYg9khJcU3+0qW6n4zgqMeUYov0CkctgUgzbxIJGodnHFEMM2ZqCySV1u+feprmknAM\nkbPiXFX2H8eWmNuGHxl+szTGmAR4sTTGmARMTFB6VjKjgsDsNJstRXoz05YEYmOqOrzVbfB6w7md\nqlX1QyPIdx4u6DdHEbicg/QaHlNgeWVMEvi1N6qc2hj6OkfKl6HCNSpupc48Ux7tzm7JwsF+efMp\nq/KQUuy9nsJ2QXurgq0z2LIYRAB55zTJ/xQanOXhbb//pyof99Z3vU2nSqOBFrYyqhlN9JQZ2nbY\nu1/St2eKPOPsh31gQJ50esMntWlrgp7sQg6l054ez9JZimg4Zelpwd68D1sRfYpi6EP5t6is1nxf\nAK90G7z6aVTrr1UbB6Wnso294XV4q/k7lP+daAq3/DQlOjzxhPrbF9v0N0QJX8HvF1BBfR5yySPb\nBeao8ZulMcYkwIulMcYkYIJKtMlkNepxSK065CErond1Sg5l0Qy5s0NB3dVRyTo2bSpVdPz4mORZ\nZxOkN/plDw2rmjorhy+YK8m3eJ68lUP9kna5vORwCVKtDcHHbfB6DiKHuQ1zMlbSPFRTkE+49jIq\nXy87Rd75jevXB5v/CrY16xr37pTnmpXkezdtCnY0zxne1gyD9iH/Cvr99lZdY3MTepEvmh/swSHd\n932Q4byuiNc5rXMtnH3Ys3/lJeeGz1auOivYf/lpNXarYatm21YFwkeCySGNzz1fSQaMRIgtgwZm\nc6sDMnw7eqcTRmEUUYrtiiuvDvY4Kr1H7ijUf6SRGY9GcH6l4krpxwO/WRpjTAK8WBpjTAImxhte\nlteYPcR70FzsnFMUOD13qjyny1DJnHJv2VKV/zp0QH2jDw0gtzqt4+/98U+DPXO6yqMVIUXHILHW\nPfZ4sN94s8qXlUdYxk3T1w8JWYSHuoSIfJbK6sD2wui4PO91etXhxazU6AGV3dOt7Yhv3PVd/X6H\nKoa3tWqeRzH+OoLMDx3EGNj3CgH/NcjwbFp2Dl71ye26rpY88v1naPuijlJ4/bhfWTSMK6Af+umn\nnRrsi8875/BvDEveVsYl5Wfh3uYf1oVwCyeVZW41jmEDskj/bgaTp3AMGpNFAtF137ilkUH0B1t8\nc77nzFEO+Nx5C/U/WLkd0ptyvo7Bcashn2fTNHO0+M3SGGMS4MXSGGMSMCEyfM2Zy4O996ACsF9x\nzaXBvmSNGkfNRx5vuiKPYAbaiD3HizPnB7sKuVVKSQaWDqk8Gsu4Vcflff7VQw8He+6cOcGGcz5V\nKsFTnKUG0kFtzZLhj23dEuxNP1F17zf+JzX2Yjm4NNONU7Ahq1o7lP+8DpXbd/VpO2Lm3CXBHh/V\nNQ4NIpAe8jISPM1A/awkXKXSOJk4R80KTTmpVV7+pQvVWK08LNn8f3brXrRN0rmWL14U7LNXSobn\n6ofv+9pLVeF85uz5wf7uHaoo39GiIHe+FVQrkM9oXsdCZpGA88Ztw1NzZihKoogtBPaKz2ArpR6T\nk45HJ1XBMbzPlN78GQ4zzc+xpVCL6Sdujgy/WRpjTAK8WBpjTAImRIZfcJZydw8ckOy6Ye2aYLcW\npQ9GByUnM1S6NUngXF7yZnyscTBzCUHvM6dL2t/3sweCXYU78Ve/kIR79zvfGuwye5ozzRbd0arw\nLLdjVmvwdG/bosDokUF9nkOzttESzgVdVcR1paELh0YVbN+PmnSzipJwLDcXkYvQcx3oY53HMTXk\noVOF00NcxTGFlO7FzMlIKDhbz8Am9Ofm/W1GDngOMnX9evVMP3/N4VJl02cqCmAYsr4NJeKa2DgM\nHmpWFK9hLusRvd04CHzhTEnvDOq41ap8MPhdRDekOK91HIITIAogU0ROPL7Lw9OU2Bkeg97l7ht+\nXPCbpTHGJMCLpTHGJGBiKqWjj3YbAsubUOYrVVIjrXRdkiabY3ksShrKD0gpyBtKzlnwsG/fpmZe\niElOXbL2wmDn8pAxGCZlO8vKMWA+U5N3uwl5zdu29Ab77ntVEu2qa9TYq4TgYwY0t06STP7lowqY\nHxzRBYxUGJSssY2MaTz9A7oXWVQgP+ccyeQ6JiVPT21MjnQd5+XWwaQ2zclok+7pgf3aFoiEctdZ\n/ZzN5li27vAYKqglUERe/rSpkucsTTaKnPsyt3Pgimbgeq2q7QTmWbM0IEuicX+myijziItdJkv6\n8ZBJ3Qqqv3itGqtV8CxE8sEhvfkwV7B1lC+iO4E5avxmaYwxCfBiaYwxCZiYEm2QVz2QGc0oTVVG\nJfM0ZQygh68GTyQlIRuc0bvZ06Nq1O1d6H+9W2XWzrvgnGCPjcjDWq2hnzRKujGVOIVyWsP9e4J9\n2nIFY8+bq/z3T37yk8HuxHjOWXM2rgse4ad6g/2JT/9zsAeHNQ8D/ZKaGzeq5Nq2rWq41j1VY0iV\n5G29cO3lwS5CtmVRej6LfQdK7xzEdBFV4stllbkb6VcF9b17NOdNegRSy5fMD/al56sE28CgEhnq\nT0c+FOHdHh/Xs9Paqh8sQUq3d2kbo0Avc41bCLqODKuap5g/rvPyuRvDNhKf3nmz5T3fsgPbP4ie\nyCJ3uwMV0TvbEZQe8dTDxtbIQiRS8G9raET3wRw9frM0xpgEeLE0xpgETIgMp4c60uc43TiINh1x\n8KHEVYzEJulIP3E0psKVXvmiS4L90IMq3bb6VDV5YuPoPIKlS6gQnmNJMXgox0YRJN00X7+/Ur2f\nv3Obzvu1r94a7F89plzycZR9e2y9Atr3Dmor4OAheT3Tua5gj1Z0TM90ybPTTlee9bbNvwz2ZVde\nFWxuL9QRCtBU5Dw0luHcQikNaR6ydTQ+w29O7lb+9jVXvSjYs2eo8vjPHtCcdDYf3saJRAq0SmJT\nGo9Afs6ejX7cILb8Gp7ZRZDS9N6zsnsO5deqMTngJMtmfZGmZghuj/xOw5+JraDPUI2iveHHBb9Z\nGmNMArxYGmNMAtL1SN0oY4wxjfCbpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCL\npTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHG\nJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJMCLpTHGJOD/AxrfgBtYonFxAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFMCAYAAABCsp4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztvWe4Jld5pltVX9qhe+/u3p2DOiqH\nllqhJRBBAkkYTDBZBszghAfDMJ7jGYzT5Mvn4oyPzXgGjwEThmALk4MEKKCckISy1FLnnPMOX6o6\nP1paz13iqz7V0zK0pOf+w0upvqpVYa+uZ70pzrIsi4wxxhyV5Jc9AGOMeSHgydIYY0rgydIYY0rg\nydIYY0rgydIYY0rgydIYY0rgydIYY0rgydIYY0pQ/WUP4MRFsfpLZs8JdhKlz/uZkkT/ZnW73Z52\nX19fsCcmJoLdaDR67p/GOv7abVtxtgps7ZSmuq4kk/2FT/9tsD/xX/9M46nq/lSijn6L+8Y7lWYV\nbNd5s1jXnna0vdvRNa685Pxg1+Mj19jfaYdtH/ydfxnsm+99ONj/83NfCfaBrKZz1nTPSGV0b7D/\n8mO/E+xXv+Llwf7Qn3wi2I9v3BPsv/nc/w724JSRYMeZnsnAYH+w582ZEexuuxXsoq+XLm4mblnu\n+ElF9y+J9YM4xvZUP6419E7ddMsdwf7UZ78R7JknXx7s4UmTg/2dL/yHYDf3bwz2RHM82J/77KeD\nffnlOk5/dCjYWx+8MdgDyViwu7GeV7Uquy/TtTz6yOPBvv72W4P9kY9+NNjZxGiwk1jvZpbqnR0Y\n0vNKzr06KsJflsYYUwJPlsYYUwLL8BMApudTMtXr9WB3OpINtZpkCaV30THnz9EywuZtO3VM/gBL\nAQn+DX3nr78n2N/71j8Fe/Wqh4JdjSntc0cVkIURJHmS6VxQkVGW6NVct3FzsLutI/L80vMuDNse\neHJ9sL913c3B3tfU8dKG7mWjITkcQcZ2xzTG6dOnB3v37t3BfvLpNcFe/vIrgz00Vfs38UyquDVT\nhgd1LkjvBp5n2sb9q+jeZLh/XN6oVHWfsq5+m2IppcJlj4oG1Opon8XLTg12vX9SsNsTuomH2lr6\nyLAMEsGu4/Nr3bp1Ok5X7+MA5H//gO5JzCWojuxKKruDMc/BUsbFK/U+HDyg5ZFJeO5JgqUgyHn+\nDR3t69FflsYYUwJPlsYYUwLL8BOAIhlO6V2F3OL2nKcTUjrCMSuxfjtnriT5pq3be+0eNenBHZ4a\n7H/7Rx8P9gfe924dvwoJn1E6amwcJ4lTnTiBNKpBMu3csSPYhw8dkeFnnqYxXnvjncFet2lLsE+a\nNyvYkyYPYJ9NwR5v6TgNaOapU4aC/cQTT+iacKNWrlwZ7BQyM8J1TJ4sSTswoDFkbZ23PS4Z26jp\nWbWb2l6raWxxVcdvw6vLpZQKvMlNHKeR0Mus5Yh1a+TRHpo0CbZk8rrVT2L8kucNPP8WhsPli1YH\nURJ9ksatGDIZP+5v4H3pQvLjukamS4afPQCPeZ/uVZaT8KxGqeO3WloSqUXF+MvSGGNK4MnSGGNK\nYBl+AkPpSvmXk9sloDc0prTHPgxir9C7Da/qxa9+bbA/8FsKBP/KFz8T7A58tRTeldz/Q3BwJJkU\nw/ubezErkoudgSP/5e6fSRL2IzC/EkuyveE1Fwf70pUXBPu+B+XJ/95NCsbeskGebgZ779q7S+PF\nc5g1a1bP7TV4nClpuXzC+1HB/mnK5RNtbyCQvoOxNSGHE0h1yvMKvO1tRLfXIVefenJtsPtrWi6Y\nPlUy/P5dWr5ojSnYG4fJeepreC5JXR7wZksJBwmiHmpYaoo7ksZ8c/juUz4PDmqcKa49ziV86N4y\n0iQr+ffkL0tjjCmBJ0tjjCmBZfgJRpFnvExfOe5DmZe2JE0n1SXJFiHnff0WeZGfo3t4gmB+8EMf\nCfbtt98e7NXwmMYIpO5QFmJ7pcL8dHp2pe06jNOuH/FS7xuTFN13UEHI7/qVS4P9a5crp3zBzGnB\nPnuxlhPWb5QXeMcGjb2SaIx9fZD5kMyrV68O9smnnxfsBvL465CWUcZ7wCgGen4h5yG9N6xXYP6+\ng/uCfcFKnXf/IeW2x8iDTiHba1XJVcaV33PPg8GeNjI/2MOT9L7s3q4g8wTXwroC4zjogsWLMAbt\nX0fk+vAkyeHmOBMXmOdeEAlS0dhaLebCaztWdqI41n2YQITAwCQ9r6PhL0tjjCmBJ0tjjCmBZfiL\nFCpp5h5n8LbG8HRHZTyC8M4OT58d7P/0X//vYL/rnW8NdoVl33h45DDT204ZniR1bIcMrh8ZQ1+/\n/rusKDr/3NODvWSepHdrvyTqwCRtP2PxgmDfPyg51sVYTjl5icaC0nE/vVPLD29689uCPYxAbpYF\nq9AzC49wDJkZ8/sl0W+5XHDtj34Y7KnTdS2Lli4M9uFRlUGjjK31a2xf/Ydrg/3gE+uDPX2Grn0/\nSg/s2HdQ2/do/Ccv0bswo6HfXoig/QbKrMWpSrF1WvLmMwKhdwpDFCW4J3HUO1+e34BZ1rt2Ausr\nlFniyh/VGGNMIZ4sjTGmBJbhLwHorczbkihL588L9prN8ox3UZarAikVwSt87iWqJP4Xf/EXwf7D\nP/hQsBsVlANbKC98FzKsAddlF1HyO3YpAPrg2P4oiqKoA5k+daqC1ocGkHeMivKVhJ5TBTNPRw54\nghzkHchHX758ebCveJUC3W+642fB7owdCHY1lTROGO3P6tzwsOeeSYTd8dc5b8niYI+hjNu//fif\nB/vD/+pfBfuSSySBd+7S2P7HZ1TR/Qc/0jJCfbok/GhVQemrNsrzfsqK1wR7weveFew5I7rnm9bd\nHewZMxS0T690hvE3x1VZnXnZlVwtAUQR5Lzb8Izn0r4R5B9TtvcW91u3qpPA4p57HMFflsYYUwJP\nlsYYUwLL8BcpVCXdFJWsETAdd/Vv5XhbknX+bHk3N+9QGbcOPOnVpLe8fNMbfzXY3/3aF4L9hite\nrePPkkyNO5LhlF6seLZ7t2TkvQ88EkVRFF17481hW+ug/nsdueZVBmZHvT2ts2ZoLJTGhw4eDnYb\nSxG/efVbgr3m6aeD/cNvXxPsf/PH/zHYzJXv4KIYXE2l3oEkZ3mxhUvktV/5Mi0FfPGL/xDs733/\npmB/9Rp5zKNEyxRJY0qwz1rxqmCPpVimQLACc6gbFU0XC2aqydeD9/w42O95lxp+1VG6rZorDaAT\ncEkkVymf5f3wLuQr/bHGAILSKdUjLu1oew1LSus3KODfMtwYY44TT5bGGFMCy/CXADHyk5uQPV3I\nmBje7U3bKL0ZWM5/W6GNupLS99z+k2BffomaSF120Ypgpy1J3EmUvqMKVh7sR77uQnlMV5w+N4qi\nKLrqVTreqqeU0z1tUNdagfRmw69WS+c5Y5kCzocHVU7tqbUbgn3einODPWeqjv9HH3l/sP/ys98K\n9vrVqiK/cKkagVVQ+qyJHOqETcdidFkDGe7xKy+VDH9qlca5YeP+YM+af2awD01IuzaG1Vgtrkpi\nVzO9Fx0284KPenJDz3/bhseCPTKoe7tyhSIHEizbRFhuObRfufxsFpZB5re5WILA8mrUu3ZCmtPn\nGmecq7WAiv54l8fG9D4cDX9ZGmNMCTxZGmNMCSzDXwJ0EGzNqtkRezNXerdqKq7KjkZQ45LV3/+2\neot/+P0KXE46CiwfO6BA59WPKOd5yoyZwU6HFSw+MkWSfKDvyCt75ikKoj5l8dxg1yPUHetKWtKl\nWoOXNka5sKWLVJps7TqNq5XrYa1DnnnyScH+3fe/I9iNSMsGVZQFG2/DewtJ2GyzIZfkZLWmfSZQ\nmXz2TDXqev2VVwT7//3vnw/2lq3y8J5xziXB3jcqT3Q713NeFzaIhmIs9XZglyT/we0qT/fvPvIb\nwZ4+dXKw+yrwdKeKtti8VRXpBwtkdTfrHUyeZYxu5/2s9NxOu4byhEw6cG64McY8j3iyNMaYEliG\nvwSoQ3ozGLoBb+joRG8vLEkLSq5tWPtUsJecpID2pCMv4+233Rjs/XvVT/qU084I9hZUa7/h5lt0\nXkjEK6+8MoqiKJo7UzKdldfr8OpW8bsJBHizQVW1I8l84XlnB/vr37s+2KMTaPI2TedtTuj6zlmm\npYAsUymzShVB5pHg8kaK3uXMv2cFdcrMdlPPasVyedv//Z8oN/zzX/5GsK//wReCfcEllwV7eLI8\n42mm4+/bo+ew+sn7gj1nRMshf/D78vgvP1uh3M1x3ZNKFdXsNzwS7MmJlm3qCFDPebphJ2y4l0Ju\n47kXJSAwQp0yfw2iHco2APSXpTHGlMCTpTHGlMAyvAwxGyn98obxfwoDfyk5KMk379qOX7Caurbm\n5Aryzbduluf4VAR51yEjLzwfDb2qklL9k+Q9fWy1pNGu3ZLqE21J6y995atRFEXRK1+msnCvvFiN\nySI0Z+uk9PbrnN24d7D0+cvPCfbnvvy1YB/YJ+/9GDzzLClXrehejo0r6Hrf5lXBnrrg5GCPwwM+\niMD8iTaC55vsId47oDpFpMOiBfKS/9Ef/m6wH35MOex33yc5/MgjtwU7rui6li2Rl/+dH/2Ati/S\n8WdOU4B93EUyQR3Ny/Zs03Ud0PvVD894LVdjoLcML6ybDs84l2LYe51RBxN4Nw4fRmIEersfDX9Z\nGmNMCTxZGmNMCSzDj5E4fmHo8Iz5vV3ZLLmVpgza7l2Zmvm0rF6e8DZ09H+6E8h5hge3v19lwgYH\n9Nrt2S+Ju249+nAvXRTsmTMVrP5sGbe777orbDu4e2ewr7jsFTgnWplBriasTI6GaSMjKte2Yrly\nq1c/qTzo0yB1+dsGZH5fJpk5sV0B2KPw/A4uWBbsFoLVG4nk7URHx2fJuhgyPEHeNBXtJORxrzxX\nHvNzzuR52TgOkhb11PoRyF1HRH4N70g11ns0tkfB3nu36HlWUAIwQbB9hvJ+uWZt7BuOHvK5xmQI\nJu92GKmB5mgNNWi7/Y47g71zl5Z5XvEKvTNHw1+WxhhTAk+WxhhTAsvwFykU1ZTe9IAzJ3bJHAWT\nr90mLyb7elPesFv38uUXBPsfPy2ps+IUeVUrKEOWGwMCiCnVJ1oK7J7cL29x5xkv8ssuVkOuhx9+\nONg33arzX4pSZpPRyIyV3TNW284k1d/+a28K9qf//rPBvuqyS4M9aVASL8qYB43K9LGC3g/tWBds\n5nqPnCQvOXvCJYnuWVJDI7YmzlXt7SnOsGRSwTX213C/a9iHnn3qeeTXVxlAjmZhozs2BXv/tvUa\nc1vXWMG9jTNcF5YU2m2UYkOtAubO16u9p6wU11tFqbdNW9SMbD+q319wgd7ZasExn4u/LI0xpgSe\nLI0xpgSW4SWYP1+luyovwKj0FK5UBmdXUKpsHBXUGRwcQQp2sE8dXtKBKfJW70MedUoZCQ90lx5Q\neOEPHZbHNIp7l4zrPuP9TWo69oUvUwmye+6+N9jbv/P9YL/+KvW8HkEZsRTe5Apk5vzZ6nl90fmS\nbI8+Je/28nOU1z65goDqXMMsScg+SN2DuyXJuxOqcF4bnBrsKTP03sVTlMedwCvdQtO5CL3U6THv\nMqcff/J8F7gkk7YVqD9Qg/95Qksju9eoHkDzgKIRGgnKASaU/FpK6SIygfKZ40nQvawPsnoMveDr\nOGaGRIc9hyT/H37owWAPIfh86WI1gGtPSJ4fDX9ZGmNMCTxZGmNMCSzDS7B5s6pOvxBleC7Yl6Ws\nUvauRumrgpJV9KqTpF/yZsnpZwX76Q3K9T5tvvpV1+BVnz6ikmfTpqoX9X0/k3xavEDlz54FMchR\nG+XlVkKS33abcp+/83310X7jr74u2FOH4dHG/ahD1r0Z+3/ir/8m2HPnzgn20DwFq+cqtEPeJogs\nGO5nybUDsCUht+5RPnXa0D3uG9J9akzGfe1TNEGtrlzvfshbfh914X0eH5O8bcNTvxue7qgpGd6H\n8muTarjGlB5zlKdDtflcYXI2HcMzZaM80kDExDiiAqqIFnjwkZ8Fe+8+BZ9fdaWWYmI8i1rd3nBj\njHne8GRpjDEliLOy3XpecjBgW57RygvxbqFUGb3InU4L2+VZZIOuDduU60s3L3NxKdt3bVA5sGv+\n9j8G+7feISmbjkl2Uto/8Lhk+133/jTYc+dIdh44cOS302dKmvc1JM26kMAsvXXX3fcEe2BA+ddv\neUNvSR4jWJ4V4tsdSdp/uEbN2V772suDPWeW3peY9x6ZzdUKc5+RKw1Z2kFOf7uL+42AbcpVCldW\nC89yzb9EEiNaAbnYrEhYRx43q5FnrCuAIPwGGsBVUECghUgK9qjPsBLIpSCWVstdI/7+eMz7fybp\nvW+PpPc73vpW7T+hBAHekwqua9Irfj8qwl+WxhhTAk+WxhhTAnvDS8A82yzq7aU7kanmZI+ooGFZ\nE5KmygTlgmWHGAHWqNAWTR6RZE76FPy9bY88qfOH5anNILFGpioguw4P5Tbkqs+Zc8QDvWH9+rBt\nzx5VJqc8HMbxzjxbVdB/Bsn2ze9eF+w3v/H1GIukfYbA9Wf7lkdRFL3jrW8O9te+8c1gv+ENbwz2\n9Cm9r6mFAO8aPO/8emHsAb23lPMZoxvi3tIyHyQvmAsfoRFYjHxz5vEnufdIx682dF3djo7ZRdX3\n/gF4sVHGr4trSVGKrdtl4L3ONTYqKX3/A2qmth9e71+/Ws3UWuMoDcerh1mp2BtujDHPG54sjTGm\nBPaGF6LbsnSOPK/JC1CGMwqYnl04W6MqpGCc6w8uibJqg+QwnMIsap0rxfX43TcE+9bvXxPs33ij\ngoOTVAHlHZTuugM53quelod9+blHensnbKoGD3KCclsbNqo81+OPPxHsycNaKti4fVewZ83Q9ve9\n823BHh7QsgSrgvdBVu85oPziL37xq8G+8GI1VjtlqaqUz5wmT32KpmkpvPmNhoR4G27gVu4V7F2i\nrcrK6rkGdJTtvXuaZyjRVqNXussGcLonbWyvFiQ0tJqSz3VEL6R4eTq4lmZTx9y2Q8/ojjvuCPY8\nRKm86U1aQhk9oFx7evb5d8AojDZKwE169e/1HH8U+cvSGGNK4cnSGGNKYG94CbhSkb0Qc8OZ9w0v\naQK5RXnGpYYOJEouxZzyhoeHJF525rnB/smPVC5t36ik5hQ01kowtvlzVPZtLTzf+57p4T1zZDhs\n6yK4nt7bebOUr71wnvK4d+5VUHwL+9977/3BHpkiSf6rr1PA+chkyc/xcfXLnjpZge4f+ZB6dn8L\n3vYd27YE+/xzlwd7xnTldzfQQ7yZy5VmRXdtZ5+5CmRsrv9cru09PcKM8sDuDPxmQzQsyTS7XKpB\nnnvBql6jX5ERvJbRcS1BHDigCIFVq9TsbPVq2W9+syIQZs/W8x3dr2eaayRX7d0lYKKp89ZqvcsB\nPhd/WRpjTAk8WRpjTAnsDS8EueGzJeFeON5w/TtIjyOD6hNW7upKovTX9B/Y03oiklzZuF2e5lzZ\nN1QG57/Ej9x5U7Dvu/7bwX73m16rcx2U17OvT4Hr192ivO61645UGF9xtpp8VXINtihX8WpXenuN\nG+grvWOXZOCNtyvgeeXFFwX7lRdJPg/1w2ucSdblao1VJKufXrM+2Dffqb7nJ5+uiuvzTloU7Coe\n0IxpKmU3gOcTd9l3u+DaeX/YT77gTz/l7izpxrJmVb48AMcfH5cHfN++Qzo+jrkBZfyefnJVsC+4\n4LxgX3zRhcEePaTj8G+RUR4MzmfF9RSV8AmXjoYudW64McYcF54sjTGmBJbhhbywZTilTpTLuZV3\ns57kfKDB6jQZGC053M50nDVb5dmN0EM674YVzf2S2H//138R7NdefHawZ09m8LTGc6il8/7wx9dH\nURRFE4fl/TzzdEly/uvPYzA/OlcSDaXmWri+6qC84T+5+dZgL120MNhXvUYB55VUknOwDwHbbVRf\n71Mg+sEJPYf7Hn402E88oUZg/QO69xcsV257HxRwH5rOURpX0VAuQQB5TmKzTBm85AxK7+KONlu6\nxhaq03e6bFImj/nuXXuDvXrd+mCzP/jJy04JNuV2p6VIgy4C2nmNbDZXg9e7y/J0eMe7WLJgczRK\n+KFLPxwV4S9LY4wpgSdLY4wpgWV4IS8eGd6G9mKF7riLHsyQcwk8uMybZf/pCmTe02joVljTDTx4\ni3LGf3Ktcsb/5buv0nlHkd+L5lsbNx7JT//hddeHbZMnK+D5tNOWBJvX2kYAOfOXc97SlLJdcrKd\nav/vXquxv+51qrK+8kLJ5Oa4PLYNVqaH/Kygx3cdHnlWSl+3Tr3Fn14tT/HevSpJx/Ji/WjmNTg4\nhO0KmM8tQaCKeyWipxgRExj/jl27sIv2mUAvb1YvX7REz+L0084M9tCwgvA7be3fbVPO413jJx37\nvONe8T1lfYB8j3rWE6AM1+Env9Iy3BhjjgtPlsYYUwLL8EJe/DK8nnTxA8mVDmRnxkZWBdW3V29B\ngHquRFfvf4vTUQV/f+qv/nOwX3XOgmAvnasK4xOH1cd6aHhaFEVRdM9P1Vf8np+quRlUY3TyMsnA\nqcM6Xrsp2ZjBc8o46xhl0xJUjm9Hkro33Hx7sF9+6cuCfcEK5cRHXXlyc3HxDCCIentmGZhPDy+l\ncaWqJZN9yI/evVfLGGNjWoKIkZeNXmRRNYYHGe84c+enT58e7GnTlZddhezNCsoBUp7nug0gx5we\nakrvnMRmNXh6tFGhvYIe4lxOaWA5J0Xywr4Dum/Tr/hIVIS/LI0xpgSeLI0xpgSW4YW8eGQ4g9Iz\nBOYmqMpNyTeKhlK1hmRehuBj5oN3ocnXbd2uffBmsTFZjADodavUPOxrn/2rYP/6m1QWbZqGECXP\neHArA/KAr0NF9Dtuuy3Yhw6qevkAPLCz0Nd7aEiB4gmkdx0V0bsIxq4iSP9QU/fy+z9S4Pp73/ue\nYJ+2GO8O+mu3OixxhsDySu+c6zYSBVhSrM3ccPw215ubpfhYfw3PhD3BGS3A44xPaAy5egN4/pTe\nrGafi8LA3xBLA/JcE03KagTYY2z0njdQtX50VM9x2069A8xPb7XwLMZlv+6PPxkV4S9LY4wpgSdL\nY4wpgWV4IS9sGU4yBODGzKeFPOsgjzpFAX2W8UrY4Cq3Xfuv2bRJJy7Vj1ky8tG7bwz2jd/6x2C/\n8TKVSJsxfMQbPQ6PNpcQ6sgRvvlmSfIn164Pdv9kSW/K0pGpCuSeMyKZ34e+2G3kKY8jmODAmI7z\n5CoFkF/xKnnJTztF3vlOS1KRJcJySx24x/Q4M78/tx0SmM+Tx881d8t1KWOlfCyxcJ+Y5c6wXADX\ndRWSnOOM0M+9iveO7xHHluaS+dmXvPffXwVJFdu3qof4tT9QxMIelOAbR4QFq+J/7Dt6B5+LvyyN\nMaYEniyNMaYEluGFvHhkeK5JGaQOJQ3lXBMe1ozdyJLewdM1SD7m5TJYnW9Zl15SVvFG4PWjd98S\n7B/8wxeDffklRyqVn75QHu20LS8ng5nZGzrFUsFtd94d7A0bldfO5Qrej/EJSbZ5eBemzVCQdhtN\n2HfuVu72Iw88HOx3vPVNwV62aJ4G2kWVdSxL1HAxlMP0RHe7vUviUdLynuSCxrEkk5fq2qeNExf1\n2qbcbhR5rrEPA8sLZTg99RWdt4WSdww4ryLg/OH7Hwv2rdepIv3pS04PNiMKUgTe/8on/1dUhL8s\njTGmBJ4sjTGmBJbhhbx4ZHi+NBWkDiQWJU0GecbgdgafM6C5zsrakFvdRFJnAyqr50q9VQv+vYa0\n3/D4Q8H+zj9+PoqiKJrRr/9+1StVYbtRRdJ1JqmYttFLuk8ly7i0sHqdmmc9+sTTwd67VxW/mY/M\ne9mELJ0zZ36w9x9A0649KnH2jre8MdhThxR1X8nkNY6xLNFhHbFcdAOq4Ge9JXkl1yucx4Ekj3tP\nAzGef1bw7vMR5jzg9LCzNByb6fU8Yj5YnY3MOZ4kVzVd17h2lSIy7rxOdQMWzlkcbEYjsNTb6//u\nswUj8pelMcaUwpOlMcaUwDK8kBePDH++SIv+bYVEbCCXfByey/Wsps7856LXL+ktKbPOkWD0b3zp\n78K27Wvk/VyJfuJnLJHHuYK87/aEpHEdPbgpD2t9KsU2jjzlRx7TuQ4cUpDzrt2S6imWH0bHcA/g\neWcO+Afe965gz5sxrHGO6/i58nEMLIeXv9VBMDnL7GH/agX3G9K7hQgIRgJUoKpJmlDOY1kFfzdJ\nwaNNsSzQzkly5rBr/zqSGzLI5xr0fwW555vW7wj2bT9W7YHBxrRg837yVXvjpz7Xe9CRvyyNMaYU\nniyNMaYEluGFvHRleG8BnJepJFeWC17PNnuUI3/76fXr9WNGTPPW5vLWOYYj1NCr/KG7FMB+360/\nDna1pWD1yy4+L9gzp6hBWBtV2+OCZmu5AO+GAqQ5do5x7bqNwd60VR5wlg5bg1z1uXMUYL/yfDU+\nW7xA2+O2qp13UBWcOdpdPLlqXcsh3VbvSuMMbqC3nR7/XB8zkPOeJ2x81luG883pRHy2iM5AZAKj\n8JlvXklZ2R7LEVheOLBfEQW33SAZvmWjcsYXzVPEQoqmaZbhxhhznHiyNMaYEliGF/LSleHHSoKA\ndkpyemE7RVIdsmrzDnkx87eZei559kTYhlzmUTWfuv4H3w72o/cpR/isxfKSX7JC/awn1zTe1ug+\njR0yra9f8raDcY3CS8sc6gE0FBufkKZtZrpn9z+ooPtdu3QPLoIkXzRPntyJcVX/bmc6fsKAeTbw\nws3sxzJCp43GbXhWUcYAcniiKZ8LgtirrIKO7UVfZR1OP0nvxmcJpHqCo6YsJYdlm2qspIM7b5EM\nv+cWBaivOPUMnbepd9BB6cYYc5x4sjTGmBKUKWVtzFHpoMRVUVmuaqV3eTd6OpfCQ7lmC4LYmfP8\nbJ4wc41ZUXxA/cFf/87fCPYpZ0rSPnCHvOdf/OYPg738VOUOX3DWKcFu9Os6Dh9WP27mSlfRW5xe\n4OaEvO21nMzUNa049+xgP/aE9nngQfVGr1a0z6KTdJ8OHFKAPe99UkV/+AoanLV7V2LvR7TCBBqx\nsblYt8S3FRMXuDf7pDHiPM4p/t5NAAAgAElEQVTJf5ZxY1V25LAziB33sAPvea1P97B/SJI8buDd\n5LOLi+I/8vjL0hhjSuDJ0hhjSmBveCEvIm94gecyKijpVXiYgu08OvOKKc9ZHZ35zDmPOfanPNuw\nXeXdgnRMuIJUZmR4bpB7a1H+7f47bw72ni0q1zZ1UB5kBo1Pnaz88UqGa+0ogLzSlceZSw7NFE27\nkEvOP8eHH1aV9bUoH3faqcp/P3+5xtNqyyOfazTWRSQC3gVWC282WbIMQeCUwzwkvdLH9hpFfC48\nfhd91XP54Fi24RIOywq2cb2VipYUNm9RIPot16uB3WBHv509NCPYV35SNQeei78sjTGmBJ4sjTGm\nBPaGm+MmF2QObyslZYVe8rT3UkYdEr6FgOkLzlCjqWfPde/Dj2AAeI1zshESL6K0lGd+yZkrYC8P\n9qandPwnHrwv2DfepSDnBry6gw0d85QlC4K9dMHMYPc1JHsraBY3PqGgd0rjC1e+Itj1ScoTX7N6\nrX7bUsm48887N9iU2y0sC9Thqh8flye9WlNwe27xIuv9rJISSzvF8pwecCxH4Acxq/jxvLR7F+6P\n2lj6mDtPPcHnLlCDuQfv0HOcPlX7HA1/WRpjTAk8WRpjTAksw18CFPnvy0ip3Oai4yP4nNI717eb\nOqlAhsfwUtdRyjpDX+3kGc/x4tnyYM6Zf1Kw77xP8iqp9PaY56qCYx/uveAUBYEvOPk0/YfDCjK/\n4drvBfsT/+U/B3v6tKFgzxyZFOwpwyoNN3emJOHChQuDnXYoYyXJW5Fk8tPbJTN/eM+dwb7+3tXB\nfu/brgr2yfMVqJ+hbF0SMwe84P4g5zoXCYJ3B4o54n3ObU/ze4Xz0juPX1CS54Lbob1TjIeSP8Gb\n2o9A9JNP1n1e9fiTwd52cGfPsT0Xf1kaY0wJPFkaY0wJLMPNcUNvOGm15OVl9e2sqJ80c4BRuq3S\nowRcLu8cXvRzzzkr2A8+9oQGg+RkBjxzQSCNertgKVejvsnB/PsvfS3Ym/eoNNzmnXuCHaPUeKOm\n804elKweHETldkRXn3q6vPPves+/CPbvXPHWYDexfwt56I/efUOwf3yjqse/+arLgj13lrzAo2OS\n9nFO6qJUOqRub1Gdl8BRLnCd5e575PpH+Xchhhc+wzHjXO0ByHAGuuNda8Pjv2ihSvOdf9EFwb75\nRi1lHA1/WRpjTAk8WRpjTAksw83Pc6xe8oLyAgxEZzmwJFeWq/dvWX29k8p+Nme8Xlfpre3btwe7\ni8ZV82bL47xlOzyekPgxBGW+UhcagaHP+O/99m8H+2cPKa+c0i+pY+xdHXQURx89qCWK179a0vjt\n735fsBcvPTXYcxco0D0/UC4kQMKfoRJzm9fLS37jddcGe+9N9wf7DZe/Mthzpsubz0ZpEYK9c+sU\nMeUwRoZnm+UeOZdEULqvi+ruld7yvN3lGZhogFzyLiU5msq1tKSw4gIlI+zerbJ7R8NflsYYUwJP\nlsYYUwKXaCvkxVOiLS2Q1cf8L+XzVNKt8PAF22vMW37mdZ2Apz2FDMwguzZt3Yaj8GqpCbEZntkM\nDb8++DuS3jfeoMrqlYrOW0OzsyYqjU+eouD5q3/9vcF+w6++PtgnLVwU7P5JUzTiam+vfRfLCMz1\nzt/v3u3CMkjRP/3Yvwv2g/feHuyzUTH+LVe+KtiL58t7PtyvsY0dVnO3CrznCfp6d5ELz+iFrMvq\n6BgxpT0jI2pKdKAiZ9X0lPXpEGBfQy/1DsrisZ/7nCs/GBXhL0tjjCmBJ0tjjCmBveEvAZJjlM/P\nF0Wyumg0ue1YOkhRYqz9jGxLKpJjUQV502tVUbyLfOQCEZ7/Py35qz/0wd8N9i03Xh/svrqO2YFs\nPx3l3d74awoav+zyXwn2lGmSsUND8jgXVnSPJD/TDnKokTcfYx/+No16y9Xrb7kn2NfdraD90VH1\nJV/7wN5g3/bYN4K9cJYqkL9qhbztr7xAPbgXztR1ZfCkZwyMYC2BLgLRa3xK8IYjiWBsHOXmWPIO\niQOs2Fdp6N1oohQeywZM6isKsc/jL0tjjCmBJ0tjjCmBZbg54WGe8LPVxieQstxuynNdqxa80rk4\nbiZ+y/zYxz8e7JtvuSnYXUjdK197ZbDfffV7gn32csnwoakKhk+xRFAUR5FBJ8eV3t8vVfQBzwWw\n5ALUJUu5RLBzj5YXPvO//0nbRyE/q/LCs5ze+Lhy3ls7dR/O7khuX3PtHcFupMpPX37G0mC//OKL\ngt1FpEEUy+60UTE+0RgQt57rb55mXIIQHH9Gr3quHBy88IlluDHGPG94sjTGmBJYhptfOGWyIHKq\nOWEF7SP/24Vk629ImkVssMWK7JTnCJb++Mc+Fuyvf0eVz9/7/t8M9tXvelew58+fH+xJw5KuOXLN\nsygn2WEL+em57Qiuhgc835ONQfWQkLlyZ9rnS19RKbkn1iiPvoYmaIcO637yAVUqKh+3dttWnWpQ\n5c4WLVqmn7Yk2792/Q+C/bnv3hzsC85S5fnXvEyl0pbNk0e+UdE6SwdRClTeFZS8a07gPiNwvY2g\n9Djpnc/eRU760fCXpTHGlMCTpTHGlMAy3JyQZAikZ5/xZxVoH7yiqzZt1g/jnIbkEYP1+KOPBnvl\nJZcE+/c+/OFgz5mjegBUyazanpP8lMbcvygEv6B8HRuHJdVjSyboQHr/6Ia7g33t9cr7nnWSerCv\n36Lg8zQ+HOwY6whtBHt3a2q+dt9j6l0+7TLdw+Fpao628qq3B/uxh1UO7taH1FRu5y7llQ/XJIdX\nnKrljgtXnBnsKVPlhW8hB7+NqayDSIkapDpLA6YdVNoviEB4Lv6yNMaYEniyNMaYErhEWyEvnhJt\nzxfpMaaYJ8/TmxXHaED1bF4xZOz6LRu1c+X/P8CYJc5YkT3NVdguOE7vfly5QGh6qzNKP+yTU9hs\niFbinrXp5cd9eHq9PN1/+OefCPbGnar0HjeUnz7R1jWOH5AMP3BQ8rxRQ3m0SJXSa231H//I730g\n2FOG5Inu70eQPKrN79+5Jdi3XPvNYF98lrzqM6X4o6effCDYCxfob/HUU1VJ/vTTJNUHUYqt29Z5\nqzGeOyIiWi1d19TL/3VUhL8sjTGmBJ4sjTGmBJbhhViGP5dfrAxHdW/YnWc80LmU6EqBJM89KzQg\nY0A4JH4Cm8W2cz71ol5uBZ8dSYGuzqd3967cztG38X+27lLg919+8lPB/uFNytFuV9XfvH9YnuW4\nKm91ikZwCaK99+7ZEezRw+qBPgmx/wd3rg/2Bz9wdbDPOFVSuttRBfIok4s6VxENAecPo1r7ge06\n/qUXnaMxNHQjtm2SR37PdgXML5irYPuVaEy26CQ1feum8rxzFWT4UldKN8aY48KTpTHGlMBB6S8B\nitTzsarkIlldJM+PR7bnmpDhCtJnvOF9yPXu5npJU9LChtZioHgG/ZxvCoafQjYmBd7wrGB7HnrM\ne3vAKf8PHZZ0/bvPfzXYX7jmu8FuTJXEHpijMnF7dqhZ2+FDksONYd23dkcD7Uf+/fSRmcFm47Dm\nmCT54NBwsO+8575gL5yn8Qz2cXpBkgEuOEX/97MuvUpj3q1zXXeDep0vnCVv+/mnLwn2KYsX6viQ\n9t//karcj42pyvqZZ8p7fhGkuq7q5/GXpTHGlMCTpTHGlMDe8EJePN7w50uGF3GscruIIpnfQQ52\nvX5EhqXt3kHgE9h303YFaefKtVFXFwWZw+4gj7jOYHXsw77YcRXNsyg58QO0744OHFJ5tK9c8+1g\nf+FLqmpen6Rg8mRQ9t4JBX6zLza91TG6czWGJVfbaBbWYP/xjJXM4SXfuUnjyRSUPrZ/Z7D/6KO/\nH+yRIUnsSkXHb6MkWlrpHfVQ5RIB+rOve1IN1x65VxL73JMl/09ddlKwEwTt1xCIvneHxrxx/epg\n/9mX5ZF/Lv6yNMaYEniyNMaYEliGF/LikeEvdHJV05+V08y55r/5kF3M7+62Jf3W7VAAc86NDQnf\nRQXyGMdJC6qRJ2iAlTHoPZFM3ntAecq33vN4sP/qb78c7C27tc/QdAVRtzNJ6cMoTdZFbvsAWqmP\n73oa49Q9qU9ZFOxmV2MjuTz3Kq63q+WC0R3K727u1/286tXnBfu1KN2WdVjiHNIbz5FN1qpovsal\njFrCpmZ6ptvWrwr2g/cqOH/KoJ7d8lPkPR8Z0PahmsZwxb/+f6Ii/GVpjDEl8GRpjDElcFC6OSGh\n9K4mPx843oF8rtQk2ZpNybR2W3J10iTV/Fo6T97SNVs24KQMXO+9OtXNenu3OwiAH5/QPk88+VSw\n/+w//WWwt+7T2PqnyZObDaoJ2v6WdHULUfJppu0JPfipjsnVtdzSEYP9UVU+g/u/Sy8/ouT7a0oO\nnzZLXvVmTfdt9Zp1wX7ZSuV0Dwyo8RlL4XEpA0OLuhgbbfaLb9T6gz2yUAH5bzlVSwGHdsuD//BP\nJc8PbVd1/WUnzQ72FVEx/rI0xpgSeLI0xpgSWIabE56MvZ+f+d8Kcpk7HfaG1ivN8mtPrpU8zOV0\n89gV5oxjOzy2NZx3zwHlGj+1UWXNPvX3yuO++c5Hgj199lIdc0jjPNhCqbSqAstb9A7Dg8zxpFwW\ngBc7TVFdvsLlBdy3qPdxYkjjGmLwO+yvneqYA9NUEm3LOpVN239Qgeu1Pl1XH4Ln05bO24eogzZK\nqHWwJFLFkkurKw97h/3Wcd/iQUnsFa99W7ArTF5YI0/60fCXpTHGlMCTpTHGlMAy3JzwJCjHNtE+\n4u3O9RXHa7xx6xb8kIHrgn7uSqXa879kmeTeOKTijt37g/0/Pqtg8i//0/eDvWCJvMDDc9Sn+xCC\nwPOedI0gphyG3MYKQdSCHGYf8xgSO8N1Mee6mzGQXtB7XkFUQG48uZ7mupYqcuFnzdVSw2NPKOf6\nslkzgt1BE7H+qvLHUyyn9KOc+gT2Z2W7ShVR+C1Jcub1ZxWNs4373MSSxdAcBasfDX9ZGmNMCfxl\naU5I+PU3wQpDz8TWtfDFs2kz0hcLQHhevn9PwZfThk27g/2Vr6v47Ge+pi/I/uG5wZ6/7OXBbnX0\nDTKB75EmO9hiEBwP4w7puGKB42pDX1T5mEWkaMb6osoVR4ad+4LEGCqs0ARHSK2GuM8Jfd2Oo+LS\nlCHdk6fWKZbx4ouRpoiWuu1xFeqtIZ6ytV9fk0mk4sUJijV38QlZq8lpNNHU/t0GYnTxJXr4sI5/\n5913B/tDv/X2qAh/WRpjTAk8WRpjTAksw80JCRfpU6Q7PispN21Vjxm2oYWSQx2gfDseRAtGmzbu\nCvadd/0s2J/+zFeCPZ4prW7K3DO0vSOpe7gF2Ys4v5SemTi3GBAsVgVqtSRXny10HEVRlFV6x1Py\nXFmMP2dIcjpOIjiHagiiTJPe1bToHMo5gaq86TrOYYx//17FWd53000a2kE9u2FUd2ofVovfcbTg\nrWARpUHHFeR/hysHNfRngl2fNi3Yq7fvDfaM+UrdPBr+sjTGmBJ4sjTGmBJYhr8EKOqRU9Tz5rjO\nBYlIecntLMqbFcQV0h/Otribtu34ud/l9HbS28u8cZN6rtx2t+T257+itrLb98mLOjyieMFWW9fR\nbiNdEOV5qrlixPSwS0LWcR1pgUeeMYvdnFeaP+gt4bsI2GzUtXTQgTTOUJkoycWV0lXPKk8szotn\ny8pEGFkKSb4IbXFX3fDNYF8yU57rmZl+PQi7UkPVIaQ18t3JRwKgxS+qPjVHdb17Du4L9tzJ04P9\n8vPOjsrgL0tjjCmBJ0tjjCmBZbg5bigFi7bTbrfpkWXwNAQddN7GLUhhfEb0xfD8wqGai2a/7/7H\ngv3f/vv/CvbDq1UhaHjWacGuT5E8PADvNqv/pJCKNXha2y1dUxXpmSlEKgOquQRStEzSe1HiOWS9\npXGMAPIU523BM17r47IAigLjzN2IN5enZY4miwvDe45UwxmzVP2n0lHA/3T00RlBtECc0vOO1EcE\nnLP1b6uj7VnC8ev+T8M92bFePYpW34T39z/8SVSEvyyNMaYEniyNMaYEluHmuKGspgSlrKY3nLnN\n9PhSjuaUafLzOrUbUTbq3/wnHlsT7P/r3/xpsFv1qcEemX1qsA92VfVmVE7jKO97hiREkHmnK+lX\naWh7s6Xc5ySWVOziqPkeP7pP1YLtadxbq2cFXnL2JWK1nQh9ifrguWbfHSrsLFcpGZEGeCYZ8s0T\nLAso6zuKoqlqJ/3QWi2rzBvR+zKCc1Xh6c6aug99WFKIsWqDR5fz7PfDex63lA9++ZyRYG/epHfm\naPjL0hhjSuDJ0hhjSmAZbo4berRZVqyvT61Tx1uSrMx/pmxnUPrabcofJt3OEcmfVXXsw2NaBmBB\n3n3jyFk+qHM29ylAvTZJwcmNScO9zwn52UbPnkodAeqpjs9ePinWFugNT7GMkPCbJRe4ntPDPank\n3Oo4ZqW3F7vNiAOQ5frxsBcRvPnIN2cIAoMhuGTRQYHg9hR5w/fX1RZ39ZiKKY8MK5B+sK33pY/l\n7OBhb+WWYnjtLKyMJQ4OFEsli4YnR2Xwl6UxxpTAk6UxxpTAMtw8r1BKHx5Xq1hKdeZ1dwpyxnNN\nc1gB/JkAZTh1o1tuvz/YP1uzPdhDC9T/prNfsu7ATpX/qlZUom10TPJ8cJp6xtT7h3ScJpccNIYM\nnmVWL8u5lnlRkNhpTgIzbx4/LQhRp5M8xVJAguDwSu6TiL12emv7OGFuu0jgnY/T3r/twkXdwRha\n1UkaJ6qpLzj33GA/fsf1wT6nX1K9D6cag6xmab4EHvkU78s4riDDssBBhj4g0P1o+MvSGGNK4MnS\nGGNKYBlujpui6t4xcnpzpdvgAackX7tZDa6YY5wLbn9G7rYggb//o1uDvW9cv+tryLuaDMh7vvhU\necBH90m279otGd7aKztpKJh58pDkeTdmgzBdU6dbEGROyQwJnBO08ETn5Dl2SUpkjefuN4eAlY4E\nY8gpcjYvi3tHq7MAfJYVSHI8owlEvbcqktjzzrk42OOb1wd79za9C0wEaNM7D8d+H96pMazR7Mcg\nDrQUJt/s4t3kms5R8JelMcaUwJOlMcaUwDL8JcA/R0V0QunNoHS6YeklZz54lxKOdkwvOTY/s8tt\nt6va+QOPrQ12bbJk8qGWdFoLOnZ0HIHzk2YFe+5U2ds2bwj2+AE1t6q0teQwY4bynUfRBa1WQaOx\nnAccurFI9xZ9vzAHnBKeVdZZEi+Le9ussg5ZXc3lgKPMWkrPe+/nSanOiuWsyl5BvnYzUr78Tfc8\nFOzzTlEzuHVrVEKtfxiecdyfKm5hNdE9Z0e60cMKPj/Y1v3v1lAysMkWdsX4y9IYY0rgydIYY0pg\nGV6CvCfSPBd6XukBpxebHnB6izfvUNXyHGygxaDk5pH/c823fxS2jaeSdWmkwOOU1dRxjA6Clg/B\nrV5DWbCZsxU4XelKem/dtCnYu3ao1NjUmeo9PZGr+M7Ga1xyKKpHR9CQC79NcnsgUBwyPCvwVjNj\nPIl6S+yc9H7O2fQf0LO7jfJ7yN3OkBdfY145POMb1mzU/muVLDAV+4+irsAAlji4vJQrE4j7MNSv\nEnwHM0U17BiVPB8aUT/xo+G/fWOMKYEnS2OMKYFl+DFS1FzqROaf2xvezeUbw2OaoJxWB4HaNclm\n/nudwpNO2U759+3vXRdFURTd9cjqsK0+siTYlIQp8oWrMbylVMNVylt4S/GgM/x25lzJ7Y0bJSEH\nWsqDr9YVAM8q5XHEpQj2V2e5M3y/ZPAmw5Oek94xy8QhggDHYRm8KJNczTosDa8xp7lge+ySqwbX\nO6ef18te6vyz6cPC1vQEVc33Hwj2sikol7dPDc6qgxonr7GLpZI6loKmNSDn4YXfUZc8f9XV74vK\n4C9LY4wpgSdLY4wpgWX4cVDU+/lE2P6LhDKslatbhjJhkEbrNyjgmyQooUWZR/uBhx6JoiiKGqjC\nnsLbm3YlMwfqKgu2/6C8n/2DkmC5uuEJrwM3E17yvpryzafPmhfsnTu2BvukxYv00zZ7WONUuarj\nWIpgZEEuR7t3Lnkn52BPsB3LIeiXnSGoPpdzX+29vtRBVEKtoHJ7nAuw720zOL8Gu35oX7Dn1OE9\nh3d72lR5q1MEkLfarEmApQAsL1Rw7ROoYXDmxa8O9vs++gdRGfxlaYwxJfBkaYwxJbAMLwH/RcmV\nuzqBtxcp8jLe/GOV80UluijPczngScG/0Wnv5lhQwdF733t1FEVRtHS5Snh95/q7gr19lwKYx1CS\na8okVTs/NC5JntUg4TN6kCnztbQwCm97oyHvamficLD7UTusncuJ13UkMSvHo/EWK5AzgjzX7AzH\nZGV1/ACVzKJaQ7nV40157ZsdnLfG42CcTA7onT4epQyep6e+oDxdA6Xkq/slw2eM6J4kkNhj47L7\n8F7UGwyAZyIAog5wT0axZnHR+Rdo/yl6N46GvyyNMaYEniyNMaYEluHHSJGKPZG3F6nqY5XbRcfM\nLQVAbufKh9X0qs2frR7ShbnhOEMNpd7OPO1IUPiSZQoOv+C8s4N96z0PB/vHN94Z7B27DwZ7yoDk\n2zjzzpEnniJ/OUGQdr2K3ORIkn8KpNyePcpxrqOyOnOlWbE8Loj8rrDZFu8r7g0lOZ8PVWkdQfId\nyHzmU9f72ccc5+VaACU5xtDNvQ0sBwew9NKP5YuhhsbWxbJJtap9xiPJ8BQRExOQ6ozCGMV6x6bd\ner9Gzjgr2Oe/9jUaW6XcNOgvS2OMKYEnS2OMKYFl+EuAQu95Qd/oIoqC4anC6pA0KbRga1yStR8B\n5RGCyCPkkufo6rf1Z0qA1RFEvWKZJPBZSy8N9pWXnBnsBx58Ktg/vvXeYD+6UXnHSZ8kdrsD7zPd\n8fCM8/qmTpsZ7M1bVbptzhQFrmfsFZ5r/gUpnZPkyAfPWIpN+1RxHB6fnmjmSsc5z7vufQ052l0s\nQXSYuw/PO4/PJYI0ptceY8B5E5RZa6OkXgeNzA40FbEw2tE4D0zs12/retdmLl4a7EWnS24vHVFz\nujMuflmwp598so45pgiBYSQsPBd/WRpjTAk8WRpjTAksw4+RojZTJ9r2IsrsU8ZLzn0YcM6yWfSd\n9tdRzRz7L5yjpl8btu/qPVJI+yD/YuYaw3sLL/AZi6cG+7SFK4N98YXLg333E+uC/eNbIM8fVRO0\nbtQ7IJwds6r4U2pOSDZ2WcEbpek6aJ6Vshd23DtPvJLQQy0ogXM1zbnEkpPnyD1nab2ot4SP097P\nM1ceDc+iqKtAC9cyinu4fozXJUneNzQl2NPnSErPnqF8/9e9/S3BHpqzINi1IS3LDA6r1FsFVdPH\nmCTRzVUIKMRflsYYUwJPlsYYUwLL8BJQWlCFnQil2EqVaDtGr/exVoNnbnO3oM90rp84qNUkvU5Z\nOD/Y45Cym3ZKnqfdI8dJqkycRiA0Y6ixB+LaoyVz5I0/af7pwX71ikXB3rhZvcLvvO+xYF8Pqb5r\nv4KouVQwbUQS8vAhBahPmaYAdY6z0+0tsbuQwDHy7CnPixqfJRX9H+a254Lec7Z2YT/uXNA7zlXF\nXwV7gtNTn8Y6bwv77EXAeXPmsmD3TZd8ZqTGdkRDvO7si4J91ut/Tedqoi85gtLbqAw/0dFxcstF\nqWW4McY8b3iyNMaYEliGHwdFcvVE216Ggu7QpWApNnq644iSTPs3kN/bRMAxA7Irde0zMqKA7yWn\nnBFFURTdfPvNYVuuAnnBPWCLNKSpRzXIw4UzVAV9/oiCyU9dLPvK17wy2I8+LU/6zbfcEeyHHla5\nto2bt2sMU+WNrSIwu4m736bnndeCZPIuq6lH3Ke3xGb5Mt7jrOhmAS5fZLnccG7v7UlPYj5/jX88\n0TLIaFXe7cGBWcFuo6p50lEjs8F5ak7Xamk8hxmBwGUBBPbXcM8zeMDrRSUDn4O/LI0xpgSeLI0x\npgSW4cfIL6sp2LFCCZeWCkUnx1wqHecqOA6kTjtX1TrptXfURT52BznJBztHpOyV7/7zsI3Vy7/9\ntf8S7H58CjDlupHLj2cOOEuZa/tUFNIeQN/qZQvkSb/iIsnDnbtUDu6Gm1Um7sHHFei+ehNK06WS\nh12URGO1eJZWY8k43nFWNU9YHg+NwPr6cS5UDh9F9fhqnQ3d0Msd31bNNs/FCvPIK8f9TOHZr/cp\nWmD7LkU6NKs673hH45yM3t/bdipKoY5IimxU+d0VVGLn2Fg+MMkF6tsbbowxzxueLI0xpgSW4SV4\nIf6LUlhO7ZdE0T0s2p4TRrnA6yN+7bFM5bwOdbT369/2x8EeRvXvSkcB5N++5m+C3ZerWA7Jxhh6\nnL6/1nNz1D9ZB5o9RcHnJy98c7D3HtZ4tuySh/eBxyTPb7pLld6fXK3+6k1Uca8hxzzDHewW5DjH\nsf7ME5TBOzCqZmG1gck4PgLR25Ln6G8WNeqKHGBV+Qw71dGzO4VXuo0EhQo81GPwbqeJjr/38KFg\n/+RmNaf7/d9+D46D5Rx67XM95XVeNjvrtlAm8Ci8EOcBY4z5hePJ0hhjShBnRU2fX/LotiyZrTJi\nlah3YO6JxrH2DT8eL3+Z5mjlQC45jnpISjCaseS8KIqiaHjJK8K23eg6VkkkqTrIKa6hD3gjgaRN\n5bn+3tf/OtiT8BlRoVMfidM1rg7kyp3B88+0bDqxAeKpo1HFYkeHxiRdn1y1Ptj3PfR4sO9+4Ilg\nb4a0b0WStzHGw4ro+/aoSvzoqJYpxsYke2dPk+d6ZIaSAzoJ8rvbkOHwejO4IIVHPoEk37Z+TbCX\nLlK184lUSwe17niwF/RpbH/6h78Z7BUXKMe82VFSQBVl32JEFHRQoZ9JFcOTR6Ii/GVpjDEl8GRp\njDElsAwvAndlyRz1uU6i3nm5J1ql9ON5qL805zkCiLsYxeG2rmbmkvOjKIqiSQvVfGp3E57QCsrF\nZZRdCPyABBvqkyTsj1+jov8AAAW5SURBVKWBG6lk6be+/slg1yClWcoMcdC5EJM67PyNheca3lsG\n4EfwztPBe0Dx1+ioHUXb5dyOVq3fFuyHHpNUX792NWx54ek13rdbZeX27VXQ+Pi45HC1X9EIk9Ab\nfWSq/laqaEw3ip7gzGHfsmFjsE86STK8iUD9KgLjh7oKSj//dC0LfPKv/iTYBw4oHz/G00gQFRBj\nOSJBAsLQgJYdnou/LI0xpgSeLI0xpgQOSi8il1tNkh5WcaOmX9b246Kw4voxRgJkz9OIIJNazwQW\nZzE9zgUDxu8q8MAm6Dd9sKnftqsKzE7bkoGXv/3fB7sWI7j9n/5bsBtQ1YO5QHcMJz+4YGVwk2cF\nayA1/Hj6pN77zEA79tPnKYLjivNlR5XLg8mW7bt2y8u8BY3j1mxQYPzqNU8He+1q9WHftEl90jet\n0j51yPDhGWoet2OXpPTwoMqysZwaow4yBL0fwpg3bVcP8X37FNUwZVA3aKKJ8nTweo9O6DnWq+Wm\nQX9ZGmNMCTxZGmNMCewNL8FJ9Ia/BO5W4b+gv0AZzrJyBxC1PW/ZkaD0GUvUB3xvUzKqHWlfNu3K\nOqi8Ta8obDYOq0A/J2j4VUkUIV+PZffDC98HH/W3/vGz2g61x+SALtY9uhnHoH2Qkh5FuQZkUW94\n77Fk0c3lSse9donQ0jwawyOvcHkB27so14bbHK2DhH/syUeCPY4c8J370T+9Ivm8brO8+RMTuOe4\n9vahrcF+w6vPDvb7r1Y/8YNjSkxgfn1fv4Lq6Q2fBC//c/GXpTHGlMCTpTHGlMAyvBQv9FtUqNV+\noaP4PwbS9FkhNQG5l0IetnBJvDoU284tpaC6W1QtiOrPNXPr3a48d8yEpcxyjlYuY0B+xlxGwNIB\ng97x01zLdA6UvdnRFC4fMVHwzFndLddorPfubF3Ofl9pwT6MCuAIeI1NDJ/HzP22ILpgIHdPcKCs\nIDSh6AKOgr8sjTGmBJ4sjTGmBJbhpXih3yLIqtz2f97rer7+Je71hsYFSwudAtlY5bXygHQDF90O\n7p/01pOlkgPi3pXMUTks6hbUcasULAvkBhH3fs4pJGduqSEuWp7hj7l/VPB/EECe9faw58gK9i8Y\nDvueZ+xRjxtXLb7pMo8zg8NflsYYUwJPlsYYUwLLcPOioihs/p/9q6Awn/7Ydiocf1Etvhc6pe7b\niYG/LI0xpgSeLI0xpgSW4cYYUwJ/WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8\nWRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpj\nTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8\nWRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpj\nTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8\nWRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpj\nTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8\nWRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpj\nTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8\nWRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpjTAk8WRpj\nTAn+P9EnJ5LrQu9qAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFMCAYAAABCsp4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXmwHWd5p3s7y910r+6VriRru5Is\n75LlFbAxwcZgG0OIzb5lmQpZq0Jmss5M1dTUTE1SlalZssxkQopAMkuKkBAIgQSIDRjsALYBgyVj\ny7YWa7eupLufpZf5Q/L3Pm1Ox58d+WDh3/OPX/Xt0/11n/Z3+ve9W1gURREIIYT4J4l+0AMQQohz\nAU2WQgjhgSZLIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggPNFkKIYQHST9O8vu/dKezx8bGnP3W\nN95gO6VLziwwh6d57uxaGGGfrPfJwtCZeWZ2Gph9YnbR2Xff9QVnv/OOW53dqMV2nKLh7KVWB/vU\nbB+MMw8tzj9vLHd2Z2C9sz/6V1929td3HnX2+NoLnb3/6HFnj02udfayFXacdid1dhzbmIcH6s5e\nMzns7O/cf7ezL5la5uxf/rn3OruZtG38WdfZQTzgTKYyJLj2bO6Ys+ee2uXs1vwJZ3/6c1909t69\ne539o7fe5OywsGM+/Mhjzl614vT9vOM22/fknI33k1952Nkf+n+fcvbvfujDzr72envuiszOE0Z2\n/4LALnBq1Spn1xM8m6nd+zDhZ41O144f1ex/t3379tlOeI5KNxbPcmk7nuWNayaxu20vMvv/I0rs\nvHsO2bMmnh96sxRCCA80WQohhAd9keGDAyZjmw2THElEmWwwXb00m2P/sDA7g+QII7ukKLZ9osyO\nuXJs1Nk3Xn+djbMBmZnZiNodk3nNmsnbKLLRZZBktZptn50z+Tk6vNrZb3qdnXfnk3/j7ADHvO41\nb3D2qZbJuVbH7KRp11uv2fXWY5PPd9/1GWcvH7Ttd9zxbmeHMZYO8FgU+AJ4jYN1+0PYnXf2yWP7\nnZ0uzdhxUruHE6Mjzo43b7RrwdLH9PRJZ+/fb8dcs/q07OxCJh89ZfvufeqAs6+69pXOHh8fD3oR\nxnzCip4mv2cut5S+f2ynHK5DAuc45tT6DXYqPO/7Dh/uOc4Nq+zZ4f71Bo6PMZQkvDgr6M1SCCE8\n0GQphBAe9EWGLxsZ6mlTrlBC0Bte8vBBfhSQ4dyfXkN+tkoyrVm9ztmtlknFCB7HBJ8N4YXvQv7X\nsLwQ5OYxHzTVHrROPeHsrRsucvYHf+4tzv7Qx81TfPfdH3f2+k3bnD256jw7Vdek8dGD5mE9duhx\nZ192vnlM3/W2O+yYa81Tj8sNZlp2Xc2mLU0MRPD+duec3T5h583mD9r+iUn+NrzOgwN2r7LAPPUH\nDpmE/uY3v+nsKLSb+MxzkkInzyxZdMOxGVsSuPqGW5y9bp3J3oBylY9OwGent3e7iohObGzPc7sH\nOY5fSxpBLzatWWPHxHPXqNt4Oh17vvK0dzREl/+v8HrFC0ZvlkII4YEmSyGE8KAvMnx4EFKu8f2S\nKgjKkjmkHEKgcCkIGPtTfpSlOu3eY8sLBO9S8jMYHp5fSu8CgdOU9jwZ45yzbMHZJw4+4uzLNu1w\n9r/66Tc5+8vfNnn7+D7zqs9P73Y2JdklG1c4+7brX+fsG155ubNXrTRPNF2+LQS31xEkXcN11QNL\nHJg/ttfZS0f32P6FSeI6vNszs/bZuQXzkh8/OWv20UPOvvTSS53dXrCxjYycGX9iz9ERes6PWtD1\nnVsucHZzCNeNV4Q8oERlsLfJ4fL/JHy/qHh+K+xGjCgDPCNphZTmc5S2Tc7X6r2TIbpd26det/vD\nZ1a8cPRmKYQQHmiyFEIID/oiw5cWzUOZxM8dLFvqoZb3lijcpypQuHQc5GtnDIEvecyxmc5QBmxj\nPEECbz7PFZlMKkksBChHacvZx5+439lbpy5z9oV3WlD1oWMmY4+eMLuNYPvJlebdXnsecoaxXNDu\nIAcfFzmInOdmbLKtdcqCpGenLTi8feqIs5PMvt8av97QrnexbcsF+w+Y13t+0cYztcEiEzZtnHL2\nk9970tnRmaFFkcnMpw5ZPvrEKsuh37B5s7OLUpo1g7fN5JtDiAjy6HkGeJeSKiqWdkj5/wlGhRgl\neY7IAo45wppPJul91tGbpRBCeKDJUgghPOiLDA/hcS7ZFV5DSo5Wy+RqDYG5YYU0qpLntYoyWCVv\nIuQNS1x966HvOvuaa66x/ZHvnEJhpSW5haUDbEZKb1BLzYs5vcfOVTs+7ezxcQtEP+98KxkWNCzI\nP2jiGlMLGg/a9JKi9FzH7u38SSsHN3/K7GzBPM1xx7zYSYDvpfRd4HusyJHmd7psmXmpt55/vrNP\nHTdpzbJok6tP50jPztoxHt2919nXXGtl9jZvteOFAaMtkOvNLwXPZg3PYARJnleVBnwR4F2tCOYQ\nfURvlkII4YEmSyGE8KAvMrzRsDzY89ZYqSlW4aZ8pievJJ8BK4Tz+FHYW2KnHTtXDLd3hBpkWWAe\n1j37zAN77LBJ0SCFrG4jfzxBvjOUWoySbjnkdpEi/zpp2mchCxdPmse5jUDuuWMWBF5A6tYgV2OI\nuKyU88yydQiqRxm6GpYXkq7ZzJeOY7suytqM0QLw1Be49hVj5rXfvMWkcoA897kZlHcL7N4OjZyu\n7n7omP192Zg9U7fddpuNseT1ZhI47gG+/y3nrcc+9v2kTFyIzo33C+aq56rWdlY4N755IYT4AaPJ\nUgghPOiLDE9QjXrjBgsaTiH3qpK3Gciddm2fBNsp2zuwmZtcKoidokI7ZNjMko3n05+3xl7vesvt\nPYdZQ35yB8HndZTfSlFxPQkYPG/jD0sVw2z7YAIpmFrOdTc3m3n0acBc9QrpbacKUgZPV3iCQ9qo\nVJ9RYmPpIy55nXGzILED3KvlI9Y0LUstcJ256sMjVsZtfNXpnO0vfPJzbtuOK6zq/PkXXWLnofTm\n2gjufUmj4pq4S0a/9Lnulu7d90x4oDdLIYTwQJOlEEJ40BcZThhwnrJLGTyt9GinpZ2wD7ySbUi8\npCI3vI3c5FrNSsalkGrfedSqix88biXR1m/e5OzOkpUUC+DRrqNSerewc0U59okZeG/7L1l8dSnH\nvIZlBAZmF4VdL/OB2cSNLeBiyGfeZzqL84Blv7A7JXyp5B2Oz/xqrHfEOBc95gn03+Kcla0bGB50\n9hxuSnPEBvTok6erzX/+S/e6bb/5H95sA6j6/S95w828CB7wBM9mjlRsPoMJn1MPSX6uq3Zh6M1S\nCCE80GQphBAe9EWGr15lFbxLgdmQdaXyazkrokMaMdCa0giecfYiZ9B7c8ByqI9Nn3L2g9991Nmf\nuesrzt5+mZVKYzXtHEsEjSarUZv0ZgO1Uj47dG8H+0cISqesDgobfxcV0WuoNl/qmR72jhZgjna7\nY/uzj3UMz36RYKkEDbdq0J1cKimVIYNXPUOkQVHReK45ZNJ73wErBzc4PIYx2H178Ewjs1fccIPb\ntmqd9R4vubHp7i1VQcNyAhvQdTF2fOcxEyPS3mXWXsrojejsoPsohBAeaLIUQggP+iLD162zCthF\nRV/vUrXzkmQLeu5fwLtJL2ZrqaphllXz/sM//oizN19gjbHGESD9iquucjalLu2UldIp/4vedqnU\nFxViZMHwpfsDKVgfQAB8t6rMnR0zSxk0jtzmmEHjaMQG7zalKUuYscJ4+Ve2t7ed2ztUr5D5LTTZ\nmp61727v3r3OvuryC529/kxSw4ncZPr6860xGZdq+OzEdEvTMR7zu8IQsYzR7doSSD2ghx/HCXrz\nYudlV3nkFW9+9tGbpRBCeKDJUgghPOiLDB8aMk90a9GCkCmTU5QCy8OKIOqKnuCUxiyJ1oXn/cMf\n/T/O3rb9SmePjE04e+fD33P2JuSwZ8hhb6AaebdtgdMhekIvIKA6wvYG+j3Tax8wyByCjtXA2Cgt\nYf9pBpCXpCblPKQpdikHnLNRFkvPMb8esh3yOavyjOM4XQTwn5izJZH9h6wM3Ze+bPn4111n+d6v\nuv56Z3/9O7uCIAiClZsuwnnwLBS9lyX4j3WrrJlbjPeFGM9jhyXr6vjfJFWY+csVvVkKIYQHmiyF\nEMKD/vQNX7Le0DV4H1mSizndlIcpymbR650i55r9qSm3PvGpv3X22vXWQ3piwoLkp6etKdjUlHnt\nE7hPE3qBYdfwU0O5/fgTFui+69EnnP3GW6yZ1vioed7Drh2TyrFRo9cYQeyMW+fYSq7R3p53Vgkv\n9bfGLnQLU9pH+GwtYmV4RAgwcB3fNQPd9x0w6T09a8/G+955p7NveM2rnX1i3pZuFs4E1b/hFa/A\nGLEME1b8/jOqIuj9rJFyD/HnPGQlPvnjLwZaLDj76M1SCCE80GQphBAe9KdSekTph5xbyOoAsprB\nxMyV7tLrjc+yKviX7rH87lOQbzsQuExP5+OP73b2W99mMpCNt0KMLcIYkojV2m3Ml126HWO2fT72\nF59w9tU7Lnf2tVfa/sy5XoQHOYwsfzzN6X1mD+zeOc+UgqziRjlaKmFGRz2O2UH1ct7/HMsgrKi3\nZ98+Z3/s43/t7NmT1mzsfe95j7MvvdialyU1qzb/4EP3O3t08nSUwvh5U3YiPMb89S9K1ffh4Y96\nL0VkKPU3hFoCS0v2HJWe2XOEcy+b/aWJ3iyFEMIDTZZCCOFBX2R4Dm8lPZdVTbUYRE1pGcKjyvzo\nuQXLKb73H//R2Vdfax7TDsq10Uub5ibJV05agHqORmN0Pyco15W20XANJPgN2n6x5Z5fuvViZ393\n18PO/sM/+VNnX7LNGm5dvH2HHRPXzsZaTVQmbwR2jQnGzEDxLkqMtVkSHUsKnax3+TtK+5PHLYpg\n185HnL3/4FE7V2GfHRqye3vL6yyg/Jrtdn/mWnY/H929387Vsmv5wNt+8pmRuW15RZZ2hJz4DWvO\nc3atooFbAYm9hGeq2bTK+izFJ15e6M1SCCE80GQphBAe9EWGR/DHlWQsgtIpw7vd3l7XFHm5NeSA\nr5iwatvvgEd75yMWHH708CE7fsck1g2vfqWNDRIuhIwtkGPeYRA4vMCl/GvI2IE6Sqsh0P2KHVaJ\n/bIdJkUf3rXL2Z/97Ged3UJP8/ExK0+2Ya3Jy/WrVzp7dNi850MDJiPb8LAfOX7S2dOnrBHbYeRr\nHzp80NmDDbve8fFxZ1+yzZYLrn/t65395FNPO/vee77k7DvfbH3YOy0LSs9DG+d3Htnr7Otu/lFn\n15adTijoMicBKxRVDzT7xufIa2f/dqbrsz4Bg+7Fyxe9WQohhAeaLIUQwoOwKEfuvijM3/MHzi4C\n5jL37vFdCniu6GHNvlGlvuEIZqauYiV29tHmr0WU0pOKz0KGs1xXF828QlwLx8ZGXdSCUUW5sxiy\nsEiZh27LF8dPWE/zY8eOOfvAIVtqmF8wWZ0HDFa3e7tsmeWnr5lc7exVK8xzvXLC7AQB84xSaKMx\n2QLu4X0PPOTsOu75zddfbcdM7Pv6/Nd2OrvVsKWGd33gl+280fcLbeavh4jAn1qzytksfReXIi8M\nficZ7j2fHX7P5wopLnLvIXteVE79+XHuffNCCPEDQJOlEEJ40BdvOCnJTEpveJ/zrLcEot1omreX\nlxGinhYbUBXMPUdQd8yga8o52E2cq9U2721Rqr8FyZxAzsF7nqLMWoH6biG8rY0KqZ6iWvvkcpPP\nkxOjzt56wRY7L8uQYVmjFPzP6us4V8zy67jn7Ocex7YsUMO5Th2xpYCDey3v/md+5mfskG2LRtj5\n+F5n7zl83Nkf/Le/YmPAM/OMOq4xxx32+pVWBb2Bnu2lMnKICKhjWaWNJAMuBTGCQ57xly96sxRC\nCA80WQohhAd9keEhcoSRGh4UlDTI16YkZwXyDLnJWZfB4TgmPZfQ1c2EucRGF9HNNci9LmqNpW2W\nlTNJxqpmGT3jFb2/G0nvIPYckrzbQaA+PNf1BhqxIZ8941JGaGPjPWHP7Jw58iW5jb7hXF6AzftW\nxHbfFlAK75Gd5gG/8RXWez1dsiZlR0+Zfd/Djzn7rT/+i3baEfOGc5j1Xj/vWGJpIgmgVAme+eB4\n6jN8z3V8NsNzlOKehXq/eNmib14IITzQZCmEEB70RYZTDtEbm1D2QJLnCAjm/nHCYHV4aTPmnsMT\nXfKqm9xib+lyADyqoMMDGiKgOYVsY3MsSuaSZ5zSHtdY0ScrqCFIO8USARu0VVa+hgufee6U3qUl\nAmh12izFRn9/FjFf2v6y74Dljy8sWs/0S7dbNfiDT59y9ufufcDZN775bc7ecKGVpytFJvS6V7gf\nW9dZfnxR9M7pjhM+ayhlh+iD0jNV6n+OsagT2MsWvVkKIYQHmiyFEMKDvsjwGMHBnU5FpWmqWAYc\nM7+bOc7Yp9xHGx7QitzzUp/pmMc3GdZJLXC6UbOgdFZZz0o9uyHncDFdRsajlhg9vAwIZ4BAwRuR\nszEZljKSGvZhQD6bneE+hLRxLZSgyPUu1zYzc3bWPNrf+q55tG+62cqv7dxrJdq++qB5ySe3WHm6\n7a+60Q6KEm28bXFJhp/+w6Y1Vo6uXgoa59DxeOe9vys20Ktq1KYkahEEerMUQggvNFkKIYQHfZHh\nHTZ5inrnLHfRk5q9wtnUrEpiU95mpZpu3N/2qUHXcVmg1uwd1F1UqDAGKKeUwNyHudglG8dn37CK\npQOWtqO8zDMGXj/3cXiyLIcMxxJHHWXulvC9ZHhcvrnrcWd3IqtUv/uQeb13Pvqks29+4x3OvurG\nm2w8ISrJY5wJlwtQeX7j+jVBEJQr0LPEXYTA/CrXNRMF+LZQijIo4p7bI3XhftmiN0shhPBAk6UQ\nQnjQFxnehDeZsjHtmt2om5QryyGTim1ULF9Cj+mqStYFZSbyqeNStWtItY4FVC8fszJoEY5DzzsD\n2ueXLD+aV8B89pK05Agqyo1FpbxsduhiWTkG8Pf+7YvoGWewNZ3eWMpoQ9Z2A5O1+4+ZxP67ex50\n9iVXXOfs0bUXOvs3/sWvYhCUx2aWlixyurIRvcC6AWfueYfLHlHviAbejZj9xCsCyyMGtJe+lNJe\nsCXJX07ozVIIITzQZCmEEB70RYafeHrO2YtL5n1uLVjVcahzpv2WcrEX5i1QfH5+vuc+IfLH2dc7\nL3nJIdUg8eZaNs7h4WFnNweG7KOQsc0B8xqv32D5yWNjtn+BSICyZIbMzKs84JTevbdXKO9SvnwE\nmZrA7uC+lWu6mad5sW3bP/F3X3T2L/zqv3P2la+91c7bocaF9K7KqcZpa1jW4EOwft0aHOf0dfH7\nrCHvu9Thrgp8/1yLKHu9geLTRaA3SyGE8EKTpRBCeNAXGX733fc7e37GpG5nyTzUnVa35z6czQdq\nljs8PGjecwZRl8psVQSxs49yB57io3PWj/ueb3zd2YdnbH847YPRcRvPnXeYFP3A+99pOy2ZBznM\nGXRtu1TVa6Pkj0oeX8jwgI3esByBO1dajsA+pXuFG50iIPuur9zn7Dvf81POpvQOWAkfT1RVObOs\ngwB7lj7HdzG1fq2z6zGD/5/Z97n1cFQln3mxVbqaCQ2lP8gD/nJFb5ZCCOGBJkshhPCgLzJ8YdqC\nvZcNLXf24LDJZzoo6xvRpKyLnHEcs4YgZ8rVHB7eUk40ZTjkcIqDrlq1zo6DcmH3fMvKiy0Wtlxw\nat68+bufeMrZSUwvMKQ0S8Mx/52RAEzjDvhZbMcx6Q0v5Z7zenGCHAH2Sd289t3YEgfuf+BhZzdH\nrBTaK1//ZjtmzhMHPW062OmljlHNft2qVc6uRbZPs2bPwOKiRUE8U12fCQEpmtclLPVHCi5jYHPF\n7pLb4tnozVIIITzQZCmEEB70RYavHZmwf9AD24FXt+itRRNKS2zvZCbtK0u3gRx55cxVL1CibQAa\n7soLrJr34WPmDv/O7u85e2LZqLMv2bTV2Q00GksoP0sjsjF3sTULe+cns/d3WJLnvTUwveFteMAj\nBHAv5WY/fuC4s3c9edTZv/5f/6cdHmEEUcLK7bZL6YGCR3nTOvNus5FcE33ho9DuRIY8/aGmjfMZ\nb3hYWmFB2b8K9czbxF1KgehMVgj5bOI4fL/w8MiLHx70ZimEEB5oshRCCA/6IsOTjLm4pmniUi4w\ne3yzOnrvCuRJ3Ft+Zjg+HL9BCNnIytoxg7dhd9u2z1UXXeTsg0/tt7HB3btqzLz8rOwdMh+81Ju7\nNyVZWCo3R086S7ShnzjuW7lJGQLXE/PyHzlh3vy77vumsz/wL/81RmERC0Xc+7e1FGCPcW5YbZ7u\nGMsLjGRgIDqXYlhGj8Hz0ZmA8pzl5Utf9POVxr295HqLEM9Gz4QQQnigyVIIITzoT9/wmkmdFA2w\nQnqKGWTMIGp6w3nQqpjhChVWkuc4V5YioBnjGUjs1qwZMu/5tZee7+zdRw86++JLLnD2QtfkbSNh\nM7UKlyybhcHtncKDX2OJdny4i/HXa+hLDp1fH7CE9qemLe/+7m9Y8Pl7fu6Xnb1iyq6FPdBLAeel\nhQQbw46LrVJ6SW6zmn3Y2x+dlyRx1e/46X1KyxiI2C/+iTBzt/s/8S87UO+q9vKAv3zRm6UQQnig\nyVIIITzoiwxnT/AG5G0BCUnp7QXLbDGYmDnAFTXCiszk7QDKu2WZeWY7i9aAbGjYPMjrV0/agWxz\nsGWz5ZVn3ZPObqVWhq4OKc3SahGbiOE+UHqzb3gE73aC+5lC5qf4ao9PW271V+836X3Hu3/C2Wsv\n2ubsHJ9lP3GI6oDyefMaq2Q+PjqGa7H7WavZp7OMYfjGD0LulvqAlwYguS3K6M1SCCE80GQphBAe\n9EWGR6yknSHYuNRQrHdv68pkX2xnvm4psBj/SChjC8sHb+JcHXremyYbW/BKDwyY9r54hUnvgdCO\nOR+YHcG7nQe2HFFDgHd7EbnkNcuDZnX0NDM5n4V2nAxfYX3QAuOfRsD5P3zt285+09ve5+y1F+8I\nDORoQ48yGJ411zavtVzvOOgdsRDhC8gwfv1Gi3MRPbVCCOGBJkshhPCgLzI8ZDnvnB5euh85FEi/\n0oEYfIxDljyadq6YVcqhD+sIlmZl9TTDTg3zki+0zJt8fGba2W/8kdfYZzvmPY+Rt5xhzAnKkXVR\nAT6BR76LsnUxkq4LBNIXCMKuD4w4+1uP7HH2A9/d6+w3vdMajW3Ydm1g4PiIYmfQeIwbt+k8643O\nPO4ksfuZwtNdbrhmZ80qvl4hXsrozVIIITzQZCmEEB70RYanGb29kJwtq4Zdq8NjXqq+VvS087C3\n9GZjL5Zci7BPhqDuFCdjnHsXUno+M+92OGiSc8uFVh09TWftOBhaDZXJWyj7FoUM8bYT12oMOLeL\nWeyYN7k5ZoHf335kr7M/f695vX/iZ3/V2ZsvM+mdMgCe4+Q6Bf6wYc1qZzdYZX2J+e92LXUsX2Qz\nVmG+VD4uLIe3C3EuoDdLIYTwQJOlEEJ40BcZHkBaduEtpeQse8BRtqskw3tvp/QOqrZDbpf6dCMw\nPsJSQKtjHvAjxw85+5YfvdnZKVqNtbsm1VlQPEf+ey1BozR6kzHMdsuOg3bYwfCY9e/+9mP7nP0w\nmov97C/9hrPP27rdxsngdpZuq0h/3rTWgu0b7G/esesdGbSe4x1Uhu+iKn7MOgB5RXKBEOcIerMU\nQggPNFkKIYQHfZHhnQTSDJ7xIZZHQzD2sxpsO9Lem0szfik3uaIFFQuWp/D8LrZtDIdnrY/2ytXW\nH3zbdquU3mqbB7yGhmhxSPlp52JV9ixnL287L4uLD09YEPgX7n3Q2XsOzjv7x3/xV5w9uMrytXkT\nWTUdwyzlzk+hzFrCQAMsa9QgqxeXLAi/gUrsc3NWiZ3XHscs0aaodHHuoTdLIYTwQJOlEEJ40BcZ\nPtM2aTbRtIDqLryr9CBXVswOq3bqTcn/WjoM+2vb9rlFk7fH55529gfeb2XN0ty85EnvHmKlCuEh\nA+MRDB9U5Ho3Ruz+fOque519eMaO+b4PWHOxwcmNdhzo7QwDYm5+jBu3EV7vCEHj7KU+AIm90LZr\nj1FKrtNBSTokgTMpIE05nkCIcw69WQohhAeaLIUQwoO+yPCdu3c5+9Kpi529etgqe+eIli6Yx53C\nc0qPM2RsjkrmVHgFPLBFjiZZ+ImYXTzl7H2H9zr77e97u7MnVi5zdhdLCqw7lrMHOrYzGLvgkkLN\nAtTb8J7/77/8nLMbK01iv/8Xf9bZI8stXzsoBdj3LkkXIHh+/RrzsI80rbxbhmD4HFH7UczK7bZP\nlvcuxRaWcs+Lntu91lCEeImhN0shhPBAk6UQQnjQFxl+y+2vd/bXvnifsxdnLKh784Yp+0AXJd0g\nabvwMmeQt/TAsvp6K7MScMwZ72L78lXmfX7ba3/M2Rs3W5B2a4HB53ZIepaL2GRmjHzqNqRohojz\nxY7t/8l/+KKzJzdd6uzb32EVzuvD43YcrEyEFcECIca2Ds3FVozbcfKO7dMp0FAMGp6CuY3+7yH2\nSZDjn6MCPAPRc+WGi3McvVkKIYQHmiyFEMKDvsjwHVeYB3zzRpOEX/js3c6+5/4vO/uizRc6e2zI\n8rJjRIFT1mWheWZbKaqaI9h7cNmwszdB6q5ct8LZA2OWq15AqjfghW8ger5AubkCsrSFZYTakMn8\n6ROWT/2nf/UpZ9/81vc7+7qbbrfxV5R0CyH5Kclj7LN+3Qb7QwrJjGO2uia9u9TzWDqIGuYNJ4xG\nyCqC0nPkv+cVyyZCnCvoqRVCCA80WQohhAdhQX33IjF3z4ecnaM398Kiybcj+w87uxmY9EuXTCrO\nnjjp7BYqky8bs6Dx4VGT20OQ3tzeGBpwdhGj+nrAaufIZYbUrUOSdyH5cwRv53ULtr9/1+PO/tqD\nDzv7/T//QWevv3CHszPI5ITfjE9CdVFhU2EjyD9KepdxW4tybWPLLHB9EeXXAlREb7DZXGHHT0tV\n8VGiLZVnvJ9gFSbYe+iY/UM5+s8LvVkKIYQHmiyFEMKDvnjDQ8jbCFHdy5ab5BwambL9ESydoKx5\nlPcuRxbQOwwPOPuAxzWUC8vMnLhMAAAeB0lEQVSWsN3Gk7eR3x2jkRmCrpcg/4PEypd1Imvg9ekv\nPuTs2a4d5zd/54/t+IO2LNBBSfGoShvhcrPcpC690vRiV2ksSu8U9zCCN//AUVsSKf2a4vAbV1t+\neqvTOwKBY2NCQeU1CvESRm+WQgjhgSZLIYTwoC8yvEDV7hg52gsod1ZHybKwYTKN5cJCNOGKoAnT\nAq3MWKYswXEi24fjYakx5ji327Z/xkD0uuVW7z9mQeYf/thfOvvru6zPeDJmcvWRk//d2VNbrfHZ\n1Vdsc/ZVOy5z9jCal5EQuecteLebce9Ob6hgFyQ4ZljpYX/uAIl9R47gQLb/5vPYNM3GVgpKV6l0\ncQ6iN0shhPBAk6UQQnjQl6D01n3/y9mlUl2QY114eItSz2t4xpFTHFPKIRCa++cBA84Nerq7XdOo\nA3ULVl/q2vFPdmyJ4DNf3ensT9xtQebHO5ZXfqplY9hwwUXOnlkwLzzzo8OObe8uWTm4dZMTzr7o\nIosEuP5ak+1veN1rnD0ygKrmgRGVbhWC7ROWYiue0+YySAZtX0MptrJH3uytGyxXnTn14sVHQeln\nB71ZCiGEB5oshRDCg77I8Nmv/KGzi6p8YQQt55jDCzbDgneVJCErpZvM7OLKitDOlSI/PQ9Nui6h\nj/m9Dz7m7L+++zvOfrpreejBMvNoH5k37/mJEyecPYrK5HX0BKf8b2DMtYjR5xbs3Uxsn05r2tnt\nRZPta1dOOvvyy0z+X/fKq5x9803X27ngPE8QF1FUyjP2FkfUAb3npcep92/x5jVouBbCS64+Zi8K\nkuFnB71ZCiGEB5oshRDCg77I8Ke/8kfOpmTLkWfdgCSPOYfnzPVmH2r2GTe7zSD2muVun1o02dst\nbPtnv/Q1Z991/yPOngtMMheD5smdSe2zrci85wk8wvPHDpi9tOjsVVNbnL2IauolzziWCKBQ2aI8\nyEM0BYOrO0aAeg3V41PI9qUZk2HbLrbxXHfNlc6+5ZbXOnvzlPUZb0C2s3FbUKBiPL6LOEKVdVzL\n1Ho7ZoZq7fWkd45EmH//I1rqQs5H+CwFvL/wcP2XHpLhZwe9WQohhAeaLIUQwoO+yPD/9P7rnL1u\n7SpnX32lSb+xZWP4BMqmwTUbokp5WvLAIrgaOeaPPrHf2fc+YMHkM4umCSc3WjO1ZIUFfv/ZJ6yX\ndzK+1dlzbXjwSx5hk8aDuS0vTB+zPPFg0Mq4LZ+0+7DURm9xyPAk6n0fuogKSFCero6adDH2icMF\nbDfZuwz3s71oHvz52aedvXa1VX1/153WV/32W2509sQKu+f1mPcEyQWIdgiRa79pnUnybtvG1qyb\nhC/S74+CSOLezevO1sMsGS6ejd4shRDCA02WQgjhQV9k+Ff+x687e+aUNR177LEnnT2LkmjzBUql\nwaO6bMJ6fC/Bm5xEJgNnZq3f9/ikyeo18ERPrLSGXJTtXQSo/84f/IntM2qfnW+jgjolMMqmDSBI\n/tT0Ufvs4nFnr1prgdlpaB523IagkTSwHaXkIJ8pb2P2+6b7HOMsClsiGEBueNYyqT5kpw0SNG7r\nLJhnv7tk1/J7/+XfOPvV1263zwYVIJd/PZqj0Ruep3YjopKz+/SY5Q33RzL87KA3SyGE8ECTpRBC\neNCXSukHp036DQ6ZlN6ywzyh+46aB3bP7qecve0a86Sv2ThlB0WudxIg7ztnFXFUVkfQ+CL6fU+t\nMxm4cmKls2ePHrTtI7ZPMjjq7Lklk4odBpCbGQyMWC55mp6yz2I5YnSFNS8rIKXT3LzDSSkqHWXW\n0OyshkjxDPssIkm+1jCP/Byk/YGn7P6vHrde4RNjdr1B3ZYLBnCc//jbv+fsT//lh50dM4kgYDV7\nu5anUHGdTdBYxT2OevymV6wenYsyWZwb6M1SCCE80GQphBAe9EWGf/5hBGZDjrW6ZjdHrZTZK974\nbts+bEHR8y2UNavb0Bc75gGnhy9GYHO3ZdXIB2KTqCuQvjzUmXH2msT2n4xMMh9HrndaM9m+CJdj\nCxJ4CDnvA8MmXWchw4vUxl9L4J2HzK83zEXNcnYxe6bjvBkrzNfts0tt9D1Hfv3aKZSb2/O47RPY\nDRoese8ix89s1rJ/fOJv7nL2O+94nbNrVY8alxQQxJ6gmn2nZff8mbJ+GbzlcUWjtn8OkvPi2ejN\nUgghPNBkKYQQHvQlKP23fvt3nf3Qtx9w9vlbLdh784WXOPvUkkmzpGEe2Hpo0mwA03y4aPI5X7Lg\nagZsz09bMG4+Z/uPDZrMPPm07fPlr1rptuMdu0VHAvMOj+y41dlPd9AsDHnczQQe4XTe2SeOmxe4\nVrNSbytWWd/tpZbdh5Q90+EdThmsDjVKGZ7hN5GN2yI0EY/QMG4AteFSyPYCUrpR5/7W/32NKfXg\nYx/5z7YPlTLGHFWUZVuPqu+Nun24dib4v4M8clbcT7Pe1fRfzigo/eygN0shhPCgLw6eh75jPWy2\nb9vh7NacOTl23v91Zz+JN7z1G+3t8/Jtlzu72ba3k11f+Kyzj+2yc80c2+Ps1SPmXBnEm99JxDUO\nD5pz5Ro4h56u25vLrtTeumbQIyeI7bMZ+gx1EFPYQGplbcDeUNtz1kcnx5tcLbYxp+gPlObm3Ejw\nZlbgXBliSRt19ByCQyVN7e2sFLeINMgIb5lHjlgVp/O3TDm707U3472HLb1z335Libxgo7X1TfBG\nW/akQFHgujLc8/xMoeGClYZefHEkhN4shRDCB02WQgjhQV9k+BZUljm2+1Fnn9iz29kperEMLLcU\nwZOPWwziHKT0k7usX87Jb5rTaPOgScih8yy1soFqO004isIUPWOw4D0TmOxdyCFLERtah+wNIBWZ\nqkfZ20Y1peagpRRmbYvpnIXzqTlssp2OEEpjttQNE1s6CEMUx6XcBrWISwfmGOlieWGwacdMO+Y8\n4/fVQYpps2Eenj/60Eec/d9+69fsxFTNSNdkGiRueel+PuPcqqGPL2Muz1bVISGejd4shRDCA02W\nQgjhQV9k+Ku2WCvZz3/jHmevOGLVheqYth/b+5izb3/Xe5y991vfcPa+Bx909hVDFou5HJV6GNpX\nwAOelXrYoJAuJGG3MPl5IkC6YM3kcxTb9hh9dAIUAqanNkd64eCAVRqaOY4YUMQPDkzY2Lrw/tfg\nNY7huU7pIaYcRS8ftpXNMu4PTzokfBfnqtdYCcgOH0bm3V5qWSzp7sf32ths+AGd4Vym4Hex74Cl\nyE6dh2LNZ+5nt9s73VGecfFioTdLIYTwQJOlEEJ40BcZfu/H/6+z0wPWd+eiEaQyotfLsqa1xf3u\nZz7p7KJp3vBNy+yzzbZ5zAfhJW3Dq8u+NfyFKAVpI1NuHpJwGpI8mrCCxfOQgo0EAeQotsv0QtQr\nDlpd9MJBNaI20jXnEbQ/MGTyP+dAIZnpNaYYzTgItu8tENAesGIRP0tvtf2hQB+dHHc0QYHgVtuu\n5e4v3evsm19/vY2B6Y48cdTbq/2MNzxGMec2li6SivRJIf656M1SCCE80GQphBAe9EWzLHzvIWdv\nWm0FcxvIX0YRm2ASkrnZNDl2YMa8xl3IrfqgBbF3c7hdEWXOXjVhBq8uAtSzmsntma7J26cW7bPD\nF65zdjuDtxpB3RGkMXOYY0jgAtp4YMhkeGvJKvjkLbObWLJYgtzO4OWnDGdUd1r0luoxPOD0koc1\nXBd75xSUxqh8VGrBa/J4tmP7/+3nvuzsG282GV4S2xUB5aWlkjN2jmWDZtOC61MGqAtxFtGbpRBC\neKDJUgghPOiLDF83ajIzWLKg5fqAScuoYx7NRsfm8BUom5aN23CPnrC2sgvw0jKImqXYAkhR9q1h\nH6AWotjn8dluw0qQHZm1cmrhqJVZyzsIdI9YVBeB35mdK4K3PUJQdUi7wJICliyiyJYLCiwFsMwa\n09a7aJgTV1V8Rb45iwuzNS+93kFpqQGSH/t0Qvt+d+457OyTc3ZdK5YhRKBiaPuP2vLLxtWrzuxq\nO3c6vDf6/RcvDnqyhBDCA02WQgjhQV9k+CKCqEcHLZ86oGRCxHatMPvkjEnXDJ9dwtCfXDCv8TDk\n8zr0thmFvO0WdswUnt8FeNJnUbG8OWb9YI6ctErgy8dW2aXUKEvtOHHUO1eZXukUknJg2ILP2yes\n0nhn0cq4RQhip/RmbjvvbcTac9ilgKeb4+xiuSCJege6F/idLV+L3Ye0blEKs1juuAf9jd5yyw12\nrqqOtow0eOa6mFOOyIi8qOjBU1RofCE80ZulEEJ4oMlSCCE86HsibYT83y7KqdXgUc1LstQ8znum\nn3b2EiqEF6h2nqOla5ig0jhzn1GiLYRcDang0CAs6pgEXj5u0pul1ZatsDJ0S0smOUOUayt7qHEy\nSN3BYZOui0/jepdsDANNBIGzzW3IAHIEw2MMvEgG6lOpp0HvAPsIx8lK8p8CHQHtBS4YXvsvffU+\nZ//YrSbDWR096GIMSY8SbCg7l2W834EQLwp6tIQQwgNNlkII4UFfZHgTQdqjdZPGwwwmh6xegAyc\nXrAyZa2ulWIbQh53guZiI6gcXosRBI58c8rSbsv2WYbA9Q0D5nGeRh53CJ/wNLzVtXGr5t2CdGWm\ncojrTSFdo9yuhRXRBkdMkrfmTIbX0OCs1rBxIuW9lCMf049NZYyoAMrtkLnkeYU3n9KbgfdYUujQ\nOY8T73lyr7NnZy2SYWzUqscndI3j+HsPHAiCIAgumJpy21L0aQ8rg+4rKqhXesmr3iPyiu3ihx29\nWQohhAeaLIUQwoO+yPBZSO8IXuacQcgIbJ5DkPFTJy0HfA7B7QP0IGPKH0bO9WCT/cHtvCn04QB6\nbcfIuZ5IbXBrELC9cMqC0lePbHT2iePmuW4st2rqKfOmIefjGFXKESHQhhd4bMI873tPWo/1OvLo\nh1GeLI54LuSJVylQ2PRER3Apd5GTXtkQDXnlIXuyQ9rXG5Ynvtgx6X3v17/p7Dff8iPOzhAtwIZk\nwRkPO0ux8TwM0i9d+PMOSv8hlduKzX/B6M1SCCE80GQphBAe9EWGX/CWO5z9qY9+2NlbIOUmJyac\n/eS8eb2Ht1zo7BSNyRYOH3T2KHKHxwbNoxp2WXbMPPJUIgmCm1vwMtfRE3yysMZbxyGTg0H77BNP\nm9d+9UqT4bmp2FLptrRlf2g0TEpTLc6jEVdzzILz26mNZyhDVEBkY65TSrN0G+55WJHfzarvMaII\n6kOWaz+7OGNjGLLq9wstW+4o52yjgvqSyea//4d/dPYbbzUZHsccvzOD5IxdBPTes4Eby/LZ95/D\nw883hJCZCGzIhn34peSSsS9b9GYphBAeaLIUQggP+iLDz7vqKme/HknIKxdNTn76E3/t7OaGKWe/\n9t3vdnYLFbH//A9+19lFbpeRQn62IT+RPlySnEvo353UTSoOYp/xzOTwCsi/6daiswfg7Z0+bh7z\nsfHVNoaODaKqyVaM/umNml1XbZktLxzct9fZ7QGT3iE8+wXuQ1Ehw1nGrY2xxTgvy75VjTlFf/YG\n7mFJHrM5Xd3GefKkLV9A/QdFyOrnDWw//d89Z4LTgyAILlhvTeTyin7mftADzvKBSCCokOSsxPdS\n3i5eOHqzFEIIDzRZCiGEB32R4cdPWZOya25+g7OvvWaHsyeuu8bZy1eZrJq64CJn3/3FLzr7jT/5\nU86+/88+6uyTaM4V1HF58HQPQbqmqIiesgc3/KFjkMYrG3b87+GzY8gNP3x82tmNyXFnz3ZYGo5L\nBybz6/ACDyAI/OChp5zNWP6Ifc/525ewaRquMWUVd8j8Gjz1WLKIysnkNn5IU3q9Wy1GFNiBVo7b\nPX/r62939quu3GrHwYUlgUl1loNzWh1jz7HGkscVEfhe7wXP792BUjd8KW+HXXLzS54/L/RmKYQQ\nHmiyFEIID/oiw8cmVjj76IwFM89DXt301nc6O4cchvIL9h6x/Ot3vu0dzl6G4PMH//4zzj505JCz\n101a4PR9u77r7KFBC7ROl+w4Nci8JmT7AXiT99Utb33svEts/5pd4yxzxkct17sLD/vYkEnOEFXZ\n9+1+wtltBKiPrLDjJE0bfxfl1Dpd2x8quSSZGZSe4UYnyFsPUTqvDs94gqWJemBjXrHSogJef6Mt\nrdxw7TZnX7HVGsANoW14gPGnKB+XxNjpjFbfusaWPZibTm3JrUmQ99ijTClXvmKfqp5qpOr4P6jt\n4uygN0shhPBAk6UQQnjQFxl+4aWXOfuhBx9w9v7H9zt76wXnO7uFHtMjaFh2/OBhZ0exBUjf+tMf\ncPbVt93i7D/+fQtcf/tPvN/ZtyD3vBywbb8di4vmuWb+8tGdFgw9MGhe+zQw+RkhSL49Z4Hr4xM2\n5jw2eds+bvfhxFFbOlhasrE1hsacnQxZBfUAZeUKRB8zuL0WUW7bdZXKuDFYHdsHEaAeRPa9rJ20\n/ua3v+lGZ19zlX3XF2yypY9hWy0oSVlKx5j/iqjP6Q0/fd8QNBB0Md78nyNGmZgvTSuehd4shRDC\nA02WQgjhQV9k+NTUZmd/BYHl08dOOPuSS0yitrvmXc3hIb1kywXOPnTYvMyXXXOFs48dMhm747Zb\nnb3phtc4OwpRuR3B25Res2hk9q0Fk7rTT/yts+MR8/J3IYFHR01+njx+xNmdRbveDF7vk0dN2hcI\nRG8O2RLEyLh5kBuDJsMXEBjPnG6WOOu07VoayM2Hkz8oUluaiOELvnzremff8uqbnH3FZVucvXHK\n7kMDt7NWSq+Gpxs3OqLcrXJBIxJg69Tp/uzscx7hH2z9XvKRl/K7uU9vvR1VxLZXhbyHFfu8FLaL\ns4PeLIUQwgNNlkII4UFfZHjClGV4ObsphBJ7bSP4uYPmXNu3b3f27if2OHslekh/9M8/5uxf++Av\nOHupbQItQvmv7qLJ4ZR9zPE70lhmevXUrPUKX7nCPPjttu2f1K2Xd3PYJPP+3dacqxbZeJro/R3E\n5jaOILfDAdueQbs2mrZE0Ea5uaKw8QwhcD1dRCB90673tTdY0Phrr7/a2Vs3Wom5jaswTpBX/OTm\nLLmGMbfxtdOrDYd5sOk8CzpPUHYtekZsYnkm5EGqhHLF5ijo7UkvnrVXgL2c9RIouea1HaOXPn/h\n6M1SCCE80GQphBAe9EWGB+iXvQwVvzsoFzaPqun0XDKI+rLLLOD5nq/e5+xHdj3q7NaSHXMAMpZV\ns0PI/II5wwhKr6Fh2fq11oAsyM2znGV2rg7LmiG3enjUgsnr0Vpnnzph1dRPzNi1D4zgvCusiVsE\nT3c7N891jvszivJxvOdbNtj43/AaixC4dpt5ujeuNok9MWpLIiWvM8vNo5c35Wu7wqPNPm9dbL/t\nJmtmt+fb9p2O1uC9Li3jnP4Hn4ui1Csc4+09lEp8JHlV1fFzZbt44ejNUgghPNBkKYQQHvRFhmco\nFza1aaOzdz1m8vnEjDWuWjFhwdgFynYnA5Z/PTdv1dd379zl7LXjFiAdZZTYJqZi9ofOe/eWDnKz\nlzcsD7pAsDop6EmHVI9i81Y3lm1w9uoR8/aOLVr++Ck0Ozu21+7P2HIbw/JJk+er11gA/GvgxX7F\nlZc7e2LMqrWvGDN9NojLZTA5lXQK6V2L2Qfc9kEKe9DhdvRMf9f7fs0+i+PMdlDRPTA7DnEPuWxy\nRnKzIRu1N/ctUfTWpVHIBmfcv3cxtqpg9ZcykuRnB71ZCiGEB5oshRDCg77I8A68xpdfYXncD3z7\nW87eu3evs9esvNLZKXQPPdcREo+PHLbc6quvNilaqgqOEmQcTww5F+O3gw7WITQ+Wwk5TO9prQYp\nmFE2Qtyx0jgCqVkpfRLy/IKNlg++bduFzr7qWrvGdWutavoy6OpBS38v/SLyC6eXuajwBGeQzKxa\n38FlzcPT/fZ3m9xupTaeLsrWRXXz+HcRip6XcsbtBF0sBURnCrzlCLovJZiHFZqT++PYVenoP0yo\nYdnZQW+WQgjhgSZLIYTwoD8yHO/+DQifRsPkWAj3Kr13bSQY09N5zSuvdfZv/fv/5Oz3vvc9dnzk\nTXcyc80mIVy/aEzWhrZk/jjzuCcnLNB9OrB9ImjUOmTeQN22rxw1bbz9IitxdsO1tjSxdYsFio8h\nJ73ZsJsyhCWIhAXOK9Qoe6AzyDzD9hS/m+j/VgoyR+BA8KrXvNfZw6vtWubado21hCXjKMlRuR11\n0xloHmGNIAxZrf2MDMcxUkRMRBVPNJ3hlPD0hpc/QNne0xQvM/RmKYQQHmiyFEIID/oiwwt4tMPE\nZNfc3JyzS7ILko1e7IWW5VBPbbbq61ObLNh7bNRyz+npZHB4zgZX8FzTPRzXECxdQ/Xymsm2bZvN\nEz25Yauzr9h+qbM3bzCP9tpJk6jslz2Inyz2B0NcfKnJV0KPZkUpLnquC+ZuV1QJ5/Yfe/svObsD\nL3YInZ9HFhXQSu26CujgFKXVOqh2PoDlkbhC2DLfuwNveH5mLSBEo7a4bjczK3nODfaij0J6/nFO\nDiXs/YdyMHzvXuQvuUrphd6Jzga6i0II4YEmSyGE8KAvMjyFe7XTMQ/yJSi5dvS4NSB7+phVIx8e\nNe8zVF2wbqN5jTdv3uTsHN7zHO7bAnK+DqmYJJDnJQ+s7b92ys71Fx/7iLNbXch2O0wpb7qO7fRQ\n1yCa6mnJRd3LZCH50h8ovdqwW9inw+gCfODOd/y6s9PAPO9Zjvx6ePZrmZWG62L5olGRd81K6XV4\nxpvwQGcBerizCjmd0fxezvy+pyzR1u3tRSe9xXP5L1UB6tVvFFHPffKee7w0tsud/8LRm6UQQnig\nyVIIITzoiwxvQosygHjbNmuS9eCDD2IfSLw6GnhBerEP9e233+7s9RvWOTuH9GMAdo3SC25jNtUq\nSpLZJGqa2hiWU3rTqQ7JTGmZBXbtdfq3+QGcl324SlIK3xpTz1EZLnj3e37e2UuFfaBb2KCLrp2s\nxmvJTNA3S82/rblbI7SyciN1295ksDgSARqx3edBREdkocnwRh2fzS1/n/UBXF43AtVDfm+4gXnJ\nPdy7thoTIEq7P0+5WiXhXwrbVaLt7KA3SyGE8ECTpRBCeBAWpW5PLxJFRbhsVYtnSCZ6pQsEHDNw\nvXR87M8q32wixlzpsOQeNPGSUj5DWsaQzEnlBfQeT+UupaRujCbm8U3+d1FirsZge0h7tmTnUbg9\nqdheFcMcV2zv4gRYpShVTis5qbE/YvODJjzscaM06u//MJYTSr/5VU9zOUob26sqq/eulF4l588d\npMlfKHqzFEIIDzRZCiGEB32S4bDpNmaebVWB6yrJTDmUV0gpaL+iQp+F5cHxw9ga99wjgBxOqjRq\n6ffouZcgSI7g7VJ/c3yY3t+wVHqM4+c+VffTzKxiFSEKejf3Skt51wzUhtcb++cIwudtY7m5oFQ6\njfYzH+AyTJVLO+iNl5T2kavnoiSXDH+h6M1SCCE80GQphBAe9EeGv6R5fpKsKv/W0w373EOo8tp6\n8WJLrIrA7orzVudj98bvfj5D5brNc+4ixAtBb5ZCCOGBJkshhPBAMlwIITzQm6UQQnigyVIIITzQ\nZCmEEB5oshRCCA80WQohhAeaLIUQwgNNlkII4YEmSyGE8ECTpRBCeKDJUgghPNBkKYQQHmiyFEII\nDzRZCiGEB5oshRDCA02WQgjhgSZLIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggPNFkKIYQHmiyF\nEMIDTZZCCOGBJkshhPBAk6UQQnigyVIIITzQZCmEEB5oshRCCA80WQohhAeaLIUQwgNNlkII4YEm\nSyGE8ECTpRBCeKDJUgghPNBkKYQQHmiyFEIIDzRZCiGEB5oshRDCA02WQgjhgSZLIYTwQJOlEEJ4\noMlSCCE80GQphBAeaLIUQggPNFkKIYQHmiyFEMIDTZZCCOGBJkshhPBAk6UQQnigyVIIITzQZCmE\nEB5oshRCCA80WQohhAeaLIUQwgNNlkII4YEmSyGE8ECTpRBCeKDJUgghPNBkKYQQHmiyFEIIDzRZ\nCiGEB5oshRDCA02WQgjhgSZLIYTwQJOlEEJ4oMlSCCE80GQphBAeaLIUQggPNFkKIYQHmiyFEMID\nTZZCCOGBJkshhPBAk6UQQnigyVIIITzQZCmEEB5oshRCCA80WQohhAeaLIUQwgNNlkII4YEmSyGE\n8ECTpRBCeKDJUgghPNBkKYQQHmiyFEIIDzRZCiGEB5oshRDCA02WQgjhgSZLIYTwQJOlEEJ4oMlS\nCCE80GQphBAeaLIUQggP/j8HMNIOzzJ1VwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file diff --git a/cv_webcam.ipynb b/cv_webcam.ipynb new file mode 100644 index 0000000..2eb2f1e --- /dev/null +++ b/cv_webcam.ipynb @@ -0,0 +1,150 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "cv webcam.ipynb", + "version": "0.3.2", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "mBnMO2KeU8Vx", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 253 + }, + "outputId": "dc6bd15a-8009-4321-f594-03526334ca7a" + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import cv2\n", + "\n", + "cap = cv2.VideoCapture(0)\n", + "print(cap.isOpened())\n", + "\n", + "while(True):\n", + " # Capture frame-by-frame\n", + " ret, frame = cap.read()\n", + "\n", + " # Our operations on the frame come here\n", + " gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n", + "\n", + " # Display the resulting frame\n", + " cv2.imshow('frame',gray)\n", + " if cv2.waitKey(1) & 0xFF == ord('q'):\n", + " break\n", + "\n", + "# When everything done, release the capture\n", + "cap.release()\n", + "cv2.destroyAllWindows()" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "False\n" + ], + "name": "stdout" + }, + { + "output_type": "error", + "ename": "TypeError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mcap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mVideoCapture\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misOpened\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mcap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mwhile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Required argument 'filename' (pos 1) not found" + ] + } + ] + }, + { + "metadata": { + "id": "fPNQjaAOZXYw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 253 + }, + "outputId": "bf538ac1-21d9-4064-c3fb-7ac5c5ec1fd7" + }, + "cell_type": "code", + "source": [ + "import cv2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + " \n", + "face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')\n", + "cam = cv2.VideoCapture(0)\n", + "print(cam.isOpened())\n", + "cam.open()\n", + "\n", + "plt.ion()\n", + "while(True):\n", + " ret, img = cam.read()\n", + " gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n", + " faces = face_cascade.detectMultiScale(gray, 1.2, 3)\n", + " for (x,y,w,h) in faces:\n", + " img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)\n", + " \n", + " img = cv2.flip(img,1) # 1 水平翻轉, 0 垂直翻轉, -1 水平垂直翻轉\n", + " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n", + " plt.imshow(img)\n", + " plt.pause(.01)\n", + " plt.cla() # clear axis\n", + " plt.clf() # clear figure\n", + " \n", + " ### NORMAL WAY\n", + " # cv2.imshow('Face', img)\n", + " # if cv2.waitKey(1)==ord('q'):\n", + " # break\n", + " \n", + "plt.ioff()\n", + "cam.release()" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "False\n" + ], + "name": "stdout" + }, + { + "output_type": "error", + "ename": "TypeError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mcam\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mVideoCapture\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misOpened\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mcam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Required argument 'filename' (pos 1) not found" + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/hyperas.ipynb b/hyperas.ipynb new file mode 100644 index 0000000..5ecdd4a --- /dev/null +++ b/hyperas.ipynb @@ -0,0 +1,1269 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "hyperas.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true, + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "p26COp4rR8S3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# 調參工具 Hyperas\n", + " \n", + "## Dataset - Fashion-MNIST\n", + "\n", + "![alt text](https://cdn-images-1.medium.com/max/1000/1*QQVbuP2SEasB0XAmvjW0AA.jpeg)" + ] + }, + { + "metadata": { + "id": "z_-jXEC_VB8K", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Code" + ] + }, + { + "metadata": { + "id": "jGb_LcJl0R9Q", + "colab_type": "code", + "outputId": "b38401bd-e855-4a77-eaee-f21639407c04", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 72 + } + }, + "cell_type": "code", + "source": [ + "# sudo pip3 install --ignore-installed --upgrade tensorflow\n", + "from __future__ import print_function\n", + "import tensorflow as tf\n", + "import keras.backend.tensorflow_backend as KTF\n", + "config = tf.ConfigProto()\n", + "config.gpu_options.allow_growth = True\n", + "session = tf.Session(config=config)\n", + "KTF.set_session(session)\n", + "import keras\n", + "#import tensorflow as tf\n", + "print(keras.__version__)\n", + "print(tf.__version__)\n", + "# To ignore keep_dims warning\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "2.2.4\n", + "1.12.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "0MGXn9L80l2C", + "colab_type": "code", + "outputId": "987b708a-7fec-49d7-c114-3ff53b4c6468", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1546 + } + }, + "cell_type": "code", + "source": [ + "# 安裝套件\n", + "\n", + "!pip install hyperas\n", + "!pip install hyperopt" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting hyperas\n", + " Downloading https://files.pythonhosted.org/packages/54/72/5533b6bf9b47dc33685c3e62c391d6eab5785a648a5ffa841e240a3db3fe/hyperas-0.4.tar.gz\n", + "Requirement already satisfied: keras in /usr/local/lib/python3.6/dist-packages (from hyperas) (2.2.4)\n", + "Collecting hyperopt (from hyperas)\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ce/9f/f6324af3fc43f352e568b5850695c30ed7dd14af06a94f97953ff9187569/hyperopt-0.1.1-py3-none-any.whl (117kB)\n", + "\u001b[K 100% |████████████████████████████████| 122kB 10.4MB/s \n", + "\u001b[?25hRequirement already satisfied: entrypoints in /usr/local/lib/python3.6/dist-packages (from hyperas) (0.2.3)\n", + "Collecting jupyter (from hyperas)\n", + " Downloading https://files.pythonhosted.org/packages/83/df/0f5dd132200728a86190397e1ea87cd76244e42d39ec5e88efd25b2abd7e/jupyter-1.0.0-py2.py3-none-any.whl\n", + "Requirement already satisfied: nbformat in /usr/local/lib/python3.6/dist-packages (from hyperas) (4.4.0)\n", + "Requirement already satisfied: nbconvert in /usr/local/lib/python3.6/dist-packages (from hyperas) (5.4.0)\n", + "Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from keras->hyperas) (1.0.6)\n", + "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from keras->hyperas) (1.0.5)\n", + "Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from keras->hyperas) (1.1.0)\n", + "Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras->hyperas) (2.8.0)\n", + "Requirement already satisfied: numpy>=1.9.1 in /usr/local/lib/python3.6/dist-packages (from keras->hyperas) (1.14.6)\n", + "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from keras->hyperas) (1.11.0)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from keras->hyperas) (3.13)\n", + "Collecting pymongo (from hyperopt->hyperas)\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/b1/45/5440555b901a8416196fbf2499c4678ef74de8080c007104107a8cfdda20/pymongo-3.7.2-cp36-cp36m-manylinux1_x86_64.whl (408kB)\n", + "\u001b[K 100% |████████████████████████████████| 409kB 15.7MB/s \n", + "\u001b[?25hRequirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from hyperopt->hyperas) (0.16.0)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.6/dist-packages (from hyperopt->hyperas) (2.2)\n", + "Collecting qtconsole (from jupyter->hyperas)\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/e0/7a/8aefbc0ed078dec7951ac9a06dcd1869243ecd7bcbce26fa47bf5e469a8f/qtconsole-4.4.3-py2.py3-none-any.whl (113kB)\n", + "\u001b[K 100% |████████████████████████████████| 122kB 37.7MB/s \n", + "\u001b[?25hRequirement already satisfied: notebook in /usr/local/lib/python3.6/dist-packages (from jupyter->hyperas) (5.2.2)\n", + "Collecting jupyter-console (from jupyter->hyperas)\n", + " Downloading https://files.pythonhosted.org/packages/cb/ee/6374ae8c21b7d0847f9c3722dcdfac986b8e54fa9ad9ea66e1eb6320d2b8/jupyter_console-6.0.0-py2.py3-none-any.whl\n", + "Collecting ipywidgets (from jupyter->hyperas)\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/30/9a/a008c7b1183fac9e52066d80a379b3c64eab535bd9d86cdc29a0b766fd82/ipywidgets-7.4.2-py2.py3-none-any.whl (111kB)\n", + "\u001b[K 100% |████████████████████████████████| 112kB 35.0MB/s \n", + "\u001b[?25hRequirement already satisfied: ipykernel in /usr/local/lib/python3.6/dist-packages (from jupyter->hyperas) (4.6.1)\n", + "Requirement already satisfied: jupyter-core in /usr/local/lib/python3.6/dist-packages (from nbformat->hyperas) (4.4.0)\n", + "Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from nbformat->hyperas) (0.2.0)\n", + "Requirement already satisfied: traitlets>=4.1 in /usr/local/lib/python3.6/dist-packages (from nbformat->hyperas) (4.3.2)\n", + "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbformat->hyperas) (2.6.0)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->hyperas) (1.4.2)\n", + "Requirement already satisfied: defusedxml in /usr/local/lib/python3.6/dist-packages (from nbconvert->hyperas) (0.5.0)\n", + "Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from nbconvert->hyperas) (2.1.3)\n", + "Requirement already satisfied: mistune>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->hyperas) (0.8.4)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.6/dist-packages (from nbconvert->hyperas) (2.10)\n", + "Requirement already satisfied: testpath in /usr/local/lib/python3.6/dist-packages (from nbconvert->hyperas) (0.4.2)\n", + "Requirement already satisfied: bleach in /usr/local/lib/python3.6/dist-packages (from nbconvert->hyperas) (3.0.2)\n", + "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx->hyperopt->hyperas) (4.3.0)\n", + "Requirement already satisfied: jupyter-client>=4.1 in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->hyperas) (5.2.3)\n", + "Requirement already satisfied: tornado>=4 in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->hyperas) (4.5.3)\n", + "Requirement already satisfied: terminado>=0.3.3; sys_platform != \"win32\" in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->hyperas) (0.8.1)\n", + "Requirement already satisfied: ipython in /usr/local/lib/python3.6/dist-packages (from jupyter-console->jupyter->hyperas) (5.5.0)\n", + "Collecting prompt-toolkit<2.1.0,>=2.0.0 (from jupyter-console->jupyter->hyperas)\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/d1/e6/adb3be5576f5d27c6faa33f1e9fea8fe5dbd9351db12148de948507e352c/prompt_toolkit-2.0.7-py3-none-any.whl (338kB)\n", + "\u001b[K 100% |████████████████████████████████| 348kB 34.4MB/s \n", + "\u001b[?25hCollecting widgetsnbextension~=3.4.0 (from ipywidgets->jupyter->hyperas)\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/8a/81/35789a3952afb48238289171728072d26d6e76649ddc8b3588657a2d78c1/widgetsnbextension-3.4.2-py2.py3-none-any.whl (2.2MB)\n", + "\u001b[K 100% |████████████████████████████████| 2.2MB 13.8MB/s \n", + "\u001b[?25hRequirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2->nbconvert->hyperas) (1.1.0)\n", + "Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->hyperas) (0.5.1)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from jupyter-client>=4.1->qtconsole->jupyter->hyperas) (2.5.3)\n", + "Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.6/dist-packages (from jupyter-client>=4.1->qtconsole->jupyter->hyperas) (17.0.0)\n", + "Requirement already satisfied: ptyprocess; os_name != \"nt\" in /usr/local/lib/python3.6/dist-packages (from terminado>=0.3.3; sys_platform != \"win32\"->notebook->jupyter->hyperas) (0.6.0)\n", + "Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from ipython->jupyter-console->jupyter->hyperas) (0.8.1)\n", + "Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from ipython->jupyter-console->jupyter->hyperas) (0.7.5)\n", + "Requirement already satisfied: pexpect; sys_platform != \"win32\" in /usr/local/lib/python3.6/dist-packages (from ipython->jupyter-console->jupyter->hyperas) (4.6.0)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.6/dist-packages (from ipython->jupyter-console->jupyter->hyperas) (40.6.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.1.0,>=2.0.0->jupyter-console->jupyter->hyperas) (0.1.7)\n", + "Building wheels for collected packages: hyperas\n", + " Running setup.py bdist_wheel for hyperas ... \u001b[?25l-\b \bdone\n", + "\u001b[?25h Stored in directory: /root/.cache/pip/wheels/06/38/3f/27826f57fae60ef788ceb47e2c649590ab8af31f42075325d2\n", + "Successfully built hyperas\n", + "\u001b[31mipython 5.5.0 has requirement prompt-toolkit<2.0.0,>=1.0.4, but you'll have prompt-toolkit 2.0.7 which is incompatible.\u001b[0m\n", + "Installing collected packages: pymongo, hyperopt, qtconsole, prompt-toolkit, jupyter-console, widgetsnbextension, ipywidgets, jupyter, hyperas\n", + " Found existing installation: prompt-toolkit 1.0.15\n", + " Uninstalling prompt-toolkit-1.0.15:\n", + " Successfully uninstalled prompt-toolkit-1.0.15\n", + "Successfully installed hyperas-0.4 hyperopt-0.1.1 ipywidgets-7.4.2 jupyter-1.0.0 jupyter-console-6.0.0 prompt-toolkit-2.0.7 pymongo-3.7.2 qtconsole-4.4.3 widgetsnbextension-3.4.2\n", + "Requirement already satisfied: hyperopt in /usr/local/lib/python3.6/dist-packages (0.1.1)\n", + "Requirement already satisfied: pymongo in /usr/local/lib/python3.6/dist-packages (from hyperopt) (3.7.2)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.11.0)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.1.0)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.6/dist-packages (from hyperopt) (2.2)\n", + "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from hyperopt) (0.16.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.14.6)\n", + "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx->hyperopt) (4.3.0)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "krm_n0O06dj0", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "! rm -rf hyperas.ipynb" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CvAPxwCn0t0Z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# See: https://stackoverflow.com/questions/49920031/get-the-path-of-the-notebook-on-google-colab\n", + "# Install the PyDrive wrapper & import libraries.\n", + "!pip install -U -q PyDrive\n", + "from pydrive.auth import GoogleAuth\n", + "from pydrive.drive import GoogleDrive\n", + "from google.colab import auth\n", + "from oauth2client.client import GoogleCredentials\n", + "\n", + "# Authenticate and create the PyDrive client.\n", + "auth.authenticate_user()\n", + "gauth = GoogleAuth()\n", + "gauth.credentials = GoogleCredentials.get_application_default()\n", + "drive = GoogleDrive(gauth)\n", + "\n", + "# Copy/download the file\n", + "fid = drive.ListFile({'q':\"title='hyperas.ipynb'\"}).GetList()[0]['id']\n", + "f = drive.CreateFile({'id': fid})\n", + "f.GetContentFile('hyperas.ipynb')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gf1hIg5u05kf", + "colab_type": "code", + "outputId": "6afefd60-e531-4ed5-f53e-c650611db672", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145 + } + }, + "cell_type": "code", + "source": [ + "! ls -al" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total 100\n", + "drwxr-xr-x 1 root root 4096 Dec 8 14:37 .\n", + "drwxr-xr-x 1 root root 4096 Dec 8 14:35 ..\n", + "-rw-r--r-- 1 root root 2520 Dec 8 14:37 adc.json\n", + "drwxr-xr-x 1 root root 4096 Dec 8 14:37 .config\n", + "-rw-r--r-- 1 root root 72919 Dec 8 14:37 hyperas.ipynb\n", + "drwxr-xr-x 2 root root 4096 Dec 5 17:39 sample_data\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "4wHKwRKmpC6P", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Best model:\n", + "{'Activation': 0, \n", + "'Activation_1': 0, 'Dense': 2, 'Dense_1': 2, 'Dense_2': 3, 'Dropout': 0.020862912321193482, 'Dropout_1': 0.0910332772894481, 'Dropout_2': 0.8618283661109736, 'batch_size': 0, 'choiceval': 2, 'conditional': 0, 'lr': 0, 'lr_1': 1, 'lr_2': 0}\n" + ] + }, + { + "metadata": { + "id": "Faq1HLl81KsJ", + "colab_type": "code", + "outputId": "95dfd21e-8f79-4205-93f5-7ec66c8fb332", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 13168 + } + }, + "cell_type": "code", + "source": [ + "\n", + "from keras.datasets import mnist\n", + "from keras.layers.core import Dense, Dropout, Activation\n", + "from keras.models import Sequential\n", + "\n", + "\n", + "from hyperas import optim\n", + "from hyperas.distributions import choice, uniform, conditional\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from keras.utils import np_utils\n", + "from hyperopt import Trials, STATUS_OK, tpe\n", + " \n", + "from keras import backend as K\n", + "\n", + "import seaborn as sns\n", + "\n", + "\n", + "\n", + "X_test_global = None\n", + "Y_test_global = None\n", + "\n", + "\n", + "def data():\n", + " \n", + " \n", + " from keras.datasets import fashion_mnist\n", + " from keras.datasets import mnist\n", + " from sklearn.model_selection import train_test_split\n", + "\n", + " from keras.layers.core import Dense, Dropout, Activation\n", + " from keras.models import Sequential\n", + "\n", + "\n", + " from hyperas import optim\n", + " from hyperas.distributions import choice, uniform, conditional\n", + " from keras import backend as K\n", + "\n", + " import seaborn as sns\n", + "\n", + " sns.set()\n", + " \n", + " print('Data function')\n", + " img_rows, img_cols = 28, 28\n", + " nb_classes = 10\n", + " (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()\n", + "\n", + " X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2,random_state=12345)\n", + "\n", + " pltsize=1\n", + " \n", + " print (X_train.shape)\n", + " \n", + " Y_train = np_utils.to_categorical(y_train, nb_classes)\n", + " Y_val = np_utils.to_categorical(y_val, nb_classes)\n", + " Y_test= np_utils.to_categorical(y_test, nb_classes)\n", + " \n", + " \n", + " plt.figure(figsize=(10*pltsize, pltsize))\n", + "\n", + " for i in range(10):\n", + "\n", + " plt.subplot(1,10,i+1)\n", + " plt.axis('off')\n", + " plt.imshow(X_train[i,:,:], cmap=\"gray\")\n", + " plt.title('Class: '+str(y_train[i]))\n", + " print('Training sample',i,': class:',y_train[i], ', one-hot encoded:', Y_train[i])\n", + "\n", + "\n", + " X_train = X_train.reshape(X_train.shape[0], 784)\n", + " X_val = X_val.reshape(X_val.shape[0], 784)\n", + " X_test = X_test.reshape(X_test.shape[0], 784)\n", + " X_train = X_train.astype('float32')\n", + " X_val = X_val.astype('float32')\n", + " X_test = X_test.astype('float32')\n", + " X_train /= 255\n", + " X_val /= 255\n", + " X_test/= 255\n", + " \n", + " global X_test_global\n", + " X_test_global = X_test\n", + " global Y_test_global\n", + " Y_test_global= Y_test\n", + " \n", + " print (Y_test_global.shape)\n", + " \n", + " return X_train, Y_train, X_val, Y_val\n", + "\n", + "\n", + "\n", + "def create_model(X_train, Y_train, X_val, Y_val):\n", + " \"\"\"\n", + " Model providing function:\n", + "\n", + " Create Keras model with double curly brackets dropped-in as needed.\n", + " Return value has to be a valid python dictionary with two customary keys:\n", + " - loss: Specify a numeric evaluation metric to be minimized\n", + " - status: Just use STATUS_OK and see hyperopt documentation if not feasible\n", + " The last one is optional, though recommended, namely:\n", + " - model: specify the model just created so that we can later use it again.\n", + " \n", + " {'Activation': 0, \n", + " 'Activation_1': 0, \n", + " 'Dense': 2, 'Dense_1': 2, 'Dense_2': 3, \n", + " 'Dropout': 0.020862912321193482, 'Dropout_1': 0.0910332772894481, 'Dropout_2': 0.8618283661109736, \n", + " 'batch_size': 0, \n", + " 'choiceval': 2, 'conditional': 0, 'lr': 0, 'lr_1': 1, 'lr_2': 0}\n", + " \"\"\"\n", + " model = Sequential()\n", + " #layer 1\n", + " model.add(Dense({{choice([128, 256, 512, 1024])}}, input_shape=(784,)))\n", + " model.add(Activation('relu'))\n", + " model.add(Dropout({{uniform(0, 1)}}))\n", + " \n", + " # layer 2\n", + " model.add(Dense({{choice([128, 256, 512, 1024])}}))\n", + " model.add(Activation({{choice(['relu', 'sigmoid'])}}))\n", + " model.add(Dropout({{uniform(0, 1)}}))\n", + " \n", + " # layer 3\n", + " if conditional({{choice(['two', 'three'])}}) == 'three':\n", + " model.add(Dense({{choice([128, 256, 512, 1024])}}))\n", + " model.add(Activation({{choice(['relu', 'sigmoid'])}}))\n", + " model.add(Dropout({{uniform(0, 1)}}))\n", + " \n", + " model.add(Dense(10))\n", + " model.add(Activation('softmax'))\n", + " \n", + " \n", + " adam = keras.optimizers.Adam(lr={{choice([10**-3, 10**-4])}})\n", + " rmsprop = keras.optimizers.RMSprop(lr={{choice([10**-3, 10**-4])}})\n", + " sgd = keras.optimizers.SGD(lr={{choice([10**-3, 10**-4])}})\n", + " \n", + " choiceval = {{choice(['adam', 'sgd', 'rmsprop'])}}\n", + " if choiceval == 'adam':\n", + " optim = adam\n", + " elif choiceval == 'rmsprop':\n", + " optim = rmsprop\n", + " else:\n", + " optim = sgd\n", + " \n", + "\n", + " model.compile(loss='categorical_crossentropy', metrics=['accuracy'],\n", + " optimizer=optim)\n", + "\n", + " model.fit(X_train, Y_train,\n", + " batch_size={{choice([32, 64, 128])}},\n", + " epochs=5,\n", + " verbose=2,\n", + " validation_data=(X_val, Y_val))\n", + " score, acc = model.evaluate(X_val, Y_val, verbose=0)\n", + " print('Test accuracy:', acc)\n", + " \n", + " return {'loss': -acc, 'status': STATUS_OK, 'model': model}\n", + "\n", + "\n", + "if __name__ == '__main__':\n", + " notebook_name='hyperas'\n", + " \n", + " X_train, Y_train, X_val, Y_val = data()\n", + " print ('Val set')\n", + " print (X_val.shape)\n", + " print (Y_val.shape)\n", + " best_run, best_model = optim.minimize(model=create_model,\n", + " data=data,\n", + " algo=tpe.suggest,\n", + " max_evals=30,\n", + " trials=Trials(),\n", + " notebook_name=notebook_name)\n", + " print (best_model.summary())\n", + " print(\"Evalutation of best performing model:\")\n", + " print(best_model.evaluate( X_test_global, Y_test_global))\n", + " print(\"Best performing model chosen hyper-parameters:\")\n", + " print(best_run)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Data function\n", + "Downloading data from http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz\n", + "32768/29515 [=================================] - 0s 4us/step\n", + "Downloading data from http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz\n", + "26427392/26421880 [==============================] - 2s 0us/step\n", + "Downloading data from http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz\n", + "8192/5148 [===============================================] - 0s 0us/step\n", + "Downloading data from http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz\n", + "4423680/4422102 [==============================] - 1s 0us/step\n", + "(48000, 28, 28)\n", + "Training sample 0 : class: 3 , one-hot encoded: [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + "Training sample 1 : class: 6 , one-hot encoded: [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]\n", + "Training sample 2 : class: 4 , one-hot encoded: [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n", + "Training sample 3 : class: 7 , one-hot encoded: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n", + "Training sample 4 : class: 4 , one-hot encoded: [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n", + "Training sample 5 : class: 9 , one-hot encoded: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + "Training sample 6 : class: 0 , one-hot encoded: [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + "Training sample 7 : class: 9 , one-hot encoded: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + "Training sample 8 : class: 0 , one-hot encoded: [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + "Training sample 9 : class: 3 , one-hot encoded: [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + "(10000, 10)\n", + "Val set\n", + "(12000, 784)\n", + "(12000, 10)\n", + ">>> Imports:\n", + "#coding=utf-8\n", + "\n", + "from __future__ import print_function\n", + "\n", + "try:\n", + " import tensorflow as tf\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " import keras.backend.tensorflow_backend as KTF\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " import keras\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from pydrive.auth import GoogleAuth\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from pydrive.drive import GoogleDrive\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from google.colab import auth\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from oauth2client.client import GoogleCredentials\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.datasets import mnist\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.layers.core import Dense, Dropout, Activation\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.models import Sequential\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from hyperas import optim\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from hyperas.distributions import choice, uniform, conditional\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " import matplotlib.pyplot as plt\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.utils import np_utils\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from hyperopt import Trials, STATUS_OK, tpe\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras import backend as K\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " import seaborn as sns\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.datasets import fashion_mnist\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.datasets import mnist\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from sklearn.model_selection import train_test_split\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.layers.core import Dense, Dropout, Activation\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras.models import Sequential\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from hyperas import optim\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from hyperas.distributions import choice, uniform, conditional\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " from keras import backend as K\n", + "except:\n", + " pass\n", + "\n", + "try:\n", + " import seaborn as sns\n", + "except:\n", + " pass\n", + "\n", + ">>> Hyperas search space:\n", + "\n", + "def get_space():\n", + " return {\n", + " 'Dense': hp.choice('Dense', [128, 256, 512, 1024]),\n", + " 'Dropout': hp.uniform('Dropout', 0, 1),\n", + " 'Dense_1': hp.choice('Dense_1', [128, 256, 512, 1024]),\n", + " 'Activation': hp.choice('Activation', ['relu', 'sigmoid']),\n", + " 'Dropout_1': hp.uniform('Dropout_1', 0, 1),\n", + " 'conditional': hp.choice('conditional', ['two', 'three']),\n", + " 'Dense_2': hp.choice('Dense_2', [128, 256, 512, 1024]),\n", + " 'Activation_1': hp.choice('Activation_1', ['relu', 'sigmoid']),\n", + " 'Dropout_2': hp.uniform('Dropout_2', 0, 1),\n", + " 'lr': hp.choice('lr', [10**-3, 10**-4]),\n", + " 'lr_1': hp.choice('lr_1', [10**-3, 10**-4]),\n", + " 'lr_2': hp.choice('lr_2', [10**-3, 10**-4]),\n", + " 'choiceval': hp.choice('choiceval', ['adam', 'sgd', 'rmsprop']),\n", + " 'batch_size': hp.choice('batch_size', [32, 64, 128]),\n", + " }\n", + "\n", + ">>> Data\n", + " 1: \n", + " 2: \n", + " 3: \n", + " 4: from keras.datasets import fashion_mnist\n", + " 5: from keras.datasets import mnist\n", + " 6: from sklearn.model_selection import train_test_split\n", + " 7: \n", + " 8: from keras.layers.core import Dense, Dropout, Activation\n", + " 9: from keras.models import Sequential\n", + " 10: \n", + " 11: \n", + " 12: from hyperas import optim\n", + " 13: from hyperas.distributions import choice, uniform, conditional\n", + " 14: from keras import backend as K\n", + " 15: \n", + " 16: import seaborn as sns\n", + " 17: \n", + " 18: sns.set()\n", + " 19: \n", + " 20: print('Data function')\n", + " 21: img_rows, img_cols = 28, 28\n", + " 22: nb_classes = 10\n", + " 23: (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()\n", + " 24: \n", + " 25: X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2,random_state=12345)\n", + " 26: \n", + " 27: pltsize=1\n", + " 28: \n", + " 29: print (X_train.shape)\n", + " 30: \n", + " 31: Y_train = np_utils.to_categorical(y_train, nb_classes)\n", + " 32: Y_val = np_utils.to_categorical(y_val, nb_classes)\n", + " 33: Y_test= np_utils.to_categorical(y_test, nb_classes)\n", + " 34: \n", + " 35: \n", + " 36: plt.figure(figsize=(10*pltsize, pltsize))\n", + " 37: \n", + " 38: for i in range(10):\n", + " 39: \n", + " 40: plt.subplot(1,10,i+1)\n", + " 41: plt.axis('off')\n", + " 42: plt.imshow(X_train[i,:,:], cmap=\"gray\")\n", + " 43: plt.title('Class: '+str(y_train[i]))\n", + " 44: print('Training sample',i,': class:',y_train[i], ', one-hot encoded:', Y_train[i])\n", + " 45: \n", + " 46: \n", + " 47: X_train = X_train.reshape(X_train.shape[0], 784)\n", + " 48: X_val = X_val.reshape(X_val.shape[0], 784)\n", + " 49: X_test = X_test.reshape(X_test.shape[0], 784)\n", + " 50: X_train = X_train.astype('float32')\n", + " 51: X_val = X_val.astype('float32')\n", + " 52: X_test = X_test.astype('float32')\n", + " 53: X_train /= 255\n", + " 54: X_val /= 255\n", + " 55: X_test/= 255\n", + " 56: \n", + " 57: global X_test_global\n", + " 58: X_test_global = X_test\n", + " 59: global Y_test_global\n", + " 60: Y_test_global= Y_test\n", + " 61: print (Y_test_global.shape)\n", + " 62: \n", + " 63: \n", + " 64: \n", + " 65: \n", + ">>> Resulting replaced keras model:\n", + "\n", + " 1: def keras_fmin_fnct(space):\n", + " 2: \n", + " 3: \"\"\"\n", + " 4: Model providing function:\n", + " 5: \n", + " 6: Create Keras model with double curly brackets dropped-in as needed.\n", + " 7: Return value has to be a valid python dictionary with two customary keys:\n", + " 8: - loss: Specify a numeric evaluation metric to be minimized\n", + " 9: - status: Just use STATUS_OK and see hyperopt documentation if not feasible\n", + " 10: The last one is optional, though recommended, namely:\n", + " 11: - model: specify the model just created so that we can later use it again.\n", + " 12: \"\"\"\n", + " 13: model = Sequential()\n", + " 14: #layer 1\n", + " 15: model.add(Dense(space['Dense'], input_shape=(784,)))\n", + " 16: model.add(Activation('relu'))\n", + " 17: model.add(Dropout(space['Dropout']))\n", + " 18: \n", + " 19: # layer 2\n", + " 20: model.add(Dense(space['Dense_1']))\n", + " 21: model.add(Activation(space['Activation']))\n", + " 22: model.add(Dropout(space['Dropout_1']))\n", + " 23: \n", + " 24: # layer 3\n", + " 25: if conditional(space['conditional']) == 'three':\n", + " 26: model.add(Dense(space['Dense_2']))\n", + " 27: model.add(Activation(space['Activation_1']))\n", + " 28: model.add(Dropout(space['Dropout_2']))\n", + " 29: \n", + " 30: \n", + " 31: \n", + " 32: \n", + " 33: \n", + " 34: model.add(Dense(10))\n", + " 35: model.add(Activation('softmax'))\n", + " 36: \n", + " 37: \n", + " 38: adam = keras.optimizers.Adam(lr=space['lr'])\n", + " 39: rmsprop = keras.optimizers.RMSprop(lr=space['lr_1'])\n", + " 40: sgd = keras.optimizers.SGD(lr=space['lr_2'])\n", + " 41: \n", + " 42: choiceval = space['choiceval']\n", + " 43: if choiceval == 'adam':\n", + " 44: optim = adam\n", + " 45: elif choiceval == 'rmsprop':\n", + " 46: optim = rmsprop\n", + " 47: else:\n", + " 48: optim = sgd\n", + " 49: \n", + " 50: \n", + " 51: model.compile(loss='categorical_crossentropy', metrics=['accuracy'],\n", + " 52: optimizer=optim)\n", + " 53: \n", + " 54: model.fit(X_train, Y_train,\n", + " 55: batch_size=space['batch_size'],\n", + " 56: epochs=5,\n", + " 57: verbose=2,\n", + " 58: validation_data=(X_val, Y_val))\n", + " 59: score, acc = model.evaluate(X_val, Y_val, verbose=0)\n", + " 60: print('Test accuracy:', acc)\n", + " 61: \n", + " 62: return {'loss': -acc, 'status': STATUS_OK, 'model': model}\n", + " 63: \n", + "Data function\n", + "(48000, 28, 28)\n", + "Training sample 0 : class: 3 , one-hot encoded: [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + "Training sample 1 : class: 6 , one-hot encoded: [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]\n", + "Training sample 2 : class: 4 , one-hot encoded: [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n", + "Training sample 3 : class: 7 , one-hot encoded: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n", + "Training sample 4 : class: 4 , one-hot encoded: [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n", + "Training sample 5 : class: 9 , one-hot encoded: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + "Training sample 6 : class: 0 , one-hot encoded: [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + "Training sample 7 : class: 9 , one-hot encoded: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + "Training sample 8 : class: 0 , one-hot encoded: [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + "Training sample 9 : class: 3 , one-hot encoded: [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + "(10000, 10)\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 4s - loss: 1.7711 - acc: 0.4845 - val_loss: 1.3744 - val_acc: 0.6496\n", + "Epoch 2/5\n", + " - 4s - loss: 1.2206 - acc: 0.6436 - val_loss: 1.0376 - val_acc: 0.6891\n", + "Epoch 3/5\n", + " - 4s - loss: 0.9939 - acc: 0.6870 - val_loss: 0.8837 - val_acc: 0.7242\n", + "Epoch 4/5\n", + " - 3s - loss: 0.8816 - acc: 0.7163 - val_loss: 0.7981 - val_acc: 0.7527\n", + "Epoch 5/5\n", + " - 4s - loss: 0.8140 - acc: 0.7371 - val_loss: 0.7432 - val_acc: 0.7622\n", + "Test accuracy: 0.7621666666666667\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 4s - loss: 1.5962 - acc: 0.3821 - val_loss: 1.0463 - val_acc: 0.5710\n", + "Epoch 2/5\n", + " - 4s - loss: 1.3642 - acc: 0.4668 - val_loss: 0.8634 - val_acc: 0.6455\n", + "Epoch 3/5\n", + " - 4s - loss: 1.3057 - acc: 0.4947 - val_loss: 1.0342 - val_acc: 0.5791\n", + "Epoch 4/5\n", + " - 4s - loss: 1.2715 - acc: 0.5121 - val_loss: 0.8711 - val_acc: 0.6652\n", + "Epoch 5/5\n", + " - 4s - loss: 1.2651 - acc: 0.5141 - val_loss: 0.8853 - val_acc: 0.6478\n", + "Test accuracy: 0.6478333333333334\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 2s - loss: 3.0027 - acc: 0.1021 - val_loss: 2.4737 - val_acc: 0.0912\n", + "Epoch 2/5\n", + " - 2s - loss: 2.9222 - acc: 0.1048 - val_loss: 2.4065 - val_acc: 0.0912\n", + "Epoch 3/5\n", + " - 2s - loss: 2.8694 - acc: 0.1068 - val_loss: 2.3590 - val_acc: 0.0912\n", + "Epoch 4/5\n", + " - 2s - loss: 2.8272 - acc: 0.1062 - val_loss: 2.3235 - val_acc: 0.0912\n", + "Epoch 5/5\n", + " - 2s - loss: 2.7989 - acc: 0.1081 - val_loss: 2.2950 - val_acc: 0.0967\n", + "Test accuracy: 0.09666666666666666\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 2s - loss: 3.5153 - acc: 0.1011 - val_loss: 2.4093 - val_acc: 0.0978\n", + "Epoch 2/5\n", + " - 2s - loss: 3.4389 - acc: 0.1009 - val_loss: 2.3546 - val_acc: 0.0978\n", + "Epoch 3/5\n", + " - 2s - loss: 3.4249 - acc: 0.0999 - val_loss: 2.3322 - val_acc: 0.0978\n", + "Epoch 4/5\n", + " - 2s - loss: 3.3958 - acc: 0.1010 - val_loss: 2.3216 - val_acc: 0.0978\n", + "Epoch 5/5\n", + " - 2s - loss: 3.3660 - acc: 0.1025 - val_loss: 2.3168 - val_acc: 0.0978\n", + "Test accuracy: 0.09783333333333333\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 4s - loss: 2.1015 - acc: 0.2470 - val_loss: 1.4593 - val_acc: 0.4910\n", + "Epoch 2/5\n", + " - 4s - loss: 1.6605 - acc: 0.3549 - val_loss: 1.2724 - val_acc: 0.5496\n", + "Epoch 3/5\n", + " - 4s - loss: 1.5396 - acc: 0.4019 - val_loss: 1.1448 - val_acc: 0.6159\n", + "Epoch 4/5\n", + " - 4s - loss: 1.5024 - acc: 0.4246 - val_loss: 1.0731 - val_acc: 0.6162\n", + "Epoch 5/5\n", + " - 4s - loss: 1.4661 - acc: 0.4422 - val_loss: 1.0566 - val_acc: 0.6048\n", + "Test accuracy: 0.6048333333333333\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 8s - loss: 0.7821 - acc: 0.7364 - val_loss: 0.4755 - val_acc: 0.8388\n", + "Epoch 2/5\n", + " - 8s - loss: 0.5046 - acc: 0.8230 - val_loss: 0.4022 - val_acc: 0.8622\n", + "Epoch 3/5\n", + " - 8s - loss: 0.4440 - acc: 0.8427 - val_loss: 0.3719 - val_acc: 0.8718\n", + "Epoch 4/5\n", + " - 8s - loss: 0.4105 - acc: 0.8541 - val_loss: 0.3492 - val_acc: 0.8789\n", + "Epoch 5/5\n", + " - 8s - loss: 0.3854 - acc: 0.8647 - val_loss: 0.3422 - val_acc: 0.8818\n", + "Test accuracy: 0.88175\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 4s - loss: 2.2818 - acc: 0.1222 - val_loss: 1.7317 - val_acc: 0.2074\n", + "Epoch 2/5\n", + " - 3s - loss: 1.9989 - acc: 0.1783 - val_loss: 1.7690 - val_acc: 0.2045\n", + "Epoch 3/5\n", + " - 3s - loss: 1.9271 - acc: 0.1911 - val_loss: 1.8546 - val_acc: 0.2235\n", + "Epoch 4/5\n", + " - 3s - loss: 1.8892 - acc: 0.2028 - val_loss: 1.8961 - val_acc: 0.2080\n", + "Epoch 5/5\n", + " - 3s - loss: 1.8642 - acc: 0.2119 - val_loss: 1.9781 - val_acc: 0.2073\n", + "Test accuracy: 0.20725\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 3s - loss: 1.8415 - acc: 0.3175 - val_loss: 1.0807 - val_acc: 0.6139\n", + "Epoch 2/5\n", + " - 2s - loss: 1.0891 - acc: 0.5792 - val_loss: 0.7838 - val_acc: 0.7018\n", + "Epoch 3/5\n", + " - 2s - loss: 0.8623 - acc: 0.6779 - val_loss: 0.6642 - val_acc: 0.7502\n", + "Epoch 4/5\n", + " - 2s - loss: 0.7525 - acc: 0.7214 - val_loss: 0.6004 - val_acc: 0.7686\n", + "Epoch 5/5\n", + " - 2s - loss: 0.6912 - acc: 0.7446 - val_loss: 0.5598 - val_acc: 0.7854\n", + "Test accuracy: 0.7854166666666667\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 3s - loss: 1.8240 - acc: 0.3293 - val_loss: 1.0319 - val_acc: 0.6578\n", + "Epoch 2/5\n", + " - 2s - loss: 1.2054 - acc: 0.5368 - val_loss: 0.7882 - val_acc: 0.6909\n", + "Epoch 3/5\n", + " - 2s - loss: 1.0192 - acc: 0.6063 - val_loss: 0.7014 - val_acc: 0.7238\n", + "Epoch 4/5\n", + " - 2s - loss: 0.9187 - acc: 0.6500 - val_loss: 0.6400 - val_acc: 0.7871\n", + "Epoch 5/5\n", + " - 2s - loss: 0.8611 - acc: 0.6711 - val_loss: 0.5965 - val_acc: 0.8012\n", + "Test accuracy: 0.8011666666666667\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 9s - loss: 2.6022 - acc: 0.0979 - val_loss: 2.3111 - val_acc: 0.0652\n", + "Epoch 2/5\n", + " - 8s - loss: 2.4695 - acc: 0.1046 - val_loss: 2.3033 - val_acc: 0.1238\n", + "Epoch 3/5\n", + " - 8s - loss: 2.4184 - acc: 0.1077 - val_loss: 2.2952 - val_acc: 0.1482\n", + "Epoch 4/5\n", + " - 8s - loss: 2.3748 - acc: 0.1099 - val_loss: 2.2924 - val_acc: 0.1233\n", + "Epoch 5/5\n", + " - 8s - loss: 2.3530 - acc: 0.1121 - val_loss: 2.2930 - val_acc: 0.1155\n", + "Test accuracy: 0.1155\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 3s - loss: 1.8695 - acc: 0.3381 - val_loss: 1.2503 - val_acc: 0.6031\n", + "Epoch 2/5\n", + " - 2s - loss: 1.1663 - acc: 0.5772 - val_loss: 0.8765 - val_acc: 0.6964\n", + "Epoch 3/5\n", + " - 2s - loss: 0.9185 - acc: 0.6559 - val_loss: 0.7338 - val_acc: 0.7187\n", + "Epoch 4/5\n", + " - 2s - loss: 0.7982 - acc: 0.7013 - val_loss: 0.6483 - val_acc: 0.7583\n", + "Epoch 5/5\n", + " - 2s - loss: 0.7228 - acc: 0.7308 - val_loss: 0.5895 - val_acc: 0.7788\n", + "Test accuracy: 0.7788333333333334\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 3s - loss: 2.3820 - acc: 0.1238 - val_loss: 2.2719 - val_acc: 0.2191\n", + "Epoch 2/5\n", + " - 2s - loss: 2.2895 - acc: 0.1535 - val_loss: 2.1944 - val_acc: 0.2821\n", + "Epoch 3/5\n", + " - 2s - loss: 2.2198 - acc: 0.1850 - val_loss: 2.1308 - val_acc: 0.3670\n", + "Epoch 4/5\n", + " - 2s - loss: 2.1630 - acc: 0.2162 - val_loss: 2.0747 - val_acc: 0.4298\n", + "Epoch 5/5\n", + " - 2s - loss: 2.1099 - acc: 0.2481 - val_loss: 2.0231 - val_acc: 0.4643\n", + "Test accuracy: 0.4643333333333333\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 4s - loss: 1.4622 - acc: 0.4696 - val_loss: 0.7824 - val_acc: 0.7072\n", + "Epoch 2/5\n", + " - 3s - loss: 0.7908 - acc: 0.7033 - val_loss: 0.5997 - val_acc: 0.7714\n", + "Epoch 3/5\n", + " - 3s - loss: 0.6516 - acc: 0.7576 - val_loss: 0.5199 - val_acc: 0.8098\n", + "Epoch 4/5\n", + " - 3s - loss: 0.5890 - acc: 0.7854 - val_loss: 0.4809 - val_acc: 0.8272\n", + "Epoch 5/5\n", + " - 3s - loss: 0.5433 - acc: 0.8038 - val_loss: 0.4479 - val_acc: 0.8401\n", + "Test accuracy: 0.8400833333333333\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 4s - loss: 0.8213 - acc: 0.7109 - val_loss: 0.5169 - val_acc: 0.8207\n", + "Epoch 2/5\n", + " - 3s - loss: 0.5534 - acc: 0.8010 - val_loss: 0.4436 - val_acc: 0.8428\n", + "Epoch 3/5\n", + " - 3s - loss: 0.4923 - acc: 0.8227 - val_loss: 0.4126 - val_acc: 0.8538\n", + "Epoch 4/5\n", + " - 3s - loss: 0.4601 - acc: 0.8341 - val_loss: 0.3843 - val_acc: 0.8638\n", + "Epoch 5/5\n", + " - 3s - loss: 0.4395 - acc: 0.8402 - val_loss: 0.3648 - val_acc: 0.8730\n", + "Test accuracy: 0.873\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 5s - loss: 2.7298 - acc: 0.0965 - val_loss: 2.4532 - val_acc: 0.0912\n", + "Epoch 2/5\n", + " - 4s - loss: 2.6100 - acc: 0.0988 - val_loss: 2.3647 - val_acc: 0.1104\n", + "Epoch 3/5\n", + " - 4s - loss: 2.5559 - acc: 0.1014 - val_loss: 2.3178 - val_acc: 0.1695\n", + "Epoch 4/5\n", + " - 4s - loss: 2.5213 - acc: 0.1044 - val_loss: 2.2914 - val_acc: 0.1899\n", + "Epoch 5/5\n", + " - 4s - loss: 2.5060 - acc: 0.1064 - val_loss: 2.2744 - val_acc: 0.2109\n", + "Test accuracy: 0.21091666666666667\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 8s - loss: 0.7072 - acc: 0.7411 - val_loss: 0.4468 - val_acc: 0.8398\n", + "Epoch 2/5\n", + " - 7s - loss: 0.5392 - acc: 0.8017 - val_loss: 0.4025 - val_acc: 0.8488\n", + "Epoch 3/5\n", + " - 7s - loss: 0.5019 - acc: 0.8160 - val_loss: 0.3833 - val_acc: 0.8646\n", + "Epoch 4/5\n", + " - 7s - loss: 0.4860 - acc: 0.8246 - val_loss: 0.3726 - val_acc: 0.8651\n", + "Epoch 5/5\n", + " - 7s - loss: 0.4692 - acc: 0.8319 - val_loss: 0.3705 - val_acc: 0.8696\n", + "Test accuracy: 0.8695833333333334\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 9s - loss: 2.3927 - acc: 0.1039 - val_loss: 2.2769 - val_acc: 0.1943\n", + "Epoch 2/5\n", + " - 8s - loss: 2.3458 - acc: 0.1077 - val_loss: 2.2551 - val_acc: 0.2290\n", + "Epoch 3/5\n", + " - 8s - loss: 2.3227 - acc: 0.1127 - val_loss: 2.2375 - val_acc: 0.2823\n", + "Epoch 4/5\n", + " - 8s - loss: 2.3009 - acc: 0.1195 - val_loss: 2.2210 - val_acc: 0.3355\n", + "Epoch 5/5\n", + " - 8s - loss: 2.2798 - acc: 0.1295 - val_loss: 2.2047 - val_acc: 0.3820\n", + "Test accuracy: 0.382\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 3s - loss: 2.4202 - acc: 0.1229 - val_loss: 2.2525 - val_acc: 0.1941\n", + "Epoch 2/5\n", + " - 2s - loss: 2.3298 - acc: 0.1431 - val_loss: 2.1784 - val_acc: 0.2534\n", + "Epoch 3/5\n", + " - 2s - loss: 2.2630 - acc: 0.1646 - val_loss: 2.1202 - val_acc: 0.3197\n", + "Epoch 4/5\n", + " - 2s - loss: 2.2048 - acc: 0.1885 - val_loss: 2.0700 - val_acc: 0.3752\n", + "Epoch 5/5\n", + " - 2s - loss: 2.1607 - acc: 0.2100 - val_loss: 2.0244 - val_acc: 0.4202\n", + "Test accuracy: 0.42025\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 3s - loss: 2.4670 - acc: 0.1199 - val_loss: 2.1830 - val_acc: 0.3570\n", + "Epoch 2/5\n", + " - 2s - loss: 2.2529 - acc: 0.1567 - val_loss: 2.1238 - val_acc: 0.4788\n", + "Epoch 3/5\n", + " - 2s - loss: 2.1985 - acc: 0.1807 - val_loss: 2.0594 - val_acc: 0.5447\n", + "Epoch 4/5\n", + " - 2s - loss: 2.1402 - acc: 0.2107 - val_loss: 1.9869 - val_acc: 0.5772\n", + "Epoch 5/5\n", + " - 2s - loss: 2.0926 - acc: 0.2349 - val_loss: 1.9119 - val_acc: 0.5881\n", + "Test accuracy: 0.5880833333333333\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 4s - loss: 2.4152 - acc: 0.1014 - val_loss: 2.2670 - val_acc: 0.1452\n", + "Epoch 2/5\n", + " - 3s - loss: 2.3478 - acc: 0.1209 - val_loss: 2.1960 - val_acc: 0.1989\n", + "Epoch 3/5\n", + " - 3s - loss: 2.2871 - acc: 0.1437 - val_loss: 2.1337 - val_acc: 0.2279\n", + "Epoch 4/5\n", + " - 3s - loss: 2.2349 - acc: 0.1621 - val_loss: 2.0764 - val_acc: 0.2860\n", + "Epoch 5/5\n", + " - 3s - loss: 2.1799 - acc: 0.1870 - val_loss: 2.0223 - val_acc: 0.3509\n", + "Test accuracy: 0.35091666666666665\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 10s - loss: 0.6028 - acc: 0.7937 - val_loss: 0.4287 - val_acc: 0.8571\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4236 - acc: 0.8484 - val_loss: 0.3663 - val_acc: 0.8733\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3741 - acc: 0.8646 - val_loss: 0.3364 - val_acc: 0.8850\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3469 - acc: 0.8750 - val_loss: 0.3253 - val_acc: 0.8872\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3287 - acc: 0.8818 - val_loss: 0.3137 - val_acc: 0.8912\n", + "Test accuracy: 0.89125\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 10s - loss: 0.6164 - acc: 0.7893 - val_loss: 0.4311 - val_acc: 0.8493\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4273 - acc: 0.8488 - val_loss: 0.3692 - val_acc: 0.8720\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3805 - acc: 0.8642 - val_loss: 0.3506 - val_acc: 0.8742\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3521 - acc: 0.8746 - val_loss: 0.3254 - val_acc: 0.8864\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3334 - acc: 0.8804 - val_loss: 0.3173 - val_acc: 0.8898\n", + "Test accuracy: 0.8898333333333334\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 11s - loss: 0.5155 - acc: 0.8114 - val_loss: 0.3976 - val_acc: 0.8543\n", + "Epoch 2/5\n", + " - 10s - loss: 0.3962 - acc: 0.8551 - val_loss: 0.3610 - val_acc: 0.8675\n", + "Epoch 3/5\n", + " - 10s - loss: 0.3599 - acc: 0.8682 - val_loss: 0.3908 - val_acc: 0.8550\n", + "Epoch 4/5\n", + " - 10s - loss: 0.3366 - acc: 0.8749 - val_loss: 0.3098 - val_acc: 0.8877\n", + "Epoch 5/5\n", + " - 10s - loss: 0.3205 - acc: 0.8819 - val_loss: 0.3479 - val_acc: 0.8708\n", + "Test accuracy: 0.87075\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 10s - loss: 0.6292 - acc: 0.7818 - val_loss: 0.4325 - val_acc: 0.8548\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4367 - acc: 0.8444 - val_loss: 0.3889 - val_acc: 0.8627\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3914 - acc: 0.8608 - val_loss: 0.3523 - val_acc: 0.8772\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3645 - acc: 0.8710 - val_loss: 0.3446 - val_acc: 0.8779\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3475 - acc: 0.8760 - val_loss: 0.3279 - val_acc: 0.8851\n", + "Test accuracy: 0.8850833333333333\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 10s - loss: 0.5708 - acc: 0.8073 - val_loss: 0.4167 - val_acc: 0.8582\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4055 - acc: 0.8549 - val_loss: 0.3659 - val_acc: 0.8746\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3623 - acc: 0.8696 - val_loss: 0.3378 - val_acc: 0.8812\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3316 - acc: 0.8807 - val_loss: 0.3357 - val_acc: 0.8798\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3131 - acc: 0.8874 - val_loss: 0.3081 - val_acc: 0.8915\n", + "Test accuracy: 0.8915\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 10s - loss: 0.5780 - acc: 0.8024 - val_loss: 0.4299 - val_acc: 0.8524\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4078 - acc: 0.8555 - val_loss: 0.3717 - val_acc: 0.8696\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3627 - acc: 0.8696 - val_loss: 0.3502 - val_acc: 0.8794\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3357 - acc: 0.8792 - val_loss: 0.3246 - val_acc: 0.8838\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3156 - acc: 0.8866 - val_loss: 0.3077 - val_acc: 0.8938\n", + "Test accuracy: 0.89375\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 12s - loss: 0.4970 - acc: 0.8206 - val_loss: 0.4157 - val_acc: 0.8438\n", + "Epoch 2/5\n", + " - 10s - loss: 0.3769 - acc: 0.8620 - val_loss: 0.3949 - val_acc: 0.8548\n", + "Epoch 3/5\n", + " - 10s - loss: 0.3409 - acc: 0.8737 - val_loss: 0.3621 - val_acc: 0.8675\n", + "Epoch 4/5\n", + " - 10s - loss: 0.3187 - acc: 0.8798 - val_loss: 0.3068 - val_acc: 0.8908\n", + "Epoch 5/5\n", + " - 10s - loss: 0.2993 - acc: 0.8872 - val_loss: 0.3563 - val_acc: 0.8691\n", + "Test accuracy: 0.8690833333333333\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 11s - loss: 0.6012 - acc: 0.7946 - val_loss: 0.4484 - val_acc: 0.8397\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4148 - acc: 0.8523 - val_loss: 0.3737 - val_acc: 0.8705\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3698 - acc: 0.8679 - val_loss: 0.3340 - val_acc: 0.8828\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3417 - acc: 0.8775 - val_loss: 0.3480 - val_acc: 0.8738\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3222 - acc: 0.8833 - val_loss: 0.3178 - val_acc: 0.8887\n", + "Test accuracy: 0.8886666666666667\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 11s - loss: 0.5943 - acc: 0.7966 - val_loss: 0.4412 - val_acc: 0.8498\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4131 - acc: 0.8533 - val_loss: 0.3693 - val_acc: 0.8702\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3684 - acc: 0.8665 - val_loss: 0.3392 - val_acc: 0.8807\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3412 - acc: 0.8774 - val_loss: 0.3275 - val_acc: 0.8828\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3223 - acc: 0.8831 - val_loss: 0.3102 - val_acc: 0.8929\n", + "Test accuracy: 0.8929166666666667\n", + "Train on 48000 samples, validate on 12000 samples\n", + "Epoch 1/5\n", + " - 11s - loss: 0.5985 - acc: 0.7970 - val_loss: 0.4171 - val_acc: 0.8598\n", + "Epoch 2/5\n", + " - 9s - loss: 0.4198 - acc: 0.8494 - val_loss: 0.3702 - val_acc: 0.8703\n", + "Epoch 3/5\n", + " - 9s - loss: 0.3732 - acc: 0.8659 - val_loss: 0.3411 - val_acc: 0.8792\n", + "Epoch 4/5\n", + " - 9s - loss: 0.3446 - acc: 0.8769 - val_loss: 0.3413 - val_acc: 0.8778\n", + "Epoch 5/5\n", + " - 9s - loss: 0.3245 - acc: 0.8832 - val_loss: 0.3154 - val_acc: 0.8881\n", + "Test accuracy: 0.8880833333333333\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_87 (Dense) (None, 512) 401920 \n", + "_________________________________________________________________\n", + "activation_87 (Activation) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dropout_62 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dense_88 (Dense) (None, 512) 262656 \n", + "_________________________________________________________________\n", + "activation_88 (Activation) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dropout_63 (Dropout) (None, 512) 0 \n", + "_________________________________________________________________\n", + "dense_89 (Dense) (None, 10) 5130 \n", + "_________________________________________________________________\n", + "activation_89 (Activation) (None, 10) 0 \n", + "=================================================================\n", + "Total params: 669,706\n", + "Trainable params: 669,706\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n", + "Evalutation of best performing model:\n", + "10000/10000 [==============================] - 1s 69us/step\n", + "[0.34851747982501985, 0.8761]\n", + "Best performing model chosen hyper-parameters:\n", + "{'Activation': 0, 'Activation_1': 0, 'Dense': 2, 'Dense_1': 2, 'Dense_2': 3, 'Dropout': 0.020862912321193482, 'Dropout_1': 0.0910332772894481, 'Dropout_2': 0.8618283661109736, 'batch_size': 0, 'choiceval': 2, 'conditional': 0, 'lr': 0, 'lr_1': 1, 'lr_2': 0}\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAABdCAYAAABq41iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXl4VPW5x78z2ScLS4CEHSFsWtQC\nNWxXhWIRuqi9Khe9gitqsVcoqGitqOViUeRqQR/LrQugFWhRVguKSiuhiCtUCCjeUlBBoZAQyGSZ\nmXP/mOf7nt+cM4FMMhmG+H6ehydkZnLmvOe3f9/39/48lmVZUBRFURRFUeqN93TfgKIoiqIoypmG\nTqAURVEURVFiRCdQiqIoiqIoMaITKEVRFEVRlBjRCZSiKIqiKEqM6ARKURRFURQlRlIT/YWWZeGF\nF17A8uXLUVtbi2AwiGHDhmHq1KnIzc3F9OnT0aVLF/zsZz9L2D399re/xWuvvQbLstC3b188/PDD\nyMvLa/D1ktHG999/Hw8++CCqqqrQoUMHPPbYYygoKGjw9ZLRRjJ79mysX78eb731VqOuk2w2Pvro\noxE2VVVVoXXr1njllVcadL1ks8+kuZZhIBDAnDlzsHHjRlRXV+Paa6/FzTff3KhrJpuNAPDCCy9g\n6dKlCIVCGDhwIGbMmIH09PQGXy/ZbIx3OSabfUDzL0Og8WN/whWoOXPm4LXXXsOzzz6L9evXY9Wq\nVaitrcWtt96K05GSas2aNdi8eTNWrFiBP//5zwiFQnjmmWcadc1ks/H48eOYPHkyZs6ciQ0bNmDY\nsGFYu3Zto66ZbDaSXbt2YcOGDXG5VrLZePfdd2PdunXy7+KLL8YVV1zR4Oslm32kOZfhsmXLsG3b\nNqxcuRKrVq3C8uXL8f777zfqmslm48cff4xFixZh6dKlWLduHSoqKrB48eJGXTPZbIx3OSabfd+G\nMozL2G8lkKNHj1r9+vWz9uzZE/F6VVWV9eabb1rBYNC65557rKeeesqyLMv68MMPrSuuuMIaNWqU\nNXr0aKukpMSyLMuqra217rvvPusHP/iBNXLkSGvSpElWRUVFna9blmWNHz/e+uSTT1z3VFpaapWW\nlsrvixcvtm677bZmZeOrr75qTZw4scE2nQk2WpZlBYNBa+zYsdaaNWus4cOHN0sbye7du60xY8ZY\ntbW1zcq+5l6GkyZNsl588UX5fcGCBdbMmTOblY2PPPKI9dhjj8nvGzdutK688spmZWM8yzEZ7fs2\nlGE8xv6EKlDbtm1DYWEhevToEfF6RkYGRowYAa838nYeeOAB3HTTTVi3bh0mTpyIGTNmAAA2bdqE\nL774AuvWrcPrr7+OoqIifPTRR3W+DgALFy7EOeec47qnPn36oE+fPgCAiooKrFu3DiNGjGhWNu7e\nvRutWrXCpEmTMGrUKEyZMgVHjhxpVjYCwJIlS9CrVy+cd955DbYt2W0k8+fPx80334zU1IZ54ZPV\nvuZehh6PB6FQSH73+XzYt29fs7Jx79696NKli/zeuXNn/N///V+zsjGe5ZiM9n0byjAeY39CY6DK\nysqQn59f78+vWLECHo8HADBgwADs378fANC6dWt8/vnneOONNzBs2DBMnjwZALB9+/aor9eHqVOn\nYsOGDfjhD3+Iyy+/PAarIklGG48dO4ZNmzbhpZdeQocOHXD//fdj1qxZmDNnTgMsTE4bDx06hIUL\nF2LZsmWoqKhogFWRJKON5J///Ce2bduGxx9/PAaLIklG+74NZThkyBAsWbIEl112GYLBIFatWoWs\nrKwGWBcmGW30+/0RsTKZmZnw+/2xmBVBMtoYz3JMRvu+DWVIGjP2J1SBatWqFb7++ut6f3716tW4\n8sorMWrUKNx4443iJz333HNx//33Y/HixRg6dCimTp2KY8eO1fl6fXj88cexdetW+Hw+3HXXXQ2y\nD0hOG3NzczF48GB07doVaWlpGD9+PEpKSpqVjY888ggmTZqEFi1aNNguk2S0kbz22mu45JJLkJaW\n1iDbgOS079tQhldddRWGDBmCq666Cv/1X/+FIUOGNGrDSjLamJWVhZqaGvnd7/fD5/M1zEAkp43x\nLMdktO/bUIakUWN/TA6/RlJeXm6de+65Ln9kTU2NNXfuXKuyslL8oAcPHrTOOecca+fOnZZlWdY/\n/vEPq1evXq5rHj161Lr99tutuXPn1ut1J5s3b7Y+/fRT+X3Xrl3WgAEDGmpiUtq4cOFC69Zbb5Xf\nS0tLraFDhzbUxKS08fzzz7eGDBliDRkyxCouLrb69OljDRkyxKqurm42NpKrr77a+stf/tIgu0gy\n2vdtKkMyb948a968eTFaZpOMNs6ePdt69NFH5fc333zTGjt2bENNTEobnTSmHJPRvm9DGcZj7E+o\nApWXl4ebb74Z99xzD/75z38CCM9sH3jgAezcuTNCAj1y5Ah8Ph+6d++OQCCApUuXAgBOnDiB5cuX\n46mnngIAtGzZEt27dweAOl8/GR988AF+85vfyGz77bffRu/evZuVjSNHjsR7772H3bt3AwCWLl2K\nwYMHNysbP/roI5SUlKCkpAR/+tOf0L59e5SUlDR4220y2kh2797tiiVoDvZ9G8pw1apVmDJlCkKh\nEL7++mu8+uqr+PGPf9wg+5LVxtGjR2Pt2rU4fPgwAoEAFi1ahB/+8IfNysZ4lmMy2vdtKMN4jP0J\nzwP185//HC1atMDtt9+OYDAIr9eL73//+3jwwQcjPtenTx9ceOGFGDVqFPLz8zF9+nR8+OGHuO66\n6/Dcc8/hvvvuww9+8AOkpKSga9eu+M1vfgMAdb4+YcIE3H333a5gsltuuQWzZs2Syl9YWIiZM2c2\nKxs7dOiARx55BHfccQc8Hg969uyJX//6183KxqYgGW0sKyuD3+9H27Ztm6V98SbZbBw5ciRef/11\njBw5EqmpqZg6dSq6du3arGzs168fbrzxRlx77bWwLAtDhgzBuHHjmpWN8S7HZLPv21CG8Rj7PZZ1\nGhO+KIqiKIqinIHoUS6KoiiKoigxohMoRVEURVGUGNEJlKIoiqIoSozoBEpRFEVRFCVGdAKlKIqi\nKIoSIwlJY8CU7LF+3twgeO211wKA5JDYtGlT1L+dOnUqAGDnzp0AgD//+c8nvW59qM/nY7WRpKSk\nyJlKzu+58sorcffddwMA/vWvfwEIZ4jld1100UVRrwegzmvWRWNtPNWzvemmmwBAjh/56quvAABe\nrxcffPABAMjxHcXFxXIOE8vx3/7t31zXNG3l957sPpqyHJOFU9lYX/vq01Z4ftWcOXMwYMAAAJAs\n4gcPHsQvf/lLAJDybej3mGgZhmmMjdxuz+Mu/vu//xsAcPjw4aif57mEc+fOBQAsWLAAACQ/T0PQ\ncmy4fW3atMGvfvUrAMBPfvITAMDf/vY3AMCePXvw7rvvArD7x27duuGss84CAFx99dUAgL/+9a8A\ngKeeeqrOsfRUJLoMzz//fADhdAPr1q2LeG/ixIlYsWIFAOCbb76J23eesgwTkcagMROoF154AYD9\n8LZt2wYgfFZOYWEhAHty0aNHD6lQTI513XXXAQD27dsnFSoYDMZ0P/GsKBx0+DMQCLg+w0GorKxM\nDv3lPXs8HrRp0wYA8Lvf/Q4AcNttt9X5fWlpaaitrT3lfTVFY+jYsSMAYNKkSZJDZNmyZQAgic5y\ncnLw2WefAYCUZ5cuXbBjxw4A4TOnAHsiNWvWrKgDMp8nJ47RBmbttONj3+233w4AePrpp+U7q6ur\nAdjPPyUlBRkZGQAg9e+CCy4AAHz88ceu+zkTJlDR7vX+++8HAJlA0tb27dtj1qxZAOxFnMfjqdf9\nN7WN77zzDgBg2LBhAOx7/vzzz9GyZUsAkOSlrVu3xtGjRwGEj+MAgC1btgBAo5Lxalusv32TJk0C\nANx5550AgKKiIikzs70B4f6e48LAgQMBhOsmx5mqqioAkPaanp4u1+Ak7M4778Snn356yvs6XWX4\n8ssvY8mSJQBswaRXr14yfsSTM3ICxRPmA4GAnE3DQ/54IvTRo0fRqVMnAEB5eTmAsDpDc3gukZk9\n1TnI1pfGVhR+r2VZUa81YcIEAPZEqFevXvIeJ068RkpKiqsjr6ysBBA+UPGhhx4CYHdy5r2dzI54\nNYYnn3xSJrsdOnQAEJ4k8aTyDRs2ALDLwOfzoX379gBsW//1r3/JOW9cOfFnVlaWlPcDDzwAAFi5\ncuUp7wvQThtonH0XX3wxALsMORAfPHhQJv28/vHjx+UsKrZBcyJ14MABALG3yWSaQHk8Hplc7N27\nF4A9MHXq1EleGzp0aJ3XNO3n9evzLBpqY8uWLWWlTjX4xRdfBBDuM/nd27dvBxBuu5wIs0/l319/\n/fUNugdA2yJQP/teeeUVDBo0CADkLLnKykpR6wsKCgDYqmJubq58L+tWbW2tTJxYJ1lvMzMzZbzl\n5Nnv9+PSSy8FAGmnDbGvvjbGyuzZs6W/4ViwefPmeo8DsXAqGzUGSlEURVEUJUYSfpRLfTBnfQcP\nHgRgr8pyc3MBhGfLXCV169YNQNjlVVRUBCC8Aj7ZdRNJtBXlY489BiAc28WZP1evfr8fQFhtoiuS\nLqy8vDyx0TwtGwhL6q+//joAO+5kwoQJov6Yyl5jMFcVfKZ064wdO1ZcqlQgysvLZfVK1ZDPZOPG\njXINuu2GDh2K7OxsAGEXAmDHRx05cgQ5OTkAgGeeeQYA0L9/f8yYMaNRNimRRHN30zVw6NAhAOH2\nBoSVDLp3WK7Z2dk499xzIz5HFXH16tXiXohVDT6d0K3FdtqjRw9pS4y7YBsrKSnB6NGjAYTP2ALC\nR0fs2bMn4pqm/YlQXAYNGiQxTatXrwZghwyY/SPV42AwKDayTjSFq0SJhDGgffv2FdWIilJGRgYy\nMzMB2OMcQ1tyc3NFMWTbrampkTGF9Y1/z2sCdihMXl4e3nrrLfn+ZIH1r127dmI36+6QIUOaRIE6\nFapAKYqiKIqixEhSKlAmnGn26dMHACTg+P333xdVgipFly5dxCe8f//+RN9qnZixE0888QQAW7H5\n4osvJIaJcT/E6/WiXbt2ACCnVXu9XlFn+Gy4wq+pqZFVJOOQ1q5di379+gFovPJEzJUqVzAMcDx0\n6JB8D1fjNTU18hpXDPTnB4NBWR0xRqa6ulqURq6i+Gy8Xi9OnDgBwI6H+8///E8sXrwYAGSFHy+1\n7dtINCVk2bJlEpu3e/duAMB3vvMdAOFYNKosXOH26tVLyonxF1Rp1q5d24R333RQeSK33HKL1C/2\nQYzn69evn7TLs88+G0A4ToP1mgH4jFk8duxYQtS4cePGifowb948AOFDXoGw2lBaWgrAbm+VlZWi\nvJlxmM0dqofl5eXYvHlzTH/LzRKNgZtu0tLS5HmzT6uoqJCycI4Z5eXlrsByj8cjqhTLkp8JBoPS\n7/KaVVVV8jluWKprh2YioRpWXl4uXgiOgfn5+aflnlSBUhRFURRFiZGkVKBMhYOrV86YOdMcO3as\nzD65oqqsrJSZdjLt4DDt+f73vw8grDwBYbu4UmBME3+vrKwUdYarj/T0dMmh5PRnA3b8FK9fWFiI\nG264AQDw/PPPx9s03HHHHQDscjl48KCUAVfnXq9XlCQzTxAQXunxc1TKysvL5XNcsXOVVFNTI6+x\nbtTU1ODRRx8FAPz0pz+N+G4ldizLcqX6uO6662RVytX59OnTAYRjm2bPng3A3rK/detWiU1kzA1T\nWHTs2FHUq08++aQJLYkfKSkp8ky446m4uBhPPvkkAHvnLJXVdu3aSdwfU5FkZmaKKnfLLbcAsOME\nH3rooYT0WR06dJB7ZNtlqpAXX3xR+hbel8/nk/tKpj41nni9XulL27ZtCwA455xzAIT7XebbYx/s\n9/vlWTC+lArNoUOHJGapMVC1NFVJ1r/09HT5v7Ofy8rKkvHALC/2n852nZaW5ooNDoVC4uX40Y9+\nBACSTuh0wnqakpIi4xxV4RYtWkgbrE8KhniRlBMos+C//PJLALZUycH5xIkT0qFz4pGWliadFgdX\nk9MVRE7atm0rkqjptqNtrNxsNKFQSF7jT7/fLw2Zz4n2V1dXy3u8psfjQXFxMYCmmUAxzxbv7+jR\noxIAyfs7fPiwVHQGoLLjOXbsGHw+HwDbxWNZljwndhD8+44dO+If//iH/C0QzovCcndS39w7ysl5\n/vnnJdcRA1b79+8PAHj22WdlksSBpEePHvjLX/4CwO746Nro1q0bdu3aBeDMnEDRnh07dkjgLe1g\n/d62bRu++93vArAXDampqdLxc1LFLerDhw8XN2hT3T8Qbj9sS3TXcaL76KOPiluc/UdZWZlMKvia\nc/PKmUq0tBFM1cHxo3Xr1lJ+HG8Auz/iwpEbgd555x3Z3NQYuOHCTBJsBpET9ve8n+rqarl3c7Lk\n3BRiumH5f34P+2PATtSZDBOo4cOHAwhvqGJoC93kPp9PXkvkBEpdeIqiKIqiKDGSlAqUqRhwNk/p\n21SdnLNp0x3mDPhMBoqLiyUYnKuE7Oxs2RYeTT1yBkNbluVKPsj3fD5fRIZZIPxsmjLAjt/D1dyO\nHTvEVTNlypQIu0yYzmD79u0iOXN13r17d1ll0U3L51ZeXi4Znnk8TCAQENWLKsfWrVsBRLoPlZNj\nrlKpSvCYj2uuuUa2vbO8qKI8/PDDkriV6QlKS0txxRVXALATMPL6y5Ytk6MYmIzTPKqnoUcuNSWm\nq4TujTFjxojbgGoo2+5nn30mqgTbem1trSvo93vf+x4AYOTIkU2qQLENmP0Hf9Jt9+WXX0pbZZnt\n2LEDJSUlAOyNL2d6GgPazXoWDAbFVUW7qYafddZZoshwo8CXX34p/ZIzXQ5VvcbSu3dvAOHUAlTA\neN+HDx+We3eGuKSmprpcrebvzg0AgUBAFEUqOOnp6a4NWskA210gEJDy4bzATG+TSFSBUhRFURRF\niZGkV6AIfZ1UUyzLcm37NX/n6pgkQyzM0KFDI451AcKzas72uRLgajcYDLpWi16v1/U5riqOHDki\nAdZcSVZWVkqSw3hCpYfn3fF5jx07Vg6RpRJ1ww03yCHQtJWJ+r744gtZRXF13r59ewl6NM8WA8IH\nmDLAk/EK+/fvl5Ujj82gApWoRI3p6elSHif7TpbFpZdeijFjxgCw48iiwXJMTU2VcudKjM+yoThX\nqqZSRwWQwfnjx4+Xs9OorIwcOVI+z7ggxqf16NFDVEEnV199tShcDz/8MIBwWW7cuBFAcilPxCxT\n1nlTHbjwwgsB2O30kksukc/zOAwzdoUxkFTg2GaamvLycomv4TEYZmwP758r+8GDB4v66wy0PlNh\n/TLLlOXHWB/+PmjQIMyfPx+Arfb06dPH1c+aKVsaA2OOzJgmPn8qRFVVVVJ/oiXEdKaRCYVCrj7J\n9GxQ+afSVlNTI30DN3vwEGL26acD3rPpUeFrBQUF0hYTek8J/8YGwkYbTd6PtkvEOYFKBjp16uSq\nyGlpaTIgUQ5m4/F6vVEDHZ3PgI0nNzdXBmh2gKY7Jp7wfDNOenh/eXl5uOaaawDYOwHNnTymaxEI\ndwoMSqY7JD8/X9wKzrwlvXr1kmBCYgb48gyn//mf/wHQdIOx07UarePkTpqioiL5P5/XsWPHpOM6\n2e4RXt90ITknTi1atJDBMBZO9mzuvfdeAPag8dxzz8lkh4eOcifl+eefLxNcTlxvvPFG2SjAc7fo\nqrYsSyZja9asARDORcQJVDIR7aw+Ttyrq6uln6HdZr4d1nEOtmaIAesBFwOJYt++fejRoweAyDP9\n6qKsrEzqOttY586dAYQH+1WrVjXl7TYJLFPak5ubK64quinZJ2/cuFF2XXKADoVC0i74DM3JTWOg\nK5ubEwoLC11nEQYCAVlEsX9kn5CZmSn3xD7D4/G4xhEz7IVw447X65XQmT/84Q8AgHfffbdRdsUD\nThYzMjJcE0jmf0w06sJTFEVRFEWJkaRUoKKtjOnKMQOso/0d/5afP9k1E03Xrl1d+TuCwaCsMHjP\nZv6kaG4h2uKUj81gbTMVAleM8YQrZ94fV0J+v19WYQw+HTZsWEQeK34OCAdp/v3vfwdgb6euqqqS\nFRbhSmPBggWynf4Xv/gFgPDz4H005UokmkxO2rRpI1vSmeuLysOuXbvEHioWbdq0EZXw2WefBWAH\nIs+YMQPvv/8+AHvVe8EFF4jrheXJMmjbti1eeeWVBtsVTdW9/vrrAQCXXXYZgPAWYqps3J5P2rdv\n7wo+7t+/v6jGrPMM8vz888/FxUUFg/aaRFN/Eo35TKjuMoh6x44d0nbNIF4grAiwrvMzfr/flVmf\nLpJhw4Zh06ZNTWoLYKuAQHQFyqnmp6WliSJuKmlAuBzPRJybSsxnT2WdCs3ZZ58t4QZ0xb777rtS\npqyjbBvs1xrKXXfdFfF7cXExJk2aBCB8biq/k9/D7zWVL6fKBLhT5JiuWvYxH330EQBg+fLlePzx\nxxtlR1Nijpmsm1VVVVE3KzU1qkApiqIoiqLESFIqUOaKmCtazpg58za3p5vKAH2jDMy97777EnPT\n9aBjx45yz7SxtrZWVgVcRZj+amesjenP5gqSs/DKykr5PJ9JIBCQlbAz8Whj4KqMcLVz7NgxSbDI\n5IK1tbVSjrxnc0VkxnDxns1kbnwNAHr27CkKD/3+GRkZUQMMG4NZp0w1zwlXh9nZ2aIqMBkh66q5\nUYDPpl27dqJAMVaI5z1u3rxZrkVV8sCBAxKgzWSV/Hu/3y8xSA2Bz47fdcMNN0hQ+AcffAAgrOz9\n9re/BWCrgaYKx/+PHTsWALBu3TpRlXifrAPbt2+XmBNu116wYAGWLl0KwE6dcDpUY2fbMu/h8ssv\nB2DX9aysLKnHThW4Xbt2UofM2EbzjDnA3vZ+6623JkSBSktLc6n3pirhVKBSUlJc9Z82OrfwnwmY\nWce5Eea8886TeE3WWbanvLw8OVeV7cPn87nijNjW450y5d1335X4I37/JZdcIgmm2febgf68N/bz\nwWBQyswZ+xQKhSQmzqn6JyvV1dUy/jBWNprXIhGoAqUoiqIoihIjSalAmau+P/7xjwDsXRHcnZCR\nkRHV18uVAHcUjB8/HgCwaNGi0x5T0bJly4j4JiC8mqfy5EzwZt4nV66BQKDOlXl6errMwrnCNROK\n8qw5qgqNgSs0rnJ476mpqWIjt7l369ZNtsMXFRUBsHebVFVVYdSoUQDscszMzMQzzzwDwN4ez8+M\nGDFCdrzwO9PT0+U+aLfTRx4rJ6sj3bp1E4UzWlwUt7lzhZubmyuf42p2y5YtosiwrlKBePPNN12K\n64kTJ+QMM/4dV52tW7eWazQEZ7zgtGnT5LURI0YACCuOVJK4a9BMREh1k3/Xs2dPTJs2LcJm/v3+\n/fsljo1xRaFQCDNnzgTgVqBM1aCp4Xc6j74A7MSwjIXZvXu3xIOxf+J9VldXy9+y3EKhkCirrJ9s\n+4MHD24iiyLp0qWLSyUxU6RES8LIes17ZVn37t1b0pMkG3UlY42WuqC0tFTKj0cSrV+/HkC4bTHm\n0PR4OONVo+1qi/f9MwaSYyBg9wFmkklnGZpKMa/H+peTkyOKtonT83E6caYnOH78uMRTOlM2JJqk\nnECZUOJ3Zlz1eDyuTsjj8biC+hiUt2jRotMajAqEJwZ05bDBlZeXu9yUTjef+V5qaqrr/CPTZgZk\nc7JkbnmPZ/4WVmA+e96Tz+dzZWV++eWX5Vy0F198EYA9IXrwwQdlCz7db3PmzMHy5csB2IHo7MTy\n8/PFRcaUBfv375f7oBuQ9aah51K1atVK3EycLHKS0qZNGxlE2fFmZWVJp7pjxw4AkVva2dA5iQiF\nQjKw8nnx+8xz/RgUf+DAAam/7DR5P9nZ2Q2q23V1kr///e9lQOcksKysTPLhcIJoZiSnlD5x4kQA\nwIYNG6TMmDWYnfzf//53aZ+cZH/yySdYuHBh1Ps8He3WOcmYNm2a5LV66623AIQ3hXAy71xImAOf\nc1Fjfo62tWjRIiEZvtPT02M6FNjMXO6sJ2dCPqhoE2FmyGffOG7cOOmD6C7jIrNnz55SRjw9wQxi\n5uDO63fv3l3qe2OItkhmP5Gfny99Dfth81QO5yI9PT3ddWoFF2ZZWVnYs2eP67uS6fQGPmv2Vy1a\ntHCN/YFAwJVlPRGoC09RFEVRFCVGklqBGjhwoKxymIncTETnTFmQlpbmCtykQnA6oWx/8OBBuT8m\nZ3viiSckI7XzhGlTljSDO/l/zsLNgGyuhKnEVFZWyvXimZGc16LyYM7+uVWfz76goEBcXlQtGDB9\n9OhRKT8mXBw/fjwuuugiAHaQLZ9Nx44d8dlnnwGIzP7rPEeQzzdWBYrlM378eFnx8Z6pJPj9fnFj\n8PNlZWXyPl1cpvuQ75lSO6GiZGYO5mtUurxeryg6fI8/+TeNhe7VAwcOSObhefPmAQiv9PgddCXQ\n9u9+97uilFE9u+qqq2R1aCbcBMLZnlmGfFZer1e2aVMZ+NOf/iTvJUqFcrpOqLbddtttklSQ9fr8\n888XVcmZzdnr9Up5sp2ablZzEwk/n4ikmunp6VED5OvCsixXMlvCNpyMmO5lkx/96EeiGlEpbt++\nvZxgwLrNdAaHDx+W7f3sWzt06CDXpfuLdbYxrvRTwb6ga9euUu9oC8syWiJP0w3LNsvPFRQURE0h\nkgxpf4jTPdeyZUvpkznOB4NB1zmTiUAVKEVRFEVRlBhJagVqwoQJri20ZtCe87VoaewZVzJw4MCo\nM+1EwKSBmZmZEgPDFdL69eslHoiKAmfVgUBAZtVc8QSDQVE2nMdCZGVlif+dz6asrEy2fMYzoWa0\nWA/eC1fjfPZ9+/aVmAKu4piK4KuvvpLVFNWLtm3bYsmSJQDsgEnGC7Vq1Qo7d+4EEE4yB4SfJZ8F\n74vKRkNZtGiRPFdnoHBWVpb8nyuhli1bupQhM87FmcDOjIsyz73iZ/h5s2wJ3+NzzsvLk23NseBc\nnTPJYmZmJqZPnw7APpvrm2++kXrMZ0vbS0tL0bNnTwCQVAT9+/eXukEbGJ83btw4qYtMzbBz506s\nXLky4j6c9iYCZ32mAvfpp5+VOWLeAAAUY0lEQVSKksS4sBMnTkgZOs9GM5P6mptdqDjxPfYHHTt2\nbFQqivrSpUsXV59qboRwHg8F1H3UC2OCkgVTpXfWGQaMX3jhhaJsUvHr3r07nnvuOQBh5RSw4zH9\nfr+0dVNtpjJOdY6pAPr27SvHE8Ub9g/mRiLnhqNoaW7M/tHpvfB4PE1y1Fc8YT9DG1JSUlyq1OmK\ngUrqCdSwYcNcDcGUn50yrfkaP8cKXlxcfNomUHRDRnNFVFRUSGOly4huADMA3HTv8P/OnC15eXmS\ne4kuGMB+BnRrNZaCggLXs+fAkJ6eLgMBB8zjx4/LDjP+HQfO/Px8GTDZQVVWVsrEiQG7HLzfeOMN\nmYzdcMMNACIDXfl8GUQeKwzkDQQCcq2333474trm4MJJYigUkk6JDZnlaO7I4s/q6mpXXh1zsuyU\n3NPS0lw7f3gtv98vLrTJkyfX21ZnIObNN98MIDxB+t///V8AdgB9bW2tTBy4S4517Pjx4/jwww/l\nXoDwWYTnnnsuANt1xzrQokULcQEzeLdv374yoPGZJvqcOJMnn3wSAGRiuGbNGpn0k5qamoiNAkDk\ngMbyokvbHMg4GLLMfT4ftmzZ0mT2kLy8PHnmzkHI7D/NfjRavQfscj2dmJO7aK5Jhg7Qhi+//BK/\n+tWvAEDq7MsvvyzncZqHKAPhvogLO7aTPXv2iKuO16VLuqCgQAK74w3HB6/XG7HRxLwPsy80JxyE\nfQYX6bm5uVEnUHXtYjwdsG1xIlVdXS3tjq+lpqbKRDfaxoGmQl14iqIoiqIoMZLUClRRUZHM+jmr\nNFfmzjxQ5mqJ0GV06aWX4qmnnkrIfTthIGo0UlNTZTXDVYypWBHOpn0+n8zIuTpgkHh+fj7eeOMN\nAJBVVmpqqjxD0w3UGMy8HKZLijjdp+eddx5WrFgBwJbIKXl/9dVXYhvLKjs7G9dcc02EbVQjOnfu\nLC5PMxO50y3R0IB5rh59Pl9E0Khpq6lO0daamhpXhnfee1pammsVb2Zaj+bqoTJh/h1XXXyPzzwt\nLa1B6qIz4JSZxqdNmyYZxW+55RYAwPz58yVtBIPNZ82aJffPNnjvvfcCCCsdL730EgBICguu6idP\nnozhw4cDCGcgB8Lbx//2t78BsJ9bY0lNTXW5n8xVaTTX4BNPPAHAdl3SrejxeKT90OXs8XhcGcj5\nnplbh/UnIyNDlFW2edaZiooK2ZDRlOTk5Mg9OF0eZhoYU4GI5tYD4hsScDKiqUx1/Q6EVRWe4WgG\nGQPhdse+iCk3gsGgPAsGkbMczZMSWF/y8vKk7VEVMsNInKc0NAZznKNqD7hdd+ZmBOfmqtraWlcZ\nmv2P89SHZMMZmH/8+HFXChbzNAr24VRamxJVoBRFURRFUWIkqRWonJwcURmcqx8ziNxcITg/x8+c\nzkA5BluagW4Miq6srHSpa2bGW2ewoN/vl/gJfo5++5ycHFnRcvadkZFR5zNsKOYKy6keeTwe+T9j\nu3w+n6hqVBmoInm9XtdKuFWrVnjllVcA2FmsaUNWVpas7rlKNAOySUOTEppxIWbiQ8C9YjdJT093\nnTXIz5vqXDS/vJkEjzgzYpsrbWdiw5SUlKjZhOsLla3rr78eQFgxYgzZ3XffDQBYvHixBO2zvr3w\nwgsAgL1794o6Q+Vvy5Ytkm2e9/7ee+8BAGbOnCnlS8VnzJgxokpSTaNy9de//rVBdtU3izITZM6Z\nM0cC5BkvybY2dOjQiNUuEKkssj2zvAYOHCifY1BxRUWFxPJxSzo/X1VV5apv8cQZZ2f+3+xjogWM\nU8mgPfw8A+ebmpPF4aSnp4tC8Z3vfAdAWCGnusp6zDQF27dvl0S8rL8TJkwQdXX37t0A7H7H7/dL\n26KalZmZGRHXBtj13uv1SlxOPDDLg+f1eb3eiJMp+BoQqbqacapmLCVg922BQCBq35EMsU/EqSjV\ndboEU8QkMiu5KlCKoiiKoigxkpQKlBnPYSbJNDG3qkZbNTl3iZ1OBcrcMWFu/QYgW/IB+17N41G4\nwqCtwWAwInEmEOnD5nZ2xlMUFBS40v43FjO+KNpZRFzdcGV46NAh1zlqzz77LIBwgkI+A+7aWrFi\nhXyeShXTMxQVFcl3OlUaIDJOoSHwWIO8vDy5f3MHJH+a5QEgIv7JuQvk+PHjUn+jxXPwNfPvnHU6\nFAq5FC3z+JDGKFDf+973AACTJk0CEF7pMs6J5TB//nxJZsodf4sWLZL7pRrBOKfevXtLLBPt3Lx5\nM4BwygeqmNz99Itf/ELqJ3fTMI6Pqk2sdOrUCd27d5d7BOyy7N27t+wiYzzW4cOH5Qy0rVu3Aggr\nSUBY1eAOQ/MYIz539llUXefNmydn+7E9TJgwQXaFUYFypilpKqjuAfVPoOmE7c7ccZsIcnJypN9g\nu2Yf5PP55DXzzD7Gk1555ZUAbDVzwYIFokaxrq5evVr6ZdZZxollZ2fLdflaTk6O7BxmXWA76d69\ne9Rklg3F7AdMZdvZ71AdNF8zFVhn6hMzrUE8jp5pSmgbFaiqqiqXypSamiqxufxpnhnYVCTlBIoH\nyAJ2QzbdWkBkACcrWSAQiDgYE7Ar0+nMSG5mDKfMyEmDGYjJQcgMDHTm7zDPOuK1zMGbnRsrT8eO\nHV0uv8bSpUsX1+DPn6Yrgs/8wIED+PGPfwzA7gDpuhk8eLAMprzndevWySHQTMvgDLQG7M6uTZs2\nYjdtbKiMzmd5+PBhkemj5XBix0nXlflsnZO3EydOSFmdzA3oDEI3vzs7O9uVX4oT55qamkYd6sp6\nx0GgVatWsvFhw4YN8jkGVnPyz3PsUlNTMWjQIAB2DidzUPrZz34GwM6nVV5eLhOP559/HgCwcOFC\nGXh27doFwM5EHiuc4G3YsEHamXPwDwQCUoZ0LR46dEiCgpmigZNLMycb7/Obb76RSf/nn38OwM7O\nHa0si4uLI4KNgUjXfFNiLp5Olonc2a5NouXiS8QB7YMHD5YNKc50IKFQyHXIcU1NjbTB1atXA7DP\nzZw4caLUr08//RRAuN6z3Oj6pzuwsLAQe/fuBWD3t23btpXnxEUF+7zCwkKp5/GGNmdkZMj3ORd3\nwWDQlQHf6/VKmUXL0E4XdrLiHLsDgYDrPNjMzEyxMZFB8erCUxRFURRFiZGkVKCYvA6wV3LOFZvH\n43G5slJTU12rK/50ZjdOJKbUTbcQT56nqwRwrwijuXuCwaDrWXBVDYRTBgDA2rVrAQADBgyISLIW\nD1q3bi3Xcm6tP3r0qCglfG/v3r3iznj66acBhAN2gXCZUT2hPQ899JD8LbfR//u//zsA4KKLLhL3\nB1cfppxLW01Ju6E4V9X8vaqq6qQyfbTt6InYUttQmPCULo3OnTvj9ttvB2C76QDgd7/7HQB3UPew\nYcPERcJkky1bthSlisk9BwwYACCs+DAtBTcHvPfee3JuIZ8zVQDTlV0fqED5/X7Zlk6oWh44cEBW\nqlzhduvWTVQGtlmznFnHebbfhRdeiOXLlwMA/uM//uOU92VZlgSbE+fZnU2F6XavK7N4tPfMwHKn\n2yQlJUXUYwY4xxOeRzd58mRp8wxRYDmam2r27dsnr1E95mtUls477zzpI6nKFRYWSnmzL6WyVFJS\nIglkzWdDJZl1lSqumeQxHph9EG2orq6W+2TdNVVB59+GQiHXqQBmGoBomwGSKZEmXXJ8rqmpqfJ/\n508gsd4mVaAURVEURVFiJCkVKDNRY7SzfojTX+/1eiWOgyoNZ+YtWrSQuI6GnBvWGKJtq2SQ6s9/\n/nN5LVrCOqpstNHn88lsm7aaMGXCm2++CQB4+OGHZVViHg3TGDp27Bg1gB0IK1CMP+Cqev/+/RLD\n8Mc//hEA8Mtf/hJAuFyZIM48IZxHifTt2xeArQgcOHBArsXPm0dk8LXTGfN2pjFixAgAdpLT6upq\nUW7uu+8+AMCgQYPw+9//HgCwceNGAPYxLz169JB2xvceeugheY0xJKyv48aNkzKcP3++fIYbBl57\n7TUAkKNNYlGfADse5eOPPxZFie2C29ovuOAC6SPMoFtn7BLrU3V1tShvjHF5+umnceedd0Z8/mRJ\nH82VvvMYH8ZeNRVMIwLYz9MZBG4e5ULM350bWgA7eL4pFCiq6IcOHZI6ys1ADIpPSUlxxWGGQiH0\n69cPgB2szz41Oztb6iFTFrz99tuSaoJquBkjxHLkEVLme1R0+DMvL082LsQD81lTwTXT9Tjra10K\nlKmem5/z+/2iIrJ+VlRUuFLrnE64McNMWssxkGqzGfOayL4/KSdQDKyura2VRu7MOg64D98NBoOu\niRalTo/H49rJlyhMF5uToqIiuX/nRCsUComNDDINBoMiXzs7DsDO/s1BxOv1yvvMf9JY8vPzXRNV\n/m5OYlm5aQtgT4h4DlX//v3lM+ZOGHbMDHCcO3cuAGDKlCnyvCjdR+v4E5Wj5kyGHRMH1ylTpgAI\nP3/uPiM//elPxbV+9OhRAHY+MPNQWboDA4GAuI1Yh+naTEtLcx1EO3fuXNxzzz0A7MkEz+arrKzE\nq6++Wm+7rr32WgBhdw0DheliZFB8KBSS+mYeVurcFWfmeeIEj244c/JUn/O3fD6fa/cmB8Joi6F4\nEm1QibYR5GRhBNFg+ywpKYnHbUZl69atsuCMhrMeZ2ZmyiKOfQQnRnS/xgLd2WbuJ2fwPMszKysL\nH330EQC7LcQL2mnmgXKOAWZ5ma8579fcwczNO5yUfvzxx3G978bCRRCFlczMTGmz0Vx4pgDT1KgL\nT1EURVEUJUaSUoGi+sAZP2CrOKa06DwTzuPxuGRpU7E6XW4d5tkYMGCASxItKChwuemoRJnytJkP\ny5kHiBw6dEje4zZxM4AwXiuLVq1ayT07n7ff75fgTK6SvF6vpCWgusig6szMTNeqKD09Xdw3zE1E\ndeTQoUOuHChZWVmuVA3M56TUDVeefHbMHH7XXXfh9ddfBxBOKQEAf/jDH0Q1pJJE9bC0tFSCx3nN\nt956y5VFnapoly5dXHV3y5YtGDNmDAA7CziVxljz1DDH2E9+8hMJGGY6At6Dmc2Y6o+ZCdy5FbxF\nixay4YMrYgB1buOPpuZUVFSI3fx+tpGmTmNgujjMdmliWZa8Zt57NHWDNLVyVh9Y55oq788zzzzT\nJNeNFZah6WkxPSxA9A010d4369vp8szUF6ebzufzuTLrm/U7UfnJAFWgFEVRFEVRYiYpFSj6sj0e\nj6z2nIkUa2pqogaWc2btPOcpMzNTtqYmGjMhI8+CI4MGDXJtiaWKUltb61rZmllYnWeimSeB8zv9\nfr9cg+c7NZbS0lLJDMxVO/3O+fn5cl8M1r/sssvkfca1MCmjueql4tC5c2dZqVPtGD16NIBw/IlZ\nB4Bw/MXZZ58NwL3ZID09PWpSQwUS7MrYCqqC+fn5EtxN0tPTpS1RPWFw+MGDByUGhvXi4osvxsqV\nKwHY29GpYHXv3j1qjBqVJm72eOeddwCEE3bGEmPDgOYBAwZIoDvjopgOo0OHDhJLaK5w2fa44YIK\nS2FhoSRbJF6vN6YEkiNHjpR4MD5LquLOmLB4wxX6119/Ld/tPEcNcMd+1dbWSltiGzY/P3bsWADA\nqlWrmvL2FdipKAKBgJShM742WtoNU000Y7XM34H4nZUab9hPcXxgKiAgUg1mv2S+39Qk5xNTFEVR\nFEVJYpJSgeKMuVWrVrLVlDuAovnvOQsNBAKymuRslIrUgQMHZAXJ+I5Ewa3+rVu3ljgTMnv2bEyf\nPh2AvXPMPL4lWtwW45ucZ1Ll5uaKckBbW7duLe/Ha3dCp06dZGXPHVO89xUrVshqnztezDgJxjJR\nDayqqpKVlakQPvLIIwAit9vSBn6OO6pmzJghMVOEq5Wzzz476XaVJAtUCK+44goAEBVv3759rhiy\ngwcPytl0VDK5rfvyyy8XxYKvlZWVyZZz7oDiDsyzzjpL2rXJtGnTAABLliwBYKdJ4Pl0DYHb2Jm4\nlT8B+8gd9i0pKSmixrGOse3269fPpeCeTH2KloDw4osvlvhA1md+jxnv2RQwLUVBQYG0Ka7Uzd2s\nThXCjCfh59jvrF+/HnfccUeT3rdiQ89DYWGh9G/0OJhHmJ2sXrLsWP+OHDkSNWnsqXZfJhKO6eZx\nRBwXmfw3IyND5gE8XikReKwEpBptaGGMHj1atoQyX5L5ELlNlAP2gQMHJJCQgys7iZUrVzb4wNX6\nPKKT2chOuLi4WCrwpk2bXJ9j5mXmqmnbtq10sJw4lpeXy4SEWXa5xTdatvWrr75a/vall16q8x5j\nsbFbt2646aabAIQHBdOee++9V9wfnECZ5+NxokX3QV5eHt544w0AtiupqKhIGjPdMaa7kgPfvHnz\nAITPu6JtPD+N+Yi45T5WG89UTmVjNPv43MeNGwcA2L59uyvbOADMmjULgB2Qzc67qKhIOmG6Ac3J\nOicHLMs1a9ZIHrBoMB8V84MxqLw+9gGRQc/OPHLxwMw759wA0pjuNJbcOw2tp8OHD5d+hpt1+NMM\nfKddX3zxhfSbnPTyfLnG5AjSthi7fcOGDQMQPiCZKWm4ycEMa2Bfab7H8uT4yX44PT1d2i7PrATq\n3hxhkqgyfPnllyN+37p1q9RZphTJyckRezlnONl4V19OZaO68BRFURRFUWIkIQqUoiiKoihKc0IV\nKEVRFEVRlBjRCZSiKIqiKEqM6ARKURRFURQlRnQCpSiKoiiKEiM6gVIURVEURYkRnUApiqIoiqLE\niE6gFEVRFEVRYkQnUIqiKIqiKDGiEyhFURRFUZQY0QmUoiiKoihKjOgESlEURVEUJUZ0AqUoiqIo\nihIjOoFSFEVRFEWJEZ1AKYqiKIqixIhOoBRFURRFUWJEJ1CKoiiKoigxohMoRVEURVGUGNEJlKIo\niqIoSozoBEpRFEVRFCVGdAKlKIqiKIoSIzqBUhRFURRFiRGdQCmKoiiKosSITqAURVEURVFi5P8B\nBSMEXelZB2YAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAABdCAYAAABq41iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXl4VPW5x78z2ScLS4CEHSFsWtQC\nNWxXhWIRuqi9Khe9gitqsVcoqGitqOViUeRqQR/LrQugFWhRVguKSiuhiCtUCCjeUlBBoZAQyGSZ\nmXP/mOf7nt+cM4FMMhmG+H6ehydkZnLmvOe3f9/39/48lmVZUBRFURRFUeqN93TfgKIoiqIoypmG\nTqAURVEURVFiRCdQiqIoiqIoMaITKEVRFEVRlBjRCZSiKIqiKEqM6ARKURRFURQlRlIT/YWWZeGF\nF17A8uXLUVtbi2AwiGHDhmHq1KnIzc3F9OnT0aVLF/zsZz9L2D399re/xWuvvQbLstC3b188/PDD\nyMvLa/D1ktHG999/Hw8++CCqqqrQoUMHPPbYYygoKGjw9ZLRRjJ79mysX78eb731VqOuk2w2Pvro\noxE2VVVVoXXr1njllVcadL1ks8+kuZZhIBDAnDlzsHHjRlRXV+Paa6/FzTff3KhrJpuNAPDCCy9g\n6dKlCIVCGDhwIGbMmIH09PQGXy/ZbIx3OSabfUDzL0Og8WN/whWoOXPm4LXXXsOzzz6L9evXY9Wq\nVaitrcWtt96K05GSas2aNdi8eTNWrFiBP//5zwiFQnjmmWcadc1ks/H48eOYPHkyZs6ciQ0bNmDY\nsGFYu3Zto66ZbDaSXbt2YcOGDXG5VrLZePfdd2PdunXy7+KLL8YVV1zR4Oslm32kOZfhsmXLsG3b\nNqxcuRKrVq3C8uXL8f777zfqmslm48cff4xFixZh6dKlWLduHSoqKrB48eJGXTPZbIx3OSabfd+G\nMozL2G8lkKNHj1r9+vWz9uzZE/F6VVWV9eabb1rBYNC65557rKeeesqyLMv68MMPrSuuuMIaNWqU\nNXr0aKukpMSyLMuqra217rvvPusHP/iBNXLkSGvSpElWRUVFna9blmWNHz/e+uSTT1z3VFpaapWW\nlsrvixcvtm677bZmZeOrr75qTZw4scE2nQk2WpZlBYNBa+zYsdaaNWus4cOHN0sbye7du60xY8ZY\ntbW1zcq+5l6GkyZNsl588UX5fcGCBdbMmTOblY2PPPKI9dhjj8nvGzdutK688spmZWM8yzEZ7fs2\nlGE8xv6EKlDbtm1DYWEhevToEfF6RkYGRowYAa838nYeeOAB3HTTTVi3bh0mTpyIGTNmAAA2bdqE\nL774AuvWrcPrr7+OoqIifPTRR3W+DgALFy7EOeec47qnPn36oE+fPgCAiooKrFu3DiNGjGhWNu7e\nvRutWrXCpEmTMGrUKEyZMgVHjhxpVjYCwJIlS9CrVy+cd955DbYt2W0k8+fPx80334zU1IZ54ZPV\nvuZehh6PB6FQSH73+XzYt29fs7Jx79696NKli/zeuXNn/N///V+zsjGe5ZiM9n0byjAeY39CY6DK\nysqQn59f78+vWLECHo8HADBgwADs378fANC6dWt8/vnneOONNzBs2DBMnjwZALB9+/aor9eHqVOn\nYsOGDfjhD3+Iyy+/PAarIklGG48dO4ZNmzbhpZdeQocOHXD//fdj1qxZmDNnTgMsTE4bDx06hIUL\nF2LZsmWoqKhogFWRJKON5J///Ce2bduGxx9/PAaLIklG+74NZThkyBAsWbIEl112GYLBIFatWoWs\nrKwGWBcmGW30+/0RsTKZmZnw+/2xmBVBMtoYz3JMRvu+DWVIGjP2J1SBatWqFb7++ut6f3716tW4\n8sorMWrUKNx4443iJz333HNx//33Y/HixRg6dCimTp2KY8eO1fl6fXj88cexdetW+Hw+3HXXXQ2y\nD0hOG3NzczF48GB07doVaWlpGD9+PEpKSpqVjY888ggmTZqEFi1aNNguk2S0kbz22mu45JJLkJaW\n1iDbgOS079tQhldddRWGDBmCq666Cv/1X/+FIUOGNGrDSjLamJWVhZqaGvnd7/fD5/M1zEAkp43x\nLMdktO/bUIakUWN/TA6/RlJeXm6de+65Ln9kTU2NNXfuXKuyslL8oAcPHrTOOecca+fOnZZlWdY/\n/vEPq1evXq5rHj161Lr99tutuXPn1ut1J5s3b7Y+/fRT+X3Xrl3WgAEDGmpiUtq4cOFC69Zbb5Xf\nS0tLraFDhzbUxKS08fzzz7eGDBliDRkyxCouLrb69OljDRkyxKqurm42NpKrr77a+stf/tIgu0gy\n2vdtKkMyb948a968eTFaZpOMNs6ePdt69NFH5fc333zTGjt2bENNTEobnTSmHJPRvm9DGcZj7E+o\nApWXl4ebb74Z99xzD/75z38CCM9sH3jgAezcuTNCAj1y5Ah8Ph+6d++OQCCApUuXAgBOnDiB5cuX\n46mnngIAtGzZEt27dweAOl8/GR988AF+85vfyGz77bffRu/evZuVjSNHjsR7772H3bt3AwCWLl2K\nwYMHNysbP/roI5SUlKCkpAR/+tOf0L59e5SUlDR4220y2kh2797tiiVoDvZ9G8pw1apVmDJlCkKh\nEL7++mu8+uqr+PGPf9wg+5LVxtGjR2Pt2rU4fPgwAoEAFi1ahB/+8IfNysZ4lmMy2vdtKMN4jP0J\nzwP185//HC1atMDtt9+OYDAIr9eL73//+3jwwQcjPtenTx9ceOGFGDVqFPLz8zF9+nR8+OGHuO66\n6/Dcc8/hvvvuww9+8AOkpKSga9eu+M1vfgMAdb4+YcIE3H333a5gsltuuQWzZs2Syl9YWIiZM2c2\nKxs7dOiARx55BHfccQc8Hg969uyJX//6183KxqYgGW0sKyuD3+9H27Ztm6V98SbZbBw5ciRef/11\njBw5EqmpqZg6dSq6du3arGzs168fbrzxRlx77bWwLAtDhgzBuHHjmpWN8S7HZLPv21CG8Rj7PZZ1\nGhO+KIqiKIqinIHoUS6KoiiKoigxohMoRVEURVGUGNEJlKIoiqIoSozoBEpRFEVRFCVGdAKlKIqi\nKIoSIwlJY8CU7LF+3twgeO211wKA5JDYtGlT1L+dOnUqAGDnzp0AgD//+c8nvW59qM/nY7WRpKSk\nyJlKzu+58sorcffddwMA/vWvfwEIZ4jld1100UVRrwegzmvWRWNtPNWzvemmmwBAjh/56quvAABe\nrxcffPABAMjxHcXFxXIOE8vx3/7t31zXNG3l957sPpqyHJOFU9lYX/vq01Z4ftWcOXMwYMAAAJAs\n4gcPHsQvf/lLAJDybej3mGgZhmmMjdxuz+Mu/vu//xsAcPjw4aif57mEc+fOBQAsWLAAACQ/T0PQ\ncmy4fW3atMGvfvUrAMBPfvITAMDf/vY3AMCePXvw7rvvArD7x27duuGss84CAFx99dUAgL/+9a8A\ngKeeeqrOsfRUJLoMzz//fADhdAPr1q2LeG/ixIlYsWIFAOCbb76J23eesgwTkcagMROoF154AYD9\n8LZt2wYgfFZOYWEhAHty0aNHD6lQTI513XXXAQD27dsnFSoYDMZ0P/GsKBx0+DMQCLg+w0GorKxM\nDv3lPXs8HrRp0wYA8Lvf/Q4AcNttt9X5fWlpaaitrT3lfTVFY+jYsSMAYNKkSZJDZNmyZQAgic5y\ncnLw2WefAYCUZ5cuXbBjxw4A4TOnAHsiNWvWrKgDMp8nJ47RBmbttONj3+233w4AePrpp+U7q6ur\nAdjPPyUlBRkZGQAg9e+CCy4AAHz88ceu+zkTJlDR7vX+++8HAJlA0tb27dtj1qxZAOxFnMfjqdf9\nN7WN77zzDgBg2LBhAOx7/vzzz9GyZUsAkOSlrVu3xtGjRwGEj+MAgC1btgBAo5Lxalusv32TJk0C\nANx5550AgKKiIikzs70B4f6e48LAgQMBhOsmx5mqqioAkPaanp4u1+Ak7M4778Snn356yvs6XWX4\n8ssvY8mSJQBswaRXr14yfsSTM3ICxRPmA4GAnE3DQ/54IvTRo0fRqVMnAEB5eTmAsDpDc3gukZk9\n1TnI1pfGVhR+r2VZUa81YcIEAPZEqFevXvIeJ068RkpKiqsjr6ysBBA+UPGhhx4CYHdy5r2dzI54\nNYYnn3xSJrsdOnQAEJ4k8aTyDRs2ALDLwOfzoX379gBsW//1r3/JOW9cOfFnVlaWlPcDDzwAAFi5\ncuUp7wvQThtonH0XX3wxALsMORAfPHhQJv28/vHjx+UsKrZBcyJ14MABALG3yWSaQHk8Hplc7N27\nF4A9MHXq1EleGzp0aJ3XNO3n9evzLBpqY8uWLWWlTjX4xRdfBBDuM/nd27dvBxBuu5wIs0/l319/\n/fUNugdA2yJQP/teeeUVDBo0CADkLLnKykpR6wsKCgDYqmJubq58L+tWbW2tTJxYJ1lvMzMzZbzl\n5Nnv9+PSSy8FAGmnDbGvvjbGyuzZs6W/4ViwefPmeo8DsXAqGzUGSlEURVEUJUYSfpRLfTBnfQcP\nHgRgr8pyc3MBhGfLXCV169YNQNjlVVRUBCC8Aj7ZdRNJtBXlY489BiAc28WZP1evfr8fQFhtoiuS\nLqy8vDyx0TwtGwhL6q+//joAO+5kwoQJov6Yyl5jMFcVfKZ064wdO1ZcqlQgysvLZfVK1ZDPZOPG\njXINuu2GDh2K7OxsAGEXAmDHRx05cgQ5OTkAgGeeeQYA0L9/f8yYMaNRNimRRHN30zVw6NAhAOH2\nBoSVDLp3WK7Z2dk499xzIz5HFXH16tXiXohVDT6d0K3FdtqjRw9pS4y7YBsrKSnB6NGjAYTP2ALC\nR0fs2bMn4pqm/YlQXAYNGiQxTatXrwZghwyY/SPV42AwKDayTjSFq0SJhDGgffv2FdWIilJGRgYy\nMzMB2OMcQ1tyc3NFMWTbrampkTGF9Y1/z2sCdihMXl4e3nrrLfn+ZIH1r127dmI36+6QIUOaRIE6\nFapAKYqiKIqixEhSKlAmnGn26dMHACTg+P333xdVgipFly5dxCe8f//+RN9qnZixE0888QQAW7H5\n4osvJIaJcT/E6/WiXbt2ACCnVXu9XlFn+Gy4wq+pqZFVJOOQ1q5di379+gFovPJEzJUqVzAMcDx0\n6JB8D1fjNTU18hpXDPTnB4NBWR0xRqa6ulqURq6i+Gy8Xi9OnDgBwI6H+8///E8sXrwYAGSFHy+1\n7dtINCVk2bJlEpu3e/duAMB3vvMdAOFYNKosXOH26tVLyonxF1Rp1q5d24R333RQeSK33HKL1C/2\nQYzn69evn7TLs88+G0A4ToP1mgH4jFk8duxYQtS4cePGifowb948AOFDXoGw2lBaWgrAbm+VlZWi\nvJlxmM0dqofl5eXYvHlzTH/LzRKNgZtu0tLS5HmzT6uoqJCycI4Z5eXlrsByj8cjqhTLkp8JBoPS\n7/KaVVVV8jluWKprh2YioRpWXl4uXgiOgfn5+aflnlSBUhRFURRFiZGkVKBMhYOrV86YOdMcO3as\nzD65oqqsrJSZdjLt4DDt+f73vw8grDwBYbu4UmBME3+vrKwUdYarj/T0dMmh5PRnA3b8FK9fWFiI\nG264AQDw/PPPx9s03HHHHQDscjl48KCUAVfnXq9XlCQzTxAQXunxc1TKysvL5XNcsXOVVFNTI6+x\nbtTU1ODRRx8FAPz0pz+N+G4ldizLcqX6uO6662RVytX59OnTAYRjm2bPng3A3rK/detWiU1kzA1T\nWHTs2FHUq08++aQJLYkfKSkp8ky446m4uBhPPvkkAHvnLJXVdu3aSdwfU5FkZmaKKnfLLbcAsOME\nH3rooYT0WR06dJB7ZNtlqpAXX3xR+hbel8/nk/tKpj41nni9XulL27ZtCwA455xzAIT7XebbYx/s\n9/vlWTC+lArNoUOHJGapMVC1NFVJ1r/09HT5v7Ofy8rKkvHALC/2n852nZaW5ooNDoVC4uX40Y9+\nBACSTuh0wnqakpIi4xxV4RYtWkgbrE8KhniRlBMos+C//PJLALZUycH5xIkT0qFz4pGWliadFgdX\nk9MVRE7atm0rkqjptqNtrNxsNKFQSF7jT7/fLw2Zz4n2V1dXy3u8psfjQXFxMYCmmUAxzxbv7+jR\noxIAyfs7fPiwVHQGoLLjOXbsGHw+HwDbxWNZljwndhD8+44dO+If//iH/C0QzovCcndS39w7ysl5\n/vnnJdcRA1b79+8PAHj22WdlksSBpEePHvjLX/4CwO746Nro1q0bdu3aBeDMnEDRnh07dkjgLe1g\n/d62bRu++93vArAXDampqdLxc1LFLerDhw8XN2hT3T8Qbj9sS3TXcaL76KOPiluc/UdZWZlMKvia\nc/PKmUq0tBFM1cHxo3Xr1lJ+HG8Auz/iwpEbgd555x3Z3NQYuOHCTBJsBpET9ve8n+rqarl3c7Lk\n3BRiumH5f34P+2PATtSZDBOo4cOHAwhvqGJoC93kPp9PXkvkBEpdeIqiKIqiKDGSlAqUqRhwNk/p\n21SdnLNp0x3mDPhMBoqLiyUYnKuE7Oxs2RYeTT1yBkNbluVKPsj3fD5fRIZZIPxsmjLAjt/D1dyO\nHTvEVTNlypQIu0yYzmD79u0iOXN13r17d1ll0U3L51ZeXi4Znnk8TCAQENWLKsfWrVsBRLoPlZNj\nrlKpSvCYj2uuuUa2vbO8qKI8/PDDkriV6QlKS0txxRVXALATMPL6y5Ytk6MYmIzTPKqnoUcuNSWm\nq4TujTFjxojbgGoo2+5nn30mqgTbem1trSvo93vf+x4AYOTIkU2qQLENmP0Hf9Jt9+WXX0pbZZnt\n2LEDJSUlAOyNL2d6GgPazXoWDAbFVUW7qYafddZZoshwo8CXX34p/ZIzXQ5VvcbSu3dvAOHUAlTA\neN+HDx+We3eGuKSmprpcrebvzg0AgUBAFEUqOOnp6a4NWskA210gEJDy4bzATG+TSFSBUhRFURRF\niZGkV6AIfZ1UUyzLcm37NX/n6pgkQyzM0KFDI451AcKzas72uRLgajcYDLpWi16v1/U5riqOHDki\nAdZcSVZWVkqSw3hCpYfn3fF5jx07Vg6RpRJ1ww03yCHQtJWJ+r744gtZRXF13r59ewl6NM8WA8IH\nmDLAk/EK+/fvl5Ujj82gApWoRI3p6elSHif7TpbFpZdeijFjxgCw48iiwXJMTU2VcudKjM+yoThX\nqqZSRwWQwfnjx4+Xs9OorIwcOVI+z7ggxqf16NFDVEEnV199tShcDz/8MIBwWW7cuBFAcilPxCxT\n1nlTHbjwwgsB2O30kksukc/zOAwzdoUxkFTg2GaamvLycomv4TEYZmwP758r+8GDB4v66wy0PlNh\n/TLLlOXHWB/+PmjQIMyfPx+Arfb06dPH1c+aKVsaA2OOzJgmPn8qRFVVVVJ/oiXEdKaRCYVCrj7J\n9GxQ+afSVlNTI30DN3vwEGL26acD3rPpUeFrBQUF0hYTek8J/8YGwkYbTd6PtkvEOYFKBjp16uSq\nyGlpaTIgUQ5m4/F6vVEDHZ3PgI0nNzdXBmh2gKY7Jp7wfDNOenh/eXl5uOaaawDYOwHNnTymaxEI\ndwoMSqY7JD8/X9wKzrwlvXr1kmBCYgb48gyn//mf/wHQdIOx07UarePkTpqioiL5P5/XsWPHpOM6\n2e4RXt90ITknTi1atJDBMBZO9mzuvfdeAPag8dxzz8lkh4eOcifl+eefLxNcTlxvvPFG2SjAc7fo\nqrYsSyZja9asARDORcQJVDIR7aw+Ttyrq6uln6HdZr4d1nEOtmaIAesBFwOJYt++fejRoweAyDP9\n6qKsrEzqOttY586dAYQH+1WrVjXl7TYJLFPak5ubK64quinZJ2/cuFF2XXKADoVC0i74DM3JTWOg\nK5ubEwoLC11nEQYCAVlEsX9kn5CZmSn3xD7D4/G4xhEz7IVw447X65XQmT/84Q8AgHfffbdRdsUD\nThYzMjJcE0jmf0w06sJTFEVRFEWJkaRUoKKtjOnKMQOso/0d/5afP9k1E03Xrl1d+TuCwaCsMHjP\nZv6kaG4h2uKUj81gbTMVAleM8YQrZ94fV0J+v19WYQw+HTZsWEQeK34OCAdp/v3vfwdgb6euqqqS\nFRbhSmPBggWynf4Xv/gFgPDz4H005UokmkxO2rRpI1vSmeuLysOuXbvEHioWbdq0EZXw2WefBWAH\nIs+YMQPvv/8+AHvVe8EFF4jrheXJMmjbti1eeeWVBtsVTdW9/vrrAQCXXXYZgPAWYqps3J5P2rdv\n7wo+7t+/v6jGrPMM8vz888/FxUUFg/aaRFN/Eo35TKjuMoh6x44d0nbNIF4grAiwrvMzfr/flVmf\nLpJhw4Zh06ZNTWoLYKuAQHQFyqnmp6WliSJuKmlAuBzPRJybSsxnT2WdCs3ZZ58t4QZ0xb777rtS\npqyjbBvs1xrKXXfdFfF7cXExJk2aBCB8biq/k9/D7zWVL6fKBLhT5JiuWvYxH330EQBg+fLlePzx\nxxtlR1Nijpmsm1VVVVE3KzU1qkApiqIoiqLESFIqUOaKmCtazpg58za3p5vKAH2jDMy97777EnPT\n9aBjx45yz7SxtrZWVgVcRZj+amesjenP5gqSs/DKykr5PJ9JIBCQlbAz8Whj4KqMcLVz7NgxSbDI\n5IK1tbVSjrxnc0VkxnDxns1kbnwNAHr27CkKD/3+GRkZUQMMG4NZp0w1zwlXh9nZ2aIqMBkh66q5\nUYDPpl27dqJAMVaI5z1u3rxZrkVV8sCBAxKgzWSV/Hu/3y8xSA2Bz47fdcMNN0hQ+AcffAAgrOz9\n9re/BWCrgaYKx/+PHTsWALBu3TpRlXifrAPbt2+XmBNu116wYAGWLl0KwE6dcDpUY2fbMu/h8ssv\nB2DX9aysLKnHThW4Xbt2UofM2EbzjDnA3vZ+6623JkSBSktLc6n3pirhVKBSUlJc9Z82OrfwnwmY\nWce5Eea8886TeE3WWbanvLw8OVeV7cPn87nijNjW450y5d1335X4I37/JZdcIgmm2febgf68N/bz\nwWBQyswZ+xQKhSQmzqn6JyvV1dUy/jBWNprXIhGoAqUoiqIoihIjSalAmau+P/7xjwDsXRHcnZCR\nkRHV18uVAHcUjB8/HgCwaNGi0x5T0bJly4j4JiC8mqfy5EzwZt4nV66BQKDOlXl6errMwrnCNROK\n8qw5qgqNgSs0rnJ476mpqWIjt7l369ZNtsMXFRUBsHebVFVVYdSoUQDscszMzMQzzzwDwN4ez8+M\nGDFCdrzwO9PT0+U+aLfTRx4rJ6sj3bp1E4UzWlwUt7lzhZubmyuf42p2y5YtosiwrlKBePPNN12K\n64kTJ+QMM/4dV52tW7eWazQEZ7zgtGnT5LURI0YACCuOVJK4a9BMREh1k3/Xs2dPTJs2LcJm/v3+\n/fsljo1xRaFQCDNnzgTgVqBM1aCp4Xc6j74A7MSwjIXZvXu3xIOxf+J9VldXy9+y3EKhkCirrJ9s\n+4MHD24iiyLp0qWLSyUxU6RES8LIes17ZVn37t1b0pMkG3UlY42WuqC0tFTKj0cSrV+/HkC4bTHm\n0PR4OONVo+1qi/f9MwaSYyBg9wFmkklnGZpKMa/H+peTkyOKtonT83E6caYnOH78uMRTOlM2JJqk\nnECZUOJ3Zlz1eDyuTsjj8biC+hiUt2jRotMajAqEJwZ05bDBlZeXu9yUTjef+V5qaqrr/CPTZgZk\nc7JkbnmPZ/4WVmA+e96Tz+dzZWV++eWX5Vy0F198EYA9IXrwwQdlCz7db3PmzMHy5csB2IHo7MTy\n8/PFRcaUBfv375f7oBuQ9aah51K1atVK3EycLHKS0qZNGxlE2fFmZWVJp7pjxw4AkVva2dA5iQiF\nQjKw8nnx+8xz/RgUf+DAAam/7DR5P9nZ2Q2q23V1kr///e9lQOcksKysTPLhcIJoZiSnlD5x4kQA\nwIYNG6TMmDWYnfzf//53aZ+cZH/yySdYuHBh1Ps8He3WOcmYNm2a5LV66623AIQ3hXAy71xImAOf\nc1Fjfo62tWjRIiEZvtPT02M6FNjMXO6sJ2dCPqhoE2FmyGffOG7cOOmD6C7jIrNnz55SRjw9wQxi\n5uDO63fv3l3qe2OItkhmP5Gfny99Dfth81QO5yI9PT3ddWoFF2ZZWVnYs2eP67uS6fQGPmv2Vy1a\ntHCN/YFAwJVlPRGoC09RFEVRFCVGklqBGjhwoKxymIncTETnTFmQlpbmCtykQnA6oWx/8OBBuT8m\nZ3viiSckI7XzhGlTljSDO/l/zsLNgGyuhKnEVFZWyvXimZGc16LyYM7+uVWfz76goEBcXlQtGDB9\n9OhRKT8mXBw/fjwuuugiAHaQLZ9Nx44d8dlnnwGIzP7rPEeQzzdWBYrlM378eFnx8Z6pJPj9fnFj\n8PNlZWXyPl1cpvuQ75lSO6GiZGYO5mtUurxeryg6fI8/+TeNhe7VAwcOSObhefPmAQiv9PgddCXQ\n9u9+97uilFE9u+qqq2R1aCbcBMLZnlmGfFZer1e2aVMZ+NOf/iTvJUqFcrpOqLbddtttklSQ9fr8\n888XVcmZzdnr9Up5sp2ablZzEwk/n4ikmunp6VED5OvCsixXMlvCNpyMmO5lkx/96EeiGlEpbt++\nvZxgwLrNdAaHDx+W7f3sWzt06CDXpfuLdbYxrvRTwb6ga9euUu9oC8syWiJP0w3LNsvPFRQURE0h\nkgxpf4jTPdeyZUvpkznOB4NB1zmTiUAVKEVRFEVRlBhJagVqwoQJri20ZtCe87VoaewZVzJw4MCo\nM+1EwKSBmZmZEgPDFdL69eslHoiKAmfVgUBAZtVc8QSDQVE2nMdCZGVlif+dz6asrEy2fMYzoWa0\nWA/eC1fjfPZ9+/aVmAKu4piK4KuvvpLVFNWLtm3bYsmSJQDsgEnGC7Vq1Qo7d+4EEE4yB4SfJZ8F\n74vKRkNZtGiRPFdnoHBWVpb8nyuhli1bupQhM87FmcDOjIsyz73iZ/h5s2wJ3+NzzsvLk23NseBc\nnTPJYmZmJqZPnw7APpvrm2++kXrMZ0vbS0tL0bNnTwCQVAT9+/eXukEbGJ83btw4qYtMzbBz506s\nXLky4j6c9iYCZ32mAvfpp5+VOWLeAAAUY0lEQVSKksS4sBMnTkgZOs9GM5P6mptdqDjxPfYHHTt2\nbFQqivrSpUsXV59qboRwHg8F1H3UC2OCkgVTpXfWGQaMX3jhhaJsUvHr3r07nnvuOQBh5RSw4zH9\nfr+0dVNtpjJOdY6pAPr27SvHE8Ub9g/mRiLnhqNoaW7M/tHpvfB4PE1y1Fc8YT9DG1JSUlyq1OmK\ngUrqCdSwYcNcDcGUn50yrfkaP8cKXlxcfNomUHRDRnNFVFRUSGOly4huADMA3HTv8P/OnC15eXmS\ne4kuGMB+BnRrNZaCggLXs+fAkJ6eLgMBB8zjx4/LDjP+HQfO/Px8GTDZQVVWVsrEiQG7HLzfeOMN\nmYzdcMMNACIDXfl8GUQeKwzkDQQCcq2333474trm4MJJYigUkk6JDZnlaO7I4s/q6mpXXh1zsuyU\n3NPS0lw7f3gtv98vLrTJkyfX21ZnIObNN98MIDxB+t///V8AdgB9bW2tTBy4S4517Pjx4/jwww/l\nXoDwWYTnnnsuANt1xzrQokULcQEzeLdv374yoPGZJvqcOJMnn3wSAGRiuGbNGpn0k5qamoiNAkDk\ngMbyokvbHMg4GLLMfT4ftmzZ0mT2kLy8PHnmzkHI7D/NfjRavQfscj2dmJO7aK5Jhg7Qhi+//BK/\n+tWvAEDq7MsvvyzncZqHKAPhvogLO7aTPXv2iKuO16VLuqCgQAK74w3HB6/XG7HRxLwPsy80JxyE\nfQYX6bm5uVEnUHXtYjwdsG1xIlVdXS3tjq+lpqbKRDfaxoGmQl14iqIoiqIoMZLUClRRUZHM+jmr\nNFfmzjxQ5mqJ0GV06aWX4qmnnkrIfTthIGo0UlNTZTXDVYypWBHOpn0+n8zIuTpgkHh+fj7eeOMN\nAJBVVmpqqjxD0w3UGMy8HKZLijjdp+eddx5WrFgBwJbIKXl/9dVXYhvLKjs7G9dcc02EbVQjOnfu\nLC5PMxO50y3R0IB5rh59Pl9E0Khpq6lO0daamhpXhnfee1pammsVb2Zaj+bqoTJh/h1XXXyPzzwt\nLa1B6qIz4JSZxqdNmyYZxW+55RYAwPz58yVtBIPNZ82aJffPNnjvvfcCCCsdL730EgBICguu6idP\nnozhw4cDCGcgB8Lbx//2t78BsJ9bY0lNTXW5n8xVaTTX4BNPPAHAdl3SrejxeKT90OXs8XhcGcj5\nnplbh/UnIyNDlFW2edaZiooK2ZDRlOTk5Mg9OF0eZhoYU4GI5tYD4hsScDKiqUx1/Q6EVRWe4WgG\nGQPhdse+iCk3gsGgPAsGkbMczZMSWF/y8vKk7VEVMsNInKc0NAZznKNqD7hdd+ZmBOfmqtraWlcZ\nmv2P89SHZMMZmH/8+HFXChbzNAr24VRamxJVoBRFURRFUWIkqRWonJwcURmcqx8ziNxcITg/x8+c\nzkA5BluagW4Miq6srHSpa2bGW2ewoN/vl/gJfo5++5ycHFnRcvadkZFR5zNsKOYKy6keeTwe+T9j\nu3w+n6hqVBmoInm9XtdKuFWrVnjllVcA2FmsaUNWVpas7rlKNAOySUOTEppxIWbiQ8C9YjdJT093\nnTXIz5vqXDS/vJkEjzgzYpsrbWdiw5SUlKjZhOsLla3rr78eQFgxYgzZ3XffDQBYvHixBO2zvr3w\nwgsAgL1794o6Q+Vvy5Ytkm2e9/7ee+8BAGbOnCnlS8VnzJgxokpSTaNy9de//rVBdtU3izITZM6Z\nM0cC5BkvybY2dOjQiNUuEKkssj2zvAYOHCifY1BxRUWFxPJxSzo/X1VV5apv8cQZZ2f+3+xjogWM\nU8mgPfw8A+ebmpPF4aSnp4tC8Z3vfAdAWCGnusp6zDQF27dvl0S8rL8TJkwQdXX37t0A7H7H7/dL\n26KalZmZGRHXBtj13uv1SlxOPDDLg+f1eb3eiJMp+BoQqbqacapmLCVg922BQCBq35EMsU/EqSjV\ndboEU8QkMiu5KlCKoiiKoigxkpQKlBnPYSbJNDG3qkZbNTl3iZ1OBcrcMWFu/QYgW/IB+17N41G4\nwqCtwWAwInEmEOnD5nZ2xlMUFBS40v43FjO+KNpZRFzdcGV46NAh1zlqzz77LIBwgkI+A+7aWrFi\nhXyeShXTMxQVFcl3OlUaIDJOoSHwWIO8vDy5f3MHJH+a5QEgIv7JuQvk+PHjUn+jxXPwNfPvnHU6\nFAq5FC3z+JDGKFDf+973AACTJk0CEF7pMs6J5TB//nxJZsodf4sWLZL7pRrBOKfevXtLLBPt3Lx5\nM4BwygeqmNz99Itf/ELqJ3fTMI6Pqk2sdOrUCd27d5d7BOyy7N27t+wiYzzW4cOH5Qy0rVu3Aggr\nSUBY1eAOQ/MYIz539llUXefNmydn+7E9TJgwQXaFUYFypilpKqjuAfVPoOmE7c7ccZsIcnJypN9g\nu2Yf5PP55DXzzD7Gk1555ZUAbDVzwYIFokaxrq5evVr6ZdZZxollZ2fLdflaTk6O7BxmXWA76d69\ne9Rklg3F7AdMZdvZ71AdNF8zFVhn6hMzrUE8jp5pSmgbFaiqqiqXypSamiqxufxpnhnYVCTlBIoH\nyAJ2QzbdWkBkACcrWSAQiDgYE7Ar0+nMSG5mDKfMyEmDGYjJQcgMDHTm7zDPOuK1zMGbnRsrT8eO\nHV0uv8bSpUsX1+DPn6Yrgs/8wIED+PGPfwzA7gDpuhk8eLAMprzndevWySHQTMvgDLQG7M6uTZs2\nYjdtbKiMzmd5+PBhkemj5XBix0nXlflsnZO3EydOSFmdzA3oDEI3vzs7O9uVX4oT55qamkYd6sp6\nx0GgVatWsvFhw4YN8jkGVnPyz3PsUlNTMWjQIAB2DidzUPrZz34GwM6nVV5eLhOP559/HgCwcOFC\nGXh27doFwM5EHiuc4G3YsEHamXPwDwQCUoZ0LR46dEiCgpmigZNLMycb7/Obb76RSf/nn38OwM7O\nHa0si4uLI4KNgUjXfFNiLp5Olonc2a5NouXiS8QB7YMHD5YNKc50IKFQyHXIcU1NjbTB1atXA7DP\nzZw4caLUr08//RRAuN6z3Oj6pzuwsLAQe/fuBWD3t23btpXnxEUF+7zCwkKp5/GGNmdkZMj3ORd3\nwWDQlQHf6/VKmUXL0E4XdrLiHLsDgYDrPNjMzEyxMZFB8erCUxRFURRFiZGkVKCYvA6wV3LOFZvH\n43G5slJTU12rK/50ZjdOJKbUTbcQT56nqwRwrwijuXuCwaDrWXBVDYRTBgDA2rVrAQADBgyISLIW\nD1q3bi3Xcm6tP3r0qCglfG/v3r3iznj66acBhAN2gXCZUT2hPQ899JD8LbfR//u//zsA4KKLLhL3\nB1cfppxLW01Ju6E4V9X8vaqq6qQyfbTt6InYUttQmPCULo3OnTvj9ttvB2C76QDgd7/7HQB3UPew\nYcPERcJkky1bthSlisk9BwwYACCs+DAtBTcHvPfee3JuIZ8zVQDTlV0fqED5/X7Zlk6oWh44cEBW\nqlzhduvWTVQGtlmznFnHebbfhRdeiOXLlwMA/uM//uOU92VZlgSbE+fZnU2F6XavK7N4tPfMwHKn\n2yQlJUXUYwY4xxOeRzd58mRp8wxRYDmam2r27dsnr1E95mtUls477zzpI6nKFRYWSnmzL6WyVFJS\nIglkzWdDJZl1lSqumeQxHph9EG2orq6W+2TdNVVB59+GQiHXqQBmGoBomwGSKZEmXXJ8rqmpqfJ/\n508gsd4mVaAURVEURVFiJCkVKDNRY7SzfojTX+/1eiWOgyoNZ+YtWrSQuI6GnBvWGKJtq2SQ6s9/\n/nN5LVrCOqpstNHn88lsm7aaMGXCm2++CQB4+OGHZVViHg3TGDp27Bg1gB0IK1CMP+Cqev/+/RLD\n8Mc//hEA8Mtf/hJAuFyZIM48IZxHifTt2xeArQgcOHBArsXPm0dk8LXTGfN2pjFixAgAdpLT6upq\nUW7uu+8+AMCgQYPw+9//HgCwceNGAPYxLz169JB2xvceeugheY0xJKyv48aNkzKcP3++fIYbBl57\n7TUAkKNNYlGfADse5eOPPxZFie2C29ovuOAC6SPMoFtn7BLrU3V1tShvjHF5+umnceedd0Z8/mRJ\nH82VvvMYH8ZeNRVMIwLYz9MZBG4e5ULM350bWgA7eL4pFCiq6IcOHZI6ys1ADIpPSUlxxWGGQiH0\n69cPgB2szz41Oztb6iFTFrz99tuSaoJquBkjxHLkEVLme1R0+DMvL082LsQD81lTwTXT9Tjra10K\nlKmem5/z+/2iIrJ+VlRUuFLrnE64McNMWssxkGqzGfOayL4/KSdQDKyura2VRu7MOg64D98NBoOu\niRalTo/H49rJlyhMF5uToqIiuX/nRCsUComNDDINBoMiXzs7DsDO/s1BxOv1yvvMf9JY8vPzXRNV\n/m5OYlm5aQtgT4h4DlX//v3lM+ZOGHbMDHCcO3cuAGDKlCnyvCjdR+v4E5Wj5kyGHRMH1ylTpgAI\nP3/uPiM//elPxbV+9OhRAHY+MPNQWboDA4GAuI1Yh+naTEtLcx1EO3fuXNxzzz0A7MkEz+arrKzE\nq6++Wm+7rr32WgBhdw0DheliZFB8KBSS+mYeVurcFWfmeeIEj244c/JUn/O3fD6fa/cmB8Joi6F4\nEm1QibYR5GRhBNFg+ywpKYnHbUZl69atsuCMhrMeZ2ZmyiKOfQQnRnS/xgLd2WbuJ2fwPMszKysL\nH330EQC7LcQL2mnmgXKOAWZ5ma8579fcwczNO5yUfvzxx3G978bCRRCFlczMTGmz0Vx4pgDT1KgL\nT1EURVEUJUaSUoGi+sAZP2CrOKa06DwTzuPxuGRpU7E6XW4d5tkYMGCASxItKChwuemoRJnytJkP\ny5kHiBw6dEje4zZxM4AwXiuLVq1ayT07n7ff75fgTK6SvF6vpCWgusig6szMTNeqKD09Xdw3zE1E\ndeTQoUOuHChZWVmuVA3M56TUDVeefHbMHH7XXXfh9ddfBxBOKQEAf/jDH0Q1pJJE9bC0tFSCx3nN\nt956y5VFnapoly5dXHV3y5YtGDNmDAA7CziVxljz1DDH2E9+8hMJGGY6At6Dmc2Y6o+ZCdy5FbxF\nixay4YMrYgB1buOPpuZUVFSI3fx+tpGmTmNgujjMdmliWZa8Zt57NHWDNLVyVh9Y55oq788zzzzT\nJNeNFZah6WkxPSxA9A010d4369vp8szUF6ebzufzuTLrm/U7UfnJAFWgFEVRFEVRYiYpFSj6sj0e\nj6z2nIkUa2pqogaWc2btPOcpMzNTtqYmGjMhI8+CI4MGDXJtiaWKUltb61rZmllYnWeimSeB8zv9\nfr9cg+c7NZbS0lLJDMxVO/3O+fn5cl8M1r/sssvkfca1MCmjueql4tC5c2dZqVPtGD16NIBw/IlZ\nB4Bw/MXZZ58NwL3ZID09PWpSQwUS7MrYCqqC+fn5EtxN0tPTpS1RPWFw+MGDByUGhvXi4osvxsqV\nKwHY29GpYHXv3j1qjBqVJm72eOeddwCEE3bGEmPDgOYBAwZIoDvjopgOo0OHDhJLaK5w2fa44YIK\nS2FhoSRbJF6vN6YEkiNHjpR4MD5LquLOmLB4wxX6119/Ld/tPEcNcMd+1dbWSltiGzY/P3bsWADA\nqlWrmvL2FdipKAKBgJShM742WtoNU000Y7XM34H4nZUab9hPcXxgKiAgUg1mv2S+39Qk5xNTFEVR\nFEVJYpJSgeKMuVWrVrLVlDuAovnvOQsNBAKymuRslIrUgQMHZAXJ+I5Ewa3+rVu3ljgTMnv2bEyf\nPh2AvXPMPL4lWtwW45ucZ1Ll5uaKckBbW7duLe/Ha3dCp06dZGXPHVO89xUrVshqnztezDgJxjJR\nDayqqpKVlakQPvLIIwAit9vSBn6OO6pmzJghMVOEq5Wzzz476XaVJAtUCK+44goAEBVv3759rhiy\ngwcPytl0VDK5rfvyyy8XxYKvlZWVyZZz7oDiDsyzzjpL2rXJtGnTAABLliwBYKdJ4Pl0DYHb2Jm4\nlT8B+8gd9i0pKSmixrGOse3269fPpeCeTH2KloDw4osvlvhA1md+jxnv2RQwLUVBQYG0Ka7Uzd2s\nThXCjCfh59jvrF+/HnfccUeT3rdiQ89DYWGh9G/0OJhHmJ2sXrLsWP+OHDkSNWnsqXZfJhKO6eZx\nRBwXmfw3IyND5gE8XikReKwEpBptaGGMHj1atoQyX5L5ELlNlAP2gQMHJJCQgys7iZUrVzb4wNX6\nPKKT2chOuLi4WCrwpk2bXJ9j5mXmqmnbtq10sJw4lpeXy4SEWXa5xTdatvWrr75a/vall16q8x5j\nsbFbt2646aabAIQHBdOee++9V9wfnECZ5+NxokX3QV5eHt544w0AtiupqKhIGjPdMaa7kgPfvHnz\nAITPu6JtPD+N+Yi45T5WG89UTmVjNPv43MeNGwcA2L59uyvbOADMmjULgB2Qzc67qKhIOmG6Ac3J\nOicHLMs1a9ZIHrBoMB8V84MxqLw+9gGRQc/OPHLxwMw759wA0pjuNJbcOw2tp8OHD5d+hpt1+NMM\nfKddX3zxhfSbnPTyfLnG5AjSthi7fcOGDQMQPiCZKWm4ycEMa2Bfab7H8uT4yX44PT1d2i7PrATq\n3hxhkqgyfPnllyN+37p1q9RZphTJyckRezlnONl4V19OZaO68BRFURRFUWIkIQqUoiiKoihKc0IV\nKEVRFEVRlBjRCZSiKIqiKEqM6ARKURRFURQlRnQCpSiKoiiKEiM6gVIURVEURYkRnUApiqIoiqLE\niE6gFEVRFEVRYkQnUIqiKIqiKDGiEyhFURRFUZQY0QmUoiiKoihKjOgESlEURVEUJUZ0AqUoiqIo\nihIjOoFSFEVRFEWJEZ1AKYqiKIqixIhOoBRFURRFUWJEJ1CKoiiKoigxohMoRVEURVGUGNEJlKIo\niqIoSozoBEpRFEVRFCVGdAKlKIqiKIoSIzqBUhRFURRFiRGdQCmKoiiKosSITqAURVEURVFi5P8B\nBSMEXelZB2YAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "x5hBTHaG21Oa", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "!py3clean ." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "UrXFIVZT278R", + "colab_type": "code", + "outputId": "e648d072-5ed2-4f9f-f55b-f1772395ba59", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "cell_type": "code", + "source": [ + "! cat temp_model.py" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "cat: temp_model.py: No such file or directory\n" + ], + "name": "stdout" + } + ] + } + ] +} \ No newline at end of file diff --git a/jena_climate_2009_2016.csv.zip b/jena_climate_2009_2016.csv.zip new file mode 100644 index 0000000..0271733 Binary files /dev/null and b/jena_climate_2009_2016.csv.zip differ diff --git a/session8_Text_Practice.ipynb b/session8_Text_Practice.ipynb new file mode 100644 index 0000000..f28bba4 --- /dev/null +++ b/session8_Text_Practice.ipynb @@ -0,0 +1,1024 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "session8_Text_Practice.ipynb", + "version": "0.3.2", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "9KGp-KTLjqKL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Before we start..." + ] + }, + { + "metadata": { + "id": "Eklordt4jqKO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "08f363b2-a6f1-4636-8de5-e6ecc116be06" + }, + "cell_type": "code", + "source": [ + "import urllib\n", + "\n", + "imdb_url = 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'\n", + "urllib.request.urlretrieve(imdb_url, './aclImdb_v1.tar.gz') " + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "('./aclImdb_v1.tar.gz', )" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 30 + } + ] + }, + { + "metadata": { + "id": "KauQP9u2jqKW", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "e4b0e7b3-4dd9-4414-eb7a-6c74ead2d3bb" + }, + "cell_type": "code", + "source": [ + "glove_url = 'http://nlp.stanford.edu/data/glove.6B.zip'\n", + "urllib.request.urlretrieve(glove_url, './glove.6B.zip')" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "('./glove.6B.zip', )" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 31 + } + ] + }, + { + "metadata": { + "id": "_ovPTq7fjqKa", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "imdb_dir = './aclImdb'\n", + "glove_dir = './glove.6B'" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "BjkzinY0jqKd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import tarfile\n", + "tar = tarfile.open('./aclImdb_v1.tar.gz', \"r:gz\")\n", + "tar.extractall()\n", + "tar.close()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "cfetxDW9jqKg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import zipfile\n", + "import os\n", + "if not os.path.exists(glove_dir):\n", + " os.mkdir(glove_dir)\n", + "zip_ref = zipfile.ZipFile('./glove.6B.zip', 'r')\n", + "zip_ref.extractall(glove_dir)\n", + "zip_ref.close()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "cptsBV3UjqKj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Text-Preprocessing" + ] + }, + { + "metadata": { + "id": "7cc1pZ1qjqKk", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_dir = os.path.join(imdb_dir, 'train')\n", + "\n", + "labels = []\n", + "texts = []\n", + "\n", + "for label_type in ['neg', 'pos']:\n", + " dir_name = os.path.join(train_dir, label_type)\n", + " for fname in os.listdir(dir_name):\n", + " if fname[-4:] == '.txt':\n", + " f = open(os.path.join(dir_name, fname))\n", + " texts.append(f.read())\n", + " f.close()\n", + " if label_type == 'neg':\n", + " labels.append(0)\n", + " else:\n", + " labels.append(1)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "iWsFyCEvjqKo", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "ae650954-713e-4e16-8330-5afc4c087c27" + }, + "cell_type": "code", + "source": [ + "import keras\n", + "keras.__version__" + ], + "execution_count": 36, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.4'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 36 + } + ] + }, + { + "metadata": { + "id": "oUKmSJl9jqKs", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "n_data = len(texts)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Ik_DhEZnjqKv", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.preprocessing.text import Tokenizer\n", + "from keras.preprocessing.sequence import pad_sequences\n", + "import numpy as np\n", + "\n", + "maxlen = 100 # We will cut reviews after 100 words\n", + "training_samples = int(n_data* 0.8) \n", + "val_samples = n_data - training_samples\n", + "max_words = 10000 # We will only consider the top 10,000 words in the dataset" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ERF0wKjgjqKy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "c330e426-734a-4baf-f4c4-266cd88293d6" + }, + "cell_type": "code", + "source": [ + "tokenizer = Tokenizer(num_words=max_words)\n", + "tokenizer.fit_on_texts(texts)\n", + "sequences = tokenizer.texts_to_sequences(texts)\n", + "\n", + "word_index = tokenizer.word_index\n", + "print('Found %s unique tokens.' % len(word_index))" + ], + "execution_count": 39, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 88582 unique tokens.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "YtxNoKCijqK3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "5fdb4cbf-d1f8-486c-a9bd-01cac28c4f9f" + }, + "cell_type": "code", + "source": [ + "data = pad_sequences(sequences, maxlen=maxlen)\n", + "\n", + "labels = np.asarray(labels)\n", + "print('Shape of data tensor:', data.shape)\n", + "print('Shape of label tensor:', labels.shape)\n", + "\n", + "# Split the data into a training set and a validation set\n", + "# But first, shuffle the data, since we started from data\n", + "# where sample are ordered (all negative first, then all positive).\n", + "indices = np.arange(data.shape[0])\n", + "np.random.shuffle(indices)\n", + "data = data[indices]\n", + "labels = labels[indices]\n", + "\n", + "x_train = data[:training_samples]\n", + "y_train = labels[:training_samples]\n", + "x_val = data[training_samples: ]\n", + "y_val = labels[training_samples: ]" + ], + "execution_count": 40, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Shape of data tensor: (25000, 100)\n", + "Shape of label tensor: (25000,)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-Jd5WLjvjqK-", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "2fe82e25-775d-46b1-adc3-d659e7b3003c" + }, + "cell_type": "code", + "source": [ + "x_train.shape[0], y_train.shape[0]" + ], + "execution_count": 41, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(20000, 20000)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 41 + } + ] + }, + { + "metadata": { + "id": "wkR1eb6zjqLD", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "80ac9070-226a-4d3f-e60f-51e530a46cb6" + }, + "cell_type": "code", + "source": [ + "x_val.shape[0], y_val.shape[0]" + ], + "execution_count": 42, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(5000, 5000)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 42 + } + ] + }, + { + "metadata": { + "id": "xmgZzqOWjqLN", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "test_dir = os.path.join(imdb_dir, 'test')\n", + "\n", + "labels = []\n", + "texts = []\n", + "\n", + "for label_type in ['neg', 'pos']:\n", + " dir_name = os.path.join(test_dir, label_type)\n", + " for fname in sorted(os.listdir(dir_name)):\n", + " if fname[-4:] == '.txt':\n", + " f = open(os.path.join(dir_name, fname))\n", + " texts.append(f.read())\n", + " f.close()\n", + " if label_type == 'neg':\n", + " labels.append(0)\n", + " else:\n", + " labels.append(1)\n", + "\n", + "sequences = tokenizer.texts_to_sequences(texts)\n", + "x_test = pad_sequences(sequences, maxlen=maxlen)\n", + "y_test = np.asarray(labels)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "PgUEilGjjqLS", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "195008d3-4ab8-44eb-94ee-fda707abdbaa" + }, + "cell_type": "code", + "source": [ + "x_test.shape[0], y_test.shape[0]" + ], + "execution_count": 44, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(25000, 25000)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 44 + } + ] + }, + { + "metadata": { + "id": "bk5uIgldjqLa", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Text-Vectorization" + ] + }, + { + "metadata": { + "id": "r2GgJGrxjqLc", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Word Embedding" + ] + }, + { + "metadata": { + "id": "cadp6S_RjqLd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Using pre-trained embedding (Glove)" + ] + }, + { + "metadata": { + "id": "3v9fIDQKjqLf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "c06c0d3d-6b2f-441a-fc2d-a710f7f2eca7" + }, + "cell_type": "code", + "source": [ + "embeddings_index = {}\n", + "f = open(os.path.join(glove_dir, 'glove.6B.50d.txt'))\n", + "for line in f:\n", + " values = line.split()\n", + " word = values[0]\n", + " coefs = np.asarray(values[1:], dtype='float32')\n", + " embeddings_index[word] = coefs\n", + "f.close()\n", + "\n", + "print('Found %s word vectors.' % len(embeddings_index))" + ], + "execution_count": 45, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 400000 word vectors.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ntxM2XutjqLk", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "embedding_dim = 50\n", + "\n", + "embedding_matrix = np.zeros((max_words, embedding_dim))\n", + "for word, i in word_index.items():\n", + " embedding_vector = embeddings_index.get(word)\n", + " if i < max_words:\n", + " if embedding_vector is not None:\n", + " # Words not found in embedding index will be all-zeros.\n", + " embedding_matrix[i] = embedding_vector" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CNBEKuBnjqLo", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "if_using_pretrained = True" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "5sUEAUUIjqLt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# CNN " + ] + }, + { + "metadata": { + "id": "jIHucXIHjqLv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + }, + "outputId": "f01450c7-caec-4d49-e63e-e4562120e89e" + }, + "cell_type": "code", + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Embedding, Flatten, Dense, Convolution1D, Dropout\n", + "\n", + "\n", + "model_cnn = Sequential()\n", + "model_cnn.add(Embedding(max_words, embedding_dim, input_length=maxlen))\n", + "model_cnn.add(Convolution1D(2, 2))\n", + "model_cnn.add(Convolution1D(2, 3))\n", + "model_cnn.add(Flatten())\n", + "model_cnn.add(Dense(32, activation='relu'))\n", + "model_cnn.add(Dropout(0.2))\n", + "model_cnn.add(Dense(1, activation='sigmoid'))\n", + "model_cnn.summary()" + ], + "execution_count": 48, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_3 (Embedding) (None, 100, 50) 500000 \n", + "_________________________________________________________________\n", + "conv1d_3 (Conv1D) (None, 99, 2) 202 \n", + "_________________________________________________________________\n", + "conv1d_4 (Conv1D) (None, 97, 2) 14 \n", + "_________________________________________________________________\n", + "flatten_2 (Flatten) (None, 194) 0 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 32) 6240 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 32) 0 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 506,489\n", + "Trainable params: 506,489\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "OMJCqbpJjqLz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "if if_using_pretrained:\n", + " model_cnn.layers[0].set_weights([embedding_matrix])\n", + " model_cnn.layers[0].trainable = False" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "yWShTiNmjqL5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "312149cb-05d2-410e-ed7c-ed02906cef73" + }, + "cell_type": "code", + "source": [ + "model_cnn.compile(optimizer='rmsprop',\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])\n", + "history = model_cnn.fit(x_train, y_train,\n", + " epochs=5,\n", + " batch_size=32,\n", + " validation_data=(x_val, y_val))" + ], + "execution_count": 50, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/5\n", + "20000/20000 [==============================] - 5s 245us/step - loss: 0.6277 - acc: 0.6478 - val_loss: 0.5883 - val_acc: 0.6882\n", + "Epoch 2/5\n", + "20000/20000 [==============================] - 4s 225us/step - loss: 0.5698 - acc: 0.7089 - val_loss: 0.5559 - val_acc: 0.7206\n", + "Epoch 3/5\n", + "20000/20000 [==============================] - 4s 223us/step - loss: 0.5550 - acc: 0.7174 - val_loss: 0.5501 - val_acc: 0.7256\n", + "Epoch 4/5\n", + "20000/20000 [==============================] - 4s 224us/step - loss: 0.5449 - acc: 0.7299 - val_loss: 0.5528 - val_acc: 0.7204\n", + "Epoch 5/5\n", + "20000/20000 [==============================] - 4s 220us/step - loss: 0.5405 - acc: 0.7320 - val_loss: 0.5488 - val_acc: 0.7258\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "CcXZfdNijqMB", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "23db0022-9bf8-48cf-bf6a-3fd3bba1d16e" + }, + "cell_type": "code", + "source": [ + "model_cnn.evaluate(x_test, y_test)" + ], + "execution_count": 51, + "outputs": [ + { + "output_type": "stream", + "text": [ + "25000/25000 [==============================] - 2s 71us/step\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[0.556565417470932, 0.7174]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 51 + } + ] + }, + { + "metadata": { + "id": "4dejS9ZIjqMI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# RNN" + ] + }, + { + "metadata": { + "id": "6jvuMFucjqMJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.layers import SimpleRNN" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "e6HSh0WujqML", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "outputId": "2c92fe0c-e533-4566-b1c1-a809d610a0f6" + }, + "cell_type": "code", + "source": [ + "model_rnn = Sequential()\n", + "model_rnn.add(Embedding(max_words, embedding_dim, input_length=maxlen))\n", + "model_rnn.add(SimpleRNN(32, return_sequences=True))\n", + "model_rnn.add(SimpleRNN(32)) # This last layer only returns the last outputs.\n", + "model_rnn.add(Dense(1, activation='sigmoid'))\n", + "model_rnn.summary()" + ], + "execution_count": 53, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_4 (Embedding) (None, 100, 50) 500000 \n", + "_________________________________________________________________\n", + "simple_rnn_3 (SimpleRNN) (None, 100, 32) 2656 \n", + "_________________________________________________________________\n", + "simple_rnn_4 (SimpleRNN) (None, 32) 2080 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 504,769\n", + "Trainable params: 504,769\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "2WK7E_RFjqMQ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "if if_using_pretrained:\n", + " model_rnn.layers[0].set_weights([embedding_matrix])\n", + " model_rnn.layers[0].trainable = False" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jNaCQKXsjqMT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "4f1b11ff-054a-495a-d594-8b63f38b8169" + }, + "cell_type": "code", + "source": [ + "model_rnn.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])\n", + "history = model_rnn.fit(x_train, y_train,\n", + " epochs=5,\n", + " batch_size=128,\n", + " validation_data=(x_val, y_val))" + ], + "execution_count": 55, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/5\n", + "20000/20000 [==============================] - 29s 1ms/step - loss: 0.6717 - acc: 0.5834 - val_loss: 0.6605 - val_acc: 0.6020\n", + "Epoch 2/5\n", + "20000/20000 [==============================] - 28s 1ms/step - loss: 0.6291 - acc: 0.6485 - val_loss: 0.6134 - val_acc: 0.6654\n", + "Epoch 3/5\n", + "20000/20000 [==============================] - 29s 1ms/step - loss: 0.6046 - acc: 0.6802 - val_loss: 0.6185 - val_acc: 0.6596\n", + "Epoch 4/5\n", + "20000/20000 [==============================] - 29s 1ms/step - loss: 0.6098 - acc: 0.6764 - val_loss: 0.6460 - val_acc: 0.6128\n", + "Epoch 5/5\n", + "20000/20000 [==============================] - 29s 1ms/step - loss: 0.6005 - acc: 0.6821 - val_loss: 0.6077 - val_acc: 0.6828\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "kePQFOV8jqMY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "8f3f0482-1d64-43dc-b4c4-402c9588fa8d" + }, + "cell_type": "code", + "source": [ + "model_rnn.evaluate(x_test, y_test)" + ], + "execution_count": 56, + "outputs": [ + { + "output_type": "stream", + "text": [ + "25000/25000 [==============================] - 71s 3ms/step\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[0.6075507773399353, 0.68172]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 56 + } + ] + }, + { + "metadata": { + "id": "tJouQjfTjqMd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# LSTM" + ] + }, + { + "metadata": { + "id": "hT_tiyIEjqMe", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "outputId": "d29b57f9-1ec7-48b1-d561-992818e80521" + }, + "cell_type": "code", + "source": [ + "from keras.layers import LSTM\n", + "\n", + "model_lstm = Sequential()\n", + "model_lstm.add(Embedding(max_words, embedding_dim, input_length=maxlen))\n", + "model_lstm.add(LSTM(32))\n", + "model_lstm.add(Dense(1, activation='sigmoid'))\n", + "model_lstm.summary()\n" + ], + "execution_count": 57, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_5 (Embedding) (None, 100, 50) 500000 \n", + "_________________________________________________________________\n", + "lstm_1 (LSTM) (None, 32) 10624 \n", + "_________________________________________________________________\n", + "dense_7 (Dense) (None, 1) 33 \n", + "=================================================================\n", + "Total params: 510,657\n", + "Trainable params: 510,657\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "PWGmK_axjqMj", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "if if_using_pretrained:\n", + " model_lstm.layers[0].set_weights([embedding_matrix])\n", + " model_lstm.layers[0].trainable = False" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gtN-0PjWjqMm", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "9e216ebd-c742-4571-a58c-942dd3d16bcc" + }, + "cell_type": "code", + "source": [ + "model_lstm.compile(optimizer='rmsprop',\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])\n", + "history = model_lstm.fit(x_train, y_train,\n", + " epochs=5,\n", + " batch_size=128,\n", + " validation_data=(x_val, y_val))" + ], + "execution_count": 59, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 20000 samples, validate on 5000 samples\n", + "Epoch 1/5\n", + "20000/20000 [==============================] - 42s 2ms/step - loss: 0.6324 - acc: 0.6398 - val_loss: 0.5824 - val_acc: 0.6956\n", + "Epoch 2/5\n", + "20000/20000 [==============================] - 41s 2ms/step - loss: 0.5601 - acc: 0.7149 - val_loss: 0.5944 - val_acc: 0.6890\n", + "Epoch 3/5\n", + "20000/20000 [==============================] - 42s 2ms/step - loss: 0.5322 - acc: 0.7327 - val_loss: 0.4930 - val_acc: 0.7646\n", + "Epoch 4/5\n", + "20000/20000 [==============================] - 42s 2ms/step - loss: 0.5095 - acc: 0.7507 - val_loss: 0.5800 - val_acc: 0.6946\n", + "Epoch 5/5\n", + "20000/20000 [==============================] - 41s 2ms/step - loss: 0.4891 - acc: 0.7644 - val_loss: 0.4791 - val_acc: 0.7736\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "MIeHWxNKjqMs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "41917488-391f-4404-ca03-79f646268734" + }, + "cell_type": "code", + "source": [ + "model_lstm.evaluate(x_test, y_test)" + ], + "execution_count": 60, + "outputs": [ + { + "output_type": "stream", + "text": [ + "25000/25000 [==============================] - 76s 3ms/step\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[0.4908424217987061, 0.761]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 60 + } + ] + }, + { + "metadata": { + "id": "eShYJjm8jqMy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git "a/\342\200\234Deep_Learning_with_Python_Ch5_ipynb\342\200\235\347\232\204\345\211\257\346\234\254.ipynb" "b/\342\200\234Deep_Learning_with_Python_Ch5_ipynb\342\200\235\347\232\204\345\211\257\346\234\254.ipynb" new file mode 100644 index 0000000..be00ac0 --- /dev/null +++ "b/\342\200\234Deep_Learning_with_Python_Ch5_ipynb\342\200\235\347\232\204\345\211\257\346\234\254.ipynb" @@ -0,0 +1,4864 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "“Deep_Learning_with_Python_Ch5.ipynb”的副本", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "5C9xdAWnlwtM", + "colab_type": "code", + "outputId": "7d8f266d-bc13-4360-8551-caa2d3fd3809", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + } + }, + "cell_type": "code", + "source": [ + "import keras\n", + "keras.__version__" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.1.6'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "-7K9eMxvlwtT", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# 5.1 - Introduction to convnets\n", + "\n", + "This notebook contains the code sample found in Chapter 5, Section 1 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "----\n", + "\n", + "First, let's take a practical look at a very simple convnet example. We will use our convnet to classify MNIST digits, a task that you've already been \n", + "through in Chapter 2, using a densely-connected network (our test accuracy then was 97.8%). Even though our convnet will be very basic, its \n", + "accuracy will still blow out of the water that of the densely-connected model from Chapter 2.\n", + "\n", + "The 6 lines of code below show you what a basic convnet looks like. It's a stack of `Conv2D` and `MaxPooling2D` layers. We'll see in a \n", + "minute what they do concretely.\n", + "Importantly, a convnet takes as input tensors of shape `(image_height, image_width, image_channels)` (not including the batch dimension). \n", + "In our case, we will configure our convnet to process inputs of size `(28, 28, 1)`, which is the format of MNIST images. We do this via \n", + "passing the argument `input_shape=(28, 28, 1)` to our first layer." + ] + }, + { + "metadata": { + "id": "y4Cbnuy-lwtU", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import layers\n", + "from keras import models\n", + "\n", + "model = models.Sequential()\n", + "model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(64, (3, 3), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(64, (3, 3), activation='relu'))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "h3Be6ytIlwtW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's display the architecture of our convnet so far:" + ] + }, + { + "metadata": { + "id": "UKGGYs9zlwtX", + "colab_type": "code", + "outputId": "4b519766-94d6-463d-9e89-fa4d120911bd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 311 + } + }, + "cell_type": "code", + "source": [ + "model.summary()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_1 (Conv2D) (None, 26, 26, 32) 320 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 11, 11, 64) 18496 \n", + "_________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0 \n", + "_________________________________________________________________\n", + "conv2d_3 (Conv2D) (None, 3, 3, 64) 36928 \n", + "=================================================================\n", + "Total params: 55,744\n", + "Trainable params: 55,744\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "3Zyndor7lwtb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You can see above that the output of every `Conv2D` and `MaxPooling2D` layer is a 3D tensor of shape `(height, width, channels)`. The width \n", + "and height dimensions tend to shrink as we go deeper in the network. The number of channels is controlled by the first argument passed to \n", + "the `Conv2D` layers (e.g. 32 or 64).\n", + "\n", + "The next step would be to feed our last output tensor (of shape `(3, 3, 64)`) into a densely-connected classifier network like those you are \n", + "already familiar with: a stack of `Dense` layers. These classifiers process vectors, which are 1D, whereas our current output is a 3D tensor. \n", + "So first, we will have to flatten our 3D outputs to 1D, and then add a few `Dense` layers on top:" + ] + }, + { + "metadata": { + "id": "nt6twUXdlwtb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(64, activation='relu'))\n", + "model.add(layers.Dense(10, activation='softmax'))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "OKAXQemnlwte", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We are going to do 10-way classification, so we use a final layer with 10 outputs and a softmax activation. Now here's what our network \n", + "looks like:" + ] + }, + { + "metadata": { + "id": "oTvQvlstlwte", + "colab_type": "code", + "outputId": "e84225ee-f4e3-403e-8483-bccc3ad9c4e2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 415 + } + }, + "cell_type": "code", + "source": [ + "model.summary()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_1 (Conv2D) (None, 26, 26, 32) 320 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 11, 11, 64) 18496 \n", + "_________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0 \n", + "_________________________________________________________________\n", + "conv2d_3 (Conv2D) (None, 3, 3, 64) 36928 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 576) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 64) 36928 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 10) 650 \n", + "=================================================================\n", + "Total params: 93,322\n", + "Trainable params: 93,322\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "6I2SFwj0lwth", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As you can see, our `(3, 3, 64)` outputs were flattened into vectors of shape `(576,)`, before going through two `Dense` layers.\n", + "\n", + "Now, let's train our convnet on the MNIST digits. We will reuse a lot of the code we have already covered in the MNIST example from Chapter \n", + "2." + ] + }, + { + "metadata": { + "id": "kQaIYnlDlwth", + "colab_type": "code", + "outputId": "15bd66cd-311c-4c29-89e7-5043866e099a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + } + }, + "cell_type": "code", + "source": [ + "from keras.datasets import mnist\n", + "from keras.utils import to_categorical\n", + "\n", + "(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n", + "\n", + "train_images = train_images.reshape((60000, 28, 28, 1))\n", + "train_images = train_images.astype('float32') / 255\n", + "\n", + "test_images = test_images.reshape((10000, 28, 28, 1))\n", + "test_images = test_images.astype('float32') / 255\n", + "\n", + "train_labels = to_categorical(train_labels)\n", + "test_labels = to_categorical(test_labels)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz\n", + "11493376/11490434 [==============================] - 0s 0us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "CZJYIBP-lwto", + "colab_type": "code", + "outputId": "3fcb0271-60b8-4fc3-d42b-237566bed628", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 207 + } + }, + "cell_type": "code", + "source": [ + "model.compile(optimizer='rmsprop',\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "model.fit(train_images, train_labels, epochs=5, batch_size=64)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "60000/60000 [==============================] - 12s 204us/step - loss: 0.1812 - acc: 0.9431\n", + "Epoch 2/5\n", + "60000/60000 [==============================] - 10s 173us/step - loss: 0.0453 - acc: 0.9863\n", + "Epoch 3/5\n", + "60000/60000 [==============================] - 10s 174us/step - loss: 0.0316 - acc: 0.9904\n", + "Epoch 4/5\n", + "60000/60000 [==============================] - 10s 173us/step - loss: 0.0228 - acc: 0.9930\n", + "Epoch 5/5\n", + "60000/60000 [==============================] - 10s 174us/step - loss: 0.0188 - acc: 0.9945\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "id": "fVli1J5slwtx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's evaluate the model on the test data:" + ] + }, + { + "metadata": { + "id": "58xkIgSRlwty", + "colab_type": "code", + "outputId": "2a4fe2ce-665e-40b3-df41-fb7a4591b438", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "test_loss, test_acc = model.evaluate(test_images, test_labels)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "10000/10000 [==============================] - 1s 110us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "s3cGHkLwlwt2", + "colab_type": "code", + "outputId": "9451dfef-2378-40ef-d88c-21269d43c1c2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "test_acc" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.9915" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "metadata": { + "id": "Sk3uCR6plwt6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "While our densely-connected network from Chapter 2 had a test accuracy of 97.8%, our basic convnet has a test accuracy of 99.3%: we \n", + "decreased our error rate by 68% (relative). Not bad! " + ] + }, + { + "metadata": { + "id": "aoD6_neOmJ5U", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# 5.2 - Using convnets with small datasets\n", + "\n", + "This notebook contains the code sample found in Chapter 5, Section 2 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "## Training a convnet from scratch on a small dataset\n", + "\n", + "Having to train an image classification model using only very little data is a common situation, which you likely encounter yourself in \n", + "practice if you ever do computer vision in a professional context.\n", + "\n", + "Having \"few\" samples can mean anywhere from a few hundreds to a few tens of thousands of images. As a practical example, we will focus on \n", + "classifying images as \"dogs\" or \"cats\", in a dataset containing 4000 pictures of cats and dogs (2000 cats, 2000 dogs). We will use 2000 \n", + "pictures for training, 1000 for validation, and finally 1000 for testing.\n", + "\n", + "In this section, we will review one basic strategy to tackle this problem: training a new model from scratch on what little data we have. We \n", + "will start by naively training a small convnet on our 2000 training samples, without any regularization, to set a baseline for what can be \n", + "achieved. This will get us to a classification accuracy of 71%. At that point, our main issue will be overfitting. Then we will introduce \n", + "*data augmentation*, a powerful technique for mitigating overfitting in computer vision. By leveraging data augmentation, we will improve \n", + "our network to reach an accuracy of 82%.\n", + "\n", + "In the next section, we will review two more essential techniques for applying deep learning to small datasets: *doing feature extraction \n", + "with a pre-trained network* (this will get us to an accuracy of 90% to 93%), and *fine-tuning a pre-trained network* (this will get us to \n", + "our final accuracy of 95%). Together, these three strategies -- training a small model from scratch, doing feature extracting using a \n", + "pre-trained model, and fine-tuning a pre-trained model -- will constitute your future toolbox for tackling the problem of doing computer \n", + "vision with small datasets." + ] + }, + { + "metadata": { + "id": "NJpyAqQemJ5U", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## The relevance of deep learning for small-data problems\n", + "\n", + "You will sometimes hear that deep learning only works when lots of data is available. This is in part a valid point: one fundamental \n", + "characteristic of deep learning is that it is able to find interesting features in the training data on its own, without any need for manual \n", + "feature engineering, and this can only be achieved when lots of training examples are available. This is especially true for problems where \n", + "the input samples are very high-dimensional, like images.\n", + "\n", + "However, what constitutes \"lots\" of samples is relative -- relative to the size and depth of the network you are trying to train, for \n", + "starters. It isn't possible to train a convnet to solve a complex problem with just a few tens of samples, but a few hundreds can \n", + "potentially suffice if the model is small and well-regularized and if the task is simple. \n", + "Because convnets learn local, translation-invariant features, they are very \n", + "data-efficient on perceptual problems. Training a convnet from scratch on a very small image dataset will still yield reasonable results \n", + "despite a relative lack of data, without the need for any custom feature engineering. You will see this in action in this section.\n", + "\n", + "But what's more, deep learning models are by nature highly repurposable: you can take, say, an image classification or speech-to-text model \n", + "trained on a large-scale dataset then reuse it on a significantly different problem with only minor changes. Specifically, in the case of \n", + "computer vision, many pre-trained models (usually trained on the ImageNet dataset) are now publicly available for download and can be used \n", + "to bootstrap powerful vision models out of very little data. That's what we will do in the next section.\n", + "\n", + "For now, let's get started by getting our hands on the data." + ] + }, + { + "metadata": { + "id": "0vmptmV9mJ5V", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Downloading the data\n", + "\n", + "The cats vs. dogs dataset that we will use isn't packaged with Keras. It was made available by Kaggle.com as part of a computer vision \n", + "competition in late 2013, back when convnets weren't quite mainstream. You can download the original dataset at: \n", + "`https://www.kaggle.com/c/dogs-vs-cats/data` (you will need to create a Kaggle account if you don't already have one -- don't worry, the \n", + "process is painless).\n", + "\n", + "The pictures are medium-resolution color JPEGs. They look like this:\n", + "\n", + "![cats_vs_dogs_samples](https://s3.amazonaws.com/book.keras.io/img/ch5/cats_vs_dogs_samples.jpg)" + ] + }, + { + "metadata": { + "id": "_ClLVabqxUoE", + "colab_type": "code", + "outputId": "1fd5dcc0-30d3-473c-ca30-d0f9681d79c2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 104 + } + }, + "cell_type": "code", + "source": [ + "!wget --no-check-certificate -r 'https://docs.google.com/uc?export=download&id=17_3k75AIWlX6JW34zhGyKm4b7RD4e2jo' -O train.zip\n", + "\n", + "import zipfile\n", + "with zipfile.ZipFile(open('train.zip', 'rb')) as f:\n", + " f.extractall()\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "WARNING: combining -O with -r or -p will mean that all downloaded content\n", + "will be placed in the single file you specified.\n", + "\n", + "\n", + "Redirecting output to ‘wget-log’.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "jdoiKviDmJ5W", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Unsurprisingly, the cats vs. dogs Kaggle competition in 2013 was won by entrants who used convnets. The best entries could achieve up to \n", + "95% accuracy. In our own example, we will get fairly close to this accuracy (in the next section), even though we will be training our \n", + "models on less than 10% of the data that was available to the competitors.\n", + "This original dataset contains 25,000 images of dogs and cats (12,500 from each class) and is 543MB large (compressed). After downloading \n", + "and uncompressing it, we will create a new dataset containing three subsets: a training set with 1000 samples of each class, a validation \n", + "set with 500 samples of each class, and finally a test set with 500 samples of each class.\n", + "\n", + "Here are a few lines of code to do this:" + ] + }, + { + "metadata": { + "id": "iWFS3ppnmJ5Z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import os, shutil\n", + "\n", + "# The path to the directory where the original\n", + "# dataset was uncompressed\n", + "original_dataset_dir = 'train'\n", + "\n", + "# The directory where we will\n", + "# store our smaller dataset\n", + "base_dir = 'data'\n", + "os.mkdir(base_dir)\n", + "\n", + "# Directories for our training,\n", + "# validation and test splits\n", + "train_dir = os.path.join(base_dir, 'train')\n", + "os.mkdir(train_dir)\n", + "validation_dir = os.path.join(base_dir, 'validation')\n", + "os.mkdir(validation_dir)\n", + "test_dir = os.path.join(base_dir, 'test')\n", + "os.mkdir(test_dir)\n", + "\n", + "# Directory with our training cat pictures\n", + "train_cats_dir = os.path.join(train_dir, 'cats')\n", + "os.mkdir(train_cats_dir)\n", + "\n", + "# Directory with our training dog pictures\n", + "train_dogs_dir = os.path.join(train_dir, 'dogs')\n", + "os.mkdir(train_dogs_dir)\n", + "\n", + "# Directory with our validation cat pictures\n", + "validation_cats_dir = os.path.join(validation_dir, 'cats')\n", + "os.mkdir(validation_cats_dir)\n", + "\n", + "# Directory with our validation dog pictures\n", + "validation_dogs_dir = os.path.join(validation_dir, 'dogs')\n", + "os.mkdir(validation_dogs_dir)\n", + "\n", + "# Directory with our validation cat pictures\n", + "test_cats_dir = os.path.join(test_dir, 'cats')\n", + "os.mkdir(test_cats_dir)\n", + "\n", + "# Directory with our validation dog pictures\n", + "test_dogs_dir = os.path.join(test_dir, 'dogs')\n", + "os.mkdir(test_dogs_dir)\n", + "\n", + "# Copy first 1000 cat images to train_cats_dir\n", + "fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]\n", + "for fname in fnames:\n", + " src = os.path.join(original_dataset_dir, fname)\n", + " dst = os.path.join(train_cats_dir, fname)\n", + " shutil.copyfile(src, dst)\n", + "\n", + "# Copy next 500 cat images to validation_cats_dir\n", + "fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]\n", + "for fname in fnames:\n", + " src = os.path.join(original_dataset_dir, fname)\n", + " dst = os.path.join(validation_cats_dir, fname)\n", + " shutil.copyfile(src, dst)\n", + " \n", + "# Copy next 500 cat images to test_cats_dir\n", + "fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]\n", + "for fname in fnames:\n", + " src = os.path.join(original_dataset_dir, fname)\n", + " dst = os.path.join(test_cats_dir, fname)\n", + " shutil.copyfile(src, dst)\n", + " \n", + "# Copy first 1000 dog images to train_dogs_dir\n", + "fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]\n", + "for fname in fnames:\n", + " src = os.path.join(original_dataset_dir, fname)\n", + " dst = os.path.join(train_dogs_dir, fname)\n", + " shutil.copyfile(src, dst)\n", + " \n", + "# Copy next 500 dog images to validation_dogs_dir\n", + "fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]\n", + "for fname in fnames:\n", + " src = os.path.join(original_dataset_dir, fname)\n", + " dst = os.path.join(validation_dogs_dir, fname)\n", + " shutil.copyfile(src, dst)\n", + " \n", + "# Copy next 500 dog images to test_dogs_dir\n", + "fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]\n", + "for fname in fnames:\n", + " src = os.path.join(original_dataset_dir, fname)\n", + " dst = os.path.join(test_dogs_dir, fname)\n", + " shutil.copyfile(src, dst)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "b12axOkomJ5a", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As a sanity check, let's count how many pictures we have in each training split (train/validation/test):" + ] + }, + { + "metadata": { + "id": "OjjxGe4EmJ5b", + "colab_type": "code", + "outputId": "70204092-8178-44df-85a0-01c7cbf375a4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('total training cat images:', len(os.listdir(train_cats_dir)))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total training cat images: 1000\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "iYzjigydmJ5f", + "colab_type": "code", + "outputId": "a6b03a6b-0d75-4022-b49a-5d0cfd6fe58a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('total training dog images:', len(os.listdir(train_dogs_dir)))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total training dog images: 1000\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "52mvwd4NmJ5h", + "colab_type": "code", + "outputId": "3d9376a9-e0f9-4578-fde9-f8c7f5ccc880", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('total validation cat images:', len(os.listdir(validation_cats_dir)))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total validation cat images: 500\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-KXJzR0qmJ5k", + "colab_type": "code", + "outputId": "d64cb03b-f9d3-4d51-abe3-b6cc2563de12", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('total validation dog images:', len(os.listdir(validation_dogs_dir)))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total validation dog images: 500\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "1EzAnQsMmJ5o", + "colab_type": "code", + "outputId": "d322b6e5-5a6d-41b4-df74-8661e034cf9f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('total test cat images:', len(os.listdir(test_cats_dir)))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total test cat images: 500\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "EklauoenmJ5q", + "colab_type": "code", + "outputId": "d2e1d0ae-f3dd-422d-ec51-530f67668757", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('total test dog images:', len(os.listdir(test_dogs_dir)))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "total test dog images: 500\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "yfk5Z01QmJ5t", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "So we have indeed 2000 training images, and then 1000 validation images and 1000 test images. In each split, there is the same number of \n", + "samples from each class: this is a balanced binary classification problem, which means that classification accuracy will be an appropriate \n", + "measure of success." + ] + }, + { + "metadata": { + "id": "wTmoVxuXmJ5u", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Building our network\n", + "\n", + "We've already built a small convnet for MNIST in the previous example, so you should be familiar with them. We will reuse the same \n", + "general structure: our convnet will be a stack of alternated `Conv2D` (with `relu` activation) and `MaxPooling2D` layers.\n", + "\n", + "However, since we are dealing with bigger images and a more complex problem, we will make our network accordingly larger: it will have one \n", + "more `Conv2D` + `MaxPooling2D` stage. This serves both to augment the capacity of the network, and to further reduce the size of the \n", + "feature maps, so that they aren't overly large when we reach the `Flatten` layer. Here, since we start from inputs of size 150x150 (a \n", + "somewhat arbitrary choice), we end up with feature maps of size 7x7 right before the `Flatten` layer.\n", + "\n", + "Note that the depth of the feature maps is progressively increasing in the network (from 32 to 128), while the size of the feature maps is \n", + "decreasing (from 148x148 to 7x7). This is a pattern that you will see in almost all convnets.\n", + "\n", + "Since we are attacking a binary classification problem, we are ending the network with a single unit (a `Dense` layer of size 1) and a \n", + "`sigmoid` activation. This unit will encode the probability that the network is looking at one class or the other." + ] + }, + { + "metadata": { + "id": "TF4XpQbPmJ5v", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import layers\n", + "from keras import models\n", + "\n", + "model = models.Sequential()\n", + "model.add(layers.Conv2D(32, (3, 3), activation='relu',\n", + " input_shape=(150, 150, 3)))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(64, (3, 3), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(128, (3, 3), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(128, (3, 3), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(512, activation='relu'))\n", + "model.add(layers.Dense(1, activation='sigmoid'))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "KmJBPXmWmJ5y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a look at how the dimensions of the feature maps change with every successive layer:" + ] + }, + { + "metadata": { + "id": "F_hG9kRjmJ5y", + "colab_type": "code", + "outputId": "8cda967b-fd47-493a-da9f-1bdf41678d81", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + } + }, + "cell_type": "code", + "source": [ + "model.summary()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_4 (Conv2D) (None, 148, 148, 32) 896 \n", + "_________________________________________________________________\n", + "max_pooling2d_3 (MaxPooling2 (None, 74, 74, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_5 (Conv2D) (None, 72, 72, 64) 18496 \n", + "_________________________________________________________________\n", + "max_pooling2d_4 (MaxPooling2 (None, 36, 36, 64) 0 \n", + "_________________________________________________________________\n", + "conv2d_6 (Conv2D) (None, 34, 34, 128) 73856 \n", + "_________________________________________________________________\n", + "max_pooling2d_5 (MaxPooling2 (None, 17, 17, 128) 0 \n", + "_________________________________________________________________\n", + "conv2d_7 (Conv2D) (None, 15, 15, 128) 147584 \n", + "_________________________________________________________________\n", + "max_pooling2d_6 (MaxPooling2 (None, 7, 7, 128) 0 \n", + "_________________________________________________________________\n", + "flatten_2 (Flatten) (None, 6272) 0 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 512) 3211776 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 1) 513 \n", + "=================================================================\n", + "Total params: 3,453,121\n", + "Trainable params: 3,453,121\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "CiqTCgiUmJ52", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For our compilation step, we'll go with the `RMSprop` optimizer as usual. Since we ended our network with a single sigmoid unit, we will \n", + "use binary crossentropy as our loss (as a reminder, check out the table in Chapter 4, section 5 for a cheatsheet on what loss function to \n", + "use in various situations)." + ] + }, + { + "metadata": { + "id": "pcu4z4A2mJ52", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import optimizers\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer=optimizers.RMSprop(lr=1e-4),\n", + " metrics=['acc'])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "aJCfALNMmJ54", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Data preprocessing\n", + "\n", + "As you already know by now, data should be formatted into appropriately pre-processed floating point tensors before being fed into our \n", + "network. Currently, our data sits on a drive as JPEG files, so the steps for getting it into our network are roughly:\n", + "\n", + "* Read the picture files.\n", + "* Decode the JPEG content to RBG grids of pixels.\n", + "* Convert these into floating point tensors.\n", + "* Rescale the pixel values (between 0 and 255) to the [0, 1] interval (as you know, neural networks prefer to deal with small input values).\n", + "\n", + "It may seem a bit daunting, but thankfully Keras has utilities to take care of these steps automatically. Keras has a module with image \n", + "processing helper tools, located at `keras.preprocessing.image`. In particular, it contains the class `ImageDataGenerator` which allows to \n", + "quickly set up Python generators that can automatically turn image files on disk into batches of pre-processed tensors. This is what we \n", + "will use here." + ] + }, + { + "metadata": { + "id": "_T1dWihCmJ56", + "colab_type": "code", + "outputId": "56159424-93f8-4aa5-def9-4389cea66f42", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + } + }, + "cell_type": "code", + "source": [ + "from keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "# All images will be rescaled by 1./255\n", + "train_datagen = ImageDataGenerator(rescale=1./255)\n", + "test_datagen = ImageDataGenerator(rescale=1./255)\n", + "\n", + "train_generator = train_datagen.flow_from_directory(\n", + " # This is the target directory\n", + " train_dir,\n", + " # All images will be resized to 150x150\n", + " target_size=(150, 150),\n", + " batch_size=20,\n", + " # Since we use binary_crossentropy loss, we need binary labels\n", + " class_mode='binary')\n", + "\n", + "validation_generator = test_datagen.flow_from_directory(\n", + " validation_dir,\n", + " target_size=(150, 150),\n", + " batch_size=20,\n", + " class_mode='binary')" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 2000 images belonging to 2 classes.\n", + "Found 1000 images belonging to 2 classes.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "pHx8hYw1mJ5-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a look at the output of one of these generators: it yields batches of 150x150 RGB images (shape `(20, 150, 150, 3)`) and binary \n", + "labels (shape `(20,)`). 20 is the number of samples in each batch (the batch size). Note that the generator yields these batches \n", + "indefinitely: it just loops endlessly over the images present in the target folder. For this reason, we need to `break` the iteration loop \n", + "at some point." + ] + }, + { + "metadata": { + "id": "5ux8lq5EmJ5-", + "colab_type": "code", + "outputId": "4ce80a99-266e-4f83-faf6-c3cc0e3a4c57", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + } + }, + "cell_type": "code", + "source": [ + "for data_batch, labels_batch in train_generator:\n", + " print('data batch shape:', data_batch.shape)\n", + " print('labels batch shape:', labels_batch.shape)\n", + " break" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "data batch shape: (20, 150, 150, 3)\n", + "labels batch shape: (20,)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "k9gS-cCOmJ6C", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's fit our model to the data using the generator. We do it using the `fit_generator` method, the equivalent of `fit` for data generators \n", + "like ours. It expects as first argument a Python generator that will yield batches of inputs and targets indefinitely, like ours does. \n", + "Because the data is being generated endlessly, the generator needs to know example how many samples to draw from the generator before \n", + "declaring an epoch over. This is the role of the `steps_per_epoch` argument: after having drawn `steps_per_epoch` batches from the \n", + "generator, i.e. after having run for `steps_per_epoch` gradient descent steps, the fitting process will go to the next epoch. In our case, \n", + "batches are 20-sample large, so it will take 100 batches until we see our target of 2000 samples.\n", + "\n", + "When using `fit_generator`, one may pass a `validation_data` argument, much like with the `fit` method. Importantly, this argument is \n", + "allowed to be a data generator itself, but it could be a tuple of Numpy arrays as well. If you pass a generator as `validation_data`, then \n", + "this generator is expected to yield batches of validation data endlessly, and thus you should also specify the `validation_steps` argument, \n", + "which tells the process how many batches to draw from the validation generator for evaluation." + ] + }, + { + "metadata": { + "id": "Cxds9htemJ6C", + "colab_type": "code", + "outputId": "7ba3bf51-1c42-4fb1-d774-62c94332af37", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1054 + } + }, + "cell_type": "code", + "source": [ + "history = model.fit_generator(\n", + " train_generator,\n", + " steps_per_epoch=100,\n", + " epochs=30,\n", + " validation_data=validation_generator,\n", + " validation_steps=50)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/30\n", + "100/100 [==============================] - 12s 120ms/step - loss: 0.6882 - acc: 0.5510 - val_loss: 0.6967 - val_acc: 0.5000\n", + "Epoch 2/30\n", + "100/100 [==============================] - 11s 111ms/step - loss: 0.6560 - acc: 0.6160 - val_loss: 0.7042 - val_acc: 0.5580\n", + "Epoch 3/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.6061 - acc: 0.6860 - val_loss: 0.7039 - val_acc: 0.5940\n", + "Epoch 4/30\n", + "100/100 [==============================] - 11s 114ms/step - loss: 0.5666 - acc: 0.7080 - val_loss: 0.6188 - val_acc: 0.6590\n", + "Epoch 5/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.5329 - acc: 0.7320 - val_loss: 0.6324 - val_acc: 0.6400\n", + "Epoch 6/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.5074 - acc: 0.7460 - val_loss: 0.5719 - val_acc: 0.7010\n", + "Epoch 7/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.4827 - acc: 0.7685 - val_loss: 0.5593 - val_acc: 0.7010\n", + "Epoch 8/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.4570 - acc: 0.7805 - val_loss: 0.5546 - val_acc: 0.7190\n", + "Epoch 9/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.4345 - acc: 0.7940 - val_loss: 0.5738 - val_acc: 0.6960\n", + "Epoch 10/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.4045 - acc: 0.8215 - val_loss: 0.5514 - val_acc: 0.7230\n", + "Epoch 11/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.3769 - acc: 0.8375 - val_loss: 0.5780 - val_acc: 0.7230\n", + "Epoch 12/30\n", + "100/100 [==============================] - 11s 114ms/step - loss: 0.3481 - acc: 0.8450 - val_loss: 0.5841 - val_acc: 0.7250\n", + "Epoch 13/30\n", + "100/100 [==============================] - 11s 114ms/step - loss: 0.3282 - acc: 0.8585 - val_loss: 0.5710 - val_acc: 0.7390\n", + "Epoch 14/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.3162 - acc: 0.8680 - val_loss: 0.5718 - val_acc: 0.7380\n", + "Epoch 15/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.2830 - acc: 0.8865 - val_loss: 0.6322 - val_acc: 0.7380\n", + "Epoch 16/30\n", + "100/100 [==============================] - 11s 114ms/step - loss: 0.2601 - acc: 0.8900 - val_loss: 0.6177 - val_acc: 0.7360\n", + "Epoch 17/30\n", + "100/100 [==============================] - 11s 114ms/step - loss: 0.2396 - acc: 0.9055 - val_loss: 0.6363 - val_acc: 0.7360\n", + "Epoch 18/30\n", + "100/100 [==============================] - 11s 114ms/step - loss: 0.2126 - acc: 0.9245 - val_loss: 0.6626 - val_acc: 0.7220\n", + "Epoch 19/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.1923 - acc: 0.9285 - val_loss: 0.7246 - val_acc: 0.7250\n", + "Epoch 20/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.1706 - acc: 0.9405 - val_loss: 0.7141 - val_acc: 0.7310\n", + "Epoch 21/30\n", + "100/100 [==============================] - 11s 111ms/step - loss: 0.1631 - acc: 0.9400 - val_loss: 0.6769 - val_acc: 0.7600\n", + "Epoch 22/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.1400 - acc: 0.9460 - val_loss: 0.7071 - val_acc: 0.7440\n", + "Epoch 23/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.1136 - acc: 0.9620 - val_loss: 0.8069 - val_acc: 0.7230\n", + "Epoch 24/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.1073 - acc: 0.9670 - val_loss: 0.7624 - val_acc: 0.7380\n", + "Epoch 25/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.0898 - acc: 0.9695 - val_loss: 0.8264 - val_acc: 0.7410\n", + "Epoch 26/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.0833 - acc: 0.9715 - val_loss: 0.8501 - val_acc: 0.7460\n", + "Epoch 27/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.0677 - acc: 0.9815 - val_loss: 1.2146 - val_acc: 0.6940\n", + "Epoch 28/30\n", + "100/100 [==============================] - 11s 112ms/step - loss: 0.0551 - acc: 0.9845 - val_loss: 0.9133 - val_acc: 0.7570\n", + "Epoch 29/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.0500 - acc: 0.9860 - val_loss: 0.9432 - val_acc: 0.7390\n", + "Epoch 30/30\n", + "100/100 [==============================] - 11s 113ms/step - loss: 0.0444 - acc: 0.9880 - val_loss: 1.0360 - val_acc: 0.7390\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ofRjObEMmJ6G", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "It is good practice to always save your models after training:" + ] + }, + { + "metadata": { + "id": "9eFz2RiCmJ6H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.save('cats_and_dogs_small_1.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "o9ZMBLGsmJ6J", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's plot the loss and accuracy of the model over the training and validation data during training:" + ] + }, + { + "metadata": { + "id": "lShdtlzJmJ6L", + "colab_type": "code", + "outputId": "fb96e15b-0b23-4220-f842-ccc03910cd16", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4VGXax/HvtDQSIAkJ0mwIQii6\nWBZENxASqqyLjQiKCIpSXmAVFbGAIkUFFpFVAQWUGkWyiitViq4iCChKE0RFQEropGfK+8eYQMik\nTSaZzOT3uS4ucs7MOfPMnTO553nOUwwOh8OBiIiIVDijtwsgIiJSVSkJi4iIeImSsIiIiJcoCYuI\niHiJkrCIiIiXKAmLiIh4iZKwVDqjR4+mc+fOdO7cmWbNmtG+ffu87dTU1FKdq3Pnzpw4caLI50ye\nPJlFixaVpcge17dvX5YuXeqRc1177bUcPXqU1atX88wzz5Tp9T744IO8n0sSWxEpmtnbBRC51Isv\nvpj3c1xcHK+++io33nijW+dasWJFsc954okn3Dq3r0lISCAhIcHt41NSUnjnnXe49957gZLFVkSK\nppqw+JwHHniAf/3rX3Tp0oVt27Zx4sQJ+vfvT+fOnYmLi2POnDl5z82tBW7atImePXsyefJkunTp\nQlxcHJs3bwZg5MiRvPnmm4Az6S9evJi7776bW2+9lYkTJ+ad6+2336ZNmzbcddddLFiwgLi4OJfl\n+/DDD+nSpQsdO3akd+/eHD58GIClS5cydOhQRo0aRadOnejatSv79u0D4ODBg9xzzz3Ex8fzxBNP\nYLPZCpx3w4YNdO/ePd++O+64gy+++KLIGORaunQpffv2Lfb1Pv/8c7p3706nTp2488472b17NwCJ\niYn88ccfdO7cmezs7LzYArz//vt07dqVzp07M3DgQE6dOpUX22nTpvHQQw/Rvn17HnroITIyMgqU\nLSMjg+HDh9OpUyfi4uJ45ZVX8h47ePAgvXv3JiEhgbvuuoudO3cWuT8uLo4tW7bkHZ+7fejQIW69\n9VbGjx/P/fffX+R7BZg5cyYdOnSgU6dOTJgwAZvNRtu2bfnxxx/znjN//nwGDRpU4P2IlJSSsPik\nHTt28N///pdWrVrx1ltvUb9+fVasWMF7773H5MmTOXLkSIFjdu3axXXXXcfy5cvp1asXb731lstz\nf/vttyQlJfHRRx8xf/58jh49yr59+3jnnXf4+OOPWbhwYaG1wJMnT/LSSy8xZ84cVq1axeWXX56X\n4AG++OILevXqxcqVK/nrX//Ke++9B8CkSZNo06YNa9as4cEHH2Tbtm0Fzt2mTRuOHj3KwYMHAWcS\nOnr0KLfcckuJY5CrsNezWq2MHDmSsWPHsnLlynwJcfz48dSpU4cVK1YQEBCQd67vv/+ed999l3nz\n5rFixQrq1q3L5MmT8x5fsWIF//rXv1i9ejWnTp1i9erVBcqzaNEi0tLSWLFiBcnJySxdujQvkT7/\n/PN069aN1atXM3DgQJ566qki9xflzJkzNG3alPnz5xf5Xrds2cKSJUv4+OOPWbZsGVu3bmXVqlV0\n6dKFTz/9NO98q1evplu3bsW+rkhhlITFJ8XGxmI0Oi/f5557jueffx6ABg0aEBUVxaFDhwocU61a\nNeLj4wFo1qwZf/zxh8tzd+/eHZPJRO3atYmMjOTIkSN8++233HzzzURHRxMYGMhdd93l8tjIyEi2\nbt3KZZddBsCNN96YlzQBGjZsSPPmzQGIiYnJS5Rbtmyha9euALRs2ZKrr766wLkDAgJo3749a9eu\nBWDNmjXEx8djNptLHINchb2e2Wzm66+/5vrrr3dZflfWr19Pp06diIyMBOCee+7hq6++yns8NjaW\nmjVrYjabady4scsvB/369ePNN9/EYDBQo0YNGjVqxKFDh8jKymLTpk3cfvvtAHTo0IEPPvig0P3F\nycnJyWuSL+q9fvHFF8TGxhIaGkpAQADz5s2jY8eOdOvWjc8++wy73c6ZM2fYsWMH7du3L/Z1RQqj\ne8Lik2rUqJH3848//phX8zMajaSkpGC32wscExYWlvez0Wh0+RyA0NDQvJ9NJhM2m41z587le83a\ntWu7PNZmszFt2jTWrl2LzWYjLS2Nq666ymUZcs8NcPbs2XyvW716dZfn79SpE++//z4PPvgga9as\nyWsKLWkMchX1evPmzSM5OZns7Gyys7MxGAyFngfg1KlTREdH5zvXyZMni33PF/vtt9+YOHEiv/zy\nC0ajkaNHj3LnnXdy5swZ7HZ73jkMBgPVqlXj2LFjLvcXx2Qy5Xvfhb3X06dP53tPwcHBAPzlL3/B\nYrGwefNmjh49yq233kpISEixrytSGNWExec9+eSTdOrUiZUrV7JixQrCw8M9/hqhoaGkp6fnbR8/\nftzl8z777DPWrl3L/PnzWblyJUOHDi3R+atXr56v53fuPdVL3XbbbezZs4fffvuN3377jdatWwOl\nj0Fhr7dt2zZmzZrFW2+9xcqVK3n55ZeLLXutWrU4c+ZM3vaZM2eoVatWscdd7KWXXqJRo0YsX76c\nFStW0KRJEwDCw8MxGAycPn0aAIfDwYEDBwrd73A4CnzBOnv2rMvXLOq9hoeH550bnEk5d7tbt26s\nWLGCFStW5LUmiLhLSVh83smTJ2nevDkGg4Hk5GQyMjLyJUxPaNmyJZs2beLUqVNkZ2fzn//8p9Cy\n1KtXj4iICE6fPs3y5ctJS0sr9vzXX3993r3Sbdu28fvvv7t8XkBAALfeeiuvvfYaHTp0wGQy5b1u\naWJQ2OudOnWKyMhI6tatS0ZGBsnJyaSnp+NwODCbzaSnp2O1WvOdq127dqxevTovSS1evJjY2Nhi\n3/PFTp48SdOmTTGZTHz11VccOHCA9PR0AgICaNu2LcnJyQB8+eWXDBgwoND9BoOBqKgo9uzZAzi/\nFGVlZbl8zaLea1xcHGvXruXs2bNYrVYGDx7M//73PwBuv/121qxZw3fffVfq9ylyKSVh8XnDhg1j\n8ODBdO/enfT0dHr27Mnzzz9faCJzR8uWLenRowc9evSgT58+hd4HvP322zlz5gwJCQk88cQTDB8+\nnKNHj+brZe3Kk08+ybp164iPj2fBggXccssthT63U6dOrFmzhi5duuTtK20MCnu92267jejoaOLj\n4+nXrx8PPvggYWFhDB06lGuvvZYaNWrQtm3bfPfTW7ZsyYABA+jduzedO3fm/Pnz/POf/yzy/V5q\n4MCBvPLKK9x+++1s3ryZIUOG8MYbb7B161bGjRvHunXr6NChA1OnTmXSpEkAhe4fNGgQc+fO5fbb\nb2f//v1cc801Ll+zqPd6/fXX079/f/7xj3/QrVs3YmJi8u4/X3vttdSsWZNbb72VoKCgUr1PkUsZ\ntJ6wSMk4HI68e4br169n6tSphdaIxb898sgj3H///aoJS5mpJixSAqdOnaJ169YcPnwYh8PB8uXL\n83rVStWydetWDh8+zG233ebtoogfUO9okRKIiIhg+PDh9O3bF4PBwNVXX12icaniX5555hm2bdvG\na6+9ljdETqQs1BwtIiLiJfoqJyIi4iVKwiIiIl5S4feEU1LOe/R84eEhnD7t2TGh/kBxcU1xcU1x\ncU1xcU1xca2ouERFhbnc7/M1YbPZ5O0iVEqKi2uKi2uKi2uKi2uKi2vuxMXnk7CIiIivKlES3rt3\nL/Hx8cyfP7/AY19//TV33303PXv25N///rfHCygiIuKvik3C6enpjB07ljZt2rh8/OWXX+aNN95g\n0aJFfPXVV/z8888eL6SIiIg/KjYJBwQEMGvWrHzLeuU6ePAgNWrUoE6dOhiNRmJjY9m4cWO5FFRE\nRMTfFJuEzWZzoZOUp6SkEBERkbcdERFBSkqK50onIiLixyp8iFJ4eIjHe9YV1vW7qlNcXFNcXFNc\nXFNcXFNcXCttXMqUhKOjozlx4kTe9rFjx1w2W1/M02PLoqLCPD722B8oLq4pLq4pLq4pLq4pLq4V\nFZfCknOZknD9+vVJTU3l0KFDXHbZZaxbty5vTU9f8sYb/+Knn3Zz6tRJMjMzqVu3HtWr12D8+NeK\nPfazz5ZRrVoosbGu15d9/fXJ3HNPInXr1vN0sUVExMcVu4DDjh07eOWVVzh8+DBms5natWsTFxdH\n/fr1SUhI4Ntvv81LvB07dqR///5FvqAnvj0lJ5uZOjWAvXuNxMQYGDIkgx49rGU+72efLeOXX/Yz\nZMjwMp/L2/RN1TXFxTXFxTXFxTV/jcvFuaVxYzvDh2eXKreUS024efPmzJs3r9DHb7rpJpKSkkpY\nxLJLTjbz6KPBeds//sif255JxBfbtm0LixfPJz09nSFD/sl3321l/frPsdvttGnTln79BvDuuzOo\nWbMmV13VkKVLP8BgMHLgwK+0a9eBfv0GMGTIAB5//CnWrfuctLRUfv/9AIcPH2Lo0Cdo06Yt8+fP\nZc2aVdStWw+r1UpiYm9atboxrwzffruJd955G4vFQlhYGC+9NBGLxcLUqZPYtWsHJpOJJ598hquv\nvibfvvHjXyY8vI5H4yEi4q8uzS27d5vKLbdczOdmzJo6NcDl/tdfd72/rPbv/5kpU6bTpElTAN58\n8x1mzpzL8uWfkpaWmu+5u3bt5Nlnx/D223P46KOCX0yOHz/GpEnTGDZsBJ98spRz586ydOmHzJgx\nmxEjRvL999sKHHP+/HlGj36Z6dNnEhJSjU2bNvLtt5s4fvwYM2fO5dFHB/P556sL7Pvss8/KJR4i\nIhUlOdlMbGwIdeqEEhsbQnJyye6gunNcReeWXBXeO7qs9u51/b2hsP1ldc01jQgIcP4SgoKCGDJk\nACaTiTNnznDu3Ll8z7322iaFDucCaNnyesDZoc15L/0gV1/dkMDAIAIDg2jatFmBY2rWrMkrr7yM\nzWbjjz8Oc8MNN3H69ClatLgOgOuvb8X117diwYL38u1LSIj1y+YiEaka3K2ZuntcReeWXD5XE27c\n2F6q/WVlsVgAOHr0CElJC5g8+Q2mT5/JZZddVuC5JlPRQ68uftzhcOBwgNF44VdgMBQ8ZsKEsfzz\nn08xffpMbr31bwAYjSYcjvzv19U+EZHKoCJrpu4eV9G5JZfPJeHhw7Nd7h82zPV+Tzlz5gzh4eGE\nhITw0097OHr0KDk5OWU6Z506dfjll/1YrVZOnz7Nnj27CzwnLS2V2rUv4/z582zbtpWcnByaNo1h\n27YtAOzdu4fJk18psO/FF18sU9lERDwht2a6e7cJm82QVzMtLhG7WzN19zhv5Rafa452Nidk8Prr\nF3pHDx5cvjfOARo1akxwcAgDB/ajRYvrueOOO5k8+RVatrzO7XNGRESSkNCZRx7pwxVXXEVMTLMC\ntek777yHgQP706DB5fTu3YfZs2fy1luzueKKqxg06GEAnnhiJA0bXsOXX27I2/fyyy+5/2ZFRDyk\nqJppUX+3Gze2s3t3wdbF4mqm7h53aW5p3NjOsGGl6x3tjmKHKHmap+9T+npX+c8+W0ZCQmdMJhN9\n+iQyZcobREfXLvN5fT0u5UVxcU1xcU1xca00calTJxSbreC9NrPZwR9/pLo4wunSe7u5Zswo3T3h\nkh7nCRU+WYeU3cmTJxkw4EEslgA6duzskQQsIlJZVHTN1Fs1WnepJuynFBfXFBfXFBfXFBfXShMX\nb9ZMK5o7NWGf65glIiLekdvL2WymxL2ce/SwMmNGBjExNsxmBzExNr9MwO5Sc7SISBXjzvSMZZlR\nqkcPq5JuIVQTFhHxUe6Mv3V3yJC3ZpTyd0rCIiI+qKKTqbdmlPJ3ih7w6KMPFZgo4+23p7No0XyX\nz9+2bQvPPfcUACNHPl7g8Y8+SuLdd2cU+no//7yP338/AMDo0c+QlZXpbtFFpIqq6GTqrRml/J2S\nMJCQ0Im1a1fn27d+/Vri4zsWe+zEiVNK/XobNqzl4MHfAXjxxQkEBhY+37SI+D93mpUrOpl6a0Yp\nf6eOWUCHDh0ZOLA/gwYNBWDPnt1ERUURFRXtcinBi3Xr1oH//vdztmzZzLRpk4mIiCQyslbe0oTj\nxo0hJeU4GRkZ9Os3gMsuq8PHHy9lw4a1hIeH88ILz/D++0mkpp5nwoSXyMnJwWg0MnLk8xgMBsaN\nG0PduvX4+ed9NG58LSNHPp/v9VetWs6SJUmYTEauvLIhTz/9LFarlSeeeIIDB34nICCQ5557kfDw\nCF5+eTTHjh3J2xcVFV1hMRYR19zt8OTu+Nvhw7NdDhkqLpnmH39ronFjW6Uef+srKl0SHjMmkGXL\nSl4soxHs9mpFPqd7dytjxmQV+nh4eAR169Zj164dxMQ0Z+3a1SQkdAYuLCVYt249xo59gU2bNhIS\nElLgHDNmTOf558fSqFFjRowYSt269Th//hw339yaLl1u5/DhQzz//Ehmz57PX//ahnbtOhAT0zzv\n+HfeeZvbb7+DDh06sm7dGmbPnkn//o/y00+7efHF8YSHR9CjR1fOnz9PWNiF8WYZGRlMnvwGYWFh\nDB78CPv3/8yuXTuoVasWI0eOYc2alfzvf19gNpuJjIxkzJhxeft69Li7xHEWkfLh7rSOnkmmpZvM\nIreXs3M8bHqxz5fiVbok7C0JCZ35/PPVxMQ056uvvuCtt2YDrpcSdJWEjxw5QqNGjQHnUoJZWVmE\nhVVn9+6dfPLJUgwGI+fOnS309X/6aTePPTYEgFatbmTu3HcAqFevAZGRtQCoVSuKtLTUfEm4evXq\nPPPMEwAcOPArZ8+e4aef9hAX51xxKT6+EwCTJk3kxhtvyrdPRLzP3WZlTyRT8b5Kl4THjMkqstZ6\nKec3srQyv25sbHvef382CQmdaNDgcqpXrw44lxJ87bWpXHnlVUyZ8kqhx1+8JGHuJGSrV6/g3Llz\n/Pvf73Du3DkefviBIkpgyDsuJ8eKweA836ULOlw8wVlOTg5TprzK3LkLiYysxVNPDf/zGCN2e/4m\nKee+Cp0cTURKwN1mZVAy9QfqmPWnkJBqNGzYiPffn5PXFA2ulxJ0pVatKH7//TccDgfffbcVcC5/\nWKdOXYxGIxs2rM071mAwYLPZ8h1/8VKE33+/lSZNmhZb5vT0NEwmE5GRtTh27Ch79uzGarXSpEkM\n33zzDQBfffUl778/myZNYti27dt8+0TE+9ThqWqrdDVhb0pI6MzLL49m9OixeftcLSU4YMCgAscO\nGDCI5557mssuq5O3CEO7dnGMHPk4u3btoFu3vxMdHc2cObO47rq/MHXqa/matR9++DEmTBjLsmX/\nwWy28Mwzz2O1Fv0Nt0aNmtx00195+OE+XHNNI3r1eoBp06Ywe/Z8duz4jiFDBmAymXnuuTHUrBnO\nli2b8+0TEe/ztQUHxLO0gIOfUlxcU1xcU1xcU1xcU1xc0wIOIiIiPkRJWETEQ9yZdEOqNl0hIiIe\nUJZVhqTqUk1YRMQDtMqQuENJWET8lrvNw+4sXq9VhsQdao4WEb/kbvNwRc/lLFWbvqKJiF9yt3nY\n3eM06Ya4Q0lYRPySu83DZZnLecaMDGJibJjNDmJibMyYoU5ZUjQ1R4uIX3K3eVhzOUtFUk1YRPyS\nu83DalaWiqQkLCJ+yd3m4fzHoWZlKVdqjhaRSi852czUqRcWOBg+vHzXzdXi9VJRlIRFpFLTTFTi\nz9QcLSIVxp3JMzQTlfgz1YRFpEK4W6PVTFTiz3QVi0iFcLdGW9jQIM1EJf5ASVhEKoS7NVoNGRJ/\npiQsIhXC3RqtZqISf6Z7wiJSIYYPz853TzhXSWq0molK/JVqwiJSIVSjFSlINWERqTCq0Yrkp5qw\niIiIlygJi4iIeImSsIiUmjszX4lIQfrkiEipaC5nEc9RTVhESkVzOYt4TomS8Pjx4+nZsyeJiYn8\n8MMP+R5bs2YNd911F/fddx/z588vl0KKSOWhuZxFPKfYT83mzZs5cOAASUlJjBs3jnHjxuU9Zrfb\nGTt2LLNmzWLBggWsW7eOo0ePlmuBRcS7NJeziOcUm4Q3btxIfHw8AA0bNuTs2bOkpqYCcPr0aapX\nr05ERARGo5HWrVvz9ddfl2+JRcSrNJeziOcU2zHrxIkTNGvWLG87IiKClJQUQkNDiYiIIC0tjd9+\n+4169eqxadMmbr755iLPFx4egtlsKnvJLxIVFebR8/kLxcU1xcW1ksZlwACoXh0mTIBduyAmBp55\nBhITC05J6Q90vbimuLhW2riUune0w+HI+9lgMDBx4kRGjRpFWFgY9evXL/b406fTS/uSRYqKCiMl\n5bxHz+kPFBfXFBfXShuXDh2c/y6WkuLhQlUCul5cU1xcKyouhSXnYpNwdHQ0J06cyNs+fvw4UVFR\neds333wzCxcuBGDy5MnUq1evVIUWERGpqoq9J9y2bVtWrlwJwM6dO4mOjiY0NDTv8YcffpiTJ0+S\nnp7OunXraNOmTfmVVkQ8KnfSDbMZTboh4gXFfuJatWpFs2bNSExMxGAwMHr0aJYuXUpYWBgJCQnc\ne++99OvXD4PBwIABA4iIiKiIcotIGWnSDRHvMzguvslbATx9H0H3JlxTXFzz17gkJ5uZOjWAvXuN\nNG5sZ/jw7GITaWxsCLt3F+wkGRNjY/16z/bd8FX+er2UleLiWrncExaRys3dGq0m3RDxPn3aRHyc\nu9NIatINEe9TEhbxce7WaDXphoj3KQmL+Dh3a7Q9eliZMSODmBgbZrPzXvCMGeqUJVKRlIRFfFxZ\narQ9elhZvz6dnBxYvz5dCVikgikJi/i4/DVah2q0Ij5EvaNF/ECPHlYlXREfpJqwiIiIlygJi4iI\neImSsEglkjuXc506oZrLWaQK0CdcpJLQXM4iVY9qwiKVhLszX4mI71ISFqkkNJezSNWjT7dIJaG5\nnEWqHiVhkUpCczmLVD1KwiLlwJ1ezpr5SqTqUe9oEQ8rSy9nzXwlUrWoJiziYerlLCIlpSQs4mHq\n5SwiJaW/CiIepl7OIlJSSsIiHqZeziJSUkrCIh6mXs4iUlLqHS1ShORkM1OnBrB3r5HGje0MH55d\nomSqXs4iUhJKwiKF0IIKIlLe1BwtUggNNRKR8qYkLFIIDTUSkfKmvyZSJeROI2k2U+JpJDXUSETK\nm5Kw+L3ce7u7d5uw2S7c2y0uEWuokYiUNyVh8Xvu3tvVUCMRKW/qHS1+ryz3djXUSETKk2rC4vd0\nb1dEKislYfF7urcrIpWVkrD4vfz3dtG9XRGpNHRPWKqE3Hu7UVFhpKSke7s4IiKAasIiIiJeoyQs\nPiV30o06dUJLPOmGiEhlpb9g4jO0oIKI+BvVhMVnaEEFEfE3SsLiM7Sggoj4G/31Ep+hSTdExN8o\nCYvP0KQbIuJvlITFZ2hBBRHxN+odLT5FCyqIiD9RTVhERMRLlIRFRES8RElYRETES0p0T3j8+PFs\n374dg8HAqFGjaNmyZd5jCxYs4JNPPsFoNNK8eXOeffbZciusiIiIPym2Jrx582YOHDhAUlIS48aN\nY9y4cXmPpaam8u6777JgwQIWLVrE/v37+f7778u1wCIiIv6i2CS8ceNG4uPjAWjYsCFnz54lNTUV\nAIvFgsViIT09HavVSkZGBjVq1CjfEouIiPiJYpPwiRMnCA8Pz9uOiIggJSUFgMDAQAYPHkx8fDzt\n27fnuuuu46qrriq/0oqIiPiRUo8TdjgceT+npqYyY8YMVqxYQWhoKA8++CB79uyhSZMmhR4fHh6C\n2Wxyr7SFiIoK8+j5/EVljsvixTB+POzaBTExMGoUJCZWzGtX5rh4k+LimuLimuLiWmnjUmwSjo6O\n5sSJE3nbx48fJyoqCoD9+/fToEEDIiIiALjxxhvZsWNHkUn49On0UhWwOFFRYaSknPfoOf1BZY7L\npUsS/vgj3HcfnDtX/rNfVea4eJPi4pri4pri4lpRcSksORfbHN22bVtWrlwJwM6dO4mOjiY0NBSA\nevXqsX//fjIzMwHYsWMHV155pTtllypESxKKiDgVWxNu1aoVzZo1IzExEYPBwOjRo1m6dClhYWEk\nJCTQv39/+vTpg8lk4i9/+Qs33nhjRZRbfJiWJBQRcSrRPeERI0bk2764uTkxMZHEirqZJ36hcWM7\nu3cX7BegJQlFpKpR1UMqnJYkFBFxUhKWCqclCUVEnLSUoXiFliQUEVFNWMooOdlMbGwIdeqEEhsb\nQnKyvteJiJSU/mKK2y4d77t7t+nPbTUti4iUhGrC4jaN9xURKRslYXGbxvuKiJSN/lqK2wob16vx\nviIiJaMkLG7TeF8RkbJREha3abyviEjZqHe0AM6ezlOnBrB3r5HGje0MH55domSq8b4iIu5TEhYN\nNRIR8RI1R4uGGomIeImSsGiokYiIl+ivrGiokYiIlygJi4YaiYh4iZKwaKiRiAvHjhl4911ITfV2\nScSfqXe0ABpqJHKxc+fgnnuC2bMHGjSoxmuvZRIXZ/N2scQPqSYsInKR7Gx46KFg9uwx0bYtHDli\nIDExhMceCyIlxeDt4lU5X31lok+fIH780T/TlX++KxERNzgc8OSTQXz5pZnOnXPYsAFWr07nL3+x\nsXSphVtvrcbixWYcDm+XtOoYMyaQFSssdO4cwptvWrD7WX9RJWERkT/9618BLFpk4frrbbz1ViYm\nEzRrZuezz9J5+eVMsrJg6NBg7rknmF9/Va24vG3fbmT7dhMtWtioWdPBmDFB9OwZzLFj/hN7JWER\nEWDJEjMTJwbSoIGdefMyqFbtwmMmEwwYkMOXX6YRH2/liy/MtGtXjTfeCMCqrhTlZt48CwDPPJPF\n+vXpxMdb2bDBTLt2IaxcafJy6TxDSdjPJCebiY0NwWyG2NgQkpPV906kOF9/bWL48CCqV3ewYEEG\ntWu7bm9u0MD5+NtvZ1CtmoOxYwPp2DGE7dv1p9TTUlPho48s1Ktnp317G1FRzthPmJBJaqqBBx4I\n4emnA8nI8HZJy0ZXjh/JnQN6924TNtuFOaCViEUKt2+fkb59g7HbYc6cDJo0Kfqmo8EAd95p5X//\nSyMxMYcdO0x06hTCCy8EkpZWQYWuAv7zHwtpaQZ6987B9Gel12CA/v1zWLkynaZNbcyZE0DHjiHs\n3Om7qcx3Sy4FaA5okdJJSTGW6LL2AAAgAElEQVRw333BnDljYMqUTG67reTDkCIiYNq0TJYsSefy\nyx28/XYAsbHVWLvWP5pJL+ZwwG+/GfjkEzNjxwYwZAikp5fva86bZ8FodNCrV06Bx2Ji7KxYkU7/\n/tn89JPzS9DMmRaf7DCnKpIf0RzQIiWXkQF9+gTz++9Gnngii8RE927u/u1vNjZsSGPSpADefDOA\nxMQQ7rorh1dfzSQszMOFrgAOB/z6q4EffjCxfbuJH34w8sMPJs6ezd8ZKirKwqBBBROkJ/z4o5Hv\nvjPRqZOVunVdZ9bgYJgwIYu4OCvDhgXx3HNBrF1rZtq0TKKjfScbKwn7kcaN7ezeXfBbuOaAFsnP\nbodBg4LYutXEPffk8NRTZZuiNTgYnn8+m3/8w8oTTwTx0UcWdu40Mm9eBldcUXkTgt3urOFu354/\n4Z47lz/hXn21nbg4Ky1b2mjSxM6AASG8+WYADz2UQ3BwIScvg9wOWQ88UPzvJSHBxrp16Qwd6kzC\n7dqFMG1aJvHxvjG5isHhqNgKfErKeY+eLyoqzOPn9FWXrgucS1NQXqDrxbWqFpfRowN5660A2ra1\nkpSUQUAhd2zciYvVCi+8EMg77wQQGWlnzpxMWrf2TkJwOODECQOHDhk4dMjIoUMGDh82cvCg8/9f\nfzVy/vyFhGswOGjY0E7Llnauu85Gy5Z2WrSwUb16/vNOmRLGxIkwYUIm/ft7tjaclgYtWoRSvbqD\nLVvSMJewqmi3w6xZFsaODSQ728DDD2fzwgtZBAV5tHhFKup6iYpy3SyiJOxnkpPNvP56AHv3mmjc\n2MawYdlKwBepqOvFaoWFCy189JEZk8lZUwoJcRAcDMHBjnzbzv/z7wsMBKOx9B9Nkwlq1nQQGemg\nenVnR5aSqEqfo9mzLYwcGUSjRjb++990atYs/LllicucORZGjQrEaITJkzPdbu4uTnY2bNli4vff\nnYn28GEDBw8aOXzY+XNmpuuLIDjYweWX22ne3Jlwr7vOmXBDQ4t/TYcjjCuvdF5n33yTVuiXGHcs\nXGhm+PBgRozIcquFYscOI489FsTevSbq17cX2tO9KLVr25kxI5PAwNIdpyQseRQX18o7Lg4HrF1r\n4sUXA9mzx7sddMxmBxERzj+UkZEXfr50X0SEg2uuqcbp06VfqSAkxFFkEqtsVq828cADwUREOFi+\nPL3YpuKyXi8bNph4+OFgzp41MGRIFs8+m53X09cTNmwwMWpUIPv2FTxpZKSd+vUd1K9/4f969Rw0\naODcjohwlPhL2qWiosJ49NFsZs4MYOrUDHr18twXjM6dQ/j+eyNbtqRRv7576Sk9HV58MZCkJAs2\nNxohatd2sHZtWoEWgOIoCfuR5GQzU6cGsHevkcaN7QwfXroarb/GpazKMy47dhgZMyaQL74w5/Xq\nfPrpbCIjHWRkQHq6gYwMyMgwFNhOT8+/PzPTvTJYrQZOnzZw6pSBkyed/06dMhToVOMpBoODnj2t\nPPNMFnXqVN57nwA//GDk738PweGA5OR0WrUqvq+EJ66X/fsN9O4dwi+/GOncOYc338wsUW2zKIcO\nGXjhhUA+/dTZgzgxMYcbbrBTr56dBg0c1KtnJySkbK9RlKioMLZvT+Xmm6tRr56Dr74qebNxUX78\n0UiHDtVISLCyYIHvDQB2JwmrY1YldOm93dzxvqB7u5XR0aMGJk50TnfocBho187KmDFZxMRc+CMf\nFgZhYblJquKTVU4OnDp1ITlfmqQzMwPIyCj9vb2dO40sXmzh44/NDByYzZAh2WVOMOXh0CEDvXsH\nk5EBs2dnligBe0rDhg5WrEijf/9gVqywcPvtzg5bDRqU/jrIyoK33gpg6tQA0tMN3HSTjYkTM2nR\nouI7X9at66BnzxzmzQvgk0/M3Hln2f82zZ9f8g5Z/kI14UooNjbEZS/nmBgb69eXbHCeP8bFEzwZ\nl7Q0+Pe/ncNS0tMNNG1qY/ToLJ9c8s7duNhssHixhQkTAjh+3Eh0tJ2RI7O5774cjza7usvhgF9+\nMdCvn3MSm7FjM3n00ZJ/2fDk9ZKTA88+G8jcuQHUqmXnvfcyuOmmkifPtWtNjBoVxC+/GKlVy84L\nL2Rx771WjF4YgZgbl99+M9CmTTUaNbKzfn16mcqSlgYtW4YSGupg61bP1Kwrmjs1YQ0grYQ03rdy\ns9lgwQILrVtXY9KkQEJDHUyZksnatek+mYDLwmSC3r1z+OabNEaMyCI11cDjjwcRFxfilUkrbDZn\nk+Y771jo3z+IFi2q0aZNKLt3m3j44WwGDCifca0lYbHAq69mMWFCJqdPG+jRI4QPPyw+0/z+u4E+\nfYJITAzhwAEDAwZks3FjGomJ3knAF7vySgd33WVlzx4Ty5eXLWt+8omZ8+cN9OqV45MJ2F2qCVdC\nqgmXn7LGZf16E2PGBLJrl4ngYAeDBmUzeHDlbIItDU9dL0eOGHjllQtN8+3bWxk9On/TvCdlZcF3\n35nYtMnEN9+Y2LzZlG/ITe3adlq3ttGunY3ExNLXzsvrc7RunYlHHgnm3DkDw4dnMXJkdoGEmpkJ\n06cHMG1aAJmZBlq3tjJhQhbNmnl/3P/Fcdm3z8itt4bQsqWdVavS3e7s1aVLCNu2Gdm61f0OWd6m\ne8J+YvjwbJfjfYcNqzr3SSqbPXucna7WrjVjMDg7wvhCZ6SKVqeOg6lTs3j44RzGjAlk3TozGzaY\n8jqpuTNc5GKpqbB584Wku22biaysC3/1r77aTvfuObRubeOvf7Vx5ZXu9wAuT+3b21i+PJ377w9m\n6tRA9u0zMn16Zt7KTatWmXj22SAOHHA28U+Zksldd1kr5Xtp1MhO9+5WPvnEwrp1Jrdag3buNLJ1\nq4n4eKvPJmB3KQlXQs7OVxl/jvd19o7WeF/PSk+nQOek3P9PnDC47MTkcBi47TZnpytvdITxJc2b\n2/nwwww+/9w5XGv+/ACWLrUwZEg2Awdm51sm8GKpqfw5xtWQ93/uJBOHDhk5csT5ewBnz+xmzey0\naWOjdWsbN99sK3OSr0iNGtnzOmz9978Wfv/dyLhxWUyfHsCqVWbMZgcDB2YzYkRWpZ/+cvjwbD75\nxMLkyYG0b1/62vCFDlneu13gLWqO9lP+HJdVq0y8/HIg6emlrxY4HEZOnnSU6FiDwUF4uHM8ZZ06\nDh57LJv4eFulrI2UVXleL1ar8x76K68EcOKEkcsuszNoUDY2G/kmlzh0yFjoUCqTyfk7uOIKOzfe\n6Ey6N91UcCYnT6uIz1FODowcGci8eRdmvLj1VmfT87XXVs4ve67i8sADwaxcaSY5OZ22bUteG05P\nd3bICg528N13vtkhK5eao8XvffmliX79nE31UVGl//5oNsM119jzJqqoVevChBW5E1jkPlazpsOn\n/yBUFmYzPPhgDnfemcP06QG89VYAL7yQfy7BkBDnJBI33JB/conc/y+7zH9/FxYLTJqURdOmdpKS\nLAwenM0dd1TOpueiDB+excqVZv71rwDati35GN9PPjFz7pxzmkl//R0XRTVhP1WRcfnxRyMffGBh\n4MDsQlc88YTvvjNy550h5OTA/PkZtGtX+ntPul5cq8i4HD5sYO1aM5GRzsRbr56d8PCST7FZkXS9\nuFZYXO6+O5gvvjDz2Wdp3HhjyWrxXbuGsHWrkW+/TePyy33ndoIrGqIkFcpuhzfftNC5cwgzZgTQ\nrVsI+/aVzyX1009GEhNDyMiAt9/OdCsBS+VQr56DBx7IoWtXKy1a2ImIqJwJWErv8cednUenTi3Z\npMu7dhnZssVE+/Y2n0/A7lISFrccPWqgZ89gxowJomZNBw8+mM3hw0a6dw/mu+88e1n9/ruBe+4J\n5vRp58Lrt9+uDmoilVGbNjZuvtnKqlVmfvyx+L8DVblDVi4lYSm1FStMtGsXwoYNZhISrKxfn85r\nr2UxZUomZ844JyFYv94zEzUcO2bgnntCOHrUyJgxmR6dKF5EPMtguFAbfv31opdWSk+HDz+0EB1t\np2PHqvu5VhIuZ8nJZmJjQ6hTJ5TY2BCSk32350F6Ojz1VCB9+oSQlmZgwoRM5s/PyOsgdf/9Obz7\nbiY2G/TuHczHH5ftvZ49Cz17BvPrr0aGD89i0KCq+21ZxFe0b2/juutsLFtmLnKWv2XLzJw965wh\ny2KpwAJWMkrC5Sh3IYbdu03YbIa8hRh8MRHv2GGkY8cQ5s4NoGlTG6tWpdO/f06Be3ndullZvDiD\nwEAYMCCI2bPd+3SlpUGvXiHs2mWib99snnlGE5WI+AKDAf75z2wcDgPTphVeG543z/m3oXfvqv3l\nWkm4HE2d6voCLK6ZpjKx22HGDGfnq717nfPvrliRTtOmhfd8bNvWxscfpxMZ6WDkyCBeey2A0vTB\nz86Gfv2C+fZbE3femcPEiVnquCPiQzp3ttKkiY2PPjLz228FP7x79hjZvNlMu3bWYtd09ndKwuXI\n1xdiOHbMwH33BfP880FUr+5g4cJ0xo/PIrjgjJoFtGhh59NP07n8cjuvvRbIyJGBJVpc22aDwYOD\nWLfOTHy8lTfeyPT6JPUiUjpGo3MWLZvNwBtvFKx0qEPWBSX68zZ+/Hh69uxJYmIiP/zwQ97+Y8eO\n8cADD+T9a9euHcuWLSu3wvqaxo1d1xYL21+ZrF5ton37ENatMxMXZ2XdunTi40s3LOjqqx3897/p\nxMTYmDMngIEDg8guolXZ4XDec/74YwutW1t5552MKn2vSMSX3XGHlauvdk5A8scfF2rDGRnwwQcW\noqLsdO5cdTtk5So2CW/evJkDBw6QlJTEuHHjGDduXN5jtWvXZt68ecybN485c+ZQp04d4uLiyrXA\nvmT4cNcZpzIvxJCRAc88E0jv3iGcO2dg7NhMFi7McHtO3tq1HXz8cTp//auV//zHQu/ewaSmun7u\nuHEBzJsXQPPmNubPzyAkpAxvRES8ymSCoUOzyM428OabF2rDn35q5swZdcjKVWwPoY0bNxIfHw9A\nw4YNOXv2LKmpqYResnZbcnIynTp1olphM7NXQd5aiOHoUQOjR8OZM0HFP/kSW7ca2bvXxLXX2njr\nrUyaNy97rb1GDfjggwwGDHDOLXvXXSEsXJhBZOSFxP7GGwFMmxZIw4Z2kpIyyn1OYBEpf3ffbWXS\nJDvz5lkYOjSb6GiHOmRdotgkfOLECZo1a5a3HRERQUpKSoEk/OGHHzJ79mzPl9DH9ehhrfDVj6ZM\nCWDuXAD3vmb27ZvNmDFZHq2JBgfDnDkZPP54EIsXW+jePZgPPsigfn3nh3Ls2EDq1rXzwQfpbs0J\nLSKVT0AADBmSzciRQcyYYeHee618842Z2FgrV16pzzm4sYCDq6mmv/vuO66++uoCidmV8PAQzGbP\nTOSQq7A5Oaui8+dhyRJo0ADWrSv9dIDVqkHt2gFA+fTgXrgQ6teHSZNM/P3vofzf/8HIkVCrFnz+\nuZEmTYq/hspK14triotriotrJY3LsGEwdSrMmRPIuXPO6SyHDDH7bVxL+76KTcLR0dGcOHEib/v4\n8eNERUXle8769etp06ZNiV7w9On0UhWwOJpgPb85cyykpgbx9NNQvbp7cUlJ8XChLvHUUxASYuGl\nl5zlDA11sGhROpGR9nJ/bV0vrikurikurpU2Lo89ZmHMmCDeew9q1bLTpk1auX/WvaFcFnBo27Yt\nK1euBGDnzp1ER0cXqPH++OOPNGnSpLTlFQ9zOGDuXAtms4OHH/Z2aYo2ZEgO06ZlEBPj7IR13XWV\nv8e4iLinT58cIiKcn/H77sshwHemSih3xdaEW7VqRbNmzUhMTMRgMDB69GiWLl1KWFgYCQkJAKSk\npBAZGVnuhZWibdpkYvduE3fckcNll1kq/TfNxEQriYkaoiDi70JD4ckns5k8OYAHH1SHrIuV6J7w\niBEj8m1fWuvV2ODKYe5cZ0eshx7Kwd1OWSIi5aF//xz691cCvpTmIiqhyr4QQ0qKgWXLzFx7rY02\nbbTWroiIL6hcmaSSyl2IIVfuQgyQUeHDjwqzaJGFnBwDffsWXFRBREQqJ9WES6CyL8Rgs8F771kI\nCXFwzz1q7hER8RVKwiVQ2RdiWLvWxMGDRu66K0czTYmI+JDKkUUqucq+EMOcOc4aed++qgWLiPgS\nJeESqMwLMRw4YODzz03ceKONFi0qx5cCEREpGSXhEujRw8qMGc6JJcxmBzExNmbMqBydst5/34LD\nYaBvX+9/IRARkdJR7+gS8sZCDMXJyoKFCy1ERNj5+98rV9lERKR4qgn7sGXLzJw8aeS++6wElX7V\nQhER8TIlYR+WO0NWnz5qihYR8UVKwj5q504jmzebiYuzctVVWpdTRMQXKQn7qNxasDpkiYj4LiVh\nH3T+PCxZYqF+fTsJCZonWkTEVykJ+6APP7SQlmbggQdyMJm8XRoREXGXkrCPcTic80RbLA569dIM\nWSIivkxJ2Mds2mRi924T3bpZqV1bHbJERHyZknAFOXzYgMMDOTO3Q9ZDD6kWLCLi65SEK8DixWb+\n8pdQHn44iHPn3D/P8eMGli0z06SJjdat1SFLRMTXKQlXgHffda5ytGyZhfj4avz4o3thX7TIQk6O\ngQcfzMFg8GQJRUTEG5SEy9mOHUa2bzfRoYOVYcOy+O03I127hvDee5ZSNU/bbM4OWSEhDu69V03R\nIiL+QEm4nC1c6LyH+8ADOTz7bDYLF6YTEgJPPhnEwIFBpKaW7Dyff27i0CEjd9+dQ1hYORZYREQq\njJJwOcrMdE6qERVlJyHBucpRfLyNzz9P44YbbCxdaqFjxxB27Sr+1zB3rrNJu29f1YJFRPyFknA5\nWr7czJkzBu6914rFcmF//foOPv44nccey+bnn0106RLCokWFryp54ICBzz83ceONNpo3t1dAyUVE\npCIoCZejBQucmdfVpBoBAfDSS1nMnZuBxQLDhgUzdGgQ6ekFz/P++xYcDgMPPaR5okVE/ImScDn5\n/XcDX3xh5uabrTRqVHjttWtXK2vWpHHddTYWL7bQpUsI+/Zd+LVkZTnvK0dE2One3VoRRRcRkQqi\nJFxOFi1y1oJ79y7+Hu6VVzr49NN0+vXLZvduEwkJIXz0kbN5etkyMydPGunVK4egoHItsoiIVLDC\nb0SK22w2WLzYQrVqjhLXXgMDYeLELNq0sfHPfwYxcGAwX3+dza5dJgwGB336qEOWiIi/URIuBxs2\nmDh82Mj992cTGlq6Y++4w0rz5mn07x/MvHnOHtEdOli58krNEy0i4m/UHF0OcscGu7vKUcOGDpYv\nT+eBB7IJCHAweLA6ZImI+CMlYQ87edLA8uVmrr3Wxg03uD+cKDgYJk/O4tdfU7n1Vs0TLSLij5SE\nPWzJEjM5OQZ69fLM/M4Xjy8WERH/oiTsQQ6HsynaYnFwzz0aTiQiIkVTEvag774zsnu3iU6drNSq\npY5UIiJSNCVhD8qdIaskY4NFRESUhD0kLQ2Sky3UrWunXTt1pBIRkeIpCXvIp5+aSU01kJiYg8nk\n7dKIiIgvUBL2kNyxwYmJaooWEZGSURL2gF9+MbBxo5nbbtPMViIiUnJKwh5Q1hmyRESkaqpySTg5\n2UxsbAh16oQSGxtCcnLZps+2WiEpyUKNGg66dtXYYBERKbkqtYBDcrKZRx8Nztvevdv053YGPXq4\nl0A//9zEsWNG+vXLJji4+OeLiIjkqlI14alTA1zuf/111/tLQmODRUTEXVUqCe/d6/rtFra/OMeO\nGVi92kyLFjZatHB/sQYREamaqlQSbtzYdaIsbH9xPvjAgs1mUIcsERFxS5VKwsOHu16Xd9iw0q/X\nm7tYQ2Cgg7vuUhIWEZHSq1JJuEcPKzNmZBATY8NsdhATY2PGDPc6ZW3aZGL/fiPdulmpWbMcCisi\nIn6vSvWOBmcidrcn9MVyxwarQ5aIiLirREl4/PjxbN++HYPBwKhRo2jZsmXeY0eOHOHxxx8nJyeH\nmJgYXnrppXIrbGVx/jx88omZyy+307atFmsQERH3FNscvXnzZg4cOEBSUhLjxo1j3Lhx+R6fOHEi\n/fr1Y8mSJZhMJv74449yK2xl8Z//WEhPd3bIMlapBn0REfGkYlPIxo0biY+PB6Bhw4acPXuW1NRU\nAOx2O1u3biUuLg6A0aNHU7du3XIsbuWwcKEFo9GhxRpERKRMik3CJ06cIDw8PG87IiKClJQUAE6d\nOkW1atWYMGEC9913H5MnTy6/klYSe/YY2brVRPv2NurW1WINIiLivlJ3zHI4HPl+PnbsGH369KFe\nvXoMGDCA9evX065du0KPDw8PwWz27IK7UVFhHj1fUSZMcP4/cKC5Ql/XHZW9fN6iuLimuLimuLim\nuLhW2rgUm4Sjo6M5ceJE3vbx48eJiooCIDw8nLp163L55ZcD0KZNG/bt21dkEj59Or1UBSxOVFQY\nKSnnPXrOwmRnw/vvV6NWLWjdOo0/GwQqpYqMiy9RXFxTXFxTXFxTXFwrKi6FJedim6Pbtm3LypUr\nAdi5cyfR0dGEhoYCYDabadCgAb/99lve41dddZU7ZfcJS5eaOXnSyN13Wwlwf7ppERERoAQ14Vat\nWtGsWTMSExMxGAyMHj2apUuXEhYWRkJCAqNGjWLkyJE4HA4aN26c10nL3xw+bOD554MICXHQv3/p\nZ9gSERG5VInuCY8YMSLfdpMmTfJ+vuKKK1i0aJFnS1XJ2O0wdGgQZ88amDw5kyuuUIcsEREpO41y\nLYFZsyx8+aWZjh2t3H+/hiWJiIhnKAkXY/duIy+/HEitWnamTMnEYPB2iURExF9UubmjSyMrCwYN\nCiIry8CsWRlER6sZWkREPEc14SK8+moAO3eauP/+bDp31hzRIiLiWUrChdi40cT06QFccYWdl17K\n8nZxRETEDykJu3DuHAwZEoTBAG++mcGfw6JFREQ8SknYhWefDeLgQSPDh2dz0012bxdHRET8lJLw\nJZYtM5OUZOG662w88YQm5RARkfKjJHyRo0cNjBgRRHCwgzffzMRi8XaJRETEn2mI0p8cDhg2LIjT\npw1MmJBJo0ZqhhYRkfKlmvCfZs+2sG6dmfbtrfTrp1mxRESk/CkJA/v2GXnxxUDCwx28/rpmxRIR\nkYpR5Zujc3Kcs2JlZhr4978zuOwyzYolIiIVo8rXhCdPDmD7dhP33ptD9+5WbxdHRESqkCqdhDdv\nNjJ1agANGtgZPz7T28UREZEqpsom4dRUGDw4GIcDpk/PpHp1b5dIRESqmiqbhF94IZADB4wMHpxN\nmzZanEFERCpelUzCGzaYmD8/gGbNbDz9tGbFEhER76iSSXj69AAApk7NJDDQy4UREZEqy2eTcHKy\nmdjYEMxmiI0NITm5ZKOtfvrJyIYNZm65xcp112lWLBER8R6fHCecnGzm0UeD87Z37zb9uZ1Bjx5F\nDzOaNcs5IfQjj2hWLBER8S6frAlPnRrgcv/rr7ven+v0afjwQwuXX26nc2eNCRYREe/yySS8d6/r\nYhe2P9f8+QFkZBjo1y8bk6k8SiYiIlJyPpmEGzd2fS+3sP0AVqtzkYaQEAe9e6spWkREvM8nk/Dw\n4a6HFQ0bVvhwo+XLzRw+bKRnzxxq1CivkomIiJScTybhHj2szJiRQUyMDbMZYmJszJhRdKesmTNz\nO2RpXLCIiFQOPtk7GpyJuEcPK1FRYaSkpBf53B9+MLJpk5m4OCvXXKNVkkREpHLwyZpwac2c6ew1\nrVqwiIhUJn6fhI8fN/Cf/5hp2NBO+/aaI1pERCoPv0/C779vITvbwMMPZ2P0+3crIiK+xK/TUnY2\nzJ1roXp1Bz17aliSiIhULn6dhD/+2Mzx40Z69cohNNTbpREREcnPb5OwwwGzZgVgNDro318dskRE\npPLx2yT87bdGvv/eRKdOVq64QsOSRESk8vHbJDxrlnNY0oABuhcsIiKVk18m4cOHDXz6qZmYGBu3\n3KJhSSIiUjn5ZRKeM8eCzWZgwIBsDAZvl0ZERMQ1v0vC6ekwb14AkZF27rxTawaLiEjl5XdJ+KOP\nLJw+baBPnxyCgrxdGhERkcL5VRJ2DkuyYDY76NtXHbJERKRy86sk/L//mdizx0T37lbq1NGwJBER\nqdz8KgnPmqU1g0VExHf4TRL+9VcDK1eaadXKxo032r1dHBERkWL5TRKePTsAh8OgWrCIiPgMv0jC\nqamwcKGF2rXtdO+uYUkiIuIb/CIJL15s4fx5Aw89lENAgLdLIyIiUjI+n4TtdnjnnQACAx306aNh\nSSIi4jvMJXnS+PHj2b59OwaDgVGjRtGyZcu8x+Li4rjsssswmUwATJo0idq1a5dPaV1Yvhx++cXI\nffflUKuWhiWJiIjvKDYJb968mQMHDpCUlMT+/fsZNWoUSUlJ+Z4za9YsqlWrVm6FLMrrrzv/V4cs\nERHxNcU2R2/cuJH4+HgAGjZsyNmzZ0lNTS33gpXE3r1GVq+GW26x0ry5hiWJiIhvKbYmfOLECZo1\na5a3HRERQUpKCqGhoXn7Ro8ezeHDh7nhhht44oknMBSxdFF4eAhms6mMxXbatw/MZhg92kxUVJhH\nzulPFBPXFBfXFBfXFBfXFBfXShuXEt0TvpjDkf++69ChQ7ntttuoUaMGgwcPZuXKlXTu3LnQ40+f\nTi/tSxaqUSPIyAjj9OnzpKR47LR+ISoqjJSU894uRqWjuLimuLimuLimuLhWVFwKS87FNkdHR0dz\n4sSJvO3jx48TFRWVt/2Pf/yDyMhIzGYzf/vb39i7d29py10m5lJ/jRAREakcik3Cbdu2ZeXKlQDs\n3LmT6OjovKbo8+fP079/f7KznZ2ivv32Wxo1alSOxRUREfEfxdYjW7VqRbNmzUhMTMRgMDB69GiW\nLl1KWFgYCQkJ/O1vf6Nnz54EBgYSExNTZFO0iIiIXGBwXHqTt5x5+j6C7k24pri4pri4pri4pri4\npri4Vi73hEVERKR8KEDpEjEAAATzSURBVAmLiIh4iZKwiIiIlygJi4iIeImSsIiIiJcoCYuIiHiJ\nkrCIiIiXKAmLiIh4SYVP1iEiIiJOqgmLiIh4iZKwiIiIlygJi4iIeImSsIiIiJcoCYuIiHiJkrCI\niIiXmL1dgLIYP34827dvx2AwMGrUKFq2bOntInndpk2bGDZsGI0aNQKgcePGPP/8814ulXft3buX\nQYMG0bdvX+6//36OHDnCU089hc1mIyoqitdee42AgABvF7PCXRqXkSNHsnPnTmrWrAlA//79adeu\nnXcLWcFeffVVtm7ditVq5dFHH6VFixa6VigYl7Vr11b5ayUjI4ORI0dy8uRJsrKyGDRoEE2aNCn1\n9eKzSXjz5s0cOHCApKQk9u/fz6hRo0hKSvJ2sSqFm2++mWnTpnm7GJVCeno6Y8eOpU2bNnn7pk2b\nRq9evejSpQtTpkxhyZIl9OrVy4ulrHiu4gLw+OOP0759ey+Vyru++eYb9u3bR1JSEqdPn6ZHjx60\nadOmyl8rruLSunXrKn2tAKxbt47mzZvzyCOPcPjwYfr160erVq1Kfb34bHP0xo0biY+PB6Bhw4ac\nPXuW1NRUL5dKKpuAgABmzZpFdHR03r5NmzbRoUMHANq3b8/GjRu9VTyvcRWXqu6mm27i9ddfB6B6\n9epkZGToWsF1XGw2m5dL5X1du3blkUceAeDIkSPUrl3brevFZ5PwiRMnCA8Pz9uOiIggJSXFiyWq\nPH7++Wcee+wx7rvvPr766itvF8erzGYzQUFB+fZlZGTkNRFFRkZWyevGVVwA5s+fT58+ffjnP//J\nqVOnvFAy7zGZTISEhACwZMkS/va3v+lawXVcTCZTlb5WLpaYmMiIESMYNWqUW9eLzzZHX0qzbzpd\neeWVDBkyhC5dunDw4EH69OnDqlWrquR9rJLQdXPBHXfcQc2aNWnatCkzZ85k+vTpvPDCC94uVoVb\ns2YNS5YsYfbs2XTs2DFvf1W/Vi6Oy44dO3St/Gnx4sXs3r2bJ598Mt81UtLrxWdrwtHR0Zw4cSJv\n+/jx40RFRXmxRJVD7dq16dq1KwaDgcsvv5xatWpx7NgxbxerUgkJCSEzMxOAY8eOqUn2T23atKFp\n06YAxMXFsXfvXi+XqOJ9+eWXvP3228yaNYuwsDBdK3+6NC66VmDHjh0cOXIEgKZNm2Kz2ahWrVqp\nrxefTcJt27Zl5cqVAOzcuZPo6GhCQ0O9XCrv++STT3j33XcBSElJ4eTJk9SuXdvLpapcbrnllrxr\nZ9WqVdx2221eLlHl8H//938cPHgQcN43z+1hX1WcP3+eV199lRkzZuT1+tW14jouVf1aAdiyZQuz\nZ88GnLdH09PT3bpefHoVpUmTJrFlyxYMBgOjR4+mSZMm3i6S16WmpjJixAjOnTtHTk4OQ4YMITY2\n1tvF8podO3bwyiuvcPjwYcxmM7Vr12bSpEmMHDmSrKws6taty4QJE7BYLN4uaoVyFZf777+fmTNn\nEhwcTEhICBMmTCAyMtLbRa0wSUlJvPHGG1x11VV5+yZOnMhzzz1Xpa8VV3G58847mT9/fpW9VgAy\nMzN59tlnOXLkCJmZmQwZMoTmzZvz9NNPl+p68ekkLCIi4st8tjlaRETE1ykJi4iIeImSsIiIiJco\nCYuIiHiJkrCIiIiXKAmLiIh4iZKwiIiIlygJi4iIeMn/A5CTGALqSF56AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xlc1NX+x/HXLKyCBgrulVmoaGhm\nXb16wwUTNetii9wW69ZN0ywprdSbmrmnlkvdsrJ+laaUYcsj0zS1zDRNW0RxLc3MBdyRdZbfHxMo\nMmzDDMPyfj4ePGS27xyOX+bN+X4/33MMdrvdjoiIiFQ4o7cbICIiUlMphEVERLxEISwiIuIlCmER\nEREvUQiLiIh4iUJYRETESxTCUi2MHz+e2NhYYmNjad26Nd26dcu/nZ6eXqZtxcbGkpaWVuxzZs2a\nxeLFi8vTZLd74IEHSEpKcsu2WrRowdGjR1m1ahWjR48u1/t98MEH+d+Xpm9La9SoUfzvf/9zy7ZE\nvMXs7QaIuMOECRPyv+/evTsvvPACHTp0cGlbK1asKPE5I0aMcGnbVU3Pnj3p2bOny69PTU3lzTff\n5K677gJK17ciNYlGwlIj3Hfffbz00kv07t2bbdu2kZaWxkMPPURsbCzdu3fn7bffzn9u3ijw+++/\nZ8CAAcyaNYvevXvTvXt3Nm/eDBQchXXv3p0lS5Zwxx130KVLF6ZNm5a/rddee41OnTpx++23s2jR\nIrp37+60fR9++CG9e/fm5ptv5p577uHw4cMAJCUl8fjjjzNmzBh69epFnz592Lt3LwCHDh3izjvv\nJCYmhhEjRmC1Wgtt9+uvv6Zfv34F7rvtttv45ptviu2DPElJSTzwwAMlvt9XX31Fv3796NWrF/37\n9yclJQWA+Ph4/vzzT2JjY8nJycnvW4B3332XPn36EBsby5AhQzh58mR+386dO5d///vfdOvWjX//\n+99kZmYW9V8LwK5du4iPjyc2NpbbbruN9evXA3D+/HkeffRRevfuTY8ePXj22WfJzc0t8n6RiqYQ\nlhojOTmZzz//nPbt2/Pqq6/SpEkTVqxYwTvvvMOsWbM4cuRIodfs3LmTtm3b8sUXX3D33Xfz6quv\nOt32li1bSExM5KOPPmLhwoUcPXqUvXv38uabb/LJJ5/w/vvvFzkKPHHiBM8//zxvv/02X375JZdf\nfnmBw6zffPMNd999NytXruRvf/sb77zzDgAzZ86kU6dOrF69mvvvv59t27YV2nanTp04evQohw4d\nAhxBevToUf7+97+Xug/yFPV+FouFUaNGMXHiRFauXEn37t2ZPn06AFOmTKFhw4asWLECX1/f/G39\n9NNPLFiwgPfee48VK1bQqFEjZs2alf/4ihUreOmll1i1ahUnT55k1apVRbbLZrPx5JNPcu+997Ji\nxQomTZrEiBEjSE9P5+OPP6Z27dp88cUXrFy5EpPJxL59+4q8X6SiKYSlxoiOjsZodOzyzz77LGPH\njgWgadOmhIWF8ccffxR6Ta1atYiJiQGgdevW/Pnnn0633a9fP0wmE/Xr16du3bocOXKELVu2cOON\nNxIeHo6fnx+3336709fWrVuXrVu30qBBAwA6dOiQH5oAzZs3p02bNgBERkbmB+UPP/xAnz59AIiK\niuKqq64qtG1fX1+6devGmjVrAFi9ejUxMTGYzeZS90Geot7PbDbz3Xff0a5dO6ftd2bdunX06tWL\nunXrAnDnnXeyYcOG/Mejo6O57LLLMJvNREREFPvHwR9//EFaWhp9+/YF4Nprr6VRo0Zs376d0NBQ\nfvzxR7799ltsNhsTJkygVatWRd4vUtF0TlhqjDp16uR/v3379vyRn9FoJDU1FZvNVug1wcHB+d8b\njUanzwEICgrK/95kMmG1Wjl79myB96xfv77T11qtVubOncuaNWuwWq2cP3+eZs2aOW1D3rYBzpw5\nU+B9a9eu7XT7vXr14t133+X+++9n9erVDB06tEx9kKe493vvvfdYtmwZOTk55OTkYDAYitwOwMmT\nJwkPDy+wrRMnTpT4Mxe1reDg4ALvWbt2bU6ePEnfvn05c+YMc+bM4ddff+XWW29l9OjR9O7d2+n9\nF4/WRSqCRsJSIz311FP06tWLlStXsmLFCkJCQtz+HkFBQWRkZOTfPn78uNPnLV++nDVr1rBw4UJW\nrlzJ448/Xqrt165du0Dld9451Uv94x//YNeuXRw4cIADBw7QsWNHoOx9UNT7bdu2jTfeeINXX32V\nlStXMmnSpBLbXq9ePU6fPp1/+/Tp09SrV6/E1zlTt25dzpw5w8Vr0Zw+fTp/lB0fH8+HH37I8uXL\n2bFjBx9//HGx94tUJIWw1EgnTpygTZs2GAwGli1bRmZmZoHAdIeoqCi+//57Tp48SU5OTpEf8idO\nnKBx48aEhoZy6tQpvvjiC86fP1/i9tu1a5d/rnTbtm38/vvvTp/n6+tLly5dmDFjBj169MBkMuW/\nb1n6oKj3O3nyJHXr1qVRo0ZkZmaybNkyMjIysNvtmM1mMjIysFgsBbbVtWtXVq1axalTpwBYsmQJ\n0dHRJf7MzjRp0oQGDRqwfPny/LalpaURFRXFK6+8wtKlSwHHkYgmTZpgMBiKvF+koimEpUYaPnw4\njz76KP369SMjI4MBAwYwduzYIoPMFVFRUcTFxREXF8fAgQPp1q2b0+fdcsstnD59mp49ezJixAgS\nEhI4evRogSprZ5566inWrl1LTEwMixYt4u9//3uRz+3VqxerV6+md+/e+feVtQ+Ker9//OMfhIeH\nExMTw4MPPsj9999PcHAwjz/+OC1atKBOnTp07ty5wPn0qKgoBg0axD333ENsbCznzp3jiSeeKPbn\nLYrBYODFF19k4cKF9O7dm0mTJjFnzhwCAwO57bbb+OSTT+jVqxexsbH4+Phw2223FXm/SEUzaD1h\nEc+x2+35I6x169Yxe/ZsHfYUkXwaCYt4yMmTJ+nYsSOHDx/GbrfzxRdf5FcQi4iARsIiHrV48WLe\neustDAYDV111FZMnT84vGBIRUQiLiIh4iQ5Hi4iIeIlCWERExEsqfMas1NRzbt1eSEggp0659/rO\n6kD94pz6xTn1i3PqF+fUL84V1y9hYcFO76/yI2Gz2eTtJlRK6hfn1C/OqV+cU784p35xzpV+qfIh\nLCIiUlUphEVERLxEISwiIuIlCmEREREvUQiLiIh4iUJYRETESxTCIiIiXlLhk3VURvPmvcTu3Smc\nPHmCrKwsGjVqTO3adZgyZUaJr12+/DNq1QoiOtr5WrFz5szizjvjadSosUttGzZsEE8++TRXXXW1\nS68XEZHKq0qG8LJlZmbP9mXPHiORkTBsmJm4OIvL23vsMcdi4suXf8avv+5n2LCEUr+2T59+xT4+\nfPgIl9slIiLVW5UL4WXLzAweHJB/e/t2/rqdWa4gdmbbth9YsmQhGRkZDBv2BD/+uJV1677CZrPR\nqVNnHnxwEAsWzOeyyy6jWbPmJCV9gMFg5ODB3+jatQcPPjgofyS7du1XnD+fzu+/H+Tw4T94/PER\ndOrUmYUL/4/Vq7+kUaPGWCwW4uPvoX37DoXakp6ezuTJz5Gefg6LxUJCwlO0aNGS2bNnsGtXClar\nlbi4O+jTpx+zZ89g//49ZGXl5N8nIiKVT5UL4dmzfZ3eP2eOr9tDGGD//n0sXpyEr68vP/64lf/9\n702MRiN33XUbAwbcXeC5O3fu4P33P8Jms3Hnnf148MFBBR4/fvwYM2fOZdOm7/jkk49o3boNSUkf\nsnjxR5w/f574+P7Ex9/jtB0ffriY1q3bcO+9D7Br107mzXuRKVNm8N133/LBB59gsVhYvvwzzp49\nw3fffcvatWs4cuQUy5d/5vY+EREpqxMnDHz3nYl+/dz/OV2Vlaowa8+ePcTExLBw4cJCj23atIm7\n7rqL+Ph4Ro8ejc1mc3sjC7bFeZOLur+8rr76Gnx9HcHv7+/PsGGDeOyxwZw+fZqzZ88WeG6LFi3x\n9/cnMDDQ6baiotoBEB4eTnp6On/8cYirrmqOn58/oaF1adWqdZHt2LVrJ9dd5xght2wZyR9/HKJ2\n7To0bXoFo0Y9yVdffUlsbN/8+4YMGZJ/n4iIt82e7ctDDwWwZYvqgS9WYm9kZGQwceJEOnXq5PTx\ncePGMXfuXJYsWcL58+dZv3692xt5sYgI5yFf1P3l5ePjA8DRo0dITFzErFnzePnl12nQoEGh55pM\nxU/effHjdrsdux2Mxgv/BQZD0a81GAzY7fb823l/7MyaNZd//3sQe/fu4Zlnnsi/b9iwYQXuExHx\nph07HJ9127Zp8YeLlRjCvr6+vPHGG4SHhzt9PCkpKT+QQkNDOXXqlHtbeImEhByn9w8f7vx+dzl9\n+jQhISEEBgaye/cujh49Sm5ubrm22bBhQ379dT8Wi4VTp06xa1dKkc9t2TKSH3/8AYDk5O00a9ac\nI0f+5MMPl9CiRUuGDUvgzJkz+fe1bt06/z4REW/bvdsRNz/9pBC+WInnhM1mM2Zz0U8LCgoC4Pjx\n42zYsIHhw4e7r3VOOM77ZjJnTl51tIFHH3V/UdalrrkmgoCAQIYMeZBrr23Hbbf1Z9as6URFtXV5\nm6GhdenZM5aHHx7IFVc0IzKydZGj6bvu+hdTpkzg8ccfwWaz8eSTz1CvXhjJyT/z1Vdf4uPjQ9++\nt+bfFx8fDxjp2/dWl9snIuIOJ09CaqojhH/5RYejL2awX3yMsxjz5s0jJCSEe++9t9BjJ06c4OGH\nH+bJJ5+kS5cuxW7HYrFqLcqLJCUlccstt2A2m+nXrx8LFixweqhbRKSqWr8ebrrJ8b3BAGfOQLDz\nNe5rnHJXR6enp/Pwww+TkJBQYgADnDqVUd63LCAsLJjU1HNu3WZFOnDgMP37346Pjy/du9+MyVTL\nLT9PVe8XT1G/OKd+cU794lxZ++X7730Af8LCbKSmGlm3LoOOHa2ea6CXFNcvYWHO/+oodwhPmzaN\n+++/n5vy/syRMrnvvge4774HvN0MERGPybt6pX9/C/Pn+/Lzz8ZqGcKuKDGEk5OTmT59OocPH8Zs\nNrNy5Uq6d+9OkyZN6NKlCx9//DEHDx5k6dKlANxyyy0MGDDA4w0XEZGqYdcuRwjfeWcu8+f7/lWc\nVb7C1uqixBBu06YN7733XpGPJycnu7VBIiJSvezZY6RpUxtt2tgICrKrOOsi6gkREfGY06fh2DEj\nERE2jEaIirKyb5+R9HRvt6xyUAiLiIjH7N7tuBomb0KlqCgbdruB5GRdJQMKYQAGD/53oYkyXnvt\nZRYvLjxNJzgWdnj22acBGDXqyUKPf/RRIgsWzC/y/fbt28vvvx8EYPz40WRnZ7nadO64ox8ZGe6t\nOBcRcZe8oqwWLRyFWG3bOv79+WfFDyiEAejZsxdr1qwqcN+6dWuIibm5xNdOm/Zimd/v66/XcOjQ\n7wBMmDAVPz//Mm9DRKQquBDCjpFwu3Z5IayRMFTBVZQ8oUePmxky5CGGDn0cgF27UggLCyMsLJwt\nW77nzTdfw8fHh+DgYJ5/flqB1/bt24PPP/+KH37YzNy5swgNrUvduvXylyacPPk5UlOPk5mZyYMP\nDqJBg4Z88kkSX3+9hpCQEMaNG8277yaSnn6OqVOfJzc3F6PRyKhRYzEYDEye/ByNGjVm3769RES0\nYNSosU5/huPHjxV4/QsvTMNsDuL558dy4kQaOTk5PPTQYDp0uLHQfR07/t3jfSwiNVNeZXTe4ehm\nzewEBdk1Ev5LpQvh557z47PPSt8soxFstlrFPqdfPwvPPZdd5OMhIaE0atSYnTuTiYxsw5o1q+jZ\nMxaAc+fOMX78JBo1aszEieP4/vuNTldJmj//ZcaOncg110QwcuTjNGrUmHPnznLjjR3p3fsWDh/+\ng7FjR/HWWwv529860bVrDyIj2+S//s03X+OWW26jR4+bWbt2NW+99ToPPTSY3btTmDBhCiEhocTF\n9eHcuXMEO5lq5tLXv/zyy/TrdwdnzpzmlVfe4Ny5c2zcuIH9+/cVuk9ExFP27DHSqJEtf4asvOKs\njRtNpKfDXzMf11j6U+QvPXvG8tVXjkPSGzZ8Q9euPQC47LLLmD59EsOGDeLHH7dy9qzzBRGOHDnC\nNddEANCuXXsAgoNrk5KygyFDHmTy5OeKfC3A7t0pXHfd9QC0b9+BvXt3A9C4cVPq1q2H0WikXr0w\nzp93XlJ46et37tzJFVdcSUbGeSZOHMu2bVuIibnZ6X0iIp5w9iwcOWLMPxSdR8VZF1TCkXB2saPW\nSzmmCTtf7veNju7Gu+++Rc+evWja9HJq164NwNSpE5kxYzZXXtmMF1+cXuTrL16SMG867lWrVnD2\n7FleeeVNzp49y3/+c18xLbiwVGFurgWDwbG9Sxd0KHqq74KvNxqN+Pv7M3/+/7F9+y988cVnbNiw\nnjFjxju9T0TE3fJWTrp0qdmLi7Nq+sxZGgn/JTCwFs2bX8O7776dfyga4Pz5dOrXb8C5c+fYtm1r\nkcsX1qsXxu+/H8But/Pjj1sBx/KHDRs2wmg08vXXa/JfazAYsFoL7nitWkWybZtjqcKfftpKy5at\nytT+S1/fpk0bdu/exapVK2jbth0jR47mwIHfnN4nIuIJe/Y4BhGXjoRVnHVBpRsJe1PPnrFMmjSe\n8eMn5t/Xv/+dDBnyEE2bXs499wzkrbdeZ9CgoYVeO2jQUJ599hkaNGhIeHh9ALp27c6oUU+yc2cy\nffveSnh4OG+//QZt217H7NkzCpxb/s9/HmHq1Il89tnHmM0+jB49Foul9MszXvr6mTOnk55uYf78\nV/jkkySMRiN3330fDRs2KnSfiIgn5I2E8y5PyqPirAtKvZShu7h7RRKtcuKc+sU59Ytz6hfn1C/O\nlbZf4uMDWLPGzN6956hTp+Bj//xnABs3mti/P73aFGe5soqS/gwRERGP2L3bSIMGtkIBDCrOyqMQ\nFhERtzt3Dg4fNhYqysqjmbMcavZPLyIiHrF3ryNeWrYsKYQ1EhYREXGroi5PynPVVSrOAoWwiIh4\nwKWrJ11Kyxo6KIRFRMTtLl09yRkVZymERUTEA3bvNhIebiMkpOjnqDhLISwiIm6Wng6HDhWeM/pS\nKs5SCIuIiJvt21dwDeGi5BVn/fJLzY2imvuTi4iIR1y6hnBR8oqz9u6tucVZCmEREXGrC0VZxYcw\nqDhLISwiIm51YfWkkpcprOnFWTXzpxYREY/ZtctIvXo2QkNLfm5NL85SCIuIiNucPw+HDhlKdSga\nVJxVM39qERHxiP37jdjthhKLsvLU9OIshbCIiLhN3pzRpR0JQ80uzlIIi4iI27gSwjW5OKvm/cQi\nIuIxeZcnlfZwNNTs4iyFsIiIuM3u3Sbq1rURFmYv9WtqcnFWzfuJRUTEIzIz4cCB0hdl5anJxVkK\nYRERcYt9+8pWGX2xmlqcpRAWERG3yDsf3LJl2UO4shRnvf66Dx061OLMmYp5P4WwiIi4RV5ltCsj\n4cpQnLV7t5EJE/zIyQE/v4p5T4WwiIi4RXlC2NvFWVYrJCT4k5trYMaMLPz9K+Z9FcIiIuIWe/aY\nuOwyO+Hhpa+MzmM0wrXXeq846803fdi61URcXC69epW88IS7KIRFRKTcsrLgt98MtGhhxWBwbRtt\n23qnOOvAAQNTp/oRGmpj0qTsCn1vhbCIiJTb/v1GbDbXKqPzeKM4y26HESP8ycgwMGlSdpmub3aH\nUv2ke/bsISYmhoULFxZ67LvvvuOOO+5gwIABvPLKK25voIiIVH55ldFlma7yUt4ozlq82Mz69WZi\nYizcfrulwt43T4khnJGRwcSJE+nUqZPTxydNmsS8efNYvHgxGzZsYN++fW5vpIiIVG6uzBl9qYou\nzjp61MC4cf4EBdmZMSPL5cPo5VHiT+rr68sbb7xBeHh4occOHTpEnTp1aNiwIUajkejoaDZu3OiR\nhoqISOXljhCuyOIsux2eecaPs2cNjBuXTePGFXsYOo+5xCeYzZjNzp+WmppKaGho/u3Q0FAOHTpU\n7PZCQgIxm917qCEsLNit26su1C/OqV+cU784p35x7tJ+2b8f6tSBNm2CyjWi7NQJNm6Ew4eD6dKl\nnI0sxocfwhdfwE03Oc4JG43uuSaprPtLiSHsbqdOZbh1e2FhwaSmnnPrNqsD9Ytz6hfn1C/OqV+c\nu7RfcnJg794g2re3kZZWvs/4a64xAwGsW5dFixa55WypcydPwtChtfD3NzB9+nlOnHDPKLi4/aWo\ncC7Xgffw8HDS0tLybx87dszpYWsREam+9u83YrU6Lk8qr4oozho3zp+0NCNPPZVD8+beOQydp1wh\n3KRJE9LT0/njjz+wWCysXbuWzp07u6ttIiJSBbiyhnBRPF2ctWaNiQ8+8CEqysqQITkeeY+yKPFw\ndHJyMtOnT+fw4cOYzWZWrlxJ9+7dadKkCT179uS5555jxIgRAPTp04dmzZp5vNEiIlJ5lGe6ykvl\nFWdt2mQiPR2Cgsq9yXzp6TBypD9ms53Zs7MootypQpXYhDZt2vDee+8V+fgNN9xAYmKiWxslIiJV\nR14Iu7J6kjNt29rYuNFMcrKJjh3dN4Xk5Ml+/PGHkSeeyKZNG/e0tbw0Y5aIiJTLnj1GgoLsNGzo\nnvOrnpg5a9MmEwsW+HLNNVaefNL7h6HzKIRFRMRlubmOwqwWLWxum+zC3cVZWVnwxBP+GAx2Xnop\nq8KWKSwNhbCIiLjs11+NWCzuqYzO4+7irFmzfNm/38h//pPLjTdWjsPQeRTCIiLiMndWRudx58xZ\n27cbefllX5o2tTF6dMWukFQaCmEREXGZO6ardCYqqvzLGubmwvDh/litBmbOzHJrpbW7KIRFRMRl\nngrhdu0ch7fLc0j61Vd9SU42ER+fS7du7jtc7k4KYRERcdmePUZq1bK7fQGEvOKsn35ybSS8fbuR\nGTN8CQuzMWFCljub5lYKYRERcYnFAvv2GYmIcF9ldB5Xi7P27TMwdKg/PXsGkp1tYNq0bEJC3Ns2\nd6oE84WIiEhVdOCAgdxcg9sPRUPZZ87au9fIiy/6smyZGZvNQKtWVp55Joc+fSxub5s7aSQsIiIu\n2bXLcag4IsIz51tLU5y1Z4+RRx7xp0uXQD76yIeWLW289VYma9dmVPoABo2ERUTERXmXJ3liJAwF\ni7Munb5y927HyPfjj83Y7QbatLEyYkQOvXtbMFah4aVCWEREXOKJa4QvVrA4y7G28K5djvD95JML\n4fvUUznExlrcfl66IiiERUTEJbt2GQkMtNO0qWfW5L24OCslxcisWb589pkjfK+91spTT2XTq5e1\nSoZvHoWwiIiUmcXimDO6ZUubxw7/5hVnbdxoJjq6FuAYHY8cmc3NN1ft8M1ThY6ci4hIZfH77way\nsw0eOxSdp3NnxyHpdu2sLFyYwZdfZlT50e/FNBIWEZEyy6uM9lRRVp7hw3O49VaLW1dpqkwUwiIi\nUmYXKqM9Ox2knx+0bFm5Vj5yJx2OFhGRMsubM9rTh6OrO4WwiIiU2e7dRgIC7Fx+uWcqo2sKhbCI\niJSJ1eqYM/rqq22YXF9pUFAIi4hIGR04AFlZnq+MrgkUwiIiUiY7dzr+9XRldE2gEBYRkTLZscPx\nr0K4/BTCIiJSJhdGwp69PKkmUAiLiEiZ7NwJfn52rrhCldHlpRAWEZFSs9kgJQVVRruJQlhERErt\n0CEDGRk6H+wuCmERESk1T68hXNMohEVEpFR+/dXA++/7ABoJu4sWcBARkSJlZcHnn5tZuNCHDRsc\nkREeDh06qDLaHRTCIiJSyM6dRhYu9GHpUh9On3asIdili4V7783l/vsDOHdOldHuoBAWEREA0tPh\n4499WLjQh23bHKXPYWE2Hn88h7vvzuWqqxzB6+8P5855s6XVh0JYRKQGs9th2zYjixb5kJTkQ0aG\nAaPRTs+eFu65J5eePS34+Hi7ldWXQlhEpAbKyIBFixyj3pQUx6i3aVMbjz2WQ3x8Lo0b63BzRVAI\ni4jUMBkZEB8fwKZNZnx87PTrl8u99+Zy001WTcBRwRTCIiI1SE4OPPigI4BvuSWX6dOzCQvTqNdb\nFMIiIjWE1QpDh/qzZo2ZHj0svPZaFr6+3m5VzVaqEJ4yZQo///wzBoOBMWPGEBUVlf/YokWL+PTT\nTzEajbRp04b//ve/HmusiIi4xmaDESP8+PRTHzp2tLBgQaYCuBIoccaszZs3c/DgQRITE5k8eTKT\nJ0/Ofyw9PZ0FCxawaNEiFi9ezP79+/npp5882mARkepoyxYjgwf7s3u3+ycytNth/Hg/3n/fl7Zt\nrSxalElgoNvfRlxQ4v/2xo0biYmJAaB58+acOXOG9PR0AHx8fPDx8SEjIwOLxUJmZiZ16tTxbItF\nRKqZzEwYMiSAZct8uPnmQBYt8sHuxtO0M2b4Mn++Ly1aWFmyJJPgYPdtW8qnxBBOS0sjJCQk/3Zo\naCipqakA+Pn58eijjxITE0O3bt1o27YtzZo181xrRUSqoTlzfPn9dyMxMRZ8feGJJ/wZMsTfLRNi\nvPaaDzNn+nHFFTY+/DCTunVVhFWZlLkwy37Rn2fp6enMnz+fFStWEBQUxP3338+uXbto2bJlka8P\nCQnEbHZvDXxYmP6sc0b94pz6xTn1i3Oe7pd9++Dll6FxY1i2zMyJE/Cvf0FSkg8//+xDYiJcf71r\n216wAMaNg0aNYO1aI82aBbmt3dpfnCtrv5QYwuHh4aSlpeXfPn78OGFhYQDs37+fpk2bEhoaCkCH\nDh1ITk4uNoRPncooUwNLEhYWTGqq5k+7lPrFOfWLc+oX5zzdL3Y7DB4cQE6OmQkTMsnMtBAYCEuX\nwvTpvsyd60enTnbGjctm0KBcDIbSb/uTT8wMGuRPaKidxMRMgoJs/HUQs9y0vzhXXL8UFc4lHo7u\n3LkzK1euBGDHjh2Eh4cTFOT4a6px48bs37+frKwsAJKTk7nyyitdabuISI3z+edm1qwxEx1toV8/\nS/79Pj7w7LM5JCZmUKeOnbFj/bnvvgBOnizddlevNjFkiD9BQZCYmKllByuxEkfC7du3p3Xr1sTH\nx2MwGBg/fjxJSUkEBwfTs2el6WnqAAAgAElEQVRPHnroIQYOHIjJZOK6666jQ4cOFdFuEZEq7fx5\nGDvWDx8fO9OmZTkd5XbrZmXt2gyGDvXnyy/NdOtWi/nzs+jYsehlBL/7zsSDDwbg4wOLFmXStq0C\nuDIz2O3urMErmbsPYeiwiHPqF+fUL86pX5zzZL9MmuQ43JyQkM2YMTnFPtdqhXnzfJk+3Re7HZ56\nKoeEhJxCU0z++KOR228PJDsb3nsvk+7dPbPmr/YX5zxyOFpERNxr714jr77qS5MmNhISig9gAJMJ\nEhJyWLYsk4YN7Uyf7sdddwVw7NiF4XNKipH4+EAyMuC117I8FsDiXgphEZEKZLfDqFF+5OYamDQp\nu0yTZnTsaGXNmvPExuayfr2Zbt0CWbPGxG+/GbjzzgBOnTLw0ktZBc4vS+WmEBYRqUCffGJm/Xoz\nMTEWevcue1iGhMA772QxeXIWZ88aiI8PpHfvQI4fNzJpUhb/+pcCuCpRCIuIVJD0dBg3zg8/PzuT\nJzsvxioNgwEefjiX5cszaNbMxsmTRp5+2nEZk1QtWkVJRKSCzJjhx9GjRkaOzKZZs/LXxEZF2fjq\nq/Ps3WukXTtVQVdFCmERkQqQkmLk9dd9uOIKG489VnIxVmkFBcF11ymAqyodjhYR8bC8Yiyr1cCU\nKVkEBHi7RVJZKIRFRDxs6VIzGzeaiY3NpWdPXTokFyiERUQ86OxZeO45PwIC7EyalO3t5kgloxAW\nEfGg6dP9SE01kpCQw+WXaxlBKUghLCLiIdu3G1mwwIerrrIxdKj7irGk+lB1tIhUCTt3Glm0yIf6\n9e1ERlpp2dJG48Z2l6+19TSbDUaN8sdmMzB1aiZ+ft5ukVRGCmERqfSSkx0LE5w6VTBxg4PttGxp\no2VLK5GRNlq2tNGqlZW/ljj3qsREM1u2mOjXL5du3VSMJc4phEWkUtu925g/L/KUKVk0bGhn1y4j\nKSlGdu0ysm2bkS1bCi4nFB6eF8iOUI6KstGmTcVdS3v6NDz/vB+BgXYmTlQxlhRNISwildb+/QZu\nvz2AEyeMzJyZxcCBjmkZ+/a98JzsbMeqRLt2Gf8KZxO7dhn55hsz33xz4Xl9++YyeXI2jRp5vjhq\nyhQ/TpwwMnZsxbyfVF0KYRGplH77zUD//o6FCaZOvRDAl/LzgzZtCo90z53jr2A2kZho5vPPfVi3\nzswzz2Tzn//kYvbAp5/dDl9+aeKdd3yIiLAyeLCKsaR41TqEz52DQ4eMHDpk4NAhI7//fuH7o0cN\n2O2OidANBjAaC38Pl95vJyQEXnghi9atNU2ciKccOmTg9tsDOXLEyHPPZfHQQ2VfmCA4GG64wcYN\nN9i4555cliwxM2GCP+PG+fPBBz7MmJHF9de75/fYbof1603MmOHL99+bMRrtTJuWja+vWzYv1ViV\nD+Hdu2HzZlOhkD10yMjp087LJv397TRoYMdstmO3G7DZHL9EF3/ZbBS43/G9gX37jAwa5M+qVRll\nWgdURErnzz8dI+A//jAyZkw2Q4eWf2UgoxHuvttCr17nmTDBjyVLfOjTJ5D778/lv//Npk4d17Z7\nafgC9OplYeTIbNq21R/qUrIqG8LLlpmZPNmX338HKJiGAQF2mjSx0b69naZNbTRtaufyy23534eF\nuX5Zw7PP+vH6674895wfL7ygggsRdzp2zDECPnjQyIgR2SQkuPdwbt26dubOzSI+Ppenn/bj//7P\nl88/N/P889n0728p9eeC3Q7ffusI302bFL7iuioZwsuWmRk8uPAM6KNGZXHffRbq1fPctYPPPpvN\n+vUm/u//fImJsXDzzbr0QMQd0tIM3HFHAPv3Gxk2LJunn/bc+dS//93KmjUZvPqqL7Nm+TJkSACL\nF1t44YUsrrqq6EIqux02bHCE78aNjo/Pm292hK+WEhRXVMkZs2bPdn6i5dNPfco1yi0Nf3949dUs\n/PzsJCT4c/x4JZ0pQKQKOXkS7rgjgN27TQwalMPYsTken4TD1xeGD8/hm2/O06OHhW++MXPTTbWY\nMcOXrKzCz9+wwcQ//xlA//6BbNxopmdPCytXnmfhwkwFsLisSobwnj3Om13U/e4WGWnj2WezSUsz\nkpDgj11XIIi47MwZuOuuQHbuNPHAAzlMnJhdobNgXXmlnfffz2TBgkxCQ+3MmOFH1661+Pprx7XH\neeEbF+cI35gYR/guWpSpdXyl3KpkCEdEON/xi7rfEx5+OJfoaAurV5t56y2fCntfkerk3DmIjw/k\nl19M3HNPDtOmVWwA5zEYoF8/Cxs2nGfw4BwOHDBw552BtGoFcXGBfPedI3xXrDjP++8rfMV9qmQI\nF1WsMXx4xV2TZzTCvHlZhIbamDDBj927q2RXinhNejrcfXcAW7eauPPOXGbOzMbo5V+j4GCYODGb\nVasyuO46K7t2QY8eFr74whG+7dsrfMW9qmRyxMVZmD8/k8hIK2YzREZamT8/k7g4S4W2o0EDOy++\nmE1WloEhQ/zJVrG0SKlkZMDAgQF8/72Z227LZc6cLEymkl9XUa691sYXX2Twxx+weHGm264nFrlU\nlQxhcATxunUZ5ObCunUZpQ7gZcvMREcH0rBhENHRgSxbVr4C8T59LNx7bw7JySamTtUyKSIlyciA\nBx4I4NtvzfTpk8v//pflkdmrystohMaNvd0Kqe6qbAi7Iu/SppQUE1argZQUE4MHB5Q7iJ9/Pptm\nzWy8+qoP69dXoj/nRSqRo0cNTJvmy/XX12LdOkd18euvZ+GjkgqpwWpUCBd1adOcOeWbWy4oCF57\nLROTCYYN8+fUqXJtTqRa+eknI0OG+HP99bV48UU/rFYDCQnZLFiQqWkdpcarUSHsyUubrrvOxlNP\n5XDkiJGRI3XZktRsFgt8+qmZW24J4Oaba/HRRz40a2Zj5swsfvopnTFjcvD393YrRbyvEp6J8ZyI\nCBspKYUPF7vr0qbHH89hzRoTn33mQ2Kihfj4ii0UE/G206fhvfd8eestHw4fdvxxGxNjYdCgHKKj\nrV65/EikMqtRI2FPX9pkMsErr2QRHGxn9Gh/fvtNnzhSM+zda+Tpp/1o1y6IiRP9OHXKwL//ncN3\n36Xz/vuZdO2qABZxpkaNhB0V1JnMmePLnj1GIiJsDB+e49ZLmy6/3M706VkMHRrA0KEBfPZZRqWs\n/BQpL5sN1q0z8frrvqxZ49jJmzSx8dRT2dxzTy6XXeblBopUATUuHuLiLB6/nviOOyysXp1LUpIP\nL77o6/JE9OnpcPKkgcsv1wlmKZnNBr/9ZuCKK+we+8MvMxO++cbEihVmVq40k5bmOJj2t79ZGDQo\nl969LfqjU6QM9OviIdOnZ7F5s4kXX/SlWzcLN9xQ/Hlnux0OHDDwww8mtmxxfKWkGLHZDAwenMPz\nz3tnOj+pGiwWR2V+UpIPtWrZueEGK506Ob7atbOWqwjqxAkDq1aZ+OILM19/bSYjw7Ej1qtn4957\ncxg4MFcLGIi4SCHsIXXqOM4P//OfAQwZEsDatecJDr7weGYm/PyzI2x/+MHIli2m/FEFgJ+f44P0\n+HEj8+f7YjDAhAkKYins4gBu0cL612FiM+vWOX69fX3ttG/vCOS//c3KjTdaCQoqfpu//mpgxQoz\nK1aY2bzZhM3m2PGuvtpKbKyF2FgL119vq1SzXIlURQphD+rUycrjj+cwZ44fTz3lT58+lvxR7vbt\nRnJzLyRqw4Y2br01lxtusHLDDVbatLHh6+tY5Lx//wBee80RxM89pyCWCy4O4BtusJKYmEFQEKSm\nGvj+exObNpnYuNHE5s2m/MXnTSY7115ro2NHKx07OoK5bl3YutWYH7y7dzvS1WCw06GDjdhYC717\n53L11To1IuJOBru9Yq9oTU0959bthYUFu32b7pSTA337BvLzzxeGDGaz40MwL3A7dLDSuHHR/w15\nQbx3r4mhQ3MYP77kIK7s/eIt1alfrFZHAH/0kQ8dOjgC+OKjLRc7exa2bHEE8qZNJn780VTgj8DL\nLnNcXgTg728nOtox4u3Z00J4eM0N3uq0v7iT+sW54volLMz5L6dGwqW0bJmZ2bMvVFUnJJSuqtrX\nF954I5OXXvKjeXMbN95opW1bKwEBpX/v+vXtJCVl0r9/AP/7n2OKodIEsVRfVis89ljpAhigdm3o\n0cNKjx5WwHE6ZNu2CyPlQ4fMxMbmEhtrITraQq1aFfSDiNRwpQrhKVOm8PPPP2MwGBgzZgxRUVH5\njx05coQnn3yS3NxcIiMjef755z3WWG/Jm3M6T96c01C6lZuuvNLOnDlZ5WpDXhDHxTmC2GCAceMU\nxDWR1QqPP+7P0qU+XH99yQHsTEAAdO5spXNnRyg7/oIv3z4qImVX4mQdmzdv5uDBgyQmJjJ58mQm\nT55c4PFp06bx4IMPsnTpUkwmE3/++afHGustnppzuqzq17ezbFkmV19t5ZVXfJk40VfTY9YwVisM\nH+7Phx+6HsAiUnmUGMIbN24kJiYGgObNm3PmzBnS09MBsNlsbN26le7duwMwfvx4GjVq5MHmeocn\n55wuq4uD+OWX/Zg0SUFcU1itkJDgzwcfXAjg2rW93SoRKY8SD0enpaXRunXr/NuhoaGkpqYSFBTE\nyZMnqVWrFlOnTmXHjh106NCBESNGFLu9kJBAzGb3XtdQ1Alvd4mMhO3bnd1v8Ph7OxMWBt98A127\nwrx5fgQG+jF1KoUOTXujbVVBVewXqxX+8x9ITIQbb4QvvzRRp457f46q2C8VQf3inPrFubL2S5kL\nsy4uprbb7Rw7doyBAwfSuHFjBg0axLp16+jatWuRrz91KqOsb1msiqjSGzas4DnhPI8+mklqqncW\naTCbYelSA3FxgUyfbiQzM5v//jcnP4hVvehcVewXmw2eeMKfxYt9uO46K4sWZZCTA6mp7nuPqtgv\nFUH94pz6xTlXqqNLPJ4aHh5OWlpa/u3jx48TFhYGQEhICI0aNeLyyy/HZDLRqVMn9u7d60rbK7W4\nOAvz52cSGWnFbLYTGWll/vzSFWV5UoMGdpYty+Cqq2zMnevHlCk6NO0p3urXSwP4gw8yqFPHO20R\nEfcrcSTcuXNn5s2bR3x8PDt27CA8PJygv6bbMZvNNG3alAMHDnDllVeyY8cO+vbt6/FGe0NFzDnt\nigYN7Hz8cQb//Gcgc+b4ATBmjHtWhaoJcnIc12EfPWrg6FFjge+PHjX8ddtIejq0amXj+uutf33Z\naN7chtGDZQE2Gzz5pB+LF/vQrp0CWKQ6KjGE27dvT+vWrYmPj8dgMDB+/HiSkpIIDg6mZ8+ejBkz\nhlGjRmG324mIiMgv0pKKkzcijotzBLHBAC++6O1WVS52u2PFn9WrYf/+gPyAPXGi+BQNCbHTqJEN\nf39ISTGSnGzinXccj9Wp45gOsn17x4Qr7dtbCQlxT3ttNhgxwo/33/elbVsFsEh1pRmzPMzVST5c\nceSIgX/+M5DffjMyejQMHXoOPz+PvFW5nToFX35pJjnZRHS0ha5drR5ZfSczEz76yIfXX/dh164L\nBYHBwXYaNLDRoIGd+vUvfH/x7fr17QUWPsjNhZ07jfzwg4mtWx1fv/1WMMSvuurCaLlDByutWtnw\n8XH8EWCxOAqsrFZHyDpuGy657fj+5Zd9WbjQEcAffpjh8WUBK/vvkbeoX5xTvzjnyjlhhbAHXTrJ\nRx5Pnk/+809HsdZvvxnx9bXTurWN666z/vVl4+qrPXsItThHjxpYvtzM8uVmNmwwYbVeKOcOD7dx\n++0WBgzIJTKy/CvyHDtm4O23fXjnHR9OnDBiNtu59VYLI0f60KDBuRIXMCitEycM/PjjhWDets3E\nuXMXfi6DwfHrZbeXfVaVqCgrS5d6PoChcv8eeZP6xTn1i3MK4UomOjqQlJTCl2NFRlpZt869VeIX\nO3rUwOuvB/Htt1Z27Ci4UERwsJ22bR2h3K6djfbtrTRqZPfYzFu//Wbg88/NLF/uww8/XOiL666z\n0qePhagoKytWmFm2zIfTpx2NiIqyMmBALnFxFurVK9vumZzsWHVq2TIzOTkGLrvMzsCBOTz0UC4N\nG9o9vr/YbLBvn5GtWx3BvHu3EYMBTKbCX0ajY93fwo/ZqVvXzqOP5rjt8HZJKvPvkTepX5xTvzin\nEK5kGjYMKjDay2M22/nzz3SPvndev2Rnw44dRn780fTXl5G9ewv+YRAebuO66xwj5qgoK/XrO0Ig\nNNRe5nVo7XbHIdvly818/rmZnTsd72U02unUyRG8vXtbaNKk4G6Xne04PJ2Y6MNXXzlGyWaznZgY\nC/HxFmJiLPgWMUGZzQarVpmYP9+Xb791HNNu3tzGoEE53HVXboF5kCvz/uJN6hfn1C/OqV+c0wIO\nlUxEhM3pSDgiouIWQPfzg/btbbRvbwNyAceKOj//fCGUf/rJxMqVZlauLLw71Kp1IZDz/s37/uL7\n7XZHiH7+uZkDBxzHu319HSHat6+FXr2KH9X6+UG/fhb69bNw/LiBpCRHIK9Y4fgKDbXRv7/jcHVU\nlA2DAc6fhyVLfHjjDV9+/dXxnv/4h4VHHsmhRw+r1w67i4iUlkbCHuSNc8J5ytovx44Z+OknIzt2\nmDhxwpD/dfLkhe+zs0s+Zh0YeCF4Y2Is5Z7XePt2Ix984MNHH5lJS3OkasuWjiUgP/3UhzNnDPj6\n2rn9dguDBuXQunXxf+BU5v3Fm9QvzqlfnFO/OKfD0ZXQsmVm5sy5UB09fLjnqqMv5u5+sdshI4P8\nUL44nE+eNJCZaaBLFws33VS2ZRpLKzcX1qwxkZjow5dfOs731qtn44EHcnnggdxSr3lb2fcXb1G/\nOKd+cU794pwOR1dClXWSj7IyGKBWLcfh6aZNK376KB8f6NXLSq9eVk6dgh07THToYC3zOWsRkcpE\nZ80qqWXLzERHB9KwYRDR0YEsW6a/l/KEhECXLgpgEan69MleCV16LjklxfTXbe/PVy0iIu6jkXAl\nNHu282tx5swp4hodERGpkhTCldCePc7/W4q6X0REqiZ9qldCRV1HXJHXF4uIiOcphCuhhATnSxEO\nH64lCkVEqhOFcCUUF2dh/vxMIiOtmM12IiOtpZ7gI6+q2mxGVdUiIpWcPqErKVeuL1ZVtYhI1aKR\ncDWiqmoRkapFIVyNqKpaRKRq0adzNaKqahGRqkUhXI2Up6pa02SKiFQ8fdJWI47iq8y/Vm0yERFh\nLdWqTSroEhHxDoVwNZNXVe1YUiujVK8prqBLISwi4jk6HC0q6BIR8RJ9yooKukREvEQhLJomU0TE\nSxTC4pZpMlVVLSJSdvrEFEDTZIqIeINGwuIyTZMpIlI+CmFxmaqqRUTKR5+W4jJVVYuIlI9CWFym\nqmoRkfJRCIvLVFUtIlI++uSTclFVtYiI6zQSlgqnqmoREQeFsFQ4VVWLiDjoU08qnKqqRUQcFMJS\n4VRVLSLioBCWCleeqmoRkeqkVCE8ZcoUBgwYQHx8PL/88ovT58yaNYv77rvPrY2T6isuzsK6dRn8\n+Wc669ZllDqAdWmTiFQnJX6Cbd68mYMHD5KYmMj+/fsZM2YMiYmJBZ6zb98+tmzZgo+Pj8caKqJL\nm0SkuilxJLxx40ZiYmIAaN68OWfOnCE9Pb3Ac6ZNm8YTTzzhmRaK/EWXNolIdVNiCKelpRESEpJ/\nOzQ0lNTU1PzbSUlJ3HjjjTRu3NgzLRT5iy5tEpHqpswn1Ox2e/73p0+fJikpibfffptjx46V6vUh\nIYGYzaayvm2xwsKC3bq96qK69UtkJGzf7ux+Q5l+1urWL+6ifnFO/eKc+sW5svZLiSEcHh5OWlpa\n/u3jx48TFhYGwKZNmzh58iT33HMPOTk5/P7770yZMoUxY8YUub1TpzLK1MCShIUFk5p6zq3brA6q\nY78MG1bwnHCeRx/NJDW1dOeEq2O/uIP6xTn1i3PqF+eK65eiwrnE43idO3dm5cqVAOzYsYPw8HCC\ngoIAiI2NZfny5XzwwQe8/PLLtG7dutgAFikPdywYYTajqmoRqTRK/CRq3749rVu3Jj4+HoPBwPjx\n40lKSiI4OJiePXtWRBtF8mnBCBGpTgz2i0/yVgB3H8LQYRHn1C8XREcHkpJSuA4hMtLKunXuPT1S\nVWl/cU794pz6xTmPHI4WqepUVS0ilZU+haTa04IRIlJZKYSl2tOCESJSWSmEpdorWFWNFowQkUpD\nISw1Qt6CEbm5aMEIEak09IkiUgRd2iQinqaRsEgRtGCEiHiaQlikCLq0SUQ8TZ8mIkUoz6VNOpcs\nIqWhEBYpgquXNuWdS05JMWG1GvLPJSuIReRSCmGRIri6YITOJYtIaelPc5FiuLJgRHnOJS9bZmb2\nbF/27DESEWEjISFHldgi1ZhGwiJu5uq5ZB3GFql5FMIibubquWQdxhapeRTCIm7m6rlkXRIlUvPo\nOJeIB7hyLjkiwuZ03WOt9iRSfelPbJFKQqs9idQ8CmGRSsLVw9giUnXpcLRIJeLKYWwRqbo0Ehap\nBjRNpkjVpN9UkSpOSy6KVF0aCYtUcbq+WKTqUgiLVHG6vlik6tJvqUgVV54lF0XEuxTCIlVcea4v\nzivoMptRQZeIF+g3TqSKcxRfZTJnzoXVl4YPL3n1JRV0iXifQlikGnDl+uLiCroUwiIVQ4ejRWoo\nFXSJeJ9+20RqKBV0iXifQlikhnJHQZdm6BIpH/3miNRQBQu6TEREWFXQJVLBFMIiNVheQVdYWDCp\nqRmleo0KukTcR4ejRaRMVNAl4j76rRGRMlFBl4j7KIRFpEzKU9AlIgUphEWkTOLiLMyfn0lkpBWz\n2U5kpJX580tXlKWqapGC9BsgImXmygxdqqoWKaxUI+EpU6YwYMAA4uPj+eWXXwo8tmnTJu666y7i\n4+MZPXo0NpvOC4lIYVr3WKSwEkN48+bNHDx4kMTERCZPnszkyZMLPD5u3Djmzp3LkiVLOH/+POvX\nr/dYY0Wk6lJVtUhhJe79GzduJCYmBoDmzZtz5swZ0tPT8x9PSkqiQYMGAISGhnLq1CkPNVVEqjJV\nVYsUVmIIp6WlERISkn87NDSU1NTU/NtBQUEAHD9+nA0bNhAdHe2BZopIVadpMkUKK/OebLfbC913\n4sQJHnnkEcaPH18gsJ0JCQnEbDaV9W2LFRYW7NbtVRfqF+fUL855ul8GDYLatWHqVNi5EyIjYfRo\niI8PKPZ1S5bA4MEXbucVdNWuDfHxHm0yoP2lKOoX58raLyWGcHh4OGlpafm3jx8/TlhYWP7t9PR0\nHn74YRISEujSpUuJb3jqVOmmxistx3R759y6zepA/eKc+sW5iuqXHj0cXxe76MCaU88/HwgU/sN9\n4kQrPXq49/PkUtpfnFO/OFdcvxQVziUeju7cuTMrV64EYMeOHYSHh+cfggaYNm0a999/PzfddJMr\nbRYRKZYKuqQ6K3Ek3L59e1q3bk18fDwGg4Hx48eTlJREcHAwXbp04eOPP+bgwYMsXboUgFtuuYUB\nAwZ4vOEiUjNERNhISSk8ElZBl1QHpTonPHLkyAK3W7Zsmf99cnKye1skInKRhIScApN85CltQdfs\n2b7s2WMkIsJGQkLJSzWKVCSVGIpIpVZw3WNHmGrdY6kudFJFRCq9uDgL69Zl8Oef6axbl1GqEC3P\nDF15l0SZzeiSKPEo7VkiUi25WtClEbRUJI2ERaRacnWGLs1xLRVJISwi1ZKrM3TpkiipSNqrRKRa\ncnXdY81xLRVJISwi1ZYrBV2a41oqkvYQEZGLFLwkykREhFWXRInHKIRFRC4RF2chLs7y11zApZuf\nuriCLoWwFEWHo0VE3EAFXeIK7R0iIm6ggi5xhUJYRMQNylPQJTWXQlhExA1cvSQKVFVdk+l/WkTE\nTfIKuspCVdU1m0bCIiJe5I6FJjSCrrr0PyYi4kVaaKJm00hYRMSLtNBEzaYQFhHxIi00UbPpf0tE\nxIu8sdCEziVXHgphEREvq8iFJvLOJaekmLBaDfnnkksTxHnhbTaj8HYThbCISBXk6gja1XPJBcOb\nMoW3FE29JyJSRblyXbKr55K1QIVnaCQsIlKDuHouWYVgnqHeExGpQVw9l6xCMM9QCIuI1CCunkv2\nRiFYTaBeEBGpYVw5l+x4fiZz5viyZ4+JiAgrw4fnlKsQTOeSNRIWEZFSyruUKjeXUl9KVZ5zyTXh\nMLZCWEREPMbVc8nuuJ65KoS3QlhERDzG1XPJ7rmeufKHt0JYREQ8xtVCME9cz1wcbxWQVd4xuoiI\nVAuuFIJFRNhISTE5vb84VW0yEo2ERUSk0qno65m9NRmJQlhERCqdir6euTyTkZSHDkeLiEilVP7r\nmY1ERNhKdT1zQkIOgwcHFLq/pPAuL4WwiIhUKxUZ3uWlEBYREcG18C4vnRMWERHxEoWwiIiIl5Qq\nhKdMmcKAAQOIj4/nl19+KfDYd999xx133MGAAQN45ZVXPNJIERGR6qjEEN68eTMHDx4kMTGRyZMn\nM3ny5AKPT5o0iXnz5rF48WI2bNjAvn37PNZYERGR6qTEEN64cSMxMTEANG/enDNnzpCeng7AoUOH\nqFOnDg0bNsRoNBIdHc3GjRs922IREZFqosQQTktLIyQkJP92aGgoqampAKSmphIaGur0MRERESle\nmS9Rstvt5XrDkJBAzObC84GWR1hYsFu3V12oX5xTvzinfnFO/eKc+sW5svZLiSEcHh5OWlpa/u3j\nx48TFhbm9LFjx44RHh5e7PZOncooUwNLEhYWTGrqObduszpQvzinfnFO/eKc+sU59YtzxfVLUeFc\n4uHozp07s3LlSgB27NhBeHg4QUFBADRp0oT09HT++OMPLBYLa9eupXPnzq62X0REpEYx2EtxfHnm\nzJn88MMPGAwGxo8fz86dOwkODqZnz55s2bKFmTNnAnDzzTfz0EMPebzRIiIi1UGpQlhERETcTzNm\niYiIeIlCWERExEsUwlKz2bIAAARUSURBVCIiIl6iEBYREfEShbCIiIiXlHnGrMpkypQp/PzzzxgM\nBsaMGUNUVJS3m+R133//PcOHD+eaa64BICIigrFjx3q5Vd61Z88ehg4dygMPPMC9997LkSNHePrp\np7FarYSFhTFjxgx8fX293cwKd2m/jBo1ih07dnDZZZcB8NBDD9G1a1fvNrKCvfDCC2zduhWLxcLg\nwYO59tprta9QuF/WrFlT4/eVzMxMRo0axYkTJ8jOzmbo0KG0bNmyzPtLlQ3hi1d32r9/P2PGjCEx\nMdHbzaoUbrzxRubOnevtZlQKGRkZTJw4kU6dOuXfN3fuXO6++2569+7Niy++yNKlS7n77ru92MqK\n56xfAJ588km6devmpVZ516ZNm9i7dy+JiYmcOnWKuLg4OnXqVOP3FWf90rFjxxq9rwCsXbuWNm3a\n8PDDD3P48GEefPBB2rdvX+b9pcoeji5udSeRPL6+vrzxxhsFplP9/vvv6dGjBwDdunWrkSt/OeuX\nmu6GG25gzpw5ANSuXZvMzEztKzjvF6vV6uVWeV+fPn14+OGHAThy5Aj169d3aX+psiFc3OpONd2+\nfft45JFH+Ne//sWGDRu83RyvMpvN+Pv7F7gvMzMz/xBR3bp1a+R+46xfABYuXMjAgQN54oknOHny\npBda5j0mk4nAwEAAli5dyk033aR9Bef9YjKZavS+crH4+HhGjhzJmDFjXNpfquzh6Etp4i+HK6+8\nkmHDhtG7d28OHTrEwIED+fLLL2vkeazS0H5zwW233cZll11Gq1ateP3113n55ZcZN26ct5tV4Vav\nXs3SpUt56623uPnmm/Pvr+n7ysX9kpycrH3lL0uWLCElJYWnnnqqwD5S2v2lyo6Ei1vdqSarX78+\nffr0wWAwcPnll1OvXj2OHTvm7WZVKoGBgWRlZQGlW/mrpujUqROtWrUCoHv37uzZs8fLLap469ev\n57XXXuONN94gODhY+8pfLu0X7SuQnJzMkSNHAGjVqhVWq5VatWqVeX+psiFc3OpONdmnn37KggUL\nAEhNTeXEiRPUr1/fy62qXP7+97/n7ztffvkl//jHP7zcosrhscce49ChQ4DjvHlehX1Nce7cOV54\n4QXmz5+fX/WrfcV5v9T0fQXghx9+4K233gIcp0czMjJc2l+q9AIOl67u1LJlS283yevS09MZOXIk\nZ8+eJTc3l2HDhhEdHe3tZnlNcnIy06dP5/Dhw5jNZurXr8/MmTMZNWoU2dnZNGrUiKlTp+Lj4+Pt\nplYoZ/1y77338vrrrxMQEEBgYCBTp06lbt263m5qhUlMTGTevHk0a9Ys/75p06bx7LPP1uh9xVm/\n9O/fn4ULF9bYfQUgKyuL//73vxw5coSsrCyGDRtGmzZteOaZZ8q0v1TpEBYREanKquzhaBERkapO\nISwiIuIlCmEREREvUQiLiIh4iUJYRETESxTCIiIiXqIQFhER8RKFsIiIiJf8P6lXJ/yjJebMAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Y9Td7CvSmJ6X", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "These plots are characteristic of overfitting. Our training accuracy increases linearly over time, until it reaches nearly 100%, while our \n", + "validation accuracy stalls at 70-72%. Our validation loss reaches its minimum after only five epochs then stalls, while the training loss \n", + "keeps decreasing linearly until it reaches nearly 0.\n", + "\n", + "Because we only have relatively few training samples (2000), overfitting is going to be our number one concern. You already know about a \n", + "number of techniques that can help mitigate overfitting, such as dropout and weight decay (L2 regularization). We are now going to \n", + "introduce a new one, specific to computer vision, and used almost universally when processing images with deep learning models: *data \n", + "augmentation*." + ] + }, + { + "metadata": { + "id": "pGfPR55HmJ6X", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Using data augmentation\n", + "\n", + "Overfitting is caused by having too few samples to learn from, rendering us unable to train a model able to generalize to new data. \n", + "Given infinite data, our model would be exposed to every possible aspect of the data distribution at hand: we would never overfit. Data \n", + "augmentation takes the approach of generating more training data from existing training samples, by \"augmenting\" the samples via a number \n", + "of random transformations that yield believable-looking images. The goal is that at training time, our model would never see the exact same \n", + "picture twice. This helps the model get exposed to more aspects of the data and generalize better.\n", + "\n", + "In Keras, this can be done by configuring a number of random transformations to be performed on the images read by our `ImageDataGenerator` \n", + "instance. Let's get started with an example:" + ] + }, + { + "metadata": { + "id": "NJ_q6HGYmJ6Y", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "datagen = ImageDataGenerator(\n", + " rotation_range=40,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,\n", + " fill_mode='nearest')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sDIdFMDqmJ6Z", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "These are just a few of the options available (for more, see the Keras documentation). Let's quickly go over what we just wrote:\n", + "\n", + "* `rotation_range` is a value in degrees (0-180), a range within which to randomly rotate pictures.\n", + "* `width_shift` and `height_shift` are ranges (as a fraction of total width or height) within which to randomly translate pictures \n", + "vertically or horizontally.\n", + "* `shear_range` is for randomly applying shearing transformations.\n", + "* `zoom_range` is for randomly zooming inside pictures.\n", + "* `horizontal_flip` is for randomly flipping half of the images horizontally -- relevant when there are no assumptions of horizontal \n", + "asymmetry (e.g. real-world pictures).\n", + "* `fill_mode` is the strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift.\n", + "\n", + "Let's take a look at our augmented images:" + ] + }, + { + "metadata": { + "id": "zqxh76ifmJ6b", + "colab_type": "code", + "outputId": "c6238c28-d19f-4ae1-cfd6-cf00dda76b22", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1348 + } + }, + "cell_type": "code", + "source": [ + "# This is module with image preprocessing utilities\n", + "from keras.preprocessing import image\n", + "\n", + "fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]\n", + "\n", + "# We pick one image to \"augment\"\n", + "img_path = fnames[3]\n", + "\n", + "# Read the image and resize it\n", + "img = image.load_img(img_path, target_size=(150, 150))\n", + "\n", + "# Convert it to a Numpy array with shape (150, 150, 3)\n", + "x = image.img_to_array(img)\n", + "\n", + "# Reshape it to (1, 150, 150, 3)\n", + "x = x.reshape((1,) + x.shape)\n", + "\n", + "# The .flow() command below generates batches of randomly transformed images.\n", + "# It will loop indefinitely, so we need to `break` the loop at some point!\n", + "i = 0\n", + "for batch in datagen.flow(x, batch_size=1):\n", + " plt.figure(i)\n", + " imgplot = plt.imshow(image.array_to_img(batch[0]))\n", + " i += 1\n", + " if i % 4 == 0:\n", + " break\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWuUZddZHTr32ed96l1d1VK31N16\nWZL1wDY28Us4ujY2wgQMyY2NAiQkGeFCYkO4YCUMM/KDGwJ2ri9gM8DAxQyS3Fgj8gNyA1eywQKb\nyLIxtmzZenZL3VK/q+td5332uT++OdfptapOV3VVSSV7rO+Hts45+7H22rt6zz2/+c0v6ff7fcSI\nESNGjG1Fbq8HECNGjBjfyhH/EY0RI0aMHUT8RzRGjBgxdhDxH9EYMWLE2EHEf0RjxIgRYwcR/xGN\nESNGjB1Efrd3+Cu/8it45JFHkCQJfvEXfxG33377bh8iRowYMV4ysav/iH7xi1/E8ePHce+99+Lo\n0aP4xV/8Rdx77727eYgYMWLEeEnFrr7OP/TQQ3jLW94CALjuuuuwtLSE1dXV3TxEjBgxYrykYleR\n6NzcHG655Rb3eWpqCufPn8fIyMiG67/9B96G3/rQR/DT//KnAABZlgEAkiQBABSLJX62f+tzOVum\naep91vq9Xg8AkM/baSWw7/Ncv1AoeNtnLNZK8+mG+03TFP/mvffgNz/8IQDA6OgoAKBcLgMApqen\nAQD79u3zvtf2KgZrtVoAgG636423Xq8DABqNhre+xqGolmsAgPHxUa5vD6aV1WV8311/D3/0hx8B\nADz6tUcAABfOnbf99Ww+kdh89DgfnU4HALCwsOAdR+PWddC4e11bX/Naqdh5ar7rjSZ/L3j7B4BP\n/Mn/i+/73rcCANrcj/av5bDr6uaD49bn8D4pl+w+GR0dxfLysndOxaKNeWTE5rBarXr7+L0//C/4\nF//0R1GsVgAAJZ5Dd37FzhX2+fk1+zy/tAgAWKmvcdJsDLq3dO4aa5KxIJCLjP/TT/g1zyGnJc+9\nVCrhz/7s/8Pb3/59tt9ua8O5UWguws9ahuuH95h+1/51rcNrdHF86pP/He/4ob+37vvLiXDcuxmf\n/MSf4Id++Ad2ZV+Pfv3xob8lu1n2+Uu/9Et405ve5NDoj/zIj+BXfuVXcM0112y4/rPHn8WRw0d2\n6/AxYsSI8aLHriLR2dlZzM3Nuc/nzp3DzMzM0PX/xf/2T/HAn/0Fvvf73gZg/dMzny9y6Q/TIc3g\nKRY+Nd1+cj4SLRZtv0JSQgchEioUCvjwb34Iv3DPewEMkGiJyGdsbAyAIW4ADnELkWo8Qic6nkII\nVL9rfT3XtP5IdZT7NxS1uroEAKg3VvGPf/yf4z/8+/cBAJ564gkAwMJ5uwYpz7uXEanDR8BahihK\nCFTj6LZtnOPjY978abz1ptAXvO/b7Ta+9tiTePmN19v+e90Nz1fHD9GPrl+BbyJZn8ha4I4HLF2E\nREUfaW6LxQLHPuodQ/HgX38Jb3rDa5Av2TUrc/2J1JZTZbumXzp6FACw1rT9Lq0YMu0HQMohUI69\nxP2kPIdOz869nfHeG4JhyuUyjh17Ftdffy0AoJd1NlwvjPDev1wk6uac10T3YLg+YOjs1ttu2tK4\nXujYCNF+/WuP4bbbb96V/X/9a48N/W1XOdE3vOENuP/++wEA3/jGNzA7Ozv0VT5GjBgxvh1iV5Ho\nq171Ktxyyy1417vehSRJ8O/+3b+75PriPBWXy4+ET8/1K9giRDbaznFsff93ra+nr7hMLYVm2u02\nAGBtbc3bXkttH44v5LWG/V6pGE9XIJpZIh+3umq8X7dnxxdy1HgKBUOK7aZxlRmflT34x9VSx3Fc\nMc9fkYed99TEhO0nQNRp3q7jwuKSt98BiuGzOlfY8HehnhD9OM4zFRLlfPG4PXK++YtQklCykKi7\nCRgh2geAXreHPmzu8uQ4c0S3+gvJJcIbvMY5/14J59QhXnGfPKc+OdK8kGm/540y3E+43GqE9+Iw\nznTYfsN7c9jf2OV+/2LH5Y5jO+PedZ3oz//8z+/2LmPEiBHjJRu7/o/o5UT4j74QmJZCfuLQxDWG\niFHrhcgvn9rp9QNkKZSi/Q2wDbztHSfI/QshOS41yGKH2f9areZ9VoScohCk9huiD+1/fn6B39t4\nMqKYdpucqxC30BQ50TTHy9z3zy8c70AVUfSOn0sr3vcXZ98BIN/3uV/tb8A/aj4DhDuE29a43HjS\njdGBQ8TJAGHrmq6QswyVHTqmdw79vlMydDs2t/WWofiEPO667HQA4Ibx8xmIqnnqmhtxqZ3MR/Ua\nn5bbzfsORaK6B3TPJxtvF2brN8rOX+r73Yqd4tnci4CIY9lnjBgxYuwg9hSJhk+58GkePg3TQO8p\nBBeG1mu1DcEpOy/uUhyglt3M15eGekRlf/W7xiNkpvGEOtEwsxmeh5CqzjvUk0rz2G33vPFXa0TQ\nRBVOmxhwmcpMQ0g0QEPheF1GuVTyPpfzWk8I3z+/LvWfmgeNf7BfHj7gpkMEHHKlmh902954NU9F\nHk+cby6Xw8ioJTLn5+e9Meja6dw8hJckSPhR57LatDG0oKkjsgx4dF2E8Bzc25J+d7ww14N/b0PK\nEuje63Js4oEvzWE6ZJxJhyrFia6B0DqvgTZzyNTfj+Yjx19yQzDhsO9fKpG8COOLSDRGjBgxdhB7\nikSFDkJEN9D/CUX4SE/rC1WEyMdlv/lUTofwNo7DK2ysQ1UIMYV6zxBZnT9/3ltvWKZP+wtRkfYn\nBKbjtKnDdOeX+Khm3Xh0HpxPJNSLdsUNh5VeHC+U7fZRW56H6/Y4Th6h3VPl0caVVgqNt8D9dqgq\nKOSE0JXx5nCFfoT2UulcqStlhZnOO8fzaXfbTvtaLFMLzHtD6DW8toChs34qDaqORYWD0HbW5hz4\niLRPzjMHH+k5HlhUZLpxpZGUBX34kFD70febVSiFkQTrub+BXIBoddpu/zqeziPirM0izlCMGDFi\n7CD2FImWy8ZJjo6OAwCqrF8WWigUDAkpy1wqGToIM66hrrNDXkuZViGbkINzFUylkrc/ITihhKuu\nPmK/Jz6nqZp77U/jVITIzNXyE/k6REpd59ycIdljzzzNebDjvfIVrwAAPHPsGOfBxttsGmooiPMk\nSuoFlVuO69V8iGcjXGk36954eFool2y7ZtvWDxF2o0W1QoBEtXScsDhivTE49UQ4fz7a6ourLvrz\nrf2JE81x/urNJvpULIyxyGN1zSqYhml/Nc4kt/E9NdAGEzH2Qw4UG35/0VngUjHQDAuGK5vu45vN\nNNH6elhW3qH9xEfEmvNA+nvRdhvnK8L1XuzY6nEvVz2wnfOJSDRGjBgxdhB7ikS/964fBAC8/Jbv\nBDDguvIFPfVtvTBbHHKfYfa7yUqddUgw2H6z34Xg9u8/sOFxwwif2mFlUrh0OkhBP9W2Mwu/uGQZ\n5muPHAEwcI3SdlInhLXo4XGzQH8qVYJbj5xo6A3gKop4HUI1RFhjH/KN4TyEHHI4X7ocG1UVAUCB\n3Hif6LDIzwm51kI+77ZxbxntgrePjRBdLpdbh6JDp6mUx8gC/rmPjRHiVvWdIWLswecmwznblAsN\nkWjOXw7conwnM/0O95l/I+4abe2e3+3Y6X6H8fS7tX8gItEYMWLE2FHsKRK94oorAQDViiGgxKeF\n4FKHQYRIcFjdssveDtGjhjXi61CB00H6NfPD+Klh9cjDavYHFVE828xHOcvLVnWzsGiVSrMzswAG\n6gSNSxVYw2ryu8F5hCqIkCsO9a0Js/o6/0FdOjacnxDJa7xhZVYY63m8AMHm/Pl240vFkeYHaJyr\nlqiVzQJgeDFCSdN03ZiGapfDMW9S7SYEN8wNSXrTgu6tYByDSqNLI1uNY/3blq5FWLklxC3Em3if\nB9dC+98Y0Q17m3uxYzMlzAsZEYnGiBEjxg5iT5GouDfp/Aal1b5uMER2IWoIEaXicp1ohq0XHn8Y\nEg2RbzjOEPkN/EzXjcjfLvN9M8PzHaZLdR4EHd9RP1xP+ttQtzrQ23a99Yf5tipcfXjwZhC+EQzc\nmmy7QScD/01BmWVx3aPlKtenXrjC+6jeX+e4VSqxuq3jj/nit5lcLkGr7c9RyJt3WDWWC+ZQd0ZY\nhRU63Ida2vBtQsjZOYr1/bndlGNNdC7BNXH3qq6Fj1AHPHRQ0RT+DWSXRqIvlFvSTvert67d2v9G\nEZFojBgxYuwgXhK188JielrncuqRZLHO/3MIlxl+HsZ9hpzqVrVk4X6GId2tekDq9xC1dOkcJFSg\nrLm6BDz22GP+8YPxr89+2/chInTZ+rKvzxU6cuML3LTC7HnoBqUYpuMNHe2HVYBpe/VQWpdpduoC\n265cLGGl1fa+S6kh1T22cR+rxI0lRHLu3HJ0tsKK2+biGFabL8QnH4MjVFocPnwYAHD27BkAwCI7\nQpw6c+ai0Q5is7cqdTFYz0vr+yT4vHE/qywkj3X8zHfWUuh8h8WWkd5WAeFlrpcvbfJP3JD9XQ4+\njUg0RowYMXYQe4pEB649RA+u/jjMMvvrD9tPGMM4u8040mEc6GbZ/K26hYeIK9RxhhVQOo+wS6dD\nO0Oy8oPjhJo/n78LdaGhr6mcjZRdDzWUYRZ+mM4zVDcMfGOFxBNvPUVYGRa6VekqVqsVR6x3yAMX\neG5pwfc9uPjtI0kSh+TCayxN7a23fAcA4Omj99n+OeZi0XcWU98t6Uo19xPj1hXgTW96EwDgDW94\nPQDgsce+YctHbbnwl38FAFiTAkLcqAakEnun++QcKQsvvauQqbjdoIa+yP5lg863vKa9je/xzpC/\nlVwp+P5yKcatAtVh+YzhGwAA8qWNceJm20UkGiNGjBgvUuwpEnW6wcyeumlqWVcEnoeKrfIrwxDf\nMM5ys6z9MGS1WVZ/Pd/kP+UdChjCCYb12uIql5aWvM+9ABGGx3O9zMl96ndxrSkzt/IrdXXjATIN\nOwiEHGmYqQ1VA0JrWn+9NlN8nl/BlU/Fx8H7Xj3bMyH3fAE5IsAiUm9faV7oWprTwXHTNHFvP0J2\nBdkvtdhFoMdj0FEqo29Ap63XJFVzWR+ssVHT9LYatl6lYv4QBw5Y9du+fYZY3/jdVq139aGDAIAn\nj5o/wjPHngMAlAv2NzHw0LW/lYzHKxTpkMX+VariEnqX92uhYOMskiMWzyyfiH5wTdzfiHxPh/zp\nlYvBPyHhW9/Gmw2+v0yEebnbVQsbc7lb3e9W/sWJSDRGjBgxdhB7ikQX2DMoSe1p325b5rOQNz/N\nfs/PLm9Wu64YhjiHVcogRKquaiPYLngs5YJ65ASBto8b9PpCdMx6O2JrYxQwcM6n/pGuT/PzS1xP\n/BUd35n5rfN4XR6vw0oj11W177sqVct0g6IGMknFH9rqvUwVRoZQN8umD+t5tZkXprqTikdEMI+5\nwLXL6Uydmzt7XXW6+l+Uec4d1yPJR5IXD6FQLKDDtyKnD3XcoY1pZMRQu3SXOfk1yCuVyK9aNc3t\nT/3UP7Oh9fh9zc7xppuvt88jFY7D9n/NNZat/9EffRcA4LOf/TwA4JZbbwQAzOzbDwA4euxJAMCZ\nM6cAAJVqkeO08y2X1DfMIuX5Fku6p3wvXsc/B38jvRCZwg9NX03Z+c0Q3CZc46ac51YRbrDeCDnt\nLe8ncqIxYsSI8eLGniLRtaWTNoi+EI/MGZm1TeypWuDTpEc+qyvnHLqKqxlkztUp973PaSKOjdxm\nRq6OXortfiFYn/pGcZHg+kQ5zntS3JxzBxdSUkdH7gfiLv3Kny7rlVP1hQ+QsuuGSV7rgpB7Emr/\nZDoghCvU5WsH5edZcL2KrAKoRb9QdQ2VVlCcqLjNsOtpiEDFcYcccVihte78huh5hWBVq1+tGj8Y\ndoN1CeUsc9lpVWF162veNqF2FTB05rxOHeSyMQmxjbJ3kyLn3jb6F6+OQ4eN23z1d93Ok9CfGDW5\nRI66ZrpXK6y6uvW2l9uY6J171/e91c6d/hK33X4zAODTn3kAALCwYPrSmSnTEFfJe3c6yjd0OR++\nflTzs861KuTBda39aXG1+qO8Juuahw5BdOuVMv6Ow+MM3W6Lx5kYrV282ro9hN8PPc4lIiLRGDFi\nxNhB7K1OtGPdLEviqYisRGz1IXsj6gidx6J9LSSZuEwiEY07ALPEzgWICJU/C7g5W+9+5n10Djcd\nv2+7NHjthOgl76CofRYidT3FxdGGiGtjFUKv66MBLVdXV3l88XZ0+g8yqGH1iqpl2g2/X7z6EXXI\nPYd+oUKgofvSutr6Id4GYbY+1O2G3GqIihShLlXhOG8hZwz6OAmFi8ftdH3FwsV955MkcbysLn7S\n86ux1lYN0bqeRxpbz+e7b7/9FgDA6Jghy2KhwvXIV5Nn1rVKyHfnEjv+dMH0pDfedB2X13I/hqgu\nXDBE/EbpTB+36rVC4v8tNBryEFBWngoNIusye1DJozXMIwz4bc6Tu8Y+gpscZ0dW/brNWvSdlrAP\nO26teumKqt04fkSiMWLEiLGD2FMkKuSh2u0chATJYfLpnvQNMQnJJX1mRumALzdwPRGESPsDGygu\nfP5KD5+cONLgmaJuk+JCBT96mbLZYdbfd8IREM0Taeeg6hCuLuecxEdyrnpEPYaIKBcXTYOoTHCR\nPagKBb86hdM2qF4Z4touTjGD7y8aojW33pBKpWHIMlRHhMg1DdBiWBE10Jf6nGq4vni/fLm8viNr\nwOuGfKrGo371rTX2myJyG2Gvpocffti26/i+Aq4rJ5UPr3zVbTYWtgMoV8mP99jpVAA40RxWOBe+\nq9PUlOlKx4n0yqVRnrPxw0euOQIAmJu7AABortq90WnRWzaRRpjuTfyTKvJtr+i6SEgfG0Ix9Svj\n29MQZYuuTRjbRXbbr7XfmFMtFIf4iQ4hX4dxspeKiERjxIgRYwexp0h0bt56CLn+NX3LFrtunrDP\npYL0jKqkUdZaGVKLzPFCPscqrVzmUIMtS9TMQRpBh1xtkZP3IseRL/ruUgl/X20qK62sPMdDnWY/\n9ZHegCOE931Yci+kN3/B0MYZOvxcc8Q0hbVankvVvrc5XlYmSevXZXVL4K3oEHTO7z4qhBdm28PK\npdBzU99v1jlAEfbGUs+m9a5b/sSELlOq9+50OsjxHN2+Av1jqBjQ8buEiKrgadcb3nZzF+a8/Tl0\nLYRHHWatZtlq5+aU+eeapnZtuuxr5b7nNVDTz0qlyiUVKkR8IyOGTBcXivxsCLXXNI11ry1+XL4K\ntj+pAbQsEIHmAyTpejDJb7TDvEJvXfrd9lMO/DrDbDfCCPczJNattumO/Z/1FlMpXnrFIcfd4mEA\nRCQaI0aMGDuKPUWiRVZXyBFHTjSuZw8rmXpEFTMTVrVx5rxl9busa06Ktp+kL02bsuRCOn1vmZED\nHR2x+uXuirLS/N0hVbocFQ2JFgo+B5gjQm4r8+r63Gt35OVEv0nPKh1pJiQd1tT7NeTCYcqm3/Jy\n0xJ2WOGlPkIloaiu6sWFCOkH2vNRmdASTd3declBXrX0F/OHNj6fWw2z8GE2Puy5FEa4n5BbbbOi\nSjrRUCUw4JAz95tQdKnsu+Vv5OKUy+XcXHQavNZ5H2GdP3fe1tU58qJkvMbX32BZ9PEJ4zKLBeNS\nE/LNqhTSTSCwXWJllbSw7XaL52rrj9P9SX4JNVY6ze632vwbbrgBAPB4y37PunaPtIkgpRQRknX8\nuT7nfRzl3g4cQtZrlf/WpyiEfp1DoduQH7aB/DZecWNu0yHtF5Cj3fY/ou9///vx5S9/Gd1uFz/5\nkz+J2267De9973vR6/UwMzODD3zgAxfdODFixIjx7Rnb+kf0C1/4Ap566ince++9WFhYwA/90A/h\nda97He6++27cdddd+OAHP4j77rsPd9999yX3k6a+q0+ZWXrxWSm1cwmRRqtpyKhGnqPeFgJRBZI6\nPRLJ9akvdciLmjhmJteWrQJokmilRRRQK6uXkW03MWFId61uOk05vZfz9lyeHjfUsbRkyFA8VJ/I\nq90J/ElZAaXeRf0k8M/MCT3YeAuB4/w111wDAJifP8X9MWtNVKGMqvSi3ba4Rtv/sN5PWgqJahlm\n7Yd1eAzrst34hzjfh9n+MOuuyAXzof1rfA5dlkrubaCbt+VYkU5VTd95ahgS7dEZX/fI3Jy40MCN\nX9eUi4MHr/DGJiVJoVD25kiOVCEiVQ19m29XI6OGuvNOx2nrVavGiXbafteDWs2+X1kwxJwGrXNV\n1SdkmQu1xapuC962Uo5L41yHRJ2L06UR21BuU99ugiyHfzusAsqiVChuvN6Ge1+/xlbEAtviRF/z\nmtfgN37jNwCYCW2j0cDDDz+MN7/5zQCAO++8Ew899NB2dh0jRowY31KxLSSapqnjp+677z5893d/\nNz7/+c87JDI9PY3z589vfvCCKm78XkvS0KnXdZ4u3F3XN8ceDyU+F0usM1Zq0zn58Pt8qqy+ss2Z\nt+ySc1PBVEIEq6d1fXnNnRcANJi5VS+krGl81ERZSMnQh/wxzywF3KIQGM+6n238LBOqSVX7zuNp\n7psNW0qjWCQq6PY4r3KhUjY7eGYOuEc/m76Z3+qwCiRxnnKDD7lQjTvUg4ZcqO4jbT9KVLZ/v3Hi\nurfCcfR6XafMCLWpYf+oEImq6klcaJdE8bnTpogYKdk5LXap1GD3y4S18dPTVrteFgfr/B1ceZ0d\ni2A8l0jRYOfcbNY5d7p3hGQL3K+fpa9U7fupaXsLqhCJyltVfLiEDXm6PKWpKpZq/jykRPNBf3q1\nmy/15ATG0+FxynnfNerFiq3qSQtpYfOVdhhJf9NerMPjM5/5DD7ykY/gD/7gD/DWt77Voc/jx4/j\nnnvuwcc+9rFLbj8/P4epqX3bPXyMGDFi7HlsO7H0uc99Dr/zO7+D3//938fo6Ciq1SqazSbK5TLO\nnj2L2dnZTffxx3/8n/ATP/Gv8Qe/+0EAg1p5h4CIkMpFQwFFOt2sNo2bzPgUrxXlJGNPz/qaoYWR\nmmXfCwVV6JBrS3yXc7k8iUMcOLID/+Af/wz+2x/9tu2n6Nfh9vtENamqY+RAT/6MT+lcbRIA0GB2\nXQhTFUjtriGvtTU7rxMnnuE4bT+33Gb12B+/95MAgPe//9cAAEsLp/DG734r/uMv/0sAwMI5299K\nnZxhxxDw8op6MvlIVOgsI9xQzf4F6lKVER7YdvroTihJyFH8nFBTsVjEf73vk/ih77/L+z2siBpU\nHlGfSl5y36Qh/6lpy1Bfd73Vk3/m058BMHBvd5VVnc46PlZcYYf8tvh2xSf+5NP44R/4HkxU7Biq\n+CnU7R7KyHM/MWdz8WTHtM0T7H5Z4lz8k3/1EwCA//WdP2hj5tgTsEadbwmFvFC2vGRtHJrz2gjv\nZfRQq+1Ho3kOAFCv+10HNGfz1Fr/zcN/AwD4+ldt2eHfiLoWjIzZPahro2vhEF3e94ANq8u6vu0C\nAOA9//uv4Tf/z3vW/3AZsf1a+823+1f/+j/gw//Xv92V4/z0z/z7oetsixNdWVnB+9//fnzkIx/B\nxITdfK9//etx//33AwAeeOAB3HHHHdvZdYwYMWJ8S8W2kOif/umfYmFhAT/7sz/rvvvVX/1VvO99\n78O9996LAwcO4B3veMem+2nxaSqNXL4gbk1ZXHJdfPrWWMe8xiy947l6ciUXtyZkY6hDjjx9ZwjK\n3RO5qtZeVRr5vu+/Ka/HOl2QHAIj99nqMEtMtNPuqraeagFypnkev0C+a/8+O59F1msvLa5yXPZ7\nbdSQdLvF4xKpNYiS6kunAQCTFZu/OXKmy40W54GO9OT5GqysCnWfxaJq+InQeRwmatHq+LXuoSdl\nmIUPK46EVPVUD13Vtb82EfwIq34mxu38XRUQ99Ns2vlOThq6gqtc6jlUqrHq3qqw0ke/K7Ov+XBj\npB/CFLsOTLdtrE/BrmGOUyeFxsEbjgAY6DZDnjisquqJhye0k5JkkshVnGm73eTvQv0lb7s0zbzv\n9+2z7QvkPptdu5dIy6/r2yXO1SkmuN6w8avCKcxrh1VwYVwuAtxtZLpVmeV2jwts8x/Rd77znXjn\nO9+57vuPfvSj2x5IjBgxYnwrxp5WLKlToXgroQbVPytd3uwYspJmj8lo1IguWm1Dcl3qLken7HtX\nM5+pUkeONhvXiutZO0K+qL5iT/MC66Jzbb/CKMfxJT3yW3qY5dxjnfsl35SXbtN3ai+RUx1lH54a\nvR5V6tRqkitWNQ59WFcb1hESiX3OpUKEqvwSn2XoRRVIoXuS0NkwJKlKMlVS6ek+Pm7VOWEmXFl2\nHc9VRgX6T5fhJaItkZuuiVNlJnqM10PeAUKRIcrodDrr6vtV6562fRR+MRLt9XoocF9C+TVW/Nxe\ntMTnn65+HQAwKsd8vuVMXW2KgSuvvJL79yuiukTxJ9kTSby0eibVanZuOr58DgZVa/Kyte9rVXt7\nyXqqVrO5PXzI/BS+yjzA4pxxpYW8FBZSQkj/2Pc+94f0L3PINN1YDzoMib6QXOflbL8ZUt6N48fa\n+RgxYsTYQewpEhUfJIQiRDKsf7uQm5BPnRVE8kSUPlFLZWJd33UiIi1XVthdVAis5+sWB0iNNfHk\nkeRf2WySL6J6QChH+1cIMYVO9UKARY5vcszOr7FqSHqV2Xwh0CqdfcQRCxyo1xRYp63Z0zxpfsPK\no7BSSMgx1Gvmofmw83IImuepeV7nrhT4lmq9sGeSMsUzM6a1rK/adZFu9/ChqwEAn/7zv/D2q+uk\ncdbrdXetHTfKdXXMsC4fsPtNfazkyTpFhHcgs2txoGRjPQc7hwIrh0bGR3kufi+fgeeq7UdSPmmf\nS9Sd5vN+BZNbOr2rfdTfhiKs2hobMwRarlAvKveonHwNuFvJAaRj9Y3L1iHRgd+B391BcblI73Jj\np8g0rJLbrf1eHBGJxogRI8YOYk+RqJ7KoZN5GCFyGtRME0kVxeWp9ttHtt1A5BYiMCGkvHSmRIBF\n59xu3y8smGZPWWEhLm0v9CNUMND22fZCemFFT5GZ4F7eUNLUOBE3EW+3Z+MZIwdZzBN1FFWoIG5Q\nCNCvNApr5UPuUiHEKmSn+elRFECpAAAgAElEQVT2pF7Ie9sJ3TkuW+fD7UNNY3h8rSf3+BYdlHqc\nR+lDVbd+8uRJb/sQ8V58/6xD4Tk/2xz6iTr/BvKy43y7KLTt83fMXAUAeGzBeOjypCHQG49cw7ny\nOUN3jxXlAzrG46oWPvWW0hjrXtP34kQzZwXW9/aj3/PUQh+88hAA4KlvPsm1ZdEl5Mm8gHN1osKl\n73O5YRUa+pov/290GNJ7qUSIrF+QY7zgR4gRI0aMb+PYUySqmu1hXSGHdZEUukid5k2I1tYv8ula\nr8sp30eewzi1JPORjXPt5jDG2O9GblEOyAVP7RBhrSxd8H4Pz0+nKQQsnkpIe37pDPdrPNjYiGV2\nVxcMmSZ9csnk68J56wdElqtUCiqHQh1nP3CFV28ozX9Yjx7WwIeZcv2u/atQQ9dFagjxkrMzpn1c\nmJ/z5kdcaqh3LZVKbszqjJoPrrlTYlyEUDqdDlrs015asXtGnqxN9j56zawhvP/RtOqvqQOWjX/t\nra/gudGZ3nVP8BULucS/V5UPUB8u1/7LZcn5WVrmgIvMuY6ufFvgjkapLR70+9J+EETf+156VF2j\ndf4J4ebbjPBe3MoWO9l/ht7QNXcrIhKNESNGjB3EniLRVktI0Xes0dMw1C+GvpXOoSfoYaS+M6dP\nW0VPoRhUZzDW8T7U+HXXdbm0n8vOZ9T3Le0nvt70Yg3ixeMKOV/tX5zjFdQaLiwZijp1dpnHpe51\nglwj+as0b+OsjarXOrnfxEeQ8th0KCjgiTTeMNMq5CeOOc37lUdhj6Vwv+EbhhCoELr0wS67z3GO\nTtj3U5OGtJ993pC4rlOIgC9WQ6zrLKo+U/DfMkKXfXWzLBC4FDj28rSN4YpFH2W//PbbuL6f7c4y\nf6mQssN1zUyl9PC1y+r8Kmcz17er72fvdSvpmvXpqTtGtUCPvg69zEfrw5QvIYILudGs391wvR58\nvlvxQiPOddB8SGT9jce3mxGRaIwYMWLsIPYUia7VrR55nUN54BIUhhCMOEP5d7o+9tRTyikfiT2l\nQ2QbIqW++ufwaa+ss+NQ5dHoOFj1o/GR8DruNuCZQh2mkGizTW5SyI4awzyfdW3WtK+umUqg0Xne\nzitjJVffzltoZ4DKeF45/3zDfvTOsSfoMy/erUS1Q8jthhxz6OGp6zU6assaNZUiBJtEvOpQecV+\n04uOjRmqajSe5bwQHSkDzjeHAnu75yoVNPl209XbDJUZ6omU5xwU0sGtn8/lnK9Cyp5BpQbPvWFz\nvlS273/h53/KzuGAKSOmZ22ZH+HcpPLdlJKB14AuSTn1/Omr6o2DyPnW8QPHrSI/q9bevk1c33pe\nA95Dk/sMOWfsntAhQg29YsO3iczpR+H97v42so2RqLxsd5Fi3N3YbFzbdwJ1EZFojBgxYuwg9hSJ\njrM3kTokys9SSC3vdJo+pzboIunzW/pelUjuaRtwoWEXykH3SvJT5D7rK2veftRzqVo1hLu2Jq6R\n4yv6PYKcu3nwVA9DGcRmnfsj99hXL6gV8wlN2a9nYmScx7dlq0c3JYEc8lRCtKl8TXm11aHRuWfl\n5ZRvn/vUrcpRqFISUoU3X8N6IoU18YcPH+Jn8oDsI7Q4Z5nuNl2spvYZQr2BzkiVmt0fy7wOqtQS\n0hYSlXt7qVJ2CE/oNpEuNCfPWGpUL3rLSXOpQ6zqjpAXMJMGdb9lva+55XoAQENIsCL/Uv8edPls\nVymkpb7Q7jU+ri7kF3Cfrstooqw5kWygTNFbg+vFRCf+0A/hsit2Bifgf5+FyHRvIOmw42a9Ydn5\n3YuIRGPEiBFjB7GnSDQl59cLxGyVsiEjhxhTP3svbjOsUdfjXX6TzpeUCUo50Xfo+iTotkoebXzc\nKpHk61mtsJPi6Aj3S51iZYz7Ya/vnu8Q1BMPV/RVBoph3SrzuhzUz6qK5LmTJwAAsyMH7Xu6r1ek\nbyX6UNUK1P2T85Xn/OX4u3xTpUkUt5wPsu+DTpMbV6kMc7jX8oorrAOmq0hq2RvCCvWgrbavCjh0\nyKqC5A6lKpk2s/bar/McIK/p3Opzw6uxXBbb+WP6fHvGfebZnyolEuzKd/NKuzc6ZWbpO0TFnBpd\n00E2nTsOAJyQqMu1U5+5tGz30jgd6AdT7nOX6syl7gmDPAIdsIje1YWhj+A8g+q/zZDjoCrMR8Dh\n/i43huLgHbo/hVvnLnd/0cUpRowYMV7c2FMk2mcGMyWf1GbtdFgxI//OsFZ9wIWKe/Szz07PCZ9n\ncsgv9blR7V+17UJqdda8uxQvI9StKsLKKNXShzX2oVqgTM5znt1BVUP+7LFnbf1pQ2Rf/cqDAIBr\nrjNkV61wPtTjnMgzzZhpLhGFpXT6T3wE2aV3prjeMMIKJXGdmseQs9Z8qCJJvaT0BiAdbkYn/klq\nMQ9fa25NeXLLK8u23hJ1sxrHWFVORb7aodPpuLFIETConffxQlhnX6LCYpT9rmhwj6b+h5xojlVs\nCd9ecrxnBvesrb6uZnsIApV/xEUrcj8JQVGgew0UF1oO/hZsfzP7zGn/2WfPrDtfYAMk6rL+QVY+\nOB6CPl1peJ5BJLtW67S9UCXWC3qMF/wIMWLEiPFtHHuKRKXj3LfPdIGnnjPdo+Ot1M1RPZKCapQw\nHPIMeLFewOPIjSiDuFZDVqq119NW/ezV20n+paE/p0N0qkAKllILhPpJITbVeY/MMNtOrnWsZvNz\nw3XmFDRCzvL0848DAK4/bOuPVNhJsiokyP5Cq3be4yOGSta6571xu772Qc+kEI2ElV3iLNf3aip6\n62n/9bpxuC1yyjm+WQgkXHWVcb1jVGno+pw5a27wy8sr3rhV2ZQPurPm8rmLlBa+X0JTnrBBdZzG\nXeBgSkSMI0U6gBEoVqkDHZs0dH36nCkLKmNhd8yNq+8G7kx+Lb20u3pbUYS+CoPt+daV+d0GpErQ\n+cm/9Ngx/28n3L+uYS4fImI/hiHKFwtpJpembnd9u8uJiERjxIgRYwexp0h0Zdm4P/WJlztPr9fh\nZ+ofEx/hhE9tcY0hzzN42op7JGIryCXc19al1J0KOeXzqtzx3dB1vNChPjxu6MQfuqrre+ciRaQp\n5L28ZFxirWLPujFytd2W/X7hrH1/7jS54jbRiKvG4bjkck7eb5C5FpL2fUI17pAXC8cr5Bp6dIZv\nCgPnfO6HfYRmp1iXfqUhZdXmi7s+z55adepXQ5cocd26Hv2kv46XVfQCn8+Lx1goFBwSrTj7AVbD\ncYylCXsbKXO9mkS0RHIDZBugePf2oa4DQnzphusrmx9yoIPss7++Q949WdSTpy9IU+0jzDA777xY\n+xu7N7njCxGHblIv1UolxouBkyMSjREjRowdxN462/NpurpqXJkqY7pEFnJ5UlGE9Ibz89bJMOTe\nwgoahxjZLbRWmwIw4K0GyMk+T0+bf+Xp08bFdegxqS6jyl6HSDLs5aTQuELuMERDjhtl5c4y52N2\n2jSDlZR96eeMO11atO0ff2IN3w/g3Fnyd6w82jdN5/wpdv/MbD8rHTvO0rK5Q2UOeY5yXBsjzrBG\nPkRB6pEUajN13sqUr/G86g1bqpKpVpP3gS07zNqvNaiKcIiZbwxE1hrHxUg01Kw63lq6z8DbVOtK\nF1omriiqwoljy4/w2gsqCjhSCTFQWvhdBgY6xRAT9YPvh/3ufx7WBUL9wdRt1HUbCLLTPbde1/vc\nz1Gx4t4+nFmu7QcbR7ZNqLdTANvf4nG7Qwa+mwA6ItEYMWLE2EHsKRLVv+Fldj4ssQ+9+CjHRfKx\nE2bFhUCEPoSEpqYMcbp+5x3pTw1VrJGDbdGhp0T+6MRx6+EzMqJOjIZGxBGOj49tOI5hHo1hF8zQ\nSV+h38+cM8S7xGz0gf2Wtd43apU8R+umXnjugiHxxinjTOeWiRyrRJ7M1pdy1D7m2ZvJ1VvTSb6u\nvvA2LyFPFiJLnWdYK6/zdNxu4rtgqTJLaEn6UXkmyKe1XLX5XV6xTgBtVoKVylI/kF8kOlJ2ftnp\nb7sDt37HVdKDNPH7ZRXzg2tQzheQ9IRAWeVFDXMmREqEqRr8TFpk531LZ66CcImMDHy/zl6mCiMh\nPFuucX2NqpD1gRTICRGyf32fc9zU8RpUHZBHl9PXyrypB8qswJIfQjcTemdVW45vSeKZq766wTl8\nUS/bD0jRbkiSroN428R8m7ovaXHpFXuudcD2hrGVDSMSjREjRowdxB5XLNlSGUQhn1rNkF+bnGhR\nvppDegMpQr3mwAeUT1MhGO6v01UlDlEGK5hCtCCgKad3cXxOYxdkUsMstRCxxhueh9QDZ88bEm22\n7PMJ6mZf9XJzDjpy2LZba9jvy6uG2MQxdns2b4Ue5zOlB2RqiLU6ZYjT1aYzBjXwhsClW1WElUlh\npZUic/PG/ZK8nJo2zrTfM8Q4Sw/ODjnYNbo65S7Y+fQ6dvyr2If+CdaBN3t2PwgNOl6P99HyUgMN\nzt0kjzlWNB5d11yKgkpx0Me90O0jLcpngNemSWVHmwoOZq9DRCtE2utKi6wquNT73HdvV31ve4dY\nEx+xZv0MKS5GWuLh/XtSPqC6h+Qf2qbLVDtAUnpn0ltBu8W3qsxXE4Qa6LwjIQO9add/Wxlaiz8U\nsPY3/H2wv42/D7cbBoC7Tb9Laj/4fejet7oiIhKNESNGjB3F3iLRoI98QvfusRHLJqu2uugccuRT\naYhpcXHB+15Pf+3PaeiC4xZL4lDJm5GIkjv4QMMnhKY+6n7mU4jM9SwnyhGHGnbRHKgRDGkJoU7T\nJb3/zWft9xXb/4V5q1x6+U0vAwDMXmXqgSuuMpR19LEn7LhtVkh1bD7W6nQ3Ktk4Tq6eBQDcWHsZ\nz8fOXx4BQkdC2GGFVdhxIKy8kmqh3aYaIpNzv7p72nozM8ZVi1sW+uoSSjaFqFvG1apcu8Dj9PI+\n8g0RMjBApx12CejyGo9U7NyE5OQkZeffxRQ1tCsdO3YrsbnLr9l6OfHFyroP6YoZ1pqHOkuXrXel\nSLx3HHVn33cSQ6JCuiDS7K6ZsqLOe7/dWPWOV1+ye2auYcsVcqTj5FB76jqqrgL0G+3TP0EI1b1d\ndcnlyvA0+Gtqrg3pYRQguculSodVWIXb99dBUb/Sq7HaHLL9MGTqbx+RaIwYMWK8wLG3OlE+XavU\n4pEyw/KCIaHaCN25O9K02dPz8GHru76wYE9jIdCB9k+uQrbf1VXbX1qU042tVamwEooAp9UTf0KE\npAwoObkGdYtCmCH3GVYkhcgt1C4qq12ne9Xqmo1TSPHoM6YWePa4+Ym+9tW3AwDaTVvvqquPAACO\nXHMtAOD4Keu91CEy1XhV+eVqzAMfUFex5XpUVbi9IeLQFUvbSbc76ANPPq4jdMLMM12wxEOGfrDO\nASmoCAt7POXzfoWYUzu4OvW2O7aQZomZ/2pFHVrJOXYHfHo+lzqkNj1Fr9h5ujSRN5ejVpl96KXo\ngHw9M7+75gCZBv2uEv3J+UqIlIqHboF6ViK/PlF6/Yy9TayesHvhHO8JIecRanUXyZFeuGD3QpNv\nB20i85w4WvWU4mikd826fla+y+y9M3EKjFJXF1e9z4p1SG4Icuyv3+Cyth+svzFyXebbnEOeW9xu\ny+QpdohEm80m3vKWt+ATn/gETp8+jR/7sR/D3XffjZ/5mZ9ZJ4OJESNGjG/H2BES/e3f/m2X6f3N\n3/xN3H333bjrrrvwwQ9+EPfddx/uvvvuS24/MmbbusqXSeNCe8zKq7skAuRy9OhRAOsR34EDBwAA\nZ8/aU3uZlTlCrPv3G4IVbybElaMTfMfpO31eLez1FIaQmZCblkKew5yFhNDOUe+pZ5oQ7eKCff/M\nccvS33LzTQCAEXYznZo19HHohhsAAOM8v+dOngYAPHvCtmvxPNp0/JcOd9C/vePNi3S2mj+NW+PV\neWk9dRIIPQLmqVXU9ShRBaEKJ3HIWraofgi5ZqkmNG+hn6zzfW030ekK5bNqrWn7UreBfEla1gHC\nSBIgZRF4uW1jH2O2frlr5zzKe7LmHK2o12xyLCNCnESY7KIg5Keyu0R6S+e6pPIrjpOcbSkrASmQ\nnDck9eh//zQA4PRXv2rbr9q4mvR7KFToY0DlQ27erl2f5635SKlblZeA/FBlE6ouqUlYpaaywQCp\nLc0tep/XcYrruMchnOMQZBquF+53sPrGnxfPLHDr4DhbRcpb6Bm1bSR69OhRPP300/i7f/fvAgAe\nfvhhvPnNbwYA3HnnnXjooYe2u+sYMWLE+JaJbSPRX/u1X8Mv/dIv4VOf+hQAQ19CKNPT0zh//vym\n+1htyA1J2WHj2BaZXV9mlljPAiFHcXHKwgv5PfnkkwAGyFTrqyZeOk99djrTnJ+dBmy/0gwmznfU\nr83X8YWkwoqfYTrSkGM8e/o811MlkT09hbgWllZ4ntRAjhPJEZHOHLTKpmKN3GKeFUNtm5cz5NNa\nRIxKtIrnUnZc2XLNg5Yah85X5zOoTGryd1Uu+b2ZtF1HXUgTv45daoU1Il91He1wnnuZj5xDjwJX\n8dQqOb+DgcMWOcqe/ESl5R3sI4c+mnnOwQLfInqsYsvsc3XVxjZJvrlGNL1yxsZe6EmbHPTZIk5J\nB+l5W2Zq72njbMuhntxs/ZuPo/DqV+DhD//fdpyjz9hx+FZVoD5zWh1dqehYWra3kCsv2Oej7GO1\nNsqOrzUeXzXz3I840rAXlfN96PoqA/1RLhMpD+M21389jPsMfh+q/wy2H/I/+ri6tAZ/g2Fqge2p\nCAAg6W+jx+mnPvUpnDp1Cj/90z+ND33oQzh48CA+8IEPOPR5/Phx3HPPPfjYxz52yf3Mz1/A1NT0\n5R4+RowYMV4ysS0k+uCDD+K5557Dgw8+iDNnzqBYLKJaraLZbKJcLuPs2bOYnZ3ddD9/9J//C372\nPe/BfZ+4FwAwQ9fwC+etL4x0osqwhn3nhXDCnkYhd9nv+8hQ3KiQaYtaO1WRzDOjNzkxibf9wLvw\nV5/5BICBz6mOr95BYW8m1YYLYem4QsAa5xI1fX/9xUcAACvsY3/0aUMdR4+ag/3fec1rAAA/8Lbv\nAQAcusrGXx4dwU23vx5f/dvPAQDmzhgH2uB5nWAG99RJc6UaH9/njVeIusfbQBVdGr/GrXGKIxWn\nqXmUy9Ua1QWjo8zW99r4P371Q3jvz/0LAECNXVxnWIl0kAhaiPcC314unH3O5rNqbxyf++svARig\nOl1350nAirRGu4Fz52wf4kLHyNkfupJ+CqzPB3nvj9z7SfzCj/59jLF//C0nDZnNNu1Yj19t99aB\nN77Wfn/zmwAAkyM2B8eOGT9fnlQ1mM1dpcJKKWbzC+oa6pzohebVZYHZ+zmbw6//0cfxin/7bvzx\n9/0jO1e+tXXIgY6wqm+alUYdItE2ndCezuze+8w5U3hkV9r6o+oGSkWL4zqJiJ3CxXX55N8Oa+1x\nUYHSH/zZX+AnvvdOeBFyi8H363SjQ/WZQVw2guzjP3/2r/Gjd75hyH6HHW9jJPxf/2o4Pbmtf0R/\n/dd/3f2/kOhXvvIV3H///fjBH/xBPPDAA7jjjju2s+sYMWLE+JaKXdOJvvvd78Y999yDe++9FwcO\nHMA73vGOTbepOA7SnqYXmM1tMptcJrcmzlHIcdC3xu/eKU5WWWQhHLkxidsTolJof+L2xLENfDT7\n3jhC1yI9rcXVCuGFKgCpBBQXWCuubpuNuu33+PFnAQz4vAIzwUt0b1qpkLeSDpVIvDoywePTg4A6\n2yNHDtv4qva7+Oo69bNJgfPDcYfytLDHUugFEC7bXI6NjXBp6K/f9T0PhCil8KhRb3pGOlDXZZTn\nm/mwYV0vqByQV+fYtqrhbB/ySSiKK6V+ErBqn5Qod4GlQ6my6XRJqp+1uV+j/nSEVXM5Ha/jO3bp\n7cf1aVdWvOtrkfU537DjHf9reys5/+WvAwCyBrXDRLj5WVOwHLrpOhvvw7ZeQq62wLelGVarScN7\ndoUaZ2bpi0TEcqZPXN8r3vNhNRiHnfil8qizO8XgygzRcW5R37n1GEaa+tFYa2y83ZCPQ49zidjx\nP6Lvfve73f9/9KMf3enuYsSIEeNbKva0YmmKfpKr1LwtLhgyGyOCrASIUNxcqDMUQg1dhkqu5t6O\np5rwLMj2VssF73OByEw6SCGkbm/j/uuOWwye3vpdCFVPXY1PnGmDfJd4vEH225YTqjXn/hs8j+qU\noRPxaUXWh+cL/J2c4jOnj9k46wYnFoiAM2Zmk7TnjUcIW0henLOWmlfXTTVYSi0xOTnmnU8n87uf\n6g3A9UXiZ71JpIG7FoIe64OqIPmfdl2dfZoT4rQ5rfPc0pT31EWotpDPI79m69/69+8CACx/41kA\nwLVnjPc+uN86rq7Si3auwKy0Oo62ya+37Nwr5H/FiXaJhJ2/KAHq8gXbf+6YzckX/+snAQDT5OlL\ndKOaecUttr9rzVv2+ttfDgD40ilTXiRC62eNn64xm35Vzf7GnuFbjBzCiqpak69T5qsWBob85GrJ\nveYCK/uLEb0NALjUF0Nx3XbS4hevPQTR9jpbK/rZLh4GYu18jBgxYuwo9hSJNuhIo3pn9eDuE3Gc\nJ2ISX7Nvn2WXxbGJUxQyERISx6bPcnBXbyZllQcO9ba9EKN6PoW9mxpNv2JH+w99NcWLhTrJUF+p\n44sLVYWPEKwIqHGer5x3Ojqf84ZCuuTB1PGxUjH00qnYccdGbfujTz7tjadaNaTZbqqO3O9ZJCQq\n5K951jxJBSB3K8cF96SjFcK2ZZVeBoOKLN+Fa/+MXV95CVRH/DcGcaJyqxfP6ea1DxRc59Y254S8\neZtvKVR8lOk8BQBZpYYsszE+95VH7dwXbXt1fj33xS8DAE4f+wYA4NrXvRIAMMv+7gkd7eWNWqQj\nVYVZ7VLF1luiQ1V3wZDsuf/5RQDA8w+YAmGC9+jKLJ2v7nw9AOC2t/4vtl1VPLzNxZWvN+XGwtft\n2jaWbbyFZdv/dWW7Vg9wHDn+xXd4b5Xlg8r95Z2fAhEn9aO5viqcfNwV9g9TbJvq1PZDDUY3286P\nTi/0cNtk+20MPCLRGDFixNhB7CkSVTuacdbQX3nFlQCAM6dN23bVVVcDAFL4fpbiRp2+kIhUWfCw\n91KIpMLadmUklcmcmzM0cPz4cdz6nXc4HWSeAxanKUQlbk/LFpGeiC/VLdeIflyNOT10chzX3Lxl\nzXt0/qmx91RRmVwixjqPXye3uzrH86eLe5soaIlcc4c8Vp1IscQ66xxdrRJmsnvit/pyVSKiJlIv\niC9jqjafCikTYXboTyqXqjqRKd3hizUej9dFiHiV17PKuvZc3vbTI7Iu0UWrxeqbPDnrhNOsCqlc\nPUUqdyJ1rZSCISGCs00ccgSALEmxCJvTrx81j9Yb9psPwxkQLZNT7M/Zds9xzI2bzaN19Gp7u7m+\nYPdkkrP9nWO2f6xrlUSnPmfZ90f/x18AAObPmbZ3KiXvTrept73nJwEAV7/dSqk7k6YxVo18kxVR\nB17/XXb8fXb8YyftXijS0X004dsWOdKu+pbxbyrjPaFeTwXXX4v3Jmv9pV4IUdemSG+HkHTbWwc+\nDru23w0iItEYMWLE2EHsLRJV9pqIUg7procOdZIZn6aqYe+Tl1mil2GRvYGqzE6n5HPy9GZst/ys\ntxCjnlKSRZ5jt00hV9fDPHD+kRpA67WJfNeou6wSGUkX2S/bepUS3YaYKW5mzE6T51quW6ZWCO2G\nKwyJSwOYkNBqEpGqo+WiuONR1W3bsk20UiCirbDKRVyv0zRCbknqF2TbVcqstiFSlt62SE6yXLLz\nGqUeVH2G5F0pH1PHYRJB6w1AS30vxD9JNy+50Os6NJn5Fmfseqtf5E0gZ/aBhhQ2trzfwyjXHSCo\ntJNhngqJrMi+UFfYMc5xbFPsfjC1bDuce/wpAMDzq4ZIDzdvBQBcP20ItgPeEzyH7plnAQBP/vlf\nAwDmHzEOc6VneYFkn/HWt32/Ic/yjaYGSJkHQNGuXV+17fwbyU3YOEtX2bWcuM68ZeeO0cFLqgSN\nI6iVly+BeizlclKYgEveE/I/DSDcMKSn2DLiG1YTv9XNh3zf2a3xXSIiEo0RI0aMHcSeItHU1cLb\n5xaRRZXcprLqxQKfjuQQazV7auep+Suz7jlRf5quoQBaNLqnZegC5Jzp+bQV9ybkEzqoSz/acn3O\n+TszwvuYBS8Q0a0uG7JcocP8aNUQlrhK1bafOHGa47BxLS8ZOpm5zWrMy8xqK0tfX6FPat1QUJPV\nMuKKxydN3zrK+u4ENq/KqjvdpuuWSs6yKA8COhURucK9AQgZUovJMmvN/6n0NPdjv0/SC0EIV9l7\nzW8u8KzUUp0EmqoXlyNSkmy4/eD7vOtGMHB64tsG+Wnl5CvpQFExNTKG3Fmb006N/beI2PZxzsG3\noibdkLDPOMozy/b2Mc6KpnPUwI4WbK7La3bcUw9+DQBw4mnzMRiZNd8AnLffxw9fAQA4fKdl23sl\ne6sqQ7w4/1Z4DcqqxefbVmWfXfP9r/kOG+4xyytUnqVyg9n5jFl5+Z3mM7+GPFF/e/VrhxA95zNA\njO1NkN662E0ycgvRC6HzCxARicaIESPGDmJPkWie2V5xitIBCjF16IeZJtID+hUuU1OG1Npt+lGy\n0sWZb2eqsfe9EkOE2Q+QkFDMoA4aPA7rjgMuT7X2euitchx6CpbYLVS+nS0+7aWjXFoyxFpm5lW9\nxKUWCGv2pZOd64gTZuZZ/XECPeeZM/Ir9ZGb9i8O1lUAQXpMzh/fADT+gRcB3xxqFf5OLlS+r6M1\nHtfmRSgxrHkPe1RpXtWpU+glVEFoqflZWkqco1Po3dqkFvnKgs3deFm+DUB9aRlFUF9K1D+xz5Qi\nDXfP2Vymh4yrnObvr+nx7eB540ifWbNrec2YzcHkMXs7+ObHTQ/aOGCIM3fVAR7b+Oyb7rAse/nG\nI/Y7bByjGbGz9JmkcoUCXQcAACAASURBVFNNKrnLlPmEHLefup0VTnOGfAuJj5ea0hav4zhV88/d\nu7c2KTOC7g794POLFFtN+vc3GV/kRGPEiBFjj2NPkWjoqjQ7Yx6kg66UygbbU3mQtdX27GnUpCsT\ne2rL07HXZQVO26/VDt27hUDrHI+QjUOqrh+OHcZ1p1QtvDKezrHHFgVxvqyaEZI7ccr8UltCXES8\ny+Q0w9r7MdbAzxABt8ixTo2avlZIvrHEHuTkaNeoT1UWWzpaHU/nXSECbrX986+Ly6U7VNYRN2nP\nXtXaV5iF1/lXXDWQswgCsL5WPkT+Gd3ehfhdB4C+r0Vcz4WKI03WQQshKKEF+WeWXGdYoFatYebV\nN9q+Dtg9Vp5l18+mIcdqk/fMmGXL06LN/UzPrs34q43LfPiEecAef9x8Rk/+T9OdtqdtDpepRHni\nuHnGzrAvfF8+EaPkUhu8x9S/nnZLQUm7+8KtRwRcu8my9J3/aZ/HqsaPL7dMWSIeXXObCLE5WCWH\nNP/eD2MgE700ptt6zfyl43KRYzdyojFixIjx0o49RaJy7RGHNvD1NOSkGvi1Zct8Li4aUhOSEjLV\n8tw5rtegb2efdcCFvrdd2ONHFTYhFyrkphBCC3v8LCzb070oV6iK9JXkEll/3SeCO3WW7uuudt+O\nL3cjITUhuopq+Ml5jo4Zqum0iMS43wusVEpYf93mUzhHNFZhxle+ps6XVZwlOUhxrs41a8R3ul+h\nOkDjdH3lOV/iWEPPgFzB7+E08DawcQ+6efo+otIL9+Ej0vA6Jkky0IHKh4EIq8hsfIG4oXhRdj5J\ncxg9ZBznzCFzScq47yfOGsdZvcIQ6TWHzcfz7EnzLTjdsGu5wj70B1NDfAsLpnn9ypotHzlo5zT/\n9DcBANcl1DaDaF5vNz25ULGbaJHaZPaAGgsqhwYAkd0KqEVOrzeNcZP3rGr8l09Z1wDpad2cineG\n3+1TWXq9NYSQNNtpkfy3QUQkGiNGjBg7iD1FogJ0Qg+hK5Lcf1RloazwALHZ8ItFZmlZmbPYELdo\n+z8wa5nQhQVDaEJMDkmR2+sEXTwH3KRq8v2KGYWe2qqB73SY7Xc+m+p9TsREn8yQS3UuVKr1p/u4\nXMj7dCfPEUGqpr5OraK45CU597t+OdJ5+hlr56da8znMEiu0xJWurdn8VOkO1e2p7zudi+r2+5VX\nqueSZZx1faem7E1hddHG6Vyg+MYx6JHFnkmpKpD86iP1JxKylUpC90Ov13NZa1VVdYneS/xcoQa1\nUpEGFihNjqEyaW89EznW7bNnUWK7xto03wKm7VxOPGcVQc2KHa/BjqyzK9TcMps/N2nHOz1vyHWu\na/fmNS31h7L1G+ydlO/oe14jcp0VXpu0L800g+SoEKGq28qcq0LR1jxETvXRMrdsUSlCH4RiIq01\n51x/i87Micg1eAvbsV3TkNh+zj/ofhDw6S/EcSMSjREjRowdxN5WLOVUKST3bz5FifQWF427y8vt\nKOdXDi2v2FN9YsKy+uoOqkqbjE/tZXorCvGEHoiuljzQjwrhrK4KQVU5Dnv2iDtcbqhKhjXmfDQt\nLRoim2af+L9hvfWR624AAJxlZ0ohYGnwVGnUUDdTPuvKRI6nT1o1SrLPuMUTc5btLydCuIai8gXV\n/EsPS74s5y9rVb+/vM5vhD2aFuaNF5yg6qGQ2XxJ59tgFn+STkPqVCAdrJB8s0T/UaKnBj0NVtfk\n/Sk9MBiZ97lP/9B+RvUEEX2rbeMrpQVk7C+Vyg+Ad3hhlEiL16hKjhAAvuN73oT9+4wLzT9jVVfN\n83btbr/WsvaP0m1plfxth9n0yWl6oD5vSLPdtnNfZvXXYoXdPOt8u6nSyapu4+yyokrKiFRvL6U+\n8gBSlzSnthZhKD3PrpwrdpxHHvgrAMDJb5j/aZ771dud8Jo40S5/z6mmnrvNO32ojuYjvdwm+fLk\nBaJMt4oY020e/3LGHZFojBgxYuwg9hSJllhjPUNH8wtz7OOuel5p+sp8enO7USJCcXHKZLbbxgWW\n2Q0zIxeojn/yLZXOUYizSy/JGnuFKxPZ6LG/OSuM1hq2Xj6VPtTGM8bjiYPt8zFWmzJEOT57GABw\n9i//hudD1yN6PvbpmzmZEGEROZaoGWxyXpaYyR272ni5wozt/7kDNj9HTvsVR/2+/E5tYCPUm7aD\nCqUC+wClOZ2HzzkK+Qthp0S4QqxVctHiOkeIpKX3HGGvc7mlp46Lte+T1FBfm/PrKqUSn8st8k1C\n103jE7+Z9noOaSmkBKjkDTlWqfh4xWu+y60zllaQzq1xDDbmCbooLfAePPeUvc0snrNrcehKq30X\nYiuN0a+gZFV0j/zt5wEAZ85d4FGI7jmOSpH+Bavk/anxTXiu7VwXeeRdtZ1zMBPuCaCYPtYX7K3p\nyYfNKb95kn4G0r3ybSMVx6l7Vppp7sctpVyR5DegGFMl7fHCRrJN7jXdqU50C8eNSDRGjBgxdhB7\nikQrrN1eYWazxl7ZJ06Yu9HUlD09KyXyR105mxsimdhvT31lzeX32XGVNUQwqe/vWS2rCyiRKrPn\nfUKtOvmrQl6ITN0l5anIXuRELZOsEW/K3UmVTHwKPv6kVa+oh1I+NV5tlVl18VHiZvOq1KJOskIP\ngCu6htxKJ+343WOngb8HvG3RuMgTlQbng9UomZ/1F9oQYhSiUw19SvWCjj9DL0uhgEE3VL/iS9yw\nPAJGif765Fqn2TUVOUPQa3wzKBWplWTFU6vuqwx0PPF9Zda7u4qxJKil32CM+pzQxUjIsSp3JgAz\nlXH0zpPrJM9aL3HuOVev+k6rSCrnWG3Fa1+q2ec2q+NA5ccSIdvCsiFMebRmdPuvFo1f7jObvnLy\nnH3mW0JrrIMqyuhDTlt575wFIcVRSsa5QOQ7/5z9DY2o5J5vG33eC3K476e+TlT/s775ptQBPhQV\not1yvMi60iQY3wuBmCMSjREjRowdxJ4i0Sa1cnMXLLOpHkTT++3pX1E/eOkdE/mJGnJqsCvk6Dgd\n3Yko1RdGvb7bRKD5IteDn6mULrHDuuIWXaGkEihTC5jk/OdYi+NX+ljHaTBDvLBoHO3Tx57l+NTl\n0rLyqj3vERXovKQPFQ+1ykfdeSK1/URkWq/dJG9VpV71Iqd3YIDG5MQvpKrKpYmJzFtfOlHN38SE\nobY08fvNS0+rijEhf3HD6lQwTW2lnPZbzMq36NBfIuqTL+nSIrnxvqpq5HeqSjCqLIIe6EmSrNPA\nKgpal9uuuA6nwNKZRVSIMFtExU3dazk6a1U4B8QdY+RzkWdWe8S41ox88gqv6Qz7hl04z/VavOYN\nKgqIlB7/vHGYr/uxdwEAOhOTQHkU3Q6dzOid20vp1sSxa9lhldeZM6bcWDhlSPTGEWqcibDzHF9T\nGmVHdtrCZe2lO+XnxH0OdJiXW82eeIvtxxZ3EMpaX4iISDRGjBgxdhB7ikTbrOxJlLVldUWNFTQL\n5BBHmX0VEqk3WU1RVFaYnGSTLkap/CrFmdEdXH3P1XeH41DNuzK5QjHiFKUXHRmVM7z0qhwPHdgb\nTVUMGXo4c8bGX1/zXZTOnDYkOvAr5VOe3Kuc9nvUvX75lDn+nJqz7Q5MGMc4USnjtQDmCxv7c2r8\nOh9ly8VhqmZdIb2uVBOq+pHLu+qtdR4at6tsIlKepdrCeR+sGiJvkJe8+aaXAwA+/elP27j5KB8l\nt6wuo/P0ABDydf1+XD2337EA7fa6DqziRmvsw1XivXSebwkAMH9hBQeOkKPkPVio0neU9w7pesdQ\nllkr32jZOU+Ms2sB53TgkWrn0uK1viJhbTz9TVPO6epZq7E/9oj1vb/+MDvdCilCnVc5F5z7Ju+t\nRG9bRKSQnwF1rOqzVWJ+oDnMlikI14ddCDKAXeHn9bh0Y6S6GX7dOr699JpZkm1hrZ2NJCLRGDFi\nxNhB7CkSfe4542/m5gwVrKwZx5bm7LP6yY+UyRUScSibrV48k2fsKbtKd6E0L79JcqPso97h09o5\nwUsDlymLb+hF2eFmq403vhl45hnjrwiscNXVVt2yuGDawa899rCNf6XO8dMdfcLUA/v22fKZZw1R\nqkeRssyrrE1fYV/1IpGd/E0ffNg6RAo6f5MuUeNT43g3gBbPtxAg0bBWXrXq+5h1n2LWvMrjTbF+\nXEhYaEdoKkcUFWb763SpalK3e/CgaShXlgyJZ+RCDx40vezTTz/tnbfePHod1okT6boOAm25OhGp\nO+Tp+6K2Gg3HY2tu9XZRpnO97pklZs0BYOrAQRT2GZKs8NzHyjYXI4Ra0pnWeS5tIslemxzsBLPn\ni3bNiqq+o79DwntrHxFhvmf3lKrR5J50/BFzebr5u+8ARgDwnuiSp04zanll5EllyqlnjAN96jPW\nz34/X7cqHF+H+884ZyKu+5sgLV3jnnwMgvW77n3OX3+3Y7t77W6xdn4n445INEaMGDF2EHuKRL/4\nxUfwz/8Z8NWvGTJJydeon7qS4cWi/2+9srbiJsV3iSMTElWlTlIwJNvpbNz1U47tylyqF7d8LI89\na1xkrWpIc26ejvz021wjZzi1z1yMrtxvrlHNuq135vzzHF/Gcdh+5cPZpMogT+Scsu76mdO2Xadq\nn8cW2MWU6z131rwhW+SOi7PkFAMEKu61Wix7v4sbHSOnPM7+8fU14/k0/22Nr5j39ucc+ekaldCl\n3VXdEElLxLhMPfDzrP3X9ZE6Qst97KTZFgrrqqaeiJvXT36jzhc1SRwPq3MTD7xKvnqc99hrXmW6\nTwDojdTQ5b2UNqjbpEKgR3+CxVWb4xL1lr02+eCycakN9rtaPW96zzzR+UFqmc/RR2GKSo98zz7n\neU5lvh2desL+FuYeP4qRq16GlXnjSvvSTOstgffy/DmrSHros38OADjzFeNUr2FPphL1qw0qUVT1\nlbRYy69JCJzy3dfquyVEqmpC/t69XJ3oVmOXAG32Ijjbb/sf0T/5kz/B7//+7yOfz+M973kPbrzx\nRrz3ve9Fr9fDzMwMPvCBD7jXsRgxYsT4do1t/SO6sLCA3/qt38LHP/5x1Ot1fOhDH8L999+Pu+++\nG3fddRc++MEP4r777sPdd999yf3Um4YSVlbkG8rMIh9D0mWWK34vHVeJk5GfogZO1ispqzAK9Bkt\n6enNGnuWwiPP009Uq62abCEejmacvZ9GWb1SY214bYJ91YvGAVbEx1Ft0GBf+Baf+tJN6rN0oqr0\nyciVNpmdrtNj8tBdf8e2Z8/wyhhdqp6y/j1zbUM1hSZr3InUhHTFD45zvNKLzs0Zyjl4pbm2V6jX\n7GXGDzabhrzP022q3SVqKvuIVmhP9eA6LzkAiUM9fsKQs9QKGlfirhtr8cmRqvupdKiu00BOPrJ+\nF9eRmRm3jqqwNAdr6jRqe3DeswBQGht1fqP5Nb0N2LGXeY+BPLRLz/OeavMtRu5Nx49addoor+nz\n9ICdu2BzXavYvSS0rk6zPe5n7ri9fXz5wc/hyFvuwpNfM460etj0pvtG2YeM3RQe/auHAABf+/O/\ntLlSVj7h3SutbVdInF0Q9HKXqddUCEXDpdYPfn2BgOhOQ14DuRehG+m2ONGHHnoIr3vd6zAyMoLZ\n2Vn88i//Mh5++GG8+c1vBgDceeedeOihh3Z1oDFixIjxUoykv4201O/+7u/i2LFjWFxcxPLyMt79\n7nfj537u59w/nCdOnMB73/tefOxjH7vkfs7PzWNm39T2Rh4jRowYL4HYNie6uLiID3/4wzh16hR+\n/Md/3JMIbPXf5T/8T/fiF/71T+EDv/ERAIMWwgMDEb7O89UrCRI/ObVOGKU1HF/LZcRbZIKmR8Pb\nftC4TfvXemp3MRBKZ/iRH3w7Pv5nDwAARmioMXhlZAtiykYk8Zmfo3Tr7HEAwNnzlpRYot3ZV/72\nEQDA889bUqBG0+J2WWbIRhvc9F2vsv2+wl7lOi1KrdTSud7A7/2T/4Cf+YkfBgAcvO5l3nnpNVuv\nw/unLclx9dUm5Jbk6YnHzLi3QcnRjTeZafStt94MAHj6qEmzFpdb3vmHVnU9tqYW3TI6OoY3ff+P\n4tOf/AObl2U25Fu18yhS2J7xlVnmGCXKkM6ctXLglEmfCosl1Hqa+TzMUQpXyqXI8x7QGBdoDbdI\ncf2Ra2yO/sGP/BObs2uvxDPPnEGFlFB3he052CakXaCcjsm9tsTtbK9R5j3zxEf/GwDg0aM2l2du\nMurk4Xl7PT/xqM3hP50ymVfjYZPFJX1SG3z77vLlMNl/EP/mS5/Hv3ztGwEAL7/jtQCAV36n3RPn\nnzkFAPjc7/0XAMAsKY4Zdq4ZJzNWkSE2W7T85yft3vtSh8lDzmEBakdC0x3+bfESoczWPBdXPv/l\n86fwpqsO4KUauzm+v3z+1NDftvWP6PT0NF75ylcin8/j0KFDqNVqSNMUzWYT5XIZZ8+exezs7Kb7\nKbDqoyCXpJz6y1DT5jwO5cRO7pIXXHTMap0+omU6uZP0rDfpbq6+5yqk7fn8T0ZH+KwTONSQI11t\n2P5VEVVj3XTWt0xwHvzj7qg23P4wOnRq10NBFULq5S1uscrlSM3GceXhI7Yf9d/hP86drm2vf0Sn\nR+wP4wy7oE7QUV41+CX1YyffdZb/KK2t2X4OHDC9680vvw0AcPqkaQ3/9ktfsXHVjDsts7toqW4V\nRDlWzYjzLHHeT/IfydOnzWn/mmtYUTZq/3iPTtu8naXqoM157XX5cOM/SGfP2fbNps0jlDnnfZHy\nH4wSs/Nj8l1tNlGg92yRdfj9RdaeM1s9xhp39esCgGIB4KmgnferotRVochlS90B6NPQXbB/wDsP\n2z9Opb49IM5N2DU7wxr5hDdhjxVFBT7QVdLvei3I74Aa5Kmz9gCe/6y95f3N4/aP8cIpO+4hcrfj\n3F+qPl6Z/4CTT4T6dSUdeL87wwPnibvxMsb62BYn+sY3vhFf+MIXkGUZFhYWUK/X8frXvx73338/\nAOCBBx7AHXfcsasDjREjRoyXYmwLie7fvx9ve9vb8A//4T8EALzvfe/DbbfdhnvuuQf33nsvDhw4\ngHe84x2b7keZ01ZDfdlZCSPtGR+S3cyeor1ezvvduXHzHaPX8XsEpe613d+vsrl6HW011N0T3nG1\nn7VF1pjz+N0GX/t7zHon6v3D8yBSe/akZbUf+fJXAQCHrj4EABglcpJv6RhR0xXTht5f9Tp7AP0/\nX7fqk5EFQxejY8z+F/g637bzOE30cTXnU25YZWa/kam/u41PPZD0JvCyl9nr+7XXXg8AOH70WQDA\nk08eAwDc8qrv8PcH9ZQianLzrJ5LTe94RW5XEA3CKqIuHY3m6CbVJoIvkF4pq1Kt4Hf1PEgEPTdn\nyPi55yzrf/DgQYxQedDPfDcnVTntmzUlgnotAcDY6LjzB+iQmmFBEhIqJNQDKSEkkx509WtfBwA0\n1+xzb9zmQBriPucixyx5k5raUb5Gd/J6q6J+VBQTjzdBhUTuHCmuJfs8Qv+ICaoKyqRCslTdTvle\nL1cr3tM1UiWoh072PjLW9/1gGcYLVaG0W/FijG/bnOi73vUuvOtd7/K+++hHP7rjAcWIESPGt1Ls\nacXSCrtw1omMlNiRrlBP0Q4TD1noUu3qf33CRn6TQpxI6JYkN29WDOXlUqTjQf6bQkL21FaVR7uj\nSiVDQFnXPq9QI7jasvM5M2+c3uKS8WFy8FcNujSMQr5duqQfnDLuUOT9K15rfYBONAzR7pMbOwuB\nmqyuAVGHeLUWYdQEu4yq97Yc5LvkIBcX7TzElR6iJ8DLbjaXpedOWYLsPB2GJplYE+JMcqqt73G+\nyt4ydJFSt9RsxiqS+h2btzRn6LBeZwUXE2JF6XjJTQthD8Im6qqrruK4gKynDq+2rwbRcIk88VWH\nDnMOehftJYc6eedy1easOmLXvMVk2dqqIcBaanPwNBHo3J9bpVC7Zsc7owQUOdQRIr41aqI7Dduf\nulB2eQ4FcrZF51tgV7PAzE+ZSLVETrVHbrYgx3zy74Wcjc8lT5V85VuHlj3+DeR4r4c9lTLncE+k\n7Lxdv73I0WSLblaXilg7HyNGjBg7iD1FoufOnfOWLruup7EkTYmPUMP+OUKWAx9N9pHpSSrFjKXr\nbCgfTx+J9lwViapbyGOxr3qHnF1Ptf2wp383k18mOV4i025HXCzRCLPiIOpQl8qRWdPKdq6ybPv5\nVcu8Hv+qyWVOLhhS7BNxrZw3xLt66gLwE7+AhEnsjP6pbY6vSLmPJGJr9D2tJPIO8H1TF+lsdOR6\nSqWY+X32qHGjk7fdAmAw/yn5PKkRdD0mWBnl3gQY8h0tFgyJ9lwHAaImZrDz5CVLFUNVK5QV9Tvq\nK5Tzjqcuou1223F3qspKE8rQuM3oOPtBkW+1HSYuW7+6akhxhmg5pXuTPFHPHH0KAHD2m3Zt+hfs\n3u3yItQ5t4tEiGt8eyly7qUcyVJV5RFREgqqWq5JBNorqMUqpVt9dahVQ3r/rU3Is8t7N5QuFWQA\nymseytSERPvuLQ/eMkRum33e68i9CNb2EYnGiBEjxg5iT5GoxOoSu+upET4d83y6FlIf2eh7JVod\ngqQOVPpDFTw7d6c8/Svb4lptLceM9pSp9TnQJBPilTsSM6mp3JXoYpTI+cbvEaQQQpuiAHr2ShME\nT9Dn8yminYUF41RXFg3ZLvQMkXbnDMEV6kTYDRvvGjPBE6Ps3kl01WGtvnonCQnn6CUwSq61Qs6z\nx+swOc0uos9a0UDoFl9grbw8D8QrivPVUm5Paho1Qgf7Fv1Lmw35wDKDPmHHlU61+ZzpSrvk/XKJ\n+s7rfhgg0zzRbIEoWhrhNXrJZlJkyAEeNXTbmTPLcefCrHi+IFd/uwbzTxkCTekDkDSpdMj7XT/b\nLCqvEpneVLVrnZ0y5Fqnv4P0qQUOR3OaKbveI9pWt07pQSXKd9eE3Qs6vgds2udbm7bzjepdrNOF\n8nvXxkoy0i0iz5dK1v5yx7GdYUckGiNGjBg7iD1Foq5MM0297wecqDgwVrSET0EhPfWdcb+zLNTp\nF8UB2q+qIFLIclA9mbQbtbfJmMlNc5m3XkZk2nc0E3mloN+73Iq0lIZvgohr/6Rl5SfZTXOBvZRm\nbzxi4100jnG8Tg/JU3RFz/xx1lmVUpXLFH1Cc0RwmeaBiL5In9UySwOloSzwDeHkcatgmhhl/yHO\nt1BbTi3Q++J8DZXpjULlpa5ii7+PVOUCJY7bxrV/v/mx7qMfa8YM9/OsgMoz699xHLhcqy5+k+lq\nUACAlBU6qnJaIS/dy+wcDmASjXoDI+N2zoWSqt1svUKmTrLkfRvGR1dZfdamh+oc0fki31JK3P+N\nRUPbM03Twia8l9oUbjqzSKfP5L3btXMbpRZ5pEseOqe3HFtfLkU9Iu0+z9fpPdXBNe93zu0HvqCq\nakscRvWz8zpeFkC13mZ+nTsEpNvenBv2epf8eVciItEYMWLE2EHsKRIdmBMSaao2PkCiIi3FeWo9\nV9kk70BtH/QYcrzIJgXAehqjr4wnkaye0oSc4RJ98lV9GZ34nO4gUyxndlv/4EFDXOMF6i/rhmpU\nuXPoetM0FjrmV1o8ZQh14WnjCNVnJ6F7hTpK5lIfUauL5uKqcaNSL6jfe5UqgYkp42Rz5BqLJTte\nhZnsdlsIXm8GvmGLDE9mZgxZSy+qPveqOBof83WyqiyrjRo3K6Te5/UUsm4t2f6l/ZQvq5BpkiSo\nVNk/vilXfTrQj9i+lzkGZAN+fXVlBZURVWPR3KQjfptdD4i6y+ysWhPE4T1VrzGLz1viUMv2f+Ma\nrwk1sC3ZN3Duah3OoZQgVI4k6gTLtwh53gqpZo53p46zJyQpAxViXN5ry1KOcH99InPd6jq/vBA8\n95sL2nyGwO6FMrbfrXgxmNmIRGPEiBFjB7GnSLTbUyUREZUcZgIkquy26psTjTpR3bGvHxRCUpWF\naBs9MVKEGUY9xX10AYdk1emQCG8dEuWAMh038bZTdroYVPTIzWmtwuNTL7ncpmv5g+bcc90rvhMA\ncDZjryOipiLXz7MPUEod5jIt7ZaXyaeVpng8dXqkjRtr9scmWKXDqp5mV+iLTvZErE1qHltEfq6a\nhdevSERbIxpU1Y3Qyxp1qL1ZVmbl6QUwYuMrEokW6LREOhI17re9ZOoEcL/SPoqLLZQqeP6JZwEA\n+9jvqloht8i6/XEqBor5wa3fWFvFKueqLx1lVx1l7WOZ1VZzJSo8iOYrOXKVcuIioL151b4/Qg41\nI5dZZx+rVc6lFB8ZEWSXS3GdGX0fhDx1DXVv5+QnoWo7vaXp5MjRhln3dVno0M1J2+lnfHvEC3Ee\nEYnGiBEjxg5iT5Go4yyDz+uRqNsCwCDrLS4tc/6ivvtTFvScHnCj4fG4gjjQwRf8L5/2SfBUD7wg\n244LpX6y53tS9tnPRu5EquCZJBLskZcqJYbITj1mps3X77fa9WLV9v/yW83/89SCcZbJd5j706HJ\nawEA809QZ3pB6gc7z1rNEJ4qivbNmHZxetY+E1ShJeNhYsgyO1QuMmMtRKry8zaRaYVqgFrFdiQ+\nr0vUVpUvKPm4jgyByzWen6G0HHm8vut3b+NvsupHXVil460Tea/NX0CrZSh6fsG0vapM2r/fqr0q\n5RFuO7g3KtWK23fK2vImOdXpyQrHTI5wgtwq9Zzlno11lb6hf+eG2207VmNdxz+xLG/HXevZfs+t\nGkI9XzaNbHuVvqctVrkpHUB+uxUgUf1NqGOqkGiuL76aK+hvifvpsIpvXVdPt/QRaagXDRHsXlGi\nW0WUQ5LzuxoRicaIESPGDmJPkagqT/IBFxqGnraq9Q4RZD6Rg700graQjtQh237ife+y+xI8qgrE\nZeUT7/thbt89oQRXf2zfd5jh1ecaUZBqvtUjXc7259h9s0XPyAYd6088Zl096ynPb59l9SdnjEt8\n9dWGQBfOGPqZTEYeZwAAIABJREFUmjCEKZ1owuOtkjs8dPiwNy5Ng/S09XqLv5NnI+pqztv+u11D\nruqa2mSte4+uVrXqLPdLDpu83xj5wJx7g7BQK49S0ZYZuWKpFMSBkqp17UEq5CnH2ZO90Wk67evK\nsvHHUkZMTarTgurt4SKXy7ksd31Fx6T/Qof6ULozXXmj+Qos3niN/U6n+QOsnT9yyvSgrXm7dsvU\nk6bM6ouT3cdreCZn1+rESWs/0Z6z7VY6VFKU2LlVnXDFhconIqe3Jb0lidMkPgru0Qbvyf6wSqPw\nc4BAQ+T5Lc+V7kKpf0SiMWLEiLGD2FMkGnKfWeAso6Vck0LOVJVOQjx6Loa1924/vbCyCd5xEepT\nXTgPm2FnwtV4XO5O2r1Om87540LU9uwSN6ns9+OPP27bc5yvYKO6U+esTnsiR+Q1Zgj2ltvNVelW\nOtNfqJkG8gCd4KeL0l8a0l1atN9r1EzKd1XILstUh23rFziukTFDtJP1UZ4YESr5Q3UeWJmzuvDq\nrTfyPGwiZogUy+zdrmqgMSLxWs1+l7t7g47/9TXjGft9g6A5eh7k6FVw1dWG5g4ctGx/UkhQpOb2\n1PPmhNXr2C0urau6I1x8iftZ3zU/lPNWqSCtsd5a7B6cnLQqsyL55O4z5rk6RZ/Q/HHjsdt8u1ka\n4UHoJ5qtMKu/YFzo9CR55Gk7l+fs1LE8Z8i2Sj+Dxsoqx+PfY+r7rr+FgcKCyhSeV4P8sRy+siFs\n5gB5htxokL1X7JZp0wtl/vQiwMSIRGPEiBFjB7GnSFTIsCuyKxFSIyLM/PX6rh5aCFSPY3i/K3JB\n5VI+75+u20/v0jnGzZxdEvcsEgKmhyORXkvu6kEN/Rjdk6o1tudl5nV82lDOa7/Hei39xUOfBQBM\nzlOj2Lb5qJFLXErIYRJt1NgiOddX91RDgKqRV42/KrtKRJT9no27wix5t0Oucdm2L8qpiBxomxVW\nFy5YJvyZY08DAN7+9rsADCqJipyHcTrtL9IlXnrdYlmVaDYe+ba2yQtKZ6vxTtD96pprjZesUpxZ\nqZVRSFl9NW460Qtz7Cjal5MXs+UXpW37/b7jx6U9VaWO7pH2io155SlTRPTpAiVEV2QL5TVqfHM3\nGe88fbMtS/RCrR8z5Lp41N4uxpa5Pv0D9o0b0s3Tv2CsaEgUOTraF/17OnEKElsu0Q+16tA9z5F/\nW2uc277agsvnQXlsImjpUnVn953e1IeM/dwLBSF3J4Zxv7sZEYnGiBEjxg7iJcGJdh1Xqe9VdbEx\nR7me8/T3G9bMZ0F30NBxfViEyDZ0mwrRgJCoKpHEidbY3XIf/ULlsykkOkLt4YHrDFktEQXUi7Y8\n8tpbAQDP/cWjAICTX7VlcbIM3PWP8IUThgDTR62iZ4TDKRHhz05OXDQ6IJczfk3IrsP15Fik3lK5\nxFBRl3wf5aF4+qgdb3GePqsk6K65zrqF1sbtPFVLP7XPOMuMGe8F9nY6eLWdr1yl4K4ndaCs905B\nJDtpCLlU5mdyyvJDTdKSO8uESobcko19ecm4yiuvOGL7TMjvwtQJ6mTa6hPxEf2msGu1yKz5o//j\nMwCA/Jxxrt0u0TKFlM1x45MPvfpmO953vRIAUKEI+NwBm7vGPht7/Rum6U0WeK68N6Zq9vtUlV6v\n5HKXWnY+8jHQOIucww51qF2njOBbnLS58p/QvawiPc0F9LV8S4dwoVuMverJ5KrptosTL0N2EJFo\njBgxYuwg9hSJqoZc1SCZHGwSx8TY70P8RochUUWYndfnkCsdfL8x4h30Zhr2eFINfei9yK8DJKzu\nlF/9qvWj/67XvxYA8Pzzxpd99q8exP/P3rsG2XVV56Jjvfajd+9+d0tqvSXb8kO2bONgbAwE8xI5\neRYYcogpOMf3VJ2KSapuOddJfLkJhLqV65OQkFBUUnElhDIhycF5YHIC5qQIgRDCS2As27KQbb2l\nbnWre+/u/V57rftjfN/cvWb3Vre6JbVw1qDw1l6Pueaaa+2e3/zGGN8QEfmJfZtERKTRp4+pNoqq\nmRM6bkeAYnpH9bj2oKKUefB/NcSFjvQrqvHAd5XnFYky08vPKM+3raBco+8rcg4CZDJtUsSYySgq\nevFl1RmdRm2swaLyd3e//q0iIpItgpOFjmgRuqnnzisabLOSJZ6/izjhEKpMgv4zO6dc0v5SQHVk\nTO+3D9wvVd/9oM/U1YpibasAlX9GBjiu7m8gQkBEVyqmzhbgNrOhopaef/6soufaS8plDuHh1rFq\nmO6Fxup1iBi4W/UOcqPKzcbwlo8NKQL29ypq/2Ef6l89p3WsquBws4hQKOAnmoWXXjL6zKiIVQfv\n7GH102bMNd9xvHse+jvD6guI1c1Cib/FqhLGPUAkB4up4pT8jbTj5G/z8tkqkXC8Npy4kppRV4Vj\niX+lsplMYj9FjymNxj+moRXyxFh5e9lOs/9o8jvbYVC5a/3RtdM/7T/KxuzjjDgzlvO5ZKlfOpZ4\n/4ef19CmqRP6R4apf7U5lM0o6FJt13aVxDtzTP+obN+iTouN89reeThuTk6piPEgy5fAcbRho4ou\nU5ru+An9g5BF/2KUUWnHTF5AiBQEQXJ5XU7fDEGUqZNHRUSk6HM5f72IiLj4o2bScvEelyEHV+hD\nKWeGnmGJ2cQfLiN1h1LSUxMq/deDFMyREQ39CrIQnXaZZtoJj2JYVC+oFNckUOixU3X8YRaRsF1j\nHTjp6YXzDSLIpZL2rVrRA4awPQ71Xk6P65jc8K43i4jIdTdrSm5PUSmNIND9rDfHFNZSSemBa//7\ne0RE5MRBLTvy0t9+UcfkmzpBtmY1eL+JBhhuRqHwNov4IU3V7U1OTKSaXJTKKUHaTyCV52Pibxrv\nLAbFzigx1Fryj5L9fTm70oXs0kJ1qaWWWmpXua2zKLNaZ7ZY2iFEBwWRKJEcy05wvwmNssMwllnG\nd45LIlkbkXb62Q2Jqhlki+MKXIrB6nVFS3Qszc8rqqnhM0Co0cs/0GXzVkcRZCavx0+0dClamdRU\nwamndSnYyGv/h8Z0+Xz2vC7Tz70EJAeE2LNBl8Gbd+iyGJUq5PjLetymbTu03wiTIToJUVxtx40a\n5P+qM0o/bIUzpjCA1EoEljfiOZFMn5yfVmRcwXJ9fINel2mxjQaETSq6RC2hMF95RtFiaUb7lcnq\n0rivyAh2Ll0hGlKdM8twpgoTZfseS4iAEil2wtqyOU9CLONZsoblm+fmUPIECQxhjstrpTp2vkZT\nbjddp8vzPghSxxHTS4HKWdwQ1ykiNZfyjntuUeGSHa4iyR+U/kZERM75DJrXdz0zo8f3A8038S7N\nVHTVIvytZEGZsFihVe7DyDxaQiW2OA/NfLdDmrpRaUtv7gTtr9Bx0/2wlTXQNsUiL5+lSDS11FJL\nbQ22ziFOCIJn3VjmsnHSw9/4NpwFMUsj1BG+gXZYOrdWU36IDqvFCFKNyJWhTq4LfokF3YxQCcSF\nHVZkSyJTlgERFrjz/MRxGQa5ZyE+nKXMWj3xnQ6WtsOAb23vxLOKwIZQPK0OTrMHpYYzQFnnjim3\nOQenyShCqeIM+o90zqjFUDIdD4ZaCcJlWLq4XFYhlFwOKIqlIiAQzID1XTdqeqdfVgdTq6aojeV5\nq7WK9BZFzpxVJNpykoon9QbEo2eUH5ye1ONcnF+G1F/OT65ATJKE4bK1vUazLln0mYkOlN3jdzpc\n+vuBskWkr79XSgiFaoYoZAeHTaUKhAeHTs9eRZ6jO3SM5Tb9PjyyGdfBmKJkDMtzd3RBmCiCcLuM\nfneRlpq9Te9x73/Xd+L6990nIiIH/umr2r+jEKaGA0rwDveDL69OTCfuu4XrlPAbcvBOxPgNhWb1\nxnA9dN/ISCYdR21LXrLd1dlqmY1YnW47VmpJp29XMwItF25ntbtFUiSaWmqppbYmW19RZlsEAZOa\nb8q+AnkSqJpZL5m26Hb5pPG7LUBCztWkFZqCeUsLoxAB8XNRf7pMiwWIQuzYsQPflSM9C4TWi2D4\nGqTkeiHx1oIk3dTho9qvqvZz12YtRTyyRZFpbkBRz8lnVZZNplSurQAZtQD8GcCVTJ9Tj28O8m49\nWAm4nqKV6SlFtlFbEfNAQc8PsiyDAqESBL3XAgia1LTdElYEz794RMY2XicvHNF+jWxUzvQ40kNz\nCHXKgn/sz+j3eaDCvkD7kxtE2ZF+lf5jGWSihGZN0WMm5xlZPdcUI8YnQ10clqLp5H32DRREsBo5\njxTWSpUhRNp2Ngvv/J3KB4/dpJERzTGIqHgIXSL36uC65pORJLo/YlFBIEmWj46G9d6Kd+h9jCJU\n6iac9/L//pr27/AxvTuK3EDUuQ/lrRtIzY3B8TaBeD2sigRhbu2kYp6x2OJG+RtiaBTN/r5e1pWD\nXWk0QDdEvQKgfXWMQGqppZbaj6itColWKhX51V/9VSmVStJqteTBBx+U0dFR+dCHPiQiInv27JEP\nf/jDy7bDWY5xgi65UM565DRxPJGkjThtpEizkaQ9q9rSe/a0Y/fD5lgjq16sfX0KnhAdDQ8PJ467\n7jpFjEdOHBURkdNz4BYjRRXFLILWIaXnl+o4TpFd72ZFPze9TmMT62f0/CxELRoY13Oi6KTZAhc5\nCYQJoZMNplCd9rs8B47yvLY3hDjR0RHtfw88yG2KUiA2MaorJ3piUr32zz/3nLzh3p+Vo8c1ioAo\nyIHAcJCHxxpcq4vx9RHLmAFazPaA5wSfR86Z41gDWvSzjlnb0Atvc3qC4HA/23n1Xd+RTB7cKbhP\nJ6AgtR4zBB66oep8MgeR5R7EMLsOPnkCrxsvDfV8CI7EltfcrLqQu9uDxIzrc4r2UWFZThMpHtex\n9hB8H/ch6B/cawvv/ATQeoPiOBgHPkOf9D6FV9zku27WXBZii1bKia6TdU+QuXS2qj+if/d3fyc7\nd+6Uhx56SCYmJuR973ufjI6OyiOPPCK33HKLPPTQQ/Iv//Iv8oY3vOFS9ze11FJL7aqyVf0RHRwc\nlBde0JIV5XJZBgYG5NSpU3ILYt3e+MY3yje+8Y1l/4gSSXS83fCyIqOGXnaWVl4OUXaTvmM8abeM\nI3JsjAKgkRu1EWZnP2GDJNq1RaPzKPlrI+NNmzRe8ofHFVkO79Tvg1s01vDajZoB9JWvfV7Pm1C+\n7pbX3SoiIr0bFUnKkCK0qQDCuyjre+x7mvVy5Hv6rG7dd6OIiGzfrXxeo8GyG9qv8xTBwLgfPa7n\nH5rV83fv0fN2jqknuFhUdJbN6mcFSPQHL+O6RzR+dXpake3WnUzjVbRUQMpjs6rwjtw0hzuLmEyn\njYwvZCZR4MUzhQ4ZNZATj2ImJu7RjmvEu+N0Xn0/kxWAYin2K0pvIZ6TgtkuIgT6xpTXHRxQ73wG\nAiW+l+MFrE+aLVbDrUnvsUeEiP7nsHqJ87pM2Pmf7tX+oCDfmc99Sb9XFGmWke1l5AyR9TeJZ9MA\nh5rFMyhD7MVUIWd/rkCmz2W1jprR5b9UvEq8+8ADD8jx48elXC7LH/3RH8lv/dZvyd///d+LiMg3\nvvENeeKJJ+SjH/3oBds4e/asbETYTmqppZbaj6KtCol+7nOfk/HxcfnTP/1TOXTokDz44IOmIJjI\nynmI//F7vy+/9z8elYce/lUR6eRqE7HljECFHj89PZ3YzjhPG1mSO80gF5/Ij9vJUXY4UcF3eEzB\np2WCHvm1X/0V+Z3f/RiOSyJcgzh9FHKrKwo4evSoiCh3LCJy56vvFBGRfUDq7Fdvr6KFA8/+QERE\nvnxaBUm8ncphDud0gnnu2DMiInLsM/8uIiJ3vV3Fmrfes1d+7c7/LL/9b58UEZGTx8FhOoqODvyl\n5mHnfB2vnbdoGZEeFIw7CzGNImIa+4cU9Qwg4+ngc3pdlxoDeeUy79y3Tz/3KiIe6lFE/INTz4uI\nyJ9/+SkREWkeOid/+/dPyX/9b+8XEZF73/omERHZMqLH79iu3vbSrMY+NjBeDuJonQh58OBy2xiP\nvbf9mIiIZHu1nSqydfLFfgkCoNbY5iSTkRQ0x/EkiltG7KRWU9Q8O6ORBi2WUsa7mQUvO4Ix8nwW\nAwQSXRb42EiU3UuK0cVOW1wnI1GIwnmQK6xglVY+oM/muT/9SxERaTx7WPuNiA4i0TJy7v8VZO6X\nSxoRkq9qPyZEx7yHvxkgdJ/vtnXfssAb/71jL8tt23cud8NL3fYVse8dfVlu27HC/nUzjMP3Xn6p\n6yGr+iN64MABueeee0RE5Prrr5dGo2GWYiIiExMTMjY21u301FJLLbVXjK3qj+j27dvl6aeflre9\n7W1y6tQpKRQKsnnzZvnOd74jd9xxh3zpS1+S9773vcu2Q07RcI5RMqfdqCwhwJEZNjyeiNCO96R1\n4j91NiFytbd3EGk3FSdJXNfe362AHq/HgnSDkG7jfczOKjpgwbgc0Px8r97X6UnN2MnifOZLT8EL\nfy1iIGvn4HmFUs9cAf1CHKjAE9wsIKoBGVDPgbss1sH3DevEN1RWFHbiLFSlMF5N5Mi7kJebaOt1\n+2NFfyem9PgakDbLg0xCMu/fv/VdERF5648rkq5AqDjMQngYHuhwRjOmAhd570CVjVivy2yfDhlN\nnjPTQZ6mhDD99VZlN7TpiIgjnnn2zLUv9CKLLUhmt8UGiSHTSFhOQ5J9sj6dRapI6I5VCC62ynJE\nCFlpIFog29KxLe7SWOHtr79DREQOndcx653Q+M8aFLB8INKdO7AKOQS0D+7UrObsSJVunKKdO3+F\ny4NcrArUleB2V/VH9N3vfrc88sgjcv/990sYhvKhD31IRkdH5Td+4zckiiLZt2+f3H333Ze6r6ml\nllpqV52t6o9ooVCQP/iDP1i0/TOf+cxFtWPiMI2AbDKjyEZ4xltv6YnSuJ/e+G5I0uiYwmwkysnL\nzlByrdi5ji2NRJnrTcTM/jL6gNednVFEeuaUIrbcmKoVtVAUbQa57FtQZuM4slXOHDwqcqfI5DPK\nbZ6b13Zmt6vnuAEaaxhZNf4GRXpZFEGL4MWfn1X0kncUKXt57f/AmB5/4ohmGPW6ymFOYny9Hu3/\nUZRKRtKPeEDcU/PKkc4hA+mlo9rvf/6KXver39XrvPZepYaOHFSe77ad6v3fOq68I2q0SQ+43hay\ncbJWnG677Yrjkq/ucIsiIo6dHbfg3YjFFWI/DxEAOeSyeznlPDN4t5rILJIWkKNrRW4sijlOeuuX\n9tkvUBZbEDfqOCKuJDlKQdkTH7qnG35MM5qe+a5q0sqp50REpNGjx80BkY5uUuR6PfQKni/pWPe1\nkXXGMifZZNwq1awijxxp8g6uhF7nUrZSRJrqiaaWWmqpXeW2vrnz1A0FMvSsTCSDABflqqvZGUN2\nfGg3TUS7dHIHDzDelF53G4lK4rtBytieQXlbts/7oBeeRhUpWgkqRr0ZRT8jeeQ/n9VslBNf/Z6I\niIzfdCO2K2f55c98XuSBh+TZL39HRET6NyhyO13V9pwqEObIbhERacNTG4GD3Xmdbj89+xzOV+Q5\ntkeRsDev/NuZGUWaXhOlMlC0zT+Fkhlzeh2/BOWjmp7XoJo7PLst8IneNkW0kd6mHIv1fn7Y0s9e\n0evPlZS/2xXo8e064kMLimzzwzquLFntOu0FqAAIynyj0vvimF9HOqVT4lgRp2/x7nyVPOgGuEaq\n3jVt6KeJ+Fx8kYWfNJOkjuaswBbeGyqjSOSCz0f/cggR3PVjWmLm6HfVi+y4OkZtxIV64KlfD4fw\nuTPqpZ8B7970kr+JbnoUdsz0WpHe5Va6T5FoaqmlltpVbuuKRKmr2Qai9A3yI1dKbjRKHB9kmJWC\nhjB7s0YP4zC7IVN7drKLWXXiQZFXHJDPSs7KHc4WPBK8xkQ1VC2vwxNahdIOwUYL3O7EpHKep45o\nrN/RH+hntqL7h7ZpptDzLyqnmIPKkwtusAId1LMnVQl/c6he9mJVx+n4d5Bd9oxmRm1Be7dfq3Gr\nk9/X6wXDiL/dg0yost735qrGg5bPaD9bRxUhT3xdeTgPufPFIUWGOUQNZAvYDg6Wufybdms+eHVQ\nn+u5BsZlWJHwZAbqXcid74Gq+yjKHFdrYWIc+TiduN3hQhdBPz7DxcjHcTqA0I7ksM2O0LhUZlOp\ntnOcup0e+t9kh/Guj+9WXdNjWf2eRy2oCKsgFxEam8eVb77jdq1T9dQXNJY4g/OayNqz/RXdtHnX\nixO1rdvzSJFoaqmlltpVbuuKRIkQiUCb0K9s0nlu5dRnc/B2Z5LdjpFL7WNOICIlmiCytROpulbv\nlCQSDQL2I8kHLeJc0c+AGU28DfwrhLI8QwWb8HIfPqxIsTqNHHLEBIYQBPKRTfOan9OSxIdfUg7T\nrSgCzWxW7/vbXqe82PkTqpo0/W+aCTU/p9dpwcN69Kwiype/fQD3AQ82VN2jWeXJ8vAA3/r627Q9\nZPGUXlDO8sAXvy4iIjnwbvvu0/7lhhRRfhPcbR+0LI9PamZSc0rvcw5illmoRA0Nq3ZAM9D+zPfq\neJ5FbaatgR4XoeyvoBaVa1YCYac6gtOJA12J2e/A4hjiy8vd8d1hLSXP98WRBTWJmMmE1Q5jcAV8\n8ySqh7bwWyhgew4xxiZ2F5Ehd911l4iIfPe7Grs7NaXPvAWUz4Gz/RTdxsm2K13Vs5tddFzpKvqd\nItHUUksttTXYOtdYSvJPPlS4qSvJeNAQ3nsfyjOg1joowUKErIkUWzWRmDPPOFF6yVl/J46TXndq\nMnI/0pcXRQXYKk5E2ORmmaHE6pZN6GlWwfFOnkXdHKS9MEtl6x71nqNEuGy4Vb/P9imaKB1TxHnN\nq1VtfeAaRYi5Xu3via99G/3V8/MFvf/5JrJVcsqX9fVrXOmtd2j2S3azbp8XVBWFSlKrqf0b3qbX\nYf54tqH3+2JdtQ0Gody/66c04WJ2u97/6TOKlr7wxS+IiEgB3OjP/pTWETo1r1xra1Cf+6yj/ewv\naH+yMfQZPB2/NmI1qYUZxy2Dqhky4Zh3QC5oV0J38kLX4TtukHTYEjeTkcjETuNAINAstFn5zk5i\nFUMkWo+A1lFBtlFWb3021mc3Pj4uIiL79+8XEZG//Ou/EhERv2Vp4rIOmXPhqhGXy9aKaFNONLXU\nUkvtKrd15kSpwgSvvGvnptNbz/hNVkqkKhO2M0+aeqNov6+PylK6hciTCLGb155RAMws6nCnS3vn\nmWlFWxRHisl0dlbjKudRg6jC2kDgeJtQpHd6tX/X3q1e8dxW5bXOTCiS23SzemJrNUUXW65Vb3sd\nQkL5zRpXGRa0nY3jiviK2xU51oBScqKI8dizL4qIyPkfaubTtlHVMQ36gVyxQvAq2s9SSfmzRlXH\nKQ+v+Th0RSeRgVXs0+e7Y/+rRURkBCpSu1AZ858/r1qYn/u9P9PrXrNN7+/nFVmfi0q4IeX3XNSX\n9/DaNipQHgLyjtstEVa1pF5otwSiFdpKOcCVms3Dm1hpVndAhhUrzsZRUg+CHCn1A1zWIwM/zLFh\nZVUXq5+wrIg0i99MNtB3Y+/NWhVh7Cv/LCIiZ07p8THjSxkv6zJWemVI9HJzkSs9vluUxaXqh0iK\nRFNLLbXU1mTrjERZjyYZy0faqMNJ6nGd2ZsK6OBUifyi5OyZzYA3gmeTauUGQVqoIBPAo5lVhNYD\nNXGT7eLES55v0IGlYzqPior0fBbASQ4MKMfXhFZkiLxlDzGOu25WJFgf0es3gURPvqCI8cf2aozf\nwEbUlyefBi1NVnB0hxQhbn/VXr2v61iPXvf7s9rvM+BWX/qm6pmOjOtxuRuUN5sFzzgS6XiWZrTf\ndSDnChD97NOaLXM6r/vvfdOPi4jIMHLpBwYUIedQj6gX3v/5F1X96dwxfQ69M4qcCxv1/l/8vubg\nH0Q86qtvUYROlBUDhUVxS0SA3Lg6uEqqUdrW7R00ufNcbVl6Ei0gU8aN+kCWAfwFgaPIq4R3KYvV\nV4xVQyf7TsdlwwblSH/6Z35aRET+4XOfExGRc+DpffNbyib6QaM+xEptrUh+qTjfCxkV0i7V9Zey\nq/MNSy211FL7EbF1RaLkQFmrmznopgooEFaAbIsO16jHMY4zw1x1NEAehEjWMVxrUqfU5kIzQK5E\nkqa+uTBbI8lj0cithobfUhRA/VD2h+0yU8nomgIttXPa/pEXVTWpf1pz5fvmFRnmwQkOoba4M65c\naNHR7XMl5QODrCK8LKIC6i6QuKDWFO6j0KP9vv3HlbP8/j/8bxERmQEyHAESr7cVWTbq4N+moEIF\nB3AVCvQzxxS9BNsVaRdRd6hdgVI9oxSwMrjmFq12+s1DmmklWTzPSK8TIC730HcVif5rTjnSu1+l\nUQQBIHezBgV8vymZDCIusqhrtUou9GJtsdPdjhjhccntRgMX+22+31S4xbuIgASJEMnhAKn6eIdb\nGMOwDrUn5NrXW/oMe2N9B5iDz45du0efxbXX3yAiIjPnob+Ajvn4U+FayD7wLo5zpF0solx0/ko5\nUbt/K7ys6d8Kjk+RaGqppZbaGmxdkSj/hne83rrV1gNdFJdpjPvBDwXJrArO5r5DpJnkVu3Pjicv\ned0OR5s83tyFm0TARKas5pnLA+Fif5BDTaOWZvaMbFSd0JHr1Tv9w+c1l/2F//VvIiIyfgh1ccaV\n4zx96KiIiBz+l2+K/Ph/kX/6K+WxAk/RV28fFOLPq0e2r1cRZbZHz3eL2o95RznNTbept7/n28pZ\nnjykOfpHvqX9yCC+9jnEGvZBczMDBOz363XHblLv+8AtipAnZhXNlKH61D+gyLICZDvYp0i9DY7b\nB8fdPqtosnJaoxlmD2vUwAuiGVAmGgJIN0TcqziuNFgTKQDi8rWPzKWnSpJh4R0bM17YbMTZQZjJ\n72yVug8dPh/ed2YegRc3db5iVrZlK4wEASKE2v98G1l5BJSQeZrTRy1ZpePF7dXr1FxyqfhElc8m\n+pGHXioLre7AAAAgAElEQVSR6EtHVGdhfnoG1wUSDZK4i0pnXZHlagGnAYIrho5LmpdZulKvOe0S\ncKQpEk0ttdRSW4OtMxJVIxKNLT6IEIEIhbnnRuQbHCl5JXriOMsTSTIOM4sa4qZeju1lN/VvwMmG\nyf0032gqUrVJ++9nMont9HyGVMZBVdC+vB5XD7WdPW/Q3PTCNYrgTp3TOMv50wonZo8qohTUDh8f\nVw3JnkGFHeV5oApUzezNam68C9KydU4R3abr1Ot9uqLowssn43F37Fb182//zbd0nOBFr+Q1uiAA\nIm2ViPZ0HHfdo/3f+mM7REQk09DndALRCXJMEew1Pbr/H77zDRERqT2vGUqbkInUmtDjjv+7IuHy\nSWQwnddqngUg6SbidwXI22GspGSlCiSazUEZalEEyFrNxq30qhNB2hVkdSxCKHoRmbLuPTnbEJlI\njNhgREqEd7uByBIPuKeA2NkI23sHdGx6oElbwLOLsGrI4t3MBFQ4A37CT83HGG7bpquh66/fIyIi\nzxz4PvoL/0WQHEdmGVrDsWpbNTLshkS5Ol3l+SuxFImmllpqqa3B1hWJ9iLuL5+nN123t0OdXVkL\n3HNYNVNnW1bJZF50raoIprcH3mDkpteh/hPAix/ibslhzpUU4QwNKRfYUX9itUpFkJQvZV4zj+d+\noo8e5Iy328pJ9vdrf0vITGKdHxTdlHqo19/5JkVyE/Pa74GtimAHc0O4X0Wgsz9QbjD3Js1J34LM\npbExPe7c7Al0VK9z071anz3eoP2aQ7GiNsYhB73PkP3fo3GhgzcrYp2cUER70x0al7pxQDOSvv6P\nX9V2Yh2vQqDj7A8qCjo7gVpRO5Trjbeot/6LT2nO/Pyk3jcznt58/0+KiMhLkydFRMT1FfHWUCt9\ntqQd3nGLRitUDGeO54U6SM1mJGFDxzoHDdc8IhXoVXYW4QYHakmrs84qBlwjVh32KkliZiRRrYm6\nD1xlhdivh5PHN9l48NLHLmOhoSsKXYM64kd9ZOk16+gX6mDN1XRVsIF+ApeVb1FVAtcbGdFIkGuu\nU2/9kRe0IqxgFehlENeK+/fJOV60mlM3TQNnqY8lNjhLfRUbUuagZbsIal5kOxeyFImmllpqqa3B\n1hWJbtmsiGsTMm/o1WYoWuc7dCepkZhNesGJELds0Zxszv4z0L/ctWunng/1bnKizJFnO0QR3E+0\nsGWLIjPjXccnc+s5nVKtieeZvOKIszc8sqi/M1vT651BnZv5unqxb7hZOU85rojum1/4ioiIFE8q\nGqgRZY2iJlNBt/dthCL9JkWM++57szZTUU709Jy2X0BGlleDutIJ5R5jX9sZvUGvX9ip7e161T4d\np5ru332P6pa2q/CiTyv6mzii8aVVKO1v3aLt8yUrT+h9uue1nX2vVmX93C59D3rHUTeoruM2hDr0\nVXj5nzuuGVs+oh3qdR2HM9BLzWdE3FCfRQnqRb392obAGx071GtYgDSWUFbqpjW7WIWJ/HuY+ORp\nfBeJQOmdZ/xn2CISBX+fo54DMpRCKo4BiSLWt4Y40WpF38GTZUWa5QFEPPTpO1D1dX+O7wZ48jOn\nNOKjp1e35xm5glf2+us1a276nD6z7/y78uTUmKXle6FPcbl1Rbs2c+H2g1yyvysHmCkSTS211FK7\nIrauSPTaazWucOdORYpEbpylx8a0VlCzrrMpudDNmxVxdioP6qyxfbt6t2tQSSqAo9y9W3U46Skl\n8uRxRrcUXKqNRPv7dVanh5MI1OiGIn+YecRsl3GpfehHBN4rAtQ+eFgzk+bbun9wq3pGMyM6e/b2\nKIoKgAKieeV+D35JdUKvu3WLyB0iR8+oN/ttb/0pERHp2atc6YmaIjgPntX6aUVnLspwekA7L3xD\nFe6HtkEzAGjppts0ZrAP9e5ffFFz43e/XrlWF5lIR77273q9r2tmUQE6o+XohMi1Ime/r/dZnwNf\nCVJ2Fgh8Azjw3lHNxJo6rFEGlTOa0z+2Ud+DfbcpJxqiwH0Fz2E+1vbq1VA8vDtz83qt0VFmcQHh\nWcWLHC8QRZOmYpMe1wWJdpBmMpaY7w6RHLlGfnZioMGdgiqt1/lO6jNi7nsIpFlDpEMdSDXE9UPw\n9xOI5ChhDMItGmERnldt11JdEecAdBTyeb1OraLvwuiIrrIiVJUgZ8xV1Y17VXfh4LPP6n1YcaJO\nkMzqW2SXKihiWUTbZf+iyr4r7VCKRFNLLbXUroitKxIlUjQKNfC60ojsBsDv8DjWcSdipEeR24ks\niWQLUEavVBTJdatL300b0Vaqt7d7plYUdC6BkIiUc/D2CzyitRioxdf7vXaT7h/rAxLvQZXOST1u\ny+2v1f6+Qfd/+9MHRUQkOlYWeZ9I+TxUowbVS+8P62flrKKQwqz2p/wDRYpz08qfHTmmnHE/4kUr\nT2s3G2PIwEKtJB9oZTpW7rSvX59bsVfvN1/QcTz6LUWq4U5FTdM/PCnyDpFTB49qw0AtLrQqXzyk\ntaVuD98kIiLZQNHPGfB8xw9rf99wiyLi171GVxQCT3gVaC3Ec4tarqlNn4Fewtlzeo+bMcYuq3Uu\nwA8L9WBjK4vN1nGIYnrfgfzayQgNetvbphqD8rctfG+YeFFttwH+2EEISIifJGh0qYPjbUbQukV1\ngTq87MfP6TvtFHW10LNLn32dGVMTiAuFTkIMnQMX72K9pog0E/C3QG5UrzM6pu3uvk5XjSdPMAIE\nSM3tpuJ0qRDfWtvJJY+ynq+93axQ7O0XsBSJppZaaqmtwdYViZI7JP9CbznVj4gsTxzX2a8KHmcA\nFQyJ9HgcjbWUiByZ8+5b/AjPZz9yyGm3c/WJUHk8+2s4XJNpldR+JNpgdAFj8agsv22rIr3tQ8rf\n7XQ0X3kuVuQ911TvfHYA/UA0w8FRvb8JxHEWm4oMCwq6pHRI4y2nq7p/Ezjna/apN/yFr3xHRETO\nz2u85hxqlBdi/dyyRY/ffIt6aGs5fS7b+5VrbZ/T+60guuDki9r/OfB9tabydE3EbG67XbnMOjzk\nZSjo+0BxQ5GimZkz+nwLiB8t1JQz3bdTebnxHuV4I2QHNT3UVIfH2oldaYEbjBEBceKc3mMArdiR\nQShgUe/Az0i71RDPZPJYFVxjVtfUa4RtO6KD3nar2gIKYzUwRodfVKWq8+C1R8D/DoKrbAARzjfY\nTiwbh4dknkpZFW1nuqTXn5rR41ue/lbiLOpQ9SOzCFUNcr3gcOv6TsyWdHVSRLbbiZNHRURk545x\n3HBSPyLAb+gmKOBPT5exFxEpheQq0VY/6iC5ZFxot+1itdNtu51b3w1Jjm3cZPXPam+Z7SuxFImm\nllpqqa3B1hWJkrusVhWxnDmjcYZ9UCGy68bnoDTDWeL4cZ3di0Vwd0AHR46oN/g6ZF3YOfId9JDk\np4hA7RpJ7IeJ+etSi5s1nGhE1j3QKSUi9jy97p6timiHYiUjd8JlW6kqSggzipBn+/S8bEavV3qD\n8l4vHYEHGrWMJr77jIiITAeoxfQqRZQjWdR0CjVedNhXpLj1RkUv57WbcuqctjcfKdqIUUspN6OI\ntvmienwFnOb0aaCSs3q9G3dqe7v/k6KWgbw+l1tfpVETAo61faPmZf/zZ7XG0qf+UGsshZFyoXn0\n754d+jxff6NyuJm6cqT1vOqJNj2NZ823AcElFvEUcc7j2Vbg/ZYT6unPIdebq5Ugr7n4WXCoYj17\nw4Xi3eAzNplIMPMuYREzBe/41Dnte2lOB5ll3Wfn9Jl48JZTQMyL9V2pVXUszk7q2NegCRCK9ntw\nWPn+ugM9A08/nQbaxW9iZFy99dPPauZRfkDHp4BstXqDlVP100U7RmsXUQObESu9eau2x4q8W7dv\nw3f8FvCOc3/ne3I/fzP2b8hWSuu+313yeK4weP1bbr3R6o9rfV+6f/bxF7IUiaaWWmqprcFWhEQP\nHz4sv/iLvyjvf//75f7775czZ87Iww8/LO12W0ZHR+V3fud3JJPJyJNPPimf+tSnxHVdede73iX3\n3XffBdsl4iPfRK82vfJGcR58VT+89PZ+evntyn7kRG00QRRRLBYT7TBjyeY2iZRNvRkrHtTmQNke\nUUsUM1sFedOxIrgxcHzbvEPor0YZeBVFH7cO6/XmRrW9Xnhoh+5Rj+mhaxWNjO7Q7Yef/a6e7ylf\n9ta7dujxdSBJUaR/3bW6f8eoopGzFb2f706jamgFGpPn9bxbxoDctyq64ijP9ul4PR/ocysWFSHv\n3I4MtBbGYUI50IFhRaBnq3r/Iabw+ZLyhD3Iw96JjKu33qMe4cF+oLgZoMum9qPt6f2RvcpmMjLf\n1GObQMsZeKFnZoEMp6FotQlZYaLPu0WdBeg42KsVXmV+Xo8jDqVOaavJagl6U5NTek+lMmobIUss\nX8DoITssh6ysPCra1pHB1MAFaiiI1YI6kweldhd15z0cF4b6jubhhS9G2u7wLo1sON1ULrQ+oxqx\np09rZMRAnyLL0yf0WW/cAq0BVnFAjDHjLe98jda34jt/52tuS3xfcw2lVZ7f7bxt2zZf1uuKrACJ\nVqtV+chHPiJ33XWX2faHf/iH8p73vEc+85nPyPbt2+WJJ56QarUqn/jEJ+TP//zP5fHHH5dPfepT\nJjg+tdRSS+2Vassi0UwmI4899pg89thjZts3v/lN+fCHPywiIm984xvlz/7sz2Tnzp1y8803G3R3\n++23y4EDB+Tee+/t2jaRI/kpxnXyOxEdESS98uQ+N25UNEFOlLMJvedEuCae00K+NCLLkDF5rJBo\ncam2Ms8irhX9JHdruFRWAYWeaA/0RMOyIrjBLPKZA0VwBcQi+ogn9Tx8zimvtwm8V4y40PEbFbmd\nLSuauHZAPZK78nrdfF1R2PXX67iOIx6zkNfrVNt6/zub6r0/+zJqJcWKWF89Di94DigIiLpW0+/j\nG/U+UMpJBns0qiACH7lvQCfTrKtxpP0jigYLd8ITPq/jsW2DIuzNw7p99y6QtVgJBEDwzQiam55+\nd9t6P23Xk2IB8ZtNaKrmkNud0Xs/As3ScyXN8nrtXaNSbzZNxg6RJcI5pUXIiWd/7BQiGqCUxRBT\nUIoSQwE+CHTMcrgnU52T9cA8/Z7t0eyuInjy5jyeLdSanCzebWG1TWRCoVtsx2fdegzpSFGP3wov\nfKaqq4wfzqkfoTKn91EqK588NKDc5vyccrgjqEzL8aACGX+bNDt2mrZeiNQ2OyLnclT7dOLFigpL\n2sc//nEZHByU+++/X+666y75xjdUWPf48ePy8MMPyy/8wi/IM888I4888oiIiHzsYx+TTZs2ybvf\n/e6ubdbqNcnbAgGppZZaaj9CtmbvfLe/wSv52/zSyy/LTTfcKE8/8wMREZmcVAQ0CITFWe7FHya9\n7USOBmlaVTlPnNKYuGHofrLuOW0e+p6skBjg/DbyklthB4lef8NeOfgD7R+5TaZZE5EazhM7iMaJ\nRGv1ebQHrrWp3GTe+XsREdlWUM6wHiDKIMR1WGOc8ufg+QBWpNbyZOedn5Nnv/JzuruJzCrQWCMj\nQI5AsoHPmlOC7WgWXHAro6iprwd1idrUQQVyt0pdhYBfDXh4xaXqFibGyJf8dZ+S8rPvExGRSqzt\nzbSVC26UUZEA97tpCEgc+qCuq8fFgINhS5H4MefXRUTkbO5OERHJh3i+jiOCa4QNHfM5VAL1A+2T\njzFsVBUdv/3e2+VbBw7JGPL981Buj8B0URn+GCJBfngU9a6G9XgPCvROBqukfBFdAdJkVQYoTpmK\ntkCQrFS7fUzvoQIv/Ey5Jm+8YUj+8WldRTTxCGJJ8vUd/Qg1Fwfu2oA6X0U9buK4eueff1Z1DmZL\njOXV84b6dVXnZ3RVMzSq74KP2OkGVkWZBXXcX3vP6+Xr//pVWYtdDmRIu/u1r5N/+/rXVnWu/ffr\ntfe8vuuxq/LO9/T0mPCdiYkJGRsbk7GxMZmamjLHTE5OmuV5aqmlltor1VaFRO+++2556qmn5Gd+\n5mfkS1/6krzuda+Tffv2yQc/+EEpl8vieZ4cOHDALO27WRTprNlsKXrYukWzJlrQTpydgde2hxlI\nqL0NBPr972t85XXXXIPjlBsrV0poD9U2MVU0WrYyD7IyMJeEyDbJ4TqMRcsGynGWkeFDzpOKPMya\nYDwrM5R4lSq8+NW63mc/kNhAH3k4VOOktA9ORGq4+Kw+iqflwyWbBXFXDLT9iBUZcb8uUQsrSKJ5\n6nESiRIhS6uEDeDhgJaiOBmj1zHWCUJ8LdSVMvDWx7hgvhcxiKgH5CCTKUaimY9xjCvKU3rZnegv\nYhjRvRCZXoF3GlfH+DPE0xHx8WzzeegySDJCwkPmUoi6TiIi0w1fqtNYfdSVI6wBXcdAogFWP8VR\njZfMIVLERwxw28UnMqWy4DjziH2FWL/koRfq4hlMl5R3PnkOimKMU0S8JpEunO6mCkFkfXLV04vq\npr6DCAZEDXAVE+QV8WaBQF3R687MgG/fpONGzrTXV4QdU481Tv7JWCEbuOLjLvX5tv/iclx32T+i\nBw8elEcffVROnTolvu/LU089Jb/7u78rv/ZrvyZ//dd/LePj4/KzP/uzEgSBPPTQQ/LAAw+I4zjy\n4IMPmmVtaqmlltor1Zb9I7p37155/PHHF23/5Cc/uWjb/v37Zf/+/Su+eBUK7R4Q1MwMMmqGlAaI\nIuVtQiDIwGfOuKoJUe3bJyJCdc48slZyHvKh24BmQIpEKzV4feEMlyoQUl+/Xoc1nmqNZL60nTtP\nkpSVD8lTTU8rGjg/M5s4bjivMCADV6ob0LtvZWvY8afwzGYy9JiCd4OQTgRFoJg1zcGPBcg68XCg\nZyo0Rol+N+cVhTkYr8ioT7nJT5gLvi/wKaIJ3g8I1gEy9XwgUlH01uOoJzgGVxu2dXzKNeUb280Z\ntI9exlTLAtrylPPOAokSHGU9RwqoftCH5UcGqH0GWqYRxrDtdRya7SArM9DtjKp45nXU98KqZAQK\n+cU8kSnOB1Kl953u+jyuuwFxoXmfOqW4ZxfIM9Djp6F/WofqkxvHIpI3qxm3C3doZ1K1UEV0HkpY\no1jFDQwqh+ucyGG/Ht/Xo8+4t1f712rps2igvQCI2cnq/dmZWvb3y20Xiyg7cb6Xz9KMpdRSSy21\nNdi65s7HMRERvO1N5YfCkDFpyETyiAyBJIE0R6G43oCLsdEkN6jHHT2tXnA3oiajXs1FnGYbnGIf\neK0eKN9wruMsy/aLUIvi7GbiUcHdkTMkZ3vggCrGDyDa4OYbNHtkIFLE5bvUFYV3v2XnF+O7mXz1\nuCzc7z4QXwG6nqwI2QbHSM7WeNWZMQW0RMcuPckBvPBxG+5/Ikwgeltd3O00gC2AxAaVMf8YdY2o\nWemXcbhez82oJ72QR0YZ9VgdaicQ4UPH1FeuPA8ydB58XZDJU7JU8lCyD3xozAKlh7jXeAGAyuZd\nCRwofmX1nSqABybn6QHh+ng7Aly7hTENUEOpt4cjoceNFRkxgXeQalDoQAiER3UmxyjrazvtiLWV\nkor7tpksOVy33lYqba5OLVy9/o5rVBGLSLR0TutWbUBW3NHjmj23eVwzkWZnVD+hb5hqTckaVbbi\n2UrtSnGk3ZDoWq+/0FIkmlpqqaW2BltXJCoRFGvqzElX3qlURtYGuL0A2Sbnp9V7XKmgVg+85KfO\nKkfqZbWdCmaf4wi5iurI+AF6cBH7xrrzAVDHtm1Qwu/V/VOT03L99TfLC4c133jvjaoIw6yNyUnN\nzGFOfAEwhPGte1Gf5tgx5fAOoU7Na/bofTD7pA6k60CFuxM7AG7Up5INuFF6ozGbskKkAKk7uL8m\ntCmZMdVmNEQDXCrOIzINwDmaGuchdDo9xgZy9u6iCg7EKQvU2x0Rceg+t/KxI3N/ippYjTWEghGj\nCZiFQ3e+i7pBvg8uOdB+1puuFPPIXhIqy+uYFIs6tk3wxP0DQ6b/gz05aYRAlrhX1n13fKJw3V/M\nQMEeY8jsrSxQ9sY+6Dq09d4KWapC4TygepRvlyZWY64DxfyIMcpAntSqJd6x9DjtzzqQblTTC/Rg\n8IYQL8p42YFBRdxOqLx9A7HLjocYatwnVZ5CrmrcpTnRVSO7Zc+7yP3W1zYiQrqZ0639eNE/ulqK\nRFNLLbXU1mDrikSPvHxKXvOam2WmpLNdT1Znv/mKIsQyY9Vyii5ixHFOTCry3Ayl95NnNJvEz+vt\nNAHVpmeVY22UdXbNAk3E8FbXTE62ztKzs4pweovMiEJdHHgqa0gwIBIl39LEbJfLM79Z22OyAZV/\nopp6nacmVUFn2xg8qi3qhSazUIyWIr3iBh1hAIFKAmhDCtCPgFP2c0nEyAyjFu6nSQQMhOu7VL0C\nYkSMoe8hfMFLRiPQnAXYeeHeKFb8FIP/cxCFIUYj0lv41ZC0LlCYoF5SXEet9Rruy9VxZIXNEJ7w\nZuxKFZVhfcS+9iPAMg9vuhdTpamDH7ISmEFtA2nR2x7hncMrIsUckCY40BJU+B1WAUWNIp8I1rP4\nYj48jHGuB6uwHDjSGjlTcLccTTQTGyjK7YhxRmRKE+8kq4hmsdpBt80jZO2kelmz5eZndXWUyyjf\nfH5GESrCTqVV19+gb8cKt2oLu9cd2Rm7MHLsjvyWabcbV4yIkXiZ4xYDz5Uj6xSJppZaaqmtwdYV\niZ6f07/2JagBEZLM16Gp2Nbtm5AdMnteOchqFd7cosYbDvcpynjpJc0PFlT3JEco4PaqDUWmbaCD\nArzrWcwlR49qxgw1GTdAJWoI1TPtWuREpA1oWNr8FHP8B6E+1XAU+TaqUIg3XnLEbxqFHy/RDr3f\njDpwPF4HaMlW7fbpNdePGPGURJpG/5S5+ciqYbZNFFLVnWrnjDNN1t/peOU5ayNDCvGhEcadsZFG\n9t3EveL1M65yjC94SQ+amw1UqGyj9rqbZ6VNfR/cEIr5jitVIjCPqF3bynLsEFTKZyaSE8+NpEWV\nJSLQmArorJMFpIdbyCOiwnGJQJmlhmcR451AJpMBjnjmETOb0ItteGWP4LfQdKGxi4yroI1sPS5K\nYnrt8VsBancR80ut1llkyw1W9LhhVEnoh57EceiV1ioaH5rJ6jt68pRypCObGbcKJOolfwMhImJs\n6051xgv+K10Bn0HgywFX6zh7P1cmEsdL7l/UWpcaWxeyFImmllpqqa3B1hWJNtrwiGKWLVd0Vjt5\nBlUs+zQukPzU9LTGrDVbOstXwJ3mMftuBuLLDml2xsS08jv9w5qTz8yWs+cUwUwho6iE6/I6rD3e\ngKezp1e9x/S6c3Yi0uwg0GRVUCI2esfrDe3PYBbaj0BLWdQc95H/bDhQzoJ2RULG5ln0mJnlneTs\nyVro3O5SxilivXYgTZeeYqAxIL+wBkQaASGjnzEQcYysnjbumxqbrG4atVntFJw0p24g4Y7Pn9oD\nPI5xrXpcDuPd7gEH3NCVQzZUda/ID6Rp6rQzIgAxtUTlqFMVNqud8XGa0kZkgc/YVoMscS8Itq0y\n0sPnKgC3Ai8768SHOL7P3BuejdGgZTaa7s8hsygbaL9qYXLMHCBTl953cLKug3dQkqsCs0rBBSqI\neBjsU8gbYdUQQG91Btq2G6H8NQ9B9WyPvrMhImGYXceY6PJ8ZcFVOzcU2++kQYo2crzw8cuebyNM\ni0ueRCWDNbd7AUuRaGqppZbaGmx9kShi886VdTbzI531ZlCXZtO4erd7gB4aNd0/gOyJfI/OqswR\nb1TVaz+PGjwNQKKyp57HmfN6fq2u3zOY5f08apEHOru3oCo1M6WfLioq5pBHPFvS2Y2K+n19Opv3\nIEYxl9VPep9PnlSvf2te40VvuA7ID0rxQUAuMKkNaRvRDLNEYgFSiohYk0jaiZKzKznJGCjGUK6M\n16TYJVCGz1rqiPtsg5/zDfJGphRjIAHLfNMOO24utPCjc19Enow5BPKMTG0sRC3gftrIaPLheW6R\nC/Y8ccFdhuRjIx3jyOKzE1Uc48jEe5KrZCwruUdKSdXw1YF3vcXYXKwqSowfxbs3rK+WeJSIjZII\nsRUy9lev15PX73Mz6C/r0Dv6G+mHngER8ByqHAgQKccmQH9itB+g8ur0LCJVkLU3sEH9CuM792k/\n57+j+xF7e+qEov0d1+lvbgoIlfGrHaS3NltllOmyVq1TKe1yXSFFoqmlllpqa7J1RqL6ea6ss1sO\nNX1cKM33oc6LB8TRqOv+3gHlSqkC1UZDdcR1Mp7TAdKrQ53pHDhQqhTRG96KdD8rNgZQN29iVq8j\nGsB1dDZn/Cb1QzPMq4YnmGpP5L3ofb7h+t16fUercvb0FjgSiXGxPYKO4UZFrAOTn6YeTvI8Zn5R\nNzRiMn3bjoUk35XkdtmfiIgUWSyO4d8Exye5YYOIkdBO9OXZ+dZR0msftuiNR/uoLxq1OA763Hvy\nUD4C+ow9X9qov0S0znrtBWZ1AXF2qiGI9OZzMg3+PAzUax2xrjkJ3pi1jZCv3yKiBPrGmKHrArAv\ndUBGoxWLW7AXCWHI6p/6PcOHSA4Uqk8Z8P8BAj/n8W6abiJ2VsCzexj7GhTPCsgKOz+nHS2XkZUG\nzYC4ijjXQNuZhpd+YE5XhX19FFrXDrYvI8JLWpdlzDLHRyaChO/mCq9zEZYi0dRSSy21Ndi6ItGQ\nea0xVXt09mPuuoPtJcS61THLInxQZs/PoCUgKcy+EZBpxqUSPrQhkZ8cuDqL98LLS06WGTBbtmit\namYqsbYikaetoUgvPY2ZTOQKh4eVM63Na6ZSYQO82IQPrN1IYVPYkvzdBWzRHEq0Y7jFZC0oqj1R\n/ZzxpxnXjjLAfWFcQ3ioXRNbieszHYYxmYhX5fYQqIqqWraH1sRYUrmIgDkk5woVL54I7Us3wzjX\n2GibFrCKYcgs74XCVETfIiL5XFZ64BWfRhaXh2oGHDOPJ4ILjYBkydu2QkZA6GHUIZiv6Zi5VJoK\n+Ez4S3EAACAASURBVOyteEsgUSY49QSo/yXJOl6sZ+WgP228s+S/Y+TeM9aX+gRzVb4d2u9ZFOqq\nN9FvINGGiyy75lER6ehYHDupWYE33oDaS7g/17f/hKwQyTmL/rEmsyvvmu1Gkzd5nB032tnOj6Xb\nW8pSJJpaaqmltgZbX04UFRmdUBFFFCsvRdfjfAkcHUTEe/vVQ7h7fKuIiMyhjs1sqPxOpqbtlc8B\nsXJWAVc60qsooOAr6hgcQPmSSLnJMtSPxjZohhK9/plMUrHetkzATCCgDKAGIu0c+LgAsYnMxCFn\nSq92bPQ+oVHJWZ5xnwwPNbMuEBo7kqRGO9OvRcDRExzFScRHjUvfypziZ2xqLlHlCTyhQz1V5vqj\n/VZLAul494naYt6v6bcdD4v9RiEI9wkFoiCn33tEn3fVRTXVIJaAcaGAoHV4rzsVRIWDwKuL5zoy\nWIBeApElFK86JyBCgPIE7DqbQ9YXEW4V0QHHTikPv2fTUPKy+AfrvPvg1duz+i73w0vfC83VVg2I\nEjoCZfD+LbxjHpX60e82dR+I4rGfvPQcMrtixpn6+tsKM8rbl2qaU1+tQo/ijHrhxzfrbzSbVaRe\nmmOcqIXwlo2/XCZe1Dpu8fZke922n5mYTHxfnJEkye/mc+UIOUWiqaWWWmprsHVFom3k3W7dhPo1\n0A2dPHZUREROHlfOM87prD15WuMt927X6p4nkXnk9Gtc5sC45rqfntLMpnMTevzurRoL57QVFYwM\namXDyrx6HrcM3KPfUT+nSbUm5NbngVA73niooLNufcCccua8MyNJt7aAlPNATB7q6tAD7FmzLJEm\nUQ2BaGyyVKzj6dxeMI+KdGL5DBIlJxpbGUT4DE0uPa7DHH606tLLznjVmHGb0MAkz4gTmlFbhneI\nlKd03Fm4MG5b3nlzf/jeZl42NDbB/wUZRZOZgp4/gPz0+baOa9trCdOhOHa8lzbH0qNSVgc/eK7I\nUBGS9BiDqQoUujiE9NYj06cNDrQNZSyXOgNxMoe9H7WNGDHi4/rUiCXiqdR0f7GgiDWX0fZGR7Rf\nlQkdiznw166F1CKsctrwwoe4P6PI5Ws7dWShxfAXtKkMFjEsYJce19QIEsZMh019xydL+psNoDc6\nUUqqJHWQnbXaWPRdEvff+c5Pd8ntXduNlz5ustWzzPW6XT9FoqmlllpqV8TWFYm2MHtmXOVVqLbU\nhu7mCDQPJ+ZQf76oGUqzyCOOoFaOFHypwrM6tF1rg49uU+70zDHNuriuqLNpqzYhIiKVks7qkzNa\nZ2YOKkWbxkdERGTHth16XdYwt3LjDXeZYc0m3BigYy+QbK0GJfu69iPYqYe1iVqi5HnMHKJXndMs\nuUh6vY3ZvJBBqFYcaRKoLshRTyJRcpdie14JgbGdXnJGD8RQNnLJS7LWO/pRLYFPA3JnrCbHk1wq\nvf9mfFEvyaGKFFCcD5TkRaqh0G5WJUJMaRMarTnUSKrAS56HApSzgBP1PU+4mPD6oZsAPnamCu83\nlLZYUdYxilRJROkiwsLD+e0WYpVZ2RVVRXvx06PCPXUIIkdRdQ6K+EX0NwAy9ZA1F4mu2hwH30P4\nF+AnCIik8Ewbdd0fGuSG1RLfDTgeqnXGl0JvVPSdHRzRl7bsoiIAEO50m7HOF2fL+rxXWyfe+l6L\nlvZjLH/dlV8/RaKppZZaamuw9a32iZi26YmXRUTEBd8DOU8ZRE766UlVdeqFN72E2bbCDJe68jLk\n8KqYZXuZyz6iCcx1qD5VZ+EJjXVW7d+ssXE+wkJLqBPf16seS3p26TVmHGgVyvisStoEyvBN4KSi\nFaqED/eDn2vBowkO2CgGJZ3U0gGolkfRqDgBvRiu0/J4Eola2RpWKrupH+9JctamV9x43dGw71tK\nR2zPTcaFEp31IGazAV6w3W6gf4xfhXoVq6uSZ/TpaYdqFGIaq8ywgmc6kzmo2+e3ie/pM59DjO98\nG15xePSHkMuOpDfJ+iL5wJU2Ks325PWaw9D3rECPMhKq/ut2nzoFRq0fCBV9crCqKiGWOcIY1PCO\nRxlkCrGQFFB2C0iWnCu1Zn1EdPjgWpuIcDDxrm7ypWHcKTnhiMskStXj1Qjb5Nl1QzavN74JETDP\nv/CM9oM5+4ZvjxPtd7Pl4iwX5bQv+roMIrSjACxrGU3btfXjQpYi0dRSSy21Ndi6ItHeHnj8zijv\nApEgec1NWp+ds2cdiK8wrHnN86HO9rPIpRfmBaMufK1NNXBtv79fzztzQrnP0qTCEB8eywziDZsh\n4iNdeqFRnwd6op5PPokoAFwllXI8qoqDF4Nq+DxqQg1vApfbhpJ9CATGbJiQKTr60UF64ADJPcb0\nEGsmdwi0RI+ma6pz2vnGQB2IB41N0rt+BC5z/q1YPjZjKSFxO6txmvuwFP4D5GvHzCwD0uwI3SOu\nFvffYvYO402JehDlEHtAoFDQz/r6/LJRZJAhnNASAKG1gHLnKkmV/95sViq1hlE9cvHMWTnWRf2m\nOrPUmJSFkApTGZWZUNAlJfCpIAIljFiLCPoO6FcGaNvrYfQA1KDaIn29IgjDlHasSDZG1p3RjOWQ\n891kNphR8sfYIW603bRiejvLCO0neOriiEa6jO9QrdYwp7+tJrLO2lhF1Khs3wW5dUWSF4k4uyHJ\nbgr43FCFbka3/YubTcabrgSRpkg0tdRSS20Ntq5IdNcO9Szu3a6ev4nzyh3SW9tmwk7WykKBl7eB\nvJEMpG8aQK65Xuh/Qu+yPqFc6MmTiCuchWeUmUMl1fn0soo4r7lG41CpBu4zIwkogt5zM4tTnQj9\nZgY8awjtRLRA1lck3AqZw57kozzj6U0aJS2NHqjJROL2JPJbqXU73kYpi1BAl2gAAb9GMOQ4joJc\n7DZ17amwQ23NNhE27i+iClSykmUsiLXMUENBn3dWNJsmI3NSi6EyRESKnHXGiYY1coW6feNAVmYq\nofHO5wHLG0TJPuto6VPNsYgnkB8rxYbMqXcVscVtvgXwzjO+FH0OoYTfrChSipHLnvN0lVTLRbJ1\no8jxM/quV119N0Pm0jMawCefjdUTnhl5buo8MBMrbBCJAgGzSgHGuoZx8uEP2LBNM5hOnYc/oY54\nVNxftdapEKANWfy9/a9FwHFpLnL5/V2QqXX9arVywf4taykSTS211FK7vLauSHRqWmexagMZQYFy\nlDOzOuvlHJ0NmRlj+wF7kG/MycXH7FoH2qgjn/k73/q2iIiEmO3JE/nI/6XHMgtv+egIFG3gTSY3\ny/rpruEm7WkKcZFAQR6O2717u153jrnx5DSRp82UI8T80YwHFNd3JalIb7jLVpLbZP2cxQZOkypO\nJpuHufx6VEcPVRL9dC01KSJHkw3kdhT39T41mjGCWpTJgDLVTJNRCaEwtx5cKOZ4joOHPPIgk4y5\nDFoavRG0Z2SeMbbgPENotUZGU1XQ1859zLVE+sDblpCpVGemD9oh8dtk/Ce93V4yW01sPtpjhAMU\nxlAdtIn2m6yEGlGpCspl+KwD8TWhedt2GLfKrDltpxfe/zir/axUECWAdytoUe+U/We1UHYb3DH6\nkYVOQf8wsgDPK+/cgH+CMcut+tLVPo11QXLL1qdfPpB0ya/22spptmRp68alXrytCIkePnxY3vzm\nN8unP/1pERE5c+aMvP/975f7779f3v/+98u5c5pm+eSTT8o73vEOue++++Szn/3s2nuXWmqppXaV\n27JItFqtykc+8hG56667zLaPfexj8q53vUt+4id+Qv7iL/5CPvnJT8oHPvAB+cQnPiFPPPGEBEEg\n73znO+Utb3mLDKAC51I2Oa2z95kZnfWaTdRr6dHZbQuqdo6MKc/VMkgPsXyosRTDFTs9q5lBEWLx\nzs8qnxQ34BXHtJND/OjmHcrFbr9WowFYf74FD+TGTRv0OzQbQ3iVyRUyTnSgX++RFRgzQLjMic8R\nOXlJJEl0xOvFrMNuOMMI46LXzeBEIm6j+tRKzqrRIsy+sNUFFSpNnKbFYxkoqR9EmvzsoDreDzhZ\nuqid5HmtVjKLxkbyREVtRDs0GkkPMrlmj1VFwaG6dV5I3xcvLksEWNsmambwLyIlGJEQLsAP1VAk\nB6RYBQ/ewiC1hRlOyEVHBhLjD13GBLOIEuvQGwV9ZmNxtQG+H9f3EZdZQNyoF9XRD323GshEasZE\ngPTKQ4Ee3CfrezUQueJgTNpNba8HSNODZD4r65r4UdxfL6qBtmrKJeaLuhrM0i8AZOfiXffCbque\npW0xC78yHv9iVUd5fNAVaTrW5+quI7ICJJrJZOSxxx6TsbExs+03f/M35W1ve5uIiAwODsrs7Kw8\n/fTTcvPNN0uxWJRcLie33367HDhwYBVdSi211FL70bFlkajv+4Yjo/UgJ7zdbstnPvMZefDBB2Vq\nakqGhobMMUNDQ2aZ381KNeUip6vICIr0e48HZRjWp0H+s9ENBcfmVJH1ge/TJ1SdiWiiUdZZnCyV\nDy9+HqrhZeTkH/7hERERGSloP0ZHlROtVvT8FnLyQ6NvmfRKN7G/P8+a3tp+EzFqQQBVc+iKOhZS\nY3VLVtPsKNUAVZnaSOAqcVTbqhxpcuyjZP9oJkMJqKNT2ijphSciJN9m4mKZGWVlQoUmawW5/VQ8\ncql0RCkkxGgGVLpP1kEKW6wzRL6PGVTITMPw1GdwXAN55TndkfXKkoWCVpPnGvSvbZInlwUIqtJo\ni8xpG+0axpB12xGXSW7RI9dqtFFZFYDKXNomIy6IFFkEyehjYtXBOl+D/fruu6G2X6siJtYoe4FX\nbvOd41jq291u6P1msHwY6dN3eY6KYgaBM2cecZ7IjKo1FHk6rv5GiLSZLdaHemAzvB72BxYOWw2S\nW4mttl1/pUh3lbn6OHdlZ3/84x+XwcFBuf/++0VE/4A+/PDDsnPnTvnABz4gn//85+WZZ56RRx55\nREREfv/3f1/Gx8fl3e9+d9c2T56ZkS2bBlfd+dRSSy219bZVe+d//dd/XbZv3y4f+MAHRERkbGxM\npqamzP7JyUm59dZbL9jG//X//a385R88IP/l4f8pIiIFX+NEC7Eiyt3b1TM4z5g0zKJEAQKVb9ZH\nn5jV65fLijbmUSN7AFC00Kf8jofZuorzG0AXW0ZUvWnL+LiIiGzevFl+6ud+Tl48rLWRCMCIIGdm\nNC96YED1UAcGNZavLTqbO5jdjz/3SRERuXaT0hvZHPky6Gs6rDaq7XNW4wrAZP44dL8DmYWh9Oz9\nnFQO/jTOI3pKxpOSc2S0QMbOTDJANpkr7y5QOlrYjkFH6Bc5XSJVcrae70nhlv8l1Wd+MtEO081b\nyDRrNFjDCvHAXvK15HVYkqrh6Aoi194hIiL5oj7nSedNMhG9Q0RE6r7y2ZGrmrJujTWEsMrBGL3x\n+kH58vPnTKaQW8cqAllvlLKnDmnWJX/PTJ3k6oTxm/Q+57N8ZlxtqDUjbYeIbsswsuXAuZ6cmJS3\nvvYa+buvHtLjiGTRr2bIsUZNKWRv5bL6Pd+j7beoQ4DVQSZOcqJUqWL1zxB1yhgXywynY4efFxGR\nEy8f1uPCpnzhf/6ZvP1d/1Uui606nrNz3hee+HN5+zvfv8Lz+HXp637xbz7VtYlVxYk++eSTEgSB\n/PIv/7LZtm/fPnnmmWekXC5LpVKRAwcOyB133LGa5lNLLbXUfmRsWSR68OBBefTRR+XUqVPi+748\n9dRTMj09LdlsVt773veKiMju3bvlQx/6kDz00EPywAMPiOM48uCDDxol827mucymQL0YzOIlfJ8B\nJ+n6ihR7wJWdPqeK9FPHNNOoiBi/jZsVbeSQ6tQGEh2D8v3GjYo06WU/e073zyLesFiAh7MB7hVK\n7p7JUBJ8JueeyHCCVKJnHjY0F6e0n9eOE3FRTxPZIi49wEnvN2s70VzjtdfvPvrn55LIkkYE12go\nMicaIRdp2jUZSrxe0nPJdl0TFZDkXD0gR0eSHmlGUXhW7amONx48I47PIO63UxmA+evw5iNziRlk\nXgue7x6uSOYkAwTVZOQC+hQ1gZ6zycqnIqgGC4gYtFlpVr9TaaqGzBwnpwjOB/ILLFQdRcl3lUiU\nyltNcpqI42zgHT+LTCAv1EiPVojIBKMbyppIeMcQFcB255Bk38KYQOxJsn4yIqIX9eo9ZP/VQkSw\nRDi/zigDvTHKORTwW/a9ZLxp3EpWvrVtLepIiRNWSVmyThd/C+SGHdf6NFy2a21fnlNd9o/o3r17\n5fHHH19Rh/fv3y/79+9f0bGppZZaaq8EW9eMJar/MMQuCJjlod0qVXR2DFxFjhuLGmZV7FFP4SyO\n27Zpk4iIDI/0oj09rw5kuXu7cpyboEzTAKrwGdc4pbPx+EbdXyppxhRj74hG2sYpbSnct+mVxm4i\nuIgakERsvD0gVdY4IhJkYCnbN4Umk0Kgpm47Z89MMrPHd5KPlfnREbNtYitrxcr973CiyXhO+9Mo\nz6N9J0h0y8zqRJKySIMSiDvLmEfWfALKy1gZToi3dZDPHkFJnwMVRGVxHUWK2QzQbEWf4Sxq0/uo\nhrkQITlxZGJiI2QE2epAHFOuEooF5b2zeGYN5PU7uLc8Mod6C9BTAGI7ixz0Qpbcqo7WXBsxz4zz\n5NgDIrMmVCsiWue7Ak0AX5FiFdzrsMMxsTN2ECkScPWBVQb2thBTTSjLd753QP0Jo8P6WYcs6YbR\nItpBd7ohPnu7EY+yt1vHW0hx+faTx922b/vS7btLH794//JINM2dTy211FJbg60rEnUQo8bP/hHU\nBs/pbNcDT+HWsa34jvjO88plDiMuda6ss3vY0LjU0ry2NzKoXvPqvB4/DxTBKIJd12imkgtkM7ZB\nOdXhEW23AQ8sFX8iVsnELJ0DvxRZ9d+JYsi9Dg0qyuhwj8zsScbwRUSo9IrTC26mS1zATH30HJPH\nwVZr8jRMp6ndBATN7B5krThQmDd1g1hfnupKRtU82T4RrUt1d5O9Aw4WKM1UK0WHfLPwYG49M7vA\n8aI91rv3gAZjcN6ODx3Vlr432XBePF9XGb29ek59Rved6VfusVgxwbGm/67eXOJaRpcT3uwgi1WJ\nwwgRPW6wB7HHeEYh4zcxtgB8kskr2t6wQaMGGhE4Rxf8/zzr3CcrroamqgCMZKfRXyBU1uMQ6CCN\nmAr94HiBSBtV1FrCM87hWY3hHW2d1/FjZQCuDgSrhd27dLUmLUWgN+5RhTIbKdK6fXc6G/A9+Y7z\ne+f0C3/vdv4WZB0aln+l/bOucyFLkWhqqaWW2hpsfWssUScSSCiDWkVSVARJ73SuV1FAhHhE5h8P\nDily9FCXxglR9RGZSjXkYI8Oo9ZSv+biF0UR5NSMIs2hogb8U5uR6k65nJ7nwhtMVacA5B81Gykd\nGYfUsNTjGshbzmRYRZM10TG7I2bR1CKnlx6IkZ5lM8sSmVqzo/Gam0wlwBFrEjW1lAz3jOtQSKiV\nrC5Kb3sHaSczlWi27qipK0/ulHG9kthsOFjqjNIbTwRrSGF+GvDI9pmbjzjVuCYjfTrmzQBIDdwd\ndREcxsiGHa9yLM6C2NdkrnwMxOYgQiTGu1ZD9pzHyBG8qw2fY58cM8bo9qJibbPcTLRrYDn7FFLv\ngX0kd8lsNrx7MYlx8sd6w3Ws7og4A6wq8jlUQwWSzuG65To0ehElQKd7Dll8dcRUD+K3mXOwehse\nSfa7izO+myTtcuctcs53cdZ3bw/8Ob/y1bnI9i9kKRJNLbXUUluDrSsSbcf0hIJ7pKI9kAf5oFJZ\n1ZnY2V7MjqVpVX1irFxY1dk2AyTWRO2h45M6i84qQJUmEFcmAzWnfuVAq9BGLEK5xiAjizdh9kgB\n/ajMw9tPLUl6RIGUevPwqBJQxUmvuBD9WEDPzHBMlXLs+THJJxl1qHbSi250QA1oIfdIBAnUQkUf\nU9sJ6IZK80bPNNmPTi5+8rrMwef2bjF3dqlv+7jO1YiMk7GeTHCKo5ZUqxqT20I2kwuNWq+9dJ95\nPeoiQItffPDxhj+OqXHKCAFdrcQYIyK8TIb3hBhoVP+kEnwbqLmKyJNmy0204xgUjt8CnykDEcyY\ngEfnJ/lujF2lqSdUoPBVdJOrA8ZA9/fiPrB9qoaaUnP6W2giZpoc7Sw0canoP11KNGtspUgvXgHn\nqNbl3VnmuFLVrjtvvVtdL7/SfqVINLXUUkttTbauSDREPKfjKSKNHM2dpx5oO1Kkd/68et2L4J0G\nECf60hmtotkkVwmEsnVQZ9cSuLiXpnX/sQn10nP2273rWr0+VMGJAsixZbNJvUx6oanvyfhIcn5E\nC9RoLJcUKQ8HjCNNIkPXTXJ7RISMNYzsmt7O4mndk048qkM1Jluxnrqc9PS6yfmbMYiCmlPk8Yzy\nPNWa2qzhneQ46U03yNNk+0SJ7a4Ve9dRh8LtESnHyfs0XCtVpIiITeVN8n6R5GLNlffhdY51USG5\nWX0nIo/VKjucaCSuBIjbNAIGRqWJCA99cRivCf1RZkLl0QdT+pRedN1eB6JrteAdbxLpcbWDQvde\nMkuO1+M9h9Y7ERn3dDLGtg4EWkV2GivrhiDAPSvGtx+qT6ODev4sqkDUw2RGUhNRBeRi64hbpXWQ\nnRVRYm3utqE7F3lhZNgNUbbAES/Hca4yIUpEUiSaWmqppbYmW1ckyhQXxl/6DurAB0ZSXUREpicn\nRURksqLedwIyqjSxFvauzZq5dN129dq/dEL5sZmCet/PTR7X4+G1z+UUffSA2/TAEdZqOgv39SVV\n+SML4eXzqGsj7C72U3eU3CjUyg3ScjuMkN4/kBUBHtEHkZdV5bPjDY/Ek04NIxPfSSc7K1AaFIU4\nzSCp1tTJQIJquakRhe74REOS6G+HV2QFTaI3Ind653GelStv7sfUfsL4+ElEa7z8PM7KUjEZTRJJ\nLlaSro4qn6EPxXgB0kPb7sI4Uc+TLLRmHXjf6yF1RK3IAOb/49plaNq2+5CT7oSJ433EdfqIzGjg\n3fJZT4rPDjWNzLPgWFm6A6HRkE1WnmVMrUNeGmNexarOgV5piEDSFvRUPZMZpM+8D6syI4PKdxnf\nWZe+hevU3aVxWHeuEfsvvHsJNaX4At+6b6860QX3L7KVU6HGUiSaWmqppbYGW1ckGiGWrVnX+eHM\nUf2eKShS3DymSHV8HErzs+r6PPrSy/odXGixoCij2Kde9gDfq0BCFDFnCB+zPFgvJqoqOnj5lPJp\nY2OaldHXl1ShsnPG7ZxzKs1zFu0r6qzuG71MxvjxfHCQ9F6bGkQYn3bSCx2bVCEiUZGMiDQbrHsD\nDtNwksn+GOTrENEmudcwJMIkyknWSjfox6p91EHIC6/S2W9zyosRdZIrbluI3IYPnbxmkqK8cFs8\nR3n2EF5xVv/0HI1njNinBdyi4/mGJx9ATrxbgRc95Bix4ir4eqyiauBEa4j46A2S8aHkwQMguF7k\n9Ddyer3z8/oO11AFwUUdBq5CBNwm9RJYxYB15CMq3htdBTwjnH8eiv0bhqBPgFpSfKZcxVHpPgbv\nzfs0dcWYRYbxbAP5trog0e6Qzrng3kV7luFQHetf9uGum1t05Mra677FthSJppZaaqmtwdY3d56k\nF2bPSgmzIWb/7CblccZRQuRlIE8AWCkOKWfJ2jxnp1RpPkJlxNMlRSWnsF2QjbFhg6KSJioanj1z\nQkREhjepSlSGwX6L9DQZD5lEcHXWpwftFlANKa+zft5UjMTtkiQ05TnpdW4nNhONkB+LDNkZLzzN\nqKNHncLzifZthRqTb508TKKIOftEG0TCrcT5rAvEvGrydVkHvFuLXnfoiyIrxzGkryT2EwE7qGeU\nMWSs1X8SdZz6O4G05kYcmUMfkLWGqgUZcKEt4zVeECfqegbNZ/uBXGIgwqoisgoQWWw0X8FxYvBm\na3o+63e5JtsMXQXnyYqtvRjTvkDfyUpV39E2K4K58Co7yd8IEabDWOA240qRmcOceugVsBhpvan7\n8z7fYSzL8O7UsCorz1OxX8cvaiGGO9QwhyALpTQmvSFz6Wo1h3XJVqiUvxovfYpEU0sttdTWYOuK\nRHNZzN5ZeBBdRYYZ8C2MF3WRW93Gp4c4UVKE9aaeNwF1p1MKRmQOFRPbDZ1Vh8aUW924fTPa1evM\nQd07Qomoel1Rx549Se81ERFrH5kqqFRhoucUXOMPDz2n7Qypx7hQTBxuPllZkbkV9EJ3Kj0mPa9t\nQxqaFCg9jzxZh1TUdi2d0A5HavNB1EcFMvaT8ZiGomTHDb/oLeyN+EbBnhlF9KonEbRYnCw1NwNo\nFQQ+Mr0WcaL4BxG9a/CexNArGM4fFRGRqcYeERFpusqRetFiJOq2XZPlNVXVvgxAx6EILdsK6mkx\nFz00yl563gyQ6HCfItmAqwDG7gKNMzADixQZLOg/5sDLz6JSLTlHZjqxjr3hckn0G50C6qRy1aKb\nQanK9KxGtmwd1QiYLKoIhFR3AjeaA1LtR0VfAYc6OYsohDYVt5J8+ErtYo9f6/ntRboNa7v+UpYi\n0dRSSy21Ndi6ItH+vho+lReKA4oh6ux9bkIRpOMruqiAt8nDaz5xSquCMu+5jfjP2Qq9wLp9tEdv\nszCAGLgctBRRm4geyArq0PvwvHarRc3rEUGZTBxhfXi1VqgIlLXLjQoV4jeZLeIJa3nTK57kYGme\npS3JeEwfMX5UjRJTKx1oAaioCU9yJku1KEneBzY0DQfKnH8qBDFfG7dh0rGTSNw1SfBMRWLNpGR0\ngW1EDSHHyaXqFOJWTZK8GQHcAK/niMM4TdHVCRXCOvwqa9p3xjYIAqOE1YQ60/k5RW5N1KeqNaE4\nTzUng+6RzcV3EPdgZD8ZW4z9ZNu5OmAdsj4o3JdqmuXWxPVaeKd9ou0ouSrJYEg8IOYW/AMtE/Gh\n38vIhQ+H9JlmUWMp9hkTjHhWIOBCTr9XcP9cHTJ+1kQJ8FldpF0ORLiUhVbG1eWwFImmllpqHncZ\nSwAAD/BJREFUqa3B1hWJZh3Mcg4ykYT8i+bKn55XJHriLKo7Qn1oxxaN4zwxr8e1oZ7UQl50r88c\ndD0+D1WmVkvRyex5zYBiTSUq0jBW0O2ClIgqqlWqp0Ox3gAjZuwgfpSj6yQ5SxeqTUSeHbXvZDRA\nRzE+WfPI1GFH80RD9Jqb3PiYnlhJtMfJ2c5YIsKzM6Ts+jRELdQQMEgUvKLXyW1CuxgG9pPqWF3M\noDqMa8DceeqhcjysOFNHIhGHqwSsbgS58A7UiiylKZoZU1yj2Ur2IQ6YFSXJ83HvHIt2CK++l8Qn\nHNPQVBFIZm8ZvVHUiy+d099Ey4rT5MOk/GgO1UR9cJklIGlGYHiM54yoKgXulO/KoppCjGs1KUto\nhwQ+OFcn+Y78R7YUiaaWWmqprcHWFYlOz6pqE+vP0BO4YVwR4gi9xJgNA8To5cBLXbNzp4iI1Jkj\njv0B1cvprQay8VCjidkjpZJylhkg2UJOkaXhKhkHacWFso670aB0koiOqIPxpvZ+O4PH5j6Xm93t\nOjAmc4rtsIiR0QXVb4wmYCxhh9Nlrr5gezIzy5MkcuyMB9vRC7QQTZEBajHVOk2GE/obWQjYum/y\nbXx+bSJwojhTGcDGALHhYQ0ClSQnZlcsXfTvRSkvSRTeLaM7WpQd1uVAy3i5FRSVvKxmV0tYsGPh\nR2pLWIpEU0sttdTWYOur4gTeKAMeiCV+crmk2nYbfJMH73Mf4kSLqAvfBsfoAvlkgSRZNJsUYZSl\nMg61H8HtQQFfgHA2bNDMJaKPDuJEbj8Qpqm7nmHB9SRq8RHvSO+2b/FQ3eq40xYfx+2c+7DdVo43\nsCEZkErg1lGwl0T7C7ZY320ckuzP1cWLJXUCnJXkoDgLTlsl5rLr1F+8Odbnas9P2qLuXE2P6hVi\nKRJNLbXUUluDrSsSzVPHE8ixhbjO2O2oFIl0lMvFxMbp8UR2sYfYP3gqsz6RKDg/XK/ls46Omu8y\nQ4eKOERsF/Ye0xZ5eO3MGknex6UDbFcJnOgCmi5171bX3qXpxYpx4VqB6MqaX7Y/3bnVpXcsI5KU\n2gosRaKppZZaamuw9a07v0gocqXnrdasTJfLbc7SPFe3qpevHLsakDJ54rX2ZWXP6lJdZWn2eS0t\nWhEQKz276zt6NTzbq8tSJJpaaqmltgZbX+98nPxH11i1Szg/r8hWGKe5nHXiQ9fcoytsF4eUFw3H\nVXG/F+GdX2CrXaus+hnbEHTd4zJf6aukS28rQqKHDx+WN7/5zfLpT386sf1rX/ua7Nmzx3x/8skn\n5R3veIfcd9998tnPfvbS9jS11FJL7Sq0ZZFotVqVj3zkI3LXXXcltjcaDfmTP/kTGR0dNcd94hOf\nkCeeeEKCIJB3vvOd8pa3vEUGBgaWajZpFzmLm3jJ1Z2+wijIlfSj25HJ+Mz4cs/upqjSlUURV5hh\nXqHFXT4v13VWeXacXH1dLcjT7keKS5e3ZZFoJpORxx57TMbGxhLb//iP/1je8573mMDzp59+Wm6+\n+WYpFouSy+Xk9ttvlwMHDlyeXqeWWmqpXSW27B9R3/dNBhHt5ZdflkOHDsnb3/52s21qakqGhobM\n96GhITl37twF2179XB4veXYcxzrDO7LGKTTZvuM4q/KoO/hfl+6mdllNB93B/7vtv7RXW4ut7aV1\nnAvn33ft3wovu1z7/5FtVY6l3/7t35YPfvCDFzxmJamA/8+vPCwiIh/8P//v1XTjitn1N9y0qvN2\n774O//o/ltyfXWV/bMvf+I+XqKWLs9zyh4iISP6GL1zWfixlRAfXr+DYe65Z+CQu1VO5OBseGVpy\n+3/7yVuucE8uzj760M+vdxcuaFeifxf9R3RiYkJeeukl+ZVf+RUREZmcnJT7779ffumXfkmmpqbM\ncZOTk3LrrbdesK2P/M6j8se/9zH5yO//vyIi0mTVR9eq38LcdeiLjo/qC5fNIocdFR0dqDTlWK0z\ntDOWklU2mTtfr6j2ZBvCP2NjWoPphr03yzV7bpRDzz8rIiK1mqqDz6MffX192g4yrnoDzcBqedrf\ns0f/VURENgZfFBGRDUOzOF6HndqOdhVRmmNy3qknmszNj9oiuRv+UWrP/QRuC1DBpdo4xhEqS2GL\nmpZUOJJE+0YbExqWPT36ByWAfHpH2Z6qTVRxksT3AN3IZH3J3/iPUnteVyy2ihNVrIz6u1HdspTt\n8TyDHDLVssmaUZ3xckVivBPeHSIicqR5n4iI1B19Z2rQ++Q1X7u7IP96pGEUrFrQuI1RRYEVVyuo\nY8+3KcZPh++Q39Z346ZtqgRWzCXr27dwvMcqm9AvaKO9k+f1nZrE5+nJkrzvp18jj/3DD3QsoTzm\nWAparM7AZ1Se0/PLKHLgQtksi+qfe7Zq5dwBVHuIUc2zghpP1Xmt7lCu6OepKX1nZyv6LOaaHN9A\nPvrQz8tDH/0ruVrtUvbvQn+ML/qP6IYNG+Sf/umfzPd7771XPv3pT0u9XpcPfvCDUi6XxfM8OXDg\ngDzyyCOr63FqqaWW2o+ILftH9ODBg/Loo4/KqVOnxPd9eeqpp+TjH//4Iq97LpeThx56SB544AFx\nHEcefPBBUz9mpbZSzuWS04tO0s+8XPu2utLyx600rnRl7V5ue2VQX8xYWvjt4m2lY7FWFafV5rAv\nutwy53V7ty4y5T61BbbsH9G9e/fK448/3nX/l7/8ZfPv/fv3y/79+y9Nz1JLLbXUfgRsnXPn+Y9l\nsV+3M1d4/sXaJWqvixr65bNLCxtWi4jXfr9rSYFahZ7oxXTlEtvFxmVedt0FU+8rtZVamjufWmqp\npbYGW+fc+VUinTWqkC9/gbWd3kmDTnq9Lz2Xu9wBK1WhvNh2fxTMyli6YnILF75Q3AXpLf6+LCZd\nYc+s66/4/FfES3BFLEWiqaWWWmprsPVFoousi3f6CvNSa8+dR7s2J3qFc9vXza4KinppTnR5SnGt\nCG+VR6y1xFKX5hZt6VJ9odvhl7hbr0hLkWhqqaWW2hpsfb3zFl3VqaPe5Xhz3sV68y+6ZxfuyEqN\nSDR6hczjq6RYL9ouSfuXSsVphbWJ1oy+L42g6HKrqkXVJC664VQEwrYUiaaWWmqprcGuMk70SltS\n97ObJ9eOzVuxsr3Js/6PZstxxVeuD6bG0mV6CIuRHj9XGG95pZXs/+O9jJfdUiSaWmqppbYGuzqq\nfS47Oybn6W68zlpzzu12l2tv2eutNXF73exHOYbQzlham10x+tfpsn05u8h3frlc++XjU1OzLUWi\nqaWWWmprsKuq2mfX+XeN1SQvvgbTpYGOzpWqsbReZnPJV5Vd7hpLy1zWsovH9pfIPX+JzbkaH/U6\n2//fzr2ERLXHARz/io/EFz5wBKMkXOTGtCjItLcpIblQzEGO4SKihyVEmMaQQZApFoUtjLKNFmUa\nZRQlEgMuJkEEe4CE1aI0LV9pk2Oo/7u4dC51597NXP2fC7/P7vzPWXz5H86PM4s58iYqhBA+8FO6\nP14phBD/Y/ImKoQQPpAhKoQQPpAhKoQQPpAhKoQQPpAhKoQQPpAhKoQQPtA6RM+dO0dhYSF2u50X\nL17oTDHV1tZSWFhIfn4+HR0dfPr0ieLiYoqKiigrK+PHjx9a+zweD5mZmdy7d89ybQDt7e3k5uaS\nl5eH0+m0TKPb7aa0tJTi4mLsdjtdXV309/djt9ux2+1UVVVp6QJ48+YNmZmZNDc3A/zjnrW3t5Of\nn09BQQF3797V2ldSUoJhGJSUlPDlyxdtfb+3/dTV1cXq1avN40VtU5p0d3erAwcOKKWUGhgYUHv3\n7tWVYnK5XGr//v1KKaXGx8fV1q1bVUVFhXr8+LFSSqkLFy6omzdv6kxUFy9eVHl5eaqtrc1ybePj\n4yorK0tNT0+rkZER5XA4LNPY1NSk6urqlFJKDQ8Pq+zsbGUYhurr61NKKXX8+HHldDqXvMvtdivD\nMJTD4VBNTU1KKeV1z9xut8rKylJTU1NqZmZG5eTkqImJCS195eXl6tGjR0oppZqbm1VNTY2WPm9t\nSinl8XiUYRgqPT3dvG4x27S9ibpcLjIzMwFITEzk69evfPv2TVcOABs2bODy5csAREREMDMzQ3d3\nNzt37gRg+/btuFwubX1v375lYGCAbdu2AViqDf68p2lpaYSFhWGz2Th79qxlGqOiopicnARgamqK\nyMhIBgcHWbNmjda2oKAgrl27hs1mM9e87VlfXx/JycmEh4cTHBzMunXr6O3t1dJXVVVFdnY28Ne+\n6ujz1gbQ0NBAUVERQUFBAIvepm2Ijo6OEhUVZR5HR0ebPwt08ff3JyQkBIDW1la2bNnCzMyMeTNi\nYmK0NtbU1FBRUWEeW6kN4OPHj3g8Hg4ePEhRUREul8syjTk5OQwNDbFr1y4Mw6C8vJyIiAjzvK62\ngIAAgoODf1nztmejo6NER0eb1yzV8+KtLyQkBH9/f+bn57l16xZ79uzR0uet7f379/T397N7925z\nbbHbLPNRZmWhf592dnbS2trKjRs3yMrKMtd1Nt6/f5/U1FRWrFjh9bxV9m9ycpIrV64wNDTEvn37\nfunS2fjgwQPi4+NpbGykv7+fI0eOEB4ebom2f/NPXbp75+fnKS8vZ+PGjaSlpfHw4cNfzuvqq66u\nxuFw/Os1/3WbtiFqs9kYHR01jz9//kxsbKyuHFNXVxcNDQ1cv36d8PBwQkJC8Hg8BAcHMzIy8ref\nDkvF6XTy4cMHnE4nw8PDBAUFWabtp5iYGNauXUtAQAArV64kNDQUf39/SzT29vaSkZEBQFJSErOz\ns8zNzZnnrbB/P3m7r96el9TUVG2NlZWVJCQkUFpaCnh/npe6b2RkhHfv3nHixAmzwTAMjh49uqht\n2n7Op6en8/TpUwBev36NzWYjLCxMVw4A09PT1NbWcvXqVSIjIwHYtGmT2dnR0cHmzZu1tF26dIm2\ntjZaWlooKCjg8OHDlmn7KSMjg+fPn7OwsMDExATfv3+3TGNCQgJ9fX0ADA4OEhoaSmJiIj09Pdrb\nfudtz1JSUnj58iVTU1O43W56e3tZv369lr729nYCAwM5duyYuWaFvri4ODo7O2lpaaGlpQWbzUZz\nc/Oit2n9ilNdXR09PT34+flRVVVFUlKSrhQA7ty5Q319PatWrTLXzp8/j8PhYHZ2lvj4eKqrqwkM\nDNRYCfX19SxfvpyMjAxOnjxpqbbbt2/T2toKwKFDh0hOTrZEo9vt5tSpU4yNjTE3N0dZWRmxsbGc\nPn2ahYUFUlJSqKysXPKuV69eUVNTw+DgIAEBAcTFxVFXV0dFRcXf9uzJkyc0Njbi5+eHYRjk5uZq\n6RsbG2PZsmXmS09iYiJnzpxZ8j5vbfX19eYL0I4dO3j27BnAorbJp/CEEMIH8o8lIYTwgQxRIYTw\ngQxRIYTwgQxRIYTwgQxRIYTwgQxRIYTwgQxRIYTwgQxRIYTwwR94YVZIuwc6EQAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWm4ZFd1JbhjHt6cL9/LSUopJSEJ\nTQgQdkkghEoYLBvb2C4jOc3QXa5uV5nGdhkX+j4VGGzqo20wKjD4w/CB6e6qdiG3MMK0BwmMAWNS\nYhZYZpBSUmrIOfPN8WKO/rHXOjfOjjgvIt/L1Mukz/6RN2/Eveeee+59cdZZe++1U51OpyPRokWL\nFm1dlt7sDkSLFi3auWzxRzRatGjRNmDxRzRatGjRNmDxRzRatGjRNmDxRzRatGjRNmDxRzRatGjR\nNmDZ093gu971LnnooYcklUrJnXfeKddcc83pvkS0aNGinTV2Wn9Ev/rVr8qBAwfk7rvvlv3798ud\nd94pd9999+m8RLRo0aKdVXZal/P79u2Tl7/85SIicvHFF8vCwoIsLy+fzktEixYt2lllpxWJHj9+\nXK688kq3v2XLFjl27JiMjo72Pf4F1z1f/uLu/0dec9sv4RObPNU/mSqVSvXd2u9DNuj7bvvz/363\n7H3tbUMfv9b1MpmMt2+TxZL70bktnc6Yz3u3H/3Ix+R/+bV/1/d7Wjqd7vs597PZrLeltVqtvu2w\n37b//ZLfPvD+D8ob3/TrIiLSbDZFRKTRaIiISL1eFxGRdrvtnZPP50VEZHp6WkREprbMYKv7xWLR\n9E+vOzo64q5h+8i+53I5b//fvv4N8n/89//mxoJt2zHjs+OWfeb1OHapVMa7F57PvrI/Y2Nj3lhw\ny+NzuZz8zK0/KX993/1ee7y+fRbJs9T7y2byXv9436F3j8bj+QxC70g6nZYXveAa+do3v+Odb8fN\nbjkOvA7Hkf3h53w3uG/Hj9cJPe9WqyU/89OvlE/e+1fY1/Hl+FWrVe/6NF6HW/b7zb/5G33HS0Qk\ndTrTPt/2trfJTTfd5NDoL//yL8u73vUu2bNnT9/jH93/qFxy8SWn6/LRokWL9qzbaUWis7Ozcvz4\ncbd/9OhRmZmZCR5/2+2vkW987Zvywhe9QETCs+MghBpCWKcDoT647+vy49dft+Z5g4yzJmdBmkUR\nyXZtBNo923/u/r+Xn3jly/vexyDEzv5YlGLRgT3fzt6h59bpdOQzn/5/5adedauIJKihVqt5+7Y/\nXLlMb9V3Z3Jqq4iITE1NedfntlBQ1JTNZnrQM/vGe7RI7j/9x9+W977/fe5zIlGeZxEozSKjXC6P\nff3ejhW3RHi8TqVS8doh0stkMvLa22+T//vuv/DaC61m3LPMFrx+0NhuaPXDZ8Fx6Uac3fvdq5WX\n3fiv5Av/+IDXTgiJ0oi47fhZhGqRKMeP7dtx7Ydo/6fX3S5/+tGPef22qyGLYO31+N781v/2RgnZ\naeVEX/ziF8t9990nIiIPP/ywzM7OBpfy0aJFi/ajYKcVib7gBS+QK6+8Um6//XZJpVLy9re/fc3j\nQ9yanb16gQ6/75jv/fZOFaGebkErOzu7XgavszaCPFUkPeh+Q1xp6Hmc6vjweM7qRBsWydKIpsrl\nsoiIFIvcFtfsH9FCq9XsOYb3OAghsY3w6qA/skwQXt9b6ulroaBIkUhr0PVotv/2vIQ/1+M4Fpbn\nDvXPIlp7XfsOWxv0btpnb8cl9I6E3rlB7TRbPsdMsxxqqL3Q6rGfnfY40d/5nd853U1GixYt2llr\np/1H9HTYIGSaHGc/sQi1v/d4EGIbhMwG9SvU7qDviSKGbW9QuyELzbIhhEgbxhvf/blFopZvorEf\npVJJt0SipbL3uUUL+TzRYxi1WA6x39hlMhl3XAjB2nuxCNByoXYMrLc7xAdbxDfoWbtnmc56/Qv1\n37bLfthxsueHkOiwq6YQcrTI03Kl9nmE+PhebrPu3VcIgdrnarnpYSJ5YtpntGjRom3Azkokau1U\nkWByuP1+fQg19P2p9+vc4kJDKGaQWY/rqXOhI9iuzYUS3XVzobbvg7hQEeVDTzcXau+VXKj1Ckcu\ntD8XGnpXQn4UHt8AAg3143RyobSIRKNFixZtA7apSHRY7/yg862dboRqeTB7nRCis4gsjDQjF6rb\njXOhIU7LbrvHIJPJPGtcKJEoLYT4huVC2Y//v3ChIQ50EBc6LJdq3xtGUaxlEYlGixYt2gbsrORE\n1+sNX+/5wyLUcK77+rz7Nr41hHRD9iPHhZaGiwslErXZSd19H8SFWs7wVLnQkJ0qFxp6JsNyoWlk\ntzXPMi40lElkvz9TXCj7N4gLtQjejoddOfSziESjRYsWbQN2TnGi6+VOQ+cPvh7/Z+ea/gh1EHoI\ntU9uz11tAJ81bP9te5vFhdrzbJ46udCCyVAKcaFr9W9YLrQbsXU6naA60qlyobSzlQslMjvTXOiw\nCPD0caG+SlNoFTQsF2pz/NeyiESjRYsWbQN2ViLRkJ2uTKJQP0Lt9F7XHcFPvHYGI8i141FDsWu0\nQSjB7j9bXOiw+c+WCy0Yb7zlI2lrcaHs/6lyoTzmdHGhvFfLhXZfi33t17/BXCiQ4jq5UKsmZa97\nurjQ0N9CiC/fOBfqj9OgHPlBXOgwXnlaRKLRokWLtgE7p5BoyM40Qh2ELAdlQNlZb9huhPg2216Y\nv3t2uVCrCTmICy2XmZnkc6G9sZaDuVARRWPDcqHdbXQj2I1yoVab1XrlN5ojn15njvyzzYXad+xH\nkQulRSQaLVq0aBuwTUWidjY7U8iUdqY4VHt6qL12m+cRqepsaRWEkuN9tBFq36KnEPK0s7xFI886\nF1rsz4VaFDAMF8rtqcaF8v+niwslmt4oFxo6L3KhjPzwuVD23+q02vNOlQsd5rchItFo0aJF24Cd\nVZzosFzjsO0OmwG0foTan38Kx3P2n7NC3vgQTzQsmrH8m+WhQnnOIb6PFuJCQ7GBPXGhgQyljXCh\n7Ld9BrZGUL9MnXQ6fdZxofbZ/6hzoXYlMIgLbRgudKM58uvhQmkRiUaLFi3aBmyTc+fb3rbT4ey2\nNoJcL0IN2SCEGuJAh+VCRdZGqL395+yse+22rwJlbRBCtYgxxBeF+jWIgx0WiYb0Qk8HF8p2bF+J\nEGn9kFQqlTpr4kJD552rXOiwOfIhJGrboTd+vVyoXaXRQlyorUDQzyISjRYtWrQN2Fmm4tQxW+wZ\nhDosojtTCJXIMDSb9yK4/tknvdcJccT9kWqI77E2rKp3qF+h62yUC6VX/nRwodwO4kL7PbNOp7Nh\nLpTtVatV77j1cqHJeWc3FxpCloNWKevnQjemFxrirkOrnajiFC1atGhn2M6qOFFaiCNMEJhFiMMh\n1PUi02G91L3fo3epYb3/FnGFju8f0xjKuw555UOztz0/pA0Ziv2zvFOojvzp5EK7tyJhLrQfB9np\ndPp67fvZs8aFps4NLnSjeqFnOxca40SjRYsW7QzbWcaJqg3mPEMc4ZlBqPa66fTa7dKSWVBwXn/u\nNEGSMqC/fru235YnG+RZDN3/IERqc+NDPBdRkNULPRNcKLfDcqHdbXejo7OGC834XOig7LJBXGiI\nE7V2tnKhG62ddKpcKNsfhPxFIhKNFi1atA3ZpiLREJcWzvjZHISazJ5sv7/Xutcbz3777Vo0QWV7\nTqp2HBIex5+9B6EFWigTadAsbj8PoQqr3kSekNxnvlD09kPXJ1p4NrjQ7mt3Op1njQsNPasQFzps\n3OogLjSEjK2dbi409KxPlQvtbFJc6DD15yMSjRYtWrQN2KYi0bXQQffnZx6hhuI2ud+fIxxkoVx5\nW4eeSNRyp73X6z/rWh6QxlnV8mSDMpQsErQcK6/Hffs5EWeBCLSkGUpEieQPeXy5TBUn/77s/Yd4\nvm70NywXasfgVLlQ9uVUudAQL+76+SPGhYZikQdxoKeLCz3VHHnLhQ7ztx6RaLRo0aJtwDYViYb4\ni0Hc3elHqJYDHBwbtla7IQQa4m9oiVpT/35Rf9QeH0KQFiGG4j4HoSS2S75OzOfcEqVxFi9Bud7y\nhzyex9Xrtb73a9HLIF3Vbj50EBfa/SzW4r1CXGiIU1svF5oJ1JEfxMmdq1xoKMstQaBnBxc6qAqE\nyAZ+RN/97nfLN77xDWk2m/Jrv/ZrcvXVV8tb3vIWabVaMjMzI+95z3t6Hmi0aNGi/ajZun5EH3jg\nAXnkkUfk7rvvlrm5Ofn5n/95uf7662Xv3r1y6623yl133SX33HOP7N27d812QtzfIATy7CFUy5mm\nzPfWhmNHeuNDLd/Vn6sNIVeLsixasOcNQgE0+1yymJ2dVmYL/XceZd3mMHmOjI6JSC96SzhhXtdX\n9udx/WrE9+tXNyd8qlyoHpMZyIWyD2eMC01HLrT7vGbr9MSF0tbLhZ6xuvMvetGL5P3vf7+IiIyP\nj8vq6qo8+OCDcsstt4iIyM033yz79u1bT9PRokWLdk7ZupBoJpNx+dD33HOPvPSlL5Uvf/nLbvk+\nPT0tx44dG7q9QVkcIcR5phBqMun7+72ooNN1lDho1Rs32v86g9BJiD+jherEhGbPEG9kZ/FQLSbb\nbg9qwrZYKKNfPrpi+0Rx9MqzXX5uEbq9bgipttvtobnQQRyhPX69tZMGxoWSC037iOtcjwsdhJwH\ncqHmOYW4UDsOlgu1Xnlr9t2yXOgwnGiqM2y8Th/73Oc+Jx/+8Iflz/7sz+QVr3iFQ58HDhyQO+64\nQz7xiU+sef6jjz4il1zynPVePlq0aNE23dbtWPrHf/xH+dM//VP56Ec/KmNjY1Iul6VarUqxWJQj\nR47I7OzswDZ+/hd/Tr770L/INddeOdQ1h+XwQoh20PH9kOh3vv1ded7zrzHfG8RovcoBTnUQsqQN\nq/lYKpXk85/7B3nFT/6E169QzvwwKt39jNwnZ2miAs7uTq1pRL3xF158qYiITExMyPv+6D3y22+5\nQ0REVldXRUSkBc9zuaToLgPURe7UojG2b9GFy4gCCutGY/Yci6R47L99/RvkY//n/xWMCOH5I7i3\nSqXS9/tQPr/ts313ctkCeux/n8vl5FW3vlw+8zeflW6ziI779vo2UsJaCEHbd9LGAnePzytuean8\n9d/9vYj08t22f7QQZ+pWI7UK+uWvICwStefZCJFMJiNv+g//Xt73wT8RkeS52fvn6ofjZGOg+Y7/\nl3e8XUK2Lk50aWlJ3v3ud8uHP/xhmZycFBGRG264Qe677z4REbn//vvlxhtvXE/T0aJFi3ZO2bqQ\n6N/8zd/I3Nyc/NZv/Zb77A/+4A/krW99q9x9992yc+dOefWrXz2wnVDGyyAeye4Pir8cnkPldYkA\n+3soXT+cS9fnQFPSH9n2ItS1LcTjWYRmY90GeaRDURCWH0qQthpnZaIC+7zGxidEJNEPJdrjedzm\nMkAZLv4U/cf3jmcLZCxZNSl+3p0Db6ttWn1I8rXW7NhYLjQUOfJscaG0s00vdMNcaIvjSz5cEeVG\nuVAbF0oblgs9Y3Git912m9x22209n3/84x9fT3PRokWLds7aWVV3PoiEBnjXTxdCtS62UAxacr21\nM2zscYlKk/S1wVEDPiILxYdaFBLSbKRZFSY3LlSNGsC1Eg2NTUyJSIJELWIUp1blj7vrv+lHC9s8\nuVKgwXQmHFfaE29oVju0bDZBcI1GowfJ8J64X6vVvGtuNC40c4biQgd55c90XOigyI9gXGigjvwg\nBGpz5Gmh52699aG40BBy7mcxdz5atGjRNmBnZe68/d6aRaiDZl27H0aobGftKIDe7/tevmu2dD3w\n+hGK+wyZRRuDvPGDUIA9zl2/Y/vff/Znf0ojoyKSoDeLVojiQIW6/ruc/B59VYP4+TnfE8aPMvYP\nHtlOp9ODTkOIjn2y5/F73gvbsXxz5EKfHS50WD7fRicM4kJDPPug36R+FpFotGjRom3ANpcTNVyY\nnCJfQ7OIZr0I1fWL3nSDwBIOD7OZOT+EdCVF/kr6fj9InYhmY9ksJ2o/t7zSIJ4qub7fD6tLau83\nDX6RcZ42M4lxtIzhsyiHn9v8aMuR2+dqUUUjk0l4VeZKm3hOvjqdToJEa7Vaz9iurKyISC+iIQIM\nIa+NcqHWIhcqfc/jdr1caK5r9dLvfobNbBOJSDRatGjRNmRnRd15Z3bWssedIkIN6ZRaDq4XmQqO\n4yxvEKbpX9h43YEH+u3bVgzasJlDId6oV0F/ENfLXg/HTVOtqZDT1yibYZysGrNEGo06vve98Rad\nWFRhUYe9X4sm6vW6pA1qdtdw74IfRyqiqMX2wWbgWB7a9nGQ7uewXGjomdh7Ttr90eJCGyZW2J53\nprlQ+zfD1dVaFpFotGjRom3Azoq686FZsme2WydCDc2qoePCHlhez8/kYY9cRhK925w1Oz5nSwuh\nh578alPjPMRLWa83EWWn7fcvhCLSJn87hCbcLF1UFaZCQREpM4/qtVUMAPgpoItagP8LrShCvJY9\nrhu9EJlYb7rlzbv7UK9VHaoW0Xuy8YN2a3UD7CrHPpOkhlOn7/HWLKILvZObrRd6urnQEAI9U1xo\nCIHbemFrWUSi0aJFi7YBO6sylmih2TJ43joRasjs7NRskicxSvzmPH5Pnsf2K1R1M+QJtPyN5UIt\nSunJXApwm+667DcRqPSfne3sTwTKWbpUYrVObYee7RDfZM3yfSElIMuNWqWiVqsVjD21fenmFjvt\nlrTA27LeUxH3SG+8jVAI8behHP16jUhIvOsPyogZxIUO4mLPNi6UCl5nCxcaetfIhUZONFq0aNHO\nsJ1d3nnYIC/1uhFqIMsklPOezK7kfdZGDQkiwvGu3/yPbixfFsoIIgqyvJ5FRTSHgsjJBpClHd9M\njrGLmJW5bfbXMiB/aNER40Lt8aEoieR5EWFS2d5HDUQpFhXY8Wi32z114UP1w7u9861WqwvR6Oel\nUtk73yIta5aDdWPT8cfCIiJaCP3b+M+NcqHWBnGhg7anyoU2TB15y7HSTjcXat+DYbnQXG7wT2RE\notGiRYu2ATsnvPOh/UGZR/Y8xgpaPNnLbfrQMZSpQ3P8CtFIqj9qsN7ytqkjb69j9UOZ7z2I96MS\nvb1/u09k3gYSZHZPHbO345+IhtAP9seivpAH2UYXWGWkVovjahBxy+eiHVrp+OPVL9qCyITomH0g\nf9uNfNrttjS5ejDcnEU49l4GrZqSDClf+9R690Mxy/Z+bDRAyELfW355WC40dNxGuVC+A2eaC+2u\nw9XvvqxmAiNOIhKNFi1atDNsZwUnOoijtBbyENp27X7o+LT93rU/3PV6+if9Z3XXL2RCpTr+dS3v\nk0n7vJHlf8jbuHzjQCaQRVMOOab8+7Pq7Q5Rpskv5rzr2tpGoUwqy40mqCqApAPxui7rCB7vFmIN\nyf3mspkggrH32BOzm0k8/CIJgiUPG8p6s7nejuvEK8DMnCRyYzi+e1Cssx2zUE79RrnQ9caF2vbO\nVi7UvqNcqVg9h7UsItFo0aJF24CdFZyotUEIdL0IdRCS7EWsREbwyLqEJP84V1OJDaX73wc5SHKm\ngzKCOBs2akB24O2ymf6z6yAulMZMqo65fqh2kuUy2a/Eg4l+IsaSmgMJr9Q/JpLHhVCeU1ZKUeeU\nCJW7uG9mZKXFhSZwNWA5tH7IJpXOBPP0Q9lVTiPVjEkSo8wTgBSz/rO3qNy+uzYGNjRGIcTWw8ef\nIS50cDuMnGB8rb4T5woXygq1a1lEotGiRYu2AdtUJGpnyWGRorVhEeqgWTXo8bTHW38+4zIDedHO\ngwnkRC7U9sd6ventJ79D1ELeptXALO8QKKMQ1o6FSzGjqt3fs5r0nzybzxexhlLiaYb6e1fspY6T\nWsYhTrTnqqj2XzlYTpTqTy66ocPML/KSimrq9bZD+3kgCvts7RhrO1lpmmwyjnmoKqTdunsOxJM6\npArYwmKjHItOy79nmt23XCqN12uYyIremOf+z9r+jTzbXKg9b71cqFXHGpYLtauqUCx2P4tINFq0\naNE2YGcFErWxcnb2GGSDPJkhHsnaIC61B6kGvPc9Op48cAAaoBVyfr12O+s6Hg37jPN0PBUzlZy6\nlHjfu31srcKNve9Q9VDyWqWir2hPS6IAOP5+XrKrg5Ty41ZpCWfqeoTr+0g0XwDn2hbpuJx131tt\nIwqIsvXYlItRLQJtUwvVongbrxna2lje5eVlEUlQPCMdbIQEbVDkSmgVZ99B265FcvaZbzQuNMSF\nctxDXGjPainwHBtmtRPqt61AMJgL1XfScqHDROREJBotWrRoG7CzMk40hByHjdcc5DkcFEcayqXv\nnXVlzf5Yfsrdj7uwbjjbFszsGVIOSpBof17K3jdz4e39Wl6IWyLEfN5Hb7ZGkqtjlNX+E73x+BAv\nx1m+RzUeufpZZomQuxW/RpX1iAvjUjtpp5pkuU8iUSLB7mdWKhaT+EwhktHzVhEv6iIjsn48aagq\nKO+VPDKN368sV3Avda9/Vh/A1n4KKX3Zd4wWyrzieTYLrufdMYjanh9Cos3TxIVa5GuR6OniQvm8\n7d/cMKvhiESjRYsWbQN2ViJRa4NmwdCsOCi3ftjzbJ40VZrsbGcRq72/IDLGNh/gQnty9XndTn/v\newiR2utalGFjH61HmyiJxzeAvk5UVvrep607z/NDvJbzxKKbrSbjcP37JVfqamCRX+ykHfLkNuG6\n+qs7iSg6tfGf1BFwcacpfz9jlOptppPNsU/iSBkvilvFvRLJsl9ESKF3jBbyHtt3MZQRZd81i8Ts\nu8zxDHmvyYW21smF0uw7OCgu1HKhw8eFrs2FRiQaLVq0aGfYzgrvvEV6w+aoD0KWg5BqyAZ529OM\nd8z0j7ULxT2GEG8hX/CuE/KgOhVuzPJt078QDzQoJtD2j9EBguvksj4qIBe6CgRKs3XniXJCPJZF\nbaHa6lbxyKE6vL6ZDD3MqR6vrkWeRCDdtXPK5XKiSUqukDn2VPJiVhQjITJMS9ONRXg2vjGJVPCV\n1YmwuLXxqURwtj2a9daHFOh7suACalWhfVsFld/bKgsd8Vc35zoXGr3z0aJFi3aGbXORKKZxV2WS\nPNEAhDkowyk0O9vvaYO4TId43Wn9Y9looXzgkBEd2VkwhNCb5n5CnteQUk+oXzmTZ+wUgui1rypf\nRC+8zfMO5Zu77BWjoBTK/7axmDb3PlGb0vbLZe33+PiYQ5LkS20Oej8l+Fwu11UhVbx75r7rI7PD\n8MhDGU0WVTcb1Jr1OVv77HnvjCslWg/FPYZy422/rNpTSB+BxvHiWNsoBFubyMbwWg4ypIa0Xi7U\nvjNnigs94xlL1WpVXv7yl8tf/uVfyqFDh+R1r3ud7N27V37zN38zePPRokWL9qNkG0KiH/rQh2Ri\nYkJERP74j/9Y9u7dK7feeqvcddddcs8998jevXvXPL/He27VkGDDItRQNscws8kwluR88/oMFOXn\n/RFsyCNpEZZFGfb7luFpTjWvOXQdh1LgOW6KogabWWR5MMuv8XiLemzcq9XotBbyQNuVAquwMvun\n3W7LyMiIdy7jNDNGobybY6tWq0lefssfCxe72/MMOZbi9S2UfceY3kbTV7rKZv2cbYuALBdIjpRm\nr+O0aM3qyCJdWkjngX+E9p2ydeIdF5z2Vwk2/pTW806beNthuVAbzXCmuNAzikT3798vjz76qLzs\nZS8TEZEHH3xQbrnlFhERufnmm2Xfvn3rbTpatGjRzhlbNxL9wz/8Q3nb294m9957r4gop8DZZHp6\nWo4dOzawDcvPBL3YgxCq41T7I62QDaseZa2Xo3XfeO0m+zxPtxaJhvgX6/GlV35YpNlu0ovPGEff\n2+3QheGOQ1qWlqKx0QMhhG3RQAhdDKvSlfB3uiVvWK1WZWpqyut76Ml2rw46nY6L+8xiW2spkmLl\nVH7O9jK5fE873X2zHGMSYUCUDt0I1JfK5hQxlwpFfO9HE9h66TTLTdpnZHPjiRDtmPZ45TtWtwHH\ntYg4oTDW5LvUX3GMxuvZbDUbR2uRbKifp8qF9sYND8eFDhMnmuqc6i+IiNx7771y8OBB+fVf/3X5\nwAc+ILt27ZL3vOc9Dn0eOHBA7rjjDvnEJz6xZjv79z8qF198yalePlq0aNHOGlsXEv3CF74gTz31\nlHzhC1+Qw4cPSz6fl3K5LNVqVYrFohw5ckRmZ2cHtvMre2+TBx78hvz4j71ARAbHL4Z+7+3sRO6Q\nCCzk3aeFrisisv/RA3LJcy5csx+D1KHsLJoCgsrn/Txpy/M4NIPutvv0c/8jj8kll17s30ez/2xM\nczn9zPhJ+zGVnK3Hx8dFJOEVLTK2WSx2KyLyyU9+Sn7pl37Ruy9riW6pePdhUVQSg5nztrTx8XHZ\nuXMn2gQHVob2akB16D/82r+XD33kI66OFK+xtLCgxxPhAe12yB0alG5z6jkGREo0jrH9nGNMTjeT\nycirfvKV8ref/XvdT5P7805z74zNCLJxnoN0KBLOVNtbrVa8dmxNqVarLXe8+T/Ku+/6r975oXEO\nfW6Re0gvwkaAhFSzupHw//7O35f//PZ3iEjyLo+N6fjaWOUQoud4vf0/v1VCtq4f0fe9733u/0Si\n3/rWt+S+++6Tn/u5n5P7779fbrzxxvU0HS1atGjnlJ22ONE3velNcscdd8jdd98tO3fulFe/+tUD\nz+FsbOughDjS0CxKBMMYNSq7WwX6HlUm059BtcStDYovDWUuhbjQUDwlud/Q9Wih9qxHtesO9Dh/\n13HLmayv8m49tKH6P4PuP0FFHW+bxAiKd93kPtkuuV29n+6qo4k3XLxzLR/bvWpYqVScHoLNsnJj\nx3shYnFKV378ZqiyKY0I1eoRWETFz4tFX6/ArWqcEn7/+FAeT87PcpG0Hn1Q6Z+51BOrjM8tArbj\nYBFxaFVk74/n2edhVz+nzoXmvPEYxIUO81uw4R/RN73pTe7/H//4xzfaXLRo0aKdU7apGUu5Embj\nEnKuWz4/MyiDp93GLI+YvkybsXHkX7Dbg9x8bz8xiat3M2SG1CDPnUUl5LVCsXA9nld69xlTmPZj\n/9g+eR13Py1/Ng6hFCL2NJXPFe/CAAAgAElEQVTl0UC+BP3QPLQ5m0B+rG1kYhEt12mvY2d1ano2\n3f2vnW9ttT5z4JJLJV8btDuG0lYSZR85VrVa4sVeXa32IC6Lvi0yYt/IZXJLZOqeiUFEdqzsGFk1\nqbpBvNYyWT2+WAJniCEgALa6BPZZJBwiMpHa/VWcQvoMIaTZkxEl5l0MxE73aOaav0XeD7PmaPY5\nWaRPb/ypxoVGFado0aJFO8O2qUi0VEQecRH8CRFniwgIXGnL8hV+/GMak0U6TQ9p2juPnFuI87RZ\nJ4l3v3+c6SBvP61HRcnwV3YWt3wekV8K3Wghdo9xnekM67KTJ/PbtSjEqSylfE6RV8zgNopEPVwZ\ntAOeVhyfpspTu3+etM2pXwGKaAGdUBVqbHzMO295aRn9ZL6274lu1rUfY2MTaKftuK5SWlHq3Nyc\nNxbsS2U1Qa2rq6s9fbaZR0RsbN/WB7NxnNarTfRtazfRbDwokW0oVz6UrZbNYbWC1UW7g+M7jGTo\nYByMMhaqGIR0P2nDRrY4RMfMLtPPlDlPMr6mrb2+fYdCehiWl09WID4nHNJbHaTB288iEo0WLVq0\nDdimItFxzM7jmHUb5J3opXbcqB6fAcKUNmdjwfdts+UsxdlGvK07rtmf/2C75AyZT83ZtCMWyfaf\nrRJ+yK/fvlZcqoh01afX/bRLdSK6oKIQctrrfgZQKLqBs/LyqvJ1RJ459G8MHGMOmpc1tst2GAXR\nAD9VBGJFQ3V0OAd9z0yqfx45n6uQ46UnGShkenpaRESqRJwVvd8a+S68BlmsSNjP+blFyRT0HqfB\ngWVMtlUd6Ht5JdFCXVlZ6cnWsmYRi/UihzhDGq9vz1tAPCqvSwRK5Es1J37O3O9Q7aPQqoiH5fJ4\nF7HPVUDDIHEbeWHvI5TR07NKa/v7Qe83Ls/Vn2vXxZFmvOtbpGm540R1St+hWq3qtWuz6mjWjzCM\nkFJEotGiRYu2AdtUJLp1UjmwqbFREUkQBWfFOpEpsymIApqIqWtz689evWpH/tZ5xVP2e/HOC5mb\nm4fUNXUKQT0eUd8D6VAF99ks415NtIHLZAqhAXLM4L2qRlkny/xtHD9eLKE9P9m/ZRA4n0MbkzSj\nDvJApuRcm4iSqHeAEtLIZCI33PLRz8qq8oXFCipfFv1YyRpQRQoe6VwZCvdZ7ddKdUmy8/rd5IRm\nqORYRx5c5sL8koiILK8su+suLS31cGS2JpPVo7TIynJ23FqVoSTjhqpCjAPFGKBf5Abn5+dFpLcK\ngK3FZDnZUIRL8q5hDKFmxNWNRdo0GyM8MJa77a+mBq3WGBXQbJqYZFPpNUlr8+NQQ3Gm5EKtXoPd\nt8+L33Pc17KIRKNFixZtA7apSHSkrLPw1ITms5KrJCKt1qDo0vBj9JJaQ0ADTR+pulkRs2uzxVmO\nsyxRRP9+BVWFUj3/8Y7r5Vf83HebOWTjX4n8sjjP6ZeSS7Xq6kH+yyjLc1zIKXb8/oyWka9NPVHE\nbTIKINPxM5tS4DozRKwNoBhED6SAbsihZrPQDzXKSh1AbRd9AW87vfeT6Be5c3KhfJ4ICpBcAeiv\nk5LlReUYjx89qm1smcK9gg9eXsI1Vt34VKt1F0cY8oYnOpT9VYMsEgshNps5ReRlOT5GoLC/Nj7V\n9sdeLxQPGop1HlSNwSqVhY53fwtts4oZEGNNPdKQWlWyquO+X/2A2gesNlqv+8jf3j+3HD8bfWFX\niWtZRKLRokWLtgHbVCSaR5ZFvuDHg2YBOUpF1p/R2aBKzhTItNn2Z8WEB2p7xzE7pdqGhw6Bl6xi\nWW/43nxar6eTiLO95nFJXCj2hZ4+5OsyV9ypiPscZI6q5Ayhg/c7y3HC/a62dDwGZcGE6gfloYJU\nLiriq9R9jjKHSbgAztOpSxFRQxuzAC6Vz6PZBB8GJN2oQBuyAHSXZeVLxjAyDEGPr1SUF8wx3hXH\n11YUoS5XFG2eAForFbT/k+NTUgBCq6woglta0mOXlhfRNuI8M8mYNeurkk4xF5uKVVz1EPH4WVqM\n++Q+EQ85tFC9qAThUs3JV/LqUZiH2VULOVMip1D2WCiXfwXRCdYL3xsnSaTa8vYbjZq377bGG2/N\nrsJImqY7/fUX7P3TrNJZ22jtEpk2sJptdULVEfpXLQ3pwvaziESjRYsWbQO2ybnzyFgqs44NkCW4\nyxYQDeM0i4xLdBwk8oxdDCA1EeExBc9BzyyRYXsF7TNnu4NZPOPPgi6LxSjVc9NTI8qoQzkezMSL\ntpGBk2OuvuM+wTU6fU+gA2YWMV4Vn6c7/efAUGYW22VG0lhZoyJY5ZOZ+XVwmx14wQt4TiUckQaC\nzZSxz7hQbJeWoUXJHH6ggCaQbqblI9qsqwfk5JtEROSZEydEJImVrKDOfbNJrQDkrxc1ymP+xFyC\nZExG0dLKIpqm8lOCAJ9+6jGZmVH922KBMa5F3INPnKddX9X7Pzqq1yYyJcdmM6AS7tGPfba6mb2c\nbKbv5zZH3V7Xqh5ZxMnsNcu19lYd8Ptv74uIvetGtb/C/tpIGZNplebqpX/Gkb1Pyy3b8WCkSMv9\nhphYcK528358aYgDjUg0WrRo0c6wbW7ufE5n+2IBsyjjPbNUZcKs02LGDXLBmz7izKEdTiJUBaKX\nnxxg1tVz0duu5BTRVCo4jirhVeTvCmc3xjVq+3Z2CuXSuy2Oo5ecZ2dwP1RLd8r1mMU5J6YyvrZA\nvdl/dg/V+Ob958DrlcBhlujh5TjjOgXU+clC22CC/B9QR40cZZNaBzpe2QziQbMcJ92y0CazhXif\nfA5EZ426Pg9mYLFOF3lGi5r4vCurijKlM+9iX2ktM1ZpvFvVbOKdnzt5zClZFXHvNWz5juWp2o8x\nWwWn2Ma7xs8nJif847AKIoqmDoDVTKUlnKgfB0lvvFWjolnOkAic5yWRLX6VTlutgO0nilg+crRI\nkO0z86nlkBw5TyJYZr/hPjM+52gRakiL1laKTZBouvuqvdUurIIZdSZMfG/HIN+o4hQtWrRoZ9g2\nlxMFEisgjjBP3idDTxr4Iv7WE2lxFstwNmL8JDlLP6tBSuS5kDcLNJJLKwIeKSGmDChhaVlRwwrQ\nQy5P2ECkxzhU/TikpZjUKmd/dONiDYUf+955Z+SjyOVSX3QA8qW57Bsg0DLzr4GyRjGrbx9TXu8k\nPNmFET0uBUWgWtv37reMWlSPgo+LfQTqqxBJIsUJ/VxFdg7vmnHByxj/UMxeynDi9S7tAPLiKVt5\nlanY2LabyVjXKw2ZT82j73pAuezHLk9ObRERkR2o4cRO2zrwqyvIAHIIFjw+dAlqmf6rGFtfi7G4\nIS7SxpvyfLsqYm5+Hqi/gawvl/Pf9t9lW6nWxoXaZ+6414CimUW4NgMslPEUqslkj0/+1gT30R/R\n2r/RhuFyexTZTD/WsohEo0WLFm0DtrlxokBkVvfS8kIuc4d8iqtSCSQCrq2TIbenx7XaRETg7lK+\nt5hcXQn5y7m8elynwGudWFB0Mj4+KSIi1VUqwjD2T/tfWVHE1CZ/1CIX66Mgx83ifqsNH2GFeBgb\nq2c/78ol0s/dHscJHlzUSs8DFWyb1vsaQWWBFnRdl8ibkYNlXjXibW0soJvdTb5xKsUsoYrpLz2y\nyNoB2lsFolxaWvLa7Y2d9JF3d5ZL23iH+QgIF1y8YDvBD41GS9pAv1UTd1kCH8x2tqCufQp5+7aW\nEOMvQ5kxIxOKaBst6kT4WXhtN7Z+DSMbB2pzvWm9f0NYrTX9WkW2mmWCABmPCsSY8ZGl5VDJhTqd\nBhMtQLPIM1TDyeq0WkuqkvI8/TyLyJAk9Np/R8KVZvvnzA/Dhbo2hj4yWrRo0aL12FmBRG0+sq2d\nREuyHHTTgkpQtsPYMIoSIn/Z5W4Dsbi7hbffea3100IOmVIljZ8sQWl9yxZFDzNbt4mIyM6du0Qk\nycw5euS4iIg8ceAJERE5dlT36ZGdndXzL71E68OXR7TdJaCW/fv3i4jICcRFEskl9dvXzgKhORTG\nap0pP36THtE87rPeUIS4kILGJpDxKrUKmkRt4Bk7fl64nb2d4nyTKIOe6Yp3HrUx+TiryFCqGa1I\nWi/n2z8/XK/hZ7BYL27ihU3OabQb0mkR+Zh4RsSoMrIii0iQ8y9gnSdfgZ48LseEqyzGkXbXlRcR\nyaXxbKhKBARK6GurWnIsLcKyGTaOU2TES6BmUo9qEyNc6j4iS2KmdUOulzG+qUDmkx1/y3WGKsjS\nLNfbE/fq3oX+qyNboSCRQusfj2qRf0iftdsiEo0WLVq0DdjmeucxS1uVaXoK7axlZwXGjXYwi+fg\n5adDLcXiREYZnrNnGoisgEwoejBr0CmdmFBu9FWvepWIiDz3uc8VkSTrpZBXFDI3rwjyiccPiIjI\nPDyi1LSc2qLc49VXXy0iIkvLWven09b+Hzms8ZCf+tS9IiLyjW98Q0S6a2P7s7jli3rjVIFKUr5H\nlKc109r/OcRlClS/GX/KzCnmHTPWL5S9YlXAyRlbvs0q5jCTjCpdVteVqNLdj4vP9dFNt4UQiOVX\n7TmMXa03fWSWc9fSTi0sKRK8CO/sGCIbbG68zXW3aJ1IyuqC9qgqMesL7TtkGsgAssiOeqWNuv+3\nY3P++U63AnGjVvGfMb5sxz1Tg5T5zENZdLwf+1w4jjw/FHni/iZcpV7GdPscq3svsj5/b6MMTiVn\nnhaRaLRo0aJtwDYViVrUkHIVCv1ZL6S2nUH3mSXRG0tHjUXGiSoKyOeY8w1Fdsy2I0AVe3Y9R0RE\ntm1TDvTii/aISJK7Pz2tHtosMndGx3Uu2rlzq4iIFAqKUMl/uaqkyBMen9guIiL1GtAPEB+R4wQ8\nuNmsZuLUgRgtMrf366ZEzMZphwaIYpifDSRpY+lY3RQ8WuLZ9lGcnaWTGukNb2s1LolmnNKRy+Bi\nppbgvn2ez74fiaeX6C9REko7ROIPjW2z27qRfY/Gq/NCQ0Edefu1CiIIpia944msLIIbpEpEBEfu\nlOclCJXcpj+2jFwh752sDsgB949wsF50covMPbfvVo+SP2J+uVqyup22FlQoXjTEPbJfg6p60myt\nK0bkZLI+f+4QdyAONaSAtpZFJBotWrRoG7BNRaJNAcISzK6mFlEwR501h5yX3tc0dOpHVMxhPCKz\nFIBMWes6U9DZ/+LLrhARkW3bd4uIyDi88+fvPl9ERHJ5X4Ge8ajZnB6XeF45m/uzXb2xgsvi+pgE\nd+5UZPpzr/5ZERH5h89/WUREvvn17+p5eUU97Y6PSBlPmSjnw2MJT3OeFSRZ+8hk8VjUZVEDebcs\nvPxWRZ3nsx9JgUZGOSgiJ29Iczye06BEJlnGR0su7tXtWo+qaxHXTQWRRTjmVNFRKL7SZp/xnVqF\nPmmjotsS+PM0ER34eYtME+V6f+wtZ2hz5lmDqEfLtm3efbyiSYRE//Ho9Y5jVdfyIyR6tHqdbqdf\nW4pmc/wdt5zzkXJIlcnGk4aiD6xiv+U22S/WrGL2ojvfRWG0vG2oHv1aFpFotGjRom3ANhWJuiqW\nQu+vP+tYT6OrDc5YMs7azLBpkZdhVUtkabDKJaqEcroen1Ru87wLLhQRkedcrlzoGKqPjozodnJq\nDO0yy0OvRy1J5jkzWmAFGTr5HOI8GbeJy1Nlqg3dzgLUkq644lIREdmz5wIREfmV1+r1PvOZT4uI\nyL33fkpERJaXoUBET2TboBd4TsfGkG2DqZIcboj3STLH+Dw63udEoszKcXGhLR9VEX0xvtZmNHGl\nUMj7lSu5wrAani2xXKiPrvrF8q2FPG0b3Sse+86x+gCzvngPR44cEZGE3yUC2wJd0h3n6eplHO9S\nJutrxVqeuFeVyEfbhYLvpeZ57I+tP5Y1XnOLqBLulIjLfxdsJlEyXv74WO85+8V3hO+CjRO190ku\nmONiKweEMpzsu2D1VFtOT8NHzvZdsgg15VZ3/TOnui0i0WjRokXbgG0qEqV3lp5By8PQEoV4ehD9\n7IKkHg627Yb5XNtpNMHVgQO98aaXiYjIzHb1wo+MKmoYBXpgLBwRXArcYKEwhs/Jb2l/VoAQazXt\n//iY8mSMs1xdXUY7UFdH9gvve2SEvFMBx+v9pTN6fLmsHGOtipraNSJvetPpqdXtdS98gYgkeptH\njhzGuFh1cl9bkv1ijKHNTEoqVVJDwOdAMzzeKOUQzaUwnnmW6wT32XQoBfyW00/1405Dqudr5Ts7\nPUrGFnd9l5JU0Huepv5AwUeM9KZzyxaffuZJERE5ePApERG54kqNDZ6emRERkZkZfdfSWeaWo32T\nnecymhxa9zN6LGK2Mbjc8niLAIkQV1eh4dpI9FW7209ik5nt5q8erCWrDR8J04tvsxTdfZrVDtu3\nNZAsMrRxsjnXP7QHvQg7XjaHn0Zu2NZuWsvW/SP6V3/1V/LRj35Ustms/MZv/IZcdtll8pa3vEVa\nrZbMzMzIe97znh4RgmjRokX7UbN1/YjOzc3Jn/zJn8gnP/lJqVQq8oEPfEDuu+8+2bt3r9x6661y\n1113yT333CN79+5ds51Mxr98aHZwxxtPaYhn4bZRoxKOzvazs+eJiMhVz7tKRESuvEq3RDy2ljd5\nqBy4zSIU4d3s3vTjKTNOOZ4KP76yzEiZddf9WDVyuERiHSDXak0R5Axy70+enMP9+Grh5IipG3rx\nnotEJKmhdPDxR7V/4L8aZvZOYveAvDN+jCLRl60saT2xHDfyhM0m0ANi9dLC+wOacLyU7hL5uxg+\nVmE10QM09qvbQxzKNHEKWn04roxIopXKvtCbbo7nvRF1u3ehgSoJVV1tHFyFKtSyZq/t2KUc6TXX\nPl/bL+tqpgTd0hL4d8YKc5XGCAb6C0IZWTbeMrSas8iNcaRZxE43muQMyYfznfXPY92rnvrxJlOJ\nq0Vm/1kO2CJljq/NfOJqtVHnuPicqq0xxW7ZeFWLxG1kis04a7XOUO78vn375Prrr5fR0VGZnZ2V\nd77znfLggw/KLbfcIiIiN998s+zbt289TUeLFi3aOWWpziBpoD72kY98RB577DGZn5+XxcVFedOb\n3iS//du/7X44n3zySXnLW94in/jEJ9ZsZ37uqExOza6v59GiRYt2Fti6OdH5+Xn54Ac/KAcPHpTX\nv/71XqjBsL/Ln7n3I/K6//mt8t8+/l9EJCzc6spcpH3RBC4vGU7BJcAy9hfmdb+6orf50pteISIi\n179EHS6TW3WZLC44XKE/HTjpdFry+S1SqRwVke4lky+/xWUw46Dn5yFAMjXhfZ8yYhZc7nJpwqVP\nW/S+jhw5KCIi//WuD4qIyN/97T/ofVcS8v7osROyYzvK/YJEv/01t+lxi7r8f/rJx3UfS6U6QsJa\n7HCGIWW6W0TaKu/XkvsunTTHsBDBfQiOTxxAn/viPvnpn7hJj8d15ua0X2k4S1rOiYElFMNusFBy\n42KWjuwXv2+1Wj1OJxd6k/bLM7Ot7z36uFx20QW9YVgmON4t97Hc43J+dKSMdjvoCx01CF/DMrOM\n5XoBlNDktDqadp6v4Wy7zkeCxyRTinPyK7ffLnd/8pO4Pp1oWAZnfGeaDQu0ji+bFsnPQ2Iyof3u\nIPe7/ui98ub/9DvSzyzlw2W8LVFsy6tYP4oLURP/udnna+mJXC4v73j72+Qdv/dOHa+AQ84G7dvg\nffb3vX/07r73KbLOH9Hp6Wl5/vOfL9lsVnbv3i0jIyOSyWSkWq1KsViUI0eOyOzsYIQZilO0P56U\nAExUgnTgyZ/Yz1dWfC/5leBAX/Ti54mIyLZdmuPeFnry9MHxRzTh1cgL0cPnZ9I4FW08YMYCTk1N\n43g/G4LNtjraT1cKqs1YRNQ0gvd9aWnZG68O4kpZW8pF7mG8GFt3/KjGMKaaHAf8yDCHn3+AaCBt\n8pjz8ESzRjc/Z+ZRGvxYC/V66s6rDy4V5T5TyMMuwsNcRz/ocaYyEWefVgc/0lTxonefWTJJISCM\nRy8f2FPLB6dkDJfY/YNcKpV66rRzbG2Odx0TtK3V02hQUR/vBjOAqM9JfVF4jSuLWjXhmcdR12tO\nNWhntmsNp10XqF5Du8kfdbyrOcZlMlKFUQRqzGm3caj2RzHkpQ4pp9lYbf44Wh1QGy3A463Oqs21\nt/GkiSK/rzthq36y35zU+DfA7e7du71+2egK/oZwa9WtzljG0kte8hJ54IEHpN1uy9zcnFQqFbnh\nhhvkvvvuExGR+++/X2688cb1NB0tWrRo55StC4lu27ZNXvnKV8prXvMaERF561vfKldffbXccccd\ncvfdd8vOnTvl1a9+9cB2mE3gsgqQQ2+zETquzry/rLQQvF7nbMs8WZ0Nb3zpzSIiMjWl+p7Uyyy4\nmDV6mf1aT04MO8UsEz+zhr129Wi4RUZTtYrZt+nX8B4bG0G/UZsJ999JMa5V729+TtFKBcrvDcZ3\ndqjRSLUmzIXo1+qKevWx2pYcNR1TJiOo4+t8Jtk9+jW96lmTjVIirQKPbpGI1cXT+nPzCFAB6xc5\njyyReJPPW/ed5oDJqc8CjbQIItNGtVz6KH0x3s8gnG59zHw+n3zOSIKMv/yr1fxqnC233NNnQt0E\n1nWvA6W7Z4bVSi7LzjOLjpEk2n6+pO1MLOkzZMwvqRPWByNKz5h663wHWg0/9pdmY4Lt39KwVTY5\nXkSAtn167/lOOeUusxwnorXnW688KTGOs4tJNrQBV8A8bvv27d591k2defbHItFQldV+tm5O9Pbb\nb5fbb7/d++zjH//4epuLFi1atHPSNjVjiTwJZwFb9TPl6qZQocXnPrnlLLqyovtjo0rav/Sl/0pE\nEhWmQplZIMzE8Ss2JsUogaiEiBbxkvi6nSKq4WyGWZMcY5r6ndCCRMOHDj0tIiLHjilnuXVmK+4b\nsx/zlltUutF+fv97WoOp3NHZt0GEyPhM3Adrik9PKuJ++mm9Xh2opQDON8tsEcQAhuoCWZI/27Ho\nAPwceDmqXpH7XK36z8k5F3B/tap/XY6/RUE9+ctNai6AN6MzKJ1xz8RxeVT/MY4IXpP3OT5aRpt8\nCfS4qnvH9NNC3v+TsTnv7Hqt5nOskvdXM+TRybNzMXb8xEk9HO8OEepomdq0zN7jKsTnKi2XV8cz\nqDvdB9/fYDlRqzVgkaE1Ik4+W6sB65zCJj6Uf/M0ex7/NgtYJRJ5Tk5OevuWA7WrKv6NWGQcUtGy\nuhC2n/0s5s5HixYt2gZsU5FoZQFhGFA9SrtQG8xeQITk8KoMCXKqTT4vRQ70/PMuERGRa67RUCaq\nJDF0KZW2nkntT9bpWVLLsIB9XxFenMI6dtt+6BK5RCJe5h3vQSYROU+nJA+v+wqQ2dKizoZHjmjt\npV07FEkvHlSeTKBrWgEiHkHYTA6ZUD/4wQ9ERGRsXBEpVZ1SvL+Mr0hk8445m1vvdznnh6usutpM\n7L/uNxyiJtfre7KbHf96RLa1av9Ki4nGZrvv5wl/llRwtbndFnF1c6KlUklKuf4hMy5jh9qpqE9P\nFG+94ESC9vpu7FmbiNd32rTMfAKKR6XYlSUNl9s6jWoHaeaaF7pP7/EP2Bz2DCriNk1GjtXtpFmk\nZnVA7Tja8bV6C3Z1QSSZM7n47h3Eu0ZukxlPVt0pyS5kVmHRu66tS8br8HgiVCJQq9Rv9Vv7WUSi\n0aJFi7YB21wkCgRaWax4n5N9Ydwkf+rbLs4SWyLAFWgS5hR5USlnFF5wxiUWXL0a51fXfx1PRVVy\n30ObGLUHU95+G9UzU6wPz8+BTF0tIRd/CiQMZFZFDSXWXWec6NZp5UxPtMDPMFYOyLsALnUa6lIX\nj6PeT0m5yWUiSfBrGRe/CSQKRXqiL87O1lNZYLIA+T+gDfaXSLQD3o0rBI6nq6CJeNwsFe0xTo26\nX5feoiRbH4fWL07UVpANqfd3872dVkPSef883kOJqNvVQIIXnjKV6APHzFbv5PfWm+yWMQ5Kgj+u\no8IrEjVSrIeFdySHRIiE+xWv37Yqp5g4T6uexHGxCQ1Wg8Aq1Yc4VJr1wlukOQrFNKu7QD8C9Rv4\n+ThWVZZbtQjT6qGyH3we/JwJH8ePa3wuEamNVqg3/GSAfhaRaLRo0aJtwDYVic4d0Vlg8YTGQzLV\nrggusSZQAQKCAvB0dV5qqCpZQbZIATF1O87TrI90CbMgOdCWzz8R83LW4367k3CmqVSqhxfhbLeC\n+M1Siarc4OrovU9T5cnEvTLaABwv40mrq9RD1e+fOaz6nyeP6TiN5/Q6Lba3oEjyZWMaC7d9i6YM\nPlVG9gl0SFNOuxJcag0ctOHzLBop476KWZ/vY4ZSnRw1EWWTMYy6b737jstsEWESzhFN0NPsx1qS\nC7Vcrc0myefzjkOziMmi1m5rdVKCTFpBAIfkGPMqzAYbQVd9hGORjkV2lpOjOW4RY1hHO3lXJ17P\nn59HJtOsZsGlGFHSZJ10X7fTIjBWA011fM6XZrlQ65UO1TayaZfWG8/75vPg+HCfSNQ+U8ZMMy6U\nHKhtx6avcst3lPdv74f1wA4dOuR9z3FzWZBcVTX9GlL9LCLRaNGiRduAbSoSXV5UJLcMRMVZtUJd\nS+Rw5xHfiIJ90gBSOQ4v9gIQ6bWXXCwiIuUJxJCVwP9UmZsNpFQCD+M8i+iQQy+62yPenfI5UdaX\nd9U7U0Qn4O7SRLZEaMhOAadZr1F4hGIMQBNA1runNN71+is0yuBbX31IRES2YLa+Eujk9duuFBGR\nH4iO56NtjTVMjSAeFp7chpmVLToiqiBKGAMSTeF6i8jlJwfKXPyGq6pKnszn22zWSqIG7wufJF53\n8mja7yZqvVvUYznUdDrdU03TcmWJ1zXxFnsVK4E4K3inKFhSJMLNsYaPn/lj60vZMe4R5SFSpJ6B\nQ+E+X8y40BVmexVRURbvJuNg63Vkq+E4xhonlyOv7Oeu09hP6zXvjqftNuvVt1U5eT71Frjlu8Xj\nkmiCJtrxqyRMT0977d3W0ZcAACAASURBVNsMI3KZvG+baXTixAkREVlcXPTO4/3bHHq2w+oYsdpn\ntGjRop1h21Qkegyc6PGjOlsUi8g6YG0fILdVILQOkGAVdWGWFxFX2dDZZAfyjuVJ5TuWMKuvUH5s\n1y5tNwupO07nFaCCPPiYlHO9iqRSLm6USJSYopAHUkv5qKG3ZjfQRdvni5Kqlpx9UR0UiK4KBFjc\nqvnAYxif27aofNoVefVYLgMItyjLlkcsIDjlMu7/4IIiVPJANv+Z/JOTfcP4M+e9ztg7xremmdXi\nI9FyGcgXx1veiZ5lcp006xG2UQP2uH7ZMD3VGw0CtIphPNbGQ7rIBFY3wKvSZBUCKmq51Yn/p2T5\nYJvR06ihSkDav1cOvsGtLubWSdJh6NpC5MX6XOT9gdJNxhE5RY6pRXg2u4zHhbhQIkwbfcDz+Dm3\nvToN/qqOfyOhul7kNBcWNH42qaKg90lkyfs4fPgQxsVfDbIdi0xdXba2zy2vZRGJRosWLdoGbFOR\n6MoCRJXnkC1QQEwWlWuo8MJMJtaEXtTZYgZZGNeWNaZu5l80V/zgtw6IiMjjE4hJm9V4y+3IGNr9\nvGtERCR7niJTQf34NHLBOy53Py2SFmmSu0O/cy5Dxq8RxHzoVIowoe0d13LIlOiAnkhfdaoJJDlx\nviLQf/cLt4qIyKMj6n2/7PuK3MenNItldUSvu39BxaNrBR2f4rjO7itVzM4NX2uAszezQWiOL6qv\n4P4w7uCrGqhCmjLCwDZmz2ohMCvE6rLSLM/WMvG1toKkjXVst9s9x1pvOdF2N9eVSqV6+NsEiTGG\nuOONFc8nIqoBWTKEmJlOeUSauPrsfIvwjjSpNQtOlFsX58p3DH0lcmJGDxXI6nVTWdVU0QxFK7Bf\nNr6UY2yRnqsIi/PIWdI4fqFMIsvDsxqnU3QT1h3zq4QSYXLfbm1/nTj1Kr32Ne94jhe5Y2r+dsRH\nnhGJRosWLdoZts3NWFph7jwQShOzL2dFeK0zmIdHMLttzytyvGFCkdo2uO2LT2u8aZ5A8Kiet/CE\ncoFPPPSYiIgc/ea/iIjIzh9Xr/flr/gJvT7VtQEnMp225CQtbcw11Q4VgbT9tJu1qCpE3sjXQJSO\nz0tRmT6D+EiiI86SS6wUCe6xPKL3feEWeCpHMftCb3QBedZLyMkn1Uh+7MSCcs9EmJYLteVWXFyt\niYXsUb7BfU7A49pxqMnP0iEKWVxUHqrV8sfNokab9WP7bT3C3ajKIi6r2tSvfnkqlerJdHFIElvb\nh1Cl1HzRH1MRxomyTAm4QPDyLtuL7w6RMDOLEONbqVB7VlvNZanDyUwseOOpBdtHa7X7vi3/3IMQ\nWdYE7ybNjlPRZQH642E5YatAz0whImAiSOq21ms+n24V6J0X3VTpTMqgsDqEeuVtLn2iusVoiP5l\nR4axiESjRYsWbQO2qUiUHsVVKsuAEk116Fklp6iz6Q1jqmZ0OTJ3djSA5OiZxOxLnFMYRZYDZ3uo\nRjW//6SIiBxe1SN3bdN6NltefK2IiDQKRJZNEclKFjXFRzP0sPrxny4OFB69nAswNTngHc7Wvh6n\nmx2hIZBBzFyxrN+3sZ8p6n4RcGMZWRXHkXteR1371qi2v4qohVrVj7O0tbWdAblWaz5as7GOlu/i\n90QN/P5lN2mJmPN2aQYZPcpzKORns3ksfxcqKmbjQ7vRAxGHjU1dSxczm832FHKjgrxtz+aouwwh\nWRvZ8eapIEbE5Z4BulWgihFyyHOGs1zGqo0c4vQ0qyr4fzPUuKWF+GU75jSLVC3XaZEhzydy5bNi\nnCYzjqz3nF5yWyfNxvVWofBVXfUjPWxBOfe31PaV+0Pcpq3pFNIbXcsiEo0WLVq0DdimIlHmTtcb\nlDTHLNnx4wl3FZVzu7akntHzGtBGZLlTZJnktqu3OlUGtzqBin97FMF+5/P7RESkdUgVXOqPPC4i\nIg/86Z+JiMgVx39Kj//JF+tx5axIpizpFjx+RKDsLn2mzDpxQX5AoOCvSFeRQ2yAtGy2EAMHvqsG\nT28es+MklO9XD+psvlrRfswjg2cB1TyX0M4ScvUXDUogumGcJ1XRyZa52ErsW9RlUQoRKGMEOZsf\nO6b6pxdfrJljx7E/BhRy0YW7RUTkwFNPaT+XqIruV7AMlcW12TMWXdbr9R7EYTNz+sWPNpvNXv1P\nc5xFzS5DiRxow89cshxqp03OzkaACr6H9x+RIuMTyn+XEPvMGFzyyYvI9mNWV2nEV4C3mVkh5Xlb\nNbOnWmqAh+Z1qK7Ez63CfEhXlJlG3FpEa1W3KuD9ba0m/oY0G1wVcvXnc6SWy7YloGn2/RmGG41I\nNFq0aNE2YJuKROttcoWUZwLnxdkBs8m1W3VWzi/Dw4bMnMJu5drGrn2uiIhsef6lIiLSgCpSeQu8\nxojHvBSz7vEHvi0iIpVHH9F+nND4yqe/8nUREZm9UtvJX6LtNxC7lyXHydpPiPUjsmOMW8uVsdQN\nvfHkqapVPzuiBp6oBa60iNmd45BCTNs4dEMPsu4LK1JCIyBLqUooz7Qw2zJfuQX+qQDk52Zd6n+m\n+6MOmxdu+UBbl4ae11tuuUVEREpFqkTpc5mZ0eeZQQVLRhFI20c/NKsWb9EC+1epVLpU8Ptrj/ar\nZlmr1dzxRFYp6CGkMojHRMBIvsDaP0B24MnbGANbpyqp30Wkmu3bP3q5s6w8C72DErLUePzqKuuR\n6TOcX8CqqqnHcXUwNaUxxXw2dsxsZIPloS3/bd8FItWtW7d6/eP4njypETFEjvPzGknC1UpvZljB\n+5z9JocaQo4h5fyeisFGm7ZHywAWvfPRokWL9izbpiLRBr3b4A5L4HdGkEe7Ddurd6j3/PyZ83T7\nIvWip4AU83uw3YrMGyCyegYajZjFrtytnNzKc5Sz+85f/pWIiMx/+4ciItJ8RrnHJ77+PRERee7O\nHSIlkWwLXJ2AkzM1lpzyvqsB5HtKWy1mU0BhBwi0YVS0yetsRRZICwi0WNHPl5eAdhBD14ICfgWk\na4P96DCHvTc7R6Q3O6WOrA5GRYxAu6DgaoIzrxvxrVm/Sqj1qBINNaDGPgpNgMOHtf+jI4qMWado\neRl8mPj51DZDiZ8T5ZCX6842SuINfW1UGx/Ybc1ms4eH7UG0RMGI7c0gY2g068eR2thW5tqnAopZ\n9nqNtu/ltnWvOCb0dv8Qq6n5BUV6k5OKQIn4+Cx2QTfCxnUS6VnNActJhqqE2tpEoS2RqM1Vp7Ed\n+8wthxlSVbL9s9yq7TcthFQHIdZu21zHUhp/HBCaTeGPbdek/ohcPKJLhW0veKGIiFx0/Y+JiMj4\nZeooam3Xchh5hApRHLiOZTaFRKi5XM8iTOJSFfDY9tMv03ZQ4G35m+poOvbAN0VEZPL87XLey18s\nJyGMW8ILyCUdQ5jaRmSYw+4eCBxlLP1Qw49LexXOh4aeMc5iZOhwCku3Ez/UEsuVZ/RFLLX0+4Uc\nwkBQZK2F8iFMHbThKD2B12lflMKGqVixCE4Sy5QPMwHPvF/+gRcyFPtAf1xhOohXwIkiHYbvLHvt\n0OwPGvtlf7A6nY778bTn2j8ua2wzFP7Fa3AslpcauCcsc/GutRB2xoQMvhMca0snsL3ymAKArbMo\nbWNEi23Q+T8//M8iInLgSXXSTU+rbGKxoM/ukkue4533wx8+guvqfXEZzmU/JySOsRWPsT9m/J4/\n1kx/tT92NhQqEfrwn2WvNJ6/tcv5kPORZp+f7T/lKnsVCvv/2K5lcTkfLVq0aBuwTUWiqQ7SLDGJ\nzGBWvxyz07YZnSWf/ws/LSIi1e06W9fGFbkUgXCoVJfBnFDkstCEIlW5Ki3oLDlzlTqkRtDAZ7/z\nIW3/wH4REfnWX3xCznv5i+XE17+jxz9Pj0+n4ajp+OQ4xSKYcsZUslWmcWI5X0eoUnsJUnUjCBeZ\nUTTRYdmTf1Ehlfojul2FZGCHgrSTet3Fkax3PSJBO3tbaTmm0/I4K3tGFMLQrBoCnSkQzBLINaCv\n8Ul9PtNb1DlTLmq/JvE5xZqrQODFtI8oubSkgK7tlw3u5/HdYTgWodBsokE30mi1WknKqwnVsdQC\nqRmW80intO89Isx0IHX88Ky8CSHicn1kbNK7PgupsV/nnadUFsthH3jySRyvYzg2pmM+Pj6B9rXd\nraC4xid1lVNDmevjx3R1s3+/pkIXQeHM4B0kQrWIkqsFfs5+8nubfmkpH4sQ7bKdTtsaBEP6iWiL\n9C7Xafb59jqefCRr28vn6fjzky3WsohEo0WLFm0DtqlItFXXX39KtF1WQnjJMeX+jre0ew9/+1si\nInLpv75eRETSKfBQaIchTM58fQtJAw2Um0AZdUVqcxk4NCYVWU5fprP9Y1/REKj5x/5ZfkZEvviu\nPxERkT0/9XIREbnq32hQ/iRmbYHwRzsDZNcij6Ofz82dRHfAy8BRNDWp6KM8qdwg+Zjqcb3/Jx7U\nkKssxqPegNDIGBwsWaaZIuykxnLAen8NIDyGxThnBWXXMExEeCHnC1EBUxXdcUzDzPshT3suuFBE\nRMbAbRNpl8u6XT2JsJuOX47ECqHQrGCwdUJ0h1zxHq3gRI94SheC6XQ6ru82TdCGVaXF5/wSwRKW\niAGiAcdIMWCGt1FmsQin6TjegVTaT5PkM+HYkHN8+plncP02vtdnTH55YmLSGxuWtaZgeBb+hx07\n1a+w6zz1D1CoY+6k8v+PP67+Aa5qbFC9vX/rXOQ+txYRWk6Y1uRzAxLssOx4x5dbDDkArUPIfs7L\n2fROWnI+/laNA6yfRSQaLVq0aBuwzeVEQVtdPamI7tICguPnFImcBPI58qSKLe+BCMFIW3melEuz\n9JFTm54+fL+CWWUEoUrZND2mCCrfpXzRta/QdM9/+ZIWhBsvailiWdD2D37payIisuMC9WymbtJQ\nK4pPZFI6Sy40IZJABAevPEsJl3Io2gWucBXc6vwP1NP66MN6/cV5TQK4oK79n6GndhTe7RSiG1os\naeCn1GWBhpiamAKKarf8kCrKpvV4VIFgs2lyrmosUMcyIZUVPW7ndg0127pFJQqJXrYiWWJqQp/v\niaMIEAeibAF1EfUwHIZGNBNCqOyvSK8IMI8herVSaSIiuWxKOgjvIvKzCQX0rlNAm/y2DVpP43si\nmIyYksUU8gCfX4DITCrNEKos+gHxZzzTVZTnfuLAE979TYwr8iQXavstJjg+JMTB88mtnr9bwwqX\nlhQBnziu7+KRI0dx39oen4n1mvOZWC976PrOy97x9+m9t17/TtMvUWNDk3rbl779DIU0kZuNoszR\nokWLdoZtXUh0ZWVF7rjjDllYWJBGoyFvfOMbZWZmRt7xjneIiMhll10mv/d7vzewnSL4mZfuUF5m\nB2bLw/DqVho6+y6sarpieVoRYAYpcY4Jhfc4RTQApJTDETkgRGQZSgccYofc4LzOkj/8jsbSnUAM\n4NYXvkhERLI3/WsRETn2sHKzT0DUObUbnCjiO8fb4Fwxi50E2lmpoPwuvNEraUVWTx1WD6kAcc9/\nTz2lB76m15mYR8yjAjdZQv/nC/qfuRGkOwJhspR0HXGr+TKLkul9OrmxBpEdOEYEu0vbR/ZuPPOM\nPgDPRDENw1OVsJKo0qMKlMAyIlNb1OObzeh91xG10FwFeoSIxrZtilwXFpa9ftNCAfTtdtv9n4iS\nHKlFSOlUgjCymVSS6ooEDfLMRKxM7WV5a5qLH3VIii8Z30U/aL1U0rGamEJZaqD1eoPiNIg0QFrn\nChIhDqHgWiJ6TAGQCW9LXr3logeGQ2rWiARHRliITlcJF1x4iYiIzM+d9D4/DqRKYz+JIC2X2hOP\nS84246eXhrhtV1K62T9Yvpfz5Pe90Rnd5lK6hxwnkXX+iH7qU5+SPXv2yJvf/GY5cuSIvOENb5CZ\nmRm588475ZprrpE3v/nN8sUvflFuuumm9TQfLVq0aOeMretHdGpqysWrLS4uyuTkpDzzzDNyzTVa\nAO7mm2+Wffv2DfwRvWZCkdxzcjorF+Eh7ECgowaH567nKD9Th4AFZb/I9ySIFNsOPXi6O8IDwIV2\nkCnVrinCzUAM+Xufv1/7Ma2z7w8OHxQRkX969FEREbm4oLP94a+o5/J512q0wFJO+7uQBm+zoghv\n/5NPiEjCY00B6bXQsafA/e3O6v1fgUJ0P5bWrJVjJeWjlnM6Kx6ugp8qI2sGCJQlJljgbwxi1KxO\nsgIh3wVIzy0tUwgX3GidyA7DBI50tAQBYhZZY9E3cKqMM6XYMouBjYzr82G5kJzjPMEFj+n3J08q\nKiTaqoMb3jKzBccpSuODZbqnFUruRhX8jryqLZrHt6XVSJBGdymLESBXirkQuTTqPoJK4kaBbABA\ns+A0M45HRuoukO3UpN77eUhBbomOzeIyUoCb/raALL7HH3vMG4ukFLEfz9p2tZTbaMeUpjHRCaFS\nyCGkRmQ5BuS75yIV67lwj2ZInYR3/+gRRc5zcyfQHZ9ztKLLThCchfjyvkiO87IbgfNQORhryXWJ\nyPunjzoEG0gT7WepzqnkN3XZr/7qr8qTTz4pi4uL8qEPfUh+//d/X+69914REdm3b5/cc8898t73\nvnfNNp764aNy/qWXrOfy0aJFi3ZW2LqQ6Kc//WnZuXOnfOxjH5Pvf//78sY3vtEJHYgMn3f6l6/9\nD/KbX/2s/M11rxIRkQyEV09UFZE+BX7q0jf8ioiI3PS6XxIRkSLK1uZZRIseUsdLgasTZg7Bowqp\nOqkrIqscUm/4t/7270RE5Et/do+2X1NO7mvthtz78D/ItVcr4rz0QhVxuLatKODS52gJ5tGXXi0i\nIodR6jh/TO/j2KNPiIjIN+BtnwJK2g1abQqIbyGPTCLkT08ta/+ZSz9ylV5nBUjtuw9Byi/blt//\n2P+Q/xUZXW3waBmU+W2irAkFfE8uKAK1WSf0LxZQkqLI8h+u7K9fomIVaKEEScI6eMMrr7pcRERu\nfImO18zWrXLdDbfKP33+U9qPE4qk933lAREReeoZRfol5okjiiCD60yM6/0zM+kpiDmvGNm5bpTD\nd8+WBaFRlq+EUiufuf9L8oqbftxFALAEML3ftlSwRcGMfWXu/OgI4jRTiiCljUymrN7DzHZdfe25\n/DoREdm2Xf0BJ07qs/mHL3xRRER27Nomv/e775B3vuudIiLyg+//ANfVd2bnDo1p3r1bzyfKZ1lr\nyjRS14HiLuQcidBDmV3WLFJtt9vyml/8WfmLT6qIT0jgg3KMR48eFhGRY8eVD1+EYAq5R0ba8Fnz\n3bTjTQTast50UzpGROQTf/4/5LZfvt31t7tdW6jOCZGbKAYi5c985q/7jovIOn9Ev/nNb8pLXvIS\nERG5/PLLPT1GEZEjR47I7OzsepqOFi1atHPK1vUjesEFF8hDDz0kr3zlK+WZZ56RkZER2bVrl3z9\n61+X6667Tu6//3553eteN7Cd8/I6W6dbioyaiK/kXFKD1NvD3/qGHn+d5q5f80JVdUq3IYjL2Yzq\nR20W80L+Ltqrw+ucX9JZcO47Knn39Xv/Vts5rscfKiC/eFTbPblFt88Utd0iZuPzMeunnlTeZwLe\n+oufq9xwZ4fyRVe9VDOcDhxV7391//dFRGTh6BPaPxSaO9JRBH5gRO/jijFt/ztf+IKIiOSmkBMP\n9FOt6XkN8nbgjMsox1utIAtlQT9fWfFj+qzg7iiyXsp5P4fe2hiRY0HPn0S+8U/ceIOIiKTxeTqD\nXPc0S2poe7tZJgTZNw3wkytVRWMjkMobHUF2D1AhVzsp5yn3lY26C87Rkhxu8K4Yo2wmQVz5fL5H\nHjCkWmRz5JlrXYCyV6Wm7zKArkyWIa5cBpc4pXz3eeddKCIi2xCZcmLuYT0f/TxvtyLNZ55+2t2b\niEi5rGPDGNwcIlXoAGi2iLia3R9LGtl0DMBgBhURquUYByFS2iARbG63QGWKWx5P7vTwIWZi9Ve5\ncs8437+YYei6oe+T+/CjJ1w0BlObhhBnXteP6G233SZ33nmnvPa1r5VmsynveMc7ZGZmRn73d39X\n2u22PO95z5MbbrhhPU1HixYt2jll6/oRHRkZkfe///09n//5n//5qV0cWR8sCdwEZ4kqEbINXt5D\nT+gs9fDnvyQiItt37xARkemcbjNAKp0OMafO5gV4PgXe6+pTOqs/9Nef0+1nlAude1S5ttEUVJSg\nfFPLKDKaATLKojzHyEUXiojIxGVXaT9WwGmW9fwDx1VjcTSjyDGP2W77Dj2vAiS3+EP9fmRFeaJi\nTZFuB4j68UXlEA/lMcs3UF4D2Sz1IvKWEazQAXI/Ad5pHnGWSxUjJoDZtQSUNIl86zwUgag9YPOd\nidac2DOQ/RXPVc9sHQpBHeZRw/G6BDHplVUWI4P484jex3JFj986M4t+QfAY40RPOz3SVieVqk/t\ndtv11XJ+qRTiRZu+nqWIog4b1xgqpWvLSLdYjjtPZIpnDj65UNR727lNx3rrVr2HLVtn0Gftw1e+\n8hUREbnwIkWmJ5FDz7EqoxhjucRcdipjsfwInq0Ts8UqCTG6aeFx+nWLwuLM9qNAOgfFIbD+nCm3\nFoFaC+l8st87diri3oZsN64YmCF18Bn922QmWMqIRdvCdfy8O+JCJKwna8+j176fxkLIYsZStGjR\nom3ANjV3vkAexuiBpuCFHlnVWWNbW2fzJ//6H0VEZF9R+aDnv1KdW/lp3U9PI64RGUClZeSSQwXp\nq59VBPrwp5UDbc4p0izWdRiWiooqji9rPOJqkYo++vnKqm4PHdX2mpfq9bLb1It8ZB5IcgZIE7Ag\ns6ixc1ddpcj16DFFWgvI6Fluq9c/D5XwTEM/XzqiPNnWVT1+66weN48SzhV4OFNAIQ3yYRWUEEYi\nUgr9yIK/KyL+c3SU5TWAtoB6iDCJPInSmJeepZo7nhtLIdOzWiyPoz/azgr0UxeRY98Bipvdhgy0\nk4gPFp+/ciWfjc6p5cPoUe90Oj26l/SutlANoNHwuU8RkVY77XLcbXyizZyhpYDZWFAujew7Kozl\ncd5IGSVSRjDGZe3PiRO6Wjj0lD7Dw089ISIiP3b9vxERkR9+X3lzh3xROI/lP1iojkZ1KHq5uboT\n6EWk8MxS4Ke56kulyB0CgWGfyvxJ/CnjSgXf+4hwUHwmLcRl8vMiIjSoMrUdUQjUKjh5Qv9Glpd1\nlbaE4ovM4bdFDTl+VlE/6Ye/SrP9C5Uj6baIRKNFixZtA7apSLSDmj3MyXa8B7i9AmLs0pjtAQTl\n23cj7vAJzeLIz+rs/MQxRXzT48p/7cCs/QzUu+vPaKzaWBMevwaUaKi0A16rlkKeM3Qwt+/SjKkG\neKbCuCKfy67RKIHWiqKeLWloQ06As2PpYnB77RH9vF5RVPGDrykaaUAn9LnXXCkiIhn0o5BXRHfs\nIS2kdwSqTmlkLJXhqWT2TRVZNVVqWFI7AONaBqJjbKMjyMinGa1FzsZWEYmZSVdcrokS5LGoOJTD\nSmGLUUe3OfAzs4pEc0DI5TFwoHOKTImSGBtJTpRogUiZCLjdbnueepE+HKaJPxRBnjrV+5sVjJmf\n9cYxSdSAsIpyTlwUlHMIVMdobETbGZ/Qe81OacxvBvzzl7/4WRFJVJNOHFMuNIcx53E58OTkQslV\ntvE30nFsJiIh0LEMkTR1PZlthrGjKhWXg213P0S0WHUwZCYFzhjj0HDaAumuXg22kPc85P0nQqX+\nKZ/9MrIcmSm1UlFkWkEsMfl7RnLYaIICIkl42R5Vp4QlDlpEotGiRYu2AdvcksmYxZZB3pHbS7Hk\nMbjRFHidKZarPQZv7Fc1c+cg9DobVZ1lj8DrvAQeqIV4ySJi+eorzHbA9MOMJxxf2qKIsoEkrMoK\n4jGzig5+9joN3+oAQWVa0O3EnJRHVkyhBkWegnpUH/ue1m56BJUXJ1N63gsv1/jXFJBkA9knshMq\n4cg0ah3Sfi8uq6xTnvAA97EM73cTuqtET1kq32d8tMD87gmgGyrg5xwHWsT5vrp7AZzq7vM1OuL4\ncUUBI2OKPJl3zM/pPWc9HnrbXawlgiobqNXEaqr0fLda5LnolffjQ7s9rOQ0bW0k603u5rrK5bJU\nqxVcA30q+DG0LaBdcpHZLL32OW8s07j3rVt1rGe2KF9eGNUMpbFRzeo6+PRh3KP2Y/dFilDrqzpW\nixi70SJ1B1BpNgeOdRQ8MajPkVF9Z1fQT5czj3ssIi42j3eljWy+JlcJTm0JiBrvOpP8nNiSMOpB\ncB3/b9YhdiJ1k6Nu4z+Dep5Glck+Rz6/IrQDyKHyPOqgnr/7Qh0faNWSQ11E5AtrTiUrDT8XP5f3\nS133s4hEo0WLFm0DtrlIlHmw9B5niJjAUSLzpg1vdRFItYyaSG1kOFVrOnuPMOStpsclAjFQtGFF\nQlyf1TkFHtXCDo1TPJrXE2ehyH7F5Zp5VF1QZHTltMa0TQCV5DDL1ZF5lS/B299EptCybsfyijBz\n04rYrrrsMhERmYKa0srTmktewOw9s1OzW44fekJERJb3Q1cVyO3QvPJny8uKPsgxJ05uZiYhXxxc\nKJEpeSaaOw7co6tcydrpQCnbtiq6Ys1xUqrbd2j0AHPhOZtPQOuAKkzMfSdHynxvxkSOQ629kFc0\nxKwcbkmj0QNPviuVSvXwuPTsWz1RGydapjKY9M+IyWaAcIFAiyNEdEDnyAjaMqXbkRG9t9EpPS8/\npXGhoyO6fXK/xoXmR/X7xQXN3BlD7aXzZnUMLtuj71oeGrvZHHQ+y9DIBWKk6lMbTvtCDjoIQGqC\nrLg8Pl9h9QLw6aVRfdepCEbk2qgj46uKv6kGM5zwt8P6YiBTO1wdEdHhbyyNCBci1FarV4FL21kb\nkYaqfNq4ztFR5eW3bdN3cmZGV03UQT15Uv0LIS8/uW7+raxlEYlGixYt2gZsc6t9YtbLOLVpzGr4\nPsMseroChRUXPHHjkQAAIABJREFUdXaqYFZrgwfrQHczjXjJvJBH0dus4vwMKzlCiV6guL4EbvDQ\nSWQwocLiBdt1NhN40VcPK5/VPl9RQgsIulah4gw0LKHkMwJeBY5NedFzVfWpBF5rGRlOLaonIb5z\ndFTbvegK5Uyb4CwPglOtIRaQ6ulZxvK5ekBUYcp5W3qWiRDp3WZuOj2fTrUds/vUFFSlUCP9GGL2\nzjtf+agFzOYnMW7ValVeJiJPokY6UcSuXTqeSyvwpJpMpkKe9eX9rCOiSst30prNpkMSW8BF2mqc\n9NaSI9Njp2RlBbXuWyYeFF7rUk7vuYVY4k4KdbM6uj9a1vZnp7GKKoHXHr0Ix2s/Ht+vVRFOHNd3\naHqbItNcWhEiUfXsjCIpIs48yjIUiawxVuSXOTak8OpQKqtRLwF/E8uL1OuEtx+ca3VFOdgs4yqb\nftXOXI51upj1VsS4IEbZVNXk6sTl5rMeGP64XaYUM6mwZ5GoNYtMaTaTKhSPOj4x5W3ZzjGqTB3T\n7cm5w7xi3350W0Si0aJFi7YB21wkajT9mkCmrAvT7FBRhbFvrJeOOMo6eCEiWdQeyjL7oOHPVnVM\nGYUWeRq9/UXMxt9dUp6kUcLsCZ7sZE15lNw/q6ZjFcTTwuUa2zfqslX0+Crq8JTQbhm81IVbNVZw\npa0I7xh0U+ehqDOK/Ogc6uwUICKQH1FUNfYC9fAeOqjcaQue5ExRt9kq7hc8ztg40BDzpAHoiSid\nhmKOGUx+/XeiuFFXZ4e8IbQzoTzP2fzppxRx1oGQiU7onbeeT54/jtx9et2beG7keolIi8UytkWv\n/92KS/zOcmdEJFQ/6o5ZzeVyTo+TudP00tO/XV9EvGVHEZuk9ZpbUMF0dlaf9dQs4g+3aPvbZi4W\nEZHJMc1W+/IPvq7tAJKVspO4Hr3+et1LoFU7jmdYx9i0xR9DIlAicEYTkNeuIeKjRkV3xJu28LfE\nrDLH/bXpnYeuwrT2r4LoBYH2bQt+ijyqOXRSzDlHtVFA0TqrObjcfiJEke7/uGzFFJEpM6j65/CH\n1JpCHGvKxbGyqiprUOn+zIxmRl1woT6vEXDVD3372zLIIhKNFi1atA3YpiLRDGa/OrjKBrk8ziqc\nJVN+ffQskGjLcZs4HpxjhrxIi1kHapzVyGE2EI94HLn5TyDzZkzg2ZzS6x7/kuqZvmgZ3vivqFL9\n6grUmd64V0QS5XnJ6+cr0JZsoAfVIlSb4FEdLaFCY5rK9tqPygFFxCcfUdWp/A5FT08d1f1HkKkl\nuL8xeFybGcQ6unHEbMsYO6KqOhXhgSiNN91lc+TpFQfnLP1j+o4f1ygBIkZmyeSBCsfRPtut1Fgn\nnlEU2p9FxMNybqf+6ZYt09Jt9O7bLJTx8XGHxCwiJWIj6u7m1IrFokOoPM9lPNHdrc5dObms3y9W\ndHUyjqy2EkJDRsp6L9Oj0FN4Up/VPz2mMcLffEj3H3tadRFu+Zlf0OsgbvM8ZHGtVPTeuappI0aa\nmUc2i8x6q1nfqtH0NVkdx2niaQuIeaZDooI6Yavgy6lHmk6R+0QNqCw44zyrk+p5zAQaKeqzZ30v\nagR33E8PV53oNzPCHPfKVZRRqTKZWYOqabSg8O/UroS3i98Q/Cach9jnGahsVVdjxlK0aNGinVHb\nVCRaZ2yb89DpLFFrc7YS7ENVCPtFxAtWoL9ZB7/URCwa1YWo48nqmkhZd1UqG0C4VXgKR8HzVIrI\nNefs1QEfRUpwDnXkC+jvEfVS58A1NhEzVwYCa2CWr2CWTqGyYwuooFBCZhM8x8Wt20VE5CjUmp4+\npsj0wBMH9Hh4/1uI/WuaOjSuhjq29ERzTiUIY6VI8mc2xz0L/owZREQtzJV3+ePM0wbi5XVp7F+z\nycqZrKuj+8dOKM/YaDCbiPGtRa9di4D5OVFkoVBwqNoiUUYg8NyE31UkToTqVJsYuwtvdraIeFHE\n6G4pKoeWxupjaVGR6eEm6ly1FFHuP6D6CCcWoJzeVrQ9jWdcRazr1hk9fgYRIisrrMgKxAd+PZ32\ntVRtXXf2n/GhpfKYd/+2hhHHaRX1zTouo0mtiNx/rm6W5/3MrhbqeLG0bIYhKPgbrCydwDhhdZJj\nPKce30Bsc4vX5aoS+y0izI7/7NtEpkCkVOFKtf3jk7r2eCdT9MP4/pjxSf3bnZzU8ad+61NPHpRB\nFpFotGjRom3ANtc7bwTXOf0xtswlRbQ5+4DTAx/TxKzG71PGg5dBjZ9RCsNj1q67qUNvf2te0ctu\nqAg92lIUQATFnPgmMpCWwA89+vC3RETk6KTO+lf9tFbdbDEjCMo+JWhZVoDAsvQUpvQ+xkf1/Dkg\n02Ug4XFkUB07oDnnS8j4YVZLqzwcAnWVKzF+o4gHzTseDAi0oqiog/0C6vlQ9cnWXKcnlrwW+8H8\ndfJv9BzTszyK+yXIYFQCURW99OMT7H/Ba5fHsR9O5zSb7YkdtTqT1E4tFbp0RTstaTagHwnksgAl\nqcUF6i4A2cIbnc0xkgF1wdLQCT2iY/DI/oM4Ti9RREzw9LTew2xJn+0OZK+N4B6WgRQd8szwPhQp\nMrbXcqFE0hzTVax6bKaWu2Uc2IBuRcchN/2eqwKuVlr8W8A45MB5FqmsxZx48tz4Gx3NQb8Uq4sW\nxn8VehedJnPptb1W20eITq2K7VPuAvfZxGqWmVIpZJYxeoArinQaOgz0W7gfG91OTqomLjnTB/Z9\nTUREHgOXvZZFJBotWrRoG7BNRaIsHZRuMj/ZRzjUwyS+xGQmOSiyn0QebA68yAirVKLueg36nVLT\nWWiWyAkN1aHOVIUS/hjqqGcwuz6JWuEjVWTsLOL6mN2qHc0WSR/R7IYOvM7tPPke6Fwic4mK8S14\nYrOjyKRC1ku1pcePb1G00YCyf2VekegyMoKamD1HJxRRTk5OYtz8uElXwRLjymwXohmqmGcwK69C\nF5XIrljSrVV1J9LNY7yJOLciDpbGzx2KwMph507lA6kaRUUd8pR79qhmZBbH16pQd0I6zmpF22NZ\n7u74U947c6HJATJTqY06VbV2EifaqK46BFoDYp2HLgETa2pAMOTTJa3tZKBEJlk8U8SbLi7pvc2O\nK9c2BY3Z3Xsuw/WZ8w4OEG85dQcWF8kTg3/HmBNZWwV+Ik0+kxYzr1I+UuXqxNXPQu57ot1Kvhm3\nCZyVBj/ewfelUawe8GxraC/FKgngPJkrn2alXdzHOJ51Hdq+i0DOAr9Gk0gUy1G+S8W0v9Jgu1l+\nDj8CH0ueWZDoXxv+DYEGQnlE+fQq3rFj0HN96KHviojIcfD1a1lEotGiRYu2Adtc7zy88OwEkaaL\nCwQELaeBMHFcm4hmiyKRBmLqZqBk38yAV8H5o8j7rQNxMksjD8LqJDNsjkPZZgqzPrjJJmbpZdHZ\nrAQeaRrK8/MH1Gt+6AmtizN9tWpG5vLk9BQ1lJEFQa6VquRF1JnfkofqNhBtDardTz2msYWNBmME\nkQmF7c6dmsPP3PcjR9QjzNm7ABQyTjQG3on6qh0MfMpUjsxRjxXj5ThLxC7m0N+Jcb1P1jpiHCeN\nNZlGkX3DKIwCdUTBa40C3cwiVpLe/Hqhgfupo9/g48ANr4DLbXVarrKo42GZ2YPVQQu1enLlRMFq\ndnar486eRnXJsqtDpX0eBYLbuU2VtRbndBWCBB6ZAC8+vkWPL+Nel5YQNwr0fxQI98QC+G/Un2o0\nFjCG1C/wlfmJPJ2+acuvg8WoBKfy3/IjIsqoWMsEIMZFtqlP4ZAokCczkqhfQG4W7+YJ8PNEtBl6\n69kv8PAu+w38f5qrHnC8rH0l4Egn8U6kgHxXwI9nWL20RY5TT5sCb74MRXuueoiIGShCZMzqGYK/\n5TSU104c0r/dE/P6bj/zjMZkLy7OyyCLSDRatGjRNmCbikRLM4pcJoA8J4Ckaq4inx6XRpVIIo9G\nmx4/oAxkAK2e0Nm8DKTz/7H3rlF2nOWZ6Fu79n3vvuy+d6ul1g3bkiXLCHORDQGDbAs4QxIbX+KI\nM55xTtZM7ISVmHgRls8hGa8hx4EQEoc1nHhWCGPDDMGQHAWYmCFAMFjYsWVky7Ys69K6tPp+2/db\nVZ0f7/N8W1VSq4V7mAZOvX+29u7aVV99VVvfU8/7vM/rYRkqVnQ18VJAPkCyTbgyZZDFrwM99G3S\naoUrbf17PyqCupGZ7bJN4x19zeqqOXiFfq8S0dWNvYbsKLtv6nlUUIfsgRtNt+nxU6juKNf1uJMT\niigjgOQxaN1icZ2HNtRtk7skCsihtxE9I9OBLH0a88CKplIFCB3zHgGqIJJtOSEBAWJ/GaCbXjgR\n8Xi1pr7ayMz2Q2VAVDc+PuHbfxtUEew33wShtYjMOL0hI6hXb8N+HJd9ctAzvlSXehVIFIiMnGCl\ngFpscGilQstPtLSYl94+PYf0G9QPoQ7Ek4N+MANFAXn7tevVuSqKGvNsGv2z6ux4Ck9WONGfmVQE\nemJcObaDz2vF0vBardVub4f2GW5S2YzfDzXYdTTYbYBdA1p8Narr4LIUY3Ug1QQ4j5RBjETE/g68\npmIpwr5k0BDTGYyuUsa7lseN+d4Hnwx4j7n0y3BYK08rfTwt2RhPnP8nQLeK/xyq6AQQtVidh3u6\nxP7zzO7z70SoOi6qCaLYb7lKhcg09hMi0TDCCCOMn2qsKhKN1sEBlvR//4mS8iwOXLwFDvExaLzS\nRuKlq8ZZuIuPbFyvH6N/OVobSQYcXaWBVQ1Ily7bhVPKZVaRvU+j1n3buI5rKKeraQdciDqR0M2C\noz2DKpYN775aRFpuSqwxr2F1L5d14HE49cewXRq19BGL/p3I0oP7S4MjpKYuAdWAQW5QKWQ6FCXl\nkV3PwZE/ChRBBJgCYo2TvwIqYWa6ivedac32k8tNAlGzx3ocjvjc73r0nZ9Fx8VE0t+jiW7q7LlU\nwjiHhlCQzjrvBqt/Cr7PHcfvak5UkQJvmUjYZv/UDUZtZomB4tH3qlaBUzv4ZhGRkydHjT6xI6fn\n2t2j6Jlom+ibWf4UPk8hG06Hd6+ouGRyBg5d83ouf/eNb4qIyMSkIsbBQVUgkKLr6NQ56htC1RvG\nGXSsCvaI4t9ZtUVESh0oESFfg900E3i6K5fZu0mvaamg904NHDJ7TlEfSm6RiJJoLNivPehIT2Qa\n7EDACiiqDIzm2/Ru4nFQDQhHr0YNulB0ueBvL4ffrk1O1PN3NS2Dk62Bc40zf4H52LzxDSIiMjkx\nL8tFiETDCCOMMFYQq+viBD9Ja7PWITtAD/3wUrS79O+DG/TvNpBaHJnLt6/TTGkBiNUBF5hkKRRc\ngNgPpl5iT3JwquDujnxf+91EvndIvzeqmbnEoq5yIx70kGk9zly/ooXYFh3Xtpu1Uqlcw6rtcFWl\n1yLqe1Os6NFVNI7pn59HdjnQ63p2QZEbM50OuMJyRbdv62TVDfrKAGlTf7kGekzyVnQAShCJAqWV\na4o61gwrMuyEyiEeI8+HapU0+74zEwtVA3gyqgMycDZqAOEPDeo4FoCS1o8o79jVrfPIHuGzs/ok\nwioZVt2QO23UmWmmWgN84MIctisbbSn7dBHxkJMjImvDvSIi4ti2xFGd1ZlTZUAXXhOopiISTYC3\npUFDBXpUBwiqBERXQM39U8+oA9hzz78gIiLDa/TcBwdUUdFAFVxbh86R6/iz5ORAg91Kg9Vbpl9V\nwNGdr5xDx/iHIl+A2n1+r5AvYv7QXQCIjz4VVFBQyUFutWnyGPRX8PubtvpgocoMCL5S93fb5L3G\npy36LCTgnMHx06+BTykO9KYNwTxEiIDBecaosy37xhE1fbt0uxxq53Od+iSRw5PJxSJEomGEEUYY\nK4hVRaK5G94mIiJv+t3fEBGRxCZFdglowpIgNGrsYAhkagEh2cjIZRy6Z6P+l+5QQErso97Eal2A\nV2IUfM+aHeo6fvS41jvXUaWQAmcbQ13vNMZx7S3vFRGRrmuu1O0t1lNzHLpdEVUrCfBxTXB+dXpF\nAhkvFPy6SsfTz4+eHhWRFg830NeFLfQ8ylVFDa3e3X70we6a5B6TyMqzjxCz8USYnKdeOAoRPUQT\nVAXAuR/VHbNzmsHcsWM7xqXnX0IHxTZoF1mnzBr8kXWa2bZM5lzPvwsO90SL9I+lo48HJF8oaaab\nVUk8/2Qq2dIt4t6pApWzqutcR3vG5VdskQy5QPw9Bs50TRtq1XGP0XmsiSy6k9exlxb0/eyiXpM5\n+FAeHx0VEZEEFBU8txqQXUdOr+3MtF6rLPSRvb2qFmCvqGB2e7leQ8GKpkbA6SuIYHk8Zuept6UA\nJYNqPgsIfGFBr30TTzG859kRNohQyWkiGW869i6iWq2BvEUaTwSt7gYl3/h4PuyWYJA1PXPhu8on\nkSp0rTEH/ctS5IBxfoFuGXXM82UblbP+l+f0SeJiESLRMMIII4wVxCUh0SNHjshv/dZvyV133SV7\n9+6V8fFxuf/++8VxHOnt7ZVPfvKTEo/HZd++ffKFL3xBIpGI3HbbbXLrrbdedL9X/e8fFBGR3rdq\ndrsKri7L8gjWw0KT5jLBRtcgvHrsVw/+wwE3SR0k+7XEkCVuS9LBXVeproT2lU+d1WqVs2dUx9hR\nBBcXQR/4PnCwQA3JBV3N2tvZ8VDHk1+E6qDBNYo8DqpUsIpTYxgDIquj7ndiYkz/Tu2d8ZLUvTWA\nJBOmThq8D+uSkaklZ0kEWEOWf35Gucl4wu+OXgHXWsyjwgo8YBGZ2lic49DzbANKO3NGEfyWLVqp\n5UF/u4jqnMEBnTd2mHRZqQbURS6VqMj0uw/wejPI/ldxfdesUYQ9j+qhSqXccnQyLvv+fQXdjkRE\nxLKNDrQXPC0rtIvwCWWFT/4sPGyBPOPGgxWO7/BnKFUUJbdq8RdxfJ3zdetU0VBGd4ThQT1u1qB3\njfOqvwIVSy1HLb/De4s7tHzfC+pIuf+xMfTtcqh8QDVYiRwisul4mklBWeLy/JHl5jWNgFONolLI\nw/jYd4zKjWQCagr89snRVnGv8vz41MHxtxAuHMzoE4HfIKsTBVl54+BGDwSMKwllRwzXrQgE/uOD\nmh9ZQOfai8WySLRcLsuDDz4ou3btMp/9xV/8hdx5553ypS99SUZGRuTxxx+Xcrksn/3sZ+Vv/uZv\n5NFHH5UvfOELpp1rGGGEEcYvaiyLROPxuDzyyCPyyCOPmM+efvpp+aM/+iMREbn++uvlr//6r2XD\nhg2yfft2gyp27twpBw4ckHe/+91L7juFKhErxv43cGzBqOLkN9gziB0BXfqNBjoAAplG4Q9qtbzc\n9T24tahFr0V9TXUqctt+82497uWaKT34n/9eREQiWH1js7pKju5XnqTWrqvX1uFr9fispKqz6gII\ns8pafWYe9XgNeFhSi5em/hIONzZQQb1B/agi1VwXnXjg5gQ+j8H6adMrHNNElLZ+g2aIKxhnA5o5\n12G3TV3F6xUdfzeuqc1eS+jgSM65WNDxHzui9ce5dviFMpMMFJeGxpA9mTq70HN9CQ0jHYeIUDPQ\nxfYPqIZzEXrSGlQAHR056cop9zk1paiVteNEZrw/qdgQUQ9LvssAgRWAQMpFOMzjaaIwi+q3RfDd\nuEe5u2YGnCOeDngtOsD39vbCeQo/vYgFfl/8/a2IFMnlkgMktxl01gpm8YNZeeoxgwiU89JCwH5t\nbne3XqMc5nV2dhr7hWOZR70o9LLkGIlA2SrJ9qsNePxgVwXy5En8FqJR/71BHSkRKl+DnWSZRzAc\ncZrOavCtgKN+g1WPeEry8PfXRk/55vFiYXmXspWIPPzww5LL5WTv3r2ya9cu2b9/v4iInDp1Su6/\n/3759V//dXnxxRflYx/7mIiIfOYzn5HBwUG5/fbbl9yn6zQlYq9qbiuMMMIIY0Wx4v/Blvo/+FL+\nb/YqeZFslzTr7CgIXsOABHb6Y98XtgLE6kdONIBggmHasZgxgSuFi5LjKpKqoA53fPSEiIic/cEB\nuf7e35fv/rqqBzpeVRRyZoNWBK39N7+ir1eorrUEn8tSmfXBKbySC0RNPV2lmCgGjKGH42Jea+YP\nPPsDERGpAqnOTNOdCV6V/T3ykf/rP8rDD+lTAblKTkcamsaOTupHdT+CeSbn6cAdqgLUZWE1L1fY\nj0fPq7sH3GZKUUsiBYTKuuqCju/yyzaLiMirr74q/+rOe+Tpbz+O89f9np2YwvE75Nwglxvs4knN\nn+PR/UpPcPysHu/sWeWwN27cLCWcw9ycol0nkL1O0ckKt/7v3v+A/NknH5QcvFnjuAj0Vo2i/j8D\n/eDkMeXNu1Hh0o45KAG9T6De//SUIrZvfvfbIiKShS41ldC5GxpSTrSnS6/F5g2KUC+/XP1GbduW\n97z31+Qf9/0XEWk9RRDJEVnyPTlDIjp6xvJ9sILIuDUZD1qdH7pHUZ/JrDl/lC2/UJH/7eYPyde/\n9gURaT0ttNQD+i3TaTagKyVS5LXm5w3jcOZXIRCBEtkHn1I4P3zfaDTk3/7m78kjn/uUnheeJvN4\nejG9pfCbIHc+P63X70fPqZ9oAffT97/3z7JUvK7sfDqdNic1OTkpfX190tfXZ8r6RESmpqaMaW4Y\nYYQRxi9qvC4keu2118oTTzwhv/zLvyzf+ta35B3veIfs2LFDHnjgAcnn82Lbthw4cMA82i8ZFnkh\nU3mrH7PHEhv3mZbT/jpcszoGUW8QmRoois/Z4yhC7pF90uFgf4XWzWbBywxctUVERE45r4mISMdO\nVRNIRheJfB4ZU9RfG0QIxyDqLx1X90ckRad20zPIdGzU8+zq0Yzt3DyQGwSzxUnNGM/M6ud5OPwT\nyRE9MQvO/adQfeOCg16/fr2IiHE+mhxXVQBr6oeGtarGBnJtYp5SWeXHEsjQRqEdLKGWffS0jmtq\nWpE7M9Osa7dtf8dKoghmZo0jP4I9zuk4tJj3e4Z2gm/MdXTIzJSi0hy4xKATPLtHlmstvWijXpNq\nRed+CsnQJBBZD7xNbdSyD2QVUbaBA6Q+sgYNcBI19aWaItY4+O0ZKBW6u/T4g0P6NOM60KOuWYO5\nsX1zQI9WIrJFcLVGG2uq2fReC3b1DHKswU6p6bTeM8xK0xHeNtl8PU9yuHN5qgzAceIpJWZ0qXDg\nwjVPpvQeiQU4zCByJSIOcpscNxEqESjPi9eX588wyg7uDzrfrhz0phh3qaD3+tr1qgudnzmi5w19\nhuVe/ClXt10mDh06JA899JCMjY1JNBqVJ554Qj71qU/JRz/6Ufnyl78sQ0ND8iu/8isSi8Xkvvvu\nk7vvvlssy5J77rnHkPhhhBFGGL+osex/otu2bZNHH330vM8///nPn/fZnj17ZM+ePZd8cIt93cXf\nyY9AssWrgocxiNW60IuBrHRmJwL1zH6D7AXeoyIpAu/FCHppu+2KKgZuvE5ERObgixnp0dWsCU61\n2kAfH2TJE6yWgXauCYcfZpGNuxESmq6lCGx+UVGQHdVV+KodWhEVjW3BfsgL6Sp/4tioiIh09Sia\nKKMCygZ6sOEOxaaeaSC2rl7VV/ZAE+m5yp/FoNXLzynXyMxpDh0EYokMxq2vVEPU0CN97LS6YtFZ\nf25BPx89re9H1inayrShJh/qAlYXBVEUvSWp5avhstZQ8RXD9/rgETA9M3VeBQ+z20Qqs4vz2HcL\nYXhuw9Tfe8jmW0DzRWTju7v0GBtHlO8toTKpSs4R1VzFgl6bRXBpE8hm96Dixrbo8qRzsn6DVm95\n7Mtu3Kf0PavOiMj4GtSFEqEFs9f8PKh8oD9BuYTqs1lFym245xNQUrBbKb1b43GM09zDKXxu+bbr\n4hfFP86gEiNqnr4ivvEHNcPB7R1cJz7FBCu4yvDsLZRQPQdNc8Li06B+f2BA70kqTlhd2IArVB35\ngotFWLEURhhhhLGCWFV9kRen3hPZV9ePJINUp003apOFDnKf+Jz7Z8dAi5k+8iZ+REsOls7xWUFV\nRVaR2gL22z6iHKGHqgtTv1tGNjkGFCOsKqEGDSgClVLxhK7WmTa4l6PPjGWjpzc4y85AV07XI6JV\ntJABx/nWa98qIiIvH1Kd5uIia8pRvQE9aG9W99ffD48COuLDST+L+mi3rvsld0kvyQ7UcTegsSsX\n0J8GKIYoIthtdHBQkW9bhrpV1Poj8+vUWcEEZx7wcm1wd++BPyq9L3u6dB6GBlFRhv14rivxmL8K\ninrEImqlgxUvIop82Q2An5/K6utGdIO0KtAPPqduTH29ikyr9GfoVcS7iGqzcSDQ1mOVvlRQAdTE\nvTgHDrc6omg/kRzAqND9E5xis6z3WhP8tBNAoMxy8z3PkwgtmA2nIxYReifUB6k09ZnkKHU0Cf72\nbD8yS5DXd9jXnX3j9e/t7f5qNMP/B7hRvqdelciUTyUGkWJekkDCCfLkeAKg434nlB+dqNHnedYb\nfNqBdy70rxPoqZRCh4Lefr3n6LF7sQiRaBhhhBHGCmJVkWhDHLGlVeNtdIFm9SampPMMM3aXtn9y\noCbbb/mhrRf4BwCSxJGFdlF1IUCGmV5wndAEpi12jKQLNyuS2IMIfBQyfTGs5uw8yQM6Dvu8s3qD\nXCErudABEeNPQKMYj6IDJTK7J09q/XOzyew/dKLdutqm0/4afKoUotROFvT4qQ7VgyIBK1GQt9SN\nLoIPzM/Sx9OPgrjqUy3QluU8sSqFlekWvkeUhAwsvCSTGC/9UU+fVpQ3P6c85cjIehER6e7V8dYa\nTYPA6qZmXbdtev7s7blINJvNmu8loRh5S0HHlFnE0wq8W2c3arZ+YRG9lFJ6juOo+joFREPu1egd\nweFlc4qQmuDa0hn0F+vU/VoRPz/sooacTwn0k1iA76cXcI7nbyjYg4nZbfLxdBgzXCT7aTnMguOp\ngf4VTT+nyfGZyig4e/EeYF93PgkEPQE4Hj69MMj5kuvkdeJ7ClrL8L3guPnbieC8C0XqfNP4OxQr\n+G114TcaIM7lAAAgAElEQVRRRzeLdnQNzRfBpYLTvpRKpBCJhhFGGGGsIFa35hKrftO4U7OrJHpd\nm9UViMn2/5+/VFXUeVwpP5fA54HvU1PWpIuQpatf+4BmVqt0AQdPEmdHR2S128FhktNkFUQM3KLl\nsZc4OFCzzpGTxTiQzS8VyeOhNhyZZuPPiS6YcbiPD48o19loapac/WKofyUCZcWTbXxZ9fMMEGke\nmkc679iWopcJVAjNQUUQcVm7z4yunveRI6q1oxemwDknlaLkDRVacM7hE4bptQRO/NjBl0VEZHp8\n/Jy/imzYrBVi4+iG+vyLut3OnTuNbtJk+Nm7BwiDyIwcm44rdU7/JvTvwr0xDH48M6tIcm0B3SvR\nl30O/bomKorKp8DNEfHwHqCTlivkxXWcJSC4iWktVOmHNpi6St7zEDKYa9QPfScRE/00JeAkzyDC\nY7Xf8LDeK3noPtkPzHHokC+YD31ty5In93OZzAu0PvfX9NMzgOMJViLxe0tl6YlE6dPArHodPHjM\n5Bt0fitQxJBLZj6g2fRn76NQBnVCUcP/c6ahxmCXiPkFv4vWhSJEomGEEUYYK4hVRaK1SlWSiazR\nfLEiyQFyiQg9If3DDCJQooilEOiyQQqW3oyWrvYxZPc7OxWJOhnWoMP1CN9j9poZQwecKjOchtv1\nmGHk54LtWB0CZBhVHox1xw2s7k04zMRQKeQ00Tscq2kcGrcUdJhxzFsMWX+qEzygJ+puqQ+Ntilq\noANPM1DXTJSwAJ5rHap54uB255GtZ922jUqmNFQAzBDXa7i+FpEoSoiBxmbgDzrQr1xnV4eis61X\nql62WGZfIP3+8Dr4sE6eNWibvCynnsiUc204NlF0Qh/MMpDLU0dV6RCFA9dIvyoz4tA/DsX0GnTl\n9HVmAVpf8MQJONt3J+AaBUjX3qEqgIE1Wjvf0aZzsmnjBswNehMBgbah3xUR1mKRHrbwHeDTXJPI\nDX3IgNB4vryGs3PK1c7O6mujyf5YRJrooomnEQdPCWNjykcHuc1Wn/m47zhBVyny41RyELF2dXXj\n+zpOcqi8V+gJIPBN8PA0xy4SAJiyCI446NrFe61ILwTc6905VIK5uB+oDjCcMZ5cvOX/TwmRaBhh\nhBHGCmJVkWgMZBwd6embyUxfgqt4FBxehFwpUQTdj1r81qXEclyqQV4etXJYzYE+YvANjUEjJxa1\ncewvg3GatL/4X83hmdXnH4AIwRVGULkkcNbn5uyuyWy9oEok0tTV8/Sxl0REJJ1UpLgJrkpUBbBP\nO10IyXsRHZAzpZtTzXRkBLrKwhEf7ltWgkha95MGeupI+vv98LwjAbd51syXUD2zcZN6F3RDH0rv\ngSlk5cnjsUvoqVPq/ei6Tgut41zJRUoga32uH2e9XpfZkiLIY+iv9dq47jPd1LGfgnv/AhDtViDH\n7XG9NuOnNCvvAcnGgHQX4XDfBueuNLLFWSDaDLYbP6v737hGr1kBnWoBrKRcxXhxj06xO0GMTwlU\nOvgrlMhF8umCSghGtUq+nL8h+JoyTxHwG+X+eE0HBlTXSgUFa/tZ7UZ1BDlUzj/DVEqBgyQC5iuv\nPa9fpl2flibhHxHHU1mpQvcnaI6j1CgP4Tx1fNPT09i/5zsP+sZSeUKVhBNZ/v+WEImGEUYYYawg\nVhWJlip1Sbe1Mmfk6Nh5D5I1AY1hHO5dZBAjgbpaz/NDviWz9EFH/EvM8pMTZN3xUtwsj89KLGan\nW25S1K8Gpp9/91iHjMoecLM1dFZkd05yjh7qfM+gO6hAg+jaitSq4Of4mkjqxKbboRrAvLJPDZ8I\nHCDQIfRIqhTgFgX9Zo69nJAxncEqLnBdEjwx1LC/pqBjJdBVHrX1VTokDWjGeO0Gzb6zJr6CDPAi\n6sjrQEOFPOui4U7lOeLQudwh76rHyqbp4Qq03WjpRAuLizKP/lqRNypXefWN2sG0eloR3+JLijQb\nx1URcLKhxx5AbfYE/AJqeEqo2UA6hicHN1fUcymim+jioiKxHdvfr9vnULUm4A6pWIHmlwqSelOv\nLZEos9G8J1vIjz2l9Ht0PSKy5Cs/Zy+iZsAVKViTTyRPh65gVp3j4P75PSJbIlXqTs/V7Z77dwv3\nfrGg35s8q0jSw2NUvkD/WL1OIyMjvuOScyVCrpPrRXY/mYT7VF3H1wk/CepOOyiLuEiESDSMMMII\nYwWxqkjUsfV/+yY4RwKxRpO+ov6aahucHM2YGnVqv1iJE/W9tno2+hHl+SX3l4ZMg9svpwZoVUqB\nAxRmjLm6Ob7tjM8pVQnQlzoNuHHDqZ7uRW5T0cMCXNybyOD2twP9wJ3KReaW6CeCTGosA/9O1BsT\n8bO+2EUWvwGOtBv14uk2fc9+ROwz/9KL6gbe3a8VVAKeq8br2aRDD7SV8EMdgPoh16/147ke5QWZ\nyc4k4DhUoG5W5z1GFJaml6UjHvpaxWOKRKrwDW0A1RfhPM8uliIiL54clTS4yGEgmSkP3Q6S6I+1\nWzuZrq1fJSIihadVC3t49Ji+R2XRXBm+BThuxGJ3TZ1jqgIKQKRZ6C+fe+5ZERHZcZU62yfBM9PV\nP0kdJrg8cogdGXZ8RS3+nN9btlKhv0ADx8tirthfvuAbF5/uEgGPASLGYNfQoEM8XbN4POpIuZ9g\nZ1eOm/vn+ykg+zYoT9jPvrtPVQllVljN672XxfzSC3d2Vu+18XHdD/vMZ3BPuXBqm51RZMv8xSL5\ndlzHerV1nywVIRINI4wwwlhBrCoSHZ/Ny0B3p0wvstuln79pYlUhciOiSSWJ1NjBj84wyMCaLDiR\nHrnTIIfqH89SwPL1cqjm8wAidqWO89JPI/iHF3DRbtT8TvmszqBDfL2Ul1iqT8bRMzyDq8ke6g5Q\nkFtRpJrpVtRTmNMKIBfz09kNvSf0nAmgmLkp3S4BPi6aUZQRF6oX9LpMoHsn/UXzcJFKgzt26BsK\nFUMNqKAT4+zoUnSRbkfdNc+XFgNQQaSSzOqjnhr3SwzdXZvNhpTz6MaJcyOyKiCrPoseO/Vmi+ua\nqTTkLVco0vSiUB4AWZXgnOUBsXUlFS0Po1Ppy8eUK52v6TmxywK7SdpxomY4hAF50q+T7xs13f7k\nqCKnwQG9Ji6QtQveO4vse6GsSG+RNfAWEWo75oJ6SeQbwFkSAfKV9yz5d4NEgUyp2+T7Vs8mdmOA\nnwO4xYV5Ot/DlzPQEyroYM+WQj14+iCSrUKhU8bTVTsqn+iVW0V3gyYc6+nlS17fw/jm53X/5JIT\nyKcU4B/b3417HWoHOvZvv1KfCGag+71YhEg0jDDCCGMFsapItIoMGYpCpAKeiLJJ9pevV+AQk6QD\nPfSU7H/usUoD36OjvanPBZ8ToZsQI1A7f0nNo8+PS62UYt20Qcama6l/NCYbD16GfXo8ogBwlIWF\nBWnrEamxAyKQmQtk5qK6I4ba+oiLXt+YH6uErHpV0Vsa6KqBcTbgID8+rYi0H1n5VByVTUC6PT2K\nzgaBJk6MnsT4dHWfQHfP7pyu+glwsl39un2qTTOoUWj+4jHyc+S49fp2dqEXUwl9geDwv4ha/mw6\nKf2ookqkFZkcO6lIkZVIJegtZ2dQCSMi9YW6fOvL/11ERIbfqBrV/ivXi4jIUJd6oZ5BNdWJI8r7\nbrR1zGsGlf9dAPfXgZr26bqOqVLx1+wn4UVLTpFKj2xKs8J5PJU1Gzrnc/M6zl6g9SYVG7iWrEYr\nV9izCE89QGLMlrPvVhAh8r3RWtM/gn25UnSu9/fF4n8d+UW6Oem4WEnlwEms6OH4Ub/7E7lZIlAe\njxVVZSBRPt00PJ3fLnRHZU17uUKeHU5i+B6NwqpA5O1Z+FngKWbdOuW+G1C8MC/QBv9R+oxuROeB\ni0WIRMMII4wwVhCrikSjyD4nmW1Gbfkc6oPLRV1VinldnQvQIW4YVt3iZetVV5htY204qxbYuwm8\nGFZnL/I6oeYKw3QppdO+0Ymyph7ONuzOCX6NPFcULkxV1OwXUblTBVLMoa88s/r1BldnIFcg9gpW\nYToENZAtJ4qZAp9lAQlOw7WJrkqd6DufRtfSKLjKLKpx+sB3HQNaSQE95br1ewNwDurq0lXeQ+Y5\nge6h0ZieR8ZwqRg3qknyqI92qUFsYxUNHPWlKXlk3Ysz6IgKpFRCDfUkXHoqCy2Xo1jNlSz49tlD\no/r3OUU+LjjNGrowXLVth4iIbI0p+i7aqJY6q8hxFvcuK4MSCWa16fQFnwMgnwiePzqgqBgeBvI9\nq/t96hnN2nfhGm+7Qv0DOjuhFQbiasv6ey/VK+A6oZtNoFKKiJRo3475+8IHs+RErESKnkfXJd1u\nYEDHOwsn/yT6u5MPT4FnX8DTAr9H5EikPjysiO/MuD61NHHPUa9aqun1qOM60XN340bVFFeQra87\n1Lnqax88D0Cnm3zL3GwB44OjGnj/OsTpdMWKx/Tzi0WIRMMII4wwVhCrWzsPLiyOXkZuU/mkjpiu\nIoWq9p/xsIrnuhXZFOZ1VZpIaFZ4bVz1ixGbfBE4PyBPZkzJrbXqhC+twmnJYJY/sLfzwiMXCgRq\nKqv8rkqeA+1bnVwoqjmAKOdn9bynzyIbXmvIRhFx4ffpArFarAeuK3JLgKdKw71bkJntQM+lM2eU\n72uizvvEKa3emQcPOD6mKIuu71e8QTOXqTRWfdSdD2/Wz2/avE1ERIa2atXP9e//gIiIxODUT/0p\n54/cp+kdjsx2hCS1hwosvE3DTasA1yiih0ajKg6y3OOYo9NA62XMuQs+NpI6pyIn6hknq1IVekcg\npqNnlFPN4Hvz7msiIjKnpfNGEeKhZ0/DY7dOfe3qUl1iNyph6Huwdq0ipFSCHWn18yR0nyMb1O9g\ncI0eaHJMnwqOHtW53rpVuduIBT1mQZEgkv7GJyEWZ/dLvZbZqKL+NqD/almvYRrdB8pwkaJom8iU\nutPJCd0Ps97T01PYjhVJyH4X2e0AHWXxNFYqoVIrP4/503t2bPwsvg9eH9d6/YZNIiIyxxp8INds\nmn4MVObASR9PAkPgqpMxdrwF8sc9nEqy/5jeQ/QE5q+Z3HPD8VdSXShCJBpGGGGEsYJYXZ1ooSlX\ni8iZOVQvIJNXo3VNQle/dA4d+6gbxaJx4qyuguWKcnkj65WfiRtXIbp9w9uQ+sMI+SI9DiuDgn1q\nzv3sUsINUK6sgrC8AFZl8Tg0iE1WCDkBpAwut8rM8iJc0WOKImZsRSWHkamlp6WD45ahcTv5zPMi\nIrLrGu0KmkJlVFcJGdY86qCLQDVYW4+++KqIiPQO6PFOTSgq6+nX991RXaXzbXAQ2qQZz6FOfTKw\n0Y0Utp9GRRFlJRXdu7Dqx+FWxbrwSagCysjC16DdpLs5M7c73rhT37uunD4B3WaF+kV0i+yCHnCD\nIq7F/XpuIiLdG4bk7IIiuYHLLhMRkQ3XKPcZrYCDhB7z7A9/rJ9vUtQd6cE9ikqj5vPqoMXs8xDq\n/+NAhnScGpvQc3vTm7QCqq1TeeMyuNvePkWqb37bL+l+gc5PHlPlw3M/1oqpKnwyK1V9ihjo68bx\nddL7ehW1MwtufhOW/pYsu47xwd3JZW8jnT9m4yfKihSZxc7AyYv6z5hxCGNvJ1QAodcUkXl3dzf2\nj3sBCLZYYq8oHUZfjypFqNTppNN8FT2bUL1Xx/sU/t7p6HlMj+vT1ByQcgbdPyO49xagE7Xx9Mrx\nt7pq8Ok1rJ0PI4wwwvipxqoi0Ui9JCJZsR14LqIjX6ZbVxVmjfOLumqW4DhvwbHGSuvqMllCR8dx\nXZV7OnS16elk1p4ZPVTMsMcQ9KNxU9HkR6JLVyD5w2wf+EvdfAH13Mi+MwvvNHQVrQBJJ+N63qBG\npYZ+7CUg0WQKHQrhYXnKUVRzDDXwXpsepwDudD4CPemAXuaZbv3esWe1J1HpFeW1rDLqlcs6j2Vo\nHtPg+UroNT794tMiItI/pGiivQOoB1yngA+rzip/l6ymJNa9Xrwyqj4icL9CMylWmrEX+wwyuE34\noo6eOqHvkSEmiqqCt4wDNZwdU+7cikTEAwf25l96h4iIDMEvYL6uc9w7q/fEq5tbXNdlb9wh+R9r\nFjw7ogioMoXKG+gWp1Hn3w3d5NqoIs18Xsfak9J7sbZOs8ys6KkxC12lTyWcwIBUF+GlSm/U3g59\nmnJR815HB1Qrjp5PG5XrG1inCLeEyp0jhxWZnoAu1kVVWy+6Wvb26GsuB11qh14zZvlLQLI2xleD\nLwMRqc0+9PitsLbfVERBSVHDU8LsvM7XAvIX7LVULLJnEXsysRoPyBZZcepqi6gUS8OpK4mKpgV8\nnoLutgyNeQXzmIRyZN36dZgPPeo8xmOheo5Pp2Vw5/w/ghVarCy7WIRINIwwwghjBbGqSDQOp5yB\nNnSNRMbMchUFtIOn6GDPbyCmMnibMnicGHp3zxQUycyMoc/NpK46/agZz2ViOA56EeHVibBGPeJ7\nZbSQJvgRIlbahQo/5vfQUZDZd2aP4QhDbo/u4S56MjVQQWQL+uPA5SqVQffLU8qHnXY18zzTpWhj\n3II7E5LeCYw3l1VU04mqm0loJkd2aJ14dY2O46m//57uZ0bRQxc40jlbx5PpVnSWhGbuwCFFPRlH\nkfMGdBklh0lfWCsekS3d6+XVV14QEZE4+te74HxdbOfVoZMlqkE9dv8azWyXUSceR117HNl8VmqN\nnlH+ayo/Lw7+VoWD+YlpRakj1ylnuWPkjTqnCXZOFTlx6qTMAs3SxLYZ0XvmyGuKhmMQGm6/XjnK\nGTqMAQ0PQi9Jz9sZzCU1u/k8HOaRJU6AWyR6n5zUp4p6Ua9Jb9eQiLxdZif0POiwXoe2l/wydZ6D\nG5VDHd6kyKsMhHr2tHKZL7yi9w67GmTa0xi3Xtt2cKg93YqQc0CorgVPAIv+m/r9xUVULgWqAqtV\n+HbiaY9ZfV571vRXqHFGtVuDfdY8f7UhXZWSUA/QT6OzQ/crxsFf55EVVqkEK6ropQD9LJ7+0tDV\n0jnfcZK+8dFprIWcl44QiYYRRhhhrCBWFYkO91NDp3xSClo5uho1HehDkd7NZaEpA1Jya/q+CG1Z\nvEMzkBY6AZahXzw1rYhlahqdG/tUu7Z2iPyLnzNlGE7UdMlkr6MLN01y8T4i4LGAaqpAnnlUXNXg\nasSa9hTdx1EJ5KLjYiSqxzsxpsjv8//tr0VEpBDTeVp3h6IqG4g92YDv6oSe7xlkijfuulJERH58\nVLnQ9eAyZ14a1fGMKo82iD71tS5dlfPgEbP9Ol8Z8H6H5hUdTR1+SkREoi/7e3nXF+CtOT8n/8/V\nu+Xvv/5tERHpQgXThs3r9X2noolcWwqziOuAXlUW9K/pDDKx4AmngA6LcIsa83Rez8xOSqJXz60E\nPaa7WZHWK6cUkY0+dVRERE4fUL3nR26+S+pTi7KjV8d0sqw88QKQZh0epgOdivAGc5pFHx5SBDUP\n7nRhXrlT1pAz2yuWIp5cTu/1PGq9Y7hHE6iISiMfEI0DuZZ1jiem9dpUq8xmJzA3yCID0NoJPEWB\nu4zC6WzkClVMbNqiesvZaR3nJPwMXnhZ5zKJ8Wagv+zK6VPGQI9+3gcfz3gcutKUHiebxT2P364H\nDrU3B44YiI46UXbwFXj+FsGHE0EyWCnVhRr2epWeAvp5Cb9Vuj4lwWFaID/JcRbA7/O3ms7ocdZv\nGPZtV0JPK/qixg3n2+oKu1RcEhI9cuSI7N69Wx577DERERkfH5e77rpL9u7dK3fddZdp/rRv3z65\n5ZZb5NZbb5WvfOUrl7LrMMIII4yf61gWiZbLZXnwwQdl165d5rPPfOYzctttt8n73vc++eIXvyif\n//zn5d5775XPfvaz8vjjj0ssFpMPfvCDcsMNN5iV4kKxBj1+0hFmx1GnGmFvaazOdL9G5q6ErDWd\nWiIlXb0bWPVtINI0XKxLC4ouZsfRkbGpq3AK3owdcCdKxIA4sZqzY2Oz5s/ckQeKmD714AAj7H+j\niGkByHMMq7/HzGYS/WNqQMyujruNWW4X1S/QwP2Pv/u6iIgcP6gOQpkNzIrDTxP0VPmYHufwY/8s\nIi1PxiPHD4mIyLo3qQayDB7ulROKcCfqugi+e4vqSPOoVe9ZqyhGUFVy5LkDejx4MFqDilYEvdfn\n/0Vd3itHNDtfxfkfeEE1mVHMpxuFI9GgXufCHHqpZ3S/VWgI5wvKsdpA/p3wjOyMKlI/KXq+r7mK\nZioDOemO4Bg6MhnJKYJ84fuqLJh6UcdYO4frKlpVyWzVc93YpxVCW3u1Ymj/339HREQWJpQztdGj\nJyl4+on5HetNN0vPXwVXBTKOAzEyu01Hq5jNihr9eh1PR1UoN8jRNdF9tK0NCCyjHCYd6rldBNcs\nitr9OLLMqTZ9XZNQDnXDZj3fOXgNzMIb9pVXlaM9fRJzD6/XbEa/39vbIbt+ScSFLwO9aCu45+LI\nmruezjMrtfj9esM/T8zGt5Qx+ucaOgbQJ5W/vSpq5avGJYv5B+pe9fjbtqnOd3RUz4cxOa7nmcS4\n29vpKqVPXXSbOrcDwlKxLBKNx+PyyCOPSF9fn/ns4x//uNx0000ioo8pCwsLcvDgQdm+fbu0tbVJ\nMpmUnTt3yoEDB5YdQBhhhBHGz3Msi0Sj0eh5vaLTabjsOI586UtfknvuuUdmZmakq6vLbNPV1WUe\n85cKL1i7jjS3DQ5SWLmD49fqdLbX1QPSMomii+R0hasZDUnZi1uRT2KEyFJX7SOoGV8DTrYLTjqg\nkyRaKUpHd7+U0UPIFTq7sKePHo+9s8dmUVnj0MEeCNVmx0fdbxxZ+QbUAUl4GjaiCimz4ABPTCiP\nNwZf0RqUp1Fwnj948AmRv71bpr+JHunwCihnoAZI63E2X6N11sNv3KrHg+bu7VepprEMTWCioCir\nE8jcQ1VKooRMMNQDp19RNHd8/DkREVmYVUSYAA/W5ylqyDt6/Wuoism065PBwZdeERGRl17QVwd6\n4J4uRZrdcOnqx8IdASqbHddMaxt6jxfwJNDEde/xYnLiuHKeMfDDZ5/XrPQcrnkS/GvJJVcm0nft\nZrEGwM+m9R4+dULnfmijzlE75uJNb3uzHhM1+nxqogM8s8SsMGrgdb6gczSAc0rF4dMJBYZtgRf2\ncI9CsUEOkBU0zYZeq/kFcI2LiiDpP8B73qmCg6zwHuTTHZ7WUArUgCg53a7HzXYocr/8Kr1XJk6P\niYjI2ElVQBw9oe872ubkX98t8nf7figiIkn4dfbAM3bDiOpZMyl6w7IDLvh73Jt5+IJmkB+g2iAC\nbpY6UnaUpWuVAx0sOVP2lmKtP+MUFC3sdMDiwVIJnWbBtUYLMd/3iVA7OztkubC85bqyIR5++GHJ\n5XKyd+9ePQnHkfvvv182bNgg9957r/zDP/yDvPjii/Kxj31MRET+7M/+TIaGhuT2229fcp+u654n\nJwojjDDC+HmK152d/4M/+AMZGRmRe++9V0RE+vr6TL8UEZGpqSm5+uqrL7qPcqUq2Uza8Bqsr40a\nBMpVBatWQVcNK6qrdh4Iab6EXt9NIEXqD9mjG/WvFWSPqTWbh5avCEcaul5vXKuav7aOLrlqU688\n+4Iir3pFOb5F8Gl2zK/1K6AnUjSliMqLKuKL4Tzi6BUVJ9dKHk0UFSWb7H2tq/D+554UEZH/+uXH\nRaSlLexfq6t8NROVR3//j+Xe//QfRURk+l9Uj1l4TdFCeotmILe871oREUmt00w1+ws56GSZIILH\ngnYCek/23vam9Lzz3zwsIiJnp3X/0qHj2bRTs/+0ECrDwafm1OWr/+dfyr//z3+g4xhQ/u35//Ev\nur9pPe85dGSsw0ugZ6OO+7IrVc/amVa+6tCT6gFQL+t23QPKDbd1gq+LRuWFE4pEs92KejvXK9c5\nin5RZ04roloLhLnvwc/JR7/+lzJdV6TYDr3gk4/9o4iILJ5VhPNvPvQhERF53w036JxU4U+KrpQ/\n/rHW1PM3cPasItm5gj6lsAHtOniq9uTAa+Oprh0+Ax641nrDld+97/fkk5/8ExFpcX5EZC5+usFu\nCG4AE9n4LZEjZNfMBp6GqEdhNViU+lVwqokYs+ZAiDju1Jlx+Q8P/Lb8H791n4iIFAs6T2nUtKfQ\nhYI+qP096NwKTnZgAE8Z+K2S06VmmlzuCCrARkdH9XNAUXYBFSDbhXk4luHprlaryq/e/Guyb9+X\nsX88Tbr+7qKm75nr16e2uprqdrfcsleWitcFA/ft2yexWEx+53d+x3y2Y8cOefHFFyWfz0upVJID\nBw7INddc83p2H0YYYYTxcxPLItFDhw7JQw89JGNjYxKNRuWJJ56Q2dlZSSQS8iGszps2bZI//MM/\nlPvuu0/uvvtusSxL7rnnHtNjeslgVpvIER+zESMrguaBOMtVZAKhrVuE80sDGcKEreggw+6U8NVc\nQBVCCYjLxiqX64XWDZk/D1n1WWjdJmeqctUmkYkKNHk13V9nt66i5L8aqOZAe3SjVWt47E6p4yOy\nSwAhVyLgzyw9fgzqgLit3N+VW3SHb9+lvpyHj8JzsVs/H96m/FXmSkWY0cG3iIjIm8BJfvdvvyki\nIvv/3x+IiMjW3fr3jQNadz02peihgaqbPlQmnf6BIto26HGTTT1eCT3bbdQld2/QDO/l71IXpUlk\nkjek0PMcNfDRyxR1zcJN6w27FGEe+Mf9IiJSByebHFFVxdDVmhl3czpf4zNw3Edmt1lW1HEKTj07\nt12n83PsVdl4nXJ5A29A//gZncv2kt4TW4b183yjpQk++dSLMj2lTxeLQMcOfBi6LXBj4DAnUAF0\n8sSojhkuRrzXqTNsQGHQgFZ4sEfnPAktbrB/u4OnABeVNQ16rpLfd+nrwDwCisH5o8FrRPzdO/kj\ncuEOJQ1oo7G9i/01AJUdGj4AwdYsRYgRIFW+ptGLaPMVOt8NPN0V0G11Hk73x0+qquEM/F2JhPv6\n9GKxoSgAACAASURBVO8j69D1oE+5zVJR8wLJaBvGB967SYSo89OGiqVTp3T/dKGqgl8vlTkevQfr\ndXoNo2IK23F/RKbsOEC9b43+qheJZf8T3bZtmzz66KPL7khEZM+ePbJnz55L2jaMMMII4xchVrVi\niY42jum7rqtNDRlJIqTTC3DEIecZI39BnoY9lcDtoRqkSK0dUAd7HLV6bIP3QT8YSxQlJOluDWSa\nSCPLj54+NlAC9xcFKvDK6C2UYsUREHECPZCogaPbEfw4vaZmhLtix0VEpL2qnGHU0tV6OKOI8YnD\nz2Gcmm3PbFV+LdmvGcR2oKHYtO53bb9yuyePalXK8X96RreHNnAxBx9VOPskgbaueatqgiefVR3p\n8ef01UW1Tc1uYFx6vGlU61j9yuvloZqo0QEIOtKFST3vl1/RSir2iB/atF5ERLZcqzrVYhIOPgk9\nzoat2kdnBiiwWgUSvkyrcBqbFc1s3rFOOsB/z6JPVbYHyoyjyomePa2v5ypOZl98VabngXBwz0XB\nz294g6Ji3qPTk1O+79MfcwHO61Rq1Bp676SQdWZPowReY9E4PofTGH6K7GVE4Yoj5C4JOfHUZrLN\n1C6LL4hIyfHRotdy/DXqzP7zv4II70mIsB38hlw8PfHpzrg9Qa/Jfu+9/crXd6Eflws3q/Ex5dGn\nJ3V+FhcUQY7B5wLTLl1AuFdcofc4n1JT4MXpqjSO/RSB/DvxeSytO4q7VCHofGfSqL1HVr+J36Bx\n2wJSr1TYnRT7ifuz/ReKMDUeRhhhhLGCWFUk2gBSYZ1sGd6JC2hEP4GMmmPDPxSZSwe8keewLgU1\n2+BxqkX4dSLby+qHKN2XsHSw+Sf7vESRgYzShQnVJVtHFNFVipp5rcGNianNODKYcfA6RBUL6F9T\nNQ41yMpj7UrU4bouikAjeVQEiWrvBgd0gG8Z0Hn5UZ+u+nnU1L8hrcfbJMoPLc4pcv3aZz4vIiKZ\nJt2qdFV24II+2tDtrnyHFkxUsdjWkYnODuh8t71bNZHz84rq5l5RPWo2ggxsXc8n5yoinQKfxn47\naVf301mk+xIy0TvfJiIi3z+oaOQI+tQfhyaxrVe50RrUDGeQ0bVBlo+XFflWqooCy89oJVfCsmTL\nduVb+9ZBYYGxvjChczo7A6f1bvbUEem74jKRk4owJye1qq2jS8fqQjM7slZRPx242Kf9DHowEYmy\nMiiPue7tVZ45hSo1Is8EePsIKpWYBwj6NxgFIl/wahkPXPDuRKx4SnID/g4GLXn+HVFiyP5fToN9\n5bm9P3tdLqPfPbTaNShWmnUgV5yXZ9ERjY5ceq0GoQFusG8YOOs5+LUSYc7O6W+frlg9yO5ffjme\nwtrxdGd0unC/goM/kXKTrr6YX3KySXSW9fBUSmRKx332AWPV38UiRKJhhBFGGCuIVUWiEzN56cz2\nytgCeAisnhZ6ZFtANF5VEZhN6MfVlg1YsBo1Te06suXkKrFfF9tx1QUAlTgde7DcJ8GrtYOoiaAe\nOQueJIOOjBHwWylo8CKo3S8CSbehnwsM5qUK9+8m9KhuRFf1XE0rd1LeEzpuW5GZVdBVdV2frt67\ndmo/nm88MyoiIn/3ib+U3/mHW+Xrn9bEH/u1kw+rJMEJJ6AimNBVvw+6yvpxRdZReEfOwYMyjp7p\na+GmPjmpx8ty/sAxH3lGs/iHD6p+NLdJ+bDeTYoCt16pHp5nvn1QREROvqIazvEJRRvD69eLiEj7\nkHLCp48o9+rA66C8qOOJAr21o6PBUFxfF19TRD1XUxQTWaxIBP26Ogawz9dU41uYVJTdtk6VFet+\n7e3C2PTe6yUxpq5OWz1VGrzwz8o/Z7M6F91wYRpHzyH2UDK+l4uKnMagD+1sUy42iQqhBO6R1is6\ntALpkZsLdlUIdlsIvjJYPcda9gi6kJLTNNn/gB7ScoEYeTz8JjzPn90nR0z/VAdcLCt+qFShWoGv\nKbhDWTYf+6CVhi/pOvigbrlCfR0W0ftoclKfUmZn9V4YPalc9qnT+nkbKom2bNF7rI4ae+pfIwaJ\nM/tOjlf/XneYddftbPy207jXmMUnMr1YhEg0jDDCCGMFsapI9Mx8Ua5Y3ytTs+jvYlZd1DVj8YpF\nlMeIwqezAv7Ci/vrbbm6xsDDxMGRVoCcmkLbJ2ry9G0Ty28MCDRuAW1EXRHJSjrKzoiKgCLg9ugi\nxf4tdN7xkHll4rQpuj/HJqJGL6i6+nt2u9/V4zZVN+mIahldU++tB3jvL+nx7ajybP+4XznVU0fh\nUAP95jv2qPt6ArzeDHirWgGc4mHlYA9+U7P1nUld1UvgaEtdms0/ivrw3gFFC14OXpdzivwuAwoY\nfUVR3NRzej6Fl5TbPPvDQ/Lhd94uJ19VNJhEpvO9v/aren5w8YrndPW/0lKudPaQIvGZF5RvPPGc\nIlmqMDa+TbP4W4cV8T77lKLGQj4vzWeVHx0FCWZXmOFXLq2A7O3Cs6M6Z+8ROTpxQhIblF9uVtBt\ns0fP+Ya3vVPnCG5kEYPodP/0kZiAy1MZ1Xf0V0gDPafwmuTTAmrZG+BAnUDW3LwSEC6BRDkeZvVZ\nRc3eRwzLJfL0Vza5HiqfLD6d0ceCnWpRIYVXw7RS4YIBpqC9dunnCSewKq5DHFl9zlcsjuw+vADq\nJfa80s97elVXOzikXPT8vCLUeSDVIvZ/5IjeW+xK+gw62/b05GTvHXvlONyburpyGKc+CSTB6drm\negJZ4/+WCJ9WY2F2PowwwgjjpxqrikRrETipowskbY7oMGOLnx9qwA3JsnRVJzfqgQON2uRvqD/1\n90yiOxRRBLV8MVtXsU5wndkY641RxQB+x4qi1h06ySb6whdQHVGssGYciBkIuAK+xkOWvLeux+uP\nKYJKWuq36Vk9GDf4Jzrpw4uxC1q591+r43/rDh3X79+t8/HKJHpPJRXJ9wwq/zfUp6u6g55T84O6\n/cvHlL878pKu1vYU3KJ0c7nhrg/o93KKfMXR782e0XrxznZoJd+kno3f+sq3REQkMg3nouOKKDe8\nAa7w12iNfXKDHmCOmkos9gvQdvZsVl1oOqYIuYpKtFiHnu/a65UbbuD+6JhWRLp50zo5fUj5WQ/d\nA4qz8HQ9rWOW43qN3jDRwg9pzxUXPPbMS7rdVWsVZQ9B78h7iL6h1EfSPYhdPenQTmRI5MXXBO4l\nZuObDSpMcM+z/xQrjVz/byCIQFsIltpn/0/aWQLpGs7QAj+Pe9aDH6tRC+D4nK0IuFuOx6b1mukC\n4ddsMzhfRIwOuEvbhr4z5ndRitA/AwiZjv59eCrqxvmwUqpWp2Mc9Lzw8D0Ivp6VSf39ei/39elv\nLQfnsSBC5fw4fMy8SIRINIwwwghjBbGqSJQZSitKY1AKOrEaU8OG1c/hf/noeGgyhgBsTABiMZUm\neCH24M6wThb6w2ha/57G6tORhR4V+6e+0jBBQL4NHKcCFLGIRF+hrONu0E+UDvU4Xgq+pJm69jhP\nRVW7GEWFlWvrqmgyo+xPz+PCxcqpKGLrSulA3rRJs+5bLlO004gqsnWaiixn5jVT/eJLymW+7e3a\nk/3yrYoIXwLneugHOt6m6DycOKkobqBfNX4FR5HrmYgizLZ2zWT3oCLpxl99t4iIjJ1QLnNou+pQ\nh97/JhERSSeVlyo0UQuf0vNMuoo+hmN6HC+i45lCp8YikPvVb1POtAjkmk3ocbdepUg4PzkuUyd0\n23e8R92W1rUrcnn6a/9dt4Hn66ECkKmInPzRazLyZtWXNg/r3zuv1qou6kGJ4FihRG3z1JTOKbO7\nRfSRZy09s/hEonQtagSyvlHoRQ1iNEDO38fLfAqkRMTLrgpLOVuafmHcmxfcHz43nCD/QF0pudcL\nVzyd1yk30D9+qeNWwCHn8+R02btJ543I3nWYz6BXL6oTMT/deGLo69frXSzoU1dnTu/9EjjUCXRP\nHUN3V1ZA9fcrMiVC7ejQ65dKJGW5CJFoGGGEEcYKYlWRaAy9s9EKW5r09qO7E+pePVNVgVr2BLRw\nQJrULVIjZ2F1TiArjgZ/kkPtexb1zGKzqyg0eswkgrdi9Ql5MHo5lirsAaSrNqhQ49rNZT2CzGcG\nva5jriLQhKXdL4sF1h2j/w2QMZE4vSU9IOloFqqBtK6S0YiuskMdyjWWXVTjJID0mnrcy7J6frtu\n1HksW1q7Pl3T/cQz4JQvU1QwP4Ns/o/+SUREqjVFejZq8df2KWeJgiWpzCliPLFfOd4I3LZOOq7I\nHpFjzyly7V0HnnCzVlg1PD1/F4761+R0v089qz6qM0fhSj4P/9dXVCuYKep8rL9C0ePz8JrMDuXk\n/f9OfR9tPI7MgAdef53qEOdOKHJ85TnlykREiq9Nyiuv6OcDqDCilpjZdCIqIj9WKNVZbVcu+7br\n6NCnCiJS49YU4Dj5OREauUK+Eri5gSx5M+BKZJzjA36YHG+QEyXCDmb3GS29Kn97fM/vE38Fda1+\nRzbuP6gqiFGDzXyF7a+MIkJlxwCmB9ifjP3sSb3WgaDpmsXz7+3Te3ZgULP8BfSxp79oBRVYZ8Dz\nn0JX2DRq7YlQLxYhEg0jjDDCWEGsKhJNRZh9Rk9pWiSivtVh50KTSdSXMhxX4tCDUttWRUoxiyZJ\n1Or19aBmO0mEiJ7kHldBPZ5NKxlTv+yJiGXQQBXO9Q1UeSSQLc+jR5LDDYGgI44iurilWras/RLO\nW7PSMQ/Z5waQIxz7I9DceWZcimYiUAcwk8r1PtquCLXDQY8rTzWNbqKIaVMkx+GlPN2+Pa56zvXv\n0Pm8ait6Z7k6DwPoNX7ouG53GP3px2ZR/71d9ZrNhG7X36NZ+NFvqQdA89lJkY+KlP4J7lMbdZ7W\nVtXXtEadbbuO7+uzqjNND6DfPPohnX1N1QMvf0+RfBNo7/k2VQOs364I9i3vuU5cjPnpJ9UJK71O\nOcye9Yqm+9Gf6dkftpooNvJFiYJzO1NRjaxtqz60AuVFw2Y2mHpJ/1MMHe1ZK08ESn0ktyfSCiI0\nIkUiuhbHSLISc+Wyd5P+ZmKosGE2m/vjdiaLbre8As79+1II1LynTpW1+Y5f4UJEylfqTb0AF8rt\njTM/oaWZFypzyKVynlBphOOzN9Ii+HJTGQXuNJlgxREUOHhMZIVVDBVj/QNaXcf5KQKZEqkSCZ88\nOSbLRYhEwwgjjDBWEKuKRHtQsdKZ0tVmsawIq47suFioTIJvqOkrA67RhY7TiYBbTUFrhsqdGOuT\nUfFUo8aNqyCWWUrrajX6j8JB3/akPS1SLCFrjdWxDiRKdya6fVtm8YWusaE8S3tEK27a6srDMfvP\ntTgC5G1F/f1lPKIHVFIJHPSpZnBRqy9xONq4mDfWDwtIS3DPVsR/3h7252AtHRig2xI9NfU83rRF\nj7N9s6725UX12PwBuMx/euZHIiIyenhUREQqiRL2q/N4Bl1fY9OqqaxMKdortuk4htFBs3/behER\nSfQoj9WbUz5q/oxyoZV5Pb9FV8fRuVF1sO1DmvU//MJhSaAyJQIeNbtGz8lGv/ZpZOfXr1XULCJi\n1+uSgJdqD9yacqhQqsKxqw393RvwcTg7rtzZsaP6lOFizrt7FPmyxbhBYM6FEWgQMRp9pPBzZsHh\n7wBdJLlHZsujUX//dkYwKx/kRoPbGf1p073gdowg12rK96xg/3gr8E3/eRtONMp58c+HmR88dSZT\neh0bmI8mnsqKqHgqwj2LT6EeziMZZ8ddVCbhN0g9bgJ5kiw8D4ikyZ1eLEIkGkYYYYSxglhVJJqE\nsDNLN230J6ejoUMkCjekhgPEhoolOsM4AW6UGbsK+KuZRX3NpFAn2zQEE44Ex3bQQ1xcm01btm9I\ny3GlAgWtqMVKKBooQyfqAbnFE1jVatr7J20rL5dqKhea8RSJMa3diGLc4Gk8OvQbkaDfiYa1/hZW\ne5t+qV5Jzg36pXIePNfvGWmMVHH8OJx2bFr4BDLICZfbQW+bVrelrY6it8KAfu+6LTeKiMjJSc2q\ny6TW6H9glyLKl08pjyU9mlm9cofylB5QQ3JBjzcbVb6vr1dR5S2/c5eIiDz1t/8gIiIlVDbt/KDq\nRhNwuaqcacqPvq3a20hZxzTxjzr3RUez9IUyetd7LY4wlrDFAed5+WXKr9JPcmEB3qXo8JrNwL8A\nTzvUSRK5tmfZxUD3zQokz3CI4PgCvqG81rz2LX9QIj59ZUWNZ9yfLoxog+/PdfI/9+9BjtMK9D0z\nXGegUsqMmpU9rLAitxs4L8Px0v+Ufcgc6kMDOlZzD5Ib9nO+HEbrfP3Z/zp8UQvFvG8cxkWLFUrg\nlJ1moLoQFzCdWaZPnIRINIwwwghjRbGqSJSuTcQEbegZncWq1AD3KchSF6qoSa8rT1EuYVWCa5JT\nh1YMq1bCZPnBWUKQ2jR1t1i16uSbuIpiFSZ/g2WvCATk4rVBJIu/J6OKWrJN5cl6Uuq3mYzoauiW\nNXtOp5imA7/MCCujwFE24HhvwS3KrMYBzR1YR8+kblntwnpooAszw8gUwxc0YnH+8Pcg/8V6bYea\nRJwuNrt8RM/jivW6mueR2S7B/akTnO09t+nq/sNnFcH/y4Qi8qqriH14k1Y+nYDr/DxcvbrXKyqs\noErohXHVcuYy4NBHMa9ndUALr4xK7buKRG14la7ZtENERJ5/URUCG7dtExGRLVddZk5z+55rZRE9\nmDZu0EqlOJQauU5FzbPTmn2vo3qqiOwtu3tSt8hKG4YRbNh0or9wtpzIktfawT1idKARP+Ii/iFS\nZM05a9SDnCvvHVZaUTVQx2+G702tPo7C/Qa5VnM+dgBBe3SKD3Cj4r93ebzzavqpW4XnbhAJt8YR\ndLMKcq8a5JS5XQ1Ik14HVE0QmcaBVMmpkou+WIRINIwwwghjBbGqSDQDbVdXF3SNpre2rpYlFKnP\noRd1A65JdSeAvOilyA6FyMhVUNVRB39VWUCHP3CZUXCZTpP1uJgOrMZRZLNr6A8fQUWSBx1lDM4y\nbkM5wJyjKKjTOyQiIlZN+Tc3Cc43CkegNDpOVrFKsl7ZYydFuIFjPgSroancCrie0yuS/qXUv3rs\noc0qE8oHsCE9E8XxowyDQLnan8dX4fu4Tg5WdxeavE6bHLXuP51RlPauaxWlbW+olvLlOc2ExjxF\nnrE5VTOc/o56Qs4O6jzVGorg2+fg+gX3+pc/r7rSGXDU/X1NkU4d6/CQXvONG3XuRnaoX8A8nk46\nr95mzuey3W+Wtit0DJv612NugLQI/Ayk1HMaQ/fK82rjDWfo73F03jUz2XBWGEH/2fBzoS1+nHpS\n8X2PYWroA9nwIAIm4uL25EpbyNjx/b2A3x7vSYOEcZhmwNWJ/Hq1is/Fz2kGuVgelwg5iEi5fUsl\nQK6U8yC+vwcfps7jWmkFYJCzvq+iv3y1pudLjwPO18UiRKJhhBFGGCuIVUWirESKUhuHVQOFQVLF\nKpRvAEkCiUZimiGNI6PqkmNkP3iufjgO/T2lRIQEGyB2MjStu/UbcQ88kK2cZd307AYSJGK01Amm\n11K+bSihrza42xoQllNAP3j4ltpRej/6++tEoH+UJlZtC+Nm1hx6UXKYnqfnSF9Nau14/tSduuSY\n6dPq+HYnlkGirAwLrPp0zKG3Imr5vSb0s6gbTwp7dSvCtIDc2SPJA8/VZaludGePavpmF5UjnStC\n3VBSzvvwj7SGPllXTnTtZr0uZbg3TcH5Z9PGtSIictl1G6R8li1Yda7btq7X7+DUEqhImRtT3lo2\n3SBNryGpJPwmATwcVIdNos9TO3r61PGUQzcn+omayiRmi42Swp+dZhBJ2YGsebmivLDr+jvV2rYf\nMQaz8JHAU0qQQwwiwOD2QbUAj8NXU9lknmZwXgEcxv1E6cTm+Pn85XSyQf/TYCyF6Bnn96B6fQiV\n+tFK9cLj8O1r2S3CCCOMMMJYMlYViTLdS4eYBrR7E3ldhefBGVZdZPIMz8TMoJ9nsczqSr4DvIup\nksCrxy6gyHDSPRsIMxIF12cAMvqxGEsdzdR2uoo8u6EHjdW1Jh6G/eKIopjaPFyjRFELewW1xot+\nO9CqGVRjtHdN3/bMuju2JfFzzj+GjKJJozf9zjssWDLwhlwqjmt5gdWZagEgeYe8G6B7lH2MOI+o\n+mHGlpnPiO1fq2vo5R2P6fEH2/V9brtut7ZHfU6/85Jm30crOv//6r3q2mSjIqojid7h4Ehniq/K\nKYGbUlo1pkM59ZcUPL1M41oePqcm+tWnD8rgyHb9Hvpo1cC7z+Nc13YrL0ulAmurW3Pvd2Svwfdh\nKeRkLgHQPbPqpVLZtx9ylrykvAWDyI6cIiN4vCDiC7o5Bf1JgzX1Lc6TVXB+3eV5Nfim5v/CFU90\nuA9WNi1VIbVUJVYQiZ7POV8cqV4qQr1YhEg0jDDCCGMFsapItIHVIg9d4VxZEcXYIpBPxJ8tF9bQ\nc7Fglp46StQPMzsvAc2bWZ2oHQOX6lhEeNSKFfA9zSqnbSJV5fISrlbB9LjqBJRuqj6yWYHbUryI\n/ev+LBsuVci8EhHSed/0x+EfqqzZYvirSYzXZMyWuIhUF9EbCVuz13mcNfncTRAFUUfqBZC6QzSi\n14GdIU2Wn8465LLhWmU0jUBFrtuQpLRcxvEAYBB9A16OLtbyJjwL+tt1v//6evZm1/3Wo+AxwZe1\n476JoQY/39GUt/XC0ctR7jNRhkMWnjJOo3tAcpBPByLJRlnWDGotvQdfgiaQ4UCG3q3g45ndB0ea\nyeh+ymW9xvl8Uc6NoC40iLiitqJ3TLkkk/QvpU6SVXoX1n22OEgoOgJyyeDfgxynG6ikCn6PPqns\ndkq+nTX7Qe6SiDgKL15yqKx1b2meL1xxxfPieINcMnWtQa6XsRxnuhTiXQ6hXixCJBpGGGGEsYJY\nVSRadTzpEJETc3DnqaDagT6fWI2jyLo70IHaESIm/Z4F7o69sFkJ5Z7nyu3X7kWw+tbR4ygK7q+9\nBv5LaTWJ4/uJyKiIiHQlFYFmPc3OS0nRQ6Wi+6nMKSpJWshSA2lWwQVyFWY1BscRCYyPmj1yu02H\n7lZA5HD0t5uubz9NHKdeV6RHn1TboBV/JRJ1oi1dqH8Y0YALum14OqARcq6mTty/jCdQiUb0QtEB\n3bNYJ55MUCMpOF96Xuprm83z1L/HEzgf3A9tkahE4SXbXqcDmFZFxXGNq039+7B3uRnfnre/Vdrh\n/2mDf+/OoKKH52b7ucf+/n6MTe/R/KIiXqL4DGrsS0CoZfpaOn7Ew2vMuevs0HuPCNCyiGB1O/pn\nBoOIsFYj10iE5neRCrpALZWd53FMxRKuRasG/8JIlMoRfs75aaBjrdFdMm+B77XUB36udylVQRCh\nBpFp8HuvF6G67vKQ9JKQ6JEjR2T37t3y2GOP+T5/8skn5fLLWzfjvn375JZbbpFbb71VvvKVr1zK\nrsMII4wwfq5jWSRaLpflwQcflF27dvk+r9Vq8ld/9VfGybtcLstnP/tZefzxxyUWi8kHP/hBueGG\nGwyXcqGYmi9Lf2daFkvQeWI4TXKAzNqTH7JQUw5XoiSEjjSkJ8JrImtbgfcj61/ZEdFk4PiCVa0X\nlUttOUClNDjS6GsiItLZ2C8iIh3Rl3BczbY7jmaTYzG4NFXgNs5VDEtVMumvTzZ1ywZt6N+j4N0i\nNuuWsYqjxp4Im8izLafnS7TgAXU4sUCfHdfvys61mPPBKg0rxrpsv3OO1SoPkXN3QBRlx6m/5Y7h\n75oBquF+vEBNPntcOXT2obriwnXZYnhGvIV+OO6JqcZy4claQVa+HNV7p6usvHZvrIWgettSErfp\nf4CqND69UOERqKyhcz2RDhEbK5eIbJiFnpzUaqwy3tdQ0dN0L+yKFA2g/aUc8A2XSIVJlPeY7o/o\nn9eY4+S1M4KTQNUakR63b+Kph+cfzMZz+xp4dM4XHeepOKEKwXXICfv7zgfPizeTHVDiBBHjUgg1\n+L2gSoGxFEJl76eLxbJINB6PyyOPPGJMZhmf+9zn5M477zSTc/DgQdm+fbu0tbVJMpmUnTt3yoED\nBy60yzDCCCOMX5hYFolGo9HzvAhPnDghhw8flg9/+MPyyU9+UkS0x0xXV5fZpqurS6bhaL5UTOfp\nGA9exvhggs/wyKfo6p3GKsvjtJxn2EcFbtQ0BiWHB0TGWnmDvKA3bUfj+myCqANdON28iAxLrzwl\nIiIJ0VrtCDSA4uo47Dh4MKoJYuzs6M+mN+p0VyKHCOcd8lRIrxvOjzxRlOgBCEz8/I0X5KViRKro\n0dRgLbyfc3XIIZtuqvhr0BGH2fsAz8W+NTa4yUgAKZLHs1rlO4ID4jisikGNf4ScNlADe5ybXux+\nNQHPxzOeC3KOkli3aYeDuYeGTosNBQOJaM6cXntbn1h1OKHT0Qv3Yh1cHs95qe6YGSBQzhWfMtj1\nkwi1AiSaz6tiYRFcaq1Wxyuy27iH6A5FBBhEvkRWUTug1/QUeZdLyska/pm+CqYSihpfPLXgOFW4\nVSVQbUbOkj6r52XPcc+QSw3OF8dvsvf4LceifgTKCOYvTB7DIE0/Ij2/Ukl82wcRatBHdSkn/vOd\n+c+P15VY+uM//mN54IEHLrrNUqLZc+Mtl+kN/f6dfctsuVykl99kBdG9/m786+6LbhcMO/AaX2rD\n1xnm9lr3Nd/7pcYRjEu9+MH9LrW/JWPwv/2vOc4lRF/gVUTkivXv+ikc6X9O/Na/+/erPYSLxkP/\n9ydWewgXjc/+xZ/+1I/xE/8nOjk5KcePH5ePfOQjIiIyNTUle/fuld/+7d82HQ/5+dVXX33Rff3z\nS1Py/mvWyDd+rJU+DTq40MHGZPD0NY6fWQp1zexd7ZnVTvA9rFo8OyxCXHWN5g8O89mcIub+uK76\niTr65lSels51/1YqJ+7V41la5WKqRix/1rpV464vLrso0UkfWeY6UAfrilsoA72Z4DqVBidrUJL1\nhwAAEkhJREFUDOeJuKTF7yQv/7pUDr9PD2uzyoUORP6FzArUS7cyj5Z/+8Dq2wzwYK2+OvpCFBPB\n9bCIbixb7LVfFW/sNhwf42cm1CBeoiMallrnfCrGoZ9PKHSREjfg9OO6ho813Jf5gJpkfT09rj6j\nb9z9cXn5wFPioPImwn2ya6Xpkx6TC0US2ealXIdaWXN9zKjiNdhvntwpn97K5arccccd8uk/+7SI\niGTQ48lwpUD9dTwVNRsXRmTMivP4dXCWjSaVIuQ+/futwieVPDq1wdEIn+pi8uB/+EP5/fs/qscz\nihN/dj6o66SDPLuU8mlyKURJZUYwlurd1KqV9+Thz3xS7v3wR3z7WyqW8hpg/NV/+oslv/sT/yfa\n398v3/72t837d7/73fLYY49JtVqVBx54QPL5vNi2LQcOHJCPfexjP+nuwwgjjDB+rmLZ/0QPHTok\nDz30kIyNjUk0GpUnnnhCHn744fOy7slkUu677z65++67xbIsueeee0wGc8mgRyHeWgHvRCITmgrR\nbZquRDX8ndxmLOCkQy0avReJhKJEGWnlpWrgj5ySZhITtjrSR6M/xrnNY1gYL/kUZpVdv36SnF+E\nLlHg+sj5RWN0V/I75bAem9NQr7HKA4c3SJScIFd3f418k5ywkHsFSuDVJmcp4tuu5UDk19gF+Tii\nEXO+hgOl3hVZ/QCnKUaFEKxPZu2+bzgGkfJJwzXuXH79LxGr43lmblhlZcOyyqEioqpqkmi02xy/\nVBE5Pv6KiIhcsVb7PrWjUqkZQJKcCyK4OBAqkWRQ0dDyZuVbfxY4WFE0PLwW+9H3b7/u7SIiMj+v\n9+DZs9pllFV5rIILIjbD+xNB4rcTA3IuA2m2rj0dyogUdbuoR32oX51QrqMqzzwlUQvtnweGOW86\n9Hu8Lv4uDNx/UMca9GldClm2vsd54DgujHSDXGjQvepSaMll/xPdtm2bPProo0v+/Tvf+Y759549\ne2TPnj3LHjSMMMII4xclVtfFCYjGIRdq+qH7//ePRfzco/mrQXyB07D8CKyVQIRWDiUzblN5poG4\nZkgz3vdFRCTqHcT3xvFFZjy5Wvtr8g2fIn7kTPNx00WT/WjAlboRP9KLwtWIFT/MPvP8qO9sdQUF\nmgEaadT8Gj36lZqkOLV5rFwilYvzMP1yAho9ohCTycVtYxtO2sJ50G+UTwDkWnkcPyd6jomjXCio\nd5WAW5Q5oYDO17as85QDDfDPUsfG6FDa27fWHCfbnpX0ombrF+b0Xkgl0jhnf1fPGpAWHbPKcF3y\nxH8Ohgv0/HMeVLoEudFgLTl9S/nkt26d1vjPzSkyPX78BF6P67hTcNgHx0vOlE8Xxgc0kLUOZvtb\n3TX990IcfD3Pn9n4KjTZwf2c18/eKDzgW0GHMNPHi7+t4DjtwHs/Ul0KobYeCPwI1Qo89iyHUC8W\nYe18GGGEEcYKYlWR6CVzoXRy5xdtv87TcGTnyRvpVMMqED9fFhdFHf2xo7qf2ndFRMRxtLrEi3N9\nC+gfA36Z/LNLjs71H8foJP2nabhD4wUQ5SrIVTzgiwo9ZUSo2QNCwzy4ATQT7DTZYK27Q+ce/2pu\nEwVE/Kt7C7H63xv1BNEN92MQpvjCINyABLCF6M2Wvu8ZVUEQsFp+ZGvJObIyXpMKtMbwNSgUFEku\nLGgWfGCryN9+9TtyGeR2hfk5jEUPNjw8LCKtWnjy8tRzVlATzyxzQwJ60kDvIHYHZSWP6ZNeJ9d6\n4Uof6kmpN127di3GUfeNj8iQjvvPPPOMiIj0oLIwZsMZi/4LLjlV9nQiEvYrN1rcIpUQVHiI7+88\nb3KjHD/7k/FpjuoAPuXUjGrBz0UajTV9F4wT24WRaQuh+v9PuFQOdSmEerEIkWgYYYQRxgpiVZEo\nuVBrWS40iESX4EIRRHCMiMnKszZb99edVB7Jqx/EF1WvakWq/v2wjaYhWCLnvohr+BhsxuXZIFBW\nFmH1JlI0ek9W5PhRQGt1ZOdEQktyw+B4odO05cI9wk2wFt3U9CPrbTLZ9FW9sGaOTkYtBIvToxkm\n0IZjsvSB1dxoN0XO3cH5Djo4fzuAQANI1WClc6pRWOscB6p36AgG/v3kmCK6WFerQGPPTddLo6md\nWXO5nG9MwS6adHZnxU0w285KpGRcEV8PfA3KVeVO2R209T3U7MNHNMiZ0s2JCJNItI7KKiJWcpEc\nP6/Z1q1b8H1/RdPZs8r35zp1+yIqm2pGC8yafGquOccBZQR1o/TyNWoD6D/5U7DIDfsdvVyH80p3\nKv/Ftu2gOxPvTXDegetjELHx3vU/GXC+GZeKUC8WIRINI4wwwlhBrG52fhkuNPaTcqFm1fBnBqOs\nxQaPk4yoE3wupl6Tdu01HL+I79FVSLGeqdk2lUl4oYbOuzCCM447BtD6M5RBxEhuMbj8OYFunMHO\nhA59R10/xxns4W1QRODvRl+KLD8zua0MqxmhbieBHueGmwxURIkltrQ8BEynAdbIRwNqi8B8GKd8\nk5T3VxG5AY7VikTMtSMHR4f1YgHuSx0jIiKyEGll5xMJV7q6+31jJ2Ijtzc3i/5YEX9NO19bDvHo\nl+X6VQJRW8fcnlXusl7nPYUKnwAi4nH5yuw87wVm/zlecqJGvwoukr6nw8NrdB6KRd/25Gh5D9Tn\n1IOWXC4RMn+qrXuJNyHvfce3HRGnF+DHee8H+7m3ekQZhlyPZ7pW+BHqUv6hBqECgdL7wA5k+YOq\ngUtFqBeKEImGEUYYYawgVrfv/JJcKHms/0lcKHSeDfRzH0hqDbztHMeWBezAX+lznnaMqy3fE2Gy\nMqfJOmOsbnhfrbEqw48AW68X9jhsnZchW/XFDmjYPL8etKXt0wj2ryGnSVTDVbhVg85pCFSJuOQZ\ngRJsn3bB9KU/lyeMnXOepkqHGsoG9wN0QB0wudZgNp9eBDyvwHWybcsoMiQCL9iYIpxSDZ1I09ox\ndGFmyuxnfj5v9Ji1ur+/ValUwjEEx/DXhgdrxMfGlWtsa1MEl0rrvcpqulJZ919Hf6gOVEbRnb9Y\nVWRIpEbHMh6fWlxey6kpPY+RkRHfeHiN2QuK1YNEokS29AOOAbEvLCg3fOrUKd84eC0KRSJk6jz9\nig+D6Ig8kYVnBP1Ql46g1CaAUAMVWS3PWT9SZeEUESq9hQ3CXUZ/GkSoF4oQiYYRRhhhrCBWlxNd\nkguNnvNXMVyotUIuNAHOswtcaLSG7Lzpk7nMaAOrXBNowqmTQ/X7XpIDbLp+JGY6HppacvJHPE5A\nUEq1qvHNxCpMZ3dTJ+x3hQqu9qxT9hpEAzy+f1VmBB2Jgj3P2a2U/N9Sq7nxluS4eXpGZcAqFb9K\nIGLRKd+P2D3zddbU8wQd8eD+L+hH1aiDg8tq94HZcUWIHW0tY8Keni7DZSYTiljR7uu8Lp3MfjMb\nTk5xHghuckr7bj1/UO+xK7ZsFhGRoUHlJLNpRYbkiafRHTSOrgdRZKlTdIdiH62YjmMB/grzC6oy\nIFIlsiSHSvem2VlVnATvDX7e1a3f7+lTREpkS2ROnSzPd2JCz4861GQC1WrYf6XqdyRbqhvnUr6s\ny4f/6av1KTXMRKqsrPIrVoL6U/4mmsbj1//bDPqQXihCJBpGGGGEsYJYVST6k3Kh9oq50DO6H8OF\n5rEDZgYvXqVgkCh1nqZHkON7ZbtKZl6Nv+eSnQYDWWbW3Xj+umrPZM2JJMkp8u9AoBFytjwPZrUx\nr6Stgllu/L2Fg5EdlwA3SsRskvNEygFdaaBeWhoR3/cNv0UAzAxszI8KjDrCdG/FcYmMjdO9iINu\nAV5NK5JcGzrIpiLAzg44dWV6OAhpa08b5BRULqSSuj31mQQmxnGLfqPQcRJR0qXo+efVCezo0VER\nEbHB1dbq+r3uPs2er9+8SY/HyqdMRtasFdP9wDZuSjqAGVRcDfYNiohI0/Q20r+znQ91qUSW9Pyl\n435HR6fvvJnNJ1Kl+oB6VXKv/HzLFm1UyYoqukw10VW1DA646fh/U8F7ZCln+kuPpRCq3/eBcb7+\n1K9DDSLUi0WIRMMII4wwVhCW9/r/6w8jjDDC+P99hEg0jDDCCGMFEf4nGkYYYYSxggj/Ew0jjDDC\nWEGE/4mGEUYYYawgwv9EwwgjjDBWEOF/omGEEUYYK4hV/U/0E5/4hNx+++1yxx13yAsvvLCaQzHx\nJ3/yJ3L77bfLLbfcIt/61rdkfHxcPvShD8mdd94pH/7wh43RxGpFtVqV3bt3y9e+9rWfubGJiOzb\nt08+8IEPyM033yzf+973fmbGWCqV5N5775UPfehDcscdd8iTTz4phw8fljvuuEPuuOMO+fjHP74q\n4xIROXLkiOzevVsee+wxEZEl52zfvn1yyy23yK233ipf+cpXVnV8d911l+zdu1fuuusumZ6eXrXx\nBcfGePLJJ+Xyyy8373+qY/NWKZ5++mnvN3/zNz3P87yjR496t91222oNxcT+/fu93/iN3/A8z/Pm\n5ua8d77znd5HP/pR75vf/KbneZ73p3/6p94Xv/jF1Ryi9+lPf9q7+eabva9+9as/c2Obm5vzbrzx\nRq9QKHiTk5PeAw888DMzxkcffdT71Kc+5Xme501MTHg33XSTt3fvXu/gwYOe53ne7/3e73nf+973\n/pePq1QqeXv37vUeeOAB79FHH/U8z7vgnJVKJe/GG2/08vm8V6lUvPe///3e/Pz8qozv/vvv977x\njW94nud5jz32mPfQQw+tyvguNDbP87xqtert3bvXu+6668x2P82xrRoS3b9/v+zevVtERDZt2iSL\ni4vGpmu14s1vfrP8+Z//uYhoWVulUpGnn35a3vOe94iIyPXXXy/79+9ftfEdO3ZMjh49Ku9617tE\nRH6mxiai13TXrl2SzWalr69PHnzwwZ+ZMeZyOWPzls/npbOzU8bGxuSqq65a1bHF43F55JFHTJmm\nyIWv68GDB2X79u3S1tYmyWRSdu7cKQcOHFiV8X384x+Xm266SURa87oa47vQ2EREPve5z8mdd95p\njKl/2mP7/9q7e5DU/jiO4x/RHlCapCMYJOHiEho09GANQUFEbS0hzT23hGlItZnhEJyGgmyKKDlB\nD0uFhNBQgwiXCpxqKCVBKQpLIf3/h/B36V7vXc7N3xm+r82jw5vf4fzwDOd7uG2iqVSKTcQBPqfR\nFG8LeFGr1ewZaUmS0NnZiff3d3Yy9Ho910afzweXy8U+K6kNAB4eHpDNZjEyMoKhoSFcXFwoprGv\nrw+JRALd3d1wOBxwOp3s+W+ebRqNhr0/qajUmqVSKTaxCSjf9VKqT6vVQq1WI5/PY3t7G/39/Vz6\nSrXd3d0hFouht7eXHfvuNs6j8H76T0FPn4ZCIUiShM3NTfT09LDjPBv39/dhs9nYq3J/pZT1e35+\nxurqKhKJBIaHh7908Ww8ODiA0WhEIBBALBbD+Pg4G1TMu+1v/tTFuzefz8PpdKKlpQWtra04Ojr6\n8j2vPq/XC4/H89ff/Os2bpuoIAhsogzwOcewOGWbp/Pzc6ytrWFjYwM1NTXQarXIZrOorq5GMpn8\n7dahXMLhMO7v7xEOh/H4+IjKykrFtBXp9Xo0NTVBo9Ggvr4eOp0OarVaEY3RaBR2ux0AYLFYkMvl\nvsyyVML6FZU6r6WuF5vNxq3R7XbDZDJhYmICQOnrudx9yWQSt7e3mJmZYQ0OhwOTk5Pf2sbtdr69\nvR0nJycAgJubGwiCwMZ28fL6+orl5WWsr6+zIbdtbW2s8/T0FB0dHVzaVlZWsLe3h2AwiMHBQYyN\njSmmrchut+Py8hKFQgFPT094e3tTTKPJZMKPH5+vxo7H49DpdDCbzYhEItzbflVqzaxWK66urvDy\n8oJMJoNoNIrm5mYufYeHh6ioqMDU1BQ7poQ+g8GAUCiEYDCIYDAIQRCwtbX17W1cpzj5/X5EIhGo\nVCosLCzAYrHwSgEA7O7uQhRFNDQ0sGNLS0vweDzI5XIwGo3wer1sWjYvoiiirq4Odrsds7Ozimrb\n2dmBJEkAgNHRUTQ2NiqiMZPJYG5uDul0Gh8fH5ienkZtbS3m5+dRKBRgtVrhdrvL3nV9fQ2fz4d4\nPA6NRgODwQC/3w+Xy/Xbmh0fHyMQCEClUsHhcGBgYIBLXzqdRlVVFfvTYzabsbi4WPa+Um2iKLI/\nQF1dXTg7OwOAb22jUXiEECIDPbFECCEy0CZKCCEy0CZKCCEy0CZKCCEy0CZKCCEy0CZKCCEy0CZK\nCCEy0CZKCCEy/A+h/sEKhOEecAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWmwZVd1JrjuufO9b55ynpRolpAA\nq2wJBMiiDWrctlxhg0gXbrujXNjRgXG4bIgmGNzhaNqGarVtjBkaQ1W73UYVsoN2u6mSIFzCUCQS\nyGISaFYq53z55vfuPPWP9X37vL3uPe8m+QSZcuz1I2/ee8/ZZ+999n3n299a61upXq/Xk2DBggUL\ndlEWXeoOBAsWLNhL2cIf0WDBggXbhoU/osGCBQu2DQt/RIMFCxZsGxb+iAYLFizYNiz8EQ0WLFiw\nbVjmxW7wQx/6kHz729+WVCol733ve+XlL3/5i32JYMGCBbts7EX9I/rII4/ICy+8IPfdd588++yz\n8t73vlfuu+++F/MSwYIFC3ZZ2Yu6nT969Ki84Q1vEBGRw4cPy+rqqmxsbLyYlwgWLFiwy8peVCS6\nsLAg119/vXs/NTUl58+fl5GRkYHHv+m/faN84s8/Kb/5P/6G93k6nRYRkWw2KyIiqVRKREQ6nY53\nXBTpM4BJVzb5Kul9t9sVEZFmsykiIo1Gw2uf32ezWfn3n/0P8ru/9291PNNzIiIyMTk1sL10WvuT\nyaS9fvN7Oz6ez/cpfJ/J6G1pt9v6PcaZy+W889rttvzmO35D/uzPP+a1z+txPEnXyxVK3nGcT847\n2+Er+8Pj+Or6b8abzWblV9/+r+Tf/+X/JSIihUJBBhnHxVcex3lIOo7X4bharZbU63Xvu1qt5vXd\nrqV7fukX5W8+//+4zysb63petSIi4trjWmG7HHu75b+3a5LX7fY6GFveuz7bpbEf2WxWfvtd75K/\n+MxnRERkbW1NROK1yuuwP5yzUknv6eTkpIiIjI2OY870uuPj+n5iYsLrx/z8vPe6tLQkIiLVatWb\nB16/2arLB9//AfnA73/QG2/Smul2295xHCfH0Wq1RESkVqkObIfz1Gy3vPnavNY2j7/Vasn/8alP\ny6/9D7/qXdeOh2uXlpTA+e3HvjPwcxGR1IuZ9vn+979fXve61zk0+ra3vU0+9KEPyaFDhwYef+zY\nMTl48OCLdflgwYIF+7Hbi4pE5+bmZGFhwb2fn5+X2dnZxOPf8Zv/Rh74Tw/KXW9+k/e5RUT2qWuf\nZrQLRaJ8+vLpx1c+NTcjrq999ajr3+zcDhERmZya9frHpyTbzef1c4uoHeow/crgOB7P8dI4Tjve\nVColv/+BD8r7PvB+GWQOyaJdzh8RXjZf8LrD9i1yHYTQ9YSe39+ej/LS6bS8992/Jx++93/3rstX\nnsf3RFNJ82BRA6/DfjabTYcwLCpOmznm3Pzmr/9r+dM//7hDKFGEOe5q2/yc12K7vGaUymw5V66P\n4u9W2E+aHevo6Kj8zx/8fYf0uEZtP3idfF6R5tjYmIjoLlBEpFhUZJaOMq7dza/s9/Hjx0UkRqCL\ni4tePx0S5FrvtuWTH/+4/Ot/8+teOxaRErlaJGp/0xxXu+mPk69ut4j70jXX4RoiEm232/LFB74k\nr3ntq73rsZ1KpeJ9Puw390/ffEyS7EXlRF/96lfLAw88ICIijz/+uMzNzSVu5YMFCxbsn4O9qEj0\nla98pVx//fVyzz33SCqVkg9+8IMX1Y59mvEpYVFA0lPNHkezT71hyNY+Bat4ek1MzohIzM3xuJhn\nAUogh8t+ot1W238qixmP7YdFkvapSZRi+020xac023FIkYg743PPRDVNPv0JzgTz0US7RKQ0DMdy\nwLwe+2Gf8uwnx0G0w+PtfbP3b/N82blKQoibuchms+nQtV17nAt7b9wYexzDYARqdwM8v1gsikiM\niHh9rimavbf2HnItsJ/kQi3S7HV9jpZcMdcs+2E55di4Rjlu/7dn542WtIuKuVL/PtExYNt1/Hib\nh/n3I/aXcA0XvHZsvyzfbn9TtAthO1/0ONHf/d3ffbGbDBYsWLDL1l70P6I/jFlEaRFk0lMt6Xya\nfbrZ90lPl6SnJVFLFR7bWk15Mj79LYfXbOjx2YzvdbdPZfbLIjCLipKiFNg/IuUkpG490zGy134x\nmqBHj2pT2xsbLeu4G/TMAnWRn2sBFqSJSny0ReN7js9+b8efhFTJJ8bz0PbaiaK0ZLM57xzeI8t/\nb14DvV6vn+t0HGqEa/lIk0im0xm8O7CImO3Ye0PEaJGlXaNJa5/9sJENNpIjk855x3PNrK9rNEIc\nRUCvOKIHWnrv25hrcrs9Gfzbsv2L52XwbjFp3lORDDzOHe/4ePfr8r7nWsxgl1Wv17bsZ9LrhVhI\n+wwWLFiwbdglRaLDzPJZSfzLdp8mw576RF71mj6V19dWRUSkUFBei099oo9mA1wjmrE8lo1ztPyQ\n7YdF6haREl0lxbwl8YS0CKgim/fjMHleATGGjvM01+VspQEfcuCj7H2z3KdF1Pzcxp+yP6lUzzuO\n5xF9tdttSad9T79F35ZzFNkUbSCbdwFATD0fafbz6T6yIuJk5EJPuEvhvfPXsI19phEp2rVs+W0b\nH8lxE4HTUg4J9tB+3Xttd5q4jh9N0I8oxfs8yY9guWFriQjTcqD8HOfl3G6EHCrXxGA/B+83kajt\nb5JfJInLHWQBiQYLFizYNuyyQKLDeIphT61hnCjNPhWTzo+AFois2uD+6vBorq8qEh0bV0+ojWdl\na+T4bNwlkZRFnvzecpwWGQ5D4EQ75LWSohfYruV27fuMGV/GZJmQA05xh9Ahso7jNzebRaIWdfUh\ne8eV+uvBIvxut9s3tzY+dFD2WyqV6uOnI6418e+RncsYJacwV5HXZ8vj2kycpDVgj0/iXHmv6O23\n/HxfzC/uVb2ha7nRrHvf2/HZeRm2u7Oxu0ne8b44WteujrvR8jPE+ndpaKeHtebiZ/0IEPvbjM/3\n/5bYeUuKHx1kAYkGCxYs2DbskiJR+5RJiu+0XGiSp3KY9z4ZueE8XDZLz2vb9/6Sg9tY1zzmJrzY\n2eyk11789PW9y0kaAPYpaLlOzg/RhuOE4RlmDGDHoRZ//Emcsp1nl8mEpzf5NZddwygBF9+KE3l9\nZnwx6wRfM+vHobWMn+XTNnGz/Z5teloHZ3Ztvo+dTkL8ofhzsjn+MpVK9fXNoVvnfffXVtLuwF6H\ndiExrpv7FY/Z50Dt8bxXNguMxs8ZB9pq+3wydwF8ZfzosN2SHYd9TfJbxF50n9uMfxNcm+L1sz+C\nh1ECmFfsuvhbEMMBM26UHLBdQ0lr80L8KgGJBgsWLNg27LJAohYpJXnQLjSDKcksErRPNz7NmGds\nM2w252iLiKxDWWdiwudGeV6ru7V32qIHy2MR/dTr5EjxVM0VvX5GKeaDN9E+EByQG93nSXG4SaiI\nRt4txYYATrrwiPbSzCwCsmRMJpE75BAtP2mzgSwyteiL4yLXOwhNxEjJR1puDIYP5nWd9xyfReQy\nMz7nmaQvkBSzm6TkZc2ibosobdYXdwmWC+3TR8Ca5JojImV8KHcZSQppbHerONvN47SqTP0Iksf7\nSDSKBv+Gk73jvI95jJtINGW+1/sXZ4ite9dJilG219nKAhINFixYsG3YZeGdt5bkbbe54EnH28/t\n99araxFa2yBjq/zD/lTAjfLpTq1GPv3JBUrPRwcW0cZeaep4+vwZQYnjVgW8TkS0QSQLBIxogkya\nicj+0zRJQcfGbVpFJIcMGZeJfldxfIeoC5/b/GzL8yVx4Umohmix1/O5482oLUYSg72sRNO9zd55\n6bpIDFo6YZeQxGHaOFTLGdL64iDN50kRKbYfRFY2HpTnE2lSVW2Yl9r+xmx7djyMXiBnnBQXmuSv\noNm1aP0CSdlv8ZqlxgF2DOL/FmZmVOeCv8W1tRURiX97XKP8E8E4YyJQ/ha3soBEgwULFmwbdlnl\nzidl7AxThrnQPONhufjuKei0D/3PbTtUdaLqOGX/LJdaIxJLUD+PVc751OZ1+dT1vdbk6+K0YfBK\nQJ6FDPOmMd7U4Bi4JBVyohaLSiQHbhJP/6ZBrHyqJ6Eoi+ST1J2sRzdGroLz/PjbzVy0u3asWKDn\ntsl3M6Moxg/pKOrLjrL8LW2QCtRWY7URB0kRCBaB0ax33sb22rmjESETkVLdiZztyooislXEPCfF\nRVolMr52uj3ve+bcJ+0ik5ConTe7NsidZjJJuffaTnyf9IOF84rAT58+LSIihQIV76kZrO3U6348\nKtW4bHWJrSwg0WDBggXbhl1SJJrEG8Xc12AvfRJPlcSjJMWsDUO0SVxrrNqtCGwNT3OrGp4Hamg1\nfHXwJG6Q31tlfOuldk9vcp4uq8Yg1sj3mtNsrSTG1mUM6qI5/okcJ+JAGw0fjfXplRr0ZONFLddq\nx0mESdQVI3gfreXhoc2kMy521cbs9uWSb1oj2WzWXZtcYx8PbFCy5T6Jwi1Ssvc4KXY3SSXKzgF3\nO/TOW67TjoPf85UK9knKX0ncJrP4MunBmrA97JaoBGZ/OReqY2GrRMT3aXA2W3yf9XVyUqtOTEzs\nFhGRW/7F60REZGVFFfvF3ZfBUQtco0nxv4MsINFgwYIF24ZdFnGijrtz2QpEmP7TYBhHatsdpsAy\nLLsiMjFiFjXwtbKhnOjqsj7tikCSxQIUZGpEaL4+qfXoxijF73+ienjafwZaRE7PIp+61GosQX3K\nxakSTTiea7BH2XGoQ2pU2X4TNVmURXRlFZf4ahWJXAYZQI1Fzt1uty8mNikHfbNyUzqdcd5du7ux\nSM0iUIu6k/hgi7btnNrznYKW0Qe1yJrnk5fm94wU4fvl5WVvrpLiUO18MQvO9jMpQylOZhusAZB0\nH6yGrv2e1SJYQyqTRXXTou76Dr/ssIiIlIHUV5Y1NrmyoTuEs+fm0W7amx8i9vPnz+t54IqJTC/E\nAhINFixYsG3YJfbO+xko9qmVlJFkVcvt0z1JPWlYu32KMQkxdfb4JlDABmqWr63p040xahY9WP7M\nIrgkAN1/ffafT3dklzRb3nvnxe/5caBJnl6ndJ9wXen582QRKc2iL/J5Fm0QBTk0gnZdDfKWnR99\nbQ7IDrKcI8dWLpe9MW82ztPmtiyCpLn4TlyHOgstp2Ql3ucWWdKSdDYt4iUS5dxZ3VCuJZrVquU9\nIVJN4v2TcuAdckwPRuh2bTD6oSuD27W/Od4fvk5MTIjI5uqd4IBRtXRsbALX5X3gb0vv7xVXHNLx\n1pAdiLW+tqq/zWZLEWa56CPgPXv2oH1FuoxqCCpOwYIFC/YjtkucsTTMG86nl/99fyzZYOiW5FlL\nUvix/eh0BvM4/bn0vhKOVcSxHlqiiL4sENP+sPfsX7tF/olIk4ibyJ1aAeL1z+Y3E8XUqtrvkbFR\n73o0l+VhUIb1rLK9JBWrdtvWUtf2s5FfRdTWo0+qCDAyMuKOJWIjAo25NT+CQEQ9zuSr46w4xJ5m\n/fhDon/GodJrbTm9BtZEZLhOq59A4/nk6Ig85+bmvO9t3CjjP5OQIRGozZFPQpyW33Y6EwkRHOyX\ny77D54wbtcjYjpPcJOM4iTxL5VHvOpx3Rpw4NwruQ62GyrS4j3NzugvMu52Hf1wav41i0Y+i4Lzb\numZbWUCiwYIFC7YNu8ScqL4me9P5uPH/1tunOC3JS2+/H6b9aPVFaTY+1apBtVqsCqpcnlWQsSjI\nxqv2xUlmmEtP2STm9vsqR0mK+f2csI+wiUjpibRe8vU15YXGxscGzgMnyCoYWYTIzxn/S+TeNv0l\namgmeHatupPVPc3lcg6BJsVPDtLdTEWRRPgpRGkgEMRDOl4Y/2OEABGoVbanuXssfsaLXesWOTPG\nOKnqgI0/5dpyymEJcY9EokkqTEkIOY5J9ndBPI67EhsLnCvkvXER4Y2NTWKcikBHRok4B/sb4n5y\nO2qrO7A6AhXDdNysbjozMyUiIgXM4xruWx1rkplQw7QLtrKARIMFCxZsG3ZZqTglPQ2sqrj1wCbF\n6vXn2Q7mjRKVZlLmFZZUs6hjEBlfrafV9td5103OvFPKMVEJNKuA31+vxgwn4enKcTBGjh7KLFSl\n6Km0+eI5k2NP7pWZTORmG3VWAACCR38bqMDIGlasOloEP9bu+GgkCYES7YyNjfUhTjdmV3oVyDS7\naelnIkkB7BPZdNH3rvgRC4QduaxfGdXqALi10cLaMLsD9t3Ggdp+J+kL2LhR3gPeIyJCvvLzpFpH\n1pKiE1j51eoksH/T08pFTkxNi4jIFN9PKCLkvRtWY6r/tynefLjfeI9/A3RNLS6e964zBl6fHLcg\nC7Le0ONz2eQdyubrb2UBiQYLFizYNuwSZyz5XJ0FgvHTaDAStTngw/Qqk1SCrF1oLn0SZ2eRKNGG\n8xSzf6wHhGYt8LWeVDtei0T7cuITsj/svLCfi4uLXrtjXSJSP7aSs8BKAI6yZX/pdW8hfnZNM7ls\nZtYakG+1qjxWZV3naQooJpX288Wtp92iB50HxG/mMrgmEAjgQrVW8foqIlJbX5MO+OxUmhktyIyB\nIlbarTFkW+X8fH57TzhW1jSyERiW87RebqsXkLTLshERVsM1KWffco82lrk/i07PI5fINXHgkGYK\nTeKejY/79cZoScphdo0nI1GmojFHH59HVJXSeV5ZncfxuF5H52PnDr2fx49rJlOjDuSeo86Ezpfl\n0kOcaLBgwYL9iO2y0hNNRoZ89RGWjb2z2SjDNAzt+/56MOgXj0sYh1PkoYcT6IAowfJVSYg4iWu1\nvBTRRpIKeBKvEyvpu5F758XZL8wIgr5oUeeVXvq0QVMjJX1dXlCUt7SkvFQNCPPEiedEJOY6M/CA\n12rK1zlNS/Rj/qxqQI5P7RQRkYOHrhCRGNE7lIAb0sVwO520UJh8Y13bbANh0ut9+vQZ/R4K5yIi\nTz3+LanDmz25Q9V/KhvK4e1AnOY4eGLWrYqVpIwivuFtycFZb7q9p3YNJOmTDlMw4z3kq41ooLF/\n5JO5G6GxXVbJHBufwDzAuz6m3vXDL7vaO2+YHsXwaqC+9f+GGfWg1mqRV1fePofss9qKIst27aSI\niBzYD4TcvUlERI4d0zW2srrsjZ/9CHGiwYIFC/ZjssvCOx8jUXrqrHqSHyuW5F22yuzDkNow/dGk\nfva9J7JkLGGXXmqfG3X9G8jlDcjJN97wJI+p7Y/NEEpS3qHXPP4eMYB1/X5jDR7YDLJfgBxLQFO8\nX0vwiM7Pn8Kr8lJE5Ofnz4mISC4Lng/qXPTO2zpFRG31JlSf0L+9u3eJiMjMtKKKNqp/Lp9Xnmu9\nWnVzNlJSBLUOxNnivSDnuEnF6dSx5x1HWmvQy6v88NKCjo052Tt37NC5YtZVmpk4VKYil6j8LTNk\n2vAeJ621pPphSZEklqtkRVW7Zoje7S7Lrn16z0dHFXETaTKTKOn6Sfw7zUbQDNPnHKYFzCoPgsq2\n2Z6+ZsCVZlPM4dfX6Wnlaqt1vf6111wpIiK7d2uu/GOPfUdERM7OnxWRfo2BC0GiF/1H9MMf/rA8\n+uij0m635R3veIfceOON8u53v1s6nY7Mzs7KRz7ykYFiD8GCBQv2z8ku6o/o17/+dXn66aflvvvu\nk+XlZfmFX/gFufXWW+XIkSNy1113yb333iv333+/HDlyZMt2rAZh/JCySJBxglv3y6oBJXnZkzxu\nSU8f+5Slh7bNWtcd/2nJnHCbJeIQJt5n0z4StQiSlqQrat8nqSNx+H3e/BZz/MHvASEyptHpkOK+\nnD2jPFI+56utr60or7RwXhHo+uoa5gVqTBs6D40U0Ri5Zv++ODUoxJsyTvTUC/BAN5S33Fib9o5n\njavVtSVpugwaqPSwTrvxgjc2xdxWK1Wn5ERN2Ay5RdQpzyGzha9jYxoxEAFdpzPge11NoLQ3R12g\ne+ddTlAWsxzosJhmy+GxPc4JY3xdJhE4zumZHRiHIk7mrMcxv37WWZLfIkkJzUYBJGYFJrx3uzpw\nyqkMEHUHuydkM/L+ZrKI3EAdsB6+X1hcwHuoQhWUGz+0X7nvw/v3iYjIX/zlX4mIyAa48SQueZBd\nFCd6yy23yJ/8yZ+IiAY412o1efjhh+XOO+8UEZE77rhDjh49ejFNBwsWLNhLyi4KiabTaefVu//+\n++W1r32tfPWrX3Xb9+npaacUvZUNe8rZ45IQmc3ntdkctKSnuWvf5e/6uep87eLpljKeUcvz2Prt\nRAH0QvPpRkRHHov9T1JBt+NOqt/DKAZWBojzksV7bbHKaJsKPEADGX0tjrF2EWLpOuTvtJ/n4dk8\nfUoR6uqSoh9mIPE67RY92dRpRa8M3cTMrAzSh1Jm/rimmBduPartZlVSuHetBji4jj9HEbRWC1BG\nFxHptHvSSbHmkeu0iIisLyHCABVgO/AG792/X0RExqc0IycVkVfGvYLeZbmsvxPy5LV6FddJqK5p\n1rrNzbc58uSfWV9+1dX7UoQ5PqGo/cBB5QLpbU9Sbxq2a0viRpO87Um7JGdA5t0eIlt4HSwS3s8I\n9yMt5PEZ36rHU2ei2dT7UyqBf2emF9prIna5Aq68g7U5M6nzZZHohcSJpnoXkteUYF/60pfkk5/8\npHzmM5+Rn/mZn3Ho84UXXpD3vOc98rnPfW7L85999hk5fPhlF3v5YMGCBbvkdtGOpa985SvyiU98\nQj796U/L6OiolEolqdfrUigU5Ny5c04HcSt7yz1vkUe/8U/yqlteKSLJWRQ0GxtnP6fZ2jyW5+nj\nX1xtbfGu32635eGHvyG33PIq73jmXbO/REaWnyJ3WoQqN7UTmXnDHPmW0fe00QW23c1I+q//+j55\n29veKr4x/nNwDCO5XMZpbiCLhwi6AAWe8XHlj8idNivgNmv6atFPs0FuF2hEenJmfkF2zk27/m7q\nXt/OwtZgchlJGG8h79/Xvli+XkcykY98Wi4zibsVXQNjZb0XDz38DXnznXdIml5x3JMcpq6Hucqh\nXtbEtHqxd0MJfSe8vGXETzqdBCitk1deX8ccA9GSD7Y6Cpt1AO543evloX/8soiInD2r3uNz5zTS\ngaicSu/MGOJ7Ik6roD/My5+Uyz4IYf7q2++Rz/yH/9v7vE+H1F6PETac35TJYGLACyJFetglZdLa\nLgTppdPUNVir6XlT03o/Wy0i1ZT82q//W/nUJ/5QPyeyFOwCM+CqsWYff/IZERH5px887fWH9+Wh\nf/gvkmQXxYmur6/Lhz/8YfnkJz/p5Pxvu+02eeCBB0RE5MEHH5Tbb7/9YpoOFixYsJeUXRQS/cIX\nviDLy8vy27/92+6zP/zDP5T3ve99ct9998nu3bvl7rvv/qHbTVJwpw3zntNsvKhDYOYp6eIj2a7j\nDLe+jssRT+BW46e57w0n90m0Qc7SqjDxvdWStPGUyR5OZBxRGxIfz0zo05qzleb8IM+ctaKobFNF\n1g/jQOtEonVtl9qNbXLAnBfxdxJUOU9Hfv637bflgGlR2kf+dr4ciisWJZ5z8ryMVADSwa2pNuMM\nnXqrKSXsLpiNxZz3FLm6pvZxeVG99+TFmUOeyRe9vlWrOlfUteRuJI3+UPmea4FzRVQ/Pz8vd7zu\n9fLwww+LiEge7ZfLGsd5080HRUQkZ3L4h9VuutDP7fdJiLRfKR/cMs53axxrgqpL4tqlGhM/hrYs\n1koDSHSkiIiYpkYb5DO4kUUqiem8cz6J+Kl9QE2EbhOqWIiMyZR0Xg/v3ysiIs+f0d3V4oLGCacu\ngBO9qD+ib33rW+Wtb7VbSJHPfvazF9NcsGDBgr1k7bLIWLJ2IVkCW51nY9Vs0P+wp7J9yvbF7LGS\noWnHPqWp4E5u1NY2cp5Wk3NPsx7cpEwr229ywnVWeiSHuaQoahQai4WiHlcEB9pCBlEdHOnSiqKi\nZXCfDXi8QSu6bJy4X/QsywUZEeQwD3Acj+tX8LQq7DqfjCmG+hLm3tWF6nX6zm02my6n3UU+5MiZ\n+XPN2F/GXzKzKVdUDpRVKR3CAvBibSBqtHJ3wEwjRiAwm2vHDs3OuuqqG3QcJhLD7kaGecWH5a7T\nko53r/xtMGLFIUvMJ8bN+E6n9EWu02XHMTaZu0DoYDBWuAtVpRQQJebF7Z4QeEL/RBv9qyP6gYuw\nZyTS8vhtcL4z0IWNRvR+v+rlLxcRkW8++i0REVlcXpRhFnLngwULFmwbdlmpOFlLQqQ8PkkJx3KL\nVncyyRPJTJ2e+byv3ju9z06JfnDcapwDD0SK46oVRR+MgesZ5Mz+WtUncrxZoyifpDvKhzCf3lUg\nzQb4QqcMD09uAehtta6IdXlZ4z43KvS60+M6+L7Y2ktJsYFJSkTDVMWtujsrabKiQKVajXlwoOJc\nzo+vHBT50el0+rjEmC/HMW1mw2H3gHvDzKASsraIbPI51IV3lWD9LLYuuNvlZY1XLAHJXnXVtSIS\n57Cz323TP1vlIAmRDnuf6EXn92i/B3c633fAFXd6Pg/PXw53a7yDWXCTHcZaC+N4wWsjqoJVOJnV\nVgByZ3tRmnGz8HNQKU38yJY6dCFaiAvOFPT4Zlc/7yIWukJuuqgZWzNzuiM5dEjjgNN+4dmBFpBo\nsGDBgm3DLksk6sL+SGcM0f+0ZjlR+9S2PE+MaLdGxH3ed1O/x+Y9x7Fz4Hma+v060EvaIC+LhohE\nk5CuvV5fFVGgmJ6ZP1YLXd9QXq/egI4oONtlcKd8mseZTpwfH90l5UWnDFJPsiSeb1MRc+230ZJ0\nqBMcabPZjOcqoc55UqYQESL5VjcG8e99hGqT5NqqiBFeh1d9fFLjNctlvW6uQ8Snc3zFFaqN+p3v\nfVdEROahcDU1qZlPS0uLXr+T5vZic9r7FeUZUcHj8T3a6Xbx2zBe9YiZVTw/Za/vz78AubrzGMGR\nIt+tv5EyAnQj7tLwvQDJEjHWKzqf6ZSPcLlLYoZSHHNtOWr9vljIep/PQaWLfoKpmXEZZgGJBgsW\nLNg27BJ75/2nko0TpAeQZhGZtWGKMpZTsxqOvYR2rDk0QC99ZzDPRHMZU4h9I49mUZLVekyKD7XR\nApYTjZEcELPhjt35eN/pANmVVauxAAAgAElEQVSa75O44xjY+sr4cb8ic5x4x/VlnOH4SFLeKxF+\n13DVnF2iRtar73baTu2e17DVBXgO+WARvQ9JWrT5POI4EXfIC/Be0+tPnruOiIWJcT2fcYu8Hr36\na0CujAtlHCjbs7GwsbKWz+0m6XPa73sOufo6Br2IPD/XsuB4xvgiAkO84TtkmgFSzBURMYFdTqNG\nnU9moyHKwSFU/BaBHKllUEIVhXXEKDNexe2uEN/ZZpSFoKpF1tdNzef9mOQW4kOzvO893h9Ftmur\nev94n+bP6n3au2+nDLOARIMFCxZsG3ZJkWiUgEzi93x64p1FWuZ4iyAtp2jjRa0327XjOxxjptTV\nujZP+YR4UZrNK+Z7xqrZSo5WQaYvOsC033ZVQ9EvInt4MDOC2kRUBkqz2ijQgUHsrl3TX8t1iuEL\n+zOOBt+nfiQKjjWhbhDRId8XkWVCjVByy6ViXprgdVNpP6/e1j7KblK2LxaLfYrmDvFhDFTzb5Lf\nxisRXruha20DyHINCGdqSnPtiUiJREfK1O9k9pd+vgIv/44dioDaLutsMLLuvzd+fCRz/3mve8Dx\nHazqdgORKymfS3YZRzguk2Z78HanMS/4SZHb7CBetARvOBXn01k9fgScZrOh11ldU045BY2BCvRb\nuQsp5crov7ZTQZZckpJa7J2v+/OCJUmFMf4t4PynkMO/vKzZeeOTY5yAoRaQaLBgwYJtwy4r73w/\nvzMY0SQh0iREaONGk7I9IlNN1F09spB0cP+HXZ9oIIdYQmYwOX1RqqAnjM/FfzrVb31fb9fRDr3l\nenwaijVUmHdohPnN9PJj3PWmXxPKKvL3x3UOzoV32Sgwy2Xb8fUAE3LiqzdZ9Sp+zooAhRyPR+58\nIScdZGFVWT8q6+sPDOKt8/n8gGoA5NGBgs3uxCI/pxm77Gcw7dy50+u7ff+DJ54QkRhhVlEhdX1d\neXO3ZhkTa6onxPGTJva2x+O1v216u8XunrA22lyb/BzzR86T0QJQV2LueaoL7hPtFyIgVfxmOlBV\nYn2tJqoTNJvsNxAxECwlcOM15d+vMVRd5XzFFWrVXOwzkL/9TVWhXFarb+A4vU/cfXYxb2V8Hl0A\nFA1INFiwYMG2YZdF7vwwRGfdvH1IZki8KJ9aDskwg4mK78z5zhBpkR/yeadh10mK3XMeVo63OxiR\nkafJAOGxf8zI6fD6HaAOogGoqBMlMK6SSkZtTl8EDpRPV5wvOK+Bp3TL1acfcl/Il2WISPXTdntw\nlEKSWU0CvmfUwmb+UkSkkEfN9IKPMqMoknRaEYSsoK48dCNtZEanvSl3vlHdxJ2SjyUvDZ4aaNny\n+Ja/XYPaf2lc40Xpfee9PnTokIiIjI6qfsHuPVrr5+xZjRetIauM3KnLumMkCPU3yUEiey6TMhEm\nmPqOWZvMdeduZKQY4VXnsA6ExowiV720BT8DMq/KBSI1zCMjYFiVoMf59HdNdO9nSsjCSxVxXNqb\nR2r0UqGe3nNXzXVkxDvPagdbrQO+MlAlynHNYleGXRx/U2vrer1yPsSJBgsWLNiP1C4LTnTY+7ge\n/eDzLSqwiJBPJ3J9+azvpbdcacwdbp0N0qdwk4BEk5Az86FrUOku9vSpPOIqG+p5jSaVbYCMTe54\nfUPRC+vM0FtNJJvmvLDSJFBWE7Fz9Gg3wC+R0+yv4cQZ4Hz78aDDamC5s839cllEJp7Vcspx7GYR\n/fOzUnrdruQQf8ja9M0uuU7E6gKduxKmojuONNZECV5zW3uI73PmmlZJit50coErQMRx1QC9tzMz\nmqG0C174+Xn1CnOtrq7qedRd4L1wnGiLMdb0xtMLTaRNjVf2j7G/DfQfSDDH3dqa9/0IogsaUEUq\nIg6zBURZ3dDji3m/BlQD80y1Jq7xOHvNj5aIswX52xWMFwgY4yHStL8t7t7s57b+FrnUNLRya6i1\nxOvMzmqm0okTJ7TfmL9ibkSGWUCiwYIFC7YNu8RIlK9bc45EovZrpxIUQyG8+MjHeuedark5jk8v\n6xlMQpzJ40rIdGK8q3tFO3h615i/XWa+Mb7mcS77QtGU4wLxdQFINOu4UnCW5PWYZQM01oTOqHtq\no51IiCSJFIGCTL0iN3smiMKqayWpcfE4oglqZtodgI2rJR9G/VKiz1Q6kib52B5jg/W7PDmwkiIq\nIjsR9eTaapcWTVvNVFeSKUFRvoq4T9ahcrw4zifi3XNgn4iI/OBJ9dLT606vcx0caZa7J+N9p7Fq\nZRu7lRYU4SXFTCx67/X6s5MTOE/bzyCutpwDRxlBKQzt16HUHzm9VnCIVAhr1L3+8TfJ8kH8zXBc\ncR2tHMYJdSXEg1L1ifqqRPCcb6tFy/vH47iGCuDVucZr2CFQL5b+hGeeeU5EYi6W870gyzLMAhIN\nFixYsG3YJUWilvNKymhxuNDk0rvPiVhSPgeXzI3qUzprPLb93KV45yVFA8SKP65D+h6H0dvu0Irr\nF/grPN2beNo3EVPH/F5b24ml0fN4SrMyZTHHzB1Wemx5r+0meLE2+T7GRJLng3Zl248LjRE/x0Ou\nFd1MCKWzSNOqTFlFpZ47D2iL0QlG0Z4eWir4MMYwSmckm6VyOu8l+5CsVbo5TpRms9xsbKxds3Ys\nXaD9ThtK66KIbWNd3585o/Xip3doRtMkMpsWzityJQIl+mY8YxrtpJmTTqUyp52L2kG4J8WC3tMC\ncskZOJqFcny7qe13Ix1n0znbESeK9opjev0G1JNY26mEyrUVIsysH49rf4NcE0SGqyuK2EdH1Qte\nGmUml69rUYE2gUWiXBOuMgCz1wrQLICuK5Hq1Lgi4xR2V2tr2i71X4nAiWi75m/OIAtINFiwYMG2\nYZcFJ+re4zVlModcvZTe4HzhuD0i0sG59EQPTaCEnKlbbr3A7CARcKfnI6nEcSV49WN0JF4/STy1\nAQPSMngc5CrJARbAG5Wppp6lp1af8g55I1+Ytc/heJRm01cKspZD/GfL1cPx+a6+nUPkvydaIIdJ\ntGA55T6OGXyb5Vad2jzjfzmQNu9bq68WfY8RCtQL6Pr5+OxfzJfTq+2rJrm+cC2Bc2yb3UsX7eTI\n+UV+RhFhC732eagWUcfyPLz0jBclRzc5OYUxsh9ojnGZEeMdmauu30+NKScoQJYNItemPw9RRE0B\n7c8GIj54Z1IZg7hNLr+LHjB1zSxit5bL8/o6LsYGx3Giiijj3aB479mfviw3tMvcf6e/0GaOP6MS\n9H5xd7p3r1b9nJmZFRGR48ePD+z3ZgtINFiwYMG2YZcUiTInnfwELVZtcvkX+t4hw61z58nRJakf\nkY8ZAc/Un/vt8zhWGSfJO5+EfC23SN6uFRfb1nbxlGxBi7EIJZw2veY4PIuYwDyQYZ55yuhHBefH\nHmEicH3qNsGNulx8M17nOaXn2fQ/ZzQ3mbFET67lF62ea1+UA/kyg3Qtz2izjmwNqnQ67dAuEY3T\ncu1AVShNfcv4HrbbbYec8gXys9ATcJkuzO6C+hDQfbdD7zf7jFz6mnJtxVHl1vJlxjMithcc4gvH\nXhARkZkdmuEUxz3qdcgFxrHMiDIQ7sqwe8FPKI0IDapOcZQ15OSzcmpGcB2IApRKiHttI1KDOfUd\nZippO3nw7eT7Ww2/4mvOVTMd/NuL55OqWqhZ1fJrVhE5UkuAa8z+hvlquWu+j9J+P/hLp+4rkTf/\n5oyNjaNdKpkOx5kBiQYLFizYNuzSIlETaGjjRi2Scl5v8Z8ufVU27fuECoc2LjSJG03SPe3z5nuj\n6Tcb20bukyiDDCCf1mVU4ewSMfL6uGujZT799X3TUcj+/PRxvaYap9UY6M9Z973pRBvOW08FftZa\nx1k29pLIlpUjey7/m6rnfn+t4r9FojZbKJVK9Y0lXjv6eRkCmJvRcrPZdN5YZkOxPnwkfnwjrQxE\n1nW7CMQeM9jWxQDr5+NjqA0ERJdB3Ob3Hn9cRET2HVAujnPbM3XbY0TGXYC2XyzoeEbBO7dQLyvV\nYWVX9IuIi7oI1EkF5+jm1PHL2s9KlXXcUUWgxGqmjBJAFU0g2JSwOqdvXAPUDKhXtX8RdCCo4+Aq\n47pYZ8Q4G2/9+LgiRqs1y52Iu/+4L2ksViqozU7r+fMLqrpVKOh9X1lZ89ppt/01NsgCEg0WLFiw\nbdhlFSc6LIPJIb0E5XiXhULusucj0K7T1YS2oIvBQx2dhBpGTqOxOxiR0uLjmb/sIysa2yd/VWc+\nNEZYQyZRdxTH9+iBBTdIfg48UQ9PYyJWq35u+0e+zaqjc/7iGDko1tOxjHE5FSyjL+oqY/JGIXuG\nIZpx1IVLbdLxd+rePLkqnvjeIlDb383rhSieFqNhqu8jkwVxhCIimWxBOqhq2UBOeqfra71yrJzb\nXB68MeIlaxWsNXCMdShidVs6lpERRTr79qtq044dmqm0hMqqS4v6unvPHhGJvfTM+a/VmK2lOeD5\nvPZnnFVFM+DwkJFDizBHCAl295b3Ps7QYVQDOWNtZ2wMSBV4i5EejEJgfGpc1VNfMllWT8Bx2PUx\n/jVCjC/9IvQ3uDhbU1PK1r7i68YGuGdywEbzgMeNlJF7n+J5Gp/q/AXU1cD1pqcUqZ47f16GWUCi\nwYIFC7YNu6RINEag9NYK3g/m7BwyNXGY9ullKxzSeqYdcqJEokmWpOKUxD1ahGefqjbGjTW2WVCy\nDb6rjhi2ItAO2cYsUREQdQ3XaXb8uE+LmG0tJxtlYJG4Q2EpqkMZZE5SlFEWrFLKuvQGNcSakeLN\nj0WU1rtvVemt3mh7EwJPqlrQatFLDyS2aXPQ6YpUwXm6SIA00bVfedXdQ3iT01nWKOJcmDrruEZt\nQ+NCDxy8SkREpqAydeVV+v4HT3xfRESuvf4aEYmrgXIcRE4T4+D0UA+9CC6Px9t69fEuAXON7+m9\njnP0FcGPjFAnlHw/1y64yVbKO56Ij7HLhKK16hqmwa8Aa7lNGuN3qdNgj2N/+Zslgra/eVtDi/eH\n/e+6uvR6/My0ZjAtzSs3Wqso4s9SNSp454MFCxbsR2uXhZ5o/DTpea9Jx9mceYsArSXVq7deepsh\n019ZcXCmTV8eddrPKnH10tk/IkdGB6A9hxyN97mAIMACVcFTPipi/Z8WY/eMV9wivDinnZ5NP1ee\nyJwohVqVkVFFzwEFMfefyJTq5zSLgKkuxesmqT7xvliOlN/z8807FbsWrMoPEcxmlN5ut/tQuDiN\nUr9irM2oaTfZR6BplhGAN5tjWF/RXPmNDSBG8NlXQOn+Sw/8ZxERecUrbxYRkVlkMBE55tF+Cfqd\nEeau1fTjJFsuFtjPJCqPKMFeKo95/ed80dvtdicRuUj+9shXQ2chre1lS/ragD5nVojkoQLlBMjw\neY73mvG4jPsEl91CvSwTNWD9FPaVOfQx58sdBOYLCLQKpDmCnH8G2I5N6s5gZVUR/1kg00rzR+yd\nr9fr8oY3vEH+9m//Vs6cOSNvf/vb5ciRI/Kud73L3cRgwYIF++ds20KiH//4x90T7E//9E/lyJEj\nctddd8m9994r999/vxw5cmTL810VTINExcSBMuYulRCBOUwhf1iGEdECUQaNTz/bT2Z9WHUopxea\nkItu40qTFN8JYXkdco5jiGHspFxGs/a/Dn1QIEDmfbt5M1EGfFqTJ6QmAaMZGJvYbDNuVI8vZ1F7\nvemjM8b0NZ2SEDjMrs/LxTsCv19ES0RRVsXc7jAsh0pLpVLuM/bRzjnv9WZOrl6vO+Tj8vOd6hDQ\nPuIFWfsortVEJXdko2Wgug/vc7EAlNzS8yqLmou9vKze+ekpVbgvA+GdPn5aRERyRXB7uNdjyHga\nRa59kVwf15LhGO0uhIh1vav94JwSwdKI7qmcz7hKmyXWY8QGdzUp1jiCbkODsb5UFNP28nnufsiH\nY3eRZtaZfs/c9baJOOnrJ76fm5sTEZGTJ09531Ntihq79M5zF9UGQj2/pBxuBb+hUWQuTe8clWF2\n0Uj02WeflWeeeUZe//rXi4jIww8/LHfeeaeIiNxxxx1y9OjRi206WLBgwV4ydtFI9I/+6I/k/e9/\nv3z+858XEeXP+FSbnp6W8xcQX5WoFO+yPizSMIeZzJtERXmD/OzxfMpZz6ZT9jF1dpqs1wPElmK1\n0K3FnfoQmfXWO47XzAevNzKhT0XGKC41lN/pgf/pEll2qBzkc4dEeC5Dyj2dkRPvUIK2U8iRjwMq\nyvnZPg3mrkeDNQPsuGkWHVqEbLnPpPvaHFCVtC97LSGmeHM8KflBEelDpHEfff7cRQFwTJyzUdQx\n73GO9PupDLjL1vMiInLutI51ZPJlIiJy8IqDIiKyeE6rfh44rO93ILPG1XbK0FuvfR4fVY6TVQt4\nrzk+G1/pdnNE2hQs64L7Y/VLs5j52461CUroj67FWr2F6+rr9PS06Q8zyEiS4j4B6Y+WdT6amDDG\nz/I3UjQK9USYVGFaRJwt75/Nsd9w1SCwiyHni90dazCtrqsfYPeuXdr+BWQsXdQf0c9//vNy8803\ny759+wZ+P0wqjvaFv1cy/Zmnnr+YbvzY7Lnnjl3qLmxpD/7DVy51F7a0o9/8zqXuwpb2xYcu/fzd\n+dN3D/z8d97zgR9zT344e9PPb03ZXWr72bt/+Ud+jYv6I/rQQw/JiRMn5KGHHpKzZ89KLpeTUqkk\n9XpdCoWCnDt3znEUW9mbf/ZN8vRTz8tVV1/hfZ6EHqxRYaabUMc9qaqkRaJEguWyr+rUbDblueeO\nyf79e7322447hFfbxK/2IVITX2lV04kMXcYOPYaow1MCf7NvVp/u05P6+eLGutz/n/5B7nztrXo+\nM6TonY/82DkiUXrdbT4485otiiNvVQJSpFYms0UIZ1hnx+VhN9ry1Ycfk9tuuckbd4zwfe+81QK1\nXnj7vmlqTbn+SD8SsRqn7Ms3vvVd+alX3ewQDDl+rgXuitKR3x7NKXMBIZLbS0U616PIjJqd0r7u\n262vU7t1zZdnbxMRkXMnFVke/co/iojI3IGd8vsf+JD88Yc/JCIiVcRd3nyzxpHyHtTr2H0wrhPI\n0nrnbfUARozYmGCLxLlGiASpsjQ5OSmv+29+ST7/Hz/ttUNVJGaEtaAYxnvdpC4C6slzbUVpP4a7\nmNf5JwfNWk3crawiLpbfs7+uxlKvJ29881vk7z//V5gPXzeUdeZbiDxJo5oENXd37tC/X9Qe/sV/\n+UuSZBf1R/SP//iP3f8/+tGPyp49e+Sxxx6TBx54QH7+539eHnzwQbn99tsvpulgwYIFe0nZixYn\n+s53vlPe8573yH333Se7d++Wu+8evD3ZyixCTKpl1K/36SO8vno3CfqjfMs6MuQCyZskcaiDM+el\nT7qGiNQiYZpVIer7vuN7zVfA3fV6ivhqXaqwU5mHicvMgCLn7PN7STnptGyGWT/g4bLkpRRlZBF7\n55RymC2SoZakvpDapvKQaz9Lr/5gFS5bQTPpvltOfbOKE1+TtE0387bVarVvNxJHBKCPJibYRijw\np5RxcZLoI75tNHzuMA3+OpvW691wg8aHfvO/qkOW8aQ1IKhUBnGnLT+DqNP1udAedEaJHC2fb3lx\nHmcjUPg5uVW+cryLi4uYJ1bZRGSLqXtPbbISONRmhXGyzETKeO2wkm2lrWvdrlX2g9ys1RG1r1b1\n6eSps9p+FZlPaI8aCAW0t7KoPp1S2Y/YGWTb/iP6zne+0/3/s5/97HabCxYsWLCXlF0WGUu2CuQw\nc7wWEA25wL7aS0xnZo63qwZq2qNyDaBTxjzNrEW27rr47Wfg+aMiDDlD1ioaVuWU9V+IFljHp9LU\np2bP1fwm38WsDr99mr2e1WDk+XGNJtbrAc/Epz1uD5V7XP41uNA0dwDsX4r98+M6Uy7O1Ve8t7n0\nSZlmNm50s17qsN2L1TGIzwNnh4gHVscsIEPIzi37EPPZ0NvMkeND7GybXmRwbkCY7SrWfEuvxxpJ\n11yn/PGZBY0ndV5kzOnKmiK0EWbmQLWp3fHVq4g4Y6V8H727tWU4UX5PzjHmOqGYbzhTF+eJn0AO\n89VscK2Bx87p+1HojbpcfOP9tpEdRLhEvpYX5/gsYl5Y0KqpjLxgf8lx8rfIncfIGKqA0r3R6M9s\nS7KQOx8sWLBg27DLQk80yauehEz7ECyRoUtC92PhLImZhFaS4huTajmlLZcIz2QWdXCIcGmdBI42\nftXj2uBCm209vlZnbr9+z9T0dELmj7seFeMNZ2wzhBxXGjFbB+gDKKMIhX2ijgrq01BpP5OlVqOJ\ndzXozfKUSQh0WGYXjWhk87jpPbdofKu2spkUpVmlUYeieVHHlCrkB7ZnrQ2OM467JGKFV7jFqqHK\nzfXSUEGqPyUiIivrirhGxuHVPgVEuL4sIiIzuzSccHlFIxAOzKr3uAAurwNU30Bmkq1rZXPPGYlB\nI8fI84hkk+4ZvfbuHqRZTZNqUbwn5LH13RgU/kmZ2ggZW9XAImW7S3FVU/N573tGB7Ed9nduVjOh\nKohqqEBhf3Zaq6k2+FubUWR6+tQpGWYBiQYLFizYNuyy4EStJSGP5OP985w3nepCBopaj601ogeL\n4Gxmka1ZRE1JopCu+bwjPtLdFLWHdjkg9h/8lXtK+/GS1qNq85udB7YwuKqpjc8slYA4MSzG3xLp\ns5h5N4JXvsXv1SzCZQXHrtMa0OMsKiKvZVWZkvrLcZPP2oxmLL9uOczBu5z4Ojyf8ZBWz7JllNxt\nvSfqERARF9LgRHH9jQoQ1IZydukx7cfY7A0iInLzTf9CRESeefqEiIh885GviYjITT/1WhER2TOj\nscLnlhShTozpHLAaghuRUT/iWrVZeW5XZebW3hureGZ/A0SClYr2YwUc5uzcDNr369I3Ufee8Z+8\nT0TEcRabtktOlMZ4UMubW6UyF1e6phzvWEH7sbyq1+FuskZVLsxXAZztKPRVt7KARIMFCxZsG3ZJ\nkWhfjZ4EVaMkDvOHtaS4T/s9vfTkNJM4UWv0yFLv08UkMkrAqFNRyaavOXoIxa8XX0es4ehoEef5\nfJXlr2KFHh+VWXTFOFB649N4tsIx7NBVC+OxqMvmmdNsdpD1cCdlkFnURPQzgoqW9Lhani6dTsd1\nocy1k5CUiEg2l5c0csYt4rTIyPbdIjsqYHFuMvCeN1mNoIH4zYYinOWKnr83pVzn/Nkn9PMljWes\nriuyW1vQnPr9QHZVEON5ILryqHKtVJS3Su9JPPjmudv8yuPIJVpk2qfxywgPIFLWb++aKhQNatSK\nH/fJ69D7z3Y4z8xtT1L2iuNG82iXdempwK/tr2+As8VvNVvU+2DjfxlxkskN/xMZkGiwYMGCbcMu\nCyRqESmtL+5zm9ZXqynBkvgiPrWttqFDsHjfYh5zxjyjOjbTKiEKgcEFaKfTo1o70ZReP1/wM4GS\nMqOsjqf72pHJeLrj+ywQeLmkT2nWHq83G1473R7Vo/wsF6vdSY653d6a67ReeouiyG8l67DGfYjV\n+/2MFiKfzfewUCgKAQdROZEJ27Fef7t2iZzoHRfEQyJUVhpt1ENvUytVvy9kNTOmsqYiLQvntL8T\no3r9m264Vq+DyIf5edUb7U2r8n0bu5m59KQ3V/1VDHyEbbPVrPoR0T7n3MZj0nh+oQDutO3rGVCN\nqVwu4TjoOOB45r7bTLIzZ86IiMju3VodlZEvRJzsxxjiO1dWtJ2lRUXiU1C/chVmnTAcuVbs0kyV\niIzRhcgzbGMLC0g0WLBgwbZhl4V3Pik+9If10g+7zoUi0JhDjDNhRGKUItQRpWpTAifYPz4+szoD\nv7ecYM9592172o9ZqH8TBbFmk3PyC5GpydiiqhRT7Q0qiTL+eBgfKk3mkfu8FNW0iD76s2BsVIJ/\nvy1ashqSFoHamM3N6k029nRzNtPmzy1arzdYT8tX10/SgCX3SU3WPBTcuxvgZIE006iU2gPn2oRu\nZ7OryKyI3PlOVRFp1FHvew5qUDtnFWn1IkVee/cqAh2f2CkiIv/0ba0SWkM9950z2h7jMdl/Iji7\nu7KRHjYTy/LoROSMM+U8ERnaezk9peNptak1gFhgXMdW9WR/9uzZIyKboiBwu8YndFz5GteKfr97\nt8aFjkD5rG549NHREW8e6uCURzCO5WVEOyBagEi8VtPjt7KARIMFCxZsG3ZJkWgS0hzmlR+GKC2y\nvVB9UmtEgi2oJFEv1CnCgxNkzrgYD669XoyG/Dxli8is55HcI2ujS0qzKw7sPyQiIlkWaIRiTpPI\n1SBY61lNMir2M0feRQuA022baqI2N98qIU2ikmIT2pJdN48YN/lI5Kvns4rqiHJc3rOpvmprMfV6\nPYeUeCxRqs2G2syJ1uv1mDTL+musQO8tVZBYn6qDONIc7yWOpzq/IIMGtZY6ooimC/i/0dDrnD2j\nrysCb3ITmUpLqIm0pFzfNdcpMpubVOT0wukTXj8Xl7U/07Pa39EpPa4O775F9W2DBJ1XGmvMZjrZ\nzy0XHOsxIO6VuehY26fPaOYPudc2kCnPt9mC9j7xN9doaPs1ZBpR9jWX1+tsVJZxPOuI+Yr61BVt\ntxBFgfbZL16PCJa5/1tZQKLBggULtg27pEjUxqZdaK0kqzhjv08674fmUl3GE9oxUQStNuvR6Peu\nBqdBwlY31AqP8unOpyHRlHtlLSGocLN+VRrZMGOIEdxYR4xg2++PpP15sVEKRKgOnYFnysFz2UrI\n1OK4Gx0f1XC8jO276qortX3E7pFTXVnTvGdGH3CmiZZo5LH4aj3mm8eVlKdvucDNlV3L5fKmulNc\nK+SR/RjamO9lvSk/HtXFXQKB5lLIKGorImR1yVZXP19YwXu9dbK2ofe2iYiHyUmNC927U5Xwe4j4\nWFjWuXv6qWMiInLV1TrHp8/q+bM7Ff23MUcWaZHzs9U+WRvJ1dHC+bbemOVUY65U7zl3LdwJkDMl\nN9lGjn3XZJixXZrjoMGS3mMAACAASURBVFktNKfjmJrUfq6vr3rXn0HO++qKIlVGB1ANyimK4Uey\njsy00ojPIWewPcoMyW4UCUg0WLBgwbZllwUneqEcpkWa1sOa6B3n91bcKRp8vHtPro+ohp5aImJX\nHwZPT56egLBjtOJ7rfM5eJ8xHGa7dJHqROc2URLREGPsdu5WvuyF5/Tp2wAPRCWdiN5uoBHyW9Yz\nSqTn0BSjEZi7z4wjxpuyhrfRNSW/yDDZG67TWMdjzx/T64PPKpbU00yNxwzztIGkq9U65mkwqrRa\nBu12uw8R2l0IkdfmNZZKpRwytefbWNW4PagkZbk2uUuBHgEqsk4WFUnuHFEeOz9CRIt4xHXEZTYU\nMXVF52LPXq02ec31+3WuxrV/q+uKuBbhTZ4/r5lM1157vYiInJ/Xz5988nlcn/GZusbIV89CzYhI\nkfNBxMh5skjV6nlar/3Ghq7JapU1nvQ48uLM8bcZXykTd2uV+F2cboe7sQV872sY1GqsOgo1rg71\nXjEe8O2Mgebaq67jeCDtGag6rUBFaysLSDRYsGDBtmGXRcYSzeb3Jllirr3DnPQa9za/jWP+vKP6\n293iwvYDXEefmnzaH7jisIiI3HLLLXo9jPOhh74sIiJLi8pnNerwZIJHanX0KR5X4UQWBzlM8dWh\nTpw8qe1n9CnLp71T7kHd+B4QYqvpZ6u4fGZTEdONDkg6DzRSsTnw1J4EmrB1459/XtHQ/Py8iIjM\nzCoqq4ALXVxUNJEDMs9RxSlDdSmoxQONEDVZxDyonlKSVq3NPhNRvtCuRY6Fr7Y91q1inSiicnJv\nRHqTJX3t9FDTp6VjZ62lRgXxk9C3nCzpHFx3tSLQnTuV+xsDB7i2rjn1Tz35pIjE8ZfnzunnE6gE\ne+aUqh4V9w9WYbJcJxGqzcbjeTayg+fbDCbObxm1iQj42Q5rHbndkOFEYw7Uz2CKd6ltc129AH9D\n7RbvMyM79KhiARwu6pOlkQE2Bf3W9Rp1M/TV7QxSNsa53wISDRYsWLBt2GXFiSZl8LjjeF7cguBA\nERHJZExNHseB+vGMtJ7T8RzMufZxtvicCJccIHmd227V+u833/IqERF5xSu0Xs7aqiKoddTHYW3r\nQ4cUsd50k3KGDz/yFRERefCLXxQRkRMvaP6w0ydlDj168v0faLbKd773uIiIXHNoH8ajyI9ooYi8\n5SzjKs24B9UdEhFpdf1qo9QCiJB/nOr69ymJR3zkkUd0fm7TGuv79u0VEZE0YiZPnzmHceLC8KAW\ny4ouGLNHtESPa8bkNddqded1TrI41zuOAJiamnIIjK9EvzYW1e46yI3yc6oXjY/rroAoZWlevcC1\npiKwGiIp0qgiUAYne+ig3sOZGc1IyoIvX1vX86qIIy3k9fhz53QuTpw8JiIine4e9EPn7NRp/T6L\nud65c6c3Ls6py3rD+J3aFcZVwnFpk5NvkT7vfaWCWlXQsmXNJs4bdxUO4RotXBuhwUwiqjP1BFwv\n+k1E22kwVlnjZPfvUt695eJiGZmCOwMOu5dCHCx2b8XcKObvvAyzgESDBQsWbBt2WSBR63VNuWqa\nPsdpkSiRoI3Vi+MgxWuX5p6ecZL5wH455Mr4VSJk5rRD6X0SnrzX/rSqj9940zUiIpKHtuH4uD7V\nfvntbxERkRpqXhOpjY7pccWR14iISLWmKOWvT/ytiIg0oUmZpfca7vo6NA+PH9fslckRRSeMz6wx\njpLRAUTaxjNq1eA5j9QPbSAvm98naVJaBMrYRFZeJCK986dfLyIi116tSJzVRc8AVbHGVBfP+DI8\nzEWghF1z8HSX6Dlm3Z+WQ6JEOuwz+2brrXO+iJSsIrrlRJN0RDm1IybekDWSzpxT9aVsjny0tjcO\nxLh/PzKSDigXWppQLrU0Aq821gwrrx6+QuNCT55WLvT5558TkTj+87rrbtTrdFFzqan8NGsP2Xvp\nEDzGydx97j46zBzKcA36scacFyJJVz216cepWp1T9x7jGjG1n7g2yYNvICKlUOKuyo9TzTrdB2Qm\nIYMqm4PCWMRqEfq6BiX+E6d197aAGlbLK9w16vf/6ogkWkCiwYIFC7YNuyy882mHIME7wSud6vOf\nm/NM1kTsgR2sT9oXR9r1M2US1aPgsUv1gCKQPZGDJ/YnbvkJERHZv1+5PqKRiDJJQk+utjMCz6Wr\nnV1ge4oS3vzfvVFERI4e/bqIiDz9tKKIVovz4o9veUXRznPHXhARkbkp5eXyrg4Nsi9S5BD1/Eq7\n4o2bT332n0ZkSNRidw79ec6D0dxzzyla2rdPeb+9c68QEZHrr1fkns0fExGRhQUdz9oqNCJXFCWW\nRkqYJ8R6Yp0wvz2TyciOHTvc/zf32cYbbubcstlsX77/sGoBNgedS8ZGPjAWuTSix1c3dJcxgl3D\nldcqoty5U+/96ISi7OIY9EHhZe419V41K4qU9uzcg/OU4/z2t74rIvEuZHFBvfNjo9pOt6mIan5e\nOb69e6GShP4V4N12VTxFxzU6rlxklMH8IYa5inhPZhJZpEkv/MZGFfPjZ+9Zr3vWeOWZ8ZRGxlgW\nu75yVpFqE2sXAFPyOX/t5VGhlv1fhAYBM7rOI0Lm7LzO0xriRNfWwQnXyXXLUAtINFiwYMG2YZcW\niRruM0oRiQ7WGbUcXMZlDPnK7Q4FOHUhn3t1SvptaCm683wONML0jJT0qTqFvGJWxbziigMiIvK6\n1ymXuXuPZpkwli0FJMqa3GlUECyX/EqFqUiPL4L7m0U85RvfdKeIiLQ7/1lERJ584lnMA87HU5c8\nUq0GJR48XXcC8W1APQkOTclBJTwDhFqp6VOdKMEqH1FJv2uUdmx9HhtLSSP/SA1K5v6fmVcO9Oqr\nNC/8ppcrIj1zRvmpZ585LiIiC/OKRKtAYfUmuOQJvS/Hj2u8bKk06nQobdwjESSR2malrG6327f7\n4HmW+ySSZY55rGCF7CmicvDVbSDAXg9VQvN6z/fsVQQ5NatIkYXvs6hu2XYZOIoMm+Asu3i/A7uN\na6/WOWMGD21hUeeY3OXMjoMiIjJfAQeJNXL4gM4Xf0uuNlRGx7u6pgiu1YF3vaT3kLoRjIu1/Drn\nifeBESl2J0AdhQIgZbOh1z+wT39bSys6rmZTkWKrC647Rd0EKH4VqDql4zt5cl5ufKXIt77ztIiI\nPPW8rpGl5VXvOOrIthyi1vsxt0vnd3p2WoZZQKLBggULtg27pEiUZpXfneeO8YkACeROmROeMQrs\nfCbEvBbjSOkJ9L38RMLtrj6NUhE5Q3B6eYVuL79Ja4JfffXVIiIyAXXtK644KCIih65AfnORCJHj\nIUrp4fusN75YwR6ILqI3X69/620/KSIxciOnmGoBUQOBr3UV7ZTb2u7+sj5Fd3ZRl2ZCx7FCbUTM\nWwnIdw08nfWEEkF2E9S1yDPSbIVNG2XBcZ88o57q7z+l47n2Go2TnZlRlJgHuilgPn/wPT2OGU5r\nG4pq0ln/vor0xxnymtY2K0B1Op0+NX7qErAdom6O2aJtrs0U4kZZZaADpfwIu6vJCUVyzOiJyPlh\nrWWhUkS+t4fdGZFtBu2zltH+Hbr7ufrQy0RE5Dvf15jhSgPxqC2dq5FRZH0h0+fMMf2eu55Jk1Oe\nQvwqf2tp+AVqOL+Le9rEmimaWGHODysFrAHRMrMrn9Xx5wt+ZlEmi0iN88/jPdZUDtxtGmpULf38\n/HnlNpeh2nTm9DLeV+WunxP55qPPiIjIIqIkuFKmZ5Q7n92lnOk4uOgOY6MR1ZCK/AyuQRaQaLBg\nwYJtwy6rONGYlsJTPkUO0+dEWeso9s6L98o0aHr4nHpTx79uwWVLwFMbEXFpA1ddqXzTL/7iL4hI\nzIlGadRngYd1EiriVGFKQ4vQqT1RwT0iEs3hc98DTMRKVEQP6u23a/zplx/6moiI1E4qcqzjeAG/\nU0kjJg/I+4aUPmWPbUD5p4SnKtBZqaiI2sZCJtXXSfV8r7zzfGMeS0R/GD8zqxjNQBTCWL7Hn9D8\n7596lWZ6XXvDIRERQbKJ7Mnp+HNZRR9PPaH81slTqpLu0E0GFSmz+b4IgVg53a8WYL3zdsxEsLwX\n5PaoT8D2idqZbgWhe8fv7wDSu+E6XUuViiIn6hJ0ukRwjDjAmkAkxkZNx7gB3cwOeO8WvMcROMyX\n7VUO8fQpoPwXnvXG/8wzOnd7Dx4UEZGpcR3P40/qcYcP6ee7ZhWR9TqMhca959pEfxn50UPEB/lu\neuOp0E9OtoTMpS52ffXGGo5DTn1ad0/ZPLRtMe/1GhTLNvS8M+cQuYH4zcqa8uorq/p+eYW1pPA3\noqjtHtyhVUN5H9PMzqMeKnQlqDPK6qrSHqKnIdv4I/p3f/d38ulPf1oymYz81m/9llx99dXy7ne/\nWzqdjszOzspHPvKRPhmtYMGCBfvnZhf1R3R5eVk+9rGPyd/8zd9ItVqVj370o/LAAw/IkSNH5K67\n7pJ7771X7r//fjlyZIswf+mv9SwOUbJCo/WqD0aikfiIjjndXXCSOVf/HfxTxlc3d4gQh5EP+4lb\nXikiIiOjUNMG4kxniB70OoxJI7/FWkIlKM5nM76GJXVIqc8pQhUlaF5Ci3JUlCPcjyyWN7/5zSIi\n8pUvHxURkWefUd6o0KWeqV53aVGfztfvuVlERMZKQDWjep0zLaCnnM8Xcp5t5UenOg4kmeF9wPEl\n8Fp5tNd2eqgYH7OGcJ9r4POI4r569GE9LNLjD1+pUQX5gs47BIzkuuuVk56aVjT4+A8UXZ07r+ik\nXm9IeYSZLECW4PKIRKlIzzhGEc2d51pag9K5jQclouN7F89ocsfXVrUvpZKurTaQ8cqSfl6tbWAM\nqOoJpaos0DQRaAtzs7qgCHR1CRlFVR3HjlmNK22c10iGXXPK8R0+pJEOp5fOe/1jdYSFedUpyGQ0\nOuC5E4pcO5in3cg1r1f1N1BBNEAJ2wOnloS1UcI9X1rW410dLWz7CqiblcN9qVWpzqTDyWaZOQbF\n/kUd50kgzib4//PndU2vrhPpMp5U7/M4dghX7ldueHxKdwAHoPjPqp0drM1Ok1l3iAgCd9tlthza\ntdUTBtlFcaJHjx6VW2+9VUZGRmRubk7+4A/+QB5++GG5804Nybnjjjvk6NGjF9N0sGDBgr2kLNX7\nYQsPicinPvUpee6552RlZUXW1tbkne98p/zO7/yO+8N5/Phxefe73y2f+9zntmzn2WefkcOHX3Zx\nPQ8WLFiwy8AumhNdWVmRP/uzP5PTp0/Lr/zKr3jhLxf6d/mXj7xVvv7wo3LrT2napEvnzLBolR6X\njvxQJhaRymYYxI7v0S63Em4bivN7HQrG6jaxVPTLcuQYFA4ZsxtvvEHe9rZfk69+VaXpZmYgfFGg\n4AZpAaRJwvGyAvGC3bv2oh9oP8f0T33fbLP8BdMqQWaj/62Ofr9wXgOjn3lG0zofefRbIiLyyf/z\nL+Xs0yflmn0HtV3Mzyty2p//6dCrRURkfUzn6R/rupU7kQa5jy3WckW3jJUqSkXAEdRh2I8LWVJj\nuA7v18zMDMbll0OpblTlc3//Rfm5n9ZkBCY11FoMcEZqYUm3iDfeoCUu3vAzt4uIyOTUFPqDMrnY\nKq+s6Jb79Dmdl1NnzmL+mjKzYwZzylRUUhNwkqUpIK1r4Pfe+375k3/3R86xdApOKyYcTKEP3M5T\nko1jXEaZDhem10YZC4jGMMTHpUcitGk/tt1lOGS4/Z8CzdBuNeT1b36r3PdXfy4iIuef1WDx8ZT2\nY3pC6YBVpF+24Ah77ozKJz708H8VEZEnn1fHEUVcdkAsujimDpZDVyiI2b1Lt/dXHVQHzJV79LhV\n0AplFJhzUniSkp949c/KY1/7gl4f+3OuaesPaUDCjrKQTYgnV6ssyaznL6H08/yK0gMNFOyjI25i\ncsJ/nYEQuaMtWNyxJb/76/+9/K8f+wt9j3kS50BEf00ZbtI0Eb3QWLP/24f/F0myi/ojOj09La94\nxSskk8nI/v37pVwuSzqdlnq9LoVCQc6dO+fUYrYyTjQXKOMeo4g1epjJ5OfK51BXJQ9Pnq2F3TN5\nuQwXJV+TSTMfmjWOcjhej2sxw8f98fMzjvhHr1AY8frfbJDL1X6srukPbHS0jPEx7pL16sllMqZO\n2yVnSy8/lX8Y03crFPO/8OV/EBGRESyoHtTRb96hXu5q3s/w2pnR6y9j4TDrhLF6LcQiRlntP9XD\nrVZBhzWRTEygrSLadQKhah3npdd+uXpHiIl8Fkr4N8yrJ5s8F+N2O1iuG1CFz+MhuG+fevFbrZar\nL8UsLNb0IRfKOV9bW3X9ajabzmvLV6tUxTHxR8cfG+fI1asCx8bcc3KKXFy1NW13El72dkr/qExD\nCYw8cQ0PNPLQRag95bs6Bznci73g/tbxR6G9Vx/cB08rj378rHKea6h9NDOp19ng+CMqiekaOnFK\nOdadO7WdiZ36OasRSItRCHr9Oh78/C32nBJ8GvOl437qKc0+4x/LZfwxrUCdan1D5ymPP/aTczqu\n8SldA+URePfB+7N20kZV+1XHb7YHb3q9hppPeOD2HNfJOFBmlpHzZHahDwSGVruQi+REX/Oa18jX\nv/516Xa7sry8LNVqVW677TZ54IEHRETkwQcflNtvv/1img4WLFiwl5RdFBLdsWOHvPGNb5S3vEX1\nMd/3vvfJjTfeKO95z3vkvvvuk927d8vdd989/OLwQqcL+FuOlyziKXOm8iK9v7YSIWvzuJrhXXpO\n8XQGOmH4KT+nR47BfSVs05lzvmuXbm2oalRCNkejoSgnzrRCM2hnBlsMJrVEiKVr0/MK7/Q61M1P\nnNCn9B7k3ueQ3x0JYx11nMyIGhnVdt73G+8UEZGfvFWR6Q++p97qFaCDEaCqCMh9V13bOQ3aYY2Z\nVYZ9sXGjNEenAHlza2erhhKtVeERdepP2GnkUsizxv1mZlIH6CJCe9Ul3a63O9Q40FdWLaVaOa+3\nurrqFK3qTSIMPWd6SrenRNXrm6o4rq+vu7HxXnNMfbGyKXr7fcqIupnoqhTGFPUXOWZqwVIpC5RS\nvqhzmeEaxiurZrawDR7BdjqzgbhVevVxLzcQM7sXufCzU7rd3wlVqxPURVjfQHtKIyxBj/RMlr8p\nHed/eegfRURkbk7bmZuZxjxk0b6u8UV45Tega1AqIAMIa/jsOc0ye+E46mphu14Csp5GVMGVN+nr\nCD5vtPwaUJVqvHMQEWnU/d2UdLhLAlKldkEVmgOMzshQOY51vYA8GTmDbWvXKKVtZRfNid5zzz1y\nzz33eJ999rOfvdjmggULFuwlaZc0YylXYI46FNGJPKkeTg40Sw4UCvCMS8wTiTLnnbqYcNQAoRDR\n0WFDZ0OUprOBX+vxk1AHIoeXdbn6RMYg2dOseQ3HFpE08pCZodQDgmq7Oi+IB8Vxhw9rLFsB42LO\nfa9jnpo5H5GPAzW95lWqy7kX8aQHwJst/gDakeCxpvH5NDKa5qmwn/UdcLbCoyXfySFnsz4XbflC\nKhAR+ZeBIOmhYtXQAuJr00Dy8+dQHXRS70MTCL44oiiHWUNUY+d1FhYW4iqQQBRlarsCddfr7FMM\nvyuVikOajB2O66Tr8czIIX/dAfeWoWZsFxkvmIs6c+cxF9TbZCbUElD29Iwi5DUgxDwW4xLiSteg\npUrd0BLmbgrOuDXUmd+J98vgWifhHJ2dUd9Ec0nbbzWol6mviwsaf1nHOPft091XAQiZ81mvdjE/\numa///2n5HV3/qx85eg3tN/MVotGcbzuimaBhPdfqWv8OmgHpMC7k9tsY/5WazqeTosaBPwtUzMA\nuw/0y2kCc7dCZIpdZpYaBBF1M1g5F/4TUy6DiDXllOT8Ol6DLOTOBwsWLNg27JIi0TKQ5SiVcoA8\ns67uuHavAMRZAkrI4XMiP0dbUEnG5a4zQ0i/dkrzeKGXmCE9Padrqk+xqRm9XsYIARGBuhrmzqNH\nT67XHZd/nE1R5chHzhxHXNUT3CDzeFlDCmiqUERUwy7lqW561ctFRORgQznIPK7Xyn5PRESazyva\niKDJON3U/u9mFEcO0QF5cLbMNjEVF4lKcrhvGaNp4GozMSsEmWOsZ2MraeaMwlIevNyp0xqKdfWV\nGgbUAt+YaVGTE3wgzid6nJubi3UIgBipQkS8UEMmjmyqmlCrVV0b9M6PIaKiBT3QAq7VQLXOEpBa\nZcPnrXtO8Uq89qwuKbVrlxAiRZ58ckyRWgVeeoYGLQCdT4pe96mTussYGdHj21B6b61o+3tHdW08\nv0MR7NIZPT4jetwKEHmmov2u1xHKhBAsKu2PT0NZK8ffqB5/8KDWx7rueq1oW0EUxMSEnrd770Gd\nN2jnLi0r8mbGVgVZcww9asCb3oaXvd3yQ8OouMbIEMEr1axcBhJ2nT2HJLveexcxgpcMFffpJzGR\nPS6CZgsLSDRYsGDBtmGXFImOgScaRwwYEWbO5caTg2TNHpvrzWR78Y6P85nx2sLTv4P6NzlfH7OH\n4+iLpleZzmk+fellL0Lv0gXH5+jJA89CgXzKmVJtSRi3iUBk5u0ydg0nMj6006HOKLQXc4SONVwP\nSDpPZXm9fgPxrNGNGmVQIcJFNMB4Q9HMHnCRa9CcrAF5rgJt2VpJcT0hIFAiT6CBDdQaX1pcw/wg\nOqLr13DiK9FZysWNar8WkPtPlSYGrNebROra3iwCx8lXnjp1ShYXFfF0WuSzGfSN3HbMARMjRDR6\ngzICkYBHTyHHfoz8NyqPYs0SoLRaitTqdZ1Deq+zaJC7HBrnlN75Nu4Z40N7bQaf6z1gzvt6Clwm\nKp3etE/jONPz0EEAZ1kC790G5zgLbvcYECZ3fxXk1teASKeZ2IC1wutvQLs1hxpLY2M659ST2ItE\nj1xxFOOGulPEeFC9zgq43Q3kvjsutE2+HbsgIExGO/BHSCncFBBjhlq9brfmJ4BQHSvFXSkFzxhV\n0fXXUvw3Q9AOX4cnDgUkGixYsGDbsEuKRKehED8+CpVvy7Glidz0bz09hjGf1TNvmYmEdhBLR54k\nxeECyTXAA7VbfMzpU3BiTL3CkeEwiRBdJpFBOUSirH3kqoi67hERIzoAiJFZHlGGvA0QruMa/esx\nY4qohhlNqao/LyMH1DPagfainFH+LVpVNDbXhHIOxldB/Z82kHbkvO9Ilx2hUj2f8kCYLv4VHmqT\nqSQmQyljKjvy87iKqJ52Hoh0AmiwiiyeccRA8ngqLy0vL8cxq5gbxluWS4izxFjI8YloNMYkIgEm\nEJnBbYTT+cQmIK7rBW81OL8yKpFS9YdZblRpItK0EQ/U42S/K0BogrVPOcs01sDYuk7OxNPKG+ci\nvf6ZCb3O106oV/yGW14lIiIjywWMURHpyVOaPsp70toUYysSI+4i0lC5W1tb1zjPchnzkmMNJv18\nAkgViVrSwFqorGCXAuV5Is18gTHfOv6VZW3H1abCcUSMTiOYWXHCYdAxgssT+WNee/i+w4q2Ytaw\n404F4/frhXU21eJKsoBEgwULFmwbdmnjRHNEUn7VTiK5CAiUupUZpxDP7BFth1xi11Xp9D2hIshf\nFua+I+8Z2QxUlCeC4lOb/JcTMnFK+pHXXuydJuKltx5HpYjc/OqiYrIh4pC1wV5vImBWWCTiHoUH\nuLOiSK1a1fFO7tGYv7WD+r6MSo8VVDyMllBnp6coYgmxeg3Ku8K7ns4DxWXodWfdGVQBBR9Xp6e1\nSc7Wv7/06kepweMjiqNHdHEJKAdIlJ5yCq0QgZ49q1k3tWrVRXDwXjG+sI6Y2GmgWMe5iUg+n3He\neWZ5VSoWOerc1OBFnt2hXOi5eb02q4gydpWRJYyrdLoDhpMrMh5TKIDhVxcg38s1WN6AvmZZ+7WO\n38jjC4owHzmpgiP/35OPiYjI7v2awVQAsmT2Wn2dyu2sq4WaTNAcoJd+Bjn9o8iY4i6pAi97ow5B\nkTXtD8JQZQP3cgUIfANcNOM0MTypNxm36uewm4CbTQhTPOv0vfqhMeRM0y4p0hcaieNAUTOqObym\nkrWARIMFCxZsG3ZJkWgW8Y65ErhLp2Sf8t5nyUky7zXj8yAp8FcRPXJdv+okkSefci1woBlwjO4p\nJ+TY9OladHGSbIcIyudNiGDzeUrGMVYN3zvFfvZPcL6vFMN83RhB01vPzC2oRbX4OeJGgTIYu1Bi\nLSQ83fNQ5JfdyMPeo1xpbVVl3yYbQODkRiGVV0Xc6RrQVxdIuIy88BrQHdEeoxVcjSlmnmX9++fu\nV+Q/w+MKBvq6DAUezvOZ09rf6VnVGGCWT4Pq64WCiz11EQC8Jvo0hjhMVxtJVMNgBfGas6gzTom7\nScrqM86wS9TNmFef5+U9Jn89OoJMogXoAFCpi4r5zJUH38t2uAacNBvm5GxG3z+1ru1988knRERk\nHu33oHDVxNp5HhlAcxny3IiIKGn/JlFldL1KtSk/Y2oB0Q6M81zH7u0gKt0eP6GVWM+kjul4Ivym\nWSsJnG2HcawtVnHgrgy/VUaydH0kmcZ8xr8I42fgeXgf8TcTUbEeSmSGh3feeLZrfos/jMxyQKLB\nggULtg27tEgUKk4ZcqLUDSXydO+BUNBbijDT3FMDH6e6jNckKiAf5Xv76UElD5JzdW6Yw+975Tez\nlvovECljzRjX6USiiVwZ06ZPwQaII3qI44wrImbGnTJzy+cQUxFj2vynZQ5Cu81VxBqC1xuF0G9z\nDPnGQEedrPJ56Qpi7SqKRnaACz6TQRYJ+rUBHrGL+vZuNpiZFRFF+fGkjLJwO42eX8uJr67WFqyD\nTKclcL1ZcLPz85q949ADjs9kMjGqN3XPmV1FLzxfRURGx0ZkfUNRL+NMqWNA7z699PTCk0MkBiLC\nJadJlL5nt/LrVaBmK+rMGNzRjo6tCbLQ1nLi3LRRf30JXOTJxdMYg97Twh5tf/QmzfZqjGMX8t0T\nIiKS5niq0D/AsXVnQAAAIABJREFUb2AKCLXpvOHYfVGg2wl1a3/OQyj89Dm9/jR2J7nxMcyLjp8x\n0vwNMLqh4yrxMvYZLy7ImrtDE4ETJ7nrePjjYcy3088w4zBatzT7PvZ7+L+5rSwg0WDBggXbhl1S\nJMpc6UKGqkeDNfzisiCDubQ+HsPyJJGPiDLI5kjniHT1uLVVVDjcoJYha5invNdY9RoI2V2fSNLX\nnnTxoi5zh1kWzNhBf107fIoC2XX9muhRlzXLW+gnPK30fgPFtMDbZWeg/zmnKIW10dciZEqBZ9sL\nhfxVqFlVcP0qKmcWeGLPR4BxNVU+9XmYjz4aLUVvxYyiOac9YKq9MlYxn6OSEFSgkCfOnQM97Lxe\ndlMuvuMo8Z6ZMZVqpe9Y5rdvbpv6C/RSp4QRIogzRZXK5RV450cP6hihjrSO8ha5jB9RQe89VaKo\nI5BFfCTrtNtSK3HVA8TcIiNIXqbI79p/+SYREVk6hUiFEtYW+jl+zQHtB3j1azpaFmT12DEREVlZ\nVA50PUsNAHqvydPDqw6vu+PDsfZY6qXhIig4b6zj7kesMBee12GETby78rMAqcUb4XvGfXadFsFg\nDtMi0T5zSY+D/7ak02l7Rv81hh4RLFiwYMES7dLGiYJnyhouzHpp41df9ciaQ354WlHBJ9OhdiGR\npa8SxcybZhuF2hBXSg6TNZ9sphT5l/hpZY+DB7Ljq6NTPd3hVAdFiWA7XvspqjjxFcrwLN7lgg8Y\np0r+DPncbSJbxCTmJ6FtOQI1qhb0WquKOKt5RQ85VBwodBhziYwk4zGOUqwg4KMO7gCcxiNRQ4Y6\nri4gFcdzPvS17TKgxDNy1L0eMrHcPHfiel1Gdb9hcrL9rKqe7NypEQvURVhBLG0Z8aPcbbA91mza\nt3cfztPrjoMbXUUGDms5MY6Uuxvqi7o6U4YfpkVmd0ZdhwbW6vWHD+r7CiIZUFerVmFtIUXEp06q\nwvzBSR3n9XOq77me1X48tv5NERFZhlJXCZlYrs4WdmFZF/2AeNGKzierQpTyerOoi5rBriJt/Acs\ndtgV1t3y/Q5Obclxpb4KU5zd5ufM23pftgIBzdYNa7f8HQB/q6xXv5UFJBosWLBg27BLikTtX33r\nGetHonpeijFg5qnjFFyMJqC9Xp8HDkAyysLzuKDe30adFQJ9z14D/JVTsDf1d2zMWawf2vU+3xzd\ntvm98/b3iPjQDhBojMiNehTHKeR8kf/MsrPo58aM9nse3vcptDeCSpRRCVxrGbWn8qyyqeOuQF0p\nV/SjG4Q5/wjeSwNdMPOJyJ8okLGEvH9EkZxn8ofr69AATfmKSkT4VH/q9XoOKY0jIoH3mjWAWC47\n2qQTWavVZXR03DuvhXhLp3GLdvnqdhUZqvVrX8pAcNPT8MrjunMHDqCvfp0wroVR8L2t1Y435lbL\n58Mdsmro5+llnaupCEpoUzpHtbNaOrmIOe0cQnRBSse3jvjJ2pwef/jn7tD+PPoDvR4iSBilQH9A\nXNVT3zfQj3qD9a7QT1DOWUZmkONl//Vrp8Erjkcf7D13vy16+9PRwOO4U7AI3h5nq7c67hXaBcy6\nszuDQRaQaLBgwYJtwy6td54K50bFxz5F7Gs6w8yj1sDvaYw75SCTEC+RDWs1nT2DpzjqyvOxmXZP\nPx8Zk9x0vEyPyJXHGS893lEfJmv4IVeN1HhI3XUcEgNaone8YbQR8dTuwrPZIZcITvaFUT2uMa9P\n3T3QXW2AUy4i3pYItsi8a8SfVmuYf9RsKiMrptL1tSDJlRKJxryin09uPaGxjimjEICUkRUT7yzi\nTDK27XhnzH0N2VexKlOMMErFkuNnGTEyOzfr9Z1zatX+6U2O4C3PArmNIItsahxxmyPwkgPpnjqt\n8ZWMG6W3ngrrdXrrqeGK67XBS68gG+34iipdzdyMtQZEN55BZtZ55Wbnv/V9ERFZb2hLlV2aU38A\nrztGVJE+f+XVIiLSwK6jCW8742h74O25xllLqg6N2gZ2PRXMWy8LZEg9jLS/W4z1P/3dnkWk/O1S\nXyGTTQ/8Pul8mo0jpiWtTRu7PMgCEg0WLFiwbdilzVgyPFMS8rRmsxHs0yf20usLnya8jvXMkadK\nZ6BKBDQwP39eDrzsWqEKeuSQsJ0232vvnO3MA3YPPW2nDuTUBB805gcVxFyqiy+lh9H3/jvPJNWv\nyBXjlfVqdpUUlaxBfam2AU6X5WoQe7h2UNHQwZvVc1tE/vizJ4+JiEiJFTDBhdZX9Xsi1RwUi6ot\n36vuslNSdqeh33NHYvVFOQ/0kFIFqgSU1zGq8Z2uyOq68qhLiPktIl5yDt73kbLORSEfI8o9u3dJ\njfXJkeFD7pQcHBEQvewrKyveWOrIxafXfSeQ7PTUjHfc8ZOKQIlop6Ao/8ILL+hYwQOXCzoHY4hh\nddVDsRZKRSjjQ1/gOw89KiIiCyt6TxiZEsFL3txAnCwWYxF13LPHdY1cWdJ+5iPoou5QhLyMnHn+\nJmrQ4BVkk3FtVqHgVWM2HiI8OiaaIclvEbmqFD4HaRXUXOYWkG7KaBDb3Y3d1doMMLubtVq37QvQ\nE70sHEtJAa09F0pEMtoXDbBFpOyA6aBJJ4RMpY3TgO1SvmwJosCI5ohvQJY/cv+PeJfCGiDX4QeK\nxZjhaMnA0ZKJ2XRvvFYOzGW6UfLPCZhwIbJ/2EIhZAsx+VLD1qyF7X8RP8yf3Hu9iIjU65oSuAbH\n2sYLSmecn1fBj0aJDjI4Zdr4A0XxDAiQ9LKUMoz8cSVoOfCPIGXo+IeKf2DiLZwvlxY7WbClxA+7\n00u7EsmUbmOwPKkRii7nnaC2yL69e6SKP6K9LkOi0BekmvLHtrSEon9Gvo8F1yhLOI70x2effUZE\nRL77XS0auHO3bp/37NO0zCefUBHlZ559SkTibeVIGeFoEC+mLOQK0jaZAz2W0eud+f5xjBMUCoU4\npvX7a27RYobVGX1IHIRI9bf/4/8rIiK33PxKbR+LZgx/fEslPT8WRIHTr4n5wvtlPFTGkFJcLrI8\nOJ2G2u0kYORK+3R8gJDkPGaZj4z5Ddo/znHpGUgHwmFnQ+F4f0PaZ7BgwYL9mO2SIlGXrpmAOHsG\nqfWJEERbPzVsgK4NzLVQv1CgAK86Ws6eQQpdBQIlCCguiB7XQf8a3GY6xxOdAXi6YsvRpnQsSiLn\n2j6yloyf6ufKnWCfz/ALhoXESNQPrXJB6hAuWYYg7kaV49LSEnVsLbsVRREbDYQu7dYt5hN1FIzD\ntv/qXbqdb6TxFIfToAUEW4lY2gLogKWTgQ4YrE+0xcBzF3Bu0AZl4qpAhz3xi7jZrVsqnZI8nF9E\niOMTiowyGUqy6TWqTZZOFpmZmZJ0pJJ3lQ0Ie5w4gTGhgJxQ1k/b567HidfkIeqMoovs45NPPCki\nIldcoWmWL3/lK0REZH1N+/fUU/o90TfXYIFrLceQKhRJBF2wsKb9ioDGCz0GjcORg/NrmLtdhzUp\nYOX/Z+9Ngy05q2vBnXnyzHc4d751a1bNkkqlCYyEMIjBkrF50G0DYVq08ZP7R1u0+0UoAts8Pz9s\nXrubsN3hIQhHB21jGkw82rxnBvu1hY0xNiADQvNcUs23bt15PnPm6R9rre9UZtWtW6qSXJjI/UOp\nc+45OXyZp771rb322qs436OPPGVmZmuUKJ06h2fi+n2gcgI10OPxJW3SdWnbCePPXrOp8k9si4W4\naN4xbYkET/e3qfeNr+PLfBmZSE6n0ukklZdEsrpPols2Wu5vJK+8VKRINI000kjjKuKaItGQ7SVC\nV77HSHJoicRR5Gadi3OdydktKZ/YCIkKxayQrH/pORjeLiyAXM8NUOpTo4hciTG2Mm6tsdkXZ+EM\nReBG/kmzaMRti43xso4KpTVeJ07aO4SW4EaViRLy1GtxoxI+r69hPy+Rnzv2t/9oZma9bK+xMsLW\nyVnch93D42ZmVq6SP2Rb3myNvGIeaKtImUnAkr51mlLUJT/pxFGKMLcTOPNdoQ7xmWqfK+VWmYkk\nNVVTKWJSAlXK55ztoVqHCO2+/e1vN7NuK5GoJSs7s2efetK2b0MLYiG9AUqPpmn5luM165lx0hdH\n+PLZ5OdOvAyEubSA83jjXbvNzGyNia8prgYkZs9mtV/x9XzmiSRlxjJAZL3CQpAz0yjnzBDBdqhx\nCmWXyPE4dRqc6YDHhNlZIHFWhdrR59BWZKREQxMiUhmBq02JGtrpN1MqMBHF8k+1VSkXMQ6tAlcr\nXAFImpRMCiu6Ivw4knT5ED4T4rhV+KJS4CQSvdytIsmJXk6kSDSNNNJI4yrimiJRIa3zph9uLj5L\naG7oWs8JYV6cz0giUXdcN8upfJIifGbT8zyhFUp4Xj6BWbqfzcnW2LCtfg4oo8aGallatrWrFCjT\n5PjGW+/E57M4j1IFs7fXQw5WRimRZAAJ4bHJnELcIM+bwyMerCZheAf7XVpA+eryMXCf818HAt1O\niVNjmLwZ2/+OUxiu+zI0BAF2tYrri8QN9yvViuNVaNoxQ466wcy31ACa3Z1EjHcyK6OSRMtpbXM5\nCeBxY5aIgup1jKtQm/jCnnLJ/IyeGVzT3DyQ2t///dfNzGzXrj04Zqer5Ni+bZvjOM8QsUkUXyAX\nWCpTEqVywQbOoZfZa5U/1tYxtvPzGLPrKF5XNn2drVYyWbUrUYM7QMIsTZdl+1jM49q27gBSfvE4\nuFpxrwUqG1oBuUHy9VtHaahClcKpM3gWWg0qMLi6CmnIMn0WyPg7jYfNzOzWm5HNrwxBqqXVg6Rd\naq8yOopnZO0UEHaNVoB1KSr4vTaz366whvc+dIYifO1aziGcdMkXjx7GPp9sHpmUOiUjWT6bzN4n\n/345kSLRNNJII42riCtCouvr6/Yrv/Irtry8bK1Wyx544AEbGRmxj33sY2ZmduDAAfvN3/zNTfej\ntrFRePHZJ9la17M4T5FkLVy54wYZurBNDpHlja22kJ44UmbH2XBulRnIJ198xszMxkYqPC/M+meO\ngmNcPHoC+z8L5Grcr0T583/zXZwHRe07bj+M/d2C7eAh8E8tlg7WO0AHksEKaTXZUK7kAwm21ufN\n+rtmET0NZpBZ2vfYy0BVRx99HMen6qA1BPRS2gqUMeBaV/Nx6AEKG98H9OPfQKSXA/o5/Qw0j3Oz\n0JMO07xjuY96TZ8InVM0wZRF5Ce9TLyNsFpTK3WbJ08og5ICEacywlIbqNxTgnXP67aLyCRawKxQ\nH/jCC9Bj9hOhmZktLy/Z9u07zMzs+Reg25yahjJhgGL5QZqw6FnthBJ/x20Kz52Z4jXi8zv2APlm\nKY73yW2Wy2xgtzDN89T+cE6NFnWn5CJrbGQXheKFMdaDu3GPyuP43OLiLHbAwW/w2Z9+DmL+UaoU\n/EFs77//g2Zm9v2//2fsl+WdVa52RgfxzJ89Dc2wstvS9ur8Bvqh3JiZB+JV+5RGmSW7+m2Ku2yr\nhPfiHKmy8V1ESbG8H1/d6P6qxDq5ihXCTFri6f1kXKAz9TfnRq/oH9G//Mu/tN27d9uDDz5o09PT\n9vM///M2MjJiH/3oR+2mm26yBx980L75zW/am9/85ivZfRpppJHGv5q4on9EBwYG7IUXkH1cWVmx\nSqVik5OTdtNN4FHuvvtue/jhhy/7H9HNEKci0ZfNPM06Liut2cZiW2nX2uStQr52XBz3Jw1hSJPh\nBXKBTz71mJmZ3cCs9czjQKAZagrzq6xuYfa6obas5PJWWvM8X7x/jHzUwvMncGBWsez5MWoIPaCB\nEpuplcbQIrjGJmphBShizqq238yq5F5zTVxwneezNkMuk8Yg2978NjMzq1yH42V4PgV+LjvB6hTa\nsg2WoJ3MR8ze83oLY0Bn44NsjMcW0729QEc9kVpZEMEy6y4eLanJ6zijEt4fcsLi07I0HFEbjxo1\noLpxJZZo9vaWLeyorA/IRObCzWa8jC/IdVuCBPkeW+KYqRneWRqEZGkn2B7s4zVhv8WSzJrjjFiO\nSKtBK708EWiZJbO9VGosk0cP22whzFLdxUVwuHUapjQ4Fiss51xnOasv+0Ai2wJNYG67BZVHy2xx\nE9aJ7qn1rTObP7AH93gph/PcdgQ61he+94SZmT3yGFYvI8NYrajSR8oIoX8h0q1bJrC/ZV5XK96U\nUW1ENP6b6TGTig7Xi9Jpg+P60Y1KwZPc6EbGJF3daLwM1S4DiXqdV9Jg+by4//777dSpU7aysmJ/\n/Md/bL/1W79lX/rSl8zM7OGHH7YvfvGL9nu/93uX3MfiwrQNDI5dyeHTSCONNH4o4oqQ6Je//GWb\nmJiwP/mTP7Hnn3/eHnjgAceNmG38r30yvvpf/9j+x1/8mP0///fHYu9fgDgT33P5Vxl9ePG625ZD\nNJhdlFlsVDU7S7vGihqTyYQyi5htJ88t2he/9Hf203fdZmZm9+xGrfk+AEXrWROKoEEt650XqAP1\nOEsXpTlbAQporLOGvci6bAKrpmbjLTTYoKhg/gRQ0XW3gUMduR0camH3hF3/xp+0p77/TXyeCeez\nzGIvnoAmcns/Jip/AAh0JYsD5pQB5nWfWgSfd+olZIDvuuGImZkNEel5bIvrU6WwNAs+rzqF66qy\nrvtLf/UVXGe9Zn/2l39t973rJ8ysy2kqhGKUCRchWOaz1EfeUhZ8HV7gMjnRDtHbNmo8h4eHnT60\nygz+KJGUbBVKZXB8Y7SAu+PNb7MnvvuPtkJLuVOnwCOrRl7ntpPZ8WxG9f5xgxI1FVyixvjkKYzN\nvhvxzFx3EFn6SgWItM0s/ew5cJXLS/j82jruXbVatXve/W/tLz73+xhL8tlZVostLCAbnucqxqN+\ndPt+3OtZrg6+/xC4zse/AV4+O4IxHboTyHNkJ74//dQJMzP7wX/5ezMz2z2I1c+73vmTvF62RCaX\nGASBfeADH7Df/u3ftvPj5ePHzKyLXKU+GB/HKm5oaIjfZ+VXK85BJs2VzTU/5GolpA9ESz4KWn0q\nK9+1u/wP//7X7eP/238yswvtFrutZ6LE32Wph6OrId5v/9bHbaO4on9EH330UbvrrrvMzOzgwYPW\naDRi5h/T09NO+pBGGmmk8aMcV/SP6M6dO+2JJ56we+65xyYnJ61cLtvWrVvtkUcesdtvv92+9rWv\n2Qc/+MFN9+Os37RN/F2IM1SljpCn/iJ3pET2XW4/qtVuEmk1qWEzVvI0EjZY0lvWiVj9ZaKZGnWN\nU+AkA7ZiCGlA6/eAd8tvxcTx4/89kNdp1t4PMBOb4+z3wlHwySUiq4WXzuD4M+C9zjwNzjVcxef7\nAqCh4/8MlcCp48iU7tqxw65/40/a0AnwZ2dGMLsfJ692w34g1oNbUC1z9DiQZoYc6t4DQCP1Emb7\nE9/C9e0ZAuraQVPqBnkuT+182/j8IDWS49cxgzvHTDP5wg7RlrhnOedowhXqEFeaIYeck/Gxy7Tz\nfWbrXbM0Xy5OQCcry0tWIGotZtlemeg3X6CuMi/7xe6jX+7pNSOPqyoomSULuaysAtkNVYTIsB8h\n0SCQKxAQWD/RdEgutkk+XtVmxT4cZ0seXGK5jGs9Ny2Fguz+sP8tRNsjQ1xVUCEyy2f6qRPHzczs\nC18Hl5nj8efP4FkpcJXTpM9Bh61fqh1m+YfxjPaxxfLsJJ7JMzPItv/YbViNhfzN6B4ePHjQzLqt\nXLTaOMNnRfdWq8GuP0KcE02GKsLEjQrpm8Ub5XXtJ+MKm2TlkZ413d9qVRy5/pURQlV1oLjV1yg7\n//73v98++tGP2n333Wftdts+9rGP2cjIiP3Gb/yGRVFkR44csTvvvPNKdp1GGmmk8a8qrugf0XK5\nbH/wB39wwfuf//znX9F+kv/GXy7ilD9npGy62mBwclIdr7jRJCINmTlVlYmqJtokIaus/21S1xhw\nFqzkMItlWfXRoXbQG0Wm0t8C/i2/BYh074FdZmZWohHwOlHDkbe8zszMCkSmU48hI3rsm98xM7Oz\n36LL0jprz68DosxuhRPPOToDNaZesHeY2bf+69+YmVnmZnhU9tI0uQj6zb5/DB4AK0TaBToOnVgC\n8hzLkqfi7H18FYj4LTcgm+8RlazPga/L09Ypb0Bfqx2gjyadhHYdADo5+yyOO9AHJB1l4s49QhtC\nMcmKNfFTPrcBXakyrL9eZlvgJhFv2G5aWcbQ1CmKu+xjNVZPD14PD3NwzKzcU7aIukwpAIRYVKGz\nvIxjFXI+9yMFAjW7fFYEXHy2sPHaOI/6Glso0x90bAzPSC7fz89j9VB0Okycx15WPAXUkdaJ6M5N\nY1UxR6S33ohzpjZIA236EPQN4xmdXIeOdO8IuNCZGTxrzz0CLrjFDnMljuPJUyfMzGzX7l1mZrad\nlVC6R+I4la2fp/KkxrzCsWPgSIVExT269hwar4TKoetzoXek28QrtT9Xe5Zkuw+9FiIVp6v35QlQ\noIi5ztWrEHaWVXcBVz2XirRiKY000kjjKuKa1s63+E94S6Ro5+KIU/pNhzzb8QZoLWnR+H6DyKSd\nQKJyH9frSBVMaoXMWWiFLYEbqg4pYlbKa7g60oHSgWfvLjMzG78TOs+IKCDLtrkRkWxQorch+Zw6\nNYIDtyELfv02zOr7Xn+jmZn98Yd/j+OE8zt+DFxpXx9QymQvzuMf6kAlB47jODccgF63OYnraBcw\ni1e2A0WU+oCMA9WBkx8q5YjS9uB6ZgntPWbnm8ykZjxWgSwCQc6z7nvBoxsX0VAPUUqW/F6GTkVC\nedKPCu2JM60TrchbU21PtFJpst5bsK+/nysBr+PaYkzQE3ViK7LMQhb9FVx7LxGpGVCenNKlMknW\nUs9ToytuVG5KgkZOG8xnerWOMRkycrPUtq4u4/uVCrS2WuVkAioRinJDWo8df2F+9fxLtlW2TFnk\n2EclPqPUhW7PYv/NcVz/Cy9iVbBEZHrmGLjOkDX+rbNAqEVed47VdVOL4FS/9QPU1P8vH/xFHIf3\nSghTCH58DFl4MY3T00C68nfV5/X9ZM37hi1/OK45+odWq9Kb4n2talzVYSf+vhCwa0HD4wdsW5LL\nxZFqVw2QtkxOI4000nhN45oi0YjIL3IO6BdHnEKOaher10KgzVrCOYazXtevUvtTplQ9e+h+RP6m\nSeS6puw+jz/hY5byquS9NHuxGdnYTUCOw9x22B63LZTB2bNATjBLDjcXAQ0t04W8uJfZZ87j192O\n7PmZWfBVOQOCe2QKqGFlDN87WqDucxCvx3sxy+7OAS0NMxNsWRxPfJexcqtDtcL28Z34Pos8/BrR\nQI4a4Aoz0qxE6h0B2iksYvy8OrjU8W3IOP/Vl75gZmZ1woI+8lNCexnup4/osMHnoNILVBMRsfu5\nOHJdXsb7quMusXY/F2ScD6f4XXnBbt0KDlDOUJ3zXJzCdtMarXj2WAhmbHSY73PVQyhYow5VSCU0\n+T2Qy1OXBupKfW5zVAe0qOwIyLH29QK11+vgndfJ6S4R+QqpDfZSCTEDDnVhEXrWlocx7LBH0qlv\nP2lmZmdO8tkZxN/39wKZrlDHujoNRJpvEfmyUkfesoeOXG9mZt/55iNmZvYL1Z/DeZADlf5T99S1\nLuYzrHEXkhcSTDanlKFb0uNX4fnt2P5LrPxKdjlw7cWdM9jFHd5c+3Q//jwka/Uj/ltzqUiRaBpp\npJHGVcQ1RaKNGv6Vr9OnsoswhTibsdfSebZqcd1nO1GXq9p3zSbSEbaIvPRanKg4ymqo1+TgiBaW\napilgwpm34C15PleIL08q2I8IiV1A81x9svSYUZzqxzb1YuobKwJJ1LNsEb/4BuAbKe/8NdmZjbQ\nAVpRzfsakfUa+bNnJ1H9Mr+I2fnD/+YXzKzrebnOcQxYY1+SFpHoqcnxq7CdcB95oix1n6tE6rWa\neLiA3wOqGCLipQmTTWyhWzwz5Kr+aHBcB4lACx6+sLYKnk+Zdd2ngQGgrz5yuQ7JyqeU5zk8NOi6\nE3jOc1WaVFWvUUnA2nQzZNZVp7/ObR+rzvJ01hph7fzUEpDhCrXERfLNqsDxyOOPEKmJo1Mtfw+v\nIUvNq+suytXQ9CwQ5jIRaG9fhWMAfr1OLbHRiWyxl05XZVa/TeLvx5+DpniYSHoLa+NPHzthZmYL\n1BoH1Ju2SfHe+/6fNTOzl9bwLG3dByRZroBPn6ciop9VcUk3JHGjOt+JCaxKVAGm32i3Uy/vUyau\n50wi0WQvpWRlU56KE5Gxbf6mpdAR8k12+XR+GYn22zp8FLZts0iRaBpppJHGVcQ1RaJri0A0y8oQ\n1uMI022JPMVpdpFn/HXIbcOIZFvKwpOf4mTTpE5U+2sJpZiy9czwEZGeWcWsuxCwp3YWs+z23agE\n6tmJ2baQleM7kWe8/Y5F/J8amyrRktJ6qM3LRdQ4EsoN3Iq668aX0Bu8l72OtrN3+FqG582s+cIC\nUEiNGdrHZ1ED/8brUW0ywNm7RPTgEWVlipydiSyzQZwnanCc6nNE5Jx6S8wIt9hj3BfPFGF8913H\nevES0NTyCs4vcr2XsJ8Cda1ya1eViHg3obRmU54DVAdEceedQqlsO7YD/XbIvdWreMZq64v8Do7Z\nPg95ZL3AjOi4yWtdpQ9AbxHX1N9Pv07qRVeW2W3Tl18luTPXE4guUmXwtb39w9wPvU/JxXmR7JWE\nlLmKIjIrsBquzlrxZfLhRX5trID9L9FRvyiETEXDTW8Ep7lMxDzUwqops4YdvPgU/FVLN0G3ujCE\nz5V3QXM8a7xO1tw/9Rw0yiO8LuUfklzy6DD2d3YSvg8Btb7Ka9RVSUZk6Ow2klyoXkuW4MUVGT30\nQlA4PSpXj1qtbIRE65FWs9xSu93fj9/6APn9S0WKRNNII400riKuKRJdnAY6WJwCX9LlOJnxJN+h\n1xdwn3rdEu9FbZep15CqI1QbTx2pdKWatfQ9lUeIn+Hnz5FzbGwBKshNAO1U9sG1PFfC7BYRemZM\nPqfYXUeWj+KmAAAgAElEQVQdCsX/CJr6cf/UbAe3I0dOcmQEqKGs7PU58GTjHbyeEjdM9FEZw6yc\nL4MfevglONC/4cjrzcysn0i5SI9NuaD7cnNiDf3ZeehOs33gMqWlKzKr72nciZryAVFUBDQUsP56\nO/sZabvy9KNmZlbnfZ5lhrkyiOMUeN1yi9d9lq7U1V0TXcgB34hyIvMsm5NrvnhrdhCd5dhyDOrN\nrv7P8zO2jS5N0RnZ92BM81IGcD89JWSZH/3BD8zMbHzrLpwT77V8MweIxG69A0iwzIopcaRyeldX\ngrnZBY4BEFPfEJBrnquENrsaFMfAiw+zu8EIFRFzx4Aox0p4Nk6wuivqof8mVy07rse98Na4engR\n/cOKRSDL6QXck+gsoe4WdvtkX62Xv4PP7xkZi12veh/JS0DevT3Mok9sgSpAyLXLZUovisNZIptu\n7m3lFcRBc7VIJNmtwY/7gcqFy3GtcsjneRepRe7tiWf75QmgiqxLRYpE00gjjTSuIq4pEl2eZT3x\nAntgb4Q8xXnK/cf1kY9ir9WPXu7mLXJ60qDJscVxqa7Hkiqj+L4RUdHZJUNIeZJVIodYKx8NgDdp\nkST0qQrouDw8NYOqA+brQLOhNG3kRlu8Hi8kJ8nzGx3GrH+8Q00fM6NjJfmB0kWcfE6BGd+pGWRg\n51hnXWE1SZ37LRB9aPZVhrpAxOk7lQHQQkgOtUNtozjJXuo1e9lz3ahVbFF/evhmcLIL9FNdXgR6\nGh0Bt5wjX9duMzOuiqog3h9HHpKrctJn5VY5p/pm3yxD9CwtrC9kiJd11pp3zkvGNqOWI7C30LV/\nfZVdAXivesjB7TuE/Z84Bb65yf2dPcc+8uQK77jrrWZm1s9753SMXJZk2Y10sYpVzip594yc3ln6\ntLqMv8/Qs9VjsdYUX0+yz9XSaR5/L8Zi+Aj8Flb42ygSaWWZxZYHr0/FylgN53f2W9CX7shgHPq2\ngtdeX493+3zqOSDfYycwDhPUiwZEgAGr04aJqKvsCfX886icSvY8ctTnBf4JF+/BpN+w+HO5L2k/\n2czF8xLbqFuVS5f8TjNs9fvyyy9zP1wdprXzaaSRRhqvbVzb7PwKZtl1Iosu4lQ2PY40hTyFOOU1\n6DoEJmYx18Oas5W0YN1tfJpShjBZj1vk7D1L5DXFzN+RcXCWDbmbs9ZeRQ+exXkaS7wWd2pEsJEJ\nCbNXEn0/V9gzPCuOl6hlLAvUM0rkeopVNNftwuzaIa311CNwN/f27Mf39sANKldknbi8GtvqhAgU\nVyS3maWH46qH69b4ZQuqYwZyL2VUj8xMKHWoQzTo3rMPPNNLR5+PH6cghyJ5ObJPUSPugeCcejgO\nNC4yNSnttGpWo47RdeEM5OKDMellJ1PVspvhudGzNURdJcG2eVki2jz7Tg0AWd79E3B8f/LhfzIz\nsxorh8a2Y2xHd6J7aKhfWIddKmkAEPL1enWB54CxzdIjdWm2bXbIbI55gxVqaNW76PtPwzd0bp76\nS+YBrIXf0sTBm83MbGYKCLUyhf0P7wf6P6sOtazJD+b4G3wZ2fSFIZzHM/8X9KJhlX3jef6PzeK8\nHn7422Zm9hPveAc+px5K6pHEH5WQX7LHUuh8EsR782satsRvuts/TR+Um5Z6auGZE9d66NAhM+vq\nVnUcp1flj1UVUDt24L4la/0vFSkSTSONNNK4irimSLRKJCrEdQHijOIIM4k0L9hyv86Jha812yk7\nryoFVx/L7H3HdFz8tSmDUvJHQjyTx9Gb3Ocs1Z5iHTV7D0V9dB/qQtJYuBZSjgNlBRWRbIPcoK53\nhVUsgWkccF49rOzZSc6yydr4VTr7HNgOHWvIPvZPfuMfzMxs33cxK28ZAELc/m7wd03ydQ2Pfp1L\nuD99rIoRKCuzI6b0matrOn/yW4E0feyPQ9K3nxnrzOkTuHwOxCwz04PD2O88uXKP59GkTlTdQ5Vh\nJfC2Du9frrBqK8sz/C55X2arhYrFBXbOy/76QWAzc7N8H4irQq4sV8LWJ5KVt+n4BDXCb8A5HerD\nqmSRiGaIvgKeVkMhTra2BkR5jgqIl48DlY8xC1ytqoYfY14jApycZ38uItXSDnC0Oe53nT2ianQq\nOztNf4WngSQnj+H1d/7LN8zMrM0eSDkqNZ5ilr4yhP0uR6zZ57MoL4KIqoZWA8/gMTrqqztqfx+u\nX/2xpqdwnTmO/3YidSG9rm+o8Bw5T6525OSV5fGbTVxfnohSPqFCuqpmE9KU30ISASe51gwVKvq8\nquXUc+sm+mJcLFIkmkYaaaRxFXFNkWi7meC8LhNxJj+X3HahHkKINnTegF5s6+pnfW1VL4vZasln\nLya6n68x2/1HD/yvZmZ2/duB5A7fe7eZmZUOU5smXk29s3U+npAzNW9EiiV1Gmziiy+cwuw+wvrj\n1gnwW01WBKm9Zy95sgrpm2dPwok+IlLsPYIuod63UG1SWwVyXWnh+maJoOusGBq7HjxSh3XQ68wg\n9/Ri1i+xsqlK1JPsk+OTg15dXbORLT2Oz1OlkjLFXk0IE/udmgTXK7f1jBKjRN5D9Gkt9QB1SKOo\nuutWM7LqOlBs1vmB0j+SPqOdgFrUXNdPtFjus1IvuNQF9nePiIQG1T2S6DrTIjIi+i+P4d74LXy/\nj+fWJm8tnrwdYgxPn4Vi4vhpZLUjjt0S+2mdPQXE+NwzR+2Ot/ykfenLqFarFvHM7L0NVWzRFtyb\niV7oPhcfB7I8NYX9hg2cT+88/RXYhdSnQ1k/q82iCsbjID1tRwaARI8+C851YtcuMzP7u6/8HcZt\nlfciwPHnZtFHbHkV+tlKBfc2w+z4IO9Zm6sUcY7yS9VWGmQ9Sw0iwYlxrF6Un3DuS9oSUaqGP1l7\nr/uv37oQqT6frLhSNl7IdopI+lKRItE00kgjjauIa+tsz9m+ldCMJZHo5SJOzTbdDF58261mYBWH\nONCsuEB9gQiHGc8GeaypDGb7MfqLdthJ8eg/fgv7Yx+cHtbbDgywn7r2q7KWTrzjYZt1zn4dPFR2\njr3TmQFtcpw8Fa1zdlV2v8yeUIdL4OmencV+nqOWsZ7BddwaAO2sENVEPlDS9F/+v3g9iFl/+Rxm\n3+EbUW1TmCC6IqJvRZitm9Slqjunz+tXR8v1dZyHOkT25IH+dhC9zU4DxYh/WuPnfXoLXLcXqGVs\nHHzh1i34XlN83DFcX4eQvxWG1qRHbHUNSJCAxVpNVluplrrQRaKZIGv9A6xM4TWcmwciXKUP5uBO\ncHl9eaD2oseqN0og1tgtU5yrt4zve6zJnqFG9vtPPMVzxypjjTz98DCubfosxuQk3ZZOvIxuBrVB\nIN8Db7sd11XGcUb3AOlNz+CedV7EKiQ8RX9Qrh6GDqEia4WdW7fuwvU8N4n9b/kxKDca7HJw5Ag6\n1mZY4fXT5Gy/98WHzMysOYtnVNV3p0/juLpHqhjqoTdsjQi4SM54ZAT7k8+ouEghyzDBaQqBCkE6\nxJro3SQEqs/rtVYtetb0d2XftRUPr397lNW/VKRINI000kjjKuLacqLKmqs/zVUiziih93SfJpLz\nLd7VM3TZf6bj9ZpoQlntkM4z54iUeieA2PqMPp5PP2ZmZksRMqU3vu1NZmbWQ4SrGv4c3YcygSp+\n2DedGdAq0crCSyfMzOzscWRW12aBanrYOTIMiJSp68zSe9LIew2T/2sTlYVT+PsUK5yCDPazyyOn\nyix8hw5FU8zcLp5Cp8bD973TzMyW13j+Qu7UdebVn4b96JfZ2bLjuqWyioUIfttWOASVmfk+Hj3H\n/eIy9uxHVcnu64CW5DalNrD9fXTwodfmaa4IfN93iEPa4yK1rLUA19aSFpbPQH/PgK2vV51/QC89\nYlepNz3+PJDaMeot++jbOT7KLpfyRKXLU8fkVoTvn5pEdve7zwCBfvsRPCsdVgjNEBnuP4jznpkC\nEvWL9CFl9nx0hI5WdF+aZv+s7z+LDrE+FQ695LnViXbfm9D3a2APEOJRPlu7qHE+5eF7wSiu6+RL\nfObKdKwnJ3yuCmS/1MaqZ3wXfgO7b4H2N6SSZYC+qxVyrkYN8lmuRir0O8irlxO3SXcl1y8+0fNI\nn3ecJ3/scmzT97v7wWlIHyquU4g06bCvzwthq/LqUpEi0TTSSCONq4hrzInS/UdZ8wR3uSHiTOhC\nN4yuSWFsr51I7k7cj1pga7+cxVodzFYh64tnPNZds6Z7aBDbCbqkT5/ALP7In/9nMzNbuAP81e7D\nnK3prpQt05mHXOniIhDo498BqnjmS/+AEzqK/eXIybalOSSXmlWdsPw+yacN9VPnSeRdj4A0pypC\nkvSWJOIeYbK/0wQq6eFjsUQ0lln6MYxXEeirSe7W7zDDSb1qKG8Cjlc2p2oQXLc0j0IJ27bu5YEx\nzu0IyP/AgV1mZlYsx1GH6+TI+7adVUEFjuvpM6fsLLPefqh7i2Ots01UtrDKfQLdbxnbbsvz51xv\npmodY7VGNL7OIT/x4lGOEc5xB1Hy2A4gsl3keSv0ml1jOdUjJ1Fj/gz1hmdP414LvRQHwBlu2Y39\n9I7h9dI8+PBShV00e1mDfhaI8OzzUFq053DPVlgxFWbIT9MHtYd89moO92T/zVBePP8IXKhuuBmd\nYeXlOkznsJWzuP5qA+Mx+wzOP+CZ778Lz/ZNP3cvjrdCn9UQOt0tkbTSQHoDWfHo7I9Ffad0nkKY\nQobiOAPXOymeXU8i004CkYpbFfeZp0NYsmZf3G2Gv4UM91uge1ZEF6hLRYpE00gjjTSuIq5tt08V\nDnXiiLNbdvvKEGcXv8a/kdRpus8nyFNXM9FRpQ25UzrlFwyz3hyrJvawimVnAdu+NczGZ/76b83M\n7Ogz6HPTexsyn7fdAL1m/yAQXZHuR8dfACf4xJe/ZmZm1RfARQ4SYaoGX2fri7ihrjVDhJpdo98o\nK5dm6fNZpzZyZQnnfW6EXUD592IB+xkgkhxiH6I+cpQLR1HNsmsPuEovy+oRntHyGjsuUqcq/Wsv\nM7PqE5+hL6nGX1x4H3mqYgn7LTCDm82xFj+IZ2Q7zIhLZaFqmMBr2dOPfJNDo+6b+M74BJBjkx1M\nCzn1+DFrLZ2xdTpErVNzu1aXwoAVQUS2J58CAnz5LBBvewLnegdd/IvsTnC2Ca7zTAhEN0PFR28P\n7n2tjmelsA1c59o2nM8I+eLsUSDWFXq8zj7zrJmZVamIIIVr/WUcb/c+uDbJpapmGKMzVFoMDu3m\n1eI69tAHVXxzZxHfK7OX0eJLQJSnfgC+udOg9reJ86wVmXUv4vzydPA6O4nrKpOn3zaEZ22ojKWA\nz15USS7SIc9EVj3p3iQEKsQpbjPj+s7HOVGHcMntCklHfN2g1trjKieiN4CxMqvRSHsspZFGGmm8\npnFNkWi3383VIU7JMN37F7wmEtXs5swLkx3+5K7EP3N4Opm4v+lJ8k+359k/xyMPFbEfDWevUy+f\nMDOzFXo/fvkz/5+Zme28HTyUHPGrM+AyMyfAOw0QURbkiajZmBo2cbl1whE227QOK6oqAD/2+lHw\nW/M5OhcxUzrDHlOnc6wg6sN5DBK1ZVea3B9m8bOnoAG8iZq5Bl3fLVKHAXy+XqWelX2HzPUYD/iS\nagJl91vL3IJ3K/hCK6pGYdaft0k9wjPkt1zPJSLYkZFx27WbFTznoMPMRRiM+gKQYz87h6oDqZlZ\n2Fxyz0h/L64xonb3ul3gIk/Q56FGX81ljoE3hHP8AXWS8gMNtwKhRlkgtOXnqNmlIWjfXug2hw8B\nITbJV79YZQ8l+i/seD2elbl/Bifby15ORWbTxw9idTAyhv0154CcX34eq5uVSTyr4/RROPki3p9j\nFn7uLM774N3wfN16CKulM8eAYCNWJm0dZLb/CJ6pvgHc2xX28Qr5q1k/g3FfbAHJjt2F8yrxmSjQ\n+7VGBCjEKITpkKV8JxJcZyexenQcKr9fYhbeuDrrIbdZXdfqRc9eqB2Ymdn0Ip7F1QVu2WNrqQpk\nfRO544tFikTTSCONNK4iri0nuhHnecWIM57G9xL7UcGQn0CkF3yu2yEeu/OVEcT7k8y8rpOfKnPS\nDKjNKxMp7shjjmqzp9BW8kJLT8C5p0ok10sd6RD5qWUiX6EhjZA4WZ+1/qq7bsgOVN0viQzLK0DG\nYx7QRJZoq1bD7PvCOLV2/azfbmAWHqFdlRBwH/1Aa+SJcnmiAzoelahprHXE3UoNEX+8VE+dpVmn\nxqt/cFifwPd5HSvLyFDrthbIfZaIWF3Glgg3Xyzbvn3IPh+n9jbHvk8ZVmd51Nq2213H8rbnWakC\nBNrD/upVamuffRZ88HPkt2tcvTSX6RtA3WaVFUVVKiQadLoPVjBGqzNAmIfuutXMzIYPAxmOT+B4\n0z7GPkt+fcsExmSclVRnInCi41QF7H0TEGO9B+ezxlVSLsQYiWd++XF8r3YcHO3CWSDERa5Gdt4C\nVcGuG8DFZshZDhGpzT77dTMz69yA4+686+14zQ63lVE62lfZCWAvvXefZDUan5E8VxUBucesPHNd\npVDcXUnI0+k/E9l5cd0qjZezWB/7gq1R19oicq/RCaxGhLpMRYkQ8RxdspbomKbquXnu51KRItE0\n0kgjjauIy0KiL774ov3SL/2SfehDH7L77rvPpqam7CMf+YiFYWgjIyP2O7/zO5bL5ewrX/mKfeYz\nnzHf9+1973ufvfe97730ji9AjK8McV6APLVfVR3E5abOXci97d7HVgypXmeEjPi+kFdA7dwKUU4f\nNYY+K5ECZjIL7NAYcTbMtNkbnGfQIGJ1NfDki5aZxY5UkcTXQSRbKGrkpG/V9ZAjFdvXUwev08fZ\nt9LPKpQOPjFABNhfxI5WqE1s01Fnlc5Ft20B75bT9XCk5MFYIMdZJ6LOEG2Iw5S+s8rZX56cA0NA\nD7m8vB3jHQic1YC7A9QVU8upjGqGyDYTFG14FF0lz548gXMjovKJrjPMyrfPW/5k+4eszbr++Rrr\n8tkv/Xn6bC7PYGyqbXCaZV7DAp22Gk2g/gnWmK8cAxe5uABOLT+A/U/sB6LrDGKM57N4JowoO9tm\nFvzEjNl+s8lHgSTl6zm+m9wnaWcvz8ofPhojO5j9PwlO02Mn2NlFjEeNY9vD6rFx+n9mK0DStRV1\nwOWzST/PRja+HWL3zxuG2Wd+CchtuQfjsGTg4SPqcUMqLJrxxdV5lUJS6OAPzURNfOCr1h2/JfVG\nCumSJaTZWiTyLahakBVqrBY8eQLj8gx1v/Nc7RSpNZ6fBlIvM6vfCl8FZ/tqtWof//jH7Y477nDv\n/eEf/qF94AMfsM9//vO2c+dO++IXv2jVatU++clP2p/92Z/ZZz/7WfvMZz7jmlqlkUYaafyoxqZI\nNJfL2ac+9Sn71Kc+5d777ne/a7/5m79pZmZ33323/emf/qnt3r3bDh8+7Jylb731Vnv00UftrW99\n64b7zmi262yEQC8TcSamgg53pFr65PbiHY/sgs6AGWkNyTOFhKh1IrGpFXKIrAEvkvPLM+MXUOdZ\nVc07Xcg9VnEUqMnzHBeI/fcZjtdQdQURZ6jrIvKlOZNtaeDzKzl8vtTPjCo7VG5hxtmL5PMJtLDr\nKDKzfWVWKHHSVWI0S2Q88wxm7Ro1kyGz+bvvhAdlLqvunkCIPrldj73RhRbCDtULGZxfPq9qFRxH\nHQ0yhKBeXq5b8jgAymgQdTToR9pbGHDjWNK96MG1B03sI08PVI99nUK/m52fWli3hRZQ+xqzuI89\ni1r30ji4xdLSEMcG+xnkPW6wyutt72blDscm82X0tVpqQmeZ7cO1LrHCqH8Yxw/lWsS+Uj0trWZw\nbYus2e/vxee33YIqrxkqG0rMPtfZ8XVbD35/06xK2/fj6LVkRORTj4OP76fOc/ol3Nv8N4C8Rnqh\nNz19Cgj61vfDN2GgF6uR2XPQMB/cgvG6cfV7ZmY23MaztOTjHi+zS0GrQ7WDR7UCfVg71OFq9VRg\n7XyU6KvmJ6rVentx/1QLr+x+vYH7tkp/0unZZdu793o7dgLnu7wMpHyUvaVWmC8wrraq6/gxsXmC\nDbGT726O56Vi039EgyBwAlhFrVZzItahoSGbnZ21ubk5GxwcdJ8ZHBy0WRpnbBR/9jd/Y2Zm3zx+\nfNMTvZZxcmH+Wp/CJeMXpp++1qdgZmZDOy/+/r7De16V/Ut6Rnc2s74LP9PLQoK77t1/2fv9qXfc\nd+GbmzBRm8aP33913+e/fV/7z//tir7+wZvfeXXH/8V/d1kf27v/E7HXlas76qseb3/rVY7DZcRV\nZ+eTuq3N3j8/7r/nXvvGieP21p27zOwVcJw6hnOIjyPNZKVTslOgdIeq3W/pNTnT1nk9no4uzNku\nun2rmGGUlTRvrSBDeWcFXGORvFjEWVFZ/nX2q4/oQemgc0gEymy7n+gSWmfGdZUItsGsvc7Djzz7\nd2eP2R/tQv+XTA/Q0XWDyPiOsIpEtewN9pdfKxCVMZteXgHqqbMSKCQn2iRPVKTetEMEvUwC7uYH\nPmBmZv3kWldZaF6k01GtUbe9N15nzz4GXi/P4w4NAZ2Ue9gjPlCmnI+j81/VfQQCDclBh3T2XycP\n19Nf4bh51qSz/RkikFYVnFeuwGeEUGN6AUjqLW/7efvfP/Vxe4ldN296E/SSK6xg2hZAmfDlP/oc\njvkC9JXbr0c22w7g7z3041zlPc48CgS5+G0gvcUaHfe3ANncfg+6IPRMYGxPLCEr3D4K4OHPrtun\n/tPv2ds+8C6cB12Ybvipt+A8irina22KgvksZbm6WWaV2DZ6xEa8x5kFILV+esL+4e/+gZmZjRbB\nj5dW8ayvEKi/+T6sNrYV6GDWPIFx2hbZLT/+BVt6/KfNzKyQw/6bBWbRqVk+W389jlvCeQcRkO5i\nA9n7ngDHy+ek70S4zq7uNV2V+AwKgYo7XVoGMn/0cTjyLyzO2L//tf9g/+cf/B9mZnbuHLjOBd73\n0SGMS8j8QoP3e8s4fjv6kWl19Ksf+VXbKK4oO18qlZwodnp62kZHR210dNTm5ubcZ2ZmZmyU0pg0\n0kgjjR/VuCIkeuedd9pDDz1k7373u+1rX/uavelNb7IjR47Yr//6r9vKyoplMhl79NFH7aMf/egl\n9+MTCfpRPM3sJcjKJNK8XMSpSHKtQojSmqkzZDeZrwqn+I5U0z/LvvPr/eR15IVIhBQSQa6R12LC\n1c2iHq9XagT1mdd1hnTUD8jXCKlqYHSeBfJzhWEgzj3Moo+1QbXUWWWzTFVAswJ40X8DltcNorK1\no6g6WT7NyilVGlEPm2EFVZ40UsSa+BlqAZuHsITOM5PbYgZbvdX9ANfV24/j50tEnk4eEcRfa253\nKxCiEPKYPuvQcwVsW+oAmS+ZRyTW04NzqjKj3+a5nGZm/zg5w7eY2dJ4v7UXcM5nF3GtOXKU51Yn\neS1APCezQDKZcZzjwRvgJKWsfY6a1SKrtM7W2EdsHcdfewkIdWYYFNZzX3/SzMxqi+RkF4FYy+Th\n118Cks7fCF1pJ0fFBt2PCqxiazArfe40K4Wug0phndnsGhHX4C48I21yk3v2AHkvkx+fyeJ4+49A\nBXC4AoR3yxAQcl8Bf+8h/x9QkbKSB5Jtk8cejaBaqBquc+40svUhe1DN8DrnPIx3P7lsUYeiBoU4\na/zNLazh+NKPjo9jFSTudNs2qB+kYJmh7rNaVz6CmmgiVzmMSd1w7jSqBlttdUDoeixsFJv+I/r0\n00/bJz7xCZucnLQgCOyhhx6y3/3d37Vf/dVftS984Qs2MTFh73nPeyybzdqDDz5o999/v3meZw88\n8IBLMqWRRhpp/KjGpv+I3njjjfbZz372gvc//elPX/Devffea/fee+9lH1xNIj2VyTokFkdmF/SV\n38Dx/oLsfrLhO6OTKGFSVryT+Hi8O323Llr6zTnOjvNVzKbq1nneF3i+5DJ5HI9VErqMNpGnsudy\n2vfY6N3LqTieCJGzbh8zrNf10mWdJe1t1QETyfbejA6Ru3/ix3HZ24Ea1tjFc5180fw/ws+0SKS5\ntKZ6YkDQ3aR086qYWhYqIGfLDHemQf0m9Z8lcrU5Vjb5PC8/G3en6nLeST7dj33AZ4opyOE8GzXy\nnvmCUzCs09V/ZYk7ZRZ7MsI11fu6FUtRPrTxMSCYShYIaJEdRx/7wSNmZjZyA5DgwJ3whh15E1yb\nSmsYi1H+lL70mS+Ymdn2Go7XDHQvgdLLLRz39A/gBtXMcPVCr9os9aJLXD303QJEOPQ6HPfsIpKc\ny9/DWO/YhnubIUKbfRL8c3gSyHH7fvZO4nlMngFXnIsAcPZR2XC6F5/f9SYc/6334hnZaxiv8ZA9\np3p5DzrU3fIe9tM1yq8pn4Bx7GN1WzXHTrVNIL3x/l1mZja3gmfn6FFwx2Nj4CST/eNFFUqpUibv\nLu5UiLVCb4TQk0IE415j5ZFctNSKt6mafHLKjSpXSwWcl0Wvgk40jTTSSCONjePaujiRt5Bj+ytF\nnO71Bohzo/Au2MYRr/Mz1fuqqtDnmUafqatyiU7uJc6e4hI5S2baso5XjyfWxosTdUjV4u8T4clp\nJuDsGTawv176bg547D5KPm9BvbWPoI68cif67HS2YpZv9uN7g1vAJ/WzHnv7TyCTurwCVHP2xRM4\nnzPIXBenMJtnahiJpSI1dg32auf15akPzbJKRQg0IKL2nfejHj93x7mV/2tSjiEXK7wM2K++2mRC\nsy+0TpbZVtZUZ/K4JzM+dI81nvMy+0yZmQX9OcviEu30P0Afeor9pcI+nNut9wLFz7KffIYIx6PL\nf7EEVPzGe96Bvy9TQTCLz8+eAZKbeRIcYYfa2fIIxur2e9+C8+vBNb34Aiql9h2Gbuzow3Ciz1Nj\nu3oUyG5h/bs4cWpzixPgFkfHkPXv3wpEmF3E8c/St+Hv/wH7i1jbnx8GQnvjG/DMDK7i+nvJO/t5\n7Cl2MYEAACAASURBVH8wJAJ1fLX4/bhTmkcePM/f1GAvBrjeQsVQO4/reuRx8Opjo+BMt23bxv1i\nP8keTLVq3OVJrkzSGgdUzjTZa6rNVVGD/hWlPLaL5GQL7ACwfwfOx2vgffVXi6y7YtkoUiSaRhpp\npHEVcW27fdKCpS1o8SojTsXGmtU4iXrB3lXP6/4u/SLmnilyopPkW3ZQ71jkbKiaeGOWXmehbH3I\nI6pqpd1W11OeHf8nR8TWy+qJXvZM3zoAtLHGCqQW66szN0LDeN274bhT3ItZtjAIvihD1BRZvKtp\nh9vhIWR2S0fw+doNRE28vtIsUNzT7AHVy+qOKrWBPiuYCnRdz6vDI31AfU+zuxCn7oN6bbFqRWS5\n1BQd9cNRVt+4X/qOtloWeOQee4Bs5LrUwxrzMIN7tRJ2kWg9H9n4EMb2e19HBU6DOsyeQ5DpzS2B\ni8yyG8EiEWabXUUXqFmt8B6V+ojIbgCy2nIMyPGrL6LbZ6EfyK/nOmT3O+yhtG0Xxr5CJOlzlZN5\nGt9fn2S1Vh4Icpna2QbH8MAoxjizCp67NYlVwuu34Rk4O8x+V3TuWmVl0VAF47HNw3HGAjwLAfn6\njh/3N9A98Zznrfj8+GpSZXW5DBBes47uqeuL9BIYwSqofwD3S/6gytKLExUiVTfXjjr38pmvc/Un\nrnSI3Gib+k91S1W/+w453DyfsZIHjrnUi2c6F1AtUdtcppki0TTSSCONq4hrikQFEL14ccJrgDi5\n34RjjO9co7hV9ly18zyNjONM8ToiN7dGLvMcudFl1qjn6brkqa8LUVCTGWO9HyV6ancIeeWCpFk5\nH1E7VwDKkSv74gJm9zYd8nO3oXJpyzvfYmZm5RuQmc2RTwqy2mK/EVFbhl075f/ksVIomyU6YJ/7\nFfaTb/WT59oJzWFEFCKOVki92BPvleS6dXb02AniO/8svJSDv7qbJhCrLw8BjltATWbUqpvPsS/y\nXPRMjFDPmG1A9+kFXf1fphDYcy8gO5zbAiS3tg4EN0EH+jw1ukvTeH9nEUgnv4hz+04HXF9xAohn\nlX6UvXSH6udqom8YlUf/3f3/s5mZLWbA1U4unDAzs+YyfRXYFytHrrKP+s4T59jlk45i+3dj/zdt\nx+dbbXCZ21gd1psDAu2bw/mNbcWY7nkP9jdawfkP9PJZ7ADB+nLkyqhnUTwLrryA+lx1W+liIyeu\nUOWA8kXgOM2cod6096fMzKxSgSdAFEkjjXGQE1hQifdmSnb7rLK3lE4gz64N+w9gVdZi94SA9z0b\n4L4W2JW0MQeuumVAohVyuFEn7TufRhpppPGaxjVFol1/z8tDnpdTj292IeLcaD8OiTqHe2wDZdX5\neTF4qizS90Kik0lyo+foMzpSAe/kR9wDZ22PPE+RaKklf03uP5CjPM+nTMQ53g++rBAw80gOdIkc\n5sohZN1v/ClkkEcPQzuYp9NNhhrFjo7E/fisWvEtsSQQQCSaKJGrzDGT6eWBFvI5oL0l6lLFhQp5\n5llVo7roUGgkYYogrwDP4tUh3buXuO/JCjReVtQ260hr28SximXwvy8cBxd37Blk3+0Azs0OmhU6\ngfVvAzLzjwBBrv4Tst5nv4Vs9pnvQ9/o0Rd0aQz3ZJ0173s/AP45ywqY6lkgmWPPQ7fpn0B2/Ho6\n2q+XgYgb1FHmmUVWZVSLblCj+4Bca1PkOIfwzIxuAw/9b16H67vzILjRQepMa9Sf1iJkv/MeFSPk\nEpuD2NZYUdVQvyqqF3J5dfHE6yzvbYYaX4dEAykm5MAVx2Vhh1V67A6RD1hpNIT9nFpEx4Cnn8Uq\na4Tc9PXXQyXAAjS3/27egPmURB96+Y8Wed57rsN4v/wyELyA89ICkPA8VxYVItoeVl7VZ1iJxSrE\nS0WKRNNII400riKuKRLdKF5txNl9Hd9GHXGj5CL1OXKC4QbnIU4u5Gx8jpnBUyviy9jvRcjWZRaJ\nHMmXZeQnKv9M7r/ILHY/3btVO15jhrjF6+3fDgT69nfD6ad8A2ZvG8Bsqux2qy3ukIhUyLhbumU8\nkfh1CkgTQWbVdbRN/okel71Env3MXKurp3SvRs41w3p019sqadOVCN/Uc1y9vzuxz3tEIx12Dggy\nWWtUiUTY00ca2xlygi/8E/SRpRMsSb7bbP6bx215Evcwu4RjDbL2fgfH9PFHgWCDOaDuhRlpcoFE\nx58Gp5YvgUeuvwQkuvokfAlW5lCbPnYQ2ff8s0CmQ7vxuj0FvjlYBmLOlZbNDv8PNlbH/ifZp/5d\n1JPe+jogrEMlXE8lM82RQTa5yKHKhviekGbkaUzxOpfFtkAneDn/q0OrkGeGiNNl4704J+r6w+Ow\n7v2MunEyS98i0h4qr3B/uO5GlZwzjdzX+Rvp6SnzfLFn6UMDKTf42yjx2Usi4q1b2Amgrt5aQOxP\n8n6OjOI31NOH48xPsgpxln2+6pvXzqdINI000kjjKuIaZ+fjlUIbxZUiziiBPDfcf/dA8XfkIqWp\nhghL2foW56B5OvicXAUSPTyM2S1gFj+n6+Ts6Pqq87yCMJ5tztJpPseKn+U1zI7yE63sAQrZdc+b\nzcyseCs6P9ow1AEdT9l27CebT9ZoJV9efIDcu3KP8sWhqi4Z7/f0imNVPTX5Pbl0uV5LQjGXx4GL\nK3VVMG4p4SAu/0u+rBlaxC6euQwd1FlZNELP0dYM9H8z7LduZnb6a89abg/7t98O3WbBh05zbPsu\nMzN7+3b8/bmHHjYzs9UV7Ef37Nt/+tcYixHqO6kXrRF5NcnRZl8EQm3PfMvMzMIB/P36fUDO27bi\nmg5O4B6/PgsENXYDxvS6HVgFbB2B+1NUUzdKuipls7HX6gwrT9k2NctC8WU6/ufYedUTAiU/L85T\nHGjH9UJiJkMc6AUewPHVXUBONMOKqyK1wysnMR5b+sD5LudRRRdG+E212vHqNmmN3WGoGpCvqDhS\nPWKlAo63YytUCtOz4Ij7K1itzczj+C8dh6rBQva8YtY+TDnRNNJII43XNn6oONHXGnFesL/kG6rG\niIR89Db7x3vq/xLXL3rkaWbIeZ5ZBzoY6AcqadfocKPsvI/ZsbkOVNGhq1OG3OKWIXxvlT2N1piR\nDK8DGtr+Hjhlbbnrduyf1RlCikLA3f7vcc41OQLdbprJEXEF0rGXHWb9s4Zt977EjyD+Slt31MSN\n2gyZirtNVrDpvkdE8vVG3UzAIQNushPi3u3ZDQ/VPQehpX3q6A/cfnIDZRunc3x5O3SehSHy2NRm\nLDwDPnpqGj6Zfp56xUHcy917b8JrIqJsEcfdvo/I6uiLZma2/DIQ1/YteFbufTN0oPt2C/nhGStk\ngJAObUdW+dBOcYB8Fojy18hPZ4rk13WrEllz8fi+62lE5QS/l8mqBxX/SXDFYtohVwVuEbDJPUy8\n1rPod1vpmpnZFvqyNueh061mwG2uroIzLRCxqoJJq52Iv9EgS58JItBuv3r6WbCmvp9O9gtUtvSz\n2i+kZnllFSuLcgX3v5ceBvMzM7ZZpEg0jTTSSOMq4trqRMURJrRlSaSSRJpXijg3wVsX7PiC3k0C\nqtKLqsabfNGSj1nwmRXMXrf2YrbLuBr1+PEbnD2zfZh9c6womptd4N+ZVd8BNHPDW+82M7MdN6Pv\nTacPaEud2+Szqd5JDllvcH3uNR2Aks7yXgLJOqd/opLNZuDL5bw3C88didl4Vx3DHlkN1doXjRJc\ni3gtLWZjQ3Jqo6pVP/OC239lbNQidsM8SXf/bf3gJPtY/1+k49Xj5OAKA0Cg44dR+73/DmhzK2yb\nM1QAAuqtUCNLN6RoG/jtiTGMya4J7K+XyNVnNVuHiDMicvPIh6uSKGDn1EwLz4pXoE8mn8WIPH2T\nvZakt1RfK2mIk3mAjntW2ZVAzwBXX66qz7v46sbd80TXTme95X4zrETKIgs/RD/TyZNApG2DwmXX\nbmTX2y3mIYg0m+R4c/QB9Z0pMe87/+7+beH7feSqs0S226kP3r4dK5HiAPIKZ07CRUtuT5eKFImm\nkUYaaVxF/FBk59XJzyHF1whxukhOn47yi3OiG9iZOpQjWWUPIeYaOyT+YA2avfeEcCMfJN9kDWYO\nuccitW1Z+nt6RENt1hu3yQeN3gKUM8pOlHn2lTGiCukp3YyonlHJE98gg6rH4Eo9C16r6I4/zqtO\nPiwnZ6GWHHzwummeeXS7r9bosq8qKXKYt7wO3GWmr+tYns1EdvS7cG/ytiFr+4bbXmdmZsEcFBdL\nM0AkHXJsR96IezF8HavJiCRXT0EXOlbAcQ9QMdGzF3rPXmW76QHrs6a/ozKurP4ef92RJlaaWTqu\nF4kopZVVFV3oRLr4XoHPmq9mQg6gxbPrkSfEy68LUdpGkfiR6PNhnLvNSOFBhBtmeN4ekPvwKFdl\nx4BE5+dxH89MYvzkLCbnszw1z36kXk/kdjPiRLWlLyhXZ4NDyB8cPITOBJNnoNJYXsb9fYbcdZMq\nhlwmrZ1PI4000nhN49o620fx7eXG1SJOt59EBtE1GU3qRYlMLdRsihNuqdKIlKJmxTb5nseqyOje\nlAN3WeJsrMRnkT2SPIKL9ipmv4AORNkD4OWufxfqsnN7wL8JDZmPM8wIYRJ6SkXgu4qsuOdjMnN6\nufjTcxrBi4948u+Xqwfd6P5132f9tpzv6fSjKhxxx40otLUaFQ3sG543IJEsnc4P7N9lZmYTE2tu\n7+96yz773AvoL7V4HJVN//yn4C6nXgJXR9Dr/BOefw419a+vgEvbT3p6/wHWtufx/XwOCDTINnlN\n5PToEB9wtWHk6DpBHIlKi6v+51FbVVriSlmFpt8SEal0lRk6iCn77h5yZ5cgv1C+7rbY5Xaz5aCQ\naPx7XmLrnhlRo3zo1XuqtY48wrZhcJbVMyfMzOzMMXC9I6O78PWOVhBEuMyuy81pZYWVUBy/9XXc\nB3HNXStardY0rqzc4m+kQS65N58626eRRhppvKbxQ+EnesH7G7x+tRBnd79ebKsDZFRzrv7w0im6\njCQRHr/WlISvxfdZLXOUGr7dfcjSl9RhcA3vF8jj1FQnzC6iHnmw3t3ULo4zy8/qm4buWhBa8fzr\nUbK946Z7bISYvVdnzrxchHnZ4Yxlkwg5fseDjpzvgWLUPXVxFeiv3slZnfesWYLeL/SIRENwcBVW\npGzNd5HoG/bN2e7/CVVf33gYbk3PnwOCXKQD+rYtzBZvxzlcfwO0wIcO4l4WfexvIsva+CJXA6wZ\n9zPy68Qxs4Fq1dl36iIKFc+6VVqe8+fE8ZvcBiZNsAZNx+WzKM6V/qPGbLbXTQRgk2x1q/NI/o+e\nLU+db3VP+Kypf1gofWo8i69n0O/IX4E173QkG+rD93cPYTyXyXHnKC9oZeLL1majETs/PZtJ3WiO\n78tPtNIPxHv6JDXaPMHd7PH04hrv5/DgBWOSjBSJppFGGmlcRVxbJMptkhJ9rRFn54JZN1Ep1Ym7\neLtPCekJifL9tv5HlU7kTo+3gFJ+MIds/VvHtnL38QofnXe7B2ipZxuQ58SN+3Ac6kgDdz7k0zo5\nM8+cD6fjInU9fpyjTHKVr7RyaLPo7s4JOV/R9y/QHLr9Clm7EiUzM2uTF1yqKjufcV6mOVaBRdTQ\n1rIYQyG4fmZtzczKnWk7eD11pBUoKk7SrSmXxVmNjWKM5+aPm5lZkEfWPqAOdagP3F2WvYn8jCqE\n4lfne6z2ChLu/oqkKFqvwziyCqUh5mpGz0aU+DV1dZtJsXXcx0Dc63lmr7Gz07bbDg158qgttYA+\nF/9tOG7U7UHdQvE6JDfcbHJlQKTZUwKXWewjxxvhdSnXy8ugbpXcanVdXLA4ZBy4TD9ZuTr5PNGh\nCrL+O7Yhz3Cc17GFeuCwiuONE7FeKlIkmkYaaaRxFXFNkWjci+e8eNURZ2J23aBGP3KZRmySfI5D\nbpq0+X7bV1acrk3kRteIlJ5nX/a9dcx+u+mR2FDVBfvpdOhm7m8DFzp8AD2SaGRj+WRf9qgTmwbV\niTFMaPS8C3w8Xy3EybO5YHdXWKHkOkUKPTETHcWRKBPKdvocMrohueKwk3OrgTKzrR3q/NZYkz67\nDuRWJjc4aGa2PmkRucMBOr73D0h/iXu1vgQH9jHqQXMF6kMLqMnOsubb2CXS6FrkHimiaXGCHn96\n3VUJI4kY5ZtQ5/U04lyoq/qTPwGHqs3acacocQ5aRKwcRPlCWBIYb5Kd13knVz++WxUlePnE99vk\nQEO6brnVFC8gV+D1+tBxRk3ea3rTeurOoG6idCrTeDQa3ZWGmVmTCD4fSIaglQK+t2PnNu4H+9+3\nHz2f5k5PX/T6z48UiaaRRhppXEVcWxenJFAUJbkJUnq1EGekOt7E+WjWznTimj0hOZ2f9qMscuip\nOoazJNFOZhhVErYF6MVbxexZa0HTlsuRg20yW18BuqnQA3GFs63cnoJI1SU6f0dU8bqYIRWCozbR\nZYbpObkZJ7qRHrTj1ApxbvdyEehGOlLHc3Xf4efwSnzgGWbOp5ZYH87qF8sEVvTizuwmvai4swAc\n5lq74o7Sbs+ZheTaiOYzvmrF8Xm/DUQa0CmryP5RmTIRT1DjuesnFUdkHYmhVQvvssnJrDwRK1cR\nRleoiKsWofJMEF9dCDEqK92ksFXO8pRJus6zEfWkjuRUCGE6SXEcSbpVQag+ZMl8glZJyXsb271T\nvrRadf5diBkfyLPiq9aEz+fsJIS4w1vh1Rv6rPLzMf65nH6r2L+cw7QaUzTb7djfh0aRf1hcWuRl\ncfy0zByu2GaRItE00kgjjauIa5udV/Y46Takv2+COLtI02KvFRsjznj2+gJEpI9xdgw0jSuj2InP\n3tLyZcivRJzl8qymKNLvc/z2W83MbP6v4I6e5bRcybPTItHLTYegWWzSuaaTx/s1ztolcZy5vFm2\ni166fezlysTrl/NOlHSc92Pf645jnO/q4ss4V+k0f/7Fqzo6ncj14om/v0HFk/NSoA6UvF5IBF6n\nQ9LcHCrBavIiKAnmRM4Jqx0AOVqTXSuJvORE1bAuZ1YLB63oo3Y6Q/cgoz40JHIJSuTe+jhW7KoZ\n5ViTzqy7sTbcI+dnIZEkta0exyqiFljZ8Iy7R91rMetmvzvMxgtBaTWRVFpIn6nFie8AMKvpyK0K\nGrqfnvOv4HEtsV+qGbqcLlhMnZd+m+02HeZVUSWkzeOopr/NexzRByHrYyXgsxuonO39DrwIJk/g\ndf/gbbz+Ae5XlVjYT6EQV6q41QwvtKmuplncv1KZHWtZOy+ut1Ci+xZXHpeKy0KiL774or397W+3\nz33uc2ZmNjU1ZR/60Ifsvvvusw996EM2O4vSuK985Sv2Mz/zM/be977X/uIv/uJydp1GGmmk8a86\nNkWi1WrVPv7xj9sdd9zh3vv93/99e9/73mfvfOc77c///M/t05/+tH34wx+2T37yk/bFL37Rstms\n/ezP/qy94x3vsEplc07hShFnN4F4hYhzM79LflxZby9Ri64ssupwhSxzBSFYfH7XBDJ/w/t3m5nZ\nsYEnzMysZwnnm/eUmcQsefRR/D1kJ8ix68GNenlmq8kNmi+X73g3TL3uXq9QgXp3N+PjkkAdDnEm\nOE7tT8iwq6NN9k4iRxyG5vsZ93mHYjbhXiMi5RZ5PX1eGdYVegxYgS707GvvR6HlVNFC5KnacvUC\nyqmza9A9ZpArW2ALfEW+mIhM2f2c/Ax6iYCEKD1VAAnhNXhNUhZwjKnn7EgfqrEQApXZrCqTGk0L\nzKxd1f642uH3vYSGWasJfa7r7EVeXisCKTikfOiI30841yfzC8JbKlCSCqDOZ4Xn3eS9a2i14tQD\nyU6yOJ9SnnpXD+MbdchBc/zCHLuvVqC5Xl9BN9T+IhQsHXXMpQqhwBVI1RZ5nPhvX7y6uoOq5r6b\n1ZczGHSiUXtzJcumSDSXy9mnPvUpGx0dde/9x//4H+2ee+4xM7OBgQFbWlqyJ554wg4fPmy9vb1W\nKBTs1ltvtUcffXTTE0gjjTTS+NccmyLRIAhcfxNFyfUXD+3zn/+8PfDAAzY3N2eDg90608HBQbfM\n3yhCZr+jZBY8wZEmEWeSk3SI0yGd+J9fscN60t3J7ZdZb/2Bs6s0eZm2MsF4v58o/HW3oxeSHO63\n3XK9mZn1vIx+PcE8tGj1KjK8s88jIxk9g1l3fD/6A2XKmDXXlqGZKwVZy5tZpOocl6EVCtD1YBOq\nk2Enrj4QlysHIJdRlpaR+83K25JwpEX39EiaO3X1zAipt80s33VXl7NQJuFU5FYWRAtNdXrE+Uyz\neuiZY3Cd76mMu+s3M4tYNVQuZK23oPQsr5nn3lS2mBxX1p8wRTGXsyDE+y5ZzY6pfpb3viCEyrF1\n+kiOkdubnp0EF+wQIp9xCSp0r8Qt8lmS075CY+onumteRKQbO40uSoorHSS2jfxc/AvudBO/GSI9\na2m10+2wev73nV6Uekz1OMrw/NU9U68dspZjv3Hcue0UcLyxYWxXmifNzGx9HQqNbBbZdT3rfWVk\n8ZfY50zcsfh0IVHpSAv0Yx0agnJG6oalZaxMQq36LhFXnFgKw9A+8pGP2Bve8Aa744477Ktf/Wrs\n75fzD9YXvv63Zmb2yOTJKz2Nf5F4/OzpV3eHH7i6r+e29cRe5wubUybXJGjEUir1bPLBeBRZQilz\nlf4h/KO5/8CBV+GkdC5j3ePt++wV7+1yyxY2WvIlv6/X+qctf/i/Xdb+g8R2s9jc4O3yonzrX71K\ne4qHpiCdZ/kVfn9wK/5x3cUGhZcbNx5+hQeyq/hH9Nd+7dds586d9uEPf9jMzEZHR21ubs79fWZm\nxm6++eZL7uPn3nGvfe/0cXv9dnCFF3CcSd1hUve5EeLc7OQv6Ey48d8fO37MjuwAJ9lU/bK0Z8r4\nETFlvXhv7JtvvcXMzN75zneaWbdjYTSFcfK+De6zuAy9aKOJ2bMTYVa0d77VzMx+8t++D68HiUbk\nYm6eVQbHrLqOzKInZKwqF2WGOfsrc5sNyO8FqnphxtmXvlS16QG3/J46QvpCKeLVlLGNa/Xa7bb1\n9w3bwiKQc56OPMnun86rgHeuvgYUsFLD+8fOgN9qRBjXQrEP52lAF/ks7stopdfKJfpR0hEr8vGd\nmUVUErXzeH+0jgz/gYP7beXJn7dMNM1TIeouEBEVWSHDvux+No48N+yk2okjNkv2ExPS5L2KpETg\nsxS1Qytc/9dWf/an8D2OWaB7kHjKdc/EG0s/mkSwSUVG2NGqIV5zHiX0o86/VKZJnY6Vb/2qrT32\nLpwXu4RmuFqJMsqKa5VC7rUTV474zvuWFWIRJt4wwqqsTYS+to7xmV9jfqD0fhx3CD2zKH+1Avdz\nbu6cHb75iD3/3DOx61plV08hVOVs2hz3JepFjx3DKnB+AavpX/qlB22juCKd6Fe+8hXLZrP2y7/8\ny+69I0eO2FNPPWUrKyu2vr5ujz76qN3OZWwaaaSRxo9qbIpEn376afvEJz5hk5OTFgSBPfTQQzY/\nP2/5fN4++MEPmpnZnj177GMf+5g9+OCDdv/995vnefbAAw9Yb++lHVAch7cJx7kh4twMcr4CxImX\nF8/iOxTgRANxvWgmUb/c24fr3rVrl5mZbaNH4ew0EFmDPa2bS6xYIn+kKokCkWZ2DrPm4iRmw4ES\nlrXrnPtyqjySMz5nUzfL6wKUgVU1Ro11yy5TTOTKHWUcQlX1DtCBUJqO09WX6n7EVQHin6o1Zlyp\npWw21XcHh1f2Xv6g1SbGZ2oZaGSdCDTHSrAMkWeBxy0XcR0D/SXLkicN2QF0rSV7ISE9vF4/j+pa\nrW23QnSS506k6VOTWyIidX3XxYVyt+J3tTpJcImqYnPfl68BObmogRNpqzKJ3xPiFPLVM6dqOSHR\nrh6C3wsu1OWed1rdfmauRl+6zQ3cnxI/MiFbZd2Dgs4znoV36gc1a3LPpH7TqmzijkPx8LjnSQVI\nnlV9PQVkzafpZWDUPg+Mgp7JUC9azJdj56/9aBWkZ7NbPYe/9/RglbbM1eHywubdPjf9R/TGG2+0\nz3728jije++91+69997L+mwaaaSRxo9CXFsXJ1GbG3TU+5dCnEnkmXxfs5dzF9L5uQSqtIdEJUR4\nh65HFl69rtcWwXlWPXgnBn2Y9Wqz4EhpaGPrrMPOrCAbPT0Jt/XhXZhti32sjlGWvMne6pzW8+zb\no2ohLxPX1daJxmrVeuzvHhFxvYpZeo38USmL4w0Ogj+qN1SvTH6NA9Egz7daZ4ZzvW6jI1vt6Enw\nTAP0huyhi1WxCJXH6hr2N88e32tEiat0PS8U8HmffGalj7wbq2h6qBbJZDyLlD33VUGTyK6Se6yT\nTzUzWy/0W18eyazMOt5vUCfYIIouiEv05VSvBvcJZMdwCK4jzSvHaB16x6gO5FlQ10oaj0rXKETp\nkKXr4BrP2uvZdj6a8lUQ5+kamMVdpBwC4/f0uSQXqt+A+Hw/n0CcRZ53EO/j5QrVuqJt7F8AVYoX\nP46INV5dGax+g8z2Z/DbKWXRC6sVwXO3UcezkKeCRV0g1uhQP8B+8tKFVqtVXne8ek8c93AFSqP1\npbTvfBpppJHGaxrX1sUp6by+2ecvE3Fuhiw3en+jvyezySqlN2nOWFmTJ2e3dTsc7Pv6oVkTV1rh\nbKge13MjRFqL2E9fEj2xU6FQSHUVPE2xH6gpICcqFUOzKW6RXxOnKe6T3KaXw+db1Feqnnh5Hgj4\n5WPQr4bUBo6VwVG+8Dwylj0VIMMSM5sr67j+VXKt6hsU8rymljDrTy8CFQwP4/wXVybNzGxhEUhV\nzkiD1OwVe+kCT9VApZcOSqpyybGnujLpGd8pE+o1Ir+GEBr2naezlrLBZmZ1P+8c70tKphuzxMxG\nN/waj8kvOZ9M+YLGnbQcZ6kKJHJ8Hd4jaa2FNB2C68SRmfjmeC3YeRxnGMZeJ53dwzD5q4pzvRxC\neAAAIABJREFUtM7vNIGkhTyVxXaqAp5IxMowLxdHoOedocW+oPNL/sqTNe6qAhRh7jTK5EazeGb7\n8lBTRNQ+tbn6arIaL5Ph6sWPa52T3SqkHy251Qw+P0J3p7m5GdssUiSaRhpppHEVcY27fW6AQF8l\nxPlKEelGr4VEncZO590t5jczs1HOXnfffbeZmY1NgMNs+Zgdfc6a2RKGvVrB7NfHPi49q0BsbaKi\nOlHL/Dlwo2V6Kfb30FkmY7Z9oscWVoBYVd/ss3JKXpIBCao6ebg2Ucd6E9/rUN+5Qo7UpxNSD/vQ\nNIWKWA2yzgz48jrHI6AKo1eZY+wnR76vMg4dsNCPimSydCnfNoCSYqkcpEcV0s5n6EbPGnkmhC3b\nwfu54DwPUflIVuOKA1drzmvzWnSiN7PA67d2C0i11SL6pwNXi8qFjHNd4pfk5SpphDPfj3f1bBDp\nyLWoUKTSoBh3YepCS74k9Rk5P8w4ousizXjNvKsqcwDPi38/wU12Ev3EpPfU2AdahXXtnnA90gS7\nrdvhRbedxHk7jlanSZ2r3K661Gycz5fPaNiEzvfZF79jZmYDe3D/in1YxWTo0lXKUwlD9YMqkmo1\n+r9y/IW4tTJQmfvK8rJtFikSTSONNNK4irjGzvZeYnvxv18u4nylCPNyv5dEos7dqCWnIAxj/yBm\nwfGt4ERVW96WrpNc4dZt+PvxF8ExLvEulJihjXicOjtXLrF2fP4YsvQTnKWHRoZs+4RZ2weqEuqR\nW5NPPixihrnJ88kyQ9lO2I3nSqgEquTk1SgXdO6PyNKjh6aQbyR/U45TWU8VUU5PDxCsc5tiprV/\niNA8yQMSpWSJoPNEO2Ej3sM9lyOKKPZwt03rCO3SDzTw434LkUcU3znPJzIqW9ShUz27e3ba6tsE\nxNKoUVfI1q5Frib8RM+eFpUPbVaLyZc0x9r7bJ4co7ojyDfU6Ux5Sq3QcmbWasqhi+9HcWTX9XWQ\nj4Oy7PpG0jlfW+kjcR45dQ3V+em6Ep3QnJuUH78OhzgTvqRutZngZrtNETQOie/pzxvgPN+jnrT5\nvJmZzU3BC2Fn35v4RYxnlr/NtQZ+A0mdqF4LmTpulOOhbqGXihSJppFGGmlcRfxQZOdtA7/Pf2nE\nmawv1iylrLs0ZFFb1SjiHpl9H0TWubcPWWuPnJ2T9nFWVK9sZQAX2Gf+pQjcZ0DE2sMsdmEMvbH9\nPnCiTx9DZnJrPWM3H9xpzx1DRZN4nTyrRVydMqfKUokZS9Y1Dxa4/yI4zUnqNasr6heE6ypwf855\nh98PyR+1QlWjqJKJGkfiiTzvr3i2Nse3qoaY8p50GWneL9b0V4myAk8eAOSYicDVhz7smLXlEkQk\n4icqhsS5dVya3cysaHnWyBeJtsM6xsaPkJ3tKhnUJZPnkIvrKlXDLo5QqF9bh7yoIhBXJwQnvajQ\nf7sdR4Bd71fuzvllqiZeCFOrp/j3XQ8nP1FbL7eqjDBgGP9eInvvdUng2HV3nFog7sMQhXHk63SZ\nGg/pVOXHwP0HTo/LDcdL5z06hGf12DwqzsJIvsdE2OTTVcmm65ZeNKkT1WtpvkspEk0jjTTSeG3j\nmiLRjWala4U43fvn9ZExM8v68VlMIU6xMgIu9PqDhxL7YaaUs/gaEd7yPNBNL7Ps/gE40bysapU6\n3h/cj77z+a2w86oXwP0N7MDn6y1k870skKQywHVxh1lqEZkOp9zS8hFue5gHB7pGTnOVVTqDVA2U\naRYQcPbPMWuepYZwjfpScb7KrjeYAZUVY5HDViLfFnK/tRX6jKoXlJ4DOf+Ih3PGR+wQGSWqbsS1\n+r5leK972CPHZ7Z5aY1IUogv6JrB5XN5547vEaHqkQla7CoZyDcAx2rIOb9OH8xA3qzxra+CI+cD\nKi0w0bPrUWR8rf5SoRWty4lKv+hf4MUa50TFJkrnqf2LkmxTORGQ88y4mve4TlMFROJquz4J/M2y\n3FC+p5HzPyDSd32/4lyvO0/tL9FVQcfNUN/Z1bHGj99hL6uhCrYv0xmtTcVJJk97SN5HcaNtIl2t\nLsWNahUnJKoOBOXy5jaOKRJNI4000riKuKZINDlrK14tfeeGSDOBOJPI0/FFCe2c3u8QMWaJoMSb\nSFtW5CwXEm2o06JHJ3lVCG2dwOfnA1TyhPPIYhcGduEC9qMu2CPHmifiDOhXmmPVTVAGonSSQGXN\nXeWSICiz/kTIswDG1mItfEDiqUKer8w68R72jCrwuoSwB+g3Whdq4TjOLwMNhOrvw46OygCvE13Q\nfMl1hmy53lUeXws+SQWBl1miRnlgus6Xvu+coFoNjGkmkIcpR0aIp13lWJWs4/vWbgGB1mmlJbd8\nn1pW+Ts4RUJbRLf4YvLjvvq8J7LbQppEOsqiy0BC2evIVTiJg4wjzWSfqmT/MXGirZb61Mf9Q4WM\nBcSDrJ51IcF4byjx/+I09VsJeXeb7EmkrgjJfl9eokKqu5qT/lP7j3Ow5qr3pBslR0qEKIpZnx/q\nx/HXl8/g76P0nOV1ZbyLI9HlhA7UIVG+zhcKtlmkSDSNNNJI4yrimiLRV4sL3RBpboI43fF9b4Mt\n96/6YB2W3GA/EeiNh280s65/qPrUN1h4HXSExPB+oYhZ8Mkn0chv6xZwkBXVig9Cp1msAHmq8scn\nL9dowPk94nlE6uCYyIw6LZ+K/ZnpbHDubDI9HvA8K/TpLBI99BOB5l19Ny/feUbi/Ta9O+UClVOF\nFLPrIdUINXoM1FXkQ5ShenF1pgz5WKp7q+d6rhNFsOe7nPu7vdDNQQhxYA1xdOpKQNTdagGpmo1Y\nrTVjXgDHqg6rvcIMxrhdwyrAl54z0rPF/va8hnZLSE3ISdnv+LMUkkNUoZOQbeBIWH6O6oJkN8qk\ny5Jza3K1+3pIhY/kakUkF7fzdLX5QobiMMNGXAXgOFtl7aOO5cws5Kqqk8jWOyTqVnXcOk5TWf24\nnjR5XclI1sD7fCb6y1hWzS8BiVZGD3E4yBETgvNRdePadbvib0YVb8rab+Awd36kSDSNNNJI4yri\nhwKJJhGp4moRZ5KHuWDrxVFCctaU+1FBVQxykldddBOz2F5m0ZP8lNMmso733Lmz3C/e375rp5mZ\n1dbgZtTPNPbWrdCFToxju1yXSztRFRGoXI+S46NtNsE1i29zrt4mbZ76+mBbzLMnt/oKZchBZlTt\nw+NJC8nunM2IRBW1eR2iqSbr0Jt1vSbfRVox58UzuKHL9nN3RKRlZvc9wjif96dN9BT4njXJNdYa\nuPY11tDXyZGqll5cp5lZ6PU7R6gc0XBQ4DV5QKhhjTwts+XKrnf9H6TrlLs/q8Co+c2SV3dZ7k7i\nWc7EfwN+EH8Wu8gsrvtUODtOjq3Lvmfi5+f0nBvU4HeRrfZL5Bjpc8rGR1aybk8orQbU3dNpf3UP\nk1zoBs75SYR6QUfYpFM9EbaQ6OlTZ+Lj5Lqcxv9NiDgeySx9EokGyX5gF4kUiaaRRhppXEX8UOpE\nN9RxJjKTl404/QRCTLyvOtkMEZ5e6/hZOu+4aZXfGyRnqc6QyuB2E4zk1zirFnK4jmoNqGi9we6o\nnOVHBsC/7d+5xczMhsdw3NlVoKIzs0A5WdauhxafxZPI3VW1mA5DdKD+NZ629N5krXymQFcmVf3o\nemSu6QtpElFyu8L68job3er9Ncf/6QYwAy4drnrEMwOcJ6wKiHIqBVaElYAa5Nok9BZR/bC43rEl\nmjAtL/NaI/GscYd487ouTjlrWod8rUfHrQz9RDOBeF1Vm6nihc+Kuh4kKm2E7BoN9fIx7o9b+WWq\nPxWVEB0vjgg7JmQbR0QbITmnDsiIk1UtfxxJsrjsArckV/Ekca5DpFIjSJOrLDw9AqgUcb2k/Dgn\n2kXQF+dAk5Gs7VdoXLqrUipk8vT0zcBzF1n6Q93jihvlOMqZTEhUTvfqQ+/G6TIiRaJppJFGGlcR\n1xSJJt2zXzvEqeoMeiUKefL4rseTI0cdqYmt6nedmSS2O3btNjOzIjlTVZNoeu8QjdTVM3sGjval\nHrxeXV3kddNNe5w60AizYqeOmvgyea2BMo6zwPZAjTCuoUu6drdD1XEn1AXOdV1ZfPxhiDrSrHqX\ns9IpcmUjHB5maCOinpDVJVPUh7bV28kjYuXxw+RKgztsd+IcqMhSOTBVenAevQV9P17frGz/Sq1p\nVbrra5+uewLNXKXHDNtyWTKL2oE1WlRGePCpbLJqrBZh1eC3yG1m451QpSBQFZdwiYCWuhQIUQrx\nha6Bu06Cz+oFFTy8h+Ic+VtpNOXYpd1IBxrPjnddooREJSjlp7JxpOdMm0x6VmWpeXXiOD35jqqy\nKI5kFYm9d9/fgOvcKJKfSyJVl6XvYYfYJeQZnCsUxy/jED3uS1IvmuRko/+/vWuNkas8z8/Mmfvs\nrPfiXVMbbBI3wS0xGERUDM4FsxhTBD9wHLvuEiEliki4WE2QY9AqjooaY3CiRA6qE0KkypuUGBMl\njkIwtZAl/3Co0FZOCLKIwW3B9/Wu9zI79/n643ve7/h8M7O7ztqeTfU9f2bP7Lm858zlPPO87/u8\nU8QFOCbq4ODgMCM0lYnG6ZcZF7dxi3lOxTjDFvMURmkzTS9q9b5b2qZZNveUIOOMJ3T3g2TDE6xT\nnDOH9ZycVS2elTKRUeS3iay+O3bP025NJ0+/BwCIxfR+Uxn9WKan5URWs5/W1laGpeMqsVe+WiVj\njQRfvpq7uWEpGkISytRCI2QtCclIk0lL55E44HuGvMj5kQ1U5PUg8+R1LrGaIFwtAoj7wps45ZSD\nvqFmNrs48zODnoqwfrVFWCD1PbKjLOtcc+ycGs8VMFZgnaO4BnmiwUnWVebE+xypjBQUNVDpAS+X\n9GtbiepfC7GwuDLxPRYVjVQYXtD3U56X2l6pGzWuR6YjSRhW8NeEPfVBsd5VXsNIxGZwvLZVTn6t\nBpmaZO3FsV+gzK+RYO+9XT8Jw4SDNcN+B1Vgc/+9J3F49gqyffA8pstMa3r5maVvS4ur04c8mmii\n4HnK689lqWSR9y5/hdkuT5PBMVEHBweHGaCpTDTqyVyTYG96DdO0tU7TMVM/q24cc2xtM2QzzeBy\nwmKasryInUidc9uDj536UVlTS0V3EfIh4QwNab/QYkEzyhQZLNuPMZrVd8FMWyfDZVdMhbVsvJ3m\n2KkTYd2myRDzbCRrL9nvkPTQi+AlApfcnv3bst6eO8qxJjIRFc0y2A1T5F17mLPUZYZTqcTOpSoA\nxBEqanZQFmmVdadmf7xukaTUj1Jz5dGqYTl/vd4EdzTOutORCb3/iaKvhQp/kE4jeMxye5rdx+HX\n2CovjTC1sSiZmipQr6fTVVx+vFAfl9dc6i5FnzXJf2GM4BSBssyfL6EeREusmJ58aqdS2RAO1nl6\nlpuTMFl5LatV0WJFw+VrW2UXnfHpDGp/tiYoHVf+8YR5WtlzOb75bPFp+8eRJZJOJTnaDNVmqqY2\nmtUCc9KcJ39ce+4Wc1rrTCT1HHlfG5Veer2dXS/qmKiDg4PDFUJzXZxYNxmJWbO3zV2fd5lIkGma\nrPq0GafcRck4LaYpjzJ1Uxjm3Ln67nXbilu4ff06Vt+NmyyIelt+QpyC2AmUkvPVmeIy5/WUqOkt\n/thSvT1nZhcZ72hW3+WHOZ8+R1bi8Ti5PO/KzLSKa5I44xjeLU49QoYqYunDefHUu/L0D23hdaka\ndsXXRzqL+A9xNErHybpYcwlxoJcuoWg7l6VXnrWR5Jz5gtRq0guTbGmIblNSHypu72W+P8rGXcvv\nTRf+EOMsJeUN8yLwec/vWIp6cZSi+ppXeA1jcWa/keEjYyWjUzJ3vSI6brAyQy6asnrDjQuUdAqV\n7ZlIDNPyrhV/Tc90Isl7UKYLyLVkp1SETmIyDdRopODzfE1Eg7XrU20n/fpEE0b8lJ87phXKqoOV\n95Alnk6VpW9UL2qvZ3rzrQ4mcXWKJ/mr0eqlL1eCTHTCfGY1HBN1cHBwuMxobp2oZDrjQaYZsTTO\nmqmgUzFO3rWl+6Amq96mfTttjbO9fQ4PE2Scxq/SumvK/8v0Uiyzo8er6vXzeV03mctpR6Dx8f8G\nAHR1aYZ7dlz/P5pcwP0xQyjshJqf6QSSmz21ZNNDUhJ9iFchLNltvUGK12swp9mYKuvrEGGXSYwd\nV1XupyKzjVhzKd0v6aS4J4krO9mMsB/SFY8O+ZK197tXRK+jPsl3n7yM5rzJ6mIhHd/IBLevSjzc\ngJ1MY/kctwubuk3pTAmLxkm2rzglEpCOJQ8RLwlVYa1vWJ+j3yEkTCr4q8evyeV7QhifxajMEE/j\n6xnUPm2mI/kBqR2O0sHLvAf9nxV6v8LCjesQ9XipEJF4LObn9/iLw399cdJkt+36TBWqu76vZAev\n3wVUdNLjCRoxU/v5Rll6w0Tp6tR+lXZaEybqWR1gooEK5PrYFTD14Jiog4ODwwzQVCaabNF6k9RJ\n1jLNyRlnWBhng6x6G5nlXCubPqetldvX79m3l+27kV1D53eD0OWbTkKD53SGcG6H3t+psycBANER\nrbd1dOhZSek5Ohsv/dgxMsgS91+gVihTNBW1TC8q/dXBrhTFjqeWVs5SJ0tK8LwKSh8/zjrRNOt0\nI0oykmQzkglmmUE6Idlz/XguJzWV+rqMjbLrQy6UVCkwuy4Z5nA8yOjFhV1qKash6XfX1z9fkrpU\nvVvRYBWrB4rCqhD2Kzq4cpmdSSGeWzJG1pwRBhhFzmsFyqJVlnhsVkBEpDeeOq70hldsJmYxLnkg\nMbOz8352WepN5b0WrLuUXnvJhsu1Fy9W6dkXYmxmOgk/8kszuF6w08rWKv0x8rY2KdqqHEj+Ewo+\nhoLn729vrW1dvqnqQxtl6e1eet/VSX8GRBOVXz+iIYdMlp55DKuXXl6nS8ZE3333XfT09KC/vz/w\n/MGDB3HdddeZ5b1792LNmjVYu3YtXn755ens2sHBweEvGlN+zU5MTODpp5/G8uXLA88XCgX86Ec/\nQldXl1nv+eefx549exCNRvG5z30Od911F9ra2hru22M2FxG5fQaZpnzHe9QAGzFO0TI7mU0XjbO1\nVddhNvItbcRABXKXK5u7fn19yIDkJjuuGVmKrkNVaI0wkxE3be0rmhvTml88ea1en3WjEfpmFseF\nYUlHj0aIfcIVapaqwjpM/j/KLpl8nv+n1liiHChsha34mNuhj9ea0ddtJCt93ewvFh9Sdl6NTOj/\nD1PTzdEuvCzek6xfDbEKocpH+YUhfevSVVQpkh16+vUMR8gwmeUXplkuivUQXyduV5JZ8lVlsq5y\nrFJEb1NI6HNsH9PHyHRJ73wCCxfMA47TvUfmVnk5Lgd73s1rb7q1+N7xW4u4XnBWUtnKwpvsuoTr\nBR3oJbstWXTJsovPZ8VonNyeurNowZ6V3fez1+HAsplDPwWfqtVGp9JEZcOgJmt3NNn4c7P0/meZ\nXXgx/bqn47r7b4KMNNP+UYYl2igrQRRdoMhEs9lsg/OrxZRMNBaL4YUXXjBD2AQ7d+7Ehg0bjCB7\n+PBhLF26FJlMBolEAjfffDMGBgamHYiDg4PDXyKmZKKRSKRGFzh27BiOHDmCjRs34rnnngMADA4O\noqOjw6zT0dGBs2fPTr5zamUIUbtjNl6Ypsmq08+zo8PqGOJjS4tmOo0YZyMGKrA1Tptp2hnUGqcX\nM99GnucsoYq+m53+UPuGFif08lVd2s3p3KB2mklkuD6ZVZ7Z/lxOHzeZ0gw1zv0WRQOVXvZqjudF\nr8SC1jzP5aSzSbLqzPiS2SdTelmmeUY8zhkK6+0VO6Wy1B7PDuu7+jjjHCMjLIakc0xeT8kw08XJ\nzBDndeX2Ug0gnp9mNDvpVrGYDyybjLB5OSTr7zN10UKNw7t06og9Jn0nFa8t2oHc8P8gKdl8suiw\n57s86SNZ2WnLH1Ng6iyrooFKz7s4Y0nM8t4U57LgOV145AuPK9M1len5lqw/AuvJxFS/o4iarsVI\nTWeSqT5AYDv/sxDUUA1TNPWgtiYq12Vy5mjXi07VMy+Y0tWpQZY+w0m60rlk/EW5XyGF58/rz2ij\nWU8X4s9KLG3duhV9fX2TrjOdi7H1uW0AgF0v7fpzwrhiuGNlT7NDmBT/uHLJJd3fwvgl3R16Fttv\ns2jd9Xwkp/j/pcXVV10L4GEuPTzJmhePmV7K1PWvBZbTM9yf2e8l2k/yb1+9RHu6tJDzu2n1v132\nY130l+jp06fx/vvv44knngAAnDlzBr29vXjssccwODho1jtz5gyWLVs26b7+5Z+fwb++8Dz+6XG9\nL2GgNtOc26kZbipNzazBjKWppobazNG+y9TTYVbeeRf2/8e+wPrK3PbFPZ2aHDOwoyM6M1gM6brM\ndw6/q/+f13fDG6/X972J6rUAgAWL7wMAtP2VnjMvLkoyUXJ8gh1Leep7Vf+4/3Dn9fj3ff+l15cZ\nUGSsIjF7Uda/0h80SpZ1dadm+As79VsuwnrQ82Rp59nLPzbG3nTOK/Li7LgSlsfjxNkl45cKeuhZ\n0oJ974wGrluYOl+oGswsSz2qZNSzxm2cM67EEV90PC9Ys3jhqycMT7K2VWa926hFdqf149VXzcHQ\nmWOIFX4LAEh7/8kd5BCAcZpXgUfRKMNiOCAVG2SgOfb1V6wscs3UBtOB5NeXJv/mt8i9c4+cEQAg\nTx28ItnlSJDFe3R3kqoCqeGF+bVFlk/H/WKB0xJYj+qLu7JZ8DPid055aFn6W+Te+XtuJ+tZDFVc\no0JSz8mz8ayef3O84K88wVTZefu7oFhUaL3hNRw7uBYA8Kcz1wMAPrpsnY6fN3KPP1GydEiT1/Xc\nOe0rK8z07269DY1w0V+i8+bNw/79+83yypUr0d/fj3w+j76+PoyOjsLzPAwMDOCpp5662N07ODg4\n/EVhyi/Rt99+G9u2bcPx48cRiUSwb98+7Nixoybrnkgk8PWvfx1f/OIXEQqF8MgjjyCTyUy67499\nXDOvZTfpnnFhnklqoBfLOBtpmVMxTrtf2Gac1RKt5IU5KdkvaxEr8qjXP3lS38UiSb1diZMm09Sv\nCnl9fqkOzejEhej8B5rJx1o084rHJQ7NwPN56VzS+5WihnJBOqUk9cu7bFwzUBURtyfqRfz/REnf\nZU8N83qUOOGSHUODozquApltuSyTAUSP09tLXas40YteWC6VALQAdK0SVuTRzzTGLLxnJFMyW7Kh\neISZcuO4IwyUG4iuRw0ZStVWWogPJudHyUCnapIVCAA8rxPRKOdoKVHHrMJGz35a/xFVwfeeVHIU\n6T+gLKbUUKe3tMNQqL4cFjbTKIPvWVM9UA1+BhC290t/BeP8FaxbtbVKG/IrQDTURj3xjbZv5Oo0\nTSm0Bo38SGX6QSbFz25Jf7byWf3ZTKV1otzWRkuWq5O8jpNhyi/RT3ziE9i1q7Fm+cYbb5i/V69e\njdWrV095UAcHB4f/L2hqx9Kym7VOsXCR9I43l3HKPHOfcVLrLGomVTa1esHMq7gP5cgI43M4c+iE\nvvsNDbNKoZX1jiHdoeSJXuRJPalmQxPslY9Rp4nTcch0W5SCbMCLaqYqnUvCCaoSv2Lftcxa4mUa\nytIRflQz5UhVVw9EosIy9IpJehBUqU2Ww3rZuLfTuxJlHa9olzHqkDSmNyxNmGiSDDaT1r9YCqy9\nLHB/MmVVmGeobMaGyhnqOKUpJxw2kz+VmduktxUGV8jra3UurV+ThWjH+XwEXawQUdJdBYuBqOC1\nNRGoYA+8MBdxB5qqDrNRAtYQO0PwpMOJfg1lec/L86ELV6uTpZf9Bj9Lsj/T+SNCesMsvXTF1Q37\ngg2vjKuTrY36c+kbZOlZL5pMdzEsXj/LDUu00OnUi7reeQcHB4cZoLnO9tFo4LHRXagRgxQ0Ypz2\ndmZyopVVl+WqpW0KuxijZpkn05ROIGGexhXczHNhz3tFM7whDkMfGdHLmXmaiV7TeRXPl51MJpNJ\n7ZS+mcXyGE9MMzSZ0lnm+RXZvC7uV3L3lUd5laWutESN00y+FHck6oEx3p1bUuzuaSVTrOodjYxL\nhxB3zyx5irJjnKwozs6ruS2sxWNmWWo3Y9SdIjG93tgY46IGWpVZ7whqoJDqA+PYpJ+OptIoSleT\nEB8RjslMIlHW4pb8MqtiaASeMKKifr4q2fKI2DBZjIiPwkSNG3+jbrYpGJXtjlSriQaZqE9Qg8zO\nPlxDxhcOaqOlknjP1hiG1o2joatTTdz1XZ2mq8EKpltHau/X7qU/yXpRNV9XDvnz6OWrUL9HhYna\nFT714Jiog4ODwwzQXGd7a07MTBmn3zkknTzCPIOM0/hhWsxTnFuEYYrWefKM1s9qGKeJRPqoxf1I\n/+dPHxwFAIyNU9Oky/oHJ/Rx2xfo+tc0O4MUHebFUcgfCBl0qhfNVrLjnqnx09ul0oxD6i4t1/IK\nO4GqZMplMruYsDXWk8aofSapyZYK2hMgP8Y46X/a0kZ/U2rHmXbdYZWi61OKpC/M84qyMy3Nul9F\nzTOZ1I+jPM9SRTTcYH+6dDCJW0BS9h+NmGvmv4f0splpH9avcaIwF4KwiiEap/5ashhPg/eiwDAf\nafix9HzbX7SR74KdZRc0yl6HjZapAo9GG5VxBDKHPhRkuGFLExUGf/GuTly2NNRabdRiuA2y9P7y\n5Mxzuq5OtiZ69IRmopWy/gyEI+lAuKIJV/hdIVn6yeCYqIODg8MM0FQmKszPnoB48YyTXoG+4SQA\nv0vEZpwypdLWNkXz9CvdWPtn0r9y1wt2ncjzuZy+u+Xy+rGc1wwuV5JsPzN+dG86f55Z+FarW0Wy\n6tYkxzK1zxjvsqKBxmIye0o/35IWd3a9v9EJHc8YH2WEZMRop8L06GhDZnx+UK8/McTax8g442PP\nPQlwksdP0QUqnWb/Oa9/lFn6GF214mR9pq9dBc+7YmY5BX+ZeBZdSfJ8OzN6f2OVCio+CPnTAAAK\nvElEQVTlYLbVk1n23Ma4CYVMtzSGCylcndC6r8xeMr3x1fpMSGCYUM1kWmGiXLFqa4MInJu/bO1X\nmKC/ht4LGaRUithMtmprpSY9j7rxTuXqVJOlt7TN2roFeVoYvYQv3WXW8w200Uvl6hSL6vdWayrY\nSz9n7scYVrBe1DFRBwcHhyuEpjLRRln0WsYp2fRgx5BhnGSYkiGVu3OBOk/eYpqiddqM09zrbMZJ\nDU/+L0zTZp55qXNkXWb8Kt2JlQ6fAQAM/+97jFPvqbNDZmHLnHpxDefd17gZUYMUjdfMgZe7Oadq\nip9nUT8KQ43JdsL4RVONCAPmfCFmKKVzKEdmOF7m8TmFNMqZWC2cEJBpY4cVPTEjMWqxE7pnPmKy\n9WSoZC1hw4449bQkPqZBJhqiZivTRWPcPp3U8ZToIpUvFY1+Ko7x4hQv1k+GWIYv4HahKkZK+hw6\nw5085mBgu6lm/tiaaM1csAZZbRsNZxjZ9aLG8qp84dM+82zk6oRgPL42GuyEsl2dauOUzyj3U5Ol\nt5nlVK5Owf1falcnO0s/ynrR1rl/rde36kUlXHv2Uj04Jurg4OAwAzSViUoHi9FEaxhnsIPIME2L\neUpm0dY2C8VpMk7j6ShzdvQaE2SYg8PajUmYZ4FsJ0/GWVCcE6+C83jAu1jbPN2RNXRS+4e2dOhu\niZLxdCQzNAlgaoQlqQulw7zMRJJedcUOKWbv21s1M5S6yYkR7YlYzEn9p45X3J6EEXphq0pC/EqF\nqUaoEwoj52OuqNcbGdc6UwKc3URmqqR+VRyGbP1K6lYlC897eqUSpFUh6WfnciJBLwDGMUG/03K1\njGg06PRVrfqvvj5H/toJ+/whHFIYL+tfBW0x3VMdrb7PrfKYDI00Uduv0yeA8qurfs+3rTE2KlM0\nx+EKFUsDle0MUwwHjyPXwY7XfBatZHpDbRLB49aJlA9CjeUrx4rXYsh2h1Wj6zR9dye93Nai36sn\nmaWX41VNvai4XzGA8NQ80zFRBwcHhxmgqUxUcehPmD3XUzFOYZbCNHPMrku2/WIZp9y9J2xtk3PM\n8+zQOamT0igoncEtmf5sS+eCVQ1AzTaT5gyoaz4OAOhYcK3+PzVI41bOPu+ozBSne1SEmmCS00Db\nWRgps5gynL8eZd1kLqsDHqETfZFVARF2IImvqDGKlwyw3OWt62ZuyrI+3zY5/gKoFLT2OZcenblx\n6Y3X64vHpcyKMvN5eCBTNSH1umTeMkopwgBK9BIQx/sc3w8hcWaKhA3jCVnHsDtjKuoCJhquYqys\nKwuqCRmDE5WLErgGNQWOCO6/Yb2oNaPJlzjrZ539p4PM0X/eytJP6eokJ2vXoQbrRQ2DlR70KTqK\n7CmgyqpOqNVE5WkrS2/ikf3WPdy0Yc+j96jXpxPsmqvy1+WYnsibzsxnWKKNsmuuGqwcqgfHRB0c\nHBxmgJCabvrLwcHBwaEGjok6ODg4zADuS9TBwcFhBnBfog4ODg4zgPsSdXBwcJgB3Jeog4ODwwzg\nvkQdHBwcZoCmfol++9vfxrp167B+/Xr8/ve/b2YoBs8++yzWrVuHNWvW4PXXX8fJkyfx4IMPYsOG\nDdi4ceO0RqheTuTzefT09OAXv/jFrIsNAPbu3Yv7778fDzzwAA4cODBrYsxms3j00Ufx4IMPYv36\n9Th48CCOHDmC9evXY/369diyZUtT4gKAd999Fz09Pejv7weAhtds7969WLNmDdauXYuXX365qfE9\n9NBD6O3txUMPPYSzZ882LT47NsHBgwdx3XXXmeXLGptqEt5880315S9/WSml1NGjR9XnP//5ZoVi\ncOjQIfWlL31JKaXU0NCQ+sxnPqM2b96sXn31VaWUUt/5znfUT3/602aGqL773e+qBx54QL3yyiuz\nLrahoSG1atUqNTY2pk6fPq36+vpmTYy7du1S27dvV0opderUKXX33Xer3t5edfjwYaWUUl/72tfU\ngQMHrnhc2WxW9fb2qr6+PrVr1y6llKp7zbLZrFq1apUaHR1VuVxO3XvvvWp4eLgp8W3atEn95je/\nUUop1d/fr7Zt29aU+OrFppRS+Xxe9fb2qttvv92sdzljaxoTPXToEHp6egAAixcvxsjICMbHx5sV\nDgDgk5/8JL7//e8DAFpbW5HL5fDmm2/izjvvBADccccdOHToUNPie++993D06FF89rOfBYBZFRug\nX9Ply5ejpaUF3d3dePrpp2dNjO3t7Th/XhuyjI6Ooq2tDcePH8cNN9zQ1NhisRheeOEFdHd3m+fq\nXbPDhw9j6dKlyGQySCQSuPnmmzEwMNCU+LZs2YK7774bgH9dmxFfvdgAYOfOndiwYYOxsbvcsTXt\nS3RwcBDt7e1muaOjw/wsaBY8z0MqpR2I9uzZg09/+tPI5XLmxejs7GxqjNu2bcPmzZvN8myKDQA+\n/PBD5PN5PPzww9iwYQMOHTo0a2K89957ceLECdx1113o7e3Fpk2b0ErXq2bGFolEkEgkAs/Vu2aD\ng4PooP8scOU+L/XiS6VS8DwPlUoFP/vZz3Dfffc1Jb56sR07dgxHjhzBPffcY5673LE11YDkQqhZ\n1H26f/9+7NmzBz/5yU+watUq83wzY/zlL3+JZcuW4Zprrqn7/9ly/c6fP48f/OAHOHHiBL7whS8E\n4mpmjL/61a8wf/58vPjiizhy5AgeeeQRZDKZWRHbZGgUV7PjrVQq2LRpE2699VYsX74cv/71rwP/\nb1Z8W7duRV9f36TrXOrYmvYl2t3djcHBQbN85swZdHV1NSscg4MHD2Lnzp348Y9/jEwmg1QqhXw+\nj0QigdOnT9f8dLhSOHDgAD744AMcOHAAp06dQiwWmzWxCTo7O3HTTTchEolg4cKFSKfT8DxvVsQ4\nMDCAFStWAACWLFmCQqFg/GwBzIrrJ6j3utb7vCxbtqxpMT755JNYtGgRHn30UQD1P89XOr7Tp0/j\n/fffxxNPPGFi6O3txWOPPXZZY2vaz/nbb78d+/btAwD88Y9/RHd3N1paWpoVDgBgbGwMzz77LH74\nwx+ira0NAHDbbbeZOF9//XV86lOfakps3/ve9/DKK69g9+7dWLt2Lb761a/OmtgEK1aswO9+9ztU\nq1UMDw9jYmJi1sS4aNEiHD58GABw/PhxpNNpLF68GG+99VbTY7NR75rdeOON+MMf/oDR0VFks1kM\nDAzglltuaUp8e/fuRTQaxeOPP26emw3xzZs3D/v378fu3buxe/dudHd3o7+//7LH1lQXp+3bt+Ot\nt95CKBTCli1bsGTJkmaFAgD4+c9/jh07duAjH/mIee6ZZ55BX18fCoUC5s+fj61btyJKZ/hmYceO\nHViwYAFWrFiBb3zjG7Mqtpdeegl79uwBAHzlK1/B0qVLZ0WM2WwWTz31FM6dO4dyuYyNGzeiq6sL\n3/zmN1GtVnHjjTfiySefvOJxvf3229i2bRuOHz+OSCSCefPmYfv27di8eXPNNXvttdfw4osvIhQK\nobe3F/fff39T4jt37hzi8bghPYsXL8a3vvWtKx5fvdh27NhhCNDKlSvxxhtvAMBljc1Z4Tk4ODjM\nAK5jycHBwWEGcF+iDg4ODjOA+xJ1cHBwmAHcl6iDg4PDDOC+RB0cHBxmAPcl6uDg4DADuC9RBwcH\nhxnAfYk6ODg4zAD/B+r260+eqJJAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWmUZFd1Jrpjzsg5K6uyRpWGEpIs\nCTEZjAABQtg8+dkg9+qH5MLgfnZ7QpYnvNBaemBjux/LQBuDgQbcYLrb3Vhqy0bG2K+l57WMje1C\nmEkGgeZSqcasqpwzMuaI92N/37lxdsTJiMoskSW/s3/Urbhx77nnnnszzne+vfe3U+12uy3RokWL\nFm1Dlt7qDkSLFi3ac9nij2i0aNGibcLij2i0aNGibcLij2i0aNGibcLij2i0aNGibcLij2i0aNGi\nbcKy57vB9773vfLQQw9JKpWSu+66S6677rrzfYlo0aJFu2DsvP6IfuUrX5EjR47IPffcI08++aTc\nddddcs8995zPS0SLFi3aBWXndTl/6NAhef3rXy8iIgcOHJClpSVZXV09n5eIFi1atAvKzisSPXv2\nrFxzzTXu87Zt2+TMmTMyOjra8/grrrpSvvD5v5QfeeOPiogIk6fs1prdP2jSVSqVOqfjUqmU/PUX\n/sr1j2en8b+U9G6v8/xe+0fGRr1tC/2vNRr6udnwrpPL5UREJJ/P6/5MxrX5iY/9J/mF29+u+9M6\nJ2azWe88fs7gPH7m8dy2Wi0RScazUCh47TSbTe97nkfj/gzaz+Zycuev/7q8933v867LbbE4jPb1\nvjjh8jq8PvvNflSrVRERGR4e9q+bybh3jffCY+29095y261y95/eK0NDQyIiUqvVtO3iWM/j7Rjz\nOna/HTs+e3sv3G/f+WazKS998XXyz1//F+/6HJt6ve5dn/3OdLwbncbr8Dz2t9nSz41G3Tu+sx+d\nn3m9RqMht/zoj8jnPv+X3v028A6zP/Yd4Z9EE+8427PjzHb4PfvB58n9nf3p3KZSKfn5n/kZ+cNP\nfxr913bL5YqIJOPEds+ePSMiInNnTul2bs4br3/80j9JyFLnM+3z3e9+t7zmNa9xaPTHf/zH5b3v\nfa9ceumlPY9/7LHH5Iorrjhfl48WLVq077mdVyQ6MzMjZ8+edZ9Pnz4tO3bsCB7/o296ozz63Ufk\niquu7Pn9oMg0dPygth5CfeqJJ+Wyyw+ISDKr8vh0ykek6T7IlDY1vU1ERIojiqTqmA1rQAOtWt07\nj7M0kWgn2njgf90v/9sP3+wdZ5Eo+83zLRINjZtFwHb2t+cn5xXc///gQ78vv/Srv6rHZ/R4opZs\nNofz9ViiF4t02Q/edyfy7DyuUCg4dEqEwS2P5ZZje8cv/Lx84lOf7mhb+zJUGO55vL2mRVIWiVqE\nZZ9N6B1vtVry2hteLl/80pe984mMuOXxHDvbrkW6PI/9qDcUmXUiuM7juZ/WiYR/+iffJn/03/5Y\nRERGRkZERGRlZcU73z4z/inU6z5StcjQ9qdSqXjfc8vxt+MhIvIbd/1f8n+/73cxPkTc/vtQKpVE\nRGR+7rSIiJw5PSsiIsvLy9511kOi55UTfeUrXyn333+/iIg8/PDDMjMzE1zKR4sWLdq/BjuvSPTF\nL36xXHPNNXLbbbdJKpWS3/zN31z3+BB3GDqOZvmZUHuDcqd2f6g/9notIlKikpSPSF0raD6b8xGg\n2Psy7Vt0wtnZIjXbL2sp00/7mbO45T7t+XZciVDJUzm0gTt3KKbl30+6gOsCHXAcLKqzfJzlAWmd\nKNMiNYsk7T3xGHftTH7d4+0Y2P12jGmWfw5Z6B21qwC7f9B2k/73bs+2228/xze0SunRk579sf20\nZt+FXsi9V3vJO+4jW26J4Gt4hy3iHcTOe5zor//6r5/vJqNFixbtgrXz/iN6LhZCov1mKctPhWan\nEJrYqPc/1B/OWvzeItQUZt88+bSsj45aQAVt4x0fFGnafoQ8wiE0FfqeZmflkHefw2Y9qyF+rNWE\npziD9nBZ65ElqrT8Jo38Y71ed98RHVtukn3jfvaf+zP5bM8xoKUMarbI03Km9ryNItHQO9uPnw4d\n12r5q5p+fxv2WVq+ns+IFho/+7fS77qWkw31yxrbte8u7z+JItD3pFr1ueFzsZj2GS1atGibsC1F\norRB4zcHbaefV3/QWdBaP+40xNO42V/8+EvGezboaWysP0uH+hHi20J8nUOemEPbQqQ42Jxq0VjC\nixFh9kbuDi1Z9NBu9dw6ZGrQhOVkac1m03FaNOu1tZEOIoo+UikfUYa21kJc6KCc6qDvnuUc7Ttm\nUX7ofBff2vY5xn7cZIh75HU57mHuWHqeb98l258QN7lZLpQrlXqt4n22yLbfykEkItFo0aJF25Rt\nKRK1/FE/PmhQ7pTWDymGPKyDxpkO6tWndXGJ5JWAgpp9UMqgqCiEVPk9OVNp47rkqRjvStTQ9rnJ\nEHfq+MY6ZvG0jw7s82W7tt9dKAXft1pA6ritlPi8ZafnNnRNyxuXy2V3/UajIZm0jgm9tTQba2uf\nhV0FfK+50EG520G98oP6Cez9cFwH9cpbXjuERAflRENIlHGhtH5e+VDEz3oWkWi0aNGibcK2FImm\n0+ujhvOVkdoPcfbz6vfL7LHXsdaZUdNpbtbrw2P149dC+y06SpC/z4l2z7ZAMQ3cL1EEoGAq64+f\nyzxq+ZwuzY2fMN7Vz8iyUQj2fMsHZvDeNGr07vM+0l1tWGTR6xml0+muaxIBEYnanHOi79BY23vv\nh2g2Gx/a7/wkEqQ3FxqKvQ5d/1y98iEuNPQ3ZbnQkL/BWrI66R3pwnatV75XxlPneetZRKLRokWL\ntgnb4jhR3fLHvt1OeVvaoNkJ/TjScD96I59Bvfr2+v3MxSQCGdpZ0Hpa+3ndQ1k51tz36KbNoLKK\nOPaz4yjhfSd3ytsOoa7kM84LcOH9xs+Nu4sCIJerlsllOvqIdyTt86a9xqrVajuEls36Y2vz+UM5\n+P3ufaOrrdC7yP02Vz50fpIr79/PRr3ybI/j088rT2Q4qFc+xIWGYrNpIa8895MLr1XX98oPymWL\nRCQaLVq0aJuyCyJOlMZJJWUQTjK7bSy+01q/WTjEa51rRhTNqhBZbUTr2QzluNvPocyh/pyvr45k\nc9Ut32eVdWhth2g5bv5z6kIX0JCUlN9fqwlAC8a5pv3X1vF2zaZkBEgxB7Qb8AJ3Io9GvSm5nI+O\nbU645ehsbr49LpS5ZG1Qr3w/BEYLe+U3xuf3i/QY1Csf0g0N/U2FOFHaoPGhNLuyqNfW98rb92A9\ni0g0WrRo0TZhF1TufDcSsccLjuuNeAb1tp+vfvbLiLJeec7CFlX0ux6tH1INRSGEEJ3VvuyXBWP5\nQaKxVEU/F4tFtAt0Bh6MRGU+7yvT0/p5Ri33S36tO3e/nSAK3oNB2b0yexrNpmSzjDTwM5rW1ta8\n4+0YWa89UbXVfg090++1V76fP8F+Pt9e+X7tD6rWZG3QzKdBvfKRE40WLVq075FdYJxo79kshFBD\nyNSeNygfdL4zojiLEaERlRDRhTyvoetYz6itnRRCPY6fS2UGaofWr7+2To71GCeIt3ccqO2HRQWW\n/3PPQ3pHI7TbbYd611M8F/H53Ua9Kg3XR79W0CB6pL36bDnSfquDEBI8f155fxwGjQ+1x3M86OXe\nqFf+XLnQfpE5/bhQrn6YoWT9Efb4QSNeRCISjRYtWrRN2QWFREPWj78Z1Ku/0YyoQbNNQgiLqMFm\nv9jzQ7Ot5b8sp2nPC0cTGBUn00/WJ7L7yQvaGL5cnnyjH5NnkXGoWmioUqZFJQ4VESyleo9XOp0W\n90QNMrQo20MgqSQ/v1LVex1K6eohj3pRHDv7rG2EhL0HG3NrvfYhZfiQWtOgXnk3DC5nfWO58vad\nY39tDaSQ2fselLsM9S8UnZCMt/89+5145ZUL7ZcrP2glApGIRKNFixZtU/acQKLW+nGng3r17Xmh\n2bGb7xnM229RCs1mKoUypux1Q7PiRnk1tsdKjfQoswY7iwyy/fn5eRFJ+CSk4Eu9rt/bOvGWa7X9\nJJqx2S80m+9Mlahk5dH9HBOU3LtWUq/MolarFaxfRSQaihQI3Vsog8lGNvC6tt6VRbAbVbCnnsGg\ncaChdyb0jMJe+fW1cfvl6A/qle++rlXwb6HfVbP1I01o3ToTEYlGixYt2rNqW4pEzzXTqJ9tljtN\npXrXbDrXOFPrQbXqTbTQbBdSIgrxZCGPa9Jeb3RhkSf7yc+crcfHx0Uk8ci2hf1peu1YBGo54VD9\nmlDt8a4aU3wMgceRTqcllfW5z9CqolPZvt1ud2Vr0ejtzWR8VO2qExjEaZFQSPE+xGeH6qoPamzP\ncZdNv0JqvwymEAfL/loFe3veRr3yg/oJrA2aoTSobuigqlteHwY+Mlq0aNGiddkFkbEUyhY4X+3T\nNpoR1U+Bx17H5qRbZBfK0x00R582aBVQW/PI8nnkPm22Dr31RF1LS0sikiDSNLzkmayPQC364Hj0\n0wsNxbd2e3SJTDFO4pYUXW1bVNwrWyydTnd7zdP+vdjVgI0j5TZvuNhQdpl91tbrbDOr+sWXdiPL\n9RFcP7485JW3PH549XN+vfL94kOr1d5qUtYr30+1yb4HMU40WrRo0Z5l22Jl+96xciGudLMIdaMZ\nUVadyJ5ntzYnnRZSvAnF5J0rT9MPudpYRo43kTLPm5ubExGR/fv3i0jyfKampkREZHV1VUREymWq\nvzPjiN52nwMlErUe0ZBaVkjVqruGeMrbKlfLd8rnYy1f2zlGmUymO3LAcaQ+orPxkSFkFPKi9+O5\n+70bobpkltNttnzvvrVBvfIWgdr76G63N8ILXbefV37QVZnVU6BZr3zkRKNFixbtArMLyjvfbxbe\nau60X0aU5QAtP9YPlfRTS7copB/fZmup29mX/SOKIXLeuXOniHTrjPJ43l/V5CE7JSMi0pzvKed5\njlMNZGLZOFIb5dClpu5qOHUiIY5pb0ToKp7i/8nYA/U2kHuf7l0PKlRjySIry8XS7DPpp+QeiuCg\nESkmKL53VlhotdfPKz+ogj0zhkJRC7b9ftU8Q0pniWrW+anmGeJCIycaLVq0aM+ybSkS3ajSTb/c\n9/PNnYZm3cQsyvEzlaziTkgz0V7PohyLVK1n2CLRTNrfbxEv+0EUY+NEbb+pRsUtz3Pxo8zGgWIQ\nvechNBFStA9lAYVQHbOTWh37k1x53ZfEsnZnkWUymQ7OlJVL/Yfcr9aSzb6y+7tiXmEW2dqMJZp9\n5jwupFLVavdGflZLoEufIKANQB68H0I7X175fpoBiVe+2rNfDokO6JUPre4GsYhEo0WLFm0TdkF4\n5/tlM4S2tAuFO824+uf6uQUPab1eXbefIcRpP4e2YZ4O2wz7L95xRDEhvVCLIohUmcHE2Z0oJfGi\nE2HqeeSjLAdbKpVEJEG2ocwri8osCuGN5QuFYE2cVCqMNLLZbAfK7b0KSNrxuTzLOdp6VBbdh1B5\nKBstub7uTxBWzbtOgqT0aItQQ5lRdoz5PZ9VCBFbO1evfL9VWT+vvEWy9rkOWkspFJN8LrbhH9H3\nv//98rWvfU0ajYb83M/9nDz/+c+Xd77zndJsNmXHjh3ygQ98wEutixYtWrR/jbahH9Evf/nL8vjj\nj8s999wjCwsL8mM/9mNy/fXXy8GDB+Xmm2+WD37wg3LvvffKwYMH123HentDs1KIR9ood3q+kSnb\nt5k5tAR9+CpESb96Z+rYbJvQfYfQUpcCDThKamay5hH1Qu3zsJwo26XqEzOYeJ1KRblR6oxyHCwK\nsOjGZsFY9XSiCqI5q3va6kBTlj8NZYFZTrRrwiciJa9skCzHJsTtcT/vzUY62Hu153XpWaaAIBvM\nhff/VpLr+NyrRWp27BOVI1+diWMcil0O5cr3W13SBs1QsjZ4rryvG9pPwX4jXnnXp4GP7LCXvvSl\n8uEPf1hEdGlXLpflwQcflJtuuklERG688UY5dOjQRpqOFi1atOeUbQiJZjIZN1Pde++98upXv1r+\n4R/+wc3m09PTcubMmb7thPJz7Swa4otog3Knz1ZGlI2jtF5n66lN+CPev/ifzSzeD3mHsmRCCN2i\nj5WVFRFJ+LtQpUqnsYnvebxT7G/UvPHg8USUNIu+bHRAKFrDvg9ZqkOZFUznOYwjdEJQfZBjV4SD\nQyrkoYFwndK9f0/2HeIz5xiEkKdFbI6vruuY5nJEmBhbNNPEZ+oXsKqnfQdDq7tQxhDfDbs6tM+q\nbaIA7Ltqn1m/+NCQlgAtUao/v175jSBQ11Y79IsygP3N3/yNfPKTn5Q/+qM/kh/6oR9y6PPIkSNy\n5513yt13373u+U8++aQcOHBgo5ePFi1atC23DTuWvvSlL8knPvEJ+dSnPiVjY2MyPDwslUpFhoaG\nZHZ2VmZmZvq2cdvB2+SfH/xneekPfL+3P8SrbBaZWhuEO/3m1x+SF774BT3PDynEsx1+JmpfWFjw\n7sOhHqCanMm5Tzn+DciwR5bMPX9ytxz8ibd4+3l9W++eRtWm4aJuiSz37Nnj9Xd6etr7XDXZHydP\nnhQRkVOnTomIyGppWUR8jvOD//H35PY7flFERMbGxkQk4TbJxS4vL3vf2+fJ6xHxJuOs97tWBqdb\nyHfxupmMr6hlEeY7fvmX5CMf/4RrM6SFatF52mWD+bn6/GzjOG1GUch73qne9BM//m/lv9/9p2i3\n9zvaVdXTXM/y4vb61rtv+X1ar0iSn/2p/1M+9slPeMfZcWL7Fvnz2Yf+tm2GFI39Wlkped/z/qn7\nsDA3K//jjz8rN/3g60QkeYdo7J+NiQ7FiX7+vr+UkG2IE11ZWZH3v//98slPflImJydFROQVr3iF\n3H///SIi8sADD8gNN9ywkaajRYsW7TllG0Kif/3Xfy0LCwvyK7/yK27f7/7u78q73vUuueeee2TP\nnj1yyy239G2HHrYkNk/394vlsp7Ofsrvtp1z9er38+5b9EKzlQZDsXL0mtNc1kfKH5ds1teYDJnl\n3bpiGRs+GrE57YzbtBwojfGdVkMzU+ldCZLHEcnyeLu16IyI2caxOi3PNNASHnNlrZJ40VPEB/49\n9KomUK1Wu55dCLna/V0xurgeL28zlUJcJZFSt3+ASvc+orNxqP3e9VAGkH221osfjmvV/Xw2VhnM\nbmkb9cpbjtv21yFwExfaL/d+0FXrerahH9Fbb71Vbr311q79n/nMZzbSXLRo0aI9Z21LM5aIfLjt\njotcP9Ys5NUPZWVsNCMqFGsYqsAYmvWDaEF6Z004JJclemI7vA6RNznW3tVFu2P0etfz4ezN5xHS\nkLQ83PCIIlfGn3YrCvmozY6L5d9CMZYJf4bzAUGJnGu1mjRqQFBY5RSGChwEvRaQFzlQ/t8qyYfe\ntb5Zdmnm6rPPHCsiVr0uUbnlLru5waq3P/SuWRRvVwE20oMI1p7H69iIiu7Ilt7vcoiLpdlV2bnm\nytdqvZX1E6+8rywWijE/l2qe/SzmzkeLFi3aJuyCQKL01NnaRFYRJ5vtzfXRrKcuFHfab/brtw0p\n1XTHvfpoxHpgHaqR3rNuiE+zaCRBxOK1T7P9IpK1/JrlkSwXGfLgFot+tVCeZ9GMRb4TExPedS3a\nsfG3CWry76sTdbl7zTBOEepKLSCyFu6h5ddYste0GqmWU6WFIkgSxIrj8Gyop9AWXj8Us8zjW969\n98u9t9cPVTG17VTxDCpl5bsbRPvpEM/tx3taRMfr8XtubWaUfcdD1R9sppL9m+TzYnxov0ylQVWb\nBuFIIxKNFi1atE3YBaFsbz2B1uMZ2iaIrjcaCKkjnWtGVIinsZ/ZXrGocZVWAb6rEiRjDM39JvnS\nPvINItlU79m0K/8aFsoOIdqx3Cifj81xt/Go3Frleqs/SguhGI6XrVXl0JD0XiGk0+mOVUJvFO/0\nOMGdaXtJTC77nmTk+O8EY2bZDj/bZxTSC+B+G6dJrzOT2Zotf8zts7F6ExYphrRsrfe94hAo4jZb\n/t9Es4k683yXnA5pbyTqste67s//G7f94fH2b80iaprNfOLzpJK9zYiihRDoZvQ0IhKNFi1atE3Y\nliLRffv2iYi4gH3qUlptQxuLZrNJbAxfUldHsO3toQspzverQNit9ehb0i6vp7Pc+ITGPTJOk7Rc\nNqAP6qjSgCpTSPGeFupvKs376h3LZxXrqdZkPb0c52xOURurgRLd2Pxr62W3XDjPs9dJjoM2Qb03\nKsnn8wmX2O6df99xlvvfaqnkMle4tWNhvek2Q4irDPuMQrqfFt2HIiH6ebOdbqbxitvr2IqufLa8\nLzxKaZo4VocAuUrkKs/w41Yp3z77UBULi1S7VaLWjw9NlL7OrZrn+fDKu76ct5aiRYsW7f+HtqVI\ndNu2bSKSVJe0iJSZMTZu0Xr6Ql59y532y4gKeTD7aUHa+jzcJrMwt5gNMzzfR2YpgywbOK8LQ3Wp\nG5FH6q3iROvKmEKsX62us3ehQASt+4lSiAQZW0mOkx5nXsZW57Te/FCMZeh52fPard5cbudzyGR5\nDV/v00ZUSMfYNJtN965ZJSsaz7f1pCzfbd+JEE9vayWFeHrrlbftWa7QIjqOqeW33diRk6z5XGI/\nDd82r0vOl4ib/Lrphx0nG/lB43HMViOybDT88bFZcFY/tF98aD8u9FnXE40WLVq0aGpbikQ5SzpV\nIXg6rWoQkRARKrch5Zd+Xv1QRlTIqx9SMbeoolDw9USTWkM+f5XNMEOnt6ZisytutXf2TBdSM9EO\nFhFas0gwxfEAQm22wAci9m4I2T+ZDL3xPg/I50D+zfJP1tNq+T3bT8sTJu2Yfnc8B8Yv2j5Zb3u7\nA993evXtNfvFApfh1bYxsSF0Haq+aZGjzbjpqnWEoWpT3cnEm4Zio7sjT3rrj4a4SfvZZrtZjpOa\nr3QQhJCiHZek/heRuM/fJ1x1xduGEO65xoeei0UkGi1atGibsAsiTtTOGkQy5N6ITKk3ydnMIlPr\nqeSWKGDQjCjr1bf8E1ENzyNXSO+xnTWZZ0yutNXsnX+coBy/HwkrmvY+8/suvs+0F9IMsOjDeqYT\nTyv4siZUzdPgDTP5ntfnc2N7ofhc9sPGPlqPt0VBGYwD+c8MZd6l3RER4XNgbku1obaPRO3/bU45\nn7nzZjtOztep5LNpNvU6Kyt1byxCiMtWQrXcZFfuvIsg8TlIWjbjR6rw3SRidkiy0ZtzDcXw2tWL\nzUByo8B3zHC+DbN6FIPAaUk8Le/LX/XxOVQrftZjCFFvtJpnzFiKFi1atGfZLqi68zSLnKy6uEWo\n9OrTw2q9+5vNiGKuOfkZ9ovXZ3927VJl+MXFRfQD8ZVZH7HVAoo8KaOWHspASqV8RBri12ghjQAb\nl2r5LR5vs2NY1ZP152274cyy3qgmhFAt/5jEB4vXbqdnvF92l82753ch/tYar2URaILguPphzr2f\ntWa5TbvKCSlldWeZ+dwjb8xptIKvHkX23Ar+JugH4DvUrPd+BpYbDj0bG1NtVzn2XWyYaAMXBUGu\n0yDJSkXHzdbzcgpwayUc53OyG1Vp2ghHGpFotGjRom3CthSJ0kI56SFOz3KRFhGSO+VsFUKmIa++\n5U5LJV8nk9kT+XwB3+t1WHPIKtFnc7qtlJN87c77TO6/Oxe893HrjxMtNH4WkVvuMZRZxHFkNEUo\nvzykfNQvPteinVC0RGgl0alLapGQy/s3tZB4rL1n22ciySQiZH1vNt+1lKkKGsrQsWNixyDhQoFc\nifxwnh3zYsHPUBrG34bNvApl44X4884x62zHmuUmQ6ski4Dd32ZAySvJ5NL7KJVWvfuycaSDImda\nv8+9LCLRaNGiRduEXRDe+ZDZWdkeb5ENkRE9oUSoRE6craxXP6Ssw9ksQRXaDyLd0VHdbp/ZLSIi\nO2d2iYjIkaefEpEkE8h5kR0K6q1JSYQbivPsxx1bPs3lQaeN1z7VOyqCsziRpx1Py6UeP37cO85m\nz1gvPdsddLa3HlvL0XZ57TOZYFymyyASZo0lY5LP57uQkPVOd6sM9c4KsxES9C7b3G9bzTL0jPnO\nuntG5EcGCLcwpAjNcYZAbAWTyx+KU7X3FVrV0GwWX6hmVEh/wkbKhK5r63/R+Le6srzkfbbIvh+C\nDGU02fHp9xslEpFotGjRom3KLghO1P7aD5rP2o87tVyZzYiisnooI8pqSFKliPXYGRXQFnJ1igau\nuealIiICx6hUKisiIvLUU4dFJInNYz9XVvT7pokftepU1kJcpBtPbLpGk7GU0htFWe1KoiHLObPf\ndvbn1kZVWP4sFIVBC/FxvbzyPJ7nWL42pNClBzUlkyY/68eD2i297omXu3fWG2OFbTSA7UeoPrtV\n0nLcJzlCIk/EHue5NXy+1XjtlzlFc6shRJZYxS8bVWAjPDhelvcOnW9Vq5qI483l/f7ynVycn9f7\nYnwoEH864yP6foprtJCOaaj6aKdFJBotWrRom7AtRaJ2Vt6ookqIOw3xOzYjyiIsznY875JLLhGR\nBJFyllpaXkUHdPYfyi+IiMg1r7pGREQuvlTjRs+cOSsiIqOjMyIisrw0JyIipbVlvf6CzqrkzziL\n04i4bDRBMCceca0tg2htOzSLfqynmscz/pU6sETyNtuGZlcA1tsf4h9DPKNF5L1iQe0qxKLzXnGQ\n2Uwm8TZXwa05FO/zwKysWq/35vKSMfO3FvHZZ2C93fxsOdEhcp1cZYFnzyMjidtcwVehCnn9LZJ0\nHCmQdL1VxX2ZVWDGH9ek2qafux7iry1S7VIky/jcNrcVIOrSqq6CalVkTPFdAFecdc+rd8RKv3r0\noWzKnuf0PSJatGjRogXtguJErZd5UAQa2h/ysNnrEUmRP3J6mTjfZuYQJayuqtc+kyniwjon7d6t\n+qhjYxoVcPLEGRERGSpoXGthRpHwzrQi1ZUV9TSWVhWZlko6y9osl+Xl5Z797+IkA/fZpfoUUP6x\nHKT18JIzph4s0cbp06e969jaS5b3s7wVv7eIuSv/3WSjJCpaha5qB1bX0ypNdR4jIl01hlxumMvJ\n969tVwdJHSqfy7PqQxYRWVTjb/U7AAAgAElEQVRukanTMSBqBxIdwX3knXKWeP0J6Y+Gah0l6B7P\npukjsRyqGPAds1lsyXG9q6PacbAxv1ZT1/Lpy0uL3v3RbDu0UJxoiDPtt4rtZRGJRosWLdombEuR\naMPMhiFOM+T9fba8+taDaWP6yF2Wkdc7MqxIlJ7SmZ07RESkUlXERi92kpHkZ1OMjirSnZxUZMf8\n6+VlnXXLa9oOUZaNb7Uxd+TJLMdp0RORqEUtFsXReL5FyKF4ThqRfcgjG+JgQxypy1wycauZTCbJ\nHTc8bSiWlscyjjMlPhJ1EQBG35Paq24sW0R0fLb+WFsO0MZH2nhNmq0DZvnyKsaWY5hHdpxFalad\nqUuf1Hil24BXVMhKYpzpRadSGjlTmztP3p4xxL37b7PVmIlVNBlKjNUmErXP1XKvIa+81SSghX6D\nBrGIRKNFixZtE3ZBIFHH8xBZmBzpED/xbHOn3dknOvuurbGuug7f0JCigT17NGOpXNZZcxGzZrXK\nujzg01JZdqDndcgn7dixC9fRcdi2Tb3/Cwvq3V9a0s/0fi8vKWe6Vl1Dv3w9T8YKujo3QLzZPuNq\neT1bzZPXoZYBvfYcT+63HCm99KwmGlox2BhDhzyZ/w4UmE1nEp404GXtFdGQzWadV9jGO1qUbt9J\nF6c55o+pQ3Ym641IzHq1LVK0mT00u0pIEC6GoukjMrf6MN5oe73k/vBO5v12uPpKp8hZ+hykfUe6\nM5r0ujbjyea8pzJ+nCv/5rj6Wiv5MdzWr+G87ub+aSHN3dBvQcydjxYtWrRn2bYUiXZVOGSsmEEN\nGcOBfa+4U+s1TrJIwI+h3eEicsyLOhvOzWtc6Py8eqtbAk+kUw5Cv8VX4ukXnTABznTbtHKuq/Dm\n7969Dw0cExGRasXXuiQKooaAGxczDBZ92SgFG7tIZMt2mcFFFEGkaWd/Hm/jdYlI2a6tj0S04VBg\nJuu1k8lkJGs4SQ45UWu93l2Dp91uOyV4afvVC0IKYBYJ0mw0gKSo9yleX0N1ujj2NgKhZ6ZV5/Va\nRITrn+fiX7HNkZN094WXos2/HUF77i3V81njySB0u3ohgm21/OO61Kywf2TYf8b0JywiltrG2XbV\n7UL/Mmnf70ALZSb1U0JbzzaFRCuVirz+9a+XP//zP5eTJ0/KW9/6Vjl48KD88i//crBsQLRo0aL9\na7JNIdGPf/zjjv/6gz/4Azl48KDcfPPN8sEPflDuvfdeOXjwYJ8WbM2gUPaHUWS3KuQBZErrx52G\n1JEs8nIVGOFp3LlTkeG1V+8VEZGhrKKWpfkTIiKyUlpCO/Sac3akp7P3/YZ4POvFLhaVa9x30SUi\nIrJ7jyLSubMal3rm9CkRSTyaDtlThzPvK9YnMY69Ebz1NBMx2prilhez489+EO2FqoBavjB5/n4M\nYa9a8c77TIQEpNlmrGoryVhqtdrOq57N+n20ClZEphwry+fafH72gzwyvfpivPvptM912ogLGyFi\nEV+/1QxXQZY7dBEdrP9V46qLyM7GUWLMDMdpLXmW4t2PXe04nQXc9ygiXbhiWFxQ3n8Vqk32el16\nEen1f0tCXGdIU+BZ5USffPJJeeKJJ+S1r32tiIg8+OCDctNNN4mIyI033iiHDh3aaNPRokWL9pyx\nDSPR973vffLud79b7rvvPhFRVMJZbnp6Ws6cOdP/4i5+0Sqfr5810A+ZZoxHbtCMqBACdRUZ4TU/\ncOlFIiLyfVddLiIiExM6e+YzyHteUy40VQXaqYOfQo592iFK6dmffrOozXdOvNba7q7dioyJTJcW\ndTafO6v9Wl5Z9O7bVi8N8UKWX7PeestZdmWjGG7VVhiw1UJpNneez9fqxeZyuSSDpgZeGPGLVPlx\nOdbZxOudyeUdksu0/THgPRBJ8VrkSDl2HANmldEsB0gystEkImY8qo+mLeq3VUad196oK9mMLTvG\nvC/2n7x1uUytV/GOd+3mifiIYNf3O9C6NG5NrDCftY06WAACXUQkSgX964cUbb/76YyGNAVCymk9\n77F9LlGlsPvuu09OnDghb3/72+UjH/mI7N27Vz7wgQ849HnkyBG588475e677163naefftqJe0SL\nFi3ac9E2hES/+MUvytGjR+WLX/yinDp1SvL5vAwPD0ulUpGhoSGZnZ2VmZmZvu38u3//s/LFv3lA\nbnrDzSKSxJ5Z5MNsiMTW5zzThnvLGM+htW6PYqKn+fdf/Dt59WtfIyIir/yBl4mIyCWXXCwiIsUh\nHb7VVZ0183lth6rilQr4sDLzo4EcM8plpsmfATiHqmGG+ptOp+XtP/dT8on//F9EpDszKRStwPo0\nc3O6WlhaVM8nK1har7hFqoz7JIqgtgC980SIqVRKXvfaG+V/PXC/167NobcebvJlVrXcaWRiRcDr\nUX0rnU67a5Qr8KYbnpXVIxkX+pYfPyj/7bP/w7mbGfNLtaC2Q80+b8y+E3mSKyVPHMrOIg++hiqV\nfMLkqZ0OqqTlox/6ffmZX7gdY+KrOfGep7fpGIzimRApc8xqzC4DEqcSF7eO529xddP7b6QrvlLa\n8vH/9En5hdt/Xj+b1RLHi+Mcqm1E5G0rElCHgdvSyrJ3fqg+WLMjc+rL//SgvOrVr/S+t39joWw+\nPgfaX3/h/+k5LiIb/BH90Ic+5P5PJPqNb3xD7r//fnnTm94kDzzwgNxwww0baTpatGjRnlN23uJE\n77jjDrnzzjvlnnvukT179sgtt9zS9xwCLcaSUeKRVTIzTqW6tyJOiDvlt2lyiDbuNBAjRpRBJGT5\npH3IiR8GP7QKbpGe3lJJzysUtqMHnG2pQo7slQb4NmRntEzcaHZAjnTQuji0hDfT2Zvxpfv2KbJe\nRgbUwqLyUCvGI2q94VYJnyjMogrL5YZWBJbr7cq5B7ohGrPZPGrMJALCAMJkvOEyvOnzc2fdGccP\nPylDI4rsqIbEWkWjQNVEaoxDtFybzQ4jiiZCdd5q6HMuQJmd7+bkpFZNoDJ9Dd5pIla+8vQfEOEV\ncV32h1wiVwvUQ7XRBDaXnxZSvLc56nwWrYb/zDJdfL+vU2qz0Cz3SK7W1T2rGc0Ccz6N48jnE1rV\nddXcCvgZzsU2/SN6xx13uP9/5jOf2Wxz0aJFi/acsq2t9knExV9/w6c0zCyXzfaOlwxxpza7w3kI\nDRLlXByqfzOzTVFCGoizgtx4Vs1kXZdcYRjtEDH7eb2sT59zWo1AkCnE7qEdRjAW3KyK+NL2+pqH\nNrqgn4fRopCpbYqgd6BqaRkoaH4BGVjgUImuyH1SV5TjZWt/h9TBQzXHLRpwsYRA0CMjzHgib5Ws\nJNotqiFpm0R8x45r7C71BRbnTrv2Dz/2XWlSAxWxtzt3awVXcoyU1cyjnjuRT6tJJXh/1WJrBs2e\n1Mqo1SozoKhvQAUw5JpDFakEb/QatGaJkJmZxDGqBZS6iOTKuM7cnK4uuFpIOECuDvT+ktpQ60dk\n0Cz3O0ykiu+5NuLq0v7k2EwtRgtw2+zK7ff1RvtlIw6qzhRS+bJqV70s5s5HixYt2iZsS5Eo+RPO\nWl3eZIOwajWfhyJnmngOjV6mm3X6ZAYxC8KnWmUY5ToP7Ne4yyJy5HPYluABbqV8VaF0ikrr5MdY\nsVHRwRBnaxxfqTHrBJ7GDONKiWo4YkTsvTnTkFYizc7e1otvkWxxWFHZ/jH1vu/bd4mIiCyCMz17\nZlZERB5//HERSbzlu4HiyGkSiVsezuahh1YCrv9A5ESguRyUfqBdWauXpd2gN1rbOvrMEfTxCRER\nKUGBS6B0JSIyd+a0G7P5s4q6jx7WeyLyHANn2eDqoqD3NgUv+SQy9wSrp6UF5cufeeYZXEORcBWr\nGOouEInWEBnBR0xO9PjxwyIiMgzOdg9ifyfHL8KY+DhoFQiuuoZKraxJBK7RcpPJu9WbZw8h0ZBu\nZ5dOKVdT/EyVKMOb892wERkW+Xb5CQIlbUNqTKF3PiLRaNGiRdsi21IkSvXqMXgSye+4WDwc52Yx\nTpsB7tQiU1cnpo9Xn0i0AbXuFJDedS+6VkRE9l2sSDSVoy4nsjtYB6aAWRWcJTnSVos1g8BpgtOt\n1/T8kWFFVKwwmQY3WgO32+T02vbvm5NuNkV90t5ZIbRQXrC1kGam9Vxu26ZRCtPTGgvMGlHMiPra\n174mIopIb7rxdc4zPj097fXD5uCHskeIQMlPOh6tzrpGyOqplKSECIOjzxwVEZETx0+KSJJ7zcVJ\no5rkztfrLanVqBxFb7Ru53DeqZOKJImUikCGk5PT3r3Re00EevKUovV6E7Gv5QruAZwmxoDVK4nQ\n6tAlXZhX1L/GDKk8EPM2vV4DCJhe8FlkCjbKjAbQe6zW9Z3DUDruk34GyzWGEKBFaIMqxScqUsgY\nS/uRHTY22HrlQwgyhEBDFsoOtKueUAWAXhaRaLRo0aJtwrYUidbrOvs3kOdMJZmhvCLTOrMuWIvb\nxBmmDTLl7JqolPtajV1efYd0kP0ABZlp8F/btussPzalXN/i6iL6iePhcawiCyYFAJjN+bqhaVcL\nG7FxxYz3fQaYuwk0VHf52tqfBBTwvpEX3exsRSTN/7XpMe2tFXCuns2Q5iLbGR/X8ZmaUnS0F3Gn\nRKbf/e4jIiIyMqIc80UXXYTjp7x2iEKIQF32jouR9DOuqhgvfl5bWZLZU4oYT57Q7TwUrVpYZbRT\nrOmT3Hu7lShtlVGFoGG87i4uFPdedhyjnsfMJd4LP1fxbtfpxea75yJPGMeJ9sWvtVQrK0Jron+L\nLqd83rt3Vp5tcDUCoJ3Bu1JGVEC7xcgNvAOFov+5T0yvfYdclICpO+8U1kwmUFJpVnDfPhLlZ5vV\nForYaPXJXuy3pVmka6MO1rOIRKNFixZtE7alSHT/Po1HnJpUrmt1FZ5FIDsq7QwjRo4eTSLTWpen\n0Xr19TqhjChxebZ64IEDiqCuvuoqERGZmdmJ4xhPitmXSE6YNaKIiagh8S4zHhQezwxy5YFkqeRT\nHNL9q8i1zwozq/TyCbJmbW70P41c/yavp7szjo/CeLVRtwbtpQJ8l0UN/RRvQuriRUQ1EJFefc0L\nRURkBdVLZ2cVHR47pkr89N7v2bNHRJIYQaKiIaClUonZP0BrbfJyet35uTNy7KhyoXPwspPnptp/\nOg+FqGzCgbXSKanguJUSuUOifj2GXnqOSIMqRmnfu0xEZdX5rbeb5sq682Ul7CZ3C6TbBEd6dlbv\nq1h4WkREdmPMXMYUkGe7iEytZVSGBSImEi0I6senyfkxEyjlfabZiAkbB2uPs5wjueI8Vhfd1SLK\n3rZJbpqqUlzVGX2NfpxoP91Qmn332a9BLCLRaNGiRduEbSkSfeF1V4uIyFVXXCYiImfPKs+ztKKz\nJ5HpKhBIBrnmhRy5U1ZY9Gc1lyuP64S8+hnEYe7cpZk611yjCDQFNDBURJYIpsPt2xWZlkrkv7TZ\nWoU8kInDJCogAsTnIqIR1hAzWEc+daEA7hQn1Bvw5KZYeRFZKUBgKact4N2etHg9jEAKsY0txvKx\n7j32Z1J+fnSoMuagdWks+uJ5rBE1vV29+nXwj8eOK3p8Bh71PBT3Wctd2opga0BT7FYmm/L2n56d\nTbhIKsk7PtVH8Z19bjSbsoY4zTq4R0Za5PNZb3+hQOUtv4JqMK6QCMfk2ofGysZrcvWVFsbW6jvO\naAEi11HEqxbH9d3KI/60jrjZesvv1xD4+UwHItd+8H/+asNypfZzKOfe7i+XOc7wdxgulKsKe13H\nwfKPju960+eWQxbKpbf7bfXTQSwi0WjRokXbhG0pEt0+rV7dy8FFXrRPM13OAJESmc4vaqwekenK\nqq9skyVCRS63q2fPuFODAjhpsUrnlVeoQv3UlHKzzFxiJgxnOYIIl6eMz0SSeVT75GzGXO8qvi/X\ndRYeSUHzkbxPWme9Ihpk3aqFZXDEABHNNmP/tIP5vCJlaaNejVPSgcI8snZcZUbwaw2GEbAeDbhV\np8OaIj/kz7EhhRuLOK1ntytTzKETcs26PXpUYytHx/Q5jo/pONTBVxKE5PLk1XT/ImIpFxcXXdxl\nKqk6pJ8zfmRGp9e1Xq93Ici0q+NUxLVQ7aBORSmfy+tScCeScquQ3t7hUBUBl4mDIa8zN7/OZ6Dv\n0smTGgc7htVablH7Pb1dY3lzeR1LvrPkToeHoAmLz4wcWaFup+PZe0ds2H7bZ265RXe/VJXCeDKG\nmHoMRKKhqp7u+iSTHZdMfwg65FZnveNVaSEuNCLRaNGiRfse2daqOAm9rz7XSW/37l3KnS0AiRKZ\nEqmulohMWScG3Cm8+kXwV5Y7zWN2vfqKS0VE5NL9GrdIdXDOSqxFVK1ru5KGFx6xeSx5aCsZ2lmP\ns5qtx5OGt3+UCLaqiLKEevLOS59l7aEh9AfZHeC7RodxfcziExN6HyWMW4v8luM8U962ndJ+NdMM\ndGUWCr6HMlKz3TsrpZ+SvkWoRA9EcYuoAXUGMZ0rq3o/116tnPmRI5r/nuiIaj8qFX3urCFVKpUc\nj0q0S+88vfK22qSIog9bB8pWxeTxHEN6412Mro1wcKpO648RrR/ycsehvQp0JJjLz2fvqitgNbJz\nt3KlI1DaymL1ks35VUlXwCWXmZHl9FF9pGY50YTL9LMCbTVPGu8mVMcsxInaVVBIGYxGHQua1Wuw\nGVo2WmDQ64hEJBotWrRom7ItRaKsh1IBssq4TB2oIMFLyy3ryewDd2qR6dKS8isrzqtfwpVQIREI\nded2zZS58sAlIiIygTzoFmogVeAVLwARZ50X2I8WyCPuMwcNStYasjGDnN2oalQwsXKOt8F1mo5X\no3o4YvswLlTWz4LbHEqB+2UlyTVFFUMQfmc8KjOcUhiHepPEETZNxNDBM02Pbi4LNOAqBxAd4Hjp\nbV315E3OvK00SWTZaGi7rAPEcU1QDZAsFJlWOtTa06QS3bsERInPdeZmdyCORqPR9UyIeu0zpAoR\nj6OmqkOqLcPVmbHovGbnPYXiG7uRmNWDwFggQqTeYMaUjuXOHfr92ITy8MTfZUQjMCffVUMVdp/I\nczA1J1rd6F/QyGNnzDtgEahFupazFMPJhnLlLaK3iNJm7fH59Wu3l0UkGi1atGibsC1FoozdyzjP\nKWYpeD7JMzEmbxjIkNwp1Z/27QUynVNujAh1bl4/E5lyVnrda7UC4DgyhZjxk0Ym0dKyIlrqVk5B\nMWcVufPFYXi/q3o8Z1XWr+GsZysv2pra3D+9XRH28rKiAiIvQXKN4/nIs6E2ekqAmjKoPZQhH8iK\nlkAhw9qPas1HUyXEqWZy4LcazCvHLM2MKPJ62h3JOE0AQX+AmJ3n1EcRDnXhfMb2LSODad7lgSsa\n2LVzn/eZOqUcZ47fKsa7ybz4ZlNSeKeKiJMkZ1gzOgKdyCSfzzuvddnobyZximnvHocKrJuV9frm\nVhdOJYl/Yn6udwjxWO40QUw+Mu1WTfKRKXVTT505zYZ1HNAeUbytWcTPdYPMLJK29bUaJu7TatO2\ngTSpzlSCN57+AY4fswlthpRDqEToLR/pd8Uwm6gI66+w7YYiSgaxiESjRYsWbRO2tZwoOMh2i/m4\n9JhxtoaHlbMYkFjWxfChVrfbqjd/Zocix2VkPhGZEjlBcF6GgWQzyM1+8unDIiKyBlXwJdTjIULk\ncNE7P5Sl0rqiGM7Klgu06lGJqhRnXXrvi/hej6cX2vFtQIa1BnPHwUthKmzWiEyZow9PMzjNShn9\nhv5pAXqmzCIh9zxU1PjMUwusoQ4UhlFIYhiBphwKgi4rnxPGi9yuNP3jmF3EipaM+zxw2QEREdm7\nd693/xy/edRNWl7Q+FCiRmknY+IeNhAg83J6VYscGRkJ1vBxXukGeXuMaZG5577aPnnfdiCmlplH\nzB5rGUTazcX5yKj7uHbP42wGVYnqVLwvYWww3tUWs/j81YPVCw15s20OPKMbLCKtGv3URK2J2rs5\n7zzLaSZVRH1ESXOqTymbieW3xy37E1JrGoQbjUg0WrRo0TZhW4pEF1CHZnVVZy/mJROBEWKl074i\nfdPNssgocnqdQKg5H6FOTqj3fQ3ZGExrOA2lnypLLHHWRQYUZ7M6EN7omHKL5DpX4D0epiYj+Dhy\nq06FiLXMweV2aSymOMtrPxId0BbOA3eLKAZ6+WkpxASmzJwIQO9U3Tk+TUQf8HhyqZWajk+9yfGE\nxiZUtahv6vgjorwMeSpcmHnN9PAizpSlClaBQqjKRBTDOkU7dmi2DcftKJSZOG7LuB/Gh3Z6Yh1S\nIxJ13ldfuZ7eeL2vXIJmYfzeIRvcw8Sk9tFp2zIXnxEQOXKLPtIhknOIqrE+5xbiSru5VK7axPu+\nm+NDu+S3HWeI9vnONugd750zH6qga+MvQ1EOzEziZ65aeB2OV1ecrBmuflENIV1Qy4VaxN0vo6yX\nRSQaLVq0aJuwLUWiY1Ceoa2sUK2J1TLhjQdCTaWtp5CzJbhCzGpMDWfcaQHooIk4yyy2jTQ4wLS2\nXwBCu+YaP1OGyHBxQZHa/os0GmCZKkjkOKmORB1RqkFRD7VL6UY/M1eeCI111c8igyeXJ0/n83UW\n3RBWMNqAyC6FcWVeeQtzZxb3X0QNqDwQLcdxGrGF8209n6iBVVdb4F7zOT4fcty+ejlRF2uILy0p\ngqdnlvdFxXs+9+PHj+P4Jem0RtWP9exED0k9dnB2TkEe70KByKjq2qusrbj/22fFHPkMiHRmtdlM\nnSbe0YZ7FL2RjOMAA4guZNZrnyA1/T6USZQgMf2czyAetkU+W8/PYFXRxN9UtelrEKSb1LjtzTWG\n7oP95LNmrrzLVW/68akhxOiqWJhMpK7Kvaa6qEXkFinbcYve+WjRokX7HtvWVvtEzvfoqGZ9NJuK\nAsiXVIE46PEjIs3nmUlE/okxZb5XnxlRVaCSkQn12rcxmzFrg3Gf2SxVmPS8YdRd56xFLnR1Rfmz\nYXCT9MgSQdF7TrOzWycf13kfBainjwDtzEOdiF5rcpJd1TDpMSUyQ7tOM4CcMfipUahVzZ+FGlbT\nzNJ1RQtFHD8MbrQFxFkWv8oq89Nd9AF5QWGMo+B4eIrBhVJPlUh0/2WqZUAOlvqi5EDZv3Jpxbte\nZ767i1ts+jnc9BYndZsSb2w2m3Z/CC1wn4wzzUAvIZvyvcNtswoo4Phqw0eCVldBDCIKKcHTqCDG\nLL5Uyj+PkR3WK2/rVo2gP1w1tMkFoqZT06F6Ilxyy8j0ApKttRClAB7fZt1ZJMpxsNUKnHefSN8o\n5tMShKmW8RO3ElLXmM2V53PgdfibEtIPjZxotGjRon2PbEuR6DT0REdGdbavohY4q2USNSQVAXVL\njixBF0SoSBY3Xv2pSc0AomoRa21nKzobLS0q4huBxuJZeO0Zr8n4zXyugHb1Mg2gDnK1Tm2JHCzQ\nh1U/Z79p9LqTRWQcJNGHqy1l6tl0VTF1KEC35J9cLB36XWVFRnC3WebiY1xSGXjhEf3AuNoi4kor\n6P78SrWz2w7Bu5hM9gbjQFREVMLt2JiO+zBqM506BTWnlTWvHzWgoTpWEL3QgkNi0AfImFjdBMEl\nSLRYLDr0b9WH1lD3qu6qAOg5eTybMr7nO8d7tDWIHCeHdyTT8nO3+2UGheJCk/hQ8Y7j/Tbxbq0B\nzad434wqcK0w2w1XQfNN/A21hfGk4MXhP6ihfWoWZBl3Sn0DUzvJZXY1fW44VIk2mMvuOFLdkAvN\nGm2B5HB/v/XaB6uSRiQaLVq0aM+ubSkSZTzmrp2aaUQtw1KJSEVnLyLTPDyrzQZ0Nam/6Y6HlmLB\n579aLXKG5PLoedRZh17x0SIzhqi4rraMXPqpCUXOQ0Bu1TazPBBnSVV1zHrkUK26k9VczJr8axqz\nR1ptcn4573uruZgH71NvER2QT8NjhjrTaol500TM4LnAudaYOw/U0QJvVV/SuMyhUdWmLAz5vBuj\nElyed9PnvzjOzFAimNi1W6MdGJ3B2uppjGsOzz9NzUzwehUi0g6Pq6vBE8gJp5eXXnYR9cjb7DIC\nmXSa8YsmDhK8LRW21qq+l7mrThWRFp5pznCIoYyk7hx5Hsc9PhLl6sm9vYxcYfxlin9L+BuhbqiQ\n+2RsL/qHz3y3G+DDubpgZd4CrpvHto4suWXw10SsCQIkwvURZ6iWU7+qCozE4fNtMSpDfITLv7ku\n1a1Au4Mg0Q3/iH7+85+XT33qU5LNZuWXfumX5Morr5R3vvOd0mw2ZceOHfKBD3yga9kaLVq0aP/a\nbEM/ogsLC/Kxj31M/uzP/kzW1tbkIx/5iNx///1y8OBBufnmm+WDH/yg3HvvvXLw4MH125mHYv0Z\nIBzkI08iK2RiQhFcgjR1yzhFcobWq5/U/ibi1B/zbVBjqlYRj5pTDq44jPhSl32is9PZWa1fMz7C\n6AHmB+ssNwkF+TKQVQV15222C3UxqT3JWdXydI7j42fQVzkqynMWB7ooInrAtVP3lXSGweFyMmNW\nTgVc8DDUnRjPyvo3zIjieDfaTa+dNtSjhnKsNeXzTVxRSNvPcHJ1dNrkhqEXCzT01BNPiUgSi0ht\nhBRe08VlfZ6VKjy9QDGMvkinMq4qAiM4bM0ccpK5jiqXxWKxW9E8wMlxbCsVf9URUh3is2kEMn5s\n/Ce9yCEERABKXEZVoxarYTpEBsSZYw0lZt/Vvc/kMgtc7XFc8Awq8FPUcL+NukFw1Fd1Ofa6u46K\ntGvQiK2bqgZ8dqEMKMtJ9uMqiZhZr8w+z4yLyCn3/J4Wig5YzzbEiR46dEiuv/56GR0dlZmZGfmd\n3/kdefDBB+Wmm24SEZEbb7xRDh06tJGmo0WLFu05Zan2uYTmw/7wD/9QnnrqKVlcXJTl5WW54447\n5Nd+7dfcD+czzzwj73znO+Xuu+9et53FxXmZRC3yaNGiRXsu2oY50cXFRfnoRz8qJ06ckLe97W0e\n7B30d/mv/urP5C1v+d56v74AACAASURBVBn5kz/5IxFJljJZhKcMQTSZy3yS4VxmcplPiTemZ5K0\nLq1W0I6ml05P6w92vQGJNyxpjp3QZXsWS4xhFszL5+TgW39K/vR//rF+D4dTA0uCEYT8UFYsk/Hl\nv6xQL++Py3ouHeiYcWIIDLtwohJ0iOl1ybFn8jn5sTffLp//s/+M/mn7XNZTrJjhPg2XOQexjAad\nGkjpywaWwE4+DE6Pth+gTIdUrqD0wslTcxiXIfnZn/l38pGPfkJERJ5+Wpfrq6Vl775e+JIXi4jI\nl/72H0VE5OqrrsJ4gkbI6vUOP/KoiIgsLoMWcDJuXKrnpZjl8hr78IxHx5QaorOMosOf/C93y9tu\nfVNXWuBqieU29Hg+I4bq2OWgXdZbYQumN1ZNuqg9v1NC7uHvPCZXXnGZf3zLvRTefpfeyPRW0Bkj\nw36CBp8Zix6ybPjYiH6m0y6NlGAmPlAOsoR3utqoy9e/8ZC89GUv0eNT/jtSQXnwRRRLpFM3Eanx\nU5UT0SHfEWSlCUOf0+Ivw5vNpjz00Lfk5S9/md4XxnURoV5WKN069KzD79v/8rCEbEM/otPT0/Ki\nF71Istms7N+/X0ZGRiSTyUilUpGhoSGZnZ2VmZmZvu24uMQUvdWIPauxRpE+SOp78ke0iAe/fTt+\nFOvMhPF/XFeW9cExDvHUKc3Fprd/5yWqW3kJKkGePXVKRESW8ODLOcat6nXHR8AV4kczhx+tmqmj\nnu3g20S6FW5CSjvk25ivzVrgTpCIf+guQ4ke4SbGCV55ZgrRwwmuN53nePuqV4wBrBrdTnKjidoU\nYvGQf22zQgoZ7feO7TpJnJ6jSvwq7tefTHbuUr3Q2VOqvn7ZZfqDcf31PyAiIidOHBYRkblZ1TBo\nNcG1ko7DpJYbYsZZRmqo15RESDAGlcr18Kq3k5jbRqPR4b1Fhg00Vu2PovXa2lpLoRpEfNb0YpeR\nm84sMpr9Y7b8Ov9g+c43TLyjq1OW9WOIOQl0c4vUpNXPRYxtIQ8FsgKAA951BHRIBhEYWUZi4CVl\nRlGdwKbue+MTQQVfp5RK9SY1vuvH3/7tOGlbo/9quWZGclivf4hbTexZ4kRf9apXyZe//GVptVqy\nsLAga2tr8opXvELuv/9+ERF54IEH5IYbbthI09GiRYv2nLINIdGdO3fKG97wBnnzm98sIiLvete7\n5PnPf77ceeedcs8998iePXvklltu6dvOCnLQOfsncZCcvamaTa87lhKYVbMrVGLHkgRxmUQVa1iS\njY0VcdxOERGZRd2ZI1heMhNpenq7iIgUUJt7aVEzh+g9Zm57BcgqjVm0aPJxORvu2KFovFI5in4B\nWRpEumfPHhEROXbsmI4LvNBccrk87LyiHebIM0OK8Z8uw6nFWMAR3Lded62sy2iOc6WMWRsoo1jM\nefdBJOriWMt638xltzGMpC9SWKan2trO8pKOI7NghoHot0M39Gtf/YaIiLz+da8XEZGZnbp/YUFX\nDpWSRje0nM6qn0dOmqUzH55ol8+ClWATQJT0PZsrSr0OxfU1rob8uEZLcdg4TquYbpXT7fk5Vmdg\nfTHGSzrNXJ9KyTmlMK4GQGXghjJGINS+Y0TMtIQG8GmHWoMRIHoc9RfyzGDC32adCNAhS93k8T3j\nR4kwyUIw44u6C/Y5WZUo29+uCgSBevRWu3et4ufKW4TrVg5oJyX+9+vZhjnR2267TW677TZv32c+\n85mNNhctWrRoz0nb4mqf1HYkeU8Fdd1PxJTUImIONjlGcqeoY16CA4U1iHD82TlFnnkkgROxTU9q\n3CiV64vMiAIX2wKfRp6E8Z5EKeT68ohNJHIjepmdnRWR7hx3GxPI43if22cUiZF7JyrJOiUaJjEQ\nZZUwXnDEDSlidTqrGJ9cdsj7voZ42Vye4+ZztESkrB/EcbV8EzU4ybEK+LpR7HdcMtDADtxfDg6v\nZ554UkREvu/tv6jjiEyohXnVMFicU0RKoElONk14hHGoV6uOm7S6BZJmdQAfkYmo4hNuXao1X2fS\nxg1a/QM7FrYaJ5FoKH40cWz4CmRZ1nKCwyVDh4v4GTpJP9FBoPOhIf9d7NbLpAKYH5dq74/XSxW1\n3ZIwDhPcL6ua4vIVrCobRk2L/HXe6Dx0IUEi+YAqlLWUyZXvuk/GEptswe7aTdQh9c+LufPRokWL\n9izb1uqJFjT0qJCHbic40FaT3nZFEcxlJzJNKgJqO+SziLhc9UzH/anHdnJSOcolcLEMVWJ4xomj\nT4uISA4cKRVmDj+t+5m5RCpyYnzM6x/NZghxNqOSP9EH1aJ4fAM57Eltcmo6MkqhjvtC7SjUY9+x\nQ7neFdSQYpjJBGpLra6SC9XrED2wNlKr4asxUXuAxiyVUEVMZ5zl0e8iogHGR7T/qyWGYOlxTz2q\nCPTaq64QEZEK9EUXzmiURGVFVxDkyVjrnU56Rgvw+Yt0V6F0QCLdW7WHxxKxMnzO8r3WO2+957bS\na0hfM7Qqcc/CAK+sQ5gYWyK5GnUFjJ6ChBTwfa82s8Eskm6YkK4cViFZhl4BabbohWd4HxAc6903\nXA4+9FZzvv5oSE81hPzt/aSNGz+kYG+reXYp4ROJUpcV7UU90WjRokX7HtmWIlGq/gwV1KtOrUJW\n8eS21eLs6OctE5EmqtVErDrb0+s9N6e5+VkEk+cQF+o0FTFL7dw2JSIii1ATSjQLmR9MvgucKoL3\nqf9pZy/rqaUOKuupdwX4wiWaEaIVei4xLogDHYHa+qmTitTInTJgOfGe+/VkOE6cnW0MosuVx/Hk\n1eizdBqVBs25SpBAoOTDmpztscKYBjJOoR9z0CZ4wYuv1XFc0miJ+tlHRERkuH0K44PnizzwIlzC\na2UGTtMrn3KI0r0TTDRg3S0gwU7FrHK57LRXyXfb+k00i9ysDqatw86xsTnxSVUCtpfx2kmQE7zN\ned/bnAGSrFODlwg15XOtVp+TqxRbrysU11oFEd0UPntwpkCCw6gGQbd2CfG1fAeox5BlrSWjXMbx\ndoga7YRy5N14G6+8S/ww98uYcdb3EvPc3Hmp3hzpIBaRaLRo0aJtwrYUiTaRPlhpotZOipwnU9B0\n65Bpk7M7Z3uk0lX1fKo+cTY6flzjLrMOjeisObNdvfIV6JEuQl2oDVWk8SlFpMOjrIOuXOoauMUy\nOFYi0CQNVfuxfft2rx/kIskzsYqoRYY8n1wnvc7MiBtGTap8QXeMpZHKaDzCVMGibievYytU0qtO\ndSVbZdVl3wRqdxOxsjppGZztNOI/a7je8uoa+q/9PT1/Qs9HFskVV71Ax6fxtF6nqumdy+DEKxVF\nsItrWCG0uVKBB7hBj2umS02J1TddvCCeFe+Z+2xcqEWYIY7MIlbLgXKMQxlPfMYhZfW0QZSMF20h\nSy0zhNUGmqtSR9PFzvoIjQjUcr5dqkdEii4eFBlM2J9jXTNcr9xuim/gJsEyVrBCcHdtox8Yhxrg\nNruU7XmVwH6OYzWQqdUyXnhWAO6KFgi032kRiUaLFi3aJmxrOdEUtR3hNQb/Um3Sa47Zk5lBRKZN\nIhCiB1a59GsiMcOIHKGkieR81e8RxHeOjkFfk2IJdeb/avuTE4pQd80oUpxDXXh63bdtU440iSNV\nJJjUPEelSTPbJXGxeW+/RYb5LDlIxB5mOVvzfvi99pd1g4iGbEYV416tajiRMdEK419tjSf2O2lX\n+7GISgBUSU8jPnUVfFkd2+ddoVzo1OQuERGZO/20HldBnGqFaNJHUaxokGCARHsgqa6JnHeX5cQq\nBopAO2vZLy0tdXGBRI68dztGlg/ms7NonWNttWOT+FEf6XRl0jD7KwXvOMcU9zyMWOYGj18teedR\nQMXpDGBZw6oLNPbHIWVA+FQF2XLUJ8XfJPUYHGJFphcjS1JOrEa8dmmOV2eEBxFvQADE1hGzmUeh\nd9he142r8dbX2v67beNW17OIRKNFixZtE7alSPQMOMVlzJ7Fgq9K3gQybaBmELcZIMpCAco5mFWc\nZ3VBkRA5UmZGpTDrlKnwjrjSNGZVevDWEEfqECDQDeMwhwvgcquMP92D7/166ESALuYO7RAB7kZt\nobqJwyRKcHXWgfSIRGs18m78vuLdb7Wm/XdKNzza8EuWq+X1mfXD8eR9WX6Ps71DAejWcFY52cPQ\nKMggDrgJla6hjLZ/1dXKhTbAibfW9DpLS7ivCjLaGlQsoro6nneVSvd4LzKZLoRIdM5MJPaZ3KiI\n8oF2bEJea+s9p9lMpFAVzySyobeX3CJbjjkDXrm6IiLlO7UGL3TWeKcLiG2uVvyYa5uZZDUC3Gos\n59dUGsfqZnRcV2V1rOZaZnXlwnNNhEoXN8wcfm6JMDkuhrtlRA1Lyrr7NKs8+05bCyFjWsKFrp8x\nJRKRaLRo0aJtyrYUiT744DdE3i7y3UceFxGRnVDvYSYQM1RYNyepy0JkgpgzIE169wvIOBLUJpqa\nxKxJDhXIbgJ8EvONy5jNQ1xlPgeFmhqqZaI/y8uKUJv0EmcMgsT5VoyZKGNkxN9vUQIzhrJpn6Nc\nXfU9zbt2aeZSrZ6gLJFkVrYox16PKIpb3r+d1W3GEtHFOLzvNURNLEDIN4Xc+dlj+pxH04pUx6Z0\n/8qaxodKUzOYUuB6q1VEL1ALgVEZrKVV9/mxdDrdwTeTm9Sma5VVnOsjMt6vzWix2Vg2LtQpazkO\n1kcylsujJfGivTOGGNubbHEcvd14VwvD0EGAglkDfxNYlDi9BdqQibgIZe7QMkR8zORpsg6Z9mMV\nostVow5lM35svKrVW3WIkFtTrbPu/APQBMj6yDlUm8pWzrXWr679IF55WkSi0aJFi7YJ29o4UfA6\nR49q5sqRI6rWMzOjcZxEplSwJ2dKVaEcFOcTTyMVbvS2VoGE6D1vt1mN0y/TsbrKOFWdUya2KVKy\nXuqmy9Fm/Ce3QAPIpFnBdcfH1YtPxEzESK85ebmz8PInCNM/jpTj2hpLU4BXg6eUcalE2tbDa/ku\ncp28nkWmNuvGepZdhpJR9G8iY2luUZE5O/6tb35N7/Oo6qr+6M0qoXgRMsoOH/sXHbfSI9jq/WBh\n4KqDOmWgBtWpEi5UL5fuQhDsO2NmiWbzHW9+u93u4u6s19ei81DMLM16i6032R5n9w9RyxV6o6xv\nnzPqT+QQqY7UzBnF+wZXVXyGfs59l94o1aQyfkxxHYGo84tz+OxnFNVMnKm9fxunSWO2IKnHFt35\n9O7zuJbfT6ezap5HmNv0P1vk3Y1IeyPUXhaRaLRo0aJtwrYUibLGztiYIr8yVHzm5jSG78wZ9d6P\njipiJDLduVORysS4cnBEfFQ2T3Q/lbcZHtWMo+UV3U+ObxicJMMsmRtv+ZLpaUXGsydW0B9FvlPI\nbGLdnvEx7Ud9J/gi5DVTRWkYxcASFe0c7n/MGxeiHiLBURTEY9YHkRjr6JBb5SQfQgG8juU4ud/y\nSCHtS6uROVSkWpQiwzXcN8e1XtJxSyGOdGlBEen82e/odYDwF1c1WqFcAppirGON48kKB3Xv+p1I\n2nJ81GrtyixqJwhjPQRrOTcbNxrS66TxutYLbvvZMtwfESZXVRmsejI5Zt9pO6NYnaWwZTZd01y3\n0fJjkMN8t/j9QSYPH+YqVZ7KjJzhKgf+hraP8EIF+RznjK8bYjKeGPqMjxmzurLtOUTdZAG63hoH\nNJtj38VpcztACn1EotGiRYu2CdtSJDpUVM5vz76LRSTR/VxZUSS6gkyjcllnuaeeekZERJ5+WpHM\n3r2KXFaRY039TNafmZhQhLuwCIUecIkjQJJDqGFEdadMlhlOihw5W586qbnenGSJiE6fVi7TZQRV\n9DoNCF62mr6XnpMh83TpdSdaIEfK6/J4oh6qKuVyiEMt+NU4Oenbuj9E5oyls0jS8nm2fpD13tuY\nxvkF5XCfOa5xoSwlffQZ9baPItRx94H92n5LebVq+TEREanXHtL7ggJRtQbvPOJH2ylysOif48NY\n5TNRl7LVOUMZRZ2lfFwsZsdxNpedCJTHcgwS9f8hr30byWCRp83+CmVMJcgNqxMqyVNQAfupajQK\nHt1xhQ4I+quKbu85c/UNUoQ5VSp4zRm7u4a/BXrpyV/Tux+KlyXXO4S/vSoQZIVZghwXbG1JZIv8\nuxT7sUpLu9vA963ez6WL+0wNruYUkWi0aNGibcK2FInWqn5GDFHA9HaNd9w2rRwoESm3Vaj/HDum\nXn0i1csvv0xERLKIM9y3Zzeuo8enUZuIXOyJExoNkEZudhE59czWqLf9ejFDUHznrE3ETAZlelo5\n2tUSZlPwRbt27Ua/69gyVtHXoLTIj/V1iCrIhXL/vn0XiYjI1JQi7nrDjwe1Ku1ETZYz5XFEU7we\nz6MGAI0oaAm6q4efUUReQZ715Zeq132seLmIiOzeruOSTQElpZC1UlGEXEzp85sTXUmsVXUlUCcn\nyyqpKaqs63i7nH68R+l0ustrznfK2lol4cCGh4fdPXMMbOYLIyWsNivHlPw4Ub+NdLBon2a91vSi\nh7z2LuOHdaWAuJqO49XPw6ij1aQWbttHuvb6RJA1PEOuWrq4X5zHZhxCbROBc0uEyCuZqIQ2r8/K\nsPqZdbdYUMvWOgpVVeDfmh2vBGkyF954302/eHrGafnGjKVo0aJFe1ZtS5Fopg2VIlRvbAIBlpD7\nzdlmFN77qW3qlV9FDvvy8iKO09sgMqVq05OPPiEiIhddtBdbRYQNxLydhDL8xBgUcoA819ZQHTOj\nqGRyjBwlEKEj5xgjp2ilVCIXyhg3qBotan+o4E9lfCrzk6MkCnJ8GWbnRXC6iQK+Hv/000/Lgau/\nX5qtuteOzRKxalBEUfxMpGkVhvg91anIFWegZ1ptU2HeX1GcnlWEf9FORWeTw/r8njmiXGhqSlHS\nkcPgkIEwl9YQhwqQwTzwFDzLmRz4wEwRn4EBGlTmSbRjWU/dxTFiTKvw7KfSCUK1yLzTbKZNSOWJ\nqJ2RDla7Nagm1OWd1+/5bjCWmasFt2pBVh7ruzN+dBSauDUg6Gqbufrubr17tlEB6bQfM9yV84+Y\nYFaZ4LgSGSfIzr+/tCMnTc58kuKE3vnbdkDVyT4zPm/LkVrvPZGm5UKdepSNmx3AtvRHdHFJy3aU\nEFzOoPUhiDJziVBFCBGXVhRh2LNXHRVcEvDH1ZVgRrR2CTJdTz11BFt1UG3bpi/8+CSESvCCTMHh\nlUuzQBpenLL2M4v9YwhZqlS5xEOJ5RbLbOhSjz9SWdAJ6Yy/ROGS05bfyBtHjk1JZFA+w0v44G17\n/MwfRRtCZZd4DOGyS1r+SOK25NFHNV2z3dQ/9G9/W0OWnve8fTo+oyykp5PY0WM6mcye1X6Xy9qf\nEaR/NvAHXGFZY06yWX0+Msygfr/8La0tGanW+Ueq++hMTO6V68jkj2R1dbXL6WafTUiU2ZZY4Y+e\n/SNkEUWKxdgfZ5YBsT9efHfYXo3OyCYdSnjGdLKhXagJJkUJWV2Ry3LWnxb/nQqViuaPYK3KfiAM\nzS27W53N9XD8iLdtUzTaxdbjR7HNwnEcv97jHgrjswIr9vigo8jXhh4otMm1Pfih0aJFixbN2pYi\nUUbaVhlMjdmajgTO8k7+i0uBpr9E43HbUTp454yK/K5AeHcJiHcN5SWeeFKRaOaIXuf4SS1dfMnF\net7EOIRPcixlDOk4hBQxyJ3L+ckJRaAVIOY6BDMoDkGyfWycgdoQHXahT4moME7Q9oAAuWS0ZW2Z\nhGBRkhUc4fjQbBiORVt2qUrES8m5xx9HeY867qOk368BqdNhd80lulLYc4nSMNW6hrI9/F0t/7HY\n1OdTX9Vl/+gU0311KVvK631UVuCASykSlhbl5igCwlLQbZeKm6QrwjmF8s3pbLfASLFY7ArFsemQ\ndjVAs6FKNgzMSbQJSjkDYI2kgL6bXB348oTWIWYL21Ggow1Kg8tol8hBKTnxx8Mtz7nMZ6lmFvJL\n9ZZLZHjdcYSxtRzSdOtx7zxroWV4O03HFyX0eBzvx4RGGUGXJPXY/9z9/fr9sxYFSKJFixbte2Rb\n61jKcHYwsz8EOxprCOgFqZ4gU3Bp5O6ATKtwuOThXJiYVIfIjhlIxCHU6exZnU2PHNFtuaIhOsdP\nqONjdFTbv2TfDvkRETmDYPK9uzR9tIUCe5QHKxQRzgKHVBIGA9myIZ3NFxa0/fHxCdy/n7ZJxMdA\nZkum2/K7LNTGz3aWp5g0jWEsdArwPHKgvB55uLk57S/H/9QZdeQtLcLJgSpmx0+cxHHa/+UF5aZT\nQOzjcLZcfJGOX2lex/3Jw4poa+hXuajjV0Qo2e6denxjWsf31LyOS1LWBGIauE5mONOVQMDPRIwO\noXYIZnQidSsaTLO8cahAHY9jSBTbrjV0zKZQRJCyhtNTitIrcE4WwakePvy0164LQysCoRIJuiBy\nX6SlAu60FbiPLqEVIkkgwBxL8yBU6ZL9l4qIyMmTmorN1Q5jlfg3aNvtRoL+96E0zixLGAPBixGA\nobXa/qqqHxJ+Niwi0WjRokXbhG0pEk14Ehsgq1tbaqBc8UWIGXJDJMVtU1iKmeEj2gJL+15+hSLU\nmb0arH78mCKi0ycVka6hTAU9tf/woKYl7obwyZ5dur32+zSYfGSYwhwoUZylhB48pWXtz3AWIU5I\nbyT6sMH2DB2y/I5LY11QjndoKOuNhw1bocgGZ8o6wmFGIAVYBjI/c0a5WYbn2LTPo5CwO3UaYUJV\n7d8x7D9xQreNhrY/M6PB9msVpl5qe6PjOu67d+m4z83p81xEOZZVtN+CsExhDIUExxWdTTZRCLBK\nST940nGH1UqtKyIhSaH1kVEnosnn812o33rJu0sdi3cc27NCJcMQT57eDvEXJkBkkNAA7vKinRrB\nQOT8xOOP4Qq+uDO97/Rmu6iDPL3qepaTwjNpr3ZVl3DDOLFJdJ9F/0dwnN7HmTP6N1JDembLJETw\nOhwn8v5JuJ0fGWKD5h2SZdmRFtNQ/SKMqYC3fVDEGQqB2ohFJBotWrRom7ANIdFSqSR33nmnLC0t\nSb1el9tvv1127Ngh73nPe0RE5Morr5Tf+q3f6tuODXxN9nP24SzhH5cd8svisvwt00GLw376YrPF\nQFxtp4aSzORz9uxT7m3XHuVOlxa0vcUF9drPLwIpIZj+BBDr7KxyhpfBqz89TfTB2ViPZ7wo40Ol\nqf2aHqfXGjGEKHxnZ3PydJzVi/D6E+UQ9fD4EgRZmKbK7fZtGre5hnRV8meFEaZlQlzCpI0ePXZK\nP9cUSbNg3zPPaNzt4qLyZJdept74XYiOmMDKYLiIwntAHRM79X73rGj7a08cFhGRVaRilla1/6dO\nPCwiIte+8BoRSVYSExMM7l/G/SM6olLpEmqmWVHlTiRaLBYdD1wIlNGwMba2IB3jQ8fHWRyRmnLg\nXhk32iIyROouEkFWENP8ne9orC3XZkMIupc2YqdZtA+8fIGJE/Tm03tf9st1W47YRREA0dYqjL31\n01p3IxZ7cUl5aCJcdpC8eLaIksq2wB6Mq0EbzdAVnyrmt8CIZbMkc9uJJmN4AkAyJFQyKBIdxEu/\noR/Rz33uc3LppZfKO97xDpmdnZWf/MmflB07dshdd90l1113nbzjHe+Qv/u7v5PXvOY1G2k+WrRo\n0Z4ztqEf0ampKXn0UY31W15elsnJSTl+/Lhcd911IiJy4403yqFDh/r+iJIL5aRtESctVPQqSVVj\nLBwRG7i2RZ31nEwZZuMJxHUKY+RSPvc6Na0IcRpxp1d+n5b2nT2l8Y9nzigyq5Qg/HtSZ+ltyLzZ\nf7EKp+zYrtehNz5Fj2cW5XsbighrVfB04EpTecR/siRyhRlQet42lC8heurytDrZNEjIlcklg3tl\nTB3aZ/akQyWIBz16ShFmrVXAfSvyXllVTpac5NSUItxrrrxa2wHaKi+hTAjKFmeHMB7bNR70YnDX\nBXiyv/7Nb3v3u237lHffFuVwP1FVoVAIxhNaYZKkpIxywWzbCk9nHTc4jHvVPrHUzCrQ9PjElHc+\nUTyLH2bSrH+hfb7ich2ryR3KH3/uc58TEZEjRxTd79unWV8h8eRcgREZQJY4ria+t9revy2nkUN/\nHXeM9nifBaD8pxHb23J+DB95kqMl0szndLyKQ4rMM1meh2w/8O+MAHHSf21/BUB3iStSaQrbhZBm\nyEJINJT6OwgSTbU3yKj+9E//tDzzzDOyvLwsH//4x+W3f/u35b777hMRkUOHDsm9994rv/d7v7du\nG8dPnJS9UFqKFi1atOeibQiJ/sVf/IXs2bNHPv3pT8sjjzwit99+u1fiYtDf5f/w3vfLxz/6+/IL\nv/irPc9LPvvCtNYLbfNzE09qynzW45npM2IEbFPkZ1LMcc/Ju37tZ+U/fuy/ikiCvChWwIJ0ZyHa\nXEPGzvbtinKmt2n7U5D0m9mhY7RvDwrLIVOLSR/kLpeXUeKhwcwmlO3AgdPbGWealpe+8n+Xb37l\nAW0PHOfcErQIEC+bxnnDQC8sx9GEBGAB4tTklP/+n74sIiILoI4pDfjgV74iIiINpN0sIe71JS95\niYiIvOyFitinwPfNTE/KG97y7+Wfv/hXeh0ImVSR4TR3WuNLV5GT/+1vf1dERI4hWmJicjvGT7fU\nViDaqdd9JLq2tuYQpBVltl5qcpwf+NBH5NfueHtXATSbC89tAeIrFZRgbiJSoInyzWuIwa0jhljg\nTZ6c1PMv3qegYQJI75vf1jLSf/u3fysiyTu5b98++a933ydvu/VNIpLExto4VicWzaw2rM6IhGkO\nweJdHwMSX8FqoYoiiFRxvuwylZX87lPHRETkO4/os2FmUbVWk/n5RdkDmcfhER3XySl9x9/8b98i\nIiJfeVBXF48/rkUIL9qvfPmPvvGH9Tx4/7/whS+IiMgTj+pxjEAhx8v41aZBoushxcNPHZVLL9VI\nECfuzEwucuZBJ7zP9gAAIABJREFU6Tx//6OPPBm8zoZ+RL/+9a/Lq171KhERueqqq6RarXqCC7Oz\nszIzM7ORpqNFixbtOWUb+hG9+OKL5aGHHpI3vOENcvz4cRkZGZG9e/fKV7/6Vfn+7/9+eeCBB+St\nb31r33ZCsXm07s/cGqSb8hGp8+JnOev45WF5XcZXulg/5MZn8yylAI4VmTiu1gCQz/RunSj2XKL8\n1fK8cohzs4qwHn9KkdrkorZ37IR+f+KUIq/tQKo7gVyLQ0TUUK+CJKArn5vV7UoJ3GaGQruC4xTt\nZErwUEPgt15RlJEb0+uwlAQVjrg9jmiDY6c0KmGljJLWh9V7Pg8vPL364zlFsFcim2UCXGUW8bLC\nWEJklbRAO2Wh0pUtaH/zNaI15c9OAtmTH2sAsacZM+liEllSWhteXV3tUroib2xz0TtXPZOTkw55\nWu6RsblEgmehQDUEVF+HKlMdCLSBsUQ6v1yEd2PPbuXXp8a1z088rfz6t771Lb0nStl1cLUiyerC\nxqlanQNuCzm/fInlgil67DhIYDQi8yLQ/olZjUBhjDALwBEJ8h1i9t7Oncrt3vzDPygiIj/4hteK\niMj1179SREQee+wxXFfH6dprvw/jRA76Rv2Mv/FDDz6o92sk6vp500MSd261Sqk9kzlFqMooAgkD\n3C7b0I/orbfeKnfddZf8xE/8hDQaDXnPe94jO3bskN/4jd+QVqslL3jBC+QVr3jFRpqOFi1atOeU\nbehHdGRkRD784Q937f/sZz97Tu1YZNgvlitBopyN/NnUeQ4dj6LHJxlRvZEu+0E+bRX8kCurASTK\nzw3AjDYQcEt09h4FH7Rjt3KgVcRrnkVBuzOndLtaUu/+yVk97yTQyd6d6uUeH9f2iYKIRoYQizfk\nVJ+AqKGXOgR0wYwkZvLkwOc58WWgijxKSDwBfdVvfEvjMksoEXHqpPaztFbyxqkANPOi65QDHcN4\n1FDqmopEJXiml1d1/7ZJ5QHprecKodFgAUEdh5e8+EV6Pkowr7LfDWa5ILMLz6szS4hj5USYjeC1\n9ejzWBvXaL38bG95WVcRQ4gcWFxAEcAcvfiKJPdfosjz6muu0O9ZWgYRGI888Y96b1gNEYHyXmzB\nPWtWzJnZZ0PDRa+/tshgFn/yaWQCsUxHA1wouchjWJUsISuQuM95KVJUANN2Xv+DrxYRkdfddIOI\niGybRiTGGGKDJ1+o9wfkmQe33IJOxste/mIRETl9WnUVHn5EudHlVR1vh0QHzUhy/ezthU/KjJjM\np7ZfIs9qD/SymLEULVq0aJuwLc2dt6V9Qxxpt8q2iQWkV94gWjebIx6RfFCXpiH5JrQzDGRF/cyG\nKTaWBofXwGzfwOcmSgWXq4ouRsAv7dqrqOSii5EzjnjL2VOzIiLy2OPqAZ2f01mf+qQjw1CjmqBe\nqt4PuUMnPtRGPnRe0RE9xdQQaKdYWE8R3QSQ6dwiMo+oGQAEeuas9q+EQnSr8PSuwqt+7eVXiojI\nZRdf4o3XLhTMKyG7ZXlJkfjqop43PKaoIpdnaWuqsQOR1hgriJLX43oc0QLLrBBdMs6VfN7Y2Jh7\nRuQ2yYXanPlOjjSTybjIDXs8s8QKeJa5rH6/OM+CdIiYmNbIg/0XKwd66eW6nZrU1UUKup7f/a56\neR974gncA3le8O3tpE8ineWyFSkTabNfFSDQnPiRC7ZMNjnAEWZ31ZBFBw53G8b8cZTMqYPAZlnx\nNVynTWScquJ+1Tv/mtcqfbd3n3rfh6E21cwzUyzjXTeH1UoTvP5IWvv1/Os0O+3BL39VRES++U1d\nHbnCcXyn274+qtUrdd54gzyTbe/VLs2tjgcAvhGJRosWLdombEuRaCgTySJSy512eeaYkt70v2dd\nmRDH6vph+4VZjjxXhlMN9jeBPNtABeSVakQR4H1KdeRjDwG5Qu90ArWdiFDLq4r0Zo8rB/nEYfXc\nFoeoOanIc2EBns3na8ZPLqcoogivPONi11hCGKirjljFCahQjRYUNX3p6/+viIhMzSiaOApEurig\nXnhqRC4sKk9GZZ+LUap5/15FWxnkaUvN5xuXVxXpVsAz1UsouAc0s4QYxTrQUCat/T0FfdJ2y+jM\nIhMqN+znt3dmz/DaFrlxP3lmZuTosQUXI8tIj8RbX8NWnx0Lw6WQsXTF5RqZcPFFOiZ79utYjkF5\niij75HEd06987ZvePeWBbNtNZq1hlcWIEfR71RQTdBElJuqAymYukwhjMwKuVrIs7qfn7x3XcSjO\na/srBR2f2RV95hUgv0yKyFH7zeKP/8eb/42IiOy/+GJcZxz91Ms4zdwiOUa8m8wWdKWU9ASWPX/N\na1+F/drfeSB/ctAlKK25XHvjL3EF7wJINF/wI3ZcrScTJ9yi9sE6FpFotGjRom3CLggkao2zAfkc\n8j/WI2k9btYDm8/5tYWCcahtH32k28xxBy8lvueOGUAp5kNDF7TpakAhho/1Y4C0CkNAUHmcnwMa\nGdFZ8fJrnyciIgeuUp3SU8jcmT1GL7nOwiOjylluQzTAY0/o9zkE2e3YrtEBFUQZkNMsH1UOdmFB\ns0iWoE61sqKc7OIZjQ8lN7kCTpQ84vMuVZRw6X5FHZOofTWB+FrCirMlIORxlojW14xqW8OjXFno\ncafAwS4vKbqYPXMa/VAUMIosnuFRvV96kvleMMunWq26ZxhSWdq1Szm7Tq+3HsM+sSSxvlO7gFiP\nIHOH1QquvFzjHJ93QMdibAy54syCw7s7j4iFf/hH5fgeZuYPIiRYu8jvS7I6GhvRdqn+tLJa8r63\nSl9dcaGsXgAFrAbfYWR77Ub9qv1pvc/H6njXoA1LP8MIOFNmwb385S8XEZFrr1UNgKGC3nc2A/3R\nvF8imf0bKnIV6df/ajRYrVOR6vWveJneP1Sxjj6jq7MjR/Q5PPywxteurOjfhIsVBy7kCsDGB9tY\nc/LtVNwnIk0BgFpN314WkWi0aNGibcK2FIlS0cVyoTQ7q1qzXKrNK2a+Lbk1ay5OFLOlraOThUeV\ntZTEVSLE+ahW2kasG3VLm6wwiewRoo4c+lOCB5Uajnnoo1aGEOsHRL3rEuXXnv9CVcdamldUc/aU\nIrV/+fuvyo/8mzfKE4eZVYK88Zqinb179mO/9mduQc9jvGitqvupzrQAvqkBVakUFPm3QaFoZpty\nqju2KSc7BITdJmIE8lxkbaVRRRENd5+KqpiBVcdzou4Cq7MWETOZZJeIiIiUwfWWV7U9V78I45nN\nZrtWG9T35DX4jqwi/lBEpF6vOVTMSAzqK/BZ7typ93wAyLOIZ5TGvY5NqBc+P6zXKSO3/vBhjcH9\n9nfUy9xskf/1q3Qmddfb3nE2TpQxvlwd1cFbt42/gEjc8cZAkE1kr+0tKvf54raO9e6S9uO9x1RF\nKjMFnh3Ptg5d0yuu0VXSTTdpZtKllyknzHc2k2HlWMFn6q/yb4dcpO9lb2A1NzKi78bUNu3X1bje\n5Qd0O4tMqkZDj3/sMY0nTeqeCcZDtzmTI49hcMmH6bSNEPJ1SgfJXIpINFq0aNE2YVtcd95Fc+m/\n6d6cZSiGi1uLSG39dReDJ1lznF+XJpfzeTRXv8bUvqbmouNXXMya379Ui9qK8PhVFQUwbpMVGZsN\naEGWEXc6jJpMI9q/s/PKU42PK9p50aWqmnT1CzSm7sAVykuVkBk07hR6kGkEpSHyb2vgSufmFJke\nP34c/db+E6VNAlXkwEXOsI78sPZjO2Z9x7MBtY0C9bVyeh/LQLiVIb2/cSDZWp3aBKgAgPGg55zZ\nMymgGaLEFuvsiF8BIJvNOgTGVQWRKJES1Y0YR6nHNty7t7bC+l167UlowW6HkpRDXLwOVitrZfRN\n9PwFVA949PHHMUZ6b045H2PlahTBa942HKLNPHKrJXrxqanrvPlAXI4TxfWgBDYCTdkpVHcYLuiz\nOllWr/4u3Oca+tsu6HWnL1dv/JtueaOIiOzfr59HwNkmfztVjA+jA9gvIHdq5vJvwGnl6nYCMdDL\ny3iXGeUwBU4Xz/5FL9JsuYe/8y/a710a6dKq++NHLpwrilTaV+vK5tkfZi+K1+8unY4eFpFotGjR\nom3CLohqn+E6KPSctXqeZz2xNsujiuwIR4miGQdsiURNvxKvvz8bId1YmoxvNbNXu8VZzudwibBS\ncPk1mZcLPobXd7F9iPcsL+msXkujn23mHcPjCv7twPPUU1yDetLK4lncHmslIV4TfFgJHt6EQ9br\nl5CRNIK4U8YWTkHWcD9qQuXg1X9qTZHsxHaNOy2fVm61OqTjvyCIrUSGURNz9hlEAZwF0iytUvuS\nKwAfRRA91jGORFmgIyUP9JVJJznovLdJZAwR0ZEPZs46vysOM5Ij5fWZcYl1cIP07lPqkXqeXLXU\ngei2IdtqcV7vcZiZPxW+68Av4DRdvXhWGcj5Mc5EorxegzG06DW/J9Ll30YRufQZrJbGQLHuHdL+\n8Z2r4v73bFNEd3xFucc89AxuuF698Vdfo+/aMNvlO5zyM664qExnsCpDJAt1LerQfWAcbjLuNbQ/\n7N8/Il6G0c9LLlVu+v9j702jJTuvKsFzI27Mw5vnHN7LOVOZkix5kmV5kK1yQkHhwlNhRLW73b2q\nQQa6l1lucLsX0KYAlVllg3A1oCqMS7arjAW4ZQqQMZ5lWbKUGjIlpXKeXr55iBcv5ql/7L1v5L05\n2lnuxKx7figU8W7c4bs38tvfPvvs86Y3vcnMzIpEru26nMn8zmDyAjbqXtve6tKvxGl3tLr192W7\nUoRINIwwwgjjOuIG60T9r4pgNl6zXKcjFx85sPgRaLeiSbOJEKXx1SMxsb14qUDlS7BXuWYv9SLS\n55QrWkuOOETMrjhezq7yYJQDTbOj3tqcNckLefXbfay6oe+mOMP1Aq4zRR4r1gCybBA1SYdZXmft\nehG60AKrT4SuKsyWr60BjYk7bnX8aCZKXetgHzjMsSz77pRxHdtdulUxm5+aBDo7UANCXaNvqo4X\nExJdBBJtcADj5NOMvZx0H7qdO/E+RTTXRWV4L17OOo6HqvPMrsdj8hXFsyNUeyHPjv3hi/39rODh\ntUurqnPR98SNDtCtf3VpkWNJtM/jyH8gTW6yTj46xlp8ZedLdPcvsx+WNMVBP1HPSYxoPeKthjq+\n8xLS9n4L/HtfC2O5oQMEmqezvEvfhBl6wGaHser4V++AA/3kjq1m1tXkCrm7THdLn6nrrtBntY/P\nTou6UN3b4joquFpNv2dBt1+Wui1wFeMpXljBJQ2zi/PIM6vfitc5jrhePQcd49/bynMEPYjNzLqa\n7jpXPZFrwJkhEg0jjDDCuI64oUi0SX9IafQ0C3UzYkEvQL4KqNIBXhm7aMTPI4mvubi3tb9mP8jF\najtlSoMcbERcrpyBosrUItpCoJ6btvlepfHreh4ye0/UsboMbjHmTXE4zzo5XpfF+p2Ya2avsaoc\n5+tCftJAclyEFui8s8aadWXlVS0iDjlC9JbjfRgbAU+2wJ5KT56ElvDuvciQTq2wKug0VAS9oKus\naOpZxfEmKhJakWYwGferKoKoL030U2WFUov82CC5WCHSTjviITfPr5LII+YqGy5Hrm5NdKm0bnk6\nZ6XT2JdWDRlmq6UYEFcn5LRIVF0rYUxVzXaaFTYJribEqcZj/goaIa06kVbU68bg5/fFhUrR4DT9\nvaN0Xp5vhGrm+RPPs0vBSATnk+W9EV+/NAHu8M7db8Z+WYG1eyMUGWkh9BTdrGJ+faXXdZTP2vQ0\n/Q/I4+eoGZZaIJvBairidWegJ4E4YU/7TY6UFVe1Gq5/A/0bTp+GRrrcxDO/XlapEX0tHHU55XhG\nhUz521StPH/Len6qVTruV8WlXj5CJBpGGGGEcR1xQ5Foo+lHBUFPQHFh3b4n4jH8FUqqGVfvbaXj\n2wEEGdSVJgK19kH9qVf2wAiqCbqfk1Pl+6j5kap0oUIpnhzWK69QxpbcrsYl4s/kyj61xqz4LHsP\nvfDS93CdPIFV8mGnTgAxZpLKcmN7Zce9bplE0tJ3Rpj9T7Mn08lZoKovH4UHpjV4Aay0um0UaGXD\nINBcgkgzw/FVhliZcaGmSMRfQy8UcKFTvZnZGjWXqkDLU7eqlYnQY61qHrxPJIS+iZIz2KawCsTi\n8bAGrabGwMva8xkqkqvUOY2NjfneLxOJFrkayDGbfYoISYhVSFTPtqdB5rNZ52qgTj2nEy3wc2yX\nEJp3/Qg12L1Uz3KWvqG9HZzneBPb9zv01E2yG8EIdLDpW3AP79mGVYe3qtMzT2Qfdf2rPOk+1aUg\nm8V57NwJVYQ4Rj3bns9FSjw2r5/rOGm3hWyzRLD6vpB8i6qGoQEc5/TqWZ6HJ5XhedKfgv9GSNni\nUscqJNpsqbuFXwESi139n8gQiYYRRhhhXEfc4Np5vKq2XBxk3Pzu4l0kqd7hQCjBfjSq/pA3YyRQ\nn+w53VPPqZp6zebBnktOoIKqe96BviyMy/WMkkpAwNar6Tc5z/BzT2Pnr6fungc3aAMttclx1lrg\n4xaXgPQWl+lITyf7dkOqBT/nq0xrgiiswlk8yvGoE3UsqPspebLoPPb/HHuJH5sHUn39PnCkPTk/\n7+dxyYFxi3Gl4RJ1VAKej0lmqN0Y+DihxBjRSMNbweA86/WqJcnZKfnuxvyIIs/6/kU6R5mZ9ff1\nWbVM1yLepAzRrfSGOrYUEBsmULEjP8syNbbyK12hC38uk7/kWGg15LlN8e86bznW18kJJoj6uxU/\nRFa8V8HfQi6KcegtY7spF+g9y7FqsmtCcw+QdXsn9K91PoRZ7i9DBK+HVMdxXSkphET1T4k0vNgu\n5vrzG91ngPkMTxmjLhX8rTakRhDypK9pDNvn2e3BOuJA/WLwCJ/lZIrZ/rjOmwqcuFZ3WrFQEUKk\nGq/ge6XKpX07LowQiYYRRhhhXEfc4B5LqnkX0lKHQ9ZGe721/XxSMKse1NIpNGsqunXJzP52un+5\ncP9CA54aIICggm5PweMFK7C6HCuRlqtunMrS60R4Hh25c/uRdFTIlGipQc/HBq9Hmdtyyd/7KZYD\nGmo1/RVBw8Pgv4x14mmitDqvf2LrpJmZVXawYmk/OjIufQv1yo0VIN3zR06ZmVm1tcvMzHLUQEYd\nvypCGkaNZ1rVNzyfXKDaSBncZTrtCzn39OB6pEWskEfsWMdbrUj7mqFOsEQkuUqX/lwO+zIzGxoa\nsHX5dHLs5f6jqrQqFQNzc9DexokgS0WsAvRMnjkLVC7uTp6nwWfXcw3iPRfXWKvLFxTnpusRElTN\nfr4HyoR0QtpZ+qByw1ydfqgNHC8txNfDSqCN9ALYBiTapGtSfaXAUcF5ic+Ws39Mfe0j6o4qlyR+\ni6vAtuNHmJ22Ko9UwcTtvdWZ/7fXbKi3FbXS1FKLe5Xfq7qvNr38BREsVzcJ1sYLyWsVo9dIwEdU\n5yvOXN+/UoRINIwwwgjjOuKGItGu16Cf5xFSVHQRImviA/3Gvd7anH2E8KQ37PI4QrB+xFitCS0I\nJeg8/Fn9y7lKCWkF+a5uvxY/93nR/iL+2bxbzE/0QkQndqbVUkUPnYfoIFQqsfKo4a/0kWuTQI2y\n3jXqRSeI+KZuBtKMbgBCPTB3xMzMEhns5/QatH8Du1CpNDq+18zMCv+tyvMjGor666CD46bOmXJb\n13iIb9R9GRkGT3f2LNzMB4ekC8X5z8zA+X9qM7ar1aueK5Dnd8CLnqdbvhDQ+PiYKQYHB6xcFn8s\npUaMY+hHpDUqD8SBnj8P5NmTz/A4SxwD6lQdvyNYcBXlenpL49/9q6sKuVqW4ns9ldpNcYfkq/VM\n8Snp5fmPOtg+TkSV41jlXwF/ThsG31yjOkA9j/K9QKzK+nudeR3/uHh8PZGn52ivbhFt5Sn8Wm8h\nv251Io/f8XsE6Fmo1TxxON5LxeAEtMWmKjj/syZH/pgrjly/Ua6WpKQhoJUiKOp5Klw+QiQaRhhh\nhHEdcWP9RDvyRGQGru3Xa17OnamLTDnbcLbsCDkGuohqP+IQFcH9KbS9dI1BJHWxntXfzybIiQqJ\nKkN40TB423snhs91Wq7fzarBzGWNKKRSpS8nEWmS4+EoI8nxlWNOhgiwfwKIcsMAXoc3jJuZ2Szp\nwmqWetwFIL4o3ZkcaveMdd67yK3WS6qb9vOAwZVGEJELdSwvL/vel9gdVCiql1xogmgsT643Rqeg\njhuxCDk8ZXNVK69nxMtqJ7oKgmqt4jlEOW3/vfMQo2rWvU6l9Eila1DWMNblitC3rt2viFB4Pg0B\nf4fuKsdfCSTaXFzsCvtRST8qR6ueFMaknxU3+QqvYxDjktmEe9zewAokVmo1zsO1KUVOWH2tur8N\n/aYCvhKB8xX32f07udGY+Hzf5VhEvhg6SlvHC2TbdR78uJedBHpyUEOcbiqfQCSaFAJP8lXvhaT9\nipeuusC54NPuavRKESLRMMIII4zriBusE/XPtuJJstSmSUfZDvSbCWbdlfGzQHZe4WkGOYt7jvfi\neQKIVAhJxwm6SgWz9UFk7OlRya9pWguimYu7j/r3Hzxey8H3Ssy6CwWV6cBTJVc8QDf2bktunH+G\nmsWhIfBi/RuRdY9xvGdZc3/6NFBJK4nrmBgGelH1zBCdedIlnM+5afCA0R7sT/yUZn8hUyHMuMdR\n+8dfLvTyBJXbU09PjueP76veemxk1HedyUTMHHKABWbNM6yOUn29sutaZZgBrUqbK/ekIN/e5b2F\ncHFN/XRxqlb9tfFt3mP1txL3KTeiNnWS4veDTmSq0FHlkBvxI1ppbOO8+Bxr0keJ5GJyxKee01VV\nF8dwgL4DHY59hbpUjVeM23c7BajyJ+U7X88XtSNnfj8S7a4qsVl3GeL4v3+ZPmfKlkvgou3zrK5b\nWMDqRe3hpQ+VX4TuY7cKLu3bf8vo1hTQZktDfmmluD9CJBpGGGGEcR3xj6LvfLD6QtF1lsf7oE6z\nW/miKgl/jyTtV7O9Jr0gAgpyncEa++75+DnQ4HkE3yvDF+yBHkSgEc8fNfC5d37cv9ANX9X9skyk\n12nLAV9VGfQlTWD2HSD3mU9hFneIlBu8nm8/85iZmRXYG2qZ9eDpMnWczI7X6VgfJzd7ZhbbDcaI\nGIkoVUEmZDo8hOP392E/I3SHmp2F+9PmzbB/knfACjnSfC+rbbJ+vjOVoLax1u1D1A44a/UPQg8p\nneGZM2fMrNuTxwx19kGeVd1B5+eR1Q9qiLtKkqbvHBpyUA9ojcXtqWKmzNVQ18lMyCfqe5Vjl5fV\nlq+m+qYTweV5D/t47/NEksqOuymuRgYwZjHqS4XIo8xiR8iF1r1af38FUvc3wHxFxM+RCkHLX1TX\nJ845ncr6xsfkF+HpYrl/AVytphz/catcCThtIWXx63ivZ19Z+GTS7z7ljXfEn2+RJtvzbw34Z1wq\nQiQaRhhhhHEdcU1I9MiRI/YLv/AL9r73vc/uvfdem5mZsQ996EPWarVsaGjIPvaxj1k8HrdHHnnE\nPv3pT1skErF3v/vd9q53veuK+w3O5sEa9lZLsxidbNQpMZC9l0dkcJbxuEXO2vp7kBMNItCuvlO1\n+nHfeQZ7gQdD/EuVHRWdyKWRaPfV//2LuFb1HpLTjyqTWLGjrpgJV3yPqjWAKrJ0PVKVRo2oKMn6\n4VNHoQdNjQMhltV7ipnt5WPQhy4dhibypRKua2QQ3GhPFhxsxBt/ZkiZMh4ibxgJZLq7NfJARb1E\nsHL26bThGVlgRZUqtcSBBntstVot77M++l8qyyxHLXFe9Xr3HsbjCUswWz9EtKx9nj4NJ6xgdr+r\ngaWjO5UJcqYXr6tQ7b32UyrTB4C6S6cj3aMQnBy+pL3FdvK3jPIZFE/MknqLsy/XWJMKByKzaJou\nSGMYF+O9qvG8o8xaO+QShQwjHtIMKGS8rhLqEyY85td0x7S/tv8h73Kh8pWgv4LnF2H8nvqWSYWA\nPyzOr/B72C6qv8ekyPGv7rrt54kw+ex3nCsrZuSte6W4KhItl8v20Y9+1O644w7vsz/4gz+w9773\nvfa5z33ONm/ebA8//LCVy2X75Cc/aX/2Z39mDz30kH3605/2taUNI4wwwvinGFdFovF43B588EF7\n8MEHvc+eeOIJ+83f/E0zM3vzm99sf/qnf2pTU1O2b98+j0u67bbb7MCBA3b33Xdfdt/Byp0gUot6\nPIxmPWXRlT2n/pPu1evMLmvWTkTUxwYhbu5yLkxBZHy58/Qc8j3Hff/+hHRVz6wKKWVkxSN1a/Mv\nff3erM/zUGa3pr4/NfUmx+eJwPe8PkADA773bhqoa52VWs+ehhtT7y5UsYzs2G5mZjftRT/75//f\nr+L8FoCeUkQVpSo4y7EtcDRqeBww67Wp2VQFU4GIeYlVPbt338Qrw/e+851vm5nZBlYTbd22xczM\neqhlXFxa4Dj6vS2F/BOJRNfViJyYxlydTDfSEV1ZdTPV5KvmG5+tsia76xjv58mVLVZXAHWTlAIh\nqMTo8uh+LbR6DMmFSDrVhISf1D+qG4CpoojIORXwu4yzl1SshgspjmBsFlx8f+MInoWIFC7cX5T7\ncQJ5gjiz/i1WSEUjWi36kaQFkKhCTv2uqQupxvHSelDPQ7gT7LapXkx4p35gS8vz/B6fPSFR7zXi\ne+/tX5xyIO8R9AzWb/VK4XSC/5JcJh544AHr6+uze++91+644w57/PHHzQxE/Yc+9CH72Z/9WTt4\n8KB9+MMfNjOzT3ziEzY2Nmbvec97LrvPmZlZGxsbvZbDhxFGGGH8o4zrzs5f7t/ga/m3+Xc/9nH7\n/X9/v/3S//4hM7u48kfR7a3kR3yuV8njHdXMurXwygwqa6/XiHNpFkPHFdJsNpv227/1b+3//L8+\nwvPwc6UXOfJ43Ub9/qeJBPWNXp95fyVWNHAXdD3KGIugWmGVzCJ7MM0tztuff+bPbf9Pvs3MzPqy\nQFcT9LqFPJajAAAgAElEQVQcZGZ6amrKzLpoKZ0BKjh09ISZmf3l3/w3fD4Kvmz3Xa8zM7NGCuP3\nwsP/YGZmPfSmrJfpcclOkRu2gEfszeE6b9mFzpAxx7F//fO/Zn/2h79lZl09a5nfV9+du+++B9cz\nB/7xwPfg1L9126SZme3atcPMzI6Su63SoSiR9GsWW62W5/TUpsJAtd0FIkvxw1oxvequH7dvfPkv\nvL/LX/LY0VNmZra8BPQcd/1ZcmWt5SKkaiutjoRgxYXqmVGNvsehMstcWmfnVlahpRJJ+8oT37N3\n3vNGXGOWOkciw2HqHfvoG9ofx/v8OfgP9NB+YmYUf+951T4zM3vt/v0YO3rDFmaA5FpygO/J+sYp\nS22xuFGvsidi5kbSVmvgelQV5/mCdmt++DZQ2dQJrAbJCes3pOpCreb07FbJJR956aSZmf2HP/y4\nmZkNDmrVhUqmTCZjv/rrf2y//+/+N15PlufPfmUtca3+3+5Fv2WqBf7NBz5ql4sfKDufTqe9Jevc\n3JwNDw/b8PCw17TLDNKQ4eHhH2T3YYQRRhg/MvEDIdHXve519uijj9pP/dRP2Ze//GW766677JZb\nbrGPfOQjtra2ZtFo1A4cOOAt7S8XSda3KvuuUEfACyps8V+mIFWx4kSkz/TzTupFrdlP6MDrTxOo\nplD/eelJu3W2frVA9/yC2jh/rX7XaT3gcO9l6f11u7quYFZer3I5V0WSXsvMkifp9L9xI/g+ZZil\nwxT/pwzowYPwA33y29/Fda9hP543ZQFId3UFaClHC6FmHSggThTj0gVcHpejI5g05cWo7p6q1knI\nJ5XjIK+Eo3TIHxujO9QIONFnnnoWn4+jYiqbB8qoLAL96bm5sG+RatqbdSCkjdSeSqMa4T0S8jQz\nS2fStkpHK9Vkd+v9sY1q8LtO8vhc2fJu1wW6//M4qtbyHO/pjdrlVoMrNmaZ+dtox5XlxudpVm/F\nMlg1OAXck6k9u3H8bXTEevol7p89g9hjqcoxyxJZtnj8VlTPnvH8gnkDcYUSdEbMIhfkMwKdcevi\n5/nb7a4t/fy/uE5xsUq3d7XhF36r6141Q/esdAbjJO41+NsJ+jboqMHPL/bR4L8RravXLF31H9FD\nhw7Z/fffb9PT0+a6rj366KP2e7/3e/arv/qr9vnPf97Gx8ft7W9/u8ViMfvgBz9o73//+81xHLvv\nvvu8JVMYYYQRxj/VuOo/onv37rWHHnroos8/9alPXfTZ/v37bT85l2uJUWYK+/vwj620e8poBrt+\niofyKnscZbM1a0o/GvNt381+y+PQP9spm6zM4dUql4REgwi6u735zks8UiQSRJw6flfnaNatmhBq\navC8pE1UlYlQTh9dzsX7qCOlNIlCpg3yU899/gXshwh3z63Ikp85C57p+FPP4XpY9fK6219tZmYv\nETHWyDVHi3jNsMNlnm7xw0PgYqvrBV6nvy49StelJLuQtj0UgwFRZVU6Ax/R+RXVwWP/yRjOOxLo\nfOk4jtVZmTQ4AKSW4L0qEAGusXtnTx/O0Qz14BPj4JHPnDnLT5UNJodW9VeuaNUiLXOU28uvMpiV\nr1b9zla6l1JcSBfqCKHqGeKznmFFkVNh1pq9hlabuN4jf/8NMzPbNj6J43IsXzMAfjqyGbxyW7pH\nKUnkuZuWA5m4wSBi5G/CU5hIw8zz9CqLiOCE5KikcL2KLOlfhQCDSNy/evO03/QY1iru3Dl2EKAK\nQyuEIAKNBXwatAj0XKMCyiDXK/LnfXCC53dxhBVLYYQRRhjXETe0dn737t183WlmZjMzqIwpFsHz\ndLzqh6CfqPgNf5/4YK266mbFmSrD52XiNAsFaA8PXSh77nGdl0ao3Zp5Of0Yj+/vJNjlTi9dhx2s\nz9Z+hXjV56bF7p3yUpwgZ6iMsGiUo0ePmpnZduo+S6xfbrE6Zc9r4WS/+WboQ2f/CpnawSL+PkuX\npgIzpZEeINPh7eAZB5s4fvMU0Fu7zgotavzS7LyZYe8m62C8ajV6cNJRX/2CGnQK6h0Etzo4gutS\n36FERFl9IFJluuXZmU0nrWz+6rWzrJWXVjbjjRG4TzP0ajp5EkqFNbo/ybs15vqztaoBl+ZYdf7q\nD6V7qFWVOMcyOVd9T/3YW15nWiLEmH+11U/0nSfX2pfBWLWpDZ5jdt8dB/JOGn47DhHq2hJ8CTLH\ncX2DQ+yNxGfIEnJ2ZwfcgKqmFchiC4FGHD9C9ThT7ieupLvn0KZqM1YmCcNSRdBy/cf1OuR2xE3i\n+1Ui8SpXYS11Q2V1XlAxE/QkbqgUKxDB1aYuK+iodqkIkWgYYYQRxnXEDUWi4vRGRyG4F1qQtk4O\nOpolyuw3o9m9yL7qHv/k+hFft5JI3of+HuQdfq8VqFCKer2Y6NlIvsVzgwpk44MO9p5DjOcJGXB2\n987vMpVarvSoTd9xNV7afnwUSE3cZ9C/U4j04MFDZmb20oljZmb2vWcOmJnZrW+FHjQfx/53vBJ9\n49cPAFnuZeXQnr3o4rnXBaIVCjh7Eignocox3h915+xlRlpaykwa5zNAtUA6DQ1ivhf8ZIsopUG0\n1sPn4fjLQNS33wKtYxfhG993OxisFvDhsRNAoM0G+NNdu7DaOXIEWtP5FZzrntvvspdeOmwrq/Iu\nxTm3iLTU7VE16l19J569JJFOby+QbZUIM9L0O3lFtapSrbcTzCLz3vPakvy8j3rQPB2rOmXy8AVc\n10AEf8+Qjz7fxL1ZybJ/VhHnW3sc96Qvjmfq5lfgXpNqtXj00s+kR3bKIYzvOy1m5/XsqnOtqvTU\nkZa/ASMijRFZqjJLgLTJ8dAqK0bkX2/hWVDXhplpdFkwUwdZfw+oIPL0ONrLVCde5MzG62xzReNY\nAKFeIkIkGkYYYYRxHXFDkaiqSzTrCVHpVahA2y0soHa6yAxrh7Pe8rJ6UpPv6agGXlyln8NMsYZc\nPbJV2SS+SgiqVmcWmLOVkF03M+v3D9Us3uVSlTlMBrbzj8PFTvnSmfr1q8rKa1zEhe7YscO3P53X\nOP9+5AT4sAPUhaaIjBN9OK+1BK57NQGUslbD+C48DRf4DbuhP526FbXs/RGgopE4eLjKOWTRk5y9\nW0QlRRZk9PYyU+7dX6Ct/n76i5L7jFMNcP4skHCLaG6oH4hUKgoRVrkc0Rm58Xqz7WXf5+eBvDZt\n2oRrWaK2lP6TBXKUZuDKu65Lfi60ZnIAkyKDXCjHOE3nqQSfqXaU94yINCZkJAd56k3FpTriEOmw\nJQXDYAYIc5i8d72G8+ojX2wZ7H+hgoqqwTGoC9YWMHYdIbM8jts/C4S6+vffMjOzWT6TgzswPm4K\nx6nSISwXdBwzVfAo+962aMy6JgL0s2jyGeg4yrJHLvyzOfr+Ou6Hst8desVGpJAh4q5HpUjB+R8/\nhlXJygr+LUgm/ZrtICeqaF/GFzSYnde/FXL96jhhj6UwwggjjB9q/KPoseRlLD2PRCBP6RuVGRWy\nUvVItz+Nf5bX7FSt0TVcVRPqc9OS+zk9Fsklql64mz33z1JB7V8wS9/2eCNcn2r7PUehlmb3S/Mz\nHh/jZYKVla/6tlc5rWrjt2wBQlxaQqXR9DQ0dKPUi56eA3e5NE8+KcEOj6zGqLUwbqN0rl+jOqGP\nOs5jZ1DTfrwXXHXfUaCCe14Ne8Sx28CvRTlrzy9CZTE7DSTb1wckKuQoDjyVxWumB0izwufA86Rk\n3XJfL1CSXKg0fhG6dVXo4dnpRDwULjclD0kRfY9twFhFEwumSKdTXm8e6Tl1r3v7cGzx5EtL4E67\nvZtwnEZTfK7fA9cJPDtB/wV1Zk1ksb84e0ENZDFmcXYlaJDbTQ1hrCZ2YvUx4ZAzXAcilUIilwBC\nluPXSgvnvbgEBL7y9NNmZraTLke399BnNE4tdUXVcHw2pWV2pJ8Vhyndqr9azyUSb/AZKCxAM5xg\n7dLhg0+amdkoO8w2xWv34zeYZuVYpwe/TVWUvXAAVWyNKlZluWGMV7BLRbDHk7o9OAEOVOF1pwjk\nR4LVipeKEImGEUYYYVxH3FAkqtlAfJSyyprFg7Xs4qWEuMSx3X777WZmtjCHbP7aGmYtmUJrNu4i\nSn8fnuAs5tUvx/wZv6CGrpsBVA2/331KHSbjcc1yQrb+43UdZPTe35tI4yJkLi5U74VUNY433YQK\npKcPofLo+AlUGmWJCNfbOM9zzwNh3jqI2d9jf4jk88z+d5jCHRkGf9Y6jSz//AIQ7jpR2NbJDWZm\ntmHjJI6XxvH6B1m3rmw6Xa3EJ3bUxZQazTrRoEPk7ibwRWVi5XYuP9FymfXiaxXvGRF/rWdE/gG1\nFh2g4l3D8Ewyaa0mxrDGsU963SFxrnqmktS+uqbePbjHDSWxO4Fnl/tZl65R3Tr5uZ5tcaqJGF53\n7MI9HN4GDe/AFHjpSAfHzyVxfYP8/kk+mxteheqy1hkg03X6jjZfxTQ83Y+OvwD/hAqRabSCMczE\nHJ4vxiNKZUu8hfNqOri+ZqVoPakBK/KeJfnsO0Vc9+Ix8PDnnwZynHvpOK6bv5kSuz6cUZeFESo2\ntoHb3XgLrr9JxP/CETzDFQpLXa7uIi6dzhxptsVtGj/Hi+fCcRmkKg7Uq9EP+IpeKUIkGkYYYYRx\nHXFDkWhQd6mKGyEwfS6kFeQn5FKkbLXcwTXbS3eqUAXP/Cx4mm2c5dWzSJo+oQNp94I60aBDfrc3\ndtv392TA79LTg1qAr1GdsLwa6eokRC4+TZnmiQkgvh3boduURrFbp43x+taBJ8zMbKUNPqrqYPaP\nqqMkfUnPH0V2vcnvnypi+xZ7jL+2FxrL5By+X8/j8+V1ZrjJTa6u4n1xDdxpLpPlOFL7SLQVdfG5\nQ5f0tTUcb43O980KMrexJNUP8oBkZjzJ7H6D1SrrJVxvoVC4SOGhsYlJS0vfy/I6eGEz9O1ZWsCx\nVQEjp6qZ8+d4bNyD4SHw0ZFA3/RWXV07yWfzGahTUaF72X02OBZazTD7Hknj3t9+551mZrbnJvDN\niUE847EGa8TpA1pehAph8RR9QZPY3027oe3N02+0zNXC1O3wlt03imdpqY3zW6bSpUZU73CcrEz/\ng2noa0+/BP1t/8YR63nnpJ37269jDKu4J2eJOFP0V11bAA/foK62GhNXjd9CSshxDbz2In+bhWNQ\nGbg3ofb/ycNEtEVw2ePsAOv9m8D7oIKkVp19yahwiXk+Gv5/I7rqA4S8hrVqaluIRMMII4wwfqhx\nQ5GoasGD+sduFhbTgSqX9CpEJk6wUCj4XrUfoRAhucVFIK++PiDUPDm5kydPcjs50fv5qmC3z2CV\nQ4J+nukU0E2NzvqKyyHQi7p/mrhTf828UJUc66VjFe8nLlTjWKQGb5GI7l/+wnvNzOzRv/oyxq2G\ncVk596KZmVWWOf69GI833HUX/r4ANLH8IrjTWBm8Ve8gjqd+8b1D4E4z7Cmu45fIA8qxSKqCZApc\naYeazSp7RcmzoN3Gc1EkCur1+Ez6hzb8iH9ltcjvtzwlgFY14h7liJVKYyzzeXVGNevry5tDfeN5\n+lSurhKNt9VpVasVXFOedf/qYulE/KsNz5WS91aKk4tUA0RicXrgbtgJBNkhut8wBIXF+jKvsUjE\nTOSb4W/lNTtvNjOzx47hnvZOYbUy5OA6nz+Iz9UtYdurX2lmZk+egKPXyTI44ttiWN3ZESC+mRMv\nm5nZ0e8cNDOztSNA5o1a0fa+8x327c9+zszMxlwoRdJyGsuyVp0canYUz0Yjjd9ssYTxjXP8+qWD\nXcSqolLDdc7FT5mZ2bHnweFmcnTaJ5KVB4Gr8SfH2pSyhc+Iupl6blle51ki1EAnWflpeDX+V4gQ\niYYRRhhhXEfcUCQqT8cYucMU0YMymkIamsUnJyfxPSIxoYwaM4naXshNSE2VToODfsd3RdNDGf4K\nphr9NsWTCN0Imap6I9iTPMV6564mUJ0L/c71XUTqR6bKxkuDp1rzLDlG6UO1nXSzQqInpoEWbn3T\na/Gezj7b3gJd52gb+/n7P0cGNbVKXoxenBPDmO1374Km8tm/RZVL2rDd8CZkgM9moT3czbk4H8N1\nZyeAdFdZQ6/M9EqBNfQ5cr5EBXHe/xi9O2PUIMo2NumhCNyXUlNOSPSYZEZ7IJ22MWpQyzymnokG\nM/p56hHTKXJ+ZtbTk7UqO8UO89kosPKpRpSczOBklhbIPWaop+Q9U5cGaZGHeI/q5Kf1DAcVF1E+\nQzHe295hIM9zZ+ftVjM788IpXJt0k+pHT2es2CjO9/knoft0WfVlRHZHi+AYy9TBLqzj2agt4PgJ\nqhXmyEGeKkPj23oB748cAhJ1hnD8dA9+Q00hxmUgysYm/D1+M56ZgW1w+mqS3x8fw2qlUGYnXHrK\nOtP4bS5/A34O7SJ9V7ld9RDyGCOr9JFwWRXHcWhzVdKitqQjjQlXEJ6W3PU7suk3rBJ+fw8Ns0jg\n8ytFiETDCCOMMK4jbmztPNFAivq/bsWONFriyvC5ZnMhQiE/ze7KxosXO38emUFlq/V3ITlxrNpe\nXTHFzUlnqv48cgDqIzKUJk3lw12kafzcXz98gRLTF0HWRchY+lTN4ilmNkvsiVRPqDoG28/NAXU8\newg81/xmZhrrQJbxDhDddC/Piz2LbAX7ufn1rzIzs04/7ksf+acdezAu1QJ7OzEjvDGFcUjhY5s/\nBu508FaoBuLsO7/CrH0fVx6tNu6Hy8qpdAToqcLnYInX0xtQXWicaxyfcgUHzqRxvoO5tLXYB0rO\n6uLEVPOuyp96vctb1+sVT5urm9fTh2trqu87kaOeIfki9LI75twcEFWa2uBawGEqyf5V4vt1jwtU\nFgzy83wPxijPHkq9GRyv04exWmX7+ah+M9LBTgH5dZbI5dboHkUdZR+d+11mzUvz2K5vnUgOb+25\nF6Etri8TEW4At7pOhD3C/lery0CsI/SW3XwntNqb78JqJ7sJn1epXMmy+qyXv+kGnb3mGuA6W+xu\nYUSgEd6vHBFkjiqDCjnXGh3DYvwnrON5FYgb7fi2U81+nCsGrS710/S03urmyucneumSe1+ESDSM\nMMII4zrihiLRbIpejZyFK0SMpK+82vMpVsKUStRpcjaSm5P4DXGdQp7yJY3RISfowiREq+y2svWl\nEvYrxCoHfu1/mfrK2VnMxkLEqoRSBjDYE0pcqFBIt+e236H/wr73ZmZbt0Ir10+1QccR3wMEKZ3k\ni/TdPH0KGeZtP/4GMzMrFFi98jQ0fqVBulLV2JGyDXizeS/0oOdr4DpTRFmza7je3f2omilO4+8T\nRO5jRJiZIWr3yDvl+/D9iU1DvE5p+sgBR6SPBcro6wef2STCXCNXK2f7DlGkuNTCClYKGybwvXwu\n7fklFOW7KT9LIsoan4167UI/go4NDuPeJlI53zHmF5Z4Dnjm9KzIB0HPoF4r5Of7+sgRkufNkPNc\nIgKUn0OSbk2bNoFLvON2ILk1KiZiEzivVp5cbpUO7ryuRAOvw1F8HiefTcBnaVYstaUoiWU4HOQc\nObarAzi/5wyrhuPD/I0cxb3Os2KpTn8Fl9n1e/7X95iZmbMHq49YCsi5EcEqxPjbc4ncKciwDpF0\nZhKINb0PCLm4QI0wu1AkqFqo0M+iSr/UdXoJS6/r6llSVwtW3TWqVHSYdKRt3/h1+FuL0kPA8/JV\n9WDobB9GGGGE8cONG4pExQZKX2iGWadJTnJlmc72jnomYTacmwX/VCOvJU7T0wRy9pCuUtlyoYEz\n7Luj7eUOFex5FKyZF58lRDo87NepSgUg9/OgU0xQHyqNmsO5TNl1bSf+TaZPi/QMcFxlsXH+Lx2G\nBvDx76JCaYndMdf/4z+YmVkv0Un6Jcz2VQfnO8SumkfZu3ydrz0DQFFrnO179wAJd6pAFbNPwCk/\nG6Gb+gagjoEEriPFyx4axX6SXCms0/d1dgbjNDaJ8+qqGnB/hscmcV0vgYN+8QVoFMU3Rohqzp4G\n8n7lK+B4n8tkbIb+CW2i+I0T4PD6yK+W+cxEEt123rF0zvI5PkP0CWiSh50lEiUQsgj7tTc68jfA\ns5rPY/9p9kSS1jhNXar8QBtExHzErYe89NapHTw+udNefL/NvurtKvtMtfC+N4/zT/HZcHswhgU+\ne26SnF9ciBnIM9EmRzqG1d1zBXCS3zhKHj1KT9kZINAyexptcahNXoSmevKuPRiXTdhPrBca4HgN\n159ps/rQOG5cjdWYF3DIh/ezv1qEjmLHD54yM7NmCc9iax33K81xKZXwDLeXeeFc/aV03/jbqNML\nuEQNcSPpr7lXdt/rFhpQV0TV6yoWItEwwggjjB9q3FAk2nY062MWOPQi3IE2cXbLZ8G1RRz1jsbr\nwiKQjDhOVS4JgaoCSZ9nMl3UYdblTNWfXYg0WPsu/kscpV6D6jFxp6qQEjItkZPV96RJW1kpXHo8\n2urHTt0jkegyPSx76KupzOvsPBDn0wegEVw4jwqiCBFbkRq8dSK/AfY4sjX2LK8CtUWINo58F4hv\n0w5wnWeYgc1twjjNHmc3VqKEQ89j+6UZHPd1dyK7Hynzuut127PTrFZiPTqRaq2uvwNlxON0qNcK\ngFn9XXQyeunZp3C+dI0aZ8b4Va95jZmZDdFtqlmvec5bG8klZujTKf5VmtVuf3GzTM+QZQaJ+hvk\nwngNHXGPgc6tteq6770WHaoyi3OVUGLN+Noq+fyG3zVow4ZJMzPbth2VSs0W8wJcfvSwwmmdHXBb\n5ADlvVolsouoW0ASiLpFN6kWuc8o/UVL4oKJwB47A3ekw2dP4fxrvC7+0zBACN5boCN/Ftez843/\nwszMYv0Y57jhHiaptBB0j3eL0M3MLMX3TfpStLlsifI3muzH+VfP4lkT19ksYkVQrhLJt9lhoAG+\nvxKX61aSr+RSubqrszpStHx5reTbPpmh4xoRaZyqB3GrV4oQiYYRRhhhXEfcUCS6XsW08PzLmHVW\nS5iV+kpEftRBljiLKNO4Yzuy5dJpyqfz5JlTZmZ2jhU7EaKIDDnRApFhsLdTt1LJX7kU9DXV31Wd\n0vUB9buVC5H2k6vV5+I8q3RiT3tVLH6HHyFkqQ7KdDkSElUfIZk+nTgJBE9TclujC1Onh27uo+Ru\nyRdu3AbUc4691tNEZS9/G1Ujx78JrWD/LmoEiSoiy5j163SwT3MlkNkMFDdbATLud/C5S1RSU/fR\nHszua+vQs66uEH0MIuvfJpprU9XQvxHHn6TmcPkcHIK2bwNHu+3m2/B99iGqFAueL0KSaLZFnWKN\nVU5DdGGyCxzB8r39FjFWoUn5QPcfmiJZjVBqjVVX6jwb83xH8Yx5nqdMjyfpTN/O4vNaDYqCjVvg\nILZ7H12a+P0oDxirKXtOJy9ln2Mcw06NY0UlB/ns/jx9Biq4XvWT783zWSQXO0t/gm+/DE60j9xf\nhVVrrRK+NxXH/nJlPDvrPTivkduwSogQ0SY75KupRpiNkdend67aykcJBSPMcxg5zOYQVnO5XnZX\n4PmvR3Gep4sYt6b6mqm7qNyYeL8aVVaElbH/5UU8syk+D8pDNMp02SJXXOZvOkkOO+EhU/qwXiFC\nJBpGGGGEcR1xQ5Ho4ioQyvQcZvcUK2AqDfZpZ73v8iJ7A5EHGRnArNXHWatekzMLZpkezrqDzLg2\nOTstL4NbjBPRxl2/d6B5/qB+53npSVXV0u3Kie2EWIVKVEtvgVp4OfhspgeAQki3l0hTvZ7KRKxx\n9vlRdYX6AJ09h/rmCjnKqHpx92IWnbxjr5mZ3f0v7jYzs0MHgDBHNyET3Hgc4zz/NHixFMd9Qejn\nPLjUhkueji5YA5ylh3ezPnoQ1zWzDgT85JPgMG+b2mlveMt+O3KUDvq343zW1tlxgA5CMd7XHFFk\nlJnzNNHBBtbDv3kzEGviVjgQxdLUbAoNOmZJIqr1Gv0AWKGjHvdxDmIq3fUTjUYT1qBessms7jrd\nkkpreK3Sn8Cr1ycCqjf0TGBfCT5bekbicVbXMZvf4k9u5x6Mxeg4rsnxOsNSYcLzFPveJunaYNvM\nfJTZb3bDbKTYZZSrGblLpXjdjQYdtXh9T72Ae5RnrX0mgeOXFnHccXKPAx3uP4rvbeCzm6ZzmTS+\njjhO/pbS6k/mqLadvy3P0cz4d44TXbUmbsa4zD4FhLxMNcAy8xjan3w+K1ylCtk64rpb5ESZ3a9x\nO5fPStLBfWpwvN2qKqFwnBj9TRPpEImGEUYYYfxQ44Yi0ZePTNtP3H2rLaxhXhrLUFNH/mr2DLKx\ny4vg0G6+Gdo09Zs/cwZIrETfyclJzOrKqjearPVmZrFFR55h1v/mvTpmzpZR/5wS7OYpviuYrdff\nlfF1A++DyFboQmhFSDTI0RZ4/lkisgy1awODQOCl59h9cwzIfIGu4KkhoI+xV4I7PpYlEbYDutlS\nDMdJjAPh9pSo9XOBBlxW/cToDl49AwQf4fWM7cQ4j70aiHZ5FWhvZRGVUqdOnzIzszqrT554CnrO\nMvvwuAmON52TqtSj3rQLXG0PezM16a4+dRP4wyhRVpy+rRFq/Zr0+Gy266Y08Awz+WreODwG1Byl\nwqNzAX5oNdtWKYHPrbASp7xOzS85sxI50CpXFe2W+jvRpYk+A6qIGhrBNRRWcG1ulD6ifObGNm7m\n9+i8T/5bz0qhsGK9AzmLsuJHLv9y9kqQe3Tauh5s5zT9/boqrPCpLwH9n3wZPPixw0B6Q3mM5ckz\nQHzZMvY/odr7AnW3HWqyM/RbUAUSn/UWEXKU55/hQx5RWl596z2EzS6icl8iNG3KhWoUq5Iz01gl\nNdW5l6vTTktNrbDfKhWp0UC/siZXGKSOvRr7jtEVqurXXOvV5WutKqXr5eOakOiRI0fsrW99q33m\nM58xM7OZmRl73/veZ/fee6+9733v80TmjzzyiL3jHe+wd73rXfaFL3zhWnYdRhhhhPEjHVdFouVy\n2bKMy94AACAASURBVD760Y/aHXfc4X32iU98wt797nfbj//4j9tnP/tZ+9SnPmUf+MAH7JOf/KQ9\n/PDDFovF7J3vfKfdc889Xqb6UrFa5OzCWWNmCehhYY78UxWoYHAAs7rX3536wvUS+SpmFNeJJl5+\nGbPXKBFaVj21yZusEvkkyedEyWEKIcojMspZ0+vPQk5TWXZl68WZyk07GqiRl+5TUfe0hORlApxq\nsOtpnpnFFPmp6RoQZ3YXNHqv/dc/aWZmJ59CJdGTj6Ont6pj4kRBs0uncD67gED7JjA+yuoPjKNj\nQIRccYf12y/95VexQRmz+Mln4DE5R5S2/RZUnRi/J21fmSuKo1RNdOiVsE7uNEJ/0FlOwuITd01A\np2oc70qGlWPUmUbXgXzVS77YxHkWlhesRH64w3s6OADUHvM8X6kJbnYRRrtZsmqF2t4SENs6ObF2\nR9pW9lvnvVR/8tVZnEuBbv71upQe9JplpU2Cq5hePStERkVWGGnM46y88fqgk4fP9nAsqF+t1nHN\n5QpXQ0TGce44xqz80c/+rZmZLfAmf5d9xsZegzFuLOMenl/CeW1ewfdG6vgtueTlo0l8f/oweyhR\nTVDlryZJxYa6Nzimaj29kgsVeSyulKvKEpGoOwQEOi/en7/tJBH5On/76viq0vamOgVE1NEXf5fy\nhT9hi0fUTYKrPmm4tT2Rp/TGWiFcKa6KROPxuD344INeawczs1//9V+3t73tbWaGksvV1VV77rnn\nbN++fZbL5SyZTNptt91mBw4cuOoJhBFGGGH8KMdVkajrur7qDrMu8mq1Wva5z33O7rvvPltcXPR6\ne5uhz7eW+ZeLMnmOTnvddzJt9gBXtnrXNnBwvZwNT04jWz87B+Q6Sv7EHMwivXlmnRfA0RVa4LMa\ndPGeZZZ5htl7oeU+Vq24dI5psrpE9bmazZLUxjlGZxtydZ2A3lTIMsidBn1QNb5d120cfziL64/y\nwEsVjNN0DbNz5lbyfNvZD579b5oVzLLP/ClQyPa3weE+NYj9bqI/aZXj8egTqDzae8frzMzs3Dp4\nsHwMPN8aHeo7VVzHeaK1cWY4zzSwnztug27zROe7ZmY2uJEVYwNAUT2juJ6DX0fnxjSR5HwByLol\nlIDCJ9u+BZxr2gVv5zZx/XPLuM6lBaDH+VX2HapVrW8ck/3YCDL6SfZnrxGRuOS9G0R01m9Wqxat\nRo2rsrNCUg5rvvvJQ49z/2l6mE5x7E/SOevwi0BqpTJrvlMYQyGawSGcV538vDqdZtLy1KXSgOoB\nIatEXE5hOO3CCvafcankmIfWev40lBDRY/CHKH4bq5JzUSLKvbgnS01c73P0no2vU/nCZyJFNyqp\nHWSGFWcF2OLikuW3mDleXyw69VPH2qaLk+Pl4f2uuR0ibOk1Y2vk7dkF4hS13i31pCrSdakdyO7z\nJyrmtSVk2vR3jZBHcYti5DaRc5TjG3HEpRKZtqTWaNjVwulcS3d6M3vggQesr6/P7r33XpxMq2Uf\n+tCHbGpqyj7wgQ/Yl770JTt48KB9+MMfNjOzj3/84zY+Pm7vec97LrvPmfmCjQ33XMvhwwgjjDD+\nUcYPnJ3/tV/7Ndu8ebN94AMfMDN0clxcXPT+Pj8/b7feeusV9/HbD/yVPfDR99lv/T8Pm5lZfR2I\nQn3RJzcCgU5Nsja+CgT0vSfhVpSiZ+PICLi9FKs9Vo7TV5NIuM4ePm1mn0us5R5hdYdm/Ql6G+bI\n9/SnM/aK2/bac89AX5nJMgPKeS+VxPeK7AtTb9BFm5yg5ich0mBWXll4hZBojKnKBjOJdXKh33oO\n1320CeSW3Dpq97/p5+1XvvxxMzMrnwKqOfssEHrcxfU1okBdm14zievrx/XV5oAwE+SG8/RtXeDK\nYOkwMrYn/vpx7I+zuPi7UhFoZo3+nz3sAyS96uS+rfaff/c/2e9+8Q981/3sl79tZmbnj0BdEY9B\nTTF+ExDy7fuQpf9nNwMZZxK4fwsVXPfJ83idPY4VyQxdvaZ2bLPtO8H1DbOfVopItOUhE2aTySnu\nuuk19vxTX7MiPVPnZ/GMxdPYbn0dCO4mz1MWz9p6Sb6gQi4Yk8Psu376BM4xTX/SXTfht5DJAJlG\nI1SikPfWfvPsZVSr1m1wKGfT5/CbSmdiPB8ct7JC5clJrBrOPPE9vH8Zzlexda0egKjOkdp7agr3\n/ngLz1ThBL5/RxrPyoZp+inM47hJco+JXjqhsQ/8nf/Lz9me/W+32jqeNWWzO6xSa1PHKod49SyS\nJVmbz/b88VNmZvbiP3zHzMxm2dXz3Msv4fMy/k14gb9lccJCjq4c6APevdGoY4+fPmtv3DHJ9+rb\nRcWMOFTH8b33XiP+91985pBdLn4gnegjjzxisVjMfumXfsn77JZbbrGDBw/a2tqalUolO3DggL3y\nla/8QXYfRhhhhPEjE1dFoocOHbL777/fpqenzXVde/TRR21packSiYT93M/9nJnBef03fuM37IMf\n/KC9//3vN8dx7L777vNcli4XuTRm4a2bqLFDgtPmpzG7teuYfQqrmLWKBeoRVUtODjOZxKwnx5uZ\nImbpkV5ynORWzxJ5ldWvnJ0bp9VFklxjhehj747d9orb9lqMDjmqGBJiLLMKwkOM1KRJa6bsuqpP\n6k1/Fl77kauUNIJxela2WAUiN+/zRfBdmQ3kzzhbpli5NXETrnOQFUHPPs2qjzK22/wKoIgItYaH\nvoOqlZWzGJctt8KXc/wWcJGFUxj/ke1Ad1t2AY1Vya+deQFZejuC+2XMEEcnMO7FESD1hR56EhDB\nO1ug002tcnyauO5yP7Y/3gZK/MJj8EPtYxfRhQZd149A65hgJjnTq0q3phWWgFyarLXuJYfnsj/V\n6hpdjYhcdt1ktji3aEvz4DSXloBuhzdhFbRnL2rEN0zgve5RJstKoJZ4fekkWaMdAbrOZTEWI0Pg\nToU81Z0hl9XqCAgrkWPWu1ozs1y3FxTHfI1uRm4R7w99/s/NzKw1i2c5zusux3GdS/34Db7gYqzm\n2c1gbg77SRMiTkVZ+06HsRY5zm7FFF6VT2ixz1eEq5HGAGv/2efeIYKVV65HGnKVJYT/3FcfMzOz\nw3/39xgHIulGlv3AqNCpkaNssZa+RdWEQ6v8qPmRZbdLhJ9D1cpBq8XoRQiU++34P79SXPUf0b17\n99pDDz101R2Zme3fv9/2799/TduGEUYYYfxTiBtaseQ67KsyD+6tREf2NjVi87N4XyYC0ey9kw44\n0t4tkS9ZIqJbq9B9ibNdjNqvHDnMsUnoK5cKmLUr/H6RvYjq5Piefe5pe8dP/3M7+AIQ3caNQFA9\nrE6p11U1gdlKelBl2xvM7ClT22H9dCTgnO9l7TkuTc7izShRDvvebJ2ix+OUnP5x/VuGgXrW13E+\n/azcWn8USC5fZK37BmSWU2PMOE8iU3ziEJYAx74D3mf5GDK9Qj03sQuoDdD9agAoYdfkXWZmtm0f\nUNQTX/y6mZndege2H94H9FVjn3m3gfPbehM4zwj7A7387WfMzKxyHOOTnwCynGvi/vSzW+gyx2Od\nVUAx6olzGyfNzGxsdMK4aLA0q6KsgW07fB2ksmRpGfs0MysunbfVJSDRJrcbG4RyYzMdpJJpoHzx\nX+JWo57jF569PJ2zNk8KAbG+XyU5Hfw9Qf4+ElXWmC5K6/QdJQJ11SGWq4c0OcXSMaDx1Hncqxh9\nS+uskS9TczvNdpWz6lHE7gL9q/hN5GM8rzVwuC6z8g4rkNQTqU0vAYd8+NHnD9q+d/+MnacqIJnB\nb6qH3rBxHpePvFVZ8aUuqfNnkH3/3t/+Nc77RSDQcWm5Mxjv07OnMF4dZdXpqObgWYzxfOS/6i0X\nO34EKb2vfDKU1W8qr8/PowFntmtBomHtfBhhhBHGdcQNRaKVArRshw9BpzhB7nILZ/8mkdahE8h4\nrheAHra8EtVTEXKP2WFkNE+/gF5Dbeo4m/JU9PSYmDNWZzBbJ1Psg0P3atVPp6gTLdLB5/mDyM4v\nLWO2rrGD4Ogwstk7trM/TkwO/Di+XJvk6dgir+Nl4QM9nIQ2WGJuLfZCijZRgbVvHMfvbdGPtDNv\nZv+jbesgy/34KtDHOfYMH90Lr8ql4+R+DwO9TCSppWQl1HAE41Mmv7dMjV62l31w2HMpM4j3VWZG\nK5y1Y2l6SuaBeB//q78xM7Of3ADOPEe9a41eAAmqJTa6WFHkqZE88HfI2i9+C+qKYoSeAlRRtDbj\nvBfPsUeTAVW+cAbXtXdqi43snDQzs/FxcIGrCxibJrO60SbdkNirx8wsZevWn8Y9KDu41m3bUYWV\nIiKSftNlBVKbqwytLqKsCnNZGVQjj91mBVE+R4UIgY8QlLLJNaJydTh1eO0ElBajXjPVxlgdexHZ\n636tdhp4JgpElnOE5OeJ7Faof62W6HhPpDtOjtRlL6I49ZtV8vHqCNBQXzC6In33i4/aT//Wb9tf\n/PHnzMzsde/5CTMz27UPz0ibGuA2fys1duo9fxy/+eNPohCndAy/7Qn+ZgeHgGgPU4Wg0q4Ga+Pb\nUXGWRPD0bY1EhUiZtReClOew6RURzMYLb7YClWKRSIhEwwgjjDB+qHFDkei2UXB3Q31ADRvpG6l+\nNkt0Ea8xEzlJR/MGq0WW6B4Uc1mzzkxnlFnwOutus6y7VbXD9BwysC55kiRbJkZd8Dlrq5gFV9l/\nXk7xjdOYzYcHoWdscX+dgN5T2XbPXzTq7+EkJNrtO4/XdQccYN5hTXuUGVAHyHAkBd4oIyciyhk2\nr4OzPT5DzWIMGsmBt7zazMy+uYgKoZXngGTLs0ADZ17GCmD7TnCXq6yT3vAKZKQL60Dmo3TFknNP\n3SWqSkhNAPSxYRKc8fkKa9nZMTJaZ4UXtY5FuqoLucbp3pWig8/SNM5z/CbWd5NfO/cdoBeXKGeV\nyL5BV/djJ07bpq3kg8lTd9hXqkE+vU3H+OQFJdGuU7d8Dtc4MjxpZmb5nkH+1Z9dbntdCvx95l0i\nRXGcvf1AsOIEY0ScaXY0VTa+Sv691RBSZQVPnKsWcoDyGU2wr/vxw3gWXl0m0pOb0TBQ+zG6Pp1i\nZU5/Tb2PcOHDCZznIPMQMeYhOrSgF+KLC2eRc4xSb9vL3+TCY+Czj1EhkSqrZS45Xj4LB+lnsfwk\nELS9iNXGFHnyEXaBaNOh6/wiuFYhyVoE5+dQJiCnfK8VbkccLBGmq5p9kaDiTJm9l1bb//EFCBXv\nAz/tS0aIRMMII4wwriNuKBIt1dkDiX1oIkRuJXr9zc5Df6j+KMkBzO5LRJ42AJRR53Shut4OEVWR\nPp1xItFGCaghzWmsVsHxS0XN8kSKrKDJ51kHzMxpjZyluk2ODgGRqj5XNfNzc0BS4lN6epHNV2+n\nInskzc/P83h0lGeGdN8GbFdbRRfPgUH0UOqL47rPJ4Ec81QtDNSBLO+awHWeWAOamUkAtTxB5D59\nGNs1XwSyXiLaec/P/5SZma1TS9igY9Awx+kY70MvkXGFrklyXcoNAoG65EbbRAEtdrhMlTB+RXKu\nOaKJygKQ9znqPlMR7G+IHgyDt2wxM7NNWyexv/8CrtVpAFVViDqS5BtXnYZ97i++aGZmP/F2GOQM\n9mX4Cq6tsQJ0rB46ZmbJdNpqHRx7ZBT3NkK0LUTV5rnXmIWXC5G6SkpRGSWXODSA1YAc84trQIRl\n+h9oFZJM4FmLkK1TbXwuIy2xvyp7ZQGrr207oXBYmQVfX2SlUJHdMxtEvvtKuCdTFXKJ5P+LZYx9\nh45kFfpOCMCpai7NZ78VVU8jjIPDE83yGV74Jqrpvn0Ez1ibXOwxapF7xoHsWzz/nYbz6CUyznTY\nO4rVcyfo19BuEWHyN+8YndcEeDUwger1IOepnkwad/mZCoLq6+JE24H9XClCJBpGGGGEcR1xQ5Ho\nyVnqOteAWAb75OjOul56NG7ZgUxpre2fzatreB3oB+JaIxcpRNozBvTRYmYyRe1XMsvpPs0MaRLf\nP81ZcnkFWXn1OipRu9fH4/TkkSXOkUdLBTwH5RNarbGmnuoAcaRyspfXQJbZ582samlXoZtNx8Hd\n9sTpat4EZzxI/qrt8rjUreYz2O9NGYzLdmbtV94ClPJ39LosnwDKunUKaKZGz8119utRXXic7uku\nEWKRSD41inFJEUWoPntyI87vub+Bi9Oxb7xg9otmX/v9vzAzs1E64ffTo6C+hP1Nv4Dr7TOgxhTd\n1m0CxznHyrahmyZxuTHcnxcfBwqzJI77irffZefXoPcs9eHR/tqXv2JmZndtBr+6c4pa2WTX5zbX\nN2Qtrkp6e4GYOurZQ/si+Y0m6ImazmFMHeo+23JO97K65BSptKiU8WytNXBv4q7fg7ZFHt/or5ng\nMyTE1eTqIkcEFyMvXKDCpEXuc0TPPq+j7zCOG6/gWZtZ5uqHvaKKxFx1PkouryPdYHfRiB/y1chP\nS445wqy6ncEqavkMlBMd5gH2sLKrwwqnJLuepgnoY+T3G9zhi9SdNuTzGVU+nbpa82fTPZ9SvnM9\nzTW12ISUko2qB5SHTE3IM4BMub/WNfgzhUg0jDDCCOM64oYi0Q75DwIkc+nWY1Vq+hKY7VM9QHyL\ndN5ZJ8+UzNLtm7N4lITO/BJm34lN6Cn04rPIXt9MPWKkjVkzn8NsvEbeKMvvF1mtMcReRXFVdTCV\nNzqM/SYTcsMm15pWH3n6i3IWk/+q0ElPD7hd+a8eO47z2TmB60y3kY1PuKgYSsb9s21MHolEEdEO\nnfKjqoSim1QdXOZtW8hHvRVI+sm/ACrp4xS6cgCZ3rNEfP1D7OF0GN+fnznN6wCyH6jj+tfqQDXV\nQWZ2ewFn+ibAFRdPg7OtzgOdzHwT92/mq6iMyrHDY5R8XdUh72hE/nRdXyO669kKxDlTACo8Hcdz\nsjtBH9a2WYTP0MurQPGLWfbryuIebyD/3Jvq+jrEMn3Wl1afcaJgR/6VXLWQs3TZvVN/j6o7ApUL\nyg47jrqAUieaB/KVg1iTqy2Hnqwx9s8qr7OGnn4BNVbfHfgvj5qZ2UgG5z1/jOhdXRkqWLVtpC/n\nGnnsND1g+0ZxT4eJuM+u8J4UeT78EWboY+AyLyE/1QgRnrX83rppark79JQd5HAlNF5UyDRjqvAS\nwhX5Sm9dUtRzS9SHqvCoIy6U1X0dja9vM68G3nNl4ucO8yVO4O+dABcqp/suQvUj0itFiETDCCOM\nMK4jbiwSJZKKq5eOXKTJR42yBnyVWrNYCrN22qSzZDWFeCj2znbVQ5uZ1M1TQDCtRWSBrQrkV1jE\n7F1Yx+w+OXqnmZnlqbXr6QUy3HczuUPyOEnqI8V/taVR4/UkeZ6Og1laXKhCnGmafdM3b8A03Ci+\nyOsAMkwk6a/K7VtUM5jXTybie5/geDRjfsf93hpQx+teDYf7L30ejvdLx5BRfenYt3Cd70JGe5Rd\nQStxjNv6DDKuhWeg03yBfepbrIpJ3wSEmiABlduG8TseAwrZdCe40Bqdg1aOq5c7Xa2I5oyIsk1n\noefoO/rqt7/VzMySXBm4P/EaMzPrUB3QnEam+Ytf+mu7+fW4xmiCHU8noS1ez+NcXyjRFamOY241\ns1Yn03Uco4OWxwGS107wGY0RIarPuXWkRySH6mXTqUekzlG6xRz53kUqEyJEehnqR6MRINaVpYr1\nTJideALPROHpF7h/rpqYHa/QtSnJyqAmXajieVzPOhUWMTqYxbiq2zgIbrhFJLhCBJhlb6glBw97\nglxllBxppoUxj5MLjfP661ylJeWCRCTb5iox0sYzmeU4CtmqIqpMSLhCPr7UwfHb/K3H5GUbSJYH\nffP16rkzeYiWqzlpu7ldJ5DFb3tIlVzp1ZPzIRINI4wwwrieuKFItEXfyJJ6Y5MbXWGds7RuCWrg\n8qxpz7PmvEwkuF7HrCUf0Ay51HQLs9fiLBDn8jxm42QdaCKVYPad1Rxnj8Afs3cM1RP5PPu7cNra\nuWO7mZkJWJZLmG3dQA28uNEkzyMprpfzX5k61nwOHGW7BJQxf+7rZmY2tLXq275a83cRjXqu28xE\nuuLvOIAtuUWxWoUcb2wGyPPHXofzPX4O15miRu/VI0ApiQgQ41PTp3CezKAePA8u1aGT/zBRTfkI\neyRNYlz33oNeSzvvQO3+7fvfhO+Rq/7LP/mvOJ8G9rvG83zbe9G1tNPC9W8awjiOD0NzWWI9dZSZ\n8R23Yf8b7sHfH/7jh6x0HOfeTy1vk3pLp4/KCCKn1UqX7SpXY15tdm5Urj7U/rJbQTrL7gpcXXTT\nw56vEz93fG+FNN04tkvn8P0ckXCFPYYqNT7z9Huo856XDmNsR1aINGNVnhe9b6nbrKjGfRQIPDEJ\nXjrC38bySSDUHJUhQxncu9gQNL4v8zyX55f4PSFMcptElHkHY5/x/DzFoRLpsdKpI8GpupBSyRFV\nvzZu1+SztUrFyRo55KaHHMmletlzvAhhCpl6HChf1c++pd5JWr2JU/WKBf360WiAMw11omGEEUYY\nP+S4oUg0k/M7r6xRh1imN+LAKF17loFg5EfZl6crELP409PQlk1snODnmKWfZ1+UCHtzV9lvXr2C\nRsh9jm2BDjWyjtl2aRmZzT03gcsbHgTnN7V5Eufh+vvKJxJ+7rPj+YsCgYoDFVCcOY9s91n2sxlN\noP54aog6V7p3d9RikegpEuBApX2LekhUsyo+ZyLaGjVcf9rBuPzMnTnuBuc9s0JEm8R4FpdxnFvi\n4NtOleG0cw/by59ZAkI8dQ7nmaGvaqqO6z15Ahzqzje9wczMKjzRchvfe8WP/ZiZmR1/BhVZO+mK\nvpE9lgrsvNmpsNc5q2Lq7AIbI/fal8NzcGYaethorWnPPPJVMzOb3A4udPe/QZ+mRXqyRlhRVEt0\nH/1kqs9qbSlC+Dm7Pnpu/XR+b+te8LviwT284gjJSs+o7dUWgRwl/URXV6l5pjtSm894nE78dVZY\npdifvr4V13ycq4sNG3Cdy9PgvTe8Er2ceqlM6R/Aamf1e6hZn/saNLyrJ4BM8yP4DQz1g4vtsCa+\nxNVMo+1HclF6BLTkqkTuU9cbRHJtIs0qEa3D/IH8JOLsZ1akg1qBfggdcclCjBdl33k8/PmiCibp\nO5vKl1zUUyni208QmQa50ytFiETDCCOMMK4jbigS7acP6OAwssAu65f7onQRb2IeKLCb4/QhZK0n\nNoDHKbK6Y16ZTiKu2hodduiR2GJViLFKI0puda7AGv1n4GbU2w/km2Ct/QCrPiY3oYZbDjzW8fuC\nBh3tO+SJNOup73yLs/rMLJDz0DA4yck4eKi+FK4jlsRx3AwzwZxuxYkqNOtGxDPJrtubn/n3iKpu\nmNEl0nfoELRlIsVxgfawSp/OPQAxlpnEfudXgR6++zL+/tlvAiFWVtg99XZwxkNvuNnMzBrMYJ8v\nAikmh+jEv2WvmZk161Q3MMM8v4RxKGXJs1HbuUoVxe4SNZz0IFgmj9jXC2Sd783achurlkYK11qo\nY5sKNb39rPLqjQ174xNPZy2te8jsvPxCE+Szo912lWbWRaAdIU+PExWkUZaar9yvvFTrdb+DvKPK\nHOowGxWMyQCdrLIj+E1UR+kjkcN1jO3FsznC31CdXrJxdttco1tU/pY9ZmZW5G9jib2UElQrTFB1\n0DeCqrnnS8gPVPmsq5tnm8+8OtvWycl2IRufRQLUDpUiLekwAxVQ5mC/K9zfNHlvcarazDOqD5Cf\n3sdCll5pkn9VJmTqeFl39ZsPItRLc6dXihCJhhFGGGFcR9zY7HwWiCJLL8ItnE1rzM4fOwVkFCU/\nMtQD5Jah9i3SVLUDZtHF06j06XBWcz0ehz2J6JgzwEqhOrt0rhXYiykOpDQ0Cg40lmT3zCGcl5Bg\nhd6UCiHQGGfdLmphppE9vivMyo8yC553T5mZWdyBbrJ3CNDPoQ7VjYuXkXbx0iaHXb2o6q3JP0XV\n2VC8EPk2FkjLy1J13xFqEOMGNJAkxxtJYMWwkdU/fSNAftGtbzQzsycfg5ZxrQr+bmubyHIV7wcj\n2L7G0664QEO33IEM+jc/C+569TH2iNqO8Z+4DZx0Yg/Q14tf+KaZmWXLuB9HToJbHmGV0fLZWesM\nYQw23gJUrB5BvfQXKB/DuaVHuy5OiUza86R1yGerlj1GJ3tBGieiWmvdG1XEBLL0XihbTx+CqLof\n4DWVoQJE1WcZco5UQPTR67X/rVA81IlAR4ji0yk+c0SI7hDvDfvaD1D/2iD3uDn9ejMzS/JZWPnK\n43g/xy6frALMctVVLVPZwd9GSZ1p5YBPDtPV9fO9Vj8Rvo9xBSB9aITjUOZ4zfE3X+2Ig6WqIlDj\n3h1dvxpC3Tu7uXQiy47fxUkv7csg0qB7U/e+Xj5CJBpGGGGEcR1xQ5GoI66SPNAq+ZsKM5EV8jU9\ndFNyWJWRYPZ6chKVRJXn4JJdYFa+h76WcdYZdzgrrjDLn+sH1zm1HX3U16lfFK9Sot60rw/IMEHd\np0N+aLUARKZunopmg/1dpJFz/LNnkQ758SiQWD6G8x7tp0YtrqoXP7fpBLjQTuB92xPNyV2d2jrO\n6o6rPkB0FnI1a/t7oPOtxdlFVW7qmt5J7ZrLnkyv2wROtLeBcXr2RWRYd5aAQPOzqGyKfu/rZmaW\noOfAehac9kuHgCRnT7Oa5hTrt9tALeuxaV4/jnfqCDjx7FFoJxtE0st0Lhq2nJXYd95q7Li6wsob\nXuKRR6EIOHUH0Oyd+/ZZMp20DhUcTtOPQDwKL+DuEyTLVNst96BOkEyTLynvSZzILsNn28sSe/3S\nsX2e3QKKKVYMcTWWZiMurba8Lgnk4z0kyGcxoSo++on2vh7IdoFdN9efRTVfgkh8ciOctrLsgLvM\n15Knq8ThGrpe9Tji5fp9zcziXOVEWGtf5+rtXBm/iWnW/mucLuJCBegDrkqO174zoNMNhGP+Nxwh\nUgAAIABJREFUz4PZ+G63ULy0AxzqlSJEomGEEUYY1xE3tu88HWMKC0AubXbXzOcx26rSJ50AEmzS\njbuyhizuqWNwfG/SX3RyBIho4zg4T4c+mPNEoK0q+KPFBXx/qQDX7V2bMeumiGi2bEHGs7cHPJqX\n3ScSbTSUnSdS43TZIseqrp5ujPXE9HxUH/fWKtQAg9uhR43FkS1vO7huhxVcZvKsFLfpn6UVEWWK\nNWmqakSZYX7BZbZcXo8pR0iadcptvzu7kLGcjORV0KY+diQL1cTErUA7r9kmrhr3sUPe8V++ETDw\nJXYbffRLGPcCs+06r5UEzqdxDujo3FEg9fVFHCdFPa5DvejmTUBpI68Ed2q5mM2fhv5x+hQUEEuP\nnjIzs3Qe57ZG7m9l94I3fvGoaw7r91vkGmMp+TMQfouHlsO7B3x0TwJIJ/BefHSH/qMuFSJp9hSK\n0x9U/bmU1c4NYtWU5b13I+JQ5SKl4nAeqOPXElsbz1KLXTPT1Fi7t6CP1qZBvD/3mb8yM7P5b8Cj\ndYh9sfqSQMqtIqvo2A2hVqeW2eMcpfnmYaXjVJUdVzUOV0lNIshz9Gk9Q3+MDsdB3TyFRLscpf/y\null6P0JWeLrPqyDUiyqYLoN8LxUhEg0jjDDCuI64oUiULbpteRbooajZZJSIhN6KRVYa9dJVyU0h\ne7u0CGSaopvQUC9ee/g+S5ckeUVKlzhTwOycZua1QXsmN5/n96jlowtUlVyrMraqHFKlUkSZV862\nNUcONLiec+fA/a0uoGpkPIuKnt4B1mdjUvf67Ki6xesv05KWUOhDnCsH0ks5cvyEmgKONA4znqra\niZOXcsmBVtlvR16Xraa/N7r6/XRqQNTxnOrIMY49OZ0vEDZFArZjA1YE28fwmkzgOI8fYAVSHvxk\n/LZ9ZmZ25jhWJmtLGPdedRE9isqpBHs3FdZw/7fTrX55wLGBAZzL8jEgzdh5do49izHPOkBWuzdu\n1eBZtON6qxbVpHfIu2sVIbZPFTddTvT7wyHKOrcJdZIpOlNRAstiOqsSmbny0TT1cuKr180yWLPv\n+D7vsNIqygqpDnWdCaoDNo9DIeG8GpVOBXYZaJzCPUgzuz/ch9Vda01W8TwbcrvieuUsn5W3blNK\nEXGieF3nsz7D39YqV3sONdr6LahmvqsH1eX6s/Ku/F8DtfCKi7jUa0Wm11CzFCLRMMIII4zriBuK\nRMcGMQvv3gFUMH0WXNjhF6E7bFZVQ47tF2fwPz2cjOXBuFZlD6Ok3JmAJI+9CO5xfNMkjsc64rUy\nsrubxoCANJs1WEXSk8d+xYXWa+IMMduqR5Ic6zV7tZneFgJ16Vxz+ggQaI+BE9xAJ/gma/876ixJ\nLlUopRPIGIr+6mYizR/BDKX4IP1ZHGgkwC9xvwki9gbHvaHOltKpEjKnE6rVJ3dLFND26sNV68/9\nklttcnxv38WqIXZTrTTBSdsO1M5vZ8+neTocLXTUbRUZ3PUXsXKxGlCMONxcLmNrRYxh7yhcl3r2\n4G/fmUGmf+9r4Rk7tZ08qpnVW445VAQ4bfLzEXZPSEphcWk+ustBBv/gj6CzunwW2oSeXvaf/HM8\nrmeL50XOti0/Be33cgf2kJYUH1Ju+PWXukmbXwEkWnoKCohzc4+ZmVmTWfMUNd09XK2pN5QeUZdc\npvIB6xU8G6mUOgXgfCrUl54qgTc/yQolPTNRr2cS+XVehRztJVyRO1Y0oAMNjrNWjUGE+v0i0ytF\niETDCCOMMK4jbqyLU5rVFXS7XljF7KR6X6dJp3hylwO9yCTuGcfr2po0bNAnHjlLXmYSSHJ8G2q4\nI5x1htljqVjD+61bUJd85gxquzdvgJN+P4+j2VO18cqcqha+O5uRL4uLn8H2CaKGyY3IsObLmNV7\nyR2229IWkrfqsDeTqi1Ue08ELI5UelZPwyYO9LKZRD/y9GrsPeqUx3P93K444CYRaJTHibL6xONe\nlcFWvbPnPsVZ3xXHi9e+Pnz/9l68bzTBoa6y4urpedz/WgvPxehmqCX63wwUeaDxJM6XjkdTfeBE\n5xptO34aGf3T38NqZnMK1VYDE9CoxtjXyXG7SsZGq2bJJK+phXuhSiT1jXcTQV1oME186bhadjeI\ngOQRG4nSAZ6rK69PemA10uXsAvc42BXTq7xhRZSUGKrI2oRnf9f/9G4zM2uTuzz2NXQ9KPE31sPf\nhrhKt6HeUzjvmmfwKYUHuWY+K1V6DZwsQDEzy9WJebrcoBeBvAd0PXxWtTJQhZl3mapA4l46l0ao\nV0Omissh1AvjmpDokSNH7K1vfat95jOf8X3+rW99y3bu3Om9f+SRR+wd73iHvetd77IvfOEL17Lr\nMMIII4wf6bgqEi2Xy/bRj37U7rjjDt/ntVrN/uRP/sSGhoa87T75yU/aww8/bLFYzN75znfaPffc\nY729vZfarZmZHTsNBHh2EbNSnbNwnrXtTXKPsQ6Q0fapSTMzY3mw1WrIYKZ7gUTOr+P91w5A6zbC\nPvEbBsF9DmTIwe5GpVKazuxbtmK/GepE216HwAD/pF5Gyspzkoor88lsd0QOPk3wPf1p8GwxdrFs\ntZmOZ4fEFPkqhxlTVXA5QepTiJR8VKfVwQ1seSJBbB/1V9d0M46BWfeiqg3WPbuavYkUG+ohpaob\nvqpCKy5PzQD6ER/F64tJJaGqHXK0SSN/Vj9lZmZv2Y7xnKZP6cEyuOQnjuP85qgrLi8CHf2n3/6k\nmZntuusWWz8P7rNxEoh04vV4bvfv/+dmZrZ5DA5SrQuAx2qpaJ06xj7Hyh6nwb5e/IW0qRFuMrvu\nerXZxrGy64ogUrrgD763qmzydIzdDul4Lwcx4aPLnJie3TZ1q40Y7+EgtMoDd9xuZmZHjp8yM7PK\nQWiy0+Sph/jbElHfokOay9p7l7+RhhQm5DyLPM/j9EldJfJ0eb5R8z/0HgL1Ksb8SDfif5SDiyzr\nClX0TOv9lZGp4r+LTjQej9uDDz5ow8PDvs//6I/+yN773vd6hsPPPfec7du3z3K5nCWTSbvtttvs\nwIEDVz2BMMIII4wf5bgqEnVd13MpUpw8edIOHz5sv/zLv2wf+9jHzMxscXHR66Nuhp7qCwsLdqV4\n6qnHzOw+mzkLbVqCjjbLC8zKEy7EWCN9dpY10zWggXOL7Azosv8NK2+a5ElWWHs/tpGcI/upt4kc\nhdiSyjz2YRYWH9bULMrZSFl5RVxdPzkdtiTyo4tUm1xf0oFONJJQr3FNn6zeYE8hoQchWU+JGHCS\naXuog7sJ6EI9Wsmr6hB3yve8rnaAV+tE/O5QOoOoMrw8D7mFN4jOIg31mmr5zqPj4BS8nuU8nsts\nvaue4vLUZI28/FE3VlCb33bxOnwzuOXkIrLyzxRxvMoqUOPp73zTynOo1/9XdwFJvf6fQQeZHxfP\njWdgca57L1daVauzFt2h45bLa0sSlafkQ+B9y4/2A9TkNeR0ud0PCGG7qJ+rIA95EnG1/cjq8sch\ndykFBqsDR3ZAvfCKt7zZzMyenUP+oXgW98KtkxOldrtcBI8d6/hXMR6Fy/fH2O9+Re5JqlCS5y7H\nOXoZ9yQPQfL9RY96YPu2f5HW7VcfQKaKSNCn4hqQ6A+UWPqd3/kd+8hHPnLFba7l4P/u/77fzMz+\n8GMP/CCn8f9bbN+54+obXTI28fWN/71OxcwuXj5ENj58ye2u/LO59h96NPBeD00yuOHljtf3Kd/7\nxGW2iwZelfq5ObDdW95wjQe+QmwZ6v7/nXu2X/8OLxM/6D+S3+/3L0p0BesxLvs9bBjXF7Kk37bj\ndft2jM32//nnLvn9nzn4xDWdn+Jd39fW1x+PzZz/oR/j+/5HdG5uzk6cOGG/8iu/YmZm8/Pzdu+9\n99ov/uIv2uLiorfd/Py83XrrrVfc1x988uP2sd/+9/Z/fPiXzMwsxizuoRehVXPp/xlnHW+FT0Rv\nln1b1oBEax0g2ATttCvsHLhpatLMzF7/pjeZWZdfSavNeZz8DbnIyUlkgRvkHKuVqu275VY7cRyV\nMnIFVz/3TRtZxaEqlDY410gVFT3njn0e+x2EXjUex/l6Zc1NnEg0DlSUoBu5ZuHApOhp/dT/p91p\nW3TyL6115h34OBpwA/e+GPiAVSTiftsqv+4EMqPqr0NkHCVHrN5SdWbvXfZ/j9Nx/sLe7c7Qf7bO\n4v/gPx9xzm15EvjVBW2uJOqsMCvUwHMW1nH88jp9UyNApsdO4vPZ+bLtm4LWdAdupfWM45xKDfxT\nvBwBspopYh9v2D1qX3v5jLWbmBLiFXaEdXGNQzk8e5s3omqq49LPwNE/8ZeBntcAIi6M4D+WnU7H\nHMe5BiR5lQjy3/zY64IZ8EXVqsLY72xxHh4EB//4c2Zmtvx338Z2TtN++oXH7AuvxXjW6bzmLWbo\nIiVlTY3P5n84B4rvGKviYnX1H2O1HoWgqsqLcT/yK3X5o4h7CNo/LhcChO/MnLc7x8YvOzS+7Z3L\nveJ/vn52+rL7+L7/ER0ZGbGvfOUr3vu7777bPvOZz1i1WrWPfOQjtra2ZtFo1A4cOGAf/vCHv9/d\nhxFGGGH8SMVV/xE9dOiQ3X///TY9PW2u69qjjz5qDzzwwEVZ92QyaR/84Aft/e9/vzmOY/fdd5/l\nWHd7uUiR+xrswb6qdH4fG2GXzyKyr8st1Eg32+zHskQXohYQXErO7XS+Gef3+3NAspUV8DmpHJBe\nI6KeRPh+NgsE6WWphZQiytyJ6yM/Rk9Gz+eT5xUhr7O+eoKvQKCRIfaA8pZYrD4R98rMptPG565n\nD6oqFnlQcuA8fo7n21CHRKKJaCAzKzTjwZC2b78u659VmdXi/uTWlKAHpMWFkP2dEtvskd6JkuNM\n+P1Nu+2HdAKq4xYCJc/lVTpRHxzFfYmzH1IqCVRUN3Dj7Ra45qlXQWYXi/dYu4lnJpHGsetlKiKa\nuOcFF89ALd6F+dFOzCKsKWebLmsSredTrLbivXV5buLBPcQSQETfHw69OC6brf/+d8Tz8T/bXUd+\nbqdnn9fVoYtVjNn6rW+CyqFwkB6x58D3N1fYw6kHnHOlwmeI977EcVwkj3+YlUrRFLZnKywr8H7E\nvGckwDnrPCN+rjU40J0g4g5+3QLbB753Oe70SnHVf0T37t1rDz300GX//tWvftX7//3799v+/fuv\netAwwggjjH8qcUMrllRJNMhZrEFOLc5ul7kSOMR1VjCtFegFuYzZLMu+MZoFN29hXx16Hbbp2L6y\nDOTSiULbVqMmcPNmVCzl6bGoqLDuV6qEqOeehHksE6e/aQOf/3/tXVtsVNUa/vbsuTG9AIW2nHK0\nh9PkSE4OgkYSkYq3WmKIPECQphkMD8Z4QUmMqcU01sRELKlGUx8wii9Uo7UQrNEoIaZJHwoJ6UkF\nksrhkggFClMobadz3Xudh/X/a9i7reKZU/Y8rO9lZ/bM3vPvtS/r2//l+y2e7VOSBSXjMqeucjH5\nfajaJUhM2Qc6TvKFsj2sU5ohBqhU0m2uniH1KJq1DZPi+Sx5SXXLrL7EUe7cLOyqbKJFOkFRcWaW\nqhCJ2AkXLKv8WcMxLuxDFmQ/M0oRkHtk1sahUoPzZF06qD7SFQXrnoamHMdRTL2aMim5//EpGTQI\nzyfZejsN+Ih5ThCrpf5Vk2ITAGCUOpkiMA5GJAtM0phnKUrNfc6v0bX21yXS/+1TUTaiUMpx7ayB\n/7P4A2H2P7GfmX2oufUUFefovcsJmOFECosyV8gHnCgjhbMqGZFLXZZRdpIXRZoqu1g/waZzNkn3\nzL/j8h40A9Q9lU5Z2hUAMzjH2nYycZW54j4uNt+tJ+FmqLR0M9PZgqy5LqH4Q+jaeQ0NDY084CkT\nDQW586E0g3O6FlM1RDkp8UwRM+QeSbFSmQXAeZsW5RteuyJ9ZNXLJMO8OSG/Txhy+2KKAM4vlqyC\n/brzqHafMTUlGVARMWP2I3FU/i8LZcQv5ZO/46qM9KS0y8pIJrpkIWk3himyaJAyu6CIpI80I0nR\nRynREKvhWvk0MT2Tau0tVSct+4DaaWelkhFgOuH0K1lKiYhnbacGpMotpPma/8ddzcG+YGaiNmkc\nsC/VYK1L8qWyGpUVZGZNLJHOB0fp1fFTp0r45BuJbTLrk9kRvoXyjWQeZUVk03LczYAJQUwmY8lz\nPkUZExNUemQa8hqalyJGKgcMfrItk6Yab0pZSFNV2YXLMuOiplpu51f+Xic7F66mQLcfXXclmvLa\n/5GhzspIbScXy30vlyFBlUZUXQfqGFu0VPqlF/9dahAM/0f6/dPkwA/TNZum/WdpfM5SVeHpdJwM\noHgCjy9dKlyppBTsVZUdVSbR/lm7l5XSjGllfXB+Vomqzq/dvtM/Yqa/B81ENTQ0NPKAxypOkgHa\nquKGo7pywUynjHyWZdS9cwl164yNSXYwNiGj3zytZIm5zg9J1sD+mthV6kJZIhkol6zyrM1MU0Wf\nacmqTUE/K9Kw/4y2m2LVKRmxLAmP0e+5Bl4ep+oX4+MoOkd8OSpNFUKkAm5l5ecQ5WH6qFadmV8m\nk0UYgEVqRibN7uzD5BlyWp2wSlSVx+vOtfMJNxty0SG3ZiP9E0fbs+SL5q6nBqubq55PtB+uhGNy\nRH4w4ePeT3w9UN5pgDobFPH/SX9lZooqvmxD9TCyqR7fMmXFUobzCwUzmltUnHzzwJ1PTepKkCFG\nlaaxjl2X57SKqt5Y2cukHGOT7yS+hl26C3823zOXJ6rWOL6fzefp/h++tzKcAcLdE7hfl8F6m3I/\ntsWK8vSZrnWLNAUq/iV7M/3aJ5W0QtQ9wqZrFfRWlabuEkcvyvzK34I0vhn2mfI40T2gnJvqgBzH\n4dYHzTVzcIbVlc+X/e2Gc7+z+U7dzJRxO2dLM1ENDQ2NPOApEy2ex0yUZwdnqC436zjnhxLyVc4r\nJb1JS/prJsepJxNpH6ZJ/zNIfWZYfWkx9ZPn3tzu2nhWHWcmzOtDAfm/XO2RpPzIm9ekIn8odRIA\nULlAsiCTdTRVVJvzKbl7J1feyONiESclOm4yY2SGRqeL82K5gyTNtsyMmRHy/+ZYB83mKgfOOR1z\n3qrwc838LHOsK5ePdUizxJRVbX46Cx8AI0W19eTT5URY7giZO7vEihSL43xYyj/liDht76c3E8HV\nQ1kbPu6mGeAx4Qoj6nJJyu6+W4pZDcOCj3KOw4rFU1WckEwrPiWj0Zy5wdcIv6WEDPKrm7M44Vzg\nCp0c03IqsNt2BqYZhGXLa9in0gKY/cO1HRzbM7i6jBXz2Q/O9xxXh6mbjqvHOFuBtgtTVH2yVL4F\npoLybY6vuRQpgBlFcrxGKQ4wVSzH35+g/dLbXIr83EGVQ8w+UKf9Oe1cYtYqk8NwLN1MnP359rQ4\nAJxwM1RXvujt5PtqJqqhoaGRB7zt9hnkzoc8vbAPjPIQ+XPGcm8KABAcXSbfWnm5nCUXkxpTjHQn\nDVLo8VMdb2Wl7BbKvkee5Vi5nqP1bkX7olLJYLOsLUlR89KA/BwQUh815CctygDv3+mvURqJruMV\nKtJLqznIzsXttF51+2TiTpFly2Z1J6c/aZq6t6IxcPxegf/H7/Tr5SLRrF5F+2c9VOHMKrDTafgB\nWMTYTTXLk1+SxodV1JWd6v+YXXAOIptHLIN9ycQuhWUBHH0WC+hYJQMNktJXinJQ/bdUohSHhYoW\nh4jtXx6VGQChsHz7MIMyKn3irMx3/Off5e9LST+TGZ9JfbVmq51XzBCsfBVw/N5WZD4lmajFyl+s\nz8C+PqdPkwjxLX58Zw6uar3K5xzMSC3HfgzKsMhS9dok9x0LySyHSEQuq8vk258VkNtzp94MZYoU\nrZI526Ep0tI9L5l+knRLhfKTOxklM09T5SJTfIJzj+lwLJeqluHaPge6Jl1Vfupe5Le32XynOk9U\nQ0NDY27hKRO1/iAq757NedaxXfWsKlJJv2eGGA5JJhkJSTaypEqyiRCtZ+bDTJMrb5jZsr/LpOgw\nV+JkstIvFmKtyYj0xfqMUdo/bcdMjt0xilAyp2LVJadfynDPikwImcFy/idRO5O6bxpUZcJ2K9Yj\nOOpPijg00Fla72NVKJdmQC5LwXCsnxZB5fPGMvDEeng8E5NyfFjt3KR+RqzaZbFuKdvDNfXMnE1W\n1HfW2vuZnVG2QyqTRGKSMwPo3AYpOh+h35LvLhjKReeLIkHVD8uaR75U8pGSlC0Mg3QYSLP2MmnZ\nhkM0VmQj9yxicq98dKyXabGGKp8TOhfKj80dX1MIoQTMv7mLJjNM5c5W6kd0fBbla2Y504QvHi5r\nc9plsOAW63harBAml5ES0pVIynP766lfAQAxyhP1G+wTlpkwN2i/y9eultuflKpNIbr2kqQ5GyBf\nrOoCwUxSOK89k+MWKjHEmUeqGLxr6XPdS4arL/1sUf1pvtPbCM9rJqqhoaGRBzxlormo/Cw+P3sW\nJupzrmc/CPv2uPbcR4cXCku/1XyqUGL/R4oYKOeHMnPiyKvqL696KlH/eTLk4jmp0hROyI6I//hb\n2nE4zCqU/UpNiSuEnLPptAN1LVUtvWKoNMuSTzRoUSUUM086Hj4+oeqlnX/LFVc8K/PwmqrDojNy\n7DbTz75Rw22wHP8g+ZaZ6XL2RIByF7n3EmtRCpWmwLqjzqog2+ae58Qe6ThTiSkESaXJJj3QsUQN\nAGCcGCZH4e1gTho64PchEuBjlbbEE+yrJFZPSyMtr6XYhLwWiifk2JTToNkWVVUFKAeZGRGNUTrj\n1A2wXRVEzBj59/y2ZmWdHWZVUZh6aSMGy/cMjSW/NXH3AH6t4XOqfKcqL5beXugiDlCV3W9DUlP3\ntwGZgcLjOC8kMyQC1GsNVTIuwT7MdbW1AIBDIwdpvOS5imc4r1QufC4lfOXbnC0fFvy16+2NwOOQ\ndflO3b7XaV0/XX3vjdtQcdJMVENDQyMPGOJ2+nhoaGhoaMwIzUQ1NDQ08oB+iGpoaGjkAf0Q1dDQ\n0MgD+iGqoaGhkQf0Q1RDQ0MjD+iHqIaGhkYe8PQh+u6772Lr1q1oaGjAL7/84qUpCnv27MHWrVux\nefNmHD58GJcvX8a2bdvQ2NiInTt3qsR1r5BMJlFXV4eDBw8WnG0A0NPTg40bN2LTpk3o7e0tGBvj\n8Th27NiBbdu2oaGhAX19fRgaGkJDQwMaGhrQ2trqiV0AcPr0adTV1aGzsxMAZh2znp4ebN68GVu2\nbME333zjqX3bt29HNBrF9u3bce3aNc/sc9vG6Ovrwz333KM+z6ltwiMcO3ZMPP/880IIIc6cOSOe\neeYZr0xR6O/vF88995wQQojr16+LRx55RDQ3N4sffvhBCCHE+++/L7744gsvTRQffPCB2LRpkzhw\n4EDB2Xb9+nVRX18vJiYmxMjIiGhpaSkYG/fv3y/a29uFEEJcuXJFrF+/XkSjUTE4OCiEEOK1114T\nvb29d9yueDwuotGoaGlpEfv37xdCiBnHLB6Pi/r6ejE+Pi4SiYTYsGGDuHHjhif2NTU1ie+//14I\nIURnZ6doa2vzxL6ZbBNCiGQyKaLRqFi7dq363Vza5hkT7e/vR11dHQCgpqYGN2/exCQJVXiF1atX\n46OPPgIAlJaWIpFI4NixY3jiiScAAI899hj6+/s9s+/s2bM4c+YMHn30UQAoKNsAeU7XrFmD4uJi\nVFRU4J133ikYGxcuXIixMdniY3x8HAsWLMDw8DDuvfdeT20LBoP49NNPUVFRodbNNGaDg4NYsWIF\nSkpKEA6Hcf/992NgYMAT+1pbW7F+/XoAuXH1wr6ZbAOAvXv3orGxUbX/mWvbPHuIxmIxLCTdTwAo\nKytTrwVewTRNRCKy9rq7uxvr1q1DIpFQJ2PRokWe2tjW1obm5mb1uZBsA4CLFy8imUzihRdeQGNj\nI/r7+wvGxg0bNuDSpUt48sknEY1G0dTUhNLSUvW9V7b5/X6lW8uYacxisRjKysrUb+7U/TKTfZFI\nBKZpwrIsfPnll3j66ac9sW8m286fP4+hoSE89dRTat1c2+apAMmtEAVUfXrkyBF0d3fj888/R319\nvVrvpY2HDh3CqlWrcNddd834faGM39jYGD7++GNcunQJzz77rMMuL2389ttvUVVVhX379mFoaAgv\nv/wySkpKCsK238Nsdnltr2VZaGpqwoMPPog1a9bgu+++c3zvlX27d+9GS0vL7/7m/22bZw/RiooK\nxGIx9fnq1asoZyUYD9HX14e9e/fis88+Q0lJCSKRCJLJJMLhMEZGRqa9Otwp9Pb24sKFC+jt7cWV\nK1cQDAYLxjbGokWLcN9998Hv9+Puu+9GUVERTNMsCBsHBgZQS4pCy5cvRyqVUnqrAApi/BgzndeZ\n7pdVq1Z5ZuOuXbtQXV2NHTt2AJj5fr7T9o2MjODcuXN4/fXXlQ3RaBSvvPLKnNrm2ev82rVr8dNP\nPwEATp06hYqKChQXF3tlDgBgYmICe/bswSeffIIFJJv30EMPKTsPHz6Mhx9+2BPbPvzwQxw4cABd\nXV3YsmULXnrppYKxjVFbW4ujR4/Ctm3cuHEDU1NTBWNjdXU1BgcHAQDDw8MoKipCTU0Njh8/7rlt\nbsw0ZitXrsSJEycwPj6OeDyOgYEBPPDAA57Y19PTg0AggFdffVWtKwT7KisrceTIEXR1daGrqwsV\nFRXo7Oycc9s8VXFqb2/H8ePHYRgGWltbsXz5cq9MAQB8/fXX6OjowLJly9S69957Dy0tLUilUqiq\nqsLu3buV3qhX6OjowNKlS1FbW4s33nijoGz76quv0N3dDQB48cUXsWLFioKwMR6P480338To6Ciy\n2Sx27tyJ8vJyvPXWW7BtGytXrsSuXbvuuF0nT55EW1sbhoeH4ff7UVlZifb2djQ3N08bsx9//BH7\n9u2DYRiIRqPYuHGjJ/aNjo4iFAop0lNTU4O33377jts3k20dHR2KAD3++OP4+eefAWCisG/XAAAA\nUklEQVRObdNSeBoaGhp5QFcsaWhoaOQB/RDV0NDQyAP6IaqhoaGRB/RDVENDQyMP6IeohoaGRh7Q\nD1ENDQ2NPKAfohoaGhp5QD9ENTQ0NPLAfwHiHmXCiljTBQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "4O84ChzPmJ6c", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "If we train a new network using this data augmentation configuration, our network will never see twice the same input. However, the inputs \n", + "that it sees are still heavily intercorrelated, since they come from a small number of original images -- we cannot produce new information, \n", + "we can only remix existing information. As such, this might not be quite enough to completely get rid of overfitting. To further fight \n", + "overfitting, we will also add a Dropout layer to our model, right before the densely-connected classifier:" + ] + }, + { + "metadata": { + "id": "lvR2MSbxmJ6d", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model = models.Sequential()\n", + "model.add(layers.Conv2D(32, (3, 3), activation='relu',\n", + " input_shape=(150, 150, 3)))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(64, (3, 3), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(128, (3, 3), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(128, (3, 3), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Dense(512, activation='relu'))\n", + "model.add(layers.Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer=optimizers.RMSprop(lr=1e-4),\n", + " metrics=['acc'])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "-d_vV7oHmJ6h", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's train our network using data augmentation and dropout:" + ] + }, + { + "metadata": { + "id": "TzWs0PthmJ6i", + "colab_type": "code", + "outputId": "237a40b7-5c64-49ba-ca8e-103c5dab1b8f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3508 + } + }, + "cell_type": "code", + "source": [ + "train_datagen = ImageDataGenerator(\n", + " rescale=1./255,\n", + " rotation_range=40,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,)\n", + "\n", + "# Note that the validation data should not be augmented!\n", + "test_datagen = ImageDataGenerator(rescale=1./255)\n", + "\n", + "train_generator = train_datagen.flow_from_directory(\n", + " # This is the target directory\n", + " train_dir,\n", + " # All images will be resized to 150x150\n", + " target_size=(150, 150),\n", + " batch_size=32,\n", + " # Since we use binary_crossentropy loss, we need binary labels\n", + " class_mode='binary')\n", + "\n", + "validation_generator = test_datagen.flow_from_directory(\n", + " validation_dir,\n", + " target_size=(150, 150),\n", + " batch_size=32,\n", + " class_mode='binary')\n", + "\n", + "history = model.fit_generator(\n", + " train_generator,\n", + " steps_per_epoch=100,\n", + " epochs=100,\n", + " validation_data=validation_generator,\n", + " validation_steps=50)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 2000 images belonging to 2 classes.\n", + "Found 1000 images belonging to 2 classes.\n", + "Epoch 1/100\n", + "100/100 [==============================] - 37s 368ms/step - loss: 0.6920 - acc: 0.5069 - val_loss: 0.6837 - val_acc: 0.4981\n", + "Epoch 2/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.6836 - acc: 0.5522 - val_loss: 0.6619 - val_acc: 0.5869\n", + "Epoch 3/100\n", + "100/100 [==============================] - 33s 335ms/step - loss: 0.6647 - acc: 0.5987 - val_loss: 0.6616 - val_acc: 0.5857\n", + "Epoch 4/100\n", + "100/100 [==============================] - 34s 336ms/step - loss: 0.6586 - acc: 0.6025 - val_loss: 0.7027 - val_acc: 0.5463\n", + "Epoch 5/100\n", + "100/100 [==============================] - 32s 322ms/step - loss: 0.6425 - acc: 0.6341 - val_loss: 0.5918 - val_acc: 0.6992\n", + "Epoch 6/100\n", + "100/100 [==============================] - 36s 355ms/step - loss: 0.6209 - acc: 0.6550 - val_loss: 0.6646 - val_acc: 0.5901\n", + "Epoch 7/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.6087 - acc: 0.6631 - val_loss: 0.6563 - val_acc: 0.5863\n", + "Epoch 8/100\n", + "100/100 [==============================] - 33s 335ms/step - loss: 0.6088 - acc: 0.6675 - val_loss: 0.5537 - val_acc: 0.7202\n", + "Epoch 9/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.5984 - acc: 0.6775 - val_loss: 0.5480 - val_acc: 0.7183\n", + "Epoch 10/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.5874 - acc: 0.6797 - val_loss: 0.5560 - val_acc: 0.7081\n", + "Epoch 11/100\n", + "100/100 [==============================] - 35s 348ms/step - loss: 0.5845 - acc: 0.6947 - val_loss: 0.5270 - val_acc: 0.7335\n", + "Epoch 12/100\n", + "100/100 [==============================] - 33s 335ms/step - loss: 0.5668 - acc: 0.7075 - val_loss: 0.5506 - val_acc: 0.7049\n", + "Epoch 13/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.5741 - acc: 0.6934 - val_loss: 0.5853 - val_acc: 0.6770\n", + "Epoch 14/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.5617 - acc: 0.7100 - val_loss: 0.5193 - val_acc: 0.7456\n", + "Epoch 15/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.5540 - acc: 0.7122 - val_loss: 0.5138 - val_acc: 0.7341\n", + "Epoch 16/100\n", + "100/100 [==============================] - 33s 333ms/step - loss: 0.5472 - acc: 0.7144 - val_loss: 0.5383 - val_acc: 0.7284\n", + "Epoch 17/100\n", + "100/100 [==============================] - 31s 313ms/step - loss: 0.5406 - acc: 0.7300 - val_loss: 0.5110 - val_acc: 0.7348\n", + "Epoch 18/100\n", + "100/100 [==============================] - 36s 361ms/step - loss: 0.5322 - acc: 0.7306 - val_loss: 0.6045 - val_acc: 0.6802\n", + "Epoch 19/100\n", + "100/100 [==============================] - 33s 334ms/step - loss: 0.5329 - acc: 0.7353 - val_loss: 0.5620 - val_acc: 0.7005\n", + "Epoch 20/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.5308 - acc: 0.7312 - val_loss: 0.4897 - val_acc: 0.7544\n", + "Epoch 21/100\n", + "100/100 [==============================] - 33s 330ms/step - loss: 0.5325 - acc: 0.7338 - val_loss: 0.4894 - val_acc: 0.7582\n", + "Epoch 22/100\n", + "100/100 [==============================] - 33s 327ms/step - loss: 0.5230 - acc: 0.7338 - val_loss: 0.4669 - val_acc: 0.7747\n", + "Epoch 23/100\n", + "100/100 [==============================] - 35s 350ms/step - loss: 0.5164 - acc: 0.7369 - val_loss: 0.5323 - val_acc: 0.7189\n", + "Epoch 24/100\n", + "100/100 [==============================] - 33s 330ms/step - loss: 0.5136 - acc: 0.7397 - val_loss: 0.4801 - val_acc: 0.7703\n", + "Epoch 25/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.5118 - acc: 0.7447 - val_loss: 0.4696 - val_acc: 0.7703\n", + "Epoch 26/100\n", + "100/100 [==============================] - 33s 335ms/step - loss: 0.5067 - acc: 0.7494 - val_loss: 0.5285 - val_acc: 0.7208\n", + "Epoch 27/100\n", + "100/100 [==============================] - 33s 327ms/step - loss: 0.5033 - acc: 0.7494 - val_loss: 0.5682 - val_acc: 0.6948\n", + "Epoch 28/100\n", + "100/100 [==============================] - 34s 337ms/step - loss: 0.5023 - acc: 0.7491 - val_loss: 0.4641 - val_acc: 0.7621\n", + "Epoch 29/100\n", + "100/100 [==============================] - 34s 336ms/step - loss: 0.4902 - acc: 0.7591 - val_loss: 0.4470 - val_acc: 0.7976\n", + "Epoch 30/100\n", + "100/100 [==============================] - 33s 335ms/step - loss: 0.4855 - acc: 0.7616 - val_loss: 0.4560 - val_acc: 0.7773\n", + "Epoch 31/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.4820 - acc: 0.7753 - val_loss: 0.4912 - val_acc: 0.7538\n", + "Epoch 32/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.4832 - acc: 0.7675 - val_loss: 0.5900 - val_acc: 0.7259\n", + "Epoch 33/100\n", + "100/100 [==============================] - 33s 334ms/step - loss: 0.4818 - acc: 0.7703 - val_loss: 0.4394 - val_acc: 0.7881\n", + "Epoch 34/100\n", + "100/100 [==============================] - 31s 314ms/step - loss: 0.4808 - acc: 0.7669 - val_loss: 0.4842 - val_acc: 0.7614\n", + "Epoch 35/100\n", + "100/100 [==============================] - 36s 358ms/step - loss: 0.4741 - acc: 0.7703 - val_loss: 0.4469 - val_acc: 0.7919\n", + "Epoch 36/100\n", + "100/100 [==============================] - 34s 335ms/step - loss: 0.4686 - acc: 0.7756 - val_loss: 0.4377 - val_acc: 0.7938\n", + "Epoch 37/100\n", + "100/100 [==============================] - 33s 331ms/step - loss: 0.4654 - acc: 0.7784 - val_loss: 0.4722 - val_acc: 0.7697\n", + "Epoch 38/100\n", + "100/100 [==============================] - 33s 331ms/step - loss: 0.4746 - acc: 0.7644 - val_loss: 0.4583 - val_acc: 0.7773\n", + "Epoch 39/100\n", + "100/100 [==============================] - 32s 321ms/step - loss: 0.4634 - acc: 0.7734 - val_loss: 0.4509 - val_acc: 0.7887\n", + "Epoch 40/100\n", + "100/100 [==============================] - 35s 349ms/step - loss: 0.4632 - acc: 0.7809 - val_loss: 0.4445 - val_acc: 0.7836\n", + "Epoch 41/100\n", + "100/100 [==============================] - 34s 335ms/step - loss: 0.4524 - acc: 0.7787 - val_loss: 0.4483 - val_acc: 0.7786\n", + "Epoch 42/100\n", + "100/100 [==============================] - 33s 328ms/step - loss: 0.4560 - acc: 0.7803 - val_loss: 0.4206 - val_acc: 0.8020\n", + "Epoch 43/100\n", + "100/100 [==============================] - 34s 336ms/step - loss: 0.4663 - acc: 0.7834 - val_loss: 0.4462 - val_acc: 0.7786\n", + "Epoch 44/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.4485 - acc: 0.7834 - val_loss: 0.4629 - val_acc: 0.7766\n", + "Epoch 45/100\n", + "100/100 [==============================] - 34s 336ms/step - loss: 0.4492 - acc: 0.7819 - val_loss: 0.4618 - val_acc: 0.7830\n", + "Epoch 46/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.4487 - acc: 0.7875 - val_loss: 0.4191 - val_acc: 0.7995\n", + "Epoch 47/100\n", + "100/100 [==============================] - 33s 334ms/step - loss: 0.4354 - acc: 0.7988 - val_loss: 0.4369 - val_acc: 0.7982\n", + "Epoch 48/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.4522 - acc: 0.7813 - val_loss: 0.4271 - val_acc: 0.7989\n", + "Epoch 49/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.4345 - acc: 0.8003 - val_loss: 0.4124 - val_acc: 0.8084\n", + "Epoch 50/100\n", + "100/100 [==============================] - 34s 341ms/step - loss: 0.4370 - acc: 0.7956 - val_loss: 0.4988 - val_acc: 0.7640\n", + "Epoch 51/100\n", + "100/100 [==============================] - 32s 317ms/step - loss: 0.4422 - acc: 0.7906 - val_loss: 0.4221 - val_acc: 0.8033\n", + "Epoch 52/100\n", + "100/100 [==============================] - 36s 355ms/step - loss: 0.4282 - acc: 0.8044 - val_loss: 0.4477 - val_acc: 0.7868\n", + "Epoch 53/100\n", + "100/100 [==============================] - 33s 331ms/step - loss: 0.4176 - acc: 0.8025 - val_loss: 0.6481 - val_acc: 0.7081\n", + "Epoch 54/100\n", + "100/100 [==============================] - 34s 337ms/step - loss: 0.4379 - acc: 0.7997 - val_loss: 0.4431 - val_acc: 0.7944\n", + "Epoch 55/100\n", + "100/100 [==============================] - 34s 335ms/step - loss: 0.4174 - acc: 0.8056 - val_loss: 0.4930 - val_acc: 0.7646\n", + "Epoch 56/100\n", + "100/100 [==============================] - 32s 325ms/step - loss: 0.4273 - acc: 0.7981 - val_loss: 0.4043 - val_acc: 0.8236\n", + "Epoch 57/100\n", + "100/100 [==============================] - 34s 345ms/step - loss: 0.4076 - acc: 0.8169 - val_loss: 0.4191 - val_acc: 0.8122\n", + "Epoch 58/100\n", + "100/100 [==============================] - 34s 337ms/step - loss: 0.4256 - acc: 0.8016 - val_loss: 0.4265 - val_acc: 0.8052\n", + "Epoch 59/100\n", + "100/100 [==============================] - 34s 337ms/step - loss: 0.4187 - acc: 0.8094 - val_loss: 0.3952 - val_acc: 0.8135\n", + "Epoch 60/100\n", + "100/100 [==============================] - 33s 331ms/step - loss: 0.4102 - acc: 0.8188 - val_loss: 0.3920 - val_acc: 0.8223\n", + "Epoch 61/100\n", + "100/100 [==============================] - 33s 330ms/step - loss: 0.4168 - acc: 0.8097 - val_loss: 0.4223 - val_acc: 0.7982\n", + "Epoch 62/100\n", + "100/100 [==============================] - 34s 337ms/step - loss: 0.3986 - acc: 0.8181 - val_loss: 0.3964 - val_acc: 0.8223\n", + "Epoch 63/100\n", + "100/100 [==============================] - 33s 331ms/step - loss: 0.4018 - acc: 0.8116 - val_loss: 0.4506 - val_acc: 0.7887\n", + "Epoch 64/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.4099 - acc: 0.8122 - val_loss: 0.4203 - val_acc: 0.8109\n", + "Epoch 65/100\n", + "100/100 [==============================] - 34s 336ms/step - loss: 0.4002 - acc: 0.8191 - val_loss: 0.4092 - val_acc: 0.8128\n", + "Epoch 66/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.4035 - acc: 0.8131 - val_loss: 0.4253 - val_acc: 0.8065\n", + "Epoch 67/100\n", + "100/100 [==============================] - 33s 330ms/step - loss: 0.3955 - acc: 0.8234 - val_loss: 0.4014 - val_acc: 0.8154\n", + "Epoch 68/100\n", + "100/100 [==============================] - 32s 317ms/step - loss: 0.3922 - acc: 0.8222 - val_loss: 0.4194 - val_acc: 0.8014\n", + "Epoch 69/100\n", + "100/100 [==============================] - 35s 353ms/step - loss: 0.3930 - acc: 0.8231 - val_loss: 0.4066 - val_acc: 0.8344\n", + "Epoch 70/100\n", + "100/100 [==============================] - 33s 333ms/step - loss: 0.3983 - acc: 0.8166 - val_loss: 0.5012 - val_acc: 0.7766\n", + "Epoch 71/100\n", + "100/100 [==============================] - 33s 328ms/step - loss: 0.3989 - acc: 0.8153 - val_loss: 0.3865 - val_acc: 0.8230\n", + "Epoch 72/100\n", + "100/100 [==============================] - 33s 334ms/step - loss: 0.3826 - acc: 0.8309 - val_loss: 0.3822 - val_acc: 0.8268\n", + "Epoch 73/100\n", + "100/100 [==============================] - 33s 327ms/step - loss: 0.3828 - acc: 0.8344 - val_loss: 0.3815 - val_acc: 0.8280\n", + "Epoch 74/100\n", + "100/100 [==============================] - 34s 343ms/step - loss: 0.3953 - acc: 0.8091 - val_loss: 0.3756 - val_acc: 0.8312\n", + "Epoch 75/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.3883 - acc: 0.8278 - val_loss: 0.4275 - val_acc: 0.8160\n", + "Epoch 76/100\n", + "100/100 [==============================] - 33s 334ms/step - loss: 0.3818 - acc: 0.8303 - val_loss: 0.3946 - val_acc: 0.8280\n", + "Epoch 77/100\n", + "100/100 [==============================] - 33s 330ms/step - loss: 0.3681 - acc: 0.8375 - val_loss: 0.4612 - val_acc: 0.7995\n", + "Epoch 78/100\n", + "100/100 [==============================] - 33s 334ms/step - loss: 0.3711 - acc: 0.8347 - val_loss: 0.4384 - val_acc: 0.8001\n", + "Epoch 79/100\n", + "100/100 [==============================] - 33s 335ms/step - loss: 0.3691 - acc: 0.8369 - val_loss: 0.4504 - val_acc: 0.8090\n", + "Epoch 80/100\n", + "100/100 [==============================] - 31s 314ms/step - loss: 0.3870 - acc: 0.8244 - val_loss: 0.4284 - val_acc: 0.7976\n", + "Epoch 81/100\n", + "100/100 [==============================] - 36s 363ms/step - loss: 0.3694 - acc: 0.8347 - val_loss: 0.4414 - val_acc: 0.8046\n", + "Epoch 82/100\n", + "100/100 [==============================] - 34s 337ms/step - loss: 0.3705 - acc: 0.8353 - val_loss: 0.4196 - val_acc: 0.8084\n", + "Epoch 83/100\n", + "100/100 [==============================] - 33s 332ms/step - loss: 0.3640 - acc: 0.8403 - val_loss: 0.4134 - val_acc: 0.8223\n", + "Epoch 84/100\n", + "100/100 [==============================] - 33s 330ms/step - loss: 0.3591 - acc: 0.8381 - val_loss: 0.4314 - val_acc: 0.8052\n", + "Epoch 85/100\n", + "100/100 [==============================] - 32s 318ms/step - loss: 0.3678 - acc: 0.8366 - val_loss: 0.3887 - val_acc: 0.8230\n", + "Epoch 86/100\n", + "100/100 [==============================] - 35s 350ms/step - loss: 0.3591 - acc: 0.8384 - val_loss: 0.4224 - val_acc: 0.8274\n", + "Epoch 87/100\n", + "100/100 [==============================] - 34s 336ms/step - loss: 0.3548 - acc: 0.8450 - val_loss: 0.4030 - val_acc: 0.8211\n", + "Epoch 88/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.3668 - acc: 0.8363 - val_loss: 0.4373 - val_acc: 0.8020\n", + "Epoch 89/100\n", + "100/100 [==============================] - 34s 336ms/step - loss: 0.3556 - acc: 0.8441 - val_loss: 0.3685 - val_acc: 0.8420\n", + "Epoch 90/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.3502 - acc: 0.8409 - val_loss: 0.3856 - val_acc: 0.8280\n", + "Epoch 91/100\n", + "100/100 [==============================] - 34s 339ms/step - loss: 0.3688 - acc: 0.8400 - val_loss: 0.3946 - val_acc: 0.8268\n", + "Epoch 92/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.3550 - acc: 0.8503 - val_loss: 0.3840 - val_acc: 0.8306\n", + "Epoch 93/100\n", + "100/100 [==============================] - 33s 333ms/step - loss: 0.3520 - acc: 0.8484 - val_loss: 0.3681 - val_acc: 0.8382\n", + "Epoch 94/100\n", + "100/100 [==============================] - 33s 331ms/step - loss: 0.3497 - acc: 0.8403 - val_loss: 0.4349 - val_acc: 0.8242\n", + "Epoch 95/100\n", + "100/100 [==============================] - 33s 329ms/step - loss: 0.3397 - acc: 0.8456 - val_loss: 0.3989 - val_acc: 0.8135\n", + "Epoch 96/100\n", + "100/100 [==============================] - 34s 339ms/step - loss: 0.3530 - acc: 0.8469 - val_loss: 0.3821 - val_acc: 0.8274\n", + "Epoch 97/100\n", + "100/100 [==============================] - 32s 317ms/step - loss: 0.3507 - acc: 0.8475 - val_loss: 0.3955 - val_acc: 0.8249\n", + "Epoch 98/100\n", + "100/100 [==============================] - 36s 356ms/step - loss: 0.3479 - acc: 0.8472 - val_loss: 0.4987 - val_acc: 0.7862\n", + "Epoch 99/100\n", + "100/100 [==============================] - 33s 331ms/step - loss: 0.3462 - acc: 0.8497 - val_loss: 0.3874 - val_acc: 0.8433\n", + "Epoch 100/100\n", + "100/100 [==============================] - 33s 333ms/step - loss: 0.3501 - acc: 0.8466 - val_loss: 0.3584 - val_acc: 0.8407\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "WCMI1Z3imJ6l", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's save our model -- we will be using it in the section on convnet visualization." + ] + }, + { + "metadata": { + "id": "i3DFN9KumJ6m", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.save('cats_and_dogs_small_2.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "TYcnaGesmJ6p", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's plot our results again:" + ] + }, + { + "metadata": { + "id": "WTQxD58tmJ6p", + "colab_type": "code", + "outputId": "6f89f7a9-c5dc-4ea6-abf7-dddc53d9ac6e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4FNX6x78zW5JseiUFEAg1dESl\nSktogXtFVIKKBZQi/gBFBbkqNhBFECwgiugFFFBIrqIQCFJFpQUQSBAIEiAhZJOQukm2zPz+OMxs\nm9mSbEIC5/M8PGRnZ8/MnGzmO+973sLwPM+DQqFQKBRKg4G91SdAoVAoFArFGirOFAqFQqE0MKg4\nUygUCoXSwKDiTKFQKBRKA4OKM4VCoVAoDQwqzhQKhUKhNDCoOFMaDfPnz8fw4cMxfPhwdOzYEYMG\nDRJfl5eXuzXW8OHDUVBQ4HCfJUuWYMOGDbU5ZY/z1FNPITk52SNjtWvXDnl5eUhLS8Orr75aq+N9\n//334s+uzC2FQnGM8lafAIXiKm+99Zb48+DBg/HBBx+gZ8+eNRorNTXV6T6zZ8+u0diNjYSEBCQk\nJNT481qtFqtXr8YjjzwCwLW5pVAojqGWM+W2YcKECfjoo48wYsQIpKeno6CgAJMmTcLw4cMxePBg\nfP311+K+gtV46NAhjBs3DkuWLMGIESMwePBgHD58GAAwd+5crFixAgB5GNi4cSMeeugh9OvXD4sW\nLRLH+vzzz9G7d2+MHTsW3377LQYPHix5fj/88ANGjBiBoUOH4rHHHkNOTg4AIDk5GTNmzMC8efMw\nbNgwjBw5EufPnwcAXLlyBQ8//DDi4+Mxe/ZsmEwmu3H37duH0aNHW23797//jf379zucA4Hk5GQ8\n9dRTTo/366+/YvTo0Rg2bBgefPBBZGZmAgCSkpKQm5uL4cOHQ6/Xi3MLAGvXrsXIkSMxfPhwTJs2\nDUVFReLcfvzxx3j66acxaNAgPP3006isrLQ7t8rKSsyaNQvDhg3D4MGD8f7774vvXblyBY899hgS\nEhIwduxYnDlzxuH2wYMH4+jRo+LnhddXr15Fv379sHDhQjz++OMOrxUAvvjiCwwZMgTDhg3De++9\nB5PJhL59++LUqVPiPuvXr8dzzz1ndz0UiqtQcabcVpw+fRq//PILevTogZUrV6Jp06ZITU3Ff//7\nXyxZsgTXrl2z+0xGRga6du2K7du349FHH8XKlSslxz5y5Ag2bdqELVu2YP369cjLy8P58+exevVq\n/Pjjj/juu+9krcbCwkK8/fbb+Prrr7Fz5040b95cFH4A2L9/Px599FHs2LED9913H/773/8CAD78\n8EP07t0bu3btwpNPPon09HS7sXv37o28vDxcuXIFABGnvLw89OnTx+U5EJA7ntFoxNy5c/HOO+9g\nx44dVkK5cOFCREVFITU1FWq1WhzrxIkT+Oqrr7Bu3TqkpqYiOjoaS5YsEd9PTU3FRx99hLS0NBQV\nFSEtLc3ufDZs2ICKigqkpqYiJSUFycnJosC+/vrrSExMRFpaGqZNm4ZXXnnF4XZHFBcXo0OHDli/\nfr3Daz169Cg2b96MH3/8EVu3bsWxY8ewc+dOjBgxAj///LM4XlpaGhITE50el0KRg4oz5bZiwIAB\nYFnytX7ttdfw+uuvAwCaNWuG8PBwXL161e4zvr6+iI+PBwB07NgRubm5kmOPHj0aCoUCTZo0QWho\nKK5du4YjR47g3nvvRUREBLy8vDB27FjJz4aGhuLYsWOIjIwEAPTs2VMUUwCIjY1Fp06dAABxcXGi\ngB49ehQjR44EAHTp0gWtWrWyG1utVmPQoEHYvXs3AGDXrl2Ij4+HUql0eQ4E5I6nVCrx+++/o1u3\nbpLnL8XevXsxbNgwhIaGAgAefvhhHDx4UHx/wIABCAoKglKpRNu2bSUfGiZOnIgVK1aAYRgEBgai\nTZs2uHr1Kqqrq3Ho0CGMGjUKADBkyBB8//33studYTAYRNe+o2vdv38/BgwYAD8/P6jVaqxbtw5D\nhw5FYmIitm3bBo7jUFxcjNOnT2PQoEFOj0uhyEHXnCm3FYGBgeLPp06dEi1FlmWh1WrBcZzdZ/z9\n/cWfWZaV3AcA/Pz8xJ8VCgVMJhNKS0utjtmkSRPJz5pMJnz88cfYvXs3TCYTKioq0LJlS8lzEMYG\ngJKSEqvjBgQESI4/bNgwrF27Fk8++SR27dolulRdnQMBR8dbt24dUlJSoNfrodfrwTCM7DgAUFRU\nhIiICKuxCgsLnV6zJZcuXcKiRYtw8eJFsCyLvLw8PPjggyguLgbHceIYDMPA19cX169fl9zuDIVC\nYXXdctd648YNq2vy8fEBAHTv3h0qlQqHDx9GXl4e+vXrB41G4/S4FIoc1HKm3La8/PLLGDZsGHbs\n2IHU1FQEBwd7/Bh+fn7Q6XTi6/z8fMn9tm3bht27d2P9+vXYsWMHZsyY4dL4AQEBVpHowpqtLf37\n98fZs2dx6dIlXLp0Cb169QLg/hzIHS89PR1ffvklVq5ciR07duDdd991eu5hYWEoLi4WXxcXFyMs\nLMzp5yx5++230aZNG2zfvh2pqalo3749ACA4OBgMw+DGjRsAAJ7nkZ2dLbud53m7B6+SkhLJYzq6\n1uDgYHFsgIi18DoxMRGpqalITU0VvQ8USk2h4ky5bSksLESnTp3AMAxSUlJQWVlpJaSeoEuXLjh0\n6BCKioqg1+vxv//9T/ZcYmJiEBISghs3bmD79u2oqKhwOn63bt3Etdj09HRcvnxZcj+1Wo1+/fph\n8eLFGDJkCBQKhXhcd+ZA7nhFRUUIDQ1FdHQ0KisrkZKSAp1OB57noVQqodPpYDQarcYaOHAg0tLS\nRPHauHEjBgwY4PSaLSksLESHDh2gUChw8OBBZGdnQ6fTQa1Wo2/fvkhJSQEAHDhwAJMnT5bdzjAM\nwsPDcfbsWQDkYam6ulrymI6udfDgwdi9ezdKSkpgNBoxffp0/PbbbwCAUaNGYdeuXTh+/Ljb10mh\n2ELFmXLbMnPmTEyfPh2jR4+GTqfDuHHj8Prrr8sKXE3o0qULxowZgzFjxuCJJ56QXWccNWoUiouL\nkZCQgNmzZ2PWrFnIy8uzivqW4uWXX8aePXsQHx+Pb7/9Fn369JHdd9iwYdi1axdGjBghbnN3DuSO\n179/f0RERCA+Ph4TJ07Ek08+CX9/f8yYMQPt2rVDYGAg+vbta7Ve36VLF0yePBmPPfYYhg8fjrKy\nMrzwwgsOr9eWadOm4f3338eoUaNw+PBhPP/88/jkk09w7NgxLFiwAHv27MGQIUOwbNkyfPjhhwAg\nu/25557DN998g1GjRiErKwutW7eWPKaja+3WrRsmTZqEBx54AImJiYiLixPXt9u1a4egoCD069cP\n3t7ebl0nhWILQ/s5Uyi1g+d5cU1y7969WLZsmawFTbm9efbZZ/H4449Ty5lSa6jlTKHUgqKiIvTq\n1Qs5OTngeR7bt28Xo3wpdxbHjh1DTk4O+vfvf6tPhXIbQKO1KZRaEBISglmzZuGpp54CwzBo1aqV\nS3m1lNuLV199Fenp6Vi8eLGYykeh1Abq1qZQKBQKpYFBH/EoFAqFQmlgUHGmUCgUCqWB0WDWnLXa\nMo+OFxyswY0bns1pvROh8+gZ6Dx6BjqPnoHOo2eo7TyGh/vLvnfbWs5KpeJWn8JtAZ1Hz0Dn0TPQ\nefQMdB49Q13O420rzhQKhUKhNFaoOFMoFAqF0sCg4kyhUCgUSgODijOFQqFQKA0MKs4UCoVCoTQw\nqDhTKBQKhdLAoOJMoVAoFEoDo8EUIWmIfPLJR/j770wUFRWiqqoK0dExCAgIxMKFi51+dtu2rfD1\n9cOAAdL9fZcvX4KHH05CdHSMp0+bQqFQKI0clxpfLFy4ECdPngTDMJg3bx66dOkivvftt9/ip59+\nAsuy6NSpE/7zn/8gOTkZy5cvR/PmzQEAffr0wbRp0xwewxMVwlJSlFi2TI1z51jExTF4/vlKjBlj\nrPW427ZtxcWLWXj++Vm1HquxER7u7/HqbXcidB49A51Hz9CY5tHyvt62LYdZs/Qeua97gtrOo6MK\nYU4t58OHDyM7OxubNm1CVlYW5s2bh02bNgEAysvL8dVXX2Hnzp1QKpWYOHEiTpw4AQAYOXIk5syZ\nU+OTdpeUFCWmTPERX586hZuvPSPQlqSnH8XGjeuh0+nw/PMv4PjxY9i791dwHIfevfti4sTJ+Oqr\nVQgKCkLLlrFITv4eDMMiO/sfDBw4BBMnTsbzz0/Giy++gj17fkVFRTkuX85GTs5VzJgxG71798X6\n9d9g166diI6OgdFoRFLSY+jRo6d4DkeOHMLq1Z9DpVLB398fb7+9CCqVCsuWfYiMjNNQKBR4+eVX\n0apVa8ltFAqF0tCxva9nZirq7L5ue9xb/UDgVJz/+OMPxMfHAwBiY2NRUlKC8vJy+Pn5QaVSQaVS\nQafTQaPRoLKyEoGBgXV+0lIsW6aW3L58ubpOJjUr6wI2bEiGWq3G8ePHsGLFarAsi0ce+TfGjXvU\nat+MjDP47rst4DgODz88GhMnTrZ6Pz//Oj788GP8+efv+PHHLejYsROSk3/Ahg1bUFFRgaSkB5GU\n9JjVZ8rKyjB//ruIjo7BO++8gUOH/oCXlxfy86/jiy++wYkT6fj11zQUFhbabaPiTKFQGgNy9/UZ\nM7zx3HOosXDaim/fviYcPKjAuXMsmjThkZtrDseqrwcCW5yKc0FBATp27Ci+DgkJgVarhZ+fH7y8\nvDB9+nTEx8fDy8sLiYmJaNmyJY4fP47Dhw9j0qRJMBqNmDNnDuLi4hweJzhYU6s6pefOyW1XOHQd\nuIK/vzc0GrU4TlCQBnFxHRATEwoACAsLxAsvTINSqURJSTGUShN8fb3g5+eNoCANOnfuhGbNwgEA\nDMMgPNwfarUSwcG+8PX1Qu/e9yE83B/t2rVEdXUlKiqK0L59OzRtGg4gHF27dkFQkMbqOlq0iMbS\npe/BZDLhypUrGDiwP3JyctG7970ID/dHQsIAJCQMwJdffmm3zV1qO38UAp1Hz0Dn0TM0hnmUu69X\nVzMAzMIZEAAkJcmPs3EjsHAhkJEBREcDV66Y38vMVCAz06w9ubmM5BiffeaDyZPtt9fVPLodEGa5\nRF1eXo5Vq1YhNTUVfn5+ePLJJ3H27Fl07doVISEhGDhwII4fP445c+Zg69atDsetbYeUtm01VhNs\n3m6CVlu7scvKqqDT6cW1heJiHXiegVZbhry8a/jqqzVYs+ZbaDQaTJjwCIqKKlBRUQ2VqgrFxTqY\nTLz4WZ4nP+v1Rty4IeznA622DDduVECvN6KoqAJGIyd+xmAwobhYZ7W2MWfOq1i8eBlatGiJpUvf\nR1lZFSorjeB5vdV+UtvcoTGtTTVk6Dx6BjqPnqGxzKPcfd2Wd94xYcgQcp+XsopXrzZb4JbC7A5/\n/cVDqbS21utyzdlpKlVERAQKCgrE1/n5+QgPJ1ZgVlYWmjVrhpCQEKjVavTs2ROnT59GbGwsBg4c\nCADo3r07ioqKYDKZanwBrjBrll5y+8yZ0ts9RXFxMYKDg6HRaPD332eRl5cHg8FQqzGjoqJw8WIW\njEYjbty4gbNnM+32qagoR5MmkSgrK0N6+jEYDAZ06BCH9PSjAIBz585iyZL3JbdRKBRKXZGSosSA\nARpERflhwAANUlKUbr1vidx93ZZz51hx7ClTfJCZqYDJxCAzU2ElzLWDEcecMsXH4Xl7Aqfi3Ldv\nX+zYsQMAcObMGURERMDPzw8AEBMTg6ysLFRVVQEATp8+jRYtWuDLL7/Ezz//DAA4d+4cQkJCoFDU\nbYuyMWOMWLWqEnFxJiiVPLp0AVatqvs1gjZt2sLHR4Np0ybi11934t//frDWAhgSEoqEhOF49tkn\nsHz5h4iL62g3fw8++DCmTZuEDz5YgMceewLr13+Dpk2b4667WuK5557BsmUf4oEHxqJbtx522ygU\nCqUukBJHSyFz9r4ttvd1Ly/p5KK2bTkA8mvUdcHy5XV7LJdSqT788EMcPXoUDMNg/vz5yMjIgL+/\nPxISErBx40YkJydDoVCge/fueOWVV5CXl4eXX34ZPM/DaDTapV9J4WkXS2Nx28ixbdtWJCQMh0Kh\nwBNPJGHp0k8QEdGk3s+jsc9jQ4HOo2eg8+gZ5OaxtlHKAwZIu6Hj4kzYu1cn+76XFw+jEXbBWbbn\nYBu9LSAYYlFRfjCZpNeM3SUsjMONGwyI09d+TKWSh8HA1Jlb2yVxrg+oOFuzbt032L17J1QqNfr1\nux9PPDHxlpxHY5/HhgKdR89A59EzSM2jM+FzBTlxVCp55OaW11g8Lc8hJUWJ5cvNDxB9+pjFXKk0\nB4s5o2lTDnl5jDjG77+bHwimTNHjpZe8YTAw8PHhUVlpP2ZcnAlnziioOLsL/SP2DHQePQOdR89A\n59EzSM2jM6tXDktrW04cBcvYHfF05RzkHihseeYZvZX4zpzp2CNw8SKDXr38EBjIo6RE+nxXrarE\n5Mk+t64ICYVCoVAaBnVZHEMIqrIlI4NFVJSfpMvZNhJaLu5XEOSaxgXLnZvcGrOXFw+TCS4JsRT5\n+eR4Tz+tx+jRRrzyiheOHVOAYYAOHWo2prtQcaZQKJRGgCvVspyJt/l9kqZkKbZKpZx4knVX23xg\n29eWCOKoUDi2lFmWB8c5t6SFgC+Bs2dZHDmiwN9/S4u2yQTk5pY7HVeO/HxyThERPDp35rB9eyVy\ncxloNDyCgmo8rFtQcaZQKJR6oLZWr7NqWc4qW0mJu6W4ejLbVRDHqCg/h/t5ewM6F8pQWKbElpQA\n48f7ICeHxV13mZCdLVXfgrPb5g6W4iwQHV2/K8C0ZSSFQqHUMe6mEEkh59qtrib5t5bCbImQ8uNq\nmpGXFw+lkgdQczESxNGRSA4aZIROx+CZZ/RiqlRcnMnutW1A2ty53sjJIdcaEyN9jrWtb6HV2otz\nfUPF2QFTpjxtVwDk888/xYYN6yX3T08/itdeewUAMHfui3bvb9myCV99tUr2eBcunMfly9kAgPnz\nX0V1dVVNT51CodQBP/ygxNGj7t82HdX+d5WaWoOCqMuJuy2C1duhQ82tT0EcHRURmTu3GgCQlcVi\n714dcnPLsXevDgsXVlu9thTm//1PiS1bVOjRw4TmzTmcOKHA8uWVDsW8JgiWc3h47Szw2kDF2QEJ\nCcOwe3ea1ba9e3cjPn6o088uWrTU7ePt27cbV65cBgC89dZ78PLydnsMCoVSNxQXA9On+2DBAi+X\n9reshJWZKX2rdSaYlmPIRQ07wxUrVmp/V6tzObJ0bYuIxMWZEBHBISyMQ/fuHO6+24S9exXIyXF+\nbdeuMXjlFW9oNDw++6wS48YZoNMxYBjIinlNEQLCbqXlTNecHTBkyFBMmzYJzz03AwBw9mwmwsPD\nER4eIdmy0ZLExCH45ZdfcfToYXz88RKEhIQiNDRMbAG5YMGb0GrzUVlZiYkTJyMyMgo//piMfft2\nIzg4GG+88SrWrt2E8vIyvPfe2zAYDGBZFnPnvg6GYbBgwZuIjo7BhQvn0bZtO8yd+7rV8Xfu3I7N\nmzdBoWDRokUs5sz5D4xGI959dz6uX78GtdoLr732FoKDQ+y2hYdH1NscUyiNBUFI8/Kc2zSupvi0\nacOhvBzwk1iatR1DaMgg5Oc6C7YSsLRiXTknYX8icpV2OcXupCQJ4wj7mExA8+Z+6NKFPACMH2/A\nsWPe+P57FV54Qf5hgOPI2npxMYMPPqhCbCyPceMMWLzYC999p0JSkmcjp/PzSX6z1O+lvmg04vzm\nm17YutX102VZgON8He4zerQRb75ZLft+cHAIoqNjkJFxGnFxnbB7dxoSEoYDkG7ZqNFo7MZYtepT\nvP76O2jTpi1eemkGoqNjUFZWinvv7YURI0YhJ+cqXn99LtasWY/77uuNgQOHIC6uk/j51as/x6hR\n/8aQIUOxZ88urFnzBSZNmoK//87EW28tRHBwCMaMGYmysjL4+5tz5iorK7FkySfw9/fH9OnPIivr\nAjIyTiM0NBRvvrkAu3btwG+/7YdSqbTbNmbMQy7PM4Vyp3D+PAk8ElyejnB1fbeqikGHDn7YuVOH\ns2dZq4Cx0lLp4wQE8EhPr5B9ALAsrmEpntZiq0DbtianYmsprJ7g2jUGBgODu+4i4vzAAwa8/roX\nNm5UYdYsPRiJS+Z5Mp/79ikRH2/Ek0+S3gXNm/Po39+IAweUuHiRQatWnrNy8/MZhIfzkudTXzQa\ncb5VJCQMx6+/piEurhMOHtyPlSvXAACCgoLw/vvvwmQyITc3B3fffY+kOF+7dg1t2rQFAHTr1gPV\n1dXw9w9AZuYZ/PRTMhiGRWlpiezx//47E1OnPg8A6NGjJ775ZjUAICamGUJDwwAAYWHhqKgotxLn\ngIAAvPrqbABAdvY/KCkpxt9/n0XPnvcAAOLjhwEAPvxwkd02CoVij2A5l5UxqKwEfBwYofLuah4K\nBRHY4mIG//xD9nvnHTV27VKJeznqxCSMLWXZOrNkBbElRUhq162vJmRnk3MXxDkgAEhMNGLzZhUO\nHVKgVy/rkPGiIuCFF7yxfbsKYWEcPvqoykowk5IMOHBAiU2bVHj1Vc80OeI4oKCAQdeut269GWhE\n4vzmm9UOrVxbyJevotbHHTBgENauXYOEhGFo1qw5AgICAADvvfeOVctGOVjW/EcqFGNLS0tFaWkp\nPvtsNUpLS/HMMxMcnAEjfs5gMIJhyHi2jTAsC70ZDAYsXfoBvvnmO4SGhuGVV2bd/AwLjrN+upTa\nRqFQ7Dl/3vy3rNUyaN5c/u+mbVtOUmBDQ8lnCgtZtGljwltvVWPaNB/s3ev6rdhy7diZZVuXRUsE\neB64fp1BZKTz+0h2NlFWQZwB4trevFmFd97xwqRJevTqZUJ0NI8DBxSYPt0beXks+vQx4rPPqtCk\nifUxEhONmDuXx6ZNKrzyih6O+itdu8agSRMerJNVieJiwGBgbmkwGEADwpyi0fgiNrYN1q79WnRp\nA9ItG6UICwvH5cuXwPM8jh8/BoC0mYyKigbLsti3b7f4WYZh7FprWrZ8PHHiGNq37+D0nHW6CigU\nCoSGhuH69TycPZsJo9GI9u3jkJ5+BABw8OABrF27RnIbhUKxx9IaFlJt5JALpiosZFFZyeCNN6qw\nZ48O8fEmjBplgNHouv/U1TQhT6RvOcNgAF5+2Qtduvjh7bedu/LNlrNZZPv2NaFnTxOOHFFg6lQf\ndOvmhx49fPHQQz7QahnMm1eNLVsqJdOmNBriGs/NZbFvn7wy79ypQNeufhg4UIPNm5UwOng+aQjB\nYAAVZ5dISBiOI0cOoV+/+8VtUi0bCwsL7D47efJzeO21OZgz5wWxq9TAgYPx++8HMHPmNPj4+CAi\nIgJff/0lunbtjmXLFuPo0cPi5595ZipSU7dhxoyp2LbtZ0yaNMXp+QYGBuGee+7DM888ga+//hKP\nPjoBH3+8FEOGDEVlZSWef34yvv9+A0aMGIX4+GF22yiUOxFHfYZ1OuDKFbOAPvust0OR69PHhLg4\n4UGbh0bDIzHRgB9+0OHMmXI8/7wB6pta5siSZRhe/N/dNCFPpG854sYNICnJB2vXqsEwPD791Asb\nNjgWflu3NkDig378UYdt2yrwxhtVGDbMiPJysmb+8886zJrl2CIeP54YNxs3qmT3WbOGXPP58yye\ne84HvXr54r//VUkWXpEqQHIroI0vKA6h8+gZ7sR5vHCBQWysZ4Nq6moe5YKrYmJIcFVICA+t1t6W\nkRLLtDQFZs70RkEBiyFDjFi+vMrhjd5kAtq185MNAAOA5s05HD3q3jKdow5RtW11eOECg8cf1+Di\nRRYjRhjw0kt6jB2rQUUFsGVLpd3ascCIERr89ReLy5fLHQouz8Pl7w3PA/36aXD5Mou//ipHcLD1\n+7m5DLp390WPHhw+/7wSn32mxoYNKlRXM3jvvSpMmmTt9dyyRYlp03yweHGVGHwmR22/j44aX1DL\nmUKheJxDhxTo08cPn30mb804IiVFiT59NIiMtLdiBcrKgKtXPaP8clZmTg4Lk4mRFGbA3gr99FMV\nHntMg9JSBgsWVOG77yqdWmAKBTBuHBGBZs1IPnCHDiQf2MuLR5cuJly+zKJEPm5UErm8Zmf5zhUV\npCuTHBkZLEaM8MXFiyxmzKjG119XoXNnDmvWVILngaee8salS9Kfz85m0KwZ71CYAdeFWdh3wgQD\nqqsZqyYcAt9/rwLPMxg/3oC77uLxwQfVSE0lwXDHjtmfSEOxnKk4UygUjyMET61YoUZlpXufFazY\nCxcU4Dj5tdIXX/TGgAG+qHDBoHTksgZcr55li+3nvvlGDX9/Hjt26PDsswaXRWbMGCLO997LITe3\nHK++Wo38fBYPPWRA//7ECj1zxomi2SC37u1szXrOHG/07+8rBm/Z8s03KpSUMHj//Sq89ppeDLDq\n18+E996rRlERiwkTfFBmY1CWlwMFBayVS9tTPP64AaGhHL74Qo3SUvN2ngc2bFDBx4fHAw+YreB2\n7TgolbwYLW+JsOZMA8IoFMpthxAwVVDAYtMm96xnV9ZKk5OV2LpVibIyBoMGSVvWAq4ERtW0NKbl\n50jZS7JW2rGje+PdfTeH5s05bN+uhE4HfPEFudbJkw3o1EkQZ/du11LVuZytWRcXAz/+qITBwGDb\nNvs55XkgLU2JoCAeEybYu3yffNKAZ5/V4++/FfjkE+vfo9R6s6fw8wOmTjWgpITBV1+Zj3vokAL/\n/MNi5EgjbibaACB9pZs25SUfQKjlTKFQblsso5lXrFBjyxbHlqslcm0ABSs1JUWJqVN9xFaDly45\njkJ2RexdLVVpS0kJI17Tiy96wWhkkJ7OOr1GWxgGePBBUo5y2TI1fvtNifvvN6JDB7PQnz7tnuUM\nEIF2p7RlcrJKrDqWmmp//mfOsMjJYTF4sBFKmcubN68aajWPXbusd6hLcQaAiRP1CAri8fnnapTf\n7Ba5YQN5MHz0UfsHiRYtOBQUsOK+Aua62lScKRTKbYYgzsOHG3DpEotp01xL6eE4iFHMtghWqrtR\nyHIua8vttlZmTIy0gDRtyoHhezMJAAAgAElEQVQUEiE3bmFNOjNTgQ0byPF5vmZpS4JwLltGandP\nnUoeGFq3JmvP7lrONWHjRhUUCh5t2phw6JAChYXWlmVaGrmeoUPlRd7XF+jVy4TTpxW4ft38eXOO\nc92Inr8/MGWKHjduMFizhgj0jz8q0bw5h7597QPUWrQgv2Nb17ZWyyAggHdYZKY+oOJMoVA8jlbL\ngGF4vP66HnKtB6XEdONGJaqqpNc6hbVSV8TWElcDoyytzOPHK0SxFoS4d28j0tMr0KkTB85F48+d\ntKUOHTh06EBEpHVrEwYPJj8rleS9s2dZyJRT8AgZGSxOnFBg8GATxo0zguMYpKVZW+s7dyqhUPAY\nPNixBT5oEHl/717z5+vacgZIE46AAB4rV6qwaZMKOh2DRx4xSBYeEcT50iXrN4XSnbcaKs4UCsXj\naLUk/ahNG/kbsa2YFhcD77zjBY2Gx6JFlTfzhHmwLI+VK81rpXJiq1BA0m0u57Lu08dk5Wpfs0aJ\nxEQNduwggiKI9erVpHVrfDwRy/BwHjzvWqSXu4FmDz1ErnHyZGtB6djRBL2ewYULdXfLFlzASUkG\njBxJngK2bzfPY34+cdnfd58JQUGOxxo0iMzVnj3mz9eHOAcGAs8+q0dhIYs33yQeCCES3pYWLYgA\nW4qz0QgUFjKIiLi1wWAAFWcKhVIHaLWsaH0IFoottiK7aJEXCgtZvPiiHhMnEmF8+GFiwXXubN5X\ncPfaUl3NWLnNu3f3RVSUH5YtU9u1NXzmGT1Wr1ZbudrnzvXBkSMKLF1q3RJSiDxv144IjjuBQu4G\nmk2dqsfGjTo88YS1oHTqJKw7180t22Ag+b2hoRyGDTOidWserVubsG+fUoy2//VXBXieQUKC8yIo\nHTpwiIzksG+fQvQyZGczCA7mrQKz6oLJk/Xw9eVRXc2gXz+jrBvdbDmbH7QKCxnwPHPLg8EAKs4U\nCsXD6PVAcbHZNSjXkMAypSc9ncU336jQurXJSnzvvpsI4rFj5luVUNM6NJQTK2hJYbkevHq1GgEB\nPO66i8d771Xj4EH54KrjxxVW/ZcF61fwAriTYuNqqU0BlQoYPNhk54YVgsLcTadylbQ0JQoKWIwd\naxTX/IcPN0KnY7B/Pznmzp3ECh42zLk4MwyxngsLWfz1FwuOAy5frps0KluCg4lAAyTFSg7hXCwt\n54YSqQ1QcaZQKB6moMA62nXMGCNmzhSa1pACG5YpPXo9MGkSib6+eJFFQoLZLd2zJxHnzZtVGDBA\nA6USmDzZGwCweHG1W52I/vxTiawsFk8/7S0bES6IveDiBYjl7OXFiw8Fwo17ypRqK2s8PJw8LCgU\nrqUtOcu9tkQoBVpXlvPGjeTYSUlmMRs+nJx7aqoS1dXA3r1KtGzJITbWNeES1p337FEiL4+BXs/U\nizgDwMsv6/G//zmOTvf1BSIiONHdDpgDGak4UyiU2w7hBmcZVDNvnh6PPGIAwKBfP5PVTXP6dG/k\n5JBbkW3Rkbg4DioVjwMHlDdd0BCrdWm1JJLZVRQKHkuXVqGoiJVNA2rXjkNICIfNm5UwGEj0+Pnz\nLGJjObGqlXBdrVrxVmlKDEOs+mvXnKctuduUIiCAlPDMyGDh6YLL168zSEtTonNnk+g+B0judXg4\nhx07lDh4UIGKCgZDhxpdLqxy//1GsCyPPXsU9bLebIlSSWIKnJ1ry5Ycrl5loL/5jGdOo6JrzhQK\npR749VdrV60j3LHopJASZ4YB3n+/Cu3bm/Dll2r89BMZ8/x5VvzZluXL1VAqiatXiv/+V+3Wmm67\ndhwef9yAqVP10Oul79ovvKDH2LFGFBSwSEtTIjeXgU7HWB1HsKqEGzkAVFeTylIk1co5NWlK0amT\nCQUFrFV6ki3l5cDQoRoxGMoVNm1SwWRi7HKBFQriwi4oYLFoERnPUQqVLSEhQPfuHI4eVeDUKftu\nVA2BFi14cBwjloFtKB2pACrOFMptz8mTLMaP12DuXOc37Jq0GbQVc6F4ha314esLrF5dBY2Gx6xZ\n3rhwgcGLL3rJRj4La71y5T/PnWPRogUHhYJHbKzJaY6ysP47f3414uOJyAhpUlFRnOiGFly7Gzcq\n7dabyXWRz1gWWrl2jfwcHe3aTd3ddDAAFsVI5Pf56CM1TpxQ4IsvVE7rjhsMwKJFaixcqIZGw4sl\nRC0RXNsnTijg78/jvvukG1rIMXCgEUYjg2+/JU9Y9WU5u4ptrjN1a1MolHqB5yFaUbb5nFK4a9FJ\nifnatWRfqVzRtm05LFlShfJyBiNH+uLQISX8/aVvhIK1Kie2bdtyUKuJ9VNYyGLPHnOOsrDGLdVq\nUaEg3aTatzfBZGLQvbsJx49XiO937syhUycT0tKUYuCYteVMfra0nHNzWYfnKndtrm4HzBHbckFh\nFy4w+PxzNdRqHkYjg1Wr5K3wixeBf/1Lg6VLvRATw+P773UICbHfr39/EzQa8vsZPNgoWyBGDiEf\nOjOTnHNDFWfhb4MGhFEolHphxw4FDh4klmxeHuO0iIWc5ZaRwUq6ueXEHJAvfzh2rBH3329EcTED\nodexFIKlO2OG42jvNm1MKC5mxEA0AOL68LffVkqu//r7A+vXV+Lxx/X49NMqu+joRx81wGQy12m2\ntJyDgkjbRctOVTk57lnONWlKIdTYlrKceR6YN88bBgODzz6rQnQ0h3XrVLhxw36crVuV6NaNdGR6\n8EED9uypwL33Soumj485sMuVFCpbunfnEBhI5kSh4BETc+tFzxI5cQ4NvfXn6ZI4L1y4EOPGjUNS\nUhL++usvq/e+/fZbjBs3DuPHj8eCBQsAAAaDAbNnz8b48ePx+OOP48qVK54/cwqF4hCDAXjrLW+w\nLA9vb1I44/77pdeQ//xTgW3blA4sN+kcYkfr2HLinJKixP79wjkwuH6djNG0KSfZoOGpp4wIDeVE\nFzTA49NPze8LwmlZoOPPPxVgGB733CPvhm3enMfSpdWShVIefNAAtZqHTseAZXnExpr3YVlybZZu\nbcFydnXNuSZNKZo25REYKF3G85dflNi7V4lBg4z417+MmDJFD52OlLG0JD2dxdSp3uB54NNPK7Fy\nZZXTvOPZs/V46ik9Ro1yX5yVSmDAAKN4/nKBeLcK20Ik+fkMQkM52TiH+sSpOB8+fBjZ2dnYtGkT\nFixYIAowAJSXl+Orr77Ct99+iw0bNiArKwsnTpzAzz//jICAAGzYsAFTp07FkiVL6vQiKJTGxMmT\nLDZs8NxdSi6Aa+1aFbKyWHAcI5bEzMqSXkN+5RUvTJrkjWefdS01ScghBuTXNcPCpMVZztoOCOBl\nGzTcf7/p5vFIFPEjj5jfF8RVsPqrq4H0dAXi4jgEBrp0OXaEhJjzeVu04OFls1wfEUHEWYicFtZ3\nXbWcAfebUjAMqRSWlcVatcnU6YA33vCCSsVj4cIqsb9xYCCP1atV0JHWxbhxA3j2WR8YjUByMvDI\nI65FXnfqxOGDD6qh0bh8aVYI1cIamksbAEJCePj782Ihkvx8tkG4tAEXxPmPP/5AfHw8ACA2NhYl\nJSUov9nGQ6VSQaVSQafTwWg0orKyEoGBgfjjjz+QkJAAAOjTpw/S09Pr8BIolMbFa695YeZMH1y+\n7EZHeRnkAri++06JDz9Ug2Wd17XmOBIQYzIxUCphZdHJ1cV2hpcXj4QE6YjvmgRDCcVIbH8G7C3n\nkydZVFUx6NXLveAlW8aPJ2sAbdvajxMezqOykhE7Grm75lxTOnbkwPMMzp4lx+N5EgR29SqL557T\niznIfn6kS1NhIYsNG1TgOOD//s8HV66wmD1bj5u353ohPt4IPz9ezFlvSDAMcW1nZ7OoqiJdxhpC\nXW0AcPr4XlBQgI4dO4qvQ0JCoNVq4efnBy8vL0yfPh3x8fHw8vJCYmIiWrZsiYKCAoTcjC5gWRYM\nw0Cv10PtbjQBhXKbUV1NIl8B4MgRBZo3d99VWF4OLFnihehoDqtXS/vf3nmHlMKUq6BlKYTXrzNi\nm8BfflFh3Tqze3XAAI0YzOMY4rJs25bDxYtEHIXPCQ8MABm3bVtOckxHwVCOxFnIdRbKbP75J7mt\n1VacBw0yYc6cagwcaP87EoLCtFoG/v48cnIY+PnVfWlKYd155kxvGI0McnLI7y46mrNbx37mGQNW\nrlRj5Uo1ysoY7NxJ2lDOnq0H4HqqVW1p0oTHyZPlNba865oWLTicOmVO92ooljN4J7z22mt8Wlqa\n+DopKYm/ePEiz/M8X1ZWxo8cOZIvLCzkq6ur+aSkJD4zM5N/+umn+czMTPEz/fv356urqx0ex2Aw\nOjsVyh1IZSXPO/nqNCr++IPnib3D888/X7MxPvnEPIajf82b83zHjtLveXvzvELB85078/wbb5i3\ne3nxfGmp+VgbNrh2rC5dyP4Gg/N95MbcsEH+mquqeF6tJvv984/9+5GRPH/XXeTnkSPJfrm5NZtf\nV3j1VXKM/fvJ66Agno+Lq7vjCVy4wPNKJTl2eDjP9+zJ82PH8vyRI9L7T5tmnt/oaJ6/fr3uz7Gx\nMWcOmZ/Fi8n/s2ff6jMiOLWcIyIiUFBQIL7Oz89HeHg4ACArKwvNmjUTreSePXvi9OnTiIiIgFar\nRfv27WEwGMDzvFOr+cYNXW2eMewID/eHVlvm0THvRG7lPHIccN99vuja1SR2BmqsCPOYlqYCQMpP\n7t9vglbr/vd+0yYfAEq8914VFi1So6TE3h0cEMDhq68qcfEie9Nqtabq5nSeOkX+ASSY6epVFhs3\nVuKBB4i1OGQIsGqVEsuXq3HuHIsmTXixmpcl06dXQqs13iyQ4Sd53hkZPLTacrsx27blMHOmHkOG\nGKHVyl93fLw3cnNV0GjK7PZr3doHv/2mxD//lOG33/zQogUPpbLC4Xi1wc+P/B7Pn69E06ZGFBf7\no3t3I7RamaRsDxEQAPz9Nwm0su03LHWtTz3FYNUqXzAM8PnnlWAYE7Raen+0JCKC/C737DEAUMHP\nrwparWu9OWs7j+Hh/rLvOV1z7tu3L3bs2AEAOHPmDCIiIuDnR/74YmJikJWVhaqbf+mnT59GixYt\n0LdvX6SmpgIA9uzZg/vuu6/GJ0+5c8nLY5CdzWLHDqVsIYrGxpEjxJ3btCmHM2dYcc3SVQoKGPz+\nuwI9e5owaZIBH3xQLbnf4sXV6NqVs4oKBniHjSKmTCFu0V9+sX5ml+tzLBVlbJn7a4ul29rdYCgA\nWLOmCkePQjKISXBt//yzEqWltV9vdoawLpmfz7gdqV1b/P3thVmOli15fPJJFVavrqrzOWmsCOlU\nhw+Tv82G4tZ2ajn36NEDHTt2RFJSEhiGwfz585GcnAx/f38kJCRg0qRJeOKJJ6BQKNC9e3f07NkT\nJpMJv//+O8aPHw+1Wo1FixbVx7VQbjOysoToWwZHjihw//11f3PhOBJ527QpL9mgvTbwPBHniAgO\n//qXEStWkGpO/fq5fl07dijBcQwSE8mTPRG1Sjsr1FLsxowxYswYI+LjNfjrL/mLmj+fRPympipR\nVQV4e0vvN2aMEV26mPD112q89lq11X6W6UW2uNuhyRaWNecv2yIEha1bRzx0vXu7v5bvDsINXKtl\nahSpXZ88/HDdzkVjRxDngoKGtebsUj7HSy+9ZPW6ffv24s9JSUlISkqyel+hUOC9997zwOlR7mQs\n81Z/+61uxfn8eRabNyuxZYsKly+z+OijKjz2mGuuLVe5epVBXh6LxEQD7r3XhBUriFi7I86CVZuY\naC++zmjalMNff8kHd3EcI/beXbRIjTfflBfTTZtU+OILNXr1MlnlvwriPGGCHseOKWQfGDyNIM6C\nZ8LdMpPuImU513WkNqVuiI7moVbzYr31hiLOtEIYpcFy8aL563ngQN1UL7h0icHQoRr07euLjz7y\nEqtM7dnj+b65gnDcc49JTCsRtrlCaSmwb58CnTqZxOIJ7tC0qeufEWohy0Gqe8GuCIkgzkOHuu+2\nrg2WhUQiIji0bFm3N1hztDYrVgdraNWvKK6hUJCOXwINJZWKijOlwSK4tdu3N+H4cRalpZ4/xk8/\nqW66lsnabEZGOcLCOBw75nlxPnrULM4RETzuuosch3PR4EpLU8JgYKysZncQ1kQt+xDL5TGXlDgu\n9VlaSgQpI8NWnMnr+r7BRUeby4D26uW8VWBtCQgA1GqeWs63CcLDrkLBIySEijOF4pCsLBZhYRxG\njjSC40gglKcRLL8lS6owZowRGg3Qs6cJOTms2GnIGTk5jEsPDkeOKKBW8+jShdzE77nHhBs3GPEh\nxBmCS9vbm69RS0fBsouJMfchbtlSvlyn0PRBipISwXK23keqXWR9wDBm67k+Ap8YxlwlTFhzjopq\nGDd1ivsI687h4Z6PNakpDeQ0KBRr9Hrg8mUGsbGcuNZcE9f2wYMKTJ/uLaYO2ZKZyUKj4a36zPbs\nSf5QBUvXEQUFDO6/3xd9+/o6rHBVUUEaFnTpwomlIIW6z0eOOP8z1OmA3buVaNKEw1tvebvV0lGg\nWTNyXVevmo/nqD+vbdS2JYLl/M8/jFUpyVslzgDQoQO5vj596icqOTzcbDmHhnIuR1BTGh6CODeU\n9WaAijOlgZKdTcpJxsZyuPtuE3x8eBw44L7lvHGjCj/8oMKhQ/afNRhI0Fm7dpzV07JQgcoV1/bq\n1SqUlZHmDQ884CNWGbLlyBHAZGKsGjGYxdn5cfbsUUKnY2CU0VK5lo6WCJazZZ/fyEiyrWlTc2rU\nypWVCAvjsG2bUtblLngKeJ6xeigRKmbJRXrXJfPmVWPdOh3i4urHvRwRQYKILl1i6HpzI8fScm4o\nUHGmNEiysoiAtGpFmg7cd58JZ88qbha5cB0hwOvkSXsBvHiRhV7PoEMHa0ura1cTWJbHsWOO/zzK\ny4E1a9QIDubxzjtVKCxk8OCDGsnP/f47+d9SnDt04ODlxeOHH1Sii3rePC9Jl7Vgxd64IX39jqx2\ngbAwHj4+vJXlLHTjWbeuSgzeGjvWiHvuMUGrZVFUJH08wa0NABkZ5rnVam9dbeLISB7DhtVfLm94\nOLmhm0ykfCal8SIsiVgGht1qqDhTGiTCOqzQqk9IN/rtN/esZ0GcpfJ7heYB7dtb/0H6+QFxcRxO\nnlRA7yA197vvVCguZjBpkh5Tphjw6adVKC0FEhM1iIy0Flcpcf7pJyWqqxno9eZ2jKtXq+1c1t26\n+WLzZiWUSl60dG2xLPAh16WKYUjQkhBdDJjF2bZjkBAUU1Iife2lpQxUKrKPsG5vMgGFhYwoWrc7\nli5Qajk3blq25LFliw4vvVS7XHxPQsWZ0iAR0qgEcb7/fuLPdde17chyFkRFWKu05O67TaiqYuyi\nkQUMBuDzz9Xw8eExaRIJa1YqiZuX5AubxTU5WYk//iBP5b//rhCFc8YM13y/JBqYgdFojgy2RSjw\nIdelShDomBgehYXmloPZ2STozs+m4qbQalFImbK9dp2OEQPbhDkqKiLX3ZBcg3WJ5XXSSO3GT//+\npgb13aXiTGmQXLhAOioJ0cSdO3MIDORx4IBS7KHrDJ43i3N2NoviYuv3BXG2tZwB5+vOKSlKXL3K\n4rHHDAgNJSck16d48WI1ioqAyEjOSjiFTlDuEhPDyZbPlDsHYU1aCArLzWVhNJL1Z6mc6eBgwXK2\nP0chGCwykkOLFhwyMljw/K0NBrsVUMuZUpdQcaY0SLKyWDRrZm5yr1AAffsaceUKKzZGd0Z5OawE\n0LY6VmamAqGhnGSEpuB+lnIR8zzw2WdqKBQ8pk41u8Hk1n0FF316umdSwa5fZ2QLfDjrlSyIyJUr\npN2g0cjYubQBIDCQ7CdlOQuu7sBAHh06mFBUxCI/n7njxNnyOhtq6U5K44WKM6XBUVYG5Oezoktb\noH9/Yd3ZtZQqwWoWhMbStV1RAWRnM+jQgbMqWCGIcd++vmAYHocPK+1cxO+8Q9aFH3jAiObNzTdl\n+X7E5ABGo2cqYzjqeyz3nrBdKERy9SorrjcLkaqWBAWR65IKQBMs54AAiJHRGRnsHSfOQpUwoP6a\nXlDuHKg4UxoctuvNAuZ8ZyKycoFPAoI4DxxILEvLoLBz51jwPGPl0rZcr+U4BjwvLaZr1hAX8fPP\nWweP2Da7dxWFQhAzHs2acYiJ4Rx2j3LUQELuHITPCCU8c3JIxy/APhgMMD/QOHJrBwTwd7Q4C9fJ\nsjyaNLkzrplSf9RNwWIKpRYIDS9sxbl1aw6RkRwOHlQgOVmJqVPNVR8EqxYwr78KXWa6dTNh3z6l\nleUsFQwmt15ri07HYMgQIzp2tD4/2w5RJCfZubW8bFkViooYbN6swqlT5nPs2NGEyZP1WLVKvuOU\nLc66VAkW3pUrLAwG8rOjNWdpt7bZI0FaUZL5FyzJOyVa288P8PHhERzMQ0nvpBQPQ79SFJe5eJEU\nnBg+vG5zSW3TqAQYBrj3XhN++kmFxYvlA5/M4my25Lp0MWH/fiVKSkgkslB2sn1787W4kitMzoPH\nggWk5FhKihLLlpmFcNYsPfbu1QEABgzQ2JW3BAAvLx4mE+yEc9o0A86eZbFlC3GlL1pUhaZNeYwf\n714tbUddqqKiSE/nnBwG1dXybm1Ha86WlnOLFiR3OiODFZcH7hTLmWGA2bP18Pe/M66XUr9Qcaa4\nzAsveOPPPxXIyKgQI5TrAjm3NkACtX76SWXVscoSS4EVxDksjEfXrkScT50iLRoFy/mFF7yRlUWE\nNTKSt8oBluPRRw1o1YoX3eACttb7rFl6q/cFPv64SlY827fn8J//1F2upVpNinVcvcqivJyHt7e0\nS1ZYc7aNcAfMAWEBASRQr107ErEt5EbfKeIMADNmNJy8WMrtBV1zprjE9esM/vxTAZ5nXG4IUVOy\nslh4efGS6SlCFLVg2dliGRAllOx89FGSawwAJ0+Sr/yJE+S9c+fMwV45OdJ/DgzDg2XJ8Tp3NmHp\n0moAztOWxowhna5I2hPs0p5uFU2b8sjNZfDPPyzuuouT7OAUEED+d7TmLPwOOnTgoNczOHZMAY2G\nh69vnZ06hXLHQMWZ4hKpqUoxQCo/X16cKyqIZSX80+ncOw7PkzXnVq04ye4wnTpx8Pbm7YpmCFgW\n49i9mwgyxzHIySFivG2bEoWFjCgwttjmEPftaxSvOzSUw3ffVYpi5ixtCSACvXevDgYD6qWvsSs0\nbcrBZGJQXi6d4wwQizgwkHfq1gYgrjtXVNw5BUgolLqGijPFJSw7FMmJ89atSrRq5Yc2bfzFf61b\n++HPP13P783PZ1BRwaBVK+mgIrWa1L7OzWWwfHml28U4jh5VoGNHedPONod47FgyHscxWLKk2soF\n7CxtqaFimfYjFaktICfOlgFhgHVQHRVnCsUzUHGmOKW4mNS0FlJ+8vOlvzaHDxO3d79+RgwfbkDP\nniYYjQzS013/mskFg1lyzz0mcBxj1ZfYMggrKspPXFO2RSivKYetsPbrZ4RKxWPCBD1GjrS2ep2l\nLTVULJcLpILBBIKCeEm3dlkZ+d9sOVuKc8N+MKFQGgs0IIzilB07lDAaGYwebcDWrSpZyzkvj2xf\nsaIKkZE8TpxgMXSoL65dc1+cW7d2JM7kvSNHFGLus21wVk2xFdYWLXicPCkdAOcsbamhIpTwBJxb\nzjodA72eeCwESkoYMAwPf3/yOiyMR3g4B62WpZYzheIhqOVMcYrg0p44kTR4cCTOLMsjLIzcoKOi\nyP/uBJAJ4izn1gaAnj3t+yC7mqNsDy/pFrckLIwX15ltC58AkC2l2VCxtpzlxVQu17mkhIG/P6xi\nAgTrmYozheIZqOVMcUh5ObB3rxLt25tw330mMAwv21P52jUWERHmggxhYTwUCr5GlnNsrPxNPjyc\nNMQ4elQBjiMiIZ+jTM5HoYBko4m4OE50iTvDWepUY0GwnBmGt7KibbHMdbasP15aythFy3fowGHf\nPirOFIqnoJYzxSHbtwNVVQxGjjRCqQRCQ3nJNWeeJ8FUlv2GFQqSU+ue5cwgKIgXc2YtsbRai4qI\nSAiiLBeEFRzMIze3HB9/XCX5vjvrw85SpxoL/v5kXqKjeXg76Fopl+tcWsrYFd6IjzdCoeDRo0fd\nFqihUO4UqDhTHJKcTP5PTCSWYUQEL+nWLi4mlmlkpLVIRkbyyMtjwLkQJ2Q0ApcukYYXDGMtxt26\n+Vq1WywpIV/dL79UAZAPzurdm4iFkHOs0QiFMji3c45dSZ1qLHzySSWWLpV+YBEQejpbBoVxHAkI\ns7Wc77/fhJyccnTrRgPCKBRP0PjuKpR6o6oK+PlnEjTUqRO56UZE8CgrY+zylwXXtaXlDADR0RyM\nRnM7QUdcv05aGDZvzlk1oTCZGOTmSn9Vt24lPnTrgh88mjYlotyvn9mSGzPGiIkTiYgvXSpfpUuO\nxpo6JcXQoSYMGuTYypVacy4rIxHvUkVgpPLSKRRKzaB/ThRZ9u9XoLycWM1CQJSQ52trPQuR2rbi\nLASFCe87oqjIXG7T1QAvS+EQCn7k5pZj+nSDOJYlzz1nwLvvViE+3n33a2NNnaopZre2eY4FK1qo\nIEahUOoGKs4USQwGYP164jJOTDSI24XOQ3LiHBVlbUUKr+UsX0sKC8kYISG8G65iRvycJZZ1tS0J\nC+MxebIBCtfroojYWucNpRxnXSHV/MK2OhiFQqkbaLQ2xY5//mEwbZoP0tMV6NIFuPtus+AKUbsk\nKMy8PS+PiKltEwV30qkEyzkkhEfbtpxkRycpjh1jMXSotSUsJ861xVHHp9sNwXK2XHOm4kyh1A/U\ncqaI8DywaZMSgwf7Ij1dgYceMuDAAeu1REF8bdOpBPEVxFjAHbe2YAGHhvKyLuSmTTnRap05kzSg\nOHrUXsTrSpzvJARxvnHD3q0t13iEQqF4Bmo5U0TeftsLn32mhp8fjxUrKvHQQ0YEBKig1Zr3ESxn\n2wAvQaxto7Vr4tYODRQ9CbQAACAASURBVOXRt68JzqpvlZYCH3+stipGYjkWw/BiUBPFfaQtZ/I/\nFWcKpW5xSZwXLlyIkydPgmEYzJs3D126dAEAXL9+HS+99JK435UrVzB79mwYDAYsX74czZs3BwD0\n6dMH06ZNq4PTp3iS775TITycwy+/6GQrR8mtOV+7Rto8BgVZ7y8EiLnr1gacu5ADAkj/4+PHFTCZ\nYLWOXFDAIDSUr9HaMoXg5wewLG+V5yy4tYXSnRQKpW5wKs6HDx9GdnY2Nm3ahKysLMybNw+bNm0C\nADRp0gTr1q0DABiNRkyYMAGDBw/Gjh07MHLkSMyZM6duz57iMaqrifuyf3+Tw5KOguV8/bq1JZyX\nRwqQ2PYG9vYmrRavXWOQkqLEsmVmS7hvXxMOHlSIr6tupt0OGqRBu3YcZs1yXqe6SxeyNp2VxVql\nNBUUsHZWPMU9WJbkOltaztStTaHUD059jX/88Qfi4+MBALGxsSgpKUF5ebndfikpKRg2bBh8aaf1\nRolgCVuWaZTC3x/w8bEuRGI0Eje3nBhGRvK4coW1ylvOzFRg9Wq11et//iFmLscxYmnMlBTHz4+d\nO5NAsNOnzV9lvZ5EGNP15toTFMTTNWcK5RbgVJwLCgoQHBwsvg4JCYHWchHyJj/88AMeeugh8fXh\nw4cxadIkPPnkk8jIyPDQ6VLqCmHN2Dba2haGIfWTLcVZqyVtGC2DwSyre2Vns5J1rV3BWWlMoTjK\nqVNm/7VlvjSldti2jbRtF0mhUOoGtwPCeN7+j/L48eNo1aoV/Pz8AABdu3ZFSEgIBg4ciOPHj2PO\nnDnYunWrw3GDgzVQKj27QBgeThfGXKWykvwfG6tGeLi1INrOY0wMcOQIEBrqD5YFLl0i21u2VCE8\nXIWNG4EpU8z7SzhaXObcOYXD3+PAgeT/v/82n3dODtnWrBk5n4ZCY/w+hoeTJQ8/P3/4+EBcemjV\nyg9hYbfqnBrfPDZE6Dx6hrqaR6fiHBERgYKCAvF1fn4+wsPDrfbZu3cvevfuLb6OjY1FbGwsAKB7\n9+4oKiqCyWSCwkF0zo0brnUGcpXwcH9otWUeHfN25tw5FQBv+PlVQqs1r/NKzWNIiDeMRhX+/rsc\nYWE8MjKUAHwQGFgFrdaAt9/WAPDMg1bbtiZotY6/G3fd5Yvjx4H8/AowDHD+vAKABhpNNbTahlG9\nq7F+HzUabwAqXLhQjshIHlqtDwAl9PoySDjQ6pzGOo8NDTqPnqG28+hI2J26tfv27YsdO3YAAM6c\nOYOIiAjRQhY4deoU2rdvL77+8ssv8fPPPwMAzp07h5CQEIfCTHHO778rMHCgBllZNXMPO0NwUztz\nawOWhUjIZ2xLd3qyEYQrpTE7dTKhsJAVI8JpjrPnENaWhXXnkhIGGg0PVcNxSFAotyVO76I9evRA\nx44dkZSUhHfffRfz589HcnIy0tLSxH20Wi1CQ0PF16NHj8amTZvw+OOP44033sCCBQvq5uzvIPbu\nVSAjQ4GPPvKqk/HNa87OI5ydibNcIwh/f86q9OUzz+jF161bk8CuwEDO7dKYnTuT4wlBYVScPYeQ\nJy6sO0v1cqZQKJ7HpTVny1xmAFZWMgC79eTIyEgxxYriGYQCHcnJSsydy6BpU8/eIIXUKFcsZ9sq\nYULpztmzvXDpEis7RvfuHDZvrpR879gxFiNG+OKxx4x4881qt85diNg+dUqBoUNNVJw9iLm+Nnld\nWkoCAikUSt1Cy3c2EoQIZKORwapVrnVscofr14m70mbFQhJzIRLy9fnrL/J/VpZ1e0eh1Ga7dkQ8\nvb3lxxSuLzTU/Ru/OWLb2nIOD6d5zrVFKCpTXMyA54kFTTtSUSh1DxXnRoKw5hcVxWHdOhVu3PDs\n+Hl5jEtWM2B2a3/2mQpRUX7IzJT+GgUE8MjNLcf+/TpoNDxyc+XXy82lO90X1MhIHmFhHE6fJnEN\nBQXkfKjlXHssO1NVVAAmE3VrUyj1ARXnRkJREYOgIB5Tp+qh0zFYs6Z21rNlHvL992tQWMi4tN4M\nAOnp7M1zYmEyMeB5adEVAsMYhjTAcNT8wrJdpLswDNCxI4fLl1mUlJCxVCqelpj0AMKac3Exg7Iy\n2pGKQqkvqDg3EgoLGYSE8JgwwYDAQB6rV6vE3GR3SUlRWlXrOntWAZ5nYDRa7zNggAZKJTBggMaq\nUtc337j2YGAZGBYVxaGggEW1zHKybV1tdxHWnc+cUUCrJdXBbEuJUtxHsJJLShgxKIyKM4VS91Bx\nbgTwPBGvkBCyJjxxoh6FhSw2bKhZPsuyZdLievEi+TpYizfEUprdu/siKsoPZ8+69rWxTINy1jqy\nNmvOgDli+9QpFgUFtHSnp7BsG0lLd1Io9QcV50ZAaSlZ6xOE65lnDPDy4rFihdrK2rWkupqUvjx/\n3v5XLJeHXFxMbr5y4p2TQ9zYgLTAennxsmlQQuvIa9ekj10btzZgDgo7fFgBnY6Ks6ewbBtpLt15\nC0+IQrlDoOJ8izhwQIGNG12rnmrr8g0P55GUZMDlyyxWrLAXUp4HZs/2xoIFXvj8c3vrWi4PubZF\nRD7+uAq5ueXYu1dnl58sWM5yrSOLihgoFDwCA2t0aLRqxUGj4bF/P5lTKs6ewdcXUCp5FBdTy5lC\nqU+oON8i5s71wsyZ3i7VnRbEWQjOAYAXX9QjKorDu+964bvvrEX+00/V+P57Isrr1qkwYIAG8+Z5\niQFglo0MLKmuBqKi/KB0o+I6w5Bzmjq12mHBEFfEOTiYB1vDb6RCAcTFceK1UXH2DAwjNL8AXXOm\nUOoRKs63gNJSUv+Z5xlkZDj/FUgFS0VF8fj++0oEB/N48UVv/PwzUdTt25V4911La9q+PaNtHrJG\nQ8YtLCRua3c6SPXsSazwBx5wXMkrOtqZW5ut8XqzQKdOJvHn2o5FMRMYSJY8SkupOFMo9QUV51vA\nyZPmOuNCbq4jzDnA1jfFdu04bNigg48PMHWqN778UoVp0xxU+rBByEOWs1bJGjIQEyOfYnXmDPmw\n4BKXw5HlbDSSClQ1XW8WEILCAFqAxJMEBVG3NoVS31BxvgUcP24WZEHcHOEozahHDw5r15Kcqv/8\nxxs6HeNyCpGwtiznWjeZAIMBOH68AqtWVVrVxZ40iURik+PxTks6hoWRYDEpy5lUn2I8IM5my5m6\ntT1HUBAPo5ERH6yoOFModQ8V51vA8eNCcQ4eZ844t5yF6mBy4tW/vwlffFGFwEAe8+dXoV0716xG\nITBMbo3ZMnBszBgj9u7ViQFfiYmWbSWddylSKEhNbinLubZpVALt23NQKMgYVJw9hyDGly+T7y0t\n7kKh1D1uhP5QPMXx4wqEh3OIiOCRmcnCZCLiJYcrBTpGjjRi+HDioo6O5jFlio/T85g5Uw+TCeBk\ntJzkKUuPY1nq05lL23K/kydZcBysXOmeEmdvb/JAkZmpoOLsQYR0qsuXqeVModQX1HKuZ65fJwFZ\nPXpw6NSJQ2UlIxb/kMPVHGBB8MaMMWLVqkpx3bVZM+v2jJZ5yIWFDDiOQffuJsn35RCaXwDm9WRn\nREdzMBoZaLXW1nNtc5wt+fe/jejc2eTyAwPFOYI45+ez8PLiHTYwoVAonoFazvWM4NLu1s0EPz8e\nmzapcPo0izZt5F3RRUVkXVe4SbrCmDFGVFUBM2f6YPZsPR59VFpohbaP3bubsGiR660aAwJIwFh1\ntes1uS2rhFla3p4U5xdf1OPFF/XOd6S4jOX3jkZqUyj1A7Wc65kTJ4j/unt3Ezp2JKLmLChMyAF2\n5PqWwtx3WX78/HwijO5amgxj7k7lquVsrhJmbTl7yq1NqRusxfkWngiFcgdBLWcPceECA5UKuOsu\nxwIjRGp362YSo6qdpVMJdbXdRYigFgRYCsFydtX6tSQigseVK64LuyDiJM/aHFktlypGaRhYVm2j\n680USv1AxdkD6HRAfLwvdDoG995rxEMPGfGvfxkQEmK9H88Ty7lFC058LyaGc2g5cxyJ1m7Z0v2b\notlylhfnvDzWal93IOvOCkRGuibsLVqQ/Wzrfde2IxWlbqFubQql/qFubQ9QWspAp2Pg58fjyBEF\nXnnFG507+2HJEuu615cuMbhxgwRfCXTqxOH6ddYuSMo8ttD0wn3LNiyMh0LBO3RrC8ItuKjdoUUL\n/ub/rp1bXBypSCa49gWoODds/r+9uw+Osrr3AP59sptNstkNJGQ3vIbSlBAJBsiIFnmzkSBqpxc6\no0KH4XbUK1SUMMoozdVG7fCijR2inTsyiJ1ebsemRdLSTq+htc29vZqCQE1pBg0whiLBZMNLXneT\nTfbcPx6efX32LXk2u9l8P/8k+0bOHmO++zvnPOd4hzMrZ6KxwXDWQH+//HXdOic++aQPVVUO5OYK\n/OhHvqdCKUPa3uFcXKycQ6z+nyLS4FLOX542zeQ+fzklRR7aDlU5e4a1o/+ju2PHAI4e7UdBQWSv\nTU8HbrtNHilwOj33X78uIT1dwGiMugk0Blg5E409hrMG+vvlgMvIkOdVt21zYu/eAbhcEl57zVM9\ne+abPZWmsijsH/8Y+VGKvucvS+7zl+vq9MjLE+jokCCCvLy9PQV6vRjRfG92NrB8+XD4J3pZtGgY\nDofkcyb0tWvynHqkO5vR2PKulrkgjGhsMJw1YJd3z0RGhueP2P33D2Hx4mH85jepOHtW7ua//S0F\nOp3w2WbSUzmrLwoLtjuYd6W8fbv6hac1NQbk5Qk4HBK6u9Xb3tEhwWod+WlQ0VI+mHjvL37tmsTF\nYAksIwMwGOT/PhzWJhobDGcN2O2eylkhSUBlpXzd8N69aRgaAs6e1WHePBcyMz3P+8pXBDIzRdhh\n7YMHDe4h68rKNJ9KOdgpUi0tKe5V2GrzzkLIw9ojGdIeqUWL5A8jn3wit8fhAPr6Rr+vNsWOcmwk\nwGFtorHCcNaAWuUMACtXDmP58iH88Y96/Od/psJul1Ba6jsMnJIiV8/nz6fA4Qj8t//nf+QF9Vev\npriHrN9+2xD4RBWFhS735VRq8843bgCDg5FvIqKFefNcSEvzLApTRgZYOSc2hjPR2GI4a0Ctcgbk\niuP735er56qqNAC+882K4mIXhoclfPZZ4H+OhoYodx7xUlExGPJyKqWaHslK7ZEyGOT3e+6c/GFE\ny93BKHaUa505rE00NhjOGlAqZ6Mx8A/XkiUurFkz5B569l6prVBWLq9ZY3SvtFYow9qRkM9f9t0b\nWwlntY1IRrNSezQWLhyG0ynh3LkUXkY1Tngq5zg3hGiC4CYkGlBWawe7FGjXrgEcP65HRoZAUZFv\n5VxXp8d//Zc8TC2EZ6U1IIdrZmbw85b9vfGGI+CwilBzzvEKZ8+8s879R5/D2omNw9pEY4vhrAHP\npVTqf7gWLHChqsoBnQ4B5x7v368+f1xTY8D69UOYOtWFCxcCh7Yff3wQH32kQ0tLCgoLXaioGFQ9\nRSqSYe1Id/jSijK0/8knOpSUyEHNcE5smzc7MXmyiPiscCIaHYazBjwLwoI/Z9s2p+r9LS3qMwvK\n/ZIEmEwC+fmusEGsRplPTqRh7blzXTAaBT75JAUzZsh/7DmsndjuumsYd90V3TXtRDRyDGcNeBaE\nRR8whYUunDsXWBkXFsqhdf26hGnTXGho6B9R2wwGICfHFaRyjk846/XAggXDOHVKh0WL5A8hDGci\nIo+IwnnPnj1oamqCJEmorKxESUkJAKC9vR07d+50P+/y5ct49tlnsXbtWuzatQttbW3Q6XTYu3cv\nZs2aFZt3kAAiqZyD2bFj8NYcs6+KikH3oRdf+9rohhLz8gSuXFGfc5YkgdzcsQ/GRYtcOHlSj//9\nX/mDCYe1iYg8wq7WPnnyJC5duoTa2lrs3r0bu3fvdj+Wl5eHw4cP4/Dhw/jpT3+KadOmoaysDL/7\n3e+QlZWFd999F1u3bsXrr78e0zcRb6OpnNevH8KBA3bk58tDhrm5LvdK664uwOUa/QYdFotAd7fk\n/hChaG9PQW6ugD4O4ycLF8rvV/nQkJ3NcCYiUoQN58bGRqxevRoAUFBQgK6uLvSqLB+uq6vDfffd\nh8zMTDQ2NqK8vBwAcPfdd+PMmTMaNzv2Il0hDYyucgbkgP7v/5b/kdJSl3s+WavLjNQWhQ0Pj/3u\nYN68r/fOyhIwRLavChHRhBC2Zurs7ERxcbH7dk5ODmw2G0wmk8/zfvWrX+Gdd95xvybn1oHFKSkp\nkCQJg4ODMIT4C5ydbYReP/INN9RYLOYRva6hASgrA+rrgVufMUIaurU2a/ZsE8wj+5GwWIDp04Hm\nZr273efPy4/NnGmAxTLy9JozR/46OGiCxSJ/f+qU/KHirrt0YftppP0YypQpgNkM9PQAFosUk5+R\naCbCexwL7EdtsB+1Eat+jHpAU6gcb/S3v/0NX/3qVwMCO9Rr/N24MbIFT8FYLGbYbD0jeu2ZM6kQ\nIh2nTjmwaJH6KmtvXV0ZAPTo7e1R3YLTX12dHvv3G9yrr3fskFdfFxdn4A9/0OPcuV7k5gpcvKgD\nYER6ugM2W/h2BGM2pwJIx2ef2VFYKH+SOHbMACANS5bYYbMFX/k9mn4Mp6QkAx9+qMfkycOw2bT9\n759oYtmPEwn7URvsR22Mth9DBXvYYW2r1YrOzk737Y6ODliU8uuWhoYGLF261Oc1NpsNAOB0OiGE\nCFk1JxolYPv6Itudq79fgsEQ2dxtqOMdFyyQ52EPHEjFqlVG/Ou/yuPkra2j28hNbZewv/xFHqVY\ntix+l8csXMjLqIiI1IT9q79s2TLU19cDAJqbm2G1WgMq5LNnz6KoqMjnNe+//z4A4M9//jPuuusu\nLdscc8oCr0jnne32yOebQ206smCB69b3aTh3Tgch5Hb87GcGny09o+U/5zwwAJw4oUNR0XDc5pwB\nz05hDGciIl9h/+KXlpaiuLgYGzZsgCRJqKqqwtGjR2E2m92Lvmw2G6ZMmeJ+zQMPPICPPvoIGzdu\nhMFgwL59+2L3DmIg2srZbpciXqkdatMR73Oe/Sk7ho2E/xaep0/rYLdLWLEivptK3H33MKZOdWHp\n0pG9LyKiZBVROeZ9LTMAnyoZAH7729/63FaubR6vBuSDpKII58gr51CbjuTnCwACQODPDRbqkVB2\nCVMqZ2VIe8WK+Iai1Srw97/3xbUNRESJiKdSqXA4oh3Wjrxy3rFjUPX+iopBpKQEPzxD2TFsJEwm\n+cQs73BOSRG4+25ux0hElIgYziqiXxAWPFT9KZuOzJ8/HHC8IwB8/evqgVlRoR7qkcrLk8O5txc4\nc0aHxYtdPP6PiChBcW9tFdEsCHM6Aacz8soZkAM62PzxunVO/OlPekyd6sKXX0rQ6YD/+I/AoyCj\nlZfnQmurDv/3fzoMDUlYvpzzvEREiYqVs4poKmfluZFWzuEoK7bLy4eQkyPwta+5Rh3MgFw5CyGh\nrk4+szLei8GIiCg4hrMKz5xz+HAOd5ZztAoLXUhNFWhq0uHGDUmzPaeVS6bef1+PtDSBJUsYzkRE\niYrhrMJTOYd/7mj31fZnMABFRS6cPZsCIUZ/6IVCWbFtt0u4885hzdpLRETaYzirUOacIxnWHs2J\nVMEsWOByb0Ci1VGKyrXOAIe0iYgSHcNZhXKds90uYThMjkVSOdfV6bFqlRHTppmwapUx7G5f3puR\naF05A/G/vpmIiELjam0V3odX9Pcj5ElTypyz0egJP++DLfLyBNraPJ+BlL20AXvQhV7KojBAu3BW\n5pzNZuHe05qIiBITK2cVyoIwIPyiME/lLIef/8EW3sHsraYm+EEgxcWeylmrBWEzZ7qQni7wjW8M\nRXRABxERxQ//TKvwrpzDLQrzzDnLt4MdbOEv1HacZjMwZ44Ln3+eotmcc1YW8Ic/9PvMPRMRUWJi\n5axCCVwgfOXcf+sYYmVYO9I9sMNtx6kcH6lV5QwA8+a5MHmyZv8cERHFCCtnFb6Vc7hhbd/KOdjB\nFv7Cbcf5b//mhNEIlJSw0iUimmhYOftxOoHhYe/KOfTz/eecgx1sMXOmS3Uv7WC+/vVhvPmmA4bI\nRsmJiCiJsHL24101A9FXznLo2lFTI6/WLix0oaJiUJMtOImIaGJgOPvxXqkNhA9n/zlnIPTBFkRE\nROFwWNuPUjmbzXLYhh/W9q2ciYiIRovh7EepnJVLmMIPa8tfH388PeIdwIiIiEJhOPtRKufcXKVy\nDh3OyqVTFy/Km44oO4AxoImIaKQYzn6USjg3V76ESW0TEu+9sk+fVr9sKtQOYERERKGwvPPjP6zt\nXzkr23OGE+lmJERERP6YIH78h7X9K+dIt+cMtwMYERFRMAxnP+EWhEVaEYfbAYyIiCgYhrMfpXI2\nmYC0NBEQzsEq4rQ0EdUOYERERMEwnP0olXN6uoDJJAKGtYNtz/nGGw60tfWioaGfwUxERKPCBWF+\nlMo5LQ3IzAxcEOa/PacQQF6eYCATEZFmWDn7USrnjAyBzEx5WNv70qlVq4wAgIaGfrS19SI1FZg6\nVbtjHYmIiFg5+1Guc05Plyvn7m74XDqlbDIC2PEv/zIEh0Nyn0hFRESkBVbOfvznnF0u9R3CamoM\nXsdFjlXriIhoIoioct6zZw+ampogSRIqKytRUlLifuzq1at45pln4HQ6MX/+fLzyyis4ceIEKioq\nMHfuXABAYWEhXnzxxdi8A40pc85y5Ry8Im5pSUF/v2cInIiISCthw/nkyZO4dOkSamtrcfHiRVRW\nVqK2ttb9+L59+/Doo4+ivLwcL7/8Mtra2gAAd955J954443YtTxGlHCW55yDP6+w0OWunI3G2LeL\niIgmjrDD2o2NjVi9ejUAoKCgAF1dXei9dY6iy+XC6dOnUVZWBgCoqqrC9OnTY9jc2PMMawMmU/CK\nuKJi0Ou4SFbORESknbDh3NnZiezsbPftnJwc2Gw2AMD169eRmZmJvXv3YuPGjXj99dfdz7tw4QK2\nbt2KjRs34sMPP4xB02NDbVj7uecGMH/+cMAmI5xzJiKiWIh6tbYQwuf79vZ2bN68GTNmzMATTzyB\nhoYG3HbbbXjqqadw//334/Lly9i8eTOOHz8OgyH4vtTZ2Ubo9eonPI2UxWKO+jWuWxuAzZxpQl6e\n/P3q1Wl49VXlGToAchqnpcn35OYaYLEk7ylUI+lHCsR+1Ab7URvsR23Eqh/DhrPVakVnZ6f7dkdH\nBywWCwAgOzsb06dPR35+PgBg6dKlOH/+PO655x488MADAID8/Hzk5uaivb0ds2bNCvpzbtzoH9Ub\n8WexmGGz9UT9uu7uDAB69Pb2AEgFkI4vvrDDZgvcZOTqVR0AI4QYgM2WnHtpj7QfyRf7URvsR22w\nH7Ux2n4MFexhh7WXLVuG+vp6AEBzczOsVitMJhMAQK/XY9asWWhtbXU/PmfOHBw7dgyHDh0CANhs\nNly7dg15Shma4BwOCampAjqdZ85Z7UxnAFytTUREMRG2ci4tLUVxcTE2bNgASZJQVVWFo0ePwmw2\no7y8HJWVldi1axeEECgsLERZWRn6+/uxc+dOfPDBB3A6nXjppZdCDmknErtdnm8G4F6t7b+Fp6L/\nVrHPOWciItJSRHPOO3fu9LldVFTk/n727Nl49913fR43mUx46623NGje2HM4JKSny5WwsiDM/2Qq\nhbJa22hk5UxERNrhDmF+BgY8lfCt0fugw9pcrU1ERLHAcPbjcCDqyplzzkREpCWGsx+7XfKacw69\nIIyVMxERxQJPpfIihFw59/UBq1YZ8dln8meXTz9V/wzDOWciIooFVs5enE7A5ZJw8aIO587p3CdS\nnT6tR11d4OcYz2pthjMREWmH4exF2bpTTU1N4KVgnuucY9UiIiKaiBjOXpRhajUtLYFd5TmVipUz\nERFph+HsJVTlXFjoCrjPs1o7Vi0iIqKJiOHsZWAgeOVcURG4d7bdDkiScB+AQUREpAWGsxelcr73\n3iH3EZHp6QJpaQLr1wcefGG3S8jIAKTgmU5ERBQ1hrMXZZh6wYJhNDT0o62tF4sXD2NgQHIfJen7\nfM43ExGR9hjOXpTKWdmEBPBs4dmvcqKlUjkTERFpieHsRQnntDRPNRxqC8/+fl7jTERE2mM4e3E4\nAldfhzrTmZUzERHFAsPZi3LdsvewdrAznYWQNyHhnDMREWmN4exFqZyVU6mA4MPayhA4K2ciItIa\nw9nLwID8Vb1y9n2u50QqVs5ERKQthrMXz5xz+MqZu4MREVGsMJy9qM05exaE+Yez/JWVMxERaY3h\n7EV9zln+6j+srZxIZTSOSdOIiGgCYTh78Vzn7LkvWOXsOS6SlTMREWmL4ezFswI7cM452IIwVs5E\nRKQ1hrMXz7C25z5lWDv4gjBWzkREpC2GsxfPgjBP4CrD2v6bkHgWhI1J04iIaAJhOHtRznP2rZzV\nt+9k5UxERLHCcPYS6lSq4JdSjUHDiIhoQmE4e3E4JKSlCaR49YrBAKSmCpVhbeVSKlbORESkLYaz\nF7vdt2pWmEyB5zkrt1k5ExGR1hjOXpTK2V9mZmDl7NmEhJUzERFpa8KHc12dHqtWGTFtmgmXL0tw\nuQKfYzIJlQVh8ldWzkREpDV9JE/as2cPmpqaIEkSKisrUVJS4n7s6tWreOaZZ+B0OjF//ny88sor\nYV+TKOrq9NiyxTddOzsl1NXpsX79kPu+zEy1S6m4WpuIiGIjbOV88uRJXLp0CbW1tdi9ezd2797t\n8/i+ffvw6KOP4siRI9DpdGhrawv7mkSxf79B9f6aGt/7jUaBwUEJg4Oe+1g5ExFRrIQN58bGRqxe\nvRoAUFBQgK6uLvTe2svS5XLh9OnTKCsrAwBUVVVh+vTpIV8Tb97D2OfOqb/9lhbf+z37a3vuY+VM\nRESxEnZYu7OzE8XFxe7bOTk5sNlsMJlMuH79OjIzM7F37140NzfjjjvuwLPPPhvyNcFkZxuh1+tG\n+XZ8WSxmn9u/Lw6RrgAAEVxJREFU+AWwZUv4182fL/m8dsoU+Wt6uhkWi/z90K1R7/x8s8+lV8nI\nvx9pZNiP2mA/aoP9qI1Y9WNEc87ehBA+37e3t2Pz5s2YMWMGnnjiCTQ0NIR8TTA3bvSHfU40LBYz\nbLYen/teecUIIPwHgG3b7LDZPHPOen0aAAP++c8+ZGTIK8a6uoxIT0/BtWuJMSIQK2r9SNFjP2qD\n/agN9qM2RtuPoYI9bDhbrVZ0dna6b3d0dMByq3zMzs7G9OnTkZ+fDwBYunQpzp8/H/I18eQ/XO0h\noNMBw8MS7rhjyGcxGKB+prPdzsuoiIgoNsIOyC5btgz19fUAgObmZlitVvfwtF6vx6xZs9Da2up+\nfM6cOSFfE0+FhSrXSQGYP9+FxkZ5QrmgIDBw1c507u+XuBiMiIhiImzlXFpaiuLiYmzYsAGSJKGq\nqgpHjx6F2WxGeXk5KisrsWvXLgghUFhYiLKyMqSkpAS8JhHs2DEYcOkUAFRUDHodF6m+CQngezmV\n3Q5MmsTKmYiItBfRnPPOnTt9bhcVFbm/nz17Nt59992wr0kE8nC1HTU1BrS0pKCw0IWKikGsXz+E\nTz6RBxHUtu/0nOnsuc9ulzB1KsOZiIi0F/WCsPFu/frAOWUA7spZ7dIo/zOdhZArZ15GRUREsZDk\nFwFFTu24SIUyrP3553J3OZ3y4jHOORMRUSwwnG/xhHNgNVxS4kJmpsBbbxnw9NPpsNm4AQkREcXO\nhAjnmzeBjz7Sobs7+HM8C8ICH5s6VeCDD/qwaNEwamtTsXatEQBgNMaitURENNFNiHD+4Q/TsG6d\nEYWFJtx7rxH//u9p+OAD381IlMo5WDX81a8K/O53/Xj66QF0dPC4SCIiip0JEc6XL8tv8447htHS\nkoKDBw3YuNGIzz7zvH1lr2y1yllhMAAvvjiII0fsWLBgGCtXDse03URENDFNiHDu6ZGQmirw29/a\ncf58L55+egCA745hSuWclhb+31uxYhh/+lM/1q0LXPVNREQ0WhMinLu65A1DJEmujJcskSve1lbv\ncA6+CQkREdFYmhDh3N0twey1v/js2XIAX7rk2fHLM+c8li0jIiIKNCHCuadHQlaWpyKePVveY5uV\nMxERJaKkD+fBQXmxl3c4G42A1erCpUuBc86hFoQRERGNhaQP5+5uuSL2DmcA+MpXXPjiCwlOp3yb\nlTMRESWKCRDO8tesLN/7Z88WGB6W8MUXcihzzpmIiBJF0odzT0/wyhmAe2jbbpfvZ+VMRETxlvTh\n3NWlHs7+i8KUYe1IrnMmIiKKpaQP51BzzoCncuaCMCIiShRJH849PfLXwMpZvt3aqsw5S0hPlzcq\nISIiiqekD2dlWNt7ExIAsFoFjEbhrpwHBlg1ExFRYkj6cFaGtSdN8q2cJUmed25tTYEQ8rXQXAxG\nRESJIOnDOdhqbUAO595eCdevS3A4WDkTEVFiSPpwVipns1ktnD3zzg6HFPQsZyIiorGU9OHc1SV/\nnTQp8DHvFdusnImIKFEkfTiHGtZWwvnzz1PgcEhIS2PlTERE8Zf04dzdLQ9Xp6YGPqaEc0uL3A2s\nnImIKBFMiHBWm28GgJkzBSRJ4NNPlXBm5UxERPE3AcI58DIqRVoaMGOGwIULcjfw0AsiIkoESR3O\nQsiVs/+JVN5mz3bB6VSOixyjhhEREYWQ1OHscABOZ/BhbcAz7wxwWJuIiBJDUoezco3z6dMpmDbN\nhFWrjKir0/s8R7nWGWDlTEREiUEf/inAnj170NTUBEmSUFlZiZKSEvdjZWVlmDp1KnQ6HQCguroa\nra2tqKiowNy5cwEAhYWFePHFF2PQ/NCOHpXfXk+P/Bnk3DkdtmzJAGDH+vVDAHwrZ25CQkREiSBs\nOJ88eRKXLl1CbW0tLl68iMrKStTW1vo85+DBg8jMzHTfbm1txZ133ok33nhD+xZH4ac/Vbl+CkBN\njUE1nFk5ExFRIgg7rN3Y2IjVq1cDAAoKCtDV1YXe3t6YN0wL//yn+ttTrmsG5AVhCm5CQkREiSBs\nOHd2diI7O9t9OycnBzabzec5VVVV2LhxI6qrqyGEHHAXLlzA1q1bsXHjRnz44YcaNzsy06aph21h\noSeQs7M9l1qxciYiokQQ0ZyzNyV8Fdu3b8eKFSswadIkbNu2DfX19Vi8eDGeeuop3H///bh8+TI2\nb96M48ePw2AwBP13s7ON0Ot10b+DEO6/PwVvvx14/4sv6mCxeA54LigAzpwBrNZ0WCxMaH/efUUj\nx37UBvtRG+xHbcSqH8OGs9VqRWdnp/t2R0cHLBaL+/a6devc369cuRItLS1Yu3YtHnjgAQBAfn4+\ncnNz0d7ejlmzZgX9OTdu9I/oDQRjsZgxY4YDQDpmzRrG1aspKCx0oaJiEPfeOwTv4n/mzHScOZMK\np9MOm21I03aMdxaLGTZbT7ybMe6xH7XBftQG+1Ebo+3HUMEedlh72bJlqK+vBwA0NzfDarXCZDIB\nAHp6evDYY49hcHAQAPDxxx9j7ty5OHbsGA4dOgQAsNlsuHbtGvLy8kb8BkZKuZTqJz8ZQFtbLxoa\n+t0Lwbwp8868zpmIiBJB2Mq5tLQUxcXF2LBhAyRJQlVVFY4ePQqz2Yzy8nKsXLkSjzzyCNLS0jB/\n/nysXbsWfX192LlzJz744AM4nU689NJLIYe0YyXUWc7eHnpoCOfPp2Dp0uGxaBYREVFIkvCfRI4T\nrYdYLBYzHn7YiV/9KhWnTvUiPz8h3ua4w+EvbbAftcF+1Ab7URtxHdYez3pu9Vmwgy+IiIgSUVKH\nc1eXPKx9a4qciIhoXEjqcO7ulmAyCei0vUKLiIgoppI6nHt6JGRlcUibiIjGl6QO5+5uifPNREQ0\n7iRtOAsBdHeHv4yKiIgo0SRtOPf2Ai6XhKyseLeEiIgoOkkbzl1d8lfOORMR0XiTtOF886b8leFM\nRETjTdKGMytnIiIaryZAOMe3HURERNGaAOHMypmIiMaXpA1nzjkTEdF4lbThzMqZiIjGK4YzERFR\ngknacPYMa8e3HURERNFK2nBm5UxEROMVw5mIiCjBJHU463QCmZnxbgkREVF0kjacb94EzGZAkuLd\nEiIiougkbTh3dXFIm4iIxieGMxERUYJJynAeHgZ6ehjOREQ0PiVlOPf0yF8ZzkRENB4lZTh3d8ur\nwLgBCRERjUdJHs6snImIaPxJunCuq9Pju99Nd39fV6ePc4uIiIiik1TJVVenx5YtGe7b166l3Lpt\nx/r1Q/FrGBERURSSqnLev9+gen9Njfr9REREiSipwrmlRf3tBLufiIgoEUU0rL1nzx40NTVBkiRU\nVlaipKTE/VhZWRmmTp0KnU4HAKiurkZeXl7I18RKYaEL587pVO8nIiIaL8KG88mTJ3Hp0iXU1tbi\n4sWLqKysRG1trc9zDh48iEyvEyYieU0s7Ngx6DPnrKioGIz5zyYiItJK2PHexsZGrF69GgBQUFCA\nrq4u9Pb2av4aLaxfP4QDB+yYPNl162cP48ABLgYjIqLxJWw4d3Z2Ijs72307JycHNpvN5zlVVVXY\nuHEjqqurIYSI6DWxsn79EFauHAYA/PrXDGYiIhp/or6USgjfjT22b9+OFStWYNKkSdi2bRvq6+vD\nvkZNdrYRen3gfPFIOBzy14ICEzICR7kpShaLOd5NSArsR22wH7XBftRGrPoxbDhbrVZ0dna6b3d0\ndMBisbhvr1u3zv39ypUr0dLSEvY1am7c6I+q4aHk5aXhttsM6OnpwRiMpic1i8UMm60n3s0Y99iP\n2mA/aoP9qI3R9mOoYA87rL1s2TJ3Ndzc3Ayr1QqTyQQA6OnpwWOPPYbBQXnB1ccff4y5c+eGfM1Y\nqK4ewN//DkjSmP1IIiIizYStnEtLS1FcXIwNGzZAkiRUVVXh6NGjMJvNKC8vx8qVK/HII48gLS0N\n8+fPx9q1ayFJUsBrxpIkAfqk2vuMiIgmEklEMiE8BrQeYuGwjTbYj9pgP2qD/agN9qM24jqsTURE\nRGOL4UxERJRgGM5EREQJhuFMRESUYBjORERECYbhTERElGAYzkRERAmG4UxERJRgGM5EREQJhuFM\nRESUYBJm+04iIiKSsXImIiJKMAxnIiKiBMNwJiIiSjAMZyIiogTDcCYiIkowDGciIqIEo493A2Jh\nz549aGpqgiRJqKysRElJSbybNG689tprOH36NIaGhrBlyxbcfvvteO655zA8PAyLxYIf/ehHMBgM\n8W7muOBwOPDNb34TTz75JJYuXcp+HIFjx47h7bffhl6vx/bt2zFv3jz2Y5T6+vrw/PPPo6urC06n\nE9u2bYPFYsFLL70EAJg3bx5efvnl+DYygbW0tODJJ5/Ed7/7XWzatAlXr15V/R08duwYfvaznyEl\nJQUPP/wwHnroodH9YJFkTpw4IZ544gkhhBAXLlwQDz/8cJxbNH40NjaKxx9/XAghxPXr18WqVavE\nrl27xO9//3shhBCvv/66+PnPfx7PJo4rP/7xj8W3v/1t8d5777EfR+D69etizZo1oqenR7S3t4sX\nXniB/TgChw8fFtXV1UIIIb788ktx3333iU2bNommpiYhhBDPPPOMaGhoiGcTE1ZfX5/YtGmTeOGF\nF8Thw4eFEEL1d7Cvr0+sWbNGdHd3C7vdLh588EFx48aNUf3spBvWbmxsxOrVqwEABQUF6OrqQm9v\nb5xbNT4sWbIENTU1AICsrCzY7XacOHEC9957LwDgG9/4BhobG+PZxHHj4sWLuHDhAu655x4AYD+O\nQGNjI5YuXQqTyQSr1Yof/vCH7McRyM7Oxs2bNwEA3d3dmDx5Mq5cueIeUWQ/BmcwGHDw4EFYrVb3\nfWq/g01NTbj99tthNpuRnp6O0tJSnDlzZlQ/O+nCubOzE9nZ2e7bOTk5sNlscWzR+KHT6WA0GgEA\nR44cwcqVK2G3293DhlOmTGFfRujVV1/Frl273LfZj9H74osv4HA4sHXrVnznO99BY2Mj+3EEHnzw\nQbS1taG8vBybNm3Cc889h6ysLPfj7Mfg9Ho90tPTfe5T+x3s7OxETk6O+zla5E5Szjl7E9ydNGp/\n/OMfceTIEbzzzjtYs2aN+372ZWR+/etfY9GiRZg1a5bq4+zHyN28eRM/+clP0NbWhs2bN/v0Hfsx\nMr/5zW8wffp0HDp0CJ9++im2bdsGs9nsfpz9OHLB+k6LPk26cLZarejs7HTf7ujogMViiWOLxpe/\n/OUveOutt/D222/DbDbDaDTC4XAgPT0d7e3tPsM7pK6hoQGXL19GQ0MDvvzySxgMBvbjCEyZMgWL\nFy+GXq9Hfn4+MjMzodPp2I9ROnPmDJYvXw4AKCoqwsDAAIaGhtyPsx+jo/b/slruLFq0aFQ/J+mG\ntZctW4b6+noAQHNzM6xWK0wmU5xbNT709PTgtddew4EDBzB58mQAwN133+3uz+PHj2PFihXxbOK4\nsH//frz33nv45S9/iYceeghPPvkk+3EEli9fjr/+9a9wuVy4ceMG+vv72Y8jMHv2bDQ1NQEArly5\ngszMTBQUFODUqVMA2I/RUvsdXLhwIc6ePYvu7m709fXhzJkzuOOOO0b1c5LyVKrq6mqcOnUKkiSh\nqqoKRUVF8W7SuFBbW4s333wTc+bMcd+3b98+vPDCCxgYGMD06dOxd+9epKamxrGV48ubb76JGTNm\nYPny5Xj++efZj1H6xS9+gSNHjgAAvve97+H2229nP0apr68PlZWVuHbtGoaGhlBRUQGLxYIf/OAH\ncLlcWLhwIb7//e/Hu5kJ6R//+AdeffVVXLlyBXq9Hnl5eaiursauXbsCfgfff/99HDp0CJIkYdOm\nTfjWt741qp+dlOFMREQ0niXdsDYREdF4x3AmIiJKMAxnIiKiBMNwJiIiSjAMZyIiogTDcCYiIkow\nDGciIqIEw3AmIiJKMP8PpMtiNEp+vnYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXl8U1Xax383a5ekpS0tUKBsQ4UW\niyKDLAJSqBQYRuvoa9ERFP3gxgsMMDPQEVEUZEZQwBXXUfHFjtrq4LAIIs6ICAjIIDsIpdAC6UJ3\nmia57x+Hk5vlZmmzNE2f7+fDJ+Tm3puTk/T+7rOc5xFEURRBEARBEETIoGjtARAEQRAEYQ+JM0EQ\nBEGEGCTOBEEQBBFikDgTBEEQRIhB4kwQBEEQIQaJM0EQBEGEGCTORFizePFiZGdnIzs7G+np6Rgz\nZoz1eW1tbbPOlZ2djbKyMrf7rFy5EuvXr/dlyH7ngQceQEFBgV/Odd111+HixYvYunUrFi5c6NP7\n/eMf/7D+35u59ZYFCxbgtdde88u5CKK1ULX2AAgikDzzzDPW/2dmZuJvf/sbBg8e3KJzbd682eM+\n8+bNa9G52xpZWVnIyspq8fEGgwFvv/02/ud//geAd3NLEO0JspyJds3999+Pl156CRMmTMD+/ftR\nVlaGhx56CNnZ2cjMzMR7771n3Zdbjbt378Y999yDlStXYsKECcjMzMSePXsA2FttmZmZ+Pjjj3HX\nXXfhlltuwfLly63neuONNzBs2DD87ne/w0cffYTMzEzZ8X3yySeYMGECbrvtNtx33324cOECAKCg\noACzZs1CXl4exo8fj4kTJ+LkyZMAgOLiYtx9990YN24c5s2bB7PZ7HTeb7/9FpMnT7bbdvvtt+Pf\n//632zngFBQU4IEHHvD4fl9//TUmT56M8ePH484778TRo0cBALm5uSgpKUF2djaMRqN1bgHggw8+\nwMSJE5GdnY3HHnsMFRUV1rlds2YNHnzwQYwZMwYPPvggGhoaXH21AIBjx44hNzcX2dnZuP322/Gf\n//wHAFBXV4cnnngCEyZMwNixY/Hkk0+iqanJ5XaCCDYkzkS75+eff8a//vUvDBo0CK+//jq6deuG\nzZs34/3338fKlStRWlrqdMyRI0cwcOBAbNq0Cffeey9ef/112XPv3bsX+fn5+Oyzz7Bu3TpcvHgR\nJ0+exNtvv40vvvgC//d//+fSaiwvL8eSJUvw3nvv4auvvkJKSoqdu/bf//437r33XmzZsgU333wz\n3n//fQDAihUrMGzYMGzbtg3Tpk3D/v37nc49bNgwXLx4EcXFxQCYwF68eBHDhw/3eg44rt7PZDJh\nwYIFePbZZ7FlyxZkZmbir3/9KwBg2bJl6NKlCzZv3gyNRmM9108//YR33nkHH374ITZv3ozk5GSs\nXLnS+vrmzZvx0ksvYevWraioqMDWrVtdjstisWDu3Ln4/e9/j82bN+O5557DvHnzUFtbi88//xwx\nMTHYtGkTtmzZAqVSiVOnTrncThDBhsSZaPeMHj0aCgX7U3jyySexaNEiAED37t2RmJiI8+fPOx0T\nHR2NcePGAQDS09NRUlIie+7JkydDqVSiU6dOSEhIQGlpKfbu3YshQ4YgKSkJWq0Wv/vd72SPTUhI\nwL59+9C5c2cAwODBg61iCgB9+vTBgAEDAABpaWlWAf3xxx8xceJEAEBGRgZ69+7tdG6NRoMxY8Zg\n+/btAIBt27Zh3LhxUKlUXs8Bx9X7qVQqfP/997jhhhtkxy/Hjh07MH78eCQkJAAA7r77buzcudP6\n+ujRo9GhQweoVCqkpqa6vWk4f/48ysrKMGnSJADA9ddfj+TkZBw6dAjx8fE4cOAAvvvuO1gsFjzz\nzDPo37+/y+0EEWwo5ky0e2JjY63/P3TokNVSVCgUMBgMsFgsTsfo9Xrr/xUKhew+AKDT6az/VyqV\nMJvNqK6utnvPTp06yR5rNpuxZs0abN++HWazGXV1dejVq5fsGPi5AaCqqsrufWNiYmTPP378eHzw\nwQeYNm0atm3bhscff7xZc8Bx934ffvghCgsLYTQaYTQaIQiCy/MAQEVFBZKSkuzOVV5e7vEzuzqX\nXq+3e8+YmBhUVFRg0qRJqKqqwurVq/HLL7/gt7/9LRYuXIgJEybIbre17gkiGJDlTBA2/PGPf8T4\n8eOxZcsWbN68GXFxcX5/D51Oh/r6euvzy5cvy+63ceNGbN++HevWrcOWLVswa9Ysr84fExNjl4nO\nY7aOjBw5EseOHcPZs2dx9uxZDB06FEDz58DV++3fvx9vvfUWXn/9dWzZsgXPPfecx7F37NgRV65c\nsT6/cuUKOnbs6PE4ORISElBVVQXb3j5XrlyxWuW5ubn45JNPsHHjRhw+fBiff/652+0EEUxInAnC\nhvLycgwYMACCIKCwsBANDQ12QuoPMjIysHv3blRUVMBoNLq8+JeXl6Nr166Ij49HZWUlNm3ahLq6\nOo/nv+GGG6yx2P379+PcuXOy+2k0Gtxyyy144YUXMHbsWCiVSuv7NmcOXL1fRUUFEhISkJycjIaG\nBhQWFqK+vh6iKEKlUqG+vh4mk8nuXLfeeiu2bt2KyspKAMDHH3+M0aNHe/zMcnTr1g2dO3fGxo0b\nrWMrKytDRkYGXn31VXz66acAmOeiW7duEATB5XaCCDYkzgRhw+zZs/HEE09g8uTJqK+vxz333INF\nixa5FLiWkJGRgZycHOTk5GDq1KkYM2aM7H6/+c1vcOXKFWRlZWHevHmYM2cOLl68aJf1Lccf//hH\nfPPNNxg3bhw++ugjDB8+3OW+48ePx7Zt2zBhwgTrtubOgav3GzlyJJKSkjBu3DhMnz4d06ZNg16v\nx6xZs3DdddchNjYWI0aMsIvXZ2RkYMaMGbjvvvuQnZ2Nmpoa/OEPf3D7eV0hCAJefPFFrFu3DhMm\nTMBzzz2H1atXIyoqCrfffju++OILjB8/HtnZ2VCr1bj99ttdbieIYCNQP2eCCD6iKFotsh07dmDV\nqlXkPiUIwgpZzgQRZCoqKjB06FBcuHABoihi06ZN1oxmgiAIgCxngmgV1q9fj3fffReCIKB3795Y\nunSpNVGJIAiCxJkgCIIgQgxyaxMEQRBEiEHiTBAEQRAhRshUCDMYavx6vri4KFRW+nd9anuE5tE/\n0Dz6B5pH/0Dz6B98ncfERL3L18LWclaplK09hLCA5tE/0Dz6B5pH/0Dz6B8COY9hK84EQRAE0VYh\ncSYIgiCIEIPEmSAIgiBCDBJngiAIgggxSJwJgiAIIsQgcSYIgiCIEIPEmSAIgiBCjJApQkIQBEGE\nDy+//BKOHz+KiopyXL16FcnJXRETE4tly17weOzGjRsQHa3D6NHyvc5Xr16Ju+/ORXJy1xaNbebM\nGZg790/o3ftXLTo+GJA4EwRBECgsVGHVKg1OnFAgNdWCOXOMyMkxtfh8//u/fwDAhPaXX05j5sw5\nXh87ceJkt6/Pnj2vxeNqK5A4EwRBtHMKC1V45JFI6/OjR5XXnjf4JNBy7N//Iz7+eB3q6+sxc+Yf\ncODAPuzY8TUsFguGDRuB6dNn4J131qJDhw7o1asPCgr+AUFQoKjoDG69dSymT59htXy/+eZr1NXV\n4ty5Ily4cB6zZs3DsGEjsG7d37Ft21dITu4Kk8mE3Nz7MGjQYKex1NbWYunSp1FbWwOTyYQ5c/6I\n667rh1WrXsCxY0dhNpuRk3MXJk6cLLstkHglzsuWLcPBgwchCALy8vKQkZEBALh06RLmz59v3a+4\nuBjz5s1DdnY2FixYgJKSEiiVSjz//PPo3r17YD6BH6irA776SoU77jBBEFp7NARBEMFl1SqN7PbV\nqzV+F2cAOH36FNavL4BGo8GBA/vw2mtvQ6FQ4H/+53bcc8+9dvseOXIY//d/n8FiseDuuydj+vQZ\ndq9fvnwJK1aswQ8/fI8vvvgM6ekDUFDwCdav/wx1dXXIzb0Tubn3yY7jk0/WIz19AH7/+wdw7NgR\nvPzyi1i27AV8//13+Mc/voDJZMLGjRtQXV3ltC3QeBTnPXv2oKioCPn5+Th9+jTy8vKQn58PAOjU\nqRM+/PBDAIDJZML999+PzMxMfPnll4iJicHKlSvx3XffYeXKlVi1alVgP4kPvPeeGkuWRCAhoR6j\nRplbezgEQRBB5cQJ+dxgV9t95Ve/6guNht0QREREYObMGVAqlbhy5Qqqq6vt9r3uun6IiIhwea6M\njBsAAElJSaitrcX588Xo3bsPtNoIaLUR6N8/3eWxx44dwdSpDwEA+vVLw/nzxYiJiUX37j2wYMFc\njBkzDtnZk6DRaJy2BRqPM79r1y6MGzcOANCnTx9UVVWhtrbWab/CwkKMHz8e0dHR2LVrF7KysgAA\nw4cPx/79+/08bP9y8iQrXl5eTmYzQRDtj9RUS7O2+4parQYAXLxYivz8j7By5ct45ZU30blzZ6d9\nlUr3zSVsXxdFEaIIKBSStLnzhgqCAFEUrc8tFvZ5V65cgwcfnIGTJ0/gz3/+g8ttgcSj5VxWVob0\ndOnOIz4+HgaDATqdzm6/Tz75BO+++671mPj4eABskgRBgNFotN4pyREXF+X3Dh/u2nHZUlLCHgUh\nEomJfh1CWODtPBLuoXn0DzSP/sF2Hp96CpgyxXmfRYuUPs+3Xh+BqCiN9TwdOkRBq1UjMVGPS5eK\nkJjYET16dMLhw4dx6dJF6PUaREdrodNF2O0LMDFNTNRDo1EhLi7aul9ioh6VldHQaFQYMKAviorO\noEOHCNTU1ODEiWPo0CHK7nPw42+66UacOHEIY8YMx08//YTrrktFY2MVtm/fjqlTp+KWW36NO++8\nU3YbP1+gfo/NTgizvcvgHDhwAL1793YSbHfHOOLv3qKJiXqve0SfOhUNQIGLF6/CYGjy6zjaOs2Z\nR8I1NI/+gebRPzjO49ixwNq1KqxeLWVrz55txNixJhgMvr1XTc1V1Ncbre935Uo9GhubYDDUoGPH\nblCrtbjrrrtx/fU34Le/vRN/+ctTyMgYCLX6qt2+ANMSg6EGRqMJlZV1qKtrhFp9FQZDDSor62A0\nmiCKWmRm3oacnDvRo0cv9OuXhpqaRrvPy4+fNOlOLFv2DKZMuQ8WiwVz5/4ZCkUUfvhhD774YgPU\najVuu22S7DaDocbn36M7YRdED8r58ssvIzExEbm5uQCAsWPH4osvvrAT4pdeegm9e/fG7bffDgBY\nsGABJk2ahJEjR6KpqQmZmZn4z3/+43aQ/v6D83bSGhuBlBQdRFHAn/7UiPnzjX4dR1uHLob+gebR\nP9A8+odwn8eNGzcgKysbSqUSU6fm4sUXX0ZSUie/v08gxdljzHnEiBHYsmULAODw4cNISkpyspAP\nHTqEfv362R2zefNmAMA333yDm2++uUUDbwmFhSqMHh0FlQoYPToKhYXunQPnzwsQRRaUqK2lmDNB\nEERbp7y8HDNmTMOjj07HbbdlB0SYA41Ht/agQYOQnp6O3NxcCIKAxYsXo6CgAHq93pr0ZTAYkJCQ\nYD1m4sSJ+P777zFlyhRoNBosX748cJ/Ahpas1Ssqku5P6uoCPUKCIAgi0Nx//wO4//4HWnsYPuFV\nzNl2LTMAOysZADZssF/zxdc2B5uWrNU7c0YSZ7KcCYIgiFAgrBpftGStHlnOBEEQRKgRVuLckrV6\nRUWStVxXR5YzQRAE0fqElTjPmSOfaT17tusM7KIiBaKjRWi1Irm1CYIgiJAgrMQ5J8eEtWsbkJZm\nhkoFpKWZsXat62QwUWTi3KOHBTqdCJnCZwRBEEQLeOSRB3Hs2FG7bW+88QrWr18nu//+/T/iySf/\nBABYsGCu0+uffZaPd95Z6/L9Tp06iXPnigAAixcvRGPj1ZYOHXfdNRn19f6tvdFcwkqcASbQO3bU\no6kJ2LGDTe7o0VHo0kXntLSqvFxAXZ2Anj0tiI4mtzZBEIS/yMoaj+3bt9pt27FjO8aNu83jscuX\nv9js9/v22+0oLj4HAHjmmeeh1bqux90WCMuWkZWVUqcpd0ureLy5Rw8RZ86IuHAh7O5VCIIgWoWx\nY2/DY489hMcfnwUAOHbsKBITE5GYmIS9e3fj7bffgFqthl6vx5Il9sttJ00ai3/962v8+OMerFmz\nEvHxCUhI6GhtAbl06dMwGC6joaEB06fPQOfOXfDFFwX49tvtiIuLw1NPLcQHH+SjtrYGzz+/BE1N\nTVAoFFiwYBEEQcDSpU8jObkrTp06idTU67BgwSLZz3D58iWn45OSOmHJkkUoLy+DKJoxderDGDx4\niHWb0WjEQw89gqFDh/s0f2EpzvPmRWDnTiApyf3SqrNnmRgzt7YStbXM1U1tIwmCCCeeflqLDRuk\ny71CAVgs0T6dc/JkE55+utHl63Fx8UhO7oojR35GWtoAbN++FVlZ2QCAmpoaLF78HJKTu+LZZ5/C\n7t27EBUV5XSOtWtfwaJFz6Jv31TMnz8LycldUVNTjSFDhmLChN/gwoXzWLRoAd59dx1uvnkYbr11\nLNLSBliPf/vtN/Cb39yOsWNvwzffbMO7776Jhx56BMePH8UzzyxDXFw8cnImoqamBnq9c7UuuePv\nvnsKqqqu4NVX34JWK2LDhi04ffqUdVtNTQ127drp09wCYejWBoDkZBGVlcDJk+6XVvFlVMytLcJi\nEXC15WEKgiAIwoasrGx8/TVzbe/c+W/ceutYAECHDh3w178+h5kzZ+DAgX2orq6SPb60tBR9+6YC\nAG64YRAAQK+PwdGjh/HYY9OxdOnTLo8FgOPHj+LGG28CAAwaNBgnTx4HAHTt2h0JCR2hUCjQsWMi\n6urkE47kju/Royfq6+vw7LOL8MMPP2DcuNvstu3fv9cr170nwtJyHj7cjDffBOLjRZSVOZvBfGkV\nF2eeEAawQiSRkZ4bdRAEQbQVnn660c7KZTWhA1/YYfToMfjgg3eRlTUe3bunICYmBgDw/PPP4oUX\nVqFnz1548cW/ujzetvUjbwOxdetmVFdX49VX30Z1dTUefvh+NyOQWkI2NZkgCOx8jm0oXbeYcD4+\nIiICa9f+HYcO/RfffLMZmzZ9hby8xdZtmzZtwM6d/0Fe3mJ3U+ORsLSchw0zQRCYOMvBl1YVFQkQ\nBBHduong5cIpY5sgCMI/REVFo0+fvvjgg/esLm0AqKurRadOnVFTU4P9+/ehqUm+G2DHjok4d+4s\nRFHEgQP7AABXrlxBly7JUCgU+Pbb7dZjBUGA2Wy2O75//zTs3/8jAOCnn/ahX7/+zRq/3PHHjx/D\n1q2bMXDgDXj66adx9uwZu23z5y/E2bNnmvU+coSl5RwXBwwcCBw9qsArrzTgtdfs26DxpVVFRQok\nJ4vQaoHoaCbkLGObLGeCIAh/kJWVjeeeW4zFi5+1brvzzrvx2GMPoXv3FNx331S8++6bmDHjcadj\nZ8x4HE8++Wd07tzF2rzi1lszsWDBXBw58jMmTfotkpKS8N57b2HgwBuxatULdrHrhx9+FM8//yw2\nbPgcKpUaCxcugskkv7RWDrnjtdoIrF37Kr74ogARERrce+/96NIl2bpNoVDg3nvdWfPe4bFlZLDw\nd/uyZcv0WLUKKCysx4gRZqfXeavI4cPNKCxswNKlGqxercU//1mPoUOd92+vhHtruWBB8+gfaB79\nA82jf2jVlpFtlTFj2OPOnUrZ13mryB49WPyZu7Vbed05QRAEQYSvOI8cCQiCiO+/lxdnaRkVcxxw\ntzaV8CQIgiBam7AV57g4YMAAC378UYmGBufXbdc4A7DJ1g7aEAmCIAhClrAVZwAYMcIMo1HAvn3O\n1rPtMioAiL62Hp9KeBIEQRCtTZiLM8vKk4s725buBMitTRAEQYQOYS3OQ4eaoVCILsRZAZ1OREIC\nE2VyaxMEQRChQliLc2wscP31Fuzfr7RmYRcWqjBqVBSOHFGgqQn4/HO21Jvc2gRBEESoEJZFSGwZ\nPtyMgweV2LdPibIywa5LVWMjrF2qBg1ia5vJrU0QBEG0NmFtOQPALbdIcedVq1x3qXJXvrOkRMCv\nfx2NgoKwv5chCIIgQoCwF+ebb5bizrwblSMnTigcynfac+CAEkVFCvzxjxEoKSHLmiAIgggsYS/O\nMTFARoYFu3erXPZpViqBnj11AEScO+c8JZWV7MCaGgHz50cgNAqeEgRBEOFK2IszAPzv/xoxcKAZ\ncXHyqtrYKMBiEQAIOHNGgcJCe/d1RQUT5/h4C7ZtU+HTT8m9TRAEQQSOdiHOkyebsHVrPQ4frsPa\ntQ3o398MpVKEVisv1qtX28emueX8/PONiIoS8Ze/RODSJXJvEwRBEIGhXYizLTk5Jnz7bT1KS2vh\nqnOYY2yaW84DB5qxaFEjrlwRsHChNtBDJQiCINop7U6cbUlNtXi1vbKSPcbFiXjwwSYMHWrCl1+q\nsXEjubcJgiAI/9OuxXnOHKPs9ieesN9eUSFAoRARGwsoFMCSJY0AgG3b5DteEQRBEIQveGX6LVu2\nDAcPHoQgCMjLy0NGRob1tdLSUsydOxdNTU1IS0vDkiVLsHv3bsyePRt9+/YFAKSmpmLRokWB+QQ+\nkJNjAtCA1as1OHFCgchIlpE9dqy9v7uyUkBcnAjFtVuZLl1YrLqmhuLOBEEQhP/xKM579uxBUVER\n8vPzcfr0aeTl5SE/P9/6+vLlyzF9+nRkZWXhmWeeQUlJCQBgyJAhWLNmTeBG7idyckzXRBp4/PEI\nfPqpGnV1AuLjpWSxigrBLtNbr6cmGQRBEETg8OjW3rVrF8aNGwcA6NOnD6qqqlB7rYyWxWLBvn37\nkJmZCQBYvHgxkpOTAzjcwCI1v5BE12LhlrO0X2QkoFCIqKkJ9ggJgiCI9oBHcS4rK0OcjTLFx8fD\nYDAAACoqKhAdHY3nn38eU6ZMwcqVK637nTp1Co8++iimTJmCnTt3BmDo/keuM1V1NWCxCEhIkJLE\nBAHQ68mtTRAEQQSGZqcbizblsURRxKVLlzB16lR07doVM2bMwI4dO9C/f3/MnDkTEyZMQHFxMaZO\nnYqvvvoKGo18bWsAiIuLgkrl3wSrxER9s/ZPSmKPanU0EhPZ/6uq2GOXLmokJqqt+8bGAg0Nyma/\nR1ukPXzGYNCW5/HQIWDDBmDhQristBcs2vI8hhI0j/4hUPPoUZyTkpJQVlZmfX758mUkXlOuuLg4\nJCcnIyUlBQAwbNgwnDx5ErfeeismTpwIAEhJSUHHjh1x6dIldO/e3eX7VFbW+/RBHElM1MNgaJ7f\nWRDUACJw/nwDDAYWhz55UgEgGpGRRhgMjdZ9o6KicOmSAgZDeDeAbsk8Es609Xl84QUtPvxQg7Fj\na9G7d+vVr23r8xgq0Dz6B1/n0Z2we3RrjxgxAlu2bAEAHD58GElJSdBda+GkUqnQvXt3nD171vp6\nr1698M9//hPvvPMOAMBgMKC8vBydOnVq8QcIFnKdqXh1MNsEMb5vTQ2ozjbRLqivF+weCYIILB4t\n50GDBiE9PR25ubkQBAGLFy9GQUEB9Ho9srKykJeXhwULFkAURaSmpiIzMxP19fWYP38+vv76azQ1\nNeHpp59269IOFXhnqu+/V+L119nyqqQkts1RnPV6ESaTgMZGICIi6EMliKBivLb0v6mpdcdBEO0F\nr2LO8+fPt3ver18/6/979OiB9evX272u0+nwxhtv+GF4wYUnhH38sXQjUVrKLIUTJwTZfWtqBERE\nkPlMhDdGI/v9NzaS5UwQwaBdVwhzhLu15di0yf4+hq91puVURHug8Vq6hVG+qB5BEH6GxNkG7taW\n4/x5+6nSX4vjUyESoj3ARZnEmSCCA4mzDe7EuU8f+2YYfF8SZ6I9wN3Z5NYmiOBA4myDO7e2Y5MM\ncmsT7QmynAkiuFDPQxu4NZyeboYosr7OSiUrunDXXfbNMLhbm6qEEe0BEmeCCC4kzjZERbGa2dHR\nIr78sgEAkJERDblVYHJ1uAkiXOHubJ61TRBEYCG3tg2CAERHS4IriqwISUKCcyxacmvTxYoIf8hy\nJojgQuLsQHS0iLo6Xg2JWQy27SI5UrZ2MEdHEK0DF+XGRvf7EQThH0icHdDpRNTVsf9XVDCRlhNn\nytYm2hPk1iaI4ELi7EB0NKyWM6+rTW5tor1DljNBBBcSZwd0OhENDQJMJveWs5StHczREUTwEUXJ\ncqba2gQRHEicHeBrnevqJMtZTpwpW5toL9gKMhUhIYjgQOLsAI8l19UJVsvZsSMVAGi1gEYjkjgT\nYY9thjZlaxNEcCBxdsA20cudOAMs7kxubSLcsbWWSZwJIjiQODvA3dq1tZJb+6efFBg9Ogpduugw\nenQUCgtZ7RbbNdEEEa7YCjK5tQkiOFCFMAfk3NrPPRdhff3oUSUeeSQSQAP0ehHnztH9DRHe2GZo\nk+VMEMGBlMUB20QvLs5yrF6tgV4voraWZbMSRLhiu7aZxJkgggOJswPObm155T1xQgGdDhBFwVq0\nhCDCEXvLmdzaBBEMSJwdsHVrV1YKULlw/KemWqyFSCjuTIQzlK1NEMGHxNkBya3NipB07ixvOc+e\nbbTuS1XCiHDG1lqmhDCCCA4kzg5wt3ZlpYDaWgG9elmwdm0D0tLMUKlEpKWZsXZtA3JyTHYucIII\nVyghjCCCD2VrO8Dd2ufPs/uW+HgROTkm5OSYnPal+tpEe4Dc2gQRfMhydoC7qouL2dTIle7kcHHe\ntk0puw6aIMIB+yIkdCNKEMGAVMSB6Gj2WFzsujpYYaEKq1ZpcOwYE/A33tBaX7NdBy1nbRNEW4Ms\nZ4IIPmQ5O8At50uX5C3nwkIVHnkkEkePKiGK7tdBE0Q4YF8hrPXGQRDtCRJnB6Ki7J87Ws6rVnkn\nuidO0NQS4QG5tQki+JCCOKBUAlFRkiA7irO3opuaavHruAiitSC3NkEEHxJnGXjGNuDs1vZWdGfP\npqsYER7YWs7k1iaI4EDiLANfvww4W85z5siLbrduFqd10KFEUxMwYUIUXn9d3dpDIdoYttay2SzA\nbG69sRBEe8GrbO1ly5bh4MGDEAQBeXl5yMjIsL5WWlqKuXPnoqmpCWlpaViyZInHY0IdW8vZUZyZ\n6DZg9WoNjh9XwGwWMHCgGVsr9Wk5AAAgAElEQVS31gd5lM3j8mUB+/YpoVKJeOyxptYeDtGG4OIc\nFSWivl6A0QhERrbumAgi3PFoOe/ZswdFRUXIz8/H0qVLsXTpUrvXly9fjunTp+PTTz+FUqlESUmJ\nx2NCHZ6xrVKJ0OudX8/JMWHHjnoUF7PSYHy9M6ewUBVy656rq5lrklpcEs2Fu7X575zizgQReDxe\nqXft2oVx48YBAPr06YOqqirUXqtXabFYsG/fPmRmZgIAFi9ejOTkZLfHtAW4W7tDBxGCm+RUlYpZ\nE7YVwmyXWpnNgnXdc2sLNBfnixcFihsSzYKLMf+7oPraBBF4PCpGWVkZ0tPTrc/j4+NhMBig0+lQ\nUVGB6OhoPP/88zh8+DAGDx6MefPmuT3GFXFxUVCplD5+HHsSE2XMXi+Ij2ePSUkKj+fQ64GGBqV1\nv1dekd/v1VcjMWNGi4bjFxTXbsNEUUB9vR7dunl/bEvnkbCnrc4j/+3ExbH/6PU6JCa23nja6jyG\nGjSP/iFQ89hsc04URbv/X7p0CVOnTkXXrl0xY8YM7Nixw+0xrqis9G/MNjFRD4OhpkXHqtVaABrE\nxJhgMDS43Tc6OhpXrgAGA2vqfOSIDoCzZXHkiAiDofW8B8XFKgAsUHjgQD3i4rzL6vFlHgmJtjyP\nVVURANSIjDQBUKG0tBaRkZ7/pgNBW57HUILm0T/4Oo/uhN2jWzspKQllZWXW55cvX0bitdvmuLg4\nJCcnIyUlBUqlEsOGDcPJkyfdHtMW4Aa+u7raHL1etOvn7GqpVWuve+ZubYDizkTzkNza7O+B3NoE\nEXg8XqVHjBiBLVu2AAAOHz6MpKQkq3tapVKhe/fuOHv2rPX1Xr16uT2mLcCzteXqajui07EMVr68\nxNVSq9Ze92wvznRxJbyH5yjw5MgmSvYniIDj0a09aNAgpKenIzc3F4IgYPHixSgoKIBer0dWVhby\n8vKwYMECiKKI1NRUZGZmQqFQOB3TluDNL7wRZ57BWlsLxMbaL7U6cUKB1FQLZs82tvq65xobzwtZ\nzkRz4CU7+W+dEgoJIvB4FXOeP3++3fN+/fpZ/9+jRw+sX7/e4zFtCe6+88atzR0CNTUCYmPZ/q76\nP7cm5NYmWgoXY/53QfW1CSLw0FVaht69WXz4uus8x4n5Bcs27uxIKKx75uIcHS2GtVvbYmFeDMJ/\nGI2AIIjWpjBkORNE4CFxlmHUKDN++KEW48Z5zmjmrr4aFwl7obLuma/FTkuzoKJCEbYC9uSTWgwe\nHE0C4keMRgFaLaDRUBESgggWJM4yCALQu7f7AiQcniRjW4jEFlctJoPd77m6mlk//fuzG46iovD8\n6k+cUKCiQoErV8LXOxBsGhsBjQbQatlzcmsTROAJzyt0EOFu7bo6+QuWqxaTR44ogurmrq4WoNMB\nPXsyV324xp15eKHB/fJ0ohkYjcxq1mik5wRBBJbwvEIHES7Ortzartc3C27d3GfOCHjjDTW8qN/i\nFTU1AmJiRPTowU4YrnHn6mr2ePVqeH6+1oDc2gQRfEicfcSTW9vVumdHHN3cq1dr8NRTEfj5Z/98\nRdXVTJxTUsLbcubfw9WrrTyQMMLRrU1FSAgi8ITnFTqIeMrWzskxYe3aBqSlmaFSiQDkTWFH9/fx\n46zO+OXLvl8IRZFZ9np9+xHnhgYSEH/BLGdyaxNEMAnPK3QQkbK1XYsBbzFZUlKL/v09l/cUReDU\nKfbVGAy+i0xdHWCxCIiJATp0YGMOR7e22QzU11PM2d9wy5m7tclyJojAQ+LsI5Jb27v9vSnvefmy\ngKoqdgEsL/f9QsjXOMfEsAz0lBQLiooUfotnhwq2y8Mo5uw/WEIYyHImiCBC4uwjnrK1HXF0c6el\nmbF2bYNdRTFuNQP+FWdu5aekWFBfL/jl3KGEbRU0ijn7B4sFMJmYW5vHnKm2NkEEnuCXqgozvHFr\nO+KpvKdt/Lm83Pf7J57BHBPDxVnK2O7YMXzMZ9vvgGLO/oEXcyG3NkEEF7KcfSQqihX38Nat7Q1b\ntkj3TBs2qHxeB81FKyaGPe/RIzyTwmzFmSxn/8Bd2JQQRhDBJbyuzq2AQsG6WLmrrd0cCgtV2L5d\nEuPaWsHncp9ybm0g/MTZNuZMCWH+gVvJ9kupWnFABNFOCK+rcyuh14vNcmu7IxDlPm0TwgDJrV1U\nFF7uSXJr+x9uJWs0gFpNXakIIliQOPsBvV70WyOJ48flvxJXZUC9wVGcu3dnlnO41dcmt7b/sXVr\nS7W1W288BNFeCK+rcyuh0/nm1rZtKalUyu/jugyoZ3g8nMeco6OBjh0tYefW5olvAC2l8he2bm2K\nORNE8KBsbT+g04lobBTQ2CjF5byFt5TkmF10qbRdB91cHGPOANCjh4j//lcBsxkubwjaGvZu7VYc\nSBhh69bWasmtTRDBIrxMp1aCi15LrGdXMWa1WoQgsPPm5V11u/TKE45ubYAlhTU1CSgtbb0LbUMD\n8NBDEfjuO//cHdjOP8Wc/QNP/rLN1qaEMIIIPCTOfkCnY48tWU7lKpZssQALFzKzJSOj5S5twHYp\nlb04A62bsb1vnxIbNqjx+ef+ceBQzNn/cCuZJYTxba04IIJoJ5A4+wFfLGdXseTUVAsSEth5fa2v\nzWOx/CYCsC9E0lqcPct+fv5ahmZ7c0QxZ/8gJYQBgsAKkZBbmyACD4mzH/BFnF3V2p4zx2gV52+/\nlRLGRo+Oavaa5+pqATqdaBdb5pZza2ZsnznD5svb0qeesC3fSTFn/yAlhInXHsmtTRDBgBLC/IAv\nbm0WS27A6tUaHD+ugNksYNgwVt5zzx4mnJ9+qrbuf/So8loCWYPXceiaGsHOpQ2EhlubW87+qq5W\nWytYk5bIcvYPtglhAIs9U21tggg8ZDn7AU89nT3BW0q+9x4z98aOZSnb7upeN6coSXW1szh36yZC\noRBRXBxebm29XkREBFnO/kJKCGOPzHKmGx+CCDQkzn6gJc0v5Dhxgvmd+/ZlVi13a8vv691XJ4pc\ntOy3q9VAXJzYap2pRBE4c4Zbzv4SZwE6HRARIVK2tp+QEsIktzYlhBFE4CFx9gOSOPt2Ht4qsm9f\nZjmzoiHyAu1tUZK6OsBsdracASA+XkRFReuIWHm5YLWY/VVdjbvvIyIoW9tfOFrOWq1I4kwQQYDE\n2Q/wmLOv7tmTJxVQq0X06MGEVBCADh3k9x0+3OxVkpjcMipOXJyIykoBFt9WarWIs2elufKHW9ts\nZoller2IqCiRYs5+wjHmTG5tgggOlBDmB7zJ1l63Tg2VSkRurnwSlygyce7Vy2JdTwoAXbtacPWq\nAr17W3DihAKpqRYMH27G229LMWd3SWJy1cE48fEiLBYB1dWubwICBXdpA6xgiMkEqHz4NXLrW68X\nUV8vUMzZT3C3Nk+0I7c2QQQHspz9AE8Ic+XW/ve/lZg7NwILF0a4tFIvXxZQXS1Y482chARmBW7e\nXI+Sklrs2FGPnTvlK2rJJYnxNc6u3NoAWsW1zZPBoqL4jY1v5+MeAh5zbmxsHY9AuMHd2pLlzNY5\ni67TIQiC8ANe2SrLli3DwYMHIQgC8vLykJGRYX0tMzMTnTt3hvLaItoVK1bg7NmzmD17Nvr27QsA\nSE1NxaJFiwIw/NCAu7V/+UUBi4X1eOZUVwOzZ0cAYG7Xs2cF9O7tfGU7eZLHm+0VhWdsl5cL6NqV\n/d9VMpjcdsmt7bx/XBx7rKiQH1Mg4eKcnm7B3r1K1NYK6NCh5WPgn1OvFxEZyf5/9SoQFeX7WNsz\nkltbspwBoKlJ+j9BEP7Hozjv2bMHRUVFyM/Px+nTp5GXl4f8/Hy7fd566y1ER0dbn589exZDhgzB\nmjVr/D/iECQxUcTNN5vwww8q/PnPWvztb40QrhmjTz4ZgQsXFEhJYV2gDh9WondvZ9c2F1ZvxDk1\n1YKjR52tZ7kkMU9ubaB1LOczZxRQqUT062fG3r3Ka+LqizizR5YQxs7T0CBYLXOiZfD4spQQxh6N\nRhJngggkHt3au3btwrhx4wAAffr0QVVVFWr9lV4bJggC8OGHDUhPN+P99zV45hktRBHYvFmJjz9W\nIyPDjL/+laUPHzokP+VSprazWxsAysokAXVVVUyuc5Vc0wtO67q1BXTrJiIuzr9ubb0eiGCOCsrY\n9gPOCWHs+6KkMIIILB7FuaysDHHc/wkgPj4eBoPBbp/FixdjypQpWLFiBcRrwahTp07h0UcfxZQp\nU7Bz504/Dzv06NAB+Mc/GvCrX5nx2msaPP20FnPnRkCrFfHKK1dxww1MdH/+WT5efOiQAgqFiF/9\nyrM45+SYsHZtA9LSzFCpRKSlmfHww0asWqVxyt52F3PmwlhZGdwLbW0tUFamQM+eFpvqar6NQYo5\ni1ZrmcTZd6Ta2uK1R/vtBEEEhmbnx4oOmSCzZs3CyJEjERsbiyeeeAJbtmzBjTfeiJkzZ2LChAko\nLi7G1KlT8dVXX0Hjxg8WFxcFlcq/jYUTE/Wed/Lr+wE7dgAjRwKvv84+6wsvACNHMpd/t27A4cMq\np3E1NgI//QQMHAj06mX/Wu/efJ9IJCZK22fMYP8A4OOPlZgyRZo7nr0dEyP1h05JibI7HgD69GGP\nV69GIDExws3n8u88XrjAHtPSVOjcmf0ElUrn8bWErl0jrOePjNT55Zz+Iti/R3/AwzNdurC55MVs\ndLrWm9u2OI+hCM2jfwjUPHoU56SkJJSVlVmfX758GYk2f5V33HGH9f+jRo3CiRMnkJ2djYkTJwIA\nUlJS0LFjR1y6dAndu3d3+T6VlfUt+gCuSEzUw2DwU9HmZqDRAP/4h4C7745C794W/P73DeCOhrS0\nSHz1lQqHD9ciKUm6ydmzR4HGxmgMGmSEwWDfVUCtVgKIQlFRIwwGeXNlyZIoAM43Ns8+a8awYWYA\nGpjNdTAY7K1yQVAAiMb5887vywnEPO7frwIQiU6droLFmSNRUtIAg6HlPatLStQAIiCK9RBFJQAt\nLlyoQ3JyaKRst9bv0VeqqyMAqFFTUwuDQYTFogWgQWlpHfT64M9tW53HUIPm0T/4Oo/uhN2jW3vE\niBHYsmULAODw4cNISkqC7povsqamBg899BCM13xce/fuRd++ffHPf/4T77zzDgDAYDCgvLwcnTp1\navEHaGv06CFi1646rF/fYNcJasAAZsYePmw/7Xv2sJ1uvtnsdK6OHdkF0F2ZTXfZ26EYc+aZ2j17\nin53a+v1QGQk20aFSHyH3NoE0Tp4tJwHDRqE9PR05ObmQhAELF68GAUFBdDr9cjKysKoUaNwzz33\nQKvVIi0tDdnZ2airq8P8+fPx9ddfo6mpCU8//bRbl3Y4opTx0A8YwIT20CElxoyRhJiL85AhzuIs\nxZxd30e5y962zWJ2hC9dCnbMmVcH69XLgkuXeAlP38bAj+flOwGKOfsDqWUk7B5JnAkisHgVc54/\nf77d8379+ln/P23aNEybNs3udZ1OhzfeeMMPwwsvrr/e2XIWRWDvXiW6dbMgOdlZQGNjAZVKtEsI\nc2TOHOO1CmH2VFUJ2LyZfcVff63C735n7zZWqYDYWLEVxJl9/h49LKir80/zC+4h0OlEREZKS6kI\n35AsZ/4oXttOc0sQgYQqhAWRlBQRer1ot5zq9GkB5eUKWasZYAk5CQnuu0c5Zm937cos9AsXFADY\ncY89Filbfzs+Pvidqc6eVaBzZwsiI6UEI9+XUrFHW7c2lfD0ncZGASqVaC2swy3nRvkUBYIg/ASJ\ncxARBBZ3Pn1agbo6ts2dS5uTkODecgakntAlJbWyLmxAvrxnfDyznINVjrGxETh/XkCvXuwGQip9\n6q+Ys1SEhGLOvuNYbITXfSe3NkEEFhLnIHP99RaIooCjR9nU797NrFlP4lxbK7i1VkQR+PJLFWpr\nm1feMz5eRFOT4Le2jZ4oLhYgigJ69mQCyiuX1dX5HnPWaERotVIRErKcfcdolFzagOTWpiIkBBFY\nSJyDDM/YPnSIWcx79iih14vo39/1shTbEp6u2LZNienTI7F2rcZlr2e57bwQSbAytqVMbTYWXvXV\n117YNTVS0huPOZPl7DuNjYK1KhhgX1ubIIjAQeIcZNLTeaUwBcrKBJw+rcDgwWbZ7G6ON+K8axc7\nwb59SpflPauqBKcKYsGuEsZbRXK3tkIBREeLPmdrV1cL1mVZ0lIqn05JwJ3l3EoDIoh2AolzkLnu\nOgvUahE//6zE3r2e482AtJzKYHAtYD/+yM71008K3HEHSxDr25edl1uSFy4oYDYL1gpiN94YjTff\nZEHEDRuC09rb0XIGWNzZHzFn7iLnMef6erKcfaWxEbKWM2VrE0RgIXEOMhoNE+ijRxX4/vvmibMr\ny7mpCTh4kJ2rrEyB0lIBOTkmvPceMx25tePIhQsKiCI758sva3HjjdFWyzovT4vRo6OgUsHO0vYV\neXH2LVvbbGYxa0mc2XaynH3HaBTsEsKoCAlBBAcS51ZgwAALrl4V8NlnKiiVIgYN8k2cDx9WoKFB\ngFrN9uNCzZteVFV5Z+XYWtZvv63B0aNKmM1SrW5Hgd64UYXf/jayWcJ65oyAuDgRHTpI2/R639za\nPPOdL8uimLP/cHRrS12pWmlABNFOIHFuBXgxkrIyBa6/3gKbVtiyeIo5c/f45MmsyMjBg+xr5YU5\n+PG+4rgUa+NGFX74QeWy05YjZjNw7pzCzmoGmFu7oUGAqYWltW07UgEUc/YXoujs1paWUtGND0EE\nEhLnVoCX8QQ8u7QBqb62q7XOPN780EPM18gtZy5aY8e2vKGELY5LsfjNwsWL3l2oS0sFGI3SGmcO\nF9WWurYd64fzmDNVCPMNkwkQRXJrE0RrQOLcCqSnS4LsjTh7cmv/+KMSCQkWDB5sQffuFhw8qIAo\nSqJ1yy1m2QpizcVxKRa/WSgt9U4E5eLNAKxZ1i11bUvVwewtZ1rn7BvcdS3n1iZxJojAQuLcCsTE\nsLrSgHfiLNXXdv66Ll0SUFyswE03WSAIQEaGGWVlCpSUCNaYc0yMaFdB7MCBOqtYK5Xeu7xnz7a/\nIvObhdJS735G3MLu0sX+PbmotlSc+XE85qxWAwqFSG5tH+ECbOvWlixn8koQRCAhcW4l5s1rxOzZ\njejc2bM4KhSua2DzePPgwUzkb7iBif7Bg0qrWzsmxvmcXKxLS2uh04no1s1itazT0sx4+GHjteew\nPl+1SmPN5i4oUFktZ2/d2pcvs/1se1kDtiU8vTqNE44xZ0FgGdvk1vYNLsD2ljN7pIQwgggswVnc\nSjiRm9u8OHBCgojz553vpRzFOSODPR48qLCrN+2O+HgRJhOwY0e902uJiXq8+aZ916ujR5V49FHp\nubfibDCw8Scl2bu1peYXLXVrO3/OqCiynH2FC7BtzJnc2gQRHMhybiN07MgKdThaLD/+qIRSKeKG\nG5goDxzIxVnplCjlirg4920jV61y34vbW7c2t5wTE+Ut55aKs637nhMRQUupfIVbznJFSKi2NkEE\nFhLnNgJfDmVbA9toBP77XwXS0izWpKr4eCAlhSWFyYmWHPHxbClTvbPhDMB1Iw3OxYvedbXyLM6e\nzyGHZDlL2yIiREoI8xH5hDD2SLW1CSKwkDi3EXjGtu1yqkOHFGhsFKwubU5Ghhnl5QocO8Zc3rai\nJYen+tquGmlwGhsFVFa6fw+AiXNMjGjNpubwG4uWlvCUEsLsLWeKOfuGlBAmbePV5sitTRCBhcS5\njcATxz77TG21Uvn6ZkdxHjiQienZswpERYlQecgs4MLvqjOVq0YaAIvtAt65tg0GwSneDPju1uaJ\nZPw8AFtORTFn35ASwsitTRDBhsS5jZCb24TevS147TUNXniBXSEdk8E4PO4MeHZpA57bRubkmOzW\nSaelmfHrX7OENu4KLyhwfwdgMrGlV44ubUCyeFtqObtya5vNArlffUAuIYyKkBBEcCBxbiMkJYko\nKKhHjx4WrFihxcqVGvz4oxIdO1rQs6e94PGMbaB54uwuKcx2nfTs2Ubs3cvFWL5xhmMd7vJyAaIo\nOC2jAmyLkHgcqixy2dpUiMR35NzaCgVbc0+WM0EEFhLnNkRysojCwnqkpFjw179qUVLCekELDtdJ\nnhQGeI43A54rkDniKnvbsSWlrUC7WuPMxui75azRiNZuVIDU/ILizi2HC7BjVzONhixnggg0JM5t\njG7dmAXdrRsT38GD5ZO1uGvbX5azLZ6ytzmzZkVYLenPP2dCLW85s211dS2POTuu5aa2kb4jZznz\n5xQuIIjAQuLcBklJYRb0jBlG5ObKXyV5Upg34hwf7z7m7Iin7G1OY6NgtaRffpkFK+USwnhXLl8q\nhHHXOIeaX/gOF2dny5nc2gQRaEic2yg9eoh47rlGWUsUkOLOgRBnd9nbnpBLCFMqWda3LxXCHC1n\nahvpO1yAHS1nrZbc2gQRaEicw5Thw82YPt2Ie+/17H9srlv7jjtMUKlERESIUKnYP2/Jy9PKJo3p\n9WKLYs4WC1uC5SzO7DlVCWs57tzaVFubIAILiXOYotEAy5c34qabPLugo6KYmHlrOdfVASaTgJEj\nzSgpqcXNNzMrvV8/ttTK0Q1qy9mzStmkMZ2uZdna/BjH5h485uyq6hnhGalCmLNbm7pSEURgIXEm\nAHiur22LwcD241nevEDKunUNKCmpxZo13vuSV69mZpleL7YoIcyxIxWHLGffkWpr228ntzZBBB4S\nZwIAizt7aznzJVdcnLt0YdY5rxImV7QEkLemjxxRoEsXHU6cUKC+XoCpec26XHbeomxt35ESwuy3\nq9UkzgQRaLxqGbls2TIcPHgQgiAgLy8PGRkZ1tcyMzPRuXNnKJWsWtWKFSvQqVMnt8cQoUdcnIif\nfxZgNDpbSo7w+t4dOzJR7tKFCaNt68icHBNyciSl7dxZB4ush12A2Sy5n/PzVbjvPu8Vmmd4O4sz\nZWv7ipQQZj+3Wi2rvmY2s2Q+giD8j0dx3rNnD4qKipCfn4/Tp08jLy8P+fn5dvu89dZbiObrYbw8\nhggteMZ2ZaWATp3cJ3iVlzML2dGtXVoqL4RXrwIWi3ci+ec/R2D+fLZca84co53AyyFXuhNgcXT+\n3kTLcJcQBrCYNJ9ngiD8i0e39q5duzBu3DgAQJ8+fVBVVYVaD5k7LTmGaF24OHtTJYxbznxZFHdr\nX7wo/3PiMeqbbzZZXd2u3NxGo+Cyypgcrt3a3HL2+HEIF8i1jAQkS5pc28D776s91pUniJbgUZzL\nysoQFxdnfR4fHw+DwWC3z+LFizFlyhSsWLECoih6dQwRWjRnORUXZynm7OzWtoWX7rzpJou1Pnf/\n/t4VMuEJY67wHHMmt3ZLkRLCHN3a7JEKkQDPPafFihUe4kAE0QKafcsnivZ/qLNmzcLIkSMRGxuL\nJ554Alu2bPF4jBxxcVFQqfwbwEpM9KKwNAEA6NGDPZrNUUhMtH/NcR7r6tjjdddFIzER6NABEASg\nrEyNxES107m5Bda7twaJiexC9tRTwJQpnsd14oTS7ffIf1rdukXajbtLF/YoCFokJmqdD2wFQun3\n+NRTrFDLwoWu9+E125OTdXZzy5et6fU6p99KMAiVebRYgOpqIDra/W80VGmLYw4UJhPwwAPAtGlA\nVlbzjg3UPHoU56SkJJSVlVmfX758GYk2f5F33HGH9f+jRo3CiRMnPB4jR2WlfxekJibqYTC0sB5k\nO0StVgGIxJkzV2EwSIVL5Obx/PlIsJ9ODbhDJDExGufOAQZDndO5T55UA4hAZGQDDAYWQx47Fli7\nVoXVqzXWWt0mk7MllppqhsHg+rdRWqoBoIXFUg+DQerGdfWqAkA0KiqMMBhav2JGqP0e16zRQacT\n8fDDzt8Xp7o6AoAaNTW1MBikG2yLRQtAg9LSWms/72ARSvNYUwOIoh41NSIMhrYVtguleQwFTpxQ\n4KOPotHU1IQbbvA+UcXXeXQn7B7d2iNGjLBaw4cPH0ZSUhJ01woZ19TU4KGHHoLxWvBp79696Nu3\nr9tjiNDENiHME+XlAqKiRGuJTIC5ti9eFCDnJOExZ8dSo7ZtKO+7T76S2ezZ7gObrtza0jpnt4e3\nS7jF5+m75m5tua5Utq+3V6qr2eevq4Ps755oO/BVH6GUGuXRch40aBDS09ORm5sLQRCwePFiFBQU\nQK/XIysrC6NGjcI999wDrVaLtLQ0ZGdnQxAEp2OI0Ka5CWEdO9pfjTp3FnHwoIArVwCbdAMA7ttF\nckaPNuP994FOnSwoLxeQmmrB7NneZGuzR1cx5/r69i0gcjCLT0B9Pbt5sW21aQsPR7jK1m7vCWH8\nxtBiEdDQQJnrbRn+Xba0vn8g8CrmPH/+fLvn/fr1s/5/2rRpmDZtmsdjiNDG24QwUWQCPmCAfUJX\n585SIZK4OPvXvBFnXuHrwQebMHeu91d9V0upqPGFa6qqBLv/88x2R7j4qh3SCLglbVtfu7YW+Pvf\n1Xj44SaXYh9uVFdL/6+rE4Lu4if8B7+OtLRtbSCgCmEEACnz2pM419Qwd6aj5ewuY/vyZQVUKtF6\nAyAHt3xtm18UFqowenSUbKMMaTzul1JRtrYztuLsriqc0ShAqxWtiWEcObd2fr4aS5ZEYNOm9rOs\nyPa3Wuc6dE+0Afj3F0rfY/v5SyLcEh0NqNUiysoEWCyAwsVtm+MyKo601llOnJmYuzonAGs/Zh7z\nKSxU4ZFHpKA2X/cMNNi5uqurBajVotNaXG450zpnZ3isFACuXHEtzo2N8tXi+FzburWLi9mX620J\n2HDAdh6ZxUWWc1uFLGciZBEEFnc+cECJLl106NNHhxtvjIZjxILHpHnpTo5UJcz+JyWKTNDdubQB\nya3N/0hWrZJfOzprVoSdJX32rIDu3Z2tO4WCuV/JcnbGVpDdeUqMRudkMIDdxAH265x5dThbwQp3\nbD9rKMUqiebDv79Q+rm/2GAAACAASURBVB5JnAkreXmNGD/ehKFDzUhJsaC6WsAHHwAXLkg/2LIy\n+9KdHO7WdizhWVfHkrI8iTN3S/M7V768ypHGRvsKYhUVCvTtK1/QJCKCLGc5bGOl7sS5sVFwazk3\n2STYl5Sw89i6zMMde8u5FQdC+EwoZmuTOBNWpkwx4cMPG/DFFw345pt6zJ/PMn527ZKKw0iWsyu3\ntv1PSkoGc18RjJdm538cqaneVRADgF/9ypU4k+Ush62AVla63s9VExTb2toc7jGxFf5wx/ZCHkru\nUKL5cI9dU5MQMqsQSJwJlwwbxop62Iqz1JHKXpxjYoCoKNHJcr58mf3EPFnOSiU7nv+RzJnj/V9I\n375snI4JZA0NAoqLBbcJZe0RW3F2F3N25daWamvzpUSSx4QsZ6ItYuvODhXrma5WhEsGDLBApwN+\n+MHZcnZ0awsCizs7i7N9kwx36HSi9Y+EJX01WCuIKZWuaznPnRuBv/1NREmJdK959Kh9KVjuBj9+\nvBGbN6uQn9/gsftWuGJvOXtyazvPkVRbmz2WlQloamrfMWeynNs2tuJcVydY6z60JmQ5Ey5RqYAR\nI4CTJ5VWkeXVvhwtZ4CtdS4rU9i5hVxVB5NDr5diP4B9BbE1a1wvWLZYBDthdsff/67GkSNK/Oc/\n7bcRsbfi7Mmtzb9nHm8G2pc42/5WSZzbNrbWcqgkhZE4E24ZNYo97t7NxMyV5QxIGduXLkk/bm8K\nkHB0OtHlRS4nx4S1axusLSfl3K3ewJf6PPWUtt26ub1ZSmWxsPibN25t2xsjcmsTbRHbNeuh4tYm\ncSbcMno0e+Rx57IyATqdKFsFimdsnz8v/ay8TQgDWMZ2fb0Ak4uKnbaWdJN8KW4vYOMpK1N41S86\nHKmqAgRBRHS06NJy5laxN5azbSijPSWEkVs7fLAvKBMa3yWJM+GWwYNZ1jMX5/JyQdZqBoAhQ1hi\n1vvvS/UevU0IA6S1zt5YIT17ep/N7Q5P/aLDkaoqATExzPvhSZwdi7sArt3aSqWIqir55ifhCFUI\nCx/IrU20ObRa4KabzDhyRIHKSibOcvFmABg/3oTrrzejsFCFI0fYT+vyZVa72ZumZHw5le1FzxVZ\nWfLmdbduFqhUItLSzOjTh90sKJUiXFVvcrWe2hXelBQNdaqqBMTGsnKqrtzaPPlOPiHMvggJd2v3\n7m1BU5PQbuqZ19RINelD5YJOtIxQzNYmcSY8MnSoGaIoYOtWFZqaXIuzQsEKmYiigOXLmXllMLAC\nJI4VvOTghUi8udDFx7PH7t3NVjFeu7YB+/fXoaSkFjt21FuXgn33XR3695e3tJVKeC20vKTo0aNK\nu0IobU2guTh36MDCCHJi2ly3tiCI1mIw7SEpTBTZ5+QNX0LFFUo0H5MJaGggtzbRBuEi9+WXTIQS\nEly7lDMzzRgyxITNm9X48UcFDAbBq2VUgG0JT8/7njzJfrqfftpgFWPH9pI8Lt7QILhcN+1Yccyd\n0LoqKdqWXOMmE7v4cMsZkE8K48uk5BLC+DbJra1AYqJovWlrD0lhDQ2AySSgUycRgiCSW7sNwy1l\n7iUicSbaDIMHM+v0m2+YcLmynAG23vkvf2FX7YULI9DUJHiVDAZIbR+9sZxPn1ZAoxGRkuJ6LLwz\nVUMDSybLzTVeG6PrY9wJrSsXeHNd460JT9iKiWGWMyC/nIpnYruvEMbiy6WlApKTRcTGcnH2/7hD\nDR56iY0VERUVOhd0ovnw75KvNgmVG622c1UhWo2oKOCGGyzWGKOrhDDOsGFmjBljwsGDLInMm2Qw\nQLKcPYmzKDLLuXdvC5RulitLPZ3Z+eLi2PMnn3RdfcxRaCsrgVGjovDJJyqXJUWbU2q0teFWcmws\nrIUW5CxnbxLCmppYDkJjo4DkZAtiY9n29uDW5p8xJoZlvVPMue3CvzseogiV75LEmfCKYcMkl7E7\ny5mzcKFUeNlbt7YUc3a/36VLAmprBZc1tTncrc1jqufPsz+6W291sVYLQKdOol3C15o1Ghw7psSK\nFVrMni0v6q62hyJcVHjMGZC3nLlbWy4hjG9rbJSWUSUni9bvr32IM3vU61kiY6hYW0Tz4WE0bjmT\nOBNtCh53BjxbzgCztCdNYouRvbWcpeYX7v84eLzZVTcqTmQke19uOZ8/z1zh6ekWq8vbkQsXFHYJ\nX6++ykzHM2cUSEoS7Qqh8CQ0x1h3cwh29jePB3sSZ2/c2kajYF1G1aWLrVs7NC5ugYS7QrnlTG7t\ntotkOZNbm2iDDBlihkLBfrzeWsJLljQiN7cJEyZ4J17c8vK0lIqLsyfLmbu16+vZY3GxgK5dRSgU\nzBWtVovo318S2q5d3Z/vgQeYKc4LoezYwU7cUnFtjexvW8uZu7XlOlNJCWHOr9nW1ubLqJhbu/1Y\nzvw3qteL1yrbod2s7w43uDjzWvtkORNtipgY1ggD8M5yBoDu3UWsWXPV6wYTUszZ/X6nTnlnOXPr\n+OpVAfX1rCpY9+7smD592Jrcjz6Ssr0vXnT/R1ldbV9VzJW43nhjtFdi3RrZ3zy+bJsQ5i7mLOfW\nVqlYUp3RaO/WjolpPwlh/AZErxcRHQ2IomC9CSTaFvxGKzHRAoUidDLvSZwJr5k714iHHzZay3T6\nG56t7cly5uLcnJjzhQvsGC7OvXqxx19+kf4EvE3s4uLpSlwvXFB4ZQm3RvY3F84OHURrgpw7t7ac\n5SwIbDtza7OxdukiJYS1B7e2lPUOREeH1hIconlwY4DnD5DlTLQ5Jk40YdmyRq8KirQEaZ2zZ3Hu\n3NniseoYjznzvs4A0K0b29anDxPi06elPwFve0gfP86O8VZEXVnC7rK/LQFKAJeyjKXqVu4TwuTP\no1bDznLu3FmynL2p8NbWsc/WZttCxeIimodjiILEmSAcSEpiGb979ypdxu/q6lhilyeXNmC7lAoo\nLra3nLk421rOjp2v1Gr5QfBzeGtpuxJxVzcDN99sRteuOowcGYVZsyLw97+rcfSof/5U5RLC5N3a\nrst3AqwQidHIYs4dO1oQEQEbt3ZoXNwCiW1CmFQTPvw/dzjCv0udjif3tfKArkHiTIQMajVw220m\nFBcrcOiQ/E+Ti6knlzZgW4REsC6j6t6dbevd21mcAfvOV3ffLd/6irv1vbW0XYm4480Az/4+fFgB\ni4XdhHz8sRp/+lMERo+Oxjff+N6D2lacVSpmLfA2mra4SwgDmEXd2CigtFSwzkdkJKBWi+1KnFnM\nOXjifPUqMHt2hMu/D6L52Lq1dbrQucmib5gIKSZNYpndvFSoI94uowIky7mhQbKcu3Vjx3XowMqQ\n2rq1HeHuyl69mHj2729Gx44W/PSTElVVzuLqKtvb3Tpo25uBHTvqMXSoGXv2qDB0qBmnTtXi22/r\nMHMmU8pDh/wnztzKddX8wl1tbb7dYBBQX8+qgwEsFh0bK7aLtpGO65yB4Li19+5VYv16NV57re2U\njA11uBub32g1NAgwmz0cFARInImQYswYEyIjRfzrX+7FuTmW89WrAoqLFVAqRbtktl69RJw7J7js\nDc3d0du2MfH89tt6PPJIExoaBHz6KWuLaSuuBw7UeVwH7Wld88aN7PnkySYolUD//hbcdRc7/tw5\n3+/oq6oEqFRSnNS1OPOEMNdubd4soEsX6bvQ69uHW9uxQhgQHIurvJy9xw8/+H6jRjC4OOt0Uve8\nUHBtkzgTIUV0NBPokyeVsrFab5dRAfYx5/PnmYWnstHCPn0sMJmkZDG59+rSxWLNIgeA3NwmaLUi\nXnhBY02GssXREnYUZk/rmjdsYP/nHgQASElhn/XcOd//XKurmXXLk/pcdabylBBmu71rV0nAY2PF\ndpEQVlPDWqFqNLbZ2oF/Xy7OFy4oXP5uieZRU8OWBkZFSd9lKCSFkTgTIcdvfiPv2hZF4NgxBaKi\nRK+Wc3HLuapKwMWLgtWlzeFxZznXdm0tuwA63gR06iTimWcaUVGhwGOPRXh0f3FLWaUCZs2KkN2H\nZ3Nfvizghx+U+PWvzXafT6djLnjumveFK1cExMRIz111pvLGrc2xtZxjYphF3dgoc1AYUV0tWIvm\nSNZW4C/oBoP0Hrt2kfXsD2pqBERHs5a3obQsjsSZCDmyskxQq51d2//6lwrHjysxYoQZCi9+udxy\n/uUXBURRsCaDceQytjlcsOUs9AcfbMKkSU34/nsVXnzRdezP3lKGtXGII9xDsGmTChaLgMmTnf3s\nKSkiiosFr5ZYuXOdV1cL1kpegOvlVHysrtzatlncPOYMoN1UCauuhvUmJ5jWFrecAWD3bhJnf1Bb\n63yj5akQUjDwSpyXLVuGe+65B7m5ufjvf/8ru8/KlStx//33AwB2796NoUOH4v7778f999+PZ599\n1n8jJsKe2Fhg5EgzDh1SoqiIXYxqa4Enn9RCoxGxZMlVD2dgqNWAQiFaY7WOljMvRCJnOXPBlBNn\nQQBeeukqune3YOVKDb7/Xv4i6apIiSM8m1vOpc1JSbHAaBRw6ZLgVnzduc6vXmXxdzlx9sVyTk6W\n5kgSZ68+epvF9oIeFcW2BdOtrVKJFHf2E7W1UungNmU579mzB0VFRcjPz8fSpUuxdOlSp31OnTqF\nvXv32m0bMmQIPvzwQ3z44YdYtGiR/0ZMtAu4a5snSL3wghYlJQrMnGlEnz7eVSgTBFYlTBTtl1Fx\n5KqEcTxlhXfoALzxRgMEAXj00QiUlTn/MXtbpGT2bCMqKoCdO5W48Uaz0zgBKe68bp3abdzaXUlQ\n27ra0udg/3dcTiW1jHSVECb9nzcMAKQqb+GcFGY0spuc1rigc3EeNsyMkyeVdm5uomXU1gpWi9nb\nEsLBwOPVY9euXRg3bhwAoE+fPqiqqkKtw8iXL1+OP/zhD4EZIdEuGT/eBIVCxJdfqnHkiAJvvqlG\njx6WZrdnjIqShIMXD+HodCxe6k6c3RUa+fWvLVi40IiLFxV4/PEImBwMXlfHarWiUzb35s0qmM0C\nevWy2FnFeXlajB4dhVdeYaL79ttq2XPyuLW7kqDcmvXGcuZubdeWs7QUi1uOtuduDbf2t98qMXt2\nhMvse39hm6kNwKYISWDfF2DiHBcn4pZbWLKDo2tbFIEXX9Rg2zayqr2hsZH91vl3KLm1W/+mx6M4\nl5WVIY4X4QUQHx8Pg8FgfV5QUIAhQ4aga9eudsedOnUKjz76KKZMmYKdO3f6cchEeyAxUcTQoWbs\n3avEE09EwGwWsHz5VWsc2VsibHKwHN3aAEsKu3BBQEOD/faTJxXQ60WP7S5nzjQiK8uEHTtUWLhQ\na1fZzFWRkjVrrjplc2/YwES3oEBtZxW//bYGR48qrdZ/ZaX7etzuSoJKTS+k7VLM2X5/b93atslg\nQOuK87p1aqxfr8aBA4FNpbGtqw143+rUH5SXC0hIsFhbuDq6tnfuVGL5ci2WLHFRPYaww3YZFRBa\nbu1m96YTba4+V65cQUFBAd577z1cunTJur1nz56YOXMmJkyYgOLiYkydOhVfffX/7Z15fFNV2sd/\n92bpXtvShbVQkAItu+JWFmUTxWXQEaoiOq++OALjiooMio6KAy/MgDKfgVHkZRAFZFEcGWHmdVBH\ny2aRpSCMoGVtSaF0o0uSe94/Die5Se5NbtKkCz7fz4dPaZKbe+5Jen/nec6zbIVV7y8dQHJyLMzm\n8K720tISAr+ICEhzzWN+PvDNN0BRkQl33QXk58cGPsgLceMEgP79430qXuXmAl9/DVRWJiAzkz9m\ntwM//ggMHAikpwe+9vXrgSFDgBUrrOjb14qnn+aPT54MnD0LvPYaX6H36QPMnAnk53uuMMrLgS+/\n5AsJ75Qmo+TkSEhLS8BLLwH33uv7/IsvmiBJfDI6dLAiLY3/LWZl8efr66ORluYbTd6hQzxUa3MX\noslFly4mj+9Hx478p6LEIC0ttGsJhN738fx5/vPEiTiMHRuZcwPA8eP8Z0aGBWlpFpfnwG7nv0cK\np5NfY69ewKhRsbBagd273Z8lALzzDv/5/fcmAAl+PwO6P7rd12lp/LNz25jafw9aRGoeA4pzeno6\nysrKXL+fPXsWaZc+8e3bt+P8+fO4//770dDQgOPHj2POnDmYOXMmbr31VgBAZmYmUlNTUVpaik6d\nOumep7w8vP3W0tISYLNVhfU9f4405zwOGSIBiEdsLMOLL9bAZgu+G5bVGgvAhLZtFVRW+vod27Wz\nAIjGtm21yMjgVuwPP0iw2+ORlWWHzWZMLVeskDBmTCymT5fQpk0dRo92YOFCKxYssMLplC69phod\nOzKoHE8AgDVrzLDbY+BwMAChrdinTq2FzebAiBHA0qVmLFpkxZEjMrKz+VbAiBGOS/vSMTCZ6mCz\ncd+vJPE5Pn26ATabO//pxIlYmM0yLl6s9nHXA4DTGQXAijZtPI+TJBOAWJw86T5HOPH3fTxxIg6A\njO3bG3D33ZHL5Sou5tdoNtfDZmuAogCSFI/ycidsttqAx4dKWZkExuKRmGhHVVUdBg6Mwc6dJhw7\nVo2EBJ5muHlzHCSJgTEJn3xSi9tv1+6lTvdHzk8/yQDiYLHw77HDwT/bkhL+2QaisfPoT9gD+n/y\n8vKwZcsWAEBRURHS09MRf8kxP2bMGGzevBlr167F4sWLkZubi5kzZ2LTpk1YtmwZAMBms+HcuXPI\nyMgI+QKInycdOjD84Q91ePfdWo9CF8Eg3NqiG5U3o0c7YTIxLFgQ5bJajxzhHhwjVcgE7dszvPde\nLWJigMcei8att8Zi3rwotG3LXKlRe/dqe4b+9S++RhYBaoHo0EHxW4VMrxCKuq62ICmJ/1SnUtXX\nAwcOyMjNVXTd2sIDoU6jAtyu3qZ2azMGlJbycx48GNn9VnVdbYDnx8bGRt4VKoLBRD/1665zQlEk\n7NrFr/fPf+Yf1rRpXFT0sggIN95u7ZbUxCSgOA8cOBC5ubnIz8/Ha6+9htmzZ2PDhg34xz/+oXvM\n8OHDsWvXLtx3332YMmUKXn75Zb8ubYLQY+JEO4YPD73QrShEIqKdveneXcEjj9jx00+y6+YmqpBl\nZwd33r59FSxZUou6OuC770y46y47tm2rwcSJXJz1mhV8+60JyckMzz1nLNjtt7+t161C5g9tceb/\n//xzsysI7U9/sqChQcLAgfrXL/6c1WlUgDtIqqnFubISrnKihw7JEWu5Kc4FeO7dx8ezJhPn1FS3\nOAN837mkRMK6dWZ066bg2WcbEBPDSJwNINza3tHaLaF8p6E95+nTp3v83rNnT5/XdOzYEStXrgQA\nxMfHY8mSJWEYHkE0DrEfqBUMJnj22Xps2GDGwoVW/PKXdr85zoEYM8aJ99+vhdPJrXKAizagbTmX\nlUkoLpYxfLgDd93lgCTVerikb7jBiW++4aVM4+IYKipkXH11aIuVigr+Uwgo4M6tvnhRCJsJhw7x\ncfoTZ/EemZmelrMQ/qZOpSopcS98qqt5SdbOnUPztgRC3S5SEBcX+fQbb8t50CAnZJmhoMAERQHs\ndgmPPVaP6Gj+3Jdfmi8FkEVmHi4H1O0iAXUTk+a3nIMOCCOI1oSwnPXc2gC3gGbPrse0aTGYPZvn\nU1ssLOSb+4gRnqLWpg1DZiawd68MxuCqaw3AFVk8YAA/Ztw4h64lPHeuFQsWROH4cRldugQv0EIw\nhSsb8F8o5aqr9M8xaZIdGRl88aCmuaK1S0rcN9nqaglFRSZ07mzMoxAs4tqEWxvgUb6lpZGNEhe5\n9MJyTkgAevdWsGePCd9/b0JqqoLx47mXJi+Pi3NBgclVM0Dwwgt8C+ePf4zocFsF6o5UgDrPufnF\nmcp3Epc1Ys9Zz60tuOceB665xoG//c2CvXtldO2qeDTJaCxXXQWUlckuEREUFpouPR9YbDt3blwD\nDO/8XMBfoRSGrl21FycbN5px110xeOaZaNx4o2eFMl6jmLms9KZCzOvQoVyIDh6M3K1Nax7j4hgu\nXkRE3eneljPAi5E0NEioqJDw8MN21/ddLJq8XdvHjklYtsyKVavce/Q/Z6ouxXJ5V3trFUVICKI1\n06GDArOZBXRRSxLwxhv1kGUGp1MKyaXtj6uu4j/37vX8kxPiPGBA4POJymGhto4Uec5ffGFyFTrR\nW4CIRgDeBOqsJUncE9HUlrOwWkV8QiTFWdzQ1eIcH88r0Xnny4cTLXG+9lp+vTExDL/6lTtmYcAA\nJ2JiGL7+2lOc333X7SmhPWl1QBj/3WTihYtaglubxJm4rPnNbxrwxRcXNUtietOnj4IHH+RuQX+V\nwUJh4ED+c98+9w2RMWDPHhM6d1YM7QvqtY5cv96Mvn3j0Latdo9oUYv7iy9MABimTXOLq14zjmHD\ntF3C/sqDChITWTOIMz/fgAFOJCeziEZsu6O13Y81RfML74AwAMjLc6BNGwWPPtqAlBT3a61W4Oqr\nnTh0yOQ6rroa+OADi6skq7dwR4qGBl7itiVWLfOOvAf4Z0lubYKIMHFxwQV2zZpVj6efrsekSeHN\n0dUS52PHJFy4IBlyaQO41I+aobjY/We7caMZjz0Wg5ISGYria8mqLV2eQ61/0zGZGNLS+Fzdd5/2\n9fsrDyq44grWDAFh/Hxt2/L0sh9/lCIWcau35wxENspX7DmnpKjLrwJFRTV44QXfSP+8PP69Eq0l\n162zoKpKwtSpDUhIAL7+umlCjvbtk7FhgwVr10auQEuouKO1PYP7WkK0NokzQahISABmzGjwyd9t\nLBkZvNTlvn3uPznh0vYXFa3GZOK532q3diBL1mhnLABYv77WFVmu52b3Vx5UcMUV3C2oVbwkUpSU\nyDCbGdq0YcjJUcCYhO+/j8ztrbJSgtnMPErJNkWU77lzEhITmU/uuSx7BhkKxL5zQYEJjAHvvmuB\n2czwq1/ZMWQI78bmHQMRCUSdenW7y3Dz0Udm9O8fF/Q+urdbm/+fLGeC+FnRr58TJSWy6wYSrDgD\n3LVts8muvc3Dh/1bskY7YwG8M9WePTIyMxWkpWkvTvTqhasbkgiLsinbRpaWSkhPZ5BlIDdX7DtH\nxo1aVcVd92pBbIqazGVlwaVFqfedv/6aR3TffrsDGRkMN97IX9MU+86iqE8kxfnf/zbh9GkZO3cG\ndz16bu2aGnjUyW8OSJwJoono04dbl6IYSWGhCRYLQ+/ext3uImL7xAn+HnpR6MKSDWbv/LvvZJw/\nL/tdLIwb58DSpbV+K5SJuttNte/MGHdri9aVOTn8miMVFFZZKXnsNwNuyytS7lBF4YunYMQ5Korv\nOx88aMKCBdzc/q//4tsVN93EX2Nk37mqCvj730N3gQvL2bstaTgRwq/Vm90fVVUSZNnTCyKC+y6G\nt6J00JA4E0QT0a8fF729e02oq3OXyIw2Vl8fgLvoh3Bt9+ypLb4PP8wtWT1Lt2NHxSWuU6fyOtSf\nf85vwIEseb3yoAKR6zx+fIyr6ph3kFo4KS8HGhokZGS4FySyzFBUFDlxVkdqA5G3nCsqAKdTQmpq\ncIGKwrX99ddm9OnjxDXX8N/79+fWopF95zlzovDggzEoLAxtPoX35tw5KWLWqBBnUd3PKNXVfCtL\n7QVpKbnOJM4E0UT06ycqhckoKpJht/svkamF6EktgsJ+/JEXTOnZk1uyQqBElS9h6Xbtys+TnKxg\n6dJaFBbWuMT11lu5uB44wI+prpY8ekoHK6ynTvGb2k8/aadbhRtRHUxYzrGxvBXowYOmsIuB08mr\nqandoEDkA8K00qiMIILCAL5gEyJkNvPyn8eOyThzRl+EGAM2b+afW7DCB/Aua2IhabdLEcsfDtVy\nrq6WPILBgKYJ7jMCiTNBNBEZGQzp6Qr27zeFtN8MeKZTHTsm4fBhE4YPd+LLL7kl++23NcjKUrB8\nucXlThw3zoGFC7l1PGmS3cfSFT2dAV5AZN68KN08ZiOIRgzeqNOtRHpXOCxrdaS2IDdXQWWl5Foo\nhAutHGcgfAFhNTXAqlUWn2C6sjL+WQYrzgMGOBEby5CUxHw+97w8/rs/1/b+/TLOnOHnDqX4zdGj\nPItAICLOw43acg5mQVZd7bvQcm9RkOVMED8b+vVTcOqUjK1bjbmQvVG7tT/7jL/HmDHum67VykuR\nOp2Sa58R0G7WIFCX89TrT6MW1kCcPat9UxPuzUCFTIJFBNi1bet2+UZq39mdRuX5eLjc2qtXW/DU\nU9HYtMlzLkK1nKOigP/931qsXFnrsa8KuK1qf0Fh4jsGhCbOYoEYE8PHHYl9Z6fT3VWtokIyvABg\njC+21JHaQNPkrBuBxJkgmpA+ffgN8YsvzLjiCv0SmXqkpzPExDAcPy7js8/MkCSGUaM8LaJbbnHg\nyiud+PRTs6uMplZHKoHoTAXwdpFaBBP13aGD/yA1I4VMgkFUB8vIcF9HTg6f56IifeEpLpYwdmys\nT9U2f2iV7gTclnNj3bZCAL0XFaGKMwDceKPTVUlMTe/eChITGf79b/1F0ZYtZlgsDJLEQqpMJ743\nollLJMT5/HkJjLnf16hru64OcDi03Nr8J7m1CeJnhNh3BrjLUatEpj8kie87Hz3K00YGDXIiPZ35\nvGbCBAfq6yV8/DEv/CBERS3EArPZLTZq17CaYKK+x4/XTnAW6VZ6+cfBLADUCLe2WpxzcwNbzitW\nWLBrlwmrVxsvjqHVkQoIn+UsruXwYc9FhVZ1sMZiMvHa3D/9JGu6/0+dkrB/vwmDBzvRti1rlOUs\nFgeRSKcS7xkby+fG6N64d9MLAQWEEcTPkL593RZMsC5tQWYmw8WLEhRF8nBpq7nnHjskiWHNGi48\nwnL2FhWBEO1f/zpwHnMgxo7lY0pJUXzSrY4elTQLZgCBFwDbtpmwZo3v41p7zh06MCQmMl1xZgzY\ntInPjd4euRZie0DPFdpYcRbBWd75642xnP3hb995yxZuUd98swOZmQpOn5Zg1ygcV14OPPFENE6c\n8L32I0dkxMYyQv5sRQAAIABJREFUVxphJMVZVNozKs4ifoDc2gRBoH175kqHCV2c3SJ2yy3a4ty+\nPcOQIU7s2mVylQkFtN3aAC9x2rGjgkcftQfMY/bGO7hr+3Z+ox850umRblVXBzzySIxHgJCaigrJ\nb4DYs89G44EHuDtSTWkpj1hXl7WUJO7aPnpU1mxGUVgouyzBoiLZsDs6kFu7sa5QEXxVXOyZZyv2\nUcMvzvr7zmK/mYszg6JIOHnS97P75BMLPvjAgrff9tyWcDqBY8dkdO+uuL7zkRRnYZ0bdWuLhZR+\nQFiYBhgiJM4E0YRIEt9/s1gYBg4MrbmGSKfq3t2Jbt30b9b5+dzMWbPG4rL49MR56dJabNlyEbLs\nm8cMQDeyWiu467e/5Ynb3hXCZs+OQlGRCQ880IClS2tde9NXXMF/njol6waIvf++GcXFMux2YOhQ\nzzGIAiTeFnlOjgJFkbBnj6/wfPQRt5p79XLC6ZRc0fPe/P3vZg9B0nNrh8MVKoqp8P9LHhZgpCzn\nnBwFV1zB953V7S6rqrg13aePEx06MNeCUBS/USO2I/71L885LC7mjVW6d3c3donEnrNYuGRnK0hK\nYkFYzu4e4GrIciaInynz5tXjk08uhrx/2K0bv1HqWc2CW291ID6e4cMPLa5oVlG9y5vERGiW7AwU\nWe2vdre6QlhhoYzly63IyXHitdfqMW6cA++9x01aPTe3CBDbuNGMJ590hxr/9JN7DIrCo7XV+82C\n227j8/OnP3mOUVGATZt4QN4zz3B3vZZru6hIxoMPxmDqVHeVGD1xjokBJIk1ytoqL4dHlzC1a/vc\nOQlxccwn4rqxmEzAyJEOHD8u4+WXo1yP/+tfZtjtEm6+mc+hXkc0wC3Ohw+bPBYyYr85Ozuy4qxe\nuHTrpqC4WNv97o3bra290CLLmSB+ZrRtG7rVDACjRjnxxz/W6Vb/EsTGAnfcYcfJkzK++oqLqd6e\nsx6BIqv1g7g8O1N98AG3VF96qd4lMN278z1p4XL3Rry3vzGcOyfB4ZA80qgEeXlOXHutA//4hxnf\nfece586dJpw5I2PsWLurgpZWTWbh1i0oMOPAAX688AZ4u0IlSXQzCl18hEu7Z08+Jm9xDrfVLHjj\njTpkZzuxZIkVb7/NPyfvND3vynRq1N8BUWWOP87ntHt3BYmJvOuZyNcOJ2pxvvJKBQ6HhOLiwJ+D\nOyDM83Hh1ibLmSCIoDCZgPvvt/sEsmgxYQK/uVZXS4iNZbAE2bUvUItIvSAui8VtOdfXczdyRoaC\nYcPc++xWK3DllYpuxLp4b39j0AoGE0gSMH06X8AsWOC2Cj/6iAvInXc6kJrKra3du00ebl3AHRAF\nAMuWeUa9a+WL84YJod/QxbWIORIR24xxAQpnpLaapCTggw9qkZ6uYNasKHz8sRn//KcZ7doprkAu\nPcu5qgo4fVpGVhZ//vPP3YscteUsSbzVZaQt5yuv5OMwsu9Mbm2CIJqNa691um6sevvN/gjUIlLP\nes/IcFvOW7eaUVEh4Ze/dMDkZaD27KnoBoiJCHF/YxAFT7Tc2gAwdKgTgwY5sWWLGfv2yXA4uEu7\nTRsFQ4ZwERw0yImqKs8WkyUlEr77zoTBgx3o0kXB+vUWnD+v3cVIEB/fuDxnYTnn5jqRmqq4LOeq\nKl47PFKWMwB06sTw/vu8UMnkydG4cIG7tMWWg1YvccAtwKNGOZCVpeDLL80ul/J//sPbeHbpwj+/\n1FQW0YCwlBTm2vIxsu8sPiu9VCpyaxMEETFkGZgwgd8tQxHnQC0i9bpUdeyooKqK7++uXcutzvHj\nfTcCe/XiN9MpU+p1I8Qff1x/DKKutqgpLhAR5O3bx6OkhD82f74V33xjQlmZjLFjHTBfMoxFMwi1\na1tUcBszxoGHH25AXZ2E996z6kZrA423nEUaVbt2DD16KK6I7UhFanvTt6+Cd9+tdXky1Gl6Wr3E\nAU8PyogRDlRXS9i1i9c0P3JERteuistbk5LCF2xG9oOD4dw5CUlJ3CsUjOWs59Z2F5Qhy5kgiAgi\nRDGUm7uRFpFaXaquuIJHHP/0k4T/+z8T+vZ1uoRYTa9eXBiTkqAbIT5/Pt9zTkx0u8DvuIPXCNdy\na3sHsZ04wUX3s88smDfP6hqzYNAgPgZ1UJhwaY8e7cC999oRG8uwfDkPrJMk5rqBq4mLE/nnQUyw\nCnEt7dszZGcrrojtSEVqazF8uBNLltRh/Hg7Bg/2TPUTvcTVKV7C9Z6drWD4cD6nn39uQmmphKoq\nHqktEOMXwYnhQt3nOiuLdyQzYjnrubWtVsBq5Z9lcxK5Pm4EQbQIOndmWLas1pWCFSzjxjn85jlr\nISzL5cutcDgk9OzpxLBhsThyREZ2toInn2zAuHEOl2CrXcpCXAVHj7rzpv/0Jxnt2gF1dfzGqSXO\n/iLId+40Iz1dwXXXuYWne3eegiMs55oa4MsvTejVy4kuXfj7Tphgx/LlVpw+zZCQAM19ciHYFy/6\nFrYwwunT/E3btVPQowefl8OHZZfbtU2b0IMIg+HOOx24807fz7tzZwVffQWcPCm7thrc+8pOREUB\nUVEMn39uxtChzkuPu8cs8tDPnZN8qtqFiuhznZXFzxcVxV30xtza2uIsHotUBy2jkOVMED8Dbr/d\ngf79m+bmDrhd6O+/b4EsM6xda9VMx+rUiSEujuHQIfetSE9cd++W0bYt70VdWMi7D2k1vfAXQQ4A\nd9zhufctyzz3vLhYRmmphC+/NKO+3p1GBAAPP8y9D4z59nIWNLZK2JkzvM5zfLy7T/fhwzLOnePX\nE6mAMKNoRWwfPiwjNVVBSgpfnFx3nRMHDphcFcfUlrMQ53AGhYk+12qvwpVXKigrk1115fXQqxAG\n8GshtzZBEJcdQsCqqiTExmq/ZtEiK2SZC9F//iOj4dLWsp64njrFHx840ImyMhknTkgoKZERHc08\n8rf1Asi6dFGQk+PEQw/5bnqKfeddu0zYsoULy+jRbnHOzlZw4438d61gMKDxgUQlJRLatVM8ruHw\nYVOTurX94d1LvLaWC7V6vkeM4HP017/yjWb1c2JxEU5x1qo5LvadA1nPerW1Af5ZUstIgiAuO9TW\npXqPUo0Q4ZwcJxwOd0WsQBHiAwZwId2zx4SSEl6ARF3IRC+I7YUXGrBt20XX+6jLjr73Ht/h27HD\nhK1bzUhNVXxy0R95hL+vnjg3pqdzXR1w/rzscs+npjJXxHZTBYQFwjudivdO9hTn4cNFgwv+GhE9\nDbgt53D2dNbqc200YruqSoLZzBAV5ftcbCyP5g6mN3S4IXEmCCLsCEs2KYl5uDbViJu6cOEK17ae\nuIrHhWju3m3C2bOST6S2kSA276Cx48e5tbxypQVlZTJuvtnhs688cqQT48fbkZ+vvf/eGLe22Dtv\n186tBiJiW3SMan5x9nRra+W6ixrtALe01YFzkXBra3kVjEZsV1fzSG2tCnXx8QwOh+Ty5jQHhsR5\nzpw5mDBhAvLz87Fv3z7N1yxYsAAPPPBAUMcQBHF5kpzMb5a/+IUdTz/tPx1LBIUJcVaLq8nE32fE\nCHdQWp8+Tsgyw9atZiiKpFmARCuCXI3evraI0FXvNwtkGVi8uA4TJ2rnAjWm+YVICRNubQCuiG3R\nSKS5xVndSxzwLDIikCS4ora9F2Vi/OHMdfYnzkbc2oG2KJpz3zmgOO/cuRPFxcVYs2YNXn/9dbz+\n+us+r/nhhx+wa9euoI4hCOLyZfhwB6ZPr8f06Q0BLVm3OLujtIS4vvFGPQDgzjvdghgfz63KH3/k\nt6+2bZlPZyytrlZq/PWOjo5mrmjjYGhMZSmR46xeaIiIbZuN76trpW81JaKXuGh+IYqkiHEKRoxw\naj4eifraWuKckcGDDANZzlVVkusz88ad6xyecYZCQHEuKCjAyJEjAQDdunVDRUUFqr1G/Pvf/x5P\nPfVUUMcQBHH5Eh0NPPdcgytlxp8l26YNQ3q64pFOJRD9mHNyPG/06vaQH3zgvzkH4NvWUsvaFgwd\n6tQNYvOH260d/LHqAiQC4e4H+BzpNQhpSjIzeS30ykq+wElMZD5pUTff7MDcuXWYMsXTY6JOpQoX\nWgFhksSt52PHZDh11liMCbd2oOC+Fmw5l5WVITk52fV7SkoKbDab6/cNGzbgmmuuQYcOHQwfQxAE\noaZXL26RifQWwcGDMkwm5uE63bjRjK+/dgtvVZX2bUzd1cpbvEXktzeDBjnwxBP1hsbsLfgff8zH\n9NRT0YasdzWidKfara22PJs7jUoggsKOHpXx44+yq262GlkGfvUru09J1ehovoAJpzjrBct166ag\nvl67/zTAgxQVRdLNR3d7QcI21KAJuggJU4WvXbhwARs2bMDy5ctRWlpq6Bg9kpNjYTZr91QNlbS0\nhMAvIgJC8xgeaB71ueoq4IsvgJKSBHTtyh9TFODQIaBHD6BTJ/fcLV5srG/ikSMmpKUlYPFi7ecz\nM3llsoMHgZwcYNgwYNs2M+64w4ycHGDmTCA/X/vY1auBRx91/37okMnllmfMbb0nJvp/jzlz+PmF\nSPTuHYe0NP7/tDT+z2YD2rUzhf37E8r75eTwn7t2xcHhAPr1C25caWnAhQvhuxaxmOvZM94j6rpf\nP2DDBqCkJB5XX+17nOOS4yY11aw5lowM/tNicX8eekTq7zqgOKenp6OsrMz1+9mzZ5F2abTbt2/H\n+fPncf/996OhoQHHjx/HnDlz/B6jR3m5Tr5FiKSlJcBmqwr8QsIvNI/hgebRP126mAHE4Jtv6tC9\nO99fLi6WUFUVj5497bDZ6gDweTx4kAEIbH1lZzths13EwYPxmq8/fZph925uGnlXJdu/H7j3XqCy\nslazOtrvfhcLILAx8eqrTowY4Xtv8z6fKJixaVMt7r5bnV8dA5vNjIQE9xyEg1C/j8nJ/HP6+GMn\nABM6daqDzWa8WHZyciwOHpRx9mx1WNz0Z87EIj5eRmWlp4nbt68JQCw+/LAB117r6wnhLSXjYbU2\nwGbzfV6SLACicfJkLWw2/ep4jf279ifsAd3aeXl52LJlCwCgqKgI6enpiL+0zBszZgw2b96MtWvX\nYvHixcjNzcXMmTP9HkMQBOGNdzoVABQVcfHz3m/Wy4P2xkhXK4Fe9Pbjj0e73NYzZ0a53NjqcfpD\nL/BM73xvveX5uHBtN3ektqBzZz6eb7/VDgYLREoKQ329FLaOT+q62mquu4539tq82ay57yzqausF\n2TUmfiBcBLScBw4ciNzcXOTn50OSJMyePRsbNmxAQkICRo0aZfgYgiAIPbKzFURHM6xcaUFUFPDM\nM/WqYDDPu+uTTzZ4WJ2Cjh0VlJTwohhPPNHgsnj1Xi/EG9AX0fp6fhNXu62DvS4tAvXJ9j6+pe05\nizafejnseqgjtrVqWgM8WOvxx6NRVQUsX16na2GLPtei57Qakwm45RYHVq60YscOE264wfM7tGcP\n/yzbt9cev7AlmzMgzNCe8/Tp0z1+79mzp89rOnbsiJUrV+oeQxAEoUdsLLB8eS2efz4af/6zFR9+\naEZSEr955+b6FhkBarFokdXVSEMtxt4YeX12thKS+AZCvQBQo3c+bzEfO9aBLVscHu0bm5OkJF79\nrbJSQmwsQ8eOwS0a1BHboqiJN3/7mxlr1vDyn5s3OzB2rPa1V1UBdrt+n+vbb+fi/MknZg9xZoyX\nFzWbGe66S/u9W0WeM0EQRFMwYoQT//53DX7723pcvCjhhx9MSE5mIRUZCfb1elXJAsNcudsPPcTf\nQ5K0q5IZOZ+3mGdkMKxZU2vYld8UCOu5e3dFszuXPwLlOldXA7NmRcFqZZBlhrlzrbrpUIHKmubl\nOZGUxPDpp2aPNp67d8soKjLhllscPhHlApFK16LznAmCIJqK6GguUNu31+CRRxrwwgv1TZLf610o\nJSrKmEWYk6O4BH/u3HrIMsOgQc6ACwb1+WSZn2vQIAcWLrQaLqTSXKjFOViEkOrV154/PwpnzsiY\nNq0B48c78P33JleKmjeBGoJYLNy1XVIiY/dut9StWMH39R98UD+QrVXkORMEQTQ1bdsyzJlTr9lB\nKlKores33zQWGa22dCWJBxgZvaGL882bx6OFd+0y+y2kEgrBVk4zgnBHBxsMBvivr33okIy//MWC\nzEy+7fDMM/UwmxnmzYtypT6pcYuz/jhuv51/fz75hLvJy8uBjz82o2tXBYMH61eBa0y1t3BB4kwQ\nBOGFVsnRRx5p8NtMA+A39WCtLVEdTAtRSCUUtIqvhEPw+/fnojZoUPAlTvXc2owBM2ZEweGQMGdO\nHWJigM6dGe6/345jx2SsXes7ZiN9rocMcSIhgbu2GQPWrLGgvl7CpEkNfl3y7oCwIC8wjLRMvwlB\nEEQzM26cI+BetjdxcYDNJuH8eeCLL8xYuNAdhPbkk9pBa6IjlRb+aoAHQi9da9EiKyZPDvltMW6c\nAwMGVCMrK/gIcmHlelcJ+/BDMwoKzBgzxo7Ro92i/9RTDVi92oL586Nw990Oj0IjRvpcR0XxcqLr\n1lmwZ4+MFSusiIpiyM/375FJTOR73jYbWc4EQRCtnmHDHKislJCXF6dptQ4YEOfjYj59Wv823JhA\nMKPpWsEiSQhJmAHt+tpOJ/Daa1GIiWF4/XXPgiDt2zM89JAdJ0/KWLXK4vGc0T7Xt93GF0QvvhiN\no0dl3HGHAykp/scZFcVLgBYVmZqtpzOJM0EQRJh4/fV6PPtsvW796FOnZB8Xc0mJhOhobQXQS8Uy\ngpHiK01NUhIgy571tXftMqGkRMbdd9vRqZPvPPzmNw2IjWX44x+tsKsMXiOWMwDcdJMDsbEMu3bx\n1LUHHzQ2p717K6iqklz9q5saEmeCIIgwYTIBzz7rfz9TzaJFVpw5I6NzZ0WzrSaAkAO6jKZrNSWy\nzK1n9Z7zp5/yaxIWrjfp6dwNXVoq46uv3LnhRsU5JgYYPVq0J3Vi0CBjixORX3/gQPjz341A4kwQ\nBBFmjEYyHz4s48IFCW3bMp9cbACNCugK1Ee7uWjTxi3OjHFxTkhgfqOnxZg3bnS7ts+dkwz3uR4/\nnpvcjz7aYDg1r08fPp79+5tHJkmcCYIgwozRoiZZWVzE1X2cBf4CuowSbLGWpiAlhaG8XILTCezb\nJ+PkSRmjRztg9XNZgwY50aEDr5VddynL7dw5yXCf65EjnSgsrMa99xq/fmE5ixrvTQ2JM0EQRJjx\ntlo7dNC2pK+/nltn6j7OgkgFdDU3KSkMjEkoL5eweTP3AuiV6BTIMnDnnQ5UVUn4/HN+jBBno3Ts\naEzIBenpDBkZCg4cIMuZIAjiskFtte7ZU+Mh1m3bcjEWEchaJUpbYkBXOFDnOn/6qRnR0Qw33RTY\noh03jrumP/rIjJoaoLY2OHEOhT59FJw6JeP8+YieRhMSZ4IgiCZALdb79tVg1qx6V3cnLcu5JQZ0\nhQMhqNu3m3DkiAk33eQwtG/ct6+Crl0VbN1qxokTssd7RYrevblnozmCwkicCYIgmoHHH+clKlNS\nFPTt6yvORgK6IlGeM9IIQV25knsNArm0BZIE/OIXdly8KOH99y0e7xUpevcWEdtNL5UkzgRBEM3E\n88834NChGrRvry0y/gK69MpzahU60aM5xF0UItm71wSzmbnSnIwgrv+DD7g4R7rPdXNazi1/mUUQ\nBHEZE2rXLb1o7lOnuM0lxBrQTp8S4i4I9PpwIcQZAAYPdiIpyfixPXoo6NXL6eqFHWnLuUsXhrg4\nRpYzQRAEoY/a0j10yNjtWy/1KhypWqGgtna1XNqBrHn1wiHS4izLQG6uE//5j4za2oieyvfcTXs6\ngiAIIhS83diAMZNbnXolhM9shq64+0vVCocbXFjOksQwZoynOBvppHXnne4anv7aRYaL3r0VOJ0S\nDh9uWrkkcSYIgmgF6Fm6gRCpV57CB+iJu16qVrhaUKamMsTEMFx/vRMZGZ6WrxFrPiuLYcAAp+u9\nIo07KKxp951JnAmCIFoB+hYt81voRKReGRX3igpJ0zIOlxs8OhrYtOkiliyp83nOaOGV116rw/Tp\n9SF3xwqG5irjSeJMEATRCtCzaHNyFM1CJ96pV0bFXatzlr/jA1Us03KF9+unNKrwyqBBCp57znid\n7MbQo4cCk4mR5UwQBEH4YqQoib/Uq0DinpiobYUKyziUimXBusJbYuGV6Gh+jUVFMpQmLM5G4kwQ\nBNEKaGyXqUDCp2cBHzwoo127eFRUaJup/oQzWFd4S+2k1bu3gosXJfz0U9P1dqY8Z4IgiFbCuHGO\nkIWKH1eLRYusOHLEhOxsJ554osH1ftnZiit/2BPeQer0aS5MHTsqKCmRkJ2tuIR52LBYHDkiIztb\nwZNPNgR0pftzhTfmGiNF795OfPihBfv3m9C1a9OMjSxngiCInwnC7W23w8ftbbTNZWIiC9hzWlQp\nM+uYfyYTWlXJ0eYo40niTBAEQfi4lAHtPWi11euvSpnTKaG+XtsNXF8vGU7Hagn1w0UZz/37my4o\njMSZIAiCAOAZUNarV+AAMKO9paOieER4VJT/oDNvwpVb3ViBT04GbrnF3qTtOkmcCYIgCB+MRE4b\nFSu+Z10Nh852rZ7I61nmjz8eHVRzj3AI/IoVdfjd7+qDOqYxkDgTBEEQPhiJnDa6Ty1EPNh0LD3R\nDsYt3lw1xBuLIXGeM2cOJkyYgPz8fOzbt8/jubVr12L8+PHIz8/Hyy+/DMYYduzYgeuuuw4PPPAA\nHnjgAbz66qsRGTxBEAQROfzlTYvn1QIeqEqZnpjrVSUzapn7s6RDLZ6ipjn2vQOeYefOnSguLsaa\nNWtw9OhRzJw5E2vWrAEA1NbW4tNPP8WqVatgsVgwadIk7NmzBwBwzTXX4M0334zs6AmCIIhmxTv1\naeNG86V0LdmVbiWe90znkpGRwXDqlKzb5vLJJxs82lrqIQLPtNpe6qWIiYhx7/Qvb/y11pw82cAE\nhUjApUNBQQFGjhwJAOjWrRsqKipQXV0NAIiJicGKFStgsVhQW1uL6upqpKWlRW60BEEQRIvGiLUt\nng9UlczbMtcLKNM7HtC31o26xpvLLS4xxvxe7Ysvvohhw4a5BPq+++7D66+/jqysLNdr/vKXv+Cv\nf/0rJk2ahMmTJ2PHjh145ZVXkJmZiYqKCkybNg15eXl+B+JwOGE2N23tUoIgCKL5MJtxqUOW7+N2\nu+/jq1cD995r7H3Vx69eDbzxBnDwIH+uzrfnBqKj+TE5OcCNNwLbtvHXa43P3xjDRdCOcy0tnzx5\nMiZNmoT//u//xlVXXYUuXbpg2rRpuOWWW3DixAlMmjQJW7duhdWqv9IoL78Y7FD8kpaWAJutKqzv\n+XOE5jE80DyGB5rH8NBS5jE7O1bT5Zyd7YTN5qsJI0YAS5e63eYmEzRzqb2PHzGC/wO4K1urXaYQ\n7P37+b/AY3cCMDVqHtPSEnSfC+jWTk9PR1lZmev3s2fPulzXFy5cwK5duwAA0dHRGDp0KAoLC5GR\nkYFbb70VkiQhMzMTqampKC0tDfkCCIIgiMuPUBpdqN3ib76pYQIHOD5cucqRbsYRUJzz8vKwZcsW\nAEBRURHS09MRHx8PAHA4HJgxYwZqamoAAPv370dWVhY2bdqEZcuWAQBsNhvOnTuHjIyMSF0DQRAE\n0QppbKOLUI43mv7lC2vSZhwB95wBYP78+di9ezckScLs2bNx8OBBJCQkYNSoUdiwYQNWrVoFs9mM\nHj164JVXXkFNTQ2mT5+OyspK2O12TJs2DcOGDfN7jnC7WFqK26a1Q/MYHmgewwPNY3j4uc+jOqJc\nzzXuTU6O01VPXNDYefTn1jYkzk0BiXPLhOYxPNA8hgeax/BwOc/jxo1mLFxo1eySpfd6I+laWtZy\nJMW55bcDIQiCIAgD+MtJ1hNo79zr7GwFN9zgxDffmDRztZsKEmeCIAjissBfTrI/cW2JPaSptjZB\nEARxWRCOUp0thdY3YoIgCILQINjGGi0ZEmeCIAjisiCUvOmWCokzQRAEcVnQ2LzplgQFhBEEQRCX\nDS0xuCsUyHImCIIgiBYGiTNBEARBtDBInAmCIAiihUHiTBAEQRAtDBJngiAIgmhhkDgTBEEQRAuD\nxJkgCIIgWhgkzgRBEATRwiBxJgiCIIgWhsQYY809CIIgCIIg3JDlTBAEQRAtDBJngiAIgmhhkDgT\nBEEQRAuDxJkgCIIgWhgkzgRBEATRwiBxJgiCIIgWhrm5BxAJ5syZg71790KSJMycORN9+/Zt7iG1\nGubNm4dvv/0WDocDjz76KPr06YPnnnsOTqcTaWlp+J//+R9YrdbmHmaroK6uDrfddhumTJmC66+/\nnuYxBDZt2oR33nkHZrMZjz/+OHr06EHzGCQ1NTV4/vnnUVFRAbvdjqlTpyItLQ0vv/wyAKBHjx54\n5ZVXmneQLZgjR45gypQpeOihhzBx4kScOXNG8zu4adMmrFixArIsY/z48bjnnnsad2J2mbFjxw42\nefJkxhhjP/zwAxs/fnwzj6j1UFBQwB555BHGGGPnz59nw4YNYzNmzGCbN29mjDG2YMECtmrVquYc\nYqviD3/4A7vrrrvY+vXraR5D4Pz582z06NGsqqqKlZaWslmzZtE8hsDKlSvZ/PnzGWOMlZSUsJtv\nvplNnDiR7d27lzHG2NNPP822bdvWnENssdTU1LCJEyeyWbNmsZUrVzLGmOZ3sKamho0ePZpVVlay\n2tpaNnbsWFZeXt6oc192bu2CggKMHDkSANCtWzdUVFSgurq6mUfVOhg0aBAWLVoEAEhMTERtbS12\n7NiBESNGAABuuukmFBQUNOcQWw1Hjx7FDz/8gBtvvBEAaB5DoKCgANdffz3i4+ORnp6OV199leYx\nBJKTk3HhwgUAQGVlJZKSknDq1CmXR5HmUR+r1Yq3334b6enprse0voN79+5Fnz59kJCQgOjoaAwc\nOBCFhYXf0MCAAAADLElEQVSNOvdlJ85lZWVITk52/Z6SkgKbzdaMI2o9mEwmxMbGAgDWrVuHoUOH\nora21uU2bNOmDc2lQebOnYsZM2a4fqd5DJ6TJ0+irq4Ov/71r3HfffehoKCA5jEExo4di9OnT2PU\nqFGYOHEinnvuOSQmJrqep3nUx2w2Izo62uMxre9gWVkZUlJSXK8Jh+5clnvOahhVJw2af/7zn1i3\nbh3effddjB492vU4zaUxPvroI/Tv3x+dOnXSfJ7m0TgXLlzA4sWLcfr0aUyaNMlj7mgejfHxxx+j\nffv2WLZsGb7//ntMnToVCQkJrudpHkNHb+7CMaeXnTinp6ejrKzM9fvZs2eRlpbWjCNqXXz11VdY\nsmQJ3nnnHSQkJCA2NhZ1dXWIjo5GaWmph3uH0Gbbtm04ceIEtm3bhpKSElitVprHEGjTpg0GDBgA\ns9mMzMxMxMXFwWQy0TwGSWFhIQYPHgwA6NmzJ+rr6+FwOFzP0zwGh9bfspbu9O/fv1Hnuezc2nl5\nediyZQsAoKioCOnp6YiPj2/mUbUOqqqqMG/ePCxduhRJSUkAgBtuuME1n1u3bsWQIUOac4itgoUL\nF2L9+vVYu3Yt7rnnHkyZMoXmMQQGDx6M7du3Q1EUlJeX4+LFizSPIdC5c2fs3bsXAHDq1CnExcWh\nW7du2L17NwCax2DR+g7269cP+/fvR2VlJWpqalBYWIirr766Uee5LLtSzZ8/H7t374YkSZg9ezZ6\n9uzZ3ENqFaxZswZvvfUWsrKyXI/9/ve/x6xZs1BfX4/27dvjjTfegMViacZRti7eeustdOjQAYMH\nD8bzzz9P8xgkq1evxrp16wAAjz32GPr06UPzGCQ1NTWYOXMmzp07B4fDgSeeeAJpaWl46aWXoCgK\n+vXrhxdeeKG5h9kiOXDgAObOnYtTp07BbDYjIyMD8+fPx4wZM3y+g5999hmWLVsGSZIwceJE3HHH\nHY0692UpzgRBEATRmrns3NoEQRAE0dohcSYIgiCIFgaJM0EQBEG0MEicCYIgCKKFQeJMEARBEC0M\nEmeCIAiCaGGQOBMEQRBEC4PEmSAIgiBaGP8PRwDnrp0NfOoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "7O3oz_ZgmJ6t", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Thanks to data augmentation and dropout, we are no longer overfitting: the training curves are rather closely tracking the validation \n", + "curves. We are now able to reach an accuracy of 82%, a 15% relative improvement over the non-regularized model.\n", + "\n", + "By leveraging regularization techniques even further and by tuning the network's parameters (such as the number of filters per convolution \n", + "layer, or the number of layers in the network), we may be able to get an even better accuracy, likely up to 86-87%. However, it would prove \n", + "very difficult to go any higher just by training our own convnet from scratch, simply because we have so little data to work with. As a \n", + "next step to improve our accuracy on this problem, we will have to leverage a pre-trained model, which will be the focus of the next two \n", + "sections." + ] + }, + { + "metadata": { + "id": "zOCSA5sYmULk", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# 5.3 - Using a pre-trained convnet\n", + "\n", + "This notebook contains the code sample found in Chapter 5, Section 3 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "----\n", + "\n", + "A common and highly effective approach to deep learning on small image datasets is to leverage a pre-trained network. A pre-trained network \n", + "is simply a saved network previously trained on a large dataset, typically on a large-scale image classification task. If this original \n", + "dataset is large enough and general enough, then the spatial feature hierarchy learned by the pre-trained network can effectively act as a \n", + "generic model of our visual world, and hence its features can prove useful for many different computer vision problems, even though these \n", + "new problems might involve completely different classes from those of the original task. For instance, one might train a network on \n", + "ImageNet (where classes are mostly animals and everyday objects) and then re-purpose this trained network for something as remote as \n", + "identifying furniture items in images. Such portability of learned features across different problems is a key advantage of deep learning \n", + "compared to many older shallow learning approaches, and it makes deep learning very effective for small-data problems.\n", + "\n", + "In our case, we will consider a large convnet trained on the ImageNet dataset (1.4 million labeled images and 1000 different classes). \n", + "ImageNet contains many animal classes, including different species of cats and dogs, and we can thus expect to perform very well on our cat \n", + "vs. dog classification problem.\n", + "\n", + "We will use the VGG16 architecture, developed by Karen Simonyan and Andrew Zisserman in 2014, a simple and widely used convnet architecture \n", + "for ImageNet. Although it is a bit of an older model, far from the current state of the art and somewhat heavier than many other recent \n", + "models, we chose it because its architecture is similar to what you are already familiar with, and easy to understand without introducing \n", + "any new concepts. This may be your first encounter with one of these cutesie model names -- VGG, ResNet, Inception, Inception-ResNet, \n", + "Xception... you will get used to them, as they will come up frequently if you keep doing deep learning for computer vision.\n", + "\n", + "There are two ways to leverage a pre-trained network: *feature extraction* and *fine-tuning*. We will cover both of them. Let's start with \n", + "feature extraction." + ] + }, + { + "metadata": { + "id": "GIHvkuajmULl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Feature extraction\n", + "\n", + "Feature extraction consists of using the representations learned by a previous network to extract interesting features from new samples. \n", + "These features are then run through a new classifier, which is trained from scratch.\n", + "\n", + "As we saw previously, convnets used for image classification comprise two parts: they start with a series of pooling and convolution \n", + "layers, and they end with a densely-connected classifier. The first part is called the \"convolutional base\" of the model. In the case of \n", + "convnets, \"feature extraction\" will simply consist of taking the convolutional base of a previously-trained network, running the new data \n", + "through it, and training a new classifier on top of the output.\n", + "\n", + "![swapping FC classifiers](https://s3.amazonaws.com/book.keras.io/img/ch5/swapping_fc_classifier.png)\n", + "\n", + "Why only reuse the convolutional base? Could we reuse the densely-connected classifier as well? In general, it should be avoided. The \n", + "reason is simply that the representations learned by the convolutional base are likely to be more generic and therefore more reusable: the \n", + "feature maps of a convnet are presence maps of generic concepts over a picture, which is likely to be useful regardless of the computer \n", + "vision problem at hand. On the other end, the representations learned by the classifier will necessarily be very specific to the set of \n", + "classes that the model was trained on -- they will only contain information about the presence probability of this or that class in the \n", + "entire picture. Additionally, representations found in densely-connected layers no longer contain any information about _where_ objects are \n", + "located in the input image: these layers get rid of the notion of space, whereas the object location is still described by convolutional \n", + "feature maps. For problems where object location matters, densely-connected features would be largely useless.\n", + "\n", + "Note that the level of generality (and therefore reusability) of the representations extracted by specific convolution layers depends on \n", + "the depth of the layer in the model. Layers that come earlier in the model extract local, highly generic feature maps (such as visual \n", + "edges, colors, and textures), while layers higher-up extract more abstract concepts (such as \"cat ear\" or \"dog eye\"). So if your new \n", + "dataset differs a lot from the dataset that the original model was trained on, you may be better off using only the first few layers of the \n", + "model to do feature extraction, rather than using the entire convolutional base.\n", + "\n", + "In our case, since the ImageNet class set did contain multiple dog and cat classes, it is likely that it would be beneficial to reuse the \n", + "information contained in the densely-connected layers of the original model. However, we will chose not to, in order to cover the more \n", + "general case where the class set of the new problem does not overlap with the class set of the original model." + ] + }, + { + "metadata": { + "id": "bSOUBkNlmULm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's put this in practice by using the convolutional base of the VGG16 network, trained on ImageNet, to extract interesting features from \n", + "our cat and dog images, and then training a cat vs. dog classifier on top of these features.\n", + "\n", + "The VGG16 model, among others, comes pre-packaged with Keras. You can import it from the `keras.applications` module. Here's the list of \n", + "image classification models (all pre-trained on the ImageNet dataset) that are available as part of `keras.applications`:\n", + "\n", + "* Xception\n", + "* InceptionV3\n", + "* ResNet50\n", + "* VGG16\n", + "* VGG19\n", + "* MobileNet\n", + "\n", + "Let's instantiate the VGG16 model:" + ] + }, + { + "metadata": { + "id": "PpD9N4PvmULn", + "colab_type": "code", + "outputId": "741c17b4-d717-408c-f73e-8cd33e52102f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 72 + } + }, + "cell_type": "code", + "source": [ + "from keras.applications import VGG16\n", + "\n", + "conv_base = VGG16(weights='imagenet',\n", + " include_top=False,\n", + " input_shape=(150, 150, 3))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "58892288/58889256 [==============================] - 1s 0us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "sZzkn6uumULp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We passed three arguments to the constructor:\n", + "\n", + "* `weights`, to specify which weight checkpoint to initialize the model from\n", + "* `include_top`, which refers to including or not the densely-connected classifier on top of the network. By default, this \n", + "densely-connected classifier would correspond to the 1000 classes from ImageNet. Since we intend to use our own densely-connected \n", + "classifier (with only two classes, cat and dog), we don't need to include it.\n", + "* `input_shape`, the shape of the image tensors that we will feed to the network. This argument is purely optional: if we don't pass it, \n", + "then the network will be able to process inputs of any size.\n", + "\n", + "Here's the detail of the architecture of the VGG16 convolutional base: it's very similar to the simple convnets that you are already \n", + "familiar with." + ] + }, + { + "metadata": { + "id": "3-5BqxxkmULq", + "colab_type": "code", + "outputId": "3a55dfff-2156-42b6-fe2c-28b7c291dde6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 795 + } + }, + "cell_type": "code", + "source": [ + "conv_base.summary()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 150, 150, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 150, 150, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 150, 150, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 75, 75, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 75, 75, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 75, 75, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 37, 37, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 37, 37, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 37, 37, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 37, 37, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 18, 18, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 18, 18, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 18, 18, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 18, 18, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 9, 9, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 9, 9, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 9, 9, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 9, 9, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 4, 4, 512) 0 \n", + "=================================================================\n", + "Total params: 14,714,688\n", + "Trainable params: 14,714,688\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "q-qIZx1LmULu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The final feature map has shape `(4, 4, 512)`. That's the feature on top of which we will stick a densely-connected classifier.\n", + "\n", + "At this point, there are two ways we could proceed: \n", + "\n", + "* Running the convolutional base over our dataset, recording its output to a Numpy array on disk, then using this data as input to a \n", + "standalone densely-connected classifier similar to those you have seen in the first chapters of this book. This solution is very fast and \n", + "cheap to run, because it only requires running the convolutional base once for every input image, and the convolutional base is by far the \n", + "most expensive part of the pipeline. However, for the exact same reason, this technique would not allow us to leverage data augmentation at \n", + "all.\n", + "* Extending the model we have (`conv_base`) by adding `Dense` layers on top, and running the whole thing end-to-end on the input data. This \n", + "allows us to use data augmentation, because every input image is going through the convolutional base every time it is seen by the model. \n", + "However, for this same reason, this technique is far more expensive than the first one.\n", + "\n", + "We will cover both techniques. Let's walk through the code required to set-up the first one: recording the output of `conv_base` on our \n", + "data and using these outputs as inputs to a new model.\n", + "\n", + "We will start by simply running instances of the previously-introduced `ImageDataGenerator` to extract images as Numpy arrays as well as \n", + "their labels. We will extract features from these images simply by calling the `predict` method of the `conv_base` model." + ] + }, + { + "metadata": { + "id": "ADVhSEZ-mULv", + "colab_type": "code", + "outputId": "81b4603e-8c1c-496a-d3e8-9ca795f1ebf9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + } + }, + "cell_type": "code", + "source": [ + "import os\n", + "import numpy as np\n", + "from keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "base_dir = 'data'\n", + "\n", + "train_dir = os.path.join(base_dir, 'train')\n", + "validation_dir = os.path.join(base_dir, 'validation')\n", + "test_dir = os.path.join(base_dir, 'test')\n", + "\n", + "datagen = ImageDataGenerator(rescale=1./255)\n", + "batch_size = 20\n", + "\n", + "def extract_features(directory, sample_count):\n", + " features = np.zeros(shape=(sample_count, 4, 4, 512))\n", + " labels = np.zeros(shape=(sample_count))\n", + " generator = datagen.flow_from_directory(\n", + " directory,\n", + " target_size=(150, 150),\n", + " batch_size=batch_size,\n", + " class_mode='binary')\n", + " i = 0\n", + " for inputs_batch, labels_batch in generator:\n", + " features_batch = conv_base.predict(inputs_batch)\n", + " features[i * batch_size : (i + 1) * batch_size] = features_batch\n", + " labels[i * batch_size : (i + 1) * batch_size] = labels_batch\n", + " i += 1\n", + " if i * batch_size >= sample_count:\n", + " # Note that since generators yield data indefinitely in a loop,\n", + " # we must `break` after every image has been seen once.\n", + " break\n", + " return features, labels\n", + "\n", + "train_features, train_labels = extract_features(train_dir, 2000)\n", + "validation_features, validation_labels = extract_features(validation_dir, 1000)\n", + "test_features, test_labels = extract_features(test_dir, 1000)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 2000 images belonging to 2 classes.\n", + "Found 1000 images belonging to 2 classes.\n", + "Found 1000 images belonging to 2 classes.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "F7KI4GqOmULy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The extracted features are currently of shape `(samples, 4, 4, 512)`. We will feed them to a densely-connected classifier, so first we must \n", + "flatten them to `(samples, 8192)`:" + ] + }, + { + "metadata": { + "id": "NU_RAenPmULy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_features = np.reshape(train_features, (2000, 4 * 4 * 512))\n", + "validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))\n", + "test_features = np.reshape(test_features, (1000, 4 * 4 * 512))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "OoGRd-ibmUL0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "At this point, we can define our densely-connected classifier (note the use of dropout for regularization), and train it on the data and \n", + "labels that we just recorded:" + ] + }, + { + "metadata": { + "id": "lnFUBQP6mUL1", + "colab_type": "code", + "outputId": "feb7c539-585d-4ad8-9fd4-ad3ef7d5761c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1071 + } + }, + "cell_type": "code", + "source": [ + "from keras import models\n", + "from keras import layers\n", + "from keras import optimizers\n", + "\n", + "model = models.Sequential()\n", + "model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(optimizer=optimizers.RMSprop(lr=2e-5),\n", + " loss='binary_crossentropy',\n", + " metrics=['acc'])\n", + "\n", + "history = model.fit(train_features, train_labels,\n", + " epochs=30,\n", + " batch_size=20,\n", + " validation_data=(validation_features, validation_labels))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Train on 2000 samples, validate on 1000 samples\n", + "Epoch 1/30\n", + "2000/2000 [==============================] - 1s 693us/step - loss: 0.5836 - acc: 0.6865 - val_loss: 0.4429 - val_acc: 0.8400\n", + "Epoch 2/30\n", + "2000/2000 [==============================] - 1s 490us/step - loss: 0.4257 - acc: 0.8040 - val_loss: 0.3769 - val_acc: 0.8300\n", + "Epoch 3/30\n", + "2000/2000 [==============================] - 1s 506us/step - loss: 0.3573 - acc: 0.8500 - val_loss: 0.3211 - val_acc: 0.8780\n", + "Epoch 4/30\n", + "2000/2000 [==============================] - 1s 515us/step - loss: 0.3125 - acc: 0.8765 - val_loss: 0.3038 - val_acc: 0.8710\n", + "Epoch 5/30\n", + "2000/2000 [==============================] - 1s 519us/step - loss: 0.2865 - acc: 0.8825 - val_loss: 0.2827 - val_acc: 0.8920\n", + "Epoch 6/30\n", + "2000/2000 [==============================] - 1s 525us/step - loss: 0.2623 - acc: 0.8950 - val_loss: 0.2745 - val_acc: 0.8880\n", + "Epoch 7/30\n", + "2000/2000 [==============================] - 1s 521us/step - loss: 0.2480 - acc: 0.8975 - val_loss: 0.2620 - val_acc: 0.8990\n", + "Epoch 8/30\n", + "2000/2000 [==============================] - 1s 520us/step - loss: 0.2268 - acc: 0.9150 - val_loss: 0.2589 - val_acc: 0.8960\n", + "Epoch 9/30\n", + "2000/2000 [==============================] - 1s 534us/step - loss: 0.2202 - acc: 0.9180 - val_loss: 0.2521 - val_acc: 0.8990\n", + "Epoch 10/30\n", + "2000/2000 [==============================] - 1s 510us/step - loss: 0.2118 - acc: 0.9185 - val_loss: 0.2558 - val_acc: 0.8890\n", + "Epoch 11/30\n", + "2000/2000 [==============================] - 1s 524us/step - loss: 0.2071 - acc: 0.9210 - val_loss: 0.2452 - val_acc: 0.9080\n", + "Epoch 12/30\n", + "2000/2000 [==============================] - 1s 513us/step - loss: 0.1911 - acc: 0.9275 - val_loss: 0.2427 - val_acc: 0.9060\n", + "Epoch 13/30\n", + "2000/2000 [==============================] - 1s 523us/step - loss: 0.1787 - acc: 0.9415 - val_loss: 0.2442 - val_acc: 0.8970\n", + "Epoch 14/30\n", + "2000/2000 [==============================] - 1s 523us/step - loss: 0.1723 - acc: 0.9355 - val_loss: 0.2394 - val_acc: 0.9040\n", + "Epoch 15/30\n", + "2000/2000 [==============================] - 1s 523us/step - loss: 0.1615 - acc: 0.9445 - val_loss: 0.2390 - val_acc: 0.9030\n", + "Epoch 16/30\n", + "2000/2000 [==============================] - 1s 527us/step - loss: 0.1534 - acc: 0.9495 - val_loss: 0.2370 - val_acc: 0.9020\n", + "Epoch 17/30\n", + "2000/2000 [==============================] - 1s 515us/step - loss: 0.1497 - acc: 0.9485 - val_loss: 0.2492 - val_acc: 0.8950\n", + "Epoch 18/30\n", + "2000/2000 [==============================] - 1s 519us/step - loss: 0.1472 - acc: 0.9430 - val_loss: 0.2453 - val_acc: 0.8980\n", + "Epoch 19/30\n", + "2000/2000 [==============================] - 1s 523us/step - loss: 0.1379 - acc: 0.9495 - val_loss: 0.2349 - val_acc: 0.9010\n", + "Epoch 20/30\n", + "2000/2000 [==============================] - 1s 519us/step - loss: 0.1317 - acc: 0.9585 - val_loss: 0.2352 - val_acc: 0.9040\n", + "Epoch 21/30\n", + "2000/2000 [==============================] - 1s 523us/step - loss: 0.1255 - acc: 0.9575 - val_loss: 0.2363 - val_acc: 0.9030\n", + "Epoch 22/30\n", + "2000/2000 [==============================] - 1s 511us/step - loss: 0.1246 - acc: 0.9575 - val_loss: 0.2374 - val_acc: 0.9030\n", + "Epoch 23/30\n", + "2000/2000 [==============================] - 1s 521us/step - loss: 0.1146 - acc: 0.9610 - val_loss: 0.2379 - val_acc: 0.9050\n", + "Epoch 24/30\n", + "2000/2000 [==============================] - 1s 519us/step - loss: 0.1113 - acc: 0.9625 - val_loss: 0.2355 - val_acc: 0.9020\n", + "Epoch 25/30\n", + "2000/2000 [==============================] - 1s 514us/step - loss: 0.1097 - acc: 0.9650 - val_loss: 0.2407 - val_acc: 0.9020\n", + "Epoch 26/30\n", + "2000/2000 [==============================] - 1s 523us/step - loss: 0.1052 - acc: 0.9685 - val_loss: 0.2373 - val_acc: 0.9040\n", + "Epoch 27/30\n", + "2000/2000 [==============================] - 1s 522us/step - loss: 0.1040 - acc: 0.9695 - val_loss: 0.2466 - val_acc: 0.9010\n", + "Epoch 28/30\n", + "2000/2000 [==============================] - 1s 516us/step - loss: 0.0978 - acc: 0.9690 - val_loss: 0.2496 - val_acc: 0.9010\n", + "Epoch 29/30\n", + "2000/2000 [==============================] - 1s 516us/step - loss: 0.0967 - acc: 0.9670 - val_loss: 0.2444 - val_acc: 0.9040\n", + "Epoch 30/30\n", + "2000/2000 [==============================] - 1s 514us/step - loss: 0.0906 - acc: 0.9725 - val_loss: 0.2421 - val_acc: 0.9030\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "RUOHKNEWmUL4", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Training is very fast, since we only have to deal with two `Dense` layers -- an epoch takes less than one second even on CPU.\n", + "\n", + "Let's take a look at the loss and accuracy curves during training:" + ] + }, + { + "metadata": { + "id": "vggI9OOhmUL5", + "colab_type": "code", + "outputId": "40a959db-c855-4cfc-f1d0-439c0093a94c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8FHX+x/HXlhRCEkggQapojkiT\n9uOUphFIpIl32A4bKAhKOUFRwagHFooKSvFUpNgQzalExdOEbkWQeoQimjuK1IQekpBs+f2xZCFm\n0zZt2LyfjwcPspOdme98Msl75zvfmTE5nU4nIiIiYhjmqm6AiIiI5KdwFhERMRiFs4iIiMEonEVE\nRAxG4SwiImIwCmcRERGDUTjLJWPixIn07t2b3r1706pVK7p37+5+nZGRUapl9e7dm/T09CLfM2PG\nDD788MOyNLnc3XfffSxZsqRclnXVVVdx+PBhli9fzpNPPlmm9f3rX/9yf12S2opI0axV3QCRknr2\n2WfdX/fo0YOXXnqJjh07erWspKSkYt8zbtw4r5Z9qYmLiyMuLs7r+dPS0pg/fz533HEHULLaikjR\ndOQsPuPee+/l1VdfpU+fPmzatIn09HSGDh1K79696dGjB2+//bb7vXlHjevWreNvf/sbM2bMoE+f\nPvTo0YP169cDMGHCBF5//XXA9WHgo48+4rbbbqNbt25MmzbNvaw333yTzp07c+utt/LBBx/Qo0cP\nj+37+OOP6dOnDzfeeCN33303Bw4cAGDJkiU8/PDDxMfH06tXL/r27cuvv/4KwP79+7n99tuJjY1l\n3Lhx2O32Asv95ptv6N+/f75pf/nLX/j222+LrEGeJUuWcN999xW7vpUrV9K/f3969erFLbfcws6d\nOwEYOHAgBw8epHfv3uTk5LhrC/Dee+/Rt29fevfuzYgRIzh+/Li7trNnz+b++++ne/fu3H///WRl\nZRVoW1ZWFmPHjqVXr1706NGDF1980f29/fv3c/fddxMXF8ett97K9u3bi5zeo0cPNmzY4J4/7/Xv\nv/9Ot27dmDJlCvfcc0+R2wrw1ltv0bNnT3r16sXUqVOx2+107dqVbdu2ud+zaNEiRo4cWWB7REpK\n4Sw+JSUlhX//+9906NCBN954g0aNGpGUlMS7777LjBkzOHToUIF5duzYQdu2bfn666+56667eOON\nNzwu++effyYhIYFPP/2URYsWcfjwYX799Vfmz5/P559/zuLFiws9ajx27BjPPfccb7/9NsuWLaNJ\nkybu4Af49ttvueuuu0hOTubaa6/l3XffBWD69Ol07tyZFStWMHjwYDZt2lRg2Z07d+bw4cPs378f\ncIXT4cOH6dKlS4lrkKew9dlsNiZMmMDzzz9PcnJyvqCcMmUK9evXJykpCX9/f/eytmzZwoIFC3j/\n/fdJSkqiQYMGzJgxw/39pKQkXn31VZYvX87x48dZvnx5gfZ8+OGHnD17lqSkJBITE1myZIk7YJ95\n5hn69evH8uXLGTFiBE888USR04ty8uRJWrRowaJFi4rc1g0bNvDJJ5/w+eefs3TpUjZu3MiyZcvo\n06cPX375pXt5y5cvp1+/fsWuV6QwCmfxKTExMZjNrt366aef5plnngGgcePGRERE8PvvvxeYp2bN\nmsTGxgLQqlUrDh486HHZ/fv3x2KxUK9ePerUqcOhQ4f4+eefueaaa4iMjCQgIIBbb73V47x16tRh\n48aNXHbZZQB07NjRHaYAUVFRtG7dGoCWLVu6A3TDhg307dsXgDZt2nDllVcWWLa/vz/du3dn1apV\nAKxYsYLY2FisVmuJa5CnsPVZrVZ+/PFH2rVr57H9nqxZs4ZevXpRp04dAG6//XZ++OEH9/djYmKo\nXbs2VquV6Ohojx8ahgwZwuuvv47JZKJWrVo0a9aM33//nXPnzrFu3TpuuukmAHr27Mm//vWvQqcX\nJzc31921X9S2fvvtt8TExBAcHIy/vz/vv/8+N954I/369eOrr77C4XBw8uRJUlJS6N69e7HrFSmM\nzjmLT6lVq5b7623btrmPFM1mM2lpaTgcjgLzhISEuL82m80e3wMQHBzs/tpisWC32zl9+nS+ddar\nV8/jvHa7ndmzZ7Nq1Srsdjtnz57liiuu8NiGvGUDnDp1Kt96Q0NDPS6/V69evPfeewwePJgVK1a4\nu1RLWoM8Ra3v/fffJzExkZycHHJycjCZTIUuB+D48eNERkbmW9axY8eK3eaL7dmzh2nTpvHf//4X\ns9nM4cOHueWWWzh58iQOh8O9DJPJRM2aNTly5IjH6cWxWCz5truwbT1x4kS+bapRowYA7du3x8/P\nj/Xr13P48GG6detGUFBQsesVKYyOnMVnPf744/Tq1Yvk5GSSkpIICwsr93UEBweTmZnpfn306FGP\n7/vqq69YtWoVixYtIjk5mYcffrhEyw8NDc03Ej3vnO0fXXfddezatYs9e/awZ88eOnXqBJS+BoWt\nb9OmTcybN4833niD5ORkXnjhhWLbXrduXU6ePOl+ffLkSerWrVvsfBd77rnnaNasGV9//TVJSUk0\nb94cgLCwMEwmEydOnADA6XSyd+/eQqc7nc4CH7xOnTrlcZ1FbWtYWJh72eAK67zX/fr1IykpiaSk\nJHfvg4i3FM7is44dO0br1q0xmUwkJiaSlZWVL0jLQ5s2bVi3bh3Hjx8nJyeHzz77rNC2NGzYkPDw\ncE6cOMHXX3/N2bNni11+u3bt3OdiN23axL59+zy+z9/fn27duvHyyy/Ts2dPLBaLe72lqUFh6zt+\n/Dh16tShQYMGZGVlkZiYSGZmJk6nE6vVSmZmJjabLd+ybrjhBpYvX+4Or48++oiYmJhit/lix44d\no0WLFlgsFn744Qf27t1LZmYm/v7+dO3alcTERAC+++47hg8fXuh0k8lEREQEu3btAlwfls6dO+dx\nnUVta48ePVi1ahWnTp3CZrMxatQovv/+ewBuuukmVqxYwebNm0u9nSJ/pHAWnzVmzBhGjRpF//79\nyczM5G9/+xvPPPNMoQHnjTZt2jBgwAAGDBjAoEGDCj3PeNNNN3Hy5Eni4uIYN24cY8eO5fDhw/lG\nfXvy+OOPs3r1amJjY/nggw/o0qVLoe/t1asXK1asoE+fPu5ppa1BYeu77rrriIyMJDY2liFDhjB4\n8GBCQkJ4+OGHueqqq6hVqxZdu3bNd76+TZs2DB8+nLvvvpvevXtz5swZHnnkkSK3949GjBjBiy++\nyE033cT69esZPXo0c+bMYePGjUyePJnVq1fTs2dPZs6cyfTp0wEKnT5y5EjeeecdbrrpJlJTU/nT\nn/7kcZ1FbWu7du0YOnQof/3rX+nXrx8tW7Z0n9++6qqrqF27Nt26dSMwMLBU2ynyRyY9z1mkbJxO\np/uc5Jo1a5g5c2ahR9Di24YNG8Y999yjI2cpMx05i5TB8ePH6dSpEwcOHMDpdPL111+7R/lK9bJx\n40YOHDjAddddV9VNER+g0doiZRAeHs7YsWO57777MJlMXHnllSW6rlZ8y5NPPsmmTZt4+eWX3Zfy\niZSFurVFREQMRh/xREREDEbhLCIiYjCGOeeclnamXJcXFhbEiRPle02rL1BdPFNdPFNdPFNdPFNd\nPCusLhERIR7e7eKzR85Wq6Wqm2BIqotnqotnqotnqotnqotn3tTFZ8NZRETkUqVwFhERMRiFs4iI\niMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgYjGFuQmJEc+a8yi+/7OT48WNkZ2fToEFDQkNrMWXK\ny8XO+9VXS6lZM5iYGM/P9501awa33z6QBg0alnezRUTkEmeYB1+Uxx3CEhOtzJzpz+7dZlq2NDF6\ndBYDBtjKvNyvvlrKf/+byujRY8u8rKoWERFS7ndj8wWqi2eqi2eqi2e+WpeLsyU62sHYsTmlypbC\n6lLUHcJ85sg5MdHKgw/WcL/eto3zr8snoC+2adMGPvpoEZmZmYwe/QibN29kzZqVOBwOOnfuypAh\nw1mwYC61a9fmiiuiWLLkX5hMZvbu/R833NCTIUOGM3r0cB599AlWr17J2bMZ7Nu3lwMHfufhh8fR\nuXNXFi16hxUrltGgQUNsNhsDB95Nhw4d3W34+ed1zJ//Jn5+foSEhPDcc9Pw8/Nj5szp7NiRgsVi\n4fHHn+TKK/+Ub9qUKS8QFla/XOshIuKr/pgtO3daKixbLuYz4Txzpr/H6bNm+VdIAVNTf+PDD5fg\n7+/P5s0bef31+ZjNZu644y/87W935Xvvjh3bWbz4UxwOB7ff3p8hQ4bn+/7Ro0eYPn02P/30I59/\n/imtWrVmyZKP+fDDTzl79iwDB97CwIF355vnzJkzTJz4Ag0aNOT55//BunVrCQgI4OjRI7z11jts\n2bKJlSuXc+zYsXzTvvrqK+6+e2i510NExBdVdrbk8Zlw3r3b89i2wqaX1Z/+1Ax/f9cPLTAwkNGj\nh2OxWDh58iSnT5/O996rrmpOYGBgoctq06YdAJGRkWRkZPD77/u58sooAgICCQgIpEWLVgXmqV27\nNi+++AJ2u52DBw/wf//3Z06cOM7VV7cFoF27DrRr14EPPng337S4uBif7HYSkUtPWbuLK0NlZ0se\nnxmtHR3tKNX0svLz8wPg8OFDJCR8wIwZc3jttbe47LLLCrzXYin6pucXf9/pdOJ0gtl84UdjMhWc\nZ+rU53nkkSd47bW36NbtegDMZgtOZ/7t9TRNRKQ8JSZaiYkJwmqFmJggEhOLP+7L6y7eudOC3W5y\ndxeXdN6YmCDq1w8u8fq8VdnZksdnwnns2ByP08eM8Ty9vJw8eZKwsDCCgoL45ZddHD58mNzc3DIt\ns379+vz3v6nYbDZOnDjBrl07C7zn7NkM6tW7jDNnzrBp00Zyc3Np0aIlmzZtAGD37l3MmPFigWnP\nPvtsmdomInKx/CFLiUO2qO7ikq+vdKHujarKFp8J5wEDbMydm0XLlnasVidt2sDcuRV7wh6gWbNo\natQIYsSIIaxcuYy//OUWZsx4sUzLDA+vQ1xcb4YNG8SsWdNp2bJVgaPvW265nREjhvLSS5O5++5B\nLFr0Do0aNeHyy69g5MgHmDlzOn/96620a9ch37SBAweWqW0iIhfzNmS97S72dn3g3RH3H7OlZUt7\npWSLT11KdbFLfUj/V18tJS6uNxaLhUGDBvLKK3OIjKxX5uVe6nWpKKqLZ6qLZ6rLBfXrB2O3Fzz3\nZrU6OXgwo9D5YmKC2Lmz4Cm/li3trFmTWe7r++Oo6zyVEbTeXErlM0fOvubYsWMMHz6Yhx4awo03\n9i6XYBYRKYo3R5benpP1trvY2/WV5Yi7KvjMaG1fc++993HvvfdVdTNEpJrw9nresWNzPB6RFhey\nrmVmMWvWhdHaY8YUP1rb2/VV1ahrbxmzVSIi4jVvjoC9PbLMf06WUp2THTDAxpo1mRw8mMGaNZkl\nnsebc8BVNeraWzpyFhExKG+uA/b2CLgsR5YDBtgYMMB2/txq4eeLy0ve+krD2yPuqqIjZxERA/L2\nkiFvj4AvtSPL0qqqUdfeUjiLiBhQZV+iVFXX81Ymb7rRq4rCuQgPPnh/gRuAvPnma3z44SKP79+0\naQNPP/0EABMmPFrg+59+msCCBXMLXd9vv/3Kvn17AZg48UnOncv2tukiUoTKvMOUt7wNWW+PgC+1\nI0tfp3AuQlxcL1atWp5v2po1q4iNvbHYeadNe6XU6/vmm1Xs378PgGefnUpAQOH34xYR75THbSNL\nc5vKi+cz8iVKcGkdWfo6431cNJCePW9kxIihjBz5MAC7du0kIiKCiIhIj49svFi/fj35979XsmHD\nembPnkF4eB3q1KnrfgTk5MmTSEs7SlZWFkOGDOeyy+rz+edL+OabVYSFhfGPfzzJe+8lkJFxhqlT\nnyM3Nxez2cyECc9gMpmYPHkSDRo05LfffiU6+iomTHgm3/qXLfuaTz5JwGIx07RpFOPHP4XNZmPc\nuHHs3bsPf/8Ann76WcLCwnnhhYkcOXLIPS0iIrLSaixS2bx9ypC3A60ulUuUxFgumXCeNCmApUtL\n3lyzGRyOmkW+p39/G5MmnSv0+2Fh4TRo0JAdO1Jo2bI1q1YtJy6uN+D5kY1BQUEFljF37ms888zz\nNGsWzWOPPUyDBg05c+Y011zTiT59buLAgd955pkJLFy4iGuv7cwNN/SkZcvW7vnnz3+Tm276Cz17\n3sjq1StYuPAthg59kF9+2cmzz04hLCycAQP6cubMGUJCLtxtJisrixkz5hASEsKoUcNITf2NHTtS\nqFu3LhMmTGLFimS+//5brFYrderUYdKkye5pAwbcVuI6i1xqKuK2kUUFn7fzlSVkvRnNLMZyyYRz\nVYmL683Klctp2bI1P/zwLW+8sRDw/MhGT+F86NAhmjWLBlyPbDx37hwhIaHs3LmdL75Ygslk5vTp\nU4Wu/5dfdvLQQ6MB6NChI++8Mx+Ahg0bU6dOXQDq1o3g7NmMfOEcGhrKk0+OA2Dv3v9x6tRJfvll\nFz16uJ5gFRvbC4Dp06fRseOf800T8WXR0Q6Pt40srrvY21Avj0uUpPq5ZMJ50qRzRR7l/pHreruz\nZV5vTEx33ntvIXFxvWjcuAmhoaGA65GNL788k6ZNr+CVVwp/0MXFj37Mu4358uVJnD59mn/+cz6n\nT5/mgQfuLaIFJvd8ubk2TCbX8v74IIyLb5Gem5vLK6+8xDvvLKZOnbo88cTY8/OYcTjy/wFyTTPE\n7dVFKoW33cXehrq380n1pgFhxQgKqklUVDPee+9td5c2eH5koyd160awb98enE4nmzdvBFyPmaxf\nvwFms5lvvlnlntdkMmG32/PNf/EjH7ds2Ujz5i2KbXNm5lksFgt16tTlyJHD7Nq1E5vNRvPmLfnp\np58A+OGH73jvvYU0b96STZt+zjdNxJd5OyrZ24FW1eESJSl/JTpynjJlClu3bsVkMhEfH0+bNm3c\n31uxYgVvvPEG/v7+9OvXj3vuuYd169YxZswYmjVrBkB0dDTPPPNMYYs3vLi43rzwwkQmTnzePS3v\nkY2NGzfh7rsHsXDhWwwfPrLAvMOHj+Tpp8dz2WX13Q+vuOGGHkyY8Cg7dqTQr9/NREZG8vbb82jb\ntj0zZ76cr3v8gQceYurU51m69DOsVj+efPIZbLai/4jUqlWbP//5Wh54YBB/+lMz7rrrXmbPfoWF\nCxeRkrKZ0aOHY7FYefrpSdSuHcaGDevzTRPxdd50F+c/B2whOtpeonPAGqAl3ij2kZHr169nwYIF\nzJ07l9TUVOLj40lISADA4XDQvXt3EhMTqV27NsOGDWPy5Mns3buXDz74gNmzZ5e4IXpkZOVQXTxT\nXfK7cNtIVwiV5LaRVcGb21uWB+0vnqkunlXIIyPXrl1LbGwsAFFRUZw6dYqMDNczM0+cOEFoaCjh\n4eGYzWY6derEjz/+6G37RcQA8l8HjFfXAVfGzT3Kcr2yiNEVG87p6emEhYW5X4eHh5OWlub++uzZ\ns+zZs4fc3FzWrVtHeno6AL/99hsPPfQQd955Jz/88EMFNV9Eypu3t42s7LC81J7PK1Iapf6tubgX\n3GQyMW3aNOLj4wkJCaFRo0YANG3alNGjR9OnTx/279/PoEGDWLZsGf7+hf/ShIUFYbUWHNFYFkV1\nGVRnqotnqovL7t2FTbcUWaPXXvM8/Z//rMHw4eXQsALtKWx60e0sL9pfPFNdPCttXYoN58jISPfR\nMMDRo0eJiIhwv77mmmtYvHgxADNmzKBhw4bUq1ePvn37AtCkSRPq1q3LkSNHaNy4caHrOXGifB8z\npnMfnqkunqkuF0RHBxVy6Y+9yMcB7tgRDJg8THeSlpZRnk083x7v2lketL94prp4ViHnnLt27Upy\ncjIA27dvJzIykuDgYPf3H3jgAY4dO0ZmZiarV6+mc+fOfPHFFyxYsACAtLQ0jh07Rr169Uq9QSJS\nNt6cA/b20p/KfuSgLlESX1bsb2qHDh1o1aoVAwcOxGQyMXHiRJYsWUJISAhxcXHccccdDBkyBJPJ\nxPDhwwkPD6dHjx489thjrFy5ktzcXCZNmlRkl7aIlD9v7+ns7SVDZXmYvTejrnWJkviyYi+lqiy6\nlKpyqC6e+WJdYmI8d/u2bGlnzZqSdfuWti6JidZSh+UfP0TkMfLjCn1xfykPqotnFdKtLSLlpzIv\nNSrLPZ295c0jBzXqWqQghbNIJansS40q+xywt6riQ4SI0WnvF6kklX2EeKkMmLpUPkSIVCaFs0gl\nqewjRG8f8FDZLpUPESKVSfe5E6kkVfHowEvhecAadS1SkMJZpJKU5VIjX3cpfIgQqUzq1hapJGXp\nZq7MUd4iUvX0Gy5Sibw5QvT2ZiIicunSkbOIwek6YJHqR+EsYnC6Dlik+tFvt4jB6TpgkepH4Sxi\ncLoOWKT6UTiLGNylcjMRESk/Gq0t4gVvHnFYFroOWKR6UTiLlJIubRKRiqZubZFS0qVNIlLRFM4i\npaRLm0SkoumviUgp6dImEaloCmeRUtKlTSJS0RTOUq3lPVDCaqXED5TQpU0iUtE0WluqrbKMutal\nTSJSkXTkLNWWRl2LiFEpnMVQvH1usTfzadS1iBiVurXFMLztZvZ2vuhoBzt3WjxOFxGpSjpEEMPw\ntpvZ2/k06lpEjErhLBWiMruZvZ0v/6hrNOpaRAxD3dpS7iq7m7ks3dN5o64jIkJIS8ss9v0iIpVB\nR85S7iq7m1nd0yLiaxTOUu7Kp5u55Df30E1BRMTXqFtbyl15dDOXlm4KIiK+REfOUu7UzSwiUjYK\nZyl36mYWESkbdWtLhVA3s4iI9xTOUu2dPQvZ2eDnB5aCp8pFRCqdwlmqtTNnoE+fIHbvBn//YBo3\ndtK0qcP97/LLHTRt6uTyyx3UqFH88kREyoPCWaotpxPGjg1k924LXbpAdraDPXtMpKZ6/rW47LK8\nwL4Q4B072rn8cmclt1xEfJ3CWaqtN9/0Y+lSPzp3tvHNN1ZOnHDdIez0adi718yePWb+9z8ze/ea\n2LPHzN69Ztavt/DTTyb3MqxWJyNG5PDooznUrFlVWyK+yGaDAwdM7N1rJjDQSevWDoKCqrpVUlkU\nzlIt/fSTheeeCyAy0sFbb2VjtQa7vxcaCldf7eDqqwtel52TA7//7grr334zM3euP3PmBJCY6Mfk\nyefo06fiBsFt22YmNdVM7dpOatd2UquWk7AwJ6GhYNZ1F6WSnm5i61YzGRkmdx3z/g8Jqbx6nj17\n4YPgnj2mi742s3+/CZvtwgdBs9nJVVc5aNfOQdu2dtq1s9OypYPAwMppa2EyMlzbsHevmfr14fLL\nITy8attUmCNHTPznP2aysvL/3GvXrtyfe0mYnE6nIfrk0tLOlOvyXPdKLt9l+gLVxfUL2rNnEMeO\nmUhMzKJTJ7vXdcnMhFdf9ef11/3JzTXRq5eNyZOzadKkfH6tnE74/nsLM2f68913nj9Lm0yugP5j\naOf90XH9K/j92rWd1KwJJpPHxQK+sb+cPAlbt1rYutXCli1mtmyx8Pvvhf8VNpvz19NTXSMiAsnI\nyC5VO5xOOH7c5A7fvXtNHD3quR116144fXL55Q7OnnV9mPjPfyxkZl74gfn5OWnRIi+sHbRrZ6d5\ncwd+fqVqWrHtPnrU5G5zXvvzPlCkpxfchiZNXG1p2zbvfzuhoeXXppI4dsxVs61bLWze7Pr/0KGi\nf+61alHgw9rFv0exsXavHilb2O9RRERIofOUKJynTJnC1q1bMZlMxMfH06ZNG/f3VqxYwRtvvIG/\nvz/9+vXjnnvuKXYeTxTOlaO61yU3F269tQY//WTl2WezGTEiFyh7XXbvNjNhQgDff2+lRg0njzyS\nw8iROfgXfTvxQjkckJxsZfZsfzZudA0hv/56G7162ThzxsSJEyZOnTJx8iScPOn6Om9aVlYRafsH\nVmte8HgO927dAujc+cwlM4r9zBnYtu1CCG/ZYmHPnvx/kOvWdbiDrE4dJydPmtz/Tp3iotq6/mVn\nl7yeJWWxOGnYMP/gw6ZNL4RxSCF/s+12+PVXM1u2mM9/2LCwfbs5XxsDApy0auUK7IYNvfuQmJ5u\nync65+IPBBdvQ94AStfASQcORyA//GBj61Yzx47lr3tU1IUj/nbtHLRubSc4uMBivXLqFO565AXy\nvn351x8Z6aB9e1cbatd2Fvi9yftdyvt37lzBbY6NtbF4cVap21ch4bx+/XoWLFjA3LlzSU1NJT4+\nnoSEBAAcDgfdu3cnMTGR2rVrM2zYMCZPnsy+ffsKnacwCufKUd3rMmlSAK+/7k///rnMn5/tPmos\nj7o4nfDpp1YmTgwgLc1Ms2Z2XnzxHN262Uu8DJsNPvvMFcq7drkSsW/fXMaMyaF9+5J9Ys/OJl+4\neArwi/8IXfz93NyCf5Ciohz8/e/nuO02m9cfNipCZiakpOQdGbn+KP/2mxmn88I21K7tPB8GF47i\nGjRwFtlb8EdZWQXrGRAQxOnTpf8jHRrqCrNGjZzldnSbmwu//JL3YcRVjx07zB5/lqVVs6bT44eH\nvG2w/qEzJ+/3yOl0nf7Ja5MrNC2cPn2hTSaTk+hoB23bOmjQwFGqnwm4ft/27XMt+7//zR/Edeo4\n3D/vvA8Dl11Wug8qeT/3i8O7TRsHDRqU/gOPN+Fc7DnntWvXEhsbC0BUVBSnTp0iIyOD4OBgTpw4\nQWhoKOHnTzB06tSJH3/8kf379xc6j0hVWbrUyuuv+/OnP9mZOTO71H8MimMywW232YiLszF1agBv\nv+3HLbcEceutuUyadI569Qr/pc7Oho8+8uO11/zZt8+MxeLk9ttz+fvfc2jevHTdaIGBEBjoLHJ9\nnjidrnOgeUF0/LiJpKQg3nnHxNixNXjpJQejRuVw9925lT4w6dw52L79wh/5LVvM/PKLGYfjwg8x\nJMRJ1675u1Ivv7x0QexJjRpQo4Yz3x/3iAhISzPGTXb8/KB1awetWzs433HJuXOwc6eZY8e823jX\nhwgndet6Vz+TCRo3dtK4sY3+/V3TnE743/9M+T5M/ec/Fn75pWzdMrVqObn+elu+D2CNGlXMz70y\nFRvO6enptGrVyv06PDyctLTNMRKgAAAgAElEQVQ0goODCQ8P5+zZs+zZs4eGDRuybt06rrnmmiLn\nKUxYWBBWa/n2nRX1qaQ6K01dPvwQxo+H33+HRo3g0UdhzJiiz1N6w/VJGzZscP2LjIQRIyi3I7Vf\nfoGxYyEoCD77zMKVVxasQXntLxERsGABjBwJDz0En37qx4oVfkye7Hp9cRfxmTPw5pvwyitw+DAE\nBLjme+wxE1dc4QeU48lDL9xyC/zjHyZeeQXmzjXz1FOBvPpqIGPHwqhRULt2+a8zNxdSUi7sCxs2\nwLZtrul5goKgSxfo2NH17//+D6KjTZjNlTfG1eh/Xxo1qpr1FlWXyEi49toLr+122L0bjh3zbl2X\nXQZRUSZMJitGH99c2v2l1FtzcS+4yWRi2rRpxMfHExISQqNC9oaSjDnLu4ylvFT37tvClKYuixdb\nGTv2wp039u+HRx6Bp55y8n//d6G7yJtPqkeOuAZr5J0X3LLFXGBgyfz5dl57LZuWLUs/AONiZ8/C\nX/8axJkzFt58M4vISBtpafnfUxH7S5MmsHQpvPeeH5MnBzB6tIl58+y89FI2l1/uYN48fxYs8Ofk\nSRPBwU5Gj87hwQdz3Ue8f2xjVYiICCEg4AxPPgnDh5uYP9+P+fP9efppE9OmObn/flebIyO9O7pw\n/XE2u/eFrVstpKSY853vCwhw0qbNhfOVbds6iI52FDgP7u0feG/o74tn3tSlbl3XP2+lp3s/b2Wp\nkG7tyMhI0i/a+qNHjxIREeF+fc0117B48WIAZsyYQcOGDTl37lyR80jlS0y0MnOmP7t3Q3R0EGPH\n5hR57+tt28w8/rjnazRsNvjuO2u+0cMXn+Np29ZB+/Z2d3dQ3qjJi8+J/XHUZKNGDvr1y6V9e9dA\nkS++sLJ4sT9xcUGMH5/DqFE5Xg1Kcjph3LhAdu2y8MADOdxyS+V2RVoscP/9ufTrZ+PZZwP4+GM/\nevcOIjAQsrJMhIc7mDAhhyFDcirkKLQ81anjdP8s3nnHjzffdF1GNm+eP3femcuoUTlFjlJ3OCA1\n9eLBTGZSUvKPPnY9KMUVxHmDd8p79LHIpaDYcO7atStz5sxh4MCBbN++ncjIyHzd0w888AAvvvgi\nNWrUYPXq1dx///3Ur1+/yHmkciUmWnnwwQtHwDt3Ws6/LvikKKcTFi70Y+LEgEIHlDgc8NtvZ/KN\njtyyxcKqVVZWrbqwS9Wr5yAggAKjJuvVc9C7d647zNu0cRARkf+Peo8edvr2tfHoo4G88EIAX39t\n5bXXsoiKKt0R2sKFfixZ4kfHjnYmTTpXqnnLU2Skk3/+M5u7787l6acDOH3axLBh57jnntxL7uYl\nwcEwenQuDzyQ6z5P/vbb/rz3nh+33GLj4YdziI523W3tjyNoMzIu7FMWS951uxfOFbZoUfXX7YoY\nQYkupZo+fTobNmzAZDIxceJEduzYQUhICHFxcSxbtox//vOfmEwmhgwZws033+xxnubNmxe5Do3W\nrjgxMUHs3FnwsLNlSztr1lw4nXD6NDzySCBLl/pRp46DoCAn+/cXP1+e48cvXE+ad11hTg60bZv/\nEorSDLA4fhyefDKQxEQ/atRw8vTT5xg6NLdENwv4+Wczf/1rELVqOVmxIrPIUZbaXzwrSV08jTAP\nDXUWGJnbrJkj32CtS/mOV9pfPFNdPKuw65wrg8K54tSvH4zdXvAo2Gp1cvBgBgBbtpgZNqwGe/ea\n6dTJxty52fz0kyXfEXeeqng28xdfWHniiQCOHzfTtauNWbOKvtFHerrrRiNHjpj4+OMsrruu6MuZ\ntL94Vpq65F2b/frrfqSlmd0h3K6dg6uvLr9rWo1A+4tnqotnFXLOWS590dEOj0fO0dEOnE6YP9+P\nSZMCsNlg7NhzPPFEDlYr5wM4i1mz/Nm920x0tIMxY4o+V11Rbr7ZRqdOdh57LICkJD9iYmry/PPn\nuPvu3AID0ex2ePDBQA4dMvP00+eKDWYpH2Yz9Oljq9BbmIpUFwa6k6iUhNMJf/97IB071mTs2AA+\n+8xa7LWMY8fmeJw+bFgO998fyFNPBVKrlpOPPsoiPj4n340FBgywsWZNJgcPZrBmTWaVBHOeyEgn\n776bzZw5WVgs8Oijgdx1Vw0OHcq//S++6LrVZe/euYwe7XnbRUSMTN3al5hFi/x49NFAzGan+wYM\nJpPrUpOYGBs33GDnz3+2ExCQf77EROv5I2AL0dF2br45l8WLXTe86NLFxptvZlfZxfbeOHDAxNix\ngXzzjZVatZxMnZrNrbfaSE62MGhQEE2bOli+/Cy1apVseb66v5SV6uKZ6uKZ6uKZzjlfxBd3kv/+\n10SPHjXx84NVq85y7JiJb76xsmaNhfXrLe7R1UFBTjp3trvD+qqrLtwar27dEF54IZvnn3d1Yz/y\nSA6PPZZT4DZ8lwKn03UN8cSJAWRmmujdO5cff7SSkwNffZVJ69Ylvz7aF/eX8qC6eKa6eKa6eKZz\nzj7MZoNRo2qQmWli7tys87fGc9KuXQ5jxrge2/bTTxZ3WK9caWXlSteP97LLHMTE2Ln+ehvJyfDF\nF4FERDh4/fVsYmIu3fOxJhMMHpxLTIyNhx8OJCnJdTHs7NlZpQpmERGjUThfIl591fV0oltvzfV4\n3jc4GGJj7cTGusL20CET33xjYc0aK99+ayEhwY+EBFd4XXedjddfzy71vZeNqmlTJ4mJWSxa5Ifd\nDgMHakCSiFzaFM6XgI0bzbzyij8NGzqYNq1kz5CtX9/JwIE2Bg604XC4HhrwzTcWGjcO5Kabsi6Z\nRwCWlMXiOooWEfEFCmeDy8iAkSNr4HDAa69ll3iA08XMZrj6agdXX+0gIiLQEPdsFhGRwulSKoOb\nODGA//3PzMiRuXTtaicx0UpMTBD16wcTExNEYqI+X4mI+Br9ZTewpCQL77/vT6tWdiZMOFeqe2SL\niMilS0fOBnX0qIlHHw0kIMDJG29kExAAM2d6frjxrFnl9NBjERExBB05G5DT6XoARXq6mRdeyKZ5\nc9dlQbt3e/4sVdh0ERG5NOmvugG9+64fy5dbuf56Gw88cGEEcnS052t3C5suIiKXJoWzwfz2m4mJ\nEwOoXdvJnDnZ+R6NWNg9sseM0f2jRUR8icK5HCxbZmHaNH8OHCj6ARQX8zTqOjfXddlUVpaJ6dOz\nqV8//01CBgywMXduFi1b2rFanbRsaa+SxzeKiEjF0jnnMnI4YNy4QI4cMTNnjj+3357L3/+eQ1RU\n4XffKmzUdb9+uWzZYuGOO3K5+WbPgTtggE1hLCLi43TkXEZbtpg5csRMhw52Lr/cweLF/nTpUpNh\nwwLZts1zeQsbdf3vf1tp3NjBlCkluwuYiIj4JoVzGSUnuzofRo/O4bvvMlmwIIs2bRx8/rkfPXvW\n5M47a/DTT/nvlVnU6Op//jOb0NAKbbKIiBicwrmMkpKsBAQ4ueEGGxYL9O9vY9myTBISMunSxcbK\nlVZuvjmI/v1rsHKlBaez8NHVdeo46dTp0n1KlIiIlA+Fcxns2WNi504L111nJzj4wnSTCbp3t/PZ\nZ1l8+eVZbrzRxrp1Vu68M4iePYPo1s1zAD/33LlKarmIiBiZBoSVQV6Xdu/ehQ/QuuYaB4sWZZGS\n4how9vnnVlJSLERGOjCb4fBhEyYTTJx4jttv10AvERHRkXOZ5IVzr17Fh2rr1g7mzs3mxx/Pcu+9\nOZw4YeLwYTNgYsqUc4wcqccdioiIi46cvXTiBKxda6FDBzv16hV+2dQfXXmlkxkzzjFuXA5vveWP\n2exkyBAFs4iIXKBw9tLKlVbsdlORXdpFadDAyaRJOscsIiIFqVvbS0lJJe/SFhERKQ2FsxfOnYNV\nq6xcfrnD/cQoERGR8qJw9sIPP1jIyHB1aZtKfjttERGRElE4e6Ekl1CJiIh4S+FcSk6nK5xr13Zy\n7bW6m5eIiJQ/hXMpbdtm5uBBM7GxNqwa6y4iIhVA4VxKX3+tLm0REalYCudSSk624u/vpEcPhbOI\niFQMhXMp7N9vIiXFQrdu+R90ISIiUp4UzqWwbJluPCIiIhVP4VwKeeebFc4iIlKRFM4ldOoU/Pij\nhbZt7TRoUPIHXYiIiJSWwrmEVq2yYrN5/6ALERGRklI4l5AedCEiIpWlRLfRmDJlClu3bsVkMhEf\nH0+bNm3c3/vggw/44osvMJvNtG7dmqeeeoolS5Ywa9YsmjRpAkCXLl0YMWJExWxBJcjJcT0isnFj\nB61a6UEXIiJSsYoN5/Xr17N3714SEhJITU0lPj6ehIQEADIyMliwYAHLli3DarUyZMgQtmzZAkDf\nvn0ZP358xba+kqxda+H0aRN33JFb4EEXiYlWZs70Z/duM9HRDsaOzWHAAB1di4iI94oN57Vr1xIb\nGwtAVFQUp06dIiMjg+DgYPz8/PDz8yMzM5OgoCCysrKoVatWhTe6shX2oIvERCsPPljD/XrnTsv5\n11kKaBER8Vqx55zT09MJCwtzvw4PDyctLQ2AgIAARo0aRWxsLN27d6dt27ZcccUVgOuIe+jQoQwe\nPJgdO3ZUUPMrntPpOt8cGuqkc+f8D7qYOdPf4zyzZnmeLiIiUhKlfnSD03nhMqKMjAzmzp1LUlIS\nwcHBDB48mF27dtG2bVvCw8O54YYb2Lx5M+PHj2fp0qVFLjcsLAir1VL6LShCRERImZexdSv8/jvc\neSc0aJB/ebt3e55n925Luay7ohi5bVVJdfFMdfFMdfFMdfGstHUpNpwjIyNJT093vz569CgREREA\npKam0rhxY8LDwwHo2LEjKSkp3HbbbURFRQHQvn17jh8/jt1ux2IpPHxPnMgsVcOLExERQlramTIv\nZ/FifyCA7t2zSEvL31UdHR3Ezp0Ftyk62k5aWvluT3kpr7r4GtXFM9XFM9XFM9XFs8LqUlRgF9ut\n3bVrV5KTkwHYvn07kZGRBJ+/sXTDhg1JTU0lOzsbgJSUFJo2bcq8efP48ssvAdi9ezfh4eFFBrOR\nJSdb8fPz/KCLsWNzPM4zZozn6SIiIiVR7JFzhw4daNWqFQMHDsRkMjFx4kSWLFlCSEgIcXFxDB06\nlEGDBmGxWGjfvj0dO3akUaNGPP7443z00UfYbDYmT55cGdtS7g4eNLF1q4WYGBuhoQW/7xr0lcWs\nWRdGa48Zo9HaIiJSNibnxSeRq1B5d4WUR/fK22/7MX58IFOnZjN0aG45taxqqdvJM9XFM9XFM9XF\nM9XFswrp1q7OdFcwERGpCgrnQpw5A99/b6F1azuNGhmic0FERKoJhXMhVq+2kpurB12IiEjlK/V1\nzpeCn382c+QI9OkD3g4Sz+vSVjiLiEhl88kj57ff9mfIELjppiBSU03Fz/AHubmwYoWVhg0dXH21\nHnQhIiKVyyfDefLkbO68EzZutNCjR03mzfPDUYqMXb/ewsmTJnr1shV40IWIiEhF88lwDguDxYth\n/vwsatRw8tRTgdx6aw327StZ0mqUtoiIVCWfDOc8N99s49tvM+ndO5cffrASE1OTRYv8KOrKbqcT\nvv7aSnCwk65d7YW/UUREpIL4dDgDREY6effdbObMycJigUcfDeSuu2pw6JDno+hdu8zs22emZ08b\n/nq4lIiIVAGfD2cAkwn+9jcb33xzlpgYGytXWrn++pp88om1wFF0Yc9uFhERqSzVIpzzNGzo5F//\nyuLll7PJzYWRI2swZEggaWkXjqKTkqxYLE569lQ4i4hI1ahW4Qyuo+jBg3NZs+YsnTrZ+Pe//YiJ\nCeLLL60cPmxi0yYLXbrYqV27qlsqIiLVVbUL5zxNmzr57LMsnnsumzNnTAwZUoM77qgBaJS2iIhU\nrWobzgBmMzz0UC4rV2bSvr2dXbtctxNTOIuISFXyydt3llZ0tIN//zuTBQv8yMkxcfnletCFiIhU\nHYXzeVYrPPigbzyzWURELm3VultbRETEiBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIw\nCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGD\nUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonM9LTLQSExNE/frBxMQEkZhoreomiYhI\nNaUEwhXMDz5Yw/16507L+ddZDBhgq7qGiYhItaQjZ2DmTH+P02fN8jxdRESkIpXoyHnKlCls3boV\nk8lEfHw8bdq0cX/vgw8+4IsvvsBsNtO6dWueeuopcnNzmTBhAgcPHsRisTB16lQaN25cYRtRVrt3\ne/6MUth0ERGRilRs+qxfv569e/eSkJDA5MmTmTx5svt7GRkZLFiwgA8++IAPP/yQ1NRUtmzZwpdf\nfkloaCgffvghDz30EDNmzKjQjSir6GhHqaaLiIhUpGLDee3atcTGxgIQFRXFqVOnyMjIAMDPzw8/\nPz8yMzOx2WxkZWVRq1Yt1q5dS1xcHABdunRh06ZNFbgJZTd2bI7H6WPGeJ4uIiJSkYrt1k5PT6dV\nq1bu1+Hh4aSlpREcHExAQACjRo0iNjaWgIAA+vXrxxVXXEF6ejrh4eEAmM1mTCYTOTk5+PsXfg43\nLCwIq9VSDpt0QURESIneN3w4hIbC1KmwYwe0bAlPPgkDB9YofuZLUEnrUt2oLp6pLp6pLp6pLp6V\nti6lHq3tdDrdX2dkZDB37lySkpIIDg5m8ODB7Nq1q8h5CnPiRGZpm1KkiIgQ0tLOlPj9PXu6/l0s\nLa1cm2QIpa1LdaG6eKa6eKa6eKa6eFZYXYoK7GK7tSMjI0lPT3e/Pnr0KBEREQCkpqbSuHFjwsPD\n8ff3p2PHjqSkpBAZGUna+WTLzc3F6XQWedQsIiIiFxQbzl27diU5ORmA7du3ExkZSXBwMAANGzYk\nNTWV7OxsAFJSUmjatCldu3YlKSkJgNWrV3PttddWVPtFRER8TrHd2h06dKBVq1YMHDgQk8nExIkT\nWbJkCSEhIcTFxTF06FAGDRqExWKhffv2dOzYEbvdzo8//sidd96Jv78/06ZNq4xtERER8QkmZ0lO\nCFeC8j5PoXMfnqkunqkunqkunqkunqkunlXIOWcRERGpXApnERERg1E4i4iIGIzCWURExGAUziIi\nIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYR\nETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOI\niIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxF\nREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYa0neNGXKFLZu3YrJZCI+\nPp42bdoAcOTIER577DH3+/bv38+4cePIzc1l1qxZNGnSBIAuXbowYsSICmi+iIiI7yk2nNevX8/e\nvXtJSEggNTWV+Ph4EhISAKhXrx7vv/8+ADabjXvvvZcePXqQnJxM3759GT9+fMW2XkRExAcV2629\ndu1aYmNjAYiKiuLUqVNkZGQUeF9iYiK9evWiZs2a5d9KERGRaqTYcE5PTycsLMz9Ojw8nLS0tALv\n+/jjj7ntttvcr9evX8/QoUMZPHgwO3bsKKfmioiI+L4SnXO+mNPpLDBt8+bNXHnllQQHBwPQtm1b\nwsPDueGGG9i8eTPjx49n6dKlRS43LCwIq9VS2uYUKSIipFyX5ytUF89UF89UF89UF89UF89KW5di\nwzkyMpL09HT366NHjxIREZHvPWvWrKFz587u11FRUURFRQHQvn17jh8/jt1ux2IpPHxPnMgsVcOL\nExERQlramXJdpi9QXTxTXTxTXTxTXTxTXTwrrC5FBXax3dpdu3YlOTkZgO3btxMZGek+Qs6zbds2\nmjdv7n49b948vvzySwB2795NeHh4kcEsIiIiFxR75NyhQwdatWrFwIEDMZlMTJw4kSVLlhASEkJc\nXBwAaWlp1KlTxz1P//79efzxx/noo4+w2WxMnjy54rZARETEx5icnk4iV4Hy7gpR94pnqotnqotn\nqotnqotnqotnFdKtLSIiIpVL4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiF\ns4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEo\nnEVERAxG4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG\n4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIw\nCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRhrSd40ZcoUtm7dislkIj4+njZt2gBw5MgR\nHnvsMff79u/fz7hx4+jduzcTJkzg4MGDWCwWpk6dSuPGjStmC0RERHxMseG8fv169u7dS0JCAqmp\nqcTHx5OQkABAvXr1eP/99wGw2Wzce++99OjRgy+//JLQ0FBmzJjB999/z4wZM5g5c2bFbomIiIiP\nKLZbe+3atcTGxgIQFRXFqVOnyMjIKPC+xMREevXqRc2aNVm7di1xcXEAdOnShU2bNpVzs0VERHxX\nsUfO6enptGrVyv06PDyctLQ0goOD873v448/ZuHChe55wsPDATCbzZhMJnJycvD39y90PWFhQVit\nFq82ojARESHlujxfobp4prp4prp4prp4prp4Vtq6lOic88WcTmeBaZs3b+bKK68sENhFzfNHJ05k\nlrYpRYqICCEt7Uy5LtMXqC6eqS6eqS6eqS6eqS6eFVaXogK72G7tyMhI0tPT3a+PHj1KREREvves\nWbOGzp0755snLS0NgNzcXJxOZ5FHzSIiInJBseHctWtXkpOTAdi+fTuRkZEFjpC3bdtG8+bN882T\nlJQEwOrVq7n22mvLs80iIiI+rdhu7Q4dOtCqVSsGDhyIyWRi4sSJLFmyhJCQEPegr7S0NOrUqeOe\np2/fvvz444/ceeed+Pv7M23atIrbAhERER9jcpbkhHAlKO/zFDr34Znq4pnq4pnq4pnq4pnq4lmF\nnHMWERGRyqVwFhERMRiFs4iIiMEonEVERAzG58I5MdFKTEwQVivExASRmFjq+6yIiIhUKZ9KrsRE\nKw8+WMP9eudOy/nXWQwYYKu6homIiJSCTx05z5zp+S5ks2bp7mQiInLp8Klw3r3b8+YUNl1ERMSI\nfCq1oqMdpZouIiJiRD4VzmPH5nicPmaM5+kiIiJG5FPhPGCAjblzs2jZ0o7VCi1b2pk7V4PBRETk\n0uJTo7XBFdADBtjO38u0fJ8RLSIiUhl86shZRETEFyicRUREDEbhLCIiYjAKZxEREYNROIuIiBiM\nwllERMRgFM4iIiIGo3AWERExGIWziIiIwZicTqezqhshIiIiF+jIWURExGAUziIiIgajcBYRETEY\nhbOIiIjBKJxFREQMRuEsIiJiMNaqbkBFmDJlClu3bsVkMhEfH0+bNm2quklVbt26dYwZM4ZmzZoB\nEB0dzTPPPFPFrao6u3fvZuTIkdx3333cc889HDp0iCeeeAK73U5ERAQvv/wy/v7+Vd3MSvfHukyY\nMIHt27dTu3ZtAIYOHcoNN9xQtY2sAi+99BIbN27EZrPx4IMPcvXVV2t/oWBdVq1aVe33l6ysLCZM\nmMCxY8c4d+4cI0eOpHnz5qXeX3wunNevX8/evXtJSEggNTWV+Ph4EhISqrpZhnDNNdcwe/bsqm5G\nlcvMzOT555+nc+fO7mmzZ8/mrrvuok+fPrzyyit88skn3HXXXVXYysrnqS4Ajz76KN27d6+iVlW9\nn376iV9//ZWEhAROnDjBgAED6Ny5c7XfXzzVpVOnTtV+f1m9ejWtW7dm2LBhHDhwgCFDhtChQ4dS\n7y8+1629du1aYmNjAYiKiuLUqVNkZGRUcavESPz9/Zk3bx6RkZHuaevWraNnz54AdO/enbVr11ZV\n86qMp7oI/PnPf2bWrFkAhIaGkpWVpf0Fz3Wx2+1V3Kqq17dvX4YNGwbAoUOHqFevnlf7i8+Fc3p6\nOmFhYe7X4eHhpKWlVWGLjOO3337joYce4s477+SHH36o6uZUGavVSmBgYL5pWVlZ7m6mOnXqVMt9\nxlNdABYtWsSgQYN45JFHOH78eBW0rGpZLBaCgoIA+OSTT7j++uu1v+C5LhaLpdrvL3kGDhzIY489\nRnx8vFf7i891a/+R7k7q0rRpU0aPHk2fPn3Yv38/gwYNYtmyZdXyPFlxtM9c8Je//IXatWvTokUL\n3nrrLV577TX+8Y9/VHWzqsSKFSv45JNPWLhwITfeeKN7enXfXy6uS0pKivaX8z766CN27tzJ448/\nnm8fKen+4nNHzpGRkaSnp7tfHz16lIiIiCpskTHUq1ePvn37YjKZaNKkCXXr1uXIkSNV3SzDCAoK\nIjs7G4AjR46oa/e8zp0706JFCwB69OjB7t27q7hFVeO7777jzTffZN68eYSEhGh/Oe+PddH+Aikp\nKRw6dAiAFi1aYLfbqVmzZqn3F58L565du5KcnAzA9u3biYyMJDg4uIpbVfW++OILFixYAEBaWhrH\njh2jXr16Vdwq4+jSpYt7v1m2bBnXXXddFbfIGP7+97+zf/9+wHVePm+0f3Vy5swZXnrpJebOnese\nhaz9xXNdtL/Ahg0bWLhwIeA6zZqZmenV/uKTT6WaPn06GzZswGQyMXHiRJo3b17VTapyGRkZPPbY\nY5w+fZrc3FxGjx5NTExMVTerSqSkpPDiiy9y4MABrFYr9erVY/r06UyYMIFz587RoEEDpk6dip+f\nX1U3tVJ5qss999zDWzJfxdcAAACYSURBVG+9RY0aNQgKCmLq1KnUqVOnqptaqRISEpgzZw5XXHGF\ne9q0adN4+umnq/X+4qkut9xyC4sWLarW+0t2djZPPfUUhw4dIjs7m9GjR9O6dWvGjx9fqv3FJ8NZ\nRETkUuZz3doiIiKXOoWziIiIwSicRUREDEbhLCIiYjAKZxEREYNROIuIiBiMwllERMRgFM4iIiIG\n8/9dh5is+oyUkAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVPX+P/DXmQVhBBQQVNTUuCKC\noWG3q7mgCIqaGS1KlmZaWuZVU7sZv4zKUFvsim1aZlaWogb6LRfSDOuaae6KuJa4C8giMKMwM+f3\nx5FB5AzLMHCAeT0fDx8wZ7YPbw/z4nzO53w+giiKIoiIiKjOqZRuABERkaNiCBMRESmEIUxERKQQ\nhjAREZFCGMJEREQKYQgTEREphCFMjUJsbCwiIyMRGRmJoKAgDBgwwHK7oKCgWq8VGRmJrKysCh+z\ncOFCrFq1qiZNtrtx48YhMTHRLq/VuXNnXLlyBVu3bsWrr75ao/dbs2aN5fuq1LaqZs+ejU8++cQu\nr0WkFI3SDSCyhzfffNPyfVhYGN59913cd999Nr3Wli1bKn3MzJkzbXrthiYiIgIRERE2Pz8zMxPL\nli3DyJEjAVSttkSOhEfC5BDGjBmD//73vxgyZAj279+PrKwsTJgwAZGRkQgLC8OXX35peWzJUeDu\n3bsxatQoLFy4EEOGDEFYWBj27NkDoOxRWFhYGFavXo3HHnsMffr0wYIFCyyvtWTJEvTq1QuPPvoo\nvv32W4SFhcm2b+3atRgyZAgGDRqEJ598EhcvXgQAJCYmYurUqYiJicHgwYMxdOhQnDp1CgBw/vx5\nPP744wgPD8fMmTNhMpnKve6OHTswfPjwMttGjBiBX3/9tcIalEhMTMS4ceMqfb+ff/4Zw4cPx+DB\ng/HII48gLS0NABAdHY1Lly4hMjISRUVFltoCwNdff42hQ4ciMjISL7zwArKzsy21Xbx4MZ555hkM\nGDAAzzzzDAwGg7X/WgDA8ePHER0djcjISIwYMQK//fYbAKCwsBAvvvgihgwZgoEDB+K1115DcXGx\n1e1EdY0hTA7j6NGj2LhxI0JCQvDpp5+ibdu22LJlC7766issXLgQly9fLvecY8eOoVu3bti8eTNG\njx6NTz/9VPa1//zzTyQkJOD777/HypUrceXKFZw6dQrLli3Dhg0b8N1331k9Crx27RreeustfPnl\nl/jpp59w1113lelm/fXXXzF69GgkJyfjX//6F7766isAwPvvv49evXph27ZtePrpp7F///5yr92r\nVy9cuXIF58+fByAF6ZUrV/DAAw9UuQYlrL2f0WjE7NmzMXfuXCQnJyMsLAzvvPMOAGDevHlo3bo1\ntmzZAicnJ8trHTx4EF988QW++eYbbNmyBb6+vli4cKHl/i1btuC///0vtm7diuzsbGzdutVqu8xm\nM2bMmIGnnnoKW7Zswdtvv42ZM2eioKAA69evh7u7OzZv3ozk5GSo1WqcPn3a6naiusYQJocRGhoK\nlUra5V977TXMmTMHANCuXTt4e3vjwoUL5Z7TtGlThIeHAwCCgoJw6dIl2dcePnw41Go1WrZsCS8v\nL1y+fBl//vkn7r//fvj4+KBJkyZ49NFHZZ/r5eWFffv2oVWrVgCA++67zxKaAODn54euXbsCAAID\nAy1BuXfvXgwdOhQAEBwcjLvvvrvcazs5OWHAgAHYvn07AGDbtm0IDw+HRqOpcg1KWHs/jUaD33//\nHd27d5dtv5yUlBQMHjwYXl5eAIDHH38cO3futNwfGhqK5s2bQ6PRwN/fv8I/Di5cuICsrCwMGzYM\nAHDPPffA19cXR44cgaenJw4cOID//e9/MJvNePPNN9GlSxer24nqGs8Jk8No1qyZ5fsjR45YjvxU\nKhUyMzNhNpvLPcfNzc3yvUqlkn0MALi6ulq+V6vVMJlMuH79epn3bNmypexzTSYTFi9ejO3bt8Nk\nMqGwsBAdO3aUbUPJawNAXl5emfd1d3eXff3Bgwfj66+/xtNPP41t27Zh8uTJ1apBiYre75tvvkFS\nUhKKiopQVFQEQRCsvg4AZGdnw8fHp8xrXbt2rdKf2dprubm5lXlPd3d3ZGdnY9iwYcjLy0N8fDz+\n+usvPPTQQ3j11VcxZMgQ2e23H60T1QUeCZNDevnllzF48GAkJydjy5Yt8PDwsPt7uLq6Qq/XW25n\nZGTIPm7Tpk3Yvn07Vq5cieTkZEydOrVKr+/u7l5m5HfJOdU79e3bF8ePH8fZs2dx9uxZ9OzZE0D1\na2Dt/fbv34/PP/8cn376KZKTk/H2229X2vYWLVogNzfXcjs3NxctWrSo9HlyvLy8kJeXh9vXosnN\nzbUcZUdHR2Pt2rXYtGkTUlNTsX79+gq3E9UlhjA5pGvXrqFr164QBAFJSUkwGAxlAtMegoODsXv3\nbmRnZ6OoqMjqh/y1a9fQpk0beHp6IicnB5s3b0ZhYWGlr9+9e3fLudL9+/fj3Llzso9zcnJCnz59\n8N5772HgwIFQq9WW961ODay9X3Z2Nry8vODr6wuDwYCkpCTo9XqIogiNRgO9Xg+j0Vjmtfr374+t\nW7ciJycHALB69WqEhoZW+jPLadu2LVq1aoVNmzZZ2paVlYXg4GB8/PHHWLduHQCpJ6Jt27YQBMHq\ndqK6xhAmhzRt2jS8+OKLGD58OPR6PUaNGoU5c+ZYDTJbBAcHIyoqClFRURg7diwGDBgg+7gHH3wQ\nubm5iIiIwMyZMzF9+nRcuXKlzChrOS+//DJ++eUXhIeH49tvv8UDDzxg9bGDBw/Gtm3bMGTIEMu2\n6tbA2vv17dsXPj4+CA8Px/jx4/H000/Dzc0NU6dORefOndGsWTP07t27zPn04OBgTJw4EU8++SQi\nIyORn5+Pl156qcKf1xpBEPDBBx9g5cqVGDJkCN5++23Ex8dDp9NhxIgR2LBhAwYPHozIyEhotVqM\nGDHC6naiuiZwPWGi2iOKouUIKyUlBYsWLWK3JxFZ8EiYqJZkZ2ejZ8+euHjxIkRRxObNmy0jiImI\nAB4JE9WqVatWYfny5RAEAXfffTfi4uIsA4aIiBjCRERECmF3NBERkUIYwkRERAqp8xmzMjPz7fp6\nHh465OTY9/rOxoB1kce6yGNd5LEu8lgXeRXVxdvbTXZ7lUJ43rx5OHToEARBQExMDIKDgy33Xb58\nGTNmzEBxcTECAwPx1ltv2dB022k06jp9v4aCdZHHushjXeSxLvJYF3m21KXS7ug9e/YgPT0dCQkJ\niIuLQ1xcXJn7FyxYgPHjx2PdunVQq9VWJ7gnIiKisioN4V27dllWkfHz80NeXp5l/liz2Yx9+/ZZ\n1kiNjY2Fr69vLTaXiIio8ai0OzorKwtBQUGW256ensjMzISrqyuys7PRtGlTzJ8/H6mpqbjvvvsw\nc+bMCl/Pw0Nn964Ma33tjo51kce6yGNd5LEu8lgXedWtS7UHZt1+WbEoirh69SrGjh2LNm3aYOLE\niUhJSUH//v2tPt/eJ/O9vd3sPtirMWBd5LEu8lgXeayLPNZFXkV1sRbOlXZH+/j4ICsry3I7IyMD\n3t7eAAAPDw/4+vrirrvuglqtRq9evXDq1Clb2k5ERORwKg3h3r17Izk5GQCQmpoKHx8fy8LeGo0G\n7dq1w9mzZy33374YOREREVlXaXd0SEgIgoKCEB0dDUEQEBsbi8TERLi5uSEiIgIxMTGYPXs2RFGE\nv7+/ZZAWERERVaxK54RnzZpV5nZAQIDl+/bt22PVqlX2bRURETUIH374X5w4kYbs7Gu4ceMGfH3b\nwN29GebNe6/S527a9AOaNnVFaKj8Wtvx8Qvx+OPR8PVtY1PbpkyZiBkz/oO77/6HTc+vC3U+Y5a9\nJCVpsGiRE06eBPz9dZg+vQhRUUalm0VEVK+Vfnaq4O9vrvFn57///RIAKVD/+usMpkyZXuXnDh06\nvML7p02r+GqbxqBBhnBSkgaTJrlYbqelqW/dNjCIiYisqMvPzv3792L16pXQ6/WYMuUlHDiwDykp\nP8NsNqNXr94YP34ivvhiKZo3b46OHf2QmLgGgqBCevrf6N9/IMaPn2g5kv3ll59RWFiAc+fScfHi\nBUydOhO9evXGypUrsG3bT/D1bQOj0Yjo6CcREnJfubYUFBQgLu4NFBTkw2g0Yvr0l9G5cwAWLXoP\nx4+nwWQyISrqMQwdOlx2W21qkCG8aJGT7Pb4eCeGMBGRFXX92XnmzGmsWpUIJycnHDiwD598sgwq\nlQojR47AqFGjyzz22LFUfPfd9zCbzXj88eEYP35imfszMq7i/fcX448/fseGDd8jKKgrEhPXYtWq\n71FYWIjo6EcQHf2kbDvWrl2FoKCueOqpcTh+/Bg+/PADzJv3Hn7//X9Ys2YDjEYjNm36Adev55Xb\nVtsaZAifPCk/qNvadiIiqvvPzn/8oxOcnKTgd3Z2xpQpE6FWq5Gbm4vr16+XeWznzgFwdna2+lrB\nwd0BSJfNFhQU4MKF87j7bj80aeKMJk2c0aVLkNXnHj9+DGPHTgAABAQE4sKF83B3b4Z27dpj9uwZ\nGDAgHJGRw+Dk5FRuW21rkKnl72+u1nYiIqr7z06tVgsAuHLlMhISvsXChR/io48+Q6tWrco9Vq2u\neCbF2+8XRRGiCKhUpREmCNafKwhCmYmmzGbp5124cDGeeWYiTp06iVdeecnqttrUIEN4+vQi2e3T\npslvJyIi5T47c3Nz4eHhAZ1OhxMnjuPKlSsoLi6u0Wu2bt0af/11BkajETk5OTh+PM3qYwMCAnHg\nwF4AwNGjR9Cxox8uX76EtWtXo3PnAEyZMh15eXmy22pbg+yOls5dGBAf74STJ9Xw9zdh2jSOjiYi\nqkjZz05pdHRdfHZ26uQPFxcdXnhhPO65pztGjHgECxe+g+Dgbja/pqenFyIiIvHcc2PRvn1HBAYG\nWT2aHjnyCcyb9yamTn0eZrMZM2a8ghYtvHH06CH8/PNP0Gq1GDbsIdlttU0Qbz9GrwP2nm+Uc5jK\nY13ksS7yWBd5rIu8+lKXTZt+QEREJNRqNcaOjcYHH3wIH5+WirXHlrmjG+SRMBER0bVr1zBx4tPQ\nap0waFCkogFsK4YwERE1SGPGjMOYMeOUbkaNNMiBWURERI0BQ5iIiEghDGEiIiKFMISJiIgUwhAm\nIiKbTZr0TLmJMpYs+QirVq2Uffz+/Xvx2mv/AQDMnj2j3P3ff5+AL75YavX9Tp8+hXPn0gEAsbGv\n4ubNG7Y2HY89Nhx6vd7m59sDQ5iIiGwWETEY27dvLbMtJWU7wsMHVfrcBQs+qPb77dixHefPnwMA\nvPnmfDRpYn2+6YaAlygREZHNBg4chBdemIDJk6cCAI4fT4O3tze8vX3w55+7sWzZEmi1Wri5ueGt\ntxaUee6wYQOxcePP2Lt3DxYvXghPTy94ebWwLE0YF/cGMjMzYDAYMH78RLRq1RobNiRix47t8PDw\nwOuvv4qvv05AQUE+5s9/C8XFxVCpVJg9ew4EQUBc3Bvw9W2D06dPwd+/M2bPniP7M2RkXC33fB+f\nlnjrrTm4di0LRUVFmDBhEu677/5y23r2fKBG9WMIExE1Em+80QQ//GDfj/Xhw414442bVu/38PCE\nr28bHDt2FIGBXbF9+1ZEREQCAPLz8xEb+zZ8fdtg7tzXsXv3Luh0unKvsXTpR5gzZy46dfLHrFlT\n4evbBvn513H//T0xZMiDuHjxAubMmY3ly1fiX//qhf79ByIwsKvl+cuWLcGDD47AwIGD8Msv27B8\n+WeYMGESTpxIw5tvzoOHhyeiooYiPz8fbm7lZ66Se/7jjz+BvLxcfPzx58jPz8euXTtx5szpcttq\nit3RRERUIxERkfj5Z6lLeufOX9G//0AAQPPmzfHOO29jypSJOHBgH65fl18Q4fLly+jUyR8A0L17\nCADAzc0daWmpeOGF8YiLe8PqcwHgxIk03HtvDwBASMh9OHXqBACgTZt28PJqAZVKhRYtvFFYWFDl\n57dv3wF6fSHmzp2D/fv/RHj4INltNcUjYSKiRuKNN25WeNRaW0JDB+Drr5cjImIw2rW7C+7u7gCA\n+fPn4r33FqFDh4744IN3rD7/9iUJS5Yz2Lp1C65fv46PP16G69ev49lnx1TQgtKlCouLjRAE6fXu\nXNDB+lIJ5Z/v7OyMpUtX4MiRw9i8+Qfs3PkbYmJiZbfVBI+EiYioRnS6pvDz64Svv/7S0hUNAIWF\nBWjZshXy8/Oxf/8+q8sXtmjhjXPnzkIURRw4sA+AtPxh69a+UKlU2LFju+W5giDAZDKVeX6XLoHY\nv19aqvDgwX0ICOhSrfbLPf/EiePYunULunXrjlmzXsXZs3/LbqspHgkTEVGNRURE4u23YxEbO9ey\n7ZFHHscLL0xAu3Z34cknx2L58s8wceLkcs+dOHEyXnvtFbRq1dqyCEP//mGYPXsGjh07imHDHoKP\njw++/PJzdOt2LxYteq/MueVnn30e8+fPxQ8/rIdGo8Wrr86B0Vj15Rnlnt+kiTOWLv0YGzYkQqVS\nYfToMWjd2rfctpriUoaNFOsij3WRx7rIY13ksS7ybFnKkN3RRERECmEIExERKYQhTEREpBCGMBER\nkUIYwkRERAphCBMRESmEIUxERKQQhjAREZFCGMJEREQKYQgTEREphCFMRESkEIYwERGRQhjCRERE\nCmEIExERKYQhTEREpBCGMBERkUIYwkRERAphCBMRESmEIUxERKQQhjAREZFCGMJEREQKYQgTEREp\nhCFMRESkEE1VHjRv3jwcOnQIgiAgJiYGwcHBlvvCwsLQqlUrqNVqAMD777+Pli1b1k5riYiIGpFK\nQ3jPnj1IT09HQkICzpw5g5iYGCQkJJR5zOeff46mTZvWWiOJiIgao0q7o3ft2oXw8HAAgJ+fH/Ly\n8lBQUFDrDSMiImrsKj0SzsrKQlBQkOW2p6cnMjMz4erqatkWGxuLixcvokePHpg5cyYEQbD6eh4e\nOmg06ho2uyxvbze7vl5jwbrIY13ksS7yWBd5rIu86talSueEbyeKYpnbU6dORd++fdGsWTO8+OKL\nSE5ORmRkpNXn5+Toq/uWFfL2dkNmZr5dX7MxYF3ksS7yWBd5rIs81kVeRXWxFs6Vdkf7+PggKyvL\ncjsjIwPe3t6W2w8//DC8vLyg0WjQr18/nDx5srrtJiIickiVhnDv3r2RnJwMAEhNTYWPj4+lKzo/\nPx8TJkxAUVERAODPP/9Ep06darG5REREjUel3dEhISEICgpCdHQ0BEFAbGwsEhMT4ebmhoiICPTr\n1w+jRo1CkyZNEBgYWGFXNBEREZUSxDtP8tYye59H4LkJeayLPNZFHusij3WRx7rIq5VzwkRERFQ7\nGMJEREQKYQgTEREphCFMRESkEIYwERGRQhjCRERECmEIExERKYQhTEREpBCGMBERkUIYwkRERAph\nCBMRESmEIUxERKQQhjAREZFCGMJEREQKYQgTEREphCFMRESkEIYwERGRQhjCRERECmEIExERKYQh\nTEREpBCGMBERkUIYwkRERAphCBMRESmEIUxERKQQhjAREZFCGnQInzihQkgIkJraoH8MIiJyUA06\nvXJzBRw4AHz6qZPSTSEiIqq2Bh3C999vgp8f8MMPGly/rnRriIiIqqdBh7AgAOPHAwaDgPXrtUo3\nh4iIqFoadAgDwNNPAyqViO++YwgTEVHD0uBDuE0bICzMhP371UhLa/A/DhEROZBGkVpPPFEMADwa\nJiKiBqVRhPDgwUZ4eZmxbp0GRUUVPzYpSYPQUB1at3ZFaKgOSUmaumkkERHRHRpFCDs5AY89ZsS1\nayokJ1sP1aQkDSZNckFamhomk4C0NDUmTXJhEBMRkSIaRQgDwOjRUpf0qlXWu6QXLZK/njg+ntcZ\nExFR3Ws0IdylixkhISZs367G5cuC7GNOnpT/ca1tJyIiqk2NKn1Gjy6G2SwgIUH+aNjf31yt7URE\nRLWpUYXwww8Xw8VFumbYLJOr06fLj9qaNq2S0VxERES1oFGFsLs7MHy4EWfPqrBrl7rc/VFRRixd\nakBgoAkajYjAQBOWLjUgKsqoQGuJiMjRNbphwaNHF2PNGi2++06L3r1N5e6PijIydImIqF5oVEfC\nANCrlwkdO5rx449c1IGIiOq3RhfCgiDNoGUwCEhK4gxaRERUfzW6EAaAUaOKuagDERHVe40yhFu3\nFhEWZsKBA2ocO9Yof0QiImoEGm1CVWUGLSIiIiU12hAeNMiIFi3MWLu28kUdiIiIlFClEJ43bx5G\njRqF6OhoHD58WPYxCxcuxJgxY+zauJooWdQhO7viRR2IiIiUUmkI79mzB+np6UhISEBcXBzi4uLK\nPeb06dP4888/a6WBNVHSJc0BWkREVB9VGsK7du1CeHg4AMDPzw95eXkoKCgo85gFCxbgpZdeqp0W\n1kBAgBk9epjwyy9qXLokv6gDERGRUioN4aysLHh4eFhue3p6IjMz03I7MTER999/P9q0aVM7Layh\nyhZ1ICIiUkq1T5aKomj5Pjc3F4mJifjyyy9x9erVKj3fw0MHjab8vM414e3tZvW+Z58F5swBEhKa\n4O23m0DVaIeilVdRXRwZ6yKPdZHHushjXeRVty6VhrCPjw+ysrIstzMyMuDt7Q0A+OOPP5CdnY0n\nn3wSRUVFOHfuHObNm4eYmBirr5eTo69WAyvj7e2GzMz8Ch8zfLgzEhK02LBBjz59ys8n3RhVpS6O\niHWRx7rIY13ksS7yKqqLtXCu9Liwd+/eSE5OBgCkpqbCx8cHrq6uAIDIyEhs2rQJa9aswUcffYSg\noKAKA1gpHKBFRET1UaVHwiEhIQgKCkJ0dDQEQUBsbCwSExPh5uaGiIiIumhjjfXsWbqow/z5QLNm\nSreIiIioiueEZ82aVeZ2QEBAuce0bdsW33zzjX1aZWeCIB0Nx8U1QVKSFuPGFSvdJCIiosY7Y9ad\nuKgDERHVNw4Twq1aiRg40ISDB9VITXWYH5uIiOoxh0ojLupARET1iUOFcESEtKjDunUa3LypdGuI\niMjROVQIOzkBjz/ORR2IiKh+cKgQBnjNMBER1R8OF8KdO5cu6nDxIhd1ICIi5ThcCAPAk08WQxQF\nfPUVj4aJiEg5DhnCjz5aDC8vM1ascMIdqzISERHVGYcMYRcXYPz4YuTmCrxciYiIFOOQIQxIIezs\nLGLpUicYjUq3hoiIHJHDhrCXl4jo6GKcO6fCjz/yciUiIqp7DhvCAPD880UQBBEff+wEUVS6NURE\n5GgcOoTvvlvE0KFGHDqkxu+/q5VuDhERORiHDmEAmDy5CADwySdOCreEiIgcjcOH8D//acb99xux\ndasGJ05YL0dSkgahoTq0bu2K0FAdkpJ4HpmIiGrG4UMYACZPlqay/PRT+cuVkpI0mDTJBWlpaphM\nAtLS1Jg0yYVBTERENcIQBhAZacTdd5uxbp0WV6+Wn8py0SL5rur4eHZhExGR7RjCAFQq4IUXilBU\nJGDZsvJHwydPypfJ2nYiIqKqYIrcMnJkMVq0kJ/K0t/fLPsca9uJiIiqgiF8S8lUlnl5QrllDqdP\nL5J9zrRp8tuJiIiqgiF8m2eeKYaLS/mpLKOijFi61IDAQBM0GhGBgSYsXWpAVBTnuyQiIttxeO9t\nSqay/PJLJ/z4owYPP1waslFRRoYuERHZFY+E78CpLImIqK4whO/QsaOIYcM4lSUREdU+hrCMkqks\nP/6Y1wETEVHtYQjLuO8+M/71LyO2bdPg+HGWiIiIagcTxoqSqSyXLJGfypKIiKimGMJWDB5shJ+f\n9aksiYiIaoohbEVlU1kSERHVFEO4AhVNZUlERFRTDOEKODsDEybIT2VJRERUUwzhSjzzTJHsVJZE\nREQ1xRCuhKcn8MQTxTh/XoUffuAsn0REZD8M4SqYNKkIKhWnsiQiIvtiCFdByVSWhw+rsXMnp7Ik\nIiL7YAhXUclUlp98wqksiYjIPhjCVdSjhxk9e0pTWf78M4+GiYio5hjC1fDyy0XQaEQ88YQOr77a\nBHq90i0iIqKGjCFcDX37mrB5sx6dO5vwxRdOCAtrir17WUIiIrINE6SaunUzY+tWPV54oQh//y3g\nwQd1iItzws2b8o9PStIgNFSH1q1dERqqQ1ISL3MiIiIJQ9gGzs7Am2/exPr1BrRtKyI+vgkGD9Yh\nNbVsOZOSNJg0yQVpaWqYTALS0tSYNMmFQUxERAAYwjXSq5cJKSmFGDOmCMeOqTFokA7x8aUzay1a\nJD+SOj6eI6yJiIghXGOursDChTexapUenp4i4uKaYPhwHf76S8DJk/LltbadiIgcC9PATgYONOHX\nXwvxyCPF2LdPjQEDmqJFC/nptfz9zXXcOiIiqo8Ywnbk4QEsWXIDy5YZ4OIi4upV+fJOm1ZUxy0j\nIqL6qEohPG/ePIwaNQrR0dE4fPhwmfvWrFmDkSNHIjo6Gm+88QZETq6Mhx4yYscOPQYNkk4Oq1Qi\nVCoRXbqYsHSpAVFRXI6JiIiqEMJ79uxBeno6EhISEBcXh7i4OMt9BoMBGzduxLfffovVq1fjr7/+\nwoEDB2q1wQ1Fy5YivvnGgEWLDNDpALNZQPfuZgwdygAmIiJJpSG8a9cuhIeHAwD8/PyQl5eHgoIC\nAICLiwu++uoraLVaGAwGFBQUwNvbu3Zb3IAIAjB6tBE7dhSie3cTVq3S4rHHXJCVJSjdNCIiqgcq\nDeGsrCx4eHhYbnt6eiIzM7PMYz777DNEREQgMjIS7dq1s38rG7h27USsX6/Hww8XY/duDQYP1uHY\nMZ6OJyJydNWeNULunO/EiRMxduxYPPfcc+jRowd69Ohh9fkeHjpoNPZdAMHb282ur1dbEhOBt98G\nXn9dhQcfbIrvvgOGD6+992sodalrrIs81kUe6yKPdZFX3bpUGsI+Pj7Iysqy3M7IyLB0Oefm5uLU\nqVP45z//CWdnZ/Tr1w/79++vMIRzcuy76oG3txsyM/Pt+pq16fnngTZtNJgyxRkjRgCvvVaEKVOK\nINi5h7qh1aWusC7yWBd5rIs81kVeRXWxFs6V9on27t0bycnJAIDU1FT4+PjA1dUVAGA0GjF79mwU\nFhYCAI4cOYKOHTva1HhHMnx/Nu3qAAAbK0lEQVS4ET/8oEerViLmzm2Cf//bGTduKN0qIiKqa5Ue\nCYeEhCAoKAjR0dEQBAGxsbFITEyEm5sbIiIi8OKLL2Ls2LHQaDTo3LkzBg4cWBftbvCCg8346Sc9\nnn7aBWvWaPHXXyqsWGGAjw8v8SIichSCWMcX9tq7C6Ohd4sYDMCMGc74/nst2rQx4+uvDbjnHjOS\nkjRYtMgJJ0+q4O9vxvTpRdW6vrih16W2sC7yWBd5rIs81kWeLd3RXM5HYS4uwCef3EBAgNky7/TY\nsUVYsqSJ5TElqy8BnOiDiKgx4XUy9YAgSFNZrlhhAIAyAXw7rr5ERNS4MITrkaFDjfjxRz0A+TME\nXH2JiKhx4ad6PdO1qxmdOsmvssTVl4iIGheGcD00a5b8KkuuriJ+/FEDvX0vtSYiIoVwYFY9JA2+\nMlhGRzdrJkIQgD17NNizRwOdTkRYmBEPPmhERIQRbpy4hoioQWII11NRUcYyI6FFETh8WIUff9Tg\nxx+1ln9Nmojo39+EYcOKERlpRPPmCjaaiIiqhSHcQAgC0K2bGd26FSEmpgjHj5cEsgbJydI/jUZE\nnz4mPPigEWPGwO5TYRIRkX3xnHADJAhAly5mvPxyEXbs0GPXrgK89tpNBAWZkZKiwaxZzvD1BaZM\nccaZM0xiIqL6iiHcCPj5iZg6tQhbt+qxd28B3nzzBgICgDVrtOjduymef94ZJ07wv5qIqL7hJ3Mj\nc9ddIl54oRiHDwNffGFAQIAZiYla9Ounw3PPOXMdYyKieoSfyI2USiWt1rR9ux5ffSXNR71hgxb9\n+zfFM88448gR/tcTESmNn8SNnEoFDBlixNatenz7rR4hISZs3KjFwIFNMXasMw4e5C5ARKQUfgI3\nMklJGoSG6qDRAKGhOiQlSQPgBQGIiDBh82Y9Vq/W4777TNiyRYtBg5pi9GgX7NvHXYGIqK7xk7cR\nSUrSYNIkF6SlqWEyla6+VBLEgBTGYWEmbNyox7p1evTsacS2bRoMGdIUI0e64Pff1TAYFPwhiIgc\nCK8TbkQWLZJfZSk+3qncEoiCAPTrZ0K/fgb8/rsa77/vhJQUDVJSpF2iRQsz2rYV0batGW3aiGjX\nrvR227ZmeHjwOmQioppiCDci1lZZqmz1pQceMCEx0YA//lBjzRoN0tNVuHBBhWPHVDh4UC37HJ1O\nCuY2baRgbt9eRK9eRnTvboaGexURUZXw47IR8fc3Iy2tfGhWdfWlnj1N6NnTZLltNgOZmQIuXBBw\n8aIK588LuHBBhYsXBZw/LwX1iRO3Hw43QbNmIvr0MSI01ITQUCM6dpRflpGIiBjCjcr06UWYNMml\n3PZp0+RXZaqMSgW0bCmiZUsRPXrIB3l+PnDhggqnTqnw669qpKRosHGjFhs3agEA7dubERoqhXLf\nvrbNbW0wAH//rcKZMyrL15wcaf3lESOMcCn/IxMRNQiCKIp1eqiSmZlv19fz9naz+2s2ZElJGsTH\nO+HkSTX8/U2YNq2o3Png2vb33wJ27NAgJUWN//1Pg+vXpaNllUrEvfeWhnKPHiY43TqNXVwMnD8v\n4MwZKWT/+qv068WL1rvTPTxEjB5djHHjitC+feW7MvcXeayLPNZFHusir6K6eHvLL3fHEG6kqluX\npCSNZelEf38zpk+3T3gbjcDBgyqkpGiwY4ca+/apYTRKody0qYjgYBOuXlXh3DnBsv12rVub4edn\nRseO0lc/PzPuvluEWi3iu++0+PZbLa5dU0EQRAwcaML48UUICzNBZSW3ub/IY13ksS7yWBd5DGGy\nqE5dSi5tutPSpQa7H0Xn5wM7d6pvHSlrcOaMCl5eZnTsKN4WstK/jh3NaNq04te7cQP44QcNli93\nwr590vnw9u3NGDeuCKNHF8PDo+zjub/Is6Uuogjk5ADNm8PqHz0NHfcXeXVRl5s3gUuXpHEohYVA\n167SQND6fFUGQ5gsqlOX0FCd7ICuwEATUlL09m5aGQYD7HZO9/BhFZYv1yIxUYsbNwQ4O4uIijJi\n/PgidOsmndPm/iKvOnUxm4EtW6Sek4MH1dDppD+g/vEP6V+nTqW9FjpdLTe8lnF/kVfTuogikJcn\njScpHfgpDfos2Xb1avm/7Fq0MOPee83o3t2EkBATunc3w8ur/gz+ZAiTRXXq0rq1K0ym8n9eajQi\nLl0qsHfTal1ODrB6tRZffumEs2elX+SQEBOeeaYIzz7rgvx87i93qsr+YjIBGzZIYw7S0tQQBBEP\nPGBCXp50Lt9gKL8PtWsnhXGnTmVDumXL+n1EU4KfL/KqW5fMTAFJSRrs2KGxXGVRUCC/A2g0Inx9\ny14C6ews/ZF98KAaFy6UDee77jLj3ntN6N7dhHvvNSM42ARX1xr9eDZjCJNFQzkSrk1mM5CSosby\n5U7YulUNURTg7g60b2+6NerbbBn9ffttHx/RMmCsOu9VUABcvy5Y/uXnA0VFAvz9pe51tfwl1/VC\nRftLURGwdq0Wixc74e+/VVCrRTzyiBHTphVZLn8zm4GLFwWcPq3C6dPSaPkzZ6SvV66UP6Lx8BDx\n6KPFGDeuuMqX0CmBny/yqlKXGzeA5GQN1qzRYvt2teUPfXd3EW3amNGunfT19kmA2raVfv8q+l3J\nyBBw8KAKBw6ocfCgGgcPqnDtWuk+JggiOnc2o3t3M+65R/pdb9FChLe3iBYtzGjevPYmGmIIk0V9\nPSeslHPnBHz1lRbJyU1w4YIIvb7i30IvLzN8fEoD2sNDhF4P5OeXDVnpq4CCAkAUrb+mi4uIwEAz\ngoJM6NrVjK5dTejSpfJz3nVFbn8xGIDvvtPio4+ccPGiCk5OIkaNKsa//12EDh2q/rGRnw9LIJd8\n3b1bjYwM6YOzd28jxo0rxpAhxmr/8VPb+Pkiz1pdRBHYvVuNtWs12LBBa7kyols3E0aOLMZDDxnR\nsqV9I0cUpd/vgwfVOHBAjQMHVDh0SG31d1yjkUK5NJhLvjdbtv3jH+YqXW1xJ4YwWdgyOlq6tEka\nHa3EpU11oaQuBQXAlSvSeaerV4Uy35f+UyE/X/4XWaUS4e4u/VXv5ibC3V26Xfq9CDc36XEnTqhx\n5IgKJ06oyowAFwTpXKoUylIwBwWZ7f4hVRW37y8FBcCKFVp8+qkTMjNVcHERMXZsMSZPLkLr1vZp\nW3GxdF55xQotfvtNc6sNZowZU4wxY4rRpk39OM/XWD9fcnNh6dr19TWjQwfpKLSqfwTdWZe//xaw\ndq0Wa9dqkZ4u/XHVurUZjz1WjMcfNyIgoG57O0wm4NQpFY4fVyErS0BWloDMTOlfVpbq1lcBhYXW\nf7+PHi1EixbV2w8ZwmTBusirbl0KC4GrVwXk5grQ6YBmzaTQbdq0+l1aN29KU4impqpw9KgaR49K\nX0uOFkrbaEZAgBkuLtJf7RoNoNEAWi2g1UpddVotbm0XLd9rtYCTk3TU7ukpffXykr5v1qziEcze\n3m44eTIfy5Y54fPPnZCbK8DVVcSECUWYOLEY3t619zFx+rSAr75ywurVWuTlCVCpRAwaJB0d9+9v\n/XKzutAYfo8KCoAjR6Ru25KjxZKxErdTqUS0aSOiQwcz2reXjgRLvzeXudLA29sNp07lY8MGLdau\n1WDPHukPKZ1OxLBhRowcWYw+fUz1+hQMAOj1KBPSWVlSaOt0Ip59trjav+MMYbJgXeTVt7qIojRJ\nydGj0tFySUDfOfikplSqsuHs6SkFdMn3hYXOWLJERGGhAA8PERMnFmHChCKbZjizlV4PrF+vwYoV\nTpY5yzt0MGPs2CI88YRRkVGwHh5uSE/Ph8EgoLAQ0OsF6PWAwSBYvi+7TbptMADFxQKKi6Vr5YuK\nAKOx9HZxcdn7i4ul8QOCALRoIY1PKDkdIn2Vbvv4SN2lWq18e2/cAI4dKz1feuiQCidPqmA2l6ZJ\n8+YiuneXBjJ16GDGpUsqpKerkJ4u4OxZ+XP4gPQHaEkgazRabNwo3mqziD59pO7mYcOMig2Kqg8Y\nwmTBushrKHW5caPkg1r68C75oDaZSj+8pe/L3n/zJpCbK+DaNQHZ2QJyckq/L7mdnS2U+VAu4eNj\nxuTJRRg7tljxD9KDB1VYsaL0crMmTUQMHy4dYbm6ijCbAbNZgMkEyz9pW8lt4bbvpaDT66UgLSwU\nbv2TvtfrS77efr/09ebN2hnBIwhS1+/tPRxardT+rCz5iWtuVzJmoSSotVoRR46okZamQnFx6XOb\nNhXRrZsJ3bpJI4i7dTOhQ4eKR6YbDMD58yqcPSsgPV2Fs2dLQzo9XYUbN6Qn+/ubMHKkEY89Vgxf\n3/px+kBpDGGyYF3ksS7SB31eHpCdLQV0To4AV1cdevTIh7Oz0q0rKzcXSEjQYsUKJ5w5U7v90k2a\niGjaVDrVUPK1WTM1tFojdDoRLi4idDqpy1WnQ5nbLi6l25s2FeHsXBqsGo10muD20wYVddOazUBO\njjQuISND+nf1qsryvXRbQEaGqsypjCZNRHTtarYc5XbvLl0SZs8uYbNZGp3s7OyKZs3yG8RlZnWJ\nIUwWrIs81kVefa+LKAL/+58av/wiXWqmVkvnxlUqKdBKvpdui2W2qdVS+EnBWhqUpWErbZPr4q3v\nddHrpWtwDQYBfn5mq93U9lbf66IUW0KYqyhRjdTWnNNEtxMEoG9fE/r2NVX+YAei0+HWpTTsDm6o\nGMJkszuvL05LU9+63XiuLyYiqk2NdNp1qguLFslfVBgfX89mXCAiqqcYwmSzkyfldx9r24mIqCx+\nWpLNrM35W5W5gJOSNAgN1aF1a1eEhuqQlMQzI0TkeBjCZLPp04tkt0+bJr+9RMm55LQ0aVL3knPJ\nDGIicjQMYbJZVJQRS5caEBhogkYjIjDQVKVFH3gumYhIwkMPqpGoKGO1R0LzXDIRkYSfelTneC6Z\niEjCEKY6x3PJREQShjDVOZ5LJiKSMIRJEVFRRqSk6HHpUgFSUvRVOq9ck3PJJd3YGg3YjU1E9QZD\nmBoMW88ll+3GBruxiajeYAhTg2HruWR2YxNRfVWlQ4F58+bh0KFDEAQBMTExCA4Ottz3xx9/4IMP\nPoBKpULHjh0RFxcHlYrZTvYndVkbEB9fumrTtGmVr9rES6KIqL6qNIT37NmD9PR0JCQk4MyZM4iJ\niUFCQoLl/tdffx1ff/01WrVqhalTp+K3335DaGhorTaaHJct1yX7+5uRllZ+ZfOqXBJFRFSbKj0U\n2LVrF8LDwwEAfn5+yMvLQ0FBgeX+xMREtGrVCgDg6emJnJycWmoqkW1s7cYmIqptlYZwVlYWPDw8\nLLc9PT2RmZlpue3q6goAyMjIwM6dO3kUTPVO2UuiUOVLooiIalu1h4eKolhu27Vr1/D8888jNja2\nTGDL8fDQQaMp3zVYE97ebnZ9vcaCdSk1caL0T6IG4KJga+on7i/yWBd5rIu86tal0hD28fFBVlaW\n5XZGRga8vb0ttwsKCvDcc89h+vTp6NOnT6VvmJOjr1YDK+Pt7YbMzHy7vmZjwLrIY13ksS7yWBd5\nrIu8iupiLZwr7Y7u3bs3kpOTAQCpqanw8fGxdEEDwIIFC/D000+jX79+trSZqF7jXNVEVJsq/UQJ\nCQlBUFAQoqOjIQgCYmNjkZiYCDc3N/Tp0wfr169Heno61q1bBwB48MEHMWrUqFpvOFFtK5nko0TJ\nJB8AzycTkX1U6c/6WbNmlbkdEBBg+f7o0aP2bRFRPVHRJB8MYSKyB85WQGQFJ/kgotrGTxMiK2qy\n7jERUVUwhIms4CQfRFTbGMJEVti67jERUVXxeguiCtgyVzUgjaxetKh0oYnp0ytfaIKIHA9DmMjO\neGkTEVUVu6OJ7IzrFxNRVTGEieysJpc2cYYuIsfCECayM1svbSrpxk5LU8NkEizd2AxiosaLIUxk\nZ7Ze2sRubCLHwxAmsjNbL23iDF1Ejof9XES1wJZLm/z9zUhLK7/WNmfoImq8+Cc2UT3BGbqIHA9D\nmKieqMkMXRxVTdQw8TeVqB6xpRubk4MQNVw8EiZq4DiqmqjhYggTNXAcVU3UcPG3lKiB47rHRA0X\nQ5iogavJqOqSAV0aDTigi0gB/I0jauCkwVcGxMeXLp04bVrlSydyQBeR8ngkTNQIREUZkZKix6VL\nBUhJ0VcpRGsyoIuXRBHZB0OYyEHZOqCrJgtNMLyJymIIEzkoWwd02XoEzVWiiMpjCBM5KFsHdNl6\nBM3rmYnKYwgTOaiy02SiytNk2noEzeuZicrj3k/kwEoGdBUXo8oDumw9gub1zETlMYSJqFpsXWjC\nHtczc0AXNTbck4mo2mxZaILXMxOVxxAmojpjS3hXNKCLIUwNHbujiahe44Auasy4FxNRvVaTAV08\nl0z1HUOYiOo1Wwd0cXIQaggYwkRUr9k6GpuTg1BDwBAmonrPlgUqanIu2dYlHtn9TdXFPYSIGiV/\nfzPS0tSy2yti6yVRvJSKbMEjYSJqlGw9l2xrNza7v8kWDGEiapRsPZdsazc2L6UiW7A7mogaLVsm\nB7G1G9vW55Fj459oRES3sbUbuyZzY5PjYggTEd3G1iUebe3+Bjiq2pHxf5qI6A4l3dje3m7IzNRX\n+3nVwVHVjo1HwkRECqrJqGoeQTd8DGEiIgXZOqq6JtNyMrzrD4YwEZGCbF2gwtYjaM6pXb8whImI\nFGTrqGpbj6Dt0f1d3ek8yTqGMBGRgmwdVW3rEbR9ur/B7m87qVIIz5s3D6NGjUJ0dDQOHz5c5r6b\nN2/ilVdewSOPPFIrDSQiauxsWaDC1iNodn/XL5WG8J49e5Ceno6EhATExcUhLi6uzP3vvvsuunTp\nUmsNJCKi8mw9gm5I3d+OoNIQ3rVrF8LDwwEAfn5+yMvLQ0FBgeX+l156yXI/ERHVHVuOoBtK9zfg\nGN3YlVYhKysLHh4eltuenp7IzMy03HZ1da2dlhERUa1oCN3fjnIJVrVbJopijd7Qw0MHjab8JOc1\n4e3tZtfXayxYF3msizzWRR7rIpk4EXB3B+bPB44dAwIDgVdfBaKjXSp83uuvA088UX77nDnqCmv7\n0Ufy2z/+2AUTJ1p/v9WrgUmTSm+XhLe7OxAdXWFT7aK6+0ulIezj44OsrCzL7YyMDHh7e1e/Zbfk\n5FR9CriqkKaVy7frazYGrIs81kUe6yKPdSlr4EDp3+11ua1j1Opzli7VID7eCSdPquDvb8a0aUUY\nONBY4XOPHXMFIMhsF5GZWVD+Cbe89ZYOQPkDvblzTRg40L75c6eK9hdr4Vxpd3Tv3r2RnJwMAEhN\nTYWPjw+7oImIqMps6f52lHPQlb5DSEgIgoKCEB0dDUEQEBsbi8TERLi5uSEiIgJTp07FlStX8Pff\nf2PMmDEYOXIkhg8fXusNJyKixmv69KIyC1uUqMo5aFvWdVZqIQ1BrOlJ3mqyd9cOu4vksS7yWBd5\nrIs81kVeXdUlKal8N3ZlgXhnmJaobAR4aKhONrwDA01ISalaN7Yt3dH1d8gYERE5NFuWhpQeb6h2\neNekG7smGMJERNSo2BLetnZj1xTnjiYiIodn63XQNcUQJiIih2frTGI1xe5oIiIi2NaNXVM8EiYi\nIlIIQ5iIiEghDGEiIiKFMISJiIgUwhAmIiJSCEOYiIhIIQxhIiIihTCEiYiIFMIQJiIiUkidL2VI\nREREEh4JExERKYQhTEREpBCGMBERkUIYwkRERAphCBMRESmEIUxERKQQjdINqIl58+bh0KFDEAQB\nMTExCA4OVrpJitu9ezemTZuGTp06AQD8/f0xZ84chVulrJMnT2Ly5MkYN24cnnrqKVy+fBn/+c9/\nYDKZ4O3tjffeew9OTk5KN7PO3VmX2bNnIzU1Fc2bNwcATJgwAf3791e2kXXs3Xffxb59+2A0GjFp\n0iTcc8893FdQvi7bt293+H3FYDBg9uzZuHbtGm7evInJkycjICCg2vtLgw3hPXv2ID09HQkJCThz\n5gxiYmKQkJCgdLPqhfvvvx+LFy9Wuhn1gl6vx9y5c9GrVy/LtsWLF2P06NEYMmQIPvjgA6xbtw6j\nR49WsJV1T64uADBjxgwMGDBAoVYp648//sCpU6eQkJCAnJwcREVFoVevXg6/r8jVpWfPng69rwDA\nL7/8gq5du+K5557DxYsXMX78eISEhFR7f2mw3dG7du1CeHg4AMDPzw95eXkoKChQuFVU3zg5OeHz\nzz+Hj4+PZdvu3bsxcOBAAMCAAQOwa9cupZqnGLm6OLp//vOfiI+PBwC4u7vDYDBwX4F8XUwmk8Kt\nUt7QoUPx3HPPAQAuX76Mli1b2rS/NNgQzsrKgoeHh+W2p6cnMjMzFWxR/XH69Gk8//zzeOKJJ7Bz\n506lm6MojUYDZ2fnMtsMBoOli8jLy8sh9xu5ugDAypUrMXbsWLz00kvIzs5WoGXKUavV0Ol0AIB1\n69ahX79+3FcgXxe1Wu3Q+8rtoqOjMWvWLMTExNi0vzTY7ug7cfZNSYcOHTBlyhQMGTIE58+fx9ix\nY/HTTz855HmsquB+U2rEiBFo3rw5unTpgs8++wwfffQRXn/9daWbVee2bduGdevWYfny5Rg0aJBl\nu6PvK7fX5ejRo9xXblm9ejXS0tLw8ssvl9lHqrq/NNgjYR8fH2RlZVluZ2RkwNvbW8EW1Q8tW7bE\n0KFDIQgC7rrrLrRo0QJXr15Vuln1ik6nw40bNwAAV69eZZfsLb169UKXLl0AAGFhYTh58qTCLap7\nv/32G5YsWYLPP/8cbm5u3FduubMu3FeAo0eP4vLlywCALl26wGQyoWnTptXeXxpsCPfu3RvJyckA\ngNTUVPj4+MDV1VXhVinv//7v//DFF18AADIzM3Ht2jW0bNlS4VbVLw888IBl3/npp5/Qt29fhVtU\nP/z73//G+fPnAUjnzUtG2DuK/Px8vPvuu1i6dKll1C/3Ffm6OPq+AgB79+7F8uXLAUinR/V6vU37\nS4NeRen999/H3r17IQgCYmNjERAQoHSTFFdQUIBZs2bh+vXrKC4uxpQpUxAaGqp0sxRz9OhRvPPO\nO7h48SI0Gg1atmyJ999/H7Nnz8bNmzfh6+uL+fPnQ6vVKt3UOiVXl6eeegqfffYZXFxcoNPpMH/+\nfHh5eSnd1DqTkJCADz/8EB07drRsW7BgAV577TWH3lfk6vLII49g5cqVDruvAMCNGzfw//7f/8Pl\ny5dx48YNTJkyBV27dsUrr7xSrf2lQYcwERFRQ9Zgu6OJiIgaOoYwERGRQhjCRERECmEIExERKYQh\nTEREpBCGMBERkUIYwkRERAphCBMRESnk/wNUCeLfx9TLWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "zZ-YjPNUmUL9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "We reach a validation accuracy of about 90%, much better than what we could achieve in the previous section with our small model trained from \n", + "scratch. However, our plots also indicate that we are overfitting almost from the start -- despite using dropout with a fairly large rate. \n", + "This is because this technique does not leverage data augmentation, which is essential to preventing overfitting with small image datasets.\n", + "\n", + "Now, let's review the second technique we mentioned for doing feature extraction, which is much slower and more expensive, but which allows \n", + "us to leverage data augmentation during training: extending the `conv_base` model and running it end-to-end on the inputs. Note that this \n", + "technique is in fact so expensive that you should only attempt it if you have access to a GPU: it is absolutely intractable on CPU. If you \n", + "cannot run your code on GPU, then the previous technique is the way to go.\n", + "\n", + "Because models behave just like layers, you can add a model (like our `conv_base`) to a `Sequential` model just like you would add a layer. \n", + "So you can do the following:" + ] + }, + { + "metadata": { + "id": "UK2eNY0VmUL9", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import models\n", + "from keras import layers\n", + "\n", + "model = models.Sequential()\n", + "model.add(conv_base)\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(256, activation='relu'))\n", + "model.add(layers.Dense(1, activation='sigmoid'))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xrzhcPE9mUL_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is what our model looks like now:" + ] + }, + { + "metadata": { + "id": "GJ82FQLOmUMA", + "colab_type": "code", + "outputId": "0f00809a-b69a-492f-b38f-b5e3999ee642", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 276 + } + }, + "cell_type": "code", + "source": [ + "model.summary()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "vgg16 (Model) (None, 4, 4, 512) 14714688 \n", + "_________________________________________________________________\n", + "flatten_4 (Flatten) (None, 8192) 0 \n", + "_________________________________________________________________\n", + "dense_9 (Dense) (None, 256) 2097408 \n", + "_________________________________________________________________\n", + "dense_10 (Dense) (None, 1) 257 \n", + "=================================================================\n", + "Total params: 16,812,353\n", + "Trainable params: 16,812,353\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "swzY9pMVmUMC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As you can see, the convolutional base of VGG16 has 14,714,688 parameters, which is very large. The classifier we are adding on top has 2 \n", + "million parameters.\n", + "\n", + "Before we compile and train our model, a very important thing to do is to freeze the convolutional base. \"Freezing\" a layer or set of \n", + "layers means preventing their weights from getting updated during training. If we don't do this, then the representations that were \n", + "previously learned by the convolutional base would get modified during training. Since the `Dense` layers on top are randomly initialized, \n", + "very large weight updates would be propagated through the network, effectively destroying the representations previously learned.\n", + "\n", + "In Keras, freezing a network is done by setting its `trainable` attribute to `False`:" + ] + }, + { + "metadata": { + "id": "h9Ww6ZS2mUMD", + "colab_type": "code", + "outputId": "15f1039c-f954-4b0d-bd10-768ada972ddb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('This is the number of trainable weights '\n", + " 'before freezing the conv base:', len(model.trainable_weights))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "This is the number of trainable weights before freezing the conv base: 30\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "SPIqZpITmUMG", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "conv_base.trainable = False" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "k9PgrdMEmUMJ", + "colab_type": "code", + "outputId": "3b69909c-3698-45a6-daf3-acf788a8427d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "print('This is the number of trainable weights '\n", + " 'after freezing the conv base:', len(model.trainable_weights))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "This is the number of trainable weights after freezing the conv base: 4\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "53blTy-imUMN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "With this setup, only the weights from the two `Dense` layers that we added will be trained. That's a total of four weight tensors: two per \n", + "layer (the main weight matrix and the bias vector). Note that in order for these changes to take effect, we must first compile the model. \n", + "If you ever modify weight trainability after compilation, you should then re-compile the model, or these changes would be ignored.\n", + "\n", + "Now we can start training our model, with the same data augmentation configuration that we used in our previous example:" + ] + }, + { + "metadata": { + "id": "I3EVZumomUMO", + "colab_type": "code", + "outputId": "46ab2ebe-7069-48b0-ad76-5f81dc493d75", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1088 + } + }, + "cell_type": "code", + "source": [ + "from keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "train_datagen = ImageDataGenerator(\n", + " rescale=1./255,\n", + " rotation_range=40,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,\n", + " fill_mode='nearest')\n", + "\n", + "# Note that the validation data should not be augmented!\n", + "test_datagen = ImageDataGenerator(rescale=1./255)\n", + "\n", + "train_generator = train_datagen.flow_from_directory(\n", + " # This is the target directory\n", + " train_dir,\n", + " # All images will be resized to 150x150\n", + " target_size=(150, 150),\n", + " batch_size=20,\n", + " # Since we use binary_crossentropy loss, we need binary labels\n", + " class_mode='binary')\n", + "\n", + "validation_generator = test_datagen.flow_from_directory(\n", + " validation_dir,\n", + " target_size=(150, 150),\n", + " batch_size=20,\n", + " class_mode='binary')\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer=optimizers.RMSprop(lr=2e-5),\n", + " metrics=['acc'])\n", + "\n", + "history = model.fit_generator(\n", + " train_generator,\n", + " steps_per_epoch=100,\n", + " epochs=30,\n", + " validation_data=validation_generator,\n", + " validation_steps=50,\n", + " verbose=2)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 2000 images belonging to 2 classes.\n", + "Found 1000 images belonging to 2 classes.\n", + "Epoch 1/30\n", + " - 29s - loss: 0.5934 - acc: 0.6795 - val_loss: 0.4523 - val_acc: 0.8230\n", + "Epoch 2/30\n", + " - 27s - loss: 0.4779 - acc: 0.7920 - val_loss: 0.3608 - val_acc: 0.8650\n", + "Epoch 3/30\n", + " - 27s - loss: 0.4301 - acc: 0.8140 - val_loss: 0.3323 - val_acc: 0.8690\n", + "Epoch 4/30\n", + " - 27s - loss: 0.4040 - acc: 0.8210 - val_loss: 0.3062 - val_acc: 0.8750\n", + "Epoch 5/30\n", + " - 27s - loss: 0.3788 - acc: 0.8335 - val_loss: 0.2872 - val_acc: 0.8820\n", + "Epoch 6/30\n", + " - 27s - loss: 0.3754 - acc: 0.8355 - val_loss: 0.2866 - val_acc: 0.8750\n", + "Epoch 7/30\n", + " - 27s - loss: 0.3591 - acc: 0.8420 - val_loss: 0.2840 - val_acc: 0.8780\n", + "Epoch 8/30\n", + " - 27s - loss: 0.3445 - acc: 0.8495 - val_loss: 0.2761 - val_acc: 0.8870\n", + "Epoch 9/30\n", + " - 27s - loss: 0.3468 - acc: 0.8450 - val_loss: 0.2636 - val_acc: 0.8860\n", + "Epoch 10/30\n", + " - 27s - loss: 0.3422 - acc: 0.8455 - val_loss: 0.2641 - val_acc: 0.8920\n", + "Epoch 11/30\n", + " - 27s - loss: 0.3311 - acc: 0.8545 - val_loss: 0.2619 - val_acc: 0.8910\n", + "Epoch 12/30\n", + " - 27s - loss: 0.3228 - acc: 0.8685 - val_loss: 0.2514 - val_acc: 0.8930\n", + "Epoch 13/30\n", + " - 27s - loss: 0.3221 - acc: 0.8610 - val_loss: 0.2500 - val_acc: 0.8950\n", + "Epoch 14/30\n", + " - 27s - loss: 0.3216 - acc: 0.8605 - val_loss: 0.2519 - val_acc: 0.8960\n", + "Epoch 15/30\n", + " - 27s - loss: 0.3126 - acc: 0.8640 - val_loss: 0.2518 - val_acc: 0.8930\n", + "Epoch 16/30\n", + " - 27s - loss: 0.3129 - acc: 0.8685 - val_loss: 0.2458 - val_acc: 0.8990\n", + "Epoch 17/30\n", + " - 27s - loss: 0.3114 - acc: 0.8600 - val_loss: 0.2587 - val_acc: 0.8850\n", + "Epoch 18/30\n", + " - 27s - loss: 0.3044 - acc: 0.8705 - val_loss: 0.2574 - val_acc: 0.8860\n", + "Epoch 19/30\n", + " - 27s - loss: 0.2988 - acc: 0.8705 - val_loss: 0.2483 - val_acc: 0.8920\n", + "Epoch 20/30\n", + " - 27s - loss: 0.3052 - acc: 0.8615 - val_loss: 0.2446 - val_acc: 0.8980\n", + "Epoch 21/30\n", + " - 27s - loss: 0.2942 - acc: 0.8775 - val_loss: 0.2454 - val_acc: 0.8940\n", + "Epoch 22/30\n", + " - 27s - loss: 0.3014 - acc: 0.8735 - val_loss: 0.2404 - val_acc: 0.8990\n", + "Epoch 23/30\n", + " - 27s - loss: 0.2965 - acc: 0.8745 - val_loss: 0.2499 - val_acc: 0.8980\n", + "Epoch 24/30\n", + " - 27s - loss: 0.2821 - acc: 0.8860 - val_loss: 0.2417 - val_acc: 0.9050\n", + "Epoch 25/30\n", + " - 27s - loss: 0.2867 - acc: 0.8810 - val_loss: 0.2482 - val_acc: 0.8930\n", + "Epoch 26/30\n", + " - 27s - loss: 0.2840 - acc: 0.8745 - val_loss: 0.2402 - val_acc: 0.9020\n", + "Epoch 27/30\n", + " - 27s - loss: 0.2885 - acc: 0.8660 - val_loss: 0.2407 - val_acc: 0.9030\n", + "Epoch 28/30\n", + " - 27s - loss: 0.2705 - acc: 0.8900 - val_loss: 0.2402 - val_acc: 0.9050\n", + "Epoch 29/30\n", + " - 27s - loss: 0.2786 - acc: 0.8865 - val_loss: 0.2386 - val_acc: 0.9050\n", + "Epoch 30/30\n", + " - 27s - loss: 0.2785 - acc: 0.8805 - val_loss: 0.2397 - val_acc: 0.9040\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "nFpCgwYgmUMR", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.save('cats_and_dogs_small_3.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "OWd7L1lmmUMU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's plot our results again:" + ] + }, + { + "metadata": { + "id": "bQ1_rNWGmUMV", + "colab_type": "code", + "outputId": "ab64c8a7-19ba-4b58-be25-7069100ca732", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4VFXi//H3lExISIAkJAgIKyAt\nIApfVqUtNdJX4lpQERQQBVERVCCK6CpFBQUsiAKyAmrUJbaFUAQEFUGK/qQtiisiNaGH1Cm/P0YG\nYia9zJ3J5/U8PDA3M3fOPdzMZ+45555jcrlcLkRERMQwzL4ugIiIiOSmcBYRETEYhbOIiIjBKJxF\nREQMRuEsIiJiMApnERERg1E4i9+YPHkyvXr1olevXrRo0YKuXbt6HqelpRVrX7169SI1NbXA58yc\nOZP33nuvNEUuc3fffTfLli0rk301bdqUo0ePsnr1aiZOnFiq9/vggw88/y5K3YpIway+LoBIUT3z\nzDOef3fr1o0XXniBtm3blmhfycnJhT5n3LhxJdq3v4mLiyMuLq7Er09JSWH+/PnceuutQNHqVkQK\npitnCRh33XUXL7/8Mr1792b79u2kpqYybNgwevXqRbdu3Xj77bc9z71w1bh582Zuu+02Zs6cSe/e\nvenWrRtbtmwBYMKECbz++uuA+8vA+++/z80330zHjh2ZPn26Z19vvPEG7dq14x//+AdLly6lW7du\nXsv34Ycf0rt3b2644QbuvPNODh06BMCyZct46KGHSEhIoGfPnvTp04effvoJgIMHD3LLLbfQo0cP\nxo0bh8PhyLPfL7/8kv79++faduONN7Jhw4YC6+CCZcuWcffddxf6fl988QX9+/enZ8+e3HTTTezZ\nsweAgQMHcvjwYXr16kV2dranbgHeeecd+vTpQ69evRg5ciQnT5701O2cOXO455576Nq1K/fccw8Z\nGRl5ypaRkcGYMWPo2bMn3bp14/nnn/f87ODBg9x5553ExcXxj3/8g127dhW4vVu3bmzdutXz+guP\nf//9dzp27MjUqVMZNGhQgccK8Oabb9K9e3d69uzJtGnTcDgcdOjQgR9//NHznCVLljBq1Kg8xyNS\nVApnCSg7d+7kP//5D23atGHu3LlcfvnlJCcn869//YuZM2dy5MiRPK/ZvXs3V199NStWrOCOO+5g\n7ty5Xvf93XffkZiYyL///W+WLFnC0aNH+emnn5g/fz6ffPIJ7777br5XjSdOnOCf//wnb7/9NqtW\nraJ+/fqe4AfYsGEDd9xxBytXruS6667jX//6FwAzZsygXbt2rFmzhiFDhrB9+/Y8+27Xrh1Hjx7l\n4MGDgDucjh49Svv27YtcBxfk9352u50JEybw7LPPsnLlylxBOXXqVGrXrk1ycjI2m82zr++//54F\nCxawePFikpOTqVOnDjNnzvT8PDk5mZdffpnVq1dz8uRJVq9enac87733HufPnyc5OZmkpCSWLVvm\nCdhJkybRt29fVq9ezciRI3n88ccL3F6Q06dP07x5c5YsWVLgsW7dupWPPvqITz75hM8++4xt27ax\natUqevfuzeeff+7Z3+rVq+nbt2+h7yuSH4WzBJTOnTtjNrtP6yeffJJJkyYBUK9ePaKjo/n999/z\nvKZq1ar06NEDgBYtWnD48GGv++7fvz8Wi4VatWoRFRXFkSNH+O6777j22muJiYkhODiYf/zjH15f\nGxUVxbZt27jssssAaNu2rSdMARo1akTLli0BiI2N9QTo1q1b6dOnDwCtWrWiYcOGefZts9no2rUr\na9euBWDNmjX06NEDq9Va5Dq4IL/3s1qtfPPNN1xzzTVey+/N+vXr6dmzJ1FRUQDccsstfP31156f\nd+7cmRo1amC1WmnSpInXLw1Dhw7l9ddfx2QyUb16dRo3bszvv/9OVlYWmzdvpl+/fgB0796dDz74\nIN/thcnJyfE07Rd0rBs2bKBz586EhYVhs9lYvHgxN9xwA3379mX58uU4nU5Onz7Nzp076dq1a6Hv\nK5If9TlLQKlevbrn3z/++KPnStFsNpOSkoLT6czzmvDwcM+/zWaz1+cAhIWFef5tsVhwOBycPXs2\n13vWqlXL62sdDgdz5sxh7dq1OBwOzp8/T4MGDbyW4cK+Ac6cOZPrfatVq+Z1/z179uSdd95hyJAh\nrFmzxtOkWtQ6uKCg91u8eDFJSUlkZ2eTnZ2NyWTKdz8AJ0+eJCYmJte+Tpw4UegxX+rXX39l+vTp\n/PLLL5jNZo4ePcpNN93E6dOncTqdnn2YTCaqVq3KsWPHvG4vjMViyXXc+R3rqVOnch1TSEgIAK1b\ntyYoKIgtW7Zw9OhROnbsSGhoaKHvK5IfXTlLwHrsscfo2bMnK1euJDk5mYiIiDJ/j7CwMNLT0z2P\njx8/7vV5y5cvZ+3atSxZsoSVK1fy0EMPFWn/1apVyzUS/UKf7Z916tSJvXv38uuvv/Lrr79y/fXX\nA8Wvg/zeb/v27bz11lvMnTuXlStX8txzzxVa9po1a3L69GnP49OnT1OzZs1CX3epf/7znzRu3JgV\nK1aQnJxMs2bNAIiIiMBkMnHq1CkAXC4XBw4cyHe7y+XK88XrzJkzXt+zoGONiIjw7BvcYX3hcd++\nfUlOTiY5OdnT+iBSUgpnCVgnTpygZcuWmEwmkpKSyMjIyBWkZaFVq1Zs3ryZkydPkp2dzccff5xv\nWerWrUtkZCSnTp1ixYoVnD9/vtD9X3PNNZ6+2O3bt/Pbb795fZ7NZqNjx468+OKLdO/eHYvF4nnf\n4tRBfu938uRJoqKiqFOnDhkZGSQlJZGeno7L5cJqtZKeno7dbs+1ry5durB69WpPeL3//vt07ty5\n0GO+1IkTJ2jevDkWi4Wvv/6aAwcOkJ6ejs1mo0OHDiQlJQGwceNGRowYke92k8lEdHQ0e/fuBdxf\nlrKysry+Z0HH2q1bN9auXcuZM2ew2+088MADfPXVVwD069ePNWvWsGPHjmIfp8ifKZwlYD388MM8\n8MAD9O/fn/T0dG677TYmTZqUb8CVRKtWrYiPjyc+Pp7Bgwfn28/Yr18/Tp8+TVxcHOPGjWPMmDEc\nPXo016hvbx577DHWrVtHjx49WLp0Ke3bt8/3uT179mTNmjX07t3bs624dZDf+3Xq1ImYmBh69OjB\n0KFDGTJkCOHh4Tz00EM0bdqU6tWr06FDh1z99a1atWLEiBHceeed9OrVi3PnzvHII48UeLx/NnLk\nSJ5//nn69evHli1bGD16NK+88grbtm1jypQprFu3ju7duzNr1ixmzJgBkO/2UaNGsWjRIvr168f+\n/fu58sorvb5nQcd6zTXXMGzYMAYMGEDfvn2JjY319G83bdqUGjVq0LFjR6pUqVKs4xT5M5PWcxYp\nHZfL5emTXL9+PbNmzcr3CloC27333sugQYN05SylpitnkVI4efIk119/PYcOHcLlcrFixQrPKF+p\nXLZt28ahQ4fo1KmTr4siAUCjtUVKITIykjFjxnD33XdjMplo2LBhke6rlcAyceJEtm/fzosvvui5\nlU+kNNSsLSIiYjD6iiciImIwCmcRERGDMUyfc0rKuTLdX0REKKdOle09rYFA9eKd6sU71Yt3qhfv\nVC/e5Vcv0dHhXp7tFrBXzlarxddFMCTVi3eqF+9UL96pXrxTvXhXknoJ2HAWERHxVwpnERERg1E4\ni4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBGGYSEiN65ZWX+e9/93Dy5AkyMzOpU6cu1apV\nZ+rUFwt97fLln1G1ahidO3tf33f27JnccstA6tSpW9bFFhERP2eYhS/KYoawpCQrs2bZ2LfPTGys\nidGjM4iPt5d6v8uXf8Yvv+xn9Ogxpd6Xr0VHh5f5bGyBQPXinerFO9WLd6oX7/Krl4JmCAuYK+ek\nJCv33Rfiefzjj/zxuGwC+lLbt2/l/feXkJ6ezujRj7BjxzbWr/8Cp9NJu3YdGDp0BAsWzKNGjRo0\naNCIZcs+wGQyc+DA/+jSpTtDh45g9OgRjB37OOvWfcH582n89tsBDh36nYceGke7dh1YsmQRa9as\nok6dutjtdgYOvJM2bdp6yvDdd5uZP/8NgoKCCA8P55//nE5QUBCzZs1g9+6dWCwWHntsIg0bXplr\n29SpzxERUbtM60NERMpWwITzrFk2r9tnz7aVeTgD7N//M++9twybzcaOHdt4/fX5mM1mbr31Rm67\n7Y5cz929exfvvvtvnE4nt9zSn6FDR+T6+fHjx5gxYw7ffvsNn3zyb1q0aMmyZR/y3nv/5vz58wwc\neBMDB96Z6zXnzp1j8uTnqFOnLs8++xSbN28iODiY48eP8eabi/j+++188cVqTpw4kWvb8uXLufPO\nYWVeHyJiHC4XrF1rISwMrrvO4evilKkzZ2DvXgt795o5c8ZUon1UreqiZs3cfyIiXBhpKe6ACed9\n+7zXan7bS+vKKxtjs7m/EFSpUoXRo0dgsVg4ffo0Z8+ezfXcpk2bUaVKlXz31arVNQDExMSQlpbG\n778fpGHDRgQHVyE4uArNm7fI85oaNWrw/PPP4XA4OHz4EP/3f3/l1KmTXHXV1QBcc00brrmmDUuX\n/ivXtri4zmp2EglgP/9sYuLEKnz5pRWr1cXbb2fQs6f/BXRGhvvze88esyeM9+41c/hw+XymWywu\nIiMvhnV09J8D3Mn11zuoUaNc3j6PgAnnJk2c7NmTd3LxJk2c5fJ+QUFBABw9eoTExKUsXLiU0NBQ\n7rrr1jzPtVgKnvT80p+7XC5cLjBf8hXO5OXL4bRpz/Lii7O44ooGvPTS8wCYzRZcrtzH622biASe\n8+fdLYivv24jJ8dEx452tm+3MGxYCIsXZ9C1qzEDOjsb/vc/d/C6g9gdxv/7nwmXK/eHX+3aTrp2\ntdOsmZPmzR1ERxd/yJTLBefPm0hNNZGS4v774h8zhw6Z2bPH+xV5XJydpUszSnScxRUw4TxmTHau\nPucLHn44u1zf9/Tp00RERBAaGsp//7uXo0ePkpOTU6p91q5dm19+2Y/dbufcuXPs3bsnz3POn0+j\nVq3LOHfuHNu3b6NRo8Y0bx7LkiWLuOOOwezbt5fPPvuE7t3jcm17/fXljBo1tlTlExHjcLlg+XIr\nkyYF8/vvZurWdfLcc5n06WNn40YLd94ZwpAhIbz3XgYdOpR/QDudcPo0pKaaPaGXNwRNnp97a5qO\niHDRrp2DZs2cl/ypuKvWrCw4ceJiWY8fN3HihKlC6u+CIoXz1KlT+eGHHzCZTCQkJNCqVSvPz9as\nWcPcuXOx2Wz07duXQYMGFfqa8uDuV85g9uyLo7UfeKDsB4P9WePGTQgJCWXkyKFcddU13HjjTcyc\n+TytWl1d4n1GRkYRF9eLe+8dzF/+0oDY2BZ5rr5vuukWRo4cRr169bnzzsEsXPgmc+cu5C9/acCo\nUcMBGDduAo0aXcnGjV96tj333D9LfrAiYii//GIiIaEKa9daCQpy8fDDWYwZk03Vqu6f/+1vDhYt\nymDw4BDuvDOExMSMcumDPnHCxPjxwWzZAikpYTgcBfcFm80uoqJc1KnjpFUrF/XqOWne/GIQx8S4\nvLYYVpTgYKhTx0WdOr67manQW6m2bNnCggULmDdvHvv37ychIYHExEQAnE4nXbt2JSkpiRo1anDv\nvfcyZcoUfvvtt3xfk5+y7gf19yH9y5d/RlxcLywWC4MHD+Sll14hJqZWqffr7/VSXlQv3qlevPN1\nvaSnw5w5Nl591UZ2tom//c3O9OmZXHml94/zFSusDBtWhZAQ+OijdFq3Lruurh07zAwbFsLvv5up\nVw8uu8xBzZrOPP22l/7baIOvylu53Eq1adMmevToAUCjRo04c+YMaWlphIWFcerUKapVq0ZkZCQA\n119/Pd988w0HDx7M9zVSNCdOnGDEiCEEBdm44YZeZRLMIuL/kpMtPPlkFX77zUzt2k6efTaT/v3t\nBV5p9u5tZ+7cTO67rwq33RbKv/+dzlVXlS6gXS54550gnngimJwcGD8+i6lTgzlxIr1U+xW3QsM5\nNTWVFi0ujhaOjIwkJSWFsLAwIiMjOX/+PL/++it169Zl8+bNXHvttQW+Jj8REaFYrQUPnCqugr6V\nGN3YsQ8yduyD5bJvf66X8qR6yS0lxf1H9eJdcevl8GE4ehRiYiA62t10Why//AIPPwyffw5WKzz2\nGDz1lJmwsLxjbbwZPtz9nkOGwG23VWX9emiR90aQIklPh5Ej4Z13ICoK3n0XbrjBfUA6X7wrbr0U\ne0DYpa3gJpOJ6dOnk5CQQHh4OJdffnmhr8nPqVNl+23L181ORqV68U71ctHx4ybmzLHxr38FUa2a\niRUr0qhf3xATCRpGUc8Xlwu+/dbCm28GsWKFFafz4uVttWoXb9G59JadC82/F/6uXt3F4sVBzJlj\nIzPTRIcOdqZPz6JpUycZGe5bjoqqVy+YMSOIceOq0K2bk08+SadRo+L93/7yi4mhQ0PYvdtC69YO\n5s/PoF49l+eLnH6P8iqXZu2YmBhSU1M9j48fP050dLTn8bXXXsu7774LwMyZM6lbty5ZWVkFvkZE\njOfUKXjtNRvz59tITzdRs6aTlBQTd90Vwn/+k06g9Eo5HPDRR1ZmzQomPR3697czYEAO//d/zjIb\nhJSR4Z618K23bOza5W4RvOoqB9dd5+Dkydyjl3/91ZIrtPNTq5aTWbMyiY8vuAm7MHfdlUN2Nkyc\nWIWbbgrlk0/SueKKogX0ihVWHnywCmfPmrj77myefTar2C0AUjSFhnOHDh145ZVXGDhwILt27SIm\nJiZX8/Tw4cN5/vnnCQkJYd26ddxzzz3Url27wNeIiHGcOwfz5tmYO9fGuXMmLrvMyeTJWdx5Zw7T\npoXz2msWRo4MYdGiDAq5Zd/QnE747DMrL7xg46efLNhsLkJD4c03bbz5po369Z0MGJDDgAF2WrQo\nWVAfPmxi0aIg3nkniJMnzVgsLm68MYfhw3O49lqH1306nXDqVN5bjVJSLoZ406ZOHnwwm/AyajEe\nNiyHzEx45pkq3HyzO6Dr1s0/oO12mD7dxpw5wYSEuHj11QxuvbV874Sp7Iq08MWMGTPYunUrJpOJ\nyZMns3v3bsLDw4mLi2PVqlW89tprmEwmhg4dyt///nevr2nWrFmB76HR2hVD9eKdUerF5XKHpfvD\n2ZznAzsszEWHDg6uvdZBaGjp3uv8eVi40D3i99QpE1FRTh56KJu7784h5I9uzIiIcLp3t7Nhg5WH\nHsriySfLd96A8uBywapVFqZPD2bXLgsWi4s77sjhkUeyiYlxsWGDhaSkIJYvt3L+vDs9Gzd2MGCA\nnfj4HK8joC89X1wu2LLFwvz5QXz+uRWHw0RkpJO77srh7rtzCgw9X3vpJRvTpwfToIGTTz9Np1at\nvGVNSTFx//1V2LjRSoMGThYuzKBFC++DyYzye2Q0JWnWDqhVqS5VFifJfffdwyOPPE6zZs092954\n41WqV6/B7bcPyvP87du3smzZBzz33AtMmDCW6dNfyvXzf/87kdOnTzNs2H1e3+/nn3/CZrNRv/5f\nmDx5IgkJkwkOzn/az5LQL493FVEvOTnwyy/uGZAOHjTlmqTh0j/Z2YVfsgUFuWjb1kHHjg46dXLQ\npo0Dm/fp5fPIyoLFi4N4+WUbKSlmqld38cAD2Qwfnp2n6To6OpyffjpHr15V+eUXs19dMblcsGGD\nO5S3bbNgMrn4xz/sPPpoFg0b5v3Yy8iANWusfPyxldWrrWRmuv8frrrKHdQDBuRQr577ddHR4fz+\n+zk+/tjK/Pk2fvjB3aQQG+tgxIhs4uPtni84Rjd1qo1Zs4Jp0sRBUlJGrlm3vvvOzPDhIRw5YqZX\nrxxeeSWT6tXz35c+X7yr1KtSlYe4uJ6sXbs6VzivX7+WV155o9DX/jmYi+LLL9fSrFks9ev/hWee\nmVbs14sxOJ1w8KDJMw3hhSkJf/7ZnG/whoa6B/9cdZXT6yChmjXdkzYcP25i40YrX31l4dtvLWza\nZOXFF92vv+66C2Ft56qrnHmaoHNy4P33g3jpJRuHDpmpWtXF2LFZjByZXeAHbo0asHhxBr17hzJ2\nbBUaNkynbVtjTwn77bcWpk+38c037o+4fv1yePzxbJo1y7/cISHu/uf+/e2kpUFyspWPPw5i7VoL\nP/4YzLPPBtO2rYP4eHeT8Ny5VUlNNWM2u+jbN4d7782hXTvvTddGNnFiNpmZJt54w8Ytt4SQlJRO\njRqwYEEQTz0VjNMJkyZlMXp0tt8dmz9TOBege/cbGDlyGKNGPQTA3r17iI6OJjo6xuuSjZfq27c7\n//nPF2zduoU5c2YSGRlFVFRNzxKQU6Y8TUrKcTIyMhg6dASXXVabTz5ZxpdfriUiIoKnnprIO+8k\nkpZ2jmnT/klOTg5ms5kJEyZhMpmYMuVp6tSpy88//0STJk2ZMGFSrvdftWoFH32UiMVi5oorGjF+\n/BPY7XbGjRvHgQO/YbMF8+STzxAREclzz03m2LEjnm3R0TEVVsf+zOVyj2y+MCH/pRP0p6fn/hQL\nDXXRsqV7CsJmzZxccYUz16QMF2Z0Kopu3dwzPJ0+Dd984w7qjRstrFtnZd06KxBMtWou2re306mT\nO7B37jTz4ovB/PqrmSpVXIwcmc2DD2ZTs2bRGs4aN3by1lsZ3H67eyrIVasK7qP0le+/NzNtWvAf\n9eCeC3n8+CxatSrel4mwMLj5Zjs332zn1Cn4z3+CSEqy8vXXFrZudbdmVa9u4oEHsrnnnmy/Hs1u\nMsEzz2SRlQVvv23j1ltDadTIybJlQdSs6eTNNzPp2NGY83IHMr8J56efDuazz4peXLMZnM6CP/H6\n97fz9NNZ+f48IiKSOnXqsnv3TmJjW7J27Wri4noB3pdsDPXSCThv3qtMmvQsjRs34dFHH6JOnbqc\nO3eWa6+9nt69+3Ho0O9MmjSBhQuXcN117ejSpTuxsS09r58//w369buR7t1vYN26NSxc+CbDht3H\nf/+7h2eemUpERCTx8X04d+4c4ZeMFsnIyGDmzFcIDw/ngQfuZf/+n9m9eyc1a9ZkwoSnWbNmJV99\ntQGr1UpUVBRPPz3Fsy0+/uYi13Nlcfo0uVbGufDn5Mnc0xwFBbm48spLpyJ00Ly5k3r1yn5GpBo1\noE8fO336uJuZjx0z8fXXFr76ysKGDVaSk4NITg7KVbZ77snmkUeyueyy4odJ164Onn02iyeeqMJd\nd4Xw2WfpxfpSUZ527zbz/PM2VqxwH2+nTu5Qvvba0l/hR0TAoEE5DBqUw7FjJpYvtxIdXYWuXdMM\nc/ylZTLBtGlZZGfD0qXuZvq2bR0sWJBB7dr++8XDn/lNOPtKXFwvvvhiNbGxLfn66w3MnbsQ8L5k\no7dwPnLkCI0bNwHcSzZmZWURHl6NPXt28emnyzCZzJw9eybf9//vf/dw//2jAWjTpi2LFs0HoG7d\nekRF1QSgZs1ozp9PyxXO1apVY+LEcQAcOPA/zpw5zX//u5du3f4GQI8ePQGYMWM6bdv+Ndc2f3Tg\ngPve3H37zHmag3Mv/eakRg3yDcr0dPjpp4tXwReapI8cyf0Ck8lFgwYurrsuh+bNL4Zxw4ZOgoK8\n77u81arl4qab7Nx0kx3I4sCBC2FtpVo1F6NGlf4Kb/jwHPbuNbN4sY0HH6zC/PmZPp2Gcf9+Ey++\nGExSkhWXy0Tbtg4mTsyiU6fyudKrVcvFPffkEB1dhZSUcnkLnzGbYcaMLGrWdGGxwNix2UUex1DR\nkpKszJrl/n1v0sTJmDHZ5b6OQkXzm3B++umsAq9y/8zdAX++1O/buXNX3nlnIXFxPalXrz7VqlUD\nvC/Z6M2lSz9eGHu3enUyZ8+e5bXX5nP27FmGD7+rgBKYPK/LybFjMrn39+eFMC4d15eTk8NLL73A\nokXvEhVVk8cfH/PHa8w4nbmvJNzb/Peb8ZEjJl56ycbSpUHY7UXrELNY3P23lwa40wk//FCVX3/N\nu0xdnTpOunWz57oSbtzYWerR0uXtL39x8Ze/2LnjjrL70LpwhbV/v5nPPw/ixRedjB9f8SO4f/vN\nxMyZwSQmuif2uOoqdyh37+5/fb5GYrHAE08Ye0R+UpI11wqEe/ZY/nhc/gsdVSS/CWdfCQ2tSqNG\njXnnnbc9TdrgfclGb2rWjOa3336lXr2/sGPHNlq0uIrTp09Tu3YdzGYzX3651rPEpMlkwuHI/Y2/\nefNYtm/fSlxcL77/fluuwWn5SU8/j8ViISqqJseOHWXv3j3Y7XaaNYvl22+/pW3bjnz99Ub27/+J\nZs1i2b79O7p16+HZNnjw0FLUWMVISXFfKS9aFERWlokGDZw8/ngmf/+7nbNnc98rmvff7lHSBw+a\n2b374id5RIQpzzJ1zZs7ChwsVRnZbLBgQSY9e4Yyc2YwTZs6GTCgYj4Ujx418fLLNpYsCSInx0TT\npg7Gj8+mb9/STcwh/mPWLO+X87Nn2xTOlU1cXC+ee24ykyc/69nmbcnGESNG5XntiBGjePLJ8Vx2\nWW3P4hVdunRjwoSx7N69k759/05MTAxvv/0WV1/dmlmzXszVPD58+P1Mm/Ysn332MVZrEBMnTsJu\nL/gErF69Bn/963UMHz6YK69szB133MWcOS+xcOESdu7cwejRI7BYrDz55NPUqBHB1q1bcm0zstOn\n4fXX3ZNGpKebuPxyJ+PGZXHrrTme5uSoKPeVcdOmhe8vM9N9T3Ht2mGYzWn6gC+iqCgXS5Zk0KdP\nKA89VIUrrkjnmmvKbwR3aurFL2OZmSauuML9ZSw+3u7XE6NI8e3b570fJb/t/kr3OVcy/lovaWnu\nmZxef93G2bMmYmKcPPJINoMG5ZTJ9IH+Wi/lrbB6Wb3awqBBIdSq5WLVqvQSDTQryOnTMHeujXnz\n3F/G6tZ1Mm5cNrfdluOzvn3Q+ZKfiqiXzp1D2bMn7zey2FgH69cbc0WsktznHFhfNSTgZGTAa68F\n0bZtVaZPD8ZqdTF5ciZbtpxn2LCyCWYpubg4B089lcXRo2aGDAkp1iIMBUlLg5dftvHXv4bx8svB\nhIW5mDYtk2+/Pc+gQb4NZn+Ypx+iAAAgAElEQVSQlGSlc+dQatcOo3PnUJKSAqeRdMwY733iDz9c\neF+5P9WLcUsmfi072z014HffWbyMns49wUbVquRpTs7KgiVLgpg1y8axY2bCw12MH5/FffflncVK\nfGvUqBz27rWQmBjEmDFVeOONzBJ3D2RkwNtvB/HKKzZOnDATEeHiqacyGTo0x/AD8Iwi0AdMuY8h\ng9mzL47Wfvjhwkdr+1u9KJylzB05YmL48BC++65onYEhIXlnwvrqKwu//24mNNTFmDHuWawiIsq5\n4FIiJhPMmJHJL7+YSUoKolkzd5dDfux2OHEi74C9Y8fMfPSR1fNl7PHH3V/Gymqxh8qiMgyYio+3\nF/tY/K1eFM5Spr76ysKIEVVITTUzYEAOzz+fSWZm3g/iS0dNX9i+e7eZrCz3JVdwsIv77svmoYey\nc831K8YUHAxvv51Br16hTJsWTFYWWK14nTv8zxO3XCo01MXDD2cxapS+jJVUZRkwVVz+Vi8KZykT\nLhe8+qqNKVNsmM0wZUomw4fn/NG86SrSLEMul7uvMSXFRI0aLiIjy73YUoZiYly8804G/fqF8tJL\nuQcDmEwuIiPdE8I0b27P09Vx4U+TJg6Fcik1aeL0OmCqSRNjz4de3vytXhTOUmpnz8KDD1ZhxYog\nLrvMyfz5GSWaNtFkgvBwCA/XlbK/atnSydq15/n++9xjDSIjXVj1aVMhxozJztW3ekFRBkwFMn+r\nF/26SKns2mVm6NAQ/vc/Mx072pk3L1PN0JVcw4YuGjY0Xh9eZVHSAVMQ2NNilqZefEHh7GfS0vhj\nJKuJxx7L9ro4ekX58EMrjz5ahYwMEw8+mMXEidm6OhIxgJIMmPK30cwlUZJ6Ad98aTFmT7jk4XLB\np59a6dChKi+/HMw779ho164q8+YFUciEYWUuKwsefzyYBx4IwWqFRYsymDRJwSzizwoazVyZXfjS\nsmePBYfD5PnSUt73SCuc/cDPP5u49dYQhg8P4cQJE2PHZvHCC5lYrTBpUhW6dw/l228rZg7D3383\nceONoSxaZCM21sHq1ec9SxaKiP/yt9HMFcVXX1oqd60b3PnzMGWKjc6dq/Lll1a6dbOzYcN5JkzI\n5u67c9i06TyDBmWzZ4+Fv/89lNGjq3D8ePlNDr1unYUePULZvt3CLbfksHx5Og0bqn9ZJBDkN2rZ\nqKOZK4qvvrQonA3I5YL//MdKp05VmT07mFq1XCxalMF772XkCsOoKBcvvZTF8uXnueoqBx98EES7\ndlWZP79sm7qdTvdsXwMHhpCWZuKFFzJ59dVMzdgklc6F6R+tVgw//WNxlWZazEDmqy8tCmeD+eUX\nE7ffHsI994Rw7JiJMWOy2LjR3XSc35SIbds6WbUqnenT3QvfJyRU4YYbQtmypeT/vWlp8MUXFp5+\nOpiuXUOZPj2YunVdfPppOnffnaPVm6TSyd33SIX1PVaU+Hg78+ZlEBvrwGp1ERvrYN68wBkMVlK+\n+tKiVakMIj0d5syx8eqrNrKzTXTubGfatEyuvLJ4/z0pKSaefTaY9993rwxw++05PPlkluf2pvzq\nJTMTtm618NVXFjZutLJjhxm73Z3ANpuLnj3tvPBCFlFRhjhdypy/nS8VRfVykT+uhlTRAvV8SUqy\nluoWrJKsSqVwNoDkZAtPPlmF334zU7u2k+eey6Jfv9ItHr95s4Xx44PZvdtC9eouEhKyGDw4h8su\nc9eL3Q7ff2/mq6+sbNxoYcsWi2fqTLPZRevWTjp2tNOpk4O//tVBSN579wOKP50vFUn1clHt2mE4\nHHl/Ka1WF4cPp5XLe/rLfccXy2mhSROHYcvpKwrnS/jDh8r//mdi0qQqrFplxWp1cf/92YwdW3ar\nLtnt7hV+pk8P5tw5E61aObj9dgtr19rZtMlCWtrFD5rYWAedOjno1MnO9dc7qFatbMrgL/zhfPEF\n1ctFpblyLknI/vm+4wuM1tTsL+X0JYXzJYz8oXL4sImXXrLx7rtB2O0mOna0M316VrkNMDh2zMQz\nzwTz0UcXF8Ft1OjilXH79g5q1jTEaeAzRj5ffEn1clFJQ6ikr/OXZnR/KacvKZwvYcQPlePHTcyZ\nY+Nf/woiK8tEo0ZOJkzI4u9/L10TdlFt22bm1KmqxMamUaeOIf7bDcOI54sRqF5yu9j36G6+LUrf\nY0nDyxfN6CXhL+X0pZKEc2AMMzS4U6fgtddszJ9vIz3dRP36Th59NJObb7ZX6Kxa//d/TqKjISVF\nwSxSEhemf3R/2BbtqrCk98n6yypK/lJOf6NbqcrRuXMwY4aNtm3DmDMnmGrVXDz/fCbffHOegQMr\nNphFjOzC/cO1a4cV6/7hkr6uIpX0Pll/ue/YX8rpb4x3JgeA9HRYsMB9W9SpUyZq1nTy2GNZDBmS\nE/CjnkWKq6QLLvjLQg0lXarQX1ZRyl3Oojf3S8HU51yGsrJg8eIgXn7ZRkqKmerVXTzwQDbDh5fd\nCOzSUh+id8WtF3+5xaWkKvLWmJL2yfpyIFJJzhejh2xZ0OeLd+pz9pGcHEhMDGLmTBuHDpmpWtXF\n2LFZjByZTfXqvi6dlDV/uWIrqYo+vpL2yfrTQg0lXapQKi/jncV+wumELVvMTJwYzDXXVGXs2Cqc\nOGFi1KhsvvvOvTiFgjkwBfrSehV9fCXtk9VCDRLIFM7F4HLB//t/Zp55Jpi2bavSr19VFiyw4XTC\niBHZbNlynqefzqr09wwHOn+6YiuJij6+kg4o0kAk/+cPA/p8RTVRBPv2mUlKsvLxx0Hs3+/+gAoP\ndzFwYA4DBuTQqZODoKBCdiIBI9BvHano4yvpwCd/GTAl3gV691BpKZzz8euvJj75JIikJCu7d7s/\nqEJCXAwYkMOAAXa6dbNTpYqPCyk+UdLRt/7CF8dX0j5Z9eX6r4K6T/R/qnDO5cwZeP/9ID7+OIht\n29yBHBTkolevHOLj7cTF2Q0z6lp8x5+u2Eoyqly3xkhFCPTuodJSOF9ixIgQ1q2zYrG46NLFTnx8\nDr1726lRw9clE6Pxhyu20jQblmQmLJHiCPTuodLSV5Q/nDkDGzZYaNHCwf/7f+f54IMMbr9dwSz+\nK9BHlYt/04C+gimc/7BxoxWHw0Tv3naiozXaWspHRY5OVbNh/jRK2Pfi4+3Mm5dBbKwDq9VFbKxD\ny0xeQmfkH9atczevdO2qE0PKR2mamUvSd6xmQ+80Stg4/KF7yFf0FRr3/cvr11upXt1F69aV+4NL\nyk9Jm5kvhMmePRYcDpMnTAq72vNFs6E/XJGquV/8gcIZ+OUXEwcPmunUSStFSfkpaTNzScOkopsN\nS/oloqKpuV/8gbF+a3xk3Tp3NXTt6vBxSSSQlbSZuTRhUpHNhv5y36qa+8Uf6Ksil4azcT5AJPCU\ntJnZX+aQ9pcrUo0SFn9grN8aH8jKgq+/ttC4sYPLL9cobSk/JW1m9pcw8ZcvERolLP6g0jdrf/ed\nhfR0E126qElbyl9Jmpn9ZUYyf5rWVKOExegq/ZWzbqGq3C6MLrZaMezoYnCHyfr16Rw+nMb69emG\nDBZdkYqUHWN+ElWgdeus2Gwu2rXTlXNlo/tdy56uSEXKRqW+cj5+3MTOnRauu85B1aq+Lo1UNN3v\nKiJGVanDef16d5O2+psrJ38ZXSwilU+l/hRav163UFVm/jK6WEQqnyL1OU+dOpUffvgBk8lEQkIC\nrVq18vxs6dKlfPrpp5jNZlq2bMkTTzzBsmXLmD17NvXr1wegffv2jBw5snyOoIScTveVc0yMkxYt\n9GFcGfnT6GIRqVwKDectW7Zw4MABEhMT2b9/PwkJCSQmJgKQlpbGggULWLVqFVarlaFDh/L9998D\n0KdPH8aPH1++pS+FXbvMpKaaufXWHEwmX5cm8JRkoYaKlvsWJQtNmjgMeYuSiFQ+hYbzpk2b6NGj\nBwCNGjXizJkzpKWlERYWRlBQEEFBQaSnpxMaGkpGRgbVq1cv90KXhQuzgnXpog/isuZPo6AvjC6O\njg4nJSXd18UREQGK0OecmppKRESE53FkZCQpKSkABAcH88ADD9CjRw+6du3K1VdfTYMGDQD3Ffew\nYcMYMmQIu3fvLqfil9yFwWCdO2swWFnTKGgRkdIp9n3OLtfFKS7T0tKYN28eycnJhIWFMWTIEPbu\n3cvVV19NZGQkXbp0YceOHYwfP57PPvuswP1GRIRiteadjL40oqPDvW5PS4PNm6FNG4iNDSvT9/QH\n+dVLWdm3L7/tlnJ/79Iwctl8SfXinerFO9WLd8Wtl0LDOSYmhtTUVM/j48ePEx0dDcD+/fupV68e\nkZGRALRt25adO3dy880306hRIwBat27NyZMncTgcWCz5h++pU2XbpOhupjzn9WerVlnIyQmlU6cs\nUlIq1+CfguqlrDRpEprPqj8OwzYdV0S9+CPVi3eqF+9UL97lVy8FBXahzdodOnRg5cqVAOzatYuY\nmBjCwtxXm3Xr1mX//v1kZmYCsHPnTq644greeustPv/8cwD27dtHZGRkgcFc0bREZPnyxUINF6bh\nrF07zNDTcIqIFEWhn2Bt2rShRYsWDBw4EJPJxOTJk1m2bBnh4eHExcUxbNgwBg8ejMVioXXr1rRt\n25bLL7+cxx57jPfffx+73c6UKVMq4liKbP16K1WrumjbVuFcHkqzUENJRnn70wA0EZGiMLku7UT2\nobJuCsmvGeG330y0bRtGz552Fi/OKNP39AdGbnb6c8heUNjiCZ07e29Gj411sH590ZrRjVwvvqR6\n8U714p3qxbtyadYONLqFyrhKOspb03CKSKCpdJ9eWiKyeCqyL7ekIatpOEUk0FSqcLbbYeNGK/Xr\nO2nQwBCt+YZ2oZl5zx4LDofJ05dbXgFd0pD1xQA0EZHyVKnCeds2C+fOmeja1a4pO4ugoicTKWnI\nxsfbmTcvg9hYB1ari9hYR6H91CIiRlap7je52KStUdpFUdF9uaUZ5X1hGk4RkUBQqcJ5/XorFouL\nTp30IV4UTZo485lMpPz6chWyIiKVqFn71CnYscNM27YOwjW7XJGoL1dExDcqTThv2GDF5TKpSbsY\n1JcrIuIblaZZW7dQlYyamUVEKl6luHJ2udyTj0RGOmnVqnLe+3rhfmWrFc09LSJicJXiE3rfPjNH\njpgZMCAHA62/UWE097SIiH+pFFfOlb1Ju6LvVxYRkdKpJOF8YT5t/x8MVpLpNDX3tIiIfwn4T+eM\nDNi0yULz5g5q1/bvKTtLOp2m5p4WEfEvAR/O335rITPTFBBXzSVtntb9yiIi/iXgw3n9+sBZIrKk\nzdO571dG9yuLiBhcwI/WXr/eQpUqLq6/3v+vnEszneaF+5Xdi36nl0fxRESkjAT0lfORI+5+2Xbt\nHISEFP58o1PztIhI5RDQ4bx+fWDdQqXpNEVEKoeAbta+2N/s/03aF2g6TRGRwBewV84OB3z5pYXa\ntZ00bapbhkRExH8EbDhv3w4nT5rp2tWOyeTr0oiIiBRdwIbzypXuv7VEpIiI+JuADedVq8BkctGp\nk/pnRUTEvwRkOJ87B5s2QevWTiIjfV0aERGR4gnIcN640YrdHhizgomISOUTkOF8cYlI9TeLiIj/\nCchwttvhiiugTRvjhnNJln4UEZHKISAT4cUXs4iKsnHmjK9L4t2FpR8vuLD0I2i2LxERCdArZ6sV\nbAWvouhTJV36UUREKoeADGejK+nSjyIiUjkoDXwgvyUei7L0o4iIBD6Fsw9o6UcRESmIwtkHtPSj\niIgUJCBHa/sDLf0oIiL50ZVzKel+ZRERKWtKklLQ/coiIlIedOVcCrpfWUREyoPCuRR0v7KIiJQH\npUgp6H5lEREpDwrnUtD9yiIiUh4UzqWg+5VFRKQ8aLR2Kel+ZRERKWu6chYRETEYhbOIiIjBKJxF\nREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgZTpElIpk6dyg8//IDJZCIhIYFWrVp5\nfrZ06VI+/fRTzGYzLVu25IknniAnJ4cJEyZw+PBhLBYL06ZNo169euV2ECIiIoGk0CvnLVu2cODA\nARITE5kyZQpTpkzx/CwtLY0FCxawdOlS3nvvPfbv38/333/P559/TrVq1Xjvvfe4//77mTlzZrke\nhIiISCApNJw3bdpEjx49AGjUqBFnzpwhLS0NgKCgIIKCgkhPT8dut5ORkUH16tXZtGkTcXFxALRv\n357t27eX4yGIiIgElkLDOTU1lYiICM/jyMhIUlJSAAgODuaBBx6gR48edO3alauvvpoGDRqQmppK\nZGSk+w3MZkwmE9nZWqlJRESkKIq98IXL5fL8Oy0tjXnz5pGcnExYWBhDhgxh7969Bb4mPxERoVit\nluIWp0DR0eFlur9AoXrxTvXinerFO9WLd6oX74pbL4WGc0xMDKmpqZ7Hx48fJzo6GoD9+/dTr149\nz1Vy27Zt2blzJzExMaSkpNCsWTNycnJwuVzYbLYC3+fUqfRiFbww0dHhpKScK9N9BgLVi3eqF+9U\nL96pXrxTvXiXX70UFNiFNmt36NCBlStXArBr1y5iYmIICwsDoG7duuzfv5/MzEwAdu7cyRVXXEGH\nDh1ITk4GYN26dVx33XXFPxoREZFKqtAr5zZt2tCiRQsGDhyIyWRi8uTJLFu2jPDwcOLi4hg2bBiD\nBw/GYrHQunVr2rZti8Ph4JtvvuH222/HZrMxffr0ijgWERGRgGByFaVDuAKUdVOImle8U714p3rx\nTvXinerFO9WLd+XSrC0iIiIVS+EsIiJiMArnPyQlWencOZTatcPo3DmUpKRi32UmIiJSJpRAuIP5\nvvtCPI/37LH88TiD+Hi77womIiKVkq6cgVmzvN+DPXt2wfdmi4iIlAeFM7Bvn/dqyG+7iIhIeVL6\nAE2aOIu1XUREpDwpnIExY7wvyvHww1qsQ0REKp7CGYiPtzNvXgaxsQ6sVhexsQ7mzdNgMBER8Q2N\n1v5DfLxdYSwiIoagK2cRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG\n4SwiImIwCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIw\nCmcRERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGD\nUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgY\njMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiLiIgYjLUoT5o6\ndSo//PADJpOJhIQEWrVqBcCxY8d49NFHPc87ePAg48aNIycnh9mzZ1O/fn0A2rdvz8iRI8uh+CIi\nIoGn0HDesmULBw4cIDExkf3795OQkEBiYiIAtWrVYvHixQDY7XbuuusuunXrxsqVK+nTpw/jx48v\n39KLiIgEoEKbtTdt2kSPHj0AaNSoEWfOnCEtLS3P85KSkujZsydVq1Yt+1KKiIhUIoVeOaemptKi\nRQvP48jISFJSUggLC8v1vA8//JCFCxd6Hm/ZsoVhw4Zht9sZP348sbGxBb5PREQoVquluOUvUHR0\neJnuL1CoXrxTvXinevFO9eKd6sW74tZLkfqcL+VyufJs27FjBw0bNvQE9tVXX01kZCRdunRhx44d\njB8/ns8++6zA/Z46lV7cohQoOjqclJRzZbrPQKB68U714p3qxTvVi3eqF+/yq5eCArvQcI6JiSE1\nNdXz+Pjx40RHR+d6zvr162nXrp3ncaNGjWjUqBEArVu35uTJkzgcDiyWsr0yFhERCUSF9jl36NCB\nlStXArBr1y5iYmLyNGn/+OOPNGvWzPP4rbfe4vPPPwdg3759REZGKphFRESKqNAr5zZt2tCiRQsG\nDhyIyWRi8uTJLFu2jPDwcOLi4gBISUkhKirK85r+/fvz2GOP8f7772O325kyZUr5HYGIiEiAMbm8\ndSL7QFn3U6jvwzvVi3eqF+9UL96pXrxTvXhXkj5nzRAmIiJiMApnERERg1E4i4iIGIzCWURExGAU\nziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgaj\ncBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEY\nhbOIiIjBKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjB\nKJxFREQMRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQM\nRuEsIiJiMApnERERg1E4i4iIGIzCWURExGAUziIiIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJi\nMApnERERg1E4i4iIGIy1KE+aOnUqP/zwAyaTiYSEBFq1agXAsWPHePTRRz3PO3jwIOPGjaNXr15M\nmDCBw4cPY7FYmDZtGvXq1SufIxAREQkwhYbzli1bOHDgAImJiezfv5+EhAQSExMBqFWrFosXLwbA\nbrdz11130a1bNz7//HOqVavGzJkz+eqrr5g5cyazZs0q3yMREREJEIU2a2/atIkePXoA0KhRI86c\nOUNaWlqe5yUlJdGzZ0+qVq3Kpk2biIuLA6B9+/Zs3769jIstIiISuAoN59TUVCIiIjyPIyMjSUlJ\nyfO8Dz/8kJtvvtnzmsjISPcbmM2YTCays7PLqswiIiIBrUh9zpdyuVx5tu3YsYOGDRsSFhZW5Nf8\nWUREKFarpbjFKVB0dHiZ7i9QqF68U714p3rxTvXinerFu+LWS6HhHBMTQ2pqqufx8ePHiY6OzvWc\n9evX065du1yvSUlJoVmzZuTk5OByubDZbAW+z6lT6cUqeGGio8NJSTlXpvsMBKoX71Qv3qlevFO9\neKd68S6/eikosAtt1u7QoQMrV64EYNeuXcTExOS5Qv7xxx9p1qxZrtckJycDsG7dOq677rqiHYGI\niIgUfuXcpk0bWrRowcCBAzGZTEyePJlly5YRHh7uGfSVkpJCVFSU5zV9+vThm2++4fbbb8dmszF9\n+vTyOwIREZEAY3IVpUO4ApR1U4iaV7xTvXinevFO9eKd6sU71Yt35dKsLSIiIhVL4SwiImIwCmcR\nERGDUTiLiIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGDUTiL\niIgYjMJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEEXDgnJVnp3DkUqxU6dw4lKcnq6yKJiIgUS0Al\nV1KSlfvuC/E83rPH8sfjDOLj7b4rmIiISDEE1JXzrFk2r9tnz/a+XURExIgCKpz37fN+OPltFxER\nMaKASq0mTZzF2i4iImJEARXOY8Zke93+8MPet4uIiBhRQIVzfLydefMyiI11YLVCbKyDefM0GExE\nRPxLQI3WBndAx8fbiY4OJyUl3dfFERERKbaAunIWEREJBApnERERg1E4i4iIGIzCWURExGAUziIi\nIgajcBYRETEYhbOIiIjBKJxFREQMRuEsIiJiMCaXy+XydSFERETkIl05i4iIGIzCWURExGAUziIi\nIgajcBYRETEYhbOIiIjBKJxFREQMxurrApSHqVOn8sMPP2AymUhISKBVq1a+LpLPbd68mYcffpjG\njRsD0KRJEyZNmuTjUvnOvn37GDVqFHfffTeDBg3iyJEjPP744zgcDqKjo3nxxRex2Wy+LmaF+3O9\nTJgwgV27dlGjRg0Ahg0bRpcuXXxbSB944YUX2LZtG3a7nfvuu4+rrrpK5wt562Xt2rWV/nzJyMhg\nwoQJnDhxgqysLEaNGkWzZs2Kfb4EXDhv2bKFAwcOkJiYyP79+0lISCAxMdHXxTKEa6+9ljlz5vi6\nGD6Xnp7Os88+S7t27Tzb5syZwx133EHv3r156aWX+Oijj7jjjjt8WMqK561eAMaOHUvXrl19VCrf\n+/bbb/npp59ITEzk1KlTxMfH065du0p/vnirl+uvv77Sny/r1q2jZcuW3HvvvRw6dIihQ4fSpk2b\nYp8vAdesvWnTJnr06AFAo0aNOHPmDGlpaT4ulRiJzWbjrbfeIiYmxrNt8+bNdO/eHYCuXbuyadMm\nXxXPZ7zVi8Bf//pXZs+eDUC1atXIyMjQ+YL3enE4HD4ule/16dOHe++9F4AjR45Qq1atEp0vARfO\nqampREREeB5HRkaSkpLiwxIZx88//8z999/P7bffztdff+3r4viM1WqlSpUqubZlZGR4mpmioqIq\n5TnjrV4AlixZwuDBg3nkkUc4efKkD0rmWxaLhdDQUAA++ugj/va3v+l8wXu9WCyWSn++XDBw4EAe\nffRREhISSnS+BFyz9p9pdlK3K664gtGjR9O7d28OHjzI4MGDWbVqVaXsJyuMzpmLbrzxRmrUqEHz\n5s158803efXVV3nqqad8XSyfWLNmDR999BELFy7khhtu8Gyv7OfLpfWyc+dOnS9/eP/999mzZw+P\nPfZYrnOkqOdLwF05x8TEkJqa6nl8/PhxoqOjfVgiY6hVqxZ9+vTBZDJRv359atasybFjx3xdLMMI\nDQ0lMzMTgGPHjqlp9w/t2rWjefPmAHTr1o19+/b5uES+sXHjRt544w3eeustwsPDdb784c/1ovMF\ndu7cyZEjRwBo3rw5DoeDqlWrFvt8Cbhw7tChAytXrgRg165dxMTEEBYW5uNS+d6nn37KggULAEhJ\nSeHEiRPUqlXLx6Uyjvbt23vOm1WrVtGpUycfl8gYHnzwQQ4ePAi4++UvjPavTM6dO8cLL7zAvHnz\nPKOQdb54rxedL7B167Q7jnMAAAEKSURBVFYWLlwIuLtZ09PTS3S+BOSqVDNmzGDr1q2YTCYmT55M\ns2bNfF0kn0tLS+PRRx/l7Nmz5OTkMHr0aDp37uzrYvnEzp07ef755zl06BBWq5VatWoxY8YMJkyY\nQFZWFnXq1GHatGkEBQX5uqgVylu9DBo0iDfffJOQkBBCQ0OZNm0aUVFRvi5qhUpMTOSVV16hQYMG\nnm3Tp0/nySefrNTni7d6uemmm1iyZEmlPl8yMzN54oknOHLkCJmZmYwePZqWLVsyfvz4Yp0vARnO\nIiIi/izgmrVFRET8ncJZRETEYBTOIiIiBqNwFhERMRiFs4iIiMEonEVERAxG4SwiImIwCmcRERGD\n+f9M0/qPJr2X0wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xtc1HW+x/HXD4aLCBoqeEvTPKJi\nUVlrupSkQqLWeixTtKLSo5aSmpfWOBqWSbWr5aVds7JOdlHKxdU2U8uy9rSmpq0Zat6OZuUFvCDI\nZWBmzh8jo+SPq8AM8H4+HjyY34/5/eY7H37Mh+/3970YDofDgYiIiHgML3cXQERERIpTchYREfEw\nSs4iIiIeRslZRETEwyg5i4iIeBglZxEREQ+j5Cx1WlJSErGxscTGxtK1a1d69+7t2s7Ozq7QuWJj\nY8nIyCj1OfPmzWP58uVXUuQq9/DDD5Oamlol5+rUqRPHjx/n008/5amnnrqi1/vggw9cj8sT2/Ka\nPn06f/3rX6vkXCLuYnF3AUSq0zPPPON63KdPH/70pz9xyy23VOpc69atK/M5U6ZMqdS5a5uYmBhi\nYmIqfXx6ejpvvPEGQ4cOBcoXW5H6RDVnqdcefPBBXn75Zfr378+OHTvIyMhg1KhRxMbG0qdPH956\n6y3Xc4tqjVu2bGHYsGHMmzeP/v3706dPH7Zu3QoUr7X16dOHFStWMGTIEG677TZeeOEF17leffVV\nevbsyb333st7771Hnz59TMv34Ycf0r9/f+68807uv/9+fvnlFwBSU1OZMGECiYmJ9OvXjwEDBrB/\n/34Ajh49yn333Ud0dDRTpkzBZrNddt4vv/ySu+++u9i+QYMG8dVXX5UagyKpqak8/PDDZb7exo0b\nufvuu+nXrx/33HMPe/bsASAuLo5ff/2V2NhYrFarK7YAy5YtY8CAAcTGxvLYY49x+vRpV2wXLlzI\nI488Qu/evXnkkUfIzc0t6VcLwN69e4mLiyM2NpZBgwbxz3/+E4Dz588zfvx4+vfvT9++fZkxYwYF\nBQUl7hepaUrOUu/98MMPfPzxx3Tr1o3Fixdz9dVXs27dOt5++23mzZvHsWPHLjtm9+7d3HDDDXzy\nySeMGDGCxYsXm55727ZtpKSk8Le//Y13332X48ePs3//ft544w1Wr17N+++/X2Kt8dSpUzz77LO8\n9dZbbNiwgbZt2xZrrv3qq68YMWIE69ev59Zbb+Xtt98GYO7cufTs2ZPPPvuMhx56iB07dlx27p49\ne3L8+HGOHj0KOBPs8ePH+f3vf1/uGBQp6fUKCwuZPn06s2fPZv369fTp04cXX3wRgOTkZFq2bMm6\ndevw9fV1nevf//43S5cu5Z133mHdunW0atWKefPmuX6+bt06Xn75ZT799FNOnz7Np59+WmK57HY7\nkydP5oEHHmDdunU899xzTJkyhezsbP7+97/TqFEjPvnkE9avX4+3tzcHDhwocb9ITVNylnovKioK\nLy/nn8KMGTOYOXMmAG3atCEkJISff/75smMaNmxIdHQ0AF27duXXX381Pffdd9+Nt7c3zZs3p2nT\nphw7doxt27bRvXt3QkND8fPz49577zU9tmnTpmzfvp0WLVoAcMstt7iSKUCHDh247rrrAAgPD3cl\n0G+//ZYBAwYAEBERwbXXXnvZuX19fenduzeff/45AJ999hnR0dFYLJZyx6BISa9nsVj417/+xY03\n3mhafjObNm2iX79+NG3aFID77ruPr7/+2vXzqKgorrrqKiwWC2FhYaX+0/Dzzz+TkZHBwIEDAbj+\n+utp1aoVu3btokmTJnz33Xf87//+L3a7nWeeeYYuXbqUuF+kpumes9R7jRs3dj3etWuXq6bo5eVF\neno6drv9smOCgoJcj728vEyfAxAYGOh67O3tjc1m49y5c8Ves3nz5qbH2mw2Fi5cyOeff47NZuP8\n+fO0b9/etAxF5wbIzMws9rqNGjUyPX+/fv1YtmwZDz30EJ999hnjxo2rUAyKlPZ677zzDqtWrcJq\ntWK1WjEMo8TzAJw+fZrQ0NBi5zp16lSZ77mkcwUFBRV7zUaNGnH69GkGDhxIZmYmCxYs4NChQ/zh\nD3/gqaeeon///qb7L63di9QE1ZxFLjFt2jT69evH+vXrWbduHcHBwVX+GoGBgeTk5Li2T548afq8\ntWvX8vnnn/Puu++yfv16JkyYUK7zN2rUqFhP9KJ7tr91++23s3fvXg4fPszhw4fp0aMHUPEYlPR6\nO3bs4PXXX2fx4sWsX7+e5557rsyyN2vWjLNnz7q2z549S7Nmzco8zkzTpk3JzMzk0rV9zp4966qV\nx8XF8eGHH7J27VrS0tL4+9//Xup+kZqk5CxyiVOnTnHddddhGAarVq0iNze3WCKtChEREWzZsoXT\np09jtVpL/PA/deoUrVu3pkmTJpw5c4ZPPvmE8+fPl3n+G2+80XUvdseOHfz000+mz/P19eW2227j\nz3/+M3379sXb29v1uhWJQUmvd/r0aZo2bUqrVq3Izc1l1apV5OTk4HA4sFgs5OTkUFhYWOxcd9xx\nB59++ilnzpwBYMWKFURFRZX5ns1cffXVtGjRgrVr17rKlpGRQUREBH/5y19YuXIl4Gy5uPrqqzEM\no8T9IjVNyVnkEhMnTmT8+PHcfffd5OTkMGzYMGbOnFligquMiIgIBg8ezODBg4mPj6d3796mz7vr\nrrs4e/YsMTExTJkyhUmTJnH8+PFivb7NTJs2jS+++ILo6Gjee+89fv/735f43H79+vHZZ5/Rv39/\n176KxqCk17v99tsJDQ0lOjqakSNH8tBDDxEUFMSECRPo1KkTjRs3JjIystj9+oiICMaMGcP9999P\nbGwsWVlZPPHEE6W+35IYhsFLL73Eu+++S//+/XnuuedYsGABAQEBDBo0iNWrV9OvXz9iY2Px8fFh\n0KBBJe4XqWmG1nMWqXkOh8NVI9u0aRPz589X86mIuKjmLFLDTp8+TY8ePfjll19wOBx88sknrh7N\nIiKgmrOIWyxfvpw333wTwzC49tprmTNnjqujkoiIkrOIiIiHUbO2iIiIh1FyFhER8TAeM0NYenpW\nlZ4vODiAM2eqdnxqXaC4mFNczCku5hQXc4qLuZLiEhISZPJspzpbc7ZYvN1dBI+kuJhTXMwpLuYU\nF3OKi7nKxKXOJmcREZHaSslZRETEwyg5i4iIeJhydQhLTk5m586dGIZBYmIiERERrp8dO3aMyZMn\nU1BQQHh4OM8++2yZx4iIiEjJyqw5b926lSNHjpCSksKcOXOYM2dOsZ+/8MILjBw5kpUrV+Lt7c2v\nv/5a5jEiIiJSsjKT8+bNm4mOjgagQ4cOZGZmutZutdvtbN++nT59+gCQlJREq1atSj1GRERESldm\ns3ZGRgZdu3Z1bTdp0oT09HQCAwM5ffo0DRs25PnnnyctLY1bbrmFKVOmlHpMSYKDA6q8G35pY8jq\nM8XFnOJiTnExp7iYU1zMVTQuFZ6E5NKpuB0OBydOnCA+Pp7WrVszZswYNm3aVOoxJanqgeshIUFV\nPrFJXaC4mFNczCku5hQXc5fGZdGil/nxxz2cPn2KvLw8WrVqTaNGjUlO/nOZ51m79iMaNgwkKsp8\nrfMFC+Zx331xtGrVulLlTEgYw+TJT3Lttf9RqeMrqqTrpbSEXWZyDg0NJSMjw7V98uRJQkJCAAgO\nDqZVq1a0bdsWgJ49e7J///5Sj6luq1ZZmD/fl337ICwsgEmTrAweXFgjry0iUltd/Oz0IizMfsWf\nnY8//gTgTLSHDh0kIWFSuY8dMODuUn8+ceKUSpertigzOUdGRrJo0SLi4uJIS0sjNDTU1TxtsVho\n06YNhw8fpl27dqSlpTFw4ECaNGlS4jHVadUqC2PHNnBt79njfWE7VwlaRKQENfnZuWPHt6xY8S45\nOTkkJDzBd99tZ9Omjdjtdnr2jGTkyDEsXbqEq666ivbtO5Ca+gGG4cWRI//HHXf0ZeTIMa6a7xdf\nbOT8+Wx++ukIv/zyMxMmTKFnz0jeffd/+OyzDbRq1ZrCwkLi4u6nW7dbLitLdnY2c+bMIjs7i8LC\nQiZNmkanTp2ZP//P7N27B5vNxuDBQxgw4G7TfdWpzOTcrVs3unbtSlxcHIZhkJSURGpqKkFBQcTE\nxJCYmMj06dNxOByEhYXRp08fvLy8LjumJsyf72u6f8ECXyVnEZES1PRn58GDB1i+PBVfX1+++247\nf/3rG3h5eTF06CCGDRtR7Lm7d6fx/vt/w263c999dzNy5JhiPz958gRz5y7km2/+xerVf6Nr1+tI\nTf2Q5cv/xvnz54mLu4e4uPtNy/Hhh8vp2vU6HnjgYfbu3c2iRS+RnPxn/vWv/+WDD1ZTWFjI2rUf\nce5c5mX7qlu57jlPnTq12Hbnzp1dj6+55hqWL19e5jE1Yd8+887nJe0XEZGa/+z8j//oiK+v8x8C\nf39/EhLG4O3tzdmzZzl37lyx53bq1Bl/f/8SzxURcSPgvAWbnZ3Nzz8f5dprO+Dn54+fnz9dunQt\n8di9e3cTHz8KgM6dw/n556M0atSYNm2uYfr0yfTuHU1s7EB8fX0v21fd6lTWCguzV2i/iIjU/Gen\nj48PAMePHyMl5T3mzVvEK6+8RosWLS57rrd36aN4Lv25w+HA4QAvr4upzTBKPtYwjGIdlu125/ud\nN28hjzwyhv379/HHPz5R4r7qVKeS86RJVtP9Eyea7xcREfd9dp49e5bg4GACAgL48ce9HD9+nIKC\ngis6Z8uWLTl06CCFhYWcOXOGvXv3lPjczp3D+e67bwH44YddtG/fgWPHfuXDD1fQqVNnEhImkZmZ\nabqvunnMes5VwXlvJJcFC3zZt8+bsDAbEyeqt7aISGmKf3Y6e2vXxGdnx45hNGgQwGOPjeT6629k\n0KB7mDfvRSIibqj0OZs0aUpMTCyjR8dzzTXtCQ/vWmLte+jQ4SQnP8OECY9it9uZPPmPNGsWwg8/\n7GTjxg34+PgwcOAfTPdVN8NRnkHINaCqxwxqHKI5xcWc4mJOcTGnuJjzlLisXfsRMTGxeHt7Ex8f\nx0svLSI0tLnbylMt45xFRERqk1OnTjFmzEP4+Phy552xbk3MlaXkLCIidcqDDz7Mgw8+7O5iXJE6\n1SFMRESkLlByFhER8TBKziIiIh5GyVlERMTDKDmLiEiVGzv2kcsmAHn11VdYvvxd0+fv2PEtM2Y8\nCcD06ZMv+/nf/pbC0qVLSny9Awf289NPRwBISnqK/Py8yhadIUPuJienapcxriglZxERqXIxMf34\n/PNPi+3btOlzoqPvLPPYF154qcKv9+WXn3P06E8APPPM8/j5lTwfd22goVQiIlLl+va9k8ceG8W4\ncRMA2Lt3DyEhIYSEhLJt2xbeeONVfHx8CAoK4tlnXyh27MCBffn44418++1WFi6cR5MmTWnatJlr\nCcg5c2aRnn6S3NxcRo4cQ4sWLVm9OpUvv/yc4OBgnn76KZYtSyE7O4vnn3+WgoICvLy8mD59JoZh\nMGfOLFq1as2BA/sJC+vE9OkzTd/DyZMnLjs+NLQ5zz47k1OnMrBarYwaNZZbbul+2b4ePX5/RfFT\nchYRqeNmzfLjo4+q9uP+7rsLmTUrv8SfBwc3oVWr1uze/QPh4dfx+eefEhMTC0BWVhZJSc/RqlVr\nZs9+mi1bNhMQEHDZOZYseYWZM2fTsWMYU6dOoFWr1mRlnaN79x70738Xv/zyMzNnTufNN9/l1lt7\ncscdfQkPv851/BtvvMpddw2ib987+eKLz3jzzdcYNWosP/64h2eeSSY4uAmDBw8gKyuLoKDLZ+sy\nO/6++4aTmXmWv/zldbKysti8+WsOHjxw2b4rpWZtERGpFjExsWzc6Gza/vrrr7jjjr4AXHXVVbz4\n4nMkJIzhu++2c+6c+UISx44do2PHMABuvLEbAEFBjdizJ43HHhvJnDmzSjwW4Mcf93DTTTcD0K3b\nLezf/yMArVu3oWnTZnh5edGsWQjnz2eX+/hrrmlHTs55Zs+eyY4d24iOvtN035VSzVlEpI6bNSu/\n1FpudYmK6s2yZW8SE9OPNm3a0qhRIwCef342f/7zfNq1a89LL71Y4vGXLv1YtAzEp5+u49y5c/zl\nL29w7tw5/uu/HiylBBeXhCwoKMQwnOf77UIYJS8xcfnx/v7+LFnyP+za9T2ffPIRX3/9TxITk0z3\nXQnVnEVEpFoEBDSkQ4eOLFv2lqtJG+D8+WyaN29BVlYWO3ZsL3GZyGbNQvjpp8M4HA6++2474Fxm\nsmXLVnh5efHll5+7jjUMA5vNVuz4Ll3C2bHDuSTkv/+9nc6du1So/GbH//jjXj79dB033HAjU6c+\nxeHD/2e670qp5iwiItUmJiaW555LIilptmvfPffcx2OPjaJNm7bcf388b775GmPGjLvs2DFjxjFj\nxh9p0aKla/GKO+7ow/Tpk9m9+wcGDvwDoaGhvPXW69xww03Mn//nYveu/+u/HuX552fz0Ud/x2Lx\n4amnZlJYWP5lMM2O9/PzZ8mSv7B6dSpeXl6MGPEgLVu2umzfldKSkfWM4mJOcTGnuJhTXMwpLuYq\ns2SkmrVFREQ8jJKziIiIh1FyFhER8TBKziIiIh5GyVlERMTDKDmLiIh4GCVnERERD6PkLCIi4mGU\nnEVERDyMkrOIiIiHKdfc2snJyezcuRPDMEhMTCQiIsL1sz59+tCiRQvXKh9z587l8OHDTJw4kY4d\nOwIQFhbGzJnmi1mLiIhIcWUm561bt3LkyBFSUlI4ePAgiYmJpKSkFHvO66+/TsOGDV3bhw8fpnv3\n7ixcuLDqSywiIlLHldmsvXnzZqKjowHo0KEDmZmZZGebL0wtIiIiV67M5JyRkUFwcLBru0mTJqSn\npxd7TlJSEsOHD2fu3LmuhakPHDjAo48+yvDhw/n666+ruNgiIiJ1V4XXc/7tCpMTJkzg9ttvp3Hj\nxowfP57169dz0003kZCQQP/+/Tl69Cjx8fFs2LABX1/fEs8bHByAxeJd8XdQitKW46rPFBdzios5\nxcWc4mJOcTFX0biUmZxDQ0PJyMhwbZ88eZKQkBDX9n/+53+6Hvfq1Yt9+/YRGxvLgAEDAGjbti3N\nmjXjxIkTtGnTpsTXOXMmp0IFL4vWFTWnuJhTXMwpLuYUF3OKi7lqWc85MjKS9evXA5CWlkZoaCiB\ngYEAZGVlMWrUKKxWKwDbtm2jY8eOrFmzhqVLlwKQnp7OqVOnaN68ecXfkYiISD1UZs25W7dudO3a\nlbi4OAzDICkpidTUVIKCgoiJiaFXr14MGzYMPz8/wsPDiY2N5fz580ydOpWNGzdSUFDArFmzSm3S\nFhERkYsMx29vIrtJVTeFqHnFnOJiTnExp7iYU1zMKS7mqqVZW0RERGqWkrOIiIiHUXIWERHxMErO\nIiIiHkbJWURExMMoOYuIiHgYJWcREREPo+QsIiLiYZScRUREPIySs4iIiIdRchYREfEwSs4iIiIe\nRslZRETEwyg5i4iIeBglZxEREQ+j5CwiIuJhlJxFREQ8jJKziIiIh1FyFhER8TBKziIiIh5GyVlE\nRMTDKDmLiIh4GCVnERERD6PkLCIi4mGUnEVERDyMkrOIiIiHUXIWERHxMErOIiIiHkbJWURExMNY\nyvOk5ORkdu7ciWEYJCYmEhER4fpZnz59aNGiBd7e3gDMnTuX5s2bl3qMiIiIlKzM5Lx161aOHDlC\nSkoKBw8eJDExkZSUlGLPef3112nYsGGFjhERERFzZTZrb968mejoaAA6dOhAZmYm2dnZVX6MiIiI\nOJWZnDMyMggODnZtN2nShPT09GLPSUpKYvjw4cydOxeHw1GuY0RERMRcue45X8rhcBTbnjBhArff\nfjuNGzdm/PjxrF+/vsxjzAQHB2CxeFe0OKUKCQmq0vPVFYqLOcXFnOJiTnExp7iYq2hcykzOoaGh\nZGRkuLZPnjxJSEiIa/s///M/XY979erFvn37yjzGzJkzORUqeFlCQoJIT8+q0nPWBYqLOcXFnOJi\nTnExp7iYKykupSXsMpu1IyMjXbXhtLQ0QkNDCQwMBCArK4tRo0ZhtVoB2LZtGx07diz1GBERESld\nmTXnbt260bVrV+Li4jAMg6SkJFJTUwkKCiImJoZevXoxbNgw/Pz8CA8PJzY2FsMwLjtGREREysdw\nlOeGcA2o6qYQNa+YU1zMKS7mFBdzios5xcVctTRri4iISM1SchYREfEwSs4iIiIeRslZRETEwyg5\ni4iIeBglZxEREQ+j5CwiIuJhlJxFREQ8jJKziIiIh1FyvmDVKgtRUQG0bBlIVFQAq1ZVeMEuERGR\nKqEMhDMxjx3bwLW9Z4/3he1cBg8udF/BRESkXlLNGZg/39d0/4IF5vtFRESqk5IzsG+feRhK2i8i\nIlKdlH2AsDB7hfaLiIhUJyVnYNIkq+n+iRPN94uIiFQnJWdg8OBClizJJTzchsXiIDzcxpIl6gwm\nIiLuod7aFwweXKhkLCIiHkE1ZxEREQ+j5CwiIuJhlJxFREQ8jJKziIiIh1FyFhER8TBKziIiIh5G\nyVlERMTDKDmLiIh4GCVnERERD6PkLCIi4mGUnEVERDyMkrOIiIiHUXIWERHxMOValSo5OZmdO3di\nGAaJiYlERERc9px58+bx73//m3feeYctW7YwceJEOnbsCEBYWBgzZ86s2pKX4v/+z+DQIbj22hp7\nSRERkSpTZnLeunUrR44cISUlhYMHD5KYmEhKSkqx5xw4cIBt27bh4+Pj2te9e3cWLlxY9SUuh6Qk\nP778En78Efz93VIEERGRSiuzWXvz5s1ER0cD0KFDBzIzM8nOzi72nBdeeIEnnniiekpYCa1bO8jN\nhd271WovIiK1T5k154yMDLp27erabtKkCenp6QQGBgKQmppK9+7dad26dbHjDhw4wKOPPkpmZiYJ\nCQlERkaW+jrBwQFYLN6VeQ+Xue02WLoUDh1qSL9+VXLKOiUkJMjdRfBIios5xcWc4mJOcTFX0biU\n657zpRwOh+vx2bNnSU1N5a233uLEiROu/e3atSMhIYH+/ftz9OhR4uPj2bBhA76+viWe98yZnIoW\npUTt23sBDfn6aytDhuRX2XnrgpCQINLTs9xdDI+juJhTXMwpLuYUF3MlxaW0hF1mu29oaCgZGRmu\n7ZMnTxISEgLAN998w+nTp7n//vtJSEggLS2N5ORkmjdvzoABAzAMg7Zt29KsWbNiybu6hYXZadAA\ndu6smpq4iIhITSozOUdGRrJ+/XoA0tLSCA0NdTVpx8bGsnbtWj744ANeeeUVunbtSmJiImvWrGHp\n0qUApKenc+rUKZo3b16Nb6M4iwVuuAH27vUiL6/GXlZERKRKlNms3a1bN7p27UpcXByGYZCUlERq\naipBQUHExMSYHtOnTx+mTp3Kxo0bKSgoYNasWaU2aVeHm2+Gb74x2L3bi27d7DX62iIiIleiXPec\np06dWmy7c+fOlz3n6quv5p133gEgMDCQV199tQqKV3k33+z8vnOnt5KziIjUKnV2rFFRcv7++zr7\nFkVEpI6qs5krPBz8/R3qFCYiIrVOnU3OFgt07WpXpzAREal16mxyBrjhBhuFhQZ79tTptykiInVM\nnc5aN9xgAzTeWUREapc6nZwjIpy9tNUpTEREapM6nbU6dbJXe6ewVassREUF0LJlIFFRAaxaVeEZ\nUUVERIqp05mkqFPY9997kZ8Pfn5Ve/5VqyyMHdvAtb1nj/eF7VwGDy6s2hcTEZF6o07XnAEiImwU\nFFRPp7D5881nPVuwoGZnQxMRkbqlzifn6uwUtm+fefhK2i8iIlIedT6LVGensLAw82lBS9ovIiJS\nHnU+OXfqZMfPr3o6hU2aZDXdP3Gi+X4REZHyqPPJ2cfH2Slszx5np7CqNHhwIUuW5BIebsNicRAe\nbmPJEnUGExGRK1One2sXiYiwsWOHN3v2eHHjjVXb5Dx4cKGSsYiIVKk6X3MGuOEGZ0LWTGEiIlIb\n1IvkHBHh7LGtmcJERKQ2qBfZqnPn6usUJiIiUtXqRXL28YHw8OrpFCYiIlLV6kVyhoszhe3dW2/e\nsoiI1FL1JlOpU5iIiNQW9Sg5F03jWW/esoiI1FL1JlMVdQr7/nvVnEVExLPVm+R8aacwq2bXFBER\nD1ZvkjM4O4VZreoUJiIinq1eZSl1ChMRkdqgniVndQoTERHPV6+yVKdOdnx91SlMREQ8W71Kzr6+\nzk5hu3e7v1PYqlUWoqICaNkykKioAFatqhcLhImISDnUq+QMntEpbNUqC2PHNmDPHm9sNoM9e7wZ\nO7aBErSIiADlTM7JyckMGzaMuLg4vv/+e9PnzJs3jwcffLBCx7iDJ3QKmz/f13T/ggXm+0VEpH4p\nMzlv3bqVI0eOkJKSwpw5c5gzZ85lzzlw4ADbtm2r0DHu4gmdwvbtM3/tkvaLiEj9UmY22Lx5M9HR\n0QB06NCBzMxMsrOziz3nhRde4IknnqjQMe7SubP7O4WFhdkrtF9EROqXMpNzRkYGwcHBru0mTZqQ\nnp7u2k5NTaV79+60bt263Me4k68vdOni3k5hkyaZv/DEiZq6TEREoMI9kBwOh+vx2bNnSU1N5a23\n3uLEiRPlOqYkwcEBWCxVW5sNCQky3X/rrbBzJ5w8GcRNN1XpS5bLmDHQqBE8/zzs3g3h4fDUUxAX\n16BGXr+kuNR3ios5xcWc4mJOcTFX0biUmZxDQ0PJyMhwbZ88eZKQkBAAvvnmG06fPs3999+P1Wrl\np59+Ijk5udRjSnLmTE6FCl6WkJAg0tOzTH8WFuYD+LNpUx5XX11Qpa9bXn37Or8uVRONC6XFpT5T\nXMwpLuYUF3OKi7mS4lJawi6zWTsyMpL169cDkJaWRmhoKIGBgQDExsaydu1aPvjgA1555RW6du1K\nYmJiqcd4Ak/oFCYiIlKSMmvO3bp1o2vXrsTFxWEYBklJSaSmphIUFERMTEy5j/EkntApTEREpCSG\nozw3hGtAVTeFlNW8EhMTwN69Xhw6lI2PT5W+tEdTs5M5xcWc4mJOcTGnuJirlmbtuioiwkZ+vpaP\nFBERz1NvM1PRTGFq2hYREU96JdGHAAAgAElEQVRTj5OzOoWJiIhnqreZqXNnOz4+6hQmIiKep94m\nZz8/50xhaWleFLhnqLOIiIipepucwdm0nZ9v8OOP9ToMIiLiYep1VoqIcP/ykSIiIr9Vr5OzOoWJ\niIgnqtdZqUuX2tcpbNUqC1FRAbRsGUhUVACrVlV47RIREfFw9fqT3c/P2Wu7qFOYp88UtmqVhbFj\nL65ctWeP94XtXAYPLnRfwUREpErV65oz1K5OYfPn+5ruX7DAfP+limrcFguqcYuIeDjPz0jVrKhT\n2Pffe34o9u0zL2NJ+4sU1bj37PHGZrtY41aCFhHxTJ6fkarZxU5hnn/fOSzMXqH9Ra6kxi0iIjWv\n3ifnLl3sWCy1o1PYpElW0/0TJ5rvL1LZGreIiLhHvf909ve/2Cms0MP7VA0eXMiSJbmEh9uwWByE\nh9tYsqTszmCVrXGLiIh71PvkDHDjjTby8mpHp7DBgwvZtCmHX3/NZtOmnHL10q5sjVtERNzD87NR\nDahNncIqo3iNm3LXuEVExD3qZjaqoNrUKayyimrcBQWUu8YtIiLuoeTMxU5hdTk5i4hI7aHkzMVO\nYbt3e36nMBERqfuUnC+44QYbubmGhheJiIjbKRNdcHH5SIVERETcS5nogvrQKUxERGoHJecLwsPV\nKcyMlqgUEal5+qS9wN/f2Wt71y4vjh41aNPG4e4iuZ2WqBQRcQ/VnC8xZowVq9XgySf9cSg3a8EM\nERE3UXK+xNChhURFFbJxo4XUVDUqaMEMERH30KfsJQwD5s7NIyDAwYwZfpw6Zbi7SG6lBTNERNxD\nyfk3rrnGwfTp+Zw65cXTT/u5uzhupQUzRETco1xtt8nJyezcuRPDMEhMTCQiIsL1sw8++ICVK1fi\n5eVF586dSUpKYuvWrUycOJGOHTsCEBYWxsyZM6vnHVSD0aMLWLXKhw8/9OHeewvo08fm7iK5hbPT\nVy4LFviyb58XYWF2Jk60qjOYiEg1KzM5b926lSNHjpCSksLBgwdJTEwkJSUFgNzcXD7++GPee+89\nfHx8iI+P57vvvgOge/fuLFy4sHpLX028vWHevDzuvDOAadP8+fLL8wQGurtU7jF4cKGSsYhIDSuz\nWXvz5s1ER0cD0KFDBzIzM8nOzgagQYMGvP322/j4+JCbm0t2djYhISHVW+Iact11dhISrBw96sWL\nL9bv5m0REalZZSbnjIwMgoODXdtNmjQhPT292HNee+01YmJiiI2NpU2bNgAcOHCARx99lOHDh/P1\n119XcbFrxuTJVjp0sPPaaz5s367b8zVBk56IiFRiEhKHyQDgMWPGEB8fz+jRo7n55ptp164dCQkJ\n9O/fn6NHjxIfH8+GDRvw9S15fGxwcAAWS9XOzhUSEnTF53jzTYiKgmnTGrJ9O5TyFmqNqohLdVix\nAsaOvbhdNOlJo0YQF1f9r++pcXE3xcWc4mJOcTFX0biUmZxDQ0PJyMhwbZ88edLVdH327Fn279/P\n7373O/z9/enVqxc7duzg5ptvZsCAAQC0bduWZs2aceLECVet2syZMzkVKnhZQkKCSE/PuuLzdOkC\n8fF+LFvmS1JSPpMn1+6eylUVl7KsWmVh/vyLHckmTSq7I9mzzwYAl/+DNnu2jb59q/b6+K2aiktt\no7iYU1zMKS7mSopLaQm7zLbayMhI1q9fD0BaWhqhoaEEXugdVVhYyPTp0zl//jwAu3bton379qxZ\ns4alS5cCkJ6ezqlTp2jevHnF35GHePrpfJo3t/PSS77s36/m7bIUTfu5Z483NpvhqgGX1UStSU9E\nRJzKrDl369aNrl27EhcXh2EYJCUlkZqaSlBQEDExMYwfP574+HgsFgudOnWib9++nD9/nqlTp7Jx\n40YKCgqYNWtWqU3anq5RI3jxxXwefrgBkyf7sXp1Ll7KFyUqbdrP0mrPYWF29uy5vOZcnklPKlNT\nFxHxVIbD7CayG1R1U0h1NK+MHOnPP/7hw4sv5vHIIwVVeu6aUhPNTi1bBmKzXT67msXi4Ndfs0s8\n7rcLbRRZsqT0hTYqe9yl1BxnTnExp7iYU1zMVUuztlz0/PP5NG7sYPZsP379tX5P7Vmayk77OXhw\nIUuW5BIebsNicRAebitXgtUCHSJS1yg5V0Dz5g5mzconO9vgj3/UylUluZJpPwcPLmTTphx+/TWb\nTZtyylXz1b1qEalr9OlVQSNGFHDbbYWsX29hzRqNwTVT2RpwZWmBDhGpa5ScK6ho5Sp/fwdPPeXH\nmTPuLpFnqkwNuLK0QIeI1DVKzpVw7bUOpk61kpHhxaxZ/u4uTr1X0zV1EZHqpnbZSho3zsrq1RaW\nL/fhnnsKiIqqnytXeQot0CEidYlqzpVkscDLL+fh7e1g6lR/cqp3AiupJkVzeVssaC5vEfEYSs5X\nICLCzqOPFnDkiFauqo2Kz2RGuWcyExGpbkrOV2jatHzatbOzZIkPW7ZU7cIdUr00PlpEPJWS8xUK\nCICFC/NwOCAhwZ/skifAEg+j8dEi4qn0KVQFevSw8fjjVo4c8WLGDDVv1xYaHy0inkrJuYo8+aSV\n66+38f77vqxdq3uWtYHGR4uIp1JyriK+vvDXvzonJ5kyxY8TJzT3tqcrPj4ajY8WEY+h5FyFOnWy\nM3NmPqdOeTFpkuberg2KZjIrKKBCM5kVDcFq2TKwQkOwKnuciNQvSs5VbNSoAqKiCtm40cL//I+P\nu4sj1aD4ECyj3EOwKntc0bFK6iL1h5JzFfPycvbevuoqB7Nm+XHggJq365rKDsGq7HFXktRFpHZS\ncq4GLVs6mDs3j9xcg3HjGlBQ4O4SSVWq7BCsyh6n8dgi9Y+SczX5wx8Kue++Av79b2/mzdOHaF1S\n2SFYlT1O47FF6h/9dVej55/Po00bO/Pn+7Jtm0JdV1R2CFZlj9N4bJH6RxmjGjVqBK+84pw9bPz4\nBpo9rI6o7BKVlT1O47FF6h8l52rWs6eN8eOtHD7sRVKSZg+rK4qGYP36a3aFhmBV5rgrWa/6Sod8\nabUuEfcwHA7PGI2bnp5VpecLCQmq8nNWVn4+xMYGkJbmzbJlOcTGum/tZ0+Kiyepi3Ep6uX9W2Ul\n9soeV3Ts/Pm+7NvnRViYnUmTrHVyUpe6eL1UBcXFXElxCQkJKvEY1ZxrgJ8fLF6ch5+fg8mT/Tl5\nUsOrpPppyJdI7aXkXEM6d7YzY0Y+GRleTJ6s2cOk+mnIl0jtpeRcg0aPLuD22wvZsMHCO+9o9jCp\nXhryJVJ76a+mBnl5waJFeTRu7ODpp/04dEjN21J9NORLpPZScq5hrVo5+NOf8sjJMRg/vgGFda+v\njHiIqhnyVf7VumrTkC/NVS6eTr213eTRR/1JTfVh2rR8pk2ruQ8vT4+Luygu5ioal1WrLCxYcLG3\n9sSJ5eutXZO9vK+kN3oRXS/mFBdzlemtrX8X3eTFF/PYssWbuXN9ueYaO0OHqgottd/gwYUVTqq/\nTZZFvbyhetbWLq3jWl0c9iW1k5q13aRxY3jnnVwaNYIJE/xZs0b/J0n9VNO9vN3RcU3N6FJR5boa\nk5OTGTZsGHFxcXz//ffFfvbBBx8wdOhQ4uLimDVrFkWt5KUdI07XXWcnJSWHgABnM/eGDd7uLpJI\njavpZFnTHdc0/lsqo8yrf+vWrRw5coSUlBTmzJnDnDlzXD/Lzc3l448/5r333mPFihUcOnSI7777\nrtRjpLhu3ey8/34uvr4wcmQDNm1Sgpb65UqSZWVqpDXdcU3jv6UyykzOmzdvJjo6GoAOHTqQmZlJ\n9oUVHBo0aMDbb7+Nj48Pubm5ZGdnExISUuoxcrkePWy8/XYuhgEPPdSAzZuVoKX+qGyyrGyN9Erm\nKq8Mjf+WSnGUYcaMGY5PP/3UtT18+HDHoUOHij1nyZIljsjISMeSJUvKfcxvFRQUllWUOu8f/3A4\nfHwcjsBAh+Obb9xdGpGas3y5wxER4XBYLM7vy5eXfcz11zsccPlXRET1l7cirqScy5c7j/f2dn4v\nT1ykbqjwTQ+HycirMWPGEB8fz+jRo7n55pvLdcxvnTmTU9GilKo2dunv3h1efdXCmDH+9OsHqak5\nXH991d4Hq41xqQmKi7maikvfvs6vS6Wnl37M7t2BwOUT+eze7SA9vXpb6ioSl4QE86Fb48fnkp5e\n/gVIdu2C4cPh3Lnqq+VfKf0dmauWhS9CQ0PJyMhwbZ88eZKQkBAAzp49y7Zt2wDw9/enV69e7Nix\no9RjpHR3313IokV5nDsHQ4c2YO9eNX2JmHHHjGSVWUqzss3oulddv5X5yR8ZGcn69esBSEtLIzQ0\nlMDAQAAKCwuZPn0658+fB2DXrl20b9++1GOkbEOGFPLSS/mcOuXFkCENNM2niIma7thV/B43Fep1\nXZl1vHWvun4r86rq1q0bXbt2JS4uDsMwSEpKIjU1laCgIGJiYhg/fjzx8fFYLBY6depE3759MQzj\nsmOkYu6/v4DcXEhM9OeeewJYsyaHtm09YjI3EY/gTHC5lZqRrDJqevKSsDA7e/Zc3jlUc5XXD5q+\n08MtWuTL7Nl+tG1r56OPcmjZ8sp+XXUlLlVNcTGnuFzUsmUgNtvlrVgWi4Nff636e9xVMc1oTdP1\nYq5a7jmLez3+uJVp0/L56Scv7r23ASdPqolbxB1q+h53TQ/5cgfNnFYyJedaYOpUKwkJ+Rw44M19\n9zXg9Gl3l0ik/nHHqluVuVd9JWoyWWrmtNIpOdcChgEzZ1oZNcrKnj3eDB0aQGamu0slUr9UdinN\n2qKmk6V6o5dO95xrEbsdpkzx4733fGnWzE5IiAM/P/D3d35v0KBoG/z8HPj7X/xZ0eO2bf1p2vQ8\n7ds7aNLEgaFWcqBuXi9VQXExVxfjEhUVYNoBLTzcxqZNpc9DcXHJT2/CwmzlWvKzpu/hu5OWjKzj\nvLxg7tx8GjSAjz6ycOyYF/n5kJtb0QzbEIBGjRy0b2/n2mvttG9vp107O+3bO/eFhChxi9QnlR26\nVdklP9UbvXRKzrWMtzckJ+eTnJzv2udwgNUKeXmQl2eQlwf5+caFbee+/PyinzVg1y4rhw8bHDrk\nxZ49XuzcefkfSMOGziRd9NWtm5077yzEoitGxONdrMk6h5iVpyZb2WRZ2SFmkyZZTXujV+c9/NpE\nH7V1gGGAn5/zq3HjorsU5ncrQkIgPf1iYrfZ4Ngxg//7P69LvpzbBw968cMPF/9Yr77aziOPFPDA\nA1aCg6vzHYlIZVW2JlvZZFnZGndNj1OvbXTPuZ6pSFwcDjhxwuDgQS8++sjCihU+5OQYBAQ4uO++\nAkaPLqgzTVC6XswpLuY8OS5Xeu+4osnySl6vvtA4Z6lShgEtWjiIjLTxwgv57NyZzaxZeTRt6uDt\nt3257baGDB3agM8+88ZeN3K0SK13JdN+VmboljuGmFVWZYeKuWM8tpKzlFvjxjBuXAFbtpznzTdz\n6dmzkE2bLIwYEUBkZEOWLvVBy3aLuJd7J0vx3CFmlR0q5q7x2ErOUmEWC9x1VyGrV+eyceN5hg0r\n4OhRg6ee8ufGGwN5+mk/jhxRV28Rd3DnZCkFBdTIZCmVUdlx1e4aj63kLFfk+uvtLFqUx44d53ny\nyXz8/By8+qovt97akIcf9ufbb3WJidSk+jDtZ2VUtrnfXauD6ZNTqkRoqIOpU63s2HGeV17J5frr\n7axd68OAAQ2ZOdOP3Fx3l1Ck/qjpaT9rg8o297tj3XBQcpYq5ucHQ4cWsmFDDqtW5fAf/2FjyRJf\n+vYNYPt2XW4i4h6Vbe53V4c3fVpKtTAMiIy0sXFjDmPHWjlwwJuBAwNITvbF6nmdOEWkFqlM7+nK\nNve76zaBxjnXM+6Ky9dfezNxoj8//eRFeLiNV17J47rrPGf8la4Xc4qLOcXFXE3EpS6tc61xzuJ2\nkZE2Nm06z4MPWtm925t+/QKYP9+XQs/8WxIRD1VfVrNScpYaExgI8+bls2JFDk2bOkhO9uOuuwLY\nv1+XoYiUj7t6T9e0uvVupFbo08fGV1+d5957C9ixw5u+fQNYssRHs4yJSJnc1Xu6pik5i1tcdRUs\nXpzH0qW5NGzoYOZMf+65p4EmLxGRUtWm6UKvhJKzuNXddxfy1Vc59O9fwL/+ZeGOOxryzjs+lNRN\nsWh5zOxsOH0ajh83OHLEYP9+L9LSvDh40LlUpojUTfVlkhX11q5nPDUuDgd8+KGFxER/zp0zaNPG\njmFAQYEzGefnG1itYLWWr2YdEmKnbVsHV19t5+qrHbRpY6dNm4uPAwN/+3zPjIu7KS7mFBdziou5\nyvTW1nrO4hEMwzl5yW23nWf6dD++/dbbtUZ1o0YOfH0d+PpyyXfnYz8/8PG5+Pj8eYOffzY4etSL\n77/3Yvv2y5eyAwgOLkrcdtq0cRAdDb16gZfakkTEAyg5i0dp1crBsmVV0y5ts8HJkwZHjzqT9c8/\ne3H0qOH6fuCAF7t2OZP3a6/BzTcHMHt2HrfcUrc6lohI7aPkLHWWtze0bOmgZUsH3btfnnAdDjh1\nyuDwYYP/+Z+GfPCBNwMGNGTIkAJmzsynZUuPuONT6zgcYLc74y8ilaPkLPWWYUCzZg6aNXPQvz88\n8EAO//3ffqxc6cPatRYef9zKuHFWGlw+GZGUYNcuLx5/3J/du71p1MjBVVc5vxo3vvjYue28tVB8\nn/MfKR8fd78LEfdTcha5oEcPGxs25LBihQ9z5vjy4ot+vP++D08/nc8f/lCIoVFeJbLbYfFiH5KT\n/SgoMLj5Zhu5uXD2rPP2QU5O+TvyPf64lfj4AgICqrnQIh5MvbXrGcXF3G/jkpUFL7/sy5IlvhQU\nGPToUchzz+UTEVG/7keX53r55ReDxx/353//10JoqJ2FC/Po08dW7DlWqzNRZ2YanDkDmZkGZ88W\n/zp1ymDDBgvZ2QYhIXYSEqw89JBnJmn9HZlTXMxVpre2knM9o7iYKykuhw4ZzJrlx7p1PhiGgxEj\nCnjqKSuhoR7xZ1Ptyrpe/v53C9Om+ZOZaRAbW8BLL+XTrFnlY3P6NCxZ4svrr/uSnW3QrJmzJu1p\nSVp/R+YUF3PVtvBFcnIyw4YNIy4uju+//77Yz7755huGDh1KXFwcTz31FHa7nS1bttCjRw8efPBB\nHnzwQWbPnl3BtyLiGa691tl7/MMPc+jUyc577/nSo0dDFi3yJT/f3aVzn6wsGD/enzFjGlBQAC+9\nlMfbb+ddUWIGaNIEnnrKyvbt2UyenE9enkFSkj+33NKQxYt9yMmpojcg4uHKrDlv3bqVpUuXsmTJ\nEg4ePEhiYiIpKSmun995550sW7aMFi1aMGHCBO699178/f157733WLhwYbkLoppzzVBczJUnLoWF\nsGyZDy++6MeZMwbt2tkZM8ZK8+YOgoOdX02aOL/7+1e8DA4HnDkDx455cfy4wbFjXhw7ZhR7fP68\ngZcXeHk5Lnx3dmwrenzpl3O/A8OAq692MHBgIX37Flaog5tZXL75xpuEBOfynzfdZGPx4lyuvbZ6\nWhLOnHHWpF97zbNq0vo7Mqe4mKuWSUg2b95MdHQ0AB06dCAzM5Ps7GwCL0yxlJqa6nrcpEkTzpw5\nQ8uWLSv1BkQ8mcUCI0cWMHhwAXPn+vHmmz4kJppn4YCA4gm7KGkXbdtslyZhZ/I9ccIgP7/kjlMB\nAQ4aNXJcGKpkuIYs2e3Ghe/Or4v7nV82m8GWLfC3v/kQEOAgJqaQu+92JuqGDcv//gsKYO5cX9fS\nfJMn5zNlirVae1cHB8P06VbGjrW6knRSkj+LFvm67klX5D3URocPO6+Jdu3qx60UcSqz5jxz5kyi\noqJcCXrEiBHMmTOH9u3bF3veyZMnuf/++/nggw/Yt28fzzzzDG3btiUzM5OEhAQiIyNLLUhhoQ2L\nRQMjpfY4cAC2bIFTp4p/ZWQU3z5/vvTzGAa0aAGtW5f81aoVNGpEpXqMOxywYwesXAkffggHDzr3\nN2gAAwbAkCEwcCAElfxPPPv2wQMPwLZt0K4dvPsulPEnXS1On4b5851fWVkQGgpPPgljx3LZlKy1\n3f79kJQEK1Y4f4cDB8KUKXDHHZW7DqR2qXByHj58OMnJycWS86lTpxg9ejSTJ0/mtttu48SJE2zf\nvp3+/ftz9OhR4uPj2bBhA76+JS+GrWbtmqG4mKvOuOTl4eqNfOaM88swoGVLOy1bOggNdWCpoUGN\nDgekpXnxj39YWLPGwoEDzn+I/fwc9O7trFH361dIo0bO5zdrFsRLL+Xx9NN+5OQYDB1awPPP55Wa\nyGtCUXP366/7kpVl4O3toHNnOzfcYOOGG+zceKONLl3slbq9UB7Veb38/LPBvHm+rFjhg81mEBFh\nw88Ptm1z/q4iImw89piVP/yhsMpaLRwO5xj1Dz/0YfVqCw0awMiRVkaMKKjQ71qfL+aqpbf2okWL\nCAkJIS4uDoC+ffuyevVqV1N2dnY28fHxTJo0iV69epmeY8iQIbz88su0adOmxNdRcq4Ziou5+hgX\nhwP27vXio48s/OMfFvbudX74+/o6uOMOGwMHFvD55w1YvRoaN3Ywd24egwZ51so/Z8/CG2/48sUX\nFn74wYvc3ItVSovFQZcuzkQdEeH83rmzHT+/K3/d6rheTpwwWLDAl2XLfLBaDcLCbPzxj1buuss5\nxv7bb71YvNiXjz+2YLcbtG5tZ/RoKw88UOD6Z6qifvrJIDXVh5UrLezb5/z9X3WVg7w8yMszCAx0\ncP/9BfzXf1m55pqym9Xr499ReVRLct6xYweLFi3irbfeIi0tjeeee47ly5e7fj5jxgx+97vfMWjQ\nINe+NWvWkJ6ezqhRo0hPT2fo0KGsX79eNWcPoLiYU1xg3z5njfqjjyykpV28xXTbbYUsWpRH69ae\nfc+zsND5Hnbu9GLnTm927vQmLc2LvLyLCdvHx0F4uJ2ICBs33mineXM7ubkGubnORVNyc3Ft5+QY\nrse5uQY5OUX7oHVrb3r2zOOOO2yEh9uvaMGUM2fglVd8WbrUl5wcg2uusTNtWj733ltoOgXq4cMG\nr73my/vv+5CT40ygDz5YwJgx1nL9js6ehTVrnAn5m2+cTTZ+fg769StkyJAC+vSxce6cwTvv+PDm\nmz6cOOGFl5eD2NhCHn20gFtvtZXYrK6/I3PVNs557ty5fPvttxiGQVJSErt37yYoKIjbbruN3/3u\nd9x0002u5951110MHDiQqVOncu7cOQoKCkhISCAqKqrU11ByrhmKiznFpbhDhwzWrrXQrp0/AwZk\n1drVugoK4Mcfi5K1lythl3fp0d/y8XH2xM/Kunh8s2Z2oqJsREUVcscdNlq0KN8/MdnZ8Oqrvixe\n7Gyab9HCzpQpzqbk8jRXnzkDy5b58sYbzgTq7e1g0KBCxo2zXjZZTn4+fPqphZUrLXz2mQWr1cAw\nHERG2hgypIC77io0rX1brbB6tYUlS3z5/vuLzepjx1oZNKiQ39a39HdkTpOQXEIXiTnFxZziYq4u\nxsVqdSbsf//bm7NnDQICHDRs6KBBA2jQwPk9IODidkCAc9vfH1fStNmCSE3N5csvLWza5M3Jkxf/\ne+nSxUavXjZ69y6kRw/bZUO+cnPhrbd8WLjQl9OnvWja1M6ECVYefrigUvO45+fDqlUWFi/2Zc8e\nZwKNjHQm6cBAWLnSwpo1PmRmOv+h6NzZxpAhhdx7b0G5W0McDtiyxZslS3z45BNns3poqJ2RIwt4\n6KECmjZ1nqcuXi9VQcn5ErpIzCku5hQXc4qLuUvj4nDAnj1efPmlN5s2Wdi82dvVlO7r6+DWW22u\nmvWOHd68/LIvx4970aiRg3HjrIwZY62SnuYOB3zxhTeLF/vy5ZfFexi2aGHnnnuczdZdu9qvqLf3\nkSMGb7zhy3vv+ZCdbeDv72DIkALGjCng9tsbFrteHA7n7Qar1dmKkZ9vUFBQtG1gtTofG4ZzjXY/\nv4trsxet3e7n5xzGWJt7qCs5X0IfKuYUF3OKiznFxVxpccnLg61bvdm0yZsvv7S41gwvEhDgYPRo\n54pnwcHVU74ffvDirbd8sNth8OBCIiNtVb6EZ1YWLF/uw+uv+3LkiLPloEULsFrtWK1FibdqMqph\nFCXsS5M3BAU5V5Vr2vTi95AQe7HtZs0c5RoL73BATg5kZxucO2eQlcWF787HWVkGkZE2rruu4vPr\nKzlfQh8q5hQXc4qLOcXFXEXikp5u8M9/evPVV940aeLg0UcL6tTc7DYbrF9vYelSH44ft+DtbcPH\n52IiLXrs4+O4sO+3+52J0Wp1NtEXJfaix87v5o/PnTOK9dAvSYMGF5N106bO2fWKku+lydhmK/1c\n0dGFvP9+boVjVC0zhImISOWFhDi4555C7rnHs4ahVRVvbxgwoJABAwovJKGanQD9/HnIyHDOI1D0\nPT3dq9h20eM9e7xcs/AZhoOgIGftu2VLOx07QqNGDoKCir4u3771VlsZpak6Ss4iIlJrNWwIDRs6\nyjUO2+G4OGNfQAAePQpByVlEROoFw6g907x68P8NIiIi9ZOSs4iIiIdRchYREfEwSs4iIiIeRslZ\nRETEwyg5i4iIeBglZxEREQ+j5CwiIuJhlJxFREQ8jJKziIiIh1FyFhER8TAes2SkiIiIOKnmLCIi\n4mGUnEVERDyMkrOIiIiHUXIWERHxMErOIiIiHkbJWURExMNY3F2A6pCcnMzOnTsxDIPExEQiIiLc\nXSS327JlCxMnTqRjx44AhIWFMXPmTDeXyn327dvHuHHjePjhh3nggQc4duwYTz75JDabjZCQEP78\n5z/j6+vr7mLWuN/GZfr06aSlpXHVVVcBMGrUKO644w73FtIN/vSnP7F9+3YKCwsZO3Ys119/va4X\nLo/L559/Xu+vl9zcXKZPn86pU6fIz89n3LhxdO7cucLXS51Lzlu3buXIkSOkpKRw8OBBEhMTSUlJ\ncXexPEL37t1ZuHChu2T/dDkAAAPESURBVIvhdjk5OcyePZuePXu69i1cuJARI0bQv39/XnrpJVau\nXMmIESPcWMqaZxYXgMmTJ9O7d283lcr9vvnmG/bv309KSgpnzpxh8ODB9OzZs95fL2Zx6dGjR72/\nXr744guuu+46Ro8ezS+//MLIkSPp1q1bha+XOtesvXnzZqKjowHo0KEDmZmZZGdnu7lU4kl8fX15\n/fXXCQ0Nde3bsmULffv2BaB3795s3rzZXcVzG7O4CPzud79jwYIFADRq1Ijc3FxdL5jHxWazublU\n7jdgwABGjx4NwLFjx2jevHmlrpc6l5wzMjIIDg52bTdp0oT09HQ3lshzHDhwgEcffZThw4fz9ddf\nu7s4bmOxWPD39y+2Lzc319XM1LRp03p5zZjFBeDdd98lPj6eJ554gtOnT7uhZO7l7e1NQEAAACtX\nrqRXr166XjCPi7e3d72/XorExcUxdepUEhMTK3W91Llm7d/S7KRO7dq1IyEhgf79+3P06FHi4+PZ\nsGFDvbxPVhZdMxcNGjSIq666ii5duvDaa6/xyiuv8PTTT7u7WG7x2WefsXLlSt58803uvPNO1/76\nfr1cGpcffvhB18sFK1asYM+ePUybNq3YNVLe66XO1ZxDQ0PJyMhwbZ88eZKQkBA3lsgzNG/enAED\nBmAYBm3btqVZs2acOHHC3cXyGAEBAeTl5QFw4sQJNe1e0LNnT7p06QJAnz592Ldvn5tL5B7//Oc/\nefXVV3n99dcJCgrS9XLBb+Oi6wV++OEHjh07BkCXLl2w2Ww0bNiwwtdLnUvOkZGRrF+/HoC0tDRC\nQ0MJDAx0c6ncb82aNSxduhSA9PR0Tp06RfPmzd1cKs/x+9//3nXdbNiwgdtvv93NJfIMjz/+OEeP\nHgWc9+WLevvXJ1lZWfzpT39iyZIlrl7Iul7M46LrBb799lvefPNNwHmbNScnp1LXS51clWru3Ll8\n++23GIZBUlISnTt3dneR3C47O5upU6dy7tw5CgoKSEhIICoqyt3FcosffviBF198kV9++QWLxULz\n5s2ZO3cu06dPJz8/n1atWvH888/j4+Pj7qLWKLO4PPDAA7z22ms0aNCAgIAAnn/+eZo2beruotao\nlJQUFi1aRPv27V37XnjhBWbMmFGvrxezuNxzzz28++679fp6ycvL47//+785duwYeXl5JCQkcN11\n1/HHP/6xQtdLnUzOIiIitVmda9YWERGp7ZScRUREPIySs4iIiIdRchYREfEwSs4iIiIeRslZRETE\nwyg5i4iIeBglZxEREQ/z/9TohChidhWlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "2HuTVk6XmUMY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As you can see, we reach a validation accuracy of about 96%. This is much better than our small convnet trained from scratch." + ] + }, + { + "metadata": { + "id": "F6fAmCLXmUMa", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Fine-tuning\n", + "\n", + "Another widely used technique for model reuse, complementary to feature extraction, is _fine-tuning_. \n", + "Fine-tuning consists in unfreezing a few of the top layers \n", + "of a frozen model base used for feature extraction, and jointly training both the newly added part of the model (in our case, the \n", + "fully-connected classifier) and these top layers. This is called \"fine-tuning\" because it slightly adjusts the more abstract \n", + "representations of the model being reused, in order to make them more relevant for the problem at hand.\n", + "\n", + "![fine-tuning VGG16](https://s3.amazonaws.com/book.keras.io/img/ch5/vgg16_fine_tuning.png)" + ] + }, + { + "metadata": { + "id": "CalVHRxCmUMc", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We have stated before that it was necessary to freeze the convolution base of VGG16 in order to be able to train a randomly initialized \n", + "classifier on top. For the same reason, it is only possible to fine-tune the top layers of the convolutional base once the classifier on \n", + "top has already been trained. If the classified wasn't already trained, then the error signal propagating through the network during \n", + "training would be too large, and the representations previously learned by the layers being fine-tuned would be destroyed. Thus the steps \n", + "for fine-tuning a network are as follow:\n", + "\n", + "* 1) Add your custom network on top of an already trained base network.\n", + "* 2) Freeze the base network.\n", + "* 3) Train the part you added.\n", + "* 4) Unfreeze some layers in the base network.\n", + "* 5) Jointly train both these layers and the part you added.\n", + "\n", + "We have already completed the first 3 steps when doing feature extraction. Let's proceed with the 4th step: we will unfreeze our `conv_base`, \n", + "and then freeze individual layers inside of it.\n", + "\n", + "As a reminder, this is what our convolutional base looks like:" + ] + }, + { + "metadata": { + "id": "ll6LbpGqmUMd", + "colab_type": "code", + "outputId": "8f20ffd4-ea6b-46d4-8bca-c9b6d9168a08", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 795 + } + }, + "cell_type": "code", + "source": [ + "conv_base.summary()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 150, 150, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 150, 150, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 150, 150, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 75, 75, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 75, 75, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 75, 75, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 37, 37, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 37, 37, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 37, 37, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 37, 37, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 18, 18, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 18, 18, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 18, 18, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 18, 18, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 9, 9, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 9, 9, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 9, 9, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 9, 9, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 4, 4, 512) 0 \n", + "=================================================================\n", + "Total params: 14,714,688\n", + "Trainable params: 0\n", + "Non-trainable params: 14,714,688\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "kM_vaoVEmUMi", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "We will fine-tune the last 3 convolutional layers, which means that all layers up until `block4_pool` should be frozen, and the layers \n", + "`block5_conv1`, `block5_conv2` and `block5_conv3` should be trainable.\n", + "\n", + "Why not fine-tune more layers? Why not fine-tune the entire convolutional base? We could. However, we need to consider that:\n", + "\n", + "* Earlier layers in the convolutional base encode more generic, reusable features, while layers higher up encode more specialized features. It is \n", + "more useful to fine-tune the more specialized features, as these are the ones that need to be repurposed on our new problem. There would \n", + "be fast-decreasing returns in fine-tuning lower layers.\n", + "* The more parameters we are training, the more we are at risk of overfitting. The convolutional base has 15M parameters, so it would be \n", + "risky to attempt to train it on our small dataset.\n", + "\n", + "Thus, in our situation, it is a good strategy to only fine-tune the top 2 to 3 layers in the convolutional base.\n", + "\n", + "Let's set this up, starting from where we left off in the previous example:" + ] + }, + { + "metadata": { + "id": "LwFbx08pmUMj", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "conv_base.trainable = True\n", + "\n", + "set_trainable = False\n", + "for layer in conv_base.layers:\n", + " if layer.name == 'block5_conv1':\n", + " set_trainable = True\n", + " if set_trainable:\n", + " layer.trainable = True\n", + " else:\n", + " layer.trainable = False" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wz7tWcTAmUMl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now we can start fine-tuning our network. We will do this with the RMSprop optimizer, using a very low learning rate. The reason for using \n", + "a low learning rate is that we want to limit the magnitude of the modifications we make to the representations of the 3 layers that we are \n", + "fine-tuning. Updates that are too large may harm these representations.\n", + "\n", + "Now let's proceed with fine-tuning:" + ] + }, + { + "metadata": { + "id": "sYvqmdR_mUMm", + "colab_type": "code", + "outputId": "9cbbb1c6-a9cd-4008-ac47-0acd5da2537f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3473 + } + }, + "cell_type": "code", + "source": [ + "model.compile(loss='binary_crossentropy',\n", + " optimizer=optimizers.RMSprop(lr=1e-5),\n", + " metrics=['acc'])\n", + "\n", + "history = model.fit_generator(\n", + " train_generator,\n", + " steps_per_epoch=100,\n", + " epochs=100,\n", + " validation_data=validation_generator,\n", + " validation_steps=50)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "100/100 [==============================] - 31s 312ms/step - loss: 0.2995 - acc: 0.8695 - val_loss: 0.2233 - val_acc: 0.9080\n", + "Epoch 2/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.2607 - acc: 0.8870 - val_loss: 0.2248 - val_acc: 0.9130\n", + "Epoch 3/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.2332 - acc: 0.9015 - val_loss: 0.2018 - val_acc: 0.9190\n", + "Epoch 4/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.2134 - acc: 0.9155 - val_loss: 0.1976 - val_acc: 0.9210\n", + "Epoch 5/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1965 - acc: 0.9110 - val_loss: 0.1891 - val_acc: 0.9330\n", + "Epoch 6/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.2021 - acc: 0.9190 - val_loss: 0.1884 - val_acc: 0.9260\n", + "Epoch 7/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.1881 - acc: 0.9225 - val_loss: 0.1931 - val_acc: 0.9210\n", + "Epoch 8/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1664 - acc: 0.9300 - val_loss: 0.2018 - val_acc: 0.9200\n", + "Epoch 9/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1646 - acc: 0.9315 - val_loss: 0.1953 - val_acc: 0.9170\n", + "Epoch 10/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.1499 - acc: 0.9340 - val_loss: 0.2023 - val_acc: 0.9250\n", + "Epoch 11/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1538 - acc: 0.9350 - val_loss: 0.2005 - val_acc: 0.9240\n", + "Epoch 12/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1602 - acc: 0.9285 - val_loss: 0.1788 - val_acc: 0.9320\n", + "Epoch 13/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1233 - acc: 0.9515 - val_loss: 0.1882 - val_acc: 0.9300\n", + "Epoch 14/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1207 - acc: 0.9560 - val_loss: 0.1922 - val_acc: 0.9320\n", + "Epoch 15/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.1378 - acc: 0.9490 - val_loss: 0.2020 - val_acc: 0.9240\n", + "Epoch 16/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1156 - acc: 0.9555 - val_loss: 0.1966 - val_acc: 0.9190\n", + "Epoch 17/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.1149 - acc: 0.9565 - val_loss: 0.1815 - val_acc: 0.9260\n", + "Epoch 18/100\n", + "100/100 [==============================] - 29s 288ms/step - loss: 0.1112 - acc: 0.9540 - val_loss: 0.1908 - val_acc: 0.9290\n", + "Epoch 19/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.1096 - acc: 0.9555 - val_loss: 0.1863 - val_acc: 0.9220\n", + "Epoch 20/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.1015 - acc: 0.9610 - val_loss: 0.2433 - val_acc: 0.9200\n", + "Epoch 21/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0895 - acc: 0.9660 - val_loss: 0.1903 - val_acc: 0.9330\n", + "Epoch 22/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0837 - acc: 0.9705 - val_loss: 0.2080 - val_acc: 0.9260\n", + "Epoch 23/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0943 - acc: 0.9630 - val_loss: 0.1874 - val_acc: 0.9330\n", + "Epoch 24/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0727 - acc: 0.9735 - val_loss: 0.2186 - val_acc: 0.9340\n", + "Epoch 25/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0809 - acc: 0.9660 - val_loss: 0.3203 - val_acc: 0.9040\n", + "Epoch 26/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0879 - acc: 0.9650 - val_loss: 0.2114 - val_acc: 0.9280\n", + "Epoch 27/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0713 - acc: 0.9705 - val_loss: 0.2049 - val_acc: 0.9310\n", + "Epoch 28/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0705 - acc: 0.9730 - val_loss: 0.1948 - val_acc: 0.9380\n", + "Epoch 29/100\n", + "100/100 [==============================] - 29s 288ms/step - loss: 0.0677 - acc: 0.9775 - val_loss: 0.2057 - val_acc: 0.9210\n", + "Epoch 30/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0624 - acc: 0.9775 - val_loss: 0.2029 - val_acc: 0.9380\n", + "Epoch 31/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0544 - acc: 0.9795 - val_loss: 0.2049 - val_acc: 0.9350\n", + "Epoch 32/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0608 - acc: 0.9780 - val_loss: 0.2515 - val_acc: 0.9250\n", + "Epoch 33/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0566 - acc: 0.9765 - val_loss: 0.2474 - val_acc: 0.9280\n", + "Epoch 34/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0491 - acc: 0.9845 - val_loss: 0.2369 - val_acc: 0.9250\n", + "Epoch 35/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0582 - acc: 0.9795 - val_loss: 0.2249 - val_acc: 0.9350\n", + "Epoch 36/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0659 - acc: 0.9785 - val_loss: 0.2861 - val_acc: 0.9210\n", + "Epoch 37/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0515 - acc: 0.9805 - val_loss: 0.2077 - val_acc: 0.9330\n", + "Epoch 38/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0678 - acc: 0.9745 - val_loss: 0.2490 - val_acc: 0.9290\n", + "Epoch 39/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0495 - acc: 0.9790 - val_loss: 0.2597 - val_acc: 0.9290\n", + "Epoch 40/100\n", + "100/100 [==============================] - 29s 288ms/step - loss: 0.0521 - acc: 0.9830 - val_loss: 0.2934 - val_acc: 0.9230\n", + "Epoch 41/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0501 - acc: 0.9815 - val_loss: 0.2137 - val_acc: 0.9310\n", + "Epoch 42/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0505 - acc: 0.9835 - val_loss: 0.2004 - val_acc: 0.9370\n", + "Epoch 43/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0402 - acc: 0.9865 - val_loss: 0.2114 - val_acc: 0.9320\n", + "Epoch 44/100\n", + "100/100 [==============================] - 28s 285ms/step - loss: 0.0484 - acc: 0.9805 - val_loss: 0.3985 - val_acc: 0.9050\n", + "Epoch 45/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0427 - acc: 0.9870 - val_loss: 0.2189 - val_acc: 0.9350\n", + "Epoch 46/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0374 - acc: 0.9875 - val_loss: 0.2076 - val_acc: 0.9380\n", + "Epoch 47/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0462 - acc: 0.9825 - val_loss: 0.2825 - val_acc: 0.9280\n", + "Epoch 48/100\n", + "100/100 [==============================] - 28s 284ms/step - loss: 0.0500 - acc: 0.9790 - val_loss: 0.2251 - val_acc: 0.9340\n", + "Epoch 49/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0378 - acc: 0.9855 - val_loss: 0.2672 - val_acc: 0.9350\n", + "Epoch 50/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0459 - acc: 0.9825 - val_loss: 0.5906 - val_acc: 0.8830\n", + "Epoch 51/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0341 - acc: 0.9865 - val_loss: 0.2048 - val_acc: 0.9390\n", + "Epoch 52/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0369 - acc: 0.9865 - val_loss: 0.2236 - val_acc: 0.9340\n", + "Epoch 53/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0351 - acc: 0.9875 - val_loss: 0.2203 - val_acc: 0.9410\n", + "Epoch 54/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0407 - acc: 0.9850 - val_loss: 0.2498 - val_acc: 0.9370\n", + "Epoch 55/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0373 - acc: 0.9870 - val_loss: 0.2288 - val_acc: 0.9430\n", + "Epoch 56/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0460 - acc: 0.9830 - val_loss: 0.2143 - val_acc: 0.9390\n", + "Epoch 57/100\n", + "100/100 [==============================] - 28s 285ms/step - loss: 0.0334 - acc: 0.9890 - val_loss: 0.2042 - val_acc: 0.9480\n", + "Epoch 58/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0252 - acc: 0.9935 - val_loss: 0.2357 - val_acc: 0.9320\n", + "Epoch 59/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0341 - acc: 0.9870 - val_loss: 0.2141 - val_acc: 0.9410\n", + "Epoch 60/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0345 - acc: 0.9880 - val_loss: 0.2628 - val_acc: 0.9370\n", + "Epoch 61/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0345 - acc: 0.9875 - val_loss: 0.2325 - val_acc: 0.9290\n", + "Epoch 62/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0274 - acc: 0.9890 - val_loss: 0.2175 - val_acc: 0.9400\n", + "Epoch 63/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0319 - acc: 0.9895 - val_loss: 0.3719 - val_acc: 0.9160\n", + "Epoch 64/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0308 - acc: 0.9885 - val_loss: 0.2438 - val_acc: 0.9230\n", + "Epoch 65/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0249 - acc: 0.9915 - val_loss: 0.3172 - val_acc: 0.9310\n", + "Epoch 66/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0333 - acc: 0.9885 - val_loss: 0.2720 - val_acc: 0.9280\n", + "Epoch 67/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0324 - acc: 0.9900 - val_loss: 0.2181 - val_acc: 0.9420\n", + "Epoch 68/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0264 - acc: 0.9895 - val_loss: 0.3330 - val_acc: 0.9200\n", + "Epoch 69/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0326 - acc: 0.9905 - val_loss: 0.2689 - val_acc: 0.9230\n", + "Epoch 70/100\n", + "100/100 [==============================] - 28s 285ms/step - loss: 0.0244 - acc: 0.9890 - val_loss: 0.2267 - val_acc: 0.9450\n", + "Epoch 71/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0256 - acc: 0.9935 - val_loss: 0.2687 - val_acc: 0.9410\n", + "Epoch 72/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0318 - acc: 0.9890 - val_loss: 0.2896 - val_acc: 0.9260\n", + "Epoch 73/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0167 - acc: 0.9950 - val_loss: 0.2705 - val_acc: 0.9390\n", + "Epoch 74/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0345 - acc: 0.9855 - val_loss: 0.2105 - val_acc: 0.9450\n", + "Epoch 75/100\n", + "100/100 [==============================] - 28s 284ms/step - loss: 0.0281 - acc: 0.9910 - val_loss: 0.2597 - val_acc: 0.9440\n", + "Epoch 76/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0216 - acc: 0.9925 - val_loss: 0.3115 - val_acc: 0.9390\n", + "Epoch 77/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0192 - acc: 0.9915 - val_loss: 0.2352 - val_acc: 0.9380\n", + "Epoch 78/100\n", + "100/100 [==============================] - 28s 284ms/step - loss: 0.0265 - acc: 0.9900 - val_loss: 0.2852 - val_acc: 0.9320\n", + "Epoch 79/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0319 - acc: 0.9875 - val_loss: 0.2646 - val_acc: 0.9430\n", + "Epoch 80/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0291 - acc: 0.9920 - val_loss: 0.2862 - val_acc: 0.9350\n", + "Epoch 81/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0187 - acc: 0.9945 - val_loss: 0.5087 - val_acc: 0.9100\n", + "Epoch 82/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0243 - acc: 0.9910 - val_loss: 0.3057 - val_acc: 0.9310\n", + "Epoch 83/100\n", + "100/100 [==============================] - 29s 287ms/step - loss: 0.0232 - acc: 0.9935 - val_loss: 0.2503 - val_acc: 0.9450\n", + "Epoch 84/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0260 - acc: 0.9890 - val_loss: 0.3007 - val_acc: 0.9370\n", + "Epoch 85/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0206 - acc: 0.9940 - val_loss: 0.2884 - val_acc: 0.9380\n", + "Epoch 86/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0146 - acc: 0.9960 - val_loss: 0.2719 - val_acc: 0.9360\n", + "Epoch 87/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0197 - acc: 0.9950 - val_loss: 0.2342 - val_acc: 0.9390\n", + "Epoch 88/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0136 - acc: 0.9945 - val_loss: 0.2675 - val_acc: 0.9370\n", + "Epoch 89/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0173 - acc: 0.9915 - val_loss: 0.3546 - val_acc: 0.9330\n", + "Epoch 90/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0163 - acc: 0.9925 - val_loss: 0.2576 - val_acc: 0.9450\n", + "Epoch 91/100\n", + "100/100 [==============================] - 29s 286ms/step - loss: 0.0189 - acc: 0.9925 - val_loss: 0.3445 - val_acc: 0.9320\n", + "Epoch 92/100\n", + "100/100 [==============================] - 28s 285ms/step - loss: 0.0194 - acc: 0.9940 - val_loss: 0.2604 - val_acc: 0.9440\n", + "Epoch 93/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0130 - acc: 0.9945 - val_loss: 0.3393 - val_acc: 0.9360\n", + "Epoch 94/100\n", + "100/100 [==============================] - 29s 288ms/step - loss: 0.0167 - acc: 0.9950 - val_loss: 0.3185 - val_acc: 0.9470\n", + "Epoch 95/100\n", + "100/100 [==============================] - 28s 285ms/step - loss: 0.0286 - acc: 0.9895 - val_loss: 0.3157 - val_acc: 0.9330\n", + "Epoch 96/100\n", + "100/100 [==============================] - 28s 285ms/step - loss: 0.0215 - acc: 0.9930 - val_loss: 0.2586 - val_acc: 0.9360\n", + "Epoch 97/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0263 - acc: 0.9910 - val_loss: 0.2337 - val_acc: 0.9420\n", + "Epoch 98/100\n", + "100/100 [==============================] - 28s 285ms/step - loss: 0.0219 - acc: 0.9915 - val_loss: 0.5248 - val_acc: 0.9100\n", + "Epoch 99/100\n", + "100/100 [==============================] - 29s 285ms/step - loss: 0.0138 - acc: 0.9955 - val_loss: 0.2680 - val_acc: 0.9450\n", + "Epoch 100/100\n", + "100/100 [==============================] - 28s 284ms/step - loss: 0.0184 - acc: 0.9950 - val_loss: 0.3320 - val_acc: 0.9390\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "RrSEKQBcmUMs", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model.save('cats_and_dogs_small_4.h5')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "F8aqk7BPmUMu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's plot our results using the same plotting code as before:" + ] + }, + { + "metadata": { + "id": "mL3AVIzKmUMv", + "colab_type": "code", + "outputId": "0e7df46b-822b-4ceb-ac4a-187e62e663bb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd8FNX6/z8zu9n0QColFAEpoYmo\nSCgGgQiI5QIKEVQUAa/IRa7oFfjCBQVRr6KIBVHsVH9CrAiEEkVBkKK0IM1QEkJ6SLIpW+b3x/Fs\nndm+ySY879eLV9jZ2Zk5Z2fnOU8XJEmSQBAEQRBEwCDW9wUQBEEQBGENCWeCIAiCCDBIOBMEQRBE\ngEHCmSAIgiACDBLOBEEQBBFgkHAmCIIgiACDhDPRYFiwYAGGDx+O4cOHo1u3brj99ttNrysqKtw6\n1vDhw1FYWOhwn6VLl2LdunXeXLLPeeSRR7Bp0yafHKtz587Iy8tDRkYG5syZ49X5vvjiC9P/XZlb\ngiAco67vCyAIV3n++edN/x88eDD+97//4eabb/boWFu2bHG6z6xZszw6dkMjNTUVqampHn++oKAA\nq1atwtixYwG4NrcEQTiGNGei0fDQQw/hjTfewIgRI3Do0CEUFhbisccew/DhwzF48GB8/PHHpn25\n1rhv3z6MGzcOS5cuxYgRIzB48GDs378fADB79my8++67ANhiYP369bjvvvswYMAAvPzyy6Zjvffe\ne0hOTsaYMWOwZs0aDB48WPb6/t//+38YMWIE7rjjDkyYMAE5OTkAgE2bNmHGjBmYO3cuhg0bhjvv\nvBOnT58GAFy8eBH3338/hg4dilmzZsFgMNgd98cff8Tdd99tte3ee+/FTz/95HAOOJs2bcIjjzzi\n9Hw7duzA3XffjWHDhmH06NHIysoCAKSlpSE3NxfDhw9HbW2taW4B4LPPPsOdd96J4cOH44knnkBx\ncbFpbpcvX45HH30Ut99+Ox599FFUVVXZXVtVVRVmzpyJYcOGYfDgwXjllVdM7128eBETJkxAamoq\nxowZg+PHjzvcPnjwYBw4cMD0ef760qVLGDBgAJYsWYIHH3zQ4VgB4P3338eQIUMwbNgwvPTSSzAY\nDOjfvz+OHj1q2mf16tWYNm2a3XgIwlVIOBONimPHjuH7779H7969sWLFCrRq1QpbtmzBp59+iqVL\nl+Ly5ct2nzlx4gRuuOEG/PDDDxg/fjxWrFghe+zffvsNGzZswMaNG7F69Wrk5eXh9OnTWLVqFb7+\n+musXbtWUWssKirCCy+8gI8//hjbtm1DmzZtTIIfAH766SeMHz8eW7duxa233opPP/0UAPDaa68h\nOTkZ27dvx8SJE3Ho0CG7YycnJyMvLw8XL14EwIRTXl4e+vXr5/IccJTOp9frMXv2bCxatAhbt261\nEpRLlixBixYtsGXLFmg0GtOxfv/9d3z44Yf4/PPPsWXLFrRs2RJLly41vb9lyxa88cYbyMjIQHFx\nMTIyMuyuZ926daisrMSWLVuQnp6OTZs2mQTs/PnzMXLkSGRkZOCJJ57Af/7zH4fbHVFaWoqkpCSs\nXr3a4VgPHDiAL7/8El9//TW+/fZbHDx4ENu2bcOIESPw3XffmY6XkZGBkSNHOj0vQShBwploVKSk\npEAU2W09b948zJ8/HwDQunVrxMfH49KlS3afCQ8Px9ChQwEA3bp1Q25uruyx7777bqhUKjRr1gyx\nsbG4fPkyfvvtN/Tp0wcJCQkIDg7GmDFjZD8bGxuLgwcPonnz5gCAm2++2SRMAaBDhw7o3r07AKBr\n164mAXrgwAHceeedAICePXuiffv2dsfWaDS4/fbbsXPnTgDA9u3bMXToUKjVapfngKN0PrVajT17\n9qBXr16y1y9HZmYmhg0bhtjYWADA/fffj19++cX0fkpKCpo2bQq1Wo1OnTrJLhomTZqEd999F4Ig\noEmTJujYsSMuXbqEmpoa7Nu3D3fddRcAYMiQIfjiiy8UtztDp9OZTPuOxvrTTz8hJSUFERER0Gg0\n+Pzzz3HHHXdg5MiR2Lx5M4xGI0pLS3Hs2DHcfvvtTs9LEEqQz5loVDRp0sT0/6NHj5o0RVEUUVBQ\nAKPRaPeZyMhI0/9FUZTdBwAiIiJM/1epVDAYDLh69arVOZs1ayb7WYPBgOXLl2Pnzp0wGAyorKxE\nu3btZK+BHxsAysrKrM4bFRUle/xhw4bhs88+w8SJE7F9+3aTSdXVOeA4Ot/nn3+O9PR01NbWora2\nFoIgKB4HAIqLi5GQkGB1rKKiIqdjtiQ7Oxsvv/wyzp07B1EUkZeXh9GjR6O0tBRGo9F0DEEQEB4e\njitXrshud4ZKpbIat9JYS0pKrMYUGhoKALjxxhsRFBSE/fv3Iy8vDwMGDEBYWJjT8xKEEqQ5E42W\nZ599FsOGDcPWrVuxZcsWREdH+/wcERER0Gq1ptf5+fmy+23evBk7d+7E6tWrsXXrVsyYMcOl40dF\nRVlFonOfrS0DBw7EyZMnkZ2djezsbPTt2xeA+3OgdL5Dhw7hgw8+wIoVK7B161YsXrzY6bXHxcWh\ntLTU9Lq0tBRxcXFOP2fJCy+8gI4dO+KHH37Ali1b0KVLFwBAdHQ0BEFASUkJAECSJJw/f15xuyRJ\ndguvsrIy2XM6Gmt0dLTp2AAT1vz1yJEjsWXLFmzZssVkfSAITyHhTDRaioqK0L17dwiCgPT0dFRV\nVVkJUl/Qs2dP7Nu3D8XFxaitrcVXX32leC2JiYmIiYlBSUkJfvjhB1RWVjo9fq9evUy+2EOHDuHC\nhQuy+2k0GgwYMACvvvoqhgwZApVKZTqvO3OgdL7i4mLExsaiZcuWqKqqQnp6OrRaLSRJglqthlar\nhV6vtzrWoEGDkJGRYRJe69evR0pKitMxW1JUVISkpCSoVCr88ssvOH/+PLRaLTQaDfr374/09HQA\nwO7duzF16lTF7YIgID4+HidPngTAFks1NTWy53Q01sGDB2Pnzp0oKyuDXq/Hk08+iZ9//hkAcNdd\nd2H79u04fPiw2+MkCFtIOBONlqeeegpPPvkk7r77bmi1WowbNw7z589XFHCe0LNnT4waNQqjRo3C\nww8/rOhnvOuuu1BaWorU1FTMmjULM2fORF5enlXUtxzPPvssdu3ahaFDh2LNmjXo16+f4r7Dhg3D\n9u3bMWLECNM2d+dA6XwDBw5EQkIChg4dikmTJmHixImIjIzEjBkz0LlzZzRp0gT9+/e38tf37NkT\nU6dOxYQJEzB8+HCUl5fj3//+t8Px2vLEE0/glVdewV133YX9+/dj+vTpeOutt3Dw4EG8+OKL2LVr\nF4YMGYJly5bhtddeAwDF7dOmTcMnn3yCu+66C2fPnsX1118ve05HY+3Vqxcee+wx/OMf/8DIkSPR\ntWtXk3+7c+fOaNq0KQYMGICQkBC3xkkQtgjUz5kgvEOSJJNPMjMzE8uWLVPUoInGzZQpU/Dggw+S\n5kx4DWnOBOEFxcXF6Nu3L3JyciBJEn744QdTlC9xbXHw4EHk5ORg4MCB9X0pRCOAorUJwgtiYmIw\nc+ZMPPLIIxAEAe3bt3cpr5ZoXMyZMweHDh3Cq6++akrlIwhvILM2QRAEQQQYtMQjCIIgiACDhDNB\nEARBBBgB43MuKCj36fGio8NQUuLbnNZrEZpH30Dz6BtoHn0DzaNv8HYe4+MjFd9zSXM+deoUhg4d\nitWrV9u9t2fPHtx3330YN24c3nnnHdP2JUuWYNy4cUhLS8ORI0c8uGzvUKtVdX7OxgjNo2+gefQN\nNI++gebRN/hzHp1qzlqtFosWLUJycrLs+4sXL8aHH36IZs2a4cEHH8SwYcNQXFyM8+fPY8OGDTh7\n9izmzp2LDRs2+PziCYIgCKIx4lRz1mg0+OCDD6yKvXMuXryIJk2aoEWLFhBFESkpKdi7dy/27t1r\n6vLToUMHlJWVWdXrJQiCIAhCGafCWa1WK5aiKygoQExMjOl1TEwMCgoKUFhYaFVgn28nCIIgCMI5\ndRIQ5koqdXR0mM/t946c7YTr0Dz6BppH30Dz6BtoHn2Dv+bRK+GckJCAwsJC0+srV64gISEBQUFB\nVtvz8/MRHx/v8Fi+jhyMj4/0eQT4tQjNo2+gefQNNI++gebRN3g7j15HayvRqlUrVFRU4NKlS9Dr\n9di1axf69++P/v37Y+vWrQCA48ePIyEhwaqROUEQBEEQyjjVnI8dO4ZXXnkFOTk5UKvV2Lp1KwYP\nHoxWrVohNTUVCxcuxKxZswAAd955J9q1a4d27dqhW7duSEtLgyAIWLBggd8HQhAEQRCNhYCpre1r\nE4svzDZvvfUG/vwzC8XFRaiurkbLlomIimqCJUtedfrZzZu/RXh4BFJS5Pv7vvnmUtx/fxpatkz0\n6hr9DZm/fAPNo2+gefQNNI++wZ9m7UYlnNPT1Vi2TINTp0R07Spg+vQqjBql9/q4mzd/i3PnzmL6\n9JleH6uhQT9i30Dz6BtoHn2DL+fR8rnbqZMRM2fW+uS52xDwp3AOmPKd3pKersbjj4eaXh89ir9f\n+0ZAW3Lo0AGsX78aWq0W06f/G4cPH0Rm5g4YjUYkJ/fHpElT8eGHK9G0aVO0a9cBmzZ9AUEQcf78\nXxg0aAgmTZqK6dOn4umn/4Ndu3agsrICFy6cR07OJcyYMQvJyf2xevUn2L59G1q2TIRer0da2gT0\n7n2z6Rp++20fVq16D0FBQYiMjMQLL7yMoKAgLFv2Gk6cOAaVSoVnn52D9u2vl91GEAThLbbP3aws\nld+eu3VJICw4Go1wXrZMI7v9zTc1fpnUs2fPYN26TdBoNDh8+CDefXcVRFHE2LH3Yty48Vb7njhx\nHGvXboTRaMT999+NSZOmWr2fn38Fr722HL/+ugdff70R3bp1x6ZN/w/r1m1EZWUl0tJGIy1tgtVn\nysvLsWDBYrRsmYhFi/6Lffv2Ijg4GPn5V/D++5/g998PYceODBQVFdltI+FMEIQvqOvnbl0QKAuO\nRtOV6tQp+aEobfeW66/vCI2G3ZghISGYPn0q/vWvx1FaWoqrV69a7du5cxeEhIQgLCxM9lg9e/YC\nwFLTWPT7RbRv3wHBwSGIiYlFUlI3u880bdoUr7yyGNOnT8Xhwwdx9WoZTp06iR49bgAA9OrVG1Om\nPCG7jSCIuic9XY2UlDC0aBGBlJQwpKc3fN1I6fl64oRYZ+P09bwqLThmzAip0++u0QjnTp2Mbm33\nlqCgIABAXt5lbNiwBkuXvoW3334fzZs3t9tXpXJcXMXyfUmSIEmAKJq/GkGw/8xLLy3Cv//9H7z9\n9vsYMOA2AIAoqiBJ1uOV20YQRN3CtbGsLBUMBsGkjdW1gOaCTK2GT4SM8vNVsBrnjTeG+0ywWQrj\nXr3CfT6vSguOmhqhTr+7RiOcZ86sld3+1FPy231FaWkpoqOjERYWhj//PIm8vDzodDqvjtmiRQuc\nO3cWer0eJSUlOHkyy26fysoKNGvWHOXl5Th06CB0Oh2Skrri0KEDAIBTp05i6dJXZLcRBFG3ODL/\n1hXWCwR4JGRstdT+/Q0ufS4nR/RYsDkSxrm58iLMm3l1VaHz93fXaITzqFF6rFxZha5dDVCrJfTs\nCaxc6X8fQceOnRAaGoYnnpiEHTu24d57R3stAGNiYpGaOhxTpjyMN998DV27drPTvkePvh9PPPEY\n/ve/FzFhwsNYvfoTtGrVBm3btsO0aZOxbNlr+Mc/xqBXr9522wiivmmMJl5HY6prt5scriwQHI1B\nTvtftUqDyZNrTc9dwLXkH1cFm+05lYSxLd7Mq5Ki58tzuEKjSqWypKGnXGze/C1SU4dDpVLh4YfT\n8PrrbyEhoVmdX0dDn8dAgebRjG3ADceVxXSgzqOzMaWkhCEry9691bWrAZmZvi1drESLFhEwGOx9\nZGq1hNzcCp+MQWkfpXM6w9XjObomwP3o6/R0Nd58k+2vUjGTttw5jh9XBWb5TsJ/FBUVYerUifjn\nPyfhjjuG14tgJgh/EAgmXl/jbEyeut18aWFwFpfjbAyuaP+uap2W12I7xrlzg02vs7I8E1GW8+qJ\nv3/UKD0yM7XIza3A8uXVTs/hDxq+LamR8tBDj+Chhx6p78sgCJ8TCCZeX+NsTExLqzJpY506GfHU\nU861N29Teiw1xmbN5I2kXMg4G0OnTkZZLdZS0NqOs1kzCTk59sfl55QboyeacqtWRuTlCbLz6m26\nlyffnS8gszbhEJpH30DzaMYbE6+n8+jvohL+MFsrHTM4WIJeD6fjUDJTM0EmolMng5WQcTYGT90R\nlibiTp2M6NfPgF9+UeHUKRFqtbzJ2BmOhLEtzsz5/Bo9uT+oQhhBEI2GmTNrZR/y/jIT1kVRCV+M\nyVZA/PmnckoP4HwcShpjVJSEixeBggKtyaTsimbtqQY5apTetI/td2FwLdgbgAS1Gh5prUoav0rF\nBHezZpJVoFmgVDkjzZlwCM2jb6B5tMZWm3L1gevJPPpKq3WmXXk6Jv5ZOeHuCkrjcKQx6nQC3n+/\nyoFm7ZpW6i6+CvByB0/n1p+WHMvPK0GaM0EQdY6lNuVvXPVxOxK+rmjf3oxJSct1BV6Ny/aaHfuI\nVQ4160OHKj2+Hkd4GlfgjVXFVuNXir62pb5jIBpuBEYd8Pjjj9oVAHnvvbexbt1q2f0PHTqAefP+\nAwCYPftpu/c3btyADz9cqXi+M2dO48KF8wCABQvmoKZGPkqQIAhrHEU1u1I9UCmil1e2mjEjRPYY\nvoowVxIEoiiZcoiDg5WMnPKVq5xFiNdHYJ7SdxEcLEGtZmO1zJvu2tXgdr0KuXvBMvpa7+Kh/FVd\n0lVIODsgNXUYdu7MsNqWmbkTQ4fe4fSzL7/8utvn+/HHnbh48QIA4PnnX0JwsPwDgSAaGr4uOuJO\nCUdX0piUtEhe2UpJ03JUQ9qdMSsJgi5djE5TemzhCwbbwky2gs7VRYsvvzel72L58mrk5lYgM1OL\nJUtqTGPOzNS6LZidpU25KnT9nSrlDDJrO2DIkDvwxBOPYdq0GQCAkyezEB8fj/j4BNmWjZaMHDkE\n33+/AwcO7Mfy5UsRExOL2Ng4UwvIF19ciIKCfFRVVWHSpKlo3rwFvv56E378cSeio6Px3//OwWef\nbUBFRTleeukF6HQ6iKKI2bPnQxAEvPjiQrRsmYgzZ06jU6fOmD17vtX5t237AV9+uQEqlYjrruuA\n5577P+j1eixevABXrlyGRhOMefOeR3R0jN22+PiEOptjovHj64As2+Pl5soLTp4q40ogk+faomBV\nCpOPyd0xuxJQZjsOpgHaj91yLI5M7c7O6Y9AOn+nJbmSNqU0bn/62j2hwQjnhQuD8e23rl+uKAJG\nY7jDfe6+W4+FC2sU34+OjkHLlok4ceIYunbtjp07M5CaOhyAfMtGua5TK1e+jfnzF6Fjx0545pkZ\naNkyEeXlV9GnT1+MGHEXcnIuYf782fjoo9W49dZkDBo0BF27djd9ftWq93DXXfdiyJA7sGvXdnz0\n0ft47LHH8eefWXj++SWIjo7BqFF3ory8HJGR5uCCqqoqLF36FiIjI/Hkk1Nw9uwZnDhxDLGxsVi4\n8EVs374VP//8E9Rqtd22UaPuc3meCcIZvm4r6Kp/1tYXaxvcY+ljVqvdiRxWho/J3TG7KrQsha1S\ncJWrmqGzc/qrHaQ/4w1cMdXXV96yuzQY4VxfpKYOx44dGejatTt++eUnrFjxEQBzy0aDwYDc3Bzc\ndNMtssL58uXL6NixEwDWsrGmpgaRkVHIyjqOb77ZBEEQcfVqmeL5//wzC//853QAQO/eN+OTT1YB\nABITWyM2Ng4AEBcXj8rKCivhHBUVhTlzZgEAzp//C2Vlpfjzz5O4+eZbAABDhw4DALz22st22wjC\nl3ji23QUnOW6liuv1fLje5LSExwswWCAU63VkzG7K7R8kb7l6JwNsViMK4VSgLoNSPSUBiOcFy6s\ncajl2sJC3L2POExJuR2fffYRUlOHoXXrNoiKigLAWja++uoyXHddO7z+unKjC8vWjzxrLSNjC65e\nvYp33lmFq1evYvLkhxxcgWD6nE6nhyCw49k2wrDMiNPpdHj99f/hk0/WIjY2Dv/5z8y/PyPCaLQO\nKpHbRgQ2/i6o4evzufrAtDyfnDn1hReMyMuDx1qupcanpBVy4atU2Wr58mqHdab5mNwdsyfIaYD9\n+hmwbJkG06aFeH1v1MUYfE1d59D7k8BdAgUIYWHh6NChIz777GOTSRuQb9koR1xcPC5cyIYkSTh8\n+CAA1mayRYuWEEURP/640/RZQRBgsHnqWLZ8/P33g+jSJcnpNWu1lVCpVIiNjcOVK3k4eTILer0e\nXbp0xaFDvwEAfvllNz777CPZbUTgIFd3uC77ArsSYOMsaMiVgCzLYyhFRrPgLOU0mFatjA47I1lq\nfEran8EA5OZW4PDhSofBVM7GVFctbC2jkJ96qharVml8dm/UVxteb3AWBNeQaDCac32Smjocixcv\nwIIFi0zbeMvG1q3bYMKEh/HRR+9j6tRpdp+dOnUa5s17Ds2btzA1rxg0aDBmz34aJ04cw8iR9yAh\nIQEff/wBbrjhRixb9qqVeXzy5H/ipZcW4dtvv4JaHYQ5c+ZD7yQXoEmTprjlllsxefLDuP76jhg/\n/iEsX/46PvpoNQ4c2I/p06dCpVJj3ryFaNo02m4bUXe4m1urVMDBGz+g7TX0729dXtHR+VzN/3Xk\n4/PWxGx7PFd8sa7WiVaaU2djqg+/pq99xA3FN2tLQzBZuwJVCCMcQvPoG+Tm0dMWfXK42oLPFk+r\nJ/Hz+aL6lqdVo5TG7EoNaG/aVgYqrtSQ5tDv2jf4s0IYmbUJop7wtEWfHI78gI7Mzp5WpuLn80XQ\nkKcBRkpjdsW0GQjmT1/nELuSt0w0HMisTRD1hKct+uRQ8gM6Mzt7KhjLygS0aBGhGJzljkBQGqez\n4CxHvk9XTJv1af70Rw5xYwqGIkhzJq4hfK2peIszTUcpIMed8obOtHNXhSgvr5iYyPZ3VjnLHYHg\nrGqUdXAWGnSQD8fZ9+IJgWANIHwH+ZwJhzSWeaxvH6MnPme+jzcBOc78kK76nJ35wZWCs1zF1XE2\nlvvRHf+wP2gs81jfUFcqgvASf1U7chfbyOjJk2uxZ49KUSh5a3p1FpWslCurdE3OUpA8pbFE2LpK\nQ8whJuoWEs7ENUFdVTvyJDXKn9q7qzWbXT2/q0KlrgulNDTIP0w4g3zOxDVBXUSyOivY4Q8/Iz+v\nki9dzg85eXItli3TeOR7d7WgSF0WSmmIkH+YcAb5nAmHNJZ5rAufs6Oc3+PHVVCrJZ/7Gd0dly/m\nwZl/2Be5z0o0lvuxvqF59A2U50wQXlIXmoorqVFyeKO9u6uN+0J7tywZKddvtyE2TCCIQIPsTMQ1\ng7+DjpT8sSoVa9bQrJn3aUe2uCsI60JwUrATQXgPLWUJwkco+WNraoS/o5nZz403aPCF9u6uNl4X\nvveG2DCBIAINl4TzkiVLMG7cOKSlpeHIkSNW723fvh1jxozBAw88gNWrVwMAKisrMX36dDz00ENI\nS0vD7t27fX/lBFEHuFO4xNZ0HhwsH84RFSUpmoTdLZTiriCsC8FJwU4E4T1Ozdr79+/H+fPnsWHD\nBpw9exZz587Fhg0bAABGoxGLFi1Ceno6mjZtiilTpmDo0KHYvn072rVrh1mzZuHKlSuYOHEitmzZ\n4vfBEIQv8aTEoqXpvEWLCNl9lEzInp7Pnc5BddVp6FrLWyYIX+NUc967dy+GDh0KAOjQoQPKyspQ\nUcEiS0tKShAVFYWYmBiIooi+fftiz549iI6ORmlpKQDg6tWriI6O9uMQiGsVb8txOvu8t8FT7pqQ\nPT2fswAtb/cnCKLucSqcCwsLrYRrTEwMCgoKTP+vrKxEdnY2dDod9u3bh8LCQowcORK5ublITU3F\ngw8+iOeee85/IyCuSbzNpXXl864ETzkS8O6akH0VrBVoNcQJgvAAyQnz5s2TMjIyTK/T0tKkc+fO\nmV7v27dPeuCBB6SpU6dKCxYskFauXCl99dVX0rx58yRJkqSsrCxp1KhRzk4j6XR6p/sQBKdHD0kC\n7P/17Ond59u0Ye+pVJIUEuL4HOvWyb+/bp35POvWsf3VavbX8j1fj8nVayIIIvBxuqROSEhAYWGh\n6XV+fj7i4+NNr/v06YO1a9cCAJYuXYrExETs378fAwYMAAB06dIF+fn5MBgMUKmU29+VlHhXnMAW\nSrL3DYE6jydORACwT006ckSCWg2nJSOVPn/hgvn/cq0QAeDJJ6tQUKDHCy+EAbC/pxctMmDIEHY/\nDxnC/lnO49+GJzumT5cvEMLP5wquXFNDJlDvx4YGzaNvqNciJP3798fWrVsBAMePH0dCQgIiIsyB\nLpMnT0ZRURG0Wi127dqF5ORktG3bFn/88QcAICcnB+Hh4Q4FM0HIYWuenTs32PRarbisFFwyc7uT\nOsTbJdpGHfs6Z9gXUc5UAIQgGgdONefevXujW7duSEtLgyAIWLBgATZt2oTIyEikpqZi7NixmDRp\nEgRBwNSpUxETE4Nx48Zh7ty5ePDBB6HX67Fw4cI6GArRmFBqEsFR0mptUeo6pdR4QA6ljkv+KLbh\n7y5UBEE0DKi2NuGQ+ppHpfrMtvA+wno9IGemBiSoVPJmbtsa0WVlAnJy7DVMpZrQ7tSprqt5rO++\n1f6Gfte+gebRN1BtbeKaw1UzLNdqk5KUNENlM7dtStF//1sjewSl6OpALLYRiNdEEIT7UI4FEZAo\nmWfl9gNcN1MrmbkBzwp0BGKxjUC8JoIg3IOEMxGQuCpsuVZrK1iVzNzONHISbARBBAJk1iYCEjnz\n7OTJtQ7NtZZmaiUzNwVGEQTRECDNmQhYvNFilTRvbxs8pKersWyZ2eztKJeaIAjCU0g4E40SfzR4\n8KQxBUEQhCeQWZvwCYFYz9nXDR68bYRBEAThKiScCa/xtgmF5XECTcBbQtW3CIKoK+ipQniNLzRK\nXwl4f+JuC0iCIAhPIeFMeI0vNMqGYDJ2twUkQRCEp5BwJrzGFxplQzAZU/UtgiDqisCxGRINFl+k\nLTWUhg1UpIQgiLogcNQSIqDF7+WqAAAgAElEQVRxFKzlqUZpecyyMrmmFWQyJgji2oQ0Z8IpruT3\nuqtR2h4zN5cJ51atjMjLE3ySl0wQBNFQIeFMOMVRsJanwlPpmFFREg4dqvTomARBEI0FMmsTTvFH\nsFZDCAAjCIKoL+hJSDjFH/m9lDNMEAShDAlnwin+yO+lnGGCIAhlSDgTTvFHfi/lDBMEQShDAWGE\nS/gjv5dyhgmCIOQhzZkgCIIgAgwSzgRBEAQRYJBwJmTh1bvUanjUvjHQ2z8SBEEEMvTEJOxwpSKY\nPz9PEARxrUOaM2GHt+0blT7/wgvBpE0TBEG4AD0dCTu8rd6ltF9OjoicHPZ/0qYJgiCUIc2ZsMPb\n6l3uVPlyVRsnCIK4liDhTNjhbfUupc/LQbW0CYIg7KEnI2GHdfUuyFbvcre/c2Ii1dImCIJwFfI5\nE7Lw6l3x8ZEoKNBavedJf2fbz3ColjZBEIQ9pDkTbuNJNDfV0iYIgnAd0pwJt/E0mptqaRMEQbgG\nac6E21AvZoIgCP9CwpkA4F65TerFTBAE4V9cEs5LlizBuHHjkJaWhiNHjli9t337dowZMwYPPPAA\nVq9ebdr+zTff4J577sHo0aORmZnp04smfAsP1srKUsFgEEwBXkoCmvzHBEEQ/sWpz3n//v04f/48\nNmzYgLNnz2Lu3LnYsGEDAMBoNGLRokVIT09H06ZNMWXKFAwdOhTBwcF45513sHHjRmi1Wrz11lsY\nNGiQv8dCeIijAK+pU+U/Q/5jgiAI/+FUOO/duxdDhw4FAHTo0AFlZWWoqKhAREQESkpKEBUVhZiY\nGABA3759sWfPHoSEhCA5ORkRERGIiIjAokWL/DsKwiu8LddJEARB+BanT9/CwkJER0ebXsfExKCg\noMD0/8rKSmRnZ0On02Hfvn0oLCzEpUuXUF1djX/+858YP3489u7d678REF5DAV4EQRCBhdupVJIk\nmf4vCAJefvllzJ07F5GRkWjVqpXpvdLSUrz99tvIzc3Fww8/jF27dkEQBMXjRkeHQa1WuXs5DomP\nj/Tp8Ror//0v8MAD9tvnz2ffB82jb6B59A00j76B5tE3+GsenQrnhIQEFBYWml7n5+cjPj7e9LpP\nnz5Yu3YtAGDp0qVITExEdXU1brzxRqjVarRp0wbh4eEoLi5GbGys4nlKSrSK73kCq2xV7tNjNlaG\nDAFWrlTjzTc1OHVKRKdORjz1VC2GDNEDoHn0BXQ/+gaaR99A8+gbvJ1HR4LdqVm7f//+2Lp1KwDg\n+PHjSEhIQEREhOn9yZMno6ioCFqtFrt27UJycjIGDBiAX3/9FUajESUlJdBqtVamcSLwGDVKj8xM\nLXJzK5CZqaVgL4IgiHrEqebcu3dvdOvWDWlpaRAEAQsWLMCmTZsQGRmJ1NRUjB07FpMmTYIgCJg6\ndaopOGzYsGEYO3YsAGDevHkQRQouIgiCIAhXECRLJ3I94msTy7VutklPV2PZMrOZeubMWo+04Wt9\nHn0FzaNvoHn0DTSPvqFezdpE/eNO9S6+vztFRQiCIIjAgoRzgOOqoLUU4DNmhMgey7JrlLsCnyAI\ngqg76Ikc4Diq3sXN1La9kg0G+WPxoiKu9GMmCIIg6g/SnAMcV6p3KQlwW3hREU/6MRMEQRB1Bwnn\nAMeV6l2ultnkXaOoXCdBEERgQ0/jAMeV9oxKAjw4WDJ1jZo8uRbLlmnQokUE1ArODCrXSRAEERiQ\ncA5wXGnPqCTAly+vRm5uBZ56qharVmlMQWU1NfJlVKkfM0EQRGBAAWENAGftGdl7VXblN/lnlHzM\nwcESDAbY7U8QBEHULyScGwmOBLiSL9lgAHJzK/x5WQRBEIQHkFn7GoBaQhIEQTQsSDgHIL4uEOJK\nUBlBEAQROJBZO8DwR4EQZz5pgiAIIrAg4RxguFIRzBOcBZURBEEQgQOZtQMMKhBCEARB0BM/wKDg\nLYIgCIKEc4DhavAWdZUiCIJovNATPcBwJXiLukoRBEE0bkg4ByDOgrf8FTRGEARBBAZk1m6AUNAY\nQRBE44ae5g0QChojGiJHjojQauv7KgiiYUDCuQFCFb+IhsbRoyKGDg3HO+/Iu2QIgrCGhHMDxJU2\nkgQRSPz6qwoA8Oef9MghfI/RCJSU1PdV+BYKCGugUMUvoiFx8CATzpcukXAmfM+qVUF4/vlg/PJL\nJa67Tqrvy/EJ9EshCMLvHD7MhbNQz1dCNEZ+/lkFnU7AkSOq+r4Un0HCmSAIv1JSAvz1F3vU5OeL\nqK6u5wsiGh0nTjChnJ3deERa4xkJQRABCdeaObm5pD0TvqOiArhwgYmy7OzGc2+RcCYIwq8cOsSE\nc48eBgCNy+88Z04wFi4M9vjzmZkqDB8ehs8+C4JO58ML84KvvlLjgQdCUVVVd+d87rlgLF3qWSS/\nZX0HX2nOkgRMmRKCDz8M8snxPKHx/EoIgghIuOZ8990sgDEnp3FoN5IErF4dhHff1eD4cc8epe+8\no8GhQyo880wI+vcPx8aNahjruVzBF18EYccONfbtqxv/rVYLfPJJED7+2DNBmJVlvk5fCefSUuDr\nr4Pw+usaGAw+OaTbkHAmCMJvSBJw+LCI1q2N6NWLPeUuXmwcj52KCqCmhi003nrLfa2vtBT45RcV\nkpIMmDSpFjk5Ap54IhRDhoThypX6W8Bw0zBPf/M3Z8+KkCQB+fkiKirk9/nuOzVeflkDSSYQ++RJ\ndj+Fh0vIyRFQU+P9NZWXszkoKBDx22/1E2TWOH4lBEEEJBcvCigsFHHjjQa0bs1UwpycxvHYKSgw\nC9CvvlLj3Dn3BOq2bWro9QJGjdLj5ZdrsGdPJe69V4fjx1V4//36MacaDGb/bV1pzqdPm++Hc+fk\n74033tDg9deDceGC/RxnZbHPDB6shyQJuHjR+4UNF84AsHlz/WQcN45fCUEQ9UpJCfDqqxpcvWq9\nnZu0e/c2oGVLpvY0lnSqwkI2jvbtjTAaBbern/GH/p13MnN/27YSli+vRpMmEr74Igh6D8sYbNig\nxoEDnj3aL18WUFvLxnXwoAq1dVB00JlwNhqBM2fYdjltPitLRJs2RnTrxhZ/vjBt2wpnOY3d35Bw\nJgjCa1as0ODVV4Px+uvWwVG8+Ejv3kaEhgJxccZGExBWWMjG8eCDtWjf3oj164Nw+bJrCw+tFti1\nS42OHQ1WNfFDQ4HRo3W4ckXErl3ua65FRQL+9a9QzJ4d4vZnAeD8eTYmUZRQXS3gjz/8/11ZCuez\nZ+3Pd+mSgKoqNq+22nxhoYCCAhFduhhx3XVsHvkYvMHSvH7hgohjx+r+nm0cvxKCIOoVrgV+8kmQ\nVRnFw4dFiKJkitRu3Zr5Bes76EmJjAwVSktd25ebtZs1kzBjRg10OgHvvuua9rxrlxpVVYJJa7bk\ngQdY2Pbate6btrn/9dgxEeXlbn/cpHWmpLDv69df/W/SdaY5c62ZXY+1cObjTUoymISzK5qzJAFb\ntqhQVib/PtecBwxg3099mLZJOBME4RWnT4s4dUqFsDAJWq2AVauYgNLrgSNHVOjSxYjwcLZvYqIR\ntbWClb82UDh8WMSECWF47z3XBCw3a8fFSbjvPj1atjTi88+DUFTkfGzff88e9iNH2gvnG24wIinJ\ngG3b1KZzuAr3vxqNgkeBTDwYbNw4tkDwt9/ZYGDaco8erE+AnHDmqVIajYQzZ1RW9w4XzpaasyvC\nOSNDhYcfDsNHH8l/11w433uvHsHBUuAK5yVLlmDcuHFIS0vDkSNHrN7bvn07xowZgwceeACrV6+2\neq+6uhpDhw7Fpk2bfHfFBEHUOZWVyv3C+YNrwYIaREdL+OADDSoq2IOzqkrATTeZc1FatVL2O58/\nL9Rr8wLelMNVs7ulcNZogCefrIVWK+CDDxxrvLW1QEaGGomJRtxwg70JQRCA8eN10OkEbNzonlDg\nwhnwLNqaC7a+fQ1o29aI/ftVfrVynD/PfNxcuMoJZ65ZcyuD5YKBjzcpyYjoaCAqSnKpEMm337Lv\nSCkqnlsdmjc3IiXFgKwsldsBf97i9C7cv38/zp8/jw0bNuDFF1/Eiy++aHrPaDRi0aJF+OCDD7Bm\nzRrs2rULeXl5pvdXrFiBJk2a+OfKCYKoMxYtCsZtt4Xh99/tHxmbN6uhVkv4xz90mDKlFqWlAj77\nLMhUfOTGG81P91at2P9tBWBVFTBkSDjGjw+rl+AbwCyYXNVW+X4JCeyCJ0zQISaGac+O+OUXFcrK\nBIwYoYegcKoxY/QICpKwdm2QW/Nx8qQKKpUEUZQ8Fs7BwRKaN5fQt68BpaWCSTv1B1zwdupkRPv2\nEkpKBBQXW+9z6hRzjXBzv7VwVkGtlnD99UYIAtC2rRHnz4sOFxQ6HYuUB4CrV5WEM9seGQmMHMnO\n+/33dRtB73TW9+7di6FDhwIAOnTogLKyMlT87S0vKSlBVFQUYmJiIIoi+vbtiz179gAAzp49izNn\nzmDQoEH+u3qCIPyOJAFbt6phNAp4801rM2BOjoDDh1Xo18+A6GjgscdqER4uYcUKDfbu5cLZueZ8\n7JiIq1cFHDyoQmama0JFr4dPclo5ngrnmBg2prAwthApKBDtotYt4ZYGOZM2Jy5OwrBhemRlqXDk\niGvCUZKYtaJDByO6djXi8GGV2/OTnS2ibVsjRJFpz4B/8525cL7+eiPat2cS1VZ7PnNGRNu2bLEQ\nFGRedFiOV/P3bXnddUZUVwsO88T37lWhpIS9bxmVbUlFBRfOEu64wwBRrHvTttNvvbCwENHR0abX\nMTExKCgoMP2/srIS2dnZ0Ol02LdvHwoLCwEAr7zyCmbPnu2nyyYIoq44c0Y05SZ//32QVU/mH36w\nTgeKjgYefbQWV66I2LRJjbAwCZ07O9ecLetv2y4AlJg7Nxi33hrus7KXPMrXVX94YaGA6GgJQRYK\nVZs2bHw8V9gWo5HNWUyMEbfe6rj0lLuBYTk5AsrLBSQlGdG3rwE1NYJdXXNHlJQAZWWCqeVi3772\nZmRfc/o0O3anTkZ06MDmzjJiu6hIQFGRiE6dWLR/r15GHD3KipXk5AioqGDj5bjid7YUss4CwiIi\nJMTGSujXz4CDB1XIy6s707bbSwHJwsYiCAJefvllzJ07F5GRkWjVqhUA4KuvvkKvXr3QunVrl48b\nHR0Gtdq3N0F8fKRPj3etQvPoGxrqPK5bx/7ecw/wzTfABx+E49NP2bZt29jfhx4KQXw8S9/5v/8D\nPviAVc+6+WagRQvzuHv1Yn8LCjSIjzcL4ePH2d9u3YA9e9Q4dSoS/fvLXw+fx927gdxcQJIiER/v\n/TjPn2d/CwtFxMVFKpqcOYWFQLNm1t9rUhL7e/VquOw17dkD5OcDkyZZz4scY8cCzzwDpKdr8O67\nGoQ4yY7av5/9vemmIHTpAqxaBRw7Foa775bf3/Z+zM7mY1AjPj4ScXFAQgKwf38Q4uKCnM6HJ/z1\nF6BWA7fcEm7qVpaXF2qau5Mn2d+ePdk1DRkC/PYbcPp0pGlRdtNNQYiPZwuYHj3YtqKiMNn5NxqB\nrVuBmBjm+9dq1bK/S57f3a5dBOLj2Xfx88/A7t0RmDbNel9//a6dCueEhASTNgwA+fn5iLcYdZ8+\nfbB27VoAwNKlS5GYmIiMjAxcvHgRmZmZyMvLg0ajQfPmzdGvXz/F85SUaL0Zhx3x8ZEoKPAgl4Cw\ngubRNwT6PM6fH4yTJ0Vs2FAF0Ubp+O67UABqLFxYgVOnQrFmjYgZMyoRHg789FM4brrJiKAgLf42\nqEGlAsaPD8bHH2vQvXstCgrMtlVJAsLCInD2rBEFBebf/N694WjaVMCSJVW4994wPP+8HmvW2Hde\n4PNYWQmcOxcBQMCpU5XQaLyLWiovBwoL2UNWpwPOni2Ho3AZvR4oKopE5856FBSYrzM2Vg0gFEeP\nVqNfP3uVft06DYBgDB6sRUGB86LN99+vwfLlwZgwQYd582pMbgE5fv2VHbt16yokJRkARGDHDj0m\nT1aeR0t+/51de7Nm1SgoYNfep08IvvsuCAcPVqBtW9ec31lZIiZODMWDD+owY4ZyFRNJArKyItC+\nvRGlpVrExgoAInDsmA4FBUxS798fBCAErVpVoaBAj549VQDCsHVrDcLCACAYbdqw9wAgNpa9f/Ro\nDQoK7M998KCInJxwjBunw88/q1BSAhQUVNrtV1jI7vmamnIUFAADB7Jr++orPe6/3zyf3v6uHQl2\np2bt/v37Y+vWrQCA48ePIyEhAREREab3J0+ejKKiImi1WuzatQvJyclYtmwZNm7ciC+++AL3338/\npk2b5lAwEwRRv/z4owo//qi28y/W1LAApk6dDGjVSsKMGbUwGFg1rK1bVTAa5XN1n366FqNH6zBh\ngrWAEgRm2rYs4VlczMyQN95oQHKyAbfeqkdGhhpHjyo/nk6fZvWY2ee9V+lszaDO/M48XSouzlpg\n8RKlSvXDjx1j85uc7Fo3hSlTdEhKMmDTpiD07RuOefOCFc3u5shlA5o1k9CuHYu2drVxA5+Dtm3N\nCx13/c4GA/D00yHIzhaxeHEwVqxQNsnn5wsoKxNw/fXsfM2bSwgNlazM2twn3bEj2+eWWwwQBOZ3\n5uPt0sU8QGeFSCyrskVFSYoBYRUVAjQaCcF/19RJTJTw7LM1uOMOD8u2eYBT4dy7d29069YNaWlp\nWLx4MRYsWIBNmzYhIyMDADB27FhMmjQJ48ePx9SpUxETE+P3iyYaJzod8PjjIdi0Sdmgs2SJBvPn\nB9dbRG8gcO6cgNGjQ2Ujpz2lupo9pNats36YHjigglYrmIpS/OMferRta8TatUH4/HNmlubRrJY0\naybhvfeqTQ9VSxITJZSWCqYqTL//bi7xCQAzZzKNx1EzCcuUIVfyip3BBVNYGLuxCgocz61lGpUl\nZp+z/DWdOyciIcGISBctoc2aSdi5U4u3365C8+YS3n9fg1tuCcePP9oLy5MnRYSGSiYNt29fA8rL\nBZw44dp9wlOQuM+ZHwMwC2etFli+XIO77w7F4cP2x/344yAcPKjC4MF6tGhhxIIFIfj0U3kBbRmp\nDQCiCLRrx9Kp+O/bVjg3aQJ07WrEoUMqHD0qIixMstLoW7aUEBQkyfqcJYnFTISFSRg0iAtnyEZ2\nl5ezYDBLnn22FhMn1l1fT5e+tWeeeQbr16/HunXr0KVLF4wePRqpqakAgDvuuANff/01vvrqK9xz\nzz12n/3Xv/6F0aNH+/aqiUbJgQMqpKcH2QkIS1at0mDlSg2++65+itHXN0YjMHNmCH7+WY2NG32X\n2sH9fd9+q7aqLMWFwKBBTGNQq4F//asWNTUssjopyYD27d1bKdkGhZlLfDJBMHiwAT16GPD112qc\nPaukJZqFky81Z34NzoLClIRzdDTrjiSnudXUsCh1HpXsKioVMHasHnv2VOKll6qh1drX8dbrmSDr\n3NkI1d9T425AV3a2CEGQTAsMAOjWzYiICAl79qjx0UdB6NMnHIsXB2PfPjXGjQuzapWZkyPgxReD\n0bQpqxH+5ZdViIsz4j//CcYXX9j/XnnevOUCrkMHI7Rac7T16dNsMWPpYujb14DqagGnTqnQubPR\nyg2jUgFt2sjnOv/5p4hz50QMHqxHaCgQFQVIkoBKe6s2yssFWBiI6wWqEEYEDDyFJjdX/sF49ao5\nxWHOnGCXyywGGjt3qhTb3zlj9eogU0lFR2Zfd+Gas1Yr4OuvzUI/M1ONoCDJygw7bpwOzZqxB+qI\nEe6b+WzTqXhEca9e7JiCwLRnSRIUtWffa87sGDffzMbpzKzNhbetcBYEpj1fvCjafb8s/1YwRSW7\ni0YDPPaYDj17GvDzz9alJ8+dE03FPDg8GtxVk3R2toiWLc2mXIAJu1tuMeCvv0TMnh2CigoBTz9d\ng1deqUZpqYD77w/F2bMCJAl47rkQVFYKWLiwGgkJEjp2NOKLL6rQpAkwY0YItm2zvg5eltNSOFum\nU2m1zD1gWXscMGvzAKzGy2nb1ojiYvt0NttGI1wzljNtl5cLdppzXUPCmQgYMjPZjycnx/7BxrcD\n7EeVny9i0aJg+50aAPPnswYR7qaoXLki4IUXghEZKaF5cyOOHVP5zLxfUwO0aGGEIEim1J2iItb4\n4JZbDFZaRHAwMHt2LSIiJNx/v/tmPkvNmfd7btPGiPh482DuvFOPVq2M+P77IFmz48mTTMvj1+kt\nXHPm1cycCWf+vuU1c9q0kVBRYV/tjPtS27Xz7ksbOVIPvV5ARoZZG7WsMc1p105CQoIRv/7q/D6p\nrmYdqbjP1pLRo3WIiJDw+OO1+O23SsyeXYtHH9XhlVeqUVgoYsyYMLz7bhC2bVNjwAA9HnjAvGDr\n3t2I9eu1UKuBefNCrDptcc2Z+5wBWKVT8fmydY1YCmfL8XKU0qm+/54tNFNT2UU0aSIvnI1GpgSQ\ncL4GSU9XIyUlDC1aRCAlJQzp6demidaS4mKYfKharSBbxIF3/Jk6tRZJSQZ8/rm50EVD4dQp0ZTb\n6W5jg7lzg3H1qoB582qQnGzA1auCom/THSQJqKoS0LYtK1V44IAKp0+L2L1bBUkSMGiQ/QNwwgQd\nzp6tQIcO7j/ALDXnCxdYHis3J3NUKmDAAAPKygQrLRlg98qVKyJ69DD+/dr7OTh/nplP27Rh1+aq\ncLbVnAGz39k2KIyb6D3VnDlc8+P1uQGY/MqWmqQgMEGWny/ir78cj+fCBRZgJyecx43T49y5Cixa\nVGO1GHn0UR0WLKhGbq6I558PQXCwhNdeq7ZLuerd24i0NB2ys0V8+635mk+fFpGYaLRa+PGFy7lz\noqzZG2B+eH6dcpqznHC+cEHA0aMqDBhgMJnIo6LYucrKrC+Ym7ldjQvwFySc65j0dDUefzwUWVkq\nGAwCsrJUePzx0GteQP/8sxqSJECtZj8Yy2heDt/Wtq0Rr79eDUGQMGtWsMlf2hDgpjVBkPDNN2qr\n1nSO2LJFhW+/DUKfPnpMnKgz9a49etT7xQmvIhUSwmo6A8C6dWqTm4H7m23xNO/VUnM2l/i0XwBw\nn6l9JyL2ul8/9hlvhbNOxxYK111nNAlbV33O8fH2wkGpEMlff7HX3gpnXrCDdbZi28yas7yW6cxK\nIxcM5gpPPqnDs8+yG2j27BrF+IPp02shihKWLWPunIoK4PJl0UprBiw1Z8EuGMySYcP0CA+XTAs0\nS+SE8+uvM/fIPfeY72UufG27d1kWIKlPSDjXMcuWyfvQXK2K1FjhgoCbnOT8zjk5bFtiooSbbjLi\nscd0OHNG5dXcGQysQ42r6Sbe8v33rA711Kk6aLUCvvnG+aKsvJz584KCJCxdWgNRhKkFoyt9ZiWJ\nlSyUazYBmIPBQkIkDB+uR9OmEjZsCEJmphrR0fIPQG9o0YLVfr50SZCtv81REixck+7Rw4CoKMnt\nzk22XLwowGhklbFiYiQIgvNj8l7Ocppz69Zsm61V4+xZZoqX007dQRBYhLxWK5hcQSdPqhAdLaFZ\nM+vrMfudHd9nXJB5cm3PPluL48cr8OSTyi6O666TMGoUK0eakaGyi9TmxMZKaNJEwl9/iYr7AMD8\n+TU4cKASsbH2888XGHzB8fPPKqxdq0G3bgaMHWu+Rq4525q1eVwLCedrAEsztq2JjqPU8edaQJJg\nEgQ8wEhOc758mW1r2ZL9WOfOrUHz5ka8+67G4xKOGzaoMWFCmJW5zV9cuiTgjz9U6N/fgMcfr7Xy\n7zriu+/UuHxZxJNP1ppKYXKB6UhzliRg1y4Vhg0Lw733hmH2bPkSUzU17GEUEsL+jR6tQ0GBiNxc\nEbfdpjdF//oKtZoJ6JwcEYcPi1CpJPTsab86atdOQny8vc/UnN9qREyM5LXmbCmYVComIFwJCNNo\nJFnTp5LmfO6ciFatJKeVvlzB0rSt1QJ//SWgSxeDnTWja1cjwsMlp2l3PLrc04WDnO/dFl6Q5I03\nghVN1oLAgsL++kvEyZMiIiJYEw5bNBrICmbAnKednS2iqgqYNSsEoijh9derrUqtKvmcuSZNZu1G\njq0ZG5D/0cutDhsaNTXK+Z2OOHtWwKVLIgYO1Jv8kdy/bAnXnFu0YPtERABDhuhRVSVYNWx3B57G\n48/OOxzLhgetWkm47TYD9u9X48wZZ4KAXVufPmYBFhcnoUULo2LE9qFDIkaNCsW4cWGmPGIlUy03\njXKhwU3bAGT9zb6gVSsjLl8WcOSICklJxr+rPVnDfaZ5eSLOn7fu4atSsWjg2FgmnL0JjLPVGuPj\nJZNmrERhoYD4eEnWtC8nnCsqgLw8Ee3a+eZ33quXES1aGLFtmxonTjB/sa1JG2C++2bNnC82vNGc\nXSUpyYjhw3U4eFCFzz5j1i45k3X79qzn9+nTKnTsaHTbfRIaylo9ZmeLeOMNDf76S8SUKTo764yS\n5mzuSEWac6NGyYxty1NPKZe5C3T0emD9ejX69QvHzTdHWOU+usKPPzKhNWiQwaQVy2nOubkCYmKs\nH+Tdu3MN0rNbmWuerjRo95bNm9UQBLN1gAvB9esda888OI4/TDg9ehiRlyfaCd3cXAH33huGPXvU\nSE3VY8eOSjRtKin65nkaVUiIZDput25MKKek+KciUmKiBKNRQHW1IOtv5tgWwWCdiFRo396IkBCm\nPel0gp3f0B1sBVNcHCuSUqvwk5QkJpzlTNoAy59t2lTCxYvm78VX/maOKDLtubRUwMcfs2eMXHAU\nAERHs1aMjhYw2dkCmjaVHJYs9QX8Offbb+z7VBLOHLn3XeG664zIyRHw9tsatG5txHPP2bfnMqdS\nWW8n4Rzg+MoHqWyulqBWS+ja1YCVK6swalTdlYVzFUlyPA+SxIpWpKSEYcaMUFN0qlzDdEdwv1lK\nih4tW7IfhK3PWZKA3FzR9D7H7Ht13/aq05lNpErl/vh+3qYsFRQwAXPzzUaTX3DECD2aNGH+Xb2D\nr7+0lM2F7YOze3c2dq+wevEAACAASURBVNuFyebNatTUCPjvf6uxZk0VevQwIiREQlWVvArCA8J4\nfqsgACtXVuPTT6sc1nL2Bl7mEmDRvErY+p0vXWKaDtcSebtGb9KpbIOhuNBVOmZlJYtuVxLOABuf\nZa4z/024W4DEEdy0vXEj+/3Iac4AW8Do9coLGKORafn+1Jo5N91kxMCB7LqbNpVkzeGWCxjPhbME\nSRKg1wv43/+qZQuKREWxv/Y+Z/aXhHMAsm+fComJEbIl8txFyVzdtasRubkVyMzUBqRgBoDp00PQ\no4eygH77bQ0eeywU586JeOihWsydy57ytqkJjqitZQEb119vQOvWzB8XF2e005zLyliKla1w7tqV\n5eZ6ojmfPi2a/K1yFYUAIC9PQMeOEVi+3LuAvW++wd91qM0mY+7fvXJFxK5dyvcaf3hwHxmH+51t\nFybcfD5mjPm+Cg01m69t4UI7NNR8/E6djB4VGHGVxETzuRxpzl27GhEZKVkUXmHbuZbI/Y7e+J3P\nnxdNrQEBs3BWMgU7SqPitGljRFWVYLJq8JxdX2nOAKvPHR3NLBCAdY1pS6KjHS82Ll8WUFMjn0bl\nD3h51uuvlzdZ+0Y4s8+NHq3DkCHy88J/T7Y9nc3R2h6d2meQcJZh925W0N/T9CbLADAlQdUQzNi7\nd6uQlaVsMk5PV0OjkbB7dyWWLq0xFQRQ6pEqx8GDKlRWmms3A8ynfPmytRmOC2tu9uZERLAfsycF\nOSwjnYuKRFnNgteWXr5c49a4bElPZ39tm0SYU5eUTdv8HrIXzvYR20VFAvbuVeGmmwwm3zzATNbc\nfG2LOVrbhYH4CK452/Z7toVXqDp7VsSVKwKOHWPbuXD2VnOWJCac27Y1CwquzSn56B2lUXF4vjSP\nwfCH5qxWs5QiAEhMNCqapPkclZTIj6cu/M2WDBhgwMKF1abFvC2Wc9Spk2cmzLQ0HZ58shZLlijn\nWXLN2PYZTWbtAIYHF2Vmqt1+4NsGgOXmsmO1amV0aMZesSIIt98eZhX4Ysnnn7O6tkoanq/hASyA\n2exsSX6+gGPHVLj1VgOuv55NEn84uKM529ZuBtiDpqrKusISN3Nbalyc7t2NHhXk4P5mLuTk/M78\nXigvN/v23KW8HMjIALp2NdhVh+rZ04ikJAO2blUrliMtK2ORwbbCs3VrlnZiGbG9bRu772wXAY40\nZ8tUqrqCf4+9ehmcRoNz0/b+/SqTcO7alW2LjfWuEEl+vgCt1lprdKY58wA9Z5ozYC5EcvasCLVa\nMgltX8EtMUr+ZsAsnJXmqK6FsyAA06bpMGCAvOCNjGQLH7VacrlNpS0tW0pYsKAGjvowhYcDKpV9\nZyoSzgEMfyDn5opuRwErBYBFRUkOzdhr1gTh+HEVxowJs4tUXr9ejVmzWBu2H36om2IlPIAFMOcg\nW/LTT1yomn9gXLNzRzhnZrK83/79zcfhpmtL0zZf5NhqzoBlUJh7bohjx1jeKRdkjoSzRiNh5cog\naD1oO75jhxq1tfZaM8AeVLfdZoBOJ9il3nDKygRERdlHBgsC8zufO2fu8LR5M9PAbTtFhYZKqK0V\nZF0U3LQfXIfVUDt2NGLChFpMm+bcgmQZFHb0KKw6L3FTtKeas1kwmR/EcXHsfnKmObsinPl3+tdf\nAtq2laD28c/39tsNGDdOh8ceU55H58LZswIk/mTmzFo880ytVeqTrxEEthCwL0LC/lIqVYBhNMKq\nn6icYLLF2zzmoiLWYSUiQsKFCyLuuy/U9GD49ls1Zs4MMSXEu1rE3lssg7p++01lV8mKa9OWGq+7\nwrmgQMDhw/a1m7lwtlykcM3Z1ucMuFeQgyNJzFfbvr1kiky2XJBwTp8WERwsYdq0WhQViVizxv2n\nhWUKlRzcJ6hkdiwrsw8G43TvboQkCTh+nH1HmZnynaK41i0Xsc01akufs79RqYA33qjBHXc4N1v2\n6mWARiPhl1+Ym6VTJ3PnJXfM2qdOiRg/PtSq05VZMMlpzvL3kyvC2bIQSXExUFws+tSkzQkOBt56\nqxpDhyrPI7+/lISztznO/mDKFB2eftr/rj+5ns68CAlpzgHGxYsCqqoEJCezB6mcSdcSX+Qx80jU\nadNq8cQTtTh9WoWxY0Px5ZdqPP54CMLCgI0btWjZkjVPr4texlw433ADoNMJVjWsJYmZo+PijKYy\nkoByrVolFi8OhiQJViX1AMimUyn5nAHXCnLYcuECa/Teo4fBpDHYuhSMRiac27c34vHHdQgLk/DO\nOxrFFBs5jEZmZWjdmgU3ydG0KTs/j8q2RJJYQBjfxxbLhcnOnSxKWy6QiwteuYhtcyqVCwOqB0JC\nWNDYiRMq1NRYm3DdCQhbuzYI27erMWNGqKmZhpxJ19WAMEeFN7hP/cIF0S/+Znfgc6S0+MvJYXnj\ncsU+GjtRUZKiz5kqhAUYvI3ZbbcZ0KmTAXv2qEypJnL4Io+Za8N9+xqwcGENJk6sxfHjKkybFoqg\nIGDNmirceKMRffsaUFTkvqndE7j1YPp09tpykXLypIgrV0TcdpvBqpdqeDigVtvf7HLs3q3CunVB\n6N7dYNfAnPsjLdOpuBYtpzk7K8ghBxfk3bsbTSZIW7P25cvMH9mpEyt28dBDOuTmivjyS9dtk6dP\niyguFnHbbcq1qB1pzlVVQG2tYJfjzDEvTESHGrojzZlvq0uztrtYtqy0jEp2RzjzRfBvv6nw6afM\nAiInnLnQ9UY4h4cz87ilcPZlpLY7OIvWLihgaWHiNSgNoqIkVFZau3vKy1nt+/Dw+rsugISzHdz8\n3KmTEYMGGaDVCjhwQFkj80Ue85YtagAS7rsvFIMGhaFvXwPGj69FeLiEjz+uMj2YbAsy+JNz51gA\ny/jxLKLW0ryv1BBBEJhpW66jlCWWJfXeeKPazg+npDnHxRkVBYhSQQ4luAm8Rw8DwsKAZs2MdrnO\nti3tpk2rhUYjYfnyYJfz4Pl3NXCg8j5cK5YTzkppVJyOHVkO86FDKmRkqNGmjdHkg7fEkebMfc51\nadZ2F+s2gZbWGhbU46yiV2Ul8McfIq6/ntXjXrQoGJcvC8jOZve5ZaBheDi755UDwth2blJXok0b\nVj+cL/jrS3N2Fq2dny+4VH6zMcIXvZZ+Z9bL2fPGLr6ChLMNlp1QuPBx5Hf2No953Tr136t3Vnw/\nK0uFJ54IRUqKAX/+WYHBg80PJW+EsyQxE7yrNbzPnWMBLGFhQP/+Bpw+rTKVzzT7m+0lVFSUc7P2\n0qUaZGeLmDpVhxtusJ8/bl7j2jIrQGKf42yJUkEOJSw1Z4BpTpcuWVeFsi2836KFhHHjdDh3TsTT\nT4fg5Zc1pn+HD8uf1xXh7EhzVkqj4qjVTFidPKlCeTkzacs9VEJD2V9HPudANWsDLJ1KFNkcWApn\nQYBL9bUPHVJBrxeQmmrAggU1qKgQMGdOMM6fF9C6tX2gVlyc5DAgrGlTCRonRrM2bYzQ6QTs2cPu\ngfrWnOXmqLKS1Q9ISLhWhTP7a+l3DoRezgAJZztOnxYhihLatTMiOdmAoCDJod+ZJ9Tb4moe89Kl\nyl2qbH/8nToZER0tOW3/Jsd33zHf+OzZzm2XJSXWASy8hOOPP6pQXc0ETlKSQdZH1bSpY7P2sWMi\n3nlHgzZt5EvqAcy8Gh9vLkRSUsL8onL+Zo5SQQ5H19G8udGkMVx3HSvmYNm5Sa44//TpTHtety4I\nr78ebPr35JMhsrEA+/apEBNjRFKS8rU48jnz3Gol4QyYFyaActAZT5OSS6eyLd8ZiERGssVpu3aw\nu+/i4pwLZ0vX0YQJOiQn67F5cxAKC+UrY8XFMc1Z7jtlpTudC1rudz54UIWQEMkq77wuCQpiGqLc\nHPEFyLWuOVs+s5jmXP/zQcLZhtOnRVx3nYTgYGbe6tPHgCNHREV/zahReqxcWYWuXQ0eleO0bcjO\nkdNwRRG49VY9Ll4UTVqsK5SVAXPmMKG8b5/K1ExcCdsAFq4hZ2aqsX+/ClVV1kVDLImKYsUu5DQ0\ng4GZsw0GVlLPkU8nMdFciIQLabkcZw4XULYR21otM2daUlgo4PJl0aoVolwP2DNnWKqVpcbTrp2E\nn36qxNdfa03/UlL0OHNGZfedXbrEGnr06WPfLcgSrtnI5TnzhwZf4cvBtf+4OCNuuUX+e+Gas7xZ\nm/0NZJ8zAHz2WRX277c3N8bEsFrYjjqTceF86616iCLw2ms10Gj4wkxeONfW2pe8NBiY79ZRpDaH\n5zQbDALatTPWq09XybqQn++8oEpjxmzWNlvpysvrvzoYQMLZisJCAcXFolVVmkGDDJAkAbt3K2tk\no0bpkZmp9agcJ39o2qJkLjf3Z3Vde160KBj5+SJatDDaRV7LYVtqsGNHI1q2NOLHH9XYscM+hcoS\npTZsALBnjwqHD6swapTOylwvR8uWRtTUCCgsFBymUXHatLEvyCFJwEMPhSI1NRzff2+2fnDTN490\nBswPaMt0qlOnRLRuLdl9R+3bS0hONpj+8R6xPCCLY6mtOSIyEhBFySOzNgDcfDM7/l13Kbd35Fqx\no4CwQPY5A2yBEhdnv92ZT1WnY9prly4GU1GKjh2N+Pe/mXVL7rfGhZWt35l1wHLNR2tZP7y+/M2c\nmBj55he8oMq1rjnzOJnqakCvJ8054OA+Rh4ABJhNuq7kO7tLbS0UV/tKZnF3/c6//srasyUlGfDG\nG+wpzLtAKWGrOQsCE8YlJQLWrAmCRiMpChxHuc7chzxwoPNoKstcZ0dpVBy5ghwbNqixezcb65w5\nwaYfoK2/GbDXnEtKWJ6rK60877hDD7Va8lg4iyIzbcubtdk2pVQqgJn0N27UYv585bQC7k+W05z5\ntkD2OTvCWcT20aMitFrBtLDlzJxZi/XrtVYtMjlcM+bCi8PNwK5ozryvMFB//mZOTAyzBNhazfh4\nyOfM5iFQqoMBJJytsA0AAtiDLybG6FEpT2ccOSJCpxOQkqJ32Szes6cRYWGu+Z1raoBZs4IhCBKW\nLq1G//4Gu8hrOeRSP7hp++pV9pCT678LWApn+/f4w9NZlCtgHbHNhbojszZgXZCjoEDAggUhCAuT\nMHFiLfLyRCxezOy23PRt6au1zXW2DAx0RpMmrF7wH3+orNoE7tunQliYZGU+V6JpU8fR2kqpVJyB\nAw0OKxqFhTnXnAPdrK2Es0IkSosklQoYPNgga70yC2frY7pSgIRjeb/Wt3BWCgojn7O1pS9QOlIB\nJJytkHsgq1Qs59mTUp7O2LuXaVrjx+tcNosHBQE33WTAyZMqFBc7Pv6yZRqcPq3CpEk63HwzS0NK\nTjbgzz9Vdi0ZLTl3TrQLYBk40ABBYK/lorQ5vJKVnFmbPzxdEc6Wuc6uaM6AdUGO+fODUVIi4P/+\nrwYvvliDzp0N+OQTDfbtU+HoURWioqzr9sbESIiIkEzpVKdPK/eblYMHYvHyqsXFwJ9/sgYUrpQg\njI5mmrPtAtDcLtK7h4UjzZmnUgVyQJgjnGnOrlowLFEqROKOcA4JAZo3Z/ePbU31ukaphKfZ59ww\nv3tvMfd0ttacyeccYMhF5wJm/+qOHb41bXPt152HBmD2O+/fr3w9ly+zTkot/397dx8dVXnnAfx7\nZ+4kk8lMTAYnLO+4WZHyJiJakJfgkuBWaleKhsDhWA+lUOFs4bQWNXBKlSMVKhaObo9Zgd0eX2MD\nUex6wLKFamsMRbahcHARFKS8JYEkJJNJMi93/7jemZvkzmtmMndmvp9zPMlMTHLzMDO/+f2e5/k9\nQ31Yvz5Q7lT+lmDHYUqSPOfcewHLoEESJk1SFogFf/MQqkuY8sIQyUrXQH9tec5ZEMJ3MFIy1N27\nTdi714Q77/Ri2TI3srKAbds6IQgS1q4144svBEyY0HORliDIpe3z5+UzeIM9FoL5l3/xQBAk/9x2\nXZ38MdJ/24ICuezYu3e3UooPVdaORGCfc9+vBeac+/UrkiZUf22fT36ejBjhC1t5UQsXnCMNZkqD\nGz3MOQPMnHvrvUaGZW2dOnPGgMGDfX1WxpaWyiXn3/42fl3YlReNkSN9UW+xCMw7B587PnhQhNst\nYPXq7h7vAtUrr7U0NAhwOgXNF5Of/awLP/1pl2aTC4XyYNeaP40mc1ay5EuXDLh0yQCHI/y+UqUh\nx+efGyGKcilfWSB1990+PPqoG2fPGiBJgmapefRoHzo6BDQ0BBpHRHpk3eDBEqZO9aGuzoimJiHq\nbC1YI5JIVmtHItAhTLt9Z1ZW6naIClXWVjq09Z5vDidYl7BoMmcAePzxbmzc2Jn0Od3gwVlu3RnJ\nczId9W5CwuCsQ06nvK1Je+WmhNJSD06cMEbVIlJt/fpsPPxwjr8hwWefGdDSIkSdNQNyWVsUQ887\nK5nxP/9zzyx3zBgfhgzx4cMPjf7+wmqhWg3OmuXFT3/aHXJbkBJkgpW1DQYJ+fnBv1/xD/8gQRAk\nXLwo4PJlIaKsR2nIAcj7kXv3st6woQtDhsj3qeebFeoV26dPyx3JCgrCX6ti/nw3fD4BBw6IqKuT\n3yDceWfkmTMQKjjHp6wdbM45VeebgdBlbWVnQrTPs3BzzpFuPZozx4vVq0Ps8RogoTLnTG3dCQRO\nnlKeZ3o5kQpgcPZTtg8FK2MqKzrfeCP67NnpBP7zP0344x9FPPigBWVlOXj1VfnnxBKcc3PlhWH1\n9QbNPcteL/DhhyJGjPD1OZ1IXnkt9+jWOsVJGYdYy3CBsnbfr12/LsBuj+yFwGSSs9GTJ43o6grd\ngERt2bJuPPCA279NRs1mA/793zsxa5YHc+dqBWf52v/v/wz46ish4pK2QjkS8re/FXH8uAG33+4L\nunCut2CNSFpbBVgs4asG4SgLwoIdfJGq881A6LJ2LPPNgBzMBKFvC89IznLWo1Bzzpla0gb6Lghj\n5qxD4Vbnzp3rhcPhw549Js3sI5RPP5VbB95/vxuzZ3tw+LCIXbvkV9tp0yLfE632zW964fEI+PTT\nvtlzfb2clc+Zo93KMdCWtG9p+4sv5G/oHdQjpSwI05pzvnZNiKp8NmyY5D++LdL5wkWLPNi1qzPo\n/OnMmV7s2ePSfHFVMuf/+R8jJCn64Dx6tLza/uOPRXg8fbfuhBJoRNI3OPd3MRigXhDW92udnak7\n3wyEPtihrs6IQYN8Uf9biqIc0LTK2llZUr+nGQaa1mptpXVnJgdns1k+q10JysrrTbJPpAIYnP3C\nBWdRBMrKPGhpEbBpU7b//ObiYgtqakLvG1bevS9e7EZ1tQt79nRg2jQPZs/2oKgotgeBsv/6vff6\n/m4l6Abr4qXsM9baUtXfzDnYPmevVy7ZRhOclRJ0788TRQnOH34oj18ke5x7U7fPjOaNV7A55xs3\n4hOcQx8ZCWRnJ//FKFY5OXJloHdWeOGCvNI/XIe2YOQWnn33Od98s5T0QxGipXVsZKbvcQbkSqJ8\nprN8W9lKxdXaOqI+jSqYxYvl0vYrr2T5z28+dcqIlStzQgZoZW747rvloDhrlhf79rlQXe2K+Ule\nXOzFkCE+1NSY+mRDhw8bIQgSZs3SDg433yxh0iSvZivPL780wGaTYn43HWy1trxNSPC/SERCnS1H\ns9I2VsOGySeJdXTI1x5ttgUESttA4N87ElqZs88nTw/0d74ZCDfnLKRsAxKFVn/tWEvaCodD7qql\nNAqSJKWvduoFM63MOdNbdypsNvWcM8vaunPmjAFWq4TBg4P/o4wZ4wva4nDHDu1JQaV14De+4Y1q\ncVE4RiNQVubGjRtCj85U7e3A0aNG3HFH6MVMc+Z44HYLPTqNeb1ycC4q8sX8psFslvfL9l4QFs1K\nbYV6njnSOef+MBqBESMC1xdLcB43zofJk72YMcPjbxUZCa3M2ekEfD4hogV04SiPW+3V2qnbHUxh\nt0u4dq3nPvE//1l+bKvPgo6GEoSVx+5774no6BCS3lAkFllZcqlWHZwzvXWn4qabAmVtBmed8Xjk\ncu6YMeGDUrD55mBHMR4/rt06MB6UTF69SO3Pf5bnt0PtRQYCW6oOHQoE9osXBXR1aW+jikZeXt9W\nlMqLgp4zZyBQ2rZYpJh+pyAAv/tdB95+W2NyNwStwy/itVIbCD7n7HbLBzOk8oIwQA7OnZ2BfeKS\nJLeptdt9EXVo06Jesd3SIreAzc6Wgp6mpne9D79gWVtms0lwueQKSWC1dvLHhMEZcstGtzuyBUDB\n/p9g5fD+ltZC+cd/lDBtmgcffSTiq6/kJ1q4+WbFXXfJh86/+qrJf429e2rHKj8/MIejULKPaIKz\nMs9sMISuaMSTEpxvvTX26kFWFiLqCqamlTlHcuhFpEQRMJmkPnPOypvNVM+ce2+nOnPGgIsXDZg1\nyxv0MJBw1I1InnkmG42NBjz+eHfMiyWTrffhF5negEShXrEdWBCWzCuSRRScN2/ejEWLFqG8vBzH\njx/v8bWDBw9i4cKFWLx4MV577TX//Vu3bsWiRYuwcOFCfPDBB/G96jiLpo/yT34S3fnNsXYBi5SS\nPVdVydHg8GERubnh99dmZwMvv+yCxwMsWZKDY8cM/V4MpsjLkwOLusQYS1lbyVwHD5Yghl5zFzdK\ncFYffjIQlFXu6opDPIMzIC+c6p05p8JZzpHo3YhEWewYqtVsOErQeu89Ea+9loVx47xYtSqyc9r1\nqHd1IdNbdyqUlfetrXJZ22IZuNebUMIG5yNHjuD8+fOoqqrCs88+i2effdb/NZ/Ph02bNuGVV17B\n66+/jkOHDuHKlSv45JNP8Pnnn6Oqqgo7d+7E5s2bE/pH9EdXF7Bzpzxf/I1vhH8iL1jgwU9+opS1\nJDgcPmzfrn1Qhc8nt3EcOdIX8rjD/njgAQ8sFglvvWXCV18JOHvWgJkzvRHtiy0p8eLllzvR0QGU\nl1tw4ID8iOzvnNpNN0nweHqegBNLWXvwYAm5udKAtj687bbgTUoSyWiUxy1RmTMgB+Dec87pmjkH\nKkixbVUEApnza69lQRAkvPBCZ9QVET3p3eiGmbNMfaZzW5ugi21UQATBuba2FiUlJQCAoqIitLa2\nov3r9ebNzc3Iy8uD3W6HwWDAtGnT8PHHH+Ouu+7Cjh07AAB5eXlwuVzwegf2xS4Sbjfwgx+Y8eGH\nIkpLPbj33siu8YknurF1ayduvllCY6MBzzyTjV//uu/+59OnDWhuTsx8s8JqBR580I0LFwzYvFlu\n8xRuvlntgQc82LGjEy0tgv8Frb/BUOtM51jK2kYjsHdvB154IcqN5f1w771e/Nd/ubBs2cB3dSoo\n6B2c5Y/xC85910ykS+asbkTS3S2vvbj1Vi+GD4/971L3gF++3I0pU1JvIZha7zcwmd66U6Eua7e1\n6aM7GBBBcG5qakKBatmv3W5HY2Oj/3On04lz587B7Xajrq4OTU1NMBqNsHzdGqm6uhqzZ8+GMdaJ\nnwTxeoF/+zcz9u83YdYsD3btcgUtZdTUiH32NT/6qBtHjjjx1FNdcLsF/PznZnz/+zk9SrmJnG9W\nKy+Xg/HevfLb+mizhUWLPNiyRX7Vvvlmn7/EGiutvc6xlLUB4I47fAN6oo8gyNuhktGUQzmZShE4\nLjI+P99iSd85Z3VZ++hRIzo6hLDrLsJR1jkMG+bDU0+l5iIwtd7bqRoaMrt1p6L3nLMeFoMBQNSV\ndUkVfQRBwHPPPYeKigrYbDYMHz68x/978OBBVFdXY/fu3WF/bkGBBaIY3wDucGi/BZIkYMUKYO9e\n4J57gPffF2G1av+/b70FrFwZuK3sa87LA8rLgc2bgccfBx56CPj970UcPGjDkiXy//vXv8of77/f\nDIcjca9+3/42cOutwOefAyNHAtOmWaNezLRuHTB6NGA2G/qMW7BxDGbIEPmjwZALh0P+XNncP3as\nNeKWlukm3DgWFgL/+7+A1WpDTg78+2tHj87xj2N/WK3A+fM9r0N5E2K3Z8Hh6GeP0AGiNY5FRfLH\nzk4zjhyRP//Xf+3f3+RwAC++CMyaZcAtt+gkneqHUaPkjx6P/ARsajLg1lujf36nm2HD5I9udw5c\nLsBuN0Y1Jokav7DBubCwEE1NTf7bDQ0NcKheKe6++2688cYbAIBt27Zh2Nd/6UcffYSXX34ZO3fu\nhC2COkFzc0fY/ycaDocNjY1tml/7j/8wYedOMyZN8uI3v+mAy6Xd1hAAnnnGAqDvm4ZNm7yYOzdw\nzVu2CCguzsWaNRLuvNMJux344x9zcfPNgN3uxNfFhoQpK8vCs89mY/bsbjQ1xfYu/9575Y/qaw01\njsGIogmAGefOdeC22+Ts5coVC3JyDHA62zX7gae7SMYxN9cMwITPP2/HkCESLl/OBpAFSXKisbH/\nJVWTKQcul4iGhjb/m7fLl40ALPD5utDYqP/FTsHG0Wg0AMjFhQvd+NvfjDCZDBg/vr3fz7tFi+SP\niX7+DgSTSQSQg/PnO+F0muF0AgUFHjQ2RrftL90Igjwun33WBSAb2dluNDZGNpUWy+tj7+8PJmxB\nY8aMGThw4AAA4OTJkygsLIRVtc58+fLluHbtGjo6OnDo0CFMnz4dbW1t2Lp1KyorK5Efjw4Kcfbm\nmyZkZUl4801X2BJusP3Lve8fPVrCunVdaGoyYONGc79bB0bre9/rxuLFbvzwh8k/AUf5J+9d1s70\nua1wem+niuc+Z0C7S5jyeSqfSgUEytpnzhhQX2/AXXd5dbEdRk/Upf+rV+X7Mn2PMxB4fl26JL+m\n62XOOWzmPGXKFIwfPx7l5eUQBAEbN27E3r17YbPZUFpairKyMixbtgyCIGDFihWw2+2oqqpCc3Mz\n1q5d6/85W7ZswdChQxP6x0Ti3DkBJ08aUVLiiWiV4pgxPpw61Tdz1trXvHKlGzU1JlRVmfwBOdHz\nzYr8fGDHjoFbOBVKsAVhA709KdX0Ppkq/gvClC5hgXK2siAsWOe7VJGfL58i9ckn8qEl/Z1vTkfq\n1dpXrsj3ZXrrOeUEYgAAFa9JREFUTiAQnC9e1E93MCDCOefHH3+8x+2xY8f6P583bx7mzZvX4+uL\nFi3CIqUepDNKq0t1D+RQ1q7txsqVfVcHae1rFkXghRc6MW+eBW+9FfuRkKlOebArQcblkk+/YeYc\nWu+tLq2tAgQhficgKQHZ5RL8vytdFoQZjUoLTzn7iWbHQqZQr9ZWMudM30YFqIOzkjnrY0wybp3e\n+++LMBgk3HdfZE/eBQs8qKx0Ydw4L0RRPhKwslJ7XzMgn7O8cqVcWs7NlTBhQua9M+29WltZHcrg\nHFrfzFmAzYa4raYN9NcO3Kdkzql8KpVCeXwVFEiYNCnznnfhqI/WZHAOUN78Xrqkn+5gQAyrtVPZ\n1asC/vIXI6ZN8/oflDU1IrZvz8Lp03Jv7bVru/sE3gULPEGDsZZ167rwpz8ZMXmyVxedZgZa77K2\nEpxT8TSfgdR7q0u8jotUKJmzfOpWz0Cdyuc5K5TgPHu2J+aWnenMbJa30zU3c85ZTcmclTeqesmc\nMyp07N8vQpIEf0m7pkbsUbJWtkkBwTPjSOTmAgcPdqTcma/xEsic5dux7nHONIHMGV9/FPztRONB\nPeesSJcmJECgbMv55uAGDZIPvwjMOaf+v3t/mUxyVUnpAaCX4JxRZe3e883bt2vvgQx2/GM0MjUw\nA+petfIgMDhHRun109IiwOMB2tvjmzkHVmsHHpzpMucMAOPH+2C1Spg7l/PNwShd6FjW7km9I4LB\neYC1tgJ/+pMRkyZ5/Wf2RrpNiqIjivJ8e+8552had2Yi9YIw5ei6eG2jAtQLwgL3BbZSpf6/zY9/\n3I36enmPOGmz2yV0dAg4dw5s3anSMzgn8UJUMiYK/f73Itxuoccq7WDHPAa7nyInHxvZM3NmcA5N\nvSAscOhF/H5+YEFYIHPu6lK2UsXv9ySL0aifF1a9UoLxqVNg604V9Y4IZs4DTClpz58fCM5r10Z3\n/CNFLi8v0CeaZe3IiKL8wtDcLMT9RCpAO3NWPk+HsjaFpzwHOztZ0lZTB+SUOZUqHbhcwB/+IKKo\nyNcjK452mxRF7qabJLS1ycdmsqwdOeXwi0QEZ2XRl/rwi3TaSkXhKVMnAIOzmvp5ppfqS0as1j58\nWERHh4D77+/us1Ar2m1SFJn8fAmSJM+dKsFZ/cJA2vLzJZw5Y0hQcJY/arXvZOacGdTVKwbnAPWc\nMzPnAfTee31L2pRY6hXb164JyM+XMnLPd7Ty8+UFO42NiShr982cA3PO+nhBosRSB+fCQq6tUSjZ\nsskk6abPfNoH57Y24L//W8SoUT5MnswH40BRdwm7dk1gSTtCSnXh3Dn5qZmIOWd15sw558zCzFmb\nkjnbbJJutsGmfXB+910TXC4BS5a4I16ZWFMjorjYgiFDrCgutqCmhilftNT9ta9fZ1/tSCkrts+f\nT9xq7d5zzgYDqxqZgsFZm/ImWC+tO4EMmHN+4w0TBEFCWVlkRykmqmtYplGCzIULArxeAYMGsWoR\nCSVzPn9eficZz33OSnasXq3d1SXfr5dsgRKLwVmbslpbL9uogDTPnE+fNuDoUSPmzPFi2LDIBj2R\nXcMyifJO9Isv5IcYy9qRCWTOhh634yHQvrNnhzDON2cO9aJM9tUOUJe19SKtg/Obb8rHNi5ZElnW\nDLBrWLwoC8K+/FIeN5a1I6O8eDqdcgBNfIcwQTcLYCjxLJbAmzFmzgHK9JFetlEBaRyc3W7g7bdF\n5OdHfjwkwK5h8cLMOTbqzMZolJCbG7+frdUhzOXiYrBMU1Ag+c+/JhnL2gNo/36gsdGAhQvdUb34\nsGtYfCjBmZlzdPLz1Z/Hd+WoVubc1SWkxYlUFLl77vFizpz4nROeDkaP9mH4cB+mTtXPiWZpuyBs\n9275YzQlbQBfL/pyYceOwBnPa9b0PeOZQlOCs3x2MDPnSKkzZ3W/33gwmeRsvOdq7fToq02R+/Wv\nO+FwmNDYmOwr0Q+rFTh2zJnsy+ghLYNzQ4OA3/0OmDDBi4kToy9Hs2tY//Xen8vgHBn1ArB47nFW\nmM2Bfc5eL9DdLbB1J5EOpWVho7pahMcDLF4cXdZM8WO1AgZD4EWfZe3IqINzPBeDKeRD5eXP2bqT\nSL/SMjj/5S9GmM3Ad7/L7DdZDIaeZVlmzpHJzgYsFnms4rmNSpGTE1gQ1tUl38c5ZyL9Scvg/Oyz\nXairY0BINiXzy8qSdNV5R++UeedElLVzciR/xqwEaWbORPqTlsF56FAJkyYl+ypICS52u3761aYC\nJWOO94IwQA7EyiK9QFmbb2KJ9CYtgzPpgxJkON8cHSVzTkRZ22yWM2dJYuZMpGcMzpQwSlmb0wvR\nCWTOiZlz9vkEuN1cEEakZwzOlDBKWZvBOTqJnnMG5EYkgcyZ/z5EesPgTAmjzJmyrB0dJXNOTHCW\nP3Z2CsyciXQsLZuQkD4oQYaZc3QefNCDL7804JvfjH8rQSUQd3QwcybSMwZnShj1am2K3MSJPuze\n3ZmQn60+NpKZM5F+saxNCTNjhhf/9E9ezJqln2bymS5Q1uZWKiI9Y+ZMCTN2rA8ff9yR7MsgFSUQ\nu1wCt1IR6VjGZc41NSKKiy0YMsSK4mILamr4/oQyh8Uif2TmTKRvGRWZampErFwZOB/v1Cnj17dd\nPIWKMoISiDs6AplzdnYyr4iItGRU5rx9e5bm/Tt2aN9PlG6UErY6c+Z5zkT6E1Fw3rx5MxYtWoTy\n8nIcP368x9cOHjyIhQsXYvHixXjttdci+p5kOX1a+88Ndj9RulGakMirtbmVikivwpa1jxw5gvPn\nz6Oqqgpnz55FRUUFqqqqAAA+nw+bNm1CTU0N8vPz8YMf/AAlJSX46quvgn5PMo0Z48OpU0bN+4ky\ngZI5yx3Cet5HRPoRNmWsra1FSUkJAKCoqAitra1ob28HADQ3NyMvLw92ux0GgwHTpk3Dxx9/HPJ7\nkmnt2m7N+9es0b6fKN0oZ0WrV2tnZzNzJtKbsMG5qakJBQUF/tt2ux2NjY3+z51OJ86dOwe32426\nujo0NTWF/J5kWrDAg8pKF8aN80IUJYwb50VlJReDUebQypw550ykP1Gv1pakwLtsQRDw3HPPoaKi\nAjabDcOHDw/7PcEUFFggin1Lzv3hcNj63LdihfyfzAiAr0zhaI0jRU8P4zhkiPzRYMiG8rQcPtwK\n1Xtp3dPDOKYDjmN8JGocwwbnwsJCNDU1+W83NDTA4XD4b99999144403AADbtm3DsGHD0NXVFfJ7\ntDQ3x7dZhcNhQ2NjW1x/ZibiOMaHXsaxs9MAIBfXr3ejtdUAQERbWxs8KVI80ss4pjqOY3z0dxxD\nBfawZe0ZM2bgwIEDAICTJ0+isLAQVqvV//Xly5fj2rVr6OjowKFDhzB9+vSw30NEyRHoEMYFYUR6\nFjZznjJlCsaPH4/y8nIIgoCNGzdi7969sNlsKC0tRVlZGZYtWwZBELBixQrY7XbY7fY+30NEyRfo\nECagq0uA2SxBEJJ7TUTUlyBFMiE8AOJdYmHZJj44jvGhl3FsaQHGjLHhW99y49w5Ay5fNuD06eTv\npIiUXsYx1XEc4yOpZW0iSh+B1doCXC6B26iIdIrBmSiDZGcDgiD523dyvplInxiciTKIIMj7ml0u\nec5ZaedJRPrC4EyUYXJyApkzT6Qi0icGZ6IMYzYH5px56AWRPjE4E2UYsxlobRX8nxOR/jA4E2WY\nnBzJH5w550ykTwzORBlGnS1zzplInxiciTKMOltmWZtInxiciTKM+ohILggj0icGZ6IMow7IzJyJ\n9InBmSjDMHMm0j8GZ6IMw8yZSP8YnIkyDDNnIv1jcCbKMFytTaR/DM5EGUYdkBmcifSJwZkow/TM\nnFnWJtIjBmeiDMMOYUT6x+BMlGHUmTN7axPpE4MzUYbpuVo7eddBRMGlfXCuqRFRXGzBkCFWFBdb\nUFMjJvuSiJKq5z5nZs5EepTWkaqmRsTKlYE04dQp49e3XViwwJO8CyNKInXmzDlnIn1K68x5+/Ys\nzft37NC+nygTqLNlzjkT6VNaB+fTp7X/vGD3E2UCzjkT6V9aR6kxY3xR3U+UCdTZMsvaRPqU1sF5\n7dpuzfvXrNG+nygT9OwQxrI2kR6ldXBesMCDykoXxo3zQhQljBvnRWUlF4NRZuu5zzmJF0JEQaX1\nam1ADtAMxkQBSuZsMkkwGpN7LUSkLa0zZyLqSwnOnG8m0i8GZ6IMYzDIc82cbybSLwZnogxkNnO+\nmUjP0n7OmYj6Gj/eC6s12VdBRMEwOBNloOpqFwQh2VdBRMEwOBNlIK7SJtK3iILz5s2bUV9fD0EQ\nUFFRgUmTJvm/9vrrr2Pfvn0wGAyYMGEC1q9fj6tXr6KiogLd3d3w+Xx46qmnMGHChIT9EUREROkk\nbHA+cuQIzp8/j6qqKpw9exYVFRWoqqoCALS3t2PXrl344IMPIIoili1bhr/+9a84cOAASktLUV5e\njmPHjuFXv/oVdu3alfA/hoiIKB2EXa1dW1uLkpISAEBRURFaW1vR3t4OADCZTDCZTOjo6IDH44HL\n5cJNN92EgoICtLS0AABu3LiBgoKCBP4JRERE6SVs5tzU1ITx48f7b9vtdjQ2NsJqtSI7OxurV69G\nSUkJsrOzMX/+fNxyyy149NFH8dBDD+Gdd95Be3s73nzzzYT+EUREROkk6gVhkhRoXNDe3o7Kykrs\n378fVqsV3/ve9/DZZ5/hD3/4A771rW/hsccew6FDh7Blyxa89NJLIX9uQYEFohjfVSoOhy2uPy9T\ncRzjg+MYHxzH+OA4xkeixjFscC4sLERTU5P/dkNDAxwOBwDg7NmzGDFiBOx2OwBg6tSpOHHiBI4d\nO4a1a9cCAGbMmIGnn3467IU0N3fE9AcE43DY0NjYFtefmYk4jvHBcYwPjmN8cBzjo7/jGCqwh51z\nnjFjBg4cOAAAOHnyJAoLC2H9unvBsGHDcPbsWXR2dgIATpw4gdGjR2PUqFGor68HABw/fhyjRo2K\n+eKJiIgyTdjMecqUKRg/fjzKy8shCAI2btyIvXv3wmazobS0FN///vfxyCOPwGg04o477sDUqVMx\ncuRIrF+/Hvv37wcArF+/PuF/CBERUboQJPUkchLFu8TCsk18cBzjg+MYHxzH+OA4xkdSy9pEREQ0\nsBiciYiIdIbBmYiISGcYnImIiHSGwZmIiEhnGJyJiIh0hsGZiIhIZxiciYiIdIbBmYiISGcYnImI\niHSGwZmIiEhnGJyJiIh0hsGZiIhIZxiciYiIdCbtgnNNjYjiYgtEESgutqCmJuyR1URERLqSVpGr\npkbEypU5/tunThm/vu3CggWe5F0YERFRFNIqc96+PUvz/h07tO8nIiLSo7QKzqdPa/85we4nIiLS\no7SKWmPG+KK6n4iISI/SKjivXdutef+aNdr3ExER6VFaBecFCzyorHRh3DgvRBEYN86LykouBiMi\notSSVqu1ATlAL1jggcNhQ2NjR7Ivh4iIKGpplTkTERGlAwZnIiIinWFwJiIi0hkGZyIiIp1hcCYi\nItIZBmciIiKdYXAmIiLSGQZnIiIinWFwJiIi0hlBkiQp2RdBREREAcyciYiIdIbBmYiISGcYnImI\niHSGwZmIiEhnGJyJiIh0hsGZiIhIZ8RkX0AibN68GfX19RAEARUVFZg0aVKyLyllbN26FZ9++ik8\nHg9WrlyJiRMnYt26dfB6vXA4HPjlL3+JrKysZF9mSujs7MS3v/1trFq1CtOnT+c4xmDfvn3YuXMn\nRFHEj370I9x2220cxyg5nU488cQTaG1thdvtxurVq+FwOPDzn/8cAHDbbbfh6aefTu5F6tjp06ex\natUqPProo1i6dCkuX76s+Rjct28ffvOb38BgMKCsrAwPP/xw/36xlGbq6uqkFStWSJIkSWfOnJHK\nysqSfEWpo7a2Vlq+fLkkSZJ0/fp1qbi4WHryySel999/X5IkSdq2bZv0+uuvJ/MSU8oLL7wgffe7\n35X27NnDcYzB9evXpXnz5kltbW3S1atXpQ0bNnAcY/Dqq69Kzz//vCRJknTlyhXpvvvuk5YuXSrV\n19dLkiRJP/7xj6XDhw8n8xJ1y+l0SkuXLpU2bNggvfrqq5IkSZqPQafTKc2bN0+6ceOG5HK5pPnz\n50vNzc39+t1pV9aura1FSUkJAKCoqAitra1ob29P8lWlhrvuugs7duwAAOTl5cHlcqGurg5z584F\nANx7772ora1N5iWmjLNnz+LMmTOYM2cOAHAcY1BbW4vp06fDarWisLAQmzZt4jjGoKCgAC0tLQCA\nGzduID8/HxcvXvRXFDmOwWVlZeGVV15BYWGh/z6tx2B9fT0mTpwIm80Gs9mMKVOm4NixY/363WkX\nnJuamlBQUOC/bbfb0djYmMQrSh1GoxEWiwUAUF1djdmzZ8PlcvnLhoMGDeJYRmjLli148skn/bc5\njtH7+9//js7OTvzwhz/EkiVLUFtby3GMwfz583Hp0iWUlpZi6dKlWLduHfLy8vxf5zgGJ4oizGZz\nj/u0HoNNTU2w2+3+/ycecSct55zVJHYnjdrBgwdRXV2N3bt3Y968ef77OZaReeeddzB58mSMGDFC\n8+scx8i1tLTgpZdewqVLl/DII4/0GDuOY2TeffddDB06FLt27cJnn32G1atXw2az+b/OcYxdsLGL\nx5imXXAuLCxEU1OT/3ZDQwMcDkcSryi1fPTRR3j55Zexc+dO2Gw2WCwWdHZ2wmw24+rVqz3KO6Tt\n8OHDuHDhAg4fPowrV64gKyuL4xiDQYMG4Y477oAoihg5ciRyc3NhNBo5jlE6duwYZs6cCQAYO3Ys\nurq64PF4/F/nOEZH67msFXcmT57cr9+TdmXtGTNm4MCBAwCAkydPorCwEFarNclXlRra2tqwdetW\nVFZWIj8/HwBwzz33+Mfzgw8+wKxZs5J5iSlh+/bt2LNnD95++208/PDDWLVqFccxBjNnzsQnn3wC\nn8+H5uZmdHR0cBxjMGrUKNTX1wMALl68iNzcXBQVFeHo0aMAOI7R0noM3n777fjb3/6GGzduwOl0\n4tixY5g6dWq/fk9ankr1/PPP4+jRoxAEARs3bsTYsWOTfUkpoaqqCi+++CJuueUW/33PPfccNmzY\ngK6uLgwdOhS/+MUvYDKZkniVqeXFF1/EsGHDMHPmTDzxxBMcxyi99dZbqK6uBgA89thjmDhxIscx\nSk6nExUVFbh27Ro8Hg/WrFkDh8OBn/3sZ/D5fLj99tvx1FNPJfsydenEiRPYsmULLl68CFEUMXjw\nYDz//PN48skn+zwG9+/fj127dkEQBCxduhTf+c53+vW70zI4ExERpbK0K2sTERGlOgZnIiIinWFw\nJiIi0hkGZyIiIp1hcCYiItIZBmciIiKdYXAmIiLSGQZnIiIinfl/2JodflYZCvMAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFZCAYAAACv05cWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXlgE9Xe//+eydoVCm2BlrLKWkBE\nr4qICBQpInpxo26geB+8Ll839LnITx9wAfUiXnfFq6K4ggp6vSKICuKGoICy7zuUprSULmmzzPz+\nOJzMJJnJ0iZNmnxe/6SZZCYnk+m8z2c9gizLMgiCIAiCaHbEWA+AIAiCIJIVEmGCIAiCiBEkwgRB\nEAQRI0iECYIgCCJGkAgTBEEQRIwgESYIgiCIGEEiTCQEM2bMQHFxMYqLi1FYWIjhw4d7ntfU1IR1\nrOLiYpSXlwd8z9y5c/Hhhx82ZcgR5+abb8bixYsjcqxevXqhtLQUK1aswEMPPdSkz1u0aJHn71DO\nbahMmzYNr7zySkSORRCxwhjrARBEJHj00Uc9f48YMQL//Oc/cc455zTqWMuWLQv6nqlTpzbq2C2N\nUaNGYdSoUY3e32az4Y033sC1114LILRzSxDJBFnCRFJw00034V//+hfGjBmD9evXo7y8HLfeeiuK\ni4sxYsQIzJ8/3/NebgX++uuvmDBhAubOnYsxY8ZgxIgRWLt2LQBvK2zEiBH46KOPcPXVV+PCCy/E\nU0895TnWa6+9hsGDB+Oqq67C+++/jxEjRmiO7+OPP8aYMWNwySWX4IYbbsCRI0cAAIsXL8bdd9+N\n6dOnY/To0bj00kuxa9cuAMChQ4dwzTXXoKioCFOnToXb7fY77vfff49x48Z5bbviiiuwevXqgOeA\ns3jxYtx8881BP+/bb7/FuHHjMHr0aFx55ZXYtm0bAKCkpARHjx5FcXExHA6H59wCwIIFC3DppZei\nuLgYt99+OyoqKjzn9oUXXsAtt9yC4cOH45ZbboHdbtf7aQEA27dvR0lJCYqLi3HFFVfghx9+AADU\n1tbizjvvxJgxYzBy5Eg8/PDDcDqdutsJorkhESaShs2bN+PLL7/EoEGD8Oqrr6Jjx45YtmwZ3nnn\nHcydOxfHjh3z22fr1q0488wz8dVXX+H666/Hq6++qnnsdevWYeHChfj000/x3nvvobS0FLt27cIb\nb7yBzz//HB988IGuFXjixAk89thjmD9/Pr7++mt06tTJy826evVqXH/99Vi+fDnOO+88vPPOOwCA\nZ555BoMHD8Y333yDSZMmYf369X7HHjx4MEpLS3Ho0CEATEhLS0txwQUXhHwOOHqf53K5MG3aNDz+\n+ONYvnw5RowYgaeffhoAMHv2bHTo0AHLli2D2Wz2HGvjxo1488038e6772LZsmXIy8vD3LlzPa8v\nW7YM//rXv7BixQpUVFRgxYoVuuOSJAn3338/brzxRixbtgxPPPEEpk6dipqaGnz22WfIzMzEV199\nheXLl8NgMGD37t262wmiuSERJpKGYcOGQRTZJf/www/jkUceAQAUFBQgJycHhw8f9tsnLS0NRUVF\nAIDCwkIcPXpU89jjxo2DwWBAu3bt0LZtWxw7dgzr1q3Dueeei9zcXFgsFlx11VWa+7Zt2xa///47\n2rdvDwA455xzPKIJAN27d0e/fv0AAH379vUI5W+//YZLL70UADBgwAB069bN79hmsxnDhw/Hd999\nBwD45ptvUFRUBKPRGPI54Oh9ntFoxM8//4yBAwdqjl+LVatWYfTo0Wjbti0A4JprrsFPP/3keX3Y\nsGFo3bo1jEYjevbsGXBycPjwYZSXl2Ps2LEAgP79+yMvLw+bNm1CmzZtsGHDBvz444+QJAmPPvoo\n+vTpo7udIJobigkTSUOrVq08f2/atMlj+YmiCJvNBkmS/PbJyMjw/C2KouZ7ACA9Pd3zt8FggNvt\nxqlTp7w+s127dpr7ut1uvPDCC/juu+/gdrtRW1uLrl27ao6BHxsAqqqqvD43MzNT8/ijR4/GggUL\nMGnSJHzzzTe44447wjoHnECf9+6772LJkiVwOBxwOBwQBEH3OABQUVGB3Nxcr2OdOHEi6HfWO1ZG\nRobXZ2ZmZqKiogJjx45FVVUVnn/+eezduxeXX345HnroIYwZM0Zzu9paJ4jmgCxhIil58MEHMXr0\naCxfvhzLli1DVlZWxD8jPT0ddXV1nudlZWWa71u6dCm+++47vPfee1i+fDnuvvvukI6fmZnplfnN\nY6q+DB06FNu3b8f+/fuxf/9+nH/++QDCPwd6n7d+/Xr8+9//xquvvorly5fjiSeeCDr27OxsnDx5\n0vP85MmTyM7ODrqfFm3btkVVVRXUa9GcPHnSY2WXlJTg448/xtKlS7FlyxZ89tlnAbcTRHNCIkwk\nJSdOnEC/fv0gCAKWLFkCu93uJZiRYMCAAfj1119RUVEBh8Ohe5M/ceIE8vPz0aZNG1RWVuKrr75C\nbW1t0OMPHDjQEytdv349Dh48qPk+s9mMCy+8EHPmzMHIkSNhMBg8nxvOOdD7vIqKCrRt2xZ5eXmw\n2+1YsmQJ6urqIMsyjEYj6urq4HK5vI518cUXY8WKFaisrAQAfPTRRxg2bFjQ76xFx44d0b59eyxd\nutQztvLycgwYMAAvv/wyPvnkEwDME9GxY0cIgqC7nSCaGxJhIim55557cOedd2LcuHGoq6vDhAkT\n8Mgjj+gKWWMYMGAAxo8fj/Hjx2PixIkYPny45vsuu+wynDx5EqNGjcLUqVNx7733orS01CvLWosH\nH3wQK1euRFFREd5//31ccMEFuu8dPXo0vvnmG4wZM8azLdxzoPd5Q4cORW5uLoqKijB58mRMmjQJ\nGRkZuPvuu9GrVy+0atUKQ4YM8YqnDxgwAFOmTMENN9yA4uJiVFdX47777gv4ffUQBAHPPvss3nvv\nPYwZMwZPPPEEnn/+eaSmpuKKK67A559/jtGjR6O4uBgmkwlXXHGF7naCaG4EWk+YIKKHLMseC2vV\nqlV47rnnyO1JEIQHsoQJIkpUVFTg/PPPx5EjRyDLMr766itPBjFBEARAljBBRJUPP/wQb731FgRB\nQLdu3TBr1ixPwhBBEASJMEEQBEHECHJHEwRBEESMIBEmCIIgiBjR7B2zbLbqiB4vKysVlZWRre9M\nRug8RgY6j5GBzmNkoPMYGSJxHnNyMjS3t3hL2Gg0xHoICQGdx8hA5zEy0HmMDHQeI0M0z2OLF2GC\nIAiCaKmQCBMEQRBEjCARJgiCIIgYEVJi1uzZs/HHH39AEARMnz4dAwYM8Lx27Ngx3H///XA6nejb\nty8ee+yxqA2WIAiCIBKJoJbw2rVrceDAASxcuBCzZs3CrFmzvF5/6qmnMHnyZHzyyScwGAy6i54T\nBEEQBOFNUBH+5ZdfUFRUBADo3r07qqqqPGuKSpKE33//HSNGjAAAzJgxA3l5eVEcLkEQBEEkDkFF\nuLy83Gux7zZt2sBmswFgDerT0tLw5JNP4rrrrsPcuXOjN1KCIAiCSDDCbtahbjUtyzKOHz+OiRMn\nIj8/H1OmTMGqVatw8cUX6+6flZUa8ZorvSJoIjzoPEYGOo+Rgc5jZIj2eXzqqaewZcsW2Gw22O12\ndOrUCa1atcJLL70UdN/FixcjIyMDo0aN0nx91qxZmDhxIgoKCho1tptuugmPPPIIevbs2aj91UTr\nPAYV4dzcXJSXl3uel5WVIScnBwCQlZWFvLw8dOrUCQAwePBg7Nq1K6AIR7p7S05ORsS7cCUjdB4j\nA53HyEDnMTJoncclS4x47jkzdu4U0bOnhHvvdWD8eFejP+PWW+8EACxd+gX27t2Du+66F0Bo3RGH\nDh0V8L1Tptwd8rG0cDhcqKysbfK1FInrUU/Eg4rwkCFD8OKLL6KkpARbtmxBbm4u0tPT2c5GIwoK\nCrB//3506dIFW7ZswdixY5s0UIIgCCI6LFlixG23pXieb9tmOP3c3iQh1mL9+t/w0Ufvoa6uDnfd\ndR82bPgdq1Z9C0mSMHjwEEyePAVvvjkPrVu3Rteu3bF48SIIgogDB/bh4otHYvLkKbjrrim4//7/\nxcqV36K2tgYHDx7AkSOHcffdUzF48BC8997b+Oabr5GXlw+Xy4WSkhswaNA5fmOpqanBrFkzUVNT\nDZfLhXvvfRC9evXGc8/Nwfbt2+B2uzF+/NW49NJxmtuiSVARHjRoEAoLC1FSUgJBEDBjxgwvF8L0\n6dMxbdo0yLKMnj17epK0CIKIPeXlAlatMuCqq1wQhFiPhog1zz1n1tz+/PPmiIswAOzZsxsffrgY\nZrMZGzb8jldeeQOiKOLaa6/AhAnXe71369Yt+OCDTyFJEq65ZhwmT57i9XpZ2XE888wLWLPmZ3z+\n+acoLOyHxYs/xocffora2lqUlFyJkpIbNMfx8ccforCwH2688WZs374VL774LGbPnoOff/4RixZ9\nDpfLhaVLv8CpU1V+26JNSDHhBx54wOt57969PX937twZH374YWRHRRBERHjrLROeecaCHj1qceaZ\nUqyHQ8SYnTu1c3H1tjeVM87oAbOZCb/VasVdd02BwWDAyZMncerUKa/39urVG1arVfdYAwYMBMBC\npDU1NTh8+BC6desOi8UKi8WKPn0Kdffdvn0rJk68FQDQu3dfHD58CJmZrVBQ0BnTpt2P4cOLUFw8\nFmaz2W9btKGOWQSRwFRXM/O3pobMYALo2VN7Iqa3vamYTCYAQGnpMSxc+D7mzn0RL730Otq3b+/3\nXoMhcMKu+nVZliHLgCgqEhbI0yMIgldSsSSx7zt37gu45ZYp2LVrJ/7xj/t0t0UTEmGCSGAaGtij\nwxHbcRDxwb33al8I99wT3Qvk5MmTyMrKQmpqKnbs2I7S0lI4nc4mHbNDhw7Yu3cPXC4XKisrsX37\nNt339u7dFxs2/AYA2Lx5E7p27Y5jx47i448/Qq9evXHXXfeiqqpKc1u0afb1hAmCaD74fa6J9zsi\nQWBxXzuef17Jjr7nnqZlR4dCjx49kZKSittvn4z+/QfiiiuuxNy5T2PAgDMbfcw2bdpi1Khi/M//\nTETnzl3Rt2+hrjV97bXXYfbsR3H33X+HJEm4//5/IDs7B5s3/4Fvv/0aJpMJY8derrkt2giy2kZv\nBiJddkClDJGBzmNkiLfzeMcdVnzyiQnz59sxdmx0b7SRJN7OY0sl0c/j0qVfYNSoYhgMBkycWIJn\nn30RubntIv45MS1RIgii5cLd0GQJE4nIiRMnMGXKJJhMZlxySXFUBDjakAgTRALDRZhiwkQictNN\nN+Omm26O9TCaBCVmEUQC09DAUkadTsqOJoh4hESYIBIYckcTRHxDIkwQCYxiCcd4IARBaEIiTBAJ\nDMWECSK+IREmiARGcUdTTJiIDrfddotfo4zXXnsJH374nub716//DQ8//L8AgGnT7vd7/dNPF+LN\nN+fpft7u3btw8OABAMCMGQ+hoaG+sUPH1VePQ11dZFf2CxcSYYJIYBwO4fRjjAdCJCyjRo3Gd9+t\n8Nq2atV3KCq6JOi+Tz31bNif9/333+HQoYMAgEcffRIWi36/6ZYAlSgRRALDxdfVcvp0EC2MkSMv\nwe2334o77mBr/27fvg05OTnIycnFunW/4o03XoPJZEJGRgYee+wpr33Hjh2JL7/8Fr/9thYvvDAX\nbdq0Rdu22Z6lCWfNmgmbrQx2ux2TJ09B+/Yd8Pnni/H9998hKysL//d/D2HBgoWoqanGk08+BqfT\nCVEUMW3aIxAEAbNmzUReXj52796Fnj17Ydq0RzS/Q1nZcb/9c3Pb4bHHHsGJE+WQZTcmTvwbzjnn\nXM82h8OBW2+9Deeff0GTzh+JMEEkMErvaHJHJwMzZ1rwxRfKbV0UAUlKa9Ixx41zYebMBt3Xs7La\nIC8vH1u3bkbfvv3w3XcrMGpUMQCguroaM2Y8gby8fDz++P/h119/QWpqqt8x5s17CY888jh69OiJ\nBx64G3l5+aiuPoVzzz0fY8ZchiNHDuORR6bhrbfew3nnDcbFF49E3779PPu/8cZruOyyKzBy5CVY\nufIbvPXW67j11tuwY8c2PProbGRltcH48ZeiuroaGRn+nau09r/mmutQVXUSL7/8b1gsMr74Yjn2\n7Nnt2VZdXY1ffvmpSecWIHc0QSQ0XHwpO5qIJqNGFePbb5lL+qefVuPii0cCAFq3bo2nn34Cd901\nBRs2/I5Tp7QXRDh27Bh69OgJABg4cBAAICMjE9u2bcHtt0/GrFkzdfcFgB07tuGss84GAAwadA52\n7doBAMjPL0DbttkQRRHZ2Tmora0Jef/Onbugrq4Wjz/+CNasWYOioku8tq1fvy4kl3swyBImiASG\nsqOTi5kzG7ysVtbzuDbqnzts2HAsWPAWRo0ajYKCTsjMzAQAPPnk45gz5zl06dIVzz77tO7+6iUJ\n+XIGK1Ysw6lTp/Dyy2/g1KlT+NvfbgowAmWpQqfTBUFgx/Nd0EF/qQT//a1WK+bNexubNv2JlSuX\n4auvvsb06TM827766gv89NMPmD59RqBTExSyhAkigeHuaIoJE9EkNTUN3bv3wIIF8z2uaACora1B\nu3btUV1djfXrf9ddvjA7OwcHD+6HLMvYsOF3AGz5ww4d8iCKIr7//jvPvoIgwO12e+3fp09frF/P\nlircuPF39O7dJ6zxa+2/Y8d2rFixDGeeORAzZ87E/v37vLY98MBD2L9/X1ifowVZwgSRoLhcgCTx\n7GiKCRPRZdSoYjzxxAzMmPG4Z9uVV16D22+/FQUFnXDDDRPx1luvY8qUO/z2nTLlDjz88D/Qvn0H\nzyIMF188AtOm3Y+tWzdj7NjLkZubi/nz/40zzzwLzz03xyu2/Le//R1PPvk4vvjiMxiNJjz00CNw\nhTHz1NrfYrFi3ryX8fnni2G1mnH99TehQ4c8zzZRFHH99YGs89CgpQwJAHQeI0U8ncfaWqBrV5aE\n8te/OvH6642vp2xu4uk8tmToPEaGaC5lSO5ogkhQ1HFgigkTRHxCIkwQCYraBU0dswgiPiERJogE\nRW39UokSQcQnJMIEkaCQCBNE/EMiTBAJCl/GEKDsaIKIV0iECSJBIUuYIOIfEmGCSFDUljCJMEHE\nJyTCBJGgkCVMEPEPiTBBJCjedcIUEyaIeIREmCASFHJHE0T8QyJMEAkKdcwiCH82bhTx1Vfxs2xC\n/IyEIIiI0qBah93lInc0QQDAzJkW/P67AQcP1kCIg38LsoQJIkFRt6okS5ggGNXVAhoahLgJ0ZAI\nE0SCoraE4+WGQxCxhk9I6+NkUTESYYJIUHyzo5t30VKCiE/q6wWvx1hDIkwQCYpvWZLbHaOBEEQc\nwT1EZAkTBBFV+M3GamUmMMWFCULtjiZLmCCIKMJvNunpTIQpLkwQiviqcyZiCYkwQSQovFlHaip7\nTl2zkos1awzo1w84cIB+dzVcfO322I6DE1Kd8OzZs/HHH39AEARMnz4dAwYM8Lw2YsQItG/fHgaD\nAQDwzDPPoF27dtEZLUEQIUOWcHLz668GbNkC/PmnAZ07u2I9nLjA5QLc7vhKzAoqwmvXrsWBAwew\ncOFC7NmzB9OnT8fChQu93vPvf/8baWlpURskQRDhQyKc3HBLr64utuOIJ9Qu6Bbjjv7ll19QVFQE\nAOjevTuqqqpQU1MT9YERBNE0uPs5PZ09JxFOLurqBK9Hwlt448USDirC5eXlyMrK8jxv06YNbDab\n13tmzJiB6667Ds888wxkKkYkiLiAW8JpaTw7Oj5uOkTzQJawP+r/gRYVE1bjK7J33303hg4dilat\nWuHOO+/E8uXLUVxcrLt/VlYqjEZD+CMNQE5ORkSPl6zQeYwM8XYe27Y1AQDS09OQkxPjwYRBvJ3H\nlga/VQuCFTk51tgOJk6orlb+NplSwvp/iNb1GFSEc3NzUV5e7nleVlaGHNXI//rXv3r+vuiii7Bz\n586AIlxZGdlpWU5OBmy26uBvJAJC5zEyxNN5rK5OAWCE0egAYEZZWS1sNinWwwqJeDqPLZXKSisA\nE2w2B2y2OAmAxphjx0QALH+pvLweNltoMZpIXI96Ih7UHT1kyBAsX74cALBlyxbk5uYi/XSQqbq6\nGrfeeiscp/1e69atQ48ePZo0UIIgIoN/Yha5o5MJJSYc44HEEeqYsN0eH/8PQS3hQYMGobCwECUl\nJRAEATNmzMDixYuRkZGBUaNG4aKLLsKECRNgsVjQt2/fgFYwQRDNR0ODAINBhsXCnlPHrORCiQnH\nh9jEA+pWlfHStjKkmPADDzzg9bx3796evydNmoRJkyZFdlQEQTQZhwOwWAATCwlTdnSSwS09soQV\n1IlZLaZEiSCIlonDAZjNgNlM2dHJCFnC/rTIEiWCIFomDQ0CzGbZYwm7qGlSUkExYX/Uwhsv7mgS\nYYJIULg72mxWnhPJA1nC/qj/B8gSJggiqnB3tMlEbSuTEYoJ+xOPiVkkwgSRoDgc3u5oigknD7JM\nlrAWfGUxgCxhgiCijJKYxZ5TTDh5cDqV1YJIhBW83dGxG4caEmGCSFAaGrzd0RQTTh7UfZHJHa3g\nnZgVH5MTEmGCSEDcbmYJWSyyqk44Pm46RPRRd4NqaBDgdsdwMHGEd4lS7MahhkSYIBIQfrNhljD7\nmyzh5MHX+iVrmKH+H6BmHQRBRA1+szGbZU9MmLKjkwffvsgUF2aQO5ogiGaBZ4GytpVUopRs+K6V\nW1sbm3HEG94LOMRuHGpIhAkiAVEsYags4fiY+RPRhyxhbfj/RWqq7FWuFEtIhAkiAeE3G4tFhtHo\nvY1IfLiVx397igkzuAu6VSuZErMIgogevDGHegEHckcnD9wSzs5mz8kSZnB3dKtWMhyO+MgaJxEm\niASEW70mE6hEKQnhlnBODnskEWbwyWlmJpuYxoM1TCJMEAkIn/FbLJQdnYxw0VVEOIaDiSO46LZu\nzR7joUyJRJggEhC1O5piwskHWcLaNDQAgiAjPZ1bwrE/LyTCBJGAKIlZ6phw7G84RPPAY8JkCXvj\ncAiwWoGUFHJHEwQRRXj5hfcqSjEcENGskCWsTX098w5ZLPx57M8LiTBBJCBadcK0ilLyQJawNg0N\nrJ+61cqekyVMEERUUBKzAIMBEEWZLOEkgixhbRwOwGoFrFaKCRMEEUWUxCx2szGZKCacTJAlrA1z\nR5MlTBBElFEnZgFMhMkSTh646JIl7A1zR5MlTBBElFHHhNmjTDHhJMLfEo692MQDijuaPSdLmCCI\nqKDljubbiMTHbgcMBhlZWew5uaMBWWaWMHNHs/8LatZBEERU4DcXbgmzmHDsxkM0L3a7gJQU1qjF\nbJbJEoZ3siK3hH1Xm4oFJMIEkYD4uqMpJpxc2O1KQ4rUVLKEAeX6t1plVUw4hgM6DYkwQSQgvFmH\nxcJuNmazTJZwEsEtYYCtnUuWsJKEpW7WEQ9rCpMIE0QComUJU4lS8mC3M/EFuAjHeEBxgNodzSco\nZAkTBBEVlBIlbglTTDiZ8LaEKTsa0HZHU0yYIIiooPSOZs+NRuqYlSxIEhdhtSUsQJJiPLAYo+2O\njuGATkMiTBAJiH+dMCBJAtzu2I2JaB64i1VtCQNKK8tkxTs7mpp1EAQRRXzd0XwlJXJJJz7cxaq2\nhAFySfM6eatVppgwQRDRRWnWAa9HEuHEh1u8ZAl7wwXXbIYqJhzDAZ2GRJggEhBfd7TRKJ/entzW\nUDJAlrA2au8QlSgRBBFVGhrY8oVGI3tOlnDyoGcJJ3uZEhdc6h1NEETUcTgEz2wfUGLClCGd+HCL\nV10nrN6erKjd0YLAXNKUmEUQRFRoaFCsX0BZyIFWUkp8/C1hLsIxGlCcwEMxPFnRYmlBlvDs2bMx\nYcIElJSU4M8//9R8z9y5c3HTTTdFdHAEQTQOh0PwCC+gtoRjP/Mnoot/TJhtJ0uYPXIPUYuxhNeu\nXYsDBw5g4cKFmDVrFmbNmuX3nt27d2PdunVRGSBBEOHjcEDTHU0x4cSHLGFtlDphdj6s1hZiCf/y\nyy8oKioCAHTv3h1VVVWoqanxes9TTz2F++67LzojJAgibHzd0RQTTh58LeG0NLY92S1hxR3Nnlut\ncsvomFVeXo4svjI0gDZt2sBms3meL168GOeeey7y8/OjM0KCSGBkOfh7GgNLzFIOzl3TtIhD4qNv\nCSf3b+/vjo6PjlnGcHeQVXeNkydPYvHixZg/fz6OHz8e0v5ZWakwGg3hfmxAcnIyInq8ZIXOY2QI\n9TzW1gK9egH33QdMnRrZMTidQGqqwTOW1q3Z9rS0VOTkRPazogVdj41DPG1adejAVDgv73RQGBbk\n5Fi0d0oCDKdlp3179j+QkcEmLNnZGRBC0OJoXY9BRTg3Nxfl5eWe52VlZcg5/V+8Zs0aVFRU4IYb\nboDD4cDBgwcxe/ZsTJ8+Xfd4lZWRDUzk5GTAZquO6DGTETqPkSGc87h7t4AjR9Lxww9OTJwY2eBU\nQ0M6RFGCzcb+35xOMwALbLY62Gzx30CarsfGY7Ox39rhqAOQCoejFkAabDYHbLY48L/GiJMnLQDM\nqKurhc0mQRRTIMtGHD1a7RW60SIS16OeiAd1Rw8ZMgTLly8HAGzZsgW5ublIT08HABQXF2Pp0qVY\ntGgRXnrpJRQWFgYUYIIgFGpr2fS7piayLjFJAlwu7+xopWNWRD+KiEO429k/OzpWI4oPfN3R8dI/\nOqglPGjQIBQWFqKkpASCIGDGjBlYvHgxMjIyMGrUqOYYI0EkJFyEa2sje1yebOJdJ8weKSac+FBM\nWBveMUvJjlbWFM7MjFJyRgiEFBN+4IEHvJ737t3b7z0dO3bEu+++G5lREUQSwMU30paw7wpKAJUo\nJRP6vaNjNqS4QPm/8H6MdYY0dcwiiBihWMKRFWE+49fqmEXu6MRHv3d0clvCijva2xKOdYY0iTBB\nxAglJhzZ4/quoATAs5ADuaMTH19L2GwGDAY56UVYcUez5/ESEyYRJogYwd2DkbaEtdzRXJDJEk58\nfC1hQWDWMLmj2aO6WQdAIkwQSQsX37o6AZIUueNquaN5TJgWcEh87HbWqMWgaseQmkqWcH29AJNJ\n9tRRczEmdzRBJCnqrOhIWimemsuVAAAgAElEQVRa7mglJpzcN+JkwG5XrGAOWcIsAUvdT50sYYJI\nctRu6Ei6pCk7OrmpqxM88WAOWcLs/4ILL6COCZMlTBBJiVp4I5mcxa1dLrzqvykmnPgEsoSj1au8\nJVBfL3h5hxR3dGzGwyERJogYoXZHR9ISVpZsU7aZTOzumwgxYUkC3nzThOPHk9uy08Nu17aE3W4h\nqSdh+u5osoQJIinxtoQj745Wt61UsqNbvnCtW2fAQw9ZMX++KfibkxAtS5iLcjLHhR0OwcsdbbWy\nR7KECSJJ8baEI3dc33VTgcSKCVdUsO9XXt7yJxSRxulkfcN5lywONezwX2ObLGGCSHKilZil1Ts6\nkWLC1acXszl5MnkFRQ9eI+wrwmlp1D+6vt47WZEsYYJIcqLnjuZ1wursaPZ3InTMqq5m34FE2B+l\nW5b39mRfScnlAiRJoBIlgiAUouWO1krMUlZRitznxAoSYX24yGolZrHXk/Oc+S5jqP6bN7eJFSTC\nBBEjop+YpWxLpJgwuaP1IUtYG99lDAFlokKWMEEkIbLMbojcTRydxCx1dnTirKJ06hT7flVVJMK+\nKH2jyRJW49s3GlBiwnziEitIhAkiBtTXsxhVbi4X4ehawom0ihJ3R1dVCXC7YzyYOCOYJRzJyV4o\nlJcL2Lgx9jKj5Y7mIkzrCRNEEsJFl4twNNzR6o5ZiRgTBoBTp2I4kDgk3izhxx+3YOzYVFRUNOvH\n+qHljqYSJYJIYrhF0q6d5PU8EmjdcBRLOHKfEyt4TBgAKitbvmUfSfQt4dg069izR4DTKeDIkdhK\nTSB3NMWECSIJ4ZZwTk70LGG1O1oQWFw4ETpmqS1higt7w0U2Xpp1HD/OJMZmi+3vpLijvSemRqNM\nljBBJCPc8s3KkmEyyVFfRQlgN53EsISVc0WWsDfBLeHmO1+yDE9/71iLsOId8t5usZAlTBBJCRfd\ntDQgPT067mi1JcyfJ5oIkyXsjX5MmD02pzu6qkqJt+qJ8LFjAmbOtHjGHS203NEAO08kwgSRhCgi\nLCMtLVqWsPd2k0lu8SIsy97JWFQr7E08WcLcFQ0ANpu21HzwgQmvvGLGt98aozoWPhnw9Q5ZrdSs\ngyCSEm75MktYjkrHLHXbSva85a+iZLcDbrcAo5F9NxJhb+LJEi4tVX6bQJaw73t9KSsTmrwOslYX\nOf482lZ4MEiECSIGeFvC0eod7b3dZGr57mjuis7LIxHWIr4s4eAizK1lLsa+bN8uon//NLz2WtOW\nrdTLk7BaKTGLIJISbvmmpspITWVZy5HqZpXI7mhentSpEyvtIhH2Rm8VJS7KzWsJq93ReiIs+L1X\nzebNImRZwGuvmeFyNX4sijvae7vVSolZBJGUeCdmRbZ1pcMBiKLsqQ3mMEu4ZYsWb1lZUMAt4cgc\nt7YWOHGiZZ8bQLF0fS1hUWTCHG+WMHdD67mjjx7llrKIr75qfNxYzx1ttcpwOmPbeY1EmCBigK87\nWr2tqTgcgp8rGkiM7Gjujs7PZ5ZwpLKjp061Ytiw1BZ/fvRiwgAX4eYbCxfhLl0knDjhL3RuN4v3\nAvru6KNHle3z5zfeJa3VwAbQbtixdq2Iu++2NlufdRJhgogB/GbobQlHRlAaGvzjwQCzhFv6Ag5c\nhLOyZGRmyhGrE96xQ0RZmYjDh1u2NawXEwZYclZzWsKlpQJEUUafPm5IkoCKCu/PLi8XIEmB3dFc\nhPv3d+PHH43YsaNxkhXIEga8W1cuWGDGRx+ZdCcGkYZEmCBigJYlXFMTmWM7HP6Z0QCLCbtcAiQp\nMp8TC3hMOCNDRuvWcsQsYS7mBw607Fui3c5CEVqTsOZ3R4vIzZXRrh27Fn1d0mp3dU2NoHn9Hz0q\nIiVFxn33sdnjW281zhrWS8xS1hRWtu3fL8BgkD3Jf9GmZV9xBNFCUUqU5Ihbwg6H4DfjBxJjTWFu\nCWdkAK1byxFLzOIivH9/y74l2u0CUlJYm1JfmCXcPOPg3bLatZM9rVl9Rdg3DqwVFz56VECHDjKK\ni13Iy5OwaJHJq3d4qOglZmmtKbx/v4j8fNlrAZRo0rKvOIJooXDBTU1lQgxErkxJzx2dCCsp8cSs\njAwZrVoxy66pLva6OsWN2/JFWDseDMCThd+ULONQ4d2y2rfXF2FensQz3Y8d8z73DQ1AebmIvDwJ\nRiMwaZITtbUCFi0KXx313dHskf/+tbVAWZmIzp2bz13Usq84Im4oK9N2JxHa1NUJsFjYbFtJzIrM\nsZklrO2OBlq2CCuWMHNHA00vU1LHlffvb/kxYd6Ywxe+vTmaU3CBbddOCmoJDxzo9nrO4TFZ7ha+\n4QYnTCYZ8+ebwm7eoV8nzB65SPNwRJcuJMJEC8LtBkaMSMXUqdZYD6XFUFurWMDcHd1clnBL7prF\nXZGZmZETYXXCUKJbwkDzJGdxQWXuaCZowUTY1xLmz/Py2P65uTLGjXNh504DvvjCGJYQ67mjuSjz\n1xURbp54MEAiTESAykoBZWViozMXk5HaWsFjAXMxjmSdsJYIJ8KawtwSTk+HSoS93yPLwLRpFnzy\nSWh1pWoRPnBAbHKLxFjCY8JacBGOZItUPbjAerujve8P3FoeOFA6/dxbpHlmdIcOyg/yt785Tj+m\n4C9/ScOMGRasWycGTTbUc0fzc8VjwtwTQpYw0aIoL2cXbiI0O2guvC1hvq3p50+SAJdL2x3NM6YT\nQYSZJcy2+VrCZWUC3nrLjFde0ZiJaKB2R9fWCp7ruaUhy8zK1beE2WNzWMKhuKOPH2dj7dGDx4R9\nRdjbEgaAc86RsGhRHa680omKCgGvvmrG2LFMjAPBvT9abSsBxRLmnhASYaJFwW9aFRVNb7SeLGhZ\nwpFwR/PYl16dMNCyu2adOsUWb7BaoeuO5rW+27eLXqUnevDJI7/ZxyouLMto0v8Pt+aCWcLNkSHN\nrdr27WWkp7PP1nJH8+xpo1H2qxXmlrBvqdDFF7vx2mv12LatBu+/XwerVcbPPxsCjoefG60FHNSv\ncxHu2pVEmGhBcBF2OoVGlQ8kG04n6+DDb4pchCNxcwwkwkpMuOmfEytqapgVLAiKCPvWCh8+zG5r\nLpcQUoiEW8JnncVik7GKC48alYq//73xeRWBumUBzW0JKzFhAMjO9hZht5tZxu3aSRBF9j7fxCw9\nEeZYLMCoUW506yZhz57ALumGBu1WroolzJ7v3y8iO1vyeKeaAxJhosmo3Xfkkg6O0i3L2x0dCUuY\nt+fTataRCDHhU6cEz/niIuzbNUvd9WrTpsAWEqDEhM86i1vCzX9btNkE/PmnAWvWBB+vHoG6ZQHN\nn5glijKys9ln5uTIpztksdd5t6z27dnr7dvLOH7cu5HMsWMirFYZbdoEdg/06CGhrk4I2OHK4RBg\ntfrXTysxYVa6deiQgM6dm9edRyJMNBkS4fBQ1wgD6sSs6LqjuTC37OxoARkZ7HvoWcJHjii3tT//\nDH6L4yI8aBCzhGPRNYtb7MePN76ON3RLuHHHD4fSUtYty3B6TpGTI8HlEjxJdOrsaQBo316C0yl4\n3T+OHGGNOrQaj6jp3p0p9+7d+r+bXsWAkh3NPs/lEpq1RhgIUYRnz56NCRMmoKSkBH/++afXa4sW\nLcK1116LkpISzJw5E3IzBQWXLDFi2LBUGI3AsGGpWLKk8StsEE1D7Wby7Q9L+KNuWQkoN8dI1Fkr\nWaBadcLssTmaNUQDSVLc0UBwS1gQ5JAsYb7/gAFuGAxyTGLCXIQlSQi4wH0guCWsVyfMJy+RavWp\nhyyz5DgusAD8MqT9RVj22u5wsPeqk7L0OOOM4CJcX6+drKgs4CDEJCkLCEGE165diwMHDmDhwoWY\nNWsWZs2a5XnNbrfjyy+/xPvvv4+PPvoIe/fuxYYNG6I6YIAJ8G23pWDbNgPcbmDbNgNuuy2FhDhG\nkCUcHurFGwDAYGCuwshYwtwd7f9aS48J19YCsiwgI4M9DxQTTk2V0bu3hK1bxaDL1FVUsCzdzEwg\nP1+OiTt6+3blM3lMO1yUZQy1DSGebLRnj/7xI2FDqbtlcXwzpHn2dPv2bEy8DMl3aUN1eZIeXIQD\nfS+Hwz8pC/Bu1hG3IvzLL7+gqKgIANC9e3dUVVWh5vSUPSUlBe+88w5MJhPsdjtqamqQk5MT3RED\neO457dKD558PrSSBiCzl5cplRCIcHF9LmP8difpNpTOQ/2stvWOWumUlwGLpBoN//+gjR0R07Chh\nwAAWKwx0cwaYJZyVxY7ZpYuEsjKxWWpp1agTyNTL94WD4o7Wfp2L1a5d2uejshLo1y8NTz7ZtPuo\nujyJ4yvCvpYwfy/PkNYqT9IjVHe0tiXMttntAg4c4DXCzRsTDmo6lpeXo7Cw0PO8TZs2sNlsSFel\nj73++utYsGABJk6ciIKCgoDHy8pKhdHY+OQDANi5U2+7ATk5GU06djLT2HNXWan8XV9vRU5OcnfO\nCnYeeYJUu3YW5OQwtczMZBZyU69f7ops3dqMnBzvm2lWFntMSUlFM8yVm4zvuSgrY4+5uSbk5DDf\nelYWUF2t/N/X1LDr8dxzDRg82ICFC4EDB9IwZIj+51RUAN27s8/r3RtYvRqoqclAly7R+Fb+yLL3\nPa2qKqVRvw/3dOTkKNcVe55x+hHo2BHYu9eoeZ399htgswH/+pcFY8ZYMGpU+GMAgD/+YI/duinX\n4BlnsG12O/tuVVXsed++7Frs04c9P3WK3T94aKZXL+/vokVODtChA7Bvn/b3ApgIp6X5X1N5eexR\nEMw4doz9fc452v8f0dKWsP23WjHfKVOmYOLEifif//kfnH322Tj77LN196+sbHpWQM+eqdi2zV/I\ne/Z0w2ZrxlWrE4icnAzYbI2rLzp+PN2zVumhQ07YbPXBd0pQQjmPR48aAaRAluthszGz1GpNRVmZ\nCJutaYHhsjIDgFS4XA2w2bz9zg0NJgBWnDhhh80W34FhrfPIEqbSYDIp3y0zMw0nTgA2GzNdmUWZ\nhtxcB7p2dQFIxU8/OTBqlHbBsMPBBDcz0wWbzY527cwALFi/3o527ZrnHB0/LqCiIh2dOkk4eFDE\nzp0O2GwhFDj7UFrKriu3W7mufM9jt24pWL3aiH37qv3KcNasYdcHAEycKGHVqlq0aRP+99m+nY0j\nI0MZh8XCrst9+9hvd+BACgAjzOZq2GyA1cp+t7172Xffvp2NJSOjDjZbkHjC6e/1888GHDxYo+kJ\naGhIh8Eg+ekDc+Gno7LSiR07RKSmijAYamCzee/flPuj+hhaBHVH5+bmory83PO8rKzM43I+efIk\n1q1bBwCwWq246KKLsH79+iYNNBTuvVc7qHXPPS002NWCqa9nGau9ejGXUDIlZh08KGDOHHPQmKMv\nWu7o9HT5dMyzaWPSa88HtPyYsHoZQ05WFnNH8/N25Ah7T8eOMvr1Yz/Mpk36tzmelMXLYHg8sDmT\ns7gresQIJvr8O4RLsJgwAE93Ki0X/fbtzLC57jonSktFTJ1qbdT16BvvBeDXP7q0lMXh+W/ZoYP3\nSkpK3+jQBtC9uwRZFrB3r//3kiT9RU3UbSv372erJwXLxo40QUV4yJAhWL58OQBgy5YtyM3N9bii\nXS4Xpk2bhtrTAZRNmzaha9euURwuY/x4F+bNs6NvXzeMRqBvXzfmzbNj/Pj4nt0nIjwG3LWrBKNR\nbrEt/xrDv/5lxpw5lqDdenxR1hJWtqWlsczYpq5wwwWWx3/VKDHhlvkbqVdQ4rRqJcPpFDzJbocO\nsVtafr6EjAx2XW7aZNAVE379+otw8yVncRE+/3w3UlJkrxKrcAgWEwYCx4W3bxdhsciYM6cegwe7\n8OWXJnz0UfjJrr6NOgDt7Oh27ZTyo4wMNinlsWI+EQklMUv9vbQmF4EmplyYjx4VUFPT/OVJQAgi\nPGjQIBQWFqKkpARPPPEEZsyYgcWLF2PFihXIzs7GnXfeiYkTJ2LChAlo3bo1Ro4c2RzjxvjxLqxa\nVQenE1i1qo4EOEZw0c3JYUX1yWQJ//ADu0GFa7noWcLq1xqL0iPX/zVeotRSLWHfxCzAv3Ul/y0K\nCtj2/v3dOHlS8GrgoYZbwurELCB8Ed6/X8C116Zg27bwBZRnRvfqJSE/X2pCYhYvUdIXrp49tZOY\n3G5g504RPXtKMJuBl16qR2amjOnTrdi3L7zxaIlwRgYTPJuN1UGXlwteljLAypS4CB87JsJsVpp9\nBCNQmZLeMoaAkh3NvQDNnZQFhBgTfuCBB7ye9+7d2/P3lVdeiSuvvDKyoyJaDFyEs7NltG3b+Fl8\nLKitBUQxsOWgx4EDAg4e9HadhfO5gG92NHusqUGTkqb4rD9w7+jGHz+W8JaoeiKcny97ynvy89lN\nuX9/Cf/5D/DnnwYUFPhP1PmkkVvCGRlA27ZS2A07XnzRjFWrjHjySRkLFoSXE7FjhwiDQcYZZ0jI\ny5Oxe7fh9JKEYR3G4w0ItB93R/tawvv3C6ivF9CnD3u9oEDG00/X4/bbU/Dgg1Z88knoLhrfblkA\n61SVk8NEmHfLUos0wFzSe/YY4XAwyzSURh2cQBnSessYqrfxCV5cWsIEEQge4+EifOqU0GJu8pdf\nnopJkxqhwAB+/FGZv4Zrufh2zAIi1zVL6ZiVeKso8RtlZqayzbdW+PBhJgDcjdm/f+C4sK8IA8wa\nOnRICDnWX1UFfPopm+EsW2bSLQHSQpaBHTsM6NpVgsXC6pQB7Wvqiy+MePpps65rnU+IA1nC7drJ\nSE+X/cbIE11791a+9FVXuTB8uAurVxuxenXoIRffblkcLsLqZQ59xwaw37CsTAipPInTqZMMs1nW\nFOFA7mhBUMqUgOZduIFDIkw0CR5Ty86W0LYtu5hbgku6pob1Fd64sXHlcj/8oOwXviWs744O1j96\n82YRa9cGqocM7o5uqTFhfm60LGHuVj5yRET79rLnu/bvz26qmzdr/86+iVkAs4acTiHkMMPChSbU\n1Qk47zxmab/2minUr4TjxwVUVSmJjVx4tDxKzzxjxty5Fvz2m5a1B3zxhQnZ2ZLHmtVCEJg1vHev\n6NU5jbvEfff9//4/pmCzZllCStLi3bJ8BRZgIuxwCNi507+OGFCSszZuNECWhZCTsgDW8KZrVwm7\nd/uvBx3IHQ0oLmmg+Rt1ACTCRBPhjTqys5VG6y2hYQeP+Z08KYTdmEGWgR9/NCAnR0JqqtwIS5g9\n+iZmAcH7+t51lxU33piqe0NM5FWUAsWEq6pYXPPoUcFjTQLsxt++vaTbQ9o3MQsILy4sy8D8+WaY\nzTLefLMeXbtKWLTIhLKy0K4JdTwYYFndgL8l7HAoLuQ33/T/cf/7XyMqKwVcd51TcwKmpkcPCQ6H\ngIMHlc/gsezevb1FaMAACZdf7sSGDQZ8+WXw6CXvluXragaUDGneStT3PVy4N2xgr4djCQPMJV1T\nI/id+0DuaECxhEVR9pz/5oREmGgSvjFhoGWI8L59yqUfaPUVLXbtElFWJmLoUDfy8qSw92+sJSzL\nTBhOntTvL6xYwom3ipISE1a2qS3h0lIBbreAjh39haS0VPRbz5bvByiJWYAiwqHEhVevNmDPHhGX\nX+5Cbq6Mv//dgYYGAW++GZo1zDOjuQWqZwnv2SPC5WJj/c9/jJ7kJ84777DPu/HG4D8ujwurXbfb\nt4vIzJQ1rc9p0xpgMMh46qng5Xha3bI4PEN6yxZewuQbE2bPf/+di3B4gqj1vYDA7mj19o4dZc3J\na7QhESaahJYItwR3tFqEw00m467oCy90o0MHGSdOiJ71SEOhro4tLqBOoFFiwvr7VVYqtaB6LfpC\nWUWppbqjtUqUWrdmj1VVgicpy1eEA9UL68WEgdBqhefPZ+I3eTI78RMmONG2rYT5880heVi4CHNL\nmFvxvq5wbqn26eOGyyVgwQJF5LdvF/Hrr0YMG+ZC166h91rmbuH6emDvXhG9e7s1E6HOOEPGddc5\nsXOnAR9/HNga9m1HqYaLMA8N+MeEuaXMxhVqeRJHLzlLqRjQPh6vq45FUhZAIkw0kfJytjh9Who8\nItwSaoXVZRfhWrI//shuIkOHujyz9XCOUVsrIC3Ne21T7o4OlJilnizoiTC3chMzO1qA1eptraiz\no7lwqd3RgBIX1lpRqbJSgMkke3WPCtUdffSogGXLjOjf342zz2b7pKYCt9zixMmTAj78MLg1vH27\nAUajjG7dAlvCXISnT29AZqaMd94xeSZcXJAnTQrth/W1GHfvFuF2C36uaDUPPOCAxSLjn/+0eCxL\nLfSSrgBFhHk5mX9MmL3OvTk8wz1U9MqU+ARZ3x3NHmMRDwZIhIkmUl4ueEoRuDWRyJawJAE//WRE\np04SOneWPTfNcJKzmAh736T480DuaPXqOlqdgYDA7uiWHhOurlbc9hy1COtZwoEypCsq2OIN6glR\nu3YyrNbgqyktWGCCJAmYPNnptf/kyU5YrTJee80ccNlIlhktont3yfPbpKez7+QbE+Z1rGefLeG6\n65woKxPx5ZdG1NUBixaZkJsrYfTo0Hol8MY6u3axYypWtr4I5eXJuOUWJw4fFj2uby20umVxuAgD\nLIM7w6eLo3/JUniWsF7DjkDLe6q3x6JGGCARJpqALHuLcEuKCe/dK0IU9ctB9NiyhcVkL7yQ3fD4\njSKcY9TWeidlAWpLWH8/tYsymDvapHGfNBpbfomSujwJYB2zAHg15PBNrikokNGqlYwtW/wt4YoK\nwXPdcgSBuSb37/fPtOU4HMC775rQqpWM8eO9T2h2towJE5w4eFDE0qX67ttjxwSvlq+cvDwJhw97\nf/a2bSKysyVkZ8u45Rb2I7/5pgn/+Y8Rp04JuPFGp+ZvroXJxKy+XbvYZ+hlRvtyzz0OpKbKQUQ4\nuDuav+7r+jabWZUFG2PojTo4rVuz/fXd0dr7kSVMtFhqapjlxW9iLSUmXFvLahnPPDN8K1YdDwYU\n9yFfei20z/e3hENJzArFHR1a7+j4/n30qKkRvOLBAGtMYbXKp93R2pawILBOUfv3C16uVJeLxZLV\nSVmcLl1kVFcLuhPK5cuNsNlElJQ4veq9Oddfz4Q5UEtT38xoTn4+W1v61Cn+vYGDB0WPSHbrJmPk\nSBfWrjXi6actEAQZN9wQ3szqjDMknDzJGmdwK9t3HL60bSvjL39xY9cug+55CSzCyvG1ErfU+3Xo\nIENshDp17y7h4EHv3zmYO5rHhEmEiRaHulEHgBZTosTdjP37u5GRIYfVdpI36eAizC3hUGPCsswt\nYW13dOCYsNLV59AhQTM2x/dXNyDgcEspkIs0XnE6WVJaZqb/92rVSvZYwhkZsp+1DAC9ernhdns3\n+NfKjOb06cN+382btW+RPC/A1wrm8LirXtgAUETYNxbLY6F8UsHf17ev8r5bb3V43jNypNvTpjNU\n1HHh7dtF5OZKfh4BLc49l52Xdeu0v9e+faKuFdu6tdK/XCtmDCj/T+GWJ3HOOEOCJAleoYRAIRoA\nOPNMCZ06SZ7EruYmoUR4yRIjhg1LRYcO6Rg2LBVLloTffJwIHSUzml28ZjPLXI13Eebx4G7dpNMl\nRqH9GzidwC+/GNCjh9tzE+GJWaG6o+12QJYFP3c0TwwK5I4+fFiE0ShjyBAXJEnwimtztmwRkZam\nXWrCs6PjLSbscgWfxPD1ZX1jwgATUZ4d7WsFc7TaNWo16uAMHKg0jtBi40YDTCYZhYXan5eeDuTm\nSgFFeMcObQvUt2uW0s1Ked+IEW6P5TZpUvg/KD8f69eLOHRIDOqK5nARXrtWK8mNTVrOPtvt1y0L\nYB4JLs5aljKgxJLDLU/iaGVIK806tPeZOtWB336r1fRoNAcJI8JLlhhx220p2LbNALdbwLZtBtx2\nWwoJcRRRN+rgtG3bckS4a1cmVqE27Ni4UURtreCxggF2A7dY5JCFXKtGWP08sDua9dPVq4esqWFl\nJ2eeqX0TjNeOWfPmmTBoUJqnflQLXp6kZeW2aiWjspLFV/WaLfCFC3hJEKBdnsQZOJD9xhs2aLdB\n3LJFRGGhFLAxRvfuEg4f1vZY8LGYTLJfq0TfDGl1eRJHFIE5c+px550OFBWFuZYmFBH+73/ZRREo\nM1rN2We7IYqypgj/9JMRsizgoov0x8PjwnruaD65DTcpi6OVnKW4o2OTeBWMhBHh557TrrJ+/vkY\nVF8nCeoaYU7btmwlpaauixtNeHlS166SKrs5uDB99523Kxpgs/sOHULvmqXVLQtgySGiKOtOBpxO\nFm/Lz1fcZr5W1p9/snZ/3IrzJV5XUfrlFyPcbiFgEpNWtywOrxUG9MtauAirLeFAItyhg4zcXEnT\nEt66VYTDIXiEWo9u3ZhrVKvpB8+MPuMMyS+hyrdWmIuwr8U8bJgbM2Y0aE64gsHFijfGUAt8INLT\ngX79JPzxh8FvcsHzJYYODS7CwdzR4ZYncbTKlAK1co0HEkaEeeF5qNuJpqMlwm3asPVdeXejeGTf\nPhGCIKNLF8nzTx+sTGnjRhEvvWRGZqaMoUO9g6p5eRJsNiEkcVMWb/DPyE1P17eES0vZyjP5+bJu\nPSS32s46S/smGK8x4a1b2bj5JEcLrb7RHF6mBPhnRnPy82Wkpspe94NAMWFBAM46i4UqfLtT8baK\neueZwxtn7N3r/5seOiSgttY/M5qNVbGEZZmJcOfOkt/ErSm0asXc5ZxQ3dEAc0k3NAj44w/v6++H\nHwxIS5MxaFAolrD273TFFU7cfrsDV13VuBT+zp1lmEyyVyw/mDs61iSMQvGZbqjbiaajZwkD8Z2c\ntW+fiLw8GVarYnUEsoSPHxcwaVIKHA5g3jy7l+UFsNm7LAt+N2sttJYx5KSlybqJWXySkJ/P6pON\nRv8VY7jVpmehiSIrU4qn7OiqKqX+ef16UbfRC88UDi7C2v/voshcsHv2iJ7Wi1p9o9Xw87hxo/Z5\nPuuswPcW3oBDKy7MrQPUn94AACAASURBVFt1shWHLeHHvCtlZQIqKsSQLdVw4C5pILz7JI8L//qr\nMmk6dkzA7t0GDB7sDlgqVVTkQp8+bk/tti+ZmcCjjzYgKyvk4XhhMjFP1ebNBs/kR+kdHZ/uuYQR\n4Xvv1TZD7rknznxvCQS/Yarr/+I9Q7qujpUT8RskX7lFr8SooQGYPDkFx46JePhhB0aO9L95hFOm\npMSE/V9LT9d3R/Ma2Px8tkJQ586yX1OCDRsMaNNGQqdO+jcbszm+6oR50lFaGpvIrFql7VtVWlb6\nv6YWYd9uWWp69JDQ0CDgwAF2rECJWYBi6XLLl7Nxo4jUVNlLxLQIJMJbt+q7gc1m9j915IgYUKyb\nCh9/uFa2VoY0X+rQ10vky+WXu/D993V+E9lIwjPWlyxhs4FgvaNjTcKI8PjxLsybZ0ffvm4YjTL6\n9nVj3jw7xo+PM99bAsFFWH0Ta65a4WPHBPz1rymYPdsc8oo1gNKUn2eW6vXqBVjcbto0C9atM+DK\nK5246y7tCV04rSv1ErPYNv0SJS7w3NI74wwJlZVKHeuJEwIOHmS1z4EWQjcaw48Ju92IWoyfu6In\nTmQ3zm++0XZJK2sJB7aECwr0xco3LlxZybbriTCvI1fHhYMlv6nh11i4ljDA3OpHjwqe8xNq4lQ4\ncBEO18rOy5NRUCBh3TqD57r44Qf2uwWKBzcXY8e6YLHIWLzYCFkOvpRhrEkYEQaYEK9aVYejR2uw\nalUdCXCUKS8X0Lq1dy/ftm3ZP3a0LeGvvjLi55+NeO45C845Jw0PPmjx6getB78h8ozUQG0n33vP\nhPffN2PAADeefbZeV9zC6ZrFlyrUs4Ttdu3F5NWWMKBYWdwlzeNzweKUZrMcliVcXi6gsDANTz8d\nnQRHLjJXX+1Ehw4SVq0yaH5/rcUbOFyEDQZZN9YIqDOkmXoGSswC2ISyUycJGzcq3as2bTJAkvST\n39SkprLwgZ4IZ2ToL52Xl8eWG/zpJyZu4cRsQ4WXVw0YEP6x//IXN06cELFnD0vC/OEHA9q2laJi\nsYdLRgZwySUu7NplwObNYtClDGNNQokw0bywlpXe/3TNFRPm5Sz/7/81IDdXxjvvmDF4cBpefz1w\n7z4u1N26sXFmZEC3Ycfbb5tgsch4+217wBrCcPpHB7OE2Xv891PHhAF1KQY7HneZBsvYNZnCK1Fa\nscKAigoRr79u9tTqRpJt2wwwGGT07CmhqMiFigpRsyxIaxlDDhfhvDw5oHXasyc7N9wSrqgQIIra\nzT04Awe6UVEh4tAhfp5Dm+xwunWTcPSo6LVOdEMDmzz17q3vteCTrR9/NMBsVhZ4iCSDB7vx/vt1\n+Pvfww/ZqePCe/YIOHZMxIUXuhvV5SoaXHklM8CWLDFSYhaRmLjd7Cbm2xlHiQlH99LavJndnKZN\nc2DNmlrMm2dHTo6MRx6xYMUK/TuxUiOs3NS0GnbY7cxK699fCrrQdziWcLDELPYe/+McPiwgPV0R\nDN96yFCThZgIBx2mhxUrmCVWUyPg009DbE4cIpLELMIzzmD1tiNGsBu7lks6kCXM+0frJWVxunRh\nmbNqEc7KCtweUUnOYuc31MkOh19n6g5OO3eyVYv69tU/Bp/Y2e2CZhlTJBAEYNQot9cKUqGibtqx\nenX8uKI5I0e6kJEhY8kSE+x2Sswi4oylS40YMCDN4+JsDJWVrGTGt9Vdc8SEXS528+7dm92cjEYW\ninj3XTssFuC221K8mjKo4SKsXjtUq2HHpk3sRhmo3IKTk8Nu7k1NzArUsOPIEdYNiltO6s5Assws\ntA4dpIDuWIC5o0ONCTscwKpVRrRrx1bdeestU0Rjw4cOCaipETwuzIsucsFkkjVLlZRmHf4DyM3l\nvX8DD85oZOdt5052ziorBV1XNIdParj48uS3zp1DOxFayVmhrFqknvhFwxXdVPr0kZCRwZp2KPXB\n8RP+s1qByy5z4cgR0dNYhCxhIm74+msDSktF/PRTI6r8T6NVngQ0jzt6zx4W5/FtGThwoITnn69H\nTY2AG29MQUWF/76sPEnyci9rNewItRYUYOUvHTrIEUnMYu/x3l5dzRKT1Jm/OTkyMjNZhnRpqYCy\nMjEk6ywcd/SaNQbU1Ai44goXxo51Yds2A379tfHXjC88Q5iLcEYGcN55bmzcaMDx497vVdzR/uet\nUycZb7xhx4MPBljo9jQ9ekioqWFrD1dWai/eoGbAADcEQcbGjWLIyW9qtETY93troe6dHI8ibDAA\n55zjxp49IlatMqKgQIrZUoB6XHklc/nw9YtJhIm4gSfzNKWRiZ4IZ2ayWtRoijAvxO/Xz190xo93\n4b77GnDggIi//S3Fy/VqtzOL0rdNoOJOVs5HOCLMjiHh+HEhaCOMQO5o3hfZ1x3N48HqG7MgMKtu\n3z4Rv/0WmisaCM8dzV3RRUUu3HIL2+nttyPnF1UyhJVzPHIkO4HLl3u/l1vCeq7Tyy93BQ0bAEpy\n1m+/sQSrYJZwRgZz/f/xhyHseDCg5B6oG3ZotaH0RT3hikaNcCTgLunaWgFDh7pCnpg0Fxde6Pas\n3GQ2+y+dGC8ktAjTgg7a8Djizp2Rt4QFgcWFoyvCbNz9+mmLzj/+4cCYMU78+KMRM2cq019enuSb\n5OLbMB8A1q83oHVr2dP1KBh5eTLcbsHPgvMlNHe093aeNOYrMt27S3A6BXzxBbuuQ7eEg74NABPh\ntDQZgwe7MXiwG717u/HFF8awSsIAJkBaXheeGa229Hgd9tKl3u89dYot/9iYFo1quAhziz6YCAPM\nw1JTI+CTT0ynn4cuip07SxBF2ccSFpGfL6FVK/39cnJkz/rP8WgJA4oIA/EVD+YYDMBf/8omdfFq\nBQMJLMK0oIM2lZVK0pRe3DQUtBp1cHj/6GjBLeHCQv3OUC+/XI+ePd3497/NWL6c3XB5PNjXbebb\nsKOigiXSnHWWO+TZM7emDx8O/D6lRCmQO9r7Q3lHKd9+ujw5a9my0EWYxYSD9/bes4ct+zdsmAsW\nC5tc3XyzE06ngPffD88avuuuFFx1VQoOHvT+Xlu3isjMlL2svl69JHTsKOHrr73ba1ZX+68l3Bh4\nbeyaNeyaCKUzE7d8//tf4+nnoYuixcImT1yEKyqA48eDr1pkMAAFBTJat5YDNiCJJYMGuWEwsLGp\n+6nHE9wlHa9JWUACizAt6KCNutXhgQMC7PbGHUfPEgaYCJ86FVov5XCRZVae1KmTFLC0JD0dmDev\nHhaLjHvusaK0VPBauEGNb8MOJdM49BsLdxUHE2Gld7TWmLUTs7iF7msJcxGurxfQtasUUheiUPtH\nc1f0JZcob7zmGifS0mQsWGAKuf90RQXw++8iJEnAe+8p4m23szhp377eEx1BAEaMcKGyki0byamu\n1k7KCpfu3Zllyq3w0Cxhdh04HALy8oInv/nSrZuEsjIRNTVKh7BAmdGcF1+0Y/58e9y6UdPSWCnQ\n2LHOsM9JczFokIQ+fdwBu8jFmoQVYVrQQRvuik5NZW0CffsPh4rNFliEAaUtYCQ5flxAebmoGQ/2\npbBQwsyZDaioEHHnnVbPd/d1R/vW+fKVZULJjOaEagnX1gqwWGQYNRwyeolZ3BL2XehcvQh5qBOG\nUFdS4iKsbtOZkQFce60TR46I+Prr0DxKq1ez5e0A4IMPTB5X+M6dTJi1kpOuuYYp/KxZFkinX2aW\ncEgfGZCUFJbIxccUiggXFkoe13A4rmiOOjlLywWvx7nnShgyJD4tTM7LL9dj/vz6WA9DF0EA/vOf\nOixaVBf8zTEiYRWJFnTQhotuURG70TV2UqJYwv7nk9/Y9JrxNwXepENvMXVfJk92orjYiR9+MGLh\nQqZA6vIkQGnYwS1OJSkr9GsldEtY2xUN6FvCR44IEATZb41V9WQiVHEwmdgxAlmy1dXMCh040O1n\n4dx8M1PRl14yh1SuxHtBn3eeC2Vlosd1HkiMzjvPjWuvZXH5RYuMaGhgVmgk3NGA9z0gFBFOSVHa\nRoZzTXDUIhxKeRIRWVq10l6HOl5IGBF2u1kCyPffG+Bw0IIOevBGBZde2lQRFmEwyJou0GjWCgdL\nyvJFEIDnnqtHhw6sDWD79trN6vPyWGcjXnPbqZOkGe/Wg/ePDsUS1muWr9es4/BhEbm5sl9ySUqK\n0qAilDaKADwtRgOtpLRqlREul+CZqKnp00fCZZc58dtvTCADIcvAypVGtG0r4emnWfnQggVsIqSU\n6WhPHubMAVJSZDzxhMUzOYqcCCufGaxEicO9IuGEKDjeImyAyaQsR0kQLVqEKyqAO+4ARo9ORbdu\n6Tj//HRcc00qXnjBTAs66LBnD0uG4W6uxiZnlZezRh1a3YaiWSscqDxJjzZtgFdeqYcgyJrrtwJK\nw47t20WcOCGGfbPNzZVhMMghirCeJczfo2yTJFa/rFd+c9ZZbmRkyLpLw/nC3dHcLXzkiICJE614\n/nkzSkvZ76UVD1bz2GMNSEmR8dhjFs8Sg1rs2CHi2DERw4a50bevhPPOc+H7743Yt08I6pbt1Am4\n6y4HyspEPPYYm33EyhIGgPvuc+DJJ+sblYCk7vPNO4SZkzs1hVDRokV42zYDXn2VuSi7dZNw9dUs\nceSDD0yQJFrQwReXi2UIn3GGhNxclnnJm9mHC+sbrd/4HoiWCBvQqpV+43s9hgxx44sv6jB3rnb8\niruTv/ySZ8CGd7M1GNhC5aFkRwezhNXuaJtNgNMp+MWDOXPn1mPlytqQl6LzjQnPnWvGsmUmzJpl\nwVlnpeHGG1Pw9dcG5ORIuo39O3aUce+9DthsIv75T/3aj5Ur2bV18cXs/46vlPTeeyZs3cq8DYFa\nJt55pwMdO0r48ks26EjEhIHGiXB+voxbb3U2qjdyp06s3Gj1agPq6gRyRRNetGgRHjLEjePHgX37\narByZR1eeaUeV1zhxOHDIn78MXKdfRKFgwfZDb17d9bxp2dPN/btEzzrbYZKfT1LlNETYX5ji7Q7\nuqaGhRz69Qu9dEjNuefqr7XL461chAcNCv9G2aGDjCNH4Ekm8sXpBBoaBKSmao9BcUcr23xXT/Kl\ndWuElfmpjgkfPy5g0SITunaV8M9/1qN/fwlff21ERYWIoqLAzfjvuMOBrl0lvPmmyWPV+rJyJTuX\nF1/MJjTjxrmQlSXj7bfNOHFCDJohnJoKzJypXJyRsoTV6wCrl0GMFkYj+43KyqK3NjDRcmnRIgwA\nubnwam5eUsJm3R9+6F/LmOzNO3h2MI9H9eolQZIEv8Xhg3HwIHu/XlmCsohDZEV42zYRsiyEHA8O\nBy5yW7YYIIqhu3fV5OVJcDr1E9IC1QgDSoLYjz8aPR2WeLesYIsThIo6Jvz66yY4HALuuMOBm292\n4uuv67ByZS0efrgB//hH4JmZxQLMnl0Pt1vAQw9Z/JK07HZWi9unjxvt27MXrVaWXc27X4UiRuPG\nuXDBBex/OhIlSgA7z/n5Etq0kTSz1KOBOokulPIkInlo8SLsy3nnudGtm4QvvzR6xauoeYeSGa0W\nYSD85Kzvv2dehsGDtW8m3EKOtCXMk7L0mnQ0Bd6wA2CZsKG6d9Xw5Cy9HtKBumUBzKX91FOs9/Ut\nt6Sgri64JRwufMJaUSHg7bfNyM6WMGGC0kKrsFDC3Xc7PN8lECNHulFc7MQvvxixeLH3/9GaNQbU\n1wsYPtz7t+Iuaf5ZwRAEYM6cBgwd6vJY1JHg2Wfr8dxzzVdaoxZhckcTahJOhAUBKClxor5ewGef\nKdYwNe/wF2FlkfPwLgPuZhw+XDvGzjNOI20JK52yomcJA+HVB6vhQr5pk3YoJNDiDZxrrnHh5psd\n2LbNgH/8w+q3jnBTMZvZZ7/xhgnV1QKmTHHCam388Z54ogFWq4yHHrJi927l99a7Rnr0kDBkCNsW\n6mSqRw8Jn35q95QJRYLhw90oLm4+i5Q3iGnVSg5pgkMkDwknwgBzeYmi7OWSpuYdTIQFQfbcEBpj\nCdfXAz//bECvXm5d68xiYW7VHTtET5eqSLBlCyvv0MtwbgrqxKfG1IICrOzLagVmzzZrTkD4wvBa\n3bLUPP54A846y42FC02efsWRsoS5+3XpUhPS0mTcfHPTSvY6dZIxZ049Tp4UcN11qZ4mLqtWGZCS\nIuO88/yF7oUX6vHWW3bP4gbJAG+s0qdP4/IZiMQlIRUoL0/GsGFu/P67wSMw1LyDiXBBgeyxfNq3\nl5GRIfuJsCSxBCWtlpa//soyPIO5BidNYuUlRUVp+Oyzprv83W4WE+7ZMzrlHTweCzSuFhRgPakf\nf5zVUD/8sHfWsM0mYOpUKwRBRnFx4Cx9iwV44w07srJkVFayDlt6SXDhoj53N93kDKnVZTAmTHBh\n6lS2ctXEiSnYu1fA9u0GDB7s1rSyCwpkXHZZclUq9OsnIT2d3ZcIQk1CijAAXHcdiz199BETgFCa\ndyRy4tapU4DNJno1CWAZ0hL27BG9VtaZP9+EW25JwZw5/mrH3YwjRgS+if7f/znw4ot2uN3AlCkp\nmDrV4klM0qKyEvjuO4Nfy0bO3r0i7PboJGVxunRhN8qmuD3vvZeJ+KefmrBiBXNLu1zAlCnMtfzQ\nQw5ccEHwG3FBgYxXX7VDEGQUFIS+fm0weEzYaJTx979HrnHN//6vA1df7cTvvxtw1VXM1NcLVyQj\n2dkyNm+u0b0PEclLSCI8e/ZsTJgwASUlJfjzzz+9XluzZg2uvfZalJSU4KGHHoKkV5/RzBQXu9Cq\nlYxFi1iz+WDNOxI9ccs3Hszp1csNl0vA7t3seUMD8MILTHzfe8/sJ5wrVxpgtco4//zgQjJhggvf\nfFOLwkI33n3XjP+/vXuPjrK88wD+nUuuTBDCTlguallcCMkBAaUHCRK1XCyoR7TQ4CbVWuS6J6Jt\nlaYRZDURkVIC3R4RsMuyHAlCsFhcEbqmRzQaFTYqF6naRUggJBICSSaXmXn2j7czmUzed97LvGFm\nwvdzjucwt3eeeZzkl+d5fs/vue++ZP/h7IFcLmDOnGTk5CQjI8OBn/40EXv22HHmjAXvvGNDUVE8\nli6VhlR6inTotXFjK3btagkrY9Zulyp0xcUJ/OIXibh8GVi1KgHvv2/HzJkduiq23XWXB9u2ubBu\nnc49ZCH41oQffNBt6tqkxQL89retmDTJ7V/HDk7KutYlJyPsoxip91ENwpWVlTh9+jRKS0tRVFSE\noqKiLo+vWLECGzZswM6dO9Hc3Iz33nuvxxqrR2KidIzVhQtW7Nsn/VYNVbxDa+LWF19YsXOnHR6F\n3y9//rMNjz6aiOeei8f+/XZ/FSKjhAC2bo3Dnj12TbV6lfiCcGDRf6BzOv74cen2a6/F4dw5KwYM\n8OLSJUuXqeRz56Q/TiZN8iApSdv73nSTwH//dwvmzu3AZ5/ZsGBBUpe6xUIATz2ViM8+s2HiRCkw\n7N8fh8WLk3DLLQ7k5iajpCQBVVXSoQ0zZvTc6Cojw4tbbw3/j8hRo7x44ol2nDtnxY9+lIxNm+Lx\nz//swcaNrbpHtHff7dH0B49Wd9zhwV13ufGLX5gX2H0SEoD/+A8X0tOls4cD9+MSkTzVv/krKiow\ndepUAMDw4cPR2NiIpqYmOP5e6qasrMz/79TUVDQ0NPRgc/XJze3Atm1xWLQoCTt3urFsWTtuu60z\nMWLvXjvWr4/HqVNWxaAauF764Yc2zJuXhOZmC15/3Y3f/77Vv1dWCCmQr14d7z+hxWfYMC927GjB\nTTfpj6Jr18bjpZek9cXt291Ys6bN0Dp28B5hH1+S0/HjwMSJ0ig4MVHgtddc+OEPk7FlSzzmzXPD\nYuksxq93mjExURodfvedBX/+sx2FhQl44YU2WCzAq6/GobQ0DuPGebBrlwsJCcDJk1bs32/HF19Y\nkZnpxa23enDLLZ6oLsIeLD+/HW++acf//q8NDofAtm0u0yo+hWPkSC927jR4fqUG/foBBw+2QAgw\nAYlIC6GisLBQHDx40H973rx54ptvvun2vNraWjF16lRx8eLFkNfr6HCrvaWpysuFuPNOIaQwKURW\nlhCVlUK89lrnfaH+GzNGus7hw0I4HELY7ULcfrv02MCBQhw6JMSVK0I8+KB03/XXC/GXv0j3FxUJ\ncffd0v2PPKK/7Vu2SK/93veEuPde6d9xcUIUFgrR0qLvWr72VVd3vf///k+6/8c/FuKVV6R/L1vW\n9TWHD0u3586Vbh8/rv+zCCFEY6MQo0dL11i/Xoj33pP60+kU4ttvjV0zmh09KsTEiULs3x/plhBR\ntLIIEXqS85lnnkF2drZ/NDxv3jwUFxdj2LBh/ud89913eOyxx/Dkk09i8uTJIYN+XZ3MomAYnM4U\nTdf8+GMr1q9PwMGDdiQnC/zDP3jx7bfqCzSbNrkweLBATk4S2tqAzZtbMXOmG5s2xeHf/i0BHo+0\nfeTsWSsmTXJj8+bWLqfveL3AxIl9UFtrwWefNeG667R9rkOHbMjLS8J11wn86U/SKPqtt+woKEhA\nTY0VEyZItZC11rLNzk7Gt99a8c03TV1GKF4v8E//5MANN1jQ0uJFba0FH3/cjH/8R4H337dh9uxk\nzJ7dgd//vhWjRjngcAh8+mmz4VHO2bMW3H23tJWlXz8pYWz3blfUn5uqldbvI4XGfjQH+9EcZvSj\n0yk/Fab6KzwtLQ319fX+2xcuXIDT6fTfbmpqwmOPPYZly5apBuBImjDBix07XPjDH1zo6Ogsvdid\n6JK4lZbWGYBfeaUVs2ZJU7OLFnXgzTdbMHSoFIDnz2/H66+7uh1/Z7VKW0FcLgtef717KU05R49a\nMX9+EuLigO3bXf5p7Jkz3Th8uBnTp7vx8cc2lJZqyyCSjnmUMqODg6fVKq0Lnzwp9UleXoe/zOCk\nSR6MGuXBm2/a8fbbdly6ZMGdd7rDmmYcOlTgv/7LhcREoKHBgpUr23pNACYi0ks1CGdlZeHAgQMA\ngGPHjiEtLc2/BgwAq1evxsMPP4wpU6b0XCtNNGuWG6++6lIMJBkZXtTUNOEPf3Bh8+Y4zJ6djOZm\nYOBAb5dtPABwyy1elJc349ChZhQXt3WpYR0oJ6cDcXEC//mfcSGTqxoagHXr4jF3bjJaW4GXX27F\nhAld13AdDuDFF1uRlCRQVJSApib56/iqSwHS6LOtzdItKcvHt8YcHy/wr//amb1rsQCPPtoBt9uC\nX/5SWpc2I+N17Fgvdu+WTjRauLBD/QVERL2UahAeP348MjMzkZOTg+effx4rV65EWVkZDh48CJfL\nhTfeeAO7d+9GXl4e8vLyUFpaejXaHZYZMzxdgk2ge+5x49e/TsCkSX3wySe+kaYF1dXyW5ZSUqB4\n5JuP0ykwa5YbJ0/aUFnZfQr8zBkLCgsTMG6cA6tXJ/w9yUua9pYzZIjwn7UanNVdW2vBjBl9cNdd\nffDgg0n4+GOrYlKWjy8566GHOrptW3nwwQ707StQX2+FzSYwZYo52ckTJniRl9fB5B0iuqaprgmb\nLVJrwnKKiuKxYUP3bGZAOvKto6P7/RkZHpSXh6g6oeDwYRseeCAZc+Z04N//vbNw/P/8jw0PP5yE\ntjbpzNiFC9uRl9cR8pxVQDqRJyurD+rqLDh8uBnf+55AQwNw//3JOHHChvR0D06elAL+kCFeVFdb\n8corLtx/f/cgeuGCBVu2OLBgQZNsZaZnnknApk3x+P733fjTn3ous7Y34BqcOdiP5mA/miOia8K9\n2a9/3Y6jR5uxY0cLSkpceOaZNixe3I61a1s1bVnSIytLOt1p3z47fLu4KiutePTRJFgswPr1LlRW\nNmPxYvUADEgb/1esaEN7uwWrVknT0g89JAXgn/2sHX/5Swv27WvB5MmdxROUtjalpQn89rdQLI04\nf347nE4v5s1jBSQiIjP1jnJQYRg8WGDw4O4Rd+vWOJw40X3q2GitaYsFyMtrx6pVidi1Kw6TJ3vw\nL/+SjLY2YNs2F6ZP17/Wev/9bmzd6sb+/XH45hsrTpywYc6cDhQVSXtwJ070oKzMhffft+HMGYvh\nw8RvvFHg2DGFepJERGTYNT0SDkVLrWm9cnLciI8X2Lw5Hj/+cRIaGy3YuLHVUAAGpMD+/PNS5aMT\nJ2z44Q87UFLS2m3bUlaWBzk5HMUSEUWba34krEQqaelCSYlUUWvECC8ef7y9S6lLvQYMkE6PKSuT\n0qiLi1vxox+FFxzHjvWisLANp09bUFTUFlbdYyIiurr4KzuE2bPdYQVdOYsWtePdd+1YtKgd8+eb\nsz0nP58nsxARxSIG4ats7Fgvjh9v4mkqRETENeFIYAAmIiKAQViXvXvtyM5OxqBBDmRnJ/eas4aJ\niCgyGIQ12rvXjoULk3DihA0ej3Su7sKFSRg3rg+DMhERGcIgrFFweUif6mprl6DMQExERFoxCGuk\ntVJWSYl8sPbhlDYREfkwCGuktVJWqGCtNKXNQExEdG1iENZIqYJWsFDBWmlKW230TEREvRODsEaz\nZ7uxaZMLGRke2O0CQ4bIB9vAspbBU89ffinf3UYPhSAiotjGeVAdgito7d1rVyxr6Zt69pE7DMLH\n6KEQREQU2xiEwyAXlLOzk3HqlFVXDedwDoUgIqLYxSBskuCRr9J5xFarQHq617RDIYiIKHYxCJtE\nKekqWHq6F+XlLT3cGiIiigXMCDKJ1uQqTj0TEZEPg7BJlJKrEhIE7HaBjAwPNm1yceqZiIj8GIRN\norSPeMOGVtTUNKG8vIUBmIiIumAQNknwPmKzRr4sc0lE1HvxN7qJgrcshUtur7F0m9PaRES9AUfC\nUYxlLomIejcG4SimlHHNMpdERL0Df5tHMaWMa5a5JCLqHRiEo5hSxjX3GhMR9Q4MwhEWKvu5pzKu\niYgoOjA7OoK0ZD+bnXFNRETRgyPhCFLKfs7PT+S+YCKiawCDcAQpZTm3tVng8Vj8I2MGYiKi3olB\nOIK0ZjkH7gsOpdoa1AAAEdtJREFUXkMuKEhgRS0iohjF39gRtGxZe5c1YSW+EbPcGvKJE7Yut1lR\ni4godnAkHEHB2c8JCUL2eb4Rs9Yzi7mmTEQUGxiEI2z2bDfKy1tQU9OEDRtaZZ/j2xestVJW8Jry\nuHF9GJSJiKIQg3AUUdsXbLRSVnW1lYleRERRiEE4ygSOjIPPIFaqoKUXD4AgIooODMIxRG6kPH9+\nu+qacjAeAEFEFB00zUsWFxejqqoKFosFBQUFGDNmjP+xtrY2rFixAn/9619RVlbWYw0lSagKWsHZ\n00psNmDQIAdGjPBi2bJ2ZlITEUWI6pCosrISp0+fRmlpKYqKilBUVNTl8TVr1mDUqFE91kDSLnik\nPGSI/Boyi4EQEUUH1SBcUVGBqVOnAgCGDx+OxsZGNDU1+R9/4okn/I9T5AWuKR892qxpCxTXiImI\nIkN1CFRfX4/MzEz/7dTUVNTV1cHhcAAAHA4HLl26pPkN+/dPht1uU3+iDk5niqnX600WLJD+AwC7\nwv/tU6ek/x9K/bhzJ1BcDBw/DmRkAAUFQE5OT7S2d+D30RzsR3OwH83RU/2oex5SCG3JP0oaGlrC\nen0wpzMFdXVXTL1mbzViRHKXClud93sA2GT7MXid+fPPgXnzgMuXWZVLDr+P5mA/moP9aA4z+lEp\niKtOR6elpaG+vt5/+8KFC3A6nWE1hiJDaYtTY6MFdjtki3koVeniFDYRUfhUg3BWVhYOHDgAADh2\n7BjS0tL8U9EUW5QSt6RiHpBN1FLazhRqm1PwIRNM/CIikqf623H8+PHIzMxETk4OLBYLVq5cibKy\nMqSkpGDatGnIz8/H+fPn8be//Q15eXmYO3cu7r333qvRdjIgcItTdnYyqqu7P6ekJL5LlS75KWz5\nzGu5QyZ4qAQRkTyLCHeRVyez1ye45mHcoEEOeDyWbvdbrQIjR3px6pQVAwcK1NR0H/UGltMMlJ0t\nv+6ckeFBebm5+QDRiN9Hc7AfzcF+NEdE14Sp91IazXq90h5ij8fiD8BDh3pl61kDXaefT5zQP31N\nRHSt4mLdNUzrecYA0LevwJEjzd3u11qly+jhE0REvRmHJ9ewrola0pSx1Sq/OqE0ktV6xrHvOEYi\nIurEIHyN81XY6ugAystbMHKk/IhVaSSrPM0sFKeviYhIwiBMXSjtJQ4cyQauAStV4crI8Moex0hE\nRJ0YhKkLueMSA0eyvjVgX+JWW1v37GpAOWhnZyejoCCB+4iJiMAtSvR3WvtRaQtSQoKAxyNNWz/+\neHu3oK1myBAvzp+3RM3xinv32rF+fTxOnbLqahO/j+ZgP5qD/WiOntyixCEI6aK0BuzxADU1Td3u\n15q4VV0tXfdqFfcIFWRZcISIrhZOR5MuSgla+hO3QuvJ2tTBU+rB5TpZL5uIrhYGYdJFS+JWIKP7\ng48ft/bYmrFakDVSL5uIyAj+ViFd1BK3gikFbXUW2VGqTziHRKgFWb2jfSIioxiESTff3mItW5Dk\ngvb8+e3dTnJSEzgVrDadLEfLtipfkNU72iciMoqJWdTjAk9ukrN3rx0lJVKSlNsNAN23PQWOXpWm\nk/PzE7FkCVQTrTwe+Xb4gqz0Ope/TcEZ30REZuEWJQIQPf0YaguU2y0F2C+/tMLrld+fHMg3Ta53\nW1U4oqUfYx370RzsR3PwFCW6ZihNBbe1da4RawnAgHqilW9ble+IRT1rzOGsSRMR+TAIU1QJXkNO\nSDA+UePLsFZbA9ayxhwYdMeO7SP7/HHj+sBuhz8o93Sg5h8CRLGP09EEIHr7cdAgBzye7iNfq1Ug\nPd2LU6essNmgWD4zFLXp6owMD8rLWzRX/dLznoDxqly+18q1qbcclhGt38dYw340B6ej6ZqltC0o\nPd3rz9DesKFV07USEuRPdlLbsqS16pcWvinycDO88/MTQ14/+Pk9NVLmaJwoPAzCFNW0bBcKnsIG\n5Cd3AteAA0eLavuCzSzSoRbY8/MTZQOa1oMzfNc3EuT1uhrvQdTbMQhTVNNaHCRw7/KoUfqKbagF\nejOLdNhs0hT7iRPyP3qBCWhaSmkG87XVrNKboUa6LO9JFD4GYYp6eoqDAPqLbagFeqXrDR3q1VVw\nBOgMsnJ7oeWoZXgH831GM0pvqo10Wd6TKHz8aaFeR29pTd9rlAK90vWOHGlGTU0Tjh5tDngc/sfN\nyPJWy/AOXOeeP78d69fHa8oI9zEy0vVNmWt9DyJSxuxoAsB+NItSPypleQMCdjvCzvA2cm5zVpYH\nW7Z0D7S+50iVxYy3SU5wRnhWlgfvv2+TuW3DiBGeqDhb2gzhZMKHgz/X5mB2NFGMUxodZmR4Tcnw\nVhq1+p7vmzKvrrb6p5blAnDgc7QGYKXRuFpyma8N8rdh2uEdwc8vKEgI+XojGd+hXtMTCWzMSu89\nOBImAOxHsyj1o5Z9vVpqaNvtAjU1Td3uVxpp+56vtBfaDL73UPuMRtvg268NKPdj4Ag/VN1wJWoz\nCmqjeyOfO/Bz6aGnjfy5NgdHwkQxTss6dTgZ3j27zUqEXNfWmpFttA0nT1pV90cHjvCNZJX72mgk\n49vo5zZ6Zrbe7W29WW+YEWAQJrpK9GR5683w7sltVmpT5moZ2WrJZWq8Xovq/uhgegO/r41KW8cC\nrxP8i//LL42dT612ZnagwPfUu71Nq1gLaHrLzUbrZ2IQJopCejO8jW6z0nK2c+ARj6HeQy3YGEk8\nM0p/4A+9dcy3v1uubrjSgSJq51MHUxptBwcbvdvbAq+jtDauVA89GoOWj9oMRKwUk+GaMAFgP5ol\nmvsxcM1Z6fhGLc8JdX0t66+BR0hOmuTBBx90Zkd33payo0+e1HZsZTTSu94PCNhs3c/DNrqWbrcL\ndHRYUFd3xXD9c6Pr1ldDqB0HNhtgt8vvOAg8FlVrlnpPrgkzCBMA9qNZrvV+DCe5LJCvH9XOgh44\nUKC6Wn1CTynwhwqIeraOBR4oovbHi9agqr5VLHQbMzI8OHbMFrIf1cn/YQCEv+1K7vUANF/TrGRD\nLYeeMDGLiGJCOMllcpSmcjdsaJUplKKtbnhxcZtqG33r4G6NMSXwQBG186m1Tk+rbRVTW6tvbLT4\nj9ZUWrdWJ7/OHO56rNLr9VyzsdGcGZKrfehJMI6ECQD70Szsx07hHLcY2I96psj1bgcya1tV8NSz\nGdvR9L6n73paZweM8E3lKk31qh3/6RvdK71ejto1hw6Vrmm0H7VssVuwIInT0Ur4S88c7EdzsB+7\nMrrGbLQfje7zVWqj2i9+uc+k9w8B7dOq0vSzWdPdcsINaGrrscaEvqavX9WWLpSm7bX8YeGb1g8H\ngzCFxH40B/vRHOH0YzjJZWZcT61witz1tSRNaU2SUnr/4HXr4KS4wM/Vk8VdzKa1WIzR5LTABLdw\nKAXh6MrVJiIK0+zZblPrMuu93ogRXtkAprQWLl3bpTqdrLRHXOv7+9attVi2rN1QwIoEX78G92Pw\nHxbBj2tNupOu33N/kDAxi4jIRHoLrQBdE9qCk820nAIW7vvLtUfLKWC+uuFKCXFqgmuha0myCxb4\nudQK4gQ+rjXpTk+/GcHpaALAfjQL+9Ecsd6PZk+JG39/ab+1GVPyRhLY1LaShfrjQu2a4farnutz\nn3AIsf7DGi3Yj+ZgP5qD/WgOM/vRSAKbUga3lgAaTna91s9zNQ/CCGtNuLi4GFVVVbBYLCgoKMCY\nMWP8j33wwQdYt24dbDYbpkyZgqVLl4bVUCIiij6h1sbV1mPVXm/0muHo6etrpRqEKysrcfr0aZSW\nluLrr79GQUEBSktL/Y8///zz2Lp1KwYOHIjc3FzMmDEDN910U482moiIoovZCXE9dc2reX0tVBOz\nKioqMHXqVADA8OHD0djYiKYmKc3+zJkzuO666zBo0CBYrVZkZ2ejoqKiZ1tMRETUS6iOhOvr65GZ\nmem/nZqairq6OjgcDtTV1SE1NbXLY2fOnAl5vf79k2G3m5vurTTXTvqwH83BfjQH+9Ec7Edz9FQ/\n6t4nHG4eV0ODuSdyMIHDHOxHc7AfzcF+NAf70RwRPcAhLS0N9fX1/tsXLlyA0+mUfay2thZpaWlh\nNZSIiOhaoRqEs7KycODAAQDAsWPHkJaWBofDAQAYOnQompqacPbsWbjdbrz77rvIysrq2RYTERH1\nEqrT0ePHj0dmZiZycnJgsViwcuVKlJWVISUlBdOmTcOzzz6Ln//85wCAmTNnYtiwYT3eaCIiot6A\nxToIAPvRLOxHc7AfzcF+NEdE14SJiIioZzAIExERRchVn44mIiIiCUfCREREEcIgTEREFCEMwkRE\nRBHCIExERBQhDMJEREQRwiBMREQUIbpPUYomxcXFqKqqgsViQUFBAcaMGRPpJsWMNWvW4NNPP4Xb\n7cbChQsxevRoPPXUU/B4PHA6nXjppZcQHx8f6WbGhNbWVtxzzz1YsmQJbrvtNvajAfv27cOWLVtg\nt9uRn5+PkSNHsh91am5uxtNPP43GxkZ0dHRg6dKlcDqdePbZZwEAI0eOxKpVqyLbyCh36tQpLFmy\nBI888ghyc3Nx7tw52e/hvn37sG3bNlitVsydOxdz5swx/qYiRn300UdiwYIFQgghvvrqKzF37twI\ntyh2VFRUiPnz5wshhLh48aLIzs4Wy5cvF2+99ZYQQojf/OY3YseOHZFsYkxZt26deOCBB8SePXvY\njwZcvHhRTJ8+XVy5ckXU1taKwsJC9qMB27dvF2vXrhVCCHH+/HkxY8YMkZubK6qqqoQQQjz55JOi\nvLw8kk2Mas3NzSI3N1cUFhaK7du3CyGE7PewublZTJ8+XVy+fFm4XC4xa9Ys0dDQYPh9Y3Y6uqKi\nAlOnTgUADB8+HI2NjWhqaopwq2LDhAkTUFJSAgDo27cvXC4XPvroI/zgBz8AANx5552oqKiIZBNj\nxtdff42vvvoKd9xxBwCwHw2oqKjAbbfdBofDgbS0NDz33HPsRwP69++PS5cuAQAuX76Mfv36obq6\n2j9DyH4MLT4+Hps3b+5yHK/c97CqqgqjR49GSkoKEhMTMX78eBw5csTw+8ZsEK6vr0f//v39t1NT\nU1FXVxfBFsUOm82G5ORkAMDu3bsxZcoUuFwu/3TfgAED2Jcavfjii1i+fLn/NvtRv7Nnz6K1tRWL\nFi3CQw89hIqKCvajAbNmzUJNTQ2mTZuG3NxcPPXUU+jbt6//cfZjaHa7HYmJiV3uk/se1tfXIzU1\n1f+ccGNPTK8JBxKsvqnboUOHsHv3brz66quYPn26/372pTZvvPEGxo4di+uvv172cfajdpcuXcLv\nfvc71NTU4Cc/+UmXvmM/avPHP/4RgwcPxtatW3Hy5EksXboUKSmdJ/ewH8Oj1H/h9mvMBuG0tDTU\n19f7b1+4cAFOpzOCLYot7733Hl5++WVs2bIFKSkpSE5ORmtrKxITE1FbW9tlSobklZeX48yZMygv\nL8f58+cRHx/PfjRgwIABGDduHOx2O2644Qb06dMHNpuN/ajTkSNHMHnyZABAeno62tra4Ha7/Y+z\nH/WT+3mWiz1jx441/B4xOx2dlZWFAwcOAACOHTuGtLQ0OByOCLcqNly5cgVr1qzBpk2b0K9fPwDA\npEmT/P35zjvv4Pbbb49kE2PC+vXrsWfPHuzatQtz5szBkiVL2I8GTJ48GR9++CG8Xi8aGhrQ0tLC\nfjTgxhtvRFVVFQCguroaffr0wfDhw/HJJ58AYD8aIfc9vPnmm/H555/j8uXLaG5uxpEjR3Drrbca\nfo+YPkVp7dq1+OSTT2CxWLBy5Uqkp6dHukkxobS0FBs3bsSwYcP8961evRqFhYVoa2vD4MGD8cIL\nLyAuLi6CrYwtGzduxJAhQzB58mQ8/fTT7Eeddu7cid27dwMAFi9ejNGjR7MfdWpubkZBQQG+++47\nuN1uPP7443A6nVixYgW8Xi9uvvlm/OpXv4p0M6PWF198gRdffBHV1dWw2+0YOHAg1q5di+XLl3f7\nHr799tvYunUrLBYLcnNzcd999xl+35gOwkRERLEsZqejiYiIYh2DMBERUYQwCBMREUUIgzAREVGE\nMAgTERFFCIMwERFRhDAIExERRQiDMBERUYT8PwUvB/5HXip/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "31o0j3UhmUMy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "These curves look very noisy. To make them more readable, we can smooth them by replacing every loss and accuracy with exponential moving \n", + "averages of these quantities. Here's a trivial utility function to do this:" + ] + }, + { + "metadata": { + "id": "ejuMwcSFmUMz", + "colab_type": "code", + "outputId": "65fa6e49-4deb-4680-90ff-83a5a6962823", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + } + }, + "cell_type": "code", + "source": [ + "def smooth_curve(points, factor=0.8):\n", + " smoothed_points = []\n", + " for point in points:\n", + " if smoothed_points:\n", + " previous = smoothed_points[-1]\n", + " smoothed_points.append(previous * factor + point * (1 - factor))\n", + " else:\n", + " smoothed_points.append(point)\n", + " return smoothed_points\n", + "\n", + "plt.plot(epochs,\n", + " smooth_curve(acc), 'bo', label='Smoothed training acc')\n", + "plt.plot(epochs,\n", + " smooth_curve(val_acc), 'b', label='Smoothed validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs,\n", + " smooth_curve(loss), 'bo', label='Smoothed training loss')\n", + "plt.plot(epochs,\n", + " smooth_curve(val_loss), 'b', label='Smoothed validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xt8zfUfwPHX99x2dxnmmktCRpJK\nNFqY3CvkVkJyyV2kn1ZSlBBCCUVRKNepxDC3ElF0kUtEc5uxsY3tbDvX3x+nHbucs+vZdjbv5+Ph\nYed7zvlePjv7vs/n9v4oVqvVihBCCCHchqq4T0AIIYQQGUlwFkIIIdyMBGchhBDCzUhwFkIIIdyM\nBGchhBDCzUhwFkIIIdyMBGdRYkydOpWOHTvSsWNHGjVqRJs2beyPExMT87Svjh07Ehsbm+1r5s6d\ny1dffVWQU3a5QYMGsWnTJpfsq0GDBkRHR7Nz505ee+21Ah1v3bp19p9zU7ZCiOxpivsEhMitt99+\n2/5z27ZtmT17Ng899FC+9hUeHp7jayZOnJivfZc07du3p3379vl+f0xMDMuWLaN3795A7spWCJE9\nqTmLUuP555/ngw8+oFOnThw9epTY2FhefPFFOnbsSNu2bfn888/tr02rNR46dIg+ffowd+5cOnXq\nRNu2bTl8+DAAkydP5uOPPwZsXwa+/vprnnnmGVq1asXMmTPt+1qyZAktW7akZ8+erF69mrZt2zo8\nv/Xr19OpUyeeeOIJnnvuOS5fvgzApk2bGDt2LKGhoXTo0IHOnTtz5swZAC5evEivXr0ICQlh4sSJ\nmM3mLPvdt28f3bp1y7Dtqaee4ocffsi2DNJs2rSJQYMG5Xi8Xbt20a1bNzp06ECPHj04efIkAH37\n9iUqKoqOHTtiMBjsZQvwxRdf0LlzZzp27MiIESO4ceOGvWwXLlzICy+8QJs2bXjhhRdITk7Ocm7J\nycmMHz+eDh060LZtW2bNmmV/7uLFizz33HO0b9+enj17cvz48Wy3t23bll9//dX+/rTHly5dolWr\nVsyYMYP+/ftne60An3zyCe3ataNDhw689957mM1mgoKCOHbsmP01q1atYuTIkVmuR4jckuAsSpW/\n/vqL77//nmbNmrF48WJq1KhBeHg4K1euZO7cuVy5ciXLe06cOMH999/Ptm3bePbZZ1m8eLHDff/y\nyy+sXbuWjRs3smrVKqKjozlz5gzLli3jm2++Yc2aNU5rjdevX2fatGl8/vnn7Nixg5o1a9oDP8AP\nP/zAs88+y/bt23nkkUdYuXIlAHPmzKFly5ZEREQwcOBAjh49mmXfLVu2JDo6mosXLwK24BQdHc2j\njz6a6zJI4+x4JpOJyZMnM336dLZv354hUM6YMYOqVasSHh6OTqez7+v3339n+fLlfPnll4SHh1Ot\nWjXmzp1rfz48PJwPPviAnTt3cuPGDXbu3JnlfL766iuSkpIIDw8nLCyMTZs22QPslClT6NKlCzt3\n7mTEiBG8+uqr2W7PTnx8PA0bNmTVqlXZXuuvv/7Khg0b+Oabb/juu+84cuQIO3bsoFOnTmzZssW+\nv507d9KlS5ccjyuEMxKcRakSHByMSmX7WL/xxhtMmTIFgLvuuotKlSpx6dKlLO/x8fEhJCQEgEaN\nGhEVFeVw3926dUOtVlO5cmUqVKjAlStX+OWXX2jevDkBAQF4eHjQs2dPh++tUKECR44coUqVKgA8\n9NBD9mAKULduXRo3bgxAYGCgPYD++uuvdO7cGYAmTZpw9913Z9m3TqejTZs27N69G4CIiAhCQkLQ\naDS5LoM0zo6n0Wg4cOAATZs2dXj+juzdu5cOHTpQoUIFAHr16sVPP/1kfz44OJhy5cqh0WioX7++\nwy8NgwcP5uOPP0ZRFMqWLUu9evW4dOkSqampHDp0iK5duwLQrl071q1b53R7ToxGo71pP7tr/eGH\nHwgODsbX1xedTseXX37JE088QZcuXdi6dSsWi4X4+Hj++usv2rRpk+NxhXBG+pxFqVK2bFn7z8eO\nHbPXFFUqFTExMVgslizv8fPzs/+sUqkcvgbA19fX/rNarcZsNnPz5s0Mx6xcubLD95rNZhYuXMju\n3bsxm80kJSVRp04dh+eQtm+AhISEDMctU6aMw/136NCBL774goEDBxIREWFvUs1tGaTJ7nhffvkl\nYWFhGAwGDAYDiqI43Q/AjRs3CAgIyLCv69ev53jN6UVGRjJz5kzOnTuHSqUiOjqaHj16EB8fj8Vi\nse9DURR8fHy4evWqw+05UavVGa7b2bXGxcVluCYvLy8AHnjgAbRaLYcPHyY6OppWrVrh7e2d43GF\ncEZqzqLUmjRpEh06dGD79u2Eh4dTvnx5lx/D19cXvV5vf3zt2jWHr9u6dSu7d+9m1apVbN++nbFj\nx+Zq/2XKlMkwEj2tzzaz1q1bc+rUKSIjI4mMjKRFixZA3svA2fGOHj3Kp59+yuLFi9m+fTvvvPNO\njudesWJF4uPj7Y/j4+OpWLFiju9Lb9q0adSrV49t27YRHh7OvffeC0D58uVRFIW4uDgArFYr58+f\nd7rdarVm+eKVkJDg8JjZXWv58uXt+wZbsE573KVLF8LDwwkPD7e3PgiRXxKcRal1/fp1GjdujKIo\nhIWFkZycnCGQukKTJk04dOgQN27cwGAwsHnzZqfnUr16dfz9/YmLi2Pbtm0kJSXluP+mTZva+2KP\nHj3KhQsXHL5Op9PRqlUr3n//fdq1a4darbYfNy9l4Ox4N27coEKFClSrVo3k5GTCwsLQ6/VYrVY0\nGg16vR6TyZRhX48//jg7d+60B6+vv/6a4ODgHK85vevXr9OwYUPUajU//fQT58+fR6/Xo9PpCAoK\nIiwsDIAff/yRYcOGOd2uKAqVKlXi1KlTgO3LUmpqqsNjZnetbdu2Zffu3SQkJGAymRg1ahT79+8H\noGvXrkRERPDbb7/l+TqFyEyCsyi1xo0bx6hRo+jWrRt6vZ4+ffowZcoUpwEuP5o0aUL37t3p3r07\nAwYMcNrP2LVrV+Lj42nfvj0TJ05k/PjxREdHZxj17cikSZPYs2cPISEhrF69mkcffdTpazt06EBE\nRASdOnWyb8trGTg7XuvWrQkICCAkJITBgwczcOBA/Pz8GDt2LA0aNKBs2bIEBQVl6K9v0qQJw4YN\n47nnnqNjx47cunWLl19+OdvrzWzEiBHMmjWLrl27cvjwYUaPHs2HH37IkSNHePfdd9mzZw/t2rVj\n/vz5zJkzB8Dp9pEjR7JixQq6du3K2bNnueeeexweM7trbdq0KS+++CJPP/00Xbp0ITAw0N6/3aBB\nA8qVK0erVq3w9PTM03UKkZki6zkLUTBWq9XeJ7l3717mz5/vtAYtSrehQ4fSv39/qTmLApOasxAF\ncOPGDVq0aMHly5exWq1s27bNPspX3FmOHDnC5cuXad26dXGfiigFchWcT58+TUhICKtWrcry3IED\nB3jmmWfo06cPixYtsm+fMWMGffr0oW/fvvz555+uO2Mh3Ii/vz/jx49n0KBBdOjQgYSEBMaMGVPc\npyWK2GuvvUZoaCgzZ860T+UToiBybNbW6/UMHz6c2rVr06BBA3sGnTSdO3dm+fLlVK5cmf79+zNt\n2jRu3LjB8uXLWbp0KWfPniU0NJS1a9cW6oUIIYQQpUWOX/F0Oh2ffvpphrl9aS5evEjZsmWpWrUq\nKpWK4OBgDh48yMGDB+1JHerWrUtCQkKeFyYQQggh7lQ5BmeNRuN05GFMTAz+/v72x/7+/sTExBAb\nG5thPmXadiGEEELkrEg6R3IzINxkypodSAghhLgTFSh9Z0BAQIZ1W69evUpAQABarTbD9mvXrlGp\nUqVs9xUX59rkEJUq+RETc8ul+7wTSTm6hpSja0g5uoaUo2sUtBwrVfJz+lyBas41atQgMTGRS5cu\nYTKZ2LNnD0FBQQQFBbF9+3YAjh8/TkBAQIa8tUIIIYRwLsea819//cWsWbO4fPkyGo3GvoRajRo1\naN++PW+99ZZ9UfrOnTtTp04d6tSpQ6NGjejbty+KojB16tRCvxAhhBCitHCbDGGubmKRZhvXkHJ0\nDSlH15BydA0pR9dw22ZtIYQQQrieBGchhBDCzUhwFkIIIdyMBGchhBDCzUhwzsHGjesYNmwQo0cP\nY+jQAfzyyyGXHyMpKZHDh38GYPnypWzcmPc85Hq9nmee6ZZl+549Ebnex9at37Fv3x6nzy9YMJeo\nqMt5PjchhBB5U6qCc1iYhuBgb6pW9aVJE9vjgrhyJYrvvtvMxx8v46OPPuHNN99h5crlLjrb2/7+\n+5Q9OLvaqlUrc/3azp27ERzcxunz48ZNpFq16q44LSGEcIn09/3gYO8C3/fdRem4Cmy/oOHDveyP\njx3jv8fJdO9uytc+ExMTMRhSMRqNaDQa7rqrJh999AkAo0cPo1mzh/jll0OoVCo6derC1q1bUKlU\nLFiwmOTkZN599y0SE29hMpkYP34SDRrcy65dO1m7djVqtZoGDRoyfvwrzJs3G70+ibvuqgnAuXNn\nefXV8Vy8eIFx416hRYtH2bdvN19/vQq1WkODBg0ZM+ZlkpISef31VzEYDDRpknUN4TVrvuCff04T\nGjqJZ57pw9dfr0Kv1zN69Mv89tsR9u7dhcVioWXLIAYPHsby5UspV64cderUZdOmdSiKisuXL9Cq\n1eMMHjyM0aOHMWHCq+zZs4ukpEQuXDjP5cuXGDt2Ii1bBrFq1QoiInZQrVp1TCYTffs+R7NmD9nP\n55dfDrFs2RK0Wi1+fn5MmzYTrVbL/PlzOHHiL9RqNZMmvcbdd9/jcJsQouQJC9Mwf76O06dV1K9v\nYfx4Q77vyZn3V7mylaio23XMkyfVBb7v53RMV1xDbpSa4Dx/vs7h9gULdPkuxHr16tOwYSN69XqS\nli2DaNEiiODgNmg0tmKrUKEiixcvZ8SIwdy8eZOPP17GyJFDOHfuH/bv/4FGjRrTv/8gTp06wYcf\nzmP27Pl88skiPv98Dd7e3rz66sscPforzz77POfOneWpp3qwfPlSEhLimT17PocOHWTz5g00adKU\nlSuXs2TJ5+h0OqZMmcyff/7OP/+c4e676zJ27ER27dpBRMT2DOf/7LMDWL16JTNmvM/Ro79y9uw/\nfPXVJnQ6Hb/9doSPP16GSqWid++n6NPn2QzvPXHiOGvWbMTf35s2bdowePCwDM9fu3aVOXMW8vPP\nB/jmm400atSYTZvW89VXG0lKSqJv3x707ftchvfcunWLqVPfoVq16kyf/iaHDh3Ew8ODa9eu8skn\nK/j996Ps2rWT69evZ9kmwVmIkiE3wXPaNAvR0Qr161sICjLz009qe+DL7nHm/UVFKQ7PYexYT0aO\nxB5IgTwF19x+ARg2zOkuCqzUBOfTpx230DvbnltTpkwjMvJfDh8+yJo1X7B58wYWLlwCQGBgI8AW\npOvVawDYVuBKTEzk1KkTDBjwIgD33hvIpUsXuXjxAjVq1MTb2xuABx54kNOnT1GmTNkMx0yrBVeq\nVInExET+/fccV69GM2HCaMDWRx0dHU1k5DmaNn3Qvq+c3HNPPXQ625cYT09PRo8ehlqtJj4+nps3\nb2Z4bYMG9+Lp6YmPj4/DfaWdY0BAwH8pXC9y99118fDwxMPDk4YNG2V5T7ly5Zg16x3MZjNRUZd5\n8MGHiYu7wX333Q9A06bNaNq0GatXr8yyTQjhnrILZM6C5+XLttecPKnm5Em1fXtOj53tL7PUVMX+\n/vQtqum3OfuCkNtrWLBAJ8E5N+rXt2T4Jabfnl9WqxWDwUDt2nWoXbsOPXv24bnnnuHq1WgA1Orb\nx0v/s9VqRVGUDKtxWSwWFCXjCl0mkxEPD48sx828L63W1pQ9b95HGV537NgfqFTKf/vPOdGbVqsF\nIDr6CmvXruazz1bj7e3N88/3zvYcHMl8jlYrqFS3P9CKg8/ze+9N5/3351O7dh3mzZsFgEqlxmrN\n+DtytE0I4X4ydyfmNni6A2dfEHJ7DQWt+OWk1AwIS2u6yGzcOMfbc2PLlm+YPftde0BNSkrEYrFk\nWKvamXvvDeS3334F4K+/jlGnTl3uuqsWly5dQK9PAuC3347SoEEgiqJgNjtfMrNmzdpERv5LXNwN\nwDaiOybmGjVr1uLUqZMAHD36q8P3Ogra8fHxlC9fHm9vb/7++xTR0dEYjcYcryk7VatW5dy5s5hM\nJuLi4uznlV5SUiKVK1fh1q1bHD16BKPRSMOGgfZzP336FHPnznK4TQhR+HIaXJX5+WnTslYu7hQF\nqfjlRqmpOdv6D5JZsMDWvBIYqDBqVMEGBXTu3I3z5yMZNmwgXl7e9oFdHh6eOb63d+9+zJjxNmPH\nvoTFYmHChP/h5eXFqFHjmDhxDIqiokmTptx/f1P8/HxZsuRDKlUKcLgvT09Pxo2byCuvjEOn01Kv\nXgMqVqxEx45dCA19hXHjRtCkSVMUB9XV+vUbMHToAEaMGGvfVq9efby8vBkxYjD33deUp57qwdy5\ns2jS5P58l5W/fwXat+/I0KEDqFWrDoGBjbLUvnv06MWIES9y1101ee65AXz22ScsXvwZtWrVYeTI\nIQBMnDiZunXv4ccf92XYJkRJVxyDipyfA9Sv751tc27m5l9Hz7uLGjVs56hW327SLmy2ip9Xjq/L\nL1n4QmQrL+W4det3tG/fEbVazYABfZk370MCAioX8hmWDPJ5dI2SWo6Zm3/TLF2afQUic0DPafBU\ndgHf2TkUhbTgWbmy1d6c7Ir91a9vYdy429dcmNfo6JiFufCFBGeRrbyU45dfrmD37h1otTpatXqM\nAQMGF/LZlRzyeXQNdy7H7GrGwcHeDmuagYFm9u7VO3x/UJCZZcscz0LJTvXqjgc6aTRFV6t0FjzB\ndp1pLZz161t49FEzBw6oc/048/4yy7z/tK7NtG25/YKQ3TWkkeCcD+78R1ySSDm6hpSja7hrOTqr\nsaUFStuQEkeB0YpaTZYm45KkenULZctacx083UFOXxByew2FGZxLTZ+zEEK4Ul6alDVO7qQ519Bs\ngbskjXLO7M03U90+GGfWvbvJ7c9ZgrMQotRz1OQMOA2+jgY/ZTf/NpvJFiVOTv3DuWnuFQUnwVkI\nUerkLsMTGbblZ65r3lnRaMBkAsfN3IXPw8OK2axQv745x+ZcR/23EoyLhgRnIUSJk12Tc24zPBWH\nwEALe/fqnQ4Qy2zIEEOuB0vldqDTwoUpDBvmRUyMPsfXloTm39JKgnMONm5cx/btW9HpdKSmpjBs\n2CgefvgRlx4jKSmR48f/onnzFvbFJ3r27JOnfej1egYM6MOGDd/l6xzeffctHn+8HWq1mitXouje\n/ZkMz7/44vO8884sqlat5vD9e/ZE0KZNCGfO/M0PP+zlxReH5+s8xJ0hpzm/zoMvVK7sk22Tc3EG\nY1utFKeBMm3k8PjxBocDyAraZOyqgU6i+ElwzkbakpHLln2BRqPh4sULzJr1jsuDc9qSkc2bt3Dp\nfvOjRYtH8/W+VatW0qZNCPXqNbDnGRfCkcwjm3OT7CJj8HXfUc0LF6ZkmHPrrEk4c9IkVwVOqemW\nHhKcs1HSl4xcuHAu9eo1oFOnrgD07duDTz75nJUrl3PixHEMBgNPP92Tbt2etr9n69bvOHfuLKNH\nj2f+/Pc5deo41ardhclkS+955sxp5s2bhUajQaVSMX36TLZs+SbD0pSbNq3jnXdmO7zW5cuXOlxu\nMo3JZOLdd98iJuYaycnJDB48jKCg1vY0niqVQuPG9zNq1DiH24T7c7aCXFpN052aodPXZPM6/zan\nQCmBVGSnxATnt97y4Lvvcn+6KhVYLI5XVErTrZuJt95Kdfp8SV8yMji4LevXf02nTl35558zVK1a\nFQ8PT6pUqcaYMRNITU2hd++nMwTnNP/+e45jx/5k8+ZNnDhxlr59uwMQH3+Dl1+eRP3697Js2RJ2\n7NiWZWlKsDWzO7pWyLrcZPrgfOvWTZo3b0GnTl25fPkSU6ZMJiioNfPnz2HSpFDuuace06e/SXT0\nFYfbqlSpmotPhyhOhb1ggDOZm4wBaQIWbqvEBOfiUpKXjLzvvvt5773pGI1G9u/fx+OPt8PDw4Ob\nNxN46aXBaDQa4uPjHF53ZOQ5AgMbo1KpqFy5CtWqVQegfPkKLF78IampKcTGxtC+fUeH73d2remv\nL225yfT8/Mpw8uRxvv12E4qi4ubNBAAuXDjPPffUs/9OnG0T7il9H7JGUzRTj3LTfyvBV7irEhOc\n33orNdtabma2zC1JBTpmSV8yUqVS0azZg/z++xEOHNjPrFkf8NtvRzh69Fc++ugTNBoN7du3dnLt\n2Peddv4ACxbM4bnnBtKixaOsWfMlycmOR3xmd62Zry+9nTvDuXnzJosWLePmzZsMGfK8/VocXZ8o\nfrkZ3JW+j9lVgTm7Jmep9YqSTu5u2SgNS0YGB7clPPx7vLy8KF++PAkJ8QQEVEaj0bB//z7MZovD\n5SJr1qzF33+fwmq1Eh19hStXogBISIinevUaGAwGfv75J0y2CZtZvhw4u9acxMfHU7VqNVQqFfv2\n7bafW+3adTh+/C8A3nvP1prhaJtwvczLBIaGetgfN23qw/DhXpw8qcZsVuyDu9K/ZuxYx6u4eXhY\n0WisVK/ueOm9GjUsaDRWAgPNDBliIDDQjEZjy0e9dGkyR48mERWVyN69embMSGXvXr39sQRmUdKV\nmJpzcSgNS0Y++ODDTJv2Bi+++BIADz30CKtXr2T06GG0bh3Mo4+2Ys6c97K875576nH33XXp06cP\nVapUp169+gD07NmH1157herVq9OzZx8++GA2bdu2z7I0pbNr/fXXQ9mW2+OPt2Xy5AmcOPEXXbo8\nSUBAAJ9//injxr1iP89Gje6jdu06DreJgsspgUdupi2lX7DB2fdOW9rKRPsxczNy2dYilvP8XCFK\nOln4QmRLytE13LkcswvGhSn9iky55c7lWJJIObpGYS58Ic3aQpQw2TUzBwd7ExaW+waxtP7gtGbp\nopxDnDZiWgiRlTRrC1GCOErgkXlBBtvzyRmSYThLdelsNaXCkJY9SwZsCZEzCc5CuLHMgfXmzdwl\n6Bg71pORI7OuE1xYqyllHjmdvs85TfrsWUKI7ElwFsJNOaol51Zqqi2IuyrbVl6nLT38sFlWMxKi\nACQ4C1GMspsj7CzNZVEo6AIMkppSiIKR4CxEMclpAYiiyKKVRvqDhXAvEpyFKCY5LQDhTPXqFsqW\ntTrMCa1W327SzgvpDxbCveQqOM+YMYM//vgDRVEIDQ2lSZMm9uciIiJYvHgxOp2OLl260L9/f5KS\nkvjf//5HQkICRqORUaNG0bq14zSRQtxJ0jdj57dm/OabqU4DaebaeBpJdSlEyZJjcD58+DDnz59n\n7dq1nD17ltDQUNauXQvY8i1Pnz6dsLAwypUrx9ChQwkJCSEiIoI6deowceJErl69ysCBAwkPDy/0\nixHCnTkLnDmzotHkrsm5sNYJFkIUrRyD88GDBwkJCQGgbt26JCQkkJiYiK+vL3FxcZQpUwZ/f38A\nWrRowYEDByhfvjx///03ADdv3sxVLmohSqPbNWXQaHJO++pIYKAlT5m0ZDCWECVfjsE5NjaWRo0a\n2R/7+/sTExODr68v/v7+JCUlERkZSfXq1Tl06BDNmzdn2LBhbNq0ifbt23Pz5k2WLl2a44mUL++N\nRpP7qSK5kV1qNJF7Uo659/XXMGMGnDgB1arBxYu3nzObnfcFazS211+4kPW5KVPU8jtIR8rCNaQc\nXaOwyjHPA8LSp+JWFIWZM2cSGhqKn58fNWrUAOCbb76hWrVqLF++nFOnThEaGsqmTZuy3W9cnGuT\n2UvuWNeQcsy9zM3W6QNzdtLnmHa0AES7diZiYgrjjEse+Ty6hpSjaxRmbu0cg3NAQACxsbH2x9eu\nXaNSpUr2x82bN2fNmjUAzJ07l+rVq3P48GFatWoFwL333su1a9cwm80Z1vEVoiTIaa3i9PI7Lzl9\njmlpkhZCQC4WvggKCmL79u0AHD9+nICAAHx9fe3PDxkyhOvXr6PX69mzZw8tW7akVq1a/PHHHwBc\nvnwZHx8fCcyixMm8KETaPOT0C0ukX4Ti5MncLRqRto5x2rrEEoyFEJnlasnIOXPm8Ouvv6IoClOn\nTuXEiRP4+fnRvn17duzYwaJFi1AUhcGDB/Pkk0+SlJREaGgo169fx2QyMW7cOFq2bJntMWTJSPd0\np5Vj+pqyRuN4zrCHhxWTKWve6tySgJx/d9rnsbBIObpGYTZry3rOIluluRwdrdbkaMGGgrLNMVZR\nv75ZpjUVUGn+PBYlKUfXKNY+ZyFKi/TBOKfVmgom67xk2x+xawc9CiFKLwnO4o6QeSS1q1ZrciSv\n85KFECKzvHeYCVECFWSFp7QBXB4euesBSj/6Wggh8kOCs7gjnD6d/4/6woUpREUlsnBhisPna9Sw\nyOhrIYRLSbO2uCPUr2/JVZ/ykCEGp4tCSN5qIURRkeAsSq3MA8AcSb9aU24CrSQJEUIUBQnOotTI\nbjR22gCwvAZjIYQoDhKcRamQ29HYZcpYOXo0qahOSwgh8kUGhIlSIbejsQsyMEwIIYqK3KlEiZWf\nvNb161sK+ayEEKLgpFlblEiZm7FzS+YgCyFKAqk5ixIpt83YMgdZCFESSc1ZlEjO+46z5rUWQoiS\nRoKzKDEyL+doNmd9jeS1FkKUBhKcRYmQuY/ZUWAG6VMWQpQO0ucsSgRnfcxpi1JIn7IQojSRmrMo\nEZz1MZvNEBWVWMRnI4QQhUtqzsJtpZ/HrHHyNVLmLQshSiOpOQu3JH3MQog7mdSchVuSPmYhxJ1M\nas7CLUkfsxDiTiY1Z+GWnPUlSx+zEOJOIMFZuI30A8ASEhwv+Sh9zEKIO4E0awu34Gw95ho1LERH\nK5KOUwhxR5HgLNyCswFgZcpYOXo0qYjPRgghipc0awu34GwAmPMFLoQQovSSO58oNpJkRAghHJNm\nbVEsJMmIEEI4JzVnUSwkyYgQQjgnNWdRZNKvx+yspixJRoQQQoKzKCTpA3H9+haCgswsW+a4tpye\n9DELIYQEZ1EIMvcnnzyp5uS6e60xAAAgAElEQVRJda7eK33MQgghfc6iEDjrT3ZM+piFECIzqTkL\nl8hNf7IjgYEW9u7VF96JCSFECZSrmvOMGTPo06cPffv25c8//8zwXEREBD179qRfv36sWrXKvv3b\nb7/lySefpEePHuzdu9elJy3cS1oz9smTasxmBXCcF9sRacYWQoiscgzOhw8f5vz586xdu5Z3332X\nd9991/6cxWJh+vTpfPrpp6xevZo9e/YQHR1NXFwcixYtYs2aNSxZsoRdu3YV6kWI4pXbZuwhQwwE\nBpqlGVsIIXKQY7P2wYMHCQkJAaBu3bokJCSQmJiIr68vcXFxlClTBn9/fwBatGjBgQMH8PT0pGXL\nlvj6+uLr68v06dML9ypEsXKeYtOKRoMsWiGEEHmUY805NjaW8uXL2x/7+/sTExNj/zkpKYnIyEiM\nRiOHDh0iNjaWS5cukZKSwksvvcSzzz7LwYMHC+8KRLFzNv0pMNBCVFQie/fqJTALIUQe5HlAmNVq\ntf+sKAozZ84kNDQUPz8/atSoYX8uPj6ejz76iKioKAYMGMCePXtQFOd9keXLe6PR5G66TW5VquTn\n0v3dqXIqxzffhH79sm6fMkUtv4N0pCxcQ8rRNaQcXaOwyjHH4BwQEEBsbKz98bVr16hUqZL9cfPm\nzVmzZg0Ac+fOpXr16qSkpPDAAw+g0WioWbMmPj4+3LhxgwoVKjg9Tlyca0fsVqrkR0zMLZfu807k\nrBwzJxkZMsTMgQNq++Nx4wy0a2fiv0aWO558Hl1DytE1pBxdo6DlmF1gz7FZOygoiO3btwNw/Phx\nAgIC8PX1tT8/ZMgQrl+/jl6vZ8+ePbRs2ZJWrVrx888/Y7FYiIuLQ6/XZ2gaFyVb5tHZJ0+qWbZM\nx7hxBmnGFkIIF8ix5tysWTMaNWpE3759URSFqVOnsmnTJvz8/Gjfvj29e/dm8ODBKIrCsGHD7IPD\nOnToQO/evQF44403UKkk30lp4Wx09oIFOgnKQgjhAoo1fSdyMXJ1E4s027hGWjlmTTKSdfyARmOV\nRSuckM+ja0g5uoaUo2sUZrO2ZAgTOcqcK9sZWbRCCCFcQ9qaRY5ym2REsn0JIYRrSHAWOco+yYhk\n+xJCCFeTZm2Ro/r1LQ6XfJRFK4QQonBIzVnkaPx4x83V0owthBCFQ4KzyFH37iaWLk2WRSuEEKKI\nSLO2cOj21CmoX9+b8eMN0oQthBBFRIKzyCLz1KmTJ9X/PZbashBCFAVp1hZZZJcBTAghROGT4Cyy\ncDZ1yvmUKiGEEK4kd1uRhbNMX5IBTAghioYEZ5GFTJ0SQojiJcFZZJFx6hQydUoIIYqYBGcB2EZo\nBwd7U7WqL8HB3gDs3avHaETWZxZCiCImU6lEtlOnhg0rvvMSQog7ldSchUydEkIINyPBWcjUKSGE\ncDNy9xUydUoIIdyMBGchU6eEEMLNSHC+Q6UfnT1/vo4hQwyy6pQQQrgJGa19B3I0OvvkSbUEZCGE\ncBNSc74DyehsIYRwbxKc70AyOlsIIdyb3I3vEOn7mDVOOjNkdLYQQrgH6XO+A2TuYzabHb9ORmcL\nIYR7kJrzHcBZH7OHh1VGZwshhBuSmvMdwFlfstkMUVGJRXw2QgghciI15zuAZAATQoiSRYJzKZV+\nAFhCguLwNdLHLIQQ7kmatUuhzAPAoqJswblGDQvR0Qr161sYN84gfcxCCOGmJDiXQs4GgJUpY+Xo\n0aQiPhshhBB5Jc3apZAkGRFCiJJN7talkAwAE0KIkk2CcykkS0AKIUTJJsG5FOre3cTSpcmyBKQQ\nQpRQuQrOM2bMoE+fPvTt25c///wzw3MRERH07NmTfv36sWrVqgzPpaSkEBISwqZNm1x3xsKh9FOn\ngoO9Adi7V09UVCJ79+olMAshRAmS42jtw4cPc/78edauXcvZs2cJDQ1l7dq1AFgsFqZPn05YWBjl\nypVj6NChhISEUKVKFQAWL15M2bJlC/cKhMP1mW2PpbYshBAlUY4154MHDxISEgJA3bp1SUhIIDHR\nlvIxLi6OMmXK4O/vj0qlokWLFhw4cACAs2fP8s8///D4448X3tkLQNZnFkKI0ibH4BwbG0v58uXt\nj/39/YmJibH/nJSURGRkJEajkUOHDhEbGwvArFmzmDx5ciGdtkhPpk4JIUTpkuckJFar1f6zoijM\nnDmT0NBQ/Pz8qFGjBgCbN2+madOm3HXXXbneb/ny3mg06ryeTrYqVfJz6f7cVWAgHDvmaLvikjK4\nU8qxsEk5uoaUo2uUpnJcuxaWLYO334ZHHy3aYxdWOeYYnAMCAuy1YYBr165RqVIl++PmzZuzZs0a\nAObOnUv16tXZuXMnFy9eZO/evURHR6PT6ahSpQqPZlNqcXH6glxHFpUq+RETc8ul+3RXo0dn7HNO\nM2pUMjExBetzvpPKsTBJObqGlKNrlKZyXL9ew+jRnlitCrt3WxkzxsCkSQZ0RdCrV9ByzC6w59ju\nGRQUxPbt2wE4fvw4AQEB+Pr62p8fMmQI169fR6/Xs2fPHlq2bMn8+fPZuHEj69ato1evXowcOTLb\nwCwKRqZOCSHuRBs3ahgzxpMyZWDevBRq1LCyYIEHHTt6c/Kk4/AWFwcffKDj8ce92b3bta21rpRj\nzblZs2Y0atSIvn37oigKU6dOZdOmTfj5+dG+fXt69+7N4MGDURSFYcOG4e/vXxTnLTLp3t0kwViI\nUsZqhRs3FJKTwWAAg0HBaoV69SxoHNy9rVbYu9cWcIKCzEVSeywK+/ap+eUXNY0bm3ngAQuVK1vZ\ntEnDqFGe+PnB+vV6mja18PTTRt5804NVq3S0a+dN06YWHnnETPPmZu66y8KaNVrWrNGi19sWA/r4\nYx1t2yYX89U5pljTdyIXI1c3sZSmZhtHwsI0zJ+v4/RpFfXrWxg/vnBWmSrt5VhUpBxdo7SXY2Ii\nrF2r5cQJFX//reL0aTXx8VmXfG3c2MycOSk0a3Y7Je/VqwoTJniyc6ctavv5WQkJMdGpk4knnjDh\n7X37/e5UjmYzzJypQ62G0aMNpGuYxWKB99/XMXeuR4b3VK9u4coVBV9f2LDBFpjT275dzbx5Hvz5\npwqzWcny3uHDDWzYoOX4cRV//ZVEhQr5C4OF2awtq1KVQDKvWZQ0J06o6NPHi4ceMjNlSip3353x\nZnjkiIqFC3VcuaJCowGNxopWC61amRk3zoDqDph4cOWKQr9+Xpw4Yav5qlRW6tSx8sgjZvz8rHh4\n2MokNlZhyxYtnTp5M3CgkddfT2XXLg2TJ3sSH6/QurWJwEAL27ZpCAvTEhampXVrExs3ul8N0WSC\n0aM92bRJC8CaNVrefjuVp582kZgII0d6sX27hpo1Lbz+eir//qvit9/UHDmiokoVK59/npwlMAN0\n6GCmQwc9iYnw229qDh9Wc+aMipAQE089ZUKrtR37zz89CQ/X8NxzxqK+9BxJzbkECg725uTJrH0l\ngYFm9u6VgXXu6E4ux5QU6NDh9mdWq7Xy4otGJkxI5cIFFbNmedhre56eVsxmMBpv13a6djWyaFEK\nXl4Zy9FkAqMRvLKOhSxxTpxQ8eyzXkRFqXj+eQODBxupW9eCp6fj1x88qGbSJA9On1bj7W1Fr1fw\n9rby5pupDBpkRKWyNXEfP65i0iRPjhxR8/PPifYvRUX1eTSbIS5O4eZNqF7dike6CrDJBCNHerJ5\ns5aHHzbTurWJRYt0pKYqBAWZuHZN4cwZNa1bm/j002TS95imRS0la6NCrkVGKjRv7kvbtia+/jp/\nX1yKdUCYcD8yr1mUJO+958HJk2qef97A8uXJVK1qZckSHQ884EtIiA87d2po2dLE5s16LlxI5PLl\nRK5evcXff98iKMjEli1aevTwJibGdifW6+HTT7U89JAPDz3kQ3x8MV9gAe3bp6ZbN2+iolRMmZLK\nnDmpNGrkPDADtGxpZvduPaGhqVgs8MgjJnbvTmLwYKO9lUFRoHFjC4MG2Ra82bxZW+jXcu6cwuzZ\nOoKDvalf35dq1XwJDPSlRQtf7rvPl1df9eCXX1QYjTB8uC0wP/KIibVr9UyebOCHH5J44gkTP/2k\n4cwZNSNGGFi7NmNgTru2ggRmgNq1rTRpYuaHH9Q5foasVjh2TEV0dAEPmgdScy6BpOZc8typ5bh/\nv5qePb2oU8fKrl1J+PjYatLLlmlZskRHrVpWXn01lcceMzu82aamwssve7Jhg5ZatSwMGqRi0SIL\nsbEqFMWK1arw+uupJXbFtS1bNAwb5olKBR9+mJKvbqnkZPD0dB6sbt6ERo18uftuC/v22e4PBfk8\nWiy2IJyQoHDrlkJiokJUlEJYmJYjR2z3JS8vK7VqWfD3t1K+vBVvb9uXkGvXbN8cypa1kpCg0LKl\nidWrkzP0M4PttWYztG1rztc55tb8+TpmzPDgww+T6dMna9nHxcGGDVpWrdJy8qQ6Sy27MGvOEpxL\noMx9zmkKY/pUaS7HonQnlmNCAjz+uA/R0Qpbtuh58MH8rSdutcKsWTrmzbO1iZYpY2XIEAN9+xpp\n184HT08rR44kZVvTdEfHjqno2tUblQrWrEmmZcvCC0QDB3qybZuWffuSaNjQkufPo8UCv/6q4rvv\ntHz7rYYrV7K20qlUVh57zEyvXkY6dTJlCbgmE/zwg5r167Vs3arh4YfNrFyZjI9PQa8u/86eVWjZ\n0pcOHUx8+eXtoGsyQWioB199pSU1VUGrtdKpk4kJEwwEBt7+HMuAMJGBLQAns2DB7dHa48YVzmht\nIfJr8mRPLl9W8corqfkOzGCrEU6ebKBRIwsJCV48+WQiZcrYnhs40MBHH3mwYYOW/v3db1CPMzEx\nCgMHepGcrLByZeEGZrDdM7Zt0/LNNxoaNsxdK0NiIvz4o4bdu9Xs3KkhKup2rbdHDyNVq1rx87Pi\n62ulbFkrwcFmqlRxXtfTaGw14bZtzRiNoFZT7AP96ta10rChmT171Ny6BX7/xcpZs3SsWKGjdm0L\nAwem0ru3iUqVirYeKzXnEqCopk05UprKsTjdSeV4+bLC2297sHmzlmbNzHz3nR6ti7o7M5djdLTC\ngw/6UKuWhf379cV+s88NgwGeecaLn3/W8L//pTJxYuE3yScl2Zq2K1e28vPPSQQEOP88Hj6sYuZM\nDw4dUtsH5pUrZ6VjRxNPPWWkdevSM38aYM4cHbNne7B4cTI9e5oID1czYIA3depY2Lkzyf5F0BEZ\nEHYHS2vCPnlSjdms2KdNhYVJo4dwLykptsxLQUE+9sC8dGmyywKzI1WqWHnmGRP//KNm+/bi/5tI\nTbUFwuy8/roHP/+soVs3IxMmFE1fuY8PdOhg4t9/VRw75vy2f/WqrUa/f7+GRo0sTJiQypYtSZw4\nkcjChSm0a1e6AjNA1662is5332mIjFQYPdoLT08ry5cnZxuYC5sEZzcny0GKkuDUKRWPPebDe+95\n4O1tZcGCZLZu1VOrVuE3zI0caQtwixYV/mjk7Fy6pPDYYz48+KAP+/dnHbBpscDcuTpWrtTRqJGZ\nhQtTCjziOC+eesoWhMLCHJeT1Qrjx3ty/bqKd99NYccO2wjq5s0dZyMrLRo0sFCvnpnduzW88IIX\nN28qzJ6dQuPG+e+KcQUJzm5Opk0Jd5eQAAMGeBEZqWLYMAMHDybRr5+pyJqYGzSw0L69icOHNRw+\nXDx/F+fPKzz1lDf//qsiPl6hVy8vPvvsdhC8ds2WYGTWLA+qVLEUy0Cotm1N+PlZ+eYbDRYHcefz\nz7Xs2qXh8cdNvPhiyem/LyhFgW7dTKSkKBw/bpvy17dv8Y/fkTu8m6tf3/G3N2fbhShKFosti1Nk\npIpx41J5551UypYt+vMYPTqt9pz/FiWz2Ta16caNvL3v3DlbYL54UcX//pfK5s3JlC9vZfJkT155\nxYNdu9S0aePNnj0a2rUzsXu3npo1i36oj6cndO5s4tIlFT//nPG506dVvPWWB/7+FhYuTCkRffeu\n9OSTtmDcpImZd99NLeazsbnDfgUlz/jxjvukSuq8TlG6zJ2rY+dODcHBJiZPLr7PZIsWZpo1MxMe\nrmHz5vy1wb7/vo7Bg73o188bQy4v5cwZFU89ZUsg8sYbtsFdLVqY2b5dT6NGZr74Qke/ft7Exyu8\n/XYKq1cnU7Fi8Y3B7d7dViNescI2/9lqtQ1QGznSk5QUhTlzUrMdcV1aBQZa+PZbPRs26N1mSp6M\n1i4BwsI0xTZtqjSVY3EqjeW4c6ea/v29qFHDys6dSVmyOBWG7Mrx999V9OzpjV4Pixen8PTTuf8b\nSRuhq1JZsVgUhg415FiD0uuhdWsfLl5UMW1aCi+9lLEpOCkJJk3y5ORJFfPmpfDAA8Xf2mU0wn33\n+XDjhq1e5uFhmw4VG6vi2WcNzJ/vHrXGkkKSkORDabwZFgcpR9coznJMSYFvv7WNvm3UyDUB4p9/\nFDp18iE1FbZs0dOkSdEEnpzK8cgRFb17e5OUBB9/nEKPHjkH6HPnFNq398Fksq1wNGGCJ3//reaz\nz5LtI3kdSZuCM3KkgbfeKjlBbdcuNbt2eXPhgi1/dUyMQpUqVtav12dJHCKyJ8E5HySouIaUo2tk\nV456vS2AurrmaTTalh+cO1fH5cuq/5p9C57edccONSNH2ka1LlyYXKSDZ3LzeTx61BagExNh7txU\n7r/fzK1bCrdu2RbUePDB28kykpKgc2dbOtxFi5Lp1cvE33+r6NDBG40GIiKSqF076y0yKkrh0Ud9\n8PGxcuhQUokLavJ37RqSIUwIBywWWLdOw7VrKgYPNpSYG+TVqwpbtmj44w81f/xhW7dXp4MffnAc\nCPLKYrF1hcye7cG//6rw9LRSrpyVv/6yLTiQ33nHFouttjhnjgeenlan+YiLW7NmFtav19Orlzcv\nv+y4A7FhQzOPP27m339tuQMGDzbQq5ftWho0sDBrVgpjxngxdKgXW7boM6ymBPDuux7o9QozZqSU\nmM+dKFkkOIsS6cwZFRMn2pI5ACxdquW11wz062dEnXWKabbMZvL8nvw6eVJF795eXL1q6/Pz9rZy\nzz0WTp9Ws26dlldfzf+gKqsVtm7VMHu2jpMn1Wg0VgYNMjBhgoH339fx5Ze2cQv5adqOj7eNyo6I\nsK2t+/nnydx3X/H3oTrzwAMWNm/Ws2KFFq3Wlo/b19dWRj/9pObgQbV98ZiHHzYzbVrGZuk+fUwc\nOGDkq6+0DB3qyYcfpthHoR89qmL9ei333Wd2yy8nonSQ4CxKFIMBPvxQxwcf6DAYFDp3NnLvvRaW\nLNExYYInn36qZcIEAw0bWqhRw4K3t/N9pabCO+94sGKFltdeS2XkyMKd23n4sIrnnvMmIUFh0qRU\nunUzUa+eheRkaNzYl3XrtEyaZMgxMcXvv6uYPNkTjcZKvXoW7rnHQoUKVpYv1/HHH2pUKit9+hh5\n5ZVUexKQtEB67Fjeg7PVCsOHe7Fnj4Y2bUwsXpx1CT931LixhTlzsvYFjx1r60Y4dEjNH3+o6dfP\n6DDr1XvvpXD+vEJ4uJZ27dR88kkyDzxgYcoUW218+vTUIvtSJ+48EpzdUHHm0nZnej307OnNkSNq\nKle2MHNmCl262Mpl0CAj773nwddfaxg69PaKXRUrWmjQwEK/fkaefNJknyZx9qzC8OFe/Pmn7e76\n1lueXLum4s03UzPM8YyKUli2TMv16ypMJlst22zG/rPFomCx2KbyvPSSwWlqw/Bw6NXLNkXno4+S\n6d379u/T19eWQnDdOi2HDqlp0cL5IgiRkQrPPuvF9esKigKHD2f8E376aSOTJhmoVy9jAG7SxLbP\nP/9U57mP+KuvNPbAvGZNcqkISJ6eEBxsJjjYeVl7e8OGDcnMmWP7Mtitmzddu5r45Rc1XbsaefTR\nwl2sQtzZZECYmynK5SBzI7flaDbbUop+/72Gzz5LznfaxshIhYoVrVn68SwWGDrUk+++0/Lkk0bm\nzk1xmOzi+HEVO3ZouHhR4cIFFRcuqDh/XsFqVahQwUL//kaqV7fy1lu2PsNnnzUwcqSRQYM8+ecf\nNb17G/nggxRSUmw19CVLdKSk5C7HYoMGZubMSeWRR27ftK9fV1i7VsM779hqusuWJfPEE1lv6j/8\noOaZZ7x5/nkDc+c6Hvl74wZ06eLD2bMq3nsvhf79jURGqjhzRsWlSwqtWpmdphxMToa77/blwQfN\nbNmS7PA1jly5otC6tQ8WC/z4YxLVqxfv7aK4/q737VMzcqQnMTEqdDor+/e7ZnxAcSmp90d3I6O1\n86GkfviCg73tfWHpBQaa2bu34CNt8yo35RgVpTBihCcHD9pqcfmdWnLggJqePb2oWtWWdD79vNCZ\nM23r+bZsaWL9+uQ8Jd8/f15h5Uotq1friIuzBVpfXytz5tyeanP9usJzz3lx9Kia5s1NnDunIjZW\nRZUqFiZPTqVlSzMajW3ZO5XK9r9abUWjgZQUhfff17FihRarVWHAAAPNm5sJC9Oyb58ak0mhbFn4\n8ku901qx2QwPPuhDYqLCsWOJeGX6fpaSYlvJ6PBhDaNGGZg6Ne/lGxzszfnzKs6eTcxV7ddqheef\n92LHDg1z5qQwYEDxp3Qszr/ra9cUpk/34JFHzCVqeUpHSur90d1IcM6Hkvrhq1rVF7M5a01No7ES\nFZVY5OeTUzlu26Zh/HhP4uJs/b8//6xGpYI//kjK06jgq1cV2rb15sYNWzOxVgvvvpvKgAFGNm3S\nMGKEF7VqWQgP11OhQv4+ssnJsHmzhl9+UTNmjIE6dTLuJykJBg+29a36+FgZM8bASy8Zsu23Tu/w\nYRWvvOLJqVO3I1/Tpma6dzcybJgnanX2n8d33tGxcKEHn36abF+kAGytBsOGefLtt1qeftrIkiX5\nS684erQn69Zp+emnpCzN3o6sX69h1CgvWrc2sWFDcpEu0uBMSf27djdSjq4hS0beQUpKLm2DAd54\nw+O/BeNh9uwUPv88hZ49TcTGqoiIyP1wBpPJFnxiYlRMnZrK118n4+trZdIkTwYO9GT8eE/8/Kys\nWpWc78AM4OUF/fqZmDcvNUtgBtuyel9+mcyyZckcOpTEhAm5D8wAzZtbiIjQ8957KYSGpnLwYCI7\ndugZMcJIlSo5vz9tKs+6dbe/1VitMHmyB99+q6VlS1OB8h6n9Ttnt2RgmqtXFV5/3RNvbyvz5hXt\n6klCCAnObqck5NK+ckWhe3dvPvlER4MGtjzCgwYZURTo18/W3PfVV7kPzjNm6Dh4UEPXrkaGDzfS\npo2ZiAg9DzxgJjxci9EIn36aTIMGhf8FRaezJcEPCMjflwCdDl580cj48Qbq1s3bPho0sNC0qZnd\nu9Vcu6ZgtcKUKR6sWGFbYnDFiuQC5f1Ny+KVNgjOmaQkeOklT+LjFaZMSS2SZR+FEBnJaG03Yxv0\nlZwll3aHDib27lVTu7aFWrWsxVaT2b9fzbBhnsTGquje3TYwK/3grcaNLdx3n5mdOzVcvapQuXL2\nN/Zt2zR89JEHd99tYcGC2zW0GjWsfPutnkWLdNSrZ6Ft2ztjZGzv3kZ+/92TTZs0XLum8MknOu69\n18z69cmUL1+wfTdunHPN+dYtePZZLw4d0tC5s5EXXijZfatClFTS51wC/PuvwqBBXvaBYhUqWHjg\nAQsPP2xm0CBDrm/akZEKZctac/36777TsHu3F3FxRlJSFJKTbXNDVSqYNi2VF180OvySsHy5ltde\n82Tq1BRGjXJ+c9+xQ82IEV6YTLBtm57AQPdqunel3H4eY2MVmjTxQacDvV6hbl1bMo2cvuTkVsuW\nPsTGKpw+nZjldxcXB337evPbb2qeftrIokUp+c4mVlhK0991cZJydA3pc76D7d6t5oknfDh5Uk2P\nHkaeesqItzdERGh47z0PgoN92LfPeTOl1WqbBtKzpxfNm/vSuLEvL7zgyfbtaozZVIqWL9fy4ote\nrF4NW7dq2b1bw8GDGmrWtLJ5s54hQxwHZoAePYzodFa+/lqLo69+iYkwYYIH/ft7k5oKCxaklOrA\nnBcVK1oJCTGh1yvUrm1h0ybXBWaw9TsnJChcuJDxlxcbq9Cjhy0w9+1rZPFi9wvMQtxJpFnbTVmt\ntnm2M2bo0GrJssDAtWsKq1dref99Hb16eTN8uIHXX0/F09P23gsXFH75Rc3SpbasUQBBQSZu3FD4\n/nst33+vpWJFC88/b+SllzLWvpcu1TJliieVKln47jsV5crdwtPTlrghN4ORypeHTp1MfPONlqNH\nVTz44O3Ae+iQmtGjPTl/XkWjRmY+/jiFhg0lMKcXGmrA39/KK68YqFrVtQ1bjRtbCAuz9TvXqmX7\nPFmtMGiQJ8ePqxk0yMDMman5HnQmhHANCc5uKC4OXn7Zk61btVStamHFiuQsa8EGBFh5+WUDbdqY\nGDHCi6VLdezercbf38qJE2pu3bLVjBTFSrduRsaMMdC0qQWr1dbnuHatlo0bNXzwgQfLlul46SUD\nw4cb+OILLdOmeVKliq3W9sgjvsTE5P0a+vUz8s03Wtas0fLgg6n89puKDz+0JSkBGDs2lUmTDFkW\nFBBw772WQltXN23E9l9/qejWzbbt++81HD6soVMnI7NmpcrIbCHcgPQ5u5lDh9S89JInly+rCAoy\nsXRpSo4jh5OS4K23PFi5UodKZVtIIW3t3i5djE5HDev1sGKFlg8/1HH9ugofHytJSQrVq1vYuFHP\n3Xdb812OaUk1bt1SuP9+M/v324Jy06a2RQayS1FZGrnL5/HGDbj3Xj/atTPx1VfJmEzw2GPe/Puv\niv37k/I8wryouUs5lnRSjq4hS0beAcxmWLhQx+zZOqxW+N//Uhk/3pCrTE4+PvD++7aaqJ+fNUt2\nKWe8vWHkSCMDBhhZvlzHokU6ata0BeaCTp9Rq6FPHyMffODB/v0aHn/cxJgxBlq1MkvNrBj5+8Nd\nd1n44w8VVit8/bWWf4VEv4EAABSESURBVP5R8/zzeZ/6JYQoPBKc3cDGjRr+9z8Pbt5UodHYmqsn\nTsz7vOb8zs319bXNox4+3HbMgsylTW/0aANeXtCuncmtlxe809x3n5mtW7VERtrSjnp5WZk0yX3m\n0QshZLR2sQsLs6WmvHnT9qswmRTmzPEgLKzovzelDfpyFT8/W1IVCczuJe33MWGCJ1euqBg61ECV\nKlJrFsKdSHAuZm+/7XhE1IIFeVjZQYg8SBsU9tNPGsqVs+UQF0K4FwnOxejQITVRUY47YE+fll+N\nKBxpaTwBxowxOFx6UwhRvHLVdjpjxgz++OMPFEUhNDSUJk2a2J+LiIhg8eLF6HQ6unTpQv/+/QGY\nPXs2R44cwWQyMXz4cJ544onCuYISKCxMw+zZOs6edR6A3W2hC1F6VK5spVYtCyYTDBkitWYh3FGO\nwfnw4cOcP3+etWvXcvbsWUJDQ1m7di0AFouF6dOnExYWRrly5Rg6dCghISFERkZy5swZ1q5dS1xc\nHN27d5fg/J+FC7W8807OHbvutNCFKH2++UaPWk2uR/YLIYpWjsH54MGDhISEAFC3bl0SEhJITEzE\n19eXuLg4ypQpg7+/PwAtWrTgwIEDPPXUU/badZkyZUhOTsZsNqPOzbygUshqtSV6+PhjHb/+6rgM\nPDysmM3YF7qwLYAhROGoVk0GgAnhznIMzrGxsTRq1Mj+2N/fn5iYGHx9ffH39ycpKYnIyEiqV6/O\noUOHaN68OWq1Gu//FsLdsGEDjz322B0bmKOjFV591YPwcC2KYgWsQNZ+ZrMZoqISi/z8hBBCuJ88\nz9dJn1BMURRmzpxJaGgofn5+1KhRI8NrIyIi2LBhA5999lmO+y1f3huNxrUBPLvsK/kVHw8HDsDP\nP8OlSxATY/t3/TrUqgVt2kDbtvDgg/DFF/DKK5CQAMHBsHSpQq9ecOxY1v0GBiqFcr6u4K7nVdJI\nObqGlKNrSDm6RmGVY47BOSAggNjYWPvja9euUalSJfvj5s2bs2bNGgDmzp1L9erVAfjxxx9ZsmQJ\ny5Ytw88v55OPi9Pn+eSz48r0dAkJMGeOBz/8oObUKRVWa8aar1ZrpWxZK//8o2LXrtvbjEYFX18r\n77+fyvPPG1GpYPRoDcOHZ+3oGzUqmZgY92vKljR/riHl6BpSjq4h5egaxZq+MygoiA8//JC+ffty\n/PhxAgIC8PX1tT8/ZMgQZs2ahZeXF3v27OGFF17g1q1bzJ49mxUrVlCuXLl8n7g7uHEDevf25s8/\n1Xh5WQkKMtO8ue1f7doWKla04ucHimJbdu/gQTU//qjm0CE199xjYfr01Az9e7a+5GQWLNBx+rRK\n+piFEEJkkWNwbtasGY0aNaJv374oisLUqVPZtGkTfn5+tG/fnt69ezN48GAURWHYsGH4+/vbR2mP\nHz/evp9Zs2ZRrVq1Qr0YV7t2TaFXLy9OnlTTv79tKT1dNrlBKla00q2biW7dsg+03bubJBgLIYRw\nSlalciIqSqFnT2/OnlUxZIiBd97J/xq3YWEa5s+/XVMeP77k1JSl+cs1pBxdQ8rRNaQcXUNWpSpi\nV68qPPmkNxcuqBgzJpU33jDkeyWlsLCMfcwnT6r/e5xcYgK0EEKIoiU5Ih2YN0/HhQsqJkwoWGAG\nmD/fcTu45M4WQgjhjATnTK5dU/jqKy01a1p45ZWCBWZwniNbcmcLIYRwRiJEJsuWaUlJURg50oDG\nBY3+znJkS+5sIYQQzkhwTufWLfjsMx0VK1ro18/okn2OH+84R7bkzhZCCOGMBOd0Vq7UcvOmwtCh\nRpctCNC9u4mlS5MJDDSj0VgJDDSzdKkMBhNCCOGcjNb+T2oqLF2qw8fHygsvuLZWK/OahRBC5IXU\nnP+zfr2Wq1dVDBxopIQnNRNCCFHCSXDGtiLURx/p0OmsvPSS9AULIYQoXhKcga++0nLunIpevYxU\nqVLwhGlhYRqCg72pWtWX4GBvwsL+3979xzZV738cf3XrBowWWUlrZAJylwBhjF9BIg6cXjeMwXiD\nwphmFwkiykiE6x8wBhENYQIOhUBuJDATg1NngAF/GIZcWWJiheDicFwIYYmIIGOFsbHuB4yd7x9+\n7RXc2I+e0dP2+UhIdk531k/fKXnlc368P1w9AAB0X9Snxtdfx2rFin5yOg29+Wbws2Y6ggEAghXV\nM+fvvovVq68OUFycVFzcrJEjg5810xEMABCsqJ05V1bGKCdngG7flnbvbtZjj9025e/SEQwAEKyo\nTIyzZ2M0b94A+f3Sv//dor//3ZxglugIBgAIXtSF8y+//L5G87VrMSosbNU//mHudWA6ggEAghVV\n4VxTY9OcOQn67bcYvfNOi/75T3NadP4ZHcEAAMGKmmvOdXVSVtYA/fxzjP71r1bl5pofzH+gIxgA\nIBhRMXNubJRefjlBp0/HauHCm8rL4xQzAMC6Ijqc29ulAwfsysgYqB9+iNWcObdUUNAa9BrNAAD0\npYgN56+/lp55JkGvvTZAv/xi02uv3dTWrS2K6YNPTEcwAICZIjJF3nsvXh9+KEmxeuGFW1qxolV/\n+1vwDUY6QkcwAIDZInLmPHSooaws6T//8eujj1r6LJglOoIBAMwXkeH8yiu3VFIipab2feMPOoIB\nAMxGggSJjmAAALMRzkGiIxgAwGyEc5DoCAYAMFtE3q19v9ERDABgJmbOAABYDOEMAIDFEM4AAFgM\n4QwAgMUQzr1AL20AQF8iVXqIXtoAgL7GzLmH6KUNAOhrhHMP0UsbANDXupUoBQUFmjdvnrKzs3Xy\n5Mk7Xjty5IhefPFFvfTSS/r000+7dUw4o5c2AKCvdRnOx48f1/nz51VSUqL169dr/fr1gdfa29u1\nbt067dy5U8XFxTp69KguX758z2PCHb20AQB9rcsbwrxerzIyMiRJycnJqq+vV2NjoxwOh+rq6jRo\n0CC5XC5J0mOPPabvvvtOFy5c6PSYcPf7TV/N2ro1XmfPxmjUqHYtW3aTm8EAAKbpMpx9Pp9SUlIC\n2y6XS7W1tXI4HHK5XPL7/fr555+VlJSkY8eOaerUqfc8pjOJiQmy22OD/Dh3crudpv69Pyxe/Pu/\n38VKGnCP3w5/fVXHaEMdzUEdzUEdzdFXdezxo1SGYQR+ttls2rBhg/Lz8+V0OvXwww93eUxn6uqa\nejqUe3K7naqtvWHq34xG1NEc1NEc1NEc1NEcwdbxXsHeZTh7PB75fL7A9pUrV+R2uwPbU6dO1Wef\nfSZJ2rx5s5KSktTa2nrPYwAAQOe6vCEsLS1NZWVlkqRTp07J4/HccXp60aJFunr1qpqamnT06FFN\nmzaty2MAAEDnupw5T548WSkpKcrOzpbNZtPatWu1b98+OZ1OZWZmKisrSwsXLpTNZtPixYvlcrnk\ncrn+cgwAAOgem9GdC8L3gdnXP8y8plJaateWLf+7O3v58ui5O5trU+agjuagjuagjuYI6TXnaEcv\nbQDA/UbPyS7QSxsAcL8Rzl2glzYA4H4jYbpAL20AwP1GOHeBXtoAgPuNcO7C7Nlt2rGjWWPH3pbd\nbmjs2NvasYObwQAAfYe7tbth9uw2whgAcN8wcwYAwGIIZwAALIZwBgDAYghnAAAshnDuQGmpXenp\nCXroIYfS0xNUWsp9cwCA+4fUuQu9tAEAocbM+S700gYAhBrhfBd6aQMAQo3EuQu9tAEAoUY434Ve\n2gCAUCOc70IvbQBAqHG3dgfopQ0ACCVmzgAAWAzhDACAxRDOAABYTNSHM606AQBWE9VJRKtOAIAV\nRfXMmVadAAAriupwplUnAMCKojqFaNUJALCiqA5nWnUCAKwoqsOZVp0AACuK6ru1JVp1AgCsJ6pn\nzgAAWBHhDACAxRDOAABYDOEMAIDFEM4AAFhMt+7WLigoUGVlpWw2m/Lz8zV+/PjAa8XFxTp48KBi\nYmI0btw4rV69WjU1NcrPz9fNmzfV3t6uVatWady4cX32IQAAiCRdhvPx48d1/vx5lZSUqLq6Wvn5\n+SopKZEkNTY2qqioSIcPH5bdbtfChQv1448/qqysTJmZmcrOzlZFRYU+/PBDFRUV9fmHAQAgEnR5\nWtvr9SojI0OSlJycrPr6ejU2NkqS4uLiFBcXp6amJrW1tam5uVkPPPCAEhMTdf36dUlSQ0ODEhMT\n+/AjAAAQWbqcOft8PqWkpAS2XS6Xamtr5XA41K9fPy1dulQZGRnq16+fZs2apZEjR2rBggWaM2eO\n9u/fr8bGRn3++eddDiQxMUF2e2xwn+YubrfzL/u++EIqKJD++19p7FgpP1/Kzjb1bSNOR3VEz1FH\nc1BHc1BHc/RVHXvcIcwwjMDPjY2N2rFjhw4dOiSHw6FXXnlFZ86c0TfffKNnn31WS5Ys0dGjR7Vx\n40Zt3779nn+3rq6p56O/B7fbqdraG3fsu3v95p9+kl56SWpooGVnZzqqI3qOOpqDOpqDOpoj2Dre\nK9i7PK3t8Xjk8/kC21euXJHb7ZYkVVdXa9iwYXK5XIqPj9eUKVNUVVWliooKzZgxQ5KUlpamqqqq\nXg/eTKzfDAAIB12Gc1pamsrKyiRJp06dksfjkcPhkCQlJSWpurpaLS0tkqSqqio98sgjGjFihCor\nKyVJJ0+e1IgRI/pq/D3C+s0AgHDQ5WntyZMnKyUlRdnZ2bLZbFq7dq327dsnp9OpzMxMvfrqq5o/\nf75iY2M1adIkTZkyRcOHD9fq1at16NAhSdLq1av7/IN0x6hR7Tp9+q/XtVm/GQBgJTbjzxeRQ8js\n6x/dueb8B5aJ7BzXpsxBHc1BHc1BHc0R0mvOkYT1mwEA4SDq1nNm/WYAgNVF1cwZAIBwQDgDAGAx\nhDMAABZDOAMAYDGEMwAAFhPx4Vxaald6eoIeesih9PQElZZG3Q3qAIAwE9FJdXfTkdOnY/9/m2eb\nAQDWFdEzZxa6AACEo4gOZxa6AACEo4hOqc4WtGChCwCAlUV0OC9ffrPD/cuWdbwfAAAriOhwZqEL\nAEA4iri7tUtL7dqyJV5nz0qjRiVo+fKbKi9vCvWwAADotogKZx6dAgBEgog6rc2jUwCASBBR4cyj\nUwCASBBRqcWjUwCASBBR4cyjUwCASBBR4Xzno1Pi0SkAQFiKqLu1pd8DevbsNrndTtXW8ggVACD8\nRNTMGQCASEA4AwBgMYQzAAAWQzgDAGAxhDMAABZDOAMAYDGEMwAAFkM4AwBgMYQzAAAWYzMMwwj1\nIAAAwP8wcwYAwGIIZwAALIZwBgDAYghnAAAshnAGAMBiCGcAACzGHuoB9IWCggJVVlbKZrMpPz9f\n48ePD/WQwsamTZv0ww8/qK2tTa+//rpSU1O1YsUK3b59W263W++//77i4+NDPcyw0NLSoueee065\nubmaNm0adeyFgwcPateuXbLb7XrzzTc1evRo6thDfr9fK1euVH19vW7duqWlS5fK7XbrnXfekSSN\nHj1a7777bmgHaWFnz55Vbm6uFixYoJycHP32228dfgcPHjyoTz75RDExMcrKytLcuXODe2Mjwhw7\ndsxYvHixYRiGce7cOSMrKyvEIwofXq/XWLRokWEYhnHt2jUjPT3dyMvLM7766ivDMAxj8+bNRnFx\ncSiHGFY++OAD44UXXjD27t1LHXvh2rVrxsyZM40bN24YNTU1xpo1a6hjL+zevdsoLCw0DMMwLl++\nbDzzzDNGTk6OUVlZaRiGYbz11ltGeXl5KIdoWX6/38jJyTHWrFlj7N692zAMo8PvoN/vN2bOnGk0\nNDQYzc3NxqxZs4y6urqg3jviTmt7vV5lZGRIkpKTk1VfX6/GxsYQjyo8PProo9q6daskadCgQWpu\nbtaxY8f09NNPS5Keeuopeb3eUA4xbFRXV+vcuXN68sknJYk69oLX69W0adPkcDjk8Xi0bt066tgL\niYmJun79uiSpoaFBgwcP1sWLFwNnFKlj5+Lj47Vz5055PJ7Avo6+g5WVlUpNTZXT6VT//v01efJk\nVVRUBPXeERfOPp9PiYmJgW2Xy6Xa2toQjih8xMbGKiEhQZK0Z88ePfHEE2pubg6cNhwyZAi17KaN\nGzcqLy8vsE0de+7XX39VS0uL3njjDb388svyer3UsRdmzZqlS5cuKTMzUzk5OVqxYoUGDRoUeJ06\nds5ut6t///537OvoO+jz+eRyuQK/Y0buROQ15z8z6E7aY0eOHNGePXv08ccfa+bMmYH91LJ79u/f\nr4kTJ2rYsGEdvk4du+/69evavn27Ll26pPnz599RO+rYPQcOHNDQoUNVVFSkM2fOaOnSpXI6nYHX\nqWPvdVY7M2oaceHs8Xjk8/kC21euXJHb7Q7hiMLLt99+q48++ki7du2S0+lUQkKCWlpa1L9/f9XU\n1NxxegcdKy8v14ULF1ReXq7Lly8rPj6eOvbCkCFDNGnSJNntdg0fPlwDBw5UbGwsdeyhiooKTZ8+\nXZI0ZswYtba2qq2tLfA6deyZjv4vd5Q7EydODOp9Iu60dlpamsrKyiRJp06dksfjkcPhCPGowsON\nGze0adMm7dixQ4MHD5YkPf7444F6Hj58WDNmzAjlEMPCli1btHfvXn355ZeaO3eucnNzqWMvTJ8+\nXd9//73a29tVV1enpqYm6tgLI0aMUGVlpSTp4sWLGjhwoJKTk3XixAlJ1LGnOvoOTpgwQT/99JMa\nGhrk9/tVUVGhKVOmBPU+EbkqVWFhoU6cOCGbzaa1a9dqzJgxoR5SWCgpKdG2bds0cuTIwL4NGzZo\nzZo1am1t1dChQ/Xee+8pLi4uhKMML9u2bVNSUpKmT5+ulStXUsce+uKLL7Rnzx5J0pIlS5Samkod\ne8jv9ys/P19Xr15VW1ubli1bJrfbrbffflvt7e2aMGGCVq1aFephWlJVVZU2btyoixcvym6368EH\nH1RhYaHy8vL+8h08dOiQioqKZLPZlJOTo+effz6o947IcAYAIJxF3GltAADCHeEMAIDFEM4AAFgM\n4QwAgMUQzgAAWAzhDACAxRDOAABYDOEMAIDF/B8XGE2qXi0TUQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFZCAYAAACizedRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4U2UbwOHfyeqgIKMtGwVkFVni\nAAErSwqIUGbZCjIEZAj6KaKoDBGZiiwFZMpGFBkCiiBbAUEBESvIsNBCW2ibNut8fxwbKE0XlDZt\nnvu6vGxOckZekvPkXc+rqKqqIoQQQgi3ocvtCxBCCCFEShKchRBCCDcjwVkIIYRwMxKchRBCCDcj\nwVkIIYRwMxKchRBCCDcjwVnka2PHjiUkJISQkBCqV69O48aNnY/j4uKydKyQkBCioqLSfc3UqVP5\n8ssv7+WSs90LL7zA+vXrs+VYVapUISIigu3bt/Pmm2/e0/lWr17t/DszZZtZb7zxBrNnz86WYwmR\nWwy5fQFC3E/vvfee8+8mTZowefJkHnvssbs61tatWzN8zciRI+/q2HlN8+bNad68+V3vHxkZyeef\nf07nzp2BzJWtEJ5Eas7Co/Xs2ZPp06fTsmVLjhw5QlRUFH379iUkJIQmTZqwaNEi52uTa40HDx6k\nS5cuTJ06lZYtW9KkSRMOHToEpKy1NWnShJUrV9KxY0caNmzIpEmTnMeaO3cu9evXp0OHDixfvpwm\nTZq4vL41a9bQsmVLnn32Wbp3786lS5cAWL9+PUOHDmX06NG0aNGCVq1a8eeffwJw4cIFOnXqRLNm\nzRg5ciR2uz3VcX/88UfatGmTYlvbtm3ZvXt3umWQbP369bzwwgsZnm/nzp20adOGFi1a0L59e06d\nOgVAWFgYly9fJiQkBIvF4ixbgCVLltCqVStCQkJ4+eWXuX79urNsP/74Y1588UUaN27Miy++iNls\nTuufFoDTp08TFhZGSEgIbdu2Zc+ePQDEx8czePBgWrZsSdOmTRkzZgxWqzXN7ULkNAnOwuP99ttv\nfPvttzz66KPMmTOHMmXKsHXrVhYvXszUqVP5999/U+1z8uRJatWqxZYtW+jWrRtz5sxxeezDhw+z\natUq1q1bx7Jly4iIiODPP//k888/Z+PGjaxYsSLNWuO1a9d4//33WbRoEd999x3lypVL0Vy7e/du\nunXrxrZt23jyySdZvHgxAFOmTKF+/frs2LGD3r17c+TIkVTHrl+/PhEREVy4cAHQAmxERARPPfVU\npssgWVrns9lsvPHGG4wbN45t27bRpEkTPvzwQwAmTpxIyZIl2bp1KyaTyXmsY8eOsWDBApYuXcrW\nrVspVaoUU6dOdT6/detWpk+fzvbt27l+/Trbt29P87ocDgevvvoqPXr0YOvWrYwfP56RI0cSFxfH\nV199RaFChdiyZQvbtm1Dr9dz9uzZNLcLkdMkOAuPFxwcjE6nfRXGjBnD22+/DUDZsmUJCAjg4sWL\nqfYpUKAAzZo1A6B69epcvnzZ5bHbtGmDXq+nePHiFCtWjH///ZfDhw/zxBNPEBgYiJeXFx06dHC5\nb7Fixfjll18oUaIEAI899pgzmAJUrFiRRx55BICgoCBnAP35559p1aoVADVr1qRChQqpjm0ymWjc\nuDHff/89ADt27KBZs2YYDIZMl0GytM5nMBjYt28ftWvXdnn9ruzatYsWLVpQrFgxADp16sTevXud\nzwcHB1O4cGEMBgOVK1dO90fDxYsXiYqKonXr1gDUqFGDUqVKceLECYoWLcrRo0f56aefcDgcvPfe\ne1SrVi3N7ULkNOlzFh7vgQcecP594sQJZ01Rp9MRGRmJw+FItU/BggWdf+t0OpevAfDz83P+rdfr\nsdvt3LhxI8U5ixcv7nJfu93Oxx9/zPfff4/dbic+Pp7y5cu7vIbkYwPExsamOG+hQoVcHr9FixYs\nWbKE3r17s2PHDgYNGpSlMkiW3vmWLl3Khg0bsFgsWCwWFEVJ8zgA169fJzAwMMWxrl27luF7TutY\nBQsWTHHOQoUKcf36dVq3bk1sbCwzZ84kPDyc559/njfffJOWLVu63H577V6InCA1ZyFu89prr9Gi\nRQu2bdvG1q1bKVKkSLafw8/Pj4SEBOfjq1evunzd5s2b+f7771m2bBnbtm1j6NChmTp+oUKFUoxE\nT+6zvVOjRo04ffo0586d49y5c9SrVw/Iehmkdb4jR47w2WefMWfOHLZt28b48eMzvHZ/f39iYmKc\nj2NiYvD3989wP1eKFStGbGwst6/tExMT46yVh4WFsWbNGjZv3szvv//OV199le52IXKSBGchbnPt\n2jUeeeQRFEVhw4YNmM3mFIE0O9SsWZODBw9y/fp1LBZLmjf/a9euUbp0aYoWLUp0dDRbtmwhPj4+\nw+PXrl3b2Rd75MgR/vnnH5evM5lMNGzYkI8++oimTZui1+ud581KGaR1vuvXr1OsWDFKlSqF2Wxm\nw4YNJCQkoKoqBoOBhIQEbDZbimM988wzbN++nejoaABWrlxJcHBwhu/ZlTJlylCiRAk2b97svLao\nqChq1qzJp59+ytq1awGt5aJMmTIoipLmdiFymgRnIW4zbNgwBg8eTJs2bUhISKBLly68/fbbaQa4\nu1GzZk1CQ0MJDQ2lV69eNG7c2OXrnnvuOWJiYmjevDkjR45k+PDhREREpBj17cprr73GDz/8QLNm\nzVi+fDlPPfVUmq9t0aIFO3bsoGXLls5tWS2DtM7XqFEjAgMDadasGX369KF3794ULFiQoUOHUqVK\nFR544AEaNGiQor++Zs2a9O/fn+7duxMSEsLNmzcZMWJEuu83LYqiMG3aNJYtW0bLli0ZP348M2fO\nxNfXl7Zt27Jx40ZatGhBSEgIRqORtm3bprldiJymyHrOQuQ8VVWdNbJdu3YxY8YMaT4VQjhJzVmI\nHHb9+nXq1avHpUuXUFWVLVu2OEc0CyEESM1ZiFzx5ZdfsnDhQhRFoUKFCkyYMME5UEkIISQ4CyGE\nEG5GmrWFEEIINyPBWQghhHAzbpMhLDLyZrYer0gRX6Kjs3d+qieScsweUo7ZQ8oxe0g5Zo97LceA\ngIJpPpdva84Ggz63LyFfkHLMHlKO2UPKMXtIOWaP+1mO+TY4CyGEEHmVBGchhBDCzUhwFkIIIdyM\nBGchhBDCzUhwFkIIIdyMBGchhBDCzUhwFkIIIdyMBOcMrFu3mv79X2DIkP7069eLw4cPZvs54uPj\nOHToAAALFsxj3bpVWT5GQkICHTu2SbX9hx92ZPoYmzd/w48//pDm8zNnTuXy5UtZvrZkQ4b0Jzz8\n7F3vL4QQniJfBecNGwwEB/tSsqQfNWtqj+/Fv/9e5ptvvmL27M+ZNWs+77wznsWLF2TT1d7yxx+n\nncE5uy1btjjTr23Vqg3BwY3TfH7YsJGUKlU6Oy5LCCFEOtwmfee92rDBwIABPs7HJ07w32MzoaG2\nuzpmXFwcFksSVqsVg8FA2bLlmDVrPqDVAh999DEOHz6ITqejZcvWbN68CZ1Ox8yZczCbzUyY8C5x\ncTex2WwMH/4aVapUZefO7axatRy9Xk+VKtUYPnwU06ZNJiEhnrJlywEQHv4Xr78+nAsX/mHYsFHU\nq/cUP/74PStXLkOvN1ClSjVeeWUE8fFxvPXW61gsFmrWTL0e8IoVSzh79gyjR79Gx45dWLlyGQkJ\nCQwZMoKjR39h166dOBwO6tdvQJ8+/VmwYB6FCxemfPmKrF+/GkXRcenSPzRs+Ax9+vRnyJD+vPrq\n6/zww07i4+P455/zXLp0kaFDR1K/fgOWLfuCHTu+o1Sp0thsNsLCuvPoo4+5LFdXZTNjxkecPn0K\nu91OaGhHWrVq43KbEELkd/mm5jxjhsnl9pkzXW/PjEqVKlOtWnU6dXqeCRPeZefO7dhstwJ9sWL+\nzJmzAIfDzo0bN5g9+3McDgfh4WdZs+ZLqld/hE8+mcewYSP55JNpJCQkMH/+p8yYMZs5cxZw+fIl\njhz5mW7detKkSXPatm0PQGxsDJMnz2D48NfYuHEdCQkJLF68gJkz5zJr1nyuXr3C8ePH2LZtCxUq\nVGT27M+pVKlyquvv1q0Xfn5+TJz4EQB//XWWadNmUbVqNQBmz/6c+fO/YMuWTcTHx6XY9+TJ33nr\nrXdZuXKly2b2q1evMGXKxwwbNoqvv17PjRuxrF+/hnnzFjJq1BscO3YkzXJ1VTY3bsSyb99PzJ27\nkDlzFmCz2VxuE0KI+2HzZgNXrii5fRlO+abmfOaM698ZaW3PrLfffp9z5/7m0KH9rFixhK++WsvH\nH88FICioOqAF6UqVqgBQtGhR4uLiOH36JL169QWgatUgLl68wIUL/1CmTDl8fX0BqFOnLmfOnKZQ\noQdSnDO5FhwQEEBcXBx//x3OlSsRvPrqEEDro46IiODcuXBq167rPFZGHn64EiaT9mPF29ubIUP6\no9friYmJ4caNGyleW6VKVby9vSlQoIDLYyVfY2BgIHFxcVy8eIEKFSri5eWNl5c31apVT/M6XJVN\noUIPULbsg7zxxqs0btyMkJDWmEymVNuEECK7nTun8MILPjz7rI1ly8y5fTlAPgrOlSs7OHUqdRLy\nypUdd31MVVWxWCw89FB5HnqoPB06dKF7945cuRIBgF5/63y3/62qKoqioKqqc5vD4UBRSLHNZrPi\n5eWV6rx3Hsto1Jqyp02bleJ1J078ik6n/Hd8lYwYjUYAIiL+ZdWq5SxcuBxfX1969uyc7jW4cuc1\nqirodLd+CCnp/AB1VTYAU6d+zB9/nGb79q1s3fot06d/6nKbEEJkpwsXtHvXzp16IiMVAgIyvp/e\nb/mmWXv4cIvL7cOGud6eGZs2bWTy5AnOQBIfH4fD4aBIkSIZ7lu1ahBHj/4MwG+/naB8+YqULfsg\nFy/+Q0JCPABHjx6hSpUgFEXBbreneaxy5R7i3Lm/iY6+DmgjuiMjr1Ku3IOcPn0KgCNHfna5r6ug\nHRMTQ5EiRfD19eWPP04TERGB1WrN8D2lp2TJkoSH/4XNZiM6Otp5Xa64Kpt//73MmjUrqVKlKkOG\nDCc2NtblNiGEyG7Jzdl2u8L69e5RZ3WPq8gG2qAvMzNnmjhzRkdQkMLgwXc/GAy00cvnz5+jf//e\n+Pj4OgcveXl5Z7hv585dmTjxPYYOHYjD4eDVV/+Hj48PgwcPY+TIV1AUHTVr1qZWrdoULOjH3Lmf\nEBAQ6PJY3t7eDBs2klGjhmEyGalUqQr+/gGEhLRm9OhRDBv2MjVr1kZxUV2tXLkK/fr14uWXhzq3\nVapUGR8fX15+uQ81atSmbdv2TJ36ITVr1rrrsipatBjNm4fQr18vHnywPEFB1dOsfbsqG3//AH77\n7Vd27vwOo9FI69bPu9wmhBDZ7fa+5tWrjQwYcG+VleygqLe3L+aiyMib2Xq8gICC2X5MT5SVcty8\n+RuaNw9Br9fTq1cY06Z9QmBg8ft8hXmDfB6zh5Rj9pByTOmdd7yYO9dE6dIOLl3SsWtXPEFBGXeJ\n3ms5BgQUTPO5fNOsLXLftWvX6N+/NwMH9uHZZ0MkMAsh8oTkmvOgQVo36OrVxty8HEBqziIDUo7Z\nQ8oxe0g5Zg8px5TatfNh3z4D4eE3qVvXD6NR5dixeAwZdPxKzVkIIYS4T65c0VGsmAM/P2jXzsrV\nqzp2705/xsr9JsFZCCGER7tyRaF4ca0RuUsXbTDYqlW3mratVli71sChQzkXMiU4CyGE8FhxcRAX\ndys416nj4OGH7WzZYiAmBtatM9CgQQEGDfJh1qy7zziZVRKchRBCeKyrV7XBYMnBWVGgc2cbiYkK\nTz1VgJdf9uHSJYU+fSxMnZqUY9clwTkDeX3JyMyaMOFd9u7dw4ED+9iwYW2q5/v27cm//15Oc//k\npSn//PMPFiyYd9fXceTIz4wZ8/pd7y8yp3t3H/r0yXi+vsif3GMYsHu4ckULg8WL35o61amTFb1e\n5fp1hS5drOzbF8+kSUk5mjks3yQhuR+Sl4z8/PMlGAwGLlz4hw8/HM/jjz+ZredJXjLyiSfqZetx\n70a9ek/d1X7Lli2mceNmVKpUxZlnXLivvXv1WCyQmAjeEqM9St++3uzdC4MHm+jTx0Ia6fM9RvI0\nqhIlbgXe0qVVNm9OoGBBlYcfzp1fMhKc05HXl4z8+OOpVKpUhZYtnwMgLKw98+cvYvHiBZw8+TsW\ni4V27TrQpk075z6bN39DePhfDBky/L/lGn+nVKmy2GzaIIk//zzDtGkfYjAY0Ol0jBs3iU2bNqZY\nmnL9+tWMHz/Z5XtdsGCey+UmXXG1/5kzp5k69UOMRiMmk4n33vuAf/+9lGpbwYJpT1HwdElJkJCg\n3ZB++03HY4/dff55kfccPKjn+nUYN86LuXONjBhhoWdPKy7S/HuEiAjtuxAYmDII16mTu9+LPBOc\n333Xi2++yfzl6nTgcKT/k7BNGxvvvpt2H8LtS0bWr9+AevUaEBzcGMN/k9+Sl4x8+eU+ziUjBw16\nifDws/z0026qV3+EHj1e4PTpk3zyyTQmT57B/PmfsmjRCnx9fXn99RHOJSPDw/+ibdv2LFgwz7lk\n5MGD+/nqq7XUrFmbxYsXMHfuIkwmE2+//QbHjx/j7Nk/qVChIkOHjmTnzu/YsWNbiusPDm7CmjUr\nadnyOc6e/ZOSJUvi5eVNiRKleOWVV0lKSqRz53YpgnOyv/8O58SJ43z11XpOnvyLsLBQAGJirjNi\nxGtUrlyVzz+fy3ffbaFbt14sX76YiRM/cub4Tl4e8873CreWmzxwYB8bN65zGZzT2n/37h8IDe1I\nSEhrfvnlMNevX2Pz5m9SbZPgnLaYmFupCo8d00tw9iA2G0RGKjz6KDzzTBLz5pkYPdqbpUuN7NiR\ngDH3c2/kOFfN2u4gzwTn3JKXl4ysUaMWH3wwDqvVyk8//cgzzzTFy8uLGzdiGTiwDwaDgZiYaJfv\n+9y5cIKCHkGn01G8eAlKlSoNQJEixZgz5xOSkhKJioqkefMQl/un9V5vf3/Jy01mZf+GDYOZMmUS\nFy78Q9OmzXnwwYdcbhNpuz04Hz2qB3I/j7DIGVFRCqqqUKkSvPGGhZdesjJihDfbthn4/ns9LVqk\nvQBPfpXcrJ08IMxd5Jng/O67SenWcu+kZW6Jv6dz5vUlI3U6HY8+Wpdjx35h376f+PDD6Rw9+gtH\njvzMrFnzMRgMNG/eKI33jvPYydcPMHPmFLp37029ek+xYsVSzOYEl/un917vfH9Z2f+xx57g88+X\nsG/fHsaPf5chQ4a73Pboo4+5PK64s+YsY0I9SXITbsmS2mN/f5WRI5PYts3AmjVGCc5uRL6Z6cgP\nS0YGBzdh69Zv8fHxoUiRIsTGxhAYWByDwcBPP/2I3e5wuVxkuXIP8scfp1FVlYiIf50jtWNjYyhd\nugwWi4UDB/Zis2mrft354yCt95pZae2/bt0qbtyI5dlnW9KlSzfOnDntcptIW0zMrb/PntVx40bu\nXYvIWcmBqFSpW9tq1XJQqZKdbdsMeOKqrFeuKBQurLrdwMg8U3PODflhyci6dR/n/ffH0LfvQAAe\ne+xJli9fzJAh/WnUKJinnmrIlCkfpNrv4YcrUaFCRbp06UKJEqWpVKkyAB06dOHNN0dRunRpOnTo\nwvTpk2nSpHmqpSnTeq8//5y5qWhp7W82J/D222/g5+eH0Whk9OixnDnzR6ptIm3R0drnxN/fQVSU\njl9/1dOokefVmDxRRIRWH0uuOcOteb0TJnjxzTdGevTwrG6OK1d0lCjhXv3NIAtfiAxIOWYPdyrH\nuXONvPOONx06WFm3zsiYMUkMHWrJ7cvKFHcqx7xo8mQTU6Z4sXMn1KhxqxwvXlR49FE/6te3sXGj\nORevMGeZzfDggwVp1MjGunVZf9+y8IUQItsk9zk3bqx1SUi/s+dIbta+veYMUKaMSoMGNvbvN/DP\nP6lb4PKr5Oxgt89xdhfyrRTCwyQ3az/yiAN/fwfHjuXu6jsi5yRPG7q9zzlZp05ac/batfljPlVm\n2oSTm/ndbRoVSHAWwuMk15yLFFGpU8fBxYs6IiM9p7bkySIiFHx8VAoVSv1cmzY2vL1V1qwx5un0\nnocP6+ja1YcHH/TjwIH0f3jemVfbnUhwFsLDJNecCxdWqV1bGwgmTdueIXlpRBdjRylYEEJCbPz1\nl46jR/PW50FVtZS0HTr40Lp1AXbuNJCYqDBxoindHxquUne6i7z1LyCEuGcxMQre3io+PlCnjhac\njxyRpu38zm7XsoOl14Sb3LS9Zk3eadq+eRMGDPAmNNSXPXsMBAfb+PrrBJo3t3HggIG9e9P+bLvr\nHGfI5FSqiRMn8uuvv6IoCqNHj6ZmzZrO51avXs3atWvR6XRUrVqVsWPHoihKuvsIIXJPdLQ2rxOg\ndm3tRi39zvlfVJSCw6GkW0t85hk7/v4OVq82Eh+vULSoStGiKmXLOmjd2oYp55YzzpTfftPx0ks+\nhIfreOwxO+PGJVK3rvaZ9vJKYvt2A1OmmGjY0PVI7OQ+58DAPNjnfOjQIc6fP8+qVauYMGECEyZM\ncD5nNpv59ttvWb58OStXriQ8PJyjR4+mu8/9tmGDgeBgXwwGCA72ZcMGmcotxO1iYhSKFNFu0P7+\nKuXKOTh2TJen+xlFxpKzg6VXSzQaoU8fKzdvKqxcaWT2bBPjx3sxYIAPzzzjy86d7vEjTlVh+XIj\nrVr5Eh6uY8iQJDZuTHAGZtAWrmja1Ma+fQb27XN93e5cc84wOO/fv59mzZoBULFiRWJjY535kH18\nfFi8eDFGoxGz2UxcXBwBAQHp7nM/bdhgYMAAH06d0mO3w6lTegYM8JEALcR/7Ha4cQNnzRmgdm07\n167puHBBBoXlZ5kNRKNGWTh79iYHD8axZUs8K1Yk8OKLFsLDdXTt6kv37j6Eh+fuZ2XmTBMjRnjj\n7Q1LlybwzjsWl4t2jBqlpXyeMsV1lf/KFYWCBVW3XDYzw6gVFRVF9erVnY+LFi1KZGQkfn5+zm3z\n589nyZIl9OrVi7Jly2ZqnzsVKeKLwXBvv8pmzXK9/dNPfejf/54O7dHSmygvMs8dyvH6da3WUby4\nwXk9DRvC119DeLgfdVOvn+J23KEc86L4/5YaqFRJy3GfXjkGBEDFirced+0KI0bAsGGwfbuBXbv8\nWLcO2rS5P9ealKT9kPxv3ZsUoqJg5kwoUQL271d46CEXL/pPSAi0aAHbthk4daogTz+d8vnISG1a\n2b18pu7X5zHLVUpXCcX69+9Pr1696NevH3VdfLszk4QsOtr1AgpZcfKkH5D6F93JkyqRkfe/5p4f\nSUam7OEu5ajVePzw9bUQGanVKipV0gO+/PijhWeeyfziMrnBXcoxLzp71gR44eubAPhmuRxLlICV\nK2HTJgNDhngTFgYbNyZQq1b29teqKrRu7UtUlML338dzZ53ugw9MxMd78cYbiRQoYCUyMv3jDR2q\nY9u2AowZkzILmMUCUVEFqVLFRmTk3WVFy9UMYYGBgURFRTkfX716lYCAAABiYmI4fPgwoOV/fvrp\npzly5Ei6+9xPlSu7/pCktV0IT5M8x7lw4VvbatWyoyiqTKfK5zLT55wRRdHmQ8+dm4jZDN27+3Dx\nYvY2cR8+rOPnn/WcO6fjww9TrtoXEwOff27C399Bz56ZywH++OMOnnnGxp49Bg4evNU6685znCET\nwblBgwZs27YNgN9//53AwEBn87TNZuONN94g/r/2khMnTlC+fPl097mfhg93nR942LC8kTdYiPvt\n9gQkyfz8tB+wR4/qSUzMrSsT99vVq9rtPjsWeWjZ0sb77ydx9aqO7t19uJmNjRlffKH1Dz/wgMpn\nnxk5fvxWmPrsMxM3byoMGmRx2eSdluTYsGTJrY5pdx4MBpkIzo8++ijVq1cnLCyM8ePHM3bsWNav\nX8/27dvx9/dn8ODB9OrViy5dulC4cGGaNm3qcp+cEBpqY948M0FBdgwGCAqy89JLFmbMMFGypJ+M\n3hYeLzkByQMPpLwhNW1qJyFB4ccf3WM0rsh+ERHa/HZX2cHuRv/+Vvr2tXDqlJ6+fX1wsfJsmrZu\n1XPyZOrwc+2awtdfG3j4YTuffWbG4VAYOdIbu12bzzx/vomiRR288ELWVs6qX9/OQw852LTJ4Pwh\nkZzK1B1Td0Im+5xHjRqV4nHVqlWdf7dv35727dtnuE9OCQ21ERpqIyCgIPPnWxgwwMf5XPLobTAT\nGmrLlesTIje5qjkDtGljZfZsE998Y6RFC1k+Mj9KLzvY3VAUGDcuiX/+0bF9u4FFi4z0759x0Lx4\nUaFXL1+KF3fw00/xPPDAree+/NKAxaLQu7eVZ56x07GjlbVrjSxcaCQhQSE2VmH0aEuqfujMXGtY\nmJVJk7z4+msj3btbs6WZ/37K151MM2a4Hj4/c6abzaQXIofcnrrzdnXqOChVysG2bQYs0guU79jt\nWh9rdtcSDQb4+ONETCaVxYszl5N7yxatTnjlio53373Vp+xwwOLFJnx8VLp00YL8e+8lUbiwysSJ\nXsyebeKBB1T69r27D2jnzlYURWXlSu38eb7POS87c8b120truxD5XVo1Z50OnnvORmyswk8/SdN2\nfpOZ7GB3q1gxleees/Hnn/oUA67SkhycH37YzvLlJmdXyq5des6f1xEaanUOWAwIUBk7Non4eIXo\naIV+/SwUvMuZS2XKqDRqZOfgQQPh4cptebXds1k7X0cpGb0tREpp1ZxBC84A33wj4zLym/s9+KlH\nD62mu3Rp+jm5r1+H/fv11K1rZ+7cRPR6lZEjvYmPhy++0Pa9sz+5a1crjRrZ8Pd30L//vTXrhIVp\nx1692nhbn7PUnHOcjN4WIqW0as4ATzxhJzDQwZYtBmwyJCNfud/BuUEDO+XLO/j6awPR0Wm/7rvv\nDNjtCi1b2qhZ08GgQRb++UfH8OHefPedgTp17M5878l0OlixwszBg/EppgDejVatbPj5qaxaZeTy\nZQVfXzXL/dc5JV8H55Sjt1WCguzMmyeDwYTniolR0Otd35B0Omjd2sb167o0cxGLvCl5gYf7NTJZ\nUaBnTwtJSQpr16Zde05u0m52ZeNLAAAgAElEQVTVSqvBjhploWJFBxs3GnE4FF54wXXFycuLu27O\nvp2vL7RrZ+XSJR0nT+oJDMy+AXLZLV8HZ9AC9K5dCVy+HMeuXQkSmIVHi4nRas1p3ZDatJGm7fwo\nJ9Yt7tLFhtGosnSp64FhCQmwa5eBypXtPPyw9gIfH5g+XZtcX7iwStu29//+3KXLrXO4a38zeEBw\nFkLccvtyka7Uq2enWDEHmzcbsMuMqnwjJxJuBASotGpl4/RpPYcPpw4tu3YZMJu1Ju3b1auntWjO\nn2/OUmKRu/XEE3YqVNCCsrv2N4MEZyE8hqpqzdrp9dsZDFq/XGSkjkOHpGk7v8ipkcnJKTWXLUs9\nXXXz5uQm7dS149BQG888kzO/BpPnPIMEZyGEG4iPB5st/ZozyKjt/OjKFR1eXmqKhB/3Q8OGWiau\njRsNxMbe2m6zaYPBSpZ0ZPtCGXejRw8rzZrZnN047sjjgvOGDQaCg30lnafwOOlNo7pdw4Z2ChdW\n2bTJgCP376MiG0REZG92sLTodFrgM5sV3njD2xmg9+/XExOjNWnr3CDq+PurrFhh5skn3bfvxg2K\nKeds2GBgwAAfTp3SY7crznSeEqCFJ0hvGtXtjEZtNG1EhI49e6RpO69zOJKzg+VME26PHhaqVrWz\nbp2R+vULsHq1wdmkfWd/s0ibRwVnSecpPFlma84AXbtqN9EVK9JPKiHcX1SUgt2u5NjI5KJFYceO\nBMaM0TJ7DRniw8KFRh54QOWpp9y3pupuPCo4SzpP4ckyW3MGbUTrww/b2bw5/aQSwv3lxtKIJhMM\nHWphz554QkKsqKrCc89ZMcpvvUzzqKgk6TyFJ8tKzVlRoFs3K0lJCuvXyx01L8uJOc5pKVdOZcmS\nRH78MZ7x45Ny/Px5mUcFZ0nnKTxZVmrOAJ072zAYVJYvl+CclyXnkA4MzL1KSLVqDgoUyLXT50ke\nFZwlnafwZMnBOTM1Z4DAQJXmzW389pue48c96lYBaPPCFywwsmCBkd9/1+XZkevJ6xbnRs1Z3D2P\nG6YcGmqTYCw8UkyM9v/M1pwBune3smWLkeXLjdSs6VnNkj//rOPNN72djwsXVnniCTtDhlioVy/v\nDGzKjT5nce887+ewEB4qK33OyZo0sVO8uIN164yYzffrytzTpk1ac/6AARa6dLHywAMq331noE8f\nbYnDvOJWzTmPVv09lARnITxEcrN2VrJEGQzQpYuVGzcUvv3WcxraVBU2bTJQsKDKmDFJfPJJIocP\nx/Pqq0lERelYtCjv9MNfvaplB7vX5RZFzpLgLISHiI5WKFRIRZ/FvCLduml5iPP6nOcLFxQGDvSm\nXTsfGjXyJSioAA895Md336UukOPHdVy4oKN5cxteXre2DxxooVAhlU8/NREXl/E5Dx/W8fbbXrz+\nuhcjRngxeLA348aZcmxRkYgIhb//1uVIdjCRvTw+OEs6T+EptEUvst7vWKGCSv36Nn76ycDixXk3\nQM+YYWL9eiP79hm4ckXHAw9AYiJMnuyVaonDTZu0+8CduZcLF9YC9LVrOhYuTD950Y8/6mnf3pd5\n80x88YWJ5ctNrFlj5JNPvPjuu8zdZy5cUOja1YejR7N+q/71Vx0tWvgSHa0QGmrN8v4id3l0cJZ0\nnsKTxMQoWRoMdrv33kuiWDEHr73mzZtvemHLY2Mq4+Jg/XojpUs7uHjxJmfOxLF/fzytW9s4flzP\nTz/dqj2rKnzzjRFfX5XGjVO/0f79LRQurNWeb950fb4DB/T06uWDqsL8+WZ2747nwIE41q5NAGDp\n0sz9yJkxw8TOnQb69fNJ81yufP21geef9yUiQmHs2ERGj5bponmNRwdnSecpPIXZDGbz3dWcAWrX\ndrB1awLVqtlZsMBEWJiPc/R3XrBunZH4eIUePayYbvt6DxqkBa3Zs29tPHVKR3i4jqZNbS7XFy5U\nSNsvOlrhs89S3yt++UVH164+WK2wYIGZdu1sVK3qoEIFlaeftlO3rp2dO/VcvJh+O3NUlMKaNUZ0\nOpV//tHx1lveqV4THq7QsqUv9esXoF07H/r392bgQG9eeskHnQ6WLjUzeLBVmrTzII8OzpLOU3iK\n2NisJSBx5cEHVb79NoEWLWzs3m0gJKQAV6+6/11fVWHJEiN6vUr37imbd+vWdfDkkzZ27jRw6pT2\nvU9u0k5eOtOVl16yULSogzlzTM6Vl8xm+OEHPWFhvpjNMG9eIi1apO5c7tnTgqoqGSZ3+eILI4mJ\nCu+8k0StWnZWrjSmWMbzjz90PP+8L7/8oicmBvbtM/DVV0bWrzdSrpyDzZsTePbZvDPlS6Tk0VFI\n0nkKd5SUBL/9lr1fzbuZRuWKnx988YWZAQMshIfrGD3aK+OdctmxYzpOnNDz7LM2l4k4Bg3SAvbc\nuVot+NtvDXh5aQlY0uLnB4MHW4mNVQgL8yU42JcKFfzo0sWXGzdg1qzENNcKbtvWhp+fyooVxjS7\nBxITcS4W0auXldmzE/HxURk1ypuICIUTJ3S0a+fD1as6Jk5M5NSpeC5dusmvv8axc2c8u3fHU62a\n3MfyMo8OzpLOU7ijhQuNNGlSIEUt6V5lNXVnevR6rQ/68cftfP210bkcoLtaskSrofbu7XpQVIsW\nNipWdLB2rYG9e/WcOqWncWMbfn7pH7dPHwvFizv45Rc958/rqFvXTt++FtasMdOxY9qBvUAB6NjR\nyr//6ti50/XQ+bVrjURF6ejVy4KfH1Sq5GDs2CSioxVefNGH9u19uX5dYerURF56SXtfRiOULKlS\no4bDZXO8yFs8OjhLOk/hjk6c0G7YH3xgyraBV1lN3ZkRnQ6mT0/EZFL53/+8nE27uen333VMnZpy\nitONG7Bhg9bM+8wzrpt4dTp4+WULVqvCgAFav27r1hkXfIECsHNnAvv2xfHXX3Fs2mTmgw+SePrp\njJuSe/bUAurSpan7rFUV5s41YjCo9O176wfFiy9aadrUxi+/6Ll5U6udJx9H5D8eHZxBC9C7diVw\n+XIcu3YlSGAWue7vv7Wv5dmzelatyp6pS3eTujMjlSs7GDnSwpUrOt57L/ebt2fMMPHhh16EhPjy\nxx9aGa5dayQhQRsIpkvnbtepkxV/fwdXr+owGFRatMjcfSAwUOXhh7M+d7xGDQd16tjZsUPPpUsp\n++2//17PmTN62rWzUarUrX8vRYEZMxJ5/nkrCxcm0qmT3KvyM48PzkK4m3PnFPz9Hfj4qHz0kYnE\nxHs/ZnKfc1ayg2XGkCEWgoLsLFtmYs+eLEaobHbqlA6dTuXMGT0tWviyZo2BJUu0GmjXrunXMH18\noE8f7TVPP23PkWxavXpZcTiUVMld5szRatMvv5y6e614cZXPP0+kVSsJzPmdBGch3EhsLFy7pqNW\nLQd9+1q4fFnHF1/ce+05O/ucb2c0arU5nU7l1Ve9SUjI1sNnWlIS/PWXjrp1HSxYYEavh8GDfTh5\nUk9IiC1Tiz689JKF556z5tiYk7Ztrfj5qSxdauTTT41MnGhi5Egvdu820LChjRo1ZECXJ5PgLIQb\nOXdO+0qWL+/glVe0VJEzZqSd7CKzsmu0tiu1azt4+WUr58/r+PTT3MkRcPasDrtdoWpVO23a2Ni+\nPZ7q1bW+39v7bdNTuDAsXJhI/fo5M/3Iz08bGBYRoeO997yZMcPL2Qc9dKgMSvV0EpyFcCPJ/c3l\nyzsoUgQGD7Zw/brO2dR5t+5XzTnZyJFJ+Ps7mD3bRGRkzs99Tp6jHBSk1TYrVFDZujWB/fvjaNDA\nfef6vv12EnPnmlm82MzGjQns2hXPyZNxaQ5eE55DgrMLkm9b5Jbk4FyhghZk+vWz4O+vJbuIirr7\noHerz/n+BGc/Pxg50kJ8vMK0aTlfez59Wiu3qlVvNQV7eUHFiu69hnHBgtC+vY2WLW3Ur28nKMiB\nv797X7PIGRKc7yD5tkVuCg+/VXMGLei9+qoW9GbNuvugFxOj4Our4p06A2S26dnTykMPOVi82Mjf\nf+ds7fn0aW0wWpUq0k8r8odMBeeJEyfSpUsXwsLCOH78eIrnDhw4QOfOnQkLC+PNN9/E4XBw8OBB\n6tWrR8+ePenZsyfjxo27Lxd/P0i+bZGb/v5bQa9XKVPmVu2pZ08rJUs6WLTI6LLJ+Pp1GDjQm+3b\n0x4tfbcrUmWFyQRvvZWEzaYwaVLOTq06fVpHQIDUOkX+kWFwPnToEOfPn2fVqlVMmDCBCRMmpHj+\nnXfe4eOPP2blypXEx8ezZ88eAJ544gmWLl3K0qVLefvtt+/P1d8Hkm9b3KuEBO561PLff+soU0ZN\nsTiDl5eWtc5sdl17fucdb9avN9Knjw+HD7v+nEZH3//gDNoSi7Vr29mwwcixYznznYmLg3/+0aVo\n0hYir8vw27N//36aNWsGQMWKFYmNjSXuthQ869evp0SJEgAULVqU6Ojo+3SpOUPybYt7YbdDixa+\ntGihLX6QFXFxEBmpczZp3657dyulSjn44gtjisUmdu3Ss3q1lgHLZoPevX04d+7W8zYbvPWWFzdv\nKpQrd/8/wzqdNsgJYNy41Osk3w/JCUckl7TITzIMzlFRURQpUsT5uGjRokRGRjof+/2XgPbq1avs\n3buX4OBgAM6ePcvAgQPp2rUre/fuze7rvm8k37a4F5s3G/jjDz1//KHP8sCo20dq38lV7Tk+HkaN\n8kavV1m0yMzEiUlEReno3t2H2Fi4eRN69vThs89MVKliZ9y4pHt/g5nQqJGdxo1t7Nlj4Icf7n9i\nklOntHNIcBb5ipqBMWPGqNu3b3c+DgsLU8PDw1O8JioqSg0NDVX37NmjqqqqRkREqN9++63qcDjU\n8+fPq8HBwWpSUlK657FabRldSo758ktVrVlTVQ0G7f9ffpnbVyTyivr1VRVUtUQJ7fPz66+Z33fN\nGm3fadNcP5+YqKply6qqj4+q/vuvqo4apb3+9ddvvWbECG1bcLCqVq+u/R0SoqoxMff0trLs6FHt\n3I8+qqoOx/0917Bh2rkOHLi/5xEiJ2U4BDkwMJCoqCjn46tXrxIQEOB8HBcXR79+/Rg+fDgNGzYE\noHjx4rRq1QqAcuXK4e/vz5UrVyhbtmya54mOzt7UQgEBBYmMvLvMDU2bav/d7rbGAo9yL+XoaQ4f\n1rF/fwGefdZGnz4WwsJ8eeEFO5s3J1CiRMbl+OuvJsCLgIAEIiNdz3N95RUjr7/uTY8eNn74Qc9D\nD6kMGhTv/Hy+/jqcOuXN1q1aVrF+/Sy8914SFkvOfoZLl4bQUG82bDCyaJE5zeUTs8rV5/HIER/A\nQGDgTY/9nmaVfK+zx72WY0BAwTSfy7BZu0GDBmzbtg2A33//ncDAQGdTNsCkSZPo3bs3Tz/9tHPb\n119/zYIFCwCIjIzk2rVrFC9e/K7fgBB5QfJ6wAMHWmjSxE6HDlaOHtWzYEHm0m8mTz8qXz7tjtpu\n3ayULu1g504DDoe2ZODtywPq9TBnTiI9e1qYOdPMhAlJGHJpFuDrryeh16tMmpR9q2u5cvq0jnLl\nHBku8ShEXqKoasZDNqZMmcLPP/+MoiiMHTuWkydPUrBgQRo2bMjjjz9OnTp1nK997rnnaN26NaNG\njeLGjRtYrVaGDBni7ItOS3b/isvOX4YbNhiYMcPEmTM6Kld2MHy4xWNWr5Jf2Jlz/rzCk08WoHp1\nBzt2JKAoEBWl0LChL4mJCidPKvj6pl+Obdv6cOCAnn/+icMrnZlIS5YYGTXKm65drcycmQ2rYtxH\nr77qxbJlJj7+2ExY2L1/Z+78PEZFKQQF+fHsszaWLcviCDwPJt/r7HE/a86Z+k09atSoFI+rVq3q\n/Pu3335zuc/cuXMzc2i3l5yUJFlyUhKQdZ/FLZ9/bsLhUBg40ILy32Bpf3+V999PYsgQHwYNgi++\nSP8YydOo0gvMoM17LlPGwVNPuX+Kx5EjLaxZY+Sjj7wIDbVl+N6y6tZIbfcvCyGyQibvZkCSkoiM\nxMbCsmVGSpRw0LZtyh9snTrZePppG5s3a+v0piU+HiIidDz0UMYjjhUFmjSx39dsX9mldGmVF16w\ncuGCjqVLs2dt6tsl59SWOc4iv5HgnAFJSiIysmyZkfh4hZdesqZIHgJaIH3vvaT//u+FPY0K3vnz\naU+jyuuGDbNQoIDKtGkm4uOz99gSnEV+JREmA5KURKQnIkJh7lwTvr4qvXq5ngtfvbqDF17QukRW\nrXLdk5TeHOe8zt9fZeBAC1FROurXL0CvXt5MmWLiu+/0JKUx9drhgPffNzF4sDfffGNIM6ifPq1H\nr1d5+OH8V27Cs0lwzoAkJfE8ma3dXbmi0L69D1eu6BgxwkLhwmm/9v33wcdHZdIkL5fHz8xI7bxs\n8GALHTpYsdth61Yjkyd70aOHL+3a+XJbwkGnKVNMzJrlxZo1Rvr29aFaNT969fJm06Zbr1FVbaR2\nxYqObO/LFiK3SXDOQGiojXnzzAQF2TEYVIKC7MybJ4PB8qvDh3U8/LAf06enP6YgKkqhY0cfzp7V\nM3iwhaFD0/+xVqYMDBhgISJCx7x5qY+dn2vOoK2uNWdOIr//Hs+JE3EsX55A69ZWfvlFT+/ePiTe\nNuj8q68MTJniRblyDtavT2DEiCTKlXOwdauRNm1g6lQTqgqXLyvcvKlIk7bIlzI1lSonuPNUKk/m\naeU4cKC2iISiqKxYYaZp09SdxNevQ/v2vpw8qad/fwvjxiU5R2inJSCgIOHhN3nyyQKYzQoHD8YT\nGHjrq9e+vQ8//WTg3LmbKeYt52c2G/TpoyVMadnSyoIFiZw4oaNtW1/0eti8OSFFSs4TJ3T07VuA\nc+egZ08Lzz5ro2dPX/73vyRGjpSWrKzwtO/1/ZKrSUiE8BTXrils2mSgVCkHJhO8/LIP58+njLrn\nzil06KAF5hdfzFxgTlawoDa1KD5eYcqUlLXnv//WUaqUw2MCM4DBAPPnJ9KokY0tW4y8/LI3vXr5\nkJQE8+ebU+XKrlHDwf79UKOGnaVLTQwdqk1xlJqzyI8kON+FDRsMBAf7UrKkH8HBvmzYkEspmES2\nWrPGgMWiMGCAhQ8/TCQmRqFPHx/MZq1/c/VqA02aFOD33/X07m3hgw8yH5iT9eplpWJFB0uWGFmz\nRvvcmM1w6ZLr1ajyO29vWLzYTN26djZuNHLlio6xY5No3tz1sPYSJWDjxgQaN7YRHa0VvsxxFvmR\nRJUskqQk+ZOqalOiTCaVzp1tFCum8ssvFpYuNTFypDcOB6xfb8TPT2XWLDOdOtmyHJgBjEaYO9dM\nx46+DBnijcORSO3aWlD2xOAMWn/0ihUJDBjgwyOP2Hn5ZWuGr1+2zMzbb3vx5586HnzQLXrmhMhW\nEpyzKL2kJBKc866DB/WcOaMnNNRKsWLazX7ChCSOH9ezdq2WPKNuXTtz5ph56KF7Cwa1ajlYty6B\njh19GTrUm3bttM/NvR43LytSBFavznz6TaMRJk3KmSUwhcgN0qydRZKUJH9atkwLwD163Kq1eXvD\nwoVmnnzSxmuvJfHNNwnZFkBr1tQCdOHCsGGDdm5PrTkLIVKTiJJFkpQk/4mNhW++MVC+vIMGDVL2\nX5Ytq/LNN2Zee82S7as71aihBeiiRbXPjiTSEEIkk+CcRZKUJP9Zu9aI2azQvbsVXQ5/Ix55xMG3\n3yYwY4ZZRh0LIZykzzmLtH5lMzNn3lpCctgwz1lCMj+w27V1j0EbCLZ0qRGDQSUsLP2BSPdLxYoq\nFSvK50cIcYsE57sQGmqTYJwJ0dEwfboXoaFW6tTJ/VpheLjC+PFefPutAS8vKFxYpVAhlTNn9Dz3\nnDVFUhAhhMhN0qwt7pvly43MnWsiJMSXN97w4saN3LmOyEiFN97womHDAmzaZKRyZQdVqmj5mK9e\n1eHnpy3MIIQQ7iJf1pxjY+HAATh/3sCNGwoxMQrFi6t07251NmeK++/XX7XCLltWZeFCE5s2GRg/\nPom2be9ujvDd+PprA8OHexMXp1C+vIMxYxJ57rmcO78QQtyNfBmcX3vNm6++AvBJsX3PHj2zZiXK\nCjY55NgxPUWKqOzdG8/s2SamTzfRv78PmzZZmT49kYJpp5XNpvPrGDzYG6MRPvggkZ49U6+3LIQQ\n7ihfBufhwy00bGhEp0vkgQe0fsVp00xs3GgkOlrhiy/M+Pnl9lXmbzExcP68juBgG15eMGKEhXbt\nrAwd6s3XXxv5/Xc9CxaYCQq6P33RV68qvPCCDxYLLFpkplkzSfEohMg78mWfc1CQg5EjtYQSbdrY\nCA62s3KlmZAQK7t3G+jQwZdr17KvXVNybaeW3KRdu/atoFi+vMr69WYGDbLw1186Wrb0ZfXq7C8r\ni0Vb7ejyZR1vvWWRwCyEyHPyZXB2xccHFi5MJCzMytGjetq08eHixXsP0Mm5tk+d0mO3K85c254e\noJODc61aKWvGRiO8+24SixaZMRhgyBAfxo/X1ufNLm+95cWhQwbatrXyyisy0EsIkfd4THAGbYm6\nmTMTGTTIwtmzelq39uX06XsrgvRybXuyX3/VyrVWLde11tatbWzfHk/Fig4+/tiLqVOzp7xWrDCw\neLGJoCA7M2YkysAvIUSe5FHBGUBRtJrb2LGJ/Puvjuef9+XQobsvBsm17dqvv+opVsxBmTJpV4kr\nVFBZty6BcuUcTJ7sxaxZxns65/XrMHasN4UKqSxebKZAgXs6nBBC5BqPjSCDB1v55BMzN29Cp06+\nbN9+d3OsJNd2atevwz//6KhZ05FhzbVUKS1Alyrl4P33vVmw4O4D9EcfeREbqzBqVJIsIyiEyNM8\nNjgDdOliY8kSbZm6Xr18+PbbrPcTS67t1FwNBkvPgw9qATogwMGbb3rz7rte/PVX1tqjz5zR8cUX\nRipUcNCnT+6k4RRCiOzi0cEZoHlzO2vWJODlBQMHerN3b9Zq0KGhNubNMxMUZMdgUAkKsjNvntmj\n03seP+56MFh6KlZUWbvWTECAg9mzTdSv70fLlr588YWR2NiM93/3XS/sdoWxY5NkLrMQIs/z+OAM\n8MQTDhYvNuNwQM+ePhw/nrViCQ21sWtXApcvx7FrV4JHB2bQkn9A2oPB0lKtmoPDh+OZM8dM48Y2\njh7V8frr3tSs6cerr3ql+e/y/fd6duww0KiRjZAQzy57IUT+IMH5P8HBdubMSSQ+HsLCfLLcrCpu\nOX5cj7+/g1Klst7v6+sLHTrYWLXKzNGj8YwZk0RAgMqyZSaaNStAy5a+LFpk5OxZBVUFmw3GjvVC\nUVTeey9JRmcLIfIFCc63ef55G5MnJxEVpaNzZ9+7ngftyUlJrl1TuHBBR61aGQ8Gy0jJkipDh1o4\ndCieL79M4NlnbRw5ouN///Pmqaf8qFGjAO3b+/DHH3q6d7fyyCOeOwhPCJG/eE7UyKTeva1cu6Yw\naZIXrVv7smqVmapVM3/TT05Kkiw5KQl4Rj90RvOb74ZOB02b2mna1MyFCwrff29g3z49e/fqOXDA\nQMGCKv/7n+cOwBNC5D9Sc3ZhxAgL77yjzYNu08aXAwcyP0jM05OSpJUZLLuULavSu7eVefMSOXEi\nnv3749i1K57ixWXqlBAi/5Dg7IKiwJAhVmbNMhMfD507+7BlS+YaGTw9KUnyYLDMTqO6F4qijfIu\nW1YCsxAif/GMiHGXOne2sWyZGZ0OXnzRm7FjvTJcMMPTk5IcP64nMNBBiRISMIUQ4m5JcM5AkyZ2\nNmxIoGRJlTlzTDz+eAEmTzZx86br13tyUpLISIVLl7JnMJgQQniyTLXVTpw4kV9//RVFURg9ejQ1\na9Z0PnfgwAGmTZuGTqejfPnyTJgwAZ1Ol+4+eU2dOg72749nyRIjM2aYmDLFiwULTNSqZcfPT6VA\nAfDzU6lRw86zz2pJSGbONHHmjI7KlR0MG2bxiMFgyfOQs3MwmBBCeKIMg/OhQ4c4f/48q1at4q+/\n/mL06NGsWrXK+fw777zDkiVLKFGiBEOHDmXPnj34+Piku09e5O0N/ftb6dbNyuefm5gzx8SuXamL\nT6dTeeIJO126WKlQwUF8vEJ8vMK8eUZUVZvH6+ur4usL1arZKV/efZp/5841cvGijn79LC5zU9+4\nAWaz4nLw1ZUr2gh3gLp1JTgLIcS9yDA479+/n2bNmgFQsWJFYmNjiYuLw8/PD4D169c7/y5atCjR\n0dEcO3Ys3X3yMj8/rel62DALSUkQF6cQHw+xsQo//aRnyxYDBw9qU3wyYjKpzJ+fSKtWuV+rDg9X\nGDvWC1VVWLDASMeONoYNS6JQIdi82cC6dQa++86AxQI9elh5800L/v5akP7tNx09evhw+bKOsDAr\njRtLcBZCiHuRYQSJioqievXqzsdFixYlMjLSGWiT/3/16lX27t3LsGHDmDZtWrr75AeKotWmvb1V\n/P0BVGrWdDBokJWrVxV27NATE6Pg6wsFCmg1ZUWBhARISFCIjlaYPt1E377efPJJIh075m6AnjPH\nhKoqvPiihX379KxaZWT1agOFCkFsrDZvu3JlLeguXWpi40Yjr72WRNmyKoMHexMfrzBmTBKvvGKR\n/mYhhLhHWU5CoqqpmzSvXbvGwIEDGTt2LEWKFMnUPncqUsQXg+Hulm1MS0BAwWw9XubPC7f9NmHl\nSpg4EU6ehKAgGD0aRo6E1q2hVSsYPNgHnQ4GDMiVy+XqVVi1Ch56CObPN6HTwVdfwaRJCleuQN++\n0KMH1K6tx26HOXPgnXcU3n7bGwAfH1i7Fjp08AK8cudN5AG59XnMb6Qcs4eUY/a4X+WYYXAODAwk\nKirK+fjq1asEBAQ4H8fFxdGvXz+GDx9Ow4YNM7WPK9HRCVm++PQEBBQkMjKNIdU56M6MYSdOQNeu\ncOOGljFs3TodXbr4MHCgjnPnkhgwwEKBAjl7jZMnm0hM9KJ//0Sio7XlFhs10v67vRyT/0nDwqB5\nc4UPPzRx+LCeadMSqZTKSMwAABm1SURBVFPHQWRkzl53XuIun8e8Tsoxe0g5Zo97Lcf0AnuGU6ka\nNGjAtm3bAPj9998JDAxM0Tw9adIkevfuzdNPP53pfTxJRhnDatRwsHGjmVKlHEya5MUjj/gxZIg3\nu3ZptVRX/v5b4dNPjXTr5sPzz/vQsqUvTZpo/82fb8SWhRbyhARYtMhIkSIqXbtmfh3kYsVUJk9O\n4ocfEqhTxzPmcAshRE7JsOb86KOPUr16dcLCwlAUhbFjx7J+/XoKFixIw4YN+eqrrzh//jxr164F\n4LnnnqNLly6p9vFUmckYVqmSg23bEli0yMjatUZWr9b+K1JEpXx5B2XKOChTRsVoVPnuOwOnTqVs\n/vfyUjEawWqFMWO8WbXKyEcfJfLooxkHzS+/NHL9uo5XX03K8Rq7EEII1xQ1Mx3COSC7m1jcpdkm\nONg3VTAFCAqys2tX6qZ8VYVDh/SsWWNg924Dly4pWK23RliZTCrBwXZatbLx7LM2/P1V5wCsqCiF\n997zYtUqI4qi8uKLVjp0sFKihErx4iqmOyrxdjvUq1eAiAiFI0fiCQhI/VFwl3LM66Qcs4eUY/aQ\ncswe97NZW1alus+GD7ek6HNOllbGMEWBJ5+08+STdiAJhwOuXlW4cEHh5k2Fxx+3UzCNf09/f5VP\nPkkkLMzK6697sXChiYULb0XkYsUc1Kjh4OmnbQQH2wkP13H+vI5evSwuA7MQQojcIcH5PtMyg919\nxjCdDkqUULOUq7pBAzs//JDA2rUGzp7VERGhIyJCS625a5fBmTxFUVQURWXQoPyfWlQIIfISCc45\nIDTUliIYb9hgIDjY1xmshw/P/vSeJhN065b6mFeuKOzerefHH7U1kZs3t1GhgtSahRDCnUhwzmF3\nTq06dUr/32NzjuTfLl5cpVMnG5065X5WMiGEEK7JqlQ5LKOpVUIIIYQE5xyWmalVQgghPJtEhBxW\nubLrucdpbRdCCOF5JDjnsOHDXY+Mjo1VKFnSj+BgXzZskKEAQgjhySQ457DQUBvz5pkJCrJjMKiU\nLq3VmC9d0mG3K84BYhKghRDCc0lwzgWhoTZ27Urg8uU4ChVyPY1JBogJIYTnkuCcy2SAmBBCiDtJ\nBMhlMkBMCCHEnSQ457K0BoillXtbCCFE/ifBOZfdOUAsKMjOvHk5ky1MCCGEe5IhwW7gztzbQggh\nPJvUnIUQQgg3I8FZCCGEcDMSnN1Q8pKSkjFMCCE8k9z13UxuLykphBAi90nN2c3IkpJCCCEkOLsZ\nyRgmhBBC7vhuRjKGCSGEkODsZiRjmBBCCAnObkYyhgkhhJDR2m5IMoYJIYRnk5qzEEII4WYkOOcB\nkpRECCE8i9zl3ZwkJRFCCM8jNWc3J0lJhBDC80hwdnOSlEQIITyP3OHdXFrJR4oXV6UfWggh8ikJ\nzm4uraQkly7pOHVKj92uOPuhJUALIUT+IMHZzblKSlK6tOvatPRDCyFE/iBVrTzgzqQkJUv6uXyd\n9EMLIUT+kKm7+cSJE+nSpQthYWEcP348xXNJSUn873//o3379s5tBw8epF69evTs2ZOePXsybty4\n7L1qDyeLYwghRP6WYc350KFDnD9/nlWrVvHXX38xevRoVq1a5Xx+8uTJVKtWjT///DPFfk888QQf\nf/xx9l+xYPhwS4q5z8lkcQwhhMgfMqw579+/n2bNmgFQsWJFYmNjiYuLcz4/YsQI5/MiZ8jiGEII\nkb9lGJyjoqIoUqSI83HRokWJjIz8f3v3Hxv1Xcdx/HW9s8XS69Zudw0UcIbYDQj7QdRkK65Tfizb\n1IQlw2I6skQCCASmWQY2KHNz6LAuwPxjTGpiliVg2ND+YYRobGK2ykSWii0LYVmWrrWlZdDSUgrX\nfv2j9miv9+N7d5/rfb93z8df/fZ+ffvOt9/3fT6f9+fzCR+XlEQf/7xw4YI2b96sdevW6d133zVw\nqphszZqQmpuvqatrUM3N1ySJqVUAkCOSvoNblpXwOXfddZe2bdumxx57TB0dHVq/fr1OnjypwsLY\n1cRlZcXy+bzJnk5cgYDf6Ps51ZEj0qZNt44nplaVlkq1tem/f77EMdOIoxnE0QziaEam4pgwOQeD\nQfX19YWPL168qEAgEPc1FRUVevzxxyVJCxYs0J133qmenh7Nnz8/5msuX75m95xtCQT86u29avQ9\nnerFF4slTf9i89JLo1qxIr245lMcM4k4mkEczSCOZqQbx3iJPWG3dnV1tU6cOCFJamtrUzAYjNmV\nPaGpqUmNjY2SpN7eXl26dEkVFRXJnDOSwBKfAJBbEracly1bpiVLlqi2tlYej0d79uzRO++8I7/f\nr1WrVmn79u3q7u7Wxx9/rKefflpr167VN77xDT333HP661//qps3b+qFF16I26WN9FRVjencuekt\nZ6ZWAYA7eSw7g8gzwHQXSz5120RuKzmhsnJM3d0eVVWN6dlnb6RUzZ1Pccwk4mgGcTSDOJqR1W5t\nOF/k1KqJ5T07OwtYexsAXIjknCMmT60qLY3eGcLa2wDgDiTnHESBGAC4G3frHMTa2wDgbiTnHBRr\nD2jW3gYAdyA556Boa29v2HBD+/cXsrwnALgAd+gcNXkP6MipVhPV2xKbZQCAE9FyzgP790ev0qZ6\nGwCcieScB6jeBgB34e6cB2JVaXu9YgwaAByI5JwHYlVvj4x4WEEMAByI5JwHIqu3i4pYQQwAnIzk\nnCcmL+8ZilGgzRg0ADgDd+M8xApiAOBsJOc8FGsMur/fQ4EYADgAyTkPscUkADgbyTlPscUkADgX\nyRksUgIADsPdFxSIAYDDkJzBFpMA4DAkZ8TdYtLnE9XbADDDuONCEltMAoCT0HLGNGwxCQDZRXLG\nNFRvA0B2cbfFNFRvA0B2kZwxDdXbAJBdJGdMM7V6W1Oqt1l7GwAyjzssopqo3g4E/HrjjRtUbwPA\nDKLljISo3gaAmUVyRkKxqrTb2wvo5gaADCA5I6HYVdoetpgEgAwgOSOhWNXbkejmBgAzSM5IKHLt\nbSn6/s8sUgIAZnA3hS1r1oTU3HxNXV2DWrSIRUoAIJNsJee9e/fqO9/5jmpra/Xvf/97ymMjIyPa\nuXOnnnzySduvgbuxSAkAZFbC5Pz+++/rk08+0dGjR/Xyyy/r5ZdfnvL4vn37tGjRoqReA3eLt8Uk\n1dsAkL6Ed9CWlhatXLlSkrRw4UL19/drcHBQJSUlkqQf/OAHunLlipqammy/Bu7HFpMAkDkJW859\nfX0qKysLH5eXl6u3tzd8HC3hJnoNcguLlACAWUn3PVpW9ErddF9TVlYsn8+b9HvHEwj4jb5fvkoU\nx/Pno/++vd2rOXP8WrxYqq+XamszcHIuwvVoBnE0gziakak4JkzOwWBQfX194eOLFy8qEAgYf83l\ny9cSnUpSAgG/enuvGn3PfGQnjlVVxTp3LvoXq9FR6exZad06aWAgf7u5uR7NII5mEEcz0o1jvMSe\nsFu7urpaJ06ckCS1tbUpGAwmHDtO5TVwL7uLlLz4YpFqaoopGgOABBLeHZctW6YlS5aotrZWHo9H\ne/bs0TvvvCO/369Vq1Zp+/bt6u7u1scff6ynn35aa9eu1be+9a1pr0HuGm8ND+vAgUKdP1+gUEiS\nPNOe19lZoM7O8Z8pGgOA2DxWKoPIGWC6i4VuGzNSiWNNTexu7kiLF4+qudnskIYTcT2aQRzNII5m\nZLVbG0iW3W5uiSU/ASAa7owwLtoiJZWV0Zf29HrFGDQAROBuiIyYvEiJNH2hkgkjI+Nj04xBA8At\ntJwxIyJb00VF0UsdWLgEAEjOmEGTd7YKxWgct7cX0M0NIO+RnJEVsbeX9Gh01BPu5iZBA8hHJGdk\nhd2Kbrq5AeQjkjOyInIMWoo+Bk03N4B8RHJG1kweg160iG5uAJhAcoYj0M0NALeQnOEIdru5WVEM\nQD7gTgfHsNPNzYpiAPIByRmOFKube2SEMWgAuY/kDEdiRTEA+YzkDMeys6IYY9AAchF3NrhCrBXF\nGIMGkItIznAFxqAB5BOSM1zB7hj09u2zaEkDcD2SM1zDzhg0LWkAuYDkDFeKvavVVFRzA3AjkjNc\nye5yn2ycAcCNSM5wJbtj0GycAcCNSM5wrclj0AcPXrf1Grq5AbgByRk5wdT+0MeP+1RTU0xXOICs\nIjkjZ6SyP/QDD8wOJ+L6+iJt2vR5nTvnjdkVTvIGMBNIzshJdgvGOjsLwon48OHoXd4TXeHHj/sS\nJm8AMIG7CnLSmjUhScM6cKBQ588X/H9etCel95roCvfF+G85cKDw/58HAGbQckbOstfNbcd4V/jI\nSPTkznQtAKaRnJEX7HZzpyb2ODbJGkAqSM7IC5HV3JWV0VvSGzbcSFjxncjkceyJZO3ziWQNwDbu\nFMgba9aEpowNHz/uC49JV1WNaceOG1Mer6kp1rlz3mnvU1RkaXRUtsexOzvHvwNPJGtpmDFqAHHR\nckbemjwm3dx8bVrCjNUVfvDg9bTGsdk5C0AiJGcghsiu8MWLR3Xo0K1Wb6rj2OycBSARj2VZqQ2s\nGdbbe9Xo+wUCfuPvmY+IY3yTu8YrKqxwF3YyiooshULjO209++wNurzj4Ho0gziakW4cAwF/zMdo\nOQNpmNw1/sEHQ7aKziJFtqSp9gZgq+W8d+9etba2yuPxqL6+Xvfee2/4sffee0+vvvqqvF6vHn74\nYW3dulWnTp3Sjh079KUvfUmSVFVVpR//+MdxP4OWszMRx/Tcall75fVaMedKx1NZOabubg8ta3E9\nmkIczchkyznh1/L3339fn3zyiY4ePaqPPvpI9fX1Onr0aPjxn/3sZ2psbFRFRYXq6ur06KOPSpK+\n+tWv6uDBgymfNJALJirEAwG/3njj+v+rtZNDtTeQfxJ2a7e0tGjlypWSpIULF6q/v1+Dg4OSpI6O\nDt12222aM2eOCgoKVFNTo5aWlsyeMeBS9vegji/RtpdszgG4X8L/2r6+Pi1ZsiR8XF5ert7eXpWU\nlKi3t1fl5eVTHuvo6FBVVZUuXLigzZs3q7+/X9u2bVN1dXXczykrK5bPN31OaTridRnAPuJoRiDg\n18aN0saN48dHjkjr1iX/Ph9+6NWKFX61t0uLF0uPPCI1N0vt7dLcuVJHx63nTrS2S0ul2loTf0X2\ncT2aQRzNyFQck/5Kbae4+6677tK2bdv02GOPqaOjQ+vXr9fJkydVWBj7G//ly9eSPZW4GFMxgzia\nES2OK1ZIhw4lX+09NiadPTv+89mzt36WpibmyZ55xlJd3XhFeHX1qN591xtefMVN49hcj2YQRzOy\nOuYcDAbV19cXPr548aICgUDUx3p6ehQMBlVRUaHHH39ckrRgwQLdeeed6unp0fz581P+I4BcFG/V\nslSnZkUzUYh27px3yqpnjGMDzpTwP7+6ulonTpyQJLW1tSkYDKqkpESSNG/ePA0ODurTTz9VKBTS\n3/72N1VXV6upqUmNjY2SpN7eXl26dEkVFRUZ/DOA3BBvatbixaMqKMjMsgSsWgY4i62pVA0NDTp9\n+rQ8Ho/27Nmj9vZ2+f1+rVq1Sv/85z/V0NAgSVq9erW+973vaXBwUM8995wGBgZ08+ZNbdu2TTU1\nNXE/g6lUzkQczTAVx1jrfZvm1OlbXI9mEEczMtmtzQphiIs4mmEqjseP+2xNx5o3bzy5er1KaW51\npMnJ2s6Y9fHjPu3fX2h8XJvr0QziaAbJOQVcfGYQRzNMxjFyN62HHhrVe+95o+6uZTeZpysyeR8+\nPL3400RrnOvRDOJoRlYLwgA4S2QRWaLnSsMxk7mplvXkhVJidbuzmApgH8kZyHHxkvlMtayjOXCg\nkOQMxEByBvJYZMva5PStRNrbCzRnTknUcWw3z8UGTGDMGXERRzPcFMdMzbVO1/iYdYGqqkZJ1mly\n0/XoZGwZCWDGJJprvWHDjYTbYtp5TrI6Ows0OqqoW2vW1xexnjhyCi1nxEUczcjlOEZWj0+uFo/2\nnFBIktIvQkvEqXO1nSCXr8eZxFSqFHDxmUEczSCOt8zUQiqRIpO1pClzsRONc2dq7nY2cD2aQXJO\nARefGcTRDOJ4SzYrxJM1kdArKix1dU0fBTx0yJ3TwbgezWDMGUDOiNzXOnIc2+649kwYH+f2RE3M\n0tQ1ySPHvRkHRzpoOSMu4mgGcUzPrTFrryoqxhxTQZ6syS3tyG7ymZw+xvVoBt3aKeDiM4M4mkEc\nzZiIY7wlTJ00/StSUZGlUEgxu8kjbdhwI6mEbTfhcz2aQXJOARefGcTRDOJoht04OnWutgmxNiGx\nm/CZL24OyTkF3AzNII5mEEczUo1jtOlekpJufZve7csJ4u04xspt8ZGcU8DN0AziaAZxNGMm4xhv\n/rabKs4zza0V6yaQnFPAzdAM4mgGcTTDSXFMtHVnJnb/cqLKyjGVllp52ZomOafASf/EbkYczSCO\nZrg1jrFa2hPd5LGSe7R9sd3A6auzmaqUJzmnwK3/xE5DHM0gjma4OY52ljmN9xq7hW2xEn42C+Nm\nMllHW8lNurUaXHKFc9HH4k1VvZOckTLiaAZxNCPf45ioKz1RwnfKfPFMFaHNZC3AoUPD2rjx8yTn\nZOX7P7EpxNEM4mgGcTTDznxxO8f9/Z6sJPhYyd3nm7mx/cWLR9XW5s1YcmY9OQDIU2vWhNLqYs5W\n1frEF4Jz57xTNlEZHZ25czh/PrNfSnJnZj4AYEZFrpOezXXQZ1pVVWb/VpIzACBla9aE1Nx8TV1d\ng/rggyHXJOt588bS2mhlYiGbTKFbGwBgTGRXeTaWUi0qsjQ6qpirwdkvnEut8M4ECsIQF3E0gzia\nQRzNyGYc0ylCs5vcZ2rVskxOpaLlDACYMSaK0LLdqp0JJGcAgGukm9zdgoIwAAAchuQMAIDDkJwB\nAHAYkjMAAA5DcgYAwGFIzgAAOAzJGQAAhyE5AwDgMCRnAAAcxjFrawMAgHG0nAEAcBiSMwAADkNy\nBgDAYUjOAAA4DMkZAACHITkDAOAwvmyfQCbs3btXra2t8ng8qq+v17333pvtU3KNffv26V//+pdC\noZA2bdqkpUuX6vnnn9fo6KgCgYB++ctfqrCwMNun6QrXr1/XN7/5TW3ZskUPPvggcUxBU1OTDh8+\nLJ/Pp+3bt+vuu+8mjkkaGhrSzp071d/fr5s3b2rr1q0KBAJ64YUXJEl33323fvrTn2b3JB3s/Pnz\n2rJli5555hnV1dXpv//9b9RrsKmpSb/73e9UUFCgtWvX6qmnnkrvg60cc+rUKWvjxo2WZVnWhQsX\nrLVr12b5jNyjpaXF2rBhg2VZlvXZZ59ZNTU11q5du6w//elPlmVZ1q9+9SvrrbfeyuYpusqrr75q\nPfnkk9bbb79NHFPw2WefWatXr7auXr1q9fT0WLt37yaOKXjzzTethoYGy7Isq7u723r00Ueturo6\nq7W11bIsy/rhD39oNTc3Z/MUHWtoaMiqq6uzdu/ebb355puWZVlRr8GhoSFr9erV1sDAgDU8PGw9\n8cQT1uXLl9P67Jzr1m5padHKlSslSQsXLlR/f78GBwezfFbu8JWvfEUHDhyQJJWWlmp4eFinTp3S\nihUrJElf//rX1dLSks1TdI2PPvpIFy5c0COPPCJJxDEFLS0tevDBB1VSUqJgMKiXXnqJOKagrKxM\nV65ckSQNDAzo9ttvV2dnZ7hHkTjGVlhYqN/85jcKBoPh30W7BltbW7V06VL5/X7NmjVLy5Yt05kz\nZ9L67JxLzn19fSorKwsfl5eXq7e3N4tn5B5er1fFxcWSpGPHjunhhx/W8PBwuNvwjjvuIJY2vfLK\nK9q1a1f4mDgm79NPP9X169e1efNmffe731VLSwtxTMETTzyhrq4urVq1SnV1dXr++edVWloafpw4\nxubz+TRr1qwpv4t2Dfb19am8vDz8HBN5JyfHnCezWJ00aX/5y1907Ngx/fa3v9Xq1avDvyeW9vzh\nD3/Q/fffr/nz50d9nDjad+XKFf36179WV1eX1q9fPyV2xNGeP/7xj5o7d64aGxv14YcfauvWrfL7\n/eHHiWPqYsXORExzLjkHg0H19fWFjy9evKhAIJDFM3KXv//973r99dd1+PBh+f1+FRcX6/r165o1\na5Z6enqmdO8guubmZnV0dKi5uVnd3d0qLCwkjim444479MADD8jn82nBggWaPXu2vF4vcUzSmTNn\ntHz5cknSPffco5GREYVCofDjxDE50f6Xo+Wd+++/P63Pyblu7erqap04cUKS1NbWpmAwqJKSkiyf\nlTtcvXpV+/bt06FDh3T77bdLkh566KFwPE+ePKmvfe1r2TxFV9i/f7/efvtt/f73v9dTTz2lLVu2\nEMcULF++XP/4xz80Njamy5cv69q1a8QxBV/4whfU2toqSers7NTs2bO1cOFCnT59WhJxTFa0a/C+\n++7T2bNnNTAwoKGhIZ05c0Zf/vKX0/qcnNyVqqGhQadPn5bH49GePXt0zz33ZPuUXOHo0aN67bXX\n9MUvfjH8u1/84hfavXu3RkZGNHfuXP385z/X5z73uSyepbu89tprqqys1PLly7Vz507imKQjR47o\n2LFjkqTvf//7Wrp0KXFM0tDQkOrr63Xp0iWFQiHt2LFDgUBAP/nJTzQ2Nqb77rtPP/rRj7J9mo70\nn//8R6+88oo6Ozvl8/lUUVGhhoYG7dq1a9o1+Oc//1mNjY3yeDyqq6vTt7/97bQ+OyeTMwAAbpZz\n3doAALgdyRkAAIchOQMA4DAkZwAAHIbkDACAw5CcAQBwGJIzAAAOQ3IGAMBh/gfkbhuoXWmbMgAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "8LfKmPOdmUM3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "These curves look much cleaner and more stable. We are seeing a nice 1% absolute improvement.\n", + "\n", + "Note that the loss curve does not show any real improvement (in fact, it is deteriorating). You may wonder, how could accuracy improve if the \n", + "loss isn't decreasing? The answer is simple: what we display is an average of pointwise loss values, but what actually matters for accuracy \n", + "is the distribution of the loss values, not their average, since accuracy is the result of a binary thresholding of the class probability \n", + "predicted by the model. The model may still be improving even if this isn't reflected in the average loss.\n", + "\n", + "We can now finally evaluate this model on the test data:" + ] + }, + { + "metadata": { + "id": "tGUfJE8gmUM3", + "colab_type": "code", + "outputId": "c370dfcf-8ecb-4d5d-d1b2-05eaa1b1a74c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + } + }, + "cell_type": "code", + "source": [ + "test_generator = test_datagen.flow_from_directory(\n", + " test_dir,\n", + " target_size=(150, 150),\n", + " batch_size=20,\n", + " class_mode='binary')\n", + "\n", + "test_loss, test_acc = model.evaluate_generator(test_generator, steps=50)\n", + "print('test acc:', test_acc)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Found 1000 images belonging to 2 classes.\n", + "test acc: 0.9349999940395355\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "YILhtr8xmUM7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Here we get a test accuracy of 97%. In the original Kaggle competition around this dataset, this would have been one of the top results. \n", + "However, using modern deep learning techniques, we managed to reach this result using only a very small fraction of the training data \n", + "available (about 10%). There is a huge difference between being able to train on 20,000 samples compared to 2,000 samples!" + ] + }, + { + "metadata": { + "id": "Rz3Ost8_mUM9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Take-aways: using convnets with small datasets\n", + "\n", + "Here's what you should take away from the exercises of these past two sections:\n", + "\n", + "* Convnets are the best type of machine learning models for computer vision tasks. It is possible to train one from scratch even on a very \n", + "small dataset, with decent results.\n", + "* On a small dataset, overfitting will be the main issue. Data augmentation is a powerful way to fight overfitting when working with image \n", + "data.\n", + "* It is easy to reuse an existing convnet on a new dataset, via feature extraction. This is a very valuable technique for working with \n", + "small image datasets.\n", + "* As a complement to feature extraction, one may use fine-tuning, which adapts to a new problem some of the representations previously \n", + "learned by an existing model. This pushes performance a bit further.\n", + "\n", + "Now you have a solid set of tools for dealing with image classification problems, in particular with small datasets." + ] + }, + { + "metadata": { + "id": "Lx66A1aEmbcO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# 5.4 - Visualizing what convnets learn\n", + "\n", + "This notebook contains the code sample found in Chapter 5, Section 4 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", + "\n", + "----\n", + "\n", + "It is often said that deep learning models are \"black boxes\", learning representations that are difficult to extract and present in a \n", + "human-readable form. While this is partially true for certain types of deep learning models, it is definitely not true for convnets. The \n", + "representations learned by convnets are highly amenable to visualization, in large part because they are _representations of visual \n", + "concepts_. Since 2013, a wide array of techniques have been developed for visualizing and interpreting these representations. We won't \n", + "survey all of them, but we will cover three of the most accessible and useful ones:\n", + "\n", + "* Visualizing intermediate convnet outputs (\"intermediate activations\"). This is useful to understand how successive convnet layers \n", + "transform their input, and to get a first idea of the meaning of individual convnet filters.\n", + "* Visualizing convnets filters. This is useful to understand precisely what visual pattern or concept each filter in a convnet is receptive \n", + "to.\n", + "* Visualizing heatmaps of class activation in an image. This is useful to understand which part of an image where identified as belonging \n", + "to a given class, and thus allows to localize objects in images.\n", + "\n", + "For the first method -- activation visualization -- we will use the small convnet that we trained from scratch on the cat vs. dog \n", + "classification problem two sections ago. For the next two methods, we will use the VGG16 model that we introduced in the previous section." + ] + }, + { + "metadata": { + "id": "9FJ0xpkAmbcP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Visualizing intermediate activations\n", + "\n", + "Visualizing intermediate activations consists in displaying the feature maps that are output by various convolution and pooling layers in a \n", + "network, given a certain input (the output of a layer is often called its \"activation\", the output of the activation function). This gives \n", + "a view into how an input is decomposed unto the different filters learned by the network. These feature maps we want to visualize have 3 \n", + "dimensions: width, height, and depth (channels). Each channel encodes relatively independent features, so the proper way to visualize these \n", + "feature maps is by independently plotting the contents of every channel, as a 2D image.\n", + "Let's start by loading the model that we saved in section 5.2:" + ] + }, + { + "metadata": { + "id": "yi-OjXeZmbcP", + "colab_type": "code", + "outputId": "8837151e-0775-4de6-e7ef-2b8f7fb0cb1b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 553 + } + }, + "cell_type": "code", + "source": [ + "from keras.models import load_model\n", + "\n", + "model = load_model('cats_and_dogs_small_2.h5')\n", + "model.summary() # As a reminder." + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_8 (Conv2D) (None, 148, 148, 32) 896 \n", + "_________________________________________________________________\n", + "max_pooling2d_7 (MaxPooling2 (None, 74, 74, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_9 (Conv2D) (None, 72, 72, 64) 18496 \n", + "_________________________________________________________________\n", + "max_pooling2d_8 (MaxPooling2 (None, 36, 36, 64) 0 \n", + "_________________________________________________________________\n", + "conv2d_10 (Conv2D) (None, 34, 34, 128) 73856 \n", + "_________________________________________________________________\n", + "max_pooling2d_9 (MaxPooling2 (None, 17, 17, 128) 0 \n", + "_________________________________________________________________\n", + "conv2d_11 (Conv2D) (None, 15, 15, 128) 147584 \n", + "_________________________________________________________________\n", + "max_pooling2d_10 (MaxPooling (None, 7, 7, 128) 0 \n", + "_________________________________________________________________\n", + "flatten_3 (Flatten) (None, 6272) 0 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 6272) 0 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 512) 3211776 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 513 \n", + "=================================================================\n", + "Total params: 3,453,121\n", + "Trainable params: 3,453,121\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ZZNirQ3ombcS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This will be the input image we will use -- a picture of a cat, not part of images that the network was trained on:" + ] + }, + { + "metadata": { + "id": "nletkIg3mbcT", + "colab_type": "code", + "outputId": "698a5fe2-e63a-45ec-e5f3-e81ee3892df4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "img_path = 'data/test/cats/cat.1700.jpg'\n", + "\n", + "# We preprocess the image into a 4D tensor\n", + "from keras.preprocessing import image\n", + "import numpy as np\n", + "\n", + "img = image.load_img(img_path, target_size=(150, 150))\n", + "img_tensor = image.img_to_array(img)\n", + "img_tensor = np.expand_dims(img_tensor, axis=0)\n", + "# Remember that the model was trained on inputs\n", + "# that were preprocessed in the following way:\n", + "img_tensor /= 255.\n", + "\n", + "# Its shape is (1, 150, 150, 3)\n", + "print(img_tensor.shape)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(1, 150, 150, 3)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "FxwYCX3-mbcW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's display our picture:" + ] + }, + { + "metadata": { + "id": "rqwj_wIEmbcX", + "colab_type": "code", + "outputId": "3498976c-77be-4a9d-a0f7-e1caaf462a08", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.imshow(img_tensor[0])\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWmQZNd5JfZlvtwrs/aq7qrurq5e\nsDYWEqtACBQhQuBQskLUaCYoIUzP2D8sW2GGZIdCnGCIIUc4gpbIMEMSHSExLIuhH+MhRhiJQ0kc\nAQTFBSCxEPvS+1JLd+175b76xznnZd/bXQ0YDbpIxfv+ZFdV5nv33fey77nnO9/5Yp1Op2NRRBFF\nFFG8p4jv9gCiiCKKKH6aI/pPNIoooojiOiL6TzSKKKKI4joi+k80iiiiiOI6IvpPNIoooojiOiL6\nTzSKKKKI4joi8X4f8POf/7y9/vrrFovF7LOf/azdcccd7/cpoogiiih+YuJ9/U/0xRdftOnpaXv8\n8cft3Llz9tnPftYef/zx9/MUUUQRRRQ/UfG+buefe+45e+SRR8zM7MiRI7a5uWnFYvH9PEUUUUQR\nxU9UvK9IdGVlxY4dOxb+PDg4aMvLy5bP56/6/n//t9+yX/roA/aNp541M7M2/0+PxzGscqVqZmYt\nY1FVB3/P5vD3ZCowM7MgwGurXuP72nhtN/GjV5TVsYw3Ehy33cbnAp6/3W7brzx6v/3d0z/CuwIc\nJ0gmOE58rtFq8RXna/H8iUTCOX8+U8D7Gg0zM4vFYs4o9PtcLueMp1ZtOefT9dbrdfvlhz9gT/7g\nuHMcHbfZdMfhh3+8ZrPpfD4WlDH+Nuc5nsL1tdxxBwF+DhId/j0RHvfhew7Z0y+cdY6703n98bfb\nPG48jXF0YnzFfCSSxvdh3qyTtCBI+lfJv8Wcn3WOD981aD98Y8FavId6VWjudC90L3UNFnPP599T\n/2dFqgef0z3XcXWeVqtlH75jzJ59axHvT6XC35uZxTt153NBHMfT9es47bZ7XDPc02QizetL8e/4\na63a4PUFfL+Ls2L8brRaLfvQ7UP2gzdWnOvUvHSfQdzbZOB+FzSeZDJ51XnS5+JBy/l7Op125k3n\n06vmqd1u222Heuz18y6I8/8v8Mep+x3eX8b9NxVsp4i9n2Wfn/vc5+znfu7nQjT6G7/xG/b5z3/e\nDh06dNX3b2wVrb/36v/BRhFFFFH8NMT7ikRHR0dtZWUl/HlpaclGRkZ2fP9/fvIZ+zf/+uP2l1/7\nezMz68Sw+gmJtriKduJCJFi1mi0gTiEZRauB36eJFIVEu6sVjlNpYHXTqlapVMzMrLe3Fx/jqlyt\nVu2/+1cfs7/626fNrLuaCg20iZDjXL2S6e4qaGZWa9Sd8zQ9ROkjMh8FheiHSNBfJdvttv3GL95r\n/88/vOh8TutieF6uspev0pcfR6u6/l6tYgcQJDR/mPdkogefJxKt13F9yVSc48NrrY7PZTIZ++WH\nbrRvfP+UM47L0dbl16/zZjIZ57zWERrEj7EYri+T1Xzg53KpESKb7u6Chwg/S5TNZ+1XHt5v3/ju\nmSsQio+oNPf6WdeeSvc416Tj+MfT50O0H7jv93cLQRDYI3eP2bdemnN+HyLPwEXOQpatVofnabnH\nD1K8Lt7bwJ2nVtND2ObOk667UuV1p1L283cP23deWb3qdej94TPddv++0+5Dz4KeyUwWP3eRtDnj\n1Pt0Hj3DQRDYz9zab8+f3HI+7383/GfRR9SK+27cGey9r5zogw8+aE8++aSZmb399ts2Ojq641Y+\niiiiiOKfQ7yvSPSuu+6yY8eO2a//+q9bLBazP/iDP7jm+/3/9TsxIRoMq1Is4e9EllpNc1nwE0Iu\nLXJiWaKCRIDjNGtVnkmrLI6TyQoB4vzJFt9PhBsixaDhvCbD1ZurNFfXOJFRk0i4pVVTqxwRaSaD\n8Wk11Oqnn7WKanUN+SIT3+Ui1i7q4qi8+Ww0K87fmy13NRa/JS4zFudxU+Kn3PNbx0X+4tPi4rM6\nOr+LGsLz8X1Cmj4Hq/ve5SHJjbZcxG7W9n7WuANr1BvO35JJF6HFPE4U70legXR8rqx7ze5uoGNX\nRy47IVuNKxbErvp3f0784+r8jQa+G0Kg4ou748N5Om0X4SWT+nzD+Xuau6h6XchO1+3Otb+b8V+v\n+E5rHrxn3t8N+d8Jf/53+tlHvlfsTr3dncJHoP44/OfhWvG+60R/93d/9/0+ZBRRRBHFT2y87/+J\n/n8JrSpdnsjlUYRYuFhehtxcviaZiDs/t1ta5XB56TSQVDabxXF7sZrWakBq+Tyy4cUi+BOLEdnm\n8Ll0hsiu3HDGH+Oq1agBaSZSQmz4fVaIi+Mul5EZ9bP24tc0Ps2Hrl8IT6uj3q9VV6/6ezez2XGO\n46/ytVrN+bt+7iJgopmOXoUMO87PTRGORC2dmDtO7Rh8nlHX719vN1OOo6aSOR5fPGfHe1+dv49Z\nNpfmnJHrazWdz4Qcn3WRYL1e35Fz01xorEJwilbbRdk7IVLNRchn85pDhMhnIvAQaVvKD3F/Hlpv\nNFwuMFQPxPjVDjQPeF+95t8LvK3GZ9hHeDpumBUnQN3a2nLG5SNvXVfIEfM76b/fP77GGX5HrO68\nT5/375ePSP3/WzQeXbevxvARrL8DuVZEZZ9RRBFFFNcRu4pEtfp0eSKXd6nVteqQt4i5q4hWJXGb\nMeoH40QZytL72ek0Eep2Cchru7hpZl39oRBcoQAOM8nVut7E+ZQsU/Y9leQqKU1ciLSUOSXf0nIR\nmFZFIbAw2510tX7NhotifG2dVmEfabZaGG+14n5er1lytIpwnERXjaa0iFyleT3iSEPuMuQ8ncOF\n49d99q/b50qv0KnGXAS+k5ZQnHcsFruMy9NnjWN157Srg8Rz4fPTujahcx9Fh5riRMb5u8+phc+2\nl61OhM8sxqDdjP85ZbWlDAnirra2i+a52ylVOX5l4/XM4B7EY6nLp8yChM/F6mdXsaH5qHsaZ39X\n5V9veFydz0OEl2ueL4/wPnBz5yPQ7nffRZD+ef1n7wp1RcqdJx+57sSpXh4REo0iiiiiuI7YVSS6\nU8VOmEmNu5xfgtnxRhOrbV9/zv2cdKJpacXczFudGc3TPzxvZpBhmZmlqHNMpohcW6zU6bTtE488\narEyVq1Dk0fMzGxxEVUk2QxWudW1NTMzy/Tk+DnxQOIOtVYlnfH4HKePchShXpLhr476vF8F0mln\nnfe3xTFy9S2XXBXAFRliqRKSqvrhuMlvSadZLJWc+YgH7nn96/Vfw/vrVQcJFYXIuCGk7r6/0RCK\n6s6b+FpRn9Kwhrxuu8vhtVqtK5CKz9cK0WiudrpnfpbYn4Nwl1EHHx9LiEuVwoHj5bVnUziv+PQu\nUnS5vGZDcykOV1l33AvR1k3vGajXPC1zy+XndfwaudR02n3GfbWCvoshLy+EHuYpXETv7558ZNvd\nWZjzPn835ucDdH0Kf4eg3aTe7yPhnY5ztYiQaBRRRBHFdcSuIlGfR4knxKcws0cYodp5rQ7ZrFZN\n8j9EJtk0+KnNjXUcz1x0cOHCBTMzK14Ecpo+N43jkzuUPjIX1jUD2f7g+z8wM7OeYSDYW265xcy6\nXGZvAbpVcYNNnddcpL0T1+dXUfj8nFZjrdI+cvRX8TATbOA85QUQIn8iyhzRhkLnS5KIiiUxv50Q\ntSnrL2+DbV4HM6HaQRD1+LyXXxm1U5WPKshizDCHPJ6n8RR6u0KT6F4Vx1rksa585Dudzo7Z9Z6e\nHuf3el9Yyx5yru5x/d2Er4MMPH56p+yxEGhYBSeONiklivHzOH8ul+H5MM5qpeZ8PkVdab3GZ8rL\nGwT8Duq8KSpO5Oeg8LPvfjbbn6/AQ6x+9lzPtI/cfeWJry+9vELJ7Mqaev+75CtT/O+kwq9oulZE\nSDSKKKKI4jpid3WiBkTYigHxSJcoBNIk16WqjICrVcrjzup8X42auA6zzqpeyZBXasewSp+Zfc3M\nzNYqqPPPEdnGicA2t8jrNLB6PfHX3zIzs3s+eCOOX0Y2f2zfqJmZjeyHP0CTiI3JcEtn+szMrJDt\nxzgrGG9VdcoJrO4Bea4kUYA1MS9Bh65QaXGi5DY74jiFQF0kplU4HXdX4XA1l9QxJjcrcZ58X0vI\nGAh7cxvXm0qp4ijufC6VctFMl1fkqBsuCrLQZIsINOZWdvE2WosVZBbguF2Noc7nordOPGmtEIzy\nHwQYqYyLWHyE4dde69rENTbDA4vzZNaadfvtppyl3Oo3RchTmxQOicunIlSgKLI57BKkkU6Kb/Z1\njlKUxFzNcjd7z2dEmuIMEW0RaD/JLL40zwmhezqkxWN81hp4f4o8ea1eN7OcpVWtpxJ5+V10xNkK\niYpP5zNKxUdC1XjcLWUJeFsdKkuK2O2EuxeqBhJ8Y5XObdod+Ry2VAGtCn7fm4Y/RoL/x3R4/2oJ\nzFuF9y3VkW9FlJ2PIoooovixxq4i0Ubd9UJUVr5alS+oVi/xHOSViDDl7hTja4foIiE+hvrNFLP8\n+/eMmZnZOWbmMmlcfrUG/mdzDY40ca6OpPpCJPvKK2+YmdnWFvi1D9yL1ifZXiJKcrIBOV2t6o06\nkHa74/JIAktCE82mixhjHZf/uXLNczOc3Ywlz9O4ehVJIuSe9XkXtQSBm0kWHybez/cB9atPqhWX\n5/Kz83qf//ku3+VmYPV3cdA+4g4z5t71OtEWYmpc8ad4PL4jT23vwGt3fRnc7PROiFfxTvpD8cJX\n7CK84/n3XJrgbtbcRWh6xnx/0kyYrXf9FlJJ91kJ54nD7+4+kt77+B3kd7bZVs28njnuPnieJhG0\nvgudOI5byLk+C+F16zvvIUbNh59dT3F88Zj7HQznNSZvBV03qyWDiBONIoooovixxq4i0XgMvE+9\n5q5eWgXkuBN6C9KlKckssbLh9Y6WRWrlQgSkchD8fbAP3OTeYXCY3/ved8zMTFSk0sqNMrL7Y2MH\nzMyskGVdchpI9vxpeDyePYNs/9HXJs3M7NF/8aiZme2bwOcSTSDqZkNuUrwu+WOKHyNaaPD9QUz1\nz+LXtF77SMvVNG5vgz+SVjDhOQwlwqoXF8F2M5fmvF912QI/2in42r0s+SkfWfqvvi7Wrw7pZshd\nNcEVnQk6cuDR791xXi12qo3X8a90sOczaW5FzJV+of7Y9Hf87KP3lqeN3Sn8GnJfH9lVMFzdDaqr\nHXaRaZNZefHw4mhrISfqfueqRO7deyakp2dISFy7CPc6pNxokRuVfLctp69wV8FdUFL3iQi2WnaO\nl6OaoLyF72iDO4yA3K52KwnOS6OK70TC8Pcid4WFAvIV7Y52fTh+mnkRZe+7z41b3Xd5REg0iiii\niOI6Yncrlnj6jOcO3tUTusPTz0kCs3pLtepY1TMplz9pKpvL1KFq8W88epOZmb3x6itm1q2VL21j\ndWtzaamypn6gDxzqzNSSmZn15ZHha7DPzfTZGTMzO/nWCTMz6y/g/WkiWFV/tMThCoF2xNNcPbse\ni/kOM1fnRIVGdJ56Xc5FTedzfm8koQghVyF/ZVY7bSLkOn9OuNU4Ya8oc9HOjq5SXmbZ1/r5KMqv\nyulyph5SlY71GlBUSONqPX3a7fbOvZE88H+l1tdF2dJdyiGsi8KZTac0IhGkdxyre3yXo9X4d+pS\n0Oy4XKDPiaoLQ1PKFT6jTc55mnmEUHscuPdcu51E4HoGqNtAlwt17410rJ0Yn0mJidu618x7tNU4\nizpW5kXK0ruGzviYz1wu75yvWS05159Q4Zq+S1QJVKkEafJ+tDmemBQv4TP2zjgzQqJRRBFFFNcR\nu1yxRN6iofpZt4Ip9KHkalhnBZGozq67uGqrmXmNu6jiH//xH83M7K3XkV3/8N33m5lZIQcEnEnj\nODcfnTQzs40VZOmnp4Awm9TIFQqqKCLXyfEN9INrPfXGWxg/eaQ94+Beb74F+tJkD5G0+LdAq7ZG\nqtVbqIWvpswqa9bJ+3Tdyt0stvgpaRi76MnjKs1VBSjDG46G05nJXL2yKU01Qhdxuq7lfjWL7zbl\nu1d1Xb30WLr3MZVyq0h8ZBvEutymf85w7ELBl3GSqVTqCremLk9L5FJV7bh7DWF2eIdr7VboEIEm\n3Xvm+1ruVH21kyLiijnwULuq8cLPt6/uUuTfm/D83q5Dmm1l5/3zNun8FRPnKZ1pnfMk/ppdF2LU\ng7aokNmmn4P8ShNeV4OW993fZv5ECpLegUGchx4AykfE5D/BjrUNfqdCD2BVLUpJEu7Koux8FFFE\nEcWPNXYViQahk716GakumcMKIRq1XB2sKo0OtV/0SCwxg9cR4qIWrcpVcWMbq9rcEtyXnv/hC2Zm\nNjAIJMpFy0YGkbHbN7YX4yHC7afzvbjMNDnc2RnwQ+XtDY4Pq9vLL6BP/W23A4EWWC0zdoQopCfu\nXF8n1Ly5yDERIkyXd+o6z2DeSnRRUoSI8oolUquqW/8dItN27Orv9hx3/Ky6wvcrVfjZd0WouiAi\nDbuMej3K/c9dqeXsnt93U/KVAVfrxtnpdK6oXdc1tpqu05XGqLnbSUHgh+9z2Wm7tdsKH8n6Nfe+\nU5ff7SHwkGy3xZFbwaUIkbdevWfMf5/KyQKvL72QfDqj767b7YDAz+rMljeb0Fpvri6YmVm1jN9L\nAz51Dj4Vo6NQxBw4AMXL4hKqDM+ePWtmZoX+ITMzO3jwoJmZHfF0rdbR/y1E2hqP7oeUL5qvpmQV\n+vW172t3BqKIIoooonhPsatItKUMnBxp+HOlwtpxpdZUFUJE1iBPIgTZFEdGBBsiuAo+f/QmIMI3\n33zTzMyK5FtqVWTfe9hLKcZM4S033WBmZoP9yMIXiESzPUI5dOBPjJuZ2dI8/ETjzFiOj6Omfurs\nOTMze/jBB3heZP+HC6ylF8crfWSgrp4uuvFfhRLko+kjylA/KTQQog/9Q45A0hqq75Cn1wzRkDnv\nSyZd3q07PnfcO3lH7pSl76JIc44nF3q5s3f7z7uZ8oS1Q0QUcqGi9pQ1lqLBAxj+HIdjirm6zmTS\nzVZ3s9Kqnus4v++6Crl+An52PeyptAPK9l2m3qkLQFff6O4OYuKbQ2cu97pbXq24v/uwtnSi+K7I\n7UnPRNj/K4HPbWwiv5Dt4LuxsnwJn2/gu/f6q8+bmdm9d6H67/S5M2ZmVtvC/wG9h/FdvDQ7a2Zm\np06dMjOzqRnkK8b2AaGWWWO/ugwFzY03w2mtUsLvs3x2GwTQyST7mVF5ktSuVxrkpvddukZESDSK\nKKKI4jpiV5FoKkkeJaXqCv4+hVUi1Cd6GblWApxkPXT14VrQFM/hOrkUBoEob7vnTjMzWzqBVW2I\nSLNZBjLdLmI8Uxfnzcxs336scqk+ZPyCEgaysgJeJpPBqpzJ4/drq+BGX3oN3KtcoP7mG/AjzdJB\n59/+D/vMzGx4EOObngP/0zeI31dqdFFPAbE2quCPruitpNWzrR7irndA6JgTF3J0eSwlHhMhgncz\nuomki1KEOsIeUzXxe8q88vPcUXSEgsJ2QUSa0oeqBzortVJpZdZZ4RVKNfH7Uklu8kKyrLJRVU/K\nrGkuwlKNtlC0fAMu9xXtxLq13clAY5ZekM9UhzpFItMax5jWPfHgSBdIipN1FRA+Gt/JV9N3Vg87\nxgY5vk96T6F+VoWRc1SnW+3q4p0BfE5VfvJnCIRktSuiKqEmnlq19m7+IpnWdw0/V/isLs4vm5nZ\n/CV81xZfB4c5P4/dWashDTYQ6lvP4zs4u7DJ82DcCwvfNjOz5WUg2lwWz95QL5QvK7OoHlyamcb4\nb5jA/DQ3zD7xiFkdx6vyu53pA4eqvmEJKkxU+99qqbpPjmrv3PUzQqJRRBFFFNcRu+vipPpcZjyl\ng6xV3Yyo0ETobJ5yuTTVniuyWawuW1tAhn19yLr39pLjPAKeZXUJq9jaJt7XnwcCTqf8bDFWpQIR\nqZDPJrPyyhwWy9SPbgg5Ai0888z3zMzs5hsP4XicdnVmFChQPXQyQ1PFtjR+rm6yWyXjZmC770Ok\nM26/nfC17XcybDs/67W0Sc6Y7u5h5ZXXF+cKHq6jmn/yfQ2v0kienHFX36qa/J2Oqw6Wus5uxZU0\nipUrdY4mz9Wr9yU3w3PoV1v5tdO+8sDPmu8Uvk7Vd1b3uxXspC7w+1AFrLJLh1rbKo+j6xRHievs\nSbIqsKU59Ry0wvlS1eDVu4+KWw67GXAe11ew+1rfQH5gcQnc56svoyqws4RnqZda6TzzDAcP4ruz\nvAzkKu32a2+eNjOzVMrto6bvjPIBk4cO8Drw9/PnpszMbGICiPTsWezybr79dryP1xN+txMu8gxi\nqjhzr9/M1UpfHhESjSKKKKK4jthdFye5CxFhpNPqby5+R6u/+7n6DuhAq4bqe8UnDQ8Pm1m3quGZ\nV5ARHKIuNEvk19cHpDoyAr4lxVVxZA90o40SeJlh9qOvUR6gLPuDDz5oZmZLi1iNp6bABwnJ5XJw\niv/7v3vSzMw+9su/YGZmBXKMJaKJeAxIts3VNZkBNxqiHnHEchgSj3VZL3WzLjfZbAi5MyPccj0l\nw0omU58d+nTG3CqWnfoA+b9XgtdHcT7fJ37Pr6GX56f/eWV+EwlXDdDtAR+/onrrShQvJNbNusbj\n8fD9QigKHU/IUe/T7qalKrkdws/6d7uBupVVfh90P2uv0OerNWad43TA56TXWRmUkPM+XYnEz1fK\ncvqi2kAO9mFzA29OdW9FERKhqrZdbkpLi9B7zs4A+b3xBrpH1Cq4xw3mCzpNjrdBRM75HhwAV7s2\nhXxErgfvK27j7/kefDcrFfy8vY3s/amT4FrzhSw/h/etLON8P/zhD83MrG8A/wdM3IT71pNV11JX\n7xv6Rxh3gYmodj6KKKKI4scau9tjqem6NnVC12u5/rjD0+qa9vgjkYIpOtAkyN1tbK7xeDi+/EQP\nH4VudIPVEsUyVrUbjkyamVmZzvr99B0NdZkyoGE98NAI9KBFuj0dP47a+UOHwLnm2CenvA1kWSlj\nHM+ye+h2CRnJm2672czMMnkg1aFh8l5JZW7zvA6XC/Zf/b+LbBUilc5S1SbSiUpPGiTExwmluTyi\nkKNUD7pvPo8Xj6knVMx5VYWV0F0y6WaehQ59zaR0s7Fw5yL9qssbNhq18BnqOkcJnbvHlmetGebN\nz4L7/eN1zb5+85040Z00sl1Pd/d9Pge6k45Uu7Z6XfcEux19R8plKV8w7tAbQMVs4abF9WYVopXe\nVVn9sJ88XZIq/M6cPIFn/vwZcJjH34Y/xcbaCseDz2f4Xa8ynzHYC+S5MAcutcrxXZgFEo0lcH/2\n79+P463ju7KxAYQ50I/vZoPfxRJ7Ri0uzvNndkll94wzZ6AKGDt4BMcPyHl21POKHrxx8fJul4Vr\nRYREo4giiiiuI3bZ2V7ZWnFvbhZeq2o3W4u/thtuFjdEGUQ6dWrbUuSDkszWDxCJzs1j9QuIBvYd\nQNZ8ke5N9x66G59LgzcZn0BdboK2RpWKtHrkuchd9vaCb3nlpVfxe2bBb7wRyHR5cZWjBTr4wfee\nMzOz2emLeN8xVFkMDqLqYvIQVs0O3aMGB6EOCF2P6EAjx5rQ6Yb13qmsMr9uRVjokp5Slt51JZeW\nst10uWZxu0I1Ch8RB3LKEXppuvxareb2Bg99ScMe5b6Tklvto+v3fUUv/3fX6UrcozuGy53uW61W\neEwfCe5UOSRUHvPe779vJyWDELI+p/H6blJ+1ZffNdR3d+oqIfB7v1dTl/vE5xsN16UodFkKs++Y\nl2IRu6naBr47p068bb/2X33I3nwZPhRF7vq2FpGVT4lj5LwX+rArGxrAMyQ3rY0VIEv5e44z/5Dj\nd2l1E+ft68fnkyloqS8SsWazON7Cwjrfh93c6dPgSl968WUzM6NIwW678x4zMxvN9XIe+FyYHO5d\nX9h3E+/5P9EvfOEL9vLLL1uz2bTf/M3ftNtvv91+7/d+z1qtlo2MjNgXv/jFK7ZIUUQRRRT/3OI9\n/Sf6/PPP25kzZ+zxxx+39fV1+9Vf/VV74IEH7LHHHrOPf/zj9qUvfcmeeOIJe+yxx659ciJF6Q8F\nDlSp5PfOVm/qkCMLewh52WHpFLmK1uX7yYzq/oPQkJW4ek7Pog735qNApOofr15NGmeejvUNVXmo\nJxM51FtvBZLs5yp6+gRWwwTHVziCVfTEKfBHBSK7V19GJnNuDghUjjT9eSDPkUE42Wxu4O/Su5ZL\n6xwHkSd7nsdZ+bO8jlW+p6fAeRR36SJSzWdXS3l1NObzf139pqt1rNdcDaGfxfdRmc8/yvJH6FBc\n7hW1/R5aa7Y6XTeeq7g1XX4OdcXUuP1+5fqcr+f0s+y+q1LoZsTj6NWvideY/ay/79a0E5KVwUCM\nuznt6lRp1A2Xl9YuwO+nJQ407C0V0y4F7y8WwUleOo/a9gb9LS7NXDAzs81V6DwHe/EdCfisDQ2y\n6q4J5F6tkVOlWiDHiqE8EWW1Ied/jGN8H7Lqul+xOJDpkaP4Ds9dYrcJItDZWYzntttuMzOzkcER\n5/qrROah36uqHeXTwHdX6+68XyveEyd677332p/8yZ+YGb7QlUrFXnjhBfvoRz9qZmYPP/ywPffc\nc+/l0FFEEUUUP1XxnpBoEASh5vKJJ56wD3/4w/bss8+G2/ehoaGwAuFaIS5Mq2O4GntO66rC6Hj9\nbPyMZogSuDSE+sPA1YtWq/QZ3cDqKqQmX059Thyn3JVMyFl9XYgAh8nzHKdz/t5R8Dq3keM8dRKr\nd70Jjd6tt4AjnSGvY6zj3dzE39dXkO1PxjDu116HP+mhQ0DKHfY0Ug27atybLayyWl3zBdwjuUSJ\nFxRvlgyRtosAG031AHc5aV+z6CPTEDXRsUcu6Gl6IYTVMWG9uPv5lFQX5nK8XZ5Sa7573y93Z9ez\n00XBbrWT71yv6/O1q76m1a8oCruDemPwOczLz3H5530eWD/7yoedEKq+G5qTdNrV0gpZKvt+RT94\njS8mhOyOSxVQcpg/ew67p6Up6EBPvIlnfWUJz3CS4+zNYfx1Zu/npoAMU70Y73AfvoP91GQrb6A+\nX4MD+M6lWdHUSbH/fEGIFsgghFXTAAAgAElEQVS9Ucf4C71ZjhO7roOTQKgrq6yg4m6sMICa+dCk\nKqzccv1YW6bdbIa/f2cXp1jn3bxrh3j66aftK1/5iv3lX/6lPfrooyH6nJ6ets985jP2ta997Zqf\nX9/YsgGagEQRRRRR/DTGe04sPfPMM/bnf/7n9hd/8RdWKBQsl8tZtVq1TCZji4uLNjo6+o7H+Ptv\nP2ef+rWP2V/99X8xsys5L6GHBlNrQr9Xevy5fFOSrkRaTbUqa5X9h6+jln19BTrReVZZ3HkM+tE7\nPwBvw6aZ/bvP/k/2F//XX+Ms1KT1ZLFqlqgPrWwDdbfIjc5dQoYywf7yU1NT+HwHq/OZ0+BgewtY\nlZeXwM320mFm/36spuvr4Dx7juJ9okuEigqFgn3qX/+aPfH33+R86bqJRlJA2PIiyGSAXNURQDsA\ndRJo06moyn43iRTO66MrPyOsCDWYCZ63VrNf/6Vj9vg3jzvj0/uUkfY1kPGE6/ouBN1FtMb3G3+W\n4Wkj1Il2+VJxex7Py/f96iNH7T99+0SIAP0eRqpgkjIhvEYlTT0dZ9hl0uNQ/Q6pGrLupfSPyg8k\nk0n72AMT9u0fzdnl0d2tCaUTWqmLpmk35vYtC31OO96uoNN0jiMvX41nZnbKzMxefPFF/Pz2S2Zm\ntjw/ZwuLs/ahe1Gll2A2PyWAK3cpIsxUL+8lK6p6s0Cct98KZ7XZWXxnzs7gfLfedgzH6XF1rE1W\nOq1yt6b/wi5ehMJlc3M9vI7Tl6btgds+YmZmOYK1Bx5+2MzM/uVjv4Hjhbtbc6LRyTs/P3RHwXaK\n98SJbm9v2xe+8AX7yle+Yv1s0vahD33InnwS5YxPPfWUPfTQQ+/l0FFEEUUUP1XxnpDoN7/5TVtf\nX7ff+Z3fCX/3h3/4h/b7v//79vjjj9v4+Lh94hOfeMfj1FjTXW+6OkWhiDIrerSq11rKpCXt8uj2\nV0dU6PSSUA24NHlc9Y/dj8zdf/xLrKrqYx8rc9WTYzy5TusnN9vE6tmglq4eZ1UEkd3+/ZP4Pfu1\nX5zC6prrB0c6z+qM4WE4z6RTcY6XvZrKQKRrW/Q4ZLXJ2ltAzD+qft/MzD72S4+YmdniOWT/G9tY\nlYMsVss4qy+CpjhN8n+c7wY7LaZScilnNj1M/FItwR7cqrUXjdZsuFn3kB/k+1tN6GEzytoHRJbq\niU7dqtqJtomiknSditWJ8lQ5RR2ufFVTKbnUkwtXdUmsz+IpZr/VZZLdHhOqbiKSibW7nGgySIVO\nWom4y31miH5DfwLulvT+oE1OMs6sPrPOoYO+qrWq8kJllpyPrDjcIK4+XjwOx9dsuKg/5HJjqkBy\neeJ4sMNugZxnyvC5GjXVgbpF0LWoto5nsLQCBHzpbWiet2bAiTa38KzuKeBZS3EikkS6cX4Xcxm6\nTslJPgGw1ZNxu0+cugjONJ3BdX/gfiDTUpVZ9FaO88OrjGGce+gRvMo8QoGKldUtfCe3qBU/df6E\nmZndeuutZma2MkvvXipZNmus6qMmvKIvQV3ne+fs/Hv6T/STn/ykffKTn7zi91/96lffy+GiiCKK\nKH5qY1crloRg/B7dftWJIsxMmsuJXtFd0rQKK/uPVU28VpIIdXQUGrLaChEgdaMlrrZ3HDuKcajy\nictqldynNG6JNLjD1VXwMQcnkEU/chCff/558EnbdKDZZBa9Wsdrvh8IN0mkuLhCZQOz20VWOm2U\ngGR7+jFfP//oR8zM7NRJ1C8PDGIck6zdr6jntuaT9eI1Isk2s+OxMMNLvizMJKuqRZlkt3a93mCX\n1ab7+xy5V2V21YEgSImnpGaPaCPsxKjMd9LNyssRX3e9KUcm6XXDXuExC/iZCnnhjPw1iYgCKh6C\nTvfRb7Y6IcrWq+r4VRVVLOFa9UwmyfXFOqqeEn/rVgKJaw15Z3GoVSkQVBUmFyY8W1JedD1WzXlf\nLK6svnYDroNWq6k5cz1n00m3B1SJnXDrfDbfeg2a5UoFnOj2xjrfh5+H89RzMvue5hymeQ81rp50\nivOFd/SMoFZe3rtbJVYiUbtdquBndb5tCgqafFSpq+V99TXICj0zyp+IoxbHq2dUPycLGFfT7ywb\nd7nxa0VUOx9FFFFEcR2xq0jU71ToV6KEWWZPDxqPtb3jeKsIQ7yQUIBWr/5Cr/NzjpVI+Rw7Eq6g\nCmJ2Cn1b6qwbzvRgVc3Kg5EdA9fXuCon5IhPh3uiEVVPDND16fxpVrdUxIUC5Wxu4Txxfj7PcYp3\nKjFzevokOh72D/faJ//rf2NHDk2amdkGkd/FGehSh/cjw1mg3jVcVcWXkb/reO5JXd6u7MxjoIqm\nuHxHdR+IrpiRLVepQ03r/Tp+lfNHNJh0fUZDb83QxUskOe+reM1Qy6fnAedJZ1JWp7IgKW9S+QW0\n1Y9J2diuD2g8EVzxDIoD1bX38BnRM6meTMEOnqp+7byvIy30uHrQfC7lvK/TIudpLhca6kVJdQbq\nIkoEnMqknLmUOkH3vlIBfy4OdHMNu683XgcC/c63/hHXS06zuL3O+aADF5+Bg0cOm5nZ7azSyxFx\nr1Gf2WAlVg99K/YdRNWd+O88/SDqfCYy9A/VM99Pf9HNjTrnCccbm5w0M7PlRXxH09R4N9vYvQ3w\nc+enoIDZs2cP58H1adBrQpVp3AHEuRuLJYRwIxenKKKIIoofa+wqEt2pltpHoH79cTzmZh7FR3Wr\nNYyfU3dM310cf+8fwKr3xvNwonnwHrg3bbP6ocUMX4N82EbVrRTqhP3niSqIIJeWsEpubWw676/W\n5QIFLrBMhLtGNKBeUUIVWj3l1L/F+uVsFuf77tPI1p8+iczpvn1QASzQSWd4DNxsjaqDDB38hcpU\nyRQws6wOkA2mjpMpuWIBASdiRNoVOcy7PF/oCh8nb8hVvUU1gK6vVsN1tIksmw2vnjkujtT1Kw3R\ng94Xc3cYje1NgWxr0Gczk6VuU4qAtrpVdh/9eq0UPmt6hqTXDGvSQ+dzItsQDUvx4D6z4lRlTBai\naikOxG3Kz0D8LjlM/7UjdB6Ommif3Kx4Z3UrlUJFVWt6huLMbpfocP/tf3rKzMzefvV1MzNbvAS9\nZW8P5q1DpJjrwT2dOABfB3G5RfbhWuSzeeAA/CHWV8Hjp4lE3z71ppmZjY7gGU0yn9DDLH+G3rsz\n7Cd/w03w2F1mryZxwXKT8qsUb2cPpWoT51lmfmKT41O1or574SyGFWDu7jcduP8nXSsiJBpFFFFE\ncR2xq0hU/I5fR+x7J/pcp88vdeuHgaiqzMZ3vRvNOU6WvJG40tvvBGd5gb2rf+aeD5qZWZEZPCPy\nCthfvkN+JkZNYZ69sE9QFzo9jePcevNNuD7W+3aoCRwZRGXSBomtegnj7efvS0Ws/kuX6JnITGOa\nSHJpEa7h/awz/sF30Efmlz/xcTMzu+UGqAJmzr1tZmYHD06amVmtCMQ7OASeSNUaoUN9U7paZtFj\nygSzzpiIVL24W80Y5xHzqV7sFXWe5OeScd1fZoyb8hN1O2yqjrvF+VLnxRCFEY2kA9XBG1+ZqW41\nQ2/VeExzTk9T9e2irjPT0y03TnRqoQN8PqxcogNYWdpUnDMrr1NqXJvhGHisxNV3V35/+XAXFlcW\nXW0TxNHxnnQa7vtDGYHeR19T8s5r63L6wjO5toafhcTP0IE+4IBPnsAzsrUJ5CidZ0BNdk8PnjlV\n6amvvJB6jNn+0X14puqc7w6/kyvcjR28eZLXwRr5YeQHpAgp8zt25wfh93mcuyvpO1WJtDyP74QQ\nZZydefUMywFt5iJ0rr671vHjx53x+zgzrERrud4F14oIiUYRRRRRXEf8RCBRvze3X23hezHKV7TL\nyV3dt9LnM7SK97Fbp1yRTryOqozRvdCNXroIXmaM9f/rS8g4pqs8bwC0kkxgte9jRdIaOwzeddc9\nPB/GM38Bq+LqNFBBjIhtYwmIMl4XpwdUMdqL6g5KEI1JdCuRDxroHzezroP/3CyO881vwIPgPlZ9\nHDqCca3Po7JphO5Sy9NY1TNZ8VF0zklgddaqrXHmOM9a/XuplVxcxLwYkXIn9N7E6r9N1/LVi1AL\nDAzRRYvXW6fGUZq+UM/KrqhhZ05OQJWIvSfhel6G3prtmq0yO5xhD6KyOC5ycC0qJs6+DQ7wkYdu\ntcWZ0+EY9OwUyNUlhfy4u0kSqQrCtNo8LrnWjnr1cM6qNbd7qCIW9vZBKFseKiG0G1APJK9KrNVm\nZ1jCIHnmSk+5uMAeR0TGF87jmV4iX/5PT3/HzMw21oBAV3kvC8wjSOc5PiJPW7y2krhO6TtTVBUs\n8zgVZrmF9PaRI02yB5R0rSX2gMr14Ljr1KPmCrjX+8aR/Zd/RF8fa9f5f8L2plvNKP3u4tkpMzMb\nG4MaQEhWutA77oAvRjWcL3xOiLio+8DvnN/n7WoRIdEooogiiuuIXUWiO+lAd+JIteqUS24lju+Z\nqG6W3T4xrku1VvNBum6fP4962oNcvfJ5ZmYJdM7Qif7IbUCuLDkPnXQS9CGVc9W3nnrazMw+8jAc\nbrRKqqrjwgVkQNvMSmselohMxycmzcxscj+qO5Z5/CY5VWXHW6p5Z3XK9gYyrmsrOM7P3AcN3yo9\nFafOQl+6dxzHT2j6yEEmWdGUZk/utleHXWOFkSq3VI+9ThQS9imSrJP3c3UFKKdCfpGXEfYOz1G9\nIAf7ClUQyqgW2clR3gP79mFecjmgm2wGr1vldZu/NMu/UYdIBFkpyiuW3F6pixDfeOWVUE+oZ0/V\nbeo2qWdGSosQuXIMvt+nrl08veYm1IHGXa5NDvJCll2HLLfjqbBrg9xvpSzHKxxvkXy5nl1pkNX5\n9u23wYHO0C2puo6/HzqIOW3zHuWp25S8QLXr+yYOcPwYxx5+ZwZZ/TdMrlPevCpFz2SkAcd1qTfS\nyjLGtXcPdlfz7H92081AkJUtPFt+Z1n1G9tgV09l9XXechn3V0hW+RN91/WdrHucdeg0VuH/QQk3\nH3O1iJBoFFFEEcV1xO5WLLGWuhV3PRlVfxsiVP1Xz99nskSaHXVGVNdQvLGjTCyd2cWhajWqyM+y\ngGz4nglksy/OAyEO9GM1nV+UryZW2ZlTWOUnVTWxBY6zUgH62WJ/+b2sYV++iPcPsn/90J1YfQcH\nsQpemp7C56lDtVUgxrN0A1ftfGsDLk7NJFBQm/zSFrnCeaKsupzpnwffd5g9nfbuAZpKJTHPy/Os\nGx7HceQ10A6waneIaraI4NXvxtqY7/I2tXY1cqvSLBpW73XyTXFpImuoJokZs/stno+Iepacc7GE\n47cbmMfVIaCcpRXOD+HVMtFWs4NxDIxgR5FoxkI/gGQHSGWOPpPS8ApxqBOsmVkQ1Gx5GYoKIZ6V\nFWXXi3zFNQqx1mqYu56YauPxrG3RBUn8utyIWnSw6qOiQk7sSXW0JTwXZ9vhLqpR3uK4MXfyAiiu\nY7z6zlRYJVbkvcn24Dwr5Eb/6dvgQLcvsYa8iOu7gdrigV5WfQ2i4qeXWfneHnZx4K08+RZ2M0J6\nU2cwjv3siHtxGs+qkLz8HDo0Gg0yzGtwvnJ05G/zfhxmZ9wm8wllfveTrA5sscY/x7zB1DTyDXKm\n76MTWGkdCLaQAZcq1UCV0LjNHYkUNuouEW9LoYLzBO8MRCMkGkUUUURxPbGrSFQQs9t/Xv6ReFHV\nR+jNGPbFwSqlLHI261auaFWSW3c81IvifNU6a93JV+3di9X4LDVkch9Kx9QnHav7yBC0hcrsiRfr\nVkPUnHEIUZ8/i+x4kpnNNFe3FnmzbTraZLX6078z3w+kvNogz0OPyXboVUmnoCRWdfFuxQrOv7hA\n7R/R0oH94HQvXQJaWFjAa4F14QHrylURJdclVRHnyCOpakTXb7xPFSLDdMfNKCeIdBt1OfPg+EN9\nQBML8xhnm/xbmVn49oDbK77OrH6ZvJ1AxOIlINm+nrzlyVFKSSDuSxSksu4rS90eYPVS5QodZ1gt\ntkY+md0JKoeRNRbyjGUwhzInz/fi+G8ugKMbGQEiTWWApM4tYKw5VlLFWKMvjrBGjnNjfdnM7rH5\nS0B+Wday16htzhJhqU9Yk1lvaXeL7Nf+5qtw+Npc2+bv2S0h62qqt6lNLvM7szCHLP7ggJApnpGj\nN6H7g3wUBok0xTXGiSh7+/A52Wd1AtzLnjw9b5kVb5m0xnyW4vIUIBKv8u/Uqabou5qmU/49d3+Q\n14Hv1ptvwz9UGmopSOShkGGWP5mUF4HxVd9Z7v7eRaWSIkKiUUQRRRTXEbuKRP3e3uKdtMr7Ok+h\nBbkASXN2RRVIyI2KW5U3JDsSchXvZPG5m29Gne7z3/++c74C9aR1ZtFn57CaC13oVZq/A6zaEJe7\nyvrhLHsVSdtXI/JUvfDecWQmV9ZQ3SFEubEKfk2rdZxZ8RzrkY2raYbavjId7mvMPL/59kkzM5sj\nIl1axvgPHgQiFaKs1nEedQ1V9ctwD44vDV29RdVC6PouJx7ykGl8rp8oY2Ya3K7c0ztSERSB7ooV\n8HULF4l6RjF/+TwQf4J8YSKg2xb75KyuUWNI9Fbo5WuhEPoVyJo8zYqWTNLtoRRcVjtfK1atN3RG\nd7PBjTKOkyMnt3hR6B3P0Nwydi9p3stVamOH6Nil6rAiEaaUFYMDcuJE5Mkh6p6MDOP4a0tTZmZ2\nK71tO6xgmlvF8VaZ3e5nF80GXayeeQbP8sI8eXspWtQloNF2fm5zVza2B+POETl32m5/qwXpSQtA\netpFHb0R1XllbzeW524jT0f7AvWluTy7d3KXUlP3BGqV1TpgqI/+pexn1mlpVyrlCF6n+axNHgY3\nuyrEzd2dONEJVjTp/5ym/guUHyr/r8jmXdXFtSJColFEEUUU1xG7ikSlC9TrTj27FeK5mLgLEZtf\nobRTr3BVUZTp45nk5Ysb7COPo8xihjxMkn17Cr3gKCt09Z6exio82A/U0CDXKsf7QSLZFLtuSv+Y\n2QfkmaUeVehji2jhEFfLs2emzMxs7zh+3mAWXq/SFrZqrjONVtW5+TXOG+bzjTfAzd5zz31mZvbo\no+jVNMO+M3VmsOusx+6l+/s2M84je8Adqw59dBxIfGmZPZVYabQ8B4Q53E8vR6okpF0cGcL7YtS1\n/vxHfs7MzGbnUBddJipZZRWLtIe6z+sruL9SQQywp3jdmtbIijelPpLoPEvULI40lex2TRjo7bcL\nF4BkQs9aPoub5ET1s98NtNbAGGu8twki1v1Eou0irvHcW9AaixttbeHZOnoDOFajIuHD7P9ldFuK\nd3Ad8TZ+fuaZZzDmffdzbqC8eIpNIudmka1eJAIN6E5U4zNTWgUXnC/g+oMs+5kRca+s41nJseeQ\nuNqA83fbMYwvTx/Pm26BnjMpxM9nSPdqlfOXGsD7tw3XWSlzF6mqMypR+vVs8PMrs/T2nTlnZmZ7\nRjB/a9v4/fgEnrGBQXC2y9QkD5ATlftUpsOdSIvObNRGx8gx69lsUn9bVdXeu+ixFCHRKKKIIorr\niF3uscSulIHbo1vGKX6mtIcZwpYQHVGF7+qUoUuTemiLYy2VyKuwvWetilX+2DE4wC/MgJuTE9A2\nUczNN0O7ZuzPU/V0kMvz+FxmDxDRYD9W8a0tfD4ZY419L5DuM889a2Zm/YNYLQdYffHRR3/BzMxe\nfO5HZmZ2wxHwYIvUvIm3E1+zvArEN8RVN5HA8RcWgOjOn8e4+vsxD3v3Qnd58hQQaf8Aznvf/chw\nvnX8Zc4T0NPeXiJA1Z2rLjyp+ZRbFjWOddWPY1nPMlNeY1Z9zyiQ4+Aw52kPfl/k/RzbD13r7Dyu\nS/e3Sq1kjMetEmWqfrpZoRtYymxjDchQu5QMuT7x41vsHpC8jBMNgiCsVBHykP+mEK20wadPA1FK\nkRE33OtMgv27yB9X5UG7RqUH9Z39VEJk+AxeonPY3fd+wMy6VV3bJSC4ngLu0etv4rwHJ4H8gl7s\nAt54FY70TdZ8ry5j7tb5bATKfnNXNsZnVO5Qo3vATe7fj2dj7x7qW3lvBwdwnUneczmN6bt56DCe\n0QrvfZa7qcVluUnh+Kq/qlMLnO1J8PqIzLlbLJA7FdeaZFb/lhvB468sYdc0OYldkZEv338APx+8\nAd+Rv/n6N3E+OoptcUew78iEmXWdv+QH2+0YzCrEVFdH/E4RIdEooogiiuuI3c3Ot9WnXH1v2s6r\nUEGzpS6f8puk8zpX1xaVjNKFqppCzjpl9qYWT9PpSIPGLHMc6GB6CpVH/ayIijWxGm5usTIn08/j\n4/cJuXuz+uS1V7H67qVbUaupTpC43p5erPY33YRM5tlp8DyvvwU37n6ijiDsbY7x9XH1n5tD9c06\nkamy6OrYuM6MpAqdBweBKkJ3K2rgBqg/vUS/0nPncF379gEJLi7i93NrQFOqF49n1MES5y0S9YXt\n4YnmCkS4FakQqA0cGQMX3JTjER2Heodw/iSz7AuruF/VCs5f446iuIXXyQNAE1PnMR8TB4BS0vl8\nyJurhrrGXUgqcJ2/KuwfhQsIbIKKhRMnoDOUI30/+dY51nTL01U/HyS/rV1Uma5NWfLDHcN5hofJ\nwfLe9PVhTveOAe13FSpEZh0828tUVPTk8Ez19uPa3zwLRPbGG2+Ymdk6kd/qCvj9FOc2FfZ0wnGb\nVfDbaXKB/dzdaFdV4fhTRPCzdLqXT8EKO+PW6nX7H83shRewazp2B5zl5WR/N3l31a5rZxD6K6gi\ni968/dRvljYx/iBsW4pnaGEJvx9jlV2nc9n9s67e88IZzIs4b91vVYjtIdJW14tWnEofcsdN+qgm\nUld3grtaREg0iiiiiOI64idCJ+qH3/VTIe1eEIs5P8cD6UJZFy0dqSxkzOW71tgPJkU+K8FV+e67\n0WPp3HHwTPfddx8/h3EODAFhKfPXZpWDMSu/ytVyiUguoIxAqoDlZdZRB2530sNHj5iZ2fYaVt2A\ndulNrtoTh4BcVX2RZ6XQ8jI7K9bdTGKd1R7LRIrSW5bJm1XmMc7JNDK7U7Psa3PLh83MbJAektPT\nyOSuruA1xcy3upwm6EkgJKy+Qek+/L3EOmdldtXfPuxvxCy8Uf/a4nXs2QPEPj0FpC4uuIfuUlu8\nLvGa9So7d9Ya1mrJPYljoJ9BjHMmnwVxpGZmq+trIf86RmSpvlfiv0f3shsAd0G6Z2lWXzVZpaX+\nWnLWSlB5ItcmIRshZdXilyqYQ2W5txbpPhQAoQVJoPXvf/8VMzNb3OK9Z5b5whQQWA+vO0sOs0iF\nQ6DzV8Q1AtGNjJKfpqOZ+Ooks+XHbgfPvr4Ofr+0BWQsP1Hx88dPoLLqgQcedOZPfHmdSC9gH/ok\n8wuhLQO9a3vZcff8OaglpCg5dFhuWvSJoJqhVeMBgm6nApwf132Jrl7aTd1wA/Ib+i5lmKdI0de0\n2+k2craPIoooovj/JXbXxYmreNjVM0NEaVoFmDlrqT850ESrpr4yOI7PpbZY1bC1iVUrSCgzi9W+\nRk3ceg0ZzEYvVq0HP4QM6cnX4HQ/cxGrWDaPz5ebWF21qg1QKzcyCrfs4gb0nEkO7BJ7XyvTa3F2\n9yS3OTi8l/NAJ/gqxrvCDoWqNP/BD7/L66cXZgN/KTMjupf+mps8zwr9RNN0HReqWKVGUDXvK3RD\natWBkN94GQj8ww/9rJmZLWSBDoZHyCcS4Z85A3SwZxCrf5sIMkM39NEBIMstIutOC8ffoh62Raec\nBrnwDepDNa+rU/g53WZ9d1nejqxkC4jw8+Q3q7ivlfUtGxoCMjp3CsistE0lRQ3nSlEfKV2kmdnK\n2pYlkxijnjn5GgyNAqFMHAQSGh8Hh6kukj3sk97hrmF0ye35k2RNeIP+BQnqLyvsYnmONeeFYSCi\nFSpEjtyELHyV3OG3vvGfzMwsQ6R66QKQ1Moq54rfmRyr2MpFPNPKepeLuJ5Bap0zfDY21nCcagkI\n+uIUdxPUNh8+gF1QMoFxf+hB6FNfeglKjt48u3by3l+6gN2DuNYYzz9xYNLMzGrUaVao1VaFVcBs\nubwASlvM4jNbL3VDvYz5WFtT1Ru9eFem8PdmmvMBRH5wEvft3vseMDOzkRHscnI9rDZUDX+bx+du\nKt7Q7jZColFEEUUUP9bYVSQapwYslRZnyb7zzNiJtwqz9aHa7N2F+CtxhL67uHipgHzW6ABWqX7W\naOv9Fy7QM3E/VqWk/DOp+dumHnR9g5U6zE4nc0COA1mgjK0NXKf69CwuYvUvERVtU1uovi/bzE6P\nDAE9vMZMrHg0vV66BPSiyqeAiHVtg5VGQ8rSm/M+ub1XKxhvjtq9D94JRD5Cp/4L54E8N5eAbsQP\nrjETnCGnWSKirZzG++XE02FVSpEu5OrsmCJ/N88OjoOs8pE2U317xiaAJuott1oo7CHOVHqxVLOx\nUfLhNbxXWflhcn8EmhardrOu6XQ6dEqX47uqwUaIRLULkF+CHMBafHYaVHzsp9ZVSLQmR3bqSBeW\ncE3bZYw9z/OubeKaB0aQhZ9i5dGPXsLuoMFrXJrF7qhVdyurpLVeZb/1Njm9XA7Psnj0vXtV0y9t\nsbomcNfBKrCNdfze91Etcbd0253QVtf5HStwV9bUd6tKn1OpJZr06mVlUY7IdbvEXQSRaYceuUMD\neF+h7yaOgzpU6jfliVCqun3VLk3ju7B/ApVgbVrCibOuN1yuU8x4WKlG4Kn7HSHRKKKIIoofc+wu\nJyoHGfVUiksbhhfxJHJlUlb+3eJRv+dS6LxDHkkdFpe2sXov0aGnzIqdKpGqXNDTPJ66XW4wa63V\nWgg2oMYsw2oMIeLaCl5XyfsMECFWW0CMWWavh6jv3HcQmsAaV2n5fB4/BXcmrZLNsMOi6wwUpLCa\nr7P2PRl3vQpUxy2OVNzp+fNTZmZ28DbUSedY45+mp6US2wV6TapjpNyk9rDGvlTxOg/wNZ2Rcw45\nTj6Gp06iK6gx46qsvPjrQv8AACAASURBVFBduer2pFJGfZvOTSMje21hDuheWfoOHabUb10ZffGv\neG/LTp2ib6e8VNVXivpNRYhgxOMTGW2uUpfKvuzyF40H0o+ycom8f2Y/+PM6j5enb0PfIHZDr76O\nXUc/n4WLs3hm94wD6c6dneGI2s4c6V7KY1aofota59Psa5VIco4LeD12DFlrPRuTk0Ce4tdniYzv\neAj8/779eDbvvheKljU6kJWK9F+o0YWJSot6BePcYEfcdALjTSXIQTbVY4rZ/LZ6YOWc6yAgtblL\nvM/c5aiWv68Pz4j8TZNUA4xzh9DD3aMQamheHFZL8n5xF9itnXez/5fHdSHRarVqjzzyiP3N3/yN\nzc/P26c+9Sl77LHH7Ld/+7fDBz2KKKKI4p9zXBcS/bM/+7NQL/anf/qn9thjj9nHP/5x+9KXvmRP\nPPGEPfbYY9f8PBdLs5hq5LGqhJVILZePUOb0nUL/gUsvqk6H6j3d1Zvy+BSrLS8CWTLBaSqnlV6z\nQ/fsDJFpilUci9QGblAvKa2hdKXKzk8cAk+jbqVyAV+nlnGbnRdnLwFlqPpjiRlbdZ4co+/mOfZi\nCl3WuWomyTcV6+rNzUxjW5VdrDgiN3qOmrwWnYKKHG8wwOw7+cES0UCVFURZctmahx5WHG2X1D0U\n1xcP8Kquq20i4uUFzHeJvFmeyHP+PFBPk1zzTbchUz3PXkzyWR1iXba0nIPxpMWo5AiID7IFIBnx\nxsPDuCfZvB4+uHgNEFXLL0F9zsNOreRAlZWfm8MYxbWG3T/ZL0xKCFUA9Y8CCannUl8fuMnefjrA\ncxdw4jTuxdz8Msc9z7nDw/j226huM3V8lWM7x9kkci43VG1GfSyf9Vqx6RwvkcB1vvE6KrXG9mBX\nMTDA3dAejHuIVXivUbmyzeqx119HP68jR+B4P3IIz2iJz7h2I1k+eym6UxVZydQO6H6VUBUi719O\nWmI8O1vbdOcq4Vms6PrZFaO8TqUJOVlx2r3sGbWH38ltOrBl8ejszI3G3z2+fM9I9Ny5c3b27Fn7\nyEc+YmZmL7zwgn30ox81M7OHH37Ynnvuufd66CiiiCKKn5p4z0j0j/7oj+xzn/ucff3rXzczZOGE\niIaGhmx5eflaHzczs1SKzi3k3FTdIF1otSWPRvwshKlVomPXrmv1+9ULGaVYFRFWM9BMW9n/frpp\n7xnFqjo6Ao5PfdKPv4VVe4XO9U2uskJ20rCJxxG3Z02cP08EdYF6yzjHp/5AKfI4YQ9zItrZi0Co\nSb5/lFn7wYF+5/1yrFFdspZZuWC1qaPNF+Qgj5/VL2eYqGP6PDjKcTrvC5HKm1N9abo9p3D8FLng\nEtUGU9OscZ+YxPiJYFfJo2WYQT7OHlc9fCy3eR3qb6T7r52EOgekxVkHidBP8tZbb+VngeyOsItk\nqD2+DD+ooszssmeEz/KBA9DgiiMVEtUzVSP3F+PcxMjR6ZjajcRZbZUkYuzvB1copcIz34OzV4KK\nhYvsYjl9HuOPsdMqm1lauaw+7NJSJzkeHG+IDmE1VtM1G7hH+RSelTQ7xgb8Lo0Mj/H6sHuJx1h7\nbphP3YOHHnkIx+MmbrAX55F7Vod9wPJ0vm+0xXWSD8+T9y+wcoy7pRS7KsjToEqOdGsD1635FiGf\nSeNZU995+WUkiOj76PF7w83I7l9gVZ46DWT4bAVUkIjv13dRu+J3E7HOu8nhe/H1r3/d5ubm7Ld+\n67fsy1/+su3bt8+++MUvhuhzenraPvOZz9jXvva1ax5ns1i0vssI/iiiiCKKn7Z4T0j0u9/9rs3O\nztp3v/tdW1hYsFQqZblczqrVqmUyGVtcXLRRagyvFU//4Hv2ax/7JXv87+H9p9W00yaXpk6B/H9e\nnF2T7k9CokJgzaaLVKv0C93aBjIUJ9ou4v2LS8jYZlPsW0PuMdEEGujP99hfff1x++WHsPq2mnIB\nx3FH6SmpTKhelRG+kXW6motF9t+pseIoySz+ElG7tGwTE8h85liXXGY2/zgdhk6eRHY+kU7Zs2+/\nbDfuwftDlyoi8HJHGkAiWlV+BUBFfXn2yWElV29vzhl3OsedAlUNymgKmWaJrjSvhw7R85F9f4Ig\naZ/5Xz9nf/yFL5mZWaPOjgPs16Pa/pd+hHpw9d+pkfPMMZOaYMZcTvfyLU0QlSSJGvbvHw+7EkxM\nYixvvgV0O8M+TjFm5zWWp5/9W/vEv/hkiDzllKVa8ttuv8XMzKZngAiPHQOyESre3GTPIvLEQ0MY\nc5pou0b9ZYp9o9LcbeRz4Bxff5P39NQUzwOFyNb6sq0sH7cjh+7ENVeBgLc38ayUQ50orj0VUEFB\nQr/EiqX+AfVKwnjbVdfNKsXXLD1jD5A7HBsHYtsg2t+zF+M9NIHr39retv/t//4/7Y/+l39nZmbD\n1J8Oj+F9GXLEJc5LmtnzdhkIMMVdZjauZxM/LxMhVojs44b5FId7kR65l2bxWhigtpgI/CVytodv\nOGr//huP2//x5S/jvHRGK/RiZzA6hvxErocuVvxOCIlay0Wij9y/x3aK9/Sf6B//8R+H/xYSffXV\nV+3JJ5+0X/mVX7GnnnrKHuJ/PFFEEUUU/5zjfdOJfvrTn7bPfOYz9vjjj9v4+Lh94hOfeMfPCIml\n6UTfajAr3ySiaqt+VT2h1ZBeXTyv/qoMnc9UhH9nl9BRcn+lMjKgs9NTZmZ28yRW/zYR5SqR4jxr\nwSvk+s6cgxbtyAFo/u79wF04ET/31qvIpGqV7yciffEleDCqcml1jS5J5EJf/tELZtZFlk2iJj9T\nHE+6XKp6nleJkkr0Uc2RA47TqyAg3yXELv4ulXI9GA/uw/wsUrUgZBgPRQ30rCQnKfFEjSqGnh7c\nVzkbFeiYU6QTUJMdJw8fhTu6Mr6ZPs47kefECFClvDpZBm8b7O20nz6lG+uLdvgInLfkVC6P1Jde\nQRb56A1AlovUP+K97ZALFZou0ulLv7/xRmSfz51DbfhRjjlLBUWrJp9M3LM679kWefRsLMlrwrWP\njeLnbz35X8zM7MAEjp+iNjrL8za5mzJymgX2DGqaOFjcK9XUt7kbEw/fbFZ4HTiMehfpWerJ4NlJ\nE4mr4ukCHbR6+L7FJXxHVmfxHZg8PInz6TqpRd7cwmssgZt0yx3gppe2qXzhLqyfzmlpfjdqPE6K\nP8cTeNYC7krrdVcdvsx73zK8f7OkPADmRTpddWE9dx5Vh2NxHG/I64ahVz3L7di7z7lf93+in/70\np8N/f/WrX73ew0URRRRR/FTFrlYsZegMkyT3GWffGbU3qZH7ErJUr+xETD2UsMpK0tWhrrROxKLO\nfhVmzUvk/lIx9ughIkrH6VgzAZQi/ajqrjNJrOpDOepYe8GP9PeDXymw2mSG6CZI05F+kv13mFJN\nsQf2xG1AO+Iam014Uwr1CCXI87BCHam40AcfhGej1ADDI1h1hfj27oWa4IGfg073H/7hHzBe9gDX\nvC0uQp3wM/fBmSdGdYTQR4mdGztcldWTST2W1GM8TV7p/AyO16zTH7QttES3LrpVNRs4f5NcttzP\n5SZf5Ph6OK9xdh1N8zjqyzPSq/4/OO7KzIzN0e3+pttuxrE3MIc3HMMcq+op3XtZQjOXsQ324vkA\nHdrlGH9xEYjn6BHcs+ERKDYWFsEDZ7KYs4U1nLeTAPJV/3ntfvpb7LlEdP3k36Fr5+EJjOvUqbfN\n7PKsPx3h1e+LustuNwe6QrEz60hafd6pEaZWtx6Xoz77k/Ebn6e7lLYPLSFE8uJje4C019fwTAmp\nbfF8NSozNtmFYIketXF2xr3jg5j/8iq9a4cmzcysxHxEg6qGzUB93nFdWTp1ZdN41hpE2AuXoFYY\nGMP87zsEhH/yFBQkcfLmaaoS7vgQnukkXZ0aJZ63Th8OTwcaUJmTpJuTkP67iah2PooooojiOmJX\nkag68QmxWMzNiEkfSgo07MUkp3l19QxYkbO9TYd31d9Sg6fMnlCBkE+ZtfEDRGjKuI4xw/jqiy+Z\nWdcN++RxoIXx/eDgRugHWlJPJ45/8jDQSIGoYGEBq2hxE8hx3959HC9W8f4Czh9WSxD5HZoA+hHn\nWWA2fZYqAnGjxW2gA2Wcz5+bMjOz3hEg5iOHwNmqO2aSvNs43ZhW6MjfT83ffayHnr50gu8HYq4R\nxYnTzHPe1EEzQ6QtlCF+SohbOwqNO8tMulDOy68gSz/EKh45B+XS3R7xmA+cZ2EB41a10eypU9ZL\nzWyRtc+q8qrz3iRZ263KILMub3r5WA8exJwVeE16hoaozZ2Zge6wQjQuxUKN7kV6xqSd1VhVq63d\ngnYTCj0TdSJD1e5LPaBx5IjQcuzlNNBHlM48A6lAKzXohEb9ZJwoXprf3j76E9Skacbx0tw9DfQj\ni12k21JpG+N69vv/ZGZm3/mnp8zM7JFf+HkzM+sbwD09dQK7JkqKbe8Evmu33oJnK5vBeYplcKWz\nl6CZ1vyvrADZj7JGv0XN8zBVExt04JeD/jwrxO66HbX96i114QLuszTT4jwbvpuTl0/J5bVLfGen\njgiJRhFFFFFcR+xuj6UWqxHi8p2k/pPuTuI4E8qghfW00msCAcohnYuMVWvyD63x7+ykyCy/kG2C\n/JJWv9ExoINpejYusXf3PFHEHbcBnWzQNSifASfXIHeYYifIBLm9zUWgDLmQV0rUxjEbLm4ydHki\n6hBSU1xiLyXVZ4fuVMzOTx4GYp2eRgZSqKXGOvA1IuEOOUghOXGgh+jXWaXH5etUB8yvgW9Sd9AD\nB4FKLpzF6j4whPnqybE6hR4IJ05Cm/nAA3ATryuzTCS9RB1olVl8VTwpo9pTAJpRNU6eP4+yU+MW\n5z9Nj4BD5CtTsY5tssNokKX/5zjG2M8+6rUGuEohVDNksoUUpTOV9li7k/U1PAv7eTzV4g8N0jeA\nSoR6Fe8v9LietOqHJc3y0irGqXufSskvwu0T1gw72wbOz+02s/5ZVrnx792qQcx1nJVJm0XmCZSd\nJmLP5ohQ6eVb5fypsmsfrzefB0e6RAT+ofvAHX/qU7+G6+Ju5K3X4X96191QuGRS7G46hPkospfU\nBvMTy6tAnEES83SelVH9faigmjmD3dDZ01AL7KXnbGkbz9DcJfo+sCxvL8/z7W9+w/7b//7fWqOM\n8/RxR1GhTrVK5K3dcJKOYsbd73Y4D5GfaBRRRBHFjzV2FYmqZj5P7VubFSiUcVqGyLOpZo7M1ksH\nKccXZTTLFfW1of6Rq2y1xo6M4kbVdZJITu7kGSLEVWrehPCkj4x1gBT3jwMRqY/NJpFRqYy/CxFq\njRLn16DWrd2Ugz3OL25SlT9Cxm+99RbOT82f0FGNyLc4B/S0SM2cVAKqqJolalAFlJzsdZzNddb4\n8/fbrAsvEiX0DGN1lg+C6pJT6tlEl/bBm4BWlpfo7E++apm90FVvrtdYgM+PjOB98i8V0uww8zu2\nD8eNhzpgoIIGM9bjB8BDpnmf908etAXqGdXTXt6ncjTXtaTIyeG4sbDWXnMutK9nRvemXnXvneYg\nM45nJMN+50tFerjKyarD/u/kt9M53Cuh8FnWduveBNwldP1M3Zr+DLPJ6j0kp6wWL3iZlUb5AvWQ\nRGq33AoFygg10qdPg7sc5b0IWHMuPezzzz9vZl1++tAoEK6Q4NIyvXmpje7twzw8/+wPzMzsIfZk\nqjOrL2/bHiJ1efC2OD/r9FOYusBad+4ogrD/O59d+qNWyH3nWD5+iVrvc/Rh2GR3h7UtfCfvuBc6\nYj1jur/qRSU/VT1zUd/5KKKIIoofc+yuTjTlcqAt9YnvgN9p0+JelS1yqA/ohq1OgsrGB3QjSrEa\nYm0NPJi4REW5yI6PTfAe60QZB/cf4HiYsWN1x8WL4G3a/TEeD6tfkZzs0DBWaWXnhwbxM4GzxVlV\ncuQwOFUZtSibvsWs/cb6lnO9GXaG3CSfpwom+ayqt7Zco4R4QxTF4yibr78PsEZdjkOqK5fruzLQ\nW9SnrqwAHWzQ03HfOJCtvCJffhVZ9QHqZg/dBATf5Rd5v2JyDML7ykR1tRqub5Lzo/sobrhONLZG\nX1i5zwuxi28c7Bu0VmgMSV0gOUYhwrDuv4eGkgaOWg7umjvNlbLnQowdZrXVOTal2m8+MxfpAD9K\nz1dpfZVFvvUY9JOz1J8KnYdOX4xt7nLEn2tO9AwEfAbK3JWc49xkiEhj5DTz5EKlYJBzWYNaas2H\n5liKlQ9/+CO8Xlzfy6+gyq5WxfX3sffU0Ch2D+qnlWJ3gxXy8DUeL83eTFX13eJ2s9CL7+I6K6W2\n+R1YYT7hxCwQpKr75CexRV/QOL/rQpKn2aFgi5Vhvdyl6Bmrsja/w+ci7MPGXWKVeZQgqeq9ru/s\nThEh0SiiiCKK64hdRaIN1vVKo9aRsz27RzbIW4R6Ua4emazcndgrmhxpW4iWaEGu+9LsiV9SRVCN\n2ehR9joSClEN+gJdxdWfZWsRPI0yjKqz3uTqNrIHmcONDfaDoRNMP3mm51960czMBsg/iVdTt8sV\n8jcNooi1LfbWJgcYdvMkGlGfILkrbW7i/eKvqlXWHVOOUKP3Yr3h9pWJq88POyy2uRNIZjDObA/P\nRx3pzDxQ2+EbkLGtVFjTTsT50kvQ14pnVKZXaG59HShsnMhfKKnNcUglIQd7Xa+QrbLzQmlCmZVm\n3RrkzOQAlqFgUllvZeWnZ6XbxOeFLEfozKWxWttFLGE1G7nJtQVyglVwiDHWyKt/1wY5PnUfrRPJ\njY0h+yyHfB0/RLycC+kZ1alVc1GnO5LmRNV/dSLwJBFUPEnHLCK9Zfo+tKlo+dGP0D9eVWsBuw78\n6MVXeRz6KExAK51o4BlsE/F2qCqYvcQsO8f9wfvgI7FOf9fyDK5vfC+OszKH3c/KPH5fquCZmJvG\nfSluif+n1rgf9+U4s/R33HWPmZnddT+q99QB4Nyp0/wcJqyHyHhZ/5dwhyG1g56dkLuOqdqOu2JN\n/DUiQqJRRBFFFNcRu4tEycuoOsKYoVO9sDi7OJFMjAg1XI1Dp3O5X3NNIFqoepnUnh6ikiZXcSJO\n9V0pENkJGR5kt80ZcqJ9Saz2LSK/46fh4rTvAFDFArt/EoTYzDSOM3EA+ko5ta8R9Wj8Gl8ve5BP\nM6uu3xNc2MgwNXLkmZborjTHVbiiiiI6Bw0wA9toyPsS5x8l3yM+bi/dpZbIre6VI1BFdcTsuMhE\ncZOPja6jxvkX0lfVjO6H0JXQm+//evgwEO0mj7dFBD5xCPP/GiuZRodHeF3UOBKJhsePJS25gXNI\nayqEJ91fKq2+590qqI2NjbCffIbIShymOMMYEe4q+Vchlzp9QnWv1un0VS6Be1SWe88e3Au58TdZ\nPSbE6WeBQ1ehUC9ad651oAe7ggrnXD6ZQs4VPtNlKibydAjL0QP2zTehQhAi/rtvwNN3mM+gdllL\n3B1977s/NDOzX/x5WFzuZ6eAD94DLfAedgCoUJv8w28/aWZm/82/+pdmZvbCG0C8F9WFky5NWSpw\nNhYxztI6Pl+v4BlaI7e5Se43y91lhwqRA0cwjhKRfuwsOFTtplSZJY8A3Ue1V/N7KYU9mkKnuHd2\nuI+QaBRRRBHFdcSuIlG5E9VZjxtPyJ0bq7s0fuU6VqN4UpU9zMiJI6UutEUEm+xnhrJN5EPH/GX1\nw4lLgwfk1mK981l2vbz/Qay2C3TPThCBtpPqkIjzD/QDwb30CnxDlU3uC7PfrJKps/MjOzDWuWoW\ni+SEmaWvUOfaT72nPBNZfm116lvzqlFnJrGPiPoIda3KNMsPNcMC5hxRh7SS4geFqobI6crhZouZ\n0kEiv+0y67ypYewlcn/5NfBQk5NAjsks7t+lJTr5M2WeoLt4LzOsE6yGWVvkPAt5d3C/V1k/zY2H\nZeiLqvu2sgkELl1wrNZnFbr1JNjTJ0nEMjSMzP/Y2CjHhqosM7NCIR9mw/uYJa83Mfc/fAEVODcd\nBb8rxDhKN6cGefXlVWaVqfSI0WUpSw/VDXapjGUx1lVmyeXjOUbtsZz1xcnF6YtKcG9Z7hL6+4Y4\nF3gGNtaVdcbn0uoVxSq6LW6P1uakcMB37fRpILcSeX7x6UVqjTepBx3dy1p17tLefvO4/c9f+N/t\ny59H14KPPPywmZltsyLozjvAVb7wGqrehsfhl7pG79zZKdTKH8wg33D0wKSZmQ0EeJZPnsDnktyV\nDGSogKHk5RIRfj6D6xijB0CGGuwMlTcxPvtp9nyqNuUkRsVOk05r3FFISdNmV1L50l4rIiQaRRRR\nRHEdsatItOtA33J/NvmBunXEjTZdurksx+SAT45SCEo9hcS1lkvSsLn6QyGwDj0G29KuUX/4CjOn\n4g5XWIcrnixNBHT3Xchsqv5avFeLCGxpEat5hdejnkviXUpl/F09zFVTv3cc79suAVmqi+ehEfBr\ncXLEcsRfo1flIiuFbr/tA7i+jlv9ouMPMxMt3lB+pELS+/YDuZ4/j1VfLuE6nurH5UgkdKNqmRvu\nx7yENf8mPa/bOVPaRN2XgPd7nfyY3NvDvvWkD9VBMpVU91GzVFpoVlnVDj8LBLPG/uSD7EduZtZs\n1e3wYfDW58+iVlvP3L5xcH26Z2lmwdVt8tTJNzhGdqEk8ltfw72SOkDZYDlm9UrjuoI5V//4sDa+\n43ZnSLIySePSs1ZmJVAvK7DUbUAMq6rXpEhJcBemDqk99Cu48Qiuf3MTz9Ahulgtzbm7hCy3Rfle\njE/PzH/4j4+bmdnttx8zM7P943h2Rui69NrL4EQX5oHA777rAzwufTC4u4jxOzXM6jU9K0tE+DIP\nPk9u9cZbcT7x6bpOVenl2bm3h0g81JQnOpcfLpyxjrn/50QVS1FEEUUUP+bYVSQqbZ5WSwKKcFBC\nmFoNVA3RVO9wOawo1Ubkp+qJWFyrOh3wE1iN6sxiq1eQVkMdLiD3OMnVuadADR452i36d8boiFPz\nulgevQFVKeIehRoWVliVsYXPSx+pDOHSEpCvEF07JQ4UKKPBrqRNIubDh+CKXqu67lCj9BEVIlbm\nWYhRq7sy0H6v9VBLOaPqGyBW+YWu0rtRlU1rRC8HD4KTTaRcN3TpdOURIHVBqSS1hMs1G/vqrCwD\niY7tBRqUB2UmjevvT7BnU5G60XzGUilVddERi/3ER0bx3sVFXNPkoa6LUyqVCudKtdMTE5MYwxKu\nVRUtmjv5VEq7mwgyzlwOMsstJCq3oMoSrr1RxzOoeyYEqLm+NDfL6yCPT19QoxNZhXx4mjpQ7Upi\nJkSM8SibLyVIgc5XqqXPkVPUPc/Ro/fpp75lZmb5PJ3J9IxS4zs4gmdpdA8QZ5njuXgR87vK3VC9\nhuu9m72Wxm4DcpybmTKzrqvVMJ/RWpVuUkTmbflLTAAZz7FKb3oa8yPNcIm9nYoVdnvoZxaf2vHe\nAXCeSfbEClLqpmF4H12sOlQ3tJvvHl9GSDSKKKKI4jpil53t2T+GSEKdALM5rvriLLUqqAojLmca\nZs464jPI95B/qhNq9hbocNPAqjhIR/ZVItYNuhjJsT0xQO9GroZb7CQ4PoBVVwi6UsYqd+H8LMfl\nds/Uz329QGzpPNDJ/DxW6zoRZZPO/kOsZNJ8JNJ0qaLrUYEZSHGJF+hYc8cH4N0o9yi9b5pOOOI4\nlbVXlYtQ1JbHJ+k1R4/MgQF8vqeX3pUclyrK5Awv3rB/EKgix3mQr+gadbTSYur+bxCpTk5O4rjM\n4h8+hIxuifXf+R6gyZP0K83mML4O++G0Ei3roTPY2qqrOY2p+wHntlzu1qoHQczy9DoVZ6nY3iIP\nH6fDF3cXY2NA1dplqMZ6aBhzd/4cq9v4TK2tA5mN0OFKNexSGqhLg9yigrArp1txVSppFxR33qe5\nVHcCec3mqccUDy7uVpVQ5TJr/qcx3hq11ULSJeo+hUQL7LNVpwogT8Q3fx7IfIg/ixd/4D442b/8\nLHpK3XoHXKTGWXO/dwzIe4sqhz3UXK9SGbK1xJp3es/GE26F0dR5ZPlvUPdRfmeLVAlkC7gfDeZF\nsnn2pkpSB5rQbpZ5Ge1+W+/sI6qIkGgUUUQRxXXEriJRcY9x9USijjIbE8LQasC6Vq6Gddbad1dh\nN6NZYo24ySG/Lf9RZmyV+WTGtledH9tuvxVVzOxhLXergt9XqFVLkVeaPHKU43D74iizqqqSXjrE\n1wbpyN+QVyRC3GGBiE/+mXINl/O7EoZ6PX36LI+Hcaky6Wd/9mfNrItAxfuJ/5qlg7+y4nrVOBIJ\nXN8gOyiqb5F6rReIKPuITqp0depnpdQazydOW4i3QV5OFWTyAND8De7F+IJAXULpd8pKrCAQh5vh\ndQEt9Y0N2zo5skFmhevqGkCd5t69QMtV8uJmqM6R25Lc90PHqwFciyp9LmwCcckhK8bOp+pUur1B\nJy6e9yC7BtSq3G2R2iz04trFA8eIvoVEw9Jt1rjrGc9lOVd8dmucM2mBK6wClEduS/kB9RDiV2pr\nG+Ps76NPBDlMZamFPNWDKUFfi2kqVgboML/EZ0Wc7NsnoW74xUc/amZmb76BvmTxtpzz+QxR+VEk\nZypFjHwoQi65l7tIItU5ujTVeF1C2KoMk/PboaNUG/CZswD3L+AzKw16WDEm9y/qcRMSJ7+LiJBo\nFFFEEcV1xK4iUSGjpWXwShlycMUKMm1pau4KeZeHSTMTGvp+ttnhkNo9VYVsbmN1TRFRrZaBBlo1\nZua4+qimXbyU3JDEJd55DzRtJ1+CC/iWOEtV2DCzp+y2ym2XmdkVB7lRxPUemASHeJzu20a9Y4WZ\nxdqa+upg1ezvAxq6wIykztuijnKdyFOr+f59yGa/+CJcow6wrllZenGqQqRCiDfeCA5SPN++Cbz/\nxpuwqss7Uqjo+AmgglFm/RXSn6r6R6hM51skJyykLA9I1WvniGwX6Bal+6DrliM+7U8tFsf7l5fW\nLE+f0AaR4iC7y8LmcwAAIABJREFUEmyxdj5D7XCjXQ3HG4u3wy6bg4MY+/wcnp0y+2KNDgE5aZcx\ncRD3cLMshy0cb2MDY5Y2tsga+T5muTNZerbSzcjnpaVtrpS1m5G/KZ4tKUNaMfVmYsdbcqBNfke2\niRAzcsInz10hUktQcdKh4qXO2vw4vxRSYjTpoJbjMzwzhWdwZgXP8kuvQyc7wF3S5GEoRi7OobJp\nmH4Hkzdit7bIPvTTU9RgU3s9TOVGk/4Zb59AbX+yF58/Q/emBDXDeTrj97H6bXOLPbAO4L4MDPdy\nPJjneIKdZdlRIMMuqckUK5di0hfz/xjOy7uJCIlGEUUUUVxH7CoSFUIRNxg0xE+oJIVdPKt0l46z\n6oL8jzKiXIQtTi/HFrP5KboVtTr0K+UqnFXGs4HVKfSODCtqsBoX6YTz1nHUxtdKeN8EeS4hNmn8\nxDuFDj/UBgo5lVvgb86cB/I6ciMQnlbZdAaoSS7n0izKwUfQWX6nOp96RpXIWS4xC66QK5UqrXwV\ngfjAXq+XU7VGtQIz20fYVfPFF+EXKp2o9K5CTUKOF1hVoh1DilyosvlCYULI+lyKKEgZ8M1N3Ae5\nWbU7Oc4PIH+lqkqyCdtglwC556/SmSpJX4aYtL6b5XB+FhYWui78NP0R/9qTVd/4RY4VYxLPXGMV\nlfhoKSPS3F1ssmOsevbkya3OrS1yPG6/c6HtBLPGmtOcfFFZjdcy97y6Gh0/yRrx8F7yGU/mWMXH\nZ0VIMMd7k+Czv14kMlaWn7x1H+e1RAQ+zFp7uWIpi77FXWadXUc3+QyqK0GZFUTJjHwucC9L2+wM\nm8E8niailU+s/CHKVD0IwQfMT/TT50H5DCH4RFp93LR9ocsTka847Rj/Xqt3OfN3igiJRhFFFFFc\nR+wqEtUq2UU++N8/EVadyN2IFUYB+8fXWTPf1hogThHoQR6AFWaLW228ajVdL7qu4dLW5YnEhujb\nuUi/TjnbTK8gM6t64SpXK3F9oWYwppr2pPM6Pw+HnhLdm06exOv4GD6/sQEUlUxQp0kUtF0EmlJd\ndjrtZnZ1nSHiY9Zauk0/O36QddH6+ehR8FVCV5r3icPgAVWPLgR7ww3gmc6egy5VnpQzM7i+cF77\nu32MzLqcbZ6o6sgR8GfqWBBm6alKkEZS1yMudmsbyF/eCupksLmxHTpjDQ6Ap82xu+YKu0y2SlJq\ndHvnVCoV26YCYoAc3BC7HUydxzUmAs5twtVZssDF7rzjg2Zm9jz7Z3VirtKjyWzy6dPYhRh9NDUn\n2g3ccQc0vzPTc87ng7h7D1IJt7Y75GDpjJbm9YnD1TelFqOmlgNPKEudkJevdod4nzqrrnK3lSRi\nzPa4XSPSzNbX1D2Tr3qmkvSn6B8mv03EP5Tu8tlmZrMzQJ4JVv8t6/PsCz9Dr90xnk/X3WaXDH1X\nxftXK9SeJ6khL7BnFR385b8gxUeCJUyx4J1r5hX/L3tvGiXZVV0Jn5jnjIjMjJynmrNKVZrQYAkE\nGiwkgQHZbYQs5KnxarutxnZDt6Axthm+breNjW2Gj2XABswyNo1sAzbYkhmMkDWAVFKp5ikrqyrn\nOWOeo3/svV8qEpDUqsUqm/Xun6yIinjvvvvui7vvPvvs4yJRt7nNbW67gHZRkaiXq56X4qx6FatF\no8FVkTnh3SnqJlnL29shh5t2NOCnBszD1SXCyF0hj+W2XNEHGaX30i2KCCdQxXlLWax6wip+rvbi\nycRTiZNVHrWfWrnx3UBqWqVbzKzKdIALDBkd4YkS8vSC7CInKK5Sue2xBLNZyOOVSt628197zY+Z\nmdk3v/ktjFsFq3eeEdRrrrmq7biRGLM46rj+5TWgoFe8Cp9TNVJ/ky5P1fYaSX66RimDyUOycoB5\n37UmI9IxjFMmzlpTAVYxZWS5vAqk30HE2qJOOEROvEpez9/iDoIVLStFIW5qJOmR4EmHzM9o/HIF\n157j7ibITBVF25fmpIs0W17MOxrZNHneI8egxEh24xqFeIQcv/a1r+HaOoB4V8lD55iZFO3DWLR8\n5PiYOVOq456VKrjGfI4ZUdx9LC6xvj3VBV3MTVcUXg7uvjLGopP9rTDbz0NuU3rIpqedO61vylyS\ni1OR+k1dZ5D13rULlK6yTgVNk//fJMJbK3C3xIwi8d+JTvorkCOtMTuwg9yo0dE+Q5/XaDfu3znu\n6mJh8O0dzETriDHu0WTmFiFtdw/ug5e7N2N8QXGEpqmyMN6OkwOXn6t2q9bEs9gg777Z+f77tZf8\nI/rlL3/ZPvnJT5rf77df+7Vfs127dtn9999vjUbDMpmMfeADH3BuvNvc5ja3/ai2l/Qjurq6ah/9\n6Eftb/7mb6xYLNqHP/xhe/DBB+2ee+6xO+64wz74wQ/aAw88YPfcc8/zn9wvPoJIlMh0c90ZuSF1\n0n26wIyhECNuLa424hC1+vgUvQ/Kd5KRN/FLJkRJN2tmh8zOzLW9Fk9y4403mpnZU/RGVFT54Yf/\nxczMkozMHjyIaL70kg6vxawJRcHFrWr1F1LUcRUxnl8GT6SsFFWS3LZl+3Mv17ZvGzMzs7lZIMsY\na27PzuM8l19+qZmZpdJ0QyKaCIVFjAG1vOxK8HKD9DfdxVrpFsTnzp+BVnB8N84vJB1kFVYL4vgn\nWXlxmNVSi9SzJokWI0R/yqUPEOHKC9RDnqpcVzoJ5sOsE+ll7XW6r4fiLSswOnyG3NrYlh3sE/7U\nWKsn6NuY+vFo1Km6OUQFwyB5Xt1DIRKHh6YTVSuBvh6mgkOKBd3LBWYUeU1VQ5npxDkhPl27KY2F\nn1HwbYwyH3jmWQ4Bjnf55dAun2f9L51vQ/GCccizGoGPPH2Mc1QIc5WZS7q+HKP2G1VG2/019WzK\nec1RBzC87Y/iPNkVIE8pMHRPu5ilJkWJj9psPzlcVb6K0d8iQJ48xDhJhYqRKy/da2ZmL3/F1WZm\ntsRMtRh3CgVWoJVSJhzSTkLuTsoEw3j6yAkrntLUDXGyJn9we0mc6GOPPWbXXXedxeNx6+npsfe/\n//32xBNP2C23INXrpptucraEbnOb29z2o9w8Lf0k/z+0j3/84zYxMWFra2uWzWbtrW99q73tbW9z\nfjjPnTtn999/v/31X//18x5ncWHGMj0DL63nbnOb29z2b6C9ZE50bW3NPvKRj9jMzIz93M/9nD33\nt/jF/i5/8mP/0/7H73zUPvB7bzMzsyb3pd5NpZH93HaHVEJZYntZ5fF8EUL/ICVALVMBu3apVLUs\nGzC8VuCkQmu7Uh5bvuXlVfvYn33C3vDq1+L1UruJtCRCe/Zgu3v4MFLV8gW8ry2bpDsBX7ztfW0N\nJQOR2FxbIEmAltdBZywtYtsqU+POzk6bnDttv/ILbzWzjXIdjzzyiJmZjQ2PtF3/JXthQ3b1VZDj\n7NgB4fIH/+j3zczsDa9/bdvnd2xFuuhGIAlbwTy3xM7WiFs5Ffxbohwm6PPbnXe/2b711X8wM7Mm\nt9odlB2lu7BlTaSxdaszQCVBdpPF3qYXsDU7egxGKyrmtrgIWiEZY1G4RNKmZkFdPPUMttdXXn0N\n+k5qpMUATJEWeb//B79jv/Eb73bm0OZEAN3r8XHcY0mRnn76aTMzO34YlIXMlC+l6fCjj+Ie5JhC\nLIu9FK3iYvyrVNsD+7Fd17Y6HI7a/iNP2A1X3mhmZpOTk23X4fcy+MbttBItNMfLtfYEDR23UMXc\ncVKUJcEiDSBqSU3BTzUVP4xGo7aeW7MEAzgtUm8Svcv4JEbxf5xFBqNMIx0mTSKJVRdL3iidVB7U\na5QjJhnErDCA9YrrcF/TnXg/HMc2fpBlzgOhsL3x3v9on/7MJ3H+FAJPyS7I+zxBBKyaNB1SscMm\nx80fbrezvGFfj/2g9pJ+RLu6uuyKK64wv99vIyMjFovFzOfzWblctnA4bPPz845G8fna5traVfIQ\nurEON8q/ZWnXSu315KOs+9Lk/69x4kfpCC8XJPFGNT7MHmYreHl8RdMLq5iIa3TkKVB7Jy5TPIom\nnhxkdu3aZWZmRebAK2qvKPuObUDdp07hx0C542r6nCLF8haIk0Nspqj3VEVJ9vvYETyA0sht24If\nv9f8xE+amdkjjzxsZhsZSz6OW5luWDe8ApUZx0YG2s4b0mLmb68yWmImVpAZQwFGYisevO8FbWX9\ndEyq8n71MY9anK70naoNHuMDLNerDaVeg+OiLBxG46nqKBaY8RZsWjSCh6rE7LJClvWbWPWzxe9K\n02tmFo/GHP49x1x3p/44fwzkoH7iGHSeI0MY4yN0KdqyZczMNuaQ5pqO18PosZy5nNxvVgM9cxZz\nZc84HODD/HUpFnBeVbTtiLf7RnRw4fXxx1r6yCYXpK6u9jpa/oi/7bV+dNVfcYiOvpTPqF5Lf6pn\nwHlWnew5zhlj49wpUVPd04lxKPOee/XM0weixAU6R8VMlXXUJiaweF1/DQBAPxe7aIx+Cr30b/C3\nuy910ds2TjeumuqNqY59pD1KL4DmYfzkh1Zj6RWveIU9/vjj1mw2bXV11YrFol1//fX24IMPmpnZ\nQw89ZDfccMNLObTb3OY2t/27ai8Jifb29tptt91md911l5mZvfvd77Z9+/bZO97xDvv85z9vAwMD\nduedd77gcTZnLGl1DAVUX5yRVHoZehraSnC1cPKOlbHCGtV05S4xMplIYLWRU09PFxCSIotlbkN9\nzL0/V8F2UY41QqReR/MHhKtVem0NCPKZZ1CjPMOotiKoivA+8vB32X8grmPUIiqiKwQ6xYirtvk7\nd2zjgGEVHRrAKpxKAc0s0Qvymquh8+ygQ0+MCHaI9WkyRKqnJ1DT+4orsEUdvPXH2R858uC40tKp\nfo5QSoLIX1s3eU0WSIt00LFIqKuH3gGKPFeKyoVnZQKqMrKkAbQ18/G4xhrg5Uq741GZaKKD45ld\nzZlRp7iDda68pICECPOsxSMKQv+na9Mc0ZyU+5F2I/OzQLBCpqNjiK6n6bm6TOcup8Ip52hXmhlQ\n3JZfdg2oFFEvfX39PA+O2+JcKLE/w/QR0JyLdlDfSSR58jR2N6LAUik+A9T26lmq1aj15W4kxd2a\nnr0Es+LqzIJrUk0QJ0Wm2k6OVy5fh4lQa6pWyvHTrjEZk05W/qc4Xph0QJ1zqcbdYZDv15hxtOcS\n0CRbtuNZyNGVK9aB6xQCjtFXolJrr5ZaLHKXxPMGw9IBGMeFWnFOuVZd3gX2gu0lc6J333233X33\n3W3vfepTn3qph3Ob29zmtn+X7aJmLAnRafWU67ea4/qtYp5EohVqwOShKMebJtkJ1ewJUkcqhLNR\nWZF15JeASrrIlyzOAkUU6NlYq4gcByI7dWayrb/qv1b53bsRuDl46ICZbXCLCh4oOCFHefFym6tt\nKjddNZNmqfscH8dxelmTe3YO2kYFP1SZcWgI/NAM6wx1UXcqh6GeGpD40aNwIb/6yn1mZlamo88q\n3aa6k0CQBIrmNbk/yf2K3CZjGKQunWDC6nJ7NVFn3BhYqlPvKx5RiNxBhbyuSkV/y23HUebYOj0H\nCoWSbduFMfYZ0HmOrk7KziqxuqSfWVPob2RDN8l7Jg9W8cxf+cpXcImcg2fJd+8Y39Z2DeK1H330\nUTMzu/nGm8zMbHYKQT+5QD355H68lkfrFHPUuatIc/cQIKe4ziqbw4NAvjkGFyNEvHpWNCcLdO7X\n3NSYBRmsUxBTQU/NoSYRXJha6mikXR/q7BrJueq8CmQpJz/gVw46A1t8VsV3D/diDnpVTYK58eUV\nOtEH2/n2NGtTJRmE9FF3qvtTp55Tuf/iaJUbL9lnUDnyATm+4XvS7/o87a5OCjw9X3Nz593mNre5\n7QLavwk/UaGATq7K4jucbAIuBmFlH4TR7Q1OEyhD/FOpieP5+L5vk5xjcQY8k3irKTrGy2l+aQGo\nIs/IrhCj+DGt4kK0Ws21Wu/bt6/tc1//+tfNzOwV1yMZwcnTpg+nEKiQmDjRkRHINRbIwwmFTE3D\nyeZyOv687rWvQT+YDTK+C0h2WwDHV02kepn1bK5EtkfYh+X5sX/9ppmZXbIbKO7pZ4CSWg3yeawN\nVaD0q0B+KULE6Wf2T47cco11c0pENxFG1Vs15XFTNsOslRE68UuOk3OyYfD581OsRKk8eI7X4gLQ\nWau6wak/9tjjZmZ2xVXMZCEyPPTsGZ5CPOyGs/3ExMSGQ7yv3UGsvIlTFL8txCcktMIMnRMnwHMr\nW2//k8hu60xjDOV49fgz4Mf37kUWWZ2KBUWrZ+j4VWKl2Z3kAiNEZsle1n4ib61nxpE4sXqAdl9S\njvRRYaIswMOHoS4Q8hbf3J2iAzzn/LHTuK4GkZ2yBDd72nZTtrZ3L+bYvxKRr2XxTBl3IYeP4njD\n/eD360S4qgGVItc5ONjP/kE5snUrayetYbwrrDWlKhj6zfDTi1f3LU6OWMi5Qpmj7rdvU458s6HM\npU3b4+/TXCTqNre5zW0X0C4qEq0RDfjoNJNdAvenWkcN5gmLFK3RaaVeB8Kr0glfDvAe8hcteSVy\njfDQHapMJBYicppiDvgaV99tO7Fa11pwZK97WEuJfqNbMqr9g372UiDcwUjp9DTytY0RxlYN/fqZ\nN/6imZk9+jhQkhDnxMQkX2PVVzTeT0GyfDyvfdmVZmYWYe76Ta+81szMcuT3EsxXFt939jT6f83L\nX8nPMcI7JB0oUEhL/E8L3+9ijns36+AEnXpEdE2iS7j61ZFEv1d4vCKF3F5qGmuM1reI6mpl9KOq\nzzGf2csdQZEowlgLK0I3+go9QuWb6mfOf7aSbRu3zojf4VPrFVzDxEkoJgp5OUbhXspR3cws3ZF+\nDs+Ka10myo3Tj0E60yC5u5l5IL1mq9DWtyDv3Q5qdSN8vcSofZH36Jabrsf/E1mWmMPuIfpPhIF0\nx4awG+mgB+vllyJKfY5+CtUyEGhvEhzjSoOKjmHw4pfsA7e6cxz9eeqJSTMzW1vFHL78ciDGhrXr\nPJUIcewYkgm6WGNqlcoK7SKDAUa7OZZlumQ99sgT+Bx3E1XOtXKWGm4qNUozeAYzVIQMpnF/xgaA\ngMfY7337cN0hjkO9husWF9tSlU7OTVVz9YYwji0+k3LgN+Ui+FWbCq8bDmcqR7kfkk7UbW5zm9vc\nhnZRkehGE6dFRJplRoyyCMhXqK5801j3PYT36/JSFH9BXiWXxWqkpAPxN7k1cqZcdYXU5ueAPork\n9lSPvko1gPimkJxnuIopDVNR9T5Wvywya2azHlR1fpTWOccouxCo0NDiItBCaRXo5dLLLmkbNUWC\nr6DrkiKNQWrh1C9xr3KNGh4EIl1dAzrq7wGvV6QWspeZRY6WkK+NKKy6st42Hk5aK7NswsyqyfF9\nx8uyvhERf+73xGOpv2VWX010AqE2REsxG6XBz4fI9ZapVVyr5B1u78QJIChFzTUG4g6fm1F36PAB\nu/ZaoHtlnwnRHjwEJKu0QEX5h5ndtc4KrnJcv/P1b0Afib7Fm+ve5znX9PfMCewaokwzTNIxvsZ+\nql7Wjp3QlR7ndZ1nCrA8ZTdSZTGG11yLzJ5UCmO8sgQEKC73mmuQNrmwiP6fnoQSJNONuSAFifj7\nBh8i1WaShlf3Tn81bpo7jvsVnxk9jB7uMpVtmOBuLso50UPdbJw+rMoCVG0pqQQ66PbkpH6Tc9X/\nS0MeCCiOQuTaas/8kmuTqsRurn31fM1Fom5zm9vcdgHtoiJRZbRoNRAyVPsezz/Hd1Ru4IyoEgEV\nyLfUyvhelL6WTfIaJScLA6uLshgU9Z6mj2iyk3rSNUZGWXd9bQHIUKvT6Bj4qlMngV6C9C1VxFM1\nhvro2q3a1mfOAH2oeuYWGn0oEixUIa3hKHPuVd1yitHqO15zm5ltrPY9PM/iInixdfJsnczgEhoS\nOkoyM2gXdayLC5NmZtZN1FbIYrw0/tZ+ezZ2CMw8EtqrcVXX9atW0vKqqqLiQNFNqEG58BNUJ/Sw\nwkGdx1sgZ+4LyhBF1VFxHdWVFUslca0nTiErq1AQWgbnpuoE0ehGtc9IJGQnTyInXgYf0k1q19BN\nf08Zk4i3P3gEiG37duxChmn6onrzJSK38V0Y4yOHgCDlGbtGJ3tF7ZeJMIXehexOnsT1iOvr7IGX\nq3lwjwaGMPZbtuO4Hrr9T01hTvdkePxl9HeClViltLjuFUjT3v8UkPdG5VecZoHR/CTjA8494wBp\njmm3oai4/kaYNVjmuDboX5H34npOZaGeiO+Bd8Aqtb8LWWTRpVLwmQhStypEHaMJjs5TLrXvdvQb\nornqZEVG9dvB3a6qqLaUqca4jItE3eY2t7nth9suKhJV9N3jFSdKe6+KqkV2tn1e/99oYJUXMhP3\nGA5jteug21CVtXgKeWb0kG8Kxck9duL/p1jbemwUiNDLCN28Ctq35FgjzlF8D/77xptehf4yWl2v\nP9XW7yxt1yp0plGkUVHuArWA0sTFWRvK7wc6OMMIqc8PxBwJ4v/Pnz/b9n1xstKndmSAYLVKFxnl\nLjPC2qhiXLxEkp3kpTxcraUR1PcD1OcKpWhVzxPt9ffRkZ//XyTvp6wRoUGhvRjztss15Tezf9R9\nrtN9S2hJnK6qnSovWxHwhjds62vi7NB3D+PG6VQP+1pt+38zs1K5YErTj9CXYfsO7D6k2RU/Hqcv\ngXYbiTju+Y9di2j78hLQ9re/Be1thgqOBVrhZenCrznURT3mwYOwUezL0LKNc3h0yxjGhFH4oTHM\n0WKBOf3kCoMh7tpqGPN0DNd76Fnk1B89BASaLxJRJqVwAdKStV+QKH8ti92Kdmu6ZyHqQaUzdRzH\nqJMdZaaV4hlCrEv8f8dhX7n/rLmUjGF851klIV9Cv7duxzPxxBPQ1Xb3qMonPr+FOwA/M6TEeQup\nCrmvMuOrI4Vxb5QxT2Jx1WUjN8rcftWjd9Iln6e5SNRtbnOb2y6gXeS68/QMrConGquCVj3H05Fp\nDD6vMpYY9SWykzlwMYfj5FkV0tdq15uen+Lq2cRlB7iKbh0bQ4cILReXwSmmO7Ga9fcyh5y54opK\n5/NAxEeOAEVodUwm8T1Fz51661yz5qgxvP32V6Mf5L0mJsCtTp4FXyXEd8styL/u7MLrKCseJlhD\nW7n06/QIEPJLMKtEXGWK3pX5NXzOySNXHjGrnS7TUyDdB1TRJExz6g3RZUv3R65Pum/1TU4+4qXk\niOPUxnL8YvE5ccINpw4Rzrs4By5Ubl4tIuNFmlCvreB+xcPdTrRaf4V211nfqYdIz+F5DbXJVYMn\nT98EGWAPDgD5yRv2qqvglHX8GDjKfnq0ao6eZPRcSK23TxlOMY4hdldSQDzybfDeqQTGUNlxUlD4\niej6ugY4dnh9kpyv/DRHR8CRzs3P8rjQaYapkwyF5bsJHl7aWmUWPXv4SNv1dzJXPRxWlhren90U\nF9A4xqLaHQHx6t5uNn8WN1kqtWe9CflJmdNgxtD0FHYfW7cyx7+AXer8HOICJfovjIxil+bjXK7S\nv1S7vVBY/g10HpOHMbPnvKpSyvfzVIio32btu+LnNheJus1tbnPbBbSLm7FUb/cm1KpW5OogNNFq\nYlXq6CACqkvThe+FyC9VK+36TpX76E4AgXmZhF9ZxeeWGcWWllD8SRdz+GPUrI1SezjQh4weRUpL\nRfRzxw5EXpWxlMu3lwcRJ9pJ9LFMRPyFL3zBzMxupZ+nVs1bb73VzDai9HVymUPMQqnW8DqXW+Vr\nRkBb1BrSfWmz406LCE88lr/JnP86jre0BD5phSUawsyCYaLS96goHLd0v7/tr6qkysvT62l3CRcy\nr/P9aSJNZXoV6VmwvgZE3uKOI7+CcVSEPEnOtkU002h5bXkZY7J1K5DZoaNAWKvUtl55Fd5XxVAz\noVWcu1pVtUzMsdOnz7Rd80MPfY3Xgu+u8Hxf+9o30AfqEC+9tL2y6vkp8Nc1OlE99d0nzcyslxyf\nn7uw/l4gzvlFIFJpYBOsFDs1A/S9c3yQ3wdn+OR3wdFqbm7fjuuU122yS5665FCJuFRlQZrdgX5w\nlXny5rqn2hWtbPK12Fz9c8sWIN1VR4khJIfx1a4rRsWG+HY5elUYDO+KUHFBpU0+S0e1uNQAQPhC\nmEU6kHUw48nL+6V4QUS+peQ8Q1T0VKkL9atkLv/qGXkxpY5cJOo2t7nNbRfQLioSVRaBw1d48euv\nRFit9g2n7jhXjwrdtmOM8DGqK67NKboVo9s2V/OlJazuaT9Wf2UMFbi6zpHvWSHH5uVqFaC3oYfI\nSbWRlOmUI3LauROrv3w2hV6EyE5NANUIJUhDKP5s5y6hJKANIbYu1uNR5lOZtbf3XQpNnfSf4hKL\ndPSP97DQnONcQ+6ZvJQUcKp5VCDC6+tpd1GXBlDogwlRznEJdJ/DhWLchHakF41wPLRjqHvbkbGH\net4BorFnDwFFVgoYpwzVGuscLy+9NnvJ+U7OlizgxzHO0plrhehV13LqFNCteG0zM4/5rZBvr1M+\nM425oOJ/ynDSNWdZ02hlDdH77aw+sHfPy8zMbISerpNnwXPnGO2uSFHAKLiyxMLkFOfncT75FkjT\nu3XHmJmZDY/J2QsI8hTdlVaX6K+ZoaZ5lSoFjlGhpCKH7e5FegZyfIbEiSp7TIhcDvq6fkX39VfH\nEyLVPdfrPBUyuteaK9Lxim9XLSpVHuglj18pU7GxrgKCVNj4cRwvHcmiHTh+lXNZ91PnVRP/rqKW\n6k+NfqRST7wYZ3sXibrNbW5z2wW0i8uJ5hmVXWfebYj5qvz5V9TYx8hZrUVtF/mhyjpLHm8q6+qs\ninRv0uo5SN9KRdXz1JuWmBGT6JQrUwf7gdVqdh5oI0ZHn1yeSJVRcLkVVWtYkxQNFyIVMuxi7aX5\neSDiQdbnERe6Sl4n3dvZdh2tENDDtlGgBulj5SAfoI9obFOE0dsiCjMg9HAU/ctngWSDdH9yNHFN\nZpEwU2saMRP8AAAgAElEQVSICDfNkslVkqNN7gw8vD/qT6kG9BIu0QGHO4D8KsYryOsJaxxZPyfG\nyHh2DpHYWhzny7bId5ETL1VwPb4ExitPVMWkHwt3hCxXBBfXzXs4OAI0L5/PsbhQNfpqZhZIRO3M\nrDxcgeQWl3HQLH0Ugut0nuJcaRKVL1F3eev4zWZmlujEtZ1iVlqAWVieGq4lGQEvXg8VOHbtFUwz\nhrHI5XH+7dsxRwJenHeR/Tx2AJxuL6P44RjuWcuL4+bXMZb9vUCEJSKzXA7neeMb34jPFbmb4q6q\nQR+LZSpLVP57YhK7qEwcz0h2ndpszjntLsJEfCvU9EpX29sDBB1jraUKx3+dJZCzvG++NVX6pZtU\nN+a2nuH1MvrVHcb9DbK/FWaIVbh77M1g5+Chc1hxHTx/w485E/eygi7PE6Czm1/HY3Tf631hnOki\nUbe5zW1uu4B2UZFoNgeEUiqxwqKHGUnk1IrMdVemi9ePVazKioXieyI+IqVKe96sosFCdIrodTBn\n3O9TLXKspvv3I2sjlcQqJS1cirWJqmX0q+5UEsSqVmVksasLKOPMBPg4ZdgoYpllBs7V14A36yTS\n27FzG/uL/ouH0+vOTqAJVUEV36Tm97HGObVtsQjdlIjsc06NbXwuQlKzyOh+mXrR7VsQ6c2Th5Pj\nTYnZHUn6nlbkQ0qqWnneOm6EEc4yV3HVRpfbljK36rIx5+cDRLy5eWbdENGvrgJlKFIqjWO5xHo+\nvhSP1/ieyrG6ZnFimgt33HGHM3657LoliVzzHJMIdweqUllhxtDIEJDhNt7Ta2LIVFpnNHp8O5Qa\nfl779CT0jCvkUKfO4rWy4HSNavKBECe3MM9dD/l4zanLrkQ9r1UisI4A5mwnXY0WmMU10I85GQ2i\nv+PclZygtrlEtYBqEmm8qozOX3sldLE7mRl05CRUBrt3AQHvvQQVbeXpu8aKu105zG05k9Wa+P+u\nLvRPGuzpmU6OAzOoGJ4fGMA4SxMdj6Lfabk20dHez0wjD7nMeFQeB6xMQK43EsVrOb95nEwkVhym\n9Zu8b41z3LPZMOL7NBeJus1tbnPbBbSLmzvP1UN5q8om0CqgyJm1pAOlj6hf0XIdpx19CBkps2lh\nAau5cuj7WGnQYxV+n3pTZoMYEfEoc+kHmJUiT0Zxpt3dOI58PIUS/D6smuPjiJ5PTSFDqZ/8lSKR\nOr60g0KYyuGXHjJO1YFTFZUu68r2SKeIsBPK3WfEkqt/jLn4qg0uVBUNUmfJcS+Rh1tdRH9j/XQK\nEg9IP1d5GIRj8bb3taorET1AblbO+KqcKOf7KH1HVxgZX94USd8cUVUNrG3bwa8tLpBPW8P5I+Gg\nyQhMOsVOL8ZELkkam5mZGee4I0PDjvLAy2s49OxBM9vILNI9V7S5m1piXxJz8+XXXYfjngNn6bgX\nceybytryqeoBOlrj3JWuVM+Acr3z9IVQragBIuGTp6ALDTKqbx5ykes4XoHR9Mmz2NX4WlSsMKtO\nHGOEypM0d2lCoju3gxt+4rvIWdfc3LYV1R+aqr/ViWdASprzvP6BwRG+j/P6+CxHY6wQwDlw9dXY\nlWn89ayGnbrweJZV3VTvrzOrLkE9aQd1ruvUk+bWsJuKUgVRZ1Zk3UNfUi/+3xdUNJ7PGBF/nbvM\nF+PidFF/RMXZSuqkgEijSSNXbhGI3J20UG2jN8sPJEUKs2jVKsuvKj00zWJhJRZcizKwMkcBc53i\n/54Mti4LDADpR0QlkR1DDz5Qc7MLuqK293U+lUo2ThylaTpWcjXKPXK4sUFO8G5uXZqkC3r5QyAL\nwCAFywpwhTmhHNuvspIRaO9GswovB04/0saJ3nQsBnG9uSzTPztZ1pcF6MxDcTsnWIilHpxyLux/\ngH9r/NFVKQal6oW4VV5neZZJypKaQQm48TkVFJTMSP3WD1upINlL0fz+9sJix4/D4m7PHtwDBVBU\njtrMzO81G9uKFNdl3vPxbVjIhgchaj9wED9aHdx+Jzux/ewawo+PyniHWb5CC+rkOZzHR2s1Vnm2\nDpb+VaG7Pi7U2g53MjDSO9DPa2MhOs69oVG8bx6Mfd8gfvRELZ3hr1pFZUcosxONsDCP/t3wKpaQ\noYzs2DEsVFU+dGGWx1YhPQGWA89gPA5yXFS+uoeLi+R2SostEdikO5kiHGeJZBmrsHSNFmjRGYMj\nGP8zLHmToyTKH8Sc6KD1oX78KrLNDDBYuUzbx278lpSqLKnTjfHzcL5slIfBMImecANLbnOb29z2\nQ24XFYlWKQ2q0fpMwt4ShbCqKeX1UFrDbXY8QaEybbq0WkgMX3dK83IrQCPeQoFGsSwb0teH1T7A\nLVSewufzFEhrC1MmCpCZstBCnjZe57iFGeIWRghJi5jMJzxhrHYhGssqBS0cUNlWBhW4HY6SXmhy\ntTxLg5I0t5iJjqRlbEOOkqCtmgrIlZjOaUwLDXBrk2MwQsLiKhFqjYjQQ+SdpDxFaaYhopM8C8Sl\nGAiq1biaC1lzbdbWNJVhMgAlTznehwbRS5mIdpXSs64e9L/IgnVKTVQKobbkZQYkEzTv8Pnj1mgw\nISAEpBjn2AsZypBEYnIzs2a9ZkeePYBroSSmswPfq+SZNknkpF1TjtKfUBZjILpAgS0d/0oalmj3\nsoPmzCXRDTIzZr9lpBHjtldzNBob5WuK0Zs4fzKNuXDoKNI9z7H4Ync3iwjy3hWJSEUhyQj82HEE\nmGqktMIyK6Zcr9FUKjUTGojgta2WebGQrsZZZTlGRoEkFYTU9l7P4vDwYNv1y6hcu8lIHMheSRNL\nLCBIBtAKDNZ2kFoqMPFFuxYZsIdZtltFJRvcdSZZmtnr1a6XQc5Ie+LO8zUXibrNbW5z2wW0i4pE\nO1NYhbwerDb5HI1HyG3KuCNAfkQ2V3Nzkq8ALYiPUWmAgD/Kz2FVFKeqchRGznWVCK47A9Ti8QCl\nDA1iFUsS0XWlsVrlKLzOBPH5PZcg8DI6Bj5HUqw1SnK8PpZ4CFLATC5vZgYylwZ5prVlrK6zU0AR\nSzTkYAzCMn2Uf5AvisXxum9o2H77dz9oaxQSV7jKL1NO0zcCZCweraLSxx0scxsAQiz6gOgrNfS7\nWvDyejDeEaIiyUmCRGORTWikVmHpB0mc6g2L2YaVnpdIOMDxL3En4uOWI0juM0tELPS2dSv4vnIF\nyHR+Achf86VCCVd2acXGaFp8fgqoPRxplzYpoJLPbSDRqckzNjaMe9jRDUSztozAU2eCBdRiQJp7\nr4akafyKa9r6KASmXdGNN8O+UMGxo8ch9hePnIxijCTXkui+Us/xe3jdQ0OQ0VEgUfHDxQLm6hot\n/naSd5cdoXYX3WkguxrLhbcYTC3U8f+XXAErvBoR9PQU5l6GxibaxYUYcDp8FuVDGnVc57U/BqSt\nZ1Ccc4X8eYNlzvsH8KyHacm3YciOOVXiri7Vh2fNw+DyyhqTEiifS3diziZZEmaZtpJ+PmNdvSzM\nt444x8wkrfm4ixkZx1xTDFmcrHaFkRh3BjWVSnY5Ube5zW1u+6G2i4pEK4wey+pOnJfMjENEES1G\n3PzkPKMRit8dM+d226plIjsJdmWxNkeEF6ZovVxSVFdldMEvyRBFsos1mjzLuk3ieYniZelXr9NA\nt7+77TqVOrdG84Q6JU0Nohhxt1W+XqO8ReMwO4/+337Ha8zMbJFI97vfhfHuO9753zF+lDDt2g10\n8bo33WVmzyntQGlYjMg+SguShMptcByDUUXvaSMWx+rvFNLj8Vrkm5y/5KlUSK5eVDSfsh4u2XFa\nGlY4Ho6kiTyYMdkiEJAlIo5XKGI8xFX7ffj/dVobpv1pp48jROHFkgrTScLDgmmpjVThcChkWRpV\nh9i3Qcrgzk2Aa9x7NZCnROEqnyELN5VqllTJy7HWPYwSOQmZrk7DvDkYRKkYcYwSgSdpdH3l1RCz\nyzBFPPNgEsh0cBDnmWF57TgTRXJNfL5Be8dkihIjpr0OjYxhfFguRQkuaaoCcpSd+cl79/YCmUY6\nqEagKL5lUsowwYNIs5uF8cpEpE6JY8YLgkwEKZGDFtL2mMyT8XeKSFMmzrpPenY7aDIUlLUdE0N6\nerGLHGPhwI4u9LvZULykyv5QRudlyRvuWsWFblj5/eDmIlG3uc1tbruA9pKQaKFQsHe84x22vr5u\ntVrN7rvvPstkMvae97zHzMx27dpl733ve1/wOL4go+JcZfxMsUpFJIZXSheXhxIFsOQGEzFxmfhe\npQ50oNQwIT+VShb3WV3GaiWz4tI6jnvwPNCBIoa9RCOtClPoummyPIXPpajXHB0Fn1ZViV9ljnE1\nDZPPiQY72e/2UhEPPfgVMzOboQbv3LlJMzN7013/wczMfuJOFMJrMc01SyQ7R8PZq++61szM1qle\neOQQ0ldv3Qvk+tA/wUh4JAy0dOPuq83MbGGWfFGY6oYqxz8FVFAAqDFfAqt4MohxrdTaV+cqTSjK\nNL1OEU14yE37yXkLiVaVDBGi8LtFdQH1pmdnmMpIxLk4D5QVIiJVmZYw0V4gyWJouYZ1U6GgNMwl\ncny79wGdz5In9/g30vmGejptZhpR59Or4Kv942O45kGicCKuJdokDiWh70yRZw+Taz3H0i7iNGW0\n4WvgnpXXqTHWLoDR4YBK+xIBJWj2srUX96xATtNDorxZwNhKvL+lF2OT5u7t5DEi8G4qQ4hMQ0Hu\n4ihGX1nCeEgnmmXZ8f4BIDhq9G1d98DDBA2O3RaWG49TITEzB2OUKp/ZUBgIfGCIxiu8vhSj5D3d\n+KvdSKEo02icYRdLQRdK5IJ7UvwczX1kpqNKg0SalSJVAA3Mg54O3C8P+Xo/E3ia2g1TP+tj0kLL\nzyt8EVZ4L+lH9O/+7u9sy5Yt9va3v93m5+ft53/+5y2Tydi73vUuu/TSS+3tb3+7fetb37JXvepV\nL+XwbnOb29z276a9pB/RdDrtZIJks1lLpVI2PT3t8EE33XSTPfbYYy/4IyouUJHJFiNi4n9a1Cvm\nGH1O02asxlQ4RUaVyiZDkgp5kSi1XjJ5UPnbDKPu4QgjhVy9yhX0oy49JLlMFZZbXsAqqcwlLznE\nyTNAMSGaJy/RRu2SfZeZmVmEGrZyEavgJZcAFT2zHyUipDu9/npEfvMsq3v11UCMA0PglxaIrmrk\n+eLk57bsQGT2wSdQ9CzK8iAf+NjHzczsl+75ZTMz6/XiOE8fhO7yeppA55nmOdCvks0Yn3gnxs/v\nkRYQf1UKOejD63BQ+lCmh/J+Kn1WWTpOJpVKMhB56j6qQGCYmVjithVZV0ZbmllEylBbmEWWUbKn\nx+bOg6cW95baC+SywrHTuXq7mPFjZre97vX26T/HWI0MwwymRcRSoz1gTx92GykiXSfazzmQpVVe\nmbul48fBpYbC5AqJrFZXYJ3XwV3I0089bmZmUSLZGDNlFmNx2/fKV9t57kpUqiZOM5y6D0hrlXPH\nT+2xFC1SNBTXcb44uVAvkZbSSsXvz7NUzrZtGK8R2i7OzbJUDO0LZ+YxjjlyqRrPfAH3QLrXlk+l\nYJj2SkgnTllcozjscgXPfI2aZnGouRXMNW4+LcFdppQhCaY+z7H8ilH73OL59NtSJtIOKn5CpFwi\n8hUX7XC8wfaSN8/XPK0XU0Tk+7S3vOUtdu7cOctms/axj33M3ve+99kXv/hFMzN77LHH7IEHHrA/\n/MM/fN5jzM2ctz5WU3Sb29zmtn+P7SUh0S996Us2MDBgf/Znf2bHjh2z++67zyllYfbiijuZmX3o\nD95p/+uDf2nvexeQkpcRQiFUWac161itcswe8VKnKIgjJEpK0VJdjKyeB8JSOVzxSdVlGuwSGYUZ\ngZQ5sop7BYNB++O/+Fv7tXtfb2ZmkQB1oixhkKL5Qk8/FoL1HI1cZVlHTVs3++OlmbQK3inS+NR3\ngCBPMnvk/DloHP/bf3urmZlV/OjPHBHuoVP4/2B3t/36ve+2X/q9XzEzs39itL53BxDmchPHbzBF\n/ubLUBCvh7xWhsP4kzcBAXe0ZJXHol4BctI0YY4GgCrWl2TeQK8CZjY1TZZ4QBvm8Zk/GbMGeTYf\n1QMFctSyYTt69Bj/HjUzs1yJGWxUR4jfzKrEM5FtkJleKqHR9PqsqlK8PJdQ/rrQM/vaPwwu70//\n/z+yj37k43boIPSPuTVwf8s04t66ZczMzG67/bVmZjYwjLHN5XGthTUMbp5+CccngPInz4EbXVwC\nMrY6djWxCPniEFB7hlHjEHPg1+dxr89OTNpDT520X7vnDWZmtnMcu58xIsdeRr/r3K3lGYVXGRJj\ntlp/D+5FlsbYSyzYJ3vFeUb187SMk2mPdlk9GcxVFXSLMTpfa5j9xN132ef+9NM4Huf4Kst2Rzuk\n+cX1yE9CpXBk1qzMohwzqlRuXJ8TJ1thFqJ2dRUWqVTmUonnDXqVPWf2X9/7HvvDd78Nn+ePQ4rm\nP9v3QW3h01z1A+G3WGbdw92QEPPNV23sXDa3l/Qjun//fqfO0Pj4uFUqlbb0qPn5eWdw3OY2t7nt\nR7m9pB/R0dFRO3DggN122202PT1tsVjMBgcH7cknn7SrrrrKHnroIfvZn/3ZFzyOyrSKkxRXpl9/\nrV6ry1gt/URGNZYQDhLxJROy96KLEhFLmMgylQSC8inThpyhzl8ix6ishVod5xVf052hcS7D7gND\nY2ZmFiUHOr4HXHCZptANDqvcj3R9DUbzC+SRnnwK6GdxEavo3/4t6JBf/PmfxukY2a2ypME6c9bT\nQ4g0fulfvm2/fq/ZPzz8MPo5DpuyeWoXE3Eg5gw1fjPLQGNllln5zjGc/+xJOPG87d77zMysl0hb\n0fYKy3gUmGHlZdaMl1kn1Tz6r4C3N8qIKyGjw5WSXxQXmmW54flF8G7KqU/z/Et0GiqwuFuDPNky\n+bw0UcvwKCLJs4tLDp9eJULr5mKu13vI29c9G7ul00vzFuwCl3c9dZkH98MC7srL8XqObkANLxDq\n9CyQ0hf//i94DUBckU7MlSuvAZ/9mltfbWZm2wYxV6LkSJNEVLInjFHJ4KuzmF8Bc2krM7A++fE/\nNTOzfZexFDP1oBkWFXz5q240M7MO2gsu0ybwye88heOMKGOIGTshWdKxmCC1vVX6WEgDPT2Fe9Cd\n4VwiYtb19g/g/HKTCpapQaaJMhORHH+K4UHMRWmyleE0SkWMShx3EykvL2DctcOQT0VIJZA513vS\nGN8Tx6Gc6SR3rN1NTy8QaLGA4yUSQKCZIewsqszkCjFjqVXDdbwYF6eX9CP6pje9yd71rnfZvffe\na/V63d7znvdYJpOx3/7t37Zms2mXXXaZEyRxm9vc5rYf5faSfkRjsZj9yZ/8yfe8/7nPfe7/6Tii\nAJQZZHWZM2M1lm+kImRN5uEGGBUOMvKm1UyOLMoD9ll7BlSVvqK9HXQVIkKMsdCb8pJ1Xhn7Sme6\nawcceBJ0tBE/U6UfaIymyCFGMkPMBGqwH1FGJmvk/C7ZC5TzyUfBiQoliC9qttoL8Kmkc7wXqKBC\nJBhhNkqeWsQgI797BoFMf+r1yFzyldCPf/6bB8zM7JqrcP4h5sZnmce9HsR1VNP0kmSOe0imzhyP\nNNUPubUsr5NekLxPnqrPguGotYho5fJUogeB0FCEnHaC2sF5ahK1I9mI7KJfW7eNmZnZqRNQiIjv\nDASDFmdmUJMG3nJNCsWjbWMZjm687s5knAJ0MpCO0u2pjznfcm969HFE02dmoYd8w71Aml5m0S1y\nlzRLpHbgPPoY7wbi6WB+S4zuRBUqQXgLTAA5TReme3/+XhyfutMvPPA3ZmZ2xy23mpnZ7kv2mZnZ\niaNAYP10fZKReA/RepGG26LZ5LKkcttNzlEv9ak9vbhulSqu8dnMsNhinFFyPVtxIju5TjW4+9D5\nhCRbrfbdZpSesorKy0dU0XJpvmWAPjSEXccKuehJ+oyeOYNCetIJK+vPMZ8O6TeD7lRlzNkVKlO8\nUSDjGrXqUSJ9N2PJbW5zm9t+yO0ilweho40KmZUZ8Swo35nIMFtu+3yQ/I1KFNSYx1tR+ZCAymYA\nSQlJ+hJYZXLkBqXx8/vIWdJTUaWOt26Bw30fOcU1+nCm0oyo0jHeRy9Cr08O/cyDZiZPgM7z4uGy\ndMaZoMPMieOI6MrRZ21tmdeB61sjN7wkr0aqCQjIzQLUXcaZ/zxEVMCMK3HF0Q66qwdwfXnmou++\nFkHCf/hboJx7fvLnOG4Yxy5yu+KUY+Sb5LNaoDYy7G/XVoaCGg8537PUMld3D8clQackAmwrEp0p\nsq7MpZkpZBMNDOKDQplLC+AnO/syVqej0wJ9EpapgEiT84yQP1d03swsGQ1bB/WMfio+QtuAHOXO\ntEqt8rnZSTMz+8n/cKeZmZ3Jg3P7zhHwyt/eD2f4FjnObuomH3/yO2Zm9hO3wEk+vo86Vjp/Fcmn\nx4jOhd6rHtyrW25HSeYnn4W2+OwEkPDwCMagyFz3mWn0d4W7llFmCglQbegeqeNkRlGATlrKWKpx\nlyikqiy8uTkgtyBLFov7XGSUv1TB8aTcKLAMOGWjzq5Tuy1F4xWXMCLBPJFidyc410NHoODQnFFG\nVZ6ZVxX6XahgXVIes/S7OM8KAwEvSztHMc4DaRXUw9m9HPcXUxZEzUWibnOb29x2Ae3fBBIV9ygk\n6jiXMzouZBqOsLgXI4hCsCpo5+Xl5HJYTUN1fZ41hIzcK/NmhTiVe1/Lkstj7vfExKSZmS0s0HeU\nXGOOBe+8QayCmcF2N24vuUMfo/FyXq9H6GbEzKihEeSoKwtDnKjGw+Mlf0T1WIrHkV7SS5FcJIHz\nDGwDQvP1oB8VD8bz77/2ZVwfa0sVS0Buo2miBR8zsV6GzKdvP/ktMzO7+rpb8D1mkzSVJ87rLFCb\n2PISBXjbM8AarboFbCNjqbkpg0k7B6Ee1bXppJZPSDSTIRIm0pWTv58R3zId80PlsuMopbpWTglg\notsgayClOjdKFQ9nuqxBXnuYtX6yVHR841vfNDOzfAn35O43Qzkxv4IMnadPAR0/cQxIpxYm+o+h\nzwVqcgO8R//0MDKZBqlgGN8J3tpYN8zLm+311qzDzIIkSxM+ILZbXwut71c+hXt0/gzrgJHry2dx\nby/fB4RaYLWGLu7KhATlgFYr0JeCuedNp74ZxklzsUnjA6kfiuS1FT+QkiZfxC6vSr5+cRHIOEH+\nXBUAhDzzrGYQJ2fteAczLqJnf88eFH08z6KPp09DKy3+vMrz+hkPKTLKr92s4wAXJgKng3+Qz5Cf\nuz7VwvLzWXwxmncXibrNbW5z2wW0i4pES7n2qLxK75boNl3g6lJi5lKc/IW3Qv9RUwVDIpoq+Rzq\nML08XpCrqpDn4ipWYc9ae80eIVv5b9abKvJEt+xVrHqqG5NMMPrOOjbKW+5ltDnO6L1W6Qgjn3Ui\nxIUqVvl1w/dX6Qw/Pw9u1E/EGiRh46VL1Lmz0Mp5qc3z13Ebp04BDbXW8f3pFLR+HiLnJHm37UGg\nmt0ZlkRmdD1JBOuPYrU+fuARMzO7+hVAP4qcFojaPESkyS6gugCj8sbsEvM2zWJmHqIYjyoqe4Rc\nfTy9UAz1v0RjUQpP56dxveLzPFRlkP5yOOlaLuug1hbvvRBoL2sTia9O0wHMzCy7WrYt1ClmmSv+\nzP7HzMysJ4l7/Ia7EYV/ehIc6KlVjO23joHPjhF5DnjB4d35mnvMzOzVt6GU8m+887dwTSnMgTmi\n+gSj1X5WWPWXgSQDRgRdAxJbJe88x5z16XM4/y234t4UqG3uJVe4xGcnTUSdp5OWqmM2iCj9m+pW\nOUkzfL9mOK7KbgeItJdWmUW3iHsT5v9XuDsx8vB7LoNfar2kemfUKi/hcxuZjixpzMyu2Tkcd2Ee\nn+/pA4I9wxLQ3fQ9tSCOm0nhtyEawpw59Aw447oR6VK1ESaHG6RWPEAVRpKKmzp3pVUvEXrrhXGm\ni0Td5ja3ue0C2kVFouI9tPopZ16N9IYN0rWnUsXqpRz4Ile9Jr0D/eSFvPz/PJ3V09RRJlNYhf1h\nRslZy0f90F/xPnJHV252KonV+fixE+wP0EO6G/3TYAp5NvlOjKutanZHqSMd34l86Ntvh+/niQOI\nvH7jm982M7P//IuIkoe78f3BgTEzM5tVLSpypuszQJ6hANBQmXrREhFemNpHaQDj5ImaJTrX0DvR\n7+cqTYB/fhHIVvyZ+KtwAqs4pYXWkkyAqEou58pAa/K+erxULXjl4Yi/M7NAHadOQ+s30o/jz1KL\nKSce3R9x5fq+skparbrDxw6xnrv8C9KMkk+RUxNXambW1ZW22Wm8/8QjXzczs0YVCOie//gzZma2\nsgxuL05NcSinul9UIsRYiVYVXQl0s7z2eIYcXw0IrlSkoqSMe1sj31+X9jfCWj9NKVIwxjlGo8VF\nfvOb4Gxv/ynk9m/dDvelw0ee5VhxF0fku8rceWXrOXNV2mqfv+11J5UoOl+FVRy0W1P03kcdplQQ\n+rxy4IuMU3RQjRDlX6kG9Ix5qUZI81mNsSKBdimqIJBjKpR2HqtUaJyfwH0UwhV/v1kJJD2u+mkB\n7ApjSQp2qV6wF5aJukjUbW5zm9supF1UJOpXYXkixwq5Nso1LUA95DpXHdWXCRGRbKS1EvFw9RRX\n6ueqWqcZ4RT5m1Q3+LFh5hNrlRfy2b4DXoxnWWNbUeElei6OjzNfmHzJl77492Zm9sqb6ZLEbA+/\nk1EFBBeNE3VwVYxTo7dlDHrUSBirZIIauj//iy+Ymdl99/8nMzPrTGHVvWYvvvfN/XBtuuky5Gk/\nfQ58XQfdljwVcaaMWFMbubUT/FKQSLFKbjqQwHinerD6T9aRbTMzM2lmZjvpWhXhdTWlauD56uS2\n5dVYpwVPjYjdEyDnzVx8eUhqpxFiRDRLrwShHaEmIU+hCqkZdP9q5Zzzb33Gyc0eG+NncQ+fmxOd\nTuXdGAwAACAASURBVKasRs3r8goQ5+V7wBc3q6yayd2ActKr/HwogGsIhFnHvA9j8i9Pf9XMzE6t\n4p6UAuBaLUQPXD+5wAa+v7TIaDKztvKFkmXMrFTE56skgE8zQ0fKCF9Q/DKuZ2ISaoGxreh/pYB+\ntviMqL66HOezOaB6KSOE+pWJJGvYhUU6aAUxN2vsj3aDAb5WRV7x1yN0vg/xe6ur7bWp/Ky/5fer\nzpoquLLfROJC0lmOh7TGx49gfLXbKXO3FCJPb9yFNflXngDDrDYhPW+Fc9HLqD6N883r1U/kmP2g\n5iJRt7nNbW67gHZxo/NOBUNm9nAVC1CnaeH2vFrxHDVygg2ufvWmXKxxOdIhxpidskj0sJOavEU6\n8jiu3ORFdP4jR5B1olxtve9nRPf4MWjUKlWcd+/efW3H279/v5mZ9TLvWv6jKytYJY1ooEz96ihd\noa5iTfMnHvmGmZk9dQCawmcPHTQzsw7yRN4GlslR5uIPsq5O76Xox0KRaCsA3slPBHcVdalBrtp9\n5Luc8aaLVZlON1u24vOTpxGBfvkNQNpyZ6o1gB4aHlUEYBTeJ64SnxOCrJSVeSZ0AHQkt/NF8o7i\nPuWSrtf6vFDSRmUDoIl4JOj8W3pIZeLos8opl2u+2TZrNpu2Tj/K2Wlkkb35jbdhTFk18uwK3g8z\n9SZAqUFIUewKEMzZWcyNniHsZtaquKaKl0oTZuKcOAxENNL9So4JndyJnDtCmOuqdDo3BT3o4YPI\n3EnRWSzKOa46ZT2MOs8yY6uD/59JU7daALKbOo9+aa4L1TsuWBw/va974Wf0W6RihdruPDlP7SrF\nPS7kmU0mD17OYQJMW2XNqghdmVTnXhrrzk4qYEhRlsrM1ecuxVFjMK6SZb8ivO96dutU0Az245lM\nM1of4HGCKkTPnH8/FSLyrH2+5iJRt7nNbW67gHZRkWi9obom+C2XK5JyvbUqiisL0B80bHitqHGJ\nFfsUcRWHNsRMorFRLGOHD2EV12qpevNabR0dIlezhQWs/nK630JO0esBmiiy1tMR5vW+7FpoAvsy\n7ZUNxbekU0BBOfI6YfJ36vdP/fSbzMzs2DEcb50u5X/04Q+ZmdknP/EJMzNbmke/hnuBOjoZXQ8z\nN34beahaFdcVDsnrEYg8SuTfx0qQWdax8cgT0sl+wfvHD0ONUCurYiRDz9wBhOTmRBRB0YBT412c\ntJyCcsyiiRBBDwyAoz12Atet+zAxAf5PEVmhIyFT3Wdxp4XssjPmQ3QPqhHC6Lvqy3Nzo5eW1mx+\nBsgtt44xajbIRRZxD3rJsdUZzE3FgHg7jIhrhTWCwszYMfDvS0S4Teo9E0Q89TK9UteAxALUMlfo\nrF6mcsLDagOHDuAeLM2zhlIH5tJWVjEYHsOuYYkO9nFqldez7bWfxL1K4bDIaglCjuKKi0SY0Tjf\nJyIuMDtsQyVQYP/pEUuvAmmCFXUvskJsJNTuplXgHJPPZzqFueTz4wALrMK6Qi2zMqmqvM/yTWjy\n/o7RV2GdOlYv4yMDvRivGOeqfB2kG21x0gbDeD/EuSmlyfM1F4m6zW1uc9sFtIuKRGNyWmGuuSrx\nlVmtM8DsEnkvrgslFJTlgTVA/p0VZja1CkAFUzNAbHXWY+npx2rUpBZPaERcq7g2+YsKga6Qt1lb\nxGqpSpIJ6iU9HMZnn4U278RJ8GKZPkTxd+xEHvfcLKt1khAKcHUPEYlupV/pO9/zfjMz++hHPmZm\nZgszqCN/772/YWZmb/3lXzIzs0svRT7x9kF8r1xnRJWrarQTnKc8G8+enTQzs3Q/UNr8HK6rwHpB\nnR1AdH//1X8yM7Mv/eVXcHz2f2ka6oXBaCevmxwo0Ysvyqh9Hqv/8tK6DaRTjo9rtakdA+8zc+f3\nPw197NQ0+hdmVdEU3Zs2ezqKnxPPqeb3+x1EJWQUZo609JDiY3VsM7PJiVn78hcfNDMzL30VFDX2\ncI7I3cnDaxlIYQzvvgH1t775DK7h0Cy4zjC/V6NOMsS68QnuPl62F4qMFrXM/VSERL3of3cGes9v\nfB3O9H/Fe5GOgtPbvQ/3ftdeaI3DdKHq5q5DHGuZyoiqrpueAdJvyglL4yPEnqEDmHhoZX4ZEVwH\n9be1hrhRVoPgLmuuBGTf041d2fwCOOhivj37TFH6LjrTCxmfO49naICVeX1y/jI2zqUikXCX7jsV\nOXFWAV1bxjORpuIlSwTd0w/E2qTu1Tjnmk0gdKtTPeEiUbe5zW1u++G2i4pEHecYvmyKI+X7Qiyq\nCilOLRJr13aV5SBDjZdWUwJBK9KpZpDlmYV0hWQW6IUojk0c5a5xrNKd5MOifqx2cpY5zxrnSWZp\nDI2Bg5Vju1y9FxaBiBOs/a2m1V01iELM4929D3V03ve//7eZmf3pBz9sZmZPPvavZmb2oQ/BmX7H\ntn77u1vvsmOHsMpffhXQS5SZVdl1XN8yr3+oH/XuA+TlKhWqEojov/IP0J3+68NAP7l1jOPaEsa1\nQV3p7BmghG7maVc8UklU+T2s9rVawwZsI0tGfqpyyFE2ToARUKGTFP1FNY4ab6ElReCV4ab3Y+Gw\ncwzxpuLkVLddlWHlE2q22yZOnHWcv+J085mZAureug2TaHkJiCZEL1svfQKi9E7dtxVjEU3j/4/P\nQq+ZZAZTmNrYbURWCWbSpBlNL7BSbFcv5uiRQ2dsdMfL7C8/+7dmZjY9if72D+H/o8pV51z3MDqf\noy7Uy2dFcYcyM36K5NmlAtiIA+Dz2oXJ27aXmV/yIpiVrwORup41D5Gh+GkhwiL5bx+9d7sz8qJF\nf4a2Alnn6by/Tsd6ZUqVi9KIA2GXGGVv8fpGR8EFN8nxqt89fCaHB/XM43updLubVSjYHoVvcjfr\nyENfROFiF4m6zW1uc9sFtH8TufNaDTdr04pchcRfCTlm6TAvBOIlBygEGWVUOMSsBOWcVysbZZ2f\n+3nxPmpaTeVnqf7MT4FHUs69qlYm0uifuFXVBFIEtJf8i9+H45w4gUirh6t5jH6iMfJYkQTe76HV\n+6/88v8wM7P3nf9NMzM7/CyQYrUMJPz5v/5HMzP7qy8AXVz2MiDo3buBPDvIFz39NDKQstTFKpf+\nycfBuU5PYhWvlOkHyuqbytr45we/ZmZmP/Zy6Fkbcu6Pqx4NXiuiuVEbi5lk/k3ohSoJjVNwk5ek\n0JKykDKbVA/Sn+r9gLfhvOdoijmm+o5QrXwyzcy++92nLbuK92MAQI7v5VNPYayvv/kGMzOb5/e3\nbsUHs+exy6gwh36xgjG85nLwyCFe8zgrwwbI1ycH8H0fH8HBXkTZ6wW8/t3/9ft2x0/+tM3NYc71\n9KA/174MY9/Tz2qdzOo7dw7ItyuD4/rpZ5Cng5czN+tCWr6270kTvbCE80kZI2S7Ywc43DDn+gqz\n99Q07hrXGDnJXnKiK1SAqD8Z1qnf/zTmXoP9CvjpHUAu28v7Ji57lTsGeQT3cbdX5pxaX22vP6/d\nTJw7iLERjGOyB0hVqgFV+vXxc0XeZ2u5OlG3uc1tbvuhtouKRGvrdPdhRcEwV+2GeAnyEauLQH7N\nJp1nKNbzMKov2qJEbVuY7tRCkovkv7Qqlbm6iVsT6tBqWiVyEnc3shWR044k86a56smdaYA8VZMO\nNBl6Ha5nwVWK2601gHB7+8bMbCNrpl7hKjsPFODjqluSo7wHq/h/fht0pN/+NlQGDz30kJmZ5eja\n3agB7fzDg0Cc//Slg23nF0IOsh6N3Lw9zEBaK7fzZN2DuI5cBavygUMH0D/aPF3zyhvNzIwp8dZk\nP5p0c9f5fDGglyy56AJRTgd1wTlWFKgVGQn2LvH71CxSXaGdRIx8oioSeIg2a7Wag+5nmSNNWajj\nJ7nCKpBB3wZ+qJXmLVfAHMkyG+6Xf/23zczsda+5yczM+vuAFINBHHAQAMvqvLZhOlhF0uTmlsGp\nlsk7h0aw64lQd7l+DmO+cwd2C6eeAlf5qU9+1szMlmdZiZZz+ZZbLjMzsz2XAEEFEuSjWWcsRV+G\nNeomVbc9yGoOBe4+ak5VUypTyMmyNJVFo+BAFaWuVtDvA89gPLfuYNYcOUntMjKsI68c/yDjFkfO\nINvNxwqy8TjmxsoiEHCqA/dheZEuUfwtCBgdx+Lg+as1zJ1iAVl8iRjmWoDPxpZhjOtKlAiVu5Nw\nAudTppqHu0dStU7VUD+z7JId+HyjA78lpGKft7lI1G1uc5vbLqBdVCQ6M4dV5ew5cIRx1noWj9Uk\nHxGPYRVT7nmLTvY+og7lvpcK9CykjjNCfqOfruZCnllyqWob3CqOJw5OulHVtF5ZYO67KXccq/PT\nz8BJZus28EaVChDgzt3Q8s3OAP30DwPNSJ+6macTcpbG8YorrsB1Eo34mE3xup+CNvFVP36jmZn9\nl//6VjMze5w10aUB9NBndZ0uUuKAvQFxkbjuFVYXTWUG2q67XKY/K6Pvj38H/NXlV16LfhfpGt/F\nzCG6g+eauA4jL6XraZXauWJFbhVlV4Q4wB3GyhKO093HbCFm/UiF0RFXRhTQVk9vl4WJgPyEEHIG\nU3R+aRmc2cP/Cs/Wu+56vU1MTzieqnKcWqKy4bP/B/Wp/vGf4WfwmtvhH3DHbXC67xxD3zqoq4yF\nMWZDrL+ue1yUfnIaKDu7Cu7y/3zuI2ZmNnMe+slcDoh0+/YxMzPbOY5djpQlynrzh1XvijnvZSou\nOJdPnoCCokXlh+59oSRkSm9e8tixKJBsgj6f4sGlZqjQl3SSLlG6rhgVJUtUL+jzykqL83h+egFU\nKu1zfYYqhh2srhplRpN8QH3MTjzwKKql9vUp9x7HX11lVYgVzOEM9as5/hYoay7eAaSq2k5Sf0pz\nXGfVCD95+Qh9OOLUsj9fc5Go29zmNrddQLuoSDQSxW94nD6WUWrUwsxACgbxl+m6Fk+ArymXERFt\nEbFqNc4HgVCEpBLMUBLCEWJVhpCi8EKiiv7XN9XcFp8S9CTajleTNo6rbTd5Ia3yylfeSk61oeqc\n7K80jJleoJLdl4zz+ojUmOUSDTGqzeyKXIEuSEQZ4jiv+TH4iko90Bmj6zij3WFGcmeZez8zh7+r\nRKLPHgSC9mTR/+4MC8FTIzg0gPEfGoYeNhhgHjQ50dx6e+VHRd+FtNWvmRm4jy/N07WJOwqNe4M1\nozqJKhr19iyjKMfPR1VGsyrPzaqFWnLIovaWbj6n6Zr/1NPgdddWtatARU3xwIU8o7qMXreazLZi\nTvsXv/qwmZl942Gg8u27MEajo0CKLWP9Kc6ROY7xoWfJ5SXoO+AZMzOz2TkgMY9h7F59O1QA27fg\neDff8gozM9uxBZlJcTqJNXjtmrOLzEHXnO1mxVTFAVaY7ReN4PvaXc2Lh+ccqdbIhcqXgvy1dmlC\nZhsIG59bX8f5hezSrIemz83SSW1pCeOhTKHLLgPXqwykOnlvqQZ8TYz7rp3Y5RVymKtR7jaH+uku\nRa9hjfvoEPSjGaoalF0XIVJuiK+nW1R5DXO2xOoZtZz6Q2PR52kuEnWb29zmtgtoFxWJ0kzbAkGs\nHuIixc80mtKR4nPKXFJ+tGpqC1HmqB8dGoKLkfJmq1ytr7rqKhyPSGZzRoxWZ63mip7r7yJz59VP\nOfN3Z4BsF5kfrOh9nNH+AweAfoa3g/cRByieSq+16gsxa1VdPgseT9xik071Y3Rr371rvO04up5E\nFOMkBCfdpXStV1yN8fAQdX384x83M7NpqhkKRAVCZR5qD48eB6radyWQ7+IquVzuINQ0DuK/xEnr\n+vR3bQXXd/TwYTMz62KEdMduVIqMxP1t1z8/j8h3jFpCH5FyR1fcqUEv/0m5/ega5a8wy3rlZlBB\n+Bv0oiVb1iKn6uU1K5tMTvOlGt4/8izG6l++/gw+T1iie6fqojHWmadhu3X24IM3vgrR/+3bgRyH\nRvG5JOvU794Nza+f3KBTM4m7N3lRpVNCuPJ0xd/zM+Dt5ei+sowOSBcqP9CcotxbsGvq6sSuSrsG\nzSnV4dK92OykpWdFz4h2VXrWtCurlNo9fDWna4x3aNeyzPphHaxa6qHaIBxRvAR/+6mpFgc7zV1O\njrrUclUVCOiiRXWCn2oLrzKWOKItzpOV7MaO5Qc1F4m6zW1uc9sFtIvrJ0qUoOyKOuuVK+PFce/x\ncL1lvfb1dayKIUZxtZqpVo+4RvlQponEFLXeuWdPWz9OngSyuuSSS9rOq0wYp0JgA+fTKqno9sQE\ntHAhZmkof7efebvqV4F5y8qp3+zCHqGGLZjEajo1hYhtP/02hZBV++ns6VN23TWXWZ15wV2KNPJ1\nL7MypKPt6qJDEDlYXeca+axdu+D8f/4czjvSDQ50bQmrurSFJ05hvGrktWh1YCXqTGt0hZJjkDjr\nSrO97pGyaI4ehru6kOlwX1db/zajmgQdi3zkmEPcqiwtz1ky1Z6xIyT67MFDZmZ26hSi1s3nTH1P\ny2ONWrtiQlFnIZyVFaDpPnq1CsEFiEh9PtyzFutKhchTq575MJ3ut2+n41aD7kPdrH4ZbfA4rGhK\nPn2ZaoJOesXKMUz3uCNKxQUh8Bq5UZkP6fyqMFsawHnEW2d4j/Xa4UbJiXZ2UW9KL1956Op8YUbT\nNW46npCrzt8dYQYZc9874ngmzk9h96dnKkRnMz1zPR2YC+JS+/pxfFUFVT21MKPwaTqXDfDZ6+b9\ni8WI3Ol1kGO8YZX31UsHOTns+8iFdwvhP09zkajb3OY2t11Ae1FI9MSJE/arv/qr9gu/8At27733\n2uzsrN1///3WaDQsk8nYBz7wAQsGg/blL3/ZPvOZz5jX67W77rrL3vjGNz7vcYMkRZ3a0PRyVCSt\nWmuPltebQCoF5h/7E6zxQ91lKKi6LEBgct8W96hI4Aw5PyFB6TEPk5PT54WAhHRLJSDZBOvW5Bjl\n7mDuu7hbOd4wtdx6iax6e7D6Sscqnkj90HkcJEzeapku3dNEoFWiBiHTOhGajxxsPxF0T2aTH6dH\nddsxriusvBgKYrwDhJRXXYnxWJym+xSzXy7dAxS1MIN6QzMzQKwNOfqQiIwFsHqfOHHCdu0btePH\nkUHVO4zrVx72dx6DrlU7B/F0S4u43s4MEPjKOq5761aoAhyvhCgG3Et0kUh1WpUepR5xmuRCFxaw\nOzhxCm754s7MzELeoLMb8FOb3JlCX+RiJJ5dSE27hEHWxwpSQRGiljeZavdlmJvFnBvail1Idw8R\nJFG8otWaO2XmrAfp5B6iT6jQeI2ZPeIShUAL5P+LjCo3eevDrJYpFK+sOiHA7dtxTxYX0U/VL6uS\nY45Tkyvli+asqmj6/YG2v8Fge7xhau4MrwMXXMi1c6oVulAdfhbPoKL75yYxzl3dmFPT5zH3Rscw\nN7ZtQ0aT9MHivlVZV3phVRltGuZHMIr+iTv2UTs9vwSufKSf7lDNdr+N79deEIkWi0V7//vfb9dd\nd53z3oc+9CG755577HOf+5yNjo7aAw88YMVi0T760Y/apz/9afvsZz9rn/nMZ5yAgtvc5ja3/ai2\nF0SiwWDQPvGJT9gnWN/HzOyJJ56w9773vWZmdtNNN9mf//mf25YtW2zfvn0Oz3XllVfa/v377eab\nb/6Bx5ZZ9toqa/z4sOqWSkBAqm3tD2C1K1QYBfYARehHWucUohHCE8c2z0iseBbVbHJy5YlC9P9a\n7cXlKfK4YyeQ0NwcVutt27Baef2q/U3Xb2ZelRnhO34Cq+vqHPit66+HE0+LqKksLwBllXD1dqpk\nMsLYTS/KSa6qcls38nkd5IWElvLZpbbrE78WkssV+Z9O5pVfQbf0xx9Hdkh0C67vzAQyyh57HH6m\nSVYaiNDJPleSCxNdnTgeighLZ2vslzjoo0eR6SUEGuP1l7PySsDXxsehPjhFLra/VxpEoiBGVMPJ\niJWpc6yw3tPSMo719LNQSIjnrlQ3nLvqpZqVieDku9DfDaSWiLXX7Spzd3TV1UDrfs5Zn0/O8UKY\n6FNnJ+bqq159JcbyDK6hQc5Wc99v+F53J9B60Id7dOQwPh+PTZqZ2egoEHE6KKcyzDnx7GuqXEu/\nTvlLaBdiVCGUec8mJ3FcIdJV7nqkm1VVBGX6aPykJNGzomdkc/0r/c0xUyqdxlxbpsdulj6q4p49\ne+mFm2X9syHMnb17MTe1+wjxb74kv1I888q4UrUMPZvdGewoKuSil1itQnPWnOxHZkXWhORfeLPu\naelJfYH24Q9/2NLptN1777123XXX2WOPPWZmEMXef//99uY3v9kOHjxo73rXu8zM7I//+I+tv7/f\n3vSmN/3AY05PTTrbIbe5zW1u+/fYLjg6/4N+g1/Mb/Pv/tZ99pFPfcV++c2vNTMzr59aMPpcSvMn\nDiyWxKroqbT7j4rz02oqXaT+OjnjjCjGOiL8f3KTjKT6mPWwnsVqXK9X7T/9l//PPv3x95mZ2coi\nzjtNPkzeiT3kb3I8f1r5wlzNd7F2UvcQeJyh0TEz26ix5GOertBCVF6Y1H2u5LDa+4luahW6sMdC\ntm33bjv6NDwvo2FclzKHah7lqtMVixHI0RFEiv10uFdm1KHDyMI5dASZS0urOM/sGWSPnDyACHeK\nSPan3/wzOB61jMZxnD8BDvPokeP2P//4ffbkt/E96U+/ybz1KGs61VvoX4IIvrgOreHaimqFg6+T\nu3m1xgqRZXoSDIADj4QD5gngmEsruKa5eaD2rz/4LxgzapCDzBn/9sOfsx3br7LTpxG1v/xyVBXY\nRv41zqguDcYswHvVmcauJRrGvV+h8qKPyOkc50iFiK23i/XRmcs/sgVzocKxT1L3KX1o1N+0H//p\nt9gTX/0rMzNrsBaRl3M9miEar+E6VlaZDceqAGtZzM31Auayx4/v13PUw/L53FwBQHNOmVCK2usZ\nkoNaMBi03/ytd9l7f+d9bf+vZ1EcsnaBK3PYNXqoqIhxlxchh1wq4tk5fw5KFz2rncy8krJG/dLu\nRYoaaab1/5VKxV5398/ZP/7FZ3DddXLJdVZB4G9AXTW0iFhDIWq3g5gn4n5ffiO8Er5fe0nR+Wg0\n6sD4+fl56+npsZ6eHkfaY4byC9piuM1tbnPbj2p7SUj0+uuvtwcffNDe8IY32EMPPWQ33HCDXXbZ\nZfbud7/bstms+Xw+279/v7O1/0GtQk5Qq2KWq7nHy1WBuktFs1UbusZovaLwQqD6nLhNRVClF9Xf\nftamVn5xgxG46WlE/laWgXRU+6daUY42+rdr+yD7DdShqH6tDtRRIEcZI2+1WgICay5QTUDlZpIc\nZ5SaxEIJq+T6Sbqsk2dKpIFiyuRK5xeIhFcWbNvu3fad76A2Ul8PrmuEecPnWJ1T9WqSHRgvVd+s\n0KeT9qWWTuE8A/3wqjx1GpSN8r+FUppYrL8nW+UY9bJf/fsvmplZL/OWDx0FElW+c0cHvtfD+1Cu\nsl49abt6ESfw+9t1w0IjddaEjyfwuXlyzR2JiM3Sp7JKx/JVOtbLNd+YESMfAjOzQiFnl1+xz8zM\nxnciqyzC6G2BDli7d+H9Kj1eBwZYMXUWyKyH2lvVre+IY+6ukkM9eQoKhRTvdSiM/nV3Jvl5jEmY\nLlC+Fv0AGDgQAg5T0aKov6PsCOEe5EvtXrneIHcjNdWbx//XiIh9jGZncxhDIcA64xHhCFUBdF/y\nh9p3gUKE6o+i93r2nKoF/J6ULXLYz+YwXhXOfelvR8fwrK7x2dbc66Mjm1Pnnv8/O4u5LgSs64iy\nrvzsPKuNlnC+Ep9lHc+pqhBor8pQK7U7vn2/9oI/oocOHbLf+73fs+npafP7/fbggw/aH/zBH9g7\n3/lO+/znP28DAwN25513WiAQsLe//e32lre8xTwej913331OwMdtbnOb235U2wv+iO7du9c++9nP\nfs/7n/rUp77nvdtvv91uv/32F33yAFdV8RANZnvU6sreYO4483F7B7BqJDrbPf4U/VXEUKvT7t27\neXycR5lDityp3ot4nEQcfJJUA/OMwk+cRpQ5Tn/MpfmptvM1iaS7eoAq+odwHiFd5ek2yWvNzc3w\n+gNt3w9FsGp2dbPWtqLs5F6XVuiWzgTsJNHLQB/rxlCvukhvRy95v2ZDLlZABXm6t3vIA2ncDx5E\n5tB3ngSyPU9NXoZ61CHWxQkSMg4R2Z9mtP3Bh1CvfnzPOI+LcRT/VCPi330J7st6HteVSZFXpCdk\nqhPnqdVxn6bncN2pJJD0nOoa1TFeXkbGfU2fk2N+bhb36MhR9M3PPvuJTJrcNZiZ7dyx1Zlj56fA\n527fNmZmZlHyvA1yapke3JsCEdRAL5BPltFrzYkwM4n2jONaH3jm82ZmNnLFy8xsY1ex2MBx4zE9\nijhfhtrigX7MJb/mAmsMhVTXip8vluUZgDEOsPrAKqPf8p2Ico5J1ypEuecS8NpCksqZj1FvqWy0\nWAT3QEhXc3RzVF5cqhBdkDrXEjngRrVdA87guPN57Tq8/vafKCcziioBVaUQUpX/hVPFolrkeNCr\ntiENOvpx6jQUIkKuDWqdU13Qn2qX9XzNzVhym9vc5rYLaBc1dz5FTlCrobOqEaHKm3GD/8BquLCO\niJ+4VEUAHQ6RNIJe72GuvM4T4LKXFtdI3qbOgjypJCOpTfI4rBe/eOZsWz8jIXo7Uq7p82N1jkRw\nXeUq/iPJOjZBatuEAKs1oRb6fM4C8RaYF62smkwKyKyPiHBtvcX/x/Vp9RaKiNG9SXnMDtJn+kpN\neeKsI7+4jICg6sMHA0Ard9yGXUWB7lhjzEd+9BHoReWIJJWCXLS6+zMcR4xbF31WT02Ar+zsxnUo\n4ypfYG14ajIDflx3MARU09+P8dq/H05JKaohxDMmEhj32YlzlkjjnGvkteU5u0quMhkHctm9b8M/\nIRoLWySMsTp0CPxthNxYX2+m7VytY3XnO2Zm0RAQrFSnRXKgg8NAqEK2/XS+l3drikqTrjRRICK5\n+AAAIABJREFUd7U9E2k9j/4vr7ZroVucu4W8MpzkAIb++ljh9vw0kHi1gXskr9vsMnZXeqbE409N\nA/kprjDA+lriOpstvL/IXHMhRe1W9KwpSl/fVMesysq9ijM0OGLK0Z/nbqNKDrKZxf9fcRX0uHJ/\nEtLV8aUF1/tClEKiBJ5WkJ6UFQzSSWU0tXOgQep3V9bxjHg5vs/XXCTqNre5zW0X0C4qEi3RqUar\nh7z+pFs0OrSEwtKPcvWnobq4T3GPQqZaJeUWJJfsnTvB+4yMjfLzWG0UzRfC7KDWTvxTlq5R6TSQ\nWJ58Vo1ZL0XyTarnMjUJRCiJV4b+na0GENvaGv5fju35IvrZR/6ryVWwSf3kuQmgoJFRcrrs94nj\nh+2G2+4w86AfWn3lYSleTB6XQkvKw5Yzf5xIbvceuDiNbMF5ztA3VONzdgqoY2QbNJRZ5neLn/rN\nd7zTzMy6R+haRY+DczPz7I+4b0aAyRHLsSjACGmFWUed5IaVmXTpFUCPJ09ABTBAjnuaKoQtmW6L\nsZbOIuszyTFdTl415pSfOT1haj6P36qMVl9xKZBPkhrWAebO5xi9TnYoE4ca1yozj6gsSaQUfcY1\nyc+hi7pSufjLjX9yAmMsrjWVxnGbDaDtOeb8e6jxXSbfrdpRxrEMcO6VuLsQIkxwt1Tf9L6eHWX9\nae7ofcUJ9Ezpb/cm3aaeGcf/k9zyZocyjxf9LXGXpUq+c0SgaWq2M9Tnyg9Dvw0TE/I8wPgKmY6O\n4lmWPlTn0+6owMwtGVms59f5/6w75ihw8H1py+N81j1e19nebW5zm9t+qO2iIlFpwqQDDDtIFAhH\nukGtikI2lVx7jrxWQUUEtQpq1VX0Xjnpyr9V3fViUQ754EnCEfRDGrgB+nkuz2GVLTHrQavlFiEz\nZn3k1oAsqyXWfFrEatvTj+Nv2Y7IX4WoSHVfFAGVZk2Rx5wfaCSXZdYHMeUuuiEF/Yrys047V/t0\nD1BDkeOWY+0nuWb5iVjXyNP5/DhuifxRiqhOWjr1RxyydK2jw9CVjgxh9a4zK6hSxw2MJcBTTk9h\nHBp0SlIlStJ25uU8iCRVGxxoQvXlA9Q89kujOUffVnTLQv6qU/lzoA8IUvpBcXb9GfTlyOFnTS3o\nDZmX+sxIqD2nvUn+uIt6ztMnJ83MbHwcu5q+Xpw8QY7t6InjvGbc0zwR6toarmWMY5VnVlmEc17I\nVbyyuMMzZ3E+H7PbVIVTuyTttrqYe16ut3PAGuvOLswFBqkdv1X9zWWlp+UzyGdpgVlm4kZT5NmF\n+PRXSFXjrGi5/sYizAZUNh2RX18/7mWV6gLnepjhpf2T5p7j+sTvKx4iBClkrGe31pCqQf4Ocnui\nryozuyKsP1ak58LMCvwipOh5vuYiUbe5zW1uu4B2UZGovAjFe9SIIrR6+VVVkx6A0Shz3ZkTLiSq\nVXLjuMy156qojBsh0jOTyJPeu3cvPkfktEj3bCEfRWB1nh7Wv/FG0B+luS4uIwKbZGSzSseaBldp\nb5icZbiz7fparSbPh+sJs2aTPCCd6qTMVikR2dap6+wItFcfTVEnmi8wT5raxmhMjjbif+hBuU6X\npxpz8bka16ld3DICvilPxCl0s5W1olZ4/UIBHt7PdaKa6XOzdunOQcvTDT1OrrlElCO0paqhcgpK\n9BJt1FVPB/3vJRppGDjuHPmuEvnFiaPPWt8g+pzsAmJSVpu4v14ix77MRkry6uq6oyONkLcdGwbn\nlqOPgrS2IWahPfbod83MrNV6EmPE6HPvIOZYP++ZdivDmzJp+hgtFz9dYZRcmlf5mI6Noh+T53HN\n6VS767/mpvjvAPWpHV45++Maz5+H8qNRBtJVNNrRKvMRku+qnh3tzqR/1V+njtgmZCjnM123uMzh\nwWRbP2MRPCslzg3tbraNY5em+9b00EuY0Xh9brNOVbtMIdPFxUW75f+2967BcpXnlfCz+3493af7\n3I90LpKQBOjGxQSBbAgRIJsxzgAyDCMcpuwvXxLATMUeApS+4CqqQnBI4gyhioQ4mSpkVwxyKpHH\nmUARQoYZZMZYjEAgIesunfu9+/T9sr8fz1q7vRshOT7BLafe5490Tnfvfve79z7vetfzPGvdeoec\nOIkOthJ2m+gU83n0/cv7FGnSZ573QXfUne0/VxgkasKECRNLiJYiURuIz4ZmXx7ePAE4CvrA/3jw\nt94HBfMSSDQ6NNJJEe29YmP1ykwp19eWgJ+9Vz/XmRgSEZHCAla1oK6K3eg9p9p1Gf3Dnf1AkHn8\nvgDeytLfey1d9WtY9nNwhIxH9bgHDyryPX1aV8lPXvcpfX9Nzyc2qKseJBHFBqLLLkJNCvPUOwB1\ndWgL2Fg1u9A1E0Vdaf8yqFZFdV7IGedmNKNatNHjj9U5GEF3y4J+H7PtYfSDe6E96QF/Nwad0N4e\nVAuAe15EZ1YCHOihzCEREcnn3OiHTpWOXipcRSPwNK+wRq8CxSSgysKiXr9kTMflWQ7vJqhUJZcN\nyhT48ooH+gVRRR6lRf2uD95TzvK2W28XRmkxL6ugBjQ2rue2FpUcHDP7/QcGFSn1LVfEOzGuFQvv\nva96pX5kczNTepx+zFEYyJDKXbZX0fipUeVsZ3BtGsj5oPzqDpE396ouQyGvc7RiBRTC4qitxr0w\nCcfUYIj6p/o+cqhDg3pvz83p60SOCwv6uWFkxc+MKHILh6EqBQ8oKtyPz+CeBSLv6FTk7ehvgucv\nzeq91RdHbz3qX6nfmcFuxckrrIBSF5C15afbqr7e1aH3JGucU9B5sNHdyN3TmpWK3JeBa714pb7v\nxHHUDWMX19sN3VZ8TwidbE7PvB11zeO5wiBREyZMmFhCtBSJksegmnatrqudo7iDv/FUIWLtF7O6\nlTL8aKBMwwxoFOpPy9F1sWatrk7tKeV3/CFdXeLg6FglQMRTA1cZ8Sl6iEUVHZTQQUVezepUlFNH\nHeO772i3C/mbYye0j5c6nw3+Cd0W4Bqp9E53zCi6U3zwffEgo1gp6/f4Y7pax5A9J0/n9ejvyXnW\nBR7phZJrnqhKVcLPQ8OKQqLwqeE8F1Gnywyytx3oAP3ac6if7cDxqtgpjM2cwPF0XOxMIo9G3oy8\nXnO3SX5R+Usq8hRRT0r+j2UbWfCQ5GRLi2nxA3kRLR8/qnO7Zo32sMfAxf3PN/5ZRETuk/8gVbvu\n9OeTc3sXylwd0O0MQ7pqFL5a3EXkMbfrN2wSEZFImJ4+ek+PT+txC1E4siLrHEFXWG+vIjl6BaXT\neg/Mzyt6564gm9HPs0MomNB7gdn0NmSjPci2Ux+0VKEzvcY4KhpiUJnKZt1cYnMlDPUruGsIgMeu\n4N45jeqBoFfnfRLVEDH06M+hbtT2wT0TdaasPW7mMvn9RMq9y/XZY5UAK0tG89Cf8LDSA51F2A3N\noRabdasNjWHUo3boz1nsvhgcTy0ErjXvzrecLQwSNWHChIklREuRKFWu2RecXaTWIXQrkTJkZjWB\nXuwCOEe+zlW1G7xJPqf8BzUh6eVTBx+ycrVqR162SZFnHM6OHsuNgKkIHwZyrVfQpxuH9iB9WeDb\nvnq1qhcRUdFtlKs661Fff0N7z4m0VqBuNBimjia4YC/dTHVUbRhnDGpTftR5sj50FvWpEdSdRuLo\n8ArrPFspH+YNvFCPfn+QtYr4/dAg1Kdw/ALQygIyt5lZ9kEraiiC06SnlHjdmWnHjRVIkteXmVUH\nYSKYmWadbw0cbhF8WxX98I72JZB/LJSQIlSLOnAvpIA8HGSDGlPLauCHtZdc7CAgeuwQRbPmNlqm\nIy12KehYSjj1jDq2wVVDIiKysU3vsXao9U9NTGMuiOjiOAf99Ny8vj4Ot00i0TnUMfq8QO8+9nrr\n3MXBI/OZWMgoQms46BJZ6jWjjgLvcdZfcn5E9P2s12xcQ71m4bCebxVdelXsLqZmFIFaNjuN9Pt7\noBnrQ4EqrxWRbZujMduG47t3bdy98Hp0wiuJuyFyorNzOm/04apivA6CDVK5Tef11MmjOI5+vg9+\n9kSseSRYIqHz/4k0SNSECRMmlhAtRaLk4Jx6QXChDsIC0mRGMwXOMB90I1EimyI6bep1dlPo+9hn\ny1VuaJUbMXK1pUpUEupONXCl5CJ9XrcyTMjxiYFSexcagln/OqxvpMbhxKSihERFUcgsONzj//RP\nIiLS16fIkL39VIan4kwFCKwIRwB2owirGIDsqS25COTYvPpzlee8T0L1e2BgAPNIblrPt4ROqmyO\nauTQUQVyDaI20Yc6U4/lRoicd/J3zV0uRKR8P+fV6eP2Nnmu11hf60ZZUyOTDnIogC9fvUazvuTC\nqGHL79KBeyUBBJLuURTOGuBOIE3W8gqRKK5JJqe8djc0XVkhMYsusEM/Vo3WFbimC9hVFVCxQISX\nbNd7CKcmESCvtqR+z+iIIipmp2u4dz3gBANAnkSglnAXQ30K3COo9BgbVW63H55QRGxU0gpDr4L5\nB3KsNepEYPcQ5L0E7rSAe6SCCprFOfiDNSFRIk+6TXC+6ezKZ9Lr1fezA8npRoTCVwm1wrW6cqxX\nX321fi92o/ReivIehVlWMKD/xiJ0CYUgByLszJupEzVhwoSJjzVaikTJhZG7LFfdrpsWlNkTyEIz\n0xYM6Crk9NLDoycILpE6nadPa+btGLx/6Pd+4oR2UQwMDOn3gF9iZtPp5Q/q6pRG37FluesbiYAX\ngWB9UL4voiNnelrHS+Q1NKRIrw2ZyVFkJMvIKFLXs0pF+Ji+j/weu0Wop5kHZ7sIVDOPbHkVaCme\ncFc1EOGRFyMCJHph55Dfp69Pode+UCQXiaoIoImpaR3/8hV6XlRfIjogr0adU3LfzMxy/rjaczwc\nL1FLXdy82Cy4ZioJ8ThWrSpTU/pad0/K9V1UCKNmbLHcQKI9fb0OJ1gA2mXFwsws0TxqUakGhbEN\nDOr7bFRC0Oe9jN0IdRHOQMmKCLGOnm4qx+PtjvJ8HruqMVQD0GvJC50E1oey225hUa99GzR6ic6p\n1OXob2IXQd68CmTbhRppniffPzVFf3bUuaLjqAp+ulahKyjyBbhGRTjS9vSip7+oP/NZ4LPsdHQB\nkfJeIPKMJugtpfPCe4Sfr2DXxWf+xBiy9gGf63gM3itVqGBlsGOoA3nyGYl1dcpPGwaJmjBhwsQS\noqVItJ3e3eQ5IrraleCo2OyBHUSGjZlIrpZ51AtmsRpRrZoKMXEgOups1upF179Esm1QG38bPu7L\nh4YxUmRUwRNR4YarOhFXLqurMbtbeH48nxg0KotAFV12F75XV90x1PD5gWZm5sBD1TSTSM6ydBrZ\naPBvBRzfC97Jhw6qmdlJ1/yRA/Ui08ufuZaSg+S8+rADSEAPdXJUay9HUIM5Na3/rs5qL30EuqSV\nvNupgMi9URc8h/HHMA50jQAFEHETRRTBbbMmMwcekjqxVKkK+S0JAilZ4PLIm/Lap9J6LtxliIic\nGRt1tGbZqcMxp1AnSmTIMfEac9dShG96ACh/AD3vYlOpilluONtO6/HofjkyqvoLtbrbBTNMT6SA\nW3WJ+QD6hPlQ00zn2bY2Pc/xSUXrVOKKx3lPUgVJx8F7i0iRHCWdYVmpMnVqAuPRPx3z6JRaOazn\nW4GLKp/pbJb6nXBkBRd61VVXuc6DCJ/zy3FU5qEohprubFaRYwzuDdSXGB3Te4GaBOREef35zKZS\n0PbFPPuxCy5Ct4HjZvdhc+XI2cIgURMmTJhYQrS2d17crp42atRqDj/BVZe+MuBAi4o2ikBg5FvS\nKV3V00BO/aiDrFXh5omaulCb/kzHP/bgl+EMeO0WXSXnFvTnKjONs8hKs1+XzQzIeKY7kdmd1NW6\nVGbNov6+Lop8uepT35PZ5gTcNOdmMzgv/d70CkUR2QK8iIBoF7LKNS4WqTMKvo3zCK6VTofUC6VS\nkOXRn33IftfQceTB9TiFPuoZqGDVsTOIQ309nlKkXrf1vEbGFfVI1Y3Ym7PuVCMnOmlWRWfDGlEB\nM8PkZtmx1Kxp6S3lZP16RZSDyMrSzykMNaIwEIwFNC4icteO/+ggL2Zvyb8WikR6mn0nYiJizaEH\nHFSlVIia4VdP3r4A5GdDDcry6s9zOPcQKlWK0DOIAbEFwuxAUmTlgdpQBgjNssiD6/cPDSkiLIIr\nvOGG9a7PU63J44GXUR1IDFzw7IxeEyJcPovcRcTxJ4PPQATzQI+oUWgPOApr0AMNo2uP2gC81kSm\n3H2wQ8vxgIK7A6sHyOWydpx8O+81VsK0oXri5MmT+H4dz/T0JH7GMw8XjTL+lrBGe9UlG/S48P86\nVxgkasKECRNLiJYiUR84zhqQk9hUnKenNuoN0TVSBBdWL6BXO6+rnx/IdHFEV615aCd60O8cjOn3\nBNqAHiZZs6arbt3WjN4auIIWi9rhRM7OrkOF3ILjIhwD4+hkmkGit4zstB+97Jddroj2zBl1Xjxz\nXM9j2tbV8MyIrpLUOWWRoB/Imejgh3t1PJ++5TP6Pfprhyus18Elg8cpAz1Q3YqrehB6rFnMW7mm\nnw9HUF+K1Zy+NGX0sFNftQjENwt0lUwqmnOQIryilqEzqjeu87CyB/MENETtxhGos9vYaYyNKTpp\nh7K9wz3TwzzAelFFDx5oLXihnOSJeSWJjpYgHFoDUUU2HeiCAoUp5XLDd35w8GIJBhVtk4dn+Hzw\n3Gnq72ftcjiwgDmCHkEVylt11m/qPRgFp0cO1e/X3QUrDNjz7dTQgjcPhPVzHbinnO6vuFsnNQLO\nNNqu92jM0jmfnJ1wfS7PfILjfYSaZp/+vlSEYyw0cC1UnCTb0FU4C/fQTh3X+su1rpO7DPtd/dz0\nlD5bgYB+LhhBDbelyDse1d1ZOq3nkUrpdSLiJZfph7rS+KTeGydP67M0AV+tKmq5mb3PoHKDHO0Q\nsv7srbfg3un3scJG5y2V0K7BAOqI8zadB0zHkgkTJkx8rNFSJMruC/IvbAoh38LMHesuqZaUyZCn\ngIoSV1lk2OiHzuzt5k8pIuyE51B/p65OXPXYZVICd8dVm6jE0XicYv+woot5aDGS/6ECOzO35Gca\nTokpjFNX4yuuuAznoz/POp7eih6Yca3iPHfv3i0iIpdd8QkREWnHKs5wUAzQA+ePPI+T8WTVQ4X6\np0DQ5KGovI81No+aQDpaUkkolVB30DOnFPlHoXyzCMQYidAfR1FgFTWL7F9mF9BJKAFNjOO8LdTl\n+ljHCpSDzDbnharr03DAvPnf3SJ9fXptI1HlPokAWR8ajrCzp5F19Xq9zjVm1rp57ngNm/v1g1DC\nr9aYlVbESAWuWdSZUmmLHUbzCxM4B3QG1dydQWiRb2S5+Xuc+xnMFYOuol5WNGAXQ73MvON1pMfz\n4Lg9PcrDF8D9dSShroTqAOYlWG87Pam7iQpcE0ZHdRfH6gE+G+0pnb926H6Go/qspVOKwJMJ/B67\nOe52WEXA7P/IlN5rSeQzvOB006homQYPTzWnVdBFrbJ22KnO0OtNDYMMXB1WrVIO3elapFZwG/IL\nTa4ZZwuDRE2YMGFiCdFSJMrss7+p9q2A/lwflXZgOuRFFpm1fkQD2Rl0DCGzyuztho3KccaBDImA\njma07tLxxgYi9mI1DaKDh06RRIC5BTcaYVUBEWYOnCBX7QQyhNRKLMF7qQiFmFQKqyvqKcenlJej\ncg/R05GjqCFEJ9IEFPs3XrZJPvO5TztoIIYawBB4ONbQEU15fe7xM8irMUrQ7yS6mkNHVl+vqoEP\nDA+JiMgUziuILH9HXNHFmov0dc6nF7AqibrZXEGvWwmuroKavUAQqk4RojaPa3yOMj74yRT8hkZO\n6/nX67aE0FNNPYM6hA6IlIgbatWGzmaxWHRQuDNXXq/8ZDB7TGTTUBoT/FzF59BTjoqIoUHt3ecu\nI58Dj4t7mccbRUcTj9MPLi+VAneIc+UzkupSdM9rzEoH3rO8B1nDTMTrh/pRAbuwWdSRDi7T6gMb\neggDfYoI84tZ1/H9juI8fMGAVDm/fB8rYYjgE/D/4vl0pPX4HnQlUqUqEOT867z0e3VcR48edZ3H\n8aPadThNbhTXox3fwx0FtXoDQfTMQ3nsk5/8pH4OzxgdehnN3Pi5wiBREyZMmFhCtBSJTozqKjg/\ng1o5cF9eDKsIrs4CEiWSm5xUrpOIpEyOD9nqAFZH9shX0NfMjpp4UFf1H/1IO5NWQ/U8CGQaibpd\nNOkKmowpf8S6T3KqrB0kD8WsMlEA0VEFjo7RmJ7n0aPq98MaQh+6bXr7dfX1ofhw2XLleW68+SY9\nTyDnGDKm7ElvB6/H3vkcPInIubIzqllRnp1ArMWLAUXQtTMKVHMcmdEY5mcGtZVFVCUMXaHoiV06\ncbilJvAvr+8s6m9HRhSl2KhP7YLa+My0ohm6tHKlJ/dM7pw9+t3QCJidychcewbvRc88kA0RIHcd\nsXijY6mrq1MWFtw+UJwjIisGkR9fLy+i663EelEqs1PJXu81rwd1qRw7XDc9Hrp2En3jkbTdzqwn\nwa/znuvq7XSNNwWtWSJCXttm5fi3fvimiDQ6pdLo4BnFsxJF3WcsBl8yuJEyitCuFUvHRYdW+sP3\n496NwEGASLOrE+6hEeqfwi0U9bFOZxCqHIqoyJnFvUDtXm5OY8jae7t0fo/DVTSXhcoWuyDB0VIl\ny4txc/dGXp0IN5SCrkTYveM4V/xUSPTw4cOydetW2bVrl4joluHee++VHTt2yL333uuUaezZs0du\nv/122b59u7z44os/zaFNmDBh4hc6zotE8/m8PP7447J582bnd9/4xjfk85//vHzmM5+Rb33rW/JX\nf/VXcv/998szzzwju3fvFr/fL3fccYfceOONDko7W0yMKfJZXNDV3fFrB9dJpRinI8UiFwnHQCAa\nq0q9T12Fl/UrIqKm4Qh4k9UXayaOyO2mmxTZsRMmgt9bQAPOKg+EFwvranb6jHKUXO2J4Ph+9mm3\nt+t4kklkfuHvXkJn1AB687kKs0qBHuesRWwH0nK8wtGfTU54uVMLh8wxkGi14u4bZladfF9Ht/JS\n5Puocp6Hu2c0yjpZqmrR41vfvwDF+3pBEfer/6S+Rb98w+UiIjI/l5HV669w+KwIFPlR2ucsvqNw\nvGSG9MSIIlBmmnPgZMNBndckulziGF+5oJ9ra2uTH7z5hoiIbNv2Of0Sj5vrZPCeEgnL7OzchzhQ\nXlMiOSIbcpLcZXgx5kaNsI4xjq4ycnPsQlsEck13oiMJyLELuqXcNdQwPr7f0QfFvV6AalOzX1UI\nuguTYzqHvNcDcBugXme1ylpi/fz8nF6LcZx3uqLjG4byGK9NDrsWdsHx+F7kIyI4HitUgvAHi0Gn\nNNWuuzm6VNBNgvfo5JQixAmoVzHPUMHfgiOH1UE2hSqC0VG9pzuQX7hkre4qGxUuPpwvNHUtt8sC\nX2+uyKnQU8rh0j86zotEA4GAPPfcc9LV1eX87rHHHpObb75ZRFSyan5+Xvbv3y/r16+XeDwuoVBI\nLr/8ctm3b995B2DChAkTv8hxXiTq8/k+tIo7Sie1mnz729+W++67T6anpx3EJqLozenG+IhgRoyO\ngwEfvKupI4lVnxxYEVn7cpWrBnrYC1B6h4rT+MT/FRGRbb+qSNMb0lUzBcX6srPKQ0mnzZ3R83jd\nvAp5sffe0c6hiy7SjCv5LiJGngezynTZJGqpU1meakvISM5Ma+a2s1MXqiKy18ND+j0FaDV60elT\nF2Ya9fPkYomoa0INSbdTY7OSP+eXfBDPt4L57UGfcoFcM1DdP/7jP+q/3/+eiIhYVWgXoEPpyNG3\nRURk44ZNctOv3ianTyi6OHnqLRER+THqSien0N2D+k86YYbC7GvW7x05c0LHByRag75qEVUIW665\nFscblS5HxUfnNAAVJGqh+poQJ8+fSIWIjvcyrx3/ZaUA5zw3r8iNXB57zTnnvAfIT1Oh3ucHN4vd\nTIfTUw7VJegwLGbZww7leNzriaRbJ5S7CGbPOX7WnRJRFUP6+Yg/ijlTxHfFFbp7qEFP9AQ8iEaA\nCHmvpzvaXecZAGdK7jEUdLsY0Gee93oV99Y0rj13bUSG7KXHZZAT6PKbmtFxBIG0yRHXsKsrQVP3\nFeg9DA+oPgORcgx+Y6EAn019prj78wLpt6HCpdqkL3qusGxe7fPE008/Le3t7bJjxw4dfK0mDz30\nkAwPD8v9998v3/ve9+Tdd9+VRx99VERE/viP/1j6+vrkzjvv/MhjHvvxj2UF/iCZMGHCxC9i/MzZ\n+UceeUQGBwfl/vvvFxGRrq4uRwlHRDmlTZs2nfMYt1x/vRwcGZFPXKRcZSM7Dw4O7+Pf+SKysaEI\nnft0FckvsKPJnbUeXK18zr/797eIiMgMHBUH+1XdiavUIjg+ZuepCVkqleTWO78g3/32fxMRkVQi\n7fxepFHTx1W2HYrz/DcS1tWeiM8LJFUoMYOsqzTRx6lTmv2enlK0kwMflkrouLp60BeO40bjMbly\n8xXyz68pD0g1qVKV3lBy9vPEqk9/ICrlE21RTSuMmscKllnOy7sH9ouIyNf+v0f0dWSaw9An9UNV\nKpFKy+HRU3L1+it0XtAffXpU61z7lg3p+c/p+7Pg+RaqOh+OpxLGbdXcO5MEkPKVlyuKOjoxKQ88\n8J9FpFHREIGWLCMFREUFqw1rOuXA4UwDqeE7qXfAa93Mjb388ss6tgK8mIAcWcPs8NfYpYRQLXDy\nhB7XFr133nnnHRERGTsD9aOQ3hOdqXb5znf/Qn7tP/6WiDTyA/QMisWbOMkm7VaeB193tHcrRIKK\niPtQDzoxptxiG3YTy/pYh6rXlnw6s9nt7XH5f7/8sHzn+Wfwczu+h8pget7pFN05FQHSRYHuCfS8\nYvcaFcFYo5wFl8wqAFYXHHhHdzsdCeps6HlRc6C3t1seeOJZ+YOHf1NERLq6FZm3oTIh5nX4AAAg\nAElEQVTG69H3J1CxwnzH+Bg6yeC5RI761l//Xfmo+JnqRPfs2SN+v1++/OUvO7/buHGjvPvuu5LJ\nZCSXy8m+ffvkyiuv/FkOb8KECRO/MHFeJHrgwAF58sknZWRkRHw+n7z00ksyMzMjwWBQ7rnnHhER\nWblypXzta1+Tr3zlK/LFL35RLMuS++67z1kFPyqK9MqGug/Vv4lIq+ic8QAZsYYuk6HvOfifdkUB\nKE+Uzm79+Y47Pi8iIh29ij5WrVHEuwDkx6w0kRl/puMiuVOiEfbiMxveBuV3G4o9XI3JOZJLdZT5\no1BRWoRmI/qVmRGk7ilr6ZhdZ40fe9en0f1Srdfkys1XOOVk6Q7lVFNARZs2ao99o3+YzgFudEWk\nTD6K/u4Cl1Nmdtmffe21ykGuvUQzoQcPaALRBxTlq6J7BTV+vM7H5k/o+ed1frI57Sapoad+Ep5U\ngTS4bvbwg5+qYVxt7GgCvUmNyDu2/6qjXO5kh8HVMftbgAJUvc76PzdPTg6RCIS8Pu9Jzh05wNUr\n1+J4ivS6oM9A3Uvesz6PjjmI3Qg7i7Zt+7SIiMSxC6LG7uGD77s+v2yZXlveC+WK+1qSsySvzaoY\n6nY6bgXonR+ApuuPj2itchrZ7TlwvlUo1LcB6W257lMiInLq+CmMS++ZZoTOeYqEwUWC8xUodTUq\nPdyVI7xeC3P6t4AVLFSYf/vtt13ft2qFqi75LL2OZeRLqvB2ijT51zc7yrZ36LPLZx7T7jwD5HrP\nVV3EOO8f0XXr1snzzz9/3gOJiGzbtk22bdv2U73XhAkTJv4tRGs7lrJQByqBR0FWljLdOWSlE+hq\nqDNLjO6DeSCyehneRuAKM0VFE/sPaEdSf04zlxb6fSNwSKRXE7lAZvvryBbTpyYANaFUWlcp1rHO\nTCOTCuWgLHrBvVDaCaJWMBZShGqjJq6GvuBwm/5+Dko/5YoiKsuvq2M4BgTr0551oo7hIXhHJXQ8\n111zvYiIRMEFM7VZKOq8UkmIqIAZVKItnygS713e6/qecdRvxrCqdyT1fIjadj70sIiI/OhHPxQR\ncRBxzdb3MxYXobAPxF+pAKHTjycG5SNUZ3jQ7SMFXIcQtAiAMoeW6Xxs3KBI+OI1ikouue4zUinr\nOdvoEa9W4C8epUsnvhP3ioiiz4ij7qRIihULzhyB42S3Wn+/jsFnzbrmxPGFxz1kYRcVwL2N5LL0\nDYCnRoVICX5fREqxhL6xp1+5PPLAl31CFdeDYX0fKxYKQHT5vD4T05PKvSaxW5qf13s1YuM8cS/c\neP3VGLdb9Yjzwa6xDw7priGB2lxn7uD2kIzDLwyKaNyVcd7q4Dh9fr03FlB/S4WwY+9oNUAWu4rM\nrCLoN/a+qud9mfLek9jdQAZVKtCF9cARNhJxu1QEfXpeMeySOC4ymdRfYO05K1hY3bGQdXesnS1M\n77wJEyZMLCFaikQ94MIs/Eu3zCK6CgIed52jFzVeluX+28/Vkwhqfl5XafJO2ZIiU/ZRW0Ap5Dbp\nuU1Va7po8nuZcSzDoygAzjMO/oTfayMd7vW7V3VmDOseXcWppcj6TyJeC34ylqWrtS2KVioldKV4\n3H3d9FLq7FMUkEb2Owjea3wG3TbwNqcfzewCVcfhkQ6UUKzi/egrb/BD+r2OZ3eVuqroqEop2hkc\n0vk8MHIG40PGFX3VFfCGlSq9kvQ6UiszBkRKBcdoQo+fQsfWsj5Ff8sHFDFfebUmLkPBhhd5OqVz\n4fUEMVa3LmgEffweT6OyLxzxO7oGzGqHI36ck34n74Vmd0qv7e4YKqEda5r8bpjj0HPv6VYXg/ms\nzpGFOaIeJutQhwZ0Lq++SnntUsHtgAvK1UHACexKusCNsruL57NieEjHi7nieMnf16hKRV1NKuaz\nYgYInLW73XAKoEsqx82e9GXLtAKGyK6rE/qf8HCqQl2rVIQrK7rsjh9XRHrmxAn9HJp8PjikNdrl\nko6TCm8dqIagp5LHC4UwPJOs1JmZ03ufWsMRZOP5TAWh8lTD67y3KxU9zrnCIFETJkyYWEK0FImS\nayTn5gdX6IXyCxVXbKxSdSJW8FT0xGbHkh9ZW3qKU690WUJXxd5lijhTadSusTeb3t3orgiE6D2u\n46GLp98DfUxm+uCLQ49wKrG3QU2depmWAP344ZWN6gJyvul29IJHqHquCLqIHnbY3Tt6okRXADcS\nJrrC9+eAWqJQ6iE68KKOs47VfwbdNo6WZlDntx3cYwJoi9ULZXDSJXDYVEKiR9T69ZeKiMjJg4oa\nuBOYXnD7zHP+fEDC5Kn4PSdPaMbYE6Dzpt4fF61V3xz2f6fQnUR0WfKGnWxvLEqXAfDYNaJodiY1\nFMt9Pkv8ICt90D7N5dxzTATKbHkW1zwzM+l6veFQqjz7oUOHRaRRr8lOnXQa6ki4p4lsk7hmdFa1\ngZDjMeiUBvV8FnM6p+Q8CawTUOBi9UAe3KPTQVVxu1ryfY15ogMvPKKaKjgqTXoWDCrS83PUHiCH\nvB8t4OlOfV+8Tble1qHyGWeNuI0SmbHTpzAOvcZh1Jk6zy5660N4dlLI8rchHxFw7rGUax4SmLcP\nuTng9RoQbSRqfOdNmDBh4mONliLREFZDcqPk1ihQz1qxEBBinf268M+JRZAlH4euJZBnHN0cy5dr\nLRxVlJpr/bD4OSjAUR+H1mEYEBCAU7LIBBLNsKA0iuoBZ7XPUStST6S3e5X+vsLMJ7L2UT2vRSjZ\n16pwRMTxF6FeZAWhhVnS3y9kkZGEatWJ40cwf4rM6GtTw0Tatn7OD73S5QPK8xGdUYGHNXOseazT\ntx49+3TZLJfJG4IThWI90UwS/NeZCe3CoXd6GapaFtAeu3OIaFkDaaHzDMBfrt6svGA/eELbCy4V\nqKgO3dW6tyQJIBxHdYgK7qhQoLtlF3QoRUTm5qecbDy5PdYEMztNDpBI6/BhRZixANWdMMdANvxe\nIjJyhKWy/n58JI851bkcRMWBXdU5jISonYo6SNyTUXCa7DSiN5MftbwOssLchPHssAqANdfM9vs8\n7vpJP55JzgMV8hlE2vyXCJvPlqN3Ybk7qpZ1a1XBkaMnRERkBPfw0aPUMVUEyU4qD5hx+toXoUFQ\nxXk6uhdJjAf6pzXc66kOvb7UTujD/PO6MBsfQv4gAB0Kx03VT2670YX5UWGQqAkTJkwsIVqKRKNY\nJdvBA4XA6U1MKpfWDq6QCjll1PgVoT+ag8INzcQtmypFuswu69fe+bpXV5W5Wc0CB6N6PDr9OZ1P\nHfB9Ae9FtfMKVlcq6HPVZX1pL7o62KFUzkN9vFNXw5kpRWQS0PdVqxHX+IM470Qbfp/TzG4eveTz\n0ENdsUI5wSBWY2E3jK3zcuSgdnVQ9zOScivx1+BX70UtXQAIjirqPozPog4p6m+p0s4aS5+f6AUd\nRMiAXnONas6u36Cc5XPPPafD9LvVo8h7UfOxhPlyOrt8iiZWDev12HrjFhERiaMPO1fU61uq6jiK\nyJC3hYIOcmL3F/UVnM4VoOBjUEK/YkO/zMzMST7vrtMcHl7pmkv2jhOhbdmiY/IBrY+M6DXu6FQk\nnE4rGie6z4P/rgGxWkCW7KBaXNDjzqNDagx1iu+9o1zipg3qrpCIAZ4jf0Cl/kanEepM2QGF3RLn\n1g/kReRaAu/Ojid2OJGrJaIl8mTdLHddzZUxfDbIc7Mi5Mh7qroUw06ByHLNahUg+udXX9P5wS4n\nM6/PUjSM2m64VVBliv5lCdSMT0zrvdTdo8c/eOR9+YyI5DH/Bz84hM/p/dGB7r4anm1m7cmNjp7W\n6/nTdCwZJGrChAkTS4iWItE21C/6UA9agKpQHPyUo0YN5ML6xAJqt5wMITqc2LG0apVykOx79oTc\n9Yqd6E0fBwfHLDwVZhKo2+xEjVp3j2af08gGH4a6Nletw0eUk2yLgJfBajk6qqsZu0pi3bo6ezxJ\nnCcRraKUM2eUf6GvzQA0EQcgo5TN6fsiyCTnwadFUce5alh5HyfzCvXwqalpjEvPcz9QWF+vHr+/\nTxF7bkGPR842ANRDdBEMJTFfin7og8PXk9g51EWR71f+y2+LiMj2u7aLiMj/+P73dTwTynuxX5oc\nML3at/ySqj5d8yl1ZPQjS08O1sb5+6uo6030YF4KzjVPtKVdc+G4c+JaE5mKiMRj7Q5i9IJnXpin\nT7qiX/LMVF368WFFVluu3qhzhTrDOFSQFnNQ4wfqX8iA3wc/nAxTZ0HnrEzEY4Hnn9R7Z/Uq3X3Q\nh2qRlSDgYpl9JqfLelIqnjH7znuwBOUx1hj7qDELnYo2dCQFyTMDqYXh2+4P6vfx2XSUtqgIT78z\nIFMiUXKRp84oxzyDXeGpk1o50guXBXLQYWf3gq7GeUXI7AZcntZ7N4JnzoPxVTFP3Alw/L29+gyz\neoP3LLlQZv+JrAd63VoF5wqDRE2YMGFiCdFSJMqug4VZ1BGCW/Qg+xqNU9kGCBSOilxdmVmswJsp\nlWpkXEUaPFasXVfpX7pGs7w1cIlcvbkKse6Uqyj5oYOoe5x+43+LiEgnuE7WR06Bw+X3DQ4oIuxD\nRreOjOFiSdFJGce3ajqO/l59fwz92Oxkos4oaxIpnz02qat3EtUMmC6Jo57Si1U8s6if80Cixgf0\ntR7qS+1JXf2pO1rIQq0diDTaqfPfg1WZqIJKSURBRFder35/FvqiQysVRX32c7eKiMiaNWtEROSZ\nP/mven5AyNSNvXzTZSIisuky3Ukshxc6PcgnkSmNt2uWPoQdRb6o8xv01JwsOv23uMtglphoNxhs\n3Prd3T3OuTCbziw8kQyRK5W7WNN67DDqH4F8iuCP/eCNMxn0skOZnffu6XHdDXD31QbN2MHlei8w\nm98LDVl20NDDyAeVJI5vFvcqdTnDTqcUXDXBacZCMYwrg+O5s+y89/kzrzkRpyfoRqhEbqzM4LNC\nRMnjzKMXfmIS4/S46y+J+IpF5DnAdweg0kStgtxiwTWuZQP6DEpA7/EknvUFPDOJdiB87HZZO72Q\nocMwOGSL94WOi46z7Gw6VxgkasKECRNLiJYi0SpWAU8EnUoYTRB1iWFwX/Qpp1r2wpwiEvI8bUn+\nq5+75FLNrHYsV6SV6ELdIjKoVBWvVRVR2hX458zov1Eo51+0SrnC9St1FZSA8jAH31dOdB7+M5vW\nrhcRkeKgZhrJX83PouYNqyCVenp7oBwDX5djh1Q7Eou7DKCqIBlW1NO1Rs9jekJrF71VXUVLeV29\nF0d0PBmgEHYC9Q9obV4f+CAPeDg7BNSB1b7q1VW8fRm0AAo631HUf1rgzegRNTYOf/oo/XSCOB+N\nhF+PTx5sead+fxx845e+8GsiIrL3f78uIiL5RZ33AK7/4aN6/Nmiop4IvOTXrlP+MV9CX7pPjx9F\nPe/ozKKzO6C8QrWGrjbw4QG/IotwqJF1zU6NO1zZewe0W2oQepsh8NbcDU1M6a4jX1BOr47urYPv\nvavnjh52IlHqDvQCIZNLjKeg1p/WOR45o7uLE0f1XK+99joREenswPlgdsk5ZqA34PSmg79vds9k\ndUGjR153OZ1d6P3HQ1dgDTQ7dqCR2wY/KyJzq0bHV71muYx+js69HdgNRlGf+c676ne2mAWHCmUu\nQaVHIoT5wjjm0OXmw71lWXSxgF5rN84TPmUzs+DA4c4wN6XIO4kuRXai0SnYB041Bf0K6ojOjbp1\nV6NN+YBzhUGiJkyYMLGEaCkSJVLhX3v+WwQnyFWXSiwZ8CWJhCIU8jTksVi79tZb6ip5Q7e6fb79\nltZPplDDR96IGomRoCIZaguSxzl08LDcJCJv7P2BiIisWquc3rp10HSELqdAkYbjCfjJ6bLbA/wR\nOFD690TBj61EBpbBDCmPtwBeDaBDwljlK0DQdCYcGVekXUFvfQycZwCdUZ4y6kGBkkJwfAwxE+tH\nDz+6YeoedirpOOi/42hP2nXXv5z/ElbzZo3KIHjFVYNAV2X14Hpnn16vkydP6ufyyFiDn7vkCkUN\nb/9QrwOF99esUW63CjTo94mEUE9IJa7xcUU2h3+s6kA9PcqzDg2rB5NIjxTLVfnxUc22s8PltdcV\nJV919VUiIpJI6LkT4Z2BUtVK8NkXDQ64zlmc3nxwlkDv1CWo2XQ41XsuBSTFOeT3OCpN0J5l/WUO\nNbxEmrxG1ar+S8RFZMV71R9y94pDaN553YZKUhX5gXKJ+qjojEIegrXDRPwc58mTOo9nzuiuqVzR\n8Vi4J/nMz08rkp4F9xjCbqYHrhS1mtth1gvin9xpGO6dPfCC4vmEUQdLbtPpqAqEXfNB7pduGn39\nel/Mz+m4BFwsO6POFQaJmjBhwsQSoqVIdFmPIozODl2dyzldHTrTuhp50N86AyQ2Na0ZOUFmL4E6\n0xWDQyIi0gX+hiiAvvZOv3Cd9aD6+UugBjR6WtEKe8y7e3V1u2i1IsThlcp1hlA/OTquqyH1O2uo\n4wxB5NHnoTI/3TQVFUWB9FbieBbqLclBUpEml1XOl3xavA2I0qOrabBPUUtmQedteFj5u15ksxfZ\ntz2tyC6TR1a7Tee1s2cQx9fxBMFLReABVYEntx+IuAYOOYBunwTe11Cz0vMlGiHydJSA0JsfZR1p\nB763qOPZMHCziIjkoehz6oyik3n45giy/R7UOPZ16rxPjSq6ZGdaKpmWxQU91wx4c9b6Jq9Q3noO\n6kpV9LCLiFj+gHxi8zU6Z5PKsV2Nn/e9rar9obCeQz+0W/v6dO4XTirion7n6KTeG+xeY5ac9aoW\nlLDSyajr9x3pTtfPdXgSNXsE8fWYBx1R6HjqaNfPO7oO4r4m/LcG36w49CfKQIjUkWClBCtfvMhP\nEEFOjOluZzGXkSvkOikV4I8GdaigX4/Qjo6iclnPn7XBrDGmm6bPuUf0PKmuxez/Yh7OAn726CvC\n7sUzmskqcmxPB3B8dhfqvTM1OYfx6Hmze28GaloJIFW6iSbb6Q6BfI3n/DjTIFETJkyYWEK0tmMJ\nHBtXoUQnkZz+nMnTfROrSBf4jyoybVgtxyfdKk59qK3zgi9qR+eODzql+ayigUPv/x8RUbdSEZFE\nUleh0THlu2Zmg7JZRDyoCqhhdQ+jvrSGvuQUUABr1+aQlU/SYwk6mhZW3TK6QwQ8E5Ebawh7oRBP\nnmtmVt8XgaZk1UF80FBMdbiOnwOy9c9pxpH93lM4rzq+v7dvSEREouCbcjOo0aONJlABfXOIZqjz\nWoXaEqsKmr3PyaNxvMUCdGDBeQfAzXqBTtpRF+wdUpS0AHSQwTxHqC6P9wfpIQ7UUK0UnPpQ7hre\n+b+KFC+/XFXwfag4sAm5RFWkOPfd0I7NosZ2Wb/eS+WiIq4MkG7dJqeGyo68Ih67ot/fldJ7aRL3\nZm+v7hL6kV0Ohtx6nqxTJUdq4V51dA+q7jllZ1UcuwL25uNWchS7wkBuSXC681NzeD/raPW4HiBO\nbDakjN3HwrwiPafeFFlrj0ev1Ryy40Sq7LlnNpzPdhDjWLZM+fDxEX1G1l+qmgA/eGOviIisHNZK\nmCSuUwxc7fiEVi+Mjev1lFGdh4sv1d1kENebSmc+H6sSkP/4QPMfVGqzwFV3gKNm19wCtG8j0KPl\nM3iuMEjUhAkTJpYQLUWi42O6ulDBJi/kfeBbjp7yKbwegmL89Aw8k8i1gY+yqFodd/f/5pGJG0Mt\nXgWreX+fZlbrVaqe66rTjbpK+r/w/V3tyk3SE8ljI3ud01Waq/HwylU4vqKYhno3/Nah/kTd1CD7\ndlGDt5hBVht8TDKBzC08kDwWulfCOo4I3DDngZ78PkUJ6SRcR33o54YyThGr7QQQ6WwAup/oAKIu\nKVfxbFPfcgBuqT5oDQAoSgnopgptA0cNvUJvcKhAIRPblkDdKlCO42yAzKsNvoteWywkztKrHONd\nANK2A36pot7Riy6qVJLOrnoNFqEY5fc1OmamJkYcN4Rp9N7znozCpTMW1WsTD8ENEgpcFWRxc3kd\nawEeRAlURnziKnWpJIpn/Sg7q7hL4T3QUFjXuSMS4viIHPl7asIGgnx2UNMLtags7r1yBTW37Gor\noc4S3HE5gy46ILhi2a2LMAUXBCqUETmn4FfPLr4zeMaGwNOz4oJdblloCDC7/6MfqSMvNWUPHDgg\nIiIeOPPy2ebnqWSWyeuu79TpE/o6VJl6uvWZTibB7yP7PjS0wj0/mLdGRY2eNzVumTehpu65wiBR\nEyZMmFhCtBSJ1umOCaRRwc9EQMwVsuZvFvqaVazS0SDdIaHiBKTaA9WlDw6q+njJUWrXfxNQuqeu\nJRFkG7QJHadAcKnpTnab6PdOjLO/WletApDoMqgutcXRH31GER6V76vIYBJ9eKB/SoRG/xycjpSB\nhLnUBYGeWOdaQbZabB1HV6euwuSQJ6YVhSSxykcsXdXnprUaoQykV4XPPXv8y3C6rCwCneA8iTy5\neltAR5gWCaM6IRSgXqn+62Rq0WUi8K1ZmIdnO/i8OjljdHyFoP2YI3IHz9aO+6GY1/H1IrPtjYQc\npME5D+PfErK1PpCGljQQhlWriLeu13AlerFPHMOY4K5QL1BfE4hzHvWK4DTjbcp5Ovw3OUF0zKyi\nGpPt1t9k9reh46Dvz0L53XF2Baonl5lGvaiN3VABnO0M6hw9Xn0/dTczGf19BVwuXSxL+FyhhF2E\n42em8zM9o/cwESmkZ6WMqgDWdJdQX0ol/ZFTqiPRiQ6mmlDdSY/Hetd5W8dVq/LZ1GtLqdtilmpU\n6IrDboU6nwlUfNQwr/kCFdHoB6bXlVULOVQABQOs7dbzzmb0fUzGT0/r9eb1OFcYJGrChAkTS4iW\nIlFmDqXu9ixiH+8CVMmrQELkazpQ+0dv7CQQEFWX3n5bVyPWTw6t0O6UZFqRZTs6k0bGla/p7taf\nyV22ow6RSjflKrPB4NGQvQ76FIUs71OU4azK6Pbg6k10IvC7t9GX7EOfczhI3k5XSWZeA2Get37P\n4oIi4GqBXthA2OiE8gh4HEDZVFKRqVVHJhnIMRmmBgH6ndElMg0OemZSs/g1UbRAPVUL14mINIwa\nuxqqBFjXGwJP6Kg8AZ1EQmmcJ7pT4m7HxUko/+T9qAsFcEVfmIM8s3AcWDUwpN+D77difomjImIB\nveVZcJsxqC85HKK/gTAiIa/kMnrvTI2i7pNKWKiD9PvBQ6P7K+TVc0+iVz/VrnNIhXzunuhOWWUj\nE/UqB9wdTtQzdTqDMCdUYqd6EWNiQncT3F0FgvCRr+v7IqjDnF+gEtgCxq3HKwJ5lun+SeEDINA6\n3C79FX0m43HUq8Z0fqdRsz0zA04V/Dp3Z7EYXRoUsZ4e1WctDafdsbpyp3TKjaMm2XGNWFTefmhQ\nK1W4w+D8VapEjvozFdyYr4jj3qJDwSKQODllOsYeek852IiDdHX81K5ld+G5wiBREyZMmFhCtBSJ\ndqQVUYbhlV0D0ihw9Y/oalJHhs0uoO8Vakgxh5OD/zvUgI6P6eq2dqOuNn7U5GUXdfWcz6B3HWgh\nCEX83uVDetyYIlYPVa/9qImb1ON3dyn/1dOt/xahZ+qBnqZtud0qC4Ah5EDJu9RRh+kPkft1q2tX\ngBIqGaCTMBAwOVV8X6SHivngIkFceeF7z3rOChBqzdLPJRJD+Fk/563o6tsHBZz57Al9va5oI+in\n6pW+32a2HSgmjAyzHypYrNkTcLnsihEPnQt0XmpAO3l0frVFoQvLmkOoTQUT6JDqgFsrziuO7h8r\nYjlIoh1ZYw/qLXkxqBmbzxHNi0R9PomirrPapt8xP6eo2AOlqCB2O4kYVIREdzkxcKI9qBWe9+hc\nOcr5VWT3fToeS6hMBvdN3Asx1DmycybsR2UE6lIr8B5izW0Fz4hTk1ty1xqfOaqImvcSdUPzdf1c\nBYi8Dm7YdrrO3K6lIaheTY4qMgx44WKAfMFq+JSxRvqNN94QEZFUKuX6t78PXYjgLleuUISZB0Jm\nZUcQuy8qnXHDAHpdvEDcvSndAUSwwwjHFIGGInB7hfqTeHQ+E+36cxd2fadOnRARkWFoKESgBMbd\n5zy6/NpRN3yuMEjUhAkTJpYQLVZxUqSVA/dZs+mlo6vmYh7OiFhNqVJN5fYasvmTcI2kV9Oll14q\nIo3+ZfbHRuFNvX6jqjANDylfMgYVKK6+XM3D6M23yTsh60y+5NQp5Xk64RJKJ0kb5xEEH0YlnzoQ\nVxB1kkQRzM5X8TqPQ4VOcovUxqS2JTO9RA+2430exHnE8Doysvg8s/ceZDr9qP+Mt1HDEVlwUdSV\nRyfYAtBZJKrXIYYqBK8gc1sGp+1xd1SR3LSAeCMx1kRiXKjPTfdAaZ87DvbOW+zR13GFYoo+WMu5\niJ1AOtHhdE1RxYfdVH7MIX/O+BRx6ISUpQrVIAF/TL+siA8+W9SxBK+diFPdX+fYCzje2dXnOjfG\nwjx80mO6a/BX9FzmoPheROUJKxvypbIkRaRS5O4MmrpOb727XpT3UgHunR3QkeDrVJoPolLD6T7D\nfPFZ6cE14D1Hbpmc72JGz4PKafRlZ/b7qqtU9Wp0VDnP999XrdwiOrkiQZ2vkyc1ez88qPmEyTEd\nXwXVEDbcCpLYpaa7wKcX3c6w3eBS43hfs488VZy8uPc4Tmb3iaBLEZ0nloVa6Jr8V+udP3z4sGzd\nulV27drl+v3rr7/uWD6IiOzZs0duv/122b59u7z44os/zaFNmDBh4hc6zotE8/m8PP7447J582bX\n70ulkvz5n/+5dCKTnc/n5ZlnnpHdu3eL3++XO+64Q2688cZz+jZXkY0v498QEGAOfA9r+8hnUU2b\nPilcZdlfHAN6IA+zZo3yNRFk/C5arcizAgfBAwd1lUwmgQ4wLvrez3/wgVyx+Zfkfahzp5HFd3gs\n8DD0Y2dmNRh0992yts2uoJ/Xz2y2HoeZQWZqa006nHUYxtdQP8mwUOcaRgcRke+YiIwAABmkSURB\nVDRXU1YJeFFPGwZasjG/znGwSpPfI7ean0LdaFHRhtdDtKaoZWpMUUOqXflBy6/zXrKgBRlwox4b\nMJDKQTwfZswdVXHwgxYIsSTQ0gTQDScuCl6Omo8Bf5tTQ1sqsgZZP5IrKqLKg3NkNlxExKrkxMI9\nEUDPeQR8+WIOdYlANFTxF9Qyk4NlZ0wV14odROTY/ECYM7N6Dl5UXNC9oYqa3zkgP5/Hkj4RKXGX\nRl905AM8IcxBm9tFgD7q41OTGG/A9b5yzV05QaTFn4kgWbdKxXzqeDpcKR1gHcTvrmOl59K6ddob\nn0VH1//Zq9qxrE5g9rsfOq/ZjCLDMHj1Cm5m7g7pKxaB4wC5XlbApFM63koFeQlwo+R82fkVwHnQ\nHYP3JiOELj8i3nPFeZFoIBCQ5557zplMxrPPPit33323M/n79++X9evXSzwel1AoJJdffrns27fv\nvAMwYcKEiV/kOC8S9fl8Dg/DOH78uBw6dEgefPBB+YM/+AMRUW6ECFBE0SA9wD8qiuy4wd/ybNbd\nkcRVJoeug5rtVj0in9PwutbjjMGnxY/+25XIwB0+rB1Mg6t1FeyAj3y9Rn4J/dBYxahQ3we3ywiU\ncOo2PJTQcWM7OqVuRZ5FODl6wK8AqDo1dVzNy1Bmr1TZWcVuCSjxxPh5XAegLc4DuUKpueeFV7cM\nLlQwjkg86Xof1a9qUOi3cdxQUBE60VUkhkyw0NscfeMLOg91IHBBNYSNLiD2SZdLUGHCwFjPylq/\nHPg/DzqrKG5JbrkXDpjk4RKoqsgCrU1OzDgOoRmoD0mdeppUKEet60/0RIcCtnAfQg1X3vNDqEUl\n58h7jXPnRWtNBSpLAagOUc+SeqaTU8r5tXcoYoKglePjTiQZR73jYlbfEAPH52HdJ2qjcyWiff18\nJBp3jS+EuXGU5KGjGkMdLZ8t7p7a2xvPrkhjF0WOlZzjBLhLzo+j1NWkGM/P829AABoE1Azg66tW\nqc7ELJxfCdYyWd3t1PC3YGZO77GeiHK2QSBT7iiSMJEo5tkViMqbgJ6v7SBlVKxgngLQY0iyHhfz\nlXfm9/weSz9TYumJJ56QnTt3nvM9vOnOFf9tz38XEZF/fv/gzzKMn1vcsv3On/GTvf+q4/ioaF82\ncNbfR8762w9H23le75R1/6LxNMfw6hXnf9O/cnSv6v+p37vu+ls+xpFoLOsedv3c3vR650d8rufK\nq10/d33E+1oV2+7+jVYP4Zxx8eZPf+zf8S/+IzoxMSHHjh2Tr371qyKiWbodO3bIAw884CAE/n7T\npk3nPNaXbt8ur76zXy5brn8EuLrWkXWuCBEakClWQ3oVhck9Aul4gGzmoDr0uc/qBA4u15q0TmT4\nZnKoF8WqTmWYNFbjNBB1NpuVW+/6T/L8n31DREQ6oMoUAQcZRR1rMoHeemTXuUozy04tRk9d+SPy\nTeRWqdhDjpQ8FVdNjwd936jRY0eTx/JJanmvVJD55apMb3WqRvn9RLD0uUEfNVEL1Ziq6D/Gah4F\nV1q38/heZIpLOm+lnKKPQhaIEvWnniQ4X19AVqy7SkaP6A6gCqRbBnJeBH+WLxbwvfpzDBwuM8Uz\n08rvBTGvVEMn/0k0VC7lJAp+uYyOHBtZ9zo4T58QOem5b9h6m5z44cviB4KkoyyVxHjvhcC3B+m7\nDp2BItA1308+mbsEVmZUa/QkwvcX2L3m9qOqopKiXCzIymuul6P/658wN3qNqTdaD9B1s6HQL9Lg\nn3kPkcMkUqxiHpiNZ06DnCYRIo/zoY6qCrnjgNx45/8j33/+GRFpIE4idCJSHtcL3YSxMxM4Pu6d\nHLLi2JVSv5UqThVc4+7uTswflfn1nm2DnqrPB3823JOJtna56nOfl33/+D0REelIt+N79fsW0SlF\nN4UgOGvumoLI+nPefunTvyYfFf/iP6Ld3d3yyiuvOD/fcMMNsmvXLikWi7Jz507JZDLi9Xpl3759\n8uijj/5LD2/ChAkTv1Bx3j+iBw4ckCeffFJGRkbE5/PJSy+9JE8//fSHsu6hUEi+8pWvyBe/+EWx\nLEvuu+8+p0bro4KrWwAZshpWbxs8RYgq2+AofdD6qxfdfbSOrwx4ruVAnuw7ZoaUNWZdw7rNXnGR\n8jGsRRsfVS51GpnNPHrJ54CwJ6CpuHyZZqMHluu4R0a05i2EGjhmJsmPheEf76mzQdl2j9tyc6Lk\nq6jRuJBBxhRoqIaOIY9TteDOIJLuo2dUCeiDvjFUzQqg3rUGzpSe5XH0R9PZ0a7TORKZZxvdPwVd\nzX1hPX4dr5dzREOozcsp6rGQ8bRsagegYwtoQ2ygHI/O4zwQqO3Uk6JqAbylH+dRI+qRnJN9p6ap\nH98RADILh5hd57UQsXyWg9hq4LcrDmrGm1AYUfWSS8ULqImtg9enj7vXQ88f8MCo4LBRiRLktUS2\nnG1fTg00dhERqDCxC6yIOfDhXmKPuPMsgcNz0Dm9lcD7+7CL6epUlM/6UXKR1FlltUEo6K4+KEJP\nlLst8vrczXF3x2fuxIkTOj54WtnY7XRA/zMUgNoSdj/U2u3oBOGBy0SvJ+qAEuHyPMO4JzqW6XnR\nxZN8/xzUrSIRHW8nlNlm6MQr3KWhMgj1u6wKOFec94/ounXr5Pnnn//I11999VXn/9u2bZNt27ad\n90tNmDBh4t9KtLRjKV9w+5eUKXWD7LQPnCd7zB2FGx81F3XVCOB95JP4vqNH4QYJpZ0VK9WnXJAp\n5CpNfmhmlj3iejx6Lq2AGlS8R7lS+rRMzyhSGhrQ43rhQsrauYbzokYA6IR8GrlLogdymDYyyKxX\nDUVQL0oEC6gZwursD1CBBr350JKUsrvelNlucrQNyKr/0JeGHU8FdvFYzLbDodIPP6JeuLSWdT4K\nBeiT4rJWUS3gEXQw2fTx0fONYmcRgLYjqVsv0CB9eurIfNNJkgjWxwo9cM/egIiFe8fCHHswFT7U\n6oL6cjhMEZFUulNsdoehV9xGF1YV3+HBd6DAQWxUaNTLqEyoNSFUBJEp+Wx2m9UpUYVuLKLqOu4J\nH+5lVqoUy+7dRg46EU52HruXRvUAOm4oWIB7owL+mbtEZsupgEZOk88Qj0fulcis0TmFulQgWt7z\nfJ3eUhV0gtEFgvqj5L1ruFdZ0cEKmD54MgVRW001qmDYrTPBcS9C4SsNjdlEQu9Rag7Mz+vrc7N0\nFoaqFWqnHZ3Tpl3QucL0zpswYcLEEqKlSNSfAB8RUfQQ8aETCSri2SbfF/q4e2xdNZnZS7cpQuxo\nV55loB/eSVBTon96lTVhUX1/Oe/2IO/r0N9PoTvj9ISuWu8ePCQiIqtLijjJB9NhMIhVnr3tzDTG\nwMmyo8YKQxGIvBxQSwmZ2+a6VyLxMDKPfioSeYHY7UURiYnXA2X6Gj3EwS0DenrYw84100sUgfF6\n8C8QbNUip0m+D7xiiP3HGDey7L4IHCmhAuX3KFqg/mi9CF4QCkKWpfPhpco80AyxYcVih5N+Ph0n\nQma9LDlUYgBwq/miBMHR1en+iN2NH8jFH3XXR4qIFMUrYaj4lMGF0t/crrjRugV0HQBaz9XhkuBj\nxQAQJbhQgGnxo4a4XGYJBjRjm2qwS+iR7+imOpEiIx/qHRkeuJpSd4EUL3vEeS9EguxC04GUPOhw\ngkdUtQpX0ZRWyCxk4NMVhLNtGI6v4Pln8Dp1DcZRk50Gd8tdXg1VEAvYLXpDigzLBfh8oattKqtI\nfvlyLUmLhN1eU6WCnli6vQ/j6XWNpxk5t3frfBXw+QiccPPQY7WK+vssHHlnZ3R8HlSg5OHdFEnq\nfUKEfq4wSNSECRMmlhAtRaJReArVsfpTubyO7G0igTJwcGDTc7pqkP9JQaG+klfkwlUjDhSy4Yr1\nrveTt3n/sHpQX7Jas/Pjp4+LiEgGqkDrLlYd0muv0TrXdZdu1HGB7yGyLFHxHiiG7pXkOhdwPHZ7\nlCs6/lm4cpLPcpRmkM32gLizm3zWiW68PnctYrFERXyv61+ij2YlGh6XKlBej/esrzOYtWe23QvE\nys6mhk8QMs5V+N4DSVPrgHwZM8m5vJtn43FCfrqIUisANZnItDJT7EMmmYo9sVibgzwj4KWZBfcB\nxfoCdIBt8PHxtqRzbnadNbb6WhAdQw5qB49cwxsiqPklv85rwlrW5m4/Xrs6tWVZkWLbrvdXKhUJ\nSaPekh02RGh1cJ28hxo93tSh0N9zrtkVFgzovdgBzVbmA2bntM4zHoeuKdWS8lSJojYAEJ2wJlrP\nc3RUn60yqhDK7L4DhA9Z0PWE8ldvt1uJ3umywy4q0aYIks61RJrsimSvPOeD4W2a9wAFMbCLCidQ\nQRNFXShdWvPI8kd0PBn08CcTzW0RHw6DRE2YMGFiCdFSJMq//sk4nAvr6FsF11lDFnke/je0Cueq\nT+QaQba4DSrXRANcpdkJQwUYrn6HDn0gIiK98F7q6dJMZRqK+8eOnRCRRi/97LSu1oODUC0Ct0id\nUcdfvcxedXZBUBdTV2Wuos0ZzgZCdCPBQJP+aEP5Xr8vGGQnk9d1vErZ7ShJlMLj8NeN123X5xtr\nrBvRcnjkSonSqFYVRkbUqeGjLis+GAJHnaQqO97n8JQOxwxXUdaTOt030Dagkj4UkerlmrRF9Zpb\nlG8CAvPjvURIAV+jhtnv90sdXKfPzzpJdNp43Vxno9KhhqHyHnC/3oz+G79HhUWFlRganHPnXsC/\nzW6gTt1nmdlzVqS4lbHqdT7aULWi/kRVd1GsIAlCbSqRpLI+dhF+7obcSLdU0mc0Mzvn+n5WwrDm\nm0jfwvykgOCpuBbEs8kKjCB2H7GoPqPsFCPy526tWcPA0dqtcrdCjyu4P2AXQ4X8PLLwASDoAI4b\nRqUI60T9ER039UbPFQaJmjBhwsQSoqVINI5VZ2FWV8cpKLlYzFKz0waZPirzxKKKXONQailk2Cet\nq0hPpyJJqjatvlSFo6lduHadcpyrhrSzyYusuoVVi6sda+iYDWYHEUFGEBlcrtpFrL5ESGFoHpJ3\nSnfo+VJhpvQhLhMdWU3ahnTRbEbYvibFHgZXY76vgaLcSJMI0mnzRjRed3AS3udGSwz2Y/N7bExQ\nuVyWkIgUyo1+axGRKDKrRJ5UTw8BbRHB12pA2D43gvYHWVdKhR1wqeHwT6BsdhCh6wrv9Ho+PMe2\n5XE6hHwe6gwQKXpcnyfC9YBHLkGBnd9HjddalXNGBMqsvbuusVnHsoFgz81r04uJymPN/Poi6kiJ\nFBvcrH7fYm4er0OfFJQk/esdfVTU6LKkmH7wbW2K9Fg/yh788Ql9hmNQCmMdrI2e+zrqQVnBYsNL\nKgRXhVBYx285yLmAcbjnmQhxGZS9eP7MeywuLsrgBpGJcbiKooOqG4r/dfD8wtrsKiXt9ffz8MCy\nvCRVPzoMEjVhwoSJJURLkagX6zuz2W3gzqjqY4EDI+fn8bp5JK4uKXCqqaSuMkQj1CqkhUkbOpBO\njujqVMT3pKGxmGjT44ydGRGRhqoUeaNV6A/OQSeUqtvsnPI5Pj5QzAGnO7wCHGpTrz+RZ8Pvhque\nW21coGjDLHwBXKdt2xJItEmJbqJEK+QDm7QeHZdRKuvgfRyvoyZFFMf+b2nUVOrnvK73N/gzcLrI\nsDKDTe1Hfq7c1MkVAzIl51lCtYYFPo5IlOPm/cCqDmbWPd6A1IBw+N1EkpbjZllzjdUvEKkHv81r\n6sN3EIl4HT6ZfC3QNeoaOWdOx05TzW+NfDNQv68h2eWai1rdfY879wDH6zwTTtpZRERyqHlmpw/5\naUeztsIsO+pFsWuKxnzuz9NtoM7ee3Ct6HmfympegLXLzbsS5gfYWRTBM11EnWYe7qlegQ9YgLsS\n2zVep70u4H5mnAoOvI+9+uSM2XHEey2KyhlQ0bIwr7tCPzqgUqgj9ThuFPpsJRO662xWyTpbGCRq\nwoQJE0uIliLREpz9qHBDRMRVOgy17hxq1gJezeCFoPJNv/Lmft5mtW3WdS5itaV/Sxey9XmsTqdO\naadSGzJ7F2+4REREOrs0e39mBF7e4Kvi6Fxijz0zkXF4LzErnUGXB5EmV9Hm1dVuQhv8l7wXERdX\nf5/TJcM6T9YcutFBI+uPdzWRoA6Xyaw70UVTtYDDrXrI9/EI/D5knoX1rujpB6prrpm0m7LzNBf3\ne9m7RPdTNyfK8/Va5A1RN+v3SRVjYC82dUMDIPNscJP0P2dQ3YharbzGTuC7+CmHq+TuAT/7LPfn\nrCbdB+IWzjHrP5uz8sVCQWLyE/y2383lcve2mGPWHJqzPmrCYhcVcrtWFlCpQk60Sq0BD5X5dZTc\nLJBDruFaZNAplYe7QQbunz5xc78h+MdHo9BnRTebVUedLjqmZr3KbZbxLDu11nRJqAJRRt2eR806\np7y3/E3zVCnyptbjEKmOT+izXEK3Iq9/EB1eNnUbpClhcJYwSNSECRMmlhCW/dP4eJgwYcKEibOG\nQaImTJgwsYQwf0RNmDBhYglh/oiaMGHCxBLC/BE1YcKEiSWE+SNqwoQJE0sI80fUhAkTJpYQLf0j\n+nu/93ty5513yl133SXvvPNOK4fixNe//nW588475fbbb5eXX35ZxsbG5J577pG7775bHnzwQadF\ns1VRLBZl69at8jd/8zcX3NhERPbs2SO33nqr3HbbbfLaa69dMGPM5XJy//33yz333CN33XWXvP76\n63Lo0CG566675K677pLHHnusJeMSUaGcrVu3yq5du0REPnLO9uzZI7fffrts375dXnzxxZaO7957\n75UdO3bIvffeK1NTUy0bX/PYGK+//rrT7v2xj81uUbz55pv2r//6r9u2bdtHjhyxP//5z7dqKE7s\n3bvX/tKXvmTbtm3Pzs7a1113nf3www/bf//3f2/btm3/4R/+of2tb32rlUO0/+iP/si+7bbb7O9+\n97sX3NhmZ2ftm266yc5ms/bExIS9c+fOC2aMzz//vP3UU0/Ztm3b4+Pj9s0332zv2LHD3r9/v23b\ntv3bv/3b9muvvfZzH1cul7N37Nhh79y5037++edt27bPOme5XM6+6aab7EwmYxcKBfuWW26x5+bm\nWjK+hx56yP7+979v27Zt79q1y37yySdbMr6zjc22bbtYLNo7duywr732Wud9H+fYWoZE9+7dK1u3\nbhURkZUrV8rCwoLTntmq+MQnPiF/8id/IiJqhFUoFOTNN9+UX/mVXxERkV/+5V+WvXv3tmx8R48e\nlSNHjsj1118vInJBjU1Er+nmzZslFotJV1eXPP744xfMGNvb2x2xikwmI8lkUkZGRmTDhg0tHVsg\nEJDnnntOurq6nN+dbc72798v69evl3g8LqFQSC6//HLZt29fS8b32GOPyc033ywijXltxfjONjYR\nkWeffVbuvvtuR7zl4x5by/6ITk9PO32sIuqdwm1Bq8Lr9Tp+TLt375ZPfepTUigUnIuRTqdbOsYn\nn3xSHn74YefnC2lsIqrXWiwW5Td+4zfk7rvvlr17914wY7zllltkdHRUbrzxRtmxY4c89NBDjmNk\nK8fm8/l+QrlI42xzNj097fgLifz8npezjS8SiYjX65VarSbf/va35bOf/WxLxne2sR0/flwOHTok\nn/70p53ffdxja6kAyU+GfQF1n77yyiuye/du+cu//Eu56aabnN+3cox/+7d/K5s2bZLly5ef9fUL\nZf7m5+flT//0T2V0dFS+8IUvuMbVyjH+3d/9nfT19ck3v/lNOXTokNx3332OgHGrx3au+KhxtXq8\ntVpNHnroIbn66qtl8+bN8r3vfc/1eqvG98QTT8jOnTvP+Z5/7bG17I9oV1eXTE9POz9PTk466tit\njNdff12effZZ+Yu/+AuJx+MSiUSkWCxKKBSSiYmJD20dfl7x2muvyenTp+W1116T8fFxCQQCF8zY\nGOl0Wi677DLx+XwyMDAg0WhUvF7vBTHGffv2yZYtW0REZO3atVIqlRwVLRG5IOaPcbbrerbnZdOm\nTS0b4yOPPCKDg4Ny//33i8jZn+ef9/gmJibk2LFj8tWvftUZw44dO+SBBx74WMfWsu38tddeKy+9\n9JKIiLz33nvS1dXlmEu1KrLZrHz961+XP/uzP5MkZO6uueYaZ5wvv/yyfPKTn2zJ2L7xjW/Id7/7\nXXnhhRdk+/bt8lu/9VsXzNgYW7ZskR/84AdSr9dlbm5O8vn8BTPGwcFB2b9/v4iIjIyMSDQalZUr\nV8pbb73V8rE1x9nmbOPGjfLuu+9KJpORXC4n+/btkyuvvLIl49uzZ4/4/X758pe/7PzuQhhfd3e3\nvPLKK/LCCy/ICy+8IF1dXbJr166PfWwtVXF66qmn5K233hLLsuSxxx6TtWvXtmooIiLyne98R55+\n+mkZHh52fvf7v//7snPnTimVStLX1ydPPPGEo1nYqnj66aelv79ftmzZIr/zO79zQY3tr//6r2X3\n7t0iIvKbv/mbsn79+gtijLlcTh599FGZmZmRarUqDz74oHR2dsrv/u7vSr1el40bN8ojjzzycx/X\ngQMH5Mknn5SRkRHx+XzS3d0tTz31lDz88MMfmrN/+Id/kG9+85tiWZbs2LFDbr311paMb2ZmRoLB\noAN6Vq5cKV/72td+7uM729iefvppBwDdcMMN8uqrr4qIfKxjM1J4JkyYMLGEMB1LJkyYMLGEMH9E\nTZgwYWIJYf6ImjBhwsQSwvwRNWHChIklhPkjasKECRNLCPNH1IQJEyaWEOaPqAkTJkwsIcwfURMm\nTJhYQvz/Ahz40cSF4MIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "l7MDFaCLmbca", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In order to extract the feature maps we want to look at, we will create a Keras model that takes batches of images as input, and outputs \n", + "the activations of all convolution and pooling layers. To do this, we will use the Keras class `Model`. A `Model` is instantiated using two \n", + "arguments: an input tensor (or list of input tensors), and an output tensor (or list of output tensors). The resulting class is a Keras \n", + "model, just like the `Sequential` models that you are familiar with, mapping the specified inputs to the specified outputs. What sets the \n", + "`Model` class apart is that it allows for models with multiple outputs, unlike `Sequential`. For more information about the `Model` class, see \n", + "Chapter 7, Section 1." + ] + }, + { + "metadata": { + "id": "VHmyvSqcmbca", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras import models\n", + "\n", + "# Extracts the outputs of the top 8 layers:\n", + "layer_outputs = [layer.output for layer in model.layers[:8]]\n", + "# Creates a model that will return these outputs, given the model input:\n", + "activation_model = models.Model(inputs=model.input, outputs=layer_outputs)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "giRJ4LoPmbcc", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "When fed an image input, this model returns the values of the layer activations in the original model. This is the first time you encounter \n", + "a multi-output model in this book: until now the models you have seen only had exactly one input and one output. In the general case, a \n", + "model could have any number of inputs and outputs. This one has one input and 8 outputs, one output per layer activation." + ] + }, + { + "metadata": { + "id": "by-e-baambcd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# This will return a list of 5 Numpy arrays:\n", + "# one array per layer activation\n", + "activations = activation_model.predict(img_tensor)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "-bI-n9lymbcf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For instance, this is the activation of the first convolution layer for our cat image input:" + ] + }, + { + "metadata": { + "id": "Gbymp9bcmbcf", + "colab_type": "code", + "outputId": "10cbf927-cdcd-41cb-afe8-28468337113a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "first_layer_activation = activations[0]\n", + "print(first_layer_activation.shape)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(1, 148, 148, 32)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "PAaPA5gembcj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "It's a 148x148 feature map with 32 channels. Let's try visualizing the 3rd channel:" + ] + }, + { + "metadata": { + "id": "zGS9DDWSmbcj", + "colab_type": "code", + "outputId": "e8bfb274-ba42-4c94-be7f-04ef00065d6a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 355 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.matshow(first_layer_activation[0, :, :, 3], cmap='viridis')\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVkAAAFSCAYAAABYNawYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXl4FGW2/7/V3dkXQkIChCXsoKzi\nMoIwCorieB2dUZTJxeV3neuM+4x4cbmMyzh3FFHHcbnuOA4MI4KK6Kgso3hxDCiibIphFQgQCBAC\n2Uh31++P857q7jfd6aTTle5Ozud5eJruqq56011d9a3znvM9hmmaJgRBEARbcMR6AIIgCO0ZOckK\ngiDYiJxkBUEQbEROsoIgCDYiJ1lBEAQbkZOsIAiCjcT0JPvHP/4RV199NaZOnYoNGzbEciiNeOyx\nx3D11VfjiiuuwLJly7B//35cc801KC4uxh133IGTJ0/GeogAgLq6OlxwwQV4++2343KMS5YswU9/\n+lP8/Oc/x8qVK+NyjNXV1bj11ltxzTXXYOrUqVi1ahW2bNmCqVOnYurUqXjggQdiOr7S0lJccMEF\nmDdvHgCE/AyXLFmCK664AlOmTMHChQtjPsbrr78e06ZNw/XXX49Dhw7FfIzBxsmsWrUKgwcPtp5H\ndZxmjFizZo154403mqZpmtu2bTOvuuqqWA2lESUlJeYvf/lL0zRN88iRI+a5555r3nPPPeYHH3xg\nmqZpPvHEE+bf/va3WA7R4sknnzR//vOfm2+99VbcjfHIkSPmhRdeaB4/ftwsLy83Z86cGXdjNE3T\nnDt3rvn444+bpmmaBw4cMC+66CJz2rRp5vr1603TNM0777zTXLlyZUzGVl1dbU6bNs2cOXOmOXfu\nXNM0zaCfYXV1tXnhhReaVVVVZm1trXnJJZeYR48ejdkYZ8yYYf7jH/8wTdM0582bZ86aNSumYww1\nTtM0zbq6OnPatGnmOeecY60XzXHGTMmWlJTgggsuAAD0798fx44dw4kTJ2I1nADOPPNM/PnPfwYA\nZGdno7a2FmvWrMH5558PAJgwYQJKSkpiOUQAwPbt27Ft2zacd955ABB3YywpKcGYMWOQmZmJgoIC\nPPzww3E3RgDo3LkzKisrAQBVVVXIyclBWVkZRowYASC240xOTsbLL7+MgoIC67Vgn+H69esxfPhw\nZGVlITU1FaNHj8a6detiNsYHHngAF110EQDf5xvLMYYaJwC88MILKC4uRnJyMgBEfZwxO8lWVFSg\nc+fO1vPc3FzrliLWOJ1OpKenAwAWLVqEH//4x6itrbW+hLy8vLgY66xZs3DPPfdYz+NtjHv37kVd\nXR1+/etfo7i4GCUlJXE3RgC45JJLsG/fPkyaNAnTpk3DjBkzkJ2dbS2P5ThdLhdSU1MDXgv2GVZU\nVCA3N9dapy1/T8HGmJ6eDqfTCY/Hg/nz5+PSSy+N6RhDjXPnzp3YsmULLr74Yuu1aI/TFfE7o4wZ\nh9W9K1aswKJFizBnzhxceOGF1uvxMNbFixdj1KhR6NWrV9Dl8TBGAKisrMSzzz6Lffv24dprrw0Y\nV7yM8d1330VhYSFeffVVbNmyBbfccguysrKs5fEyzmCEGls8jNnj8WDGjBk4++yzMWbMGLz33nsB\ny+NhjI888ghmzpzZ5DqtHWfMTrIFBQWoqKiwnh88eBD5+fmxGk4jVq1ahRdeeAGvvPIKsrKykJ6e\njrq6OqSmpqK8vLzRLUdbs3LlSuzZswcrV67EgQMHkJycHHdjzMvLw2mnnQaXy4XevXsjIyMDTqcz\nrsYIAOvWrcO4ceMAAEOGDEF9fT3cbre1PF7GyQT7noP9nkaNGhXDUQL33nsvioqKcOuttwII/puP\n5RjLy8uxY8cO3HXXXdZ4pk2bhttuuy2q44xZuOCcc87B0qVLAQCbN29GQUEBMjMzYzWcAI4fP47H\nHnsML774InJycgAAY8eOtca7bNkyjB8/PpZDxFNPPYW33noLb775JqZMmYKbb7457sY4btw4rF69\nGl6vF0ePHkVNTU3cjREAioqKsH79egBAWVkZMjIy0L9/f6xduxZA/IyTCfYZjhw5Ehs3bkRVVRWq\nq6uxbt06nHHGGTEb45IlS5CUlITbb7/dei3exti1a1esWLECb775Jt58800UFBRg3rx5UR+nYcZQ\nsz/++ONYu3YtDMPAAw88gCFDhsRqKAEsWLAAzzzzDPr27Wu99uijj2LmzJmor69HYWEhHnnkESQl\nJcVwlD6eeeYZ9OjRA+PGjcPdd98dV2N84403sGjRIgDATTfdhOHDh8fdGKurq3Hffffh8OHDcLvd\nuOOOO5Cfn4/7778fXq8XI0eOxL333huTsW3atAmzZs1CWVkZXC4Xunbtiscffxz33HNPo8/wo48+\nwquvvgrDMDBt2jT89Kc/jdkYDx8+jJSUFEs49e/fHw8++GDMxhhqnM8884wlpCZOnIiPP/4YAKI6\nzpieZAVBENo7UvElCIJgI3KSFQRBsBE5yQqCINiInGQFQRBsRE6ygiAINhL1YoQ//vGPWL9+PQzD\nwH333WfVfwuCIHREonqS/eKLL/DDDz9gwYIF2L59O+677z4sWLAgmrsQBEFIKKIaLohnZy1BEIRY\nEFUlW1FRgaFDh1rP2b0mVLnsJMcUvLThCdw4Yno0h2ELiTDORBgjkBjjlDFGj0QYZ2vHuNwb2tjb\nVoOYcMVkL214An2H9W5ygPFEIowzEcYIJMY4ZYzRIxHGadcYo3qSbamz1o0jpmO5dyEmOaZEcxi2\nkAjjTIQxAokxThlj9EiEcbZ2jE2doKMak41nZy1BEIRYEFUlO3r0aAwdOhRTp061nLUEQRA6MlGP\nybIBriAIgiAVX4IgCLYiJ1lBEAQbkZOsIAiCjchJVhAEwUY67EnWMWwIHMPio6eYIAjtlw57khUE\nQWgLbC2rjWe8m7Y0ubzu384CAKS+/0VbDEcQhHaKKFlBEAQbkZOsIAiCjXTYcAFjuOgjMN3ugNc5\nTHDgN2PbfEyCILQfRMkKgiDYSIdTss68XACA5/ARAI0VrE63pz6n/zz5W9T8/EcAgEMjnQCAogc+\nt2mUgiC0F0TJCoIg2EiHU7KsYPffSbHWXm/+AABw7y0Luj4rXwBIf3sNAKDobXpefjtto/Cjctp2\n6fboD1gQhIRGlKwgCIKNdDgly3T9shZAYwVrnEaNIM2vNwPwKV8A8Jw3GgDgXLmOtvE0xWQrrz4b\nAJAlSlYQBA1RsoIgCDbSYZRszc8oMyD9HYqrOlZ9HXQ9VrBO1QDSc+iQtYwVrPX8lIEAgKwFqwEA\nZXdTjLbHLMk6EASBECUrCIJgIx1GySYfazofVsdfwYbCdDoDnrOCdRX1AgC4f9gTsDyYOhYEIbo4\nB/YDAHh37gYQPhfebkTJCoIg2EiHUbKuj78K+jrHVet6dQIAJC1bG3IbjqwsAID3+HF6VHaJzq4F\ntEJONgDA/f02AEBVMWUdZM+nmK1Z2IXWEyUrCAEYScn0n2H0e+S5kabg352n/GDA656tOwAAVb+g\n31/mnjoAgOOzb6Iy1pYiSlYQBMFGOoyS1XGeOggAYFRTvmzqalW11cR7WME2XmACAI6NyAMAZCol\n25BuBK62/rtIhysI7Rqz4ST9pxkK1qK2LuCpq0chAMBdtg8AkP331QHLD/9yDAAg75WSCEcZGaJk\nBUEQbKTDKFlHaioAwFtHVz/Pt6UAAFffInpeVdXybaoYLWcLZC5UsdazRwDwu2KeNRwAUDEqEwDQ\n5aW2vZIKQrxjpKQAAMz6+ma/Z/+1wwAABc9SVg8rWP5NN3TPoW1/vh6A7/fo6tmD1g/hVxJtRMkK\ngiDYSIdRsqxgOW7T0IdmJt3/inzGkWO0rn59aFs7dtGC1RsA+GJAXb4mldxlQzUAyZcVBGc2ZeLw\nHaQznzJvmqMunYP6A/ApWMbVqydtYyc56xnq0Vrep3fwDao7T7sQJSsIgmAjHUbJMhy3MdSjec4o\net4KRcsKds/vlEftw3SF5RiQowtlHXgqDgMAym9UCvclUbJCx8Ix8hQAgHGcsnqglGxTCpZzaDkD\ngX2bHcOGAPDlq7v37AUA1F16FgAg9b0vAt7v3kUVYJw/a5xNd7WdFtubPytKVhAEwUY6nJJlTk4+\nEwCQ/NGXUdsmK1jjDJr1NNduAuBTsM7BAwAA+a9R9VnlNLqiph6m7NyUD6M3FkGIB2ovPyvgOeeK\ne7X1jNPJx9nYTCqV51AAn4LVlSs/6rCCdXbuDADwHD0KAKi8lu4gc/4amN3TMIF8oh2jTvWN85tv\nm/y7WoIoWUEQBBuJWMk+9thj+Oqrr+B2u/GrX/0Kw4cPx4wZM+DxeJCfn4/Zs2cjOTk5mmONCt5z\nTwPgU7DRiMnqsIJlnDnki+BRlWBMp3lUkbJnJsVy03qNsZZJLq3QHsj8/mjQ109MIX/nnBKKo7q/\nokovUy1nJy3A50UQSrmGghWsq1tX2pdSsByzTfuQ/KFTdlbQ9qOoXv2J6CS7evVqbN26FQsWLMDR\no0fxs5/9DGPGjEFxcTEuvvhiPPnkk1i0aBGKi4ujPV5BEISEIqKT7JlnnokRIyi3LDs7G7W1tViz\nZg0eeughAMCECRMwZ86cuDzJOj4N7Ijg2rwTQNOeBa3FU3kMgF//ML5imnTd7vWHxp0Utj9O8dr+\nd61utEwQEgXPd1sBNPZYzlxIHUrY6dW621O/FVav/uyYRXd6/e5u2V2e+wD5knDVJ8dsWTU3FFLs\ntuJXfneSL0bvTtIwTdMMv1poFixYgLVr1+Kzzz5DSQkNbPfu3ZgxYwbeeOONJt+7c9Nu9B0WIkFY\nEAShHdCq7IIVK1Zg0aJFmDNnDi688ELr9eaet28cMR3LvQsxyTGlNcNoFfoVNBTRGGcoJRuMSJRs\nrD/L5pII45QxRo/l3oW4uO+dABp3C2Ga8zuMVMkyun8JY44diRWfzcRpNz1pvdZSJbvcuzDksohP\nsqtWrcILL7yAV155BVlZWUhPT0ddXR1SU1NRXl6OgoKCSDfdpoQ7uUYCB+31Wx42ItbNv63Ukrm+\nE6p1clXmMpVDyFxGTz8RhHiEzfA5XKCfXK0CA3cDraf9DoNNfPHJVS9OaC58cnWq4qDDPyG7U/5N\n5Wxt2faaS0QpXMePH8djjz2GF198ETk55HQzduxYLF26FACwbNkyjB8/PnqjFARBSFAiUrIffPAB\njh49it/85jfWa48++ihmzpyJBQsWoLCwEJdffnnUBmkHzrxcAMDJ4X3oudbuuzUEC9r7o5t/85WU\nSw4BwHGQ0k/MnQcAAKld+wLwM8FQJYTNDXcIgp24uncDAJzsrx4zkwAAySF86lmFhjp+m/oNtVTB\n6nBxUJflNOl98P/RnaR/iyrdwKY1RHSSvfrqq3H11Vc3ev21115r9YAEQRDaEx22rNZz+AgAwLmS\nHrmsz/yqBe0voox/exqHSqBmO8SMLRTH3X01ZWMUPk5KVhSs0Fb4l8imLf4iYNnJQd0B+FIkQ5Uh\nsd0gm7XE8vh176e7xPzF9cCrQMOFZ/gWNtFQtaVIWa0gCIKNdFglqzdVi6WCDQYnUDM1g2hGtPcb\nZER8chyVA8eqzbHQ8TAdRqPXuC03tCIfnsGHEajjWMEyx6dSqmLWG21fdGOOHQkA8Kj2NEl+6lU3\neWoNomQFQRBspMMqWVawbFTBZX6xwJGeDgDw1tRYr+lKO+UfZGiz/yZ6vdtyiieduEyZXbwbGCM7\n8h+0Xu4cyasVIoPVnPEtzfR7kn1KlpWq2ZWydFzpaQB8rV94Bj8U9T8hq9FYKFjmyKn0u+u6hzJ2\njl7nK6vt/Hr0fjeiZAVBEGykwypZhhVshdUSpg2Vn8NJj0bjWFfGAbKscQ4dDADwbP4eAJD/vBof\nV8Sot/7w+zEB7xcFK7SWE30yAADZVZQ5kL3IF7P0uJW1i1KsDtVmOxROrQVTygexN6jnu0S3+v35\nq9etf6ZY8cA7Wq+0RckKgiDYSIdXskw0FOy2J+nqN+DO4Fc/bmXMjeDgVQaLfckGDn6mxKnvqxir\naqHBbYuP96E4Esey0riuu3QQMLPVf4IgYO99ZCLf849kwck2oP5+At6dlCVgKkUbrpW3HqMNNg8R\nM5RRExs4AcCQ35cCiI4FqihZQRAEG+nwStY4k1yuzC83Bl3uVfmowdB9BFjBOvPzAfiqtRirlXEG\nxbq81dU0hnK6ynMbGgDoXlJP+yhV+bKrNwAAsnSRrFy6vB5qTVfzM8qWyNp4kPa5bWfI8QtCMFjB\n6gTzE2APkL3XUZPD/PXquP3nV43W9ScuFKyGUbrL+n/pg3Tn2P+/Wn+HK0pWEATBRjq8kmUFG8q7\noKmKKlawOrqC1WEF6xxAzlqsNnv9ofH7uD1H9ZWkUFOO0iupW/bTeEtVbEwp2fR3KFui7oLTAQBJ\nomSFMHCrem706RhBqtRxmByozHQyu64ZmGe9J+1TMp5nD5DuTwZXv1zRFY9wXNhIJscwo0c3a1nn\nEO5hEe0nepsSBEEQdDq8kmVKr6POAwO1UBLHV+1Aj5da9d4AzB5UE87OXFnbyIOW2xazwmVXI6Sl\n0PLx1PK8phtdnTuF2Lfe2E5oOU059Bsu+mnx7Hs8wwrWqvCqob/HPH6ClpftAwCk+MVkzZSUgG0c\nvkFVKL4aGMPMemM1MN+GQUcBKy6sHqysHwD1l3aN2n5EyQqCINiIKFnFKU9SjFPXHeHiq62B3eTN\nDKr79le2jtrAZm+sYI8oF/f89yiPzzyhMhQaaOSOVeSGlLeTKnD47zl6Pb2v819UlYso2IjR+1cF\nddE/TXW5CJG1wrj69QEAuHfsiuoYmwOP+8QEisEmH6OjJaWC/o7as6kHlusE9eEylFsVAJj19QHb\n0hVsPMKdR/x9m/2pu9Tnl5u1OxoZsmq/UduSIAiC0AhRsoqGHpTvZ2h+l1Hdh3JeZ99KdmZnXH71\n31xBc+zfaXa2098oQTb3NaUYlJoy6ih+xu5HHGstvYVyePu/SRVjrGArfkWKtutbqqIljFuS4MPq\nR6UULBOsD5Sxkdbhpu/mGPIuNUrWB6ynK9hQ60UFlVNd15XunNKW0T7Ywc15KilXziZIimJ3gLYg\nXF8uXcFyji9nSGRsO2ot83RKi9q4RMkKgiDYiChZRdIPFHuNZC7YMepUAL64KaM7D7EycCo/gmOT\nyGEr801SqcHqvzu/RXm6jh6FAPzit0pNWVkCEykvlmOt/WbQo1PF/BqUQuryIina2snk55n8kSjZ\nUOh5zNyPij9r7m4azN3fWxcYU2+uMrVFwSoc9SrH+n1ywGKVzRk0fFd0fDhltmSWByo9f/iuK5xn\nQVvS0s6y/Hc5hlFMentxF2tZn9+Jn6wgCEJCICdZQRAEG5FwgUK/7dFvFZuCwwS6wXaoSSXPUQqw\nc5igyW2r206vSgjnth3pTro+Hh5NIYm8j3cB8N3G1Qwlo2XXZkpNc3xJ5cJ8i5j8UexNk6OJI4ta\npnuPH4/aNvXvns2EOEzANKeFSiyKE7iFd9oBdQwpkyE2KLIsNsvIhKiuLx1Lae/R3+fxhk5j0n8v\nnvNGAwCcK9cFvO7qFr2k/mjDLZ5yN1M1woDX9lvLovktiZIVBEGwEVGyGmX3kN1gj0eDG140BStY\nxlClh5y4rU+Y6PAkFuCbwNo+m662bLmWXkIlkHWnk4Eyp3ZZRjIjaYIsraxabYiWVP+U9p3+NhnI\nBFN+bFpsfh1f7dGbQ0sUrG6I0lxC2WE2Bwenf4VJmfNMUIrwk3VNrseGRsbpQxuZGrEFZ9pilZql\n2nabyhDFkUsTr5Wn0JiytpJiT9lPn2H1JXSspL5H73f1LQLgSxMMhq5gGW5t70iltDB9QjCWcPsZ\nxqy2x35RlKwgCIKNiJLV8NAF10rM9nxbGvG29NJDVrAcu/WWkoJggxH/UldWtaxg3eeTuoAyQ05a\nQY/lt5HyLlxKiiF9NZlc1I+kmLLrG/X628r8WyWk13ahPzT1YK1vgB4T0UA3JW/VtkKkx0WClawe\nQsFaxQYqVYuJhplOc4s+wilYhtWr+dXmRnMBbMHJCrb6zD4AgIwdlbRcpf9lLqT1+FvnYz3jEKV0\nNSjDencTdp8W3BRUxXFdKuXQreYS4kHB8ufhKT8Y8Pq+u8YGfT1aiJIVBEGwEVGyGn0WUYJyaxRs\nKDhGq8dug6GrJm7nsfUZMu8edCcZwXR9jmKsGKKaNA6keFzy56R0TioFnPR/ypx8M9nVpSiVGUy7\n8owwx9NaSmsULLf7YbN0K3NDM2WJBCM3h7ZVoIpEtOwBVrCswhj+LmJp5tIUjeYCVGy9IZusGNM+\nInXMbbzrL6YMlZOdSH2ml9OdVPJeUrqGMoBvyrC+qpgKMGq7kE7r+nTgHAYr2HiClWrFjTTPwc1T\ne7/xA/CYffsVJSsIgmAjomQ1HJU0w2qEiM+1Bj1Ga+1TxR3dnXxGyI5Pvw667sDbSLkeuF3FYldU\n0IKTZEfHDRfZVDn1ezKhcZ9OpYPOPbS+OaQPAKBqYJa17czdFJ/1VisT6giVbGvQ1ZMVR2umguW2\n1dz0z7+NtVu9xm1HQsVaQ6kw9674tIc88Bs6Fro9RWqSs0NYQTlUeXf9yD4AgJQPKUeajza2AKwZ\nQOulb6P48ZH/UIpvPh2L/nHV7PmU1ZKtnm/9C90xnfIAqcV4ttIs+Bv9RupViyasaLrpY2tplZKt\nq6vDBRdcgLfffhv79+/HNddcg+LiYtxxxx04ebKxW7wgCEJHo1VK9vnnn0enTqT4nn76aRQXF+Pi\niy/Gk08+iUWLFqG4uDgqg2xLmmN4EbK6yDDo0WzZLD3HHZu64ukzyFYMTMUqzf2qBbiqvEk6qrIG\nKpQSVwrXoxSuoRR61leN46de9cixO1Y+sYDjaJxdobea1tuyo+JowHIcbXwnwm1HvD8Ez4vkNiyN\n3xg9I+dICfadsIJlrCorJ8VcucqMPztWrg25ys5PZTSksDeNyqzJnUMxy/KbSNE6/RIE2HKTjecH\nXk/bjqdmO1yh5/ie8nvZQIbnDFzVbTPaiJXs9u3bsW3bNpx33nkAgDVr1uD8888HAEyYMAElJfHv\nlC4IgmA3ESvZWbNm4Xe/+x0WL14MAKitrUVyMs1m5uXl4ZCNbVtija5guSLmxDBSEFwpE9V9btsF\nANj6NGUXDHmBFJtRRVflhjNIfXDlDatRQ8XjdC+GYPFhvUVN2icbA7ZlJ6wezbWbgi5P/tfmoGPR\n27Lr3gCRmJI3GkOEdyjRgOOirCqD3lWcPQIA4NhA+b9edZfi6Er5rtwI8cQUOnay/0Hfq1Mpep4T\n4L/P6yLtxRkd+c83FkzsxcDG8/odBXtspHwQu7sgrtDj+w+2NPSmU5NRV+megOV2EdFJdvHixRg1\nahR69eoVdLnZzIPxpQ1PAACWexdGMow2J67GeWvwl6Myxjmt30Q44uqzDEFcjfGV4C/H1RibIBHG\nadcYIzrJrly5Env27MHKlStx4MABJCcnIz09HXV1dUhNTUV5eTkKCgrCbufGEdOx3LsQkxxTIhlG\nm8B+A5+suAcTz38EAHDgLKqW6vkkmXDrLaH33kuzvfnracZfv5pzjiHP0DpG0BW2tqdvpj+cAjDP\noXxS41++2fjl3oWY5LwKALD/TlJA3Z/QPBj0yhyV+wkA1UPym7Xv1tKS75wNztm5TIdjgnorn2Zt\nW29X4qdYmzNGbr/OzSujiT42qzV9rsp6+X5bozHyOt4+9JnU51L8/WQ2feeZCykzpVE1ozomHMNU\nS6NyZdKt7nYO/5SUblUfw9pX799/HrAto5rmAIJlFfiPM1TVVVuyYxb9Nvrd7VPorT0PNXWCjugk\n+9RTT1n/f+aZZ9CjRw98/fXXWLp0KS677DIsW7YM48ePj2TTgiAI7Yqo5cnedtttuPvuu7FgwQIU\nFhbi8ssvj9am2wRdXTLOOl+ML/lbijf1WnMCAOBVClZXUz0fadrBK+fdwFind8MWAEDKhsbrcizV\n2zkTgC/O5K9gAeCkaifDcTVWsKx4GX5fQ5AcwRRVybTvv1QO7uyWO5FFm1AKlgmlYPWqnmB4+6tw\nF+eVptFsO2cfNBqL5pkaTQV7/GrVwmaBclUbTvm9/H1xa3qnOuaMpGTr0ZGWGrBO7VgVf08m5dnp\nY5VjrFQn9gefLzH2q/h1AbWdgZeO0Nw36e/M8cuTZRVv1NB4zC3bg27z4M10LNX8jOLB6e+sCbqe\nHeifKTPoaco2aKtMiFafZG+77Tbr/6+99lprNycIgtCukIovha5gGW+K0/q/uz91GzA+19o6tzAe\n2JLafr2+PuVTFW87l/bJ1Uvc6YAVeee1pFY8rISUCkvhunylYHc8Osbadr97SPWFUrDRdMQKSZRm\n8ptSsIzumxtKwTKhPFOjgaW2lEsaK1hWY50+oLEayuHMVBkEZsNJGCqLwKEKgDJX71IbpXW5YaBT\nZQSc+DHFXjNL6S6Bq+lODiVln7yJlJ55go7TYA5arOINzkwYSfMK399Mx2P2tzSD3+1PnwPP/tZS\nsNziPqdUeWe0wqM3HPyZWt1EvqCKv7b2VRDvAkEQBBsRJRuC7Y/TFbf/XT6FW5dPs7VpLdwWx6+c\nX5AC5BzVukupB1P6chWMdfiueayq9EovVrD6eqxoOy+n2JhZSO2N2fkr+SDFkfWrOKtXfw79mtRt\n/guBy2xVsEyUclGrfqFi7H8P33/L2rVqm25nW24dzrG2/u4yiotyvNBSuKrKkI8dbjfv7JJndb9o\nOJtUZfJ3yid2r69nFeCb0U97lx5NVfnFn1WnhZQt49FyjZtyQONjgp2/Bv1nYGYK9xnjOynu5GG1\nI9czPGwg5Uhwz5C2QpSsIAiCjYiSDcGgRyiH0L8aJO1drWeSilnVjSNF4Gig67Pew8tZS/myepUV\nV4ZZ1Vku39dhuUkpBctXfK5ocnSi5+z5asUTTdoa16U71T45J5JVdVIpeTQYSUnWPtm3weXXLKEp\nuM+U3mOK4fgbq5e2pCUKlmmxgtVzjlWWCdD8OL2ZrjIDNE9YVtWmqr4y1F2Q9wTdkbC6REEe3Oq7\nTVFeBd4a5aamxVK5lt+oV45fFSXLAAAgAElEQVRtO0jxZq//jval1tOzZayY7UVnWNv6oZiOs4HX\nUZya49ussNk3weozpuLZFb9SWR8v0l1SNBVsqLzlkzl0N5ekvJYNVQW4639oLH3+214LAFGygiAI\nNiJKVoOv4icHUSaB49MjjdZhxelRWQLJS9c2uU2uhefqpd03kvLtMStwFt8YOtD6v0epC47b6n4I\ndT8mFek9vTctf5+Wc62+8xMV29Pcq/gqzwqd468AkP8CKdm8BbSOqXIxuaJNr0dnBXtIuTTpNe6x\nULBtiubKFUnVGfbsD/oyq2qusXIq71tvhToeD1daj5aPgIq3812QOYweXYdILRoH6T0nRtCxnary\ns3VfC/47LC9e5WTmf5wPXKqG/zvKg03hFNv/bTq3OnsXqWjdJyMS2E3Mq34ruoKt+zf67aTtV5kM\n2h1X2gEj4Dn7LwCNPTFagyhZQRAEGxElq7H9JrqqF93f+AprdTBQM6quPqQi3bt2N7lNXQGygmVX\noPpulM+Y9p1P1VhxWtVBtvJaFcv6TK2j8mK5MyxUdoFO8mEVn1P5p55zVaaDipF1Xe3zW7X2yZVP\nWrVV2seU0+jQOgroCparyZJsdpyPZ5yDBwAI3RmXVdjBM6jvWN6rgZ8h38FklFC2iHuPUqkD+tAK\nx3xOcJZfbM8e9Lycul8YqhMElFLl7yv9EMnOhgk0418+jOLCXZ8hJat3l2C45h/w1f33epiOZc5i\nqfilOk7XU+xYz4NlNbz/92q9MJ9TU7CCtZ5r/eH47i5UvsqJ3rREue/Cc9Ae50BRsoIgCDYiJ1lB\nEAQbkXCBRp//USkpQZZx4vXxqcp44g1tYkel9DRMVDaEaiMcJtCTur2baOIhSXlE71NmGgDQfR7d\nbqVvp1v2jA3qtj+XktKrryDDjaRquslPqaDl+kSZlSyuTLFdJSrVRoU6zFqfTWPYW9zOdGvLt51s\nAs0WekyihAk41NKaFuah0D9DvWmjdyOlXeWmB291c7wnHUupmuk438Jz23IjKclKpXOriR0rlUyl\nR/GEFh8Dh4fSMdT5dbrl7/oJrc5mLjx59cND9LzLBprg87cGZLY9Rb+FAb+h30LeK7SO/vvhSd+y\naylMUnQ/7YOnDvVmkC3BMjR6vJmTaOp3mlwVOPEVqtFpaxElKwiCYCOiZDX0qxkH9P1hBbvrDxS8\n7/93SqvhhHJWcvWX0IQXf8h1PaiAIK2GVI1VzHAaTUz4p7+4x1IyuqOWJjXMUmUlt5c0QnaZsqPL\nU6bWajkr2P3T6erecx4pKg+nkSm1ah5UCqlLZ2ufHq1ldsOPVBtx1WjPSlFSk2i6gnXm0ZgsQxIt\nNSjeaKmCrfm5sut7u+V2fWbViYDnR66jOw6rIaEyT3cru0l9MpEtK5P2qu/NrTSgacKxNbCNCn9P\nR/4fHZ95G9Uk2Ua6g+q8lo5xVraVg8lGs/sCurMqVzaRfd+hlC+jmooaTDVRC/juwljBbv8bTah2\nfZd+LzVdSL/xMc2Wld3+TM+3Pkuf5cBb6bNkBVt2Nx23PT7xa/H0ReDkGZfo1uVRIU3PZbRtrypN\nZttPNk3SOVasDGMOtE07IVGygiAINiJKNgTNaWvSZyapDUPFNw/8VsWV/kRX5bR/Bppzs8J1KyXY\nMEmlOi2jtJaAVtTKTpFTrtwX0rqcAsNq0XGSkrudg/rTuFVCNZt2W+nybKFXQQrBdKiULr80HU6B\nMb10hWcFa5VwchoYl+hqKTOe/pRCBDW2eFWwkdISBcsxUy4QcJ9Cx0jSbrpLsBSsat/NCtYqp00m\n/eP4lBLsk3bQcWg1LmTLSgDeWlKanBZmNNC3XrCCFK55jGKz5hBKzXK46Yj0qBhubmUfAMDJEfRY\nMI+OPY7BV5xPJjY5f20c89w+m1TvwP+k93B5d4UqWd0277TGHw58CnbfDPrNeKjuBb3+ED4my+mH\n2arUvPR+Sq3sn0YNJdM3UlGNWyt7ZvI+p8+w7JJCtAWiZAVBEGxElGwIrNJCFWcEGpeoWq+rYoRu\nf6JHNnM58O806+tQznGddpwMeD8rWG686N+2xmqcp5RMmpqdhVKsHIOtH0NWiFx0wOWAbDHHBh0c\n12ITO1Yg/f/Lp05YkVqxVPV6MIs7//UttNhZa5ocJjq6pSQbvestTxqUEXzdj0gtsglRHX9/aj2v\nUqNc6OHaXKYWeK2yZ1Ml53NzQyTRz9vIopgratR8Q4UqMvkR3d1gC5l0p6g4r6mV6eb8lR77fOEz\n+dx1Fh1vg/+Xlh24hhQ4G7+w6YozOxsoBg7eSsd492VkaLR/Ein4wscClevOv9N2ui3wzYVYx7AG\nm8uwHSkft0fH012D4aXHzDcDs4D4riF7d/hmr9FAlKwgCIKNiJINA8c+AT+TFdXCu2oIxaySj5E+\nSStR9ojqCqvPEHMrkWwVe2XjGEvBqrgp4BdLVc3xeHbWUUTKR59BteZJVRyqYhh9tfme4AYzrGD9\nlbqRqmz3dgW2dQ7WfhxobCiu0xEVLBNKxZffpnI655Hq5PZAGSqeWnNp4B2Inl+bckCZndTWWo/8\n/bi+p3WMI6pUWjVY9Kpj2Kygo4QzaFwHqb34SdW0MWnTLnp+OmWgnMymY4jVNatXwKdMc7bRnAAr\nWB2jCx1fXV+ku7by/yAlXvAcHfOszOtzKVOg7y8amwqFayPO+c48B5CtSpDr3qPfCt4MXF/PbLAb\nUbKCIAg2Iko2DM6cTo1eM8roipqprOI4r9TsRzEgbCIlq+eJZr1JV07v2TQLyvUmwWK9fHV2aPmT\nXMGVprZddyEZKXN8t/LfSQnps7ShqtS8fbr79llFSsVIVhaHbBBeo0zHtc8hlILtaHAMlLMugNAq\nvuszgVkfrAgLnqXXM+oGBCxnBetQdxmOEzR77/VQhoDp8Vp3GKY6ZurG0J1W2nZlFNOTvmOvOg4t\nY22VV5p0QCnffHVXo77ozG30upctL0/35cnyeLl9jlfl0HL+rPU5qOO2fBGp5YLLSPGyDWHGGhqT\n50d9EQpWsHrGBsP5ztwCZ++F9Jv1fEbLe2NXwPqnPElxYShDHTartwtRsoIgCDYiSjYMnkqfFSD7\nBbhqlV/ABxTrslq/qKu4pWwyaYa0kbnwSaUQOf9UKViuKAKArO9o2241s28ZCnNVSze6WrOCZXLm\nklLQ69BZwereBo7tPnNiKyartcbWW2cLgfgr2HDwnREfV7nfBlYYsucB1/pzLN7orxou1qpqLZUB\nYLhcgLozcqhqsORVFOs3VbWi0VndjXHMfwcpQY9qtOhUVYPcyiilXlUkqowGRx869jyrN1jjtIzC\nd1JmAremOXgpHXdFi5Vt4CE6jgsuo9+GXjXHit0w+wDwVSp2f9IX47Xi0iqLJ1RjR8dxOm6L5qns\nCS/9TvWMDk+eakppYzvygHG1yV4EQRA6KKJkW0DGW3T15TjUbuX+0+sVNVOsVIelbJTCsBSsMv32\nqkobL2cZqNlh/4oivsLzzCrnv7Iq1nNUeT1ulscKVo/56VkGZoPfdb5QKR6laNgoPFilT7SwKp7U\nPhORYK3EOc/ZcyjQCNr/zgjwNd3kLA+DG2SqWCbHGY1D5CPgUZ8TV+V5jlXB8Q0dbw2jKdvD0U3l\nVKsYu5t9L1R816OOSydX/ykfC47V1vejsSd/o4y32TCc29EAMFSlIceMuRKx6Bt1HKrqwOoz6T18\nXGZ/o75nvjNTahP/oCyZLg2kiA2Xr8GnWRvYEJIVbFWxytaZT3dpPPfhUO3Td/2W9tn79xQfNzi2\n3EYKlhElKwiCYCOiZFsAqxPvfroaF86meBSrTq7D5ioW57e7ApZzK2a9GsulVEyNalMD+Dxo9dxA\n40Cgv2jNzyjGlfEeKSL9Ks15jMGqyoBAJ6rS35KSHfSf6r02KlgmkRUsE6yVeCMFq5yjuO6eM08a\nelCuNVf24XBg406Oh/P9xtHr1N1FKcUfzR8Ng1ftP2kPHRvVwyibIGMvjYFzdr3K9c3YptrBZ6rW\nRdmk/Fglu6pUG3kVk7Vanrv9PACUkuY7q7ruVFXGedsce075iBQuH5delQFxeAqpaauRolK+qTvo\nbzC6+aqxak6l8acq5znOYGAFy4q2LifQ+av37wOPda6Ma2tEyQqCINiIKNkw8Mwm4FMnPLPKsVme\nYdXrsCt/QjFYKze1guJqWZUUC6u+WDVY/JCu/umf+ymFEM3s3KrW3ZVDsbv0d1QcV8WbuMV3txUU\nh2Jl0fMjWs07nlyRuH0y+5gCwKD/DPTf1NWXEDknetD3w1nXVvxQNVDwKre1mgJaj7169bh4/v8p\nVy91zPmr6O/uojjnwN/S9+jW3KesjAVuG6+yCk6MIoWYtYHioNxhQc+E4H0Cvvito4oqDNP2UU6u\nqTJUzDqlhs9TLlxKqfKdk94KfP+d9HcWrKP4a32OLyab9cmWgHFwJgPHgXO+JcXNOeScwVDXiTQk\nO57FClGygiAINiJKNgw8e+oPV0JVjKcKlJQRNEOeuVn5DHCFl1ZdZcXp1Oxu2md0hWa/2YCZZ/V/\nPX7r5HiZyqesvUwtV/Xl3d5S0iiH4mwcs2XFywrW+vvULDbg87NlTwXXZ5QX2Tb+8YmP1VsLjSu+\nOv0t8FjQVWJDBv0UO61Q/hdqvbwvKwKe+6tJC3U8DbwjcB+Wf4KKtXr70fHqrFVzCxmUR8vHlldV\nLnI1FrfUZq8OxxFftwJPOR3LJvsaq/caquqRM2xcn6kGdiq/mxVw1blU2cYZOz2XqAwAFfd17fFV\nYRk9VFWi+qxYwXJGDcoOBYyBs3TSER+IkhUEQbCRiJXskiVL8Morr8DlcuH222/H4MGDMWPGDHg8\nHuTn52P27NlIVjXwiQz7CvjDea0cJzv8nxRPqssh5ZCvsgg4t1V3EeK8xqNX0HZY5XBOJOCbVbYU\nLFeHlVM8jfs36fGmalUDvnciXT8H3Km8NpXHLTuEBWP7laR++6kiMlbsQvPYf7mv/j7/+aYdyGrG\nUlUgZ5Hwo6lyPJnKEaT8cpSzlqF5vQKAJ41eO6nd9XjzVeYCeyMfJiXq7aR8Marprsirut1y/jYr\nWJ6PMMtV9aF/potye3MVKpWpvGs9W3cFjNNZSHd5fGx71tPdW+YPyk1Mbc5dQMencwPl9Pofe2ZN\nYJ4sYzgcalz09zmUf8LBcynGzE5fsSYiJXv06FE899xzmD9/Pl544QX885//xNNPP43i4mLMnz8f\nRUVFWLRoUbTHKgiCkHBEpGRLSkowZswYZGZmIjMzEw8//DAmTpyIhx56CAAwYcIEzJkzB8XFxVEd\nbCzwd8biihFHNeXbVV1F+Xl5LweqyR0PUk5qXS9StoNuCPQX8NbRlZkV7M5HVXfQe3zb4dgVzwRz\nlQvPrHrV5KtebcQqZMD7gX/HiQnKmend4C7zADDwCdXZNuQaiY0en442/v7BVb9Q1Uh/b+yPCviU\nK8+6G6MDqwGZ471JB2XxXRC7can4oyM9HQ1JtI7eQcCrXOK4/9vBc+iOKtRsu6EUrZlEKtWr7ri4\nCi1w46qLQjapYu82ihU7Mqh7AseauSOzYw+pTY9JMxDOCpURoOK9+IaOb0N54DqdPvc7s7tyDeM5\nDeXB4F5L2QR6VWPBpqB/XswwTNNs8bzGSy+9hB07dqCyshJVVVW47bbbcOedd6KkhL683bt3Y8aM\nGXjjjTea3M7OTbvRd1jvyEYuCIKQAEQck62srMSzzz6Lffv24dprr4X/ubq55+0bR0zHcu9CTHJM\niXQYbcZy70JcmPLvAABjKM2MVg2iK7zeQ2i3pWRJ8epKVqc5SpZhJVtVRFI2byNV/hgl65v8LPUs\nhGCEqrePNrH6zluiZFs7xnBK1kJTsqamZPcpf4zC2aTSWMnC4cDSE6/joszrUD+O3qs7sjGsZA+1\nUMk6NCUbrDMBzxWEUrLOvFx8dOhFTC74Nb2ushE43uvNVjkA21VXB6Vk4R+T7a38cJUyt9zEWMne\nTN8rK9lIaO33vdy7MOSyiE6yeXl5OO200+ByudC7d29kZGTA6XSirq4OqampKC8vR0FB2zQpswvL\nTMKvFM9qWKeSnpO6UzFB6fN0Aht0E53Aej8Y+GVzu4vB99L7Ki+lg5nLAvnkyvaEAJBRTrdjGW8F\nnmRTVfuRtG9UGIEPfMMIWI9NMrzHabLD8CIsdp9cY012yS4Aja3vGL3VS3MJZrqeUhk86FKvSqfT\nS1Vqlkr345OrnkaXs522Y51ck+jiyt+rt6YGqTtVC3Z9Z9wS20nhhC5/p/Q9hzKr5tc9uXQSNdVz\nx0aafHKoC30wU2trnN8pI/CCLvRcnRz19jscNnB2ofV48s3YrVK3VPvxoPvSDGKMr8ks3pFP47MM\nxCP8/uwmoomvcePGYfXq1fB6vTh69ChqamowduxYLF26FACwbNkyjB8/PqoDFQRBSEQiUrJdu3bF\nRRddhKuuugoAMHPmTAwfPhx33303FixYgMLCQlx++eVRHWhbw6qVb7MBYN9d6tbtcbpycjnsoA9p\n+Qk1EbZvIsnGQb8mZcsN2xxcoquiKVxK6VDmIGxsAQAupTa2PUyhhD6/I7Vr2SYqY46Ky+hWsMsG\nn9ELADiU+QcrHt3isFHL8A6ApzupKIQwpYlUAXlSSav4/5j42GB2ad+jZWWpQjT7ptJtN7enYbLX\n0JjcarIU6pFDUrsfHGvdOXHalJX+xGW1KtWJJ1zNQ6Siay9Uk6ZuM2DMfNPDJbB6cQIAmA66czLV\nOryulWpYRc9dfdScy4A+AICjw0mx6mEUR1Ppgh7+O0iZn/gp/W46rSMVbLWliTMFy0Qck506dSqm\nTp0a8Nprr73W6gEJgiC0J6SsNgz+E0WsYFl9sFLgYD5PgA1SLYi7llCsq3wMpavwlTabr7iqHJLh\nCQrAZ7Tce1mgGTc20GQEK9ouyh+EW+NY7w/Tjru9K1i9zQ7QuI2OrvxaaiBujiUlmPKPL8Os6VOw\nB35LCrTbn1RDRRUHL1yhCge0CU8uOtjz38qq8hNSiEV/+AK4Xz1qcVyduh4Un08xKF1q51VkDNN7\nqWqcqbV6Z1vMokV0DLGC5YIWAPB8QdaFbDBUM4h+E6mraN7BUPaJ3sNkZG/ZE2pD3P0A7av3Q0qN\nq+Pc37LTarUziPblTiMVbZnkuOL7NCZltYIgCDYS35eAGBCsvbO1LIT9IM8Y1+bRx8nNDFnBsnrp\n/gwpAoMb3B0jJcHxOQ+3CYGfalCGLkeup5he5y8DG+9xVkH2p9ua9fd1FPQYdDD0suGWGogfHkbp\nR11UGJXj5IDvToO/R/dQKrllBcutiAzVVDNUM0a2Ouz1P4Gx2oaJlNHQ8OORVgsbRk/FS9ug2s70\noJh00f3BU7i846jMm43d9WwF/5JsS/Urg6G0KmUe07tQDVxlP3B2i1Lb+35Mn0f3J2kffRaT0nWo\n2K1bKdiGC3zl7Clr1N2bSuHKSVKpZmp5vJd/i5IVBEGwkQ6vZK3mhir3VVcUPMsP+BTsycmkXNkQ\n2zL50Lbtm1Gmq7Z+5d01jZTFgOepoMA/R5BVAysG3eTYyotVhR960YLQcvTcTh3d6KfrO4FlyKxe\nAd9x5VHHld6iho83a9ua9SGjtwA6fjVlsGQtoPi/rmIBwD2Q1KRRoYy01fGmFzrocHNO/hy+n94H\nAND/LmVglOQzfGLV79AMbRryKKslaT99Rnz35yyjsXR/MjAo6zis5iv42FcZBEkrfH+XleKtloX7\nO+INUbKCIAg20uGVrK4odPwt5RhWsKxya4ZS2R+bCTM8o8zUX6LazajZ6D7/rXImg8yOsgJwa/Ff\nq4rH215tXOyHmxhytRUrNFaw/D0xVh6mdiy0pkKukQGQpmAZq3JPxXQ7/98uAED5DXSXdPiGMch7\nNfA4Mz4n1cyz7la7Ge3v1uEMhj5v0ufACtZS8Acb/73mYGrB5DhC7cOTNqjj1bI+pOdmFinc+tNU\nxdsu1dJGu3N0DlR2kRV+DSW7qRjz5u8D122GfWc8IEpWEATBRjqskuVKFPeu3U2vGMTsxpoxVnGk\nZK3eWs/RdKg2yKxg2YjD2EzZBFyJ4w8rgCPvU7ZD/n+p2KuyPNSbOAqBNNUEUldyzl5KqaqZcj3v\nNdjdjD+6TwQQ/g6pfmQfAIDrn6QyucWLZU+ox2hXUysgj1LdXdblqceqkO2BDl9LqjF3jrpj0v7u\n3ferHFXVOtvKYFD7Lr+NlnMVmnuib8bf0UCRUm5nxPP7Vg55Z/qNNJym1LPKnElRj3wfxk0Ps79S\nDSJVWyWOaQOA+Z3yUlCfkVFG8V7OT+fsHss+Ms4QJSsIgmAjHVbJhlWwTcAxIGcetbngKyqj52ha\ndd2cv6hmR1mBOAeTdeLB8fnWe/JeIfWR+2+BjfWs8YuCbZKWtDH3byYJtLyCiBWsZ8Jo3/4/Cdw/\nt185dCYpvC4vBcZRWcFaVWgNpA11i0rLFU5Vr/lXsXH7leNDSImygmV0S01WsL4NULyf1XPhm6Qq\nf1AVYJw/G/B3qQotR5XK+VZK1KUcvZJWkAr94SEV732PfjtcncZND011d2jlqfvdCVgVX/tVBo3K\nrOF5i1AKNtgdRiwQJSsIgmAjHU7JWm2Ec9TM5Pctr5Ri42w9m4BbgnhrKO9Vv5LybHTpHHr/oP9Y\nGzCGvAjGIrSc+otVDO/D4ArI6dfauylYnRU9QAov6Qvf7PchNftfsJhe8yjF2SWwI7uF7iPLua2s\nYLkay7VWKd5Uysp25nRqZGqdoVJR9awAf1P4oKiMlX0zlNvcY/R39XyksVk3wx4DfKfFZuWd11Fe\nrFNlFfBnZN29KbcunmPwKL9ZBKl8cwwmT4/qvqTQLTewMLnhsVawjChZQRAEG+lwStbqJKC10tAb\nEjYFK1hdqbKCZawrqVadxQq2I3q62o6KKzpzydWKfSIAX5YAK1iOoerxU27lHgqOrbM64+wR9+hB\n1joFJSr/VYvXh4IVLMfn9TssrsYytOWeymOAlmOrVyRa49byZDnPm7NkWIWygmVaksnCPrH6HEKj\nDIADpHTZUzn5B+U6FmSuhPNjU0MUerXUPa2tESUrCIJgIx1OyYaiOQpWp9kxH6VgveNVJwSVWygK\n1gZUXNFQnSGCKSNWoq6dpKZa6uHk7UMxW6eKm7qHUM51bYGvtp+/45YSao5AV6f+LcH5Dorzt3UF\ny3nZnNViVbgpBcsVbaGaPgZTsBzXdtXR563fDTCcgcMK1qrSOqrctz6lRyvPNkgD0eorKZc2Y1Hw\nBpisYEM1H401omQFQRBsRJSsDYTKz4tU3Qih0eOKTFN50Jzl4R6husxq6/L3xxVOutNV+Vm0vOBL\nUmFGCT1m+K2z9y1Sjz2vaNoxytWrZ8Bz7uqKQsoM8JZS/FRXp6xe/ecBQtXw665V/h2YAV+sev9i\n8sPtfvl3CIeemRGqBboek+Yxsveuv3MZEFyFhlKwOvGmYBlRsoIgCDYiSlYRKvc1EljB6rmAQuvR\nnZd0BavDM89A49ln1/GT+uoAAHMAxVhZwTpSU+lR1fQXPKfNvgfxoQ2nYK0xqUwGzpN1DyAFGzLG\nqeLJXhXTNFwuK6c2XOzSIoSTGytYl+qq3FT317K7KZe2xyz6LELFc61xax1HdAXbnhElKwiCYCOi\nZBXRULA6omCjDyvYY9MoBthpXqCC4vp97o7qr155lt2KUaqOq3qlnt7Vll3SjGzVJUNTxOE6AweM\nL0S83sqTDfN+jidzLNrpp9SbG7t0Dla96tTxyR4AdUXUxRYrAmPQ3JW3PteXc8wKVu8W4duHls8b\noodZLAnlExxtRMkKgiDYiJxkBUEQbETCBYpoTnwJ9qOHCRgOEwSDwwTHp6pmhG/QNvRyaLYl1MMI\nOFIZsF7FjapNeym1aW+OvWK0TEt4wi/cxF8wrDAB3+org/gkFd3Szby5nU1qsG2VBzePqSuisuZU\nD5Xy6m3K4wG7wwSMKFlBEAQbESWriHcFa7UmV2bITaXXCE3DCjYUPPHFCtYy49bSqnTj7USDVag+\nSdXIzLsF8MRj0jJl48n70hXsWWT2zZOP7RlRsoIgCDYiSjZO2fpXUk+Pnv0WAODVQYHLOQG+agzZ\n0HEbD4GIxP6ODUbMwvzA15WCPXqdisG+ntgKVicS4/pQcEycTcbZorERHUDBMqJkBUEQbESUbAtg\nc2ZujBgt3OeTEUlyuW+7A68l9fQq+gZ/j0qAT3+7+YnwHYlgCpbNWEKZclsGI+pRL5dlBStm6+EJ\nqWA7IBGdZKurq3H33Xfj2LFjaGhowC233IL8/Hw8+OCDAIDBgwfjoYceiuY4BUEQEpKITrLvvPMO\n+vbti+nTp6O8vBzXXXcd8vPzcd9992HEiBGYPn06Pv30U5x77rnRHq99aC1igtFIwTbjPc3B9U8q\nY/T6vZb/OeUZHhpbGeQd4an5GZmFpL/TMWO1Vmttt8+SmxUsl5FyfmgozIaGoK9nfkZtrvUWK4IQ\njIhisp07d0ZlJf34q6qqkJOTg7KyMowYMQIAMGHCBJSUtK/JAUEQhEiISMlecsklePvttzFp0iRU\nVVXh+eefx+9//3treV5eHg7FUWVHs2iOGtUt4lqpYJtidQnlG/ZH0zmdoeioCpbxV7A64RQs88ON\ngwEAPf8YmDcaiTk056Lu/AVVWXVbTSpZN+MO9/6WZAJwmxndpFtoWwzTbPmZ4t1338XatWvx8MMP\nY8uWLbjllluQlZWFxYsXAwA+//xzvPXWW3jiiSea3M7OTbvRd1jvyEYuCIKQAESkZNetW4dx48YB\nAIYMGYL6+nq4/ZRDeXk5CgoKwm7nxhHTsdy7EJMcUyIZRpvSFuPkahkAcBymcExLbPQ60mcZLOYa\nTSIZ467/GWP9/2RXUqqDfhndSkLObNh31UnsmPrf6PfG/6B/cctm8p3KfNyjtRK3i0Q4Lls7xuXe\nhSGXRRSTLSoqwvr1ZIW9yfkAABx8SURBVBpRVlaGjIwM9O/fH2vX0gG1bNkyjB8/PpJNC4IgtCsi\nUrJXX3017rvvPkybNg1utxsPPvgg8vPzcf/998Pr9WLkyJEYO3ZstMfaJnALYyilFMplyA76vrbL\n+v/2M+vabL+JSFQU7Nk0UYvVG1q1Gc95VJ3X57/tn+zl3Nz+iwFMBfoXf4PSF6k996BfNS++21YK\nNpHhlkNs2N4aIjrJZmRk4M9//nOj1+fPn9/qAQmCILQnpOJLQ29hzLE/OzFSqK3Hh18Pt14bhOap\nEqH5NGp42EoFyzTHR9ZOWMFWXksx4Zy/Svpkc+CmnDXjBjdaFg0Fy4h3gSAIgo2IktXQ/Qnsmr0O\n2OeAPgCA5E71tu+rOThGqGaEG0J3GYg1kTTBa0mmRlPEq2Lk8WybdxoAYMC0r2M5nJgRrEV7MLgp\nZ8oH9t41ipIVBEGwEVGyGtF22GoOns3fAwD63+7LLY5lXXw8K1imrfozBSPeFKzOoNkUT/SGWa+9\n0tw7lqpi6vWWPT+yqsrmIkpWEATBRjqcknUV9QIQWY8sV1/qQuDe+UNUx8R0f9fXNXXv2bbsQogz\nuBtDJH4IoZj7/isAgH/vdU7UttkesVvBMqJkBUEQbKTDKdnWdHnVFWzVL1RM5+/RuSLun+brLbX1\n2aEAgIG3dmw3rXig+kry5s38ge40zC+j158qmgqWOfPD3wCQXOt4QZSsIAiCjchJVhAEwUY6XLgg\nFK6ePQAA7r1lIdcxzqSyV75djFaYgDk+wpfCdcojFNawvxRCCMeJQjJrz1gU322s2dg76TD9rCMp\n2BCijyhZQRAEG2n3SpYnLTIWNT2B1JSCZVjB1l1Kxsmp76uJhSi1ocn+wteq2tOtMwDgxFhKOctc\nGDh+V78+AAD3jl1R2XdzKH2B/u5Bv+5YrbC/ued/AQAXPT0qxiNpmn7z1KTuv1G5qLsNbTqF0IiS\nFQRBsJF2r2TDKdhwOLKyGr2W+l6gkvOOJ0MOx6rWGXL4q+nKidT7LGce7WvHLDIl6Xc3lXTqCrb+\nkjNbte9gcPEFGigynHzIGfV9JAL93vkVAGAg4jud7ptZpLQzyuN7nPFCw4VnAACSlkW3RZCOKFlB\nEAQbafdKtrV4jx9v9JpzKJn8srFLaxVsMHQTkn73kqI99GtStPkvBC5P+Uf0E8+5+GLr69ReZdDT\nFOuzrxF6fLFnJrVQmnA6mXvvbWrlNobvXOovOROHRiQBAIpe2QogtuZCiQQrWLZGtAtRsoIgCDYi\nSjYMzs6dG7948Ejj12zGcFI89Ng4srHLfyFwOedIthRW5YBPmTOcwdB/DmnXPRdRK+meX0W0q4Sj\n6E/UkXnvH9re/jIU5tiRAIAjQ5Ksx65fktm759ChmI0rkeB5Fr5LjZaZe8j92bp1QRCEDk67VbLO\nUwYCADzfbW3VdjxHjzZ+LQaKwWw4CcDXUmTrXylOOvDZBhrTF5TDy/GlE6dTdkLq+03ntOrqFQCM\npGQAvgyG+uFUidZtDSmmaLZLjke2/pmMfw4VU8vwwmk7AQD159qreIKhx/8rRqQDALo/8Tkw+7f0\n2EFo7nEXzj4y2DyLnYiSFQRBsJF2q2Rbq2A5FhtMyVrrnDqI1vm2tFX7ioSB1wZvQ83xpdT36ZFb\nmrekISSrZuM0slvMWEqz6/t+Teq5x1fUwhztVMl2/xeA24CCJdsBACe/JiW//Yk+AIC0ctImhY9F\nX0XW/4SyBpKq6ftybqIMD8cwam6pZ5W0CMOgxyhVKPoTbfPx+ot9ed8pH1LmTCgFq6t9HoOrW1cA\ngPtAeVTGFCmiZAVBEGyk3SjZ1rSVCUZTCtZaJwYKtqW0pqW5+fVmelTPu/1ZqajcIBkX7QjDQ3+x\nR9X+O05QdkH/6fToHNgPALDvdsqjTTlK6+fMbb7KtPwvtOpBbk+97y7aduGnKpPlcBQyWmxQsEy0\nzcdZvTZr30rB6n4esVawjChZQRAEG2k3SpYVLOfAOfIpRtSWLlU6zYnrxiPOvFwAwPEfU4ZG+juq\nFl4pISM52fYxGKdTPNj8arPt+4JDeTJ4qVYqqTqwmbaRSjFoZxL9XDxbdwAAuqpH9iKG8m8FgMpz\nKLsj+9tK2kUNxRP5eGQFe2waZTJ0fpf+Tp75Lny842QNRIp5Dnk1GP/6BoDvs41kHsJORMkKgiDY\nSLtRsgwrAX6svYxiX2nvRt8DNZxSTTQFy3hU/M9SsApWXZ3m2d9KuU0ULOMNrPY/ma25jXWjBpcc\n+9Nn0oN5EWe+qboRqKwA76HgMUv+LI2cThEMvGPDClafj2EF21YuW+EQJSsIgmAj7U7J6tihYJlE\nVaqRoivYnW9QRVTfqRtiMZxW41Tq0X1qHwCA8Tl5FXT6hir6ONZa1y2Tnitx3ZKZdO+mLUFf17ML\nPJXHWjDyjomeD8u499Bdg3vi6QAA18dkrhFrBcuIkhUEQbCRZinZ0tJS3Hzzzbj++usxbdo07N+/\nHzNmzIDH40F+fj5mz56N5ORkLFmyBK+//jocDgeuuuoqTJkyxe7xhyTaebMtwTGC4nA1vbMBhPcP\nSBS4UwL7zPb9RXx3bw0Hq0fXJvIm4Misdwf9fSf7U6VXyoETAcujgaVgz6MqOufK4BV8gg/Lv1lz\n0eKYOitYhqvkQt1NtBVhlWxNTQ0efvhhjBkzxnrt6aefRnFxMebPn4+ioiIsWrQINTU1eO655/CX\nv/wFc+fOxeuvv47KykpbBy8IghDvhFWyycnJePnll/Hyyy9br61ZswYPPfQQAGDChAmYM2cO+vbt\ni+HDhyNLXWVGjx6NdevWYeLEiTYNvWlYwTqzSU16qqqitm3ngL60zW07gy73bqArZ2pihipDwgqW\ne5pt+wV5mg66uWmlzq5e7IkQL5hjyJvVU7I+4PXD11Dd/Mls+vscnzZ2KosWomBbTigXLV3hxlrB\nMmFPsi6XCy5X4Gq1tbVIVgnpeXl5OHToECoqKpCbm2utk5ubi0NhLAFf2vAEAGC5d2GLBx4LEmGc\nMRnjr1v+lkT4LFe9+1+xHkJYEuFzBBJjnHaNsdXZBWaIeuhQr/tz44jpWO5diEkO+2K30VKy/uMM\np2Rjhd2fJdNaJdtW4wwHK1lDU7JH/t8YfPXqnRh/2WwAjf0F4oV4+RzD0VbjbBSrbQGtHWNTJ+iI\nTrLp6emoq6tDamoqysvLUVBQgIKCAlRUVFjrHDx4EKNGjYpk81ElmmECa5vq5MopQKZqmc3lpu0t\ntUu/qCTvpWKFIS9lAAC82vqOdDKW9tbU0PM0Mlv2xFm4oKETfV96kXDuayXAq/F7chWC09Zm3M0l\nohSusWPHYunSpQCAZcuWYfz48Rg5ciQ2btyIqqoqVFdXY926dTjjjDOiOlhBEIREI6yS3bRpE2bN\nmoWysjK4XC4sXboUjz/+OO655x4sWLAAhYWFuPzyy5GUlITp06fjhhtugGEYuOWWW6xJsLYg2qbB\nzaFRAnl1/DTciyZ6WIQnwELBCtZ6vw13E9Eg+SOy03P16gkAcO+hpt/c5qQtcGSou4F2euzYAbdY\nYoN6KyTIStZGS8dICHuSHTZsGObOndvo9ddee63Ra5MnT8bkyZOjMzJBEIR2QMKW1eqTKW2pYAWi\n8hrKnWazaisWO6w/rfBFfBYrOAfR+Dyl1F6GFSzDbU6OXk9/X/IJijpnLAo0zIkGVT8ZBgDIXBj9\nbbdX9Bbe8XqnxEhZrSAIgo0krJLVE9s5fcMc0gcAYJykGX/v+u/sG4Rm9tzR0NutWLHYOFWwDCvY\ncGWXnf/SiqaFzST7H/RZ6RkaQnj0LJZ4RZSsIAiCjSSsktWxcuS+JGXQJvOLHVTBthdYwTpGnkLP\nQ9z1tMZsyDiDYq7WndWGQNUc7yosnkmUz06UrCAIgo20GyWr0xbN1CTHMTFhdWmu3QTAp2BDNW8M\np2CP/D/KQshf4jOS4RY+vI/4ytwU2hJRsoIgCDbS7pSs+3zVguKfX4VZs/WEVbAq+6D651RebEee\npdBynBWUV7lz5lgAQK8/UPttVrDcxqS55L5GWQj+EXpu4lebRz+x7L+3rPlkLCoYBXsQJSsIgmAj\n7U7JtoWCDTsGbTY6lII1zhwOADC/jO+80vYC17i7d+0GAPT6Az1W3Egx1S4vkSI90TPQl6v+J2Ti\nnfLBl83eFzfxS2NfBPV6KHtFnZYoWL2Wv73h7NwZQOK624mSFQRBsJF2p2QZ4zSaKXYepKufu2xf\nm+071Gy0PqstCrZt4Rr3Y9POBuBrcc4Klsn5awnwF9/zlihYHd0XIZyCjWgf7VTBMomqYBlRsoIg\nCDbSbpWs+bWaKY7xOPxhBSvEFlawgtAWiJIVBEGwkXanZHn2tq4gBQCQ9q70aRKERMEcq7IvVvvd\n9SW4R4goWUEQBBtJeCXr7FoAAPCUHwTgm71Ni9mIhHjCMepU6//eb76N4Uhih6tvEYDwvdniAePz\n6GdfxBpRsoIgCDaS8EqWFawgBKOjqld/EkHBtmdEyQqCINiInGQFQWgznF0LrHmUjoKcZAVBEGxE\nTrKCIAg2kvATX4wzPx8AsHX6AABAv3vsb+fcljTXIk8Q4plEmaj2nnsaAMDx6det3pYoWUEQBBtp\nN0oWphdA9BSsczApYs/326KyvRajWtc4c3MAADsvoqaNPVJH0+ufrIvNuPyIRzNl73ilQFa1XoEI\nHZdoKFhrW1HbkiAIgtCIhFCyzpxOAABP5bHGy7jh3IAeAICqSQMBhG5c50hPBwB4a2qa3GfMFCyj\nTDG4DUnvBz+P5WiCEk8KljHc3lgPQYhTdLP2tkKUrCAIgo0khJJlBes8dZDvtW9L6ZEbzqlHo4iu\nViem/AgAkLkwsIlhOAUrtIKzR9Dj6g0Rb8J5Ct2JeL7b2rL35eXS+yT7Iuo4hw4GAHg2fx/jkbQO\nXcE6RgwBAHg3bLF1v81SsqWlpbjgggswb948AMD+/ftx/fXXY9q0abj++utx6NAhAMCSJUtwxRVX\nYMqUKVi4cKF9oxYEQUgQwirZmpoaPPzwwxgzZoz12lNPPYWrrroKP/nJT/C3v/0Nr732Gm699VY8\n99xzWLRoEZKSknDllVdi0qRJyMnJidpgPVu2N/4DVMvlXdN6AwB6PhJ/scuOgnNbGQDAozIjIjFb\nDqdg2bpQN37xHD4SdH02gQbap41eW8AKli0TAQBein2HahoaT/A8jHlqP3pUbaDsVrDW/sOtkJyc\njJdffhkFBb564wceeAAXXXQRAKBz586orKzE+vXrMXz4cGRlZSE1NRWjR4/GunWxTzMSBEGIJWGV\nrMvlgssVuFq6ujJ4PB7Mnz8ft9xyCyoqKpCbm2utk5uba4URWoxh0L6VkYT7QDkAwJmdaa3iHtoX\nANBgmgCAXh9R3HboV3Td2HS6zDK3FY6RpwAAPBspTn58ypkAgJRKamOZvrUCAODesSvstriVu2MP\ntbk2srMC3mvUngQAnJxM+0jbRtv2dqJj0p1NbYc4j7gt1aurezfr/61t0112z1gAQI9H4+fOLKhl\nYhTi8NHG1Yfuat27dgPwm4eJUSPTiCe+PB4PZsyYgbPPPhtjxozBe++9F7DcVCe/pnhpwxMAgOVe\nG+K3NpxjbRlnlEmEMQKJMc64GOMff9vk4rgYYzNIhHHaNcaIT7L33nsvioqKcOuttwIACgoKUFFR\nYS0/ePAgRo0a1eQ2brryf/HRlkcxyTEl4HXnAFKpnu27AADecbSdYFU8PKuMLmp22ab81uXehY3G\nGW/EaownPqJYV+bkHQGvN1x4BgAgdT0pCtTXAwA+OvKKNc6an1EWSPo7lAXi6tYVAGC6SQVb2SMK\n43RSuqxYq3rTY3UPuvvp+cfoKL9E+r4dGVQN6K2ujsp2I83wCEUifZateX8oIsqTXbJkCZKSknD7\n7bdbr40cORIbN25EVVUVqqursW7dOpxxxhmRbF4QBKHdEFbJbtq0CbNmzUJZWRlcLheWLl2Kw4cP\nIyUlBddccw0AoH///njwwQcxffp03HDDDTAMA7fccguysrKa3LZ3Z+DMpBVLyaXYq8ujnisF60hN\ntdY1iiirwNyzj56r18vuVrGsWfETy2rvsILlmCTHI5OWrQUAHC2m3OXs+X55iioDIem4O2BbrFyP\nTaELdM6SOgA+lWZ+tRkAoPIX0Fl77IhES8Ey0VKwtnPWcHr8YmNsxxGGsCfZYcOGYe7cuc3a2OTJ\nkzF58uRWD0oQBKG9ENOKL+PU/gB8cVWeDXQhcHbQoRSx9/hx673OI5RNYA6lbZzMSgYA5GxreW6m\nEB1YwRopFCc1VQyWFSznNAOAM5PiiA0Ougepv0RlJPzjS3qP8p7g+UvrvWpC1b23zI4/QUgklIKt\nvfwsAEDa4i9iOZqQiHeBIAiCjcRWydaQ0jGUqnHU1asFpG5YEaGfUjHrv7Pe6+FMBpWLm6zUbvnN\nFKfJsG3UQjhYwbK3K6tPc7Mvz9JTVQUASDlwgtYNUX1TfzEp3GN5FIVtawclIX7hYyNeFSwjSlYQ\nBMFGYqpkPVtpVprrn7lPl5lOWQSsiEw/BctwPmXlOKqnzi4lZVT4f9GdaRUiR89rDhYtb6RgVdaB\nqysdC/uGJgEAumxqiPr4hMQm5UOK3zsHUp42n08YQ1Wqcs51rBAlKwiCYCOxjckmUUYAV5hAZQzo\nvpWuHoUAAPe+/dZrPJOdtYM6I5RdQJmS3Z+Q/Nh448h/kINb7pzG/dfY9+BkF/IecP3zKwBAxSSq\n+ks5SvHc5I++tH2cQnzCd7gezQuFlaquYBlWsM3thmIXomQFQRBsJC7yZLnCpPoKqmPP/j9SL9aV\nS3lXOjtl+97L1WRHaHa6+58ottfI7VxlKqAZhjWCPbCCPXjz2EbLvCrenqRUSf1FVOnV5TO6a2mO\nc1esaS+dA+IJ7oQMNFawjBVrVZVfzlLKq9d7Aca6G4ooWUEQBBuRk6wgCIKNxDRc4KggWc9ls9kf\nq+aIWqtpzxH13ONLAmo4fQAAIKmKTJyPjaXE5E7btVsDCRPEDQX/qyYln/2t1RSz4iyauOz8Fwop\nJC8lU5nYJt20DAkTRB//cwAXHXDKFvT2Rqq81lCl15WXUouinLmNJ1pjgShZQRAEG4mpkq36US8A\ngcYvAODq2QMA4DmkWoucQWk+zg2+Roqc6uPoQkqo05eB5s52EMyoRogMbumeX0XfdSIpV6FtYQXr\nGEaT2vXdqGg+aYU6ByjTcveevQCAnLn0WPNzZQj/9pq2G2wQRMkKgiDYSEyVLF9hOF2j7nQqj4O6\nQjHGv74BAJxQrUoAoKoPxWVSKyjm2mkbxWKNEvsa54mCjT5sWeiZMBoAcOAsKqmOJ9N1tllkpSTY\nh1Wg1M3XHdtMpdc8mygtM0nrh+itJWN3qwnnLjLyj7WCZUTJCoIg2EhMlaxVLqdmEvUYi3kKlVY6\nqskohpvtAUC6ti2O4+6/iUo4859v5syiPlMpxARu4d3jk+DLo90ssCWIgm07zAbKFgr2mVsqt5DM\noTy5VJxkfr054JF/yRzD9W4KbqPZVoiSFQRBsJHYWh2GKJez1MpaCr5YV6YMnxW3+zQylXFWkwWe\nW13Fui8la7xQs9VWu/FtO9XORMEmArFQsEKcoErjLZWrrFGhPOCdgylnfs9PKY7bdS3FaKHujmKN\nKFlBEAQbiW3Fl1+Lb3+4GgjllCfrOXwEAHDy7CHWOpwnizOGAfC1OnFrRtE6loIVBCFuqf/Jmdb/\nUz6gPNlj06i1fOoRT8Drnu+3AQAKZ28L2MZJZTbEVYSxQpSsIAiCjcRUyXrrKHbizKZZQm6u57M+\npFa/nb4ig2583DjGYqq4LV8t6i6l92R+Q7lyMjMsCIkHq1TAd8erN9G08mK3U4yWzx9MrBUsI0pW\nEATBRmKqZBm+AnGuq5lFWbAZiygvljMFPOeNtt6TvHGXelFlB+STh0HGKnJEcmvGvYIgJCZ8x8tY\nGUJaXmy8IkpWEATBRuJCyXJlhud7aojmdKqKDqVcvS7Kk0vy8zSwcmdVvGbnNfSefk8Gd+Pi7AO9\nTbUgCPbj6lsEAHDv/KFZ63OTRAA4dhVlCWTPp5gsZwgliqeEKFlBEAQbiW0jxZQUAL7aYqfyhkU9\nVXY4V1I2QbJy6TL98mobxpD7uddNLlxF95NXwY6HqFlf0QOBLk6iYAUhdugK1nkKVWxyJpGO1SQR\nPgWrN0mNdwXLiJIVBEGwkZgqWbOe3LW4NtnbqxsAwHmA4qpWtkED+RN4/fr+OEPUJesKVhCE+ENX\nsLqnCM/TAL47XVawiYYoWUEQBBtp1km2tLQUF1xwAebNmxfw+qpVqzB48GDr+ZIlS3DFFVdgypQp\nWLhwYfids6uWaQKmCXP9FpjrtwCpKUBqCjz5OfDk58AwDBhK7TLOUwfBeeogODIyAty5ym8fi/Lb\nxzbnzxIEIU7wbNsJz7adcKSnw5GeDu+mLda/sBiGdTccj4QNF9TU1ODhhx/GmDFjAl6vr6/HSy+9\nhHxlvF1TU4PnnnsOixYtQlJSEq688kpMmjQJOTk59oxcEAQhAQh7kk1OTsbLL7+Ml19+OeD1F154\nAcXFxZg9ezYAYP369Rg+fDiyVEfX0aNHY926dZg4cWLIbXPnA1e/PvQ8iYbj3VdOz9WMpNdPqTLc\n7ZTz76pHUB1ztxLqw2WG2Ge4WU1BEGKHt6am5W8yQ/3a44OwJ1mXywWXK3C1nTt3YsuWLbjjjjus\nk2xFRQVyc3OtdXJzc3EohCk389LfbwIAfLhtdosHHguWe8OHQGJNIowRSIxxyhijRyKM064xRpRd\n8Mgjj2DmzJlNrmM24+ryq9H3YOmxOZic+0t6z0mVRVBHWQfOPDppB+2goGIwjpGn0Hu++Tbw+frv\naBtRUq7LvQsxyTGlVduwm0QYI5AY45QxRo9EGGdrx9jUCbrF2QXl5eXYsWMH7rrrLlx11VU4ePAg\npk2bhoKCAlRUVFjrHTx4EAUFBU1sSRAEof3TYiXbtWtXrFixwno+ceJEzJs3D3V1dZg5cyaqqqrg\ndDqxbt063HfffVEdrCAIQqIR9iS7adMmzJo1C2VlZXC5XFi6dCmeeeaZRlkDqampmD59Om644QYY\nhoFbbrnFmgQLhfe4mqTyeOm5HvQ2vQFPnTmdrP97lJWh6SIxfnwqtaZIO9gQ8IfJBJcgCLEk7El2\n2LBhmDt3bsjlH3/8sfX/yZMnY/LkydEZmSAIQjsgLqwOjZRkAIB35CgAQNIWaifhPX4CAOAc2I/W\nUxNjAOBU5jIe1X4mS3WaqPs3aj8T6R9mnkNjMP71TYRbEARB8CFltYIgCDYSF1aHngoyhHF8Ro9s\nyO3q0xsAYFaQMYzb3yBmKJXznjiXVG7WDlK9qe9/0bIxnE5FDOZX1MpCFKwgCNFElKwgCIKNxIXV\noXPwAHquymoNL2UVuLl0VilaR+9u1ns9qtggkwQo6i+iFhXJYfZZfcWPAAAZb1GTRlawgiAIdiBK\nVhAEwUbiIiaLI5Tz6shIAwCYx1T+rJrpdweJk3K57LHh1LIm801qUVH1C8qXzf776qD7ZAUrCILQ\nFoiSFQRBsJG4iMl6+lKs1VGnDGJ27QYAGP+ibILayyj3NXPLEeu9XMmVqR65PXAoBdtcuJkjZzwI\nghA9HKoZqreuLsYjaTtEyQqCINiIYTbHk1AQBEGICFGygiAINiInWUEQBBuRk6wgCIKNyElWEATB\nRuQkKwiCYCNykhUEQbCR/w9fTvCaQRTfuwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "NStVhr7Mmbcm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This channel appears to encode a diagonal edge detector. Let's try the 30th channel -- but note that your own channels may vary, since the \n", + "specific filters learned by convolution layers are not deterministic." + ] + }, + { + "metadata": { + "id": "SYOW4REzmbcn", + "colab_type": "code", + "outputId": "36d2ddb3-e278-4a73-d5df-15d1ebf8b255", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 355 + } + }, + "cell_type": "code", + "source": [ + "plt.matshow(first_layer_activation[0, :, :, 30], cmap='viridis')\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVkAAAFSCAYAAABYNawYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWmUXVd5LfqdvU9X51Rfqir1jWVb\ntuUebDA2MTbGTUhoB9jRE3m88RJICE2Sm2eaGAiXew22iQfBycAkYN4bOB4IBIOYG7CNISYGZIM7\nuZUlWY3VSyVVe6pOv9+Pb86191qnSpKF65Yud31/Tp1Tu1m7OWfPNb/5zS8VRVEkPnz48OFjViKY\n6wH48OHDx+9y+B9ZHz58+JjF8D+yPnz48DGL4X9kffjw4WMWw//I+vDhw8cshv+R9eHDh49ZjDn9\nkb355pvl+uuvlxtuuEGefvrpuRxKS9x6661y/fXXy7vf/W554IEHZN++ffK+971P1qxZIx/72Mek\nWq3O9RBFRKRcLstVV10l3//+90/KMd57773ytre9Td71rnfJQw89dFKOsVQqyYc//GF53/veJzfc\ncIM8/PDDsmnTJrnhhhvkhhtukM9+9rNzOr7NmzfLVVddJXfffbeIyIzn8N5775V3v/vd8p73vEe+\n+93vzvkY3//+98vatWvl/e9/vxw6dGjOxzjdOBkPP/ywrFq1yrx/VccZzVE8+uij0Qc+8IEoiqJo\n69at0Xvf+965GkpLbNiwIfqTP/mTKIqi6MiRI9Hll18efeITn4h+9KMfRVEURX//938f/eu//utc\nDtHE7bffHr3rXe+Kvve97510Yzxy5Eh09dVXR+Pj49GBAweim2666aQbYxRF0be+9a3oS1/6UhRF\nUbR///7ommuuidauXRtt3LgxiqIo+uu//uvooYcempOxlUqlaO3atdFNN90Ufetb34qiKJr2HJZK\npejqq6+OxsbGoqmpqeitb31rNDw8PGdjvPHGG6N///d/j6Ioiu6+++7olltumdMxzjTOKIqicrkc\nrV27Nrr00kvNcq/mOOcMyW7YsEGuuuoqERFZuXKljI6OysTExFwNx4qLLrpI/uEf/kFERDo7O2Vq\nakoeffRRefOb3ywiIldccYVs2LBhLocoIiIvvfSSbN26Vd70pjeJiJx0Y9ywYYNccskl0t7eLgMD\nA/L5z3/+pBujiEhPT4+MjIyIiMjY2Jh0d3fLnj175NxzzxWRuR1nNpuVf/mXf5GBgQHz2XTncOPG\njXLOOedIR0eH5PN5ufDCC+WJJ56YszF+9rOflWuuuUZE4vM7l2OcaZwiInfeeaesWbNGstmsiMir\nPs45+5EdGhqSnp4e8763t9dMKeY6wjCUQqEgIiLr16+X3/u935OpqSlzEfr6+k6Ksd5yyy3yiU98\nwrw/2ca4e/duKZfL8md/9meyZs0a2bBhw0k3RhGRt771rbJ37155y1veImvXrpUbb7xROjs7zf/n\ncpzpdFry+bz12XTncGhoSHp7e80y/zO/T9ONsVAoSBiG0mg05J577pE//MM/nNMxzjTO7du3y6ZN\nm+S6664zn73a40yf8JqvckQnYXXvgw8+KOvXr5e77rpLrr76avP5yTDWH/zgB3L++efLkiVLpv3/\nyTBGEZGRkRH5x3/8R9m7d6/88R//sTWuk2WM//Zv/yYLFy6Ub3zjG7Jp0yb5i7/4C+no6DD/P1nG\nOV3MNLaTYcyNRkNuvPFGef3rXy+XXHKJ/PCHP7T+fzKM8Qtf+ILcdNNNR13mtx3nnP3IDgwMyNDQ\nkHl/8OBB6e/vn6vhtMTDDz8sd955p3z961+Xjo4OKRQKUi6XJZ/Py4EDB1qmHP+z46GHHpJdu3bJ\nQw89JPv375dsNnvSjbGvr08uuOACSafTsnTpUikWixKG4Uk1RhGRJ554Qi677DIRETnjjDOkUqlI\nvV43/z9ZxsmY7jpP9306//zz53CUIp/85Cdl2bJl8uEPf1hEpv/Oz+UYDxw4INu2bZO/+Zu/MeNZ\nu3atfOQjH3lVxzlndMGll14q999/v4iIPPfcczIwMCDt7e1zNRwrxsfH5dZbb5Wvfe1r0t3dLSIi\nb3jDG8x4H3jgAXnjG984l0OUL3/5y/K9731PvvOd78h73vMe+dCHPnTSjfGyyy6TRx55RJrNpgwP\nD8vk5ORJN0YRkWXLlsnGjRtFRGTPnj1SLBZl5cqV8thjj4nIyTNOxnTn8LzzzpNnnnlGxsbGpFQq\nyRNPPCGvfe1r52yM9957r2QyGfnoRz9qPjvZxjg4OCgPPvigfOc735HvfOc7MjAwIHfffferPs5U\nNIeY/Utf+pI89thjkkql5LOf/aycccYZczUUK9atWyd33HGHrFixwnz2xS9+UW666SapVCqycOFC\n+cIXviCZTGYORxnHHXfcIYsWLZLLLrtMPv7xj59UY/z2t78t69evFxGRP//zP5dzzjnnpBtjqVSS\nT33qU3L48GGp1+vysY99TPr7++Uzn/mMNJtNOe+88+STn/zknIzt2WeflVtuuUX27Nkj6XRaBgcH\n5Utf+pJ84hOfaDmH9913n3zjG9+QVCola9eulbe97W1zNsbDhw9LLpczwGnlypXyd3/3d3M2xpnG\neccddxggdeWVV8rPfvYzEZFXdZxz+iPrw4cPH7/r4Su+fPjw4WMWw//I+vDhw8cshv+R9eHDh49Z\nDP8j68OHDx+zGP5H1ocPHz5mMV71YoSbb75ZNm7cKKlUSj71qU+Z+m8fPnz4+N8xXtUf2V//+tey\nc+dOWbdunbz00kvyqU99StatW/dq7sKHDx8+/peKV5UuOJmdtXz48OFjLuJVRbJDQ0OyevVq857u\nNTOVy179mr+Tf173IfnA/3GniIgEE2X9R03rxqP2NhERabRpRVBQb5p1U7WGvTH8L8KyzbQ+P5r5\nUD9PpXQbNV0u1dQajKCq26m363qpOj7H9ps5Xf/rd/2p/Mn7/0WXaTStbZl9ZwK8htbQGthGOKXH\nlR7T42wWshgbjilRFtLM6jrp4UlrW00cn2DXQbWO40zLP3/7Q/LBd96BMWL8ed2HhNgJa08CjJWf\ni0iq0sA4IowL/+O5xCvPTTAJw20sZ8aG9VM8L1iP1+xr6z8sH/ijr1rLpHAcgnMrZt84l02ea4xx\nqqLbbsvpv3GvpLBcasoeW3IbqWrN3hfPSTaD8YZy5w//Sv7sD27Xz0PcQ5m0dT4YPIepxP0pDZwD\nXAfB/Wb2lRyXiEiI64HrkipXrDGZc5xPYyyh/PPdH5QPrP2a2XZQ1uNqtOewL7xgvOGU/j/AK8fC\n68bvGe/5oKrHkx6dEjeaeXxfmnYtU1CqWOON0oFe7+v1eotzL/Ca8DtjzmHi/LScX55D3hI9bdYY\nOCZ+T819zE3yt6CC35kgJf/8r39mfof0nzjfHC8PE9uOsrgHcJ1/+p9/KzPFq1rx9elPf1ouv/xy\ng2b/6I/+SG6++WarPDUZO7YelOWnnjzGGz58+PDxaserimRfqbPWn669U37yyGfkqkv/m4jET56Q\nT06gmCTaMoGnEZ+IRIX1dn3lU69R0ENs8mnIJ1Fa32fG9GlW7dYnc3aMKCey1n/ovo/LlW/+go4P\niDQy6MJ+8geT2AYedu5Tuon3RIQu0tNjtp+gLto1yyZQ433P/De59hy1bWtmgXiISspAvFm+r+H/\nCd8Ajq9N1w1xHI0CEarg+IGIRksYDM5Dp3rwGsSIc8hrw5nKfc/dLNeerU/+COPkcZhZAM9/MWPv\nc7xs7SMq5Jx9VHF+cI0y8S1u0CHf814InPsrm5H7nv3v5lzy+pjrVJ8BfSVtHIFIg0ns090HkR6R\nK9B1s5jHtgNrPaJPs3yjIfc/9Xm55vxPSwSkTZQbmPvMRtxEbkSAhizENhtY38zyEkjPDffccVnO\nIKI2fA/LNbnvhS/Itas/pZ/jepv7FzMTM2Nh1BPfBVzjlsD5rnfrOQsn69P+n9HM6b7NzJIzt1pD\nfvLIZ+Tqiz8XL4vvCY+Py/K3KHJmIg/+cma7xFeVkz2ZnbV8+PDhYy7iVUWyF154oaxevVpuuOEG\n46x1tDB8Dh4K8ZMWKLQInq1GhFuKV+aTv08d7PmUSpeAIvE0r3UpEqoVbGSYLun/60UiKWy2w3aE\nihJniMggKONpBl6GCNZwXEAEDSBCcpzpcX3Kh+PgE4lo63XrvUiMhptAkUT5RIcGMWQcJEjetALk\nA07Q5ekaxRz2HfOIBglVbb7b5Z5dPs3MKsiD8nMgJK5noZPAfr5zmwbtYyxpItNS2d4mER3umYDv\ngWCnQ7LNLkXaRPUyAb47SFvHYcaJeyyFmyAFVBrlwHNnU9bxJmciqbo905Amb3IeN64j+WGew4bD\ni4cxt5lcLhLO8kKzTlhqWMsE+HobvtuMzUbigvsvU7KRfjNn50LM9RWRZqd+N+sdOBeYQWaGcf/x\nepkVHFbSZSnNeZqGveSsBYid54bfeSJzInH+jpA3dvdl8jIN+zVKcO3xbxORKzaFGabhwZM8/Azx\nqutkaYDrw4cPHz7muP1M5GRpG0V9GhLPkTc06KYjziKmJm0e00Vf9W4bueUP69Mte1DRcOrQEXsw\n5JgG+0REZOQc9ZiMElRRekLHU+3RcWZH9T3RMJUJMV+l6xmEQXTCLDx5Yxx38ikeJLLIIiLhBFAG\nERKz0VyuYWevXeTD9V3+sFls5buIfAxfS96XmfIKEI2DRs2YcvZtxfWS3JpB6Dxkl5M16NjJshM1\nklMGl5eqkAe3+eEknx/wHBo+F/2e3Mw/cwHgFY0SI8eMOpFdzTo+o1ZIRtbxyiVy5bkDOnNVB0Ty\n5v4mJ0sOOzmrMEoarEOukbMZ7CMcHsdxgL/mueW5hxLFXAOeOyC/Rlcii0+elqeOEwwg2FRJ8yqc\nafKeMDOYrD07MNcA5545heRxcQbC+9PlOs0sDr8FBqHyvkw7swicJ+YgmomZJO8bzoyNWgmz2TRn\no6E7itbwZbU+fPjwMYsxp0g2RlX6Yp5UkzZ6IdoichARafRpQo08DJ84zBwy+5c/pE9WPpmaz246\n+qDQlbJ7pzbSi85Ybv41sVSf5EGNGltoWUtUG+BwHG2dq/MzPK/75K3Ex0fUFCKbTgQQdZCjxdO4\nbPNtzOAbFErka7jMlPV/o3UVkaBuc3rkO5vgc402MmMrFszxugiYxzKNjjRl9MpN+39O1tZsm0jd\n1baawbfqfq31ROIMNk6ZUQcwF0D+1uFYI3Cv5ALJDzc7CtZ2ggT3abbNz8ARG+TKIAqmRjdwjpfb\no1qEaCwdz2QMn03UW65a65iZhNH5Ai06Mw6jFmkv4Dgr1nY4sxSJOf56QbeVHcf/iBqRT2nh0Mk5\nl21Eb2Y/DjctIhKO2zw1db0GoYb298h816kmcHINPLdU3hjFTSW+fvzucl2DYCddDv3YnKxHsj58\n+PAxizG3LcFTduaUPB05krhyA08wZDBFYqSaGVFUQV6T2T4+tcLDykPVt+14RUNrjut61b64T3vP\nL3bpvsFdTaxWDTCfetVOHXcGHGwzzafd9BpQIg7zZHYQoB6XIobQ8H825xo5PJzRqvI8EB2Tn8LY\nWyrmJKFtdGYS5v/U7jaopwWyBVojEm926xioogiIQBI8m1E/uLyuEwaZc9/gNInKomLeXoGIeJrN\nGm0juVaiYaIrKhLIyeaImGytKhGvqyc2qgoRoyYwyNThlM2YcjYnzuti0BcL4XKstnP44HI9gfps\nNGj2XbM5cRdlB2NUWTgnjSjT4cn1Q33JHalY4631FUVEJDM8Ze3DzNJ4jvMYS44Vfdguz/V4Qp1A\nJN5uo2MiT6JqcqqRo4k354wChpytUjAKlsTkgTNi3iOZYapbxDonTae6c7rwSNaHDx8+ZjHmFMk2\nnQoaPlkMT4gnFjkTPi1F4qcP661N9hxcT32ecrZEbseKsFOzoI2xMevz7H2/MX9HMLspn3WaiIjk\nRsADg6/JjAMZ1G1tZDNrZzeDml07blBpIlNJnSyf9ETqpvILiDZ0/AOMRwO9C6DIMJwnkdQ0XJLJ\nNjP7TmSTylj7clUhvE61wS5d3FEKECBYnGXa5upkAshHcL3qrIazM/1EY4br5PGQ0iVSClpvbfK/\nUrPPe7Nb0Ver3wCWN94FQEBAhsZXYppzmXK9CRjkvYnEMw6SyzpcH65bSOTP5U21lkiTqJDnNEdl\nglOZhuMJD43qclCJRH2qpOFMI8C1MOfF6Gpbj6nahesC9JjluA0H7VxnaoydajO+Nwi9mshPhDai\n5u9A1M5qQN4LVGiggq3NroDjbC8zztkvZhHkv5M5A+NDgm11Zu1leX2Pw5XAI1kfPnz4mMXwP7I+\nfPjwMYtxUhQjmPLUUs36P41JONVNJ/5PSzXKiVyjESPnyB79EMNBdQFrHDh47AEjSZF/ZLNue8Ui\nERGZWK3T5OwYEkIYQ7Ud8pYJ2xrQJCIo/ZlypoIST7kZNKpwqRUmnwJHGN8i+TFCe0cUnoiA0+OI\nUyWnqABUTG1BpzUWmmcY6sKxomMyw7WAFElM+93pNWkCx5yFEQU6fTMCfLNPStNwPpqtU3m3VDVO\nztTtfZMmoESIlBSTb5SEmcKCxBhdCoH/Y9IMU1XXPtJcX3fcjrSLycnUZCVOjiLRaO6NvJ0IC2i8\nxIRWbxdOCA1hbHkSxyYsJ68lptMYbwamLLWibb6SZnLRobHce6FhbBXxHTEUWuJeccqzze/BmN5v\nNVgd1tt0ncw4izBY0GLTJvWsncjjeWLiXUSkinJ8FhyZYienaIQGUkcLj2R9+PDhYxZjbosR8LRP\nQ+5ByYwxdkAYq70E2AmytsTCIFfKbow1IJ78QKFRxTbBOC4Ey2UPHdbxLlqg49y0TUREeg/PExGR\n6nKVdJX7sS8+wpibwXEFMwjnLaNiSkQoN6Hsq2LLUUxSgkiH5D3NTShyz9jI0DX9toJJGaJEIj1s\nMz0KaVa5aq3Gskui6mByCp8XMeYYnbvlvUxYNZEYSTnmMyax5STlTDLOFbuz9Ne10DtKuIJ4hluy\nHc20zSR6dU1ymJAjwiMqc83UuQ+3aIGJIV5vWiIW8+Z7QSRmxkup0xi+XyyFxXchRYOcFlNylOFi\ntkgbyaT8zBh8A6FnxmyJoSl7ZsLSkWqZmRmBISciLKBIXgMWF+D4GrAWrfZyXPqSmYCkC+iSvwHm\nt4GzIhYssTAnbf+WiIjkhsrWuFzpHS04pXWi1BIeyfrw4cPHLMacIlk+YYzhMstqycvU9BlQL1CK\nkXjaO1ZjfLLQpCV8XMtnm2XHcs2J8KzT9Y99Wk7bnNDSwrCvR/e9/0Bin2hVs2u3LtOtnFZtiSLZ\n4TMVyeVGdEwZcEGNNj2OCgobyBm5pZNJpGcQrCOodmVRhi+bsktco0LRPlDHso32ikZqIxIj2MDh\nKh3zGcPdEaXxcyJYittZeuiWzorEqM9wr5RqAXk7LWzc4gXK4MxYU/a5NIUU0xhpu+HOfowZD8IU\nbhDxVB2UPV1LGafQwUiXuE1jdEMIZyNfIyPjNmusPcfmEzMTUw5qUL8hw3F8lGbhHuGsgTMMFrg4\nCN6dUSbfm5JxAnWUe2dHMLPIs5WPY9EIGZhrGWi4WR5CQq5pSsEdU5r0JH4/yPPiNZxCjgD3YxVm\nUdVuluDjnuJ3CutR8iUixr6U5bQ0lopndyx6mmYm6IRHsj58+PAxi3FSGMSwZYg4Tz1xnlBBor2E\n22IjYIYbGdbGMRCsCSCO2upl1najw+iyu3/mVRsjKurO7FC0W+xbqsMHMmArm7HlLP2kcQy4MzxJ\nzT6TlB7LSCmwxmvoKhFmMEqhkoElh+7yTVz6ILm+09LH8E2OyUyL+YlTHm1Kd8HZmuWSSJKohObr\nPe3Wsgb1klslMuU94RiPuM0bTeY4Uaps+Ny0cxyG72YhA68Tzo0rrKe9IkT7sWViIvvOYgrXdCYi\nv8hzRFMd2+LPzOoathLFnRWk6k2jJKEaIM3yX+c6Gu4x49gMcsyhjXxjWElDlRjpppxSVSJY3p9G\n9TJp8/ZmwsGZjGlfYxfLJM1a3HwCczhGRcGZ8ChmUKNaEp8qanl32pw77Dqv26l2AdmWZyZW005R\nEMto2XJKUtOuZoVHsj58+PAxizG3BjGmbNHRUbJBGlpbGM4o0dDN2JPRnMNt03GckRoD1zJfrQ3T\nu1RBQAQVnH2GWTY9f1D/AL9W3wnDmJI+QYublNcl6jp4iRqA1wsY2wjQKJ7aES33iCATUDagCYtj\nCmxKQY1NIkp5gRrJh8YaThuNmOOmYUxSu2paJzuP58BBcNRoEq1RR1qzEatBcXyfuDbGho8fOAjN\naBz5f27b0dqalig8TzwulpYmkTq5ZQ6LygQiOM4CqjYCb3bkreWNkbijMkja3rUcO9UCnKw5Bj20\n5SOCMw0YQ2d2Z3aWuFbUKyfaw+t4aCLP75mtdDDWjtyW247dNB2lciXJb9smLOZzanKnbM2ta4Np\n1AQ0lZ+0S7rlyGi8zSWqZU/vVCVQVOXMF+cMZcEmpzCqpfFUDoWH9LsdrlwiIiLjp+r7zARyJnkd\nA3W2IvEPo5kZmXvctlNkLuRo4ZGsDx8+fMxizK1BDLiUah+s8cBDGWsyvgZ2VUjyb6IqNsmbrqoo\nGWGPqgYaw8O6HnnVYX0aNuZpNVPwsj4Fg8MjZt2oQ7Oxpn1HERl8osWDioLrq1eIiEjbER3/WIeO\naXyZLldr19PeuVOPt96OVheTrdwQW96Yhm3kD4UGzUAvqPqpz+uw1jcomU3jDMcr+DzR/I8zBmdm\nkeKzmE9tRxHg8qJxRtxWPMh0Olkn4897IhxSNNJicGMaDJJns/WwkZMRt9usp1o+0zFw52IddytH\nTW6SbVpoMwn+uydWdJgWMKbSzj5Odwy8541OtM1WHZgWTORyyXNHUcw1k8+dsisnTUNEl0Mnl5ul\nLtbmT6WlyjC5UaDAFK4X90lunKbcbuUa8zDj4E936GywUbcRYdAR38fRY8/qK5RAjec3W8uWL14u\nIiLFzdpSylUUBVAKlXv1Xsof1rFVeqD1TRPJJloV1XDseZ4bm883ipvjgKkeyfrw4cPHLMbcIllk\n7Fj7Tj2sqQIhcnDauoiIiFNnzqdxegQ2bTNVeAHBUuOa6tWnXKUHFTR4yue62jHIhHYVpsHhEdgh\n9ij6re/eo9tiJc2GjSIiAvtsSb39YhERyQ8pUth7mf6n3Ita6xIUDu0xCs+O2KjDbYrHqHfmcbx2\nCw23tUh8AhytayKIhl3EZ/jvJq4P25HT5HvKtqY03C1VCQ7Pqm9wbbM2dxm3f3b0lY6yIXAs8Qxi\nbzq4IakDRpWUq3ZINdg+yFa1tLTzdvlRp2LPRZBWuIjOPX6jfHDaePP42tus1Xl9m7m0+b7EHLON\nQI22liiMxuBF5jyw75S9nmkvZOwYE5wzzoVRu3Cfxj98+lY/xkR/x8tytKBpvkj8vaosQN7keRxW\nXq9n8Rdb9Hjw3WaE85ATGdDvem7jdhERGb1SrUrrVBl00KshmfOxEWvg2JGGR7vWTngk68OHDx+z\nGCeFaTczlSF1o0C25nNWPU3EnJExZ6YfAM26u1BVNaA+AqzOatk3KrsicLJZ8Faj5+jTr5nVKq7C\npgMt60ZoNGf4s/mKhoOt4JeAnvkk7Xhir4iITJ41X0REll67Q0REDn9TtbkZNGKcWBjziWm2PAfi\nCSkjbHey0EZPCc6OrZcN6sKYjeG0oyqYznTY4W1DehRQTQBEaLi8SSfbbvwFbJ1zSz1+YlmpO9lz\n8p2mmaHznsiWVUvkLIHGjRKgnuA+iex4HDl7PLynpGpXuJkqH25zEpyfaRrotMCRabTE3IdRytj+\nFbxuBiERwdKQm+iZs4JC7EkRjJatdZrghg3/bpQJNnfbEoRcnCWYg3E0yInxtDQ35EpO9j313Es6\n/OPUr1euu8j8fXi1bnvwMV2XuZBmCY0fnW2mMorQG4ePYCiouDxvhbVcA5etjklrpSu+B6k0aN/L\nHIDjljaTe9w04ZGsDx8+fMxizK2fLGuG0STOVG/hlci2aTLkCdTl8ExElaYlyDQ+ota+6/aTqLxI\nVQWVTn2fQcFXZcU8s47xmyS3BV4z2KdcUDSgy4aLFLHKgSF9xb6GT9cn7O5HFcEuGqpbxy+Jw6vD\n74DqAoMMKrafQIuTF5UO7seOv+p0zRJbMC1pUnrTksPjjMNpj+w6TcUaWLwmEv8mS+60sTbcs1Od\n1OJqRaDucJdBzUaOSU/cuJ022o44CI0qgWY3WhcxKw83Kh6fUTw07PWtenvu00HvEQ3luC6OP3Tc\n1IhgU2XqZfPW/43/atIhzKB/+kLYHhRGJywOUqe2dRwVbKGNsmPfgdaZiNu80GiMDyiKrEOreiwP\nEUa46lR9rcTf364deoy5l3RbdSJYBJFrVMO+yZvOU107dbXpnz0uIiLdK/T7t/f31Q96wcO6vVp7\n/KXJ7uP10Pd1+OWGZYeHL3udrA8fPnzMacyxCxcqVfDkTU/ZesSgPn1GVkRa6s7JZdV7lC9NoUpH\n9uyddt9u48TyPLgIjYNjgltQqhTvkzpCg1iA8CbPV8+Ctke36jadLKdA57vg4V4dO+vqgYwz29Qg\noTDYa1aZOEUzqXyCEsmmDwNttNkuU7FP7DSOUCLmcdqAr0BgqngS9fbMFBOxEzUBZTaoniAvVbN9\nZqkfNf+fstFyEgmZls8NWy/abLf5TeotU0KHMPyD6JFo0z1e3isJTtZUHVFjy/ETgRP1EtlSy0ok\n52T4BU5gHHMjwfFmDk3Y2zTI20aPcdPJGfAOz53LSUcxGjXfhTLUILw/6QvQJF8NNIb7mHwpGydy\n9tDsbLOOO77eCc2xw+mH8BOQA1r1SF+P4w0qCFhdR38BEZGAjS+npqZdN1ys/s4R/YuJnvfZxiP8\nzlPZMPBVuOmtVGQ7NZjQceNGy4+gAwS6MJDndisTjxYeyfrw4cPHLMYcqwtYM23zU8y0Nqi9ow6w\nHGvTzBOdXqBEetDJkqOT007RbW3ZZu2bCDZ9ynJ9hRNPHfxotZ06uZhILC1Tro76Ojd727xM9XfF\nTUPWPsMzlWdK7YcvApBUyFoQ/YnxAAAgAElEQVRrIKLgcNyOPIvqFD7RiTrqfayAAuKmno/v4YkZ\nTpLvZYcFW3WQYnVZYnbQ6ACaoMMQi5XojOQ6gPERTacop9rKeKia7hXT8FfGuxaIdaJsrWPQFZG7\n61FLJExU6vgpSJKTJbdsZkG2ioWokdys0ZVCB2wwi1PrT4ScKSU02cZ1i2oCujjZ6DCCBjdyjot8\najO0EWM0DbokT0tlRXzA8Gpt1+tg3KvIzXIsmKlEHQVr9ZYqu8RMJHK6LjS27sBxO9V0xwj6gTQx\ni5sabGtZprhDNbNEqvzOjl6o67bvhF/Hb3aKSIxYm5P4HDkRfueJmoMCjndMZx1dW+J9ji/HucP3\nizp0fiemrYKbITyS9eHDh49ZjLn1kyUd6GQviRDdWuok/+FmOvmEb6ACKgrhhzB69KxmfdsOERHJ\nLdTqrdGLdL2u7UCOhQQ3BD6tDRn/KfC4nZtRnQL0Qf+A+orXiohIE6gyQ03hZkW4KVb3wPeSHJ9I\n7MJVw3FOLtJlsmNAbIHzCKUvLqrm+EpPW1PFcxSdrNE8MlPsZM/dzgLBKLTGVCg4tf9BzdZvGt9V\nkRjpUQ1gqqua1rKGi2QW16lmMtl4jsHwqtMgKu5zij4QFALTXayM8dtVV6YvV2TPuKiTNe+TLlzG\n3yC0l0mF1ufx2MQ+3gq5aOwD/biM6qAR6zVTPAd0tGKlFrlZt/9dgs8VEWmgIirldMyN1Rhp63Pr\neA4j//BKEewCVeDUVigaLQ8AXfI79nKi4gvHWrtolb7i3s4dgdqDeu3zz9IVtinXGjkOYeZ3Bjr2\nJmdBF5wpIiKjq+Llg4WKmqe26/cuU7JzHgGuSzjh+D1MEx7J+vDhw8csxgkj2VtvvVUef/xxqdfr\n8sEPflDOOeccufHGG6XRaEh/f7/cdtttks1mj7oNavz4NEg5vBNrq6dVGzg62JSDMoyOdBrtor2i\n7mt8mSKn3LCuV+mkr0BiP3ywj+t4c+CUR89Q5Nr9nDp2ZdAPKAOE0ehVLpcIlsiJ2sEUOKPmxatb\nhnfkDB3/wOP69E2X0LeoC5l8PHwr/fq+mdUxEfHyHJPrch3sk4iKmkf2UiPqNQjO6TsVOX2rYi0v\ntj2u5yFFVNqWWJ6o2FQyzYCEHIVJS7WS65latbW70TQeDuR/W4JZeGbXybnyniqB7+f1g6ogvtcS\nnDTRogNj3I6yKddDgvuCPtZ0pYWywczmGkCvuUwrwjadLDAUV5ng6F/F1ftCw0yu2oy1lJgVDimC\nbVHSHCMCoM0m9sUcSsce6GoXaPXk2JldZp3suC7btgtKoNN11jk5qMdVOKj3ehbnIdOh37d0Qc+Z\n6dPH8wRdrZytOZToN8+IiMi8J+NxjizBTLLd1uibnnvUKR+Hh8EJ/cg+8sgjsmXLFlm3bp0MDw/L\nO9/5TrnkkktkzZo1ct1118ntt98u69evlzVr1pzI5n348OHjdyZO6Ef2oosuknPPPVdERDo7O2Vq\nakoeffRR+dznPiciIldccYXcddddx/yRNR0vMzbfwZ7uxoWL9d0JWBCYrgLYFp40xn2K22YHgRnG\nwAwjn9rjy/W1+0V9kiWRbIZ8KEEKEF9xP6uVkMUc0Cctn5Ci5j8S9mkGlTXVDGY/0y/uMp8dfqvy\nT0t+DI/Mp7X77tAHLxERka7t8MTsstEng9Vz7EGfP2hrDOud4PaSvJXxKsBxVpyOqW7F0AxOWSm0\nfGguVUd746+QVBcQFZODbUONPqvFjOLE1rCaijCis5TdZULIWVKtYPWKgnNVp+1Ry+o38rrMmLdU\nOhWxXtlxHWMfsoRLXFwNBi0te41RZ+kgWOO/ynNNzbFTmZcCv2846HqzpbNIRDc1fjea9gyxaZzP\nUtZyVKbw8po6ffLD43GlVf14ESzVEK/RWVod3+3sTlXgELlOrIb/B5v7jsYzm6l5yDMU9XvVvlPH\nkZ60ZxKmYzNmTuTYU44jHyvD5MnndDuLtfKrmcj51Otw9QPoZVVmyH5gTCHM5AORPAVRFEXHXOoo\nsW7dOnnsscfkF7/4hWzYsEFERF5++WW58cYb5dvf/vZR192+7aCsOGXgt9m9Dx8+fJzU8VupCx58\n8EFZv3693HXXXXL11Vebz4/3d/tP/89/kQcf/lt5y+v/q4jET9wWJOugVZGYnzX/45OFqNhFsg8n\nCJdE0NHnyLsUmY+ttJFsflifqD//0Y3y5stvFpEY6dU6s9Y4s3vh5g+kZJAsYiYk6/5fJEayvU+h\ng8OxkGxD5Jfr/0Yue+dtIiKSRgadXr1uL6JG0T7HuhOcE4Ng8Eq+s2FfV5ejNdVXQHqmiyiVAdjO\nfc/dLNeefqOuWrORmYtkxe366vKMxlnL4egdbja5DeOq5SDZZGeH+zZ9Ua4985NYHufK8KU4vk5U\nF9JfN8HJuhpTnhtWY4Ulp1Osi2Tp3cDjIHJNnK/7n/68XHPup1t8bY0e2EGyvH5uRVjLcg6SpXdD\najjWcRue81iRSslPGt+Rqy/6Ox3CTEh2mZ5LItnMRCuSDSs6MCLZSp+NZLOH4dKFCjYi2caQ6tNd\nb2lGevEi+fHLX5bX/l+3m8+OXKPbyG/Ucc17Rq8DkWzIajnc2w88/ncznoIT/pF9+OGH5c4775Sv\nf/3r0tHRIYVCQcrlsuTzeTlw4IAMDBwboSaLC0TiH8T0GKQ0TBzhB4HtvnUh2wqQy4ac2uDE13rx\nRZjBxJt2aQ1MCzJUY+GCTvUlEkMUJiOhlxnRcTbx5Rq+UA1i+MNcWK7ltizjMz+uNORYrT+k0YuQ\ndLXFQuy+f3/RWicNU4uOXXpRS/MhH9umN0O1G/ZuSHyFFU7hbSs9TnsyNJ5JmpKz+WDFTkKZ9s6U\nq/BLXbVlWJwsmzYoE3ZzvKiQEMtT4mQMUThVh1SJ9AHpH/6G8tX8CNvG1LEZDX5oElN4Hod7fOZH\nlObjXBevxjiFRQtuYYDzubUMKQUmBZmcMkUYpGZ4bnG/UbKFH9nGSi0dDaZs2Viq2ZQUfgQjp9El\nf5jNlJbngr/JJjlnG8KYogVet+2w8DxOkxeRGLzULtZ7nBQMv5eVlfr7UO1mO3MWY+j/D6+Ok6SF\n/TqOrkd0HGMXoyHiEj3e3uf1eA1wcI4rYDECym3doOl+1474+A6N6v4r58Fw6hmAAJ5CJtGOYUQl\ncoISrvHxcbn11lvla1/7mnR3K0/yhje8Qe6//34REXnggQfkjW9844ls2ocPHz5+p+KEkOyPfvQj\nGR4elr/8y780n33xi1+Um266SdatWycLFy6Ud7zjHcfcTtNt5Eazbnxe55PJtHJOPBNc6zsEyf9G\nB9Av4Hy4SJEAiw8Y6UULRUSkeIDoBuL/eTTpTewST9vMmI2WJ+cr6sqN6TbatusUv7RahdYFJEzY\nAI6lhNEhJLWQHJFEM7mUI3+rb9eSwXyfysWqnSpTGVuh2ybyLhxURDQ5qGPKYoaXrtmzhqZT+CEi\nErJ9CUoII8d0xSSAjAQIyLRqt9QmUq8u0PLGNCV6icSXQZWckZRti0Nj4kKk6ki9OBZKoowZecFu\nT5OMkDMk3ncObWAQOM25WUTBhoJs04IxhodUshfBdEcStoZGakbE47S8EUfwzyadwSiMZWAMTykX\nZ3HmmrCIo1aPz42xgZzeHMi8dewy+f1zWxZFOxXhHa9NoUjChOVsNciu43qwQIfHyyaGU32YHWLX\nDVp8JoyZJgf0s9L1y0UkNnHq3QTaBhRhPdG+SUQkZOHKzjE5WrAoqNwXf+fSXXq+F/Sp0U1YVirP\nSLhY8JE+Nk49oR/Z66+/Xq6//vqWz7/5zW+eyOZ8+PDh43c25tbqkKWeLPtzklghTaGn47z49Gap\nJOU2YpsaGzRcs80vGE1wnpkSyvw6UY46ovvq2dxqr0aziDrQcmE/uUfwTYtUSF3cqDaLddgtmsQW\njwPoxYimgVaPFnE5Kd5jW9lRfbIeWWVbBRLJTi7Uz2mGTMlXlGgeFwVIVLG1DUs3adyDRJYxy6DN\nZAm8bxu5TFwDJt1ga9joSVwDXr+UfW2bPegFwqRU2TaAcYX3bhEKk64m4TkWXz82wjQcP2dOWDY8\nPIFt2Yk6w9GG5PpwrwHBNmGskrQCNFIzJLyM0D/LMmCnDTdRs8tFB3ZhjrHaK8fJuiYlSw2b72W4\npb3GPEc4JnvW0Hx2k5xwLNJZGpuiTvXp6+Fz9By1HYHIH+Xq6Sk9ntFT9X0OaYvcWKLcG4fVsUev\ny+gKSrrs2RhLcqs9eq6yvLdee4b+/xdPTT/mkGXg8T6zOb0eExXdVqFH99m+AzMNp3XW0cKX1frw\n4cPHLMacIlk3rFYaElu0mbLFhPDXPJVZCgoeTZBdrwNtGfXBDOa65JtoIN7zoj7BRlYqAhlbHiND\ncj+mZTnGlT4IuEiFA1EInqTkYOuOifBxNWFzmsY1n9J+yF2hirtr3Tq+iUV6rooHgR7B0R45Q4+j\nfY9t62fE1dVkm2eK1VnggGWJYInCqDIC4iMyNKoJyFuIbOvz2jGmBCebZXsZjMM0VGQzTYj4nTY1\nLC4w19XlNolgS44sS2KkF1ShWiH3zHWofqjjeEwBALhc8sU0L8d2jWQtaTWI27HFCCZyOD0WEnRB\nwjRl8/1GBjdJpAvFANBzs6MQQyVHoWSkakDstV6Uju8bx3uYDu1W+EgR/yuzetEIYSk6cq42D60V\nUd49occx8Cu0aOIsEMUwh87Vfba/rMvlUEKbbM+dLuNePlOPfd7TeqBGYbMdM6W8beye2T+KfeIe\nOlV54sbW7fbggYTbn4oN/vdV0QS1DSeVE66Mna9INWZJXeDDhw8fPo4v5tbqkJrWmv00qMM8mo8A\nI2ZPiuGJfCK7pNAgJGNuTN4JT3V3EIFjmWgyyfqeT1HdBpAdTK3TJXvcNBBpvKhZWTnvTGyT/KAi\nCKLSoF0RXopC895usy0afjdnaBrHFsv5QW19XmtX9QQRwPgi8oi6HjkwttOog8+qdcTHH+JYc8No\nNwNkwEwwOatGnlpc8GudbFPOlhxEtvoScXbRFiM9nsMQnGsDbUfIEVfyyp9SyRGY6wl+GIiujtmO\nMbMhZwmezWT+Rcz9VO3RcWQmYEG5D0UkBbbXqVr7aPRhNgEkz1YkrmF8I2FGlKENH7PP5Kl5P+bt\nWZFRGzgWlOa9M+sxpuXNZqw1JsrijIuKC6BH6rob7Th+tsgZ19cG9NzHE2lowNl0cmwlVC8wVOnc\nieaFaClVXoz/d+A+PKznp3MX/t+lnw+fRqVKvK8stOu5I3pORk7Va5qnmVOfHs9kv67b8TKuDwpb\nygt0jIVN9neJwTLb8mmD5rPUS7pu76XaTmckrRr4WIni/N4cJTyS9eHDh49ZjLltCc4nL1uk0ATZ\nmGiAQ6N+M8HJEkW42eaAWWo+YVgpCLQROhwnzYbJq04s0UqUwd/o43N8eZwRNyV1FbY+4cb1lZUj\nlbdepNtaqOPtv+dpe5+I5vi49T7dXpRjBZ+6EaswJ3SbbQcUpVQ69Ry2DdkqhCpanU8sAAqH9LFt\nKGbgiFAnF9A8Bp9nqATAGPBa6UUjSJZAUs4MXWxL2eNobHBMZUnIhopUh+AaZ4a00qbeTdtBXOcR\nPWcB7xHqbcGNsSotwHJW803olduoODDm3OA7N+vsgJxreEB1sCHvqXmqGiGHW+uy0bfVst7h7Eyb\nbZw7oyogYnVb4ziWnXFJLL4z4E/r3XlJsSEpvidBiWbWKEcd1nPJJoVm3yN6z89U5n20IIKdXKKv\nJdxXrLgj2kyzGxSsQ4u72HZcT0RpAGizT9+3DdmlvSKxGRQrssYXQwMORc3oKXoP9D0PQ5iqPSvg\nDKzZNf33KxzU73xu94j5rHiunrv3LnhMRET+33E1kTHKlBJn4cdmsD2S9eHDh49ZjJMCycam3LYW\nkk9ioplkdtogWKfygttkpZe7raBHeU8XVdKEuBs1yqVTFLV0PR8/3YzDX5lZajzFUKXDKGw+jFes\nhqx22KNmGK7RMT+v79wlMwW5WGPThjAoBK/dW/Rp/vK1ilpqHaj7fhFc2BE7ezuyMr4FWN1GHpoI\nok6BBdUSKOdu5KCThZKBaIWI1+idgfwrvTEnW+kGCj4EY+9x1OpTV4qMfZo1/cOaKa7zePfpS3YU\n1XO8H1C9Y0xBavE9Q51yhGvP/7nnNMUZBe7HiObqtDoEAk5n0Ia+aHOzInFegeboNBNKT1J5AU65\ngyY6rHakxthus2Oq00yrc1opRka3nIqgPKBagvxhE5w6FTiH9Z6eqZbfDdqBNi443Xw2thB6XuQw\naFhE1Uq1SPWKjjNT0uM7cLGe26re8pLC5Wk7hOWgRpiaF+O/jt3gbVGRxfPMvEIOmvZJoOLOF/Ve\nCYb1e8kZR2pHrB5IBs9DtHtffHyb1TDqH6IrRUSkiEq07LDdVNQ0FjhKeCTrw4cPH7MYc9sSnJwJ\nEGqcJbVrsE2tdYL/qKNhYtq1uHPs+QxaZi+8jukrv1Jdmv0kCqBmjm0/dCDYBqs8qHBwm8gdUBu3\niSu10qSd/GAX2mL0KEpm+xK2HLE4WWgyWQXmoq2ZIrtdn8qFPeraNblAB104xGw0USd8GBI14kTq\ndCQzCgun6I0+CVwuDV0skSwbTLKqLJ2hpV6M9Kh2KC/WWvf8Dvsckt8m+nS9HEywVdFM1nsJ9Ui0\nQLWPzWcVDYfwf2hOATUCBUfzVbER9UHtsVfPKTlNopj0AUVMzcU6xiBZ8eV4LuR36bLVhZ3W/7N7\n9PPKYt0XZ0e8D1mVFpKLpzNdF/wXMoHZVh0+DrkDUA3Q+YsNL0eVg41mar/jBJsdVk9V5UpmKJ6x\nhfP0etTbdB+jy6FZ3an3Qt/TtiY8hPXmvGfhxQBEP7lIzymRL2dY9CcQEannHU0Q/jUxX6/tvKfB\n3xcx8+2B1Sh0wORam1NH92AwKh8RMxu7ZOEOERF5YeIc3Sar/eiL4DZrnCY8kvXhw4ePWYy59S4g\nx0qE4z4dkJml0W+YyN7Sc9Y1hjacFTk6ZrFpPDzR6kUgEnu+pl57tm4X3F8Q9ZhlsiNoYkg+8aAi\n1Mr5WknSzKzUbbXZKolokSKj1G5FW+QVic7I2UYJFy5GOE/RFznGmXxxzXHAJ6Fjj2ZDx1faz1Ei\nBXKz9Xz8/8yk07SQyoQOVkjhfSdRlh7f2FJFI5VuoGPwanlwZeVucoaJbZO+NQ5r+OCQ8tV0R2vM\n1/NvMuVQUxjUiRp+6jYb8xQpUhnQmBc35OPxhJwxQGMsQKgpIFTypXLQzrrzHqsOKALOPK4cXmq+\notD0zpjjjOAW1jikOsuoQ2dKOfjE8joJM9twZIuqUAhwbBVqPtEyG9utd8X8dq0LMwfqlPF9qvWh\noottkV5GZeJxmupHQPppOoDlYqRXfAmoGDPFHqDl8gq9X4+8TrnyiSW8dzCj2qHXZews8ONAhka/\nje+OUbSISGYS3tCoIguhFpj3nP4GGP/pNGappkKUPhE67pHrLxQRkV56NTu5kcbIqPk7d1jXLYb2\n98zw3NRIH7to0yNZHz58+JjNmNuKL2odq1QI2LwbUajRRDZaNWmG5zMuR3YW1ugOUV1GZCS7dk87\npirqu/PLoItrj70L0ocUuWb2AaXA29UcB16beApnUIdN1DFxlrYgbn9Zn7yZLYpmUm3YR4KzNFzs\nhK2CmAnBxgugDnurPpW7+xUxdG0EokIVTGVAn/p0QdL946XuqAUMV4uZBt43M/YrOdzsBJ2WgFLQ\nKaJWTHQpMFVS4OKAHiMgP9bCE+lOLdBz1LlLkWpEf1w4mdUGFbHW2sFVLlAk3LY/nrmEh4BUOvW6\nscqMChVy6WEGCgd2bwDnnkJWPrtLEWyjpKjU+BBMxftKoiKRWBPtaqPdDD8z+bz+PA9NdCcIUBU4\n1Z8xr5yd1KFAoIIh/I8ndB9yYhHt1ZlXarFyszxfIiKVhXrey73g4fv1/Ae4Pbu36fVh5w7G0Ou0\ncoqzILbcjlKh9T5M0qcp23OWzU0zB+GaxsrRLngrQys9uqoT6+tYe76vevWZcDz1siIi5TN13Ity\ninafpPqD+mehJ8qxcapHsj58+PAxizG3LlzMDEMpwKcEs7TGDYpNABM+mcEIM6iogGEfKnCvbFyX\nctyciDpCOmM5WWkirKml+mTO74kzqlX4xNZRddO2C6ikHZpHZMw7tuk61ECSs+x6SZFPtQv9uM5T\nHrEGR/fivY+bfbmaWr5nG25ytDNFc+sOERHpQaaV66V2KgrLRYpOhs+OOcviPpaR6UuEzHylh1y5\nft4wyJVoVN+ztpy8WuEgWp3j+o0viZEQ+V36jYZl8Lrvfp2OP80KIB1TcTuuNxQaqSnwhECXtZXg\nrrHvInw/yYOLiERQddCLNdgJpEY+GAiWXGQT2XiiT2qVwwFFYzIGjvPZLbrv41CANC87X0RiFYjh\nZhFBr17nyfM1N0DuuvQmRVmTC/S8FPeibr87kPHluszKuxWJN17Q8RyrcedMQb47tVC/I5PLu1uW\nyYzD9wHVZWFVL2hpUM//vkuQtyjp65GzUJX1rJ6jqX6g7ilba52ZxCxwMsabbfsV1tbbbR6U32n2\n9WOz1DrP8ThmnOCDa69TtU9uk57z5uSkdUzNhf3x3xj3D/epXraBDg8hlUX4HXGdA6cLj2R9+PDh\nYxZjbpFs3a6eaPEhIB0Z2LydSFyHbhyH2E4cqNi4NdFL0mkdPV0mX0Qkf3DSWn5qWYf5H/m+3GFF\nQvU+VACBw2SmfvQ0ZJ8n7bbiJWgCux7UUjCi1LZTluv781bFA9kNbhI9kySC0mLIzojOFHShSj+B\nfeGpzaz9yJng0BKnwXQZqHLcejysviGqqiM5z/bNRLj5Uf2j2s4+TbrxqUG9BrnRhPaxyKodfV+F\nvygRzcAvgdShMKFGtYFKqvQYugwzQ4xZUHEb0OfT07j7A/0HyPSTa4yGFA2n0FeL+mci2LAfullU\nfhF9ppdp11RW6tE3WCS+v1J5+P2erxx/xIYHv3Cqjy5WHeaRlXpCmEEfX0SuUhdb9u96fJOLdayF\nQw3JjeI7AD127erX6sIPPNZ6Do4jUmdrZVcF93dpvg662hXnDNr3Ylzg3cml1nEK+57Vm2NiIRzA\noHstLdDvcHE/XcrglzGgy+VHHF8QESkt1nE0jaOcrpNDC3D27atd9RrdJ7yVqXbhTGv+ozqm6uno\n/Ov4OweW8kivQ3+bzoj25HUduorFnS68C5cPHz58zGnMrU4W9emm3z31e8yys7cS3odHYn602WH7\nGbCGmH3BDJJlU1s8pZqdQJ+D4NUcbjPYAv+AJfrkmlgQn6L8Ad0GXYyMY/6kfl4MFK24Wc9mJ1zv\n92NfeUVj5T+8WERE2p/U6qbo8efMvsj0MNvs8kfHCnf59GIdG89pcZ+i8WRPsCpQYt+zihKn+lAb\nPmqrJ1INIFV4HGTH+Lm9XK0DfhF0QUrU9k8s0wtT2AMOda/de6zWr0gis1F9dVMZoA/4DTQPKf9I\nZB7sh34W90PYrUjdzfKLJCp79ignS52y+Rz8NTXKEZUBQLLhmaoSkXHnmuRj7WqKxDU4vAL4e+Np\ngG2nilATsLoRF358CbL2g3o++h+HUgX+ubmhqnnNHNZjnzxPkXX2vt+0HPPxRADUTUXO6ApUdRXI\nj8c6al7r4n5UpKEyrQFtatvLet6Lu4m4UeE2hkqvQT0/9J81bl1FW5Ot/4PapYOaWvC4+9Ft4Sx4\nKkygEq+i257AtiEQMIqM9u8+Ou3x1wY7zd/5Ph3Q3glUZwJx8/gCdmhOdHCYKTyS9eHDh49ZDP8j\n68OHDx+zGCeFhItlb0K7QtIF9ImZtEsLk+uaJBmlFE4bD0MbwOglPIjmap1IMECAbEThKFs9cJnK\nX6b64+nA+Cm6ToD24jSJoBHxBOzfcjCqyO/T6SQbQkrHQuvw236sYnFZuljHipJeEZFgBwTvoDNm\nskk83qDhCmmD9BNbRUSkf2ypWWZktSaE9lyuWZau7UhCVGx7xPa9nBraxQk0faGhB6Uz+UNKTUyd\nHpvtZJCsad8DYfmknTTL7oAcCaYeIaRaEYoPojO1hFlG7QaTjTdp6WSOJijT0AXRFK0LkXUDtWIK\nPdhQ0KGSQjTio8F2bbkmxIKFeq+MLIvNh1iK3PMCEqmgwsoDaP1yEJabeZSMozQ0M4F7vKnrz3uK\nNn56P3c/psma5kHQJU9ukcY5ei5OlCZgkA5x285nRynNi78L/I7SJL60UI9j4Ck97wd+T+k4mnFX\nuphERbtuJMI6X6Y5FLYbMIEW479Kl02lmHb2TH5v05L46pvOwT50Xd6/WRQFte2FUc4Mx89W4iIi\nf7BSz+X632gS8ZTDely0OTWm6sfhteORrA8fPnzMYpwUpt1sXUzrQ9NKhBaIXC5MyCX45EvhECg/\nYoO5QxCKAyVHhxUB1lGmGubVCpCJBwYNPTp2LRcRkbah+DlUw5M8C/6f7bQbBY4ftm9ohzG+RIn0\ntsNsWwPrv0l9CmaWa6KCT9Zgc9zIrkGhO9+fIIJlULZES0BKjNKjcdluYb8iuLHliqYomen9lZYg\nV1co6h86TxHEvI1oJULynxZ0kNBQmJ4Zb22Ol1cgJjkYg+QPKYrKMznGljBAl40jevxBtx5HuE83\nUMcMhDOSEE0R2RxwumBSMGQ5MxJfTaDeELMZk4DFvdUAYmpeqgL1Q+cjiUpXw4TtHRM5tPJj8o9I\nffJURb9ZNK2k8QhLmdkksLhHj79za806rqCj3bw2H3l6xmM9nmByNUDxwvhSzBZwvWjeUtidKPEm\nkkWLoe4tej/tu1S31f0S1sEEkduiyUvfM7otGp5T2kW0nCyrpeEQ/8fy7dSoJhOjM7T0eP/rdRsF\nFGrkRvE9G8W5e+L5aY+ficzd741h6Xmo4S3swPjmAw0PIZl2EAUQ1emloMnwSNaHDx8+ZjFOCiTb\nzKGMjzwH3QqDwPo8SKfdgDkAACAASURBVJijxO2b6SyN50XdsQ0kv8bSSJo/s53JqZA2bbPHRj6x\nkYt5KJpV1/FZBe2024FSOnahSKENZbfggCjbIUKfWAp+eBIGzkQiCQs6FiEYREvzadcgnBEcXRTt\nGpOYzw/FvGO2B7Kpko53ZBV4xadRygqkNviIjqkG45tKjy3VKveCi0WrjhzkVbI85rxMixvMBgzv\n/jJE+t1xuW8yTJsanMtUGm27cRwhTXqm4WLdiBYo+g3A99YhTqfNJe0TaYMZwpylNEhpE44FSq7i\ngVjiRLlaAVK5KuwIeQ7JOQZ1/Ty/W89p94N6/BOXwTazyLJj3M8YQx1NH92y8BMKU5qOnAIsPStO\nO6GRM+PCHMqqiC7HL2RrGP0/+fsychrmepMqP03vtbYhPa78EaBOtIAv98f5F84Q2cqGDU2rp2mO\nYwKNFWlOU4DUjDNGWqiyWITXmXmO0bNhuzgW358//plysd0HInt84zaCZduro4VHsj58+PAxizG3\nSJYN39hexlEG8AkUHQOliUhcdcDWy+BeA5h+hAOaCW4cVM6VnF84quSZiw87n9Ts/uFLY0XA6Cks\n4dX37bvxlNuvUGb0dH3SE8mlmvq0Jmop7tLlOregXJNKB3BhkuSc5+lTNj0Cs5IeRbbN59X8IwDX\nzIzwjAj3GJFEuBEy3UQbtXZYFqKNB01Nps7SwgDyh9kx3XelG6oKGIJPzsds4OLY+JxBzi0wra7T\n9nE5pibBSuXQGzRLfvI56/+GP8UMhhyta8BirQLUXHf4b3KTtBs0MaAFBFRPhKihIdeeH4o5vSra\nw5CvzoIXJLoyTQAPoIiipPdh5Rw9TmbZ+X/CoQYQ7G8TLNQwCBaGOc2dyr0Hm/U9bWGiN5yHMcWF\nKzwHlW4d2KKf6zhZAst8hQgKG/DdKe5BAQvsMGl1SURM1JqeSswK6ijdLbBIIoNl9By3oWx93rNA\nsGjamNuMslkYANEQ3dwraC9ElB3l4+8Qq3qbGQeHcpbN/JHnZH348OFjbuOkaKTYKLJ9BvhUlhhO\n2U8JKgdERCKZAd2Ck00VHNWA2/4YT/GUWxqJqC1Em+5EE7f8EJ/CNk9Do/DCAUUrbQDL1NHmjqC8\nFk/FJtBaeVARYWGDalbJtyWPw7QrdhBZs3yiVsxOJGYJaTTK69mkn3XsQmknWi1nt2M58FKZEVgG\nVmlorOd86Bxdnk0ae15UlDY5P+bZaICSHkd2HYY4tOVjiacZHw21uxTRt+AHGDuTi4+GR9wl4n07\nFoAszRWYCdFwpGV5x5KTJtJEtNmDsaKBWmrmDEpL0FYb2uL23eBq0SIm1UulAvj9F2HhOA+Z/58/\nOePxHHfgXLqlxqHDf1NtULlAs/YsmW1/KUb8qRI0tbCc3PvO5SISG7inS3qcbOc98ITeMxOL9KRR\nN8tzR26Wxu6GD5aY+zbm5HhP3SyNmTij4njZ+r25QnXoAcrg3fL94dN0TJlCPBNpe1bvBX7HjXKE\nPwc0nDqOVj6/FZItl8ty1VVXyfe//33Zt2+fvO9975M1a9bIxz72MalWj6+7qg8fPnz8LsdvhWS/\n+tWvSleXPgW/8pWvyJo1a+S6666T22+/XdavXy9r1qw56vp1cCwN2hWikiMo44liFAOsQImfCcaW\nj21mmqwSw7bAwzSdBoS0AKR1YDRh6ynZBrmSbW3+176fGUa8/uczug2YNWehRS1deaaIiBS365Of\nLZmNSXmPLpf+pW32HC6M219MLlPElp0H28QdaEsN9GW4WAR1sEczRpk2Elyu4QV7lHtkNQ8VFh3Q\nqDKzWpmHipvAbiXTsduuGCqjyqdzU4wus6M2EidiJ4J1jy/F5ocztHUOoHfma+UMVY2EDz1hlkmv\nUL6TXCsRG1sShXudCi+cyyb4/Uov7qGIWW6cl5cBKBrxTIu2mBncXvnDdmnQ6EocJ5Bf4SDFn/qS\n3YHWNs+9OO3xnlDgWgeodON3oQXZ4lzn0K68gbYuk0tjdUFmQj+rdupxzn9YdcwTK/W+HTlVtz00\nT/9/6HxYHELDWjik9xBRqFHzZMn1xjPIcj/bOuG8s4V7k+2NMMMcwayI1Z80VyefzdZGUBVUlujr\n+Kkw4N4Sz367t9rIOjNhm3Sbhq3BLKoLXnrpJdm6dau86U1vEhGRRx99VN785jeLiMgVV1whGzZs\nONFN+/Dhw8fvTJwwkr3lllvk05/+tPzgBz8QEZGpqSnJQoPa19cnh/DUOFoQJWZgUUatpJDuyLM2\n3m6KKCJxU0Wn0ovqApOp5ys0trS1a6LpHTk+Y/OG1iPZ3fpk7n0IROTXRdp+8Gtr/KZS6/yzRCRu\nmJiHDV11niKCkUv0iTnwKCqK0DqnAQRomgaWYtPg7Kht5RhB7xsIlAgOomUTPxeVsJVIAFQWscU0\nlg8S3HWExoDFvXqusmNoEQL+t9GlY2BDyQjNGE3lG1BJGSika4eOvfAiVAmnxe09yrBRLGyB+TY+\nb0GwbIGO44+6gGhdw2Xw2c1uvX5ERiHMsEVE9rxOkdjgHUCyQDp1WEyS5zWtfvoV0csOzbo3gbJY\ntbTwHjUGr567XNfvLZp9tW3X+yfFFt4D0D1DRdE2pJ9nwW8T+RZ+vUOXP47vz4lGs2Q35zTIFjaY\nZraA70qwW5U27Xti7nb8IuU5C7t0W0Swh8/U6zr4mN5nVJz0vqDbKvfodRlbqp937IKRdoeNZJMz\nSCJXKlKyuMXJ+bMykTON9qfUp4Oz2GCx5j5SmKXyN4OViW37WIUWz0Qm+9H6ikqbDqiUYHXIH07T\ncOAokYqi42zCnogf/OAHsnfvXvnQhz4kd9xxhyxatEhuu+02g1537twpH//4x+Xb3/72Ubezfcch\nWbG8/6jL+PDhw8f/ynFCSPahhx6SXbt2yUMPPST79++XbDYrhUJByuWy5PN5OXDggAwMDBxzO2v/\ny/8nv/ze38gb33abDmaKlV12lpAaWDZBFIkzvAbBkg9jo7NDivQaR9BaJLTVCOF8jA/Il1U9qdes\n1o+hYa2jdfhPmt+VtwTvsbZBHpTRXK0uTeV+VJnhqdyxRbfVRMO9mTStyZbERBHHapiYTjSE/Enz\nu3LN+Z/W9drBH/5qo46VjlPgkKgZDBfELVPo7MSGc6UF+qRndQ8rusjREpUUDkGXCBUFK3B6H1W0\nWV6uiDANQ/Wf/OrTcs0Fn9FtAtWzhYs5LriFGc4cqDIFo3e6ijHzT91zal6vtc+R0+Iqnt7ngN5/\n8ZS1L15HaobT8wflx3v/Ua4985M6BrTGLr9B2wPRcJrtrtngL78voS4YAp85AJVKN9y3hpGVB6/d\nLKJa6UW0gMd1cRH9dDHdPWkFviPphYrkGri+RKxBD6rH9ipSZfVc0IX2PDQUX4BjKMbtnzK/eFbH\nixkivzemahMzsNLpvfLwv/0/cskNf6/byNtt4keXg7sGKmX7mYn58fe1DGqVlXVEl1QZ5I/YBuLF\nn70gIon2QatO1eN/UVU8NEzf/hd6PbOjIs/c/ldy7dl/a/Y5dpYeM53lqDKgzpncLCvxHvj1Z2Wm\nOKEf2S9/+cvmbyLZJ598Uu6//355+9vfLg888IC88Y1vPJFN+/Dhw8fvVLxqOtmPfOQj8vGPf1zW\nrVsnCxculHe84x3HXIc6Q9Y7s7UDNWkRM3nkaJN1wizJqDvcLJQJrG0naoyYWSX3CsTArDZ5ODb0\nC8YT3rUIg1xPUT5qcom+H1tmtzfuexLN/MC/DZ+jiKFtwQUiIpL/lWaMJ96iXC5rsdmwLnlO6EDU\n8bIim/RmRXDV1ergRdepEC1wZPMOXQ9P6wr8VdOb9ljnJQWUQwQvIhKu1if7kVV0oRLruIrbFZ0d\nuQCcJS5BdhSZYqhFOl+CbydaaocVPf4kf0V9aA56S9cvl0jVoDG0yq4t1uNiEzy2/olW6SyCqVzy\n+EFCSdjMhclFTLDZYQo8dXO+7qOJ2YCcsVxEYqRa6+jCcUFlgvYvU8tinXNhDOqA7ToTymH8pooM\nut7wFPVHeCUI9ngjIJ8N39XgVDjPUS8K9M9Zg/F7QGWbQAMbHtbjDkdjdFl7vd67Tbaa5/kmfz8v\n5qdFYg+HcEKP88Aleg6r6PjChp4jK1v17zmIUvidYIVdtduuEqPPLNsI8Z5KjaEdFM5H7Uw95+X5\nutPe5zn7jZ3uylDYcDaancDMGYi7kce9dBwtwX/rH9mPfOQj5u9vfvObv+3mfPjw4eN3Kua2kSIp\nV6cZWRON+gQcUKoGP9YEJ5tCProOHSmrlWYKZtkFXgZ8z6c4kVNum27PtHleFHsXsPniyBnI1NNv\ndRMqn6DnHT4nbsgmIlLcq09vIqEUFA3FnfAGBcLLDSUqouCpIAeQZYZjVLRIE4VVZG0zv9ZKMHqk\nNunDugB+pc/s0OOBGoFKhsYW3W6yG8PEIkWXg7/QJ/oQPAeIEMbOVKRG/qz7RSBWVLZloKqQnXou\n62frviJc3qlF7WZfaSAaKipMdwzHbYyc68RqOGaBFy4gU9zsBZ+KWUOaHQZeUFVI5YLzzT5LNd1H\nLxzOmPMlgqPyJEADzPFToFFGnX3bfyinHq3SWv6JpXq+On+maLVQiZE61RCplJ5DNtPkjCuA41Vj\n63aZrUgt1Xt77Fy9b+nDmj8CPr4EVQ9nGD1QZsDDIoI+lnmOqYHW2Z0bFcwECwf1u1p8WGdt6WG9\nzruvg+MVvuJth2x3rhzaytcT7ndsN17cB/ctqDt6X8B1OaTHkzkE0nY+fEocjXF0iV638WWcqen6\nHT/QarpGQtHRyJ5mHxhmbQ3MhtKoRqWD4NHCexf48OHDxyzGnCLZMuqX6RZPv8hU014uhSdpMxvz\nNSa7x6cwlWhUEVBHC2Rk/GXJuy3Tp3yDHCw7BgzbOtPKafPN39XF4AXxJC3uhxfm84rcais0U58p\n6QF0PqvKAGY1I2pSgdpS4CyNtncsRuONpj1+t1dVGxLkAdQFqQJ4N7j9R0DV45frE7nwfW2D3Nii\nxrlGH5uYHdC9aPRsINZJZHx/qPrg4DytZCOfGu5SPru+XMcQTABN49zSJ7dx5YU4L4mZCH1f4YQk\n6DrgKi/oqxrCKSmNbdQXKSJia+pwXGcTY2fo9jrokpS4l4iSohXgIDe+YO0r7FcEtO8Kfe3egI4Q\nKxVFc5bQtRFZeraEx/VMeh4EZ6tCI0LrevYgM8efnr2vHpUkETyXif5ZqcgKywYUDzV0QgiqRJXM\nEUBtgHNMtyoRkbb96Ns2iG0gC58bw7oL9Phe/u96Hjb/33pdzviKflcOv0EVD0dWQ3vcC357WK/b\nwGPxhet9Tu+rao/uKz0FhQxmUPRvzsEXONmaPRlpdEupXKDHu+pr0Huj4rL5xgvihZmPKNkKV87K\nDKIttbhotIRHsj58+PAxizGnSLbaZbvqsAY+YsYS3Cy9J7NjieoKZJ2rfYoUMlgnfQC62B7lTdNA\neBEro9jFFI8XdqjMAemyEwEzkcOnx09FulGxzryKzgjMo4bQgXY9Aad9ZJJTGV2P6IVdUlm1xg6s\n4YJYJ9vMw2ne8U2lt0IdXC0ROvW0rOZJ79f3BaxvvBuQhacKIzUao+cMuuq2PYfMPv1God+tEMEC\n/bK/VgDv2+pi8MA7wPeid9IIKmt6n4iztylsg56uKehgg4pyrBG0mkSwrAhqglPPwf0+fFlVBvWV\nioxKC3TMXb/W6zjweHz9Rk9BxdqkHod78zMr3feC3isN8NqZIXQdJsoehnrE7XKbCM6QMvt1BpKC\n2oPXye3h9moGfR6aKXrZ2nX3RKopcMj5vfr+8Gt1jJODemb6nuMsUV8mB+Iz1liq57JjOyonMZOY\nXKF8d7VT973g5ymRPxdZ9VXcr+Ci+f/cMP1jUfG2t7U2ahK5As5425HjyIyBWx7Sc1lfpvfp1KCO\nrc3xA67Cq6AHfrn8bjWuwExrfzxbzIG35aw1ckUPzdZxzhQeyfrw4cPHLMacIlnT5dORmlFtkAO3\nyadIrZjQkdJzlk9l6D+bcLhKoZspnzjUQvJ9Ew777GTpRvNC5ZIGHx4yn7XvUJRYA5fV/rjyiA3o\nKlntQkQni/TJSR3lxCp9X9iJrg0TUBCAi23xvJ0m6k7NPpGRqehylwOaYXfTxtNab2/QdTau4gnZ\nDw2dYeUcRaLBqCK2/GZ7m7IM3XYxO8iijp1Kjeq1F4lI7HLPrsQisQ/F2DVwLNuDSqhHtJJo4veg\newXXHlfeKHpJQ7sZDUJ9gL5pnTtsjiy7dZ/5O9evOtFwcnoebfy1i6334UHMSKg0OWW5vnf9Zh2U\nKiKS2anIrbZM+d2Us44bM237hAKzm2ASHhR7gSKhKSZ/z9dGLzrfQkWy9B5FgPVFelyj6Mc1b0N8\nf9b79Xu27zLcdynwugD11Cezwmt8NRQO+P6179Pvyq5rdbn8Pr03suRAk4Ij/N39IvS62/U+TOWy\nkozwJb3W9WXK47u8N13+8s/q9WSO5PApQNeLY53z2HJwzG6TaMBS8tTB5LG9CzyS9eHDh49ZjLnV\nySKbSaRaZ1dKVHTQz5SIN5Po+0MkG+LJye4E6SH0rAKnx/4+TTgpkWckShl7vWaau/BUI88W/Eb5\nmuisU+N9ouIsv00RS+lCVF1hXBm4/Gd36f8j9IWXBYpm6OJFNidCBjr1Cvid4w3jXgW+kCiLT3dm\nVPkqIpJChj+1SvWtwo6cu/ba4ybCHQafi+Okgxn1iGm4q7XBUZ8u+iIiEbKzOfjKshqr9vuvERGR\nyXm24qT3hdihTESkvFRRRw1+prEyBRU5g6gy2xl3czX3G3vLAc0HUEO0vwBeuwv3AnhvaqWJ+MJh\nuzrNIKZkLzqg/fAp1dY6gpmWiHKZYyxx/GG6S8BVzXQBQdad1X6NedBzw/+j9xFFiAZ9w/eid7u+\nr5y71OwjRGXXwtt+pe/POl1ERHa+XRFrtQd65n02L5x7Ru+xHR/EPTTZxHK2o5ZJ44tI+17wvlv0\nO8zzzuD5n3j7a6zPa5frfTjVj55gqKzMIn8zebn6LUwuBC88EaPSVENndaxIaxtiv0FWmUHhkDt2\n/0GPZH348OFjFsP/yPrw4cPHLMac0gUNkOK1DkytMCNkiR0NZGjg26jHUwg24iO1UOuC5CkN6RYk\nJcEBnTqlYOvGIoUIUycaVNP2jXRB2K/THor6ReKpX+0iNVIpPo2kCpv3tcMaLmG6IiIio7Zch9Ob\n5rOb5BUHLR5Du8jCNWKeTlaUXN619xMRCQfh7TuOclkk5Jo0Taet3dObdTkYgXMaWkehQ+olHVtm\nmSaSKDzvfTJu881p19gSTuXsQpQ2tBVnMoattWkMxM+zI3o8NGAujuH4kKxjGyKR2EgkHgR2NoRx\nUebWhqQgzJ5rgzjOX6ICBNI0bpmGMsFYfC7ZijyEMYxMTt+w08TQzI0fTzRoNmNMkRwz7ugxTTIy\nuRjBEpDJR0N/DGhyMf3Tx822SUcFpyJBCTvI5euUfmIZ9KHz9F7nlH0faIJ5z+h12v86NOvs12tT\nOIS23pNxNnxshSbouitK2wQv4N7GdyCAvWXHS3r+a916vHvepK+d22Cy9B0df51mUQ2l+5jcCiZi\nc55UhFZL+C0iDRXAoJ7NRI/HtNsjWR8+fPiYxZhTJMuEV3YUUBUvNISgEJ2INkhIvVgqWINAuRmS\nmOYCeG1X8b4RGkN8n0KyJoOnuCufYoFA4/nN5rPUEn2SZvbqtqro6pDZBEIeSM6NNIw6iHBNie8J\nBMthW1qIAK3w/ykkc+QIzKOd46P8JcwnOlPAzDkC+mucBknTr5+x1jXJNBYjoNxWoP1mM8OJs7Xc\nlk3zjMWexG1YQgCB8aV6wbq2oyR5K2wF0dKHmSNKsg5do8k5GpEUDsK2D2WONPduHIoleLlhvX7Z\n7WhKiXZJU69TdNX2qM5UaGTD2U56BFMsWudBxM8WRqndSK5BEiUiBrkyCXWsaLyK7WZMcpOzHM5q\nWHoOUG0KVLA8y7+JYNlQkUYr4ze83uyj80X9/jRY7HKRtvnZ8yZFgIt/rMe95H+8KPJf/0q6/ofe\nQz2QEg69Ra9fdky/t8u+rd+h/dfofZsdd2YdIlIeRNXSgCasCjthhr8L0i1IJsvzUOac1+Nlu3G3\nZJu5NdNyvD1v/ufKSwNHZsrkqWW/OkN4JOvDhw8fsxhzy8lCS1xvY2mdPnmM3Rk+Z3FCPZdc12m8\nxo7KEc10wZ3Q1Jvlo2xPQ1kL/h+cDtkSjHsbm19qHS+e9LRHzDwP6MbmjJerwUTmORQpQDbVwtFS\nzP8K2qsZQxfsq6W9NThkcsrywhZrrK7YnWOj3EpEJPMyymFZegxkTvNjNl8k18cS3+YWu8V2+VKV\nphU3K5qp9St6Ka+MUTM51hoOi62iiWCrvSiBBfdFxFBbofuMm3ACpQAusCihewSC+1x80zR5z6AF\nODnUtt362iRnictT60f5LaR5EaRDjfOUhxy5QjnbgZ+jSCNR2CHHaBs0m9EyU5rhPuOMxHDtbLoJ\ne8kUzIYar1Gutrgv5vnZTidN1Ixz1rkDRvs1tNR+s5asyqkwJ9+uhSo9z0PWB+5z4my9rvO+pn0C\nK9ddZPZ14HUwqkEKo+tZlM7jO125+HTruDo2KcKdAh8+eoquP9+RaU4s1M+nBlDIlIkxJ1vd8DeK\nM2RjSDSRcIM/Rngk68OHDx+zGHOKZNMADszgGY4ECLZuWoLz83jdsGJzsFyXYuYG7M9ClN1GC1D6\nuguWhnx6Y3tNtJpOOVlg0x5aREKaPaOdRzSsT1Tyo8HP1fyX5XpsjNhSLvtKGgQD9RrVA8cA/jQ8\nXUsI69MgbxGRZp8ub2z9WGbLp3ojVk+YjDhUA83L1PA62KjbNtlq2vgdABo+C0bg4FmpGqks1u0M\nnaOoZ/G6Vs46P4xSx2GYznQodKijjDZKKdpgW/HR1yh6zI7b8v5qJ1qOsNljh6KwMBPf4kTFtMw0\n7Vkozr9IuWWW8GYPQF2xZYeIiGkWyDY7HXuAGDErSvL3J1O4hSnHnElRLQMzF5ajsj29iEi4GbM1\nLFsegFHTJNs+6Wv+STUlr/Xq/2tLzrB21XX3I7o9mMnv/i9vEBGRSm88toX/ieaZRZxntKYnWs7t\n1BkTi0jYXLVrh17vPZfrvdF0vtvM/eQO4zuWKCwwvyOsxkfOx8yECU+PVWUiHsn68OHDx6zG3KoL\n8BNv9LDG6hCfg+IKSX9MYxrBVy5jSnTbyNnCvg9cShYWiMwkptjwbhxPOdoNoi1IsoSP9nQBW4hQ\nW+tk+s0TcyZt5AxIIskfBsjsGk1jGfwZ9422LUSfZj0g1ACa1+ZWRRwsDW2ChzT6WEc5ICKSgoaW\n7XSkhqnGxZpBFtgkSje0tmjBEYHTGluq7wce14uSA1qtrIpb+Uz1gf+rUyWiF65tn267grbixQk9\n/spy5ZxrRRh3oBw3g7ZDmX2wfKTZCa0c83HGOKixhJdyFcyUgMgnztVZQc+TKK9lu+7lqrKgZrq4\nEU0paagzg6pEpLVB5FxEi2Z6JgSL5o6819iGJ7sHzS0T5jVN8reY1RR263UYO03vifo8fU0f0nMZ\n/scTugsYY1PhMfJeVSzUCnot2vdAXbIzHuOh80GM4mszsUDv8bYhPf+cBbVtHbLGGfYhRzKG1vb4\nDpjWQOzBit+MSk/MqbOxY+DIYMnJSmA6dsqxwiNZHz58+JjFmFsk66BR6tWMUgBAilxsNvFUIWdi\n0DDe59AyhaqDgBJcGjpAA2q4WbY/AXdX70ZGeVgzrEmdI7WoRIHJaimROJNvtJlsbV5zMpHHyPaK\niDTwtzEnYfsZ8KLcN/lT/t80VITqIL1EUVhtiXLS4RN6POnlmu21WoIjq0we12hZoQ8+fK6ixM4d\nejxtLyiyb+QUrY0tg+EKjFhqHYoMurbBMD2MpyI9P1aOeORa5UHzaGcyjuqeEkw7QjQ/pAFM22FU\ndFVwc+zXcz35+lOxHT3+8kJFUmzNLZLUNgLBQgfbhCba2PKdgfOA5VOoZpIVWiFEM++gVLHOW1SK\n90X++ngRLLl21zR+psq92QjXNCg1So0y7Qfj65dqg3oDqJcziM4X0ZTyRcwEnfFnwO+PXq3XnXr3\n/vt3iIjItj9VbjZpMVikeQx+rWia37YHuZCXVSfrfqsyB/U7kp4CHwzjm/Rm1eSOnqnvg0qrJpe/\nKyHyRuT6WfnFe7mZ9gYxPnz48DGnMadIllwd/QcIbfm+SQ0s5YuJTF4LX4uokYsFFUcVAnW1pvaf\ntnxsvAi9bHoESHACPGvCvo6N9GYKmlUfM5y219MGxulyrm40nAaLDOpoG3thcLxLn95sgyK11qqz\n+umK1CYXorXIVkVVI69RnnoUcsSgpoh1DPvIjuPpTkNjbJoKgRSmGcnW780Vi611dl+paCMLm4ep\nQb3Y9LUYRGM9Ih8iidrZy3UFbLo8HzMRWPE1YOKuO8X9hlbYtPojR8smgOUe2CxuVK1xClVKKTSK\njA7BYByVbabd+pmJNtLQKR9vmHbk4MPJJb+alWCvOOixcQS61Gxskh1gBhWxcrCEL+Ievd+a1Rl0\npGjXbXS1P9UZzYHrVblB69LsWIxLO7dp/qEGBUl2GNt+RivRGjNUUNbmI2eA34pGmx7PoRvUeyRq\nQxubw3oMIyuTPhf6muFkNbJfU+DnozbfEtyHDx8+5jTmtuIrx0aKQJdAqtVuqAzwtMugWKuRkBcw\nK82IcCRtB/SpVumGCXSBbWp0+Xov2mTUgBTa9JFF8+f8XvBqZ8Os+/FEI0MHeU7XdmS6YGsYU1F0\nNATLbQPRMAPegliPoVCoO03kOFZTp07fgY4Y6aW2oqnh/FOsdUuDnB3ouMeX67ld8a+oGe9XRDiy\nCjpFHB6NtwefUTTW6Ilb5FSgq5xYGOC9rtT1EnjRlaj+2w0eFeeBqoT8MFQXaZtPa9unM5BGUdFJ\neWEhPgcwV8/tR3wS5AAAIABJREFUQXNDeikMKCpr3643WhGtcQJUDDWhomjANY3ce5KD1QVP3Hyd\n7YHqaE0vDt8/F3G0dkh1zIyOFcwZpC5QpCpQLHQ9pIqMaKny/QM/133xmpRXzY/HkYc+Nq/3QmY3\nKilnQLCsYpxEu/K2g/juQ988OQh+NY3rhd+d3JH4+tEVjrmALNzd0iXacvE3qpXPdcMjWR8+fPiY\nxZjjRop4WpTt96bSi+oCAKBM3L26pdKLXA71sXwCZUqsS2aFGBGr8jxEspVO+Fois04e6GhPIdPS\nhd6ayBA33fYYeFofi6cLEprOCJxW1Ji+pGQmpOtmo03me7E6YkWohglRl55EvJXLVPPIcxUc1OMI\n6orownnY9hDQIbSCE8sUlVZ6dD3Wr4c1nHPwdpOLY1Q5vhhVOKwNb9N1jpytn0dp+ldgbGgJTkcv\nelOEU3DdYoNMVHPxvihsidUh9XngVolg2Xr+Oc140/+hcqpy0FRZRM+Bm3Ua84nD0RsXqxMIg2BP\nwjCqmnL5GEu2Bu/L4CVtXkhHMCJ36r1ZPdk4VfMC9IsQERlfoT8ApipwBhRtqjPHdJwd2/SeOvha\naHdRBVod1O1k9+jN17UNPiflxEyEE8XARqqm7Qxe2Wb9aOGRrA8fPnzMYpwULcGN+z0eGvnD+r7a\naXsXNBOSNDaDI9faQDaw2aXPDTp61cH75rCv/AEg2HZFn7UOuxEffUnDR5/XMR3HcRh/VWSCQzrM\nQ0MoY6Vp1yNfxTCcrYiECxR5tjh4MaDrPZZfKf8fDipKm1yGfQbUkcbcX3pKn8oTi3Xbk+cpqigt\nwTke0nNGvfLkqYqSc0AYk/12ZQ6vZ+lUIMLEI31yAfj4Ivixkl7cNHxE0yUdQwanjvcAx5h9egcO\nEK5PK+123hIiM94ZG15QtxtSx0xnfXbNAL+dfUo1nlQdVN+sHg7Z+x/TxeBGNnWxVogVnlZk5bZr\nF2n1dj1WzOR3Qcez6fYxU/w2CDQZr2h9KGdS9IzA9aFDWQQdcAMztXQn1BTsIMEuDQn9Kf0Q2OjQ\n6NGB/s257df7cexMvZ5jy+i0h+OA7DfAvZZHc8QKfmfoZSAikik5jTmhTgrqmP1U2bnj2OYFHsn6\n8OHDxyzGSdEZwe3pZThBPIGYrU56F1j8icQKBT6BuGy6Yi9Xgw9mCETEffE1M9baKnumCM4/S9d9\nSlFver6izyZaaDeO0deJfBURrfGMFRGZgYs1/wZCrfy++m4Wn3b0tED61MuWgGCbQPZVdJTIDceq\nhbFlem5YbVU4CLS5UBF5vqDnpNwEt9nkeopSGiwQoldsEbrnqr6W5iemIpRGs3Ivrxur9vDa87ro\n/03lDThYZvaJssKpQeu4WWPOayMiQpVngOvETgasdTfOZOdCWRLQpamcHLIM/YHqLHNwAotqrfpp\nVtq5/GHYrzrRGfWv7MFGRQp8Mcilu9tPL1ncso/0Mp2BUN8qvyWSfUUB5UxUsbnKFgUOEGvSD0Ek\nngXWO2IfD1ZvVrv1Cma24R7AuTJqjzQRql6PiQX6fuwiuMcdZEWibi87Yuu7kzpu+hxTh58d0T/o\nf9EoIqfgcLbThUeyPnz48DGLccJI9t5775Wvf/3rkk6n5aMf/aisWrVKbrzxRmk0GtLf3y+33Xab\nZBMVItNFgKdEygFt5GgNysRmwkTinPpXcnV8GlU7bI0tw/QLwzYbuYz1nk8/dqyMjoPPSqIkERHJ\nTO9beSxezmhgE9Vlcpw174XNyi9GnUXrc7eTArmliQU6Fs4Oxq6PHeiZuR85U5cZX4JxYzZQHtN9\nzHsyZf1/HLLazi1w28I1yKFqh/7Ao6fH6IZKkco8cF8V9Gpjpc0Eri9BIi40K23c65JClrrRDy8H\nII3pUEQVbmCZTXaFXmqhItz0AcwwhpSvnlylfHYb0GXPi4ouwyPQ5E6jk246XDm1m40NG6cZURys\nuktDsyxEspN6fPQ4IHpNoljOpIwH8UmgtT3eMB4dhVzL/6gQSmMW4yoxWGlpun9ADzuG+y2/Rb/L\nfc/q+7FlAZbD+qDtUwmdcwYeKDl0Q04BeZOnJycrs4Vkh4eH5Z/+6Z/knnvukTvvvFN++tOfyle+\n8hVZs2aN3HPPPbJs2TJZv379iWzahw8fPn6n4oSQ7IYNG+SSSy6R9vZ2aW9vl89//vNy5ZVXyuc+\n9zkREbniiivkrrvukjVr1hx1O402okp84KTyqRCgK3nQiBcgR0dOr9yry7QN0e/R3ka5RxfM4qlI\nzi6N9/kdijwa8JE9kSCqoMem0KmHXQkcz4KWjPE0lWAzdldA0A1+/JT2af+/7/eVu+vciZ5LQJkT\npypEXPDTGD0XfrNDRET6PoIKLvCcqSkoNkrwiz0FSBVgLcAMo4YhsO78/2fvvYMsu8tr0e/k3DlN\n6JmeHBRGCQkJ6crCyGAbG64xyRcbnl2u9wzlWwVyAYVdKjBVLlPGl7KfeQ7UM/FyjcHGYBMksjHK\nGmk0CpNzT+fu06dPju+PtdYOZ3qC5npu+/L298/pcM4Ov733+a3f961vrQavbx4pTEvOunO6UIQU\nkFoRXo+K7gkiVx6eVjGReVSnL1gT1LAsEtKILtGPrPt9ZtbI4j1x8nxDMSyVdO2l0t/JAAGlqJWq\nPGK4yr1fQoHJ8ZGiXmrfo+dWP25G5y4g3Sj1caXVa8rddlXpV92GFOWm11Dv4GWGw7BhzrmdFn/a\nvVcS8+SsL9MBuHsj6rriGNXJee+kmLsli2TqVawRcFWbJXEnJtnknItKdQ/Hl/y881bK34Ho9QW7\nWIQ6nZfjhYL4m7/5Gztx4oTl83krFAr2u7/7u/a+973PHn0UJmhnzpyx97///fZ3f/d3l9zOsfPz\ntn390MvdfRBBBBHE/zZx1TnZfD5vf/EXf2Hnz5+33/iN3zDvd/WVfm+/6Y8/bwf+/L128+/8N36Q\n/+hKc6yGZLtVzS9AsozUPKvWrKZ3I1lpn6aPIrd5MST7nfaX7f7wm6/ovK4aya4Sl0Oy8p1a2Zq1\nR7/0e84xqjo98xs3mpmLZBfYUbUaku37Pjqflj5HJPsYkGxtkMdbUpeLH8nWQE90fhcKUK5dSDZa\nxucO/eF7bc/vf8LMzOq95CGmmXcrq5WP50fo18PLMvJ95N+6+cPKRza2wQMsskLd3ecOWXfUfpGM\njP3oQmrN48DFKIns2GrfPvwxe+3ND/o/SFde2zmBY6vTjeES3l4XINmLdCtdgGT5DMl1QTn2EJFs\nK798wT0ZuY4DTSR7OQ71/6q41LPjaBtQn7axlc9Exv1qii+SHSAk2+1EISbNJqzalu4E22DqNbg+\nyXNYqTSy7BKs0oWBt1AnYvbsJ99n133wE84mM3Ro6Dvi57g3s+T7diHZH33z/aufvF3ll+zg4KDd\nfPPNFo1GbdOmTZbJZCwSiVi1WrVkMmkzMzM2MjJyxdvT0l9pg3AXeypssihxv30lZagv5CTFHSQ6\noy/PCkVKHBsJPryVAXy59JwWR4NE9S7x5Cs6fkrctdg226aQiB6M4pvvMDOz3u/iYbyokLO38MUv\nYn25XvS4nIYOvC7/FzzUyUUVvPD3zH7cUbM3g0A/9gPsK7/DXe7Uc6DPlB7lTVvh33u7Wws5QTX9\nf1cR0jEzjKuV+cJTrQ3hwFLT+Gc1pGIE/h5bphgIC2BNGdr1pG21aHKcor2Ut/M0IVwQKpayqUBf\nrrpezWEu1WndE5IVEFtBWyx46ppcKhzb+4u1guq6PoKCWJkTQOIbT/oPedcWMzNrP/OCdUdkO/8X\npyUMG0/s3+lLVumUK6E1vtxQ0TcqaUeaGcYXKs572kk+m83VW1jVYr70Sn65/ixBwSI+J7nCUCvs\n+935DuH9kJ5yAVqGNkhOG61asGnMKsAXu1bNCHfffbc99thj1m63bWlpycrlst1111320EMPmZnZ\nww8/bPfcc8/VbDqIIIII4qcqrgrJjo6O2mtf+1p7y1veYmZmf/AHf2A33HCDfeADH7AvfelLtn79\nenvjG9942e2IOiHajpBQmBNWI9P1AQ9wiq340wJKKSgN4BgrqimBBTClDYaepvgJ7Uku2r56BSEE\nK3vuDmkoonhlv/w43tf9OS5TJeKy6vKO6LYzAYpL+Di2UnoN0gSJBZoV5jHzztzDZc7zGNTkAgsK\nY5A61NhWByhfmPKkeQikN38D6OL0L2Epp2JUPE9SeI+fxC06lq6JxrrWR7Ee1g5aSXdf8UWJqOOl\n2SvR9Ijv77V+fEbGeuFlLN+68UMoyptIS//DHNsdrmyjlpmJbwIlXlTaQ6kKIlutJkKvgJFkmO2b\nkj5cLdQQMPhvoGJ1F7wkKhRiW6lxhSKpze6EW4cIVmmg8DCuZ3Rik7VyOM6OLK2rLxNxqhVWdCSu\nKiIbsHRvL+BZkV2P2dXTwy6KiikilDiHBor6BrflPFqgiWi54vuIIwizDg0e+e1ssDmP1xTrf4Wt\nuFvieaJRXvjEMlfIsr3ypDlFAwsTuUbKbFKKSYCIK+by5cf6qnOyb3vb2+xtb3ub72+f/vSnr3Zz\nQQQRRBA/lbGmbbWpOX+uVQioW75wNYqXmgjUXhtWs0EXq8bJDzJXO/goRSVIz2msw2wYehlIViil\nQ4sax6pmmQaLR1hAeued2OeXkW+TxYgEZRzDOib9VQgzW4XWxZnz3LtRINn4LSC1EKkv538Webjc\nGI6hMgs6T4Qo9OivI/fnNGXIvqXHxYSNDAavOkJkRBfKRk7WL/7BjRVJcyGo0XVT84GDomlIWNjt\nwY4CsmJDEcE2h5g8rxOVzDNHV2Ab9Mzq9CSNpVYDTqFoZRVxnosInofHWEco+QV/FCVKNaa/+viq\nx+C9fsuvwMoj963n/bu+7XozM6uzvTv23adxKK+CCE2EjRDGIlbrhcP+YxzBdW7PolDbnluw/KvY\nXMHnJ0VEGmWLqiQY1Yory+/2BI633o9jia5g7FV0iv8Yxy7ZzXDqwjz3lQrXK3SdnMYBttU2T6MI\nKXQaX/LUHtSqSwElCd9U7sD5Le7CKqYyzpZkFk8TRK5x5veT1AUSYq3ze0f2Sd62Wt3DCd7D4SLH\njLn+0BVJRyGCttoggggiiGsYa4pklZMVm0DISKhTAiOOkIwn/ZFYxgzjVLC7BGE0KwmxqWW0NYgK\ncXQWM2X72VO+Y7qUPJyTc6XwhkRKWrdDKCa8QIti5o76PwvecIg0rM44kdJTfnTTIjpbrXorCldl\nDLk4MTEqm5HLm74DlzB3ki2sTwEJRIkQRa8aeA6v5TFJROL3Td90kWyY5oonfwUD3vsSZ/obMVaN\nRWw7Pe1vGKiM4PfMpD8fLqTgtC2m3cxklJ3Hsg1qkV4TpsVN+ghydN3iQGpNvmQe2zyi51kPG+GV\noLPZY8/53iv01GE+t7IbKNJZsTBfmHuBNL+ufYk61Tp83Plb5is0FNT5EkVO34rrNvZNILeS6GQH\n2EbLBofSDqw8El1kAomsF94OFkn+l29wnhenxVwE+YUuFgu33SE3ffI+HEtpE85o4p9YMSe6lpFi\n62duxu8/fMY9Zz4LrSPuOV9JaKy7hWEUYt44+VYzC/X7JUFrN4FNMX8DEewI77se3ngruOEkmWpt\n3jxaPfHed1a5Yq54vg1VuwhRqKmd45u62QTta8QuCCKIIIII4spijaUOVc3Ei8RdHGaAUoBKf3im\nBOVMhHQk6KDP6Pf4MpFPjWR3Ili14CmPJs7kxSy2zcxMCFa5IdqVxI6AIK8qdOPnbsP5sL0v982D\n+NxT5Lx2NRhENoJAbx7RbkcEYwCzeHIKJfyBDpD4/PVAVxt/gM+cuR95NSHD8jo/3grXcSyJvB/p\nV4Y8pO+ilM05NhzDhRnsMxb3i6nHC8y9EkzqupVHyH2V+zhzup2mewF13Rryccw1fO/JnmUTSc4v\nRSkkq8r/xbig4W0TeH/KFSmKvHjKzC5Eoo49PKvn6Sdo8idhdKI1rz2Q7/OyCvcIAEliskM0ef4N\nm3g++H9rFquX9OO47+q7gZplZ5L4lp8nq6q87pXeo0XntbAdx5+ao8jRj4g4iQYlviLb+7nbka8v\nbcTvm/8Zr0KwahAovAZNNZmvIAftNd18uQjW+dwVCh/peTQzC1GSsnQnedyUMBQHudXDZ/w8rs8A\nF4pxSlHqORRSVSNBq0u/yitUpecj1JV6DZO50U7yw+HL49QAyQYRRBBBXMNYUyQrhCppQwlvS2hE\neTt1Vyj3ZGZujo7IVbnZBKvQEeVmHdsIVsrHMEvHpmk82Mcc7HpaZreROwufRIdOu+SZUWWVQUnD\n4j4ghOQ85RG34/fEo6gIx8gl1AQpkW87gW2rFbQ1iO2WaXZoZpZYIPr4t2fNzKz0K7ebmdnyVpzw\nwCHM3pP/CcefvZ6mjgRTiTm/9Ub3jCzGhlfUfGUcn4lRyKW0kULmi1HfNuIE+8klnJk4t+VRMRYk\nS6gKLW2/Pbeb8mBN8XTFKJlmLpayc6lFtdv6c1+Xs6QOMb/cGHHRV7irW86RDWRlWxxU8UElviMU\nGSKSi6jKTkGWDoXPlSc28xhU3g5urVD9lq/gOrXIMGkwnx8/Bnv19jC2qbPttnJvnqYIUQZdhqFq\n03mOot9jLpW819rN4AjX+/DZ4nrmZAmtdv8Fy+1E2y1+Tqs5IVih8tWYHS/X4uZK3+/9f4iGldln\ncO6xElefYVynoRcoesR6g3KtFd6X4tsn5/2r3aSzqjPfq5l7vzVyEvpmByVFu8VJbiYv/xUaINkg\ngggiiGsYa4pku+1mlANUvlWdYPq/zA7N3FxdZqrt+58kDcW57TmO3FWLM06jBzPTCjmCqXnaA1PS\nrDqKmTZdRd40PD3v7NOxKaEATJy8QglJL+2mqPVB5nPIiYycAwJosgOs9TO3mJnZ4h7MxGPfx/+z\nR1x2QYd96HYDKtflYfXy47wWd0d5vBTBeHjQ7PVuxT9CCcHqdpxXbQmDOfAchXQ41uUhd55NEjV2\n2PFTnMDviXn8Xu+nTTdZH+UEu8bkn0j4JZQqk0sZ2ImviH3gtTlM40pagMeY503PkiTNSy475ysO\nop/YgsuT7c7FdmTV/jwQbpi5yBY5qJJV7GxBvrRJZkpsCsivuolGknmaA67CFT1/L9Dv6JM4HvFe\nVQuocqWlHHyk7meYOLbzRLLRTejPL2/Edqsbcw6HWB1pskWv9xLB0vZn5IkV3/8lJOOIzJOPqm60\nyHoiRrJlfGL0EgZ/mdY2F4itX4EugvjKGjOZGo7+ADWN4h4uE3hP9b7E86Rs4vJWrDwkDqV7qtbj\nx5hRb0NZl0iVV9DbzCxcrPv2cakIkGwQQQQRxDWMNUWy4qIpfypLGSFYVcIdS19PNVA8T+Vpa1SK\nyswQEa2QF5v05xNTx4BS0hV2cDAHtnQ98nO500RQrBp2Nrh5UuXHOupg2kxbi6cxw/d/BrxYIabw\nS9Tno3qTuJKRKfapUy0pf/OQ7/zNzAaeBwKPTpLREAZqyt9KrYJzyl1SGPsm/L0+hvPOHsUgxs/g\nfbI/rlM4yslle9w+2gk5yuFFClkad0kcVsY0xuxxJwKoDjPntYHsi8PkK2ox4EEHjmaCVMRO470J\nev+pXz1EQ77muJtb9cbF+LLNSfBOO+M3On+7wCgk6scYsoxxUBXvAXEkY+eAKjtEdImneLCxCx8j\nrWJyZ7ga+KafLVC8DWwDXYcE873Fu1FBT33tCf95kskig00JWSfmK45QeXETcsi9PzmF05vFyqrW\ni3u4sg5jnPo6tRvY+SRzx84GvErPQ8aEqu77QgLmPO6r1TJ4Ocpe4qWnnyenOC6VLdwjOabpV3bg\nmKIV3lyq3/C1LW59l5GrVyulTY2CjINgqXAmI08+K90Id7UIkGwQQQQRxDWMte34Yu5O+VXlUeOO\n/iNeHZUuT1JNKFdILDeJf0ontpnCh9Kkm4qTW7kBuVYhXVmA937hMRwD8z41mu15lXnKt9OWhDy7\n9AymwJWdQMOJEeRa4zNAoaECTfBojRKKEpmzdzy5gM8npvm+o65geOE/o8tm7k1Awarop05JgJjd\nOcxzhtnjnzqD8y6vZ36Vti6xIjUA8l1dWR7LDXFstbIIN/C/wg6qGHFfTXZnOZ0zBP/Kp9ZDSd/f\nZTXjhZKhFvPW9P5QPld95K00zjM+z5XHUeoJmD8u6PhihTw6juvXeemU+96uz3ZeYE8/WR7dBn3i\nlYbPUDCdyO5KxLDD1D/o/Rdc0+7Or/x2DPbIfmrakmPbjWAde+8cYVZUq4uI81paj4eg9195/zBf\nev7ncS9n+Wx0b9vJ4eqYl3Dfih8s1kGTeWHp1pq57A0xM644uoTrLxoh92aRDoXMADrisjNXHi1T\nc4HKWZlJrKQaOTwLpXXivPqfAa2C9b0T8YBqV0dFljU433aKiJbqXKFrpScbRBBBBBHElcUad3zh\nVflShyfLSTvc9L9fM7KZWSNNcz+ZLcb83WPKv1QHMZv17gdKiQ0AGUp5qDYM1BVml1YlJScF5okz\nnur7DLUKskBZSzvxWbEiUjM4vvIEqtRhtvc0qW6VO0BlLc7IpfXYzvyNOJbULW6/dovoff2Psc2V\njeI44sRGnsbgLO7hbD2OGbU2KJSpBBRe6jnO1lTlUqdVyDPGiSW8J7mEfc7chn1G1uG8q+Q4iv/q\n9MpH/K/KcXVbvbc8DVO1YT+SSSxKVQ0fqowSyR4lvKj6De2cINKQnqyUzoSwohObnLeGpT7FCneY\nLgrq0e+O5iS4q5dFXauENIajG8kGeDX0f5d2Yl9jj2FMY+eBFjtiDxDptkbJwaXlitw2HJ2F69hR\nFg45z0ljJ/ZVHMf9tOEfwdWVZbZ4wLVX7TEzs+QJsiGY25QynYmXvgtIsc4VXOqMm3dtHT91xWNh\n5naRiXfe6VKX61ZE8/7eLvmV1KQR3E75rWCiFV77lDjiuJd6TvHZYN2mOqiVqF/1z+u8IraS9KmV\ne5WinKyHOkHHVxBBBBHE2saaIlnl7KSuJUToKDMRncZK5M8mPb3vnOiEuppCttUu1f4SnQT2oHJa\n2IyNy2Cx7wfoU2+vx//Le4Fu5A2WO+eiGOUJ5fMz+i1o0LbIUFA3SHoJ6KM+im1lHzuFY2JerbGh\nj+eD7TZY8Y97GpJS1LFc3Bv1jZEq/adfT92AYaCL2IvYl3K0tWH2+HOajiyR0+pwWI3/d/epGb6R\nxj479PJqrFDFP8Me8Sn83u3JJu8vJ5euXnHdZR5kG18A2mjU/YySaj9+z50V9YR5ULIFLuBVqspN\nH67u3viOV4sisjrXtnQDO/WI+JwQ2rpIHlHo7FJ6F6d+A4hT3Yvjf3fKzFz2gxYSYkl0EhiIkGzH\niZSkdyEti9LGpPOqzqbUNJHbF1Ff6JA1IJUw5ReTp8GKKO+g9kaRXPGjOKbpN2z1HXPvcbINPN1N\ntV/Ayi9MTZDk09R72AxthfA8xqQ1R+Wyi42Rrh9RdkcmlS+52ggdMirCE0D5Qr/in7d2Yp9CnR3q\nDrSIaIVgxSpQfaOZpEocV87SWjZzv1eUe3XQ8gpXQ2R0dKIBkg0iiCCCWNNYUySrnJ1QZ7fXl1Cp\nEJGv+sf/1XN+Tyi9V4pSmoE0a0mtv8nKYvk2IA3N5mIh9J1gNTHm5mmU61K+NjKCHFhyDgdWHcaU\nmFhiF9MP9+OD8pli1Va53AIkOa2Zw75qQ+6+MqdYJSeakGZmM43X6AoRXgE55gjHUl0roWn2umf9\nyN4ZJyJir5OscrKO8tU4cpc9GbwWFugv1TBfaFuy/JYegey+dd18OVl2qoWrfh8wrVqUX+vW6+x2\nllUX0sXUnbwIKkKnAKOClFgCjRx0AGL3gtHhqFg5J7h6TlYOA+oAbPW6J3j+bjrfZnA+I/t5f6VZ\nAyByU77RYSzwVbncTgErlRbdN6LUzUgs9fK16fTkhx6FA0f4RhyPusLSx5n3pap/h7lMR4GN98Ds\n26mXzN9Hv4I8sDQ7WkOuO2/yIYxR827wkIv3cgzZfRYjwgv3kiMuVTLmf0N0EWlOkIfODqqQ3EOu\n3+7sSz5apa1cMcrZIAekLqQqzy4961qZ6X6N8t6q9ykPzHPh+HlrQPUs6xHkw0aIaFsZqqGR0dCd\nSl4tAiQbRBBBBHENY02RbA0Tk6O6pfyhqn2aUZOLXWjMXNV9h+NGdBkvUMlc+qMEutnTQDwNeitF\niJTiJ8A6aPdTkWkXkIaq+bU+F11q5hOzoUYEt0Lvp8wUFcDKmBIXfvNO3+eE3BdvoN4CUVxyBpch\ne8adFjVbdytbiR0gxB5d8bMq5EIgxOtwi9Wv3YcfVM0Pe0BaaT2RKHmw8UPYWGEjdhah5mszi9/T\nk/58qnK06uZSh5hexdk1M0vM+jVBdT6ODvAkVdIa1Idg9V18Ul8fvV2880h9+GZmHSpYRfRe6vdq\nVRObpc4F3++gL65AOmeQsxU7obMHyC9/Hbbn7YUfPoDjzm8jahwkR/PbJ+xSoX2WdwKlteNAtOJ0\nOtzq2YrzKu5m89W34jO898UGaA4RTS6ySj8LVkG2B7zX+Az+nqGDc3MT8r9yIHC8rzzc1dI76Ogw\nhePJfBtuE+KyhqmxIIfgzgrHlpxb8X8jy9RxZldddZRdaVPu9a2M49l0uuNmgWwrg3juBl6gtkLc\nrzI2cADXqdUjbjn1gVmfSFIfY34fV0UeGYLuFbHqMOEaVySesbhcBEg2iCCCCOIaxtqqcMX8CQ3N\nQHqNF8jXS/r/bubx++qaUMRrlUp8fAazeW09ZsPyME45M921b/Yql9kdkub/+465UE+5Yh1P73Ec\nROrQtG9bzY3QOEjm5fKKD87equQyXqJFIg659nq6r5Q/Uj4zPUm3gSHp5EqMVx0p/JX5p8RSl5IZ\n1blSs/4VgN90k4iTyKU6SmSe8ydhw1U/mna0DVQQJ49WU7iQbaTq6S7r4kgrJ5t7iblJKmGFsnQt\naK7uhhoOsB9hAAAgAElEQVTeB85n+8BLXf8gqvGoWmlbLerKqrtv8Cnuq9LFxRVaoSOGXIWLvwxn\n2b5HwMXNTgItF7a4OdlF5h57zpBx8o+P+/bpuBF3RWMdlnfFDdQsHscxjD7B+/kcjqU5RDSejNrS\nbiCxBFdxWr0s7aNjsdTr1Bn2girlGJvyFjwbVfK0+18C6ixs9vusDR5w89vxhzDeYa4U6q8CDzg+\nxxzzc4d859WtUNbYADZFRBoVDb/myPKOrLsvOhxEyRRS3URsgkYvxio5Qw4un4nwCtBwcSvV04rs\nfFtiR5gQrjjjnlVdhLd8ZTDq22a0zFVdVTWDQLsgiCCCCGJNI/iSDSKIIIK4hrGm6YJYiUtdrtIc\n0RcucR1KBV/rnra3ULirJY7tsD1nsBSIn8Gys90Lqkwsj78PnEFyv7EeFJhOBkvAhZuxZHIbI/C6\nvM0lsCtdMXSAdJqzWGZ2SMPpbAapvcaW3cJmirbMkSR+HMdcW6Tl9kmSwPOkg0Td82vR3qJW9Cfz\nc9Lj4CqlRA/GOOkrIlqrmJikY0iLtBZHWDsueou73HHEt7nc73CM+3swGM0WJR7ZXtthuqMV9wuF\nawzdNlt/ERLnR6pWiZKSOvV5LIdFversncC2udy8QPR5evU0QmSYspRlj30Ql/AqLjmUpGe49GXL\nqmQKjSIojnD2rVgSp2dww4qOdf5uvDYy7lgOvkBJQtL5JMbSeu4Ijm/vTjMzq43R0ojLzuUtuHcq\nw5TudGzW2ZxyO4pSEqCujiYcY8v8LhZ0FkRhwmcH4eNpA9+AYLiNYGyaWb+ToNI/J3+ZtECmdyb+\nBi3CNtTnvLf282hGaPK5S7EY1XnxmG+baqJQocsoltR5CY08lTtA1UpSJEl2Udmz7nWu98d5Prh+\nmfO0huH3QaSOz2Sm8WzXJyjZmKYx5nlsK1rgNmeovbkDzQ3JBZy4t8it1J3Sb0kyBNsxyXuyAJu8\nvJh8gGSDCCKIIK5hrK1ADCcOh6LVVcRqS1ia9YR40UUKDgLTNmgj044QGRHBhEnTaY+ybZEW0Y0M\n7Wi2D/j2XaGVdpMFtJiHESTSc4UWNbUdQESS8lu6DjNs5iwOXEhcFJj0HP7Qc4oI9hzR9hRpZB6U\npvmxy7XYCVGTcjTkk7CI2oC7rTWcVsS6P1EvxGTmFrDqfSzY9WAa70niuKaXVWwhMZu0omYvGz+K\n/n1qhSJE7A01LqhgpyYE57NsWW3wenYjWJlShpaBgLopXLJbV6HJzCNlSOPDaJU0qb1AU52ToGiF\nXiTNio0Q1V+CiWWYaLLC4mmHVKfKBl7PfvcYzydwU+RO4l4Z+zEGo/QLKJrN34grPPwsJTdZlBEV\nMUmArjGUVVHvSSJjdR1XO1bcxPGPqnkH2x46wOLtCzjfMi21yyM4/hjR8OIevL+6CSiz/yk2DJCO\ndfq30WiQnr5w1dMgiq4O4DxHDnqUr82svgf3ZW0r0SXHsLQB768MaIWF8ar2c2w9VvXVPtwDfSw0\nr2zmvX8WY5c5RHsntkXHuWJZuZEWUhxTIeL2dtxb9RwbJrR69dxioab/ftR7e48UOQCSAw2kDoMI\nIogg1jTWFMn2nvQbm8UkW0gYp/ZO5RGVe8JnSH+al7mfCMbIH4YymBmXb0HbXmoakCBSAhLQjCoK\nkUj54Zo/r5VccGc0Ucrmboryd/y95zQN6J4TBw3vq4xQkIKHrdxrvY+2GSmP90tXSCB54S6Zx+Hv\nophJolDoov8wrTm+CqpQhvnD6hjGIcY24eWtbOtsqinB3WetX/QuNkA0cD7zRQrbNIjQy35bGoU+\nF3bEupVPZO426VmJ1P1NFE7LNNswW8cgQC2xZJkchiSZd4jCPhR9CVEgxmhREpUJYNJzkLwuoVtB\n++qssKmA9L3IIGUEiQQbm4C+dN2qw/4T1rWI9THnd8ClHW14irlHnt/Uz+C4RcHrOeZvFpm9FfdC\nlP0CohWV15O2lML9Wr4Hg9vktTjzjqa1mXZOn6DlEFdfxfU0wMwilzp4kJKV/RJO4WpNSoJncX75\n69RUg//3v0Qk6Hn+dD/KXsdpjd8C5Hr2dZT75H0aP4+HJcScbCo2xO1gQ6JKOU01SXdfWsGW1uH8\n1C6rxpUOnyOneYTXL3uY7cQ0JS1NYFATvJ4h8hunb8f783vdvtrYMuVJcRs6Qva1oRR/Z/vwotd9\ncfUIkGwQQQQRxDWMtTVSJJpSrlKVylaqy+AucmElXOhXs6sEvUubSV6fwGvPc5Ra66NgRy9nPbbV\nVofivmOIPcHZvexvzzUzW7yeSI9pmf4jmBHnr2cOS8CcSFxIN8pZcOH6lO99ZRoz9oyymvuD/c6+\nRIyfvxmf/dPXf8HMzJ6vACl87hv3YRvKtTaw7en33sWxwnbG3wzEt/xxiFcPvACYM3kfKusRTx5K\n1t1hsgQiCaIo/j+bxjHlE9hXS+wBpzmB6KyhFYhfiMPbTNIt8O20LxaBtpRjDVPOziSFxxx7iP+3\nYQqdzwG1CMG2l2nnPeyKdqvC3XzqefxhD3KNkUmyRHpwHdonTmMfHbFdKKPJe6IyQOPC3UBl8WM4\nNjWVmJkVibq0Ohg8iLGT3VFYlil9WFn0HSOb4Axg5dytlK4skF1CdKYKe5KrheSLKceKqDag/XMV\nxlpH9jyuY36nfIAQK1gsWaNHxHqR/HnMz/nrHulZ9/ycGsYgxkarPOOzuvF7tOVmy+/ibUCuYkXI\n1luNBks7KFpOYJhYdnOdkjwVmyAzJTskv6hTefeI73flUWUT5byfz0x5GGOayFNgZs79OtSzq1Zw\nfQ/EFyn4Xpb30uXba6/qS7ZUKtkHPvABW15etkajYe95z3tseHjYPvzhD5uZ2a5du+wjH/nI1Ww6\niCCCCOKnKq7qS/arX/2qbdmyxR544AGbmZmxd77znTY8PGwf+tCH7MYbb7QHHnjAfvSjH9m99957\nye0IoSof4+QJ1UY3TXNEVXM9ogzi9CU540m0O06pNQnALO/DDKo2W1UD671+6wq9X4IesruOeoR8\ne0gBrIGQYJP3SNiFx7LE4yZyzW/HTFmUhY24rRvxvu1/T1T2k2dxDBRZNjM7+9YJMzN79Ff/xMzM\nPrmICvc//A+MaY4opec0kFH6MKrp6/8a2+rsAUyZW8B2+s6gwnz013t5LhSgWe/s0mojzC0n8RoN\nMw9YJvqPUsiYudfkPM5LSEo8WYl0i1UgZOSVSFRFN8ZVgRgYEoQRSyBMmT2jBF5rFshW5odt5tua\nuyBIEpvjBoeYE6y5O22eoUCM7Euy5PvSKqb6CuT0KneyKn0QkojN+5DfXty9+uPSoLVPddCF6pnz\n+Nvok8wRHwbBWawXCd5Ew7gAPZNA4qU92Lcq56lzfsGbwm4KvpPZkT3bcdgtqgEoxyqut56N3lO4\n3+avw0qkHZHokAwyMcbZ4zi2Cl3Iteqojnhy6lsxzuGDuD4l6mk3Mvg9KdlMos/caS6Z9Mwzv72y\nAfsS6hb7RaL5ZmZZ8mJTFNIWIm2Ko0rQq3pMO0m0P8t7Ju1RfjHXlia1SCZOH47BZ5fURYjRKroj\n9hLz+BLqv1RcVU62v7/f8nmQxguFgvX19dnk5KTdeCO0Je+77z579NFHr2bTQQQRRBA/VXFVSPYX\nf/EX7R//8R/t/vvvt0KhYH/5l39pf/iHf+j8f3Bw0Obm5i67nUZanUX43RULIT+RCFfdSV6Op/K3\n1RDZABRjESqOViktR2TbovhucSNm0NQ8UVtbKITcQVpSa1bzItnyGI6jNsRuHiI5Ids6+Xyqqtc3\n0Pr7tJ9F0HOMKPlF5P40Fxbv2uK8Jz1LxM284BcOAskOMC829ASQj0SOm6cApyUBGDkFE8DQDiIN\nVla3/d5jvmMp/8odzs+T9+K4hsax7fkFosh8jNtmvrrq79SrAzQ6593pmrrbXYaY3ve4LAcgTolX\nh9VVliVMmyLvlR1EbYpYh5hHjVUAjVsU5JZwSdujqqxOrvaz6HwKUcIwTHsWWRPlzpFzLUFtVroH\nDpOhMUH0laNN+TTGZ/RJV2AmeRz3f5u22i0hc+aSm9fzWvPwypso0jLg7yCavRk3V4KdfGP/ivEJ\nnQXnd/BfDlnj+gkzM6vxOJSTXNmAbTVl89Sk4LQs33ldJFGZPYnz0ipRC0flmjue/GPqEMe97Dcp\nlNxnYUJCKmTk3JL2bTtGxoAs4J2cPJ9HSSiauXlojVVhEzu5ZtmRR7F0dYvJSDF1nkLgYhCdwZiV\nb93MY/GvsPqOevLA/M5RF5iT5yXXNlZQ3eHyX6GhTudKtL398bWvfc2eeuop++hHP2qHDh2y97zn\nPZbL5eyf/umfzMzskUcesX/4h3+wP/3TP73kdo5Nztv2DUMvd/dBBBFEEP/bxFUh2f3799vdd99t\nZma7d++2Wq1mzaYLV2ZmZmxkZOSy23nrg5+zp//f99ldb/m4mZnFipIGpKg1+4PrvZg9an3uLK9q\nnzhzEXJsZUGRO43c1/I2f0VV+SUJVGt2VA4tO0n5t1FabW/A7PjCH7/Xtn/sv5mZWZMINcycVjiC\n2bt9lmZ+PTQcpERga4U983nKLFLsevTPH7no2Bz5KyDXv3zNZ83M7AOf/C0zM0vPsKtsipXtp5Eo\nbhUK9p32l+3+8JvNzO2Vb+TiHAe8ZpjnzhxHuqe60bUUmblV0m84r2YP5efyWmrgRbO4EECt31+F\nFjJSB5J64MXtPfr777M9v/8JM3N5yEPPMZH42HO+cRD6DBOZt6lpENmEJKDsWayf/Nks8o3hMiX0\nCkVnW83N7KOfBBqUaeHcfwIjQUyVwedr9sOHP2ivzb4TY3QPusvyHMPkLwERzb2IHPr4dzCmyfNu\n/rTdJfWnkGHimd+GRUzsThzLLaPIF69L4vw2xvH3JwtAvKeK+NyeXuz720f22om3f8i2/o8/sp1/\niP2u7AVbRToH6RO4xvO3A8jU2F0lA0/pXCiHXuetIFv53AnJa/J9ns699DTzv0WhXPy9mcLfh57D\n87e0O2n7//p9dsMDuN5ZdiQq59pzmjeF2ApkbiztcccsOe+/37TKzBI1i1evDrbUea5yzkJOslPn\nB7cgbx8uMHfLVVInFrGHn/6wvepXP+7sc3mCovK8l/uO0zBywc+zl4j3dx570C4WV5WT3bx5sx04\nAD+hyclJy2Qytm3bNnvqqafMzOzhhx+2e+6552o2HUQQQQTxUxVXhWTf+ta32oc+9CF7xzveYc1m\n0z784Q/b8PCwPfjgg9Zut23fvn121113XXY73SLDypEkORM1aC+hPJU3JyQE6+b2/Nsor8d03Z3j\nqQwDveRO+/NS6hlvdanqhF3NZ1c5Ks7qZpW5SlbPk0R4dQ0rzQ5TeT+7YOCQZ6O+nbn7/sLP/ZWZ\nmX3s7C/gX8yrKUeszjUJUMuYr3XfLWZmFlvAbL3wSuQAV7ZxdVDDPjK0WV7e4lZeazfgM//njT82\nM7O//tbP4fhnuxS8OLvrukmHQIiokWMXUIJsi7K0HNzr5/BkJfRNszxjLjY0TtpDhefZJfos0erq\ndf7+dK2CEqdgb20ZdyUjJsnKLdh2tMK8NxHsyNNAX7UBjMnir+7D+zjmo48D+h2fwD6lDVDrlbWM\ni17FyZ1+LRC38vk63/7DGLyFBBDqD3upcDVCha8m1Z7izLlTLPr8GWxv/YGm2dvN1v99zFr9OMfS\nGD6zspm5yV8FNI1hEWDDz1I3YBT/L23iPb+BnW9LctdkPpK1BnXqaQVjZlYjPbmwneNe92tRzLyC\npo28zj2ncB6OXgDBpWy6K+xCq1JLw6sZIg5uMy3+L/PA1OfoPYbr1sjxut2IVU18C+6RzDlyr4s8\nT2obKJcb4rNQHHOfP9mEVzbiQGMlrkZ1L/N7Jl5bpeDQFVf1JZvJZOzP/uzPLvj7F7/4xavZXBBB\nBBHET22srf0MZwPlcZIVISDMGvUeVijJKqj2uzOpqpYOn42v4qgq1GFSHiPqFBrmSzukKidznQeg\n5FO/F51CxQm34qgqpZ1g91EfoVyc+pY5oSm+nwhXFjCqxqvvuTuiI24R8IUaEEupwYowkVpqitYZ\nNIQUDg1thLBsM42ZdmVjP48J/08ssA/9S0+bmVmL6l2tn3Nz52Ge4Oc+91r8Ydg/ljJplCqaY3kj\nRMsuGbENWmQbOGaJXrshpXG1iiG3MSINAllHF6jdq750doR1iCDiBXbznEUVv7IdY9jcu5nH6qIT\n3U+OIR/NNWObsK+F63BiMfJLpZ2hY62O0uZlQZV0oO/o9zGmUw+4qzd1RI1/BkyGbiQe6QHK7H0a\nCHbuXuQL5+6RcAe7H3lNQsxv13ew1rCMi7E8EbXcQQz8uq8iX5v/0ISZmeUO4h4ZJUKfvBufEVMh\nTouiBpO0jT4/a0YrN0fdy0OSUZ40Rj1gXWNxdNWBqbFWET6xzPz1XJfVTwcbj3dtz8zl2upe0XVJ\nEOEu7sV59R/BNgcfoZ1QkznbOYx98yZ0+ImFEKaFzMpmXFcveylJydlmmmp9vC1lsJoohHlMl+cN\nBNoFQQQRRBDXMNZWu4CzQO4ktV/VPdHycyfL62jj7UllujbUVHiSChCVeSICmXkgnuQMu5Wo6lTe\nhKlJecZ4HhuXNbiMBjf8gDPVfzWLL2In0g9Vp0ybalVCaqTuWmJRvD1/T7nyqd1zYHNi1Pl5U+yH\neM0CoR0uII+o/FE9hxnVQbJVzOLiCWvmFcex9wRVoWp+BFHe4B5Fu83ZWfxJsiRK68lX5nkIFTvq\naeQ6Kr/mmjwSCXFcwh4jRaFfjb96waVNEC4zf8bzMh33KNWbMoA6RZoD9j8PNJd8BlCqfNuEmZml\nTyy55zcB1Li4l0r7vdQVZU5W7hLi7upVqyPlXsVESZ4E3DnxIPUiPOm5jX8E5kj3mqX8n8FLzvwz\n0G9kAMekbq1Qyf9Idvh7KMu+e97o5fUd57W+AauW8I9PmZlZ7jisyoU8ZYXdcxqDvXB913VS8Fro\n+keoZSBTTl1nM1dDWUg1M8WVFnWddX9qDDPneX+O4qBkYihHBCFjaYlIKczM5dJGa1L8EopmdyeV\n82JLZDTcjudIOrptcsij82CahEo0XKSzRWyInGrP0C/v4vlsQnK4NIMHKloll5irHTklXCoCJBtE\nEEEEcQ1jTZGsqrsN8mCjJU6hXf0R9Qwrsx5YIG6crLPjfI2t4E0NzqR19iULdSZZrVZOyLEkVufU\nAGaszBnMetOv6nX2KWWeOvm67VFJ/+MldorVSv7e6OEMTC8sMRWqI8yNdQ+IhyP69aWbzcxsdwZc\nvwMD4IvKJyx7oujdtdMZJZ5vjGpBkVkgueYkqu1yCli+iznOTa4eZpoqWy2qbKVPAydXdnKM2PlV\n7yd/lvkzrTCUi1VCMlT295a3PcQNX5+4mYWXMLhNdlmFVjCWymWqAyxMJB+lR1Rfic4H5MmGqlS5\n4mpo6RY3z63unRS76ZSDqw1SP5a5v4EXAVOczi9ysntfZF6VnWJnP0H2y3m8b+e7n7CLRehm6B/k\nd9B6/jdfYWZmI597xszMkvPIyWbuAzqemaTfGFGaONlyoG5l2s6rk2Pkvsb+DCj66CfZzcdlX5Ny\nt52o7Lf9HYrS/VXuUyhVtYaWR+NVN15q1q9R0OLY6GD0zNQGaC/OE5B+wPIurByXt1J7hPni3lNu\nx1crSb5un/Rv+VwRySanCSvZotbzRXQ1hnmvh6gJIhZGZQ9oE1G6URTGccz1Xvf8lGstF3jfVanT\nwRWiNDdCXYuB1SJAskEEEUQQ1zDW1uNLClhVTZ3SDcBrgSr+qmZH8+60IadbsQc0szayzI/yzKRP\nKY5tZQOmIqGTMFF0kWpAAy/hA9URejSdc+GzZnbNXn2PAItKl7OZ9avEpydF4jXfa+cKNCi/9zCQ\n7IO/+vfYNhkY1WGgzOQcuYGvuRUf+D7Ut+ILOmEeZIIIgk4JM3TlXdrL/7fdY1mZA9QJjeE8Bg4y\ndxfFeW66F+jx2AFKLnETQgDKSSaWWCEmv9LRmfWsRPSzEKfYBAoHwZL/Kx2BMJX129s28I3Kg3Nw\nY+q/V3eTJw9MxJ3fpS5BOq3OC11xSOgUHF9i7/sjaLyR/uzin+DgiyeRT939KWqn2oXRvgfXsUlP\nucoI3rXpv2Msm/Quk5rauaeBuiK851s5VsiZ98/04vqWVtzx0qqlG1RFStLBxe+lLdhW7wvkpBLk\nayUSobqa0KejYdD2I1z84n9VjSQ7pVUCObn0E5MuhDoz61ulbYDPbfiRdCI0Th7+do+fTRAnApVG\nwfJW1lHIOMpm4aNWl9Yy6zD6vsk9Bs2QziCuX+2OxAXn5/gNFqlpQjZBgin+1AI7vuqBx1cQQQQR\nxJrGmiJZ5T2E7Dr0a9IMpZlH/c2NrJvUi7CzR6rpbT8QclR9NIMOPUvvL6Lkeh+9heiK2XccecfF\nPUCK2SnsM33ezVn2HZeDA/urbwME6HsW2xJSKiLdafV+sSRwjFEyH4Su5DDbPHvugrGRRu2jBTiM\nSh9ArhHljUDa6UkcX/sO5GxXtoMYGxXCDwOdFtfhmJd34s+ZrUh+lYpJd6ealMkKqAwTPbFyPJxC\nIupImippQ9KV9eechZwc/d8uLrM3pAgl/qtCbrQ1rihSh8EBLV2HPFtinjnnPBBQuw+It5mTG7Hy\njS6S1YpIHEjlhXtOI/+3sIe1gRXmoIlgpfN77EEcyyv7T5qZ2cqPwTEusrMo/eyF59fivVwkQ6MP\ntFknR65ITAMN14muBH/CRNudNBWnyC5ITkec1/BJ3D/dTAblbaO/APjV/3VoG4gTvgISgotgmQ9V\nrlo6rlpFtT0rsGiV/0tKg4BOD7w/de3TVLtLz/iPLjdJpDuGcZm6y+9yq32buatRXa+VjRIsxov0\nSqRdIG50fIH3yBLGtkOWgU2AA794E/LeCUg8+DzrlJ8OF/2dbLqH6hkh24AnG0QQQQSxphF8yQYR\nRBBBXMP4D2Gk6BQp2BKqopTSCcsTtIQpudA8IXHtkFo3RbGguAXFI4YOYK0hErSW6loS9R0t+fY1\n+DyWZZLDK+5z/Vm0BFVhYPCf8fsCVraWuRvr0MijWF5mz5EiRDENLXdUOGv3k1Nz9sKxGfsGljaP\nNSH48rP/F6g+T55AIUXWGUYqTP46bKs0QooQJRqjLBDKImb0Riy7V6oYDwmRmJklB7AmarEdOE5h\nZlmhnCtiKXvdbhzwS88yL8KloRo4VEjRMtMpKHjqfRHV57j75g6Mc4Si46FJiF4njuD6NG9E2kRj\nGCmxKNVW6yfpPXNsuw1j+Vlc76aYRKZv8h5x2n15/znFjGV/6qJDwe037ALFLsYTeoLNGZGqLqyX\n4qRiH14dkXUW7kIydTyNsWxlcT1SU3gkJTeoMQuTdlWv4VnIqjV22axF+UeFWpAz63Hc8+dw3bKy\n9ObLABmDoq45z8QxpEviz/PYtqFlO3p23t0Jz7W5HnSodkJNMBhUt52WRSu20+p3PeO6ZwYomKNC\nUjPjuW5sna73UiydxSdRQJ2GJD7bqWnSMxdppsmGlvrrQJtrch+SW1RjRdTj7l3ZwFSLnomzbL1l\n2kDW7TqmS0WAZIMIIoggrmGsKZJV650KX7Kj6UZ8MRaMJI1o5kG7QjKqsai9loWw2VtQyBJK6TuM\nKag6QnuTsGhKRH4FCrBsRJEgc9idvZPzNPmLUFBkL4ZPhGz7MjgxEfoh5nfpc3hVYUjFuhKpJ9lJ\noAFZr5iZNc9BqKbvBFoEn/x/gGCXiJrLi9h3lW3AFRahSuNEa6ST1dcRIcQoNUcf78I0ijWpIRe1\nVeZZTDuNbfeewPkmiA5PPgFE88CbvmZmZkdLE/igkDnHXIhABTBJ5glVm5mDphxrEAq+hIfwZiG8\nyHbw46KzQCUhMuplmd5ZAoprbMX1ao6S9peQtbu7+tH9paYIB23xegzsx/i3jp00b4Q2gS72rgHY\nsr/5qd/mBvC5xT048fWze53PdJ6B7GHiNK+pSPp8bR494dtHcYJSlaS9bboO+oRnXljne1/4NM5v\n+NmK79Ub53+eppIR0ODi/WxVbtB6nmisQaEVNfQMP473h9gYIiujJo0IOxOumJCem8IWisuojXue\nguGTXFHwuYqU2YrOZ706CMSbO0nqVkbC9riu6Vm3HVpjlkxJY5P73sPC1RJb50/wQWNrtkwrO3U8\neKnTFKofR+NKZkbFNxxjPefuMjpIimSRxVDeRhKg171T6/FLo64WAZINIogggriGsbZShzHlYoki\nZfBGWT+JRChvE1txFTgcAWlSRhJh/wwj4nLfc0QSzJEVrgNSUj54cS/R27zsgzEkcZL9q5v7nX3G\nOcumjiFfGKkDZZTG/FYVEiiOH8RBLu2gRTHtyzNnMcuLeN3egnxkmDMw/khS90EQpzNp2FjHS9hX\n9u/hBrz8X15pZmZN5tWa6ygEQyPJUIVCHUmM3fwpnH+MM3Vl2aVwrf8+BWLaOP7Et57Etvj/9J0Q\nQhmLAhFI+CbG69ihJbhjrlf3U7xkVWLmXtMGr19xAigr8/QL5o2QpA3ZNlwZw2umQJQyPup7f7xA\nqhNz9Eu7XF6OkLVoN61UyPcZoePukMjzdXG2Q8fw/vwwXrNnWEuIu49T6z4Q4ms8jtRZNixkiYyY\nN20N4LyrbPltbvbcA2aWHMfnynlRC0kt+vEzvldv5F+B83gNLW1+9H24SGs1p7qF5Aj1vDUGAUcj\nGYm4ABEvT+CYRXM0c8XvZWUjVJicrfGzFF2JacnC46bMp8SfmhwPvS8xr2Szy8lsz/MZ3oY8tmh9\nvY+wqSCDsWmOAqE2M1hRJqbZ+3oGdLnKJvx/hdKWibzMG7kjD+TsnCY071erP98isfGYfg8oXEEE\nEUQQaxprimRlnChCuqzAVzYS+S3RGG0as7saCMzcPK7sRlJzFFCmTYfaa5sUhaj3cvZa8s9MA5x5\nNWUrknoAACAASURBVNM6tsIUxdYxmbmzc3UU6Mkhs7P6LoJyaR2QzdS9+H8SGi8WPYJZXPlg5aQl\nFZMYus7ZV/olmsDR+jrxDaDKNC2xK6+9zczMev87xDB6zcwefK8N/ARjtHg9x5RE8979KZ4ftl/Y\nipl68w/d1UGkimk6+r2nbbVYuRPo8RfTQAjv8ys4ulJxXDUI3SgX2vIo4qiSrWpz7ihl6fR/ilpX\nrmfDBqvNF1Ty2U4bKxIZMX8opopynGaufYpWLY7Ns8ThT55e9bxPvA2rmf97CehzXQ9ylgW21ZbX\n6d5xrW4y0zjOnv1AUSs3UVRdZP0teK9Eawr3YGwnRoDaak3albMxZPQHbPv+NkXAVznO9r3I20co\nIv/dA8gRDzL9K+Qm226dv5oMlBePnKOd+VY0fgztp3hPn3sBk4t4b42ShTXayqTZRBBb5LKBwtlq\n8BByXRnHtjIzuG7p5zFOzXHWNZbcWkH9Feig0bOp3GprDHn4wk4kU7Pnqty3ks5coYxj7CUapfMX\n+4WpaqsNelroKc8ZydI4cYa5dArXJ/S1EQjEBBFEEEGsbawpklU4ra6caVILzBU1lQhRrs9FXdE8\nZysimkafxGQkuYbX5a2cegh8eo9hhqwOK+9EsYzeiO996TlWLGfdHFm0CLScoDFbeRvym2rdFaIR\nmyA5Q6sKFkoXd2MWH2FFOCKeX1LVTXfOa9+A2Tfzk6PmjdbMrJmZxR/Ca5QtgsobDn4KudpB84eM\n/Yz2yMNT03bFwTFucZXwu+eRm3Wk8jjESQqEq/Ks1kvZPIc8EpZCTw769XJMzZxrLlNDVaEjc0C8\nzRFagLPFOcQVjazcxf1US7OZK5Up9NyKi8N5aZGP8e8Ctsz/EiDPobOUV6T8YGUjVzJ97vVrUWSm\nngUSlwSl6gzzt2Kf8VGc1+YBnJdalx8/CF5wzyGcX3oWn++2sTEzi+wF0jvya0S/HSI4WtiI56xn\no0zxldSCXCx5zFwFNG7AMUe5OqhRmjM56dqrh4gSs0mgfLXX1gaIdvXK4W/mEr599b9Y4D7xTLRG\nsJ3oNPP9Y33OvpJHwe1W+3mHokG2c8LMzHqOIG8drvN8eGydFLZd3sS25ylcx1q/BN/Fy8fHYsue\n528rntGWDC3V5uxYS/GNAZINIogggljbWGPRbkwHrrU0q33ix67QjpfdV+0ej71zjDm3FKehkLYp\n4QqiSqLi9CmqQDCHF48TwQ7SHphVUlVghWCbGbfKKeuX2kbMskUKVSzvxgH3Htb7uK1Z//mOPo4Z\nN0SbncoGqSjjRWjFzLVVCd0FRKOcrEISh23KRMYoYh3diIpwexA5zfaBl3Aep1dpK7vCiFDir/c5\njMV3syAAt2n9rbxvbVArDuZbiVYdBOuZ9SVLF+N4S8RZESJaSc8AfYjHbMNAsNF5VutzQFnqmFL3\nj/KPnZCLI4RCkgvM3zLPm34audjV7S3NIrTGeeS/3m5mZnsOg8N85H1gfKRPkKO8wT0H5Z/FH53f\nhz+UR5nrK3P1MoN7evIloK3aQRzFOo5d7jTRo0fQ3cwV0AnftNcO/SY+2zPKXDE50OlJ5fxxXLoe\nDoJl6H6NzXd1uukZ46pPv5uZ1UdwYlUK2OdOMx+6UPK9V6JPjRxZO5SPLOzAMfa+BATfefE4jnEX\nxjRy1BVN6nClG75xN46H7Ic2hWAStAFq9WOb4Vl8X9THscprpCV/is/VWa8p7CHiT3ElMuTeAWHK\nO0Yn8Zkc89qOqWREdYauFdgqESDZIIIIIohrGP8hpA4VquRLZLdNtNmJ+m1MzMxa4hvSPC28zGbi\nLWi3SnNbyunNvgpVSyEoVRbV/dJ7EmhF/Mp6P2aw6IprgxE6ArSYGMM+BqqYOYf2c0YkQg2xSl/Z\n0s/jZ96Y7IT4AhBD+hRm8fooO3GKLpLN0fSuzvxR6DZIGSonGX0eM72q7zPvwixf2YtcrnrA628A\n+nLQSpHH2uyqAptZ68Uj5o1IHy1dyB8dfJE5LfIpw3uBJhs13EbRF4Eqq4Oq+Puvr7c3vOcENSOY\nR5O5nRPMMaszSNxirSzaMXrdKF9MVCOmiiN1mPLkZMmsqPWLaULzxvKFXVO+eOIgzuc6IPj8PRNm\nZrbzk8wRLgNBrrx6t/ORZtK/otJxqeddOWOh6dEncO3Tz2GbzYvkzCW+fuwtWKkce3uvbd6Dyvyp\nM7z32bGXnmHOeEgtbnhpUWcgdwrnXRskUuWqUPdYm9xk8Yi97IL4PK9fG+9pZrUixHElnz2FbWzH\nykqrVuVNs6f53C4wN7sPeeWQdCMG3Jys0dI7VKFg+wD22aAQum0hI+EH+/E+ruaK63HBpU2QXNS9\ngd9jS5RWpVaHxdwvmNjxFI8bv7dYd6jxtouQXRBxvx4uGgGSDSKIIIK4hrGmSDa/PcFXzIJxdmm1\nYpiBUovMq0VQxfcp3nBWzpBxUNkF7mqEHSWNHmyzMIF5JHvWb54n9kEyz/dTEDw551d3auY8auDs\nOKkOiXNKg7d+dpyQD6r+bXXWNJm30ayXIbKNcHZvEoUVN7jN0yubWNUk0haFL8ouseI4ksg9x4Eo\nNn7hrNmfmKWOIBG89Mr13CZ5mTLF4+yfZJE6M+Wik74lVM2FoqTuFKGeQGyZegGEhH9z2+fNzOyd\nP/otvF8dYNSjzk6xOk0zS+/KxeFiLrGaXPV3OrVnkWeLFWmCl5DZIbaVoZFkcQcQj/JsugZiLSQ9\nosqJAvmhZC4kDpObSZWty0X7CDQN+pZxTLUduOcqw0BOfY+6ecTVhNivJJpdv0f6sRo69e49ZmYW\nfQWoKpE6zj+yxa34y0pI1XKh6CyNHsWqEId87hZAuqQ6wcidziT9XwulMVxvKWmZmcXLVOriqi1E\nPmyDXVflO7by79QdOYUbrr4J91KIKy2NYZyi5S1qOoRiLie+ev8+MzNboeHh8FNAv7EnUQSRNZGi\nfD3ufQn3l8lbL46roxHvawyQQUSlrVDJzTmrO1AIViGBb33/RMuXpxcESDaIIIII4hrGfwierKMp\nKr4lEWwiz24LVtCjsQvnBPX/J9kFUtyNmbJMrcj+w5itlrf4OzZkqSLeoiw5lnYCIaorSL3YZmZ2\nFFXoVAFIppOkdmYYaGpgPzVDVzANFm8GwkmLRSEt1Kofr8iaxJvf2fRNnE95I/K1QiGREi3Nl4jU\ntwF9dHYAOSy8CrO48qLqZtG+xeHto8KWqsNmZtU9zJ915QNlsx0hzzCxiLzbR078Mv5Ps7nUDBEi\nEaN4zw6qLPgZBGZm7drqegFCJ8mTZJbQXiY1wzziGFC/ro/0EYR4l3Z6vER0HgRi2aNEzy+HK2xm\nIeaJpZCmNUCMyKoz6tqPR3g9Wl1qWxcLcV011vVxINgj78Dg/cwNyAv/6zGwTaQDXC/H7dQ80GDP\nUf/jHF8R/5z6EBuoY8HUv2yd0qdx/GEqX7ULZMGsJ8rso6ycp5Be2QYmtpPjZz2iQWNSdeZFKvh/\neae2QcZJggj3PJH4PK5J51XQfCiPuCssHf/gQTxXkUV8RndTKMrnhxbgUXaPrdyK+1msknheLBgx\nW/C5znTO7E1mqWn3WdC9kpwzXzgrYXKstVq9VARINoggggjiGsbaIlkJ9HDWUP5RhmiOVqz4lm1P\nTo+5WOlVVjcDTaqKK3O1c/dL3Qefi7P7Sv30678B/ujybUCADarHN8hjjKU9ykpU51dmSjy9JE39\n2seAdCODQCHKRxU3+Kuccdo5V4g2ZaXddGnAlt8DtChOY4NV6Lnb8XeHWyy+qbipUb/ifIUiVerb\nV764SAO72oA7E/f/EzRQu/FmfRv0EpQ7Ts3hHSfOAp3ER4Auc9/DKkAamz3kTjY4hrVeD89yG1BH\n+DJocvkm5mTVnUU0nJgnf5bItTzKHnrZkxO96F4y8yhC1VwWx8uJcA9z5lvYPbck72xxfd2cpXLK\n4Rw+09lF1a2ufOf8Plz0KoFevZec1gSRILuQHvkO2CXxhl9zOXks4XQUOuwBrta0ghBPVNdeuco4\nV4qVjTjG4u24b3U/quOynvU7KpiZjTwFNBkuYyybPdRn5nsiXH3qfKMlPq9cjSovHmoRAe8FS0Yr\nkbZnmDLnqUvy4il8lsjVsYknf7ZB/mx5A45laSe2JRNSR7uY94aOtUY1tXqvJ7/K/8WX9Dzh9xjT\nv1oRhy9DTDELkGwQQQQRxDWNNUWymknUnaMQX1b96MrjxAouAqlQAV95WyPKjZJdINSUOx7h+zkr\nU/Vo+ABmr6VXIm9TJ4LtO0qPrzLzwGU3URpdwOzdHCKvtaKedXJq72AXzgwQTnkEw1vvlRo8tlOm\n2L0QSL2H4+G5GnEiz9IYUG9xI5H3Tyo8Frwu3Ab0sbCHveP94v+SHZHGq/KlpfWssBKtpKfd2Ts8\ngG11V2vjZ3GgYapU1d56B34nr3DTEP5fb+LEhJQUbaLQ3kOuF1X0ADt8bPUIs+NLegNNIp/ss2QE\nbKCDAi23lSuLVqVdgc959SCy59j/3+V8cLkQGq1vx/m1icbiXGFVbsI9lHluyv3QdnQbNXsBeUrs\n4CtuZC6V17znBO9L3n89x3kdqYOgFYvGITPp96eKrZhVaFggS++WwwfmPX2CrhMNvx9ek0wTaWeI\nhSAEK53nUMtflTdzebFyCVdXnzor66M57kNcd3ZdcezUMdUYwbMUm8IzEycnO5nwsHrYNdaZwDir\nNhJOYxUgjrzTCcZt95zEAc/RmaNJNkFkiTlc3ivxJWmMuFA9Oa9VtL9bUTlYPT+6bpeKAMkGEUQQ\nQVzDuCIke+TIEXv3u99t73rXu+wd73iHTU1N2fvf/35rtVo2PDxsf/Inf2LxeNy+/vWv22c/+1kL\nh8P2lre8xd785jdfcruOXiz1BZTHic8SMVILNkw0qS4vvFfWCMy3qCmMcjlJ6sYqH5o5Qy3ROewj\nv83vzyWHzsXd7H6J4P/Z8+4QNUaZDxWHlkigOsDcLGfzxg5A1pUJfz4ne4butcqDSqOBBdaOZ8oL\n87yE8qWkVFpH190JIPnyqH8fVVZOo9QTSM4yl7kkJ1n/a8dNkzq+ZiFyPCODgAAdKtNHhlA97/se\nUGi8MIEPPsB9k6kh7rFgauY4UEr+BreLRxqh0e+vrl3b2redx08dUvKCV25F7lx85vQZbFt5RaG1\n8jCOpfekR0WN6P/SmlsXRjiD+7DMsZfGRqRKPvdpVOOrO1yXBjkHSIlMrwMvcWx4CyzQH6w6gv/3\nH6G77QGibnqVaXtCsMorhhtmudO877J+3V6h4DI7vpS317Vf2eB//BMrXDEW8cHs8yitt4YwtqGn\nDznvjYzgXmhsQjI5ukynioifzyxutOPjl5HbCceF3GvHueS2Db7/m5klZsgqmAbXtjOB/G1hD+6n\n3FHcA+L9ilFT3UcHkjyuU/ZwnP/nd0bTr5oX9Ug3FMelgcHzreiZ5zGxe0yr0kvFZZFsuVy2j370\no3bnnXc6f/vzP/9z+7Vf+zX74he/aJs3b7avfOUrVi6X7ZOf/KR95jOfsc9//vP22c9+1vL5/CW2\nHEQQQQTx0x+XRbLxeNw+9alP2ac+9Snnb48//rh95CMfMTOz++67z/72b//WtmzZYjfccIPlmL+6\n5ZZbbP/+/fbqV7/6ott2WARSYOLs3himc6fyN+zeqnucIePkYio35M3XmpmVNiIXplysKqbqce/m\n5qo6rSq206vc485DlREil3nsSx1QOSJwIW5pnA4dxGfnr2fHyd3km1K5PnkQO1GuK+pp3lFOrjxK\n/zN2o+i98aJ/Zg2x26cxQMT0b/6KsMNgYBfQwvWswrfcnFKLHlY9j/J3j3vuajF7M9S5kiUgvYFz\n7AKawYm0DjHvSs+wldff5Xw2/gi8vBx7JebXln8JflTyCUsssrLMHHP2JfJmT0BHov4qVN1TzAWW\ndgB9Z89Twe28mwfunD1/yfO5WBRvAzNAVfZw05+Hq1JNTblNM/f+TCxhTKrD5F+fxHGKD5vZzy46\nMhOW7t9mZi5qzm9TJxvOX6hL173RY7Z8O7alHHmrQGcRqvlnZrpWLzzMxIpWPV1jnScqTeIYatTx\nSF233Tm/Crse4wtk1jCHqtxsnJofzZT/K0Y+fVLlCue1jOP5zWE8Yktu2X75OtQK4qP04zuMrsbc\nMawglvdQY4Ooef2/UQv2KXKmd/D1Np7fAjWKp/xMJDkmmJn1Mle+slEMBWlQ4P+ljdKxvph2mxuX\n/ZKNRqMWjfrfVqlULB7HF87g4KDNzc3Z/Py8DQwMOO8ZGBiwubkuJm9XfOaT/4eZmf3w4Q9e9kD/\nI8QjX/69f98Nvv3fd3NmZqd+h8f4O/8TG/nCVX7u9Vf+1ofKn7/Knfyvi++0v7zWh3DZePGP3rvW\nh3BF8YPv/Md/xh/90r/z8834n2YXdDxq91fyd2+86z2ftn/9l/fbz/zcH5uZm4dUztNBsjFVZC9E\nso727EWQ7OytQh/4e2IBvysXGecsJnfbEpGjkKyq70/97fvsrjd/3MxcJKvuqzZVjbqRbGUM6EVI\ntroF0+CVIFlHrZ75tWip43uvkOzSbvEmQ3b4wffaxF/iGEcvg2TzO/h3D5LtO0Jfqi8+ZlcSZ38f\nyDR5B3JlA58AvOpGskYkO/lBvP/FP3qvvTb96/gXNQsuh2Qr7ADKvYh9Cck2iWTjrE4LyTrebydc\nNC4k2+7SSVgtvtP+st0fRk2h+noomZVHlHP2e881clKg8mjXEjV2I9nMMXYFEsladXUkq+t1IZJ1\nV1ov/tF7be+HPmHl3djGxZBs/yG/boeQrONgcTEkS1ZPZRyr09SUyzqpdSFZhZBss5e1g1TUfvTN\n99t99/8xt2kcMxxbzzNkZPBz9XF2kq2GZPnMC8m2e3G/Le9GrUSOv0MHiWSTQrIAhEu30cNOSPYU\ntp9Y7tjjX3jA7nzrx519imd+MSTbIDtEvmCn3nPxL+ir+pJNp9NWrVYtmUzazMyMjYyM2MjIiM3P\nzzvvmZ2dtZtuuumS2xG8V8FL4i4idxdpkKYvxMyUS6eq9ePQYyt+0vP8Dbi42fP4ew8FlUWjqozx\nCzxFKcACLcWpiTz2OL4gyuspBh13v4RyxykUzX0t7cXx6SaNldjquolk6Zj/i673GRXV8LuKUSJe\na0ls5rb5avkk2UcZBOrLdt0j3AUnpvXfN98+IpI8zCr94C+U9R53Cwx9z7DQYVcYPK9qPcZtU0jk\nNL9A+OUauhnyfCHPhjtNf2tx/g34ck0uyeQPf4+dQLNC9BhFTHayVfIwJ7ofUt5u6wTPiyLmnHSv\ntK11tQgnSWrfxS+E09h2agpfLMVNnCR52Upj7pfs6BMk67OFOjWNAQ8VSDeijUx4E2lJIYnMyyqG\ntCl+I3bIaCpu9gvbV4fbFj9NMep+pq3aojziPfWciP+k0p3EPSUDSbVWdyKU1Rzwp856DrHl1WMR\nFM/z24bUrEaOn+10iVonJUrD9vXlpu+1s0JkQREimaXWhtwid/o8xjt+bMo3Vov3oAiamcb3Qt9z\nLIDdQYNFZjf0fPUewDZjBCwCMNV+AiuPALeeFz3DDkjJmC8yZyN2ubgqCtddd91lDz30kJmZPfzw\nw3bPPffYvn377ODBg1YoFKxUKtn+/fvttttuu5rNBxFEEEH81MRlkezzzz9vH/vYx2xyctKi0ag9\n9NBD9vGPf9w++MEP2pe+9CVbv369vfGNb7RYLGYPPPCA/dZv/ZaFQiF7z3ve4xTBLhaSCnRQmsjR\ntE1WS6kEqEU8NzNLzlM8hsvCyiimpb7jpG7RJC2/hzNrkqiqzvbS82r9pE3yeczMKsKpISJz1l0O\ntTKigLCw9T2QooXKZl+vogXR8wCRRZW0G+47ToRRpV1Las5P1zIzqwzi+Bb3UBiFVLPB54imae8h\nNLWyGfs4/5+wzdwJ/N53AtsUypKcpGx2UjNumiV0mXbT6BgoSm2a3lXW47y39uGEkrTXabJpQST+\nE2/C2irsEcBp3nMjx8SPzJy2TK4OOn1czbCwEnniRfzedWztaSwhY5NAO5ERUIu6pQNXC9mPtwoF\n39/Dw6ApbXgIKYcQTShlWhlpAOmKTth/xIXqkUKV7yXxfYppiwQFVIaAtppE2kpJiA6oE4xwxZFo\nStwEvzeIWluZtrUyvGeLfswk1CVZy9xZ0cK4GpJgDk0e65SkdFqY86QNbkVhSRQ9M7PUnNraeQ9P\nUVSdNEst1dX4kFhs8HzwWh/A2LW3UNCIZo16npOn3NxZWILuabzHFWbCn9VKvngL0LCeKxUJy1y9\nVkaYLmHKJTul502NLO5dVR4J+z6jlaOMOSUAHrqCZd9lv2Svv/56+/znLyxSfPrTn77gb6973evs\nda973eX3GkQQQQTx/5NYW/sZGaTVlVclDaTLurlOClfPSx7erQprM5iu0j8hYX77FmwrgV7DOs3k\nlJNNT2mb+LjI3Yk8jd7OYtqPckZe3u5JwvB4k9PIq9W3YB+i2yiPqPxN5jTzUAUVHJQPxjG49DEm\n1esuEknP0qaDbZTKQRcnMr6xWdrpJ6f3HiFiJT1neSLqOzbNyMqZ1fvc9sX4udWzR6U3oY222ucX\nxs4AsNqJCBDu7lmgTCHDk+9DUSrNVJpEUMzclmmtZjKUUZQIjezXK5uAopJTlLe7BWIgoUcP+I6x\nXQaSkthze3HJrjT02fD13PYMSe/6e4wCNxSc1rGpKUH3Q6joFmtkp9OiAE6Hx9W45wZ8llYpCrX/\n9r+E81y8jhKXzBsqryikH5+LOK9Joqsw06TdhHnZ21eHWBDjKlAiO0t72MjBGkm8oJWjbITwQPZP\nu+enQp5yl+FB/K46i5pEwgWMYXwS16OTkgUTpUZHUPBUG3tolYJ5a4grIYrRGIuEmWki7VEMzspm\n5oH3MO/NdmBZyaRmuEGOYX67Vnf8sweVqiCue72VZGF8E95U3IUxCq9co5xsEEEEEUQQVxZrimQl\n+KtKomgvkgjUzJomylFO1MwskvcbrlXvRClRTAVRlQZfxKwtubfSGJESPy6qhkRMmmMeAzcz6zvo\nouco91ndgJlV4hdOPpewI8X0m0Ralrf60WQ8T3lCzqBCvt622vwOGQbid+VtHfEOVkJ7Tonuxm2x\nrbTQ1dKrz6u1UrO5roGZizKiExA3yb8CPYNqjFDOuP+IP3d7XPblm1EpP/lm5DJf+ToITT/6MBDt\npm9z0B80i5/GCqR4E3Jy6TPI58Yo/lxdT+aGrieFVmIU3+mw8t+hTXunQdsg5kslOB0Ju4PaOnzM\nd9xCvZENkF20BYp5k9+tZoxIg8Lv92I8YmV8rvcFvH/5etwzJc+9k5nGcfU9heNubMD/VK2OUIwn\nxPNIzeE+LY0D2UnSUdJ6ugYSDtIqKF4IWZN29n3nKGrE9m3tS1StzDmaF1LYaOHmHt94JFaUH+dz\ndxLXRC3LjfWuF0v6PLaVnNUz629WliV4fSPQv1YB8Uk2Y4ipIIph3W8N1Mq5ot3RE1gKdcaQkJ6/\nHduqcAVY2oKxyx7Hte/9l5Tv/Mu8vFVqqjtt7mfVhECDRs+3YZNCMDE6E0VYT0ksSpCIdaSkXTYC\nJBtEEEEEcQ1jTZGsWu40e4knK/6eUiTxRRLWSx6rkpj/0LPPwhKkNQrE4BCRd2J2kw1wdR05uazE\nZiZZte1RLpDCHuRblra7s32FwuApWt2000A0eea0JBiensXMWBojsqVYsgj2RRq71Uierg0w17vg\nznmZ88wBrZdMImd4cRfJiiiQVVDaTNtm5nu7xYWFkkVId4Q7PNxHtUYazyt3CsgzR97y0l6MRX4H\npm8JkijXdfoNgArVdTiWZz+H/OPW76Hy721rFWpOnafwMnN3yrV3osjF1pP+nFeYFzJ8hm9v+FG1\nZBobm4EUU4dn7GIR2Qhkqpxf50kgbwnj6LW9FQh96El/njdcxDH3/xjouq836/wvVGa7aQ9zjhSn\niVGk2vpxfm3WFCwMRK/8p6x7JHRT79WG8SIUlp7uOPWGSMO/KtO9UusVDxTXTSvEwQNcFVBUqUW7\ndeXLW1kJ4oi77LlX2CAUm+SyjfdRJ0qLG6L/UD9XJGxBb45QZIkrFq3M1NChlUvU04wgBDt9D66p\nnrPUjBo0otwG3j9/kxp08HvuJN+3pNWcDFp5LmJALLmrOo1dfqeMSP3c2laOnOlzl/8KDZBsEEEE\nEcQ1jDVFsqqQO/a6bFNtcBaPVPx5HgkBm7n50PQRtlkO4H8torA6hV1klSIJxCg7vKJlP8tA5nKN\nHs2KlGrzWN4IDZa3MA884O++6jkCZCArDuXZxAyYfiXRckn5HW2Z1WEPj7S0rksOkWyBEKudKxtl\nlEhEwxlV7X7tmF/OTV0ust3ReKhjzswszFbPwnVAcJrZl7f4eYmDzwPBLW8HShMaXtnGbivmrZz2\nxq5cqJlZqCE7EnYbMZfaThM9SRCdzBLxaes06gvfhS6y5GHk65qTfvGX2Hchodjp8ecdvdGeQe61\nOQGkJMzc2kErFOZkw+uoii2rIwqVROp4ddqIs24e0V48suo+ZRQYncdnJPlYHaCYyznyayk6n1hW\nbpaotM+fk22mzFHZUQ0gTJRYHsHYqSVU4tvOfUwEn5lhu+ppPyNA+VQ33+piMkfukyvHBoXrtRqN\nsOOuRv5rg7zYMLcVJrc4MUs5whS5xytAvJVx97qJedF3DA/I3D61Metg+MpnJTVHZE8wrBb5AhG/\nxF+yp7Hv6CxEhLR6xT4pBkX5lRVoBFl7mLl/modWxj0P7UUiQLJBBBFEENcw1hTJauaQhYxys00K\nFYeZe1EXifiJZmYRItHQCjmK5M4112W5LbxPuRWZpDWz5AAyfZakDbC4q/M3UgSEM1is6CJZWXfL\nLlwhJkNpAmg69xzygOVdI9wG3t972J/fSdH6fFl5Rw9FMOqmpPgZ7kvc2vWSh2QOMyZLESJYn5a4\nCgAAIABJREFUTrAtCosIAWVmaKK3TDGbmJtnW7qJiE7C16MUih7GewYOMU9N8R3ld2NMpwo190vb\nmddAVfxwxq1Ot/UzEVF9PZBLtNjgtoS8aY2yAIST3wH02HsKiK81g3yvBGbEeVWO0MY85Nyujq5Q\ngpzNaZSQW/rMYxCyiOxEB5+MFxuDfs5us58dSETjkRW3O7B55z6cDy2LSrswtuKmNkZwr9SIYCXq\nLc51YrnlG48SzQFV5e7//gmzvzIb/dpxa+eBxCr3Y5+yRlG+U2wW2QIJhTpdWHyuypskSq8aA58V\n6WU0Pc8CxfDFgnBWo5Q47CSUS2bHG41PZT4aPgoDU+MqYYX5/vgKz3/RfdZTZ/EwzNwNZN3I8XyW\n1dnFe6hPqzR8TuLdUV4WVysE71vYl+X7cL5zN7tOplUKCtYGOWaDrActU6NBK8TlICcbRBBBBLGm\nsbY8WbIGYovM3WWUB/HnZqO0GgnVPdU/WRD3ELmeQ24uPtrr+2xhC2USR/25k3CRCDbtr8iKF6fZ\n3tvPLD6rmAjVAfEQ8Xd1ZzV5DGJFREo4/pVxTI/LO7nBo9Kcw4u6TMzMIvKH5BUqbOV5JyVL558f\nhV6E8CXJJn5sD5WxlBNzmB0ukHXUiNSZ1UoRcbNjSxzcJFFGlWpNDcpD5k4q/8vcLAWzW2QAtLfr\nxM1qY2AJyGBPOddGD1WYpLLGSnBhK3my5DULfYW3IlnWOnLcNx5OR+CsqwwnVS1H6pA6ycvX47r0\n5cGtbbJLS3nj1lkwV6IJcLFDU0DPoQyswZXDlGaDmZsmbNyNHOzcjbQ7YqeW0JX0OZTXTpT9CHZx\nD9BVaVxcV7JObp9wXjV2na6nWc9RnHUIoUpxw6UjoEp/5slT2A6r+dJdaFIzIH3UM5YT7H4jQg3X\naFLI/GZzHZgAPS+CiRM9Ckuj9jIfsF7WV7h67T2KFalE+L06JStkiji1D15qIXWt0hw07bGRMXNz\nzlLL0+qth9ZEYldkJ90VaplaH500O9HmmW9nrSNBJpD3+blYBEg2iCCCCOIaxpoi2UY/kEVVeVSl\nJkN+np+j7JNw2yuUL2pnyNl85R4zMytM4L0rE3hfnA1bIz/mrKyc5ljIt0/HOlvGg0SVssgxc2dS\n6XO22YCWOa8ZEnPW1KtoGU402fIUnc3Mhp9mNxD1W+fupgbCqDsthvwpV3dbSfEKqbxEw8Q0lYXE\nrxVTQZ+XIZ8Qfj0jdoK7z8JObLP3sJ9nqByXqrxJ5qRzh5e4baAaCZ4nF5jvzTJ3uxcIttPwqFTp\n+nEfUl+SqlOs6O+fdzrcTsqwj3qr5UsLcLfyyxf8rXMXcpdzu4ASMzNEkw3mKIcB5WubmUcloq0Q\nfUf60BEn0Xblf6Obx919MOe8wlxq7oy/i3HuZimyAbnJHl5smBbz4RGmJoefpZbFEXZM0To7+7zL\nA27nuM+d5BjzGivHnpolsl3mypBat+L7WizmO0/xY/UcqmvNzCxakkIeX6kr0EnjfKPzK+aNToVc\n9z4cW2sL2rBC7NhbmcC1UA4+WnNXderImr0Z29bz5AhoM/cqbnhxM5/dIo9bbKUqzTVPkVOexvmW\n1lMHesJFz3p+sofF3+W2N/L5U+3jQqmFCyJAskEEEUQQ1zDWFMlKN1acyAo1DDSbKbG1vAVTlxTd\nzdwujcpGzLqqRg4+gwpydpKz+jhmoiUAXevbh7xSbR45oeRR2oKcF3qTYhbe38i485CjhCS1LR6O\nzBZleqjckHKYEc6CsiOXRsPsPSM8Lxx7/yE351wcpxHkoLp1eAzKk1JdLEk1oxTRpWxpauQEZqb5\n9zz20Uz7u+y8MfwkXsUdFlLIzuO4pKxkR07hmJjbjG95hZm5XWRCpcYOIccNgJbjZq76l9CSeMm6\n5uJIt5n/7jtBixXm/sIFItpSVwLuEhEdB/+1kpXpH/4uJ4vkLDrAOvtfMjOzxGlwsJs87uR5avlm\ncDHE/Qyxi6s+5Cq2JU9gldJgD3x1yK81sf2L7LaSxRJz5CHmV6OL7FwjC0Hjo1pEnTzS8s5hVwWM\nKwWtQKTkJhaPOrZqAzj+JFWshD5rY9hXYpEMCHJFew7imemkXO0Q1UcaIzSR5Gqz+/hDtNdxEOwY\n8qvlDTRFnMJ1zJ1k5x+7OmvrXZ5sfhsZB2QH1Ab8965qJdKNDXPBpOdOtY7cWap2jdFF5UZ/XaI4\n7lm1tvysJBvBcY0NYWU0s0gN4vmuZeoqESDZIIIIIohrGGubk00rL+hXZBf/UtV7KRp5zdWcLhSq\n1bd7MTPW2I1To29Rcok5rnP4fYWl8yzzN0KsQoTSCLAV/zFgm8zFuhKsOK6y+u3VWYO/587Rz2gJ\nKFIuBh0p1lPVSseQ3+ny9LpRs35PzPotzbtfZTaXnFeyU7lnGUSSVRFT7tmdvZtpf5422qXYFZpE\nVb3VZUQYI+e2wPOLF4gMyRtVrtPRAzWz9Fl2SUlZjbvq9kWTOn98FhdMnFRH46Dm0bO4TKjivbBX\nLBbmoKeI6J56Hrsmf7bGTrDESSC5Bj/fJgc0cRb50dq4X7nNzFVz0wpEXE4pYZW2AAFWqSsgXQRx\nb6vjQH61ASF+dryxsyp1BogqdbZgoWWMZWMzaSEcy8owjRRfYFcVuyGTx6mXyy67DrvshL6lK1Gn\nIlhsBa/1fhe1yUMtfmTKf96b1R3H+zTLrkDeM41eoGYxUDSWDaLrWq+f527mrs4cLQZqfaSmqbK1\nTktH5klr1NSgQljPGdwj8qBLLWLfWVqCV4b8nZhmLh9Z1y90Ase9eITatFxANd1H9qIRINkggggi\niGsYa5uTVdWyC0GpFztFdJlYYhdJzFP9W2SXDnM8yh8pVBFfuIHbHicn9wymplKfn++W34X3978k\n+2T8HvEAJfELwyxYp5aki4Df09LW5PFXBulmwBxQkf3PAy/431cdBKKQQ62Z61FW2uBnPYjRIC5g\nmmhM+V8hwcogO3JW/E7A5SFZJOCl6VG5crZNlN9/GD9EmF/rqId/wbXZNjOLLeJgOmEhHyLXopLR\nmP2bnt7+4lbk/zJnsO3oLHOU9MBSx5DuBV17J+/IDr9W+SI5WVb8Q7fsdf40f2PWd+4OW4R5384v\nILec/A5cF8QeyN8OhSy3gwrId/5OjIfQjPdesQ5RY5cjsdxY1SWoY8jfAOQrXrAcB+RqoBy6FODc\n/XSssoe5ZHGOeS/Iu0u6ALEpus4yByv9XOE3qZHJ+Tl9zj+2yRML7m6pHtbmKiW0DTd3lKpcHeZi\nQ1xB6d5Rpd9ZtTaohkdPrzg7quZvcLsDSzT0barTKy9vQPw9e0bPBle+9O7S8yTWT89RfGesbOUq\nok8O0NhOetpFss41rXLbvH7aZ3E3edorQcdXEEEEEcSaxpoiWeVeFZkpeX35c5tO1Xr5QtQSmRZX\nE1qmi3uBluQyGWZ+JnGcKkDkv0Vq/gplmuyC4gbmecapTHTWnYdiNNCMl8RRZV8zZ1Bpf1ZG2F9O\n99Ko8qLUrhVa0fvDXb3mZq5HV/IgXudv4jEwb6TKqXy31NXi5DKJYKWyVZIPmYr46hBrePbJ3JeO\nQ464NsAkMnv6u6OwlxXjMXXP4XPSUhXvWcwAM5fFUVmH94So1pQ+AoQUZp5XuT1tK0ROZ2fZr0PQ\nHZFtEzi2CVfj1emaSzNPT+6wEGjfMa4w9uCN534WaLv3JDm7vC9bVLfSfVCjGpuXDy030zrZBd33\ntDoJU2Ru6B6PkGkTX2aekDqsUrNS1V2ayyu7Byy+TLTLfYsF0qZnnlxEWkNkKrCrrs7rprxw7ymg\ns8Q0bvTqBrxffnDpo2ec83OcDTaDsRHKAyV2enCvrLxig2/bK7uQY+7dT88zoukQ0XR5HzjGs7dQ\n58JjM5w7zfx7xI8qHb4sv0fSc9I08GuLpI4i1yy9DG1H10D78iruiV2ge0P7DPE7IFbEcVaHL0+U\nDZBsEEEEEcQ1jDVFsuKzCdmZk5Ik+qQ6V2waSVB1h5iZGXNByveJk9l3VBVsqeVQUWqdOon4b/U5\nM88qpSnlOgf3q2zv0ZNV5xO5s50evz6nYuggpsapO/1Vy/6jzLexc2roKVaUyX3UeZq5FV/5K41/\nF8exyMq4ZlYhXnVGKXcnLq40ABopv85Cgvqy6s7CNjnu5EmGz6CbSEpXcqFtdalZpScBq9f9f+19\naaxlV5ndd+48vPvmsaZXg2uwa3R5wg0hxI3jaqJI3Y2HCBWKFROpgy06bdO0cByBYrWIQQJLloHG\nUmhkwx/8BzvqxoG4oR3azVR2ucrYVXbN9eb53Xfn4eTHt9Y+Z5+q8isIpafA/v7cd+899wz77PP2\n2muvb30VuKXBE7Q0qiiy0mcrIkQCPowZdR3f/ZnuG9/TVcvbogjHq8D/AB6wsRH1GZBIRlf8+u0i\nIlK8XrPQpm8Kz0SY/2+rRKgOIZrk/Rj5Z72u8iBqgSELKYXZwcoIsrWAWtMhTp3okn4ByeUmXuHo\nBZUAFR1GEYCKspxNJKAGId9YxfY5Zm8tN41mnPrkFnS8dLxa2ayqAyJxPm/0nx36pXrxUoHCvkf/\nBCoAWI9MRKS5Wdu/MkSfWEXFfIbJuTKzknrvHFQXdfhetHbq+6UtkQoYoYIX3Acd5rhmkJuws654\n/9rIDiz8VJG3X4E3Co6dmdd7wftHv13OQMPHL0E7y2e40YX+uhHeu3XHybpw4cLFmob7J+vChQsX\n1zDWlC6gNItTKf7LT8D0xEiDMH3xWyFiGgsiwjIqKDVc3WfLasxiRZq0AA4F092lYebgQbj8JuaQ\nPFRofYxpimZKjukZJUs0s17Yrs3aeQrTsZfVKq85oNPtCkorz9zWg3PT/Q39NFQKBlP17Bn9bfv6\nzSIi0nMSUp4LKNeMxQnKkCha59ScBuhcHEgvY5Fgompdg26MaeQCzD1SmP6jRHgLRfHktTclHJxO\nppDaTIkMDTdIwYTpAk69w1aS1j4hzfJgtxen3GhAFzhphhIrYHGmqOdM45TpGyHdGwhWUNILEN8z\nsQPpltk5COMpKUTJm0QRgvss6Q5MWzFl57SbZjYsAigiEsPfzK2Io52ZTkqDHDFTXX3NTekxk7N6\n/Y1+dGTk4aTA1FCW5Mc9kxbKhbw0UlU9lO1ux/WZ8EFFdJxSzowpvZRuUR5H46a565k4gAWi9VvM\n9bFgJ8PQV+hfpfVoI0ztB/9JqTFvCokQu3TBbGkfki/6YLzSC4leK7R/SjonYPSCxaiVTaDh3rbv\nQxypveV9egw+G6TUGmhSSsPYP5MhT5taD+i0adpE2v208bo+u37SLXy5cOHCxZrGmiJZLkqxvEVy\nGcJmkwoKiVNZh65WT5DD1szBGGaSqAtyFciqVrZjdCvob+MndfuB1yBQxpXXxmiibFuYscxy15kA\nCeXetcsfMyqbUSocpcBzKFXcAsKrblX0RYlI7gLMMFCILzOlQ2l8KiQ0h+1ce8cAtqXRi7bR7M06\nkuaREmoWD327TSkzaqVYQJIlRbggE6wwJJaQdIC0SplUOZXHBIHXdCGB5WT8Ju4Xy4tj8XF5FAsu\n26gTA2pdCLob25sGMdEgQjXoN4PZTAmQDveiXbXTapkq2ujU/Xe9EeRAp1GGJbNItMR7joUjnC7b\nhBabTBgwpX4AHVn6nRK1cHkkRmqRKBl9vAhjlYL96OXP6AIeky7qg9pfo6mui/s11ZeG3F7LlyQS\nTWo9sCqEeUxloNc6vzRSrmlGk1iCDnBWUWZ7HfuaXjALYRI1cxFVJFTWCbafHeNIVUVxwswCTGew\nwDmH/toxrrOcGgpFcvHRyBir9kKgiEhqyV5gprUhS9FztlnvYjlyFFGdxfP4hhqG16/TpA0WS+1C\nqfAVWB0yiUFEJKdrvTL/b/R61vfp/Tn/llo08v9EO2sXe71cOCTrwoULF9cw1raQ4rKOpLRqM3Kp\nGAlF8ItJjLwXg7S+BDlZpleiNDFHs8wYDaaBcIGciLK6T0Fig1GxbcyikZKIkbk0HEhLzt2tspXy\nBgjIgWj8JLigZcirskSs+tuOixCtdxER0CJP99v9rp5EPhXcjsoILO067FTJ4j2K3Ee6tC2Wqrrd\n8i8Uhczt0XPIwVQnD7lKPAVezZQqoTg+GInJc5oyP+uQRguheWKLpk76C4q4W7BPjL96TLc7sEvb\nbBSpvCVwhLOXjuW0h8xfUCR6JWYrPg67QZSEWTWA2jpPAbmHOF8i2Dis/2igHa/aaKQ6ALMSIEOa\nmfAepMHVcnZBeVlY7scwJixIbaXtIMu2JM8jPbUP8jiYuHDf7PulbTCnIfc5VzGv3pii3WQT920Q\naBeJNI1enTFVB/W6WNKmMAbOHbxv7Mev6XvYEra3KxefBNeeORvMGmqjKD+zjPuHtRGif/LXQbFN\nSCkHkUSxkZwy9rfOLg+VmgxmIKYklLEwxH2gheF5/T+SmNENWbQydV5nO5W9ys0uw/aUpZ04s6xC\nvrmwK+in9VG9rnRC+8b0P2pqdRJrO40e1sJxJcFduHDhYk1jTZGsT8TqM20WiJbpbahN4pfBw+VC\nJaWZZjmhSCc+h1HsX+gozLTTRp6vdjLC3G4ghK06EqUnaOTMFNBLEw3I83WexIo3UZIH1AwzEJNG\nCpTI1EqaS9D2rnBRh+a5PTiXkcD0uTLENEsIpUdZ5kN3MvcDHZ1ZOrwbq9cUUZOLNSbkXOVGyRHz\neTy4wNhFpB9uhEIDqCQFO0kBqmqdsRMAfCCo+Fm1vdvwQy2lTbRKZUfX6YCzHPgxFBdng1TNcFAt\nwNfVIrFekUarE2gcoI5GzSIBD5haZr10oBKYtjBJhHxnZgYprTDbKRwDUYf+yCKeVDT49eD6mHbq\nZVHKG6YrTFXmDKJ5UdtB8JpCCZvGOvCpafLC4JMXgJ7PjplXltiJ7dOZxMo2PAN1G6FTadN9Ss83\nNQ2VwVnlLGNQkSzdpNwlEwiYss0EC5Gg0OHSFkXgJlFjxU5ZrsIetLgBpi4AqEwgIPaPL/GZwuww\n9J+J6dqZOQ+v+nnnKZgLodRNqw+mQ6+i0mJe/0dk39JZUHJRZwOn/1TvGxVGPAs/EcxE0mcwmwHy\nliHA6Dae7QrKH5V+S6bdJ0+elA9/+MPy3HPPiYjIxMSE3H///XL48GG5//77ZWZGH84XXnhBPvrR\nj8o999wj3/3ud69m1y5cuHDxOx2rItlyuSyPP/643H777eazJ598Uu699175yEc+It/+9rflm9/8\npjz00EPy9NNPy/PPPy/JZFLuvvtuufPOO6W7+1JDY4ZHBIuSyj6L4vksX4JRHyNSO2QK4pUDA2+R\ngLta9w+6UjrxQVgggnOt7AJvM64jTx5mLV3HdWhtAWVS50fbxfCIuvEHSImEXdvc9SgZggGw3mnb\n17FchinjgpLhNazIlgdR2O00UGjIIKag4EIWt+k2udPgB1eAuNs0ccH1x4hSoD0u0nhE952BbV+w\nUowSKh3BOFtoKa9bGUZpEBiNNAcUIVBTG2cpkUhKa2tWIUb2e/paALpsjmnaZmzPLrPtlRDsbxpt\nnIu/HnzcyqX86NwepmvbKZxUGRibQaTC1lAOKQu9qU8j6iFFme00Oke0HLkE6ogYVBE0LI+jj7dR\nqjy6Nt08d0HPCa/8Pn3c3o6ajNbiUnCsItQACb0/sQYVADavXx5m2XWs+MMi0a/CohL9cPBn2qYl\nmOxM3RKk1ZIbLpxH/5qnwkHbqDyAWQx+wlkcn7N2knw408Ajad9zgYKHzxHPn/83Fm7ATKKlr71H\nocXNwkxni/ZnpnnPweqyFzLvjvE6rittXZOISKMbnHgWPP4cC15CS12gOsZWGl0uVkWyqVRKnnnm\nGRkcHDSffe5zn5O77rpLRER6enpkcXFRjh49Knv37pVCoSCZTEYOHjwoR44cWfUEXLhw4eJ3OVZF\nsolEQhIJe7MczDtarZZ85zvfkQcffFBmZ2elt7fXbNPb22tohCtFbA5GzUXlhtor0I+myXPoyNqk\nQUlfsH9B8brWsv42DvQ7+bHdIiJS3GZn1NDqkBko5SGb52FWS6Ngl17pOh2sHs7u0fNa2aL77nwH\n7TFNm0GUx4DGlto/lq0p5Wz7NK6WXlLuRQL+cv2PFOXT5rHZT+NpjKCcDdTsonmldXquNDOhljCG\nTKNKPziwkN1kZZ1ywskVihaJRlgLB7wwzbsvU27bOjfcI5bYbh1/+/Lb/xbCB2/MbLqe72hVyJn/\ncIvZhgYxzTy4WZhvN8AdN7J2JhczEtm2rQhiZQnwdl7brV0qme8Ml7xNt6n102YP2VXXAWWhtHby\ngiLb8h5F/+kZzO5eQ5u1cR9jcft96Fje8ACOYZuyEKHl5vS6cqf1mWGGFw1lmtDmdrwF5coB3Deg\nzw1/H5i1l7bpdczs152T702VbDUBnydmUHnBaevvOvA5JdV19utgm9I67BsTWWZo0ba0AHPy+f2K\nzHPT+oykFvRBW9wFpI9jrGzQ/c3cpueeAsfL/qHnCfQ/C91yn554ZRAHXVJk2wyWUa4Ynu9fRndy\nmXjqqaekp6dHDh8+LCL6D/Yzn/mMbNmyRR566CF58cUX5dixY/Loo4+KiMhXvvIVWbdundx3331X\n3OfZExOyeefI1RzehQsXLv6/jN9YXfDZz35WRkdH5aGHHhIRkcHBQZmdnTXfT09Py4EDB95zH3/2\ngc/L92f+Rg4N/pmIiPgV5as88Kt+A8ipR3ndMCfL0Zvo1l+v6GrqD3Q0G7hHOa3Joo5itTdQ2A6j\ncvcJfU3C6pAZLOQ6oyjzyN88LDd94st6TKyklkbsMhhUHyRWaBmon6eXybnimCXmWusHLNTHlWQR\nkcaAjsb1HuoO8QUGW2aNMUusNTUj/6v2bfmjjX+u28M8ubJJ+TmTAQafiDhy68nR6vVAYzuFbCKM\nvzRtpqUe+d7YK6/J1QRtC2Ndin7+fuwpuTN2z1X9drWI71Alw+KN4JMHyDnr9+s/dMFsO/2Cosrc\nNJAqMqDq4Nhzk+TcE/LK9/5SPvSv/7uIiGSO6T6ilo8CRN868e4l51X8d+/T8+m1GTn2HepDWWwz\nOwZ0SY0y+uHMH+h1lWAmT/6++/iivPT643LXgf8qpa16PtR6k1M1pvdNcpqYxcB0PL1ol4unl8HS\nlgzaxzanX9oWyp5D6aWud7QfzhxEf+22zclrvb68+1cPy/a/5rNDfwiuKdjPDH1LEqElFxa85FpH\nCufFLLnyqF5/9hVF/fzf4L9f//9M3Qq/CDzrDaydVFGQMVHx5MTn/kJGn/miOWZ8BUbseZs1T84j\ncw/nWx3Q78/8+SNypfiNdLIvvPCCJJNJ+dSnPmU+279/vxw7dkyWl5elVCrJkSNH5Oabb/5Ndu/C\nhQsXvzOxKpI9fvy4PPHEEzI2NiaJREJeeuklmZubk3Q6LR//+MdFRGTbtm3y+c9/Xh555BF54IEH\nxPM8efDBB6WAVc8rRWteVwPJKxLBtpGfHu/vtbYPmwbHwRO3ycmmqCeEFu6XiloGf64jzSCciegY\nRXPkBLJ9qCpgEA200sHozfLgdaCkwllbicAVUpYe4cp/eRCaOhyicF7/qK1P4ft1OPeQyxj+pNcA\ndYdElTTELt2qo3ijoNlYb/2VXncC2VapRd1+0/8E8URvA/hAmNLqEmRHlZDLTU0mkUwro/us9Ol9\n6HkVMw7oZJkR1jxzTqyASsSvXn357tWC5tyTH1JfiKIeWvr3a0L7rX2qaPjf/7jf/KZnmZlCEZ4a\n97qKPkG0mYRptUAPmwBH7Rd0ltAYRP8eUMTEjCoRkaUt0E7PE0Xq5+QqeQy2qXHAGtRjrYBT74A3\nRf8RIN3zqvlsb9U+4yfjhr/kbGx+J2AyIBQ141yl7zyPwqRQpNB4myoElomv9uj7lX00nzeXZ0r5\nLO7U8+3C+kTnOd333B5tSxYA5dpHHWIj6rYNOi3a6gKiTpGg7bre1FlbG9y+t0FttNJ/p9NS9mTq\nhVt4njrPQimAZinShByHoHbeqwWYM4pgqYul6qDJdZfK6uqCVf/J7tmzR5599tlVdyQicujQITl0\n6NBVbevChQsXvw+xtoUUwdExqLv0oC7wuxUpeEUakgajS2tBUTD5MaILZvhUhlBaoos50si8IUoB\nL1oaglNWv61/Mzq40OjNUbcDEk/6wDYBsDNzNoLl9yxx0zERWVr17fzusE6POkNyqabcNM6Bfrks\n4UO0khuPW+9731YYUBtWxEE3rtw52/VJRKS5SS+EXqFeQLGLSMAvEo3Rq8B7XZHFJQiWp3yVWVvv\nFdSCNm5WBDt3nfaR4mb9Pr1d+frJMZ1mrLysPhObjgZZWNFSL1yF53uWU2cfqQxre+Qr4KixRkCF\nR3ETyrRU7T4lItILUQBX3VmwMjsD3hcuaJlJ7dttloxBBh750movnaVQlHJIOWiWTpnf02lW39k/\nyWdSrUIk2ETm4eStAfev2+nrymYgPmQ+JXDbOk9j9hPykO0+AV9jKBbK/XreZTx3RI0rI0DF/T5+\np5+z5EvHOFzzFJibLMrCWJBdRkWMBwUJXeCYLRffrrB6/jblyPte0c99zEKJjulbUuu1FQ28bqtN\noKWOo/twLSdRwv2gCuIqCFfnXeDChQsX1zDW1k8WSJZca2JEvRqZE04/WWEp38uUgWZRvwSywuqd\nuhobrG4iu2rERqrNTt2g823qZHV7ZsnkkVLOFVs9H31t5mweJjcJxIBj1sHR0jeBK5FEzdTkdlzU\nYZJcIHP9RUKohGiEOkIg2uwcs1/0fWk4Zl134YL+kZ6FSz4dzYDeGgN6cq2QuiANDraVYp49eTLb\nb9V473Yq+kqj/PblVtl/a7FVvRrIpVOL3OxGJltJoUbncbukNP0KRIICeuS+mX/P+5Ze0O+poiAX\n7aM9WMaaOuDCOZ0uxJlNlw0ep9xxTAOYJQYNODPTUkOoVlDVfbTmVIrCPaShmohvUBKO0V2QAAAg\nAElEQVSzAXf/CpBtCkUbk+W2FC4wg9DuAyxDXsPSRiuSZp+GfTFnYoUzOFfypezPoJ5jIcBXwcyv\nTJc69MNmDlwznOhYWaADIg/6NNdV9CLzuC6W/ab3Qfi5iwOZe1ir8Rv63CQ2ap9odemz33NM27a+\nSXl6asWpAopavVHhIAX2i+CYzR7MWlIs8opZ6SyR+lUpX0XEIVkXLly4uKaxti5cUBMwM8jv4pBp\nI0WvBmIkVJGAvC1/K1AbkAc1OjyWAgMCTC5Bb3gCdX+ANjnKs7wzeVJ6H4gEq7NcfSXS46hL5Mp9\nEh3XNJ1eUgu2BnBhB/0D4IF6PoAKCfB7LG9cXIdKBhjpyf/RW6FwUc9t4DX6e7IdgDYnFPFXtnZb\n514PeRdU+m0k1MZMghwsj0k3JrqMVUdRGaKmLk7/L74E0ZpdjLkDeozZfwVNJ7LPMueQ2baoCIPO\nZper0UbPiTTKoOdOQd0Ct7fGkM6sqCdlrjyRnVzUlX3vVygHjT7oXa+o0/uno+ZYZBSpgmjDIcqL\nINrWvutERCQxr3Czth6+A9O6HbPTiKoL6CPLW+A/0B0z1QlM0I6ZYhxy0OBaM7O2dzKRItuK3GsD\nj2N6wd6PiEgazxPXBrgv+hTznOhdUIFna37c1vDyWMVR8srwYL4QHCz3d6/rvrtstRJnB83rdFbQ\n6MCMA898epE1+fTz+T22htdPozbbNHygOwIeWJpoRNQa80rYNz7mTLPRG/rNFcIhWRcuXLi4hrG2\nSBZVaFsjqIH1luaGx/oB/cjFgosh/3rZfaEGkqkDBD1b5wlUVSj71mtlEHwjRu8EVuOXduhrrA5U\nF5LLsdJrdFW6PMQML/oh6CtzpOmnSjRNxNt5Hhxg0karIiKpIpz9sdKdnYdDFPleqA6YvULVwcoG\nHZWJtgsnoS3sUEjBldp6QZFfLGTszmoRbMNKHzg6IAMPEwpmi9V6bB/W5KCisERss4iINAfhNXpK\nfWZbq3hZiFyKYGMHbhARkQW1pJD/dPOPRETkq//nD3E92JC3xLPfh3nuPDwmWJGDUdnWZ11XaoY1\n2LD9mGqM25t0Cbzdp8g1sQDt9eu/EhGR+l1B8s3iNm2bzAJ1zuhv+2/U91it5ip7bhJOc3Sr2o1n\nAxbKdLtKANF2IFOs42JT5m/Qe0nfVa4BpGAtwRX7/Dj2nbb5RDqWURdLdQz7ax0iINZI07bRV1YV\nCJQZ+jn1wZylmXOpEVbbz9/wT1XikJilr0LIB/j9e3Qfb120zlv6VUlCTpzKGVOdFp4bizuxpoBz\na+P6U7OsQozrGw808TFkplVHWKGC0JU+01BHvBv85krhkKwLFy5cXMNYUyRLjjV2FkMs1AbNDYos\nEhNKBnE18bJBVyLsi9xPYpn1tWyHrOXNtjNR9zv291ksCvue7WkgIrK0FegSXGt+Cm5cyCihFnJx\nq+6cK9yZi3R/0vfUsM7vhJMPeC1WuRUJ6lERJS7uwHiIATXDxeuIFpLIobhZr3/qVuX68hdtHi5l\n/BMCqE4FAqu1xmuKfqnVJFqZvz6L9/gdmnDmJmRGVVCzbEJPKov7F9t/vawWcay6S7f2hdN/quj4\n3x/6BxERWQHJV3hH25joO7ECdN2rJ7WCFeWucwEiyszYCLbdAT53Xj/34as6d5O2WQNov7FPM4uS\nRb2e1AXtl40hPbfyR28TkQCtigQ6T/L1S9fpvrmK3n3KPhdWNiaya8ERjGoCrpCzYsfSLr3e838U\nk/QIcvXHtIMlSngG0DfMzGTInoHxvlX7wDs27c/Jp/L3fmhNpB6xiY6iXzNTxG8zmIlxhsUsu8w4\nqhrgXtQ2aJumXz9j9h3/0Vndhu8500X9tOVtcA8bR2VqzNamD0IbX7Wvh9ff6GINQWRg9ofkE+Re\nM6hEAU62naGGWK9vZYer8eXChQsXaxrun6wLFy5cXMNY22SEi2rm4WXsNFqW6qD4uz2u28VCBjE0\nlI4NafLB1Af0td6FtLzTuhkF5nN7KZeyZSzNjE320wSGiz3ZmWAKv+l7unDjoUT2xB9vEZHA5CO5\nTKkTph+Y1TSwcEA5GUtYFM7ZiyLL24LLW0bZGUrOaEbD4IJcC+fNBZQaRN4UhWdg0EEDHNIkJZS+\nKb4vmAJ2YQrefxQLCRCzU8pE6oSmJU1Maet5vEJo3uD0dACys+s3635+/qY5Fs1kWuMqi4qh4CAT\nThb/UFMlm9fp4tLfHlfrQH9atxtCKR8ab9NAJz2PwpiLnvW5SGCEkoMMiuVjWAI8CcqByQo0QGfS\nQqNLG7verZRGdkx5o863lD4498f95lg9J5Bwch4LOhUsPKK4IeVG3EdlW8E6h8JR7fO5fu080zcr\nBcOCoBTOe21PahMw+8Gxq4NYyNJHwpizUKpFaZYP2aJZ4IKxNlNG2wk7TZz3VyS0GEpvfDQzKbLc\nuJ2gU+2zS7TnT+piIhe/Wc47yRJUoWfdlKKnBeqEWk42Ueq844L+prxOf2OSMphHgD7P9OEK2oeL\nW60MNkyGDJpYSBXtnJ7lBfNZ0LfpidX/hTok68KFCxfXMNZ24Yt2hX02i97s0oWV5Nsq2fBgmtGu\n2osF4e8yizoaFTFu0AzjzN06AmUUMMn6HylKrndT2oXFHixqcAGCqa6VvmD0fud+IBVPX3MTWEwC\nSixuwflv1vNMntLryF9ggoN+X4IZxgwqoxCtdpy/1N6NpsblYc/6nBIapidy0Sw/gZEWzoZMplje\nRoE5F7p0u9x4SOI0qTCkOgBE0A9DjW47iYLJCVzU4YIf0VUyUsSQCKOwe7v5zJ/DomYNyRM7tfGq\nI3rCLJ3S9WNtQ6Kt/p9r+qlJtuhD0ce3FfnRVrG6WacRXqjMc+6MoqUY0JLnw0y8rrCEqLdwTg+W\nPqELsvEJ7TzxG1Tf1+oEKi2hKOIZzRkd/epUcNEoE9/evA7HVimdV6X2SY9RuhHlaSA1ozh//npd\nbGtHnlCizcsFixIa03jmWgB1ldfZxihMZGEf4gyLx2x0Y7FqlungwbEMckV/rGLWxkVcD+W240Uk\nyRxRGJka05Mq7lcDnySM09On9Vn3mWQUMoMSlKdq7tXZTbKJmUjKNlHiYlp+Ur+fu4ELtljsXYZc\nDn2epjXJbvSHcpCCTUTeFjwDI1j0nIKxzyyla7JqOCTrwoULF9cw1paTzSlKafTr8JdY0VE+dVa5\nTyYfeEC8LEUtIuJv0tpggXkJRjEYu1D0PPwtRQyxug7D83uU4yrAnCUJ+U5xuxJVs3vBYUKikZ0O\nkMPwT2GPCM5n4Wbdh1fT0a73CMass7AMxKhOOQuLxrG0SOc7MWu7+RsDCUmyS8+7NaltRNQc5dUY\nRLrkZhmljZRq4boWwB/DqJj8sYhIecC2d6O0h6N1egnGKuBqWQI9apjThIA+jdyRGEpuL+8M7l9r\nl/Js8ZOagtvA7IXluHtO2rI9ir+XdqsAnam9qR9oCZz2XkWZHspap6f0Aos7gllSdb2i5MwU7tMp\nRaC5uvalZreeAznZ1qyiZiJYAYLiudDyMOFvwLGDc65uH7LOv4Ky6kT9bEOTDIP+2kBbsg3N/nbr\njU8k9RySJ1D0ctkTK3dYQtZ+2yGXAsLNzNuJK37c+pnUu+004swUbRb1fdhgxqSX0pAI0jReB3l8\nmuKT926ndBaY//4b+h6zU2+zpmQLkhBoBC8i4rd0m9jPNOlDBnUfLJ3Ec2GKOPnSvjf15IobkZzA\nNmUzICmhsYIST7ng+fNXWLBSX3JnIeeDwRSfK7/TSbhcuHDhYk1jTZFscZ+O9jTkoBi+wWQEpMpG\nSzGLhGzPblLj6OJ6vRTyTlwh7XlLtyeC7TqlvyuOouTGDhYqtNP/OMrP7QuQ3sV/i6J376I0yAn9\nbcdFnD9KuxQ32YkDHDmTQMe1Phgdf1DRdb2MFNeFEMGzgJXTaRvZlDYCZWVoyEGeDeLoUXBcI8qB\nxRvg0yZYTE73w8SIsKUcOVemUZrCj0C9FHUz4YG/pWqCQzbbkL9vIYmhFfKKLm3U80l1w0AFHGsN\n6Hj6pqR1fVwJzk3qa9ebyq8u/4mmspKjzcwqslhBaZ+wwc/wy0iPxYp25UOaHLG4DTMloLC+43qh\njQ/u1e2BmJZHdTuusg+/SndsbYCF928wx6LpemFM70duGjOnOb0v9X69AeVh2lyijcDJVgftkvb+\nIlKYYbHnQUVT7/JDtpjg7QGos5N24k2NSDVicsIy3Kkle+bC9Fty7VydFwksNnnvWfqb++R9YNtl\n5pHggtlq82Z9bmt9KRwbRUXBg7c3BTOB+KxOiebfhxkHZgHZeSQBAS3nS0z31gueutVOHmI/JgdN\nW9MkTIZyZ4Lnj89XG4qaWq9djoYJH82EUxe4cOHCxZrGmiLZ3DiQAE2UC9ArvqU8XWt2zto+MRyM\nbn4vXX91mBr5sXKY5OzK5EHzUBEApZRH9Bg9x3S1tw7z6ot36IjKFdruk1hZXQyQXuYsrO2oUQVH\nVe21uVWqDah/rfVhxC2DP8Yx4scUZpEKauYD1FxfryN+awN4tXHoSLmqC/SRAMdqkG0KCOeCXhdL\nMJNvi5MLjJF/C66P6NaUL2GBubZt+8gVcGOssWTrg8npEXHQfCd8LCJPziCKG/U+sfR1VqWQkkEX\noHUeub75A3qfqd3NIF1zdh9mGShr0jEWcGbl63qsfSTK2vDdmChVe6AdRlkZGo6kF7Rv9aKwYnJO\n+9zsbeAX0cdyUwEn2wEtbqMT/aqiSG32ZlThxK2mqfzKFrv0i9AUGjOUWBV9BwX92tR2xnxjKE1+\nlEoMzn64T86kjJkOUWjeRrh8BlgEsR2agTDY1zOz0GPDCIecMnXphs8Foq1u0k7E0vTmXhDhjg7i\negNOdumgmvn3HFWOvD6k+6j1KPJcwGyUZjo5KGy6Tgq201e2cWIFbVnntdj9VoRcd9CWS7uhoa5R\nV48ZVtXmwy8XDsm6cOHCxTWMtS2kOKe8WmIRZM+sossogmU0J0M6RPwdy+mQ2rhVOR6WvBbDU+mI\n2HUc9nUreqzKDh0xJ94Ha0BWzEaL0AzGDw1DBsFmba6KK/00m1naCq3mjXos8mmm6GE5shrfYfOs\nIiLeCjKCLlLrp58zo41og+i32Q1kUGXmk10yhrwcj8HROxZaMc7M2MiTyJZDPLPG8pNALdAiGwMO\ncK9UE9D43BiMhNqyySKUyAqjKoI8IJULPLYpUkkNZ4d9bBbJI3IyRiuZ4KAsRUP+d2Wjvo68ihVu\nzqgyNvagVWO8DX0mlC0sH0S9ZnFD0JhsAyLt8qDN55ZHcD0jmDagj7DfxmAgTfDfbrCfIptpQa8l\nOxGUBDd9AYgu0LVSecIZln5K3SiVJ9yeZt98Fow2uxn0zzR057TtZJFNY805Y5eRmd2vB81PsIAp\nrmeZbjV60pxdxOcDUW7Xa/octc6rlra5We0iCyf0/0XhGE4Q3PjsrTrDMLalQMvdv4rhnMl7A4XP\nXIpGSyyuyK/SsMGctpUKrcKlRRij4ZCsCxcuXFzDWFMk2xiBhpHDtW+v4JnPPa7WB6OG0cxidS8B\n497iTToMJ5FpkryAHOmMjpyV6zShe36nvu9+R4+5tA3F84CMkngtrQtGb2rkcuNcbYVPAgyUF6+D\nzR7szzInkY2EzBtarRGVskQOV4UldPleg8gO5wN+NFGhNlXf+1QALNi3kmbDmXFbDOm1bK6p0RW0\nadW3CwsSeZKb43tTtJHnCwSYXoYXA9Aby9lQVeCHTpEl2Fmkr5Ujr2u3BXleoqhoMUdmhpnyJzjH\n4kb9IzcVoBRmrrH9iY5r3fAkgM4yWaFaRLerHFRNr9eieiRlXVeqaOezi4iUaYDNbKvNKHnTp6is\nOaUQ0FvC6vqQfl4rwsdjjib09qyJaJVcezslBsnyPhFdUk3AiBkVgb5nH+Kshn2DZZbY1lQONJNB\nW5prNR/hftAkHYfmPjrGbIvDjklmk+lsYGGnQsOBX6Cjzy+aYzW2q2ojhhI+LBs0f4siVnL9NMkn\n8mbxxuXr9FgL+3Bf0ZZ8Nvi/Isw9J7HWwWezGrFuJP+dO+fUBS5cuHCxprG25WfA13hFcJde5H8+\n+VUfK3vpgPPykfvNYSs+qaPb8D8DjZX189Je5c/IiS1vwcopKqGUgcqIsrhCyRE4PxaM3tlJ6kP1\nPf0Rpm6B+Ta42sLb+p454ka7S90oRkyiSfKQ4dXNRGTVkk5eLKHBfVPr18BqcxsljDNTdlE5IqCo\nJ0J4mPVGgbJQRC55Bi5oxukL5w2Ub8ydwa9WB2y+ituxbU3BPgnaMIVqM+2qjcK48kv+lPvk+bMk\nNUuiFEf1nIneqJAorQsrGnBMgCSD5nM2wq3kdF+lYT3JrjN26W8BkiW/yn5AZCgi0tytiMxvA/XD\nmqy8rG2a7tcTrKGUufcmCi3CODrWD0+HKTqEYQbCmQx4/HbSN/y8mSnhMYmqA9hnmK0Ug3KB2YQ8\n/6AUPN/jmsImeOx/uE+VYR7D1qnTXJ7l2Jto2xqKWi5DLz3wBkpMwbw7GXrWk2eUAG5s1YNUt2pH\nzKCEfXGD3ifONInyTb9D+8SQmdnKIgttSH9f3a7nVu8JZnU5oNzmQRiiT3LqaD+XlfWOk3XhwoWL\nNY21RbLgUsiXtienre/pWcA8Zjo2iRjKx6gL2vOKZJNAv2N/ojxaNLul6xT4wyU69bDUL/i5Xmaf\nYSU6tPpuRu8G0ZO+Z6ZMpy5Cm4ypJnSlREzBiGq3g8meCflZ0i2Lmj7qRXnh9MQkr8vyxhw2G50s\na23zVIaTpSKgEByzWYdj2cmMtW+O8EQn3Ec7ayMH8sYc7ImAzLFDFKHRdFbJpdrIp+uMNnal3y52\nx9z/BvhTzkxqvTiXClGpzTOKBH1gZZQzJH3JzgBtku+t2N9PH6CnQdY6l8qQvYbQzgbvc/AYaFCm\nuwSNdZd+0DwP74EGdczwmFiCOuQsvRxsVYWftzWvyaJnMprIjxJdmmw3fN4Y0N+mFvUYLM9NVzij\nAknY742zVhi0oW2orKFiJjfpWxtQJUIVT/9xZsCBo8YjXx4EokcT5ht95lAeSs/Xu6HSgSfv8qi+\nL63Hb8Ztnr/aD3+BIX3g2hVOQfFMoFhqfAJFL2eC9YvSTnieXNT7xD5S34vZXlE7d3LOcbIuXLhw\nsaaxpkg2fVZhiz+mnIvfAveahJ8ACyiy4GIuRHoBsbbLoYRqEZn/6D4REVnZjCKH74KDnaWKQEer\nmQ8DtiCjKzupn3e9DScqeqQGiScG4SxCf9dx3uYFyScSuZricuRX7cXeILuHI2stQF0p/B2POCBF\n/SuJIgV8U3KeelHyUkCKNHYHGiEy8urBOBuD81CUv03M6ed1FJ4z2S51mx8kZIp6jZIfDetkTQFI\nItoKrwfoatj2smWJaaoKOJsgoiPPWmFSYIQ70/MW6zc8v7ih9+22op6SMxjqaJfV1lTyW3WZvjgT\nMkhAVFagDgB6ilMtwoJ84OETJebX26oPw1kvRTTVeASIVmP1EGdKl6no0ga56AX7/izcgFkdKyeQ\nB2ffoAMVMqjoJicSeCvkL0BBgv65gtkdPW3pYrfuJ/DPhVfD1K362ntMv+89olO1+jBg6M+OmWN5\ne3bhvKExxj74bLDtykP2/TNuWyU0ENYrvAqeEaM1188r64OH3SvaaxrlLcj2Ow9XPPo8XCYbLhoO\nybpw4cLFNYy1rYwANBqDP6SAk72kAgJRa6kkV4rYgRtEJMgyyk4xu0O/X9qBkaegw3XvT5CBMqVQ\nahl2lqYGEepYJVeC0Y0oo/M03wN1rSeaoqYR34fQhn6hL+SMqAklcoi64IsEK7oBp4r34Bq9qq3R\npN60JURK5GB5LIz2RNHtEFLi3wTexicB51vkKjT4tgG00bxdAt2zqUqDtBIhdQGvh1UW0k1qGHEd\nafK/9j6rXTHrdw0gO2aptaABpaKDNc7Cx4zqgJnJxntfj6gFmPlGfpRtV61yqsKspWCqEpsFx9i0\nESptq1KsQca8eSDvODx4iaCMez/anjMrIsdWOtTuPDzemxkGJ0xa6dwoFbrfBoeJNQRmQEUzEql7\nbqWC6zMIFv0zCZUIkTdLhlcH9P38Lj1hlgTf9H0g2xFtp/E7Vb/e/wb8ne97nzlW3HhN6G9NhZFh\n+/mRyPpLqweueZ26z8oCOHWYhbRxLzgj4yxQJOCl27hm1vpqDMBdjFVdXGUEFy5cuFjbuCoke/Lk\nSfnkJz8p999/vxw+fNh8/sorr8gnPvEJOXHihIiIvPDCC/Ktb31LYrGY3HvvvXLPPfe8945rqEq7\nqPAjimCj3GwsnzffEdWaCrZwuU8PK39Dn0tq/pj5k0VtngUg29ndqKiKlXGOtBx+xj8QWNTPHqAG\nk5kzGAGBPjiCUtNKFyvD2wAIcCQmbWiymGx6WUQCNGVc6aldBJoyHgR05Sp51vtA6wiUEtHfttNh\n2Gn/1qgi6OrEc2G+Njgu+iGQHmatKKKxttErBkfiNROlRPlqIlhWXeCMg7xcvcOzvg8QlY384qEC\nC+TU6bFA5MrZQmkEsx8gwCpW45udUFfAF8LPozoBFATNss3xha+dx+dMw2RRddkXzPvZGsF2Eb6R\nfKtRTRCddviB72uL94/7sNGvcVMD586adPTtIGdbHYCyhf60Vft+igRaWyoVmMlFT4nAwxX3o2Rf\nL53O0qjx1fWq/sAoUxIB2cnnanEbuNiqPWPkzKTJdQdOPnG/quU8ztFe++D10YuEPLlICN1C7eHz\nPuRtXT3dut4rVv0nWy6X5fHHH5fbb7/d+rxWq8k3vvENGRgYMNs9/fTT8vzzz0symZS7775b7rzz\nTunu7r7cbl24cOHi9yJW/SebSqXkmWeekWeeecb6/Otf/7p87GMfky996UsiInL06FHZu3evFApK\nOB48eFCOHDkid9xxxxX37QO5toBkL/keCJZ6WWldml1B9BvPK8zKXFRyaH6XElBEkUQCxc06GtKz\nIHG2je+RiYLca+bEZ2eC0a3jnD2KGU9QSPq40m9GUnKbRDXM8CLXSTQHrrIVyqihxpGIhvsiGozF\nAp1k+LdepIl4jCZdvHrAfQL1JBcDxojoyI8zm8hGw36E+5IKoYN9jlQnEJXQeT9cI4r58KwQmwLi\nSS8CsSLTq4XrIxebAiLi9sadrEB0ou9NVl5IkMLqreQgTcZWLsieEhFpQaNMBGtWqZFVx6qmtUWQ\n6xn+Lmj8WLRtEEblQRQG1FkbgMsTlBxmFsBsLc6CIu5r7URQAYF9gJU3gqxA+7dJ8vtNbg8uGr7H\n+bPIoAKir0NLTS7X+hvnRb6diHZFi/CamYZRbqDfEsE2cf+nb9YOTxUQvYh1n/radVpPfHYfNKqY\nKTLTi3wpgyoC9mdysamz8PhF25vZXyM4JvuCQe+4TiLX7BRRv6wanu/7/uqbiTz11FPS09Mjhw8f\nljNnzsgXv/hF+drXviZ33HGHvPzyy/Liiy/KsWPH5NFHHxURkSeffFJGRkbkvvvuu+I+z741JptR\n+tiFCxcufhfjN1IXfOELX5DHHnvsPbe5mv/d/3H3f5YftL8rdxXuFxERDzpYIlwvBQ8A8K7NsXHz\n20u0tIjmHTeJiMjpe3UI6jyhl2hcgDCisiY79X6FM8iCgTtQblL3u7xZ4dcv/sfDcuCTX7aOVR7h\nqKbvia6Y5WLcpww/jPdEePQhIIIM+wiYagn6Sh4tmtVDR6FYQ+Tt//YXsucvv4LteUx7RI7XbGhF\n7avuRF8MDwUEYPxzmxG9L8UIkVpmpuYXLoxcGJHTO48+LLs/o+cZcHY4haZ9vqV1QLCovkCks7LO\nzgQjL0enLGpcw6u/VCCwbZjR1sozzQgerom2nPnYozL6t0/o+xK009C0Ehly9T6oSBBGQny1286c\nZ6TIqUGsbEvffm9QlmljX975Lw/L9r/+sslK5LFYkTjK35oZSaQvkD81ioWMzd8T8YVnSd6VlCRU\nueA1veDL6199WPY+rPebM0rqnulgxhlMalEPNr87mIKwrwfVkXkS9rEChzJ9T4TLfszsyWbBXndJ\nLsbknc8+LDse/4o5JtUSVHeYY6GvpGfog6Dfv/uZh+VK8WurC6ampuT06dPy6U9/Wu69916Znp6W\nw4cPy+DgoMzOzprtpqenZXBw8NfdvQsXLlz8TsWvjWSHhobkhz/8oXl/xx13yHPPPSfValUee+wx\nWV5elng8LkeOHDHUgQsXLlz8vsaq/2SPHz8uTzzxhIyNjUkikZCXXnpJnnrqqUtUA5lMRh555BF5\n4IEHxPM8efDBB80i2BUPjsKINH6JpsjKe1AOUZogsUXz+ao5hfF9v9RXJhXM7mU6I7bHFKnvdZ0H\n9L+meZm1QZ2LlId1DlLcFEwBF/fCcAJmMulp3SenL7U+LuZgKgTBeSyUmisSTLuMAQcL3oUkMhRB\ncx+cbtZ7bBlZNAXSCOYjabTmWHm7TS0DFRaW62jb+6AUiIkQkesxheiMhIYph7Y0xtANEipt40UX\n7ux0RWO/x5LhPbadIu8Fp75cZKNhTDi7thmZ5reznOejTZBinMjYc3kmH/A6jIEKqRjSQGF/9Ail\nEg1O4UkDmH1zKo/7y/vKtqT8yA9RUZReiWcfzKRWR+gqk9iCfbONjWRvye5bpBEyoUVgsyiKfbPc\nDIuKcgpf7aMcUH+bQ5otk4a4wLW8Cc8njO/DNATvNV9J8xibT/ZX9PFEmaWj7H7XgNFREqV7guQZ\nXEvi0uuj9NOcA2xAzXMUoUsuF6v+k92zZ488++yzV/z+5ZdfNn8fOnRIDh06tPpRXbhw4eL3JNY2\nrTaJUQsSrViXamtac/P2dqY8zXssprV1SCkPwqIQV7aww042iKG0Rg4LKNlJlBLfpccubsJCC1Jk\n8xPBMXuP2MUJF3fpd6VNKD99DimTSzY6k4iUJorSDEIMgXNKZIjEqkO2LKedsuPgf1kAAAbRSURB\nVL9n03iRRaaAdbcXacynoR5AZBZFTSYNlYgoItkyC1uU8RBhCCVvlyLZaLBNAlNx67QDJE65VKRk\nipGdUcPO1MoQcm/C/lGQgJHM2bOhVgMouYZGYRnuOl/tJA2fIv3LFIo0pbCz9uIL02fbERlgtACk\nMfaJSLcC851AdmRSQCPGPRaylksRbDRRxaQ/Q6TfcVE/ryA1tt4dmvVEZjN8btj+NOwpXAR6xMyx\nPGiXp+ECGJE9U5xNIU25jDyRCDxrI1rT5ugjPhYy/TqN04FK2Q8oy2JCRWjhkm1TR5Ur9jtKJhPY\nBWdM7xUurdaFCxcurmGsLZKNY/RjOm0krdYYcoOrNUkJIhIfUuVCu08RqA+DkY4xHc5q3Xa5GRbN\nG3hFnbXr67WERSuD0sozKH44r9tP3qZDciNkaj1/EPZuZ2EriHTaZBESn0j6KXlfyopqvXbaI0d7\nSorCqJKDtrEdrNmjNUdzGmcHeir7bZt8I7aPyq1iIfqRPJRBDERVEcTDMCM/h2oiJ3Jd3I+RDgW/\np0m1ScMECjbm1NwnpTMwxPazdkJAnNaN5H9xDa1uTh9C54wSMDGkw8YpUQPP1oZdpJdiPXmgLFo1\nEo3GbKRojOFDh+LfRrpFRM77YqRlNhrjbMKkYFds9M/7l2Ia+HyAHoMSNUCDkcKRBsFG+Hr+LmqD\nydI9lM+xvLdIUKaJyTHGihLHbmZtTpkcbfe7el9SRe14jRye01H7X1Ej5B5Z3sSsHcj4ziWxD/2Y\nMqsm07cpOUMyQorGL7gpRurFsj1ZnntwzGAtwJb5eT6tHW154nuFQ7IuXLhwcQ1jTZFstNwMuVcv\nDl41ojaID/Sbv01iAl5jMPatd+pvyRGN/ESHp3qXjn4Lt2gxNiKN/EX9fuxfKpysobxE/mc69LJc\njYjI4Kt6fizXEU5txAWIiEiKCBcpoCz6R16YK5WVPhu1ML0vfH4BF2cfi2YfUQtDjsoGubYir0bk\nTpRzKfwKfhNJPvCtzYKfRZMREvYG0dREvR78BDujqU67AwkBVaBK8r08F/BrPtBmk6m6aRi+Ey2v\nJHCuAY7wc7pvliGpwsyZSQY8TYNagISMuoK3CxuS+zRtGAI1UcG/MR/hhCN6Xyh0aNnHYtua9+TH\nE8ErOUvfGLzb/C37guF7OQGJoMyoUZFBpTThCaVFE936ptClvU0Gax/sp/2v6UNRhXqnlYaYP8PE\nCf19haWbskFnoQVhPGJUQ2OfzKx9bFoyJpftNRRj+gLkbmxE8Xl41spGoh1prAW+HtwseWvrN1cI\nh2RduHDh4hrGmiJZL5u1P8BSKgsnmohhFJmcMh9RYytpDMMlRaTNjHKttLyjpVp+Qod5jqy0TZu6\nRUfWNAQNHa+GHEVEZGFnMA6VUD68PGzbvHEl2BQSxE+Ko5dPW6TxBs0mDLcXWg021dCJXCOpm4GJ\ny+URLEdak95JHabhBrmsLZdGdHA2KIowzF4RJjIikLvE2jFiAi0SKniYtg+WmNUTNtwkpQxE8hGD\nbJba9mNsdKDSiEZURCQ2j30TRTdtPph6X6+GfdC6kCv64B+jHCf51FboWrwIBx5ojG2kGrStWOcb\nIH0cM8J7h7lOIjeTBmssKsHNFmztsEF2K7bSISi7w2PYawi0GAwfP7UMpQZM1GmwVOuydcvNgnZ+\nWgWS361BRcBVfPb3WEi/bUzIcX8SVXLFaIMQwhYJccw43UakPJKxgoysHXScD/ZRxaSZJeaNyfyK\n3dnDs88rhUOyLly4cHENY02RbGthwXpPU+6oIbfXgaG1u9Ns688CeqLmcuN6rR8To0EISkazXHBx\nVIc7cig9b+lrGvXayLNyVZMF4GhpJhKU5wgyZYBII2VkWCaZ3KzhYEd0yMxMK2RIRCwO22FdIwdf\n8p1EtBF+KUBK4JCK9ihuNK9Ro3DzfeiYhlS13gXA1iyR4yWiwzSnTL2mUUQAzXQE6THNbtsIm6je\nlNEBL5pYIrTDdTUi0I4KAOyH7cDXRKhiUVSxwDaMRcxamhEznoCTjnxAjjNuI0SRAAUG5jr8AjMK\niXCvdtMGSgDPfm/uawjxeu0ImsI2RLDMrjNG5kC69W72Z/YdHAPIjqv2bCeasfO4IgGKpAF6Ejwu\nLSnjFXDnOfZ5fV8ahH4dCFhm7HMOh1Fi0PQobp+3WROJzB5MxhqeL1pd8l5Uhu3Z3/K24Jic6fHZ\npkETZ14mI291IOuQrAsXLlxcy7hqP1kXLly4cPHrh0OyLly4cHENw/2TdeHChYtrGO6frAsXLlxc\nw3D/ZF24cOHiGob7J+vChQsX1zDcP1kXLly4uIbxfwG06F36k9P4dwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "_Abyfa3Gmbcp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This one looks like a \"bright green dot\" detector, useful to encode cat eyes. At this point, let's go and plot a complete visualization of \n", + "all the activations in the network. We'll extract and plot every channel in each of our 8 activation maps, and we will stack the results in \n", + "one big image tensor, with channels stacked side by side." + ] + }, + { + "metadata": { + "id": "2XR6n5-Embcp", + "colab_type": "code", + "outputId": "81ecc7e9-768c-4fb6-ef28-8491ce0417bb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2795 + } + }, + "cell_type": "code", + "source": [ + "import keras\n", + "\n", + "# These are the names of the layers, so can have them as part of our plot\n", + "layer_names = []\n", + "for layer in model.layers[:8]:\n", + " layer_names.append(layer.name)\n", + "\n", + "images_per_row = 16\n", + "\n", + "# Now let's display our feature maps\n", + "for layer_name, layer_activation in zip(layer_names, activations):\n", + " # This is the number of features in the feature map\n", + " n_features = layer_activation.shape[-1]\n", + "\n", + " # The feature map has shape (1, size, size, n_features)\n", + " size = layer_activation.shape[1]\n", + "\n", + " # We will tile the activation channels in this matrix\n", + " n_cols = n_features // images_per_row\n", + " display_grid = np.zeros((size * n_cols, images_per_row * size))\n", + "\n", + " # We'll tile each filter into this big horizontal grid\n", + " for col in range(n_cols):\n", + " for row in range(images_per_row):\n", + " channel_image = layer_activation[0,\n", + " :, :,\n", + " col * images_per_row + row]\n", + " # Post-process the feature to make it visually palatable\n", + " channel_image -= channel_image.mean()\n", + " channel_image /= channel_image.std()\n", + " channel_image *= 64\n", + " channel_image += 128\n", + " channel_image = np.clip(channel_image, 0, 255).astype('uint8')\n", + " display_grid[col * size : (col + 1) * size,\n", + " row * size : (row + 1) * size] = channel_image\n", + "\n", + " # Display the grid\n", + " scale = 1. / size\n", + " plt.figure(figsize=(scale * display_grid.shape[1],\n", + " scale * display_grid.shape[0]))\n", + " plt.title(layer_name)\n", + " plt.grid(False)\n", + " plt.imshow(display_grid, aspect='auto', cmap='viridis')\n", + " \n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:30: RuntimeWarning: invalid value encountered in true_divide\n" + ], + "name": "stderr" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAACbCAYAAACXp01BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXmcJlV59/09td771t13r9Mz07MP\nzAwIyqaiuIGKotEYkyeoQQISJXkT85iQPJrEJRr1jSGKuEQT8kRARfFFBVmVVWQZYGZg9u6Z7p7p\n5d7X2s/7R/X0MDIIJgO41Pfz6c99V92nT52qOufU+Z3rOlcJKaUkIiIiIiIiIiIiIiIiIuJ5RHmh\nCxARERERERERERERERHx20ckRiMiIiIiIiIiIiIiIiKedyIxGhEREREREREREREREfG8E4nRiIiI\niIiIiIiIiIiIiOedSIxGREREREREREREREREPO9EYjQiIiIiIiIiIiIiIiLieScSoxERERERERER\nERERERHPO5EYjYiIiIiIeJ6YnZ3l4osv5pxzzuHss8/mG9/4xlHTzczMsGbNmmfMb3x8nPPPP5+z\nzz6bc889l+9+97vHusgRERERERHPGdoLXYCIiIiIiIjfFj784Q9z/PHHc+WVVzI7O8sb3/hGTj31\nVMbGxv5b+f31X/815557Ln/wB3/A3Nwc5557LieccALLly8/xiWPiIiIiIg49kRiNCIiIiIiYoHr\nr7+eL37xiwBs3LiRj3/849x222184QtfwPM8isUiH/vYxxgdHeVf//VfqVarzM7Osn37dvL5PFdc\ncQW33HILd911F1deeSUAvu9z+umn841vfIN3vOMdnHTSSQD09/czMjLC3r17GRsb49vf/jZf+MIX\nSKVSnHvuuc+qvDt37uS0004DoFgssnz5cvbs2ROJ0YiIiIiIXwsiN92IiIiIiAhgamqKT33qU1x1\n1VXcdNNNdLtdvvzlL/N//s//4Qtf+AI33XQTr3jFK/jwhz+8+D833XQTl112Gbfeeis9PT1cd911\nvPa1r+X++++n2+0C8MADD1AsFlmxYgVnnXUW2WwWgAMHDjAxMcH69eup1+t8/OMf56tf/So33HAD\nc3Nzz6rMp512Gj/84Q8JgoC9e/cyNTXFpk2bjv3FiYiIiIiIeA6IxGhERERERARwzz33cOKJJ9Lf\n348Qgs9+9rP09vZyyimnsHTpUgDe/va3c//99+N5HgAnn3wyw8PDCCFYt24dBw8epK+vj/Xr13PP\nPfcAcOutt3LOOecccaxGo8EHPvABLrroIoaGhnj00UdZunQpK1asAOC88857VmW+7LLL+Pa3v82p\np57KG97wBt73vvfR19d3rC5JRERERETEc0okRiMiIiIiIoBqtUomk1ncNk2TRqNxxL50Oo2Ukmq1\nurh9CFVV8X0fgNe97nXcfvvtANx22228/vWvX0w3Pz/P+eefz5lnnsnFF18MQL1ePyKvQ9bTZ+ID\nH/gAl156KT/72c+44447+NrXvsbmzZt/2VOPiIiIiIh4QYjEaEREREREBJDP5xdFJkCr1QKgVqst\n7qvX6yiKQj6f/4V5ve51r+MnP/kJW7ZsIZvNsmzZssU8L7jgAs477zwuvfTSxfSZTIZms7m4XalU\nnrG8lUqFbdu2La4vHRgY4MQTT+Shhx565pONiIiIiIj4FSASoxEREREREcCZZ57Jww8/zNTUFFJK\nPvKRj+A4Dg8++CCTk5MAXHPNNZxxxhlo2i+O/9ff38+SJUu48sorj3DR/dznPsepp57Ku9/97iPS\nb9iwgfHxcSYmJgCe1StacrkchUKBO+64AwiF8ubNm1m1atUvcdYREREREREvHFE03YiIiIiICELL\n4j/8wz/wrne9C1VV2bBhAxdeeCGrVq3ikksuwXVdRkZG+OhHP/qs8nvd617HJz/5ST70oQ8t7rvm\nmmsoFovceeedi/ve9a538c53vpMPfehDvOc97yGZTPL2t7/9GfNXFIXLL7+cT33qU3z2s58F4C1v\neQtnnnnmL3nmERERERERLwxCSilf6EJERERERERERERERERE/HZxzC2jn/jEJ3j00UcRQnDZZZex\ncePGY32IiIiIiIiIiIiIiIiIiF9zjqkY/dnPfsa+ffu49tpr2bNnD5dddhnXXnvtsTxERERERETE\nbw3XX389V1555VF/e8tb3sJFF130PJcoIiIiIiLi2HFMxeh9993Hq1/9agBWrFhBvV6n1WqRSqWO\n5WEiIiIiIiJ+KzjvvPOe9TtHIyIiIiIift04ptF0S6XSEeHuC4UC8/Pzx/IQERERERERERERERER\nEb8BPKfRdJ8pNtLKf/p/n8vDv+Bk9oCTEYgA1K6kOyCwxyyyP4vhZCA+L2kPCYQPZhW6/ZL4jMBo\nSlojAqmA3gYvDnoL2iMSxYXkFLRGITEjqK/z6H1ABaC6DhQf4jMCJwNOLsCoK/gxiVkVtI+ziO2K\noXWhPRygOILsLuj2C9yUxC345B7TqK/3EZ5AFhz0fSZSA7Ms8GNgNMJymBVBe5nH2MoZ/nDkp/z9\nT96MMadxyqu38eD3j8ca8JEJn3jWQkrB0p4KNSvOylyJB6eWcNroBHUnxqMPryCzvMZrR7czYlSZ\ndTPcdnA1b13yCFU3yaBR59rJk/jblT/gzuYapqwc0+0c67KzDJh1xju9nJ7dzQ1zm3hJfoLt7X4A\nSlaKvxj9EZ/d/zqm61leNryXzw/fz58dPBlT8bhlcg2vH32ce+bH+NTKb/Nv8y/nieoAJ/RM8UR9\ngKmfLHkhq85zjpsNXugiPKdobfFCF+E5JXFChZFsnSemB4jFHYSQtPdmecPLH+Kns8soV1MkkjYv\nGdzP/QeWYnUNVg/NMpyoM2+l2Fst0J9usSozT1qz6Po6dqAxYDa4v7yMg40Mbx/bTEq1+MHMBt4+\n9BCuVNnRGUARkqIevg8zQLCv24OpeLw2t4XvlV/E8kSJGTtLn9HEDjTyeptpO8+LkhMEKCzRy0y6\nPTzRHWK5OU/JS7PcnMcKdGKKS1rp8qe3/S+EK1AcgWoJnIJPz4Mq5dNchBEgFEnQ0kGVaEmXwZ46\n9W6MbtfArZvkh+pUZzPgC1L9LVrVBASgxn003WOsr0wgBTv2DpLra1GvJRCKxIy7ZBIWmhLQtExs\nRyNuugRSYGg+qhIwkGyyt1qgeSBNbriBLwXNuRSFwTpd28D3FbKpLuUdPQTxgKHlJbqOTk+yQ1xz\n2TXXh5Rgt0z0hIN/IEGQ9onnu5yxZJx7JpdjtQ1etXYHj5aGqDXjDBUa7Jvoo3eoTtfRKSQ7jKRq\n7GvmKdVTCCFJJ2xW5ed5dGaITinB0NIyB8Z7GVpeIqU7TFZz6JqPBBKGS0zzqHTimJpPXHdxA4WO\nbbAkV2PXbB/5dIfeRBtFSLqeTtbokje6mIrH/bNLUZWAoVSdffU8LypOs6NWJGNatF2D/kSTpOoA\nsL+dZ1Vmnv3tPCndxgsULF9nZXqetmdiKh52oGEHKjm9S8VJsiIZ1oe0aqEgKbtJFCEZNqvUvQQH\n7CzHJw9gKi4ALT9GJzCwAp0Ro4KPQlrpEqDgSI2c2saVGjHhElMcJp0eAGKKy8vie/lxZyVL9DIV\nP0Va7ZJTOsSEh4pkp1tkhT6PK1V8BBc8+C4G8w1mahmCQOA5KprhM1So07JN/EDQ7poYhofnhc9m\n11VZWqzgBwodV2ckXWNfPU/HMnnp6F4enhsmE7OxvHBIpi9c27FEiVk7gx1oKCJgf7OAFygUE02y\nhoUvBTurRdYVZml7BnU7Ttbs0vEMNBGQ0m0yukVas9jR6GdZqswTtQFOKEzhBQrdwGCqk6M/1qRg\ntFEJuPHfXnrUPifQQXgQGCACWLj0LzhOGozmM6d7cvrAAK393zygAiw8Pp2cxKg99Vnj5CRaW6C4\n4MfAyUriswI3I9EbgkAHqYHafYay5iVGVWD1SfSWAAl+7KnH9OOH8zJrEqtHECuH42//3Cr1apLC\n3QZ2TmDWnjout/MCs/qk/QKQ0FwK6X0/V6aswDchPidx0wIC0NtPP9YPNFC8hXKaAi/OYhkaKyGz\n++fS62AVBKoT1jOjfjjv+m/4G6uCYQtVDZBSIKXAjDmk4zaOp9LqmGha+BuA7ws0LUDXfOKGix8o\n+EH4nBJCogpJXA8bqeuruEFoe8yaFobi4wQqhuKjiABPqihIDNUjproEUiGQAkVIkpq92E8rQqKI\nsPLHVRdT8ag4SUzFW+yL46pLTHGpugnyeoeOb2AqHjHF5a+P++HTnvsxtYwWi0VKpdLi9tzcHH19\nfcfyEL9W2FmB2oX4XEB9rSS3M6D/JoNYJSAzEdA4q4PihJ2LkwG9JTBakuq6sEEGBlh9EqsvwM5D\nfFagtQXVEz3cvE9rNECvq9RXh403NSnQ6wI7Hzb+IOdhDXoIH+xc2KDdlMTqkwR5F6/oUjkxwDeh\nZ6skN9igOyARniCI++iTJiIIO9TWegfhg5MFKaBbDEAP8AOFjz30Box5Db0tuO+u41B8SEyrJHcZ\nWC0TqxRnbXaWZdkK+5t5/nzDbfx0chl/NnIL33zz5XzsuOv54cR6/uWRs7jm8ZN4+cAe6l6Cna0i\nncDg5f27+f+qJ5JSbVquSU+szaXF27kg9yAvyuzDlSorUvPcMH08942P4QQaMdVlxsuxIXeAJbka\nP3h4I2vuOp+i3kQl4NTBfVy36wT64i3Of+CPeG1uG8VEk1vG17ImM/cC15yIiF+MEJK5dgqhBNi2\nRrsVI1ZSuHHncXxx/X8R3xpHEZJH5odQlQBFCR8gk+0clq+xtneONZk5bF9jX6dASrWJqy5b6kPE\nVI/l+QolN0XVS3JCfoqt7WGeaA8tHn/GyZBQbXThk9RsMlo48D8udYCE4vC2wgPEFJdhs8qm2H4A\ncmoHXfjMexnWGgcZMaooQuJKlW2dYQb0GgfcHJNuTzgZZgYEGhDA+affQ3LORzF99r76a+iGByIU\non7VpNqJ43oqbs1ExD0au/IIW8Eoq8R0DxyFgeEqihJgV+JM17O0HBPRVWm2Y/T2NtFND9fRmC+n\nOVjK0rV0HEunVk7R7phU60nKtRTbZ4u0pjIMj5WolVOcNDDFiWsnaHViOE4oJorJFkHeJVFsU6qn\naLTimKrHRDVPId1G0wIyhTaqKtGGO7ztpAd5/PT/y1CshqJINMPnzokVDKSaGIZPuZ0g2duh6+ik\n4xaT4338dNcYHdtgRbFEOmHTtgzuH1/G8p4K61ZPkzZsEsVwxO0EKsVMC0VI1vfNoi7Uh8F0k0BC\nyzbQlYDl+QqBFMhA4PoKe0s9bN03xGCizkw7Q9szeKg0QiZmhcLKM1AVyZbyIJanMRhvENdcimaT\nsp1kT6OXlmNw08820bBjzLQzPLxnKX2xFnNWmozWJaN10RWfnN6laDRZlZzDlworYnO4UmXOTeOj\nhP2/H6OgtRkwG2TVNlUviStDwTeo1+jVmyhCohKQUS3SikXdjzPvZdhn96ILDx2fhGKTUML66yPo\n0VpU/BSKCJj3Msx4OdrSYNrPslqfw5IatSBBn9qlJ9NGUwJ03cP3FaQU7HjZVbyoMIl3Yy/GtXnW\nDczieSrZZBdd91jSV6Vpm4ymK9iuxq5yH4VElw2DB9haGWBptkqlnWA4VUcuDAK9QKHlmwDUnDhe\noHJ8/iAS6HgGac0CwFB9ynYSTQQkdRuAjG5hqB7T7SxbK4OoBKxKzzHVybEiU2JHox9T8Xi8OsDx\nmQPk9A5zdpqUah/Rz3gxcFOw+bIrCFQQElQ73O9knoOO7b+B+CXfB6G4RwpRLxl+XvCeH7Llz694\n5gwCQrHG4UnP7uCRk7uBDoEZpvPjEn0hnd4IPwMTFOfIbBeqMU5W4uQkUgWnL1RxsflwLBkYEi/x\n1BNWrcPfrR6B3goFJoB6Q57C3QbAUYUosChEvXj4P14s/FT8hfI+yWxl1CXxuTC93pSLQlSq4CUE\ndk7gmwsXSIT7DtHtl4fvlzhSiPpGmE74kJiViCCc/PhtQtN9ggWxqRsetmUwN96D+t0CybtTaJpP\nKm6jKAGaFta5QIZ9tRBy8S+mefhS0HV1uq5OTHNJGzYxzcMNVDypoCkBngwnBhVCkekFCl4QVsQA\ngal4qAuC1A40dMVfEJ4eXqCSVbsUjDZx1cFHwZUqrlTp+AY9ehtfKuiKT1brLPbTT8cxFaNnnHEG\nP/rRjwDYtm0bxWLxt3q9qN6WKF7Y+IyKwn2fuZL2wOFL3nNDHL0ddlyxiqS93qbTLzAaAmvIw0uF\ngzFpSJIHJc3VHt1BH2EGDCwrI5VQyKqWQLPAN0EqYNTD72pZR20reKmwDPqkiZfz0RsC0dLQ4y65\n0RpO3sfXBWeN7MTuD8UrgSA2LzDqkN0NSkPDyUvkxiZaRxBb2sScMijdPkQs7vB7595J97guf3Vu\n+KL2r/7xvwKQ2G6S3Kext9VL1UowuaePf3n8lXxs0/f4i8d/l/Mffg/vv/N/seWUbzDUW+PNax7j\nlsk1XNb7EFPNHHu7vVz9yIvpNxo8WBtlNFklq1s8bI3wqflX0AkMbi2vY2ttCNvVeOnYHgDOH7yP\neS/Nu/P34gUKIuYTjCe5s7SSbz7xIu6ZXo7d0TnQygLwsSdez0sLu7FaBg3PfH4rSsTzwvb3fvGF\nLsIxw3b10EqXbxKPucS3xjHqEMzEuLV1HFsvvYL27iyG5jOcrVPIttlXyYcD105oZeoxWuT0Dl6g\ncNDOMtXJMZKoESBYlZ5jxspQ1BsoC6OHjNZlfeIAKdXmlPRe0orFznY/KdVm1Cxzc+14Sm6KgtZi\ni7UERQTs6AxwdelUEorD5s4y5r00ltSZcHvZ1S2iEnBO+jHOzj7GMq2KimTaziP1gHSxhT7Qwc0G\n3PTZl6N2fQZuMDnr/AvY/tL/ZOnyeYqFBnpvl1YlwWihippxUTSJn/OQCR+n36XxSA8oknI9iZQC\nvarSnM4wPdmDjPsEbmgRPDTjLBRQNR8ZKKhagBrzMAyPRNLCMF00LSA10mCummbpSIn9rTylbops\nqotpusRMl5oVZ9PYFAnTxTA8kgmbyVoO29bRlYDRfJXGXAopYVlvhU8PbObL9SG+819nYv4og6oF\nnDI6wd5yD7alM5BpIoRkOFsnH+uyetUBEhmLej3BRLkAQDbZJZWyiKku/fEmqzNznDg4vTjDDdBq\nx9hT7cXxNAaSDdKGha4G5BNdlmXKVKwE/fEmr1yxk5cN7WWst4ym+/zt0I2kDJtt8wMsz1TYu6/I\ninyJiVKBMwd3c0b/XkrjhdA6alhMdXJ0PZ3j8wcZTDYw+jo0vzdI8IUiqS0mSdVhOF5j2sqxs1Vk\nb7MHO9BwpcoBO0vDizFh9VLUG4yaoUC2Aw1d+FS8JKbwKHkZNsXDiQ5FBHQCk4TioBJ+L3spyn6K\nrNplWK/Sr9fZ5/RR8cMxSUYNLYs/7qxiTC/RDkwqXoqc2mGHNUgziOFLhV7VpRYk2G4PMullqDST\nzDZTtFsxMqkuNHUArr/zJdRfYpGY99h94wr8XSniukuzlKTtGCR0l731XnpTbbJxi9FklZZrEtM8\nxqs9KEJStRMMpeoUYm2yukXJTtH2DWpWnI4XWjGHU3UGE43FydlcrEuf2WJ/M48nVU7ITJHUHAIp\nMFUPy9PwUVCEJKtbzFkpYprLoFFnY2EaV6o8Uh1hNF5hT6cPJ324n/FNuOgPfwCA9iTB01npYDSe\nuZ/yYkdu+8Yv1889G5ysRP6SjjB+/PD3Q8L08zeezT1WcHRB+qSRstSgPerjZuSidTh+8MihtFkV\neHEJEoyqQGuBmwnboJOToRFioQzBwjURPli9EsUPjQ7CB63yJBUoQvF7aEwvn/RT50liOFaWqLY8\n0tL5cwT6kdtSCf/cVCgqF+ZASByU+KYg0AV+TByR/lAehz7tvEDrSBQfVHvBairBaCxYaE1Baj9o\nnYVyySPLERih6F0wvGE0Dgvd5tKnPZXfKAJfASkQSoDvKcgA8o8qZMdtsuMuxg05SlM5XEfD1D20\nBSuovmBNjeseCd3FVD1imocEdNUHQFMCNBEQSBH2p56G66sEUqApPgnNJaG5JLVwlkRbuBEtz6Dp\nxsIJLsXDkyqeVAkQ6Asmb0VIdOETSIW2Z2IvzF4ECPJam5hwFy2nT4f6d3/3d393rC7k4OAgu3fv\n5vLLL+euu+7iIx/5CL29vU+b/vJ77jtWh/6VRLUFsaqksl6QGYev3XgyRkty32eu5PplfXQfyqF3\nJI01AXgq5owWdm4CFEtBswTOoIs5qyNVQSAEQdonNmlgTacIdIneVBABeAlwMhIlEAQm2EsckAKj\npqI1BUIKFFdg1BSs9V2wVZRZA6cUxywpiEDwiD0YprMU1I5CdlxitCTtQYXMHuj2Q+anBl5S4HRM\ncptK1BMa2mNJtho9+Afj/PvJP+aSUx7g7CveT3uZh1ELO+kpJ01tMoveVBhdNcfq9Cw3jx9H4CsI\nLeCtI3fzxt7HiGk235/YxLiRoOnH0JSAt4w9QtOPkTe77GoW2V7q5/j8QfZZvexsFckZFlLAcLqO\nL1VyRpeHGktp+HFaxGjJGJM7Bjn5jJ08uncJIEgnbeSWDPbeFMpBk2AqzsOPrUIOO/Rnm8zuOXq9\n3fDaHcwt/PbBd36He7eue55q07EliP1mv15YcZ86Ovn8wy8GQlF66PuvK37ewzQ8qu0EQsDX3vgl\nHvjn9fRscZj43ghfvutUNv/Vl/jM919BI61g6j4J02WulcJ2dJZkq9TcBJqQ7Kr30R9vYfk6K5Il\n8kaHh6ujrMvMMudmsH2drN7FUHxWxuaY9bJ4UkUVAQ46nlRJqA6+VNiYmKQeJEipFiU3Q0Hv0PBj\n9Bptlpnz7OwOsLk5yj2VlaxOzzFt59npDGKjs8sp0vDjZLQuDxxcRj7XoVFOghAU7w8felo3wE1r\n/N9rT+COi67mgv4n+Pr8WqxWjETapm3r+NUY6BI15hFLOjgxgVAlCIGiBgyMVQjiPk7DBE2Cp6AY\nPlIK/EoMLeXgtg2EHoAUxBMOnUYMz1cRisSxdRQ1wJtM4qd9TM1nppYhGXPwA4V8IvSX+9/LbsSI\nS94/ejsHKLC+MMvjEyM05tLMN9LoZQ2Z9Sg3Uvzp8kdYaczxva++mLmXCIauU6n/pJfWiR6qGjBf\nzpDPdKh249i+zlwjxfr+GWZbaaQE11MZK5Rxpcr+SoGZTpp5O83OmSIBCtVmAlcqrCnO0/EM/EDg\nBhqT9Vzosqt6VKwkg6kGnlTZMj/EjJVhvpXCqsbZYRbZW+mhJ9VhbWYWPy7IGBbreua4bXI1dT9O\nb7HBcbkZ9rUKKAKaTgwU2Fku0m3EGbrDQ3ElyYM+zX9qcNdJ60kkHIYSdSQCU/FJaxb7OgXimocT\naFS8JGnNYsSoUvFTxBWXtm8ihSCt2uy2+0FAgIImwsGWIzXiiosjNTKqRY/awpYaigBN+MQVl7of\nthuJYIc1iKG6tIMYPgrbuiPs7fRxd3UV80GWg0EKgWSNOcNSrcHXd59Ob7ZN1zbQdZ/Hzvoa/1he\nT/WKEWzDxM6p9G1xyEwElDYJzKSD7WpUGyny6Q5NO0Yx2WKylSNndolrLpoWDijThs2BVpZCvMN8\nN01Cc7F9jbodp5ho0fYM+mJtcnqHve1ehhN1+swWTd+k4xvEVI+6H8cJNJpujK5n0JPoMNPNhK54\nQrIsUaHqJrhrdiUP71rGrkYfS3JVTkhPMuPkmH1gYLGf0WxYd/I4Z8Sr/DPr8JbZ6PtMYjOhInLS\noD7Jwucb4VKhQxxyz5QiNCY++bdjhd4SR1hH7WxYbi9xdFfiQAvdX7XOkc8IvSX47o4X89nZE9hx\n/pd4dInG5LbBhRM4nM5LSfS6gpcErSPwUqGV08mFhgEIBdWh/L1kKPC0brj0yhr20WsKvikJDIHW\nZeHiHBabhwzUh/Kwe8LyCgnGgnXVyUmsYR+tpeAMOxjzoQDQrNCVVgSHhR1A7ZUWga2jt8L9Vo/A\nSwq0Tmhd9hKhC6+XFIsCUsjwnine4XsJ4MdCjzkhD3/XOuFvh+qD6oCbEovbih8KUqmKxbycrMDJ\nh5bcQ265P49vCFRboLpg9zz1998osh5SCjIpCxTwXJW+ewEJ5lyX9MPTxKwczayJn/YRIvSScjwN\nRQkIZDjetv2wv1OFRFXkgtutgkSgKQESgaqE91hTAhKai0TgL8y62IGGRGAofvh811xUIel4BhJB\n19fxpYIQ4C24/9bcBCU7yXQnR81NsLvVR8awcAINU/WwA4OXF3//aU/9mFpGAT74wQ9yzTXXcPXV\nV7N27dr/cX47z/8iO8//1bVo/KKy+SZ0exSkFs4AveNvbuIfP/plTvvgxWzbM8zMS8OWl96p8fif\nXEFrjUNiLqA9EoRWDg2MWR3flLRWuni9LngCOx8gXEhOKahW2AlYQy5GQxAYkvSEJPuIQeGRhYrV\nExCfk2id0JJauC2G1lLI7IXhkw5g9wZYvRCfVpGqJDUp6NkqyV8Yzjq3l/morqRvs6S1FLrDHnLQ\nolxNIS2V7pCP3TbY83tXcvzll3D85ZcAkJw4PHWX3K8RKynIFR16Ym3+efurCMoGuhFaHb7Z2Mh2\nt5dvz5/MSUv3E1cdrlp1NbtrvVw3dQJbG0NcvzN8Z+2rl+zghNh+7p1aRo/ZwVQ9ts/3k9FsnEBl\na2WQjmfw4OwS3pjahu1rxJY32dfIk8xamLtjdO/uPeqDynwsgeMf3Z3giYuvYMvNaxa3P3P1W3n5\nGzeTPfVX263XS/1mC89ny5vPDSe/1n71fWx/7xdZ9tL9L3CJ/mfU23E0zScbt/jw29/D7j/XuOTq\n7wDQHNbY+JlL+OO3/ojsN9PMTufpiXeI6R7FTIuDnSwVO0nJSbKp5wAPziyhGGsxY2fZ3uyn64Zr\nSPe38+xu9jJt5ah6CR7vDjPe6WHWzTBu91Fz4xSNBh3f5KTkBDm1w0EnR0Kx2d8t4EuFrq/TqzXp\nBCb7OgUmmzmm7lzCtdefybaL1vOW7EO8K7OLqpckodoM6TWwFea395LYa6BYhx9T+8/R0ZsetZUG\nZ51/AQDnr7if777680ztKOK6vw1fAAAgAElEQVS7KiLroBg+flPHaplIT6CUwil4w/BpWiauq7Fk\nbB49EXYCdi004UgjCN2cMjaa5uPb4QCerkpfoYl7IMna4RlOH5kgPtagWY9z4OFBZCBoWSaa6nPO\n4DZUJeCO5nqu2X4Sn5k8m6uW3snnBh9ETXjEB1voKQe3z2Wop05PvsVOt82bL7yU2iqdobsl5Q1h\nebvlOM6+FNILr0E6ZlOupAh8hblOmoFCg1eO7SKdsOl4BvVOHMfW6El2mC+nyaS6rO2bpSfbxvcV\n2p4RzphLQbmdYGm+yvSBApVuAjdQ2Fnuo2bHWZar0OjEWJqvsnLFDKfmxgH427Hv8+mBzezcNsL+\nf1hDRuviPZpj/rZhemJtHikPowhJRrcYTVdZmqjwyQ3fYey/QitR+TgTc7oOwNpL9zD/rSU8Vh4i\nqTmYiseMHfp+KkiGzNqia+6ubn/oUisVikYDBUnJS+FKlbqXwF4wscSEgx3otPwYdqBjBTozXo6a\nnwzXoCoWzSBGQglH+0WtyWmp3XQCk+3dQT7zk3P41p2ncu+Da5i8fjk3PriRr+86lYqfIqHYlAOT\nRMpGV30UNaA/3UQXKt/54itpjIYD/cCE2ZNCc1ffFxMkDBdVDVjaX6bUStJ1dMrdBAKYqBU42M7g\nLawlzegWK3MlGk4MVQnYUemjaicwVJ+c0WVlep5ACna1iqGV004TV13mumnWZWfJmx02ZSY50M6i\nCMnyTJllyTKnFCZ4deFxvj56F9+87XReU3icYrJFbMpg5Os62w4O8uPqGvSjqMW/LOzhxE9cQuKu\nFE5XpzF2WDEYzVBo2rmnCtMn88u60v4yHMo79oZZ6ut8zLB68e/v+9zT/k9s/kghOnDOJFv+/Ar0\nhiD1hMHYLX/El0bC54VVPLLwekOg+BArhXlorVBs6s3DebZHD19HrRO61xKE1r/YwdDoYNTD8Roc\ntkzaBYmdf6rL75PdVXtee4DrPvBpzIpg/E1fZtv7ryCethctrH4sXGP65PFNdb2kv6eOF5eLLrex\nsiRWkovusYeslHorLFPt8FBnETcdzipoXbkoHLWuxMkI3KTASxy23MJhC+shV13VkaHn3QJmVZI4\n+Isrh+pIAh06A7/ZcSAApBSoaoDrqziOijYRw6zYSFVQOy6Ns2aIxGSb4Ts85K4UVtdAXXDN7doG\nnq8gYXGf7avYnobtaYui0fJ03EBddAcGFtx1NVquScczUITE8nQCQiuqJxVaXljBAikoGB3SmkXb\nM5m1M4y3e7j1oePY8b3VzF+/hP03LKdy7Qg/uuEl7GwVKblpEj+3BODnOeZi9H/KN99xZAey+qr3\nsfqq971ApXlmflHZ1AXX2dicQHjwZ/kJPrnvHADesHEL8QNa6Lq7JGDlj99NZotBfYVCrKTgpiFW\nBrUbNn61oWJmbFAl0gwQATTHfLykpDsYECtYuBmJk/dxU4LGqrDFe/HQRTfQBMmZgPR4WCajKgg0\nqF83hJ/y8RNh5xKf1ohVApy04IdrwsXGxfvCStseUDA21hCewNgdx9gZR8Q9sqN1aB89FtbWS490\nefEcla3zAzRKSZCCwVyD31/9IF/51tnMuDne2PMoD0+OcPP+tfzJxFuwXY0Te6bpM1u8adUWXtaz\nC4Bt9jDvXvNTTMVjT6OXdNzCVFwe2L6cycke8maHFxWneee2dzNvpRjrKdOfaHF8/8GnfWAeosfs\nHHX/uisv4TVvemBxO3vqHHd+/0TqPy3+4gxfYLTWb34n/mwYbx+eVl371fexNjvL+efd/gKW6BdT\nPGXmaX9zLY0gEKzvmyVlhJ28uSXB/776XTRWpui/v8HQnQ0qXpJ7//lKPnjGTWzZsYSE7tJxdfrj\nTQpmGy9QGDJrvGx4D11fZ8Cssyk7DRBux5skNIf1qQMsi5WYcTKkNGfRHXLIrFP3EkzZeWa8LF89\n+DJWxw7yL3tfxZ8O3EpBa/HS3G62tke4ZurFPH7zaox/LjB4n0N+R8DOSw0u+MoH+Oj8qdx8YC2n\nJPaw1jiI2lEQEjpjzqK1obHUwKgoSE0htztsxGedfwF/lp/gfdt/n6XrZghsFSHCtTdm3sKcMFHj\nYV/oN3W6HYPaXBohJJankU51UdoqRtbGs3QShbDtrynOYbdMVNPH8xVEygsfwisrPDE5wB17VjGc\nrSMDQW5DCbdlYNyYxbq3l6u+8Rqa1wxx7wdfwvBXdMa/P8aFk2cAsH7kIKbuoWoBZsamaRt0HZ3V\nepLGUo3cLpfaSpX4rKSxTGPp9aG1JJnvMnswR6WZRPoCM+ZysJwlqTvcPTnGCX3TtBwTx1ExzHDk\nmsuF9zdvdFGFZCRXp9aNk9AdWu0YQ5kGVStOutDG9lRK9RRDmQYx1WPz1uW8cnQ3huLRE2vzrckT\n+fSG63hV3OcVF1zIwN2Czvtr3HvZKfTf7yIFNJwYa3JzZI0umuJjqh7TVo5HO0uZfLWBk9OQGsyc\n1UfrzHCkm53w6NgGe+q9VJwE6oIracMzGe/2YgcaVqATV10SikNMcWn54cSBgsQONHr1JrrwGdKr\n7Hd6yaodEopNr9ag5KVJKjauVBnQa+y2++nTQv/SpGJjSZ2yl2JLe4S9rV5QJSu+ZTF0J8TnA3oe\nVOn5SpKdnQECqWAQ4LoqDcskn+4w10rxqfIqUufNINXwfKweidGEyVcd9kG0bR3L03BdFSEkrq8i\ngb5km75Em6wRBvqbbmfZ3wzfSFDpJkgaLlkj9I+tOAnanknBaJPRLVypULPjJJTQK0FTfMYbPdxV\nXsVAskFGt1iVmKNkp/iLnod5d2aON+06m9GbPYb1KrtvHmPw3rAdDf9bGPDohNR+nEzorvlkDrnX\n6vtN1py4n1s+9OnF30Jr3S8XROgQP+8uetQ0zyLMZvZNB7hv03VknwiV0Jnv+Rnv/eyfPetyzNx4\nZMDC5JYYj9hhv+qbTxVLvgHI0MIKoYvtoe8ARk1ZFGJ2Plz/GRhhkKEnC0vFWVhz2h8gPDArgti8\ngpcIfw8MFoUrgPPiFuWbh/idf/1L/urCa1n3pXDif0m+hr1w/G7fU9da5h8XfO+4/+Rt59yD+eY5\nvvPhT/MffxsGEHXClUqYNYmdCwVloENuB7SHD48dOoMCvRlOKj35ntg5sehSq3UWxKY4vPxsMV0+\ndNs9tEb3aJhvm6W1RNAtCiobQ7VbPV6GS8Se03CrvyIICUJi2xpCgDPgIYXALFtYBYXK2hhuNobe\n8ujbHBCLO7i+iq76oduuGrrh6qqP66ukDAdFyNBFVwlQFkz8fqBgqD7uwvrQlmsSSAXXD4MaARiq\nR9M1CRCL6Zqeiab4eEHoqtvwTCp2gs0PrmT1VRaaFdajgXvb9GzpYFRh876wbdnP0Nh/5cTo7177\n7DuQF4LchtIzJ1qgOeajtyV2XlLZILmpY7LnZ6N0exV+tGsd3SUuF06eQWy0Sd/3YyTmA+TGJnY+\nwBrwER54yXB9gVFT8PYnEY6CUVKxexcWLxtAINDvS+PmPRRLweqD9B6VwAAv54Uzlz1QOU5QXw1+\nXODkJF5C4OQEWl1DrwvSk2GHWFup4MUEF+x/KfNvsKmPKax4/3Y+//4reOwlV6M1FcwKWEMexkSM\nWiUJEo6//BLSZ84e/WK8JJyuTDwRI/hpHqFJ1K5g795+vvbI6eROneWnjRXMeFkMw+fcZVupO+Gi\nigPdDGtTBxlv97Cv20vJSXFbZR0P1JaxtTrISYX99CXa3Lx/LcetnCaR7xJXXZKazUCySVq3OKt3\nOwBbb3iqtX7Z2eGs/4KHAztqTy8uLx86LEZ/FUXoTy789FH3P3HxFdj9z4GP1K8R3xy77Yjtm37w\nYi7r3fFLrzd6rnAKYZv2V4ZunnP3D/CDdx39fsZTNjHTxfJ0Oq7B5GsyLLmlwfpX7Ka6WmH/2aGF\n6cH3buJl77+IaTvP8GiZybk8XUfn3p0rcAKNmXYGXyrM2WncIAw8kFYt1uXDdrwxOUlfrMX21iDb\nWsOcnt5Nv9Gg6iU4aGfZ1S5S0NpMdXLUvQRp3aYZxDm1b4LvNzbxeGeIBxrL+cHmjdSvH2LJLS1K\nmwzcpEp2Z4vVlzt4KcnmSzZx36bruLmxgXs7qwh08AsuuArCheaoQWafQ+aMOSbOE9RWHV58dtb5\nF3Dfpuu447jvgasQizv8zupHcCwda8Aj8ARBXBLv7aDpPsJR6JYS6KpPu2uGa+iFRCnpdKfS2OU4\nW/YPUehrIAPoNmMsHyphuxq1RoJstoP0BbseXYJQJeWdPSy/NiC716H/AZverR6aJXFy4eipb7PN\nnr8J+52mY1Ibz2O3DRxLp901ycZDsREsWCh6trgk5jzqq8KBw8B9Hp2mSa63RcxwEW0N31foLzSY\nrmexbZ2ur1PrxFFVyfLechhZ2DYYTDfZUStycD5LgCAX75LSbdYOzaKrPqqQOI6GpgQM5sP8+mIt\nTtqwl8cqYTArgPs2XcfZCZtXXHAhED5L9H8P16q2hjQKO3z23L2Uvc0eSt0U+5sFJpqF0IrXKZI+\nvkz6rr24yXBQ2hpU2fe+44jvLqH9MMfU7iJlK8mBThY70AgWLOo+4WcgBXNuGivQSSgOuvBxpcqq\n+Cx2oKMLnwNunnWxA+jCI6d2KHkZsmqHdmAy52aYdHrIa21ySocBrc60m6fmJ3iotYw9rT4mvjfG\n+o/PYIzPYTR8Al3Q90CV+FSTW24/EQeVOT+F0zCpzGWot+M4nsbtc2u4c8N3yY67qHZAbF7gpCG9\nrsL4eQred/oY/jeDAwfzBL7CklyNhO7StEy6nk5/LIzOnIt3kVKwLFOh0k0Q111O6Ztgd7mXoVQ9\njJCr+Iy3ewikYKLRw3Cizt3lFSQ1h52N8Hk0mqjyivwOTNVjxsnwjeV3kFJirLj9PbQ+PkK3V+Of\nLvlDustcxt+q0BgNB4meVLi7thIIo/cf4lPlVTz2wXBSOTErOHjdMgIgUKH90jDh0dwrD/GL1ok+\nm4i8yjMEsdl82RX8+PjrOfEToTBrjUp+8vWX4J5Vp7bhvx/y9w+/8P/wzfd/hr1vv5K/fO83F/d7\nicMuqUY1bLNuRoYxPhbG2yIQi2tE9ZZAeGLR1VcEh9eJHgo8lDgQDj68VKhHDuX/5CBHbkaybiDs\nl1urXD75lXfgpiQHvRY/Wvd9zIpYzDNx8MiHWntE0KsmuWV6LcszFS7c9Xv8zlV/DoRvdTgU7Mis\nhYJScaG27kgrZmz+sLAUQRjsyMksuBn/PJJwadmCgNQ64RrWQy69RyP/zins6/qJn1Bhxev2YpZD\nAWSOtHCK3lMCPv0moqrh0pBYzCUZt1GTLo2xOFJT6BYltbWSmVNMAl1BtSRL/kHi7MjQbMXDiPpW\nGPug4+ooQmJ7GpanLVpBQ2GpENNcHF9dXBeqLQS0E0JSc+JYXliRAykW1omG9TOpOeGzxo1TcRJs\nKw3Q+pcR1n5uGmH7pA74ZPZb+HENxfEY+d4UiUfiuFKl6ceOcsaH+ZUTo78IL/3Cv46ituXp18D+\nvMtu7nEFsx5GUsvuFPzp1X9E72OSeCnAszQGfqJSd2Nod2eZefXCbPZ3k/zJa29Ga4VrEhIHFvzl\nbRCeIDWu4gy4CFeg9tqk9ocuI/orS+hVjcyKGoEaHkPxQDgKQdIP3XO3ycWIuG6fS3OVh5eQyGEL\ne0OHuZMhPRmgnVij2y+598aNBBWDwJTcd/9aPvS3F3PaBy/GS0jcJJhzKlo3DJSUmFJxU5L7Nl23\neP7dYsDrd7w+3PhZ9ohrk9huIke7CNNn6WAZVUi6vs7nH30FfekW95eXMZqq8o6xh+l4BveUV9Jj\ntpmx0rQ9g28sv4M91R7W5GZ5pDZC19PZcso3aDkmb1v5CBOtAvvbefbXc5S6Kd6W3srW6cGj3reJ\nm5Zz1tseWHyg1rpP32hW/+RdT9n32EVhsKYnLn4WkfieY878yl8edf+6Ky9h71u+9DyX5lefFdde\nzOjpU78SwY2MStgdq7sPR9d4w3/8JW94w/1kTjpyEiwIFArJDtPN0B2vuy4c1YwkarhrjhwdtPsV\nrvvBGdy98TvkfxyjNZvi5JUTHGhlKTWSzDqhm2Cv2WLKylFyU5iKx8FulnvrK5hs54mrLq/Jb+X7\n5U3MOhkSisOqxBwnZyfY0enn1Pw46kIDcqXKrJ2h6iWY6uS47acbWPPlLsUHmwgvwKxI2gMK9Y+G\n5Vz+3SaV9aEpQBc+q8wZ4iNNlg6Xw2iMKUnp5HBUtDo/h3AFuV1HjkxO/vD7eOljb0UEgpU9Jb75\n+EkUexuYs1q4Bj8fut1KGX5HQqmeIhm38VZ2cSyd2FgTsi4YAUKBRjNBLOGQynXYu3uAbtegWGhQ\nPZAlaOu8/LRtEAiW/uDI0ZVqB+hdiZ1R6PaFD/XZF4dmkpZtIgo20laQHQ27bVBth/f7D/44DP43\n+VqV/b/nQ9GmclGL5iV1Rq9RyV6ZpjafIj7Ywu7qHNjZx+reORQheaJcpDfVxtA9ds/0IYQMgzWp\nPrrqk812qHXj7JvPM93KsqfUw/bpAebqKUzDo901mZzLY7sak+0c060sbUdnTWqWa5bfzk0dc1GI\nQigwuj0KB8/QcDPhWrjBez0OVLIEUlDpxBcD8pTtJFdt+A9kfw/WgEf+5TOYb56js8KhubFI4fEu\na/9mO7u3jGD5WhidWbeIqy55rUNKtZl30qHlEtjWGkIVAS3fDN2/FIcJq4cxc5bNnaU0gziTbgF/\nIeSpITxentqOJXX2WEUm3D52OQMcdHLcWlnPLbvWsu2+MZZcvRdZb9BdN0inqNEeEpRPzCMNjVX/\n+DiuVMkoFkrcQ417eJ6CrvqMzxcWr4uTVkmeNQcn17n+hH9DJD3KJ/uU1xssv1qQuT0MODVdCtfq\nVtoJJtu5RUvGULJOyUoykGri+GFgoWWFCvPdFE0nfL1C1U5g+RptJ6xbg/EGbc9YtIjMWGm+e/BE\n6k5scfL0rHe/l6VXhYP7eMnDzmkYcxpG3qLx6jCCT1qzKRidpwQmuuZLrzliuzEWMOnpfOfP/4nh\nnnCS+dBErp2D9pBc/A5P77p7NH6ZAEeBGgpRgBM/cclisKTU/vC+96ba/P2Z311M7z7JIndIKP48\nqVcdOZn+u5//IK3A4vxMifbGsI/Vnuw4taD59Eb4ipNDS2LU7mG3XcWBQA8F3iGxekiQKS5HjMK1\n1tEjyFp94SthHt0+CsDQ0jIQvmHhZXd94Ig84/PyiEjHjZWQnJJ8qryK0kyGnV9fS/nqJaT2Q7dv\nQYQuBDuy82LRpdaoKSRmjrxOdi5s6yI47KqrWofTHHI3DvRw/6EyefHQfVd4ctEN+Mk4WcGqzDwP\n/v0XUW/Is+emMZyFSVlnPM1Xz/raYh37Tcb3DrvPeoGCabpYBYVAU3AKPrLgYPcGVNcYeAkFpdwg\ntx1Sdyao1xMkYw7dhX7BWQhOZKjhK8m6ro4qggXvKGNhzadcFK2eDCODp3SbmOZiKD6G6mP5OsZC\nVF03UPEWXHz3NfIkv5ojdft2/L4sdjFOoAnmXhSnvsLAyceQmkpyJgg9qX7RjBW/ZmJUa/5qF3f1\nnecfse2bgvJGsdh5pSfCz8ZSBW1eZ+aVPnv+czVOFgZu1Wj/btixf+sTryU2F7o+BEYYLS41HWBW\nQ1fb/jvC6SbzsUT4LtKGwLu9F+FDY08OrSOYfZWH4oZroJLjOuqKFjMvDxg9bQq71yf3sMHAXQr2\noIe+K86K/hKXv+nfEQGkvpXB7fNwcgGfO/s/SRxfZc87rlw8r/SE8v+z996BdVVX2vfv1NubuixZ\n1b1gsI0LNr0ZQm8hBRJKqIGEkmSSN5VJMkMgQAKxgVBCC6H3jqmu2Ma9FzWr60q6vZz2/bFlybKN\nIcmbGb6Zd/0j3XP3OWffU9bez17Peha2S9TPSo3KI1dksNzgndw37Pd7umSa36oZti1VPzRxc6/z\nonS6aNxdRHRZGcsaanGv85LK6xS6U8Tyblb2V+FV82xsLeedzeOJ5cUkZ8onX8OwFD5+5TC2bBxJ\njb+XScu+gSLbvNo8kV3dhaxpHMlhJa30vl/OvPk/xL3O+5n3blXPEE0n7Ml+Zjtl8/4ck0PuE4PB\niZtP/28BpHuf8+QzP/nMduMWXfRf0Z0vre37foKYMLwz/hXqXrjyv6FH+9vskzbst+2112byyWHP\nDNvm9+TY3R3BoxkosshzBFj1u2lUl0Yx/Q67zhGymCUrEtS+mGDeGd/kqZ/dRvkHMh2pINGklzlV\nDXRkAqJEBzYfbxpD1BC5pJXeftKmzuEFTfQbHnbnC6nxRslZKnMC2wBBvSlzxdmULGe8u5UqTy9T\nPY2cVriWpV21tC+oJ7JJwnKrtB0VYPfxQSxdwvRIhH7mwfKIgXPPOFWkJXgzNpnM7gAtXRHUmILt\nE3WPAVa+Pokrj3mP1mN0ese7qP31VgA8vTb67RFOPHwdv6x6mZPGbCaZdWGNTuMLZJla1UIup4Ej\nMaGig5F13ZiGQt5UGVncR0lRnLA3Q9WIKEWlcVGnTbXIZsTsuKCiH1mx6eoNguQweXwzHy2dSM3j\not+NZ6oYAZW2K/Kc/PsP6Tw/S6A5T994iWyRRukKQfmbVNSOJIOvOI23OIU/nMGtGxy1/mx+UCCU\nwJXyNFKvjtLiJrchTGB+iI5Z4jpVPyfh1g3snIK3UohO2bbMxKIO3KpByJOlrrSHYl+K2qIorbEQ\naUPDsmXCngxTR+5GkRxk2aGsMEbQl6U60odjS8ysbaQ0lGBrYzkdHWGml7bwi+JNAPzndUPvTtdU\njYoPTTIlkhBw8YCaEjfwwnGr8Os56iK9FLpTRFxpvGqeOzpOxPZqyEGDdF6jpy+AOyQWBfTdvTg1\nFYz95Wa2ba7knc3jB9R1FTrzQRrThXRn/UwLN9OWCwsKsGwMqObqxCwPhVqKrdkRaJJFay6C7cgk\nLSFItCZVxd96ZmE4ClWuKL2mn0/j1WyIjWDJjjqKXnEz5q5dOJkMqCrxWp1cUMbV5wxEuMVCwg83\nnYtbMvH6RGkFnyePplpYA7VEk+UaesKie2sRqmJz5urLcXkNgltUvJ3i+gSbDEof8FBaECeV05lT\nuQu/lqPYl8KlmKztGEF/1kOlV0RPe5K+wXzSGUVNLGqrY1Swm7ytEnTnSJguOrMBXIpJiSdBSM8Q\n0HJMK2jm+VHvcGHDcRz37cuH+Q5HlsBxKFtmoX3qZ9tRjwIHZwTtbcFdMue/fD0nfng9XXE/vtM6\nSI4U/sfVD742iWyRiK4afiEoBAxSTw9mXxS4Jmpt1v5oPhc3HTUYEd1b7TdxRJq2T8v5xXvn0H+o\nOOjeEdY9JVb2tSNKGvbbNvuuG5l8xzXsOuEh8mGH9Ii9JtUDuMoIOviaFeS8JOqwWgMlcHzAQNUD\nIyAA4545XT7kDJRD2Tu3cv8+nfS1ZYM5rmq/mPvF3x0SmfKs9uy3z96MyD01Sf+2axqFy4dTJT3d\nDtFpYqGv7JuNjJjXjOET4HHfXE7ZFJHTvTHFHmC5ByiaXiGc5MhD19fwS6hZocqbK9j/uq+8ZQGB\nEztoS4eY9surB6nBSoub6OEmcmWa4z3WfsD4f6LJioUsOViWjGkqGHmVfBiUjIGaUJBVB6c0Ry4i\nkSqTMcsjFL28hdKP+wgtcdPTFsLrEtTcTF4jnnXRn/bQk/SRzmtE0z4SORepvEba0EjkXeRMFRuJ\njCkU+vOWOqi4azsSET2NIjlYjoQmW9hILFs1Bt+tIQIrd5M8bhw9hwboH6XTN0YWAmFBiVi9Tq6q\nAP9u8f71GQd3AF9udPclsYtPff+LNWwcDlSMoMjXy4fA1iSyRRLpYhkjJHj3wU0a+gAHP1Yns27G\nk3QcY9FzWhZfh42ecPC127jr48TqZFLjxIRGciC0E3ytDqlKh/ToHPkAFGx0iGwWtAm9TSNeB4Gt\nGukRFs5mP1q/wo6t5bh6FNz9wqOUfqAQ3mbTm/Hyq62nD/a97H2FkhVwd/Px3DD2XQCyEfG4pCrF\nvk5FFu8uHdNQKJvTSu6TAg5mD1xxN76d2mBuA4gcCd9WF0oW3OuFU01/XMyGV8ax7fXRrFldz4Yl\nowgH03g3u2l/ZyQbXhlHZksYe1kEHJALcix6bQrWmhDNn1YQ21KI2eLDu8nN8hcP+dzbZnog9kHZ\nYH6rS/1sXtDBwOY7418ZbPNfDUrfuvx34u9LMwa37VvWacbIfapX/y8zeZuPXOX+HKFxD1yNHpX/\n26OjZbPaWfr2pMHPJ5zy6eD/P+2aPKxt1lApLYijyDYNbUV4/cI3HPaD1SRyLooP7cQIW+y6ebiL\n/9aNN7Hkjns5qnQHh5W3srytmnXLR7FjaTUvLDmcOeN30JQsoD/nYVNfGT0ZP2/snsCSHXVsTI5g\nS6KU9dFybts1D002Wdxbj+XIHBXZxtZcOWlL5/6OY/hL6xF0rC8ltD2JlnTYdZVYlKtcGCc2zqJw\nk8HunzjkwxoNZwYoXC8SznK2RkRN4/hN7LyCPSKLlJdx3MLn6DERPT3/tEWMu3ALDT8VuYdyXviU\n7T+ZwERdZW10BJ/MeJi5dTuZXt7CivX1lIYTXDxxObMiDcwt2UlBOEVtQS8ZQ6PIm2KEP8Y7E5+j\nNhwV/sadx84rKJJDPOHF684TDqbRgnkOC7dge/akSsjUvGSiZG3ynV4eeukEAh946Z3gYsRHebqm\nDU3Axvk6KIokSMXcBL1ZUjEPvd1BynxD4SjPMj922ECuT3LMSWtoOVnBtdc6n/RSIZgyXleebW2l\nhIIpdsaK2La7lNGhboJ6lqSho8sWiaSHY8u249JMLqpYSlM8gl/PkctqxDJufHoeXTapLYnSlgpR\n6k1QV9XFqKou7qtcytiHrh4WEQUo+dSgc4aGrTv45nTjaxvy56v6qgjrGXoyPgGUHWmQ8qX0pRjx\nvE5qfQGWKWPu9BOvVsPt9yIAACAASURBVHC8buQOEemp/1ue0jd1OhMBdsWKWNFZxZZoCS3xEM/s\nPIylHdVs7C1nbWIk25Ml7EgVsyRax4q+al5pn8yrLZOwkLEcGcNW2JouI6KmKdYTJC03n8arSVhu\ndqfCtCZCjPvPJJE3NhM/ogZzQg2x40YPRqv0uEOyUqZrugtKi1Fkh2YzglszMXMqqYwQ+tgDSBKn\nCcqqv1nmK9Ub6W8PoqoWhZvyRKcMPQOS7dDaVkCyx8f7O8fQmgyxq7OItniQTIefzvYwbekQTV0F\nlAYStMZCJDJunl4zjXjSw9b+UnKWikc1yFraYLmGvK1S4k5SoKX4bek6ALp+VQdArFYjHxQDgiOB\nK2YRr1IpWT2E/mIZ9zBRExgCSfvat475iKLCBCfWbKWtKywo9XuZnIPEaAtbAdeMXvonmtiKyGcE\nSJeLixavF+9Q5guWo7dV0acdXxOL4+ufEP4yUTuEkJIjHbyrvGy7eAHhTSpfmbIeGFKo/Sy7pnUW\nRwa3kZr82YvRWy9dwJzZm8gW7y9qlA85qKmhfMrU5CxqSgBP222Tq8oNKOsKQR49JmG5GcijFMfb\nl8Iqz+1jVbQK0weZMns/4aUDmemR8LU5gwDRGDh2KqODI6Kfxmn9g+0LVykkR0p0PF5D9MmR6AkR\n9fx7bA9A1ZIDAkl7dXMPYFXTQ/VJ99hff3Y7lzQfSe7ZUv6j+gWuu/E5rrzgdX5z6aOCCelI+H3i\nfhiBL0k+zb/QHFsGycEeEBuSZCFoFRsTQE1JWCkVx5QxvQ5qxsH2qEhBP3K0n4ItOSTdpisaJG+q\nWLaMZcmk426SvV4SSQ+xhId0XiOdFS92T8zP7n7hayxbJpZzkzE1spZGeoBtETM8ZCyNrkyAnbEi\nVjZWM/aBGOrSjSSmV2K6ZIFjJCGWmqqySIw2B6LsCoZfRZFsPMrBKfNfSjD6ZVPPffT1Y/nRmS98\nfsN9zN/iEGhyCO20RZ3PJKz90XwK1zkUrXOIH5Jj6e33Emh0yI7OMu6Bq6mr6xxUEe8bN0CheCtI\npibPKZM20j9K3LLoNIvoIYADBct08mGb3okSv/3RA8THmdz61ccINCAiqcskIlsctJhE2SKZXIFF\nx5E2x/9wMcmRMrFzkqh/Ldgv+tJ/doqZhY38x5MXABAbIzyOnJfw7XZQNZN0lYna6qJpWxmZKoPv\nts4cdgxl1tAs6vL7RQTRHvHZzn5f87bL6P0SmUVFpOqGHuY9q32yORBhzYtVVVevhDsqRAD2FU/6\nLFMzkKoxB1WAd/eGv3D/9lXSHX+vOMYdvXVf+Bj/rI2/9xpOXbl/ZE/aJ0V0xRuT9mvzv80a5j2w\n/8ZxSZZfegfjHvjvFUrrWDacRv7uG1MBUCbG+XXJ+mHfOQN1wpraCqkd0UNJIEnr/7H5/YhF5N4u\npq09ghZXMPqHKOdd0wN427KMfvxq3r5zLmcUrca2Jaywia1BxfuwY/44ep6oouWdalpXlxN2ZUgu\nKca3wc3qRyazamsNdeEoaUPjzxvm8KORr9Nr+Lhr43EkLTfPfTyTxWvG0PJuNaOeStB1eIC+cRJ1\n94F9Uh8NZwcIbVVom6Pi0Q3661RqX0qQrhCrpiEljSZZYMgoLgupyyUE29ziYU7OzPDY/Hm89Ye5\ndPy2nugkMagq2aGH/eRvXcG0ohZO2nAhliPx0Y5R6FGF1HNlPPH8cTz8+nG8e9cc9EcibFlSS2dT\nAelfj6DnlzXM+I/r6EoHWDH1aT6d/hQN8x4gm9f4/qELmVXeRDqnoa3z8fFNs6h91iJbqBG7MkG8\nRkc2bI4+fBOj5zZinNIPDmQLNareGprwL+2to7O5AH9Y5Ad6g1lk3WLb00PSlZGtBv5whuBrfhZu\nH8eIDwXgaT5FpneChr/VpOIdCevlIgL+DLGElytrPkJzmXzcUM/KNaO4suYjXhz9FhdNWs7SnlrO\nr/6U27ecSMiVpf25GpAc0ikX0wubyVoaDd0FlHgTfLt0MeeMWM07419h4tJvUL5YLMy1HquSGDmk\nIBLc5VAzuwVZcoge6pAqF9/JkoPpyFQG+il2JXErJm7VYFNfKd1zS0mVyAQaQdVNvB0Snm4b2jqx\nywqJHz8Orb2fyIpOjKUFdK0uJZZ0E4t7iW8uxFwfIr1SsGg+/GQCG9bU0JkOsK2tlC2rqok/O4LY\nukKeXjaDV1onsTxag1/Jsaq/io86R/Fu+1gMR2ZZXy27OovQHiuAtk5QFDpmyHRP9ZGskOkfI8BS\n9yk5ssUO/t02jlvDsiXckkFf3IvmNhlREKe7V7APbo2OZvOcxzA9MjjQnQ8w4j2Z3JYQPZN1jCKD\njplDHFT/Fp3wag0joVMd7MNI6qQSbrwtCjfOeoe120cyojBGNO0j2e8hk9YJbHBR9LqbptZCmpZX\n0tQbIWNqbO8posidZGtPCSeFN3B6eA3AsIhoskpEqwy/QnKESjaiEh9lI/2wi1W5PKZXZnJJOzXu\n6CAAtfQhAFf37qXD/M+ZwdUYbxSTt1UcS+JXc14kNnboHdQTENqskKkxuHPS05w3cwVzz15NxZzd\nnH/FQqYdswXDD66RSTixl8C0nmEqvQey2OFZTrp4KetuGqLmAvQflsfyDu3rb5FIVtnUvnE5t99w\nHx3ZwODvOZi9seoQ3u2fCMkDC62Mv1+cb8niCXzlhBWkaoYPsHtEhvYw4c6YuI5knYneJ+HqVlF6\ndBZcfC9bLl9AZFIPqZE2akoAOcu9PxjNTE3zzVGf0LylFGVKjLOPWy5qyR9Y7H/Q1IyD4R8CboGB\nNWjfx36yp8Zx9TlCQBIRyYxOszAGUuD6Jjr0T8uRLv/7gF+qcqi9bA6n7gLDSuPssd5DbL7+7zez\nok1Qjy/69U38+8qvUKd38etbL0LOS1w8ezHyKyLI8TmBtf8R5iCouo4DliXj2BJ20MTwSRRssfE0\na8jdOkpO5N46koRVHMLu60f5YDVlb2rYGVX4KMVClh2crILepqHs8KCv9aG+Fcb3lp/806W4l/lx\nvRvE/6GXnoUj6Pu4jG3bRrC9q5iGvgJ29haxs6+IDZ3l7OosYvfWEmr+LCE1tyPXjCRdrJAPSGSK\nZLJFYLts5ELhNDKlNrmwjKc1hSZZKPwPounua0bB52S2/5N2wbxFg//f+tLZf/f+Sl4khmcjMulS\nh1wBWI64IQ/99g5+MfsVnk6GSJ0Rp/QtnS2XL6D9w0rmz3iC2mu3Etki3mA94VD2nsrqOw9FmyrA\n3Y7T76V4UhdFax30hINTlEfvk7jmxcvQowq3/uKbqDmH6mu3ETsnSfdhErUnNwhab0xGCRos/N0c\n0uU2IV+GvrNS3NQ+lYd+KxTWDK9E+AUfcdONmoHpv7ia0uXidzkSxEZDUTDFqNHtnDdvMbVj25FM\nmfdenDbsGljLIoP/3/MdsZrp9OmcfP6yz71+h5y+edhn364vIL03YBuunz8ILg9m8gBY3rsMTTb+\nGcvBDIHNPbZHxKj+uAZq37iczVfNZ8onX+PTeNUX7us/asa49CAt11oT+pzW/88+y16YcR8zH7qR\nLZcv4IRTPiUfObjT/L9tn3c+a2Nwv22OA/1xL+OqOohn3fRn3EiSw5lnXkL54jhSQkWpTxLYprL1\nagFIlTzYboX6pxNkiyQu8MfIxNzISQXbZWO6JcJbkhStTVC4ycQMWWxaUifq0pmQKZHQujV2PDSW\n/oQH10o/V6y+iI+fmYq8Mshrdx9FZKNE6RKZkW+LSF+owcTWoWu6h/JfKyhpiaJzWsiXmvS0hpCP\n66V5XhDLJYaihO0ezC2x+3WRn6RbFBUmcFSZqodlEnPTBFryNJ3jkJ2dxP+z1v2uz0ePHM6iQ55n\n989GY6dUjKociRooX5SjdKWNvzVPrF7hzJOXofUpdMxy0TnDRWRLDvl3hRx57ZUcd/FlHHfxZfje\n9nNtuIWkqfO10asE5XaAhuaOGkTu9hE9XIxFq56ZzJYVNWQzOgWbc7ijBokqndQIMROeEGwHINUc\npKs7SF1hFI83j33c8BSH0OMBYmOg8nGVnikKiTEWVW/YZEoHctLyDpIJscYwwY893P2786ks7Edb\n5yOwU+Guu85n8p3X8P6/zaGprZAFC08kszXM1q0V9B+Wx7FlvGs9PLtiOslbKxnxiIuu39Rx9dvf\n4tpwC6dtO4WivwwxfSreNwm0iN/YdBbEz0hyR/0zpN4v4fDDt9EzV8yiZRxMWyZpuIgZbpKGi7yl\nEHJl+c+f3o+vy0ZNO7hX+MmHIFMk0z9vPFIqS3DhFoyKMPT04m0XOXKB9304MR1HccgVm0gmFK82\nKVssUbhWIvdgOYHFHpS0RKBFANyCNQr5F0qIvlTJi8/OpfGlOrLPlBJdXsYRoZ2kDJ26P9qEP+0i\nefRYOs8bS8VHYkEmF3EwyvNEDutG1SyMoEXXbAcpk0dTbHRJZKLKskOJN4HHm2fUiG7e7RICVWrG\nxtbhkyen0DNZIjQ5ijvq4N2pkw86dB8yUPJlTR5bh9pnHZr+NAYprSD16JR8muf+R75CcINOWzRE\n4I9BtHYd9yYPyRrRF1ezi9AhUUrv85AzVUrv87Dur5OINYY5y5ekTosPqqxmI2Jcq/jQoH2uQzYs\nEz3CIDpJ4mvHLqYjFiBhu1HTNp2ZAD2GfxCA7s1g8q91I58s8tZtFS75/Q0AvLlsCg0nP8gvPjqb\nwMg4maOGJHUnfn0T4bUaN9x5Ff2Gl85MkL60hxeap7D5yfFoSTC3B7DfKyC9pIgp03fSf1ieTImD\nefxQ5A5E2Zjy0n5uK1vNHb11g0DU9EB4tU54ozqYM5qotTlj7kq8O3SWp0bxbP27g/7vQGYEBn7j\nDpXX1k1GCuZZ/v19ysJIIp9z8h3XsOPr93JX+Up8jQrJugPPQdMVNgufnIF/l0qqxkJLiPzOa9d8\njdpXv0N3axhfi8wVl7zGv33jadzd8qCoUXZqmuQokwsnrOKBjXMYN7kFaUmIN/86m9DcTsLHHlhl\nfW+VWi3p7CcqdcJlS7lnypOkyyQ0/9DF+NHRr/GbrzxFvA4iGyUKF+vkx4l8zehsg3i9EDOKHZdh\n5S0LiI2G6HQL7/lD/dg3zzVdKvxj72SHh356pzjW4UON3Od1suu8+1h5ywI2zHqClbcsIFED7k0e\nHmg7SjRy4LG1MweB7L65zF9mmzZ36z+2oyMhyQ6WqQgw6kgoXhMjIGG6JFHjNiWRK7DpmWrTPtuN\nEXJhHTYWJJnQy+uoedbBjrpIbo6Q7PGhBAwst6BuWwMUctkUebpa0kHJCbGp4jV5SlYb1D1jUflH\nFf9fQ6gvRoivLSTV5YNGL+Pu60f5cDVSIEBiQiGOLJ6R2BibXKGFHDTQNAs0GzUtEa+RMSJuegz/\nActG7W1fSjD6RUu5aL3/Wq3np9+ci3tc/+c3HLB9I7rpUhnJFs7O2yEhWTD3B8KJ/qDxXL4d7OIX\nT3yDTKufxEhxKzZdPZ+HOo9k6aZRg8dZersAcb0TJJxFAtzNWn0hR5Q00HumWIbbdcJD+NtsHAWM\nCuFoshGZIj3FX6Y9jKtXYvfztUg2FGx2KH7NRcfRFqXLoasniCw7JC0Xl/7kRixdIh+SMN0SSztq\ncUUd+o8ZoEp4JMywhbddosiT4tjibTz7xhx27ShDCuaRLTACB6Z4fPfPVwHgbVN465lZg9tv+Nbz\nB2y/7pXxn3vNMyUHnsjvC0Szkw8k+Yag+u5jrt1fTEVh2RW/H/z/1TFv4G7SeTRexIzyZla9OeEL\nHeMftXcu/x3KLg93la/8wvs8e+nvP7/R/0I7+9GbAEHXzVgaet9wt3jFOW/9Xcc7et6av6v9vuf7\nIubWDSqL+2iMFmBaMuZetXHffPlxAg0K545egzE7wdgFWQr+0ErhugSmR8EIujDdUP/0VYxdkGXs\noc142hU6T87TcFaAHV8N4OnMokcVRr6bJ7LDwNXn4O6BuucSOArU3W5TujJLfnuQVIXNby/7C5li\nidqLtg9O+lJVPjpmaNS+nKH6rF28+fLjOBq0vTuSgvIYOBKBh4MoeQjsEhTHT/prAZAzAzQlG5RO\nF4lPign8uAWAqofEb619UgzayX+vACBeM/TeakmHrzccy1Xzn6X6ZXDtckNtmvYr87QdKWG7ZEpW\n5nj3wdkUrncoW5bD1euQLRILXlpCTJzyYRVPjy0Uez+eyHs3zxUnsIWPs3XRz9pnbJrnaSTGGKhp\nCaPfRc8hLppO04idmMbXJi7KvNA6gmUJSkb3EI6k2NZZjEszsCyZH3UeStFPGmg7UqX1NBNpdJJp\nv15Ftszktyc8TetFBmaBQedMDcl08LeZVL1pEWixiE5x6FhYiWxBZmaS4DntJMfniVerfHfaB2hx\nifBWUBMKFW8oVDymUbjBwNM8tMDXfJpMw1n302elSd5aiWQO/EaXRNPpEu4ftAFQtExF/jTARN1D\nZJvJ8m21fGOqWKmM5d2E9CzF7iS6bJEydfK2il/L8Vzv4STLFDrn2gSaLVx9YB0do2+czK6LSqG0\nGL2lD3NCDcUft5MZl8WRQY3LYEsoKQU9Di1n2vSNl4mNgehEQXXUExLdh2r4Wy1kQ+QPli5PULrK\nwNtpE51lkis1ue3N0+l9vhJlSxP09JEYqWL4JZrOceDoPiRbwrvdRc/GYowuD4WrFUKVMbI1ETpb\nIsiSTWVxH153jsZYAZLkUOnrx6MOhbSSow1mfX01pt8hs6iIxFeSWB6H0LjosKhW4aY8zSep5AMS\njttCKhUoMFVpoRwXxegTi6KWV9SDLFopgwW+NgfvvYK9k3lK5A56Tu0ktFU8i2fe+kPKl4rnzfBK\nNJwj03G4Ts2rFtlCCe8OHXlcknd+Pxd5WYhjBujmOxpKac8NLWp6OwWgSJc6ZIsdVk0TirLxcSbZ\nQiFUpGRknkgUEl6nccLIrUINdMA+fX0CqTlCHOmTJ6ewI1pEf6+fFVOfJj4zg3l8PxOO2EW22BH3\nNR5ByiiYPodk5/DaMpUnNNPWJEpzPfzovMHt6XKb9JHCd+zJGQ00yNxVvhI9AX9efhSfZ1oCcoXi\nWW845QG8az1c2jSP9TeKCGy2RDATssX7lxeRfMJP7KHRDl671iGfHhoZGxQ/Ssc8+Ldp+LeJ9+7O\nhfP45cJzkY0h5dyqkl6UhMKWRCn6Cj9b11Tx9HdvByC5sJTWBiHklQ/vk9N5EBak4ZdoyUS4bt2F\nIEHwXR/W6X2oaYcH7jiD22+7kOAukesXPdwk/L5bAMqcTHAnhDdL1JX2MObDbxHaDoUrFXoWDTF5\n9qQR9E10WPqrezAnJ+k/Nsuu8+/l5fihRKdZFK4QFy96uMkP698E4K6+GibefQ1391XjqJCblGb9\nZrGQH94iUfDRUGDgi5QB+rLYqkUHKNL6BUxWLHAkHATT2bYk7KiLXMQhH5KwVQdbdfA3yZR8Ikrw\nGH4F06eCY2On03iWbhO+QgI5oWDFNRzVwarMki03Mb0SSk74FE/Uxt1n42+zULMWSs7G1mXSZboo\n/TgWTK+D1qtQ9VYOa6MA2blRJSTLFRI1oLdrOC4bgqKesseVR+/QMH3ivXZUiYylk/3/W2mXL5v9\ndMLrX7jtviDaVkE2HAy/g7vPJj1aDDZLb7+XTWurqX31OwQaHWZN20agxWbMI2L/te+MQ3abZIpk\nDK/E7JsFiAs0gb9NOLzU8iI29I/AsSVS5TLHbDgLEDXpSt8WN331/5nP8vlTufix6yk8pp3UCId5\nP/poENxqwYHE/lY3rAlyX+VSur+So/soA9MN0Wk20Z0F/OrHD/PzaSIf8ps3viHyNE3oSAXYnYtg\nFFggO9hZFf9RXWy95LNp1j/89tOky4cDyDsfOYefX/rEF77Oe5unayCPtUYMCquvu5ui49r2a7cn\nH/WLmDzx4Etwe/JBZ91/0+C2UU9exfGnr+I//noBfx65eDBv9GC5o3uD2T1mT0xy/OmrPrePW40Q\ncl7i8E8vGJzgTDxx20H3mah/8WvwP9X2peLuydVxZPjLN+/hwapFzDlpPbmyoVXc+58/+e86x4dv\nHnrQ781RGYzaL05Vh/37nUy7yVsKimKTM1SSDSFyG8I0nxJk7McXkzg0y2t/PpLqWx06jgiy814R\nuemcoaHFc7hiULpMANfux6oZ+U4cpd1F0ToHR3Ho+T+if/mQSn+dRuH6BNlCaDo1SLIaGs4K0HKC\ni/pnExSvkrhpxQUUH9tG8oayQWDZebhM9etxYvUemvoizL3uSopntzP+1G1ofytgxEIJV9Sg4r04\nLSeK6O/xBZuZ4mkGCfTi9GAxeW+HQ/tfamk7SqfhHIWO2S5S5TpVj4ioJkCwcWi1P9CSp+MXdTzd\neThyzqZ8UQ5phxd9cYARHzvIOZv+0TrBJpNEtUzn4S5iYxzcPQYN5yp0znCRD6u0z5XQEia7j9cZ\n+XYeSx8aMltO0Kn86Xa6D3Xx3qMPUvWmAZaE5ICvSSUxKU9oi4TvYx/pG2O8mPJzf8cxxHt8GJZM\nNq9hGiqGpVAZjvH0isN5tv5ditc4hFe4MFp9vP/nmRR8qvDj987Ht8xL9XMSegwyRUOz4pbzTQrW\nC+DgbXfQNIsPJr3IiDdVUpVwz8pjKV8iBIdAiA21z1FpPkUm1GDTOUOMF7vOvo+fdB7CyT8b8msA\ncs6hYGQ/3U9V0TVVo+cIk8z4LMdc9h1Sl/ejeQwW/XgWsVqNgJ4jNVAc3aMYeFSDrpSf3YkwHz4/\nlfK323F1qXTOEloKpX9ygy3SK4ySAE5vH2pPEicWp+5hyByXxBqZxd0joVYnSY100Do0bMXB2yoJ\nUUAJqh7dSdF6E9kUOWvJComO2QH6R2n0TBV1ut3tKiUrYcTru8UPc2yKV6epeKsXpV8lvzqCMTpD\nptTG9trUvGQKNfznI/SO1blgxgpsR6Yr7sewFLyaQaEvTb23m6+WrWDWD8Q4XfuMw4eNo3BXJQhv\ntzitfgOmz6G3Oygoma6hZ0gZmSZRLYRp3J480Yk61x//FvnFhUh+k/YjdApG9RJqNHAlbGpetQg1\nGLQeI2O5ZKLTbAy/wtIpz3HPzfdQ98xVuPuGxtdAq0Ht8za+dof22TrJ0QbpWoNcRsPXKSIm01aJ\nNJxISYISV2K/Sb9RYDPjqCGWUniDePbOPmUp/maJX7xyPuq8Hl7cNIV039AY4+qHyyYtIT5KKPvX\nFUYhqfLNxmMILveQ7PDT9Ew9/ikiX9h8s4jQFoVAg4y3WIDY8nMbAXhr/KuccOgm6p6/kvxei93B\nXTLej/30TxI5qQCpOSmO2XAWV17zEhUjo4NR1L1tX6qrKzpEM7U8sPGFcUy+4xpM7xDIU3KQK3A4\na7sYD9bfOB/fehGOLZjdMQyoSnMFOtOOivKtUcsoKhQR44Z5D5CqHYoQ+ZoV5PDwkG1P0seObywg\nabhYf+N8Tpm7mgvuuRnTKwCZf6c40Z5UpT35q3L+s0WitKTDjofHUl8QxdUL8ePTpDeIhfivfv9t\nnDPFPdDjDr4GjXS5xKZr51P4qbhQ0llRmnsjBBeKE8RHMShwlKoU4Abg4uM+4pD7ryPwvg9Ztql/\n6ioMR6Fw1dAFl30mt9z6Lerevow+00e6Ps9UTwNKWiL8nofClcowmvBZ17/PNxuP+dyc38+zv13w\nBx48/1+bArj9on/u+LLsCIVb2cZxJOyUqFShxyTc0QG1+rBNttAhUyTjb3GwXDJq2kRSxDW24nHC\nOzJYXhu9X8bTpiIb4lhaTEFNO5huCTXn4GtJ4+nIoqUsLE2mY4aLptNkYnUKsXoZbYB6XvdMHOWD\nAQ0Lx0HrTuPrslDTEur4OFo4iy+YRVZs+pvDGCGb0FYJf6tF0zwVl2yQ+5yCwf8PjB7A9l5vuq/5\n6H/4OEoOUiMklKxELiTh2SkmTbNvvorS5RAsSaIYDn+tfR/Xtztwd0vcGh0NDkhdLiwXxMaIYyUr\nZfJBiZN+9DGJKpmVV97F1yo+YdvRj+Brt0WdrRvWoGQklt5+L5HvNGM4FmrOwdsGxiOlFK1zePPW\no5h981V0npyn8BUPliZRtM7h+q+/xBnb5+Fb4aG0rJ/s6ByObuPukdmeK6NCE871qd/MQ0nJ5ELQ\nu6aYxa21oNuofoOrZn2AItsHpcdeHOzB277/Y3fLQ98Y9nnmWev2a3OwHFBfo8qvLn2cKQuuo+e9\nEZ97bw5m+YbAQb/fl6oLgvq88BVBUX4z7aLLSlH33JWMv/eazwSke4NZz3QxGMgb/YPH+SwbcdRu\nvvvIlWy+aj6/n/A0W74zn/rjGtj4zpgDtt9z/gP1+3+bVc9pGfZZTQlnK9nQYYmowINVi7jnuMf+\nZX1Qd3jQGtycftrnU9U/y3TdpC/pxXEk8nmVyCaJyvfzFGyyMNu9+IJZTC90zgziyEOTlPDWAeGy\nZXH0mMXcdeeQHClh+TRkAywNSlZC8a90vK0S7mh+UAhDj4uoTMHULgo3iChBrshDukTCjOm4fzIU\nzUiN9FG5UEyy8kEJ79Mh1Cs7ad1UytolozH8ErmQTKJa+ERXv8Oj8SLcskFjvghfTYxc1AM25IMO\nvk6LQEuefHWO2uctMrV5fO158kGFsmU5TJ8YiPf83WOb3xhD0S8b6ZruYuLRO4iPMZEsaJ/jIrw9\nj5K1KFmZo3RFjurXxazzvJkrMH0OPZMVHMXh5Ds/omSVTT6kDstNHfmeQdvP6ylek6PunUv5y0N/\nQIvk0OKCCiUpNuEdeSLbcpxRuZ4uM4gs2biCObJ5DccR9U1tW6bYkyRQkmTGT65GS1g88IO7cBSH\nvmkm2lndVL8sBCsyxSqhBhNPz9BiSUlxHHWgjELXHIuJpR1c3CQiQt4OiUhhguQIFSXDoACKI4Oa\nlnH1WZR+YvDBg3/mR52H8tLTc/F2DufcJStUAvNDBJpNqo5vIrhJo+pJhdz1vYwv7CL0tuAHpkcI\nim5fzjtY0sV21Zf5DAAAIABJREFUJHx6ns62gTz8RIr6B5qxwibqtD52na9geR28XTaWZ2Dim86C\nZaGv2Untd5rRdnqwdVDWBDBDJv4WEbXLFoGv0yIXcbBGloADrn6DUKOBbEKmzCEfEFEqpzRH0XqL\ngo9acFIZJJ/os7qxgYbzCxj1RAL31F6sjEJko0RknUzHTBeS5eCJWmTKnMGcp1xWx7ZlUnkdSXLQ\nZJM3opPJXSBYVJ3TdQqDKYLPBeg8N8e6vgo8HTKT63cT2mXRO35oUlbxoE7lBwYlqxxSnT5sBdyS\nQcnqPGdMXEf5kjy594qITtAHwRaAlpCJ1apUvW7z8T338bdEhCvXXETNa+LZMD3Dx9jAbgNfm4Pe\nrVL9EuiNLlq+beLqg9424feyeY2uXEDkog3sbitw7LSNFOgpxi++aHCbZENIyVB0dguBRpmKQIwr\nDl1EeI1O/yFDIbq/3XciwR3iYI19Ee6e9wiboyK1JbBdJVPiUB0Sc4v+SQNRRjfo74cw/ND+XA2r\nfzKfU7eeyrtrJhDaogxGbPe28AaV+CF5ciHwLfYRTXm5KtxKPHvglJt99RT22Ji/XE3oiE4u/vZb\npCblUNNDtUS1uISrV2LjsjpGf/Bt0deZAmS6VRN319A1T/T6sDwQ31rAgw+fSnf7UMRZjQ+0kyBV\naw1Tw02ONkhvCTN77bk0RQs4bdspXFy0iLev/x1q+sDRzz0AKDnGGCYctK8lTkyx+7E6lJyDa5WP\n0KE9WLrEDwp20tszNOexp8exJyeY/vOhBVDz9SLUFaJNqlJE6KJz8qy8ZQGXnveWoGqOgqefOgZf\nqyghaCR1IhslXrt7KDptqxD5wC3SxXbrPL5uBpLqcOX930VyoHeKTXS2QbZI1Gw1vRLnBj9l8ZZR\nw2jI/4hd+PT3uOyZqzEj/7r0vtGP/XO6E5IEbk9eREcdkPJCkDSy1URL2wR3SBStkJFsiWyRg2xC\nskImVelB8gw9R+rWFiIbZLydzkCpHQetXyGyUdDVw7uyKDmbnkP8OLqMrQq2kCODu33A0dhCfGvs\ngm6c1RuH9dPZsgN3j0Fol02m3Y+q2ti2hNedRy3MDoIoT2cOO2TSmg2TMj87/Q2+pGD08a/+8XPb\nrL/o89v8o7b3+9yysmLw/79XWMn0iAiirYHlHl4ceOnt9zK+uJPiKxuZffNVZB4rJ1Pm8KPC7Xi6\nHIpXCdlts1B4H/9uG1+7zRzfNiw3THzjWu675RwAPrrtT8y++SrmVyxj07XzmX3zVVi2zFE/uBYA\nV9yhexqDtUz7R8ksPOaPyBd30X2UQedM+OOmY+m+r4a1P5yP9HgRgXCasvcVQjttvh9p5LqHrxyM\nqCJBwZEd6HGJeI+PuqouAv4M7fkQsQ+GJMcPZDlnyJseDFy+v23MMCW/1Kj8AUHu3nktq9PVn1sg\n+4uY5T84tx2g4IgOqo85sDrtDY9extF//gGubvFSfxEQmFlZyIYr7yFbcXDFsXzEZuGEl7nnW/cx\n/v5r8El5xt97Da+OeeOg+409fufn9uF/gzUtHsm15w6xHfaskOcjNgE5w7gHruanXZO56a+XDE7I\nDqSye8hx+0eh/x413i2XL+DZldMHP7//7dsO2C5XZh7wuKm4m1xGwzRFJ20Feia78DelGP14korf\nyBSd1EpiTpryRfFBRcPu03J0HCGikO7uDNGlZQQbHHZeJkoS9JyaI1khs+16HTXjYLkUvn75O+w6\nL0B8jEnVxTvIv1hCcEeSsqUWjV+1qfggjrtTTLBzhSJS4GtJocXztM8JUrosjvfSNnKWwjGzN1Dz\napb0CUnsM3oJb0my87wAl3z3dSq0PlK2i7d7JhD2ZFFSMlpSwtMpoWQdAVaSGk3fsql4TaF3vAu9\nX7zwhm8g57RyaKKfrNDJFttsfmks/qO62PTBKNRwHi1hUr54+DK7PRCtMgIqS/5zJhXv58WEVYa3\nbjgKvd9Ej+3jXOwh3+PZ6qZI1nl45sOsu3k+4Z0Wdx3xt8Fc0XdvnMsVoTY0ySYSSFNd0MfYki48\n3hwBT5aZoQYMQ8XbadI+R+Wma67F3amIiN7dIoLh323i6TaRB6IQewYq990RLF2COf0UfaLQGCtg\n8Y56tIRFaKdBYH6Ilf++AM/JXRRuEP5Fj0kEt0PXdI0PHvwzFzcdxTv3z0YfSvkbNH+r+N3ZQoXs\nbSOIbDFo+bqJ9JdidsYKOfn6RSQrVMoXmzT3RbAHatUF9Qy6bApAYMhkKiwyh1WDaTL+pu0ob0fw\n71AZ9UAHkbe2ofeJe5KeWA4uF1I4RP7QekpXmriikCmz0LtV4nWQLRLUQN/WHlx9El3T/SQqFXYf\n66HhQkG7VNMSWgoOPX8Dpa+48DUlcVJpMPI4KRF5o6KMujs3IjfsxlhSAJZEbKxDsgoyFSa+1gyZ\nQgXT67A8WsPOfAluT55RhT3YDgT0HKNdnZiOjGEpNJ6mULoyj+uOAlJlMv5FXoxbyyhemyf5m0ra\njxS5WV2Hieei4WviXvaNkYmsVcgVOJw3UDbplY+nEx+pkay2OfqbK3DFLNpn6XQfqlM6pw33vC7a\n5qoszCjc8vjX8D8/BCjUzP7pK2rGoeJDg5avmYR2wOHVTUz+xgZqn3NoPVLD2hJgW38xtgaxSQbZ\nQkjUW0wO7OadhnG4Pwxw301/QLbEtX/m/uNp+qQSgKZn6gfrkXqaNPonimfGe5rIKzSOi6G8G+F7\nL1xCb4cAZpkSB0+XxNpV9ZSe0zQYcU1PyRAba2FOTfD4zb9nVS5Py2s1BDeJkO2++aR7LLxaxxWD\n2FgLdaFY/Lhl4isHbPtZ5uqVsGyZl3ZPQenaP13H8Du4uyVOHL2FpJ1F/SSA6YeuNyvJjh+a4Pk3\n6SgZmDBDlIrxb9GZfPZm1uRyuKKCWj769O34GsQAlI84ZIscIuVx3FGJjqZCsv1uml6tZYZLo1z1\n89i1d2LuWe87EOi0pIHorUSmWBI+YS8LvONj5S0LWHnLAhZ+7zbuHP8Uq38q5mBzxor5wcpbFuB9\nM8DsqkaqLt5Bep5wCEreGWS05Udl+PZJH/Cr2S+RcwweeOEkJNXmuOPW8P7Vt5GLiPMWLh8eCcsW\nSjz349s46drFfOP6t7jhnJeZXd9AwSIdd4/IgXfcNp4GnYL1QqDnl9c9ykW/vomLpy3F/L9E7FL7\n/jXpff9sVBTA687h0Q0U1UaWHeScjJZ0cPXlcXfnKPu4F8sNnm4IbxXK3ErWwZHAmlSHMqoWtbIC\nSVUx3RK2JoED3jYZyRyqE9tf7yZVqpCsht5xbvJBhY6ZKq4YeHoc3L0O4R02Y/7UgrVtaO6ojqxE\nCYeQxo1Cb4+LxcwlEtKnQTKtfnTVQpIdCJjIJiRq3LibdbKmRoGeOuhv/1KC0W8+df0g8Dtkzvb9\nvh8zq5HJj10/+Pm/Qn1328ULDprLeqA+ODLkCmy87Q750NBqY6ZQ/PP98nfovq+GdIlM8WWNWC6H\nDzIyrphD/2iZ23++AN0/nMJx47oLUNNQvEi8ULPWnMfxG84b/H7mv11NcoRMS1+Yh357B4fdIPLX\njpyzkbJ3VeLVMq4+OPWTqzGeLOX14/+IvzpG6Hk/qQtivJ0WDj+ZdNO5lzBuaJc9SBeWcxL9aeEZ\nXG0aje2FjCro4cjAwWmiANPu/t7g/weLoHo3uZly0pbBzw2nChXU1Ngca6+7R1zHElF7FeDKi17j\nueeP/NzzfxHzNX2+s1p8yPM0fVANQK7Y2i/6+d5AqZW/xybd910aTv/zAb8be/xOcnU5QvV9zFl3\nDt995Eo+vOw2vvnw94HhgNcYlx627/h7r2Hrwvq/uz//E82R4U/PnTr4ec8Kud4nc+0TVwDw7Msi\nLzBfIiZUB1LZXd0s6tLuXQlhxurzP/O8+9YPHfXE1bg6VLZcvoAtly/g2L/84ID7uTo+41l0JKG0\nZ8nIjR5kU+SgAYT/0Eb7kUEad5Yy6g6ThrMCdB3h0HZ0kJJXXJQtETR0WxeT7PjpSSpe1NBjEpXF\nfcgmjPljnp45Bl2H6bx/yUxOP3E5/kaVrW+MpnhVgughAUy3TMWrKplyL4XrxYV0RbNkyrzE6/1I\ntkP54jjbLvKj/VuQ0M885GyVC+9/A89CP309AaKHBKh/NsF1kSbeT0xgmruRy0Z8TGtXGLs4T67E\nwt9qI5k2fWNUal4wGflXFT1mEjs0Lyi6soSny8BRZWTDIVOi0THbha/DILJJIlvoYLxYzIiP8hSG\nk3TMFmJFsTqdhq+LG9hyooL/Z63EvhUn75cE0J3aR80LB17dajhPYfflBtGJLrqmu7jl249z2rev\nZo5b5rydJ6DFTX7w1LfonQCjf7uJ9x59EIAqTy/RmI+MqdGZ9lMZinF4cTOvdU5CXxJgwYI/ENoh\nzlHyqYFVYGB/v4foZI0H772TbKGYvHbM0sAByy0TnaTRe4gjxC7yDj2NBYz8q4rllonVC39+yO+v\nQXugkM6ZGulSlZsveZbo3DyhnTZ39Nax9m+T0BMOoZ2fvRjmjop7XPDjRiTFIXDFbpZOeY5FP55F\n71ECSBqGQsSVJqhl6cn6CelZFNkBWdRhtFUJZBlzQg16UtTPbj29nJZLxrH1Eg/mxFo8y7eTnl6N\n0x/D8KtkChRyBaD3KcimhDwyRdE6CyXrsOOSUsqWpclFJGRTvI/e7TqeTglHAl+7xYo3JhHe0IfS\nEwdnL5BWVACtQyIsBVtNql8Cd20C0+OADC0n+Cl6aROhrRKy5KBINtmMTlsySIE3g4yDJpnsToTx\nvBqk+jVxjVpO0EiNtElXODTNU7ni7ufonqJT9ab43tspQKgnkKP5ZJWSTw3Cuwxs3SHtDAgX9soE\nWwxqXjP5z7LFAGTLTdIjbOw/ldDdG6DksE7+2j2bYIM9eH/2tr4xQ4Cqb6x41r85+RPy5/bRlgrx\n3bKFAFR8bODqk4hn3CTqLZBECkPJqCgbkxXomsmyH/+BK38/NH7PuHg1RoFJ+sgkl18jQF8uBK7Y\nUM63WzVJHJHmwlEi9STQJBFeK55J99gYyZEOwZ1CqGWPXXXYRwS3KRhtPp7sn0GLWYCahT36J3uA\n5p7z7Wu/PenpQeXcs3zJYd85nzHjTY0Uz8XPrniCnp0F/HjU67i7JNzH9JCblkI/uof603cOUmMb\nkwW0mDbPffc2FlwkFumDwSEwukfYqOGVIVX9T1sr+dojQvgpPyHN9pdHD363J9pcGYrhKFBa1Yt/\nq0Z2aprJd1zD5DuuYWN+BGecuQQAa2YcWxdU4T1R2oraHiQT8gEhXqTkhxbLonPE2HDOjhMZv/gi\nTv3VzXzvt9cy/edXM/3nV7PlofH0HpUbpDRP8LfR/Ogosq1+tHNFxYDIRvHbH5z9CNcVrGaer4mf\nds7AcoPUp/PBW4dy6q9uxtXnYHr3R8uZSRku3/51XmuayI0Fu9idL2DJjjpW3iLmzmNP2U7hcnVY\nPdH3YkI3ZGH7WLKl/1rB0n/Gtl+04J+OigK4NRNFtlFVC0m2kS3Q0g7pMheWR6X1hEL0hIOr30bN\nOVi6hKfHJrKsFbU7jlXgxwn6MOrKCDWaeLtsvJ0Orn4HNSXh7rPJlEgkakQesSMJIaNUmVj4dSTw\n9NhoSQd31MDq6h7sm+zzYRcEyE4fRf/kMB3HFoME8RoZLQlyYZ6efj9GjwepVyO0K4/hk3D3QE/G\nh/tgSc18ScEoDOVfrls8Gt/4PqTaIVS9bVnNMPD3RQWP/l7bc459gWjxoZ0H7O++gNTX7lCyArQU\n4AipY4A1PxbRyxt+KiKXqQqH6P3VuPpkrvnLVfScliW83eayZ67mh4e8PeyYgWcD+HfbJKskOuba\nSI8XYTxSOhi1NM+PYnlg0xGPc+p71zO/YhlLb7+XkyMb6BsnVorVtEO2141iOJx/7834ng7xvV88\nhfRBhG5LRE3CH7uRi3LIF3cx++arqL12SB1MS0g4K8QooKYlPBs9bHhrLE92ziA7OfOFS6p8nq1c\nMpQEvge4jqnqZMLD15IptYepxd332Fcw/j/23js8jupu+//MzM7O9lXvki13uVewwQSD6T1A6CV0\n2wEChJJC6pMnlVAC2IbQayiB0DEYMDZgGxew5d5kq/fV9p3dKe8fR1pJ2KYkeX5v8nve73X58mp6\nOXPOub/lvv32fkX9XzRz2gFc/wyO0g4kIjiQbZ23kITV7yTQOhS2pgUAPO+sZaSq0hz90K1snbeQ\ndVcLVr6vUwcKB46irrjqj2x/bziOViduZ4a2LvHsixQv1573WhYI9/3/62mvfK1z/SdZn67cP2sb\nL/vyjIofn9Mvb3RQIAgou4QzRhrQ3CLrCrK/jRGDCbOuLPpw0N/FE0QfMuah+fuB3S9GQg8EhqUe\nFSnkhH0etJ6+NDLRJrc+PwY9B8qXStgOmeq/Rxn1aJyyDyMYLonWWQEyAY1ksYhiDvm9TfeFMdQo\nNG4o5TuXvc9Rj65m5KMGiQqTpqMDvLZzPIWfp3F12ey41EtkOLSdqhMZojDsJ1vxtAowYnpV3K0J\nHLrFzgt9zHp4Pd7G/mHm02U1/PrjU7BUidELU/zgtr8CMPy5eZwdXMvnqSq8UpqcnDgjK9rBaRGp\nlukar6H0PlI5Y2FpMv7NTqQpYaLlKoZXQTIsgnvSWA6JkpU6kmkTqEtTuTRNbEjvBTxdQO7hreRt\nMwnuSePd7iTjdxDYJbPz/WEkduag6DZ5W3Xy7xO5zX3RzYFW/aKJY5OP/M06ig5n+frrzNfXCQKO\nklUmRZPb2PnjsdkJY8ZWGFbURUsogGEq7GorwKfoBJwp9ByocXqyabIZv4I/N4HxSDHxKpNv33Mr\nasImHVTwNts0HK+gpCzyN2WoXGKiLA+SODuMlJbonKhSeOMefE0mJ//xfbwtFolCmeAui65JNr99\n8SykmIOVdyxmce0RGB5wRgf3e62zHHTXqOw7p7dW6fuilGDz8hG8efj9NL1TldUgrXq2N8Vgl5eg\nmqI95aPYHaU+lktPxIMrL4WnxUbOWNiGgWTZ+JrSJAtkSpeHKVseZdiLJo7NdVBegmf1HijMR+vS\nKXh9O0Nf7sLTYuPsAW2dj9aZMrGhvac8VyNZbNE9ycLSbJxhKF4VJ2enhb8uTsEmE8utQjqDFOxn\npjbzfEhuN9bIKnpOqKFtmkKywIHrjQCBPTI1P9xOskK8Cy1iU9+ZS9R0Y5kS4ZiblrA41rPtM6nw\n9+BvzGT7g8qlGfI3CNJCV6fM7a+eR6rARuqNpve9Y+39AFVLDOIlDkynTMFn8N0rb6DuXBF9rD9e\n9EHf3XsijUeryCmZGTN2EBrpwLYknHfmsb6tgrRPIh0cnKIeL1EJ1okJoJ7jYM7xn1N3lsTr9eOY\nXtKAfEcBP7xmPkN+tZ1UngNnxMayJGyPiZSSMV0Wee4Em7pLGF3Qjib1F5OaGnz6xBRyalVMQ+He\nTXMIH5JCC4v1vn3im9+zowT/Jx7+9uDRg66t/Ow6HO/lcPdZjwJQv7yffX7hirmEJ6U5elYtbzx0\nBP+17aQDyrKYWn//O/I8MT+JDrWY4WpgzQ/uYcpvFjDspcGSZ19kmO0zb4O43tuWnsvESXu5dvlF\nPPa9uwnX5mO0u4luzsen6hxy9kbSOTbbm4pJ2A7OuvcWfrnnVGKjMxgr8vjvax4T979n8NiRCdio\nn/px9GLj6mLxLdXetFCkn0pg+C22txZRcdw+Vk1+kZU33IkRVbNESr/7y7lsCIlMPWVVgM3XLmTC\nnQvYduQjgJBVSpZauDp79UsHmGuvSDOrf2IEevOB813zlmtZSZZnFh9P11QTJSXRtruA6FCxzdpf\nLeKl0DRmr7mCHzUdz9JHZpGzHXI3SYNqjZOF+8/Dcj90sbe2DPX1HKb/bD5v3zc7S1D0s9se57Mt\n1YO2X/urRby5bBpzv7eSjya+BOo30z79/9L+GSD6xYiqacnIko0s21gKpH0S8WIFrTVGyeoYzoiF\ntzmD1mMQrNMJLq/DjsQwd9Wh7KiH9i7UfR1490bxtOgEd6fRegSwbfuWSXxUGsMN0fFpLFU4QiwV\n6HNgSOBtSeNqiaHk9jt+rHgcttfhaonha9Zxd1k4Q2kSw9PCKd+iIe9zU7hKpuIDi5aZGt42M+sA\nCn9FaPvfFowOtPjWXOy6wR9QHzj8V0dFM8F+72LfOb4Idjs+Lz7gvl/crs8zJZs2gTobRReTxkN/\nOJ+eUTIzblpHtEpGrkiQKJTJ2WGRqUkwq3oPK+9YjFSV4KH/EsRE8iXCO9UHOoO7LdRwr5f8W/09\nbHkggjMs6lJLljo4ZceJVL92Fb//8/noZRncnRbxSgk5oWBe2EU6aPPzXz3Kj5eew53XPUBjOg/L\nIXHTTc8zvKSD1g4BfJ6p/iB7jiHH7cXw7M/ktu0NUbM4/s8LiA85uBcrUX7wNNiBYNHVSyqQDvaf\nq8oXQo1JjJjYiKtzcPN1dUlZz+XBTFl34HrQgVFad+uXfxY1ixcw7cEbsrIqICaRAH/92xwkVbyP\n33SOZtqDInL5VXWgB7Ot8xZyxF9uYeu8hYw4dB+l3ggPzHyC96/8A6Mfns8dK07Yry71PH9o0P6G\n1+bCs9//h87/72Ijnp33LznOpIevHwT2fnquYIjsW/ab57+T/f1N0m6/aI5dbp6/5K7s31c89T1W\nX35n9u+uTw/ch0A/+Ky94j6OOXH9AbexczI4e2QMX59ovETGp9JwbAB/o0k618S3N87eU7zo+S5i\nQ0T/aSlQsjKCGtHJeCQcSYlotRf7syAlKyNoIYmo6WLxiqNI/DSCu1nB3W7z7dEbOe2upWgRm1GP\nx6n+e4yRdwuW3WW1Y9h9lot4pRclngFJwtOYYOTTMVZeMZXY6DQNxwZon+HHPbaHog9Vwr11Zb/4\n6/nsvMhHySc2I1SbiwINrE4Mpya/ncaeIFJSIVlqEi+3Bwmxt09RKdioU7zIhaWCIy76lHipE29z\nmkj14Nlr+Qdp2qdpeNoytHYEaTzG5vpFz6FGofkIiZ7xBiWzmyhcb6OFe9PRcsSEso8J94tWskpH\nz3UQHSrYdgFGPzyf/A80Zv5xDUrKRLtDpNia3RoPhsvYFS9kz6oqDEOhO+RFkmBXvJBqbxeB6R0M\ne+cKMj7R/6hRE31TDnqORMVSm7ytGZSkRbhaaFlWLunVXi3vJTSJ2Egf5FK2XDynjatH0DNcoVUP\nEh4u0zPapubazVS+YwovuM9gzhVXoWz34kiA5ZBExBVAhpKVhjhnt4rhlVHvyafx4gylHxucufAW\nvM3iPPPufjH7TDI5Fh/XV+OUTTpSPixbwqkZmKZEolgiVqaSrqnA0RZG29dN8eoocmMHyr42XHuE\nFz5d6MUYWQGhMF0TPXScPprw2BxkU6SaxsenMHIMrKokmRwTR0JGskFJyBh+C9mwiVa78TWkkBva\n8e0KY/id2CkdzP6xUtlRj51MIu+sJ2fJ9qxOZH5tDE+beLZjFkXpPGMssXIZp9OgWO0hb7mGbYma\nrk1NpRi2zAhvB41Hqfz14Xuyxw+NhbKPMqgxqHo3Q+V7GbpqRLs0XTJ6joNotU0q14G/MYOStvB0\nGNSdA/78OEpapN+l/QopU8XdIpE/qov2Xw7j6sveIG+FRsMxKu5nc0iWSLi6DeLF/YjA25rJpq2n\nciRq/zSJnA0qwXsDLP1sXDaro0iLEq2QsRwwu3IPgY1O1IiMlJtmV2sh3yrZzZmF65nymwVUfmeP\neHY6qCeK9+Vf6ca93E/wU1d2WV8UU+vcXxTTdMLW9UPomZThUE2AMku1iVXZ3Hzdc7gbHRSURFj7\n5CSxbkkBer4gphpoii5AHsDG98Xc4/snvsXZf7yVJYkgkWEWwW1fIco5wGxFgMja+jJ8W5xc+sAN\naF0S4yfvReuU2PDSWD59cSLp0gwffuterqq9GFOD9vfLQRbXcZpXOKULju+Xm0oVCpmigdb6ViXm\nzAjj71lAaqiO6bOQctIML+pk+74Spqw5jwlvXodvp8ptbZOpvWkh62+8l6Y3hwh2X+CozaeL5yCJ\n/sK0JdytMmrcRs8bjLq9Tb1kQ2USh0zfQc9R/QR6XVNNTE0i45PoPkInemycB35wD8dM24wakfCW\nR9l++SISxRLTfzafTxZPJ7U9yEdLJ6CkbLqmipcd3AWX3vhm7/kg/3zBzxAZILluO2zCo2DUZduY\n+72VAIy7bwE3v3Ap+WsVor1OQ/PUEI1GjJxtEr8vFtl9Svjrv8svs39FOu2/8rgDgWx3tLeWXTFx\nOCzMoIGpSWgRi/iwIEp3HM/eCGoohfrOWpRl6zE7usA0UUYOw4rFIS8Hsywfw6/hiKRwhtNItpDf\nkTIyapuKmWOAIYEEiSoDwyt4G2xJjDvOlgjoaezM4GimlUphbt6OumEPWthEzpgENjrJ3ZVBjcl4\nmiUkyybtk9HCQgc1HYQS71fr8vxHgNEvs391VFQJ7j/xGBiV7bNvAoItReRpe5pFhyQbNjk7LJY1\njsCaHsGxxYunQ3QeBa+72HnvWAEm8yJZ8DkpXzDErkqZtE8ffPyS5eI1Tl17Lh0PDGXoWf053pu3\nV1DyoYL31FY8u8VAWHxYM652mc6OAOqoCNv0Uoo/lrj9p1fxtzuOYfXvFtGYzmPHjjKOHrV/6u2u\ntgIyeV8ePbxj7l8Pus7T1Mv65RTkJAPN3DmY0j0xRs9OEgBWvjyJeJVBa7QfVCbHJbn4wnez9aP/\nLAX4V0VX+6xPVmXrvIVZQLjm6jvRdrvYOm8hT744F2Vy+J+6lprFC7DGCXdq3QdD2dhUxu/2nsTh\nr/6AS09/f1Ba74HIkqrfvpKdFy/i9oJt/D8Tdn3zjOzv/3ruHLZduYjL6vtTvPvA4IEikl/Xxs7Z\nxRnLROZDH6g99JGbvvb+hhsu3nss95WvPuB6pydNqsTAdlpgQfG6NM4eHdMFhlsid5NM4zEBKpfq\nJIpUfPsK6uVfAAAgAElEQVTidEz1kwmIb2nXTQ5ytscwNRtTk6h6O8KwRbs459xlvPz2LEqqu+Av\nhSRrUuhBiVdePYyn7jqRnhEy+04J0PVzUXsqmzD6gSQjn4nhbRD9ZLLETbLEg+F3sv1qN6MXp0hW\nmBStiVL6a4XOKTajHxBhzvLlOrvPWUznJJnvNx7Dht7ud1bObooCMapGtmErNmaOgb+hv28uWdVf\n8xnc07/ccEO0ykmgTiyrO1Nh77fFLFZJgfKjdlxb3SDDjx+/BD0fgiNC5K9RMO8rxt2RIeOTCQ93\nYstfLfyuhQyGvpbBdIk+rfzDND3HJnnxrcOz29iKRHCrwtXBZixbENqZCQdWVHRUli2hWw78mo7q\nzqDGLBJFDpqOFHWY/voBdaIIRs/waJumOeK+3L0si94Wg9wdGSJDFUw3VLxvEK+0ODdvNWoE1JjE\n2pZKuq+J4Tmig+B6DSTQukQqmCNhkb9JTCzTPgVkiH8vTMVSE0fcIlrpoOJJcc0FGzPIvdIvP1lz\nRvbaHPlJ9KhGfTQXh2ThkHs1Y00FywmxKglHVCc8rYT2I0uEJ9/vBV3H7gljV5WibW8mWeLCGFWB\nv9HA3WUiGwJ8BPYZEFUpr+rCTDhQghky+QZaRYyccV04ojKxIQK0OmJpwt+qRqpvwdnYA7a13+Qq\nfoTIvrHLi6l8fCf5r24hXunB05rGripF2tdMXm0EPd9GVUyckkmqQMJsdWPbErJssbm9hI60D7My\nRbPhIFHooG2aE1uCZL4DudcpbSn9rKPhYQpaj0HxGntQ/V/XOCeBWieJnTnEjo5DkU73WIXR/jZM\nF3SHvXTMT3DXurlkPBK54zqRMza5Wy2Rltw2+P76IqOhSRaukEHuLvFdVL9k0TlPAKc3nz4MX7OF\nniNh2TKyIZharYxCXlB809/2CWd4S1REg6PVFpm3Cvf7HvqWuU4WmR/u9v2/ISUNzoiM2uXgzC0X\nAYJo6/4zH+Kh+tmkSk2Mt0WWSewwcY2eFol0zn6Hwtsojt8np/XIopNJFcC99XP56Ow79t8BBnFR\nDLS+CI6imow8bWdvCqPNprpyYjVpzr54mbiWnCQn/vlW1k9/jkNPrRWyLJr4bqrfvpIpZ21i37Z+\n7gyzON1f69lrer4NGwJIJqguA9ttota5yNMSOJucWLbEOTPWkJ4R4/fFnzPhzgW0mUlqb1qIq/eZ\ndi4pH3TMlp2FYAvSH3/d/lP7rkMNUkPTbH9mDGZEJeOXSJRKOEMKkVlJHHM78QZSBH1JFvz39Wzq\nLuHks1by/JSHGPXE/Gxq+ZU3vcqEw3YJJmtA63BktUQfePJkANLHReh6VpSyBPaIa0oWSihJIRWz\n9dka3rt/Fl2HGOh5FgHh4+DyM5byo1ufxqOlOe03onSl3YyzMZ1C6/rn4cq/Kp32f+q4qahGPOVE\nlkCSbLAkDLcY020ZLK8LM6AhN7TiKBdEnbJTRfL7sBuasQ4dD5KE0tKN4VNJVvjomuAjXC3q0eWE\njFGuI7sMJF3GdFu4WhykgxapfIlMQMJ2SFh+F4TCmF3d+12jpGlQVIC2cjtSxqSgVsfdGMPTYmN4\nIOOVkCzwNZkk82RsBQxLwbK/fDz9jwCjORM60Ub/c5P6r2ty/f6hZLvOy3dPep9PLhSd245LFlH9\nxlXZ9V8FTFMFEvFSiVhlr0frlk9YecdivM8H8bzl55nL7yIyVLyKGTetw7hANIDG1lzuDQ1h5R2L\nWfnYVF763R3cePv3KOqVljzumPXZus7pP52PbUt0TZRoe6A/3aHu1L+Qf/U+zCeKCOyzRB3rYyVk\nJsXw1WqwLsiDz/bX0IVqRFT16UeP5bYj32DNU5NI+4S8jOESjSkT1gZTDg8wV62bTdcvpMRxYJKB\ndNAmPkoMiGJQ6m+gqXx70N8ApSX9UT737E4yU2J46x3E9oqI7fHfWYV7s5snnz42Wz+azvlyoPxV\ndvpxX4/ldNxKwQAcs1JZQJqwxaDUl24b73Z/qbzL1zF5s49fd45h0vHboM7LuzWvobUr+BXh3bzx\n/L9Ts3gBFUc28OvOMZyx8/jsM3DtdQ66nv9U+1el6QIcn1MLkJVXuarhcFa+Mz67/vzTP9xvn28a\nJd2ybATOevHs+0DtNzmGIwmfvzf6oIDY944P2ZvBGdSJjczgiBvEhnopXmMQL5EpXB8lHRQT8vYj\nDOJVXvxNBvm1Og3HBbAyor/59gkrWfWHxZhulTw1zkuPzMFywI3DlxIrV3C6MlhOcLdD9xQLyYTc\nrRb5v3BS8kkEd6dBy+EBQjX+LHmRGjNEqm40zegHk0SH+Rj1aBxblmg4LsDIZ2KkCkU/Gx7qZPhz\n85g0ZwcWEilbZYTWxiO7Z3FqaS2T8xuRLImcz1VMl5JlXO2zeJlIs+2z4J40/vp+cFr9kslvjhHR\nby1sk1xURrJUiHLbsqgx7Al5UZM2zUfI1J2lCJbA3WkiQ77+8Ng50UHXBDHLda33kNNb1RAe5sRy\nyly+4A3W6Wm2dhTj6gI54kANK1j7vGxqKWWGr46MqeB/18uyh/9COihhqzbRKgfNlwrg3T61t9au\nSyJni4TptuicqKKkrGwKbeq6ELnbMqSDFvvOsXDEJc5/+ToS5aLDNk0ZY20uiRWFpI6I0l2jEq+w\n8TUave/OIlrlwBkxCY1QUZ/Kw3TJ2IqEv0FsY/YytQauFBIphW+J++6cpJIfjKM1qTTtKaAhEqQr\n7iER07BMMUFxxGHfqUECW3so+LzXWy5JSC4XlJcg1bcQPbQKJWWhJDKo4QyNx0m0HSrTMcOi5fIU\nRcO6qMlto7KyC9sWWnrJLtGeMsVpMkGLltkSyXIvwY1dGGOHki7PEWyTui6YdBUFNA3vyt0YY4ci\nNbZAJo1RMxT/9jDYNqZftOd0rgvHiCgnVAp5E63bpmQlOJcHsBo9uJ0Z1rRW4fnczZLYeNqONijc\nkKHq3Qxpv0Rwr3husmkj2SJltqBWtFGtx+CTOxdjS3D8nz5E1iHjgyOPqOW8MeuoKu5GjcB7jaNI\nT47zm+kvk4hp2LqCotsYrxXQephE1wSJdEB8GwPnfMl8B6lcB0NfGZyNVHcOFC4S2TyFG9MYmkRy\ntE7U0IhX2DiSkLPeSdvePCZ6GtiatkgW2ayZ+jz6nAjuti//NlJv9Gd+fPZjMf6deMVH2WUVRzQg\n6xKt6wRoS/vhtruv4sqqj1B7ZO648QFsGXyfeJh60UZ6JmSyOpwDrY9h+NMnpmSXuTrhwRHPctIf\nbj3gtSk6xIfun53VV9Jm13v5bHcV1cfXkcm1cO3W8G118uKTc3j+2ju4Zdy7ACxLyjxatQIAbbto\nf9+d9gkfranBu6+/n/Ju0rLpufEhfbX1EkpS1JZq67womokakaiP5mIPTxAJefigeSQ/mvQ209ad\nww+veo5fthzPw+ESYiNEe7rhipeQZoe4NzSEK+pnZwkTHYk+BtXB9zdnwjbyP1FRdJv8dQpq1Mbd\nZvODM1/Bt86N+U4BqZ1BeqJuuqabZP5WxB9LPqNEEcRO3UforP3VIoY522lL9DLrHh/D12Bz+a9v\n7H32NrYC0qr+Yt6eGhv9iCjuDhtnSKSu96UD53/qIGeblJVyWfzxUfz2Dxeiv1hMaJLJmz+/g9kf\nz+f2fWf82+qM7rx4EbszMVZecGDnxzcx9x4n6Z0BwlE3Xi0NTgvbIQBed40DeXcDakMXtp4GWUb2\neJCCAYymZmzbRm0OgWkSm1JOx2SV5ovSdB5iEh+nY3hsTpizntPGbaSmshXbZUHAQC8wUSMyllPI\n9VgOCdOtIgX8SOr++fG2rmPu2I0VjWJt2IpjmXAE5dcmCOwVpTL+51ZhK5AskkiPSJKrJXAr/6E1\noyBYdX1ju+mpLUDf3t+4/6cJi/pS3wbaY28ezWFP30xwvBj0c4sjmJr4oL4sOmtLopPzN4hc/mS+\nzN/eODwL7tSkzTnP3iCYBvNl9sbzcTyTR/uJOsVLnFyXKxhbXSGLU/77FjonShgXdGM6JT54aRrX\nzhU1pTPnrSe8L4h/XFf23CvvWMwTkQI2b6skldcvIp9xS0g7vaQD9DYei7aZ4l4KNor/va0W83Ka\nkExw9jJx9owRNNJamyPb8X3R4sMyjP/zAq558NpByxOVohN2hiW8O5zMv0QQHgys1XR17e85GcjO\nm/yogHREw3CLVNpN1y9kyQszSU1MDDqWq6O/WX+FM+aA9vJ7M7/WdptnCW3UGQ/exLCllwPQbDjY\nOm8h154n7s9V72TE0/+Yx2z40YKJz6yJ88yO6WxYMgYlKWUjoH1tY2lXDZZq0/hhJX+rm8y2ZcOR\nTHHjObPa/uOBKPzr0nQBfvDMZWy44s88O/tBAFYsmTho/bOv9Ms59QHIbxolXX7ZHYP27zvGtisX\nZdN39RIDc0SS9NADC6gN1Dr9ovlaDJQmF2aDBzXkIFXgxLc3TusshfwtotN3JCQSFR5GP5ike7SC\nqy1J3ZkKle9E2HPsI1iagxc2TuWy+iPYcw389d3ZREeYHHLYNp5oPgz76BCuFX4SZRbv//AO8tfJ\nVB67j8BuMbNqn+6n4QKD0o8jaBET0y1jaQ4c0cGzRv+eGIZPDGoFtQahGj9dE3qJ0o6PYQUNPl8+\niqHuLixbZmOyksiWfBa/fjxv7hxL9ZgWeiYIDUnDJWVBHwg9STVqUHe26I/qzhk8pN370H08UP8t\n1B+10TnNommuza1zX6eyogt9RIrST3RsQ2blHYsJ7pTwl0ZpnCuutY/9PDysf0AODz9A8RpQ/KlO\nfq14j4Wf6xhuSJQIEofTf7uUOz88nmmaE1kSkTCtW0bRJYxcA1m2eazxMLrjHronWwx/7zLSQah4\nz0TPkSh7XCOVp2Q1cR0J8DUbVL1locZBz1UIfVxCZH4Ex8P5AFg+k18f9ncOmbOVM+esRo1K6AUm\njpUBitZlhMPwURcZP5QvG9zO1JhNx2SV3B0ZHEmLcLWCZIpzd05UUXqZWvU7hOi9q9uku0YVrPGW\njGRIaB0OQntzSaScDCntQlZ69T9HZah+oQspEkcv9JCZMAw6usDtQuoO0/6dsfiWbSdZ6EDa20Ss\n0oUakjG8FrbDxtrlwyFb6JZCniuBy53G8ptImkVqWQGVZd349igMfT1NV42KFXBjORW0+m6sfBFa\ns+NxyA0KYOrz4tjegOQToSslmUFqbEGybFG/WphP91gNTTXQLQcR0yUAZVDUyCm6RCjsRVMNkGCS\nu56yJQ4sVSKV6xAT8wGsy8E6UesFkOmVIar5+GIaj1Z5+rFjcfVYqDGh0frLws00risj75QmQu1+\nzFY3v95yEkOeVJDSMmMu3oaeK1H6sU358gzh82NkfArhYSqmJnRIk4UyrpCBpUqDI/1fGBj9TRkm\nD6vHKRsYPouMFxKlNlqHgx2pEjyygV5s8POOcWjLAtkazmRvcLQPFPYBz4E28qn5pI6M8tbDs7PL\nqrwhfnzu8+RPERHX6uPFWPfbR89l++WLuPmua5h7qXAK744UkFOr4oyIbKp4WV+kGSJjDtxHHrPi\nuuzvVMH+6717D57y6WqX0Oo1il1R1B6Z5VcLpvPamxZyzn03892AuOa0rXDOnrkAKEkwfLCupwpv\nff+xDS/9NZ/zHsF292Ye5PaRVIlt3Z+5KTuxntC7pSjbvDibnXSFfPzu+bPo6fGypHscec44JjKS\nR9xzfTqfxO4gDz56MmcWrMWREBJeplPCdvSC697XHB4JtQ8Jh2v3BHFuPVc4iH7/9mmoUZt3bv0j\nRRPb2PGtJ/DWOXjoJ3ezMZ3ixNpL0Lptvj3+c56PBblp4znoLwpng3dJf8g3c0oPp173IZIJ6Wli\njFj7q0XIaQnvEh9d003cHYOjGH1ER32apQUVPfQcnSR0ZIq60x/ksOXXMm/8R2xbWZ0tC/hH7X8q\nKjryyfmc8NdbmPXMzYPOtfPiRVxwwvJs+u7XSeOVTPHeMiGNtvo8sASDc8bfm2pdXozt9wgg2NUt\ntGCCwjEgjxgKlkVyeD7dYxzEh2UYUdLB6FFNaN4046btZXZgBycFN5AxFeS4QmC9hhqWcSTFuTun\n2jgjBrZDwtjXiJKfi+zx4CgpRinIP/BFWybWhq1IqzbhChk4e3SUcaOJDFFIDE/jdBk4ZYOo4Trw\n/r32bw1GL3ruemJb8sjkGwclE/pnrA9Y9h23zxyxgz+W8KZ8Rj0hopB9NaBfZumAhKtbkO34mi3c\nXRZ5W2zipTKSKQCjMyxR/LFEsshm68pqPJc3s3uuKOyfdfO8LIutMyro6o03C1DSNplJMUa7msm4\nJdbdNQXJkOjZlUfHKSmOu20Fs26exyWBTkqWy7i6xQTivv/+M9Ou+Zy8rTa52y2iVTLxUpngdoVk\nQf996wGJT/UM8UqbQ3+wlmilTMHnNskiG8mSshOjL5p3j0o6xyZRkxq03NOgZMHijZe+xPdyGjjm\nO59+KaPuAY+/W8WRBM8RHdl9XRv3V3oef6pIS5VsIQsDX01M1GdmwYFrxA5m+jAdbZdIzS1WMtQs\nXsCf1h6bXa9Gvz4iHkh0tPt9EeG+buIythz2FKnS/oG3+tWruaZxFtVvXkntO6NJlxhUHVmP6jCR\nx0VQoxLpHIuelQevTfzfaOl8i79dcieTHr6eS3oZufvA4EDg+I+C0D771qM3Z/c/4eQ1g4537pqr\nsFRBkKTscnPUqB2k8y300sETqy8jUNIDCoXrLArXg6nZ6EGF1lkBql+O4mpPYroclH6s42kUjprK\ndyNsn+9i9CMJ9AI3J5x2Ee+88Bg/OeRNmuNBfOvcOJJw9wlPsmpXNbG0ht+l428yOXfOJ5xzwfeI\nDoW9H1XReIxI1dOPjZCz3EXj3ACepgSexgTpHAEybUev1Ep1bw1MLI1k2bhbEvSMgfzNvcQqXW4c\nHSqZvF6WUVmnxtWMbAgRd4fDIpRwI3kM9p0ko4VEdLdjaq8+6SzRh1e/2Jsm97zFW48vZt8pKm3z\nU1x35bVkTIWdDcXYTottp93PMw2H8FTNk9gxB5ZTxrvDyYzb5xMeaVNwnwdriEChGR/87i+LSQf7\nv9/uKV8t+wSQsyuNkoaGY50sfPs4Tj3kM7amE8TjLuSM0OEzXTb5qx2Y2/zsW11BvN3LyJom5BYX\nOTssGo5VyNsu2oSr28yO1jk7+z3Mwtlpo3WDsSyfZL6M6ZLBkLjQ38WGtjLeqR9D0doMgbIop1wk\nolOrUib7zoTi1f3H6mPetWWJwg1iuZwWtap95y6o7d++r1YVRLQpWZ0mnnJiumxMzUbrVJA3+Nm7\nrxBTVzB8NsXLFVLlfuxoFHdDBGdjN6GTaiCl03lsNcVvN0B5Cf4GndCJNfSMksmb1o6/MgIOm0ye\nSSSlMcrbjk/VkVcGGTeyEfd2DcMHHStLe6/NibfFQu6J4/x8N3Z3SEQ/C/OxRvQyYQ8pw+4Jg2lm\n03elvU1QWoRk2UguF5GJhYTHGkwtbmSku42hzk70XIlUnoS32cK/B9TNHtq3FZIssmk1glgOIa3i\nChn0jBHfZueEfidGy2Hid7RCAJFUtwuzVMfZYxMaLYMMRwVFFFZJQ0zXUH1phrxl4HkxyPuPPcTQ\nV0zqo7lkAjb+60RtXtFiN10XxAnWGSTzFRTdwhG3yfgU5IwNdv+YrUT6AVP3GCcNx6iEdA/duhds\n0CclcMQEQ/FT7x3BGWuuYcWJd5HpRZ3GeAE2+hzyfTWiU36zgPRRIoutZ4J4pkbApCxXLIv3RuiP\nzNnGJYHObAR1d0cBeWc0osb6ayHffEU4hZeN/3sW7G68eSHe3nInSxV1wpkvpMAC+Nb1Z7i5Ovdf\n/1WWf2grHy2dwBknr+Soe27hJ1c9y4Q7F1B7kyAN+sXVT/GDxVex4cN+bW9bEuy5A9OAnVNC2RKQ\nHy6+nJJykelVM3sPsbFp5h7/GQCJcgu/U8yZFF0cy7nLjRqR8Gxw89H6Gl7aOpkxWjPejS7SOTa/\nLNyM5RTP8869x2H4hKNKSdsofdMvW/AJBAeIUuTVSoSPTgrJkLPbyN0sMfOa9cx64QdcM3Q5Yz66\nmE3fX8hFn13O/G0X0L5LgJCXNkzl9nVnEA/3g4qBfaP6eg6v3XskqQIJo0nMyab/bD6B3dA13SRQ\n0s8HMvaKzegnCzblvvToWKVEwJXCscvN2jn3k7DS3D7tDe5bexSW498TiB7sXAA/bpvILws3D1r2\nVWapoKQl3C0OlJiMHHEIJ59m4+4yMLfuxJZ7a4SnjMKKx5EiMZSCfEy/RvPJlTQc60A9ootAUYyM\npeBTdYqDUQ7J3UvKVukwAzSFgzi7ZUynSKVXUqBGoXi1qPM0nTLK6GHgcCC5XeBwYFV+uWwjlokj\nbqB0RsjkeYiONHB4DMpyw/gUnRxH4kt3/7cGo32mdjkOSib0z1h4Uz/S/6bH/XjaE19rOy28/0e0\n8o7FxCamcJ7fxtm7j2HT9xdy16/vJ11oUrDR5r2xrzLsxWsGbQ+QKJLJ2WVltaEyCSe3PXQ5D90u\nGFuL1oKclrjnkL/yy8LNvPb7P3FDy3Sx/8WCWODKjZfwQMVKDJdEaIyE71vt/PjqZ5l/7d+R0yLy\nkMqR0SI2N+84h5yJndxduhZ/gwByEw/dhawfnJUOBMj3bO3vsDZdvxDT1UsSdEiYux4/k/F/XsDS\nFw7BnhEmVXjwg2W8dhbEDjtxT3Z5YkV/vcqm6xdy63efH7TfvJJlAKQmJvDuEoN/HzHRxRe+e9Dz\nmRoMq+w46PqB1hdx1PZo2TTdw18WIETb9eVeoANZxm+zNSwG54GpvQufO5mpa8+l7vQHs06AV074\nMw9UrKTupIdIj0oyb+YyVMUkurqQLYc9BcDu8xaT8f/7MtD93zBnl8xZT9xE0aGtWYDo7GUaHPPQ\nfIoObc3+hn+OxKjPLs8XAKDv3T07/SFOPW41265cRLoqTX08l5/NfRmt5evrn5mahKlJ+Bp0ildB\noqS/Hi02xEvnRA+pW/tT3DMBjcpXZdpn+Pngkb+w4zIvI56ezwsXH8OOHWWYR4QxvDYroqOxDZlE\nRkV/rhhvfZw3H5mNksxQ+nEGWZd4d8EfSBW5KX7ATeH6KGUrRF1Z4zGBbPq+ZFhYTgV/3f719iUr\nTWIlDvadEsBfGuXQI7biLkiQsRXWJIchSxbauB7S+Rby2gCR7XlIsk3R6v6JT+F6naajnMQ252WX\nNR0lvvOZay/GGZLJe8pH4KeNhJMuRla24dmrokkqtw1/i2M+WUD1SyZy2iJRZeKvT1OySlx80asu\n0jkOitbq/PCqeRR+JpwVsQon9NaGhUZ9uYB3y2EabWekqHw3Tcn4dn5WvAwLCTOikiwUmq7uFolo\nNaTzTIyyNJLHYEnN6xSttXFGTCrfMWk+XKHtEJWmIx2Ufbh/FCheYaMHZNIB0A+N4W8waJ8qc/SU\nLQB8NONh4gmNop/sgWW5LL3ncOrPN/nh9+ZRd3J/vXk6oGRlXdydBtgCbEarHFmm177tABLX9mT1\nR9tmqMTLbUYMaSOtC0DrSAl9O8NrQ0ZGijqwEWOYZNhIebnQ1Erb3DJy39xKYmIFBe/tw45G2XVx\nHk3fctF2YhpfvU1HyE8y6cSTlwDVQnOYvNNSQ7m7B2TYvK0Sd4eNpQhQbjsg7/WttB2TofPwYvRp\nI0SbdLuxAm7kXQ0iNXhfs5B30bR+zVhJBtPCcshkhpcKnT6gS/fikXUULJw9NumgSGfL+CTUBJTW\ntDNmxl7q9MJBWtdSno4WNrNpuQCln6RJ+xUi03sRg2pz1vjPCDRk0CaFyN+czrIzOyf2ENqWR34w\njqVKeNoNQqaY1DnvzEMLSWzf0M9Ea+z0CyKeZvEuAw0ZeoaLdzaQ+btqiZF9n6l8UXtZ7IkiSzZq\nRMaIqiRLTTI1CSQL7p78HBUOH3/9ZBYA3o98JIptfnLG3/Zrk84PRBbb5ycL5nJnh0JdswhPGmU6\n4RkpLgn0I8SecQauD/00donIdcfScu65aSGubhEJTVjpLNhd3CPqJM+6+n0h95KWSBbtP3/4ChWJ\nLzU93yaytIR0WYY3nz6M+IQUDZm8Qdv84sGLes/T3ydd9G1BEqgMSHS5d+KzrH1xAhwuypZi7xWj\nF9jsfm04vi1OVjw3FYCnT7+ffWFxjtTEBFq3hDzgOI6ojGu9B5eUITbc4LkL72bCnQvw7lNIlFsk\nMiqWMqCuPLd/34HRSPPUEKMuE4769T9dROqlYrpnp7mvfDW7z1vMJYFOts1+kuk/m8+Voz+mrTuQ\nja4Wl/Sw9VuP4t3e3/edeJGQmomXSdkopy1B7haJX//wEZb/QhB61Z32IG9M/QtIIlpa+/R4Lhm5\nGk+rRKwKuida+Bpswn8tR+uWyFU8zLj/Bu564GyGlHdiKyJV9R+10Ssu+Yf3/aY28sn5jHxyPi+8\nc3gWAPct+yqTM4JoCAsccRlHUnAMuDolPPsiOIYIR1rmmGmoTd0ohYXgcBA6biSNR/uIzU4wZHIz\nesaBYcqMDHRk6zUztoKMRXMmh0STj6L1BsG9JnlbdZxhWxABpixMTcazqZl0sZ/00EIkv4/U6BKM\nHA154hikGRNQRlSLc3/x+j/dApJE3RkaOCwsU0JTDJKWE/Mr4OZ/BBj9v20HSgue/NT3D7Dl/mY6\nJTIeibRffEiP//ZPjFp+CcVLnHw08SVeHL6UWTfP49HO2QwdLor+x9+zgD1nP8C1P3+B9ukwbd05\ntB6bwXBD6Iw4f+wejh6UOHvyOrxNNuYABoSCDTZ+OcX0n83nlNpLWf2n6SKy+qRoOENyQsSsFPfe\nfh/brlyE9FQB9/zyXB79r9MIj7FxpGxGX7gNPSCRebwY5en8bEpxvETm88+HYWlglqf2v9le62wO\nZiOjP7rsOcb/eQFKCkadtBM+HSwMJq0JDkqr/aJVzGpi4qfnk/HZ7F4y7IDbjP/zAv7w2DmM//MC\nEo7vigYAACAASURBVGNED37tX0Q0eWDUNDlORDxO8W8k4zswSFN0uLTik4Nez0AbKKlSs3gBN57/\ndxyJf7zDVKMSzcsrGDl3z6DUWs+MTpJrheOkz8P2fnwMNYsX8GC4DKXexW35O9kXys1eizo1JP7/\nBlHZ/y227cpFtK8uGRT1TOda2eUD7etERs0RScYfNVgPueAQ8S2XzGzhnCduJGalOPJwoTV63pM3\n8MYbhzLmoflcP+M9du0t5tevn8n4o3YSmNbJDWe/+pXnDO5K4gqZhEa78O9LIOuQu0O0fd++OMli\nyDxbnGXRBfjVnQ/xwxuf4ehLruCFk+7loTMfYM8PFK47Yin6jgDObpm/rTgUpy+N/Gw+3XNTdI/z\nE5khvuWOyU7mnLGey86cR7zYgbM7hfNPnTQe7aVtZoCKpRFMTSad56Jrgh85feAoors1AZIgUovv\nCbLh5bHoDT6CjgRNei5bk+WktubgaVBQZoaQTSh/UcU9QEcxWuWk/IM0BZ/3sUSKv8/589vcM+Gv\nKDpY13SwY+lwqvO62VVbwU+/+yyzr7uGT+PD8X7ko2ucmFQNeU1MZp09Bj0jnLg6Mzh7DN5/4mHe\nf+Jh9FzhJPA1pilc5mTvxTa5O3QSxSqZwIEdCPmbTXbNeUzsbzh4P1nGOKcbf2kUJQ1IYGliMu2I\nKdgJBfc2F3OuuCobKWi+JI0akyj+NEP5ACDaNU6l4TgF5QdtOHskci9oxFbAtcpHaIxK6ScG91aI\niXFQdlPxpEpdTz652zOo57VBj0rzJWnmXHEVkfkRekaqmJroJ/QcAVzaZqgctWAVkgGmC1GX6ldw\nhnsj2PcJ4NB8pAOtRwDAREalojCEGpWQMoAs0lidXQpqTCJQJ7KDXDvbiE4oYvctYyn8NITk9+Pe\n24PtcdFzfA2ZoIlerePcq9F5qMmRw3ZRkhdhdGE7qjdNZSBETHfywoZp5OwyqXodLAcMf7aLtB+C\ne0zqvj+Omht3IZm9dbvVFWSGFhOrFmG07kOKaLlwHJKewSorhEwaJBnJpUFXCGdzD41HeeicKIFi\n06O7CZtetullSDaUrTBIFkroeZAotmnbWMyW+lKe2z41m4Zbd5bEkCfF89x7Wn8kMpXroGmujZ1W\niFSpaD6dV9+YSd1ZErGoi7ZrkryXFHJhmsPkmhPexXq2iEShg46JTk669SZMp8xpdy3F1WFTOqad\nrnHCEVPxQQY5Y1P/XYPWQ520HuLE1dU/1oWrBxfeOSMmpstGTts0RsU79U3swlOQQEnJuD06lsvm\nlk1nM3bRApyFAggfedmneNok7rlPaJxrJ7Xv9w3MeEoQtmXyLIKfuohV2QTXuNhzrJAieSMhHLa1\npwrQ6lnhIzwjRbza4Pt3LqD0rL0oadhnGIRHmYRnpHhg4em4Tm5jS1REwC3VxgqI550o2Z9xV2yz\n/7Ivs/zJ7Rg+cDaLHb21Lm7J203tTQsZu2hwJpde3T8Peu6Jo4lXDe7z1iaGiRrPj3O46FLhBNc6\nJWpvWsi8y1/LbnfrzrPxaaL+371ezFnsaf0MpH0qD1fc/33qTn+QyZpG7rEtgADElf4enGGROp4O\nSln23K5pJpERIH+7kwlXbkJ+M5dnqj/AiDgZ8cw81v1iEUeOESSVt7ROIWwleSPhIlYp8dD2w8kN\nJHC1Khw5fzXtu/PZltFxdfa3pzefOYzuiRZ6vkV4UppLb3wTd4fN2l8t4vbfXc70B24gWg3Dn5/H\nrQ2ncuPNzzP9Z/NRUjbP3X0czrAoW5Dz01mG31S+zfSfzcfdYaNGbfZtKcXymKjxf9yxbu09sJzN\nv8rM4oNn0418cv7Xjoz2pVYrGRGpVKMSii60P5MVfmyfh9Zv5eFIGCRGFxE/tJqewyrRgxL21AgX\njfuUk0s2cezQ7Rw7dDsyNvlanIuqVqNJBgElxeM7ZqJGZJS0hSNuocYyeDpNPO0WlkPC3RCl/vyh\nxMqd6AVO0kPyMdwKhluh7bBcDK+K3dIOhbn7Xb+dSWM7VXx7ZSTVQlFNIroLr6KjH+jjHHjvX+sJ\n/S+3fzQam8qTUdI2asLGGbUxLujm/I2X4djk46Lb32BB00xBnnLHYjbePYlKX4iMV8LfYDHh7gW8\n0TmRopoOopvy8W7TqD6+Dq9bZ4izE8/pbfyx5DNSeRLnP9sPjMd/v5Yb/jgfNWELrao7FpM6V3jl\nxl6/iU1rq/HJLj5PVTHr5nm0z4DIEJnuGomiT6F7nMT6FaNJlkh0TpLoHifReUoKRbfxtloEdikY\nbhv3pgNrBtmySNX1bHXhOaKD3z56LlNPF5PwHW+OPOA+X2ZtSyuwVuWSCVrccsmLg9b11a1UHLcv\nu8yz7eARC7lZDH6nvP191NjBQdov15z6ta6tDzD2/X/Xs2egJP958LfzvWFsnbeQ1BDRwSXW9Be9\njPrwUgAeeE6QTl0dbEZJiTrSX4x7PXstmfX7dxT/z4SNeWg+esHgSYMzJH/jlFzP5G5OP3Ulyi43\nmz4Y3LY7e6VbWleVYnhspj9yIx+/M2G/Y9z39gnMO+RDzFyDIleMWFLj9x+efFDGxz6T0ybhoSpa\nWERxSj+O4Iil2XebaH9DX4sQ3JsiXiwmwWpE5+rnr+HHr57PlN9/xn1tc7lsyZVo67281DiZwLgu\nTjxzFThsfj/1JdydJldM/ITOo9KomoGlKmR8Nu++P4WdF/joOkpn93f8pH9QQNXbEbwtJqEaP96G\nOHXnQH5tlMgIMfEPjd1fTsnbatK8thQraBCrNpCKdE7ybUKVTd5tGYMzLKHn2OhpMYD1DHOgBxU6\npmpEb4hmSYpcXSIE8tiv/sR373uFeTlNXL32YqqO30vbpiJKVuo8UP0igeoe/t45hc6JCq/Xj8PV\nZaGFbWyHjGT0R1ZydvVPKqb89wKOvuQKtJBB0xzR2WhRi6FPSnSPFTIxasSAL7DupnMcOMMGR19y\nBaOemE/AleIsb4iHwyV4tbQgTpJtcnaavdqbUDask7xtJtEF4SxburTbg169fz2xt8Xi8JlbqNte\nSmJohsjjFXhndhI8oQXlqC72nS7xYkwwLc7eeCYA3SEvrZelUO/JZ/LkPdw2eQmzf7uKwKIAVWft\nwd1hEC91IBs2P773MYrXZHhlyUx8zf0gWI3u71wo+9AgZ2cGy2ETSbroiIp3nvGLVF3LaePskSj9\nxCAdkOgZKROZUY5kgatTomtKLvYTFpHx+aSq82g50kLyGJw3aY2Q7VAtWpIBCtwxhvs6kSQY6e8g\n1BLAtVtDC2WIlSl42y0yeR7KPk4hGzbVT7fgeU1FsmyiQ0Cua6RnlAet26DxsTLyP2yg5OMe7GgU\nKWMKAiWnip1Mgmli5nop/zBJyWoTOa6Q54qjyRmGO9txdVt0TlIxXWArNsGdQle0ojhE2UOakGyp\nUHF2OuiY7MR0ygx9VTy7RJEDrcdg6Mg25kzYhq/FQA+5MLw2eWVh1D1ufj7hdea6TVYkR5D4uICF\nq4/C25ohlS8hm4JZU7JtXr3xGLon2oTfKyFvS3+7bZ3hpOgVF1o3uNttQjWCyAj62XUHWuFnNrIB\nDtmiJtCKIttktgcwCtNE230sPuERUrU5TD1xC9rHfsKHpHj1o+lkjg7TJx2ov1k06Jj6nAifXySi\nYo6wjOECqWpwlsSjLaKGdOanV2SXBde4uO8YkXXW8rehlJ61lwvuuJngDoVvjxdEKZHlxazcNhz/\nqS2oERlXo5OMTzDyygcoIf06UdKMX/wDEb10xASjcO1NC7EdMHbhAkY8M490cHAUdvrwfYP+tr+Q\nTlobK8e3y8HVl73Bw5tnZcHqY5EiFj8i5hmWCmeUb6BzSTm+nf3IWVnVr4nbVyeqT48xe+OZHLX5\ndKr8IcpP2ofltClxRTA1ca963gBQbkNgF1gvF7DqrQncf9t9ACw58S606ii3tU3m0aoVjFj2Xf7+\nzkw+SuVyw98uw90BiZjG5EIhUfPOszORdYlLf93PCG+6JAJzW8nbKJNXK5G/UuXxu8S8ZOIdC+ie\n0iuRlWsSHBbi5IKN3PXHc4iXCWbYU6/7sPc4NkcO3wktGql8idJDW9DObsPwSPTU2GhlceTkv0bW\n5X/KlLYDcwnAN5N8kU2RdWgNuF01BtFKmWSBg7qz8pFNm85JHjJ+hbRfpuVwCE02KM8NM8LVxjCt\nnSI1SnMyyHR/HRcXfsJQtYPZvu10GT4SzT60bpGK64yIj8MZSuPqNgUpWr6bsuVRbEXC1aaT8ThI\n5SpEqhwUfh4HCcyJI7Lpwl80KZHC22ri2uXCbPFg2pLQwDW/3Cv0/8Borx2MFMkoOzC5yNcxLSQ+\nxo4pYrLiUEx+VfMqwT0WzzVMZ+nSKRi2zI5MnBt/8SxPDFnO0EtEhMXXaLHmozF0dAdw1fTgn9PG\ntqYS3KrB3zum4lYz/LJjLJ4Oi/xNNtFKmVN/+AE/LFmSTQ3uNOPMunken80QMisfrphAzhaJkU/M\n54GFoi4jd4tEYJ9F3labVI7Mlu/ej7cmxEmnruKW017BN7GLnXMey6b4qFEbszh90MjiwPTdvlTa\n9a+MP+C2X8cKjhaSNp4mhd/XHs/73/sjh56xkXcX/IHi2WJd4ztDvuwQWTv0iK1sun4h3r2ip37g\natExfzGV1Up9/XRJ4J9my+2zQbqlH19M3YkP7bdNJjwYpfSBz63zFnL7UxeRGZ38l1zL/1/tojOE\nXu6B9O++qSU+z+PFDwaTXX2x7vTpi+/BKtzfa3r/hQ8y8egdOOISj758DHUnPsTC8lVsOewptA7l\nKwcw06tSsCmJbELPKDepIjcdU/3ocSd1Z/jZfqWHzgluij+N/B/2zjs6jvLc/5+p21erXqxqufeO\nDQaMbXrvvUMwpoVLCXATAiQhBUINtoMh9E7oHWyMjbEp7r1Llmx1abV9d9rvj1eWLGwISci9uTm/\n5xyds5qdeWd2yjvP9ynfL7am0G/2Fsw+abLXSXy0cxC6bKKEMvT5NMKo3F1cUr2ERY3VuAoSPLBj\nOg2TNBZeMp6qZ6D0UY2mCT4kB0Ibof/zMcpeUdly/mw2X+Rj19Qup0mCXYcFGTgnRf20oOh/A7LX\nR2kdFcDWFSL9/Jh+HVdbmuwNEFyjI2dk7Hadj+ODmeTbyvF91hDvl6FyfD3KigBaRCKd4+BuM8ie\n1kBmXh4tY1xkQirHPSCu51WXXcMDm6cx4EkRUBgcbMTy2uyaolOs+ikMRGlL+chUpcjxJomWy/jr\nM6SzFExfD/mR7ep5JWZvEnP/HtmW2mM0AT6BnPVpdh6p03RlitZhvR0RPdzjEZd+ksG+t5BXYrkc\n6NlO2lDRw8JZbB4nEysHd4tE88pCWocpBGZl4ciQc2sNalzi5gkfAIKp1gh09eu5JRTJoWJAIwWL\nVQwvtDZkEU25sGyZooo2Lgi2ctq26bQtLaJjoIadVCl6wk0qV2HN0n7c/f5JfH7rREK37KTu5b7U\nT1fwNZi0nJLiN9dfDEDJQvE7gjXfTaS1x7wNMrEOL5U57bjCjsiOWohSXT909NdIlNiUvx+hbbBC\nywiVQJ1FOkei7r1Kdh8KNefayAEDwjph0wt5afQGjaSp4dfShA0v1QWtbIgUcfCITdiaQ+twN8Fa\nA19tjExIJ5Wr4dmdJDyukJbf98XdYVH94FYozCd/fh07TlYpvN9N62Hl3f2hmQIfyWGlOEW5OJV9\nyIyupnVUkLZhbiLlKnJKImq4cUsZtmUK0KMWvl0OalwACUeFWImGX09j6TK7p9rES0RpXf7KDEpG\nlL4BdAyS6Big41EN4aQZDrLXRClJkOdNkM43+TomKoCq9SZkC/IWayTyVRZd/0fi4xME6kX2M/jf\ndSjFCfJXZbrfzzvOAE+rQ2dfmewtGbJqDKxcg2i5TN004Qw2HqCTCSjdpdfudhPTI5G2RDlfS30I\ndU9Q1YEZX5yPFpNY9/wQUnkOkuygxSSScR01CZ0T9q2SygvEabLEvKcmJeJlNj5PhvDonrkwZoh3\nmTa/p1rqoAuX8fMHBBng/dfPoeGvlb3GTRwcQ49CaIVO9O3irlJeh8SQFMku/U3jH0iCiSxUj+xL\nbKCBo0D1/ItFdYDLwdMo76NB3pnuHZT3b+/tO3y2bAgA12TXYjWKjGfuEbu7SZBAAMirsjf12i4z\nPtbrf98aEUiXN/soD3RwdunXrHpjCDuWlOMoDpXutu7y4MAOyIS6NHOXK7SNs/jJDW+SCdlcfffV\njLv9Ss751Y0kWnz8vnAld7cOZNkhs7nhhLe4/uszwRFst9un/4Wbij5CsiHW38AKWLRN6kH2Ssoh\n9r6oJEoUSiSKxD7fuP0eVt84i5wVMt4Gh9zlCvGki9/NPRP3aU08dfGDLLtjNq8+M4UHb3uERaff\ny+Pln7P1nDmUH1XDh0NfYfGI11h5yyyKhjZjbfXjaP8+7UZ/r57ot0t0/YM6vnNdNe6gJsScIsjP\nRMZfTUGkUkZJ95A+pYMybScmkHLTaMEMxd5ONMnELRk0GwGy9QTDXfW4JYNKLYyOha+r9tu328bT\nlEROGVhuFUeT8W1oxr+6AdOjsvOoAN4mA0eR0BImpheyN2eIVniJlrqIVnpIl/hJHT9BlO0OGYBS\nWIA8aghmnxwShQqWS/QDx1IuWtN+tO/r7QOUO+64446/68z+iPbQ4iX7Xb75gtk8vGr8fr/7V9l3\n7U+O/n3A5Ftbo8UdfI2i3l35xsvyvvlkVgRpUvz4d8psbyngr58fxPvpAfylbRCNX5SiRSFZIJPu\nl8axJdJhD6mdAfIXKXQkAtQpftKLc9n5vugVcc5rpXRoEx8vGMMHzx0IwEu/u5dTbrmRJffOYdKN\nMzjlto85dvByHjl6IdeO/Ian3hxL05EZ1l06lwfXTeD9n9/LU94hKP4w62aPZF1DGVJlhm1teTzy\n/mTipeBtgkShjFWawfSC3vavj1YldohwZXJoktxQjLmvHMGujYU88/VB3d9ZbkhWZtDbFX5+8Qss\nXLlvBgqgcVM+s77suc7vLJsAiIbxva3PmEZiO4P8UHvkm3/8Xt0wY1b39ts27aUb1uzaZ9xHvhnP\nAQdtpGFr71r9DTNmMWXtSdx48Dss+rSH4t5RevcJ7W22+99ncv9X2N69PHvb6o1V+13+j5josei9\nnz8tH9/r86sbJzJzyjyWbejHi+c/wKurJ7Lxstkc89QMmnbk9lp3z9/e4/z0tLdYun7gPvsO1lik\ncnXcHQZqSvT3hQ9JIXXoaH1jOE1u+nyWxPJphH5TR3vGh+qycI+IkjJV8rxxanbn423QueWUV9lh\n5NNkZNHQkM2lQxbzeUcVhsdL4+E2TsZF0dIIptdFKk8iuCMNP2/j3uem4auTKF4cpeCuWqRnXGSy\ndXZN1al6K0poi3jxbTs9QKrQIV7sYuyFq1np6oPh04kcliRneBu2zyK4wIM5LMPicH9sSWZrSwGR\ntBvPFg3JEQ5t+wkpvG6DSRM3sEHNofLwOj7d3Z+2LB/tB9iUFoR58tDHuKzsK55vHkdiaR5ZOxyO\nmLqAE3PWsSJdyo6mfNBtcl/vIo/JUXG3dcmadIpyVS1m86tH5/KXwDj0Nh1Xh0mwxiK0pffL1JEV\nnCY33hYHvStreNGf3uSjppH4GnqyiM6Nrby+eCJD++7k06aBZM9XyAQVHFnC9IK7XSJ/pUmyUMHX\naJO13WGTPxfb5bBzTj9SuQqdB6bw7BD9m0ZIYqsW5PDKjSzLyoeYhpySiUsaLl+GRFpnk+LiiYrP\neU4tJ73TT94KiaZJCsqUDvJf0cja7lD1y43kueJEXssHS6FthIx/tUbHYBlfkyBZarksgTo5yl8u\n/jNP9xmGZ5kA3vVTVYI7bNqHaHhabLzNNvF8jWbLQ9ZaBZCQHElE11sgtN3AdKvE+7jQ4pAsdugc\nbBPaAJ0HpRjUfzettTkM6NdAYXEYXbGo3VSMp0kmf0gbAwPNZGlJdidD9PW3sjsZQn/Jj5qERKGK\n6dfp7KcQ2iaAWbi/i+bJFpEqmaxmHw1TQmiSFzmtEFzbjrcuSmRSBUa2G9mGltEutLRKOt+N4VdI\nZ8uoCbA8omerPVtB8cIATxPL3h+ClrAxPTLIEokDkuQvAu+hYYwFQQyPRvDgJoJvdZ2rKRqJYpnA\nTpu28Q6ZoMTPxrzL/NZBsNhHR38FSQMU0P0Z/jrwEwCmv/kT9IhMrBT0qMQz8ydRsBAaJuoE6i1+\nds5fibh8dHyaT91FJlkrZbLXQSagkLvRwNYk2mbE6fOEjuvcZoz1AdwdDsFak3iRChe2oi310DRO\nx9Pm0CZ7MULQ3piFEbTBlMHloLRqeFrEPKfFJVz1GiDh3SHArdKpYvh72KcBTjlsKUE1xgdLxqOm\nwNUh4VSlkDb5mTD8C/qoCn98VJD8RSclu8aEulUiox8/KM7IgnqaKnXC63JZdMt93PTyaVhJDXVc\nGHm7AIG3XvscVdVNbE4UoK8Ry/YoSKTyBKHPt+27qgWrjt+OvzJCdEuITKGFq1lBa+z6jd9BVvn+\ncY/x2LID98uhYbkEa7bhh/VFCg1LStA7Zb468RmG39dT7mtMiPL4Xw/ptW1aUtGiErF+Jnq7jH5o\nK5+eNItZDRMILy5k0c6BqAmJZF+DAf0bQJGo2VKMZIHpk1AyolxXS4B3t8yyJYOQHLn7fLSPsNl4\n0iP0f/8KdlrZ3Lf8UDa+OpikW0UxJFxhmJvVl2tK1vDnNZOwc02klELuNz0nLzwQ0v3TpPwKRrZF\n1hahJXrrpFUMfnQmsREZ1l32KD857BtavSYvT3+PBal8Zr10ApVD17Dok1E8Hx3HGy9N5sG1E3gw\nNYSm5hC+/FbO/fpknnr8QMz1fkafso7Lh37Gu6lByJn//fzZw6v/OWySad1/VSGAp0WATVtFVCsk\nwd0u2JpT+ZAusNHDMulsicSEJCNLd1Gd10pJVoSxWbUMcjWQJadYHOmPRzEIaCkKlSg5soUiWbzT\nOYLtK8rxtDo4qoLlUXE3RDEDLswcL8nyIHXHyEiOhLdFIlqu0zFQA0ki1kfFFXFwRWwcVSJaroID\nagqUeIbmaX1oH+mhfahGJku81+S0RDrbJj8YQ5MtTig5+Tt/+//+ld2P7ekl+L9u3iYxQ7UPlrrr\n3WOPC8ChxmWKT6vhuKO/5IEr/sw9k14lY6hsuGIWv/zFE0QHmBR+qHPl2M/IXqXQd5xgzAvUOsiy\nTay/mHFbR0l0LM+n5c+V5K3qEdc+8xZBpDPki/Mw3RJPvHgkf3jyDAYuuoDft/Vnyb1zKPxQZ8js\nmXibHO5onIbv5SxmhHbRMUgiE3T45oUR/GH0X0kVmxgFXeyXeQ7BhR7U5r+vEePC8z7s/ry3nMv3\n2Qcz/wBAKs9Gc5lEP9s/M6ySopuk6NdPnP29Y367f2TE8RtYdc2fei3b1bofde0fYHv3kP5Q+7bs\ninvsviLDe9uyD4bsd4ymz0s4K9A74ib9MOLP/2/0ZDT/HsKiPeVfezLrmYp9qyjkDDz62pGA6BWF\nHokXgH6H1HzvPh549YT9LlejGZSMAw7YukTeqhiF77pwZAf3vABqEuqutaibprPzsf5kbsgj80Ih\n7tv85Pvj3N3nPUIrdJS0w0/WnodbMjBtmYOHbuYvWyfR7xmT3LVp+j7r9MgDVENgiuiFfbT/88Qr\nLBIlEKn2s33uQGIVPqLT45R9bNE0MUjbiACRaj/lH2Xo90KMZN8My/8yguzBbSQLHLLmeYi9W4S0\nKEQ6R+LQ0GYmZNdwUHALgbU6/sVewqMNEsUOnmab0sc0Zg16npVtpUiSw+qVVSifZFP2cYaqFxzC\nz5VyzWVXc9El19HySBXxUpv2IRJvRofyenQoNbEcCovCZMy9vNG9fEzJAm+jQcNkF/lKkhsnfkj2\nRTupOUGl5jyROa2f2sWEWqajHtfK4JM2IZ3VQvVvNuIoEg88eDr+epuGyS4ShWKyCb9Twshx23hw\n+1TuHPY2HQM0ZAOCOxzyVziEh5kkClXyV4gbKlKpohfH8dfKTP/9ImQTtk19AnebRbzcYc1PZ7Ft\n6hMM9dRT+qxKssgiawsECmLEt2ZxUvVqauK59P3kEpq25JG71iDjl3AA58NckAVxzY47B/Hu6uFE\ny1SCtSYli0zUJGT6GBhe4Ro4K7NwPZTDT2b8FPmjbGxdwvLIlM43OfoPCzC9kMoVwF7vlNA9BoZP\nEDRJ5l5zkCPkzZAgUeJg5Rr4t6tYZ7fj3uDBvikHV4dMjivB6/3fIU+PQV6adI5D2lIZ59tBytY4\nq/grBnobWV9bTMMkFVsVGVgtYVM2dx2OLBEr93DypQvQm1XUhMzuyR5yNhk0jdVIHhFl6yUFNE0r\nIrgxjHdXgqZxOmWPrqNpvEbrCIXWUTLpbAgfniQ6OoWtQehdH0lLozaTR6RcI16kEdxpiExanYem\nsTqR3whyEXerQ/zjQmLFGg0H6my+aDYlnxvUX2yw47i5FC+Gnz93HvVLhS+gtakEAwnSpoIsC59h\n7LIzyKtuJ15hYYYsgjsN1C5txuKlGWpOUPjZHVfw2XwhS1X2pEqsRKNhok7sSJFVywQU8mb5iBdp\nqH/MJTUygZK26eivY/glRuftYtehGo4kCI8cCTK2IuRHZNA7FPqWN+NpkolOEkgz3schWmmTKLaZ\ndOFywsNM1l4ryIZW3DarW9rlL29N57KvekhjLDek1oRQRnYywaUxdtkZRA/sQkb7iZj6Fvu4/09n\nsPld0f5w8O/+C8PvYAUsBuQKgsHO/jZ3PnEuj70/HfmTnrYURxaapsqIH65Nn85x8Ktpdr0nqqz8\n63tXO7x49R+BHpmWPTb6k6tJVO6/DlhJQzLfQYvCopfGEOtv4J/WtM962lf7tjF4d4nnz79VzFWZ\nz/I45MEb8W8Vc4qrSwbPv16nbkE5mzoLMIKChMbd5pDOdjC9Dm3jTdI5Yl13q0PbOFGNMGBY/imR\n9QAAIABJREFUPSM+vxRJs7HezWXHcYLM7M7jXiEgVHaozm7FL7upmLwTOjUct3iYI13UHY7i4PGl\nkQtT5C5XaB9p85tLnqb65RmccOIXZH3j4pctQ8Vv7JoIPt/cj5zJjfx83UnidxQmGHnZGs4+ez4z\nR3yGN5Tky0hfAh/7SB/bia3BrLKPmN8xGM/ufyYx9H/DHEnoxOoRkRX1NVjoUQd32MbuuiWjgwyc\nYVEsU2b9BwPYdv8Qlr83hDmvHsOVj1zNaQuupCkVYKC3kUqtlRzFIE/xkC9LtGb8GAGbRL7QjpZN\nh1RJgGSBRipHpbOvSl5lO4GhbdQfZ9E22sIYGWP46eupOG4HDUcZtIxSaR4nAqmZoMSOk3R2npBH\nZ3+IVxkYXX6QI4vfoCg2CVMnpH1/1d6/JRi9/tWL/8f29a/WLAXI2SDS1cff8il33vU4TQc5uEZ2\nsHF9GWfmfMlTzQdxqj9C6HUf97RX8+vbL6Joobg0r919ONGDkzS9KbKgkg3KJl/3BJ630iFnvUP/\na9bzwR/uJ31WB7LlYHglWkdIZL3mx9Zg/cxZrL12FpsOfpo3fiu0sZK5Mt5GB9l0WHH/KFqPSzHi\nq7MZM20jjuZgTwlzf83hFC2UkWLC4chd/Y9l1J569sjuz8Memsnaa2f9TVA65ZUbSRbauFtl1OVd\nIsuVpiBC2svOOWcek05exdprZ5EZuS9759727f6R1W8PZuTDvTVR9VV/u87H8nz3efhndD1Ty3qz\n9t153nPd4Pa3538/g/N/gp7o1rPn/GhjHXrUyu/9ftz0Dd2fq978CfDDpVz2LlPfQxKl17pIF5vf\nCWj3Xj7wCbGfzY37MtL9EDMDOp6GBLYqkQ4qdAz2Y2kSA56OU/B1lHQfA3lNgIOmruX8m99j5guv\nEenbld24JUip6idQb2K5JfrntPL7hccyNKuBmOEiEvFg+lTaB7tI3dxBrMKh4aAgVW8nyfqFh4af\nWxz+6XUocZnKt6K4Oi2CtWk6+ypUF7TibkkSHpsmXizh253ml3MfJ9HHS/lrQs6qdVcWVnUSxYDy\n07aTLHQo/CbJmYEaXtkxmtp0HpYbsrdk0PwZXO0S4YHi2H962VWEPyzGanGTs1bqFVzaU2I3/+nH\naT01gbs8yqZLZvPIukP4rL0/v+z7FsNzG/C9GuwmL4oX96BRyRY9pKeetIjb64/nqlAdmbuLqHzL\npPJZIRuz+aLZgpQoR6KlMYvlSwZwW//3mFu2mKbxOqEtGdIhmUy/JJIDDZNdlJ6yg92PVrNk5F8p\nUsP4mmyCtRaeNpNEgYy7UaXlYINEgXC2gjUmziY/oa0Gn/zsYL64bw5TLr2cBY/P5Z2z72XoknMB\nuONLEagYMmInHUMgtjOIXhnjrOyvWLOunNLCDsaM3sbOsy3aRzj0+cwka7sBtnAUFjw+lx1HP8bJ\nV3/KWX98j3A/jSOu/xxZs2gbLpEoVCn4xsC4ro3mS5Nk7TConyrTOlww/M758lAyIZtkvkysj4qS\nhuLsCLIBoa0mRUviuNpATTpEylVSIQlfo03umi7SqQqL1qYg5e+FiVT7KT24jmk5G7ihYSL3FK1A\nc5mMPWwjo7LreWzXwUzybyVXFUBL9xioCYmGKTamR6J5jErDU8XEiwS4evf+Q1GHRPjtKc/xXxe8\nhnGNkAAytgYwQha2IrHjtFyaxwVIlJrUXzoUJQXpXIvRUzaRLrTwfunFtd1N/kqDZJ7EisZSLEdG\njzpEqgXYK16SwdsgEdpm0zJKJ5WtEtxpkLc2g7/BYOThG7vvr82HPgWAK2xScnA9fRYa1JzjUDCm\niVjChVszKfSL3/ezgR8ST+k4Hou8LxXqp2o0TjdpHyg80u2n/Jm2kQ6jDt5MzXk28598DPfZjRQv\nzZBu92CrEtEzI9Qcp+BrFC89/xIvnddEiExKEp+Q4IMvR4IDWhwsXcbdIlPbkIvapiFlRHamZm0J\n8aFp7Had0Im7MP02gRqZUFUHS54aw71TX+zFqXH1rgPEHBOV8H3uJzxMkA+pScGsfEBJLZNXn8L5\nfb8i8IWXYy9bROALUb66Rz8UIDwqQzIf1l43i6W3PsiK22YR3C4TWqOxsaWQ8BCTZafcR6Lc7JZM\nTRQ7pPKgc1SGLDWJNj+rV+/dty3Wt6f83NUuseb1wWKckfs6zWf96QaAbnmXl6++lzX/NQvfWhf+\nLRrmflyG1JgEniZxcJde/B7+LRpLRv6Vvp9cQmxAb0ckWWTvA3QB+hzTuyeVvdwOs4ubUTJh3pC3\noCJBOkes4N8JnhaJ3K9VYoMyvPKLe8hkSZx9wFLW/HQWHwx6l0uGLCFnkYsXb7mXcbeLa3j/PWd0\nj1/hbWfY0nPZtqIUKScNXVlJV3sXEK6V0T7LImu+h5Ou/RTJkjjJFyN7rcS8RybROdjqljZ546HD\nGHf7leQscpF6tRD53WyS+UJ/NGqKufjZ+4+mNNTJgpWDSeVKuN7NQjZgyh3Xs3B7P5x/77bRH8Us\nl4QecwjUW7jaHaKlCtEymViJIuR5bAl/fpzpVZu5edyHJEtN2k+Pk+qXpnr2NooXRRk4K8O2+VWc\n4hf+TftevZob2guRLBEs7BigEinXMf0KjgSJQoVotUVsaT6eJ7NRWzRw2QwqbmbDU4NZt6EMfyiJ\nNTyGmWcQG5AhPMRGLkihH9iGU54E3cYxhTzVnqyptMlHYyzAluj3+zr/lmD0u+xfARz3R070Y+0n\nVtpzemN9ZJ58dypXfHwxxx2wnGRSp3CxxMWPXseWh3uyXWM8Nd1SLk1iXifvHTeGT5ALyaaD4XM4\nYPB2knkyqWyZW+98mgOztrEkFSLfJ8BY9tn15HUBRz3q9NIrBaFf6mmzaR9pY50rXtRmWMf3char\nm0rIXwaxRj+tH4vo7d1HvsyIn64CIJUvYWb9fWm3vYHnns93tw4kXv7d/Uhbz57D2PFbem2rxGRO\nLVze/b8jwfPPT2PJ6yMZ9tDMHwQk/1lTR4f3S1T0z4LB/WVUf/nsud3j3vrM/xw9+f+W9Xthxt9e\n6QdaW/r774VvPhnc/XnHiY/u8/33ZUm/iwDL1aB+pyzM3hnRPRkjefP3H2PehCb6HVKDd1TvjHm6\nS89TD6fxNRlkghIdx4hMw9brNZBAG9tBS8rPw28fw33XnUvl24KdMdrXz+i7Z5IOKiyc9SgbWgrJ\nKw3jUQxBYlLWiGzYyKZD4Odeql+O0v+0zeT8YSetowIoH4RwbInql6O0Dwsg2Q41x+koabin6q/8\n4uWnyV2sk7fOJJ2jcfcZ5zH5jqUU37qVtjHih+e/7aZ9GCR+WULOOoiUuxnx5nWEvEn6upop/CoN\ntoNrhQ/D71CyMEP9ZcKBszV48YSHufmm5znvUlFxUXOCKoAWcPiG49l08NM4K7IY/99XsnHyM6z/\nYABuyeDw7LUkimRy16XpGOSi8Os0zeNcNB7gommaSd3hCs8tncSLVfOpfmkG7zwpwOfNc54lUqEz\n9YJLGXHvTH5+xXNMH7YBOz/DnRuPY/CcmSRLTGrOA+vwDnwrPJx06zzyJzWQ+HUJ3kaDxzuLCMlp\nWkZJ7JoiYXhlsjcZSKbogZNNR0iwAMVfmFhumY5BvUs5Bmg+HEdiyqWXQ6Qr85ryYIQstKhMXiDO\nCN2NryhOLK3TencVno1uyj4U571pvNim+MptTLn0cqZcejkvPT2Ve5YdwcpbZ/H5rRPRt3ooWWRi\n+CQiFSrag7loi4I0XpwiUNGJ3ilIR7JW65R+YhGrsPHvMsnZYNAa85Eoloj1UXAUiawa0XuXyZJI\nZ3dxJ6RsPMEUI4bVcOyINdQfHiL04QZ2NObx68XH4VfSDJo7k75XNTIk0MDhwbU0x/1sShWj4LAr\nnY1tyYKNOCljeiFvtUW4IUjbsSlMt0TkmBgVl9Zz46dnMmfbIfi1DJWPrKPsEyGho0cdbNUhWSBR\n9LmMZEK82kBvV/hyTT+krAy2Dv46h0ilSumHbbjey8KrpEkUyBhVqe7SbC3m4EgQ2mLh7uh5n+2e\nrPFi1fxe129PIGHeEMGYHcqJkTZVirKjRBNugl1ak+VqO6EX/cidKr5mk9L5BlqjhpJ2OPKPn3FF\n/STKPzJpvauKiudkqudfzMLhrwNQ8aYIMOsfZFH2sfABWkbqIEFqSR7qDjey5KDmJRk/dQPJIgcl\nY5O3xoSwRnBIG7l9O9BiEu5mGW8wRdYmhesq55G1SSAC5yPRYnCqP4KvvmcuXPzUWECw6IPI7ClJ\n4QcpGYnhgXru7P8mZZqYz15YO6572z36odEKB8Vj4WkRuqUTf3sdC5Iy4RHi+dbmZ+GvURm34Cq8\nO1UCtRKmG0yvg7sV1BaNPy8TZa/HXvQ5eSfXsT/zb1e7PeDkmK4s7UFhfjbuw17rvX/tH3r9P/y+\nmZzxpxt7DzYsyrfNvbyHyf/BxaIkecrak/CtduPfrHHK+Z8xd+bDgJCd27t0d4/tydTuD+zuKbmV\nDdhhxDh7yDcUDReZ13RIIpMFbeNNgqt0Dn/5JvROh7sLV/NBwsVtTSP48wqhfzpA6xk8enicb+6a\nTfbZ9cx7ZBL6R0FCGyVRQdJ1rlzhPTJI0DnI5L7bZqNJFkphkoc7Khj7ExEEzlkhM+72K6l6+3K+\nuWs239zV8z7MObOeX1z0Ag/e9gjbnxzA41+I67VlQx+UmNwNtO0TxH0SDCRI9/1uBYf/FLM8wjdQ\nUjaK4eCoIsOeCUIqV0LKTXNgnx2ckL2cSr2VgiUKkuSg7tYxG5uQEwbbTvWT7pfivXg/Uo5GxHHR\nYadwSSoFvhhaRMLVIeYsIyDROFGhdaREeIiJozoULUnj6jApXmIxtHoXo0N1JA8X93dqUxaaZuEO\npEGCUEWY8oJ2LFtGAvILImhe0RceL7PBhqyt0NbhpzW5H0Hgvez/FBj9n7IfS8t0DwV2JiCijEa2\nhdqp8PayUeS+LerG9Qg0TewJd03zWN2gsfBLsSxSKZM7pYHgSAEardw9enA2nYMtfnX3hTzyxIk8\nsHM6kcdLSRTKZOlJtAv3LQnp+8oMltw7h+qrRcQ2sFXBfiOPxmkm2WsUGg83MNYHaZxikb9UIT4s\nRfMEePDOM1n9wEhAsHv9GHZb3iZ8O1USQ/adZAqn1zPsoZmsf2eg0CftMnerzG+fOBMQoHbdNftm\nWH9oGfA/auaKf6yM92/ZDwWzn11+z79k//9p9m2G2x9iewPIv5ddd2/bmw13f2P+0HLg1q8K2bqw\nksTK3hlzX50IOpkBHb09ReHSCCXP6tScEEDTTX4+6R0eHvECAwNNBLZDreArw3YJNs/CpRGyN0Q5\n6oTzOLPvcnK9cZa0VnFw9lZ2dWZx7IOf4mu02XSpF+v3nSxb05e7St8mfFiKVK5EYJ3I0ORcsJOG\nSXpXHwvccNrl/OqMC7j+ppepnyYR7qdSd3iQ+X88kC839QXVwVuj0XioTfUrMZIFOtnro2RviJK7\nTObwwo1C00+WaJzoQkmJc1lzskrpYwJIFSxLM8GlcYa/k6k+Ef2tfMukdaROokhjfE4t59VM4ebz\nXuW5O+4FIDMkyaUrL2SiexeSDfXTdSJ9bTr76jgSJMtMXP40SlJixwmPMvWCSzn+kG8Y9cx1jPrd\nTGoyebhPF/Pp6htn8bNPzmTepoE4DqQNjVRFBv8OFaVRJ9ruQzLhmecOp/nLImxdJlqmszRSzVDd\ng7tdAtlBi4mSTNPnkM6Czv4yX6+p7r7G7YMVBp7aQ2zSbMVF5UpJPQsen0v5eza1J0q0flnEGRO/\nQg9L1O0UzNvTK8R2tadAoNYmUiGyrs9eLDSpX+v3MXaXnEvuOgNfIMVBq09hweNzKfzKAFmALCSo\nny4i5rpuEnw6SGSAiZKWOOOyedzxp8cp+6gnMKl/kIW7RfSbokhoEQMt5uAKOzgK3bI1qYROtb+F\n3xQvIPdwQURnGzJ6g8YE/3buOvs5NvyhnDfvP4zdZjZ53jirIqWUqJ0saa0iNxQjXZnG2yiTznMI\nXxAlp08Y31Ivng6LJZP+zJZZVYRWaaQW5FEfzuLab5Yimw558120jRCSI5bHoXGyjREE2WOSu9ZC\nCWaw4yqDT9xE9KgYhV+EaRuTgyPB/NZBGH7QunoWDb9CoN6k8UDo7Ns7dWPtp9uoLDtM0S+3MfWi\nywAI/SmAacmCfGqbH7kr9bUsVUnDIYADsuHQeIDOodNW0zklybu/OIw/lwq+jflPPiaIxRb17Kx1\npHhOMkHhaNZN14gNMOgcmSFvjYlsSZTkdvLQuJdY8uWg7syikrFRkjI53iThdbm4OsAYEcNYF2TM\neau55fn9B0PNb7XAmdPC3PvwmRScvBM1JQIXILRMy7R2brz/Cu5cfywAwaU9G/uOExrPW8+djWdV\n70EvXnhxdymp4RNBaKdTJz0siTW9g3ilhe2xyQQEq+72Ix7npZvu4Y1tI2h9vWy/x21rgA22Dq41\nXuLDUxirQ/wkazdVx/domh/90M37bBuvsrqzpADql/uW2joq2JM6iVdY3eW1Jb6e0uHXnjmUi5++\nptc2p5z/GamCfauu1O8v+OKyLefweUs1DRsEq3HZsTVgIzKjVTaeFomOKSkGz5nJPTVHsjJcihPb\nt+w18LGPcbdfSf1Ccc4evvkRUXYfV5G+xcOgxRymj13HIW545cHpBOd5uSa7lmWPjqJtrJgTbFUc\nw8h7ZjLu9it57fZ7aBtv0vhBGb94/SwuevUqAHwFceKlEr4ahdBGCX+dQ8ehKTKLc8k+u55lY1/m\nsIGbv/8k/AeYu9XB02Zi+MVE6WkWrTjeRkGYpta4cckm/bUOhultJAokjG0BzKCNkp2NvXYj/X+/\nEald5+Xd40jZGjoWcdsh7ZgicBlwSBRKWC6Ijk8SGNpG5fh6PA0qWiiFe00d7k0NREtU1q+qYEO0\nCJdmUvqxhFwVx7YlVNUikBuns9PL9rp8Iu0+zE6dlrpsjLAbyYSsLTLuDodMQEJRbEr83182/38K\njA54+srvzFr2nbDzR9vPj5UZ3dPjEakGZPjT9KfJ3ghFn4mXVsdJceKT4+hhmep5FxM7PcKkG2fw\n2u/u7TWOv97BeKqQMQUiwid3qixfJEhNSvs3o6Yd/LtsOh8TE8iqm2ZR4W2noa23pidAcJvMpBtn\n8GzlAmKnR/A223QMcSiap9I50MFd40I2JIoWKCiGg3uTm4Kveo9h6fTqtfohtqc0F2DEV6KvM2GL\nCIp3/b5v7aZPSv8uUJke0cNUsDd4/VfZ/rKYA6dt+5eNvbcVKP/67O9/iv0Naat9bGU6/Xf1jX6X\nKWkwHPFC3hvU7hn7nwG6e5saFc9Q0wFBwtUalW9FyX3Ry5pEKc+0HIRfTfPLm55i4NwkH7z1LHLG\nQm8XwZ+Gg4NsvsjHbXmbmFYgglNvNY6gT1YnD38xjciFEXy1KuGkBzWU4fQHbqLf/Qby2E5KPosQ\n7etn1/sVVLwbIbTZxhgonsEZL7zBzxecgpyWSBTbJCpM2kZIeLbpeOo0HBXUToW24X589aIkbtMV\nHqKV8NjCKbxRP5JMUMHVLlhrfbslKl83aR3pwgiotIxxMWXtSTwXzSXlqOw4Tcyn6RwhUfHCsglE\nDDcXBZt5PTKKpSmLA/tuw1oe4uodp+E/spHSTzKcN20RyUIhpeUvjGHU++izIMMFtSJK/+aXY6ia\nUEeszCFqu/lJ5UJAMGyiOMiKg9ypkYi6cO3SiPUzkCrj/HzSO5he0VJw1LFfk8pRsNwwf/MAftow\nDtMD5e8LIGoEFPJWOWRvsfHXOujtPYDG1e6wtlHoKcaLVI7+9Y2cULmW+l/1F5lRYED/3RQtNYib\nLtJjY91lfO9tGUJwThDPTg13u0Ww1qT2BImxrp5euI4LY/xx1iO0jNLwvpJF9KMiql+cQWe1xu6D\nVAZcsYGfXvcK7qoojssmvSbErkOFbmiqNMMLT0/jks8vomncXtlbR2RBPW02tiKTydYxvBK5a5NI\nFsSLZPROk9wFLi7L/ZxNhsqCYW8AcPLwFagJid/edT5/uulMgitd5F9Qy7pEH2aULiCkJ6kzQ0wp\n2EJTSxZyi05sUAZsOL5yLVWhduSMQ8EN2xk7/2pGl9dx3bWvEqs2ScZdzNk1BclyCA9EtLmYElnD\n25CDBjjgdOhwaQvyTg9KVGHbMwNQlwdwVFnMIxKkTRUtDllbHUyvjK2I8u7Kd01sDXYd0nMu7OIU\nHyV6Z7Y3byil8U4RcLBcMjfMepbwriDnV3+FrToclL0VgPvfO5aqwQ3IGQlbk9AiMLdsMeVPqgz7\n79WA0Ax9OiKCD3tLttiKyIRedfGb+Ia342mS8G7XcNXrJHMU0n1TtH1UwjWvXYLtsSmb17Otozhs\n3VaEv06ic3wKzxI/Rx79DcufHYE9YF9ENHDRBay5vud9pR3dgt8tesbq5pez4rZZaFGJznFi2bzO\nIay4bRbKJ9mk9oqvhYeafD7itZ7j6PIv9pThh5b1RPcyWQ6JwWkGDKnHimjEd2ThrVdwN6joUaH7\nWvXeZRz5yXWkk73P/97AeU/LjpyBRHUG3xo3WleC863+H1B0dE9G9dsltL4d318zGq+0kExI1gd4\n+/gHoIvgaE8p8B5TvxXYvzN/XXcZbP8TtjD85J5Wkj08Id820wcdCQ81q0vw7pJpm2TQkfJgu4Te\nZ9GgZlztDtkL3Ph2OzzU7yU2rilDb1NIFkiMu/3K7qxl+QVbGX35apSRAjgc5JbJZIHUVaK7hzEX\noO0AE9ORuXa3IPTJZEn0W3ARALnLxPmRu+JUWlQcS7nqR2tTcXU4ZG0Fyy1OjPu9IL56pyfrCmR/\n5sZyQ327CP7nuX6kLMi/scmWQzqkkg6JlpZYqSTKk2Xwd5HivfPFGJ4MH0DagdjgDIVf2UimRPsx\nA0meNIG6Swfjq+ykpjWHDzuH008T7/tGC0r8ncimeIYsj4MvkCLPm6At7sXwOZTkRCAvG6u1jeKX\nNpK7UmJlXSnJVdm0DVZwHDAyKonaIKkNIeRdbuQODbVVQ0mIe0ROyigpCU+LLZJwAdB0k5YfIzO6\nefNmpk+fzrPPPgtAQ0MD559/Pueccw7XXXcdmYxwiN566y1OPfVUTj/9dF555ZV/6GL8LfsuQPrB\noHf/Jfv7Z8xWJBwJvLsksrbZ3HH3xSgZh/Yh4oHOfsPHoJIm/LWg1rpZc8DzAJxyy41EKnoujWyK\nB3Thu6NJFMhoERlXqxijPNDRqxy46QiDSTfO4IDANqzWfcUKZ8x4E4A34n6S2wRjrKtVbF/wFaSr\nU1RNqUG+oJlomUw63yY8QHyfzhL7FFHv7+8ddb4DrK69dhb20myGPTSTCX/66Xdun8q3uae9+ju/\nh96g07Xa273dD7Fk4Q9bb3/mqA6D58zcBzS+0f/D/a5/8smf/8P72p/9J/SG/k/Z/nTnzH779gTt\nKaE965mf/iCgWDxp936X7w1khz9+9T7f/1gg1PJoZEIuLJ9G+7AAsTKnmzCtbajCW+tG4FPT3Jm/\njs8igwDo+/oVfPDmM91jBOosPLuE03BTzja2by3iV1VvsL6mhJxvVLwvZ+Gvs2nfnMPUfpvgUEGQ\ntXbic2L77THUOGRCLhoPhNCnwtO7Z9sReOo1stdL+OplXM0KZq6Bt9HBHBojE7LJ2gLJAonGiSKw\nMvDPSTI5No7LxnYkTJdEqKvsNtLfZOdRGrFyG0eG/OVp6tYX8YtPTuO8BT/hoBGbqTnfofSTDF/c\nN4cTR69kx9t9mXjzDD68/hAmuhWerliIe3wbt5W9S8tKQYS26IaJyAZ0nhgnHnFT/IWY056uWMiO\nsyWqXrPY8WUZIw7YStrWePLqEzn5wU8IZcWR4wrSLjdaRKKkMIyrQyLvSxXfIj+z/3gyhV+nKfsA\n5r04AW+jgZqA4eW7OSdnCXmrLZrHaNRPU0gUyDgytA2V8TWaglyiq3e033mbeWDUS3yU0Pj6N7MJ\n7DR5/eWDu69f8ziNDwe/A8DCXX1RFIf8PmHua+/LYX23gNNTnbP7UJWBA3d1g1gA17tZXLXhHPJX\nGrjbLVbfOIuyjy06B1mYAZttnbnMvus08uZ6wZEwyjL46mTuO/sJslbpFB1dR3lxO4Vf9zjJsQrQ\nOx1ifRRifXSUtI3plWga76Xs4wi+BpvGA9z4mkw+S/RnfboPnXaSjQ/046OXJuJrcGgfCvXTJVIH\nxtjxWSUf7hxEf62VLZF8wpaPIwNrmNx/K1bAQoorIMGS1iqWbagif2WcLW35KI0uVn02gLtfP5Wc\nFQp0apxTvBRtzXaMLAvbLeRnkovy0La7kU1wtSg0ryqkbNwu9LCMpQtyJCPkRks6JIolMraCt9lG\nS9hES1TiRQq2IhEp1yhYniGTZxGpEADIv9xDu+XnvJopzH/yMaZedBmVb1rYmng5mle1coQnjt6m\nUKq3QUmKea3iWZUzErXNOeidEskclXRuz/t2eUspl+6cTMeBaWbfdRogMqR7zAw4xIemmfvACchv\n5og+QknwTbQPd6BTo/r4bXgaJdRwD6hK5aioCQk5phAelUHRbIwAvPfpONIhcK3wER7ZGxCZGbH9\nittmMfrumRjv59O0OZ9olc36q8T70dsoceoI0Vrz8fzRbMiIoJV7r86DbzPzr71uFuHRmW7AuGd8\nEBVmFX1aaXqtgtA6wTpruUX2MD45hhWwmTR4G2qrhubqeQHYGmRC+/db/Bt7gjSLU2IefbTfC8QG\nC992+H0z4aDwfrfdM6bZU5WLr0b8HrUgyemP3dC9PFGyH7+jy3373Yy/MPy+mUhdh7zlrf6s2F3a\nvZrW3vs+AEiPjaPGYVh+A0paABd3rY7x1wL0sACayTcLsdwS4YHQfkia4xdcjaM7BGpF5u3KG17v\n7hk9ILuGL18eif5xj5qAb7dDziqZnFWCYyTrrF2EB0LWGo07S95n8VxRah0dmsGz3EtA5LcxAAAg\nAElEQVTsiB7Q2HFIivd+2ZNcqXrvMoJdSedIP5DsHkcxXirRPkqcn86uoiZ1VBjTULivvS8v/xOq\nBf9XLBOQSAek7nvA3e6gpAAH4oUK2Rsd5LTMR7sH8Wj7ZPpVNtF4Soa85RLtwyTqjnZIjUmQiLup\neEjmi+YqWiyJVZkivkxVUhvJxgjY3c+Vz5Uh250gvDPUrZHbNDkHZ+QAJF2nsz9kBZL0fWgzyQoD\nHAmrw4WrVUaNd7VdJCTkjDhGvUVBSQo2ZsMrgSOSV4piI3+XtEOX/U0wmkgk+NWvfsWkSZO6lz30\n0EOcc845PP/881RUVPDqq6+SSCR45JFHePLJJ3nmmWd46qmnCIf3//D+s/bPltFuvmD2fgHtnmU/\nVpmubDnY57ThbREP2EU3vkNntUzOeqe7NLfulb5oSUFCNOlGUUK75N45BOps7v31LLyX7CZaLi7T\n+KPWsurmWRRN2o1/txgzYoiUePPRIvKoecRddv8dZ1O4VOKkW+fRfEwPy+dTvz6eB3/zMDf/9Xzy\nu1ov04OEc954uIG620XrUxXEPigiMSTFyDHbSBWIJ2OPfqmjgNby/Smn/d13wx6a+YPJi9wtMrO+\nnvK96+wZs/rlnj5Dd4s4V/GBvZlN4xW9UYmn6R8vCpBM8RB+GxTurfm5N1B9/fXJpAv/P7Xt3vZj\nEhX9vaZu3T+1+h5A+kMyow1LSn7sw9qvyUP27UUCUJIG8WIdJW5g6eDfKWF4JcID/ZR9EmfAQxk+\n3D4Yw7H45JmJPPraHHJWyhx1wnnsPiSIfE87qWyZso8jnLZtOgCh4givd47lhgkfYfokOk6K03JU\nGiUtcXLOctKZnmc+nSfOYeFXEdqGushfJpG3Ior1+07UR/LwHdCKI0G0yu6OTOlxB2W9H71DRH0T\nZRYlCyNsPcvPpku8uAoT+LdoxFIuOgZJ1B4n0zHQBZqDHpbJWSvRPlih9kKb/zriXa44ZD4njlxJ\ne9rLOSO/pujO7Uy94FJW/2wk+SvTeLuIW/bM50F3mgu/vhjvbolIlY55Uzv6gW2kkxpOQu3WB12Q\nlNlx9GM0HOQib7XD1jf6M69pIG3DXTy06jC8T2QzcPRObM3B0sH5SwG5a9L4Gk0cGXyNFtItLSRy\nFRIjkuw+ROecm9+n5tVqzvzwKlqHK0g2yH2S6BEHLWFjVCdJFKqUv2/T3iXLvHreQH5fczTXPXM5\nx20+mgWPz+1m3F3w+FwuO/MDRtwr5pzsxwOc2n8l8cX5TPevZ+nzo2mYrGL4JAy/zAXHfNorYDv2\nzitpm2Tgfji7e7w9QDW4SWHQsDoKvTGsLuB07sQl6LUu8o7cxdULziNZ6GDcWwT351M/XTjebcM1\nLB20hIOacEjmSyhpi5xNGSKDTNpGBEhnSZR9GMa7eDMPvHoCLWaAsS9djyeQouzoGhJFEmXzDSaM\n2QJbfFS93ErpbRa7rQCnlyxjZbycBxoOZ9GKQch+kdE0ijJ4VIPcr1SUjbVo74bwDgwjZySMbIv2\n0Ra/O/JFnpwwiubTh6C3KziajRGySeXbokw6xxGalYUZGueVIlmQvyJB6UcduOrCJHNk0nk9pYeO\nDJkQKBkH2XJoH9mV4dmtEqwV1yh3XYZZNVNY0dCHqncuZ+eFFv1/vY7UVR3otzRwTdWnHHnxFfRZ\nZHD7C+diJVQuLVkEgFFo4HIZBGtt2o5OUnBAY/e18z4Q4vOPh+Pa4cbwSLRcmeCBjkqmXnQZLSN1\n8kc14SQVLJeE5IgyWT0segwtrw1Bg/Afygke0UjZ/B5w2Xiwg+F3CNTI5BRGkGo9uMJCzsVzQCtq\noidD1j0/7XYz+u6ZjL57Jitum8X918/h/CmLOObQZUxadWo3gKxNiDSoHpY4597e/ZbRKptNl8ym\n6l1x/+3Z5tWpsxh3/irCw0xuaxKswZ0DLCSviUftOe5Mto27VWRg1HV+AlsUNrwwGH+dhGdhT/ls\n8fG1eBv2jZIbE6Iki3pA4gttk9hpCkDl36Bz6JnLxBeLRYZu72wlwKZLxPtibxmZVH6XssFujwAT\nXbbtrDn7EhXZ8NG1f6DF7C0nZ30rl+Bqk3C1C9K2WL8un2yZj+PP/ZwVfx2GnJEwfQ6+3V1cIZE9\nlXkOEy5YQWgT5Cx0kfO5Tu43PeB/9h9Pxnt6I9/cNZtXHpyO3ukgG9A2zmLc7Vdy9y2P0TbBJF4q\nzl3ni30IbRLg/qivZhCeLH5g7hcarrCD/yM/7YekMY4Lk/2Zm2PuvJFv7prN4pRN7tKeTHW/A2rR\nO7r0d4c6WG6HnJXi/6wtkM6RSOwIsmXKkzzy8REcNLQ3ceV/ovmabGQLvC0WnhbBJyBbDpJNV7uD\njW+XRHNrkFfXjqa+PURFYRvhAUJftuw9iX6/T1N97gqU1dtIvlfIqnQf4raLqOWhqTkLOS1jeRwy\nRQYuxaIj5WXg3AgD5rZizyqA49rYPMPF5uuq0KIS+T+TaDhrIIGCGJYlo0TF+1uywdGcLjAq4d8p\nk7/KxtsgoXc66HEH0ythDY6jKRbh5HdL2sAPAKO6rjN37lwKCgq6l3355ZdMmyYYWQ877DCWLFnC\nqlWrGD58OIFAALfbzZgxY1i+fPl3Dfuj298LIPe3/o8FQve21Lx8WkdKNB5i8+T2SfzkrPdIn9XB\nX44V/Q/mtDBNR2WouGoz7/3+Ph7vLGLSjTP46S9e4vyFl+NSTOL9RXRuy8NDGLvsDJojPenuNVtL\nSRY5FLzv4pTbPibnTS8tYyFxRieNh9gsauvHf435pJsUCeDCJ6/D0yTRcmyaJffOwbfSQ9MkB6Vd\nw9MoCWbGcpvCD3VWLaumrLqFpqMytByXovW4FIE6+zt1HL/PrK7g47CHZjL40R4gt/baWd0scHts\n2TUPorj2BXCBQ0XfliNBv6O3cdApK/A0yvv0rfg2fWsm1/afCe179Pb9Lv+2par2le34Lhs8Z2Yv\noLphxiwGDdk/icL+bNhSQXIxePoWLjr94x+83f8l+zGJiv6WfXRR7x7b/fVy7bFBj12537Lab1sm\n5x/PrP8QO+0EkU231+/biwRQc3wQ2XJIFXjIXx4lNjlB9uYkoU0xdh/iY+tZfuTlAW5rGkdkWIbj\nll9Ox6EpXnvjL+RsMtiwvaRbJH3ZeqG9emrVSl7fNII/vXw8yQKHgqwYdkrlqP9H3nkGxlGde/83\nbfuuVqsuWZLlJrnIvdvY9N4ChguEkoRmiNPDzU1IAiEJSQghEIipxvTeiwFTTHPvVS6yetdK29vs\nlPfD2JJFCdyEJO+b9/li7Xh2ypnZc85znn85YRPXfHAJw28x0d0KJy66DHswxcHzvLSc7MPbrmNI\n0PrTQ/ZVJRLZt/JRzwjz3ePfxNdo4suzIH7ZmiT5OzXyLmlhzHJrW830ZiS/irHfgzErQrzXjWdy\nH44uiVSRSdXTBoYCWY9A8boMlQ+L3P7q6Tz8zAkogk5dYymvNk2gLe7HcX0nxb9qoOkMhY6jrD5g\n2DtW/5nRJdSQg4wffI0quikgvBaAmDKEdnDjdy7n2Esvp2R1BkcwS/6ODOnlJdy25F6qS7vpmi2S\n/m0Jla9nKftII+sS0NwShiKg+kBK62TuLsHXrFL2nELZ3Hae/MMpyEmTs2ZsoWhjloKtWZSdbuJl\nAqpHpPxxGVe3hu4UGTezEdUnUTm/hdbeXLI+g86YlxHPXU3rCRKRKoXxd13LK9cdR8lpFj1F0EyK\nlChjT9nP79tPIeuxJq/qjDidR8GyzfMAyzYGwNuicWLtbs69dSXAQCLafKaAmDU5v2QTN1W+jKtH\no/0YmWfenI89BJGUg8rnBdQCjY6F8qH21cl6RJIlBq7RYeSMxRNCgNBoB3I8i3+HjKhZapGtJ/uJ\nL6zGFhZ4vmUKZmGG0flBxvq6yE6J03a0wubmCguuqBvQ0c2dbcezK1FGhb2fDdtG4y2NYcQVpPwM\nvtwk7ZEcXEEds7KUwtV9lPxGIl2axdYr4WmQeWjmZBq/O57kSTGyfoOyyj7mTt2H7jKw9VsCRroN\nTJNDvEromusiVJtD5/FFpI6OIeaqNDUX4OrRiJdJyEmIjLLemeGv6jSeJ5Au1Wg+ZXDRpmtrMfZ3\nfIwZ2YnTlWHbXZNx3e7nwLbyIVZcoxY24i+Ic5rLmthXPieQ7HfRVytgaCIf1r7ItszgGORrhHRZ\nFl9rloK7XbzyA2tBSTmqj67eHG497ikiUzMEZ+gImoDutJJoQRNQ2ux0fyNNx/5BdcvOOTZEv4o9\nJCIYEAp5kNICZYsacQTBeMuCAzd87V7C4zXCk63flKdVQPVaAitTbr6Wy1+9ilfuX8iqp2awdtLz\nA8ffuLeKRKnJ7u8s/ZTCrRI7xI9rHkxUlrTP4retp7Hp0Un4d8m8sWw+AKfP3UJ+fow/Vj1PZGaa\nSLVOzj4J1QtKDOwhSOeZfG/Jc6TzB89R+/VdtIX9hCdoxKuHVncXjdmGs2twKiyLOic8ch1ViodU\nkcnbb04dotp9JNR2wc5P+yZmfSa+cX2YMtgqB6uEmYBJ1VuXM/KpxSQqdFJTk9gWBtHtsODjJfzp\ngUVDjuOeE0Re7x0qXmRa8GJPvUx8lEb+Se288Mr8Q+0ISlQgcqxVXNDt1t/1F93Dxy9O4ec/sVAx\niVKrs4tXDFYgW1vzmLThQjbddDdrf3WXBdsVTU789moe6p5PYLOMdshBoH++SqzSKkq43vSS+4E1\noGpOgf4FGVIFAoEP7Wyf+eSAcNG17bO5+K3FFmUNqPlWHSuqV+DohcgYsEVEcib0ETp6MHMX5oY4\neME97M8m8DaIbH/x07Z2/644cMndHLjkqxdUzToFksUCiSILWaLbBWJVkCgTCI2FjF9ESZg46pyY\n/XacdpVwykHu1F6yp4aRlnTjvDPI/rtnQlWZlcQKOjHdwStdE3HvdGDvF9A91iJxKOmk9f0KzD0H\n0ffV435zB/7bvYz9U4yqV1ME9unUfc/H2AvrGJHbT3F+BNvoKOlCw7K0MyzuadZnoDsgNEZCzJoo\nKYNEsUhsboqy/DDRmAtN/9vp5hcmo7Is43AMnb2lUilsNiuzyMvLo7e3l2AwSCAwSAIIBAL09vb+\nPc/j744vy/X8ZySdnxf2sImrU6D4QxHz5Tzue+pUMmvzaMpaPaWxwc+OY5fyVNV7fKf1VP6w7SQ0\nu0BAiuPdZueekc8Q2DDYE8Z257Fn7mOk/SI33LQcsiL520z6JgpcF7A4iwWbwTAFBIdO332VPPab\n05jz48WkAyJdJ2RJF2soMZO8Nx3MuP4afnfNg9j7JAo2Wx3mPefeh2DCs7+/lWkzDlh81aoW3Otd\n5L/mYNoPtjLh2P89mVxSj/j7E5pFBy4e+uz+GqqmKBAdsq3khFYuq1yH5rQqr/VvjGT1C1OAQcPt\nz0s0DvuQfjIa3hjxpa7d0fhpyDPAy5d/sZjQ2HuupXHV8C91HoAHpzwEQN07o3no2RO+9Pc+GZmR\nViO/8K1bv2DP/+w48aHrhnyW0l9eQKjmgWuG2LgcDlv/l6us587o+VL7fTKeOzTBuPjsVZ/5/74G\nE0e/jqCbtJ7oY/6Ig8QqrZe/eF0ab4OIYYN+1c1P5r5BhT+MkZKZ+PR3ueWupRQUR0h+zeIFVd9v\n/Xge2jmHu6Y/ib0PKt7K8GHti5SV97Fi/3gLDgl0zXRy4HKFzvk+jNI0xsQYJ/ziIyInJnG+4aPE\nFSE64pAfYb+buO6g96gszudyyHy9n7w3nfROkTmwvZzoSA/RUR7qP6hiWH4YR4+AbVUOi6Zvgtfy\nyN+lkbfTIFRtx9VpDsCEO+fa8TWAY0Yfz++cghSSMT/MRfxLPv3LKmiI5KEUJ7FPGuq7e175VhrP\nvG/AoD6aciBmLZ5c1XODC19Zt0jjBYequT/roulsma5jNb53/9XsXzscQzFpO9ZG6DsJxIyB6hUI\nVcu0nmVQvD5DOk/BFtEILkmSujKMW1E5+gdrkc/t5bVV04lUKfROVkiNyeBtMeheqJP1SiSKZbJO\ngfp3RpAqEMncWkLpIzaUmIjbliW3KkTJahM1B3YvWUrwyiTHF9XRe4VVklEEjeDNVTxRtYrCzVkC\ndVkEwcQ/PEzjScuYduM1+JoGESL7bpjA0788mY6FMi2nijSfIZC/USJVLPDnuxdxZ/dx/P6v96AX\nZQjsMtGcYFc0eqcoCBmR0g8GjxWqtt4PVZVR3SJZn5UUYEJfrYvIOJ3+k1NoLgsa6OjNULImzih/\nkNqKDo7L38uusIU20EpVXpm7lL98+x4aLiqk9xxrEvrqlsn8efNxCD4V/3IvYlJEEExMYGpxG0pU\nx1QkIuNzUf128jbJjLqnmdzjOwk+XkjpgjacdhUpkKFrdyFrG6oYO7aN1AjLniVRYZCz1U6wVqb0\n/Rjl99cReK2OeIWJ3uRBT0ugiaRzZWIjdUQNHIfoMtFyBUQT/y4Zwz+Y7JR+pBGapPOrqpeJd3pI\nFgpEvhNFKrWeWdVNFle79eUqog1W5W3kU4sRdROlVyZ/m8kfZz8HwMtRa6xTfRLetiye/da8QPtR\nH02nyTSeJxDqyMHtTfPLhy5mfFUHgWFhtICGYICv2cC0WeJS6aCT4a9Z73xsmIIpmUhNDlxdJqoX\nzKRMtjpJ60tVA/fyk+88ydkHTmLE6C782wbHUzXH5MmrbrP6pXqRWKVJqsT6kT38Y2u73KcMqOWa\nnwBV3XDhk0y5+VrsRwDpVj88jcZnrEwpcHYb6jFWX7WyoYbe1lzOv/dHyDYNRGsRwRYbHPtNBe64\naxGO4ODxNrw9nkTEgX+XPMQeBeA3hTuHfH73yZnYwta1OrsFbBFhANZ4pB0MQOjtkoG/D1c8laiA\nIhkkS3WEzVa1M5Nvtbs3N4mrQ8TdImHf6SK6J4/06AyOLS702UPnO+n38zElC34cH/lpvom7USaS\nGuS5AiQnp8h5z4nqE0gXgFTv5MrWeWTyDd4I1ZIoFUhXZdBcAnuvuJs5C3aTd2ErDxyznO0zn2T6\nL69hzg1LuLptDoHNMiv/Oo8nqlYdUni12qSoKIyn1eK0HxnbfrqU62esYPd3lvLSL//Ipc0LLDXd\n167k4yenctr07fgnBolVwt4HxzLtV9cgqSY5+7E42y/lkfu+g9DRaZb8+Hkyu/xkzCwX/frHyCnL\nO/XfGcceM2gVN/rRaxj96D8nj3B1WpVQwQTNY3HAM7kGUkYglSei2wVSxTreygiXj1rD+cO3Mjyn\nnzOH7+K/yjaxIO8AY2va6Jmdi7dN477WBdy2wyoeurpNq4IvmQgpkWi3h/K3YohOB8b8yYTOnUz3\ndDuN5+ZRf6GdznNVUAz29VsLVzl2a06ZMzKE5jNQEgKGYtEAVJ9pLXiZYIoCkSkZcnMS9CVcCKKB\nLP3tBfx/WMDIND/7Bfm87f/M+FcmmV8mkoUictokUWYe+izgCJosvvh1bnncWgXzNRtMfOfbzPnx\nYtYcGIG4342cMdmaGo7ugJPv/29sMZO7fvsXYNDn0xE2uOaDS/DvtHr2bEGWyb+/lq6jrQHG86wP\n5347WbdA/ziBvonWCiaaSPFH1nUlz4kQrobtyUr8+w2655kotRF+VX8mrnaRFYkxND0wBoAt20cO\nwI03/3kK7XeP+sra6TB898h48LGT6dleNGRb59vl3PXIWQOJJ1gD0RDrl89Q//4kZPerinSFylnL\nrvviHYHzz/3gC/c5DO29bPn3/qHrOhz2g9bofM6DP/6CPf//i/8Nd/PzbFw+K/7QN1TBN7Sx8B8S\nRHrspWM+c7uomfSNV0jnyeTu04moDsJfsyqNwYkO3D06ZR+kOSd/E4v97expKqV2TCuiKhDWXdQE\nutk56wnShYOQAj2m8H5sLMVroxy8QGbkM4vxO1Io+1zISZGuuT4MBYpWyUhpE9tBJ2X32HjmqaPR\nu5zodoF1zcPR8rM4+gQ8dTY++M4cRLuOZhcIHwgw4dqdZN0mzi6RVIFI1ilQPKeD/rdKQYBwbZZX\nX5uNkjDJOkXsEZ3cfRkEA1IpawJcfFQ7/dM10hvyKF5ho/7Ce9DnRei6LE2oRsAm6fz3xJVcPGoD\nmkdC9Vt95GvfP4bvd06neJ3VHwQe9BAdBbbg0FJN/3iJYSskDJtI9wuVvHnGbfxq/kskKjWktMCs\nmfvw74cib4zOeXZiIw0yAZP8jxSaT1MGOPzCqlz6+jzs2VDFi/smor1QwL4Ll6I7QfOYlL0sozkE\nSt+RUGI67i6NwquaqDimGd0O6YCE5hZJD1P5XtW7XFC1mZV33MnYU/dz9OVXYleyXBc4SCZttcti\nfzsARy25mti1ETrnyXje8nDxiI0AVF5sieOoPgnNJdJ8DshJg9IPNIrWCuTuOCQEVZUmWqOx6uNa\nLvroSlx1DjS7gGDAT0e9gZyEyZMb6Jk6uEiq5ph4G0WcH3oRNRNnt0nOAas6o3oFpKSIsseFKVve\nrppHoXOuh3Wrx+JRMpQqITK6zM1TXuKEcXs4Z+PVdGk5SGmr4rJ/5Uh+etTrPHvUPQjddjr+S8XM\nVzFbXbhsWTa9UEvPNDtifSvJIonm0xXCNSYdZw+nfXcR4e35NPcESGVseNxpdI+OkZaoayhF6VGI\njNVQIiKxKgNHv0nXHC+tl48lcVQ1ekkGMQtKt4KrRSZVIFL2Hjh7jQFopq81i6veRjpgLVz2jbee\nSWyYjOjJ8mJkGj8++g0y0+PEkw6MVqvcdWWhNS68/oNbqHzDSjjkhEDTxQZj5jahOQTO9USp/uhS\nHlpjLVDZojrd022kig0Kb2hA/lMew1/XcLQrIBtMK24jOUKlO+4lq0sIaYuX3LVQx94jkRmWRUqI\nhMZY1xgdAZXzWvE0Wwr92uQ4/l0yju0uskdU5S7whti1qYqWzWVDfi+umjCL1l1F0TnNqF6wRQW8\njdZvwHuI/Ha4ilT15hXExg2uSkfG6kMqxIcjXmGiHUou+18ahm1VDprT4p6NGNVFJt/A604jJsWB\nRe5U2aGErTL5qeNJ46MDIkie/UORENd1Tfn0+WtU7gxVsuzbdwzZfum81eQc3/Wp/T8ZqibhbpEG\n+KR5k3r470UvommD28Ss1S7DSizyrLTO96njCDoggOfg0Aw+XqMizA4jHMGHMmxgJGX6JxmkCk0m\nnbAXcVyM+8tXM2F6I5vvm4y7wyRvtY1t/7OUmgeuYc+y8fQ9Wc5PfnfVAG8098I2Nt83ecB+7HCs\nv/xP3Hv9HaRWFJEs/fSYeHOwmqc6ZnB7aDhn33Qde5aNJzzWxNmscNM1jzDF00ywIYC3GcLVDFg9\n5V/UgrvdHHgmue87uOvWc7nszPeYtv4b1r3JDHBN/13x3qrJ//RzCAY4Ijq6A9K5ApoLhLIUBTVB\npLQFvTZFQLLWVOoSpexPFKHqEpv6K/g4PJqMoeCSVSTVmid0RH3onS4O7i2lZ45OutDE0arg6JEo\n/kBCCiUwTZN4uYOsWyBdaIBgOW2ILQ48/hRTC9spckYpcsbQdZFo3IkpWPZYhmLB/0XNSkwFAzS7\ngOLQCPZ60TQJrdtFX/CzUV6H4+9KRl0uF+m0Nevv7u6msLCQwsJCgsHBpaienp4h0N7/HyM1O06y\nQMQ92lrym376LlxndXOxr47Lzn8bzSFgyAJFKxUuuv4NiCjoTpNkocjzfzqexHANNcega4HBt+su\nGjjuvB3n0D3bUsBdsuQFfnXTMnI3KTiDBoumbyLnilaCkwR8TQanLfkQtTTLvKN3gQDOFoXgJIGe\n2SaeZ304+gRe/f0xaHYBKSEiv+0n+3ARrm6D5b8+E0k1SZwfwVQMcq9sIesWBnhEX1Wcd+H7Qz4f\nTi7tIWHI58/imaaHZb9QPfdTkN2/Iz5L4dbR8tnV1s+KZ55f+IX77FD/8320/tPi9cv+iOY2WXzu\nGwAsf/H4T+3zVYkWHRn+fXFy92v4GpIIBgxzhUmHHWTynUgZk2iFRMcSld/Vn8rRV16J1GPj6rL3\nKdpgcM26ixnmCDN72yIcPSmiIz1M/v21VD+Q5K175sEtIcuwuiRJ9yPDUf0GI56LIWVMXF0mxVc2\nEp6t4jto0nChSOHWLJ6qCPF5SRwbPCi9ColKHXenQdNpDqQ2B/nbY7jbRN5fZxEih70bpWhdlOor\n62jfUoJuh6KNSbz7FTSXiasrS3CKQO8kG33j7YRqDcoLrEmr8Id8hj9vTdS+ceMrTPrDtSS73bje\n8yCPjWKYAn/YfiJvdo2n75IEwVqJo6+8krcevo8dP5lE1xw7zZcZhC6PUbZKpXj90FmXoMNvb70X\nUbV80k75aAm/e/J8Tpu+HduUEL8e9iqTrtlBw/oKRBXsvSJnnbgOUwYxa6nzxipsuLsNzLTEucev\nZdgDCqYIk9ZfYomYGJDKF1EPicK1XawRnKhwasFOWt+uRLeBo1+n82wVxaNyw64zuH/XPMa/toS6\nFWPI/1kjiZSd8Xdei6Fbxzj68iup+OU+4pdFCDUEuOTMVYjnBHlo+cn8pHsy23ZYKBBbVEdOGuSt\nl2m72LIRUD0CoUk6E67axQUTN+FqlXGPjODY78B/dBf9UwzShQY/e+AbHPX1zTQ+PZrCLVkiIxQy\nuRKBcUGyboiMNtAcVuIqZ0wKtibwdBi4xoQJzO/CkMHRZxIabUNzWRPypKbw4w/PB+DJ7pm8W1/N\nyIIgr/VNwl+vU3hOC9df+jSP/OIMfnTgfIon9DAsPwwxBVeHQGplIYWbM5bibVkxviaN/C0CpR8a\n2KImFW9ZFTS7PYtpCowMBJG9WQSbgZCQ0LwG3oMymXIVW0QkWSTgP6iRKDeIXhGFiPXs5KRVkVDi\nli9nrFIcUuVLFRvUnrgPOWnxRQFS+QJyk4NXXp7Lw42z0TtcONZ6MAozdGpxvv37JcRLFRb97Mek\nfhDipLrTyZkaRJQNFubvJ15uPduyZTbK3rH+NmSBgm1ZSj422f1SDapPIh2Q8TCnOhIAACAASURB\nVO83sHlVVjdV4d1jY3JBOw5Fw9YvoTksvmemUEdISlSs1Mjdr5IoVlDzdFr6c4lVQbBWIpuWSRZZ\nPFr7EW4MQT3BT099CVtkcPyPzkqRSNrRNQmbpKMkLKgswHF7zuScP1q2KFNuvpbqC/fi32LDv9Ua\nN3/z/QfJqRtcCFKPmKtOmbsf+RPD4be/+TLChhw6PxiGka8yNq+HwLgg4fEWV9u/WyYxL0Fh7lCe\n/WXXrEDTJKrOP4JzeESt5I/FW8lMP0Kp9dCseGO0km88eMTCsGDZsUTeKR7YlM43qXr9StRck9rb\nriVVZB04+6Hlw1oxzVogKvNEuH3ZOaQ73APIDICRzyzmuOJ9XPVNi8+tLOgjk/+JQo5pXVP8iCTe\n1q1Q6I2jfjCIRRZVwBDw1kvk1EP98mpcb3r5bscMdjRaQkjREZaX6PRfXoOnxRI06pubJXxMmsix\nKf7r+yvpfHvQCid9qlWt3XTT3Rx34w+5+rffQ/VD1mvdRGhhmmSRZRtz/5qFHNxbyghbD/0Trf/3\n1wm4uk1+84dLuPtPXyOw3Wpc/75BcbXgExVWm7mt9+qKH76CfkaIvqwbc5PlCPFZQoT/iSGYlvCp\nu9sgf2cGRy9oaZmUqpCs0FB9lliXo1MiFnKxqmUUWVOkKRygN+FmpLuXHtXL/r4CeheqNJ8hkGjz\n8sOTXkf0q+AwUPN01FwDd7ulV2DabRhjhyNnTJSkiZgRkJMgJ02ktECqPod1HZWsahjNRw0jEQTQ\nIzYE3eIwO/oEPA2yJdbaaYm29p2Swu7IUl3ZRarXhZgFuetvz5elG2+88cYv00gbNmzA6XQyceJE\n6uvrSaVS1NTUsHz5cqZOncqCBQu4/fbbOfvss9E0jdtvv53vf//72O2fnwj8ZfXa/9WD+qpi/6V3\nc+f2f74yV96HCqEJJpmoHU+bQNtwG4Yp8Je982h6bAyhCSaJYeBph/vOepcnH5qB5hLxthkUXN5M\nX0suhken8cz7eSw4htgYHbXfRbLLg+a1RD3W7BzHu64qHJutZcQtiXKidom8DxTCY0TaX6lAjMs0\ndhdSPL+Dvx63nA+fmImJRNYr4Gk30C7qJ9XnxhkUUOImqUUR4jhxHkJZ23Y70OwyvO2jfyIYkog9\nYg5MpP7R2NRXMaT6NH3yGp7KTOJHp7zO+u01XDtrI9fO2viZSedZJ2ygfvdn+4j9I2F+gteyZPpG\n/vpPVnP79ayt//RzHA7D8e+FvPyz44s4zXNO3MU7xzzPXVv+sfZ+Yvs8fnfuEzzXNY1Qix95QhSj\nx+rzrjrnLTbXfXUIgiND1G04+rNoHgU5qRNcWUh6QQb7Pjv2qEFgV5xQwAsbPQTPyKAZIiv7xpLw\n2jhm2h7eODCeaJeX0Dg7piDy3Pf/yInnb+HtJ2ZysMBnTYD6bbg7BMrei9N4ncjOS5dx3/sziI/U\n8T3vwb8/TuEFPQS78pD2OfjWme8xd9pu1mbKUXwqatpB3m6T6AhIFTjwHd9Fye0m9qhCyykOUmen\nadhXihIXqXwjSu9UN9GpKlJEpn+CSMHYIOlON0oKsj6IKxL9FXb8ew0yARlTFPi4qYbUhBTrTvoL\nLTUKkgzT81rY3lBJdkMurm12UkVQdkEzLabC5ubRiFmwdSkYnU7cnfqAWjlAcJKdiWfU8djdp6Db\nJfqm6Tj9aYpfEOh9t5Bs0M22Efn0pLyEOnIom99OULHTsG44/pO6sL/tpuvELKkRGksuep0LRq3n\nle5JtEgBdIdAxm9S8qaEIYmkAwKOfhNnv45vu4ir2+DjhnEkRuh4mgW650PF8wJJh5OUIOPb4KBo\nnY67y2DsSQ28Ov4t7nt/BoYpYYgSr9xyGxXOTp5ZPx85KdD2/HDOOm09HU+W8/hFK1i6ZibeVoOs\nR0Q0wB4x8OyTSBZJ+Fo0Lr3iXZ77cA67G8upmttC8vVidBekmzyUfqjjazAxRZEDraUE6rKk8yTc\nPTq9U0QScSclqzVy6k0cIQ1bzMBQBDSvjGAKaF0ussNVUi7QJJnAXoPc/SqxSpmuzgCG20CTBHri\nXgK+BAFHkhxbCmFagj07K1mfqeCK81YS1L2Iokko5WJh9X72yLnkbbZUb33NGqIJkVEOCt9rQ5Rs\n6C6JeJlMqshEFURocxKU7WRDDlwHbTj6ROSEiKiBf5eAp8MgXSBij1om89leJ6Im4DvIIY61iD0E\n9qiOIYlER5nkHLQm3kpMoqXETrZIJ2VzkMqTKNqq4mk3iYwWKXhSQUpLJMrggdOWseix72LYBCJT\nVQrXm3y0+HFub5lMNO7Evt1NT5Gd50+8lz2qxLuvTafz6yq+bZb4VdOZIkpEIrA/S8uZkByfJVmt\nkfumi1i+hGNChPbXhsMeF2oOFG/UiIwWqHrZIONR8HTq9FfbUHMEsn6T3FV28ndmwRTJ2mRsMQF7\n2EJTyYeARY+unod/YojLZq3iD8e+zwMfz8bermBvVRAiComtuQPChQu/uQEdkf5d+RZ0z4B3znyG\nez8a7G/FcWm22fI5vfxjnlkzbwiNp3/XYJI189KtBCb0seLBBUhZSzjH3SjTu7MAo95NutDA2SOi\nnNKL9J6f7P6hFhIfpKrwbnIQ3p2HoVjiU+l8S3gF4P0iHz1xL1L7obmqaaElUmUG/ZKNrAcwhQGY\n6pEhJwXevOhPPLFpvlU9P6QwaijWPSfqrWrn+6c9jV7Tw/pwBY4WC1Fw5zX38HLPROrfGcXmbWOY\nuWgHrdFc5H2fIfRySKk0EzC55Lz32NI8nPTunCGJLVj0EVvMegi6XUD1C7x6wss0uiROW7iBD9qr\neeHYpbz84Ryu+OEr1D01HlerxIijWrm39jHWJ0bS+sEw4hWw7gd3cMfe2TS6JH7+x7NAgP7JBgWT\ne8i6TJR6O85my+rI2STj6hCR4yIfr5qEOD1KxKvg6hT57o+f5eMdE4Y8X4BUgUC6yOrbbZFBGtfa\nQDHCe7ns6SjDFhWQVPj5Tx7lRcYiJv62pc7/6+FrtgTRdLuIlDUxJYFUdRZJNigtDhNU3WguC3VC\nVibpFhGdBj57hksq1zPB0U5Q95EVZVwelXHDOpg38gAf9Y2mL+ZBcWjYPCr2QBqtz4n/QIZkuZus\nT0FSDZIFEt4WC8qruQVShSa6R4cWJ3pawRDB6HWgRETLN1oGKSOAaC0uCCaExxuYionHnaatLR8M\nAbkohenT+d6EBZ9771+YjO7atYsf/ehHbNiwgZ07d7Jy5Up+/vOfc9ddd/HMM8+gKApLlizBbrdT\nWFjIjTfeyMsvv8wVV1zBxIkT/2bD/7uS0X9FIgrg6oZkMUglKVz7FH55/jO82T4BebfHWumZFiNr\nSqRyRW7vnojngIQjZBIrF+nt9qNERbQcA29xB6+vm45/pYN4hSWHbYoCckogEzBJuQTcB2Ri5SIf\nX34rs4vreEycTP5GgVi5iKfTwNkL2R1eHu+ejavHslVIVmrYe0SUrU7S+QLx0VmSIzXmVjWSeG1Q\n3MC8OIi/MsIfFj3CanE4vz7+Gd7cPfVT3I/Pi8QY9VPS7UeGEhcQZ4cw26xO+IXds7F1KKzfXkOq\n0GDSyC0c+8E3ufqkd1hrliH3DMLD/hmJKHw6Gf1bSWLd4qVfSRL5r0pE4T8/GRX0Q0qS9kGvsyOj\n7WAhtx2czoFL7uHP+6cjqX//wsp7uyYSarH4Xs+ffBdPb58LwOa6Ucw7cSetB4v+1tf/rihaG6fx\nLBc5DTq2cIbgJBenn7CJycftY/u20YRrHJSvjKG7bHzz/HdY3zOc2soOplQ3cqx/D2vCI8iaEp7i\nONlijUebZvNBagzto2xMHNnGiNJeFk3YyDvScAyceHco/Fadgu+gQGyUQVyxExltR1/lJ3RUBlez\nzK41o9i4rQYzbiMtS3ibBJQLenCvcKPmCCirXfRMdxAeC1WvqvTluTH8Go5uCVGXiVaJuBtkdAcM\nW6UT7/dRsC1DskTG1wDRUoHF895ndXgM0VEmxetVvC064VqBn43eRaW9ni3pSt5vG82skY2MntjG\nS197iXs+nsn42iZCWTd7pACqW0DNNyiZ3kUolIuzV6f1eBs5DTrOPpOmUBFKCiLVIGZF6HCgnhkj\nZnpIFUNbdx7mKj/xsSrOp/349oqEJuvk3e+gf6yCqUnkbpFZs3cs63JKEW/Jx9ek42nTEfvs2GIG\nkgaOkAmmgJIwaDlVJOeASWSUVamzRSSK1x5Sb1VEcuoFPB0avZMVgvN1+gUnj10/j75JIuNnNxDe\nG2DXcB9ro6NoT3sp+lAi+l8xrij/kMfEabx461QkVURJGEiqSaxcxh4xEHSwhw2az4GNvZVUvATR\nUSL2QIZQyo1amkVzQrjWZNiZbSS2+wEBR7+B6pWQslB8XgsRUSEzQ0WudyBgiRfFh8lIGfBvC9J3\nuU6izcv0cY20626StVl8WyUKXjyAkZ9Pxisi+VUmlnRyRvFONEHmzb3jOatqB22KF58jQ6kryr5Y\nEbJo0J90Icsm/WkXKcmOPSIgapAusBEeI5LN9xEZaaNoVRepci/JMhNnq4KrSyCRI+IqSKIm7KgB\nE7VIQ5dETEUksDtFvNxG1iOQqUljIJIzup+I4MQ2K0xcULCFrAl/sljC2WNRZgAEBGacXkfbxxWk\nRqh460V6p0rkNOjkNBgkC2RyLmvHUZLkkY1H4W2QiNVkuWH+K3y4dwJFM/ayoqUWQ5fQi7McXX6A\nRb5+Tli2BG+bTn+FDUePRPcMCSklkrfX4oIqIQX71AgFvgT2lQ6iMzRMAZx7bYQmGRgFKuKCGPI2\nD64eHVfQQDDA2acTPEll4YR9dG8vJDpcJlZlojssO5bIJBVnh0TWM5iQMibFky8ey9L0BGw1MSKK\nHUdwECqbybEmqK0bygYS0WiNhq1f5HZjLHKrbQAh21jgIhV38Mrznz9BBWjfXoIwOkWizupjYxNU\nTE1CSVr+pIImMOnE/fS8WPmp7xZ+rYVN85/kdqGGTJlOtiyL3KmQrswOwPObND/Hjd1L6+6SId/N\nNHi497z7uaLmI/bnB+jdm/+p4wMEJgTZvKFmyLZPJol37pzB1g1jmHdUHa0HitCmx3jr5XnYemSy\nXisRa99TBO0Oy6vXb34q+U3UphESMtsOVOHsET91jsORHAb5J3TgGxemJ+nle+M3cbK3g6tuvgRn\nt8CL/mo2f/0hFt988cB35i3YzfVvnc/ujlJcnSKaQ8A/to2dT9XStN0SwkmWCGhO0PZ5cR3BGb73\n+jtorXaTHK0TyhdJuBX2nbicx5MjYa+L9WvGk/UKxCvNAY5135wsvn0i9rCViIJ1fPsJQX5SvZLw\nSIkFtXXs3T6cOd/cyvpIFatnPM+dO/6z7V18TQamLJDxi8hZiFZaCxBTK1vx2DIERQeaDRIlFp/U\nt1chU6YxvbCFoz111KvFxHUHs3IameJroSWTR3Myj2jGgd2exW7TKPbF0EyJTJcbd6dB7xQFBOuc\nhk1AcwtoLoF4heXbLWgizl4BAQHTFLCHLUSInBKRk4KlIN9pKeeqfoFswMDpT1NT0INuE0hkbNgc\nOjneFFeNPu5z7/0LYboTJkzg0Ucf5b333mPlypU8+uijFBUVsXz5cp544gluvfVWFMVKDk4++WSe\nffZZnnnmGc4888yv7gn9PxqGLGDkZXGt8dBzSobf3XAp5g4f6RKddL5Aqs1LUXGYgs2wdO7jxMtE\nXN/qYMGiLXibIKfRQPGpvN5ba3mA5ggE9pj46w3qv343zqBBoM7kz7OeBixvrsei4/nZ/nMgI3LG\n/6wiUaURLxXpWmANQNkSld4pAv56AyEr0DdfJe+qZlzdJoImYuuwsfcv4wfsYIITBbpbAmQeKuay\n578Njxbwm19+A3XeZ1tOfFa491sd1ydV9Ia01bpcfvkty79QSgMzrR5KzAoc7TRw7XHw4GMnU3/M\nclITUujTYlx9yes8fPXtn3vM/GM7SNb843zRovmf7Sl5OL4K3881V/7/LTL0VcfhgVr6G4/fFhGo\neeAalLiAND76+Tv+L2KszTXk8+qVtV/JcT8rcusgWSCDIGBKAi8cmMS9b5xI9ZV1pAtNDi7y4quP\n8+Zl8xn2ioxHyZBni/M/axahSDqXTFrPjplPomkSwx6XcSkqelKmIRQgrDr586qTGfm4YQ1OF/Uj\nOjVqv7OTdJcb3WkiZi2bgaI3bUhpUBKW9HzOQQM5IpEOCHTuKyTtF1H9JqFqgcBeHSUq0jHfgV6c\nAVVEiVry9aZoSdvn1pkYijXIAWBYZvXFpSHy5RjquBRSSiBUbedrd7zD8Mfg2Esvp1XLoSkW4Kyq\nnXQnfbQkcpm2+XxSpTorN9XyzpbxuHNTlL9jYAom7VtKCOzJoPplyg8p7gqaQcHWDL5GlWHvqOTu\nti5BXuFHiVvcJU+TSLJYYPhTAv1jRaKVEs4WhdYTbCgJGDGjlfRpUTJ5JpdVrqPteBuhMXYc13dy\n/o9WknVbHpbByQK9Mw2CExUqVlgvrDoqhZAVOOrrmwlemaRvgkJoioajT6f1RIkrL16B4lYJ7smn\n9SKN2fPqeGn0W0RHGVQ4+9nUVElFcT81P9xFkS/GcU6d4o+sCWDiDOsdD05S8DVrg6O/COgCZlxG\nd4oYbp3u7UXY+wV8eQnk/BTegjjxPwwjNhz89ZaaS6pIQL62i8n+NowmN66XfahegWSB1dHbQwb2\nsE7frALKbpcRAipzcw9SVhjG4VRpOF9i//XVpAsEitabuB0q5c4Qy+rnEsx4mDGimcv92xiX240g\nmGwKV5DM2rCJGmU51vigZSUETcB1dTv9i+P0TBdBMOmbrqPNjdJ6dqkFGU6IuDpNPF26JbaRUbBF\nBGxhkfy1MqYEJR8naD7Vha/RIJNrotg03KUxInvzsPeJmO8EyF8vocQtLlaqyBzgvYE1vu0LFxGY\n30XtyDb6Jxtk8zQaz7Yaur9WIM+RYGKgAzEtEq7VaDz9fr7h68EZNHioYx7iHg9zRxykJC9CxpBZ\n0j6LkrUqkeEKT5y6lHiZSN4uEzVPp/l0gUSxQrxcINTvof/NUvqrbZimQCbsQHMITJ9Uj9xhR3o+\nD1eXQbxUQcxaC5GNZ4ssm/Mwm56vxdlnIKpQsVJDLkyRmB+nqCSMKTIA1c3kQt2KMeTM7mFYXhhz\nZR73n/IAsbnJgfvXnSbpiYOiDpm5MRrPvI/EMAN5m4dkmcUFjdTobJn+NP4tnw/di1Trloq2G7pj\n3kHF/Iw44B1XO64FW0hk35NDk0HNBeHJKm+NfY2q167E+aEXLSnjWWP1z566wfMKDmvRZ4hq7aH4\nzt2LueCuH/FU1XsD29IFJoiQGG597zBXO11okiwbmiHqDhh95gHkQyjgDc9NtCqoGwYxyUcKEGFY\n37GFhQF7mPRUq33lDju5tUGE4YnPbTPdbtEMwi+W0fdkOQfPvwfdNLig8VhCCy3cs/hKgNrbruWq\nH73MppvuZtQ39/HER3MJ7BTI2yKR8QukKrPcdeu5AMSOsp6nq9PEd9D6HR2Op3/xR6bZbbQl/Kwa\n/zL7jnqEhvPu4ZWEC5usERp/6B4KDfx7rd9K7oVtQyxewEIhuDpNlo9/hNf6JrH3wbG8fucClJjJ\nhnun0PDQmAFO639yxEslUnkiStJE0MDdaSCIJvv7ChAxmVbWyrDiQzh4b5bEMINwr4edoVL+3H4i\nK3pqOZjMp1iOsClexe6+YnbWD6OtM4BuiCQzNhp78+ht9+M/YNB0tow4LUL2lDChyRqRKRmyCyPE\npqYxHAaGfKhYlAVbCJTooK2LoFsiVp4203rvDEiV6eQPC5PjTrG7u5jg7gLEsILa6qa3Nfdv3rtg\n/juUhg7FqFtu+3ed+l8SJhaZv/jYNhoaixBsOkVv2QjVCOTu/XSzx8pFvK1WZ5YoEdFckM43cHaJ\n+JoHO7nDNi1zfmzZYzzxu1s579fXkSwSSFenEXttVmldADEpIaoCrnYBV6/BkhuepS5Vyru3zKN7\nnokpGzx94lJubT+Z1qWjWXvrPcy+bjHBqTB7zl6CaTdx1Y7+yCD/t3+sQKDOHPA//UdCmBXGXO//\n1PZXr7mFb+3/Or3vlrHru0sHILqq35q01s6uZ/8KSyxm3jlbB1R1AW6+/CF+tuwb/9B16Z8YI+sW\nL/1Kks7/WyKb88+1Jvl3x2FD5mxVGqXxb3i5/F8Sao45hIv1RVGwzcDZnUHMaGheGwe/LuLdYyMz\nK86vJr/KTTtPQ8tKaEEHQlYgb7tA6KQUj85exsUvfJsJMxrZ212I15XBY8/QuqMEQzH50fErCGlu\nlq0/CsWboehpJ+FLY1w3diVBzcedHx/PrNp6vHKGzpSPg+9XkS7LIsYl8rZZXEHPZe2Eny1Dtwnk\n7c4gZg2kVJbIr1O4b8mh6VQ7gXFBUqsKKFmTIFTtov+4NKPu0mn4mpvALnCEdaTUYEm78VyJD067\njRs6TmG4s48bCvYAUPXalfz5mCe5Y8kF9I+zsf26pfyqdxxFSoQ/fHQqZZV99K0ppmRNhvgPovQd\nyKNslUEqz0qYvC0q7z2yjEkbLsTjyGCTdJoOFiHFRZS45S3papMo3DS4qqG5JWLDZBLlJv7aIM67\nc2k508S7TwETpp2/k/d3VVP+qkjrKTC+ppX2SA7JHbl4myyom6gK6Lka7v02nN0m7i6LFJXxS9i/\n2cWM/GZWPjIHz8ldSHfnc87NK3ng0VNJVGhICQn7iCi57hQnl+7hp3l7mP7bJeQ0ZgnVKGy/bimz\n/3sxwVPTHDdqH/tusHi6rRdpCCLY6pz45vYQS9kRNuSQc0wXswuaeGHjdPwlUYQ3c9FOCuN/yEui\nUMLbal1bckkY111WX53Kl+k5SkPpkyn90Pp/wyagekUSJaLlMxc3yd3WT8fx+cgJE2+7RvMZIkpI\nRC1TEUQTpdXyco1Uieh2CMztwqVkGZvThVPK0pPxMtLVy/Ltc/D7E/QHvZSX9pNQFcIRN3KzAyUq\ncO5FHzDG0cX62Aj6VTdF9ihx3c6OvlJcSpaG5kLIikg+FWWfi0yejqvDegfcHSaeNis5ztsokckT\nyE6PkVVlClfYyd3QTfexxYTmZ5A67Mhpy+TdlEDQoGjzIP6wcZGAFJUQDAEtVyNnp0KqwMQ2IULB\n3S56J9lIF5hcdNKHuESVHtXLRYF1XLz8+3jaTDinj41Tn2HihgtJ1/kZtiqLbhdpOQXOn7OBlw/U\n4nZmGB0IUtdbhG6IlORE6XqjnGSpgXtEhNReP7aIQNFmFdUnESuTUBImFZfWE/6NVT0MTrBx7mXv\n88KDR5NXpxKpUpAylu1H3sJO/I4U4bSTvrgL26qcgfvLekA5lFjNuWwLax+eytafLeWkutPpebFi\nYL/wFBUpJFvtEMgOqO/+6nsPccMd3yBZYjJp4X4OPFU92Ad6LVVcAM1hQWkFExxjwxhrc5l69i62\ndJaTrfNZC1ftAumAVVn7JPoltSDGpTUbeOaB4yw/RBHis5PoCQXPvqGJ0K+vfoRf3HspYCWYclS0\nbIWOiF9c9TjneyLU3nYt2qwY8vrBZDIxIcN5kzaz4vG5A8dwN1nv1s4fLqXqlavw1H85GFl8hIan\n4fP3TVTouFsGV/UNBTTX0LHDHrbmlqEJJqfN38zp/m1ct2sRymufnmd9MjJ+CxYrJ4fOT5/+xR85\nmM3lZ7+/gtA4k9w91vk23XQ3NR9fguMjL6n5lg+ld40LKWPSN10jb6N1L+lToxiGQCroIm+TROqU\nKKX+KC9WP8tRN/8QgDnf3MLSsnW0aXHO/N11iFnon2IQ2Cpy8/88wNXvfBM58p8N0/W0CtiiJvZD\nvP5ouUJ4rIm9KoYgQDJmx8yKePMTJJpyMFw6+etkVK9AZl6MskCE4Z5+DkQK6OjLQY/akOIiY6a1\nUOvv4LlVsxGzh2gNDbDwmvWMc3UQ1LwkDRt2QaMtk0tTPEAk46Cz24+ZkEEycbQrh5RywVBMNI9F\nFczk6fgOSMQrDObO24Nhiqw9WIV9nxNTwrIEqrAWNA5ecP3n3vuX5oz+M+JImO5XxeM86uidtDR9\n9bC4vydMCTSvSSjkofgjEc9B64fkDILqEXBc2E2H14WnReCM/1nFulQ5niZrMJcTJobNqoSGJmss\nvuQN3o1V4+6Cm4WJPHX3LK74xUts+bCG+zvnkZmeYMLUJsJri5CT1uTT0yTibgdXl2VEDvCqczQ9\nD1fRd0aKq2e+T+tjo7jh1K3c9tuT6FpgcP/KWYQn6shxEW9ZnItKN/Dqmpm4DxUHkwUivmbrWH8P\nZ1TNMS2MOVjQ3PW5DD+5kY9PfZKl6wef/5Ob5pFs9GHOiHD3i0cNbJfSAqYM46tbaK2zYDWH/z0c\n7279x1XP/pWcUXlKGKPrX5sw/afDdA9zRqXwl8SSf0HsveLuf5hf+slwTe4n2+VEHZ7B1v2/u05B\nExAECVs0S3iMC/esENGAiBaxE/U4aG4pZF51PS1thTh7RIrXxeibKfFSxxSOmVzHugMjeHzu/Ty1\n8hj6JRs5ZVH2HP8wF645l52bRpO/ScS3Q6b9BJMH5z3IGe4UvUaGccM6+aBrNLGsg0TWhp6f5cIJ\nG2l7cTixSoHoaIP0bj/xkQaVr8WRMjonPLCandtqSHV66TzBZOrkg3REcjC7HcSG28jdn6VwlUpw\nioesx1LSdPYI6A4ROW0QHm0jsEfg4zFFNEUD6ILEitgwfrJzIboq8dbBiZx3+Ydsbq1iuT6SllSA\n996ZRuXETtq6cyl7EwTD5ONrH+N74zfx7gQvjaEC8neoNJ4j8crvp/D7bz3GKx2TiCSd5HzkQJ+W\n4PQ5W6gsDZI7OsTL33yRW9rmYEsKJL8Vxv+6hJwU6Rfc6IpkTQYKddy1Ia4o/5iPIiPxrRUxTRuT\nZ9bTnfaR7nJz3EUbSd1bTGSkiNIvkbfbwBE6YiYtCXSPkNjZWk6mQMf+o79NlgAAIABJREFUho/+\n8SLty6pwdRukAwql0zspzwkDAuu6hnPrprnUXXUPf2yZTaJC53vjNnPFCZvIy2vlxdbJhA0voeOs\n5G/68BaePW45cZvE+oaR5NUG6dlVxL7GYVx/4svs+20t0eES/lERpNVO7FGDZJFMskjC+5aVUJiS\nQOfR8NopdzB77F7WvDHJeid1iFXKeFt0lKSJpIE9mMbdmaVnlh13p0mySEJOCpyycCudqg815ED1\nWjBP3QkUqOS5kvSrbk7J28nq/lGs6axixE0q7VUBSqv6aGsoQHJriDu8CIaAOD3CnIJGLvAdRJCS\nBGwJ3uutYW+wCMMQ6WzOI7DZ4o3am+2kizTEnCwVL2nEKhUyfoFwjQV9jY/UUf0GNcO76G0NkA6I\n5K1sITy7EFeDhO6C0tVZkkUStohVuVBSBqZo0QJy94C9X0Q8Jow3J0W/w0beNhH/+xJNZ0loFRnG\njG3n3bqxlORF2Bis5Odl+3nhrknYowbvLX6QY3ctYvmER3h9xRwcIQNRN8k/qwunnOWtCa8juENU\nOvp4b9843pj/V579zUmkC0SuOecNdj9SS3JChsUnvcPed0fQM03C0w62hIH2tsVfDI2y8eAPbme2\ns4X7kjPI3WVBjeWUiT0KvZqXDtVLNOTCvX4o0uMwHDc8VaXz42Gos2Mse2w+ib2DCWu4Not/uw05\nZY3V9f913wBX9M/HrWF9pYOl8x7h3vvO/NSx7/jhUp6KT8bVIWGLCthiAmKDEykLPTsLkRodpCak\ncbQoSFnL0i1WZQyIHR6OXV9fRrW9hRX5laT+D3vvHW9XWab9f1fda/dyej85yUnvlYQEklBEQIqg\nFJWxgAjMoGMZy290FJ13RgcHRYcgoIKgIgJSNVJCSSW9n+SknN7P7n3V948FCRFwZhTeUX5z/5NP\ndnnWfvZe53me676v+7oOhTACICYVbElAj9rIBZfmOuF9x3k53k7hmPvdiLqI0ayjjp66Hr+8YzZr\nNrtzEAc8lKqdEwlPdVTm0XOeZMrcnazdvhAj6iBOyXPgih8DsNapZcgOoCZPJu9z03QcW6TU6ApM\nuQODXmWd0tJUmFNEGXnVwscPonVq72pg5Sjm8cApyrevCT95RwUykxxuqe/ghXIN5pQy+oEg2XPy\n5KpEfAMi2Qmw77Nr+OSq7dxX0Qw7/YiGKyaUmmNRjgh4xwQefvl0nt8w3x137FWq7UKLH41PRzgQ\nRNLBe0hB61JOiA35Bl/n3XrEg17UkFrylASVsiySM1V+MjQXZWqOSYv7GC6GuK1nHr+66+yTFGRL\npLi0wO+GZxLcqqH/53j6rzpqt+hIZQfvSAllOENuYgBHEjErLLyaztzGAS5r30le0AhW5YmnAqjz\nM7znzF34vQZFS2W0GCRXVhFEMEoK9S8KdDd4OTDUQGynTN2mEpU7c8TnehmMatQGskz0jOIRTZ4b\nn8a2vmZGxsNk4wHUYQXL5+Dtd//Vm3W0IRnRELBe9Z0VLIHiBIOpM/pZVXGYCjXP1q6JRA+IyEXI\nT7AQVJtgoMQNU1a/5dz//NLW2xRvly3L+hddWlz13JG3Zbw/J0QDbK+NVptneLXJrd+6A8P3KmWq\nQWB+ZR9NE12VoCf/dRWy36U/+YdsPBmH4JnuHJbMPMb3nryQox9aQzkkcOTsewC455uXAC51zDIk\nlseOUq60KU51V6OKT/YwtgDO+oeNDK+02Hzrnexf7VZVjaKCJpgkpgucd+gC97pdsqtk2SNjhm3a\nA6N8betFnL18D8lL8lR8sgdbgUyryPBZ/315s9bzuk7J4Nlb3LJ9VzzGzNtvZP/Nd+AsSp/yHp/n\nVINqACUrsPHReaeo6+6/+Y43Vdt9O+LNlHT/lFh37XdOGevKy16k41N3sG/JL9709c1n9v6Xx367\nPuP/xlvHn2PRAvC9q39yyv8Lu11fZrX7rUXe3oo+LJVBybpVUaXgMN4doyqWAcVmW0cbONCbjeFr\nysLCNMcvD/LI8jv514WP8vy2mUiqxUd3fIyqRSPMbBmk+haFVR+/jkOr7sGTFBhf4KBmLDyjMp85\neCUACSvAkB5mTuUgxj21rKo9QrY3xEufW0pitsNvP/EdAs0ZihN0l1obUOn8Gz9rP72SaV/YT6HO\nIVKdpVrLcf6EgzgSND2bwVZFhlaEKFW4a0P1dpe260m6a0zkiI4nYXDg5Un4FIOMofHCthl4PQZ/\nd9o6miaM8dPfupvczoW/YuPsR9GrLMqmjF2UKd7s0ppWX/MJ2h69nt1PTKfhJfdUHeiWWXfvPdy0\n+yqaIiliwTypVSXqfqSy40sLeOGp+Qx+bSKrr/kENdvKqCkTRbKxNInUZAGrtkxmiknrkwaxhhST\nK8b4Vsf5rG45QuRrvYimw/4vzab4bDWOBC8PuK7voeMiwe6T/pwApl+kHBKxu/2IqoVnUME/bOJJ\nCgifHaX3fBFpZpoza46we3cb3ZuaqPAX+OJKV4mzarfB35yxnonPf4ytZYOSreC9O0L1DgOhT6My\nkuMDVduplPx8pfIwyohCYns1ogGW3+I0bxcAxSllLEegFJOIfzJPrkE4Qe0ESE6WCXRJXPrLz/KZ\nrVeeeNyRBKKHDEKdGQI9ebTRMjgOfeeGEWyB/tUiRszEkeHM0GE8iokZcv06c7NLBBeMk075iBd9\njOYDPDE+jzpvhq/PeAqAqbf2YTkCEx8ysXZGaP3NOJbXoa0iDsAe3cvxcjWvZNqYERki6nOVXoNH\nZeZ+bB/+2jyBPgfBZ2EXZI5doWLNy2J5HcyAja2AHNapakmSKnmp2Si4HohVFeghyDedtHnS4g5K\n3jlBJR+fqTCyQKXrcgEtaZIvqoyNhhDzEmMLbc6+dT2+OrekGP9pCxQlntw7h3jG5YZ2XSqSaVLw\nCAqD4xFuH13tqqO+GmVT5qVuVwzt7mPLWdN5BsqYwiU7P0niqjwb//a7fP/lcwn1Gnj9ZX6w8SwG\nV8hU73Sprp60hR6SGJurUmhw+P7w2dybWkLjkyfvP9F0cEQB76iAmJOQX5fIe63FJj3VRT2RnSpK\nDrwvB4lcPID/wpN2J5F9LngqVrlJpdfHhCev46Vt03mxcKoFFrhJKE0w6Hrf3SceE86NU3dZN2s+\n+4MTj/kDJfTXeU7avjeyfFYduJhqyU/PLteGRi6ClgChusx5S/dQrHXf0zFQSyJ/EnDLBSAvo60c\nP2W8mz7+OMLyJO0XuYq8f1g5vbprFWd5LVZduQ1HtimNnxQhOtzZAKp7PfvVomy0KosnIRA44j5g\neUFdMY6onTxX2Qr49rxOzEgA9Q9Ad35dNf7Tx94w/9fi+elP0GXk2HZoAtlf1VOsElC3BVg07Ti2\nDMEuWPi1G1j4tRsoP+wWcUrnZ8jOKyPlRGqnv7VPdsV2iY7T76ccs99QSb3j/7ud7besofmao2y/\nZQ3ZFpeOrK0Pgg3KqELwWT/FgQAr6o+jSQZX1m8jlTrJlY7Pt5h1oevD69N00lPe+Du/Zhn0bgnt\n8BC+3gzScBIch1JMoNReQpJtdFPGI5lsT7dSreWYHBplVns/liPw6z0L2LJzMjldxSObNIbTNEZS\nqKEy/ke3Mul2k2lfH6N6UwJx/S7sPR1U7TaYEhslY2pkbC9Pjc6mc6gae8AHZQk8Fnab2zbiHXVw\nBEBwVbb1kIO/V8RuKWHGTOobEyyrOI4mGIwbwVd9RwVKlQKCLuDYoKlvPMu/Pv7HabpGxEJJvb2l\n98D0BLmDsbd1zD8pWvPgCFQ86SVXL7L48r2kDY3eH7czvrpMzVo30zy62KUVmi0l5B4NbVzAOD1D\n+NEA43MFzKCFt6rA6pYjHM9VkLzbpcN4PjpM+d5acvUiX7j2If55z/l4XglQd0EviZ83Mb7Ionb9\nyXzD+Bx3IWteMEDvzgbkCTmCTwUYX13mX5c+wtd2X8RX5/yWH37jA8RnC3Res4YJT1+HlJYI9Lge\nbIBbmq88SXP6UyN45gjZl9wFsBxzM40d17uUXEeACe/ponvtSdNtPeKgpgQK9RZO0HxbLFveKp69\n8TusvucfKE8qcfxsF0S8XTRdY2qBoyvvdccTgXeQMftW9OL/v9B03844dO0aPjc0n6efXvK2j/1W\n13srW5hIp4Oas1FTJkZAZnSBm0gK9AjklhcQJZuaSJbz6g7yRP8sjMeryLaC1VTi9InH2D7QzPsm\n7ufbNbv5XrKVX/UuIPxVL/1nh2h8zgXAxVof2t8P8vtpT3Fd3+l4JR3TkXj2yFSunbWRH+1aQWNN\nkkTeh70rjB5ylfeUlETtKxYDZ4j4hkVyEw1En4nW4WXbjd9jxhN/ixgy8O/0UrW7zOAKD9o4FM/M\nUs55aHxKQsmcPJTFZ3ko1DjUbLNxrhtj5EA11JW4Z8nPeCk3lXs3LSe6R+ITNz/FHR1ncGHbAdb9\nYCnJs0ocXfVTJr34Uaof19Dip26GXVcJqMMKU5Z3EZDLHIpXk0oEEBUbK6tw4/Ln+emhpcyv78cv\nl3m5ZxLW0QCO5B7ick1un4x3VMCTcsg1Crxy478TEDUWfP0Ggv0m47MUCo0WweMStuRS+pp/JVKq\nkNDiFkPLZeo2mPS8H0IHFKKHXaqtVHRIzjcJVOWZUjnKoacmo6YdSlUCOFBsNJk2pZ/PND3Lp37/\ncY5f+iPO6XgfmXsbXwXyJ0sl+ZvSxI/F8NTn+eH8X/C3O69GeyGIEYLC9BKi5GDlZKo2y4img1xy\nkPPu+tB3rkTVlHG0H0QpRyVGljmsWniA66pf4uqXP4n/oIeKfe73mpqkUKqEttsOIHi9OLoOlkV5\nwSR6P2Eh9HqJHoDxc0vYJZkZ7f3c3PgcD4wtZX3HZKSkayfjALbt7lvfnv0IG7OTMRyJgxfVY1eE\nKDYG8G3sxJ7QyMjSMB+5cS0e0WCgHOWyyHau2nIdkmxTSmlEqrOkhoMEqvNoT4ZJzHSwIya+oyqe\npEN+ZR497QFbwF+dRxRtzmk6zBPPLaF+g0WmWSZyVCc5RSU90wAHJjziHpnSExTCXe7ck5NVpJJD\nqNeg7yzlhBH8pNn9jBd8pI7G0EZFanboxL7azaqKw/z0tgvJrC6wafkdVEp+pt5zA74hiBz7g/v0\nMoHa5gQTw3E+WfsiH33qeoSozozmIfZ1NKMNyZheh6Z1BiMLVFcERYRilUhmlo5QkGh4AbSbBhnO\nBPnCtGe4JjTO6Z++Hk/65H2SaVHINXECQBZW5PCtd5Vp01Mswofd/b4Uc4EdQLEKvHMTmBtiJ/y/\nM0uKMOYhdNz9DSde0cnDE59j7r/ciOmH0uwCwU2nVlwBsi0OUnP+xDULNQ6+kVPX8WIVJ1T+y1EQ\n5qYRtoZRXm2jzDc4XHPBC/xj5SGmb/ownhfdimex2u1ra13YT6LgJVfQULcFOP9Dm1AEi8cfWHHK\ndcoVDmZDGf/eUxlLjuQyAHJtJo+ffzuX/erv0V6tFF7+kRf59S9WIlguPRfgY70r2PjCTDzx181D\nABx3LfDv/6+fYUJnD5PYUnui/zQ/wULOinjG3d598dXbRo+69hz+QYf4EpO2CSM8P/0JtpYN1oys\nZsvaWWhjrsdroEuisKDAR2ZsJWNq7Ig3k3uo7tXvWkCfVSC87iQgTsx1bamOX/4jACa/fA32gA81\nKSKV3IpvxeZTadAA5960kSe6ZnHfvJ+ywKNy2u7LGU8GeXjZncz1eN60HzQzCWgpcF77QbrzFXS+\nNIFD166h/f53pnf0/edu5ts1u9+x8f8r0fbFzUiRMNgOjq6TvmQuowtepdXOiKMpJlGtyKTgGAGp\nTMrw8cpIC4LgUBvIUudNEy/7SZZ9XFC7n5ic458fv4y2L54qFlu+YBEzv76XiFIgKJWIynkeHZpH\nxFOkOx1DlSz6h6M4pojosQgESpiWiOMISJJNS9RN8OZ0DyFPCZ+sEy/5KRoKA70VRHfKSDqkJ4Ew\nMU9VOIcDbD7322859//xyujbDUSBvwwgCjRVpjDLMmPzITBoc/D2mQysmYSkO0xvHgJcUSJfv0jz\naf1493mpWzREOeqcyCJU7naoXS9y0/SXeHrbHH7Z/ggf+Moz7nvvrWXzrXfiH7L5pxffz4WT9lOs\ndjjSV4PpFU4A0bEFEJ8pUDl7FDNsMfRSI5bfRt0QRA8LRKJ5bvv6VdiWyDcecf3eKvY6PJiNEuxQ\nCHe6zfRaS5bq7RBYPM6WS//8ft/XgCi4mcbXxGb233wH2rLxE0BUn5PHXpjBiFgUq218gxJd73Ep\nMN/4+AP4Vri7U2zV0J/9mV6L5Y9+noplw8xuccUJ3s5+UeWQuxF3fOqOdxSIAicB7//Gnx1T77mB\n79btRI/95z9aZOHJbHW59k8zSftj/qRawsLXX8DyiJg+V1TArHDXDEFwEEWH/CO1NKpxvIpBYqEJ\nrQUi6zXWH5zM9Jphvl2zmw93r0QTXP9FgMbnMhRr3ftTuHmUziP1PJH3sWOkkee6p3BeZC/aLh9f\nrDgCWYXB/TX4fxOi2GAiNhZonTSC5XVIfzSLvy1NqdJBzEvYpkj1qgFWfeXT+PpkWu4VqX85Q7pN\npXqHSXq6haJYCFmZXO2pe8IVH3seAbjilrWcW3eIcKeAnfDwL93n86XKPayYe4jUNIc77n8fhRE/\nT/16GcVqgaOrfsrEdR/DyitkW0RGFp168GtpGkfUBQ701rF5TzvOMxX493vw7fDSOnGEX33vXOoi\nGbb2NnPkK9MpD/v4p/c/hC07COfHsVtKxBaMkp5lEJ/tED1jmJXf+HuW7rmMz37uIUTdRg871GwS\nyE6yXH/RV4VXbEkgXyuj179aoT3iAlEj4P6W2VYQcxLXtL/CNbWbuPJD68hMcrPT37zmAZSURHc8\nxqd/dh3fPPthzth3Kc3+JKLloGZOvT8TR2IsXHCE97R18HJuKmF/kVyLQ+Ueg+ZfSjQ+IOPrVhhb\napKcJmB9YpzyzQnG5in4J6TJr6um5/0wen4Zb12OffE67hhZRdMj0gkgOrxUJjBoYfpezW1rHgSv\nFyEWxTOcQ+nwYUswPs9hUVsPgi5yeGsrD4wtJSDr1NcnCE5KkesKc/3kDSiSxermTu4eOJPPVG7m\nuooNHP5ME2I8g2BBaXE7/e8Jc/rHdrAhMZHjxSrOCB52L+3VMboDiJqJsDaKNqCQ7wuSPKuE3FBg\nUssI/tPHSC0tE/KXqGpIsWDGcSoDeYJamSeeW0KgTyCwrYfK/UUKNQqZhSVQbDzRk+aXRkDA9LqL\na7RTR806GH6Jf3v//fgGRap2wGguQEs4yaLFnehhh64PwrLocW598b0kpzuYhsQXB97DV0Zmc+ja\nNZx//QZGFp4ULBg6TcVbUeSK5h2kdC8/H1/Kkxd9j5b7JY4+04a/W0bNwPKV+wEoTi0xcp5O4sKi\nC5wkBzkn0n++RdFQ+NL03/Odg+/hw90rccSTAClX5/Y7l6st9CDkGh1C/pNzfQ2I2hJ868MPkJnk\n3mPGxCKZrJf7b7yN9GQLzknwvun7TgBRgN1b2vnc0Hx2f/kORIM3BaKmz03sWNbJ970GRA0/TLnK\nrZCJMzJk2mz0oOtnWhwMwJK0y7q4eIAvXvIbHji0iLZHrj8BRG3ZBdiCDT+f/CClTZWo21zAe1Xk\nFR5/YAXWaacyUDxxgfaGN1YFX6PD1reN86EffvYEEAV4+H4XiFqvLjOz/v1GXnplxqlAFE54nL4e\niFaf14+z7FRW2B9G5rmTQBTAER08CYHcZAPrdZjZ3+f2QQN0XXA36QcbmPTzG/jQ5us4lKzG3+8g\nlR1iu93e7sg6L3HDz+MvLnbHfXX5FRxwBjUqr+5l+y1rOO36ncR2iyeA6F3pemqjWddLdNjBkaFi\ns8L2W9bw5Nf+jfgik7X/dCsVV/XRW4whvxDm+n/+NPO/eQO5l6oR+jS+1X8BbY9e/4a5lmMCq1bv\nxigqPHVgFrJgoc5OvaNA8dFnltJ+/w3/o9VWeUILgqaBJGGXSpRDAlIJzIhFUyiNZYscGqxhd7yR\nMT1AxvTQFEqSyvjI6h62DTfTn41Q58vgE8uMmUEmLuql887FiEG3zznxsaUUbkyRMT0EpRL7sg38\ndnQWx0cr6E7HyBY9DMXDiIpNtCqLP1CiUPCwrLGbqdUjTIglCCklGnwpZscGqNGyjBUDHOuvIv1c\nLXXrJAJDrkirYIPjQHtkjOU1x//o3P/3mPoOxmAyjJBSEGx3MfryN35GeqL7lc+N9OMIsOCjewkM\n2kiCTbDP5vHpv3RpNQ9GKV2RAqBQI9KRr6dil8TcJz7NdG2AphtdusjSz38KwXEpE48dnEPzwgG0\nI56TSpRA1Q6YenoX3F/FopnHAJg6vc/teyg6JIdDjCx1mNvUj39Q4JIvPw/AlcEk2UkmxWqBQA+E\nHnFvZvkXMc68+wt/dO56+E8ruM+8/UYm33cDOxY8dOIxdY8fcXsIf7dM9bSxE68D+KeffJjCeteG\nJvFC3RsH/BNj3oKjjKUD7N3XCry9NNg1f3Mn0+688R0XRLJe6wt9dxdB/2h45yTf1vGm3nMDx9//\no/+UspvaftIayTP89vStvj6UrAtwjYDEyBIoVdnIPhPznBSeXX7+dsaLpFcW+fZ9H6TncC2SzyS0\nzkfh7ByKz+DoQ5Npe/h6Nh6aRL8e40vtaxn5qsnQihDe4QJHPq3w0eZNfP6M37FMG+OKCTvxenQ+\ns/EqclN0Zt5+I988+2FEXWB0ucmas++j7bsWJVMmul8g2x8iO+6ncd4gakpEkBxKpky+XiDcZaOm\nypRqvFTuztJ3uUXwqIS6NoxSWyDbdvKGNUIyDzx0FtXbbWqUFEv9R0hNcfDV54j/solLOy8mphY4\n/oE7MYIOUkRn900/ILxymLZffwr1qBfJZ/LETd9h4nnHGZvrHgCzzSovznyMjuvvQJJt5IhO5aV9\nnHvVFn7z6e+QKXkIXjGIYUlUPeIl1a6CCN/YdQEVU+JkDlZgpRVGRsMoAR0EGNteQ6hLx3i0mh/f\ndAlGUHYr9NeMMX/2MUITU8gek2yTjG/UBAHqf+dWEV4DdcmpEldd9yyhGXGanrW487lz+PSzH+bh\ne1ZTM3MU0+/whWeuQjCg+sdelPlJ1nSdSSLvY0NPG5tvvZNS7CSYL9+cgMoy04LD/P7JxfQWY2TX\nV9PwoknvFTaP3307D/zoNsozi7Q8BoFeGDleSW5dDYIN2cGgS2kUHBZN6OGrM3/LrIohur89FeF1\n/qy1m03kgn2iDcNJunuXk0hy/IMV+IYc1IyAtzXLbU1P4GgWog7r90xlw8AEBnsqSA0H8YyLfP+x\nC7modR9bR1uIegr8KjOd3+Zm8H8u+iWppY0oWQNt6xEWXbKP47kKqrQcXsngi/vfz+Uv3kBbNAGi\ng9ev03b1EZiVxd+UdS16Ehq2I1AyZGTFwnYg5i2QLPtIFLyM7qlByQpEjug40RBi0UTJ2yh9HihJ\nlMe92LI7x2CfjVw8ea+m2kVKERFFMJFLbmXS2BRjd1cTW3e1M3FxL75jKvffeR5VWyWWLD6MNOTh\nYLKGXz9zOgVb51vV+6jZ7iYo9KBEeWKJmbVD/KJ7ER19tey4ay7/PnwOfR81KU0uYc7PcsN1j9Pz\ntSmYPhGl14NTlLFGvG7fXVrBVh0aGhMsqepmxAgjbA6zce9ktOTJJFlgyCA9Cbz9MmoWpLYcuW1v\ntDK5+tpnuavvDKgoUw7jVkC3eLl6xyeYO/c4PBvj8T2uZkNhhYucgj0Cv3v0NAD2fu6N+6jlcemx\nysTsG4Bq+5WH+dUN3z2hlmt1BLEDFvareF0wBILeEnq9zgszHmfIiKCP+k6AZ+BED6M2LcXpP/88\n8hJ3T7C8MNfjITfFwD4Y5A9j8HfNb3jsNdCXea4WcCuof3jWOXiTO8fK9wyc8F39wwidfZLWLK9I\nMLq2EWFT+M1f/CaRm2Ti75HBhkCncooib9UH+tDDAhm3I4Dvf+U/8A0LhNd5MR6pJvDBIbbfsgZb\ncS3+AJ7cPYdIh0DuoTpWfvIVvv+V/4DFaQK9ImMPNtN+/w18uGIT229ZQ6+ZY+HXbuCu715M4de1\nGH6BXLPrMwku7fd9t3yBim0y533j88R/2cQDrS+Sa7GJLzFZ/ontxFYPIU/MsaNjArE9b4Qhte/p\n49LYTuRxhY/MfYWRQhD1TQSY3gng+D9ZGcUwcaIhrHQGqaqKfCMYIQcEh/Gin5GeGLMbBzBskbFS\ngEOJGmaFB1nY3EvfaIyQVsav6kwPDHGoWIcmmHykYQstbaN0fnMGcm0N6clQMtwzieWIiIJNQCkT\nCRZJpP1YloiZcS2YkvEA+a4wF03Zi0c0qfdmiKgFmnxJIkqRKb5hkroXv6KjHdVQ8m57D4CcB1sF\nSXLvi2O5N7dGei3+YgSM3o0xbWo/w6mwSwEahA0vzkFLOhQrRfqebWJklUXhwVoabjjK2F0TsFSB\nnz9zGplpFqWZOuoLIQTL7cXJtMCw5AevzdNH5zGYipBrs9l34138+JmFSAb4j8oYu4LY56bIqiqB\nPoHkJXm0hRlua3+Ie5yFxHUfalOB5Mt1ODNy6LoHbUIOscuL3FAiORqi+4kJ/M0/Psnf/eOH+Pmn\nvs+zDy9hbKVJ4LiI4RXIXJhHHPG8pc8VcEKk6E8JqSycImb0+tB73Izm/pvveMvXvB1RqLUxdkX5\n3mX3cvGPP3lCwMjyOojmn0cBfXrPwrfpU/7xOOu9u+jurOPRj9/Kr3YtO+W5d7uA0Zmr91HZmuTY\nQA3Sf1OBL7JwjOKI/y0PEt/tm89npu7g9n2L/ujfwJ8al1+0gT1DTUhl4S2Fk4J9NpJuY/plxJJI\n1V6bguYh0JTF+7IXc75ObzKGgYSaFjEdkeDp4/h+GaH26TLn3bKRac2DaEGDZzqnMSK5vaAjNQra\nCzIVr9g8OzqPjb2TuSs1n6ZYEq9qUnqoluotFrkGmQ27ZqKNC5QBbZUCAAAgAElEQVTqLZ4+Oo/M\nKpvTGrpJThDIGipLpxzn8HA1VLsKpilJpe2hPJ6Ee9iW8ybHPhik7UGDkSUS/gEBtVtFzot4x90N\nTSrbzLnhAIdytWx+YTbPh1q5Y8X9PN4/FzvrYdrMXjoz1Xx905lI9UXUvX7+Y99iskk/x668E++k\nPs5p6OCe0dMpWQrjUZlMyIupCTzyw9l8MzKXJa3dGKJI34E6jlsRHnpsNWmvTP5IhMgDKuMfLbLk\nzMMcT1bQWhdnOB7BX5dDOOpnzoLjjOUDEPdgexz8QwJq1kE0HSTdJjBgESdMrxmkY+XPuGdkOuF1\n7kFgdIlA9NBJmmTfh0zqfw9Hn20lPdshPcuh4mWVyt02o+eYaE+FsTSB+pcs5n9iP9mFFmOpIKYj\nYu4LM21mH//n2GIqFo9jb3LXyVwihJBTeHjlb7n7+UWMbasmethkfI7Czef/jn/rP4Of/fP5RLe7\n3qDDKx18/TKFRsu1+pqQwwmYXDB9P39TvZGvfvdjjDdJqJvfKLiWvymNfcxHeKebMCzOb0Xpj1Nq\nq0aPCAT6HcyExn07T+eD52ziiBwhHC2Q7o1wwaI99JbC2GmVtseybJ5ex9L6bkxHIiCX6SzUMtk7\nwrqGJuR9PpT+ODsmTyMny3R2NLE/U8OjS37Ek+lZRL1F7Kei5NHoz0YwDRk96yHalmRy4wg9iRhe\n1USQHCr8RbqGq6gK5RjsqSR6QMQ/5OAfLGKGNJS+cTLTI+SbHERdwNFsYgccCtUyku4g6e4i0XuO\nQsN6A0/W5omBhZROy+E7oKAlHUo+mWnze+jc3oInJaBHXZprpxhDacyTSfvw1BQZUFXGHIOt62ci\n6Q597xWpfV6mNNPAua+abJ1IqVKgti7J2KZ6tLYsNT/ycmBtO8l2lWyziDGphDSuYlcamIqI1pyl\nsSXOxfV72Z1u4umjM6nYIlK526Z/lUKo213AMk0K1XsM8rUSkg7NC4fI74+cUKlNzTbQRiT275hI\n/lAYs1XHe0TFkxTINTlcu+wl1g9OomnBEHlHQerSMIsqjuQKE5l++O7APD4zdQe39i/Akzq5hxZr\nHdSsgJXyIJdc79ApK7tYdNphtt8/l0c3LcMRoBxzKajaqEyptYyUkdFrTL4+/wkubd3F57vP5qPV\nGzik1TBQDJ9yjXIYlA4vegikQy7ttNBqMhSx6HmhFaks8KmPP8n2XVPIt1io6Tev04gmFOtsZp51\nhPjhCuSi8IazzprNi1izeRGjmoeWSaMnxJFeH+XjAfSogz6thPTKG5//z0JNiJh+KFfZKLPT0Hfy\n7/FTK3/P+gMzeP/FG/nuwAJ+3LEC/yGZr33xPn6Tm43pdfjJXctZ8+Xbeah7Md7lCS6cso9dwUoq\nF41z5L6pPNaxBPmIhumDcgWEuuC36xeTm5PgPH+eyKIj7KirxjwYwHfxCHNndPPbSx7hrhdO7lXF\nKoErrl3H/Res5WeZStb1T8VXVeB4qpJEVwzlmEa489Tvefsta6hdfJAbql/h2n1X84nFL/Po7WdR\n7gqSPaMImVMpwO8239HQiOquO8k8glcj3x5FTQvYskja8LBi9mGCio5PMfArOhfX7cFBwCcbpPAS\n0/L0pyNMjw4zwzdAVMozQR2jIZDGqnDYUz8Fs0ZH7AjQHa9kT6GOvKOSNz3U+jOMZEJYpoRTknDy\nMk2t41w15xWWBzpp945Q60mxONCFKILtiPSUKtjQNYnxjiq8YwJawsH0ixg+0fWlDTgYiITDRWxH\n5KqW899y7n8xYPTtUtP9S4rxnihV24UTSrRrv3Mb9+w4HW/c3QACK+Kw109+usmYEABBYNnHdzK0\nvpGSV+A979vOcJtMfjhAMiBjWyJquIwvUsQY96KEdX784OkoBYdbv3UHz6xzv794VKV2o8iCv9/F\nstrjbOmbwDP3nIGalClKCso+H4UWC1+0SNEnIO9x1djGfQpSQsFz/hh3tr5CxyybNd+6jPO++DKH\nN03kV/9wK0+sXYqd1jjjsp30dLx9lcj/bryTQBSgNOw20vvb8hw61HwCjP65QPT/ZXR31mFMKfLw\nc2e+4bl3Oxjt6quhvxRC7f3v9xWXBt8aiALIBZEf7nxngCjAwcPNCM1FhITylgq+kWMGom6hZA0G\nLofobjD8Epev3MJLcguVlRl8msF4KoBdbTC1fZCwp0RXvZd8IMCRDa2MPViLb2WKgcEKlrcepb8Y\nZTQXJC1FGLnEJrxHIjvJQUzLTGwZ5vnDU/n8VY+z96kpaEmo2JcnMdODpQh8aPkmdvc0U1+ZomNH\nK7bm0D8ew3vAi3ZEpeKgQXoG5Kt9RI6UybX4sbwKWCL+EYPkDJn8RIsLLt5KR18Twd6TIG2Ppw7R\nEKjeofPQ9WvQRJ37OpdhBFz/0f6xGEJaobYpScKjsOK0DrK/q+HB++bwNDO4fd7zPJSYytF4JcWB\nAFW7XFplplXl45c8z5NPnwaVBg1NcQqGgtypET4kkJlqkZopYBYV8Ns0VyZQJJvpVcP0pqP85Ly7\n+WnXMkoDQWwFvC1ZkmENY1UOZ9DHwHsdbFSKs4ooAx7u3LCYyikJ2OxHD0mYmoh/2L2Jei4SaH7Y\nPZhZmsgt1/ySff86n/SHchQsH55BmewEsD1geSR6jtWSGgphl2UMFaonx+kaqaKU8FI4EMW4MMNo\nowffoIBoCKzZvIjMVJNLLtnMZqeV+Wcf4pV/XEx5QxhJd+hfLZNrFHFUuPS8LRwtx/i7Vc/QWajh\n2smbeeiRlQzW+RnoqcbXlsU4GkQunvwjKVTL+F9UGTvNoer5ONRVI+cMhEwOKRRlbImDoEvkZpSx\n63W+PulJRuQws6ODOGGb0WIQj2oh15Ton+tFOOanc6yGnuEqRlUfX25+mocTi5Alh94pKqmLwhiG\njJlXEWwBNVzmyfhscjkvQwMx1KUplF0+ylGQwgbVtWli3iLxop+Yv8DQWJjaaJbhVIhYKM/g9npE\nXSQw4KAlTNTxAvJ4hsL0WvL1MrYKZtgG2SF6AFLtMp4MyCX39/MPAY6bOE6dV0QUHbJ1UKgWsX02\n48MRqCwjxxVKNRb5NovQYRmroGJqMK+tj+f2T+fFkclkqmWk96Yo6CpiTiaVDJBrASdk4qsqMLC1\ngZqdFoEtCsVKmbF5MvmJBq0LBomPhHCiBo4hsnjeUTK6xuieGnaU6xkcjCEkVLAlHEmkcv/J3tSx\n+RKJZRZKXKbQYJM6FkFw3NaZdLtNpOMkuyPX5BDYr5Kar2OoIlpCYOehSeRtleShGC2TR/jwqpdY\nX2pBiruqt47sehR+Nz2Lsxfsp2bWGEN7a8i2OAT6BPQgILnqsXevvJd71q9m8Dm3Mml5IDvJwhEF\ntDGR8tQiLfVxzl2yh8XNrujW3X0ryOgaX2vo5OuPnUOgX8SWXepv/vQ83iMq+qo0/3HWffymbwGi\nKWBWGzw153f8W3IO6rhEw4xR9iqVeDv++J6h5ATihyuwFSjMLEFJetPkuzomu0D0LY4MUklAGX5j\nf+V/NSTdHUPoPjUxtG39dMqVsN+oxnqikv0fv5vdk2XuPXYanl0+CjU2yqDK08F2hLBJNuPlQGcL\n4e0qgZlp5p5+lH9f+XN+OrAUqShQrrEJLhunPNFgedUxvtm3jAefP4OVMzs4EI2Q74hyPBPjgZ+7\nWgqBDw6x6YoHuGnJNkZtg893ncWvdy8mcFRB2+9BOerBOyqg5CHdfrL/GOCuFxbxxNhcSvUOZRQm\nB0ZQZ+c51lVHcL9MucJ93ZGPrHnXAVGAqs1pxMO92JkMgiBQnFJFqdJVpRYrdRbX9SAKDpdU7KTJ\nk6RRSbBA6yMq54h6S7T64gS9BscLlXTk61Blm7zjISwVqfLkmNfeRZ8dJa1JVDWlEESHgEcn5Ckx\nWghgOiJ6xkOsIc3stn4+Ur+FVnUcr6gzbEYo2B66jSo2JNvZm2xg30g9liViSQKCIREYsPGNGRSr\nZCyvgNlcQgvoCJLbPvSR1vPecu5/MWD03QZEAVas3sdBvQYjIJKebLNObMLaFCTbJOLJOAxHvGBK\npIo+rKCN4wj0b6/H9IM6McvBoXq8j4YpRwU8vQq+QZGyrWCNa/gGRMI7ZeILLPJTTUIxnZ39EyhH\nBHAEfKNwrNlHHo2hwRiCKaGfloWEB1uF0FEB704PpYBM9LCDaII8prDy8h3sH6rnFz9cypFmP2nJ\ny8F9EzD9Dg/uXEZ6rsmc5UfZ+PJM5NJfDzD770a5yiYwI8GBeB0HL3UFjN4pa5d3MqT4m29273Yw\nquQFtOY89qiGEXCQ9L+ee7Xp9H6yuyv+6Gti+4vYqoRgOQSOKVT8YzdjVTKd2SrCsTz1/gw2AlLA\nIhosUOdP05uNYjkivgk58lk/yeki8X1VWB6BcHUeBHAEgcjkJPHuGPlmB8EQEGrKZPGQzWm81D+F\n0GGR8Y8XWHD1EToStVy24hVKtkIcH4cPNuFETbQuD5YCeqWNnBexVBFDk5jwWJZjn5WJbhcpRSWU\nIvRcLCIVRLRhiT16DXUvO4i6gxGU3epiv0D4mMnwp8rkvQrTtUGubdvMeNiH4bjCQEVJ4tKJezhW\nqqBoqYxUKaRmCTRMHOc7687ivmU/YVZFH42NSXomeUkvsDEHfWxR6vjmub9mcmSc7mIFA4MVlCod\n6s4aJO/I+EMlKiqyjGf9TI2Nsnuwkd4tzXgb8jy8diWlsso/nPskm1KtCIcDND6v498mM7RCJHJA\nQi7DnFVHie+uQliaIrmnimKVhOkTqNxnkK+VUXM2EbfdEUsTGZ0v8pw1iUSlhm7ImH6wJxcwHQnb\na6NHwKgx8Q7IBPpBnZVlbDiMqDioAR0jYmMfDmCFbJS0BA4YQZiyuIcNvRMJb1MpPxVhYKVMcXUB\nY3EJMaLjr89RMhU6DrcgDntYn56AuDHMzh2TMf0wfWovB4UYrZUJrGdPpTXKJYfETAW9yiLaH0Ts\nH0NIZ7EnNODpHCK+OEbFAYeyX4aoyeTqUQ7kGrAQafUlmB0aoKdYQXt4nIV1veRiIuHKPJZmM9YX\nZa/YyPxIH1P8IzRHUiQsP6YCoWiB+vokpiOSSvqprUpTPhYkj4I6O4M3WiIWLCAIDumSRq6oYToi\nxbyHgqlgDvnRe/0YFRbhwyKJmZBcZFG5xaTUEiU51UN2oo0jgagL1E0aRz8WRCqDb9RED0pIulsJ\nFxzovkik/gmF3AwTuywj5SWkqjLeWAn9VeBJ2ABbxBZEAnPiCPuD5NdXoE/RiYYLtLcMUx/IMJAJ\nE+yQyU2wEWvKeAM6hXEfzWstHElgYKVMZqaJ2pTHynrI2gq2KaIMqdiaw3AhROV9fpKzHfzRIna/\njy9f+Bjrj04j1GMhvo5mLZgSlGSKU0tUNKeQdvtPaDhof6Acq2YEbNn1MPcNC+RaLSyfg5IR0Sst\n4mMhNo1ORBr2cNZ7d9G3pw7RcnsR5bjM4M46zDadfOfJ6mVhYQHdI3DmjE5+dtf5CJZIvtmi1GJi\n1BlQlpBqi0ye18/44SrUihJnVR7ivjvPZ122nY/N2ogpypwTPMoPhheijUgnkoUlRabYYGGYMgNq\nlPSOSorTSwT2a9xWnsHls3dyZF8TO8r1+PZpFOYW/0sgUbBBHZGJrRihMBB4g9cpQLHWPqHA/HZG\nvtmt3uoRB7l46viOIlBsMYltUNl+i0tj/ZfuxTiPVSLpYBdURAuytobY40UdVFAyIoUG0IM2B/e0\nstdXx7Dpx9cjU2o2kDaGKRY19v92Kl2+ANG9El17GrHaytgpleg+kdQUePLGf+Pm2qNM33gNP3j+\ndLY+PZv8vgi+ARHRcqulSt71s5UMATkvUK4QUM+O43T6XF/ZODx44dNcWXGMxVqGv9t6LpYgEj1z\nlPyIy/h4NwJRgNi+MkKxhOhRwYHs/BqMkIN/RhJJsWgOpahT03hFg6BUZIKSYtgKoogWbeooFVKe\nGjVDUNGp96Y4kq+h1TtOQCxRKWUZs0JMDo0i+RymREa5oG4/bYE4jiAyXgqwvP44t8z8Dcsqupgf\n6MFEYn+xiSPlWo6XqtgQn0TK9NOfizCcDOL3lhFEMNMepKJI+LhJrlGlUCNQaNeZPWGAmmCWedF+\n4kaAq/8aKqPvxhg8UEv0kEOxFoLdIkN6EP8gJBeYBLpFbEFCSzgUakGrKaA7EoEeAdMn4IxrCDVl\ntKMq6ekWeoOBPD2Hd4eGeFqKXFQgcFTC8Ik4psiBA63ok0uITSV0SSTQLVKerruebEGTcsTBKioE\njkmUZ5bQZRk9IKJXm653aLfrRTq0pY5Mg/t+fdRHePko4nY/pldASwgYXoHsxiocUXjTxffdEnq9\ngdkdoKFtnK9vPYPPTN75VwlGLe3NacXvdjAqGgL2qJsx/msCogBGzMIc8VKuspALb04XU3MySs4k\nPieAI4sc8UWY1DjKyNY6KlpS9GWivL9hN5pqsSDaw+axNkKeMgVD5aq27RzWohAyqZs6jvrbID3j\n1bxv4XYMZCTRYd6Ebg6P1lDdlmDv0l/wrb1LIaOgjMtkVxUp5z305iNU1qfZenASh4dqKdkyVS8r\n2JaMXAK9yqZqs0R2ooNoiqgZARGZmrVl5IKJFtfpvlwC2UEsSFgeUGqL6CUvoi2esHYRTYfBFR6q\nJibYO17PT/cvR6iweX5gMmO5ICGtjM+rE/MWcCSRY0NVRCN56ioyBFQd+5koT9ZO4qKq3czX+rm7\nczlz6wfoHa3E062y1mxnc/9EcpaC5tdxZIcJsQQtkQRH+mtBcdDLCkUUltV30+lEsQ6GEBwwIhab\nO6di2yKRQ643qpKzwXFVWAs1MlWzxqmYmmDolQZuuPR3dD/URqZNcHsOdYdihYyStxk8Qya/vED9\nUyLjrQrYAr7aPGZOxUIES0BOyiiNeayciuGH0PIxpAcryDeCNKYyd0Y3jgxWhcmyicc5Hq+m2GjR\nPH+QoUyIyMNBtIRN33kiAmCYMnrci9CvoW3yIadlbMldN+S061Fp+gUsDcT6Mo4M9r+/0cd7ZImC\n5XUIHpMIrzsCooAQCiCMJxm8sh095mB4Rcr1Jkqvh9b2EYq2iuWIRNUChiNTsFVCSplaNUN7cJRh\nPczESJzukSoSRS8J0c/00BBdxUpa/Am6MhVkcl5qw1lE0aFkKaQzPqygxeSWEar8eWxESqbCyHCE\n8qgPT6RMNuUjGC1QGgmgpkSMiA1eG1uUsBvK1D+hYMQ00hMVENzEpBMzIGiS7wojFUSUgoOStxEs\nV+il5zyZyFGb7GkG0phK0aPgq8uj5zzUNSUQBCj3BkAEb1UBWTMxCiqGx0GXJExNwJBFlk08xpTA\nCM/1TMEyJEqTTOZN7cbv1cmvq8E7JGHLIoNnO9iqgxQwMU0JZVhBSLlegNqIhFFlEd6qoQcFhJl5\nHEdALykkA16ctWHU7MnNO9ugUI4JruBRSSKf9r7Bt9P0nVRrBReI6WEHJS+ghyHY5frHCqaILYGD\ngB20MFSRaYu6GTxYg+UBZ14WpcvDsBE8AXILK3I0VqYoHA3T11VNvtVy/WN1AaFSR5QcPN0eyqpI\nXPfilGSKosRLR6chFiSMOoOVTYeZ4htmfbGeHXunUJ5ewtPvAkq5INB82gCl7TGGvBqkVRxLBBEm\nzRjk3pb13Down8BxmXKFg78hRzmjneLn+ceifDxAYZJx0h9U5IRIkWduCqfX+5bv/VNDTYuuam57\nDmng1EquJ+2yEJQC3HZkMbfnpyE9FSW+yEQPC3hmpnAGva6VUUFANEEyodhqYIz4sIMWI/EwQlFG\nnp2hvW6Mwq4ISs4989miRLEGKs4cRngihpaAxBybvzt3LQ/H5/Ncvp7D+5txZIisHGW8ViJfKWC0\nl9E1gWKtQ+WsMSIzk4yUgtgeB22Dj1KVwIeve4Z0u0Crv5Mv9a/mc6+chadHwzci4Oz2n6iMvluj\ncksKa2gYHAfB74dYhFJMJKdImJaE368TVYvUKGlUwUIVTEatEA4C09QcPqGMI1g0Kgl0R6ZCzWM4\nMhnbhwDszTehiSZ+WafdO0LZVjheqqJkK5wW6+LC0B5MRMJiCR2ZvOOh5CjotkLO1NAkE0l0MB2J\nWKBAXlcpFj1Ypoi/X8LwixgBV/A00prCI1tMC4+wP12PX9H5QNP73nLu/wtG38GwFfCNuFLkhRqB\nWIeDpQgU2kwCxyVSU1wfLjUlkq92CBxSMX0CnqSD5RWwcwqmT8A7KiJlZcpFFSMkYI5r2JaII0gU\nm0zkyjKWIRM4oKK25yiPe5GKEgVbxTssISUUfP0SRpOO0Wji95fQUx7MoA2qzZXLtrA934xvBKLX\n9fLRaZvY+/Jk4gstckkf4aOCa4QcFDBbS1i2jKP8eX2hf+khZSVEQyDbE+LI1a563F8jGH0rWvG7\nHYwa1SZy9u1X6v5/EebIq4cXRzwhvvGHUbU9j2A7+IZ1tLhOfKlIuqOCtseyHJ0SQu8JEm3McHro\nCD/tXsZ4OkAy7+MD7bvpLcXoTlVQKqiEAiWYVaQYs9n1+xl0mlEUv8n27ZPx1efxKCb/vHUF3i4V\nWwGnuQSOwP9l782jJL3KM8/fvfdbY82MyK0yK6tUm0olIQkJJEDCLAOiaQw2Nt7t7mkvDDbgdtsz\nbncPp2e6p7t92jZjTBtkGNlu22M8YLANNmALsSO0IEpSaS+Val+yco2M9VvvvfPHjUpJaHH7jI2Q\nxu85cTIiMvLLG1/Ed+993vd5n2d6ygGAa2ZPk4SKQRZSfSBm84ChmDTksyVerWA4qQhXFSaC0TbD\n9D0FZcVj49IKS68OaB72yCYg3DEg1x7Ve2Lmv9pDaoFVAmFhuC1g8ftOcP7mRap3hNz5cx/gS8Pt\n5Pic6zS5eHqFi5sr9IuIN049wNTEiFz4rA6r/OLuLzC43PLw8hw3f+K7WNoT8e/2/RWtYMilF59h\nfd5jc1RBD3yarRH/y/7P01E1Dq/PcMnkCnmg6I1irBH4n5zkgeE2Xnv1Q6zWAoZFAALqRxWtByH+\nifPIWyvoSFH+8AaDpEG0aTl7eprujMC7r8Jjc3XSY3XaD5UUdcXaiyWTh92HHK3DoB7SOG4IOh7e\nUFK7tEvhgxdo9MhHzmYUncgB+HpBf61KcqBArQWoDM6fbNMPPdTBOseCBtq3+Gseo0ebyKMx3T24\ninTfJSL9Zo62ktkDqyxPhGQtC0aiG2NAcF0XvT2n+fWA1V2S7kaN6nH1JN/R3k4PqQXZixIK69E+\nrqASIUoNlRhbrYBRDA9kNO4PqJ+2bFwqaAYJDS9lLa9zdDDN7toaEstjwxn6OmYySBiWIVftOMWZ\ndIKVpQkeSLZxuj/BoeM7KYzC8wydUYXuoILyDLtmNqhVM7ZVe8xXumyr9NhVX2e23aM90yOzHnEl\npzSSqZkelYUhVDXqvhr53pTWlyKQoAro7ZaM5g3xwoAi9dk2u0n+WJ3aOYPxBHldEY7FOiYeM5z9\n6ZzpT8XUlkq8oWKzrajND+h0q8RRgZzMoaLRpXLWNRVDo56QpKFTt1/1ODJs82B3jjz1kcsRXivl\n7KNzyL9pEgwsvd2ud5JtGShLrZ5SFB6inRPNDyk2IoopjUgUeROSnZpaI2VwqomtauTHW8Trj08q\ned1V6Tcv12AEJnTWN9F59SQAKgv4wC99gM/efu3W36pMkE063+/B3hJrBWFHoEMwFUv1qM+qijh9\nZJaJl6+wqSPKUlEGEhNb8qYTANpx0Son758nWpUYX1A9Iylq7jPwlgIKKYkPdNk5v87ozimnQG0E\nZBIuSjC54tYz+/i9y77Oj33mh2kck1tAFJxQUXNPl+WsxsW7lxg8NEFZdbTri+ZX+cHJ4/zu3ziK\nqbiyz3R9SPbg362PcwuIwhYQBf5BgOiFUKl4ChAFSKcF1SU3iOh1a3z2pTfx0a9cT7imMIHgwe/5\nb7y3fznhWZ9ku6Z+QrB5TQ5WUDvqYZRE5AK/Jyk2I6KZhN6ipd+SxEuKoi4wkaW7USNrQeu1y/z7\naz5JRWZ84uTVHL15D+rSPnozoIePGXkEExnieAWVSEzVICNN76uz5NOa1n0u4Zq/csCD3W380I6D\nfH+tz/dPnOA1i3fw0dGV2JFP0OMFD0Zbt5yGssQWBXY0InvRdjZfkUMhiY6GTO9dZ6hDrq0ddwk8\nG1CVGQtej9SCJywTqkBb2O53iWTGrNdDCcumqdIp3c2Xml4Z09UV6l7GtbVjvDw+RlUWxKJkQpUE\nomRO9Zn2egSqJMNnX7zMbNCnHY4Y6pBhGVJaRVEoROphPMHgkoJoYcC+9hr76qtsC7ocH02xPKrz\nM3tueMb3/pyC0d+64/Zn7c16vkf7fsv65YKZt5xFfKlO82dO85Uf+RM+9qGX0f3+Ae3PBySzEn9o\nSRYNxWxJqST+NV2GscQEFh0KhHGeUcJIspaldkpSv2adTUJkoqg+HCIv7zEMfJI0oH1QMXj1iOBk\n6M6vhWzSomPLpTuXOHN8Gm8g0RWDyCRn/3onKhEMFwS9IxN8ZbSL8LwimxCoRFJGEvGaTWq3hfQv\nssRnPSaOWPLmCxeMWgUf+6nfpL9D8YsfeevzEog+W7zQwWhtoY9efqrIyvMpngmIAkwczrfuL7+8\nwdRBwewdA868voGRErVjxHVzx3ld9VE+dOg1XL7zHH5guG9tgVIoZqoDKpWc9WGVwNPkpYeeLQji\nksHBaYoJTbkZMlqtEs6NqO3qM7u9w/6pFV46d4q1vIa2knbklEjnJnus1AIMApEq9u5fol0fIj8z\nwXAHbP9iztShAh1Kzr4mYHhZjgkstRd3sIdrzFy8TnejiswkXuGRtj2nyicFV7/nHt46dQ8P/t5+\nOgd8/vivXsZFLztLZnxOPzrH+bJKrZphrOTPj7+YTV2htJLILzldtLm6fpq9rTWC/QPODCf4g8PX\nsyKbfPrhy9k9vUZifaan+uydWKXAZ1dlnUpUshh1mI37hIzFgL4AACAASURBVJFGS8nqgsJvZ6Cg\nm0b80xc9QDBRMJg38GgFc3eN/k7F9e/6JjvrHe4rZ1h47Vk2WpJ//6JP8/7X3cp/vPc6Zu5w117n\ngMfM3SVYOPUjmsoJj9ZDmpPfBxOHBeJtawzTEPtAg2BhRF56NJoJhIaoljlA41lHzZxJKDKfsm5o\n3xpgQkF0wmfqbhClIOxCfxfY+ZQiFhSTelzFskzN9KkGOfNTm6xuNKieVlQu7SKbBcOzdYrUp/mq\nVS6a2GD4+VkqyxodSdau8Fi71iK0Im9aTEMTnvGZeKAPy6sI5SGkxDOKzoGAsuEoxqPLcjaGVXa1\n1rmkep71ssZVjdNYBDNBjwKPvfEqifGZDBKUsOybWEXVDFLCyvIE8wsbhGGJsZLZZp8DM8vsnljn\nmskTXNE4x2zYp7CKi6I1pICal3F8MMXplRbKMxSFRy3KOXNyirwbUUwaouMh1hOkbcH6Swy6rqnN\nDyhLBULQrKZ0RlWM55JEjdNP9gNNRUwZC6R2lgbJ5TnF2So2V4xKnzAuSPoRcS1jopYwHIbkhU/c\nyIhrGUkgCc8E2J6PLRVeIqg8ECJKQXe/YbBPI6dzpvduEPiarPCpVTKmGkOumDvnqvihIW6m2OWI\n2ctX6PcqiMDw9mu/wl0n9jB90IHn0bRHf9Eja0qKG3oU/QBhBbpm8Nc9kksyKiefrAL+2duvRbxh\nHY5WHE23dBXSommdX+XukqLqhLBoFuQNC0ZgK9rRK0OLyBTRiqSsWapnFaIQFPc0SHYVkEtXaZ20\nyEKgUkGyOwcheOnuk5zsTjIaRVS2jTAnK9R29Si15KdffBt/dsUtXHb7j1M96MDfcH4sihSCl8Bq\np4Gdy/BDTXashj8UFIs5t770z3n5vT9AcbxK1rb4RyI6EwpvKeC5DB3ytMyz2uuWGS3XnlSl/tao\nrLj5JZsUNPd1uXW0i7e/4Wbun5uiVxV0qxn3PryHfEpDZNBKoSNLY3pI0YnRgUtihxsCHUP+UIO0\nCByT5uXLBPMjLt97mvdc9SlaiwNW8zp/fN/L+cJDV5AMQowvYDlEakG45BMtKzLhMfGooKjDxMMS\nTsQEfUvl3OPMn0wHyOmM7912iLcd/EHef+xqbv7D7yI67mOloKy58byQo31HB5sVYNyHn165SFr1\niJYV3rUdVgZ1XtQ+j5IOXF4SnKcqCuY9TSAs8diuyQpLZhVNmREITU2lRKJgb7TCjmiDukq5of4Q\nb6yd5NWV88x4m+z0fRpS4glNVSompcAXBiFKzpVNNnQNKSx9HfPIYI5Ueyz3G4xONKge9bESyhcP\nuHhxmR3NTS6uraCEZaWoMxmMQAh+eMebn/G9C2vtc7YrvexX3vdc/etvS2StF/aGv3ppB2PFViLw\nglehEJaJ2HmUrfWrNCop1SBHj43MCyNZqDlPrdJI1pIajTDFG0tM50ZR9XIy7TERJEwHfU4lLRai\nTYwVjExATWVkxsMXmqaXEMqCgY7oj7XXFYaKyumWMTOB8xAzVhLKgpF2/kp1lZBbD4WhsApfaOoq\nYbVs8N4v/1P8rqJyzk2gMJbYtuD3HG0tXgWZW9Ip10NTNA1YVxGP1iTeEIoGGN9iPNA1gygEJjQE\nrZSyUAgB4QMxo8WSxT2rnH1oFtvO8c6FtK9cYa1TRxcSm3j4mwqhoZgw2FjjxwVFL0CEBv9sQN7W\nBKuKfL5AKIstJOE5Hx05Spf1LOGqomgawrUXtqtT0XhhX3uXXneMN83cz7XRcd59+EfppSHVMGdP\nc52lUYMdtQ5VlTPhj2h5Q/aG5ymsx6XBebrGUW+kMBgrOVtO8uP1dbQ19EyKFIJzpeVA8FQ/wIFJ\nqcm/HeRra1BCcrwYsMuvPevrABKbE4sAJdz38uX/+mcZvq1HcrRBZUnSv6Rg+use/Z2CbEoTdCTF\n7pQwKkjPVUGA15dYD6wAM50jVwOqZwSjl43wfE1xooYJLOG6pGgYsO5aFFoQbkjK2BJuCgb7c3f9\npAqhBVZZ4tMe4uou+sEG2WKOtxpQThVUjgRkL0rQPZ/W9k16/Qp6PcSGBr+RUabjCk3PQ7RybCmp\n3ReicsjrEPQhbbnKkywA6WwurIRswol7lJHb+MsSihr4T/AaHGy31M4I0tbYwtSMK0qjpznXoQMP\nT7eRvTCWZBrCDUfL9IeuChetuTlNFmO6Zv54osQot2m+AE506Mb4Qo74JeuAW7t8pSm1QklDXnpY\nC1FQEPklvSRicWITTxoCWRKpkkEREqiS0kgCpRmVAftqK2TGp+ElbJYVYpnT9oeocdNjKAsqMmel\ncNW6pkqY9nr0TExVZmzqytba1tUxTZVQWEVdukp1XTkly4rMMGM3v7pMOF20kRgW/A59ExMJ98X4\nVx/56efgrH77QscW41v8vqCMwcSG+JwinTZYZZGZO0cmNsjUaXB4ibOp0IHF1DSUAm+g0JVxY6oW\noCwykWMHBNB1jRo6ISWERRiBabr+V4R1oN2ziIHC1kvEyMPGGlIJoXHVsHZC2g0JGxlF7iEESOU8\nmaW0FIXCGEEUFZSlQkrLFbPnODOY4MDkeZaSJsMiYDIcYcb7s8kgYagDmn4y3kf5TPhuwmh6IwY6\nYlCGtP0hnbLCTNCjqRK6Omba66Ot3NovKWHwhSYSBX0TkVuPHf46QxMSyRyFJRIFm6bCelkjkgXT\nqsfIhkzIEefLJtNej8K6xEduFQ2Zcr5sopHsC84TYMiRBBj++W//Iv7QkrYF3sh9JtmkJdgUlOPl\nKug69Wah2fJ99UbulPsD66jrY8tn4wPjOdF64PctVkG0YRksSIKeJexZdABlLCiq7m+9xHk+G1+4\nnvyGmwNVBlhIpyzVs26f6PctRUOgEve9EBrSKVCp+5+ycJZBVlrKvQlhWHDl3DnuObedIvcIoxyt\nJZ5nCLyS6eqQyWhErhU1P+NYd4qXTp9iI68QSs18tMl6XmMlq3FZfYkpv08kCh5JtvFgdxuL1Q57\nKyuMdMjOcI1z+SR1ldLVMS+KzzA0IdoKIllwcLiLA/E55rwuh5IdSGGY9vosF036OuINjftpiIyd\nnua8BoOgbwJ6JuJ82SSSBcZK5rwuUhhec9GRZ7wuX9g70n+Mf9DwPU1RKiK/pFVJmGv00VpSDXNW\nezU2hhVqccYo98lKD19pIq9godZlZVSnk1XIjcdElNDwUyZDNyFGqiDRPrEqqHspIx0wE/ZJtM/I\nBCTap1dGNL2ESX9IX0dkxieUBb7QWwC1InO2BV0iUTLrdTmdttwirRxQ1lZSlRlLxQRSWDSSjbLG\ntNeDWGOF21jVzlhkAfNfLdn2dc30oYKyahhud5XrvGkpq5ZgQ+INXda8rDgPVyzOa1CAyIQzzbaQ\nd0NsN8CuOkGpYF1xZnkSYXC+h33B+TMtym6AzRReT4GBvKVBQ3jGRxxzs6/Y8InWBBfvO0c+W6Ii\nTVjNUT0HXo3vMs1ISLeV6NazpFX/MZ4XEaiSy8IzHC2m+ZmLbuWaudP8jzvv4K7TO9gYVji0Ms+x\nQZtIFpzKWjyQLFKVGcfKFvNewoqucyyf4ZFsGy+PTgIOEJ7X0DeaRU9uAcVT5ePo5wIQLezTN4wv\njV97AVQ+GxC98LoSTTEGr12TAJDXBL7SqMwJpPzAS77J4M19iv0jRDHeRPZ8ks0IlTrxo6JdohKB\n9SzWus3gYJfBaEFxqoo/FFSWpPu9B9Z3CRq/L0h2FK7X0gdyiVzzXfInF3g9RTqrSU/XUYkgPhoS\n7Omh1n3SacOLd5xGJpLOiUk4HeMNJBhBs5ZiS4H0DSqVsBKizgeUMehgDESnHLg0AXD9JjqE3m7j\nvFbHq7Px3QYGHBDMnmBHWFl2G8xoA8IOhF2e5DH9rfFMFZULVZh41d0P+m4TFzi7UEbbXHLHGz25\nYn+B2STLJ2zGXuBhrcBThlYlwVpBLcqYrg4pS4nWcotpUA1zjBX08xApLIMipOZn9PIIYyWBLGn4\nKZ40eGPanCc0mfExCAcuy5hOWXXChVYisayVNTa1m/v72h1rZAIGOhoDgxw1NpeOZMEObwONdP2z\nxqcuE1LrM+91iGSxBUQ1Avn/A1NqK5ymQFm16LrGa6ek04ZwcYA3cEI73kjgDSRWuu92NuP2Ayp3\na7nMJca32FhjlcX6BpELrG8pJzSmYiDUmMi9Bonz+7YC1chBWXcTFiYKV0H2DEIZWoubyEAj4pJa\nnCFSRdYLMYmHKdzFHQUOfFainCgqGA0j8swnS31yo5ivdekWMcMioB0N2V7Z5Ex/gk5WoVtETAVD\n2v6Q5axBOxiQaB9jBQMdcXQ4TcNLMQgqygHKzPhEomRTV1grXXY+tT5DE7Ja1tnUla3E/pFsDiUM\nfR2zUtY5W06yqSvUVcKct8mJwnlwD63rhb8AWCWGCTViaAPmvC51mdA3br3pm4hQaKyCMhKolC06\ndLktJ5k15G1NWbGUVXeuZe7mo2jDfYbecAwgg7FfrHFAMdy0+CPrwKHE7elqrkVER67QoAPheulD\nUKlFaKdmjHA0cG8IQc/9P1lA/YQTdctaThxUpeCNLP7AgV1hnTK6VSBKNxaVCqx2c8t6WuW6xeNc\nPL/M/375p5lqDFlodqkEBd0sojSSR9dmODucYEe9Q248SqMYlgHdMubEsEUg3V64U1a5f7Sd5azO\nxY0VGl7K1fEJOmWFlhrQ8gaMxsa9uVUMTUggNBtljVfUHmNCjbh7dBFSGCoyp6UG+ELT8oa8KoJ7\ns0XuzCa5LdlN3wRMq4QZNWBPsMKEdFo4PRNxJJt71uvyOaXp3vj5O56rf/1tiRc6pUC1M+KwoCgV\nq5066+ea1L4Rk52sMXP5Gq9fOMyjmzPEQUFa+PjKoIR1ADRMqPk5zSBlM6uQlAGRVxLKEoMg0x6B\n0rSDIVJYzqYTFMZzi7cwrOV1cusRSk0gNQMd4QmLLzS9MmI+2CS1PjNej6rKmfV6XFM9zpquE8iS\nvo6pqxSDJBAlJQolLJ4wbOoa3zx4CWHXNewHPUsyJ/jzf/d/8qHVVzKcU8x/vaR+0pBMKZI9Oaqv\n0LFLdspcIPcNGLQkMpVUz7pFLL0oJ1zxneR8LrGhRQ0klWXXe2MqBq+VYZZiBKArBjlSTjSkYjBV\nw/5950hDgV6LKBYzGu0RuScorUd924DNYQXb85nZtkmvCClrhnDVw0owU673gELi9555x/rgz9/I\nu152Fzd+4/lLTTZ/d0eX51WEcwk9WaXtDziazXJwfQff/J2XEB4NsCdi/EMxp1oVVNXwptb97A/P\n8/XhxewM1phSKddFlheHQ14a9XmgCGiIEQb3/V/waqzolLPaMKN8jC3xhNwCmMCT7j8x6vKp9LbM\nFpzTCc2n+d3D+Yi28qlK94FFwlUSf+PMNYyMh8UleFb/coHwkYDKEY/v/4mvce/GPFhBdNYnn9JO\n7CSXFPMFqq+wWuK3U0xgqdRy/MMxox0FZQ3MXIbs+DSOCoqGcAI2QO2YIrtqhFUW6iW2WWKkQKYS\n61uiNYWwTugjqBRE90WkCyXLJ6YI1yVWCOxiSikFql4w7EeoWKN7AVZCe2+HdLWCP3KVlqwJXgZe\n6qiE8niEl0LYcRQ5b+SAqSwE6Ywl7LqEkv+EqufoFUOC04HrscsZV2GenuJtx1XM0TaLKMWTXmMU\nJDMWKwXeGFDace8kuE2YP3y8LcNKd5NPwC7CwHD70wumPfyOG3nri7/E/3rtIWeTdfD5O7fYmRxt\nBUJA4GnSwmPlm3O0vurT/org/IsUw0GEH5TUw4yqV7CZx8ReQaIDtlc3iVRJxStYTusESrOa1ZkK\nBxTGVYgKqziXTZCYgFgVThAIyYSXIIUhFCVDE6GR1GRGReZE0r1OAhcFawxMxPlygimvz3LpMhil\nlQRSMyFHPJRtZ4e/Tm59RjZgh9ehZ2M+d/9VT3nPj7z9Ru6ZDjl99KniVc+30LHFSvASgQmgfk8I\nVtC43edvfum97N93gr9evdQxLZRwTIBcUjY0KnPK37qhcau9wO+6NdrGxs0VVY0cKoIpx35CgNdV\n2LkMm3oI32CNRPgGUg+/UmBSD5FJB7aEwHQiZFVTaIWIDCZTyLjEGoHyDcPVGpVmSuBptJEEQUk6\nDAjikrl6n1CV470TzER9bvmLaxEPVOl06pxda6HaBYuVDqkJxlXSlPNZEysEC9Em60WV3HgkxvXF\nS2E4k01SUTlVlVGTKSezaeoqRSDYHaxwpmhTVRmJDZAYCjximVNYRU1mtNQQbSWp9dkbrFAi2e51\n6JmYEsWartPRVeoyY2QDFjy3hwtFyapusD8Y8Id3Xe+qntbNZTqA3R8Z0r4vp31PjpcFDHaMAeLI\niXKZwCXzrC8QVuAPLVing1JWBWHP/RTaVauDPltA1EpXEfVHjvZsAvATB0515ABrUXN7RGGctVO8\nbtCRIG+KMVAVBINxNTdz2isXQKgJnNL/hTHKxZS9U2s0g5QH1+dYOrSN4/9lD/LOKuKWiMXvOcdM\nZcCoDOmkMbsn1km1Ex2cj7tUVc6ByhI/NnUnga9ZKRp8ZWUfBxrnqXtOHO7IcBarJKHUHM+mSW3A\nUIfsila5JDhPRWa01YCmSujpCiMTcP9wO/vj83x/7TGWdcS+YBlXaN9kZANKFJcGSxwu5phUQ87o\nCRTufCphMUhy63FV+5lZF/8IRv8B44UORsW4wpaXilo1ZWamR/t9PahUqd805J7+ZVx93WMMdUig\nDEoaktInUJqKXyCxaOvoSlLAVDRkJa0zG/WRAjbzmI2iSreI8aUhUiW58ZDCMhUMmA165NbtvrR1\nX/YShUHiS43CslHW8KXm0WwbVgiUMCwVE/hSU1iPwnqcyttsDzZoeUO2+xsg4AuHL8cEzj9u/UpH\nzb21tcCqH+Gt+dzw7ts5/cXtxBuGUcvHGzk/2aIBZc1SZh7ReZ98Z0bheajcKWFm+xMYedipHDGm\nAeYti0DgdRSFLxHNAjmToUe+ExU4oWCsUtg508RUNa2Lukw2RqyemoSRh5pP6I1idOrhT2Skhc/U\nzRHWeqTzmmBTooUEAeG6ela/1Pc99lI+/JVrefDnb3zeAtIXOhjds2eJndEGE96I83mTjaLK97zh\nTr62uZf515/hda+/h3N/ssfZlUzU2bA1TqeTpCIkBx7II+pynaYMWNM5AwtTStBWFdb0kDmvhiSn\na3ISLHXpQKIUT/3erOkhlacBmgCPFkOWNXyiexXXxufxhCKzBZ5Q/M9LV3PnaBd/sn4JKlijpTpU\nZcDApPxfm1fy+gOP8NjqjKtCBJKiKijqglM373Bq5FI5iqgChKCc0ERnfPy+cGJLAw+RKLLcdyC1\n49RR5ab7OdpTYCODt+lhJwuMUZjMw+t4kChs5iEqGppuk68Dt7GpnvSQpyJG21yFFQnxiuvnN1pS\nPeGRVQQT9wTYxKd2UqIjQbZaoWxqwo6kv0sTr0pG2ww6hAd+4Xf42e+6iw9/7RoG2y1Bz53nsOOA\nq7BibC/yZNvC4LQ77yp3FNtgANnkmI77LYD0QvXTH4in/q6EoO+qPmnbqaTqeJz958lANG+MKwBP\nU0TzRo6a9q3xwYPX8H/fcz0fPHgN737pXc9rQBptH+IrQ6AcWChKj+hgRHWpJJ3yWbhpibLaprfN\nCU9l2kdJixxvzAqrmPBTfKmZCBJAMBs5+qMnDHUvIzEBEpj0R/R1hC/1Vu9XLAuEgMT6lNZDI0lN\ngBKGpkoQWAYmYrlsYqxkXddY9NcJRUmBx+F0nruGu9EoNnUVg2B3sEqJpG9iPn//lU95zx+4+xr+\nzSs+yWfveymPvP3GZ/Q/fj6E3xeUE4/T89MZy94PHqNyfJO/vOlSbl5+Nf/tpz7AxzauQqYSHTs6\npRq6qmkxWwBOy4PAwGQBuXL3rcDb9NBNJzgmSgm+wXjONgstsEIglCGsFPjVgiL3XJU0NpAoxHrg\nKMKBwZQS6RlUYJDKYIYBYS0nbqQ0oozzZ1vUmwmeMsy1egzzAOVZhmXIUIfU/YxbP3kVRdPSetgw\n9/kVNq+ssbLRRE6W1PyMbhEz4SfEXsHkeD0xSGaCPpP+kECWNFVCZn0CWaKwnC1aTHojUhOgEShh\nEQKUMLS8AQPjNr+JdawAiaUqM4Y2Yqe/zpFijq6OWdV1NnWVYLxf2+Z16ZoKj+Wz3Jvs5KXxSU6V\nbea9DtoaPnboOlQORd1uOTrUlgyicJNR0CvxE5/upRq/69YH5JhdYiDsWfIJQdi15A1Huc0mBdG6\nxfgQ9C1pW1JW3FzoD8dior5AAPH6GGDlkLUcGBUGdyzrjotw4NJ67rMOu5ZsQlBWXVEimbWUNYsJ\nXeJOx25OLmqW+mKfWpjTDofEQelaqr4aIEvDibdU6H9uht4Xpph65QproxqtyohU+5wfNjjeb9Mr\nY6pBwaFkBwuBo9+/ZfoQJYpNXaHhJVS93FGxdUisCi6JlhiaiNT6ZPgMTMTZskVTJiQ2oMDj1fXD\nnClafK6/j4SAZd1krazz0dVr8JVhu9/hy8NLEAJeFKzw4ZVXcapo0/KH3D7Yx0sqJ6jKjD2T737G\n6/I7lqY73PHC9Q35F9/9xed6CH8vIaXB9zTVKEdJi/7QLKuvmqf+mUMke6eYva3Lke40L548Qz8L\nGBU+uVZEqmQ9rbKeVukVEVJYPKlZy6pEXsGwDDEI9tTWmAkH1P2UQJZk2mM66AOQGQ9tJYMyZDWv\nI5+ghDUT9FC4KmlXx5zNJ6nInDv7uxmaEF9oRjrkUH+Ruko4PmxzTXSKs8Ukh5KdFNZDGJdB1aHA\nBu7Yj52fZvtHPH7iB7/Az7Zvo6i6y2f+1hJZjDeAuaB5WNA47FFG1vWeXZQwmjfo2E1kNrB450Lk\nSLrJTAvMmDror3mYTJEPArf4lTBacF5lwghMYDFnK6yu1zm7OoE3UO4qPlmhWU8IVjzKXDH3BxHR\nhqMU7/iMYeZggd8T2MBQ/i1JknAsuf8ryy/mwZ+/8e//i/OP8f85YuX6wz584lU80p/l4WPzfOzX\n/wlmPuWxE7OcSlp03jRk8iF44P6dbBaOEp8an8IqFJY70gVOlQNeEgZcEUTI8XIQCcXI5EypKtu8\nGju8Gr5QZPbpFZWaz9JDerFfZVVXeXPjEKHw+dzI5z+uXs2eL/4kt77/Zdzy6Ws4+uFLeO/RN3Ci\ndMCqJiO8B6p8/rYrad+laN9vqZ0xVJcMyVWPlwXTOe16gpoaXTdUTnkUDcNoUVNOlngjQbgmXeWi\nFAQ9gZUWM586OnylhFKiawabjhkIjZKiqccg02JHCqsFInVWEGYmZ7hLM5o3lBMl1jNgBMm06yWL\nz3moDCbu9wh7huZRw+aVBeOCF2E7wRtB81E1pnNJog3BVb/6Ti697Sf4t//yI/zwG29l87Inn2uV\nPd73NJp9+n7ocffBFtX2Qui/gxaLlz5O/b1wvG+NoMczCw8+TY7r4XfcyMPveHweOfDhd/73D+g5\nigvjfeK4L0TolxgLjTAl8kp6qzU291uKuqJ6JqVcaLPtL08SPlAhLbytXj0pLKWVDIqQoQ7IjUdN\nZUgs/dK1mnjSMNBujWoHg63evNS4ZJBG0tUxxgqMlXTLmMI6JdeRCbfuA9RlukWrS63PatngwdEC\nHz9+FZ86eBV/dfJF/N7hV/BIso1V3XD9pTJ5yvt95O038sjbb+Rdf/wOAC656Tv/83u2SGc1aIGu\nGpLFgt2fGPDYu3ezdsNuAGY+e4x/ftdP8b5XfszRbH2DSgRlqyTfVkAhkUPl2m6GHiZ3LTRipBxN\nt6nddaCsY1logTfhFIBlrUBIiy0l6WZEkXtYI7BGEMYFolqiJ0vwXatBpZZRJD61aopSFr+Z8fqL\nDvNfL/8YS6tNjn/3TexvrTBMA3pphDGS2CtQwrAt7jrF6Ws7zBy0VM6OyBYnmb3TsPBlyz1HdzAs\nQ9LSRwpLon1OJm0y7Sqa4HQ21oo6nbJKUyWcTlv0dURF5oxMwMgEGCtZLpq01YDj2TSrZYPGmAo+\n0NFWL3JqfXo6Yt1U8UVJJAtGJqSuElbKBn0T8Ui2jQ+dfjUf+vwNfObkZfzQnW/ncLqNuihYNRX8\noQOCOh7rdwxAjgpWr21w+o1NRGEQ2iKHiuHenLxpySbtVvtAGbtbXhf4A0e3vbB3ExaGC5Kga1Hj\nvviy6pKQVjpKr5fYcUXTzYNl7OZaVYDKrLM1kji17aaj6CZTYqs31CqonXbtIu37BEXDUjSM+zsF\noVey1G9w3/o8Dy7PUfv1BlkrpPZfzjF3hyabFPQXFd84uZNrt50iUgWdNKafhlwyucLe+hobRZWl\n1AkOTfl9NnWFo+m001GROb7QXByfZybosxB0SK2PP04yaCtIjU9bDfjmaDd6XNE8ls+QGZ890QqX\nhmd5SXSCaa/P3uoqAEMT0tcRHzr8XfwPf/1LfPG+A/TKmMuC8/hCs65r7Pa6z3pdfsdWRoOu5E0/\ndhv3pHMEG89Pi4Znqozee2TXU5776Td/nnse3f0PPKK/37ATJVnuoZQh9EuKR+pM3bnK0V/YQ7gp\nEUIS/ZXg67sWSXoxQSWn4pdsJBWEACGg6jlrgVBpRjrAWohVyUgHbBYVR5uQGm/c8K/HG+bMuJ5S\njSQzPu1x72jLH5GYgIaXbHHfaypjZAKqKufIaJa/OHIld5/dwdLBeb766KUsnW3zZ7dez8uvfISV\nskFVZhy/aR/NY5bBoqKMIVoTPPTjv8uvbryMld9fZPkVkh9/0xeZeu0ah2/ZjVGSoiHG/aIuC+Zf\n1qPMFZyP3CJVN3irAaJ0GTkElA1NdWePDOUmJB9kqlBjkCkzgW5qhJaUDUOwofD2DDFnKlSP+KTb\nNH5PUTYMoyRk++cM/TmfzmXw9v/pb7jr0CVkLUnYM9TOGLTyKfameKvPbOo997ozDI43ePTBRd71\nsrueF5Td0a4Cf/PxeeKFXhldiULW8hr7mqu8tHmKYfA+IwAAIABJREFUB4Zz3POTv89v3X8tM7d6\nrNw1S39aUT0tqZ4VHO7NMrtzgxfVztIzMVJYFrxNLAZPZFRkQGE1I5vTkDESQWoLfKHQ1jCyGVUZ\noq15UnV0ZHIi+ewG8ZNyiCc0sVC85c5/xrk/2kvlqENnYQdWXlUQf7rBQxdPcnXtfloq4L0bVyLq\nBWldUTnvMtBrVwpM5qwHwp6lekbQvdgyc7tEJorhLk20fYB3NMYKQTGl0YFAlgK/42F8CwiolQTn\nfArPUe5qxxX5pBMsAcC3qIFCpQKhJbam8dZ8dF0jfYMdU+yDNQ87nSNrJbLjU39MUV02+COLlz2O\n1monJYPdluppSTFfblUzAUZzzrT+3n9zI7955CXc9WdXc1+txftf+f/wxTuu2npN2BUUtTE91nPz\nTN504BGcyNET6btj7RvXP2qfGTxeUO20YxFU449fP75/AdReoBT/bSEMW0IiF+KDB6/hgwev4c3f\nezuPHl7ceu7hd9z4HVUdffgdN25VbC+M78CH38ncK88yOPW41Uc2acgLj0pU0M9C4lrG/O9JKqd6\nnH5Tk2CkUCqg+ef3s/CzJQ8fXWD7TIdkvOn3pKHhZ5TGCc40vJSNooonDaVRrhpaxtRUhicNBklF\n5gjh/DsL4+EJg0bgCUskC0okodDk1uds0WLO75HjkVsnevON/h7+9PjVHPnL/YjDMbUTEvVgTOVQ\nwP0rO7AXleyM1phUI/7i0MufdF4+cPc1T6mEZttzHvvhD3/HVUgfefuNvPsld/GBu695xgpuOV06\n6uzAqfnO/PVZWt/ocPJHmxSzbWpnClqf7HDXDbtZX224iqV2FFrVV6iRdMyLmkbUSuSm7xLWoQE9\nrpj6Bm/DKYzKeoFOfPAMyjeYxENGGltKjJaIkYeMS4qBo8RWmilFPyRqZChlyJOAICoZDUNMJyS9\naZaPDK+l/pDPn//XS3n9D93NHcu7CH3X17oxrCCVJfZKpqMBJz+5l2jTkLYD/JEhWkuJTneBBsfa\nVRYmNql5GZtFhUT7NPyMupfhCcNDg3kuitdJjc/ZbJLtUQeLYGhCdocrKOH6lneE64SypLQeU16f\noQkRAnLrsRhssKIbFFbRUCnH8hmmvT6JDbEIcutzLp/k/V97A/fffCnlNxq0HzC0Pj5i/VUh3zix\nm9fufIiuqfI3R68gbzqmSPUcIAS1MxlZO2S0HZKZiPY9fdqHcoZzVbJtJWok8RLhBEWFQGVgx5XL\noGdRYzDqekmdpZgsXQ+pP3JzoLAC6wuKmpsoTeAAZlEbC855IIxAh4Ks5dgsUo/bvPqWeM0ye3uP\n2qmM2umMYKTwMkvv6pKL951jbaNJtCGo7+uy2NikMB4GybnZGmWs6DzUJpmRbLttSPVcweQ34Juz\n2zi10iasFSw0u1xU3WA1q7OUNHjJxCkqKudU1uZU2mbSH+ELQ12lnM5aFLjjb+oKPV1he7DBctFk\n1ndiUqn1sUIw0DGJ9anLFI0klCWvjs+zalxyaymfILM+Nx25nsF75qnfpmgf0rTv1dzdWOAzn7me\n/+N1f8qGqbBuYvZPPnMi6zu2Mgrwa7P3cvzNNz3Xw3jGGM0bymv7fy/H+r1Pv/7v5TjfzvD9kkqU\nE3iajX6VlVeVmFoIEno7JUXDo7+vzoH3LHH9ZUe4YnoJJQ2teLSlnltaRW48RmWA5Mk7pkgVFEah\nraCwEl8Y+oUTabjQi2CscFVT6zHQIWtFjTPp5JbyYDY2U++WMUdH03z1M1fR/osKMzcH1E7C7j/t\nsfePOkzfW/Cbf/k9/HL7IBNqRGe/z9IrPEaLmtppicrd2Gbudru8X529j++uOAWyt/7GLdSWSloP\nF+jQmYHLHJJTdUyuiHb3EaVT2ysmNOOko+sX6CuSRyYQ0uJN5Pg9iTdwFZxoVVI2HfVHhxZZK8jn\nC7Jlt9sbzRv8rkIYmLxPUjvsc91/vpPaScnM7Yo3VR/mhn/5dYK3rmyd0+qSQZ165krWX/zsb7D0\n5e1bjy/77Xdy2W+/8zuqQposaG7+uV/femx8eOd1X/yOGuM/dOS5EwS7pLaEFAZrBQ/nI648cJK1\nqy1pSxCd91h9fcbqywwTh+GuR3cx0BGFVdw/3E5LjfjdtVehEDyYJyzpnKaM0dYwsBkPP0Hs5oJw\n0RN7RTvaoZ8LQkfgxI6OFo8LHmW2YNVY3r/2Xbzy376bic9UyWsOzBoF+ds6RE2Hcu7//H4+1b+C\nrkmQmx7BkRhTL1l5rbtg/re3fJyfe90tTzoP0wef8KBWYA41KeoWoQXBske4JrE7ki01TOZTbCcg\nndfIRKJbJf3dhmBNEa4ovA0Pcomey7By3GuUuL4vERjiB2P8nhM2KhoGdSYieKjC5MOWsDtWBm67\nczScdz83LhN843t+k+L6HuKxJyO1aM3RtgDiB1z28i17H+C7Kyn/4Rf+AIDKeXe+/IEDnxdEMsLO\n48ex35KvvQAIvxUcGsW418fFhbmorLqfOngcuD5RjCh8mqR2661nnvrks8SnP/WKJz0+8OF3cuUb\nHnna6uO3Oy6M4YlV2wMffie/9hN/wJcu+9RTXj9ZH+EJQ+yXjFK35hXtKslCyblXKtYvq2KuvoT+\n23yisz7HN1qEqsRYQa4VpZV08phuETPQIZn2HJXRy+iMQUGnrNApKpRjFfpOUaFbuh6u5aJBZpyg\n3wXRPl+UrJU1aiplU1cY6IhOWeWLG5fw1Y++hLlfC9j25S6NU6VLTp7NqZ1KuOjPVvns7S9mtWyw\nof/7pJDDM8F3XIX0kbffyCU3vXNrXM80Ptnz8HoKHY5p9nHE2g27kakk7Bjw3MWkfqzkR66/nfvf\n8AG8+RFeX6FjgwnH2R0LduT0GNTIMSeQFuoFquNRtgusb5FLESJzomblwEeM6bcIi/ANIhPusXYX\nZpoEiEhTFoo09VGhRt08wf73jlj4Eqxd4XPxbx1j/s+OcvY1VX77E2/mm9fdRLcfk6Y+7dqIhVqX\n0kruXNmJeN0G9a8+RlERnPxun6Xr62SLE9TOlYR3V3nwM/v52vk9VFVOrAoanquOn8smqHoukV9R\nGdVxNqpTVohkwZm8zXLRYNbvkhqfE/kUhVUcy2YorNoSlZQYGjJhZEJS41OR+ZZ6biQLPnT0Vfzp\nR1/D/t8d0jpcMP3ls3gjTbrY5OL3dGjf7nMkm2NaOVcEfyCI1gQ6Fs5zF2jd10NvTxEWjvwzJ7AU\n9GDhFkkxXaIyUMlYjCgaA0gFOnaFAaldlbSybPGHjgJsgrFaeOnUc4W2qMySzLrkqMos4aY7niyg\nqLtbZdmOe0UtQc8yc0ePiYccTnj0X7ixJVMe8dkhF38wZ/2Pd2ypMp9canPf0jwL1U2unjnNxZef\nZv5rQ4oGZFcP6Ox3k3lR99n3RxnVYz4/dNFBZqM+R/rTGCtYqHS5dX0Pf3X+ChLtcz6tMyjDLaXk\n5ayBtpIpr09qfDLjUZU5V1ZO0TMxR9MZTuVt50cqNBWZ0zcxIxMw7fX4RP9i1nWNU3mb+zYXuOdd\nV7LtN3yS2YjhgtsnrF5VpXJOMnEk50BQ4TOdK0nNs1N0vqPB6OXveyeXv89NKFn7O8uq4Zv/6v14\nQ4H3jTrDxRcupfhbo2g9Th+zViDGmd7pxoCpbV3Keki5LWN0RcKZN1jOXwf57lk6b4s4+PHLaQYu\nlV9oxaBwX04pLIEq2czicSZY4AkndgSuz6Y0Ck9qhjrg5KhFr4zplRHGCmoqIzU+c2GPRAf4UiNx\nvTndMuZ0OsknH7mSuz92OYu3DGk8NsBPLPUzBcvXNyknYypH1pj/WsmyLjmWTzNcMOTzBVZaevtK\nhmN8pn96DYArf/2dXPyHP8cnPvpqPvaf30jacgvYzN0FC18tKeoWmQlkz8n928AyOddDVErKqkXt\nHaBGroneRBbRCbBLEVZBsSMjXpGOApIIRCkw0zmVe2PCekZzsevoP0BZN5RVS+dyw2je8MX3Xkf3\nQElvj+AHfvWXueW3r+c/XfxJTn4vdPb7RBuava84+Yyf7/d96Je3lDsvxGhnuQVIn2vAt3jDSX7q\nVV/hn/zOv956Thbwoc85M+U73/Wbz9XQvq1RiXJeMXWcWa/LsWSaHa0O7zn1vexvLLNwYJnhoqFx\nzNL8RsT0nZLumwfMfNnnDz5+Azfe+Vo0kttGe9w1ZQ2R0NTHHmVKSJoyZn7cMGi+JUmUWYdSQ+FR\nkcGTAOoOr8Yev+bAbTngXJlxW7KLr/6Wq7aUEQQD6wCpgOK2Fmk3ZPVlhstff5iNsopC4Pcl2a4M\nf9mncW9Ib6fkxv/0A/zJ0WvY98ajdC5xY+1+7xCAQ79yI8du+H1kAcGmYPbKZYqGQYcWcz4imTUY\n3zLb7hKuK9AQ7OojRgqVuc1FNuPUGlXT2cKUrZJyskSkCrlngOj4FHXHcIjPK6pnFOGGoHHiyc2T\n4aY7XxfWhdaDllff+Ms8dN0fb9FYEycoiZUQdNyTP/ijXwbgk7e8nD1f+Em+MdwDwGDH06992aT7\nqQNnJfBEOu4Tr+FxZwPF/8vdecfZWdX5//3U29vcmTslM0lmJpl0QuglYBQQpCkoKMqClbY2bKuu\n29xdXRfF31oCiCi4FBURBESEEDqEBBKSkDIpM5lMppfb29PO749zZ4YQqrrq7vf1mtfcufM852nn\nnOd8v9/P9/MJySj/QZlLZUYuxg4dnEF1XhazKrQKrFpysNAmyCx2mLi3lW9+9iYuuOyR6e1e7ui+\n3OLHjbzq95sfWsi826589Z3+TPZqjuiU/d2tH+bkrecd9F3Ib6EpAp/uEDar1EWKlBp9uAENLWrh\nxhyy82FycZDK4lbaf7gba3uMPaP1DOWiZCoBsi9j1LU8HV118an29Pus6ukEVQuf6khYveIR0Gai\nQ2VXLurr9CLjdqTmmPpIGTlsT2Y28q6fx0fms/PnC2lZK6MJwlCpxlVcQyEz30ToKkomT+IlOYb/\nN7LpTsGIu5645E1tr1alXJPqgOfz2HVFC/UP9+CZgux7iuz6SJI9n+pg71UdPP7NEzjlK1fTfdLP\nCHRlUIIuXrz2HBRQLAUzq6DYtY7vKYiCjhvyoKqC7k3LqilFDQwPYavTUjCipENDFaWgo2e0aQgv\nBR07Z+J7PozS76f5nl7yXZKEava94+z9XorqolnM/cle4t2CsCrXQnbBxNBcKq6Brni0RyepbKyj\n51MLyCySpIjWiXkmFvsopXTafrKT0hyH4mMpnhuZw4FinOcm5mILjYwVoMWXJaZJZQLHU1EVj2qt\n3GNKlUBVBBGtTJsxSVCtoike404EX426e8yNUvR8tJkTTLhhkpoMVrpC4bl8Bw2f96jf6qA4HoEN\ne+n7QCu5uSZa1SW3ogl/1uPmfceT9wIS5ZKXRG2eIYnfANBVwuEK+Q4XtalCdlGExueKBAcqmMM6\nVhQqXRWckJTZKzfI+U2oEslm5j0UD4ySqGVHZbNuQEq3aFUZfHBNZToI6Oly/aZV5XwbGBUYBajG\nJfGRZkH989KBHnpbjNFjoxC36L4yyNhRgmJ7GM/USG7KsfKoHRKlonuE/BYDxTg9+XomSjJKGO/2\nOGPeDsaPcRk6MUR+tkGuPUDT+gp95XqqnoYnVLaMtJC2AsyLjBHUJSTXrzk0+bLM9w0zYkfxqQ71\nRh5byDkmrFWJa0V+M7GCJj2DobrU65LAaF8lyXxzmP3VJFXP4PliB/urSfZUm/jdgcUo/yCjAcPH\nhwiMVBg9WqX/nSGECk3PljDyNv8ytpiya9BdaX79cfmmRu9f0BKnDnHUe7diZF+bcOXPacqJaZ79\nzLX4FIPuj15HYYFFqF+j3PS/bxL/Q8yYnBHCFkLB0Lzpes2QaeHbO0pjKouqyexEyxMCs3cUL5Ug\n0u8xel07w/kIlifZa6uOTtE28Ws27dEJUr4CRcfEpzq4QiFjBRivhii65jT9eFsgzUQ1SFSvUPZM\nPKFQrNWONph52gNj2EKjr5zE8TSGyjGCG4I0PZ1H8eS5+iZtJheZqLZgYokfRidQXHigsISBakJG\nqlwp66DUMpNdT1zC8KBcAeYWOiiuZJ599tvXM/pOi4klM3DF+i0CvaQQGFZpiBRRHIX0WARt0Cc1\nEveFccIeqgO+cZXAkIobd7DrbbRhH9U6WW/iBQTC9IgnilhxgaZ55PfECQ6pNQZPgX9UZf6iAYJD\nKoVWFbWssuOy1YTOH2ZiueATT36YNWd8l3y7XKE2Bl47m995Rg8tp/Yf9N2U+Pny9Rf98R3ojzA7\nKuh/eA533PEOAKxlM7hE/5icyt6MBub/BeusG2eoEmNzcTYJo0SmEuCd9dtZFBgk6qsQ6Mjh+CGz\n3CY3V8FnOpTPzxDdJ0g9bjBYjvFCfi6TVpBx12DYDbKu0kDJs6aPkdKCbLPKGIp2kJSLr8Z4G6yR\nDb2azTN0NlRTPFBcxHdueh9ChcnFMrPn6dIhLbQqhIYEiRcM1ESVbFUSloVVP6oNgV0+SbSjSgZb\ngE1H/xwPGRnPvrtI7DchSo0qi66/il8WYkT6PTgyy0Q+hJlR0SryvWFmVYQpGN6Zopp0UVyF6oEw\noX0SWSBUQWS3jtdYxc2auEEPpaqiFTTqXlKwygZexJHZEN3DWloCTyINpsyKKOTPy1Nok8eM9Myk\nK0ud8r5aTTZ2SNZ1ggykGEW4auA4/qlhOyAXN/909H38W2orm766Gjc180xgRmfUl2aaRTfSp0yT\nDU21YUWYrncCeRyhyN9Tpngz7RnFGX1S1yeflROE4NnDCE1uV42B11Kh9z0/wg7DVU9dzIQdmrkH\n8VftDmTWvTYLq1FQ+MVHrv2LZEhfzxGdssGtjViJmefsegpVR8fxVGxPw3Y1Ro9QUBwhpRnCNp5f\nUGxV0Kou1MVov6dANecjnwsQ81UwNTmeHE8jZ0vH1BYaqiKoejrN/iwZJyjJX2qkRxGtgr+2wG/y\nZWXWSfFoNLIk9KLUERUqHgpZJ8hgNcbgC800biigWg5a2SbXGaLYrOIEZB8tNZlgGgTHvWlH4g8x\nZ35pOkD6l7CFN16F2v3qWd17P3zNwV8I+eP5hWS/bZMeTbw9jfJiRCIPLIXO1T2E9xWp25plybMf\nwnVVvnH8r1F1D6IOal6ObyvuyaCVLnXGMeTaB0Apa3hRB7UsWXaVko4RqYKjomgCPafh2Roi5OI0\n2Oimixm0IOxgpHVansjT9f96qC5swdMUItukxq22KUJhlow+JR/plccCFMNDVzw8oeAIlYhRQT0s\ni9AFTes85nSOUi2amHkxXcc+71YLMyPQNZfhfISQYTFeDbM8eoCgVp3uVzK4HyRpFInpJSadEM1m\nhu5SEyXPx6At9SqDqjWtS9qkZ6frQ6f4OgbthGzLDfHgQ0chDJ3wS8OomQKT7+rC9UkG21LKxMw6\naBXBWHc9cbWEUZB1mp4BalUiO7ygAY7HMc370Yoqxo4gY0eCWpGJk+Z1DuVmFwpSc90JiZrmqLx+\n1RIUGzVcU6HYVNOY1SUzrlDBDiu4poTeCl32HccPqi0w8gInAL60ZNOVyDg5jyY3SUfUTsg1Sfpw\nl5VdeyQBUlWhnFRRS3I8/2zOEzXZP4V0NkSu4qdgmWTzEi0TGLM5Pb5VouOigki/Q7S3jFp16b56\nEQ1mgV0PdRILlkn6ihQdH7rqYQuNRl+O59LtTDhhGo0cdWaR7lITttDwqzYF18eAnWBlbPd0QEtq\nv2ocHe7lcF+GZjNDl3+IFcF9FFwfT0zMp/yojKjuuUIjOOyx/4wgsV0QGBb4soLCbHndt2w6nktT\nTzNszZQ6vJrpr/vfv5CF3zFCYa18eaXXNPM8zahIlj+vtUJw81+GprayooSbCbL8sSsJbg5w0oUb\n6T3zxyxJfIjAutgbN/B/wOwmC2NYToI+w6Zqyy6kqR5Fy8DXv4/xrcfjn5+FgMXAqggD5zYx70aX\n+BO9iKrF6JELycXDnHX4FnbnGvBpDj3ZegKGTUi3qLiS9CFmVKYd3Vn+jCSA8DRsoXFEvJ+0HaTO\nKGILjZAu6e09FNJ2iKBmUWcWueuR4wj1qzSuL1JuCTC5QKf+JZvRIwwCowJPl7IqxZMXEtyf4/7h\nZSyNDxI8oOMEBXbMA0fBKKhUiianLt3B7rsW07JWZehMi8XPXMyNR/yMp1d9j7XHzuGfXziHWbca\nTCxRaNjsMrgKSrc3U6eAXtFRPMH44bWi95wqWeFMDy2vEtxjUmq30TsKsC2CFfXQk2VM0yU9FoGk\ni30ggoi4OFkVO+ahxS18rVn6nm4jPuSRObeIf1OE9t9+AqWsEp6TJeKv0mmEEYa8l08/upTXqvLb\n+2AHt132XT7E1cCM2D2A81yC9yVPZdunVrPk+39eiNbjV13D8bd/gfbTe+n9fTtWQuCUdN4CN8v/\nKTNVl0ZfjmYzS0XodMQmuHbzqXhCwegOYmZg8vgqDY+bMju4JoGnw+iJNqmndXp/0kV2Hiw+sYcP\nbfwopZEQwcYiXxYKJ83ey6LQEB3mKBk3Rb+T55HcYmJ6mYtizzNbD0j4revQqJmk3RJh1YdXy6rk\nPYs1pVa+tfN0zLsSGEFBfq5C3XbZ/6aYXKP75N9GET60ZAP39B7G4XUS+un6Jbuhk3Cw4ipKSS78\nbssneal3FvVpQcmW3wVH5HGv/fpFfPEfb+ear39QLipUKKc8tIqCmZY1YlOLCV9ayAVPiyAwIut/\ngiMevOinONtDLyi4PknmlV7iYez3YUcFRkHBSioYO4L40jOL7+J7c4TuitKRGuHAvgjjZ1aof2Am\nMKIFas68J6Pprk86jG5ALmweevxw+KDkUAiMKvzb3RfwzYrCHR/+LvG6AumlGvGXDn5dCwWs2jkJ\n5dC6UDMvHdGX+xevSTz0CpuC7xbbXPT7m4jUvvdlgV0Bzp9zGuKIHKql86+N61iLzHzbIVkD+1bt\nvHs+i5n+88bGd1y+mr12gbN/8qXX3c7IqzgLSpCWKWXXU9E1B9urwTlVD62jgDluIzIxjOYi5aiD\nYxkUZ/nx+zWMTIVFf7+fvZ/u5EAoRjbgJ2DY9GUSWI6G56k0RAt4QiHqk+8929VoCWXZl68j6S8S\nMapE9AqeUCm7kicBIC0kuYzMWhn0VxLsSDdh/ayReRvHEZpGZlmCYqNKaMTDjtQYPzWoJjSMYhPh\nnjyz9DT9dvIt38cf/c1qNDzmrCxx6k9f/17+KW3nJ2Qg4Y3gwufe/MWD/nZDHnpRxfMERk7F0iXB\ngPNYEv+qCdIDMfzDOpNvb6fuUenozflalPCNk2wptXF8Zy/PbFgoncy8jhd00fIaXlVFdRW0nLy3\nqFLf2/Z5GLOKuPvCOEkbe9IPARfyBqK1DGUdf7RKJe3H57epVgyam9JEv22ieB4HPtCJVhXk50Ap\nlaLcJNBrjpQztxF9n0QdqJqHW9MhNVUJCS+7Bk2xPMPFGJlOjfJ4HGGpuD6o1Cnk3j6fSlyl8a5u\nBv0LWfL+HWwZaaGhpcCuYiMBzWZ3TjodLaEsAc3GFpqE7qqSlVVXPfZUGlkZ3sXWSivVGtlWqzlJ\njyX31RB0+EbpNEd4orCQG7pXEr4rwrwNo4iAydC7ZtH84CD5NpVoryA/W0G1VYKjHr5JB99kiJha\nRWgyG2qrsuxCtWH4uCAta7M8sm4ZhD3i3Spmppbpt138gyW6fgoH/kGWTjkJB9XWcX2yREIvy7Io\niaqpBeJKAs+QNaX5OQoIKdmil8CKSbkfz1CwVTnPllNS+7SaECS3imlY7sThUdzzJhGP+zh22R6e\n6elEn9AxCgrUEiOevzavKxCNlDB1l/qgHNvt0Um6ly0kubVET7URVRNoFYXxpQbNz8hJutjqZ+un\nllH3j8MMT8Tw6w5Jf5GSY7JuZK4s54mPcs/oCpoCeUzV4UApLsmprBApX571+U4CmsWq6A6eynWR\nNAsUHB8lz2TQTtBipKl4khX8xYlW/P8SpZkiw8eFaHhYEO0tUY2HUFyBWRZEe8v0nRUkPKAS2OWj\n/7gkR4V7X3ec/lU6o1OO6JQ5Idhx2Wr+ZWwxv7p11V/knO795H9y2p1fIDRSe2GekOHhtSvoCC8n\ntO9/J8HSlO269Dq6bnlzUKkpR3TKdM0j5qswkI3heQrKkUsIHVCoFuJU2myIOIS3+VArWSbf0U5i\n0wRd/7mH4ZvqeOpnR+KdkkYBHFdleF8KN+JKAg1LRa+vYBcNLjzyeX7Xt4hCfxQEhGfnOK2tm6he\nYXcxhScUIkaFPruOpZFBNuda6cskyIxGWPizDIorKMyPUYlp+CcFpXodIycpve2wnBDSC3SEHkV1\nK7T5JzEKsiDdToBWVHCCgvgLJje+62lWsRij4DL7lyrFxggnnqACYb51w/txFtr0n6bR9rDD4Ek6\nsx9wqNQpVKMqhTMLaC9ESG71KDWqJLpnYFdCFSieIF02SOwCsMnN0amOhyk1u/ibSni7wkT3QK5D\nxyiAf0Jl0XF9PNczFxET+Cddmm724xkO5SYNYXrkhyOcfew2dtkz6RA77mLkXnvof+hHV3PmBc/y\nwJ3Hc/Z75G+A1DsG2PFAFxeeJf5gh9SOCIz8m1+sVpaU8W8LUK+FMDMKvb+X5F9mWsFMH9wX2x/4\nOL1n/vgtn9Nf0tyAQPsDFu+66tJTqp/W5T0+3sPudAPpnXWYOfCnBc4uH4on60cDY4LsCo9wqsj4\nEVHqNyokdsLQzg7CgMwpyMjlixzOixwuz8/koIzbfbx9+vOn//6XPJubR4svA0ha/7v7l5NdnwIB\n0V7B6CobJa9P13ZOHCZIbpHXW2xRCA0Kch0Kv7jnbfiWp+n0y/pmrSLRCMFeg3Kzi/B5gMrXf3kh\nSkiQ7YLLDnuSux44bfp80ueUuObrH+T6f/0vLrrlaqx5ZYJbAjKbqUFo2MMJKOjlmhNcEgQmgJfB\nkIOjHsFRyMyXcDChQt1mhfxcBf+oQviAR/iqIazPAAAgAElEQVTAlIK9tPEzK3h5P7GLR/lV5xqW\nvTeFsSlO6X1pgr+SQcr63/ng7aCn9YPup16STqV/38GOWGhA3qPDfT7++7Cbufihzx/SBxQhnWUr\nAtqxabQ1iUO3eYNEV7FFysgYhYO/VwQ8+eVrOew3n5n+rtQo8E9KmNpIKYJt6TQk8pz4H5+d3iYw\nJomWXsvsrjLGrsA0OdCUXbTqaS6Kr6dFE5zw4y+87jn/5qPX0GXMZGM77rqcnvfeQMfdl9Nz3g1v\niq13x+WrebDk4+r/fnNzmLp3JgAeMG1sV2WyJGUUVEVwTFsfo0YbkR6NUikCCQezM4fYGJFoHFVF\nCQXpvLabXV/popzyEQhVKRd9CEfFv89k0org6TApwAkJ/BMKe1s89ILKZEaOxXKjhxdxeceyHVQ9\ng4wdmC5LSVsBXuyZjXAUkusMUhtGcetCFGYHsYOyNi69UMVKulTrBahQt1HDCahUGoPkvcB05vXN\nWsfJ+7jsTd7D1zPf8jTVzYf239eyN+uIvpoproITkFlRJyhQrRp6IieYTIcINxWYtSDL6MhsAEQ4\nyMjJ9fBhh/uuaSQWqHDmCZtYPzqb0ByLgfE4pIN49TZGn4+Fq/ZSdgwagznGK2F2bmujOhFAU+Ck\nxbuYHUhz2wvHIvwuYtQPEQdV9VB8LuWySd3vA1T1IOp4D9mVcykeU8It6cxqnWRUNNY0UqHUqKJ4\nQSKahD/aVR3V8IiYFbJWgKS/yGg5woLYKH11LTQ/LQgP+Bk5QTB5hEPqKR2hQN12CYdIbSgyvmE2\nxhEhnpy1DP/iDPnhyPR92+3OwpcqYfVL1Emlza7VwoJ/ROPni4/CLelEGwq8v2MjY04ET6iSddc1\neT47h93pBpbWDzH7K1WYHKV8xBwCeycIjHuMnNKC0CA/R6HS5GJHVILjJnrRxfULbKS83VQkXS9L\nx9GtkRXGdypkF0Bg0gVFo9Ikg0f+YXl9rf8KV/zyVr644X20zxukPx3HEAqVkok64sNtcIjtUXH8\nCskXcxTnhgkOlIjvUlHLDtVUgHybiZWQkF3FlT96udafbIVIH9OOaN85MaoNLgFbZ8l53ayI9uPN\nUdjmb8KqGph7ZLByKoNrZuR6Ol/2UbYM6sNFirZJflWJ5FZY/cuzcBodnNm2lBF6Rl73xBIFOxgk\n9H2TPTfeyKpPfILuTxSwbB13bxjfuMK2oRS5dpWRbpfJJRrJrS4vnmsTW+9nclORyUVBim0Kv2o8\nmk+dtIYRO4qLyrZcM0lfkawvwB07joTeEHPvK1Gt8zG4UkN1BPqqSfRInuK6IEZOobq0Qn5biDkP\nlEAImp6rUrzYNx2keC37q3RGX2l6EdZXbf6pYTv3nrwU64n6V92usMhibtsYjy75DfNuu5LA6J8O\n2vtkeS57Png9y757FVZMYD4Txw8wPuOIllPiT3rMP5e9WUcUDnZcy1UTv2kzlI8QC5YJGxZ739+G\nVpELbLWokdimU2oCYWjUPTOIs38AgMiN7bh/O8zA/iQdHSOM5sOolkJ0k4xY+ScFmhVAcQWPPX48\nbqtC3bjAP+lRro/zYN1x2MsLfGzJswA17bYyaTvIls1zQSgktyoopSqVjiRWWMUOK+glwfgRNXEo\njel1aMuTLoH9WXaNxwm2WfgnPaquSmyHJusNFpfJhA8eTH0XeNzxth/w+aGj+U7zRjrevZfWYIac\n42P/wwtoedJhYqlB8iUb/6RLeXuE4mwHrayj2jByjIFYnIedYVw/klAhYFNs1YjvUIj2OdAHvAjg\nB+SklevUJelJW5n93+3Cf1GBi5Y/y5rfn8R//nA1H7nxM3Qt62PPxjaC87I88NOV2B/WWHvmtXzk\nvqslU+/r2IpztrNhfA7AtCMKMLp2FgBbH1oAVzxCaa6Nb0R/S87UW3FEAdRBPzWuA0pdVbRxc1p6\n5pUW3PvH5Um92RXU1yF3+p+wP8QRBai4BgmzxJgVIaBZHBHpZWP9bC4971d8fN2lONsCLDhjNzsf\nnk+kT1BJKIigQ9hfxW0twMbIGx4jP1uh3Opgjmn4JxUqxxUIPBXGDkN4QPC9f79wettqrKaxBuiN\nklxr7ChB6rGZMVNKKSS3yM/ZeSA0gRVRsCMekXkZLmjfVCMeG6Sa9PBCLmVTIzig1ZjJPVRbIdoj\ns5Z37V9x0PmKvSFA8N57PoOodzF7/IQGPfKzVSJDHtW4SqUeYnvkeZaTKpV6QaJb/j15Vpm630om\n3vjuGS8uvVAhsdOjkjg0czexVKH+AT/5NhV7TSPH3XoF7lyV5Mph8g82MXq8y6/P/B5X/IN06pyo\ny9Rr1zUl+YWZO5SB1tMgt9xi8Q+vYvvfrqZ8cp7AExHU08fxfj/z/tMrQAX8PoviqWl4IjHt7B5x\n8RY23noYAPM/0M2OexegVQ52UEODB/e/3DyP6B6VzGE2J/3H55jC+wh1RvIl2+VSebYJ0VXmgrZN\nfO6rPSz4yZUEhyVT5es5o8auAJ4hDnEY77r7JO7UV7Lo5J7X3rlm597yhWkYJIAPCbOd+g2vLsky\n9b/AkRLq+PnN73vDY03Zy3WZS5YhJTRMG031COs2/YUEpSVRtLKsRcRRsLujZDsU9IqOMVHCiwbx\nevtofE6Q7fRTbjLRLFm/6IQF/v0yo5bYbTN6pIF/Qma9K0mZqTZygliPQBEqTw/K5+qEPDy/QCuo\nuC1VREkj3KtTvzkPE2lEfRjHp2CUpNahHfZQYhaRcIVi0U+xVcPMK2imSkUYBJU3QZn8Mut5Yu70\n55PO2MzaZ5dhZN96hvutOKIAP88n+OdffICtH/8+y378qbe0r1AkDFd1JImgUnu2Dc9n8YwYmUUG\nY7+LoXpQXDGb0Kb9RPsclEKJtq+ZXP+7n3H6c1dyYddGdhdS7Cs1oGkgLOnc7rurk/hemwPVRnyj\nRVLLFPwZDyfg8Yy6mCdjDuev2MhpsW2cEazyWFllY3kuN9xzumR1NaDx/h6G3tNBw4tF9N1h4vsF\no/MbMTMKVkJQbhTYCZdKg0bd2iFc4REIValWDUo1iaw6s4SKYNIK4kZdwrvzZJfEiezVKDWrZBbC\nrEcdhFZ7XqoCQq6xsosF5V1xtKlS2KBHYrOKVg3jBOW8FXhBp9iGRJZoYGwIkHqhzJ5LwtxcPg4h\nFJyMCT4PpaCTmj/O+FCM7v+uI+6NgucidAUvFsQOSR3pSpOLv6lI3LSxnkkS6itQag0hNPCEMo3s\nEIYsQzCzMygOO6Lgm1AYPl7BrnMI3qvgH6/Uzt9ALdlcveaDaFGb7t5mFE2wcM4Q/pTNpvJcfIkK\nVjSMHVaoNAWxQwpDKyOYOYnSie5zaNxQxYrr+NIOdkTDyLnkZ5uMH+kR26mRen4mqmfmIbpPJXOW\nxt6fdfH8yjn4gxZW1SC8LsD4coGZDU47y3YEUv4yjqvievLHEwqz6jNAHL0Mpx65jbQVYOvj8xGG\n1FfVSwogCZhuyyfpe68geV+c4kJZh2nmBOEBC9UxCQ1UGD06SG6Ohn+3Rm6eRyUZkqoVaWhdY/Hr\nNaeRXqBRml+lviHPpkwb/oCFvjVMaqMMVk0u1mm/t4jn0+gNJai/0495kmQsVjUXOyLoOzOAXlBI\n7nAYtyPM8786b8CU/dXXjE7Zx1Z/RjqCr+GIPvLpawjvMBl5fBaXHziePR+6jlLLH1/HWa0ThN8x\nwjU3XThNpmRmlUMWD6d8YP3/SkcU4HcfvOaNN3oV8xkOUX8Vy9JJF4IM5qI0Lx8m3A9WXND4LEys\ncPEdNUnvu0PYLQnUwxagp+rx37ce7Qf1fOiYdUze3Yq1LYY3p0ypWRJz2EHQKx6FFo1ch8TuW1GF\n9AKNho0FkjscZv3U5PHzl3Hnf53KA99Yxa8eO45Hbj6O5IsqrWs96raVUMpVtKqLWfAotgnGj3aJ\n7lVRXIVYaxbCDkIXjBxtIjSNULDKuB2h1CihLFpZ4JkQe8rPnPsFH9l/EgDVmEbqUZMvf/IKHr/+\nWBY/czG96Toe3T+P7T9ewugRBtl26YgeOEU6f5E+gRazCQ17BM8e5rq/uZ5qzodQYOXJL9HyhKB+\nnc7Xzv41k8s9yvU6w8cafP0HN9J/qmzjwNt13PYKR6/ciUDWLTTcFGTNl+V5bSh3sO2Tq+mbqCM0\noFKtGmgVQW8xycOlLkC+WF7PXvj9YsYebTn4y1rXriY9qvUux2y6gN5zbuRtZ7zIinO2H1Rn+mZJ\njuyIkLUcwIUfeOyQ/+vHptl98XVUF8iaHmN4xhF9eZBN/IlmsSlH9Gvn3fmnafANbNel1/3B+57f\nsJG4UWZBcBif6vCt/jN5Ys88Oowc2j4/5YUVBn48j0iffHv704LGxizDw3EqxRpx2EWjr9n++OGC\ncoeFf1DHl1HQiwLtpTC5BS6qDZkuGDvKY/y0CsoHxqjW0H2TiyWbIALqOyeZWAbpxdIRDY7KLGip\nUdZ8aiUFMy9IblbQ7k3wUr6FUSuCKzyEJpmmjbx8wbk1rd/Tzt1AZoWFHYL0Cw3k22pMo4sUfBmF\niaWSGCm1TsHuqOAaCvNP30s5qeLLeJx5zjre9cUnAFnfeMJpLwFgBxWccfn8FSGYWKowuVj2tc4T\n+6j/eB/5zoPHTW6uyu5LruPeb36HKy7+LQ0f3UemS0FxIVv2Exj3aOkcm3ZEAYyMlHCSB3oZEUcJ\nDqvVZE/JrcQ3mviysPS/rmJp8xCZ5TbuQwe//3Id8pwqv23Ebzh86CMP863P3simr66edkTzcwS7\nf74AvQShM4cByC6U467ytpn68WoMontUiisLxLcYWBGo1EsY8ZQD+/xXfkBsl4Z/As5euJUb7zyD\nricuwZpVI7t6/eA3AGqN7KXScnAW7gPnPkHZMfjWxTe/7v4vd0QBFp2yGyco+0e13mXlmZtZdMNV\nh/yAdFI3HvULFt1wFd6WN1la84rXetC08Rk2noCJYpBdQyn6hpKMnuBilCSBVuvDCsFhBb0IE4t0\nym0RlLKFGgwSvvM5Wp4o4vnlQtLTwdMFuXkeucU2+89UCQ4K7LBCOaUQHKqxeKYUzJyLpynM+V2B\nSJ9EGUT2aPIU0ybJjRptP+1GG8simlM4QR2z4DG0yiO/xMKNumi6S8C0UQ748QzIdqhoVY+KZ5D3\n/vASqCcfXI6RVaezlv9TtvMTq/nafe8HobxlRxRq5F7KlH6RglNvM3BhJ2NHxiiuKhIc1PjApx9i\n9d9/DzusYt1mEtifpXxYG3YiwBVnfJS6SJFf3vU2jon30jFnFK/BIpIqoJehZc04E4sNqgmdwrwY\nuXaV8aUGsaf2MecBm5bfa+y4ZD7fe9dZnPTJy/nI2o9xW+9RRPZB43qXxvt7QNNQXdjzgSCXnPcI\nx12xkeanXDk3dBQQKoRSRbSSQuHoOWiKSikdwLNk3bGhuuzN1XOgECdTDaCFbZxEACusEBjzmP2g\nxbwfDzJ0uYUxXiB/8nz0XQPo3f0kNowQ2qfhxBwifQpGUeqTV+sU8u0K6WWuJOip1mrQC4LAmEd0\nv8vkIj+LvryX2TdopO7x0/lLB98Bk+CgymQuSMtDKol1AzCZQTSn0Esu44dH8TQoHlOGsIPPcCiU\nfHg67PpomEpCw65zUBWpF6qXoQagwYpJx3jquVaaXNSqrNvuf59LpitEcW54ujZz3s9tGu8xMYcN\n1AmDcxs3s6l7Lv4hg6Na+2m+aB9mTmDFNMaOgJZHs5JkLi/wTIVyg4HiQe/5OsG+In0fd3nv59dA\nzCY/V4AjJ8qhVTGWXbCdxo/1YpcNnDMzkDcojwdJxIo0PZPliJO7GT7+ZRwsqtQZDZo27YlJDM3F\nFQr7elLk5wSwjizwyI6F7Lq7C6FD7zk+Bk8OkdjtEtlvMbnQ4JaPnE3zQzq504rUbxZ4uqzfLDab\njJ9XYt+nBaF+hdCwh7W4RNvDLp5PUE26RPtdMl0Bxg/T8AzovEWQL/moixep7I/Q+mgRM2uR6Qri\nP3kc/zdHEH8/zjfPuoPdl5oyS91c5Yx5O3BaqugLcwTGBPlWnZzjZ9J5fabuv15ntPYCsGKC6hFF\nwu94fa/6lO/JugCtCs/cuYJl372K4OAbX16h0yF1+mtT1Ls+wbPL76Lz7L1wQoatV8uJdoroYeq7\ntf3z3/ia/sz2Zha7n3v3vbzrdnnvPnb2mjfc/uVZVNvVyFV86LpHtWJQmAgyMBonedN6nIjL0Cku\nc+4XhG+O4R9XKMwOkF4SRZSkc+G/fz1rvn0iqfP3ExhRcPMG1XoJycjNF/SfLuF1iZ0engnRPpfE\nLpfx5WFybTqVOp2J4xsl7E7ILFNdt0Vkv0Vk/X7UjTvB0Mm3+hi60MI3qRDq09FOG4eGKtl0iPrH\nTMI9EvaaOSxO2C9JHOyILFa3I7Ieq9yoMLBKp/frC3nsxzfiy7pk50FmnsEvvnYN9t4IsUCFjy14\nFvfcNJE+MQ0faX3EZXKRQXY+tN6mY+Zd0k828eXu84nUF6GryIu3LmNimUb4okHW5zuY/aCH/sER\nzjh7PT+fOA4jL/vyV86+m86mMQb/fR5Kf4DJRToHTtHwTIUrvvsrfvSjczjh6itQN0YoH1vg+0fe\nwd994XY+0vwUP7zhPaCAL1U65Lm+3HZcvprygldEyGsRSd+EyrXvuo2J3UkW/PRKbmh9lk33LWZw\nTdv0pu33Xvaq7d5x+QzT7dvPfwEjrxAYkivzX/cuxz5sBkpsJQSFnhg351LMasiwxapg5GZWhVNo\nskrKm14o/6lqWS+Jjv9RjuIb2a5Lr/uj2/erNs1mhjZzgjErzPaBJryCwenPXUm8GxrW+HBr1PRO\nbX3p3NVA4jkTUdFo+Og+hgdkNmJ0pXNI+/UvKjKrqYKZFUyucEmcOIziKPgygtPPeB5fc4kls4cA\niPYIxo4U1G2XjmpoQGVyZ5LkVkhsl06Ka8rtnIBknI30z8BjNRtub3+UM+NbJDuvJrMWTkjW4NRt\nF0wuVviPpqcxQhaxHo9FJ/dMsx76RxVCgx7JlwQiYTF2ehV/wGLDv1/HtoFmAhMeE4cprD3Qxe+u\nORmQDsCzDy0lP1sl3wGh/bKxq772K3Zfch1KZ5GRtzvs3jCHgTvbCfcd/D6xEh7HfekKzv3K5/mv\nB99F3CzjBAXnvf9JvPVxyg0qzq0pANb95/UAKB1FKvWCSr1krzUKNVmAEGhrEmz66mq0qgzInfXx\nJymdVMAowt5fdPGVlb+dljKYsmjPzDnZv2vg5zecxt/9v08cxCwa6ZPjxjVhsF9GDe45+7/Y9NXV\nLGkamt5uahyFnpKLBjMP/nGZfc0eLTMMR33zk5RT8rkdHe7FjnqEngpzy9tuAmbG5Zsx/6D0XE8/\ndz0A/9Kwjevn/Zyfjx7LjstXs+4T33nNfb1acOLtZ29k097ZtewACJ/HUw8sf9V9/lCCJKEeXGir\nqVJKSdSog928gdnrx1dXRnEF5SaPkWNVfBmZJfVlBEJRUEoV1FQ9KApGzzALbihiRWUm2j+mEtov\nWVaNjIodkdn/+C6P+G75vgwOC6yYzuQShZ7zQ1QTCoVZipSUiLvM/r1L6vER3PEJqFqIgEG2w+TA\naUKiyhWob8nijAcY2VeHVlEI98nAx+gRJhk3+MpLf9M2xWgLEjo79Xz+lPbyY8w5fBCQmeG3amZW\nBqM9DYQu8PebFGZ7NP62h2Utg1QaPH6y4wQ+89VPkZ+tse+FVpTJLIEt/QhdxQsYjGxtZMcVq/nR\n7WfS92ILh3fspyFcpP6YEfZelMT1g1H0GF2hEuvxmH3vGCIZ58AqEzukMn5UHeXOJIonMMIWk/1x\nErsrhJ/vg4AfTINCG3h+j1vuewcP7VnI4Act3n7ORpoTOaI9UN0TpWGzQ2hvhptzKfSgg3AUgrqF\nrnooikBTPXpGkyjAnkt0PBNy7Spa2WHihGbMZyKUOuKUUiqFE2QJDOksbfeOMudeOe4VBxof07Bi\ngkqTg2KrMjhpCVqedojus3ANhVKDSmDCY88XFlBsNsm3qRRaTVRL9t3mW/2EBquIQpHKkR0IQ8Mz\nVNKrKuTmg/BAVFWK2xPYOR96GfSsil4RrFi4j4znB08GzYQm1/q+jKBhs8XkYVFa1maJt2VwfYJF\ns4YRJQ2hQGjfTLZSy1mEDlRk0Ky5wv2jh2GO6DSdOEDJMeh7oJ3653NoVUHLk7IPRw44xPaUCO4v\n0nhFL8G/HUCogv53xUAo3Pqz0+j6bpV5t0vCIjdqkuty2HLXYnav7UAIWNIwjJZX8SfLjA/GGDop\nxvqN85l7d46xo6N8bXQZWhUafAWivgoeCiXbIP10E7MeUgl/fADH1tD9NqUWDzOtMPtBG70IwcEK\nesnBKAomlgaxAwqiL4RQpMa2f8LGDik4owGab/NPs71rvQHMjIUTEIT2a5STKs/86w+Ye1IflTaL\nno9CJFglvbOOzjvlHFRu8uMEoLq2nspXGukfS/Ct73yQQLLMJz9wH/5dfp654SiErTLrOzp120ts\n+upqzom/SNZ9/UDXX68zWpvLzKyCb2Nouo60sFBGYO2j8wdlRAKrxt5Us3bk4EkyvFdn4OnW19ga\ngkMq7Q9+nK37W+CZ+HR2FGDr1at5f+dGln33Kgq5vwyp0uvZm4HfXvubc6c/v1WtU7tGIGJoLrrh\n4hs0CD8fwD51BdFuHXNMZ+jSKsPHqvgnBHZQigK7udx0G/E7N7Grp5l8u4c5qqN4MrPgG1dpflxF\n6DIjGu0VRLeMExyoEOu1cIIwegzk2hXSC2VGJHRAodBi4O9L44yMofp8eBNp4jvzGNuDOH44/N3b\nyeWDeDkDJWNQSSoYeYF/QjBxmMLC+Cg+1caKehRnuxRbPYQq8EzBWadsYOQYg7dvezcATesc4nts\nPvq3n0NogtmRND/afiK/PvzHTBwG5SZBX00VoDDXJTioTEvAXPORnzCxpQHL0vE9F+aBL/0ny07t\nJlv287uNywAY3pHitw8fzbODc3FCHsVGne+vPp/RQpihE3VCB2QhvTmpolqCrzzxPuJ7HS78xwf5\n3CW/JhaucPPISi4MZ+m3kiR22SCgkvO97nPtuuVKet5502v+/+9/cgn+ERV9YY7l6y86JBM6xb77\nSrvohs9Nf/586hGs+MxYbI7mMLbM1IGZaQX/mModA8fwxLK7ueiGz3HCezYf0qZ/9OApzAn/8Yug\nb4wv+KPbeCN7LYf9zdpvJlZQ9Qw2l2YT0GwWtoyA6RG9L8zkUrmNZsmFZmahIDNfOnzllEIgWWbP\nE3PRgw6lRoXUUwc/r0pSIdehkGuXpAzuOWnMugoNgSIkq2QWCp6+8Sii94UZuamd4qMpvvFPPyIw\nrJLpAquW8fKNzzyb8IBAs5CZ1FdZP5YbFLqeuISNpbkAmBMqel49CMaslxTe8eVPYxguxSaV4Rvb\nEbqsFS3Nks+9klCpX+sj8FIAd1uUjrsvJ1kjEvrOebdwYssMiUKiWxDfJYjs91DsGWbckGpx7N9d\nSeK+II2P6oQXpLnli9cSGDv4xI2sSrFZXuNVpz/EntULiczPcP9NJxHp9w7ZHsAeD8ggV0jCqhQh\nobHFLosFF+3k6Yrcx5eG3/74JEKBKpkV8p23v5rkvPc8RW7ewe2WGyRkDaA4S3DipS9MO5QAm766\nmn/6zM8k6+4O6QBe+u3P0fGry9nxQBel5hqRhiEzoZ4GlVc4vbEN8h5mj66QOnaY8sl5fjN2OFed\n/hBOED5z7VsLAr3cMfz9vccAsOCmKznzJ1+ie7KBBT+5kuNuPLROdsoWrezh3z50K4/efwSUZ8oO\n/AOvnpp9+fFO33E2DSdIJ9xckX7V7V9ur8zEVmy9BtEVUn6sliVK3B0iOGJjTqo0bBRUkgqqLQiM\nexSbNNA1REHWUXm5PNp4Fi/qIHS5f7lJoNgqgVGF4KhH3XYbxRPYEYO6HWXCQ47UgXUUXL+H4taQ\nKnUebQ9CaON+vP0DKLqOMzSMsm0v/oygdY2CFrPpmD2K6ylSZsSRdcJmQfZ/jsliCx33lWngt2DH\nbLpAfliU56mLv/2WM6Su/7Xn7q5VM/Dt03acQ+9APTs/sRq9+NaXsIoroZ2KK2vTI/sE8Z0KXn2C\nA9fPY/W7b2Ltsdex4nMvUmz1iO+UdaMAvp0DaAPjLPhODyu+cRXlWQ7BIZWRUoSGQIHcw02ED9Sy\ndAmNeTfsp25tL0q+hNAUjILC+ArB5FLItuuUExqq5tF+j4fZLR1syhWE36ThRQ+1opJYMUYgYBEI\nVnnwmcPZ/1IzmUWCupegXKfRf1Y9TXqWSLgW5K9JAJmai+1q2EUTY3uQzttdrJhCw4sO6YVBwoMW\nqQ0l8rN0So0K4W1jKEZt/Exm6XsP+Hpl9jyzQEJgg/t1Zj0mSO6okNiWwz9cwjeQJb67THjAJT9b\nw0465OaqFGZ7jL7TQhEQHrIJ9ufRd+4HVcO/qQ8vIGtW9f1+nOaqlAqsqrKG/oCBVoa2NRZDpzkk\nfSV6rBTVOqahzFoVtAqYY2WMGg9ALFDBzCnsWNdOYEAnOOowfuTBLK5qxSG2G9ycSc/D7bh+gam6\nbOlvJbHLQRgqoX0FggMyaO8fKpHpClFpDtIazDD+yzYwJRGYvtfPrDUvE2HWVRy/xpx7BYoDnW/v\npa1lkt5cHeZ8ue49a8UWiseUmHO/RKcc9tGXuP3FY9As2FeoYygXZawUomwZOCGBXvFI39GKtt+P\nnfOR3CzH6MAqEzM3M2bqtpWo21EhOO7SuMFj7LQqTetcCq0moREXs6mEb6JKpV4h3F/FyCnsOztI\nvFshcsBj4nibU156Hwd+P4fkswZ1T/qYTIcIDdTGmKLgH7OIHHCp21mLOvYFqSQVzurYxrefPgPf\npHwmHXccPJZznp9mI/O64/Kv1xl9mXnHzTzs8E4JMZuXGuf482cWp+XHGt6wne9fcf1BNWv/ftnN\nAIeQN0xZca6LefI4quFKIoxX2Ok7zlg1tEgAACAASURBVCaoWgRWjRHa+qevNbMb3hqZwP+0vTKb\n05zI4TNkVsV1NIQG/klBodkgcsDFyCv414UxCgquCenFgsCki9aYmm5DDQYJdxv4x1R8GQUjq+Kb\nVGjYYqNVBfHdLuEBh/EjPdxdeynMkYQkniEDBW5AoFkyAhTrs6nbmsPd3YMWlYsxJRjAifqI7fVw\ngoIdEyka63I0zp1EsRXKKUFwzKP+qUFcn+BAMc64HcGLuBB2cMMewgC9qLAt00ylyUF8N0V6gZy0\nJ5YaKJ6gda3LgX+bT/LOIJftuQi1rYjbWJ1mAZ21VrK/TZ5dwoponBWs4F+Q5YolT1Ka5XHRFVfz\ny45HqFgG5x/1Av0fdAiMqMx60sF7tI7WtS63/fO3CUzIhaiVdNErgmKrR2qT7Cdz7gbFFdzzxdO4\n/przuHDuC5Qck5tzKe4ZPnz6npvhg6UiXml2o82i66/COyLPtk+tprJYvuSmfk/bCzGc5xLcVYji\n1fzbat2hC4qX65NWlsg2zr7+S5gZBf8J45QXVeh/eM709pWUvMZSp4VRk0DY9qnVrNm0hLbTXlsj\ndcn3r8KO//HQ/Jt/+44/uo3Xs65brqT33B+9pVrtV9ozfe1ka1q7RcfHaDE8HcCre2lmO0+D+k0K\n8d3y79CggBej2BGB6bOns1wgiSMAjLygknLQlmdxjsjjra3j6ROuY89EPcm6Ag1Lxmb03ZCw3L/7\nxmW4NRIHqipOUOquAQfpX9Y/7Cey/9A+kp/n4Fg6RwT3ARDul6y7mqVgReR5Rfd5WGGFyN0RQsMe\n6QUKOy5bTeK+ILOPGCBw6RD+tIfqCoqdNmZW4ZrT7pg+xj9/51JenJg1/Xc1ptL0iV6Wf3oziW5B\ntlMl26nyjzdfjCIk0/bk2SXa4hku+9pneaX50tKBDX14kL9NdOP4FXx3xjHzh17fkS/I+lqzoURo\nQMHM1aQCVInoUCoauuLxyWs/edB+4qEk8U3yBt7525Xc8fyxvO9t6w66p4ExsGOCckrghD3eV7dh\nWse0Ui/HRZs+SeGEEqVZM+MjtkvDzENwSKHULCFwrk9gxZnOOL/SYhv8ZH/XjDUcZFFkmO5SI4X2\nQzPrr2bVjgp/895HDiIvCh41zo7LV7Pj8tW89NEfAFB6vh7VVqaht69m3Ws7+dptFwPgH9E57l1b\nX3PblzuiHb++HMvT6N8rb5C1KUHTyoE3df5TZuouMV8FTZUSGqhCQvkKHp6hMuf+NJrloTgSUhju\nKxGY8BCaiuKrQeQbkoh8ntYHNKyYdF6EJjByMjjq6QpuQEWzBf3v1LBiBqUGHaEohAYEoX75vjWz\nKvEdCuFdGZzhEYRlIRz5PNREnNi2NIHhCmq/n549TRTLPvDVINpJQSWhEuktU90TJe/60Xj9YN67\nz32Gz17wm0O+X3jjVeSeb+CwU7phR4STf/LFt0wuNCXD9Gp27/wHASh4FS5oeYFk8jUWbW/CPONg\naKdqC/wZj8FT6qjUqXzvwKm87fYvckpsO2ed9AKXfP4BLvntY4e0I1RIPauhVWFifSPP982W+oq/\n6SH1gkXy6UF6PyLfa6UlzTixgKSqqCjoJYXcSWW0C8ZI3B0isOVgOTWlUCa8N8fcpYP8cNHttCcm\n2XLMHfzNqidJLRzD83sERx00W6CvnOS5YieZdAhsFZ86I8MlABQpP6N4gsb1VULP7KGcUsjO9WGM\nFWjYVKD9hztRqjbO3Bp5qOey4IYy/nHwT9Ta0mSGsxJXscM6eB4jx8XY+zcNZOYHyHTqpDaWqV+n\nSwKumtxarMfDfyCHmilMt43nolYdAs/30PyMAwUDw+fgH9PQSwpOSODLeZjjRZSixp5cPYbi4gRF\njVwSFE+izzy/jplzGT8qiu9LYfSylIsyilBs1ik1K+TnhadZa+06P+EDDlpRJTgicKMueza3ohsO\nwb4ink9ul5sXov+MGJklERJbc5gZi5f++TDK9QrBPSaKA6kXXiHK7niotkC1PcKDLtv2zJLSUI5G\neSjM/NQYPQWZqdZLLoWOMMvCA/jDVZwg9OxuwtBlm7arYcddJpYY1G0vMetxm/k3W4wd41Fqc7Fb\nLcaP9DjjR0+y7+waqkEFO6iilzyC2/y4pkqxRSHTqWMYLkJT+f/EvXeYVeW59/9Zbfc2vTMFZhi6\ndFBQEXvBmsQSE2OJimkmJ8k5JicnJ7+c5MR4YkwiaDDF3ogFFRXBBlIUqUMdhul99t6ze1nt/WNN\nYRCwnLzv774uLmaX9ay19lrPs+7yvb/fTAB0p0SiPsPhm1bibdfoWQhiRMb+ywClGxOoPqudZvxK\ng6JtCTJ5djBNBN3AHsxgG8wSq3KieQyS4zRePjQdX4OC5gF/UxLdJtKyzEUmz07tY3eSNpVPJUeT\nfv7zn//8lN8A7r33Xv7whz/wzDPPkJOTg8vlYvny5axevZr333+fpUuXIkkSa9as4Z577mH16tUI\ngsCUKVNOOe6K9VtP+fneu1ewcutchM5PBnpnzt3HA6Xbua9rFnp1BqXn05tVXt8+Z8zrtz8+7STf\nBHNhhEPn/Y3KwBH+OHE7yxd+NPJv5da5eM7pJfhWGbt2T0BrsSo6iSp9hFIa4FOq0p9qUvL/Pkuv\nmqMjpT9bTuKPu+eOee0uSRBL2wGBTL9riLhAoGBHjESpA2+XjuYQyGnULaFth4BjANTyHIzqUhxx\nAzSd2MwCHGGTZAkoUYFsnkmyQMLdazA4QUZziRRvVgleVI2UNUmUyoiahXv3dFiMmMVv9aI0diP0\nDyIG/JCfi97VjTBhHEpvFHtYJ/eVJgYqqgmJNuZWttJhuimsCtPtdaN7fKRKTLIOmJffwoF36hAT\nMtK4BPTbSJfoJPfloHkNkvOyOCdGKVrah/jiWCIYSTVpqXChp2UCH9sRpsdw71QQ9aEMudNBdDz8\nde08hDYHc2Yd5vJJ21nXdBp3LvqIJ0K19P33ePx7RYLTBPzL+ogEPXg6DB6KLUL1iOS9IhOpE9h/\nx8O05RmEZ4N8eoz1Nz/Dr4Pzqf1aI9nXA7yXqUV63kfp2d0c/MU0sl4JKWuSVJynZNlUQpb2otBt\nZ8WHc5H7FdyL+nlk1mOs2TEfsILDFdvmctMNb3L/Y1dRtbSFSFOAX137JO/ssnrVbrhuA3sbaljx\n4Vzumv8RKz6cy6FrV/FAejJSr+WUae0ulIHRylyq2OD6sz9gR7wMV7PCYFMOK806HnxxMUpEJHo0\nYO37w7H34vB77smD6B3OkeD4RHb46ys/cS9/2r3+z7TPw159MlNa7ewV8ykJRIlpdg4fKsPRrZD1\nCNijMDDLxEREzljV0RETLP00/1GwHbJbkMEhdLRhE9AdApF5WQS7wZfqd3JX1dtkJxr88oEvcfdl\nr3J54S4OZUpozeSi2wSyPgFbDKK1kC3W0NwmhVsk7BEIzjJIlpp42gViFdZxncgMGSaef5Qra3ax\nP1XGRMcRntixCMMmYCgmni7LQR6ss3RJAQYuyrBw9iE2JIpprbLjd6Rp7c/Fedh6DnhaRV79yW/5\nt6OXcfVFH9CwaQJSFvrKZFxHZOJXxTDHp3l/+kv8YOdSnI0Km3/8AHfP3cHs6VvZWl1Ccq8f9wGF\nxI5R8czIeBFtSZRUxokxP0rUbWOwz8saKjE+9qDbBCR1rEO/9d6H+NvvF3Predv53eE5yCEZwbCg\n6OkCC3XhqYjSvqUCJSEQHW9gD3/SMVfiAqYh0bapAlGHeIXFhAtgiwok6rME9io8Z0zF0ygTqde5\n65I3aPiglpzTQpTlROh8x2IInXjdQTp78kfaTQRdANH6P1OsM2leCx0+BxmbxOM3P8CaLQtGbyHD\nYvI+tKOK5y56lj9/tHDkOOCTZEzDJodl9hyo4cGPR+eW2uViwuQ93HnkYqb59vHCLms/lmi8gO4w\nx5AHAWRrU0ihsc/7jiMn1jEdDkQ3pCT+pfVcwg35xNt8Yypq8bZT6999wgqzaKaI26aSVhWy3S7y\n9pnExknk7owQnRQY0hK0Eiq62zpWW1xDK/ARurAGd1sSrboYJa5higq6UwAENI+JEhdJFQgki0UG\nawUMt4EhKiRLrKRrqljAHjLxdhj4WnUCOwfQDzWNHJ4wcwpmTSnp6hwyBQ4Mm4RmlwgcBNusGJk2\nK9kqx0Qq1seIVbtR3SI1k7ooskV4p2H6SU/95TNf4auP33jSz9879zlKJh7i7VOM8XnNFE2+PWs7\nNS/czl8+OIMt++rJdrv40w7rPrrk0q38fwueZ/XuhZ8ykmWZUhUxIyAYAnJKwBaBdL5I6bo+Bqe6\n0d71o7pE1kYm0RzPxenWeD9Yy2CoEmfLIInZ40hX5aB6RGpuOkxvoYJ3s52MomAfFBCdPpJFMu7G\nMP52k/i0Qjwft3HoO7mYooCnTUBJQtG7YBz04G1LIYWtQC18VjXO1kHL8Y+nyLSU8cEvizFWw9sX\nlbCho44vV+1kanknG0tKSdbqlOVG2N47Dp83jdufxm9PY5c0PEqGvqSXdKsXd6eItzmN6lOQRTso\nNpxBnWy+C0k1EQcioBsMLC7GmXUghGPohQF8TQlEQcERtH4jzSVgKgK2OETGu9Dc1j0ZqzFx9UJo\nsoKhCDj7LDWCilezeA4OQDgKmaHWn+ICTK+HVIUXW0cIvF4GJypInXbSVRk0j4lhN3H2iLjbkuhO\nN2ZdioAzza5QKZl8C0Gg2wXcPSb2QY1UkQ1Rg2SZg1gVyFOiKI32EX3kdJ6IrylF53l+dJtE9zkm\nOdVhQj4bgb0Kgi4gddmRNRnDJpEscxCpEZm/bC/JNTlIqsGRa10MnmaQs1fEVAQqXo+iRMYGWIfu\ncIGmEBkvE5qtgyEgGCJLJh8k4ZQYSLjJ6DKZQ37ydiXpukOj/6fV5F/Wz0B3AN1nYMggCCbjc4NE\nPy6gZEuKcL0TT2eGxlsVwEI6uHc5MEWBrd01KFER/1GV9vNcZHIEBpdmyLgEkgUCoipwzpc+Yn93\nKZrhZPqyAzR4ChE9Gmlfgt0NE7juunfpXF2F8+4eGitycPaI5DeodJ7twNNposQ1uha7yfoVVK9C\neJLlv3naBMreSZMxLZKprN8kcEQlk6tQ8HGK3z2ykrVvLeSWMzYQMxxMyb39pPPyU6OQrVu30tjY\nyLPPPssjjzzCr371K/7whz9w/fXX89RTT1FZWcnq1atJJpM8+OCD/P3vf+fxxx/n0UcfZXDw1GXZ\nk9neu1eQGKezJzskqH6CZN3Lzy1i2v3LsYVFnLucxCdlOf/aUwe3n2bHQn2FLX6ubT6HHz58yxho\n7oYhSFBwZ+GYbffeveL/ucTL+hs+O/HQrhsfOOH7SviLH3NWl/A6MuiGiDBESuHqMzC3N+Ac0Ejm\nS/ibVRJFEjmHsviPgH9fGO++II7+NNnxxSDLlK0PU7S2lcq1KTQXFvxUhd65Errd6tdsu1AhMllH\n9QgkKqw+NntEJ1kg4d8bRG9qBV1Hj0YxQoMI6QzqubM5dJuProvLECNxBq6Zir/JwNar8O6eeoRG\nN9H1xSgRkfxHPsTZLZFMOMgYlgapu9NEa7UqTqJHRVSh4nU4fNajxPblMc4douvGLF2LZc769WYG\nxytkvRKORjvuRhuGDTIdHsITFfpmKbRfr1G8VSNvt4D/om5ShSa7YhXc88p1LP6qpX0R3VhE+3Ua\nyg8sofm+90q57vL3uOP+1bh6hJFqk+DWmPHb5Xz877NJ/08p6ftKqX75m5TO66L991b/csFpvQx+\nI8aP8xp595FV2GJDQuunqDgM94pe/uVNY95PbCrgllXfRnfApuX3MeWPy6m+oJm/PX0BAGsnrgXg\nR69eP7LNk08vHfl7uJezes03R+C4BUu6PrF/wYTX2ydx3fytI9XUi6r2A7D8xlcAqN806gwNf2d4\n/Edn/P2k5zZs/9tA8IvYcJ9ozfy2f8r+PZ0muW84eX/9dD7cXoeSm7b6eYaSDPk7rMAtuFAlVjFE\nGJNrMUg6B46RMukd/dvZb1qV7ajMvPEt5MoJbnv1Nt58ZR6xKujI5rL8pVtIajZsEYs5NVmpEb4o\niTIpijsviRwZXU8KtosUbLceMcf2hx5vWa9A5yMTeKppLuW2MH5RQkqZeFtNbIOjgcj0cw6P/J3/\nup0Ptk7mjfdmojybS9+TlfjechOeOPr9c/76IxJ/L2XlSxeR8VnHYfZbWYoSf5RUk4+6979G7mtW\n1tAl2pj84HK+97O7GPxrxUj10RStMWMVInISPC948R81uGrCbgyfRtNXHqLtQDGR8SLVN48e47At\n+NEdI38XFUTQXFZAl83VkRMCk6e38afpT6NNSLHznhX4mqxjjY8zOesbH44Zy3lMN4qnfWyQFvjY\nOjdTE0kWm5gunUdXXsz4rxzm0ZUXs7Z5MoNTNCKTdBrW1OMYgMSiOJG5aTK55lAPFvgPSLQ/X4Nv\nqxPfUZEe3UeyyOTcm7d84txcoo2JC1pOcFVPbJnx6TGvPXMHSBh23HKW2XYbZ16yE7AqOXDiapmt\n8dOzvJkaaz/D5EV5YhKHpDFpqQURmHH+wVNu75k7cNLPkmkbmi4RTjrRhxg+TREwQffarb7RXBFD\nEfC0pzAUAe+hMGJfGCmaoejVZrRCH2JWR9AsPgR72MQRBEe/xficKtXJ5BroHh1lUCJRZsFyVQ/k\n79HJOZwlWSji6I4jaDqYx/Rf9w8ixTNkfBLhOhlnewzNCYYkEPs4HyUmUPi+jP8IRGo9yGmDnEaD\nQc1FQDw5n4BuN6lee+sJ4beZUpWDt63gw4zKD7dcw+ILd6PVJrnnK8+hTP9ifuCwGQpM/OudSAlx\nTN/osL326gKufezuMe999cq3WXPTif2j3OIIusdAwKr2OUMactJEiMQs/WGXgP+ogX+vQvUDJu+v\nn05sZTmibgWLclInXiahJEy6fj8BZb0fOWUgqhCfn0IwTVL5Ah1fqqJ/TgDdJmIU5xHYK1P75268\nnRrxShP7QAolYaActUjFEARE3SR8djXFL8axP2dw1q830379ePb/rJKNb0/DLus81TSHRzcuxlBF\nJv6gi46NFThtKuGIm3jKjigYpHUZm6gxMOhB1KykSMe5XuyhDPFqL+7ODK4Pm0gUSyidIfTxZZDj\no+jtLsR4GkFRULrDaF47gm71v0oZC+0SrVfpnScSHycQrzTI5pjISYFYFWBYfCrFb3ZQuCNFosyB\n4XJY1dBhy6rEJvpxbzkCQLLETsVbOr6jJlJIIW+bzMRVCQrf7ab1inxyDmWIpRwUKlFmT2whpzRC\nukQjm2tJ5KWKHYTrRfwHYiSLBVy9AnqDn/AMHU+PTsFHUUrei6AF7JS9FSFvZ5S8jyWy7+VT8o6E\nI2SQzjcQszAwVab9Gh3VJZCdnKLxvsnYgmkO3eyk9rEYE/+UIndPlJJ3Ixxv6RIXNc8ZaC6rAJO3\nTebyOTupnd7Oax/PYNP0FxgMuXH8OYeCXSaGQ6bwSSeD91jZYEMGOSST6XURHvCyq6UCTEiU2AnO\n1tE8CrWPqNQ+lsEI2ohNVKlcm2TC02kq1ifQnTLj3kxQviFB6VM2ah/LUPNCior1CWqc/YhdDhxB\ng4b+YtztIkZc4c+7FuHu0RhnGyBZJGL+ex5VL5mIQwnVcW8miFbZCNU7Kd2YIG9vEn9Tkvy9WcQs\n9C/U6Vrsxt+qEZuctfRTAVe3tf7+6IZvIhhwMFtMnnRqNMOnBqNz587lgQesQMbn85FKpdi2bRtL\nl1qO5pIlS9iyZQu7d+9m2rRpeL1eHA4Hs2bNYseOHZ82/AnttvYzOG/+Hm548Puf+CyTMyqcrtvh\n3useBcBzwMa6ZxZ84vufx4ahvqkig/h4jX0v1Y98Vr3mm7yU8PC9h24nUaljDwtcfP1m9t69AnNh\nZEzA+v/Kzn3yh5/+pSE77fHvfvqXPoMdS0wQTTpIZmwYhkVPbyimNaFqqlDiGvaI5VCoHoFEqUL+\nJqtPRz90BDQDZV8rZkke6RIPalUh8QoHeQ0WY5x9oYUNUX0m6fIsSkxECVvZMEGHwUkWzKF4Uwg1\nz01q2WzMrJWlMtUsZjyB82APFW9YFUnT5yZ8XopUnoi7HdxNCvl7TcrXD2KLCKjnzsQUQY/LJHUb\nrj4NW9QkcBhsMYFxRSGS47SRSar6dd5ePRe9x8n0RY088c5iMnkQLxf5ypff5ZJrN1O2rAVTNMm5\nqAthZoSKp4ZgIi4B8YF8CrcbHLpvCnm7Bd7vrKFbi3PP15/F87GTzB9KLPjXaTEOxIv52Y5lnHHD\nDuLjoO1iEf9WB4nyocjDhAdX/IHKV0xamgsRTGi7VueD6S/wiymvcPatt425htop4N+ORjvS/DCb\n+saz4PI9I+/PvGw/qt8km6OzaMW/UHpuO6oucdrFB4DRYPC6cz4YM16qfCyM5dh+0mHG3neWjzoN\njl4R0xT4x2tnALD5rv/ht8U7yTmrh7sCFpRJ2jlajb708EVjelan2744XP54GPo/k8So7tE7+WHP\nTI5uG/dPGxPA1SkQOCCgDTjBsILUdM6oA1/4roK33UR1ASaEL04wWAexCoHIeIH+OQb98wyCM4bY\nSCssCPfurjIeefZChNwMWZ9B2cxu+rJehNI0jbsrSE7IIp8dxN0sc1bNEcr8EXRdxDYoEJxmEfLo\np25NHjFHeIgowpFhseswftFJeLrOwGzL0Rm2HdusJEvvUuv+LfgY8ncNfShAOl8YkQECcHWZhOsF\nfE1gjw4FN0mB4HQBvy3Ff172vEUHOWQ/6J5FemKa0NShamN8LMxYTkJinE6yyHpsPrl1Id68BAt+\ndAeFH8EjX/8TR56sGxmvby784udje68dsmZVYgpMAvtk1JIsnRE/BWISsdUKsoZ/N0+bwHt/mzey\nbTrvxL+fdlxsFthhw9Uj4M21nJwcm4WpfvC0pwnskwlUDGJfZAVbZosbudPOGUsaSOefOGHw09/f\njKtXYP1fFzLthgaiEwymXG8liGb+ajmv1r1+4gM7gdmbrPl54PYVTDn3MH+Z+hhXe6IszT/IpIeX\n8/5rllyPPTTqmmRyDV74xn2feR8A9qMODty+gnFntnHg9hVcue5bHBnM58CGWvzz+/hwRy3CtNFS\n/ZRzxyYR4h+dmLV/2HRDQNUlkkk7hs0k67HkyFS/DU9LnEBTltzdg4hZHXdHCjQdrbcPMZbAyAsg\nR9JoboVUiZO83XF8rZmR625OjYFPhYKM1R9qMy1tTJeJq3fUUXT36Gg+x5hAFEDv7UeMJsnd0oW3\n1UBIq+hOC0rsb7KCXiVlkLs3Ss8SHVdbgoxXYIKzD5ugH3+qI9b4tZXYO20j8NuDt63g59c+zbpv\n3EvzJau4rf0M5tkVjp73V1ZVfIDc6OLn665G3RM46ZinsuGgs/FrKzn7/F0sOquB+lXLeSaWMxKU\nnigw1u0mP80/yLK/n9g/KvLEkX1ZtNKMxbkwqGJKkDxtHO5unUBjhug1MfxHNQbr3EgpAXtYI/B+\nMznvNWM/0EnRthiBw0mUuEHJWz2obhHDBnpaovtrGdR5MVKFJqYMiSIRsSdI1g/7f1SI6haZ8EQY\nMZFBtx+TbDFNfLv68B5NsO3F6ezpKGP1M2eRLDVovuLPaOUZxOfyyH3Iw6RftiA7VMwcH/55fRZk\n3BDIZmUOhwsJpt3sCZZSkBNDL09brNhOEykYJ1YuYWvpJ3H6BPxHs6BqSE2dCIkUmco86Ati+r3E\npxaTDdhI5UuEJinYIiaZZYPkl0VQi7IW9NcETwtk8y19+LL3U3h6dJL1RSSLbQQ+7gX5uDAjNIiv\nITjyMhMQcX3cSv6rh8hpEAg0ZRBbuolNL8QxYGLrjpJK2hhQvTgkjXH+QXJKI5iCxYhuyIwQnhZv\nTeNt06l6KcLEhxO4WodgP7KIPDhKymiLmeQ3qLg70vgPxMjfKaA5QZsaxzQEYtVgs1scG6Zdonyd\nQNulftLFLrTAiR9sju4kgm5S+nYEd1uS/B1Rdt9zGocOlrF80QbWJFxIQQVbRENzCHzlr2/iaktQ\n7IlR4oxa7WxuAykpgmAi9tuQU5ZsmqNbRo6P+m0TnklT++hou9XAdBdSarRdQsoaJMocxMdZD4dV\nB88AE5w3dRPv8CEsCoPNYEJpP1La4HC6hNwDKo03KyjRLHl7kyOPxpyDSTzdGgjCiAyQElPJOZSk\n9rEMDd9dQd8sCXejbUR6JzzRxTV/eQuAgh0JznK2kzZPjV791GBUkiRcLgt3s3r1as4880xSqRQ2\nm/WEzsvLo7+/n4GBAXJzR1kPcnNz6e//bKRCx9vW1TPY/PzMMXCff3zLcliVuMC8q/ew9+4VXHb1\nZn7y55us9xdbN7e8KMScq0/eP/JZTEoJeJpkkmXGiGZa87I/M8veQ6LcYN7MRvbevYLfFFmeUMOC\nJ7nlprX/q31+mnmnWuf3f5Pl87PYsEA0QL43gcOmIkkGpltHd5kYikDXhaUo+1tR4gaOngTFv99M\nzt4IpixBVy/S5DrMnfuInDcR02ZNMtUj42lN4W1JIidNwn1esgUaWq6GkJDJ5OmYExLEaqzG8Zz9\nEC+1oea6UEJJPI0RhLLikWMzsypaRyfuQwPY4jpawIn/XSelTxwgPFeleFuaRJGI7rZR+tvNBCfZ\nrMU1KzLObv3Wtpi1wOY1qPS9U8b8aUfom62w4Ed3IOgCvmaDird0VlS9jKtLRK+PE5ug8fJDZ7Er\nVE7Xi1XISZH4syWUBqK0XglX/3YdC7+xg3iZTOndR5CTBs4BjeV173PWkz9k1d1XEZ2iIqomPzn3\nZV6e9xCNj05Ey0psfHYWgiYgZAVUH1RM7yY4WSH8zTj/1nolp//XNvK3ytaY7gwdWpwr3HFCk45b\nBETzE3IFwyYYoG/LIZ6xsfVlC2qlO2DnK5NR8zSWzrcaErvWV9Cxfhy7X500ZvsXn1085nXdpBMz\nVScrRxfOJSt+iOYxyQZMzNlRHnM+8QAAIABJREFUbpmwmfFntDL+mTvwi06m/HE5Zxc3Ur/pRp6+\n/XeMv9Ais0gXGew7WMFhdZSF97n4Z5RrOMaG51Tdo3eyeIm1dlTO6/inV1B/W2xVfdRClcvO33bS\nufx55rgtbqIkoeBDkfztEvEyK1sdvMDKTA7MMolVCsRqIF5poGVl1IDFQHzJpVut3jObwfS5TTi/\n2s1tszeBT8P1lgdBA0OVcPSLKJLOK3unY3Y5EHTw77IR7vbxyO1/ZH+4iMNHSlBb3WgeEz0/S+T0\nNOEpVoVg2BIln7zpxgTOrhjVioFuGgT2yyhRcex6Y/18XDLVugdDUwV0m/W5nDLxdBqoOaPOtPvq\nHn5yzfMIuhXAZgIiuftN8vaYHHy1jpDmoTDHkjbJegXWPbuAwnU2Dn9t9PcP1wtWb3axxRRZuE0g\nPj2NbhMo2iQivDeqj1gsJbHFTG685zXrfD6Ce/771pFxADp2liJqVqAJIEgmybSN95K1nLGkgdon\n7kQ6idSjIwix063KVdk1o0RM6twYkXlpvvTNDYgXWEFm+qwYsV7r4bV7wEr63H3/Hbz94/tIfZxH\nqM+HcW4YT4eAu0tgxzPTcHULJIaIoLRjcjqRuWnKrmkmUWqy98mp+I6IbNlWz7fuegGwAtIvYgf7\ni7jmmbv5Ttdc7n/7wk98PqwHag+JXPW3f/nc4096eDlvTnoVgObLVlETCJIuV4lsK8Q+IGHu9Y3A\nePetr6PojE8iNU5k2YSNWNyJIJgYqogpW889wTBRIlkwQNQMxME4YjKLtNuqAInT6zHTGYR0BvpC\nCLqJmDUxZRHNLZEuNMn6LTSOELIhSQYI1pos6iCnLamX/hkyqlfCHlJR+mKYg2Px71JpEWYsjmlT\nyNnWBZJI+TsZ8nZFyXoFnAOWZFq82oM8KJMtcBKvBB2BNjX3RKcMcMIe0Gu9Yd5O1lD9+q1sfGMG\nde99nfpVy0e+a/uiyCvBpH7Vci681EIGFNuj/G3cRkpO72RV+2KW7l/2ieMZDkzNivQp+1VLnFFq\nigYQZYNkTZbBWieFm0N0L1QQVYN0nkK2yYdnbzf5645S/UgTzoYOei+tASByRhWmAJ1nu7H3JjHd\nDgreOErt749i61LQNQm9xYNWmiWTI5CoMNn/ywoKdqkIDp3gdAGxL4ypSPg/aBkhRwIQVA25rY+K\n10J4troo3ZzC3SEy9Q/LcXvTfPPfXiQ0UcEoyqX8rzbidTmcVXKE3qAfQTQtcreMDdMUKHJZlSgj\nrpD1G5R+oCGoGrmHspjJJIYiYN/bhum2AhYznbbaOEoK0f1O3IcGEEyT3H1xEhUGsfMSxNt9xHbk\ngW71vZq5WeKVVpJZLdDome8kWSAiJ3U8rUlMhx0hdRxHhSzDQMj6O8dP0ett4HXTsryewtePWonF\n2TUEJ8m4Bgz6FhVQVRyk3BZCFAxiqp1yf4TCSf1odUkSxRJ5DTpqjgPDJuI5Gkfzjw0Ys/5jmuxl\nEd/hGD3zFQZmuGhd5ic8xZIjNNrdSCGZbIFGqs+FkjBIFTkYmC5RviFB+3nSmKD2eJMj1meZfAcd\nF/hpvUwi/yOJle+ey4ovX8lvlj1F12IHhgS/fu0KAKb7Oyl3hBGz4OySMGQTNBHdbeAImeQeTFOw\n2/KXEuVOTFGg+/RRssfe+W4cgyahyS4GprtoXuYCw0RziHQv0Tl6l8iUoh48rQLB18sINIhcW7MD\n2aFx+HApzVfKrD58Gq2Xg+Sy9pPJsxOuU9AdMplcO7bBLKpHJjTJgWGXaLnMumfj45ycfett+Jqg\ndGOCkk1DCdBDScoU6xqHJrtQBIE29STZ1CH7zARG69evZ/Xq1fzsZz8b875pnjiberL3P4/JxyBG\nrv6TleVKleh8+I/pTLt/OWufOh33EktwSN2YR9lFrWibctn+j2n/q/0O97+4OsURcqNp9y/nkj/+\nCEdZnGeq36b6jVtZ1ngh0+5fTvUbt1JlG0CbFzvFqF/cDn99JR/Pfg74/wdieDJrb88jnrYmvRSW\nkROW4yanTdTJlTjbYwjJDMLMKRi7D2B2dGMkUgiJFKLXS8YnILZ0o3kUWq4UiVc6OXSLk8Ep1kPY\nkZNGdGqYNgMkoNmNKZmYsklwhgWnEbM6ifEB6OxBbzyKoNgQZBlUFbm4CKOlA/eOdjBNCh/bSWxJ\nHbnbFATTyhQbNhHz9BkoCRN7UMSUTLrV0Uyup0sjUqNgD5vUuAbI1KUITxRYNPsAWa9A1yKZC/77\nh+jzopiGyPzpRyj8UhvRv5QTOKLinhRm8Jw06u+Kceclefzei3mnpRZPp8a+3mLU7wRpXSagI45A\n0hyBNG0Xivz3K1fydqKO0Gk6tlY7eed3oXqtQCKTa9LzQZmVmXzSR/Q3FfyqaA9y2pp3ynt+3kxM\n4I/hSlQPnH3rbXSdKaM7RDwH7CeEvg9b3tndZLbkMe9yKzDLn2/BiL5/+jo2vzSD4qVWgHnTDW8C\ncNtX17L69vvI5H+yEfVYYqJj7XjGXTkuWILeLR5e75vK4Y/H4aqOsmjPVfz65r/z/KuLkHZ6mW5z\nsCCnmWRdBkeviKtVpk5x8+od9wLwn3+74ZT37Ims7tE7RwLAje9Ya0frhxbD9j8z+XPxoYsBaL7o\nEf6l4P0x+x224/tJP8/+RQ1sUVBiInpCJlEiYHg1dIdpZVxLUjgaHYgZAU+nydo1C5hz9V6kiMxP\nKl7DpWRpiJVipiVm3bKHwnM6mVLTSbJSwy5pXDV9J7kNAnquRrLYZMrEDg5ni1B1y+G0V8dwTBlE\nEIB+u9VCcQwkeLjf81hzhE0G6yBeLrAk7xB+0YkkWJqgviZLKuRY6G1kgsj2B6zqWW6DJS8A0D/b\n+rxok0i02nqsZR8v4hevfIkPf72S5gv+ws57ViDc0E/fXGj47gruf+dCMs8VoboEIhNN9n7PcmZr\nHx/9/XMOWuO7es0R5lyp1z6yXyVq0nee5Wzd8BMrYBqu4APIaZPgxWkevu5hAJx1YyGLSqudF+Y/\nzIvdM1ENCU+bwPm3bD7pNfZutpyAztXViBcMoC0dxGbTuHjSPp57ZCmhzgBZr9VzdNvC99GWDnL1\nuF1Mus5CMMx97vs4ghDYacMm66QKYMr1+4nNspIX7s6h4P4YNK3/Iwedq6txDIxeB1+TyJ8evAqA\n6IIUwvmjlY5Ps2Epl3E5YTDgw75K7AMSv/nq38lOSI0EiKmPT+28fBYbhulO3XoD0ayDW+Zv5O5r\nX8I1Z4DyM9uZ8NQdOGcHOfOSnfR+UPrpAwLefTaEFifZrIzLm0EZlFA9oNsEBma4kHqCSPGs5RDm\nuBAkCSQRMRRDcLsgHCE5twoppRKtkulY6qb9XAndZg7NVZ2a6Z1UFwYtsr6CLJrbQKtLYsiQLtIx\nJQHdLmJ4jnG6RWseaq3tmOkMZlsnZmgQRBGlP4kYT5G/O4mcMfB06rg60xRuN4lWKGSKNRRBJ23a\nTnLWo6bVJtEdJkv3L+M/+qdwk6+P+898hoO3rUA87P7U7T+TDZVl3nh1HvWrlvPYFgsp096Xy4bJ\na2hpsK5V/arlfPtLr3DwthWjAahgIXhOxua7ub0azRSRJAMhLZEsEsgUeSj+UCVVIOP/oIX8nSZG\nYKwuYtGrR8lOLEW3C8htfeTt02j+V4kj1/pp/F4Nh35Qg1qRxTTBHhKQu2zYQyaeNgHvARs98xXk\nbhvuDgEzL4AYjoMkIcSPcXQl6xqK8STOfoOWSxz42nQq/95EstXqbU4Vm4Sn+XHuaafrTJF/bFiA\nIJhgCiiKRjzkoj/mpnUwh1jKgZQQkTICvXMUzFgcQxZAlNAcAkZ5IYQGLY6N2nJse1oQEyl0t0L7\nlVZPc9sFXsjPwBE3gf0iwqQ4Cyc1odRFMZOylQCcEwFNID5RxdVnoNtFC4aeVUcCzxGmXk1DGCpw\nEY5gOu1ohT6q/9qCqVrVSDmuktOo42mKEpyrU+WxxjgQLCbPkSCrS2Q1CcWmEa8ySOeIDNbaUIYC\nxeGg0PpNBWxBa0EbnOIlVeSk7WI/9jDo54XxzutHzdNwdwn8yyVr+M2yp5BiEoIqEpqkMDhBJl2Z\nJV1oJ3+XQP/c0R5zNffESCxHd5KSTUkC+0Ty9sbI3SmSzXPw832XggF5u6JIKQHb74NU2/vZOVgB\nIhR9lKH8HUtZQoqLJIsEBNVATuh0n+7G3ZEiXuGgZEuScL31GxZtS+BpS5G7P4m7z9Iubr1YQbiu\nn+bLVnFp/V52v1tHsszk0hs3kVoaZ1e0HFuDi9zyQfJrQlxTt4uCLTJCm5NkiWOEBbxnvh17KINh\nl5CTOv4WFd0uUbzNSvraIjq2wSze9iwdS8fO/b90LebIdQ7qvnGQXl3EJpya6O4zBaMbN27koYce\nYtWqVXi9XlwuF+m0dXF7e3spLCyksLCQgYHRPou+vj4KCwtPNiQAicpPQkLUY+b/sKbnsSYcR2aQ\nyipcfP1mll774Yjjm6g6OdTkVBYfP/pjnWjfANI2H1P+uBzPARtrat9g790rmFDZyxXuOPKH3hNu\n81ntoxt/N+b1sY7o5w1CT0WT/s8yzyEb8YGhG7A4g5QW0BwCA3N1pLSG0XAQLd+LYFhBipibg+Cw\nE5lbiiDLmKK1QAmGiezL0n2mgehRMRWDn57+KrdP3khVcZDiqiCmbGCbGMUWksCn4ugT8bWq9M90\n42qNgjEE384NIHq9GOm0xS6oZi2a+827MdJpvIcGKXrbCq58bTrKlv1IiSy2uEmyUmP2tKPkyIkx\n5+k/quJr1Xi9bTKBjQ5Ktmg8Vvk+23+xktJNGtlzIrgdWTzuNB2xAMkHylj6IwuuunPuM/x09mv0\nnaaQGHSSKBMwDlo3ucuu8oval6lcY/LELy9B9Rm0XauT/7SL8ol9NH51JX86eDZyIEumVKW1LR/D\nZVhMkz4dQ7How5WEweB4hdk/H71H4hUmt/h7KJCj+I6aJAtlBB3iJdII4sA8sQILwXdLAPjwZSsw\nC79XjH1hkIeeuASAng3l7Pv2CgpkK/lSqoS58/D1Y6Q8TmbHwnaPhdcmKzUy+Qb2oEjzm9XYgyLG\nhwG6+gI81HE2ek2KmZftZ11S4cmnl9J8gQV/vPeWvzJv55d4NX5qsrTj7fgg72Tz65+Z/Fk7ce3I\nfktkz0jgeTLd0S9CdGSLmfibTBBN5BTYuhTK53ci+LPY7BrpYp0nrnyQ2DiBaecd4t0dkzBlk+X/\n8V2ObKmk6eF6nO0yex6cTvD1Mo68V427RWbfoXLaUzmE660xD9+0kn37K3i043SCjXl4ChOYO/wk\nmvy4/SmU8gTZgEFsnECiVCA8CUInuETB6RYJj6fDZMvgeAA6tDihyQLB2QbOXhNfM6Rzh5gZj4wm\nPHqXaASnCtz2k5dGZL5Ul4A+NU78KuvezN9t8kHaoPaJO6l97E6iG4somdjH1AeWU7hVQMqaCAYU\nbIfqV25jza//h7y9Jou/vw0AXRFI5YsEL0rh7jaY892deFqEkcA0Pk7AedBB/2yIVokkC8UxVZmt\n9z7EkwtX8V68nh90zyLW5yFZYo4cr6tX4PLnv8943wBJzXLWhhE3ABfdsolMjlWpzBxX9P/xxDf5\nyeTXkdbn8M6LsxEMCDTI2GJg7PPx1JE5yBsCPPPweRx4ehK6HbzNIjfe8QY771lBaNBN2Rkd7Hxl\nMv4PR52q6HiDzAmQldJxBY7ffG8VABWFYcx1nz1wfHPNPNYkXDS/W4WUEYhss/yEF4OzsR1xjsjb\nfFYzT7DsfPcrFuNrNmeImbvDw9qJa3nyH+fw21cuZ3xOkKaGMnLqQyNBb9b/2farxE28raB2ukn0\nujFs1j1kCpD1C2QnlCB1BTFCYeT9rZjVZZg2GdNhIz65EPJySBTLpIpdxCrBt7CP4kl9CEUZlPIE\n3z1rHT+oXIdbsRxqMyljOgyEVifGkLSL6hTI+mWEjA4lBQgzpyBXVSCXl4EgYCQSGOk0ejSKvu8Q\nRsNBhHgSecdhbIMazr4sciRFeKJIpM7SHw1Ip9afBqhY1M6KeU8ipQU6Pyjn2ZfOon7Vcv71qa/x\nm+A/T2v94G0ryJRlR/72FlvzWWx1UPvYnTR9+SEuuXQr2coMf3z+spE5l83XkRtd2MLSSaujaouH\naNrBzPIOJk9tQ/WZhOrtdC6W8R8equzsCaO7bJgeF6Zv1Cm1HeoaWYuUmI7e5kbL01BzNfRclaun\n7+DMCUdIlukEZgwQWqCSWBS30A6TYkx4PEjp6iaSVT70fD9GwehEU2uKYUiDnXSGnO191K3oxLe5\nheSMCvJ2Cdz39FUU7DDIW99M19Xj8TUKiOVJtJhisaMn7Sh9Cul2L4O9XhJBF0ZhFkG1Kuzd19aT\n9Upg6OS+04LUF0bweTEdVhXMLCnEjMaIVdjR7RD7cYyKJW3UlvaRLVaxL+vj0vENnJFzhGS/G0de\nCkEVyLR4KfpAREhK9M0RcTYNkCpxQzBMau54oktqMYpH1wjTcUzSIzSIfKjdqswCtgMdqF4F/wet\nHLkuAHadC3L3UiBHscsawbSbCvcgogAOm4ruNAhNNYlVg6Bac3hgjhUwZgqdDNaPXr/Avhgd51oq\nDLFqg2VVDZR6okhuletvfotrvId5cWAW5W/reNpEDAkKd6QpeVOma5FIcIZJwUejSISsTyZeMzZp\nMWxSQqVwaxTdqZC/I0q8zIa+PUBOo3WMZ56/h/urVvN892x2Hy3HkCFRYkPKGEM6qsIIdD9VqJDT\naMUn3tYUzZc7cfXpHL3SNQLF7Z3nJh0QufGaDdjDIsXuGPN2fokdAxVIaYGqBe3sGizHYVM5+OJE\nNKdJOOQheCiP519ZhD1qMGlhM+E6CSWaRXULeNsMOs9yo7kkMnkKUlJDVA3k+HAwas1RKa1RviFB\nNse6rt1nuImpDsrr+miL5VAkGZTKp5bR+lTvMRaLce+99/Lwww8TCFgT5/TTT+fNN62qyLp161i8\neDEzZsxg7969RKNREokEO3bsYM6cOacaGrwq8dqx/WvSMRnZ4T7MvXev4LobNwyd/NhD9joy/KZo\nFxuemYc4FEt+ViKh+OQM37zJglQlpqYRj2GVHd53vEYDYWz/k6hBdk6c+k03Mu3+5RxpLPlM+/s0\nm/v42B7ZukfvRCvJUrP+5s891nCV7blrfw+Mwnz/qSaA+4hCot2LnpFIjtNQ3QIF2ySyOXaCty1E\n2LIb3WVDdLsZWDIO0eMmXCuhh8MUbg6jVhXRsUQh4EtSN7ELtydNQfkgId2NIujEMnb6DhaghGVc\n9ixKApyHHGRnxrFvOWT1Sx1uQZ1hObJqfRlGzckz3Pq+QwjpLGJKwz6oIoyvJDQ9QM9iy4EHUE3p\nhDBW/8NeS+6hXuHSwxcx79/u5N1HVuF/3kv4QB7mhlx+VfcComryy0Krqnh2wxX859tXIBgw7kWR\n6vObEQwBQxEIhd0sdeq0Xiqw5b6HKN+gY2qWzpb4gNWzlOhz8/cFf6XyBYHKFwRQDKhKcs5pVs9W\nqsgkXiaj2y0ZgYHTBGIVMjkHrErc7359Lc6gRrxcQC3LEqs28M614POfkqgiWW3NzX3fXkFmSx45\nZ/WMvAa4yWehEkKaZ6T/s/bCpk+MM0YPuEMaGWO4zxQsGPzdF732iW2dBxyE007se11sPjyeO968\nGe/ivpHPf/SXm/lw5vPc/+6FY3RLP82+aPXx89jJAt5j/z/+O9/qnD8GNnzTJW9/oX0HdtmIzU0R\naISBV8oxVBFhqx85L8V179zO47f8nu0f16JEJfJ3Wjd7YKhtbphsyD5okinPkskxETIiBwcKGTen\nEzVgMP9f70T0qbQPBLCFROJBF7mLe5g6p5l4vxvHRi+mCJrbJFlhPbgEfai/5xjL2yPg6rH2tyTn\nIIfVBAYWkZVp1xmcbDIwV8eUoPf0scFC0TsyArDqv66g8CPrvWu/s46cV1w0LHhy5HuN2WKEcQny\nGkzuv3kVcwvaMIZ8oXiZJaoemiIwd8pRTt94F2f9YCsbf2exRktDGeKXT7euydoDU7BHDdzdhlVh\nwGJN9R8ScPabuPoMNPfY4/zOv3+bi3y7eb97AnJIRo5bjLnD5m0VeL1hCmfmWeQ6w7DXxBkJXv/L\nIuzhoUrlTMsJ2nmPNf++7Inw0sDMIVZd2PivvyMycchJiMJpxZ1kchjRKY1NsCb84w9dyJOxPOiz\nMyXQje04QI/h15DSo9qlxkkepz/+vdWLHlkzut6e7LvDdt5l1oX68RM3ceYlO0kXa5Qu7mDm+QfY\nF7TaLG599FunGuIT9sMvvzDmdSZP54FnL8c2M4wtbC0+9qA0IifT+NWV7Hm7DtNuEP8on+Vffo2j\nsXzmzh/bN5ouOfECqTkEDEnA1Sni7JTBtBiENbeA/6iOlFJJTbEkhLT6cQhdAySqvOiNRxmslYlP\nzmNgcRZXWxQtoDMQ9qIbIqYBdtuQwymmiGQtGbOiD0TQLFI/AMOn4erX8O3pRxwIkxgfQMxqkMla\nkMuToNK0bmv9VgaSyJEUpk1G9ZgYZWkq/SHShoJPTJ1w22HzKmnOd1kHsuam3zLhrOaR3s31ffWn\n3PbzWP2q5dg7bcjTItSvWk52dw71q5Zz+KaVNH5tJR1anCpHEDMtkT+/hx9++QUO3rYC24B1AxrK\nyZ8FUhoG2gP0JHw09hagV6fI5IIjKNA3z4uRn4MQHCSbY0OIJzFdlvPXdqPlY5S+1oleUYgSy7J4\ncQPegjhCSiKnIIZLyrLQ3wSGQPaNAuztNtSwA0fIQNzjpfGnLnour8EWziJ1DyD2BEnMsngE5ODY\nJLgQS0DaSki4drdT8MZR/E0G0SqJxKxxJBYlSJSBaYgImkg6YUMbtIFpaSA7OhQwwExY+u3OfhN3\nrw4CRM+uRassxNQ0EvUFiINxMjkKYjxJ1w315K87SqpMo7czhyPdBTR2FSIHFXRDxDAFWtKWf5Ie\ncOJuk3C3W4gU06shpQTari7D1RrBqCnD3p/Et7EZob0HvdZCHAmpk0Nd0TRMUSC6oBKzIo3dnaVX\nDRDSPWQ0mYwmIwoGlf4QdXn9CKaA6dXwjkrRkr/dWivtfSkC+6wFrm+BDy1gp2ZaJ6rXZMqsFl5u\nnkZnzI+hiXwcGYdDkJjm7cTRncTVY1C2IULWL6M5BQy7SWC/tea3X2RlBkOTJGwRa84OTj5xMUqK\nW+tv7p4outPE22gdz69L1/HvHZdR6QkhDVgPJMG0pBH9hy1lCVOE4DQXsXEijn7rNwtPdFH9UtJi\nc34xOdJDfsYNOwgtSXOW5wDlbycpdUXob8+he2cxmTyDw21F1HiCpDIKeftUEGHCwzqOyhi2qRGy\nHpF9bSWUvZeg8RaFvIYkvUs1kuOz2MJZHH0ZBMNESmnISQ3VNxZFYSoigmYdi2PApKmhjPbmAgpd\nMd5OlfJWdOrJrzmfIRhdu3Yt4XCY733ve9x4443ceOON3HHHHbz00ktcf/31DA4OcsUVV+BwOPjB\nD37ALbfcwje+8Q3uuusuvN5TVwrdDQ6UkDymx1M8wfo/6aHlPP24RZgkJ+CWm9ay9+4VvP+d+4hs\nKP7C5EGe/Xb+/PdLRo7F1Sny+rfvRTwjzN67VzDn6r00X/5n9n5vBZncsQ6GbbsH5SPr/Jzt8hc+\nhpNVRA5/fSX3XvM4crcNufMzMoGcwL78jKWPF2s4ceb6ZPv/LCZogAD2AQkhIYFgMjgrCyY4djST\nv9OadG0XuhEUmdx/7CY1pYxxf9hN6BsL6Tk7l+R/xDDGpUlmFBKqjWxWZlnFXj4arCKsudF0EW+z\niBrQ0dfko3osnanyRxRCV0xFSZgY02uJjbN+I6U7SjbHyvIL8olLf1pHJ4ZNwt4SJFvgJlojYAom\nvsI4efYEfikFJmT8n/SsTNlyPBKqDdU7LKugc/GS7cy9YTc/+9ZtXPHbt9ia1nn3kVV07C7Bnp8i\n74BGrFyi54kqMgUaHecJGFmJJjXOzKnNLP7W7WS+HaJytUDvPJF3H1nFV1vOpnnZn3EIGk88dD+x\nOyPkblNYUNXMNG8HBbN7WXLuLsJnpolP0NDtYJalmXPLLtw9GlWeEMEZJp1nySgJkPpsloB17MRs\nlJm84yoDisG+b6+gTYujTk8Qfq+Yfd9ewddaz2TKH5ePBJMxwzESvDe+Mf6T98kxw95yg6UXN+WP\ny8dURgF+t+4SXr/Tgtumig2yfmthi75vyTY4D9lxdkh8b/yGkW2Gg1pnhzSGefXz2P8t6Pvx4x5f\n6bTXj2XkU3M11q2fNeY7X0TzNJVv6franZbTeOFNmxESMonJGeZUtGPzZPkoVc2yRdvJ2T+63fFy\nP6IGGAJaQGPqjFayu3No21GG4B96uAYS5Kx18+at93LVzB2ENhZzYJPVV6WeHWHenMOo+RruFgkp\nI6Dm6shfGk0kpPMEjC8HSecOBXWCQZ3iZpzswdkrYO9SyN8JvsMyug2KNo99XP3Xf64it8HE8TXL\nyd5670OsajiDF391H7WP34nqssa9/+BSCzoM/OS/buWKwA48QwG37gDNKZC7z2T7kSry1zp4738W\nMFg39l665ad3M+e7O/F9ZK0tvUs0RM0km69bAajLYpMMTbFgzADf/vfnqd90IxOWH+Q7B64jGPTA\nuBTpySmEvAyJcnMECRT42M6jKy8mVmkdV6TWQGx0jVQod96zAvu7PhZ+fQfVL32TnfesYOavlnPo\n6foRVt3F//19/IesNUvKwHWFW1HdJv5dltMQ2CePBIu/fPorNF37EP9S+A7zvrZz5DwjtQaKK8vE\nyw/DnAiReWlU31DVz8cYCHGsyiC7ZOw9LJ4ClLTgor1MdnWNkAW9/9pMHD0yXRvL2bluErEPP10r\n/Hg7cPsKYsYoWRHA0WssSPTueU+fcJtJDy9H0C1SEIBz3Ac50lzE7nX1zL5gP+J065yGPz/eBBOk\njIU8UGJgD1qEI6kCE18/HA0DAAAgAElEQVRjDCGt4Wi3OAyUtn6yUypwrvmI5FXzKfwoSc9XMkgD\nNtL/k6KgIkx+Tgy3LYskG0wp6GFA9fJOfDLtAwGc3RLxMpGcPZb+ov5/yDvrKL3qa/1/jr1u4+7J\nxJUYIWiwAMW1pBQPpNBChbb84ELvbYHiFAgkOAQL7gQIxCACcZKJTcZd3nldjv3+OMlMBkKglN57\n17p7rVkrOe/x87W997Ofx25S9rpAuEzB8LtIjC5GdYtgGOi5GfRMyQFRQi4pRgr4EeyDYbxGPI5g\nmgjxFO3TA2h+64O55DSiYOKVDu6M/q3UyjivvPQuZq24ht3LKvprRJtWlvzAr3Zw2x9eq23xs/2K\neUw5fkA8+dBNZ3HUK7/n4VdPZsVJ92ICH/eO5KbOgfIsrfggzs5eCaPmzfmYhoDNppEoT5PIN/DV\na4jdVgZH0E1wORHbe1Ar8il9rpbw9HJIJElmO9h9nYxTUjmrYhOlI9qZXfklBUofq0JVmG6NQK1K\nqijNyL80EM8V0R0mFQ9D/sdtyKGBrIt7fSP1l1ah5g5eL5sZ35YcSvusbJWzJUrOG07yprTj88Yx\nFQOXN4XotciqlKgVCJRDliOqVibI2J7E/1UbgXWd+GqCSLua0aoKcK2pxbTb8C7fRcexRUz4+RZu\nX/0WQkqksqLDql02Qc9L0dXmJ2Uo1ITzUfokhj8SJj3JqmUTNMhZrmALW31EzXKT9ttI5rtA04hP\nqyJUZcGy+qZbbcUsGkBPJiZV9v9bd4o0n2Sgx60+mClHyZHDHJpfhwnsiWTTk3TTk3Qj+NLkfSoP\nyli2HWk5i8kC63pqhoNYMbhubWViZhPFwzs4LXcjN496D00XGVnaxnhfMx7RwaFuKyjoq0/SM96H\nqyGGrz5F9dNRstdb1yj5IES42muhj3qStB7tR/VY47CpiBhOmXTWANrEcFrPsS8w3znVx6V7ziKp\ny+wM5SLHrWPjeSLepjRKzCRzh0bGDgNvo0bh8oFAxT6SoL6hIp2T3CSyRSI3R/ly3gSc7jSPdx6J\n5pTYFc7Blx9BjgsYDgMhJrOxpwhzhwcxbSDFBRqvMyi6V6HIH6Lo8t1UPWLQfIyboU+o7J4jUfKW\nyNAnVWrPdaI7ZUxRoHOSm+BwF8kMae8zCaQzbKhume5x1lxz8R/eZfyEWqSoiEPSyJUiHO7d8a32\nvL99rzN63nnnsXLlSp577rn+v6KiIp566ileeOEF7r77bpS9WPATTzyRV155hUWLFnHqqad+36kp\nO7mO35/2FiIm0ZEDg8eW6+dRclJ9///lhLVtnwN6lGsHY+6byxH/+H3//rknHJgoZX878YLB1PTy\njF6SOSYrf3NP/3lmPXgDxucZzG2Zxl8KLZbA/R1NzTlYxB2+DV/6Z2z/heeQaQ3926qfuZobXv1u\nPa+fwnIndBxwIf5DF+eGYmk4KVHw1Em46hXyPpWxRQ3LEdRNzOnj8NeaGFGrM3VMtrPj9tH0jDcp\nO6eWWMqGnpAYmt3NpJxGNE1idW8FsmDwdaSQ+IYsCj7tJWudhL3PJHe9TioAHVPsZK3vRbcJtB7h\nRU6ZiONHEhmdTSJHITR7GsnjJiBlZSIcMqq/nmafiSs3ouYH2HOmgjEyiqAJuOxpCu0h2tLWCtAe\nsiZqUxQwJYGWo2RuvfZZLjl/MW1BH8Mu2M5Rl1/BzQ8+SZYS45YCCy2w8L5ZXPDJVVS8ewXVkxrQ\nmtw0nQC6Q6B3rEFldTt5X1iDzyXbf8HrQz5GShoo87NQ3Vbh+pzmQ9n23AiOuvwKVieqOHn9FTgV\nDW+zxvq2Et5sGY/8jyw2zBtP7cynOPmQTfRM0tEjCl89bunnbrtlDCUf6xiFSZydBp56gdyh3f0L\n82+avWfwcODaaWfUg3OZu+ecfjkWgL8WDSbrevr5Ew5agwqW03jc2Wt5cJUVVEplG/0O6QdX38mo\nB+fi6BAplT2ksg3khNBPE77P4kPTxKvS3F87k4r3rmDrtfMG5J+waPp/jP13kYLt36+qn7ma1HZ/\nf18Hi2Tlp7iX1NQotoiJrouEywVe3TqB3Moecj61UTt/OLom8dj9p7LqgW9rqX6TmdVZryCkRHZ/\nVEkqX0UJCRhRha5j0oiLsrjhpuc5ce1VrHxgKsLEEIEdkLtSJpVSqJs/jNwVMq4OE0OyGkh7awbR\n08KEKwU0B4iLsnD0mqT8Altixf3XtYX2ohTcAmk/eFoGPOV9bLYznVb/DL9egK4IVL42B7PezZep\nXGwhASVuIs3uRNUknJ976DohRWioRdQi7o3g+msNTvyVJWPkXzuwcA/sNFl956N0nZDi0v/3NgCn\nZGwkkWcdVzfrcQByVw1IWmVuNVHz04hhmdV3PsqF3h4Cb7vZ2pXPgpELEUTTIoDqsCPXOXC2C4Nk\nlk6+fAWZI61SF/8uEdVjkjmjnbuvn9+fLV31zEQC22Qm3DaXDTfOI1xlEN97Ty//YYCVOu2Dk11J\ndl30CIIJk36xCRhwFh3dVga2VPaw9tkJHPrL9f3XPb5qB7UvV5PhTnDp+C+wT+pFMK1s6+sfD2g5\neutFxuS39WdjYXCZzTdt9QdjeODl09iy1IJz7qsd/VdsxPy5zF90EiPmz6VxeWn/tpo58/ozofts\nXy3qPrt99rMUH9HE4ugokEzSGQbrFo8kvfvguqO28D5GfxNb2MpKO7oFCr7QiFR50X12oiMySRf5\nCR1aghxKIY4bQecEkd4/xplU2sicWR/RtLkAh6zhkDWK3H2YpkBDJINSew8eKYkadFD6fhBvk0Hm\n9hTZm1WrjXkkctb20Xiij47JdlSXgBAMkyxwodshfN5kWn9WCrnZSEUFiPuSAnvlNfStOzDdDkLD\nDLDrGKpIpi1Ota0d6SAD+cijd3HGM79n+GNzmfHkH1BqrcFi0nHbSBX/+EWQuXdssI2znMADwWvX\nfjQa+7ggISNBcG0ecnQvo3VoAp+PfZ2XKj6lLTmAY7fVfTeruu4wMUWLoVjY7ULf4SXzS4Vhd9Xh\n+cpag6WHFGDvTPTDZptOcFM7t5LWIwQmLW6m4XQQJZ3xnkZW9VSQ0iXebBnHRGc9taFslC4FUxLI\n+Eqh+7hK5LiJEhHQ7RJqQYCGU7PYfkMFbadbDphuh+7fJzByM0g/b0MvzkEIfluYueCNPbQdadD5\nV52uM+M0NWXhUDTc2XELMh5RcHSJ6DaL7NNbB96dEqXPy7RPc6Ll+klUZiIk0zRdMhx5RxMtFw0n\nVRyg5u+VhGfGWVE7hNPf/g1yXpym7oBF8iaAIJpUlneyI5zLCF87ggqd0zLIfMtF4ae9OHpNXF2W\nTE5gt0ZwuINwuY14jkxiUiWqSySwIwr5OfjXd9B7YjWaz4HgdCIoCs6vBlKbUsIA0UTxpMkPRPCK\nCSrlXhpjmdgknQx7nL64k4auDOR6Rz9XRqLITbzM3a80kMiynMCGWTbuPe8pXqp6mzVd5TQ1ZPNo\n7RFsTRSTUmVOyd3MtqiFcLxx55mEhnsR4yrpgDW+B6vtsF+wVr6vFyVmoNstRzM2MUHO2jDhYV5q\nz3OjegeTRop7mW7LPkgSuT3B+v94hC3bS5BFA78taSULUhYkWEpqiLqJlDSRU0Y/FBZBIJljSe04\nbu+geEkMUTXJ2hKnvSGLgovrWDp5ATW9eZiySHvYi8ueJlmaBtmkYBlMzG4inaMTKbVR/FmM0vtF\nekY56X6xlOifLIRL0YoEc595DbHbhqMrRSrTjqNTREpo9I50orohOMrE22D1DcEwsQXT9A2xuFXS\nt4YYamtnw9cVGE6Tkd42woYDh/DdKg7wTxAY/TvshJxtXOlvZU1rGddO/qx/+2Gbz6Tp/fJB+465\nby4fxu0c8Y/f84t51/NfVz476LfOxcV8n3344mBRZG1lJo4ugRkP/A6AsWsvAKwJdcWiiZTKHs6v\nszITrjbrVcmJf835/C7b+ctH2L36wGQv/+p5v8s6NxxYKPyHmpS0oodywuwX+DZkATluYPo81J/h\nQ+6O4ujV6Z09me7zx1GwKomckySv2oKKHluyg7zCPmRR54v2CqaV1+OQVGRRpzaYjRKBrqkZ+BpU\n3K0p7N1pfPUmuevSGE4FV5dBMtskVC6RKHLj29BOYFuIVEDE3pOErAwShW7kMqt9SIG9E5YgIK7f\njrdWQtck3CURIgkHqinh3YcV3+sLGYqAoJsULdX47YcXsqJnKM9PfoL2v1XReL7O5R9fxpvzj+K4\nJ25A+m0HwdEmgU0K62c9QFNfAN1loGQk+fNVL+Lokmjp9dM9VmDh0QsYn9VMxQeXE6pQSHkl2qcL\nlL5vsGT3MNbf/AgN5xi88vsTidb5CS7Lp+EUgXRaoqEuh+CVUZ669V6qllxCypDJ/UKi7G0Tb7NG\npGQgql/yokzKLxItN+moz0Tt2sue9z29f1/mcnvLAEvx2zEXpfJBVpzfYWPW/JyP3piCa4/CSees\nwt4t9mc1Z9dYQRdThpHz5mLvFrEPCyHocNI5VgDJd0QHrl026k56nMiKXFx7FOJGGgWDCT+z0nsH\nUSU4qP1vIAXb3yk1xR/vIAdHgrnHTe84A1E0SeXoGEmJIwt2UzFnB53TdLIWOwiONQYF1XS7dV35\nG4kRzWPiLomQyjaYOrqWdMBEUAVmDNvFmjse4c6/Xoj3bS+mAFqND+F8q19nfWi1MUOyMrXpQhUk\nE1QRdacPQzHxtAwsfO0hk819RYQM6wYSOQLpTIO0TyBZaE1iv7jxPTqmG7g6DEJDREatssiqrrvu\nFUwZ9pw1n0OP3Mp//ONizj5vmfVcC3M5vLSWRJ6J2ObA3SrwTt+EQc94qn89h/92DbaoSXCEQM8Y\ngUiJyEuRDOzbnSy49zQAtiSL+wmN9tcOBUuDNJkpMqGqkayNAjM2n8lRX1tsifZXAvx65/nYdjmR\nEgJyzOp4xpF9pAq0/uzny9sOYem457n+GouszsxO0/dZPr+/b47leFZaq6HQpBQFZ9VTtegqlLCI\nqcCRl6zlpqZTUWZZ7/+Mc1cAcEmjxW697LOxg+53H9R3n5O7uq0M/6mtCMf38PkzFhvUyrGv83Lt\nREKNA4v8fSzA+2zHi8P7s7EwSCnnO03cy/uw+O0p37Pn99s+3VCA9JCBxrvPIR207/y5KBMG6pb+\nvPAiGlcX8+DKY/nztA/YdPb9fHH53fhG9nDTz1/+zmtKaRPdIWDfGzDBBFE16RtiLUDFhEbSL5HK\nUIgUS7Qc5ydR6MbeJxBP2sl1RNgSKaJqvBVAPzZ/O5JgMqG0iRxnjJZ0Bm+1jiOwVSad5UJUTYJD\n7diClrZopFgkXO2j8PMkhh2UmElyVDGiZpL1dQxTBG+rZhHTpFXEvXOeuB9STewMWvB8XUCIyXSn\nPDgE9aCMl9s+O3BN6Fcfj8Te/P3ER99l6Wxr4E5vyhi0/U/nvQpA5UeXAZDalMHUJ6y12r7s6YX+\nDf3O6+eLx5LK074Fkz+gidbi39UhICUEjJOC/ZnIzlmV1F4hkspz9TPo5mywkEe5wyyymcqqDsYW\ntdKtetlRX4DPlmJERjsBMU1TXQ7+XeBsjREvEHD2amTuSKJEQHNLKLVtODtNnOURpBSEZpQT2GVQ\neF2C9iMyqd1eiNS8nxLFXlKjyDRrfVj5qk5oZyZq3MYFh6ylL+YklVRQAimcuXEMm7VGVfb6sqIO\nzt3duNsM4sUuNJdEaGIeugPM4jwKVoQJVdqwdShoKZmczDCF1V1Q70YUTQKOBJMrGpAUHVEwSWky\nb9SMxxYS8O9JE88RCY0IYA+Z9IxSsEVNYvkSjqBBtNQicXOub8DVnkbz2DCcCgRD2GIGhk3CTCTQ\nyvdbi8oyztYoQlxCqnEjiQb5cogmzY9N0tANEVEwicYcOB0qoibQPlVk5yUenC0xgkNlSj+ynD/N\nCW1H+amY2Mz8lqN4uG8EoYQDeyDJS2OepCft4ZiyXeTIEUqdFklS11d5+LdbqD4pYdIx3Y+jz6T7\nEB97zrXayLZNZbTOkMjerCIYJnTbafiZn3C5SNUrceSY1k+atM8Mh4wUTdOxNZeKt6/E2azw5bZK\nanuzSAX2rqFTOol8B/ZeDSWcJpovsWu2nd1zJHpHOkn5JZJn9VH/diW9I1wkswSaZ7pRAklqVlWQ\nLbnp+TqH1sNlYi1eFNEAQ0ByafSMlnhn3XjEpEhgZxx9b7ZWOb2LwK4UPX9OUHuOk5bDnfzt9l9g\n5FiOTsovksjX+6G7RctiVL42MNbqTplwhRPBsOSmks/m85uFVyC4NZzNEsu6rHGj6adi0/13WNKU\nOerr0zE2+HnqGYvafcv18wgvyR+UGY1WaSSzTP4w/zIQ4K45T3Dzgov6f/8usqF/xqIVGvFaP+PO\n2NbPoPt50mCst6U/K/vvtP8NC2IAeajVCc+dtfJ791WippU1FKzshbPLInJI5MjsvjSXoqVpeqbl\n4myJ4a9L0jPeoHa2iMedZGbBTn5RsIqEbqO7z4NmSJxTtp4Lclcz0d9EhasHw7QWyUrcRNBMdLtI\nuNKJpyWN5paQWroJDhMp/kwlb10SUxToOKYQIZHG0WOQKHDSNyEH98pdmH1hpIAfvc+CYEmZGeiT\nRxCo1XBsdhLt8KBpIvXxLMR9eEUT4jkyUsr6/yH/tQ4pK8WW2mJ+96tfkcyQcOxyUFTejSlbi/n/\nrHwTUzLpG6MxdeXVaJqEkBbRkgo3vXMeqtdEbXFz8+mvcJhDtIrL+2RCw3SGzd3Kr477iFRAonih\nQuUnl1L2ikjnIQqXzfyMF+fcS2CrjLzVY7ENvxbg3AW/o3bmUzxW8jnps6yFVtOxEpwyuEbYX6+S\ns94kd7WEHLa6/TdhmftsHzPtPhiu/Wsn556/lFSWwZ+fvJhRD87tr7kDMH4Ailzd4kfQIV6pcnpg\nXb8juvXaef2ESYIG2+Za/ezmUVb96PuvWAGkfVDdisWX9Z+zTtM56cPr+HzLT0ec8VPaP+NQ7k9i\n9F3f5YeYdw9k1FhSL84lHqYfsgPSIu+8Ot3KVK62FjY5a8VBQTUp9e3rRosEdIdJoS+MHBf48stq\njJw0cm6C1UtHMfqBuTz2n/cBkMgVCOyE0OrBpHXp0/rQHRYDaSA3ghgXGX/4TjS3SffxSfT9Asit\nfT42pNwsT0JyYhzTZsk4Kb3WpPncbScjhyUipSI1V84j1xdlxDVbucjXTXCUydi757Lz4ZGUn13L\noteP7D9vTTDfCryYkMyG1fcN5jK44K1rWXHvVEuaY0SYrC0m3iaDO+8/H8/0LuSE5XS81jjYiZ31\nh+UELrWYc71NBjN/uZoNu8swFGipy6Yr4qbjMIPomREcssqpZ3xBukBFMCFdnIZVAZRuGXsfuE5p\nRwvbOOyO67jzqXOJ55s43SkKjrfOP+G2ufj2iIQmpfB/ZaduaTmmbI237maBxXtGsHnJMETBxHFy\nBzdmr+PXrZPZuNCCLqpZGokjBopD95djcZ3STqQmk9DbhZgfZWEoA/v8atgycqt68P6srZ/4LH2Q\n6ptv1p/+u217Zx5/vOBV3r/0TkxToPSIRt691Bq/vpkZBfhyshXEThZbAQ4xbcF173vpdMZ8cC3T\nH/89imRw0xenf+c1Rc1yAFWngGBYCKG0T8DeZ/Y7n7odwiUWmke3QdMFGuq0CF5XkqHODqpc3ST2\nElbNcO9kjKeFEmcQny1BSHPSuLUAzQXBahupgEj25hi6SyazRsVfr+PdEyU41E7W1zqCCYYi0jPS\nRrTEScbWMO49YTrOqiZdngPKXohgMoWUkYHodmMGvLjbVDLXKjg6JGpDWRYz9o+Fl/wLVnfqAlIF\n1vfYXzv0jpfPBsDWYOeli6xxZh9cd8iLVjDoqJVWffHwx+aiDY2TWdTXH+z5LtNdBkJawBQgVK0j\nJUFfnknLCTnU3FhO8Ngk9joH0QKZeIHA9rsK6bvEath5rijTMuqYkVNLd8JD3LDxx2kfcG7hV1yW\ns5xWzQuKRUATqbQYet3rGkE3sYcNYnkSsQmlOHsN9E1+fA1pfDV9pHwi7ccXkr+0l8z1Iruvqdzv\nhnWQZbwbLJ12UTdQwiJyp8Li5uGkkjaOqNyN05nGMARcrSZSEkv31CEQLTHpnpFPpESkd5iEYJgk\nAyJKDDqnBdh5kZtYoYBnbA+njtnE8IxOFElHigu4HGnG+lvItUfQVQm/LUFrjx+j17aXYdxGvMgk\n7ROQkwbeBgNXRxpvs4acMChcnkaJGXSePgRlWwPhcjuGIpGYXIWgQaTEhuD3Ie2yAjNGeQEEfAhp\njczNIqIKcVVhWWw4rVoGJc4gwwKdyIKBIFoTlqfRxHAYmIpJ6zF+UodEqT9Fom+kl/GXbsF+bBeS\nYPBQxasc466hLBDEZtP4MlnCf+V/xgh3K8vCw/hjzhquaDqM3PXWeQ2X5Vj7GjS8uyJkrwtTucjy\n8E3FIOtrk7RXQkjpGC4dbXicvLUpusa76R7nomP6QBDPcMqIqhV0ydgq4Gy26rUvnLIap21ABzhe\n6CCRIRLPU4iUObGHTYYuTOHa5kBOWHNmpjuOcViI0FCYesoWHF0m7hUe9Pw0c1umoWWqZG02eeXk\nByn39ViqFKKBPCaEvUOmalGCdMBGuNRG/c9ceG/zIKZ1sm53kr1BIO8rldOu+4zyhSI9o1346hL4\ny0KUvTYQaQxXOPtrRkOVNkJVIs4uA3tPis5jVUzRROy0kxiWYkZ2LX26yyrnOohJt956660H3ePf\naNP1v/BSbxXhgEDMLqOVpHiwYQJKu8Lp09dw9tQv+GzdOGxBETkx8CI+Xjdx0HnmHvolbwTyie7+\n4RqD0RHp/mJ3ACkhUjCljZq1FchxgS3Xz+OW1iO4KXclUx74DY+s/jak7ftMP3Bp3k9uWkEaMTp4\nEplyZA0tDTl8na1QX2dltnb+8hEe3HTw5zB67Uw5soaPPjnke6/r7LSgkbpTQNlLxBctFYiWmtiC\nIvF8Gc0loLtsNJ0B2A08mQlG5XSwM5JLwJFkdyyH7riHiypWU6T0oZkSTeksOtNeGsKZFC40cO8O\nkirwEClV6J6qkb3OGuhqf5FD3joDUxZwNoRIFLrIWtdDaGwWtoiB6pZI+QXIySA0IRdyMtGGFUFJ\nPvHhOdiiOuFKG4kckJIi9oI4omjpkO35pIxIsYy7Syc4TCFSJtG0qpiER6TsLWiZrSJ12VB9Jq6i\nGMpyJ4lckXfXT0G3Q3F1J7GtGWgxhauO+5j1m6rx7xJI5JuYmWm+6K1kQfso/jb8TWyFKm2LS0i+\nncmOjytZ+dACVox3YTycS8NZJuXjW1myYwR7lByuPGYx4SKZ5VNe53bGotkF3rhnIo98PhWjwUm0\nWCKVryF/5eXqG9/gvcRoghMNtBlxvKtkEjki8ZEptGwNpXtwTZShWA7JC18dNmh7olBn56rKQX1w\n/yykfXIvevPBG7uoCdx32WN8+ulk3lk/hXlrJ5MYnmTB+5az+eqcu1m0bjoP68MQ2uws2ziW/JnN\nrDllIfPWTiY1Jo7cqaD0DNzzK+umo4RElL5vL6B+iIP877bv62vf3Hff3w851tl94O37au67ploE\nO1qOzqSKBkJLckl7BaS0RSJkKAev7wPQ7QKiLpA/pJteh8Lho3ZyftWXLKsbTmZlHxvPeJqZD/0a\nUxZITo0SLTPJXD/4W8QTTjxNJolcgVjajrcixEWlq/kaSxLGtX0gqpFUHbirYhzpquOFz47EUMDd\nLOJtMAlVijiCJoZN5OHLH+WK3acwPqOZm/OXUKMKfPLWNNb96WHuCE+ioriTetWPp34vA+/kXnpa\nAtirw5htDhzBgYxsuELEFhZI+QXsYZNgpoKnSaD0ql288LOneOn+mRiyxZ4bFO2DMoO7vygjucGP\nPLsTY7Obdb4cMjKjLDh7Aa+0TSTzPReeJoFU1AnFKTIdCboXFyPHwRiSJK0pKFEBOQnqTg+OTut+\nf3HZYqTCNEvGvMPadAZNmwp56LcP8f6qKajlaZJuEbM4xX8e/gZrl1qkEAlRQXOZGC4d86MsHmiZ\nwgfT3+b+HZNQYgLJbBPvV0423DiPBzdO7g9EPPTbh3jrmWPYes0j3Fs3CVtYwHFiJ/ouN2Xn1PL+\n24fCFjfpnV5rYZhvIoyNkCrSsDUdOBu2vz74v9067XzaOYyXVx6OHJQJNfh5YcNh37n7o+umASCH\nB7fTmjnzmP+Z9VuqxY3c9x1U44CvQSPtEdGcAqYMkmqRFxk2Ac0F8SIdwRDRnRCZkkQpiaOmZX4+\n6itG+tvJlcM0pzNZW19OhjfOGF8rccNOmb2bgC1BSzKD2lAWBcsMHEED/7YQmBAc5cK3J46ow54z\n3UhpgYztSVSvZLFC6wIpv4g9DIkiF6YoYosZtM7MQMksQMzLIjgtn77p+eheJ5ESmUiVaZGMSRKl\nmX24pDRrtw37CT7MD7eH1k9G3rt+eWj9ZB5aPzD2GYqJYAi8usmaJxqbcxB1Ac1tICVFxN6BaJbY\nq6C2fX/js/WJiKqA7rRKUxIlOoIuYpveg2YzcWx0k8jTydpmED4mTnZGjGxXHG9BlBxnlExbnEw5\nTqW3m5uzt9NhqGRIMSTBoESOsk3JQ3nQwN6ngiLTdXgOnVMUSl6ow7MzSMMfnQg9Nhw94N0VBknA\nGTQJDbXh/zpEZKgHZxc4kjK7b/Xj6M6k9pd+3EEXicpMnHuCJPM9aG5IBl14CyOIsklzYzYGArYO\nhVQWiGlIZe0td/BagZN0hkmsSMTRA8FDVJIVGqYhonkNJlXWE1EdDHF3sbatjCQKmmIyMrudxkQm\n+YEwhc4Q21sLcDYr+Ot17EGN/A/bcIYsGa5wlQ1JFegdKeNp0XF+3YKW4yOZJSJ6A8RzJZy9Bo6N\n9bSekkvGTpV4uRd7fS/RGUNom+7CcDtpOd6NqAqk/SaJdjdZZSGK7b04JY2NoWJqOvPQNJl0iwdT\nEMnZYOI9ppu+DGKnNWoAACAASURBVJFhBZ3E1meiHh/i9KKNrO6q4Jah77AqUUGZ0stQTzvjMlvp\n1r1U2TpoVAOMdzeyIZlDhxqg67M8lLCK6rPh6FaR4xrdEz0k8uz0DXfgvbaDsGGj4I0k8QIHjeeJ\nOOts6LoEyJiyQNoH8SIDfz0ER7pxNyXomuSjb6SDtF/AlMDRK/CVWkhZXg/dXT6UsIinRUdJmoi6\nib1Pw9llDdTeRpWmE2Rkj4okG0zMa6Ze9zM2r4WeMomKQ1oQ7CYh1YnPnyC53ceLDYeSVR7E70rS\nsTsHvddORo2A5pFxdqRIZyjYQhAcaUM0ZeK5NlJZAv/4r4e4ddPPyFxh0HGuRm+ZE89SJ+6WgUxv\n8wUGca8NR69I3zCr74YPTdI3DTKWO8is0Uh7JTy7JNrKbbSomSAInFhwznf2S8H8KQRBf6Ql2soZ\n/uHVHDu6hk+/GIOrdSCiNe3sTax+ddwPOs++rOUPIRFK5BncdMrr3LHoLJTIwMJi/XUP0qwlqFA8\nnL7rBN4cuvhbx/61ezg3ZW/vv04iz8DZ8d1RuFTm/9irBRgkHfHvyLxmbLPgdACOHhNHn05wqIyh\nWFlCJWY5q9EyHdOlgy5wwZQ1nB5YxxS7wpsxD8+2HcqGXWVMGNrA74oXU5vOpVTp5bmu6ax7YSyO\nXgNvQ4pgtQNfk4q9PUrrzEykpEm0DNQMjbzlEraYQbRAIhUQUGJW1tYWMYgVSBQusYiKbFvqSU6o\noGuC3RJWzjbBAHtQQHdY1P7jJtUyxt/Ksj9P73/OZIZE16wUQwq6SN1jZfGCQxVcnQYd0y3YopGh\ncsH4L3n/yRkEagdj4xvP1xFEk5wP7HRNgtzhXTw54jlWJIbw4PajWDP5acY/+xsyx3fxxMjn+NXc\nX/cfu/Txx7713m/sGEtX2su6p8Yy8qIaLslbwZ31s1g84l2GLL0YodliYTRsJs6yCNmPuwheGSXT\nHaf33SIS02KDakC/ackcA0eX1a41t4kcs77xjDM2ML94oO56X+bUe3gnkRUHl3H6ph139lo+fvXb\nML1EvoGzfaBP6Y4Bhu0RJ+2k5v1qDDuIB+CnWDTnHs6db8G4VN//bN/7d1tGzffv03mkiqfGhqvz\nn38XyUwBR69J/AwLSRCv92EvieJ924shw1V/eIPbPjydJ05dwG+2nIf6ZQbeJiu6+80MayLHoqj/\n2yXPcro7yrSNZ9O7MQezPIFY60Qwwb/bcpIDFzbz8Yh3GHfXXJxdg0/UcbTGb6d9zPwdMxBW+7l/\nznz+3y1XfOvei+fsZt2WSpxtMkoEzKOCFPrC9CWdxJfk4uowSGSLOLsNNLtAKkvA3TpwLWl2J5+P\nfZ2/dg9ntLOZO/4yu/+3T+64n2P/dB1dE6H2/Ec5ruZnfDziHabdcBV/+I8XOMsTZm7LND75ZAKZ\nW03Cp0fxvuUlXGEtQFxtJqZsBew8jQKpAGijYpimgGevhuihv1zPvKLVjHpoLrZvl4312/jZW1j9\nwRgce0EQqttq95OPrmHrCyPZcOM8hrxwFUpE5Nwzl/HiB0dgCpA9tpPke3n9UF2AZ8PZXOTr5ndt\nE7mnwKofnV1/FAvLlxLU43yayMchprnp/kuJVFjznufoDno25OJqE/pJNQCS/6Q86D447f7Q2gNl\nNf+3WN5XKmLKIJUhozlFlLiBHDOIFcgkcgXSPhNPE4SGmSghEXsQ/HUafUNk4oUGMw/fREJXWLlr\nCHk5IWaXrWW4vRWAgJhgQdeRfLR+DNlrJOSUibstjeaQEEyw9yRpm+4lMjFJXm6Ijt3Z2Hol1MoE\nRlQBh07eEgVXp0bLkQpK2JrbDJuJfxf0Dcdi/y1I46i142ozSfsFkpOjXDRyLZNcdVz3/GUHfwHf\nsP0Jh75LTuV/k4kapAMGcsyC6JY/VcvO6yrRAjqKP4XvExc9M9IIcRlTNnDVK7w4516eD07rl13q\n1GM81TeeX2VsYZsqkSOmiJsSzwYP5Y3Fh1L2XhJR1dEdMvbtLQC0nllFrMREzdAR4yLDH2ofkHIB\ntt1ezMib22k6t4xUlknBSo2u8QrlT9USmVqG5hQJl4sImhVIjBWa+HdDuArkiihanQepPIr/XQ+G\nZBHE5W5IkcxSMCRQPRY7q+oRSGaZqLkqYtQKugx9JsKJCz/n2QdnUf7z3Wz4ugIpIaJnqpw5dgPj\n3I3UpXLxy3Ee/PhEBFXAVwvZm+PEihzEcyUKXtoOwK4/DAMBDLuJo1MkXplm3NAmdiypIlmgUfmq\nTuthdrK36GgOgeAZMfKfcdA7TCFSrSG4NExdoPQ1iZ5RMumAycjpe/hb2Zs8H5zKO/WjyfVGaeoO\nQL0bZ5tApNJg7Zn3cN6OC9ANkbGZLbz7xUSqXkn3s9mGhnuJnRfCbU9zSfkqrvRbfe7zpEG9apGn\nPVh7NKG1udhCkLUlRdpvvR97n8aesyScuXG2TV/I2LvnEhmqYc9KMCS3m7vKX+O18ESe/Oworj/2\nA95sG0dfwoFN1nHcn0HHFBt5R7TQ3JWBJOv43/XQOd2KBnvyomR7YvR8UIS/XsfZPhjea0oirTOc\nxKvSiA4dnzdBX4+H4ncknB0D+6o+Gy8suI+Za6/CscRLcIyOrzDCyWVbeflrK7lU/rSIoJvsOUuh\n5COTZEDCUCBje5ym493cPftJjnaEGfPZHORGB44uAV+DjnpFD6HVuWRt1emcLJKzziCeIxGpNHAN\nCTE+r4XOhJcddQUISYnS9w0aZ4n4t0mED00we+xaetIe5h2y8Dv75XeH//4bzC4oXDVlGef6NrCi\nqBJavSSzTPT8NCsaKtG+4ezFxyWoPeYpYMDxvPLi97ilaxSLdk486MMY00KIq/04O0TueeJstl8/\nb5DzOvH+awftP4a5RKs06k5dwNsxF6e64xacZr9jDuaI/ljb+ctHqPz4UvYc9+S/7EB+U0ripzZJ\nNfvF4KW0SSxPIm9dktoLJIuNNi5heHQwoOhDCUePyppFk9mwykP45DG0nawxvboW0aZT4e4hZtiZ\n5mygXXeTZw+juiHtE9EVB542DdUj0XZmJqX/uYbkSYcw5MJadvdmM+m6ehbvGkFuZpgMWaMj7CUc\ntZOx0k4qE1qOzUJOmKQnDwcBVI9FVoEAtl4RR49JMltAKoyzszuXmdnbCVYrZOy0nEpHUEdqdKDl\niwSvjJKxwEPGLuu30g/A+E03M/N3cEvONpa3HUrjCRKli3V6Ryhk1qh4fAmy3HGi9kJsfQI9ITf/\n1XIy65pLGFPYSsrUkIZG6azL4ozNv8VbAt4mjViezPg75hLYPdi5bTpOQshLIpbB+tZiLs8zWTzi\nXaZsOAej2457aAjXG36c3TrgouEsE+/yDMztHhgKypYBRzRRqONsHZwlWHn23Rz7yA0A/Y4owPzi\nVf0O6JhTtvdDbX+oI5oYlmLP8U9wW/cwbszewSgGO6O6g0GOKAyWeqp5vxo4sCMK8Gzw0AP/8H/U\ncpcpgIlwfhfmSzksue0+Zt54PbP/+D4L/37SQY9VoibdE03MFi9HT9rK0obR2Jf66JyhkrtS5tG7\nzkA8NsEf/zIHB+DYS3xyIIixs8v67beLL+R62QTFwGZAxodOuo9LYkQU2C0hahBKOgjqcTQHCBd2\n0bkjB0+DBQFy77Tx/GezsCqWDWY4LGi+sFdjePWdj/JwXwm/CjQxbf5V7GOcGJHfTE/KTTytkJwU\nw/WeE2e39ZucMhH2lmdFzoiQ74+wZOTbjHxkLokijbyVIoYk0Ht8EkEwub/XIgcrH9tKxVtXkve5\nSPXoq8nEJGI4qPr0LE4fsYmiSa3EtxUyPLeD2iwfQ2fuIcce5YsPxyLHLaggSNj7IJmS+dPUD7g9\ndjKBTQqrnpnIsLwJOOIMchj32T6I7caFYzjk59tY/95I7CELam0kBLoSHjQXVC/7Jb8/6R3u2zKT\ntx87krt/8zS3PHAx3eTiYTBUF+A+LEfynjmWM7qhrYhT1RN5qOJV7th5ImX+XmKHxdBDdkRVZHRm\nO12HRfm6uRDvqh8PA9rf8fyxTqg+PIa0/bsDbD+lGbKAHDMt+SHBknoxBRFPi0oix4acEIhUmBh+\nFXt5HOerftqnSYiqScXbKT6RxjFsXCNVRV1kOWJ4xQRuIY0oGCiCQUh1gmASKxSQEwKiZiORaaEa\nooXWt60q7qIn5sKUTXSniSCZKIEUZbm9dPtLiOXbUCIQG5oGTURIiUSLRdRMFTQBqVtBt5moXgE5\nbmIaIqop0a79cHTZ/vavOKGpkjT278iy/ztMSoA0Oo5hgrLeg5GfRfZmk85JIoWVIVqGujh8+C6+\nXDyaomUq9ppGzrP9ltz1GrPqhlP8RBPjvY1kyxEe6RvFHzJriRsmO1WTKe49LMqcTMcUJzkbUzi2\nNoMk0XR+OSXP19LzpJfOLh/lQ7r55YfLWB4azkNFa4gaSa5smMWaO8qx7bKC+LF8maxtGulhhTSd\nYpL9heVEOqrChNvdODplNCc4hvYxLq+VDWIRDpuKYLhxRE2UuEA8T0GJG+huSzMze0uCXRcrZKyX\nCTlk5LiAs0MgNMLLMw+fxOc33c/oT67GUxAl2uuirKgHWTRoTGeTrURwCCqOkgjGJj+xYhNPu522\nI2H4Iz2EZlbjbkniGRFEFA1CYTfe6gisyGVnQxXeaV2oITfBaieudpNgtUS8WIdOi3grOi6JpBgY\n3XaUqEiwWgDBkjjxKClWxIfw4sbJYAgU+UPkBKK0Ztuw9dkwbQZTlvyaR2c8y+LQGGTRoHR4Bw2z\nCshdb2PlP+YzfOUvqM4IUvduJdKle/WHjTTtWjZJQyFpKnS0BijaoiNqJppbIlwmWTXZARtKCLad\nvpDDNp9JIt/E0SEj7/HiOLWNPVomqinhLg0z21fDad6tHLPiWhSbhjTBRqJYpX53Ho7sBLomWrBm\nXxqx1sm0CQ3siWQhpcDZniRW7EROWMkVe9gkniNStCxGerONtot0IrsDVI5rJXK5Hds9PpYstDTX\nx949l1M2XUrxvRKmmCBc6STc4aGvyEVpfi+qLqHbsogWy3j3CEQLTFIZluRP7wgXxUsSvHriZB5J\nenB+7cSUrJrb1rPSHJvdwqqJCl1KAEMxcbckcbeAYXOTKFboTbmxSTqKS0VLSFTdXEPX22NRYiaj\nStvQTZEp3m/L/u1v/6M1ozO3ncolgY1UKB7SbW6iQ1QcPQJ7jn+C7TOeY/fPHx20v2uTNeHt7xCW\n2Hp49aUjkdceXEZGXD14kB1z31wSudYiZsv18/jDZYvYcv08XrvmLrZcPw9tSgRPrcw1LVM51R3n\npUgGV74yB4C0z0SdPLg4Ju0zuWfOY/0sXj/Wqp+5GrnVwhj+GBKTfcfsf+y+erQF587/SZlDdUVA\nSZi42wyL0U+HULmdYQsSZH0lY3h0BMWgsKyHthkCwd9Gqf+ZAoaBuzVF9cNp1r83kkcOXUiRvY9d\n6Xx0U0DCYFV3BfEyDSUG4SGgOyz9zcAOg/r/nEKoUmbDymqSa7JYvGQiWe87CC3NRz62kbF5rYwv\nb6J3iormtOqqgqMN4mMTCNODqF4TMb1XliUkkMy2MjfCLjexLhdbY0XYwibRArmfCMjZKaDfm4ft\nrQBV/zGQlmo6XmJ0Zhu35GzjqMuvoGWmyZ5zrHZ7woWraJ4pkbnAQ/2uPELVkPelimGIvFDxGWq3\nk0JniFlbLqI0M8h7J9+Hs0NAcwo0nCpQdPEeNv5p8GJ06eOPUfKxTvFChQtOWk6yw03lXqaCa6o+\nQ8xK86eRi0n7BDonKtz4j6epm/U4qUyTtumy5UTvl8VwtkoIkwfLMxz7yA1cduGHg/Q8AXRzoG1v\neXf4AeVZDthO9pYKOHdY7LzPvziT42p+BsC4U2r4x+WWFMM+x/NA50yNPrjkAMBZgS9/0P38XzFT\nhM7DNbp2WppwM2+8HoCFfz+JNXc8Qt5ldQc8zpAgXiAg5ceRsxN8um049m6R+b97gMAmhc7pOqIG\nmXtJiuJ5VsS9Ys7Bqdv92yXcdTKeHTa8FmklvjXO/jpWAOHlbD5OFOBtMjCfzyFji4Czy6B3tMBf\nL7fq/UZcs5XVdz6KXVBYc4c1nk27/ium3XAVz912MtNuuMpiwj3RilqkdJmmVypJxO1oXQN1K6pL\nIO0VCI62OsTWQ58n9rTFKOirM8hbKbL6zkdZe/sj7D76KcYUt/DunUcBEHu6EGeLTPc4gcyvreMf\n2HEMOR/aWdo6xOrvQwRaF1Th7DbofKyciGZHSlgOjHe3RKzIOk5psnH/wtPBhDlzLekMV4fAr+e8\nTsU7V1jyT3sdx5CRoOjsOsZcaNXObX1hZD/RmqiBLQQXFa8iNTHKnZNe456Nx5EOOsg9o5FbHriY\nDTfOw9MkUHZOLb+55lU23Dhv0J+jB4a8cBXDnriaUXntjPW3cNqdNxDelMWW5UNZPP1hhLSAcUQf\nx2V8Tc3Kyn/JEYVvs9z+GPvvckQBNKe1bPJuD2GLGtiiBqmASKRUIXuzSjLbYOqMGs4cu4Erq1cS\nKRFRszV8e0Bp6aPsXZXO58uorSnkpKzNOESVt0MTcAg6+ZJOQzgDJWjNO6kMk74q0ZrDRllon3SG\nSe/LxcS2ZBLYKiMYYHY6GHpjH7v35JPIhfj4hBXcq7OhBJKMHV+HMCGE4NBBMtHdBobdUgawh0w8\nn7tY01NOazrjYI9+QPtXs6EHckT3z7YebNsPsW8el8g3kDd6kLZ5iBUZ1J7nJ3xWhOyNAr1xJ0cd\nvZmOuI9xx23HXtOC/7U06SEJPOubEbuDtJ7m4ckHTkE1JS7wbeLtmAuXaMMvqiwLDyOwSUGOmTi2\nNtN9XCXoOq4Og8jUMjq7fBBWcMxO8cCemaQMmbFrL+C8SaexYfEIAv4YpmQSGNNN3wiLPLFppoMJ\nw+oJD7HmyGTChrNNpvKZFsIjVIy1AXb05lKS0UcyraDbBOxBK4AtGCBHdXz1SUxJIFzhQEiLyKd0\nc97RX7D0orss7o/Z3ajHhhj14Vxyc0PIokFJcQ9Tc+qtbySqZElRGtNZJNo8GIqJmmHQO0wm+yuR\nurOySLsF+oY6cT/r57fVS7B/7ST5Ya6lttBkojydCa0OEsdE0fbKbsnZSX4+4ws6JolIigFtDkzZ\nRFQFOCJI/pokrnaTL3ZVsrJvKIHMGFKfzK5NJVT4epFcGsakMBceugqpw2pH9xSs5+95G/nbkNep\nfCXMyn/Mp3r5RZTfbrDn/UqiFRq1yVyiRpKbOyxo/jGu3bSlA7hqbYQqJJIBiUSmhK9RR0xD9aXb\nMWwmW9MJ4u/mU/VimJorLS6ZV6s+4Za/X8Jzy2cwIb+ZK+pPRTXhr5PexOVIoTlBcOgIqsDdE16h\nuqCT0KQURQsVMrabrHl5HDNyaknkWllQd3MCe08KZ6+BpzFBaIzK7itllKiGougsPeduHhn6IsXe\nPqSkVZdz/Nm/JH91DIeiWfWcXoXDD/8awaHzwXqLN0CRdGyhNLFCq166d7JGKstKxPQekaL2fBtL\ntwwnfWMuhStibL1mHluvnUftMU9Rd101+XdaZWn7yIs0j0Lel3HUXgc7WvPY/VElmf4Y+FS23zua\noqUxfA0pwneW8PrucTSn/xcTGB2fV4OydyatOftBjp9gTbBj7pvLkBevOiDs9ndtEweRCd284KID\napP+ECsZ39p/vbueOJcx983lxDd/x5j75iKv9Vpao946/to9nBs/Ohd7zz5dSYHxRS2DzmULCxzv\nUvsdkZ/CfkxGc/9s6P6OZ/UzV3Plojk/aZZUMEzsvSqSuldWQ4RktkCiwEXfMJPDRu3iwRnPc8uQ\nd8heLzA2pw13k4iRTBIpc9D3lwTJQp2Xu6dyincL3aqXJs2PW1DJcUbJK+21ZAtMaD7OpPMQkcg5\nEXImdaB6oPSjNPlrUgy5dQMX/vkDZp27CmVpAcE5eez4YCiCYmDKJqEJafBpiG0OIm1eDIeBnqER\nKO2j8OQGBM0a5G0RgbzlEiuaK1FiJumAgLfJEmBW3dB4koi7Q2PZigE9M98ukY8/GyA2mTCqjqMu\nt6CDX940ieIlOs0zJQqXilAWp3eEQl5mmKAeZ+jwFlY+PomOtgDhx4s57cXf4a/TyNipkr9MpO/v\npYz8YvYgqO5h113FHQ89Ss9IhWV/nk52eS9HfnIdw1f+gltXn4aelFBNCf8eldz1Krf9+mLG3zGX\nv5zzEgVfWB2l6sQBCvVRJ+8gnf52zeUzu6fy4qinB22ThG8PF0Ofu5rAke0HbSdS8tvbPh7xDgCb\n3h3Brx+f8y0n8orZ7xMvG+jY9q8HFryJ4clv/TuRb3DJgt8c9D4OZv9d8i7/nSYYoHTJONtFUoGB\nDHfnDI2pf7qajicqDnic6hVQPSYeVwqbTcdZZ0M6pI+PImPoG6MR2CL3O7Kv/fUuktlWwKdu/sFr\nzWxhE3ebiavdYg7ct+2bto8CXnMKhIdC72jL4fvjSxbrcs1Do5jTfCiXNc7g53VHA3B/wVf9x6++\n81Gm3XAV249+HNUlIIs69j4DnzeOvXegrWtuAVvERCyKs/rORxl/x1zGXLuFZi2KKVrvax9r7ogF\nc2ldMKCh2z0rhZyA7E0m4TKrX9hfsWhxlZczyftCRI7Dotvu7j9mUeUSUuPiKDFI5Jq4Wyx5G1eH\ngD0Egc0K8+ed1r//Qw+fiatBoUoZYK/2i05aXq1gy/MDAuL2Prj6V28Clgbd8lA1c8csZ2H7NGh0\n4mqQ2dmQj+qxiF9e/cOdNLxSxcU+K9g04ba5TLhtLlWLruL6axbhrRdxdQi0Rv28vnscKT+42gRc\nbQJn3nUD/p3S/yfvvcOsqu79/9cup/fpfWAKvQgooCIWLIgGjbEbW4wNJbEkJjHFeHOvMRJLYgJ2\njb0XVCQIAioKSO/MMDNMYfqc3nf7/bGHgRGsMTf3+f4+z8MD7LP32vuss9Ze6/0p7zfyMj9//Osl\nODsE0jmgfjk3xZfavOCh2sSOSX2HOfPr23cBcL/QDJDjWdSAAzmpk3WJ2MI6ggaKW0QwoNge4eKc\n1Yy1tzLk2Ras3gyuThVtTxP29hgFH/WAJrA0NIoR1i4AOlUPmmFQ6Q0hpQWsUXNfkaxQCU5VoChD\n7zgRzWYQqM9g7xbI25zCOixK0YhugvNl5JBMNs8sC0mXZ0lVZ1EzMtvaSki3eDAUEQwBISuCYUbT\nM14B316FnsT/HqD/KjscwP22oPfz1znbRbOMQwBLTECOC3gcGcSLuol1eii0RXlt+KtcUbgKAI8l\njfdTB4giakUB9TdVER0K89afSpnsZmlkNE9FC2hUfeyJ5RM7JoXqFKi7qYrgGNh5dxk9R0L7+QoT\nq1rIW2e+L/xXJFj+4Th+M2oRM5bWM/SlbmLbc5l77jsUuOII5Uks13aiy1Dfl0+2WEEJ6Iwo7eSk\n2eu5Zek75Kw3NcTTikzdzjJSHW6TYKsnibPbTE+Nl1mJl9txd2gIOjiK4lT5+zjC1cwp664lf+Fu\nulpySHS6uGjSWn4/7G3iCTvTChr4YN8wEqoNu6CiITLdvQvDqWFJCFiCIukCnVSBQOUJzVgv6EJO\nG0QvjfK7d89j5Zx5xCanKDlnLzmXteDszuJqExE3eIgOU0nUKKg9dt5tHo1amkG2aIgZAdGjIKog\nLgvQN8qOf08azyY74ayDcJ8bR5eIkZMlqtgRAGGDl+c+ORp3i8C6ZBXdWoIt2TTL46MGfnPLZjeR\nkR4KT2lj+KMJ7ircglu0M8TexwtdkxlqcaMYEtYoBOpV4uUCrm6VVI4IP+ijPpSPnpflR7+9hbOv\nXgGYa0OHGu/vY4HJE+v5rK2Suyre4tXoBB5umU46a0GpTmFkJTyNEn9qOJ0dzcUYGZFQrQVRhVit\nyp3525HGRBC0wcGsVKGd2qeyFL1nQVB0PI40d7TP5LnwZK4p+XDQuZlcG/o/CvA2pej6UZqVdbXc\nOGkFzmYLLkuW3riLrN+KnITY6CzFyyQKx3Xx66teQJAMXM0Scj9ZYNZn5dRzL+eoX1/PhP82588t\nT7+Ir84kNQKQ4wqxCjv+bTJ579gpW54gsroA32o7nf1JamJWIzLUQk1+L53ZL5fM+o+C0V/k1hOQ\nnLwW92ITLJzoM3POt948n/tmP33oBYLp9Ri28nIyAXMTk8434Jjwt7p/++qSQ46JeRm23jyfRLnG\n2PvncOeHZ/H09imMG7d30Hmblo4A4MrLF5OeYLL3jL1/Dg1K/Fs9y+HsYIbNb3PtfkA6/KPLvvqC\nb2GetgyWcBpLQsPTqqLZBAJ1KuFqmdwtAknVQqkUIVdK0H2MxscrxmA/ycyJy/m0A+cDfoSMwCeL\nxuERDGrsXbSrAXIkhYZQLl1tAQRMoGvrlvGP7+X0ITvoXVtIakQae2MP6VwLx60N8cSeo6mPFRBK\nO9C37WLkrDqMpIxRkEG0aIi9FvTiNIgGUlxCDMtEd+cQfaQcX5OGp0XH3mNKO0wtaSY0XBwg6QlX\ny2b9Q5fE8N9vQ9Ag4zM3tb4mBfEgVtLXa97n3r//fVA/OasjWOIaWqeDdL5B+74cApKT6ytWkDwp\njtOfwhbVyNtsoNpEVjz2KLaIRu+PkxQ84RgAtwCqTWCkNUvuDoWWCzQSH+fjaLSS/6KT3A+tlC6S\nWBkeTvtlGTqnyrScLmKJG9x794UDbexZeoCpb/u7w7Fsdg/UN6eKzS+trgkw85mff+UYsIYFwiuL\nvvI8aUpo0P/3p/vuB6EXNp00iHTo0Wdn4Ww+fOK9Y5f9kH87OkWGn14/IMX0Te3/Cpv1v2qfBwX+\nOrD3GIy5cMfAsYKPv7o6Q7cZWF7NIRF2oI2JE+918VbLODDAGjPoenwovRMMymQ3av6X64cdbPvZ\nc7P9AuGHAzF37DA1qkOjDbwNDEQejdp+reLjNDb/dTyftA7l088xKfeOF7iseTq///2TtKgpIrUw\nv3wJ8TKRAhhL+QAAIABJREFUUFOArO/AYr+/JrWqwAQ+9qDO1gfH8mjIZNYddsOBPjNGxUiUHFTL\nHLEQG5kllSfibTbbcV3RTs+kA98v56QOZs+7jXSOiP9HraxK6xj7HMQrDByjzDVL7verRI5KU3vh\noZHlw9WM6haIl5t9Is80mayebZkywIL7cNmnPPzSLLYvG4bmMLDGwL7XiuqAPRc9xLnzbmPj7fMH\nQOh+k1ICdeliwhOzxMsMIh8UYWzzYkmYcjJZD0RrdOSZvUSnpDj1qk/6++3A9/g29sQrpx1yLLX+\nGxaefs7+nTWnUtYwNbQlAUtcxRbRybrNsZHMl3DuE9kQLMcvZpliU+g+uZyAJ4kum2Ne21GH7rFj\nC4msWToau6BRbe8mbViwCyIbWstQnQbxCgPFY+AviTKhphmb3VxoRBWk5RtIVOjIkRTShz5iaRud\nnX4cXQK2bgldFRH69TuJWqDDZup56gJiyiSEtIYF7H0GnjYNQxQI9noI/a+yT/1nTFTNdUvMgpwU\nEDUQns0j/U4hUlxkVU8VbtFOrcV8L7Sd5ePJn98PioLc0k3tA43IaQG3xxz0MdVOjhSn1hLBb00x\n5DEz9dHZJWALCfzkqGXUjG2j7HkZu6TiaTN/x/YfVONpElifMJ2CQiTGEdPq+POK0/Fa0pTmhVE0\niZwjehAFA4tDoWypwc4Nlax8eRK/uPsawtPTREapXFS9niPGNuIrj+DeZ7ZviALu1jT+3UnktE7v\nWAlXR5bqvD50Q0DCwGnLsvs3wyheLuJpkHlh01Hc/MxViE0OXtk5kd4WP9O8dUQ0BzHNzv2tp4Im\nkCzXEHQBzaETr1JpC/vpXV9IuFbEa89gyAZHLb4JPSWza0c58awNzSaRLDFIj0ohODVQBARdIFYX\nQOyxoja5UX06RsRMMY8N1cndYUZ0BQ26E25Ii6gOM019a30ZWlYiVagjZkXSubAtVkK94sAlqHT3\n036/mXCTLtDx1SfoW1hG8L/N/pm66VxOc+/AZ0mzLCURzLqwRXSsUdVMiS+S0c8IcVrZTjRdYNgD\nGT68+698esUE6i/z4N8eY2WqHDAzUsI3FrPpmCfYlc1nZW8tNklldGEnRshKfkmY4tnNtPf6IWIh\npyRCJscsdbv62JXE9TTJ4OC552xP4+hK0zLTaRJxCgLdu/L5YNsIPgtWEtYGn2/ryyAY0DnVhbTO\nQ81DGj/0bSVZnaU74SbgTGENZylelUDutRArF7mtejEXekJ41jgwRDjvVNMBE73eXHh6pylk+5NK\nh1v6OO7Kz1BdAqlCO31jnagOgfDELD1nZDAsIprTwNFnMhvvl46REwbbtlayN/F/ODI6eeN53Nox\nkd1pkxQmX45y4gWfAbAxOeTQC/rfrbYNLuquWMDWm+dz3imr4BP/N7539sg4u68aDPS23jwfxyaH\nGRntF1V211uwbXDR8M5g7+1++Zcn/zET+0ZzUIw8azezvsYG/utYzfPXsTqtfetN8sHX7T7u6X9L\n5CfrsZAsc5vpudUWij4KESuXyd2RJV4qUPduLQt6TmCMVeBvJz9N1S8/pcIbInTF0YSPLDJlYSwG\nmtPg8fCRTLU3kyPF2ZrNY3bFNsS4hFqUNes8fTqKKrGkZQSOLoETh9VhWGQ8L63mpSdmwJIctmwZ\nQmhVEd03HMPWFbUImoDYYce6x4GgCkhtduzt5o7NXxvEKE7TN1agb4xEpEYkXmGyI67tqMAaNSNL\n0UoZOW1QtFrFe3Q3H7dW4RkVxBY5QEVa/InK9DnXsOKxRznhx1dz6w03DOqnnEf6q9z8CprVIKcg\nStUr13Hba5dSHIii7vCCAZpVoPf7yQHw+cFRjwxqR7OL9J6W5qxrfoL6kz4wBLbPnc9xszcSHC6R\nnR0m4xPZ/I8xlDxto2i1SsVineQZUbSD2WUPw2dz8xnvAGApNFMwAsd3svtHg8fMl6XlflV67LiC\njsMe3w9KP1s77AtrQcHUu9xvyaEm+Bl75q6BY3MvfYvXa97nvPx1h1z7/yf7PCgQdEgWCazaMuwr\nr92vO2oLG+RsEYhVCAgpCaXbgWhXURfnUfDpgcii7tAZ+cgcClYMFviWL+76wntI/bjVGjcO+7wA\nkWYfvRNMB0OiVOBHv17I73//JN73zchN4UcS5/9yCb8ZtwghIxIrFwdSc/M2G6zbV8HebB5nzb+N\nvM0GbtGOIYK7WcKwmPftG2sCg7wfN/NIzWBNyVdfNGVhVq054FkXtnkGSI7+eff9CG6VwhUyjl6d\nzHlhkoUiiadKyF9/4PtlnynEHtKxhQ2KnVGOtYu4asMYZSlsFpV4hUH6eLPcw7HbzsZPhg2ep/02\n4a45A+ARYPPP51M20czqURebKdhtuwoR+/t22D+uxx4Eey8DDNj2IDh6TB3f/RadkkI/KCnCtU/g\n3ceOw+rK4m4TWHLjPfgmdyOq4NpmwxoD7x4RdXEe3jUOljx+zCCt2n/VDhfNPNyxX1308te+/pt8\nvt8O1i49nKUDIskKl0kMYxXpGy2jOgQUl4CvScG/R6NlXSmXbL+CBeFafv6r5/HN2kPPETKJc6eQ\nOnsyXVPNKEHRGo0cEc71NOESM+xWbFQV9JlyIy4NzQ6lvghDXX0ke1xkSxQ0t4YUCFD7u63oW3Zh\niRvoukjBB1ZitSqZqjRWu4Jjtw33DqsZbcoKePdICEkJOWFGA0UV7GGNRLGZlihZdXZGv9qx+O+y\nr0rD/bZpup83MWtgD5q1tqrDwHJ0EM0q4NmnornNOb4w4aTa4uaOT98Bw2BBzwnU/6SKvhlDiR49\nBN/kbqR+aZGTAztYFR+GCMRVG9bfdZLOE7BEDTLjkrzbORaHrNBxtMw0fz3dk8xJXvJaA7k70rz8\n2VE88cxM9txYxaaPh+EpibFh6UiUh4po311gRi0bfNgdWUbevhVXVYRzfrgSxSVg2+XA1i0xyrGP\nmGInmbaSzrUQHudHVHXi5Xai1Q4SBRL2XrDVddL39yFs+mgYyyMjCdhTDD+ihYk/2wgGBNZaSRep\nCBqoSZncjRLllj4qrL10KT7eqH0H7w4LGKB4dLDrnD5pC9eP+BBXG6RKVEIri5g8qR5HIIVnlwUp\nJpJRZWydcQQdBBFse23IUckk2PKr2IIiao6CHBFBB1eHjrNDJJ1jMVnhnZBRZLDp6KPidMXcIBlM\nrm3CWpwwtclD8NmqEdy040Lu757Bx+1VpEucPHT+Wbx89l+pml/P8p//mbUTXgGgpy6PYRYXLYkA\nbwSPpCPlJVkoEhliw9lpEBkGTluWjC7Dohx6J3p5NlrOvhk+/DvN96qzf9NSsjyC8ecIlzbN5I4d\ns4n+rZzmFZWEMk5cLRKRDXm0Lamk6A0r/h0i0e25lKzK0nG0yLZYCW7RzsiafSRL7CTKHCAIaHaZ\njp8rVCxO4mvMgmFgjYhYuyw8UPUKH0eHMXn+Bk4993LCvzaJpNIXh9BsEKg396cFkouikhBF7hjd\nETddk110THMhJwQcJ/TQmC3grt7hFKxPsO0n83nn2WkA5N1tJ1VoRwrL+PeYbQ21uFn8/pH4mlQc\nXWk8rSp907NUvWBQsNBGothGxT8zOLuy1DyfRkqp9Bzhou8Ic80VD7fxPHhefiez+1tabG0+b/9z\nCpuiZWzKZFiTqGH5S0fxVLSAEz072HrzfC67fDCr7dj757C1n3xo7P1zePv5aSQqvpnaveoC6zo3\nVa9cx9wfvTlQI7o/Lfjua59AKfr63v5MrsGvf/wCL1ctY9ll877Rs3yRiYrAZS/d+C+3czgSo+8K\nmKYDEhm/iOISCdRl6TnKj5QyiJZbKFqTwRKDJZvGcOXeU/lr88nMb/6Y8O8qyF/ZTuHcRppniViD\nEkMWJnnrgRMpk2280TeJf4bH8mFPDaIiYCgiqsv0tKi6iLI+QMFnMc7JW8euGwuInzcFW8hA0Axc\nLRK2oKmvpVRmMOwa/l0gp0ANqNiCAvY+sAUFgvv8iPvs5G3SCezWydmhodkNxCxoukigTsEWMg4I\nmwP2vwUwNvlIrctlxWOP0jxbIFoh0z5NpvaXZs3oiscePYQBV/+pGb2ofEVELk0SjrjAn6VotUb3\nB6UDIvCKE+qmH8gIOP/amwaE1AH2HS+wYOqzhGot6E8WILdbmbblHD5urSJ/s0I8bueUuasIT83Q\neqpEvFSmZ5yFwPNulv/mPkLDzbakz4E+3QKnuExgJ28ygXPoc9HO/VHL0Q/OIVWiDQKfXwVE0wU6\nq7YdiGBtnzv/kGsWfO/xgc/2A9SDzTiQZYqzyfweW98ZgSGaxEgPPnMW5zfO4BcLL/7SZ/n/k0Wr\nBBSnmVlgCUp4L28bqLE82HpmmANCykKsQiBeJpAsFJDS4C6NUlDdh6XRQeZzPr+CTyS8jf0ZKgHz\nB3r+D/NQny8cdJ5mg0TxgR8wVinwZZa/TsTVJuJu0/Ht0Xmi6Rie7jqG8EgD1W5e+9hLM3ml80gM\nm46nVadvVpqpt11HokTE+6abp+76Hu59BzHkZsDZpeNuMtHX/k3nSG8nCV3k7PoD0bntc+fTMwkC\nWwVW32OWXfgazfNX3/MQJ/7PLfjW2tGsArosEGnzkZxoOnEMYfB3S+eICLrBxyvG8G7STmUghLjX\nQXR9HrpsYOwwvffWqElqpFvgyVvvJ1Fm9muy0Pz7YEA64a45hN8qBWDyZRvN56sXSR5nekj1fsCd\n9YBSYK5jiVKD8MQstv4koscjRTTMeJLNv5hPZHIaQzhAliRudxMerXLm5h+RWGGSkwVOOdSZpLjM\nMROekCVa9a9xJcABNt2D/4x8eI4Z0TvI/vjC+V/YxsGR74Ntf1tfx7a0lX7p54IGCCCqBrrFjIy7\nOzXsQZ3oEJmMVwQRFE3kmcbJvNkzkT81raHyzSDeTd2k/RKBuizlSxLY3/2MX+w7jZWpXFqVXLZn\nSqlrKyTrMxAMATWg4rZkWNVVRc1zCvkfWnDlJ2n66UhEjxvj2COIVkPRgzYkxUDyKBgJGaXdhTVm\nvtspSWOJmay67hYRbwO42g1EBeIlEu59KtGhAlrEMqB9+mU25LjmL/xs19Xz0YclBumFfhe26+r5\n3xlTb9YvkMoTsPcIOHoE7FaFnuMUYqUytU9nsP7Wx89eu5y7eodzwbLrmf5+I22zvdT+tZGuk1Q+\n+vvD/HbYOxT90mBVWucSTx8WQeP2fbM4LX87O+tLyfhNllu/N8lROc3saC+iaLXGdf59PHTd31CH\nFNI5u4qGC2SEtEjxqiTVLwRRXTrxfV6yfp2+MRKGTUd0KeRsERBWBvjk5Qm4Xvbx4jvTQYDiTzOI\nisBddadzdvEmrFaVjE9AtQkkC2392p8ZCtZGsEYNuk+rJDhCxD06yHsfTaDa28sQd5DtvxmL4oF4\nJYz6rxaqH2lh1G/bkNJw667zWRoahUXQuLJ5BpmAgeFS0Z067kCSFc01/PmT00iUwcj7ekkX6KzZ\nXYXrXQ/2XoOxx+wh73aRXXM9DD2qFQQDWxDcraZ0i32fOeZyP7Xg6DIdJ4ZoKjSImkEmIKN4DBIN\nPoS0RDZmRdkQwLvZxprdVUiSTqpcwZgRwhoS8NrTtKe8DMvtoeU0kbqr3Pz6nCtZ+9AELpp9NdN+\nci0zz7iE2n+YjsBwysG768fTHAogKtB3QoZEiYAlKjAmp4M3do2nYE2U2FDTafTcjfcRGwqL332O\n2a4kNc9dT/cUL/8c+Q6fbasm0uqja4qIPQh79haSKNMRDJMMKFQrkbM7g6NboG+kFd2hMz1QB4Ao\nGMRKpX5NbAMprZLd4SNVZCdSZSUbsFK+JEG2SOGPHTPZ2FfK81uO4pWXH8L/P05c+9Lk3W2ndGVi\nECNvImOloTeXTNxG4doEySKddLnC2eVbGGLtZXHHAafrmT/8mH3Hu2g/zsUxv1uDtTKOa18a5c4w\n5+w5BUtMoG+kTCbHhuISGVrWQ+8YG+7WFL3jBFL51oESl86pLvI3JZDSAq5mia2th2aiHmz/UWmX\nDc0VnLPwp7jaRH542fuc6N5Bvpjhk3Qlz7VPoXXREDTboZtnMElRTj97Na9vnEjTrMe+lqzL17Gt\nn2PZ/boWr1Y5ecJ2PqgbhnOLWd/2r0i7fL7eE+CzS+/jqGdu+Zfb/K5SEnO3mJtDf6M58DsnO3B2\nGSQLBVwduuk9cwlETkhhtapoOz1UT2umLeLD87wPa1TDub0DdV8HHDmKk5/4BLugkjZk3m0fy76N\nxagFWdAESsqC9EbcFD1jx/7OWgDq/zKVwmE9JN4vJBMw8Ow1Kc/jZ8bIpCy41zmwxgz6xhvISZOZ\nzdYnYAsZGBLISeiZqpO/WkTOGHQcZ4BHxTCg6H3LQFrVfomMQL1KyW17aP7bMBLFIjm7FDI+CVtE\nI+MzZWVsEYP0BWE+mvQUFkHCJlh4Le7lwZsuAKDv6gSTi1v4YOMoKt8261YwoG+MhQevfYgaS5Qz\n7r0N1QX5mw44RCy3dtK0oQxb0Hym5LAM+SusOHtVWk4TeWjWE9yw9hKEFgc1U5rpirtJpm0UPjk4\nDzJZINMzTcHZMDik8c519zBj4a2DmHW3z53PvGA1Tz13aBrdwbYfWB4ORH6RPXnNX5hss7Aw4eRX\nT1wx0M6Ezy4kuzrna7djnRoknrBz3sgNvPXytIHj/ylpl+96jn2RBXZCxt+/aAcP/a6KE9SZYZL1\nfqQ0TD91C6tfGY+chrGXbOPpygP1JlVvXEtJdQ/p1woJjzAQMwLOTrPt4tnNNK+oxN5rRvu6j1UR\nMiK+OmlQvadqh9OuX8WLHx5D/nqBSLWAr8EgUSyQHJXGucOOYJhadJa4QfiENIGl5tg8nN5p97Eq\noktF6LBjjQqsuGYeJz/wc5xdOoYgsPyPf8EpWtmZTTJryU8ZVt1B70vlWJIHmHWBgYjpqrTOzf91\nA6Lan45+boQCT5yJOa28sXscviUupKxBxity5OWb2frg2EOe6eA2R9+4jTxbHI+U5p17TkC1C8hp\ng94jIG8TXP3rN3n0f87mwl8t5qbAXgDG/GUOWZ/5LkpVZWma+RgLE07u+MsVAAw9v56ml2upvqCO\nza1lA1IvumwCeksCRl60k+eHLh/0XPsjpvtTnr8oZXbj7fOpfuk6HF3iQGYPQLzCoP6HC6hZfiXy\nHgfbf/w3vld3Jm1vD0HKQjoPMvka9nYJRHjwiof52f3XDlwfHq3i3y4POIwyX3/6fivbcs2DjHr2\nRvOd3m+5R3eSUmSS6/JIF6k0nXUgq+S7Ttkt/TBNcIQNd7uGJa6hW0S6J1pwdJv8BtaEQcYrkCwR\n0IYn8HlShKJOKguCpFWZUNxJtsmDp1mgaEWQ8DyFn1Z9QFhzsiI0nM/WDkNQBbQcBTIihUOC9PR5\nqLl048AzpM+cjKMrhZBR6J0UIF5p3svuyBLrdeFstGKJm6mOUsaUMNHsBo5us88sMQNHUCcVEMn6\nBGLDFWSPgsOZIbv5m5MYfZd2OBD7dYGo6tKRE18eY5GTmLXrXQqqU6Lwlga6762ib6SMlIFEmY41\nIvKri17mgboZhPrcVJX30L2kjIqnBzOCtl1YzcM/eZB/xsbSk/Ww9L2JzDzjM95aOxFrTpriQJSk\nYiHv5wJCMIJWnEfTOV6WXT6PHdkAP5t/NeXPN9B0VTVHnrmNj9eNxJAMzpmyjsV7R5LznJvuSSL5\nG01wOvTlXtpPzjMzXvqdT7Nrt+KUsqzuHUpv0on4Ri4YYIvppP0i9pBOrELCEMx6SEtMpW+MncgI\nDbwKhiZgc2XRNRE1aMcQDDwNMq52nZwVe+l8xMuFQ9ezMVJBVLGTvKuUvWdKyHERz9g+Eikb9o89\nlDxnOrRbfzQCR7dB3ju7MYoLqL88AKIBxWkcjiyJNg/5a0U0GwSnmRJD6do0vrV2otU6gR2mI9TX\naDr4Oqc6iVWrSD6FvECMWMpGtt6LLWRGTNXaJFrYir1bxhqG1NQ4StSGKy9JqsXDZSd+yIuvn0De\nFo2Oc7P8auJ7PPmbs3A3xrn4hX8iCQa/f+t8CtfouBvj7LnYi7cBEicmkGWNwAtu3A1mXzed6yVn\nm4Fv1wEC0xOfXssvcut5MFTJ/ctnIuVkkOqdZP06eRsEeifpWCKmg6ry3SQdx7goXRZh9/VO7pz+\nBpd5e3kkUsJr7RMJP1VOtFog69OpfE8F3SBaacXbnEW3iDSfr3PciHqK7VG+71vP0vhoKqy93LHi\nHCwhaWD/MeF/5pAoN3js/AU81jWdTV2laGsClK5MIP53Lx1RLwFniuaWPIa+bNZ/porsh8jKAIx9\ncCv3Fm+g+uXrzDrz4iS2DW44Ooz+mR8pw4BsWc9knYr3dCJDLYy8eCdr9w4BwcC63YniMWi47Yvx\ny38UjE5a9GvSH+aRzjOwBQW2/eTAS+ibAsJ7r32UWx8+VHPuy8w7o5PQqiJ2XG8C0KKZrXQuLv9G\nbQxYP6hIlpj6VdaIcAgYPZwG37/LDhf9/K43yJaogJwyazC8e1V0i0C4VkKzQM4us1g+ViYRHdav\nM6qI5JWFmVLYzJ5YHjWeXj7pGEL+7N2I40bw3uIXmRespjmVx6ePTkTKQM80k8TG5ktj1LmpWJxC\n/HgTUl4ugsOB2tqGNKyaxLBcesfKlJ3cQrW3l8U7RmFoIo5GK3IK0rkGUkYwafA10GwG3j0CeVuS\nxIY46JoChk0HwfQu5y524OhVCVdbMERIlphg1za7G9uDORTc3sjWJcPJPaaT9i4/x9Q28uyQFRxz\nizlh+85JclR5C6t21dA08zFGPziH/M0K0QqZ8BidxnMeHkjHjZfKRKqh/rIFTL79ejIBgZuvfZXj\nHY0MtbhZkrTwUPsJNLxRi6DR//zm33nfa2NK7l7eaxmF7RU/+kV99O3OpXypRtuJMv7d4G5XSeXK\nOIIqXZMsCDoUHr+P7g8GRwB+e8UL/OGpiwYdu+KSf34lGIXDRzQ33PgXJv7tm5EKpUelsO/4+uyc\nhmT2w8F6qPB/S2f036Hz+3mdUV1mEJFbskDA2W0QGgFqWQZBMHB70kQ7PLiaZbLjE3x/xGbeeO9o\nTj5lI0vqRxB430FotOkgcXSKyNOChLs9+Ddb0C2mp7p7ugKqyNxpS9mbzuUYzx4u9ISYsWM28acH\nj6fk9yPcMHwlf3/qLJLFOu4WkdhQDVERsIZFPM1f/BtpVpDT5ueRGpGd18xn3J/ncMs1r/LgfT8g\nPiOBvteFZ2SQUXldrP1wZL+mooG3EWJnxPnTEa9x152XDRAa9U6AS0/+kPfmTQdMwHjXutOh1zaQ\nXpvxioSPyvDSCQ9x/bZLOLa4ib+WmKUj1R9cOTA2rRH45y/n8Wa8lif+ZzZc3EvsowI8rfoAEPVc\nuY8zirayIVrBD/M/5c3QJDb85Qgy/n4NX7sJHPWTQ4hLA9hmdZNYUcCyufM47U8Hyj0qz2vgzdp/\nUvP8dXj2ioy8aCf3lr/NDXu/z+s17x8i0fL8z/7MxX/+GWBGR639+6bjr1zLshcnkxii8euT3uIq\nXye3d43jN/nrOPbumwa18bO5L5HQbdz7+lnces5bLPj72SgnRdDX+8jk6XgbRIp/sJeO14aYv3WR\ngWY38OwVv7HO6De1BZc9xPVPXzfo2M5r5/Nmws2vnv1u+BEyQzPYmg6TMw3kbtOIVUi49+koDgFR\nNeiapuOtkxFU8LaoJPMk4pWQO9lMWY+nbUQ7PJw0YQdTfI00pAvYHikmuKCS4CiRY0/bQqEtSp/i\nYvNfxhMcI6D4+3UIi+IIH/spvvcTpFHDUH0OMnk2dItAqFZC8RhkczUmjG4iodhoCQbIpCwYmgCG\ngKPRSrpIQ46LiBkBd5uBLkPB6iidx/mITU5hqCJEZcTcLPKer37/qjWpr3Xe1zXvkT38deSLXPHM\n3K8++V803WZgDQvoMjg7DZIzY6R6nNg7ZXwNOokSkYJ1GZpnWbD1iUjZfoLGo8NkszLZiA2bP031\nT7rpOLuKu3/2GNvS5dyS08ip511BrMKOdHk3ndsK0B0GJcvNEpycDw5lL+88q4pkkcDwkxqwSipW\nUWNzVwnKFj/uNtOZp3iMgfpe6+we3Pd46R1nJzJaQciIFA/r4cLy9Tyw4STyc2Ok/lmAbgVnl4Fm\ng74jVcoWixgSiIpBxiuRLBRIjk9h6AIOd4aLatfzUU8N1d5eCq1RtkZL2LCpmmFPxWk+w8dPL3yL\n+XXTiQVdFCy3kCgVSFQp5JVEkCWNwK0SdJkZYOTloPkctM3woLoNsvkqSAayQ0XXBOi1YVgN5NwU\nwh4XgiaAYJApVilbJNI2S2fk7XtBFGi4sZpsman56i6N4rFniKbsqJv86LKB6jL4xekLefIPs6md\nu4P1b48BA3J2a9hvaMciatR3FFCaF6a5OZ+isiC9IQ8Vj0lYQmmafimRDdmxdUsImkDlwgh1N9lw\n7LaTHplCVySGP3iAyT9W60GzQqJYpPT0ZhZUvzQQPCt1Rvi4pYpMuwt3ZYRCT5z2ZeUYEmh2A3cz\nhI7NUP6KTGSozLlXf8AYRxtnOCPc0T2BungBwTsryQRkRNVke88ETKKx/E1JGs924O3nnoxPT3Lu\niI3sSeTz2ZZqvjd5Ix/tq+b9iY/zx+7jeLt+DGqvw3Q2KCLunCTjC9vp/lkldzz7JAs6Txoo3al9\n2oz21V9pxdloIZOrI+gCr5z3AEfYbAxdeA1yRELNV5B7LDiGh0km7GhJGUufjJKrYuuQyQ7JYGmx\nUbkoScfPFUp9EbpiHiJhJxUvS/SNtrD97pu/cF7+R8Fo5UPzcDfJTD13Mx8vGo84LoKui+w89plv\nDEbVybGvlHc52D6/edtvm276G8NfnHOI3uHXNW1KFGmNWQ/yr0RG/xW7aNaHvLBo+r/9PjnbDXRJ\nwB7RiAyREbMQGa6Ts0UgVSDg7DKI1IBakmXW6G3YRIVVXVXkORMU2mMU2yMEFRdb7xqPuynGowsf\nYdbhjtzVAAAgAElEQVSGq/nNqEXc9eAlIEDmuBjpkB3JreBf7iBvQxRpXy9d36siUWxqr2X8Bpaa\nGKmoHTEs46sJIYkGwbCL/JwYvTvy0G39ci66gG41QDDw7pHI3Z5h33QbSlUKi02lOBClO+rGutyH\nu12jZ7yE44gg3se8psjvzDjeRW6OvGEjJ/h2Mv/m8wfVYGa9EtaouYnoHWfBFjRY//sFVC39ERUv\nSgSviVPhD7O9oZRzJ6znnYVHU7jWjICueOzRAxtLAxJlpkC25M1S9qwF3SogZg06p1j45QWvsrhv\nDOv2ViK22FFyVIS0RP46gdAZCeStbqQjw6QavLj2iVgjBrGZcYqesrPveNMDLKUEksMyOOsOv+kC\nMCZFmXfEq9z2+I8O/awfCO637XPnM3bNxehrB+dzJmuzOOutg86reuW6bz3HPm8vX3sv5z9866Bj\n/8nI6P8GGdLnwegXWaxCIBvQsYZE0kUahkPr1x+Fvpkpchc7SBYIJMp1RAVyt5iA/tzblpDUbLza\neASON30IBlx/+2vct2sGWya/QNWr1+KpiJLdEMC71zjE0RarFHC3GvSNM7DEBbyNEKkGR4+A4oZk\npULBqi8mUkoUC1hioHjAvU9n9T0PMeGuOZx3zTIW3nPiwHkf3P1Xbu86hsUNI/nt+EXMcrYS1HXO\nu/vn/O6WZ7j7zh8C8Mh/P8A1v7mJVK6Io0+n+2SFgqUWokNEvHsPPPj+6OeIR+cw7IRGuh8dQu94\ngRtnvcdfPjqVRTMf4Mrf3EKsXMTTqpP4QRTXa95BeqeaVUDKGoSHCfjrjAEwvN/2g9F4uYG79YAD\nxTarm8kFzdxbvJpRz92Iu+XAZ7oEynFRbCv615aAuYbtuno+w5+8HmeHMNDextvnc9SG8wfqSQEe\nvvUv/HTXhaTfLSRRajL5Ku4D3AfpXLj/0sf51QNXcd41y3hy29Hk+uPEPirAGoNotQlAI0dmzNSs\nt8sQjMG/uS73R9JXVn7h7/ptTB2eRN7tZOe18xn2j+uR0oNToTPVaWwNdtLlWeyfkwmZffYnLHzz\nmO/0eYpWm1GKrEcEwSSV652qIth0XNtsWBIGhmBGbUpnNVPqjCCLGiv31qBkZKZU7eWSwk+pzxTx\n1MOz8O9RqP7dTj5eNhb76DDZjQFTwiPP1DKVEwIV78WQO0KEji0jmS8SrzDw7YF4hZmKK5QnUfvs\nTJ5QT30wD0WTiPW6sHZa+stPTD4EOSEgJ8EWNLBFddpnGAh2DSMtIagCuFWszV+8Hvy/YFKmPwVU\ngaxH4NgfbmDVsxNNnePhGiPv2svuW6soGtvFkjEvsjztJay5uMRjEhrd2TOKMmuQp24/C2tEZdr9\nq3n+vencfc5z3Pfri3B2ZwlX24mfHkeSdCpviUE6AxYLTZdV4Gk1iJeZpDynX/Apb+4aT64/zpH5\nrby7aRxCWkRKiCb5WFjEkAzsvQLa9AjWJV6yPnNvFRoJL57/Fy5d/yOOq2hgyeYxePLj5C5wES8x\nneipAgF70CA4RcFZb8XbrBM6O4H3XTfBsQZGUQabXaE8EKauvoRJoxup68vn6JK9xBQ7Hf9VTd9o\nc05pNkhWqtjbZdLlCoJNM8l4Nou421UUl4icMug4RkIpUvDkJLC95Sc41lwDMvka3ztqI43xPHa2\nFUGvDd2q42yVzX1IvY1UiUbOJhFL0qDrWIPAZpHs6RH0z/wkK8ysHDkhoDkN0MHWJ3LXFU/z54ZT\nKfOEWbOrCsdeK+iw44b53NRxJI3xPIIpJ5dVruaejadisykoWZmqe0wA0HSulyFvxdH7CXf2TXdQ\n9kGS4CgHgga5G00yn7ofu7F3SqRKVQRNoGQ5dJ+b4r8mvM2FnhCaoVOz6FqErIhvu4RuNQNQWb+B\nZofczQYZn2hm681MI7Taeer8v3PlmispzQtzUdlnvHrVKcTLHeiySRAaGmYnPNzA1ieSKtEY8raG\nHFdouUln17RneCRSwjW+dh4MVaIh8MQTs/Cc0oldVpF+Z2Y41F9qw7VXJpNjMP34rSxfOxpPk0TW\nA969Br49JgFr5f17WNNRQbzNiyEb1D6dof5SG/6SKJOLm1m6ajxyQsDVZkq/GbKBqxXCo3TsXRLu\nfQa9R+rUPJ8mNsRB5wkaeSURAnc5aDzHgebSab72izl1/qM1oxPGNCFPC7Jq4XhmzV6NuNqHvNbD\nURvOR3HDU3Me+NptPTzpmW9075evvZdMwCBeO7g29IgHbvxGm+SDZWYAsk0ear/35QQI/4pNnP7l\nWn7A/woQBbCFdZy9KppFQLdA8vg41WNMyRt/g24uyhKIVo1toWI2hco4uWQ3zaEAiiGyJ5FPSyJA\nuEai4zg/Nzb9gMReH798/0Iio1Ui47N4F7opWi5Bu53CRc2kSlxofSGT4MFhsg3qNoNMqxubO8PJ\n0zZTk9PLyNxO/L4EXR1+bENjyAkRd7OIlqMgZoWBVJ6mc2QEDfSkTLbTSeuWYrL1XmKVBn2jJQzR\nYGigz6xJ7VRxv+/mpTvnsaxxGPfMuxgMCA0zN/dj7twyAESbvyfgOb6LH9z4gdlZYfOcLZNfYOem\nSjzbrbyz8Gh2XjOf0/+0givue4uJf7geX6NC+XmNnHftMuouX4DFn8brNj1zYtbc7BatUfjDonNY\ns70aYZ8dXx3krpWZfGQdtqhG8bN2BB2eOuIpyj7QCOxWCI8A53KzHrR0pYrUT2yyH4hunzt/gBjo\nYBPWeweAqDJ+MFO08Ln0ytEPzuHcqk2HtHEwEN1/3ufnmHd6F8nqLNapwUMH2pfYVZcsPgSI/ift\n/xorr6fFIHezgKfFIH+tiHeL+Vskvx9BFMzx9NtrnuP6Ge9jiYqsuXsBvaemWfDBydQnCnhz4iOE\nRkPvqWkW9Y7F70gz4tE55K8Tsb/uJ12mED8rekjGh6fZIOMXyNsk4G2ASA34601yJHebMQBEQyMP\n/9yaHeJDjIG6z5CWJHJUmoX3nEj2/BAZn6kBOuGpn+IUs/gXurj/nvNxihZOfeNnDLlozwAQXX3P\nQ1x23y30zkrzqzkvEKkRkduthEYKg4Bo5rwww5+4nqm3XYe/3tQGBaie2EpjKh8kg8v+yxxrnlad\n0EgB12tegmOEgRTZVK5osq1iOmtW3/MQ4++ZM1BHM/u25USnpA4BogCZRQX8teQzxi+Yiy6bbYRH\nmRsmUQNtp4eMH7Jesy5Uc5jnrLjU5Cn4w9kvEh6tMvS9HzMur32gBhTAL2ZJv2vW8rr29adqxsF5\npinLZO+DXz1wFQCvPDIDLSsR/aSAZG2WyAgNb4M5X33rbATfLCM6NjvA3jv76pXEKwxUJzSv+G6B\nKIC8u58g8OE5hwDRkTPqsTWYnf95IAp850AUMNk9DQNJMbCFNAQDsBjIdgUpC5pNQMoYJMp16raX\nsamnhN3hQjJBB6JkMMTZx450KZ+EqokN0UkUynzaNgTb6DCJpI10eRamRJCTAu5mAX+9jhRLo1Tk\nkfEJ2EM6iAaxSgjsMHB0CigJC5XDOwmlnaSzFmRRR4zJZplTSkBUTPZYQWWgTKVnggg28yXu2CcT\n2CoeEg1ecuU933n/DepL0eDkWWZaglKVQvHp7Lp6PsefvvErrvz25m3SUVzmOMrfkmZ+6Wp+d8Oz\nZPxgiYo0X16NoyZCMO7k47SLP9SdSV26iHeTdmbsmM2a4BDuWnc63nX76DjWxnNLpjPsgUZ+/eIl\ndB4r0PQ9G3lrQ1TN7ca+yAvpDEp1MYbHSdmKJNa4Tu52lYo3ulj2yFSemfo4q494lR/mfsLco5ch\nKAJqYRYxP03Wr+NuhVShQSppJT7EBDjutizLL5rHJU/fRKEvxpa+Eh4+8SlqcnpJ5ctIWQN7RDdJ\nqkIGlm4LyUoVQ4Cc110IBmheDT0pc1xFA3V7irH2SXQkvFT4zcLy8d422qdbkLKQP6uNZE2Wwoog\n6RIVMWGW88gxETlt4FzfbGrtlkkYMlg6LUhLAkSrwdsgkvXryL4sm/rKyLebIJ3cDI4OmeQQBTIS\nugyWkIinVaFngkDeWpHEyXG09X5sQYOiD0UQzWio7lUpX6rhajfIGhIFzhh75w/D2WAlXZ3hmosX\nceL2s9ANge0bhrCvPYeWTC42m4LflSLwnvlOsT/QS9myLD/4xzLaTnDQOsNO1qcjJhXy1kUHgGjX\nsT7y14hkAjr5qyVqns/gbohj2+Bmd7qYy5qnc3PHFASbhr0wQWSUhm6FZKmOvVfAvVeg50hM55UD\nHM4M9Zct4I8tZzCipItZxdu4xtcOgoDiFPA2pRAUndAog/LxHaRGpKl8V0eOK3RNcZHnTVDzwnXc\nv20GY++bw5rIUBZ3jeboCzYy1BukZ1EZe+dCzrxWhrxlkBmfRC9J81FTNVMn1ZH1QvnSBL49SbqO\nctH8U4OPFo+n6B4rNc+nzb4GsOqEe9x8uGgCtqCZWh0epeOv17GGBVSXQMV7OnLKdCDXPG+m+f70\njpcIFEUJ7TJrNqxhESxfnhb6HwWjN5R+QGpTDiecvYHLcz8ZON7b5cUShz+0fG/gmNa/2GcCxoCs\ny6C2Fnz9SOrWm+dz4d9vxRYScNebK+qJF3xGfOSBBfbr2uSN55GZdGCT7ugWeL3m/UNA6ndlGz78\nci2//029RCmtobgkbCGV3O0KgYVOeuMuguMMFKdAaISIvUfA50nSvKeApGLh+ZXHEu91oRsiIgay\noJOakCQyPksw7eTYKTtAFXAXxrF7M6jn96HLAvZeET0aw9GWIPb9icQqBbSyNI5OAXuPiKdRxLbK\nw5L1Y1m/rpat3SVkVRkMyO7xYokIxKp0nHusIJiRASljIMVFsgGdkso+5KSIlBZwtwmUrNIQVBPw\nDnX10TfKHBhiFk7+cC4vTX4UOWlgubWTQJ1CZKiF5a9PouU0iWiFDFadiyvW8Y+dU3g6moclKtJy\nvs7Y++bgqwqhuKFgncodPaO5yLeRp245C1GF9x99iL0Lq3j8gxM54cdXU/K0jXDQTfCaONEKma4r\n00SujXHytM3kFEcoXaGSzhUYf/VW1q6vpXuShKAbpIp0rr/zp7ReZKbolq5Q8TabG9vr7n8V3Qqq\nc/A8ajpzMPGSMSmKZoc5l5qaoJbNbr7Mts+dz8svnvCl5yge856ZHIPnrrnfPChA3+YCnA3Wb1Qv\nqk2I8eCqGV/7/P+XTTmI5X2/bMrnLZUvYA/1M9ut9GO0OMn4Be7bcwpbY6X88dKnqXnhOmqKexBz\ns6zaXU29ksu87z9DaX6Ya4tX0Nqeg3V8aOAeeatlhM98h9zLEA7UsgqGKTGT9Qh0Hzc4HcX9RVwo\n/RqAAKGRAgHJSV6emW+aWp+LNWpw5G+vJ7DLoMLWR3C0QHhGiqnrLsXWK9L2RM1AU1WvXcumX85n\nzwlPMe++C/Ht0ama2kJgp/l8q/40n0iViL4ih8KjOknlmsvifmmXyJNlLNo9hsKV0gDQBPDvBs1i\naqBakgaxChHjRLNvVt/zENli07nj6NVR7Sa50UuPz8Ba70CoTBCt1glPyhAec6BPHo8UcfSZWwZS\nzv07ZMITs0SOzODoMet45ZQJMPY7lAAiIzX+9OBF7Jr9d+ytVjY8O46h7/14AJAOs7hIH2Zq9a0t\nHGD0BTOtN1lo4FtnQ7eAf4MV726J8BFZ4sckB+7l2GslNsZM71r46PG4WwSMiVHKjm/9gh/032M7\nlx0gRsvkHfCO7bx2Ppmcf09NjCGaUS1DAEtSxdWpIqQkdF00azTTBpmAgK9exFpoEtZZJA1vUYyA\nL0GBNYqiy+zuLUAPKPROVTmuooFTynebGqCyQTYj45nUiy2skywUiY3IoW+MA0efTtYj4GoRcXQL\npPJFRAXEuEx31E1dfQmKIhGNOQfKhaSsWYMnJ8yyGl2GRBkoAQ2rU8FQBSz97PGfdzCe+uRt/5Y+\n3G+CLrB00SQ0h4Gl0YElIjLi0TmsfG/CV1/8LS3rFRB0yNkWR8xoVC25ioRuRRsXx95jZmRkt/mo\nyAnxQOspRBIOVvcO5ZmuY+gIe4lk7FhsKrtuLkNKgaMmQtnCKNnKDBig5yk0n2VOtuB4cwxaOsK0\nnpFHosRGuEbiwwWP0HZmIda4wRXP3siwp6/nyd5pPLj2JJztIldNWgX7HHj3iCbTbxP4PrYjqKCM\nSxCusXJH+0ycE/q4vPxTch1Jbnj9x+xcWguGOUYNAYpWpwiOFM33RUIkXibSM1EgOsTUmhUUkVDW\nCRaDbJHCMQVN2CWFnrSbh5efhD40RfK4OHMrP8CdkyQUc5JXFsZREcNQRYrWaPSNEdj5xwoKVvWh\n2QSsIYGae3fj6tbwNpoR1WlH7cTosNPalE+tsxvLFhd6SiYT0HHutWDtkRAVkLKmhImWq9A3wcBh\nU5DSkLstRcYnICgCckrAvctKZKiFdK5AU6YAUTDoGyeQztexubIseP109jYUcnnuKhyVMc4Zv4E7\n8jcxtbSZ9tZcUnkCbaf6aIn4mXLvZ7zeMQHXPgNfPeh2A81tOraiwz2ExngpXBUhWSSQv94Ekz1H\nOFFy7KTyDRRDIpp18PbGIzAUEXGdF1uvRCbHIG+j+f7//8h7z8C4yjPv+3fadE3RSKNebNly75Yr\nYDAQwHTiACEQEjom7C5pbPLsbkjZTUJCEkKwMb0mhJbQe3Hv2HKTJVmS1dtoep9Tng/HljGdhITn\n3ff6YmtOmTMzd7uu+18yRaYoKQZYzh/CZcuyIaOzr6mKvbtqKZbNMTjnUbBFjo5bYl5gincAMWgh\nXmUWcONjNXKPlyBoAgWODPaThtnQWE+ZI4YkGGzeMImcB9SQDVUX+eu9v8fos2GELeh9djbvqidb\nqDM808ngfCfakijFT9pRkqZX6cFrJYbPzBKvtePeY8HVYsF3QMfTplNwSMC/SyTrEbEPG5RuSjI4\nXyFbaJAuMy2iDt0IP1iznMw2P+42gXSpjcIDGuPv/3hR2C80GS2WkmQrcrxxcALnvXMDM843J3/X\nAbMhRLJ2Xr7xVvbctJL915uTqjVsejf9PfFeCLBtSZDy07u4vmgNX5q6b1Qe/5PiiB1X+p1irDtc\nZPxHFynTfruC05rO+rue8W+N9+/M/COTU9UpodoEMn6FTKFExi+SSNrw14VMaEYcyjYmca32muJB\nkkZJ/TDHT21mefF2qhxhgmknWkKhpDxCqTPGIk8bePIokkYuK6NIOsMNOu4OneiZU+g820POKZDz\n6ri32ClszuEYMEgHDKScQUGrjG7TifS7ScZtCBkJvSJDulTHPiCS8xr49gukSg3itaBXZJBK0wwE\nPajlWXTZVIccmiVT0K2jxEXccobUTHN3MusTsDbbuXDL1Xz7R3/i9UnPE6lT8HTkUV0Gri6R5ElJ\nhLTE+QX7+NbUNbRkyrj94vspaLSSnZMkvcOPlIXu0wUe3rSY/x44lcAP2zHOGUERJF7911sp3C0w\n5r8O0HWmSPuX7qPQkcbdpcK+AuItPppvmYr9QR9dZ4roCrT9ZBJSRkS3wKL/3oISFxg+Po9zp50T\nv72JnpOOQiJ/8vBXEXOQKz525THuT8fysIQdbqQM3ODtJlXzIZj298WsbRd//PGz948mGJRn+Nrd\nh/kDBihRYbQQlKr/GI8Xjtq8ZJMWHIeOVo9y01Kf+Iz/W+O9lIMjtinvD/vwUeXbnBcQoPKCDgTB\nIJG3ctO6i9FlOL74IFdM28jq4x/m9egUBvIegnEnJ9s15ozrJB5yggChyRCebODsMxieq5OoEEZV\ndYX3PYJmNXf0AusOm2oXHN6d+4ifzHNQxz542P4lIZA3NK4Ys5GhU/IoCRg+JYucNY+/FZpI4T6D\nq6dtINLnZvJpLSaPb4nG5lvvIrDFfK8J911PYmmS1PIoAXsc+dIhABbfvAJPu459WCf3SAn2EXMx\nsLzoqE3QthPuJHx2ipFlRwUeBN3cHTsSBV06jqc8WBIGs7ZdjHuPZRSeq6QMlt/8GrHpOWwhcK53\n4W4T8e6wUlR51Cf7Z5vO4r7q9fzq4odGE0nvuxY8260IusmNFvPwl+t+xRvfvJVrexZSJrvwNEmk\nygyu7DyVbJFGZHYO914LD8eKuOL6F1m8+4JjZvvk4iTqyRFyfp3qQtMDODZOxxIHx+BhP0y7QdZ7\nuJiwy4Jro4PI9DyC21Tl9e6wju4I59xgfcdN8C9/o+bC5xDW4FHxtUmrV2AN/WOWN0pCRU6rSHmD\neKWVrFdCjot4ClJMmNlFZJJB1m+gS2C0uDBCFvqjbq6pX88ltds417WXlG7h+vq1XDd3Lb6yGNNd\nPQxm3TidGcpLw8ys6qHOFyQ4C1w9GuF6CSVpEKuRSJcIyGmzHSQrdZKVBo4eEXGTByUsoQ040MMW\nk5ZiQN5pIKomP1lUQVcEM3G36NiseYSkjGYzd3Sz/n+SqMV74sDVK5HSArr176NW5Lyf7tmtEYNM\nkUFkggule4S6qiF0RHwFKWIzs+S8ULZJRbpE5aUJL2FRVM4paySWs/H43HsZCrnhgAupPIUtZHBR\n3bsogg4JBcNiQFwmW6TTfl0d9febGxVDJ5ZR/Ugbwekiqg1m/mIFVX9sQ9Ag7zLIF+V5bcc0hJQE\niyPct+047IMC0dlZNBtEx4PqMFEm8n4n4dkqb+2ZRKTby6ZYHV8t28qGr/6a8Se3Y43pyFkDOWMQ\nGW+j9q9h5BTUzOgjE9ARNJNHLnhzlL0Du7orIS9wxvS9ZHWZU/xNXFiynakzOrlhxjtMK++jNVuC\n05rDYctRVhBjaXULtVXDJMoktAKd4jUKXWcXkXeZ904uHEfvKQaJaoG8G1p/PxlLSESwady7azG6\nBYSsiJgXUF0mDFlJgrPXoOdEGTmo4BkbpsITBSBdYsUWNnB1i8gJs11LGQNdgZv9rVxauplTl+7E\nNSbKgqpDyCmBkuoQfxg8GcOAy/0b+U1oIl4lhWVApvysTm6/ZjWpXYXsj5Ux8mg10XoITwFDMhic\nZ/KhrWEVa0wjUeeifG2CWK1IYHOMr1z7Jh3nmXNZtXWEvdvHIIdkBEVHSYA1BN4DmIWkapGqN1O4\n2yBRY5DJKZQ5Y/z00NkggC0o8g33EL8L12KJ5LAPHp1jVK/KDcVvUzx5mJE5GsHpDjxNEt6WFJ5m\nCO8rIvNmMcfPPEDjUDmhnANBg/+8+M/Mnt5G44bxPJuowtEvcs7iHXztlHUsm7eLonEjIEBhUx5p\nnQdHX4ZMoUHXMhi3WuOsiXsoOJQm4zf4+tdfJVZrFkUyfrBFdNOyLKbTv9iJJQw1L6epfNNgYKED\n6w4njg6F4p0qRY0pci6R0CSJ2NiP55hLt9xyyy2fsc9/bvHO8B+5fdIa7ti/EKcvzeDrVWiWo+qK\n6fYCHtu6mN8enEu4PMX2keqji9nPKdROB/GDHl5wjqfjpbpPvgBz690aEthz00pWbW4ATD+37f92\nO601Er8/6TFuLDnEHY0Nn+uz/i3xj3wGb7OKlAfdKmALaYSmicyfcZAZhb1kPAKDdhvh+RCtlBn7\njEZXvY2ltS2McwwR1+3YxDzLivYyvbIHnz1DJO9gw3AdRd4EhfY0gmxQWRChv9+PdURg6DgdKSWi\nWwRcXRCdYJAqkSno0VHtIlk/CJqAEhNNGG5aQomKSCEFJW4OegUdJszFPmSqSNr9afzuJMmMFT2u\noFtMASPVEE17i5xAx+s1GBkFOW0mTPZhMBJWtrwxjT+8O494ncaz3/0Nb6yab/oO6nZ8s4I88MSX\n2ChWsHe4nN+P38GfH5hJ4anD2J9y4BjSSVRI2PslchUa+/fUoHU5OWXKWv710Jf59TkP84eWE7Hu\ns7O84R2medt5+6U5ZJfFse62o1tERB3EjIRuhaxXomS7yuIr3+XF5xYybskhLI/5cA5o7B6qRcoK\nqA6J4Gxh1HtQyoijlfCVWxtovnIVK7d+sL2s3NqAEhXZd+NKnvcEiLV/uK/v7vMf+NDrj8RAS/Ho\n/+WhYyEI6swEUp9ZhFJGPsglDCztJdlh8uXE3OHFsigeo6gpHb5nuswUyfnfHPbgsX+/X5E26xGQ\n35PT5wpMfjWYi9K8QyBbqlJfPgiCQHfUh8WeR7NAU7SEnCRz78alNNR20JvzkTCs/Gz/QryuNOfU\n7aav0kplbRD9FZOXossiBT2m+FHWK6CkzH/TJQKazfQ0tI9ArFbAGmH0WT4q0sUisYYsznaJZBU8\n/Pw89rxZj2thiHCBjGJTUdNWrDGDjlQRMy7cj09J0/Z6Hel1PuJVIoW7BW5312NpsnLVqdu55615\nSIMWLLVJ2rfUIG10jSbxf/mfX/PnNxdR8M1eeorsZG0yf5i3iVv7GrAPw2Ml47E/7UEeMGFrw7PB\n2W/CcpW0QXiCgN2klHH+zW+yZeMU9q9YxZ8ry0g1exBV2LlvPN4mgctveok9RYXoBx3oChgtR7e1\nbf0Sj3iqeHJ/Aw89sZDv3vhn7jxlLavXmf3KEjPb9VMbF/PHTYvp21VGwcx2Nm6dSt4Jkc0BbEER\nW7+EoMNGdznbX5iOts+F/5Q+4uU62pgs2ZCdfMjGyjMe5Hz/Lp7dtBBdEo4pDliiwjHKvLH5aUjK\neBqPwmFFFaLjTcXWnNtASQqjhdp/Rpx01rscain7TNfkxqeRQseOP7psIOifbsyQciKCJpAKyLgG\nVCxRlZGZIr7iBAFHgrzTIC4qZEs1rAMyhfshNgZmlPQQ0xw0ZUspUaI4xCyLHW082Hg8Nl+evcFS\nCp1pCixZwhkHSdVCqt1Dzi2SmpAlb5PJlOpgCKTKDTQ7CIbZt5SkgCGZ/FFHv4iUFsm7DaxRAcvh\nNZMAWGIGkek6SmHW7EOqhJ5QUB0Gqh00r4ackD7+C/ic4w/vmm1b0P6+Mfv9EO6PioJujaxXwpAE\nggs9ZPZ6kCZkSGhWFle3kS/XuGT5OzzrW8Qzf5hFJubk/lPepNbVzH93ncVp1U10Ogv46rgdvDP0\ncTQAACAASURBVHtoLI8ueYGb9y4lr0rMmdJBXJHJCRLWfhklK3PwOg9yVCK4uJCqN9JIOYnQNAOr\n6sH77iCh2QU4OmXcBwV0i4hRnMO1yUGiVkcJyWTqcpSsFXEOavQv1ZETEmNn9fL96S8zv7aNB7Ye\nT7/FzZ+HZ2CTVCJNfvIOAdUuUrxugPZLi0hXqcTzVjzlMfIuAzWloAwoIAikHBJSWsQeSHNhYCvr\nYxPQkKhxhDjTtZfb9y9FtEGpM04w4zJRK5LOgYEStLQVW1Bk2mX7OKh7MQSBdLlGtB7EtIiumDQq\nMS+iusz25dlmIzFWxTYkI2gC3hYz0dYtZrFfHZNBQ8DiyhPcWEYmoJMpEomNM8jV5jBKc2QKwNkj\nkqg1eFEuJY6dmGqjqiBKU7iE8onDdA356d5bjq8yit+Z4vfbT6Z1Tw15r0Yo7eCtyESqV+dIn6yR\nbPMgJwVUF4h5EVcPOAayyEmV7ut0Sp7PEp3oQspC/wlW2hQPVk8Wo8vBmqHxlK6H6BQNa7cVKWuK\n70Umgn+vjqaIDDfIqE4QxiX58bTnOcfXyKNd88nFrUi1SQKFnexIjKFrfxVSDkTVLKz4d2msTi8h\nioULG7bxrlKCkJaxxkRGZoqMeTZF8Pw8p1U2sWnrZLpDPibN6qInV8h0dy+Dj1TzuwvWcceuBoJ+\nmVpXiGc2NqBZDfxvibh/0E1g8jDZN9yMzJFwt8oE5yh0iG6EPifpEoGd++uofDNF9zkCniaR4Gwo\nWdZLj+DB12yQDghoVpnoeAk5DXMu3IOlNgWvOkhW2kyxp7VJrGGVr1/x0RTCLzQZPfO5MHf3zuLb\n815nTfMkrBNjFI0P4xwXI9XmHj1PTgtkqzWie/0fagPweYR6yPmxx2+79h5uXvwW9+9ZjJwUcBwX\n5OfbF2EJmQP3nptWIgsSS12dXNR8EZcXN/9Tk9GWy1f905NfS9xUaLNGNSLjLaRLdQb3B5g5qQMV\nkRHVgazo0GMjuFjD1mJDqU7Rk/bRm/UxkPUgSwaSoPNc13S6RgoZUzhC08FKgkknyZSV/oiHknck\nQlMFTlywjyXT97HNKMXbMMLxE1tI+AWCdQI51YKcNuE3zn6DnFswdxE0EFUBZ7+B96BGzi0iGJCo\nEVALNPJJC6meAqxdpj+So0dCDCsU7QJvu4nZxxAJ7MrTt1Tg3y95ijUHp1KzrIO+gIKWUviPs59h\njjXOLxxz8ewTkdMCQw4HhgCqLnHerJ1ct3EZ3v0C+iYX6r+MUH1qLzzsIzhT4JaGv/By/1QMQ+TJ\n2HQWlB7if3afTi5joXpWPw/1zeHR3YuIjhPJh2xodvDvUxmcJ1F3Wgc3Hf8iGwvKUXtcOGdE6eso\nZkixkZ+VZuY5rbx82jMUT2lh9xOT8bTrOAd0UqXSMZCsu6/+A2esugHrwhG0ng+uJjUbrNrYwKYz\n//iRCef7X88E9FG44b4bV35soioOHMv3yk5NH5OwJjvcPHDN7Ty7YwFgCim814ZGdRijCaiSEEd9\nUf+3xvuT0fdHzmNWmo/Ee5O/jF+ARREUh0pbRymCXSexy49rg42UU2bCuH72bh+LlBI5KHuY6Bvi\nV1UvUlfcz3+U7kCRwpzrb+SF4HT6pAKmndNMv9NGRrOS9UPOZ5CZlcHaaarwSjmIzs6RKhFwdZrq\nlJF6k6f4UZEuEfBvN3e2Cpf1M5xz4RgA9jhxtkmkLRakrMCvv3M3m56czci2YtbbTX+/vEtkwRl7\naR8spWCT2a5+e2AeeY+BoAnYN9owlkSx7jYbyeZb72JTxsnj4nS+NmErdneeoN3CrY0L0N0aqXEa\n+f0e0gEQEHjxB7/ij2uOwxozUNIGwRkCmlsnPT1LTlDYmq7gZ6c+xVX/+Q1yu9yIKoQnCGSLDBxL\ng6x9eyaZoAM5JYwK6RkCjL2wlcg+P7Wze7ls/Ga6Kx08vX4hd62fR2JcHtvQsUnCkd3ndbumImpm\nQgJmcmgLCegS3H/eal5Ya/aZbHWeyYFBCmw5Qjk7Z8/eRXfez2x7N5PnttPsKWTC3E4GdpvcUtuZ\ng7x4wSouWryBezsWUVwXYtbYTlq0QjLVec5ZtpXGkUqqpg0glmWICwreOUEyPR8P5/+sUbhwgPR7\n7tl07Uru3GGOJZ81EQU+kIgCnzoRBbAHDRAE7MN5bD0xBhd6UB0CUc1KbfEIRfYEQ1kXXk+amFMk\nPTFPwSYH25wlxA0beUFmMOfBIuk8MTyX4eZi2keKcftTpHIK3YN+4mkb4ZALR7fE/C/v5l8mvsmy\nqe9iK84zZVw3ZWVhRhwKhZVRIikHhiAg6AKOQVO0RnWZu6FSxkxScz7D5HH7RMTJCSRZR+0oQI9Z\nsI6IWOICUlZAiZqcv9HvZXIchv+/O5gWzR8g1Xtse4yNEZAyJmVBtwgUn9HDofvq6ZVddGluknkL\nb+ydxokL99F5qAxBF1hb5UKQBd7urWdEc1HmitGX8dAXLOSBbD0VnhjJvYUMdhdSURckuddH9asJ\nBhbYyfs1ShsGiY64iNQrpBem0GRIBmSiUwpw9pm2c4IO8cl55BYHStKg+pUEnnaNkif76LimAGVE\nxhKSyM5OEtlbxLqt09nz0kSkpEQkIJBTZRYFOmjfUo0loePdHyc2tRApI5AuMygrC+N3pIik7Jy3\ncAd7BT9V8/tJ7vExZclBmocDtOZLsUt5pju7iWpOXo5Mo22omJ5DAfpUF5fVb+H1ndMYMWyAAIEc\n15/6BtOcvTh9OY6vb8ZblMLrT5BxCKRjdozCHKooYRsRkCMyySoda9D003T0G4zM1ah6NUNsjEK6\nSkWIKRgujVxOxnVQRkkIlK/PoFksZIoMiFjw7zDXL+kA3DD3Df7SPRO3NcvuoXIEAToPloBsYBlU\nMPa4yNWrdIUKMQyRmvFDxA95CDynoETztFX5yZTpWKdGqb4zh+qyImfAPpRlxRN/YUjysKekjNS0\nLMKUFFlBRO1ykVIV9NIcRl4kWSpi75ORZkVx7LSSdwn49+v0nQS5+iyWPoVMlcrssV04lDy/bD0d\n50Ne0sUSs6d08PXC7VzqHeJPD00HURhNRrtOd1C6VSOwIcdmeSxVEwYJ6nbcXwri+ZMVKaeTFZz0\nltkI5+3U1A5T5Yyw/mAd+9fWkykU+VVoBo9/+Q7Wxiaw976ppMsMtLhCKiBx3wn3c7q3icgpAmeN\n38VZC7ZwyOOlr6+QCWe0k/JANuQg47OQdwosOX8X6UcD9Od9VL6TIzhD4ZuXvMq+zXUkqwyql3TT\nGirG/hM3gm4cLtQpDC8UCE2TuWnu4o/sq18oTNfVZOGCSbsIq07ePf12jA0+Rl4vJ/iaaRHw2A2/\n4Z7r72D8Wa20vVCHlDNVc/9RfMyPi++svpqTf/895JSpxpZZU4Tr4NFJbcL91zPttyuwCgrnlTX+\n05/vixJOkXIGSjyPs1/DEhGRp8Z4bF8D+4KlOK057JY8qsNAkEzhksE7xhLOOmgaLmGSa4CnDs3k\nkfZ5SKKO2ucgmHYxf3Ib4qAVW7MNIyWTLha59PQ1zCzoZq6jg+/NeY0lJQfxWxLM9PegKBq2uhiZ\ngEY6oJMsN9XmlIRochRnxkiWCwzNlsn6TP+33JgMteMHEQzhsCG4gWbTSU7NkncbWOIa4XqZsvVm\npQ+g+mWd+799Pv69eV6of5mWEx6m+cpVfMM9xN2RybSfej/v3HsPG397F1WTB3B1w+kLGnnu9flI\nQQtDs832sn76Mzxa+455z1c1/v3hb1DzlIAcF8gmLTzfMg29x4HcayV5TwWZlwPIIwpyVKJ4h0DF\nGpXkiihLlu4m9ssq7vi3iyhYZcIDexJe7ENQ+LoNaaOHN/ZPBODnv/sawWnmKqPz/KO/X+4w/3qx\nzRwKfI6jMubH/M6Hd0g2Zz59NUi3H4VNXduz8FNfB2Ddayc7LcXXL3l99LVv3m3axFSd2omj89jd\nU9Vpfo4jnqf/fw/H0IdD3oZOzJN3QWLYiaqKuEsS5FWJ1ZesJjjbQHNpdIQK+fLSzcw94QDxkJOv\nerfwamosfXkff0mWcYINdmWriGetGIrBzr5KlM0FZKuzOHsFxPI0lr0OVDu4eg1sIwaBty0Ubzk6\n3XhbPv753e2HodgekdvH/5mDl9zFyDRhFN5buNegoFvn//zoqJ2Xtd1KyQYRX5PBO7sm4e7U0RTz\nfNuiID9Y/jSZSWb7TrZ7GPrS0Qz9u3uXI8g69zxxOvtGSsm960OKyIiKTuB1C95WHSUucMe1d7El\nW0pBt07wjCyxWpEfn/MEgU0Clv0OrrzgNX6x8Gn+ODD/mM/jazYo2gWDXYU4BkxD9WSVPrrzKBjQ\n8YTJf9zWNJaJ1n5yusR5J5ieyrMmHRq91xE/z3iN+R395V9NkZmMHxKVBu1fMRWBRQ3WJCeOXqe/\nU8iW5rHs2VeNa6ODNQ/M4/mnF3HWK//Kz5qW0dFUxqauWrI+cxc082IJp/3ye5x96/eRcgIjuwJY\nRY2CNhkxrHChdyv/dtYLRJ8rJ/9yMd6dFuLpY32NP48IbSo95u9Jq1dgSAaOuZ9QkfmEqDvpg1Yb\nnyYE3UTXWKI5EEWcAxpyQkCMyWzcPgFVl5hf2YlFViGqQJ8N1Q4OW5ZKZ4S2aBGFliTP9U7jULQQ\nS0RAyAnYlTyzA70QtiAftKMMKrh6dZb6mnAIWSqkKKd69lFmiVBsiTO5aBBF0pCL0hjjk+TdJlc1\nG1BREofnNbtJKbJEBOI1IrEJKhMDg8wo7UOz67jbMNFNMmh2PgDTNfYf61Bwy8V/+lAf0ANXr8QQ\n/9+x0zoSwS2lH3hNyh6GklYI2IIGPxr7HK/+9DbuWnY/aksB1dePMOm2YXY8Nh1dMVWII98s5PWT\nJ5Bs8+C3Jdm1tp4de8ZiCQsIb/kYSrjIjslQ1KgTfrwSX8MQrV9zMu/cPdTWDHNexS7UQA7/9GHK\nC2MsndRM8eRh8i6DXAFkCg2Ov2YbjjYLlWvSGKeHOe/htznxrs00/bAWIWGKEsUWppld3U1g9qBp\n2zINxBNDpGI2xvhG+NPOeYja4SJ8Vz+iaqApArY+meHtJeR1ieumrKNAyqAlFDpHCpFyMPT7sfxm\n5pO4LRm6kj62xuvoSBcxp+AQwogFQzJwOTJsCY9B8uRRm9yUPGwnn5XxSEk6ssUs9TRRIGUY4wji\nUrKksxb8dSFE2UCoSSInTUsh99gI7g4D+xBY4ga2QZl4jY10qQ6SQdmkIdMntd1mci1zkKgwCyLW\nPgXrsLkJojpMkThF0BAFg4GkG+V5L+HmQiwjEkqP1YT+Dupsf2kqRlLGcKp07yvF3yiYMF+7jHVE\nouOcu4kNmUUL1SHg7jIH5gf7F7N9x3gMmwZBK+peN64DllGEpmOXncKdEnLShLgnh5xY4xpZH/Sc\nqWG4VIwRK3mPwcLJB/l51bMUiBkiMQfBGSKaTac5GGCM4mJHNkeyzIL0njXWXV9bjRJXab1apnST\nhvIjL+MfymH7sRslbnIKS7YkUX7kxb3bQmd3EXlDxHrAjpSB1KQMijOHTdBob6zAFtExJAPBlyNf\nk2WSxcGGdC0x1UadZYj2XICsJtMwsYOBpJtwhw8lKpCq0Kmb2svrb89C0Ewrpsk/34tmN7jv6dPQ\nLFA+bZDx7mHG+4cZnGdu7mk2mdrnUziLU5S//fEFvy/U2mXKzUcFTDDgnuvv4OpVH+4zVXNmB/va\nK3A1fVAx758ZH+YVuucm00y87aK7WLBrOZtnPsW3eufz2huzv5iH/CdFyVYdaziPtWOYrgurUBIG\n0UUZFKuKmpf58uSd9Ka9tEX9DDUX46qNMi3QTyjroMQep3GonKnF/XQnfPSH3Yy9Jcuix3ezK1rJ\nu411uDokSjenaL8B6kqCXFm1jlI5Sl/ex8N9C+kK+yjzmKbSgyE3dSVBWnsCCCELuk1HSki42yBW\nB9aQWS3WFbCOizE5MMAY5wgvPbaIwM4sWZ/MwHwRS0QgXaVS85yBZhPJukWi46Bso0rOLdF/gk5B\nm0x8apaaJ0U6z4WOs03hnyO+oSOTFZxLh7hv8iOcv+k6NFWk7eQHjjlnYIFM6eZjeZg9S81qIYCt\nJo5VUcls8bP/hpXszmX4lxVm3xieoVDcmCc0SWH+hY20/ngyc366gx3/OYfOc6GgRcG2dJhx3iB/\nHPM2/9LXwPONM6h5WmB4pkJ+WpJ75z/EFc9ch3VEJFOi03bhXUy+c8XH+uCmqlUcXR9tx1Fw/BCb\nZz7FlDtWkJ2axrrXzsPX/I45VrPPvt+H9Jh71+ZH+Z+ZgI5t6HByvGSA8JoPLig+9B416miS+v+S\nz+g/Ij6ttYummIvNI56WYO6MJman+VHD8/jlBLVymCkWO/P//WhBa3iOgaCDbUjE1Wuw5ReruCtS\nwWRbL+sTEyi3hLn9juXoMmQXx/G8YE7kqYBwmMZgFoIsYYF0qU7xjs8GwTtikwKgXRzilonP8dNb\nvmH6gE5TKakJMTjgpWi9MioqtPnWu6h/+HoK95p/D56cB12gvCKE9mjgQ99n8U1bua3sXab9ZgWJ\nKVkEAcpLw6gfcf7gCRpIBkJSIrBVIDRFoHCfYb5XTsTuT6PIGvanPKg2ATljLgZHTspSUzZC+qGy\nUWuXT4q8E3585aOc5Rxhwc+P+vXqMnznuif4yYvL8dSH2DHnCYAP+I1+VGhWU53zvdYx749MEVx2\nwZvMcHTyH7+7glSpQd6t42kxd2e/dOVGflmyi+/0z+atBxYc+9xLo2iNpqjVpJNbjxEZ+luj6dqP\nLjJNWv3Bz9107crR17978TNc6RlgwgPXj0L8/56oeSGKoUjIg1GMVJqeS8eRLjbQSnPItjxTy/vJ\n6TJTPP2kNYV1vXXIks543zCqIeKUcxyKF1JsN/mEbQ/XU7JmmN4zAigJk+vnX98HeZWBM2s4Y8V6\nJtn7mGnt4Z1UPYcyRTy9aR62kiRWRSXR7EO3mPYPOa+ObjUQ8gL2QRFryCA2DjBA9eeZVNfHxWVb\n2RAbz+ubp1O+FjIekXRAIFukozl0rEPmGOqcHWTHnCeYeM9ns9l7fxxJXifes4IDV6/8TPf7rOd/\nmjBkA/uggKfdRBeJk+Nk+p2UjAsy2TfIt0tfZ4rFTt3j1+FpNW3qmq5dydXdi9naX01up4+cx5wo\n3e0i5U+10fKbMlpPfJDTD5zJ4DM1SGmD0Ayd9uWrWbBrOQFnAlnQ8FgyHPj9FBq+vYP1984lsCVG\nxapODkQC9B0qQsgLGDadildFgtNFSjepJG+IEt9RhDglxuKqDvaMlBHdGmDs6nbarxlL3mVw7tIt\n/GX9PJbM38fgFWWm56csk1hYS9onMbIkh88fZ35pF28cnIBhCFw+dTNrhsdjl/M0rxtD9cIexhYE\naY8XoRsCfluS7riX4ZCbgk12SrbE6Tq9AG+Lji2sollFBhZIXHXuazTYOxirxPhp/2koosYrm2dg\nK0ty0fh3efyZE5FTZuKYqtCw90nYh83CSb4hjnVTAbEJKs5AkpmlvaiGyJamsZS8LZvCcJUScsYg\nvCSDa4cdT7uKahOxxDTC9QqNN69kedspDCTdDO4q4YLTNpFUrby0fwoIYOREZtV3cihSSGqn3xRK\nyphFCV9rHutgivj4Agpa48e0E9VrpeNsi6k87NRxHpIxBKh6JcrQAjeBzbHRc/OFNjq+bs47nm02\nIlNUzm7YyYvr5tAwr4XF3jbimo2BnJvXOyYiCAbagQKkiXHOHLuPX5Xu5JWUlR//1zcpOHR0Q8D4\naYiDB0vx7ZJJBwTkJFxw2Roe3rwIe7eCr0Vn1vd2Ms4xyB8aT0QPmUn7vFmtnFe0kx9uuoBxdx+7\nzozX2LGFVL5756Oc6cjwdMJNrRLkmr2XMsYbonHDeAQDap83ORuaTWZotpXUjDTVpSEif6kgMl3l\njDm7OfCDKRy6FISQglKZJBuyg2Aw/qGjhd6260XqVpn95Y31//GR/fILhemufGMzAMmpGSxDMs9v\nN6vJqTKdn3z1j6x9d/roudFWH5bgJ3AZFkWg+4OV2Sdu+DVPbvv0Eu+JcXkTfrsowq+WPcZz3bNQ\nkgKpcn2Us/Pe2FFhpX24iH+buIOrSvczcf1lpAWFeN+n9z19f5TP6Sfe/8nXt1y+ihtnbufGmds/\nNUz3pJN3cajj0y3wPy7K3gohZlWMngH08gDa+WEyQ07UrIzDm8GQROZ4u3Ba8nQbBaRTVoa2lDMc\nctPdXkLduAFEwUA3RL5Zt4ld66fQ871htC2VFG1O4Xy+ETmnI2jF9Mhu5o7tYFNiHFPtPTy4dzH5\nYTuxLg8Tx/fS3VlMzFAoetmGaheRU4c94OYkEPut2IMGyTqVwPggy6r3E847aAqX4p0QoVvxkXeK\nCIbphSU4NSyDCqlikVgd5P0q3maQsgbV53ez+kv3se43i4jWKVhHJG47NJeRsjTi4iS3XfwIT1gm\n87Ux27mt41RirT4aprfxk/vP4PpF2+DEHl6rqMHSbCM0VUS1S9iDOrFqmdRYlbkz2lAKc4zzBel7\ns5oF5+7m5ifOwjo2TfFJQzx2yUvc99pcfv6ze/jlCVv5102n4d0vsNlfRnSsSM3zpnpbWCvAOzbC\nLU+eTvKxAJpgwTFsQnRzmo1fHr+N3zXPQc6IjF3QxaVFrdzeNBcpK+BYHCTf7SBdoaHEjy6clejH\nL6JzXU5+PTiLvEfH3moOioUTIyy0hz82EQVQIkf79hFoL0Cm8+Mhf7u/9QdWbZ3HhDNayVkE1G4T\nYvyPhum2XL6KN51+Nix9/AvhhovqsXy+j4rwVINEnY4uSsQmaBhzEuy56H4ej9exM1pDV76ICnuI\ns/58Fbu/s4r7impJ1+exeLPkozauOPcNHjznVbrUBK25Ip4enkvaUFhS0MykuR2sc1RiUTTykzJk\nY3bmX7Cbzs4A3hbQJYHMlDSGBM7Oz8ZDOwJBzTsFtn/1Ib7+f64CQM6alihh1YkyIuNb1k+fzYlq\nl7hrQwOrv76Kn56xnXtfn0tucg49JyHbVKR9du7+2e940DYTR6u52A4uy/DitJcBWCnUY/Q4KN4k\n0l9gZ/XVq7A1JFgr1IwmbaEpAgvnNXNSbTMDT5oWJo3fu4urTt3O43fPR4nJ/NuZL7L2rdnYQsYo\nH1XUQUgojJneR3+tjNB+VMjBEI8Ve8q7jkKqpTy8LNdxbfUOSma38eVFG/nF0q2s3NLA2uYpOPsE\nokUCDz6+iOuO3zbKHT0S2ilhHJNiqK0uUqUGUlpg+iV7ufy4t7mnYS2/aZ+LJS6w6tt3ML3hIHec\nvJ7fMgl9bIam8+4jSYKuXBHruiagOQzcbUd/w7adVaxe10DHrkoyflPhFyDrBX3o6Bwc7PCTqc4h\nR/8+HuKdOxr4fWoSN9aYqKMnEh6WP3DlKFz3w84/Ehv3TuLOHQ2fiZPYdO1KfnNoNnL6g2Oe96m9\nSJEEFDgRVI1shZecB8SUhOo0iOTsjPGGCFjjOKUcAzk30bSdcNZOf8zNNH8fdlllsmsAu5znO6c8\ny/ONSyj+azPOMDgOxdC6e9Em19J3qsSiMa345TjdeR9bY3WM5JykrSI1vjAnlrayOxtAcuXJWgVz\n27xABV1Er82QcsogguZTcRamqXBH2TAyjl3bxiFlTDEYwYCsXyBfkgfZQI5J1J/YTmdngLvWLPiQ\nb+ezxR/ebRjlha7MTmDd2b9n5uT9vLxnzqe69m+JA1ev/Mhryzar2Ic1bEMpNJuVHy9/AndpmqZn\nJtGcKmK7XMWwpHL6hEZeyUzAQOCRJxroai0lFzG9JwNzBimrCBEtB8+LafyvJnjwzeNR7olRsD+M\nqzWMt8/OY9MriGVsDCdc9IW9hF+sJOcS6GiqIL0oScrhpru1hNKfRxANN+mAwNinVSyRPMNzZHIn\nJol1eVCLVFqXPkhGivFs8yxOW9zI0JluRkIFuCeE+a/aFykoTxNT7cTvzoEsIwgCuFwEZyl4GyXi\nNQYtLZXU1AxT6Y2wZagGry1D61AxeYdBaMDDmLIgV5etIYILm6Rybkkj73RNZMz9w4jBCJ4esDd2\nIfeHic0sRjghwhx/FxoiT0dmYRfz7IuU4fBlGO8fpjlWgliWIexQ0ARTyyPnNSg/pZfhmBth0EK+\nAGbMaad7sJCcLBKwJxjMuih+0yBdJJOoMtu1ZshUvxxHt8roVhH7cBbxqhC/+utJdKc8JIZcnLZk\nF6Gcg3eHKplb1UV32IeBwFCigC+NPcC3Gl5hzRuziE1VyXkhuySFHnbjOXBsIjo8z83Pb72Hr0/a\nwONt88Gh4dkvkSkSGFwqYZ8ZoWeyi0SlnXTAxsASuHreOno0LyN2CwgwvmyIbqOAKf4BKqxhTnPt\n54HeRfhvUfCshUStjamzDgEC53i6KZfSPHPfjGPmg+qz+5Bv9eAYzONpz5P8apJt7WOZP7mdi+Zt\n4FWjnvYD5ewVi2la/Chvy0UMd/n49pyX+W37Kexe9Ed+UTUVLezCkjCIjbFhD2skb4jxq+pGXklZ\nSelWHhw8joGEm1PLmnly4Svcna2n6rx+2qY7CHscuOaPUF0Upu/NagQNSucPMK+wg61dE0wIdl2c\n6sIw+ps+ql4zFybpEhtKUiVeYic21kKmyMKK0z4aIfeF7ozW3Hsrr572O/bnSng5PI01r8z8uwWK\nsoUG1tDfX/3UFT5UWfeIKut7Y89NKxnz8lVcN28NN/tbeTrh5suu2Aegs3p1BrHr84UxtVy+ijfT\nEtc/cc3net9PE3U/bUT0F6J292AsmkHvEieiCrm5CTRNxOnIMi3Qz3xPB4qgctuuU/F5ktR6QlxQ\n/C7PDM/mQDDAS7Pv4eHIHNaP1KGd1IdcUwWiiNrRSfCahehnhnFac5xb2UiDvYM9mSoOZfx0p300\neA/x2uBkim0JCi0pdofK6R/xICsa+bxEaWGMkbgTWdZIdhcgFmWxWvNMKB6isbOSotdsVEP4FAAA\nIABJREFUSHmDkSkmtwZArcwSeNXC0Kl5po/pIa0qZG8zuUmpYhnHsIrqEAmPl/C060y6aS+yqLHl\n0Vk4B3SUhMbwDAXnccNsnfUkU+5Ygf/EfjRDYMP0Zxj71LUUtEvE6lVqXjC7X/9imYIOcPWpBKcr\nFO0+2viiY0y1XoB4pUxolobzkEy6TMd9UEROmR6onRcYPLr0br6x+QoCf7Vx+Y+f4zd7TqbwGSdi\n3mCoQcQSFkiOzVNeM0JoY6lp/O0zaL10FXdGqlj5yNl8UqhO45iE8f2RLtVp/8pdTLljBftuXPmJ\nieiHoQ0+bYyqJHsMhJoUym4THvLendGWy1d9bjD2lstXMWvbxST3+xDGJjHaP55r/g8LAXz7j30p\nFRA+AM/VZQjOV3F2KDj7zGOJSgHn4mFmFPXRGi3me2Nf4aZtF7GgtoNgxkVTRznnztjF24/Mo/H7\nKzlp37mcWnKA53unIgkGbmuGIluC5lVTSJaZfGwwLROkrGlGLr1v7ExUCLh6P/1Uk3OZXo6WuMHm\nW+/i2p6FrK7cxMT1l5FLWbA4ckg7C1ASYAvrBGcIOPoFEjMyLJu8j9dfnT0KndL8eUrePEqpyF8U\nIreuiDdv/BUByfz9pvxhBQVdOrokUHpFB3taqihZIxGpF/C2HIYMe0UcZw3gt6fY112G1ZZHEAyW\nVLfx7yVvcOEPv4suCYjasZ8z6xFZ9Z07uGdoCTsfmoYhCcTGmX03sySObU0B0fEmDNgxcGy/SlYa\n6NVpBMC18SiX23nWAOGkHcvbHpKVBk9c9DtmWq3M+p8VaBZz99Ny7PoKMHOV9ysdH/M7LUqhjVix\nlyfItbnRSg6rYMUVXj/7Ns588PvYhxnluh6J8Rc3s3NjPVpJFmv75w/VBShe1M/NdS/z3Ueu4Jlv\n/poLHvjuR57bdO3K0Xn47mg5v338vM/tOcbcedjr2+fBGBgmdvpkwhMlNKtBvjqLxZZHFA3GFQe5\nvGwjzZkyHtw/H0MXqSsd5uTAAd4enoBF1Lix8g0a0zX86dBcCs9pQ66uwFDMYknb5SXMOLGFq0rX\nsjVVh09O8mjnPETBoK/fh5CUEX059KAVoTCLqyCDRdbwO5L0Rj247RkSGSsWWaOsIMbeQ+XIVpV8\nzIrvXRnHsI6gQ2ScRKpcRyjJYOgCYp8NKS3w2jdv5aSnvntMQfLviZxPw1MTJb3r09t3/SOi7t4u\ndL8bcWCE+PwaQhNlik7uYyTpYLx/mIWF7bwyMAW/Lcm21lpOnNTCcMbF8tIdLHd1MXPtdXjW2Ikc\nn6G2dISeTRWMu7P9mPdIT68iuCLJuMIg4ayD++sf45qDX+Xh8X/ih31ncJpvL525Iu5uPI7TJjTx\nVsd4KgqjtHcXU1oaocwZI5h2Md4zTHvcT/fuMmxj4qT6XQieHJaDJgwzPyuBxaKSSlrxepKkMlbG\n3jiEkc9jVAQQeofovnIilohBfAwYNWnUqIXS2hEuqt7Bac79XL7vcjJ5Ga89wyTfAOVWU8E2b0gU\nKXFeHJhG6M+VlGwIIUQTGOk06YY6ek6SueT0tUyx9xDX7HilFD9rWkY6q1DkTtIfPLwOG3BgLU8i\nyxoWWSWvSeRyMpoqoSYUnEUpcjkJdcSOpzKKtqYQb5uKvT9NfIyTVEAkWWGgFuUpfUtGyhpkCkWK\ntsdo/Y6FG2e9zfZoLVZRxS7l2dA3hpKCOKm8he6+QmoqRggmnEwODLCteQyuJgupCh3dqoNiMGHl\nByXdx97dxsqKzYx59UqEmIKcErBEBDSbaX9UvEtFMAxsfSmar3NgK8wwrayPZUV76MgW05UuRDME\n5ns6ONfVxIqO5SwubOOu9Scx4e4kvad4SE1P89sFf+Ycp/n+r6UU/uWPV1G+Po+cMCfQ5fe9zpN9\nc2jbW4FUnEHLSQghhdLJQ8TSNopcSfo3VpAr0rjsuPU8fmAOTnuWcJ+HC+dvJZh1se3J6ZRuSqLZ\nZDoukJGSIlsvuY17o9NQBA0Jg3fj1axvr+Ou+Y9wzXNXI+YECg6ZdmS5k6M4bTmGe71Mqe+hqacU\ni1XFYcsyt6SbdV11WN9yYx/R0RVwt5uVyd4Tncjpo77YRbsNNj3+0Z7wXyhndFzdANsy1fy67Uus\n/8ssslU5tE9A4QqLwx97/EgiuuemlWifYndkwjkfJC+lZqRJVX64lcV7E9GfXvMwsy7YS4+a4PjJ\nLdzsbwXgPx++lK93HqsaZYh8bonoEbuWI4vsLyIRBRAcdsjnEW028gWm11BqeprjatqpKg6TaPew\nvaeKFwen8k54AoHCGLHtxRwIBvjBmuXs7KpiRf1ank1MosYaZKa3B+ntctTObtSOTvQls8icFqPI\nlWSmv5fOdBE/P7SMx7vnsGW4lpRq4aGWBXSPeNk7XMorLZMJri2jrnQYgJpACEXSOK66Hbc9Q3n9\nMMW+OOmklX3rxuHcZccxrCKqBv69BmqBTr5QozwQIVEpQlzmxso3CGfMnQzVIRI+zexockonNS6H\nJa6x47Hp7LltBidevhXxsNWDnIIp/gHOaT2d4sY8kVfL6G8tpuHdC2lfvpr47Aw1LxhExyr0XZaj\nZO4Ac67ZxdQf7+aVFbfyzr33jHI7c0e1vAjNVfGWx0jW5RFzAukT4lR94yCdX9FRhhW+vvFKKh5V\nmPP9Hdz2zLnke51YYhpyWqd8rUrRnjw1z0JkTSmZKnPAU6ICUzd/jbBqLsw/ySLl4xJRMPvIp01E\n4W9PRMH0opxyZjNyXQK9x4FlQegD53yefOr6h65nZ8PjtFy+6otLRDk2EY0cth4+koi+13NUVCGw\nQcbZZ5AuNn83V49B9rVidt85nZGkg58fXEZNIERrpJhCa4oXlt7BursbaPz+SsY8dw1vT3mWoXwB\nJ5W28rPxfyWVt/BwzVqGT86SrD06TlpiBlL2g4ko8JkSUQDVZfKJjsTmvlrq/nwd3ueceAsTeJ53\nkZ2axhbWGZpnUNRo8NsbViP1W3lp31QK5wxR0K0jqAJiWGHBTdsZWmhw2vfWIfzVz8vfupWA5GRZ\n8zI0Q6egSyf7lQiJKoGhe2oRUhKX/fDF0UT05Z//hp0/XMng3gD9D43BscuOtMWN40U3XUkfJz1l\nJkbvTUSj48y5YuZle/hJ59nMdncSWWAmd4ZocsVyPWYb8rSKH0hEAZw9ApZ9DlpPfHD0tchUlfir\npVjeNqGwWkWGyxu/AcDOH64kPiWHZj9SIDCviS9Mc9l1rzDna7tHLWMAohNMflLF8g685/aiRi0Y\nFp3UiAOjIsPrJ/4eIWxBSoks/9X3UQ4nuNnCo5/Tc04frY9PwNUlIPVbcTUcy+XULZ9PvXt4Yxnf\nfeQKgI9NRMGE7v7HY5cyafWKz5yIvnrlrR97XLDZEKxWhFwe0eM2LVF8OrmKHF5vktyQg3TITvNA\ngHt6jmdtcBwuRxbDEOiJeLlnz3GEM3bOK9lJa7YURdD4zwkvkH65GgwDhkfoOaeU407ZwyJfGwEp\nQUqzEFUdnFzWQlVBhG/M3oSvJowetmBYdRixEo/ZqSiI0hPx4rZnKLBkKXSmmFA4RDxnxWLPY9vm\nwrdTxt+UwT6UI+MVsQ8ZJgfWouJyZTjhhD345w/wSrL+c0tEASxh6Z+SiDZedfvHHo/PKUccMSGW\nuiJwxkWb6OwoJhGxc15gJ6sbT6DEHmdbyxgeWnIfa7ZNRhQM3ghNZtpr38LhyJJ3ChQXxql1hZiy\n5CBNv6wYvb9e6id6YwxZ1Kl0ROgNejnjoe8RfrySs372PVp/PZkdyVrufuNkyoqifCfwBtmwjaG4\nC5srR7EjSdNgKYmshd6Uh3rPEEYgy/UT1+IoS+Bda0OzGDj6DXIjNiyyyin1B/jRxBf42Yxn/y97\n9xkgWVkmevx/8qkcuqs6d093T0/OCRiGDCNBxEXFhJhQEPVy2aBcr7vXXXd1F3MCFdEVRHddTIAs\nmcHJOYee0D2dQ+UcTrofCgZQUFRwlK3ft6mq6X6r6j2nz3Pe93keHKN2AhaTOYqrejG8DqnFNg1L\npnFvdeNpKpDe2sTBfBuXP3YzK6Ij5IcCjJyIsGu6gx/1L2exe5jjhQhFS+OypoNwZYLJc8IgS5hz\nOjl5jcOtb/gZV/j3sCnXx9FyMyNGmBXNIxxZcw8lQ2Z+xwRGzEXokEBl3MPipnFsWySfdqMoFqFA\ngYWzR1Blk0tnHq5tJd8Yxj9s4d1wHClTwpbB8IHltsESKDWKiJaDb8TEUUQum32Ir+68kE3Helh3\nvA+PXCGTdtPizjI7OM1HVz7F0PEo18/eyIlUA59c/SCcnUasCohlkeb2JNbnsxy/9rldiO/40SNU\nLJm+ez4EFQnPiIhcECi12IgGmPML/NW/PcrEmTLHr/Vx9sJjHD77HkJqkV35LgxbwiUZTJdqP/PH\n2UUc2N/Fj759CV0POJTaPJSXFjm37zjG86qF2Yj4BmsLHs+aqAaJ/byD9idtHGD1rBO0P2kT396E\nvT1IouBGcCDQnuHeA6tY0zVAcXcDgtvkww0buLpxB3d8+OvEby0jlU28AxLH3nUHN49eyuXeA9w3\nsoz/np7Pmxu3s7B9jB/EVuPqynHvNV/F8Am0vOUkfz3vCaKePJ4BhWPrZ2AXZKoVmezhBvrTTZQS\nLiJ7CnhHSqcCUQBjUR7BBLkARsBm/JLfXm/ktK6M2pO1XJKFX7qJ6oo86o6X3pKX7zHxDtS+pOcX\nMHp+z9DnezmvefZ1zz7/5Ru/xS37r8HZGPqt437ztev4cHg752y5kR+t+A7XbP0AR8+9m+4HP4CS\nkBF6Cty+4t7TFiT+qfTdPoJTKmHn8hy9bSmOYuOakDFdDs3LJxlPBOiKJhlNBLmo5yjJqpuqJXHk\nsT5KLSYfPfdxutQ4m3Iz6dCTZEw3s/UJDpdb2fbuxQgTcQZvnMm5V+zGK1VYNz6Tf5p7P588+EYu\n7ujnvj3LUccVqmELJVyGQQ/vvPxpHh6fS8RdQBYsTEdClwx0yaBFz3LfU2eix0SadlZJzFcJHTUo\nRmRyXQLS4gzFvIbPX6JQ1OhuSnB8oJm3r9jKE188G1fCpPsfjrDxyQWEjtRaV2T7LG44/0kGSo30\nf2oBC/5xH19v28qvyvAPH/kA+VaZ5EIHd0cOx4FiVufmVU/wv0MnAZi78V0I+3xEdxqs+86drPiH\nD7Hjn+5g3jdu4ucf/Bzv/NTf4pmqXfArfzPJ4J42nGiFc/uOcyDeQqo/jNhawjQkwr/S+OIn7uBX\n+Tlc5tvHmx/5COHdElIF3NO1nzF2rozlcvjaFf/ON0YuZOjRGRQ7TQav+jbd93/wVM7lrweSht9B\ned4W9ZcbaD7Ld840ufUvnof3h/qn9/6Aj219Eycu+h4fGTuDp3763Lav/0k5o5legcCJP+z9xlbY\nqM1Fgt4SUyMhvCcU3JMO8aXOqXzR+BIHuShQbTHAEHnw0q9wzbf+hlKzTeMu4dRKWyUooKVfmc89\n1yHgH7LJXFXgHxffz223vQO57OB69wSl77ew5bZvcubHbmRqjU3TBpH7P/sF3vB//uZ5/1+stavw\nOsitRbojCY7t7SCys/acb8Q+ldP5UgyPgHJVjMqDURrfNMKJI61gCijNRTjqoWnVJKnHW/BMvPjd\nlOlLqiCArFh8dNE6vvbA5XhP1toXqLlaUOkak9FStWIc8q/dA0ovNnjnyi2cLDZw8IfzTgWRz88N\nzawqM69zgrH7uilF4NLXb+PLLTtO5a4969ndB7s/cTs9P7mBxp4k1Ycjp767Z1dql127j4mSn4FY\nA/oGH5kFBsF9CqYLiq020Tkxio824Yi1nKvnK7Q6LDuvn72P1oomVUM2aurVu98dWT1BbNPvX033\nj9V97wR2yIt4fBQhFKD/Qy1oKYFyxMaRHeYsGAEgU9GxbJH54UlGC0FGUkGMAR/SjDxndZ6kTU8T\nkItIOCxzneRotZnNmV5O/OtcMl0yhhfMBQUuntnP1slOXt95kB8fXUZ3Y4LjkxHUvR5Mt4N7SZKA\nq8zVrXs4XGwhKBcZLQdp0bNMV3xkqjoHJ1rgqAfvCAROGpguETVjku7TKEYFSj1V/A0F8nkd5cRz\n28jPuXQv6x9e/Cf/jP8Qs84f4Oi6nt+ZZ9r5SAF5Oku5pwFtqsCRmz10/EIkcV0B85Cfh677HN9O\nruFYLsLRX/bxsff+mMdT89j7HwtQsw7b/+UO/tf4StaP9RJwlcmWNS7tOMxjY3OIfFxASKSZvryn\nlps/rwIVCfewTNO2Cvl2lUpAwPTAmjfuJlb2svvwDK5esROAsXKQ0VyQD3U/zeOpeUyVfMzyT/PI\nwFw8D3sRLQjvzzK5OkBmgUG4NcObuvYyVA4TVErEK14mrnhuRefkTXPAgVJvheB2jWXX7ePJfXNp\nak8xNRbiprOe5PatFxCOZknG/Fy1eA+/2LuEtQsOogg2rVqaFe4B+iutbEz3Mn7bTMYuEBGrAmak\nytWLdvPo8BzObB3i6cFe/t/SXzJUaeTOLefiHlRq/WtdDm1LJmj1ZJgq+ej0pjiSihLQykRdOTb0\n9+FURcSCRM/PKxRaNEJbxhm/oh09ZZNvFyl0WMg5kdARKDYJRHdWiC/WaH79MOP/3Ylgwydu+BH/\nZ/2bOHjp7Zy/9518de5/8MPkmXy1dTuvO/x6Lms+wMF8G3M9E/x4eBlnNw1wf/8izphxkm3DnSh7\nvdgaGN7a+dw7LJJZYND9Y5vJMzX0uEO5USB43GbqigqyahHyFdmy5D7uzjaSs130F2s3l64K7eLH\niTNYNzKTQsqFMq3Q8+MshRlebEVg/AIbNJs3L9nJ55p3E7cKGI7Du9/24VPfna1KDL5BJXxAIHSk\nSLbbxdQ5NmctPMbeB+diehwcGbTZGeTHgkT2FEgscBN52zA3dTzFGzxFPjG1CE00uXv/GTgZleAB\nEUurtdHJ9xl0dcXgSxGGrhTQYjKhVVMk9kSxO8sIgkNTuHZTRZcNxjIByscCmEETbAHBFPCdkKj6\noOPxwguOscQCN4GTBlPL1VrngxGZashm4K9femX0tOaM/ufk3Xz85IVkjoWQxlXefO06Du2b8aKv\nff4ftc+PLcNpSXCmK811Z6znrq2/uQ/5O0oPN7Qe/K2BKMAdW1ay/5bbec8ZG3nzNz4CIy/dmLXU\nZCNVBZYvOsZjuZn8Yt4jmJT5v921K8Nvx+ehHNd564WbeCC2mOmR07sd5dXmm1aREnmcWZ0Um3T0\nWK1vZXmGgctTJeLP0+ZJ0+zLYToi7a40WdOF0lEiY2ns2jKHfa4m1jScoEVJ06vFqCKxN9/JtrZ2\n4pf4wRA5OdjMwXwTpYJGwuXlkuYjJAwvx4da0RK1PITo7AQ9vRMs8o6yLDRCuytFUC0zUgzhV8sM\nZBo5lGjGmnShJwVccYvgoTxjF7oJHTVJzROoOhJiRiHcnMXeGCIRlGhpyrB12xwaDlpkuhVKvwjj\nG7ZRijbTZ0LTZoENuV5OjDdR9cuM7m7lSydWkGtSyC63KRwNEDrmYE+5cO9Rqcw18Pkq/DTdze6q\nj73b+zB9DsveeYi/+9kVFGbYnNWzhU13LedHu9Zw/d/ezy/9MxHKKtUZBiVJxK5I5H/eQjHpwfQ4\n+PZq+I5KGB6Bh3asZHusi39dupsNcohBj49iRCBwrHbV6R+yCZxwWPK6fn7xk3MxPQ6tC6Z5b9MR\n7nz0uQqg36QPZ+y5lXyp8sJVm9/WpuXFVIdf+VXEp/Ysov9tdzL/azfxy4t/zrFOh4FDtTvU/5Na\nu+gvslnEqXUL+J084wL6URUOeJCzEmrWQbTBPVkLmHJdAnpCQCkKuEYkhKrI/U+txhV38EwICNS2\nbAo2LyuH9eXSnwlq9X6VLe3NVIe8CBaMhzSCZyfYagQ5WGnmy5fdw+O7l/JAYzfjEY2KW6bcIGD4\nHfyDAr4hcB1VyB8KIpdFlKKD4NR2OViXprns8p0MbOrE994xikcCp7ae5jpEXHGHf3nzvRzrCnBV\n8152/Woe8twsgV94cSXA2lfLw3lWbFkt9841/cxnOyDhOSHhOqZwoCvItSs30v9ULwjPVPidFk99\nZi+WElIJw/5kCyODUfSEyOdHl3MwpHDLhffTvnSK3TtmoY/J5A490+tVhWSjxPzAAd4X2cuM5YOs\nD7RhdBlIz2yd/db6legJkXKHSe+KMda98T/4t/QSAkdqwc/0jiZy/UGUkxqlZgffCQlTh3KjQ++y\nUdZEB9hhtiD0FlGGtFM5ruUGcE8LJA40nuozevTdd/CNnSupdFeQ0y9d+OwPVRz5w2sy/DFC/RUE\nw8KJJSDgI9/rq1VozQhUZ1RpD6cIaiU6vWlcioFfqfD6yD5sTYZGg4olM7Cjk0NWA5IOM1xxYpaf\niqMwXGpgsFen0Fjb4WBXZDKySkCvUHEU0hUX4/Eg8nE3pd4Klg7zO8e5IHIUVTQJKUWOF6M06zke\nHZ7DQKKR8cEoliOipGUcQUC0BAL7EyQX+5ErDuUGAVsUKCPhGCJaV57vX/otPrtqFx/78e9O2/hz\nkThZOw6+vmvlb80ZdSQF93AeOVtl9LJGeleNcFIO0Tdzgrxf4JxoP48m53NX9wPsaglyUeAQfe4p\nLjpjN4WF8NEtr2Nxyyi3dD7KuaFjnBc5RhWF9WMzmVrupvEDBYY9XmxE/P0y5SYLZWae3HKbbLNA\ntc1AjckcqTQyPdzApy/5CVElyzuCexmyg7ylaQeaYNKoFmhzZfjZyUWEPCVS7QKtPymTmu9HKTnY\nkkyxoDOvZxQLkSsDe7i5cYh77+xDcLsQVJVCb4DwURPHVDH84O/OkBcV3tm9g6PVCKYkI7st/FqF\nbFVjpBjEHvZwPBYlJumkbTcVUSVn6RQslf0NYYSyiBWwcJ9QGQm4WNY8Rs7UeGPnPu6bWM7Gh5ag\nx6TaKuKSPN6WPAsaJimYKmc3DFCxFU5mwjgIHDzQhSM5+A+ouKag3CATPFqi2uzDM20SW6rUqlcL\nAkbQwj0m4huz0KdKuFJwoseLe1jmvR98iH2FDi7rPsD92Zk0ufNEtSzdepwmKc2yQD9Xe3P0Wyrd\napyCqOMgMpBqJFF1U62oSB0lLj9jN83tKeyQxcxlo4wORbn6xvVsT3QS2W2T6RMw1uRRVIvDZ/+A\ndzXtJWmXeSQ/G5doMM89hiVIHCq1szfdhuWIWCI4AZPUGgFpUiO20qFxl8S3r/sm2/I9/HeunTf4\nxzhhSjzxvBvqguVQvLSCNKQx8aZai7EVs0+ye6ydT176Mx7Pz8S2RBhzoaxOkdIDuKcdjK1+1m1Z\nymfyyzgw1UpM9FAoa7iOagi2QDUE8soULdE0ggDda0eI46LtRw6jczWi6yUC+0Que/N2FgXHWHdy\nFrGEn2pKxwma6CMq3kERPSaipR1KUcj1qHgmHESjFsi7pw3KDSogYLhFqo0W7gmJD1/00jmjpzUY\nnVf9HP/voUtONa5/qUD016lZkR1aE1/YehZ/N38v65r8fOeS7/If257rYWMPu7ljS+1klO8zTvUD\nfZbhhdvf901uO2cbbzz2Om675/Lf+D2WBtayHBUUWs4ap9wf4Lvv/xr/ctfb+fz5PyIsqfjF5+5C\nXdWyiUtXbOPT3387v7rsP09LYZM/pchPaluchVSO9KoItgKWGyyvzazWKWb5Y/S44kTUPC16hi4t\nQRWFgFpmTmQKs9Fm6Fgz29KduPwmaduDKlj45AoVr8R0zgemhH9WCp+vjNtTJWdo7Im3c2S6CXlE\npxqysTrLNAezLAqOU7A1XKJBydbYnekgW9U5PNFMZixAJa+i5GoVaw2fhCjK+AdNcp0KjigimCJi\nW4lMzEd4SZxr+7az/unFuCZFXHEbPW2T6VaYutiCikq5w6TikXBPCgiWwILL+ql0mly+eC8508Wu\ngS6MGQYt508wWQwgFwUMFI6lI4zvb8ZpNvj4qgd4eGARS2cM8d6lT7PXaeWw0UZ2SwNTq2FjvAd1\nTCV8xGIyqqOMqziIBE44+EYssjPFWon0vEP64hKlsIOSkfjo0h188sHXEdgnYWkCvlGb1CyFSkhi\narXDk4cX1XLqIjZfPuOHzFAclDljbN1bW9V4fiD6anHkP26LLsCX+1cgOAJfyc9naN2MU4//TwhG\nLQ3iawxKodoWz2y3gJauVWGVqjC9xsQz/PJXpiphARCQn1nxckTQ0qAUa/mgxTYH0RZwT75wNfGP\n/Q5fzLMrdtNrq3xq0YP8ausiNv/DV7l911k4u30cthtwjcs8WJxLOQSZko6UUGjYB5YuYivQdMkY\n77riKXavn0360hKLzhrgmN2A/+w4b7lwE3uTbewa7sJeXKSwLkp2lo1YkUguN1l74R7ecMlmrvbm\nuXX7BWw6MA/BAfceDcmAXKeIlqkNshwSSaw2iG4STwWiAMkFtdxQ37lxvj/vbm79/nXoaYdicy1Y\nLrbZ6Ina92NpnOqhne9wqDQ42IqDlJWx/RblJhvHZTNp+Bh2Gvl8627mrNjJQ7tXnPp/chliqs6q\nrgHuTqzkbxsH+ObYQj45/yHWeTsxZ1TIeWTKLRZ7Lvg272o8ycx178EXKlEq6iAIyKXnPvuqH4q9\nBqYq0LtslOH1nQxu6OLw+77FF7edhWjUxl5YWkLrLOCbn8Y9J0vhmSDxGztX0nnuMIW9Da/8BDmN\ngscqiPkSWDZUq5RmNiJVHUrNEJiRoTeQZIV/CFGAbleCXtc0DXKerOOmxxOn3ZdhVPXQ6CuQKLvx\naVUcBGbpk/S5p/B4TIqSSsFWaGtNUTEl5oSmiVe8TKX82KZI46wEXm+ZvrYpGvUCYaXA/lw7u9Md\nnEg2MlwIkcu7MPIqqLXqz6JZ6yUaPlgCRUK0RJLzZCrNFqIhIJQl8JmIR718dtUu+ta9B/FFerL+\nJfhthY9aH08hpnPg1ik3u0mfDNF53ghHjrZjS/DLyYW8vWs7/dUAq3wD7C7NwEDAEZNZAAAgAElE\nQVRmf7GDTj1BQ6hI3tQ5WG7nYKmNUSMMApzVNEhvU4wGrcDhoXb0mEh5ZQH9qI4zpVNWRbq64qTj\nXsxmk3cu30pjc5ZV3gHCUpFJy023FuMyd5XvJBewPTODzbFu3te7mYO3LeHtb32aY0/2UgnJWKpA\ndp4JPosxM8C+8TZ+sesM1ruCGD+0wONGKJXx7Z5m+sIoasYhO8ciVvFwSXc/J0sNeNQqqmRxdfNu\nco6LoKdMsydH0SdQsmQ8nirTWR+CAjM90wiCQFWTKOsCpilh+BwE1abdn6FkKiiSzYbDfZhuB8MD\nlahFqDHPGc3DTJQCJEoeNgz3cnxvJ4bbJpP2oIbKuPa66bxqkNL2IJZLwDdcRiqZJOd7QBSwVAgM\nQHl+FQMZz4SDkjGwdZmST0dck8JRROZ4pjjwzMrnWCXELNcUbqHC1nIb24o9NCtDTJgBPGKVjzWe\nICWU6Qqn6PSnWdY0QrMvjyDAYL4B05bo8cWZ1znKg0MLcAdLpGQPV75uKxe29HNP33oACk6Vh4sd\n2Ai4RIMH44uZrviZKPu5NHqIt7dspTucYuOxWSzsHqeyPkChXaDxwkkKkou/b3qatwSmkQWJ46bE\nr366BID0LDd6wiB/tk3XqnGmEgGEpEpnexyvq8qPD6yksTGHpTvYQYNi1oWakCi2QalRJNdn0/Wg\ng3phhg/1PE1C9FFtNbG6KuQdBXvUzTuXb+LRwwsYGm7CEyyh7nFRWG5w+VXb2d8dwK0bDBYamTwW\nBZeNt19FysmEj9hoWZtySKTYItD5SJHACeNUIFoJa0yco2OpIumVVaSchJqWiOw1ed/bX7rP6GkN\nRr8++nN2b539WwsqvBRxTEPNityxZSXx/kbuPrqat7z5Vxx+kYD21wNRgOvf/jCfuett3LFlJamj\nz61gzr2qn1vOe5DHDiwhvGYSY0MDR66/g/dE+7ly6VNcfc8trLvh81z+tY/x+pVPEXgmGK04Bud9\n9W+QZlfYRRNqKMbm/tm//xv7CxLemgIHaAyB7ibfAd4lCQxHoi2YodcdxyVViSg5OpQkKctDq5oG\nQaBga8z3TVD0SrQF02we6abZn2O+exxVNJnvHeectuPsMlvRFZNbZj5Bhz9NxF1guuKjastceeYu\nzph5nLnRKRq0AjuTnUiiw7bkDJ4YmIMlCUwmAogDbmgpg+RAScJ/EnxjtdLkhZZa71HPmhgVj4PX\nXQHFIXc0RNqvEk/7cI8LaJnagTZ1vo3ksijrEl0POBgeiVKLg5IXGB9vINCRY8PRPk4ONOMg4A6W\nmT4UwWo0YHYJ/bBGpdnE0qH0dIQzVh7m8ck5JP6zk8eOLibt6GQ2Ran4RSpNNkKpVqmsd+0wlsuh\n6BZQxjT8b5xkuNOFPqagXZigkPPQ9IRAKSDTssnkm5092Ie8BE+Y+EZsbFUgtsqmeYtFtkck2JPG\nGnWj5EQeV3u4se0AH+lfS0rQUNISnjUxjFdhNfNZlsv5o9ssODL832v+i2BvloGnel7w3P+EYDQz\ni1r7ojkpOO7Clag992zO5u8TiAKoeZArYLpquaaliIDyzO4bpQCuadB+e8r+K+bZvwmeExJfvGIj\nN56znTUf/zCecVAKDlW3RGAA1GkJ0y0iR8oEN6vkO0X0s+KIBz1MiS42TvViWQq+PQpTxyOoOQFl\nq4sNxR7EQRfhnSLveuPTHNzYi38QbFVg+cX9CALc/dgF/PAHK/AOSuS7bRr3CEgGpGYLBAYcEpeX\nKWsKvmEHz0kJgVrrFxsZLePwuZvuohjQ6PEn+OTmN2JpUGwR8IzX7k77BkUyfTZ6UjgVUAKoWQEt\nLaDHRNSMgJyVkPMSYnuJypSHWH8jmY48/7znct568SaOR73Yx2vLkfq0yIatixg81oo4Z5ytDyxl\n04ZFiIM6OY8Mig0I/PAnZ/PVAytxSjIzeqeobA9R6LSo9FSp+ASMWRVMUSC4X6HUbpI/HMIIOBy6\n8Q7eeOx1rFvzA773xJlIVdDGFEqtFpmcm+xwAKlcO67LMyqvuUAUILQ7i2BaEPIjOGAHveS6ROzZ\nBUpFja5wErdkIAkOi1wjyIKNKlhUkWlXUoSVAqpusyI0xHCpgd1T7SwITyAJNj6pgi2IzPdNEnN8\nSKLDWdGTxKteJgs+Qp4SK9qH+avm3cz2xwioZTKmm6mqn+myj2xFx7RF0jk3smKjeQyMbG1FRDQF\nGg7aIIsgiSTn1wq5tM+apup2EHwmmm5iT+t8Ib6IzRd8ne/tfumLx79Uel5GncgglCtUOoJceMMW\n1vfPItKaJp9x85lVP6NLSXCiGqVJydKtxjlQakcTTa7w7adZSzNQibLQM8rOTBc+pcL14U0cqLQy\nU59GFS2OE0bvKvDEyu+wbPEBorNT5HSVZneOf178U945YytPZ+cQUoscLrWyv9TButRsBqpN/H3/\nGs6KDPDU2CxafDl2JTvJzrfYuHcuYkVBcKDYLHDmuYd5x8xtRDwFzmoeJNBcoNcTZ/z7XnDp4HHh\nhAOoJYnJ1xtgCVw4t5+U4Wa+d4JmPUujmmegHEESHGa6Y+QsnRZPlrZwmuF0CMuS0DWTRr1Ah5ak\nyZXDlkWKyHj9ZXrDcQxbYiwfZP9UG50tSQwVFs8c5oLefkxBYudEB1NpP7mijm2JuFoKlHM6lCWE\nKR0QiMWC+EYcIlvi2G6V/AwPxWaRUouN1V2m6JewRYhsE3FPVREtG7FkEnuDw0Nn3MGnN1zJcSvM\nUCZMqy/LsVyUg4VWErYPG5GcpdOuJThDn2DY9FN2cpiIrNCHOFBuJ2fqbJmawZ6TnZiiQKboYjDT\nQLMvh0s1GJyIcMvFD/PJSD9nutLcnW1kyIRPj16MLUhMVIKYSLyzcTP7Sp2sDg7QpKS5a/xcgmqJ\nw4Uokxk/+dk2jm7zlr5d/FP0IG5R5WC1RNWp4GDz6E9WAFANyFSCCv/w1v/iWKkJ+fYGgv0W+1vC\nXNF7gIOpFgpFjeZwlmzRhVOWsNuqmJKA7XKQ8iKVoIS8081D5TnkJYV8QaeYdNPVEyM34WNzcgZU\nRQRLwBnwkDjHIOAvsm+qjfKQj9IDUYaMMFpCxD0kUw07eIep9bvtkvBM2Wgph/gSDT0tkJyjY/gV\nqn6RfI+NObNCtDGLtN1DpQFMt8RNa/9MV0bft3EAK64jGrD4rw4xdSTCXTd9hfu3n4npru2pHzn0\n8nJCpLLA4X0z+NcbvsvDR5a+xLYnh8++6x7+2+7jwMNzX/TnxPsbeXLnEkQLKoNevBdO8cWfXMA3\nN67kh9vO5vb3fosr191I/7Xf5p+nz2CtdxIAWZC4Y8tKhhtdOJuDfPeCJ1/zK6OhdZPY2SyS24Mk\nquQ7VCoxF6bPZupIE+H2DF16raCMAPRpkwxVI4TkAivcgwTlIppi0elKEfCW6c80cbDYRkQr8HRq\nNttS3SyOjNPlS7IjO4ORUpitE110BlK0+zP0uadxi1UsRBTBRpMtYmUvs/3ToIHtiKQSXuYsHiGe\n9WFXJKS8hCsGuU4J95RNrkvC8Dt4WvNUDIXV7YP0j7Qg5SUqO4MItkip1cE/WLs6Dh6BkqZxxnmH\nOVZuxtZqc688t4Q2qpCb9GF6alXapLwEYzqWDo7i8I5F27F6q0zlfbS2pYiLLtYdWIjtsilGBHyD\nAqVmh1UXHyIWlUGzsXIK1aLC9NEIWrRE6WgA17TAlKaj+SoYYRv1CT+mS6AUFXHF4N/+5Vv8YNca\nqs0mQklFz9gk5yp4FybRduj4rogxNREES8T0OQhH3Xz4jO3cHZuDuadWFCWfdyOX/viq1C9FNF+B\nny3CE2NzOVJuRJ5+4R385wejR999x2vuWHTFodgCZtBC3+hFKb346wx3bcVTKbz48y9GNKHUKKCn\nnFdl1fPlSM8RyK+oIE+r3HjudiqOwTnnb+L+J2t/zLILTcS8TG5VGTEjowxrrLluF4edMOJOP4hg\nugRcwwrlZgsQ0VIOWvaZisLdDuH9td+182AfWsZBvnaamKIzNhwh//MmTF3EdAlkZjvoU7Xc69iZ\nNmJVxHSJODmZ8OHaz0suFKg0CDTuFNAytUB1W7GbwXQDgw/3YrZUiT4tI1gihh/Eaq01j5J/LhDN\nzbDR0i88Lhyltmqq5EA9qaLHRYodNrtGuhASGruTbSzuGOV7l3+Pfz90NnIZfFdOYB708URpJuoz\nK6+lqAPNVcgqtPbEaVwYp7QrSGVBiWTeQ9eqMZKWjn7IRWBRkkLahRYqY1RVbKmWJrP64gP8ItNF\nVM/xYLabEyMtp1q6iAmVM84+wuyucYaO1f5mvxpbc/8chHemcLJ5BMPEzuUpz46Snm8jTWjYhkRM\n0XBpJrPcU5hI2I7IsWoTc7QJZigJErYXUXRQBItzg8doD2SYqATZlu7GrRjsyXZiIqHLJg6wa7qD\nTNVFXzDOW1u206ElOFmJMEufZLQaps89xXglSKriptOXQpYdPK4q6bwbyxKxyzK4bJSUhOGpXaSW\nG2RKTQ5W2MTlqRJ0l0kmfRgJHakkImfk12QgCtC4p4ggyzg+N+6TWZqvSTFQDLO8eZSRQy3M7h3n\nKwMXclZ4kKKtsbXQyz9H91MmQ3+1GRuBPtcU02aAdzRu4SdTy/hZfAketcqGZB8P9C9iVnSaHn+C\nx3MzGTXCaKJJg1ZAkSzStoeSo9DnmqZLS6CKNoIA74uup4SGSzexEdFVi5KlENaLuFWD6bSPwDGB\nclgk32dS0URSjocuV5IuNc5T8dlMlv3wYxPKFSiUKM+KMnG2glOR0acl+uaO8dSeeazqHGTa8GMh\ncon/IJszvYTUIvM9YyiiTc5ysbblMKIOmaqLiXKAE8UIJhLJioeoJ0/ZUiiZKiemImQzbvpapzmr\ncZDVkQEsQaJoaSiiTdhdJGephH1FdN1AlmyKSTdaQwnDkbBctR65lZCAYmqk+zQyMwUcWcAM2PTM\nmKJ4OIgjCLQ+maPcrFNuVNGSVdJtHv49uYJNa7/M7UfX0N6QZrpSu4mzLDhCrOojbnh5V8MmNhRm\nc8JooOSoLNWnGDRCKKJJtxbjHO9xJoQQo6UAF3UdRVYcQu4Sfd4Y741s4LZZ+5itTjFhVni6HGam\nOs2UGWC1/wSOILDWf4Cs4wIExqph5rtHeSS5kIotE9XzzG2Y4lC8haaGLJd0H6FJzRGVxwCTXdUo\nRUdkd7mTw/f3kO90oaUtXNNV/u5t6/jHB99A41vGEB/V8Q3IbG5vYkHrBHMjUwxnQ2iqSVNjFr+n\nTNGWsUXQWwqonUVSfpXIVolyScdqNHFMEZe3AiGDSkYjvFei0gBWexlpXKdgaKjHXNBboOBXsBsM\nHFPC1msr3ZWAiK2KiGbtxqqaBUsVyMwUad1QJNOrIlVALoio4wopUQdTxNah/Yki173v3Jc8Lk9r\nMPqln+9GzQmUlxaJbWhFsOH+7bW+VqLByw5En+/xnUspNVsItohUhcqyAvKEiuFzOH/tHi73H+Qn\nj573grL0v0110IuzIktJkVHTIsG5Gfbs7+VriQU8sOBhFn7pJm46azs9j70PdVqmOug9VTzptXYB\n/OuCD51AdLvBtrFawxSbZcrtJp5jGpV2A8ltM8c7ScZ217Y/VKP4pDIz1BgWEkVHxXRkutQ4zWqG\nTk+KWNXHyVIDMzxJDEcia+jkTY1kxcNQKkzIXebMhpMs8I5hIiILNjO1aXTRQJVMpqt+DqeaWd4w\ngiTZyG6LeMGDKDlUsxq2z8axJKQqxJfV2pSYPhtXoEJvOM7OsU4k1cLOKZS7DHx9acxRN77R567K\nvRM2h2miZZNJJVRbdW/YJpE7vwgZBSkvosUlqlETy2vjHpURDJG9Q530zJik0V9g6FddqGmRpu1W\nbSueKlBaUeKNS3azc7qTZNyHcsSN2WKABE7QpJBxYbsczO4qrn4NcVLjsnN3c2iyDT0pkF9SJroR\nnnpoOX/1no3sP9gNS3MkWjSM9iqWI/KJ9/6ER//jbBxHRMkJyEWBuz7wNbaWg3yuY++pXNDXXb6D\nwcNtL/q9/7kQ7Fpl318PROGFwehr8ThUM2D4oWGPSCkikF5k4hn5zZVQR65ttf19KcVXZ/vty5Xv\ndIisl5ErDtdfsoNdVZsP/f3NnPPXWxne3M6BD32brxxciW1KaL05lGM6yXYR1gexVagGHGwVTK+D\nb0Ci0uBgugUMr4CWdfCM1oI+UxdQ8w7W25L4tAqZ4QBySSDfBWJfHiGmUW02sFQBZ1keyxZRYjKW\n7iDPy5KOylS9Eg2LYriechNbUctH9e+SufSSnXyx5346Fo6y6aklOIKAK25jeAUEu/b9Pb/9yq8H\novDMHK9AaU0eO6MiV0DJiVTDNoQN5JjK6GQD/35oNRev3c0BsQFrR5BKY227vlyCFW/bx9xZI8RN\nD9agh7ThImXoVFQJGwEHAZ+vTHc4wZjmxjjix9KBaR3BBl9fGmvMxeTeJqb2NjEQ9pCsesiWdaTF\nOfIRsFurtAUzjBeCZIZqN7Sa14yRH/b/xnv6SxfakwXThGoVMRTAjHip+GSkUi1RW2ysMjs0Tbce\nZ9wIIgs2VUchIBUxEdEEEwEHB4Gc7cIvl2hV06QtDwVLw0JksuwnUfFgI9LhS9PtT7LQN8qZrkFs\nBAQBmuQM7WqKRimHR66Sc1ykqh48SpVGvUDIWyRr6FQtGXVMRSoLtYvKsEOp1cbfl8LnL9MdTKKK\nFgVHoVJWkPMSRz5wOx9Zvv0P7vP55yx4pIw4nUIolJm6rIN90x2ct+ww74+s56mfreKGix6m1Zel\naKvcEBjmkOEi7ZSYMv2c6xpEFasogsVCbZxhM8za8EFsRaZkqWiSRW9jjDZXhjeEdnOo1Eq84iVn\n6cz2TLLIPUq3GqPo6DgIxC0fLrFKl5pgwgxSdhS69CS6aOCWDSwk3JJBquLmyln72FzpwpYF5M4C\nEV8Bv1JhjmeSzx1aS2cgxQxvksQ9Wq3tUCSEcmSE2AWNqBmBrgdS9K/yY0qwommYqJJna6obW5JQ\nRYtZrknGjRACoIgWFiJeuUJIK3Eo3owi2wxlQ1QtmZyhMRkLUnUkNM1kTusUayOHCUhFdue66HHH\n8Mtlel3TWIJEztKZznvxalVEwaElmmZ6MgSyU8tlFms7bwptEvlOB7G3QMUDvmgeBGjsTZHIe1Bz\nOnLJxjNeAtvBfFueWU0xvvizK7n87N0cT0e4b969PJabScrwsNg3StLwstp7glEzhAjM0iZwCVWC\nYomU7SFm+QlLBaqCTMBTYa57gvdHNtLrneJK7zHmqLU6MnGrwo5KK2GpQJNUZMBoxCVWmTYDjJph\nKo5CwvSxxDPE4VIbumTQqBU4XoiSNtxMF730hBK8LnyAViXNSl3CwuJQNcC4GWKk2sDYL1sQDVBy\nBo4iMX6+w56pDjz3+DACCpOrJb6z9i7Wpeawf7KVqD/PxGSIhmCBZMFNtaqA4FBN6pRzGoLbpNAs\nIOdEtFEFq71KbtqL4YhQUCi3ODiyAxUZqaWEP1wkj4KkW+C2iTRmKWkiRm0BG0SQ5+RQ+zXyi6qU\nAiKdjxYpNqnYmoItCeR6odxkY3prLV0cGRr2gZa2fmswetr7jC6fO8jK4BB3/+gSROOF1W3//gP3\n8uk733m6hvcbll59gLu7fsWomeeSrR9C3vabBRTKEQc9JrD/ltt/o6XE3W/9Otf950f+VMN91c38\nfD9WIono8VA6fx7JOQqWCsUeA3e4iN9d5tLWWnEnt1ShSc7QLGcoOwqSYFOwaw13c5YLt1jBQqRo\nq0g49BebcUlVklUPQaVIg1KgXU1gODIROUunnGLMCuATy6hYZO1asv2eQheHsi20u9OcLITRJYPR\nXJBcSaOYctH5c5FiRCKx1KZ99jTpko5HqxLQyuiSSa83xr50GxdHj/Djk0vJ5NxYWRX3kMwjH7qN\nd3z0r4kvkKlEbML7BIpNApUFJRjXsVUHNSOgJQSys01cEzKCCdVgrWiK4bcQrFp+qRCp4Dhgl2S0\nQBlJsinGPAT3yaQXmOCyUHQTSbaplBScqgiOgCtU4sreAzzx9bNIrLQQiyJaZ55SVifytEL60iKt\n99S2jicWKBQXllCPuXjdVbWeUyOfncXUu0pIu184d+df0c+eDbNQMrUL4tLsCq7+P8+9rkbAwQib\nuAdfOp/J8DuvaH/RPzfPr6abnSHgP+lQCQiIpoNSeK4PpCPWqtzqyb+s6sKCXRtvYoHA7mu/xMW3\n/m8e/OwXOP8bf8f/evfP+dHoSkb2tGJ5LdBsqIioSYkZZ45wfH87tstCLEhIFQFHBD0hYCm1CrCl\nFhslI8LCHLpqkB73444WsG2R6pgHsSJgeW18xySq/lpfOakKlQaH8AGHYpOIe8rGlmufNzxTebfg\nEL+8TDhQ4A0d+/nu+vPw99duVunJ5yL7QnMtp/X5gWih1WHW6pOM/KybSoODa7p2HBabHERLoNJo\noSYkHNHB7i0hDtQukCyXg1QWMAI22rSEpTu45qWZ3TjN/onW2rmjLKFOyZheByUrguBgeGsXIXJe\nxPTZOC4L2W2i6QbKkwFy3XbttYCeqPU7/eQb/4svff2aF4zZMy6Q7bFxT4rIxVoLGdsUXrVeo38O\neu4Zx56cxjFMRK+H8WvnkllkoE3IVMM2gY4McxunWBUcpE+bpGBr+MUyPrGEIljELB9py0PZrp2/\nJMGmbCuUHYWInGOo0giALhqscA8gUZs7CctLr5JAFywKjoyEg4hD0tY5UY2Ss108EZ9DsuzBr5WJ\nFT3EUj7spIbnpETgpIWlCExdWmVZzzDxkpflDcPsTHSSq6g0efMMp0IcOPNegFMVaatBGzV9WrsA\nvqJ67zgBgNURBdOmEnUx8m4TO65x+Vl7mK54WeIfZUe6kwsajtKjTZEwvVznj7OvWqs4ZjtCrd+r\nGSBr6/jFMkGxiC6YPFaYR48aI225aZDzXOCKUbQtYrbMuBlAFwyGjTCdShJRsDlUbsMtVtiY7WOR\nd5StmW5a9CxbYzPQJJNOb4pNv1hMqdlizcrDrPQPcc/JVcxvmGRN4BjfG1rNlW37OZhv4USmkeAN\nBtgOTrGIoKo4PxSZ/M8uUosspGCVjkiKJneODzQ/zaFyOzlLp1VNETN9NMkZRqu1rfXTho9OLUnG\ncjFYbMAlGfSnm5gdnCJjuAirRZrULIYjEZYLWAjM1iYYMRqYr41hIXCyGsFwJE6Uo+xLtVG1a+fD\nybQfUbQppl2EtyqouVp7oXJYrOXZd2WYG5li6+EeWtuTjI804I/kCX3Liz5ZxFFEsr0eMm/KYx73\n8aO3foVPD19JqzvDm8LbuWP8AlpdGTr0JBVboVHOcY77OA/lF7BYHyYq5aki4hFMxkw/qmAhCjY9\ncp64pbBEq137jJp5piwVRbAp2gp7yp3M08dIWl4mjQCGI5OzdHq0aX4aW8a7mzdyoNSB5Yg8FZvF\n8RPNdHTFGRkP09aS4rquLUjYHCq2YjgSmmhiOwJXhXaxo9jDwx8859Q8LTXrzPn4Abbct5iL3raN\nXz62Equ1QmdzkkZXnqFMGFU2cSsG8byHC9uP8ujwHLx6hVjKh5VVQa39bdQnZMqtZm1LrtsES0AP\nVJBlC0Fw0BWTQllFlS3KVQXHAUmy0RSTbM6NY4N3h4vcsjKuI7XdrI0HDKo+Ec9Y7ZgYvchDubdC\na3OKicNR5NYi6k4vLRsKjFzioWmHwa8e+NhLHpenNRitq6urq6urq6urq6ur+5/ptXO7q66urq6u\nrq6urq6uru4vRj0Yraurq6urq6urq6urq/uTqwejdXV1dXV1dXV1dXV1dX9y9WC0rq6urq6urq6u\nrq6u7k+uHozW1dXV1dXV1dXV1dXV/cnVg9G6urq6urq6urq6urq6Pzn5dP3iz3zmM+zduxdBEPjE\nJz7BokWLTtdQ6upeMVu3buXmm2+mr68PgFmzZnH99dfzsY99DMuyiEQifO5zn0NVVe6//36+//3v\nI4oi11xzDW95y1tO8+jr6l6+o0ePctNNN/Ge97yHa6+9lomJiZc9zw3D4NZbb2V8fBxJkvjsZz9L\nR0fH6X5LdXUv6dfn+6233srBgwcJBoMAvP/97+f888+vz/e614zbbruNnTt3YpomN9xwAwsXLqyf\n4+teHc5psHXrVueDH/yg4ziOc/z4ceeaa645HcOoq3vFbdmyxfnoRz/6gsduvfVW56GHHnIcx3G+\n8IUvOPfee69TKBSctWvXOtls1imVSs4VV1zhpFKp0zHkurrfW6FQcK699lrnk5/8pHPPPfc4jvP7\nzfOf/vSnzqc+9SnHcRxn/fr1zs0333za3ktd3e/yYvP94x//uPPkk0/+xuvq873utWDz5s3O9ddf\n7ziO4ySTSee8886rn+PrXjWnZZvu5s2bufjiiwHo7e0lk8mQz+dPx1Dq6l51W7du5aKLLgLgggsu\nYPPmzezdu5eFCxfi8/nQdZ1ly5axa9eu0zzSurqXR1VV7rzzTqLR6KnHfp95vnnzZi655BIAVq9e\nXZ/7dX/WXmy+v5j6fK97rVi5ciVf+cpXAPD7/ZRKpfo5vu5Vc1qC0Xg8TigUOvXvcDhMLBY7HUOp\nq3vFHT9+nBtvvJG3v/3tbNy4kVKphKqqADQ0NBCLxYjH44TD4VP/p34M1P0lkWUZXddf8NjvM8+f\n/7goigiCQLVa/dO9gbq638OLzXeAH/zgB1x33XXccsstJJPJ+nyve82QJAm32w3Afffdx7nnnls/\nx9e9ak5bzujzOY5zuodQV/eKmDFjBh/5yEe47LLLGBkZ4brrrsOyrFPPv9Rcrx8Dda8lv+88r8//\nur80V111FcFgkLlz5/Ltb3+br3/96yxduvQFr6nP97q/dI8//jj33Xcf3/3ud1m7du2px+vn+LpX\n0mlZGY1Go8Tj8VP/np6eJhKJnI6h1NW9opqamrj88ssRBIHOzk4aGxvJZPRZO8wAAAIbSURBVDKU\ny2UApqamiEajL3oM/K4tYHV1f87cbvfLnufRaPTUTgDDMHAc59Qd97q6vwRnnXUWc+fOBeDCCy/k\n6NGj9fle95qyfv16vvnNb3LnnXfi8/nq5/i6V81pCUbPPvtsHnnkEQAOHjxINBrF6/WejqHU1b2i\n7r//fu666y4AYrEYiUSCq6+++tR8f/TRRznnnHNYvHgx+/fvJ5vNUigU2LVrFytWrDidQ6+r+6Os\nXr36Zc/zs88+m4cffhiAp556ijPOOON0Dr2u7vf20Y/+/3buHkWRKAoD6C1QQVMD0cxAsDfjClyC\nnQkaFBhWKWZGCi7AHbgIQxcgiBtQExGZCQY66qCDniroPid80X1wufDxft7jfD5HxL/30r1eT7/z\nY9xut1gsFrFerz9+jDbj+V+SPyWdnS+XyzgcDpEkScxms+j3+2WUAd/qfr/HeDyO6/Uaz+czRqNR\nvL29xWQyicfjEZ1OJ7Isi2q1Gvv9PrbbbSRJEsPhMAaDQdnlw5ccj8eYz+dxuVyiUqlEq9WK5XIZ\n0+n0S33+er0iTdM4nU5Rq9Uiz/Not9tlbws+9Vm/D4fD2Gw2Ua/Xo9FoRJZl0Ww29Ts/wm63i9Vq\nFd1u92Mtz/NI09SM59uVFkYBAAD4vUq5pgsAAMDvJowCAABQOGEUAACAwgmjAAAAFE4YBQAAoHDC\nKAAAAIUTRgEAACicMAoAAEDh/gJz9JrUXFjxLgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAACbCAYAAACXp01BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXe4ZVV99z9rrd1Ovf1OH2CGmUGR\nUXAEIyKIQSAGu75GIwaMBROT6KuxvWqixJgYS1CwoCJERUSxBEGiUgSsdARmYIaB6eWW089ua633\nj3XmDkMxSFCU7M/zzDP3nLP3Oruu/fv+2hHWWktBQUFBQUFBQUFBQUFBwe8Q+VhvQEFBQUFBQUFB\nQUFBQcH/PgoxWlBQUFBQUFBQUFBQUPA7pxCjBQUFBQUFBQUFBQUFBb9zCjFaUFBQUFBQUFBQUFBQ\n8DunEKMFBQUFBQUFBQUFBQUFv3MKMVpQUFBQUFBQUFBQUFDwO8d7rDegoKCgoKDgfyOrVq3iqquu\n4tZbb+Xyyy/nn//5nx/xWF//+tc599xz0VqzaNEi/umf/on58+c/YLn3vOc9zJ8/nze/+c0POda5\n557L+eefP/c6z3Pa7TY///nPH/H2FRQUFBQUPBiFGC0oKCgoKHgMOe644zjuuOMe8fq33HILZ5xx\nBhdddBGTk5P8y7/8Cx/5yEf46Ec/+ojGe81rXsNrXvOauddnn30209PTj3j7CgoKCgoKHooiTbeg\noKCg4A+OLVu28MxnPpOzzz6b448/nuOPP56bbrqJ17/+9Rx11FG8613vAuDCCy/kxBNP5LnPfS6v\netWr2Lp1KwBvfOMbOeeccwBot9scddRRrF279td+57HHHsvZZ5/Ni1/8Yp7+9KfziU98Yu6zSy+9\nlD/90z/lhBNO4OSTT2bTpk0AJEnC+973Po4//nhOPPFEPvzhD6O13mfciy66iL/4i78A4J3vfCdn\nnHEGp5xyCs9+9rM55ZRT6Pf7AFx99dUcffTRnHjiiVxwwQUcdthhbNmyhdHRUT7+8Y8zOTkJwJo1\na1i/fj0As7OznHrqqRx77LG8/vWvp91u/0bHeWpqivPPP583velNv9F6BQUFBQUFD4dCjBYUFBQU\n/EEyOzvLxMQEl112GatWreItb3kLH/7wh/nud7/LxRdfzM0338wHPvABzjnnHP7rv/6LpUuXctZZ\nZwHw/ve/ny996UvMzMzwyU9+kuc///kcdNBB/+133nTTTVx44YV873vf46tf/Spr165l27ZtvPe9\n7+XMM8/k+9//Pscccwzve9/7AJfyumPHDr73ve/xrW99i+uuu46LL774137H97//fT7+8Y/zgx/8\ngJmZGX7wgx+gtead73wnH/jAB7j00ku555575kTq4sWLedrTnja3/o9//GOe/OQnAy6qOTIywuWX\nX8773vc+rrnmmt/oGH/hC1/gxS9+MfV6/Tdar6CgoKCg4OFQiNGCgoKCgj9I8jznhBNOAGDlypUc\ncsghjI6OMjIywsTEBFmWcf3118/VTq5Zs4bNmzcDsGDBAk499VTe/va3c9VVV/3aGsr78sIXvhCl\nFGNjYzz1qU/lhhtu4Nprr+WII45gv/32A+BlL3sZP//5z8nznCuvvJKXv/zleJ5HFEWcdNJJXHvt\ntb/2O44++miGh4fxPI+VK1eyfft27rnnHtI05eijjwbg1a9+NcaYB6z77W9/m6uvvnpuf6677jpO\nPPFEwInWww8//GHtJ7iI8Xe+8x1e+cpXPux1CgoKCgoKfhOKmtGCgoKCgj9IlFJEUQSAlJJyubzP\nZ1mWccYZZ3D55Zejtabb7XLAAQfMLfOSl7yEf/u3f+Mv//Iv58b57xgaGtrn71arhZRyn8hhrVbD\nWsvs7CwzMzMPWOe/q7+s1Wr77IfWmmazuc937EnJvS9f+cpX+NKXvsS5557LxMQEAM1mc5/xfpMI\n5xVXXMHq1asZHR192OsUFBQUFBT8JhSR0YKCgoKCxyVTU1NcfvnlfPnLX+ayyy7jb/7mb/b5/Mwz\nz+RFL3oRF110ETt37nxYY87Ozs793Wg0GBoaYmxsjEajMfd+s9lESsnIyAjj4+P7fNZoNBgfH/+N\n96VardLr9fbZt/ty0UUX8ZWvfIUvf/nLLFmyZO79er2+T53ozMzMw/7OK6+8ci4SW1BQUFBQ8Nug\nEKMFBQUFBY9LpqenWbRoEaOjo8zOznLppZfS7XYBWLt2LT/84Q9597vfzcknn8zpp5/+sMa85JJL\nMMYwNTXFDTfcwJo1azjyyCO57rrr5lKAv/a1r3HkkUfieR7HHHMM3/jGN9Ba0+v1+M53vvOIBN7+\n++9PnudzP69y/vnnI4QAYOfOnXzsYx/j85//PPPmzdtnvac85Sn88Ic/BGDTpk1cf/31D/s7165d\ny/Lly3/jbS0oKCgoKHi4FGm6BQUFBQWPSyYnJ2k0Ghx33HEsWbKEv/u7v+O0007jQx/6EDfeeCPv\neMc7iKKIk08+mW9+85v86Ec/4jnPec6vHXPFihW89KUvZevWrbz61a9mxYoVAJx++um86U1vIssy\nFi9ezAc/+EHA1XZu3ryZ5z3veQghOOGEE+ZqOH8TgiDgH/7hH3jXu95FrVbjlFNOQUqJEIJvf/vb\ndLtdTj311LnlPc/j4osv5g1veANvectbOPbYY1m+fDnPfe5zH/Z37tix4xFFcQsKCgoKCh4uwlpr\nH+uNKCgoKCgo+H3n2GOP5V//9V9Zs2bNY70p9Ho9Dj30UK677rp9akILCgoKCgr+kCjSdAsKCgoK\nCv4AeMlLXsIll1wCuHTh5cuXF0K0oKCgoOAPmiJNt6CgoKCgAPezKJ/5zGce9LMXvehFv+OteSDv\nete7+MAHPsC///u/U6lU+PCHP/yIx3rpS19Kp9N50M++8Y1vUK1WH/HYBQUFBQUFD5dHPU33Qx/6\nEDfffDNCCN797nezevXqR3P4goKCgoKCgoKCgoKCgscBj2pk9Be/+AX33nsvF1xwARs2bODd7343\nF1xwwaP5FQUFBQUFBQUFBQUFBQWPAx7VmtGf/vSn/PEf/zEAy5cvp9lsPmQaUEFBQUFBQUFBQUFB\nQcH/Xh7VyOjU1BQHH3zw3OvR0VF27979kLUnKz70sUfz63/vWHRlivUknQUelV05zf18dAnGb03p\nLPQpTWt0KOiNS+r35mQ1RR4KhLUEHYMOnK8grQrysiBoWbIy1LZo2ksUwoCVYDyBzCxZVeDFkEdQ\n2WGIRyRCg8osybBAaKhtMWRlgRWgI/D6EI+KueWjWUMyJLBSoCOQGXg9CxaymsDrW7w+qMQSvHYH\nm3eOsGrxTtbeugSvJ6k+cYbZ7XX8GY9sMqM21kVribUCYwTlKGWi0uXe6RHyXGG1oFqLAdhvZJZW\nEmGsYLLcZizsMp1UiLXPUWPrWd+bZHdcZWt7iH7qs3reNnp5QCMpcfS8u/jJ1DIqXspMXKaTBCwe\najLdL7N7tkZUSvnrVVdx5rqjmV9r08kC+qlPbiQrx3azsTFKtx/i+5pSkNG/YuKxvHR+6/Tnm8d6\nE36rhDOP795s/UWaYKJHnit020f2FAio7t+ktbMKngUjKI30SROfMEqJ+wGlcoqUBq0lSrlroB4l\ndJOASpgy2y0xXOnTT33qUUI1SJjul1k9to2+9rmrMYE2kvnVNsNBj139GsNhn83tYQ4a3sWt0wsY\nLfVopyELKi16eUDZSzliZCO3thdR9xIMAm0FVZWQWUU3D6l4CX0d0M5DKirlpxevJqtawllB0LTE\n4wLrgQ4twgAGTAjGd1UmJjKonkTFbp7LahaRC/R4imh7RLvcfNlbnCNTianmYAXljT7xuHFjAkIL\ndMlgPYtM3Xg6sNjAghYgLbaao2Z8dMWAdMdZJBJhQeRgPTCBQVgBFhBglQXPOPdvLCE0BNt9jO/m\nWCxkwwZ/so/eUkZXDOFon3R3GSst/khM1g4RqcQGBgyoWoZuBai2Qo9lYEGVcgSQxx7S19hGgDce\nozxDlnqYTGIzCQZEpLHa3SfS15jUXUOV4T5J7JM3AvyRhDxVYAVCGbxA43maXrOEkBYZaAA8T5P2\nfYZHunjKUAlSpLBU/JRWElH2U2b6ZSpBSjcNWFxrEKmc3EqMFcyPWrTziHYWEkiNJ924JZVhrEQK\nQ1UlJMZnftgklBmZ8WjqEjUVE8oMhaWtI5QwhDIDIBI5Q6rLjK6isJRlQiQzFIZ18QJGvS6HRJtZ\nmyygpmK6JiSzimHVIxIZShgikRFbH20lmVW868cvxatk6ExiEwW5QA1lmFwgpMVqiU0koqSRnkG3\nfVQtw2rhrgUj8MMccH+XSilJ6pGlHuVKQiVMafUiSmFK5Oe045B6lGCBZq9EmnhUKzGeMmgjCDxN\nrhVpruj1QhZPzDLTLeMpTeTn9FOf0M/RRlL2M6Y6FWqlGGsFaa4oBxkWMFaghCX+xjwGh29wU0Bn\nkUAl4PVAaovMQOi9ixgPZL7vHGUlCOuu7fuiI1DxYBm17zgPC7HvmHnZbdfDJR0SGH9g19x3u0Lh\n9svYwbYJhH5gFZuVAmEsVgiyGgQti1XC3VODqre0LhAG/I4lGRHkJUtlm7O1/A6YwO2H37YY39lv\nAFaIuTH2jK8St495yRK0BHkJSrvdMnlJoEPwYlCxe6+y0xAPSaKmwSjY/kyB3xJM3mjoj0lK026y\nSysSv29I6tKdhxzC9t65MKlJ0rqgtlWTRwIvthgF3QUKr2fxe5akLghb1p1DAXkkyCN3LXh9i9+3\naF9gJXiJJa3Iwfa6dRorJLV7LV5s0aHA6xuML8gqApm67QjbhjwUeIll55rH93M9m+9uPOlrTKaQ\ngaZUTslzSdoLUIHGaIG1AuUZ/CDHGIFSZs7G9jx3AqU0lIMMYwVSWISwWCvwpMFXGk+65dTghGsr\nkVgqfgKAsRJPaqRw15UUFk8YpDBzc3IoNd08wJMaXxgqXjK3/B6MFYQyRwrLR5584UPu+2/1zP5P\nylEPOfquR3FLHhuML8nLEpVZOvM9mkfEWAGzBwaM3dRk+mAPlVj68wUmEPRHBUHHYKUgK0vSiqA/\nJtABVLZrWgcIooaltZ/zIajYiUmZW2pbNWHTIrSltNuSlwRWue2w0k2YADNPlHQXCNJhgQ4FWVWg\nYsgqgt58S3upE7B5BUq77JyxtEeINg+EZFiQlQX3rp/Easld2yfZ7wk7OOflZzK7ZQiA0k5B/daA\n3vohKlHKaLVHGOQ0W2X6uc9IrceTFm3nqQdsYtFQkzjx2TgzykyvhBSW6bjC5etXsak1wtbmED+f\n3Z+tvSG6eUCceRy2YDMVL2WqXyE3km9tXM36jfO4c/cEce4hhCXVirFSDz/I6a8dZjavsGp8F/3c\nRwlLNXQG+vW3LWO83KNWTuh1Q0ai/mNyvRQUPGwMpL0AHXuIWDF50G5kImhvrbPxpLMRXYXsKuJO\niMkFWeohpaXfC7BWUIlSnjSxg1qUUPFTfE+zsNqkHGakuUc5yCj7KcYKcq345Y6lbGiOUw1SlDQk\nuefuIT+hk4XMK7fJrGQk6rOg3OLQsa08e2wdC0otJqMOt3cWEkrNrqRKoj3qXszutEo7jwhVjrGS\nJ1S2Y6ygnYckowYTWuJJQ+MQg79mlrFfaYZXT7HulE+z7rWfJh/JMVVNOCVRHYUVzrjVAQQNia5p\ngm0BYiSlv39Kf6HGbylkIlBND5Slt3+GMGACi65rZAbhjEL1JSIT5GVD0JKojntUCi3ADuZWAyKT\n1Oe3mVwxhSlpdNmg+gJCgxpJCCZ72JJGxpJoKJkToiSSrGaxEljRZd1rP83dL/ks1XKMt6SL11Ik\n0yWoZohckDVDd941iEDjzXqoDSUA7PwYFWrQAp0odKqojvRQnhPVOpdkmSIIM5AWVXaqQXoWFeUg\nLCaXLFk8jVCGbjPCD3JKkz2yro9NFE/cfxvK12gt6XdCVKhRgTNUdCMgDJy478UBWa6oBc4oMVYQ\neRmZUcy2y2ydGcKThmZaYmt3iNxIpLDsiOsk2mMk6BOqnNwoFkQtunlIbiVVlVD3nOicyqpsTUbI\nrCI3kp4OyIzHTF6hrBInGo2HwhJbj43JJLvSOr7IyayirSOkMIz7bZq6hEZwVHk92gonyDDExqdr\nAromJLWKrgkZUx0mvBYoi9EC6Vl3PIcy1j/7HMbH21grsLHCH0qwHQ+TD64bQChLqZyChbQZYo1g\nqNbHUxrf11gjyDJFL/UZqfawVhBn7lk/1aoQZx6hn+EHOd1+SOTlGCOZbZdJcsWq8V0oT7OjUcdT\nmkwreklAq1Mi8nIqQUorDgm8nKEwnjNGLVD1UxZUWoRejvEHU4wHOoRffOjT3P5XZyE1+F1Lf1IQ\njzvbYQ/yQQSlMG7wvLzv+3uEqLufHsHc9wBx68TOw0Vmdh8hmpfdfhzy8tu58T1nccN7Pz3Ytr3L\nWLV3X/MSxGNuDrAS+hOCZGSvEM1qAhNAOuQEKxbChkBHApk7e8p4gHECOC+DDgRWCZIxiMcFaV2Q\njEI8blGJJZy1lHe4bbCeJR0SxKPO8RY2LOl9GmrHQxIrnZiUGhZdZZm80Z3rPUI0KwuyijtHYcvg\n9VwAJKlJ0qokHpKEbYPMLXm4VyxL7YIhpRmDSiyVXQah3f4kdUF/wgVEwInPrCxIq+789MecuBXa\nnXepIZp2x1BqixVgfLd8adogLHPXog4Febj3HDxeEZ4ZeHAGf1uIN9QZ+XaF0asDgjAjLGVIZRHS\nCVAhwBiJEBYpneisRglKWPqpP1jG4g/u91QrtJEkuUc/88mMItEeShhKnhPDxkpy6+bmId+d0F4e\n4EuNEhYpDCWVUff6jAY9/IGgzQeiwwyczb7QlFQ2cCT++tjnoypGJycnmZqamnu9a9cuJiYeWYTp\n1qtWIFb+Yaf4ysx5nboLJFHDcPdxX2T8VxnRrKG3pMqS7zdo7u9R32BRsUGXBCo1qNS66KQHWdV5\n2PJIEO2G3oTEBNBdPIiKKucV7I8qgtYgaplZZOo8ZV5sEblbJpq2eINDKlPnoexPuOWxkC7I8Ntu\nXL9t8XtuosnL7rUwoFLn8eouEgRjMTZW5M2AZj/iyEiy8YWf44+etJ4f/d+PAFDZImn3InZMD9Fu\nlbBGsGXnCPUg4dbNC7lp82LuWL+Iv1/9X3RbERPVLrO9EoeMbGNytEUtTEgyj3ubI2yaHWFHq8ZI\nuc/W7jA/27af87zHIZ40VMd6REFGNw4YL/doJhF1PybuBVjf8pnrnsX1G5ey5c5JdjZqNPoRWd8H\nC1saQ1SCFLE94t7pkYc8pyaAs9/0SW5961m/i0uo4FHktr9+/JwzkQn8UoYX5VjfMHXLJPUNMHSH\nexjc/dLP8qyn38bwaAeh3MNNZ3LuYdVol2ikJXxp2N2tkGQeN2xaQj2K6cYBSe6xfoebu4WwKOmE\nRahynjS6g4lSh9mkTG4UjbhEajyqXspY1KWdhSwMG6zrzafmxzTSEjv7Nfrap5mUmE1LhDKnk4Xs\nX5qmohI8qTmivJ6al1DzEmQuMGWNTAX+jKR8wRBD123HO2+MZ7z1jQB8/tgv4tcS4oXaCcqaBgsm\ntOQli9dSyEwgdoaE23xE5owZmYLqC4KtPv6M56JVgUW1FXnZklUsQrtIkMgFedk6NeFZZCoglZjQ\nzEU8u72QXbvrIMDrKPKKQcSKPPYIgpz5C2aZWDmFlAbVVS7CWtLO2Cob0m7AF5rzAWjcNUr58qqL\nhg4nlGsJ1HIIDLKjsBUnWvKJjGzUEOxWCAkmk4hIQ6Lwoowk8fCDHG8oxSQK3fVJ+j5eMAhfaYHn\n51jjonlBOWNXs4oX5ixcMIu1wl0rnoVcsKw6xVA1xuSShfMaDNW7SGXwfE1tYRtjBbQ9hIBymNJO\nQzppwLLqFJFy3znvqxFj36igz5vEl5qxqIuxglQrpuMKjbREX/ts6w7RyiK29oeZF7YoqYySytiZ\n1impDF9oUuOxM62zorQTjaRnAowVGCtRwpBYj7aO6OgIX2iWR7vQSDSS+X4TYyW+0Ggr+VHrYDZk\nY9wZL6BnQnompKb6tE2Jhi4zqdoA3JYsmjt2JlN4fo4MNbrrjKze1RN420JWnJuQtUK8jkJ5BgJn\nNGIF/V6AkBZVzYhKKa1uRLtTohRkBFFGniuUsLRj53zoJwFZ5qKmnV6EMZLQz6mWnYGYZB5hkFOL\nEtZOTRIGOQtHmtSjhDT1iIIMHXvEufsHLhNipl+mHsZUwxRtJFO9MpHKmemWnYBiIKr8vQJAaOeI\nrm6yJMOWrMqcw/v+AnEPJnC2xx5B+t/Yo4+ItM5cNO/Xch8tk1X2vtgjTG+45Ilz793w3k9jfIEO\nXFbaffdPGJehkQ0EYGm3JZqyc8fK67p99nouEq5S9x3Gc+vGk+5zYd0xVbETXUI7W83KQQQ6c8EG\ncMd9zz4IIxA5IN3x1ZEgmdir6oPOIDKmLUlNMnOQO0n3Fey9eRITuDGTmkTmbtuM78Q2gPadwyGr\nuOOgB8vnoSCpyX0Eut930fLaJidgSzPGRVP7lqhhMJ4gaFuCtkVldk6oqtQSNd2yMrfIzFKeMoPj\n7MaZPljROMiJ28c7NpdgBVJZrBZYLRm/2TJ8W5PRtX3UT4boNyMAjFZoLbDWRUEBfM9l9glhCf2c\nwNN4yl0bxg6cGdZlJmVGoq0gyT1KXuach4ObJLcSTxhyI2nnbi4aDnpoK+hrF8zp5iGhzDGIuUyW\nVhaRGg9jJX3t09cBkcwY8nqU94S6H4JHVYweeeSRXHbZZQDcdtttTE5O/o/aw9s7/7Bby7cOCIjH\nXHptUpdszDq87VP/wT9+8AtsPk6w8+lDLLi6QVoT5GVFdashHlFg3UQUNq0ziIzzGHmxewCEM5Zw\n2nnPrNozOe7xdgmykiAZ3uuJA5ceIrXzsAkD8bibBMNZl56hQ8HoL31nYHkCr+9SQISB0pQhq7ox\noykXFfU7kLZCMCD7kmUj0zzhc28C4IylF/Ps617Hi0+5EoDg2hpiS4Tc6S5qqSyJ9mB3SL6rBAZ+\n0jyQZ65cz4H13XhKc+WWA4k893Csl2NKfo6ShqFSzGS5TZJ7+Eoz1SuTZR7tTonIdx7jQxdsZfPs\nMPPKHTa2Rhkb7WDnJfilDNP3sL6lHKV0GmXqtwTU13kkd9fZetMCTGAx+qFvi96BKa87681syTvY\nZzR/q9dPwW+H173qksd6E/7nCLAW9O4ImUpec+IV6Eiw4IppjvuzU3j7jkM5Z+nVNO8ewaSKPHOp\nlnnfo9uOqJRSdrRr9DKfapgyXu3yJytvA2Ck2mPFyG5Gh7rsaNcIlHugSWEZDbts7g47wx/BSNjD\nAplWrGtOAjDkx1zXWMqOuE5ZpkzHFZ4/72YqXsJY1GVbZ4ibGovZ2avxy9n9uLc3ii80G1K3vhQW\nrysQqcRvC4K2YOpQwT9dcSGVHQnVTX2e94zn85yS5qZnfh7rOWFIJsiGNUFDYiKLVU6Uytx55m3g\nIpHpuEaXLNZzolTFAq/l5l2kSzHLR3InbCsaPTl4iOYuhVf2JV5b4bUVsi/RzYCokoIR5HWN9S1W\nWo594lqetehuDh3fykyr7KJmniXa4iPaHl5XoNqSYLvPa4d2sD3vMPorZ/we+LUOZluJXifEWhAt\nHxMZyJ0TQvQUYiglHdNOVMYKOXA6VMsJ+XSJ3s4KencEuYRMYFsBeeoNrGBIBkaNF+ak3YCkEWEG\n0bQ09rDWXWPCCNY15zE9XcXzXXpXkvkoZYiCbC7C5k/28X2XJtzolWj1Im6dXcim5jCZVnQWKGp3\ndxj55S5m4xLX334AvTwgNR5SWIaDPqHMWVhx82punXiUWJQwdPKAmazirhEsgczZEE/S1z6ZVWRW\nERv3t8SSWYUvNDUVM5XXmM3duncl89C49OAhr8eI36VnQnyhXfqvVVzTWslt3UXc0V3I5Z0n0tYR\ni/xZdx1oAcK649X1+cdnfQuA/qQhnBG0lpc46FNtytsFOpeQScxsgDUQlVIqtRjP03RaJcIwg0H6\nXBjkSGnodCOyzKPZKuN7GmMEJpP4viY3EiUtvjJ0koBKlFIKMlp9t04tSubS8gCa3RLVkR7Nbok0\nVwSeRklDuxextTnEbK9EJw6J/JxOHhL6OV7fret3LH7Hcm3szm9rhaa90hmdw+ucuMmj+yg84eyQ\n+zKwfx+QwvtIebAIaHnHfZUic7aKDu+3/H0Wu/92gnPWH/LxN829NsfOIiwDG2zvylkVgrabU4Rx\nwjYZdumzOnQ2mdezBC23npXu/T2prDqwCOsyOHToSp505NJ/ZebsMqHdMQtnXAR0TxTWb1uiKReh\nNr6lt9AMnAKD1F4p6I9JkhFnp4Vtw+had84ar+zQm5B0FiiGNmr8tiUedtHTPeeyNGPwu04gqsxS\n3uEEocpApS5NV+YWlVrSga2Z1sScsLRq73H2e5Y8Ei7QJ/Y6IqwcOAUzJ2B7ExIduPXvm+Hp99yx\nq2y1VO/59dfF4wXhGees8jQqMEjf0NpPossBABM3Jiz5rkSn7sJ2EdG9/2e5Isk8tJEESiPuc0A9\naVzQJkzmUvLl4N8e9jj0AFLjnBhx7jun4UBkmoEgDWVOIy+jB2OBE6OdPKCRlZjJKsiBl6ijowek\n796fR1WMHnbYYRx88MG84hWv4PTTT+f973///3jMa1/zb6w79dOPwtb9dnjO8Tc+5Gdhw1Db7G7u\nkXU9fpks4r23v4CPv/Rl2JKhvT9seIfP8IaUq8/8LN35kqBtSGtuUsoj55ETBnfDVwXhrEudrW3W\nZDUGnisnVsO2i6ruobrNkA4iq9ZzaRJBxwncoOk8YL0FbvmwaUjrru4hnDXsflbGW993Piq2xKOS\n2ok75iZZmQ9qRDoKv6VQC3tcv/YA7ni9izw956NvR141zEXnHEP7AHcxlre7eiup3I12792TiMkE\nORGDFdw2M5+puMpV9xxIPwnwlWZZbZp2N2K01GPXbI3WbJnpdoVNrRHmV1qUg4xeHBIFGdVKTDVM\nmDfsvNjLxqe5ed1SVg7vJs48TN9zT0bj9tFcMUrtJvdEMp57AJS3CYLGnkKXB/LGU/+T0490hsez\nv/p2fKW59a1nMf/Ezf+zi+ja3IqMAAAgAElEQVRRJi/DASfdTWeZswCKKO6+nP2VP+EFL7uGn7zp\no/QXPZI8sccemQiyRgTDKWYo4+rVEf15lgVf2Iq69lZuePthHPO617Hh5Z+hcmfAs1feiVAGFWkQ\nuHRKrWj3InylaSchv9i1H+0kRAlLIy0xWuoxWe1gASUsI1GfTe1RtJWUVEaSe9zVmODJY9vo5z4L\nyi1qfkxJZa4e0Eju7o2TGsXFu1aztTdMJw/ZuWmUrc0hdqydpHnGUv7f4u/xkfk38ov2cro6oO71\nScY1MhH0DkzRPqw8ayvvefbL2PaMEqqX0Vs1ySE/fyVlGbDxpLM55uhbUH1JuFuhI4vfEoRTEplC\nNpqTTuQE0xIrnPNMDIRrMqHJS048ytTNDTqyiL4kGzH4s56r9bO4+lAJpp4jlnbJ6xrVF8hEkq2v\noToSoQXjSxqsff6Z/HLHEr7/40O59NYnceezzuM9h1zKstVbSUdd+qwVTvT+y8v/A4BXnfq35GWB\n17NseGkNmQm8bSHergCvJ/CHE+dQmC6huhLT9SAwCAGqnjoDJdTM7qoh6in+SEKwoEs42keUNSIR\neL52tbKTXVTF1THm0yUnsIxAKk0lTPHDnN6uCkKAP9GnkwXst3CaO48+lyuf9G2OXXontz/jy9yw\n5gLkd0fp7KrgeZos85jtlqiEKcOVPkNBzCnLf8Zkuc3kdW12HlEnXTTMyMktDjqzzYZfLiXRHkNB\nn0ZaYjqpMJuUkcJS8xKaWQkpDJv6o4QD77sUlsR4LA1nKKuUxHj4QlNVrh65N/DG+0KTWcWWdISe\nCeZeN/MysfGpqdjVhWK5I17I9Y2lfPS64/jpzDIuueqpXLbuCXzvptV8d8sh3N5bSGoVbVNCDGpD\nK+M9VC3j5PoUz3jLG1l8haF2r6G5TLL2r2pkFajW+85xFLroaL8T0t5RI419pGfodiLGhrp044A0\n8/B9zYKxJr6f4wc582ttwjDDj3ICL2ek3CfJXSpvbiTauBqwLFOUo4Re6lMLEjbtGgUgCjICL2f1\ngm1c/9Sv87OnfINd7Spve9IPWDW+C339MEv+QbNj7SR37ZqgEqRzqZF7oodHRpLD330a49dJ0LD7\nqIw1f30jlW2W/jFt4vGBGIuccLsvKhnYCgN/zj6i9EHE64OxZ3tg4Jj32CfKaQUkI4Iz3v8phl69\nhWNP/Rk3v+MsVrxm3UOm73qxc7bvofmMmB+9+6P4HcthHzyNA89/I7ccfj43vfMsmqv2PiOsEERT\neyKfg3+xi37KzEVpZWbpzXd1qVnFpeFmFfe5yMHvOJstbNi5/ZeZy1SzHiQjFmEtak9vjtZg/NzS\nXGF5wp/dwTNfex3yiW02/J/PcPtpZ4Fk7juDthN5e1JyAXa+LCbuByTDgsYad5L6J7U44rQb5kS1\nVYK0IkmrgqQuaR6gEGYgKI2br5KBeBXGZdT5fYvftYNaV5duvCeCmZUEyZCcO4fGExiPufFl7lKE\ny7sNQdvMjWv2lJcJ93rqaRodud4qj3uMc3TpXGFyge4rll7WwipBPB6gS5Ly1h4rP+vS9aWwaC3Q\nWpDne/tA5FrSTX2ksMSpTy8JiHPn9ItzD38gTPfcAdpIEu2RaI9Ye4O5RWKsJDUKTxqMFcTajVFS\nGZmVLoOlN8y65iRX3X0gm7++jLWfPZg7vvQEbjrvEC65Yg0/mVrGbFYm2qcQ/YE86mf3bW97G1/7\n2tc4//zzOeigg37j9Z9w1N37vD7y3Lex6ounPVqb96jzo8sOnfv7AaJZCPy2xihBMhqy1JuhdecI\nU4cNuYhiDucccQ6dRT5fa48wentCUldEs8bl7w+5NAeZuwkmq7qopQ4EaU1S3mkp7zJkdUEy7MSr\nUc4LpxJLe7HE7w7yz3OXo98fk9Q2axftrFvGbrXkZYFRbiKr7NTU74lZfLHiu1OHYjyXv7/7l/Pw\nO9B4ZuxqLmKIdknyiiFPPaLhmPtjfLj7ZZ8hHhsU1m+W6LZPOhuhuhKxNcJkkvHFDdr9kE4asmSs\ngVKGBbU2V2xYQank0oiUZxgdbzNU6RN5OU8Z2uJqQmtd50nWiulumS07RzBWsH7XOMesXsv2Xp1e\nL0SVXX3NyMIm9Tv3zRWSOUTTg5SVeTnVcvKAfQH41NdP4h9v+FMAoinBtU89D4AfPOE/H8GV81tE\nwsb/XMbGF36OzkEpf7PtaXSe+OtTJP638aF5tzAkS9z9os8+1pvyoPRWJMRP7JOMPXj+mdSuAY0X\naAZZdYzfZPjVWYfQP/EwdCjJS256/9XfnMXOuIZQFt31UMq4qJafo5SrE8lyRasXUfYz6mFMoj02\nzY7QTkMEEHo5kcqIvIzcuHFrgbvnZ1KXg9dISywMm2RW0ssDDhnaRicLnXHcGOa2uxex4fvLmPiZ\norG9zspzmmx5nuYFl72Zw298GddPLebAym5CmeN1Xd2TaHsEbbCeIl42QTxpEJ0+5XW76G6usfoX\nfwbA2UuuhQUxIneOvGRCkw5bVCoQfYXIXXkD0kVdrWIubTecleiqIa8bZC5QicDWclRXuiyVlodK\nBoI0d6l32UwEnkFHFhMYvFgw7+eWiZ9JksvHOezMv2X07CqTv4Txa5w1/araNDO9ElbZQaMkC1bw\nyXuPBeDvPn0+8388Q9iyDN0F83+qWf7VWeobIBvSmK0lZE8iUoFa1hlYaxC3QzzPpejKhg/KNdHJ\nWgFJ13nUbayw4ylSGYwWrvFV33PNdpRrziTKObVKzLZdwySzEQeu3E5tuIfOFc1eiQsP+ioAh33w\nNK742tNY9q03cNRfvwGhYfIaj14rwhhBvRxT8VMCpWkkJW5qLyE3EpFpohlDY3lIsnopcneDFWfv\nYMPWCdppRKQyUqNoZyFVL2FnXKPmxSyJZqgoV78cyJxRr0tiFOv7k2RGEcqcxHiUVcKI12UyaBEb\nH19oejqYSw8ry5Tt6TAHRjvZmQ2RWYXGpetu7I2xpen6Hcx8bD+WX9hj4UUBB1xoKX9imPXtCde0\nA4PIXV1od7aEbvs85/bn86V//SjGE9Q2dvG7ULvTJ57UTH6iBMK6FOtMQsdH1VOUZ5DSEJVSfGnI\nB7Wl/U5IexCpTDohzSQi8nNXq5sEZEa6piRGYox0abpejs4VSlpyI9ncGGbZvCkqpYSRcp+Sn/O1\nAy4HYEveobutxi/aB3Db91bN1W+u/GKDwM/Zvzrj6vNKTizt4TV/fzEApe0K4VnkIPwV/rRGf8IS\nNu1cSul90dG+YnIf7MOrGX3AMvdrYBS+YBcXvuUjPD1SNM9bzG3NBWzKO9z9uVXk90nH3eer1b7C\neegn0T6f19fvu96e+lhhLcmoi2p6fWeTCe3KorI6RFPMNd/JSy6CKQxz0cc9Uec9x1YNHss6GjjF\nE5fe258Q5JVBU6Xc4rfd8h8/6Txu2r6Ia76whv978A85ZdNRAPzwxI+58oPEkgw5wZhV9pr3498u\n8ZZDfwhHNKGvWPn3t7F63jaeO3yr6xuSWfyuq9P0Ynd8S7ssaW3QuMgT9Mf3Nj9ykVpBWnVRTS82\nGCUI2obm/oq0IlGppbLTnTy/60rBVGrd/vRcuu4e9tQcbznOsvMIwY4jJI0VinhY8hfPuIbefDtX\n2/u4RlisEVjAj3JEYMhrAUJbuvMV/TEPXfIRuSGeKrl5QCuUsgjhUnCNFSg5aOw3SE1Q96kXTXM1\nVx+vB58bxNyy941gpkYRSE2cO+dXbhSBzEm0R2o8WlnEbFxiy88XsfSLyqVdz2rmXTNNbVtOZZtg\n/QZXgtLW+95j9+f3ztXw7RWXPej7//6KL/5eREjThQ+t7ld98TQOffa6udfJkCAvOyOoN6F4eqQY\nvwnq96bsd8BuvCe0eMsd/4envOEWvnjqCwin+rSXCjoLFf1x6ZoOCTfBZBVBeYcrZvcH3W0ZeKKi\nKUvQhv6ERCUuyimzvY2HEINJ0LpJIa05IyucdqLV77qJ4akn/YrZlYrGgSV2Pk1y7U0raTw1Zdvz\nM7IRgzx+ij9f/Yu5iSUbsqiuxPa8fdIBANor9FxHvnQyZ80rbgEg2u65ZiAW8tEM5RvSXDFZ75AZ\nlwJgjGBbq85+kzNEfs7GXWMMVfrUwpTRkstb/+bGp7C0Pst0u8LkaIvAy3na/M3Mm2iybmaCIMi5\neddCZvplBPCkxdsIwozZrUP7bKcJYP5JmwA3wdbXejQalQc9v14HXrDqlrnXZekMvddueubvTfRx\n/ombifdzT9ln3vJihG84dewaNp7weQ5/6S3/zdr/e1h53l4Hl/09ecZlVXcP9edryneFRLeXeMrh\n6/fWZd2HvGwRynXFtVrQedkReLFl+DWbSWuStK6YXaF48kdc2tnFKy91naJH+yjPEPo5zXYJrSWN\n2EWySmFK2U9JtEvzEYNoaDcJmOpUCKRmNOyRaUWocja1RhiO+rTSiOVDUyyrTnHBXYexO66SW8nN\njcVEKmNHp0bvrmGWfFey34XbkZkl3KUQ/RTZ9hi5yeMZ8zfy0yd/k51JnfXdCVRPIAfC0ipIF48Q\n3b2boeWzbH7xAnoHzWPZRRnzPh7xx688FYDbjj6b2hG7Sebl1Ba0MYHLAlGJoHKvcsHNzDUXCWcE\nKJwI0+A3FF7HCbO8YhBtDxPaQY2Wc1KJXOC3B3VhLYVqeMh8bx1qdXOf6raUedf3WXRFl2hbj5Gf\nbaN+z15HUKtdxhvMfyoWqLbi7vXuYf38imsJmpUEWU2QvXEa6yvGb+niNxUmdF19zXBG0g7BN5BJ\nRFcRBDkMGsYArsvtINoJQKixmSRph0hlyWIPoezehhnG1SvNzlQJoozKRI97do7Rj31OWHk7v3r6\nVxhXFZZd9AbmXTvL8pM2ULtT0VnoOvAOre/h7QyolmN6SUA3c5H3zEi6OuCw4c3OgBqR9OYLsppi\n9/EHYDZvw2rBrk7VGTdJRMV3qd2RymjnERv7E0hhGPbd8WnmJepe4ko9AF9ojBU08zKZVfS0S7nt\nmYCySlHCNSSKrceCoIEvNON+m9t6i2jmZe6Jx7htaj6zW4fY/zxB9Wf3sO1ZVYJGTumu3eQlyebv\n7U866LJrPYvsKsgkSMuOZo2VfoXqhiYiM6RDltpxO3ji6k1sOypi6Xcki640YAQ21AhwaXjK0u+G\nzvgbTEJCWTKtiDMPoQxCWHpJQL3mlF6c+qS5Qkr3WeBpdjRreL6mlwT0eyGeMoRejq8MmVZcs/qi\nuevvBae/Hassl1/+FPKyJa/C1FNdjwQlDesakwjNA4TlXw277J+8ahEzPiWVEr+oQWeJYeQO9hGH\n8di+daa/jgdrfHR/7l8Pev8Ay0+f/E1W+nuf2dpK/vgnb2LqqYbO0odw5qXsE10FGFH7dlo64Luv\nB+Dul3yWJX9yz976WbtXyO5p1pNXwCiXpqpSUNne54rQzHXVNp6bb/bUX1rpIpLhjGsyqUPwO27c\nPeJyD8mI4Ms7/4h4W4XOfvAvNx3PLbsX8JGZ5Sz3qy4CL5xNZzz2yZKLRwXb02EWDzd46dN/ycvG\nf0luJR95x6uJRyGpS/pjEi+2xKNOgPbmib1dxg1EM4OoW+TSc/dES43vRHPQdZ8P360Juq5ONK1K\nkrprihm2DdoX+F0nSO/P9Cu74BsX3T2whXGVJbx/4nbuOvnT+J3HYc3o/W0P67IupLAo5VJ2s4qH\nLnvEo4LGStj03Iidh9dZ9CNB/eoI0wjQ2jUpMkbMNT4zg+Zw5n4GjhnY2bBXeCa5h7WCXua75/8g\npSCQGoNAChdJjbyMWPt08pBGUqKbBXQum8+Bn95E6a5dRIPGVt1lw9Ru2sGCK5vU7/BJjE83//Vp\nEL93YnTVF0/DLHugi+1vv3YqB3z/Lx+DLdqLlRBseyg3H1zwqk9w4xWr5l6XptzDtzRt5orK05fP\nEkz32XntQuTPhpjaMMqVV6ym+94WyXiJ/b7XoPK8HajYtQePZg1ZRVC/Nycec51vk2FXVxSPCcKW\nwQrXdU0m0N5f0N5PEk8IsqqbzPKyS/FtHqTpz3O1FPGYi5o2lyumDrXMHiS443MH01uR0lwJi9Zs\nY+MLP0dpY4DtK7yWJPzyKP84cRt5afAzM0OuPspvKLL1NQ7+5N56i2BKkQ7Du3eu5m1HfZ/rLljt\n3m+6pkaVLRLR9bDbI54wsZOdzRqdOGR3p0K/HdHqlJhXajNW7qJzyVSjyq5Wlbu2T7J7tsaJS2+n\nnUaUo4TZTpnJaofFpVnKfoa1glqU0OqU2L1lmDxRLK/uJt5apb7uflHRFHb851LM0Y25B6ftPXSX\nhW9dfsTc34d87E0c/NNXsTOusfK807j1rWc9pqLUf9Y0W69cgpoK0E9vMXPNfCq3Rrz6zLcA8IWl\n1zxm2/b7ht8SHPwpd73mh3T451O+9JhuT3+ewe+4B0Rph2LimG2kQ5Y7Ll3J6hPW8vaTv7HP8taz\nDA93XaqmEWw7UdMfVXxl5QWMvG4T04e4uu9F/7md5/z5a3nae07jjiP/g9c/4RrOXfNFksyjVu2T\npZ7zlmqFtYKqn1DxUmZ7JfJcsb1dIxr89IMcpO82+xEbWuPUwoTRsMuy6jT3tEcZ87vsPzZDNwvZ\n1a3STCM2NkaZmqqx8sPrkKmlf+A4jZWuFvSOt46x4itd5n99Hbe/2f0k2B2z81hSmiWvWvK6RuSC\neNSy+TnuQfbGFVe7iEMzJat6BPdOE94zxXP+/LVc3B3jF4deyOnHXERncx3ruRonV+ZgsZ6rIdWR\npbckR/YktprTX+hSdY0CryNdVNa3eB2B8ZzjLdit8PqCbNigpn1MZBELY4xveeK/7mDhj3uIRBNM\n9WgeELm0qgVl0sWjRHfv5pbUWa3PWrbe1auWNTqy6Jrbx7nz6ivSIUHroJyXLbmRe98pmfl/MfUN\nUFuvCHcp1IyPbHmuY3Ilw/qWOPYZXtTCjGQIZTHTIShLbaxL0gqR3uBnaADd9p0DccZ1yhWhQWQS\nBumnSSek3w0Q0nDns87jU4t+DsCJJ7yCVZ9z9Zy3/XwZugSt5YbWctBljwO/OsvsvSOUgozQy100\n3ctppRFryhsRnR6NJ+Xkh3TY/vKU2YNg5s8O4wl/v4nRf6+w8b8OoBWHpFrhK82SkqvRnEnLTCVV\nNnbH7lMfKplOKoQyRyPZ2B1jnt9iRzJEK4+YzirMZBXiQVhuZbQDgGZeZmMywV39eWyPh/j+9ify\nnbVPpnHXKAe95RbCXV1EKaJ2r6G1f0D3oEmqP7uHJZ/7FZn12JaNYKXFjqcuRTrSZOngeSElpuyT\nL4/Zdu8YR42tp78gZ9dhHllZUr/NnTc9FZLGPlq7895NA3QuWTzaICqlpIlHniuqQ32mZmtkmaLT\njdBa4ClDu1MiSXy6rcgJTz8nTTx33KOMTj9kw9QYHz3o6/z4kG/NnbsTT3gFkz+bpbTVY9FVOaVd\nAn1Qh+k1+wq2PdlU8MAazdpG59zZ3B/h808+jz96+lpmVlva+w2aHlXFnIGdDcqNHmos9+a+L+/f\n4CgdenBPYWepYPFr13PBBz7CxqzD4e86jTXvdw7GjTcuYvjSCtRz/vbES0le1ABc9HFu3PqDOyFn\nD9/rOBq5WXHYB0/j/bsP5pJVl7iU3WfEeDH7/FIBDOo8jSCtu9RjK8DvOVtNGAbtlJ3z2wQMSp3E\nXNqx+9kqgd8a/CRK286JycbBhtnDU/LSIJoaS7J5KdUfl7GXjPGZHx4HuJpXJEQN4yKpg2PbWqKo\n7DTUVMzG3WP87PTDOe1HJ7Pum6vY+TSJ13dlYOUpQ29comInOKVmrpmQUZCXJPGwdH1EZg1+byAq\nhWuIZIVLfTYK4mEXGQ3bxtmog2abQceJ1PsyfbBi67Phx0d8lrf+0Q84+0/PJl1fJ6+4rsHH3+Gy\n0e7bvflxw/2uf2v23j957upAZ1d6pHWP/gJNOpmjy5bmKkP1ni7zL9/F/yfvvePsquv8/+fnlHtu\nb9P7pE5CekICIfTeVEAQBEWqAjZ0dV3XLbrurl9FAQUBEQQUF6VX6Z2QkEB6b5PJZPrce+f2ctrv\nj89kJiGJupb9bXk/HvN4zL3nnnM+p3zK+/1+vV+vplcg/qyfyug4tC9QZbuC4ihUVwiXsqmhKrLO\n33XFGKGZqjjjf8JFV2xCeomAXkYRzhgKomJr5EyDguXBchR60hESTzXT9Ewfdk2UYkcdxWqFkUk6\npbhKpaUKZWc3kV0WPrUyRnJ0OPtv54xuvepO2usSh9z2+xzBv7ZtverOP8jYdv4LXzzgs1Z00EqS\nvMjRBVPf/Ayrjvwt+bYgem4Up6+5XHDGMkbyPvqOkQuu0D/4GT65LJnS9NFI2qgGlmq6xLaaOBqE\nu2QUQq2Avxe8KQfvsGR3U4tywCxWC9SSi+WDQLdKqVoOUq4KmckuxZlF4uslLKf8sRG+fNQrVKps\nhl9uYuE/XI+xMElTW4JtV9xJoVa+LqkjXEkLbgnJXBlwsGpMCu3jM4+RAs8IPPfAsXw+2s1nrn4B\ngAnn7xz7TbBLwfY5rNg+geKgn/pwVmZ6TIW22iS9+Qh7kjGE6lIdzVFM+HCBCbUJJnkHmRIeYiQd\noNIVpC2YZKgSIlPyUih5GBoJoggXb7xEY0OKV351NKHOw7/uuaSf4lH50cYfvtNcdfrrB3xWlkXo\nenYCxrBgwrPXAlCs+6+N4D32xZu4+PLX+Pb0Zyh3FCXpwvLwART6E56TbStV/y+MLv4ZNuP2G9h2\n/C+5a++J/7+2wzegED2+n2c/9wMAht5oxJMWFOttbmx4mSvCgwfuoEA660cYo06GJYg9sIxv9Z3K\n5t0NeNLSobF3dGL0Zah5eitP5oPcGNvNu4UpFFM+meH0VkiOBBkeCgOQKvtJlvxMiCXRdYtcwUvQ\nI/UOB4qSPnJK1RCzYz0owkUXDqsTTcyI9jPBGCRuFJge7WdiNEGubJDsj+DmNUoLJuLoEinS9FaZ\nqk0m3l4Nx6NiJ5JjBCEd0UF25mrQcgJjQMPxuCi2JDEC8AiLhWduYNcXFPqPVtn277I2zjOc5xen\nn8ivs1VcFkqg1xZRSgqlOgdtchZzFC1AxMQNycI1rQhqSoOgBYqLHbYo11mSiTetjjJcyvIFK+Ri\nGy76iITAOWELscdHYK9CfkYdA4v8pKeF2HJ9CPfCBHvO8pFr1BiZ4sOuiXDBozcCENDKqAUhs2qu\nrF/FhRM3nAeAMG2KdS6irPBM3yxMU8V5uopCvSSjC+1xcbwuWkFI7VMBeqRM0F8mnfaDLST1f1w6\nS7keyfLr5HVwhKwZ9owuMEM2wrDRvKbMDofLOCUNzWvhlDQ8nvFxcNHfjyMJEvNjNL5l4x1yMZIK\nVlsJz5AcO2NtKQoVnZGil4KpUzB10mUvjwwvxEmOoFQkW6SdMrBiFpkJAhHw4UkWaf3xWkolKUVg\n2irdxRiJssx4OQginhJ5ax/RkEWNN8dQJYQubKqMAsNWkCo9T1grkbMNFGRWwHRVthQbxjKnMjOa\no2RrdO+qwdjgY9qPe3BKJZRMgcK0OkAu6s2ggtNYg53J8IN1p+NX5HvkFtWxTLSZkwiZUn0ANVvC\nzskA0V3LTkTYAs8IFOoVGl9LolQEVWskmsGqaMRiOTTVRtVtOgeqME0Vobh4PSYCsC2FWEjKvFRF\n8tiOoDaewbEVfMEy+ZIHdR/hySjc12dUiAWKLPHK+e6xXBgz7qdcK+9lbKtDaqpOJQqLWvdw6+my\nZrk9msSnH5h2FA5Mfevy8WHHlA7YB2930G9FWLplMnbIptQwWgzqgndY6ppreUnMY40SKx4Wrsu4\nE/phoqN98NQP24rP3czjk1/mb7rO5+J/+jrJWVKBAEDPKAwdY9FYn+LkwBbWLnpINm2/6V8rHNo5\njldnD/rumbuOH/v/R0c/Mlr/6UointHmWT5JIqSVACGznEoZrMBoAMizT/nAxfZIeK/tk06s7ZXb\n99WN7m+pOTaxthR6nwffoGDD8x2EOiG2wjP2m8hWed25VgkZdtXxe20ZksUWoE5PE3o5gKuAv7og\n5WAm5LE9SC3Ra4cZmV/BGU1ghbvsMTkVrSyDdXrePSDjqo/CjtXiOMdJsUqR5EU+Qa5elQ5uRUJ9\ny6OSMfss06ryd5c9zIbzbyOm+Ci5Gt/ccgFWzMKM2ZiLs3x34hMHPb//tSZcXEtC8G1LZZ86pukX\nGAkV4XGww/aoZrbM5Iff7yG8s4idk4zprisQyAyoaankC/KBVqxRcrpRkiOvJsnmSpYm685tVZIH\nKuMyLQXLg2dUes1B4FXl+NCVjGE8G6HpkZ0UplaTmRoiX6/LRFkACnWCXIuBO7GZQGeGsqMdlKH9\nsP23e7wdv7ieztVNh90+5djdBOckfi9x0F/agnMO7Rx/2NRIBTM23tEsv4wi6QWXSlAQel2+PJWQ\ngqNJVrYLj15J3jIod4b45qUP03NylL2nhHEtue9Ih0KudTxakq9XKFZraCXJZlaKqZSqR6G4JZdS\njUuxZhQCoo3SqvukTAEuhHaB45FC8sHdCu8cfxu5FoHjcyjsjPDjt09HzSlYfkhNh1zey3BGTmKf\n/OzLshGKrBcQoyLeuBJepOQPgScE5vzgBh7ctZBJF2xn/QcT5EBsyIkuvE3Dv9lAH1EZfKYF7e0I\nSlZlV2cde7bXYdsKhmHSHBrBt1fHSRkM5oJ877nz+GC4mWCwhB20efXNubywcQapzVWU016sIR/O\nXj/N8RGW7gdT+rCVY7It4fUebln4WwC8wcPXV94YX3/YbZ3n/hyAZy760X9phnSqHuDVgQ5ufOHT\n3L34l2z/1Cicfb/e3XmObNucJf/z9Xv/HFv00YOf36RXr2Tn0jauuPTQJQJ/Tdtfbqa3L8a5P/vb\nsc/OvCy+fpWr75FBrv3JlkRFyAyXKR+ykpN9L6oXUXSH3EQL316NnT88GnoGsKa1ctfMGawom9wY\n2019c5JyWaeYN7BzGhIqF5oAACAASURBVLW1aVK9EXZ212I6CjsS1aOOAWM1pTOifWOMfO8nWjFU\nizVDjbImtBDj2eE57M7EWZNoRhMOZUul4VWVKQ+W6TlOro5sXTA8y2DPRQ6l9gpdZ/lIfWYxLJcQ\n8oBWxq9VcDwuCMmu6KjjRB+d5Rq2pWrxB0oEZieZ/IMK2bn1pKdHAfjHVy4E4I3Fd3DFGa8zfW4X\nlYqGbljEpyf40sJXiddkOHXBRipVDkcu3oZbUZg9ezfzpu9m5Tm3QKxCcHoKK27J+s7RId3xupgh\nF7PaJBzPYyQl2ZCes4h02vgHTULbNEY2VWGGHDKn5qlan2X3uSEi2+WYvC7ZhBmzpValz8HVXYQl\n6B4cl5MykpLs7cqWpZw/bS3xi/cS3e5QqoKqVSniaxTsCUVQXNyUByvppVTRcW2BJ1QZFTeX45ir\nukSrc6A7TG3vR1EcfOESIiAdcLesYpsqTsTCzHtQAya18QxXLFrKhqN/zcZKkWO+eh1Vq1Kkj5D3\nuBwRZJtVirWC4oQKwfd9Y21XFZewt0zIqFA2tTEY2O5cHHvWRGrel86bK1zCdTkq7SWKk2tQ0nlE\nUz3WsI+upS30ZUNsT9QwUvKxM1XN1uFadmfj9BXC5GyDwXJIyg8oNgPlEKmKj4LtwUGQMAPowkFT\nJGFRfzlMxvKSsbyMmH52Fat5L9XO9kQNDW9K6LgTC+EeM4f0ggb6F+kkZguSHSqWTyE1K4wwDGxb\nwUEBVcJqRVFFMywJhwa6zpJ9UE9pfPPEZ0FzOe2odVSiUJa3jsn/kZKZR1vgmgrZnI/hVAhNc3BS\nBlZ5VA+47MFvVGhrSBD1FrGzOl5NSjWkcn5ZpeMKDN0iWzAQQjLn+gwTj2bz6iw5l01+4wp+duUF\nlGM6mfbR+mFFBiVtw2XZ8mnMNwYptIVJV2SAav9FvxkS6GulqkGxdtQxyQuuP/dF5huD3LDodRYe\nsQtPXEY+92VVXVVmLy2vIDfJJt886ozERuucq0ezwk2jCgCj5UT7WGPHxrkPJQBcRcJCg4r02ja8\nO1n2mYRCvt3G8kmYrCipnFi/nW91nTe+rxhfDOt59yCewucKXiZEk4zMOPCkriLGILvnBXIoc9KU\nqiUx0f41oPvqyh1V3rfMZAdPWiLRHI9LoUmSRHoysmZdqcgs6T6WXVeVa7b9bd4RnSxp6MTRoRKF\nSuzAtuVOyI/97xkZ5b0ISVSM7ZHZzX21lj/eejJ63qUUUSj2BvEmoe5hH8KBXL2K9vNqMBUCfc5Y\nPef+cir7GHb3mT0KW5bIP0lmpJWkNEtltFbXPyy3ObokOPIlD2z/nIs3sDQzhRlPf4HPdJ3Mc72z\ncF3B5En9+PdoBH1l7h+WdbHlqv8DgXRXjOuMjiJZynFZhykscEdRNHpWUA6puD4Pdm0E8d4GIht0\nnJxOIW9gOwqWJf9sW2FkJIDjKJQqOmVTp2xKqadU3kehLKXcbFeQLXso25I113IUXFeQqXixRj+X\nbJ1M2Yv/2TBV9y6j0tFIKS7HjHJEUIm6lKoly3MprlCq82OHJJOudah6o/3sr6D69OfbjkvvOixp\n0eY1bWg5wexJS7njquX/JeRGubVV3Dax7Q/+Tt3lY//bXYwrkupbGWU2G+1L0au6SaxsxQrZXFf1\nNp/feTHNs/v519Xn4Na7iJYCk+5WGZoN9ctNtJzJ0Hw/mWkW/i4NR4NcMwT3QnIKtD9bYNfHvRgj\nAt+cFOmuCP7mHLX3BfB3j2u15tuCOJpgaL4io/01ZS654asocwAB/3TOoyTtIP/xg7NInl7Es8lH\nsVqlqXqEsmsy0yfrRuJrBYV6EDVl3JQHb2NeannGTWYuv+yAe5CZZhHeomG/VsVOqggCuQVFgh/s\nt4Apg29wfKII7lEAhUKDi+n40HpVthcjmPUuWlbBeT1OACjslRHs8L4de0ZXrD1y4fupa17kwXvO\nYM4z4/DhD5tjuKgpgefUYb7w2qcJA+UB/2E7xlVdZwLwkcve4ZlfH0t+gk2gU8VclOXudCMXh3by\nvb4zOSG67bDn/EuZdlySqL/Iq0WV12c8xb3N9dx45+f2u7jxfzt+cT3GzBHWLXqIWUz9q7ftv6Mt\nXPUJVs5/mBnMOuD7nafcx62pdh7pnk+h3URPauiZ/xpI0D6oMIB/+4E1FcpqmYm88OI3AXCV/SZj\nAdiCUF2WbMqPpyXPjluO5kr/b3nGO5NS0oMnDbgKdiaDeHct1gnz+PbREQbOmwTnJljYsofly6Zh\nDCtUVtcwdVWO1BFBLFGLOVkujJymElv7a1HXBXlp5SIpZTArz6K2Lr7b9Cy3Dx/PupEm+rIBPJpF\n39ZafP0K3TX1dHx/F/mFIUam+Kle59BzkoKoLeF/349bVhCWQnQrRHYV0dpbgTVYrsreXFTqjGou\nekbWG7kqZOY38Nunmqha75A9xaXj53l6To5QtckktKYXgOk39XHOTR/lMy+9yc5CDaatEg4WMd+u\nQu/yc2/b2Tg6LK9U076mzPa1HQQjgpEnWtFKNqfN+DruDIsXT7qXWlUG4cquiSF0vjEwl8dfXozl\nFTT9vY1ZU0TNm2y/NIiwBY3vqBSOLGAXNdSURvjlAMNzwDcI0R0ywJUuemE0cLdPq9QJ2JCRY5YV\n89HyfJJtV0Z54PMfY89pHoLTU5SmK9gdedLbotS8lyI9KUbrOzZ7PuYgDJvWeIrt3S04Ax4qcYup\nk/r41oRn+ZtNn2C4N0J9S5Id65txwhYzm3pZv2wyF52+lGe7ZjCtepDjYjt4Lz2Bkq1xTGwXX41L\nIsEvXfUFDN2i78Q40Z0m/cfHiW+pYPlVUgttKCnkFhTpCsZpezpJtuClPprBdhRi/iKmreK4Al2x\n6To1QO0qi7bHwblxCPveOvJHgSedxwn7cXWVKV94j56/O4bcnjB6WmGk2kYELALrvSQrMuD6UmMz\n5ZYKvnCJukiWrk0NeAcVunpdKmFBscHFbS3i95eZXjPA1uFa8kUPkWCJuK/AUD5Aqi+MUlRp3Jwm\nO6uW9EQVtQilGjDDDqKhRCHjwfZqNL9eonzSbBxL6pIKry1LOUIW5ohX6rsiyfpO+t01qCXBmlwr\n3j0edrTWUK6y0TMKfSfECXdbRDaPUI7GsHyCclxHOSJLqT+Amlfw7fTS+tE+tr/TzjFnbeTxDxag\nD2uEjxhh4K0mqYHrgDIxTzHlo+K3cEY8RFtGSPVGWDini1+2vQXonHXmJUwMgeNRyDar2D5IHxEl\nX69QqbJQKgoTZ/VwW+JY+paoGNkgTZE0uVFoe6la8lHoo8nC9V+5g0XfvB5vEt5Pt3Hb8pP5zrFP\nkql4aYynGWgNEtwjxyhvwsWbhPRkmD1zNzuTVUSOLHBe0xqe6ZtNcjCO9paPUq1DsUmyWWtZVcod\nlWRmUZMlwji6rEOtObUHTXG4b8pDfD8xj8d+eCq+qGB4oY2elkzajkfWXCombMrUc2Pzy/w6WwXI\nkqX9HV3FlNk7ywfepMtXHr6Sy899ndQ0P0OdzWP6o8JxMeJFJj90HV876xneWfRzTtGvJNUTIbZu\nfLVjJOVvtSJkjity8fRVbMg0svc3EyjFBVZbiblHdXJT87O8WWwhYQd5bmAWZVtjd38VkaXeMVjz\nyOIy0WieZCnAuvcmQ1ORqYv62LR0otQcFWCkXIJv7sdvMTpl+VIOpl+SX9qGwEhJHc+KpZJZBK7m\n4G/K4W6PYHmljnJhgkWxX6N9ci+9w41oBUF8q3yv87UK/iGHYpUcixNHWVS9p+HJuxRqFNKTIbwL\nPLlRP8qVbRi7z4eR9UnMUPEXwtT4ciglhfd2t7OgbQ8p1U/iNy0UjyuhWirPr54FTcvxpATl+P9y\nh9QBHAVHcREKCEXy1OTrdGrWWfSFdIQlM+7CBSvqRc1UUDw69XesIHraPPac5aEIaLqN6yi4SQ96\nVkHJCTyZcU4ZRBBfSAZQSqYk3nI8sGOahfBb6IaFYUjt40pFwy5p6IM64e1Q+8w2KifNp1DroVil\nSKh2vYtVayJUB9dWKDToeDI6seEiurDHSJQOZ//tMqN/yLTRuqpbHv/oX/1c/lkpfnXZTwC4/Ymz\n/9P7KyYE+2SHFvZ4xO+Fac/RMLcfT1WJj6y8jpKl88bMJ9l2wgNY1SYBf5ldF+g0vjnCkf/+Ps0/\n3EmhUWYKHA9kJsKsE7eTWlImPCNB1zk+PCkFyyvIFwzcgM15E9dR942dbL0qRNe5URJzI/ScoPBP\n3/8FytQcVrWJ0e0hX69i+10+d/xreITN43vnUWgQhN71YQVcprYO0L2hnh8lZnLOqNC2YkNwr0sk\nnOeImXswdAscgd7jQSwfJwjKzKwQ3iLdOlcdh+i6GQ/OCSN/8P6Jtjy+XhXb51Ksc/H3C7xDBzsJ\npZqDB6i1f3sHv3zgDIr1v3/wMqPy+VReqR4n+7AP74jsYyX8zbuLAQh0ysmonPbyWO98IoqPdzsn\ncnWkn/VfvYPC3ENQDP4Rph+fGLsuc9HB0CGAB+fcx9kNG/jCL6UDeuu9Fxz2eJ4RwX1zHviT2vK/\nxQrvVh92242x3Syd/Tj+qgJNC3rHspCFtoMJyx767M2ce9G7hzyOd/Hwf7pd+4iLCq3WGKzrUDZ5\nat/Y/67uEmzIkRvxS9KTioarudzX0Ya6Ikzj1CGOuXwVNWstuv/hGNQjpqKUbcxpTVT/bBkfLHiY\nB9vfwI5YY/VKyZlBzKAg2GuiZwSu6mJs9uF7J4hWhHCng56Dpgc8LN08mVOf+BrP7phJXzqMptoU\nnqnnmIVbmHBGJ/XLoXJEM8KRUL1ilUJwt0LoHT/ZmRWqm9JoGYWhox1yLV5cn3TEd+fitIcTqEWZ\ngXF0l2KjRanBYni2Ss1qh+HZCsEdGjsuDVGsddn9iYPv2TfeuYj7Wt8m5CkR8xcpziuQbVawDYhv\nsYnutOk6V6d8ZoZyzCXVoZOv91CzukBgt8bpP/g6R9x5A0d//TqmPf151pTLxLU8t15wH+iSoEEf\nzOHoKlVrBd6EoH+ximsLdL+JU1shtrVI8ewM5RgoZfk+BYwKoqRIfdO8CkETYci60bRTpFBnkJ8Y\npvlVh76jDVpfqpDbGkMtQcOvjbFSCcfrsuccUDMqgXVedqxqwQnaxDfC1Ue/TenWRm742Q2k11fh\nGdDIvlmHWhD4t3vY/OoUrJjFV6uXsW7RQ1xcu5KdpRqWL53OR2vWjDmic75/A1ZAxduXI7bNpBJS\nqX8rycBCD33HKJwzez0o0FKXGsvYaJpNyFOWWpZlA3OUeblgevjaJx/H352lHFNJvdLA0DxB7Qoo\n1XgR/QmUfBmtvo7mWz4g0K3iTQria1SMXV4cHcpxRhdiDrWv6/ifD1H5eQOxTQIjDaHuCqEem5pV\nLrGXfFi2wvu728gXDK6duZTkjjizYz2UKjqiojD5xuWU6wKoFQelIgPG3mEk0ZA7DsHsOdGLb1cS\nRXWp0TK4RU3Cb/0VhC0QmsPy0r55XsIzV988Fz0D3UMxXN0lPDdBuQrKITlf1C5LwYkp4ptc/M+H\nMIYlQZUx4rJxVxPehODJNxcR3KHjGC7KyzHKU4toRYG/X2CVdHxdOm8cdxuu32JiLIG/Sxt1ROGm\n5CT5nugKeqKAL+FImGXOoVTj0jhxmJMXryfiKfL9ujWSuVq4mI465hDtn5XMOXLutw1Zb7nj7mmo\nfou30x38Y/szLKnZRanOJjF3NDOqQOr0IoEeWLe+HdOUZFZ+pUJrMIX/fT9aEfx7FXx7VTzDKk5D\nCTPokp9gkT5Gns/RZJax9czdlCyNl6c/Q7MW5LEfngpI1JlaUPCMCMygiyftUgmBd2KW3Q9N5oGh\nJVwWSoxdz0GlVmKc0TbYDW8PTabGl+Pjl79xwM/UNSGCXQo/++nHiKl+Vh35W6IbNHJt+zHt7qdF\nqm/1E1TLbFzdTnqKizfpEnnXy3u727l062WsK7TwXnoCN014jGtb3sYd8ZBtl/uOTHPRDQufx6Rg\n6oSmpgi/7WPbK5Mw602KHWXKcYd844GXYo8id0tRZUyjUy1LNQat5HL51BVMn9clHYeMl9hHejCu\n6Cd+5CBt7UMopsC8q57a1Q7h4wcohxV6jxekZtukJ6hMv2Iz73/3ThSfRb5F0P7FrfiHHOpWugc5\nnMWq0ZKuKSpNf7Od3vMrJGaMO+57T3e56MI3eXH6szzY/gY7L7mLaLjAe+sns21PHb6EQ3CtF7/H\nZPqUHvlO/YVSZ41H9v3hH/25NqHwp+0nAE2yoTumimMqklxOlX9aTiISFVOQbVUYmu2j1OhHtDbh\nWhaBDX1MeqSCsteLu1PqTLs+R2raeiXR1j7JpkKt9BnUsgwiRHeZ1H5QpO0Zl/rfefC/HcRcFaOy\nO4iTMvD06dSscqm6dxlufQ2OLhnvs5NtCvWSvEsormQB1uQ5S1UCHCjaHsq/D6fP/wBn1Go7WDLE\njMoR5Uu9C/+q5y6sj3HxK4fPqn3YvnPRbw747B+2qAQUwt0WnqxkGJvwpIR7tIcTPHLU3cR/EyD3\nSAPXdi/hpuQk3j31VtJdEcLbVHpOifLqz4/Gp5pEtoHRr1NqsKjU2KxdNoWqeI5UV4wJT+U59py1\nAIRf8/PD4x7msuh77EhWo9WUuP6Tz2GkHVyPy919J1Ae9FP/soZvQFDzfppKzGZ1poVvvn4R3T1V\n3H7tXTLyNiJYWNWF63G5Z/WSseuqhCSTWqFkMJALMTIUxOOvYPllPao1mvQMbxivaxA2dD4xiZM+\nvYLQdhWWRse2xc7uPeT9NJNetCIyCj4gxo6zr7YzM82iEuUgB9V3+iD3Z2ql1la/3JaZOj5alvaD\ne+xzloExgo/fZ3/TNx+QTmjT2V3k22z+7trfsu3su3hx+rPMXvFJYuHxgehHRz3yB4/5YSvWuVw5\naTnbP30nx128Cn1FiOMuXnXAb371+Vv4yLM3cm5wPaW2CrNuPvR7us+hLTQ5LDA8XNu95JC/+79s\n0+++gRm338Cndp+IZans7q7B1yMnTn+XfpCD+cm7v8rTTxzDxy46mBAq2ROl5dQuHI0xwokPo1O+\n/OkngfHtZrV8N/17NLT8wYGQR397AgC71o6XL7iqSz7jxa0ouHkNd8hAWAKtqZHf3PAjtNuq2Jqu\nZcY/rwMXdvyjQanWQO8ZQY3FmPKgRJS8dtqtlCaXKDS55FrkxJGeoNP4ToHYJsF/XHML2QkO3qRL\ntlXBDECuQaPuNY0JT1awevwU94SYFhukVA3v7W6n86UJBB9ejisE5aiKf8ghfWyJx7/yA4yMA6Yg\n0RkjMitBZKNkDhdZ2Wc8ik13LiaRG36p/elJqKg5hVJLhcEFCuedu4z4VotFR2+lbu4A/kiR7lsD\nlCbWYNfIYJh/u4dJr15JzjTYtbMOO6uTa3MotlfItKoMz1GZ/JsC+ZQPs8aSGoAumEGNqk0WdStz\n1Ky2CO0p0/6Uy9/vPp+7VpzAk4kFTL8pTXBDP/lJMfaeEkD/5ADzP7aBJy65Gd9GH9EX/TTXpTD+\ndQBza5jipDI7Lh9Fa7S+ByqYMRvHcHDzGormImIVfpqcS/9Hy+QaVAaP1KjMKDD4xSKO7tJ6xm76\njlUpVcHQohgtL9pMuzPDhCfLhPY6+AYUPAMa6SnwwPMnsecjLpPP3kloNzQv7sFIufj7BGoF6pdX\n8AxqfPqcq5n8+pXcc+HZPLVyPnpOcHl4mJ1mjgXfuZ7G15OUoiqFtjB7T9ToO92iXBsgvNsh0CP4\nUu1rTH7IpH9ZI+EpkmyoWPSQrRgYqkVjMEOm4EVTHEqWxmP988lODpOaJmh6PUNkO/SdatP1cZe+\nj08GxwVVRQkGaH55hMx0c0wTuxJ2cXSZ6RGOJOerRARD8yU5nyftkm314O8rY4xYhHeXafmeIPyO\nl/bbBXd+cAKB9jSPfnAk1Q/6mf5DOeeYQZVCjUa+yaXvTMnF4BkRiL1etIxK1UaHcnsZJ+LHSXgo\nObokjfLblNMSKhoIlrh6tayrHDzSQFk0QumSESpRl6kNgwTq8pRMjVKDSa5ZUGyRiIfCtijZFoVc\n2yg6z4Jgr0VNXZr6c/egWAJ7UYbjlmwcg7+aYQet4FLzmoe2p5Mc98qNTLslz5o9LXhGY5aXdp7E\n774m5YIsv8ruC+KYAfnsh2drhHfAQ0f8koFSiLXLpgBQN3sAQ5N6w/vMSMpzZibB7MdkzXM5Lrjw\n4jdRLh5C2+6naOv8w87zGTH9+BtzYwF34UB1LEtqgQkCygkfQ6kQP3zqY5wU3cxlV77M8JEOvpOG\n8B4zTGQHzGjtQ23N4+/S0HfJRYRiyXb0Z0Msm/MYAKdt/shYG4vVEkHhG5RkYI4OgV6XxxfcjaML\nivb4AtgZX46MmYTZyxpXgOtb32Dbgx1M9g7w3b+5DzMkKNZKfXczCMVaGLbl+uNnX/sxbmsRV5Wl\nUKm542sM36BLbznKP5/5KNSWyRxXJNsOVland0UjTzx5LKufmMmla65iR7lOkpiNDv1aXYFrZizl\n65NeYmpsiLl1Pdz69Tsp1doY3R4QLp6UMkZ4NzYnaKNZ6RFJEqTYckxTTZfEdJW71xzL/ZMeRcsp\nND2t0bW5HvuuOvJlD5nHG6jaaGP6FVKfynFS/XaG58n1XOMbCkbK5fjYNr4xMJfIUi9myOGD16aN\nPiPJxt23WKHnZDj6H1bwnW/cR//RCnd87g7a/Em8/grF0brixAyVqVN6OSW0kYWrPkHHvdezaPVF\nVPklmy4lOWGWql0GemI8OkXOl/Yhnt9/1rZdcSe97zf8+Qf6Q9bp/8O/OYQJdVwpA+HimpLos1Ql\nKEVUyRBfkk6pFZDJKVcRVBrlvGd170Xf1oNaFth+qTeLJQPL5XqTYq1DqUrKQ+pZl9BeGyNjoxcc\nCaW2HITlopUcIp0m5SpHnjOrUL/cJvjwcgAyR0RJTPeQnii1ta0aE7vKlAE64aL1ynFEWIAq0BSb\n8ofZyT587a7r/uEV+F/Jpvz7zYfdtvWqO/8oCO5/XPZjLnnky2Oiyn9JczzQPK+X12c89SfBgcO7\npOMWGHDQSg6J6RpNbxV46ZH7mf8v19N+6Q52PDWFbIfJUTN2suKDKXzllBe47amzUSuC4B6JwY9u\nytB1bhQ9D42vj7D12hBHz93GnPBejvLv5PpfXYc1tUDwHT/lOFQf10fgGz6ufPg5/u6FS6hfKhie\nJ0Xehc/i/uN+wZd/dAOlaojskFCxkamC6z7+PGuzLby9axJij49wJySPrrB46i5W9TTTdJeHrqsd\nQkt9eHIugyea+CNFSgUP50zfwN5ClL58mO9NfYIv33bd2H2wDQnFrYRh5Wdv5v8NL+S3LxyLv398\nMK39SDeDz7QccP8yM0zCG8cnk8ysCuH1hx6RinWyBua8E1bw+Lp5BDcbkiDk9+vsHtIy0yyCOw7f\ncdZ/9Y4DnD8rANGjBxhMhNl58n0A3J1uZFl6Ep+qefdA6Ox+1nR2Fz2/k/Dv4rwiusfC7AqgthTw\nrAwecp/wqf1U+Qrc0PQ6Z/rLzFx+GRuO/jUAE56/huDmQ9+ffTWs+9pdrP8DbFz/w81IHjrOVmyw\n8fWNe4e216Vca/PaWTfz+V2f4Hcdv6Pj7cupZAz8nX88Ydq8czex+tkjDvjO8XDAuFRoteiY2sO2\n9S1Sx9JrYWz44yatu6+5nc/e84XxY00wwRYoRQVhyTqkwF6Xtqu2s2rVZPScILbZJbS7xOACP96U\nS2RHgcxEH96UjVJ2SHUYrP6WfJfViqx/KtTKLFO6w6ZqlSSbyLSpGCk5FuWaFLzDLsPHmdS8pWN5\nJfnF3lMUHL/NEd/tw+reC8DQ9Ysp1glimx3eveUuZt1yA7nJJmrIJPyWj1CPTWDzEG7Ay5brQ3R+\n9G4u7TyJgFbh7Rfm4Bguvj4xxkYubChUq6ROK0ottqSH6bcOkFhcT2xjhuH5EWpfG42i+6WjEL9n\nkFW/OwJ/nysXlSOypr7tuTQ7Lg0RXy/G9O+K1QrepIP26UF69lSh5FREXRljgw9vwqXu9QFcnwcl\nU6DSVkVympf08SV8/jLrj/oPHsuF+fbPPyXJQ0ZJ4upWVkhP1Fn1j3dyd7qRm9efQmXQL7drUm+0\nekKSkawPr9dk3aKHOP3Cz1CqMdh7vo3W6yGwV1CJSKfM8ktiEbXiEujMsP0zUYz2LMp7EXKTTVqf\nFuw9WeGfz36Uf37tAkTAorUhSep3jRTrJNlcxz1ptv+dF98aP7l2C6O6yK8X3ssCw8O8lZcQ+2kQ\noz9HYn6MqlXSydx6bYTYBikdlm2VGWt/v6Dhwt1sWd9Cxz1p8hPC7L3A4oi2vtG6I0Gq4JPyJCWD\nckHHt8WLMSLlI1wdItsdyhEF/5BNdHkPbtCHvVnWtStzprPzmzrWgJ/4ekHiSJvgTk1mCPLSkfCm\npVxEfFkviWMbpWyE6ZKYoSFsMEOyFMMFmub3Yd5TT/DRleDYaO2tuLk8qdOmMHgUKCWB7ZdBW2+/\nhr/PxZNxCfRXKNR6aP7ids6uXs933v3oGE8CwmVC0zA1vhzX1b/BS5mZPP3bYynPLmAnDURFUDNt\nmPwbtZTjLoFugX/QJrxVshJvuyqKf6/kh8hNsqlbKohc0013Kkp9JEvqsSaKJ+fwvhnC9siMY/NL\nSbZ+LoKWVdDyst+/+d0f41c8zLjtBupXlMcIpQCyUyIkZqkIGxzdHau7FO44MmjaHRl6/kVQE8yT\nfKJZZtRGCXXyp+SwLZXtJ97Pom9ez/BJFYLRAlFfCccVBD1ltm5rItaYJr8ujndIjOlouhclSG2u\nwjcgyM8u8a2Fv+MXXcfQPxzBs8NHYK+LceEA5UfqyLcIfAMShpxaUkbtNbAbylS/ZvC7f/0hZ6+7\ngux7NXiyktho39zuKpCeyiiaQ9ZVqs0Fbpr/KENWmO+tPpP4i+NlQZZ/lPPCOXDp+6nPv0ijnuLm\nHadSeq0GrTCqf4I4wQAAIABJREFUwa5J2LAZFFQiLkpHju/NfYLzAjnmf1euC1OLKni7DHwD8pip\nOTbBXRq5KSZXLFpKzjZ4bMM8dp36C6Y8eD2hTnnOUrWgOLF8ACHR8despNVIMtno56OBAn1WjhN/\n9XWMhCSx3F8WxfYKStUuW6+8k477rsdICIK9Do4ms8b7WyWoMOW6zbz39nRA9osrT36Dbfla3nl/\nOlp1Cc+aAN6EfEeW//PtzPjVF6he7WJdniC5uYrQLgUrIOe1cPcojLdOao3aPvjoxe/w6JZ51D7m\nZeBIBavW5II5q1jxb+OJo4GFCuGdkG0DY9YIub1hZs/azY5ENbEHg9i6IF+vEO62KUUUVv6b5MCY\nc9MNFA+BgvtjbcJR3UwKD/NefyvZ9VV/8nF+n227QrZ14uOfQ8v853N9dksJ15b7uaaCKClEtqjg\nQmS3yZ4zVNSSJLPz9wn8AzaerINWtFDeHOfRSX/qaBIzJcGoWpSEVq4qCedCXS6K7eJN2ujpCkrJ\nwvHJ9W7fsQFKVS6eEXkO2yvXSK0vlQ44vnrEVAYXV1GOCYrzivgDMmmYS/sgpyPKgppV4E3Y9Jyg\nceyJG/AoFj8/8peHvfb/tpnRP9b5u/TXX+b+C3/6V2mDXVdmT3/8T65LVSwI9DsHQEOGZ/uY+tbl\nFGsFm1+bgqPBA6f+nLOr1hHeobK9WItvUNZN2Aakpgn6l0QJ7XEp1rpsvdGHb69kufrFpsW0aBnK\nVTbbT7yfkdkWxSaL5uAI2z8d5jf9i3A9UqPUUaHqA5UTOrbz+bWXypfMcLE9gky7gjOlwGvD03hn\n1ySUPT7s+gqpxRU8ez1cXf8WbVUp9pzhwbPFJ7VKgwJPoIJlqTh5nTWJZo6N78R1xQGOKIxrcnky\nknjgty+NO6LlUd6ODzuilSVZwht1zCDk2uQN/P5xMst4KFY134Bg8dFb2JhuILjJQKn8aY4ogLf3\n90dwJrx4tWzHqE+j5SH3Wh3+NT4Wr/04AI/0LkATDqf4bP7fdb845HEuaJCdOz+zjOGtUClp+PoV\ntDWHdkRvuu5els5+nPWbW9ldqebm5ER+OHtc8kPoh3Yw51ywifsztYfNnv5fMrWqfODnksDbq3Hu\nz/6WgikXBGdN3sTECQOHPYYz72DY9LvvS0mn/YN/Hw6Q+fdodL/Shm9AQRvU8Xr/uBf0hPNX8aWN\nlxzwnSiMynqokk1bz0ooVvofWpgwo5dK3CYxU9B5vnTKgj0V+pYEiK0bIbCuD+PdzTS82MeEZ64l\n0OcQ6rbJtoM5o4Dlg9rlguJHMhSrJNW/J+dSikvt4+GjbERWIznLJdhvk2nVqJqSYPKvLMzmKoRh\noE1sp/7hrcS2OAycW+b+TC3Vp/cQrssRedOH4xE4usAN+shNDOPt07g11U7cU6CvGJZan5ZcOJbD\nCkbKRMvb5FoFns1+nILGbWc/QOzBEYbPKTG0QDqi+5xQUSghCiV23j4N5mZIHl+m2FEmckEvviGX\ngaMiRLYJat7qoxIWRNeP0Ph8H/4Bk5GCj/qWJNEtAmfYwL9kGG/KwQ14UTKjGdyuBPUv9dLxrQS5\nER+f2n0i72Ynk5tewTfk4huWsCX/1kHiW8o8lgvTpCdpqRqRAQRbwq2EKUimA1zYsYZiwWDiy1eh\n5sp0/P1GREpHKwpGZlqUah1G5phYR8l3z1Xk+Nmw1KWY9WLrIEyFnhNUrj71df519TksmLULZdhD\nc3AExYTaDxzqlgkcr6T7tw0whjScHUEWGB7eKEqSCj1TodAaJr4hy8iMKMWmEC0vyXrMoeNNtAJE\nt8HITIvtfbVjGZlUh4brCCxHoWjq5CuyP+mqg6o6VL9uENtmU//KAGbIpdRaYeAEG9srZS6GTmkZ\nc0QBRMnEzBq4hkMlIgju1CjWO1TCLqEeW+rFpiyK1QpWbYTg3gr+viJGokx+goVigRlycDTJQDzy\nTCP+vjI4chFt7d5DYaGswVMLAru+glpUiGzSCOyV86bpF1TCGoU6ZZQ92oayZEB2K6PkYcKlYHm4\netlnePXmJZghF6ukUf+OQGsqMJQMkZtWgbYC8S1lLN/4BDbl13msANSsKeN6HAo1Cl7VwtweJls2\nEDaUEj6sU0ZQSzIQAWAMqBgJgbBg5b/diV/x8Lm9i6lZZ6KPlLBDo7SsQmCMWFRtsClVO1gBFyMl\nYeW210X4LYQ5CtsrGCTzfoTjjsucCUmUFIvkWfDBJ+R3pkLAqJCv6MyI99GViDNnehdBo4K/VxxQ\nGiMeqZLENUMuHq/JFKOfhkAGY4t0RJPHlekfjmCGBa6QhIu5VtD2ysyKf5OXh/7lJt4rVzHUFyHU\n5WIk3QPmduFAdIvUQDXDLjgCy1Rp15N8kGs/AKk0vs/BTs2DPz2DtzIdlE2N6Ol9ZCa5aAV3THNV\nz8lFejnv4dZOCRMemelgBgWK5lBqHh/whd8i3+TwtSUv8JvHT+SV7g70boMVZRNPSuAKgW0IKhFn\nzBEtxQWpI02ee2UhP11zAj/cdQb/PtzBLsvPNR97ifDp/Qfpc6ol6YiuKZepNJjYhiQW+rAjCjB4\nnMW2VA317zn4BgWu7vLMTSdxVe07eFIKdPrxJl0S820yJxaZ+tT11K2QpEW5ZTWoLQWC/TZaQQYz\nhuYqfOsH9yPOTtDwsS6WXLCahBmg7hEvxSoFu6HMZfPfO8ARdVQIdAuy7eDJCL7Q8SYNk4cYLgYo\ndoVIHKEy+LHS2JiQnSD3m/j458ZqeP9U63yvhVdenscHCx7+s47z+2zq/dJX2HXBz/6k/VXNQd2P\nxRxk0C3UY2H5FKJbhKzPTQvMACAE2WaN4Zm+A/YJ7yoS3wj+PgW1JEa1gwXxLRKh6Rs0cRXIt/go\nNfgPYIX2DgtcTfovroCqde4BjigArkuks4J/wMWxBLpqowoXj8/E9dljnqVesLADDlnTOAClcMhr\n//a3v/3tP+mu/QXstreXHfL7juM6effU33D76oNhuFZ7CWVE4/jT1tG1qw5nYpHzmlfz1PpFv/dc\n04/bxfCe2GG3f+WCp1m+eVwjtFJr4enzoKTHV5frrvwJd6456lC7M+fEbQzsPjDaEttmgRCkJ6rk\nmhVq1lr4Byxe/uIdzJu1np66IF0jcUo1Gg/9+lR8wy6Pn/8UP0jO5ezTPmDnlmaKdS6vXXMTr7Y3\nkVsfwz81g1lrUXFV8jkvl7atZIO3jovju7ix4wNW+QLMD3fT6YlQsDzk+4MUZ5S5+/Rf8MzWI8m+\nWINno0H4ol5GNB11do72I/rpH4ry3lEPc03rCt6PRBlYW4evR6NhWYVPn/8mdz16Nud9ZBmdK1sw\nw4JinYu+x6AUBGHYpNMBNhXqSO2NYCQOH+PYOtGlZ2kzIOs673pn4SGFr0vo3HL5L3imcx6KJdh0\nw500ayN4Zw7x7rZpqGVo+thukr1R1AqYx2ZIlvxkX2w4rARPZrqJMXwwo9fjX/kBP08eRbnRwhhU\nqURctOKh60bXf/UO7n16MZdf8SLv5trwJEdrRqtcmJ1j9cLf0HHv9Rwzaytt3iTH+pN8/LbP0njW\nHrI7Igcca8VqCXPxDGqIvV6mLupmcDDKpy98jQ1rJx503tNevpIf75zPs6f9hDY9yb9sPZvqYJEX\nck3c3jeHd498jBsWr+TOZQf2m1fOeoTzX/0knv2u3Qr+7yYCONzzO3XJOhbN2cb6re2yBsWFr136\nOJlmBctR+e7zp5CPKgy+3kR5ZgFtUOfea27j6VXj/V70G2PbyjGXRy6/hafeXMJ1lz3HB2slOZQ7\njroC4F+ueJDX18yWiyUEt19yDxc0rEKbXKYn5uMrJz7Hq33TD4LpVqIuLx77JD95/IQDvldssAxQ\nKgqKKWh4t4wVVPG/ugF3eysjU3XsqIWeVgn0QiWiYnsFw0d68ZYCaLqPkbnVTDmrk/6+avJn5Qis\nNjBdHbUkKNYL3D4vuQkO9cf28YNP/JLHth9FYUGRiQ+4ZE8s0/IwDBzpoRJ18b/hI/jOdtSSBcUi\n9tAwzrypgIJ/t86E47p5efsRqJpDtlZgqSrpyS7x+9bQ//E2Nl9/B4oyxKsj0wnqZXYnq1DKCsIV\nRDpttKKDWrYp1nmwvaAUFN5+dT6dI9U4tkqxFjIXKBidQTzDeVyPjtkQJT3JQ/3cQVKZAFq/Qa47\nRHSXQ82bvTjhIJ6hAqE9ZXpPryK8PU/vKVG07V7SpQCWH3yDCmz2E91RQhtKH/Kdim/S6dvRyOwT\ntvPLmU8j5idY2tXBlFN2kTjDy7CI4rZbTPX1s7HQRG85CH4bvA6UVbzxIl7Dpns4TiyeI1eK49zh\nAcWHqwoi2wWNbxVQC15yPp2Gt/MMf6mEOxClHFaIbpRQT6WhSMPzCm9oE1B7PQztqsYzIkiurOb6\nLz7F78RUCnUCregh0yLQ2/L41nlY8cUfM+Otq3j/pkUY6w2MwQJ6uoywHbxDJfRshVybDCD49ygE\n+xySMwRfPvMF9lhx1IDFCVdsIn9TiOS0AL6qEkJA0FOhbOsk0wHKWQNHaNS/Nozr0an6IEepKkx8\nvaD21+vw5RR8y3diLZlF5vh2Anvy4DUId3sJdSrkmyTpnpEUqBWBrQuMtEuxWqMcFwye6yByXrJt\nBoNH6QR3qzIYvBeqT+2n9jaFyOs7Ubr6cK1xOKW2s4/g6j7ClSq0pIGzJEM2oGJ5FRyPrAeM7jAZ\nONMmUfHTER9iZeck9GgZVKirydAWSrK+rxEr4aU4o8zku7OEd+pUwiqhdRq1b9pENwn0HoOek1XU\nokIl7sXfV2LXRRG0kmDoKIGvW0Nx4MIlyxi4pYUkERxdoGUVbj/rftbeNJHd5/kQ+MjOr1CJO1iG\nYGtU4wtvnYV5dx3+7qwkkREScgeAqpJt9VC30iK2xaL/WNDTCtULBwj4yzR/36T72ypmTwAlbOIM\neSnUg6sJivVQ1T7CYF+Uz8xYTnGGhflkDe6GAIm4h4G3mgis8ZBdHWPQDXLxxW+ypliP7eoYIzB0\njEV0o0L2jDy+d0K8GJrIZ1qXsea5IxheaBOryyJWh5l07k4qr8VIzHGpmzPIiGMQaM3y7TMe47b+\nk7jnrZOpXqEhXBg+0sHfOz5OJua5WH6FyA5wdIEdcPHv8PCdY1fzk565lB6qP6C/Hqp0rRwTaCVY\nb9cSq87R1x/D6NMlG/BEC9+gIms584LALpVCm81Vjau5o28u+qQ8bA3iouBNyHZ592roWYW31RYC\nmzWKOT+emWmG1QgDy+txvILi0Tm82wxUU0LOy1UOrt/B361R8Sjk94R4f7CVz3W8TUAtMuDGsKeU\nyW+KkDm2hLFHg7OSfK5xI/Waxi9HplBO+TBGpEa96R93SvN1Cram8NUlz/OT899iTatGMF7kvo/f\nw1azGrXFZObULj57ygs8t3U+wm8jPA65uIY3Icg3gl3U0fIKrZ/cRbRjhJnTu3CFwqonZ5Opgx3D\nNUyOJ+he24irQtVqha43ZZKhElTINSrMuXYDV5/0MpfMWco5C1diKCa1/jw/b3+XhvbtbI3F4bk4\nKJKJ+arLX+TL372E1tP2kOiLHRJqfcBYPHeIYn/gsNu3XXHnmMP4l7Smhb18cPqD3LZm4djf/ufc\n//PvM7WmjKbbUuLQEShFlchOV2rP5m1UUyJ5hAOhXhkocBWBakKgaMDEZpTqOFbYS75BRc8Bqgw+\nOZqQjM8CMu06hQaVUlxQjqiUavT/j7zzjpKrvLL974a6lWPnrFbOWUIghAQIAcZgk8EGG3DAJHuM\nx+ZNHnsc3mCMjQ0SJhlsbILJAhElIRGUc2h1t9StVudQoStX3fT++KSWZETwzHtredbba2mp0g19\nw3e/c84+e5MYr6ElReLZ22vj7zIofXY/2nahISCpKuqoeqSqcooVfmTdohhUhSaB7iGfduEMFzCK\nKnJAx7dfJTpNQ8nK1IwfoMKZ4oKqKz/2b/+brIw2v9c48toec3JWSz3swhydY/3b09HrC7QueZwD\nheq/XMVH0PTe6E/8/kRBpLPO20375x9m5fX3HN+nm1Yw/XffHnn9l3h29OqPfK57hElwuNnAdNkM\nzlBxDuUIKx7q1CRtiRKUgsTymo1kKy0+9711zNl2FWOeNnll4xwcS4YgVOSMVXdyaLCU2rcSJNtC\naB/4WVBxGKnfycV/+PsRefNeI0373ZOQJYv4jjKWVjWz8LT9VJUOsz9fizo/TiEgoaUsBtbWEHzf\nxaKaNg6ua+Rb89Yx6be38pv4FDrum4AxKo+lgpI3GePw0fBagv+s2CkmBFEbNSOhZoX3qxTVqKyK\nUx1IMm/6IVKzTu7z1U8o9K39w/GkwYy7bx2pmv4lvJ0y3956Nd5uCU+vGODP3309bw1N5vNf3ECq\n0aJ93SgcKdEPGvZlyeY1ChH7Iz16AJOuPECg6dSZmct++QMCLeoIBfhEZd+/xLR7b2XPncv5vG8P\nP1siqpKXXb+OZ6/5FSFflnFP3kKx3KDGGSdraTS+8XUAel6vZ9wlrZ9o+dK+cjRLlu3kqd+fi+WA\n9HiR/vWeM8CYNTciZRXKKoZZlZ7Kz3ouZNucZ3lwwxJ+XL4Hw1ZofFn0I+fLjweaV1z/LtPuvZX2\nzz3ysdv9/wWFiMWal+bwb2X7kQ1RuZQs+Fqwj32rJvD5yj04khK98QDZBh2pS2Qbj1mrnAhrSGTu\ntYTEtQ/dieGxuffDZSPfn2gboM6P88P9F5EbX8CRFIIBN6//Kt985HZ+XL6HjTOf4yuBIQKNCeqW\ndpy0HS0h8c8DJ6v/gvD41YZUQdkpSMi6mHgevms2HbdaeDtlvK0aJXtsBhcXyZdIhFsN4YvolZGH\nM+TDMs2vjyNfZiPLNul6Qckp2a/j7rcphiwqPpS4omY7ryZn4oxBbWmC8T/fj+cDH0fO16jYpjP2\n4S4i26JIbjdWSQDjtEnoy+YSn+hhaLqDdJXMK3edS/3TCptOe5TpjV00rCpgazb26TNwZEG3Tbbk\nRjPV34NTNnGW5DAClqBYKkJ1NFfpQs3YhA9Y2CoUgiJrO/ZPeRpf1hn9j2lk3WJwcQ2x+WU44jmK\nfuheKyZEvskx9KBF91Kblltq0L0SB75dzuHLSsGCpn+IkC+3KN2Tp2adEJOqe74LywmO7thJx//I\nL31El2t0X1zL8I+yhL95hCdePxuf7OK+3WcLiq4rRV93GGNKmuU1G7nIkyelu1CGNGxdxi7KOKsz\nhL052oZLwJb43bTfEzpYpO+sCIkLMniW9TOw0MD6SZwLvrcef7tMrspDcVeY4P4EjisGSDYIlUuz\n103n5y1sp8noZ+OYLhtjTgpX3GaKs4uL5+9AqigwOAfGjuoXxudLU5y39xrKn3chGTZK3sLyaKTG\nicRZ99II7ZdHRNV9mk7Fh3F6L9apP72LCkeC9dNeZPvcZ/jzyjMBkHVhpu7TxMDucxZEUqYgi2pj\nmQ/Lp2G7NQphm0JAInrldOJzy2j90TSQoHTNEfTpo7A6e4hOcWKrwrPaGYNslU16lIEjDdkKWegX\n2KAecVEISWRrbML7hZqrrNuED2RJPVeFtHU/ZjyOlRfPJiUURCktQW1sIHn5XBy9SSI74gSf8oFi\n40iJSp0esMiVOZAUYSRf4RgGC/SUE9VhEnTmcUgWpiGzYFYLt81aR2xmmMGZTgbOsOlZAu2XuKj4\nURuWKlG72iLcouMZMLA1FcNnIRvgqsgQ6BDiQnlbRckWKZRY5CrFte6QDA5fFsH2Ggwu0hnzqIWk\n2oQa47zf3UjZhyra8DHeqo2c1ymWeUlODHHoShfR03TaLxViRnVjBslMLDAQC3BmRRuHvhTG/5wf\n14BMyJMTNkoSwsYoIioemBJ3lbRy+OHxDM21iJ+fw1eaIVNvEjs/R/VNbbgHJV56aAm+rW7kY891\nh83wOPC6C0IhV7FYmxA0UcmUSCS8eLttdrXVonsl5KJE0VQIb3EwOhzjvvZzSRTc+NuVkSRz6VYZ\n+6h9yuCZBiU7JG687G2u+f6bGDPTnLtoF+MuERX2eSUduL7Ud8LA+ZGhFDgmzCQxbfIR+rrDzB17\nmOKkLLmxBSRLIj7bYPy0ToJn95GYaJPLaXyv50wunLCfGRU9TF5yEMtrkhwj2gEytaCcE8XRJNow\npp/bjGEorH5vBgDln+/Et8478jcVAzZUFRhdP8C1163mVxf8AX8HSLrEtbtv5NanvklvLkA0KwIt\nc9iB7pXYPvcZmopijjw6HMXwioq+4ZJGKroA2Soh0HS+p41x797A2xunM8oXZcma7/Cb/3UNW349\nm1deX8D37/8GyBD0Z6l+QcM1KNO/0EIPm2gJmeQYOLf0AKO8URTJ5vX+KWCDKlt43/Ox52czcKYs\niiGJbJlM9xKx/XSNoBOv2T2Jpnw1Z7nAKxV5om8hd0aO7lN8KgNv1eIZsggcMfH1mjy0fyHDY2BK\nsPeU87q/RGxn2Sd+//8iEAVYO+Xlj133X7NNl6YjyzaKKvzDJUsknnW/giOWJx8WlH5n0kbJC7sk\nZ8KiZOMAUq6AnCkgp3Jkqh0E23X8XTruQVs8w44aayQbZPKlNrkKi0LYFuyjkIQjI9hV7iELLWWi\n5gys1HEWmOzzQlHH8mjEJjnpOsdDql4mWynhGpCwPCaZmBtlQINuN77OHP4jFv5Om0TRPWLz9XH4\nmwxGT4R0yEOxUqdYYnLNxeuZc/YBDi55nOabVqCoFmP/eAt3P3/pf3n937v85Y98dk/NO4x+4WbG\nO8SN/5f9qz8cPLk37OP6Wz0DRTyDJkreItgqzKANv5jEXrHj62TyGtjQ+PI3kYsST+xaQLwjTN98\nF+qwTLwtgsNl4OpRyUfdDM4LYpcUCR42+HX1FrydMmZjHkZl+E28gSrVx+Asmdf6pvHzq57gj+8s\nIqJlmRTuZ8jw4X0qiJYScubasCjDH0yV4pwR54nm07BluKuklefuuQdni5tJF7Zw+CIxIZ/waAtZ\nq0im3sRWj6vSuaISzrhMpqDR1l9KvOCh7byTaamONJ+KUw00i0a1jYghzbj7VjJryjkwUMGqP5/O\n+kvvAUuIFbl7VOaVHeGrkzYhF6QRitGJaPqzqEKmxp7iS+CNO+8mXypullOp8/4lvtd+BT95+FoA\nFnpbmOl0smLin2i9bgVPnfcgQSWHRy7SfsEjmG74xbce5oWxb38qVfbDZ2cBR5WYW0TwvHHmc3h2\nuvHWpRg8Eubx5gX8oPoNANwR8cR5ZdwbtH/hIQA844VSceWFnRQslUdvuw8QdOD/qTj4pQf/2+tw\nxmROv3j3SZ/ZkrBXcZ0+xC/fuZDQWX2ou3x4Ohwjvm2ngrtPXLDHxlc1K53UY5qrOF6en1bey+75\nT414ggLUVIvgZsr9tzJm9Y1Muf9Wdsx7mjcmvsbPbnz8pG39uHzPSX6kgOibSkpoCdEnlS/TRPUw\nD9pOL+5Bm9rVSfpOhwkPFJAMcHdlGLUyjeGSiJ1RQ9W6KI40eLol8m1+zMYcsi5h3BEleFkPVtAg\n2Sjz25YzeXr1QuSlUTrayvngT7OF+XkeMuUqbfeEKFQFMIdiSB09YNq4WwdxX91H6Ow+nMM2sYkO\nHCmDJf/2XVqHSrE0mYnf20fknk4iTTqzfnMH47Q+dFthuq8LSQJbsyiWmFiqUClVchbZauGfZ2k2\nJftNhmbB4Cwvzr4UkmGi6BbBQzlK3u/B9GqEDlrUvzaM+4AL95Nh/IcUQY+tzzI0C4ItClUbCqIP\nccCBu1dGLph49/UTOiDRenMNauaj40HV3Q6CzjxnfmUb6dUVrJqwCk+vxL2x0dw95wW0YXhnxxTu\nX/Ik2g4fo5+7mX3FHEEth1VRAAlcwQK6rmDaEoMxP5JiMV1z4RzIoHtB2e9joLkMR1ylbVcNzz29\nGFsS5vK+Izbd50UI3eXAGRcJuMoNNnJaxTHoID4thFWdhyY/0g0DuCSDjb+Zi5XQsMqK9LxTRz7p\n5LHZTzCwswLdLeMayCLrFul6D/7WYQYWhPF3iXPgbxkGU8L0Ogl96GRSsI+fNV3Iz2NjmPGft6Id\ntUJy90v4nQWGCy4cikm64CQczIAsxG+07jhKcye2IjFuRSeeQYvS1w4SbEkz4ZedONuHsIM+tOYe\n5FF1VK2L4UiaSJZNusEm0AZKTiYxAdJ1FqkxQrTG8IrJlS0JvzstbR0VpbIp3zyMpJ1QUpEVzMQw\niaXjSE0rJ1MlY5T46FsSwT2oE97qINxqEmoBJPAdyTHmQZtiwYFfzomARrIppjViOQ9dmRCKajHV\n38NXgnsIdOQJHDYJ7lMINilYLotNmyeQKxU2b6ZTQslbSEWD0m0iWa1sDBBqzqBkJR778/m0XxbA\nKtUpnTyEPinLIwOLkaYm0Xod1NVFGZruRunXqPSnCLnz2LKoZAIjFN1iQMWRMqG0QLg8RaAqRfvl\nES6r3cHoukEcTR6e2zyP6tm9eHuLyDpEU15RoVNFy4HkMknlnSje49Vk14CCa7sHfXeIUJOMphns\naq0jHxFiQPlSG1f0+D0T2QvGOsEaGxoMsOfhqQydU6B0q8zEuj7StRK+fU4y9SIJkEi5ydRBU18F\ny6qa6B4+mVGUL5GEd3reJrRDjLkeuchi7wHUnT5+W7uByyu28/PYGGq1GI9MfPL4wh/zaPf02WTG\nF9nfVYXDq7N111gWjz4IBQVJl1CjKoMZLx6HjlKWR3Ma5EwHrckytnXX0TEcRnYbzDztIJZq4+2C\nZGt4ZC6yfdM4il1eAgfFOdJNhRtvX8UNN72B4RG0SDOr0jkYZq6njUu8Wa677U1sv8ENozfh7YbW\n90dRMMRzJ7xH4X9/6zFm/8ct7CoIYbto3ovlMXEmLNHzax7/Yz09IuC4+IffR2n1UD42ysu7Z+Bu\nPppUzViEmiFwxKRmDTj/GCE2UUH32kLMclDBVuD+Kx7hgX1n8dp7c1h3ZAyHOsvJl9pkctqIl27f\naTJqRtBshnZoAAAgAElEQVRs3TVi8hfosKjYaqHGVZ558hwW3X4zf/e9O+j51VjiZpYpNb2M9/YR\nOHz8ufne/b/lzmmrueSijdwQ+ZBczcd4xPwNYPzjt4z0i/612PKV49o5li2JoE2ykWQbWxLPO8Mp\nYXodhFpyuGIGWtJE98p4uvN4P2jFbDmE0d0LA1GsgSFK3u3E1Z/FGc3j6y7i6bNQijZDcy1yNSaW\nEyy3qPQfg6zbyEVwpAy0eBElWYQTvHnNxDDWUBQ5mUNL2YQOihbEQqkYg6WCjNbnIHQAqt836Z/v\nxT2gY2oiWZE0XJ94HP4mabrASRRdJS2oLYVym73rx3L/jnncv2MeLZc+wrenbz0lnfezYkPTxJPe\nmy6bR7eegZKXRta7t8zBm4tf5P4d8zBH59izYywtX10x8v2x/++YdfK+hPfl0YMOkCT8HTnyZRqZ\nKgcv/GYK+bSfVFCh9h2b4QlgBQ3cviJak5vQ2X1MmdDJY/Mf54lNiwk1Q+N5R3j3iqf4zugd/EiZ\nxUv5elK9fm5eupqm5ydTOWOA7UUfmztH88TCR3kzNY2XFqzilnUX4Q3l2fT0LAyPRHKsyF4rBdH0\nnzoYQqvJsm3+k9ijo3z5w0t5bOtZzD+7iU2tjdxx7lvcfP+XePn8l7nkousZWqRQdMsE2sVDFYQ0\nujngxs6opDwyt9fv5petc3FkJJLTi5yzdBede4SCWbZS9CqNuaCd4QNhLvrq+7TuqkeyITUrz4Gv\nPMTWOic9eyvo2VuBfLRvTNbh+pveZOdQHXnbwe/652IbMrfPf4eDoSAHohVs2j4R9ymsX05EodQ6\nJY34yQ0LMbwiqJAs6WOpvgA/j87kG1Pe49Gz13Dr6VsY47D4Y6qEDZmxDNhFhkw/C1yHeSE2i0tD\nHTyuNLJmaBKHZYXthSq06GdI8QHIsPiqbazOVPCTJc/QGB7i3Z4JNFTGeCs+hbW5CpZVN7HQHT9p\nsVtq9nLr6Vv4j9fP5eWFr1Gjiu098vLpI7/5n0bT/fWeuSOvD37pwZPenwofR9Ptaq7gtvlbWL5Z\n3KeRs/qIyU6unryNlk2NDPtlmq96mMeURn5w7kre2zWVZ7/5C1Zq4zG6PBheG1n/dA9Sx8Qk552x\nm+CYYXa8Opnlm+exYFETvS3lAOQ7fOjT0yj9Gs3XPMzyzfN4wjGKXz2/hNU7ZwKw6dZ7uWDWB/xj\nzxIuCXaO7DMIWrhkivvY2yMyqMEd/RTL/Xj7LRITZJJjnISa4cilCqMfHyQxPcKRayU8HSrhfUma\nbw4SPAgV6wdRbA++JpXhCRZOf5HBnRVYThurroDR7icyOUqJJ8vE2l7Sa0vwdeuUvRfF9rnIG26K\nAZXgABAOIhsW9EeRmirI9IaITbcJHoJf/voBnnZPxfuGn8Q4Ff+aNl7+8Qbqlu3itf1z+ad5a0jZ\nErsydQybbnRZxukvkrFd6H6FQIeOlpTxd+ZR8iq6V6bh2R5khxutR1BoLa+LTJ2bgYVBnGmZTJWC\nWpQpe7eX4UkBEjMMXP0qjpoco0f301MIkKpXKYZt7OoCgb0qg3M0hicHqF43TOkHUXztGWyHimQe\nHxSUdB75FYn2zvEYHolH35xL9apu3pgyiSOUkCiXGPsvMVb2n8Wuu1bwCjXMD7XxVnQKqeaIoJv1\nurAshYbqIerCcfKoNEludphjqV8Vw99lYSka3h7hKR1pKoAkY7pktIxF2eYE7ZdH8PTblO0sigpb\nVCayT0e6dQh7XZhi2MYMmrzwyhKk8+Jo/iIVT7pxXjVAsSnI6+tPw9MnFDedwyaxyW5KdiQwgm78\nh1Lky1yk68A7oFG1OkXL17zYskJzbxXe99z0PFZF6LYeBqNBInvzDM1xEZVcBHx5ohkvRVOhUHRg\n2hKRHTLRuUGCHTpyJo+dSOJsG8KMx5ETaax0BkmSkIo6uJzYbie5ej+SZWMrMoEOm+GxMnrQxCox\nQJeRLAlnQhJqux5RSQ81Q65MoWR3FkdvHLujGzkSPp7lP6rZ6NzbhbugEGhOoSSz6GV+hsc6yJeD\nkpUoW9dN6LkDmOOqiU51ky2zmVXTyd5XJ1H0yYBENuFGd0JVKMna92fgqh+m+Y0xDI9xYLnAmbAJ\ntEPF5gLeAZPYRA1/l46SN4hND5CrlNCSNmWbE0imRWq0G9NlU4yYVK1WsWdkcTgM2qKlFHIaUqmO\n/4kA1/6vN9i+ZxyZPWHUdV50v4T/YJZihRdHLIse8eDuSROd6cPTpqLsdRN5UwIUtu4fz0DeR/Ag\n/OSrf+S92FgyvUGSky1KypO41ngBCcMHtiTxtdnvMbeyg6++cA2ZaQVCOxVkC9JjTWxJwbtdw9eu\nkK2xyYy2CO2XUXTx3NZiKrlKCW/PUc/OrIqiQ64MDJfM3MltHCCM1usgvLCf8JgEW+c+y1p/mL5E\niH3vjce7yUlynA3IonqTE3MOyYLMsjTJEoWNQ6NY+7uFuC8a4FeHZ1MbHObV7mmsaNjMVc1XUNw9\n4kZOuv5jEuS6iu6zuXraNvZ019IeLcEdyWG7Lfw1KUAi90oFZy/dw6RIH6pssWHHBMy0sN8JBXJ8\noXo3H/SOoTgxT2CnAzUv+kolXcJ3REb3CzpwpiPAutRotraOpVCjY9sScl4Gn8lrm0/j19FpXFq/\nnSV1LaQtJ/9wzsv8+9xd3L3jdIpBQbv8xdKN3Lx4K1OdotrfZLs5/N4ovP0WmWpxrBRdHHctY+OO\nir7v7Iw8hdYg1WslEuMlMrUSyXkFrr1sPf3TFNr9QcZffIhet4vGiX0kTY3/WPZnNmvVrHx9EXKv\nkwvO38qRVaMpRGzUtIwuK3j6ZMZ+vRnrzxHSX0iRCskE13jIlQofSkdOiMeZThg+o8Cz37yPFfrp\nDIZVdjw1nZ4aF0PDQcJXdzP2nA5WJutpzVQw3d/FUs8w97fPFXZYfwX0sAlIyIY0QpddeM5eOtvL\n/6r1fBq0iUlS7jytWojigPvTFzgBD+86Pi+TS4rIko0sg2nLWJKEI6HgGTJBlnB2D6PYMlpfCse6\n3Uhd/dj5PLLHg1JVgZ3OIDk1CPqxPU5sWcJyKgyPcWC6paOKuRKmz0TWZSFi5rcxPTZqXsZ0SoQO\n5lC7o0h9g9iFkwsYtmFgR+N4Cy4USSWyLY6tevH3WFiKgjMuVLu1lIUty1hOmXyJTP20XkDi0pov\nfOxx+JuujN57ze9Oep8zHGhThtGDYlIw4bFb/sviQh8H03NyFOKbEeWt7dOY8NgtNN+0gkdO+/3J\nwjjjjqvW/dvglJOWtVVZ9LbEiwzM9WFqEr5ek8FZHuIzDVzdDqI3ZZCKEpIE1Q9oOBM23T0RPtw2\ngWUv/j1fXLyZwcU6r45/nR8OTmb+jitxeIq8O/Ul6s45wp2RNpILcviUAss3nIO3W+bKrd/gx+V7\nAPAecnDwrdFMuaKJTK1Q1ko1gGfIxNMnqojJlIeZ99/BfRuX4mpyc/fn/8S+wUrCmzXuW7+M0t2F\nER817wEnzqjwJzoRalZYrBS7vVzVdu5IliiwW2P9c7OZcEUzAJ4+wVvf21GN5YAXWgVtJTlJ53vz\n3ubM3ZexY0Bk+gpnpNCWDuE6fYj0KItHXlxGxJdFzUjYWZUblr3LlmQjsYwHp8PAjggBgU9SkA60\nfPyX2rBQrcxWn7p6egy+Fgd3v3YJT6fCTP7wOgA+SI6jNVPO490L8cs5Jmkeft+wnktaL2BJdSv5\nd0tZ2zdupNr5WeBdMsD9NZv4RdV2dFvmkY5FXDFrG9fXbODQ/mpqXAmUo6neVzKekaqrbptMu/dW\nXEMSl7Re8Jm39z8FY//0rU//0Sdg8ofXUXvuEQC620tpv+hh/tgkglvnXg+Nq75ObDDAwXwFAF94\n/rv8y8RVAKe0XjkVCnmNlevmsvGDSey7fTm/vOlhqlxJ8mXHxxfHbh+2LKqjAF5NXL+BRf14zhhi\n1vpv0aCqvLNr8shvjsGWRILGdIp/gZYkdjp79DOhYBvZbxLen6bmTZnsuBJkw0bpE2yMQ1cFqXxf\nouiTSE+M0Hc6VN1xECUn0xCMoVcItV5HiwdLs5GeKWVqqIcdKyczPFqm/VKVXGOYok+m4bGDVK0Z\nJD+qBHN/C/JwBmNiPbZDUHgm/OwQg+cWuevGb6Fu83Pl371D9fs54jeczuKbv4lL0vEfttmve9mR\nbWBfoorZpZ1cM34bliWhR4RH4uBMF66ojqM7hq+rSPnablIzKnH1C5ra0Fk16AENT18RNQuFkEIh\nJBGdqmH5PGQrxLkrWdBHsTlAz4ujKNsOptum6n0bz0432jX9hA9YBNssbOXoubYsESCdAu5BnZpV\n/eRLJLITKxj7K4P9uxrIZpzEVjgohCUmf3gdHQMRYQuCUHZ1JBQcGQnbbXKguxKPWqTCl+bAcAXZ\nUTqHL43Qc5YX2QD3oEFob4JMlYaWNsmHJdK1CkcuimDLNsFW8QyyZYmBedB+rURsTRWWE/yTYsyt\n6qTuvA4KWyOk24N0LZWZWdKNe2aM5AQDV1woqku6SeRAgVytn3Stk3yVj75FNhMeGcZWJFrvclO1\nXqbx+RgVG224LIr8kyEO7K7HNSSOleUEuyAzkPAhyxaaaiDLNnZewXAJVUej1I9RESJ3xgSksKh6\nWdkstm5gTKijOKYSK+BBjiexZYnoFCdFv8TgTFkIW5kSqktHq8xCSYFMgwmhIrJPR00qJEfJKDkb\n061ilgWRfF6M7lPbh9keF0Z7B8aRLiLvdVG9YjuVGw3KNg5h5/IoZSXkS1QSM3TCZSksWzwz3QPC\n/w9AkS2G0l4kGwaKATrP07BVwfZJ10koRRt1OIekWwQ6TLTBDB0XeijdGifcbNJzjhjDj1wUIT89\ni6dfArfJ0BezDLaUoqkmIV+OxuohzLiTzmXwcs8M9NF5UhN1DLfoI9MjLpx9afQSD5Jhif8tm7JN\ncdL1Eo5YFk+/QfXaONqwTPTsAt9dcy3GHyvQMjZ4DXJFB7pPBAwAUqBIXPfikgzkugxXTttOISyR\nrgN3p4rpPt4WU7JLonSz6NU9JnTljNnULuoEhDhKIXLUmiIhVJFf2zkd25ZwRW1K3FnaDpdzTfs5\nHIqVYuYU9IBFbKqgq8p/SeyRwDroI7JDQTsqBpd7vQJlXZBnDs1maqSXHw9NJPWHmpMWc8ZOPYY7\nE+A7oLHy8FQc4Tz+0gzK5gB2r4tMzsnk0n4SCwq8tnsaq/58Or+q2oq7Kk1ov8zc2k7M10q4b9Xn\ncFenUQ8eD0jknIRZIixutKT4zHRCoFUl2Cwh5RQkQ8KRltA0A6uigGVK1KsxNqVG45fzfP5Pf89P\nhybw1NIHUfIf3f+sVWRd71i0pC2YE10WWubkuWz3uZAaBUqnCzUtkbg+RfCgSMArXS4eWbeEpkPV\nSMEiB14bz8Xj9/DmpFd5Z+EDNOVqyG0s5bvXvsRFl2/g1b3TkXVQYyp62OKK+VtwpG12r5xEpkIm\n3+HH06ZRuCRBan4OJQ+5sIwzLlG6x8a/2c01//vvcZTmeGn/DPxdJm1tFfzLV5/CsiXe2T6FjT0N\ndKVDzHEdJmYWkNJ/vdGoI66MsJdGv3MTLTes4IM1U//q9Xwcmr4qxFP3Lvgjd5W0kt4bAcA1OfGR\n3158/qZPXV9mwEsm48KyxLUgHRUzMlwysm4jFYrIyRwMRJE9x5X47WIRo7MHqbYSwkGMUh/FoEbP\nYj99pzlJjbLQfTZmeRG5LoOvKi3EyY7eu5Ip5r5IYHgd2F43UjBwij08ioEoyrs7QJYp3T6MpyuL\nr8sSwm4SZMtUXAmTTJVMrsImb376ufubDkbvfPpGAIo1RYrlBl0bayjuC+IYPnm37bGZUy3+X8Ix\nQZpj2DbnWbQhhe9d/jLXHV7CzU/dzE+v/CMPJI6qv7Z6R3pFn1551knLKlkdV9RgeIwbyyEkuTMV\nMonZRZbN2osrCmX+NFXjBxlf30fbFQ5icwycXQ7qX7fwHpHpzIVpv0D0+304NJp/Hv8aiiLurpaD\nVZy7/xKm1PfyYWw0rm4HSgFmVnXTVMwyf8eV7P3OcooRiy0dDRgBk9uvXknZTpvoZHFxqDmoel6j\n+v0ckmKTL7f4/tvXkujzkz83hSOh0HGTRa2ao/NfJTz9NlqKkyggf4lnR6/msoPnUXWJ6H8rRGy2\nNIksWiFiUwzaENeQdXB+KDzXAk0OHm87ne7uCOaaEnLlNtJ+P0P9AeKHw0jleYoVBj2tZbgHJJz9\nKh25Ejb11qOsD1J4uwz/DheFMGRrrU9tdD8V5KI4Hv765Kf+9sOrf8E/rbqahXXtXHDgImJFD03R\ncnRLYWNa9PDuLBTYv7mRn1cKJbL06oqR5dNjP51yMrusi7F/vIXfxBu4evM30C2ZWNHL1nQji+ft\n54WDIpCfsuHL5G0He+5cTpeR5oO8eL3nzuUcHCwFhPfc/2T836DpHkNVKEnrvhryZUIsYuL71/P6\n6YIGW4hYBEozSLLNH94R9/OXl77HF72fgWt+Apz73LiGZJq/9ADztl/FY/2L+FH5lpGepVyNKYzm\nT5gvDKytITchT/K9CrIflmLkVTYU3HgOfzSBUbJb9HoUgzb5kqNiJeEAzqSQek/VyaRqFfoX+ImP\nU/C0DKHmbcY+PYxasFGKEkW/hHrxEM/85l58R2S600GUvIQmmyyceBA1VMRw27j7ZOIXZnn5wAzs\nOUnh/Teg4G6PUwjKZGc3YLk0nPs6UasqsXN51MEkytrtNLw8BOUR6p+VsTSZqZcc4OkV51EocRBq\nzTEwS+Xmh24nvizHW8lp5EwHVZ4k73aN5Ugugqqa+A4pqFnQvZAYJ2bJzsPC+9WWJQplHlIzKyld\n343nQD+ORB7dJ8zfs2OKfOOm1xiaFyZfbuFvcdC/uwLv5Ligt8oSWkImH5ZRczC0qZLB2cLOId0o\nmt0LjaWYYf+pz3NngtTUUrRhG9MlcegKH5HdEq59brJvVGDLUHe3REUkyerUFLqHg8g66GEDw2Oj\n9Tigx8XswBFU2aL/+Qb+edFKEVz4bLx9Jt1LxFidrpPJhxTcUQvDJdoswgdEf6D5j1G6rtcx3RYT\n70uTnZwXx6szxPqNU+h+vQFHGqSKPJIJb7RMJtHnJ9Ckkq5WhNWFbmK4xWv/4Ry6X6HuDZvBeWGG\npqqYaVX0UUY8ZMsUtsx+lp5XGyjfIoKO+PQQht/EEVOxLRlFtjFMBcOQkQoyuXLhY9t9th+lrQf3\noSgcDfKVCWORXU4cHYOoyTy5Gj92yI9vbz/FsBASKkYsTJ+FXFKgoSyObUtYOXFslH4nmtMQdFUF\ncuUSpltG6YuDbaNWVZ7y/Jn7W1BKIqiNDRidXUhuN54PW8g2hui7bAyZ+aOEAq8E40sGyVpObAWU\nHLh7FNSUTCbnJFdwYEuwKTpKWIoVhcp6oN1iaLqC6XeRrRLXbrYhgJaSjl6/8MulfyI9Jkj10k4c\nzR6Ugo0/nKUynMKOFIltLyeRdnNkIMIZs5rxVmboaKnE0mV8LQ5y5aLiIR8VLNK9KkpGxxHNEm4p\nokc8aAmwFQV3dwrTo+GbN8TsxiNMfCBFZFccLWWCbKOpJrpfBGaOtIQd13DKBjHDi9nn4T8rdpKe\nm8PTI9hDdm2OxEQxFygGT90i8/akleJYX5AgdODoca8soJfpOKIqpWucGB7Y01TPqIZBNu0ZS2M4\nhvegRmSPhFKfEcmSY1OOY7GYDd4uieHFgo4O4txna2y+N+kd3ls5i1d+8dHnnlKwSTVwPNl0FLJ+\n1HM072BsxRDTy3tJNxrIRQnpgI/NHQ18bvI+Fk46SG5CgQcTNew7XdiqbVov+mDLpg6Qyzjx9B5f\nb+CQhDKkIVmQmCUSjs6ETbbCJlMDof0yyCKJXsg7RGAd1/jSe9/gYKqMH79/MeNPP0zBVvn3w5fQ\nOE8E9w8k6vjakTPZWSjwuf1XMdBWIsRsijb5Epmi9/g8uRCQkcMFKjdbBNpENUxeJ3i1odP6cSQl\n1LIc/v0atiGTaTD453Lho313/7n8Ye9puE6L8s1gD/uGq7AN4fVr1eRxJGQ2/ng+7qhF8JBJphqc\nURlHGjJtQTw73URn2LjjQiG94Jfwd5l4+y3Kn3FT9ZKG57ZuSrao/OgP19K3upaS7QoXj9rL1Egv\nDWqOf+y5ENfAXx+uLDh7HwevFXOHYwrNAHdd+uJfva5TYdITt40UXi47eN7I69OqRLJbGZdm8kIh\nALTyzVOLn54IV6+KcvioIvwxqq4sksZDM5xgWliHO0X/e+54U7BtGEIlvHcASTewZYn4RCfpSUWy\n9Qa208JywKXTdrC48RAzKnqwfQZ60MT0Cts0ST/qQCEBqjLCIDkVzLgYV839LdByGHUohbe3iDsq\nqLtl67qxFYlspY0eNtBkE03+5Dnv33QwOmFRO8UqHUkSiqPHcCz4+8Hl4oJqOevjvWtOxP4bT7aA\n+UvBoWPvjwUyZXP7Ryqvv3j+C2xZM4kJi9oZNPzcs+F86k8XfnofV51NjfWjxXIii78li5a0sRwS\nVW+pXB7ZiqzbzC05QmMgxpeqNzHqRQPJadL4wjDvPvIwqfEGz45eDcB/RsfRl/Jz15M3YB3wMftH\nt6ANqiTzLjI/rOFwLEK+tkiuXGQhvn/4cjbP+jMT37+ewLg49Y8otF/yEPesv5BRdzSTrTfwdZmo\nWZtcWCY22UXkPY2GVQauPgVHXGVqZS9VH5iYRZm/6/gimQEvuTKJQlhkP04FOS8x4+5baX5jHJ3x\nEMu/fT+eXgltQMUZkxh71mG0xhSXL9rEd7/1HLfd/NLIssV3Sk8SEdISgCGxYHYL3s0eAvsdKFmZ\n5LQizjg8XPcBAOk54qZc/u37Mcdl8R2WyZXZJKcVR6xjPksfKAghgeTgqa1VTsRL6XEcuvpBVh+Y\nQPOBGp5uXMOT0x4nqzv4aYXoS7zyz3+Hu19i8gMf7RP9JB/TY1hes1Es7+rit3OfpK8nzDR/F7eX\nvctw0cX0qh7O9DaTHXbzD5svY972q3BJEisTMxn37g00vvoNIj5RNdrz4qTP9Pf/reK/Ww09EX1r\naln/xV8wYeYRtt92H8VeL2Mc4pw7YzK75j9F27JHOXjtg+y7fTnPPbP4I5XJT8O+25ez7/blKJJM\ntC3M041rmP3Ad1h72T28/q27OXvOPoohi1ylSXFqVviGAq7W430VpeVJvv3oqT1qIzti+Lps/B0i\n256cGEIq6uQiCv49A6QnFvEMWMhFIV7QcWUVrpWbGfdIK9kymXuuewz9ogT3T/4T17V8idQ4g8SG\nCi68YAuqbLLp8Cg8ngJGiej5uGvmmzj3ucmnnUz+fDOuGEx75hC5SqFkmRrrIzN/FAMXNGL2D2B1\n9iA5NOyObsx9zXjeb8bVOUzqS15K9+SwJQl5014Mn83YCw9hZFXqnVEsW6Y7E4T1YTasnE6qx490\nVpzkRANHBlwxi9TMSrovqcX2uolNUhia5iA2QdxPTd+rovnrfrINBompBsum7+PeDecRXVxEyUt4\nl/ZTO6sHv6tAcrREZHscbHjl339OuLWI4bO4aOkWoaJ6u5hQxMc5kXQxy86NP5neJRV1Att7qXqj\nG//OPsav6MbfpVO+vYivx2TF15cz/O85JoYGqNXiZIZd+DqhdKNK4BDCnNxncv/Os9lzsBbnRQOs\nHJiBb/4Qnl6J4UYVI2jStSyC4QZ31GTw/AL1r8Wo3JjDkbXpuDhC0VSYWN1P4wtiPzW3zoFvLOff\nz32ety69h2LQpnhGCjOrEjgocfDs34ElkTkti+GFyM44ff8B7u4UsYkqw+M8uPuLFP0yzpRN/Wsx\nJjySF2bpsSyV78eYcfet1LwTE351WZuBeYAi7C/c2zykNpWRTrlEZdRt4Rqyheo4YKXSJ0120hMj\nMLae7NRqpIKBmjMZmhdheE4ltYs6SU0t4q5K44gr1JXFCWo5vjhejLO2w0JuyGAc8qHUZzCdNpYD\nCkEF2+uG8hLMwSHUxgbUutqTz59Dw4zGMNoOiw9MEzMxjOdQnPJHtuFdd4Aj57txhfOUahkatCHU\nHPh6TOH11yNhdnkopJwoRRjtj9J4WidK0aYYEIIgagYy1U48vQWu+vEb6B4Z75IBimVe/K3D3Lnq\nOvqvznGos5yKrTrpWomAq8D6aS/CsIPmG1dgt/hw7vbwQfMY9H0BpILEtNHdpMfpFOekqVoX49CV\nGgevCzMwRyVf6cF2OsiVOjC8CpUbkhhBJ7aiYGsyw3tKGLhnNKbfxeC8MIZbRnPpFA0Fw2NjqWB4\nbPyHFN7qncjhXAmW0+KfB6Yxo76LdIM4d55tHlyDMrYM2rDN5p+toBiQaL/wuGDe1PtuxX99N5ms\nCAZy5RJuX4GvzX8fPWyw+acrSC7KEdmu0LOpmvZLHqLnsdFc/+W3AfjhzJWE9wtrFa4aIjrdphAW\n/bf5coi85SLQZlMISThjNlhw74Fz8R0R+1gIfXSy4uuSkD4moa7u83Lo/QaKloKcl7nigg/w9Nm0\nLH6CEi3Nk6Pe5fpZG9mRrmfCe18BwN8BuldiKO7Hs+/4GB6fo7P9X1YQaIPxVzVTUyu0Ah78wa/x\ndkvcd43Q1wg2S5TP7if4gQuzzYcjKSHFNA5uaEDOKLRHI6zqnEKNZxivo4Dulbgt1Mm7B8dx7RPf\npdyTwt2jCCEmr7Dg0jLWyDytEJaoek4c/8Qkm+BBIQbm+MIg6bUVRJpNzh7dykO3/4a2ZY/S/oWH\nCCsermk/h9f2TMMsKJT70lzSegHNO+qpXaUQaTapfkEbYQh0L5ZIfTlJ+Q6LpZduQS7aPPqFh0hP\nLFKyS6JrqRDHyZVL5EMy6UrBlrAViewDNWSqJPKVJtK8YVKj4KcVu2l0D/LdzkvY1NVApPmTGWvH\ncGLv5sa1U0YEhE78/D9f/K/rzPwlxj9+C+Mfv4W9748d2c7DdR/QcsMKmhb+gZfGvUnLDSs+U0+p\nMwZUlNkAACAASURBVA6OlESx3U+u14eVclAMCD/aESZGWSlKKIjs86FWVaKURECSUEfVQ00lyTnV\nHLrGSer0HNXVMapHDeEpyzB2QQeLAi2cF97LKE8UR78Dd5eK54iKmhNCcNlqGzVZoFjuxU6mUMrK\nUCsrkP3+k/pHR2DbWNksRtthlHe3E2jLULa+BzuXp/d0GSNiEK5K4lQ+vfjyNx2MNr/XiNbroG3Z\noyOB4jGxoO9e9go/2fI54LN7kk7+3W0nvT+mdHpsvccgF6FYajK4teKk3yOJfVo1OA1sOLLh5Afb\nqWAEnUiWjZouimbfCPQuM/jpHTeQWJTny+GN/K5hNT98/Qq6v6EzdVQPB68V1KX7l4oge/wTt7Aj\nWYe0Ooyt2PhmRnHHxAO3wpdCyRnk20Vm0H8YwlqOV8e/ztSNX+Yfp7/O9rnPcOTr4kaubIiy8VAj\nT52/gnxYJlcm+kjj0yyCh4tYikT5Nh29VGcg66d/ngq6zL63x+OIKTjSNp4eG8dHrbsAQcNNTjAo\nlFj8y9RVfH3bV3nsO7+i+cYVXHnTGjpebaQ8kKbUkeaGwAAP/PaLn3j8nOE8ewaqjq+/VyKwRyM5\nRafxtW9wXl0z7r1u8qU2h/UyPJsFdUGuzRLYo+GMi0HXGZNGAtNPQrHcoKz6oxSLE2G64Vd/Evvd\ndt5jtH9RCAeVKTbfOZo8GPf7W3j+ql8CfKxi8Il46Y67AcjOOJ7temi4ml/d8lvu2HEtD/YtQR10\nUKamuPw33+eFsW+TNTQeHljCaRPaiIQyDHUH+XLL1WyL1mNGnSyc2sr701/4b/mL/t+sSP4toBi0\nGXf+Ic5/8Af8avSf2VGQGTO1m415k69c+za/+8Z9TLn/Vn44+FFq7F+Dc/dfwpT7byVuZln+ucf5\nfVJUqBev/g71qo/166Yh1+Q4c14TF03YC4ZEIWyTrxL3aXZs8ZNWT7HCR2SfSHDZMhhuiaGzaih/\nvY3mWyuZePte0lclyZdJXH/ZakY93kbnP53BhuVz2fFPy7njja+ya/5TzNEU2ntKkX06rhi8unYu\nyaKb8kiSZJ+f8FYHwQUDvHDhfLQEeA442XGkjuSCHM+vXoAzJtFzDmQrFDrPl/D1iKDa1g1svYhU\nK+5dq1DAbGrF6OgkMdaFuz+PUlPFaWc20TJYhjKs8sbgFLxqgQpPCt0Pig5qSsGt6SjBIukGi+C2\nXpxxHW+vSdOdfvJlFuXbCwTbTLovqWXirwf5+lnv4uxXKa1PMNXbQ2VNHDurYDltLq7Zi1MxmF3a\niZoF26Wi5uDyH/w98XEiEfby9lkkJtncUruW8qfjLLp5C8NTQsQXVDMw65MpF7bXje5X8DQP0Hum\nxDf/cCv9/UG6MiGaslXIww4sVRJWDpGjCTdJZMEd/Q7GhoY4FCsh/24ppgsCnQYTH0xTs3YYNQdq\nWmfcfTpdyyL0nuEW6rN7DWIbKmnZOIpcuYOecyJ43WLQWeg+zMup6Xh6JRpLo4TK0ky+vglACJ71\nuKhbFQNZJtMkBkilCNiQrdTQ0hbasLAoM10qJTtEf7rtUMgfDSzdXSniE2RQbZSUoMXZEmjD4Gh3\nkYu5kZwmqQaRZCzbWUSa0IheJSoz9sKZuF/ejB7xcGSZQnZ0GCRwD5mkqxQO95fgcOvken3YCgS1\nPLODnQSVHGpMJVSRQt3pwz0gYXZ60IYlatfmUHM2tlPFbGpF9nmxU2nsVGqE3iapKrZ+8n1mJgUr\nRtINjDOnYo2pQw9ZVIeHmeTtQZHEBF/3yrgHbXw9JmpGwtHvYNzCwywIHGLo2Tqcw0L4JT5eQUva\nFIIy+TInz/zrBeQjEr6fB2j/gkigaAkZvzePf6eT4QYHkgmjg6Ly7xxS+CAv/EEL07MoUQebb7yX\n8Y8n+FzZHnwtDs5sEJWXyvclSqYOUrFZ3INSQVBDHUdVdh3xHJJpkhjtQjnaUy8XTWwFkg0KxZwD\nRbYwXTaZOgu5KGE5oac7wrtN47n/vN/zyuGp7Ggaha3ahBf3YcuCTTK0SCdfIjFt05dIjrUYv/4r\nDJ0jrkHDI7xYQ6vd5MoknAmbunCCem2I0G7B+rCKCrEFOt5ukXgHuDYoGEWjHEPiHjHh9jFrCR2Q\nRkS7JJMRkUNnQlyP6pg0qehxew8t+dGg8+MC0VSDEMMq1hbZt2oCkXExntp6GrXXtAPww7J9FGyd\n+d5DbPndTBzbT0hcS2BZEuYJLYMOr86QmUH9/BBFU2VCaADTJWHZMpk6m9Oc4n6SPhdlICHWpeak\nkYKIMyah5CT01gDRQxHcis7enqqRmXt9RQx3v8229nosDUwXOFNCrCYXFj2B6SqFQvhoEkiVhDfx\nhUnOO2cHsaTwmFRv6aM/F2CBS+FrR4Qy9uytV9M8VA6mhNNXoH2whD37609qVSn6ZCJzBwBwDckE\nfx8gH5LZ2D+KXKXEzrwIXAeXFjhn9n7Rs2hD/Nw8yXEWmSoZyRR+95bDRgoVyQy7aL5RzMf3p6vZ\n1VNDPu0kV/LZwpVTiQkde///Sk33xG2fiLR1srPEonP2fOLylkPEH1pSQk3LyHl5hE3oTNigOcAw\nkCJh5FAQ27JAVcG2sb1uDn+xhMGZMo6yHPJR70+XahDy5hgfGCBpuvDKBdoypag5oaDrjIuEmTNu\now1LZOu8mE4FNAd2Po+VTIGuo9bWfOK+A0hFAzubg9Iwpt/E4S+gyDYytlDl/gT8TQejx3BisHns\n9S9fuATHEefHLfKZ0FA7dNJ6Lzhw0UhQqp3Cj/KYEtsr4974TFYZWtJEHS5QiIgBN1MtEz5gsWRy\nM92LVXy+PJe//B1ezEQoGR/ljIZ2rqvaQOv1Yh8u8ogL+cVr72VzayPJcSaFGp0l1QcJtCQpmTZI\n50uNpP41TekOkBxCQXCiT3BE6sNxXuifA4B0WIyQiU0VtC19jAUuhfgUm899YSPquBRqaQ65aJGu\nUXn3kYeZeH+Wnu1VWA6b9s8/TKDdpnS3zfAEG8MrkQ9/Qu+cYuNIyfxsxbWsW/Agc5waV7WdS95y\nkB5tEH2rmgffE/SZXT9YLrjqHwN1u5/fTH8agB/edrwC/s6yX+JrdvB/2HvvwDjKs937N217VZes\nLkuWO25yBVONMQ4l9BpKKHYMIZCEvHxvTkKSL40AIQGbXkIJECAUAwZTbHDBvcpFsnrvq+27084f\nY8s4YEhy3pwv5z3f/Zc0Ozu7szPzPM9139d9XR88O4u9313OwetWcIV3YOT1uvnPAJali6vLogsc\nHvcZdW7zcT9PsOuEY1+j+pWAfUuWo5oWcKj40KKTZ0luXu+bCoCWoXHFg7fz6i33fOWxjsR3my5C\nt4MRs+6V+Zdso9reyWlOnWSPmxfLPqL+auscj/Tz/KT4TR4rWo8sGPx4zEoyCoZ5b+xK1kx4nVlT\n63iudA1l73z7Kz7162P0Czf/twKkckzgZyVvEB+dJkOEa55bRqE7xPWP38LDn53M/2iykgxPb59N\nvMRaxHnn9R73eKecv+1Lt3d/VIhuh3krvs9CV4qrff28edNvcdVbF2/j5b9j07wVXHeYCtV07qMY\nOSlM2aB22XJch2zEN2Qd93N1u4SY0HB3qWTvTiBqlnx+dHoJVY/0kp4znmiPh31LlvPRrXPpuLCc\nqgUN2MNWetU9yhJzadAS5GSFEXrsJLOsybB1OMBA2E1u8SCJHIHePh8Prn2BWLFJvEDn1skfY9/v\nRPfpJDNNGs9/hIK32sjeLBIabbPEFCrLkMaPoX9WNtLYyhEhBHXB9JE+lYETR7FxUzW6LoIhsCBr\nH4NpN24pjeq1vqejT6CnOQM9LkN2iuiEPMSERmBLF5kbFS47ZT26w6LZDo/TGJidyxMfnEKqMI3n\nQT+7o4XEUzaUYArbkMjp3r3YJJ1F/l24eiwKVCLPILC9b+R7jXk0SfEqnbt/fi3d3x7F+3+tIe0T\nSGSII4vE2FgrUdl/0rETtBBLoNkFDny3ACklEDxoIMRlZmS2oJuWXYgSN9EdIEet1g1nm4xU78Io\nTXD3qJUokk4qy6RgzTDKsm56ZvvpONVP4apB5HCSgYleRn08TNG7g0RGSUgpk2RJGt1mEqoSCVdp\naLp1Ms+Fali++yTyL2xmf/0ohlv8PFe6hjt7LJGsrJ3QvjAD3W2jYK2GKUkYCiSyBZSo1QOkuSWS\n+R50u4jms8bGg9e7Kf+LNaD2Tw8iJ8G069aCUrfsCAQD7EMC9m4ZsddGOlMnFTQxbCKCZiAPJ+hb\nUAaGiVxeitIfJ3+9Scs5Aq0L7LRdrDE8XkNLyIiSgWkz0LLT9CXc1MdzaEpk4WkViO8J4uo2ieeb\n+OsF0kETzS3TOV8gneUmvXAGemgYweFAG1+GEY8jF446xm8UsCoMh8PwubB1DJPKcWLaDOKqQq9q\n9VA5h/QRZdx4toinBdT8ND8sfpc5zkbSfgElpuPsNS0P3l7rXpZSBt76YVSvQMeJDubN2E+s3Icp\nmyiSQXhCmtBEDd1l8sei9wBI5mrcvGIZty14F6PXgb9OwC86qfuBk1V9EyzQLqlEKv3494WIpWwM\nlyk4OyJEK/y4utP0TnchpDV0t42euUFMGbL26ribwgxXujFkAVePgcOdxmlTUaIiclzAsJskcgwU\nl8rE8g7LmqjLi7NdIWO3wNDaPDLP6MTRJxLYbtmqOV/3Yzp1MnxxLp+8BbCofz0RD4PzU6SyTMIV\nsKr6ba729SPoJmMfXYp/qx0xJCPH4bE9cym8/hDf2H4DgxNNPoqOG6nwXe3rZ2i8iXbBIOHR1lyc\nOrwW6T/FSiwkI3YyNxxtbVC9f1+fP1jUd+fYEE5vivSEOMO7M1kweS9jfd1M/bm19pz9i1u55e1r\nAI4Bnr7TujFUkWTe0fuqpqSFBb/8PmcX1lLp7WXHMxOJTE7hFdMoYYETH/o+ADeNXkdOwGoFSWUY\neJvBNiSixEzkqIAcFcip7GeSp43zx+xmzoU7GL3mGpoP5ZLIEbA7VQTVoimbIqR8woh/u6dLJ3un\ndQ92nq7T+c006Xofk9xtuD/1kHNmOx+Pf4PXK6177onidSzrmMnbJzxB9GAQZUAm3etC7Xdy8azN\nI1Z7ANFzw8iPZRHPFsk9qcP6/ueEGNyfyS8uf44LvXvpuiBN4xlPcmf+e/SdlmLvrct5ac4jBEYP\nIiUglm/1edsiAp6tTnI/tK7dtlSa3X35eF1JTPNwZfzviC+rQJa9ceO/DIge83llVpXmSLV06p++\nN/LSDW1zuS7nE24/783jHss43GsuaCBHBewDIqJqFWEyaiMYPX0gCKi5fhAFSCQRFIXU2TNo/mYm\nifI0vmn96JpEhi9OgWcYUTDRDRHDFBhv70Q3RQ6FsnB1WolsBPB0HKbqaqBEdKSUTv/iKoQiK5ls\njq3AyPQh5+chl5ci+b68n1To7Edw2Gm4NAPRraKlZWyyhoGAeDwp6yPvNc2vIAb/i6Pyl/d95euG\nzcoS/Ktj2ikH2PZx9XFf/7x1i1AVJRW1Y+tUmHlaLeu2j0UZ+nJMX/7KMIZNwpRFUpl2uuZIFEzr\nQhBMwkk7YzN7ea50DeV/vYnG8x/h90OlzHI28NzAHJxSmjWdlfR3+BFSIsGyIYYGPZgxy1DWfsDJ\npLMOELo1H/O3w4h3+Hh15dN8r3M+W3uKiO7KtL73E0u4YPF6fpm7m8pnl+CpHqIoEOLNylXc2jmD\nLX3FaLpEf4+PzA0Kkgp90w3KXtdIZch4D0VoXRRA1CBrt8pQlUIi28qgHI8CHi21bmx3m0jW4nb6\nV1oV5F0/XM64DVeirPuKxui/ibxvtFJXX8BlMz/jz5/N4ps1W/nrniko7TaojOHYaGUTw+NVXI0K\nqUwDd/ux12Phtzaw6pk5RMoMvE0iEy/ex7b3x1lVib8JU4LMhR30v/c1WSARfvrt56hQ+oiZCve2\nn8lro1czdeslRKJOHNtdX/3+Lwm1JmIJtkTseA4qlkR+v8At17/OC201VPj6eaJ4HRPvW4o2M8L+\nuc8CVu/I2sEqDvTncP/ElxmnDHNN/aUc2l3Io+c8xm0rvkj1TOR9hVzwf4OwD37xmTSnhhG2+6hd\ntnyk6lm7bDnlf7mZ5Wc/xUJX6h+uhqoe0/IKzExjrz26MjnyGcaUCOIOL9O+sZdNraWkw3ZcTQrb\nv/MAUzZey745zzF71wWU+QbZ3FyKHpc5ccJBNr8/4Ssr6iUr9iO4Xagl2YhxlcHJPoL7ooh7GzDH\nlFF/h42Khwz6prgxJStjfsolWzjdX8sHw+PxSCmiup1Vq6dTUtPOofp8Ssp76dqUT3BaH4Yp0NcW\nJG+tSGiMiBIBV7dB7MIwiQYfht3Ev1/i28ve4vmfnY2jXyWZqTA0VsQ+aPVfZa/YSMUWBw0zktbk\nlZNJqjgD+aNtDHx7NgM1GjPHN7C1pRiz28GFp3yGQ1Qps/fx65cvwNUF4dEmtiERewiGq3XG/s5K\ntDVcW4ioQtEHUeputDH6SY22M1zkzOqiwDPMjo/HoAYNXK0S/lO66ezMoKqkm9ZPipl11h4+2Tie\nvA0msTyJdAAKP4yh+mxERsmkMqzet18tfRIJk5/fdS1pt0D2hj7UbA/N5ziRowJFq2OoPgXXwaPJ\nimRFNo6GPoyAh0XPr2eco50DqQLWD43m7Kzd3HvwdPSPM1EiJkrcJJZvLTZUt5UIcAxAIgeKVsdp\nWezEVw+eLo2BcQqF71sUv9D4AN0nGaAY+HfZGJ6cRojJZOwVGJimU/GSxpUrVnKNr5c6Nca5m28m\n1eMiUCsyNFnH0yjzzSvWcnd2LeWv3sTUExpofKGS3PVDtC/IID0jStAb55rSjayoOwnbGwFc/Tr2\nwTRSJEmi0Iuz3UpmHLo8iGBaFZxohUYgP4z0VhDdZpmrpzIA06KS24dMAvUxxHgaDOg6NQMlYiKl\nTXxNCeL5DjpPEpBz45RlD9Ib9RBuCDB5egP9CQ8JVaG/NcDsyfWM83bxRusk3A/5SfslCzgDsVwJ\nT5dGuFgmFbQy/2LaJHfDEEJrF51XjydvQ5ieWT7SXihaHUaMJNEPHjrm+ZLGVdE7J5PQWBMjU6Wi\nqJfTcw7gEtM8/8uz8LamiBTbSflFDLulEo8JhsOk6skQ3fMy4MxBsn7npP1UJ4IGJW8NorvtRIud\nRC8bJtLnIbBTITRJJbBHIZ5nks7UaTr3UZZ1zOTBUZsoW3kDVRVdxB8aRTxbRI5DPE9g1JoIo/7Y\nxL4/TGDOHZvZcG8Ngb3WhHboRw6MbgcI4G20KLQFa4bQPXYSOXY8DcMj59l5WgamaF0b3+Ud6IZI\nS4NFRRcMAbwqYo+drPF99HQEuWz6Jj74/Vzi54aRPvFjHzLprzHIKRvAeOmox2N/jQFeFXujg2Su\nRvZnEgNTTDJ3CGz+1Qo2p1SSpsKNW69iYcV+3n+tBk+7SWgsXLxwHe/fP49f/PhxHu8+Cb+SZP1b\nk9E8JoH9UHpDHUXOIV7fNxmxy4Gogr/usHVQyBzpw4/nWbZXzl7zGNFJ7Wum5mnX7OazzhLSe/1M\nO/UAB56r5td3PE5AivPcwBzWPXFUyT1cYeJrEEj7LFXkoakawe1HW3C+cfMnPPfxiUhJgRNP3sP2\nZychGCbbf2wBmCMANzQzDaJJTUUzdc+NGdkW2GRlv4Ym64geFaHLwXMXPMgshzSiW/LAG4vJmNxH\naEsOjn7Q3ODsMRE1iBQLKFGIVOlIwRSedS6u+87b/OHtRRgFSTbOf5BTt9zI3lnP81lS50A6nz93\n1NCxuphYhcqUMc3UduUjSQaJkIMbaj7l3Z+ePHJ+3TNFxNIYyg4PifEJbjxhHU+sPJ39Vz/ExBXL\nUGIWwLnwho/4oNtaY+sP52Jb2kXjoTycbTK2sNXniwm5WwyiBRKuHh1RB10R6DpDg7RIYK9MrPDf\n0wVA8xjI0ePX9uquWUHV00v4w8VPcuvL1x13P0+rJUAomFjFL+GoWKEtYpKxa4i+GUHsEZN4loih\ngLddJ1IsIZ0ywLkle5jsauW1fqsoElASFDkGyZYjNKWyqbD38MHQOD7dUc3oF9KWR3MogZrhIh1Q\nSHtFDElAdYNzwMDVm0YeSKBlOomOspPyWyKs9gEV5UA7el/fF87BmD+FoSoHQ/OTGKpIICNGTX4L\nkmDy8LRnj3vu/9aV0c8D0b/t7/yviIPXrcCQYdvH1RjlR+mR6ZxjUdbnK7NmnccSnQA2fTj+uEAU\nQA060N0KUlxFjusIGnR/lk8sbSPDlWBjQxl39Uxi+uRDzL/pRl5onoGOwJpXpvHqxhoGmoLY+mVM\nl050VyZivw0xKeJwplHHxflRwbvUX+WlcVsRnacEOON7t7C1pwjXU0HKX7EmnMvPWUtYc3Jx42ko\nFRE0Q+TFijepWvst5vsOor6Sw5apL2PzpEllCGhOqJlWT+NFEqpLpPEiP7rDREpA2itiChYV19n3\n5YOCKYKnWeTBc5/ijptfpqm2gNScCLt+uJzJv136DwFRgP64Cykm8pf35rJp8f183FFJMDOCo19A\n2mMB0ei0BL5aBTnBF4AowKpn5hCemMZ06kSmJNm8dixS8ii952+jZf+Xi10cEwbc9dIVXPTSbVz1\n7pIRD1H1k8x/CogC3Dv1L9i3evActASIblz8PntuX84fnziPHFeEDFuMk/eex7rb7mX/3GdH6LcP\nP/kNZMFgd82fWdF5Cif9+QcMpxw4iiPctuKmkT6t/9tD2G7de+MfXErtsuUkqpNUvHwzpmJwx5PX\nc2Xzyf/Q8eIlKvaxwzi7Jey1ThZftGGkan0E1Io7vCTHJdj21gQURR/xIp360Hcx9/qYuOlyUqrM\nxr2jycscBlXALuqkA1+TLLApJKrzMEUB3WMtWOpucHDop5Mxd9RiGgKh/4wjJ012/sdybCf1s3LT\nVO7YcjGN0Sxeb5jEqtXTcbcJfKf4YwRNIKnJpAvTVAV76esMUFLeS6hSRHOYaLPDGLKA7V2/5Ts3\nIFFxWR1vjsskliviaBliuEIkd7OKOn+Y3D/tRpgxkZZzAgjTJ4AkIWg6hmJl1bO2hcncJLP7nWpO\nqahH0AW8UpKgHOPN3smYkkWZE1UB3W7i6dDxHZRovd/D/u8VUPFUO4Ufxeif5CaYFWH1y08zam47\n543axab95bgmDqGERHzNBreXf0BVSTcNPVkIBpQ6B0bEMAre7cLVadI1x03LIpGctd1ER6vE801u\nWfUtfn3L1fRNsRa1nQtyCJc5ydphkrVXx3BIOJtDIB4dc44AUTEU5aFXzuaWp2/id58uZLq/hU+G\nq1B1CVvIEjuK5VlANDIjQbxEQ1RheKyOHAc5nESpDBMtOVbkKlrht/o2AynQrGpw3ocySCbxMyMg\nmHTNcrA1UgbAbY0XkfmSCyUkEi6H6uVhYhOSrOurAKDwA5Pa7nxy1w+RzPeQmBpn8qgOctxRHnno\nXHLvsWMo0DlXIpllo31hBraho/5zRR+pSElLJVdMiAwPuxAMK/mhekEJW1RKOWYSqobOkzwMTAlS\nf20Ae8jE1aeTuGiY+qvt+Ld3I5hQnd9L0BEneiCI4ddoGMxCEg1K/IN48qMYCDyxbS4DAx5i+TK6\nIiAlddwH+y1RHUkgkSPgPbGX7O1xS9wnmiQ9pQJRNTm41IGzz6Dk0QOICRW9rgEpNwepshxmTUKw\n2zGb28nYFydnMxCWCSWcDGpuXGIKW8wgNNpxuN8N0l4s39gxw2TuEBiYGkRYOEC4KcBwuYOsPTrO\n/sMe1rl2JNUkOuxkyphmy5/PbqB6wD1pEF9+hJSp8tO8j6zxIy7R/FkRXXMtb01RN9HcoHkU9gzk\nEykWeff1WUhp6/jd8zLQ++2IaQFPi4hzwBIuSWe56JrtIpEpYtqOgiVnn4EtbCVGeiMefPbkYWqv\nhJgQMJMS42qa6B/yUlXehY7I0FhQVYl4TRzDBlmbRYZ2HAWiYKnfnj9+J94mE9uAVW2XchPoF1rs\npTGKxiuDM9Ba3azvKkeZYVXZA/th+5AFsu5pWcjO9lF83FCJo9/EVhUmsjhKZ9TPylUzMZIytpCA\nXB22lHoDxz4rrm4Td8exQNQ4jph9pASGJlqlxJ6kl7IMK/HzQtnHPHvnffzgoRu45snv8k7dsY4J\nUpFVCRuhAv/NVJuvhPjD4qcpmt7Bzr4CTrhqD/H8Y/eJlEBxwQCBjXbGeHpQ3db9ewSIJjMPi11p\nIobD4PJPbuQnfeN5unE2iqBb7V+q1W4gaof9n0dZAnWmDL42Hf9+CS2iUHZpPbcEW5h9Yi0OZ5qr\n6y9m7yxLhGltrJrXeqZSXzsKU4RbZn+IZkqo/U5c73lx+FOsG6gY+d66TcA1JsTM4mbsQybOWicr\nf3IquVsM5vzoO3zrktXIcZNoicGTn863fn9ToH2RTtfaQrx5EezDlrKwWZxAjgl0nAyhCRq956cY\nHCPRN0UAXUAKpBH+v6ubfW18FRA94iNad80KFrq+umfLlI8CUfPwY6o7rL8l1fKW1p0Cus0SEU1m\nm/ROt9gwed4IGXKMtCmRa4/QE/dR6hhgjqueAnmIKa4WejQ/XXE/rjYZJAFDEUnlepAjKeSYjmNQ\nx9eaxNuuE8+RMAWBdK6bVMASaHP1GrhaYijdwwiyhOj4IovQdqgHX4uKfb8TEhLqYZbO11VG/63B\n6Ofjv9rC5cgxj1T3rp1w1PP082JJR2xkvizOXLj1K48vh1Kk/TIDky3vPTVoYJsUoirYR8uWQvwb\nHPx54yx64176vhXnlYlPsTY6Fs1t4t8nIaYsWtcV0zcdlt63bFESnR6Kcwa5Yvt1BCoGCezHyjR/\nQ2XbtJfpmS5y6FKL+7ppsJQSZz/bmopJpxRirT4mvXgrJ5Y1kCeH2PrzFZSt+jbfGruJ39/8CGVX\n1rPpYDnbF/+eoUUx0jkaNWfUEs836ZpvVasNmyXM8GVxZDK488Hruffhi/E2idg3eCl/5cuFaTYk\nmgAAIABJREFUWL4uBvu9YFiy5zc2fpMZea3cUrmGmst2kahIseuHy/Fs+2pfp+j0BE1nPU5B8QCP\nzXsGw2Zy+kWbqb1lOYbtWFAqWLZUx40TL9k+8rdtWMDRL3DVvHXUqf9ris7R6jQHkwUj/1/ZfDLX\n+nePAM6D/TnM8jTQtSmfjxPZjF1/FdGxVrbm1zc/yXR/CxPvW8qOLaP51lkf09uQibjRT3S0hn3g\n76cp/XcOzW2SOd+qrI1/cClypx3Dr+Jql5FqhtixctwX3pOoOv7kceGMraT2H+WYr/zLHA7csHzk\n/19d+zRlC5qg10Koomg9HIkCncLTWlGr4txSvYYXJz9J0zce4z9Hv82KBc/wwfbxfHje777yXASH\nHcEAZTCObhfJXt1C1gYZOSbQ+OvZuPY5SK3OJuf9Vk6+4QbemPwk9j4JWdHZv70EUTRRMzQcIYOD\nyXzGTWgdsZbZ1TMKV6OC+nge2bs0Rn2qoTZ4SfsFIqWWhUP5U228UvEBHT+ag69VJ16VScEncQyb\nQOFvRJrvmMzBm+3oeZmYW/eijStB7+hGCavIowpQMxzE8wRUv8mHn01EiQk0xbOojY6yTL8BLaih\nhAWUmEWRdQwZRLs9ZFYMcuC2AloXulDO6yOyP4NpP11C854C/vjZqSj9Cn5nknSmTtoj0Kd5aezJ\nQo8o+Of08PKhKcRHp/EeimIEPQgGFL/SjrNLAkmi9DWTMQ918MKi5ShRDcNmEj49huqB4UpIZogk\nAyLSf/ZSf1024cm5xwBSMRQlckIejn5LUdXRodCczGSCu9OS7I+ZlhF43ERKmQTXOnBkJpATMObR\nYUQV6n7gJNHpIX92JwPjFXQ7NF4cpONUy68PwURwaeRskLBFDIS0QCqpICQlzGlhHhy1ietb59Ed\n8dI/SSR3RjdV01tovCSIx5ega20hk+9ZSvsFGvImL/VXBXF0RSnJGaTu5TH0PFGGuLCfjvkuBqfq\n5G02EFWT/PVxxKRG76wA0Qo/Ukqn5M1h7IMmpmKCISAnTWzDVh+SYFi9fNFiATkmEDikozsswRZv\nW4rQaJlYgx9BF9h3p0V9Ptidg2aIaD4dZ7MNVZPQDZHhtBOfM0lUtVMyagCl3T5CO4/l20iWBAkc\nSmJK4Gk3iX+Qw+A4J54unVSxRcFNZAuM/fUQ7u4U/YvHYDhkpKoKBKcDwlEwTKSsTMKLJxEb5bAq\nvCLEUwouMY0iaMhR3Zr/RAvcZBwwyNgLiYQNd7fKwCQTYWUGmNa1Gi6ViJRa1i3hIhlDFrC7VCb7\nO3AMWLY3iVyD4bCLcLeXdi1FluRmaccsnF2Whcyi+dtYcuMb9J1tjUfKQJxQxEnpwiZLofh065kJ\nVxlkbRNx9At4Og265xlEyzUihTYEEzL2J+ib6kX3OjDtCsHdIZSYVU0UBJNI2o69V8JQTAzb4esp\n6OhRme+VrOb1d2ajZanYN3vQ4jJiGobGWpVx1S2MACcxJ8mdOZ+SyrDmyHiugJqUcSoaaxIiftHJ\nyr2TcHWKDDQHmZjTxUU/eJ/oNyIcaLOSwW45jd7lQo8ppBdYvbwOm0pHRwb+OlAGZHJO6SDR4SFS\naul8DC5IjiQEj8Tn5/djbPk+F94WCO6RSOQKtP2lnP0by3D1CFzYcDqrY2NJZlo9qr5Pj11raOqx\n7VzBHUfXjpEyuPetc/gkUs03C3YQ35aFakikS6xrOPXnSxiaqkFxgtPzLJnhtx4+yQLMEyIjx3EM\nmCiDEo5DdhDglOqDfNZfhiCY/L72VFSvgd+ZRPVa94CUMnF1m3i6dVxdJh2nQs75rWAzOPBeJVVP\nL6E5nIm508+q6reZsuVSdqZSnOPdRcAWx9so4ew1mek6RMAWR0gJlrhQxM6BvUVHz69IJNLuY+On\n49n2kxXYB026a0Sq79zLpt+sYOVPTiVSCrrH4J4z/kziuXzsssbSWR+zb8lydtf8mctvfo89ty/n\n59Pe4MbL3uGq+ev45oyt7Jv/BD+79jmU0REETURocyId2375vzU+T8X9e4SIjoQpw4w/3U7V00v4\nUziL0/adg5p9fDEfOW4iquZI7yimRd2V4yaxPBEpBVLSxJAFUgEBtTCNmqHhzo2R7wyjCBqqKZPQ\nbQQdcSY42pAwCUhxAmIcr5ikM+RDiQG6iZjWsfXHwDSxtw7i3NYMBgyNkZFSJppbQo6kUd0irj4N\nJWYQL3ETnpRNYvwoUvPGI5eVIGVbySi5vBS1NIdovoLmMRFUkWTSygANpr+6SPNvSdN956p7WPTs\nD76wfdVV91CmeP4lwPRfEQWfqjh64gxO9OPpTNM5z47mNpFjAqrP4NBlD/OncBa/euFi5MOVusxa\nnXCxRGZtmvbTFLSAhjwkI5bGSA86EFMi9j6RqgUNfDN3Gz/bvhip0YnmMsnaKRAuFbjqwg+5K8vy\n9axNJ1i86ruIbhXFrrFx9iMEJRcPhYr4w6uLmXHafh4qfpdL6i6kZU0Jz137e+5uPYd9W0vRnQau\ndplkjoHhMPDWyYiHzaz/HlGe/9VYcPVG1vWU0z/kRRAN1KgN394vCogkZkWpPfEppt9zCznfaKP3\nrSLk0/rRPjy25y48Ic2WMx/gtHuP3luPffcBLln1HXwHPzeJnJDCvffL+5F/fOPz/PzRK/6LzhD2\n3L6cifctpfKcel4bvZoxTy7BPiHE7po/85uBSp54+3Ts/Z/r0RifwlNrRzlpgJQqUzv7eTanVC5Z\n9R1+depf+H8fu+zowQVGMrXRsWk8+4/+dv830nT/mUhlGF96rLTPRI5bz7F9UMQ2c5D0powv7Kd6\nTeq+tYLxDy6l4sxGflHyOpNsVjbx+UgmPaqfh3bMZ3RBHy3rismc2U3ok6OVee+8XiLrvmjQnbNd\nxdkWRnfbEHQDw6HQusCFYwCiRSa+RivjbthMiiZ00zngZ3pxK2lDIqkr5DvDrH9zMsXvhZn62G72\nhgtoCwUINwWonNRG2+oSy07FC8GDOvZhneYrDTy7HNgHTRbftpb6WA7dd5UzXG5n+Iw4+S/YsQ2l\n6T/Bha9ZQ3MKdM8VCOwXGJpo4G2Q0E8cJtnoRfcYKIMSaoZOID9MaNDNZSdsYWeoEJuos3t3qQVu\nJBPvfsWq7vhNzNIEFXl9NGwtRstOgyayYPJezsnYMdJjD1D23vVkfWrD35TixkdeZVOkgjcPTsIw\nBIywwrjfdhOvzkWOqiRy7chJg+FShfDsBIUvKRT9Rx0bP6um/LUkcihJy7kZ6E6T0Y93EJ6aj297\nF90LRuEcMOidJlL6doLOE13knt5O8tECuufAmEcHOXR1Jqpf57kzH2auQ2TRwUXE7i0kVCFj2EFM\ngXTaAImtmdiHIONgmuZzJO5Z8Gd+tvxK8teF6Z7tI5FnovoMaqbWs7NjFIYu4vUkiOzJxNcIg1MM\nMCy/OMOnsemMB8iR3JS9cSN5n4jYIgbhEpnhcTqmXaf6D1F+9+ZT3HTgCmIr83AMGMRzRAKNGqkl\ng5gvZpOxc4jOnwmEu7xcM2cda3orke8OYtgk+k6wo80Jwy4fiVEaeWstc/PQeI2i90B1iRiygOrC\nWvgAgmGSyBJJZploZUnkJgdKVCA+LonXnyBeF2DirENkO6JohsSnH03E2SMgnjrI3IImRMHg4HAu\nk4IdfNA2hnDYSckzIqZsPZ+JTAnVI+Bt12i7TEOxaaT7XJS8qZPMkHF3pwmNthMuh8rHutD9blrP\n9pO1RyPtFXEM6SQyZKKFAqJqCTlJKZNkhkC8RGNMVQdn5+7l9VtPJ5GlkAwKSCmILooS+KubgXPi\nlP/OYPSKerb2FSE9ncVgtUgqS8fdZvlvpoImoiowfdFetnUWkfmsm94pMqkcDSQTFIOmM5+wxg5T\nZ9q9tyCYICUs0cD+qSaB/QLphcM8P+VJrtp5LQX/w6T+WwGUYZF0hkHRuG5iL+aTPidEuNOLs0Mm\nWZnC3myn+J0IXfO8BBo0ui9NIda50R0mo9ZotJwHoltDaXAeFlu0bBqkpJUUnzKvjqZQJlumvszE\nTZfjfN2PYbNsdwTNqsrJcWt9UHxpI+N8Xbz6zlz8dRAtFkjm6pwzexu/z7eS+JXPLsHdLhAtNsmo\ntRIF6elR/O+46T8tRePpT1Lx4bVkfuBgzq1b+PjZGpbc+AZbwmXsWTGRp+6+j9saLmZqRht/WT8T\nQRXI3CkQqobAAeszDcWaAH0Nnx/TBaTPJdM1l0BslIGUn8AwRHzrHITLLZu3dHEaudvGNYs+4q6s\ng9zRNZWPHz9q0bHopnW88ua8Y6xcjo79lgJqbEIKfzCG35kk/Nd8tv/YKgAEtyhoLoErrlnNMy+d\ngWPgcPU8QyCVaWA4DWZOOsSeldUkxqS4dPIWXlk1F1vI6ldOFOi4CyMk4naqR3Wzb1cJjl4Rd6eJ\npJpodgHnkDXPhyokbrvuNe7bdxruN318+0dvcDCex+q2MUTbfcgREXebQKzQasEK1uvc8MtX6VKD\nPLx5PrYuBVMGNaBT+L5g+T5PsQSSbMOWFVa8SOOlhQ9RY1fYmUqRJakUyl90Jriz5wTuyt7IGbuu\n5tFxz3HB+pv5zglrOde7m4t3X4dN1unfk4MStp7D5OQ4hVkhurbkH9fF4b9LBPdbOEBzCUgpE1MQ\nsIcN0l6BZJaA6rHwg+40CUzqx+9I4pRVZEFnor+Taa4mfGKS5/tnAzDXX89MR/PI8e/rOYOP1k8k\nY69A8EAcQTOQYmniJT5LSMop0naujtxjw9NqMTF0++Hrm28SOGBpHkRKRFxd1n0mpS2dgHiOaCWk\ncsyRa5f2maTzVWaObcQpqTxT8+Rxz/0fd5H93xBLD136pdsXPvsDDl63YoSyGzWSTHv6e1+671fG\n5xbp/8o4Ih4lqSYD4+2kMnVGrYHBMRK5m6As8G0wITh9gO3TX2LcQ0tZ94dHmLT5MjozA4x+YZi6\n79sxYhLakAN7r4wpmog6tISCSHkm9j0upJRlXByqNHFMHOL9H53Ep53T8D/UjV9J8MyCR5Ew+FnT\nOQQlFxUfXsv9s14inaNxWc5nTHntNkybCYUqEcNB3yOlCJMFxKSIOCOEokqo7W5UH/gaTRJ54Giy\nJqG/N5wLekm8by2qj1B2vy7uydtB9cpZ5NT0MBhxI3YqLLnxDe7bdTrOTUfV8nbOe5w/hYuJzUjQ\n+5aVuftbIArQtOhxJt7/A0QgmWniGBC4avP1XDhzC+8fnH30uknHB2pfBUT33L6c8g+uY83Jf+Ds\nP/zwa88PGKl81r9ZyUQqUYt1Dtb8eWT730JiT621Rf0kE9uJgyP7eYDds4qYcsFedrx62NT5c/f4\n54Ho/x9wxgWbWf1qDQDx8jRNix5n7CNLufiba3nlpfkj+wnal9/jtrC13T4oojlN2JRBMssgf1wv\n3XtysQ9ZrysRgfPqzwSgdnsp59Yv44rpm7gisIn/XHMDpeW9NJz2lNVf6jPpC3n4PJPsy4AogLNp\nCDXbgzIYx3AqDIx3otstQZ6M2sMMBcGyDunako+vCfacnc+emS/Qr8d4Ljyej6qrEF9L8UbjRM6v\n2M2+jjycxRHqagupen+YrpP8FK8K0zXPh24XyPhUYGBmGr3BhkNUWb+zCulsiaqnB3F3+eidKqN6\nJXK2G0hJHfuARuZOF9mfdKE5C0gHwLnaR3y8gRKSULM0lAEZ+7oAOYLAocpsZNFgjK+HfdFy7EPW\nJCglwdNpoEQNqk6rpy/pYfLsevasrSRrt8n+tyfSvjObvI9f4bJN36bupD9ZC/ozYfTzSzjfPUiO\nFOEdZTzppIwU+Fz/hyTgbYjQ+VOT3HvsBA9KfPQnSx17XjgDJqt0vlWEvWaQ9GcZtFxSiLPPRJtd\nwNAkgyGfCsMKzctMCp5VackqwJcpYBsUCI8N4uoUUIdlVnSfymv2MGN93WzwFYNo9QKlg5BhUzH7\nIdCoImgmYkrgR69fQV6rzuDdKRYVrBuxi7q86RQOzLP6bs7cv5icF0Xaz8zAv09iuFrH8GgEMqPU\nq05OfGYJzpSA6jYZHi1jH4LC1SaaQ0bzOVj88TJs7TYcMkSKRfyNOnJcp3dzDn7dGgNtbwQob0mz\noaoc/aFc7IkYombgGLAhupLEUj689TKB2kE6zshA8qcR0wqm2wInoi4QGyXg6jZxDBlIKhiKiNHp\nwDEgEJ2WwIwqSEGDk07awxPF6xg2EixpWYTutOYamy5R7uzjUCKHOVmNOESVWMKGb5OTdMCiKapO\nAX9DHLljkFRFDnMrGqh29/BM3al0zZHIn9NB67YC1KCG96DC8JRcQpUSRe9HGJzgsZIdHhkES3wp\nlWGiBnTEpEjmbkjkiSQ1BbuokshW0OwWEE1lCKitbjSHQMUvrfvqozem4WkzEUWTaQv38VzpGgDu\nGyzn9oxGJv92Keu2jcXeK+FqD2Mv8ZHKBQwBVAtYL+uYyfuHqhEyLfAqS9bCsOpJqy+0JSuD85tu\nw5RN+maKCDrYIjD+jEO45DQdLZlEXg9QWZ+wfE7bbageAzGp4uw3aV8gMKu4lX0bxiInLEsfW8CG\n25kiFLBjC4mYNgNXbox41I7Ubaf5sSqS2QJlbTciD0toi6MjugUAKVPFLijU/McS6j6ooH+uG0ef\ntdiSUmAbkKh09gBwceNpmLI5YhHTN18luNmG8x1rXvdud1AWvRHBozFcCdv7i0j7wSsluSt/FYtG\nT2Txqu/ibJO55uoNvBqcgm2/EzAJHITk+SGSrT4C+8TDrQGHq00qxwBRsKpOckJAlA3sm9yAlcwD\ncPZYbghHkvv35m/nzAsLaFlfhKsLnt8+E+U4U6sSMQmNNTDTIsKqIC3TVZoO94oGtygjn/3S8tNx\nfG6ydgyaOAYFQKJu9xgEP9gb7by1bx7uGGBavdiBfSLs82P6BPJHh9knmRg2kNImqYB1Hw2Ml9Dt\nVpJAEgziAy6yr+ji15sXIvbaWXTKVpacsJaxNhd3943j454q9IcthoJN0Blt7yErN0yiLotUpomr\nVabvBJNAnYmUFEgHDPRSKwno2uukxm6d15U7ruPuCW/xju7hSm8zLtHGqridddEq2uJB/KKTzVP+\nwqPDZTSc+hQAfwqXUuIfIqbaiXcJRIsNTMnkorE72RMqQPV+dV/m8eJIv+b/CWEoVhLEUCyWnmPY\nQNStSqgpWcnltN3EDKbpawsy3CcRqLeo3PVKJc+fMIOakhZEwaTa002BPIRXNHALIknToC9pMYFS\nQQHDLiFIIoJuCdWlfRKpgEhu7iDpTIl4uY3UkANHRpLKnD4GEy46Xdl4GiV0xxH6uEAyy8TdablV\nJHN1TNnEUESL1SGAIJvYRA1Z+OoCyL9lZfR4cfC6FVQ+u+QYqsXnxYX+mfiy9y8+axMr3/16g9qv\ni+JVCcuI2jBpO8NLckwSry9BjjdK+ydFZMzu5vT8gzy7bh6N5z/C9P+xhKH5STI/dJC5c5hf/fUp\n/uP8a2k7M0C8UEcJiXjaIVoMv7n4WX7y0NUYMgTP6KL9UA6N5z9C9WNLOXDDciZtvgzXK34+++3D\nX1BEvbzpFGoCTTy08izslWHs7/kYnp/ggZoXWfbB1QTyw7jtaQY25KG5THJO6CH1ai4pv3XjuboP\nG17/A+PCh3fcM1KR3PXD5ce8djxgOvaiA2zZUsXkqQ3Uv1VJ3sI2DrXkIjk0RMHEucnN9h88yGVN\nZ/BA8RtsSuVxnjv6dwHdIxGp1Cmo6COy6tg+UeNr0jRHJrbPx5Eq5z8SXyXSted263d6Pebhx49c\nzeu3/JYKxcPE+5aSyDVx9vzzacJ/18roocsf/i/xFLUPiugnRJB2eo/ZXnJGM+fl7eSBZ89DnRhD\n2eOmdpn1Ox/pJT3S77nowo2888rsLxwbrIyfLSyQzDIskYwe62FIB0zqr1wxcozM+V0MrM3nikuP\nshXGP7jUsmPxmGhuw6KH/oNR9O4w5o5ahGnj0T02dLuErS+B7rGRyLXRdW4aoceOUhKjJHOQfFeY\nfQ9NIJklkHf/Bn7TtIkT7FZio+qTqynKCo14gdVtKyZ7GwxOEJh28gEOPFtNrBDK5rTSNhQg2ebl\n/rP/RLcW4J43ziVzj0nmmlYiMwr5ZLklvvLhW9MIHjRw9qtM/O0u3tw4DX/RMMNtfpwdEprHJGun\nQfc5aUxdRGm38cIVD3BH/cV4bCkGHilB9Vi0YNuQgG6HqgUNqN+y03KfF5usEY64ME3wfebENnx4\nUVtj8P+c/gYvdNTQ3J1Jw6lPUb3uKtIJhVmjm+iK++joD1hV3JBKtNBOrEDE3WnQP1kge4eJfF0P\nt5evpi2dyS3BFnank2xJlPLaWTW8vcFSQlxcdxYHOnPxrnOx4vt/pFnNYpy9i+9fdhM9s9ykAlbP\nmuvcHjo6Mjh70h4eHLUJgGl3LyE0xsQ+KOJps0RbpISAt9k6B3e3SrhUIWfjEKk8Dx89/ThnLbyU\nd1dZquLlf72Jbefcz9pkDr/62VX0nZYmkBFlqN0PDoOXTlnBJe99h9On1PJRXRVyswN5XJjiu3Ua\nLwpS/pehkWM9MZxHUyqb9X3lZDujnJpxgPv/eg6mCGJaQExDokhDior4GgRLaAUQQgqYWK0kRUn0\npIS31kZ8epz8v9iRksbhSqiMqEG4TCSzVsPenyKVaafzRAk5IaBVxTE7HYxaYxC+IcyOGS/yp3AW\nV/v6eTXq453BSbjlFK2xDE7KrMcvxRnU3SxfdxquVhndYeJpsSoJqZMieFd6UOIG6x94BIB7BisY\nUt282zqOcFOA0gmdtG8chRo0cHRZ1cpYuYorK0681wJCeaUDhDblIuiQzNHJ2iZiyDAwS+W7sz/g\nlZ+cSfcsgbLXk6g+hXCxjKvPIJ4tEhpnMObxYXrmBsldf/R3/vz1m/j7pWy69fdcsOhqGi4Loual\nEQQwVRHFk6Zu/jNc2Xwyh0JZxNMK5vogsSIdJSLi7BZw9RpsuP9h6tQY52y6Gb3Jw9uX/o4qxc3k\n3ywlPFbD3iOTytZwdslggqfNZGCyiZSfwGxzoXl1ELBYCT1estfLDI0DzaejhCSM4iRygwMxLaB5\nTHSbSfHELno+GYWn1aRvpk72JonNv7LAVc1/LBn5e/pPljDnpq189sfpRMqsqqnusCo6tbdYY+2i\ng4s4sK8I76gwwkdBbMMmfSenyc4Jc2fle1zgCfPEcB7Duov57gNMs9uo+Y8lDI+G3JpuYmmFuflN\n7BwopK0xm6wtEgNTDZydEqrHxD9pgJML6nl1Qw1SRorge0fptUcEjGKFVrLQNmyiuQTkuMnQNJWq\nsm663ikmmWniafvi2HvHbS+zMTyaB0dtGhEgipSBt+nY/ULVJr4GEVE1ef7Oe7niN3ew/ccrqHjx\nZqS0gKfl6L5P33k/k2wOVFNn5i+WjWyXF/cT3ZBNqjqBf4ODaLElcgNWBdUxaFWudv1wOXd0TWX7\nYBHaCmst0z9BwjEAockqJ086wLq1E3jswkc42Xl07p/yy6XsuGs5Jy6z2qg+ffARNqdU7rhjGYNX\nREm2eHF3WPYiUlwgc79OyiuSzBIoXNzMKdkHKVIGiRl2rvd3AzDvlpuIXBXm7amPjVRGT1x2EwPj\nJNJjEyyo2s+q2vFkZYe5tGQbj9TOY05JE3v785mQ1cWa/VXYOmwYNsj7zCCWK6KdGUJeFSBa/MXr\n8d8pfI0WI8M5oBHPkjEla2xLey26dvjkBGNHdTM3o4HJzlaWvX4tSkkMjzNFxjfqkSpKaftmPlPO\n38t/FrxLxFBQTYkxikVlXLDrGkL7MnF1CcgxE1vURFcsAS7DBo5T+wjtySJYC+EyAXNChNKsQWZn\nNvH0tjlk5YQZjjhRQ3Ykfxo9bMObF8FtTzMYdqOlJYy0BKpIYLds2Q3ZwXVSH1muGKvmP3Dcc/8/\npmf0SPwtABjz5BLEMdF/+nhjnlwyIul/JO7N3/7lO/8dkc4/+gUHJjgRkxqxIhfOPhPfFgfSewEO\nHcqz6D3v5fHSwakUjrbUGP2Nae6c/h4v3W3ZgXzznVut7ad0YxsS0V0mOZuGsQ0LDGge0j6LujYU\ndyJnJNmfjiOMi1Bz1xISdQE+++3DnLXociqfC3PWoss5a9Hl3NUziaHv5HOq+wDesYPou/1Ei8C1\n1cWPf3ctGJDamkF4dR7OPhNnn8Cvql4jfmaE6GgNV5dApMywVBL/gciSrInedWbP3/2eF8s+Yu7M\nfbw2ejWiCgMxF45mG0XZQyOV0aiZ4uXyD1l43w/5yUOWAfXfgt2vClu/RGRV3jG2MV8X0XLtS4H4\nP+PneQSIRseo1Fy4+5jXfjNQycT7lvLjR6zzOu+PVrV1z+3L/2Egmsw2+eOSh1F9/74iAMB/CRA9\nEpr2RZDXsrqUe187FwBlj/sLr38+7snb8YWx4UgcqYw6+sURIApgCwnHKPUOrLXUKp5/8bRjlHoF\nA5SwgLNLIlF9/GaY+Og0ybGJEZuZIyFGLOEM4UAz0QILVDZe7COeb6drnoDDlebcUzYjSQb9fy5m\n62sT8balyLt/A9K4Kk6w25n6M2shlR2I0nQgn6Gkk5bBIEZOGk9bEkbH2NObj7R4AL08QWNPFtp+\nHzmb4UfPXMMbC6dR/lqU9b9dTuP1pYSLrAyOXVRhYoRooYjqkdjxk6nklA9QkdGPMz9KKsvyaowU\nS9gcGvZmOwXrNL6z/3JauzOYEWxBiRt4OjX8ddbi0dNusm99Ob2njEIUDc4oOsjo/F5GZYcwZMsU\n3NVngemmVDYfjnuT/CxLxO23U15FkExkUafIM2RNmIqA6pXpPkUnnmfRjuSkQCJbZOjDfM5zR3ni\nkbP5RX81k2wOrvd3s++uXKofX8JnSR3NEBEFk/DsBJe/9R0eaDyVCzbcTOwnEaZesgfGRpDOHqCj\nMYuCVRK7fmVZqbRqUUtQRxPwtphk7hgicAACdQZyymRwQRJHV5ScjUM0n5dB65lHs2KJAWZAAAAg\nAElEQVS6aS0ixYRAUHJxnjuK/cpuZIdKqDkAdgPJoeEVVC6euZkPN0/As9WJHBewr7bEu3xNjIAi\ngF+sPYeX3p9HS1cmL5d/yO92LEBKCCgRAX+DiZyEvE9EdI9BuBymj27Gvc+Os0vElE10p4kgmFQ8\na5C9K4XZ4yDlEzFlAWfDAM5+DVtUx91hksiUGK50YcqQObGPWQv3cMcJqzEU6JsiE444WVx3Fu8M\nTGJbKs0v/nAlM3xNnO6vpS/hxiMlSZoKO4aLEd0qhmKpWcspk2ixidbgYeD0JNnLmpm69RJUU+fD\n3mpWd1QzMaeTHy98Dce3rd5xe6+ELWKpp/v3KsQHLb9FKSbSeyCbVNAg7TcwFRPngE7O2h58e20Y\nptUvLOgCcjiJsz2Ct0PHMaASKzwqZOLqNWg9+4uTZPlrN1G4apAmTWdoUgA1qDO5vB3ZoSLEJRxO\na0KocPcRTdrRNwdJZpv4DkmWYvGsBO4bLQuNzxIliLu8FL+fZtHLlkWIqEPxSgjUGxSuFnB1mTj7\nTIbGg7t8GC0lI0cFxISI5EuT1iQ8hxScAzr2IQEpJqIGdfSIgrNXONyWY5D5P7l77wC7ynLt+7fa\n7n16y8wkk0nvpCc0aRGIFEEIgihSRVB81fMqemzn+IodMBERRJDepBgIoYQSUkjvk+mT6W33vsr3\nx5PMEJKAoOecz3P/NbP2Ws9ee61nPesu131dOyVssoGnQ7w/ijYpDCw6tvdt6p03Iedgd7gc3Qnu\nLovCpT2YKkex7wdsaZS4TOpggOhE8UHROhtjfGG++e4lAPTkAzz287O59o5buaDxbDb/dBW2uETm\nkVLCHUH+9s4cDnWHcHWoROrBcuu4u0T/6+CAl9ZkAZ7KGHrm+JllV5eAu1qyRGJ6hnSxxKRx3cwM\ndVJ+bvtIIPqD2/581HG3r7uI1RvE8xyeLc7dcB+d3M0GJJy9MpIuCLXOf/Ib4v6/+iVc3UIOqPTS\ndrZ9bxXpIomrfyYQfg/Gjmbx118sRHcLcqDoBOsov8MxPNojChDUUnhtIujIeWRMu5A7Cm1Vee/Z\naQBETBcrWk9j6sYrmPD2VXi6jWOuyzy7RucykwUV7ShZwVCcD5ggQ9Ynk6yQWPi57cSyDrZGq9Ek\ng/M9zczddinztl+CdkMvX5/4Gpd/7Rssvfl6Jv3+Ji7+8Rr23bQS+14nO4fKsfIyLi3PO8PjqCkc\nZtPfpuG4P8jm56bh2Sva2UzNoutU0BLw5pz7uOaWF497H/83mSULRAmAmrVEUcQSbXGmTaKyKMyZ\nhftZ6G4kadop3WCRy6oM9vjBssjUhNAd0BYr4Ln4dLr0AL2GnwHTIo+Fx55FL8iT84LhkBicKRGv\nlYjNyZJfEGewJYSrS6BMKt9MM7m0l5NCHbzcPQlMGGoNIismskf4I/ZQGoemMxTxkEvYcLhyyDYD\nWzAjIN8xC3vYIhJ3Yn4ExvpfLhg9Hquu2XAsLv3jmHTs8/iJTJkYx9YzCrKzxS3CU31oCQPXgEls\nThYtAe4WTZTKA5ANO+geFOLfbedpFKsxrr/8KwBMuFc0sa+f/gy5gImclTBtCqYCUcNFoNHEcwgS\nfR78r7i4eMt17F/8ENHx8Nglv6X+QeFsHrhh9Pq88rvFTLjvINNtDpJpAR22RYSUgeGQsA+oGHYB\nq/F2GpgaPDa0AHOfl2sXvYmvw8A+JOPs+3hBTXNeJAy+WLOBrDXqWE9+9/Mkq46t0sVnZXg64ePt\nvfXMuOMm4uMNjNcLsMWg6/D12vmtlfhl58jfcOIq64nsiPbokUD27zFbWPmn9cweISHyNGhsfmr6\nyPbdt63kL38+85j9P0nAm5iQp/HKVXx11Q1osU9eTf1X0xu17zl+w/z7Rbs/aE8kRgmJptx90yde\nG8xZ8RFSqyOV1/fb1SvWjPztPHBiXVtXkw0zpTKpvuvoDxQFae40jOl1BHcOIxkW7k6h/2s6TKaU\n9GKXdRZWtBFoymLJoKzbhlozBsumMu7xGyjYm2HG5sspccXBo5PK2nA7chC2wQ+H8K92o+sKw2E3\nzm0urp6yEVOFwfMyFO3U0dsPcehbFg/EyslU50iMsTjnwLlMcPUyo7wLyYRUoYJhF1ql27aPQ98v\ngiIlJ+Hstwg+7aZoh07PIpW+3gBjSofpzvpxN8fIBBV0p4AtZQol3F0S6RKJZJufn5Xs4IaqNxnn\nHxTSLM92kvPK2AcUhvNuTtv7Gb5f9wI3d81nuTvFqXWNrN80mRJ7HFkVpDI9i1Sqn4OibRapCgPD\nYbHsmnfY/bWVnH71l8mdHOOvd53G2Keu5xs9s5k7uYWi7SYLHAqHwgH0rIq9wYmck4i+U4IesxF/\npZRNL04jl9Z4evr9yBmZdKFMziMzdeMVHMgFSZVY6H6d2FgxD3WnYKbMBCTse5zkCkWSRM2AVTK6\n0HyvfyY7stmjnsPOhmJ8r7mpndyDq8mGw5Hn1eQkHIeztrHJApbp7TQwvA7e+8kq/pYS8+2VlMbC\naY3U/SWMNGxjY8ag6bQ/Uf38MGUbMsRqJBK1Br2n66JaVpKlNVKAeVjL8Ounv8xjy+/ijSV3I+dN\nbANJyt86TIZjWORL/Th6k0gGOId1DLuQ/EkVKqiySUhLcoqrEVuZeE48ngyNfUV8rWwtc+w28qdH\n+fm2s8hbKqYl0ZwppkobQpYsZMUi7xUyXn2LTGy1cYzyLHXlA9xU8TrPz7yP34TrOat4P3ZVpyVa\nSNK0s/+bZfiaZdSMkGNJVepEp+VRIipaMEvh5EEsxQLVonDyIBU1g+S8MvlyP8GGPB3ZEMnKUVmz\n5FgfWNCz0EHwgJDiGrEPLDPPJ13IwRzt31f5zFNfJ10k4+hWSesa+aQNT7uMpogFJ2NqZFq95D2i\nn1PJWEhLwzy3eCW9L4lWlEcvPYN9X1mJZFoU7hTvY6F9qhDcFaH/JJlUmUSyXPROxgc8EFdRslAx\npY9P1TUQdKdJTs3g6ogR2q9jBHS8pXE8LSpa3CJdYqIWp4ksS9L98tFlKTV8bJCXC1gMnmQy8GoF\n4fk55AsG6Y96ULLieT9iXi2DVhcnuFcEtsPTLAYW64zzDNJyluiZff6XQotcTcG+9WPFupE5zC7q\nNNDKk5CTsS8cEpc6Lyp2jgGJa+e8g1fLYpoyV8zedMx5giCXsYcPO/yS6JF1qTl+VrKDc0r2juz3\nre0XH3VccIdKWf0As398I63n3gtAYM9xpMQUiEzTSRdbYk4BdmceLXmY+fiJanHNgsL/mfWfN3GN\nv5dM6OiJ4+4W1Vt/g4R9WPQOftB+NTyWd4fGsqetHEuG/lPz5EryI5rBrj7xXH79tRVUOCMkw05o\nPDYZu/Tm61l68/UEt6p4tQyTF7WgZizktKhw22MmoQMGW++ZSe7REtqiIcZpAzwem4zj/iBvz3yE\n3vUV3PHQZxm4LIXrK104BuGxn57DjJ/dxPPX38Fg1IM2qNL3bjnbm8fQ/+wYsgUmnWdZuLstAi0G\n5W9bKGkJX5NC+NMpgoqLL76/8fdj2MchHPqfHBPEmu8cHM3a2GMWSsbC3WMi5yyiaQcp00ZAzmAg\nkSqSscI2UMUccu7voea5MN1Dfp7umEXG0ihVomQsBeMICDYn5qphA92vY02OU1wcJZOwYXl0yl8d\nQHephOsctIYL6EgHmRjsx95lA6+OaUr4/SlkyULXFQbag+jDDqS0QqrPjTVsx+h04W8CLPGb/J6P\nZp/6lwpGPwyO+3GlXz64/5Izdn+ic3q/GQeOhgTmPRKWLJEq0YSwbCBFqkQiNSWDLSIouN2tGjZ7\nnr+lHDRf9nsucCeQfjw0MkbP0gCzf3QjLZ+9B7MmzcGrnRgO+P3upXzq2+sZnmUQ3KkwuFDnkTn3\nMXfbpTR8cRWXb/oyALrHxsTfi0BweJof1yW9NFxTD4C814MUzJEptEiVW4JAaY8QSC7YmyETUAg2\nGLzdORZfM/xp9elE6hSKt5+YDexEdtGvv8XOb63kd/dcwMQXvsJ90VJu6Z6L9o4PJXXs4urd7iBi\nuPDtsZGoMfE2ihJVptAiHz0+udAR+0bP7KPvg/cEO35Me+vWX5CYksUWlph24f5jPt/wNQE7z845\nlln3COT2g3a8Xs5PAvf9MPM0aP+U8T4I9/5XMN19dNJEd1rkPUdve38l8y89C7n0c+uOOu7Oa+45\nZtwzL9583O87EnjuX/wQ9Zr7qPHfbw88cvbf/Rtc7Rrta2uO2ma67GQLHEgbd6EHnAxNtmMpEDyY\nJbBLpdCe5OLAFqJ5B9U/PUj1412s6d6B3tYBB9tQUxLZkIb1VpBn6tZSWzlAbMjNGF8Ygjm6X61i\ncLZFvt2NFbWRnxfntf4JOAYlXll8N44XNqNMmYDjVS9P987m1CkNKDnoeb6aDdFxbN42HiUjWFQj\n4xUCG+y4uhRy5Xm0MUlcPRbpIgn/vghKRjge6qBG+6FCXtk2jVyJG8kUWmfZOQkcQxaZIgg0GfgO\nytS/dRUXuBP8aczb3H7547StqGT9b+9h/w0refPZ2bQdKiJuOrmq8B1ACLmbPp3BnAe7I4erz8Qx\nNUKqSMXUJLxVMfI+g43fnMuUDVegO2WUTT6G5upcsnQTPyx5l3DWRcltzXynbzqZtA1bhw0tDkjC\niXK3qZx35TsUn9yN0mPnlNduxVaVFJXQy/v57YzHeKBvCd4OqH4OxqxJEJ0coHBXGnvMFNJaHovo\nWBvIMqnpacyYxm/CNXSdGeLd2+fzcHgB55x/BcvOuYxl51xGy2fF3OyPe8gFLFz2HLOdrTzTMgO1\nMINkNynaFMYWzSP9aBCAW5+7GoAbX7iGR2rf4MCtHsrftFjgEGtseFqA5s+pvP7lO1i+cCtyTLCm\nau12Mm8WEjyllwWf2cWagclc9vb13NF/GkpcOBvpAlmQWmRN0aIiSUimhWGXkXOCRyHQnKV/Wwln\n+3ezO1fGgSUPUbUmzrjQIN5X3dzyw5tZ8tXrsd7z4/FkeLRvHjePXUd7KkR7rghNNjD7HJh2i3Sp\nhaRLTC/rprgwRubX5Xz/4Gc45a2v8mrfJGTJZOC9EsJJJ/c3L0TOSMTGmSTG5XFPCSP78tj8WUHU\ns9/NUMSD5TZw9Cr0NxbSv6OEwJ4IpiqTLFNpihcR3G9S9q5OdHIA+1AeV0cMyYLwRIn84byvtzFK\nzm+xOSuSAi+9/Bgp047S4qD6RzrVq/MYdth/w0q6Yz5mjW8nUW1S5hUJ6A39tVjFWZwDEo7+NLpL\nYue8R/nKTbegnTxE2EjRcklQSLYNpdBSYr0qWzdMYozEwS8GmLCkFd/CfgKNJpIuEdihYQvLpKoM\nOpuKeWXbNLr7A9T/ViQ8DLuMHFdJtvoxbDCw0MDVK6OqJnqfi/SsFHn36LtazUh8u09UCI9AdItm\n9mHZTNKlJmdMPsDmWU9itHmwJgof5NpDiwF459BYtHd8I8y3F39qI63n3csbvxltizA1RpApcp04\n3ha1iI63eO70uzF0hVmT2oiE3ehOC/8eoYFu2uD+tadxeeFGkhEnL61aMjLm+5l25fzhymLOQumx\nEzggsfVgDX+IlvPVQAvn3/CWWH/f8Izogh6x9HMlI38nKznGUlU6mTIDe7/K6cu2428U1835+tGF\nk8W7LsI3VvQBb/+OeHfYBHEwiVOSpE9PIBniPBPVkByfQzmsQmjJEpHJJrpL4g/7FtP8TjW2djsD\nM2XIyLhabPz4gseoOq2DwdOylLxnUrBFoSsdQEopKBmJVKHM0puv5w+/+jXheoWy25rouyRDeJbO\n1v+Yw1/HryFWI6MdrvinCmWyPplsgcTgp7JcOmYbV+28mse/fw5v330Pk9+4jsJdBgX7DYoec5Fc\nWcHCL25DS1ns/PZKxmkenOs9lLxnkqnOYnfn8HQblGyAylck7PHRwkTJFpPYeIPygigvp+xcdPDC\nYy/032H/Ff2i/1U9qGrGIutXyHkV1IwglRPyURJayiK9pYBN4RoeC8+jQEkQXZJBTchoPTaaf7GA\n9s/X0HRFAIcjT3+/n5eGp1OkpDEtibglYVd0bEPioUqXmWi+HFPLeogknCjDGnVj+olNDqG9upWC\n+zaQ2B/kUCJIWzyEMT4lEBwSJPaEUPe4UVqc2MIKWkRGScnIWRktIWEflHENGFgqZP0SWV0hnvtw\nv/0TBaObNm1iwYIFXHnllVx55ZX8+Mc/pqenhyuvvJIVK1Zw6623ksudoBHuH7QJ99/I1qt/fVQw\neeXyNz7WGMcLXN95ddrI30eqeP+ohfam6V9goKVMbFGd9MEA7l6TgjfsVF3RwpiXIuRmJlBVg9t/\nPSqEK33LT7Lag+lQcfWblGwUcDOtwYWUl1HTsPfk++lIB5EMidhYcIbSfP73X+e92U8w/i83clLV\nIbSoROsFIgveuyhArFaixjdEYqyXB2OF6C4LpcNBcD+Cyt0uoHO9CyU6zrSTuihKskQmEXFij5vY\nwxL5ueJlaaonri4Zdk4oj7LzWyvBZnLnPRfx5l/mAuA4jvRIzg9P984mU2jhaR+dppYKrcsFwcj7\nnfwj8M6cH159aMFRY2mHWdJj00bnZC5wwtM/oZ382/8jCIRk2PLWRC668s2jPvfIDnbfthL71qMz\njicKRD+J7b5tJVEz/dE7fsD+7drHSUw4Aa/9x7B/tYD0g1VQNS2he46txB+ZS81rxvLE46ceddwt\n9x0rS/T87hnHbEuXjI47af2VXNOxhGnnHiAbEtuPVyH9pGY6VFy7u1ArK5B0EzVjUbo+yvBEO4YD\n1jRM4su7ruLemhdRZYP478UztKZ7B92PVFO9Ok28QsXXISoxd9Y9jqSZxHMO3N4MhXt0PO1CVFuL\nytw27TXa9pRT/ot3qdU8KMEgVnM7wYM50v+vnM3PTaN2YQd//fodzPZ2UPKuhJqCXIGBkoV0sUTw\noIHWr5HtcRGtA1+7QWRKgFSRKtgjVQutXyNQFiM83oahSViKuA/ZCyLYwhCpUwg25bBv9fCNntms\naD2Nh7vnc/llr3PuouUj1/msqXs5w9XH514bdRquOekd8qbCpOI+HMMG7kf9JMslwpMhHnNSOCaC\ns2mAvQsfpvNCAywoeE/liR1zuL1vCeHHKrmq9F3G2IfwbnJii0jEJumYTot4jYSahKdXL2Yw4cYx\nKOHdY8f/nJvEGJPhbcXc0bZM9OVakCpWOXSmh7xTIjLeifcWgQm0RSXxeZVwWufPaKJIjfOd6x7F\neSjOursWIOkmll1jcE4QgKJNYZIdPk49dRd5XeH56GzyeQV9yIHaI5JdLRfaOaNkP8vOuQw5L/Fw\nvACKstS+/GUm/jbB278TQW39m1+g7zQdX2mcz+67ilefnEfFmybZQoN8QOhhlrpjvLt6OnubKrAy\nCi+/ctLovNRElTdVrBGe4Eb324lVawzMUIQsmALxSjv2iMRr8SnsSolq29PP3Ev3H8YRmWCRKZDo\nXSSRGqOTy6tsbayhSIlhk3WihpOzg3uomtKLkpYxHCYE8nQn/ITjLlydCZxaHp83TcfbY1j5wjJk\nXcLc6efSmu34GiUc1UIuItrup3CNA3WHB9NuoaZB2+/C6c9g2C0cAzLBfaD7najJPLpDwqHkMewS\nukMm75RIVNmxFAVLEvImyJCsFdX/QAP8pvssbu6az2PxIKu+cQk1f0ti2VR659vZc4tYD7L7/dS6\nhzhl/l4a+4REQt/mUtHzHbOIjveQni8SnM7OOOF+L92GhH1ahMZHJwCi1w+g8aoAmeocpstg3+Za\nIluKyATlkWp1LihYl9WCNI5uFc8Ox0iwk3dKAtI9LJOdmEZJyiRqdLIdHiy3jtTpJDZ+dI2TpsZ4\n5pWF3N4vfKd5//dG8o+WYBtQKZ3Uz71V6wHwN8KMii6GzsyMbDN3+UUfYlZUc39WsuOYNW7yNXtH\nkCkHljwkxvdISOUZvtN2IY5tLnZtqqOyNIyaFpBb02aRC1j464f5SfN5yFF1RBIkWS4dl3QxNha8\nbZAukZCSCgomiiQT1Z2E5+RJniqu/bbvrTomKAXY/gXRB6c7R8cO7lZwdSjkCgzWPTeaHE+XHP39\nkTdL4ZUQierRbUdgmvatHmza+xL/JriabSNeu2RaYEF8co6AJ42akjAc4OyXqHxVwtNp8aPd53Kw\nsZzABjudnzaI18KWNycyb3Yj6Uod16DJ23ffw3W3fZ3gQYOm4UK0XW48jaMIv7zPomCPgavPwh6z\nGFikC3Kdgw4ypob1bnAEPizJFj2LhF7oou9t4id33ItN1umfM+rDeTvFTfXttJNLayTKFGTDIlKn\nMDxBYXiiQqxaIVqjIOkSPnuG3ZlKOiOfwGn7F7O8S8KwS4L8LWfhHDxMJJc4TE54wGT7gRr+1j6F\nxwYXUFUcJl+oky/JY9osUlUGekGe5JCL0HobW3qqGDCcdOhB1iYn0hU9zIDtMzGcJqWhGPGcA6PV\ng5yVSORsDE9W0E+fQ+6cuci1SYaTLgbXVqBnFfIpG7mIHS0hCNwMp4WakFATEkoG7IMySkrC3WOR\nDgkUZ7rYwrKkD1NMBP6Byui8efN46KGHeOihh/je977HnXfeyYoVK3jkkUeorq7mqaee+qRDj5gy\nMX7c7Qs2X8OK1tNo+NIqDDuE8x+uX/P32o0XvgRwXFmZT2KmTcE2pODqyZL3KngmhNFSAi6xq62C\n9vMCSI1u8tuDpMosTrn+OgBefuFh3lr1B4Zvz7D425to+LKXCW9fRaY8z2Unv0s2YKFJCgM3ViLl\nBGRI3eDDe6rox6x7JMr2VyaRKTaxSrJ0nhmg9N0IagrWN40j/+UhooYbJQcFe0SFQqtMYotCbn4c\n+6DIbiSjTqITLYKbbARvbRdwlgMeMck+hJxVyQoa6PdbssIagdC2nvPHEVhtfPzxcZC2KMwPtQnY\n0/uGKp3VO/K3mhL08BPvvQl3pzxy3JHve7+liy28+0ZP2hY5Wn/so8xx6uDoP6Z46T3z0ClH7XOk\n+rj7tpXce9NdALhP72dX7p8jkHUkqF3ym298rOOSYwx++OyleBpOoPj9Me2DfZ2fJDj9nwxonb3H\nbwQ9QmD0/qDRvmCIf7/64WP2ra4YPGZbyyWjv0ne7mXj89OZ428fkYb5fNupx62SfpilK06AE5bA\nKA1i+dyYdhV/c47+eT60BFQ924Vni5MSb5w1qVKieSffGbeaMy+9mtv7p3FO9X6arpNBBvdTAsLW\nnC/A6c7S3FtEdTCMZFikSwTNvzU2RUOqFKU0NXpe8+swMxnU17cyOMNG1ZnthB8Ywzkbb+KZ7pn0\nnqnjHDbwNio4hgT1e84jo0UlHH0K7i6JWI0ymvWNyci6RD5oEBn0YNoEHM0WM1D2e0g2+VEzFp5O\nk55FNnyf6uWXZdt4pPYN9jeX80zbDA78pIBzFy3n3EXLuaJwA19sWU7Nk6PJRU0yeHfrBHavG0+s\nRqXnFFOskRKomoHrnlFnp+Ws+/i3ax9n0fVbuHTmVv6z5F3mXLuDbz7+Be5Z+RmiM3PIOrjaVdzt\nCr6TBohO0cmV5Mkd8JGo0ynaniUyXia4VyI0u5+Ot8aQNxUkU6w9efdh/c20RfO71Rh2kdCITLbo\nPE0m+KaDTfvG8f3Ny9marOGllx8jG5Q4cKubC/78Ou/9xyp6dPHbCrdJ7A+XED3kJ6470HUFJSGI\nd/oXBgnVD/PNkIC5jXskzO3rLsJMq0z8TYJ05Sh0ZNxPs0hJlVjYRU9/AFOBrE8hUBHD2a2QLc+z\nd209l128DimrINlMnAPCzQhPCxCvFdl92RBwyrxHpeTVbizFwt+ax5Il7HEDT6fJM2sXMpx3c+b+\n84mbOhvv+D2m3UI5ZZiiyQNUj+vH/5ybCauyBJQUlY4I++JlPNC1iEN7SgXETLMoCCUo90SxWt0k\nqz20tReRytjIBs3DPXsWV1+ylpd6puBr10kNuNEiMraITHS8eJaUlHCucn4TdgrorXPAwjFsYNpk\nouNcZIognHWhJU0Bqy4S7S2SYWDJUPHqMM4+i+GJ6uF7EqUpUsjqTTNZE57KV371OL3/lqfheifT\nzhO6knWP3MC4x8JsHKjhYKSIJdWHaVxlMB0WjojJwBzQs6OQ2Il3Jriz/3Tc9hy+dp3PP7lWjLXu\nauQKkahUEgqOQRGgGU4ExL1YPGfVk3qxb/GQqRFzOFss/KdElWDsVNJgGRKGS7BeV0zpg7xMcC+c\nvHAvQzPEu9Xc68OqzPDKr5dwQePZrPrBb1nzk1/imhbmrDLx++rf/AJyDrZ3VCF3jbYj2CKMEPik\nSo92Uxfs+CwAv6h8idi5Cdb85Jejy97ZQ1jdDhr7ijDsYJZk6WwqJu8XySOrMId72jDW6gJ6dpYy\nZqrQXBlYaJCekEXJHR00ApguU6w1YQjsl3m2b9bIc+VqtuFy5Jj94xtHtNKnXrWXystG2Ypcso1Y\nnYWaHvU5MiGJTLGJnJHQ3lfb2H/dSt747ihxpz1iIZkWB69axa5c5igEkyXD+IKB0fO0W2QLTZQM\nJKogMslETcmcPuUAqdeKkfOid/VIsGdLmOTaPXiaVBKnJlEHNXIFBgevXkV3wo+7TSVVJLN410XM\n+e5W3r77HtwPBAg1GARaDPpOkrmmYwkzFjXS9SmLVImYTwWbVexhi1zA5P61p5ENiOd96c3XU/aU\nHV+ThBaXeWL7Sfyw5XxWr51LwxdFED/xnStHfk9seg4rreLpMYjUKRh2CDUYhA4YSAaoacEk/Yua\npynXIqRT//sVASwJLElCzlvYh7PIughEs34J3SESRtqwSjLpIK7b0RSDsbV9qEMaJRskql62qH5a\nYvJPeim4dwPmewF2ZMZwKF9A3lJIDLuQdMGyL7l1coZCMm+jZnWGynV5etsLsKbHab1YpfNUFcuU\nSDb5cfZZqHYDdAk5qYAlik6SISEboh/cHpZQ0+DpEszVknWYfKkyh2lKpHIf7l7ymQMAACAASURB\nVH9+IjbdTZs28fDDD3PnnXeObDv99NN5+eWXsdlsbN++nfvvv5+77rrrQ8f5uGy6H2a5sjxSWpSL\nP8zGLOxk7aQX/lu0Sitfz2HaZFJFKukiifOufIcn9s9GUUw8rgyJXQXkq7IsGNfKxh31zJvZyJ6+\nMpL9bkIVEVIZO9l+Fy0X3kPtX6+j9YI/MPGPN3Lgy6uoe+QGSjZDz1ILb4tCusji6vNep87Ry89/\nuoLImeKldO6EPWzqr2bDjKcZ+8z1OPoUTBVsM8JY64NMu2A/mzdMQCrPEFjrJDZWMLwGDkB4Mlil\nGZROB5YC9sMVzFCDTs8CBVfv8XMdySoTV5fIxr7f8kti6E1ekUXJCfKeXEAs0GOfvX4Eiguigrq8\n8Rzanx07su2hr/2Kmw6s4J3pzzBt0wrSKTuhQIKBzgCvn/Nrlt/9raMIrqovbKH1hbHo8+PoLR5c\nPaPnW/GZNrqeqyE5N437vWOj0g+y6ebmJnhm/j1cdvfRgWCq3MTV/eFz7vmv3kHtYRbcjzJTg8Ap\nvfQ0FmG5DGyeHA1LH6Tu4Rs/NmnROSs28My+mfxo7vP8v3s/d9Rn/39l0/1n2fu1Qad8ugHTkti7\ntp6ixT0MbCg7IYPxB+39TLtHTJ4bwabqZDYcLR9kzIxz30l/5ro/3syZF2/muR0zWTZ9DysrNn7s\nIFSZF8bYHDzh544hC2+HTs6nEHyzlX3fr8ZVkkTa7CfQZBCeoGBq4Jk7SGx7AdNObaQ1EuK2+td4\num82B/pLyCTsjL96K+Pfs3N3xSY+23wGHbEg8qMFpAtkxl3cyN6363BMiRALu5j4yyS0d2HVj2Fw\npk+sCVGLxOVRMvsDGE4LCrOEXncwPNUCCeqmd6JbMm29BZS8YGdoukSgAQZOz+FssCNZkJqcQTtk\nx9sGkQkWhsdEzsiEdkqkSiWqXo3T8EUn82c0senAWKqfkohVq8ROTmO350kNuJFTMqbDRAtluHzS\nVh5dfTJYUPenPjrPL2XX/1nJZa2n05v0kX6oDFMD26V9ZJ4tIVEJWkJizItDSMk0lk1Dyo0uJCvW\nrOfBL5yL/xddvNdQi6RYENXwN4rKsavPJFIvo6TB2W8xON9gzIvQvVRBsiAf1HF2aORCJtqYJDU/\nztNzSoicXyTuSt7LoA2naLk0SNkGnY5LDUJv2xlekkPptWE4LQrGDTPY58PepYElYdotvK0wPC/P\nxN8Kbzf58yzTQ93cXbGJud+9kWSFRN4rqieNVwln8OQbr8PdGkP3ORj+dgq3LY/7m3YS4/wkyhRy\nfkiXGVy4+D3Spo1X1s3CCOgEdmpIhkVkskn5OhieKBiRQ3stgrsiRCcFSFTKxOt0xj2ukyy3CbZd\nA3wNUcJT/QycBMWbIecTTm02KJGdksblzqApBhNCA5hI7O4t49O1+5Ali11fmAgH2xj3tkV/1sPc\nQBv3P3k2+fo0ZsSGpVjYghns9jwVt1vI4RjYbQwtKqVvqYHqzVOw2kG8SiY9KYOVVkAGzZvlpKpD\nbN4wAS0hiGa0JCTLLQp2c1QCNOeXiEwdrVBNXBmj+7QQrgGTRLlM6IBOZLxKbHIeR6eGkoXkhCyB\nLXayAdBSULG8jQP7qnB2Krj6BLNtyyW/Z9wTN1B/f4TuH0k4bXk2zhRJ/HPOvYLWi3w4BiVSZRaN\nV63iO33T2f6FyQA0fNkPChRslSncEiZR5ydRqhCZm4W0wuKZB9m8bhJ6ZRZp2IanTRbyDUFwzRkk\nEnWjtjoY+6QgTehbFCQ2TvRkettgeIaJmpSxTYjhes5H7NwEJ1Ue4iR/G3etOYexM7qIPlgJ0uHE\nyllRnH/1k6yQcHdZZAOSgGU+dgMFOyWi4zmKTXfe/71xpB8855fY8W8rWbDjs5iPF5EukTDmxbAs\nCe+LAiFg2kB3SORPjZIacLN4+kE2vTUJw2NSsFUmUySQGFrcoubag4SzLgaeqxph2Y6ck0IfcGAL\nKxgOC2/b6P21nT9A8o1itMThm75smKArzU1j1vHdRz9PtjSPf49GdGoeTIngrlE/5UildPaPb8RU\nRUUrG5RIT8zg3+wgMlknuFsZmUeZAuuwbqyEPCVGNqPh2eIkNj03IvdyxMJz8gS3akTrLVw9Mlr8\nAwn+U5Msqm5ly1PTRvpQQehLF+0Qz/1J39zK/yl+g6sOfB5NMeh8uwpbBM6/+m0uD2xmR7aSf996\nPl53hmhbgJcv+CX3Di3h56XbWd54Dj1xH+/NfoIlt1xPvErB126QvWaY/OoidKfoES7eJnyJK37y\nInlL5b1YNbeXvzTSpgKCsV3d7RFJqjlxzqw9wEmeVn5+36XoLoHMc08f5uSKZl756zyyIRO5JMPL\ni+/mh92fZtPrU3D2SscUOf477UifaP0DNx719z/T/I0igHMOCkmXvFNmaLogRkQWxGSmKtoh7GcN\nUOqJY5N19veXUOBJsaS4mUItwV0bT6fmKYnIWI0bv/pXBvNe2jMhttw3E1MTJKRmQR7VkSefslH/\nJaH9q9ZWYwQ8SKaJpco0fs2GohnUlQySytsYTjnJZjVMQ0bPKqgDNtSkhKla2CMShk2QDSp5i4FZ\nEtq4OE57jmjMjcOZY98FPzjhb//EldGmpiZuuOEGLr/8ctavX086ncZmE5mLgoICBgYGPmKEf67Z\nejRaLjq2t+uD1rHhOAD//yKTcwaDUzXcPTl87QZPvrIYqdPJjIouEikH7kNwWv1BErqdG095lc3b\nx/OXWfdz6fzN/Mek5yj9o53aCSKzV/O8eAiPECRoMZnEiiifmreH0P48oX1CC6te68fdp+NyZTEG\nHLx4YBp9zYVMfvfz1D6jI+dFEJjNaqRLTTbsGo+rLkpgrRM1a+HuAu+kYeK1UDu7E1OXGTu/47CG\noch2HFomWBRPZO5Do4FobvFodVt7x4ezV8K/uG8kGLCJdglaLhy9d+kSi/uipeQMheyi0eOLZJ1f\n1D8JgLk5gNudIbu2iJ+e+hQX/FoEou+v2LY/OxZZB9OUcPVII/0innN66XquhnSpddxA9Him55Vj\nAlGABy/4aOjl8ru+Rd26qz8SrpsuNfnUxe/xheqNuNsVPPtt2N7zsDWb+0QyLs+9soCvzXqde9pO\n/tjH/m+yvasnsP+lemQduvaXkPOZ/xBkVlOMYwJRgHxWZbFDLKmr186FrMxLO6cyft3VH/s7EjEn\n377qCWzzh4/7ubvXwL29A8MuETm5lllTW7G94UeLg2/tfko3ZvE3mTww9c+MX9rGgYEShrv9fG/D\nBSwJNaMoJlZaIX7ZAoZzojKy81Al4b2FOMIGlc938ei41eQKdTJ7AkhxFauxleTpk+g4x4+nRydZ\nITEwW2LXvEcF419KQrMJXUA1LWEfkknrGj1vVGKFbfQutbAkGDgji3+LneLtgmDDSisYtSJ5Nubl\nPGPrerFFZFKlEqYGg9M9nDp7P5t21xHYZiNdqBJoyWP1OVgz9x5al/+BoomDuDpVAt40rakClp62\nm6vPe518iY+qZzoBuL/6ZdZN/SuSaZHzSgxGPeSXRfDPHqTizQT9CwT7aWp8iLYVlfSdUUH540M8\n3Teb7m/rTPd1seqUh7C3ioUkNtZk/EUHGZ4iYR86LPekQ+Ua4ZRaioVemqOiegh5ThR7TZxcl5t4\nvZ9kpUW6Ko89bNG91IHhsSPnJLqWqnj9aeLVMOZJmbpHwoR2S6RzGp5QisVn7UaLwy8u/jPy+UOU\nlodp/IKo6L417Vn+tktAJgu3HmZmk0AdJ4LVQSOJu1U0pGWK7RR/V8b5PQ+9S0N0nyyR84v9CeR5\nYc18Xm8dz9Kle0CXSFYKSKWnKsbATBnngkHU8XGCu8QCni6QSczIIGdkdKdC3i2RKpZRsibDMwJE\n62QszWJgtoTuknANmJS9m6G8MEK5L8byMXsI2UTlPZ9XONO3h2W+XfQuCZFdMoWYbqdhsJgz3fvI\nVOZx7nRiOUU1LJ9VmVjYjxxNYIYjGCEPrt481X+FoucchM9PkZ2axuHKoflyaN4sTkeejdvrcddF\n0Z1ChzHnF7IKw1MFG+qR65cuAiQLzZ9FcurkC1zobtFz6BywyHll1JSFlJWxRYSD7tlrxx4xkUyI\n15hM8vWiBLN4Oi0G5+tIIdGnecMZoqpZ6o3z1NQHAFFNTNZ4kCzBur3wFEGm8+6ASMzqPgcT/hil\naKMIRA983c3wBIVUmUV5WZiqcQO898YkSuf0Mq5iANNu4hi20JIWpYu7iCcduNxZQvvEOzw8LUCq\nTALJwt8MmSLh+JoqZA8KyLG800tPyseWaA1SaYb2AZEos2TIeyWmFfeQ94hANFUmjbTBnHvyVgBy\nhQbP33AHALUvCT4L9XC3ScHyTv4QLWesX3BlOPssPC948b7oIVovNEiHp1qoKYsZpd1Uj+1nY2st\nytgEWlFatCkdJlSMTISgLSV646KjPkpxME5x3RC+Fmsk0XCk1eja2ndGoLwAvBSi97VKLvbEOGXZ\ndgI7NQGdNUU1SXeJKjOMooQyBRIvfvOOkd8lq6ZAZ9mEI5QNCDk8w2tgSaJ1SJYtVM0gWWkiKSbh\naUejYALbbViKhKSLIDZZAfGa0c9zMTtvHqgnUTeaKIktTVO62cTQJDIhideensvvhpYwEHfTF/fA\nlDjxmVkOJoqZYnMy19GBLJtU+KN8/+xnOOf529jwn/Oof+sq2p8dS2ZdIc8nXViyhHyYS+3uyY+Q\n90KgxRgJRHNumRsCXVzlP8AXitcfFYhO+v1NhHwppi5rIDMtjWFIvLBrBr/5zSUEmg0sxULWJbSn\nQqz/3VzSFTpXnf4Wjac+wOrEFLY/M1UkDz459+I/xSatv3Ik+Kx/4Mb/kr5RNSP0mGVDzNOcV8Jw\nG6KNRbPIuyRMRSJdZnFaeSOLQ82cEmpkRmk300PdFGoJooaT8sph+mdpKHmL1f3T2BMvZ89wGVrS\nwlTEs21lFPIJG77dwmlWJteTmFJC32I/XWcEaf6cD/MwE3Us6yDkSOJ1ZNHzCrJiIsUFl4ClWBgu\ni0S1gZITiBjdIWGUZfE4s5R4Eph5GdP8L2DTramp4eabb2bVqlX87Gc/47vf/S6GMfog/U9Jlx5Z\n5D7KHoufuOLwce1E0g8AsVonmSKLcL2drnMNQeBQlaItGsK+2YNy3hDNP5pE+1/H8uADZ+NpUbhw\nzVd59uWFfGXDCsITbESeqOBvKQeZW4VT6lwmoLj+ZpPYsJvzQ9tx9CZJF8j8LlLF1xo/R/tyiUlF\nfcyc1Sx0+BoUpK0+kuUa2YBFLmSS73OixWRswwqJmJOhk0SWN10skdgXwj1riP64B3IyPS9Ui2b3\n2jwVa6PISQVv60dPndj0HLb1x7IHpdaUHLNtztZLR/4+Enj1xHzkekch2GWqhyufuJlrOpaIF9m6\nIKYGl3nDI/scr+JlHBJjHGHATRzWFHWeoLJ7PHPtcJIp/AD0t8zkhpU3n+CIUcvPi3PFlPcAIbFy\nIvvFZ/7CG4/N5a77Ljhq+9W/+9rffZ7vN/ugxF0vfJrw2rJPdPz/RgvVDaOUpxi79kvkAh+9TtX+\n7dpjtiV3HV/XSG13MHebmMdaTMLVqeJqsbGsfu9x9/8wcx5w8LMHLyW36fjfJecsEnOrCe5P4BjK\ns+tQJYkxFt4unfTCepSMzuBMid/0ncGvap/C70oju3T8wSRN6WJ8zgx3n/kgWZ9EZLl4DsYUD9P4\n+VW0X2jRfmkFV7QsQ3Ia5EIG7g6F8OdmY9hlMvUZuk4V+pF6UZ6buhage020hESux43uNskV6uQC\nJodaizAcFoG9Mo4+Bc/UYbxbHXi6DCTTwn7SMDctfh25w0mkHvrm2mlpKcHZZyHr4O6xyBRJrG+r\nxTakEKszmfnVHbR9RsEqyGEidHjnFbfzo6v/QjJj42cVq3Eqef56aDpty52YAVFd+WzjBbyS0oiO\nk1FyFlaLG94OMtDjp+18N4GWLKmJJfTN1UiXmAyfnKXxh5Mpd8Yo9ib40+unctP6K7DNEgGi6TVo\neKEeR7+AVZk2i3i1BBLYhjOUv2MiD2mosknugI/UsIsbzlhLJijjbYMJf8zgHDapfD2FkshS+WYa\noyyLbshYKuS8CobbTrJcoiY0jMeRZa6vldrzW/jungsYag2yYcbTPHXRqHZb67I/AtBwnWCF1oty\nfH3qawDMXyfWKsPrQEsYdPy7wvjfHcSSwdckU7BPp3CXjtZhJ1+SR1FM3jxQj6NXPSwvYHFe9V4K\nd5lEIm6MA146zxLzMzJdR7PreFtkbNEczkET18BhKRrdEknQjISzT7ByWhJEa+2EXysja6jMdzfT\nECtmQaCFiWX9bEiO593keGLjTbpPtuFRc5xbvZfmfBH2bk3objrzovqqmuztK2XolEpQFKL1Hvrm\n2ek6TUCxzVY3WqOTTK+bfMyG25kjFnYRGBMh1RBAi4tAPBs0yVfk0OLifsqGxcB8k7zXREko5KN2\nnAccROrshA4YOIZ0skEJd0+OQFOO6dPamH35biQDEpNz+BuT+FtMHBUJNg7UMKmil8HZFkWVkZH7\ndQQ6vWbSiyOajGaXk95Lsuh1aTJFFg9WCyKdQ3vEe0uNZWj6fJCh6RC7I8fEXydx9Vm4u6G7pZBw\nyok1NkX3kB/dlFGjCrGxEpGJFkNJFx5XlmSHj3SRTHRSgOEpEqULuwntlvA3pUlVGXibFFw9EnpA\n+HXOAYvXJj9Pc7SAomBc3ECEEkGy2mDj1npiC9OkiyTysxI4Dncx3Fku3nuty/9Acz7IVe0nY+vV\nUC4Tcnbxaon/GPssP924jM0bJoxcl1SpxMB8A/9BKHpTw98g2go27KujvbMQI61gt+mUBOK4uwWK\nK1Mo4MjTPZ20vFpLzi/OcfAkk+6GYsJbRT+uq0cSUMjDvZm/bz75GKm6XMBiazZHuT06Uo0L7lIo\nKYqSmp0WcG7A1yy+Iz85NXL/lIwFloRht0Y87NT4HBXntCM5dUynkEnJHfTRsPRBSqb2E9hox9Ny\nNBxLMi0kw8LbLnp5cyFjpKIbr4G6sb1cOWsjgd0qhl0SCZQeB8MTFKJ1EtFFGVJVOj8r2cGtk99A\nXRPAtt6LvcXOipJNPJHwc/aar+HY7KH7sRru+86FVLwB+peGqC4K4+swSM9Ks9ydwnZtD0u/9B5l\ntzVx5cO3kA0e/e5MVInr8NmGS3liaB61a65h7u03Mu1XN2FMTuC1Z+lO+KkuGSK42o06oJEpkAjX\nK2Qr8mSLDFKlEkOzTSpfkXj8yVNZvOsiNkTGEmg2sEctCpZ38j9pRuM/ptrx95g9ZmAPG+TcMlm/\njO4GLZjFWRPHtCGg0ofZzBtiJUR1J82ZIuyKznDORUu6iIypsaSkhUyJSWhfmoMDRWx9YyLd3SEG\nZ0I2BO5OGWenim+vjdINIlmZqvWT88mkiy10x+FqrAnFgQSl7hilzjhFziR+X4pcwoaclVGy0kgB\nyD4ooNZKFtKFEpYuY1MMBlNuQfLn+HA4mvKDH/zgBx/3gnk8HsaPH48kSfj9fl588UU6Ojq49tpr\nUVWVgwcP0tzczLJlyz50nLve3vBxv/pDTUn8feLx6/ZNBYQQs6z/Y+kW6UP82UyBwGZnCywKtyjE\nx5vIfTYqawfocdmxr/Ux9JkM9hYbyfkpMh4JNaZgi0oYhkouaOFYNMzTO+ez+5S/8Fg8yJpDU7jz\n9cVYisyYF7NMW97EmmnjCKxVaX2gjIe++ice2LGYgf1FJDeGCM0eItPmIVVj4OiTqT6vDevlIMlx\nBkpCwVJhzPMWGb9GptQU/TNpibiiou70oIxLYUTtuHok8m4JR0QjG1BQU5wwlZHziQlp7/v77scf\nHbXorxUy7qJG1p3/OLaph7jznotIGnbuOPdR7jztHVYsfAuHpHHLjC18/57zRo5NF1vct2beh45v\n+wRyJu/X88oWWsw4u4HwtqKj9tESf9+4Sped/btqWLVhLupxmIOP2LZgCf76CP0uG7Y+8WIqOKub\n6KCgxv+4lvNb2MPHP073/M/BXf47TE1LWCIuIFWTR4uIuZg/5ELps+EYF0du/uiquBZRWLl57lHb\n5PzoNZ207CB9nSE884b4ySlP8uzB2WhD4t5lJqdRBzRa9x+tHffPsOJXu1B0GSmro2R0brplDVaJ\nSVO4DH9rjkNnOQWZTNBg5bqzMNwmJ9c207SxhhZ8OO15NkXHERn20Xupj6/VbWOP4eKr289icnUP\nfW4bXQMh6n5vUHJZL9IrXr7947+wa3yIcNLF1095me2bJmCoEr3vlJP3C7IiWZdwVSXIpzTch1Sc\nPTJKTkIyDgu0d7lQ8hbJchktCdEJFhtb63AdUql6NY09LpG3aSh5CSVr4RwyidVKnHXSHn4y/wme\n2b4A7TsWoQaJos8O8FjfbF7tm8jOlmpe2zmDypohfrnzdA4eKiMYSpLs9WCpDu4rqOHrtWv5t1XX\nkC00MW0yhtNi7J+7KNxiULApjBF00XWKDcMJcxcc5Ipxm3ijbzLNreXI67xctOJtWtMFnFLZxF5/\nACuhIedkUlMySBNT2Pc5yIYsHMOQLLOTqBJQ1rzHJB8XzubG3nEoGQnTJpGotBOvlnFEJDo+7ULJ\nKBQu7SexqYic38JCZniGhuGAgX4/6R4Pe5Qi4s+Uk6o08RfHmRHaxRUP34IzolF05j5cUoQZq7+C\n5NKZPreF4kCC55qm88e+ySjbvPib0qQrXTg7E8RcAVrcHoLvKDiHBYonelYKd0US/ZAb02MgdTtg\nfBKlIIcZcdC0ZQyp8+LkIg5qn80hoTA81UW2yKTgdTuxOvB1HJZ3scAW03EM5+k700QrzJKxKahJ\nGdeASd4jo509RM5QeaZlNomsnYOpEvpiXnKyxs5wBXmnhVqaYV5hO3HDwUMt88n5Bfz2U+MOknqk\nDD1vo+Q5iUxQxWk4SZXacfeZqEkJJa1QuNskVSqjBw2QLbz+NC5XjkhTCC0mk/dZGA4LJS/haVKF\nBI0uIOLy2CRG0obpMijYopKqAH+LSSYoky5WyBRJFGyLEa9101riojo0TJfmougFB4OzHKSLJHJZ\nDWWDh3abF1eHirTLxXUXrOXddIhbD5yB1ODnwadm8YULt/NKSuP5nhmYGZXTJjXQFC+kqqKRW5vP\nIrszgKfboHeRn0yJia9FZsDmwHtIwzmkE6vV0F0geXQkycLpyNPXHcRRmcC+1wFIGANOjEMual5M\noaUkuk+V0WqSeJ1ZEh0+siGVTLFFttQgV6bjLkijNdiRDdg5SWEw4/n/yDvvcLvqMt9/fmutvXav\nZ5+e05Occ9I7IaRQAiIICoKioAIWBFEsM5a5c8cZx3Fm1EEHuTQBQZCiCA6hCwRIIZBeTnKSk+T0\nXnZvq94/VghgQAHxztyZ93ny5Dl77b32avu31u99v+/nS8ClkeiM4x13JoHCBEmXsPwmrkmF4E4X\nsUsGuHFgPj/YczL+HpmfP7eUBSsP8cunTncmg/v8XPjV5+nY2cwPVm7nlheWE+hzfE0tBbLLi8Rf\nUo9XwwTguWgUY08Yw28zt62fkUSYZNpHySvjH5SwBeQWFth0dCbRfRJyCcaXm1Q2TZFHxooY5CoF\nviGB7RLH1VubP347p83bzO82OSRfPSAoVVjI5RaP3r0aLQLupNPLVxgJ4OtScOUkJNOpeF6fm8MF\n7bv59k8uoFgmkIsCT5+CZ0qgNerojTqK22BsOIrIKXx77To2u2ox0yo3b1mGuzZHaE4SbXeQxEID\nqSijHKvUplodQIyaceSb7qQjc5fnphmfCtK9bjqS6fRsKkVne5SiwJUHKeXCiJjcMj6brVONMOih\nFAVjZoG9NyzksbIWTFNGi1qYbonkQgNlZQrz8TiF/SHG1hh8aM5eVviPcFXlEX7wnfPIbIlhuST0\nAAhdkGwTnPeFDewYq+enPQuZmgwiAhbpogfNdlFoMLByLtI9EYKP+uh3h4gctgkM2vgmbNwpCB8U\nFOIS4aM2hltG/fA4dW1jDKdCjGychm/cGU/GZwqsyT9OZP1LxaHLb+Znu5b+6Tf+mREYdGTcrpyF\nJ2WCkMi3mEiyRclSCPQK9JBA0gWJqEx3tgxTktEtGQT4FY2IUuDx3tkUDIWpeTKfWbCF+a09DFkh\nslkvRsRED0DZbvBOWKiTJcS0StKNXmQdtJCEZ8rGnQRMmYTuZUz3c3iinETRSy7rQZ50IUyBKy9Q\nUwJ3wgEUyQUHCFas14lVpJEkm/HuMkRGIaepfG3RKW+77++pMvroo49yxx2OF9T4+DiTk5NceOGF\nPP204533zDPPsGrVqvey6v8n8RpNVy7+Zev+rqzjrWUpkG4SKBkJ02Nz4HAtVsl5OA74i1RtTnLn\n8rsIHFEwYjrFcgtqC7gyEoVX43xr9eM0Pf1Z/uG+T1Cc9BI66jQPjyz38Y/7ziF9JEL/Wmd91UqA\npgWDXP7R38MHp1hQNkhmjgZ+g4mlJmO5AJkGQf2jgvJdJq60oPT1KQqNGnJeoM5Mo80oIGUVYp0G\n7AtSbCyRajM5Y9VuxhcoBAZsAsNvb8D4Gpr8nUZuZxnnfmYjRx6ewU8TjTw9OZtsg0XNnFH+4ZbL\nAI77if71yEJ2/PWN5Gptdn/zJioXjL7tetPztOO9n4XlTvanUPHuJ2HuCcHpsc63XGa5YONX/+0t\nl73b2DjvYcJqAf8eB/Sw9+s3MflMjUPYfA/xXj/33yVeSxTJmROTIuc37uPJY7KxPycOPDmTquXD\nTE4F+M4vLufomXcCoAdtIuETLX7er7BDforVPrQKP6JvhO8/fiFdyXL0uTmUyQLN94wia/C3zY9h\nu2xUxeDF5+ahVRi4XCbj+yroO1iJZICkmvxgopUKNY1eUujY0Yg14GNm/QiSZjB+TwOpyzJ8xJ/l\n0tottE8b4aZ7zqPxw0exyjUMH0Q7BNNnDNO+oJdc0ouSUtDCNunFJQqVbehNIAAAIABJREFUNqUo\nTJxkIgwo35lD1mDodNASHnyHVUK9FrlpHsYWKcfHzOQsC8MjqNlo8OSmhXxq+5VOm4LlWIb0PN/I\n6srDbF/8ay5fshm1MUvvaBmBSB5/j0LmqSoH4KLCJQ3bGDEiFMttfEMSUglaFg4wdlotIl9k/99V\nUPH9boQNVk2R0e818/Dn1lJoLWF6bJSizSPd81hVe5THD8xBz6pIeYlijY77sAf3syFSswziu21S\nLRITq3Sia4eZs6SbUkkhst+RHCsFp8fUlhx4SbDHxteXoeX+BOGuHAPjUQrVBnZIp1RmE93vQKSE\nDb7WJL67IwT7Ddwenc+3bOIzW6/ACNgMn+ziXF+RaUoAb68Lsi52b55BzlCRJJvdy+7HnbTJNYfw\njGtkm0NoYZvQIwFH6uqTiKwZwZjwom2JYcR1bNuB2Ej7A9gHApR16PjGLDxPh/D1KmSnuTE8TrK1\nvXUAW8D0XyWO01mxQUmXELpJ3X/IyLJFvGkKw+9Akcr2ZDGejDPZG8VKuFFVA92QWVl3lHJPlgVl\ng/g9Grou05GpZkWwi/Mb9+L3aoT8RY5myhhZ7kijSzEX7oxFKe51oE0XlMhNE7hyNpJhYyk2vlge\nJBjvjzIxHCYyfYpSuYl3VKCmJMIHHe9Rd9KRx9oKlJIeGmYNIwd18lUCNemQdNWMTbDfxHXsJx7p\nSCINeNjc20Qx7SZxUQ7T4/R2RzscyWTZqwpqyiZf43zm4YEFJHfHGVqp0HOBc6PKWF5EUcI9JrOh\nu4Xvnvo7NmemUzIUsk0GUl6jbH+J7Rf8hGC/QdtNaQZXuej9oJuqD/RT+4IFe4NoRRfFfRGwwNgf\nQi7aFGcW8Y46NkRyXkcPyAhdcO3sF/hc/UZq1k8RHHBoz8qUgq/L/SZp3eP75tASnqDMk+Mja7cA\nEN0PgT4JNSmIbXDjyji+lllNZSoZoPwF9bh67OLAJMFeB0wjl8BC8MlLn+OKvlWcfe5WJ8ENKB8d\n5/BpvwCcdaXPzZI+I09yfRWBAZvoHplDo+UYuow84kbWBK6sjb04jRh1U77JOZaliADV4tG5dxN9\n0YN/pxf32LGk5BuKXE/nw/Tor5dGXVkb74DMDyr3cM911xNsm0IPCoRtH5f+yqVjxNukzUfad+M6\nhv31TDrWMq9VZcObPZw5o5ODq35Jc/MowhDccsOH0fv8LD/lAHrAovRoBUcPVaGflQJL4E4eA0Qp\ngvBBp/JkeiDY7aw3ctoINZE0wa3e49Xd1yJ09Fi1utbCcsHaBfvpXHkPV858mcDZI5QqDZY19mAL\niIVyuPtV4lsUZp7cwycWvcpHG3aTmG9iS4IPL9zF008tYfnLX2DVtVcxtFowMV8i3WpgRExceTB8\nNg/fu4YjH7+FH5/6IOcu3k3v1mlYYx60aqfHtq5lnLI9zna+Rqk3XYKxxRIjK2DoQg1lRoZMvUR8\nr0m1P82+3Q2EfEXHH7dW5mP/+BRr6t+bz+j7EX8pK5c/DMv1OrDTFuBOmSguA4+qU9s4Qa7WKfa4\nEzb5jBshbHK6StF0sTTSw9pIB5WuFBFfgfLqFLNbB6h2JXFLOhPJAFK0hOQxcFfmKZQ7Nj1GxE2y\nNYCrYJOvkAj0O8/3htdpbROGwBrxYE+plJIeVI8OtgNOtRQoxmz0AEi688xlqTaugEbQrSELx6PW\niuoI9Y+btr+nymhtbS133XUX9913H+vWreOb3/wm5513HjfeeCO//vWvcblcXHvttcjyH6+Mvd+V\n0XcaN+78y2c4AIQlyLQZeIdlB6PdkEHLq/h7FALdTtN9ffsoQ/lqHt++FD0Ips/GlZSIveoi3WJh\nNxTZMtYEQtDyixz5D+pIAx48EzayAda4By1qUb5DYurqIlfX7uPj8Q4uf/Eizm/bywt3nsT5577C\nkB7C6vaTwZG85CtldJ9EodImoyjUPuoCW0JPe9BdgnCnTGKWwJ6ex7YFFGXqaibx12eZaBDkdB/y\nO4DAaKdk0Gp1XAMnktCK5TZ6COKLR3m1rwlfe4qNG+cxNBrDlsDYE8IIwLOhGEm5yO/SjSjCYm1g\nnDueWsYtm5aSTvrxnzKBefREA2f3qEOuzDRZ+Pe5KVQ6puR/rJr9Wth/kKYZrXUzKPtRJ958TRfm\nFtgmKqmdNcbogTdXTt9NFMttvjJ/Gx+PHaV1wQ6e2raEm19eyoqP7aS/43WZbXaGjjr1zirOfyz+\nu1dG5aKTqbNcYDUUUcbfDIfo7Gjg1bIqNnzwAX62Z8mfpZDI9wRxTSisv/pHfOrouUweLkPWBK3z\n+hn2edDj5gnf/+dGpDPP1JwAvlEdWVKYOFtmSW2/k/Hf6KdYF6Ty+QnunHYy3ef/nDtGZ+GqKKB4\nDU6q6aNnqAK5KHHHp/4P/7FlBZ+dv579hVoO7WxE1BaRIhplgTy9UhWeBFQ+WOR79Yt4rnMu06vH\nGN9fjrYhgv+oQqbZpmyfRXIgQp8SRMrKWKqN0pAjHsugHw7gHXegJqEem5FTVIpxG9vl9MW4JyWm\n5lm4J48RdUNOFdUzIYhvHGVkTZjq5UNsXfwb7vQ0UUpWkJrhof6hAY7ubOXwCp3vVXTQIfnABcM9\ncayGIlZ9iatXrOfgcy28FK1hf76a0pAP0+t4D09kAygZmdDBNKYnwsiRchp+PYIpR/BOmCTaPfzd\nx37D+s45ZOtB6vIxsrEaTVWQcxKWyyZYl8Ea9FJYUmDaIzL5SgktJBCVJdxug6OdNTTeA/kr0kRn\nJqlpmWCqO4Zv1ML0OBNU35jO4JkRwp05xmf7wW3hP+TGUiF6yKQYd2BU0WdUDK/E0Jk2H5mzi4d6\nFyK9GKHUUiLSkuSM+Csse+kqyCiEuwT5No3WylF6hsv598OL0PwSQpPI1qlMnK4x/e4ihQqn6uX6\nwigDfXEiexVKMZs1y/fj8epM9kdwtaXR8yq+8ydI5IL4R23CR3XGlshYqqDQrKF6DcYVP6lWL8EB\nG1daRw+6KFa4ceUsej4qYdoSwUCRXBCyMQVLceMfs9CX51BDGqWii/nVQ3wkvpNl/m72F2qp9Gdo\niU7iU3TODe3jzqEVGLZMOu8l6C0xmffj65dJN4MWlLAUybHvSLuIHrIoRSSSMwSWG8SgByUlY/gs\nUGw0S0GadGF6HbVDsdKB99iSINtgYYQt5JBOMu1DGvKg12mIooywBJ6kRa5KxnQLQkec5kdFc8Oi\nPJ5NAbJlAktyqKJyCQy/wPALcouKqLV5Jq0gqQdqKZbD/JVdFN2C+bE9XPXCZ5CzCpbbpmxais9V\nbeSf953N1GCYhuljJJPl5KsU/r2whOrnC/SeH8E/CLkmg0TOB3mVUpmNvzaLPeTFCNjYskBdnsTo\nDiCZgortOTJNfky3oPn8bvqKMR54bjVC8pJultHiFrYC2IKSKlAnFGQN/D0yfdPc9O2cxkmtXWy0\n6rEUGd+Y7VTrSlCoAi1qo3kh8pSPXI1DxRaW4LGKCopbI8crkstXd9BbLONwupyra9ZzX2YJvmFB\naHGC725fjb9XRgsLxJibUsgmsk/G9EC2HuwpFfegCy1iI0yBuTSLdShIoE9CPsYeS8+wWbbwMHHP\nJM/HGshqHvyzkojDXgrVTrUT4GhDiL+p7ODG/Se9PiEuQm+bxhOJubRGxjjsC2El3Mcrlm8Ma6bG\n3qkazEN+p7fSsI+3BAFkmmzqgod54InTOP303Qx0VFOstBjfWQnCIZL6hiQyLhfCFqgJ5xo2Pc52\nSJpAi0K+1saWIWm7mUr7EUUF17Ht1YPi+POY4RWctLaDo8UIi6b1MWWX+HxkmB8/chqecYmxmItt\nn7+LEcWmY1cTelAQbk5hC8GTDy8n0imYd+U+BvJRRm0v5qSHUA+Ikuz0sDbl8e3x4B+z8Jw1yY4L\n7gbgkl0X0rm9CYArz1rP3XPXMRBSMZAY74lTiEv4xpwJS7JNQioJvGOC8B6ZwE4XiVlgrs4gJEFr\nwzCfrHmVTbvmoC3JsnmghTtnP8Dde96+svbfIWL7dSTTphRTUIoWmXoFo1mjvWKUKl+GHjuE7hJo\nYYGcVMi7ZIqmwtzyIVYGD+GXSuRtN/X+JItjfYTVIoOlKM+NtGHYErJsEQvn8Lk1tKMB3CmbVIsL\nNeckgF/z9k3NkCmVOVRcJSehlJxqrNAk7IQKio0rKyFr4Mo5RTdbcQBTZsxAyFAeyjKeDaAVVWS/\ngS9Q4kttp73tvr8nmu77Fe8nTfe/YsT22+QrJeSijeET5OosqjfaTM6WKZWbEDBwDapYipP1Tid8\nVFamGO2LUfWiRLHMkUMUqizCzQnK/s3H0p9u54HNJ7Ny0QE67pqNLTmo8a4bZjHnq3v5ed0mZt59\nNYE+MD6QJN8VIdw2ydRwGCyBOiEf64kB/eQM6uYgpZMz1NzuJtXkYvt3b2bp315NpkGgNZQI7HEj\n6RDfW2RiniPzKMUsPGPS8azwOw1b5rhv2B9GdnGBX55yB1fddi2GFxpX9TKaCVLaGuOlq37E0qev\nI7RP5e7rfsICt5vzu85msuCjNpBi7zOt1K/pY2Sd41mXr7LxjQgyC0pIE67jti8ApSi4E2+9DW+M\nN9J0sy0GgSPK27/5fYjac3oZfKLhT7/xfYr/STTdPxWFmSVa6sYYeq7uz/7ejmtvektyri3xJrp0\nodLCO3riNp750Vf5/W//uOwcoPH+Qcx4CKGbWKrM4Uv8xGZOUdBc6LqMsjuAUoDsogKx5z1UvDhM\ny68H2T5Rx/CRctpm9dMeGuGcyG4+9/vPIvl1jpzxC36dDXNr3xqqfWm2Pt9O9WaDvg86/VqueAGX\nyyQ35kcqSnjGJEplFtEOcdyrTw8K8pU23nGBXIDUshJN90CqSUXSIdkKesREGAIpXkIMeHFPCWKn\nDZN8ppqKHUW6z1cp2y3wTpoUIzJnfsOhkAPcftLdfOaZL6BOyGhxk5rGCUbGw3xhwUa+VdbFt0YX\n8FRvO4YpIQTMqRxm+6ZWpIYcxpAPYQjalvbQ+1gTesihwSJg+CwDX5eKZDjjlJpy7GjcKZtiTBDp\n0rDcEqlGl2MpoTpVkEJcEOt0ssj5SofKmpqr44kWEbuCxFaNMDgUo7ZmChvQTRnxYBwtIChUOlW9\n0FGL6F7nyfjwpVEs1cZTn0HXFMoe9TKxUDD93gSDZ8YInTmCJGxymotEd5SHz7uBBW5Hunbh4TPZ\nt3E6epmBGikxt2aIh1qe5cyPXY6wbA5f6qH11hSJeRGie5KMnhIlVwOWG8wKh26spqDio32M/q4e\n0w1rPr6dp59fhOW2CXVJpGZazPxlhkK1n4EzJKrbx/hK83P8082XUora2K054g95HYlu0gBJUArL\n+AeKDHzDZG3jQY5m4xwarmBWzQgdLzcTPeCAO8bOLzGvbgCfopPUvNT6knypYj2tLpkVOy4l5Ckx\nkfXjd2sUNBeKbJI4GiPYI2GuSpFLeRBZBcI6JFRsr4nwODccZciNb8iZ/GemGwivSWi7Gz0Aniln\nMoV9DEKlO60ZesTEX5HD3O3039qyTanCpGy7jCtnMzlXED7kwKJMv5tkq4+J00pUVqSYTAbQiwqu\nERUlL4jvMchcmaaoufB5SiS6o0Qak/x9+zrO9+dp3/QpFMUk1xeiZc4gRwbLiZdlMC1Bxf+SyDWH\nWPq/t/HizSdRKBfYCugB25F8t2ahx49cFBieY5U7zalCla8dZGBHDabXYvniQ+x7uJ347hLJGSrZ\nNTnOnn6ALT9bQikq0P0OCXN8tY6kmkiyje9VH+7EMR/SoCDVblLRNMnocARPqMSMinGSRS/5X1eR\nmG0jawJLhtg+Z5waP9nkn0/7Dd//xScoVFgoBYFWZuIZVtj8uR9z0q++QeQA3Pz3/87n934K5bdO\nhbIYFxg+p4/X8lkIU2BLNr5+BcNr45kUFMttYovGyD9dybmf2chwKUzHzcdasNygXjDGWTWdPPDo\naqKLx1Eki9FdlQR7Xx9HczWgRywCdWlivgLpR96ar/CFLz/Kj3edSWiDl9QpRcSwBySb0GHBZ7/8\nGKf7DnLuuq/hnpBxZZ02JWHaVFzcx9GxMgIvnpgs/8PQQgIt7CThlIJNYq5J6KBCut0Al4XvsIrv\nlAkmJwMog24CjjUxibnmcWJvphH8AwI94NikbLjxVl4qwhWbrqCxepLsL2vRQgLjjCQBT4kzqg9x\n/94lWBkXgW4FJQepWSZyVqLqVeeGNbJMQk0JLrrkRR67afXxXnB43d8W4Km8G82WOd+f5/sTbdyx\neTXRmhS5ghtx0I8esjl5WSenRTv5199dgFwUuKfgs198nDp1kq89/wk+tmwr64dm4L7j9Up1tkYG\nC7IN9ts+P/53idCRYxCjpIma1MlO8zB8lkF78xDTg+MczcYZTIVRZIvJ3ihKWsIIWFROnyCgavgV\njTJ3jnNie+jXY/xucAF9w86xdPt0DF3G1GRsGxoekug9H+a29VMwXAwmnHEuGsiTL6kkJwPIUwqu\nrKMkcmWd35XpccZISQf/sEWiXaDkBJ4Jm8RpRULBApYtyOU8MOLGUm1sn3Pieq/41tvu+3um6f4l\n4nMfeeY/exPe17BkgZK3yTQeA+vYUP+1Qxh+m4bWEeQxFaOhiHfMOXGK2yT6NyqxHTK5GgktBJ4J\nm8gBwY4lD5KtdfPyt5fxmZUbOCe2l2JM4BuzaPJNUiyT2PLQfJofcbywbFlQ2hvBMynQNsQJHnTh\n61WQWrPYy1LODbioYKpQFsrRfYFEYMjkb8fmEtufo1SnQVYh06rzoc9uoOdcN9k6m/YzuvD3v7fL\n5q0GknSrgaWCJNuc4pGQi9Cwso9qX5rqUBrJgLjsx9vtVFY/efvXuC1Vw/7BKkY6K9i+bQZiXvr4\nRFQLw4yTerHWJAnuch+fiFouSLcZJ0xE/5hf6vHttsSfJOG+Fms+vv0dve8P4/2aiGZbjD+6/KJP\nvfC+fM//L5GvMyi0/nGfV+8h9/syEQXe1sLlD22O/nAiWmx3qit/OBF9O0CaUR6CPYeQklmMgIoV\nNCm+EGdRdT+Lp/WjRWwKFTaBHV5KMUHnV6q4oWYrKyq6wYLeqSjDxTDrM7NAsagqT3F257lszzWh\nmzKbd7Zi+Gw8YwW+vXYdPzrzfurjCdrKR/GUFZi9sIdCW5HgUYlc9TEwjQnlu4oYcZ3MbI1SGYRf\ndeNKaw4Vc7lJ1asmgR4F222hdviIHHBucpNZH4EBi4k5HuI7jvk3GjaxPUke7ZnDPy9+hHNmdnDt\nnk/Qff5t7Lz83/nyymeZTPtprxvhF4+s5aIja/nXyl1cMeNlygJ5ciN+Xtk9Hd+w4NSmLspbJ2ha\nNEDv4014ppysLwI2X38LaBL56Zrz+7Gdh9RimWD4AwbFuGBssRvD69hjZJtNTBXH0LvaJNCdId0g\nYXgcCaIS0JF2BonvM0g9XwU2DO+vQAB/O/NxhxLsdpgFWsTCN25gRL30XBijduEwlt9Eli0iT/k4\n9zsvIOryZH6o4R23GRqJMnigktShGGpVnrisc/1UMwkzz4FnZ6DkBU+f/VNsG/rSUX4w0YqSLpKc\n4UPOSBy5JEohLtH5xRDJ2RZa3MQImfjDBRCQajMZebQe9exx8gsKPNXVTnQ/tDxYIDXLpPWOJEI3\nUfImsRlTfKHxJaaMAErexpqRp+5mB6YiF22MgIzr99sRFgye6kfTFIYKYSRho+dd7D5Uj11XZHy1\njukWuDu89KejDOdDSMKm2TvBUT3ONf2nMTUYYSrngOgSGR+mJWGYMmrSkQ0uqu7ns4s3sWjBEaZV\nJpi3oJuZLcO4vTpefwmjukRumkN8dI/LiISLTIuFFnaq87EDBlrYJr7XwAiAUVMCxSLiKyAsKNtn\nogdtgl0KhkegBZ1eqdcUNH1n+9F9ArXXzchwFLvXhzqgQlOOtjO7GLxYh6djlAou8tvjzJvfw8yy\ncWRh8a3RBRjdAaJ3B7C9Jr9vX4edVxgfDeO7M4rlcTExV2HzWBOTywzyjTr2vAzxeWNoZSaRYAH3\nlMBUbYyQiW9UoDWWyLVq9I/FKNtjI8dLbOuvo/b3UxTLXKSbYVb1KIfSFXinTEK9JsE+pzqCJfAH\ni1iWIN3ulBkTHyggDBupKJjoKHcm/cCRiTLOqDrI5EqNst0CV1oQ2weJduefrzzHdx+6BN+ITdlu\nwROX/Yhb1/4CVwaGTEHkgHP8rvrBdSR7Iq+PeTYUpunOOKlaRPdINE4fpVBl4k4IctMs7JYcbtnE\ncsFwKcyOkdedEhJzLH4/91cMFSP4h2BqdzmDPXEs95trL5IhuOrU51GejpDTVJJzLBKLjOMy29fi\ni5FBDp96F6lWGzul4soK5GP8h4cGF/HpfZfj75fxjtmUIq8Te59qexw94eGdhJq2HRXPMb/S0EEF\nWbORChLKpAt30ibRGUPt8RyfiFougSslY/icbQn2QHDQJHbQ8e4EUDGJRXP0batlbI3uWKlYAuXn\ncZ64dSU1j6hUbJGJHDHJ1dmok/LxiShA1asW9191PVunGnDlbJItb74p/c3oPJoe+zzXvvoJvr71\nY7Tfeg1P/NOp4DbJdjiwztI0HctjsWn/dG7+twsw3TbFaTrXXPM7AP6l62w+sewV/rVyF/fOuYtU\no0wxLDG4RpBcoFF9cQ/nrt36jo7j/88hGSDroORMhO5A/lw+neF0iO0TdaiSQcyfJ53zQFDH9Nqo\nUzKpjZUkC14GM2FKlsJvxxezbngefUNlkFSprkyysv4o9Hlx9auoAyrj81ycPv8Aq8q6WBTr56ym\nTs5t7qAhmCDoKdEwbQIzYKH7bYoVFpbqJOlMt40etClU2STaJEzVebbPNsDsumFml4/gc2uonV6E\n4dCgFa+B7PkLyHTfr3ijTPfglTfzYq6C3Qeb3vP6Dl55M19euI0vL9z2Jilu9bJhsoMnUl3fzzh4\n5c0nyH/dCTC9TvYnelgnNVOifypG8IjMqMeDnJOJNyZwNeeQFYviQIDgpyYZlgKEjggKK3PMP/UI\nI4cquGT5i1x79m4evK2NV9JtPNM/B6stR9W6Ih0HZ5KvFORrLLxDMtKcDDmvwqLlXXhuUJia66H1\ng134fyaTU8PYox6MgMCoNAh2Kpy3disduUqshIf9XQ0UYyroMqbfxlNeoP9X04kcsSiUC1z3Bhlf\n5lDkLPWdSxuz9RZqysm+viajKSzPogZ0Vpzcye/nrwPglk1LyR4KM7yvkszBCNlmg188etLxz8g6\nvLy/DbmuwOVLNtG1voW/+9BD3HjaRm7ZtBS5BJmDEUTvsRvAawAEC9wTJ06is3NLLFrVxfj+N0ts\n3yjTPXjlLQDc/PKflnf3dtS842MCTkV0tBDirHO20bPvvYFuSotzKMPOrFpNvHWiIHrmMMWjQfbv\naQT++8t0lYJz4i1Z4Bn40xLZYoV1vJ/lraLj2ptOABn9uZFv0HGlZAd0pJpIoydmRp676of8ctuJ\n0iSBC29OQmgGuFWCH50iORlkfHclUmORhsZRJlQ3JUNFWAIjYBGoHeTWXavxlhXwqDpX1W/g/v6l\naJ0hUjkfW1ffz62jczi0u57oPonIYSj/bi//Ur2HWWqJCdlg0vDjVk0qPRmG8yH8s1P4GzNs+Ogd\n/NvoMpKtMq6kjJyWCXVDejoEPz2O+liQYK9g6DQIL5hE8pgEX1bJ1UpUvZJHX1Min/E7D1yzIL5X\nxz1WQMqXaP/0IN8qP8x3OlcT9pb40ZElnFq5g29suRj6fWT3RvGeNMmNMx7kU10f4Ymti9D3hdAj\nFvG6JK5tXowfmzz87V/xhYpuri/OIR9zKrtXfuUxlnnSbFHD2G6bkpAoKTLCFHgXJvAFipy+dB8P\nnP4b/oUlmDMK2GkVYUBZp0mqHSbnetDLTFxpicziEq21oyh1BYK3Z1DwUjqphBTSye2J8bzZQvxZ\nmUKZhHccYp1Oz6hUNAgM2pS6IuTn6miDfvK1NjtG6pHG3MTvcqGFFNAUFp52kCEjgGUL7jy6nFeH\nG/n29H385Mhi7v/kvzNX9fKBms28kJnJ77fNA3xMrS0ipRQ+/aH1zFzQxz/NfQQtLnHfoodY0tDB\n2ZUdTNa5mXilCqVgE5yTpLArRvPdecaWerDcLqo3acglk94PRRlfZbNmehc70vU8O9RG5S+LhDpU\npmZ5KNuTRSmauCeK2CPjSNVVaEEFS1MYSMSYWT9EbVkS2WdyWv0hDmfKsDNucvUGsxsGafQnKJgu\naj0p7u1fznghgPJikLTLTaAsR6E7RAmZwHN+XDm4+MKNhJQSF4e3M90/RpU/wzN9bTREElxcv4MR\nM0yi4MMyZcKdMrlmE9tt4e9WCPZBKSYohSVMLyRmQ/OSAabFkqQtN6muKNjgmQLfsNOzFzukowUl\nAkNOIkHJasi2G90nkEyBOiljtBXQ3Y5FSs5S8T0XINsI7qo88ZYEXf2VFCWF/+hewKOzn+YnvQup\n2GpwzZce56r95/D5+S+xJ1ND7EWQsyXGzodYMM+Ty2+jva6PQTtGwXCxdc0vODu+jdtHljN9UT/+\ne0JMtQumtw0TuCNILqSi+yXqf2sQ2qWgRT2MfaLIA2fezIrQEX7x5JlEDhp4BzNkG71oIYFnTCYb\nkRCTKt5BBTUDZFWELTD8EDkIhVobo6RQUZFm90Qtoaf8aCFBqdwmV2fjSktOf/ewh/1X38xt65ci\nbFi7Zhuf3foZlqw4xB0//vDr45kJ7ilB/eWH+dY5D/P8i4vQwoKmU/qYyvoJdCnoe4L4hgWZZmfC\n6j3oZiosI0+4SK6vQOn0YPhgaqHFgQtvxCe5ue7lD+DvkZFLAtGWQ9cVFp55iKGecuQSuFZPMWkG\nGMlEcG3zIecl7AYHKvnGBOKPhpbwi3XL8IyDZ0zgWj2FutPhWJQOBNl+yd1cs3wrPxxZglmp8+Cl\nN/B3p+8C4PZkGzncyEWnzw4gdMEwqbEQZR8cwtOeITsQQluZxRw+Aq5SAAAgAElEQVT24jnm5y5s\nQXq6TbjLAReVogK5JPCOv37vTi7SmTu/l8zO1x0i1GOeo54pm898cCv3p9u4omYTjwwvILJbJdPk\ngMnUcydoX97Duk8+zND8PC+p9YQPShTLgbVJptw+kgsMQl0STzy9HO3VMLIOnmOV8slZMgdr4fnb\nlyMVZSo2SAT3K/jGbCQLQockAkM2nqRN6JBEZo6BkG2ktKMu+cjKrfz85TVsOTyDcDzHUDHMrcNz\nuO2ltdgyhHssXGmJQr1F4miUAxNVyIX/UvWz9z2qXimgpnTUoSRSIku+OUK6VsJAQjNl5sRHaA+N\ncErlUbxBHTtskvZJrFp+gKg3T1r3kCp5mSz6SRec6n3N7xQGqrz0ZqNUvCRT1qFT/tI44ysDFMIQ\ndGvM9/VRrSbZmW7g5UPNpJM+Ugk/niEXlttGTUtoERsjbIIloRQdurOsCfSYiTQjx5IFRzgldhhF\nshgrhSh0hpB0gem1ccVKCGHzldlr3nbf/0uc2fIlo8y862r+Jn7wz17XaR0f5rZUDXrd66L9FeVH\n/+z1/qlovfPEBmdbdmShifkmfWe6mDGvn5YHDeSSTaBTRY8ZTO0uRzNkIr4CcknQt72WnRf8lGVf\n2gGH/by8pY3SigxR2ckK/8Mjd9N24UHUtEBPuRk8PcLIWoNHv/hDpPIirhwUh/14B2R+3fwchy4P\nUWwosfNIPU8+cR9PX/dDxNIUhdkFhGQzudTg0vA2fnPSbYT6DKcakrCQdLDdFsorQSaWmYwtduiT\nY4tVCOno/nfXY+cflMguKWArTjUUwLslAHudJMH8HzoVpYrznJRfZkGJzMIiKDZ1H+nGXJ0iu/hY\nb04BLpu5la/EdmOfmuB//+aTAOz+5k1waoJs/RvuIjZkpptvfu0NEdzlpuM37SeeuxUp9GUZPnzZ\nBq4dPOld7evbxd6v38Tff+FeCpU2j375h5SWZPn8tA0c+dgtrH/gxIlOdoZ+wmulsjdPItU1E7i3\n+1l20Z63/d7CwsL/WHuXOcve2W/fM/anh8KOa29CXvYONN5vE01ndRNa9Tpwy9frTJI9+73I8ltf\nnyse+/rbf2cyja3ryNkSA+NRtLhTsTs6FGf/aBUr6rqxqotoEQvPuEx3qZwV04/SEEvQGhvn7uEV\nzIyME1w0yYyvvOKYeU+W48oITLcgvP4I23vqeSbvbGdALnJRfBu9U1F23j2XSCCPaUloD1Sy/AfX\ncdXZv8eWHE9BcOQ8vhFBz3AZqY9lGPmgBoagqCt4XAZTswXT/vUVhG7ivTtK+Iiz/d5RgTpeAAmE\npvPzuk08lXfjUXUaQ5NUhLJc3flJJMVm4cpD5BoMpobC/OPguXyv6XccvfBWx5/VAsOUyJzveBVf\ntuoS5v34GsIveWh5QKPhgQHu++45ALy6awbjyQArGrqpmT7OtPU64VuCTE0EeeXHS5j9zDWOH9tR\nP5bXRKvVGf9MHs+QgntKQgroTDujD4CBVJixVIDHNz/KyDIX0Yf8GP1+9PoSpf4AlstRtCgFKAVf\nv+4m5vsY/pCGPep2qNthHclnsHDFIbo/a6NfPMV3rniQrqk4ZsaFNe7BLsjUVzm2X+4picVulafy\nbrr0MkxbInxAJr49gZV2oUdMLo9so8U9ymzVy7O3n8zqf/sGV235NF+5/Sq8sk7ZXgfU03O4EluC\nrsuCBPteg4/oDK2JYKkgNImbardwUcV2yn/gxna7yFe6kYsgD06gDEwiBscRikK6QUXYr4FfBBu7\nprMw3Efcm6XMleO6eesxlmaobJzi542PcVFsK4PZMMNaGFmy+ET9VqpenKThSZN0xkfdMwahPSpl\nHTlOv2oL63rnkNR9bC/W4RE6B/LVtMQn2Tkwjet3rOXQ/mk0VExhu03yNTZyUAdToEVtps4qUFyY\nR4uAVq9hey26x8rYP1yJbQss1ablvklKEYf4acng7c/gHzWRTI7DmhIzJIpxh2BeitlYox5ESeKy\nea9y67x7iVw8yKUffJGPTd/JyE7HoiWV9RAOOve0+8+8BS3ookzJUtBc3H14OVp3ECVRIN0WwTIk\n4t4s1UqAV3PN7N7fQPbJKtr+40tceehSvnnGY+R1lbGFCqbf4shIOUOrFJScoFhpoqQKSLrF5FwX\n9fEE24uN3Dp2KtOe01AnnH4buegAedwJG0+XGyXnyEa1sPO/7nekv5lGCHfKuGMFqvxpLmzazcQZ\nJT72+ecIzJqibKdAKTjy79csQLZ+/2YQcOk91yFJNj3pshOGs1JUcFZ8P0e1CqcavUtwsLOWJc29\nzL563/H3mF7HvzU7U8fMK5hvKDzmah059Q8mFvBU3o0y7kIyHHlhcdKLKElYCIpxG90vKGouDhyq\nJdDnyJBLMRtz2Etqvobpef0ZZ86SbnIrs4hzHC9UbXMZ6WaHdguOByXA/MVHsIsyf33kouOf1TpD\nCNvxT0/MPyZX7C3HnYDUwzWkHq4hO1NDKyrIVYXjn7MlCHc5NjSZBkdd55l88/0/us3F7sMnqnry\ncYmpNhlZSHyrrItfTZzMtKclUu0myKDXlZjcU073j9o5+a++yLP/sIraZwVfvO4/sFw2+b1Rx+O2\n7QhjiyWGVwgyta9XRKPX9bL/mpu4oWYrxZjAO+Fsl6kKRi4qccn3n+COn1yPuGqMDTfeSv6KBCtn\nHqamMolkgHdcoNsyq+YdpKl9mIKuoJsyk8kASkFQsdNisl0mfmkf/mgBtTFL68zBE/bz0OU3n/Da\nu423Wsehy29+X9b9bkPe1YWrewRrfBI7k6VQJiHcJpYp0DSFtO5hoBClaLlo849g24KycI71R2bw\nSl8j6YLHUZWEJzmltpt5NUPYErT/cILWvxomsv4oyvPbMQ93Y/osGoIJokqeCSPEkVIle8eqEQIk\nj0mgPEexXkMyBGoSLJfT0iJsp1VPBAy0CgN3rMDSab20+MfRbZlxLUjfWMzxNFWd67gsmMP3J6xd\n/tN7Rk2vjVTjaIwPn3rXW07q3m0cvPLm4+vRyg3U8b9sv1944QSpnfETXn+t0qKHbapeNun/APir\ncuSHAwSOyuh+iB60mJolYcs2Wo1OMJZD2x1Fi5kIXRDfJZhYZGOpFt0fuQ2ApnWfp+ZZifQnM1hb\nI7R84CiHRsuRdwaxXA7JE0Aywagu4e72oC5IkOkNE22eIr2/DKUgOOe8LWwea2L0SBxvdRa2hbEW\nZWj8J5Ouy0IsX9HJvvtnoaZtsnUC/5AjPzH8jjzpDyE/7ya+9sWHuL1nJalnq6g7t4ee5xsJrxjl\n5fm/Zf4PryE900AK6QS2OdnHzAwTz5BMod4htD149v/hkhe/yIy6UUbW1VNakcHoDXDvR2/kqhu+\nDEB6pkHokHPuX+sjfacR/9AAtf4kL3c389UFz/GlSD9zr39rCea7ib1fv4nmZ6/kzlPu4soNV2Db\nEOj4y+DK51+4n/9V8wQfu/GvTlj2P6Fn1FKh5dRujjzfdDwj/V7jjAu3HvfMm3XzNeh+m22XXc+K\nm77xrtYz+5yDdDzh+Onlp2t4j6hvC9S65rJ13HTveW+5rHpzEXfvJHYyjTGrga5Puwh3uFBTNuNr\ndNAFDU3jWLagvzdO2VYFLSgoLs0hyRYn1/fQMVnFD9t+y4vZNu56eSUzv/gqxQ8tczKz3WPoDeX0\nXWfSufIevjG8iM1jTVxct5OfvXo6jXXj9HRXcOq8TjZscnrXlZxja+AbcXrk0y1OX6ywIF9jMmP2\nIJ+e9jL/+5mLUBPO+YnvdKSBxTKJXK2NKyMI9NuUbxh2dtSyGPmZB81QCHhKjB6NI0IaCDh9xiEA\nnt09CzktUzVnjNE9lZy8qoPtj84hP13j68t/z/UbPkDlRomyjUNvOoYHv1SLpyVN2FdgZDyMlXGB\nbOMeVdBiDvn13jl38dOxM9g9WcP4rkpCRxwPNYfgauMbEqgZm1y1A3C58dqb0G2Za+77AnrUwt8r\nO9TB1UkUyZF9er7hJdccwn80zeiKKJWbEwx+T3B6XRfrNiyhbKcDqEjPdO4BxJ3EaniTB1lzKKGZ\nNh3hMVnS3Mv+x1r5zRd/zDnPfYXaJ2VSzU7229vvTMIPfiGMkpawXPCdDz3C97eci/ew2zkvMzRc\nPo3r5q3nttvOo3x3kb4z3VgNRcofdzMxT2CETPCaTL/LYuxrRVTFZGllHzfVbqFp3ecpf1mhbEeC\nxNwIhk9Q9nNH8SQUBdswkOa10XltEFeoRCyUZ/xgHLmqwMzqMc6v3M19/csYGI86/UVxjXg8w5rq\nw/TmY6yKHmZTsgXDksismkAoClJLIwyPgSTo/nk9ZzQewitrLPD34RE63z9wDsmRIK5wiapohoin\nQE5XGV4/zaHkLk5TyLjxh4t4VR1ZshgdiRCI5gl7i8S9OXYfrmNpaze9t87EO2VgeCXGFjvXcvOD\nCYywl2ydm/DBDEI3GVkdI1tnI2ngTjjwGVsGrT1PNJQnkfITfdZDYNhg6IoSMyrHGburEf2CBDuX\nPgDAozkff3fD5biyNp6kReBIismFURLtYMR1Frf2cFrZQW7YexpWjx9Rn8eY9GB7TGY2jdC7sZ5g\nr01ito0Z0x2ZsASG30ZNSGgzCtgple3n/4So7ONbowvY8dWFKAlnAjS6InpMyXWs8jXfkdammwW2\nYmM2Fok940ELCdS0M5lLT7ewy5yHzPjzzn0sMcvxKPQP2UzOtzlyiaMsun6qmV/97AOkpkOkkzeN\nybbskHOtpWkC64IOkTboXOdKUqF2wTD5X1U71/6iIoE9HvI1FpYCkQOC5IoS0qib4MzXj2fLr79I\noFfCPWVTijpwFau2yCktR9jQMZPodheLL99Du3+Ym54+i9BhQaFCYCk2WqWBnJEJHX7zM0O6xSZ0\nRJCbBh89ZxP3v7Kc6G5nkuY+f4yi5iJ9NMJjF1xPu+rjpSJc/fNrjhNywbGIEbZNst0icuCdP0Ql\nlmkE97lR8s660tMdb2N/n4zhBc8ECNtGDwoK5TbVL1sMnGWDZPPZ5RvYlZpG3lA50FON94j7uLVh\nzcoBvtv8KKs9cFnPqXTcN4vAkMlUm4wxP0tLxQT9TzaCdQxwszjN/hX3Hj/GUtGp2Eo6zPrAIa6u\nWc+tw6eyY8sMQkcEpirY/a2beCbv4vaR1VxV/QJneE0+27eSnKlycfk2vrP9Aip/82Y5c7pOJttk\n4arJYdsCfdzL0Qtv/YuRbdW2NPuW/+r43/+vCLpvjKa/OTZ2HuMAJC9ayNRsgR4xcccLlIVy1AZS\neGSdSneGwUKEzskKSrpCa/kYLYEJDmYqMSyJBZEBat0JbnzwPJrv6sfo7T/+PfaK+cR/1Ee1J0VI\nKeKRdDqy1YwVnOKQaUtkSm5yJZXsuB9XqIRpyISCBUq6QjzoJLCyJZVZ8VHGCwHqAwkkYfHM7jlE\ndygIy0kOafUaZfEMXpfOxjPf3sHgP12mKxkCkXAhJVzvG+X2xp1Lj8tm5fxfvvhbGvG95evFeh1L\nFlgKRA+apJtkrAkPoS6JtZ/ZwuhTtaSmS8QOWuSmCa5Y/RLbXm4n1A2mKlGx04ZPjeOJFdGEzM9e\nOpmRKo11i57k/nvmMzpD5cvnPMXLNyyj4FIp1RpE26cIVWX45KItnNa+j8U1fWwu1KGN+3BlJOIN\nSRIpP5YbBl+oI2H6WL7kED2dNagZQSEo8Pep6AGFoZCb+LMSas4ic3YeTXdjK4JimU3dWX1kD0b+\n6HGxlDf3yr3x7y3bZqEdDji024MRZA1yEwGuXbKVq0/ZylfbtnPnb1YAkFuWx7IFoq6AnVX59MpN\nXBaa5LqWndw7MZMhlw//Di9aa5FnHnld0uiefP3cv1NP0Nci0Jri1qbfcVvnCn419wVO3fcR8r3B\nE3r/3m1cc/JWrmveyVO5Gu6Z/SJ3PHry2743tHaE0tH3ZrRcqLYY311BT22QoQOVJyz/nyDTLVaZ\njBd9iIKMrP15NjfdB2q5xZ7BNdP28qWlW7l1wzLu2Lribd+fb9ZwJZyHFC1iH7eRGu96PWnlmpL5\nY1u1dU/r2y5z5QWurV0In4/C9Dia30W2XaPU9hpSUSIQLlIdSDOcCVGoNymFHJCLPOimWwlyx6K7\n+eXEKXRmqghGChw5qQ1hKIyepOASQXoukmiomeSlQjl/VfkcO0r1JAw/WcnFS3Mf4uKWDXzvyf/L\n3XvHSXaWd77f9z25cujqnCZHjaTRjHJAiCCiAXv9sXEG7F2c4K4vXN+N9r2fXXvXn7W9gMlYwIIN\nBhMsWwIkEMozozSaHHt6Ok53V3flqpPf+8cZjaQLgiVZWM9fPV3TVeecqnrP+3ueX3gT0hfYqwnN\nUe5oIRZsGrt8ZDbAL8akz+u4wxGrjQz3LW4hfdrE3eyx5U/mWbq1iNKS+AJ3NCQ1p1E462OsduBi\nn7T9Wp1rhs6zpzRD3bGYKK/x8rFTHK4P87F1/8BBq0KQj6k+NcDoVQucuDBIYXONwzd+lod7ZTYN\nL7Gw0eTM5RUqDyQ30fO/MIrc0eLtWx7lvgO7sGZM0gsSYo3CKUV7neLfXnkPv/XNX4O0Ym/fDMdn\nRhh6xTwr7Sx+OU42rRs9un2SaNTDT0u+PHUV560yqZEO2U+lqe4BbyzgxnVTZGwPSwsJ70qBrrN2\nWYbusKBwvMfSWAHvQxXcgoEyBO29PVKnTfr2LrGhUkWYCm86S2sSNr3iHMVih9VGhpVDA0y8bIb3\nHXglb7/mIR7IjSC6OpV9DRZuK7HwcovseJOByTWCTMyT9TGErrDGusiTDuuvm6XzQD+PpwYIqzbt\nER1vOES5GpGm4VciKgc0YqFT36yzbvMFXjF4kv82eJBb3/abFI8psqebLF9bpL49aUZk9j8jaEsW\nS7VUpXHjBGbFRUpFYaBFo5plZS3HeUrcNHCWcq7D+TBH7Gt8dO+n+fulqzC1iKluH384ejeXZebY\n9XstnvzsBlQ+i9R15j5cYqJU45XlY9TDNKaMyEiPdYVVzkZ9dDsWHddi+Uwf9aUscnOb4R0rdDwT\noSncWhID02o79PW16LkmrY7DhXN9jN4jkR8KSE03qF5TZHUXRPkIe6JN7kFJ7Oi0xgzSyyEiiJAY\ndIYlzpJg9y8eZjFnYZywGbhymWozw4aBKiu1AtVrYjaOLXPuvklSty9TP9LHx71NfHZ1M/9t7BD/\n5qbH+Oj9eykeqbOyt0hzPey86QzXjE9zZHWIg7Ux3rj+MMeCPsJVm1+56SFmv7qe+hikD1hUb/JR\npkI2DFKLku6GgOxpHeO6Nd676xsEBcmcSvFvDr2G6gfWYy8kkWfucBa3rNFaH2M2BatXRShTkZ6T\nWDWwV8E1ddQNTYauWGZpRCfqmsiNbaSuuHryPDPLFZpbY+zxFqmnLKq3+PTt1/mfx67mg2oz/2vT\nA4grF3jssW2XnGwhoUl3BxM6X9iycJYT2q6fF6RnNcymoDMa0dJt1GVtojUbJQVGW2JsbtK2Da7Y\nep7LN53nQxu/yAfWLuPfn70Z854sei/JDTWbis5EzO1XHGH/wgTasTRKE/z5rZ/hPU+9hfJIg85q\nBqeqMFvgXJCEu7qIqvW81ACrJugNCMZumOPw/9qJ3tEuPR6dTONNhOzcNMvvVmbZ8YHf5s4jey9N\nM7tDiT7efuMy0ck0dlUQ2Ulj6/q3PcmhuP95XgLPOBQ/U868hrxIlgodwfjNs3SPFJP7iy8wLoJU\nvyjQe4LIlJx4x4f5nyf2cLQ9wIUjg+zdMsXKP40RZgAEpeMxs2WHYwzz3z/zCnojEeYDDtf8u8eY\ne2iEwLO4EKU4+Ssf4f3xVhj2LgHRGw69hWbbYeghqF0ZEeZi+ssthp0G1TDLvMhw861HOUIfh60U\n31rbxvH7NvLV6d385dndzPbyzK0Weeie3aSPGZeOH6A5rnH1W5/mnFvgspEF6l4K39P54CPPstSC\nIR+t/aMnCzxTUdXi/Qf38ntXPP6iAFGAvoNdZCZD3GwidJ3ezmFaOwOEEzFaqdP2LObrBQJ0inaP\nYbvBWphG02KCWOdssw830hlMtRi16/Rik23bZvj2ro2s3jRJ6WtznPnLa/Ff1+Vlg6cpGF3O9Sqs\nBWm8yGCuVWC1ncY2Qi6s5dD1GDTFzpFFxks1lBD0pTuMZeoMppoMpNroImaxm2Opl2XmcxsY2Bdj\nthStcS0xPMpF7BhZZCTd4GdG3vSC5/6ig9FonYsz2ubY6+/4sUaufOCpvagNXUTtxxup8Ny65raj\n/NF1f8+dh7/7ccciWVjSc5L8lIv3uh7lu03y5zw+8xt387G+dfzGjfezb2ozQVZxTs8xuWGZ2nSR\nwQMey7/m0j1URJUDfE/HOW9w/NQ4v7P3Mf4ovobhb0seXNwCQlA+FhErg3Y3RauWZtlJceadm7lH\n7MSoGkSDAaLPpzZTQESJQYhXUihdsXimQuG0oLUhxlzVqd/oE2ga33rl+/jk4ZvQfegYFpk5aOyI\nkMMuvfsr3zMiJUgnck35HM3yCwG53qDC3eiTOq/z4Yf38s4bkgnUO294jA8/vBdz3sBa1jDmTLzh\nkKcvjHHHl67l8/kRzq+UyB5MOmpRrP/AoPOF6nOv/wg33PNufubKg9yeXeB+t8LikWdBndenEird\nD1gfenQvn7Qn+ci6fd930vrDAlFIwPd7f+Pv+NSh6zn5Sx/9Dr3rSx2MRimFWdOY3LlI90T+x/Kc\nasHmgwf28jtXP8bvXP3Y99SQPgNE4YfLM+6uCwj7Q4zV787qGHi4RnxhGTkyyPm3ZPGHA4y0T7zo\noHTFZVvmmNk/yly9iLAjrt0wTfClCt1hQVCK0VZMvq2t59CZcW5dd4r1mSrlSgv+e4zdcei8rcG7\nrvgmLyueomB0+a/Tt7Pmpvj5ocd5/8TjvHX6Nr7R3EJciOjOZ7j5DQd51567+YfDewhTkJnSidCJ\n7ZhwvYcxYxOlFKN3aTirMYNf7xEMF6ht14j1izoopRHtbbE6bFPZ1wIpibMOD7z387xr36vpGCZZ\nw+P3R77J//vwG4keKvK+1h5GKzXeMnSQxx7bRmMpy9tueoA/Hvsaf1a9ir++91ZOHJngpstPkMp5\nnCqso3SwidMx2f/uT3GdU+NQ1uZ0p8yJd3yYD/mbeeptd3BnNMKdp3ZhpANWqjnmvj6JsbvOhYUi\nKIHWkTDgEbs6drlHFElSp02cCxL9C2nqs0WsRoSXN4gswXSryGIjz/KpCqk1A3uxTXfEIb2osFdc\nyk+7zLw2g0CQuWWZt299hNN3bqDeybI0X6KznKE3GiEiQX6gxamjo6TOmvhlxarvIDTYNnCB3990\nL6Obqpy8bxOtCZ3KniXqzTQTpTVmzwzy7j33crA+xlN7P88/VCpcU5pmcucCRx7dyLov1ahd5mBV\nk4lQmBIoKRAqoWnGkz1KmS7TnTJ/+vlXUH6igd5OduKpxQC7qaOkwDk4B4C0bVQYsvzb1+MXwXcN\nep7Jx/d+kq8sXUHsa3Qjg8v756mYbU62+3EezXBnajMbClUmU2vkTZenehNE6KwzVzj/5kGaHwmY\n/eV19G1dY29pBlNGgODp1ihrUYajrWGkgGtGzjNWrHN2tQ+VilFVGz+lUErgtmw0J2Ksr4avNAwt\nJkYQn8qQPS/peyCZzKu1Ou3L+yEWaK7EyyjK+yO0jk+csrAXk+bG4k1p7NUkTmr08gucv38SBKxE\naVTNZLWWQ416mGkf7VNlOiOCXdunmW6UiaSgsZom27/AbrvNJ+/cg73isnSTg76tSc7xeNvAQ/yX\nsaPsKh6iGmV5fGWc0kCLR09vZOMtM2Tea2G1oL7OQutoWKvy4v1dIF3JtVedomj0GLBafOJLr0Yt\n2fQ//CwijG2D5jodvxKSnZJ0N4aYywZ2wkqlNSkw2oIjP/fX/KcnbyJqmzDiErQsWLGYqZXIbq1x\nxfoZ5p4YwamCm5ekLhqbyfM2pStP8au5Kh/91t7nRaR0xiB/Bv71O/6RQ/Rz++1PcCA1gF+IKe9d\nYfOeGZqfHaXXD2HPQDkx1rKGX1CwZCFGXCrZDu8euod3T/0cjcjhzMOT2GsX118/AbZqe4fTKwN4\nNZvsOYlXhj/e+zTvu/963MU0Sk9o5CJO3kdz2iQ2BEE2oR0DRFaylveO5RPmWUrQHVGEaYHZBP2c\nxV+97g4qmsHYjqNokz5HVkcYfMU80YEcb3nnfRz57E5qV/sJuAyhdmVI9e6R7zC1ey4QfW5FduIk\nXDNMfBu0niS1+Ozj7a0B6fMJEPjt6x7j3Vue4FOfuB6jLTg7Ncyh93yQzro6p761nvaY5LKrpzh7\n/3ryUzHL4xoH3/kJrk1P8cB4H0uzJawlnb8Kt7Bj8AL/x8Z7+R9Le/mzf/9a3HNZSkehM6QRC8nQ\nQ9DbX+Cpb25j5aEB5KzN03oF2dK5btNp7p/aRJiNsfpcQk/HznpEkYZoGRTOPX9zGLypTiQkQle0\nA4ueZ+I87RA+Z+6jtTVO/fqHeP/BH6+Xw4/7+X6QKj2wBJpEdXvIbZuoXpWCWBIrSezE7OpfQNcV\nE9kaS26OidQaKSPA1iOOzQ+jGxGj2QYT6TXGrDVMGTJurnLL8GlOGX2olY24RR2/GOMZBpYWMdMt\nkTNcnrgwhqFHNBsp6ktZlBLk8z2CSOPlI6dwI5OC2WNzdpkRq44UikGryXS3jBsZrO4bIn1B4awG\nKCnoVTT8AjiDHbaXl5hulfnVdbe/4Lm/6GBU1nWiZZsnyw6zU/0/1uf/SQJRgPlz/S8IRAGUkQBR\nvatY224iz9lY/2oZbX+KOzZP0LlrkKfyfbSVxfhli7TuG6Q3GNEdiKlu1pn4hMQvGHhtC9HRMesC\nIeC3r32M+8wyX3vr37K/P8PK4Qqru2Dspjmq3RQHfuYv+PDMNSxszmCtakS2YnBzlcZKAm70jiTM\nx+htidZNumhWHfxC4obnZ0Evedw0fJz9Q8PMZLLEjmLiztCOmIYAACAASURBVCahnYKGSWpZPU9T\n8UzFJnSHY+yqeB4Q/V5ltAXWhWc33R9+eC9/1tnFuzY8xYcffvb6Pv3eD/KIVmSo1ODjt3+CJZlj\n5q71z3ueH1d9dOVa/vPLvsrjjQl+vjTFm/IzfOjRvcRGAqp/GCD6TIXTadwtq+yf2XDJaOe51dnl\nYi79aNTyzk6PqpGlL9/mwwuX4U4938DrpQ5G9fEO1kiXxcXi84Dh9yv7uipNw0Bvai/YbPmdq5Nm\nyW/seZiPPXbtdzzu9sU/0udDu7rGU7d8jL86ei2nfvXD3xX05k+5sFZH5rKE2SxBSqP0kEl4dYc/\nuOoevj67HVUMsI/bBIMhKweGaGyL2PKxOsVPH2HjH7Wo+05yE4lTLHs5ri6d4+7hnQz8xQFy39Ko\n/HKPAaPJX5y+jUcu/xJvHzjOm+5/K395ZjfqM/3UtilWn+xH7wrO6HleOXyMBzsb8EKdoADaUJc4\n0FANAznZxTxtk52NSJ9rcvpXCvQ/0sTPO8hY0BsEb51PVLfIH9fInm6CUsQZm/9nZDf6lEPnWIHF\nrMWsLPOvt32bI5UybqQzM9PP/voEfkGRPaVz/KH1vOcVh3h5epnXbLmfR9NjHF8d4NxcP8KThIUc\ntS0Gn7xzD39dmmSuWeD4bZ9i06ffiVb2+Nhnb6KxkCNSGjIXgIRozCef6dGup0BTEAmUE2M4IdFs\nCuVrsKnLxB0t9JZHZyKF0QU/JxFbO4xW6vzq5n3cvvUgJz6RuH42tqRIL0UYDY/T/5cDLZ2xe3qs\nmAX2zW6gNyBIL1x0Rh+ISPV30M45ZD5t0X6ZT1CJUHayiUsfs6kOGPQ0m98vPcFXPrGTxddplAod\ntvdf4Of7H+fbzY385vgDfH7qarTCKk/Xx3jgzCam71vH5FdqrF1eJEgLwqwCmWzA/aIi3NLjuitO\nMVJokDNdjlwYwjU0+h73QCSf86Wbiqxco5CBJPvILFqlgugvo2oNuleN0huNQYG5qlPe0EDasBol\nEoynZifI53u4sUlrIQuzNmdUgWzeRZMKU4RoQrEYFph3C7QfGSHIWVQ7WVKjXU61B9ibP8ebC0/x\n9yvJRPXwwXXMHBzh/NQgUSbGqBpkN9dJWT6D2RY9dGIFvcDAMkL8UKcv02XVS1F5IsZshiAlvctG\nLlKykwxcujqlQ128wQz2qo/0E65pdbdNbyRGcyUXnhikd2UXzxHoTQ2zKYnHXIQAFUtk1cQvwMx8\nP0IJ5KqBKAcsixyF1CxfvXAl3ZEUXkmhTTss2xa7BuY5G2jc09zJP85eRmc2RzfWsactcn+uaG3O\n0xoz8QuCKB0TWwn1NbYUxZ2rBErjdeVDfP7CXhqnigwc8FnemyE7naAsr+IQmYLMjEz0jetDCk8n\nVLv2uMC+ao1g2eEjD+wlf0yjO6LIHLYIrSRLtbhtlf+w9S5uyJ7hy+d3Y60J9K4EkXg8RLbg7uWd\n/P5lj7P5qif5grUD52JcmpICowuVvSs8OTNBKuuzUM+TLrjIL5ZZfSIxFwzTAr0riDVxyWVcabB+\n0wWGU01+vXieu1qTPDY1ibVgYLa4dL/u9QviuolxwUDEErMBXgnevPPbfO6BG3FWYOCV86z0MsRW\nMsGEi86mz8o4kRH0vX6eXXvOcmp1kNRyMi012s/ml3/p4eup72xQ0VtIAcfu2cSOa6ZZPDjAI2oU\nZ1HDmdfgNWs0pJ244aaffc3vV+2JJOPRTytkVycqhTgLGq0JsBpQuWaF6OkM4cub3Nj/GDd95vfI\nzCtKvzTL9buP857jL+OJ+7ez5Y2n+a+3/C3/tHw5vUJMrd9g3dgKH//jl/GJfddzvpwi8nX8UsTg\nV02qJ/t4sDLKV7bcxWcmx1h0Ughfp7EjhEGPP/yVL1HdLZmdGWTP7xzk9OIwmc0NPnzLJ/nU7PXU\nVrLIpk5cN9F6GkHbZPjrGumliwyYIY33/oe/4dCWEttKSzz+1EasgkvtZBn9nE13h4tsPrsvuv+X\n/4yrPv2u/72L9i+kSud1VD6N6Hr0Lh8hSGn4edB8wdi6FWwtZDjVZL5b4PrSFI4MKBkdurHFsp+m\nP9Om5qa4sjDHgN7EkiElrUM7trCsmH1ynKAYo8+ZrJgWy0GWjOmz5qUppXpM5taYnu9Ha+lobY3B\niTXetuERxsw1NjgrlM0O4+YqjShFjMSNDR6aW0+1miN1Xic7H9IZMnGLGkFO4PdFGJkANMH67Cqv\nH37LC577i64Zfaaeq/P8l1KVPUusPP6dFMhnKsjHZKY1nBWFXYvI/sEsx46OUzgi8fMCd1eXwVKT\n5ScHcJYT+qvfH+LMGIRZRVAOMVZ0KruXWNs3iDfp4Zy08PpijIYk2t5GxZL1A1XWeik6rgkHc8Sm\nwi/HlCdq1JsprEMpOht9ssdMNDfJMQrSAq+ULICFMyGNdTqhA/HuFvGpDK+/fT9fevIqCgcNGns9\n0kctyq9cYDjdYP/UJHHHIHfiJ6vFfaGKdX5kDWBnNH5e/uj/v7pDiuy2Ne7b/Umu3/8O7tj9Sd7+\nV/+yFr6J15/j5P5J7JXvBEYvdc3otdef4MD5CcRU6nu65P40VXd9ooVMnTU5+rsfZN1XfovU3Hf/\njk185AToOv72UeZvsSmcimm8pU1/ro0b6qzWM5hWQK9lo/zEBEFoCn3aJkwrSocF3QGBf1kXIRTZ\nTA9NKqpnS5g1DSUVZkPQ3uaTOmtiXrNGq2Oza3Sep46tY/3fRczdlrj/BoWYDVsXaPsmrm9QX8yB\nVNgLBn2HokvGF34BnKur9L3hFOr6yzHm1/DWV2iNWXj5JBvPvr4K/1hm8OvPmlXc8eDfcv3n/wAl\n4U23HMCLDZqhxYOHtoCuMDM+fscEV+Is6vjbuuQedAiygs5YxNtuuZ9akOJoY4iTZ4cxqjpGS5Cd\nieGtVZaW8ghNoXoawo4wZiyyM7B6vQ9KIM2IQr5Dq2ODEmQzPSbyNTKGxyMP7SBKR5hll/h8mvSc\noDOqmLzTZeFGh9QFRWNzoqdd/4pzHJseZuNHQ9Z2pNBcyE/1WL4qRWOXz9b3tanuKdIeE2y77TRP\nP74BZSicBQ0lk0ZfmFIIlWjuIguaN/XQppzkpr+mofcEmpusb3ov0b9lp5OYsN5IxOZtc5w6Ooos\ne2z602Q8pUydk7/lIHwJMWTHmzRrKSZGVjl/tp+x9Sus3j+Ev7OLkDFxLImrFls+3rj0HrU251m4\nGZxFjdE/eQSZTiMMnajeoPbr11HbmphZtXa72CmfP738S/z1wk1syi7zzbnN5B0XpQSLtRy5tMva\nqRJWTeJv65JNu/zf2+7mE7M3UbY7PHp0I+jq0sZUScX41iUWVvNsHlrmxOMTxBUf66yNV4lIj7YY\nK9SZa+TRhKI/02a2ViCOBd6ag5bzMU6liDVFZCeurhMfPUG0ukZ8y5VMvTlxQhVhYs418KAksgSF\nsy5aJ0D4Ie2NedLn2rjDKWZeLUEJ0BT2oobSk/ctzEfkTui01iXO8npX4PbFRPkIK+8Sns8QWzGy\n7BO5GqKjkTudbEbdoQhZ8PnZ7U9x199cz+CjXcKMgQxilvZYdMciRN4n7ibXRNgRVirAXbPR2ho3\n3XCUR2cmCebSqLLPxN9I7MUE/XTHc9Q36PQGFUpAWAnQVwwyMwKjk/hFZGaf3Sa2JgRRKvGPMJqC\nMJWsFV5JYTYF3a0ew4M15s/1URxp0H2qjOaBWYfOuEKub6OUIHV/hiAHfk6hNAizEdddfppuaHLq\nng2klpLj8QuC0AG/GKN0hbJidmyaY7ZeQJMxKTPgC9s/zY0P/B5nX34Htx17I4v3j5KeU4gY1nYl\nxxr3BexcN8/x/eswa8nxfulf/QU/f+A3CWfT9G2rsnym/L+t44wNQXNLhN6SZM5/5+NuSWCvKZRI\ncmEBZPDDb7efeb5nSklBkE28O57JgoUEfLslQZBT7Ln5BFfmZ7h3aRubcit8497d/Myr93HXF66j\nNxShsiGGE2A8naG7ycfJuUSR5L27vsGfPHU7cZjEWamOjggkQ1uWWbxQRFs2+Y9v/AJ//PgbePWW\n43z95DbK99hUb/P43d3f5t+WEuPAVx5PPA/mHhgje15hNZ/dd4SWYPUyQXohSVmIjYtNcgW3v/Jx\n7p/byMcu/zS/vP/tGEZEf67N/GNJWsGnf+ED/OrnfveHvpY/rbXp44uo6hpRs4lWyFN77TZaY5Lu\ndpfhgTrXVKa5KXcKX2loKAwR0q+1aMY2a1GG1SjDVK+CJUOmu2VGnDpbnUXKeptISY70RjneHuRC\nJ0fK8BlymtR8h4zhcXh5mE7X4qZ1Z7G0kGuzZxjUGwRo2CLgtDdIK7apBWmeWBun2k3R80x0PaJ9\nPo/0BaP3hRjNgPpmh/qWROueKXVZV1pjpZtm/6v/9AXP/UWfjD5TH3hqL6PXztOcy71Yh/MDV3fh\ne9Moo0xM7oxg7VUunrRY8LN85FV3cP+9u9F8UB2TtcgmtZhoAfSeILQkladjvJzEaGiUj8QsTeoU\nntDpjCjsJY3YSNzIxMYezgNZWmfz1HMaQdNC70qsWtJJj09m0YZ7GKctYikRkcBqKLqDAgR0N3uk\nZnWa6yVeUSEjgWtIlBI00gbB8TzphZj88eTmupi30ZyYxmyB/EntRfNi/lF1mwBm83sDlNKNS6ys\n5hioLPOxjfsY0TUWNricPPTjyQP9SZV5S5XofIrIgkUtRWr6u4OZl/pkdHaxj62bFlidL8D2NvJC\nYgjgVn60qeVPsvSGRlgOCfsibhzdzxcWrnpBmm5h3wVEIYfW8cnPKOZ+LSaaSzE+voKpR1w3co6T\ny4Pk8l0CpWHaIXEsUZ6GGHQxLpiEDhiLBvb6NtcPTXN6rUJlsEHd0ImFRIaSy/ZM8cvXPci9x3Yi\nV00Wujn6H9SZf3NEeryF17IobaihECzOlDEfzxA6AILUoqQzKHErCr+syMxAQzk0bxkjO6uQSOZv\nzRBkRDKB2eYTn8pQOhlhLreJcymIFe9rvRq/nEydZo0Md277GnMKnmyNIHWFrsesH6wSOzEtYWKk\nAqKulVBL7ZjpuMCvjz7Cm8oHube7ha6hEQlJZEk6tRSbdsxj2iG92ICqxcDly1QHNfr7Wrxp89Os\nxmnKqS5r7TRB26TXsVie7sPLQKtjM7Zhhca5IqrfIxwPyA63WNhiozc1uiNQvKxKt55iZbFAbrRJ\nsJLD6CiyMy5hRqd4pEFoZFi52kYGgu5YxPJMCbsqiQ2R+Cpc0cTPxljzRqKv7QOEIPe0Tnsyxl7S\n8SsRSlycbAJGW2KvJWu93gFvXcDqbAGzLtnw0TaLt5S4cLNN9SoDrSe57MppqpFDMJVFa2qs+Q7l\nx3SaKwmrQo71UKcz/MfbvsK3VzfR98izbt+1bWnyU+CVBaWjHeJGE+V66BNjpI4s0t5ZQWmg1XX0\n0S6ZdMhcr4AuFSOZJkNOk8FUk5QTUHK6dGyNqBLgd0y8FYfldIYN2Sp5o8dIf52asvENQWWkDumI\n6mqWqGtQ8xxiVwc7IixECCtG6orVVpq0HdDqWqw2M1hWSG8thQglYs0kKEekZzVkmICU8r4GcniA\nzrocflYjchSxBVrZI3dYw88J0DTCrIG55oGmE9s6S9eYOEsSbzBCb2sEpZiwEBGbSR5gcJGgIkKB\n2Ra4IyHlAzouJrGlUE7MhvFlXDTSpR7ZB0zcvsTsK5KCo3MjF02FTNqjGiu7JX4lQnMlTn8PteAk\nzaR+n3g2TfasBkIwJXJEns4VO6Zx7+4nd95FBAl1qbkhhdJEot22kqZH8ahM9IxxElHXmhBYjQQw\n2GtcNKy5yH4SgiCvsKsiMU/saTSbKTAUmIrcfhOjk0xHY1Og+pL31V7UsNcSEx2vT6H1JK20pPV3\nw8hQ4PYJWrt8QiMxjjI3tAilIFPsMT/XR39fk2o9S+NClrOZApv6lvl2p5990+twpo1LE81Yk/gD\nIdKKQAf5RIbOugizIfns+Wt44xUHOXV2lN6FNIM7lgnX+3Q7zvedVIo4ocgGW3r00loSZfPc9bwH\n3UGB2U5AsYgTrecP20h/7oS2PZE46/vFmMzs81+31y+IbEWUUnz1uk9zc6rBq4oHqWLz8OJGji0P\nYS1r6F2JsaqjLZsoDWRX4vsmzgmLb/rriV0dWTfQ6zqZ88nnKDyRIRxO1rivn7mM7eOLZAyPMzOD\nhJbk/3zFXWyxFpE0ufaRdxB8rQIPZElfiJERuEWJkoJuv7zInBP4xaTZ0v+YIjOvqF8R8pp1R/jF\n4cfIS5cvL11Jr5ai3kyhdZLG5pePXP0Toei+2FXeX0e1WqgwRLke3d1jNLbG6Dmf/myb9ZkqmlCY\nImLEqJHXemRkQIAkq7nkZY9hq0GMJGe4rPhZxu01sloPR/i4mFSsNpYeU7HbrE+tMOmsMecW8WKD\nnQMLvLWyjxGrjgCWojyB0liLsjza3IgbG0x1+phtFImVxDFDWq0Usa4QnsRZkUQpDbdPInY3GRuo\nkbZ81mdX6YbWTy9N93+cfuB5AuSqn0q0OC+Ryp2WZOdDauslE3cHtK4PeaS1EX8uTZAW9IZiZMlH\nXzaI7GSxUYYg1iRBNrFQRgms8wZBViB7GukFhZ9NNm/GSQs/L5A31CjcmUKEybWMbNA7WhK8vGQh\nAH+zi2wYNLeHEEpSy+A7EqsuaG8IMeuJEN9aSxbVqnB42S2HOd4bpHA6AinQWjrhwQy9ASgfifHz\nP/n3Ksgmmo/I/tGnoT9INZpptu6c41h7mD/+h1fye1c+zrs+8nPf/w9f5IrOpwiublHeXCPeV0Dp\n3x28v9TBqN4RrM0W0Da30Q4+S1H+aQWikHzfjTWdIKP4+6XdaAsWmvfdj7d4xqezrR90HRkpqnt1\nVCqi/kQ/q47Ba0ePsCoytH0ryUx0bQLXIJaCdWMrXIjTSYj1SMDgp0y4octl5QVW3CzoisGhOhu2\nLjBgt/mPlRN8NRijcy5HelqntR5kn0sx06PZdejWbboLGYx+l56pJWtWTcOtxAweiGjd6JE6ZVI4\nG5K6ILBqENsa1lKPxhYHd0ePdVfP0zhRItYTGYHlaXh9DuZyi53/+Sy/sf1B7u9N4p/P8nTe5vHa\nBC3Pppzv4Ic6F86XGRxo4OsCTVN4vkmUjRhZt0r3/n4eyYyiOZB3PKbqZUQ6wjcFyoAmBo1GKqEU\n2zGRhFKuy3iuzv0zG2l1LaonKoSRxCq5xHWL7LTGqm1il1y6j5cJihHaiklxv0HfFyMIHHr9YGxs\n8Z5t9/DN5kZiJ6aQ72I+6tAd0IgtjTAlkUojf6KJW0nx5nd8mxmRo9d0iBwFGpgNQQ8DFUnMhsQv\nJw0VvSeo74wwWhrRxQaANd7GKHkEPRMx3iXqGXg7XPRtbV6+4RRr/zTM8H1N5l9VpLUlJD/ZQDkx\noWuwdqqEvmCSWk7uTcWLoKuzPoRY4FvJJvf+0zso7TdIzz8r/OsN2YR24qqZuv/Upd/HjSbt1+2i\nV5H0trlkNjS4eeQsVT9DpCSOFmJrIc3QohtZ6DImo/tM5Go0IptyoU29mcbJe2hSkdU9CkaPlBVg\n2yFz1SK2lVCp0RVRKJFtjcpEjYFSi2Kuy2i+zko7S6QEXttGBTJxg2+YyLIHHR2tJ9H8JKt7wxd7\nCNOktb1EkJI0t8YoA0QsUC2d7BygEkf5zKyLDCIWbsnS3KATbu1Cw0CEgrASIHsaKh0lkQi+RpSO\nUSbEpiLIA5kI5etIPzHxyow3sfSI6kIBIx1QSzuwpYOW94lbJgMPS6xaRPVKSZBXaEM9qCeZmH7X\nTKQqAuJSiLFoJoBoLAJfQ7Q1qsqh+FiiVdR6AcrUCdMGXlHirCpiXSC9pHGNACORxBLkBX5WAAmY\nklEShWKvqYsAKzl+qyaSvYInkZ4kN9akPq5QbSuh/w7GqLqBM6/jVhJjt9b6GDnoEgqJdjiD25eA\n4jCtkilxKInyEYGXGF16SkOrGfRsiBccNE8SFGIagcPZZh/B0TxeCZzl5Nj9oiAsRxhzFi3NQHR0\njM0t3NCguL7Gv5u4i8/N70EJwcBQnQureeJIw2hLwrR4Qe0mJHsT19bp27RGfCoRNCY66+Tx7i4X\ne/bZhqIMk4nqj9pQNxuASs4btEvvE4DVTD6rIhZ80dzI+6av4pN338ajZzcTpWJkTyM3BfHFHFy4\nGNdRVqTnJWE6meSnzhn4lQh9uIdz3MBoQ3Y+RnVN4vMO2sYO8uMVVh4aINR1ttw2hZKC9x17OXc8\neQvagkV3h4eb0WmPCLpDgvaWgM4IeH0x3ckYc01D86DylGLhFoH+8hrprMfGXJV71rbzeHeSxW+O\no3U1Qkehuc/uOd9/cC87bzzD8kzpR7uYP0VVenAJ/AAVhiAERqmf+jURUlP0IoOs7ZPWfaRQ5LQe\nvtKpxSkMETGodbBlgCM9LBkQk6yvzShFhIarDJaCAmtBhpTm02e0KehdVsMMCsmW3BKvKx6iqHWQ\nQhEonU5s0Y1tGlGKJT+LQqLJmACdvO0mbCjPQNRM9LZImBH9MmFBjbfZUKhSsTv4sY4bG/zSxGte\n8NxfVDD6wbsPXPrZHwwwl36yGs9/7vJLENoaXn+M1jGpfFtRtbJJpllJUTwiCGMdo5OI/LVA4ZVB\nhkluk9kAo6uwG4rIFNiriW16bCQccrcCCIFfs+kNJB8Et6yw6gLdBRlA6VSEkgJrTgchMGtacrNw\nBZovkLeu4foGRlUjTKskT2xbj/57DQ7lSuSPaizvFdirgsZmRW+nh5IgXCO56ZmJ891Pqp5xqvvn\nBKIA7kDMbZuPsW9hkuNv+GsOeAH/cFEf+Kpf3MfZI6P/vAf0A5Q2b10yP3qhm95LHYzefOsRZs4N\noM1Y9DZ7Lzhh/Gkso6GhrxjAC+uu8/uW0KSJ1g1YvTLP1a8+wfTsAHpX8gs3P4qvdE42B1iXX2Oq\nVqbbsskXuwwO1FlpZ/CVBmGiiaxt0Fl2M8zdO8laXqPXsPGfLLKQsjkxNcrHv3YNvdM5/KIi3tHB\nqLgoJWk0UmTKXYxMgCclUdtEZELyQy2CZZvIhuakQK4ZpBYSo4vCaZf6FpNev6A34CAALy2phTbW\nYI+wbjF4wMWYr2HUeijbZP/6cb41u5X37PkGU1aR/zRxJ6siy7lWGccIKac79FeaVNsZKtkOKTOg\n5tsQSsYHV4lGfVZW8hw6uJH0YIdrh6ZxNQM9E6BlAnoXMoiODoFk4+ZFau0UjWqGtSCF27YQUhBp\ngAaqaqEPuPRKIPQY6+k0YUaRPafRG4voTkbobZvVK5Js5a5m8NDBncRC0rdPZzllk5sSZGd8vKJO\nd0BSPNwEwKvYHD65jtI/6ugdjSArCHMxQT7GGugiF228kRARJDq9MKVQ/T4qH4KnkT8t8UKTIBMT\nBxragkWYj8k9aWIdtlk4MERtp6Kx2UaEIgGYqw76nEVQiC86lCZ0aaMtEUrQnojRPIHZkISGwGho\naF2RhNmvuATlFF6/Q22rhlcGd0BR+sYi0rKSDRVgWQW6QzZ+SuAvpTincqy6aSwjIlKSEafOmF1D\nCIiRTDirVP0MXqzT53TYNLzERGaNe5/ayfHVAY7VBple7mNlsQBmTK9pE0UaW0aXmOxbZWysynC6\niQK25ZZwY5OM4xMoDWEokBArgZb1EUIRGmAu67j9MdlpiVc0aI871HYIQkcQjXroGR+ZDok9nfxZ\nhdmKk+ZttQtA7Fg093iomknxeKK3jXSNOKUgFshUSKSByISoMLm20peodESoSSJbYXQkXWXQWsxC\nLGA6lRixnbVIHzIhkrTHob4juefKQBCKRJcZWwqcGGtZT4x4VkyibW26+WcBh7JiUkdtisd76E2P\nKG3hle3EuKgAze0hoSVQF+nKmi8ugRwlBFvfeIrakTJ67+J9RSSTziCv8AsJRTcyQekQ2Ql1t9V1\nYM0k2OASaBpxIUQJkpQBQ+EOxqhshD5rYa0kIDnMKmIjoUuLmoGSCcDFjMmcNVBKEvYFIAWREExu\nX2S1k+YVIyc5sH8rhROJB8Yz+xLpgz8ZUFjXwHZ85LEUvmuBgFt3nuB12TN87p6bSc/DgpYmW+4S\nWQp7yvieQPSZslfFJSAKPM9r4LlA9NLjPyIQ9YrJ/k53wVmW6D3xvNcMbUF+JsLPSN5w4+O8afgg\njxzYSZBXXHHFFK/cepQnqhMY7aSBIAPoDceYDYnVSP5trmkYbZCexLUkXjmRdUlP4laSCbhYtAlf\n3eCWNzxNZxh6ocG+p7agn7cTWrIU4GvIIKEpG63ETEu6EqUJnAU9aTqkFOkLis5I0vD6L7u+jBCg\na4oFN895t4gIBakL2vMyZYGXFBAFyN956tK6KdNpOpcP0poUUDPxNYGwFCOpBiNGjVbsYIkQWwTo\nIsIWETECS8Skhc+g3mDMSEyMIiQCxVKQJ6N5BErDliGdyGa9vcL1mdNc7ZxnVO8QIihrLiWty4De\noKB1cWRAKHTKRoe84VKyuqz6aaSEVs9G+RpGU9KeVHBZG23YZVtlmQlnjazuUfUyTNXKvHPLy1/w\n3F9UMPq+hx+99CWyxjrE1Z9M3uKLVUFfSOGYwCtoVJ70mbnd4A/f9BUOHNiO1kuy5LzBiPSMSCai\nhsCqC/wciEig9GQqIqOE4mI3YrxCYjAQZpKbkdIUuitQIqHP6N1E5xHkBNJPFn0lwewoIkfQGYmJ\nLEVqKbE8j+Yc9KaW3DwdSC1JjDmD/JSP8i16Q8mmqrUO+p4G0TJRcRLjoPfETxSIvpjlXFFn0c3T\naKV55+QTvO59vw/Ahjec5fG/3/UiH92PXi91MFoZqTPTLRA6IFvadzWK+mmv72UAln9wFjW7gFqu\n4l02xgm/AvkQva4zk00z1emj4rS5Ij/HkdoQ6bRHEGm0eja9toXUE52W8jRAEIeScMRHzjmYVZ3e\naIh9wkZEAr+g8Pti4kyENCMm+2q0fQvHCQgjLQnJfbzUpAAAIABJREFU1mPihono6vS6JlExQjkR\nwtVQGlQORaxeLtECA6UlgCeyoPLKedxjeYoba/iPlCkfVYkpjmWhNbqojEP7VTGbRpb56rEraS1l\nCcuS063+RDcjFE3PZqWVwfMMWq5N1zfJZDwiXbHSzJJNeWhGTJCOWW5lOb48xNpalvBUlp4joKdh\nDncpDLQJlSRj+7iRTiblolsRUSQxnIDIS0wdQk2gORHXrJ9mijxEktw5CBxJZesqnc0RMhvQyUow\nFK+64Wn0QsB7X/9lvn74SqyaBE0SpASDjzRAKc79XJHenh7Dd8fMvMbAWRK0N8ZIVyJiQdwy0VxB\nrCUUz2doo7JuoK3qSV53INE8gbZmkD+ZTLGUJug7kjBbOkOSIKcugoWEahlb4A+EIGFoQ5U100Rr\nS7xyTJAF3UtAa7DBZc+2c8zVipSOCIonO6xdnmd1h0FsCLi+Qbxsk1qQ5A6tooIAISXEMVq5RG/I\nwd/mEWkQdQ0yhR7DmSbjqRrdyKIZOrRDm4zhMecWyOg+bqxjyBgv1ulEFl090c6iBEKClgpIpXyk\noRgoNxnP1sgbLmWzAwhsPcDWQgwZgwBNU4lbZMdB1yOkBL/mQCSRnkBvS6x64ozaG7yYEzoSoEKJ\n6SQbROO8TaxLjB6kp5uXDJzmX+GQPWmQPwPp5ZDaFv2irlIgQkEsk+soOhqkYtAVIpDga6CrJI4l\nEBhN7aKhYEJNzU5xkcYqCDOK2FLEuQh18e+VHWMUPVIFF9MJ8LoWYSZOaL2aQKsZpMdbTI5UaZ4u\n0nc0xr7QYeHWEm7FYOmGpDGOElhLSQRWUIiQfkLx1nzoDQiCHCysFOkNR6TnJUqDyBHEBuhu0twO\n0+riviUBpPFFQCIAFSQU6DgVY6zpiQ5RB2dJIz2V6GKtpsArKox2YlBkdBKgqzSQ/S4qloieTpCP\n0boasR0jujpv2fEkH994N+966vUUH0507F5RoHehequP6OgoVycuhEgB8pRN5AiCSsi7tn2Dn73v\ntxCexCtB/pTEmwixrQB51v4uK+8/T0XWdzYiY11QvyrAWNXQ3cTYTCi+w2ivN0AC7oYlX7zlLt78\n0C8wcsUSd9z4Cd7/9ddRzVj4J7NEDgQ5dXEfmeTTm81kvyhD0L0kL9pak7ClTZyO0bd16CoDZ7LN\n+m2LbCxUWXKzHD0xTmMli7WSDDXMukQZYFclzhIoPXkNZ0lc+tmuCfJTMZmFi7mp6wXX7TjDt1a3\n8vWZ7Zxq9jP/2AgyEMRm8jn4nlloL4Hqe6KFcpMOiNZfIRjI4aeM5D0pBhQzXUpWl+Ciu7ghQiQw\nordJSYUlYkIl8NFwlY5CYImQlPTQRUzZaJPTXEwZcXXqLNc7M2wyGmiE9GkKXQhMEWMLyEiQREhi\nqnGGWpShF5sIAVnN44KXRyFYO1ciNa9h9ICdbTZUqmQsjysLc0ihkEKR1n18ofPWide+4Lm/qAZG\nV/z2n3////QvuDojL/YR/GQrWu9imCFeL5loSz1GRQLdjND1ZCUNQy2hUQG6FhHHEkOPsPUQeXEV\n7QYGRbtHjCBruIRKw480IiXJmz3yhosX6zhagCEjIiXQnrMC6yLCkiFerGOIiHqQImu4+LFOEGuU\nzIS+4MYGhojQRIwhIiQKQ4YEsU43NslqLpYM0FB8/OOvIzLBbCjsusJPCyJH4JaScGm9p0gvhfhZ\nDQT0SvKi61nSWbRXY8JUYibiZwVhKplom61kE+4Vks2kiCE9I3D7wStF6F2J3hYYLWhPxkk30Uto\nPUpL6DlKg85IEi1jtBMDCL8cgYTCYf2SqYFfUGg9QZBLzJpEmEzag8xLt4nwTLl9L22wXdizwhtH\nD5PVXE52B3l4YR2FVA9TRniRTqwEhhaRNTxGU3Vyeo/bckepR2kCpTHl9V/6TtySOc4Wo0cMHPQK\nlLUOtojYbJgYQmMubDOkpdAuRlWdDdqM6haWeJbJshgmAqvTSYAd6/U2MTAdZpjU24zr36mvj1TM\nY54iJQMKMqQTJ89vi5if/ZP3/H/svXmcXVd15/vde5/pzrfmUqkklWRLsi0Pso0nMGAbBxIIBAgz\nNAkzuPHrJiF0v3S/pJum85LQJC8BzBAghIAJQ8JkGxts42Bs43mUhWxZsqTSVOOd7xn3fn/sU7ds\njIAkGEyS9fnoo6o7nHvqnrPXXmv9fuu36MzYsTjasQmU17DrwiiLenTWG2QCqp+jPwYQdv2ZPGhx\nO9CbMojUvs/pWfphWjD4S4L+pKYwZ2mbIssDaGHXj3FARpAVDJlvj6siQebZe0v74C3n4iQmD+yi\n1c/RLqiQgcDLSlW/PGtFYQpHjUWWStCf0JjRmOKOgMKcRaaSku3xN9L2mtmo3oqVyNSyZaIhQfGo\npjchcfpW/EMmVqQurliKoYrt+Wae9SMyNWS+sI8b+7hl29gCpRFWabS6xxDXBCo0JBVBYU6TFmyC\nIjL7+ZlvaYd+0yAyQ1S3Ykn/mk2f0UYpjRB2TIzWAt9NyYwgDF1cN0NKQ5ZJaqU+ShhcleGrlDB1\nUVLjCI2rMvqpy9baHJ3Uw5cZ7dTHkynDXo+ijIm0Q9mJ8EXKYlIiQ1Jz+ow6HdpZQFFFNPN5F67I\ncGWKKzK0kUih0UayyZ/jQDxCJaf1lWRESUa08htyxQ8EMkEbyf/6m1f/Ir/eJ9+MTbZEZtf5yr6c\nBgwSnixHDLMAjDJ4DbuHO31Iiwz8hUwsOyzzLeKucv+iQrv/ysQWj4xjyDybOBplz0Ho3M9IMK5B\nexrVsxTpdDhFdhVGWJp+PJzP7HVswo+275GhxAgwrgZpP2t68xxFN8YYwXy3RKolJ40dZb5fJtOW\nZlnz+ngqw5MpS1GJqmsp93WvTyf1qDoR/cz6d1+lVJyQdhow5rXJjCSQCa7IGHK6dLKADEEv83FF\nRs2xOgUKQ1FGuCKlp30m3ebgPmxkReqqR1FGHOfOc3t/I67IaOuAuuoh0Yw4HbraxxMZgUgIjcv/\nev9/sNdN5SN7qnb6g3HBX7SAioxBhTaR9loWZVeRveaZD2h7zSHv+43sNZAZAx9WmU3pjSm8tsHr\n2GCpP+LY667B62i0I0jzUT9Zrl69cqxV8Sobc6WBGBxfGOiPSmRiKe5e006mMAraZ9vG4FI5JIpc\npDTEkYPjZqSxwmiBX0wQwlAthiSZJHBTAidluVfAz3/uxh7GCOqFPutLy3Qzj0ZUYG2xSUElSKHZ\n0xml7vWpu30cmQ2u94jbJUPmfmQ1++9kPtpIJv0me3uj+Cql7vQYcrtMuQ2OJjUyBJ0sYL23yL3d\ndQy5PQ6FdepuDykM7z/tS8dclv96GjT/3X7uJlVGkigKpYihoQ5b1swRFGOOG1+gXuqTJArXzYhi\nByU1rtJUgoiimxCmDt3YI0zt8F7fSRnye/RSjzhTBCq1TtBddYqpkfQzl3YSDB7zZIo2kkg7SGHo\nZD7DnuUWbQgWqeZd/2u9ZSLt0Ml8Qu0ONl+Foac9itLSuCLtkiFIA+vsjCPorLVodPlgxsYvL7Dm\nujkyHzprHbxOZh1LaijMG7yWDfyieh4cYp1UOGpIi4ZoKHdmbaum6C8IZGpwWxDMKURCrr5oNzu3\nbQNIJ7QbXFLGBtypdXxp0dKpSvsdnGpMUrEbaVo0OF1B8YjBX5AWiQogqtm/7UdZ8s8fa/rv9nO2\ngpughGZ/NEzJiRgvd9hUWWTv/DD7Dw+TGcF8p4TzmPL6dzsn0NUeGTaYmHCbTHnLdLVPIBShMax1\nWnSNx8G0ytHMrp1dSW2QiEYmYb1TYGe8yjXr6JAlregZ2Ox0qMuQhcxlvVPmHD/hWAKSSkgqMqah\nA5Yyl0BoRpShqV2ygk2K3DYE84JsOiQpG972H79Ga6vtwQsWBG7bjoXArAYCJm8fiEY03Wm7Dgpz\nAqdrEUXVt2tGGGzVn5w6Z+z706IhWDS4bQbJrmWBWEVVFdvkV4UWTeivTUGAv2g/R0UWJcoKtu1B\nJlbZMitYIZPUivLaQNaBwryh+ogV0vFahv6EYPmMFCe0CanQECwaCnPaIncFcsEZcLv2y/WXbb8f\nwvqbtCjw2maQiBppE8cViqCKbCJqlA02RAZRXeC2DcGSHmgTgC28dac1nWlpg+vsMcqdBoIljVY2\nkXU7xy4CXfOOP+W1r77up7zDn7omhMFzUhxpv0ylNK6T0V4ukvRdqkWrSApgjMCRevAvcOzep/L3\n+ipFYtBG0k09m6TmF6mo7J7USX0i4xBpF4WmmRboaQ8lNFFeYA1kQmIUiXYoyphRp0VRxnkvWZOi\njMiMtEUqkRJqF5X3hYXaxRMZnsjI/o2EhDJv/0lLtn/xzZd8g99985c59UU7Uf2VgpL1PyoUtidb\n2P1WOwbt2vWcFo1lp/XtWDy7/gzJCvPIiEGSqCIxeL0wIFLyApqxI/batrCd1lNUU9mEs5DZIvSi\nQvUkTlNBKjCevUd0oG0iCvb1ji18ZEbiOym+m/KimQfopR5HmhXWV5YouTFhHj814iJ1b1UZqZUE\nNOIi3cxDI6i7PSY820ZQd3osJ0WU0Ejs3/doOGrvJQw1p0dPeyynpUExJDQuzcwWURbTMr60wEQg\nEtpZgXHVJjQOdWUT2GHVoa4s9b2RlQBwc2RvxlkcFAlFhvWDEpKaAQ3t4zTdDRmZb/uZRV5og7z4\noA1u1wx0NFRkE0UVG1Ri0I59vd/QGCVwQlu0S4qSzJMIbZNLFZncf9ui4EoSao9pj1eZ1RgF0bCw\nfdipTWCNFCSFHFyQtli4wjBQofXJxVJEtxNQLoZkqeSizQ+RZZLTNswilMF1U7QWtHo2kGv2CjT6\nwUCRvJ+4bKov0o9dJIZIOxztVfBUxmJUYmdzwoI3mUPVDdGIQTytjaSVFuimPvNxGSlsfDwfVzjU\nr+HLhHYWUHFDHJHx4vqdLCcl7umu5/6ORd/Wesu4IqXqhDTTAsOe7UFdiH58gPlvw/P8uz0pJqUh\nCKxz0VryyNwovfkSm8qLfOGkz/De079BHDkIAb3QI9N2M0y0pOJHlP2I6UoDIQz91KUVBwQqtUPJ\nMwdPpjhCM+p3aCUBTu4EnRz9WYqLg0UEkGqFKzStNKCsIlyRMe61GXXbTDoNLqj+gLKKBolnhiDU\nLjWnRyATfJkw5HRJjN0URGYdRPmgdfYb37OThbNGWDprlMnvzNNdK0gLkrgCCBuM6Zye1FtjaG2U\ntNdbZxgs2OSzss86cRXazU4mNqATOkdmXMBAXFtBM3KxiKJNJnvrU/oThrSsrQx/0TpGf8mQLflo\nh5zGbVCRrRw6oa3cGpVXZo+x6t2O3Tvf9LYruee/Xvbk3DT/bj8TSzLFUlqiqGK6qU8r9nngslOo\nXF9i/Fseh48M0WkUCVRKyYkoqpghp0toLI3t1dX7eHZhH79dnUMjaeiUu6JJQqPwyCjJiKOZR1P3\nqcs+N4WayCTsS2P2p322+6stFRmGoshwBSxpxZhMB8/7wmVYHnubOZDWmVRdajLBFRAbgy8y0sCK\noaygD5s+BuuvCfnCu36N6ePnSC5qkhbBb1jEAVYr004ftGtVOo2yAaN27fMytkmZjPM4MUdIMHbt\nGQeSIU1/Qtg1mI9UcXo5dc3GSWhl2yTcjkCWEvxlu2bjul1HTk/gLdsk1qgcPfEsiyHzrYhTNGRH\nVqjI4Dc0upbgtQzlA5qhOx1EahHZNBD0JoUNrIwtkmnH/t88PkczFXhtO0ZCZOD0rP9IA2EFVbTJ\nk1voj0mrBitsYrkyixFsgNcfs7Ox3Z7BX7ZPOF3bPziY7yjzSr/OAz4BbidXav8RtuPSy5h2yvz+\n6C52XPrL7VuyTJJpSaolQhiSRNH77hj1233qd/iEsYvjZKSpfR7sPNMoczBGsKbUou71WVNooY1g\nKS6SGomvUgoqQSPopj7LSZF2GtDXHqF2cWRG2bH71+BccpRKCk3N6VFRoe2HFQaFJjQOLR2QGCtg\nIoUhEAlBHlSWZIQnMkLjUhTHbpD80zd+iq+/7U+f9O/252EyL/g6fYOMQU71+fNvvoD33fV8Lt/4\nHd5zyReI1kcDNpLQgLbJo9O1SKWK7H5uFMhIENf0AG1bYVdYKr0h8wxJVaN9g4osbVuk9hxWkNi0\nZsfWqFAgwlVRz9Ko7V/NCjZRAcCxc44xgDKDWcjkiqaPNV9lHA5r3L9zPb1mgVuv3cYPDk3QT10c\nodFG0El8Ciqh5MRoI6h71smN+20OhzUAuqlPYhQFZVF0jaBpZdMpqoiijFhOS4MCSIagpz06WUBP\ne/S0ddLaCCSaMadNUUYsZmUauogUmsQ4JMbhYDJEIBN7n4qEUHuDeM04lkZs0Wv7c+0h2PRXe9jy\niQYizgt/nr1mTmgexwKTKRQWNF7H5HGVFeZK8wTRiXLl48zk6LVlgGgn73P2Vj83822imfk2plKR\nfUzkCKhWtngRVy3gEJflIPZaOb5RK3uJZZiYTBJFDiNDdvyR42YcfJ7Dlj9o0vm/1/KBcyyyqLUg\niR20liSJInBTkkwhhGGmtsTJlUNsnzxIP3WZ8Ftsqixa4AZBxY042K8DsL87NLi+vkzZUFik7vao\nuz2qTkgjsawLKTTbqoc5rbSfUbfNuNum6oQcSEbwZUpRxZxR2U+iHTpZwF3dGYoyZo3XJNVW6bfi\nrgre/Sj7hfaMfvTKW57w2AoP/sK33Mqjdz11RWJ+Gkv+tdOV6hkj1S5h4tLr+5yy9hDJVaP0Plvn\nyj9aw3cffRZnPn8XjbRAZuzImCi1C8h3MjyZEWaurTAbQcGxfTklN0blFKOlqMhcWMHPEZ7UKKQw\n+DJjyOsBglg7KGHVxgpOwqjXpZ0FdDKfbuaDEDzQXUcmJArDfFJBI4mNi0bSyQJ8mVJSESNOh0h7\n3HfjFtyeDRzTgqWh7SiMMH7BEV72/Jv49snHsekvm/hzfeKRYj6Cwe4WVpwiF7HI6X1JxW5q0XBO\nra3n1BBt0Q/tW6qQTMVgM/NaEpVvgMaxx/GXJNq1x01LhmDB9mbEVYERNjjOfPv+4Z1m4CDLs9CZ\nMXa4dvfY8vICuG3XFv7q+rO4579extvPv52Pfu+XTz49Lf7k1/wy21mn7OZwWMORmgO9IbqJx/Hn\n7+fRkSKvfPH3oGioVfvcc9dxiOEUIeHO5fXEuKzzl7ihezwN46HEEgZDRztEOAhhUBhGVUhRZDS0\nIEQhEMREKAy+gKq0wcVC1uW2aIiijDGAJzSugEr+/N6kw83hGr7TG2dMHeJIlnJ3VGQ+S/iLhTP5\n+8NnsDub4P5oiuP8w/SMYk6XuXLH0+gfF+EtOCBh+USXpZMcgiXBoWoJ42dksUN1LzktThDXbWLp\ntS0a6jfAbdvIxTiWyuU17JqL6zZZXbHMA/JijdOWqNjSgleotTKzSKtKbBCoPZvY6sDgLLl25mLP\nVrq9lkUpS4et/+ivS6nuVqjIrk+UTfqktp+nPcFVf/h/+G+bH+BPD51FWpSoxPocr2VsQLUCtEjr\nQ/yGfax4BNKSHFBsg4YmqdiIRzvCjtPIE1eRo8du3+Qost1rVWL/PrdnSAtyQFNGQjgskSkUj+bn\ngSApC5zYfr7M37sCwMsY0tLjE9KkYrh0+x1svPrNfPyac5nb2OO1Z3+Xh0aGaO2pPTkL5Ek0Z33P\nJt9KYxC29WSvz/gdXbwuDH2xy8GT6+hUIf2MOHXIjMBVGiEgyRwCJ8UVmoKTAIK61yfSDp60+2I/\nc8nyvc4WXAUVFdr3yASDoJEV6Wsv38scYu1SUhEGQWIUC2kVJTSPRBNMeQ2U0LR1wN3dDdzW3EhT\nF+kZn572We8tkqLwRcp192x/wt/87btP5+LT7+KLs2ex6w0fYWFjlx07Zn7eX/3PzOK6ydtqBLe+\n7IN86rans/Gdd3D5R4/jjnvP56VvuImdwzXYY0XW0rJBCGFHJI0YhBFWNErlFM0cbRNmRefDMjFU\nmCOj2WprjDBAzsAwjkFGEuNZ+q3QloGhctGfuO9ZNNAz6FKGiCXa00zMLFEZ6rF2bJnFZhmh7Lxl\nraBaDkm1YrFX5HUzt3Ffa5rWfSMM3yNZ++0leoUa87pEz1eW3hkVKLgJYeZScmJaSYAAMqOouZZm\n7kh7r3syI9YO7Swg1B6RdulrjyTvTyyoGIPAIHCE7dUuyISSipAYOrpAXfUIjUuCw5jT5p7eDG0d\nUFUWofVlyj3dDdza3MRJpcM8Go8x4nRJUFx745nIxI6QkoltQfA6hnhtDScRTFx9hKMvDsikJAvA\na1mUNPPzorwnSIoCN4TMFai8MKFCUKlBJobMs2O/EAIntvFTFghUYigu6IEicly2o49EltO5xSr6\nCYKkZEcyuZ08jgzsvdBfY89He5Ylg1pthRWbe2SpZRSGsUsUuiyePUlnY5W46nDLt05FndblnLX7\nORJWyLQkyyRR4hJnDv3IQyg4EtWoe33aaUDZi6xKPnBceYHZ3hC91CPVEk9lBCrFkxntNKCZFmin\nAe00IJAJnfznNX6LRlJiKSuzzltiV38NjaRIxwRoJO0sYH9/hFB7TPpNvjO3le21WRaSMkeiKpN+\ni0i7PG/y5cdck085ZHSFAvTNr5xL98Iu4cVt+seotv6y2tCZ87/oU/iZmFS2ah54CVJq7t03TfDy\no3SnfBgfofbtXWgEm+qLxLGy/QrCUPQS+onLclign7h4MiM1kjBzaCc+ncSn5oUUnZiiE1NxQ6TQ\n9FIvr97ZKjJAohXd1FJKwFZ4epmHQud9pC69zKPkROztjw0qdP3MZW93hEAmPNwe47zSwyynJfZG\n44BFK6IhOyNMe/Af3/sl9r7o4xTe6TLjLXDe+keZ/4BEF32q+2L8pnVCaUGg+obiUW1pFxLinJq7\ngipol1wp2TqyuGarZCvU3KxgQEA0ZAZo6UrlzQhLW1ShwF+0zs5r5EFtUeO1bLV36saMuadZ1U6h\nwW9pvGVp++9+zKoPfnVuMF/tVXsvYjnrPaVR0g/8p48BFvH5t2TNpEAv9fj+0RnaiU/ND/n+TSeS\nzBf4q9ufyZFuleWwwNR3DbuOjPPA0hqqXkg/c7m9s5HltMi+aJR7omlO91KGVchmd5F1qkMgbP9b\nbCQlqZlSEYFI2ZMM09AegVj1x4FQVGSfxEja2mVR+7TzgCwxNvqqqy6/UvoBAPfHa7js4EW85qpL\n+NbfnMf8N6e5709O4yu7TmUuK1OUKSe5TYqHDaVdPsWjmvE7+4w8kDFzZcjiyYqROyQbPqz4n7/+\nJeKKIKnYjd3tWjp7UhakJZtspcXVdZcGthczqhtUbCm7WSHvJQpsgiYTexztkouz2GQKwGtItLLI\nq9vJ+y8Tgb9oj5GU7DotLmSkJag+GjLyQEJ5jzMoIMV1g79kacDFI5rSIc2n3/XnjKsSx/3d27nw\n4nsYu+AQzbMfU0U2uV/wLXXsccImOW1shR6GsH3uIkcFVnpIV44Dq9S1QS/qY8xvaoIljRPmiX3L\nMip6EzmdOTNWYdWsHu8n2UO//RH7XkcjNHz5757Ni0sdrjnxip/uAD9ne/vrruSad/wpYxceYsel\nlxFOPFH+NEkcfDdFAI6TEQ0b2hsLdKZcsnqRE/9gL7X7XNJMkuXrIct7ojuJRy/16Gcuvsxwc6ZP\nqhWpVhRkTNWJqLs9fGnR0pVjaATqh+RYVyiTiVGW1ZObzvv4aqpPOws4FA9xMBriqoe2cettW7n2\nkS18d+54dvfGOZLWSYzzhGMD7HjnZex452W86ROXEsxJtn3oEv7zyJ0/k+/6F2Uysd9nWjQ8889+\nl+JhePgvz0F3uzjX3clfX38Bz5jaSzRiafFuR2CkoT9pBuO2jAC3mSdFoUVKM88WubRrBiypzGNQ\nIEbmaGtqjylj208qYls0MnlfuB4wEHKafZCBEeixmFef930uWvMQL1i7gy9s+TK3XfhBTCqImz4m\nsuyzgpMwWuzx5YNn8ODBSdZ/q0PpUIwRgrXXNxi+R7K4Z4he4uGpzCLyxtI1w8wl1gpXZvQzi2o2\nkgL9zCKUncyyXupuj8RIupnPclqkrEKrxSE0mZGDticpNAtJhZ62PaXzaZWe9ulkAbd0jwegpvr0\ntM8P+mv429lz+eajJ1FQCe/67qvIsGjqkbSO27X+TyubiPoNw/B3HqU9rVg6sUDjvGn8RwJ0LcHd\n0iIt2uLhSsvUil9PChY8kJn1+07ethCXJW5fIzP7XOYxYI4YZUVGhTGDvuO0gH1tnBckjD0vI1eY\nODnzLZ+WoSIY2mXbIEbvTUiqhqS0+vqo76IzQWOpTL8VIA4HbLgqZe1FB2icaBW8k2+OccMNpxLH\ntnicRg5h26ccRJQLEa3QJ9GKfuZS8/o0E4tgayM50B9CCc2aYpOaF1J2IxIjORpWLDqtFY7QeDJl\nPi6T5MHio70RGkmBpbjEQlph2O0SaYc93VGWkhL9zGVXY5yrvr+dD1/+Qg7cM8VCWmYol+NupgVm\ngoUfvyZ/Jiv7Z2jR8Aqt0XD52Z9AP1ghXBf/hHf9YuyuP/jIP+t9y3eOPeGx4afN/UtP5+duWSY5\nMl+j3Q1QyrD+s4rq7zgsnahIRkqwZox7/+Zknj9yH58955MkiSLVkm7kESUOSaowQJg5lFx7jW2l\nGJpxYJUt3chSi1RK4CR0U2/w+a7IKKgYjUBi6GYeBRXTSi3SWc512VecbCGnN6VGcaA7xIF2nU9f\ncyG7rt7MW25/PdPeElJo2llANJQLedStKvF/v/43Adj7qnH++H+8jpv3beTS46/n0B9qggNNulMS\n7eSBbUEQ1a0CcVoypHmvmPYMXsOiKjrfoLTDgHZihP1dJhZ1KcyvojBOL3+fa3sjMPbYsILSgOzb\ncw2WDI3NDpUtyxw5x0dFhsqDiww9rCkekkSjx9aWP3t8H694s+3ruvX+4xlST12IUV68SGIcmiem\n7Lj0MttL+G/Eds5PsNgvMlNbYk2xxdvX/SMOUbM0AAAgAElEQVS7X/sRxjctItsOje9MMv/gGFFV\n4txTZv6WNYSpy6jfGayLigoJtcu+NMXF0NYu+9IqEyqhqX3mdZHEQM8IFnWR07xFKjKhl2veLWc9\n2jplSvWYdlIqMmFKRRSF4XDawRWKaaeAwvCDeIw9aY2jSZ3Fv5hh7fVQPZDhNQ1HzhNMfLHA15fP\nIDOCUVWgPyZsgL9e0jwuwO1qDvxKQLBgkb3WxoDXVha58398BKcH0bANEMIRS21Vke0HA2wwElra\nr62mC4qHrCgJ2iaRfkMMRI9W1uVKEGHUSq+QHaFhqbW2aJSWbB+42zIM7dJM3NbHX0yYvr5Pe4NP\na8ahN2XXm9sBoS3aGlcFcVXYfvMc9qwdv8z3vnI60+UGW6aPDq51f1SCgagO0ZBE5tX6uGr9Q5xX\n/t2ORWQtEpon0G3zOLXNtCgGz8nsMdQ/YYOtzLMVfJGZQaLq9AxOz5DkiKfQx85CnfCJz2374CVs\n++AllKurvWkv3f0rAE8pyu6OSy9jx6WXcenQPqadMjec/FX2Jh386c7jXtfr+iSJwhhh9zAjmPlK\ni8JcYhXyRwNEpcTkx+9kqm777QpuSj9x6SdunpPkNGoj8WRKO/XRiEFRtZX69HP+uSt0LjqSt24Y\nSU97tuXFKKuXkPfsATTTIolx8GUyeGw2HuaOxnq+fMfT8O4tMXErFG8u0/3sFDfPznBPZz2uSBmR\nXX7Ytn3oEj7dGic8afX6nfl372LHO586127FdrzzMi593deonD93zPNLKgYjrXKs2xGs+bObGfvI\nLRQPKcIXno3achxbP3SUD629lW3P3E1ct/utjGxfqBUdsgWtpGqP4/QsI0nFdg+2NE5DXNcDqq/2\nbL+pUZYajyYXXLNJqYos0yIrWTEi7eYtPT0JiURVY6678C8A+NLOM/jkzc/i3Qcv5sGkZBNdAWQC\nbQRH2hU0gpoXImYLREM+bichGS3SW1fG6Rs2XJkxU10EoJ34BCplKSriSI0nM0oqYjpYtuew4qNU\nn6oTMu61cUVG1bFFs1G3g8JQkeGARt7THqNOG4Apb5kMwSb/KEUZ5ey2ZPBaT6Q83B/nyq+cx+F/\nnKb2dxVu/eqpiFBx6/JGDqVDVGSf3rikP2ZbBFaosisW16yg0MzXG3iHPDaPLtCfsN+1TKyokJEr\nlFjbwmATVdvzLnIBvMwTZK5AJhYM8DombxcxpL4gqqpc8M2gXfvaAU3Xs3M2EbnfDPP/I8PEtw8y\nescStXvmac8IgoWQtJrBli5xFZyuwWhBqRKCNLjFGNb2CYcdFr80jb+kyDwYfjBCZLDrmZ9BCoPj\nZbiFBEdqolTRC30khlgrym5EJ7G+xcsBnMxIyk7MiN9lOSyyEJZt76iRjPodNhYWKKiERly0PcVu\nn02lBYY9m4Cuce09oY3gaL/Cw60xbjk0Q/eKSdbcKFh/dQvtGb7ymWdzIBzm4qEHKaqYuZ9AFX1K\nq+m++p3foqb6vLV2iDPe+46f01n9ZOuPC9Y/ez9H2hXa+6uU17eIdtQpHXj8635aNd1kQ4S775dv\nrE12XB/XzVBKI6Wm+2iNzZ/tsPclFWQkKB8w1HeHuPfvIfn7KkN+j7lehXbkIQWUvNxpPUZNN8kU\n48U2qZZWDTdTDAVW2MgRGUUnGXy+L1MSIwkzl5obDn5fqTgPe12W4hKuzOikHkd7VR65e5qZK2KM\nEqRFRXFfC5FqjOfwks/fwG9V9/GJ5iY+9skX4nStyplMAAN3//fLePbb3sr8aQ6vfPkN/OHYgwCc\ne8/L+O2ZW/j6S85j+cxRWhskhXlDf8zS4OKaoXTQjrMQed9ZXMub3rPVfjLjrogW5RU1bfLENkdF\n894CFVo1XZmB0xG5qAh0tiZ41YjhrxUpHY6Z/N976CQ+b5y6kXd94/UY33D850Lmziyt8kJ+yGZ+\n8xG+uvkatv/xJYPHkrLd5P9oYSuXX/6cQd/cL8raZ/c5c2Y/uxbGEdcPWbGJixa488wvArD9jy/5\nV6+mywkdTpiYY2v1KO004L7FKV6/4fvc11nHHfPrmF+qoGNFdbhLt+ez5ss+3iWH2VRZxJUZjsg4\nuXSQB7prec3w92noIhucZSpSExkYlpJrems5v2CdWmJgo1vmcNohAdY7Zb4bWjRmSrWpSI0CdiVV\nusbjJHeBKcfnUBpxfe94/v7IGbQ/uI72tJ0VV9+dcehZgpmTD7H34CjVOwN6T+/w+9uvZp27yLs+\n/DbSkl0HWQGmr+uz8O4+lSDi4I4JascvU/5Ujd6Yoj8qGHkwZXGbg9uxlCmR2mp4VBcD9kBWWGUl\n9CcMTmel1zEX78p7rb2moDepqe6RiMwqymo3FxzBHsNvMBAEKh7RVPbbBH9xW0A0LBi7O6G93qF0\nNKM3qrjjvR9h45VvobLTRYUgjEUYMx/a62HXm2xh8+zffwfdF7a49ZxPkmG44M43kN40TCnvWw+H\nbaDjN3KBIWHRy6huVRlXVHaNXE0Mk5IYUG/drg3KCvPa0s98+/60KHB6hs60pHxQk5TEgImxkrzO\nPw2G7xeoyBAOS8ZefICSE7Pvi8fhN+z5pUVBf/SJziWc0JRnmqS3Dq0+dlIf5WY89KzPcMqtr0Hf\nVv9Zr5KfynobUva+6OMAHH/52/EXV2v00xfvHyC42z5ofWJyWgfXzSgFMUlqIayxP/FpbSywcLql\nhqsIygc0bs/Q2KyIzugwVu+gjcAYwXipQysKqPt9ym5ErBWetKrw/cylk/rUvR6u0GgEw67VMkiN\nykX7xCA5HXJ6aITt1TMyp/NmzMZD9DOXbupz7ydOYfyGI4hM0z1xHISlcZceaZGMFtn/XJ93v+Rr\nBCLmTz7zip/qe6ucP8dCo8zxk/McuHbDz+x6/FNNn95m5zP+FrCJ8453XsZs2uF5H30P/89vfZ5X\nVZbZ9qHV/UymufBf3yYg43dEyESz90UBlb0Cv6UJljL8b95B/K31fGLL53juP7zbKmQrQILbsj5h\nRUhQK1sclkkukpargMvH9IemBTPoV80820pgnNWk0yZKq2tn5fGV0SYn/H8HOfSCdWQBjD4Q43/v\nQZZedhpJCf7buz7Hf/nGa8gKmtH1DRyVIYWh6CY8MjuGOupTfcSu/RXxnjX/2OTQRTXCEcOGc2Zx\nZcaW6hxHwioSw9pCAz9HyJQweHlvT6ydQWEfQAqT63O0OBzXmXBbLCRW/GbY6VKUEUtpmZrTo5kW\nrbpzMmwZbjJhd2+C6648k01/fQDjOuC5pPUC3bUBhYWE2QsCXvjCW9he2s8ff+KVg/hDRRZ9rsxm\nzD5HYhyDt2znL6/9R01Utb5yaZugeFgMGCbIvNiobaLodSyzJC5LgkZGf0St6gkYQ+YKvI71lxiI\natK+J7bPaXeFuUKehDJQ3TUKRu5pIo8usXTBDI3NkrRkqP8ARu9cxijFhZ+5jYWkzLWfPI/m1gxq\nCaOjbZTUlqp7+zDn/Pr9ZEZw470noNqKrR8+SDZUYc8rqjz/ubdz69wG0kzRDT2rqOsldCOPqWrL\nihAlHhurizTjgEOdGlPlJo7UlJyYmtunm/qDuGC2V6fsRiyEZbbXZ5mPLWp6uF9jfXF5AP7sao3b\nkS2/EWKm19A+oUZld5tdb6hS2yUpLmiCxYTr/vaTvGrvRawrLPOB7V885jp+yiGjj7XPf+i5vLV2\niNc9egHLZyV2ntkv2NKiYPKZBxkJuly+/VNcePYOovvrnHnBD2ie8M8LgH+ZEtEVNG7FZK4KmGUS\nOR6iljokFU04E9PYCrPPKdC+6ATcl9hG5uGgS8lLyLSgG1veuqssotUMA4QwdBKfbuIPxlOk2laP\nPWWlpnuppZG0U59YO5ScmEgrfJmQajVQcutn7kCB985D63j4gWnWXZvhNkJUP6VwpE/zpDoijNH3\n7uT93/gN7o4kB6MhZAJxPR9d4FkUITEZsxdJJm+LufLPn83xn3sHH29OsdAo8/b6QQCG7lxg/O6E\n3hrbowBYdNOxqE1askFxWjYDh7WC3DgduwElpTxBDXJF0Y7dyNDQm8ponZBSeVRYGXljA0yZQv1u\nF3Vfme6k5OAzA+649kQePDzBN5ZOJ1iQTH/L4Cx2aZ50jIZR4L0bvvbEa140vGbvhfz+6C7+z5s/\n+S+/if4FVn3BYYqliHtm19JuWNRWZHDO5P5f6Hk9mfaDNz+RgVHwE8aCTh64ekSpwwtLD9FKfZZa\nRZy9ASO3uLT31cj6DrO/qjly3TTX33wK33roRPZ3h7m9tZGluERLW2n+tnGZdsoc55YZUkVO8I4Q\nCEFbS5q5OkdNeoRGcGcUs8npsMlpUsp9wKHMY4PT4hRvgSXtsSdJ2JPWUEJz5AsbaE8r+uOG+u6M\n5S2K0bsEB5dqFCsRnXP6PGNmL7vDCULjWsp6mlNiW9BZ59OYL/PcNTvRBU188wizFwna62Hq5j5v\n/JOv8pE3X0ZhwZ5Ld1qjXbsGhcbS4wREQ5qkZFEOGzxiRYHy14nUqk17DTkQnzA5SuG17PkYlYsf\nxfYcVxJRgPWv3kN/S0Rjs0saCPzFhCAXAdr7gr/K53taBDMctsisTAWz+WgcmRi4s8aZN72Vmixw\nxsQshWevtnUESxqnZwYCGDIxOUKwOq7gsYJEYBV33Y5FOkVmf9auTSplwmAEVVSTBAsGrUTe52R7\nQTvTkoXTbb+6igy9SUlch9mlOlurR+G5S4PPMsfYonUlfVwiChA8WMC9t8x9ccj951z+I+mwT7Y9\nNhHd9sFLHpeIAsxeu573LZwwSESBwegWT2UU/RhHabKCgxMZsmpGXNPEdUNjq6D8SJN1Xz1K0vNo\ndAvEqSJOldVOMAJHZsRaUXJiSk6U/4tJtRzoJAADBBRsi4kUhrKKKKsIldPrejmS2swKHI5rpFqy\nEJW56+g0E9/cN0C0jRR0Jh2SkkRkGU43YXiHoZMFeP+EmV/t743zxpNv4eoTrvznffk/I1tJRDd+\n9a2ATUif99H3APC91pbHJaJgqZVOx+7JaQEWT/Zx59o4PUFzqx2TdPgZDgtvOZf+36zh7a99J4+8\n8qPEoylZSefMBAMip+IqO+aJXCFXJPZ/GVtqb1awSKxMGAgeuW25Gn0bYcXWXEMW2D5SmygJiock\npVnBxK2QDVcRxjCyI2bf8x3k8BD1z9zC6H19frPcGiCqnpOSZnYGcz9xqQ910a6hN2FHWXU3JfjL\nhnBNkemvH0Fo2P3wGg63qsyFFXqphxSGpbjEwbCe9ynHpFoR5/dgKxcvWklEyyoiMcqiZUkVV9oR\neu0sGBRNAEbdNgeSYRSGxCh29ya46tbtbPziAsZzMUcXWDhrhLTs4rUynEaE04dd7QnaWWDFgXTu\n/4S9l/ujCuMYhmaWSfOC4+JJDlFdkpQEU2cepjdp6GzQxHUIRx/f+qQdUKG2tN3E/iMvwskUvK5V\n2xXa+sNgWZMULdV3hQ0nUzsCcAUVR9jzHH6gjTy6xOJFMyydJEgqhnQopTslSIcKLJ9cpShj3j95\ntz2P0QijLeMi05I4VdR3a4bdLv9z6iqK+x1G7zXs/Q/TLJxZJZgXbC/t54ShObqhRxS6RIljBdZS\nOx4RoOjGzBQWmS42mCo3LaIqNId7VQ71a9Tdnm0VyGn+dbfPRKHNg601VJ0+R/tVyk40SESPhBWS\nTPHA7Rvt/XBSnc4axeFn1VmzdY60COX9PfqjKyq9gtaxxjjk9pRORgE2fu2tSKHZsG6B5skJ7Zlf\n7Pl0ZjImim3Oq+9hm1fg0onr0D58/+FNFGd/uq9z5ukHfvKLfkGW1H58QGCcVcciAN9NMQY7pz5I\nyPbP4k32IBVkZc3wjozq7QfRx61j7xc2U/NCJkstu9nms0ZXks7hQo8h3w71rfl9HKkpu5HtKdWW\n4lvP52OlWlJyYktfwiawGZKKG7K+sDSglXh5pZk7a2z6Skxh9wJoTXe6wNK2MkZA8/QJnJn1lB8V\nnBso9veHB/0bfsNS9IyEu2NNMCdJi5LOOsHotnneWjvE7gs+zfn3vZTG9lEACnuXKRw1qL7tDUvL\nVmkvWLRV0qRiEU2kTUwh72Oo2M80uQqbrcxZwYRkWFNYMDgdSXGfg3ZyUZGcOdXeHtE4K6KwYOhN\nad796n+guH2J4k1lrtt5Aqe9YCetDXYjEYVjBxynegG/d+T0xz1WmBMc7lV52SMX86vFYysuPtmW\nFuDwPZPo2+p85dyP8Vj+4bceOvEXdl5Ptp3wiSeyQoQwLMcFpDAUVEKcKtY4ZSb8NsPVHvHahKRo\nUfPKgx7C0/S2RIzcKyjdUUAj8GVqERmRMSK7jMmIm8LV9T/lpPxDZzORUQwry0goSo8tbolhGZMY\nUAIyA9NOmTN9j41umQnl0zUet4frube/gasWTqGzAXqThvG7NMubFUMPZbTXCWpXlOnOlciaLrPd\nOhUVcmHQsurUFTMQEOpMS6o7PNZ7tu/EXza4Tcn6b4X0Rz3ed8VLuT9cx5GLU+KaRR3CUTNANHsT\nllJb3SNxu7nadChylVwzoMIDxHVth6zL1X7SuGZob9K0j88w0qrmJuXVW3D/8wIeeZnPvTs2MDHR\noL1RUz1g11lh7jFtJjkVzG8YCvMaJzJUHjV4j+nDddswUW+zI+7zyfXfw/xQhmeUpZipaJU+tpJU\ng00+Mz8XRnMF/TGLEBSPasIROUhiIe9lCu05rfRTxTVBNCRRIWQuvO/NnyEra/xFOPpMTW+N5j2v\n/TLi3gpX7t3GGROzg3PrT/zobLS42/uRj6fbO7z6Y78DwCOv+OiPfM2TaSuJ6I+zB9treMvrrhr8\nrnPRkMwI4tRBGzh8nk9SkKAFYjIkGU5RfUFaKyDihM2fSOjPVmg0Sjj5jFIlNUFOnVuOijQTO1JB\nG8FEoU07tSqnYFtLqk6Il/eQrszLBku7G/daDLldNMKOgtEO+3rD3HN4LfLKIXAdjJL0to7T3ORY\ndM4VRGuqyN2zVGYjptxlhlXniV/AMeyLb/0Avz+6i20fuoT+ZHbMQsTPw0768CUUZ50nPP6dr5zJ\ntufvevyDBvqT2qKSjqGzzpDt2k00kVJ5VJJ54C8JJm6YY/jqhxHa8PVukS8/98M85+wHBiq4g170\nUq6MmoukIWxLjk0qc9Vbs/I/JBXbO61XjiHsqBgZWrEwnc8tNgqmvttm8uN3Ur9zDuNKSkc1c2d6\njN4piGfGcNZMou60/fiimNrRL0A1sJXwkmsLG792/t2EUynlDU1QhsXthuaMiyn6TN6aobqSTjdg\nX9uK4XUSOyLPquxGg5E/w3kPoC9TMmx/6nxcITIOB6MhanlA0kwLuCKjqHKV3TxZnUuqRPlovYWk\nzDXfOYOtH2+SPfgQ2e699M8/gbQAScn+HTKMWfO9Hvc/uJ666uH0jB1rJfNCXmbnpptyyrbRI+hA\nDyYGTNzaYuihiH17xtEbwsG1cLorff9mIDrZH3NAQDik8jEw9jrEZTuKJSmsiMKRJ5o2WS0s21Ey\nwtjXas8KJsUVQfXREHVwATNcoz8mSaqG6tYlymNdVALtaZ/Ra/fyZzc+D7BMnrTtIh1NZgSNVpEo\ncqlfvZPXDH+fjW6ZpGJor5PUHtGUjmbU9mb8yedfxjsmrqdW6lMoxgReQpTYtVBwEkaDDmuLTR7p\njZLm7AptBK0koOqFSGFsHI4g0YqikzDutZEYhvwep5RmObl2iHVFS889ElaouBH7H5pgy/t2svs9\nJ6FijdO387yb35lk+AfWr9Wv2clbDjyDDcUl0pVG6GPYU5Km2zhFU7//8Yld40SD8TWVyTbO1T9/\nOk93Ldz9hr/g8+31nBns4xW3vgWtJbsv+DSbvv1GKncHVr2rYR73nn9ttutNH2HrJ21wbDZbx+Q4\n+UBmI3Buq9A5MaZU75OmkuRQCSPg+C/0UffuRne7zP7+0wnOW2BDbZnlqEgr9EkzhedklLyYKFOU\nvRhfpbSigKpvG61XxrpUHZsQLcQlSsoOBvdlmvchpETaGVBzH2mOkv3tOLVHeqQll+ZGz876Kwg7\nnF1YCp9RMHFrm2u++rf8X4fO4qa/etpgNIp27SzA7pTgja+7mmt/8wx02ec/f+HL/KcvvJHNz3iU\ni0Z3sbO7hutvOoXh+y09d/jeFoefXaN8SKNijb+cIGLN0snFAWUkLYqB4prfNLRmJHHN0jjCYUFv\nylbkvOZqL0pSgfrDloYSjkNSMgw9CL01do5Z7WFobAX/xCbjlQ4VN+Krm6/h9fuexcJvj3P44vHB\nRvrD1jwx5fZf/3POueGdVG4vsOUVu3joi1tJShaBbT0tZM/Fn+K0216NuH7oRx/kZ2ydDZqzz93F\ni8fu4r/c9DJ+49R7ufqKsy1a1RSDhHxFaOmXiaYbj2i8xX96TXD07KNsqi1QdmIkxlJzFyt84Nwv\n8QcfeT1+w7B0qkEXM0ZvcQhHBb1T++hIsfZqRVySzJ+bUZ9q0Zgv4yy6pCMJWzcdBmC80GY6aDDq\ndjg5OMAVje2cVDyEKzJmvHkSsxr4hcalIvt23mE+nPxbrVO4/N6zWPs1l8ZxCqGhtne1CGIkJAVJ\n5kM4Ktjy/Ie5cOQh2lnAReUHeeMnL7WV6NQmfcECjN3T54y/vJsrvvh0S3Wvw8iODBUZDj/dShLW\nTl5k6/AcP/jrE0ny/kjt2BEM/rIdPeJ2IapZMaFgUeA1LB0+rlgavNe2SOPK4HsnfDzip10ozmlK\nhxNkrNn9WhdvKGToG0WOnq85/aS9HOrUWHxgjJlvhBx6ZoGXvOJG3jd+Pyd+7BKCBTsySiW5uIkn\nCEdh59sv49zfezsA/XHbG7r51bs4sXKEy69+FiqC+q7H3NcCupMSr2XHsPwoQaGVsS7HtFww5Qm/\n5/Q2t20LGqVDlqaWFi262jo/5OmbHuH7+2b41eN3ctU/nsnoXdCblINROz/OwpP6mKYHGgqHFef+\nxn3csHszv7b1Qb7zD2f+5AP8C+0P3/A5XlFu8pq9F3LvFT++kBXXDVlBUzhsnaY+w/bBVYp2rl8v\ncklTRfWaEs3NoNeHZG0XEQs2fi3F6SY4s4voZotHf/cU4uP6lCshSmr6kUeaKLJEUqn10UYwUuqh\njSDOFKPFLt3EIlVDfg9PZmgEa4PGAHGS+RgXKexMQVdktNICD/zhqRRvfghRLtM+cy3hkAID3SlB\nb10KEgqzDuUDhpG7l3nb31/BkaTGBz/7Gz/Vd5gFhvS4kC1TR5HCUPf63H3FSf+Cq/LT2//7hk/z\nopKtHv0w8vkTzayq08vErvXpP7qZzsvPYfHlPYQAeVeFYMnuyW5XU7pxF49+Yh1/fNo/8N8eeLFV\nMD1Qxl+Sq8nohj5pw7N9oH2JCm1Pam9TzPBEiw21ZXZ81wr2JJXHzBolR+r8fG5tV5INJ2z6LPiz\nTQ68aByZQGdGoz2N6klEJqjusUWpyb+4mWsO3cOma9+I6TpMbVwgTh2qQUiSKdqhT6tdYOiGgKXT\ndD7nVOAfVQw9pPEbGcGRLq3NFcSb5jmyVGXDuGU7FJyEVhTQ6AdsGZkfIGqpkQQqoezELEQlhrwe\np5Znua8zTdUJaaUBk36L+bhC3ekRaYe1foOyCvFEyv3daa762rls+tQ+0ukR+hMBCOgPK/rjgv64\nprpbWiT4/j6PvFlx5QUf5PXv/V3SgmWreO3VWcgyNUQXt+gfLjN9rSEp2jEqflNT2tNE9CMefM84\nY+uWmZ+tExxy0Z5FtoMFO11A53ObRWYR07hmVcu7U8LOnnXsCL24usoqkWmOdqe2cBcN2QJnaS7D\na2XMXuSSjCc4Cy7FLQ02DC3z4OwaskhR3umx/rN7OPDqTdz37ss4/X9fQuOUFFFI8QoJSmmMEfjX\nV+muNzz3OXdx5d2nUt3pUpjXlA4lzJ3ps/Y7LdRCi+ZHHRypKboxs80aRS/h6IEhhK+p1HsMl3qM\nBF0W+mWa/YBtY0e4f24Nvpvytk030tM+u3qTLMQlRr0uu1rjzJTtfZAaSaIVJSfi+4dmWPvbhzjw\n1m3IGCZu75EWFO11Hu0Z296RVAzBgmD6s7tZ+pVNPO/3bmQ5KfKhMy4/5rJ8YinpKWCV3YrH7pBZ\nINjz8o9wxh2vpNUpsNIGGw0J/OUnP+hMf7XB5nqD74YV2jpgu+9z4aaHueHb23nTpvORC54NLn78\nGJ2nrF33W+/nOX/ze//k9xktkUoTeAntToF6tcfSaQ7B7gJdDW4pQU32qF1TIhr2cc45AfemB5j+\no5s5656Mz916LmPTDfqRR7/tQyJZACrjHbqRR70QkhnB2mKDA90hmlGAEoaZ6iKpVox6XWZ7dWKt\nqHt9Yq0YDzo0k4DFsMS+oyNUvxcw/mCL3oYSaSAHcuDdKUEWWERERYJgYVXoo6wi3K5BxfYe81pW\ntCSYN/zO8B6+su1XqOxY5B3XvZ7jvh1xxRu+CcCFh0/hxc++jasXzmXD388xd/4Ywztj2tMuoDj6\nNMXovRq/aQiHBOM3PkZVWQqaJw8zvDOl9JB1AK2TRwBFOGZIKobKXuiPCdy2lRBPA4E5qYN3f4Wk\nbIOmq1/5fl76Z+/BXwJxY505Waf3nKO8au9F3HvNCWxkjrTEse9VaegZgxfYXfL+w1P4QG8mYcPG\nebhiCi6Ge8/+PNuv//FBQHtGU3k0H/6uGAyqFhp6p/ap3F74ifdY7+kdXrLlfoacHu9/6HnIZZer\nHzkRvbUDe0qDRBRg82fewcOv/wmiYid04Ac/fvjyz9OcliRak+If/qe54qofshCW8YtNIq04Y2yW\nhWqJ99z5UqpN269cOiCI6oK09P8z9+ZhdlVlvv9nT2ce69RcqSRVSWWeyUASAiHMyCiDMmirqIhi\n43i129utbXu7W2lxQAFRBhUEAVEQVEgYZErIPM+pOTXXmcc9rd8fq1IxkjDYfe+v3+ep56mqs/c+\n5+y99trr+77f9/uV86QvXiCdDdB3pgkXj8AAACAASURBVEbTyy4T1irkJlRRmxp7KGc0CkzA1WAk\nqrI1oVCc4EDEIrzNx+Z+d7znqHJBlg9O3ULG9o/3r1lCI2f52Ng/kXLJQ+JlL31nCNyISf2L8vuN\nzNGIHpGVgUpM3luKDYeebuP7f/9bfp2dT5VWlgrQKZn1PgY8Adb1TsMOCQKD8OQXbudTN34WgJqt\nCqNzVUYGIzRHUmgVKNaBY8skTrTTwTdsEhzQ0EwXxRZ0XuLDyEJiz4k3w8ByP560QDMUCk0C75Hj\ntPnAoEuo50R2wOoF+7BcjQ0XtXDp9N08s2ERNW+qMBuK9dKaYZpPgnzHK2Q1dsyLTto5CAIDJ15f\n/5DL0HLBV5r+yJ8LM7CjDkpawwwreHJjE5UAOwSlelkBrt341nHytkAU6Slq5MW4L6lQpFpkJapy\n4XmbWPfUEoykYGiFIDEpSfZwleyPyhm8dnAqH5y3mT/edwZMkmUfb0rSAU8WbRceYef2FvwDKkfO\neYDZd36a4lSTyhyTJZEO7lvzGr8rhHiJtwejfy16tGjzB3hp0YO4QrDDDPHRF24i0GGcYm85F10b\nygC8IxAFSdH2DxzP3imKGPMaVbAdDUWBtrphMmk/HFIZSej4EiXMso6ra7i6SmlGPd71aSY/maTz\n/VUUpwkCgQqWqeMUddSCRrnXixV1KbhhRMBBKWmkagO4HUGEBh0BFz0hdRr0BpcqT0H6kDrGOEPo\nUKaGoUyISsHDzIMjKPEYpSnV0ivRgEpUodTgYMQrOIN+vGkIjNi4PgN1DNCeLMrVLr6RE5NmWllh\n3ao7uXP0DH5/ZA6VskHVihFGBiIE2t9FRuIvojjJItB16mv21zEORNff8I7blhqc8UQCjNkQOWCN\nsSOssIDT55GequH12GT7w2hzi9Q8ZCBUBTOsoiyfxqRv5vjf37wc11UI+SvY9RpmrQr9XilqZGp4\nq+X1aUsMc371XvaXGtiRbBpjgKnMX32Q4VKIrgP1CBc0SwofioCNUlbHqL4KLQ+Dd2s7g9fOoO3S\nQ/QXImQHYgT3e3E9cgwfo4tqs6cD2xEVDS1/vDIaNioknQANkSylioEVVIjtUclPks9goyATYf4t\nnSiaSrRngMGq6YgzyrR31uIJmwgBPp9F8XCULckxRThHIZgoUsj40DwuwgXhqKxlFrrXRlEF57Qe\npOh4aPSmOVioHRfhOlyqZV+6joHXmmj5/m4KK6cT6M4ScATpaUGK9QrFibLCK+3ZFISuEtnq5dDK\n6rHWJkmfHe8BVSDc45DpCqM6CqppM3ilybQfVrBiPpRkBvw+MFxum/oi/1q4GDdWwbY0FFVQ0nz4\nRmSvaahPUI6pBIdsrLCOL+VgFBSMvEO5Sh9PtrkeZdyjWitLUKxa4B8RxA4UMToHOfj5FvSWPIqr\nsGzmQbKmn/ZUFU7OwIhW8GTkeI8dkWstrSxQQxbCVomHi4xmgji2RmmhRWy7wR9fW0hgSMUKwU8+\n+2O+uWgNwcaZDC8KA2HcpxWe+4fbuervv0D+CotcKYyR1Ii0gxn10heL0R0UeCfmcQ6E2TlbwdwZ\ng1GFb825lMbmUWr8BWyh0uRLkzc9bOyfSFVQMha37W1BqajUvwG5NRKFFZaUODRPp6kxyUh/nLp1\nBqNzFTxZhfhBG0VVGTrfpKOYwH07Gwf+h4JRrXR8QkwttIlv0zln72Wc0djO7zeeSCE0Y8p4NTJ3\nZgnHUrlq7jb++NjyE6qU/5Wo7IrRv8BhfWEq8/w9tD5/E7ENHoLAtgfnEgH+7Uv38/jIErY9OPe/\n5T3/X8a/Dpz3N+3nmBqesEW+4JMUXVfB5zfR035czUDoBq4OqdkC3xsK3o48hEM4lQpZ24c/USJf\n8mLoDkqkTKk/RHS/hu2Po5cgq8hs1NqWGohZ1Kz1Ug7AbrWe9PIKCyb3MDF4LHOjoY/1u3SkE4y2\nx5nwokAvWqhlk0o4gl6RQh+VBIDADsjFYLFeEDvioFhyf0N1cDwKWsUldNSlWKNSTjDeA5qdpFGO\n1fDb87/Py2dM5/TtV/PDmY9weeMOavQcv5s5H5B0jZF5Hmq3VqjEdEoFjVyzRvygTWG2zujSGlIX\nF6ErQLgdkottfH0G/qYaqvZXiOweJbL7+PnOzUpQ++oowytqSE/RcVdmMPtD1K0YJFv0ccv09Xyx\n8ypybY7MftoKWkHl7Jpufti4iRsvdEn+uhozLPCXT75gjO4xmHhpiHLKhxeoDAXwjv2/y6gmCtzc\nu5yfTFjPP976MP/02PX4h05+LDduQaeXXKtLuP04KLUigmWtnWzzTcD7apjiijyBN04OEOc09vPk\nngV8ZfFztMWH2VgXpJL0E92rU06cuG2w713wxN4GiJoxF0/6/23ngmrxnoEogK66ZCtScdp2NWYG\n+nl09DQ+Nec1fjR6HpH9Gsq5SXwvVZFvlr0s9uEqYlOSNDUNkHpZCo6Ee99K2VYd8CddrKCGVlTx\n9fgoNgiyMx383QbeDPiejfCLKWdj1djEamWlqCpYJPNoE0pEQVmaZ+R0G0+sgndjCMcjMEMK1bsd\nKhGV5ByBEzOpfcWgUiWwmyo4AnyKTVlo0ksuLvs69YKCGRFYER33uWqsxRXSuocLHv8SDdWCTKuG\nJyvwDynUr1c4OL8NLS59QWs3IfuqszbFBi+2TyHSUabvDD8N621KcY2ReX70kiA/UcGbBP+gIDBi\nU6zRiR6GYp1CYEDgS7oE+yp0Xexj0h/K2AGN7gt0gpUAh0er+faS3/DlN65BjZsMrTSI7dLJN2k0\nn93Nv/zxaj78gXvQi9JuRi8JFHVMXCknpLLjX4TQFIy0wpcOX8PKmna0gop/QCE916H2DUX6cTuC\n6CFZscycVyR7pUPgT2Ecn4I35TL6vjLG3gCRDpfhCyt4DvmJdIgTAKp/6MS2jPwEhXC3oHBGgRe7\npxFpl68HejTUDQkiYennaloKblEqAf/si9/nY9//HHCiwfxfx45DzQQGZMXiWA/mMfruD/dfDtc9\nRc71oS9LvaW/9C9jygsfxbVVIvEi10/ZTGV9ghXrv0hpggMCrl6xkdsv2faW/Wb+5NOoJuz9tASz\nHda7o6SqtkLN6j6GX2oEwLYkza1Q8hLwmQS8Jn3ZCGFLerHqSR07HcKXUkhNg5rtDt6BAmokjL1z\nP8plK3CSXrJZj6RMl1Q8aSl6J/o0goMO2YkejILADsj5ypMR6GUFoQYoNKhsXKRTFS1QsXQCXpNi\nxUMu78cp6OhpnYYtAkaSiOoqHJ9GJSL75+wQELUQQsH1O9gB6akodBVL6ATVk7dh/DUQPef9m3jh\nySXjvZl7b72LL/YvYlGoi3974wNvez4rs0tcPmMHT765GF9NCXVb+D0B0WNx9p7LeWnpvRxa6OeT\nP7v1lNv9JRA9Fq425v3pyjl4ZF6Qmp0WXZPCoAni6/z0L4farS6RIwW0ZB7ncAeJe5Zw3fee5Z5D\nq1g6qYsdg40UdS++IRU368WT9uJ4Ib3Fz13z2hA6NLxexIwa9Cd0Ah/uY2pkhNnLBlgY6mKFv50d\nlSYeHVjKjv0TwVVofsbCt6Ob4vKplM7LseeVqTh+gdFYojBFxRjRUQSkpqt4U+Ae7JBfSpftBY6r\nUrYlO0xTXVyhUB0poB/yUarWie+DbKusLoZ6TZRwEJHNgapR+2YGOxAj1+Jgmj4UV8EaCWEAoS4P\nZlS2B+WbIxgGGDkFT2ZMNM4BK+ylknD5Y24Oly7Ywa8OLiYeKpLKBzB0h3LFILw2SMvrwzjZLEJT\n6F+doFQn8KZkwgRN4DRUYNSH7QNjpEhmhnxGOj5pnef4FBRD+n5Wogpa2SGxUyM3UWF4voHRq5OZ\n7kEvC9z5zfgPjzDlly7J00NYR4ModWXcioY3XEFryVH0hkCFXLOGNyUIdBXQSn6KtQbenEOhwZB9\n+GMg3tWl8JsZVTCKknGjl6D+DSlWBDLhLwRYw342dMzGijlguBixMp7tIawQOPUJgp254wNTyH1G\nM0EUBTTdQXgUGp8dJP31GjytBcqmwS27bkC7Kk5iV55MW5DQURNv1yhf+fCFDC9Upb2NIfDkFCLd\nJp7RErkpYYy8Q3pKhFCfg3UgBtXSz7p6vY72bDW9NXVM/NBhNo1MojmcZnehgc6eGgYjZWK7dQKD\nDtG1+9n37WkEujT0w34CGXCfr0VfoDC4ygHdJdxlMDpbxwxPJv66gjtVxVDfvh9d+8Y3vvGN93D/\n/7fGPc+uP+Vr+qUjqNOLVHpDmHNL5Csenp39R366dhmaJWmQehlybS6VKphx/hGGd9UROmCw01fN\n+87awoGOZhRFZjD+OlLzHSo1sOCCA4zslL1+Zkx5S8WoXKPgWZDmw1M28cpIG4+9fAbRnTqZGbIM\nfSx+p8+gOx3H8xeT6jsoGf+PibqWUY62176rbT+7aDM/2rYEALWujK7Lnk+zbFCpGBgeB7PoxTUg\nehjKNQJ9YgGr7MOwDDyDORRdZ/iHRWLttcz4YBc9L06ihIEwBFpBHff2cr0KgX6BXlBRCjqenASn\nZlRh8mMl3CcNkk9E6d7byuGuJg52N7EvVY++OYRvVKV6XTfGYAY3EcEJGvStEVQvHcLaH6bU5KAm\nTIhYKGmDcpWGUdZpOWcbW/It9OxokH58ijJm4yANrz915iY2N3s5kKvjfbO38IN/ug7nYJA/1E6h\ngI9v1u3lrqPzqKhxPDlBwwvDeG5PUtgRQ7Ug1yrItciq7NzLD9BzsB6nykadUyD+vB+9APM+tpvt\n4Qa+9Y1H+EXwDBKfHKG/1MTIBRUsI0axUaHYZqIdDBI9pPDxi9bx1UlrOWzVYKNz1YxN7Kw0YOa9\nGHmF0n3VTLpwB4/0LCH4vKA0IcQpEuAAnLfsJT7RtoHuKT4OZRIwtYTW4wVLo1zj0ru7kTtLM7mn\nbSN3ZmdTbnRQppTQxoS4zvvIetq3N+MbkA+Q0JJR3CMBSjWy38M/rNARDiJcldoFwzgvJPjmZx9k\n3Y4FfOcz97HuzUVkTytTjsJ/Lvo1T21cQbipyNFiFHSBsSGM0ORDASAzy8Y3LBdLnzpjE/e8tmQs\nq/reQhsD6Ps/fje3LtrMj7Yuee8HeQ+x/+N3/83vcfb8PUwMpsjZPgK6yVNdc0l2VnHx1O281DuD\nygQbZXeY+GEHT1oh0u2SX1Kh3BNmaDhKtk1QXGQS2vtWIGyGVFLTVUp1LopQsP3S3sQ3pOMEBMVm\nF1dXcaaUEGUdS1UoZX0EfxVh8ee2Mfp8PdkWgeZzMfYGpQx+GQIjLn1nKFghaequljSinS6hPoGo\neJiz6BBbC5OZ5B3h+TcWo5kyA+1LCvyD0mjcd/UgxfYodsQh2KNhFCHfDN6UFPcp1mmojsIlN73K\nPy/4HQ/mlpGb4mL7PHhygvxVOZKLFIxeD6qtoH5gmMgzOuWEhmIr1G4rMbhcRyCrFFZE4VMf+z1X\nnP06fzywCCuiU7++zOASP3Nu3cPc1m6+3PA8G8stHKnUEo8WGexOYKQ17BCUqwXmphj7bpYV++8d\nPo3wmNaWUGRfpx1U8OTh39OLqT6vn8reCLlL8sReM7C3hzmwYxKJ1YOUJ9gohwP4UsdZHMlLiwT3\nGvgPGmSaFbwLMjQsGOKc87axa30bRkkhvaJC7XNefCnB0GobPadTf2MnqSNVpM4uQ8lDeraLkVEJ\nDAtGFih4Ozw4oz6080cpZYKEemQv1tm3bmD3QBPhTpXoyiH2PTqLh/uWUZliEmzXEKr0fT1ZfOGS\nZ2iaOcz+3ZNkL++iDG69hdLvlTTuaVk+GNvMQbeejnyVFHk5SejDBsaojj3iZ+f2KZhzi1hoY6BD\n4Yga5a7fncFdG5ec8KM4x6uqF+y7hO/tXIMxIsd/sdXCSB0HLfGzBsjHQR3w4E4r8qG2N9m6s02+\n/8TSmIK8oFz2UCj6sGyNzExBZK+GFVQJ9skxbwcVchMNrLiPwK5+RLlC9JUeiqdNQmgQ6tKwogIn\nIFkApUaXXCtED8pKixlVCHc7ks1TrxE/VCEw5GD0erGPBNH3+EmXQphJP2pKp/51qP/xZnydKaxF\nUxldGMOMqRTPz1NpcLAUVdINAyZu0icFu/wqkcMlpl3VTdH1snHnjJOe98iqQSrdEhx37Dveg/TI\nJ+/gmr3X8OiUl5jnLRGb2c6rO+ac9BjHrt/hfRMwsirKwFvFG5detoujB+pOuu+eW+/iM0s3Mf3+\nWygdivDzzSsZnuCj9xTbnywUG7QxkSHFlUAKRSHUa5Nt0Ynu02m4vpP3LdzGq24LyTWC+H37URfM\nwjjUz+YDSzEXVkhVArTEkpT9CuW4wGgqUTa9eNMKqisrnuVqsP0GxXqZMAs8qTHyWh2ZJ2Ps+/Uk\nfqyt4c+75tBXCmOkdBpeh8DL+xm5cgZ6RaCenueBc37KV+a+zt17VuIZ1rESDlpJxZ5aplQriGZq\nmXrxFjZZLWSTQSLVBcKeCqPFII5QMTSXkXwIKxXAKAoKDSqJPTbejKD7MoVopwfF70d1XJz9hwlt\n6EGrnogVUgl3qNh+aWOll6QAUiUBvmEVzZTr5aoDJgiFSI9NcNCleptJzesVOg5MJrJBI2lGsatt\n6c27LUj9PVtwB4fRJ0+k75wYpVqBMrVAydBkz23YRhR0wh0KZkwhkFRJz1S5aMpO1j83D70sRYXs\ngDJu7RJ7vZtSa5zsaRUcRcXxSdcLb1oh0F9GUVSMriEO/a6F4IiH9CyFQLTMaU29tHc0oOc1vnLh\n0+yPxxDbQxSavWSm6DQ+2UFlYgxf0ibYV0YVGsF+m9RMleodJsNLVaa8r4OB0RhaRSH+eh8AQxe2\noK1O4QqVpqYkyYofNWADCo6p4x3UaLmsnaP5BgrNfj515ibuenMpziQT4aiououigF02MHq9BNI+\nUjM03M4AVllaREUPKRxd4wVUFKFiVwex7lUZWRqkevEgNfepFOs82H4V12+QvT5HMuanZruD61EY\nWajQ8ugQ2bYg5RqFmjfTVKr9pHdXMagHMJ+tZtZZHfQOJPBvD9D08z34B0sMX9qGNbuEW2thRVxW\nnbUHsbBEIaTgqgqJ6hwp/FgRQe0Wi5EFGvNndOJRHS5uuOqU9+X/WAGj2YkBhntj/MMlv+XQ6geZ\nlEix6Ju34E1JJS3rggyVKoXYLpXofoXOX02ldVk3qiVwUx5e+ukyvClxQpX1LyO2R+e8pTuZHBjl\nvJslKD5ZJVWx4Usz1nLnxjW8v2Eb/3Lp4wBE98ubIDND8B9f+hnukI/6qizpOf/vFQFPFls++r1x\nu4C3i4Zl/by5bjbwt3mdlssGrqPiFnUY8VIuyT4goQlGT3OY8liB0HMhygmBXnAozZmAk5YUKW0k\ny/4fzMazLImeU1FLKpW4wK6xsKIuZkwugGKHLYyctCoIHXUwctC/KkyxJUp6QbX0iTKkaEBst0q5\nWtD4h36coRFELEx2aoij5wkSWzQGRqOUFxZRhIJwQenx48koGHm5CP9R3xqCegXFlZXNfNOYN1Vl\nrC9BWNw38TUmP1NipU/l9e/fw1l/v4HC6zVMCiSZt/E6rEE/uZUlKjE5RiYHkwwvHOttaCrS9kCa\n6q0K63e1oZYVsBT8Hotsi8Lo6RavHJqK8EuBisPX34MrFNLzbHx7/egXj1BusIlt9RDoEzhehTvv\nu4KPfeELPD80i13fnM+3/3QZuXSA37/v+zSv7KXypRS/HF7BTa2v48QDlBNvzxjYXmnk630X8tov\nTyOyxYfZE5RCSrU2oW6VxPIBtN0h7ki2cvCsn/PIynu5ftpm1HNHqVTBExtPBFjJw1UAtK3qpFIj\nM0MtdaMENwRIPyOrDT/oOpfaC3q55dUbybW41NVm8PfprPSp2DGbzkIV7UMJpsUltflYBeaztzxJ\nsEMKOh3rGX2nOJk67bt57b8r/vHax/+m95m1+vD475rikne81HpzjFaCVCoGWlFlXWoWiqkS2e7F\n9Qhp7u0Ijq4G346AlJv3O4Qbcoh+H5ZfoX/5iY8BT96lepdDqEfF8bt4pmZx4jbWrKI87w5ccOlG\nVrUeoaY5hQLENxsMLVTZcsdCchNVREnHKegEBgSJPQ7JpRZ9qxRqtoInqxDugLrNx+fKaKfDZcEi\nM/z9xNTSuAm4VpH93aoNmVaVH0x/lEev+QF6RmP65QfJTlJpXlsmN0khMGCSawUzAk8+vorrf3Ub\nL131n2gRCxRITVMpZHzUPOnD8Y71gz9WQ/8ZXnKTpSLmyHw/P7zmfq77zPOk15RxvLDA18Wtaz9M\nJSGI7x/LViqwdXACzx6Yw2yPnypvERXBvjdbUOMV9KKk/7X+tkLtluNccs+kPMU6Cchtv6zMmFHZ\nt1a7EV6a/RSuATdM38SqL77J4FkOyYUOuacaCPsquB5Bqfb49fr3Rb9j8FwpcqN7bTy/jjPy4CQW\nBjqxIkImFEZl9dE1pMVL/RVd3NP6OJfd/Gfplbk4R3y3KhfmHoXq7YJQj0ugX2A8WkXrRe1c8pWX\nsT6Y5JmnliPqKzg+8GoOVgiqtwvuX/UAwLggyMnizl9ezm9/vUpuZwGbo6hbw6hL01x33Yt8v2Ez\ne8x6tvZNYO1l3+WMK99a3QRplSVVSYHFGVZPOUSkNU1xqimN57e8NQtsRcQJ9N6L6nfj339c3THQ\nfmJlrn84ir5dAq/WuhF++tDF468ZmoNtHweurqUiegIYXhtXUzCjgnJCGaNiQ7jbxZNzcbJ5FK8E\nX5OeTsnWhVUpfMPquKCd4ijoORUzKpXcvakxJU8hdQXsoMbwQi/pNilKVU7IfmjHLzCyCpF1+xG2\njZvLoecqePKCbCvY7WMV1toiSl6jfDREoE/Fk5b0wMHlUer1zClpugDZV08O+K679wt8oXXt+N8X\nBLpx/wbO3TEW38anT84uO+Yb+o+D87jkojfxLEsy93372fD0vFMe0woJnvjkf57wP70kr8uxr+rJ\nKpRqBUOLvXgmFEifZrJv+yR+d+fZhDpVQpv8FK9YipqSifTwjkEKu6p4bt7P2b6zFQB1TJTKrjXJ\nLahg+RUi3TahXpk09Y0K8k0qA8tC0n4poKMUytgJi8DcFHrYwjUEkV2jKLpOsN/m6GqVZCbIJ75z\nG0se+wKeaIXoghGUgC0FlARoPpvkDC8/GVxNT28CFIj7SliuhqIILEelczBBMeuj0Cx9Mj0ZQbFa\no1irktikkZvkpdQUxI3IDK7eOpnEhkHMWpvsFFltVSywfYxpbEj7p0C/tETR8xaBQQtXV/ANFBla\nEiA5L0KmVaV/hY5qw6KJPdQ87WPiY70Iy0RvnQyqpMa6PoGZk722brWJOuzByGgYBYE3Cf1neKlv\nGUVTXFxNoRKVXsjamIenVobCgmZGLyizoKUHN+Dia8rLZ50KquUixgTilGwezXRZ0NpNuSfMlqPN\nKD4H0VzizUwr/QdriLaX0UuCmu1jon29RbzJCpWEl+QNefo+XsGsdhg43Qsu7B+sJXZAYfKD7XIc\nR0LkWiCTDjC1ZgQhFGJ1OUTWA6pAHzKY//69HB6upumJdtZ+9XZ53osCv99E9TggFMyCB1HW8GQV\nRv6+yPmLdmFNlGtTLWhJpeBXHRpfyWIGFYycQ3lijNpNLvfOeJgZP9w7ruA8uESlVPIQ7lQp1mgk\nZ2oITVCZEMOMKfiHBZlZMb72zz8ndXYZxVFIT4M9w/X4ewwmPCzXHm48QrDfRtddmqrTXDxzDy9s\nnsOuwxOYlhhGO+zH99M4nozKzH/vwLunhwMfu3vMsurtqfv/IwWM/jpS8x0C3TpTLmzn1qYXOD9g\n0fK7T6Ka6jgoTM9xie0+NbauxBWs+Xn8b4beAlAdn4J2ErPu7BRwEhbaqMG8ZYfZdmAy8S3HZ9mX\n/vcdRFU/Z+x8PwN7avnYeS/xxF1rxl//rwoYmQ0Wnv73Tl/5vxUL1xxg24vTx/92p5RQVBfX0XAK\nOr5eg3C3IDBsMzzPoFLt4kQcgkcMQj0u3oxcfAZfP4STSo0fx1w7iaObG/EPKdK03i8It6v4R6Tf\n3TFrhPArh3AnN4CicPTsCOVqgRNwCbdrUqa7BNFOi+D+Yez2zvHja9UJOj4znXKdzfQZR2kfSuC6\nKvT5CHeqBAZls3nXdYLL5u4gpFV46qFVoErlNdUWVOIK5XlFqmN5htoTTFgn6D1HwTeoseqybdR4\n8iwNHuGyYJGbe5fz/PY5+HoNUKHlkSH6LqglMOSSmqFiRl0mzulnOBfCcVTMo0HuvfSnnON3aHvo\nFrSSQuuvhug/t5b8JIGrC2JtSTIHqgh3quSbxwSOqmWDfSWqUFpUHAcb6soUHt2hYmsU8j4+t/BF\nHmxfRvy7IayQzvBCHU/m1Nd51gf2cWFiF9/cegl3LHmML22+hsD64PjrxQZBoF8hO8Vlw/u/S60W\nZOojn+JD577C44+sptBiEd1jUKwXWLUWy2ceYd9IHeKFKoqNgqnLuvjD9D8w+85PH69uLjCJbpeT\nVXaqg7ehSDnvoaY2y+sLHsVQ5OJv+n234B9+a+Ule1qZ9vPuZ8pjnyLcrv7NAkb7P343jnDRFDmX\nnEzJ9r8a+z9+Nxm3RFT1828j0/nF79a84z7mRBNP9/HJPLF0kJZIkrKjkzN99OfC6Kq0PHE8UL37\nOCVmeL6GkYfGC7vpem0ilUYLNa8RbMkQ8FgYPzvOd3YMhUK9iuuF/FQLY0THbqpw86JX6SonWN83\nmfRAmLpXpOqgZgkSt3XyjYlPc/39n5fWRCGBJ63iSwICQv0O+QaNUL/D0bOlJsAxpVmAfIPsDyrO\nL/HhuW/ymapNrP7Rl9GL0gYl2mlhhTRyEzSKDYKz1uxk3+1zKCVUbL9CJQ4ogua1ZcyYwdBCnar9\nLukpKr/45Pf5yI8/h14E7yVDDA1HmPKzv9Aj8Kp0XqYTbtdgdQpeivOnL36HGz9yG+k2D9mzSvgD\nFRojWZyvS/ZIudpDdrKGFYBST+55RAAAIABJREFUq8kjZ/+E6UaFfxo4m+deWCTnsRpB4ys2lbhG\nqKfC2l8/wL2ZRm5/+nJ8o2M+oAWpapue46LGZX/W3OY+Bu5tGf98Q8sFRlrl2x/4JUetOEG1wree\neT/BoypGVtJCK3EV1RyzePErVJbnMAcD6DUlImuD/MNXHsZB4V/vvQEzJojvk98/26JSqXKl12pO\nwT8gAZEnKynVx+brv4zkJRJYWzkPqt/mzLbDbHxqLuHu49vmJr59jnvdLd/hgfRpPPzIOSe+oMje\n3PCSYZL7EnhHVUr1Lv6BE4/35b97gm9tvZiWulH6XmjGCksg9nZxDIg6wuXMXVfT1x8ncNBLcbJF\noPO9PWPVpWkAXFfBMnVsUyOy2Ues3UIru4zO9hIYcilVSQsc/7BUZK/ZkkVs2XP86y6czcGPhIke\nVLHCMiFRrrep2aDhybuUqlXcMR/DxB4T1XKxAxqpaQalWkGwR6FcC64miO8XxHekcXfvP+Gz2uec\nhhnRKd+UwnEVimUPdldonJ5as81FL7n0XGfzuUUv4lUtfvDLK97+XI6BwtuTU3iqdz6pV+rZc+td\nXHHoAjKmj/Pq9jPVN8DpvqNcNEbj/etwF+awuoKcdcbucTDpGmNJird5z9/kI9zVvZrO3Y08cNk9\nlF2Dz9//ibf9vMVW84QeVjso8A9KEK/YUL2rjBnTCR7O4v4gz7z4UeYGerjz8BoK66vxDwtqfr4V\nYZoSAY5Fz9dWUGox8fV6KE+Uoo3RR8PoJZdyXCPSXmJkXoDau97AWb0Iz2CO1B0uI7tqYUIJpdOP\nkVMo17nM+EE/dkcXAFosits2kfT0IItu284fd8/m8nk7WNs5/QRlbePVCPFDFt0Xq1y1YiO/PzwH\npzNE04J+NNUlV/GSyfsx015wFFqedMg3edArAt+IxeASL/5hQajfJjdBp+b+LQjruPJ3x38sJ9it\n4PihEhNYURcRtql90YM366DaAjOskZ2k0rChhFpx6DszRCUuWyasIJTrHELNWZq/UEKkMies+7Tq\nBOUFk0nO8pKZaaO4Ct4h+awC2UtZrNFIzRJMndfLlQ3b+NEvLseTkQDUKAn0sosnLRPcw/N9FJYV\nCWwOSHG6EYVgv0NqukbTqyX0dBl1KAWqysHbJqFMLBB+MYjnyiHZn9kfILFDIdxj4nhVAl1ZSs0R\nvMNFUrMj5CYqxM8YoK8rgVrSEHETo8fL1B93jH8nEY8gPDpOwKDn/CDMzlETydM7EEeUdAI1BebW\n97Np4zSiB6Qg3M4v3cVpW67F+1AVhesylCsGVkVHFHTUskrtRggMWbR/UMXfbTDhxSJHzwrgGhDp\nEAytcJj51QOUlrXhb0+CqjJwu7SG8TwVI98siy2FCS4zfthHdmEDg0tUrGqb2A6D2GGTfKNB6dIs\nixp6OPyDWZghhdHlFsagQd1ml/CL+xETG8CV3qvJhXH0kmRr2OemifrLDO6swzUEE59z8A4WEYbK\n0NcsXlx0P98aOoNhM8RDy05tDfg/sjKanQKlc/Kk57q03nAIPWpy7QdfxnQ0zg/I2WrNor00zBgi\nNd/B8SmoVRXsoIIZPflDacUVO2isyp4ARL2Xy0rgMSBaqpX7WhGF/GSYsaQT1eMwb9lhWoKjqP4T\n+b5f61/N3Dev59KmXZyzagdP3LUGM/bfqG/u/v/vq/qX8WjLiyf87fObqKqQ87MrPf3KCSm53fhq\nkdh+hcgeg2KTQzmhMrxAp1CnocSOZ6616gSFhxsxslLNUmjgSaqUasGbcfAnHULtWYYWqSiGgR32\nkp4eolwt+5MCvRpmFIoNLp68IPDmkROAKACxCNU7HYysxpGBGnTdRdNcmZELg1F0cXwq3k4vBdtL\nyTEwY5IqXK6WWVRPWuCmvKyqP4J3ROOBH9xBzSaVUovJ/2lYx7dqd3FZsMg+s8jCUDeTW4a4++/u\nwZuEzPxq6QOogVAFsf0KixPdmAcjeAyb4OQMt917MwBiQgmnrUjntbWYEZjwgsWEl1y8D1exePlB\nQkcdWeWZI8YFKRLn9zGjcZD6N8s0Pz0EL8cpbKgm6DX5ymnP8dl4F8mRMN0XeAkeSmIF3x6oTQ6M\n8t2fXMvh1Q+Sc/2I7gAzPrCfL3/m1+QnumglhfyyEkqiwg0HP8g96Sai05L8cs9ShAq+o3JxFxhQ\nwFZZGuvg7rkPA2BV2bQPJ2h57iaMApRW5snMtsaBqBUE4XfxvBFGKeqsqj8yDkQB5q4+JBfdf5Vk\naz/vfnmppyT5r8SMn93CHam297TP4nP3vettj1VEH8pOA3hXQBQ4AYgC9HUlyFo+PGN9QaWil+yh\nOIjjQLQSUck3atTscIgdccg8MEEKA/UZiCoTx1HRxzxCizUq2YkaqZnSX9NZmsUbK2M1mNTVZpjq\nHeRItpqov8xNy19ldJ6CFVQoJVR27prMR+74PNqitEwKmQpmlUupBkp1gnJUJdTv4GrQ9BInANFS\nlYoZhVXXbiUWLTDTfxQX8A8J2TPnV6hENfSCQ3DApfEVm84vTcM/aJKeLjj/w+vRS+C2FTlytZd8\no0alziHVpuJdPsr/6Xkf+qokZhSqAwVESSYTh07zMzrbR8dVGtesepOPf+JZ3DfiFJsEK9Z9jvZr\nNZKLbbRDAXL94XEgmm3x0bdKznGeHKAK3ii28YWjF/DnX59G059tgv0uVXsERt7GPyKfGR/tXsWh\nUh0osrJn5I953SloeRWnoNPWOETf/a0MrjoO7GrXSzuC//jGjXSWq/l5z3Lq5wyx48t3kZFDiHL1\nMdVvSameWjuCd1SjsSrL6GKHf9x2BdeGMpRrBUZOLoAqUZVIh0vNFqjeJvdThMAKSbVVVEjNeOvz\nJ7IugLY/iFJR+aclz3Jv88u4hrTeecdYnCGwcoQGPTQORIutFns+e5f8ufUu1AoUXqvBO6riengL\nEAW4/edX49kToG9d81g/sIKzMPeW7Y75lh4Dol8ZXMCSLdfRPxDHGJT3058v+h7Owhz15/S+Zf9T\nhc+wifqlkq4QCogxdc+0hRnVafhzimKNiicv8A8LvGkXoyAQhoZWU4NWnUCrTqAWyjS9LDAjx6ii\noGc0FCFF9o7Nc6UawegsD8npXmy/FDAJdzKm3g+J3YKqraNvAaJaogrfnl7Ce0fJ7E6Q6otiFj2o\nzQXsWhOzycQKqozMNVCGvGQcPx7lJD1NY2HGxDgonP2jT/PlqiO8Nu/J8f8FdJPe4TgP7F7Ovzx4\nAxfd878Irhw+6bHUbWG8SfWEqubJgOieW+8aP/7GilTqvrftVzx9xffQcDk/YGHPP3Xv71c+/Nhb\nxJR8wwqOb8xtRQczqmN7VfLTogw/3sxTB+bx3f3nsaSum8jKIVo+dIjmV3TE6fPQ6uQ8oCyeQ2Kv\nQ2y7ZCj5uj2UO8IIFYycTfVr/bgejXINcPo8jJEihSlx0uvr8I4qKJ1+rAaT4hST+B5lHIgCkjm2\n8yDhrgoe1eYTp73GrlQjP1zwKE3xDLPqBiiNBBA65CboCF2wPTUBuyeIakLIU0FXXAzNQbhyfAa7\ndIysSfRIidiWIQqNHnxJOcZGZxuUEwrahAaK718m7WJqaojvBU9e4E1Kim6oUyO0z0tg2JaV5TEW\nhOOHcsJD79khrMXyPjzmvykMgbMxjt3eeQIQBRDFEv4Dg9RtzOMb1BGqwPVIoFmqEwws06jelsP1\nu/RlIwxaUakdEDyuoOtqCp6hPI5XxZsWTP/igFRI9kB+WQm9JPCNCMywQWZmlIHLWnAaEwT6FezB\nALlWGEmFMXaEEB5ZSDGjOmZEo9wQYugTRcyEn8SWJI5PMDASJdBpEOpS8Xb40Cp/NUcKgRXzoVou\nri5wDoeo8hXRDJdATQHXVRktB1FqK1QdqDDv6r1cfeRcksMRStUquZ4IZs6DsFWUgC0tzoIKntES\nDes0Jt+5h74zAiiOtAAbXuwyd2Y3+26fhtAVuq6pp9QSp7I+QalsUKlSsCIunoxAGIKeqyaQmq5h\nVTlMm9LPA1/6Ht6REvlmBWV9lCpPEV/SplivUPtng6nf2Uugr4Q9u4Wh5XHy06K4Pp3AkE25Ss5F\nzuYYRzuqEaqgeptCKaFRnBhkaEmYbUseZdiVLhfLoh28XbwrMHrw4EHOPfdcHnroIQD6+/v50Ic+\nxPXXX89tt92GacpsytNPP81VV13FNddcw+OPP/5uDn3SCHUr7Fv5SzZcdgdbt02hrWGIM0IHONhT\nR8tT0tj4ta5WXpv3JP6jOtk5JodXP4heEHgyJ19ob3lgHv1vNpzwv9IfjtNOMtMF/qFjioJw8MN3\n88y0P9JQneHJqWv5bsNWjqx5gK3/fDeZ6YLUPIeNQxMxnoty7wvnUOPJy/7S9yCadCoareMf88gc\nlAunM8/f+a6PCXDVJa+/q+1cA5zA314YF0LBsTU0zUWxFBRHLiIdn4oT0KnaW8LIC6L7NUJ9DkYe\n4gdKWPUxBm5bgaLrkJAL6FDvcc9M1QFvGvSSTTmmkWuL0PiaRWp1C0KTi2DFgWCvpO8F+gT+AZXq\n1/pxRseax+NSAEOLRFDyRULP7ybYo6AfDDCnvp+WmlFE0MZdlKP/dB2hKbiawBYqXtUmsVvgG5HX\nIt8saXVGSuWpg3Op1DjsMusZWmnjj5Y5882baXnuJs7bdykzPQHufOhyhl9o4sv7riYz32TK5/dK\newCPtF7JT5AmzooFLfEkrfHkOEXp/tMf5F9Pe4pwp6A4yabrBpdSlYZ1Y5KDD02nOGb5UD97iCuv\nfRVWpuk6UssdLU+w7lf3M7yyhuxcEzsksH5Ty4tJ2f8z8zvZ8erBX/Y6nywaPBnmXrOXOT/8NL8d\nWoiRV3hz51R+efR0Qt0q3jTcMGcjnoN+1s78PZ+KHSXsNXEtldiZA+OzinbeCNG9Oj99+GJO90lA\nueviO7F6g8QTecwwaLtCaGGL3JKSNBA3YM3cfVTiglC7xlMvL2XGax+i5bmbALixfgOPfu4/+don\nHiHbJmmCx2LBf3yaNU2H3nHcvhNF9r4nzwfefVV087r37nG60n+YGT+7hUqNgzH3bcrUpwjPsE5v\nJjpuUO4O+DAyKnoJMpM11nz9NW796uOUaqD3PIH7yWHc60ax/WPm666CeTjCwO5aitWShaAXBZUq\nh1K9XMTPqBviptNepyGY5d6eM/n7Seu4rHEnW9PN2DEbO6CQmwi+QY3c0hKlIxGZrT0C8d1yrIsx\nKmFugrR3AXD14+MvMxUQcFfTBqZXDdNRqWV7JSaFJwy5oAkMmOhFByug0HuOJlVwvzmIG7H5za6F\nuIuzfGfxb7jlnLVUX9tD9SaVVZdvozU+ypNT11KxdMqzSvT+pgX/UZ1KlUG5RpCfBF8/+3d8u247\nj/3ThSy8cjeHbrybyc3DKLbCpCeheV2Jlt+6WBE5F5thRQpzAYUmQWyLlwd+cSGvbJhN6JxBBj5a\nZujiCtkWlfwEL1rJ4d6H7pQVo8huFBt8QzLxZgckRVe1AFuh79lJvO8Lf6bjsnsZubjC4FkO1geT\n/N3lL/LIv/0np4eOMPBaE8lX67m2/RxUCwbPkIueYL9LqV4Q7nLZc2gCviGYFR9g0pQh4k8HKLom\np608wA8++RNSMwXZFSVyk+SNWokpxPcds9ERmPMLZE8voUzPww0jTPjUYWI3SW9svSzGWRWOUDEU\njQsu33hKq6gTYnOUTYseGxcvAvDHS3x7tI3WdR/jvkw91jxJlTCjUnSrNPOtst+lBmd8LB0LbVv4\nLdsJXfDMp74DQN4ts7ZnOooi8B/wYmTkGLzo7v+Fti3MC7OePuXH3vPZu5h7yXGgZzsqtqvi95ro\nhgN5neCgS3KGX7aiTAgR7bClX2Xaxci7eLMuxUY/RENk1rQhiiXKE2OYYRVfUuAbBsWS1FHFFWQn\n6ZLNFQar1qJUL3tKh+erWGG5CPclZduKf8SC/uMtNnpTI1pbK07bBMypDZiNEbxJhdhOHW/QxCp4\nZKLbUfDkXCoJ+fy0hIbKqduMPGmF18vuuJXK7B99+oSfH098lo/OWc+EmhSVOVLttvB6zSmPB1Jk\n7N1Gu1nLt/edz9XbP861936Rj/3qM8z+0ac5sOoXTL/w5PP+k4NvVWYu1YpxWxcEeJMWxToVrSyV\n7iffCd7fxnjhuYWM7K2mI13F7mQ9vWuCuBNqUE6bjWI5HD0HzLMzpOa5OF5BuENFtQRGqkRlUhXZ\nSR4cv0DNm5QmhhleoGOFJQD0DytEt3qpfcUg3H0chStLJEVZmCbG7k4OXj+ZB/eczguznub2rgvJ\nmx4WRHtZOe8gpTpBdgpoYYvOwQRO3Mass0mX/ZRsA59uoxsOiq0Q7BO4Hg1jOI+SL6LagnC3TbTd\npPHlnLTp6ehCLziISAhnSgP+URvbJ9dj0m9ZVkgrUY3kTJ1yQkco0p85OV1D6PI+9KRl+0GwTxBq\n12l8pXjC+Vd0HVQNpaUZbBsz5qVS46C4CmbCIbeyKNc4GxyyU0OgCixLo+JKf1wrIjBjMhHqydgo\nxTKa6VKJKxQWNlM5M4cdc3BTHrqvdEmvqJBr1ojuTWP7FEp1fgpLiui1Jeywi3dnAE8GfH3S+mh4\nvkamRSXT6iHgtfAO5HHCXvSigtIvqf3+YZe6TRaTHz1RBv3IjdVkJ3sZmRcaU/6FHfsn0lSdZkr1\nKIlwgRpfHo/XolRt8Mn6l9mxvg1vqIIdRFprAdgKutfGN6QSHHAwE35S01VGHq6lMNmm4fwe8pNc\naqeOcmQkgZ7SCe4don5NL4U6nZYLOrhy+k6EClW7FdT3j6AXVOIHbdzFWWqaU3Rsaubu4dUMLo8y\n4awevnvzT3m+YwYDSzzUbLeJdJUZumoWes8IRrsE+UIF16tTiWooDvhGBMIA77BG1cxRHC8k5yr0\nnamSmSmTzhf+/guEtApD7yCi84403WKxyM0338zkyZOZPn06N954I//wD//AmWeeyUUXXcQdd9xB\nfX09V1xxBVdeeSVPPPEEhmFw9dVX89BDDxGLndoT9FQ03RU3beXFp06j+exunpv5DMt3XEXlqVrm\n/N0esqaf3b2NhF/3o7jSHy7bZuNJaYjWIlbKS3ynfDJmpguiB0698E4tsvF3GfhG5SkYp/oq4L1s\niBW1HTz9wjJmLuvgxob143Lwx+KKQxewf7AWbXt4PHs37ZUPE3pZUhr/b/uMrjhvN2+sPbVQwF/G\neRduZe2fFv1N73PgprsZcgqsevBL2CEh+1sAdYbMSFZKBuqQ5KOHe2yCnTnM6gBWSMP2qxTqVaKd\nNlpZ4N/cjpvOoNVUI+IRlGIZ4fVQbo6iuNB9oQffsEK+xSbUruP4kX0FhkCrKIS6oFivULfJQnEF\nZlQn3FEgPS1I9OENJ3xubWYbR26oxsgpWCFB9Aj40g69Z6uIgIOe0gkcVSg2CFr/cSPDn1yK/4pB\n5if62PMv8zAjKpWINFgu10oacHFmhfbz72PxP99Cek0J/VCAUI+gcEGectKH4nUxjnpwvILIEQli\nCxNcElOS5DdWM+nZDEfPjlJodlEtcGtMyBjMmtfNtfWb+MYLV4GAz5/9J+7YeC6xLV4qq7PEQ0Xy\nf6rHkxGEj1r0L/dQtVcuRDwDOUoTo/Scr3P56o0kjALPf/VMUp/MU9wf4/arfsmlgSwzf/EZpj44\nTN/5tccnvb+KYqMgMX8ITRH0DcTR+zzc+4Gf8LE/fAIEBLs15r9/L29snY4I2nxk0XoefP0Mfn7h\nvVhCo1XPcOV330rNKjRK2owZFWimVODLzLXGlVit9VXoRajEoPHMXlrDo3y94TlGHIN/O3oxS2Kd\nPNpxGtWBIl9reYa/+/NNRLd52f7Vu7CEw6xf3sqhD9/Ns0UfX/vhx/5mmm540Si5rYl33vA9hOOD\nQzfeTa+d53NdV/DElHVsKDt85KFTK0C+U9Rsd8nXa2SnyUSQE3bQ0xpO0KX2TanwB3D0bNALKsFu\n6Y1WiSvjIC/Y51KqUcnONYlt9ZCebRPq0DEjgi9e/f+x9t5RclVXvv/n3FB1K3fOQWqp1ZJaGQRC\nEjnnaA/JeEi2weA49syb8YzDez/HGWyCJWPANjgQDAaTBchYSKBIK2epW+ocqrsrh5vO++M2EjIi\n2O+319KSVqn73LrpnLP3/oY/010s57nOOWRHgqgpjT9ccx+DdowfHLiQ+LYJwTMBVXOGGB6LUhLN\nkV1bQflu58hC/Enihv/zIj9+/VIqpo7yvbbnOdE/xmXf+DqOLlBsSbi/SLFEp+dCUMIWxs6Ax5Ob\nncHM+AiW5Kl+MACuJN3odUHy1Z742eh8zzrGrbAQ4zq+hILZmuf8tt2sXDEfdXoatkRRTdj+lWXM\n/Pmd1L/lVcX6zghQqHZoeF1iGwq5KgU75C3AZkyQPyGHnfLRddkvOWhluP4/v8HwEpu6NxSCgyZd\nV/g577QtvLp+Lt8/9ymujYzT8vothLYbSNWDpNohiVNfoL1pANNReXX6S8z90Z0E4i7ZOgX7pDTq\nuxEcP0Q7j1XCtQOCXLWgWOFBWcO9LoVyhWS7hfC7XDl7M8/umMeClm6envIGLU9/noa2YRrCCdZu\na6V6jULi8izmYJBIl6ciqVjyGO/R8ctyTK4cZfC5Zrb821EfVDPq2fI88v/9lHZfgNn33ElowLvh\nHwXTVU8ex5lQyp1x0T7uqHuT73ddzK+n/YERx8cJfh83HjoDRbi8+/zRte2ky7ez4c+fXKn+ezf/\njqvDKQDuGWvhnfEWkmaAw8Nl6NtCWHMz7DvtMbrtDGetvhv/jmNtpozFccaGogQPfpDnVGjPo/ts\nrxjrKLhxP5WbFIolgrqXByg2l1Eo1xGORDUlWs5BsV2UVZvR6uuQtg2REDJk4AZ0Mo0BhPRU2rWc\nJDHTRQYd1DEdJ2oT6NEpVDloOY9bGhySBOIujk9Qsm0U2dWDW3hf0i4EalUl2YWTyNSrhAYd+k9T\niO731iPFgZL9NlKDxBSNmnU5RuYGufD2NcwLHea7vzm+XYqrQ6Ha5tOnbODFPy4+8rlU4Le3/ox1\n+SmsGGnn8qotvJuZxO5ENY6r0NNVSbD77yORFipc9LSCHXYpmz7Kv7auYKZvkGZNI6h496T9gTs9\niHb62MVs/iW7SFkG32v6Mzc89FV23rXsGC/SXGsRfdCHL+FxqCs3myi2ZKzN73n3Nkh8CU+sR8sJ\nQr1QsTWH61OxIhqK6eL6FIpRhWhnnnytQa7SowzkaiW17zikmjWPXy89qoFUQc9JSvZkUPIWfeeU\nY4xJyrYlcLd6yBp1Rit2aZChk0MoZ4yxoLqXf6pYzwJ/gtOXf4N8W4Hy8gwB3SL+Vi0Vpw0QuibO\n3h/OhLCFGPPhBlyaW4ZRFRddcegeK6UwFCLQqxIYllS/1oNbHkVqCplJIfSMi/HWToSmISJhnOE4\nKAJZLIKiYp85Dz1lkmkKkq1RcX2Qnl9AGfahFgVSeGuJWeJiDKkoDpTtsdFTDv6BFE4sgFKwcbfs\nOnL91fIy3Em1jLdHcXxQvi1Dz7kRrJjEPyaIdrlYQUHF0zuIf2qW171dZHHV/A5WHJ6BbSsUxwL4\nRlRK93hUhcHFgpI9HkLBCnniX/lqSfNLOfTuEXBdZGkUTAu3NEx6cghrwq/U1SHZCiV7PX92t6pI\naIdBrs5FLQhCfYJ8pTf/lm1L4QZ19E4vCU2d0kx0rdfVdurKcf0a421BRue7hLpVSs8d4Lza3XQk\nGvlS/Upuefl2Wp6x6L7Aj+OTGHGFGRfuw5WCfS+1oppgBcGOSHAh3A2l+00GTvFTtdkieCjF0JIy\nzJjH/a18NwUuqONpipMrcPwqgXX7MOdPYWCRQc36Io6hEP3XHrqfaaH00j6SeYNETwnGgIoZk6BI\nFp2yh+1/nIla8JomscM2gcEC2mCC4qQKjyu8+eCRe7jne9MJ9agU5ueIrQxQ9U6cvf8epvolPyWv\n7saaNZn4NwqU3h/inoeW8Xp2Joaw+fKMNz70nf/YzqjP5+Ohhx6iquqo2ur69es5+2wPZnPmmWey\ndu1atm7dyuzZs4lEIhiGwYIFC+jo6Pi44Y8bbcFBzBl5DnY0sqVY5I7JqwDY8Wg7B16ZgrE9gHPe\nOF//6lMEzxtCT6qEeiC8KngkEQU+OhGd52XtxqjE9XkJR8kOhVSrJNsAgwOlvPnQydiVJjfWruWi\n4BCnbL2a9rU3MHO5N7E917qCPUt/y867lnHR3ov4fryNb89/6R865w+LV2/6yYf+3ydNRIFjEtH3\nkshPGm2P3MGpv/kX4KjiKEz4rdkKms9GMYXnv6QL3K278Q9m8I+aBIatia6Li+/VjeC4SNtGFoo4\nu/bhjo4jdQ3j0BjClUQPTHg3lZhkplnk62xcn1dNtEOSQoXALHGJz9HR0xbRV3aiDico2Zc9AqF5\nL5zd+5n8TIradXn844KRRQ7cMYKWEwS7dPxjgqoteXytKfS/VCEVQXUwTbUvhX+0SCBue2bIOjht\nWfLVLv4uP89ng5hRwbcWvIxZ5jB6sk1T2Thtrf1o/T7UtjRKQ47xeTbZSQ5oksSOcgIjksykMMUK\nyZSni1Svl6hDfsq2KbhS8GZiBtUtcfzVOe578SKum7eRtuv2kE8aDG+tJnNiHscPozN9BIYlYzNU\nui7z0X15JTff+xxXn7WO155cxK9fPYv+m4psPelxPnfJa/zykgtQhcKsJQcoNJd4HLsPicCAYGgk\nRl93OZrfxqqx+OaeqxGlJsF+leysIhu6mzBqsuAKHtt+Mu0ze7jlT19gT7GOp1LzsY7SS4/Yr2h5\ngWqCPzGRiM6wiW3XkSvLaKsY9mBqeB3xoVSE1YdbuH90KQk3wFMtK1k5PJ13T3iKkWyIZQNnIdLe\n5mbyilvRhUqoX2BJh6z7QXXGTxp7bltOdTjNntuW/8MiQ8cb8z2F7gYtzNNT3iDuZHli/GTsoDxy\njH/kWOFBh7KtnuAM0uvTvfzeAAAgAElEQVSqBAZUHJ9XNZYCYntV/HHhCZlMhcxUG/8po1Sd38vw\nIknpRf34wibJGQ5aSsXVQG9P8YM1F/PCb04l1xfGGNBRm7I8MnIa39x8NdmiD31KGmVSFscvUYXE\n57dIZQ3yU0z6zoRCqYI9oXSYL1dITjp+6yxTq/LYdy+lZI9gakmcVn2UCjVEYoriWbsEBPkKH76U\nTck2DUWRFMtdhAOVfwww5XcudT/zNqejs/1Hkrzat/Nc8fW/IMtMat+WREpyhHoUCrU2N89Zyyvv\nziE0Zwy5I+qJi0yymbLyZgDGpxsc/qJDqE8SOaCiFjxLl0DcRc3D2FwXLSsxOoLo4yonbf4Un9p6\nK29+/15Ka1OU3+VtTsKHFJbVr6Pur/AfGz0eXklpFi3ndSCtkMQOueh+m6heoHO4nAE7gy8lyVd4\nnsix5zwlWzvgma2PXlwgV60wfLJkfKZEuBDs9xJR8Oaq6rdUylb7eHbNSYS3GWzrreeSfRcyc043\ng+MR1m2exqnz9pCrVvCtjxDpUsktzFGMCc9E/n11nNLng5xZuQ9j1GXRN75A/OIC4zMFk647wNBS\nl1v/46s8lw1TLPv44k9+RoEvt71JrtFm593LuKRyGy8k5rNy5vN8qetqvrDzRma8/Rk29TbyTucU\nXL/XIb3oU2vJO5+c12mHJM+MeB2xKStv5mtlnQxkoxzoqmZeYy+5qSZub5B1BYfzH/4mB8789Qe8\nSwvvVBw3EQXQfR6UVUpwCh5MUjjeGmXVluDvTxHdmyRyIEVo9wj+7nF8B4dRS0txhoZhoqAgbBc7\npBPuyRPsLxxBVcmwDUUFJ2ojLAUrLJHGRGVHevY7oe4Mob4CuBIR+hvpcClxxxIEVmwh1mUR2TaE\nP+4JVGWbPPsb4UpCB1JkWhy0RB6zBKYF/sbs9m9i1W0/QYRsDMViyxfv5/e3/5SvfeZP7LpzGSf4\nfVRqKZ5vfZUboz38d+1bmI7K0KYa6ifFP/G9ey/8Ywp7bl/Gget+wYb5f+T+Q2fxH92Xc9W+Kxl2\nvO75zruWse+zy4+B8gIcTJZzfc16bnjoq+RrnGMSUQB/yMSOupilHtVHKzgeWkN4NKFoJ+QaHBpW\nujS+UUTLg94/jvrXDowXNuBbsYlQZ5LQgIVSsHF8gtJ9RW+v4JP0XAjpFpdsgyTT7DVMhPQg+Ycv\nimLHDOp/vYOSvRkQAqF7z5mzez/Cdml4thfjiRJWrZ7NVx69nSFHYeddy/jMvPV8cepf6d9eTd07\nBS6t38aeH89A+h2koyB9nhtB1vSRLvpxpIJlakjD8fYwAYFMp0lPjYAjie5OENw5AKqKtG3s/gHU\nqgrUeg9BmL3yRPwDaayoD8fvcWxTs02EkLgBiVVvYoddinUWqGDPzqBnIDlZw/UpuGEDbTCBMpI4\ncu0Vw8AZHUO+u5Pyd8eI9NqkpoawIpKKzR4aItqZpfLtYXJnzCA44njULwFFV6cslENRJErIwg5J\nUpMVstUqkS6F4LBDYNSldJ9N/dOd1K220A8NHU1EHZf0nCrU3hG0nItUoXLNENVvj+EaLmZUMHlB\nL+qAn8wUG9fvHpkL1YLnkZ6dFCbd/D7hs96jXV91NI2as6hcP0rDXyS5epf8kzW82j8TgOcSCxCl\nJgOLDULdguvOehskDOciJM0AetYT35O6h5LQcsK7Z6og3CsJbelj8NQyKjemaHxoJ9XP7EU52Is6\nOEpuejX5Cp3Bk3Sc6c0kpvgn6BM+pCLYvq8RV4PDfRWMj0QwqrPevrqmgOuT9GZKSLc45KsF9S8N\nEF59gExjgL7LGhC2i5Yq4kxrAt0HQmH6f+0hMCJpvbOLTf97Od2XV6J1G0eul9QU2iqGKZZqPJ44\nmdnGx9MgPjYZ1TQNwzCO+Syfz+PzeS9QeXk5IyMjxONxysrKjvxMWVkZIyPH5wt8XPz6/osIbAkg\nNcktP/oK3159JXXXHgK8LkNgaZxtJz3OdzdfTMxfIHwYEjM9SfTEDElyyQehPe+FPYE3L92iEtvu\nLXCKKUlOd0hO83wn/aOC0o0e3jpckuenB88hrBisnfsMZzYdoDDlg15cUyMjHMxVcv/BM/+hc35/\nNC0+euPOeuVrAJgNHhT6kyjkfly4f+O1+NANn3zM91NKDJ+Fqrk4loodkpglEsWWZD69CJHJUSz3\n4d+0n/KVhwjsG0aNRnESCdT2NkQ4hLt0HqKxlnxjBPw+XM3zalIsb5FX057dgmJ5HCY36JCvcTy4\nhIRsQwClshw5nkTp6kcoH3yc5dY9aMki9SvHaVghSL5Si+vzjOf1DPg6R5AdMfYNVlIs9fxKY1oO\n4bioRc9vtKojj78jhBuzCQ5ILgvlmHPNLr77lys49+RtnDV7N50bGzm0pgnXL3F3RrHGDNpa+5nc\nNkBT6xB2pcX4ApvsTUlaTuqmWKYzcLFNpAtSLdASHuWtA1MZe7eK4kAQLSd4vc+D2IqCip4SaIcM\n9NwEvC8qKFY5lO4QFEsl3/7rVQwXI+QrJZEusNJeUlanJzjnmQ7uH29mX7yKVLPuwS0+pE4jJEQ3\nGd4mKKujD+uM7apAJnyYUYnqcwi+E+b6aZv46WlPoPQaPDX1z0gF/mfTufxr+X7ydUc5gcVG77n1\nT9BF3uMF+eJHk5ONG6eBC5lm1xMv0i2KGT9/WnEKKdfgS/0Lub1hNa/ldDpOfJInJv+FzmsexIyB\nv8fHFfvPp+Wa/fyf+By25Zo+0XP8fljhK5/9yZFk8BctHr3gO+su//9FvOhvx/h059lUqCGytp8D\n1/8CgMc+c98xP/f3JKaqJdHzksp1KqEeT2EwvthibJ5L/+mQbPUW3eFTHHxtKdSIRdHS6NpbS+vM\nPg53VtFUMU5JU4KGE/oxZ+fId0eo+YsnUCQsgatLgobJa9vaKY9msTpKvQ3JoRB3nP06A6MxT8il\nL4jIeRd2bI4n1hW/Lkfu/DSxQw7xWSpW4NgHT8t7aqEAZ5TtpUJV6bYzxDpdhO09p4FhE2FLYl0W\nk5YL3EoTs0TSd46csBLRSDXpFMq9BG1svkPnVX4eWnsasViOZItK5lCM5Xc9wCmz97Ml2YBvRKVo\naRTLHcYXWjS/KInFcjSe1c3NX32R4DthSg4WUCywwir5ah9ShYodRQIDKv6kRyuQzXksW6XkgQjX\nHryM7LYyOkfL6fuydURZNt2o4ma94kliLIw/6RIYEWgFMeErJziYLKc8liUnIXTdwIR4G2RrvTnN\nlxSkW1zoCRCISyixUEyBPCFFtslheLGk+OkEmRbv3UvMlPjHFeTSBLrPpv/JSewbqOKmmRvwV+dY\nt6qdzJzihNiIi74z6HXbAgJX86gQjt9TrXzkhXMYOsdi+GRJWSxLbB/se7mVuslxMo0KX115PVbp\nR3vIAQR2G9zz2FUEe7xr8f0tF7AgdIjvjsxk5/oWMhsqsEwNx1bx7wigzE4SmJ7g5T+ewvYXj283\ncrzQsoLd8Wpa/vgF9pz1MK/m/Cyu6kIPm3yr4SW0UR03ILnl13ez+wvLaL//Ttrvv5P8jAL//s9P\nHjNWoeqD7X3L1HBdgaa5YCoIx9swRnocki0GZnUEqSkoqRwim8fZ34mbTOFOqkNtaoCqMuzKKLgu\njk/BMTQGloTI1QiKJQI17kMpKqBLpDaxu1MkakHgS3sb40JNEIRA+jVwjr32QtOQlolon4qWsUBK\n6ldl0fJQtUGg5SS5Ko18cwQ9oZBrjqLYoOCSdgIfON/34szl36Dz3F/x9JOnM+/nd1OtWtwaG+Rb\nw7OZte4G/nPz5QAs+PmXWbjsKwyNxtCygvG3aj7xvQMILRnBDkqmPXYHG4regvHzaY9z36RneXX6\nS9zWeTUtr99C+wN38mrOz8xld/KLRP2RhDSRCfK/H70OgPKW8Q+MH/BbKCUmrjphvRTV8Q/nUU1J\n/Yv9xDpNIgdVjLjnJVzxykHsQ91Y53gFDjG/HVyXTIMPNZmldF0/dkDFCnt7FDQXpSg87+Swi6t6\nBYR0o8D1S0YWhCgsmobWNwr7Dx/75TZsxz7UTdn6Qcq3e+vlP3/vayz6xhdYMzKFN8Zmcst5b9K/\n1GDcCqFGLZqb4mhxHWyBa0gcV1C0NBSOPjt2UBIcchBlpcQ6hhBS4vo03EQSN51GiUXRaqpxK0uw\nuw6T+fQifEkbqyyIGdU82OpMG6Pbh6JKpM9FugKpSUoqM+AAh0IUYx5fM1elocZTUDRxU0f53O/v\n4Ds79+J7dSPRP6yjepOLGRFYYcg0BRG2Q75cJdCb9WDNsQIleg6/ZmOZGkbQRJabFCu89c2fcAkM\n5Al3ZUhO1rAmVxPc1guK4iXbmoJZF8X2C7LzGvGlLWxDkJxfxcFry4g1JXF1ODRUjj8xQWca1vAl\nBcKW+FKelWTvpQ5q8WjhTet5X45TNFHiScR4CmOoSLhbIdMgGNpWze6VrTy/7gQunr4D/5jEDsLj\nO06EE5NcWr8Nv2qjp71k3HNu8BLwwLCLbzSPP+XSf8UkXF2QmBlh4IZ2Mkun4kxvZvDSyehpC2PU\nJtwr6Tk7jHCgUGeTbhbIu0cwSgpkWhykpVC+VqexNIFjgFvQmDKzn8N95RjDKiUnD+HGglizmkm2\nqJTtKqIPp8HF40DPbUKURNnzvekY4w5uaxMXnXYllZtNGl8vopoTFMP+JC3BOPE5CieFOtGFTc79\naDXdT+wzumHDBgKBAHPmzOGRRx7htttuAyCRSPDGG28wZ84choeHOfVUT7p97dq1RCIRZs368O7d\nT3auxZ849rPMJA9+FDoljr4xRGYSxHYppHeUwEVjOD1B1C0BHly1EN8hH71qmNs/9To73p5Gsdam\ndLuK0aMxvtAi0P/Bavz7SfLvSXtLVWCMed5EjiEJThQI7bDAv82PszfEg6sWcq8+nfmVvdwx9U3+\n5dA5rMzVMILFjR1XEA0UeeedmaSLfgID3gbi7/EZtSMSxfReAr0mT67fSxjVnMKjNzzAf0/fwgOb\nFx7x+IwtiFMc+AfMFI8TL2z/ZF6HZr2Fmj56TbO6iuZzUFQXN+3DGFXwpaFQIvAXNPxr9yI0FVlf\nhVMagt4hsG3kyChySiOF2gCKKxhrN0jdXsQeCTHeLimWSZqmDkPMIl/0Tcj4K+hJBbUoUKZnsLM+\nIj0uiqJDLIySK+LEx8D9m02RlMjBEWiswbd6JyEZw5/UMMalpwaq+alYPYSSLiMx0yVUlieoW4z+\nIYKaMYl0ZSnWhAgNOuRONsnUwBenbOJTpd3c2zWfni31dHdWH1GCdMpsHL9EuILCu6VkKiXpDZVM\net7kz9+4l0cOLSKxrRIrrLJwyT7caUVGpcGIE6RY0Kl9QxC6II67Pcy47uOmme+wYeNMIocls67Z\nw6FEJU7I24SX7fAmLF8S6t6yOO+qTex/ahqhQYdQr8orrSV0JJt5actcEl8po2iWYUYFWvFDUboA\nJGdZxHZrOJOLhHb7+OaNz7D51Vn4F42RGwnRvKSXNb1T2JZrZPN5v+WkTTew6/zf8LM9J3B/x0lE\nD6okZ1sYwyrG4PE7Yk5AYEUlxdl51IiJJVTcsIOe0PBVFhA7ItiTC6xNTWHcCjHkxnhk31LuatqG\nI10eS1ezcc1MZl6yj8/UruXbNXv46v2fYt/mZoCP9Rl9v4PBfy70ONnTH76Dx7Ys4d6dC9HHvO/9\n/+IF+l40L+nhM5X7+PehOfyicR1PZWL8r8r9zN1wHeN+i+88de0Rb9P+epMvPnHVkd/9sOOHBr0T\nUCfmM82U+DISxRY4QsMudVAKCqKyiIOKUm6iag6z6/qRQiGZDJI8VEJN2wgVgSyX1m9n7WAL7q4o\nbkOBkiWjBKanccIOeaFRUpqlvjLB4JoGCpNMbFulsXWEumCKbcMNOKZKpDaDHjExCzrCERhxBd8B\nP+EOzzA80S7J1gmi79t/jbULrJCCcAUzFhyiXh+iXFV5ZONinKDA9QmyNTqhARupCTINfmK7FOSZ\nSUKrg0hVQU87ZOu8jUO411NOj3QplG+DDbc+yh2LN/Ll9k28kGnimTdPYc3pT3H3gk3c99pSFEsg\nhSAxx+UHJz7Lyp8uZcOu6fhSEhQFPSsZb1PJVyiAwNW9DpNWhNCgjRj3UxwLotiCQ1UB3JjNHbPf\noucnbYR7TC6/ei33F+dz7fyNnB0e4t6u+YQOqp6wxphELajMXtxJ10gFdbEUDx9azLzKPrbHygj0\naASHXIZOdQl1KxSqXcq3e9Dl0EGV4qIctq0iszqdVz/ILwfaCZXmyeRCXHLBetKVgsZogrRpkKoR\nRFcFeEc24o76CU5N8rW5b/BW/zTyc0zMmIvRr5GaJvGlvE76e1yxwAiEO1UCwwrK1gDC9RR34yLs\nVe89qztCvd6s8mEigu9F3Tk9DCiS/5jyCucFTW5edTlGv8aci/Zw/eQNPDZ9NT/vWIjoNZB9H54c\nfVgUZ+fQdQcRcnh8fBo/bNzO59+8FKHDVreRktoU8yZ1UzlljN+MTOfSkzZRP32YATPKKBGG91Xg\nWzTGfRc8ymurP/juRXZruGk/ZrmLajiQ0lFMBTugoJkQeeuAZyeRzUFJFDk6jhIMIMaSYFkIF9xY\nkMGlJQgpGFiqUax0setMrBBcsHgrS6buI+fTGRuJImoKSFPFjro4uifspGUVfBkP/it7h45d91wv\ngZaDI4ieIYSmoWg+gt1pjFELJ2wQ7jNRTZdQPwws0Si0FllSd5C0a9Cx/cMF3O7bfiLFCpfpSw7x\nwy3ncDCg4UrB420v8rVJOzht+5VsuvS3PCymIDb/Y0brVk/I87AsCp7bvIjHjUZeT8ykLJjitl2X\ncHrVAebV9HL6/O0cKlbyxOmvcqKRZsrKm3nyygf4w7tLufXSlfzhjBXc+8zpHxg/Y/sh4KDELNyI\nQ1H1E0go+NISfD6EC5HuIsr2g+jCwH1P5bZzADG/nUxLGGP/MOnppXTfYGDGSkm0KehpQbHOAUcQ\n260gsjr+MQXVhOyMIsJUCfUJ/AmXyP4kaBrZk5oxxk3czFG0mmIYCFVFd/3kqn0E4y7GqM1Itoya\nGSM8t2U+wV6VLfFGfD06cc2PyHucfNcnKY4GKVo6Y5kQqu4ghgz8CYVctUJ2UoTI4SJyXxduczVa\n1kSEgjiDQwhdR7FdaKoj0DVGsr2U0dk+xpZYWKUu2qiG1WAytW6EqvIUquGQTQYwpYIUAhmzwVI9\nS6KEpwBLNo+wHQ/2+xERHLMxVu0htqqHYEois1kMy4+ayDJ0Wpiz5+2ixp9ky1gD1bE0MaPAWCoE\nAYdirYMjdVyfj/CuEaLbR1ETWY8Gli/gVpWiDI+j5m0IGPhSFocvCaCenOCrn36BN1KtmJaGOq7z\no4sex22xOXCoDj0jkBoYo56oaqRHUtEhkZrA35/2xIpaalDH34c0nGA9qoksPjeInhXU/jVJ/AQD\nWW5SUHXMnRHqn+5idHYlr593H0/ET6Dg6Iz2lFK/OkO0s8j4TB8CjxdujFpkGg0C4y6xriLGqEXJ\nljhC0ylU+imWqEQ7s9gRH9pEInvyFzvodyLsvPJXvJBuJOi3GDMDrDrnXtx5eVb1tCIGfcRax+k7\nXEFzU5xMT4TMWAh/VifVrBMcllgRFd1ScQMaiuXiPzyK9OlUdBTx7R3AqYwycFYZ2ToVV1OJ7U0j\nEinI5nh78XS+e/af+O6OS6iOZbClymlV13/oM/APqekGg0EKExWOoaEhqqqqqKqqIh4/CscYHh4+\nBtp73BBeIvj+CAx6XB/nxXI2//sy9t+4nMzpOewLEvBy2RF/wcI5aTLNIMI2D+5cyi03vkrJVp3A\nFUPkq7zO5seFq3nqu8KRJKc5XjJYWcQOCm68awVG3PMLS7V6m3/xbpSXf7GU//XTWzmlrJOHGt8m\n5/rJjwb4n8YXUOrzlHb8AwZbgJYWnHH+FgDiG6vZe+tyfnTtbwFYZKi0PXJshyXZUfGR48kPOf0r\nLvE8Vb95zbOf+LuZ1Tb2pAK+vmMHDe7zU0gYRIJFXJ/rmbgHBenJoO3vBykRoRDicD9qunikgiuX\nzMMqM5CqQBvNYkY8IZ/RhTaBKSmoLHJOzR7ObdxLpDKDryqH63exGk1PQXYgiH9U4EvYjE8LoBzs\nxc1kkc6HV+flph0gXfT+MaJv7icwXCQ4ZKGs2kxuerXHcSsxaYmMUuM/lhvsGArJFh33UIjJv4f5\n990NwK0L16C3p6hb1I8yNYNozOGPFDEGNXxVOXK1Ll+a8SaRk0fI1Pn51M7PYmY9PmnDy2Ns7GlC\nQaIO+0ilg8iUj96zFP5n2h9JL8zTdcUvuWf72RRrLJR/GmH7cC3B+aNYFRZqAcane+ICri4YmWtw\n/+8uJ92k0H2RQr5M8HjLCvK2TsV6jYM3VWIHBWrRs5MArzuYrz4WXpecZxLb4d3n/Wf8hsyiHD9b\ndg3JdouCqRPbrbF/RwM/mPcs/zrlFdYVHF5f8AjrCg6xbT4iXd6U8h7q4G+jUA7phXmMUdh783Kc\ntE7wnTD6uML/WvIyK67/CYnuElyfRO8ycKSgp6+cd96eSWvVCGfuvJzzdl9BwvGyzeFchNcSs45U\n0D+RkApekvfeHzi2g7njxvuO+/k/GoffbgTgspjnm2hJjWEny9aTHmdmoI9nb/qfI8dqD/Yd+b1L\nL1n3dx/fl3EplrvMaO1DsQRuUcWYnEbVHHKJAB0Hm7m0fhtGeZ7ojFEGhkvY/lYr979+AamRsOfd\ndsigf3s14y/XkemLUrLZu5ejuZB3XwIWfzztF/xz0zu8MdCGdiCAdAXpZAAhJC1ThpCG19nL1UgK\nJQrjrSrGgErdW8c+b8oE70jPSJp9capVhc3FEIkZLnYQ9LSkfLdJsUxHyzkML3IIDppU3hsgeVqB\nYlQQvytH6oQCdgjGZku0rGDO9TvINBx9GFbmVf573flQV2CfleX+8WZK9nvPS8UmheZnBf/5y5to\numM/yXkmo+cUSE5W8Y/b5FqLHkfVD8Pnml7H2AGEx4uNdboUSxRiawyUAYM//PhCRtt1BhcFsKTL\n/Ek9PL13Hou2XIOI+8jWK0hlovo+6rJhSyuKIonnQlw6aQcPNqyl89xfka+SZK5Oo+QVsk0SYhZj\n7UevXV1ZksvbtlG1AfZZWa6atJWx/WVEO12eW30SfaMx9sar8D1ZinLYIFcrePnceymbOsYbJzzM\n8n2nIQMOSo9Bfe046fOynLZoJ2ZMYEYFjm9ibZ746715471oXXjYEx0LO57qL8eKU31YtJcMMNU/\nxI1bbqbt13cQPOgj12yzpa+ehYEuvtS/kI8Qdf1AlJ8xcOTfuckW/u1Btp70ONdOe5ehoRLa196A\nCDg8ufhBdu5tYCAVxZWC+kCCkVyIjYlmXupsJ7OrjI2dXjGrNpriiw9/4bjH86UkwSGJk9axM559\nl2J6asS5agE1Fbhj44hwCNk3iDJnOrKpFtlUhz2tEVkokq8xMGOed64+JU2oPo3mcxCGQ5meZbJ/\nmHOqdyN1l2g4Dy7ooxp2ybEXRh0cRwmHUKdORquvA/HB6+/ER6Fv0PsuqRxa3kVPFNB39TLWpuP6\nwB+wSLsG1sdMoFZzkVvOWEVtIMmXTvwL99VtZG6om4XLvsKNh86gJuTxdM31ZR85zsfF2VdtpFgq\nueKaNayZ8yfOrtrLbH8fjiso07KcH9nO8j2n8VZ8KgCTn/8cZaVZ7hk8l8+evpp/Ld/PzJ/fedyx\njWHFEy4yLELhAsaYxPEpjE3X0bZ3oqzeTL7GQBj+YxSK1Ypy5Oad2AGBPTBIaipcPm8LmWbXKz5X\nShrrRzml/QCZSZCbapKdVSDV4mIc8uMEJMaYS9n6IQr1EWTvAJGOfs8yZmJ88LqH9uAQYu1Wau5b\nS+jp9RiHx6nqKPLuqzPBVGh4pptwt8AJSkRWxfV7fqAIT11aG9VQfQ6OreIGPBpHqE8S7XZwogbM\nmYZYux2ZzWHOaEAtiSGCAdBUpF8lP60KOwChpSOEYnnCpTlPjMnnUBnI0B4bQAjJyXMO4OY1hN9B\n5lS0jMAOeeJzWLY3ZnUF4sRZRzx2jxduNucJGwF2Xz8iFkU5PETPlXW4lSbNxiizjV6SWa84ZUvF\n68zaCqQ1ChUuI6c4YFrYjZWkT24i3VaKW1VKscrbK4hsHn88T98ZIey6IpdN2sG14RFKy9Mw6mfa\nuQeZ6RuiO1eKMazgS3nNq3CfSdNrJqnJCsPzdYyRolfwURSQEnPK8Tv/xq4+StYcRuSKtDydoekJ\nlfQztZTuK5I5sYmymXEGHT/ruyexa2eTpz6sKkhdxT8uUExITVJQDvZRuCKBcvsw+tZO8tUGvZfX\noY/lSDVr2CFwAjpWSGWsTaP0Mz0krADV0TTvFk00xWVfZy3NtaMcssPsydZQzOmY5S7JfWWoaZXe\nrbWULR5ENOcYmee9H4FRm9jBHKlJBqlmg3y1gVsSRuQKiIIJlom26xD1K+I0/baT0t2ZIxll8rwZ\n2KbKv6+9ilwiQLWWxPgw36aJ+IeS0cWLF7NixQoAXnvtNU499VTmzp3L9u3bSaVSZLNZOjo6OPHE\nEz9yHKl8cDP83lxYLBOcufNyFnZ8mgtad+E4CnZQoE1AtOWOKL62FDKrsffUx7h/zTkIR5J/rhqz\n7JMpZ+TqJMop4/zkG79EyyjYIUlocwD9zDj3rzuLXI1XGYnu97yW/OMTFjDVkodePYdru85ib64G\nY0Dn9dwkymLZv+MqevEe7FZq8NcV8wDYdcvPmfzc5/jW9stRpmdoeebzf/e4YuK+zz1z35HjXH/Z\nKp578RTOv3ATP376SsAzegcwqz589T9v3g60Q8YHPg+MSIw+ndHOUtAlZqmcENqA8XOmkD1vFjIU\ngMpyRCaHeZZ3fqPtAbSV7zI8X2H3N0solkn2jVRSWpMimzZQNZe4FUYXDpriUhwLeJ2WcBH/uMCX\nUEhPtxhcZHgdLh+wNosAACAASURBVFVFKfeIkFrLpCOT+t+GtG3swz2IcAi9bwz/QBq1vY3EFJ34\nXIGquaRtP+NWCDfoRxo6UteI7BylcnOW8GHBwFI/UoH5G6/l+Z7ZfHPmCkZfqcfqC1H7ez8tlaMU\namz2LP0tz175M/rMUgorK1EcSKyvBlMhfFghflIpc+v7+NmUp/in89Zw17w3mfbrLIFBhVsfupsp\ny7xn+MSGHmZM6yO9porQ01FKg3n8fT7y0wtoeUGmQWBGAQG1awtIAY0rJGV7irS9cTu5x+qofHsE\nNe9BYPJVkJo6wVlyIDB07OblPYsVgLZf3UEkVODOO57jwbN/Q37UWwh+eOHjXBHKcHGwwCJD5en0\nNK571UuaUguKJOeax4z5HiT4+X/5sddV6jY447MbAOi69CEA7r/uYR48sJSLfvVNovtUT+yoycTa\nXAqmghN22dkxicP95fhVmzp9HMcP3btrWFa/js8++mWsEEeKVZ8kpj98xzHJ3s1XvkHzkh7mPvKl\nTz7IR8R7Ca2Y4VVO//l3d/FYqoL/2ngZVapHrL0ilGGG72gb9y/jM7jg4o0AvPDior9baTdfrhDs\nV9jTU0P7ok5C+3wUCjqt1SOIrIosqBzIVfH5maupj6aoKE9jlbhUbvIKCGV7Hao6XGrf8fhUouj5\neA7vrWQ8FURtS2Olfdyw8Vbu338GP572NGaFw3mzduIPWkwrH6HzUBV63OPSqQVBtmFCGdeBYuzY\nJcfVJcVyiZF00YXN0+nJDNoxSnYpqEVw/IL4LI/3MnxigKmPexNb8usZap/xISTkDsRQ4j5q1uU5\ncN0vaHy9wGPNb5E5wRMiKkqL21+9DXVUp7osxef23sD9z19EtKtA1bse1y9Tq5GZalHqy7Hx3Htp\neRCmX7UXxXL5weI/0XzGYXwpibHPINkKWtEl0aKjmOD4vIQ6dsjGPyY8z9Ral2yTw6ZiGU9PeYPG\nigSu9OauYpkk1XI02dOSCk1l45xac5BnnzyVz/eewk2HT0OqEH4mQmhykrLtEjHmo2KLZN1PfkHm\n6jSPtv2es2K7yNUoXLL2DobNCMaId31Ldwj+fd6rXNC8m9E5grKdEivicsO2mym8VUFM8VEwdfzR\nImpOYP+2ismVo3Q8Mdvjsga9tS/drGCGj59gHljfTHBIUr1KPVJUFvK4P3okxMIkQcVkR76Bz09b\nQ3TuKDvvXsYps/cztSrOTb/8Civ/9MmQCPaEEvyr7UehtcEuHTvsfT7ZP8w9S56ETTHUQT8ligkK\n3Ny6ljf3tPF6TxuDPWX0ZWJUx9I8fe1Pqa303rfBdOS4Sr7gIbfUoiTQo6GPaSA9JIZign9MgmVD\nazPu6DhKdSWiZwgnYoAqGJ8RxJreQN9ZnpKsWeLi120cR8HK6wSjBVwpKFFzqEiUjIr5djmiqOAf\nFahhGycg0fIu+UofbiKJPbMZkckhgwZq7PjdSCeRxM1msQ/34Bs3EaaN0DzfXjvqUFOSwpIqldoH\nLXLeH53n/IpvVeyhXM/yzvgU7uxbxE3RODvvWsY7+1vY+XLbBzia/0jsS1XhHxesGppK+wN38vsn\nzubK1Xfwy1m/45rITh4YPJuFdd38tOWPXLT3Ii49cTMbFzzFO2/P5Ilnz2Dm8js/9FkULqh9Brm0\nn0wqQKoFcpUqoUGXzJnTyV11MoHBAu7kOtRpUzAv8J7Hg1+eRvHihSSnKgzdvZjAsODNntYjaCh3\ncp5PNXQwN9qLf0ygxXVkQZ1QSPbUnYcWS3KtFQhbIhpqsZoqPEcBvKKBGv2b+zfRaZN9gyi2S+VW\nT2SuOKWKVKvDaedsm+AsC6QuQZUYo8KDmnYHvESx6KnbmiWCYlTB1RRwXdRYFBGN4BtKg6bhVpbg\nVMZIt4TpPk8j0wwjw96eI5f1gyZBCkr0PPX+cYK6xfrtUwl26agDflAlVlQiyoroGQmaihsfA12D\nLXtQJjUecTn423DTaU/Y673T1jVkfSWZZodpTYNYUmVXoR7HVugZLSFr+igpyxIpz05woKFig5c8\n2BEf4b3jRDcPIBXliAVNckkzhaog1uws187exFfK16EKBZ/mIEssrqp+l7SrU+nPEBzylKqbH+1k\nbIYfJ6B48ONJFmrRYeiSyeC6jLUHEY6kMKOefPvxFUtFJofWM4KetbEDAsX06F9fm/oGr6TmUhbN\nImImSLDCGlITxLoczwO2T5I4v43QkzHCX9Ho/nw7mTqVhscPMragjEI5FEslarrI9H/bQbFcsrD8\nML+b9FdemP40e8xaNu5qIbJH53B/Od/tvIy3Dkwl+q6BllSY9sODnL50B67h4krBtxe8SLHCIVcn\nCGzr4fCFYZKtCskpHhVBdA8iDR84DqJ0Qpy2fwiZz6MeHiLd4iE6raDg8aW/xAgXqasfY3WyjU3J\n5o985z8Wprtjxw6+/vWvs2HDBrZv385rr73Gt771LR544AGeeuopdF3nrrvuwu/3U1VVxXe+8x3+\n/Oc/c9tttzFnzpyPGpqfdryNf2qafKNN3tDxjytH8NinXd/B3tEqnpv3CD9c/mn0/X7soCA7t8Cu\nmx/irhM28lezigtbd3BaMI5RPci769uAj7eueC98SRCHArz2zons/NJyvjRnEysqyzixoodbWtew\nK1LBpot+y8VL/srG2kq6nFL8YwqKI9j9+eV871cXsksrJXhQZ822dth+LDbwk8B0716wiQc2Lzyi\nPLn31uUsTzbx+3lv8nymifHNlceIBv29MXSonL23LueqA+dyZuke3tw5m4MH6rzv11Tk4JUP8aTW\nRKEzipBgljtsufZefrnlFAA+f+UKnnlx6XHHDsRBuAJjVMFFQeqebHrlFofY2sP4Ug7CtOi7tI7g\na7vw+UI47c0gFBI/jFBIGxjVOUrrUxg+C1cKmirGObtxLynbIKoV2NQ7ico3fRTLBLHVfly/QEhB\nyW6Fkv0WQgiUQBirMoyetXAayiEWQdP9CCGQhQ/CQ9xkCprrcCIG8ROiOH7PeLqxOU6lkaXCl6X/\nD2W4IT9KzsSJBTyBCr/ONZ//C0+c+Sp/TLaQfqWW9gWH2FNeQmNjnM7GIGMHy4g0p7ijfgfVqoYl\nEjTPGWTdvjYKFZKKDgU7JMjVCEKNGT5bsYtDTpiHf3UJ5s1pioNBnKBkww8e5oR3P83Nje/wg7rt\nbKox2GNWo/wlSui8YRY3dZGpFJw4fz9dgTDFGpdEjYETgNQik+qX04ye4UMb0YkvDKHnQM9BdpqJ\nklfxHcck3gqDOpFHTrr6ILcs/CsPtqzjB30n81q8HbmmhC3/tox2X5HpD9/Bw6+dxOZJGnOCvax7\nZR4C8A9oPHLdcl6PtuAe9N6H9FSH3Z/7Baf/+CvoS8aYM/MwG38/jy8s9ZKuH6Xn0l43wDtDU/js\nqavZ0TGFYgm8dtU9PDK6kGtO3MTu8Woie3S2f2Y5y/vmcUftGn41cjKPXvwg6wsx1q6acwSyCh8P\n032gY+ERCOy9OxaiOPDE0hX81/rT0TLK/zM095hjvLaEuxZsYv7MDXzj8X9m/9UPHffn71qwictj\n3VwQ6T9yfHf4g0UgOArT/dvQ816iE2rIkDb9NM4aoiycY09vDQtmHMI24IzK/bQbvcRllOF7pxDt\n8uC+/tSxY/rTkuxJRSxVIdKcwj4Ywc74CNRmmV07QNhn0ZGbxBdmvUmdP8HKfbMYOlSBDLi0ze7l\nO4v/xJ/75uFEXNScZ0mhLEmg7TJQXMhVKChLEwTfMdALkgvP38CloQRz/UUeeXUhes7r+gfjLgiB\nLy3RMw7xuQGyySBv/cfP+M2bp5Crl7hBl1u++BppmeXb13nCec1VBzhkCy56/nP4xhUqtkp8qw3c\nk/Nke8PEDtrkK3XCAxYIhUKpytjrNbz08ALm/HQr20brcU/Pc3nlVp77xdnUfaaLeE8ppXshe12K\n689dw+bqMtR9BnreE22KXjxIIhGhcotk21cf5I4DF/GjAwsZ7ivF7gx7HQMmRCpcz/MzekhS3Byl\nZ1091dd0czhVxq69jbhhB3NWEb/P5pvXPMvaVXN581v3oKNyXs16ilLhxjW3UrJVIRvSGXu+Hiss\nyNWCsAUlsxK82DmL0rd8jM0WlG8FZU+Qjm8tZ/7P7uYbF7yA49f44qIVvNQzj+KmEqwzkuy+7FcU\nZ4xwwakb6QjXoE3PMm6GUU1B/pI0vt1eBTPbAPlqCPV7SagdEKim/FCY7s67l3Fd7Xqm+Hv59qPX\ns3FbG3Uzhtlih1nz3HwSBz9CWe04oViCLXfdzxnbrmPz5Y/yoJiK7Auw7vZ7MIROWBnm9oe8xOjE\nc3fz0z9cgT6usk7WY+wKkC8FY6/BtNm97NzXyA9mbOMAOhec0MHbLy1Ajx8f5eRLe+erZzwuvJ5R\nJmzSBCWdNr7BlFcg9fnAdpCVZaArDJwaY3y+jXVuDkeDSHWGaE2G8mAOVwhyaYOpdSPMiAzQb5Wx\nKt6K9XYpmSkOJTsVpCZQxnS0rAffMyMKVksVxVINY/cgZlsdhalV+AZSiOktqMEQMl/4AKdU8wVw\ngwZD59RQLAcZdDmpuYsG/zj1+jivb55/3PN+/HP3UK161+R3Y9M4q3QPTzx5Fo/qk1hVrCK+tva4\nv/dJQiqejZpiCXbetYzvP3Uuu764jHv+eCYdX7yX1JQce/46jS+e9Bb/NXA+616fxazph3llfBZf\nql/J7kId04x9HC6L8T9Lf89vBxeip47fa7FiEjUnwFQRBdWDtlaAGVWoXj2G9tY21LyFEArCtHBi\nQfRUkdhogJ7PO7gZHTsCZUuHCPtNmivHyEWgvXaAT5dvYFehnm1dzZTuBtuvULbD03hQTIXWR+Lk\nGkMkpurEdo6j9A7j9PWTuOkUwkPWUWu68jJkPn/0+lgWWtZi4IIqFBuiB/NkGwwOyBhoEm1cQ+oe\nnUkxBcaol6D6xlSEFBQrXWIHoXxLAjWRo/OfysnOqiTaEef/Unfe0XGV19r/nTpzpjd1S5Ylufde\nMDa9xLTQQkgCBNIgIb3d5ObmS7k3hRSSEFNCL6GX0DGmYyxc5d5kWc2qo9H0dtr3x7FNTDABkm/d\n9T1rzbKsNXPO6Jz3vO+7937285jdfRgLJjI818fwfJXQOf38bPGjPJWYhhYoIcsW2REvSDa2LTCp\neoD1o43sa6/Be0Ah32hQtVbAEmRH/XWLSKFColCrkZ1ZiTsFdPWTPmUCkuanNLMBORJFyhbBMI/Q\nyuWmRqxRp2+v7/JJDC12OX3xYYMTY3twizr7SlWksx6KZQXdkDB0GROB8BaJqmccH8vCuDD7P60R\nW19Gj3lxdwyTvNXNmivuZc0cjXPqt/J49yyqA3FWxmfRtm8sJ0zZy3L/Xgq2wqjtY/ChGny7hsnO\nrCX2ag96lZ/MOJHKVgG5YFMOyIwsjiDqoBQFOs+VyNbKeLNeDp5ZQXpGGP9BGyvqR0znyc1y2FGF\nKplUi8qvv/cXevQod+5dRDqrIR7U8AyBaDmJA3e8hL89g1IU8e4dQdvaA9kcVmUMwYKuK3w0PJYk\nPk8jut1m9NoSz055lmtnbeAk7xDLrvkCv9Jm89LuacTelikHBWYs6CCoFunbXcW427uwgiG6v+SF\nP1SQXmxQLMu0Pj2HyJxhSmGLkeZqEKHh+TzJCQq5GgHZE6HjUx5sVwhXQUSyRASXi67PthBqL1Gs\n89H9LT+brryZU9deiWuNn3K9zvRoH82eYZZWfPqYc8A/rYxOmzaNe+65h5dffplVq1Zxzz33UFVV\nxR133MFf//pXfvOb36Aozgp7xhln8PDDD/PQQw9xzjnn/LNDE2tOML+2G1OXEAwQTBvT5VBkn2mb\ngfR8iAfTM2n7/kqu+urT3Pul3zOvqYtTd50NwL77JxI7lMm7buNpR46baXzv82VPOLpymZxskzsu\nx+b/XMn57acyZOZoH4nxSNtcfrD5PAKuIj8YnMHvh5fxldqXCe0UsSXIzykw56dXM+OCnUTCOYpR\njlRsPywm3nY1e666kc+c+wpWc4GJt13NHx89i0ezAQ6s+WBiLB8EO15r4UcPHs3X7jj1dibedjWL\nKw8cqSipIxJz7/jGkfd8M9JxzGPqXgFtxEIs23gPOj5koT0CaqqMHQlCIkliSS2RPTrSpBayE8P0\nL9KIzxRZPqadk4/fQkNklEzB2dw0h0fY01lD0vAwWAigCCZil5tSWCCw36ENRHbpyDnHG89SRExV\nINWika9SKMxqID3OQzHmJr5sDCNnT0GYPRUp+o+UIWvLLkTdJHtqlvQ0HVEXqNCyqKLBqOEBUUBK\nOYuB5ZJBECiGBRTR4OKOk+norMRzxiCKYBB0FYm5syyfsI8Jt8SRnw0x/fprmH79NdzSv5x7OheQ\nmXtIDOX8UTLNJqbbZm9fFWHJw5dDPWTHmcQPBqnaqGN4bJpf+iypPRGu+90lzF5/CZ2ZCGasTMVb\nw4y0VfLiuhko10f5eGQTZ7dsR1YMTL+JZ0BAOeCm/+RKmv9sUbN6yEkyBJ1AQ0zLx6weKn/X+rB7\nsJKrggNcc3ARG9vH0tNWy/xPbQHgwv2nMOWEdgBeXTWL/7rj0/y97sW391xEfPCdTIy328lYFo7L\nEvHm2fjKJMp+jvgNzp3QyU03nYsgwPei+yj74YXP/Zpxio/augTPd01G6ndRqLKZetdXGOiKcv7G\nL3DgvFvo08P8zw2OFYH9EXgeuz93I/suOyRelKzDNfDRaPbHOvbhyuukW6/mvzrOO/Lze/27pvjB\nPffeF+PyZFIa+aLK5MAAe3qrOH3SLjbuaSSdc3PDa6fytbs/z6t3LqDscy7asQStjJIEAZ1iScEa\nU8TymciSxc6haravH8cZ0e3c37+An21YAZKNpVmMeVpi164xfOu2q5AqimBDOeKM+fSQj/5TDVKN\nEqMzLKw3w2ijFqWAyIjpQxGcseKJO1lyuWBjyQKFiICnv0TXCjfJ2WVMzeblQoT/+v5dSAUR16DM\nSZ49nKyZLGq7kHHPfo4f3HkZt/Yfj5IWKVWYJFtEsjVOj5tnQKBQqRI4UKTnCgNPfwltUpKLvrYa\nwy3x6s0LOad+G4WywrVbL0HJ2Tw5/nk8s0cIHCiyZcH93HvXqbwx73ZC7UUyYwWKMYGRV2vQgxZX\n/fgJANoPVKHvCzBxfB/gqN26EoJTjdQchUbzkOpw7oI09V6ngupcfJFPTtnAgpoufvGHT+Hts5i1\n6lqO++41nP7yV+kywkyqH2B0soDpsRj/pV3kmnWkosPk+VVVGzuX3OsoHI7NY6qOWu6MdZ/EFuGm\nn53PHQ1v8IfOk7GmZlFyNv7H/OzXs/zh7VOYoAxR0mUG22NYKig5yGddlELOmIltAiocT1VwqhOG\n59iJ0ykrr2Hpym9z3j3fAkBckGQg42fraB21p/R8pKF+9p5zaJ31CE/mPMyt7mXMKd1ICLxehNMf\n+faR97WumczHLlrL6qt/jXooadxYNcLXLnuCzlSECc0O1feR54/jF6+d9b7nVLPWkeSxXLRRsjau\nUZvgfkep1va4Kdb6GTmuhlJLJWbQjZgtY6mgBkucOXYX509uw7IFCmUFRTKJeXLEqh2Kq18skjdV\ndvdUEzygE9wlEdldQjAhsttEKoM2rJOYYVOIishFGyEcQsrpGJpA8bhJjE4PgSAgNtQdoT8ehlAs\nk23ykRsDlmYhKBY5w0W1nHpfAaPz3/rSEU/R1p5GfnfP+ez4ykqC7iKtb31wgal347ANVDnmLExT\nb7iGnde8Y8fyP/FZ9BTD7PjKSv6z7wze+ttMpKLAi48uYE+igjdzE7g00kqz4mN5aA8/712Bp/fY\n87iSPuRPPiCg9YuOD2evSHWrjpAvYi2dhV1XiV4dxOjuRX1rB7uua2LvVS5cG300zDuINjlJuuii\nypMhWdJIpTwM5f30GWEGSgGkgkB04wjh3TbeAZ3KTTqCDclZMULr+tBGLHouGEN+cQvirCkkJ8DO\nnzQwdM0S2u+dzeAFE2m/ftHRX9y0GPOrtzHc0H6tTLG+jNjvxjZFDL8FljOPewYclW0ER+zKPQSR\nLQKCZZNtDoBtO5Y1By1K0+rJXDyfQkwhW2+jTE4zOTTId7dcACXHS1dTdCa29CHmJSqqUrzUNQG3\npKMOych5qHlFRLAc/2GlYGO4BLRhC8+w6bBbNBmpZRyBjpwjhmNDZqwHfXoT4t/tzYyOziM/e4Yc\nJVsjYOJzlchYbuqVERJZDwg2mlZGz6roWRVMgciuIrbfS2ZBA5l6GTklEV9cgemWSM+tJZnT+Fb/\nHFZEtvDowdncN/0OLvGP4pVKuIMlpvsOMkXNMFFJ8VzvFOf6FYrkqiUwTUyXSNU6k/DrneSrVYKX\n9WK6OdJuYXtMDJ/FgcttfnLVvWBBrjmA1OsIHLkH8mg7DlLzaormMzpY6i6St1RE0cbl0rFFG6kI\n/n1ptJ40YtFAKJYdK694AiEURJ/ZhO4VSEwFxaszvChK3asGo5MEtiy4n8VbLuC+TJTz209Fu7YP\nr79IqC5NfIlBcUqBTR0NDBd9jr1ZSxWutIV6wEl2V0TSqG0+PIM22ZequH3OXeh+C91vIY/mOWdF\nK96DkPl0mq8tW0U5KFCMubFTacywn7G3t5OdWoHuEfjVvMdQBAm5zYfhdVrwxrmGSf2TCsEHFjD6\nf4F7u56n0ZfAVgUKHoGMpjJ2aS+ybNFcPcw2OUbb6BieLDQwwTfErztO49LadcwJ9vDF3R/D3OXl\nrb2T+OOOeVghA/chlb53iyIdhtqpOqXmQwWA57/wGx679wR+lZhLfzLI7VuOQw2VmFg3yEjWy1VN\na/hOdD+n+/v5+K+uplgpoORASCuwPEnvmw1ImzWU7HvTk/5ZZbT1it9ya9sSbtg8nz8ueoQ39UYG\nC378LSmef3nBv3Bl38Geq278h37TwzgshrRDjyEmZfSIRf3MfsyIgT6oHfWe94I27FTSLMWZ3BGc\nrI5/fxZ79376Pj/TUcSUBSyPy5kpBYHMRIO8qlDtyTDGk2RXvJqWaJzOVJTqaIqBfABBsMmabuJb\nKygHofa1zCHjZYlChURov4G3I4ntUkm1SEhFCLRncaUMTE3G0ATkMkiWQGFCDGX3wX/4/rLqpniW\nhCkINLcM4JXLjNGS1LqStD/agGBZ6BU+ihUuRqa5MTSBzpgPyxaZUtfHdxpWcaE/zY/bljL8Vi2P\nnXwfP61ZRqHK5j8+/jhCc4mhQoDhNbVIaYnYvEHinRFCDUnKIxqTJvdyTng7E1d9kVNm7aSzo5rC\n8QXslEp1Y4Itp9zDL5NzqL5P5YuXPMcBYnQu9LN8zm76ttSQ/1iWHjvKGy/NRPfaSEkZY0IB3SUQ\naBfxtTsPQmhHjnLEi2CB6RbQhgTHSlD4RyGjcgCkEsjdLrrHl3i8bTbSiIqaEhjcUM3+FoNKV5bV\nG2bgGhFRcgLSIQPxfK3j+Wa0+3APvtN7JFhwb6CedEajjIQdMXDtc7HtW4764Vmh3dy2ZhGlgosb\nslPYfeGtzH78Wv68YQFjGuOMvlFDqcrE1y1x0nmb6NpeR9GW+frEjUxzFYlPyrBz07ijnsF/VhkF\np3J5+AXw8wVPcnfbcf/8gx8Auz93I98ZmM3evWOO/C5e8CLnxSPnBlgx/VXu23IcXbUmV4UGAbgl\nVcuUSd1s3tV8zOMfqzKamChR8gioAypXLn2du986Dk+kSNhToChLFHaHqHnTJlsvEDzgKPECFGKH\nNrXvOqwhKKjjcliWyMTaIYaTfsojGlU1STafci+zXDmuu/k0TF1G65MxxxaRB1WkkkR4n0myXiTc\nJmNMzWMaEqgW8oiK4QNtQCS839mAyiUba2GR0/396LbJb3sXYwuOgFE5KKAUIPmZPOpON3JSQp2V\n5NnXFrGqOJ7vL3+GZdN2cqqnzHn7Tmf11KdY2TcdO63Qa/ixgibRVoX0dB1LlLErynhaXSh5C6ls\nsfDSXaxvrMDo9NG2o4nqT/WgrwmyrT5Iel+YkiBiyAo3FCaRHfGy7j/+wumXXInvoMFDj85nZJob\nWxTIjzHRoxbBnRKrExP54855eKpzGKMuhjM+pJyINixgqYAIpZh1RIk11wBFl8D06j4SZS/muhCW\nItDWV0/WLfPwx//MXXuXEmkTGJ4Httvi2d7pFN+IObZJk7LoSKgeHXu3B5YmOaWqlR26yuhMid0d\ndZR9IpYiMGbCMGvPuo/ftS/gnofmYk4r4nWXGQy4yY2zeejVZUQ3CtQsGWD1hlkoWRE9bGK4RNy9\nTo+hmnEGirddxnXIkkQ0oex3BHbeC4fHlqg74mVih4bZ6yHdESTTETzmWD8WCnUmo6aL32+fz+uv\nzKVdDFJYF+XW9Yt5ZtN89lx1IyvXOc+ZXBDYt7Oem4YX8sInf8MPF2/h/OhWLn/4CoyAya1T7+V/\nhhbzvXlP8kTnHOrn9DNc8KFk/zG49h80MTzO82IpArrHmUjLfhFbESlXaBTDskMhr5LJVSsUajSy\njTZTJ/ZSMFWSuoeM7sawRGbHelkc7qDCk6MrFyHmztNXDNHZUU31y2mKlW5sVcI7aJCvcNY63S+j\npB3rB3+3jhHzIhVN9ICCaNpIOgiSjJTIQrmMrb9DG7HSGZRIBdl61aE6uyyiwSwLAgfIWm7WbJn6\nD38zgDz0jg6AMOAkkFeum0/mQBC58NHZW3rA8RBXUs7cmG8u85cXFhFeNkCxy8emwQY6imFW9s6g\n73WnwrTjKyv5w855bP/YXXz+gYuoaRnhgWQL3aUo11a/xOObFh37hLbTFgWOQqpoCmSbDYJ7QdnX\nh1Efo+MCH+6URPysBkJ78qQnVFAxOc73TvkbrYlmFlR1owsSRVOho7eSJeM7aPSNIIs2qwcmUj7g\nw5WVKFTK+LoLuPb2I8t+RNNG3XUQoz6G95IBBo0Qwb0lAt0Wwb0CxUvT6B1+8nUW4540UMsCVsYp\nuAgTGrEHhaT2AwAAIABJREFUhtE8VbhOSnHP/NtpaBqiNT4OQTOxcwoINq5Rx08WwXnmLBUsVUAb\ntdDiZXAp5KtUBECLGyQmK/h6TXS/xJnHb2Z/toIJkWE6kxGQIOQpIosWw0k/4UgORbbIGyrldj/V\nb+cx/DKiCWrW8WMuVInoPgEtblGokBBNAVeiTKHOh5IokJrkRxsxydWqeHtyYBiIXg9ifR12wlE/\nzs2vx3QLYAl4q3OcHN2FhchrI+MJ+QropkS5rIAp4O5XyNUojM7w4TtoMrjcIrpZRNRthudI2KJI\nYFqSB1texiMmcLlLvJadwD5Dxi0aTI4O0l8O0mP6WO5J8bsXT6Tq2V6wbdIzIpixIFq8THqsyujc\nCNFtOSrPHmZoWwWeIQslb5GpkwnuFZGm5Nhy3Rwq3hxCHS2BoiCUD1XZRRExmWH3ohpu7JrD213N\nGKaIYUgogypyAfyb+49UU0k53qG9F1YzMt+PrimwIsGXFr7C3rumcNOP/8DrU8aQGArylFLDqqkP\n4xZGeTYxnX1b6pH3eMh4JCY29ZPVXbjbvAzYXtxDIuHn9pKbVkFqsklyOpT3+inWmQiGxPmffo0H\nB+czlAgw+Y8jdFxayYHN9ejHZ+DtEPFryqhy0FEM93gRgKETqjE0kco1w6zev4jr9ywgsGyQcqcP\nT1OGMyLbqVMTTAwfm8L/vxqMPn7wSd5obyG9LUrBUnDFZX5y/CPsK1bxzJYZhDcoqF0KiUSQN1Lj\neOO4W7nklcvxR0rse3QioulMJlde9gJXjnuT1W/NOer4qUn2P1B2BRvu/P7veeLNxdyzeSk3f/0G\nVj27CKEkYXgtdEFkaDRA+0l30m3CJNXhLVbP3cUNi9eQmZYg3JJi10ANVtTgY2dsYMGi3eyr8TMS\nVnD3vrMJ/2fB6K1t7xhH/8e8rfy2cw5Wh/dIIPhRsOeqG48EkIf7UQ9Tgd8LZ35sPU9Of4qVmxfQ\nfulNzA+1sceq4ZWTHmF/DXQqfqzh9248VzNOv5RgOeIe2E5gkm3UiJ8xBqnMoYXT+X3/RTr5egt3\nsMQ1418jouRIGh4MWaJaS7Mo2smCUCcBV4mIK8+GwQakHRpVG0qUIi6UTJmRmRp1zw+Rb/CiFGzi\nszRi28rIRRBsgcEFXrS4iStlog0UMDwyrkTZUfJ9F8RgAKkziq67GUoGyfoFxgfjlGyFvgcPiQn4\nXBQjMuHdBeLn6FQEshxc3UB8YyWr3pzLTWsWUKy2GDu7j1v75tBQkaCmIsWzDxxHR3cNiaEAM0/c\nS3xXjEK3D0sFfdBDdPowL099kh8NzWPHwTp6t9TyidPX0J6JYXktRMniM9WbebTUQmI6vD48nvpg\nEumGGNvqQ0i1BbYsvpsfvH0K7RfdwteaNnPe5FeZX72fF4ancNKKNiZe0otybgn7LAPrET/+riK5\nOhdKzlGEe6/tg1SClov2Mrw/yg53GNdOD1pcwF6cwoy76VxXz762BuSsiHiowppdWEBIKbhH3ntD\nYvig2OlD61QoFVyMHT/IzAX7WRFwLIzm/+pa8kuyqF0u1l94A9PvuJaq6UOkLBflV2JIZXAPixge\n2NdXgy2DXF3gxXIN9ydaeOmV2dizMwgHXUcqFh8kGH03/l2BKDjB5pPLnjqK7ns4EP173LfFOeeT\ny54C4NIDJ/LY00u5/7hV70sVPiZNNwuhPQKj0y32vDye8Jw4jaEEimiR/XM9uVoBX5+Nt98+cv/A\nMWR/dyCarZEoB0GoLBH152kOxJlW28feTIxUwktFdRc9ps2bq2YhWI61BRkXnrhNMSwwekLJsWSy\nJLz1WRqqEzTEEoxrHESKlbHqygxrHgRDQs3adEzQqAh002NIPL9tjkNXGnU21r6DBvEaFzWL+pFe\n8/HF81fxWqIZS5f48viX+GP3Kfz0uZP52eKHOfm5zxN7xUVFW4noJpv0IguyKlJOwjs3TvmtKJGd\nRaSyRXymRs+WWlactoH9bfVYLshuDRPeW+Lpa27hL9uWIOgiWr/A+Pm9XDxhA1+66VJ8Bw26vmxy\n+mWb6F1VT3KSDRVl7KKEOiuF3aNhemxcWzWKtSZTJ/cwLLuR4gqiCYbPJrjPoem6kjYtKzoY7Iky\n+nAdxT0B5DNHUKJFvjzvZc6q2MpPu1ZQN3mQdiFKxQaQMgoWEq6Ew05Je1XyvX6yZRelCoubl9zN\n1Tsv5f61y0g9VkO+zkkKefsEClsD5GYk2PlaM4mTSmSGfWRGPVS9IWGoMrHFAwgzc/SWI7y49C6+\nNaeNr0/cyMnTXudheQrNMw/y8/P+yoPBqaSDCp4B8cjYkQvHpun+PaSSQGFy8ZhU2A8CJSPia0kR\ni2aZNL2HoL/Am2fez3Gz3uSxjYtZuW4++ZYyd1+wkic3LcTUbE5btoVf3HMhv2+fxx2vL0EqCdDn\n5uGNS+gNaDz62vFYPpN0V9ARunkPeAcsBNuxvnGeIec+KgXbEfHzOZ6MCAKZRsiPtcjXW9ROGGY4\n52NpZQcgsD8Zpcaf4bzKzfSXw8iiRbM3TtrUWDvQiL3fhyC6kEs2gV0pUGS0YR0taZKpV5BK4Era\niKaAe7hAYpofWxLw9hURTcjVuZFtBSEURPL7kVwuxMoYoseDUeHHVCW0QYFCSCCjyNQHUyQMH9u2\nN33ke/JRcNnHX+btZANKWuSbn3mMu6a9zh92zqO8zw84FdNZLd18peVVXrLHIQ2q/GnrPOS8wG+7\n5uJKiqzR6/nG+FX8pX0pjz11Av6lQ5S7ve95vlLEEfpRMw6DIHjAItAhYMsCg6dWkZguoQ0JmC4R\nNW1zcEUYPWJSsBUGxSDTQn3sTlVj2BIX1GxG90g0eeNcG3uD13MtbB6op+pZgVJUIbQ7hx5yIYqK\nI3xmgWxKpMf7KO/0U1hQYHiaRmasyshCi9jDGuFdOpgyA8sEwg++I6BkDzoCoa68RVofw309i3g9\n3ozq1fF5ShR0BaEs4e8SDs0xAp5hG93v0LpT40RMVaYcUhF1J3i0FYH4QpNiWKbp1E4MW2KMJ0ln\nNkoi7aOpOs7i2AEGikE8wZLjHdsZQd8dILTPQilYJKYo5CtFKtalUDMW4bUDxD8nIh50U/VmHNGW\nKFV6MLwiqCqB19pp/0qEmjfLpKZG0DJgV4QR+uOImgZTmxFtCd0r4e2DeI2Ez69jItFdjGLaIqYl\nUhr2OPZHlmOvpMwdJeH3YAtgSSL5alh4yg4KjSY2AoY7RQGB11KTeGuwiZvHtdKo9PBypoWefJjj\nAu3EpCSv/HouUk7HjAVRiyKe/gK9J3qpf7QH/6CN1DdCz2lhhO0evMMmhiZRWFIg71ZQdmmOD/Qn\nRDKVITItPoxYEE93BtvjZuS4WtxdMiRVxILEuGn9qG6DVEnDPSzgycroAReojkuEqUnIBQHPIIzM\ntSjoCq0D4yg0Gzy4azFlRYAejVGPxE0vH0+rt57OeISap2XO/eqrNFQkWLNtItaIi3LYItAuM+b2\nHRCLIKhuClGFCbclibx8EG8uhGfYIjPPRJN10msqSU3x4RqF9CSD8T9NYnu86A0xRj6XZzToJjFD\nwd8tYHglXGmLTLOP0akOA0ho81EK2/jqsuQFN2+lWriw/uxjzgP/q8Goy/ghvqDO9qFa5LwEIjy7\nazb+2iwpy402Nc20xQfoba/Cv0/ktg1LcMUlelpr39kIN8BfF7/Ij3qXE996tMLse/WOjs41eOHh\n40gvK+AZn+aZO5fT9sMbufXF+RRrLO496RZeTE2mU5a5NtzNVd1LiVNGxObKnWez9d7pbKWC0Nsq\n4TkjrNs6gf1PN2Pu8R4ViMIHt3ZxT09ydd127hyeRKHvvSfQ94Meso70lbqa+3ij0IhSU+DL9Y5l\nxeHK6N8HqofRvq+OlZudKuy1czaw8IWrqY6muCh8gDP8fXy5ftsxA1l/r0OhM11OP6LuF5yXT8A7\n4AigSLpDqR2ZYyFkFII1GerDSRKmDxuBoXKAvlyQ0yt2oooGhi0zpAeIKjkGykHU5zxIRQs1VSY/\nxsPoVIFQh4137wg9Z8UQbAjvzjs+UhEFqYzjT5UwSDdplEIypYhK4rQGvEoMa1wtiuohfcpE1JJI\nepzmGAuLAnrURHZZqJLJyKMh8s1hbEUkVyNheBWkYZXRwSCeARv7zFF+f97d/PKkdZTCGbq+3ET/\nfBf6UxWM7o+QbTRxx0VMDUY1GWWnG8vtZCmNgInoMQgHDjJb62ZKXT/7HpjA+uxYau4X+fyVq1jd\nPoVHbl7CkE/jj0v/yj6jmmnBfjqmaaSSHi6dtoFr77wYT4/EvYF6brzhBFbmF/HMgZlowRL7X2rm\nQNDHzjXNjGypIDFNwpWWMFWBYlSgGLOdxdjlVDQMj0OXEk342Wn389yaBcjdrkMUX1B3u5HKhyhV\nNkcFMkWfiDIhg9T13v2NUhnKIZvKk/swNgVIDAf52sJnOe1vn+OmNxYiF2HHp27lN71zuGnHYsdu\no83PnOV7mTrvAA0z+9iRqOXmT93M82vnIxUFjKKCGTIZemkMxWoTSwD/lNSRPtWPEoz+u3DYpuXD\nKOEefv8rJz98VLX2WDhWMGqLTpIh0wTlagMdkYnRYUqWTH9XJZE9ju+dqQpH3cP3Qr5aJHDcEFX+\nLL0jIcqCgl8tcWHjRvKayn/XbOfqfR8jORgkM8HAWJAn/KbsbLgKYOkqWq9MeK9F9Phh7h3/EC9k\nxhNSC6xsfBJLM9lUqsGzU0GwQZ6TRXMbuESdTaunYAsCvgGTYkhidKoIlsCo7iZ8/DDPrp/DxIl9\nXD6plbO9SS6vaGdL2M0f1p3qVKk8Ir5eh66WaFIx3M64zeU0/F1ORWB0ghs157xnezTEHStu4Ykt\nC/AuGuHNr9yLJio89d/TSY9TmHbmXto2NdP1QLPjZTpTZP/pt/OLK1dwyW+fY2pTL35/iVA0iyJb\nuGvz/Hbh/Vy3fB1bNA+bWsdjuW3EjIw2bFOothFMp9dQycNQbwRPv0hipkV02SAeVefLTa+xsn0Z\nT2xaSG3VKDtfHn8o2HFEkGpmD2Bu8R1RYSzWOHY+3i6JU+ZtZlJokFcHxuPrFMlXC2hDIldc9Txv\nanUcKEUpjDWZXD3I1DF9zG88wK79DeQbdTI5DXtDkF7Fy01d8xhb1c7WsoYiGDzeO5tXZj2MJha5\npXU5wXYJOX/0WPwgwSjwLwWiAB+7aC1tG8aj+2x619aT3B3mT/okHn/mHTuPH5z9OCnLwxtt0xAN\nga5dTl+jXBDQ/TY/uvQh3mibxqav/IGVj53oVOgSEnL+2H+Dr9/CkgUMzbH5kXSHnux40jpVbgQB\nSxEoTipRNWaUgqWwrKGdsYFRqtQMA+UgnaNRSqbM3GgPJiIT3AN0lWNoos763kbCb0t4BnXc8RKm\nR6FQpaKmHPp6YqpCvg6CHTb5SgnRlpDLNgiO765SsDBdIvkqlVyDC8VQyLdEKFd5SU8NU4jJSGXH\n41oqC9gRg5ZIHBORnTsa/6X78kFhqY7g3LbtTUf6O1/pn8gtry5AOmRzt+MrK/n6xI08mGjmsUeX\nIyQc6xXLBTdffiMvlcZjHdRQ4jIvbJ6L3eesQccKRMG590rWSaLLeRg9pUi6ETKNznpYsRFGp1tU\ntFkMLRCQGvKo/jIerUyi4CHqKWAiMD3UzwXBNoZtPznTRZWaoGQrrIs3IvRpRF/tRswWKY0JMjLD\ng6+vjNy6k33fbSa23USLGwQ3ibhGZGxRJLJVINMgMTJDojSjQN3TEt1XNSDHxtD3qXoCViVyMIRR\nGUS0REanAm6LGQ0H6U2EsG0BDBFPv+MP7ErZlIIOE9AWBdxJm1LUSZBkWwyKIYl0k4DtMxEqy7hd\nBjlDxS0b9OcCFNuDBGozeGSdsi2RLGlMCQ9yYLACw2/h73ICeFfaxjNsU6xwYXpllJLAUJOf2DYT\nJVlEShcoVXvJVUtIuoArYxHZI5GY4iG0r8DwwjC+rjyl8VUkllThytr0L3ER6LYoRUQKURvRaxFx\n5Smh0DMaBgH0UTcgIOgCckmgHLZontBPVpIpegRMn8V3pz5Ha6qZyxtaaU01Y4sCZUtmeaydhVoK\ntyCxS/cSUItMdPfTWhzLzr81I5Ydyn2pyo0aLzBwkoI77yfboNH3VZVsb4DGRxMYfhd9S2XUThdy\nTsAzZJOabFJZnSIpqGCI2JKIqGokJ3nJNApkJpqYY0uEmpMUDYXRjBcrp+DtFfDtTSJnywgIiEWn\nojq0wIW/18RclkVSTfSigj9UYPdJd3Fl7WauH5mNSzMouwXHzke2iLwOrzWMYdTSKCFBSkXOCnj6\nQYiEUfb2kVhUhWgI6EE3nV8I4O2WSTfKXLrsDR5+ZQnjrt9J8hoXDLhpeL7EgYtDCIbIyCxHyyLY\nLlCcUiJdo1KMCaSmmxQnlJk3cz91jXH2uwJ4umSGPCp1kRQ5Q+UTDcdugRBs2/4n+nf/73Bp6+dZ\nGDzAY32zCKpFulMhSrqMLFmc1rCb66o387tEE3fddgaVZ/Xw4uSn+PHwVH5SsQPdNln4s6+g+wS2\nfXPlkf//M5RDAjWn9jDGm2TLnY4HamYcfGHFKiJSjquCA7S88lnaT7zjHz57X8aplv3nSxcQ2imj\n+0A9RFEqBwXkAojldy5n7r3Ftd4X70er/TA4Z0Ur11VvPtKT+n7HVKelKG8PUq7VOXDmrR/4/BVb\nLHSPiCU7GXHPoE6mQSVfJZAbZ6D1yI70uCFQqjCINSSZHB3gExXrWOEpsrFUpseI8KPt5zC7upez\nolsoWgqqYNKabeZv6+dQ9YaI72AZ3S/j6cki6CYjcyJkGgV8i4ap9mXY1j6G0CYVwbTRfQLZJgNf\nh4x3wNk06B4B0w2Vm4vkqlVSLSKGx6GUCpajgijqUFqWoSqYYXxwmO5rm5y+0dE8Bz5ZiTAtTbmk\nMOGnDmUmNz5Cz+kC/naJ5Z9Zz1mhNp4YncvKulYATvzs59D9EoFtI+z/dAVmUxErqeIaligHLeYv\n2ItfLrF681TOnreZp9fMhaDOvJZOkt8Zw8gMD1WvDnPJ317lssA7lkk/j0/inl0LuGjiZp67cSmJ\nRWUmNAzyp5YHmaB4uXD/KWx9czz+A5A6ocAfFjzA5nwjd646ActlE9wjUahwvLPejXIAJpy6n0bf\nCE/tnI5/vYbpcqqlAPnFOfYuv+vI+2f90qFcpKYY4DIJbj62dLstwYmfXseuZDV722s4cPZfaH7g\nS/g7j64+lEJH0+wt5R1v4PS8IoENbtItJoH2oxM/qckG06d0s21nA8FdMsXYh5/Wahb30b+29kN/\n7n8DFW1H95dasuM/eRiGW2B4LgT3OlUbz4CFXHJsVtzJ9+9NNRXH2iM50UZtzOLTSiRSXrAFbAuq\nnnZx569/y3UDpzFOi3PnzoUYZRlxSKVyvSNHb4sQ2eNEu4WoyOVff5aUqfGF8EZOWv8FivsDmD4T\n7aCMVHQqPLlage9d+ginezq4+OvfohAVMV0CsS0F2i9VUOMSl57zGne2HofWqxA5bgDxpphj05Bw\nBonhkej8uEhgj4w27PydiakCRsBCLDj+o9qIhVSyGVgk4usSyCzNc8OC+7n65cuIbJD52jcfPvLM\nLdh8EReN3cTngtsISx4+3XkCb7U3saC5k0pXhj2pKv6j8VlO0CwezQbYVazl9s1LIKPQ/GCZ/Re6\nsDWT3594P3/uPpH29mp8+xVKERutX8BSIHxqPz2dMbRehUCHxeg5eR5eeAvnPvdVzp6/mUb3CCd5\ndzHL5eKAnuWTP3B6IUdWFFG3e/D22Ziqo5Vg+CyUqgI3z7uXTYVG7ti3iML+AJ6WFJYlIrwVJNti\nUPWGSOt1Nx25579LNPGF0E7+c3Ap19ds4M50JT/fuIKfzHuSNenxrKxr5fRdZ9G7uoFipYVYVWRy\n3QA7NjaCCBXr3xk/mYYP17y949qVR/3/+tFGtmXG0Pq39xdAfDf0gI3yHsJs/25Uv11CKhoUqt2O\n8I4q4BnUKQdlclVO4G+6neqbJdtEtgmE9hUYXOihHIBpJ+2laCrs2DuG6voEPxn/JNVyhqItYdki\nvzl4Ohu3NeHtkolt1TE8Iq5RA0sVURNFDp7kZ8xpXWTKLvr6w0hxFdNvIuZFhOoivrUevIMWqSYR\nNWVTqHACEjnn9CiXwxaWZqOOOAq9CJCeXuZri1ZTIWf4n7s+8YGvRb6lzIEzbj3qdx9WTVdaMIq5\n7sOJV/0rECycPUselJyNmrYpVIi0XLSXjTuaEA8xWCyPhVASCe0W+OSXV/FM33Reneb0gr9aENlf\nriQk5clYboqWQt5y0Zocx74HJlK5IYsUz2C7XQwvDBNuL6L7ZLrOhTNnb6O1fyyjfUGEsoB7yFnL\nTM0Zv05SA4oNZbQDKt4+G/9BHSVdZmiOD/eoRTEqUg44exfdD3pTAUac9XfMagvTJVD2iwimszet\n2JwnPc7N6GTBSUZqNlJBwIgaaJ0KhtfmtFM38d2ql9inB/nmtovJ9AYYO3GAJv8IDVqCkiVjIvLY\nqsW4RwQiOw2nVzRZplDlxjWqk2x2kW6BCYs72dFeB4aInJQITB0huT+C5TWpXSVSjDgezoZLYGS+\niadLRg/aCAbofoelI5gQ2i0wslinZewg3xq7it92nUZ7dyWyy8SMu/B1SRQqbYzKMr9Y8hg3dy/j\ncw1vcmfvEto7qpl8XYJd34gyd1oH214fTzlm4AoX+f6MF7giMAQ4e6qeYhhN0tmbrqT/kUZcKQtt\n2MCWBPKVjmJ2chJUzxng9emP89W++cRLPnqzIV6f/jgpq8DfsvX8+I2Ps3DKfn5Q9yxf2PlpZNHC\nq5TZv6ke6gqYeZmq2iTSHVHiM0T0iMWfTr+LV9OTWXX3YmpXJxB6+7Fa6hHbexA0jczCBrLVErkT\nc9gHvJx7WiuPvrWAhucsPGv2kj5lEoIJB0+BH570N/777RU0PCwyPEOhMMZkTMsQB4dCWIZIy20m\nqWaNQpVjoTl0go6omkRXu8nVCZx8/nqWB/ZwjneU7w/MZ46vi0/5R/h05wms2d1CpFU5ZInpPPta\nsEhLRZwDiQgxX46uPdVgQ/ODJfqXenDHbT7x9VXsztYw1dfHt6e8cMzn8t+n1vERUONOEZGz+NUS\nO/urGFsxyvxIFxsTDfikErPXX8Kcql7S4w1uHvcEIPGTih20Fk2u+bUTeApLHY75/ZmqY57HdAlk\nx1ooGRFtEF6c7FDi5uAEo/4DcP8NjgDSn4EAMHvtNeSWZtm77O4jx/lL1/GMPlOLMLvkUMv+btOc\nr7VQsgLej6bDcBQO02uBDx2YTlx2gM/Vvs453vyRz/6zY5S3O/06ap/yoc7nShhIJYlsrYSUsikH\nZbS4SWKqhGAIFCstXLU5bBuEYQ+pbVHeUiO09U3ju0tSVPhzVHoyyKKFIlh4xRKNSpyirTDfd4C/\nibMpVIgUo24iO0sYPpXekz00Pp4gOTGMWzbYH48ye3wX2701yLLF/5nxFOuzTayum0hxdQTD4zT0\nGz6B4VlucnXORlQPH+r7KQgIOvi7IZ1TEUI2FWqGdcf5Mdzg6/VS0WaQKASw6k32XVlBdauFf+cI\nS34QZ11uMk+vmcsfL1rPaZ5Wln71i2RrJGo7hzCmOMkLvb4MoyqhhiTFvihiWeDtPU0IkgWSjWFL\n2AEddJE9j07EM87CUgQOXFLJjT+9kAc2xo+67p5TfDy683i8po3SryKMtUmYbp4oO7LaCODrM0kk\nVb765BW4h0XsKotJN4yQmhEl3eQoIAOUwofEtwRQ09D+XDOXXtnKKm0SoBE4eYDcs46P1uFAdNYv\nr+HUK9bS9v2VNK2+kuAGN9mx778BLVTYPPPifB7+xPXc6D8B4EggWvZDobnM3PGdVLqzvHWPQ7e3\nJScQXfqZjbx5z1wCG5yst9b/j1547gEZa7KAp+ejTWmvf/Y3VEpeJq391xNB/xv4+0AUHGGVmjVQ\nDApUX9xN/s91fP/Xd/GDP13JtC/spO3e6fj63rs0KtiHegJtgULcQ6QxT8BXoLg+im/RMPHZbs54\n7VrsnEx0k0TVyOHg1vkO4X1HH1cbsVj50ApKlSa3uZcipmS0uEB4rUDvGTrKiEyowyJXK3Fn9xJC\n4/LkYyKpCTbeHoGRaW5i66BYIXDPquVEJo2QTkYZHxpG+2EfrbfNJvTNbp4c/zxn7T2TM72jrDyn\nlaVbz2d4YxXRWUMMJwKIaTfFGGCLxLYViG51kWkQEHo1rolfwe/PvI9vWJdyWSDOcVvPJ/VqNTVr\nCrwgL+eOpadTeXwffYkA/o1u3jaaEFUTqyzxS+FMPr+uAc8kR3woHMkymozQ/mmZWF2C8uoY31A+\nQSCcx92vUIw6gYotg7ffoqcrRu3YEYYTzhoWftLDZWu+SWXS5o/nHo7yXPxkeAo/rtj5zj3v0ChN\nLSDnNHSfE2x4D0okvSqfffVKYlVpfO4SBcBaG6bmtB765SD+fTJgseg7R/to3jjzdHxdAvxwA+VD\nTXU/Wnseyyft5fz2U9l3sBIpbKOOiggJD7uFKuxoGTsv8xFd4oB3hMwO46yL3/rQgWhhjIn2LmbS\nu4PcqWs/BRs+fG/qu2FqIpaiIJZth45rQykko2ZMqBIRDdBVm0BTkuPr9vNK33z6qj2IBjQ+kWKb\nNJ7I3CHOnbsZj1gmb7voMSQqpAxBsUSqrCFYDtU3Wysj6WCqCvHZAlVve8g1GIzkvaSybtBFlIyA\nGbKxY2UigTypGg3dJyIXcOjjgoXtNRFVE+IuRF1AKDksF8t1aP63BLLmP/cZfTc87U6D8L9i55Lf\nH+TYacx/PzwDNiMzbUoRUJMihlsAEfY+MYHff+luHhhawM7hKjJxL8qIhO4XWLnuRMKxDCdddhUv\n3HULJ2iQs5P0lKPM1w7QY0ToLMeIuXJsi8HIdC+FmA9vv41vwGB4hkbdY51UfdnD6hdnY9YX2X32\nn9lx5U0tAAAgAElEQVRccp6bRW7nuk9e8xmK3V6CExKUEj5cCxJYz4TpO07FlVA544q3eGjDfBAN\nomsV1IzNwDKbXy58jO+99AkQnUDOcIv4estk61QsyamMijp4DgrkGmzsgI6vMUexrBDaL9F/us4z\nG2fyjTNf4mTNJJ93MWlqD9myC03SUQQTSbJY7N3HQ5H5GDmFVJNMqF2n5zQv2oCNnBfxHzTwXByn\nOxkCU0AKlJEHPBTXxhCmFvBqZbJjgkeSOIVqGzkpkZ9QQsjITp+rISCVBOScQK4O/DtUSnUyL6Wn\n0L63BgQQPTpmSKeYcxKfap/Kz3d8jBXjdvCXruORRIv6hjgHV9Rw4FxnHpgzGmXPvAe5LtHMSZ4O\nwNkvDZUdOrhLNBxf9u0FMG3iMzyomUPWXw0C0VmD3DrpXu5Mj+OVh+Yj5yBXZ/PZ4PFElBzVrhRq\noMR5sc30GCFaZz3CdwZm88TumQBUhDPkPSpD+2K4J4joAQvbbfJIfD47RqodBeSDg1jjxqAHXNjz\nWlCTJWzBUZSP/UGg4wKbx19aBFUlPv+7v/HXkxby5h9vBmDptV/k59I5hGtTdJ8WxlYNpKyEaQt4\nfCVU2UDtKyM0acg5yNYLRNYp6F4V8RNDVPwpTPUlab6/4Xx++6QbUxF4euJCbp4/gGULCHnHpqgU\nhth2gwXn7uGNjmYSBQ+FgsrB4qEe3rjI0LdLuJ/W0BIWf9m2lNpoihr3+9vUffQV5N8Aj1QmaXr4\nxdjHaVt6K79tfphLwut4YfLTLPXtYfP8B7ip/jUQ4apbrwUgbuaOBKIAXleZ5ge/xPXXX3TM8/jO\nHEA0nEyAYL2zaSsHBTb9143v+dr8g5V8bPw7C//WcpGRF2uRSja+rS7SLTbZE3IkpzsbMV+XSMXc\nQUqRfy0zO/G2q/+lyuiT45/nOw9cftTv9lx141GvfxdsWcAVL+EdMJHKNoWISDkgUvOWRdUaAWSb\nYsqF5tJZOmcXrkkpbAECXSY1N7jwqSU+Ubmeb0xczZxAFx2lKoq2gm5LbM3XgyGgpmxKIShUOlS+\n6A6TfZeFKNfo9PRFEATY/cJ43Ot9eJ73c2PXCVwUXkdzJE56gkk5ZGOpYC5Ik51TQKwrIBgColdH\nsMDX6VgspJuAtMy8aDc70zVUbC7iStp4B3Vcccfo3nZZSOOyHDxPp++0Sr5d8wIfP30t3gZHBfFj\nJ17I0IUF7vvWbwEYvLjIrAf2OgtEWWB0yH/II07gN0sfwhcsUFU3yhu9TVCQOGXGTpS0zdrf3ITp\ngmKtztrf3MSzrzxy1Otr1z5CKWqSPS2LNiTw/KRnWF9o4pf7zmDLW+OJzhyi/1MlUGx+f/bd7Lh2\nJYG9IsNLKpB0m+iWd8aoaxRyYyykIuRrbOQ8/M8Nn0KRTVJTDJKvH23ofLga+uKdi3kgE6bjlNsp\nB5zxfyxYiqNc6O0TuOL33+Dte9+xDrj7m7+j5sRegm0q7Q9PYGVdK23fdxaPw6q/z2ycSabJIj3H\nKdEqOUg3H13d0302hiXyncse+fADGZxA9EPQav9/gC3C6BToXFvP0ByRX373cgI9Ju2/nsLmH6wk\nfVn6PT9X9grkqkWURkdeuX9XJan9YX53+W3k36hAr9QRB12MedHpVxydIJGrEileOXrM7xLbZlLT\nPAymM/YCXc79i74tU7XewhYhtt2kuz+CRyjhHTTx9jhiOOWAwMhcC235MLZkMzk6xL7P3MhN9S+z\nyN9OdEeRb45ZxcLvX03pR9Xs++Zk1hQtDnbEuO7iuxjoiaBt0bBUG9coxLYV0P0y7oRJaL+Fr1Mg\nODbFed4s0fXOprCvP0zNmgIvPngHq++7nf9L3ntHx1Wea9+/3WZPL9Koy6qWi9wbYIMxpncIEDoE\n03GAQ0ggyZvCG8I5ISEhBTAEAoQEkphgjimmgwGDK65YlmW5qHeNNL3s9v6xbQljTIDknKxvffda\nWmtmz27a5Xnuct3XteOmJbTuLaTyIYnYtBzSkEzBqyqh9Qqdr1Zy3ilrSCad8GGQTE7B8ukUrJZJ\nfRjG3WuSF44T6/UipfeTiigWmQJ7LnL0y/RG/GhFGsLl/SRLRaJTc5x3x1uMXbkIgKPuuJELAx9x\nc+eRPHTP7xAu76fp6ocxIw4SlSbG1ASufttxGlM+CAL4nRkGthVieE2uuPxNhv5SzvZbl+DuMek7\nOUfg6g6u+sFLvPXz37D2vkdovvxh1GGTmudu4JdbT8QywRNI0/jAJHKmjCibnHfSGoJze7GmxikL\nD+NoVQlt+3IBzKftk0Hjczf8kpefnfc5a3+2HS4QnfTA4pG/hrnPHBKg/iM7IMWTqhzVQDRUe6zz\n7BpEThqIhi2zkihRCOzVSFfmqJvWzpTCLkJKCjlj6xMG9hqIWY2avw9j/K2Q+b5dTHW306mFaMqU\nYloiHtFkMOnGchsoCcjm2yiFVLGI7jeI1kqIfo3Uh2HkBi+evYqtq26Cf4OTeMrWwU5V6hgquLtE\nLI/BmPJBnO4cptPEKMzZTr8JWOCI2VqxOxPF/5Dx8n/C1MGD546Gm5cc9JcuM0Y+f1nTXRYLv7bx\noGXZkIC8n5hKykKi0iRea5DNs/jWm5fSHAmTTqm4Q2ksCSads5O8ghiuPwfpmatyZtksUmaOM9wZ\nFMFg2fBs6pR+nIJGc6yAXNBETtmJCiVp4tnRBwJ0n11J3558imf1sOeEJznh44tYvP1Srly/iDdS\n9oPWePSf+a+z/ko05kHd4+TqsWtwntcLE+Mkqk1een4eckTG2eogckyO7gUmzqIkW5KVOMNpRLeO\noFuEPh5GSWiIhkVol0asyomUswg3pBGzAopT54iSVp6a/QSWCJJqcNdxyznpRZvpura4nzl5rZxc\n0ogsGuTJCarVfjKWgpAWkTMQrzFJh2V0t8XQTJ1ksULRj/YwMdTDhTWbET06BaE42ZoMDTcvIfyK\nSnlwmNgEDd1lw7S1oMmc+TsRowqI4CxJYvp1LBHSNVmyIRPnoEVnQxHr+qtAMRHTIrmkg2Awie62\nMLwGVUe1k4zYXCvvTl7OKxOX8bO6ZWRD9hibMDOU3BCldumNPLxpARWylwEjyf/pncoYZ4RZvlaG\nNRftfXlEq5xoPgVvt4HhBE+vjnNGhEjMwzjFw8fJcsreibH5B0vYddXDPFmxip8UreaxF0+mIjxE\nu5ZHey6fxZ1HsezjGciKQWDCID378jlxTBNqaZJc0MLZLyIPKKzvrCDPlSIbFNAnVoAI6sdtqP0p\npIEYHSdb9E8XkZu7UCqS3HnmC9w66x0e3HvciGzT1F8uxv/2TlBMcrrM3q8/wuL5byNqMBjz4FR0\nYnE31lCUWI2At9uw5agcNqFeb1seXQtkLghsYux/ZQit62bdzx+m6eqHeX/Kf+P/toIcTpMNCLYG\n684IfRcFocvJCSVNBHwp/G+7sVwGussi8KTPnrcnShT/TaXQHccpanye/Vsro2sHqnlg7FKKJJFv\ndpxAmXOYZxtnomsSFcURvrmmFHe3RQhInxBnyrpLyWYUNvzwfhbeczsA2RcK2fPjh6l/aDHOwc+G\n5qWXF+H7xPeZd9tOZ3K6PvL5gCXLoenqh5nwwRXsPObPnN18KseHd7K0bRZK3GbPS1SaENDwv2v3\nJUz+RgOrNk9g29Tn2Tg+x3U//49/6rrMOaERgHFP3cSuLwnb/eS6nw48/xXw30+aYFjI0TSKWyZW\n4cA1ZJIJiigpk8GpItXju/hZ7TJSpspP953J9+pf5/7XLsS/pZfe44s52jvAnS9fyqPnPEa90sKq\nTBlx00lQTJEnJ6kc20f3YIn9Qk0V6DlJQhB0nN4suaxC+dMyjqiMsHo1szabtKTy2T0c5q5zr2TX\nd5z2iyHAUL2A1eNB0AS0gA4FOuKAilScRhibhk1hfPtA1EVW9M1Fnj1EIM+GI6TDMuqwgLfTJDHN\nINftQYkJFGxJ8+1rFhOrcpCtA460r8nrc5dw056LEIGx/zfJFsbhOctJ2bsxWs7yk7/doOdogW3p\nMcS7fATeErDGSRS3mrybmIozX2DWT24iUW9yzuzNjH/yJpoWPczpCy8AYPdP3Ow69k/8VBcofdRB\n22kmkx5YTLrcwF2SQA8YGKaIa52Hyec180TXfH6dc+I8q5fQbQKmV6X9VA+BHfarH5udQRhw2AFj\nt0BqXgI9o7Bt9pNcte9MmnaPO+z9v/ehS/ipB9KVOjvOfnQkUP20iZqdTdP8JuGJA2ReKxz5barD\nSevWUn64+Dl+s+QCpt+7mC3fW8KEi3ayqW0M7jWj58r+/Hmy1ELc31OULLXwdAkocYFETmVXuvjT\nh///rQkmOAcFlBgkKkfHxp6jRObffAOHa2kfngAIFkZaAYeJ2iGTrsnxh+75pMoM5AEF97hhWONn\n1YO/59vdM1n/n3PgiVGo3dA4idCugyuk4qMF2NzCo+fiGjKJl0n4Ou11/RudvDt1ImpEw6cIdp9R\n1qJkdY5obRimWwxkPHTrCea9eRuYAmPROc5l4t+XAeDxZx7gmstu4bu/X8FPm84E0cLZb5Est0Yk\nbDSPSGBxO42N5Qga/Kb+RbKWxrird/LQ8BiCeUlglEhuxoaLGfuMxptLn+Qn/fX85cUFxKoEdJ9F\n/jaTV/88j6pNGc586BUeWnEalSt1NJ9F3al7Sf6wlNaGfG4/6xVW1E2m7e1K5LFxcq1ecj6B0A6L\nXIeLbFCgJ5dPYY+Fp0vmv1eegDJWhIX2OUx0uHmwbB1H3XErqSKRhfI5FK7d71TXJzCSbjSfQM+Q\nj4KiKC3d+Xj6BDKGxOMvn4g2x+C27tmMu3kH89U49xVvBmDKb27H02my9r5HWHvfI4x//CYCGz30\nzzVIDaho40R6m+0799zKoyjYCAEgjQfjjDTRagGhVyW8+Qs/mgfZEZtHE8kX/P47LDxvIw+WrTuk\nYnrApp3ZyJqmWtzNh9L2NtyyhEkPLOb+SA2PP3PqQb9NemAx51z4wZc6t9rj97Hv9WrcraOukpIw\ncAxl0Qt8KLEcpsOJu08nE5JIFSpIrgzTQp2cHdhEUMyyYeVkokd48LamMXbsQsrPI+h28N2XLmXc\nzDburHiNl4an06KEyZM6yPekGOoIkAlbSBmB4SkaRWOGiHUHSU1NI/SqVLwUYee3PZCVEL0aXk8W\n5RSd9JZ8UADJIlmj2ZTpmkh7Sxh5WEZwWqALyCkB3W3h2wdSzsIRN+hN+6jz9H3mddC81mcyC2cn\npVnc+TnMtV/BPl1ldX3Gsi9qclpg5X/POmiZlLZw99g9vdkQBJoFhmbp+KuGKPNFWV73OsuTXlpy\nYZ5YfTp7hsLo74TxticIvNlK983zmLNkHjm/xY4rHuSi/im8IE1HEkxaevOZNKOFxkw1nk5IlEkM\nTC8lF9YQsiJqcYroayXMe/JGfH9bi/JmJXOK21jSeTyve/s5K7iF5/pmM6GshzZPkF9vPAGxz4Hh\nMZGzAkXHdtpMsobE2aXNrPr5UfQe6eVvydmUFA3TFc9DypkYHhV5MIF/j4DhtnuIswGRrN9JtlTj\nZzNfBOC95ATyVnUwcGaYezadzhEzm3loeAxNTWX4p2Q4Pm8nASlNc7qIencXcVxI4Sx6xI27QyRR\nBuUzOhlMuhk+1cEdpa/xs47TiWtOlh39CDftvBSfP83Mjy4iOUFAemQMnmqbjDDjtZP0a5trEA3w\nV0eJdgQQcwJGURZyEr69Ivmbh9C8IeK1KvKggrddYHg6pLP2++8YkGjtq8AhWzTGiunOT/B0bBq7\nU4V42+x7PnPVDWh3qcj+DK6NbjgRMpbFOFcPIiaznO0M6R7eiCqEmpL0T/cQnWAhFaUwPRkCzizR\nliAAxwd2sO6eKmrfWcSe458kYWZ4PVWIs36Y04oaUEUNn5ShL+OltGiYrt4gRrOXcUe28/Luyeid\nbuQcZAoNlKhIgS/JaxNWUDP7akr/3AKAWV2OYJpYHhc1zxnIyQyCz8OUki46cyGGNDfJN4sIZWzU\nXPlLPex9tAJ5n0LFt5upufsGlLjIq5ffx8nv34LpyuLzpmn+3gQs2aTnSBFTMSmd38Xc8D6cosYf\ntx/F1Y1X4O/oZsWO9wCYcv9i1CELT7XBW/Pu58SWO1CjkJiYh6hZlHxo8e67R+N0iwxMg4LVMu5e\nm6G5aGMazS2TKpRpjwfxyLnPfVf/rZXRUk+U56IzCYgu7ix+nbneZrbMf4xrp39I1pAwXKNOi/q+\nj9z2ALsWPEVAdJENCbjO7eWZ7/2K+yM1PHLNYbJmn1GoTBcKjL181yF6LKkSAXP/nCNu9VH7ziJ2\nvVfNQytOo6fLdrREzSLYKODboqJ7BLRToqx5fxJHTtvNKY1n8mLsswWjv4xN8dkyJLu+8c9VMT8Z\nfH46ED3h1K/oOXzC1O44pkfFMZgm0JJFdwpYIuS8IqFGyOgyTsFAEXS+W/UqF3h7+NP370fQDYqW\nNbH5v2aiDolc/+J15EkqTkEjYzpQBANFMOjcUjJCNODqFThtcgMn1e8gk3Lg86bRPTaVft0GlaUN\ns9gXyyOecmLt2ENJQRQxJoNXxwzoWKKFpViIURlBE3EMicg7PBhvhsnbYeLr0O1eDb9FeSBKtFoa\n6WmwJAFdFXDscxKoGkaryDIw1YXml7BEG+b90PAYEhPy2KGFcUr6QdcpOSWDGM+gDtsSGkpM4LrQ\nOsaO76ZvpkimwMS/J0nt3xMkajVe+MF9FK+Bl1bNpvZP/Uz7xehEXJpnV7PcXSI9R6r4mwX8rSbB\n7SKON/zkbZbIc6XguCGaXq1ja2MlfTEvPa35pKtDxOp8OPpHqwiWLuLuFtGOilN/USNSoxfVk2PK\nGzfzXO1bZGYeLKB7oGoJIJwQwZL5RLB4eHPOjOBpF8m8VjiyjwOBgbdV5KcbziBeNVrt3PbqBNxr\nPMTGHwol9XQJeNuFkc8A8gx70N8QqfyH5/JZVvvsjf94pf8P2HDtwRUidchCyllUze4YWZa3/dDt\n0iGRnMeeDrztApee8j6BQApyIukxGggWm1vHYCkWxWtN/H/y0z/NPtby9w6WoYpMODQQPWCGIjAw\nWSLr3y/jEBZHAlEAX4fB37bNRvPLdC0Ef4uOoQjsudhhoxcsiKTd/GbwGBzeHN4mBdMh8nbaPpe+\n2S7u7T2RN5c+yaJAC4m0yr7T/4Alg2+PNELa1DNXYM+Hlbi6ZWond3K2J8WajEr3T8fymy0nEP6l\ni93fkDjpokV06wlie4Okih1Uv3QddxXs4KRTNyHqIKUFIhMFCjdn2Ps1By90TSM0aYDByQo9cyFy\nfyWZsAMtrLGscwZNu8pIV+dIR1xIaYFUiUC6QCQxBjL1aVAN+uaNXg9X76EJ1sU/eo7LFr1Jx+ZS\nzv7uSgC6WvPRnXZv8OqjHyaZceDe5iIbsshrsOHOmPCbko+QBIv7ijePwHQPHOP0ptMBm0MgExYI\nbbHHt8AeC6VfJrRJxnSbSFf0ET8vTuL8OH5fCjMrEWr46oig/s4gnmP6R76vfH7WYQNRgK0vT/zM\nQNRzTP/Ido8/cyqeY/oPqoS6jx7gv4q2HbSNqfC5tu/16kOWSVkDQTMQc/afYzhHtNpmSbZEoEcl\nqasogkGeaNB4cwCnO8fQRB8IAsZghEyRium02Ll9DGPkGFM8HSRNFQmLwaQbVBNTthNKij/HZZUb\n8ITSuLe5MPM1xGgCtU3FEcrg3uIinXYQT6nkijX0fA1M7AHWBDkqoUQOODYWWCClBBxREXe/gbc9\ngxLTGU672JMKH/L/Ap8ZiAKoDS4iuX9dNXXaGY2H/e3TFc4vYlddemiPmrvfRNQtnIMW3jab/dnf\n4CD3dpiepI83UgrnehLMdLVQc/Ye8s7cxfvf/hWWKGAMRyl8cLWNQqhIowgSfSkfg5qHkJxEdWpE\nf1lB2Xs6hgsyBRbHnPAxkk9DiYrIskH+x1l8f1tL5qwjGEh4aByyE6jPb5jNoz0LcEoarUMhfjn5\nOX4w5xWMoI7g0REqk/S+W8bwu8VEN4dZ/73Z9M8QUCMiU6vsIBVAzBoIhgmKjOGSyYZkch4R3Wk/\nn6GiGEEpRbuWh0/M0HJFBe4NbiTJZP3mOn7/+Fn4m2T6Uj7+u3sGpcoQadOBR8ySNFVoc9k5Dr9F\nNt+u5N8z6QWMXheLtn6DkCPNYMaDIpg4ZZ102kG+J0V+g0WsUiRdbCJOimEB6oCI3OVAzAkk0w4s\n2UROCbh2OnHvVXBGLFJjfFgCZHIKUkYgk2/rbGb73CBbiBMS5KoyaGU52oeDPBefhE/M0DhUTNGK\nffazU7sLeVhCaXRz8TfeZks2y+1t53CVv4+3hup5JTGZuOFE0AU6F3jJFAjkbxEI+lPMKLSD7b1f\nt3vsb1+6iHPKt1Lze1iRcuIV7fahMTcNMVbtQbMklvXOZHt3CbGMityp4psySCynEvKloDBLrljD\n0yGhhUz8aoZlCT9WUgZp/z3c14HQ2gWdPfRPU+me56X7lBI2fziOGe5WQkoKaUFk5Jk+efkmrGYv\n7h6B9ifL8DdL1Dw7TK3iRep0EukOIIkWgWYw3Ca638AMaUwM9HJ2YBPPPnU8q+c/xNtTltJ3fj0A\nyxJ+MjNTmIrdUtJvOAhOGSBaB/EymaxfwpSh7WsmfTMFCmb1orkFdLdNzOdoH0KwbGLT3uYwjZHD\nt1LCvzkY1UyJGrWPxlyKrCVRLMW4dM9ZTHa1E026GH9Ey8i6omZx38VPsSVrQ/UablnCh1OfZ6LD\nzd50Acd+NpHnJ5PwIyZMjbFpzTiumbuK5MLkyPKd1y3BOT7KlF8vJlOXxb3VhWfGIFWzOvB8avKT\nMhZy0kJ5PYBvn+08/6D6ZX4c/vifvSw8sfzEkc9ftZr56e1+etFfRj43XfPwCNHOP2OmRyUXcGA6\nJKJVKp5uO/ORDYoYKgwnXQRFnRo5RcZSWHDnLUxyuNjxgyK0iRWkQyKGw0IoyqAKCtPVPoYNNx9n\nxmBgC7mnSu0AJV1ocbS/me50ANmhU+KPYQkgvreZdUtmYsYU+od86Pu8xL82k859YcTiDGK/AyFp\nQ5vUAQnHkEjJ+D70CSkyxQY5P6QKRaLVCtmggOE0aeosQh2y2YDdAwbxcgn9/AhlR3cwHPEg9qnI\nKQtvYwQ5YxEbCw/tWMD7Dz/KQ2ecSXvs4L4kKyftvy62JqvugjM2XUfH+2PQAiZGSCeb7yRe7UHt\nlTn3J3dgCXD8XPtZKnvVzlZbTmWEQCFVbpINm9x/x+/pOy2La9AiXgWhpizZn5dQ9l2NihUR1F4Z\nrclP9fMmrvYYwc0DiPqoY6H0KuQCFpX5ETasmkAuYKLv89r9RYDZ6yRzTPwz77/1dh5jT9z7uc9I\nqtTCVCAWd6F/QrFo6i8XI1hQv8R2Ht869gH2XPwI2f0a2I4YxKtMPC32tVNOtjOA8SqTeI39TMTn\npEf255B1rp6xmnzn6Pv8Zex/g/jkf8OCe0YDmWShrSuZLhAocY/2azgShxIYORLWSCIuVWTx9MdH\nMNzpRwlmbOhXQsaKOHD2jCYeDNWi/qHFlH4wOsiaEniO7v/07kdM0iy8HRZqzD4H98Ch5yIMOuib\nbhMWZfIk9JOGKantRx+bpub5LMNbwyiCwdIjHkPKQvsJDu696kreXPok2tExXmuYRGMuRaueQ1Hs\nxFC8Cjy9NpMw2PI3clIgU2zgkXPc1j2bmx+9ETmpM6vSTqfLbh3NJ/N0bBpjJvXg7smx76zHAHhn\n+SwEC8rfSdvPd6VK/laBjo2l6C+HEXPgaRexRIGO000Q4K8TngaHiTuUxleYIBc20AImsQk6RkUG\nocdJ+H0HyvBoQsERtzhv90msve+RkeDxSv8Af9kzGzkh8If3j7PPNSqj+QVSRSK3d5xGutNLokZH\n89vXV42aqP32vds5ZCMTIpMFjtl2HuXX7AbglfGvANiERz0msxZtw3KYCIZFYDdYgkDRKhHjz4XI\nqwJ4l/mIN+TjDGRJFX/198e9TyG+roC7Fj1zyG+fBastWNj1mftZP+PvB31PflBA3Z9H58ENM59l\nwmOjQa41K8ZnIcccR0VIT8wc9nzTYQe5PBe6V0H3OhiY6kYdNjEcAnLWQkoJvNY8keZcMRFT4jsL\nXqX6tiGGJ4C+cCbm/BkMTJZRhkbdrwWuvfikNO26nwJPEkePghY00LwW+cEEqf3irckyE8sCvb2D\n2qe6qP1BHCVhIQC5zP7IOifaz1mbjLdFxlRsYhwlJmB5DNRBCVEHJWb3mifLnOQCCtGEk/bElycS\n+njFhC+9zWdZw81L2Lpi4mF/vzI8WtXWvBapKg1h9uf3of3xL6ccskwwwdNjoHlsJztZpZMYY2Ko\nNlxxSefxdOgJauQEd1e+QN/ieQREF2889xTWvGl03TGPwSM1Tq2zA+drqz6gOVGIhImqaHRdkqNr\nvowasTBUi9Xt1UiSiZIUOLWykXSBfZ88q5owPgrSF/Wy661aXJ0ya5pq2RsNM69sH99v/Bo/W3Eu\n5ESsjIQWV3EdNUDwuB4q5nbQeqaEc1BAHYJy9zCDQ17QBExVIlXuxnTISBmd7mNs2SFH3MLTo6O/\nm8+6ZC15UpICOY58xBBlZ7eQizhxt0vEa3VSpRZtjcW0flBBxlIocsTIWRIneXaj5+sIpk2GZXhN\nygNR3otNQO23n+ePB0tIaA7OfOcWWnYX4djiIZJy4YgZZPMtLNki3e/GksBSANGWetJiKmqPginZ\n8GnnoIW/JYOomTjiFpmEA1O1yIYNECwst05+5RCKohNY5yS02kFsT5BbQq3syRSS0WWMsjDVr1/D\n78vXcO7Ja1l+7X38n3AT01WVrZ02w+jalmr6cn4ShoqUEXFGbCKldIFARpPZG88n2TWKrfROHeS/\nf3oShiryZnQymmVw1/azaP51IT/bfRqPNh7Dln1jcL3vI5O2UWfx7fn07yggsrUAoUdFHlBw9TCu\nUhoAACAASURBVFl4y2O45Rzne2Oo4TRWeRFmdTlWeQlWVRk7fzoBd59J8boUJS+2IicF6h29hOQk\ndfn9pJ4NcXr9AurUHjSvRfrIBLJoImoWpmqP91q+juLLkcw4cEVMgg0yZdUDoIm0pUL06AEKNmcp\nlDy8l3ZTuGwHc79zIz/+4+WI+1wIpq1/Okt1oL8cxtMhUPJGD/59KQamiZS+JpHXAP0bi5ByFolS\nCVefRe/xJaTDku33SWCYnx9u/lthuh8vrWeLs57UxCy1Y/roHAowubibn+w8k0J/ggXhXTx1ch6O\nN2xA2f/9ld0Lec5N73FXwQ7GPnMTT5z/MKs6a7hD+vwS8AFLLEjh+sCPmWfxl6XH84MrnuXK+QP8\nsG8KM+++CQVwndtD7qMilLiFtSKfQcCxP6rV/AJy0oaogk2qka7KMXfCHvxCFklQbQ1H/bMhw//I\nDkBr12c1rnj61q+0j0/a+Mdv4s1v3MePlt50yPJ/1uJVNimDqNvVl2i1ChY4IyaiDupSHzeHL6DO\n28fKzjoeuecB7uqfzrjrNpB4rYbEehdawGTinf0k1maokL2sj1czmPVQ7Iyj9ktoPpNcyMTwGTy4\n9zgSGZW623r5w/plrP7PUu48+lICO8HfJJMulgjuBM0l2GLy3U5cvQJSTiI6SSZTrOPfKZN8pRih\n1MIVFSjamGNorAMEG0oqZURMIPzREIZXRfM7CO7RMH/vZ9+FHvI/cDA8ATb858NM/dViwh/n0JsU\nhkoVFl59HStX2s4qdsGCZQk/d7x2CQA1f+nDfDjN3t4wuc0hxBw4hkS8W0U6FwAiNF/+MAsXXYur\nZZjOK0toO7eQiuV2MDrjjw2c1HgWkaXlBEQb/nq1eD2hmghdxyu4OmXab9KRZQPHykIy+SDUx9F7\n3Uz4z+1sv2cq3XOlEXZcsKG5lgROSUcP6eAw8W1Wics2JNYKaWgdHhzKaL/o7Yuf5Ur/AGc3n0rb\nshruvfXxwz4j7i6BnB/kVifKJ+LEbd9ZwvR7F+PY37YYNRWm37uYxu8tGTnOJ5l2r6n5kEc4h/Ez\n2ti1sQLNA96PXEgnDRBPuJgeGmT9UBWR9L++52nntQ9/4X7SCQv2svO9w+v0fZl9/TPWudB2Np39\ntq7e6g8msfvBUaTF/JtvGF13gUDZexZS1KLrWAFvq4DY6yJWY6KlFSTVZuo0HRauHovuowVKPrQo\nXj8aSB5g6b367he4572zKfSKOBImmktgYLqAGhHwtZkkS0US43OUvyKRLBTx9B0ajJZ+YJEohfzt\nGTSfzOAePwm/h9BmmWyegZwU+GbeGm7YdwGpEgvTYdFxvIt5t99I1Q1tJJ4u59bHvwlAEcBS0Hwm\nWb/NpNt5nAslsV9aIpAjZ0q8sGEmY1fbyY2/Vb/Ddb88mthDU3n3D/Y1+3vrTNYvtRnWq1+8ntJd\nBs6IbrPlunUSYxQ0r4Wo2ecdrXUSmWzhiImUvwI33vscVzVfbF/LdQHENDA9h7NVxtcGOb+TRAWY\n5w0yPTRIc30B6rNBMvkiTa/WsWzRuhH226PuuBEX4MIkUp8G3ORvtcheOERubR4frZiMP2azYxtO\nC7AYqhe478I/jgS0RwvnsesbD7Ms4ef7yy5j9b2/BDzM+cFN+NwC0Tp4a+MkUCyGJgrkCnSErIi7\nU8LbYRIfa3DEJdtZuWoK1j4vsmqTpHzRoHTMSa3saivG1aRy+tfX8NLuyfzkycsOJR16YDHWrBjC\nxlFQef/KwzNef7JXFMAxLIwsn/TAYj6JG/jkPg+Y5rdIDXpxNzvITkmhfnzoeCLqdm+ulDYRszqB\nfTaTri6C5hYI7IH+sIO7t5xBUTBOuXeY2997jTvuux7dLWHJEmXvpVEGk5jNLbx5wnhKlSHihouI\n7mXXrlJkCQRNJFes4XXkeK2nnoof5EiMN+m8wGTXY3MofUMknS+SqADnJrdNWDRVQzAFlE5bAkV3\nguk1YMAmNHLtdRBsNkkXiEgZi2xQwhKg9wgJPSsji4e+j5mJaZyNrsN+P2B3X/U053sP7UP/IhDb\nSac32ffp5iWHrB86tocPpj7PpAdH25+UhICSULBaDiWkShcbuHoO38fceSIUrJVQUpAqEkAxQRTR\nfBbOHpn+Kg/lspcVKSc/2nEOF9/0JiddtAhx1Wba7naz81pbvWHuXTfD3eu4yt/Hvmw7v2tayPhw\nHx9vtBm+41UWht9gTDBG+7YSal4d4r5bN8OvNjP2zEUE3ndiTouz85g/M+/5GxmcJOBudmCVwqoX\nZmDJIE5IQqcLb6stIyTk8umvAE8XBC27/cI6KsaHXdXMqGynebCAZEkA56COpUoYTpniD+2eZlED\n0bBQkhZPbT0KyxAYX9lDiT9Gc3cheeXDaM1hCtdIWBLkPbOJ3IIp3FV3FqfWNeIUNV6Ie5CGZTKl\nGnJUxlOYJJp1Uufq5e04aOtDxIF0qYGUl2VcdR/9Y7z47/fRdrKMc3wUvcOHd6+MJYE5O4bnXT85\nH0hRGUu0UIdtiZ3wdg05lmFwchDDsb8dIS2AJSL3eXElYKBOAgGkY1IYSQV/g8Lj0WJaU3lkNZnd\nF/kQoxZnzDqVxOwKPvAeaWv1NnRSMM8F86E4L8aLzVOwTAGjMMew4CDUaCszOB0abQ0lOPcH2gNG\nkl/UL2Pl9+u5p9AuFkz+7S3cucj2iWqfvRFHRMSTAcMB+oATZ1Qgm2/i2ysipy00n4hzwCJdKPDg\n1L9SIycwLDeCAMlqH86+LPI+G8kU2l6Pc1AnWuPCGSpHmh7l2egsVnROor+hALE8xd3r3uPm9y9n\n4l2fRBV0I/jsAFrxZTF0CdMS8OxL0HmCl8yaYsYvaKXcPcx/fHAJEzftZsBI4hB8dC6ahOaBvGN6\n6N5ZSNGzjazY8R7j3r8SsQR8LRb7Li3G02mhVWTJtqioURNPh0i6UMA5YFGwPkLXCfkMHqkzbdw+\nmt6uZdD8/ETXv1Xa5YSVt7OvJ8yF9RvpzfopcUbZFi2jO+5noDuAq1XBEbWrop823S1w7CV2bwlA\n9QvXE9r6j4kU0oUCrj4bmuGIju7XkgQ2/8CeyCavvQzHG35SpWCMTeN7/+CBN1EJ3lYovLCNvmcr\nSBcJNN5gb9uQS3PFvXY/61eRdgE7IB0wkoSlUa2sO3pmjEi1fFU7EOh+0X1MW7iLrSsP3zNYskYH\nAdT+DNE6D7pbwBGz0NwCriEDOWHQcjkUFQ2TySlcWruB5R3TcEgG/KoQZ0ccc/tOBFVl710zuerM\nd0iZDhKGys5oEXvXVWC47AqlUpHE0EVcaz0U/3Y1u56cxevH/46/Ds/hxSULSBUJWJPjSJt9pOpy\nCCkJV6eEIw7pAhuRLej76cL3mGR9tmh5qsyGLgD0H6NBzhZQztsmMniURk1lH70xH6Gnvbh6szRf\nLSNFFB782hN8v+FrRIc8SL0OgpMGmZjfw/anJhGvsYPKA3bMtvPo3lHI+N8PsHtRAXpJlq9P3cSy\nt+ZiOvY7sNsEQle1sWL8S0x6/Jt4WyETFqhY3kd0aj59X8syqaybba1lCAMOrj/pbY7xNBE3XSwd\nOIKOZJD2D8sRNQFtYorygiHaGkqwZAtlSESZFCPvTx6Gxsl2RVmz9UMPSLzUXNBMuXuY9/80h2we\nqBE49soNvNcxlliPj8AOmVSJhbv7UGfzlEWr+XnRFsb98SbcPaO/a15QEvu1Sff7OJoH0hMy7D3p\nCQCO/fhr9K0rpvLodl6f+DJvpyW+/dvRQCleYw/iB8wS7SBCykCiwrS1G7MCzuo4P5n8Ej998HKA\nryTtcjj7MgHkzmvt+/4/HXAWbDHJBGwmQdeQfXENRUDaP1ZqboG+k3M4m51IGQid2E38hRI2//DQ\nStPMjy4ikVIxO90YLhM5JuHqF8iGLJT6GOk2H5Zk4dsrkSqx9lPugxofdVx1p0D+9a00NJXjb1Rs\n8o6EheYRSNQaqL0SzkGQshY5v0B8goaYlChebR2id2oJ0HmChbNXxnBaOIYF6s9qYkt7OYXPOemb\nI3LUggaq3YNsHKqg9ZVqkmMMgjtEbrz1Ba4PjFbOTrpoEW/uDyJr3rqair9KKAmd1jOc6G4TV1mC\n8QV9tD4zlrwdGTS/TNvXTSxTwNni4JVrfsFJf/8O1S9keXPpk7yWUvnuQ9cgLRwkFncjSgZaXMWz\n2652OGIWchqy5w7jXhogdkGchRW7WRRexRWP30Z6jEZos0yszuLHZzzHM51HEX2i3A7Ya2KkBtxI\nXh2h00n+VvteRutEPB0W197+IjcGOw+6Vn+MFbLkZ+cj6hbD4+3e6VSZSd5WgeHx4IgJuHsspKzF\n2vseYfLvbG6FT2qDJktE7rvxcb659lLMjMQFMzeyL5lP00Ah1togms/uXTScFlrAZMLkdnavqUTK\nCpj1CdjtIbgTBmbachFK/H8WZXDVZa/zxN9PQfxE/jk1LguaSF5JlI2znj1km8+D/X7ayk9s4/tV\nr3Dz1kuwNhwa7BRs1cgGJdw9Go6BJHrAxcA0F+4+u/IuZyz6Z4hkS3TceSkMQ+S8uq283zuWaNpJ\nMu5E3ePEv9ci/9VdzHyrj6nuNnZnipEEk8deO9HWZi7SUDwaDlXHNAXGfL0BLAu5uIiec2rwt+q4\nt7bTd1o12ZBAvD6H5LKRAOaQitonoflN5KSAY9iWN5My9lyoDlmYEihpGzqZqtRBslADGaQtvkP+\n5wOmT0uw+eg/4BYdXyjITI/P4Go6HGxt1L4IOdEXOt64LK5dn8/N628xccT2Q3W74rT+WMb5ls8m\nFpPt66QkLKYu2s67jeOQBhy464ZJJpyMv6UFY2iUqK1qvYvfl6/h1J1nEEm7SaRVQt4UQ6uKSY/N\nUlAYo78rCCaMu2EDe+6by+7LDm6/mrTmMvRGP+rkYTI7ghhjMpQUROlqLgARAg0S2fz90jweyN9u\nMDhJIjshjWUIlBcPoUgGnZEAsmziXGEnWdwDBlLWQh1IMzDDh5KwkyjOYYO2r5uonhyybPDH6X/k\n+u2XE2kPjqAnvO0WeTtSZPNU+q9KcVbtdgJSmqjh4tl1o20Zal6a+uIedkfClJzbSNed89A89jNW\n/nYaKZGj4+QApgz6lAR6VkaULYyEjHe3QrrIRNAFTNXCMWwHzI6YLZGY15QhWawyOMUeTzS/iVqS\nIhNXcXQpKHGBXNCieGYP7XsKcPbIyBlITs5ATMHy6JCWmDixg9Y3qkZaASbl99DxnVo0v0LdXTZJ\n6bt76tDjCsXvSQxOEZAyAtkCA195jHRjkNpnhohNDNB7hO2LWCUZZlS2s3PFOLbfOur7n/XSbThL\nkuRavTgidgLBksERtX2X4B6dvlkyjijE6nSePvURjnaKLGqbz86hQnLLCxFMyPkExixrJzarlHSe\nSF5DCt0j03K2jGdMnIArQ2dLmNvnv86GWCWrP5jEqovuo0S2GYKPu/Y6olUKp133ATHdRVfaT0p3\nkPlVKfEbo+R0GUUyCLgytOwuYtxTGcREDjGRYsePC/E0OQjtMnDEdJ774wOIgsDsv9yOqVgjxJKm\namE5TIpWScTHiPhbTQYn2xq+Shy046JkWn1MnNlK91+ryJ0apeGcnxz2vfy3BqMTnv8Jwka/3Rcx\nL8KUwi5+XvYKryTHUuXo57pXriXY8I+RxPEqKJreS2r552OSP21DUw3EnMh3T3mR6wNdNOTSnPPc\nt/DvHp1MjVOHEd4JkQlbuD+FDkodnyA77GTpSUtYlxrLqqGxzAvt4bfrTiS0Xjk0GBWxezm+hD1w\nyR+45a/XfrmNsAPPnw/W8d385oOW/ytJjLztoKQsTFkgsC9D72wXuhucAxb+Fp1EqUxkqoWjJIll\nCWhphfxwnMpABHN/w+D2zlLG3tJB5NQ61v7iEW7rnk1SV1m9fBqufovBOfYkKbt1DF2k4m8S6iuj\nonZSQQGpOVVYokCiTML1tV7CriS7B8OkW3yIOQFRB0dUIJNvIWcE5AQYqj0pSRpgWQxOlsgW6ohp\nETOgU70UksUKyVKBbNCuvlS8YdDydYtZ41r4TtnrXPbiN7EEcPaJpGtzXDJjPX9ddxTBbTKJCgu5\nNkFxMMbKSS9Qvfx6Jv42QsvXC9HqU/xqzrM8eOXXGZhmZ94FE9be9SDHbrsQ5ZF8MtcPMS7UzwUF\nH3Gux2Y1nXn3TShJm100F7An8PVZjSvWX4OqamQ/DmK4LYyQjiBaPL9gCXe3n0nTq3WkxuaQIgqG\nz8DRL5Er1sGEQMNo09SPbn6aHz11OY79qNxYnYFvTAzDFJHftZ2yT+p+HrDic1t5bcKKQwiM/vPW\nJ7jz8asPqohaEqgn9qNIBslXikkVW8w//mPCaoLlK+ZiKuDpPNiZTc1N4l4zmpg5EOSmii1cfQKx\neg1Xu4IljGqU/iuD0X/GsoUG+85+9F8enH5aZ1RXbb1AOWP/36kCESlrkxEZZRksQ0RUTIROJ/6J\ngywe+z7z3XsYp3i4tWsOL62fgbtdJlNk4qqIY24KYE2Lo7V4UeICni4L55BJzzxbZPzIYxvpTfuY\nFOzmNyUfAXbCbO09tqNiOASGzk8yb8w+tvSXktwURvObCAYsOGY7K3eNo2z54Rv2olUSBVuz5Pwy\ng5cl2THvacavuhKnqtnjcT5YsoUWNLEcJg5/Fmuvh8tOf483uydwZEELH/bW4PuZbyQYnfDYYsxx\nSSqXiJgOkYFbUmgbQuSCFtUv2rBMzS/TcbxE5bQu2jaVHZRU2qclOPvBO/F2miSLRSac18S+4XyM\nFfnEam12xGSthr8wQXpnEL00y94Tn+C83SfRm/LR3RMi70MHcsoiky+SCduMm4HpA6RWFZCs1Mkr\nH2Z2UTtbfztt5Lh9J+e4eOpHPPvOPJz9Ir+97veUSnEmOuyxo/adRRS8qpLJE4lO1thyxu845bvf\nAmB4nEhwl0n03CSn1DTy4UNzGD4xTVFejLenLOXlZD7ne2MjFdNsSCQxxuLYBR8z3dfOE7vn4lZz\nRN8tJj05zSWTP+KbeWs4+YE7SdRn8W9TcfWZDI8TMZx20CodHuE6Ytq0BHq/C1fXl2fiPVDl/PSy\nC/eewPbXxiMYNsnRug3jcfZ+tU6kTIGJOiQi6If+lt+okyyScPebCKaFmLPoPE7G2WfPNf42g6zP\nrhIwb5gphd20xUPIokmxJ8ZUXyd7UgXsHC5EvT+PGx/8O/uyhUR0DxImbzx0NIOzDQRNwHIbyC4d\n0xAYe8VmpPw8KC5AD7owFZHIRJWcXyATtiif1k1KUxgY8GGlZQRdwHIZSEMyoi4gpQU7qbSftEhJ\nWfQeKaIFDQSXjpWWQTFx7zm0H/fTli4ycX3Fa+s4MkJuXd5ByxpuXsJ3e6fz7NojcORlaJpvS+qN\n/cuNqJFDj6O7LeTU4ZMembDJicds5YPlh3J4iDlw9Vtk8wT8LQadC0FK21wOhZs04mNkhifuD9z6\nRTIlBugCdZM7aIuEoMFHLmgy9ra1NP9pJntPfIIbOuZyU8G7XPtftxGvgFx5Dm+jSmpqmvy3nGBB\n6Kk1o+fgdpOZX2/7LaUy9dc20J0K0BPzkezykbdFxNuhkyyRiVWDOiTg7jPpPc6WdJEzFpGzUnYC\nMaQzq66Fxr4iBAE8y/1kAwKhZg1LhK5jZBwxAcGwk2WiZicF++eAVJTmnPHbGMh5KVGjbBkuZ3qw\nA1GwWPb8fLwdFgPzNC6YuZGQnKLcMcgv/nghyQodwRBQCtNUhSMMLB1D+NE1CLMnYzoklO5h+o4r\nJVkqoHsttLCO6NSRZBOr3Y1cnSAz4EJMi/ha7KAtWW4hJ+z1A012oiQdFolOMJDzM2hpBW8oRTrt\nwLPejemA1NQ0vzhiGd9552LyyobJvRdG369wZ4xPojh00h0+xHAWI65w1uzN9GT87Hx+PKIGwokR\n0lmFXK8bMScw/tftNH63HEdEQveaGB6T0rcFgh+0kqstJlXqREkYRKsUUgsSfGvK29wY7KRNT3DB\nx4vQdInM5jyyVVlkVcf7nttW2LBsnyVRYTHmLY1YpULJpS1M9PdwnL+RralK/rJ7NsFnvGSCIt4u\nHXUoSybsZOjaOOoLQeKnJSh5wklkgkKy3MRXN4wiGwxvCxOcOsB/jH2Hy3yDbMlmuXXXxURWlpDz\nW2h5Bo5QBr8nQ8Hlvcx8N8LyvVNJt/iwFIvCdQL5K9vYe20VomZLPRlOuPTSt/k/YRuxMHfr+Qxt\nsNs7cnkmcjiNllYIbFZJF1p2YiBg4W0Df7tO26kiYl4OI64g+3OU/Vmh9RyB1uvvOOw7+28NRque\n/hlWSsZfHGdaUSd7o2EiCTe/mb6UxcuvQSjNsH3BYyzYegm5Fws+d1+xOgt/8xfPyFqicJDMywGb\n/I0GPtxTS+CDg7N52TwBNWJ95jJDFUhUmwR2CkTHWdx2yqs8+cDpX7kyejhr+gSz7vpF93PEk7f/\nw/X+J61krY4p205wzisSqbchn64+gXShXUXLhmxB5htnvM8YJcKLA9Npi4fwqxnGeIY4wrePP915\nNupgll888yg/bD2XEwsaefSvp6MOwfDMHPKggu4zKFwj4d+bxrG7m46La+0MjQCJI9OYhoAgWpia\nSF44jkM26O0Norg0zBYPUhabgdWyRZWlHKgRAW+XSddCk1BZlKF+H968FMmoC0ebA/8eO8MXmYTd\nVN9rERtrYboshECOknCUztZ8sAQm/jpCx88VPM8G6D3S7kHM327hGtB48snf8lpyHI/94hwGjtGY\nO2EP3y59ncs/ugbnSh/OIZPIJIGbv/YKD//tDAo3aiRKZKJ1oOfpXDJnHVsuHke2LMDer0uIaZH8\n8YPEU04yQ07OmbWZV16fg7vb1u0yFQg1wPBEkJMCgg6pGrsS5W0RkVN2dSoxTkOJ2E7U1At2EFTS\nfPBnm3lQ89gSKs5T+7iqag2PPHLOyH13ndZL+tUi0oV2MHjAbrzxBRTB4DzvXhbe9x0AYjOzyN2O\nkYrqmVev4p7Cj6l+9VoCW0ednmi9/oWIkCxhlHcsNS+Be7WXivP30rbMhsbGq0x8LeK/LRj934Lh\nfjIYNRwCUs76TNhrx2kmzg4FJQ7pIrtfp2gd9B4Jht/A36Ag5uDqb65gefc0OleXceJpmzg7tIm3\n45N4dvNs/NscSBmL8xavJCClOd6zk7NXLaYwHKOnNZ+CtRKOhDlS/U4ViGgem8wsE7ZQkgJyCrIh\nCylrs3haIhSvM23SM8F2PD5pyUKRoRk6ypBMcMoAH07/G4taT2BDewX5z7vpOwIMr8G+sx6jMZfi\nrL9/G9+4ISaGe7mz9DXO/+BG8vMSBO710jvHxbbvLOHEy64mF5BpP9tk8REreeylk9HLslgZibF/\n1onWOjntW++TMRWe2z4DM67gLkqi7/Aj18e4Zvwa3hkYT9fSKhIVULTepHeOiHNAsPv2LLsXLVot\nk6gwsYqyPDz3aYZNN49dcx4AQ+OddnVfFtDdkKjPgSbga1KI1+k4w2lOr2lgT6KAridrRlBBuktg\nqN5CTgq4+gRE3U4CbvjeA1yy9xQ6HhlLqljkhmte4pvBdsa9fyXKVq/9Dg+avHzvr5jz8rco+kAk\nXSgSn54hGEoy1O+j6B2Z3oU642u62bW9nGDVMMm0Si7iRPRpKHtcyGm7HzhTYmCpJmLCJjfK32I/\ne31HWuRtFRk8WvtMcqGvYtk8i92XPczypHckIVf/8OKRADFVqeNulUeguWOfuQk1crAP4Jw3QGb1\nZ5PyfFUrXZXCdEjEKh2oMVsTuvs400bUbBERDDsplCgVKTu9laCapsY9wN+2zmH22BZ8cpb5wV3s\nShfzwt+PwT+/lwJ3ksZ11cyd38D6Nych5gTS5TrOLnn/nAqlL7SSmlTCwBQHms8eB8UsZPNNjKCO\nO5RmYcVu+rJeNrWNwTJslmMlIaI7LUyn7ey7uwQccQs5Y9J1goXo0TCTdmJIcBr/sLL4VSzntzDc\n5mHhs3dc+Ry/27WQ7Nr8f/mxP23/j7z3jrOsrNL9v++OJ+fKuaq7qnM3HYEmJxVRQIRBFEUxII75\n3jGMM86MzjiGi2MCFRXEEUQQBQQkNNA0TUPnVB2qu6q6cj457/T7YzcNSGOYkfF+7m/9VbVPqF3n\n7Pfd61nrWc8TGHUoNAqih90WT/n6FJmcF8uUcCwJxxaokyqfufzXzNcn+V1mGVOVEDfWPckqXeMD\nI+tZFTzGV5+9mJaHBZ/6+p38W9+bWF07Qv9Hu6mGNZILNPIdNnbQpPvWKmK724Gbe/canOMzkblW\nQeLMCWp9OYazUTTZYioZwkxreMcUd9Qp5WD6BVIFMoss9FkZpeiuxVKDxYfOfZKhcpzRYoT3Nz7D\nCn2aaz75aZSijRGQqAYkig2CSsxlEUX3SiRXWqhJGauljF2RuWHdRiaqYbbPtFK1ZBbHJ6lYCkO5\nKL4vhxi4woMdMZAyKqesOsresUascR8IsH0WkX0qNbuKGEGVYq1CoUFQiTuYCQN/n4YjoDi/iqRZ\nLG6ZYCQdIZPy4xgS+oSCpXGcSeOu3eAxV1NgZoWMOa+EVZaRU4pb6CoJ1CLk5rm+wvK6FFd17mK6\nGqQ33cDAQB1KWkGfl+X+VT/gvYeupWrJzKYD3LTml3zi4XfT0DPNRF8NC78yBMChv2snsVMQeM8Y\ng72NqHmBb0JgyxAZMAlsdzUEZn4UJHkojrczi7knQu0Ok5ELBZ++4GEuDRwkJmksfvRGqEpoczJa\nxi1O2SpUww61222mV0pUayzkUJVLevYTVYr8om8Vsmzzj0t+y0/PXY/ZkqCc8CAcB0uTkD88xei+\nejzT7t4SGraZPBX6r/4+Vw+ex/vqNnH71Bm8ObGXf/jdldTOn2V6NsSCj/UDcOyji4kcsXnupu+z\nfOs7sDdHKa0oofd6adpYROkdZPLqRTzw+a9z0dYbKE/40ZIyrY8Vkb40w+GjjUTrs5S3sp/JmgAA\nIABJREFUxal0l9D7XJ9SteB2ScsJQSXmkNjtkGuV0JMO4YEq8uemOXqkgdhOmWpIUDqlxMA7Pv+a\n61L+p3/6p396vRb9H4tW/8d47PAylAM+hjx+xKNRlAGde7Mr0GdkWpdO8qXdZ8ELYf7YSGjNOZNk\nmkAa8bDrC7fwg41r/uDz664cJj0UoRIXqPmXjk/vqcUz/OqkWCm96hDVKLzlms186dxf8svMcsSs\nzuoLD/LFum0EVo7x7IFFf8rH8CfF4etvYe2uK6mGbJjTuHX3aSd9nq3DQA0cPfIXRsInidiBKrk2\nDcMnMbvGwdeVoaYljedRL6bPnU0sNtk4lkTRr2JICqYj0zvWSMRfwhECUyjsm2pDoPDb5i4mNjfz\nXLkFqalESVUJHVJQcwJbEdTuqpBv1fGNl5g+M0ixw0QuyEhpFSWpIDeWWdg8ie1I1PlyzBQCGHkN\nO2jimXC/00rCRstKSIZLKU73CPxDMoWqF1t3kI76oSyjZwR6xsFRBPluk/m3zhE4ViRzucPfn/Zb\ntjy7DGtvkM6fzTG31ke+NUg5DNayErbuYHpxu6rnFfl822Fa1El+eHQ9bzvvBR7du4Sn7jid7df9\nkDedvpGLzt/KO5c9xw8mzqLyTISJC2zE8jzvOvU5Dmybx8KeYYaf60Afz1KzrYJieklKfrR+HTUt\ns8+scQf7Gy2ChxV8E66HbvdFA5y+4hAtCyYZONCMd8o1ZF//3p2M7G3EMyXTcv4wmVrBE0seZMKx\n2LrdFZAotFm84S3b6QrN8tD4UqpHAuTabfS0wDzqlh7VwsuEkC6aZevdK7lm/UZ+lV3CgZ2uCqU+\noVBsM/EcV/A92NvGs/UBPAGD2UyI0oIK+rhCpcnEaKlSCUiv8p17eQjczV3YUNIUDn7oFr7YezrS\ntIZk4c6beFwq718jvrvzD+87f6nwT74E3iQLsi0ywYlX0y48kzLBURtP2iEw5qDmJAr1EpW2KhgS\n/hHBpz/5S64JDvEfd13E373rVzyf7uS23vWsrB/hso5dPJ7uoVzrkPbqXJzYy7s2vp+m+1Uy+SC2\nLMj3GIT7XvrO1KKDIwRKBUJDbrHO8oB/DHAE4UGH0JB7/ukuGSQ3OX55mD6Bd0JCKQliS5JcHNvN\nQSPB5O2dzK4QND9t8fkbfsk/j57BTfsvwHtUI/aQTOK8GXYU2+kfrsf7ZADvnMlPvvotamSVr8yc\nBpckKVdV9jzfQ2gAgodlIocFqR6NXAf0Hm7jyJ5WKClEDknQU0JvKFIsetg21c70SAz/iEA4AnDN\n2SUTMgscSj1VREEjesQgNOjw1Q/ewUU+g3fsfhv+rSqphR7yFxTIh2XUnIR/0iYwKKHPyXhSDoFh\nwe7rf8INm97MzHAcwy8wQhJ6ykEyodACK047yvh07DhtFv72tB1cFRvgWwfWEr9onNFKjC/2ns6S\nxgnesm479UtnOPPcffx4ei1z2+vQM+7MmL9fRu718tYrnmfwuRYCxyRyfRHUvEQp58UwFdAdHEu4\nxa0DoKcd9FkJ76REOQ5dy8aYapBxlhfpbJ1mRAkR2aNivayOW5xXdRNfD0gn6TL+ofjpu77LG275\nW57ctZyPrNvG4u/ceKLgAWDELS69YCsXBSYB+OaxldxwyWNsG+xi6YV9zBxJYNYZMP7HaaJ/TgTG\nLeSyhVpyKeaFBhmzu4ISMHAyOmreLRCVGkGpK5Mq+ziUqsOwFDKmTkswgyVktsx2khkPUd85x8Hh\nBlYtH+Bwspa8peO0lHEqbvFQOND4ZBLH56HQ4sOTsinVuswHW3XpciJs4PdVEDLMlAIUKhp2yoOt\nOQhToJRdqq5wBJ6kg2Q5pBfIrueoLYEj8A6rGGEbNeXu1V973084b8UeNuxe8Yr/31haQJ7+E7qn\n3RX63vFDbt66hn+4+pc8v3npq55jLMuzft0hfv7IOZTybgfx43/zAM/LTYjJvzwoBvDOun7aM6sE\nXVcd5YnFD9KYGOSZ5Hw82/04SJhBm039C5BrbYJKhb3pJiacKP85183mwS62zrYjD3mQyxK5xYJj\nD3VygBilsI98k0zbz/rBF6MSlKl5bILS+m5UT5Dx8zwse+shBuu9RJ9XGI95ubhrP59teZSlkVG6\nEzMcJU5pzke51UAuKOQWGIhFBZwpj1v8FVDoNPnCeQ9w06Y30p+J4/dXsBSFbaVWpu+vpxJTkA0X\n5NmaK9SmpWVsRdD4jIVvCopBFa2xRMrxsW+mEdOS8aomkoAloXF01aIv2UIlYfOt837OU8V5zBX9\nVGZ9LFt+jMlkmNBhFaXkFhkRYOsCI+i6UigZBS3r3otND6DbpMpeakJ50mk/QnEwVZAr7r1DKbi5\nuOUTFGslSp1VnJKCklLwzElIlsDWwfQ7iOP7UsUDH+16ku/1nUP2hVosVUBthX8+5UFeKHVwKFuP\nrpik5oKc1tzPdrOJgGYQucPH4NVxctfKNN4ts+Jze9AVk5GRGvSkhJZzaHhqFn3ApfamzmqnNBXA\n8oAYdjUHQkNVkssl5jVOE1ZyPJifx47983E019u+mrAxArjrr+CKyykVgRGzWD1viB+3buZro2tI\nF31cOX8Xp/n6eeqOxRg1QfLNKoVGmdnVDpmKByWl0HnHGIEph/FzPYQWJfn37euZGEpw0FNH/1yC\nJ4YXEa7L0RTMIt8RZ+iaWj7y9acZ+0yExL9PMobD5heWIi/NYg/60VMCrQiVrgSzpwh+PHgqVk5z\nGRmtZaQ5LxNNCk5Wo1RVUVMy6oyKbIAZgNxCA8MjU2kwCR2RqUQErb8ap9ARZMH/OsCOA52EDioE\nJm0Mn4RTUvno2SfHLfBXBqMf2DGACJgUo9BZN8uYFsA7KWGpAu+sIFknEdzkQ666KqSWV2Br7qxf\ndrGJd/KlBKhyMEjDqmlK+0J/EIim1hh86IrHeO621chVTgDR3Fklqm0mIq29QuDlD0X4/Cm27Onh\nzonVhDZ5kaswXq/x8ZYDrNALfHfXXy4x/e6uNVQmfBy+7Mev+b4fu+K3/MMpD/Av91550sf/0hEa\nsvDMWWh5B/+YhFhdwKsaTBkRAsMOplfgLM7T1jxH35FGBsoxCo6GLQSra4dRJYuKrXCwXEMpIfAk\nytR3zTE3FUbSbCwhsDoqJDYLpKqEb6JKNazi+LxYikIl5na4fVMC74xDwaMiR6tMzEXQPCZFQ0Mo\nNlq/FzPoIBAEhl2aqyflzs8U6yF82gxytIrT70fNu1YutbsNyjEZSweru0xVRNDLMgXVT6Q7g9JY\nZnIqztS5HhZ8e47Zq8Ca0zEqCo4p4z+q4VmUodob5udSOwfsGiYCHsbLYd6xcDu9uzr4/tZ1PBTp\n4k3x/eytNrPQP4HnlDxDz7UhDXkY/1ULxVqJvv2tJBfLOF4/E2f7KDQLfD1pimUPpg8i+2UqHQbh\nXTpqwcGbsqiGJCbmohzZ18rEM42UGtx5rpp9VUZXqBTHAiAgMxRB7fPQP89El01275gPgJ6U2O+J\ncVr9IHvmmihlfPiPdzcrUbey+/IehN3v48LrtnDzDy4/AURfDLOzijbmVt7zK8rMVX1kttYy/6xj\nJA8n0LICo6VKU22abFVHn/jDHdIXE9JqxOHmrWtQ68oo/S8lnLE3jpMffe25p/8X4uVgFFzq9IuO\nQlW/hGw45BtkvMmXsvdSXMKbstHTDlWv4s5HeQVPljq5N9vNzkvv4BNHLmQ0Haaa1dmfbuC69s2c\n1XmYmYCf2+bdy8f7rmB18zD9Ew0Yq/KIoIky6sE36bzielAqjpus26BnHAyvhOUVFJttwoPuuU+t\nlYgccU7MvL48DL9ALbgKkDOZCLULJzhQaKR8TxjJUJg4C548uJTRdBR/pES13qSgeTk2VktNS4r8\nE3VINihlMM6qYokU3zhtK9+762xEXqGasGl8poLkCHo+38tnz7uP3+5dg+lzCCxN8o1z7uJeYwnG\ntA9nwI8yo2KXFTrvq1CqUTAvyBD/nUCyXNBtqRLBwzL5VggO21zxjcd4c2CMT42fyYFDbQSGJabO\ngOgzOuWE2xW1VYlMt4MtS3hS7mdy7rlPQ9xhT7qRxFYXiKYWCrJLLPxDCiOaj+gOd30IRzC1oMDP\nk930T9Sh1ZVYGp1g/IEOUgfjXHfGBj4UHed3+Sa+UP80dz2xntQSB/8EzC0XlBOCXrOGYtAtYMkG\nJ5Qtw0fAUhTiOwX+MUG6R1BoFgTGHQpNEkbCJH84QmyzSrHqIxsSWHM6pXbjBJgBUJPHrQr+TCAK\n8MDOdSd+vnnrq+95akrmnJX7uP5H17iP24I92+cjVQVPv/GXfLt3NdLQXxaIAoSGDITt4KgSnrEs\nngwkV0touknZ1vCPCVclFEHSp6JoFopsU6mqNMcyzA9MU7I0hvIxUpaOrTtcuWAXQbXCnokmbFtC\n0U08wQpKvw5C4E1CrsOPlreohmQsj8A37fote5JgOQrVgMN0Nki24MUqq+iTKlpaQj2e5CPcvVMp\nQbrHTexF2MQuy8gZheAQOI5yYn99fNcprwKiwJ8ERAHUOeXE97Zpz5KTPkee0hg9XIdAYIRcpd+t\nexe8bkAUXN0IT9pGSwuyO+P8ONGOR7fYM9FMzRaJckxCKUp87+0/5pt7L2B/qpG5rJ+hfJSxTISW\nRJqQt0JKVyk0OwwO1RNYnsQcCFJpMBGmhB2JEr1jC8VVrYQmQM1UyCyKYAQkBotRfnLWT7ivfy2B\nQYmtMx28cdFO/u7AFWQcH62BNHJ9heyRGNbCAp5DXjwHNbwzrqJ1oc1GLknsFvV0NU/TUzvFZCHE\n9qE26iM50o/HkSs2Ws5EK9hk2xWMegMlLSOZglKdTDkuAYKyLlC8Fi2hDNmKh5ZQmq7ALGVb5eHe\npVSDgub509T6CghdMDQXJ5LIky57MWRBsFehEhUkl0j4pkEgyLeA5QX/qCDWV8UIyNStnyST9+JM\ne1g17xjDvY3YCmhz8gmfcMkEJFBzDvlWUBJl1/6tKuObEqg5h0rCzTuE7e5TpiIx6I2TKnuRBt21\nbsqCpw8s5YgU422texgoJAiFSlwQP8CEE+PAUCPqrEphWQWjqPHNj/yEG2OjfOnbF+OoEo7szq36\nB7LkVzZixYOU4zKp1QZYEt7FaaxJL96kQ7FWoZpw2Jjq4bFNK13AHLbQZhTkokT0gEBPu+dr+t11\n2HLaOJ9tfZi7Mt3sTTWROxwj2pRlvm+STY+tRU2V8M4YBEerGD4vgaVpRK8fvH4sn0olLGOO+hCm\nwIxYJJMB1AM+9I48rZE0ew+2kV9iIsImz6c62PzFe7gyOsgHfnAN1aiDKSTCrRkKFS/Fc4qkajQC\nx2T8pyTxR8sUTBUcQWBAIrhXQZ+VkIsKSslVdzfPyVL7oIyaVPHMgW9MAsctIhjRAHPnVBgcrUP4\nTPyDMoGxKuFDOWLPz/KuT7xa3frEXvDXBKP3jj2IVzXRdJPuyDR3rryTe2LzkLb5EQ7kwzLXXfEk\nP3vToxya5zDyfKObdFV5BRB9MYoHXi028Ptx27tu4e93X4Z2zN1Q00ts9FVp2hJJ5nIBfH2vToRz\n7S/Nor0Yli6wev14pgVKSqUSF+z71C3c2PyStctfEoz+Ke95x+kbqDpVbt+z/sSxW995C49YPdgz\nf/nN3T8J1bCCljUpxxRS+FFry9g1BqmwhiMEzfc4VPeHybUKPJEyq+pGaApmeUN0Pxnbz5FcLd2N\nU8woOhFvmdNqBukrJvB4DCKRIjaC1AKQZzQUQ6JYJ6NnbbIdMp5ZCf84rhJuRKBnBOWhAJahkJsI\nYlQVSGqYERu5INy50YQgeMydF7G8gkqTSclQKRd1LMntdhhRG8dWsHSXEuJZkaWY9rPsIwfIP1DD\nrnwLs4MxDn3gFj6+cAf+K4d5ZPcqYntdf9WKX8bWYO3yo5y3dD+Hs3VUbBUbwdRUhP3Pz6ecAMkQ\nFKYC3JVfgSdoMVCupc07h6ezyMiROpJnGDxzxU185tQ9/KDYQ7W7SkWWCR+QXK8vSeCdE8gGVHUF\nNS9cIYsLi3iOqtiKcA2KzynQ+6bvE1o4ysRalbmSHw76qcQcjKDb4bzvDQ+yu+Jny8EFblIKaGMq\nvTs72XXV7fxCbaF6JEB2ZQX/oHIy+152FxtP2tV8EYjm1pYIbfdSSIAZskkfivP+Nz/Brr4u1CmV\nSl8QdVahXOecEEHJt9pomZf+WnZVGSWlUI24xQU9JU4A0XybTcs5I8w92Iz5lxfV/b8qXg5GKyEJ\n2eCEENCLIkZa3mHy7RUCx+nPasmhFJMoNEhU4g5XnP0Cc2GV9c2DDGVi/Pv29azrGMDvqdJeN8d5\nzYe5c3wd01aYmFbknMAxgr4MUbXEc6PzsXMaVlVGn5PItwjSC1wRCqXsAtNSXCLbKeGbcZhd5SAZ\nEvF9DrYqKMckV9DIAFOXTpzziyFst7tkq4Ir3/8UH4sOcWl4mK9Ono6edjB9MkbCRA1XsCyJRQ1T\nJIMKcqzK4LF6bEkQumCKTR/8Oe+79yqWdQ9x5T3vphJ3z80Km6Q7NRJ7DNJPxFl0yQDJWp2UolE8\nHOG5B05h2YVH2XTGPdxqz2PZ8mNM9dUwu1rC9Aqa/hMGrtLILTWp22RSqlFJ7C0zd5ZN8MI5Lk7s\n5W3PvpcjQ43E9sgERqsYbyhQt3aa2VyA0FHZtZZoL2HIboca4NcN87mkZi/v7HieL1+8jYvOe5rf\n/uJ0vBNu95SChlKGBdcfZPmaozw+voDVsWF2lRp4Y+dBHji0HHKuXdPvdqzmbk8zP+3YxDv738K5\nZ+xlz2Ab/gnXU/vC83cxWQ5SdhQcS6FUJ9CybvHA9AkcSRwHp+AIF9Tk2o+zDhyBZ1YifVqF9563\nkaKkMzcUxQ7YJwDo/0RsnulEzbt7jlx9aZ+4eesaJOP1EVKK9haQCxWMmBcj6sFWJUIXJqkJFAjW\nFBgN+Ck12ViKhHdYIR8UGJbMx5Y/zcLgBBcFexkyEqyIjHJ99zM8Pr2Insg0AhirRIhHCtQECwQ8\nVZJzYXyTDoVGBUcSVMMSxXqBf9Ih3yowA2B53KKIPKEhMirkFeSi69Ou5t0OklJyu2TeWYdSvcD0\ng5kwkFUbeVJHTwkyiyzMoI2aeWkPLzVaqLnX1wHw8qs2Ee9IM5COv+SH+l8I0+/8Sd957Y4ymQ6V\n6OESnqTJkx/9Ty4MTLNf8bPHU4ulQ902myeeW8WPrr2Fr3TsZ48U4Mz6fk6tPcZ0NcjRqRquWbSd\n/b0dvOWMHQgJUr1xpLJ7768koLqolUi/iefoDJXWGMG9kxQ6wwQHBU88uYbY5WNM+Lw09cxw1yPn\nkTd1pkbiDE7XkBmI4MggzWr4JnBzlaig0G65nXBLUE16yO2PkUlIfL77EW7p2cr/2nMu8Y2u/63p\nVyjVaBghgdNSQW8uUPC5Yz6eOSi0OMgliVzBw3QxQGtNivXxAcqOSlQpsqbxGHV1GYZyUTy6xe6Z\nRqKBEj7NIO4rUrRUPLt1Ck2uWrqpu16mehK8M5BaamPqKpYXspNBggdlqlEYHKsDBI7PRkvKOIpr\nEyMALeOKixoBVwk8HCkiDrs383yHg5aSXK9ejztHe+ZF+/hE42NEghX640Eylk6iOYOvpogi24xV\noliOxFsb9/HI3FImCyGKByJ8/IO/pime4UBfGxuq8/jpt86gnJDAhlJXhapfwlPw4R/Oc/S9KpWA\njH9EwTsliDyh0HDdEBdcuoO9Ti1d0VkOPDUfR3J1DBJb3WKRUhauArLj3puLTVBqMUnEcuwutRLT\nimx9cjGBJUm+1Hk/j+WWMnFnDManIByg3Ogn0ynznvXPsN1XSyakgyPjm7bJdh8fx2pLI3SbhSuG\nGZmLEQ8WCEZK/OPS3/Lm5r08PrUIf3iKK+6/lsiqGWob0tRGcmTKHkJPezCLOjWrpqm2GNhPxSlk\nvVhhi7q6DN1nHeOQVUfbJcdIDUaphh20HNQ+YDNyoY6eBj3voOXdfNwIusWCZcuPMT0cxzus0nT7\nAZx4hNSiIFpV4d3Xn/Wa6/KvCkYb7E/w4dqdfO+hizg6VcetI2tRNoVPVObshSW29nbz3R1rSfo1\nijOBk9Jl/5x4aPPaE0AUwDMtEEe9jGgB/Af0k9KBfx+I5luhXG+z54bv8e0j69CTDmoeNrYG+beB\ntby59gW+NL2Ow0ea/3sn+2fGR1duZ/VtH3/FsQf3rXldgChAYm8Jy6sAgnyTQiXuUNecZmFsijnJ\nQ8nUSC6WKEdk5v8sTdNV06wMDRNVi/ilKiGlRJsvSa2WB00iW/VwJFvDvPgsSAJJgK6aZJJ+1LRM\ner7btXQcV6a+GnXBY67LlQMvNDoERjnuoynQ5ySE486ueeYkkCAw5iCbDqWEoJKwkaIGgUAZ2xGI\nGfe6sPw2UkVCLbg38cATCqnFEmO9DWhZKJ1aQq4v892HzuCb2SU8n+3kC6c+yMBXa5Edhcw8BdPv\nMLulnp2DnWQrHi5duIvhYpzMZIjggADhJn7VsIOpCqY3NDOzpY7iQovto630rBhlajjGL/LL2OWE\n+N+dv+OxB9ZjNBoocypqziEw6aDlHSoRiWifm8wX1pUxywqlGkjsdum6sedlbt57GofunM/4UC3a\nVi+GXyBXBZHTpjH7AjxWH+Hrjbv5P9mlr+pMfv/ZNaw99TAPXPwbfjK3ADH4all/gI9f+SDbt5/c\nc846N82K5jFmexPoEwqeSRkjBAee76Jca2MEHDxJ4W7a86on/CxfBKKZpQaeaRnblhGmoNxoYYct\npIKMclwwRcsICofDVCL8lR2UX/94ORhVKi5dsBSXUEsO5bCEpbueh4EDCpWghBF0vebUkkM14NLU\n92Ya8UXKHMvEyBynTY0VwzSGskyXguyZa6TGl2e2HGDXRAvdiRFuG1vPRDXMtOIhUFegXNKI7pco\n1kPjZody1AVrpYREodWdy55d7eA/JiNX3Tl7pfQi2ARPxnkVEAWYWidwZJdWfnhLBx881xVJ+ubA\nKkxdwvI6aCkZK2YR3uBj0BcgGi3gPB3DPywIjjpUBgN8S1tA688cPnX1o9x/73pKjS5tUU0pND9t\nuDOZDjS/eRxFctjZ14kdshBlhbetfYGPfOUa9L06R8wEjZtNcq0SnlmJckwFIWFFLLJNOv5RMIIy\nhRqJsiLYlu/gjZ0HOTjYTPyAw+qv7OBIqpbbF9/Bo+UFpBQP/lEJsiqxl1lTT9XoyGGH2wZPZ7MR\nZ2VgkPdc+Cz3Pno64BYYJAuS2xIMvdBCPutnKq6TyfgZ2dBOeJeMrQmCQw6OJJj26ty8ZR2T0xGm\nvV6idTkmmxWcosKHlj1JX6WezrpZpvsTlBtM1Ky7nmwVPElXaCnX7nZhSytKKDMqSC5zwtZBH1fY\nLteTM3QMr0PkeR3L8z/n2bvi7CNMjMf/LOBZrrPB4RWvKbaYqNk/bdPQ8zKyBeUaDc9MBaVscWyx\nD5/XoDs8zbgRxJEFliPwj0poMwrVBovzGg8xY4YYMhLElTxvCBxEEyZ3HluL4nEYyCWwHAldsTBs\nGVly3AK7EGQW2QhbotAIkiUo1bkJvFx1CwaS6X5fpk+gFF1aoOl3vzf/uHOiiO8okOtwsGur6L4q\nji1hlxXXDibv+n6/CO6B1x2IAhzqbWPkcP1/C4gCf/I1EBqoYgRVKlGVXJtGfOURDlV1duTasPw2\nJaGw5OKj9DkJdn71FL6or+Y7y+9Ckwx2FtqQhUPAW8V0ZAbmEnxi0WNsy3YwrnkJdWQoyjJUZML9\nDp6kyfDlceSKRK477F53FpQSgtxQyKUE7wuiFgTCdOfPqyEHpSDhqK72RL7dQSkJPCl35EHvyGN5\n4fyVvUS70mSqXh4eXcLbGp7j8qYd3P/UGRgRFclynSgqURnTVLHDJh6fgR0zKDsaAvBNSNiKQERN\nTm0apF7LMlaJMmcEuC72HA16ikOVRkbyUcKeMrYjUTZVVMmmPZxi8kgNIIi/YZy5coByreMyYBod\nHBWEJeEoEDrmgqdK3BWFQoCoSHjmBFreITDhXqPVqKDQYmPHDHSfge1IiEndZWI5rnquEbWQaiuQ\nVzk6U4tVK9iTaSFV8uIPVRDCwXEEszMhkrNBDEVwZeN2fvL0eeSEgjyn0ReI8tyh+dQ/I5HpAs+A\nSqlOIBxwbJlYryB0JM/sqjD6yiyGB3yHFIyAoFQrI9rKbOhdjH+rj+GxWnfP1EFPuSwX0+fqpwjH\nBaTZTncm1vLB6fOOsiw4Stb0IjdVuKxpL2NmlI/HDnLXfWtwokGKbQG0lIE3CW+65AUe3rGahkXT\nZHJ+Sg0CR4Gue8uEfzrL+NoaIrEC6b0JZhWddMHLDe3P8IPJc5jc2MKtZz7Ntw6u4vTuo8yWAwxO\nJjDG/NRtrZK6pMzty3/Kb2eXklF0hO0qGxdKOt5/CWJ5NAp7ItRvzpKZ50E4gkKDSrmngjalIixX\n/8BWBIEx12oor8vIIQN7xkP6/V5mOr1Ul5aYWabyyRVnvOa6/KuC0XPvrPCTXev55lW30dY2w7Zj\nXfzz1XfxYGUh3gkJ7ZiGZ8Ztc8+GNL522c/ZuGX5H3/j/0J4J6XXnEvVL51GX5inZdUEA3oINSNj\nxkx+uPF0fBMO5QtyfOGyX/GPdYfYVK3hutg4sjzDQ/tWvS7nerL4nxItenn4ZiS0jIGWLDFxtnsh\n54+EaZk/hVcz6GmZIKuokDAYXxSkuKEW3+Icbw7v4dsjFzBajVG0PVRR2NDfQ3ImRDhcZDQToWIq\nzA7GyCX9BAZUiktLvO/MZzhzeS9Nayap9BgsWTKENK/EjOGl2mhCWUbLHqe8CfdmrFTcTSA46lY4\nMj0gTMmda+oswogXhrxIUxpGxK2s6nMy4QEbteT686XPq6INa2hZUC+fIXhniGS9iuV1SGxSkZcW\naA5k2GgvI74tReSYg+n3oGUdSvUg1Zfpy9fQEkozPZCg8YJRLlizl77dbagFwfpqkhUaAAAgAElE\nQVSL9jMwXYtcEYzOxrHDFpODCTwzMkVZYWCqhg1PrEUywduT5aZL7uDRrauZW2mT63KoXTuFuipH\n4+pJZgoBPPt9yCWJQjOoa9J879pbeTLWTvCXBuU6H6GBEoXG4z50x+c/n3rr3QDckZ5PNi6QMiqS\n7VbThQ2Dhxr5xuRKPrv2YZ7fdvJZ6O3bF7jKasdnSUs1DmpRsPuzN5Pzltlw97pX2HioORd8ahmB\nnn4pkRBVhXLCQcu+dMwzLVN/2RCVHRGQwJYEwSPKCSBaOLWIXVYoLy3j61f/f9UZfTHUkkMlJKGW\nXXslueKK6ihVB2FDJeyCVVsRGGfl8EdLzM2EkDQLTbdQ9vpZt7aPfdONJHN+LFvCpxtc3/Ist8zb\nyv25Ni5L7OJvYrtYUDPOlBNhPB3Bd2qKvKVRDslYXkG+zaZS61LJHNlNcsv1NrYKgVHXTLxUD3JZ\noOdOLjSlJyUSe8v4pk0SnxzmK/1ryXoqDN/TSSXqyseHzpwi5CszI/vxH1MoJhzkeQWUwx6mzzaR\nCgo1j0lMr9L5wew6ylHBqWv60G4OkF6gUKpRCA2ZPH73bdyT7uJXh05BD1TpaZ4i0JHj8UdXY3oF\nmYU2xKuUfG4HqeetfRS2xMgsM3jb8l0cmGpk7Vt7qSw2+Mrqe1iYmCKHl/5PLyRy1GH83RX6XujE\n21DgJ8+cj7TLj5aWyHfYOCp4ZwUCVzW37gmV/dEo4WCJAwPN/ObpM/jRyKmYXhnPcQE90+NS2l5k\nbiQLAcKdaUppL8UGQXVRCd8RBUeC8y7eQ+qBepSyxKzwkrU1HENGzikMBiKMpiM0BLKI5grN9Ula\nl00webiWUp0gs9hix7v/g4OxAI090wwO1xFfNItxLEC5xmbju77OzsY4U/kg5RkfFBRKTa/srJ2s\nW/XbG77GndtfYu/YKoTWT7Pr0p+elI5bnF99Rbf1o9fez9a9btFr5kjiz+6AKgXxqtf8qUAUwDdt\n48gSvrE8crpAakWMskehEnAQCkR8JVJFL6rfoBCQqdRbhHbqbAk2MFBIMGcGmDZCHKrW82hqCWN7\nGxmfjOFNlFhXM8Rz+7rJZHykJkNYXWXOOX8f1yzcwiWrttLVNcXSxYPUd8xhxyw8zUXmHA+WJo5b\ncrkUcEdxi7LCBCMgqEbcAqiwIXrGNDXhPLNTYbQBD47AnWULOninpVfMX5SaXv/O6OsVlcUlahbO\nUR4KvOJ4oVlDyzkEJgwcSeIBfzfTcgjTlnli0YN8rGM3Pb6DPE0XXZcMMzhRy78u2kuPZvBIrolt\nU61MZUPkLJ183stDw8uYLQaQRz1o23xU2k08Qxq1z2c5+gEFrbVAph0K9WB6JYqNDpU6E33OnaWW\nqwLflIOedu0A/eOSW/Sut2l8zqIaUCjX2PgnBKZfUC1rOCWFzIMNjLcqXN2xg/Zwin89eiHby21U\nN4TQkxX00TTV+gClGjffOWXZIHMlP35PlYXdo4zNxNCWZvBu9+BblmF3Xzszmp/ZcoCl4XEezy7k\noellvLVuD2nbT7MvTdxTZN94I7PTYUYn49SdPsXZ6/azOjJMY+scq7sG6Jw/gae27NraeDWUxhIl\nQ6fQ7GCHTdSU7PrAa2D5XHX8SkRCy0GxAaz6KrF4nuKxMGJSxzcBZkBghFzBHKkq4TusoRQgfvoU\n80MzfKjuae6bOIX0bJBSWePieb3IPpusrcOeEJv1ZiqzXmxDxmmqYG6N0vSkhRGUKHlVQhdMUY1a\nVEs68b3uPdM7UeRb3/8B902eQqWkUfW6a7katygfDSHnJcq1DqbfVXaWDEGxzcRU3YJeYXkZs7VK\nZGWS8mCQiy97nk8vfYTt+Q7u3r2Wvp3tLOoZob9YQ5dvhnWeInd+fx5SuoDWN4E8nab/01H2GU0E\nEgUKD9dTWlDBRsIJWCSXy6SXxWncBIP1foJtWUpFjXmNM9yy8SImjtYgbMF39q7mujc8zWLfONu+\nsYZsm8BRHXZ+7sd8tG0Pu6t+ZkWYC+f10t4+xbgVxBaC9OmCfETG0iVMn06h1cG3ag5z1MfSUwcY\nKkUpJwTNbxmmuCeM76pJyqqgmPUQf9BLZpGNaUqoSQVlQkMqSXzszNeeGf3vlaL+mxHplSicWyBn\nedmWbueCU3r5+/uuYfDdt7A4/k6+tvxX/HRyPe+q28J8dZYZ28fOf3Sl9jvvuYHIwde/Amtrgsr9\nrqTxAHUE35hG2R7B6LDwTbjJgeeJIP9gXcpVZ97BbW0bAJnzvdYfeNfXjsPX30LHw+9Hm3ht24OT\nxf80EAWQKxbCcnAkifhewdxyh0pXhacO9SBrFppuUK2oiCEvImATGjLZ/Y0VPPsOd6awrTEJwH0H\nVyDJrurnaasGAfjVs2sJHJPJdZsUG20u6DmEKpmc6TvCE/lFrIyMMF6J4JEN1nQOsWOoFTNsUo5r\nZNZVkCd0fBPCNX5fWCDfoRPqU5AqDrlOm0BbhjpfiWnVojoYxD8uMAsCI25i1Dm035chuzhG3Xab\nzKyP+ufzyKkixlsr9J8Dg2/9IQDG5RZ9RpXvzZzLgY/cDB9xP5sFz16L76kAdlMZx5DID4c48nSU\nlv0VVl44wrujz7PzsR4AepNLaB0qMXqBD6UgsI74kIWDrYBnQqESs1GKUDojj2LKfOrbHyK7psJH\n1zzFSu8x/vV976H/bTrpwxLVNRUa9hkMXe5Q95RCLhvloY4VjI/GMNaoJLbM0P+uGqo1rnrti6q5\nAN0b34OR1wjvU8ksNQjvU0/kJXIVQodlHl7+ahGKF2PHZ77Lmh3vwH7i1YqID4wt/aOz2Nl5FqGj\nMnrSVT7Ot9r45mWQjlsrTf6mDYD8QleZj/GXOrSJaI607eOmtXfzjy9c94f/0P/DoWdtUu/Ks6Ru\nggMzdVR6IxgRm6YNDlv+z/cBOLf3UvKpEEI4dLdN8rG2J9hVbOeOQ+fywoNLKc2rsLB9gqsatvOl\nR97G0s4Jbhw7D8OWyZheIuFdPJNZQNlSwYaZsQiYgo7Th5m4v41ym4nIuTNoSsml8bjhkK+XCQ9a\nlOISwnptxePQsFtlmF3q5fH5j7K5bPOxf/8IdlQQOn2a51fcC0DHQx+gacE03l+FefwTrh3E3hVl\n3vWdT1GJOswsU11fyJjCkWtvofuOD9NGGf+Iq/T9Yvz6qXVYfhtLsTl0rJ3AiMBnOKQXuh6pzb+A\n4YscoudPUrUVKhEBssPmb64lfGWavpsWk1wkkW7xsSXTxY6xFtQ1XmIHDWKhIhkjwPXznkOeZ3P7\nv72FQr2Ed0KiGnVOfA7eQx4SHxjk7PAE6wN9HGxu4jNvOsIDBR9v9RcBWLXjKnL748T2QyUuyLeb\nnHnKITbtWUBkUhC+dJyrm7dx+0NvQS04bJlsQwX0lE1ih0Smy4NcEQRGHAYrrWg5wZZOP9jgnVCo\nRmykZgczaOMbUrjgM5/A0gWZbtBMSIb9eHNgKxIfH76U4WyUVc0j9D63kNx8C6n8SuCiFF59j77k\n+3/3it8lA3Kbalm86eQ+kr+vzntDZIwbjivoLv7Ojdi6qyr758ajH/4a5/7if6Ol/rw8QjIdhO0g\nSlVExSAwViXbrlNMeekra3TVz7CgYZp02cvopA9RkcjOs+gOZ/DIJmVLQZdMNk91Ytku+LP9FoYt\nkbd0tKQMtqvg7jSYLPaP4REGIalMpz7NmBGlYNaiSDY9kSnXzmUmhDStuUwbrwtKhelSBE2v2zkt\nNtpYQYuzaoY5mK4HCSJ9NpXIcTGYmEM14nbjSo0Wjmqjpl6ZIr7oB3rj2Kls/PXKE8f/5TrXFky8\n9pJ+VbxoBfRfCWdlFutg8ET38GSh93pJ8WoWj+l3fZjnFukExi3esWQ7S7yjtKuznPLlj7LwnQeZ\nK/uxb6tlT6iOqAIX3P0++q+WkbMKnq4s61sG2bhhGXW9brdy25d/xO+KOp/75vXoB70U51UZviRM\nKJpClmx62qaZKgbxdJoMjieIhIuklQBCsdGTHmZWO9R1z6A9VYewYf17dzBb9ZNd6sHZ0I6wBJWI\nwFmeoyZQZFF0im0dLeSHwtw8eT7nrDjIOY1HGCzEkSwbYdjgOCe8LcdWGGzdOR9fU55T645RMHUc\nzaYmUGDWGyU9F+B/nfE7tqS7iKglXki2Y9gyK6KjfG3DJUixKqvbh6haMvasjmdWxjvjkGvSaNAy\ndOrTLPcOsb3YSUAusy/diOMIEuE8kzNh7IS7NwR6NfLLyuj9HqTqcZaM6V6f2S7QF6c5vX6Upw92\nExyTsHTXhqgScf2mHclVGFYL7v/23Z67WKHrdD5+A8FwiYUd4/xT+/2Mm1EeOLIUa9iP1WRyYNUv\neW/NmWzctggmdIJDNkZQxjtj8q+X3UO3Os3DuWX84rnzQTgEBwqIfJF37nwf9r4wkt8tjtsFgT7n\nzltXww6hAdd6Rq5AJeKAZp+wznEMCV+oxNyWetrOGeI98eewHYFhy4icgqPAYzuXct6KA3wwPM60\nVcBMBFGO5rAWtCEfGuLK5TvY98Za+v+2i2DBOeHP/kDBx6d//R46fp2n731eBi/6MTclO/nOlvMZ\nz4awwyaSoWJrDnvf+210ofKJidVkumSQLNTpl/DFM7kelgdHGKtEGSlFyRc8JKI5AlqVof5m5J4c\nOSmIE6tiWjLluMOOAx0kupPMHYsydVcb2XNKNOplSj4VxxEgVNrvtyjWKFg6zK2w8E784fGNv6q1\ny4obbwIgfuUohiUjSzYbFj3AoltuxDPzytNKrTYQFZlwr3xSS5bXMy798EbeEdnGGx/4FMGjbjVL\ny7x0Dj/77E1csuGjDL7pR/RWS3iERZca+KsAxP/JaH66ilwyUQ4OM3TDQtdPKmLj6BbdHZM0+9MM\nF6KMzEWollQi0QKt4TSmI2HaEsPJKOuah9gx2Uxu1k9sq8q3P/s9ni308JMDp+HbFKAagmKrSbQx\nw9/1PAZAvZLhwfQKBgtxTEcmWfKR8BYomBr9vY3IxePqbEVBeMAm2y5hq6Dm3HknsTrDmsZh2r1z\n3PHkWSgF4dJjwmCrDkbUZsG350ifksCW3Q5EzeYZivOiJHtUwscsJtYLpMYSK1tH+FTjo4ybUT73\nn+92aQuagxFwWLX2CDtfmI8VM/jPs29lvUfi4nPfDsDoJbUYp+bQNwVpeDJJrifsbhQ2tF0yyHg2\nRGougKxbHD3ndgAuPvftHLoxQWKXYHaljVZfpFpWuXX9T7nhhWvx7HTl1qUqFFptrj5/M1+udTmA\nS759I+F+C0cWJBdKtJwxwviGFky/wycvf4B3hwbxSRor/v1GTB8Uulww+vL4fSuX34/dn3UTlasG\nzmfnlm4CI4LGy4/xcM/DAK/yIf399642GoR3axQbHXzjx+m5iw2EKaFkpRP2MCc7l92fvZmO33wQ\nFIdAn4oR+r/DZ/T1it/3GX0xCnXute+fsk/8rhRdQaB//uTt/P0Pr6PQbhFuznBmUz9xtcAXEvvJ\nOxXO/+KnTogJzaxwq+neScHHP3AfKzzDbCt1kLF8zBoBSpbGQ/uWnvBNlvIKtm6jz8gIW6AUIHHR\nGHOPNFGNOK8431LUpREHJl+7YOeZeYmm8vjdt9FnFPjU4NuZK/lYFJ1i47NL8MxK6OtncR6OM++d\nffyycwPdt38Ys6lCZItOJep2gsq1Nh2/qTD+iSqN//FKYDPwQeg//zYW/vBGjICNPidRrrHp/HUF\nI6Bg+iTS82WqywvU3Odh/CIbf7+KUnSp429buYNnvruO5Hll7ILKvPkTlAyViKdE8d+akKo2jiQY\nuEaAKeEbUggOu59FtlPCO+2g5t1rVb52mvTG+hOPT51t0dk5xWfaH8EvVbh20/vRBz1Uaiya502T\nfLKB6il5vrbqPgq2znf+5Y8L102dZ+Id1JDL4J+wqQYFpVpBuN9m6gwb/zEXfHzufXfTpU7zxcFL\nGXmqlWrURi4JtKxAn3MovznL/lN/zm8KAb781Wspx4Vb1LIhvdTEM6lgeR2WrT/CwYe7/+h5/bF4\n0b7lZPH7nqMAT934dd6w83p2rfnFiWMfGj2NZ3/9at/JPzeaN+QQlo3o7Ud4vUy/fQGpxQ6O6uB4\nLNYvPEpELWE4EjnDw96pRkxTYlH9JKbjJmTNvjTT5QCZqpfZX7UQGjYZO1uGphKRDV48GRvvZIWj\n71X46bk/YsSI06VOU3A0fpdZxmPDCyiVNBTVojzhRy5ISJYL8GzNcam7RYngkKAcw/WfbipTE89x\nVetOnkt1snNvF20P2iQXukWlUp1LpdRTgmK7KxwweMmtLP7ua+/bf0q8CGA3l23WeySuGjifDv8c\nv73n9D/62kuufI7pSpCtD7x2EfS1ohJ10E9SaFDzbndbzdvkG2VSS2ykeBWrLPPw+d9mwIyxUpvl\nw4NXsKfXLYAOXvZDrh8+g51TzRQORDHqq3iP6iT2m4y82WHwklsB+HGmnn/ddjGhbR5qLhvh8YUP\nsnL737iU64qKplikp4OsW9SPVzb4UuMjeIRgzeMfxzOkgeOykYJDDuWEoNBk43gtvMMq5VqLt67f\nwXzvFDc99mYCQxK5eRZfuuBebh48m2tbX2DKCLP1ja3gOJiTU0jLFzJ1WoTs/8fde8ZJcpZZvv/w\nkT6zMrOyvOuq9kbt1XLdAjlAgsHMCIQZuMKJK2As9+7sjuGOH8xghUCAAO2IEcghIYekltQyrfa+\nu6qru7zJMul92P0QjUBIAsGIhb3nS/2qKiMyMuKNN+M873nOGXBxkgbLO9Poksl4Icba5Cx7p7vQ\nFIvcVIQVK6awHZGapbA5Mc7hXAeXNp/muUwfha91UX9vFn4cp9YsED3tEEg3UP5ujg2xSfr1OQbU\nNKbrzR+fOHYtliWxqX2Cuq0weM8yRANqLV62siOBnTCgIREYlTHDLnZPnbZEnpZAkVMLKapjYZIH\nPGKXWypRb3ZI7hcIzhgItosZkpE/meZ/Lr2dccvHV9Kvp8uXZU+mh7olUzMUYv4aq6Kz/H3LLi7Y\n80GsU2Evb1cGNe8Z8hR7wexqEDqs0/GfIy+ME2NpK32fGeSZe9ZTT3mKj+CES2TUIN+vejEr4wbp\nbRrd9+UYfk8UR3NQSp4JUvfmKc6MpQjFK1zUPspSf5p5I8z3920FSyA8JHPNB55GEWzeE93LncX1\n7PzQNqRBL3IGTeP0v7chTPrYevEpnh3spylZJKw3mCuEqJU0ok0VPr3yPtao83z0zDsZmUvgpHWS\nyxdZ1ZTGJ5k8cHQNwaYq0s4o0TMmatHE1iX++Ks/4n3hRT6f7aPqqDy90M94JkYjrxNMVijn/Hxs\nyxPcP70W+5vNzF4kQNTArcjo8zL+jYtYjyWoJ12MJpvu/nl6wxn2PLCG7vu93sYzn1IRxn10P1jH\nDMns+vGLC5E/j98pGe3/t88TXJmlUtOwZv3o8yInbryJNw9fRbocwrr/pflgRlRAzb/8IReWuYSH\nRWo7Svh3etKM3Hk2K5ZNkb6j+1UfV7VVwJ92KSx1+d5bbuIjX7+RapdNoK1EZSpE9MTPqr8f/sR9\nfObAFfzJhp18PDZO2anz5zOXAvDkIy91onu1sHrqyGMvdgJMbJ5jcV/qhd+NZovRa2554fdXS37V\n1QWM4z8ze/pNK8t9/3IURBGnVOLM/1yPrNgYOR0EF0G3STUXuKB5lGa1xEgtwaP71oIlIKeqSJJL\nbyJDzVJ4V8c+po0YIi7PrVMRdR3XdnBNA2HzGiYvC9F75SiXJU+RswIs0eb4l+NX0RotUqzrbE5N\nsG+ui8X5ML6zKlbQxfK7aFmReoeJUJVA9DIWtXiNa/qPkzUC7E93ep//mRhyFartLkbCQtAcmp5R\nsVUvz8+ICHTeN8/gf4vwznX7OFNJcuSJpbTs9R6mC70y9YtKLE0tsD46ye0nNrOxe4Jc3c/kE120\n7phi7Ggb73qdRw6X3XoDRtxGn5WJDjtEj+cZfUcMqS5Q7TPYuGyMNl+Bhx/dhNXWQB3XEFeW2NF9\nhv839Rhv+tKnWPe2k/xRci/fmN7OyYlWLl9+isfPLMMxJJb/c4H5i5M8+Lef5Q1//xfUkgJNQzaV\nZsnLp3PgXe99nG8evIhYvMSVHYP8U+oorz/5ZjL3dVBYbqFmJERbQMv+emOilnSx/V5fniu7XL1j\nPz36It/5+htfcRtX8hwOXw2KS21cn/1CRunG646y8/BKBJ9FrKlMbixGeFj6reWM/jRH9IE//gxL\nFG+O+d+RK/qLMMMubbte/jPaivcAJpkui6sl6t0GYkHGVV0SvVm+v/pW7i6t4ztD5xPQDf6fgUf4\ncXYdt3Y9Td89H4GQSTBcwzRlDmz7Fn7RO9dfyPXwfL6PdCXM15beTkh0+OuZN1AwdGbKEYrPNtNz\n2RiDEy0IWRVXcr3eIFMgOiRgqwKh6Vd3oaWG88KYeOLbt3DJDR9Gy5q8/5v38bmhy8jNRIgdkcid\nZyGYIrFjnjNtx5o0T66+l6XfvQGpLtBy0TRjwyn6v28i/t0CE7u68M+6NJ2q8+gdt77wfstuvQHL\n5xkwRbfNocsWV7Wc5OanL0Uuem0Zd1x+Ew8V13Eg38V8JcgPVn+HO4rrmKw38eBTG1ly3hSzpRD6\nPVEiI3UKfTqRkTrpbT7qcRer2UCZU2k69rPrVkuK+BY88jm/BVy/TfC0Aq5HFjPrBN70+n04rkDD\nkXlf4lnee//HCHQV0R6MkNlmknpc5vnP3MyuOnzqrz9KpV2klnJwmxus75lk6uZ+Km1esPy73/8o\nD8ys5sbenfzd996NFXBZecEI9w48wpRV5mCjmZ/k17AtfIbbps+n0ND57LIfcuOx6yiOREl6rbvM\nb/XC0sGT2Lki6FkHIyyQW2fT0p2huCuFK4MRcRDa6qjH/mva+b/84zuxXZFOJcO/jr2B9OO/2pOh\n2muCJeCf/PVEYCc+fhPLbr0BufxSMtPxz88BIPr9uKZF5Zr1XnGyIWDGbHzJKl1NOfpCGVb4Z3kq\nO8DR6TZ8usnF7SMk1RIH8l28p3U3dUchLpe58fH3svSGg0iRMG6jgVOtUr9mC0v/xwnOC03QIhcw\nXYlxI8HubB+TxQg+xWJtfIZHBlcgSi5WUUXQbSTVxjYkBMlB85kIgkujrhIOVYmdkxBXD8WR6hA9\nY9OIihhhwYsQMUT++KKnue34VpjRkboq2FP+Xxq39WpRa7O5ccejrNSniYpVrv/mx//L+3wlnLjx\nJpY8/gH0Uy9dGe2+ax4kEXdyFmPzUlb863ECcoN7HtqGNFBGkhxWNnukbboSZfRkK0pJxOquI0kO\nzpQfO2HwrvP28f2DW1DTCj3/fTdSfy/2GU/ZJaxfxfzWMMVLath1GX+kRq2ko0yq2D6XLduGiKo1\ndkROccvkJUw+04loeP2kUh1KG+qI8yqO5qIURcx2g12v+yLHjTifHr7a64nMB3EMCbcu8dELn+B0\nJUXO8FG5ZOFnH/b8tcxvDJJfYxFtLZKfDuNPVQj5GlzWNsTJYgsn0y0YVRVBcnjf2j2klAL7ir2k\ntCKaaHGs2EbmH3pQH9mPIMu4loUgyyx+YDPrrj/GeaFJqo6KItgcK7cTkAx+cnYZyWiZkNrgbDqJ\ndS7HVs7IWGEbf6pCteADQ0RrqhEN1kj4K0zmo8T8NcZHmum900YyHRZX+agnwdZc+u4qItgu5d4Q\nguNyxd/v4tsHL6SrLcP7u57jWKWD4/k2ZophVNmicLqJpuVeJvv/WPsgR6ud/PiHF1BbXkcf1qkv\nadD9nyK+ySKOKiOlMzjxKEOf8jNy2bf5THYJ377zSoyIQ/NemLvA6+c1kybKnIK+6KkKOq4cR5Vs\n5HNfWte3Pc2kEedAqYczxQRXtZzELxrcO7sO4R8TjLxDIXZE5LIbdrPeP06LXKDo6Hz+E+/Gv/cs\ngq7jRkNM/6NI+182OPXfmgjGqlSmvZQAvaVC0NegXNMwRkPI3WUGL7qNr+Y7+eKR17Hzwq/y1zNv\n4F2J5/noA9fTd69BuV1FqbjYqsAn/r87eGcoB8Bfpteze76X2cUIH1i7mytCx/jToWsJqQ3mSiGK\nJR/vWHWIu06dh66bKJLNm3uOMVFr4vmH1lDvaXDx8mGOzLXT9LUAvj3DGOctoditoedtKi0SjuQV\nn5+98y9e8Z79nfaMfnnmMXriOZCgoyND5USUWx7fxPxsE9W8HzX/0m2k+ivvT88IFLY1GN7xXb7+\n1GbMsEBgXKB8IvprHZdSBlcS0BfgoWe3IDU8oyPprO6t0tTBvLLAkXffyv8Yu4R3LDnEByLH8YkK\nqiDzrblVfK9nJ189tOVF+zXiNlLt1U3qYv6lX57VmZ/1PsgriySTRa5PneLNw1fxd/de/qo/nz3/\nYpL7aonALyLyyAiucW4FI9qLm9cwog7oDqLkIkguneE8AcmgU8uxr9CJGm2Qipb5s2WPMW9FyDX8\nXJ96hqqrMlxLkbvFwrVtBFlGECUWr+ihvKXO2tQMiuiwyjfFvBUhFDBIV8NsTY3zfLqHsF6nJ7mI\nv6dMsK1MCQWlo4riM/HF6vR0LiAGbFTF5mwhQcH0kS8GaL7VR3jcpNwp00i6uDIIikPTYZFyh0hx\nhYURcUnuqZF4psH4pSHmKyGkwwEqbSL+tM38FSaOIzI/Fqf8hVbyG11mj7Ww0Ahw7eXPMfylVZS7\n4PhYF59ctR+ld5YjO1d6DodvzpC5WKYuSzjtBsmdGhddehy/ZHJ8sIcz77iFGzfsZ2PyEPdedwl3\nPXYxtZRMbk+Cxw+sx3gugiHLWN9qoiH7WLJxivR2ncYSk/9cWEu57ke0BJr3FKmlNIyo12/mHygz\nfaiNatnHYD3Bx3uOkBYdjh9cgr4oolSFF8KazQgvuNsC2Bov6v38eShVgXrS4Zod+8n6VO4ceIyP\nfvG6XzmWKl3eCpL8S+5vAC3jBUr/1ORsbDKF2FXl6uXHGc42ox/xIbhQW4spbNQAACAASURBVFXn\ntqtv5s6zm7nq8gOcHW57NUP6V+LGDfspdpW4Kpjl9lKKa2/749dkv78uBMeL2agmRGpxkVpSxJEE\nlKr7gnsfeKZGOCK+eZHmAy7yIR+3Hb+Y3Uo7mzsneEfbQU7U2vnxgfXcUe/hquXHGc41s61zjDOn\n27m0fy+v3/N+uuJn+MzJK5jKxtB1k3sX1nHzY1eQ3ZViTA4j7Qnjn3Mx9kQIDkuoeYGmQZfwGIQm\nPMISmrGpJkSU6q8uFKQvkPAtghEW+eDl+xncbPO3776T6+/+MMaiD6UgUl5pIOUUpLqAEQU1L1Id\nC/G54hrUOYXglkXWJ6aZ3tOBI8to92joOYH5rQJaTuLaK59FFWQ+MrWN4cVmXNXFNyeSFXSsg1Hm\nv96GVFNp2VMnNCZya+w8jhxbwlwujDEe5LZDF3LgzBLm/BoDvWlOHe2mYclUO1z0eRnBhfT5CuKG\nIq09GRLRMsXxMHpWILdSwLcA+RVe1EqpS0S0BHxpCX/aizbwLQCInJxvY8SNUPheJ/ee2opUF6jI\nMo0Bg+AxHTMg8ERLmL9IjvK1eB/uWT+WHyKHZSq7mwBvBUApu+wf60d6OsDup9Zw2fXP09m7gO2K\nfOafruJbwxfx4ORahgpJnjy+hvqhGLmgzFkhxVQmxoVrTnOm1Iwri0irSsgjOo7iGZDkttcpdwjY\nsog+L9E416fnqN7cIc2/urYTK+hir6ggzb00PmTVmjHuS6/jb1sHeajczvzplxarqwMG2y85zpo1\no9z7+vvRm+cYE5te0jf4q3DT3s2IxsurQKIHM7imiaCquIZJdUO7F2cRsxADFo4jUqj5KDsa66OT\n2ILEydk2GjWVcLhGUiszUWkibUVZ4Z/lcLUHgi6l3ArkE5MIsoTY3cHYH4Y4f+AMnWqWWSvKtNHE\nvlwPZzIJbEfCtCVG83GMgoZjSsghE0WziIZquJJLMFDHdkRCvgZtsQL5mo9yQ6M8GiFxxKVpsIEZ\nkqnHROpJFzdm4toiJ4714lYlPnTV4+w9uRR9/rVxRxYcgd2ZHt6xZD+tcoXvH7jwl76+usR4UUzQ\nq4Wjwtd2b0ZefPkxF7rvOFLQGw+iovH8klbmrBCVuo7kN+lPLnJitpXuaI4lwUWWdMwR7CjTF1/k\nE/072VlbgjDj4+hCO0uXzJJTFSLzbXD4FHJ3J0JHK2KpSu1PDATRZV3XFNd176MjkecP1u1jWe8M\ny/xp9uR6+cGTFxFpKfPVS2/ljto6OtbOIfVVcUSItRUJNlW5aM0QoXCNf9r1Jtw4xLQak3f3Ydky\nvo4yly8/xVWRo9w9u4F3te3l2FfC3vmWZWRJpdIbwpZFtNYqtaqGZUvEwlViepXrks/zbLGfmqGQ\njJcIaAYT9TiWK+KTTFwEgnKD3fFWmocDUK7imiYj/7KV0I553tJyhILt5w2hYwwbzXwi8Qz35tbQ\n15RhR2KYfYvdRAJ1Snk/ctBEiJo4iDiCgD/YQA81aDQUKlWNZck5or46AcUg/DcyarpAaWkUIyxi\n+7zr6s9I1Ju9eUfLW6Qun+PCjrMczbWzN9vLbD3MdCZKdzxHdzhPJSBSKPlxXThZb2P/s8sRbIFg\nb5GyLoIlEjvmoEwsIJY9d9RTn2rmqcu/gOmafOye9yLVPIWNXBFQ8yJ6FkJnJJSy18ZXXmEgaC5l\nQ2NN0yyztQgPza5h3vIWfN7ecpAns8sYrSYQBbCeClFNegqwP1n3EOdp84TFBjYu9548HyEcQ0IC\n2+XhT32Hf+y9iMBxnXpd846hIFLzCWzsmqBsa5gjQcRZjZFOm+eyS+iI5rFklyfnltIXyrB3/0oS\n9w6hmTrzW30MvG+Iv0ud4o1Db+SxagtVW0UWHWbTTSxpWeDfv/UO7FNB2BlioVPGrUuUVZXcbBhX\nhvpkkKNj3Yzm46zZPEKm7ifzkw5KgkbstIM8nUUSFCpdfupNEkbk3HOJAx962yurIX6nZPRLx58m\n7K8zfjZF0VHpOC9N5XTUy5fLQ35bA0uUUQs/2yb41jTGYJCXzZYAGn6J79T6OXTdd/hMdh1XX72P\n0QOvXEHNbTHxTf9swsttsLA1EUfxZEdGRPCMAM49P/30YVk6q/OdaDcT6ThXdZ5AFsu0yxI359t5\nIj3A65L7+P6RnzvxIi/IR/+rOPCBf+fmR3dw6A23AbwiEb3uzU9xbKjnNXnPl0PT7kWvSqaoZC9v\nx1HASlos60lTd2VKmQALToB1TVNUHI0TuVaMhkypouMPm5zKtbCjZZisE6DmqkzVY4z/QQ++2zNg\n28jdHVT/zECSHVLBEhPVGHvzvWStIM9P9SBKLmGtwcmRdlAdRieaiUcr5Os+XAE0xXNj64rlqZ1z\ngGvyVWnYMunZGG5OJX7MotasolRdSgM2arSBqllIYzquJNC9bZr8VIT4gSquT2XS34x4JEB9Rwkh\nrWHpIkJVQV5Q+OhbfsLjXR3EHvZz6bv2M5xpJif4qEyFYU0Z/DYf7znCJr3Ex7bt45bHNxF+XCW7\nQsA1RQTZoTZgEQnVeUvsEJ/bso8LP/kRvvWTzdw5fD5v+PRu9i4MUG8+Z0ITglozGCmLRkCl1m5T\nPt5EreDD8rsYZ8Jec31FQKtKiLY3ocpXL2K6MqWgiDymc9ebv0yzpHDDsasQx/QX4lSkhhcb8IvS\nXNEGV3jFW9Bbke61eHL1jwD44vHNr0gyXcHra1ILHhF994cf4diB/l867gQHzACUByzslEEg0OD4\n0T4MRBpNLvq8hGvI3Ht0C7YGD2+7j68cfG1ilr5ycDN3XPQwsiD9zogoeAWB0JSLpQuYYYHYGfsF\nkmcGPYKqll38iy7BKRc96xFX0fIcWasBhfzuZh6jlzPlBIrfpFzxcf/qh1Gii9x193ZOv+9m7in3\n8Kfdj/FoaTWbE+OsSc4Q0ercNfAYi201QqsLVFWJ2IocldNhtKKXLarUX0w41XNGRa+GiIJHYIKT\nDbSCzfv+8DA3HrqC257ZwfuvegI5ZRDuKlE4mkApCehZAcEWiO1IUygG0CcVjJhDpaYxPNuCtKRC\nqdOlGvVR2FGn5RGJ1CdGeG98gsONBs+Xl5DZ1YqtChgxFzdk8fC1nye9Q+YrV/+Ae9b0krp0jis7\nT3H8yBLan3LAFZFM7x6s1nUWzzahFkU6H7FJHLQxg+eMHy4uUs37KMyFqcsCVl7DP+di+byIAtES\nUIsuWsFFz7hUOqG6uUZ7/yLWkSBKxTPH+Ju33cmP9GVYokdaAxMikWMSStklv9JluhjhTwYO8pG2\nE9xw4T7+fXQDUlUiv8pBNCTyq1z07Vnet30X33rLowS3neWTTWf5cbGLuFph3SXD7K10oC3IyCUJ\n0fAMbS7cMMTxB5bj1mWKO5vRs170izvn85x9LU9O7DujoS1KOArUu7ys0VqLl+XouUq+unEtGsLL\nElGAg0cHWCiGCXdPcM8PXz4iQMlKTA62MHyyk5v2bmbv0eW/NhFdf81J0qeTr/j/yJ40giThmiZy\nS4rsphhGzAXdQfV5hUnblCgWfTgBkfl6mFi4yuJ8hLlqiKKoc0FilFatQMYKIQsOG8LjrHr9GQ5M\nbUc9O8/CNUvof8MozXqJNb5J0maMRTOIKtkMRBfoDueYqYapVHXERQ3BEpCjDZojZWqGgiDAssQC\nAc1Ely3qtoJpS9SPRQmOiwTmLdSFOlZI9SJjYqC01HEVFznZwBRF3t57gMv7j/HU4bW/1vl7JYim\nQP+WSf57y2nOv+2TL4rieTn8JkR038e+wJ9uOshnF9e94vYBKYFUbmBPzWKt6CB4VY58xc/GgTEe\nXXs3zb5JRtwUb28+QMYKMV5t4vBUO1VX5d5nzsc0Zf7tjd9nZ3YpzZESrgSTPQHiP57BKRQRShXO\nfLmD8kKQWLzMmaOdPD01wPChbg49spKn6WTMjTM2FyfYUuE9PXv5s53XcV7/BJP5GHXTk/MGNQPT\nlpipRrAR6WufZzCX4g9aDrNv7wqqnTZM+BgsJhmSW7ii5STHK53kbjkX6us4NDb1U0vJnpRSE7hs\n5SkqosJsOoY/2GDcTGC4Mu3RAiODbXxizU84U29hTXCGI4UOlgfniCsVnp/rZeF8H3ZzG5k3dWGk\nLK5ZepRubZHxRoJ7M+fhIPLNmW3cN/AIfz14EScKrWRmIxiDEXx9JeLhCn6fQaWhousmjbqKTzcY\nSC6SjJTZd3wJ86eTZI8niD07Q31pK64iUOj3zItcGbS8iBES0UoOjibywTc/zOdPX4Yi2+xoO4Mg\ngiWKJHwVuvw5LEFkejLBhcvPMFGIcfWGwwzJUcyTEeygg6A4lDfblFpTONEIvrE8ez9/BxFR5S1D\nb2fR0mk6ImH5BKygV8gvLHdYefUw8ooKcyGNaKzCgY0/QPJneHh2FaLoIoku2bqfJr3KqUorB4Z6\nyDT8VJ5IIZpeD350IMt5sWlswaFJMjBcgYcePZ/QZA1peJKZt3XTv+EUD+/fhNHXoG9ZmkoIGg0V\nbV5mfD5BueQjNCZQ6rc5lWkhGKozeKKLltY8O+KnCUgGyf4cyz+YYfiJJSxsEnn6oh9694FvFkuQ\neXxyGWvjM4xWYoxXmjj6h7eSXD/E6tedIa8G6GlZZHA2RXSfipxWEVwBM2nhG1OYEoOoQ36UMvT+\ncBFXkZHm8wiCyNQ1YZJHbGopkXrCK0h/fMcrGxj9TsnoFZF38samExxT2pg71Ywcb2APBtj8fx3m\nhJsktl95gYju+euvsK/Pz1QpwsF3fZePbN/PR7bv5+tPvfghU894US2rt+7lcysOcUUw/ZLX/Dw+\n9rZHOLx3gGqrQOzyNOXZEOEzwgumLoLjSTV/ilIvuJtKrL5wlIeWP8imtgO8JVhBE+p8avZibju5\nlc0dE3x3+nwq0z/3Jfgaqga/cdi7oF/Ir+Gmna98cX+bRBSg6VAJt1pDioRZ3J7A0UBPy+SjElf3\nnSAYrVMydQaLLRRtP1F/DU2zKGSCSEGby1OD9GoLKIJF3g7glw02NU0Q/ZDCrtXno5hBsnKA/oFZ\nJMGlzV/gsvgp6qgEdJOhiRbGFhJIuk2tqhKM1diWGmV5dI6Qr0HV1mgOltElk7DaIKrVODzRifKT\nCD13FBBcP4HJKrVWjXqTiH9dHgSB5nCZxXqIWrtDJF6hrEiEj2nMXhyitqzB29+0G123WDyWpNEk\nIG3Mo3WXWbRDLBTCfO667/DgwhqcB+IE7leopmQMS8UtKXz58Ga+1RjghvbjfGT7fj4tbST2vEr0\nlMBTH/4SN5+4gCe23MPbj/4hpwQfR8sduIKIf87haaUTM+C5kBo9Bq4l4qigZrxVGDPmcPmlhymG\nJa7sOcWmpWc5v+8Mw4/34cgC0cMZyksC5E0/eqpGZjEMlsgn1z2LX1T54iMX0X3lOEVV5nU7jjJ+\npP2FKCXL7xmN/BRf/OTN3Dm74UUZoD+P8mCUf6uv4ebZ1VhVlVqH7Vm6/wJ+uvVP9/+riOhPIZmQ\n2DxPaTbERzc+yYFqG7rfxJ31oRaFF9x0h99382suo/3Kwc2vGbn9TREb9IwdHFmg2gaBc2ZqjixQ\nTYpYAfBlzv3tHBlQql4siOB4EUda0aXuU2iIEvFEmUpV47Zvb+Pw08sod7vs8ke5Z3A9R5xOdg4u\n51+W38vxRhv/nDrKwG03cPJENyMzKSI/8mHtC7Gw2VsJfTXIDUj4sr9kUhTAlUVmLlb5+Ib93Pq9\nC9C2ZRmrxrlv2f10+Me4a3Y9ZrPFX739LnKdMrP39GAFvAq6lhOJnBaQKxJWWcXSvFW3jrskbF3k\nk2+5j6u//yFuT29i6kQr9ZTLN956C8/cu4mTH/wGm374CYbMOLc8t53qiSijboRDw32AgPzGLAXT\nTyPuIloCLc+6JA83CI9ZiJZLdqXO2v/7GGdnW1hx3gRzowl87WUaDYWO+wSyq2QczcVowsvrzLoU\nBkQq27zM0eRjCrklLtqGEuaqOtrKMj+5bxv/ds3t3LTxOR6LNFF/xlP7ZFcJ2AkTsaTwxVMb+eTK\nAwD8yfIDfHZmA817vKp0Y0ONwN1hvvWWR1n1lY/RsjzDJ7/2R2QfT3H2RAfP2Z1Ejyo0NlQwAuDE\nLKSSxMzpFEoV/DOQ2WCz7IoRHrz2+wz3Cxyy2pAaItFTnquvowjUV9XxDXnKG8HxCMivY2rzqyBX\nBZ474rl5V5c2UDKvvQfjLyOiALHhBrQ2I9gOxKNkNvoJTAvYiogpC2zqG6c5UkLx2aiShY1Iq6/I\nouvDmAmQM3Ri0SoVR2O5fxa/aBCVPIMq9YIye5o3omdgfrqJI3KSOTnK6UqKtaFpjhY68MsGDx9d\njfZMCKGo0HHBNKm2HFd0DtIVyBHz12gJlFBFm4at4CIwPJFCPBLCn4boiOn1JmoypQ4ZMyRQSzmE\nk2VMS0I+EuLCi08yWk8yXGtheij1S8/Hr4PCSJSb9m7+lUT0N0F9ZY0xzc+2wDC3PXrxK74u8cQ0\n+DToSjH6Nh/V8RBOzGShGuS0FECUXIq2n9tOn8+S2CKWKxHwmVRMlXLBx4+v/iJzdoiMFGJwLkXU\nX6cjlSP91g5mt/QjRVogpyFYIuWSj/iyDMZkEMH1ok3EmkSx4ifeUsRyRPYvdrOsK01Sr2Ag41Ms\nVjbNsTw8R7oRZlvzGIfSHeR+0k7sTomTd/fhaDK+S7KUbJUVS6f5ct8PeKy0goRSZvbeNnBcRJ+P\nzMWtWP5zuZ2igD/SIF0I4yBgINMRLKBINoOLKaxFnclQhL0jPeTEAGG1QUAxiEhVVjTP4QZgJtOE\nGXERTBEjAmfrzXws9SSrA9Pc0DTNKDK3ZZZx5nAX4qDfc35VoaN3EdORWBJZRFAhEajgSrAxNclM\nNcLwsU78MxKtuy0Csw717ii2X6IWl6i2ednQruZiBDzXXbXsMnddnYaucXS4C0sSSIVK/G3bQwxE\nZnl4bjWrIrP8WWonn155jOcbMd7edog/j49wWtaYC2osb0uTLkRoSxbINvyUe10qS+KYAwt86Ogb\nWTiZRG4yMB0VbXOWSgSS5y1Smg+SnoqzmAsTTRU5uOkHfKfYzNFqJwOhBeJahaXheWZqUSYKMcZG\nWggNKdhVhcAMzF1q4Ypw7er9WEhs0ad4tt5Nv5LloTu2ohQMCAeoXl+lJvvI399KpdNFDxhsax1n\nSghiFjVCy/LUDYXQxhw1UyVyUEN/0Edpi8mKZJorQ8f57tyFzDVC3HdkPbnzBN66ZT9fTa/jr567\nlMNWB/vTXdyx4VvsKi7lH5beS1ukyDsfehc7j6xj19kV5GSVTC2AZcpUowLyqhJVQUasS0iGgFyQ\nCU24JA8WsQMajk9m6m2t6HUdS1PILxOod5sExmQcBW689PeUjF71XIbbJrZQ+VELSkmk0uqijKic\nnW1FWxRfJMn95q4tzAylMKf9nOwUeX1ojOcaEiN9YTJHXyrXyS1XeFN4im8U2nhifvlLskIBas0C\nw+EI+679Hs81BTnzdA+h0RdPksLP+YTktho4mstdF9/MxxJTAOyrR1ipNvCLKh/ffwXL2+eIKHVy\nDT/lc/ru3xZeTsr7vxPx4zWcQhExFCJ3fhOhCah0uPiSNbJWgEwtQJOvhiy6hNU6bb4ikuTgCxmc\nHmrn0Kkl9PXM06wUcRHoVLPUXZXhaoqJWoRKVEbLimTPxhi1omztHOXp7ABdvhyz9QizCzHUGQWh\nKKO1VemK5ekNZPCJJnGlwuboGDk7QEA2mSg1MTTXjFXQiAwLyIZAo0kht0rHkQQacahVdAhZuAIw\nGEBbXWBuLkroOT+REzkkNFp/UuVAbhmNh5rIXtbAQsJJ64gnA6TzUaIHZR4Y3Eha16h129T8OuEJ\nh/CY40VcJKChwU3TaxlWVGbtIIWoTGW5xX/cfwlqTuK5lgC1L7dzZqgD9eIMeZ+CYMoYURffrIxo\nCujTMmpeoNHskDwAatFFqkmkVi1Qc1R2NA3xpd2XcfLpARAEEscqjFwbxQx5sklpeYXaSBhlSYk9\nVgd/1DTCLU9soW3VHIWH2jhWbUHLikSvnqF+OvQiIgrw8J5NLxDRepyXzf/VZmTkCQ21KKAviATe\nmMYcfvEqRbXVpdbuoC2KL7rXXg3edMl+NveM8vDcKt7UfYJjC20I8ypK5Wdk9HdNGn9bCE84uAIU\ne0QSxxyvv/kc0fypQ2EjJiLX3FeUVIMXEeOfEmlMB3FrCqFpF6XuEpqExaEE9ZDEYiZM5LjCt50N\nHM208R+5AUIP+QnOuISmPEIsOLxqIgr8ciIKgIBvwWBhq8CpoMrwYgvOuB8jYfOF5y7iofJyvnLR\n7ew3unn8gS1M5puw/RAeASMMatkz5gnMuFQ6vfsmOCoQmjQQELg3vQkz4iLGDHxtFYySxv3za6i2\nwDceP5/EMZfk4w43/PmPmUn5WN02w6Ko46R13MEAekZAX4Tm/QZq0SK7QqfSqtBokqm0C0ycaeGt\nb3sGRXQIJKvMnGiht3+OXDpGYNbBFb1CUnT4nCN71sU/LOOfFWnERGquSm0uQLWi4xwP0Yg7PDS/\nkoNqkDv6dtJ/8UEee2IjvgUIjkgEZsCIiAw1S/y41MmlwREOB6IMJUJUYzKJJxXMgMBnJzbjinBo\nuhtpTZE3Xb2fo1PdSBURuSYgT6v4ZiRc05tfwuMOtWaBRkzAbrL44PJn+F52FQ88tYmmYwKFZZ7M\nuNImIjoQOeLJstyNRd51wfOMRQOUaj7azp+hMhp+9QPkVeDliKgRcZEav12X/ejRAoLrYs+kEZNx\nyr1+1LKLGQa3yaQtVkAWHVp8JQxHRpMsNoQnKLgBrKBLKFjn9FwzZVdDU21a1TwNV2HSiDNbj5IJ\nKVSXWNRkGTSHhVqQdckZZhsRxotNHJ9sxz+kU15iY4Vdlnam6Q8uoIkWDiKqaGO4EpOVGPPVINPZ\nCG5Wx1U8Mq8WXdS8QT2pYkREzCAItoAZcXBdgdCSIl/v/yFvjYyxgMS+o8t+q+fztYK8oDA22Mbr\n1+/h7y849LIxQQD19giSoFLq9YErYq6qeatZksNsNUxrsITtSry/+1mOlzto0wu0+Qok/RXW9kzy\nt/f9Eav7J/lI8hk2pUaJ+WoktApTtRhFS0XdWqCe8yNYgAslSyM+kKWrf55ga5lMIYi2KNFI+1Bb\naryp+wTrwxP06IusDM/SFcxSc1R0ySJv+ZmtRZhbiGKqInpWJLNWI3ntBOm9rSzfMIHhyBiKhO1K\nvCl8hJ3/GEZqSWEvLGAPdGCEBOS6gNli4SjQF8uwLjVD0dKZrUQYzcXpjOZZsHzMZSK4hkQmG2JN\nxzQj5QQNFEaqCRZqITKOjlSREE2B+WqA2XKYETnJndMbGELjR6NrGVlIok6p1JMOWl+JQEuZgGIS\nUA1Sepmy5eXeK5LDcDZJeiwOmkPorIgrCugZE//wIuUlIWzNi7OxEhZaWiE45RW9Eo+NUQulOBMN\n4mR0rlp3jPl6iKfL/Ty2uIKdq+6mIlTYXetjmTrDSaOJ9fo495R6MVwZWXaZrkRQVIu5ySaQANGl\nbf0cBzJdlCs64dYS1Zkgy7aOMznWTOSAxrxP9xyKe/Ls2nETG+PDPFVN4BMNRuvNpLQCNhLpRoTF\nepB82Uc0UaacANuVkKsiDiLtK+fpC2ZwXJHjjTY61QxVV+aZH63DjKgIsgRnA/RePMnE8x1UulzK\n6RDjVhhjKsjFF59g8rEelJxEOSzilGXCIwKNqEhiN+yOtPFgcRWaYnNiqg1Zt1CHfSw80EZmrIlG\n3KVqKlimxP35NVzUPMJ/zm1hb6aHts9DI66TvCBNMlhmPh9Gkh3suowzp0PEQp9UEFwITLuYQYFG\nk0alQ8EMSlQ7ILseXFFAywn4ZiQsP2h5uOGNv6dk9IOhj3LQjXBKiuOfEpEnNb7+l1/i4cfPx5V4\nSe6naIHUgKF0G185vYX7jm9m1/Yf8oYLn2RXezul4z/rDT073sbu5gD/+eSFOH4XLSO+qEJr6wKb\n33qMry25k0nL5pabrqHcZ+Ob+9nqjaMIlPq8ANtKn00oWeGdq/fzznCOq0+/geviZ2iVcvhErzfh\n+u7nOS80xIebZnh/8yBfOfT/zwfhnyJy/xA4Dm61SvaKTpSKgFISqLU4hP112oMFVoTSJLQKAdmg\nz7dA1dHQJIvW5jxlv8i+p1cyFomwaIUoOF6kCUBdVsjWvN4np6eOrFscX2inaGn4dYu9Y72Iiyqu\nLEBXjXikwurYLDkzQLueAwGeWFyOKlk8N95HzVRwzgZxIja2ICNZEpHhCr4cSJaAI3qrSYYgUjdU\n7HbTM2Qq6CQPOaiLNVo+N8lovhMzCMEZm0JKwZ/24hlcCTo3T5MmBAMVbFPCH2qwbO0kI60BGpJG\nccDBtyAi5RU2bTzDQj2ETzWpIrO2c5rwQIFqi83p8VaEukJxwKXqyOhTKq4IckWk0eyNUcnw5HJy\nWcSICF7vQqdL+nAL5Tj8S+9jfP+hi0keMnAUkcwH6jRsmfBZETMsUIiIKDMq7oLGrsu9jNELNz3N\nl++/msbqOm5FRssJ1E//8oKK5Qe1+OrGyy8SUVcEtSR49+avQUSL/TZaVuTomR5ali3y/OASjp/s\nxbRk3n/5Uxw72YujQmhDhr6laRbHY796p/+HIZB2qaZEKp3eTyMo0mgS8WU8CagZEiisNYkM/+oH\nc9EGFwFHE8Dx8kqrCRFf3iE0DmJDopEAoSjjFlWss8EX3HptRUCyXsOlr3PwzRlUWzUsReLWHbdx\nu7Wa67c/yTODy+heNke+FOCZ4hIKRxPeGCyJBKbBkc5JX0su5V4HYWuRyBM6tWYBa2uZqhAgu0ZA\nWFZGmNNwwjaNiooWqxN4PoA+L1FLOZTWGXzuE9+l7Ghsjw0xWG0j+x9dNA1ZVFskBCB5uI5ou6TP\n92EFBFL7a8xvlel6pE6lTSGXkjhwYAAxYtHRtcjQ6XYaCRelIGIFQALdQwAAIABJREFUhHOqG2+V\nf+4yE8Mve323YQGpLiBwrm+7xULNyoh1kfG5JPWWAteG5tm6fTd3nLoA9Zwbb6VdQG+usSUyxhdm\nz2d1eIaDZ/voXpYm0yNSbgE1VUOY07jq8v38a/89fHlsBwVNwrEllLKAf8EB8We+CaUlYAZdrGYT\nQXE4UOziouazWE0u+ZNNVDsdjIhII+7Q6LSodLooeQlhVuPQVDfHrvwuUwmbww+8fDbxa43fNhGF\ncz2j5SpurYZoOditcRoxr2dbaG1wSdtZUlqJiFJjaWCOlFYkLlcouz62xMdZF51m/1w3iDBaitMf\nySDgEpQatGl5LFmmZOlUTJW25jymI6HIDmOlJmqGSj3jQ1laQgkZtLXmWBFJE5OrNFyFk8UWJitN\nTFeijM0mqGT9OA0ZpSAhn3MRTewvIGfLCJpGfqlMPWWDBKYk4pQVOBFEXlrm+gev4/Bzy3noo//G\nf+z/5f2dv0+4++C2VySiAK1PF9GmcqhPHcda2oFTVTGTFmZDYWvXOGOVOKYrgSgiiQ4506tsXhQa\nRhUtBtU4xwtt3DW/nrNGijPlZtL1CH7FpDVWxHYlaqMhrDVlnKiDHm5QPhslMxEj42oocwpGwqHj\nvFkuaT3LNZFDHKj0oosWVwcHiUglTtQ6OJZvY74SotlfJmv4Wd4/g/14GMEWqB+KUO6GhcUI2WKA\ngqqjSA6P5VZg3lrFKRaREnHUIxM4XS0Ue0BprhHyNVAkB1WyEQSXmqVyZecpfLJFUdCIhGtUTBUx\np1Dwy0znozQFqgTlBoIAlipQkSSIWoRiVVTNwhFEAopJ1VGZPtKGtKDQiDvoHRXaY0UGoosgQIe/\nwFNTSyjUfKQzETIzEeoVDRSHaHOZWtlPcNrBCEvoU0XcUABEgeJGg0SyRLmuoRZEUvvLiDWDensY\nbV2JSl0jGS9huSJrw9O0+wtE5BmeLK+g5qg8W+3kTDXJgH+ekFQjawf5Yvt+Bl2diN6guyVDMlFE\nCthc2DzC4XQHjiOSjJRpbc0xXwlRralIZYm29XMs7Ujz2Kr78Ysq3TLsr4c5UOklb/po04pYrsRQ\nKUXcV+HC1hES/iqnR9rwt1ZQTmtUuxx2LB1kqhZje2SINwSH2awLHDUCHPm0jjKVwWmOUepUOGi3\nYqytI85pOEGb7vYMerxG0fCx4PqwdbyYGN3BVkUsn0CxR0Sfk5DO6EyLAS5fdZI6KvUmh1xcQTRF\nQmMC/RdNMjcXRfWb7J/pZqEUpDwaIfCuLIUkGI5EphTEqikIMzqOzyF2QsI/LhE/YaBUBBxFILWn\nAJKCVnQJpA2Sz+ZBDCJYAtV2x2spmoDUU/O858bLXvG+/J266a6572+w9sSwdV7I7MxtsIgdlLF9\nAlLt1R+aFRC44+Of5dov/QXyL+lLqscFbL+LurIAu6MoRe+1xQGX8LBAbqtBS0ueiFZnaKid/qWz\ndAVybA6P8uDCGs4sJFjePMfd/Y8CUHbqBEWd94zt4MAjK2F1CVWxuGHpLv79rjf/F87O7z96/uZ5\nBElCUFVG/modts9FaK2jqBadsTwXJEYwXQm/aNCtLWK6EoYrc7TcSbdvkXkjzHQtSrsvz90nzmN9\nzySXxocwXQkJl5KtM1pLMFmJcl3bHg5WenBcgb3z3fgUkxXROaJylblGGFFwGSs3oYg26VII2xFp\nGDKNiooggKja2EUVuSgRGoHQlLdclF3p5SBZKysIoosoukSDVco7U5R7LQRXoOmQSPPTCxTWxin2\nSJRXGOhjKloOEMAIgZ7xXHerHedMqhzvwchRXcyI7TXNdxbR742ysN1AWlTRMwKRHWlmxhL4J2Sk\nuiendEVQSi7ZjRbqvIy0okStoIMlIGgObkNEMET87WXYG6GedPBPe46W5QETJdLgiiVDPDy8Arsm\n03mfiH+iwuyOCI2Yi74oUFxmo2RFjKTNxesG+V73Lj69sJLb79+Ob16gsMIicuq3t/Juqy8tNv26\nqLS7DGwZZ3Qxjvb0i0nzT910Bz/4NR6o6vz57R/4r73Z7xmShx2yyyRsn4vR0yD1sIr8C32aRlBE\nLTuetKny6ti+ERBpRAXkuosrQCPmEabI6G/ocvYbQl8wyC3TCY8ZPPrdWyi7DfbUw3zmA+/B9w+z\nHDvRRXhYxtIBweuhVSpQXtFAnleJnIHsWgctI+Gf8TLppAboeQe1YDG9XUOuQW1Vjb62RczPtuBo\nAuVWCfvKPMVsgNhehUbMk9FafoF6wrt31Ly32rx4nkvslEB0uMHiGp1A2qbYIxGYdbDfmUWTLYJq\ng0uTp/n6U68jNCxRGrBp3i1QTXnS+1KX+EKUC8DchQ7REzJa3otdUcteX7Dl93J3RcP7/gr2FDAt\niZWpNB9ufYob911H048951BXFFi8ok5zosjccILIkIRoeREGvuV5SrMh9LRMI24jJ+uYNQXqIoIt\nIJdEzISFEm5gZnWCrWXKCwFwvL7cG7Y/xusCp7g9ez737tpCcELEN++5/go2mC0GggBawKBRUfnD\ndQf44a7z8aVfG7+E3wd0f/sMTr6A6PdjF4rU37iRqdeLOBELTIGtq8/SH1jALxr0afNUHA1FsFi0\nwnSri0iCw87CCmJKFRGXe8fWclnnEDG5SkopMNpI0qrmGaq2EFOq1B2F0Uqc4UySVKhEUGlwWfwU\nU0YTumgyb4QYq8SRBZvFWpBM2SNPjYaC6wgIoguzOmrWM18MTXoZlPWYSHarSShewTBkTMOb79XT\nPsyIwwUXnGTfw6tfoor5Px0dj5WQZ3NYk1M4F53H9puep1+bw3AlfpJdTUBu/K/27j3arqo+9Ph3\nrvd+nr3P+50XkBMw5AEIgfASgVrU3trqtTa19tZrKdjisF5JLUPsaG8Rig6t2tpbbK+i4yoDrYJX\nHqUaG+oxGiMhQAJJSHJOznu/3+s57x8Lo9ZK4ZrmJDo//2TstfOY++S311q/NX/zNxm2q8y6XQzb\nVdzI4PzkNJ7UKQRZZtwcCd1nppNjfykuYf6tlbvYU4t3bOi2mnx95mzqjQS3b/4q+9vDPFEZZbaW\n5ddXPsGwVaYSJtlTG2eq3k0QabxnzaPsqE0w1cyjCYkXGRwu9BAEOqM9FaYWuwkLNkM7obBRI3sY\n3NdXeEXfPL85MMkXll7Ja3v20q/XuWPND9f4Ctvmubs2Ic2I5ECT4VyNtm+yNrdIhEBDsipZ4Jn6\nECnDox2ajCQqLLoZds+N0aw5JNIurxyZottsMmhX2VsbI5KC440cOafNfCNDpZ5ACDCMkPMG5lls\nZRhOVTlWz9NyLZotm0TCo9l00PQQw4jozKWQhsQs64gQknOC1EKI0YpoDBuEjqC+KiLMBRjJgLBs\ns/IrIc7RMiIIKV0yiPnbC2wb38XXFtez9/AY77nkEb48t5G2b9J0LcZyFRzdx9F9XpU/AMDu+ipW\nJArMu128Ib+bR+vrebYxwL75IdrHM1hDTdy6TbanSdL2qLcdetNNtq9+iF9Kuhz2G9xf20QoNSIE\n1SDBkFWlHsbLE4p+ijGnREbr8C/lc6h4CfY/O0p6oEHzeIbUaJ3XrXyKt3VP0ooMdrTWnijTv++S\ndQC4m89i4SKbK359D9+cWkO77tD/mMnCFfF2X/PVDI7lU1rKIlo6ossjcnVER0frvPCg04f0FNSu\nbGNaAe50Gr0jSJ1bprKY4ar1B/je/Cj+E3lCK16TG+QDtIaO3hbYpbgngtmMe3SkpyWRAYliRHlC\nJ3U8bkqkhZLuby/QOruXTreOUw4pnG/SXBMvB3BmTYwmpI9H7PrcH/3U7+Wyzox+eO/juGmwCzqN\nTS50TMY3zTG8aYHS0z00Lu1gT720G2LNh/8tNtOzvshi2iYx+5OL1/20IHPlIp002DuyP5bs2qX4\niarWNqg4JsWpPAIoFzP09td44MHLaOUlPekWD0187cSfs0Q8vofqI5ijbeaP9vLoVR/nmqT7cz8z\nmvv6dDwzGkZ460YJ0hD6OkHLIt/bwJUm61JztKM4IczpLepRgjG7RFZvk9R9MqaLLw2EA8drOc7P\nzdIMHXbXVrDgZVmVLJIwAr5emKDkpjhc7cXQItblF0jpHgndRxOSnNlGaPEMT1+qSYiOH+nkulok\nkh6NhXhWThrxSS+yNIyOxM3F+wrqeY/x3goDmTqz5Rxuf4gUoNd1NE8je7CJs9CmeEGKSBNEox0C\nEc8eNs4JEEHcIMgbCiDUMJoaTgHMhkBEGlZFIxwIqPVrJI5YBBmJUxRUGikS8zpaAKn5iCApMK4u\n0l4Rok07cSnsgo3e0BEjHaJQI/2sBVIQLdkg4hKcIAlOWeJsrLJuYIFvPjVB4lmHwX+V+CmN6dfY\n+Jl4y5X2kMSoa5hNQTjiUviXEW665Lv81dxG3nrhTr67ewK9o/3MyeKLebHS0ZfCywI6lCyTcDr1\nE2tXf7RM968u/vbPXblual7SGtQIEmAtmARJgfAF9ZXaibWifkLQGtTwMgKnHB8LbPGiP3vdl/jp\neM/C1rAgfVxi1SX6Kb4hbYyYtIYEdk3wuzfs4T2zW3mo8AqeT/dSPdCN5gnMhsDvkiAEThEaGzsY\n8zZhIn6iY9U0NB/awwDxBdpqSqQmCJIaTlEi2yaLpoO1YLKwRRCZGq3IxJkx0QKB2ZA0RyGxAH4m\n/vciS1A5L0SmQ/SmQWTohLYAETf9qo9reLNJtm15nHrk8I+PX4yzqBNkJKkpjXbfC83x8oLkojxR\nFbBwRUhyKi5/MpsyLqHMxEle5UKP9GEzPp8EgnA+gRsZVDSLeZFnTXeBmQMD6C4sXh7S/88m1WaG\n1KyGn4n3mY1scJs2GJKgJyB1xMTvD6FiQSrEqBqEmQgRCVLdbVzfxKvZCCfuWGblO+yeX8mXFzby\nXKmf0IRA00nOg+5puOvbGFaI/XQSMWdjFg2e8AZIvsRr+Jki+9ihuJuupiE9j+Yrx+j0CqJkhFEy\n0Xp8hpI1HC0goXu0pYVEY9wqkNXbNCKHBb+LEbuMowVkky6znRwHG/2gCfZVRzB0STuyeKI8ypKb\n5lChl62jR7g4f4RRp0IpSDNql+OSQy0ilDqd0MTQI9K2BxrYVki7YxG1zPhhQhR3cI50QXMonp0P\nhzxSSZds0qVeSyJbBn90w4M8fnQtx6p5DvzXv+FvvvvK//iHcgbJ/9MRwoVFhGlhtH0O/dIA/3hw\nM3vq4/z2+CSbU8cYsio80RjHlwaO5rMhMc3jjXNYZS+R0AM60iSQOpu7p/GEwTP1YdzQZM/MGM+V\n+1nVUyab7NDCYaqdZyxZxjJDLswcwRYBxSBD2vAYS1VIWR4uFkndY2WyyLP1Qeqew+p8kaqXoNZ2\niKTAybuUuy3yTwtqZ4HR30HoMBt086r8fh4ureep1ii1e7x4e7xIoq8ex89n6PRFOE8mya8tk7Fc\n0qbHgF0jQmPMKbHoZ1mVLJDUPYpeGlsPWJUt0dZNWq5F1U9QcDMU/TQSwfPVHuodm8VqhsZslsiA\nwZ4a5/XFlXAhGs3AxtQipBDk023KjSRSihce+LfpHahRm8tiNjRCG5wStAY1dE/gZ+KHV5ElsFc0\n8D0DqcHgPzeJsg5Bd5LEXJvbb7yPLxUu4Jf79rFz4SyerA8zlq2w2EwzmKlT7iTI2R3WpefZ1xhl\nxsuzNjVPTm+T0j1WWQWm/R5GnAr5VIfDnTzD3TV8TZByPHJOh9eOPsXto4/QlDqT7Ty6CJjye6mH\nDpeln2Oytoas2WHQqrLoZ4nQuCpzgM/MXUozsBhNVTEyAUuVDNKSjPZWuHXkESIER4Nunm0PIQRM\nu93MfzpBdPY4RsMlt7/J63/7Ozx8YAOaHaKVLczz6rR9k3TCjc/PromV66DpkkiKuAFZt0cY6ITJ\nCD+lYcxZuJGB1uthLJp4+ZCwZXJ0oRe/4mCVNcIUIMGoa2iuIOiKiKx4vb9dirtVuj0CLRQ0BzVC\nW+IUwa5HcVOndRm0KJ5gqK4xaA9FZJ8zcHslmiuwi4LePRV+68arf+r3clmT0R2Vz7N4qI/Ihk3n\nH+GyDft56t7zmK71MH7NFMFDPS/r77OnDJbMJHozrs3WAqivBrsMzRF4+288wpzXRfuxfjTv3589\nNdrgHNdxCgJnUdBe5bNwqI9wvEM6FZc4vK3/AH9emGCDM82jrS4WIp/PTV/MQi1DetLhzZd/iy7N\n+vlPRr9xHGFaaMkE7XX9uN1AFLe/NobbBJFO3mmzyl5CojHn57G0gLPsBapRilZkUwzSjFplRhIV\nVmTKPLqwDqEJ+qwGbmRQDxJ0IoNiO02hmULXJOf3znJWcpEhq0o1TLLKiZsM9Ft1niyPUuwkWd1V\nRGiCumtjGiFN38IomUhTYhcEYUJQXa3RGg8BgUgFWFaIpYe4oRF3LDvsEJmQXABd2JiVDtV1KXo2\nLjKUq8FjXUS2IDEvEFLgZSE1pcdPj5YEoRMnv2YdvJxEO24T9gVEAz7OUQvNA7S426TZhOaowNvQ\npHM0gz7j0HUonpnychJv0CfqGKS623gDAclnbVorQuRoB19oBP0++AZu2WGmnMfpbdO2NTp5A7dL\nIzJBDroMnF3E/EYaNIHXJQlTEROvnGJd+ml+s+cZ/uCjv0tog7+5QasHnPmT09b/ZNNd4rLwaYvQ\nAmnGicAP/CAZfdVrvs/2/VcQ/ZvtjM508bYnguQiaJGgPSCxapCdjjMbPyloDWmk5iJSSz+ceXsp\nDwGshsRsS5KLEsM79YkoQKdbI3c4RGrwa7/0OJ+YuRiJoCQsPvsrf817Nu/kk3Ijyf0WXk5iNgWe\no5E5Et/MOCWJiOK1rN0HIgJbI0yC2xUn2vWVkFyEREESSpPqRBTPsCbji7mXkhBopI9L3LyG1OMZ\nSRHFTe2MhobW1gid+JpRXyXR/LhDrtsjQYNj6QyOERBlQjpzaRJLgvxBj+aQ/kJprcBs/vA6lD4W\nl9ynZiMiIy691ztx8uzmBMkZgTTjG4PIkYhQoB9xmDvWR70HakPQERapYzqtkXhNq9GW8KoKQV8Q\nV5x0BNKSEMRbBLjJ+Nc1r5ilYpiIJSu+8WjZcatrXWKnPcK2QXJvgttfdz+PF86i07LoyrXoH60w\nP2IycMEi6YRHuZjBLOm4vRH5C5aQ3z+560RPB7nvLCCDAOn76L09RH15Ot06wtWwanGCN5yu0W/V\n8KWBRNCMbAbMGtUoSScyQQhyeosAHVsLGbJrLLhZWpFNKDVmWjlmml14oU7WdhnO1LggO8UGZxoh\nJJYW0m/UGDIrZPUOCSMgwCBAI5QaactD0ySaIfHR0OfjpR5aKKidIwktiCaaDPTU2Tr4PEKHgpsi\nKtt8d886rn/VHh7d/CD/5dBrKB/++Vrm0PWvM2jJBGLlKK11AxzLZ3n3pY8wnq2Q1Dyec4c42BnE\nEBGvze9lPsixrzVKK7LpNps0IodOZDJsV1j0MgzYdVqhRdp0GczWsayQhOGzrmuBJTeDANKmy3np\nORb8LpqRw6KXoR1ZdCITPzLwpMG820XZT9HvNAgRWFpI2U2ga5Lx7gorusrMH+qjcU6AFALfEEQa\n5JwO36msYmWqRCcyaXxWQzg2RBEi30X5/BRaIAgSEPaEHJnpY+3AAhGCrNFh3uui5ifIWW3mOjkk\nAl/qGFpExnLpSzU5ONePbQe0A4ujxR50LULXJM1iCrunTTbTZsvgUQbtGgndx9QikobHylSJtOVx\nqNRLNtWJu92GOpom6Um2WPKShLoALV7vr7tQO0ujsSbATwr8QR8pBE7Sx2+bZA+Z6C0f83iJzspu\nPte7nkTC5/4nLmJ8pMifnPM1ViWLYOocrXezIlNmwKmz0ikw6+ZJGh6WCBkw47VFu1ur6DEaDBg1\nskab570+VmaL/MrIPlZkyryhdw+/07VAl2ax37Px0GlFDiEac36OapQiQMeLDI60+6gHDoaQHGgP\ns9CJ/+8NLeJYpRvXN0gkPX559BkWowxjZolSlOLZ9iDPt/oYT5Q49g8ZND9C+CFLlw/w7MouirU0\n41/QqUxoyO6A16/eRzNymCnk0YyIaCZJaEvSXW2ELvEqDiIQ4EQYdR1pQGpaw9d1EudWCEKdsGUg\nPB27GM9KBymJNtamZ1UZ91iaMCmJkhFhNr52Sj2+7oUOuL0R2SOC+krwExrdBzpEtoGIoDyhY7Qh\nTMQVOpEJWiDITEnsss9vveOqn/q9XNZHlt87sAp6PS5be5hvfXeCg8+fw973/zWr/+m/sTpTpPS6\nJMGDP9mc6MXk9v2gHCi+yGeej1+lZuCzH78eAP1ltLbN77KonS0xjjgE2RafWf9ZfmfqNYRScPVf\nv/vHfq8NVNdKrnzsXbztgm/92HtBWrLpwkPs23H2y/o8pzvpe0jfo90rAIk0JJ1Rn2ItRUmkePXA\nfo57PSR1l1GrRCjjC3MoNTJaB8deohomsTUfWwRs7p6m12zgS512ZKEhyRptNmenWG0tMh/k6NEb\nZLS4Y05Ob5HUXAbNKpUwyQU9U0y38zR8m5pnk7R8bCNARgKpS7r3aoSmoHp2xLkbjnG01M14vsx5\nXXM8XR0iZ7VJ5j2OGyGFtBPPvqTBy+qs/PQClY/0MjfUQ+cZg+pFIUZDQ2/FiZBTiL+Eeidem2M0\nQXclYUKQPh6XOoiSiVXUCB1JZAr0DvgZSWOFxCprBIsJEiUNJFTXiLiMpS4w6xZI8AtZWNNEhJCY\nMbCfMqi8IkAvmThLUD0vomu/zsA/RBx6s4HmCiJTwkibyNXhnj5KV0Vkn9ORGnR93+aqi55jo23z\nicpZdHrivXyvX7Off/nM6fcwJbQhSIC2oUq0rwu7FCf+/57Lr3+Sm/u+wdcf2nSKR/mfz0/GjUik\nENTWewg9IphzaGoaqcUI3YP8wZDSWp3EoiRRfpndoU4DCxdppI4LIin572M7eXOmzLnlbbx971sZ\n7aoSzidY95b97P3qOlrDkuScRnVdiFHXTiSiVk3GnXsL8QyqnwI3qyFCSek84u1V/HgdJy9sMSSP\nJ3FCQINWvyA9Fe/darQFvU+2OX5NgswRiV2PsMs+IpBkpwzMmkvxf7QIn89z3qajPP/QaureIK3h\nCJmNyB4WNIdM2oMRCI3WKp+e7xgYLUlhM1x3xRNMfnoz7d74GqYFcfd2qwLOnE5kxXtCuz0SuyiI\nXtgBxaxD9fEB/KEQxxPUzw4xettURmyMooHxRB6nBFomvtnzcgLdjW8sUkcNQgsOPzGKCAVBn0/y\nkPVC0k3chbNkQDYkd/0cH7rzzaRdSRoobLJohAKnLDh6dh8DXzcw1gs6/RF6R1Df2b9cofOfSlgW\ndOLuisK2aQ7ouN0RRkvQGgvAN6j4CfSEJKO3T5TghVJj3CgxFXST1DwW/C5MEaKJCDcyuaLnIDqS\nLr2JLw2qYZJLkwdZDDNYIqQSJunTm4wZNZrSoCN1fKkTSo2k5tJjNXi6MkgYaURSUG4maBWTIKB7\nCpxyhIhAbq0zlqswV8uypqsQb8HRSpFLt1jsNfjE6z7DNYmQNffdGK9dfmF7sJ8XUTPeKkGPJMkw\ngmyWu3ddR76ngWWE/Nr49/lWcTU3ju7gq+WN2JrPoF3lytQB5oMu6pFDr1nHlzqrE0s0QodzM3OE\nUsPRfKqJBLUggSlCzk3PcZYzz0qzwPNeP8dkL6HUMLSItBY/Pe236gyZFe6bvZALuqeoBQmGEzVs\nzec7tZVkMy2efWKcxLzG2LXH+Z+r/5HPFi/lYK2P8/MzPF0d4saxb5LR2jxY2UTUCU7EZ5S00beU\naT/fhez1WNFVotmxuCRziI60eKY1zBpniXG7hCYizGRIwU8TRDrt0CSle1hawIbx4xhaRMrwODu3\nhIbEjQwmVu7lSKuXNcklBswqIRo6EeNWEYBCkCGSgjXdBaZreboSHTzfoFZL0GzZyJZBYl6n78kA\nEUoawwYiAJEMGFhZYG4+z4ax4+xfHABNYpY7aK5PMJSnssakL19kLFXmyksO8s3C2TzVHqMR2lT8\nBLes/me+tHQBBTfNk9EY56Vn2FcfJa27TPvd+JFBl9FCE5Kn2qNcnXmG31nxLeqRw+bEEXQkB7wh\n/lfVoBE6tCKLeujgaD5lP0k9cJjvZGkFFkOJKs+UB7ik7yi1IEHZSzBdzOHWbDQnJOrobDh7mrzd\nYtbt4un6EA/On89E1wIJ3WdNaokDzUEAwv4u9NkikQl/suqr/EH9N+i80yf5f/upDNr8nycuwkl7\ndOeatD0TbyQi6pikbI/GdBacCL2tI1oaQSL+7kZ23KSsVk6iF6x4JjUZ4fbG9+wiGRBWbapmSDDR\nAl+DpgGhiO87uyJyz2g0xyA9FSenq+8rIW0T7eAU2foQxU15Oue26esv4+4cxuuOkEb80LXdp+Hm\nXvzB5LKuGVUURVEURVEURVF+Mf38dBVQFEVRFEVRFEVRzhgqGVUURVEURVEURVFOOZWMKoqiKIqi\nKIqiKKecSkYVRVEURVEURVGUU04lo4qiKIqiKIqiKMopp5JRRVEURVEURVEU5ZRbtn1G/+Iv/oK9\ne/cihOB973sf559//nINRTlD3XXXXXzve98jCAJ+7/d+j/Xr1/Pe976XMAzp6+vjL//yL7Esiwce\neIBPf/rTaJrGm970Jt74xjcu99CVM0Cn0+G1r30tN910E1u2bFGxpZwUDzzwAPfccw+GYfCHf/iH\nrF27VsWW8jNrNpvceuutVKtVfN/n5ptvpq+vjw984AMArF27lj/90z8F4J577uHhhx9GCME73/lO\nrrzyymUcuXK6eu6557jpppt429vexrZt25ibm3vJ5yrf99m+fTuzs7Pous4dd9zB2NjYcn8k5XQl\nl8GuXbvkO97xDimllIcOHZJvetOblmMYyhlscnJSvv3tb5dSSlkqleSVV14pt2/fLr/2ta9JKaX8\n0Ic+JD/3uc/JZrMpr7vuOlmr1WS73ZY33HCDLJfLyzl05QzWiyTLAAAFWUlEQVTx4Q9/WL7hDW+Q\nX/ziF1VsKSdFqVSS1113nazX63JhYUHedtttKraUk+Lee++Vd999t5RSyvn5eXn99dfLbdu2yb17\n90oppXz3u98td+zYIaempuSv/uqvStd1ZbFYlNdff70MgmA5h66chprNpty2bZu87bbb5L333iul\nlC/rXPWlL31JfuADH5BSSrlz5055yy23LNtnUU5/y1KmOzk5yatf/WoA1qxZQ7VapdFoLMdQlDPU\nRRddxEc/+lEAstks7XabXbt2cc011wBw9dVXMzk5yd69e1m/fj2ZTAbHcdi8eTN79uxZzqErZ4DD\nhw9z6NAhrrrqKgAVW8pJMTk5yZYtW0in0/T39/Nnf/ZnKraUkyKfz1OpVACo1WrkcjlmZmZOVJ39\nILZ27drF5ZdfjmVZdHd3MzIywqFDh5Zz6MppyLIs/u7v/o7+/v4Tx17OuWpycpJrr70WgEsvvVSd\nv5QXtSzJaKFQIJ/Pn3jd3d3N0tLScgxFOUPpuk4ymQTg/vvv54orrqDdbmNZFgA9PT0sLS1RKBTo\n7u4+8edUrCkvxZ133sn27dtPvFaxpZwMx48fp9PpcOONN/KWt7yFyclJFVvKSXHDDTcwOzvLtdde\ny7Zt23jve99LNps98b6KLeXlMAwDx3F+7NjLOVf96HFN0xBC4HneqfsAyhll2daM/igp5XIPQTlD\nPfbYY9x///38/d//Pdddd92J4z8tplSsKf+RL3/5y2zcuPGnrm9RsaX8LCqVCh//+MeZnZ3lrW99\n64/FjYot5f/XV77yFYaHh/nUpz7FgQMHuPnmm8lkMifeV7GlnEwvN55UnCkvZlmS0f7+fgqFwonX\ni4uL9PX1LcdQlDPYzp07+eQnP8k999xDJpMhmUzS6XRwHIeFhQX6+/v/3VjbuHHjMo5aOd3t2LGD\n6elpduzYwfz8PJZlqdhSToqenh42bdqEYRiMj4+TSqXQdV3FlvIz27NnD1u3bgVgYmIC13UJguDE\n+z8aW0eOHPmJ44ryH3k518H+/n6WlpaYmJjA932klCdmVRXl31qWMt3LLruMRx55BICnn36a/v5+\n0un0cgxFOUPV63Xuuusu/vZv/5ZcLgfE6xJ+EFePPvool19+ORs2bGDfvn3UajWazSZ79uzhwgsv\nXM6hK6e5j3zkI3zxi1/kvvvu441vfCM33XSTii3lpNi6dSvf/va3iaKIcrlMq9VSsaWcFCtWrGDv\n3r0AzMzMkEqlWLNmDbt37wZ+GFuXXHIJO3bswPM8FhYWWFxc5KyzzlrOoStniJdzrrrssst4+OGH\nAfjGN77BxRdfvJxDV05zQi7T3Pndd9/N7t27EUJw++23MzExsRzDUM5QX/jCF/jYxz7GqlWrThz7\n4Ac/yG233YbrugwPD3PHHXdgmiYPP/wwn/rUpxBCsG3bNl7/+tcv48iVM8nHPvYxRkZG2Lp1K7fe\nequKLeVn9vnPf577778fgN///d9n/fr1KraUn1mz2eR973sfxWKRIAi45ZZb6Ovr4/3vfz9RFLFh\nwwb++I//GIB7772XBx98ECEE73rXu9iyZcsyj1453Tz11FPceeedzMzMYBgGAwMD3H333Wzfvv0l\nnavCMOS2227j6NGjWJbFBz/4QYaGhpb7YymnqWVLRhVFURRFURRFUZRfXMtSpqsoiqIoiqIoiqL8\nYlPJqKIoiqIoiqIoinLKqWRUURRFURRFURRFOeVUMqooiqIoiqIoiqKccioZVRRFURRFURRFUU45\nlYwqiqIoiqIoiqIop5xKRhVFURRFURRFUZRTTiWjiqIoiqIoiqIoyin3/wCQnWGSBaGCRwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAEHCAYAAABbdJDNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXecXlWd8L/nlqeXeaa3THqZhER6\nlSpSRAVUsAIKUpJd37Uu++orrgVdWFB2WRJgAUURaS5NgUCAAAKSQCAJ6WTSJpPpT5mn3XreP+5k\nhmEmEDQN9n4/n3wyz31u+d37nHvO+dUjpJQSHx8fHx8fHx8fHx8fH599iLK/BfDx8fHx8fHx8fHx\n8fH534evjPr4+Pj4+Pj4+Pj4+Pjsc3xl1MfHx8fHx8fHx8fHx2ef4yujPj4+Pj4+Pj4+Pj4+Pvsc\nXxn18fHx8fHx8fHx8fHx2ef4yqiPj4+Pj4+Pj4+Pj4/PPsdXRn18fHx8fHx8fHx8fHz2Ob4y6uPj\n4+Pjs4/o6uriiiuu4Mwzz+SMM87g7rvvHnO/zs5Opk+f/p7n27JlCxdddBGnnXYan/70p1m9evWe\nFtnHx8fHx2ev4SujPj4+Pj4++4irrrqKWbNm8fjjj3PnnXfyq1/9ira2tr/5fN/97nf5+Mc/zpNP\nPsn3vvc9vvnNbyKl3IMS+/j4+Pj47D20/S2Aj4+Pj4/PgcJDDz3EggULAJgzZw5XX301Tz/9NDfd\ndBO2bVNbW8vPfvYzWlpauPHGG0mn03R1dbF27VpSqRTz58/nqaee4oUXXuDmm28GwHEcjj32WO6+\n+24+//nPc9hhhwFQV1dHc3MzbW1tTJo0iQceeICbbrqJWCzGpz71qfeUNZ/Ps2LFCu68804Ajj/+\neDRNY+3atbS2tu6lJ+Tj4+Pj47Pn8D2jPj4+Pj4+QHt7O9dccw2//e1veeKJJyiVStx666388Ic/\n5KabbuKJJ57gpJNO4qqrrho65oknnuD73/8+ixYtoqqqij/+8Y+cdtppvPLKK5RKJQCWLl1KbW0t\nkydP5pRTTiGZTALQ0dHB5s2bmTlzJtlslquvvprbbruNRx99lO7u7t2W23Xdob8jkQhbtmzZQ0/E\nx8fHx8dn7+Iroz4+Pj4+PsCLL77IIYccQl1dHUIIrr/+eqqrqznqqKMYP348AOeddx6vvPIKtm0D\ncPjhh9PU1IQQgtbWVnbs2EFNTQ0zZ87kxRdfBGDRokWceeaZI66Vy+X4xje+weWXX05jYyPLly9n\n/PjxTJ48GYBzzjnnPeWNxWJ85CMf4Te/+Q1SSl566SU2bNiAYRh78rH4+Pj4+PjsNXxl1MfHx8fH\nB0in0yQSiaHPwWCQXC43Yls8HkdKSTqdHvq8E1VVcRwHgNNPP51nnnkGgKeffppPfOITQ/v19PRw\n4YUXcuKJJ3LFFVcAkM1mR5xrp/f0vbjuuutYtmwZZ5xxBo8//jiHHXbYCHl9fHx8fHwOZPycUR8f\nHx8fHyCVSvH6668Pfc7n8wBkMpmhbdlsFkVRSKVS73qu008/nVtuuYWVK1eSTCaZMGHC0DkvueQS\nPvOZz/DVr351aP9EIsHAwMDQ5/7+/t2SuaWlhTvuuGPo86mnnsq0adN261gfHx8fH5/9je8Z9fHx\n8fHxAU488USWLVtGe3s7Ukp+9KMfYZomr776Ktu2bQPgnnvu4bjjjkPT3t2WW1dXx7hx47j55ptH\nhOjecMMNHH300SMUUYDZs2ezadMmNm/eDMCDDz64WzJfccUVLFy4EPCKLzU0NNDU1LSbd+zj4+Pj\n47N/8T2jPj4+Pj4+QH19PT/5yU+46KKLUFWV2bNnc+mllzJ16lTmzZuHZVk0Nzfz05/+dLfOd/rp\np/Nv//ZvXHnllUPb7rnnHmpra3n++eeHtl100UV88Ytf5Morr+RrX/sa0WiU8847b7eucemll3LV\nVVdx7bXX0tjYyLXXXvv+btrHx8fHx2c/IqS/IJmPj4+Pj4+Pj4+Pj4/PPsYP0/Xx8fHx8fHx8fHx\n8fHZ5+zxMN2f//znLF++HCEE3//+95kzZ86evoSPj4+Pj8//Ch566CFuvvnmMb8799xzufzyy/ex\nRD4+Pj4+PnuOPRqmu2TJEm6//XZuueUWNm7cyPe//33uvffePXV6Hx8fHx8fHx8fHx8fnw8Je9Qz\n+vLLL3PqqacCMHnyZLLZLPl8nlgsNub+03/8qzG3SwWEuycl2z8IZ+Tn0kST8KbA/hFmL2C2lhBC\nYucCVDZl+MbUxTzZN4tV97Vyxzdv4M6+43h6yzTstd6ad1bShZiNyOi4AZdgj4YTlthVFggIxgxc\nV2DlA4iySqw5h+MofGz8el7unEjZ0oiFDKQUZAthygNBFN17yIGQ7R1raIi+AG7UAVegxi0QEqQg\nHDEYV5Fh/Y5apCMQqkTTHBxbBcDOBBCWglYQ6ANivz3XfYF6VBrHUVBVl0jAomjqNCZybHl+PHVL\nLLafpDHhsHZU4VIdKrApV4kqJEHNpq8QQVUk0YCJ7SqYjkrJ1BFCEg8Z1EUGKDs6AcWh7GjEdIMB\nM4SquBQtr/0XLZ1owMRxFSpDRRKBEnkryIx4F+vztVQFC/SUY7hSIWOEqY/mqAwU6SzF6S7GqY/m\nAHCl4NCKbRSdAEHFpugGqNNzBBWLGi1HxonSovdx247jee2t8YQ2B5l16nraByo4vWkNk4NdADTp\n3pqRVUqRTieBKVVCwmJ5uYXPJ5bT7+iYKFhSpV4tAlCpKPS7LgWpUa861KpRVphlKhSbAVdlhh4k\nLw2SSpi8W0ZBod2xiAjP/ucCA66Kg2BOIDTm72RIi6DQAUg7RVJqBIDZv5w3at/8JJvwDq9LV0t7\nopXsP5zw/pZg72FFP9xlGlRzf0uwd5Ef7qGBUL9ALQ+3USkE1Z/dxq+n/oFXjXp+eOuFuBoEM7vX\njqUqEM7eafN2WOAEQbFAL+zeNbLHlnFNlUhFCfOtBIwrMamul0vGvcD8zSezrStFQ02WdCFMuRRA\n0x3MbBARcJG2AFeAIhGahIKGVCXCEsiQC7aAgPe/OqDiRFyEFGALFFPgVFmIgooMDu4LiJjtzUcU\niXQUkCB0F2kqKEEHN6+jJiwcU0EMaJCwEaqLqjuoqkRKCARsXFchqFs0xAfoK0U4qLKTdb+YBUD7\nKd61Js/qACBTCtMUz9KWrkRTXFKREjXhPE2hDEHF5q1CDWkjwo5sglNa1lNyAvSUY4Q0i83ZSr4w\n/lW2Gym2FCtJ6mUqAwVCikXZ1SnYQeqDWYKKhS4cik6QvBNEEZIeM8akcC8DTohKrcD0UAedVgUz\ngh2sMprZYVZwSGQzFWqRlwtTadDTtJtVTAl1MuCEue7ez+yFVnTg4Gof7rFhw/e/vcvv9mjOaG9v\n74i11yorK+np6Xnf5/n2+Q/tSbEOGDadeRsATujD0eDc/gCOqaLGLbLrK/nJK59kw20zCOQkF7x2\nMV+vfoHrP/IAVpOJVeEio4OKaMxGiVsos3K4jWUqa3MIzaW+YgDb0EjVDiCSJsVCCMtSeWbrNPr6\nYxhlHdtR6cvEcByBUF0iMYNw1MS2VMx0CFlSCTQXUPIqqBI9YFOTGqC+KktrTRcHV7RzaMs2ovEy\n0YhBQ8pTamgPgwAZtVGn5se8X2dsfeEDSUN8gFDAAiD3ci3qkynWtTWgD0BuvEbTYpuOReOwXJWe\nUgxXChwpUIVLYyJHRbhEwQzQnY7T2xunMZFjUqqfusgA7QMVaIrLtlySiGayJVtJPFAmoDjYroIr\nBRHdomAGUITEdFW6S3GSgTJ9VpS+chTbVWmOZLClwtRkD+PCaeJamaNSm0kEy7iDM8LuYpygYhFR\nTSzpGRXWFes8JdaJkrajzF18AWsen0bLH1VqX7PpuWYSxUW13LXySOYEt7PDSlGWOlVKkYwbxpQq\nHVaKyXqamaHtvGHUYqIw4IZwUFhp1rPRSpFxXepUjaiwMQcDTKLCploJUKk4lKRJ0fWMJUGh86Yl\nqFSgzY6hAo6EKbqnyO6KnYooMKSIbrXHbp+hLg21BOXqD4El7x2snjsfO/Lh6Dd9fA507PCwxi2k\npO+BZj79i+/xk19egDwmS3GqiRRja+V2WGBHBK42qGztQUXUCY68plaSBDMSo2rX17AjAjMhcALe\nsW5ZQ2gutq0S6hO4jqD96Rauuf5LHFG9BQT05qIoisQ1VWxLRYnYSFMBW0EYCqKsorcH0CrLICR6\nbQlRUjxF1BUoURsn7kDQRQZcZMTBSVmIkorUJMJSELZAiVsg8Y7RJJQVcASK5iICLhUVBZSSgqI6\nUPaUWOkKpKOg6w4tlWmkFEQCFlJCuj9GuhxGFZJnN04degbNz0ian5EYNzaw6Y0msvkQEc0kETIQ\nQhLVPQtSxoqQ1EpMjPYxPdFNLGSgC4e6YI5EoERSL6EqLqvyTWwvVWA6GlHNIKRYxNQyreEOjoxv\nJKUVCAmbCrVInZ7FcDWaA/0cGd9ERDFpCfbRHOijXs3xXGYaunAICZMpoS5CwmKt0Ui3GafXTqAK\nl1mBTo4Nt+3yNzaTH74x738be3Vpl781AvhX95wDwGfPfYE/Pnj8nhRpr+HqEsV6d5PpjenxAKy7\neAHf2XEojz949L4Qba+h5xRMXSWeKnDN2XfRpOWY9fEwR75+Hk2hMpf8+FsYKYE4pIRaVcLpiBDq\nVShGvedkmhpuQUNNSRTNpaMviRa0yWSikNNRq8pY2SBOxEYWNSyh0lvWCEQsrJJOY30aw9bo7Ykj\n8hroEhQoZ0LEJuYo5EK4rqBzSxV6WmVHqJY3+6ZjziwigBMmvQVAPGCwdstEzj5yGaarsSZTRzfx\n0TfcOsAnp67kmro3mPTA5YR3qPvwae9ZtvaniIQMSsUgzpQyq+fewUlfvxSwhvaJdkgKv2kk/5kB\nFMWlpSLD5v5KWlKeF3GgGKSqIo+uuLTE0ryVq8ZxFXTVoWTrhHWb3lIMVXHZUUjgSkEyWMZyveem\nCEksYKAISUi1iKomLoKoblJydNJmmIhmMmAH0RWHmsAARTdA1giRJcSpDetwpeCeTYfREB9gW6aC\nqVU9jI/0s9Wo5Pj4OjaXqxGGSvUKG4DsJI1km01qvY1aDvOd+vNoiORo0NNYUiMkLDrtCj4RW8eA\nq2JJjQqlyKKBgzg9vpKy1JgZ6CLjBlhmNBJXSoQUi6gwCYgC1apKv2viAttsFxeViFui3YYaxUFF\nYYZeoFaN0e0U6HcMkkqAp0sqM/UslWqQoNDpdgrUqlFWmSUuWX0Bfz34AZ4uqXws7BAZYxJYGO/w\nrVOe4NZfn4WM25gpnUD6w+XC0YofrvsZi0e+cD2fvuc7+1uMvYpZ6RLo92snHqiUqyTB/uF3LXO0\ngaJJEn/xrLGBpxIEAKMCAgOjvZ5aae8ZjVRj7HPHto69f3qOA7pLxesBhDt4rPA8kImFUeJbDVim\nAAYAr/3zoYiLvWipKbW9rDc0XEdF020MQ0VPGNimBjkdJyyRXWGELjEzQRRbIAY03KiDTAcQYnAO\nHBhUlCRI3UUpqqhlgVXhIABFd5GKRAgJmkTNqTiqJJoqYdoagXEFpAQRsSETQK8oMqG6n8ZoluXd\njTRWZilZOooikYZKXWSA3lIMZXMY8Ayd2z4hSa7USWyzaXzBBUJU/KBEnx5FVx16ilEGSlVMq+7m\nudJUTqtdjaHpuDWCNbl6IppJXDdImxG+1LKUvBPi9dw4psa7SWolOo0kZU0nJGxqtByGq1N0A2w1\nKrGkii4c3iw0oykOSa2EgsTQdDJOlIwZ4ZXiFCyp8mR3K+vWNxFu17DikoaDO2mMZVlfqOPg+LZd\ntotAVmH6yRu5uPEFvvnYhQTTH57+Zd3FC5j8zNdQ20MIe39Ls/fYo79YbW0tvb29Q5+7u7upqan5\nm89332MfZc3l87HDB55FvNxk8euLbsQJSwKHpFl38QKqjul812MW/OEsAGbOn8cji46iPMXYF6Lu\nEe64+MZR26yYJLxdgycrmayn+eqPv80RP5jLkkPu5wuNS/mX//t7gmmJokqEADfiYiYkwlBwixps\nD6OlNXq6EyRiXlyhY6lUVw0gB8MV1JiNUCWJ+gHidXn0kI1tqqgBB9NRiQZM9JCNsAXoLqKsoBRU\n8l0xookyquoiQg521EU4EDumB+kIAkGLKxsWElRtdgwkUCbnefzxI1i4rpVsabQL9L7Lr4e1MR58\n/BgA2j53C6WGXXu0DnQcR2DaGhWJIi33qtyerccNjJzsR3psQv0O1bdFmFnTheWo1MTzGI5Gbz5K\nMOD1jKrisr2YpGAGCGo2rhRENRNNcRkoB3GlQB0MTTUcDUVIwppFQPU8pQqeMroqU8/qdD0N4Rxl\nRyMVKGE6Gqaj4kjBpmIVWTtMXy5K72t13LXySN7c3kixHKTt6YlE70nyxitTGBfqRxGSNeUm/vjn\n4xj3uHft3HgNrSjJtWhs/QQkttoM3NXEi8unsbbUSJtRy8pyMxP0Hv5abuINoxld2OTcEKfEVlOW\nGo1qERXJONXg4GAHU/U0Ki4h4dDjKGRdB0NCgxomrrhM0TX6HYeC1KhRNSwkQaGQd8vUqlEiisoK\nU+XwoOftDAqdS7cdx/EvzWXKs1/j0n/5FoFbK5n+67n837WfwZJjt7m2z97CI51esbjY6gDWOINy\n9YHXb+6K4sEf8LjiPcSn7/kO4RmZ/S3GXuXgOW0Y9R/iWdUHnOj2kQplxV+DPHzcfM6+4jmy04e3\nBzPyb/Z6SsXznFrxYY/lnqLQOPx3aoVK6jV9WBEFtIgNjthlWG/jvQECKyO0PT0RZX0URXUwiwHU\nkBcWKxSJVCVuSCIFyIgNmkSqIHXpeToBYQovF8MSUFZQchpIcAMuTlAibIFrqbimilDANjwjrRuS\nYCiYpooQknImhGVokNdBlbiOghCSAStIZksFrRVdmLZKqRRAjdpkzTDd2Rj1S4bHivrFKlKDUuWw\nAf3ZRw/l6OpNOK5C0QgQCxnYUkURkh1mBW8Va4mqBpriogiJ4WiDht4qLKkyLpymNpAjpRVoDGYo\n2EEGnBAFN0hMLaMg0YVDTDVoCqYxXI2sFUZB8snEG8TVEjvMCgKKzYp8Mzf/6XSK/9nEuCeg+k2b\nhpcd0k83sOqhGZ5hWnn3+fK6ZyfTaVfQdt7Yxd4+iEz96Gam3zGX2qoc6y9c4KW6fUjZo8rocccd\nx8KFCwFYtWoVtbW1u8wXHYt3xkurhtdJaaUDzyIe2q7zpcfnoZYE5usp7ssn+cuc/9nt4/UBQdtp\nt7N63nwASpMPTMV0p3wX3/GNUd8F+7z8BjsCP2j/NNnTCyy9egHTb5/LzdeeiypcytWCyJIIdx95\nG586/HXsCodQl4reryFcsJMOoqhRNnXisRJuQac/EyNYWaIyWQDhhcpYtkp+WwIrHcQ1VGxDpWxp\nCCFxbMXL21AlSlnBjdmIiI2UAtPUCEZNtKKCVCCTi3D1kQ/x+BG38OV//S5L5x8Cf6wi/niMxEao\nfDrEIbXbR93rb9PHsPbrC9AHBBMfuYwXyy7fOfWxvf789xYV8ZL3fGyVw376GlcvOhvF3PXE4vVn\np5M1QjiDYbaOFAR1m75MjAnxfnJGiHjQIFsO0ZOOE1BtKoIlKqNefmVQs8kVQwRVG11xSOhlqsN5\nilaAsqNhuhrJgBd+uzNX1HC9wI0BK0TbQDXdpTiPvHgYkWdixDdB0/06CEndr0Mopmc1b37GYXO5\nmohisr5QRyDn9R25S3Mkttg4IUFiq03lcm9QDvc6VKzUWNQxnaRaJDRoevTCfCNUKEUq1CJxxaTH\nSbDOqsKUCmUJbxiN9LhBLKnR6Xj9XMbViCuCrXaJgBC8ZdkUpUrGiTDg2qSUEAOugyW9QcWQLrpw\n6HJcGrQY39lxKG/cPIfYM1Ga/qCj512EDfUvO4QXpLg5MwldjN1tb9w+bPjTgzbXf/ZOzv7KC39P\nM9nr2FEwk94E792Y8vu5+0iiv59zPvOXv+v40tqKPSTJgcPb8yx3FBLUNH24Fe4PGxdc823uu/ck\n3PhoI8LAxPd/PuFKFFuiD0jUdxl3doWre4rsWEQ73v3YhqosCEmoz4sCcoMK5arhdAit4JDc5FJ3\nwnbUWTnG16SRtkDVHFxX4JZVlJKC1FyEBDXggqUgQ85QrigSZFBC0EUEXc9YLkHYCkrCwk3ayIin\nLEpDwbUFQjCsyEYcpKtQKgYRJQVta4jIVpXEehVlU5ju+1vYdNdUFEOwIVdDQHOQjkBK6MlHiYRM\ncuOGAx/7DhKEeiX5ccPPrGaFzd2Pn0BQs4mFDCrDRTThUBPKs6OcoKscp9eMoSCpDhaYFO2l34xi\nuBpbSlUUnCBvFWvJ2hFcBC6CbitOu1lJ1gmT1IooQpKxIqhIgoo9FBW12apmnN5Hzg7RW4qx7hez\nqP/raENrar1NaoNN7y8n8mx6xpi/Z7lxOJrrV/eew4z/Hl1P4UBlzWXzd/mdHZH8adrjAPS/VsuN\n6fG0ffaWfSXaPmePVtMFuO6663j11VcRQvCjH/2IGTPGbkCw6wJGH2TWXD6f1lu8l+GdBYxWz5vP\nzPnzRm0DOHnV2XQ917RPZPxbmHn6eq4a9ye+cNu3kR8Z4MrZC7n2rs9RrnUINhS5fOYLfDO1me91\nHkLGirBo+UxQJalXdZb9cAFH/MCbTM65fCVv9DTSv72C0A6N8gQDrStAfGY/mU0plJoymuZgFAJe\nfoapQMwiHDMIaA6hgEV/LoqUEIsY5AYiyO4gUpfoWQU5uYDdFUGGHcKVJRxHIRS0sB2FYl+E/3f8\no9x87bkj7k09r4eFc37HqT/0kqsPnfsGf3nwkFHPYNU35mNIi0P/658AkIflWH3sXZz05jn0PNs4\nav8DhWPPWc5/j3uRWTcOtz1xRBbbVggEbOried7aUkf1X3Sind5kwwkpqOVhK5xUBf0zNIqNLm6F\nxYTmXhxXoSsTp7W+i4Bqk7eCbM8msWyVhoocmVKIinCZdDFMMlzGdFSSwTKVwSJBxaarHKcwWNBo\nSqJ36PP0ZDcAOStEXTBHjxlj5V0HgYRYpzNCrrHoOVjnk+e9xORQN68NjGfZzQdjh4QXwl0FoR5Q\nHEnmo2Wa7/UmIV1HaLjT84yvSXPpuOeZoPey1migSU/TYyfIuWHmBLfR7cRx8RTVSjXPsaEenik1\ncnCwg4iQ9Do6nU6CRi1LjWKTVAL0uyYDrkJUccm4GiqSSsWhQYthSYc1lsXnl15K8qEowaxL/0yN\nytXe79A/QyOx1UUrevds/2MvO7oriK4Y6b1vPHMrC1v/NFTYyDwiT0t1mrYd1QBE3jgwKgLpJ/QR\nDljkFtVTmFMmujI0NAFb+e35Q/K/WwGjUrNFuN373eScAcSKMULq9wOr585n5oL3ngj5BYw81n59\nATNu+2AYGd4u64e9gFG0w8v7VCxQbK+tZqdLmlq7uG7afRwZ1Pn9QBXX33D+0DHqWX0UX6ommN7z\nbVsKgXif01Q7IijXSGJbRn+X/ogDQqLmNFoWeo31xtv+i298/R9H7Lf1dG9suu6c33HlvRcQmJXF\nMLShokG2peGmAwhTIIMSpSzQCgKz0ssRxVTQMip2yvPECltA0kLRJI6heoUVDRWCDoru4hY1ghVl\nbFvFyXnXDu3QUEyoW+o5K5ywih0SBNPDRgE3qFCYm6W1qpMNN84kdsl2GiJZtuVTODfVAVD5rS2s\n2NTM3Sfcyj3po5gdaefO//vpoXNs+5TLrMnb6StFqAoXiekGtquQNcNMiPUzK7adtB3ltXQLDeEc\nQcVGUxxMV0MTDk3BDNuNCjpKSZojGUxXozGYoezqWFKlIZAh74QouzoZK0JCK7E618DmP04msXX4\nXvqna1SuszESKq4G4f6Rk+ieg8fOLFxz2Xxabx3ue1uO38rWF1revZHsY6xpRfT1kRHbjAkGbafd\nDkDrrfNGOeQajtzB4oMeYvodg32PBusvXMDEhy8j0Hdgp4kFZmUxVyVHbNtnBYwAvvvd73LPPffw\nhz/84V0V0fdLudFCqh+OQdx5W9jxzPnzmDl/Hs/Oeng/SuRRatx16NTqhdOYu/ZLAIjlcb6a6Pbu\nI2lhdES5cdnJ3JdP8u/1r/Pf417klDlrOGpGG6UawcmrzqbvEJf8eMELz87GsHT0pIFR63XCgawg\nNxBBry/iGCrViQLVNQOoEU8eoUocR6FYDtC5I8Xk2l7srgjp7jhuJoAbdlEqDcxqGysb9AYCRWKU\nvAqvyXCZaMjkimMWj1JEXR2OrtvMN9tPG9r26crXx3wGjxQirDGHFSHxWoJVZonFBx2YBbcqTuxE\nPSrNohUzR31nGl6nXi7rGLbGcTPeQr6tN+ifrrLl7OHPwpFUrbKoWi6IJsuUbY36aA5d9yypG9NV\n5M0g8ZCBbSuENYtiOYhha1RFi+TKQVQhsVyVfiNCnxHFctShkF1beh7XoGrTXqwgbwfQFYc1uXpW\ndjcS6XEJ5OW7em93Ur3CZnupgoCwGRdKo5Ulia02mUNMjFoHJwy5SaBtDdE/03sOdUttYoujbNxe\nw3+0fYy1RgMVapEH+w9HEe5QwaQmLUNEGBwV2kybWUvWlVQoRYquRkgITBQq1Tz9ToRXjHoAttgR\nupwYlvSq/64164Yyc3Whcs7if6D2zjDBrEuxRh2RF1K51qacGp79/mnWXZ4C9w5cRs6QbUslrpeJ\nvBFm0fGjQ+z3B+PO2oyUgq4+b4AKRUyQYCUkxebdDz/aqYgC/L85B050wuRnvra/RThgMWpHez1m\n3DaXKSds5jdf+a/9INHYxA/tG7XN1cfY8UOMmRRIFdwAFOu9fiW5TrBjeT1fX34hU++ay5fjfRSa\nh49x/lxFqc7F1fe8pv5+FFErLijWC+xjcpxx6que4vlOgl6lfTc83OfMCoTJN41c6aBloUnzszbf\neuaLRGanyfdFiIZNFMXFsVWkC1KRXuHDsIMTdr2VICyBGnQQjsANSpSSilL2BldpqjimV6QIQ/UU\n1LLqVdM1FCxTAylQYhbqgErDi8aQIgqglpwRiiiAYrj8y7QnqNBLhLstVOHiSoWa8HChu4wRpqWx\nj2vbz2DpNYfzn7eMrEo77lHOUi7fAAAgAElEQVSF1atacFyFgGIPFREMaxaKcMnaESxX5ejKTTSG\nMnSW47QXK5gY7sEezAkdF+onpNp0lhNU6gUAcnaIpFoibUep1gbYXq5gazFFl5Fg5bKJIxTRvlaN\n0uwS6akamemeQSE9TaN3lkb/hYXdbgPAkCK65rL5GKkDI7T1zqPvGLUtuDn4rsdsW1U/4vPOucGm\ns29l1glv7SnR/m7UGQOjtq086m7u/NLu9+0fmCzfUIdOYE6G8rgPft149R1hxwefuQaAn1541/4Q\nZ4hwx7vXs0r/pZ7SeGtIaZEKqDu8lymwMczS/CTuGUjx17LDC5sms/G26bgBSecLTci4zZrL5qMV\nBOKlJHZviCMP3oDMBEDAwS3bSMZKHDJ5K60pb7mNifW9JJuzhMImRl+YZKxEOFFm3fY6RKWB0CRK\nykCJWiiKFw4Tqy0QqiijhBzcgk5VokB1OM+SQ+7nyqoNo+5JseCRlR9h8fIZWDFB4svbOStSHvP+\nb24/iaRijdh2/i3fYXFJYdU35tN46q4T7PclO40dXW/W0pjIEWnzZlOrvjEcEhKNGKiq10lPTfYw\nNdpN39HD92YlJYm60VVbI902kYcTlE0dRUgCms3qdB11sTx5w8sZranIU7J1dN2mYAS85V9sjd6B\nKAB5M8iAFSRvBSjbGv2lCFkzhOFouFLgSkFXMcHGbDVvdVXjPFeJnncI99ojcn92hXAlCb3MgOPl\np1iRwXD/Xh0ZcCk2uiQ2gplyhjyQAPF2h3H3a+Seqee5zAw6rBSTwj1EFYOpwU4q1TKHBQOEFIu4\n4nJ0eCMABwcz9LkRsq4kKmxCwiEkLKbr3fS7JrpwMKVKnarR7cSYEegiJASG9J73uAc8C2fXkSqF\nRkFqvSdT3yzvfYz0DA+mKTVCrH304LrTA7oT2RfkjdcnU3VaB5+85Z+ZfvZ6SnX7z5iXn2rx2PTH\nsF+oRNnmKdP2Bs+jqecEYrD42+//8Ze7fc4XL7uOq+/6/J4X9n3ScGI7q+fOJ7hupDtXCph26sb9\nJNWBRaB3bCv+wRXt/Cl38D6WZtcMLKsatW1nl7/26wv2sTR7nnWXjH0PyUOHa30EshI9L9GKEnVQ\nD3I1QahX4CxJ4URdZv3XPKLtUHhbMFfFWkFuioNRIZDqyDnOzsq6wAiFdWdFXisucIKCcrVAKmJE\npV4ntHsKbv35W7jpivmsvXQ+dx92O4vbp6CnR7c7PWx5aTxvc26knSK9h7vYMRUjNTwPMhMqE+93\nGXirAj1mUh0rYBo6iXgRoQAKuEkbobkQcrGSXuSQU9TAATdu4wZd3IiLOlgpF1d4EV9Bx1NGAekK\n1JKX9oSQyHSA2NbR9903Kzji/51YUiWoDEY1DU7Qys6wFeWGqfeypa2W11dNJDNFIbnZxgmMnP4n\n1qlk82HKjk4yUCJrhujMx1ne28TLfRPZWqpkS6mKNQOegqQpLp1GkpKjD1bDtZka7eaw5BYiilfd\nvkovMCXUSWuogwq1yNRIN1XBAmt+dRBNzw2PY/0zNIrjbNySRuyULiYes5Vg2iW13sZKSozy324R\n2t85pOFD+/jxl37PBS98/X0fqxV23fb/Z8pTf49YexRn7ejopOl3zOXo0O57bz8wyiiA9XqKQ6Zt\nYemlv2TN5WPHWh/I5f9nzp/H6nnzR1la33i8lZnz5/FfW05m9bz5nHnuX/epXKvnzcfezdCx8BZ9\naA1YtSxQTZAhB1eVrEg38YV4mk4nSfJJLxzhhYuuo/GEdiipzHr5y/z50msJ9UlIWHyqejmTWzuo\nPXk7rhT0Z2Is39rMm/311ETzRDWv8z9/yutcctzzhDSbw5u2csykTdz30Vs4d/br1KQG0AIOVjFA\nMlVgXEWGcNDkuMkbOW7OelwpWNHexBE/mMsRP5iLO8Yyr1qHt66pOLWfbT0p0k5xzHvf8uQEJuqj\nc6B/2X4a9wykeKr10d174HsZZ3CcCvYpbHvKq+A868Z5THvuoqF98oUQrqtQES/xRk8jK3ONiII3\nCFsxFW1AUF5ZwdYvjLYsR3pskrfEebOrAYBsMUxMNzi2YTPTk92Mi2fIlUMIQNccunMxTh63gep4\nAcPW2La9is07qiiZOkUjgKoMhqC6Cv2lCCVbJxUqkn66gejzMSrXWqNkSE/XyUzW2fJpQfehOkZy\nZKfXGtmBIlw6jAoaL9gEQLRdkFilE+lQsKOC2r+qlFPv6CwlVK62WX77bACaA328nJ/K6nIzj+Vn\neXkbZi3PFCew1a4k4wZYXGrEkhoPD8wh4wZps6qJKBbbbM8DuNpo4uRwmZgS4uRwmbjiUHAlh//H\nP3HiZZfRdYRGboKGWhbULLfJTNZoP0WhMN2kd7Y25A02kl53HRgYrYzuDMPNz/CMdeEuhRlzttL3\nZCOJ47tY9/A05hz1FqGTekcdu7dZ+e35hHboTP2tF2pkVXu/pxOS5CcNRj80eQWMdrXe6lgcd+t3\nATjvc8/tSXHfF6vnzmfHc81jhucKCSu2HLipF/uSXa0b/sAjH+WBRz7KX752HcrM0db1fYE9eWzj\n49tp38VySh8kUof1MP32scOis8uqx9y+M+x2Z35nMC2peFNBG6w3ZjZYI5TFijUKWnn0ci47w32l\nIlAsObzsy6DX06iQKCf3UxpvIlw5whv69jVPd4V1WpZjq9q4p+9oZr70Ff6t40xmVHcTmJ4jfZhF\n5mgDqXjXtMs6cnBpla1neJOxH3SewkFztrD9BIVyanhaHOr1+qqWxy20VTGqQgUiEYPD67bRXJNm\n2tQODpu6mWOntDFr0nbmzNnMmQetoqJ2gOT4LMJQaZzYS2VThoaPdHLEQRsJxEz06hJqwEVWmoSq\nS+hhC7vKIhQxcTIBJjxsU7nGswSkZ3gDupXQyE9w2fRFgRWD7OThycwPH/4Cn6rwIrpKlk5PKYbp\nDI9tX771WyRXa4xbCFWDBljVdMlO0Oif4Y37ia02dX8I0XvneDZlKtnSUUX+pRqKi2rZ8vx4Xnmh\nlRcWzmH5s9NYtmwKr6ycwsOLj+TVB2Zz651nsWDN8TzfM4XneqfRaSZ4pW8CXWaCLWY168oN/E/P\noTyxYyarbj4IzfA6hMwkjfZTBFZMEqkrEKksIqVgW7qCvtne7xXqEbx4/E3v+vv/Njd2+229dR6t\nt87zPKST3vs939OsuWw+pWVV/OjuLxPcNPbY9vbw4t1h+h1zWWV6L+C/f/7Ov1vGvcn0O+ay7uLd\nM+Lt1aVd9gZrnp7KvTUTuCQ5unKtMamMorvoEYMZ1d1sylSRXVE1VAgJIHJ4L4qA/NJqnKAc8d07\nMQfd+7LCIrhpbHe6HZHve8mBXQ3MXc81wSy4vmEZj7Oby74cnIM3Eu/r+u9k6u/mor+LBWZXOGGv\nmpxSUkGBha1/AuDUcC9X48W3n/mz79J60RraRD2WqfGH7GH0HmNTvTjIDYvPx6wQ5Me5dBQFTrVD\neJtGfyhExhFYU0uMr+vjd0+eyLkf+yvbtlTTu6UBIeFL4VYUW1Butqhv7iejSOIhg/5ShGlVPXSX\n4mx9ejyJ47pJPRVGapCeKalcMfo+kxug0KhQzKVItkHqxMiofd6NjU9MInSxV7Rk2T/+x1BO6f7C\nq0T8Dst0EOz+EDvtIIrqoiguquJSKIeYGO1jmToZAD3vENsuKJ+ToeHWGN2H6NS+PlohPKhuBxvT\n1QQ0mxUdjRi5ILGqIsV8kHDURLyUJJuUNLxss/C4w5EqOM1llJxGqDtApiGASJlkemLkq4NoqkMi\nZNDeV0FVU2FwzUxIbh55XSekkFpnsf1EjermDKGFKXpnq2glhapVnpxZJ0y1NkBjMIOLIEsLdhSq\n3rSRmhfuYiYUArmxX8boDodrn/0kE6fvoC48wMPds1GEJNcfBUsQX6/jBKDUWkYaKkrIJvpGmJua\nPCs4QYeTWtdzbtVrtJuV3JoNsiLfzBerXqHPSfHjm79C5aAH1KxwEa5C7Wve51C/xIor6NsCuCqU\nUyqhtEMw+97hRuNbeulb24iRkjiuN6mqiRTIAxsemUry1E76ZpfHDPV1QqDu4fH6Mxc8xxHLzkfL\ng5b38nbV7KDHd4cCruIppJkxrERj8M68TCckuf+BE/es0LvJo1+/limL/5G3S64dlsZ+bXit7TNa\nV7NIn462OrrvBfwA8dFff9fLy1y9b3NIdzdv9dTffO8D6xldd4lXVDD92vtb2UCqo5dtAc/LWa6W\nRNuh4rUAA5Ndou3KkNK4838rOrpi7c7Ilp3K6U5i24BtKVJAuVp4SmlZRa00YKtnaIt2eIrs25nw\nxbeYmejkhNhaTotY3Jxp4vGBWSzZMRWtpkTsuSgB4Ir/8zC/KH0SPe1V4relCkkLurx53ZPPHczP\nP/0HblgygVCvybaPBxj31OgovLZMFfnNSdQmycREH31GlI391VTHCpQsnaKpkzHC3nrarqB2Yh+W\no1IsBwnpNsen3iKuGaTNMJvSVViOSlC3KBkBiFjYtkrjYoWdS7IApNYaWHEN45J+tHwY3opiJSXx\nty1nU7fE5YSveH+nC2FkFBqiOXaa1avW2ORahqf7xWqVSK9DcvNgFM5MbUhJDWUctvXGQQpUCyra\n3q3ytTv4D1gfwSLCppMV1sjxJCZmGDCDvC6bKBoBWJwiudkm9LZ7y092aJ7S7S3vpllc0PRXrnr8\nPKQi0QZPm9pgc0338TjvEgL+i3vO3+V3O2k79Y73rfj9PfzsS3sm0nFnvujb+eySy1j70d/x7SWf\nZ+lF13P0nQfecmBWykVPK8x86Su7tf8B5xmdd/6f33Of6+7x4t0r37aUihOUBNtC6OsiWK+nWLmj\nkd7OxChls/hqNZrqsOby+cw4bhM1x+4AGJEvB2BUOQTSCoG0sktFFP62te/eWdhoJ4d+YjVTFn8V\ngNKk3QxH/jsV0Skfb0MfGL4H5dDsex4jB/u02GYI9Xnly3d6pF8zTN4aDLkTNtR9YQsvL5lB48Re\nYs9FeLZnGuFtw65hKaBypSCxEapfUYl2SBJtENsiSS0Kkft9E9F2weIbj6b6ZY1ohySyw9vHTLmg\nSH489RF03ebk+vUcXrONt349nb7ftVBqsSgtrAXASIpRiqgdEfQd5tJ7lEO0Q1J5ePd73vu87aON\nBEa1yznR4aU5zNT+8c6Xmhwix/US7B39WisGXPWxB4c+S1dg2yqxgElQt3m5eyKHfmQ4pDDSbeMs\nSdFz8NiKKMDae2fQ215BImQQjxiIokq5FCDxShhneZLUBpuGl21KVRqBtMBKOOhtIUSNgZGSJNep\n1D4WpOEpjfjvEmj3V7FldQOHNW/jtSVTGZjkUvfq6Gu7KjhBhUiHoLczwY7zDOpetYYUUfDClnrt\nOFknTECxKdSpFJsdeudoQ3kX/bPe/d2teFPBvqGelQ+2ku+NUlpTgd6tE1+voxUkoX7JuPs06har\nVD8ZIrrDpW4JNCxWaPmjStvPWvnm4xdw352nsLBnFks7W7h26xn866pPjgjFrV0KlWuGFc2+gyVO\nUFJolIR7JaVaQaFu98JdduYvBzKCDas8r5zCcHvMLqrnp0ePnZ/+dkV0ZxsuNg3LZb8/Gw0AP65Z\nRX5p9dDSLYUWh/AOxRt5Bk8da9M47fCVXNn13uGa7/RAzj7BC70v1zmUp+w7y3fLyVuYrMcIrBl+\nKK4uRyiiAIsfOXSPKaKx1vQeOc+BiFHrsMPO71OF774Lf8U5G07fZ9fbX0z93d+m4O9URN+ZB1ps\nlKhFgfnxHO5paRJviTG9l7taOuW9CPVKUq/pVKxSiL8QJr4F4lsYpYgCvL56Ios6pnP5cxdx0H/O\n4572Ixjf1AdxG8dWOeOyF1HP6mNRXyup5SqxrWCXNYQi0QI2bp3nfWx50ub57AxUQ7Lpy1D76mjD\nX7hLUigHCO9QeLptGlvzKVwpyGYitK1sIv1cPfnVlfQtaqTUlsBan2DgL7WUFtegLIvTsbmaG5ad\nwuKXDuL11RPJ9MTQVQfXVWipTHPlwQvRl8UI9o8e8wr1Cj1bU0jpjX+uJilXC3ITPFPY2725tq3S\n2ZNkfd9I44NWHPROC0G+BfL1w2NKxYaRk9LGxzRiqwPEt7gUq1SMxO6HWzY/69K02CX+6wTqzdXo\nt1QNKaJvp/NoleYp3bhSsHV9HRtWjOPqlWeiNxZQqkwinYOe7JDCR6JbUcf4/XeXL2w6BYBffPm3\nu32MfI8K7+/FZ2M5/lzc/Uif94Nc70XovXXyrzn6zu+w5Ku7Tm9xJu57jzCAnlb40qee47LW3asu\nf8Apo/PvO2u39mu9ZR4vzvkfnFZPCRjl4XwzTmjb2Nb2zF/raL1lHhuemUTPS16o4U5vZcsJWzns\n9NVe/P4g5bpdW4ac97kG6jur6b6dZY/N5LOtbzD7lS+x6Yzbhirtnnbukvd1jd1h9bz5nHrOUt56\natLQtnKNi+u+t3K9sxx1ZraLUSmRusQNu8z473msNJo5OBhk6dULuOGHN7HxL+OpXC7IPluPYsET\nMx7GTLr0Heo98GBakp02+hpWTLD06gWIz/WSP7zE2d96dugYgHyLoHK5oPovOt+6/VKCD1fwwL0n\n8tTCQ0mfWOb6Hy4gvE3HGoyqDfVJ7vnXf/fknu5V0C2fNIBUJdHaAumZYD5YS/rj777e4XP/cyil\n1pEvd7BXYcZtc/k/HUcAsOErC0bkZ/49fO4Lz71n6PnO78PbVYovjh2uAvDvd35u6G9FdYmETHrz\nUYrlAH0DUb5YN7Kd1bxhkWxz2fbxMcJZgYq3LMY/IuGGGtK5CFptiVDYJPMRC3NKiWKtilQF4T6b\nqtUW4/8kqf+rTfPvNZqftUm2WQQzDoEBh3KFQuasAqRMVt3fSiCrMO6p0VYbNyDQCy6lagUz6eWB\nhpdFmHfDfeQbhi2/unAIKhYFO0i1nid9Upk5szdTvcJb3gXhLZfybsS3OXQfrlG51qb5MU/5TWwA\nPS+Z9OUNXj6VADskCKUdnIBANSV63h1as3Xck5LUOpv1iycxsLqSwvXNVN7uNcpijUrVKptgxh0q\nUpRr0XBSNmaNgxty6Tu1TLLNIdo1LGvv7PcOaCk3OES3er/ZxkcnY0dg1rlryU+zuL/zcPJTxu7T\nCgd5k7PAzCxWQiJTwxMjrehVuc1PsimMdwic2Is9xspdhQkOx57/Otrx/Xx0xWdwgpLjJm/EPSZL\ndLNKuVYOKaITP9UGwEv3HcI1dW+85329kzdemcLPL/wtbZ+5hdBbuz/wr577t72fpWaL1XPn88SM\nP49SjBVr75ZZza9JvfdOH1CC3Son/+Z7++x6a7++gPN/+y3WPjfpvXcGzMo9UwRlxcX/uUfOszus\nu2QB6y5ZgPJ3ltlQLMnAeCjVCv7123cS2zoYvbE6gftSivDZXeRPKJI7ftdjp1QFgU/1cMc/34D4\nRB8D79i3XOm9O2Plh749f/Sdxyw961cEVIdg3OCv//hLVMWloz9BxSsBki+GeOiBj5JfUs3qP00f\nPtASSFfgbo8gy14fWarWeOyVg3F1QXBrkK6jxIjcUYBkm0ndghBOEPRlMTqeb8ZwNFTdRaoSqUDz\nIhO1BDWvQiArqFtiIFyvGu7EBxzG36kw/jGLiQ84TLxHYr5SifFqJZtebuH33ziL2tdGL/G39fQA\nTlCQaspi5QM0H9ZBqEeheESRwTRR4ud3cE3fVAAiIZOqyjwDHfERy7sYKYEdVBBSUrvMIdw3mB4T\nVEYpeqolsRKSzuMlkT6H3tPK9F9YoON4hd6DNDKTNXrmeOfe+T/AQLNGbpxGx/He/DnxzW2kp2mj\nFNHa77RhR126Ml6uYeOUHr7x8Sf4/NRl1N4dpvF+HX3Ak0kru1yY6MVV//b+dflTM7i8/RjOieYx\nJuzeMopicC68swBSuXb0mDnW0ixrLpvPmsvmM2fJF/nuXRf/zTK/F9PvmMu0384leFCGQ+/7Fud9\ncmylT31beLBV4e522OxYuO8zlvbuR09kwYNn7ta+B5wyuvTS3S9gMfOlr7D+hN9ixd59sj6WMunq\nYx+z9fkWXls4c4TH884zbsWKuzih0ce8sxjR7rBTyRyLR/94LM5rw+vM1Z7QwSOr5jD3i7v2GNuz\n3l+lsdXz5jPtuYtY9JCnPE342GZ+cMG9hHqU3fa03pptRCkJrKSDjDgoRYUzPrmEm675LAAf+fd5\n/NPP/4GEN9ck3C2Z9LX1zPzNP3hJ+wpkT/fktqptll49/II4IW/CP2fJF+nPxKipGuD3645ALSk0\nfHUTvUc5mCmX8Rdv4Lmf/ge/vuw/aL1sFXZYkhh07n3np3MJZjzv6Z9/ch0AX/jX7xH7Ugd6XuDc\nX4PRGaHiTY3wowmC/V4p+9RT770EhjTeZlE8sZPiOBupwtN/PGK3nt3uYlS5vJ4Zt0vve3GagR17\n/2HiOwkFLArFIMZAEClhXblh6DszrtI/Q2egWaF2CYTS7664qW1hnB0RdNUhvFWnoSZL31HWmGFe\nparRPZqVEDTcGUTdESS13qJu6Ujr8E7lrvPzBh3Ha5RqvEqFdq2FYsGVL36O/jnetUrVGi2BXhr1\nDN1GjCc6ZuKWNbb/ZhIIyDeqdB2hkp303j1r7avDfYdUwAkLhAPtt0yhVCMo1KpDimIw5w7ld7af\n5bD9RJVtZwiyEzXMiWUa/zLyGUZ6nBHnzk3QCKVd1JCNErMY96TEtZRRHoFS/RgTY4UhY0i5WhJt\nGiA/baQiuXzhDGLrdVa+NpFgl0Zh9miLqUh7UQvOaxW4U4tIW4xQONXS/+fuveOjKvO3//c5Z3pm\n0nsgIdTQpSMgoFRFsGFBFAuuCrvuWtbVLe7z26/PFnXddS3EslhArIgFRBBBREB6CYEAgYRQUkhP\nps8pzx8nM8mQSUPcZ5/f9XrxCmdOnTPn3Pd93Z/rc33AVCNhcIn4v9NTHVrBLrOhoD/y9/HUfpeK\nuUZg6+7+qAebXHTPNz+vJ6vCDWM2e7rWJZnqRX63bAEPnL0c0Mum+DpBHC7W+bZ49htA6whte4gf\n3zql5MegcMH/m3LRjhCMih69L7fDPv3HwJeov3fjpx/q9D5FN/74+n7XXrMTs/CfseYNGhXlbL3z\nkhzP0q8eyQtPLL+b+x/6AoCoc2Bs1PB8noJaasVQ2LZ0QlA0/KuTuPfZh9HWJmDbFb6tpUajrr/K\nyFvz2PdUbujfwofWRHTTbeit4U1RSJSi2DL4U+4fsI0xOxdy+nw80lF72HGtlRrewS3IryYgGlUk\nt4CpQu8DrOcDOE5KVFzvRZRBcSjI1shtUdp2H8l7fYgynKmOxWL14+jeQOLEMqoHm4kv8FHfUyS+\noCkfPkLXqTQZu7h7+rGe1yXPbcHgFmjsrVBXY8cc7aPaZcPogmiHm5rp+vd6r98KznjjAd2xPcrk\nBxGizzT3X84BPsrH6ZJcIERAg/mbQJiUN3mfgr1Yv07LYSveIgfp36sk5svYKlTsZ/X9E/Obv+Cv\nH/qQny1azYl5rzLo93nMSTmIsaH171f4SV+6bdSQz9nwyQbqv0nlXzun4lZNuBP1c/pj9X4iSEJL\nZ7cnF+4YW9YO45W67qFSKp2FmKiTV2O8l4FTjoeti6SUCyJwoHOTh2vuebZL19MSggy+/Fi+vunv\nvPfd+A63N9aJDN01L6J3SmegpP50BrL/dWR02IpH2jQnuhDaIZ04nZjf3DkH+ukq+Zb1eiwVrQed\ny+d3fobyrs338f0tf0fytj/ojzgwi4CNnvYlD0cWL+G5ml7ceGIamwd9huW4hbeLxoRt07KzNhzW\nZWDCsHCJ7X23rYt47Jb77HnwBe7O2MbTH3TOlfKPd74PwAsrrkf0CyBqiI0GzNUiG071I+veQoY/\nvQhXN5XqkXoj1ZgNVaMVDm7uS/QJGDOxQHeaO2fDmyiQuN0QJpcKygXNn8ei+EXOn4/B6zRh7NlI\nwblUEndKfHH9PylzRWMUJL5qGEqFOxrHKaiaECBui6XpOBrRfWuZ9Ufd6KR6uIrzvXS8fb1Uj1BJ\n2CeGpCvmOv3vY09+0OE9CLrTAtR9l4rtjAGDU+DZha2tuzsLaUwt8+dtpP81zY2duVrk5LrWM/fu\nLBl/jEZ6Wi1xwyov7nySii+gy5UEpwF/hY33l0+h6r6m98cISdecJeFIAFHWCNjbf2Yln15HrbbK\ngSdDpvRkEtGHI7d41mq9U6ntZ+TcZAMBu4ToB2eaAXNt5HfMb9ebqvTlJixVAt4kFX+8wqi+xbjT\nNLI+FrGV6ts0dhco9iVz1h9PtTcKg6iCQUWToOG+BryJGim7FBp7qHgSOic/0iRdnu5JAkutirlO\nJb5AJqpCQTHr19yy7Iz5rAnVoiLE+nGn6XLe9uA4oxB9SqbuRhemAhuWw1Y0CRyHWqcI9Bp0rtVn\nsg2+/UAno5YqAbbFYj+uP6cBBzgH+vCmy2RdW4ytVMTYSMS8Uds5sWkfDbXUirXY1Kou5vWzfsBc\n1eQCecHPNW/BRhyxbjS3/n2Dcl/NqGGI4AvmL9TbcN8IfWLqodwHI9+gC5A2KXz09v3qYTC0gcIF\nudh6NIStixQFVZuuj6ENrdYBeJMUpOF1YZ/9fN5qnGrXJU8121I73qgLeKG2x/8vCenSev0+Dd01\nj5O3XZwDZmcimOk9dROvpZlb6TupuNPH/rE1UdesHUO/pYv417w3sV/WuoTMpYLSSycoPVc+gHYs\ngnThImD8OgZTg07sFkQX88Ljubz6mxf10ilX10Cqj6jhnTdHk3wagajwxiO2QGTPh0N4vT6dAz4f\nd5yazPJTYyLuH31CILZAZPjTi3iuphePxhcRCEg4vrdirWg9Dove2qKtkzRUpxFTvUBsU3db29eM\ndGU1S0avIPUHH2mbJKLKI6enBKGYIWFlFKoqkGh3cb7ejuTRz52604fBpY9/EvKbI3GlE/U+sb6n\ngZr+ZvCLOM7IxBZGHikj4W8AACAASURBVOSXjTMjBiA2sw6TzY98JopAwIAvHvzfJ5L5pt5/pRns\nbHt7BAAmg4LL37rv7f65RLdvVSxVGueHSwRsIn67SGO6AXeShCYKYaVWAGJPynjiJCQ/JO9u/tzk\nVENqwrrezX3oH9fezN+3z6Dvd3dR57fyt10zsZe3ZuPGRo2ATSRji4plaRwDbzhK94xqNp3ri61K\n3z6mWL+Wxm4Snzij0dzt99XpE9ph9E14+aPZQOSIZlswFuoBiuMTl3F4Y7iM79svh4ctKzlOflcx\nhN9VDKHg/iV8t/C5Do/fK4IpZmjd+AiFctGNw1rijBwdlm7XHrz5sRetljCe7QKL7WKMRNC0LlYT\nvoTo96d/tvrs2ut+YM3nl3fpOHn3v8SQ1x/q0j4Jl5dT/YPe+fl6ejEXdSzx+vddL3PfO7/ocLsg\n2soNBZ0U9n7/QUy1bc8HHFm8pF1Zb3vbR487T8P25NC6jCvPsKH/al6o7cHr718Ttp+3j5fExEZ2\nDfu4w/O1PIenlw9B0kAD0agyOquEwn/noJoIe9g1A6iza/h9zlf87a/z9X2TBTJnnsIiBThclkb0\nuua8KneqgC9BJbpvLXWnY9FEjcTdErv/nEtxwMmM7T8n4DYSt8cYIq7qjdVM7XacLeW9CHySjG9W\nPc6qKBK3dxz9CjgE0MDg1djzp1wWlExk7xeDOtwvEg4/tIQ8vzfkCvp4+TA+PToU86G2Z41lm4Y/\nSeGbq/9BL6Odnh8/iJjkbbWPp78Xak1YKkVm37Q9JGtc0ZhARSCG3LyJmNo5T0uowxuxmv3UVtv1\nemcWhYTvTERVhHdGp2eJZK5VoYNWomK0EVM9uFM0BA0S8jTM9e1HUwFKrhXIWqNxeqZI5rrOSeE8\niQZqr3EhV1pBFbCWiyQdbG6ca/sYeePhf7HP04NPyoZTUhkHp6JI2alGzDtqD6dna2SuFmjoYcBx\nVtZNFAQBg1vFFytirmu+Zk+ihLVKwRsn0ZAtkLxPj5i31w60hGwTMbhVzk2SiC4Ca7VuEGZ06ec4\ne5XI87PfpVq288LSGy/YFxxjKpnT/RAfLrsq4vF9iRqBaAWsCoN7niP/YFZIynsh7r/nS/65eSaa\nVcEa7UXaEc0bi1/ijlU/R0j3YtmnP2cBBxgbwZWlYMtwohyMwdstgP1YiwiQCL54XZprrmndQ1km\nV/H2oHe4dt2vsJ/Q31flQoHC0AY4GK3X8bvgMbmQbAajlp40GWtZ53RF9rGVOHc051gpJg3J33yt\nwXNkr/lZWM57Z+CLUzG3aOcvJPcXg16jT3Ny109T1L0l0Q06IHcF0kUOdI7el8srdd15aeW1nTYW\n6irkXl4MJy08f/tbrK8bzPr1Izl2T/vnuvBaLpyA6SxmXL2HF9ObR/SnZSfT3rn00uQLy7e05aB7\n4T7B7aJKO38uVzd45pblIc+EDxrjSDfW8nr5ZPavHkAgWkPyCFgrWz/zPead4O60bZQG4jjqSeO0\nK47GgIXqld1abRuEN17AkyEjuUVsZc2TyQC1IwLE7TXiixNQTeCPUbGfFrn1no38+7vJxB7R30Hn\nJBdytZWoEgn7GRVLrYIgq1QPNJNw2EflZWaSDviQ7RKSV0OQ2++XSu5WUZ1Gsld23NCfH2FG8kLD\nED9SjZHM9R2/LN5EI55EEcUMsdPLsJt8nNrUg9QfdJI76rm9rPx2LL2HnqV0XSamiVU4zH5KipLp\nfkE8QhOFsPJowWVXikTtYBXNomA5Y0K2aqTtaP4+iklEaqqx3pBpQDWCe4Sb9I9MlI2TGDOhgP1l\nGTg+dWBytn2/ysZJRJ0RaBjpxbHPQkxJ83hDJ70avlvqCGyPJ/6YTH0PA2jgTtMQstxIxzrOvzcM\nrUM+GNvm+iARbcvMyJeoYK6S8MeqmOpapOsly1jOR+5PlBwnSbFOKqpj0CrMXDX+EPEmFx9vGUtK\n30rqdqZE3G/9vc8y7YfFiAU6IW0ZRPMny6RnVnP+QEpIjt0Wjt2bS783F9FrfAknt2W1ud3VV+/m\nq6/CFXzBfdtCIE4lObua2n1dM0DzJyqtSnoV/u7RNrf/r4uM/iyhc8muQcSOraD/Bz9HNWr4Y9Sw\n2lEtcaHsp/Rk842NREQj5elFIqLBh8c2soqCB5ZwzZzOlWXp9+YiTLUi/gFujixewl23biDzqpIw\nCW+vjfcQGODmyTs+6vB4/jg1rNMZmRRe83J4vL58IREFwGnE+UNSh0TU1y88z0NoSvAWjSop8Q0c\nq9HvaZCIXv7zPfp2MvBVPH/763z80QLOa5y4uymcXteD/fnZ+GssCHOrdFIIeNIUVCNEW3xoFoVb\nLt9F1Ri9Ycw22slJr6D46n8jecGVLuBNEhBXJbB65ThSbE4EBSxfxJC43UB9H/AmRB49BE2r/A5o\nzFa54+GvmHl0FofOp7d7H3614LNQFNTT34swqh53jwCmsTUsPjeWue8/wm3FV7HFC59uHBuq59kW\nDG6BT2e8xJxXf0OfdxchJPhak1cBXrj8A7IHluLpJiOh8pEzhsN+D/Md1QywnMN0yIYnre0Ocebc\n5mczPa4eqymA0SJjrJMwlZipHdB6n8wvVSqHGFvVjbsQKbsCOE4rWCsFUnapVI5se9v6nvpgvr6H\nkfgDemPVWSIKYK2SsW23k9izhuQ+VWFEFHT3v0Pe7ljEAGm2egIuExqRDTA6QuZq/XtHn5IRZKgc\nIYKm0ZBloHa2m9p+BhoyDXqReAnqsw14E/WSRw2Zhk4TUQCDW78HGd8pGJ36cpCIAiTkCZzyJ2IR\nW8/Ye9NlRief5qQ7iUOPNrchvngtZEIU1b8WQRUonrGUU7VxiD4RX7ymE0X06G9LRBVL4BP5ZOTr\nAIy1SAiKgOzSfz93hoqxqRrHH6d9ittpxuCCqJP6emcvGU+KhitLwVwlRCSiAL/vt5aBJiv2EwZ8\niW38Rgf1CGokJ/IBuYtDBDT7y5+hDm7kyKIlISL6y3mRDZtaomFPeEc7beY+/P1bh3KDRHTMrM5L\nPM3tTDheLH4qIgo6AS0O6OSicEHuJY3CHr0vl2fnhZcjeGjuGu654RsG7ZhPqqFjA72LhS9V5sSV\nb9Fjwmkcopev145EUGCb99LkgwIEsnz88ZbI/fX6r0bSb2lzWYb/BBF9tS6jzdqiLdEZwhp9Qxn7\nnsql7x3HqB/nxTnJxX3Xfc2m+v587Tay2SPqpd3kGNIs9Yy9Lg9NJIyIepIEAtPrqRvrY1XvDfx6\n71xef2kOt8XtZFXvDTye1VrN1RIbH3iW4utf58Ttr5L32BL2PZUbylWN26u/m+ZaDWuFhqNIZOgt\n+cQbnNgynPiaZJ9RVj+iR0Ax6uWXgmQz4bBO7pIO6H8NTqVNIupJMhKINlA11Ix41oLkEvEm6udX\njfr7rlibG9TG7iYask2Y6jUSDutmf+nbOtc5WKoCxB314R3pokd0NWfrY0L1XwE+zhuOuUZkUGwp\nlioNi1GmsjEKS3nTxF6LeqLlc32cm9i8HCSmURUKhgQvaRsMGJ0gx+sTr5WX6ceo69W8z5B5+Rgm\nVXNi8tsApG1XiDZ6eXboJ7iT227rSieIKFEqDSO9FE17k5Hz8jh7vX4PFKOAtVbB5FKxfBhL/DGd\nfcWckokpkUnboTAgveN0h2tm72iXiIJusrmgZGKb681NBEq1Nf8+3ixfm0QUwBHlZduQVXw+fglC\nio+tXw3li8/HIXmENokoQKbBHiKiF+KWUbsZlXS6QyIKzY677RFRgLUbWqeStUdEAWK719HNUdfu\nNpHQVm3ptvBfR0ave/PxVs62kZA5Ufe1rt2djLFBRAwImOpFfKmRfzmjM3wgZD7f/o0K5uHJHRgU\njZpSgGN0Je49ifR/bTF/Sd3Z4bUfWbyEQKyKt68X0xEbA3IXs+z4aNblfMnxgC5Xk6M0JvY5wa0D\n9rIgumP5i6lORGsxYb/p8xFh6yOZg/j76424pUwKXZcnQ27z/p+c8hb9tzXnoGg+CVHSUBpM1DRG\n0Sdev87GHgL+GIHjDXpk1pkl4IsVuOGRTWgGsK+1Y6wX8cdoJGXVkrhLQluZqOefJOv5pFp0gKX9\n3iV38nKeSTmAqUqiwO/msN/DF33WMXr/zQBElWpYKjWqJvqZfuMu8k6F1/UTFL1ouf+6OqomBEJO\nwACu7kLoGHFHBAZbzlD+aRb+nfFt3mfVCPfHlPKHw9cDYC2w4C1y0Ld3GftHfYBHMWLo00iGpY6v\nGwaTPqQcjkeezYua0Cyxvf3NRwAw1QqoHkPYdQI8ddf7zIlyE2PycPngQpJNDTy1/zrerhlHz68X\n8tjShUy4YT+SV8QyrvXzkjX9FM+n7Qst93RUY5IUMhLrUDK8CCrYygUaslo3uEkHI+d+XgiDRyXu\nmIxsFYgtaFHYvInINnZrKulxXsWTYNCjeWcvLg+ksadK1al4Gr9PxpMYfs2CopFkaMAm+vTC32Lr\nvNq6XhdX1cpYL+CNF3FNcBHwGfAmaASm1oOgd+ieFI2G/gES8uVWkqeuwFKrtJIQW6sURlmL2FTb\nv/UOZoW124fxVub3vN303slReiTS0NT2eXxGok5J5LyxGG1rHJJPXx8kiUKLn9jcRHjtJw28XTsO\ndzd9UGbPqcV+zIhiBjVK76ydOX7++slNCFW6hCfoVmw7bcBaIRBVLPHU/SvwDnfjGuzFlR0+CHtk\n661UKS7sUypQu7cvgz2yaAn337aWQBNR9KYoHFm0hA8W6l4Dz0z6CPGQg56fPgDoZXNefP+6do8J\nhHX4iknjz2mbw5xyQ/dlZA0AO78cHLqezCsjS6mC6/9fwfJbXg4Rz+nvP06fZYtC/y4lfnfohrDl\nl1Zey1ufTkXOj+aJ3TehNCnBfN3al0l2GU0Tx+tyvmRi0/yzaoA7Nt/P0ftymX7NHnImFbW5+4M3\nfdXhKUyWAP/zUftlJm5c/minyF9X4c8Iv19jD8zln5/Mod/SRcjZXvzdfly+V9nONA77Pez5oS9C\nhRn7d1HkbprK1qUjefL5+3j07w/QZ9kinlx/GysPjGD/O4NxnGreXzEJaBJkx9dwZb/j5Pm9/OGy\ntdSN9fGdK4fstffxi4/uA9o2LZr118cZumte2GcnJr/NvqdyqcvR8Me0qAwga+QvG8jrL83BtCE6\nlIqTFVuLEq+/8KbG8LaoZoA5lM/ZHsx1CsYGGdUI3b/xIwSEUE3S0okGfPFGJI9C1VA9zUJP8RBC\n9VlTtwkYnJ2fqXSnGIneaCPF3Ii8Ow5fbHNj3WO57mMwznGCgEOgtDQej0uPwLoTpVBEEyDtIxPG\nxqZ0lozwPjD1QzMGn0rsSZnuawWkgEbSAf0+Oc7oxwhYRXrZqqhvsLGsITHkslvnt/KrT+9ptwyM\nrUyk2waNbp8auPHENJ5IW88DI7bQ68mCMAMlozvyBMC5xph275Fq0Fi7uu0cznEz8wAYYTax49uB\n7R4LwFLaPKC2lLRdUQN0aTToJVfGZhejNhmrGjpI7Wuv1MzPE7byQtqeDq+zKxAuYkhiNsoc+q7P\nJb2OSPivk+n+WNhGVlHfaMN4LHwgoRq1i3Y7DMp4/3rHMn777oJW619e8Bq/WPZAq8/biooEpa6P\nzV/FwphyFp6ewKa8/lhPt5Z/+WNVNANocX4shXoPGrBrrch1WziyeAnZX/4Ma4kRTw8/hiojRqdA\n1NgqHuuzgdsctUw5MoeiwlSKr3udnK13IuY5QvsrVo1AjIqlvJmwBiOoUec0ZJuAM0tDUGD8lfm4\nZBPFSyPY40aAN0FAMYOnm4zttAHfYHfIQEi9sZqrMgr59pWxJN9RgqKKnMjrxtTxB+ltO88bhyYQ\n8Bq4IqeQ7w/mcMuYXXxzti8jU86w651hBBxEzB1p81oSBQ49soRRv19EwC6EXHgj4fBDSxj40mJU\nE1wzZwc7K3vQ6DUzPfMod8dvZ6DJygeNcWxv7M2gqHM8t386n43LZc5nj2Cp6Pz8z9BrC7g/9TtW\n1Y5gQvRxrrKWkijpxNanBTALRrK/uB9biQF3Lz+2kyZ8CSrm6vBzyFEaBpfADbd+j0UM8P77V7Hg\n9g3Uy1aOO5M5WZNIfUkMklskMU/DXNeFcF4bKLlZxWBWkOtNSE4JzaiXA0jfKlNyHSTsMmAvu3iy\nJttERFkLy9NsifgnT2GSFJwBMwFF4kRZEt0+MFI6QWplJNSVc3riBeoGqGh2BdGoYD5uRZDB6ARX\ndw3VoJH6g0bVEJHUnRd3Hr9DxNTYukM+N0ni3ZtexiH6ue3l8Lpisg1uuvF7/nfyISbnX0/11+HR\n/YCjeWLGl6BiLRfRxtUjbG/u4AfecJTDn+bgj9Ew1Qu4L/NgO2DFl6CRPqKMh3ps4vF180LSXs9w\nN9Z9NnwjXIjHo1DMGpYqAdlGxPxQbVw9gYJoTAPqYZs+e33o0SX8snQU334wikOPLmHQjvkI22Na\nyXSD9UWVQU6io7y4drbtGr36vmeZ/e/ftHuPO4MB049z5Gu9LfvLgmX8bpne9kdqf8dfe5AdpVkc\nGvMeA3IXoxrCCa6neyAUVb1YmW7G8DI2D/rskpPDIIJE9E+VA3j3q4uv3XqxMt2fEr4UmREDisn/\nVh9U9Z1UzOSE47y+akaYDPfofbn0XrEIgwdSx5ZRvqPZ1C243cXKdJff8SKjzUZWNCbwPx/dwj/m\nvcWj71+ckVYkmAfXkTf6fdyqn2Fvda3W9ea7nmNyU6S2LZmuP0bAVB/52Q3WJPUkC1jPa8hWAX+s\nhq2seRtnFgQSAwg+CaJkYnaZ0Qx62+Xq58NYZkLQwD6kGm1tuLFZXY6GsVEgqnW6fAjyjDqS7C5W\n5XzIPUVzOPV+79C65U/8g9mbf0HsThPj7t3HKVc8h490J6pEd0sP5nd6E40hUtkVlF5hxn5Wo3qc\nH3uBGWFcLa5TMaTs0N3WPckC9jMqRo/aJRLaErU5ZuKORnaCrRxmJmtWMWXv98DZXZ80jzsClnpF\nN9k73/45K0ZKJO9VQ2ZRwTqkAauI0aPijZVo7CHgS1QwNIjEDq2iujAByS0QdU6gvp9C6jYBd4rY\n5iSsM03C6ALZSpg7fFuozzIQUyLjiZeonujnjSve5hfLW4+zg0gZV0rF9vZVbZHwyK2f8c8Pr+/y\nfi1hG1FFtMVH+baMkAz4iYrL+GjPKCzn9HY/KP8NouD+JSEy+v3C57hi6eNhMt1AtErR3Nfo9+Yi\nnrv1HR7/8K4fdY2dxYWy3W13/Z3x2xdBYedLlLU8Rsu+8L9XpvsTOOG79yS2IqIQWd7VWQRlvI98\nOw9vut5Qqabmh2aKVem06RJA7/cepOfUYv684ToGLFnMXzPWk5geLk/qObWYgEPjhqt2otqUEBGF\n1lHe9tDzm3vpmV3ByFn5WE+ZGDq+qS5fwMD/LJ/HgpKJFJ1Mofg6XYp3dMLysP0ljwDRAQLRGtHj\nznPHqclh6w1uDXONgGzTqPA4yNvYjyEPHAq5dQXs+rV6kwTkKIH6vlA92UfV5TKuwV6kkXUIikBg\niIu4DVZueexrGnpDrNXL5pfGIqhwdnUPyr/IREj28f3qYRxxphPztY0nxqxje3FPMKgkGhupLYpn\nR2kPGsd59JyGtOb75Mxq/54ZPLrhA0D94I47o8MPLSFmzHkeSPyerUNWMT3zKNvPZ7Pbq8skbnPU\n8mL6br6uGsDDl21koMlKWk7HdUxb4uCa/mx39eHF9N3cYq8PEVEg5Mo4+bICFs5fx/pp/+LwQ0uw\n9go3ZFFNMHm6HhX/9MMr+K6yeYZroO0cw2POIAgaml1BULkkRDRgl8haKSKcthLfrQ5RBinVjeQX\nqO9hBE2fIS+Zc/ENgMGtohoi7+9JNFDjjaLWa6OwIoniyng0WW/qOiN5uRCqUcDvEKkaIuBNENBs\nClKtAU0TiDumIts1GkZ6Ef1g8AiUTtEumogCEYkoQPxhyDJ4SIog+5Z8cLQxhS/dFmQ1crNucOtk\nFE3Am6SFyjhpBvAma5xpjEWxNEdYgiY/5mqBysYo/lU8hajTUsjNd9W4V3EN8SJXWzA2NhknEZmI\nZs8uQhRVTLW6uZI/Rm8/5xTO5KxbJ6br3Ga8RY7WOwM9v16of898e4iIBl1q/dHNbfGRRUsumogG\nUzNUA0y/fhcre30TWvfYzps5smgJvgQ1Yvu7bc1QlH2xIbnw0Z8tQW5BOruaZxoJ5/Y1E6OUyyp+\n9PEuRJ9lixj4w3z+V9KREDH9TxglmYc0S8BGTzv805yjwsCBM3ouomyF499l82h8EXPn6GlBhxe+\ngmwNNynqE1MZdk0/Jof12MJc7nz3lzxePoz/+egWji3MvaREFGDNcN3p2SaaCHT3408P8PubP+7U\nvuPWtD1IDCJIRGuHhrdtikXAO6mRKT/bga+nlwd/+Tm+OA25l5fa4TLT7v+Bvz32b+Q0n14/NF/E\nsd+MJ1XDk6QfU6oxEjOkGrGvk9paO954ISSrBYg9KoQZtKgGgYYJ4SoKw/pYyr7txqjlj+IKhEey\n/nzuGrQm48jLo08QbfQiRMkEorWwoMHFEFHQJyOrx/kRjSp+h0YgYEAToPxyCEQJuAZ6cSeLF01E\nAcy1TTmb2ReYyIgCnmSNDFsd/miBgEND8jWnIZka25/80kQBU51A6USB88MMnB8uUZej4Y2RqLne\nTZ8nj+C9vo74seWYakQkr0BtfRTWMhFTvT75GHNMwpPQNhEFsJcpaE0KIneCRKDJrbi+R2uVUl0L\np3trjYJQZyRKaH+WqyMi2lYFjVr5x9eBbsxPoHxbBuLg+pBqT9UELOeMIXJqbke2GogQEzQ2iGz2\niBy7N5dJ1mpMA3+6FIaW6PfmIvwZzfd61PpfdYmIgp4uE0Rnx1z/V8moYWgdvmx9pidS2ZRLCUH5\nccxXtmkIHglLqRFvpp975zQPVDpTrL0lTHUi96RvY8v1z+OP0Zj82uPM66GH448sXkJggJuCM6kY\nGwUyzTWhiGl7JWHaguW4hbLN3djz5SDGXHsIf1OhIFejhatv2MHWvf2ZPPQoAMN238b/qmyWL3h7\n67/NTYP2U3hHLq/2X8GYmNbug9YKDVOdyNHTqdx/0zryXhvM0idfYOHjX+Cf1IDvujqc2TL1o72M\nnlSAUG3CnuTCHuPBWRWFvViid2olLzz1CmNsJxk2+Rh1H2dQM1Rj0AP5OIf4MDVojM0uxpuokmhy\nUjvNw/NfzOHKXoX071XKssIxjB55nMDuOBSnAWWQE3VYI7UDNaquCGAvaf/5qhsok7C/6XXo5KO4\n47KVof8/l7qfbUNWcXf0ec7KukTjjlOTybLV8OIn15K97j76xFbCyK41KGtLI8tJ8vxeltan8quU\nb3g0vogdnix6fqPXtGpZB1X0w9ZPh4WWS7/pDkCM5EZCxSb5qDsTS1Ssh0C8gr8Lxa0jwRcr4UoR\nCdhEkner1FRGIztUFFnCF69Q31/BWCfhndFAzOGLk8oGYWhDzlPfS6DWbUVFwO82IldbsZww6xHH\n+q61A4pF4NxkAYNPIxCr4svxMH7ACYyNIgaTTNUQAdEnIFaZ9HzKTC/2IsNPMtFW1093TSxXWv9G\nggL7DvTiV7tuI8rY3JEEy7sEczu9iXpNYEulgLcsClcPBaXJcKz0dAKSF8bnnMCXqIUIlGKG1JhG\nKn9Iw5egocTKeIZ5eLVyMtSaEDqhOCle3RNta1yovmnwdyhe3ZNVvTeQPPMsi9fejbU8cpdkORk+\nuBw041jIpdboCuaay3zm0iUNvr6Rax4+dvuqsGVlkDP0/6CUW5ThLynb6f3eg3SffJpZN/xAcoI+\nyTN0+MnmfdvpswbkLsbguvQPQTAqWnGg7Tyki0HhglzMfRtY3H8LAG7VH3a+SwnfBXLSqd2Phf6/\na4Pe3vljL10eZxCGE1YUs162I1jeZeUXE6hSXAxc+nP+fv1yjt6XG3Ln/379EI7el8uyrC0/7sR9\nXWz2iPzl1hV88aUuI+y3dFGncjk7C9UIcw/p5LY44KRo+lJEs8KfP765U/ubqjtu92tHBXB1g7iD\n+rbOifqsk+TVsG6y8+WnlzNnUB5/3TqLQHc/itvAbyd8yTMpB5huC1A07U1ibixFmVGHd5wTWxmY\nGvQIqqN3HQ37ExiWfhbNacCTIeMd4GHYXYeo66/ijxEItJh0EmUt3CG3CZYaDU2CypXdwz4vdcWA\nWX+m+pjKGRp9lsy0GsSA0KkSXx0hMc+PLdqLsciCrULA22AmPl/A2CBgrlcxnjWDCKdnXvyklK1C\nf2+ii5vbd2+CkVN3qCgOBasUIGAHySsQsGshDwCjp/ldks3h7asvWkJQNeJOyDiKREwNIPoFzDUi\n3RaeYES3MyzN3Mrl6ae4M3MnqWPL6HVVMUO7n0W6vBZTvYY3ScMzqRFHaTjrqMkxhAinp6lOuaW+\nuQxa8LourEEKuu9D0Nyour8BKcVDktR+DfiOEFRG+uIVlJzmdv/tT6b9qOOCXk0AwF0ZRV1eIs9U\n92HljlF4U+RQ9PPeuevD9gmO1wCu+PjXEY/77OmZ/LJ0FKPffpRDY9770dfZafgk/ElNfXV5159Z\nU4QKJh3h/6pMVy3vQ+9v78F4vOPajm3Bmx4I03YD+OJVzDX/OZ495dq9bFyj52h6uwWwnNWvpyPz\nEk9WAGuJEePIWgJ74vCmKVwz+gCbPh8RknUFHBqFd+Z2yVU3iKCkNm5CObVbU7n55u/4+ONJKFaN\nm2dtJb8+neMbeuHt4+WRkRtZGFOITTQx5cgccvu8z8NFN7O239o2zx11LvzRqRqjIFhlaDAyc+xB\njtSm0rAqDc8UJxxyUPDgEnxagBMBmZuWPYqjWC+3YqoVOXpfLlWKizGfPEb8QYGoeWUMiT/HOMcJ\nGlQrbxaPY3RyCcPtJbzyzE0MeeAQO85lkTd2OTt88ODBO/CciCHuCFzz8BbSjHX84+BUYr7unLss\n6EWhzbUatYM0d9WP6AAAIABJREFUzFVtPz+eNIWiueF159a5zcy0+Sjwu+lvaj7n+LwbKT2dgK34\n4jqhx+9ayd3R5/nCZWNOVISQE7DLp3dSTxXdwPyMHVxlO8WMXD065E1WsZwXcWcHwq4hakIlgxPK\ncBi9nPc62LG3L4YkL8IJG2k/dD18WD3IiGzRjXQERQB7gLG9i0m2NLJm0yi0NC+2PCuuTAVN1Mha\no+GLlS5JJLYlnGkG6qZ4UGvNGOK9BOrNGOsk7KfAWq0i+bWI72XQ9fZCiWx9TwMNI7z8YsRmjrlT\n2FPRnWcHfEKhLxW3auaNj2aiDWok6QMbZ2fLJG8yUTlKJWMzbUqIu4ozMwUS94h4kgUOPaxPSA3+\nR/g7KdvA19NHVL4ZV3eVzP7lIamuN1nDcl4f9I26qgC/KrH/dHcs+2zETSujdkOaLpfvLpOSWUN1\nfhKW8wKqEfrMPEmVJ4pzpxKxn9Bzmb0JGogaB259gaErH0by6oOugF1XSXhSNKwVnSNi6VefZmmf\nD5j25m8wNI8PWrvpNuHVe5bw4Fv6dw/mY270SDz09gOIw+pR90fOKzqyaAl9tyzAcLjzpS6OLFrC\ngO138PaIt7jv4ALyRutlrW4vvpL3sr9lQt6N+BUpzIW3JYLy+AtxKdx0fwoEo6B9li2icEEutYqb\n0St0OfjPZ3/FK6s7V7y8MzJd2Raexy1bCeXTXUrIvT0YTjQ/TC3P40tSEH0ixgaBhNEVLM7+jpeL\nJlPTEIXQjmtnV2W6gycXcmhznzDyOffkVA6XpyEX2S+6zEJLKBa4Zeo2/pC0B5uoR87y/F6O+lN4\nYuOtmKok/AlKp0hnJJlu7WUyoktCk6DPoLOMiD/N+rM5ZMXUcrYxlqrieAwJXgINJgyOAAcnvs6s\ngpu5Ji2fJduu4p9Xvc/1UU5WNCbwRskVlBQnEXfAgCdFCKXT1A6TsSe5MH6tv8OGa6uQ1yTiSRbo\nd9VJRsedYunBcVjzrZgi1K68EI3Z8Ofr30PVRP728jxkmz6x9ut5+oTUEXc6289n4/omhahSFWtl\n16KixbeKmEuNyFEqSrTCg5dv5mrHIZ4svpHje7L0fPkyldo5bhwbojA5NWSLgP2sn4DDgLHx4tJU\nZLsUirAKT1ZS0eDAfdZOVv9yTh9KI2Wn3p8FrAK2an07n0PC3JQfW59tIKZYpibHgC9OI2W3ii9a\nxFqjcGY6xB42cP39m9lQlsO5okQEm0JKSh0/DP0E0CfaZJuGYtXI2KxyZgakfSdi6MAIrHR8502b\nAM7MUXHEu5jc7QSlnhjGxRXxxsqZF3HH9HxSURZQzFqIOF6I9fc+y4w3f3x6BzS3b7JFQ07x88SY\ndWyu7YdfkSjYpKvTCu5fQt93FoVdT0uZLsC4qfl8t2sAxgaRidPyeKP7tg4Nhy4Fjt2by9Bd8/Dm\nN5tBTZuxjw3rh7ezV8f4r5XpPlPdB1uUF29W51vjC11xLySiAJPGRJb6BPq58SU0uXd1siZoZ/By\nxs5QofUgEe0MrCVGXY67J46H53+GpUyip1WXBgWLqxsbhVBB94vFtiF64/unJP2+fL/g7zTIFgq2\n6DUsLYUWPisbyqeuNHptvIdat5UZax+h+NseYZHSX97eviuloUHCavchxPr5+rvLqNycTs/5hdjX\n2il4cAn/qOnJncUzue3lx3jx9n9TdUUAa7qTo/fl8lJtFuNW/Jr4PP3FrFuTzg+vjOQPe67nuf3T\nqc5P4odXRnLI1Y2aKV52lWVybc/DSILIdncfXGccCBkedv85l4fid/HsnhkkxzVSM0Sjvp/eODu7\nC1SNitwY1kzxYq5tkgx1i0z6grCWSaHoZxAzbT4UTWXWmkdCbom/LB3FtiGr+O0VX7Z7vPZQKTsY\ne2AuT75zN0Cr8wJIaPQ0+Pm03yreKx3DDXn3EojW8PT3YjnfJE91hg9CXFuT+PZYX866Y5kYd5y0\nvpWY90bhT5E5O7/rnaSzT4CB047z20lrSOxRQ1y8k55RVVwTc5CEQzC+10kS8gNEnZYQAiJl4wx6\nmZRLCUHP/Y1xuNGsCgGXEdEjIttV3OlQOVwMEVF/dHjTF/y8JRH1O0RsFSrdUmt57fAEtp7pyZCk\nMhpVK0fc6bxRMJ6YIpWUZVadePok3CmCbqjWDhF1pXYt+mysF6nrB65uTW2X1rrTN7hBKtcHoZpN\nwSsbCIzWw6FKSpM7pEvg0Pk0Puq5kWl9dDWE2aD/1pJPlzI2fp+M5XxThDAAL2Z/QvX2VKKSdWM1\n9wCvXj81zYtdtGA7q9/fXjOKOLDgXwBYKwTkJs7nj23t1Nuy4PakpELWOPuFEdH28MDbzUQ06KL7\n0NsP8NjtqyIS0SBhHZC7OCIR9SZHbg+Cxz8y7l3ufvNXyHubC5i/l/0tAJNTC9k17GPEYfV8svDv\nrY5h7vfTyKrGTCz4SY7bZ9kicrY2G9TFSTbMffXarXMd+dw8Y9slOY8vWQkRUX+c/iy3rBU+5Cq9\n+KPc+xKw09Lm6NnoaYcZPe5oaFkI6JMoANW7Unj6w1uo2ZvMZ2P0GqezZnVsRtgeji3M5djCXA5t\n7sOGu54LGYsBHNrcB/XopSGigUwfJ+bnsnL9+BARBRhisnCLvZ7i615n7z3/5OpRedx53bf4m1KN\nFEtr991I0ASBuAMGYgoFDMkezq/K5IPvL+efAz+i4Js+1OUlEntYxLI7CskuUzj5bWyiiW8Hfs7H\nJcNBEfjNyju58cQ0/rR/Fg2fphF3QI+ctPR1iCoyEm31MmjBYerHe/FuTKK+j8ZtN26ml72SZUdH\nY823EnA0yek76D+Sh1Sw8vxIKuVoGnqroTqpuxqzOevXTQqvTC3E1V3FndL1ofCNw/fiS5Kx9a5n\n8bhNPJFQyBCThXizG+t5AaNLwxcjopy1EX3Kj8GjYj+r/+AXS0SBMKnvuW3dCAQk4rJr8QSMiAEB\nUdYweDXMDfq75UpuJqLlY6RQ/c74ozJGp769tUZf/+ik9Ygzq7gnbhdv9l9O7GEDlhNm4izN72Li\nIZnUnQqxR/T73309GLxqh/25/bS+PmDr3L3umXme/xm4mkFR55ieeIR+li7UHLoAoqyfuy0iCjB7\n38/aXNdVBNs3g1dAEDWe2X41sipyZcLxsO3aux6A7d8M4pEpusP0lg1D/iNEFHSpbksiCrBh/XB6\nXH6mjT1+PP6vktHXN0xBUUTMdl+HrrVBdJQv6U2TOdUY2Q31xOS3MdbrX7mjh6AjKGYNuV8zaelK\nJNaX0/xiF32TzfKFL/D8Kt3x8d8fzEQb2ki/75uNkr7/YlirY3QGwYjmnyrDa3ZMfu1xXkzfHboH\nnh5+GrwW/rh7DiaLjPNIPP36nUNQ4eOPdSOLXQ/+gxffa9+V0lIl4LD6GJxZiuQTsJVplLzZh0EP\n5HN78ZVUBewUL+2LpVrj/aqxFM/8N7Y10TxRcRlvvXQNMccATY9QGpvyHHIyypE9BmIL4Lk/vMaW\nst5IBoXfD/iKTS9eztgDc3k8/iQzLz+IXG+iz/JFjFr9CKgCNVtTic8TiDkG9lvK0AwacYciEwG1\nsXkSQVM7fjYO+lsbqEiCiKlG5JbX9GjCcLvusvm3TbM7PN6FUJreh7dXzGDHZStDEu1uhtYD6hFm\nE4lSFDbRxJf9VvP7fmsJxCpYC/SBmLuXP9QYB6FJINSYyC9LY3t9L+7M3IkytoHEHQa6reicxMIb\nJ1E23kDlUCM3Dt/LwOgyvqgYSr3TSn2jDYsY4EqrF1eawO6v9LqtCfkBMtcrSF4BX9ylJaOnrxHx\nX+Yixe7EUGVEcBkwNgpIbt25Oa3FrKypQcWZEflZCNrZnx8Fn/39ec6UxiOX2fCedlDqiuHz6mGc\naEzC22DG0FTkvGKUgcw1em56alN9NtXU+vvV9TYQFaEIeFs4P8KAZWAdgTgFovVBxDZf5LZG8gm4\nshUeHLsZ16ZkshJq8cdoaD79e/oHu9GA/1U5kCUZO3Dm+Cn/qlnOZmxsyiltgUyDHc2gkT92BQDj\nehcRVSLx6pjlTCuYjbO/nz9O/ZSjpSlclXd7KJ904jX7cWUpGJ0CnjQ1RPbFCbWhAbg3SeOxhHz+\nvrbz70fBg83kEiBnWiG337yJ59+7sb3d2oSlDVf1YOrFgNzFHFm0JIzU/uLcGABWfXIFL9VmkT92\nBfcdvYOp1+0OO4ayr/0SA53FfbO+CVveuSWCm/Ilgs9lCssTDf7u3Qx2/pKSd0lySFs62RfdpCtM\nvnY3t795m3TTqJYRza7iutk/AHDidp1YJoyuYNuJXuzbmBPaxlQnhiZGgn8FFZ4o0Z+ltUUdO262\nheV3vEi/pYtCsvFMg527o3XPgEvppPubuZ+iySI9v17I8QW59N3S2mARwC5aWJKxgz8kHqX46n8D\ncPj2Fzt3LS2aMfsWG6oJiua+xr077mbH/c9j1wsb4Jhezokr3wrb1ekxIwREVJPGyU/7YP8uPOKs\nGptzQ031Gp7PUyioTsV0wopigU9vfIEPC4fz9ekcfDVWZBshE6Ok687gzNTrkvujg9UPBNypTeOa\nz1Mo+Kwf/9g2HXO1iGxr/iIFzlQqfNEcqOuG6BOIPdE1cnh+hJlfJ21h4IAzGESVvfW6V8Ren594\nkwvHaRXFLBB33EfmVwG8iUbKLv9xKTAXovhmkUlX76dPSiWJNje+gF5KzBct4k4UETTw28Uw86Kg\nl8GZ6ToxtVTp/ZczVaIh00ChJ5m9Iz5i1su/oU414U7T8OV46Bt9np+dGR82oWKtCZ8UlS4onVY5\nP3wyKfpM0z3WoGJE+/eirqeBWan5PPHRnbx2YgIWwU+s2H6QIAhffOv+NZi32R78B+I63KYlWkp9\n24O52MLsyw6Sdy6dJR/PAvSapZ3Fy59GKMf4H8CSea+3+mxh9+/Dli8lOf2vcNP19fKi+UUsZ0wd\n7BEZ1hHVePaGu6/ddMP3rNhxOZYOip4XPLCE/q91XQIbRP79LzPo9db1R6Fjme7VN+wg2dTIOx/q\nmvULpUtdRVCOGwkBh8ZT133M3969BS5rgAPRaEMbEQ468Meq/GXO+zyx9WZEo4I1yk/+2BWcDDi5\nft/9OOusWE+2tra+UKbbErUDNboNKafKGcVdfXeQZGjklWduwn9dHaomMK/XXj47MwRtpU7q3Gk6\neY2EyQ/tIM7g5o3dV2A7YcJWrlHXD2KPQX1fiD4Be57OJWfrnQiHHViG11BfEkPCfpHdf84l+4v7\nufvyrXxdlkNFfjI5I0uoeKdH6Pjjf6EPIre9PApNgpqJvhCRi4T58zbyxs6JFM96o9W6V+syeGbr\nNV2W5XrSFaylzQ20amqu19p9WgnrcvTo6u8qhjAi6hR/fOsOxl6Xx9LMyHV5byu+ikNrciKuA/Bk\n6JIt1aQhR6sYa0QC0RppW7Ww2pZt4fQMiZsn7mBl/jAeHLaFL0sHMz21gNXnBqFpAg/32oiCyA1R\nZVxz/8/D9lUseuSwZfHtH4vGbgb8V9fjcZsZ1K2UvPweWMolPGky5iqJmEK9XEoIAqHc4MphBpL2\nyzT0MOB3wLx5m9ha1Ys7M3bw1LqbSexdTVVxPDHd66mricJokZGrLRgaxTCCC/pgyODRcKVKIdJZ\nPchAQv7FzYRXXmbAWqlRO0BDsykUz3qD84qLKf9qXaPQO9zNiKzTlDpjqN2Qxuz5W1m9YgJX3LqP\nLSuHs+uhFxiy5X6s+3QZuXOAn/T0Ghq+idxmeJP0FAHQZcFZ1xZz+Hg37MeNuDJ1qfr1hTM4uboX\n3iSNN+a+xqvlk9l/thvSITveFIWsnHLO7k1HjpMRo2Q0VUCTRexHTDhz/NiPRm7z25LpAvx83mpe\neX82wmX1HL58RYiYXoghM4+St67td6AlDCNqw6KfQRxZtITDfg8DTdYQMQ2eL1LZlhkF17K+/5o2\nrwm6JtM9cufLDFgeuX/5T0KOVii+/nX6LFvEjTN+YNX6ttU6F+ume6Gk9qfCi7f/m2Xnx/Nuj816\nJPioHV9GAEOlEcmvu+YGEcm06GLcdI8tzP1Jyrm0xNO3vsdTH94eOlfw75SZ+1mS0Vxj+jOXncfW\n3MHJW1+NeE1tuekCJMw9y+u93yfbqJPsaQWzuTLpOCNtRUy36TNZwffluZpevLN8BgG7hpztJWZb\n231qS9ReJhN3wMC+p3LJ83s54O3GP49Npa4smuI54QPks7KTGbm/IRCtEYhRQpPNzu5w/O5cAppC\n368ewFpsQrFoRJWCd0ojckDCYvXj9RrJeNvcZj3RlmjMNFGXoytNbA4fv8jZzH5nJvUBK7cl7+KI\nJ4PelnKOe9PY9Oh4oNmd151ipKGnSOoPkd1wu4qSWUaMGS7EPAdpk8+SZmtg24G+CKpA7GERe1nr\nwadiEqkYA5/f9E/u+Ptj+K+sx1viwJzpxOs2MWdgHi+k7eGxsuE4FTOSoLGzPJO7e+7kgzMjaPSa\naSx30D1CKdi6XgZiT4b3ceeHSyTvU6jPNuAc4SFjpZGzUwWM9SIpI8up2ppG4qHI/eK5uQFm9z/E\ngepuVNQ7mNLjOFnWKt5cOaPNe+Lt7kesN2BqCJ+sVcwax+/Kpe+yRUgdlFppCy2db30JCuYL5O6+\nJAVzZdsEO3vSKYq/68Hn9zxHX6M+IROprMuFMt0g0kaXUbYrLewz44AGAkeiu/I1ms/TYnzZETYu\neI4pyyLXRB46+Tj7T3dHLOpcu/1fK9P1x6n441RESbtoIgoQuMDQ4w+3f8jO6h4Y6jqeibr2eOfy\nYNrCanc0qlHD14bcqz18sWEMTyQUhpaN/Rra2bpj1G5NxdvHS2CAPoMUjKYdWbwEY6OgE1GAA/oD\nXDB+OZsfeI7fzvqM/2/ZfKxFJoxFVu7ss4vzioulNeM4NOY9Xr5iRZeu48+//zdxhwVq3FYGJJfz\n0fPTqQjEsPvPuaQ6GvEei+Gdz6+isrxZVtcWEa0ZqlHYmMx7J0YSfcjEg3d8SePVzhARVbM87Hk6\nl56fPIAkqdhPaxg+iyNhv4gwt4pRv19E4k6JVW9NpvR0AopdpWRNNml3NxsxrVszmm0vj0Ixo5OU\n+vaJ5JelA3lmUnNh8+wv7md83o0sa0jkH1/Muaj8UMkl4ktUSbqyNKyhSL7qHCf2dWfgS4u5pWgK\n06PzeeLz+QA8k7Ge3pvvjni8D7I34R3QtsxNsyjIdhWDU8B6VgIBHKfEThFRxazPukqo3DP0B4yC\nwu3dd9HNVM2opNP0jq2iTrEx31FNnl9CsYQ3M5JXvaREFMCTIoQiUUkWJ4JfCElDFROhfBa/Q8ST\nKOFKlagarE9U+WNU6rMNeOPB1AAfnhzOif3deWrDXKIyGxidfJrMvhX0iq/CHOUn4DYiyEI4EW3q\n4wwejUCUGBb9DM4+gx5N7gqSDsjYzymYq0UEo4qiqcSJkQd1aQn17DyezajEEhBh9YoJuLIUlmTs\nwNXHz/+uHBkiogDWIr0+cEt4k5uvtd+YUwB86bZgvbKSw4U6EQUwpnh4pa47R7b1xN1Npf/YYhbt\nm0+5Kxopz47khagSicqNGWgGDUOdAc6bMVkCCC4J1QSCu+uRgqfvfJdX3tcjqYv7b2FOYds5RB0R\n0ZZksrGm+T54mupbBonnQFNzR3shEQ0uP14+jBF7b+HM5sxWx/4x+G8gogD7Zr8AwJxpO/lo38gf\ndSytny75btlnyr28l5SILrh+U9jy+OmHQv//5Xv3seeb/mSv/hkctdNjwmnM54xoTW6bO7z6dfW9\nSPOmC6WvgTj1khPRPlecavXZUx/eDjRHXoN/N64LV1ZdH+Vsk4hGgjtVYN9Tufzm4Q+o91qY+smv\nQ+OmDf1X87vEYyEiOvHQDcz+4mGG77mV19ZNw5ukEojWmNr3KM6s9s+jmARcGfDguM3UDpMZ/vQi\n7j9yB3/Ln8ldvXdgiPYz9+RU+ixfxPCnF5HzxmKu2PAwigUCSQHE6ADOSfqzZT8Dw59exJj//Qvi\n9hqx1OhENOAQkCQVo0nGWWcjUGfBldqxEijnr4d56rfv8Ps5n2Bz+LCaAlxjP4ZZlMmvSKNBsbC1\nuhd57kyWbp0Y2i/ozmurCIQRUc0Q3icGl72JnRs7GJwC2nE72tBGHEYfXsUAJhUEPQjiTpBQpRa1\nvkWB88MFlPgAdzz3GJJPwyCp/PXa9zky7l2Kpr7JC2l7+MQZTbErgW+2DSXF1MDw5HM8FFdChr2e\nAUkV0Mbw4EIiCpC8T3+PYoplJvY+AUD6txB7FMhNikhE63sYkC0iyWvN7Ht6OJXfpuNzmajx2yjx\ntF3OC8ByxhQiouLg5hQJySfQ//XFF01EIZw4XkhEAQz17VOpo0d0BdLnjUMu6vybB32G2C88Enux\nRBT08aWhf+f4xl8qpra57q7UbcgNF8/dwq7pkhzlImGqFRF9QkQDo/acCmWbhjqg+YdZMezNsPVR\noo+zW7ojJ3ackH7y2+yIZVn+NL9zBOy37y5ADAhoon693rTOR0B+OTvcHEhrynnSfoS527rJL1E4\n+W38cWq7RNsfqzJgyWLGrnqM51c0S9zEAPw6/hgT33yczz6ZwO8qhvCPU9M7fX7VBI+/8jMee/ID\n+iZUUvR2X6y3lfPJ6cvou2wRxbu7E1MI0UXgOGLq0HXUXCWSv6sn3WLreOTBlQy1ljC37wEefvIj\nYo6DxRJg7smpxByVkAuiaZjpwpuo1/UKRl0B1El1CF4RKdqPJ1XlUKFu8x+wCzhONeWK+vSiwJrU\ngfPud6nsbOzFwJcX03PVA9hKDNyeuZsRljMYu+jWGoQcoyAGBL2O4FV64XXFqlFSlhCqG3r4y34s\nfutBSNfdcicteRzzobYNmk5OeQt338gzsYJXwuASUE16JEPyCfgjtG1+xwW5pikG6vpIxPeu4bKo\nErZX96TMH8tlFl2SvCjxO6bGH6FKdvCZy87i/NtDFvNdgSZ1/j5qooDBBWhgMgfwKEbMVSKiD6KP\nGZBjFPx2EcWsF/Ju7CEQVaYgNP3M6d+rTP4/7L13fJX1+f//vMfZJzshOxAghL1REEFQURla96yt\nVUSJtVqrdqj9flpr+2kdtWqDE+tGW7diHewhG5kBAiRk7+ScnH3u8fvjTs7JIQkJiB/7+3y/r8eD\nByf3fN/r/X5f1/W6XtdNWzhr3m7axocRBJ0h46sYPeYYgdIEvq4biElSSTAF0FQRZ7IPzXrcqNzl\nlek06NuGGh9yV8NU66efQrXGXr/ZDVKDGUkQEXv5aCqrUnDus/DetkmRSYPjmMRLrgzSs9r4qGwM\nvpxou6UAZCXF5jVK/uixpyQd4yVXBi/Xns0ZAyqgy3cRclt4fNscLC0C9iqRfTsGEWcP0PxlFlIQ\nUi6owTMihHdoCFudiLVRQNAh6LEYdUp1gyZ5snjotR8ChrGXIbs4/JWR9555TtVJH6srbGXGgKrY\ndTbO/WtMBPTp1oExkc6LL9/Ib+qjk4qhb93Op+9PY/ukd7oZqf8bIA/xUKfCu554Hs/cQdncF79V\naZlOcaDfzYoqG8tH+hc16y9e/eDcmL83fDEGiI16WjoUH8vX56HJRMSmbnr9pwx/cfEp53Meb+SZ\nWk//NKt03aB+b9tbXmh/1XztdTqDv7iFZMnDlgn/JH5IG/uOZnPRgfkxtM0G1UtlZQqSX4TPkok/\nIqBnBNFtKivWjqMja6VXSCEdRzW89vocknZ2OAo/TmNG3hHuTionKcHLvhXDiCsH9xCdcLzGuKGV\nBLPCOA+Y0TwmTLuctI3ubjF1jied6T/+diuiSUMMiNjrFdoKjO+/dnp3BlgwSebuASsYY27gLFsZ\n6fHtJNt8bPTncn7CPm4e9jWSoHN15jbawnZsfbDxjPbE/i0oGohCv0vLpG9TkYICAZeFkfG1jImv\nITndjW7WCKQICBox466g6ShJCmcOKyOYDPZGlZ8PX8HVzmj/vz0Y4qXqs/mmLBc9OURQk8m3NbEp\noJJhdWOTwtgrT21yquoCYbuIqOpY2lUq58bOseqmSh3thNbhIqYOpfyUEgVTtZmjrhRK3T0LxfUE\nbU/PQnanA51z/a6QQieer3RGTb+oH8m/fcY7ljK1rt/nLFy6GOVI/8X3ToR//vCv/Paqd1BK+mfM\nrvi89zTBe5b9hLmTdp+Wdn2vNN2BL/0lIvgTjtf4wawtnBN/gF++flOv+/RUcPx4qm0gU+mTnvtd\nIRyvYerwzvRF0z3dGDv3ALs/i40G5M6u4P5Bn3Hny70XCz4RAmkaQkoQy4HuDoOeaLqheAGzW8eb\nLRjKmwODvD+rmH2hLFa3DWfFttHILpGE0m67doN7KCy97u/cuuNHDEppoWzVIPJnl5Ntd3Ft6iZ+\n8eRtfPNrY/I35QFjAqCL3WvKBtIEVBM4anS2PrKkmzLthoDG7c/+FGujcT2uQk7ZqDwVBFO0iMEJ\nMG5BCVs2FXLbhV9yX/IRpu26Ave6dDSzkadgNquouxOQxrqIswWwSCqXZn/D3UnlkWPcWjmdr74Z\nyeEFz/Gn5pG89Vbs5CyUpCMFDMpZOElDTA5iOmgnfasxGDaPNuFP00koNYx093wPk3Mqyba1MclR\nxqFAJjOdB3ii8kIa/Q5+X/AhBSYXqaIZjx5mgORgxIYbUQ87yVpnOGjCTgnTKdRZ82TLOKt7d/LU\nTzaRdFDDPUhEFyFuRgPNe9KQ/QKCCkkHVGS/jj9VYtiiEjaUDMUSFyTln3bqpgk4B7tQv04y6N8X\n+QgHZNLTXbRtS8PkEfjVLW/zRs2ZtAZsxJuDlJZkk/Olji4JPQoV+VMlbE0q4l31tH2YTXy5QsNk\nGbMLnNVaTEmatgKZxFIFf6qEuV1DCuoodpH2HBHFDomHNVqHiSBCQqnGhfevY5StioefvyH2pCJk\nX3QMV9CKZ0U61llNNDXE40zyoexK7FUg6LzrtrDirTN6XPdfi15njKWWK542KDrO8+ppbnMyPKue\nvw76F/Okdg9dAAAgAElEQVReuw9zm4BnZAjBJ+Eol3Cc20DL7jTOP28nnx8cQWF2PZWfDoLpbQQP\nJPDVDY8yd8n9BEb6KczpWNcDTkTT/U4xzg27ooN0V6O0K/74o1e51OFh5JIixl50gKNtKXg2pXHB\npVv44oPo/QwMDWA9HGto/aeq6Z4unCpN93QhmKFgqTvx+H9g4RIuLb2Qwvh6Pvz45AQCT4Wmezox\n56IdfPnvE6ta6iYQwrDppseZ+o9foDh0jlz7LAsOzY0YsqHMMOba7t6x42m6vgyBjGk13DloJVc4\nTxxNmbLjaoKrUpF9J/eOX7RoAwfa08myuXkmezM/qZjBpn+PwVav0zpeAV3AXiFjPrOFSwbtwSSo\nvLrvTB6b/M9eVeZLQj5+UXYlJQdzIuVoAPzneggFZIR6C7oMAz8JU3alhK1axuQG95gQ1kozgbwQ\ngkljwcg9FNgaGGc7xhtN0whpMluq87il8Gsm24/SptrREKkLJ/CXLy9m0MenVqsUIBwvY3L3HdDQ\nzCINk0woozykJHi5Pm8bG9qGsKcuE+vn8Qga2JtU2rNk4moUmkfI+PIUJJ+IfYiLG4Zs45cppdxW\nNY1nstdjEiR8WohtITM3rbsZsdHMOWfvJcfWikux4VUsHHanov49WlKqU6FXsYjIQWNMi7+7kk+G\nfcbPaqbwzR8m4BokE0jV0Yf4yHi7u6Eftou4hohcevl6bkjazCizjSrFw4eeEVQEU3hns9GXmpsk\nIzK4r+c61McjkBciMcVDYGfP+jEAtonN+Hek9Lq+E13T5/50w6skSx5ue9UYE6wTWk54jpNFbzTd\n04ntN/0Vp2iNEUMK5wXJHNBG07bo8/3FFR/y+Lsn1onpCcIwD/qhng3n/1iarrljwFAtOmJIYEP9\n4B47lk6l2pLbiiOGqH1yU+8HNhnbK30M+qGC068lL/aj5l5fCI3sX6L28dj92XCyZ8cmFFeuyjtl\nQxTA2ij2aIj2hq6S67oAqWvN2EWF3y6/iq1vjOOSqdtJKIWmqX13uPGHwatZkGUVUdAZNecQ89P3\nsOpIAff/eVHEEH3elcUvfrWMO375Ls3TjYHAMzD6HKyNOo4aHcUusCmgkie38mjLEJ5uHciWYJhC\nkx9PfrQ9J1sf0DfkW86+BJh9+XYK55biGxZk1ycjsDSJHPJmMPLvRbjXpvPIT15FDIIo6pgklXCB\nnyuGfIN7bTq1WzN5avWFMUJV7YoFe7mJdQEZU4+1TAzDXQoIJOyXEI/ZEDRwD+yoQ9uh3OrLFLA3\nKmT8w0rVHwrY/MAUfrvsepJkLx+3TcBpCuIJWLAKYQK6gF00symQRpPq5ZdjPo+oVQI9GqI9ifwc\njxMZop33z5MjknhExdako2pGuQbNpGOv1WkaJxJMFPGnCRx6bgRZn8tYvo6jdiZIWT5eGfcPdAnc\ngwVMux3kvSsR+GwAoWQNs0unXbWSbXeh6wIJFj+mNhFNNgzR+ikygWQJzSwQdhjdaeNZCg2TZBpX\nGIZo0xgZyQ+BZJ2mcQK10yXahso0TpAxeYzvRbGBFNTxZEvUXKQQSNNxTG2i8ZIAJi84KnUEHaY5\nDtOmdi874clXOLQ/B6UjZeHKgTtx7jej7khE9oJwdmtMnb5OfLRpUq+39Qqnm8frz0czGc6LumMp\nWLY7KF01mLdckzG3CQQG6Nw0aSNCYgjFDjlxbSg2nZK2dHSXmSMbBhKc5EVVRVLGN3DPsUvx5SrY\nd9ko3Wzw9oKTDUvZM+r05FP1F4POLY/87qw3+u8zno0s64lqO3yO4UW71OFh+Pob2b+4mJ0rCyPl\nXb744AxUs44/23hnjzdE/+Pxvc4ITg/KFnTP5e9EsIO59Pe2XA6sGXzShuh/Ap7J7q7yO+ncAzGM\nKqHDHpr6D0NMT/YKTN99eUxEtSdDtCfY63SaVmRx75pryP/4Vu6uNWjaPzo2k4kPL2bKjqspeHUx\nT7cOZOvEd7j31nfwp/fdr7dOVGg9I0QoXuCT189mZ+nAyLWFNYnlP/kLOx5aQtnFL1B2yfPs+2kx\nE9OrWHZgEq8fmELYbebZqlmMLC5iZHERY7dcx6aAykdeO39sKmT+h/dQ985AknZJqJaOOpAZAoKg\no3lNCJqRv1g5x8zAwQ0EhgRxjwmRvlomkBeCoMigVwXKvSk88948pllUrkvZzNrDQxmTUYtTCmAV\nwgwytZAhuagPJ/TI9qg9O9YIa5wQ+7d/gPEcXIPNmNwKDZMsBJO6O1NCCTJV55nRJQHfAJlgikZ+\nWgvpdg+FlhqyrW04rCGsrRr2JmOstTca/6eUKKRvEDG3iaQ4fLgUGyOeLaLkj2M4747FzCxaxIyH\n7+Km9TcTl+AnfXQDFd4k9riyGGRtIsvaRm3rcZE0AarOF2gbGr3mZUPfB2BlxTBu/u8P2HV/Mb+7\nahlDMxq599HXqbk6ROUPjDa5c2V86SKpexSWrZtGmqTxb58FDSjxZvHRB2dhbpaw1sjoQ3xIUu8p\nRM7j7AFrhblPI/FHQ/qnlq06oue91BE1RIEezzHqvEPdlp3w+BY9UuXjdCCcqBHK7N0h4uxI8wkn\nRK/LVGGJMUS1wX4WJdSg5hssvE6maii173b2Zoj2he83Z7RDYlwKCoSTVFybo5QPTdY5a64R/u2c\nS3eNfvq2RSmYFYonxrC0VhiUi2su6FncpRNHzn35hOtPBbccp3x4Kjg86x+nvG/1qlzOv9QQ5Emd\nUXvS+z95U+8D+cnAUa0TV64TTBK45tH7SN5tKORueGaK0bZN/YtcP3jwUt6f8ALvDP2QY0sL2O3J\nIelLG2LYULx8oz2Fta3DuDaulXmOMszVJm649zPyzykn/obqmGO5pgR5oeEcxlssnGk/QkCXWeMd\nzo5gIkIXBd0TUcR7gv3It+PMW5pElpeMomRlAaIp2kFs/GBcJMr7wFJDJVHaGUdoUzKWvTb+tcxQ\nOu7M+5xgLwfg0tILI+JFd7x4O6++2b2os7NCQHHqaGZoH6JhqxMIJRry9/WTTWQOa+T+BR9GIqWd\n8GTJzJ+/mce/mscoezWTE8pxNzqZbhXJl41O7hKHj7CuUxNKIpSkn5CKPeI3e2ha6KN2mkz1TJn6\nySYqLhJxDTYRTJQIJEsoNpGKCw0jK+yUIgZsy3ATLYs86JKOGILquSqBFIEUuxdRgaT9Oiaf4dUM\nJogklyjYmlVkn4alRSeroJHBA5op+tVdpO5WSN+qRPJYEsoUJI+IP1UgWfZQ6U1EEjVkQUNUBKSg\nTt1UCUuLUQ7GlyrSNM5oV95HApqs48/QqLxaQZ3QjjbFjRgWcIxpwdIi4B4VJpCq0XJ2kPZcibhK\nlaYxMoEL3EwZVoY20E9zWRJqswVPvopqFQjFCewJ5HCxo+fBLmlgK21ug7b97KZZxvviB3RYMvaN\nGMdABL286p7CMH9uNuqhhRN0zK0CyBqaGWQPvLXMiLQrCQqr6ochCJB3TgW7NhYgp/t4pmAZCTku\nzC4Bk1lB2hTPwkEbyLK5cB41vn1rk9GeAYmGIWiqPbXv6FTzM1sDUSebtNcYQC96IVpnbuSSIkZs\niJY6Wb3oUQ58WYBzaiMuzY+4Jw6PFmDUOUY+VCctTgoJ2Kq/H2bOt0bfKeP/0cicduLyD5YOxtRj\na7+dVsT3iWFrftxt2faVwxH68Nk1bU0/8QY9IOwQCKQI+EYEsR81MW54BU9mbmPkxh+y91VDbVj9\nNIW4Y/DyM/OY+PBinvzbVYQL/LiHdCi15vZycEEnNa2dvIvKUazGvO28/Zdwa6UhLtUpktQVL+Wt\n5+CMVzlw9muUXfwCywuXs7+omP1Fxbw1filTrRIzrE1cFr8TITmIe3DHjh39nMkDfpcVKS6MvUZA\n9htlOLIcLuzxAQa+J9Ay38/5o0uQ240x59gHg8leE8IkSMyyaRw592XmJO9ndUshAA5BwS6GKfUO\nIGud4VBTHNFIbOpuleYxUQNU6+gaQgkyx+abqD8Tyi6XaB1lNDJtVxhPjoRqkwglGBu7B5lxD5QI\nZ4Son2KmrRCs9SJlW3JxhaykSF7W1g7F5bHFqNq250k0jpNpGiPjTzUMv2avnbf3TSJtd+wL46hX\nyXlPJuEfcfiCZr4c8TGtQTvVwSTsYojs5Cil150nIwV1zM0S5vbosmlbbwbgt6M/iahHXxvXyvLC\n5Vzi8DE6u5bXz3mBmqvCSEEd9/AwVecJHL3yOQZIDi6yB5m99k42vDwJKQBiSCCQE8ZkVggGenee\n3DF0deS3Yu/f/O1v6/qXfnYiYaKesOvrgpPa/rErX2H02D447CcBU5uI4O25za/d8BQAHi0QqSzS\nE8SjNgqXLkYqM+Z0nfm2ZZc83y+DFGDS7AN9b9T1nCe19WmG1GIi2HFhnbTa4etvRLXqzJ23lY2f\nGXk55o6b5pxieD9e/PEzMXme87cvwlzaPXr37vszej23atFpVU8tAnki/DKlFH1U+0nvF8gw7kNX\n0aFTxVNZhjG6dsz7vLuwe/27UELvH+vPd119yuftCZZWHdkbPd/WR5bQ1j+BS1zDIC++lQvW3snX\nQRvjb9/NjiXjI+u/ackhTXLz+qDV/K5xJC+3jUfJD/DGY3NZXrico4czYnIzUtaYeSlvPd8Eg4wx\n+SjePBuroFD0/kLiSiXcQ4zt5D7KB/WGMQsO4B8eOKV9AcQgWPfZ+PvCZ3vf5oy2Xtf9eulN5H96\nK7sO9zb6RyGoOpZmEXutbtDOBMhZoWJxaaRvC+P9NIMn37yUtqEmmkeasN9nGPbbfr+ExzN38OaC\nYuLEAH/bOAfBYry7JWHDcA3qYTJlJy/unA45/l4NHoAVpcNR9iRgbRHIXquQeFjDXiORe9VR2oaJ\niGGoXqBgdglUzZbxpRpKvIFkiXA8+A4nEMwN4S5QEV0yYhgOVabjqNGRQjqCBmYXuAq7iKXYRcKX\nt1K3Jx33c7m4BotUXBLbyIof6CQeAmW0lxVtIzk79QgTUqopcDagWnRcg2WkgIA3V8OfIhJMFsjc\nqFJztvHCpU0xxB5y35GRt8fBrnhUq07c8wkklyiYmmV0s4a11Mq4H++l9myJ8DgPcwYdpMEXhyRp\nWDO9Rv4VYPLomN06qxoLWePv/nwtKX7ajiRj7RAoEtsllI504pQLaphuFbHOasI33s+ee6J9i6O8\n50Fr1pgDPLvlHL7YPgbzMDfKme2gCfjyFFbd9Wgkn85ZaiLeEkCstPLzgV+i5/qxbHNy8Sd3U5DS\niC9Tw9diNOTDhvF8sndsRCRJM4EvW6P6mEGV0rrUfjZNao0ICflz+0d7Cw7zE0iLPue+jFTXxr4n\n52ppdEI86/n72L+4GM+mNKZ1lG8647l7OPBlAWsXPdotPeD/oX/omsc5+fxvV0N11agPe1TAPR6d\n5WWSpjR8q/P9T2PpDX9HONy7TsDphGITyJpbgT83TOJmM5Y2nYplg8n/aBHzB+9j5sKthJ0C7rO7\nj3l6o4XD1z+LZhJw9lL94dzRB3h4+Id4Qhb+fdtfEMe6sEgKOxqymfjwYoYsu52i6qkUvLaY/A8W\n0aR6Y/Z/xxObFzjcZOGS0ouYsvYOLl96L2arQvqYetwz/AQ7AlihBB25yYTqlREVcFZpBIcE2Ly1\nEF9lHJXXKcwbtg+LqJD7pdHJmduMfmnS9qup6KjzfUtCHRZJwSEoVKtOxpqt1PqMyGEwSUb2Rvsh\nk1uJjIGaRcTa3JEOlC9hyvbiqBKNCGB2Ry6FrhOc1o6g6tROF6iZaQbdyPFPT3cxYGYN5jYBW6NO\n9uQavCEzG30FnJl+jJAv1mCTvTrBZA3FoZNQruDOlWlvdLJq5tNGeySBqnO7z3dcro5xRNDZ05bF\nsUAKRw8Zquthu4g/Xad2jkL85Ebaz/DTOFbGl6XjK49nZtEinrn/GmYWLer2b8+OfEyCitZqpuXM\nMBNGlINuiOQB7A4F0MIijnqVQKqOatHBpOFrdCAc652h9+dlV0av+QQVKfJmVER+W/ug8h+PkkXF\nzN7XN231ZCtifNxyaqUbTwSTu2fT7gyL8X5M3hhbU/VkdGrMTf0zzrev6udEvwPfqzFq8giYW6IX\nlnF2NcK+OA79eAl2MRQjUgTg2WpEQxe+8tNIlLTktmKUb6L13HJm9q/uzaGblnDWi/cSd0ZjZFln\nAe6eBI2Krv4UpdAXoQcLY3rPnfhBwZ5e1/WGo5c/F/l9d+1kRhYXRTx+J4uuokgjzEansr+omJ2L\njaL0ZpdAsLBnirLeQ+H4b4utjxiTjbbhMHHbNWRPqGXrI0siy3vDH654E59iRlNE/rt8HquPFLD1\nkSVolzez9ZEltLyeywOPLGTKA4v55MlzeOv5OSSvMDq1glcNFd3jGarj/1TE1Ztv5ewl9+I4ZObl\nZ+ZhrxX44cLPiT9ibGOvOzXe/rL8ldgOnBotr7OUjHlqC3e8eDsQK3bjyzW8mNqWRPbdWcxdP/qg\nx+PYj5qwH+47wiSFILFUI75CIa5cRLVCw0QTdWca36OtScOfreCb5mXIxUdYXrg8su+DDWMMD7St\nlrL5LzB72CHeaE9hrNnKobAXi2DCp4XIyWhF1wWaxppAgNZCE7XTZarONRR2PVkyFw3bT+KUBkJn\ntbP6xRdIu60cAPefczGNbyV58THM9jDz529mxoy9DLnuEI23+Ahd3UrK1DqmnnWAcYOrkAIigiqQ\nXBLGesiKJkMgWUSTIOyE3C+iz9SdJ+IpSWLpFUsIJAuk7jGMQ2OdjC9NYu74PTivq2FsTjX1/ng+\nrBjLmqohzI3bTThZQQzrmNrB5BHxZQgExvqQ767D0irQMFHmuryt5KzUcA+USdmn4KzQkQICl/35\nCwAy16tIXpFAmsaagwWE41XiHAE+PTiauk2ZhAMy7DJyf2w1EroEqkWgrj2OrZ78bs9T3hGHvUrE\nOzbAfQvfwV4jInf42pq/ygIgsDqVI+e+zNOtA5lxzY4YoxQglBi9Ry/nrePWKevIym8iUBZHoNmG\nM82L87DMVz5D/GvPPcXsuaeY6zM2Y2kSuO/ZWzg86x94hodwlEuUfFCIvUZECBjDTNnHg3HstaA6\nNILJOmLY8HxbkgKE48Ca344/0+iDp2aVY+vQE7BV9o9OeOS8l7F2eLFPJlra27b7Fxdz6KYl7F9c\nHIl6jlxSFDGSu2Lm8z1L3//fCnHkyTtkAbZ99e1qqJ7IEI2b2MzYcw8R7OKwaN06oNftj8erNz71\nrdp2OnDzG3f0vdFpgjdHo+7jPCSPhHeWl6k37+Ti29eycu4TtIQcrH1xCiaPTvz66JiXcfUxdEFA\nl3UmPrwYMdx9LPVlQtvUID8esJ7/PjqXtWPeJ12ysG/aG8iihr7ccE4llApsWjqBj655nD+d908u\n+OO9THx4MYVLFzPqmSKeKTuXOSUXM+K5IgZ/cQtT/nAHe0pzECUV1arztwnLmJ+1j6wUV2RMd1SD\nrUFACIsIio4nW0SutpC6Q0D2C8wfsReToOJXjT6naZwlMk9Rv0jlicZZHAobRvHLeesYZbbxSsPZ\nABytNKj6gWSjs/BlmKg924Ivw4SgQXuumSEPlZBwNIQnx4wuw+ScSqxNOtlrQmQ8a2Hlqy9x7HqN\nRKef5lu9WJtEQskaw24+gO8cD2ZJZVJKRSQFzftGFo21CbxWfgaF9jqmFx6hZbiMd4DRD2pmgeTd\nAhmbVKouUxh69SGemf0aeR31ykVVJ2dl92eU857MzKJFHPsmC1HQ2duSSfoG47pCToGkCY2YGk08\nNWIZR859mQ9veZT8KZVkr+nukXPnRi2d7DUa9/78DkO9P8XLN7sGIySF+OULNzPpd4u59KO7SNxu\nQbUIpO3QydiiErfXQuZqkQHbjGPPu3gTUy/qPsfuq5botZetpmJdHort1OZ3I54vom5D9inteyKs\nWTmWjwqi9XKSJjaeYOuecfDmk6v/fDyVti9WRfoUQ2ypa55pfxA6Cfrx954h0tWbXLfeeNCtqo8/\npu/m4IxX+3WMrsZjjqP3yFEn/vTDV5m++3JUi86WCf+MLDd3Ub073iAtfmc+8kE7vm2phBK1E1IG\n/pz+Tb/a3Ru+eP+MiBHa1bA8WdxWNY2RGw31yRHPFzFhyV2RdZaDNixTWr5VO08WiQdgx+S3eX/E\nm5FlLWO7dAxdHEqhH7Th0ywsL1zO9MIjHKlKw2I1JoFXDNxFweqb+PT3j9FyruGV3frIEkweHf8A\ngaazFKzNPXunTB6dhM8d2Gt1bA2GiI+lVeftv/VfMbgv2Kc3EUg/tTBJaFM0B0HsMuftqmI36uki\nFiWcmI7WF1SLIaUPkHg4jK1eR/aDuV2gZqaMxWV0IofOeYUPCj6P7PdsWzbvvj+DWQtvpaj8B4zZ\nfD0v5a3n/YYJqLoWqaFlF81UHUjH9o1RvNyTKSN7dTI3KGhWHSmgEZjnZuUHk1A1kZQ4L1/4THxU\n8G/2/sx4931eK/WeOCblVPJVZSEVniRKGtKZmn2M1mYnzV9n0BRwcOiLIUZn2qFyF0o06LmKVUAK\n6VhbdGqnR51eyQeMnnfh5h8TV2lcZzjB+D++QkHQYLyzglWjPiTL5iLL7qKl1cHFg/bylWcUol1B\nUI06nGddZKQSnDf0IA/lf4I/XSOQG+bpfy0A4A8/X4pvgIQU1kk4qvHugxcy/WGj5l/8EQFHpYh9\nvxXJL+I6lIzaZEEb5kWuteCs0BHCEFehYW7X0AXIinczyNrc7Xl2DiZ6UOLRkth32Ts6NnKRJrtZ\nuXwig9+PzSXv6h0N6mFMokLdgQGocSpSXBg2GE6/s22xDr9r41ojv8c8UUTZvBdj1juOxXpSrXUS\nlhbj3bM2CgRbbAZ9rjwuYvSt+3gCwWH9y+k/XmCo07g8Ej5xUfLUs2u77b960aMxx+hc99iNSyPL\nO43k/uKqK9cgTnD1veH/Iijhky/b813DvSsFV9BG2Q+6F3PvDzqjCv83QJMFEkqNbzT+sIBjtYNN\nSyfw9gfnMHfzYjZVDySQ0n2MrXtnIIKuk7iv96mlvRYSN1lY9FoRFXXJfOEzccmBy5j48GLMYnRW\n/PAvXiblyipu+PMv+MuT10aWO6qNMbtlZSZVa3KR/ZC42XDAJm034VzjwFkJv3p8If9aci71WzJo\nnRQ26MaZRqRTN2n4soxIqS6CJ1sgY0Id2ZY2Hs3YSZzJ6DPbh0bb45oQYoqzjHU+g0LVGSVtDjpQ\ndQ3JoqKZDT2BYwtMtOeJCAo0nKGTWBomrjKEhkB7ntHW2278lNcHre7mlLfYw5wx4BhTs46RNLOO\nkaONaJ7JpLKk8E1uS11HMFWlZZyGO18gOd2NP2SiPhzPvkYjeqk4jGdjaTXSZIJxEo69VnZtKOCn\nq3/IEy2D6QuqScB5TORHWV+j6QLmDpX4sFOgvi4RR7XA4I779Ktjl+J/OqvH48RXxlo6VZcrmJsk\nPC4buqyT8pWVxCMqUgCc5RJxVQomn4bJ33k+yLvzENXzjDH6iCeNdetG93iuSRfsj/n7p1d/HPm9\n7P1ZAKy67tE+r70TWh+VFU4HpGDsdySJJzd3DOca1PBRMw+ftjYdj/qtPdci7wvmHsrg9Ibv1Rjt\nzM0L5MYKwExbem+/9j9vwXYGf3FLzLL1a3p+ScOFPtQOj8ilDg8bxr4X8xJ0JhD3FBVldNTLqxT6\nMLeJWG3RNndNPp697wc82Tqoz5IlvaHT+OxMyv82WPfRBPaf9TrQ3fPhz1HYOWXZKR9bG9t/z/fg\n92/jvx80JgBTHlhMkmSP/O7qjHB36R9Nnybyl70XMG3XFWwsHUzKagtmWWHBobks/XI2y6Y9zwDJ\nQWFOPVsfWRKZeNoadFI3ykbN0JNAX54hMMrW9AZ/ZvQd8G1IxVr/7T4ttYv37ttQf3uDvVHD1hS9\n6GCyEBE1MrkEGiaYkF3RjuSLDvrPsnvn4ajRqZ4pMzyunh/kGx7KHUfzkIToNe8OBSgYXYUUMMQ0\nwg4BTe7IERxsGFO+KidvLvwrsqQiP5XCHe8tZNiaH3NrpVEwXKi0Mja1hmmJR2k/ZkTs7xm5gnnJ\nu5EtKkqhj0NV6TimNaEN8iN7BVz5JiytAp4cETmgo5kEFOtxNUGBrPUqSkvUo58XDfzSNhyeOXgO\ng7+8meWrJ1GcvYmct00c9aWSIPkRa63oEoiFHtatHkMoQWdTzSBEQSNnpcaZI4+QvkXFnSfzSt10\ntv5hCfVngqVNQwzrfFQ2BvcgmUCqgByAlH0KliYR2SOSvEskwRlAUA2HgbVZQLEIyH4dXYb95Vl8\nUhdboqUrnAdNeJpiBY4cu2Oj9dfGtRKO03CUSXjHBCIRUktTtNOyCCaWbJuFZlPJzmvGusegSHlG\nhMiRnWTMNQzSsVuuY+o3V3IyCMfFDvDOwzLqmQbTRHNEn1NGmqubQRpKPPFA7TiziZFLihi5pIiL\nX7z/hNs2rc/stmyAFL13nYbo2gDc98rN+POi3qGTKVf0z3+dg/YdME7+kyGW9kwlvXjBpv/hlkQh\nqPD5iE/6ReM9HsGcaA71/w0QFeMb1SWwXNLA8B8eoG20hr1Ox77KCdsTSD67jtYpxjfRNlpjx0Md\nEURLtB/JuPpYxOl5PDSTjtUe4tcll9H4LyP14Oib0Xv80OM/4eiu2EhUINk4Vut4BV0EW6MeKdcS\nOK8daX4zbSNj+whHDViqzVibdey1Rtksa5UJyS8QfxScxwRsDTq1zQns8xh9wpOZ20AUyH9X5dEW\nw/hM+drEg6uu4JYEI0p0S+l1AOwqGcjqgInctFbEkEbSwSCaTSUwQCNY6Ec364hho00/TV9BXEUI\nxQpL3pwfaWNnaZkKxYPjcyeH29M42DYAHfArJg62pDE0pYlP2sfyYftYLI0y6RuNEi42k8KiYRuI\nkwKoumAIE/p1/MkSvkyBsEPAlyGgyRBXDvajZl56o/f6zJ2QwjquUQqioGGRo3MFs1vHWmGmbUw4\n0qqiiW0AACAASURBVF82PdGdrQOgHFdjPBgvkZDgY8BOhayPTCTtklBs0DRWpPEsBV+WFqn/3RWV\n7YnYE42xYNfRHEy9iEy+Pmh1zN/PvHNxt23mLDXGhb4iqQDJk09M49++8Mk+j9EXLrx4S+R3KFWN\nERLqCwdvXoKp0pjsvjf0y37t87OaKX0esxPKoNM/9+wN32/OaEdS7LD82Ho7gkakAzhR/mWK2QNu\nmRHPFTHpQsMj0pWvffa8XZHfaUntMTX0OtFJ971s+lZKbiuOeIym747W3jSbFG672pitygeNQdZf\nGw1zW5olVKuOc0oT7oCF596ZRzju5LwbnYbn/qJinrjpJQA23PYYyijvSVN1u25/vEHbSf2dNOro\ntzJ2xd39k9gGIzLyqz8silBzpzywmPxPb6VpejimpElX54CgADvjCX0wAARoGwGCoLN/Xx5JewVu\n//1dTNlxdYQ+OvdNgybnKoheZ9MZp7e2zonqztlqJUY9XcQ7tz3OvjuLT5jb2R90fVd7ov4+3dpH\nBfE+0DJcwpVviASBkTtj8uqk7g6TtivMgJ1hstcoEUpSZ1FzMNRts9cqrP/NVNb/ZiqF635E3tsS\nb7Qb9Ko/NhUy1myl6e1cXKMUQ+HWZtSRW/3iC1ifScI1yMTRK5/jjl/eRXObk/l/WYmjSkA4aqf0\ndyPRzAJnziwh1eLh88aRiAocPZrOY8su58E3f0h2ahuK24ztgBX3zhRyXjcRVwYJZWH8hQHij6kd\nZYY0EsoUWofJKHaRtoLoQJe2WaRyrnGfu0YFMzeoJL0YR+4/ZbJXR7/jbV8P4+/7ZmJpFlBsAhmJ\nbtTsAGpymN+O/JSbPjUijRPiDUMt+fIqXEEbP6mYQe6X0ePsnfoGugD2Gp34cgVPloTi1EnfqhBK\nEAiuSkWXQA5A4mEFR72KJ0tCCoJo0mjy2bFXiREa9/GOF+fBniM4e+4p5iOvnYLVN2GvMb67iYMr\netx2WXsSjr0WZJdM7YEBEWdN2Vwj6ln3mTF53H3GW8hdPLl77inmjJ1XRf5WLeDP0Ah3dBeaCawN\n3fvhiVlV2GtEnIeibf/N0OVYOmpQh0cYnOMT1SYduaSId8cuZf/iYj5d+JdTFjY6vpzL7S8XsX9x\nMWXzX4gs79Fp+f/QJz7+ZGq3ZScyDrvmk35bHFi4hMHvnpqyvKXKxLPrZ5+2tvwnwz8g+n3KPh3f\nF+ls+mYYziNR56SlVcf3YTq2o2Z+dte7JO4VmfjwYnY8tIRd9xcTf5nBOqh7ZyBSD+WvNFlAH+RH\nFHV8W6NilJ5c2PHQEpb96jH853oYOi62frC1xThW0jcylrbY41pXxKF+mkLi/mgfoZoFWieFGTC1\nFl00rsuTp6PadYPqKkAg1bhm53o72z4dzRvtKTzdOpDU35YB8PwnBtPEnQ+YNPI/v4WhbyzGJhtj\noi3VR3kojRavHV0WqZlhQXLLCAMCCCLk/6tDPTbfzCSLYXQmHg5h6kiB/U39WBJLjcnFrJV30TpK\np3L5IOp2ZtDS7qDNb8XVbqc9bOHZ9bNZ0TAceYwLX4aIrV7HaQ7yZsVkPqsdRbw1iLXJUF4PJAsk\nHVJIOKYQV6mRUqKgmQRS9iuklBgdekthrOHXMlzGlxp9zrn/hv969QaqWxIizuTmaWECWWEunvQN\nP6uZwsyiRd2eLxiGpxyIjg0PPvYyFreKdZnBsBFVQ+AylCDgqIaMNRJZ67WIiGAnRpxXyiXZeyK1\nQ63Heo40DP7KEE86GWXavgzSts1Rw7CnbSe9eHe/j9UTVIvO4fY08pcvBHrPx9SH9KxvU7h0MSt+\n9CiFSxf3i0L797Zcbk45sbDrhSULIgapXP4/pwb/vdN0ARblru1mvBVvncWy9iSEE9QVeue9c7B0\nhIGP94gA/J/MKL2wbVOst6HTCLVNaiZc6OOqpK2MeK6IyfajjHiuiJavo2Fpd10cz74bq753vMKW\nFBDwbE2NqPxKJ5nE3ImRxUXc849buP7qlUx/7l7uGRerzhtM7Z+R25MB23WZ9h0XS9Mlg84B4BkR\n5L8eeJmxWwxP4tZHlpC6USZ1gwl7bXRAcVTFDi6D55Rhvawesd7ofPTlKeh2BW9WR9vfjdaI+uT6\nx5h15ybstUKE9pK6xXhGvkyBQKoQoa7oMgRSBXyZ0XvgyT0992OU2cZv6seibUkkONrP7p8+c9LH\nmHfV1ydcf911K3n29fkn3KYvxJdpJJSFsbQZHXdroUhcpULjOBPNo6IGwYWf/Zwrj5wPwLFecvcz\nXzGez0NfX8q+kJ95cbspCfkIXOgGUad1lIagQigheo8TysPMWngr9WeCcMTOp/efS+LhMJkbjIEo\nkCCxoyaH9w+Mo3TDIHTJyB0MpqiEHTq+NzKR3RJxxzQSjkAoXooYZ7oqEowTkbsE1eIrDBVdk1vH\nm97l29WhbahM/SSJX/z19R6vL/8zY6CIKxM5P/8QKfsU/Bk65cfS0FssmBwhSgJZ5H5uvL/Lf21M\nWpUnMwj8NYujf4jmwa153mAIBNJ0RBWCiSIWt07Kbh1/igSC4YhJLAF/avR+OepVpJCOeb+NlsZY\nif3jhXNCiTreMbEezTFPGP3dJQ5fROQI4F9Delb/7qTeimGwV/U8TBS8tph3PAmoHX3JirsM+pN/\nVbQ4uRQEW52INswbOd7xDAPvIJXNa7vnCt73ys2R36aS/om2dKrhdipxnoxBOv8y47sb/MUtfLDQ\nuBbrlOYe6bw91R79rlH6o9NnmH2fSJx88jlR/UVfxmvXVJyTxcmqav5PI2vqt0vd6IStIXYcVs2g\nyxqesUGG3hCr5G1t1hlpqeb+uw2W1cSHFzPx4cW43+/OOuiEZyC4JwUxmRV8biu2xuj5nJXwi9qJ\nDDM5KJn+Gp+P+AQA9xCdpCti1fHdM/yREjJto3qeF/mydOaO24umC7gLjG1EBWx1HYbVJBXVbhhv\nUkgnY1OQG+KaiZP8DLS3oDglcr8K0TzaQs7KEInbzaStNpP3eYgDG/L5P42jCHjNfNwwjnaXDV+a\njC7r6LKOzRbip+NXRdrSWXu16paoYnv+R4vYdJ8RqTo2z0TCVotBq03RUeI0Ai1WQmtTUdtNVG7N\nJmWHxOGduXjrHJg8Om1jNOxyiLdHvYIvbCLZ5sPRoOKoV0k6bJyndqpEsGPszbjsGJUXa/iTjHdZ\nOi7wlXxAiZSF6UTqXgVhb5d5eFgETeCsuMN8vGdsr8/ZPTh2TrU3kIs/SYrQb9tzjNqnmhkUu8H+\nOR7+ZIksm5vNrYMIDIwt/RU8TtXVctRKWFexZsYKXf1PoGRRMfkf9WyUnwhSUOCc1ENYq2IHxREz\njsb8LRzpffzLkZ39zhn92wcLuGL97d2WP31tNLWm/Ou+BTC/C5xSz7x582amTp3KjTfeyI033sjD\nDz9MbW0tN954I9dffz133XUXoVD/ay/+6oMbMLXHNsVabulRqONk8FJr92LuYadOUXXUO+vfnoLp\noJ2fvHInALe90n2SYa2VEdSTM1biJ3TP6+qKp3/yHPq43qO+b75jlE546k3DAggON2bWR67uXWn1\neAydE32hv1j0F+N/n4mRxUUc+OL0UI5C8UJMTTHPQAHNbFCiXKMNz2HqWjP/9chP2Drl1aga3X0f\nAaBc2trtmN4cgeZZQarfyadhVzpaehBBMSbd++YswVET7bSmPLCYKQ8s5ob/upfVT0+N1G0cs/n6\niPFpr9UJpOi0TQyhmYzJvrXJqEHZNsdPez5o5tOTGzDq6SL+mL6bfXcWI5VZkQSRfXeenMfs0Yyd\nJ1z/1lvnfpsmAhBMEmmYEDU607cZzyptVzhGbTn+gMzuDQWM2Xw9ZRe/wOoXey/9YztkYZTZxjfB\nXJ5sOA95fQL2MhNi2KAIqWe5KHjN8N4FEyXcA2VyVqhkbox6QtuGmKibKqPJkJnoxv61g8wNCuZW\nEc2kI2gCjmqB9nyB7NUK9TM07A1KpBB9MFFiUkE53hwBS6uGahXwp0i0FEq0FRgKio56laaxMo3n\nBXHmuAme1U4oReWXb9xE9WyRp5+JFSrJe1+kebRM/DGFT7ePAyBll052TgskhDkjr4JNLUZfVXGZ\nRig+ti/rVHT23W5Ey/M/W4g0yk0w0aDgNlwcpHm0gDdLQLFC4hEFUdFJKo3el8bxMrXnqqg2HZPd\n6Ft9g8IEJ3nx5YcjyrlgiAIJzd055aOeKeIlVwZ77inGM1jBNrtvo6CrsnSnsdkJa6PAw8/fQLw5\niDdfpTRsOGLAiIBqZhh1mSHvrjQZHlbNbDAMvIOMiYQ3T+WyaVsjZV46EUzWcE49NaOlk6Z7sgZj\n53dnPWLh0hfvI+GsenZMfptEq58LSxacdDs662OfLhS8anw7pT9aEvn3/0fUVyZ9L+c9FXouQDj/\nu6Oq/e7qU0+VOR41m3rO2TtZKDYhUo5FtQqI01qRXTImW5htR7szcm7/y8+4Nq6VHQ8tYcdDS1j7\nwF9xDdNRrT3PmZzHwGQLYzWHMVd076dWvXhmxKid+LDxzNZd/RjXZG/jvFs34Z3lpX0gUGvFVm+M\nVYn7RBS7gGoWCMcJuGf48WbB3h8+xcz4gzS0OdHijf40lKSiWsHSIhBfIqNJYHbpxJcb/ergf93G\nK5XTaAo5qbsmSDBJJmWvYQglHQrirDa2s9UL3JOyjaNzluJVDJaOozaEkhdADAmMGlBHq9K9JnTO\nSzKqVUIM6WSs7ahNPcHCkWufJRQPiSUCWm4AXdIxxYcQFRDCIo5KAX+qQO4XCkm7jUHFWivhU8x8\n6R2Krgs0eJ00jZGpO1OicaxM/WSJzE1qxDFbvXwguR+L2FpV2rNk2icEaS2QaRsis7b4+cg/gKYf\n+iLR0HCCFqFum1ok0nJbaVTiyf2wdwdN2jfR8at1mBGBNV9TT/ONXiov0RhwWQWiXySYrOHN1nAP\nknANjEZqdUGg4JYD/GzASlIsPuyHYiOivzh3OcfjstIFBHzfrtReIKd32yUwoOd8rj83F5y0Om/n\nuV4/3N1OSbH036DujIh2GqTJkxp6NU4FDeRj3aOdF9jDhLKj132yQkWnA4Ku6yc9C9+8eTNvvPEG\nTz0VnbT9+te/ZubMmcydO5cnnniCjIwMrr/++hMep/B3f438LrmtOKaOaCfWLHyUc16MVSpU7Ho3\n+eSe9pfHt0WUdjWTjhg29gmmqd28nA9e/zZ/ePOaE7b3RAglaZhbRYMiIMBts1byytvd6zueKvYX\nFUcUdnuj16bOqKVpXSaBTBVr7bfz4uoS3ZRoj4ejuvdXR7EZnq72QQIjZ5dyS9Y63m48A5sUZmN1\nPtcM2UGZL5WX8gzKwO5QgGcbZ7G1eAJ//+1TPFc/m1VbRmFqF1HNBv1as+hYmgRUa++lby4/PIfK\nl4dG/m46Q2X5XIPXP2/VnZhqzQgqvHDDEm57tQjnsZ6vwZdx+iLH++4sZtTT/Z8Y77uzmFl7LyXZ\n6iXH3saFiXvY4h0SqSt6OpCyX6FlhIygGsZBUqlhjNaeJWNtFFBtRi5jzQyJpP2gX9mMpkNmXDu/\nzvuUjb4C5jj28/eGc9n4wTjSdhn7P7/kSX78619gaVOpnCPhqBJpL1CQ2iUuO28TWx+c3GN7GseZ\nSNsVpnKOZCgxjj9CnTeeVJsXqxxmy/YCLC0SYtDI11NtOo5qCCYJJJeoSEGNyvMlrpm9ka0tAwn9\nNRNvuoSjXsWbIdE6y5CMT9psxn+eB8e/nahWAW+OTsr4BuymMA3tTuYN2s8IWw3b2vP54quJ3POD\nj3jr/vnc8cTb/P2eaP9QeZVCfnYTlVuyUeK0SFQ07BBxDRYxu8DWrNF0qR/zLgeLf/QxO9wDWXVo\nGOYyK6rF8J7LeV6E/XGEHTpqR75k8jcSrgJDbdw0oRVPVTymVpFwooYu65haowJAAJ6RIS4YvY+V\nq8Yj6Ebup2dUkIHZzVTuzcBeI6JL4B0WIjHVg7IuKpL1q1vfZrcvlz+nf8OYJ4pImlPLlNRjPJ65\nIxJN7URX9d0hK37CqLzaiArgmCeKUC0G60D2QihJx+QWEFTw5WjYq8TI//50HVuDwNQrd7Fq3RjW\nXf0YFzwVm9+p9qLiL05wfev8S3W0J1JXtBN3X/8BixJqYgxY1WooIB8vZtQX/NlKr3VGbWc04d6X\n0uO6/y2Q+uGH1kyxAm3fBZQhAeQjp59m9h2Tik6Ig7cYk8zCl767yaKjI8DqzYFwvMbIMRWUtyRz\n7dDt/PPoBH48dDPFu87hrvErOcteSrIY4qHqBUZt0I9vRYoLY9lr5683v8Ad7y4krrz/5z7v1k3d\nnLFF1VP5+pWJePJ04soMI6VtrFEupdMoA2gfBEqcStIeCV+GwL6Fz1Cu+GhUbdz4z58SVw6uQh0x\naCjnhh06ml0j50udtiEyzioNf6qIa7hKXmE9U1KPsaJqGIOTmtF0gfeGfsmmgMq+YDZv3Gkwk1x3\ntbNmwqtMfP3nxB+G+PIQdWdaCCVrDBlfRbUrgQHF0XfQP8CErSH64tsfrGFSUgUmQeXB1ANcXzab\nLZsKjfnXAGPMEkQdvcVC3FGRQKoRxc3YbLCY3lr0BFdsvJ25w/ZhElQyLC4++P0cBE2naaxIMEMh\n7oCJYLJO2k6NmpkC1kaRGZfsZKyzis2uaMDHJGhsqMjnszOX8OO77sGVL+MeFSL3k1jnauU8nZTN\nMs3TwjHrPJkST9z7HLNsUSfckbCHISYnl5ZeyK4jhofDmeQj6RUn1TNFpIBAOCPMuSMPsHH5WFSr\noaBbM11i3TWP8p5nBAd9GXyydyzWUgt6lwyUkkXFjHi+e58cyApjremf2NjxxwgMULA29Nx37731\nGUa/8NN+Hbc/yJhe3U2dV5NPMKd26Mi95Moej05jtKtR2dOyyHnNJ05D6w2qTe8x/bE3lP7mnl7X\nnbbK3Js3b+Z3v/sdALNnz2bp0qV9GqOdmHdJVNQgODiA5ajx8V57+WoSRDOBdAVrfbSpSqKC7DMR\nyA1hrezdC9K15EunIQpw2bStLP8oNnflT/su4qYrv+S5nTOwOYJou6MTnh5fAoGY+ol7rnyKSS/c\njW7TsFaZeK20u7ejN5gmtxLedmJv8Re+nj8uZZQXeV9HEvk6gxozbEQVFbXfLqfweEM0HKdjau/7\npWs6U0V2SySWGDdHtens2TSUBwtTaKuNR3SGkcusfPiRQWX85c88/Dn9G2753c8jx7jj9z9DcQgc\n/U0xw9ffSNJnTsJOo2D1nJ+tZ9n6aQA878qKqMpOeaDnwTl1i8R1++/FXaCSUCrhHqaSNKiVm9+7\nnbiOwItqMeiE3xV6M0Q1C5w3fzur3pvUbV3FwXSq/SL7gvBJ0kRs1aeXIuYbIGFt0rG4DdXZULxE\n8yiBcE4IXTZjbRAIJEpoZp2mWWHOSm7gJ+nrOM+mMqfkBzR5HPxs8gHSzO3EH4sOPnPX/RR5pIDs\nM0Gan3CrDedhGc0M75eMJ6eHtlTOkcj9Mkz1D8M8NPFD6sMJXOjcy+0lN1DjiSfV7kU36QTyQgiS\nhmjSSP7cRuM5YZI3maieDembJDS7xvqGIYaIg1NEtQmoVsMg0twmkr+RcNao6KvjMPk0xt26h43/\nHovLa6MpFIdebeOd1smMyK/hrJSjiCGB54p/QDwKq11RGmnrMBmzzU+SxUd4s4piE+nsDEJxAtKZ\nrZjfTSTkFIhfaSeYBE+9vwB0GD79GAdcuZAQBrcJTRVRklUsTRKaTUAMCrjOCZCwxoqzRsHdlIR5\nAATTFJzlMorVmCB2VUizxgVZebgQS4sRxdDXJ2FxhAhrIqaOyKagguCX8HitdJ2e3xDXHKHZAjS6\nnbxfO4H6YCwVGKAk5GN/KIMrnG7su2yU7RrMGIqIP9/I+ZeCQMd3ZG6NHlOzaoCIpcmYuNjqjfqs\n0xNKWZU5jPO33tZvis4fxnzIriF5vP2vWf3a/vj8T4DlU4u5eK9h/AaH+bEcsnUzRMFIvbj+qpUn\nHWHtNEQDaWqk1Ewn/FtSwfHdKzT+p+O7NkSB78QQ/T5x8JYl36kR2gldELBeXE9x4Tt83j6GBNnH\n3w5cwL9Wn4v3TD/lgRT0BgtPbLyAZ+rmoQwKYN1vY3B2IUn7RIxppc6vHl9I1yQrbxbII92oqmiI\nIHWBJgssuGUd5b6oo2bYK4txVkAwUSBxQR2yItOc7kSqs5CwX46UjQk7BFQLxJXraCaZsAMsLXD2\n7quQBJ2mLenE1Xacx65icsuggaNGYPr1u/i3Og7dGibsNJFwRGPAkGbiLQGKUtbxWflIQprMggGG\narpJUBlkjjI2fNtTmSPfwGUXfs3Wr4xxPOHsetpXp1PtSoAtCUQ6RaDtMi/mV2y0jJBJ2xmksi2R\nbHsbiSY/v6kfS60vnrihbfi/SSYkWdDNGrouQHwYf7qZcLJK+jqR5lEmpDNa+UPVfB6YuJynS2eR\n7vRAPAQSBRwNGopdZ/roUr72Did7jYY3XcJeK5B3YTmSoPPUewuwtAq0D1HIXinQcKWfsM/M1Xtu\nxoZBI86+pAZPl1FbFwRMzRKegZCxQgaiY7+8oIkHSi+loSWe9GQ3DTvScVQbz4aZrSSmePCWJBF2\nSjSNlknfrCEHVerONLGxYiyJhzV86cZIkHgQ5u1ciLckidSdOjlBDV+ajje77znoY7Pe5sE3f9jn\ndj3iBANRg9o9b9M+qQnf9tQetu4b3tDJRXD7a4iCYXD2FB1d2wvJ41QMUeCkDNG+cMoJFIcPH+b2\n22/nuuuuY8OGDfj9fsxm4+ampKTQ2Nh/ilWGxcVHXoNnZjlqRTMZncyrq2Yy/OM7sKcbIetOr8Ht\nZ60G6NEQ7Q816nhDFODtiS/yj3/NYXhuHf7q2I6yx5egYz5x2aVGZG/SC0Yis7XKRDBV5Yoh/S/v\n4vX1Lf169z+MIrUz91xGeGT0o5D3OWL+BjBLXSzJ0/Su9GSI6hJ48oSIgIovQ8B5RI7JYUssMfIS\n5A+SSN0skbzi/2PvvKPkqM60/6vQOUz35DwajWZG0ijniIRIItskk0U2krHBeW2vd71rvDbGmGCT\nTDBRgMggECCQhEAR5TQaSZNz7J7Oqaq+P0qTpFFEwvZ++5yjc0bVt29Vd1fde5/7vu/zmHH2S4cv\n92X2Esm0G2sBmLBwG9G5Pp7zpbN31otkLKhBUKFrXoTlj8xkwRlfUPTqnTTHXCxqnMY9zZPonHT4\n764a9cioMs+Lo0oikK8hxAXEt1Jw7xZ6azhOJxE9GsQofLhhHKFhfSOBY3YbhR/ehqVJwugRkEPC\nKSeiAHJYw+jX8A4TsXQkMPoUkiohaaMJVYLQxDAJK6RuFqDbgKoJpElBFjVOY3JyLbcMW8eykJsf\npa7jtT/8qbdfQ6WFPTc/yu3XfYhzrQVzJzjrVMwdA/3oehDMkFGtB+/XOgtvtEzknYYxLPWP5eqC\nTeQ7PVyXvQFnlh+7O4TcbEJtN9M+M4G93EggD9I3CHSNFBhW3Mys9EpmpFcTcQtYWxWkiIa1XcHS\nKOMZpVI/X8DWomD0q6zYNpLRZ1cQ9ptIcQUonNCA2RElnDBQGUrDXaHirElQf57Ahqd0Y+q6SzWk\nOV24HSE8USuCAoZA371na9HFj8wevW7H1qwgRiF9k4qrAvY3p2Orl0AV0CQNpdmClKrfgEl7JQx+\nEUOFBSmq15P6ilWck9pxHJCxtmiYuxhQMhAYliDNGcCdFERQYF7efuJOjXhMxrs6E4OvX91pjYQS\nO/xeutGpeycjgrzBgSCpbH9rJNEUDdu8NmIujWiKxg+rruTllqlsjsaIpvQRqpa9g3s1Kgd/bkOX\nXgvbXyTKVi/ydM0sLFstZCb1lSv09zodDDWx1OMmonB4NDOckxigsmvaZyFh1XoFJA7F4tdPPiX+\nUCL6/yP6p/z/H74evgkiCvomafS9dG596vu89PEcHll1Hu7tEmJcH8PLuzP5+fz3SNphwNYESWvN\nmLyD27ls+fXj+Ifof0tRAZctjMmY4ILvDhRRibphyd7xbGvJYcJvF1Ly+QLuvPhjIqkCJq+Gd3Um\nseWpuNabsDYLxO2gGgSCc4OEM7TeUggxrmEIakgxjXVj32Rh4efkzOirNXVvlZEiAuYO8JUmuNC9\nDWNmCNcOA0kHVFRZwBcyM81dzdv+MfzP6LeZm7KPaRZ90ZIhxVA0kY6x+qInY0YTLY1uXl8zlbZJ\nJurONxB7J530zVEcrztI3xQlYe8bB+wf2qn7topihq4RJv48eglhRZ9fz3BUkGH1E4oYYYQfS7OE\nEJEQrAnM9hiCCqI9TnexSNSlccmQXSwZ+hlPVs8m2Rqm3uvih2mrsbXp82nqNlhTPqx3E9DWqpC8\nN0FFQwYznftJ36LirFXI/EJETGgoTVbkNkOvtUjDPKFXILLhLH0eaZ0iosqQvkWhY+zANeGU9Dp4\nNp2sJUbiizN0j9BLmvEXJwhWJxHbkIyhWyDWasV1QKVztEDjGSJGr0AkPUEoXcTeqJ9bu7ST35e9\njWW4FzmqogkCcevha9DBPEPX+ocddux4cbRU2xkfHB7Vu71ozUmdRzFpLCr6/Ljbn6iP6GAofXYh\n39uuBwhjWd/AbuAJ4qTSdFtbW9m8eTPnn38+9fX13HjjjYRCITZu1CWKa2tr+fnPf86rrx69HmLo\nA3/GEBB45aYHGWfSH+7+qbaR7Djnjt9Fe8TO1r1DMDceOfQeGRLFXHOCfh6HIHl6S69wkSprxJ0a\npq6j8HXhYJh/kPRiOHaa6+lC/1TeQ9N6FZN2mK/RyeJoaboxl4CxW+sl7XGH0CvB3oNgtoCtSaNr\ntMZ3zlzLKxumUX3J3xjxxCLMHRDM1zhz3jaezNWFRTxKqNcWZvy9i5i0YDs7O7NQXk8jlCkQyVCx\nNomY24+S6mAVMF3YRuLNtMOEX/rjVKbpHg8Sdg05IPTWl87feyH1y79edPtocNaqveJFPag7BvsV\njQAAIABJREFUT2LKpH3sem84qTv1wcqfJyNFIHSpj7l5BxAFFVUTyTZ5WXxgEgtK1vPigSm4LBE6\nvshCnuThrtLP+dO2cxiW2U6ezcP6l8f3pgEPhkCOXrejiQKTFmxnxbrR5Ixo5cLsXfgVM6taimms\nT8GWEkL8MkmvRzTo6YByAMIZEHeonD1rO7u7suj020h9xYq3SMLSptE5XsPSLOKoU2mdpgsR+UoS\nZKwVMXl7xBQkRt5YTkyVmOGu5OEvzgUNLpuyiQ+WTuNHV73D0rYxyIKCVY6jagJ7O9PxemzkvS6D\noEdM3RUJmmdKWJsE5IiGt1QjZ5U6IO09mCXhKdOwtIjIIYjb9M8Tc6k4akSSqhJost6fc14LI92t\nrHl/bK+diKCAqOi1z8FChZFldRz4vBDDQU4Xc2skrBqqRcV+4MiTayRNT0NN2FTmz9nK569NZMZV\nW1m+YQxSWMTcJhBN1njkqmd5sPYc6rrcKIrAj8Z8xqPPXorlzHa6t6Zi9B75WQlnqViaxd60zLhD\n/5y2+n7j6sEsk2iKPjbJgSOn6Z4ODJb1MW5+Ods+OlxU6WQRS1LRMqKY9lmI/y+PjB5Pmu6/Mv6R\nabrfBGxNEMzRN3MTyXEki4KaELh6zCZe2z2RpDUDNxWtl7biDVmYm3eAhpCL2teKiLkgNiqE3RbB\nV+UiaZ+AYhKQohqRVIFoaRhBoHeD0jtC5d/OeZ/na6cRfrdPbHLiTTvY9OJYBOXwZyaYDcrQCFKV\nGesYD95WB6gCBo9Ewq6CBo5KCSmmYbqkjQdLl1ATT+X+B67G3qTgLZZRZndz/pA9fP7INDznhnF9\nasEQ1PAMF7npiuVYxRhf+QrY703jW7k72BfMYNWBYtSIhBCVGD6ynmGOdjb9aSLN58WxOiOEuqwU\nvjb44qL2IgMFS+PEXDIxm0jwEh95bi/DHPqG4Ma2fLoDFkymOImEhLrbSeygUI8maIgREc2k8edz\nX+bpxtkkm4J81VDA6KwmbHKMVeUl5L0rEToohhdJEQjlKjiqJPzjImiqgGOXCaNXw9qpEEmSaJ+u\nMG/cHv6Su4IlgVz+e/m3uWj6FkRBI8fk4fmXziN5b4LOG4IUpnTRGtBVi0OZAulb+2oolTs7aO1M\nIvt1fZ0ezJDompgAAZJ2GrC2qshRlbhFRI5qeIfqooNGn65oHE1WEdMiKD4j88btIawY2P/0cCwe\nhfpLFWxJEZR+GYvldzzG+ojCzS98/2Ru838YjpbReaQ0Xa0oxL45zwOnrp6z4pbHv/Ha0KOl6Z5U\nZDQjI4MLLrgAQRDIz88nNTWV7u5uIhE9Btza2kp6+uC75YPh2x9/vzcy2h/mJgM7OrPZsbEIc6MB\n++SOI3cSlb52FLCp2Y1i1ojkxhETgi6PnXEUA0qNIxLRE8G1V6342n0cCYfWlwqncR0Uc/b9AEav\nNiCNuT8R7THLNnVDMEfgmnlr+JZrM1NHH2Dc7xehGjR++IMlDJ9ezUSHHi39JGSgS9UH+B80Tabs\n+j1sXDwW5fU0Ipd0Y23RSN4uHJGI+obq8u05V1ajvN5HRLtLv95njiafmi9UDgio/fZS9tX1qTmH\nhsYJFZ7anaweItojd9813ED+xwo/zf6InHPraB9roGOMQfcoyxLQNiXxwfbRmMQE57p28svUCp4e\n9wIGQWGouwuTnCCaqvLSuL+jagKZyT66wlbSjAEG0XAAdDW9mEOv7xE08I5J8OnuEagmlaYdmSxr\nLuO9mlF0+m0kZ3Zj/sBJKFv/4VwHVJIqFYx+DcfEDubO2MWtaauJJmS0cjvhZFFPv45r5H6qYmvW\nMPpVNJNK3AZJ5TJtUzU6R+lkLZYk0BGxkVBFXqyaguyM4c7pJs/chVoa4I9bz2XPpiHsbMjBICqI\ngsYZOZVoYZlAtkQwQyJQqNB4poilVcDRqHDuojWQFaVtgp4t0D5WpnGORCRZwF4tIkUgmKMhh/Tn\n0lUhYG9U6BitL1QAmupS+Kx8OIaAPmkrFg1Lh9ZLbG3VEk0+JylT++yx4k4VU5eIaI8z7crtHAmW\nUi8Gv652O8VRCYCqidhqpV77FVOXwAutM/h4xFKirVbuHrOS+9bryuKPjHgVbZietdJDHqOTAgPP\ncdBvtyct0+DXU3vi/fP3Dj5C2RObERLffDRtyMQ++4ie+tBDiWjM+fWuydgt9trU/B/+D//siKUl\nyJ/QyOyyffxk/CekpvppiLj40YRP2fLrx/nB3W/2tu1ekYndHOXTZRPYvX4o6ZfXse17f2H/3Ofw\nVetEFMA3PIFnSoyMMxpJdgUR68wE8mDWrZvIKO7gD59cQuCjTHxDoeT6Crb8+nG+lbIZzuka9Bpt\nTTqZtTWB8JEb91YZU5uEXOwnv7QVQREIFOjzRUtdMou7pvFQ5VlEkwWkiIIqg6oKTLNXIn2nDYs1\nStwmYO6Mo5g0/l4+je+7a3kq/zP+q/g96iPJ7OzMQg0YMDmjGDsk9m3JZ6ilHXNHHEGAUJcVVEjY\nDs+KUE1ir6WWHFYJZguEOq1Ubcxn1ZsT2dSex9nZFWS4/IQqk4jHZBSLhhgSyf1EAxEsbSLWrAAP\nVZ+NqgmYRAVpk4OIYuC32cv46+yX0QRdRLJzepyH73iSW+Z8jn9cBPwGnp/zDMqMbh7+1aMAmLsV\nBEXguxkr+YunjEf2nYkpM8Qj2V/hlkM8tmYeyXv1NXBhShfzUiuwm6KICUjfmqB5hoRngT7mNzUm\nI9aaidlFmq6KYbi0nUUzVmB2RXDWJYi4BUKpuppuxCVibdNIKU8gxTTStidIqhCRqixcPGkrUVVm\nXXkRJp9KOFnCXG0iyRo+7DstkA8/diohjPKd0v7iJSFSM068T6HSyo5YhJvrZp+SKOk/I06KjL73\n3ns884zuhdne3k5nZyeXXXYZH3+sW6l88sknzJ49+5j99BCCRbM+4xJbiOp44LA23vUZiAkBZXiQ\nztq+uspDvYTkbolY0de7Mc01JqSIgNStDyRGj4i5VUYdefh1IUBsmH6+SEaCSJb+TxMhWhQhknUU\nEnsIFi+ZR6Tk1Cn2jd5w5FpdMXb6tnWN/Qhnj21KKFMg66bqXtsN0OXgAeSgnl7z8vrpFMtxxjga\ndWsLDf5z3aW0Be38ads5FL57B2YxTtFBu4Yh5k4CcRNGn4Z3BESjxy59jrtVLG0arc8PAXRrF4Ck\nCr1mNJh7ct9LfyGZrwsxCtO3Xw6ApaKPmVqrDFirj68g/0QQcUsEsiWaZuuebVGXRIEcZ5SriTmX\nbSE2NogYh9QdcaKjQhjaDKxtKyRf9lAdD/BFqISFrv3MTDlAqbONrC80XuyaztruIpo6XAiCxiu7\nJg3wwewc2fc5HA0J5KhupN5dopG/FEz1RszNMiaPQG1dKsGaJBRFwLc7BXtzgtwVCpE0FUNApbNM\nwlsKdxat5pn8Lxkqx5icUceSGx8EQY/cG/0q4RSJhBmaZknI3RLxJI2YE1IKPbjm6iTO1qRRUZPF\nzoYcbMY4I3JaeGL0S9zjrkFtsKJ2mbh7/jKUhEiyIUgoYUBCJXmrhCZC5ySFpLxuFKeCb3SMUJrI\nW+/PRK40E81Q6CyTiSWrGIL6QsFVmSBuA1uDQFJNAikKnjKV1ikiqTsTtE3XiI4PYuiQkdqMuA4k\nkEMatgYBOdSnRhvKUQlHjczK6Mt9t9VKxB0akqzQHTcTyh18lz62Q6+pjzs1bnR2EE3R+Ly6aEAb\nxQSP5n8AwJjRNXzPVY8gasQdcO2Xt2PaZNdJ/8Gh17Spr8RBk+gtKepN6xXB3CEgDjI8tq3ORoqA\nsVt/pvYsfOyY1iwLr/7gqK8fD2o299VE9U/rjSX1fW9G39d/zv+3R9QGQ6zgH1QD8X84aQTywbXD\ngOfNHHa9UMZ9ay4gsC6NDJOfbf58PgiZGWeq77VaMfg1Yu+nYW0GRw20v5HHuL9+n+FPLSKpou+m\nd2+XELsNdC7LQfkgBXudbuXy/sbxtLa6uP/8xcy8bgsjp1TzVVUBhR/czq8euQXho+NTX/YV6WOM\nusdBtq0b1a4gxgTSrqgnLdfLV+35ZNu7sderRN0yMZdGuN3K5XYfY1KayHb6mHvTRjwlJkxegWiX\nhetr5mISDL0+28mWEBPLqpiZX03CquGoFtnoLaRjrImMDC9p2V4y8jzIwcPT4sSorhoL0DbOgKNe\nxVJnIO7S27a2uHh1zXQayzNQZRCrLUgRsDUKeIfJ2GpkomNCJFnD5Du6GOdqoC7gJliQoMbj5ub9\n17DKNwJB0zB1a1iqjCx87Q5eensemcuMaJLG93dcgyhqPNh4bu91WRokbnnybv7+9tlE16dgNsa5\nv6uIpQ/NIW+Z/vv5c2TKkpqJaxI1NelY2/Vr3n/94/xh9Ft0D5G5bNwW9t30OC//7k/8ZNxyAqvT\neflv56Hs1+eEqFvotY2JOQRMPv1va7uCJghE0nWhymJLGwszV5CT20XXSAlfoZ69knh5oD0jwO/b\nTq/377MTnj/utgnzsTcsjcYEgU0nV2N65Us/ZO2no45YD3qi6G9Fc9u3PmH8mRVfu8+vg5NK0w0E\nAvzkJz/B5/MRj8e56667GDFiBD//+c+JRqNkZ2fz+9//HoPh6AvoHjXd8u8+xpJAEv/58nVHbb/5\n9od6azMHw5EUeY90/OsimqxHICK5ccwNBgrn1lC9agiRghilQ5qpW3H60iwHQ9ypDagRO904Wpqu\natAJqa2xL4rjHQ6uvUfv0z9EYO/tj7E7Fuam/9JD+oF8AXud1usf2h8fhMx4FT30dl/5uYifuTHO\nb8dhilLdlIqxxoRigtQxbfhCZsIBEymr+thRIF/A4NdNvPvjm07THaBmdog41ulAT5pu3CZiCOoT\nZHBRN7KkEIwaCVUmYRriJ9RqA4uCc7sJ976DirvTZUrPqGa8qx5FE7GKMT5sKqOpIh3NoGJKDTMz\nv5qtz43GMzVG/lsSgqIRTZL40+8e44ZlC5GTIwzLbKfF7yCWkLGaYrTXu7FVy0TSVMSYgGLRSC7u\nIrQ2lWiyimrUdKEfg4a1VSCUqSEoAjPP20GuxcOr75+BrQHCZwVIf74vCqVJ0DpZQrFoCFkRhFoL\nzgP6a8EcAfuUDiKrU5EDenQ2eavEVXd9yrquoWyvzMO634g4xYvdHMUfNhPstJK5UqJtEuSuUPnB\nn19FQeA3Oy5mz4yX+CRkwCgofNA9lh2eHBq7kwg12NGMGkm7ZRQzBIoSSEHdr83oFTB1g7MmQcdo\nmcyzGvhOziY+7RxB+Tul2FpU/Hn6vmHCqhF3q9hq9A2zSKrGZ9fez4WHqNEGhiYwp4WJNdi485zl\nvPDceWz64cNMevDuw+4F1aArOC9qnMYXr00AIDQujHWbhdHfLmdx4UpG/G0RcgCSzm6hc20m8sEy\n9Ui6hmJT0SQNRA37PgP2s1oJfNa3cEhYIZquYKuTmHPlZnZ5suj8pJ8NhQDRCUFMm/tC6CeSpvvR\n7X/kvKd/dlqzPo4H4ewElqYjb4zFXCpGr/h/abr/4vjfvqnQo6bbE2ErvaKC8ndKMQT1+/bW7y/l\nkTcvwtIu9IoIHQ+806K41vfNvfPvWMN17g14VRMzzX1xkf9qH0lNOIXdnZmk2wLsrsrBaItRmNZJ\nRWU2pmaZWEGUH09ezvdc9eyOhWlMOLmv5nz+OuxVXvRMY48vi7pXh/b26b68karqDNwZPpTPUkgp\nj4GqUfw/e3DKEW5P+ZLzPvwhqXleitwd7GnPIBI2kohLpH9spGu0AEOC3D1mJeXBbNY2D0H7OIWk\nqjhXPvARDy29CDkkEE1TKChpQbhPJxyj/rCDXf+m2111jjIRzFUxduuf1eADQ0gjnCpg7NZr7BUz\nhDMPptVOiGApN6PJuk1K6ySZh657hj2RHFZ0lFK5qhBrk8bvfvYsv9zzLXKTukkzBdj/h5EAhFIl\nrB0KgSwJ7wiV3BUarZMk4i6VtA16nWiP52fcIqIaBNqnqNhzfbie60tdCbsl5n5/PZ/9bRr2Fp04\nCppGzC6y/o+61eCOWIQxxr707TYlyC8az2NLay7d3VbSU3107E5DtagklUsEc/VSEjkjxJicJvZ8\nVMKo8ytYMvQzPEqIWRtvJ+VFG6FUvaRFygwj77YN0B04kpruobBP6jgqAYymKJg6B4lkSxriCVo6\nfl30puke5xowlpHA2HpqdGjHzt3H9lUlh58jWcHYNbj+gVYUOqoH6qE45Wm6drudJ554gsWLF/P6\n668zZ84c0tPT+fvf/87ixYv505/+dEwieijSpSN7bvZg+qYFFMypPWqb8u8OvpOePL1l0ONfBz31\npOYG/bP+R8H7AEhdMrWfDySi4bw4ynHsnBwPYi6VPYseY8F3lg84/k0S0WNBjIO1RRtQN+vaC+EM\nAf8QAc9IPV03nC7oPp+X6b6sSxb8mXs7hlNmtGD6TiudE1XsdRqjvrsL0KO+F+07nz93DaXwvTu4\ne+PVbPAP5bHqOUT2ulj20z/i9VvoCNiw2KLECyNIUYi8n0G8wtlLRMPpAp6zI1zyrbUDorb/KAxQ\nM/sG1qqmboWYU+ologBd+5Pp3JrOjimvcOCaJ5g/pBzBlkDqMuAbGadxjkz9NQmkqIBZirOsYSSf\nNZcQUo1MT68GWaNgqYa2305z2EnCKuDcZuqt99FE2BYp4MoZG7ixbAPdUTPRuIzDEuHM7P0A5Jxb\nh5oax1ELqkmlo96FJoFrr4CjSsLYDWpRmGCuBsVBoplxVmwdyQePnIF1tIfumREm5tQP+KxtEyUy\n1ysoNpXsxUYUk0bsYi+dM+NE8mN4KpKxN6hkXVkDJoXAvCAfNI0ipkqIRgVxihfXiw4SS9IR1ySR\n/65eD5rzuV4L+ssl16FqIpNy6ohqcYoMHmKaxH5/OpUtaUiiSupmEcc+maTqBJEUDckZI20T5Hyu\nkLZdDxPWXah7hzoMUdriTsxSHDEBJq+KpV3DUa+fT7P0PVTmToF8Wd957p8Oba+SkTc4sDaKvPDc\neZReuo/rqs4f9F6IuTX+1p3N3KTy3mPXjNoEwMa1wwG9Nheg+9M+IgpgbhOwVUuYU8IIJv26PBv7\niGjppftQywKYWyRiTo1Pl02g9kBfCYdi0on53WNPvlRh/lP/eCIKHJGI/ur61wAwek9aL/BfEoea\n0v9vg1Z8/F6A/2qIunTCIUU1DrxcgiGo4SvSmHXrJmZb90NJENsF+pqqx1+05PrBIyuecQne+cX9\nPDHzRUyXtPUevzBpG290T+TmDTdT8sJCCt+7g5LnF/LuE3P44ssywjEDc1L3UT3/ac4rKqfxowKG\nFrYSS1FxrTfxzF8u4r7OYi5+7x7uWnIbDw5bwtrwUMZY69nTrI9BmiAQzIGq/ZmgCMzKrsJVlQBV\nI+aS2dSaR2UglRXBEgzuCHlOD3/Me48/jnqLeNhAykoTwWyRRRcv48aRG3m/ZQyr6odhMiRwV0QR\n4yoPfHYBRZPqSN2hMOTtBN53cwhmGekcZWJByhpCGQaaZpvwjYhTMrEO29QOYiNCGIIagXMCRFNV\nwpm6oKA8xYMYF/CNjSK1mIiNDpEoC9BZJjPyzP34VDOtcSfVnxTi2qdi7VBZ+MkCJFGj3utitmtf\n7/fbNVaf21WDgLlNJxOmUV6ePf8p2s+K0TYZGs4UefrhB1n3wBOk3VKDKSOEJOhWN92F+njmHyLw\n4evTsbfoz7NwMH5lDKjc1TiV6ngAr2rmfzpKuaDiAopeu5Mf1F1Mxf1l+CpduNaa8H+ZzpipBxBc\nMezNCvY6yFyrZ9LsWlmMaoSnhiwFYEHVZZiW62ruckTDWSmSaDcTSe8bT2Ku4/dwXjb270d9very\nJwc93mOjdKow2DW7prZywcXrD298nPPZqSKiwKBEFDgiEQVOiIgeCycVGT1V6B8Zhb76y4nn7cFl\nCPPphxOPKjJzvCj/7mOUPrMQMXHqyFqPr+igrxWHMe63HCZgFC6MYak+ihXNQRGbI+FQb83+9aCR\nLAW5WzzMf/V04kiRUX+hvnvsrNKjo45ZbbTvTSVteAePjljMV+FCVnlK2d6Ug7DDQXxEiP1znwNg\n0q8XolziwdvsJDXXS0djEqnrZTQZrFe00Lkqi1BegtSvJDqmJ0jZoNfjXfeTZTyy4jxkv0jSfugu\n0cWabA3iYVFP0NN0zR368Y4pCsZOCWdl3+unIzJ6NL/R393yAr969sZTfs4joccXdADuaWfJiJdJ\nl/pYzY21Z5Bl9lFoaufR5y4lkqwxduZ+JiTV0xB1U2DuZHHlJGLb3GRsPHpda8wpMf2nGxlpbaIy\nks7r5RMQqyzEUhSEhED+Mv1hjyZJtE0BMSOCUGfBUOwj5LUg+mTM7SKhvAQzx+4joYm0BJ0EY0Z8\n21NQC8Okv23Cf50P99N9O7ve2/wYlrqIOwTCaRpyiZ9haR2YpTj1fhe+LzJQTLD39se4r7OYpz84\nG8WqYsvz85cxr/K9Z+4kdcfgafe+ApnuEQpPzH+Weysv4u7CzwiqRh7eP4+uNifERexVMsl7Er3t\nfdPCODZa8JUqaLYEhhYjclAgZY9Cw8UJrhn3FV+2FdHcmUT24r7xIpgl4R2u12JbWvrGnp0/euww\nT9De9+QrJBV0k2SJUHsgHXvV4JNXTwS0p59AWRSLI0qs2sGB6x4/rP9ImoZiUbHV6RPV7O9sYeXS\nCUhRXVgJ9Khp0aQ66j4rOKJidSRdI5EcZ3RxA9Xv90UyToeA0dY7H2b8E3fz0e1/ZP5TPzv2G74m\n4iNCGMr7JuukGa10r834/yYyeiozdQpm1lO7Ju+U9HWy6BEh64mMnm7Pz2/KyuVQ9ERGAXyzw6S5\n/bTUJ2OpNxAtDfPg1NewiVHOshy+2fCDpsl89tZkFBOICXrn2FOFwBkhVFUkN81DcVI7n24tw5Qc\n5taRa9npz2H9qjK0gjBCnQV7v7iFZ3Ic91f6rrNrf9/Ob9Hv9rKzMwubMYYoaNS2u7m1bB1v14+l\nrcNJ7lsy/myZ4msr2NaQw5lD9/P5svEICpi7wL33yGnojXONKGY9c8TgiqLVWtEMGpoI6cPbaalJ\nIXmbhH9uiHjQgBCWyC9tpe3zbAQNwqURcjM9RBIy+U4Ps5IPkGfo4gt/CQlVYs1zE3FXREn9TQ3X\nZmxgeygfhxThnX8/G4DOETIp5Qn8OTLe0QkyPxdpnwiKU8GZHiAcNvLKtKeYaNLnmMJlt3Hx2O0E\nEyZW7isBj5HclUdfgF/425VUhVNJMQR5o2IcaW9ZkWIqTbNFsr8Y+N7OkXpqtCZpZJa14f84k5hT\njwZedMEGHsjaAsC0bVdg/JvuhR1KlfCM0kgr6aCr24ZUoa9N4jaNA9c9flyR0ZNB+R0HOclp6r8/\nejJm4Og+oyeDUyVSVDSzlso1J5bpuX7BA0x7/scDjn0jPqNfF2fuvrT3780f62kGcy7cyvJ1Yw9T\ntE2UhhBqLMetCjviyUUn72FzBByJiAIY9/etpHLOrGf5CD1ieqiY0KE4GhHt//7+CrlJM1tZN/bN\n4+r/ZBAuimKpPDGVYkd139/WZg3l9TTUGQl869K54527EePw9n/dT26hnckfLqRjSN9tuOm3jzNl\n65VgUPFvScEo0Zuee19nMU/kpTF3QjmfKyN545xHmXhR32L9nsufRNFUJEGk8N07MB00Lw7mCqDp\nwihiHOJuhZQtupJbKFsgdePhOz+hkiiSSeHyEdt487NpmDpPzR3Uo5bbn5Q+fvtjLPjoDo62xxQa\nGsdadXpDuI1bs7gofhP5Tg+ZZj+yqPBCwWo+C0v8x/5L+fVtL3OVvZt3gnY2BQvZ2pHDmmghfq+V\nqjseY+7G24/af/PZCYZa2pltreTWpBZ+m76NYs9CXpv/KNevv40x/72HD76YiBgV0CSVM4YeoDI1\nlXa/DWIiqitOwbhmUs0Bcs1e6sLJzEqv5OX107H5BCzLLbSPh3izg/5VRrZXkzAEFJqKJSylXvwd\nNrwOCybZwJV5W3li9GxM5jhDl99C5odG7vnPpbzfMganMcLOSB5yELqGy0QmhAaQQ9UokH5ZHVtH\n6Du6G7PK+VPlOZyZuR9vt42pw6vYsrqU0Jgw4owI9416i/c841m2eQziOZ1Y4jKJhEQ8W2NYfgtD\nL+2kcU8Zr66eAe4Y6R8b6Sm69A2R8ReqpG4Bf/7x34u2OolEXTKdgMWsk7ye+s7+6bTXZeiK1T3p\nuaY6Ew9d9wLnzogzbPGdHMoNze0C4QlRaLCSsMJHG8diC8KkK3ay6Y3Reps2gX27ciFTwZ7nw99p\nw17e9/2FslWEjCgEZao+HDqo/typUv9e990HGPPld6lY+BgjHz/9RBRg9ay/8t2cKzBLcXZ9XEr3\n2sNrnv43486zl/PMW+ceu+FxoIeISmU+lN2He+B+ExhMHf90EtF/Bji/sBDFgliqYeoCwyYLv1mz\nANDVbONuFWN6CE0TqJj9AhvbCnSxMg3CpVH2LNS1RSb8duD3FMqCvbc9zvqIwoKvbkarsiEHBRJl\nwV7V0G41TG1COCz9s0WReo91ZH/CQ53TqI8ks+uFMuwAdQNHq0iyQElBC7V2N4laO679fa+trilC\nqbNxyXkruNm1ma4iiRbFzm53FiOSW/niymGUZDeweWMxruIuVE3ENbmNTJufHduH4D5K2VHOqhg1\nl8pY62RGjKqi5tNipLhA5DIvrW1J2GplTF6VqCmB6yMrXNVBV8hCpCSCIymMHYirIknmCHdlr2Cm\nOU5UixPXJP72vcuIzAT/+X4yBZUlbZPxxixMcPdlBYUK46SUCzgaEyhmmcjVXZg2JBOPCURdMooi\ncsMz96AaNaIZCeaO3ctHyyeh5EW4dsxXbPPm0lToxP5s0oDP1T5GpvzOvsDI/V0qjVE38m47HaM1\njKMCZFgitGQ7yE7pxizH2deQQdXZfyOgRpiy/ja+HPMWjNFTsh1ShCd3z2J18zD8W1I/AuQRAAAg\nAElEQVRI39L3oHXPC2OzRjFKCjmpXloOklHDCXhunih6iOg3gfI7HuPq6nlsXz78tJ2jp77065DS\nEyWiwGFE9Fj4pyGjLV/mAGCZ2El4s258/Mmm0ZSOrj8s5bU0u5XKisJj9hnJSPDVxQ8y++mfntJr\nvemK5TTHknh3y/jeFF3QJZtRhQEWNA2f5zFy5SLkSZ5Teg3XXrWCxUvm9RHRtSdp8nsMnCgRBb0G\nLWETdEVdwHN2BMFrRJ7owb/Xxd2XLOUF70T+/uE8zlm0lZXvT2Durm9xde5X3OlqZHZmJavfmArA\nvB+s6+13RZsufbvryVGkX9nOnf+t1791zIojBGR9F14AY1k3ybleugMpGH16PYZ/iIqtUSSSovWS\nTwGw1w6+E3XfzDcoD+egIpwyIlr2l0W9ZDSaomLqFHv/b60/+qN4uokoQPGUWmRRJabKxDWRYNzI\nJyEDxQYPN+Rv4OGqs6jO2ckTG+cgmhQuHrGTqkAqQ3L1Aszab0PB24P33TBP4t9nvsMfd5xL2aRG\nzl+9gCtGbcVxQOLqpXcxbcI+3t84nuwRbbTtyEBOi7CjI5t5OftoczpocLkodrZT7s1galI1eYZO\n8k1u7lt7PgVD20gszyBuE5GDAnHXwHN7SkTSt6gomVHicRlrpZGGUDqjxtYy1lJLctIEWuuSwaSQ\n+/391ERSuSf/U7yKlfWBIizntRH5KB3beivNMzSy1uqTZcs0kYcKPgUgqsXZ489CEjReWTcNe1aA\nnUuHY1QBr4VAlonfP72AHz/4Etedu5brV9xBRraXbHs3Fe3pKKrIB7tGcdW4zby1fDrZS3RD8bYJ\nMulbEtibFMLpIq1zExidIYxf6am5yjQf++J96YLBUVFsuw5/ZkPjwtBm6lVzBPB/ntFLAP/tiVtI\n+97DfDr7L1yy7WeMO3svd665AdtOcy8R7bFn6YFli759IgdADunPVHtkoEezpVlCjEPAaRlARAGm\nTq1grLOBl54/Z/CbBk6ZDdUz3jKkXXZG7lrEnoWPHeY/ejqQJds58OnQYzc8hbAO9xLa6zp2w28A\n2QbvKe9T2e1k722PU/L8wgH34jeJzxbcz+ylR97h/zroT0L/EVFR0FN05RDEXGBp0whlCowYV8Me\ndxbGGjPWgxVPclgglqVgXak/8xNW6dfrvLSFjm47tFoY+8dFTLt2K6EzA73tIqkC487ay9BPb8G8\n34wpqPtegwarrUxYffjnjpzlJ9xpITO/iwKnh1qfG4/fSixkJMkdpDS17bD39EBQIdfmJZww0FGo\nAfr4mLBJFKa1EE/xssOfw08DWVyVtpHaWBqLMlZSl0jGJsXY5cli6tQK5qfs5OXGaQQiJn4z4mXu\nFS9kp6+YnFWHF0m3TTShGgEUEuMCVHal4p2SQPJLvDb2ee7aew0tUYnkMztQfHYm3bWVZEOQJeUT\nMFriFCV30BG2I4kqM1KreLljOh8YQgy3NNN1UCMjZZdC12gjXVEr8zN2YxbixPsVVQ4pbEMhg/rz\nAGMMa0JCUHSBuHBURpJVoqkqWnIMkznO+g9H467WSIwKco1rI+s6ComvTkExqigGiNsFbK3KACI6\n/Msb+E7pFuqCbmwNGt7hEGi141jlJCOq4U+3EgloWApEbi6ZzTWp67m2ZBP3dxXxStUkhiV3kGfx\nYDLFCWxKJX3bwAwkTRMIdFs4J68CX8JCCzpP0ATYFj314mgFZ+jh9G8iInrBxespWnEzxgOnT2X9\nVIkdnShOJiL7T1fE4unoS68zt8qYpQQJW1/NGcCe7QVHrA3tD3OrTKp0BF+JIyCSM/gMFyvuU+p9\n7o1zWHZg5EAimhMf1DuoJ834uqJNJ3QdR8PIxxbx76l7yTuzDoA3A07Y9o/ZLe6Bp0w7OPjqC9Ye\nIqpJ4P7UTMomEdO7LpIq4Ln7L+LtB+eRyIixorqYaIpK8JUsHnlFj44/kLWFr373OJ6zI9yXsQ2A\nDiVIbacbY4quOvzQ8Ne46adLCVwQYOaIA/zlwudwVoGlVcD8XhLiWym494CpS8Pg10jeKWDq0vT6\nUIEBhfCD4RxLM/+Wup0lb805pd9TT0T0wLVPoBqgaMmdR0zd/aaxf0MBXWEr4131JFSJVTv7dutu\nT6rHIKosqRnP1OFVbJrzKC0RJ3ubMlhRp9caVF/4FK1TDifNzTNlxk09wOfeEsbnNuBTzfxy0jJK\nzC0s/9H9VF3+JFXdKYwtq6VlTzrSkAAuZ4gcRzflvkyagknMSK3CJYe4q2AlKVKA97vGUxlJx1Jt\nJPG3DOSwihTTiKaoDC0ZWB9ua9LvxbTPTIzOaiI2OoStQWL/iqEs3Hg9waiR0pJGrM4ImyoLeGPr\nRF5qm87VDg/T7JVMSa8lnKaRVJVAKu5T1k4kx/n33d/i+pq5hNQ4B7ypNFanMrqsDosxjhQDW7OG\nNN2DJmk0XB3nwZpzWLTjOsxJURymKLXdbqbk1OlG41GJJeunkL26b2c4fUsCxSwgxjQyvlIwJUWI\nefvI5mXDtrM82Pc79RDRQ+ugTeUWtJSBi6ZDIz03LP4BhQY7O3/0GKX2Vmw7B/oJ9iz+VQNYzmzv\nPR7O0HpVc2uXFg76nkP7Avjqi+G81zi6T2m3H/rXB50KPP3afAAWXLX8GC1PDY6lAny6sH3KK2y9\n/sF/yLkPxXWOztPW9zdBRDUJbOM7SRyyVvzOnhsxHhQ8OWf+llN6zn8UAe0Pk1cj5oJIZoLEeV7d\n11jQsNijlMztU+02eTScu414psQIp/VtGoXfzYD9Nuw1EqFsjSdz17F31ovMunUTKVc0cM+17/Bq\n4Qqqzn6WmRdtx1+mj0ueCQm8U2P84cdP99ahXnznatKvrCPSaMfSYCD6Xjr7Xiol+l461pV2rOUm\nol8ls++lwT3ahAs6CRXH2Pr8aPzvZxGN9A2MYlyjyedkemo16SY/GSYfL7TM4AL7bpKlCE4xwghb\nE56Qhc0NebzaPIVvZ21lQlY9EU1mqrsaioMolsMzqxI2DVMnCIpALGTAv8+Npd5A8i6Bq1+7G3/Y\nDJJGi8fBK5Oe5vdZK7kiaRPnDtvL/KJy7sxexZmZ+xjtbsIqxmgOO1nXVsi9qy9m2T1zqfm2voBJ\nHHBQ73GxqqOUHcE8rKJO0EKpEjUNqcQtIrnLBYSwRKjVhmKB0MgI5j0WhCorqlFFi4lE/SbSdiSQ\n4hpOc5SFFdeyIHcteRfWoN7czrQfbSI2v5umK+O87E/p/ZxDUrt448A4djVlEcwWyFqnkPm5SDhF\nxJ8n4S+AtnPiMLGbpmASvyj/Ns/vmoYnbmNGVg2BuAmTmMD1nIO0Q4hoKE1C7TCB18jb6yfzWUXf\nb+yY2ME1z//wuO/p48VHw7++Ovvx4r8y1qJ1mk572UYPKfwmSen1NXNP+D3/NDWj/dVu5XFeEtv6\ndndL51VSsWKg5UD/90SHRjBVHb7Y6Y+MmU20rsk+aptZF2znyw/HHvH1hFU7oZpMQYFoaZg/Tn2T\npxpmnxZ1XU3uq9E6nRjsPP1rRv3nB3Ass3MiiKQKhMaEcbmCOEwxvO9nY7uwhTVj3uptM3rDtZjf\n60sTCWUKWFs0/u0XL/OFv4Q1f518ch/oGHjqPx7i5h16OlJsffIp778nIlr8wsJeK4tTjdjoEMad\n1kHv28FqRuvPkZg7fRdhxcC5KbuJaTLbAvkAFJg7ucixg4tX3YUWljAmR7i8ZBvjbLUMN7aSKSm0\nKyJlRn3lNve2vpTdhuvjmExxpuXU8kV1EbvPeJb/6RjNkgPj0TSBRFzCZI4zKaueBWlr2BnJY4Kl\nmv2xTMxCnKBqYpqlmqX+MXzSOoJoQqa5PJ3cFWqvOFLMIdE5SkCTwVjqI+XZvk0ob7GMtUWl85Iw\n7mVWPCNh6JQ67IYojQH93orEDHg77QiihqYKGNoMzD97E8WWNs6z72FvLI1H6+axvzyHVy/8K12K\nne+/dQuKVaVweDM2Q4wxSY3cm76T+zqLsUsR3micQNP6bOJOjScufIZ/r/gWbnMYQdAIxExk27up\n9KQQVyT8LQ7dT26FiqdUxl0x8GHz5R9cfFghMDyGfa8RYZYHlyVCy5ZMTJ0C0VQNU4dAKFfF2iAS\nKEpgrzx816Wn3WAIlEX56+yXudAaOWIdasq5TTRtzkItCCMfsCDGBCJpKrb6Y+9txtwaqgxGr0B8\nbICUpCC+1RmHkYt7bn2LBxZfdsz+/pkRGxHCWH548v3/LzWje297nOFPn3pydbr67Y9Yfgyxw4Ac\nElCLQ4j7+37HnprReJKKofufbj//a8M02st1RZtY1lxG9zvZCJpGoAASVpX0YZ1E4zKxhMQVw7bx\n4vapmK0xzMY4kqihfNBHVGLn+FBVAW2XE0urxvw71vA/GTsAGPvHRUjRvudAEwS6hysggGvPwO/0\n+u99zIuVU/D5LCQlhfB6bWhBGXu1PMC/vAfhDIG7rnqfqnAa73w+BdWhIAYkVLuC1C2R/5E+2NRc\nIqMZNS6etJVHsr/i39tGM8zcyrfttfyk8WzuTF9JRJNxiDGaEkn8Zt/FTEhr4PLkr3jXM4ELXDt4\ntmUWP8n5iJ/dtQgxelAw6Ged1LUkMzyvhQyLn4agixRzkJZ7i2i7NUy4y8JLZz/J021zsEkxdnRl\n82DJa+yPZbDWP4y70laxIlhCshygOpqOXzGz+MsZOA5IpOzSyWY02YCpK07thQbuOXcZYy217Ink\n0Bx3seI3sxj7y22sqC0m9SX9vm2ZJqHkRnA6wpybv5dCUztfeotJaCI7W7IoSPZQ0ZCBc52FSJou\n+Hll3hbuSNrHzM03wifJOBoT3Pvnv/HLfZchPtGnTls/H4SoSO5KFU+xjHu/Pnc1zhH51hkbudL9\nFdPMEvd1FjPKUk9ckzELcf6j4hLaG1zY9xtwH+ib71RJoHm2gLPQS2iHG/u4TrorktEkepWID1XS\njeTHMNcdWY/leHH5t77g1U9nYgic3uc65lQx+sTDylBOtma04pbHuarqrCOKEPW0ga+Xrns0vHjd\nI9zw8g+O2uaUq+mebkzJqhvw/0OJKMDQT27lrZv/BHBMIhpLUmnclsXl3/5i0Nejyfogsnr5GCK5\ng2+5aiIkXIkB3nODQR7nZfQ5uqqcNNHLPRNWsNY/TK+dOg34Jojo8ZzHuuLEiCjo4gbJK8yIb6XQ\n/U42hoBG7LUMJv9qIZN/tZDx9y4i4LUQSREYd+cOEjaBR297god+/SiX2328t3vMYX12jRn4MCtm\nXbX3UHTMjqOYjxwhXeKdzA1FGxHFU6CgNQjK/rKIjdE4cuT01T7cNnoNwHFvoKgmlbX1hbRH7Ew2\n1zLc1MREew0F5k6ucG6lQBaoOvcZLGkhYiEDAcXELzZcxpZIPo92TeGL0DA+CRl4pjuT4KJu/Hn6\nlyvUWchzeym0dnDNyE10qxG+7ChCWpNEtMGOvMdGKGBigqOO3dEcvu+uZYpJ4wZHCzFNIsfg4V3f\nONpiDn439G3uLX4HS6tId79aY6NfIWtdAjEOE7IGqukKChj9Kpb1NlwL6tl5wyPsa8igOegkGDUS\njcuUprYhmRSMtSYyszzEU+O8v3Ucj+4+gxXBEiaY2jg/cxdicpTvfPw9IpqBv1z2LKaMEGWuZnbt\nKKDE3EzRipvJMnhY3j6SPLuHGy5dSXZpG78o/zZXF2zGIsfRNIGmfWns70wjGjcQaHAimBVUu0J3\n4UAimrAIdA2X8Q1T6Z4WIVASRzg4YWlfuqlvSME0vBvoU9O2NujD+mBEFKBwcv2gxwHsu038eMuV\njN14DYFhgz/0tY0p+njQbEYT0b3wjoOIAqgyyEMDRNJU4l4zLbUpg0a5bk069ernJwJ54tcrq/jx\ntW9x4KAoWzjnGxqk/4mw8qb7T1vfp5uIAkwrruLAtU+w7uYHBhDR/rh//iun/Tr+EZA/dvHaY2fj\nezurVzlVjArY6iSiS9PJcvpQVZHFy85AajIRrbcjiRpjUpsIZ/TNNcblTsyfObC06n189LeZzN97\nIQDbf/YY3hF9c6ugabjKRRxVfVFG+aIObr7rQzridsLb3Zj3WGBZMq51Jtw7pMOIqOmSNjyT4gij\nfDy+9ww2d+Yzeeo+UASS9gm4t8g4K/uuz9Is4dwr82HFKG6vn0mGwcc7rePZEHHyVN4aJpqMfOof\nxYrgcN7snEQ0LrNs+ygWfnUdt6V+gVmI89SQpYw1QvF/7KFztIm4U8bzQTZCh06MjGKCm3LXkmQI\n03B9glGZzZw/fic3rL6dhqCLc107WT36bfLkODMs9ZydtJt2xcJQYxtr/cWIgkpVMBXNohDvt8Qy\ndcWpvg7QoMDYTooY5hrnAa5K2oSgaax7agLWZXqWYeMZIqpBQ41J+Cpd1IaSSZYDjHXWk2P2Mjqz\nmfPTd1N51t+RL+ggYdEIfJTJE29cwA+b5mA1xVDP8dA0U2J1YDhlyc38/eE/M+Tne2k4U8TglUje\nIdA+RsbcodFVKtMyTaLyO0/wQNYWRhnj3NsxHFFQebl1OvcdOI8fvHELgfVppG6QBxBR/WYAUqK4\nrGHcE9vx1LhJ2S7gqDryHHMqiCjAm+/MPu1EFMDoE3lpwUPE009NikfpswsRjyEpX7ZOt86ceOYx\n/BVPEmlilBsuWXnS7/+ni4yqBo24S8XUfmQ54R7ES8IofgNpeR46u+zHzL2OuVTkgICYEIhkJTA3\n9y3WomkKpnYJTdJQTPoCNu5SwKBhbjBgHO8httXd28+hMv3Rwiim6p5aBA05KFA6r5JwwsD+hnTM\n+49OmP8VcTSf0VOFSIqAuVP/TYI5femHrtPsz3vRPZ9jFuO80zAG3+p/TeGRX970Gg9UnE10Xcph\nrw2qpgs0zZLJmdzEzXlrKDG2Mt6k8oo/B4cY4SJbJ+8GUzELcT73DWdlYzG+gIU/T17CBFMbcQ0k\nAfJlOxftO589O/LRLCqST8IxzEtckRiV0UySIcz2jhxGpzRTH3QhChpRRWZR/iqKjW2MMZqpSwTI\nl+2siah8FR5KnqGLN9snIgoazSEnjWtzyFyvT2KBLBlDWKOrTMDgF0g7qxH14b7frGu4jKtKoX2s\n7lGasGmkFHVRmqzXGSU0EYccZXVNETGPGSEmMG5cFWYpQUVXGqoqclvxGqKqgWWtZVSWZyP7Rcwj\nvMzKqWa/L40kY5hrMjbys42Xk5/RRU1DKpmZes3cvSXv8J/7L2VoUgetISf7G9MxmBLEW6xo9gRC\nUEJzHFTVDQikbU/gGyIjKBr+QlDS9VCTFtEtVNR9dowefVEVzlQ5c/ZO1r9+5IyOI6EngnooVAOE\n8nUfVDkoYjiC61b6/AZaPss9oZRJxayTV8uZ7eQ7PVS8O/hO7ulQ0/2moEngmNxOYH3aoK/3REYf\nuPx5fvzmgm/y0r4RSDFwTuxgdmYlH3ww9R99OSeFl294mIkm46DEt7+a7j9DWu2pRn813R54p0Wx\nOvSonKKICDscGHy6P7YhoN/PUbdA2QUVVHSkE9vm7iWhAIpZQJvjYVZONV80DCXb6eN7+Suoj6fw\n191zMa12ICb09r/50fNcYuvzjxr2yp1YWsVBo6D94RmjkJrnxWmOUHUgE3NKmGjIQH5WFy1eR2/N\nan813XCagQW/fp/s/8fem8f5VdX3/89zzt0+2+z7ZN9DCAFCANkEF0TBirWuda8rrf1Sa3/dvv1+\ntbWt34fVYhWwda1WrWhVEFQEZAkCYQmEbGRPZpKZyeyf/a7n/P64k0kmCatAgu3rnzxy77l3zufe\nc8857+31sifYVJ/NqwqbWO0olJD0xRUmtcV6fw6z7TH+uf9Smpy0XKuv3MzHF9zGpZlxijrkh+UV\n3DR0Gn2jzZjdOeKCJtdb5tI5T9Bfb2Z1Yx8/7l/FrMIkjkx4YqyDjnyFj8/5Jb1WiZEkR0l7LHNG\niIxkTGf4z7FzAWixq3zvzvNpfwSyQxF+m02tQ1I/v0I8mOX8c7YwHuT44vwfsCHs4h8+/S684uEy\nh6V/uZly7LLpYDeLWkf53c5HiIxFTaf71bUTi1jTtBeFISsDXp3bxqvuuBrlxehxl/dcuJZOu8g8\nZxQAieYUZ4JZU5Ji79hzCTsm2ol+2UZ5TZ2/OuvnM5yJd9Ul1+x/NRt2z4JIUnjCpml3TKVb4Y0b\nSvMlLU8cNkjHl1nEWUN2AFa/73HqiU2LU+Vnd56FXRUU1ozw4Bk/mI6MhgvrOLteWgvG1g9dxy9q\nLlf9/L0zNE5/Uzbd54s997nis29Nv90n68NTRUZPGmP08dDnrd/4+PT/37L7lWy87fh1AMfDea99\nnPv658OmwjHnjsfI+FTSLEfikJH6dPdbeMkedt2Z1ksFLRp3XKIdwxkXb+OxO5YiwyNC8faLU/Py\nQqPeE+OOKgp7oHRZlYZfPLv63GeC8nyIM6meYnV+RNsDLw7nVviGSf7PKbewzDnIW/712bGCnSwI\nmwzO5PGjok9mjK759MM0WnWGgkbe2XofS+2Aca2ZY2WwhWJPVCFCsMTOcVdd0mOVuaG4mkXuQTbV\nZ1FJXK7pfpjhpMp3SysYjQooodlc6qYnU2RxZhhXRjxWmcPp+T48EdJrTzAUNzHPHqGqXR6sLWQ0\nylOMMkwEWU5tHGBTsYcdo20opbFVQn1dG0ZC58MRkwttSssS5iw+CMBV8+7k2o+/dfo3DVykaN4M\nk0sh6g75/TMepK/ezHC9QG+2SGQkfmKjjWCw2kDeDimFLuW6h2PFZJyIl3fuZL/fxIFqE1Gi6N/f\nyitWPEGnW+LmfSuo1Vyy2YALevdQT2zGghxNTo3No114dkyiJcPDjVC1MI5G1BR2V42obuPsc4ka\nNHZZIENBwx7N6OmCwj5BrTuVAvCWT5IkknrFxdQscvus6WyFp5J2+U3HSdBicCfFdE3o84HqqQF2\nJiIsuohIkttzrOPxkDEaNGvcZzBPn2x47ZUP8POfnHvcc/9d0nSj+T72npeeEzZZVEftzHDZ5Q/x\ni1uOLQN5saRdThSONEa1LQiaUyKjak96zkiB0EdlILliRtotpCy23vjxx3pUEGiLGbJrQbOg+aIh\nDj7WSXZQoMKn/06qvZA7MHXPvKCyNKSzZ5IPzr+XJ+rdrB+fzXg1S8ELOPhQF3ZF0PHwYeKbiY9V\nefP8R3lFfguf2P5m7j3tR9Okfb6RjOgsNe1yWTZgf1zh4aCLsTiPLWIOxo1sqfSwODvM6wqP06Ii\nPjVwGQdqjVhS84HetRRkna8MvRxHxjRYAb/X8hAtqkZN2zwezKZJVelQZZ4IupnnjHJ/dRFDQQOh\ntnhj6yP83bYraMnU2L63i8Jmh7bH0773vT8hqVu89rRNrMgdoN0qcW9pCfXEYdM1K9G2oHplidr+\nPIVdCrtmyI4k9F8GSxYPMCs3SadbYt3YPKqhw/KWg7Q5FWyRMMcd477iQlbkB/nJ/tPIOyG7+jsQ\nSqPshEsW7GBRdhhtJP+6/kLksIvorfN3q2/kbYUJIpNwzcQSvrtrDUFk4TkRE6MFViw4wGgtRz20\nmd88ztahTvTeHEYZeu49vMAs/IutWELz+233c3t5BfPdEXb5HXx/8+rpgJM/K2TP6776ohANPd8I\nmzSLT+tn/2QTyeMzmYqfb2mXkw1PZYyqT37yk5988boyE1+6OxV7/aOzHuL8G/5o2sC7MdfFph2z\nsUpPHx09hP6dnTi9NarCxpoKs5/72o3s39mJ1ILVr9nC4K52koxBxgJ1VHpk1KCn/77fHU/fw0iB\nmjIk46xBRgKZHLtxGwwK09dY9cPtRze1IxLBWZdvYmBHKvb+fGinngxwihJ3UqBCcHc+P2kSR8Od\nBKEFYZOh5fEXb1O66uKd5K2Q/XETDz7+wtFuv5A4eowfidzBYwfh8Gobe06dMwp9+MahL2plhXeA\nrBQkJiEjbWyh6bbStLWQCk0SXpsv8Vd9F9OTKdKofLZGLhExBkmTVSOnQtrcCiNhgTX53UgMnU6J\nLbUePti8kQbpM8cu8tPSacxzRhmMm2izK/jGYVZmkkG/kb3lFroKZVqydUCQPJJHuwKRSLQtSBzB\n6cv2oqTmoeJ8ovsPE3qFBUXDvoRCv0GVbNZPzGH/vg4WLRikwQ5wZcJArZEzm/s5tXEQqaAWu3hO\nzKW9T7Bloov5DeMEic3eYjO10KGlucrihhFqiUskFPNaxpn0MzR4AQ1WwJ5SKxk7wrE05cDDUQmx\nEEShBcIgA0mMwMlFmJKNTESqYaig0G8wUlI8NSJpSFAdPrObi6mA+0ABVZdYdTE9j4wvLrN5w2Hi\noMri6CmFqo83ThIv1QU8GlZdPGMB7meKKCtYOHeY0s5m3BF53PnQ2C9dQxRgTzaPGTy+IaZfmKny\npIFRIBOIHYFVfem9Pzmept/s3NF7/AZT0+rHznz4t84QhdQALS9OMELhlAz2FFm3M5UhcbxsQHkc\nvjGrDnFWHNfxrkKw/JnHokaBvydPbuj49wOIcoKwSVDvSvdm3vjhebB2Tp1XLNvGW3seZpY9zg2D\nZ7FvQw/szBJtKeBOgArAGz9886HFDo+P9zLmNPCZeT+mXdkstDVbIotVjkXZBPjGYoFt2BtrOlSF\n071xpAgo6ixr8nsYipvYGvSQtyooBS1ejSanzuWFLeyNWml26pyZ38eF+e1ckBHkREyvJQiosSvo\nYjhu5OHyPLbVu7moYRvrigvYXWwjm4nxsRmuFVBuQlW7+K02fqtFJBSF3jIv79xBQfrYQrMyu5+i\nydJ322yEEeTOmUTc30B+MMGpaOotitq8hCVdBzmnaQ+DYROWNOSdgFc0P8F4kmckKOCqhIyKmO+O\ncHXP3dw8vpJy4GIOeogJh51+M09UO1nUNMrjTywgO7/EW5au542FLWSE4o07rsBWmrwbck7HXlY0\nD5FkBQsLo5zXupuFjWNMxlkSIYm2F1CBQCuB36KYXCTomj/GN+eu5cGggZuGVgaYA98AACAASURB\nVPGrgaU4jqZ/qBURSMLuCK8x4I/mPM61j7wwnCEvJJQvGLFd5NZjS9vMS2+6nIHEffJvF+CPL3zZ\nk547aX56kktnlKiguW35T5k3b5igdeav8meHJO7MmfDIlxc+2ow1eXgTdu/uqVpTA+vuXQ4crn2M\nszPvY5cO3+jI9F3k4XaHau+MOnY29gYttDOVrtKW9vvIVN5dxbZjrnmpw3vZKKUl6W8tz3vhah+9\nMUPjjqdv93zizEIfNw+t5PM3/c6L+4dPIJwirN81lwdKC7l1/3L21VtRwKSGoQQ2h3Xy8vAGu1NJ\n7Kmd2T9OaboMRwUUmh1BF78uLebuyaWsKy4g0DYNlo8SmrcVJnhvwzB/0n4PzSqLIwSRgbOyu7m7\nsoy88jkzs5c1+T2sG5vHu9rvo1jNMFQucG7zHta07aM6K93slOcLal2GwsoxJsIMb+x4lFo0c7ev\n6jCxxGL4TIs4I0g8DbPr1GKHRdmDlGKX05oP4IqYRlUjpwJavSquitlW6UQKuGXPClwVM7dxAr/u\nUKxm2FNtZWe5jQbHp7/chKU0DbZPl1vk9NYDzM5M0OD4nNY2QDVwcKyEtu4idj7EmVWlpbPEnLYJ\n4pwmzhgyw4LmJwxGpQ6rNafsZtG8g8xum2TXwTYqvosMBU5JTDPhBq2GSwsbZ77I5/ApKv/p2zxf\nyM8qceC2Obhjx9+oHsJL0RBNPEPQoknWnxzyKicCh5waPfNGT2xH/gfPCXYFnHFFeMT+K86mDj9z\n2bOrpbZqBm0/9YRU7xSEDQJvmGnD90gYdfh6u2rIjBjy/QLlp4y4h6CHPSbCDFXtkhMhd5xyE296\nxQPMfkUfpRURftux/WhurbB6bh8PDs7hYJLnl7XUEZEg2RXXWW7btMoao0mV5bbNXMvCRtBj1XlP\nwz4W2mM0W1X66i18begi+oIWzs7totmqsStqZplzkDcUNrPQHqEvbqEvTtnYazpitqow2xmjnHhY\nQrM8NwjAyoYB3j//Pn45sAxLauY0TFA+mEdGgrDRUF4S0bB4gpUdg2gjmW2P4cmIXWEHN+1NNZ7D\nnGBOYYLMyGFP39jpmqa2CqXI47HyHBosH1smdHklfjC4Gm0EKwv7GQ4LPDY5iw3VOXxu+FW8q/d+\n5naMYxyDt7iIZSc0eAF3DC7l7y77ARvP+S5XtzyEBvbEPm/vfpBmq8Y5jXuY444RaItZ2Um0EWyr\ndbKt0slIPU/GjghW1EGk792dTBUZvjH3DgDeki/y2QU/5FWzt1GLHYSVZiR6+50XjMvjxcILKedy\nIqF+A7WdE5um+8mTg4L+hYJTPNE9eGERNgECrGqaxnMkvvqpf+ZN932E3ANZnKJJqd9F2t4IyA6l\n7au9gsywIfHSlES7LDAi9Zyq+hQBUXtag6sCCJrTCUn56YY9aDUoX2CkQcSCJGvIDKWRnqhgkEG6\ncZcJ1Ds0jTsEUS5dlLSd6n3KKO2b8gXOBER5aLlwiGrgkEzpXLXe5ZJ/xwBRorj3tB9x5Y7XMFQt\ncLCvBVmXaE+Taa8xu3mSUCt6c0WW5YdYPzmbYpihM1OmxakRaItHDs5iVccAGRVxefNjRMbi9skV\nzPbGaVQ1euwJxpM8TapGjzXBjrALhSYrA745eD5SGM5r3k1e+RSTDGoqdDXLGeOe4jLOKuyhql3O\nz+xkbW0JNe2wu95GrBUaQTlyefShRQidRjFMa8jnX3YDt4yvYt0Nq3BKhslL6uhIIkedaUcRyiCc\nBGVrjBEkVQsSgd3sE4cWaIF0EowWmFhSaKrhBzYNOZ+JUhalNEppLCtBAJZKCKJ08bdVgjaCllyN\nMFH4kYUf2nhORMENibSkPVOlGHpUQ4esHaGNoBI45N2QSuDQ4AXYKt1ALW4YYVFmmMGwkVc2bOFM\nd5wLv/kJmrbD8PkJ3qDFa37nQVZm96OEJjGSXjvdaHkiYizJU9YeWRlwrneAn1aWM9seQyNpkjU6\nVYUuBdsiF1skLLITajphIHEoa49FdgkNRAZCI/GEpkUptDEMJdBjCRSCbZEkMopzPcX2qMoSO8f+\nuIIGPCEYSwQRkgVT/rGMcFBCsuTfT3xExllaItz27CSl4t4A68DTaxebZx7Yfcnh6itupteeoEsV\nORA386Z8if89vJLtlQ62DHdRyPjYUvP+ub/mwsxuXJGOo/n2syeJOxFY+o0TPzZfSLz58nuxRUKj\nVePaDRejE8FFi3eSURGPjvaSaMmb566nx56kXZUYSRooyDqRsbBFTIcqI4VmMsmihGYobqJdlQDw\nZISe8rBnZUC7DBhIslS1iycjPBGRm/KoF2SCBGpGEBmJxNClYFJrfCPpUpBg2BLlcEjoVHXsqYx7\nCdM1fxXtz3AyHqls8NsI77fcR/K//9d/kCBQGB6tzeWXB5YxOlZgTtc42gjWtO2j1a5ySuYAWRGg\nhJ4aVxFZGTOpHTyRrscFGZEV4BvwBCghsBE0SA+NwRaHJ+rIpGuvRuOKYyXejh5nzwUrr3nysRln\nwao96enpNlFBY5clUyo4+J0a5QvccUFip2UrRhl0Y4w1YpP0BJiaNZ0hJHIxJk6/UfugjQzT/WjQ\nYtAZjZFp5pNTlFg1qCyIye+2qPZqjKNBGuwxC7t8eB96KEvgyZzCf/uxb/JXG99IsKOB3IEXLvDz\nQuPxa55cjuekcj0nGYN95m/GYvg/eBFhwC6lHq2jcZrjsePib3Leu9YTZwGZThSqnhqa5XmCoEmg\n7TT1JnHAqqT/GgkyTBn2hEmNThmndbaJZ4gKGquetpGBQNXBLgucEqi6wG81aTR1e5qfn3iG7KBB\nN0cUFxvqXTrtE2kKsNCpPqlIwO9ItSoP7GtFG0G17JHJT9VpHGwh+H4nnx5dxk8W38oDp/+QL7zy\nP6AtoNBdJvBtBssFEi0pRR79fjPnNO/lyu4NXNyyjVanQo83yaqOtCgn0opfFU/h1+XF1BMbV0YU\nkyyP1ubRoir42mZ32EFVuzxQWciNY2eyqvEApzfuZ2e9A0fEtFtllnoDzHVGeaQ6n9Py/ekmxiqx\nPerAlRGJkSlhUGE/V7RsoNH20VmdZhUImNs9xrcGX8a9P19Fz90l2h4ts+jzMdagS1JIEIlAROku\nxkQSnQiMhkJHBZGNcZwEkwgyBZ+kZqXSKJkIP7AJSy7jEzmMTifQJJGEoUXeC/BDGyFMqrEJZN2Q\nsWqWREv80CZJJFGiGCnnKPsu8/JjJFrS7NWJtaTsuyhpKNY9Mk5ER7aMq2Ka3RoZGXIwamAyynKO\nO8HH+y+n+4GYzHjM3J8aOh+O2FtppaDqZGW6IB+Imqlql5L2yMmAxc4Q5STDA34vORngG5sF9igt\nqkbZ2GyJPIaTAmNJjn2xYFKn0+lsq0RkoEVaSEAJgy1gTySZ1JomqRlNEhIMVePwiD+PwETUdGpx\nzrLytEmHsjbsi5spa4eyjinrGCUko8lxwgfA9vc8cx2xxPvNfZDP1hAFnpEh+tsObSRV7TKUNJKT\nAbuiNFryga57qI5kGdrXiq0Svtl3HiNJBk8IysYiML8FRAO/BQi0RSVxabfKrJm7D9uNuaBxB7fd\ncQZD+1oZL+YYCho5GDVS1mkERAlNgqCmXR6oL2R9fR4DcfO0gVrWGTQSh4SC9ClIH20kGijIkA5V\nQRuJb2zK2iFBkBgIDPhG4YkEJQz9iWQgyaIRVI3GN4ay9ghRFLXNuLYoa4UjBEWdkvEkGCra/5/x\n9VuCkbhAOckwluTpqzcz0t+Ms8djYH03/Qdaub1/Kfv8lmlD1BYJtkiQwkyvQdoIskfUbTRJSQSE\nR8SuAhPNGDOHDNOjDdHAREQmOa6B+pug3m7YePV1rHzDVjZefR1zLuyjsujJx3A0RWnijqaGqN+h\nkQlkhiR2URAW0v0m0iASgSxZacrppI0IJCIS2BMKU1fIooUat9LSPmGI86l8nlWS2C0+uiEGDfoI\np2rmoESEEhFJ4pxBTgVJjk5XPx5+PLaaTed+hw9d/svf6Jk933i6tOJnk3Z8Uhmj7778Tv5q+S9O\ndDdeMNzxic9SP7fKH3/kR8x+454T3Z3fGMYy1Ho1yVQazsh5hyevs//yo3x+fAF/3/UryvNSr1GU\nT71AyjdT9SQp2VO90+CUTGqshikbcdCcGqDueBot1fbU/8ck2QE5FdU0JG6a1ohIGZBVADIRaAX1\ndkFmWIJMc9mbHnIRXT5JU0zQkWDVmfJipXVx9TkRyhforGbJokFacjVamqtpnR8wp3Ocz/3N9fz4\nS5dM/84mVcN2Y/y6Q2NDjSiy0EYwJztBl1uinHiMxzluH1vOUNDAPcOLiLTizEIfGRVywG9i42QP\nTXaNSuJR0w4DQSOTSZaxJM88e5TRKCXlKkYebXaZPbU2mqwap7gHWOYMMhbnebQ2lxaryi6/g5p2\nuae4jHKSYZffwY/7VpGxIyKjuLOYpqvLukQ3xWhXM3JHL1tvX4w4ah5f8MMyMpu+U5NJNeCEkxqO\nlpOgtcRyEmplF2JJrZgh05TOrGEtNSaFm2BM+nzDWmp8AlR8F8+JkFPGaKwl5bqH1pIgsuhqLNPa\nUEUJg5SGnBuyebKbybpHqBWxlhS8gFqQEg+FsYUjE+blxpkIsgTanjLwY8697yPct34pfa+dOd3t\nvnEh/zH4Mu4rL6aqXZpUjWQqx/WQvmmCRBtJjzWBIxJ8o/CNoqZdRpIGOlQZ39jUtE1Ru9giJXvK\nSUFZx4xrB3vKpTqUNNCf5MlKxRwrw3iS4GubyCh2RjE9VkxfXCEyCb+st/Cj8iruKS9loz+bn1aX\nsC1qIDIJA8lvHjZ8qnriZ4Ko9b+fXMnziVZVoZR4zLUmuPLa/4+fX38Bf/zdD+A0BTijima3xqz8\nJJuDXrZFGXyjcIU9HX04Esc7djLBXl460V14XjHPG8WVMY/XZrNxuJuub3p8+09fT9c6zdybDM6W\nLL/av4St1W6G4kYio0iMxJnKrddGIoVhPM7TF6VM5wWZGoZyqgDyULZL1VgURExWxhTk1NyKol3G\nHMp+9USCK8AThpq2aVd15luKglQ0SYtLM1XOcSNmWTEtMqZRJrhCUtYJg3GFwGgGkoTd0f8Yo78N\nSJAUkyyRUYTaQmRikowhvw8yuxzK/Q3ctWcx/VNjbzLJMplk8afSUbwpw3QoyTGSZKgZKBtNYqBJ\nWlSNZkLXSTAkxlDT4bTBefRcdOj/EjEjinrk+Yo+1hqLTMJoUqWi/Sed35LWdLxuvHE5y3/9Lm5d\nfjN7rvgKG6++7pi2ZioV2KqlGXN+u0Z76bdW60kQJt03xhmDMy5JcglCQ+KAiAXGTjPoDpXiqbrA\nHZMEzTot+dOgHUOc1wgBwtYkGUPYbFANIXFmqnzBMnhD6nBUVB02WOPjK0gB8Oh3V/K6ba/jz1p2\nUVx58nyntZ5jndpRDkqLE+odhvKiZ742nVgCo7semPH/Gy76OW/+xvtPUG+ePQ6RIT0ZjsyfLi9M\n+Lf+s7G9mPbGGt+Yey//Ipah+l66kQLtChLP4JTSFNrNV/0r3+yYQ3WkgF2FTfctYug0g9vlM9jf\nSm4QBAK7mtagICA7KIgLU3UhIvUSCZ3eN8kIonwauTSpAwqh02xfq5oarIfSa+OcQYUCqzaVitEI\ndlVgLNAuaa1dxVBpl4i6whtRZA+mdXpuMf27f/XOH3JnPB/hakYHm6gLhUGQ/1mBh/7+et7bsY3L\nr7uKX/zpZ3nF3/wv/sk+hX9auAHRMMG9e5cQ7c8RJRblqkdZOXRnSwz4jfS4RQp2QKQtZmcnyFsB\n26pdNNl15mQmiLAIdGo41RMHJQ2rsv00qhqxUWyszaJ9itDngfH5zMpNklUhW+q95K2AtaWlrBuZ\nx6bJHopRlnGd57ZHT+XR21ewaWAW3r1Z3nHZ3fT7LVhCc0p+gPt3L0EEElWXnH3pZi5atYXy51so\nLsnjjR2mvs/vdKm1KxIPsA2EEoPAyUT4dQcdKYxvITJp+m4cK0ygcPIRlqWJfZtswUcqg+Uk5DIB\nCIEQEGsFAmp1hyi0seyEOJa4Tkxi5FSdpSYxgoIbEiYWtcChGjhUqhlcN6YjX2VkskClmMFXiv2V\nJhwrYTzM0Zkp878772LIzbFtXy+FPYrM2OFak8yYZn+5jR1uA2va+wix6LDKbAl68WTMRJKjpDNY\nQtNlFdFI6sYhMBbz7CJtqkqzimhXVeooMjLd7OWlzVgS0ZdkEcKgERyI88QoZlslsgLqJsY3MKzz\nzLHH0Qj2xA00yTpFHXNreQUHgmY0gu/vXs26kflUnCwN9hBF7fGzLWce8z1+ccMzJ3OIc1Pp6c8V\nRmC6A3SsntV9orYYVXsGPtCTyk36/OKNKx7EEQmejJhjVfnBbecBKUFMbZbG+IqxbW0MPdFOX1ue\nZYWDuDKmRyUUtU/FRAgORyKUODEP6wE/wRN1Hg4dDiYRWRGQkTZfeuzwOExcwxOv/caMYy91LFl8\ngHLscdOOlXR8PUN5tkWtW5E9mG68coOasUKOqFnTnqnSalVoUD4xaZlE+u4S1JTh2WpVCIxDRoYY\nBCNJgcBY6dxhBCXjUDYuztQ1EvBETE4KFCCnOMYiAwUZExhF1STkpSAxhpKOsIRgWBtGtAsYflWb\nw4G4QEbWKWvJrqiVFU4NS0iuf+SlKcfzTPFUqZxGQe2CCs7zpFt5IrDirDTQ0ayq3LL/VPI/K4AQ\nGCVo6EtVJKLYQcyKaXLqBMbCkDpIJIYEgQQyR0RGM8LQICU1k+AKgT3lzJAYfBK0SUd2VqbP7ZAB\naQBHWETEJGisowzSwMRUTUw85QYOTcL2KOQH5cVsCDrYHWepUqeofdqk5Mvrzp6+Vi2o8uX/ugBe\nNolc18hV5z40fe5zfaunDT5I94xhId0jJhkwDlhtPn5WomppNCMuaLxxidRglSV2RWBXBVYtfXYy\nEsTtMcLRyIqF5QuiRo3yJSoSRC0aqyqJPTCxxCopnKIgThRuMe2LU5SpHFJVUFkS0njKBMneLHE2\n5cRxxtU0Z8TRKD/RxMGlVX58+q18bvdZOOXfzKH8fMApHduH6hyNbA3JzKpw+YrH2aDacad4eD56\n2ZMTGL04OhnPAEHHye3dPRJLX7mLLfctQE2x5mbXjFJ76KkJigq7FHd94p95z+7f5bb+pfx016ls\nPf/bcD68r+9C1n9v5YvR9WcPCWgIm8E5KoM632eodUn8VviLP/xPzv7LtFZo4z+murGFvYbbrzmf\nB//xeu7ovosP3vse7D4XOycwCuwyiMTgFAW1bo03ItNi9krqeRImDfMHLSZNp62mi0W9zVCokdaf\nWoY4D85kGg01XlrDGjZz2BulISqAsQTt9x+aDA1jpxtaHzv8MX3hH96Ce2WRv1lxC5/e8jrKYznC\nmsID5v/8A7Tda5PMhis2vB9+d4zoQBNn/u1HWf9/rucPL/sqC375Bwhh6OwoMjaZZ1u2k3Lo8ntt\nD/N4fQ71xOaM/D5sEfOjymoOmCbIwCn5gWlPOMCBICU/6VIlNgc9VBKXXZV2ljYcpKdtkkgrmq0q\n52V3sCXoJTEC14qp/6iT8QjG1GzWvHc7e9YtwSjBmqvWc923X8/fv/9bXJmr8PnxBRgrjQgbZdj7\nmWUMH0hX6MbtFXa+Lc+sOxNiT5LfV2X+jbDzbXkSAzKQGNtQ1x7C0QhLoxoShNToRGESAYnAGMh6\nAUHdTutLE0ESK+JI4WVSYzcILGw7QUqDZUWEwRTTrIAgshBAxo5wrZiJWoaOQoV53eO0OFXWfn0N\ncsyDfTUWxjEQA6ljZ9+fu6yZtY96YnPuTR8nt0cxZ2sEpHPM8Ok2KoTWLRHtj0fwuMe//sEFLGs/\nyMqGAWra4czMXiaTLFkZ4omIobiJqnZoUD5dqsgTURs5ETIUN7LYOUh/1EpB1vFVjcjUGdcOnoix\nhWYoLuCIhFOcMSa1xYhOI6xLbUXVpMQOKx0bJQKGE8FbPnL1jO/skErsFlby8Q/P5dunffO5fs3T\n+E1ZTpUvoP/Z1//YoyfNknPCsM3vptMukpMBb93y7hnnmtYeeqbpfDB+wyw+ccbb+N01D6ObHqNT\nBRSkfk4kVc8XLtn8Boo/6pneME0uS1nmdY/Pted+d0bboyXQfhtQTjzyVoBlpfNJof/YLIHeu2K4\nq53vvrybwvJxPrJ4LTkZoKY0klpUhZG4gXYrjRpnRUAyldPWIH2k0ERG4UylUNokFGSEbxQaTc0o\n0Ak1o4iMJCtjEiNQIjUmqtohMRGtyhAB106k+4urW7bw9l1vYMfNi/HbDHFrhNfnEDZrPn7pLbw+\nv/VFeIInJ9704V/xtfsuomltnjiTEuS9FOFPibG3WhUmJ3LYi8Abh6YdMfVWRcvmGi2bYf3Qadx3\nyXxW9/ZzTuMecjKgZCQRCpuEXquELWI8oTnShFTT2UOCaGqeSjDoo/S/AhNjC/WktaKRSSjqkIK0\niIzm70bP5N7hhYzc1ZM+e53ykvjdMc09RT606N7paxMbtpz3H3BeWkdqzi1O15NuvPo63nnJWj7V\nvnlGjekh482dEOiSQA7kiJYHWMMqjYLmEyo5TX63Rb0nQUSp1Jp2TBpFFWAP2URdEdo2RAVwRxWJ\nZ/B7I+wxCyPA2+nidydY1TSjb+p10PbqA9y54sZjnsOelRU2hF184sZ3Pq3k44+/djFj786x493X\nM5pUedVn/+ypL3iRUZmradglYVeGKJfhc2ev53Pd6znt8auOy9Z/JE4a/7M7rLhk8xtOdDeeFn/+\njh/yk8W3zqjPKm9ufYorDuOihz9A3goIYwvXPvxmvjFn7fPez+cDfruhMlfT8Tv9bP3QdTS+bvCo\n84IkY9CO4Ryvf/r4a7ZewUMf/DwjL0sX67P/8qNUtcvuV3+d//e2bxM2mdRgbIKwSeBOmCnv0xQR\nkknlD4xKBbVlkNYrOiWDCsAppiyc3qhIDVgN2koLz0UyVVvqGhDgt5kp7xV4ozNTClo3iJRY6Qhk\nftLIW/JFysN5hK/oXDRKdZbA63N4+5/eyqYPf4lzuvoob2olv9tC22Ka8OGKUx+ns6PI8GgD+ZyP\nNoJmt8aPx1Zz7+hC5mTGeaLezYbqHFrdKqcUBjkYFNhTb6emHQ4ETQyGjZTiDHeWl/OfE+fwi7GV\nHKw3MC8/RrczSV+9BVfGFOMsn+l/HQCujNm9r2N6IvvUX3yDPV9bAoA3Yrjnh2diLPj4fW8B4OMt\nu6d1I5OMptahGDutQHFJnqAtg84YSrMtLP/w4rLoPyvIQIIhTVnxEuQUq3QSKoQgJTQyAuFqtJZM\nTOQxgSKOZZq6MvWoA9+mWnNRyiAEKKVJEomyNJalcawYP7TJuiFKauqRxdK2YTozZSqRyx3/tYbO\nB0s07Kog4mNdiMbAqJ+nGrsUektc+vYHKH043fSVZlvEhTRl/EiE2xvYNd5GoC26nUnKOk1xBgiN\nYrEzTJdVJDGSkvawSZjUWRIke6M2mlSVLqvMeJLHNxLfHDa6DqX/TmqLHWEH6/1ZFERMYgwFETPX\nSqajW1f3XXHM7zkSwQOtrK0tOu65Z1Mz+j84cahpB09GrHQHWNI08rTtW3onKcUZDsTNREjKWqLE\ni2/kbQ1rvHrr6yn9sGeG5940R7hjAl2xue7AJcdct/QbHyV/2tiMYw2rxtj2vpfmePVkhC0SmnJP\nb6303h1TLGbZVuuiqt3p1P+adimoOp5ISYkORUkTI6cMgHQyD1HTaZSJEdhobKGJjCRCIDG0qAiF\nITAKTxjGkywFEdEk0yjqtWMX8EhxDr8eX8jy2z/M8L8soHVTRO9dMXP/S9D5UET3vYabBlcxqf/7\nOosaVZ3vv+ZaAMQFE5z/3kfwn9nW7oTiHR+9lfL5h8O9kVFkVUBkLJpbKoRdMVEOau1qap+URi/b\nH62S/3meh/fPZluti76olf6odTqlPEEwrj08wXSqLoBvNJHRRMbgipRR3xaSaOp8TYfUzOHsKlso\nAhORTJ0/FDW1haIgLfLS46+HXsFNe09lcF032SFDbkCTH9S0bNU0bbQoP9HCtdtePn1PFcHKde/g\nD/ouAEA80EiUT/cjK6+5ik+1bwag49L9x31mMgG/1WCNOCQOaNsgYok3YKXyJIHAtIYkeY2xDXga\nlCFqjfH6HOyyxIg0NTdqixE1hfIF3liapSdrkrDR4LdpnEnJxquv484VN/K1Ytc0Y/MhzLfzXJmr\noN1jU14PITxCjvSeb6VZJm0qx7o//8KTXnMikN932KS0q7DgRx8GoLzy6Wl2TxpjFEhry05ivOl3\n1/LehmEAln/5sMdF1Z5Zv28446u4Kibc1kBlazPv67uQL07MBaBy1snlhqvOMrgTgqWr+ogSxSNB\nyNKm9LeHU6oFiZ1K5EQtMTdWTp2+dnnTEHnp8aVXfYu29+4D4NOffg8Xb7qSK3MV4oLGWKmhFBUM\nMkwJiKxaGgmNMymrmBFThmXmkGGZGqwyZlraIsqndOB2BfJ9TKc4ZAcl2krleNxRRWYk/dBHXpYQ\nv2kcgKBR8M0/vIbRs441aISX0LlglN58kWBpnXyf4avfv4y/OLiaud4YmYMCb8QQNqURYoB/6XmI\nD89fi44l1brLhJ9h53gbe0qtbN84mw3FXs7N7yJvBXS6Jfr9Zrq9EhKDPfWDet00/Lyr0kZkFG1u\nhQanTjV22eu3sTA7gicjNpZ6mAiy7A9buOWJU2m716a0ENrfvY8/vvm9AIxekNLZxzmDkfCjiw5v\n/oxjSBoScDWlhRBnBCNngjtaZ+6SIVa/73Hyf5ZO5FFDGnFs2ppGq1EGHUmSsp0apwZ0IhFegrA0\nJpQYLbCcGKRBa5kSFVkJSZwanUrp9DotkNLgODG2HWNZCaW6h+dE1AKH8WqWyWKOLq/EqJ9j1y0L\nmX1balj6HRmKS/LE+ZkpVXJDgSUNw8zLjnF+7560fvSRVsq9FlY9rdEIGqZ8fgAAIABJREFUOmMm\nFxxeFHrWxsS/buHmfSvYXOllb9jGZJxlIs5xfmYvu6M2eq0SVe0wkjQwkjTga5sua5KqdlAYWmTM\nXGuCsrGxpxZzG01BRHSpCu0y5hRniBaVsuU+GHhsCLtoVlnuqksWf/ujDPzDTENzfNnMhat9Q8Rd\nE0uPGa9PhpeCgXrpq9az+d1fOtHdeNGwPDNAlzWJxPDWtgefsu3ESk3lsVbuue00fjWxnJEkx8aw\nmw1huqnbHL4468Y79lzCm776CcZvmHXsyZJF0GKQvuSJwY5jTrevPsgjq2+YecmG1pcU665ZOJM0\nTGI4o/XADNmRJ0P+kQx3HljMPRNLKCZZGqbqQx2RUNYp0cxkkqNmUsbcI6HQ5GRAhGJcp9GlyEgK\nMsKbKgEoa8VQkk3rSoWkRdXITZHC7Yw8Bv0GclbIrtFW5nxfYdWOXe+smmbvA7O5vXLKc3o+Jwu2\nfvjYesFnio817yMyismzAtRtzaw9sIBw8cm1LwOovzwVfE1cqMw1fPsbr+GU3iHCV6TyDbZIUBiG\nokaaMj6IdJ+FSGV0orwkyaZOBxlBMJrhlsdX4ogYW8RExkIKTU3beCKmZpiuT64ZmNQpsVYC1PSU\nYYnCFpLhKXI9GzUdKfVN6ngd03VGk+qM2lFbKCaSGr9Yt4pkXTNWTdC8tYYwU/WaicEb19hlQW3P\nUYR59zfxtTmHo6V25fC3+Ds7LgPgS4v+k8986OvHfY52OQ1qCANha4JsCgmbp74NkyoCeEMKk0kQ\ndYU1njrbjUj3nXEuDX7Yo1bKNWIZ4my6J5YRJHmNXRJ88m3fA+Cz4wv5zI1v5GPf/wArr7mKlddc\nxT+Mpmt5ZJLjSkYewoJXzuSYOf0zV3FDpZGHAzUtr3gyomF7+q73vOZrT9v2pKoZLY7lj1t/tPUj\n1/H5yZXpYDhBuO+D/8TlhdRQONIQPQS/K+adr7mHTVvnTR87WnPHW1nmB4+dRX6XhV0RDG7q5L6+\nxdyaa+fvVvyEnbOa6NMNuGMnzkcQXlAmKbnEeYNz2iSjD3ZTOpjn+3vP5j0r1nL/wyuod2qc4pRh\nIkHVJfcPLiQ7kL67/nW93Dq/iVHdwLfn3c0/7zgbpwjRxgJfuWMNH3jnLxjptTnQ7OEcsLGrUJlv\nsEupoHUyxb6bSsEItCVS1rEqBC1grNRYDVoFmZFUxsWotBa13pmKdgetBm1B405wpyR22t67j/DX\nLYTDWZxSes33+s9h7Zv/iTdcch//def5AHxuz9nEOY2TjSgFGfzAIbPb4j0fvJWbr7mYP371T/n5\nL9O6GqcEQYvg67ecxVd+tYbrXnc3Vy96lL2OYtNIN9XRHJXYoWPWBK6V8EStm8XZEbIq5IlyF55K\n6HKLeDImNBbVxGWWN8GK/CBXNjyGkJp5mTGMkLy+8VH6wjY67BLLckMMx43cd90aMnvS76J8agQ/\nbUFbEqcM2T6VGviWIDto+NbYOfzxyocB+MKOMyFOdXZ0PqFxm6B1U4JVizmo22ldOs76XXOZvEAQ\nmgyFfQG5wZCWTSHeqAuhTTLfR1ccsAx6KjqaK/hEWoEWGATZhoBg0iPb4GNZGm0EnhsTRRbGCFob\nq1gqlYoJphh0QRBGFgbBotYxsA0b719M8xckDXvSj2r2tXvYVuzBuWKE/T15okwGtwQqSEgyDu6q\nMm1uhYF6E/f97DSCtoSgFRr2potWfZbmwks3sX28h+zwFJvviCaz3qF/azelZbAgO4olNHujVnb4\nXRSsGolR9IetLHEHGYkb6LUm6Y9aqRiPdlVkIClgEFhC46DptjSOMGyNWjHEjOssrarGprCb87xx\nznANy//tKh7+2ioa9s3cJMaepLhQUH65T7ngUuhPz2/JtB93nvzY6Q8fUzf6xQ1r2P6e659VPemL\njV27u7luw9kzDz7LKfC/3vLP3LD5yetRTiZcfsp62lSFuZamUdX4/trzp8+VXl5HjjqoKZskM5yy\nhFdOCdm3q5ubdp3Jo7qXxLVZ7u0hMoJ2ZbM/ruCbiJx8/mvdrtj+WvZ+ZxH2k9TaZUYE7kSaqVLL\nWahw5tisDeb52BkP8x0xD38o97z378XAn19yC18/9y6+9NgaTl2yD1fGLMsMcFPDEho3p783yisG\nLpZUexSFvpm16dVKnp2ykUkrA5Ykp0ISI2hWNSraQwjDQNSCEgaBYVznCY3NpM4iEFS0R06GjCdZ\nIhTDSR7fCHxjERlFSWcxGFwZYaN5POzgk32v447x5Wy8fxHJt1rIPfrUbKaFfk31nITBXe0v6LN8\nIXDR5Y/yi1ekWtfXrn/que7JakY/ctFDfG3iVPb9NNWnF7szuPttqr2Gv33/d7hn3WnPa5+fC67/\n0y/y5t5HSFZEzFs5wK7HZmNX4O4rv8cfzt7IZ6NTObOrHyPAEpqhsJHRre3EXSHegKJ8epgSSuYc\nGvZF2L6h7ZEIb9jhZncJe2jDWBJbaiyhaZ9ijvdEggHqRpERmsCAJWBSKxL0dJGjJxSOsKibCI0h\nJ11sFAhDo/TISofRpEpWOgzGFS7b+C4+/+AlzLpD0LK5TsPeCGNJorzCCkE7gsRLjUarLmesC5X5\nMa9beA83PJTOn9U5CU4xbTC5o5nrH1jD8DyXq1v38ftn38PX1503fa2RaVAjZcNN90HWiIX20v1l\nZlSgygrtGESUcluIHh8x6qDtdM6LmjVxU5JGSDMaEaV/OzMqsXyBU5R86O0/5//d+Ea+cufZbNiw\nCKsuZpQubHp8Adc/sIZHezP84Yo7uOfB44+xe97wPb6olqD2HU53XvvgafzsgbPZ+sEv85ELHmLZ\n6kf4xbqzno9h9pxQXB7jjR67cH/53jV85IKH+PK9a56yZvSkioxa1eN7GVeuewePXHJiPefNKssj\nQXhcQxTAG7L497svfMp7fLRpM04unHHMGxEsLRzkwdpCTm0c4C0vexC/48RIv5aWxizvHEKtKqY0\n1Hc2446DtaRMYZeiQfmUlsfIqc2G0CASgVUVeAcVpcsr0/dyZMIvblnDY0GAOsq5+IUHX8kf9N7L\nO1c+SJwzVOYK7LLErhi88TRSKpLU84dJNUlVkBIT2eU0Upp4gsQ1BI2HU3oPScVoO/X4ySMcRh3v\n28vPlv6M8qKE/P6UgTd6VZHZaw7wzu3v4E/2/t5024bdBjsfMjFWYKKYQ03VBn19e/oh7YpmLtbu\nuCFoFvjtgjV/nXr7J6Msfl8B4SboUDE00MyWjXOoRC7/vvMc7ptYwNaDXQTa4ub9p7LXb2UkLFBJ\nXJa6gzSpKg/U5/NEvYeBsJlV2T7W1RbRYlXYUuvhZ6MreWjtMgDqry/xub+5nqb16UY0d8AwuiZh\n4tR0HB1KT27eJPjUSOr5VmWF9CUiFoiaojRfEjSmXiynaLh/13ycbIgZ8KgfNR7ze6tkhzRJ3UJ4\nCUQSUVMYX+Fvb4SynbLtlm2qkxmElxCGFn7doaNpaowIQ2/bJH5kUa67xFqScSO0FthWWkfamKuT\ntwP+7+KbWfDD1Bs8eEEDI/835K5diylcMMx4MYfxElRgiBrS/svI4CcWvrbxE4tgoU/PkhFm357g\nVNLFo2v2OFJoul/dT9/rZk6DueGY9RsW8tDEXB6anMuOegd99Wa+P3I2Pxxeze56G78sraSYZBlO\nCixzB9npd7K2voh7KsvYEXTxmD8XKQwPBy3c5/fga2eqfrSRvXErq90D5GUace586HA0pO+1kpFV\nNuVZFgMXp8zS2ogZFOkm++w8oSeDJukLjTfd8OT6ZScbsiJgKE7zrqp65tiLJx0qpx/LLimLNk1b\nBXZJMra3mUBb/Ko2j21RB9dOzuY7xTP4QXkZv6zZbA7rx8h0PFfZjpdteBOD35v3jNsb6/hr19Jv\nfJQHTv/hk14365wDz7Zrzzu++44nT3n7+9sPlxD1OhO4MsKTEd1dh4kUgkaBsc0M4pRDaHkiout2\nix2bZvHY+CwOhM2MJ3lK2puu8cvKgJG4QM24hEZR1S4KQ7tK5769YRu+sdkVdlDSHgmShLRsIE3/\nFYwnNnfXF/BvB17Oln3dNHs1eu8+frHWofn+SIz6Lz1nwdYPX8e/9N7DFdtfy6oH347fGxFnzDFt\nng4f7D+fb/36/GOOF1aO8ekvvPN56+9zwTs+eiuP/vV1nOspVrsO37n/Zfz05nNRqydntOtqL5JV\nAd5UqndPpkg8K4B6WhdpZyJkJkYmMLYyi0jS52TXNM0P2+zb1cHdg4sIjcVwXGBce4wlOTaGHRxM\nMpS1gy1SOaFxbeEbRYSgrA0j2jCpYyRpLemk1hR1ncDE+CZmNKmyP65QM4abqlkuf+wPODjQhHfQ\nIjPoT+t4Ti72SBxBvUWiFeQGI4Kmmd+UkaBqkrW1hax8Q1rnnOs7djzfsiGtlW6UGV7+5kemjx9Z\nZnBIVcGqCeyiRMRp9pTfkWBXUv1RqywwBzLorJ5WgrAqEllVqRWVSZDRYUKf6gqfc9+0gYL08caf\nPnviwR+dxpvyM1nHo6M+xd9b9Nhxr90apt6VizOaaq8hPCqAHLSQElAeB/p5VNuxi4pq73O3XV4S\nBQIXztpNs3oK3uMXGFs/ch131BV/9O9XP2W7wpwS4Wjzk54f1zFLu4bZx8yCtV8fXIAlNcubD/KV\n2b/mhpaz8YZf3FdTOavOG07ZyJ3fOpujP2n73nR0/8mdb6dh6+F+eWOGqOGw7Eo4fPgd+YlFdhD+\naNvbeflbH+HuG1an9aBA+10O+9a0cX5uO49eOJuNW+eQ32mhQsCkxhRAZU5677BR/P/svXeAVeWd\n//867fY2vTHAMHSkV7GgQcEeuzEa1MSomLhx15hks2kbtyTrmk2MJdEUxa7YuyKiIEUUkCIMbRim\n9zu333va949n5g7DFEY0ZX/7e//DZc5zyj33nOd53s/n/Xl/SIwysuZDtiJRckENVftL0QtspLSC\nklQwnSJ3VM5AcK/4DGBe2s6+taOZ9+fluM6P0jrfQ8EmhVS1n/ikNH+evILv11zc5zsbKU1ITi3Q\n0+JA7pfFfXihdRapfAktamej385Omytve5Mn7lrK0t3n8dC4J7lxlo/2pIfGAwXkbpeRM9C8ZxSy\nBLtPl5G3+EmWabTtKuCVA3m4GxRGnHGYu0s3U2fEeCIynTJnJ++2T+Dd1vEszD/I6rYJtMR9tNbm\nkF8FnVNsvla5ldvuWI6KTWQM6AGb/M39O+bIWXGefuo0fvrtT7EV0QHbqrAlV9KQzJcJHIDgIR1v\ns0bjQhdm0ESJydScF2DUK72dZagqRssCL7bbRPNn0HEgxxQszUZOSuhdTuSUjO0xKCkMk0g76Or0\nUl+XC4aM5DFoifhIxp2EQnGSaQcZS8XrzghJr2LR3uWlyBPjrmuvRMHA8DuovHgfuxpLKMqN4FQN\nmjtzkQM6hteBp050yq6wSak7gkfO4NPSzBt7iBP8DbyUfzruDhN/vUHN4VzCG4rQ/TbBagmOMl9w\ntirs2l+G4jZpzBO/u24qhCMeNIeBLNtYlsTiUXtZfVjk54Y8SRr2FoAC+aM7SI/W8MhpirUwUdPN\nnkwRsmRRm8kjYyv8uG4Wnz41iRCCKDQuUBnxtomtmLRNU3C2KjA1ilXlI5PbS0AlbQCrPQTp3HvN\n/f3Ip+G1Prdh0RcJa2QK+fDnK37+vx2ibq1Fwu4byZR8hlAVSBCpFMoOEBL52EixeJkpMlm5bTZV\nlUX41DQN8SCGJaMpJlNzGih0RCnRwnSZHkY52ohbDvLUGB/FxwBwgruOdtPHNGctC1yDlwkat2I5\ngc9agcxlQb8RRGDsY8v7bbEqksjVbuo2lWWL0f+t8NXHv9Pvb0Vzmmj+qBgtIjPtwysB6DLduCSD\nBj2HRUX7Wd9tMZbMl1BzUyQNN+mggrOr76KRM2xSvkoiOVEjZjhJmA5ipgsZmzbDj2nLtHfPQNeF\nx5EyVSb6m6lR8+ky3Zi2TFBNYNky5Vo7HaYPj5TG1U2M45YTXVLZlShjX3MBkmKz9d0JlNBLRmNl\nanbR1pahcEvfa0zo/7tcZFOjxQDslDQW5h7kwX2n4qo7vhn2Ox+dwPnzt7B2V9/IqvVGPtEKi/1f\n/R0z/33gYMRfGtcHd/B0rITLfd0yLxvGnFJD48rRgDDB/PPItfgd6WzKT8rWmOBp4g3HJOyYE90r\noadVJNkmWWCT+6mJZNqYbhVHRwZHjkLOdoU2K5dDpfnIks3eVAl7Y4V41Qy5WhynbFDpEulauq1Q\nnS4gX4vSqXspc3YyztFElWRRoGRwSSbNpoWGiSJBypboMN0cNnJ5s2Mqqc15uGTw1vUlMEraJh2U\nUVM2hksiHVJJFVnIKSlL7ERteJlH6+bz7pQXmcokli17kxUrlpIotvA0iX7Et9fBOZXn8NqE17in\nbBPjZ03AueUowwjA3SJjaiLPMTbaxBlW+wRdMgUmkiEhpyTktITut3F1CNWe6QSlQUHuJrHGjBgH\nT1kB0MdAaTAkpibx7HBze9PMPn/Xjion/q8Fu3hBWZRNUevBlb/6Ltt+IBZbtMooyRYPjoiK7u0u\nZxOH+NQUjmoXmXwTz2GF+GgDz2GVTFDUO9XL09gxFTWmCPI9hOP00bAVETxydkiY8yJEnT78Bz97\nP/53R0Z333Rfv+jjuy/P4oNr1/PNy99AtxUeeubMQffXJyTRqkSh6YKTGmn9oCS77apLV/PIi6dj\nuhhw9XKga+nBtx++cdB25qQ4ym4vc4prWc/gZHRPJoeazhwu+8ZqHn7tdDyN4hpGBzu4qXgN85wp\nwMGu8+9hZvt3cLX+dXJoyy48RGMkwDuHxxMfb+Lfe9SUobuvOHvmDj7YJUpKJItsnGHRkWSCEo6I\nzTmXfsh7mxcAUPfHsYQXp/nVuBc4zW1RUTEdbJUvX72Wt/7nZJ68cymGG4qvqEHrUAic0cTs/Fo2\n/naOkOfavbmYzjDYipq9EE+TTcfDI+mJT3ZMFaTQnB1F2+nHf0i0kw0ILquja8UIevK/ky0eHO0K\n2pXNhJ4pojNRwNXmtVSEOvp+Z9nG7nSgFSbJRHsH6HSuxOMV71IxoRJMifyNKpExEDgIK35/Fstu\ne4Mn7lrKBdxOZCzIuoRY8BLXpCa6/30lANis3zwR22uSu01B1m06Hi1nLr1k4l9++AgrK1dl/z9m\n7cnkfSyT9W6WYMW7p6KMFwQ8cBDaZ9p0nplCOegmcKD3KwXe8BITKcqoMUnUtVJAicskSi1GvSYm\nLYZbpnO8SsEWi6ZTJEJ7JKKj+q94la2GhlNVrE4NWbGxggZqq4aalMjdIZG7K9rd0oMfKNAMZL23\nJzV8TtK5GuGxeai2iGa7Gy3aZkjoRTr5azVSOwpQMKha7mL0yFaCjhR6m5v84maK3BHUCRZpU6Wu\n1EXzggBFGyM4W0VkSbcVpvga2Z8o5M/vnEZ5m0HTNSmKH3ZRslohNgLcrcIkK+NTcMR6r63oI51I\ns4bpctDpdWMrwtXP0aHgPgS+BnGvtjOj97fAw8gsqQ3xLEvoHKuhpmxSeRL+wxZtM6B0ajO1h/MZ\n9QJZIgpQslEcs3WySjrXZNSkJprCAfTyNGR630lfKEGqcfiTRjUu98kd/VtHSv+vE9FiVbwX+wwf\nXilDpIIs6bNjKq4WlXQOBPf3fedcrRLxMpvczRqWIrEjNRJnfhLXWj9KxiYJrJNKkWyIjgIlI5Ea\nlUZtdggTDkvCLkkxpXwkj1e+wJaMi1cTLtZERO3h5/dMJz8U466JT3PbnsuHJKIdM0xQbJxNKt4j\ngpoufxqrcWAysP+q+/vlicrV7uxnLSoz4eRqqtZVDPNO/uXR/FFx9nN6lzBLKFK7iFpuUpaDoJqk\nea5G0Wadgk902g0vLgucXQNHoiXTJvZcMc/NyufiOR+j2wqP7piHFdNQAhmsTieekhjpfQFs1eZj\nr1hAkAwJJSFjlaRQ6lzYo5IoqsmSMXtwKzoXBLdwMFPIb3efRjqt4f/AQ7BahyOIqOGRiY4GNQaZ\noC3MWWQJybKz2/kcvh2m0/6ruie7Z7fztdHbmPT7m7n20rd5fP+c4yaiAMFPFeKz+5fa65qbJrjZ\nyYxf3Mx531yLX0nx5O8Gn4N+kbj/tt92Lxh5GKl2cE7V+QQcKUK7VBp3jc62++i5qXDrWvY3FkKx\nqGWbsBws9e3kT94T6ch1YDc5CG1wEi8VOZKZgIyz3ULpNgH0HxLjZvCgyss1JxOrMEC1kVKiygGm\nJAwiM8K40nZayClhIKlkBEmzNBtbBSNgUjSyg5ArSciZJGMqNMYDlHgjfFIzAs8nbpxJyPs0hZwS\n4250tJtUjkxkvIVSHEMPuwjuUkWKVgz0kAUdveOgLUHDxlKYIv7/5z0n8h/fXMEiVwun/va72Xa1\nr48mMS6DR3aw99QVTN0yMEFUdBh1TjXPjnsJpySeo+83z+CHBRu45sCFvDDuTUCUtKo3cvhN9WKK\nvRG2Hi5H2+YhWWThbpapOmVFHxLaQzYHQ8+2O4u3MoOBZawzfnEzIy6uxl7UibS6P8eY8YubKb6w\nhk8XPspbCY0Hpi7ivtEvsuTO21HSEPhIjLmudnH/gt1BJa1bjepudtE1PYOvLEJ0fyhrRGQ6ITE9\nie9jdz8S3APdK9LVTAcYhnz0uv6w8XdHRgfD9Q99myln7uXjXWMIzOoks2Vg0mc393YmrR+UkCo1\ncDWIr/nYyi8hIya9qZEZXMOsJTWYNLcHfl+SBF7WvzZ0TsHyl77BssXv88jueZy5eCtrn5qFrMOH\n+yq4qXgN+w2LaQ5oNDNMOKWa+kgAY9XAJWNMFxScUU/t9hLsojSqZuJaL1Z8Uvk2pkvID5ztQw8O\nifkJXIrOpPxm9rQXosRkCi+opeWl8n5tV78+k8ysFP4tLgyfBciYTnF8WQefkiZeKuFtEINb/jtO\n/r3sXE6b9DK3nLqK+6NLef7pU/D2ELMkdKbcaFGJzrXFcFEtjiubUWWLGXl1rL+7d4XSV2sTK5ey\nn49E7g7BXsMHfPiae7flLKul+cWRuL/SjPmkMNbwHlaJjzTQnyhCvyhMps1LZ00OG2c9weyLCnA9\nLyYcdkJFCug4nTqZmAPDI6EmbPQFUX7UMhW1XeMXFz2Gd3GaH/2nqI2rxWzu234qSjc5Hb2glkmh\nJt55ah5yX3V2FhOnHSbgSLFJq8SblyCTVhlV2MH+fSV8/9RX0SSDFZF8LGTueP1i8rb3/p5t80yu\nOnEDb9VPJLahABCkJ2+rTMGyFg5UjyJRLJEJ2oSqxD6pkeJC9KDoMaTuAcTymjg6xGCkpG1i43UM\nj4arOELHqQ4Cm120T/OTtz2aPb+3Nk75W27qFivY+RmkiIaRZ2BYYHhVOif5qeyW14Yn+gjtidE5\nyU/ObvE3ybTxHo7jPSyOV3WTCy2uUbLepOFKg7wdvXJFd7WDQ+kiaoxiTp+3i431o9geL6OyrJWa\n/YVILot4qehAI5VexrhbadN9tGT81CeC2RSAiUUthBmJI2YidUskW+dbBPcoxEtkHF023hYxgQt0\nl2yoPVPBcpuMqWymbkMZXeMAW6V9gU5om4P4CButO4fa1W5niSpAzn4xKfV3m/r5D2m0jvIx6oX+\nz4Lhkukcr5AJ2mgRmaZwgJxnvXROlEnnmfT08nneBPWEBn6gBkFP1PT/x98eKVuh1fTjknTCthu7\nPAXVYrLgblRR4wPLqtSkjWxAOkc4kMt+HbvKh2z09nlS90d/DYCNp9FBKrenTh6kcFHjy2H6u8sp\nzI/QVJsLqk3OhxpKGTjmdXH9w9/G0zS43Mp0SkgeA6XZiaevwTqeVT5iIwfe79edo495b4ZLRDOl\nGRwNf5soXqOeQ44ap8vwoEgW+oQEbO4up7FLvO+pHAVX58CzN8kC/16N59RZjB/dhNTowpECM+pm\n5LsG4CETsHFETXSvQtt0CdMBoT0Qi7lxRCCuurEMeLl9Jt6iOM/EZmEnVBztCv4GqZuI9oWasJB1\nhcRIAyUuYztNknkanlYju70i1Eo7xf32HQ7+2mV8tsx5CoBHWMxDK78YcvjHkeuomDqZ0A6V+Ckx\n9KRGYKsT0wmGF+pTITYcHs3oS2poflas7KbywNV+jAMfB8JTDRa4FB6KFPLzty/Cv1/hwq+/R10y\nh0SJnQ1mADhOaQOgIDeCS9Lpsjw4ZZ3XotOozGmn82Autgy2LKGkILRLRU2amG4VJSl+f8m0sZwK\nWlTH2a5hOlRRPk8BOS0knc4wpHNEffhEqYQWE+lSsiEqHgRqxfNtaQrNdi7Nqo2UkVGiMnZ5iq71\nRUgBGzUF/jojS0STJS4ShbLY128gmQo4LNSkje4RJejUSN9om2SD4Rf9VHxKihmFzfz4wb6lsnow\n/+5b2XGrCC7tuPU+Xoj7Bmxb81oFc/gO6Rxh4AnwGgsxNTih/Sp2Lnise3EgwiVTRY4yY2Dqtpux\n8nTevfxu6oy+fedQRPSzoO65CvRcUF3CM+VoNL0wCn4ASzw6y2vK+bZ0AckiG3fz8N7L4CcObHL7\n6DZjlQZENUznwLnW9pc6cazOwXB3V7CA4/a8+fvRbnVjKOK3c/V4lECGSIN/0DaO8FEPrKd3Yvij\nq0Tn9UUSUYD5xWI2nRoxdF6Or0ZmlLONpZW7eXv1TCZ8eS/xETb+rU6+c/dNjFGFC1jU0ri+9H1u\nGbcGEDUyj4aSgo5XynCEZXyb3Vg13iO2SXjrJE5asoNPvn8fc67cTqyi/3LFxV9fwzUnbKQr42bL\nqkmED4eQbAYkoiCI7cgSEUF0NyroPuFu62oT5Vgee3URidHiHrTNsomXSnStEO6L/5R7kH1fu5/M\nCX2f6A3TnyUxWsdXZ7N65VzqD+fRlXTRkAxiHxGg7ViaxFcrXOG8VzegX9zJZbe/BUC8VLxsod29\ntcHG3FBFfVcQR5edJaKxcol/vu4pvn/aq8RGSDifDyHFVZSEzEns+aD2AAAgAElEQVQ//DbRI54r\nZ24SRbOIdnqQu1TUhFjxKw5F+LfCHTx46e/5wXNXcfMHV/XJP7AMmYK5zUiXttHxaDkvrZ9NbNLg\nttatK0axacdYbj5xNa7XAugJjbcnvUz1BQ9wU6ieRa4wywJt/Pyti3AekRzeeUaK0A6VF6unYq/M\nJzkmg/srTZz11Q2UX7efPbvKCeyHdH5vTcKiaw4xaoQYtGxV/Ga2amO5LVz1GvGRXprnB9CiOlqr\nyshTD5Ns9YAlEZ2fpGscRMf0lbi4WpP0VDGxZRtXKEVuaReMSOKZGKbxlG6Jq0dchLcxQ7TCiy1L\nNJzsJlHWK+0e/4cM4Yk2rdckGLGid4XbcigEFrYwd9oBnCUJPjhcQYE/zqyKwyR1jdzyMHkVnXjr\nxDmUjE2uGiNseHDKBrqlkCkRz+X2HaOzx83ZqxM4bDDydYtUvhh0e4jokdBK4zhaVA5WF+E/DCee\nsovltz2P4jYJVuu4WiUKtuu4Wu3s4szRsCWJtqkayVOj5D7t6bcNQE1ZOMOCcLhbJFKdLhxRk9So\nNIvmfgpAxq8wJ+/wgOc4FsY/vLyfFAggOPX4ZlKWw+a9q+48rn3/L2O0miFPjlOsxHBJOhXFbdlt\n7hYbLW7jardJFvZ/lvyHxAq07pUIrXPhq2PQZw7AUiRSRRapcSlMt5D9qq+HCK1zkXmhkNyPVXI3\naUg25M9tpnFb8ZBEFCA20qJyRCuBA8Kdc7i4/4Wzh932WPgiiKg5RCmFoeBTUnSZbjTJRMbmhLLG\nfm3UtE28SCVW2n+931dvkLtbZ9SzEoc2lENZUqRNqDaJQpV0UCGZJxMrVUkHuif5B8HVaVH0kU7O\nXp0R7xqUrjUY9bJN/h88aDVOtLCCkhyYiAJ0jtPEoqhmIRsSUkohUdL7++k+hTJXeMB9/5ooOqkh\nm+P5b1c9OmCbnu09ZdW+KEz57c1gQ9cEE2WPj9BHzm6jG3B2wLZHpvLDaa/TkRR9eNdkMzuLdp7b\nwrgrq0iUdkea3RAdM3CYqGu8Req0KPGT41z/rZcHbFN9wQMAXBtooeri+zjl6o+pdDaz+pNJfYgo\nCCkxQOvOQlK2GDvTlkZdOodydydSXhrJ7q7rHoHAYQN3cwolaWA5FWxVxvCqyGkTbHCFLZyd4jtb\nqo2aFJLPjF+4xUo2eJok5IyoCe/sEH1XKk9CssQ8zHNYxdGs4juoiGDFJjeOLnA3S/jrDFwtYl4U\nnuAhVqxgOSE20gZdxtJl3NUOTJeEs8tCzzHxdhtkWkfMC+XuBZCDZ/5J1M6d0Tu/1E7uO65duG9p\n72dvjKHQQ0TTIfFbJkfrSBuD/KpjDJceOIPJ993MydsvzrriAhxc8kdaTYmz7/nekMceCMYwxEK2\nLH6PgYhoD3rK5xTkRtmyaRyMjZMssEkWHV9fJxkSwd3qgEQ05/x6/mHCu8RH2KSmJUECyxLmmcd1\nLtu2/zZuOcCEn/1P9rNjVifXj1vPfU+dO2Db0InNhDcUZaWzxyKJIxbV8vaklzl1x0V9pLrHwtyz\nd7Ji1PvDOkcPzMkx9p66ot8+jq7+bW1F1O90N/V2JpYGwTOa+Icx72RzAnZnEtQaQd6PTeTJT2fj\n3OlBjfc/HoDug1SxybjJ9ZxRtJsHX1qCmpTQjsiHTpTYuNrE6nh0rMkdS1Yyy1nLptRodiXKWNtU\nSfLN/rb8fdAtn+1BOs8WNZkM0CISnibhYBsbKRE4aNN6WoYzJu9h1c5JXD7rI557+0Rmn1TFtlUT\nCRzsPdC8b2+h2NnFS3eJGnWWQ+R9tp6ik1MYRX02l84pkLOr99zxMonvL3uaZiPIjmgZe343Jbst\nWiHhrbcHjEa2LU6DJeHwZHhp/u9Y+uo/4jsk9PVHXlPrqTqywwQJPNvdONttkafwlSaSTx575bj9\n9DRzxtSw+8UJuE9rpb3DR+7q/j2O4ZG45MbVvFo/hdn5dVyet4lWI8DPHria1KwEkmyxpLKKTffN\nGvA84QkQqhL5ZTde+Ca7YqVs//1UzIs6sN/My8qCs99/ocHKM+7lstduAcBWREmG0KcSplOieEME\nPeCk5lwNuSxBeX6YtKHSsqUIyYJRryb6SG170HBqIBsZjIyW0GJQ+n53CZYCd/cKq4S7MdF93T5c\n1zQRciY50JFH3gNeGk9WqXh+4J7swKV+ZB0sJ7jGdVEeCjMjVMebdRNJr8sneNDEXy1ekP1X+Pnm\nWasIKgka9RBbw+VUNRVSskKoJlIhBWfEovGqFM6PfaRmJih7TCNepOJtHrwyc+dYDcMj3tf8nSYZ\nr4y7w6BznEbOvr4TwNZpGslJKZxuHdOQMZvdlL89tPGQ7lVoON1CjSjYqo23TiY6I4V7j4uC7eL4\ntV8xmDKykT3rj0/KOFBO6XBx/pJNvNztIv2Xhj14KuP/auy7+n4e6CpFwaJca+eQXsD/7FyMtN2f\nzakfDlK5Eq6O/u1j3euIniYJWbeJVHSrVuog9qU4vtX9DWoii5KMLOwg/ExZv226V0KL956nY7qJ\n5DEJbHGipPufP3xKCrXmi5Fh9xjR/aVgeO1BTROHwlfOex9NMtkZLaUuGiJtqMQ35FO4Tc+Oj5Ym\n7v9w0PC1DPJer6jZrQojlcCB7hJl3VFL0ykjWTaybmPLEk3zu+sadti4Om3CY2X8h23cbQP3X6lc\nhWi5TGJ8moLCCG0Hc/HUKTjDNv5uBUjDySr/dOFL/Oapz1/v3T+vleiHn92V90dffYp/e/yKIduk\nSgwkt4Hz4PE9Z662Y7exVIjNTRLY4CZZKBYKPA0S8XIbw2/xu6V/YolHz+aQRsZaBPYPHdvJBCET\nsNm37H7GrrkW/weD+6C89v3/okTtXfh9I+HkqbZ5bDg8GucGP5ETMgS2O5C7f+6t/yLmxdN/eTM3\n3Pgyli1jIrGuYyw7GkoxD3vxNErkVumoCUE4TZeC4ZFxhI1sdLQHtiojGRbR0W66KmVsGTIhC1er\njGwK08ZUnkRov0kqp0fSKaHFbNztJm3TVAyvje63cLYrYIv5cOiAgbO9/+J87RIvus/G9JsocRlv\nnYyzQ5SjMZ2QyhN59MoR/UG83MRbq/CNa17j1pxDA+ZnGi5IF4h2AIkSiwNX/C67fbCcTnlhJ9b6\nHG77+kru+tOlXHzVezz32KIB24KIto5/7xqo8eDszmtNzkhAvRv3MdLtLEX0dSu/fhdX/eq2Qdt9\n86aXuWvzmQQ+Hvq5v/1bT3GVv50zd59PbXuI4lCUtndKs4GawVDw5VpOzj/AEy+cdsxIf9dUnepz\nHwTg2ViA7676CmpMwd0kZZ/JI7Hshjf4wxNnseeOwY0G/24ioz5XmltyavrkaR6J8IYiQJC9qw+d\ndszjfWvkuwDHJKITFh/o8/8eIhqzhlh+OApKd32gMc8PnlcKgCwktLdc8Bqc3ily9gB9XpRpeQ00\n673Su0kOD0s8OnuiRVgZZUAianggWWyTybHw71cY4Q0TM134Tuig/LS+0RMjX88O7FJOBr+cpNn0\nMddVwyWhj5iU25y9nqMRrTTRffQhoiDcj4UkAzI5vXmaPaQuNz/KjvYSHE0a7/76RJztEl8t3IiS\nEoSzBx/eM4uZnkPERoqXNlIBrYt08tdrhDvF5Mk5tq/TmLfe5p7/vIwVDy/tQ0Sv/8GLlJ5cR2KQ\nFft5lYf4cPHd/PuMF/lJ3fmcPXc75Wcf6kNEAZROFVqd9NSW74l+Jp4RRPQXP3qAgmU1A57DdIJ7\nt4uWhJ/YeJ1owoXL05cZJ4rFgcMnGPwofw9t2ws5I7SLGz76Gpf4IsQmZpCr3fje8/YhotEKiI0S\nzr2xUVJ2BS9wAJ64aymf/HEqkbPiKM/n9iGi7TPE538++VVmOx3YqoWt2EimhGQIcl/4sXjIbFUi\nb5uE930f1VUljAu1UjG/lsvOW0fDooHdFvN3ZtAiNvESiXS+Sd6nvaOGFjNwhDO0T+mNEoSqYmg/\nD9H+69EYW0PUnqn0yW89GmVrDUo2GEJSbElMCTZymn83E3JbSRVaxIu7za1UGSUtoheyZJMwHRS5\nosjyEfdiusiTcmz1YbghsMZN/SIVd7uJ4Rq4SzTcwlbedNtYmo2StnB3iF43Z5+O4ZKJlfR+v4Lt\nOgWrnISe92I1uFFLju0IoMVNRr1iYwRNiqe0UHbBIRxuHcPTe+0Ol4FL+fwz9OOR7N5VsuVzn/f/\nOsY9upyY6SKkJPDKaVr0ANIn/j5lwKKjj30cV4c9YB/n7JBwt/QSoUC1IKIA7nU+UnkSnVMsOifb\nJAvEApTPm6JzZX8iCvQhogCBvSruqoGJKMD/zH9q0Guuum54z1zB7GbgL0tEYXD3/uEiYTho6fTT\n1hAU0eTuW9I0Xxs2EdV9CkaHi0yecPkOVYk+3RGz+izIKGkre8zW6Sr6yDTJkTr+WhNHxETJMCgR\nBVAykBhl4PRmCEfdeGtF2S9H5AiJd2U8G1X7PMiMS/LhzGc+836m2+ZH6y46Zruc0i6UZifPXfff\nx3N5w4JsQGCDkFe6W8iWrfPWSsihDPfULwYgskDM8N3NA48bsfLe+2t4bfKmtVLxwg1DEtETr93C\nLTUX8lZC495wOe8kFUwk1myZhPaRn3iZxXcWrCKd23e/C/adJWT8R1ikZiwVp1PH3SLhbbRwdGSw\nJYnoSCe2BO7GVD8iCpDO1bAdgnhaWrfiTIZ0bk/UV6jidK+Mq9NCyYCrw0L3SRjubkJiCcdbJHBE\nwRG1syqtoyHKykkiap+WyAREJDBUlUD3idJ0ycq+cyil25Tv1aapWVJ55w1/pPzsQ9k2aoosEQVw\ntfYakQH87Pq+kXdLEXP0ylyxYvElz0EAHnnv5Gyb6Rd+2mefxLQktzfNxOhwoUYl4qNMEtOSjCrs\noOqr93LnDUPX2EyM1lFTsKJz6NJkD/7ufM6ctHvINgB33isWc96e9DLWAR8BZ6qPG/9gqN4ygvne\nA1hOm1T+0P1XYKfGjXXiei/xRai+8AG8dcLMaSD4lJQwKB0CfxdkNDVC5/ZKIbk8VjRy+tI9fPzG\nsQsztxv9HbMGwvZtvRGGHiK8rOZU5j7wT8PaH8DtFHfZ2Tz0cr6lCInCb944m0TCyarl/0V8hE26\ny8WGhtGUap399llZuQpbl/u9xKl8EakrnNnMby58iNjcJH8cuY5XDk9hfF4rkUzfpyKwU7C/2Nwk\np43dR54SY7IjSoWqMEJN8ueRa9l1y328f/td/a7Bf0ARHcFRT0uyxMKWQU1I6DkG0dG9F2m4wXo9\nH+upAqquu58P//N+dn7nPi7wJvA22IQn9H3Y//WO67KGRXquyZITdhGpAKmbRHheDPDhf/adzOhe\nqZckFkt0jRVFwus2lZEcnRlQ5nbwgQmcdu/t/KZ6MW5Fx6ukmRGqw76s71JQ4ICE7bSxOh042+3s\nyyyZ8OMfPsyNG5fRHPORKJHY/O/3c+9P7mbzv4vrU9LCZGlGXh3V5z6IvMWP5xUhVzW8oi5q8eI6\nrr39FXJHhBn/0HKmL9xHbSYPy5K4+tBpSA4xGemRZLTPtohWgL8a5KldxEYb6OMTuNps5t+8hUxA\nIlEikfeVWhaOqqZ9zlHyoJwM4YlwQ7BBfA+3iRLIYKuinbsFTLdKeIIPS5HwNWQo+jCC7bD44FAF\npd4uHl+3kJJ1CQ5d4KdrXN/3y9GRwvBIBGosXC0KqdzulcgyDwcvctI830vgkDhX00JxL/ZfLZ7J\nwCEbR1juk48KInoarfCSLPGgxQywofR9m3TKwRs1k3ipcxYXFmxh4uwaCraJSUEm6MARkWjMhEhb\nGnHTSYEjSrrFgy1LtJ2gZUsd5O/UKfpYx19vUPaegWzYqCkrK5s9EmrSAotsjly8UKV9sobpEA9G\n/Zk20SOClbYkER6PmKBaUjYqOxz49qu0bC2iNe4j4E3hP9S7TT/sJWWKyYZZ3n/BrHR2f8ngkeiJ\nio5/eDmOCZEh235e7L3mfr5x3qpjN/w/ArNQjBM7YmUczBTQagaY5BLvo6Ortz888vceCpbWtw/t\nGieKrR9JFA1X77OsZGySZSa230CNSyRHGORdUEdiew6Gd2hilsqTiI4Wk/ShSGJVevDF36PNiwbC\n1mt+Q+vHRcds14OTF+8YdtsvCnq3TjBjKqIust23VETxJh3DI4sFrGNAi5kE9iioMRkzR8cZtrul\n2hbepoHJpbvNhpiGlJGpPVOmbZpG3s6hmbsWExEn85AP01CIjdVJ59DH8de2oT49uAHjcOHY5+bZ\nWODYDY/CnFP2HDN9SvdbPDn9T+y7+n4mOTykCz5bmauh0DWv28Dnyw2kCoRU90ikQ1D5lb0E/Any\nnHFmf3w5gY1uoqNttKMEPV3jLSwNTH/vg6HGJH4+/kWU4OC/VXhmhtsLV/HYmNdZ4tH5VqiWxW6T\nW169ltAuFWzwV8s8fN85uIWpLd//hyf4Y1cxGVM8l05ZxynrdBpe2pMeYjVBTAfIho2tiihncF8C\nW5WIl7vJ5Pa/52rcRMpYOCImki1SAyRdQslAssDG8Iq5kP9wmniJQrxELGx5m0zSQVGSxdUu4WmW\ncLaDkrJxdlkDRkVtVcbTkCK438ZZr+FpFPJfWwbTI1KkkGDsqOY++/U46za9WY7hgluue4GQnGB+\n7iF+dv2jpPK6ifMRgcR0jo29PofbGmcx4Y/L+dkf+pbskU1RL3l7rUgvO/ee75EJ2HjrxL2VFnay\n5dXJWanwjlvv41sz3uPFNxfgrlNQdPDWKHi2u2l8bwS/DY/h9ge+MejvDeA7oFG4pI6keeyFoE2P\nzmTalTuP2e6btSdxW+MsDI/NwfY8Jpy9r1+bZMFRJftqJW7dcjl6yMzKnweDZItrGfPsjZy64yLe\nT0FkdgotLnKoj0R8hM0NwYZjEty/C5mub14bm2c9DQgyOpCj7l8Kut8G2UbrknnxG3fSYbq47qFb\nhr3/tZe9Pai779EyXcMDZ176If9RtJ4pb96MZ78D0wUXX7COp3bNxr3TzYwLPmX9/jFUlrVyWenH\nbOoaw5r94/BucWfrbPYgWWzjbpEIntVI56oSYuN03LlJzCo/hsfGd0gmE4J0ZYp3Ft1Nqerk0Ug5\neWqMX+w7i2jSyYhQF/9S8Qq/azydXU9P4pPv38fcLZcT3ZLXx/yo5Ms1vDHxVab/svd3iZdbWPk6\nbn+KkDeJ/kQR6ZCEM2xn5aOtp+hgShSsF1Gjjql2t+GQkMIWvN//BUxfFOaTeU8w4U/LyeSbuPMT\n+F72s+g7G3nvN8KtNzZSwnfYJlkk4W626ZwMP7jgee6552K02BGysqk2wQkdxLfmoY9Jkfd2f4mD\n7pXY+qP7mPfPvZOlY60kdU4G028imRJ5Hw1/Taf9tDT/MGc1t+YcYu6PlnPRrat5cP0icrYpXPGt\nVTx9aCY/nfgKd/zHNcKluMsmcV4EzysBImPFdQX39h4vExCuuJ4mQZilgVNUAOEEvPIf7mS85mXM\nqq9jpxWkhMgzKtloIpnQPFdh9EtRDl3gxxibxEypqC0aZnGGMQ/ZtE1zUbx+cBJjujUio104YhZ1\nS220YBrvWi/RkxP413lI50AmZKPFpWypmI4p/iOcdwVsVebQeV7ssXH0mIOr5mzixeqp6LqCttlP\nJmBjVKSQJCh+3oHvUK90IFLpY+ptn2BYCn4txUetI2neXpQloa3TNNwtNr7uyZ7pkFEyw7eAMx1C\nMtdwRQa7yUXObon2E0UOWN2XFOSMhJ5jUvy+jLPLHFKy1zVaQzKF9C5Y0ztJaZ8irrFHpteDllka\nxpQYVA9eD/DzSHE/D4Z73uG0+/+qTBfACBpIblO42yYUcj/5631ZS5OIj7CRTPAdX+oxAGVfrab+\n8f5S8eioXhOlI2E6bX5/0YPc/OQNx3/SLwi2NPA1DoWq63qdgM9csoW46WBbcxnhhgCODoWSDwaP\nSg4FwyMTK1Ew3SI1RU2K9BJX2EKybeRM3wvtnKCRyrXx1ou8v8+K9ska6TwhNcWGka/39nuNC1UW\nnrGTja9PPa7vciRSozK4agYmlrtvvI8xz9yEs+OzxULSuRaTp9dwoDWfTFrFse/4jGGGkumGp+vc\nsvAd7vnodDx7nIROayL+slBDpfLFAtB5Z2/i/caxJNfmY8/rwrE6iO6HVIGVLWnx7W8/x6//eDEP\n3vxblt/VO5+MLEgS2Dj4dffIbXsw9t3r8HhTbJ/3BONXLGfvsvsZ++51+Nf3PUZ4ug6aBRmZZQvW\nE1SSRE0XKw/OIN7lpuQ1DW/tMXSaA8B0q8RLNDIBia4JNuSnocWJFpWRTLrzUEV0z1WvoaSFh0gq\nX0JJQrDGIOMTZVo89cNTGzbP8+JrtEgHJHL2JJFMm44TPGTODWOvH3ixZMet9/WR3M67eDsfPjeN\nZIHN/qvuZ8zKG7n+tDX8+Y0v4WqTSM1IsO+0h5j24ZWkd4QIzmoj+d7AsvI7vrmCHz+4jLO+soFn\n18/jnPnbeHXrNMpHtfHOCSsZ/9YN+HYPb7E5UWpBfhrPdjexCRl8Vd1BovEZnlp8Pzf8T//yUkci\n4+eYOZm2DP6zmmjZVoQWkUiWmqgxORvd/zzoMUTqKecSH2FnvTqW3fAGf3jyLBwRSJTafc53y/Ln\n+OUnS9h/+Y8HPfbfRWQ0YyisSco0GiKp+OlYsF+bCYsPUPmlz1r0bGjMXLobLSohlyXQAxZf3/01\nrt5w/Wc6xpMHZw+7rWRBUE3ikR14DjgYccZhvnTOFs4NboNWJwWL6/le6Ru8fOq9BB1J6jM5tKZ9\nTB9Zx/wrPiE5wiA2p7dDcTcJc4Ou10qQMyClZfQDfjJ5JoExYYLnNJIqMrhm+kZWhOfhlDSWBeoJ\nyQnOG7GTZeM/5EBTAT898GVKXF0s+tpmpv/yZnLdiSwRjY8Qg+Gc3P4zF9NrISkWXleGyTli1SrT\n3Vf0uLcWrNXwVmt0TLMJnx3PElHdJw1IRA03OJ8PcfH+M1EmRgntVPG97Ef3SqzcKu51bISUjQq4\nm20MN1y25AMeqV3Qr+Bv7g4J6aU8Agcg720XT/z8TnS/uAbjEmHGdLQUbTjI+RTyNylZImo64dYf\nPE06V0K9vAVbFeYe8XN7e462+SZ5eTHO8e3ip61TaJtj8tgTi8nfpKCkYeWvzuA/Jz3Pd5+5BuiN\nliRavSiXtfLBsv+GinifKLkjIgwJYGgiCiLP46qf9Vqeo0vYLiGPSeYopEKCiAKUfKBT+JKLstcU\nKldGGX9PGjWWGZKIAihJnZzdUVpnKEimhN7pJFUAZkJFsm1GrEkgm+J36xrvw3Kq/YgogGRYVLwQ\nJe8lD7mbNR5/fyHq2yH0jEpsvM6EU6uR610E1rr6EFGxM2xvLyVqOEXtUi2DVdo7EKoJskQU+ExE\ntKd9+2SVU8YcwHbYdEy3UFs0DJdM/qQ21LiEEpdpndnjNC1+x54o6pEIHtIJ1BoEa3SiI3plvnm7\ndCIV/QcP02Gjqsfpnf4FYKBo7JH44UXPHvMYf+vSMn9rqGEVqc2B3OrAd7C/wY2lDD1pOFpV0oMj\njYxsGSJj+m4XE0oTfzV46wY+tqWKY6RypSGrfAxERIFul/X+uHbJGha7v7go1ufBZyWimTyzT1Q3\npCXwKhniSQdySkaLCrfi44GasAgd0PE02tn8TXenScdEhWSuQrxYpatCjJNdYzRSeTZ5u+zjIqIA\neZ/qeBokyt+0GbGq/43oynz+fN90RXpQIqoHLCb9/ubPTEQBbjvzVQ68W0G6wXvcRPRYCH2i8dD+\n+cjtGs6T2rJEFASJVeMSL66ZR3tNDskii2RMkJBkoSD3tgKu85r57ycuxre4mesf6BvYGIqIGl5Y\nuvs8ftUxht2ZBE9Gc/D7kqSSDiZ98DW8tRIfpnVUrfe3zy7a2VC99I9IbpPWjJ/6dIi0pWJZEsTV\nAce4TI74jUy3iuVUBpTQmk4ZLWFjSxKOThlanVgei0yeiR6w0L02maCN5DLRfTbJIhERdrfY+OtN\n5IyIiDoiw3/3gzUGWtTE2yTqoIIopZaID/5sfuOwkNHGyyxiY3U+OFyBpcKaK+7kl+3juOikzXwa\nK2Hp6Vu49brnMHXx/MWjLkyPzWWjBk9B+d4zXwPgjSdPZNyket57ZjaXzvmI1oiPKWuvyxJR3Sfq\nty68dCvWfBGJWrZMlIO5+mtvA+BpkHF7MtgyKB1a1uFX9RjMdMjog68xA8cmoiDmgbHXivE0CO8O\nW7OGJdMdDhxdEulToqQWxEicGMcRlojNT9I1I8MztTORZ4nvfTTx/UawiZB/6MWQvwsymkxptJs+\n9nVLa3/40pUYE/vmWO3aOIZpwfqBdj9ubH1zEhdctJ68YBwtItO+sRiz67PlTFTkDN+JUknBC38S\nSdAzz/uU6tZcdnaUcPVbNzF/XhVFnijFiskUh5uVlav414JdvDTuDUZ4wnRm3OSUdoEEkRMGlnn4\n9yt4GiQCu1Ws1bnMLzjEtSet40Ain00dowH4actMxmgRTvTuY6yzmcriVv4w/jHuKtnCdwvfZcJl\nVfxyjJhQ6j6YNn8/ZRce4rEt81kROarMjGITCsWxbYmdHaLTdoQhMkY8iF3jRYkCSwW7MI1tybQu\nFB3pkdHL8ATxb7JAyiZZ1/1xLKYpkyyArnPipAoBSeQ+piakOGnJDsKiPB5qElozfv5r3DNYAyxQ\nHWlkdP3eqwhPEdewoKSGyLliAWTePy8nHTq+CYXuk0gWSvx4w4VkApB6uQjJEFF355oAL/3rnZRf\ntx8tmMahGpz/yHd58pVTcRcmSBZbxM+N0rbQQLmslbvrzqBifm02pxRA9uncWvkO8969heCbXmIj\nRdFyoFsm3Xsv2+YP3OkfeTwQpWvkjIycUNADFqk8iVR+b5tEkUYqR+pP9AaA6eqdUFuaQqrIjeW0\n8ZVFcLQrWKqNf7cDb7PFgUtcGG4bd7uN6ZCw5aHveXBvjPyiUkYAACAASURBVIKPo+TukNH9QgJW\n8ZTFP414C6s0ha1KtMz1Z88NCCfKlJOWhJ99kQJG+9uZUt5I+yRx0/TPriDrg8YFKolRBms+mYi7\nJIazTUHJQOMpEs3NQUynjeWy+zkeHov0+uvEc9kjEy7+sP97nsk3KQwM7QT4l4RSO/iEYNyK5Vwb\naPkrXs3/Utiipqaja+Di4nL3BCxRJJEJ9n8/QlV9/9bTRknb6D4hpxVF4SUMl5SV6joiNoF93XKz\n7kfR0nqPlcqVhJRPEs6Zhlc6JjE+Gmps4CnFQzsXfKbj/LWxdOlHg25ztCtk8nsJgGVLqLKJ02kg\npyWUNMQLP190291u4GkxaJqv0XCSQnJSivZZFvESkd/etEAlHRT10T/LxL4fJOHKK5l2P7WGIywR\n1T8/GXVW9x+Ee9xvtcjxTznveep8cfxhElnPnGE4FQ2AWG0A/0E561B7JApOb8BbK/PB+Xdx9wUP\nIbU76JorpKeLTt7JLcufo/lgPq52SL1S1E++OxRMDc4r3kHCcnB/2yJ+9MoVfLVyM951XtYu+B3p\nXLjxv7+D+z0x3sVPjrPtB+K+KlHx/I0rayGccdOcDnA4mYuqWGBIfRY6e+DozGRLu2SCaj9PEMOv\noWQsIqOE060jjGgj2xDQsYvTGCETI0+MU6bfRI1L6F4JNdmdQy2BnLGypHI4cDWncYQzWUmv7ZAx\nHTKyMvhz/7WC9aKtZrHyzHs5q3I3u759H09HphFUEuRoCba8Npn3npnNr/98Md5dLhZsu5S5Y2rY\nfsXdrFixlIx/4GucdkqvxLXhTVG36l8LN7H7pEd4Yv4fiE8W16nFRHm334/YwK4THxMS3tBupn55\nN48+0quelDYGRf98hLGRa5uHvXqG9AlDE7ajpbXDQXCXhrdOkEgQkuvjhZIC51o/7PdiZBTUeZ18\nb9abSAmFppo81DW9gcTUyb0P/7OxAG1tg1dBgWHKdPfu3cvNN9/Mtddey9VXX01jYyPf+973ME2T\ngoIC7rzzThwOBy+99BIPP/wwsixz+eWXc9lllw153CPddE8+9xMeLP+ASb+7GXNyDOVTH6kR+ucq\nYjxcKDO6MLeJm2hNiSHvGl6+6bEwkJsuwL986zEWuup5Mz4Wv5LMOujWGTHWJcuJWG5a9AAyNjWp\nXNa8OYOqb9zPOVXnsOdwMZ7dLpS0yEGVdSH/HWhSM/0rO/m3stcoUpw4JQ3TtkjbButSXg5mCmkz\n/Jzh28WVa27EHRARD0mymVrcyM7mEpKH/Vy6aCOr6sZjWTKRgyF8h3oHgmilibc8So4nSX1rCNqc\n5G2VmPmtbWy9dwa2LEqQqPvdfQyCeuSnPWg92aD63AeZ85PlwjHVAamzI6QOBETZkSYFS+s1Roqd\nH8Xzup+Fyz/ilU2zwGtgJxU8tSre+uG/rIliiUSpRf4W0Sm0n5Eib5UYjIe7kpR7dS2HNpRjVyYw\nWtzYLhPZY2BbEtfM2MhDHy2k+uw/cN3hU1izcwL5xRE2z3qaBdsupbUqH1erjCMM5VccpPHhCtrm\nmORv7jHjgY7pFmfO286aN2fgaZIwvFC4pI6D+4vJLQsjP5eXdR8GOOnbm/ngnrkDXmsmJJGcF2fv\noocZ+9hytLiE7rewnDbuegVPs40zYuGrSRAe7yVUNTjpMd0aSlLPuu7l313H+i0TqJjYSHV9PiNL\nOpic08TheA57N47G2Sbhq7domStyjP2HoGss2TqklqYM6NLbg57zAKSK3KJMwekdODWD0E96J1Cm\nV+PAJd29bUhHVmwsQ8Lp0TGqfZgui/K3bJL5Sj8J7GCoOV/o+k6ZVsW6qnHkfuAgviRGQSBG3b5C\nkMBdr+DstEl+KUaq1Y2ckcnfIhEvkcg/Rj5XDzJ+BUe09x40z9Uo2tx337ZvJBib18an68ccvfvn\nxueV9/aYIn0Rkc//TTLdfVffz7hHl/f5P9Dnb0fC8JtIloQalXG2ScLY4yhExohafmqyO4/eK5zQ\nlczg/ZvhklBTYnsmIJEstjD9Jq4GDSUlZFWSJWSqA53TUiV0v2ijRe1jKi0GQsc8HUfTwGO2HrTA\nr6PVDT9/+m+NmadVsXXNhD5/u+3iF4mZLp4+PIvmphDuagdKkj6mbccD3SuTzJdxRG3iJTKxCRkw\nZLQOBS0q0l+ShRJ5u0zUxBevjqg5X+KbJ73HI88u/tzHsjQbWf/L1x0djmvv0WVgjuWm2yM9TBbZ\npPNNJJ/BBVO28/L7c1ATEndc9jh3H1xMqa+Lxyre4qctM3HKBo+9ugizPMXI4g6a3yvD2d8CpD+O\nqFBgaRCZnuafF7zOU/Vz+PmYF/hZ9Ze5pGQLv7/3y1RcsY+WhJ/2DcWkyjMEdjqQ9V5p765MkvNW\n3cLYimYsW8Kt6uypL8ZMK6itGqEqCFanRW3PoyojHI1MyEG8WMXwiDmHpUBipAEuE4dHJ8efoLXD\nj21K2IaMw5ch0+VEDat4ayVcHRaeZvE+qPHji+L3wFYk6s7w4JrZgfFB7jHbjztvH1HdhW4qtK8q\nBSBncSM/H/sit/z+JrST29HX5R3jKALpkI0z3Pscp2fGcW4V4ctUno2rvf8zbriAqVF2n/QILWac\n+a/+Y7ZMz5FS4lSezcyT9rK9oRTtIz9zLt7BdYVr+emBL1Ozu5jA/i92EOyabBD8tP+ixBeFbT+4\njwN6jEvu6i1tE5mdQm1wogdNXC0qVT/5HG66iUSCO+64gxNP7HV6uvvuu/nqV7/K448/zqhRo1i5\nciWJRIJ7772Xhx56iEceeYSHH36YcHj4Nauqwr1lRZRPfey+6T4undO7Wml6PvuKQA9Spf1fBmma\nkBuabpvx+b2r+cdDREMnNh+70RF4rnU2I1QfE50NfMndwA+bp3FAjzFC9aFJJjcEG2jTfeRrUU4N\n7mXcKYeoeON6Yhknvu0ulCRg9RpJDEREATZUj2FtchRm93qDIsl4ZAdLPDo3herJUeN4ZJ1LZ3zM\nrVNWk++Pk2zwcVPxGv572krUqMQbDy0krWucVFqNndvXDitvq0ysw0Nz2E/An0SLSHROgbNzhKmE\nZIGly5Sd1FcT1kNEv/8vjwFQsE7l3nA5xVcfovTrB4mXSui6wiVnbEAKZVATfQeQZKebeJnE6mfm\ngiEhKRYFGxWSpZ9txTgxKY27WSZeJjqUHiI6XEy7cQdBZ5Kqr9+PvM9D3jYJR6vK0om7+cc577Cu\nrZIzTtjNbY2zeO/DyeR/oFHgjfGjlql0xd3k7BT5rmrSpur9CuJlEr5qlVSBuJ4Lb3mX4B6Fdc/P\nRDYlzDM7SefY1LbmUDq6Dbdm0DbfJJXX2yEORkQBHGGbiaXN/LR1Cr5aCUcYZF3KGhNYGnReGSM8\n4RhE1KWiJHXS+W7SuU7qzgiQMlWKKtuYlVtLfn6UX497inNztnF58Wb0fJ3YxAzhcTK+WplMromr\n08LZKWXrjA5FRIEsEQVwNYuaVuH6AK3tvattbdP9NCx04yqN461VkFscmDEVqdOBachC2i1D81x1\n2EQUQHKJ/L6R7k6UFgfts00uGbeN96c+z0/OeJ6SylYc8zvonGEwIjeM76CKrdm0nKqTv1MnMnJ4\nA8CRRDTjU/DW9u3zoiNUvjRyLwWuY0dG9fy+38/wH9/kVRk7/CjsvK2XMf7h5ey95n6uPOd9jMDf\nTk7818TRpHPco8sHJaIAjjYFrXPooTfw/9h77/C6ymvr97fq7kXVKpYlufeKcSe2aQZMCQRIKKEH\nDCQhIaSc5ITkhCQfCeQASTDdhBog9N4NNgb33i1LlmxJVt3S7nu1+8eStCWrupDznXvveB4/lrZW\n22utt8z5jjnGfjoCUbDLAFompUhkCjSP7/m+dqafqq0WhsvEdUDBEi04uYXICA3daddsgx2wdoao\nW+huC7XFQncJaN6jCyYSmQILx+3q9e9Ki8jPT37vqI55oqAV9e713BeODEQBIoaTikQWKV1CkE0M\n1cI8zpx53RSFuukiaqsdiFqiTd0TEyJyXED3WoSL7bH+6whEAQpKG5jqrjghx9p97VK0UV0nJgsW\nb+gIDE8U+gpEO59r9GMDT5C118ClAhaOBonBg5p558PpmG4DKSHw639eRm2TnxeHfowiSHx4aDSv\nVUxEbRUoO3UZn457fWCBKHYNIECk2CKZaeEqc/DHledQWZfJ9euv4py8rfz5/XM56/qVnJe7mZUT\nX+Fv332Y4EY7EC29NL1qd/6qJQQ3qtSFvYTiTqpb/RhxCZIipmqRDArorrYAp41900Ev79TULdUW\nzPQd0nDXGUSHGCQGmeA0kBwGJdlNjMlsm/Nagt0GDBFBE9F9dqCb8gkkMxXMHkpTjhaCYWE4LUZl\nD4x1s/etEUiC2RGIAiwb/TQroyPxL6wdcCAKdAlEE5kWylY7ELUEegxEwU7ETB98gJM3XsyVey7t\nCETnbLkQQ4HrrnqHZIbF4KnV7HxjFMo6+yVYWz2EU5zwi9J3WDz7+JTrE1lQclFXe4KrZ62kpRdW\n5YnAG1E3P6r4VpfPhCYVoyiBo15G62cO0u+boqoqjz76KLm56WBx9erVnHqqnT1bsGABX375JZs3\nb2bChAn4fD6cTidTp05lw4aB39Cqqiz+2lwM2A/zsvIFvPVaOgCWYseeZWt/GTrD2mJz9aS4QEPc\n26OljOFqU+Py9B0It9vODBQbKoso0yLMcYpkSx5+lrOaIbJdS/ByvV0XeV/+Or4XqOZyXyM1YR/+\nzSqNn+UjHEWS6XsTV3C5rxG3aK8U/T1U1OXvtwSryBF1JnsqqdP8VFVk883Za1kdG8Ytb16DlmES\nHmEwyB/m7U0TUaq6ZrQFE7K+UhBFi7OG7CCZY5CxHf5euaBjm+xPVcJP27YBjad3rTf76duXdfy8\nM1rAvKx9VLUG8FVYsM/D5Rlf4fHaktBqq9Wxv6tCwXfANmLO3mgPAC3DIXOTSDxn4O+JWK+S9Y2a\no1pN7YwtD09g7bZhjF16M6YCwrcamLZgFyIW3884wNTMKn6e9z7vvDmTYImdmPEqSV7bP5FkXEEw\n7XtoOGHJhe+ijYlx6rfXEBlqP+TX/3sBKZ8tTuQ9YOF4PYhZHEdrVYm9lUdtk5/gNhl3Tf/Xn8i2\nrWB0U+QM31akpF2jJOj2SiXYNGnXO36CuyLE87pLzydy7HdUStjXp7tFDi6wz7+hrJimVg/nBDbT\n2OxlssPBOe4EM10H8G9XcWfEKVyRwFdpUPSBvfIszWrGfSiG7kvzRkx1YNnA3LUxCpaLjLjf7lyr\nT/ETXRQhPjrBkMxmdA8YAQMxZgsKCWVuzKCGkhMnd0P3RtRu6RLJswPH0ND07LLgTZnCjwQ2hWyF\nvVEj0+UCe+J5jA7WYVgCjsMyFWsH46q3cOdHCGxWSfolvDV2kGk4Bj4wqxEDd0M6OI1nyUQGQ0hz\ncWpwRx972mj3AGuHHO7/3D2taBr7ek/OHWkPE9pi09pq9Ai/zdnO1Il9ePX8fxieQyAlBLRMHc0/\nsL7H2WSRuVbB2WSRsa3nZ9muohsthKaZKcSkiO6zMEfEOKd0O0iWnXRqa26dbT06XxvYdfTtpRQD\npeo6ZzewMKNv64F7X7E9LAdq83Ki1HKPHLsGCr24e4309kgBYd3JkEDIFqGS6NFbb6BoHKsgaaDn\npKg/CYwZrUSHa0wYbD+M+NAkBSdXYzqtE1b7dSSig2RGB+vIk06cwrayu+sY8u66iR2rk/8u7Lzx\nQUZ+/l0E4+jmj6Mu24WrViRZlCL8Zj6eKoHgFgVHE7xx1T0YkfT48O6kZSiywcizuyuW9od2vQfv\nAYHkIB3NZyEkRLxfuGGbj0f+eTaegyI1yQB3bTib5XGRDfGSjv33NKTn5coe+363NnkIt9dXirYF\nihyxmRVqc9uCgtm17Wu+9PcxFBG1OYUpC4SGS1geHdNhojh1FMXAoySpT3hxODUsy3Y8MFpV5Cw7\nSSy0LZSoLbal20BgOnsf9xsnutHzk8j9UDVGnZtWdpyaUUW7OG0yaHHGqz9hiNpA6yd5zP7WxgFd\nUzt+c/0zRIbq5E+pRdRt/9D2xN+8izcQGdM10aWGBb74ciyhzdlMa9Na+W39WC4bspb5F2zgbO92\nCk+qpuHDrnZayb1+HgoVMt3RwvkZxxeMmqrF+DbnBIDW4QZ35uzgrClfn/r4Dz++gppwugbKWBDi\ne6d9jMOpYTgtvAf67rz67dpkWcbp7LpiFI/HUVV7RMvKyqK+vp6GhgYyM9NL6JmZmdTX1w/4izgr\nVR584RymLdrB7uuW8lzppwPe93hR/0W+TQ92dm2gD1z8BNDVjyyRf3yUAwBxj4czPk8XtgdEF4og\nMX/bBTxX+iktZlfeeOqz7Lbr6OfAQroeLjojhmbKPBtOZ4FuCVbxcsTPzlQ6Y5kve7nc18ivsndR\nfu6jnBvcxM+y9nLbGe+CV8eVHyGgxhFUA2cP5r1iCnxvefnwgTkdn7U8NbjbdrrL7rTqZxk0nxmn\naTxkbUrXlr63dwwvlE9F+ldWR+3myy3TELApY0CHEq73oEVotN3pRQvsbQP77O9vOCHv2nIeuPNv\ntA6zz232xpEvSHBwT263j3vzW21HpDh9H7JXSxiqxZ6rlvLM+Ce5JHct7++1i1k/eWAWi56/A+8B\ni+SX9nPY+uEoXG/6yfo0PTmSEvDXDxZhNDn4omYo2avtjnnOrWtx11od3k26W2Df/CcRkiItJyeY\nOPgQmgcaZuvoboHm8RZNE7u+w2t/v5QZN29Ab1Nr3FuTywtNM4gWCCQDgi22k2gTKxHosCdx1drv\nSPPY9Mqjsz79XtZP81E3VcTKTxA7v5Wpww6QE4jwj/o5TCmu4s9Nw2gx43x787Xkr2il6I8CyQwF\nd00COWJQP0Uk/y4Jw6V0EfYRUwaGS6FmXt+FnVJCx1BA89s3J5FjcebQnRQXNBJKuEgFTISEiNoi\nIqbseo5pww+Q/5QDUU/fo0SGfa/lhD3QtQsbBfdrxLJlYtkyNXMEUtc2seNAPuNm7CfoiNOkeWyR\niZWzWLF8ApmPenE0CxSu0InlC2Q/7iaRY5HIFDtqs6SkfY7qeQNbKe18na1DBQJTG/DKKYqU/uvU\nB0qVPRa/0d7O0X6sbzx7BwCnZdmByVuX3cOeq5Ye17n+N6OdttsOwQJXvYVvl4Ia6n+S3Dy274A1\nGbTrtHSXQNMUg2RRCrlexVMl4qkUMGpdfPTQLEqG1Nt1o0eZI2ivYTUVgaYZ3TPrpmTXzOf7wlzu\nG5iGQk82Lz0FqCs/PnplV6O06/jZmxDTHy62mTlHjvudIR/ozpZZVVXKlvp8nLJGVnYYU7V6ZSf1\nh+pTZOR5TShzGykZ3MB3FnzBvCFliC6djXuL8ZWJFL4lk3okD+dhkYy9J14E6uCpEt7LqpkR2I94\ntOpObdh544Md/4Aeg05n7dFTBDuvbv7k2690O1/n4Lx0fgWat+v131ZzEtLOo2e77X5uNNu//yDO\nAw7CJSajLtvFr374DC/89M+sipdSvvhRLth7JgAzPruVUKubpoSHzxPwrbLTBnye0LR0sDZhdBWe\nQwKBXfaYpIRtUZzoYJNNT0/As9bN78oX817tOCJzYtzz44fZNvNZPo5LlL51A8626bZcp2BVeghV\nBBGiEobXtMsCEt2frWBYaAEVwyWie+znkwra/zePUhAsEBXTVuoVLATBwinptCadJOMKarWKus+F\n2iBBuQelWcLVYKK7BZSw1oUKbLWN89HB3duUmOj+XjdOdBMpdhEaYzF6SC0TfH1rxqzfPhRlrt3/\nvPn8XCQNAgtr0XI1lBaRj5rHYs5oYdW/pvR5nM7YetuD/OaxK1hx9l/4cPyLrPzBvYwtrOXlW/4M\nwIqXpjJ8SB16my5Vu+WLu1bEERJ48/m5TLjvZv717HwaNB8rXprKBY/eQWVtd7qx4TH50yeLOWvr\nd3m4Zj4551cddY1oy1h7/mLKEDEcGCqk/DB5su2XGuylozpeZgdAYIdMbFW6znrrjOf4XnAzhRkt\n3fQzesJx59l6Kzk9VseYZ0qWA/Ba9ATVbU61+RLtq5ydkRzWNespDOsa7f3oqa7+QMLE1l5Ne48G\nyRydC8Zu7vi93ZPr+dG2Ae/7sTw+T8CmZJKhL93Ur/l3fJBlGyALoLQCIhRktXB9xgZ+taKribRH\nTPJw4ym9Hmu+y54wfz/jAIMGhRDWBtjbmINvQ98UVsGEnK8kzvnxZ8z7wWqSmekbNfLGnUgpyHzf\nhadCJuN9F/sutyceg6/bh7NOYN7QMr4zdB3hYrtOSg0JxAyVEVk9JzS0oIEStvAcsrhkv71KHzsz\njLfKQhV1Zjol5PF22tGU6dFz1IjIZPdgy9KfqI73QNd3adDJtZS+8T2+tfF6/s/eRXwx7+8df2tX\nFXbXtqnCVfbcLsyAzofn3sslJeuJFgr4Lz/EF3+bTjLDFsgAW6ho+i+X4DwssXz+A2zaOAxXnUX2\nKtuLK2ObQOaWNjXMLIHf/HIZXyUMFmdswlQskpkmXk+CpGkPNu0dkJQE3WvbLxSs7JpscdfpVC5K\nB4ZN43xE7orRPCfJ7muXkp/dwnNTH2dqoIohvmYORoNM8FfjExOsTGQQjaeDbk9lFDFloIaS5K63\n3zMprlF5pkzjRB/10+zAt+JcJ9FCk7qTfOz7jpfGCb4en0lwdwSlNUnFuX7MIQne2TuWwy0+YikF\nKSEgGAKGw8JwWcQGG1Q9OqL7fZd7ftbVc2SsixtpWJjEdJskNRmhUaU26qMqHMQjJanSA3gOSDga\nBExFwNloP9vsrXaDzVutE6jQqJ3RdRKmtNjnrJ4rkwj2vxLcOE4hUZwkqcmcEdyG82joEf1g6Cs3\nnrBjjXwqHWCM/McS/vL6efbPSj8SgUDhSdX9bvP/NrSreMdzhD5XvDJ29N0fGU67vlzzQeZGCSEi\nI8cELNkOJB2N9sFb/1VwzCJtAIJukbm6+6wlWmQhTQ0xyne4WyL1aDAQH9KBQCrvqlj6p4uf7vg5\nVWBP/rWiJBd57fFBSrQpvAcHRn81dJFo3EFzwo0gWBgek0ixhakO/N5qHpG6qQqGaqHIBl5HCp+a\nZH80G5ekYSYk5AYFZ5OJHDft8XWzhpQ4sRTdeLaMkJ8goCZo0HyEzP5LVW685J0uv6cyzA7W1Yle\n+ew4ngD3/PNCANbe8BceChUy5uGbu9Q1ly8vQYm0jX9FKZbHRd5/4+SjPme4xKJ1Zpwpv7/ZDvAs\nAdMSuMjbykjF0yHStu1QPmfuXIwkmXhWelg68jl+X76Ykd6B0UlNFYLrVcKl9pd4Y8R7GAtCJLIg\n+8IqYgUmWRPqUcL2d/r1kmfYX5VDVUOQhcN3d6hTvxOahHdPul3KMQEpLiBHRaS4iNog4aoD3SVg\nOqSOoBMgVuhEaUmhhA0Mp4ThkmktljDcMqk2uxqvN4EzkEQL2e9GZTiDwyEfpi5iynYJlSWDq04g\nc7tF80gRd53ZLRAV2gT8HM39j1/RIhfOZovQcBEhN4FT0shXeuc+Z5xag3e/TDhiW6a0o2ZHLs6D\nKkoUNr46HnF1d6eO3qB54NZDMxhz3m4WPncHd9TMJiC6KH97KBVasGO7A2sGdwhvin3kip5cYy/Y\nGC4L99YeVJUFEJO2COLaXaVEUirWAIPEQedXcv51nxHYIXPmNaswslPkKmFM1U62bdxTzEOhQpRe\nLrC/GGOgSOSaxHPtB39H7RT26gqmJQxIf+CYglG3200iYQdyhw8fJjc3l9zcXBoa0oV9dXV1Xai9\nA8WmpD3z/sXT3z2WS+uGzSc/D9h03CPhKOva8fZVL5rMMm1q7zFmDtuRyLUov+AR9kbse/NezNEx\nKObLXqas/Ta/fv5yrl5xLVfd96MO36q+4DosII1vQZ/bQioArWM0Dq/JY+7Kmyk/+zEiZoJrKudx\n66EZnO6KY1oC65MpGowoNXqEg3qEvzQN5fMErE+mG/KS0s+wRBCXB/s4exqhs6J8UDOa8mgWjqb0\nfRIFs0PxsZ1S+t0Dp7Dmj0spe2UE1oJm/lz4HhHDie+AhZQER7PF9pZ81E6Np+nM9ESn/Pw09bri\n0ZGIl9ZzWokd+ZWH7KyT+3W/bZzsFIiMTVJ/StcW1+59CrYfaTtah/XdchLZAjnfPQBA+KwI1VsH\nkVkY4vSi3VxevJZzfv0TSt87OosgkiI37/s2L957Br+88gWG+hppOSOGo7mT6vBo+/+3v/cnLrrz\njo6V5XYYba9z66IozkaL3/z+Gr7/u1tZ5E7irhUw3CbhvUGGu+sQdTpWXJ0NFu4ayxbJaEjfY1OR\nCA+W8ZebHJ7pp+xiHw3TTBpaPew/zWYNPDz6Wd6PjKNAbWZzrV2jcTjlp0RtYOnBBahrvaSC3Sly\n3gNRTEUilekk/wuL+OJWfJU6VWf4GfJ+iuAuAfW8esTCGPFzWxHM3tudoxm+MWwveRlhtJSMW9Xs\nyX2bGb0UE3DUSbga02q1sRz72SeDApGC9HvQWiQTzZWZuWA7gmBBWGHOxD2Ylr2CnHwnl9qGAO9X\njuaBg6fhO2jiqzIRNavj+J0Ry5FhdISaWelz5GzRaJigcOeFLyLqtnBRb6ifqJAKWIghhUjESchw\noxyLskwvGAh9d8Do5RGN/McS5m+7gOHLr+5110PrCnr92/929FU/qkQtXPXHJhbUGWqLhavOfgDO\nOgk5lq7Nd9VbHeULx0Pz7HXoEyC+309Tf74EfcA/aeCq9ANB51XWn714ZcfParVNkxHrutNllJB9\nc6Yv6JtqrEVUklGVyqYMWiIukCwyt9HNE7Q3HFwoUT9VJF6kYQZ0hgYbCcWd7DiYz97mHNbWD0GI\nymRvsnA2GxgOEcMhHBXNf6AIjQJZMdjfnEnE6J/KfOulb/Lwi2d3+azskof4y4bTeKTla2zDnW7t\n9Ed/zP0vnN/rppPO2EX52Y+x5KmbjulUZm6S/5z+SRCLzAAAIABJREFUNmCvKo2eXsGLQz/u+Ptf\nmoYy/LmbKM5t4p3Rb0C5m5aTEzwbmsEfhr7CSzun9njcOVev7/L75jvsVV9fefq5jsiq50ffeY0P\nx7yJkaXRuCUH12G77d51/xUE1znwrPDy8OAvAdAsgzd2TyQVSN8gwbDZVmAnmC0RkhngqTUxnFKH\noFDrMBfORo1IsatD7fbwyQ4ipQY1Mx3oXgsjU8PrTKJpEoIuIAgWrQkHhi4hNttJX0fIxFUjIKYg\nkSGSu1HH6CMxMxBBI09VHE9VHM1rYRkCXiVJwuqZ4qZPD9P8cT5gq9J6d6tEBxtEhmu4a8VjZi2c\ns/grbsn5lBeHfoyjSeCBgrUdf7v9kRsoOqsCAEdz/0mo6GCDO+e9TjzXRG3pZXuPjhwRcVQ6cJWr\nNG3IxdHQ/7HPv+4zGmJubslcA8A7z83mFzPfZdm2WXa7scBdpvL33d/g+bd7XohKDLyMtk/49ov8\n+uIX2fTzBzndv41VsRGcmrt7QPtKv/nNb34zkA3XrFmDy+Vi4sSJ7Nu3j3g8zujRo1m2bBlTp07l\nlFNO4b777uOCCy5A13Xuu+8+brvtNhyO3ju4vy3/qttnL2+axd/X9S7CcjToXAd6rMfcedOD/H3d\ndOS4gDE2gnzIOeD6A+lIzQQR5IjA0q+m05wrcM+u6QzObuG7X1zArUPXIwoCb0SGUGu58G8cmJiO\n5m87T7WT+XO2887C19jjUbFyderrAmx3upCVMI99dBoJv8D9T54Kw5M89tpZPLp7Nuu8gzg/Yze6\noHOqy6BATk+MJzlixIY3sS2YiVXePZMjmnbHBxAuFgisU2BcnA/HvsWjH0+n9ZwIP/rWm7z0r/ls\nu+1BUicdZvMXIwEYOvMgpc69vLxqNo5NTn54+ma+iGdRNKOaNeZghp1ewc6qPIK+OJFNtnmpq0wh\nFbBXCu/3jkJvdhIuBVcdtJRYKKpJeGMG4g43j348Hf2iJkKqkzEL95Gf2cKCkj3s/8qW5ja+1Yi4\nI83HddWln6naKvSa4QqXCDiaIbE+QNOpCXyfufnmJV/wwohPWRHP5qO60TSGArgrpS7Pv2GOhruq\n96DDfUjk80uf4151LJ+tmMLeSBZlZzzB905dx6OfTCe2uBXfKrstvbTczrA1TrZwNKevtWV+Atd+\nmahbYciZlXzz9C/5wWlvM+udm3E0iAiGiO43KSpoZGdVIch2QKr5BKJDTHQ3OFoVqr/hpGW4k8gQ\nlTlXbGSTnEvOzMPcevKHbLMGsWDIPlbEsqm3UgxXQ9y5+xxGBur4fem7nJ+1jTN85WjoPLzzGwQ2\nSngO2gGuJYvECt3oPoWmMS58VQmkuE4i24F3rULLMIXC5a24/nCYSjNI1vMOxFoneS+nqJ/qQ40J\nIIqIukk8z40SsZMLvsokzZ/nEqsMEsmQiOoqYkzC0SSSClroAZPsjYBgS9w7QwbJoEgsVyJjnwYI\nhIbJ1M8xEZMSiRwIZ4hcVfoVjS4X+5qyKc1s5oMFT7KxxMtFJRvYGx1EtitKZX0O/iodSxBoGqPg\nbjAxHGIHtVGJmXg3y/gOdo023HUmG94fg5Sy+lRI9Ry2g93Afgt3uULNeAVRsVi9e2Sv+/zfiD/O\nfYH7R2zgLwemYvoMpFg/K8L/V5iO2RTbv245MeNROwYqbnIkmiYb6E6R6FCdRImO62D7PRRonZaC\nhExiUFtN6hFjjxKz1cNd9bYiq9K/Y1O/iAwGUReQYwKmCqksk5GBct7eNnDvbbM0jhBSSB7upzbi\nKPG3TX0/M9EQOrbJmXaYWE06EV1d0bc6K4aAkJTQkjLubU7chyTUiNVRs9sbDk9XiJwR4+ypW4hl\nCAzLr0N0muS7WxmXUUtBsJXtlYWEmz04GiSC+422a7WQE1ZHn3IiESkSsTI1FNmkNNDEbHc5TzWe\nhNzac/tcsz0t6KSPiiE2KtQOSRCTVD54e8YJuaZpZ+6gpqyfZwDkzT1EpNJm7Zy6eD17q/JZcuG7\n3JO/kYdChazePrrH/Y4MThJZdKxsXXzjx2xryWf9izaV84c3vMI9hZs6tm0x4/znvjPQdvloavLx\nqTub0yZuxenV2dJUyFv1E4mVBboI34RLTRwhgapNXYP1h1ek31Hz9GbqVJOx3lqerTyZvz22AGe1\njNpqH8eUIVZgobbaitdr851sTnl5vmk0+yrzUJsk5LYAVErZBD4xJYAF/nL7+wkmxLMlBEkiFZRp\nHSoR2JcknqsSLZBpmCKSKk7hzY0Q84hYPh1vIMHorDoUh4HiT2FYIrGYA2W3G2ejgO+ASbRARIlY\nOEMW3kMa8SzbUzyWp6JGLUTdRPcqSMlOAn1BFamdmisKXZINml9BSppofgVLlIhngy+YIMMRZ/uW\n7v7GYnXXGCM2MY5nr4radHxqtGXbB7NvsJ9fP3kOW297kNJ3r2dq0QaGjK9l2fyP+dWqBZyycCsH\nd+Z12zfrtGri+9MlTmqryPKKMZgKJAs1nrh4KX+cu457qqahtq18aw4BeWiUlC4jWAKuw73PQwHi\nuRZKVGDbnhJ+edqrnOw0+VPdVFx1Ih8lh/HIvH+wLlCAla1h5GnIy4MdzIEjIR87oaUbVq0dz92t\nkxhXUMN5vp0c0IN8Gh2Gs0FkyaJZve7X75C/bds2rrzySl599VWeeuoprrzySm699VZee+01Lrvs\nMkKhEBdccAFOp5Pbb7+d6667jmuuuYZbbrkFn69vX5kTgWSugdaLP9DRoCcaL8CYh9K0E2mHFzF5\nHDzdtvmoYNirjcX5jTy8/hTEepXhb93IpLtv5tBrJfg3DVxsQUpC6zgNUYP3P51KmRah1FXPqMBh\n7j7lJf4j730u8EQwMjW+PXgteedVUhUKUnzKAcQkbKkazCexwSxy96w2eEdmGQFXglRG978ZDrtW\nCcB9uK2u6IUcxj9wM9qFzehVHu7acDbegxbn7V2EZklwSQO6C95bPpUi2aZ5APy5aRj5SojDST94\ndK4tWMnfZz3H9vUlxAal77n/nBqax4L6oR9XnYV/f9vnb3vxq3aLalhofxfhrUxMv87m9cOYEKjm\nD4O2YF3cyPU/f51x2bW93tOeKL3t8FVY5F5UiXxJHb7VLoRzGnlt/0Sm/3IJ798/l/Ld+ThCdka1\nM7J6oLe1o/Ekk0tu/wDNMtCSMqWzKylf/CgfxyW+aKNlfXPYFlbe9QCQNrPP2mQH5ppXIFIk8MPJ\nnxAuESi79CHeGfUO1wR2MtnhYP7knYinN9oU5kExdrbm2YNVUsBwWjiaILhDZMTzUZrGSOjDEshR\nyJlfzf6bRzDq8RhV5TmMcNTy0eQnuTZrJdM8FUx3VvFU6CQm5xxitKOGhCUwSHLwSmQEH0XG4dzg\nJjQi3cUIuoklgftQjEFrbDZApNiDGjZoHCtjylB2iY+dX5Yy4pkIlijQMN3g8Ew/TVMNIgUqkSIH\nkRIPsVyJA4vtmxwd4qFxvJNwka0MbCVF1JBAMsumt4lxkdZiETlh4giZ1E1WSAYEWqbY74kaNkhm\nW8hejVipRrJQY1J2NdujhexfMwS3qtGadLIyESBuKIxQaynxN7G7IbdDgEawLLJ22sFxe20oQNMo\npcvK65FIBiTqJtvvRuM4heYRCtFcudtqacorUT9ZIGEobIl0r8keCF7/zr0su/Tv/W/YD46l9vPW\nl65n5D+WUH7+Iyj19vctPbnquK/l60ZPq5pH1oD+u5C5SULLMPDkxJg9Ml34GcuzCGZGbKG9Hoax\ndtXc9lKB9hXU44X3oF06kMyy0AIm0ZRCtCej5/btJ3Zf/RR7SHKeSPQplDTcjsjr1x+dAKER0DHd\nBoIhEM9pq+m3unq2gk3FbceBcwWkSS2cP2IrDlEn393K3sYc6kJeLsxex8LADiZ6DyJIJkh2XW/K\nK6XVTr8m5G4wsco8tNbbSv6NpouCwU29bt+ukGsqFnvnP8nOGx/kpTfncvDzol73OVq0l2r1h9qV\naQGYj9+ahhwXaGkTfLgpOHBPemen1/KF/VM7fDwBvuOrpM5IZ24UJKZmV6G2wL0X/oOlpS/jlRJs\ne2M0dc0+km/n4qvo+sx85WI3q6rQlBQbf/mgXV4FmCszmOXZyxMPnkPsTTu4aRllRyKJbFsgq13l\n9/4bHqYm5idmquSoYeZP2kUiJz3mmGobA0IAZ4NAKijgOWyQ9IskMwTiWSKtxRKpoEXjBDexPAFL\nEhAK42RkhcnxRrFiEoJokUwoBJU4Oc4Ima4YsmhixGUs2SKZYZEMikgJOwBOZAg0jlNJBQRSXrvc\nKpGtgGCvhnYWKeoibGRamA4JRIFwqYtElkzzaDeWKKD5BNwVClWhIAfiA1u+c2+x+xTXN+pxnnJs\nXrPtuDRnDb+74Sn7F01kXWwotwSrmHDfzXj3y3z18iSMk+25zKQLdpB7hu0c0VnJtx2OZrt0yLtb\n5aaHbmXCfTfjOZTuIyy3gbnHixQTuwm2xvK799nOBoHWaQmkJBxMZdFixhFSbftJFpvjxTgkncGB\nFoZlHx/zRDvKqsnAFpUitZEK3cv1gf3Igf6FrPqtKB8/fjxPP/10t8+XLVvW7bNFixaxaNGiAV5u\nV+huq0PV82hw8ZzVvPHq7D632aP1nwbuicb7dSI8zIC3CnH6aDNGPralADEJSqNM6yidvNJGzvzi\nVvbNf5I6Ywu5kgfwolkG35q0gZmu/Zw+fDf31y/AJWk0TvEwPrsGRTD4j8MT+cOgLR3HLdMi1Bsu\nZjolSv2NHBicjdrclSahhC0ig+0su5SwhX+iBRDYZ8ErGWQCvklNhCmk+qlS1lybZErOQZqvaGLT\nwUIeaJrUUWd3KJnBCP9hmlMuPIE4d+87E92QyBrVCJvTRdHV2wZx/mmrWfGAnYWVkhBeHMH3lpdV\n5UORh8FvZrzB3bsuITZUw7ddRVnQQHUiyBcJk4Qmc/e75yEXxhBLBXzl3Rt5X8qIDTN1eMYeeAUX\nJFIK1sYAa3//ICf9egnOagklbKEc4YiRDKRrCo+Eo05isXcrU9dcz32z/skvtnyTlyN+sqQI39t4\nJWd//yue+3w2b1TMI1UCxrAY7E9P4pSIfb5Hlp1Dxqlpm6GA6KL03etR6hQCe+yg9/rRayh2NPBf\nRjEIdsYuPMLAt0+iYZIXOQaWqvN/bnqCd5sn8e4PMvD4EkzL2s+GeAlOYS8jZI0v4gGGeVsRsWhO\nuUhZEvWGC8NKkCeHUAUdzQcZu7uuCHorotTM85O1PYXalODQYp3ML1X8B0xqz0rh2+gkMi1O1el+\nPHPrkbdm86sfPMPP3riMibduYeU7k1Bb7DppRzPU/Vojutmm4iRGJFGqVFLeNk9FXcCSLJz1YkeG\nMZYnksizrVqK/2W3uYMLJbwHBCKyk+zRTciSwTRfBXvjg8CClC6R7Y6yNTGY4Z56znBrePI+4fbQ\nJcQMWyW3cwDajtqrEpwzbD3rf51eKUr6JRytBimvhBoxiBSK5G7SqDxLZOqkPWz9fATOJmgcJ2BJ\nMoige0yy1wsE9sHOIXm4SwamUHgkzn/+9qPepyfv0ePxEe28b/maEzeB/XeiL9rt1wHdZU/sUgEB\nKSISFd3sVNIlMJ6DAsJoCy3TQHDpNOWIZK5NJ7+6MXROMDSvhZxlL8tsi/f+TCNbThAX7AjoLgu5\nl/G7zzrUfcdGKxbiEpZiIYdFBBMiJQb+AxDLlvDW2INHZ8/gSIGMFLUwTYGQ5qLY2cSXkVIy3HE0\nXSJhqhQpjYRkD7JqkAorxHMEPLVWB32yNyQyJNSoOWCK8JGonyyieyxUf5L6lI+9yTwObx1Eb6nT\ndoXcdg/RsauuQNS//rmT4bCQBrAQ8I/NMwlMi3FbRsVRnyORBc9PepJrPvwRLSNNlLwYk1dej7zN\nS2J4ErVSBUsgOSRJEFgTHcZ5nhifNYwkNTmKJJu0zorj/7J7gsVwpgUo231BRz65BE8TJHKg+JQD\n/PCpG2jnwwXOr+akQD37x2bR9KqdfIwWWegek+fqZ3Fu3hZ2x/KY4dvPyrphuGo7BTWi/U8wAMEu\neWoeIeOrMlEjtlih/4BBKiASKQLNbydAFMlEFEAzJKS4iKmr6AENWTRwSDp+NUGz4gJDIJVl4qmw\n/d+91XZds6EKhAdLpHyQtdMg5RHBSCv1Kq0asUIn7kPdFap1l4QoC2huASVmly2YqoDSahEZAsmo\nk5p436KGRyL+Wf+r6/3hjk3fYmrBQf7z0bF4gWX7F/H3CXHc2PRgea0PaY19XZtfG9vv8Vw9iIAC\npHwW7ow48YSEmJFC2uwiVmChZegEtndvjfEci8yT6vjLyNfYPK2YGe593FU3GzOoAyoYAp80jGJf\ndQ45WWEk8fjqQI6czw4Et664nO2nL8UhqHbJUz/4+hxQjwKWbCEPi8DWo19J7S0Q1QLpm3/+43cc\n23WNDyNs+3pWd31ldpYomWWij48xsbCaDDVO3FDY05xD8oOBNaREroVekGTW8HIy1Rgr3p9Gaex6\nnAdVErk6/t0y3rNq+WLiK5RpGq+EJ+GSNE7x7eKMMVtZdngeP1t3IaJg8VH1KJyyzoycCl7fMwG9\n0YVzUJR4nRv/7p5fFTWc/lmO2aq2lmiruB7UI7SYEtfwY0Qd9j2Sps0Yky3On7mJf4xYSGAvrKsf\nwgXBDZwUrORgOEiGM06mI8a3ctbx82FXovktsjbaAj3bJrdlnQRYe5ed+T75rSUYCZl91y9l0prv\noM5sQjRFnI0Brh++kj9+eTYfWWMQwzKWamEaIqectZnPP5pIYA9d0Kv6LpD9lUzDKSmEsIyjUSJZ\n6yXrkMXIz7/Lnv9ayvRfLqFlpG1Yr3Qylu8tEAVb1OiCZ29HK0ryw+WX89bpD3Bn1bk4JZ3ts55l\n1ONLIGBy9bXv8diu2WS83fM7aTjAKeuUaxGGyG6mrr0ctVbBUKFxqsmVc1fiFDVChhtTBlOyQICc\n1SKiYeIIGYRcCndNep2nD8+moiWTs0bv4JTALlTB4He7zmbmuDKuKz+fbdX5XDP3MXZE8jkUCVCr\nB5ntrGdbyodHTPJBaAJKBAJ7Ihw+2U/OxiiWJBAudqKGLCL5Cs2nKcwZtZOyvCzqduQQzIgy/tJ9\nzA6UYUwTufeTs5GGxLlz27mY2Rqf7R9O0byD+JQk+5szkQSLpCYjjo5gbfHh2+hA84LiS6H5ZHuV\nSLBVhNtXLdUW2xoj5RNI+mHQTeUsH/E+Yx65mcGfGhwkE1+5yONnzSGh2cdIpBSaEy7qUn5messw\nLJMrPrgJKSxhZBvUzJIYvLx7Z68f8PL6gRkMRqfqdInMzQLhEoG8WbWo99vtO2tHm9jRSoG9+0aS\nW2nQNEpC95pIeXEMXSTnAyeuJnuS2yxaOKWvzyvsSBxP4NkTvOOa2HDSC12O21PA+//Dxn/dsYzn\n62ayOGszv1hxEXPG7mNWsIwHXl5Me7JaTlh4VI2QR0OQLKTKrquTomYRzxZwNZxYmqepCIiahaNJ\nxGpxE/K7qM0/ugnjiUB7IOoe30xsW5rC0zmAsYZFEcrs4PPa8z7iiTcGrnh6JCzFAslCMGzbN8th\nEilU8B/QaR6hoEQsvDU6LSUKgmlhuAQMj0G8yYVSbFLsaGBy1kG+qCkllZLZn8pBsySCUpRUWAUB\nklkWWTv6V851NnffJjxYxnew94yqqQht/aJFskBDbJVJRVVW1wxhjKemRyqfMTqKtKtr8N6fWJE6\npZnUxh4oVX1AmtTS5biWaNNL91y9lGfDWdz13KVAWmW39K0bcB6yJ+vJoQkcZU4eLjubB3INjtbM\nx9kIaxI2DdRSTXbPe4opv7evxbE2fTRXnf2zs0315XuFn3HbtishK4FQ0728KjRBJ7hVJtnpVjwb\nzsJzyL7Pm264H4egcI17HsuGrGDkU0sI7cslXKRivpdOxJuyxfoL/pvVyQyipoN71pzFm45JOKtU\nEqUa6qAwfJCJHG9bybJsr2JRA99BEyVq0jxaRkyB6ZAQdTtAFkyB/C81GsZ7Cfu8NOToCIqFHBXR\nnBJuMYWiGtQkAozPrKW2NojcJKO7wBW2iGcJeGtshpESFbFkgZZiGcMJjpBFuEjFU2MSzVeQkhaa\nX0FpTY9huk9BjhvUznAixyBSZC9wtA6z61R1j4kVkTnUMnDxoRMFwxDZUpdPaloEdb3d47aLD8lr\n+44NUgGroz40PimOa3PvLBA1LBA57EEMpDCbVaQEuKsFUhEFfX4LQUeK+sxgR2DqqheIvzuI29+9\nkUS2xVMNi3j19j/xcvxkYnkWnqwYZ+bsoC7q5aScKj4/NHRAy13hk+NMKKqm4uVhA9i6bwQ2Opgg\n38jWBQ+jhfuYVLdBsI5V9vYEYOTv/hvDaXWxThkIdt70YAd99qILV/DyK/N63KYdnam2A0HevEPU\nrijsf8NOcJ3USHxd18yv2tJ1m3i+rRIrHcHPbp2cZNPpfyMgpl/WSXffzKXXfcwLj5/a77nDw2zK\nkGDAvsseAmDE00sonFJD1fY8vBVtHoolJt8/4z1er55E01u9f79EroWjUeioB+0NjpD96jROsgju\nEuxMVlsAdtaPPyeiO7g3fwNztlyI9nzPVKjZP1jLosBWbnnzGhxFEeYX7yNuKFyavYafbruQbw/d\nwKf1I9m3N5+cLyUu++m7PP7k2d2oZhOWbGXLwxNsu5dCge232s9/1BNLEFMClmzx+28/y0XeVt6O\nOfnt766h8fQE+dkttH6QRyrY1fKgL6GPRJZAtMhEzEkwdUgV5Y+PpHUoHZTho0HzWDD8Oo5ahTeu\n/jM/rbiQAy8OQ46lv9+ZP1zJGf6t3LL5Mpxv9N4hn/6DL3jpgzlcc9YnbGgpYv2eErJXds2qRc6O\n8MxJj3PxipsQ61Rch0W70wwJxPNNjIy2SUxS5P7TnsEvJkhZEjd+ejWjHu764jZM8WE4BDb+x4Mc\n1CM0mTKaJRIUUyxes4SMlz20logkckxK3koRLnIgahbJgEDuujAVPxV48qQneTc8kSFqI/PcZYxU\nPPzH4YmUOBuQMLkuYNOpf1s/lvGug9y990zuHPUmFakcNrQW41MSvPf2dDS/hdpkZ/l1n4F/r9xB\nWRR1W8Ahd0N6AKyZLSMmBaYt2sHc4F7+ecfZLH/0UU66cwneavsejLpzGylTZoirCa+UoFnzUOJs\nYJFnD4s33MCZQ3bx2q5J+D530TLaouhDg+bhChn7NJpHKGhzWxHW+3HX2nWh0QIRY0Yr8Xo3nkFR\nxg+qwSOl+KxsBN7VLqSExeU/eJ91LcWkTIkN+4dgaSKKN4W4x0Peap0DiwU8g6Kkdv/7J/0nCt9c\n9CWvvtd77QjQjdY2EOy9YikjnlnC/G9sYflnE4/x6r5+HK21Sk9omqaTud5OELaMsLjk1FW8f3A0\nsYQDea2vQ7wIbJGu9r66HcOu3MNdRW9w8X13dOlr+kMsX8BdY6F5hQ4fUoDQaHsMiJ4awdo7cE5X\nTzTaY1HVtYbGEPb3XneqFSXZf9oTJ0SxV0oIJLJNgrsEpATISXslJ1wkkvJbSCkBQbfVbzujcaxC\n1hnVfL/kEzbGivng0GjiKYX7Jr7ASY4IMdPgG8/egZZhIEVEBn9q9CoKVjtTxj+tgdb12Shhgazt\nGrUzZVIBi+wNAoJl+86mvALeGp1EhoSz2eDwSQpMCJOMKyhVDkypLbi2wDO8hZkFFXz+dh/WF+PD\n3Dz2cx588Zzjvo9HwpQtdl+3tFuQu/PGB7t9lsowUZuPjU3mPIK5aThh2sVbmRUo475nLyAxIsHU\noZWoosHO58bwjWvXsNC/gzvvu7rLfqGpKXYtWsrCrZcSeTeP8JQkgbV9hMAC+M6t4fMJr3YEub0h\nNC2FOxDn+WmP4xN0LvzTT5l65Rb2h7OYlV3Ou4/N7dg2lmehjGtlcDDE4ZeL8VYbWCJobrsMSrAg\nuDuG6ZSoWuhA1AWSmSZKq0DxO+kC2mSWg8oLTTzBOKldfhzNApFRKb41dT2FjmaSpoJXSnDP8rMQ\nUyLOOvv4vkqLZIaAv8IgnimiewTElEW0MC2qKMcE8lZraB6RpF8kc4d9XksSSGWoVM+VkOMCyRwD\nS7TAYUJKxLtfxhLAcEEiX8NbdmweJIGFtaycaFsDTbjv3+t1O1BEhmt49ykIs5vxO5NE3knXoj77\n43splgW+f/B0Nj7Xu93Vpp+n455Ja77DyfmVTPNVsCNWwOdP9V1HHy20sAYn8K7uOWg2HP2zbDRv\n91XU+Vet4c7cz5m17Hb2/OrHve77PyoTIY5rHXAgKk8J9fh5T4Ho0aJz4ApQu6Kw22f9Ib4ui5ln\n920o66oR0N09cL8rHEz7548Y9+XljH5sCZPuthvLf2QPTIXKVybhrBMRNYGhH17L4y15/Of5L3Fo\nY35HIAqgtIrcllHBp+Ne7/N4zrqeA9He/DezNgs0jzeJ50Ayw36eT38+l6GueoZ+cB3NK9oalWD7\nJXbGqgemc6orxt/PXUaq3EemEkUWTBa5k2iazGv3LqQx6ubH894H4IGPz+S6q7tKywN8smEs3//Z\nSwB4DqXv8V++vQxrfBhThjXRoYxddQUbYyVECwQEAQq8LQgmHT5RA4Gz0SJrk0DGhy7KH7eFZDoH\noqHT4zSPG9gEzwjoIFvce/kTVOs+aqO+bpPD9++fy+2/W9IlEO3JF2p1YwnBXfDPf5zKgSdGdAlE\n47kCkWIB7ztepjlUhCbVplpZtjhCYmoMR0kYqVEhe4WCFEjxx31nMd9lcoZbIzOvhbKLfRyanw6C\nhl61h0CZxuiVVxKzBFbFhvFVfBhuAUxTwNGsIxigNolUz3ESGyQgaRbN0zX2/EDlitFrufUPt/LP\nN0/hT1vOQGqbeb389hxevHkRb9ZNImImuLtxBJXxTD4IjaMk0MSjh77Bc5XTWVMzhDe2TqJozkGk\nQXHkBChhAXeVjNJqkbFXQzDtxIKzwaJ1SHoCiXBMAAAgAElEQVR1P7gb7rz8eZ4pWc5ftpxK7QyZ\n6yrndgSi9dfG2PTXyczw7+fT2pG8UjWZaZ4KnEKKx5tnkIirzPSWobeoaD578gkQnpYgkiejeSB3\nmYucLRqeOh1nyCBrh0buMhfFb1lYawPURv2sencirs0u5Dabj4e2zeWrjSPZ8+pIXLvskdzl1MjY\nZf+9+C0Lbfv/3kAU6DcQbYeRe2x05EeLvjim/f43oT0QjecKSEUx3ii3Jyi6JnUEoi0j7P+PDEQB\ndr0yiu/84SdHFYh2RudAtGWkha9cpGmygbXn+CzZ2q1h+qz17AF9BaIASpUdJJx55rpju7BOMJwW\nltPAVASklEU8S0QNG6T8Fp5qyN6qd4jJdEZqeoSWuJPfPnQFTZqH+kNB8vxhhsotxEyDgKiiZeu2\np6MlEC6U0d0imrdrZqZ+kkIqyyQUduE5BFnb29gVX+n4ykUaJ1mERkDTWJFklkDTaIXm0QJ1UxSM\nsREsC6yYjKlgrxybAkamTnxHkG1NtippKmiSyNNJZh8xEdjm4y+rzuj13nT2BT1aKONae/y8pxXY\nYw1EOyM62H6Hc846yE/yPuDvj1xAKmiy//Qn+Newjzq87t/5YDo/WXdx9wMkRcZ8fCOxN/MwVXCW\ndQ9ELckeq33n1XDydzdSdTCrWyDqOKeug7rbjuB6FUkyuerPP2bR03egnxZiVVUpodcKefexuUSK\n0+3PXStgrQ3glu3+0lmfRImaOFoNfFUp/AeSpIIqWBDcawcLlmriqhe6eH623tDKWwv/ituRgqFR\n4oNMfNlR3FKKupSf8a4qFMHAPSiKlZEikWOiey2ax0Ii22prD+CpMQjNSpL/lc7gT3WyN1tkbTNQ\nm1PIcQtH2CKe7yRc4iI62EnzCNlW/M2xkzBIFqJqIDgNRM2ucXfXWMihYydyXlq0vv+NBoi3b/0T\nnvl1FJxZ2fHZ1tuO/b1vh+zVkBJgrcpAN9vsuIbZOhvX77wCr+hk2ZAVRGf2Lg/c2V7tmhFf8uWh\nEiY4q9jZ0l1k6Uh4DgkE/OmSxqtvfKdLcBvLNxl5yW7UM+tJthlstPugWpK9qjpl8Q4S2V3HlLd3\njydDcvdbCvk/GozumP0MyaEDK2h5beoj/W90DOi8ytoZpa9/76iOkyjQWfXx+H63czR2fyBqCBbM\n2wrrAjgaBZKZMPPyjfzs8GQ2/2xgL7lggatWwLfByV2fnse9Sy/BLEhgOLGPIYCjiY5AN553dJOQ\n6BCTRG7vvPPs9SL+/Ral3yzr+F2zJDae9je+uOkeeyMLdt3Q/fuMX2bbjzxx0VJW1g0jU43SYERJ\nJe3OJ7Emi6crTiaWL4AlcP/q7hQr/26Z7/obWPPHNtruL5Zwyf5TKZRakGWT4G749L5ZZHpjfNVU\nanvwiSZbPxyFo9nCOQAJ7c6wZFudsnV4978FP3SRsb3r8RJZPR/fVang2q/yk40XM99l8qfR/+ry\n95Yz7c7hSNX9nnyhWp+1V7vlqNXND9dVZ+E9YJHMFPhB9XSch0UCe+2B0vCYGA0ORNGWco8WCowu\nOMyFRbaK4KzNF5HzW5VhL4UpXJ6eMLT8pBAlphN8w8NX8WJWtQxjXWsJ1YYKez00TFBJZFkkRiZI\nDE+ieeHU/1xJ0eBGMjIiPPfSQrI3hSl9LUzpn03WJws57bJrWfLNd5HDKXRLxCs6KXXUUdaaTUU4\ni8aEhx3VeVSXZ5NMyowurqH8cBbKFg9K2MJda6FEQYlZWKJApNjsEJNqV1FMBiRaSwS+7bNlTQue\ndqD5LMp+N6bju2mahKtJ5+5VZ1FVkU1ji4cX6qZTmbJpU6W5jfx667kIHp1klu01WPVtnasmfYVx\nXnM3dboD37SY/F8biWXb73TOFo3GqJvS+RWIs5tpnK0RPS1CQWYrzhoJfXYruQsP4axUET7JQHPZ\nDzQ6KD0g676B14Eci+jQseJEnWv/GY8flVhQey3n8dZ0vnzJf3f77H9CtKg9mOwL7QyRWI2XcMSF\n6kh3DIG9vfdp7R6nR4PmsRaWAJEhXa8tsEdASlpkbpLwHqcm1bqkl3eu+DPDl1/N7y5+7piOsfua\npR3B7JFB7fvvn3R8F4htFaU028Gc5rETt3WTlQ5KcOMYmREX7unog1N+O5h0rPHifCFI5i6Nr2qK\nkZtlalr8fBIbTr7s5bCRAtECQ0BtEVCiFppbRIkYHR6mNbNk1DAIKQGhzIPrm4fJ/HlFx7Vl7NFw\nl7aiBUwMp4XmgfBwnYxp9fjn1JETjOBQdfs8pq314KkWkOsV5KhAdbWtqPPBhffgrJVxNHQNhO++\n4kmcB3tfnToWn9GZZ9lJfGNzoGP/nTc+2PGvNxjO4yP1aUGD8Ow45bvzuXTp7YgpWH6JPVdpNmKs\nSdptyXNQwLOye33xbxe+QmB1WzAnQE/2z/Eci+Jv7uf64hV8WjaS4IbudMXk27k9rpSGGzwkcmDS\n/D3IHwVRvkrTQr0HurZtNQwvDHuPedesRTAslJYUjpCG5pMxVBE1lEIw7PchlmfhyokRK7CIDLY9\nRQEyPTHqDQ/hmBNJsjAdFjneKBHdQavuwrBERqq1CJ1OrQd1jLwkWFB9pk4iUyCeLaIecHBwvkzV\n6RLhIpFwkYTmV3A0JvFUxUn6RQxVIJEhIOo2e8kSLAy3iRiRoMGBa48DwQAlbuE5bHT4rQ4UnQPE\nR/5xDhPuu5m/NhcfV+BoiRA1Rb6a/C8W5/W9+HS0uHCMPd+SEtCwPcdWTw6JRKbGaVmVZhbq8d6D\ncnd1+h7dllFBao+fesPP9MwDA7oG48M0Lfy9w+O6iHf5KkR+XPAB9XV+WyyPdDlkdLCJc7uLtZ+O\n6cYq9HxlJwrjo/qO9f5Hg9Hhz9+EY//AmP2LH/9px89HS7vtCz35Qe686cEuPpYAqUz7pqcyuk8A\nT1m88f9h772j5Kqu7P/PfaFyVVfn3Mo5gIQEEiJZ5GCwSSaY4LExyR7jPOOEw3gcsPE4IMCACSYn\nm2iCRRYChHKWWmp1zqFyeOn7x+1U6larBfLY81u/vZbWatWL9eq9+86+55y9ER6LbNmBe7lMHySO\nTpEpGL0n8a7qVXiO7WLjt1egmNCZDpCxtUHyeDAMlP5aXknMksck+eUxT3HntX+Q+xg2bi/88DN4\n2w7twfY3KDlZ1gOh5U/9Uq8OPPzLMzl7y+Xkq7mz1p3H5Y7aebth0Q+u5wQPtK+qIGZ6eDExAd9G\nL72z+jOdjxdhBGV/TvGbOi//168xzh/ySHD3ORz9n9dz9H/KQNTywNb2Mr74w5vwPSPZSM9paTKP\nl9Jx70RcfaBt8xPcJy9MNuwMKvuOB0ZAYAYcio9qH7Hs6m8+z5qf5gZBB+oZ9Tc7TD61jgmFPSz4\n7xv4+k9yA+m8l/2s+enthM5vHbFt1zGj11GrGQ5Y3uXucXh5zyzcfQ6JSkG61MbfqOLqVTE3hsn/\nUKdwm0XnPRN57LencXPnHMzHR/cLzhS42XemBy7r4sn2RTQnwkz0dhNWsrgigmCTTXgXuOs8+La7\nMf02c7xNtG4oo/hHLmr+NkRsG08NsSlZw75rHF66SpYgXVoufbO2pyrpe76C2s1V7K0tI/CWD1eX\nCnV+IiuqUeu8+NodijYmiU4G75ntZIOCxjME4e2CcK1NqMFE67decEcsStcaTL//ek64Xk46Vf99\nv2u5z88Fv3yFB5f/EXe7hpFwsTi8jxvz1/H4roV0PlFN2J/Ct9WDp1OA4uDymLz+nWXk/TE46Mn4\n/d9JP1YlqvFe+0R8XfLeb/iMxbySVuq6ConvywNb4OwOUN9YJPvQNoXoXFmJnpACFIE2uZ3pFYMK\nvofiEfp/rSdzgPx9FGK5+7O3fyzyON81su/rf0u0KBOW43JsEkxZ0DSubQKv+cmv6eXoCfWkG4Nk\ng3IfmXxBolKW0GbPiHDm9e8c0rnEq8DuV3NNlgnCOwT+FodAw9hE96Ngxr3XM+Pe6znJYzBFD1B7\n0n1cHIgccoZ0OEYjpB9nfwPwdDv4m6SvYrDJJG+fQcl6AzUriXpyWhZFOLQdI18orqgcWwq2G7j7\nLLpn63gfzKfkQxtnTR6PtizGcmwm6QGwBcJQMAIO7ctNuufJloL2RSq903SyVVny9hr4GxXKV5lk\nHislYeTGUInmIMIWmAUmzIoxb04DhqWQzOr0xPxkshqe/DRWmfQAMT1yMtvRAEcSwVOf/TrXXvwi\nUz5Rl7Pvbz949ZjXZjwkcjjKjmvmrXfnjLps1p03jElu1fT478H9zydV6qCkFYLvesnbppLJd/B9\nso0TnpMibwufv4lrf/WVMff5m99fDMCRV2xGTYFrlMSup0fw7LSXOMNfPyqhHUBk1tD7Z/13V/Cb\nr91BeL0LTyfsfkTa6aijZNsHkD4xhi5UPlv4LkaeC8urYfg1vB2Zwf5MW1ewPPKaed1ZrKo0Bduy\ngxYrdc1F/KTuHBTFJt3jQY8qNL1XSUhLE9aTJG03HVaQdMqFotvYQRM9lEHVbCqOaSGw04Xpg955\nFq75fUxY0MzNZz5JqswmNtVEjxo4mnxnpUoEmQKB6RMkyx1sl4OSVVDSCmpaoPULLQVaLCxdEC9X\nD2qJle1/L1rD5kr2J54DpPSjQthw8YpvMOXR6/hyviR42X43D2NRbKxND4oXHxnSvwk0CnwtAk83\nBNd4SRcP3R91Z96NvXzoYsQWD818T75wNwANpqyVNUIW3/jgIpYEakccz1FlWW/V+XUYflj77T/k\nLG/76wRKVD/ZYa2xl719DaH85OBEm7/fXsx2OThHyQfAmZogUTEUgA5UIAxXgB8N/1Qyqkf+cYef\n/uZVgDQF3h+XX/ja4N+efaM31g4nvLNO2Y2rR55raHJuuXC6zOSt5xfgC6UR+oEzFVoS/B94cffI\nrJY1Slno2qMeB6Dk+Ba2vDOV1x84+oD7OxDUFNhu8L3v4z/XfYrPvnId0VkykE2VOURnmFgrP6Kq\n4UHG/s4TDLpPSZPNG1ox0S9TPjxjWXf2XTlEEoYyfcF9DqtbJnJ+oIlEjSzTGDCEz9sFrk558+er\nPtYvfvSA56KmwVk3VNaaKhEUvOIZLD92RR2MoIPlkSTVO6tvTBXd/eHqcwjVSluAnpPT/M/3pWVG\n6PJmzvBvZ/F3xw5eo1NlwAlQ6eujdm3NYKnmaEg8Uj7is6L3D9xY17Vk6Ms4qiTPA/C9HQAHUpUm\nwoT0kUlKlrQSWNRF9Lg07h6D/O0xgg0Gb7ZPGzzPzqPkqNR+TIi9X1c5+5evsfvK22lvC7N5ew3n\nV6ynVI9wb+9S1DSEauODIglaEsrmdvCjey9nyhNy0G7+xFC5afWrUaZ62nHtGHow/tY9jyM+uJQn\nHj4JRwF3t4KvQcNyC0J1cma85TQbNS2zE70zfTgqmJZK7xxZSpfJF/TOUDC9CpFJueNNoEEqYI6G\nZSdt4XN5O1nihvwdDqrHYn2khnXZIHPKWonMdJgZ7sDT4wzeU6dP3j64fbrQIVGq8ZtGWdL27TOf\npXvLkCiZUBxaEnm43glS/apF0bsaekwQ2iLHo2y+TbLcliIRPUO/ZaJKfq9/ZRwO4jvtwes/MgH8\nONvujznHyPr7407YMvjZPzJL6u6TqrnChGh27Ina4VYihqViOwK1bChQ0OOQKTfJm9LLpVPWUuMe\nv7y/5RIEmqTHpekRmH6HyLI08eUJkmWC1KkxPqLDUA4GSOjOz91Otshk9n03Di5bsOaSQ97f/mRz\n/x7Rw9Ez6o7IDLFi9ge/HoXu2TquiIMWl1nGCb4e/AtGv96BZptkkYKesMkU2UTSHtYMTJS16DjC\nwalJoUQ0bLeN6XNwVMjfbeBqkeNDwQ6DdL5KfIJg1+5cGwnHb+KtiTFhQieK4rClrpJUxoVbs3Dp\nJmXhGC7dJBhOosflu9fXLMjm2YSL4izZcCHuLpXbnj+TPa+P9HUcCxfvPZnza08dd4Y0Zei4+uNA\nz8IhS5nhGdLDBWW+FPFIljmoKfnOOPHfPiAyy0I4EH2tDCWc5b+6ZoI6vqxr8NxWLixaMxijDIfp\nhdgCySBP//mBRTQdBdTE0LtpazbFV2+97hC+GVwzS7YmvJuchjBtlKyFHjPBdjD9GpkiN5kCjVC9\nRaBR0NMe4vzZG2g8TaNjoUwWTP2jjfXrUvIfDlC8WqN0jSUrwGwXhqOyM11On+UnPy+BFddR3BZu\nt4nuMulJ+FAMCDT1l206gr6Uh59tPhNHt9GjKtEpXnpme0iXyl5l0yNFfhwV+TylBY7uYHlkD7Zw\nIBNS8Hab5O/Mohhj/yauqCBd4KAt7iW0vI3WfkL26A2/HnX91BiVfvvj/MvfzPm/b5h68aBPaDY3\nm5EqsYnP/GitJgDi5J7B1rhQrcqndp8+uOyBI+4bOv5uL3Mv2Ua6EL5V9RIA5/5KJu+KavqwUipr\nkyOf4+yxMTqsBIalkpxooIqRfOyyuk/kiJQ6pkK8Lm/QZihR1e+FnFbI1gXxtgt87wbwD8vQ+lrl\n37t6xxZl/RexFv94yEwdOWW05ngp5PPFxpNyPt9+3Qq+V7RjzP1d07hs8O/A0V0UuodqtNNrC3LW\nvXLZKvKWdJDo8eKuHTmjPhpik60RPYrDM6BvzP0r3zv/CawT91NAGgcSNTaZcL+f3OoAeo9K9aRO\nsmFZxhvaqZGslN5w5qEq2+83FgwnnQDFb+kcMaEpx5NoeG+RekkHAAv++wb0p0dX2etcYhHdE6bW\nEBR9qOCKCZJlQ8epWprrH/bBz26nc9lQsN554lB2WjjQNxPiNWJUb738rTLoKnjFg7X60FT/EpWC\n7gU2akpQsNLDMk9/jf9DlXzmJ6O/eAqvGOoxCNVCsE5mNxsT+TCG9PVwYtszb2i9dPHQdek6ziBd\nKEgXyc+K3hsaGIUlFTcHoCUcYpNAZBQp7tTqoeP9MtKGhtPupnu2vI/d3WnaVldgBOS2y675kF1X\n+SnamKQgL8E3C/Zwa89kZqxIM+PuJG/3TuO1npm0pvNIVPeXD5YJbA0i8wyylkr1q0PTx4kJFrHJ\nQzfL1aGOnGzpu+tmYL6fT8XbCfL2mRhBB1cfhBos0gUCf5PCjDtT+NocUqWCRIVg8XE7+O6MF3Fc\n8kWTv9scNPxWM9A7bWjaNNRgHnAC4t2Vc5n/2g2c/MVrcUcsKp7QWddcxea0tK4o2Ch4bf1s4tWy\nXwYF5vmGMlnlq00S5YICd4L2q9N8Ma+FyjeHDubd4qX3bxXk1xp0z9LJnteHp9shvNsk0ABF6wQ1\nr1iUrB+6n2NVGvaEFEWVhz4uDOB/s1z3/yqGE9mt709GnRjnnbcO3oJxuOCKyIAs9WKu6FvfTPlM\npU+Lkjk9mhOcxRtDuFWTqaVdg/3kpheUmIoQDscFdvK77Z8Y9znElw6987S0gx4VuLd7odZPusIg\n1eFDsQ5fdnTGvdcjvBY7P3f7IEFNbsk/NPLY7xs6sD0MkdNfXDxkT3fsyVtGbnsIiNUoGAEwfYJs\nUCVVKH0kg40mJesNfC2Cd9onE/amiUzOLWk1fQrJMoXoNJueL8axPQ6dbXlkUemwEmTzLfDYWDEd\n22ujZBQcl4O3Q17rwk3DFNp7LUo/MJjwbO67Y8aENtIpF/W1JTibQ6jtLlK9Xrp7AkS7/NTXlpBK\nuYh2+dHjDu5eBy3l4Gj9vcbvy0qYq858/ZCvzeZXZ7B95bRxrz9wLID0utzY6uLzcwnAxyGmazNZ\n7E1yctp2Qzbfwd+s8ErdTPK2q/ibBMlyG/dWL0/duRy9e3xlUmFPivvblo26TEvJ4H3WqivG3Iew\nIdAgf9/ffO0Oftex/BC+GfTNMbkuLGPazbEqUsU6qVI3llvBCOnYLoVsQEExHaLVKt5Om9BWF3WJ\nQk4+fiO+TptkhQdsB1dfFl9LmvDOJO5eA0+H4M3WqQT707Jv9U6nqz2E6jdRVAeXZqIoDvGYh/Bu\nk7zaJKXvKsTbAyTTbuydAQo2qLj6hPT8zkLnkVJp18hzMAJyMldLSpFJLSFwVOmBriXBFbNR0zaI\n8VlUeXoEm45+hFXzn+a0P0hCNsc1MvOz+aYV1F52B/Y4hPIy+Q4/Kt464vP9M6wD/qYD8HYoBHbk\nJrsS1RaJSpvE3NHT3E7/kOqoYDmCbN7Qs73vqSlsyMiLsM8sHMw4uvtgy6Oz8XTD5+/6Mkf+fOi8\n1ix8nLxNLp589MQRxzqqspENmTDtz9QMqvQO7xEF+FbFSzn/DxQkcfcM946XJxxoFAQaB6pocsej\nJZeuB0A5iL3LP1VNd8YPf0Om0Mbd/fE48f59n/NO28njk1cCI0t6B4SJDmep74HgikCiWqq+6XFw\nndpFdlhN9mhIF8sHcuuXc2+K6W9exZKJdWx8dOygKFFjs+K8e2gz87gyJGXjbuur5rZtJ2LbgqOr\n63P2YXmkPL2aEoM9dcPPRVj9ioFJmc0drgScKnMwikyK35EDdyYsiE+yyd8icnoaz/366zz760/Q\ntTzD3lNl2eLkp65l0YJaflT1HFfdPOR/2HmMhRZXCe6F6FSHglnd8Li8ZrYGH/7k9sFSXJBk9ITN\nn+ateX8B4PzaU9n2xlSWnraFVa/NxTUzSjarYjf7CO5RmHH5Dt7fMgV0h+I35QPYtVAqEAL0zpE9\nIsNtWUD2fI5Wats3S2ZKFn/3ejL5gnOueIf/Lt3ESVs+NSKb2Tsb8rfJv/2XtlLfWMQ1i9+mPl3A\nutuPHOXXhGd/dAvlWoApj1/HnovvGCSm3YtsCj9U6FmexuvPcubEbay8awnJMoGRZ1OwUWDrctY7\nfW6EVG3e4LFBknTFBG+7oOzdKJFpARIVCqmjkqi7fQQaHaJTwVblSzVTZuKr0wfJZHRqgGSxQrLc\nYfLTcuosWeWj+QKDgvwE+p8LCO2J03BGCGFBek6K7y96gUc/O1L8ovOoIL3zbapfckgVqHQtsvnq\n8pdoN0I8vGkxWosbJSv7ZoUjZ/G1lIMRFMQmW/gbVDxdDoHLWij3RVka3suDvziLTFgQ3jN0I9af\nLdD7VCpW5TLQRImGo0GqWPD9qx7h5scvwajJ8KWj3uCv3z1lMAPSulTjuxc+wc8fupiSdQb15zvS\nOsfjMOXIJtqeryF/19i2K2f/4jVuDG/nxqaTeXPnNDy7PJgBBz0mCDQ6xGoEoXob0yufu+FZUZCe\nqAPCU4cDH8VW5azT1vDiK2Mr831cfBQ13f8NDCj2fhyMR003XiXbOayyDEJxCL8z9kRn3wyHeUfV\nsSDcyEMvnkhwH/Qdn8bjzfL9uS9yy61DWcZsnshR27XcsudzcHlI4IoOW+4SJKodfC1yYkkxpWXE\naEiWC2x9aNniT2xnzeuzRl13f4SO6Ca6UVbt/ODCx7k8KDOL4yWkA0R2NHxw1a38ovMYAmqG+587\ntGB/f+RvdzD8AlfMkVmt/munJ+QEmOlVaD7NpqAiQsiToXV1BWXvjV12Y3+li5PLdnLf6uMoremh\nqy+AYwsK8+P0bCuiaIMzwsal5XgN76w+gp4M2u/kdcuEVfqmK3g6pX+lmobEFAMMgR5RUTOCQIOD\nrYPpEQRaLPSETbJEI3VehKJAgrZ3hpT2l5y5mZn+Nu578tQxz380xVuAvGM6cgjnoWA08vlRelL3\nPzdHAW+HjCdMH8w5e+dgKWyy3OHMM9fwzNoFuDq1nB48AAT0zTVxdar42gTf+8qDXBCIjtrzGZ1q\n46mJ4XptfJYk67+7goUffgbn5cLB80xUOyP6Q0fbDuCz+05i7Suzydtty7JrBRxFoCdtUoUKnl4H\nPW5h+hQik1QqzmjArZmE9DQfNlXjdpkkavNQ04Kq17MkynQcVZAqFlxy1Uq6DT974sVs3D5B2sbk\nZbFtQVlRhNirZQQbLPxNkmQlKzzYmrQQMryCbJ4gVeZguQeeGYFdkUa0uRGmwHbLGNR2ORRslgmI\nUL2NpQt8HQaJcmlRlw0ffALswsvf4AhfA6vjU8nYGisfkxWG8ckmgb0an/nsazz24MgxQBzbi/Nu\nblLCcsMH195KQMkdf99IKZzkHcqsjrf092CKtMNLsSNHZDlq+j5qn5ies86G/1jBydvOpfvZKjL5\njFm+vOE/VvC5huNHKPBabrj0ipU8fvfJI9YHcgjtAKIzLEI7x/9ijh6VprAwTmUwQnMsj672EPWf\n+/YB1/+n+4x+XCIK8Ivu3Jm4SEbOUNzU+vHFCj4u/I1D3y/7ahGOJhvd44tTBNaMnLHx9JviDmRK\nl1y+njurVvP5ue/y8N1DLwQjCPooJeqXn/I23956AedO3AxIMnpjuJEbj30wZ78DUNOj917YbjAn\nprGjOngtvHvd6Pv1RJiVGY6Zso9t22fi6Xb47y//iZs+uIT8S7uJPDBUw5WvJSi6uh4zFmThj69n\n3Q9uZ+8Fd/Yvze0nLX5fpef0FEecsIett88lNUVn4ColqgURO0VkOoPeoAt/fD19s22OfngoCPnl\n9+6n0Sik89gAO9+bSHinDLBSZQ7rm6rwFydJdPnonQX522UWyvRK0qXHBJEjsxS9LYmq5ZHXaH8i\n2jcDXrn0FibpAb7TPp9ff/92Pv/e1fytYTZFepzEI+UkKgSOJn1EAc44aR3vb1sIQPyJckI+wXMV\nc+neWMLw15V9fjdrj3qcxd+9nnNvllnWAmDxRvkdI9MgvEUhXi0oeM0DeHiDJXg/005vYyFF78rH\nWjEgXSTwu7N4hhFRkMIDWkTanzSeGkIsjlAcjNPQVoAnAd5um7y9JqkSndblFlOntHH1ie/ygznn\nkhdKct/8/2G+y8OGTIYv1N1E0foYyUKVC+d+wBObFzJ9jyyRKfsgS/1ZGo4luK/hWEYLqYvXxlDT\nQRrOMfnN8j/zKb/c9qi1F+NkVPyzeonvzMfVJ9ASEJlvgCXwNmuyJNGBnpPTzA928/uq1/jkjgvp\nni9FqUyvgppx6J2uUbjeoXuJwfB68yAH+WUAACAASURBVGxQJVMgqDpnH+3xAD/ddiZzTqzl6amv\nAvDaVxuJ3yLv5WA9/Nf6synYK19Cpa9rxKoF2XKDaNY9SES7Z+uD/qED6Figs+2GFXyp+RiO2X01\n80paUTpd+NodeqZnUPZ56FhmoSYUOoth6rxG6joL8P5ZlmoafpXWZVIFkaTMaB8OvJc+9JLffzQR\n/WdjLML5v9U7GuhPspttHmwV4tXOmOJA846qI2XqNKXzCe6Tn9WU9mDZCiv7cs3YXREnh5AOkKne\nZRnUFjehupFEM7hX2iNp6QMTURia2R9ADhGdmoDaA5fjDBBRgB8/eTGXj0Eu98dovaDPffZXTNf9\nzLj3eo6+/8CWAgeC6XUGPUyHI52vkC4CbQ+4oxbpsIqvwxy2ncBXr2PsKqK50EGo0HC6SnCfArYs\nt90fjS0FbPWXIzwWXX0BrITOhAmdBFwZMk3FGAHw7Bd0VrxtwtsBIECiVCNzXh/x5hCOL4Ppc0ki\n5YDWrWEFbSy3Q/42SVL8PRbxMhVhS0G33tngAQo9CdqGHePemrfHRQAPtE73puJxB5kD5HO0fX0U\nEjrppH28OONFztl1Zs7n+vw++HuY2FQLtTDDZ0tXczMzJMnsUXnzT0fDPBPT5xA8t43Ys0OTyr/6\n6p2ElRSXvncNtPm5IDC6AjBAqFbBahybiKaL+vtss0nARyTiY6B5RdgjhYoAzFP60P4ezvlsVdpm\nU0c5nk7I5CloaQdPn42wbNSMQyaoYKvQO11H2NJGpDUWZH5JK0lTJz+YpK2+EO/EONmMTrPtIVOd\nJfyhG8sFb3VNZXqog50dJQhDoGQEpkfF5TPo7A3i62+nsj0qOOBrSROv8eJvShOb6BlsKXA0B8dr\nYboUtGYPjirF/4QhMEM27k6VRCX42iRp9faYJMp0skExamvbaHj80ZO4b0qWwK7crGRgr7wTRyOi\nACdU7uXS61Zz3R1fIj7JJFCnYWsQUDycuv2TzMpr43cVawA4yWvzQLSIW/508fhOqh/jye4OYPGM\nOn5b8wxn8q2cz2/rq2ZpUR3PU3XQPlqAVfsmYU63CO0aIpLxaQZ7kiPLZo/8+Q3S2xdIF8okVLrY\n5tbzHuAHv796/CcPKLrNjIIOwnqKzpQfrWtsW55/Ohk9HPhEYBv3MUTUGt6sgVnw8jOj91x+lKyo\nPSeO221grMudOTnUzO6A4pra6CFVJh+4EbNvw/DeQwvIfOst7n7hFMwjsgQLEojX89FjEJ9g42tR\nBrOQph8MW+UXc55ifWoi90VLmKh3cZLXHrcQ0gCUDATWeGUpQEIdQUQBsAUfrp5OwTCiZkZdmMW5\n12NTvIpPFO+kOZTPy2WFLPzx9USmO9x81pOD2dvhqD3pPgCOZi7evw4N5lecv5Kl711D3i5wLurm\nvJpN/Hn70RS9KAOcD352O1Mfvo6Jeg8L3R081rgIbUqcniqNxZPq2d5ZSnZDPqmpKTzNOpNO2kf7\n3gmoGUlEO5dYBPZoiIR8aNPFAk/n6IFXeCecffe3MGYlWT51Jytal6Nv9aG1eHmE0xEXduF/cigL\nrl3cwd/eXsBAIZIw+3t1dINO3WE4QXJeKISj4C8/uoWvNZxH3T3T+cl3/0Sf5ePhtmPgPln/H2h0\niMyQqoB6r0rwL6UoM3PP19PlYD0xctAJbdNRLEiVyBKw+O4Qs5bvwasZ7OirxtZUHKHijsD0KU18\nsfot7mg8kbKiCN+c8gplqsVldZ8gqKcH+1F7jrTZ2FsJMR2QvRKZPJXwNkGyzENrQzmTkDMovbOD\ndJxk4GrWueq817hrzfGsO+13uIXGTa3HYjuCSWHZQ+Q4Ai0hVfeyeYBwEBkVW0P2hRYq2AmNb5S9\nwhZDZ299CWXrQEtbmG6B4VXQkg7JMoE3L03PzBD5u0yE7ZD1C2LTDbbvqUD1mdg9biLBOPdEypjo\n6mR3ezEDoUigxSS+y4+nzyAyUcdzTjvZzSUoLov2PUXUIElqfHaGdLELM99k8ay97O4uhg8LOOGG\nL9J+lEq2Ksvqtmngtwlc3EEm4cO0PShJBSvPxNWqU7upisINAjCxXAqt52QpL+mjc0MpJWtsOhYd\nHjJ65WNfOiz7+f8S/rcI53hga7KvSkvKCbNJn97Dproq8gtj8PwQedu0ZSIilKXrnerBz6bnddCe\nCvHGG/PZ3wxoeGbU1mQVRf4qd7/qt5PjTZqo7F9XOKT8Nu4OFV/70PaOAon+tkVPjwywR8UYRHQ0\nzLj3elZd+SuWPfCNg677nfb5PPVibrnkdP1Q+1CG8PXzn+HXT5836rLIHBNXl4rlglSBiukT2L2C\nRKmKt8fG02Ph6bFIFcn+9mSNiRIwiPVndW687iUe/vqQT2c2qKL2qGxoqkTpdFG0QfbMTbupk+29\npZg+8LcdeAKgd4aOfUIffpdBHBAJDdvlDLZKWHkmakTDdjv0zuovl9yhEGyySJSrRKeA5bM5uWYX\n2/uGLCBe/vwvgY9n1TMamc+UWLg7Rs+w/L53wiApvaRuORtfmfmRj723s5BZb4yMe9TXJZELVEeJ\n9fpYn5wIQHiLDIcXXbmRkJbieyXvcNyKb6CrstXFUeCW+jNof2oCA3fWgp/eMMKWJedYo5CP/df/\nIGPwcM8JPLNmIaJ/knGgAmEAphdSC5P4P/ANEtHILIu958tJ/Sve/gJ5H8ipXtsFaZ/AEcpg76Xp\nkxPjetzBHbHJhHXimRBdoSjNkTzKQjGCZTEMQ2PRxHo26JUoLX5sTVoVGServNk0lXTEjVqYwe51\ngynjPCMhs5axGhVXxKRvmrSR8XXaRCd5yYYE2ZCDUWDiystgmSq2bmPqNkpU+n1bARu9T8X0OuQ1\ny9YAWxXEKzSMgCATBkdxBvszx4JiMYKIjoUrr3yZF1vn8ofK95n3P/J9OG92A3V1kzn6NFnS3/R2\nNW3Jaubxj52ITVQ6+Jvld2yO5/FYbO6Ie6FYi3JjuBH98xbP1M/D/nshV1/7IjPdrfyx5QT2Prlf\nmfxeP9r+l00g/c1HOYeB/mfT57Ds9M3cU/MOryR1YhNtOaE2TgzE8bf0TGG3Xkxy5tjM+Z9epjsa\nbr78EX700KXj3s+B7FkGMOuU3Wz/+zTOOu89XnxmySGdY7rCRM/LYHZ70OIKanLsh+Gai1/irsfP\nAGSZ7uHAF699jrt3L8N6q4A1X/stC+74yiA5LDu3gd2NpRDXOOuYDfyk7HX+q+M4XtgzB/cqKTiT\nLHcGm4g/CmKTbYJ7R96E+/vXfeO7D3NxIMLs22/A2+7kDMR9M8HyOkye10zkgSp65sqs5Jr/GhI2\nGo4v/Mcz/O7+T5GYnh0sp02VCJZcuJGNK6Shfdcim3OWrmNzbwWJB4dEHCLTwJqcoqIwQmNzIWQV\nXJ0qef2CYokKgRGUmTM97mB5ZJage4GDFhPk1TJCnpoLuol/WESgfuTj0v2JDL6tHty9jmy6Dws8\nXSPX+/X3b+frP7keIyCwlvdREowTfagS7eIO2poKqDv7LpZtOp9V/ebMIFXRDAcu+eE3Mb0iJyth\n+kSOT+AAMXV3qATr5PdUTKkUPJBJHoAREETmG1TXdJF6rAzTJ0idECPT5yG4U0dNI6XFewXJI1Lo\ndR5sF9i6g2II7JoU86uaSRhu4ndU4m9Ko5g2yUovWtKme5aL2FSLmhnteL4TIF3sxdM5VONdf04I\nI2CjZgTlq0wst0LbEoXCeZ38dMZf+EvPIl7cOhfNY2B2e3E0G+G2Cb/vwtPjoKVt2heruHsFhl9O\nFi2ubmDVjqmEChI4b+fjCCjcLmdqTI9C9xyVos0WTedYlL+ikc4XhBpN4hUyCHFHHPSERftinS9d\n/Bx/2HoSRQ/7ULM2iVINf7t8I6Rv7OXH05/h1obT2Pt+DUaJwYSnh56vWJVGsGlkWV5kko51Si/H\nlDewcvtMiGt4yhI4jiCb1nDt8aJkIF1qoyUE5e/2K++epYAFKLKXxtWnkKow0fv+RWtZDwP+EWW6\n6sQ41r6PF1wfDoxWprv/sz2AnkUmBWURehvycXfKSUHn+D4WlDWx9b7RVUgBabFQZqMUZch7a2Q9\nQu98m8BedbCnv2eBBS4btUfDCllofRq+VoGakmNaskyQrjKkHUhMzVHTjdeAlhhqY4jXHOoVGT/G\nKsUFMAIOevzwKv3uD1efwPKAt90hWS6wvA625uDuVrB18HTLd6YoT3Pc5D3MDrTwZtd0ZgTbydeT\n7IiXsaaxBnVzgJJ1uVnS+k+DGlHxNylEZxm4OrXBcWAAllshHVZwx2T5pREQaCd2E3BnOa5kD/uS\nhbQk8qivK0YPZTEzsjLFm5cmnXSh17tRDEHJepO+qRqxqRaByigFvhT1TUV46ocC+bLjmnPKdg8V\nAyWyByrjHY7MlDTuPePT3RgPHvvcrXzm3pEZcVt38PRb7E359G56Mz4a2goIvTeUevvqlx/nk/4G\nFj31NUK7h4KBRKVsTQpvHMryfPidP7Dovw8+qbfoyo3s7Cuh+43yQeXdeI3D7itu54Wkh23pSh6+\n/fSxdzIMP/vqPZzhy+SUCNs6eHocXHHJKFIFCqkSgel1cEUFeXstTI8gkyf7lt3VcWaXtrGpuQKX\ny8LnzjKzoJ13905BCAer143ep2BOSEOnG9ttUzyhlzxPmu6Ej77GMEpKvpPy9khv0875OlpKThwL\nW1oXZsOQzbNxSjOEwwn6In6cPnmfCVMKF2EDttSCUNOgGLKCw+hXq3VFD/25zh4Vx7V25Ji/+aYV\ng6W1w/8ewKSz91L3wmQ237SCSS99YbD301Hkd0pMsPjzmbdz3R2HdzJXTUO8xibQoAyWzL6RUrjp\nt0OCVn/86m852i3vvx91zuYv95xEdFGaE6fv5p035w6S2UOFcWKEH897jltqTyP9kiyt/+aNj3F5\nsJtbeqbw16YjSLw40q90f7I8gG/e+Bi16VIe2XkUfm+G78x4iYumHtjv9V9SwKjP8nHxBW9SvGyk\nncX+uPfq3/Ol5mPGXGfDxsn4FneNSkRN39hc3NOicfykPbg71FF9pPbH1wr25n5wgPsimze6xcto\n+OOdn8R+rUBm01AG1TsB2p6t4dZlj5FXHeEPle+Tr/o4PW8zyyftZuO3V3DnV36P7f548w2jEdHR\n8PMdkoRvu35FDhGNV8vZWDtkcmR+E12LbLxTI2gXSUGjr7cuHFy3Z56D6YOfvXkOv/jCn6g7424y\nBf1y5B3OIBEFKPpQ4b3fL8ohotDfj2AqqIoNNtIGRMh+VMsN/hYHNSuDJzUjswSdx5moKYErKohX\n5/5opl9gP1tIoN6hd87Iaym6XXg7HBRDevEJSxJngFlf3EqiQv791Z/LICo22SbREOKMsq1c+vWX\npXVKf3N3R0+IW3smc8Qvb2DRD66nRguQcCRZ2j9AHyCi/Yv53YV/wtegDXqmpmoMvB0jiShANgTV\nLwi8Nwcp3BSj9L0o9p4AIqOQrLDpm2MS3gH+Nhul2YNiCJmBrUmw8PidfG/hi5xWtI2Wv9WQKlT4\n9oMPctmf/4bv35u59c7byOaDXpKivraEfecGB4loy4khHE160qoZwaS/xPB0pPC2p9Gjgu6+ADc+\n9EVeWbkQzWPg1Pvx16n46nUmPCL7mmM1Ch1HqYT2QP4uk6svepWdxz/ApSXvMX1CG6mUC9MD4T1D\nD4rWL4LQfAooEY22YyHUKB/oQItJNiTomidoOENBnR9hXXQCQV8ayyWw/72LTFggburgjbvuIujO\ncO3bVxJypTEDNr5wCtOrYPjlDzQaEbU1QaDZwv1MmN0/nk1gsxtHc0i3+THq/Xi3eCldY+Ducwju\nVQYD0L4pOq5uhSlzWpg0s5VgnUKw3jkoES08smPM5WPhYCJHzoTUmMv/VfGvQEQPhNGIqOkRBHbp\n2C8Xofco+FplJU11uI+FoYZR9gLx5QnSp0VRLMjfJgiN0mvac4yBFlFIFw4d092hQlrBKcugxlQs\nn01sok10mkO6QAazOKAk1BG1uGp69H76A+FQJxqGl+DuT0QvO+dN9FlDZTv/aCIKMvASlnymfa2O\nVPM2Bfm7LUo/NNAT0qpC1HtZtW8SL7XNoT0eZHe8hMf3LsCtmBhpDTPgkC4Yuhh9U3WOmN5Axbx2\nojNNap4XI4gogJqxiU8QxCvktqF6i/jWAtKmRnsmxOaOcqJpN+GyGLatgHDQvCbpVj9OQsMVEwSa\nHDJ5ColFKfwVMWLtAXqTXoSS+zseChHNTD6w98h4ymwPJxHdfu0KvrX3glE/93YITI8U09nVVcJJ\nJbtRG4eOXXlRHT959iKOfujrhHYrg0KP0Sk2V5/zWg4RjS5NsWDN5eM6p9dWzSP2bDnZeUki0yVZ\nDDQIPrX7dL705md58K7xE9FTPr+aM3wj0662JvsBlayD4RODcVi2xJTv9akqqgFmAFy9CqkuHxsb\nqyjMS6CrFiX+OH1ZH1PLOzBTGmp+Bj0qsNMqeVN6KZ3Yw/T8Tkq9MVTFQYspWIH+79KUwdWbxRWB\nYKOFmpGtZGrWwd0Dni4FO6GTTLsRioPjsxBZgaM4iIxATSi4IgLLLTOjWkoKTRn5Q4r5A8gUOCRm\nZzj6/E0kyw6sijsaEYXcHs/R+j1rO2V5xyV1ywnscFFymuybmH3OTkAq/97WOtRvaekQ+MRIm78B\nDIhAjgeBBhlvv5CU9+Tw3lRgkIgCHOFrILk0QWCjh7f3ThlBRG+6Ide3fixo7+Tx7WcuHySiALfc\n9hneS1ucH9yIZSukSkZ+j/2JqHFiBM8ZHSzx1PPY4yfheSeI9WoR78WnjHn8f0ky+ttHz+ORbYvo\nXDXSzmJ/XPbiDax87qicz8751OrclRxIrhm9dkg7QKYzGx66Ad59cT7GzOS4+rQWr8utITcOUCnk\nisi6/Se+dgvJ8vHfqIt++WW0RO5nX115GZGmoXLW03wGs3ytzL79Br687VKKZ4wshT0ciE0QOZ6h\niU1DangFVzUQmySvl6fLwfQ5nD1vM58Kr8XbohJvDaArNtuzSfqMob7Rty/+FdbpfUyc0s6XXr2S\nTdk0z331l0PHnCQGyd3AOfTMcwbJH8hYKX+Vm57nK/HtceEo4OkSFL+vDg7OA5nl7lPTdC6x8DTp\nmD6H1ILkiF7cTB70LDaJnRknf2vuPZAsExRsEnQtNbn4669QsEng7nXwdjgcc8M60paOuxe6lhko\nBoQ/24S7Os6xi3ew4p2Tuf+eMzACgrqz7gagpqSHN7qnU35uPclSwX3REh7qXcI3//NhHEV6B0Ku\nkvHAJMn3f/pvuPogUSHLd331OqlSwdxrR6pHChsikzRajpODdfvRISyvwwXLPsB2O3hLknQsz+Lp\nsah63SBdZlFc3csJE2q5ovRdrgi2cd++paTKbbRPduERBg81L+G4oj1c9MRNOLNj2JZCflUE0+fQ\ndIosFHQUiEz1YXrBCNskavw0nhZiz4VeSk9qRq31UrrGovJ1A8+aAIF6gbdLlq01n6TTudSSfRz1\nEJ8gaDtGZWu8nLWZLG1GmJ6Ujx8vfBY9AYmy3OHNCDgo+Rn0qgSeynjOsthMA212lLnz63lwwZ9o\nTYXobMyn9VQTn57le9c9xFnlW5j03DVMDPSgaDbN8TwuO/5djKxGOqygpWxsTZAq0OjbT0XTciuo\nWRt/f29ZqtQhtEOj4nXwtil4O6QvYWp5HHfvMJXUJUmqlzURz7po/3sVwnRInZ9rLzUaujd8NNEQ\nODRrFrPyEJpg/n8cErS0gyvqkCoGhHz247OyhF0p/t4pezGNgCA2SWY2+2Y4KNsCJHu9xCeZmF6B\no4x8Z2kek2C97IEegL9ZyvOrTR45eRkyCNUq5O0SeHpkJilvs45wIDRsvjVeTY5Y3XgwEFSO19d5\nrEzow8+fiLFdji0DRuwDsMduUfrIsHXpD62lHYJNJiVrTbS0IBNUiFdoCAsCdSqOAKPPQ2NXmFRW\nZ3dHMWFvGq9q8KWj3sA9I0K8UqHj31I0f9bghCvX0Jnyoyo2SsAgWTyStTuKIBNWydttE641EDay\nDSEuSBsa23pLCXgyeF0GYV8KK6KjN7nxrfHhbZX9fJYuM/HRCQqODamkGxxBdn0+3p1DdkLbr13B\nb664Z9wqtu69uWRyPNnQg8EIjt9+YwDfuORpmsw49W9OGLFs6cYLEBaY/eQg2RjkqbojmLykgchs\neWPueX0S7qnRQXXQgXjrlOM28m7P5JyqqdBqLzXhg4/HAKE9CvFqB6XOS94uuZPs8gjb35qMSKpj\nWstZw1yebB2uK3ybVjPOlfUn5Kxn6+Dus8kGFbSUg7Ad3D0O3gYdR5U2KtGJCnl7LfwtDlqfihnT\n6Y35sB2BJmwm+rsp90UpLoswo6IdZWkvpRV9LCmv54Ka9bgVE69qUBmMYOTJSqz8XTapEhedC/34\n2y0Mv4Kn20FLShskf5uF5QJsSEfdWHEdrUMHAXpUQUsKtLSsOBCW1PjonQOmz8a/T3qM+tqH7gV3\nj8C/zc0HT8/PsVn5qFCOzS0hVT8IEZ9ksvWZmaSOSFHslfHCptems/mmFXjbFTY/M9QPP/+sHfS9\nl6t+PhwfZZLsKx+Mbm115M9vGLSsXOhuY25lC7HZWaaUjozzf/T6p8Y9Dgpr9LH8+eiR3Nx8DmFP\nCmVGnESVk+M9OoDoFJtMPoT9KeYVtnLqs19H7xdFTVQ5/GXl2FWp/5JluocbByvjHQ9Mv5TbH6s/\nVF/Ym9NTerjKdMcL0w8//dwDzHa1c0/PMlZ3TKJpZwmuXhXFGF3w6OPA3eeQyRc5wbN1YTevLbif\nR6JTsVC4MdyYU4KbKpFm4bHJNhcc/z5PbVnAV49ayf2/OQvFgNg5cTIdPtS4gh4VmEEHo9iAjMKy\nI3fx4MQ3uLZpKc3JMJqwaY7lEU14cBywDBWnxz2ojDuA6GSBnugvqyoT+NqGbEcSMzMUrnLRvcjC\n16ChJeT3Gv7CGRD76F5gU7g+9/dPVAr8zf2lbkc4hHYrgxnL7kU2+ZsUlOzQd//FNX/itsbl7NhS\nja9ZxdsuVWtHE+CwHBtVKMy8+3qC/d7jsUnSEiZdJDjv8rd56unjCTTK4037wg7WrZw5uByk32V4\n58jfrmuJFDBSslCyzqZjoYKRZ3PqMZsoc0eZ7mljot7JVU/fgO12EKZAjwnKl7agCAfbEdTvLOPk\nxVtYUfUWsx7+EhNfyNC03I2nU5A+PoZlqlimwpS7HNSUQevxIdyndBJZX0TgiG569+XjqA6/OfVh\nGrOF3PrOaRSs1QYzy+FaC4QgMlnB9EohKH+HRftiVZq6exx8M/v45MQt7E0UsW7lTLIFNnvPv5Op\nj1wHZRmqHh6KeCOTdKJTbSbObWFpUR2lepTfP3sWFe/IKKD+PMgvi9LXGMZRHZbN38U9E15l7oP/\nTngnpM6Jkmj3s3zBNmYGWomYPh56fwnF72qkCwXu5V0kMzrXzXyH36w9GaXdTcHsLnr6AgRXe8Hp\n7+v2g6dLlgUrpoPplpY8RgBKP5S9rKlCKZ5QedVeZoTa+cvLS8GRJYKpMvuQDN8PN0ZT4L3y7Nd5\n4IXxW4ccDP+qarqHA6OW6XoEsWkW3hZ11Cyj5RZMvWgXUwJd7IkXoSk2y8J72JksY3XbBHqawwiv\nyYSKbv484yEAnozN5c4nzsLXmru/eBWo2Vy7qwG18GSpLIuzQiZKUkUtS2G1ewnVKiN8/rIhQXJ+\naoTS7z+yTPdfAXm75GRedLLAFZFigulpaTy+LNn6AKHdAj0Jhg/cUYeORRCa0sc3Zr7Kid563kxN\noC5TTNrWaU3noSkWm7orKPXFmZvXwixvC5YjuPmtTxOo1SncMhQh2i6B5VLIBAWWV5DJA9WA1JFJ\n7C43WlzBM7sP01RJxdyIuIZWlMa93o+728HyynFGS8j2HSYnmFTcQ313PkZGoyA/QXdXEHedGzEv\nyn/MfYmfPXJoIi2Hgmy+zZ6LpQ3frDtvYPEZW3hgwlsAzFl9+aAdy6HAUaULwIGQKbJQUwpmvkl4\ng87b/3krR751HcFVclJ8zuXbWP/cbJLTsoTXuii9oB6PalL/+NiZnQNh0ZUbeeON+YP2LaUX1HNZ\nxfvc/Nanc7KsB4Plluq/6WKb7Rf+HrfQmfTsFwlvlu+4eI1DoEEQajBRMzaxKh1/m0nvNJ3YNAvH\na4EDepeOFhP42h2MgCBRZWP5bI6YU8/Sgr34lCwNGZlYaEzlsy9SwKyCdgr0BH2Gj5jpRhM21b5e\n6pMFfLhvAopiY6Q1vMEMmbSOHdNxdamoWSFL+zOQKrdRsgIzaKNkpAgSgOVzUDICb7tsK3IU+V1T\npTauiIIrCnrMwd9u0TPrMMvcLO2jOtzHjoYy/FvlOGbpQ8+Ud4O8JwaUeA+G+BQDLWjg2eA76Lqj\nYbia7nCblSkrP0dwP8HTTD4EFnexZuHj3NC8hLebJmOtC2MEHNzTomhv5D470o5KKvdr/4DiJlsH\n7cRuTq7axZH+Bn78pBw3bA3+fNEfWOwW6OUHlpJXf/jDH/7w8J/W+PCHN947bPvaft0KnvGXEa0f\n+gG+cskzvBmZwk3T13HbhwdvPE5XG2jR0aMgz7w+xN4D32DnfGo1N098nqc2LB387FCUs2KTbdy9\nHz3ATJY7uHsEL+2bz7OO9Hps31CGcKR9h6Mf+gz2waCl5b/hULb5uDV5NA8e+QZf2n46d7TMZfpx\nDfSslZlpPQHeT7fD+iCNb1fh36OxUp1IoE5e98pjW8m8W0CgEVxRiM0xUD0WRW+52FPs59NVq2ix\ng7zeMJ32SIiKcJSOjjwmVnTj8phMqe4gtl5OCESmy/4ddXkPpyzdRMP7VUSXpEkWKmTmpfHW6hge\nBV+r7FPI5gvMRTFiYS2nx1bNSFsWtSKJZ09ubbUr1t9H0H+dMwUCIyiIL0lT8I4+mAWITxBUL29g\naqCDV+9fRrrSwtIFwlKYe8YuoebZXQAAIABJREFULsqXbPNHnbN5sm8ype46PrXpMn775ImDypqZ\nAoGvv3I9uiRNy6OTUQxB+owohYu7aL1/Mu4+WRr83ROf5unGheRv7x/wPbKxfwDJcgfb46BkFUpX\nx0mVeAgv6qK2u5iAN0sGnT83L+XyI1fzfssk9IhK+Xsmze48Iq0hsptDGFUG/mCG25oWUPF7abTt\naxe0Hy8IFCQxaoO4W3TCO1NYfp22M2xeWnIH2wsLuLzqfZZN3o2/OMNtr53GB9EaHEtguvqJph8i\nR2cRCZ1EjUV4hyBVJuhdnsGyVLS4QJkV56Kp64laXt5ceQR6XFB1dAsPd02jFzdWQssh4rauIGyF\nDo+LLTsmsemdGaQrTbLHpvBv0HF3aYidXmxNoXBOF2eWbiVfbeet24/GlbCJeLz4m1TmLtxLY6qA\nZzcfwYS/SOn8jmMdLM3h7qMe4MJglAUV6wlVJzm+sJaZxe2sFpUYboVMTRZbFfhahext9ig4en8v\nj1fB1gWuuI2esun6dJoJ+T28vHEe1a/YBBtsHBSKNlvEav55RS1fPvJDftM1HyU29HLeuHukqfbH\nwr9kzc7hwWgKiI4iyBQ6WF5JTF37CcY5qqBsXgd/3z0L3W1xbEEd3yjcQ1yJ89z2hRSs1dDmxjFt\nhesrNvNysprnO44gvVqKnRgBgdo/KRafZmKrgmS1jbc/qzAQnOgJAIG3VSVTYmPHdPK3i0FRiwHY\nqkA7pQtHCMy4p387ieyh84f/U7B1gekT5NXZeHptHATpagvdZVJUGcGYZJBI+Qg2ObijFq6oipiX\nxNI1vHoSw9HI15KcGtiOUB2eb55H595CIopOj+VnWqCDOe4Wnl+1lGCjg56UF9/yKEQmaySqBMIW\nZENghKRfuLfWha9VQbEFyl4vdLgRGWnlorW5KN5o4IrbxGpU9KTUAxBTElw4YwOq4lDfW4CV1TBR\n0Hf3xzkdbs44Yj2vbZ4/xtX46DBCNnsuuYPPNxzHfzx6DgAttSXctnYxt61djNM+vrLdzJQ0Vlj2\nOZ/6yTW8cOIzNFYb7NxRPer6TnWa4GYXnjaVRVduJODq4fWeGcQ0F55uQefmYtQMeFpVkifE6ejK\nIxxKktgeHnV/B8ML5zxNtDLO9rVyjDz1+A282jWb7vp8XBExqsV4Ni83fjROjqDt9pCstllxzr3M\ndDl8s20BLS8NZX9dEfmuVzMOigW+TgPLrUqLFRSs8izE9UFbMOEIfJ02tqZghhzyi2LYQsERgjJX\nhEpXH+3ZPPyuLEXuBJ2ZIL1ZHzHDg1s1sRyV9/ZNwrYUbEthQkUPliPwe7NkULGCFkbIxgxIP1El\no+DpFegxhUy5iZNvYHnA1a0SrId0iSRMqVKHbKGFo0kLIi0hcMUBIcZl7TIaqs/cR7R26PdLVthk\nq7P8eck93PvMGYSn9mHW+3AUKFnezKlLNrJl02T0hDyeq3d8LyRXr4rW9tFLMoZnx687bs3g3y1+\n2NZQja1DNuSgJwVaGuw9Pq47bg2zvTu4f+VyMqUWTtjEbvANij0Zfkmu1Szo/UKQw2G5cmPDjwpH\nhXSZxc7uUt56YyHeToGjChwXLJi+l/fShSwq+twBt/+nq+meft4HB1S9HQtmwEHrT32feu4a/poI\n0PTm0OBjzExyXbiZ24vj486KehplqaZiMThrM4Dsfiq6w6Ev7OWKgtU82nvo32MASlYQW5hG9Liw\nvTah7Yf20wz0CXo6BNbKQuIMmKbklpqMB7ZbqukeDEZQCuiI/W7kY+bXcvHek+nZXoinS2HzMRoz\nvrCbhrulylfHplLy+wV+MmGBr9ZFbCIE9znMyWul61Q/fRuLCO+EcGEc/Wl57SsKI1RpAb5ZsIc7\nGk/FXR2n2Btn2vzNrGqZhBAO29tKyQN65g6VkyU2FZAqd9E7G8qKI1yz+B1++ecLSZWCXZwFZA1M\noMGhzx9AHWXc0ROCwMuy5vrI6zZxV/Uq5v4/9t4zQI7yzvb+VewcJ+ek0WiUUJaQkBA5gwnGsIBt\nsDEG1jnuXe9lvWv7XmyDWRsDxga8BtYYk4MFIiMJoYjyKIxGmqDJ09M5VXo/1CiMNBIiyNi+7/kC\n6qmuqu6ueuo5z//8z3n3GtL7vBSsF0nUCkiTY2w9+VFu2TePl1aeNOr93naLl7/0ArcNTEIwLHw7\nlAOtV+O9dn9fzMxwaWA91931TZYW2zezNicFvfYvmS20ey/SpQJmQmF4kr3K5VniJ27YUrVskcCP\nKv7C5bd9h0OvWOmwRQNXt4yctge/3vl+UjMyzC3oYUFgF1vTFQzkvfQnvDylT+PuMx7mj/3z2L63\nmcL3LOK1IsnxGr5gmvbhEJmWIIERl9w9VwnMntDK2g3jqHrHJlgAqTIH507awAvJJu6vXopbVNmQ\ny/FapJlT527FsATeeWciggnpGRnbMdcU8J3bS6I/yPBklfCEQdQlReR9kCk3+GLTaia69vG99Zfh\nnRxBf7OAPS1lTJzSgdjuxJEQAHsFJu+VcA/oxBpk6ioGacuWkJueQdRFsil7gcE1pJMJ2/fdVTVr\n2Zst4M7kQZdu3W2RqMyzYbiS1r0leHaqgEayXGbhSVupcw+xwGl/3kVO6NT6UASdV4eaqakYZPH0\nXTy55yTMHSEic/LILh1hg5vQTo3IBNuR0JKg/WI4eXIrscESNveX4WlVAA3NLWJJoLk/WaY2fc1V\nyPsc77/h/4/jhpS3sBSLwA6JeL1JokZATtvVSsGERIPJqtVN+OujlLgTjHPaARzPDMxASEtkigRc\nS4JETjKYuvdrBGuiJNMOfNgS3gtmbmRvKsy2veV8bfZr1KqDPNY/hzXZ8Zhug/D6g88bZ8TCVARC\nm45+naUrLPTdYYItI9lK/w/BEm3yrsYNcgEJR9zC0eok0wD5nIIkG+RKdXrKwdmroCRAz6qMc/Xz\nq/bTuaFqBU5Bo0QyKVWiGKaAEhNRWv30zBd43TWBR5Jz8e21pcCZQpmBueaIiZtOSUkUv5qjO+4n\nl3RgxVXS5QJyRkBOCihxi2zhyHmmBIrXa2QKZTS3rdaSNFtt5HdoPP7qApv0iCDXZshHnAfit1pu\nuodxb1zP8UytJ525k62vjn//DQ9B69X3fWQZLxzsNT1UTvzcM/OP2K7p9N2cX7yZX9//qQOv/bZq\nBT8anMD3J77MT1Z/5sDrmheUJJh7PQQ7BPrWHin5PRxjxe1Fp+gsTSv8fuli9isbn7l/McARDtf7\nkS61cPeOnn+mBtwEAW9tjHPdORZsuoz08wfNZHJhcEQgNsHA0wtS1kTMGjiyBprXhZQVMPMSSmEG\nLaNgxRSUpEC8TkR3WQj+PD1xP2FHGq+Uo9MII4smde5BlvY0s7W/FJeqkcw4cDnyOCSdloESjCEH\nvqo4l9VtZHe6kKxbQRUN4j4nA2kPsZQLyxLIDjsR4yLJRg0xJeHsUhA1BSVpk6FcGLBA8xv2lFWy\nQLQIbJZw9xsoSYN47Ycnedu3VkGlgadLQpg/TJGqcceEx5muinZ8ydt2sUQwoWfYT5/fjxHUoe/4\nXXlPBHKWhkNQePmh+Rx84o6+Nq5sO4OdjzfhAjS/gKfVcWDhEeCdW+9g0dobEF4fzWFOuW4dkz1d\nRHTvEXmjHwaiBhXhGKm8SiJrt3+pcXDOiaAIBur7mO58ojLdCU/9kO9OXsrt/3PFx7K/2efZEo/m\n+26h5cv3EDMzvJwu5bZHjmwwf+KGO7j03ZsQdntGEc/w/F7enPJnpv7mK8d93JYvj+RjHUZ61Rik\nqk0cg/YFf7zIB46U+K7+7n/hEOybceKvb8FSRgKtq3XuPvsPfO2Zz4/KND0cmh++f83j3L93EX0b\nSkZV/uou282mjbX4dn8wbZycsY6o/mq+ESnKZe28NOFFAF7LSHxx6RcoenckMuXSKOX+OD3P1fDd\nm/9E1HDz8xXnUrTcnhBd992/8JVQ+xEOu3P+eT2vvDSDfGWeojdVouel0KJO/KUJJNHEermA625+\nicd+dg6RqRb+xmHkJw/2sUamWrjq46QSTnzvOTn7upW4pTy9OT89mQDtT9eTqrClLvtdJvdD/9Qw\n8jP2zZyog+K5vfzHuGe54cUbR0l3L/nGG5zn28T2fBm3t5zNjyY9S8J0cdf/PSh1WvyVd3ly0wxC\nBQlenvYQhdLBxuKpq6/G8ay9gnfHv93LojEWh2es/Qyx3fa5hDcLB+aCw5MsQluFMeXEhyO8NUm2\n2EW8Vqbk3Tit35QxdZFQKEm0NYxgwhkLN/LV4tfZmi/lSm+Mhtev51PNG7mjbD1ntVxEa0cxQkKm\nbmIPd497jCvv+TYVr8exRAHBHP39aX4HHeeonHP6eub4drM5XcWy3gYSy4opOq2bM0u388Lti/H0\nakgZndg4N3mfHWcR2mW7PqZLLYSKDJ+asJEz/HZw6p8HZ/P6homoAxLOIQHp9CHWz/oTi2+88YjP\n3DtXRo3ZMnHDBadduYYLgxvYkSvHJ2U4x91Gp+Hgc2tvQMvLCIJFdXGE1yY+N+b+DkWsViE6Wef1\n8+8kZirELQc3/vFmdLeFq1e0K08WBNs0kmUyiTqOMCcZHqcQb9b5P6f9macGZtCdDJB8sZRgm02o\nY3UKsdlZRMVEbD/O0LUPgLHkt8dC/dwO2ladGE3mP6pMd9e19zL9J7ccIXk9HjR9djs7IkWU+RLs\n6C5hSuU+Nq5rYPacnYzzDFDnGOD/vncuVreThuldtG6qxHQbIFksO/suKuWDZh53DddiWiKPtc/E\nsgQWlbXy0t5msu0+LIeFr1Ua5dR9KIanmngr4ihLxq4Ufdwy3f0tDMebOXqiEd5qVyvF/Ih7cIXM\n8EQL02UiJSRCzUNEoh7ELicFW2xjOzVhsG+RzM0XvszzPXYAfSTlJt7ro+Y5i67TZEItMDTdRB0W\ncQ4KBFs10kUy4c91cFX5GgxLZIKjmwHDzxS1lzv6z+TlHc04drjIVGkovjz6gBPBFJAyAq5++zkW\nbbLAsisiYkOSM+t2Esm7WbllnL0oKto52oNzDbwlSfQNQRCg5UtHz/38ONBy0z3cGannt38+9yPv\n68JLVjLb28Ztj45tJlQ0v4dST5zNrzThHGmtS1VZaIUaUkzG1SOSm5lCaHXj7rVNdPZXLDd+x/4e\nDnWtPV7oHnsReay80ON6/0j+eePVO3i8/jXAnk99+86bDm7jhs3fuIcfDkzkncF6rB/YkU+GW0ZK\n28+Y/tkeYhN1QuUxBMFClQ16O8PIwzKCBaZsYYR0CkviBF0ZzizezjneLTw4dAqvPTmb0lU5cmGZ\nVKmE7oJUlYHlMgluUAhf2sVt9c/hEfLs04MUSElWpcexNlZDoSPJYM7LypYGhIyEmBXtrFERpIyA\nt0NAd9u5lygWslOnujjCQNKDsSpE0UaNXEBCTZqkSuxFt/1VPHH+MOY7Ry8Sjfl9uu3sTEO1K4X7\nnXSX/PNPqZS9aJaBIkhsymeZqh6cfE256xZyQbtSe8M5r3NFYD3jFQ9T7rqF5ot3MJT10L+08kP9\nxoficJnuu1mDu3rOYnFoB3dvX8y00n1seWzi0XdwFMQm6AS2jy5wVV62h/nhNh76y+l4jhEveTRk\nii3klN0Cl1uY4Ibmdzjfu4WLXvj6qExT6axB7p38KLvypVzXeHQ17CdaGTW3+fiP3kv5uNbYx3v6\n7ZyqEXI4e9mXkVrGdhC6afs1SNuOdNqKvFPK1HeOn4geC8kaEykvkJ+SJhiOk1xypC3yWBir17T5\nqX+m7XI7U+r6q19mT6aIJeum4itNEDU8UJ6FzqPLiKUZUZ7pn059YJCl1z7GyT/7+oG/7XmqAceI\nu6+YP+oujvx81RDYdch5X93HwN5CilZKRP67mvrTvsC/z3uWa3z9/PC0p7j73U+TqBVomfNHAJpW\n3Mz6ZA03FS7j1gs64QI74uX+hy7gwQykzksSXHLw91t1zwzMZggXJvj2v77M432z2bZlPI6VQQZP\ny+MKwP1PnUP+tDwlJVF+0PgiG2trePSxM7j0ymWsH66i54laCpMWmhde/d3JIELjVTto8vXRO1yH\nqQrkg/aq6KHYT0TTZQKa3yTzWCnf4SYKDtkmFxb4QeF2QKVK7iDb9Ab/sulS5lfuZc2P72X2v9qT\nqTd/NQ+pCdad/TjgYXVOo1HW2KE5SMZdXPjVFXyzcCWFkof6V29gYnUPTkljz8ONlFxtu47cdt4T\nPNhxCspUg+gj9iC431zpcCJqjiHRFkwLV28aOe2gf7aPmuJ9VHuHWbGnHtOn4wpmWd1Tw7s+W1p0\n7d7p/GH+A/yu/1TO33E+g0kPQlpGCOc5u6SFb1zxJSqIH9j34dh7kYKnS0AWDe7dcyp9rYVIKRF3\nGsxfF/M/U8uZ+OWdvLd2HKKmItakcDo0VMmg+JIIP614mX/ZfRnRtIuo5qZJGaJO8fK0aND0uzRa\nwEHnWSqXVo3RIAvsO1VGzNkrn74ug2SFxF92TmKlv46hIS/OVid3psA1aFEypJO+Jcr40ABnhrcx\n/q3PUT7mXg8iW2hnk+3SQvxxcB6yYOLqteWWStpgeLxE8Qb7R0iXCDgHYbhRIT5BR0yLmE4TRJ2Z\nk9pozxdS445weng79wkHsw4dwyayathOhO9zPmNh4WmbWfbGlA/xzrFxoojoXxu7rr33hGeL7j9G\n4yM34x+DiOrugz3egmGPMa5euxKeC1lYksX2hyfA+RFUUeczE9eRM2U2FVey6w9N7KKJ4fk5Amuc\niJrF4K4qbKooExtvUSbZz4bdWpILV98MW3y4+u0eek+3xZsU4ASc2KZwuZB1xAKqKQtEZ+WoKo9Q\n6Y2ygw8nW/yg+KRIqNSUwNhxpFOHIzpaCuTdpxNZYPL56SvJmTJ70wV4ivaxpaCUgWofimJwYcMW\n/IkS7t+2gEJ/irPKtvNG33hSiSCgU/mGTRo8SwAOaqLdAzodr9XQ/ZlWytVhtufKWZes5dtvXgeC\nhTNix2DUPAPD4z1YEmSK7ExHV78d0eWIiGRKTKzSHAuq97IrXsTOvaUgWeguWx2TqhRs06SkAxUO\nLHCeKCLaeLotW/pmuI3fHva3sy5awyvPH7utyjdnAIDEajtD+7kl83ghf/KY2+aDJp3dYQb22oaY\nugcw4aKzVnFH2XrujNTzh9+ci2e5PddIzM/ge8d14Ln5YUjo/uNs/vo9zF5/JXr70cJ3R+PsL77D\nk6/Nw7dHJHqShtonky2CmYEO7hqu5YnOGUeM/Vdc+ybPpdwsH2wgp8sHKtv7iWi83oU+snY5PODD\nV5CizJcgMC5LVzRIJq1iDTmY3tiOKhkMZ924xTz9hpdT/DtZHp2FlNGRshJSzl7YwBKQIzKJWouL\ni3ZjWiJBKU+zK8oL6SLeHmqkO+lndbQWIyshuXUMXYRwFrc7R6rLh+GCbLGAJYCQE0EHQ7SQBRNt\nQwhnzK7wuvIm2UIF57BJ9vwk6Q4f7m7xAxHRx265g18PnMayP48kN4xwr9/Hi0lVGgcW6hTBJlH7\niejtQ430jPQdnHv2Wl5YNYNzfJu5/NffITkhT8nifjYsH48jcmI8HOY5JVZtbWBLYRnn1LSw0L+T\nlrOKSW4owDVgH1NfHMNcHzjQ2hGbqBPYNpraHU5EAR5seIIvtV2GWZGF7tGL22PNGQ+Hq3+kBcwB\n5aEYl/g2cdPOfxpFRC0Bnj7pQXyCyN29k7juGPv7uzIwcs6MkF0Xft/tjsewaPZ5W1izZPIHOv7R\njgXQ8Pr1qDtH/6ClC/eRNyS6e0L4N3x0yr3xewdlKMNGmreyxcx39vFSqoYfbzwf5zuHkWuRQ59r\nB5BoMD5wFXQsWDKj8jTnf3UNr//PHDtv0wAEGJpqsfuq+7ixcwFvLJtiV/KAwdkmp87axpvrm7lk\n7nruKlsLHMwbTZcJpCsNCtccQqxGFGHGFUNYLxaQrLGbo/1tcNGX3+aHRVsBuKz1LLb1llIRjjGY\n9JBOO5AVg9unPcm/3/E55IxNHB0R+9wH5uuIHp2CV5xkSgSSDRquTuWAMRHY0twN943unbFk28k2\nWyCgxq0DN29kikV4s4Drql7envI0vxqu4Q8/P//A+4amm+y6/F4kwf5sMTNDQHTx2fZFLNs4gcJV\n9m8TPzeF/yUPxqURfjLxGc5156h74UZc4Qxhb5rcn47u3vZ+KNg8Wk8UneBl1tfe442OcQeqI4I/\nj5mREfIiYiiPe70LUbNXxPzThsjrEum0g+aKXnYsr6Pu6QQd5/ipfnl0w9ueS31oVTm8/gxBV5bO\njkLG1/cQcqb5adVzRE2Zm7f/E5m8wmkVu3hux1RCgRTX1a5mRbQBl6SR0lWqXMPcUbaeRxMF/Ll3\nFleVruZ/r7+YyocUIhNUJl+1jQdqXsEhKGNWMpOlMpYMmUKBbGOOUEGCyL4gzh4Z54wIsfYA1S+b\ndJ4lEWyIEN0dZvG8LbyxvYkvzljOSe52/s/3P4ecOXhTdVxpcN+Ch+nVAyyNTOa8gs38tn0hF5dv\n4pvhNn4fL+bxnll0vlhr29RX5bDyIvKQguG0CNVH8Dtz9Eb9CIKFIFgUeNNUeqOsXTaB8mX2hCJR\nKdsmNzOzyIoBez+cQcL74YNWR08U/lErozC2gdF+ZAoFMvV5BMWksmSY/lWlePbZfzMcAqYMiWaN\nM6duwyXlqXcN8PAvzzvm8dbddtAcbUXW5NpXb0Ltl8kX6Ywf10PbuqpjntOhiMzRuHrGapZ0TET8\ny9iTwRNhYPS3VB0tW3FQ0WCJAv2zZLKlOrI/j6wYLKpppco5zLZEGXHNya6+IoxON44hkWyxyUWL\n1uIQdcrUKH/YPRf/fUcTbNroulbjhzOf58m+GewZLiCzIYyYt1uVtJCBHJUI7hgxfnEKJKst1KiA\nqNkKkEyFjuDSkR06t01/kfXJGt7uGYdpQebdQhwxSJdYaGETKZRD3uEmHzTZ/ZmPR0Z7OM66aA2/\nLLf74U4U2T0UP7/uQR7um8/GpRMAKFnQDcCbk58BDpLNTImFVp/Fu8Y1prNtbKJBYNvxDUy50+Js\nm/8IAPVP3kRg+/G9zzhrmMzOII4hgdmXbmbTQBnZdwopWGxXdnf9semI93zx1udpyxQhiyaRvIf2\nr48b9ffBaW4yJbaCKludJ1iYZEH5HqKai560n66hIPm4A8WXozwcp9Ib5byCzXRrQRodfXxzyTX4\ndkuUrE6RLneSqJIQDHAPmKg39DI51MOZwa00Kf28nm7i+d6pB0iuGVcQvDoMqxDMY+UkpLiE6bJz\nRS3Jsud1igkiuAMZjK1+XL22EZOpCgiGhZi3yAUlehcbeHcr6G6497r7WOwyaXz45gO5sR8EmRIT\nV58IJ0dhpLf+6mtf44+PHJSsJut1kE28Oz8+uW6yXmfVBb/glBU341g/es5+eGX00UQBP3j9ck6e\nuotIzs0phbtpdnbz7WVXEthon1OyxuTsRRt4rW08rhVe0qUWWomGq01FPYZpqaFCrsDi7DPXs/zh\nmUffcAR5v12lFzW70urqke11ickJLhq3hWmeDn78yGdGFdOSczM8Mf8+9hkBfr7nHN464+dH3f/f\nFRn9IPg4HHSPhW9c/QyaJXFrsPOox2k6Yzfbuku5aPxmnn1zDp6Oj97rpXtg6z8fJKUn3X7LMcll\not7E3SNizoqjLDv2Q++DwlQZ5ch46Ou2CYf9t+h5KR6a83tu7zyf3gftStvgLJOfnfNHftF2Jt07\ni3CWpw4M3sAREl2A6AS7N/ZQAgz2Sr4aH3EpjVic9LktrO2pIpVwYhkCF03ZxCt7JpDrcyOlRUI2\nZ+W/f3gHO7RifvKj0es1yWoBT9fIMS4fIrG+gDv+6SH+/cd283W0CaafspOWgRKczwXIFAtHfA+W\nBGfcupLbSzYwdfXVJHp9fG3hUn69cTHBVw4uWqz5sT3JOmXTZfxg3Iv8249vYHCuQeEqichUi/Am\n2+hGK9C58eS3efoXp7/v73I8sMSR1S8DCt+zR6y5D7zHH95ZwENn/46vbLqKZMRNuDhOKuPA78kS\ncGbZva8IucuBFjKoaeinKdhHa7yIG6uW8ZOWc8lvDLH+C3dx2aduQPeqyMk85/73cu7ZvAgtpYIu\n4OpSUGMw+aptbBssIdoRREra0rSzr36X9ZEq5hS2kzEUdEtibzKMU9I4rWAnBgKbE5Ws6a1C+UuQ\nQFue3rkOso05ptV3MCvYwf8q3MH8b3wZNTm6gjE4RSFbZGKENZztDtRhiDfpSCmJwC5I1oCoCfj2\nWkh5i5pbd9KdDNA77EPa7kWaGmPLvEdHEd3ua/NMruhmbmgvv910CuPL+9i+rQpnt0S23KBgncjg\nHAN3UQrP8340t0DFlXto6SpFkg3qiiLs7ivkwqYtvNYxnoWVbby8fBpVr9rnbgkCwsgQHW1QSM1L\n01jWT+u779/D9GGxP2f04ySlYkMSc/fx53z+NcjoX6MiOhYOJ36GQ0DKWaTLBMwR0w53t0B8ah7F\nreF9y41g2WOqnLWvhbxPYP6V7zHT187rkQns+sORk1SAS2+12wZmOlRey0h8aeVnCS47ujGMJcDw\nLA1lJHbBGJk0yhVpDF3C6ncgpwW8Y8ecAifOTffN635G2UgFY9hIM+8P3zoxB3ofHEpGAYabFOIT\nNRAtBMWkoWKAWm+EEkecpOHg9c5GMmkHX5yygrcGG+mJ+3EoOuND/Xyx5G1uuf8WCjcdWYboPFti\nwdxtjPf0c6Z3K1/ZdjVeR47e5RW4ey2yBQJS1q6c58s0hIyEVJBjUX0rKUOlL+074Hxe4EyxLxlg\nZmEXu+JFtK+owtVvez7kfQLZYgvHpCimKWJsDPD5K17hewW7TghZ3N/beaKJ6KYv/Yrxz97Mz898\njNt3nXOgitpy0z2Me/Pz3DL1bb4ZbmPSymtQXw8ckMSCXe35IAaUhyLWZNB2ha1iG//7m4/Ifjwa\nLv7SW/ylcxL5VwvRXZACap5jAAAgAElEQVSdlMHvyxBvC9qKnjHy3huv3kGdZ4jbSzbweDLA91Zc\nQeP99vWZLnfi7skSaXYTawS5IYnXlSORdmAaIpc0bWIw7+XNrU1gCiBajK/tpdE/gCiYVDii9Od9\n7MsGWdVSj2uPSuXrKQyXjKmK7P2Myd0LH0XCYm++kHq1n7XperpyIdYPVNLXEUb25zE0ESslIwXz\nNu9UdRTZsHtQsw5MU8AwRLReN45hEXe3hW+fjpLUEfImuk9Bd4kMN30yQk7DAdmGHCRlLj15DUv/\ndOyIkmOh4YLdbO8rRlk7RjYKY7vp7taSVMsumt/6At533fzHV36PZsksS4zn5efn4IhAos7k1ct+\nzqV3fPfA+2OTNQJbjuyzffSbdzBeUbl9aBJP/O50MkXWgSorHJQy78c5179Df87Hu521iOt9aAEL\no9JeFDcNkYJgclQ26X6UfqqdH9c9zUyHStLMsjGvsrD26Kuen7hnoTJjDGvBjwEnkojmGzN8KdDN\nrcHOY27nVzNc0rSJrbEyXPXxY257vDjciCh/SuKYVU5fm4iU4UMRUX1RjCmf2Ua8aezG47x/7HUM\nMQ9Fn+okcrZ9Z2kxB/+y63Kea3yJh354p31euyV+fOc1NIf6cJanUGSDFdmDFadn//Nno/Y5dFYW\nZ3OUxDid2Hib4JoyRM7OIk+Pkp6T5tNXvsX3v/E/FKpJbm16i5qyIdRulZW9dZjmSKjysMDAfB0E\nOP+Nr/C9x0cTUVO1jYz2I7q1AM1r8dUXPg/YfZnBHbDngfE4n7PlG4cT0VgTCJ8aYunv5lP34o1k\ntwW5aNZ7PPTb80dZfifOS/JArJScpdEc6kPEZM2P7+W2xc/wsx/8hqWX2atIt13+OIWrZP70wBk0\nfnE7YEfKfBRIeVATFt4u+7ftPMvPk388FTmQ5zstVzC9tIuqyiEiA34ml/VwQeVWPl2+jrYzH+Tq\nC94+IHNRBNPO3RRMvte8lKXX/5Rzt36GUx5ci+6RiI/z8sgvzsM0JGqqBrlm7ruEF/RiKrA7VoDX\nkUdKiQi1KZRFQ+xJFXBb/fMUKglypkyJGudX9Y/jVXI4RI1Bzcfa3irKf2RnxoqGBdPjWFmJrKHQ\nr9mDvKgfeW0WbtYIbheoeUKkZI1GfLKGs0/Gvxtqrm3FMyWC5jXJBQUGZsLOoSI6uwowNIlzLlrN\nV5vfYI+WpPx/tR7Yp/ctN5vfHcfTnSdhZCUMU0QtSqP7LCyXQbJaoOZ5i6IH3USboOma7ZQ4E5xc\nv4crmjZwatEurpq4js+HVzCluIfl++pG9X4LloXmkUgXyeguKA7H2d7+/vnLHwUfloSaNUf3i/8g\nRPSvhU+CiI4FKWcRmWbgnTWIt9NWeshZi/BqBedaz4Hetf1EFOx7d+mWSTy4Zz7R3Nj9w+JFQ6QN\nlceG5/KFjlPwCHlm1nZgXRBheLJJ3icQmT56wUbzC/g3q7h7BTveygTTr2MaIla/g8COYxPRj4qn\nrrnzqH9b/PB3ALs6GpJOjDLgw8ARsfAUpKmv6aewIMHufUWs7qlGEQwSmpNErw89J/Gb9Qtp2VVB\nOquSySv45Ry/61vE4svXMTz+yEnjZYtWcUrQHmvu6TuN4ZgHwxQxJqSwLohQtLgb/9m96LVZMAXU\nkjRBf5r1fZUMZ93U+4bQDIkyd5xyV4wCV5oly6bT82I1JWsMAm0agmFHTGlBE4dsoEj29fC9gl1H\nnM/HiQ9CRLO1H44V7pdcPtxz8gEiuh8ed45vhm2pcLbDfmYcGneRmHywX8mUbUMjOJj3mTuGQG8/\nEZ3+41uOm4i+96/38MOirQy1h0hMz6JPS1JfNogi24Y+YxHRWLPBvmSASnWY1TmNNcl6lN6DFTx3\ndxYse66gBw2yw06Gt4fJ97oRJZM3uxvZ0FeB5DRANkETad1UyUtvT8ch6pzk6qDR1cdkXzdVVUMI\nFnSd7sFURWK1MpgC27IViJg4RY1OrYC10WrebB9HTpORUiLGkAMhoiL6NUTRpCCYxO/OIokmhili\nWeB3Z5FlA0s10V0WBZvTqJE8Qt6eD6aL7V7VjzsN4nBkTjp4ATReuIvNX7+HZHMO3W3h2ebA0yGx\n9E/zSFV/eOvZTZtqj0pEj4aoqaIIEtdNWk26zOLV2CSqlCEUwUBrtM/Zt0fk0ju+i744huu8vgPX\nq3rOwBH7u+jZb/BQvIqY7iJVPpqIgk1E02UW8Rk5kjUmS9qb0UyJynAUSwTdZSFJJlpOxtBF+trH\nvhliOSdLEraa0Cs6SZnHVod+4tEuaUFBTnzinPi4kQ+bvHDOLymS7IdH3bNfQk6Off7RkEhvNsCe\nPSVohoSj5+NZ2blvxWzulsazQ3Ky871alMTHr1fPlFgYMQftsRDe3coR1v4Anu6x32uJMP7kdm6b\n8BzMyNHxch3Jbh+3zl1DsaTw29dmI2ftXpXiWf3IioluSTz3yGlcv+AdZEHCJ6r89rWDfSPuNhl5\nu5O8X8TbAWm3jDYlQ+hlFynBydLz7+Jf/vRPrHxjKv0VChtjlYBANOkm3+3BTCgoaZFp57UguE3U\nqQnkl4K4DrtXBcPOj3OM5Fg7B21tfKbEjm5xDQjE60fiGQTQPcIRg6RzCGhxk6oQmDiznX7JSddr\ntTgio/uwHK0qa1c088Cbc9keCPDWU3N5YMks1qyYyEurZvHUawvI+wWWaI2cceF7tLhCpJ+wicix\n5BfHg+FmkPIi3m4NMW+g+VTSC1IoWz3EZZmMLDOloJv/PfE5wo40finDlb42bth7Ng5R5/uTX2C3\nVsw49wCv7mtCVxTqHINMVJOcGt7CbVsupOn8vfTsKEJNWLj2KGR3+VgfqUYqyCFudRHVPFjrfORD\nFuKAyrcX/oVvFb9L0gKPlGOup4257naeT0zFQGRLooKNkQqGWwrRfE5EHfrmyRgeC184zRnlO2lw\nDrAm62fl9mac0SMvWjVhv6Z9ZQhLtTD7nMgLh/E58+wbChGujCGvd5OanCeXV3B4NBbUteGR8gTk\nDHd3L6YrEaS7XiWwVcQRN/G3mxg7vMgxmfQWPwVvi1iISCmZ4vc08j6J3BeH+cWpj6ALCtsTpcwP\nteGW8nikHLvTxfx31zx29ZZgbvfhHAZHzD5PUxaQcyZyxkI0BAYrJExNQkqd2NLhrzbORqhP2fKq\n44QQ+/Buh0fg7+eR8IExVrSLq1fE2nmQYFkCxMeBu/fo+8l7RNIDbibU76Nieh+9G0bL9q2dbtZY\n5ezYXkVZZYT7WxcSyzlJbgljifb47TokMD62KEsuZGFIIroX9JCOqzxFVekwsZYwgVaB93vSZArt\nGLEPiz9tHrvvbz/u3jB71H9PBCwRAlOHyPWNTXh9naPHlYEZIlJhjqGWQpRwDo87z7jwIBsilQgC\nnFTdSXs8DIMOXPtkGqd1Ue6LYyFQ5YpydmAznklJ3tHr8Lcf3Peq0mJWDdZRG4oQ09zs215CstuH\nlZTJyiJBX4a+qB9xjxurKM/s6g48ap5xwSFMBGrcEWYEO2n29LAvH2Z9dxWlL8i4+4wDCxyJGgnd\nbRvF+UqShF0ZYu0B1MZ9fG7Dxccdr/JB8Ot1x//btdx0D+dUr+DhvfM+cLbyvdp4pDY3fb0hRP3g\ne4sn7KRDL+TqApvo//7ZOaQqLSxZIDMjjaNTwdkj2VEVixLIXQ4MJ/z+n+9i5sydSBMzdL5zDLOa\nqd18bedZaDvffwEuWwArv34nqmDPDe9eOwcLEXcoQ29fEPUt/5j9iKZqu/e+ufg3JDFZnR7HI28s\nxNMt4u0aPSHJFai2qiIlohdr+EuTZDMqqWE3eVPCMgXIyri6ZOSsvQiVL7DISg5SppMiJYEuyuwk\niKdVRk1YmIpIusrCE8qxIjqOOvcQe7JFCCLs2FtB3pQQ/Dqi27B7RWULxWHgdebRTRELyBsSimSi\nyAaZnIrY6STUAs7I6PPPBxQ0r4jmYVQMzuav38M9q2a/75h0vFD6Dg5c3138LOMVndKSvfxmzjL+\na+sspLxAttDC3SPafa4f4hhq/NgPtsOjXS5rPYvLw1sJiCqLPQPctXMWMZfCk/tmUOxJ8p9Nz/DC\nu3MBe9y6/qw3+UzJGpa5avAH0zQGBymcNMjA1oOLMWpc4LVcPQnZwQXTNrChtxplJJkkW2ghpwXb\nhDIjYbgtvjTzbT4VWkefFaTT5yYviIRDKcL+NKJiIm/yjilrP+2UzfyoeAtguwJvyfuZFL7pyA1H\n8InKdH+1/XT+a+PpRzUZ+luANTnBxNJeWl5tJFuXw7nHZvenXLCR31at4Fs9M/jLs2OX7fONGR4/\n5Tc8F5/Ow28uHHN1628d2SIL58DYt52StMa8CAFi56dwO/NEIx4m1XXTk/ChSCafr13JJd4dlMle\nLtx5Hv0P1ZKqEFCSkJiT4Zfz/sgF7iy3DUziB4Wb+Fr3Al7e3syTp9zH9Zs+R2JnCEuxDgRl3z7U\nyH1rF1G4TCUbFnAuHiS+oQDdY+EYFMnU2lbiUtr+DN7JEdLvFXDrFS/y8E8P9nGasl3R9LXZK6TW\nyE8VPzeFZYHPkyUy4McXTmGsDuHqs3sdDo+1+TDwXN3DpyvXcdcLF+IYEtBnJphQ0s++39d/9J0f\nBYG9OeTEaLeq1qu8OOoSnFW7A92UuL5wGZolEZayPB2fxvcKdtGhJ2nT/Cx2mTyeDFAhD/PtHZ/G\nsgQWlu6mwdlP2nRwpX8TbbqX9ZlaJjh6eCU2iZ5sgC0DpaTTDkTBYkFdGw9VLztwfMMyeTcHQ4aX\n1lwpCcPJS93NDET8BPwpEiknZzbs5NXd42GPB38rZIoFcmGL7174LFMdnXToYbKmwoPfuvSIz5ws\nl8kWCAhzoxiGSH3hEH4lS5kzxjmBzezIleMWcxTISXblSticqGBddxXpQTeST0MULKZW7uPOmmco\nkRz8cngCr/Y105+0Jx0VgRi7X6+jcLNB/yyR2nmdvNz8AgAPxEpZl6zFI+XYkyqgpb8ETZPAEjB6\nXQgGGGEdZ7tKflyGqsfsyYmhigxMF9H8FkpMRB+XYVp1J5uWN56oS+MD45Jz3uXZlz+8dGks/CP0\njO661pY7H16B3S/TzYYFnJHRj9/IbA0hK4EhQCgPpoCoGnblYJf3iKpkplggU65T09BPe1sx4feO\n/OJMSSA2wUApyaDvcxPcMXo8j0w3KK8dpMSdIKU5SGoqA1Ev7PEgmOAYElBSxz9NOFEy3b8G9Jos\ncvuxCdjhMt28TyJTJJJakGJBXRt9GR+fLV+JU9TYp4XoyBXgFDW6s0He2tOAllZR3HkkyWJRTSsX\nh99DweCV+GSeWD8TV7tKPmgilmfQI04st443mKG5qA9RsNjUU47jdT/ZQsiW6Xxt0VKmODuRsJjj\nyNJlaEQMJ3u1QgxE7tlzKt3tBTi7FUrWjJ7oJypl8kGBbNiiYU4Hbf0FSC1eCk7uZfnUp/4qPZ2H\n49CIlo9y/P37uWXfPJasmYqzzx5Ts9V5xLjMC5feSZse5vubL6MiEKN9KIy+x4teoIEuECqLM75g\ngNWttVhZCcWfR0srSMMyZ59q9+jlh5wEt9r7jTUZeKoS+F1Z+rYW42mI8a0Jr/Cjpz+Np+vgPZct\nhBdu+CkNiv3c2KMl+Zeui1n9XiOBluMb+KJTdPZcfD+LNl/K21Oe5ls9tjHP6w/Oo2j9iHxuxGOj\n8yxbXaF5LdRxcRyKjt+Zw6vmCKoZBjJedEukczCIFnMgZO2eUNOvU1QW47TyXQSkDLvSxazsqCUX\ncSFmRUy/zviaXpKaiiRYKJJBTpfZty+Mo0u1j+kzsYpzOFwaJYEEhimS0RTiKSdOh0Z80IMgW7hb\nHChJ8PQauHuyBwy0UpVO8l7xwDWqJgTSUzKYaZmFU3fw3tMf3fflbwmHynSf/tZPuWLTDTSEhni8\n/jVa8mk8osmPe89inLufjfEqgkqGv6ycRvWEPjq6C/Cvd5CoNTG9Bmogx/+e9iLPDkxjU3c5zuWj\nK7KxZp3ASITk4bL0ZLVJyeR+3p7yBF/rPpnerI+5oT0sG2pkW1cZaouLXNg2aJXSB4s3h6Lg4i5C\njjROSafCFeWZnVPZ9el/O+pn/0TddPflQn+TRNRwWUxbuJPNS5twOTT60vaPqHbZVYIrL3+LOR57\nRnE0IgogiPBfvWeyLxXEchv8vS33xydp+FuOf5k7USfg2zPS05RS+dT4TbytNtARDeJWNSp9UUTB\n4q6hU/hsaCWPjnuK7956Oss768ltCiD02kT//B3nU+UZJmnm2JsM49jp4pXpE8lpMledtZzTfNv4\nyWAT/9M6i0VVu7lx5nJ+ayxESEsIuoRRl0XodpIrMhEUk/C4GJm8gvJ6gGggiOywUASdh354J9ff\n9k0AciEB34QhosVeXDscuHvt3i12eRCAulO7EZ8qAILkQjA028DZLePtPP5JWqxxtPvwfvSsKuP3\nf7yQIBCZajLlBBNRgEyhgkMSUKMHRyBXQ5yFlW283mkTnbe6GriifgMlSoxTPDt4LaOQtQpxCvaE\nZrGrm+2ah5UnPcnPIg1sT5Yxz5sgKPXyaGw6F/o2oVkSIib/WfIublHlWmExSc3Bp0vXco1vaNQ5\nbddyvJOeTNpwENedrBuqJuTMkPdLhN0ZTi5tJ6478HmyDHtcIIqkx+f45pxXCUop5jkl5mF3zz84\nxmeOn562H7adPuTiDEE1w6LQTvxiBg2JXZliRMHiU8H1zHXv5hLfJqKlKn8enkNLvBS/kuXzJct5\nPtnMymgD0byLeYV7uKB+A//RfjHfrnqZb82+gn1FIa46ZQU/Kdl04Njb0uXENSc5Q6ZtuAC3Q2Nw\n2AWaSLA+SiLlRLLsVenw607AnvBGJkhYkoVUkqFsUpQKTwzl40io/hjxYYnox+3u+7eG95MBH05E\nLQGumbWKR9fNxR3MUBWKEss5cco6Awkv6cocMYeKGhMPtAa4+i2UuEynL8SCqTtpqShmOOLFvc2J\n4bSdRCnMwrBKfthJYK/IobmgkekG4YooBa40u4aK0DQJvdODEhdx9+7f7v+dHNH3I6JjQU0Y5L0C\niqpT6xoirKSYoNol7SIpzgJXKxtyVUx1deKS8izvrifgypLVZXoyAVYmG7kmuIoz/Nswpwv0NAdY\n3V5DVdEwYrFFNOPC78wiCybRvAttt4/sHLtHfkawk/nuXQTFPAOGi+VZD38cnEeDe4AtiXJaBkpQ\nZQMUi1zB6HHDVAXyfgHNA3rQYCDlQVUNDGBoZSlMBXX6MPn3Plh8xkfBgX7S+2/52C67eyrepfmF\nGQdfEMAMaqzPVXGNbwhj8jN4xBxTGuPMjX4dZ7uKcwiSkTCrSny4W1U7pm9hDm84TcbpYNNQOfNr\n9vAOdXguShJ7vRTBFEi3+6EriNGgk047SJsOZi3azspNjQS3yGje/Z/RJqIz113J8N4Qng6JwAeI\n//OVJujSk7w95WnSZp5XO5vwOnOkKiyK1o9sNPL9hbebpItELEmgoXAIVdTxKfZz37AEmgJ9JHQn\nLllj0G9ng+b63SBZpLIqW2NlFDmTiFiUBhNkvRmiSRceV45d2ytwlyXxubIUupJs6qtEjMtYskW+\nMofi1An7U0iCRUZTSOVUMmkHRkZCz0sIKRklLuAYttDdAlLess97hEiniyUMp936tb8y7t7sItmo\nse65ySBz1ILI3zvqFC/rZj4OQEs+TbPq5vFkgITmZFDz4VeyjHP34a22WwDLS4eJqaXIKQHXXgVQ\n+FPpbBJ5By6HRqrMLizt/76q6gfoDfoxel349ogYDkg255nS0MXWzjJMS+CkVddR6E3R0V3Apt5G\ntJCO6Lbb3LydItkCCy1g4ogeyW1+2vAEMx0qN3YuICBl+JeTXgKOTkY/UZnuV99twer9+GUg+5Gt\nyyFHPzjf1qrzDK21JU96j4tMpz1wCKZ9M2xtqaV8/CCfXfJp5PQxCGZxHkGBrC6jbQ186Ib4Twpy\nUsI6xs2uHDZ4Hro6IidkPE0x6rzD7I2H0QyJwZQXh8vkuS1T8YQ1hi1odPZzd8NaftE6k4LNAqsq\nyij3xHBLOgOWgqqYdL5ZybJkPTfOeYvzfZvYp4e464mLqR7fh2ZJWILIuNIB9uaC5LIKFUVRHIUZ\nisuiuN15omuL0KMOfKcMMKW2i07Di9Nn8Eqsmc6BItSY/VmS9QamJaApIoIhkqy18DUPUz2un61r\n6shMyeHaY+dyOSKSPZkUR0tHjgVn5MjX8kEBd4/9/5Zs/1t79cQ//H1dOZRDKqO5AicD4yXOqNpO\nS6yU9NYQjU09lDtjDOh+tmYqMASJndkyCuUEOnFipkTGUtmtiyx2t9NpBChTogzofl4ZnMTv9s6n\nJx/kP8pbeC9vsiYXIKymuLV4GYtcBydGO7UU/x2bQNJyYCCyJlbLRG8vGRSKnUkSupPLyt9jQ6yK\nWk+ErQNlVFRG6HG7kFwGN9W9yfnuHINGioiZxy+q/P75I93hMpKTwvfA1yGQsxw0NHUzoPkRRYu3\nohOocg7jEHWylsLqVANhOYEkmLwTb+Tsgm1sTlSydGASfZqfnUPFlHoTLN01EWfAoDMd4unuaZR4\nk8xr2M3Py96jJZ/mF4MzeTpWS2c6hCKa7BguRpbs/qwcEuGiJB5VQ1ZM6ouGGHLJyJ0qgilg3TRI\ntsOLJUGoPkpjcBDdlCh1xtmx+6Nnmh2OX376QZZsm/6x7/domNjYSWvbUUJz/r7W7T4QxpLpWiJE\nmy02d1VRUj1MVTDGBH8fkwK9qLJB21AhoUAaMZgnpUrkveIBB0lRh0xARA5oeNU8IX+aPtODqYBU\nlubyiRsZVF2wwYeSssiGBTLzUtCURWxzk4u46En4Uba6kTscuHuOjLZ6P5iKgOYV7FiaQxbgGxfs\nJdL514mA+WvhcJmu4RTpn2dRUz1IoTNFzpSpcw5QKWfwCBoe0WTQcCEJJpNc+1BdFi5FI2sqhBwZ\ndsWL8bhyTHb0sFcvZKq3i7qCCFHdRaN/gNOKdrIwtItHWuYSzzkpqYnw02l/psYdISSnaclWsCZT\ny9ZsJUuHJtGTCtCZCdGf8pFIunA5NTRLxIqrOIZFpDwYLhFLFIhOAKM6i9Ofw6nqeBx5Ml1eNL/J\nV6es5WerFhx7jvMxY9HUZSz+3Vc/0j5M1eLLly9hnsuekBxeXVWGJfyNUe6utR38TWJ8bt31PPbI\naaiDEkrKvh/VmIAckw7cC+kikDd7MAyJWM7Jvq2lyEU5Ygk3QsyOLnNERvJcsyJmWY4NsSoGX6jC\n1SeSqLV48fM/IyDK/HBwMrduPAeWh9BdHOzbE+z+VClvV1rVmHjAaPBQ3HPpA0xWHSPnb7I0U83e\nvkKEhExwh71YrPkVEEXitQp5v/2ZsoUGCALlrjhuOU+pI06BkiKq25Ldam8Ut1PDHcpgSAKZrErG\nUJBlkwbPIFWeYSxJAEkgmXMQKLCrsFlNIWcqJPq9CME8QmGOyuIoYW+avCFhjbRMZRIj831LQO51\nIOUEpJxArhBcA+DtzqP5FARA8yqkSyU0H2SLTSwZ5BFCqkYkNL8d0aekT0ysyieBw2W6AGkzz2Vb\nruWLpdvwiUP8eu8pVHuHGcx5ieoeTEGkL+Hj3KoWNjsKMIMGuiGjJAU6DT8lJVEq/TEGtxSRKTWR\ncvY1+swl97JJKCOmygh7XCQbDIKlCeYUtRO1XPT0htAHnSQsFVMXcXXJSFm7TUgLmuQDIBp2zI96\nWKug5oEfzbdXRXYYKlsSFSzZN4mbGs/gaPiHddM9EdCaMig7XFx3xWs8/MTRv9T9qD61g8G0G8sS\nyL1bcIT50N87HNEjL52BBTpFK2QMJ8QbQG2IM6eig5Udtfg9WbKazNyyDkxLYCDnZfdgAZfUb+YM\n/1b25ov42eazuGjcFm4rXsk5W/4J0xK4rGoDbjHPkv7JtPYXUl80RJVnmJ5MgJ19RZxa20pfxs+s\nUDvLBxvYsbscxZfj3HEtvNTazCXjN/NWzzhiSReBv3gYPCOHx5flO81LuX/vIiJJN9YmP/qENNdO\nWs3ywQaij1QyNMMkWBMl1hrCdJuogxJayKRgrUii1nZdBYg2Q7Dlg313g/N0CtbICIad8XbAvfev\nhILNCXSfekCqOzjdR6IajIYMsmyQG3LhKMhwddM6ytQom5JV1LsGmOHaS96S6NUDZC2VYjlOuTzM\nRMXg3ugk5rp3s8gJX+g4hbCaYpqng1plgFcTkznTt4UFTnti83YWurUQTlGjSLJX9oqkDBty5UhY\nBKUUKdNxYJu1iTriuoNJ3h7+sHMOsmRydvV2ap2DTHO24xPzPBefxjWBtWzTCvnZ146eaJX3SiRq\nRBZ+ej0iFqJgktIdzPbvoUodYkD3kzUVEqaThe6dZC2FIcNLpxamNV3Ciu460lmVRbW7aUsUMJj0\ncG5NC9Pd7Zzp7uKdbBGbMtU0O7tpUAbYmi+nQEqStySCUpqVqUbSpkpITtGTD7K8rx7DFAm70nQM\nhyh8wE3PfJnGBXtJaSpTQt345SySYPLY9pl4XDmS28L/0AWrfwSZ7tEwVoyK7hKQM/YPGpml4wxm\naSrup9IdZVe8iN6ED7cjz8RQHz0ZP4Npj21oo4kIERV3t4gat2zZesjE3S2SHKcjpUQCOw9OFNIl\nAsbEJHpeBgucnjyZYRdIFkq/ghYwENw6liai9ii4Bmyn32Nhf8+hOGKK9vcs0z0eHC7TTRfLDJya\nR3IYiIJFeUGMB5oewScKFEseOvQkIhAWVRyCzG49gzRy8/Yabh4dmo+IRZO7lzXxGvxyDs36/9h7\n7yi7qvP8/7NPv23u9KLeuyiiN1MN2GBDbIwLxMHGDWGCE5cktlfK1/klseO4BFsUgwsY29iA6aFj\nDKYKCYTaqI+k0UjT59bT9++PfadpRoViECTPWlq6c+7p9+x93vK8z6sxI9FNu1dN60ATMYJTGzYy\nx+kgpXnMMHrZEmJuDV0AACAASURBVNbSFVahEfPUgFJTnpXspM2tY1cpS4xAQ7K2o4mgz0GvCtC3\nOlg5gVGA2IbiMSUmN/TRksyxPV9DXzFBvCpLZEs2XHbtW0LTfeYz3+Wi1o+x66k3J8C27vPLOHbl\nRzi1ZRP33T22BtmvidF8MUSj/17vDG659lwAxDk9LGro4KlVczH7DDRPoPngNkVkN+iEjlIbjS2p\n5ijVMYXEvH5KG6vJbBO49aAdNkC5aKN1WXz3g7+kGNusKk0mjDV+/+wxSqG6oBFmYqShSn7MrIfc\nkSRKxZAJyD7vIHUIE2ODQyu/sYy+qESNnuTYlR8heGC4JnCQpuvV29jdHh0np4gN5dAWpodUT8gx\nt76Tk6o3E0id7iCNJiS1RpFA6gyECTq8LJYWEsY6a3qb0bUYXUgak3m6y2kcIyBtemzpq8P1FXvO\nsQKOato5irkTSUE+cOj3E2zpqiOONAwzwvcNorwJscDI6aR2CjI7IyJLUGxR9aG6B8VpEaRDZChA\ng/T6YQ2DWB/rpL/TMZKm+/zf/RBbmFy0+SwanQKfq3+SI2ybW/N1PNq3gHqrwIreyUSxRrVdZvtA\nNZOyAxQDi4ZEga5ymi2bmklvNigs8MiuVMGL3GwlimX2aWiRQC7Ic+zkNjb2N9CQLNJgF9g40EDR\nN8nlk+gbVe18kImpmtlPLAXlskXY45DZqCs6dgrMin9TbpL4dRHXn/Uz5ll9PFCYy7f/eB5mr86m\nv//bfV/725kZ/cHyZ9H8QzOqETlyVNG7taSPfzjsf4gnR3y3ZSU/Xr7vIvwwKdECwaQ5e1hc28HL\nm6YhpfZnERp6O2G4Y5dZfTp6JeHmNkqMGp+NbS3U1BYBQf+uLK6jsa2/lvpkkX4vwfq+Zh7rno9p\nS+bUdTLd6eElr4GF2Q5ycZKd5Rp2+9Ws7mjB63fo85JMqemj3i6iWZKtA3VYRkS1Xeb02lbWBC0U\nelLs8LJYVkjKDli/dQJRySTVrmG3GwxkDeZN3EONU2ZNxwTC6pjY12mPq9jTl0EWbOTMEsWuNOnJ\nOb521EO8+NwCqjap33AwC2x9dA/mH167UmhypzaUUbXeHKHlUQiTY4WVRh2/00fzh2fy4gSbMC2w\n20xc3eADx69kenUvPX6alOGjCYlEUGfm8aRFVi8TotMfpdgdVrPWz3JCcjMlabHaTzAnuUeJ/uhl\njnNynJPuZ4qh7t0LXoAvTY6wu0AEJEREV5xhS9CALmJ2+PUEGGz2mpho9QKCp3tnIQQ82zmd4Lla\nisLi8Cnb+Yf6jUwxBE26wXGJDvJxBCLikQf2PT575xnEFmzSq7CdkN3lKg6v3smpqVaEkHSHGRrN\nPANRigiNhOajC8mxie1kzBJlw+b8Satx9IAzatdzcctyPlvdwaJKvdYUo0hCLzLP6iYhYhZYOXTh\nscabSE+UYXO5kW2lOlYPTKTGLjEt3cuOYg3bV0/A2JjALAoiR+Obp9/JsdVbOSW9ke1BPRLBwvoO\nJqYH2PBnyIweUvhflBmNbDFKKderEti1Lsc1trEh30hnIU2V41GXKBFKjZzvEEtBfVWRUBPEiZjI\nNwnSECXB6VY1xpktOk4PuPUCrxbcI8s4UwrMa+xEsyTJlEd10iWVcdGtiJJvIUKBXethpwK8ULVC\nMvP7VrIsTAZvUZm4McDXdTRfI/rzkZ0OCeydGR2YqaOVDAILpkzsIZYaH2lYRV+sE0kPT0IEOBr0\nxz5pTeAI9a/FiNktLfKRQyF26PVTlCKLRrvAukIzO4o1TM/0MCfTyV9Wv0BWL9OkF0lrkpRwmWH2\n0mzksM2AYmyjC0lS98laLnrlBaNbEhIR3vY0sVVpvZaG0pSQcxetZXa6C4SgynbZ0l2P3mPS+hnl\nqN0QzyLeneD081ewaUfzKJvojWLQxrppxYnkt785befSx3TTZ/m88MhiNrROHncdvSw48azVXJhV\nBdifufHj6J7qIyrWpZg8bw9tOxqVxodQLdB0XxCbArOoWFRSE5glUWlvJyjoFnVzeph/bBvHL24l\n1A2WTNjBPxx5DytK0/jl9mN5Zfck1nc3Ibps9EAgdTCKSljI6dQRPRbWgMAa0LA7DLRIsa700dIO\nnPKpF3lfZhf9scdA7HPjthOIe+0h5l2qQw1WLQK/xoJYIBBEFgTVMWbaZ2HtbvqjJAhoMvPYWkiE\nwNJCJIKM4ZHQAywtIhcm0ASUAosgNsi5NkGs48cGA6UEUgqyKZe5tV1MSvRTZbgkdZ+M7lFtqnKY\nCB3dkEhNEEuBlOr6Jepz9UZ1rUJCfqqGiCGolkTVIXbKJ5YaeBpW33CUsjQloubIbvqTBlbX21px\n+KZhZGb0i6es4Jx151PvFDmzeh2P5BdSFAWezs2hy00DgonJfqQQeLFBznWwjIip6T7KkUljokCH\nn6acEeDrSF2gRYIwCTIZI5o8jlqyCcOKqbdLdBSrKAWW2l9kEEQ6fqjjGxp2r4bdK6iZ30cQ6ZRd\ni/Q6aygYoAeQW+Jx58d/QGmSRqa2zNREL08WZ3Pb9qMwkwFhZ4K/PmXfAnVva2b0sKu/j18NyV0S\nr05QmO8hSgapNh33iBLalgRGSSAi9SPpZaUgJjXlCMUmiFDRG4O0JLG7QhFSmWMlQqOpJq1GSUWY\nhFR/S1H53wDdVXx1pJqoI1tFovysRMQCzVPb5+aH2J06Rkn19xIxaL4kqBIq0uWqRrJhQv044Qgx\nvmBOCXPDaHW+Y85ZzaudE3BX7kcn/BBGPL9ATaZEruQQrc+ge0qIyChJepeEUIn4pWtKxLEgaQfE\nEhwzpORZGHqMqBS+p02f2VVddPspYimwtIhqs8ys5B66gwy50GFGootqvcQuv4aeIEVCD8hW5GkL\nkUMpsvBigyrDZY9XxdRED4HUCWKdpO5TYxQ5ytnG5qCRfOSQ0V0CqdMVZihFNqXYwhQRuoi5+ZmT\nWHrKY6wcmMKR2e3cdMc5Q9cdOXKofuHhT32HjUGWaq3MS+40XsxN56m2GcSxgK0pIlti5jXiuQW0\n1jSNx3eQMAK2dtahbVD10lKTRAmJUdyHBS6kemAH/38TMJjVjU01DspNQokyobI0/Uf7VL9koQVS\njRP9zRFrel2o1I/sDWlAZKqMktSUAy4qpdmlpndx2hA4533LabZyeNKgL0jS7aWptwvYWkhbqZZZ\nqS46vCy1ZpGJdj9ZvUQgdTK6S4Oew6r8mJ1RBjc2OcrZQSA1fDR0JI6ImKBL0prNnqiMIwT1eopA\nRsTElOIAWxgkNRWpjmSMJ0N0ISjFwajWG54M0NCGWi3sjUjG6GL0s7/oh6MzMmFKwrwCxkuvTRb/\nUIT5LmPI7I1Sy7t77BmFfc/B5QkRelm1ENsXBufcAyHISkSACsxI5biA0rSIHHUeQiobaCSihEQv\nDx+/PCHC7qoEFPYxl46EVzeOdP67CMldo+ca//g8Ym0G888QFH47EO4lw3LFx+4H4NrfnPc2nM2b\ni72f9XcbSlNCRKCywIl2ndKUEJwIZ5s9pBOQmwFRXQC+eo71vE6UUe/zRH0J04golWwiX8fcoYSk\n/JoYmYhACoSnIa0YQgGJCJEzkXaMlg5U1jpnI3xNzRMSZDLCTPkYRoznmlRni/R2ZxAlg2RLgVLe\nRpYN9LxOnIiRyQij2xzK8MuioXow+xrbrvzKPq/9bY0/S109XF6NoDDH5/pTbkYmQ5IdkpqHE9Ss\nk5Rm+EhNOZZBBqycxCwqh9EoVhxCD4ySoNSiWmdIoRRRtRDMfOVfQaL7al1iCKrUPkRUaSwfqheE\n7iq6EYBZEJh5sPskTp9EK2noZUFcMcxFCJFT2TaC0AG/Wg5dFwz7DjIe+3J69smFPL5kPKmVdwai\nUCdftgkDXTUGnuVS0xrQ8FKexA4TZ4eFudvE8wziWCNXdNAExFLQmC5QmyjRmCqQNANqnBKGFuFH\nOpqQFAKb/iDBplITudBhe7GWHW4tm9wmeoIUMxJdBFKvOKE2pUgZxbYW0h8kabDypHWXFrOferNA\nPnIYCJNs8JuUqE4latwbpukLUuRCh3pT1Qg2mjn+6fS7yGguK3dN4ndtS0Zd90iJ+bN/9jVu2v0e\najWfe/YcTkL3+efD72NyfT+aLzArbYu0VpU93d2XYePqSQS5YbqJiAVTj9iF1zT+TBsPaki9SY7o\nSAwaRYOOKIBRlmRftshPkwQZdUwRKSd1JKL9t416TZD6/qmZfpWg3Dj6+CKs9OFMq3o1w5UYZYkY\np8eomKt4TtGMcdL570CEUieQOrYImWj3c3S2jef2TGNV30Re3jmRXJggkgIvNokQ5GOVrjJFSIBO\nLnZwpckUo5eF9i4CqZHVAhwRYYoYV+oUZUxJ+sRAb6ycxpL0CWREjZ4kqVkEUr0E++IyA7GPK0PS\n2ugHwxYm3dFwD7dIjjZ2c7E7ZtneWP+Za1l/8i08cuV3+Pwn738T7uD/4f/wxuHVStZctYw1Vy0D\nAVec/iiRU2kfld1HH+69HNFgnH7dsQkiUDVZRkEgRyR+RCyQmgoSjhcg1MtKYXwQZr82fMx3d5zg\ndeGkKVvf7lP4s0EelueqmjauqmkbtXxfPeL/D28vzD4do6ShlzTWXLWMrRfcwI3v+fmoXvZVW0Dv\nM0i2GWhlDd0Ds19HK2mUu5LkelKEOQspwW8J8CYGkAmV/RgI1dfd0zD7dfB0pBOBGRMHGoYRQSDQ\nygLNVeviaUS7kpQ7kyChvz+FyKsyj2JXEtFrYWY9RAxSl4i8oZKIgUAGGpqrkagrI6L9268Hldve\nsGEDS5cu5bLLLuPSSy/l7//+71mzZg3V1UqY4PLLL+e0007jnnvu4Re/+AWapnHxxRfzkY98ZL/7\njU2ViSw3x2x9/40AfOiwldxZPhqjoDPxDxFT7xQMTFfOpNQhdJT6m+6DWZSIWHHHfSHQy4Jyo8Tp\nEUTOcHY0clS/Ps0fNuztnmFnWPckUldKliKu0CYH71uslgVJcLo00jslQQqkIRCxpNSi6geMosqs\n2n2KHun0xQxUKSrm4e9dz4svzgEgnFPirxY9x613noHhCk68ad+RgkMFXk2M3Tc2bqFpMeW8g+gz\naVouqf7CbrZ+qg7LjLBFL5EUWE/UkGuw0bIuQdmku2CRqSuiCYmlRzQlc4SxTkIP2F6swdDUi1wT\nMbEU7CxVkzR8DC2iy1cOXZXh0eFXU2/m8WKTTj9DKHXKkfpxG+08XmyQ0VzysUOHnyUXOhVF1BY0\nEdNerKa9N4uUAv3VNP78MlObephV1UWL2c9/rTuL0rYqzJxGjv1nY1Y8Op8PH9lIlePR7aX5/3a8\nj/r0+OkPrTWNyMSY3QZhUiJNiZkTbNnchLYPoYgDUdm95gB792ts7idUa4nYZIRq5nAGtNwoqVkL\n3ceEBCkDs6hqOGJrOFgTJQRezejt9wVpAPEg5YkxRtFIo2pMFlaqaK/uKYGn2ACnW+2gOAHCVIzT\nrVF7/i62bWuk7vnR01rr5dcy9yalbKpveXdwCMuRSSGy8WKDw1M7+I+V5zKjqZvtf5xC0BTyB2sW\n5aLF3El7SOg+ad2jPbLpNjJMsnqp1kvkYpNavUCEwBQxXbHNZN0jLwXVWkhJCkpRTCB1IgQbAhdH\nxDTow/c3kBEDsXLwTSGIpSQgGpUF7Y6KRMDOsECtZjEQ++yJTLaFdWz0mnCEooh9NLOaFmPflPcP\nbjyXv530MN1hmuJsn9TGg++BeqgjP03Ne5lt72J+8rsQz3zsu0CKz+44idK0gJ/feg4J4PDz13Fx\n44v8/a8+OaoObDyYuRHzeyVzqQWgBcPLzQH1WRoqoG4O9h6TDNktg4hNZRQOGjFGSeBnJdbA+O+R\nwfk2yMqh4/xvwk1TnmZWZhFmTmPeh1pZd9fccfuqvxOxsFmpI05/8DMkRiy3cofu73zYuetpy9Vw\n4/xfcvFLn0G+nB13vdIsn+QmizAtMQqCVV/8EYf96Itv8dm+ubD7VANTMy+5q5jmwlSBMxMRbp3A\nm1tGb3dIt1EpF5NooUZxUoyQYPVqGB0asQFBRhLUgJYJiPMmEtBLGlE2JEoJpC6JbYnVoxM5UtUU\nh1DOG2ixIE4oVWMRVoJfhkRzNWRaoHfYhNkIraxh5AyMssDamkILJDD43pck9ghA2aXFUgb9AK+2\nAzqjpVKJb33rW5xwwmiu79/+7d9y+umnj1rvxz/+MbfffjumaXLRRRfx3ve+d8hhHffG9yraYfa4\n7qFlj958PBzmI/p1ug43aXglwG2oUPDiwWzICBquhCCtHEERg9M9OAEryqwWqAyONCuUXE/1lIwr\n3+m+VJ9D5ZBGFuiViSh0IEpAchdDxephUjmiXlZlTsNGD5E3qF0Luaka6faYyBJE5vBgv37q/Zzc\n2UzYX42xIcmtG87gpc/8gKNu/NLQOkFKYhYPzQliPEcUIPR10CRWv8bu97vsXjUFe0KR4qYsmdn9\nuK5JfFwJvcPBrI/wKu9H3zcooDKkth5Sa5fwYgNHDymFFo4R0JzIE0lBQg8oRyYZ06MYWmQMjxhB\nUlP1iO2VAqUg1omkwK6Q2FUNhDrvtO6xo6wUatf1NNK7pwrh6VS16tSu9dCDMvGzGu2nTmTHnGrM\nmTH+6ixkJNKQiIOokymtrKO/JuIjZ73EnnKGre317MtUHsyWCkNiDKjPr9mZHAGr+7XXS5QbFaU1\n3uskw4TALEgybarWzCjomEv68H2DxJMZNH/EWEhUxvA+ENlqghtkEQyOuf1G58fp3Ro5igURpCG1\na/TGVVsqGyHpzKWZOLmHwqrmoYNYiwYO7oa8w+BFBt1+mgHfUeJLU9t46fF52AWw+g1ydgK932BT\n+1TSJ3s0OzliqVFjlKjVC5Rim66wiolGH/k4wWyzB0dE5KXAlToQka9kVR0REUgNXUgCBCUZYVfo\nuqbQiaVKu0RSYmoangzxonCIqluSkkhCDJRkwFPuRAB+suM9TEr1M+A7LKneQW+s41REOUbCr2SY\n7pn9IJduO42VHRMxu1//eHmrUF5cxtjmcNrZL/OnO/avUvy/zQkNJvqY7e/sYEJpakijrjiRT2ya\ng90x/Ey+ct983PcZ/Pwvr+HSO6/E7tFGBfL2htsU4+xR1LjYrjC4xsEg42pkdjVMySE9Cqmr76zc\n6Odp0BGNbbWPD3z4GR7YtgBvXRYzLwgOK6LpMXLVO58G/3qQbNfwjiuw/s65FBb4ZNaqZ3NvR/9Q\ngzT2T129feajACS2HvpjLVxQZMOpvxixJEEp54xyokfigiNe5pFNx2IUBGuuWsaFG9/HmquWMfen\nVwxR2t9pEFFFACgDF6YKnLTqQyyd/iROj8R4OVEhx41gPRQkRlkQm5LIkQSZSiArVNnSwIlUkqxb\nx2uIIFLZzrAmhFgQJlRCTyYioligFzREJJARROlIJd0qirlxKsLe6igGn5DEqQhpaMSWGPK79oXU\nTsYw2/bGAd+AlmXxk5/8hMbGxv2u98orr7B48WIymQyO47BkyRJWrFix323ClMBw4YyWDUPLCseU\nmXKXRnoHNJy+i765Juk2Sd2agMhSE4PuVmixCTFMFRTDtRjSUJOIFlYc1F5VuyhilQXVQvW97sph\nw3eEgxsmVLZVGsqpHarZKKMiFDUQ25Li5BjDjpBOjN0f0fBKgJWPKEwSo0QcslqCV4/71ahrH+mI\nApxyymrChCR03kH0ibyJDDS8+ohE2uOfz7kdN2eju4L+njRByeKyRc8hmzwKe9KInAmhII40wkgj\nCHRKgYUbGYRSI2O6aCKmENhEUlAMbWIEKcOnHJlYWoQXG/T6SZK6R3eQIa27eLGBJpTamyZiypGJ\nqUVsc+vRkfQEKSwtJO/b9PWmEa6O5gpa/tiPs70fr9qk1GTiTQqIdiVZ3deCiAXmgKYc0YPs3WL1\n6dzVcQSmFime/HgYsS/dFQRVb/xNdzDO8t6weyVmXmLt1ay43CwpTFHUc6db1R5Z91YTbVPiF1Kr\nUHYdJQ++v3ZFuj/asdT8fb/YBxkLgwH/QSc5TKjjWDm5/wysgGh1lu/O+R3eiM44/urxo6qHMpzF\n/bRefi2tl1/LtBN3jLtOtVUma5bJWi7lyOQ/Jt+L3SeQAtIdMU2PG9jdGjVrYWNPA9uKdTRYeWqN\nAjuCOnYFNUQIirFNRivjSw1XqoCOU/nRIgQTdI9aLaz0i5WYSDTAFDq2MClJH19KIinRhcBEp0ZP\noonhZzKSUJI6+djkpv4j6I9SrClPYtP2Rrbla8laLqXI4tf9x457rRsuU2Iqi364lJfvXoB4Qf2m\n5eYYr+7Qmi/dw0tc//kfsfrqZWw+42d8+cN3c/2kZw96+zAxnCV9N8Nst2j91LVv92m8IcyfuxOA\nGXd+Hnt1YkyZxZ2zHuF4RyczW02y+3JEAeyeYVNsX45obA2XMowsaRgjjCjG7sOrlbgLynzz47ex\ndukyvt30Mq8e9yuCxkobkAGbRS0dBJlDazy9VfjvK6/DzyljMrPWojAzIj8/oDDj0CtSHGXzHiAO\nveDapcy5ef/9jg8F/OOlv97LEVVIbNl3LdAPWpYPUeQXXrOUjQ/OBKD10++MeaU0deyz5dVJxJSS\n0kgALpz0Cj/YqDp3GCXJtz5/M/npEKSGx7xeFmi+QPcFWgRGWQxVdGn9JpqnsqWap2EMGGoeigRx\nMiZOxGiBUC0whSTKRsSmOrYINLBipJBgSLSirhKCiVDVlGoSo6BRtVng1gr6jg4IMoJSy/jXe6B6\n3wM6o4Zh4DhjqW2//OUv+eQnP8nf/M3f0NvbS3d3N7W1w0I8tbW1dHV17Xffgw7bHQ+cRHekaI0L\nJ3fQP8tAC6G3lGD6hZs5ZulKtc/WCKcvRkRg9as08mCt2aCh7FYUrkU8bPh61WLIaI5MMZSxKTcK\nwpQgSIkK7bZCJ5SDjutwXWmYEoQnD/DZSx5gyultVG2BVLtG8sUkwtfYdbKaFboON6ltjUh2DRsU\n828YXx7dq4nRFqvMzXMPLsYoC8LGgGju26twceK5q/BqI9UwfR/IHNOFtGOcKg+7uUS5YPOh9E5+\nf8aPed/7XkSzItI1JfKRw1VHPgFSRf+tLoOgbOK5FklHqbR2l9PkfIf2UjVp06MlkWMgSNDrJely\n02giptYqUW2WmZjop9nJsSI3hV1eNesLLZQjk3JkUm8ViKWGFxu4sUkptujws+wqZ3l64yx2rphA\nZoVDdp1O9VpB23nVbPp0I11HGuw+OUa3I/7uffdwTP1e9RW1B28c7nh6MtuemopdUXfzp+3F0dq7\n7rPyZ5gaPkaYHKGs2TD+CJbaGzMaIlsoxd29spB+Q8inP/IQpRZ1YpltksJU1bomefYeihMFfQvA\nr1ZUEqgwE8Y9yYM7lyFBjxFZ0UHDTdWAqs97O7L5aSOOK9W5aiIed1bzGw59DfhBB9R9tZo1fpm5\nN13BtmfGV4TcWVKMk0Y7D8BNfcfhNqgb3n2YINURULMxwk8Lwj/V0u8m2ONXsdVrYGNZ9VB2RMDu\nUDl2e6I0rtSxRIyJxBESV5p4lYxmRvOp0yUZTeBKyUBcpjMqMhBHBJXfOSl0AiIGYlUfOlhPqgvo\nj21u6D6VWzcfzXfuu4CHvnMKEx4w6H1gIqt+togHbziJXz9xEr/ILaAQjx4zg2JGxdnD1rzVJ7jo\ntOcQEXiHl97U+uXXi9VXL2PTaT/nxs5TWfTDpSz64VL+++cXjhFj2hfCSgpg0yeuY+XXl/0Zz/SN\nw6sG7zXGeUbOawBzf3boG8kjsbfz3PbwNO4pJtnyoesB0FKji0EXXqN+9wunrWLhea373fdIQ20w\nIOc2DE94UldzYlQJVo9n2MUVWwWp2ASxrai31352GZsuuZbNZ/6Mf/v5R1l4zVI+v/MEpt/3WZKb\nVdQv2WZw+8xHeezj/3nA+/BuxHW7T8PZYRJkoHRUGWnFXHbsn5RBfghAvKePh770Hd7z8ZfQPcjP\nCofs30E4Z3aNqhUexKGeJVx7xTI+llES451RkQXXLh36tz/M+bmaPz6/8wS0Y1XAZ+E1S1l4zVJV\nw30I4f0feZbLLnloyN5beF4rWz94A1d/8q5R6+llgd6awsppfHX3kXy1djMvLvktfpXa8CsvXsRd\nF3+PP1793aFtEp2S9Hal+2EUBXavqjWPLYm0VAYznuqiNbrEhlS2kB1DpCi4YYtPWB+g53XS9UXi\nqlAl81wBUSUzmg6QOkS2hH4Lo6ghyjqzjm+j7qKdeHUxNctNzLwkqZjhuHUCP6v+QSUpuB+8rpF2\nwQUX8JWvfIWbb76Z+fPn86Mf/WjMOgcj0msUlCHqdAmCyvpn1K/H7lMc5qZMgS19tewuZ2i/NEB3\nY5xe1SMnN2M4e2KUJX5WokUQGxWu86DksC+H6LxKcKiiwKspxVwpKtRdHfys+j5KgBaoc9A9VVvX\n8v7t3HP09cy2d7Ols47IBqdHUtMaQAxhOqZnkYlxXB+6G2OUDuzA2H0a8auj3+jOdovAfXtlqv/w\n7CLsXh2rXz0ebvPYN9/359+GMGOiUCPwDUSvxfNeiiNsm2lON2KPTbE9w10bDuPWrcdiVnuUjy2q\n3lA5gzgUDOSStHdX01dKUAosvMhAF5JYCrJmmVgKHD1AF1JJTUsNU0SYIiKhq0beAAk9oMrwSOo+\ndqU31tZiHb1+krW5Flq7GzF22irA4Esy7aHKrKdU5s/uUTSGyNe4ML2R/2xeOeparZ7X3/TQ2rb/\nGsW4InYxUknXKAnCdExkyyGndm+IcQSxXgsGDZ69DcpvnnIvj+6ZP6rOKbMVut/jU3BtvHqlNx9Z\nklJzpb6h8Pod4zAphs7ltYhrdB8XUX1M55jln7rhauSC/JjlWz94w+s8w7cGd/3lfwHwzc7FAFx4\n2777cQFYWogfG3ixQYwgiHXiKS5erSSoiemba9E3W6dquxq7vcUkD65dQIdbRRjruLFJhEZvlKYY\n2/gVq8aV2xNXkwAAIABJREFUOq7UMEFReaMEgQSt8uOYQqNaM/BkrGi5KGfTFIK0pp71fByRjyP6\nYpeBuMxz7kSu6TiLSAp4qoamF2ISPRHJDo/qjSGp3ZEKNEjo8Ktx5djAwSrfxdzL2H+lbyKnn/ky\ns1s60T0oN719GcWVf30NABdtPosXf794aHlsgV8jKc46CPnUivDe9Ps+y3/2zvxzneqbgmhxgX/+\nq1tfk0P69Ie/e+CV3mG4+rFLhz4b1ujntjQ1ZOE1S/ntb07j1NoNlGaoZ2Bvp3wkwpQcCrpZA8Pv\nBBGp7QYD73tDaqioEUpN1xpQXQDklDLvGecV9PTvjyS5VdFR/BFCS1P2U7P9bsbG3nqMErgTAyw7\n4ENLXuL2W0/DaCwTWwwF+t4OhAl45dhfc/X2C7j/VTW3fPbkJyk3yVG9649t3M7JZ736Np3l68On\nPvrQ0OeLt5zJaTd89aC3NfOCQuzyx/uP5ILpw9ddmqbG2ZqrluEuLO9r87cU7eVqvlq7ecjGWXP/\nXBZes5TPZXeNcpyNEjidyrF8sXvq0HIrpzZMvZjkA/d+if44Rj+vZ8xxRKTUzP2qmCgdoRc1zG4D\ndjnEux3idKSouEUdc0DD7NeQEqyUjzWtQGF3WjErAkGUjCEGaUikqyPTIWhg9WvoJQGxoCNXxeZ1\nE8huHGuPZk/aQ+SMnl/2h9fljJ5wwgnMnz8fgDPOOIMNGzbQ2NhId/dw7WdnZ+cBqb1aKDELEmtA\n8uNeVZN6SnIDya4Qp0+yaXsjn579LH1ekhOmb6Fcpwzz6k0Byd2iUqgvCBNKvMgoSZxeUaEHKid0\nkG6rhVJRdAPlcIaOiioNZmelrjIvRlH1gZOGyqaGCShOjvmX6XfznDuVr6/+C6r/J4XuqoxrbAmq\nNumkJufxlhSYmB2g1PDGnEmn7e0J87sT1SDeO5Lm7B57PV989ROAqhuVUkV07u1XdVGz7d3Y3Rqa\nKzBeTtPdkSWONRIJnyNP3oDdrWG12chQmbimHuFFOrqIMURMk52jzixSa6u2Lf1+goHAQReSQmST\n1j2mOr3YWlhxUGMCqRHEOhPsfmqtIjVWCV1IVr84Ha81S+QMv+Tzkwx6jpAE1ZF6+UeQ2C0QBWOo\nBmgkpPHGXkRBNsZrDPGahw1SJTABekHDmzKWl2UUDjw092fUHAi6J4daGHWfPHxeTw/MJkaQXzz6\nnOr/aBEtV9m4qDpU/cqKiq4bpkY/L3KvU4/NyphLjp2wwsTYPmoHgw8ds5zuvrH1TcndkvUn3zJq\n2aB40aGK1suvZb6V5IRXPszv7j0ZQL0IKgjT40S7tZiEpoSJ+twkPUGKbFWRoDZCVPm4Z+YJ05K+\nOQapXTGlHRkomKzvbWJjTtFHtrn1lCKbrqiKkrTJxw6u1AnQKElIah4+OqYAS8S4UlKKKzXZQiMC\nXAmuVG1fABxhUFtp9+JLSWtg8FDvYtzQpLW/icl37KT6xQ6S6/fg1VtYAwGJjjI1Gzxq1glW9E5m\nhTdWZ2CqITFXjR6bOx+aysMrF/G1KQ/yxb+6m/edsnLMdm8FVl+9DFPozPzNF1h/35xR32m+yuJa\n48yhe6PSpYrqVSa/uu4ciicX9r/BWww/Ayu/voyVX19G6yk3880VF+BOOHjGwcm3H/pifW8Es5u6\nqDl199DfxsBwEPOHr5zB1KlduAvK4zqTgApGjHj37k3rNUrKzhklVmQr+6Y8KRyi1w22dSnN9tEq\nAhiDGaPxsC9ho/9N0IRSNTb6DYxnqrjz5SWIEIzVKaKj8n8OIfuDQmlizL2f+w6f33kCL++cSGa1\nenhufOL0IRtiEA9vnktCP4ig1yGA2JSsvWKZctCA6fd8jtUPzX3N+zn8t1/CnRTwr43Dzmhym8l1\n/RN5zo3YfMbP3pCd9GagNDnkV9Of2Of4u6Mw3GM3qILSREm5STBQVs7Jn9zhAa+7khcu/B6fWPtX\nDOQTzPjExlH7svtUgkWaEqfdVPOFVGNcmlK1galSTmpsV5Jyuy00TRKGGnrWRxQMpdQtBVixmpcy\ngUo+ORIhIdElSbVriAdrqF4zvq1aeKyJ8z/4LBOO6qDccOAB9Lq8pquuuoqvfe1rTJ48meeff57Z\ns2dz+OGH881vfpNcLoeu66xYsYKvf/3r+91PbAiElEQpwZ2/O4V/vfJVjrItOo43aHk2JL3GJj5G\n44IJr3BX+xF0nhTR9LSO0xuR3RqQn2xglFHRBiEoThBYA6r3Z2SLCo1BOa1hQvUGjU2w+5UTXK7X\nSO+JCR3FsZaGiiyYRZUVLTdqzDt7I3fOeoQlyz9B1XVVmBMM3Drl+GqBZPexOvb8fqoSLr8+6mZu\n6juOX5/bQPKW0W+c+TcsxZ3qvSZH88RzV/HMg4fhNag+YbGhmkTHhiSY7JGqcglfGTbcBltRHiy8\nughR42NtShDZ6uEFDqqx9eNLfsqSB65GS4YIAUFjwJZCPQBdYRU1GyI6j1HN12tWGBSmGvilBMvr\nq5CTQiY8JuiNVKatb8DC7NfpDaEtmDr0Ug2yMTIRoyXUMczWBO7kgFRdiWm1vdTaRdKGz65yFX5s\nYKZivNhga7GO7nKaHW31kI2YOaODDdubEHmbUoskyMRYvRqZ7eqZcRug8aWQwlSdrUGB6WaacHYJ\ny1JZJbdoHTDDuT9onuCiU1/g7ntOHFp28lmv8qeHDiNKxWRqSvjbRz8XsSXRvQNIYZde/xsycgRW\nXtWcVK+0GAzZvXzzYq7/6g+59Pm/Jj9dZUUHkdolsXI6UULnB5+/ni+t+ij9XSkIBYkOAxEqBzmo\nicmuU+1+pA7FSTFVmzRKLZLUTjXmg5SgNCnG6hOErkAvq369Xo1ERCoQNLLdDIBbmdCKUyK2Fuv4\n9jF38P26s+grJkjeNzyhbw4O3oj3GyKsrtef+X4jaL18mPa3t8Ns9o/IlI/T19DSQrzYxNBiZlZ1\ns7xzMsWyjUiGxHkTT0B6YT+5jgzWgM6s35bZfVyS3lI93Q0+23trqE6XOLK+nef6puOFKsM6t6qT\nlOFRaxQJKtnSXfYeHC3ghcIMTspsoFnPoSMxBTgioitK4EoXk5gAja4oRT6updVt4cHdC8i5NtxX\nR/ND7erkNY2gOUupQWdgukFVW0SsQ+/iGCcw2RY0jLnerJbgko8/xgO7FtL/RPPQ8r875QH+YcNf\ncFT9To7NbObR5FFDTt1bgdVXq6j2oh8u3afQBsD1n7ieL97whde079TTaX7xle9xmOVw5L8dHNX3\nz4VB2vCS5R/lytlP8tO2E3nyxGVc8OqnyDc6OE8eWPjGKL/7nJ5k27AJtaZ1EjUtOUpTQzLNeazn\nh4vXzVUpukjhMNjHc6yCLlK1hrP6xZCy7UgBndgEvzrG7h1bX5rcPnwe5Xku1510C2cnlWOyLyN4\nEAvPa2XN/a/dEXi34CXP58Ulv+U060J6H5wAQLq2RGRbyr58NoM3I4JOHa9OYve8Nc/xqq+oMffB\njRex7Z4ZOHK00nxyl4bbKLn43Ke55+ZTsKyIH018ngUcdcB9xwZcdMFT3HnHKeN+X54w2JsQvnn6\nPfzHynMJCyboEmHEGLtskHDWe1fyXMdUcoUEmpAYa8cG80ciTEmsOTnWHn/r0LIF1+5/7twfvnD2\nI/z81nPGLL/mlguGMo6tl197wDHwZsNbVAYh+eGxv+FrN316v8f/xssXEC4uYb+axCiiNC8khE/V\n8pt5NXws00epWZDcLZFCcOqyr+ItKnPxgpfY6Y4N3Dq9Eqe3QgcdgsQZqksfx+3bPg4jYqdGbNhK\n+NVVtoCfFUw6u40H593P7JuvwBxBQvOqBXa/RD+vh8Pqd/Hc3Ydxz8bFyC0ptEV5eGL/rIsDOqOr\nV6/m29/+Nu3t7RiGwUMPPcSll17Kl770JRKJBMlkkn//93/HcRy+/OUvc/nllyOE4MorryST2f8L\nSkiJ1ARSB3OEATHz5DZKz07EbZCsKUzg8bXzIBSktqn+ELEl0HxJZkdIfrKBFOBXqTo6swCxKXD6\nYnJTNdwW5chldsYUJmjoLkSWIFmOEV0xVi4iSBokeiOkEARJVYxrFiF/uMedsx4BIPhjHX1zoGp7\nRKlFxyyAVytIdELySI+yb/J4aQaR1PinJffxk1s+NOZ66xvyFMZxRs/5wAs8dO9Y8Y4/PLsIC5gw\ns4tJR/TzyiPzAOUs2lsdQkY7SPtzRCNbUXwGHZhwTglNCk6csZnrTnt0jKDSgVCjJxGhhowFcaCB\nBuuen84fJ8P315+Jk1SNv0sTYsKERs0aiVurWnNYzSW6j0gz4Y8+vfMttEqbHqmD0xchpCTZXsbP\nWoRpnfykBE5vTKrDpTDBQsQZdjRl2dAokdPKTGvqYcB1WL+riUTCp7gzQ6pNZ0pryI5zBZtXTEbY\nivZatUVREKQmVV/YKkn1Bii26BhFQVtYxXQz5itHPMKLuek8v2sqsvzGMt1hfcCjO1XGpOroLnLL\nG/jTQ4cBYHca+J01Y7bZu53L3o3M3yisAfWwuA1iVATeKEt2BHUE9SH1z469brMgKU2Ezz37SWZP\n6KS2sYO2fA17yo04XRrSgLqX1EQ46BQopTVJdiMMTpC6K/FrBH42Rnc1Ss0QJWKkDla/GOOIqvZM\nMPOcLWy/YwbxYo3fdR3NhPQAvU8Nq+cCtOgHrxxY3ZKj1DX2/r+VOHbl/ltgAfz0kh/z6VuvHPrb\njUxsLcKOA6qNEs3pPGGk4RUt9JLGhJn99JUSaGWNoEoggoiaDSFmQafPNnBjQVeg88fyTHxP1XED\nbNYbaGocwAsMDm/chYak3shjxhEv9k5lp1vNzGQ3gdQ5MtlGhMASEbtDja4wgytNAqmzodhMa38j\nvcUk4pkskx/rwJ9Ui+6G5GamiWxBforKBuYm69j9kpo10N2corXUPOb6+6ISX61by2+2DPf89Wol\nT/fPZuCZJh6YleUfz3icf5rs45d1ktsPHGAwT+wl43ic0LiVOx85ASaViUKN5JoDB55iE9YuVcbO\n7F9ewYFCjNXa66OLfW3Lh4faXb1d+NmXv09fFPHZbR9kxdG3AfAfvVWc/aOv4dZJ0jveXONcziwi\nNu/fqD3UcPj563hu+VzKK+qY+542HD2Ec3uHRFVGomZeL6U/1Q8vkCqIp7sCJpeRuSQXn/s0tUYR\nU0TkI4fl/VNY3T4BqzVFmJRjRYtG4P5Tf8R8SylSz79+6QHpb59oep5v8L/XGR3Ej+f8mo8/+GUA\nxNPVlBb42DstRAx2p5pP7B5BYWZEevNbE8CcftfnMGs84gkxUTYcUvlNtWv41eqZqa94BPMa9hz0\nfoMZZY5MtmFeFHHb7aeN+T6xy6A8w2PyhF4uz+5m2nG38ER+wRAz7dGGucyq7ub7E57Cnvgcngy4\nvO29rFi7YGgfbmNE3fQ+BgoOwYDN4nk7uHrSI5yZGGZTHKgu9EC4YdUphLN8vtRx9Jjv7i85nJdU\n9UaDIkdvFS5Z9AL/0rAGgK/tZ71z1p2PV7S45MgX+P2rpxAmlI3u9Ejy0+DOriV8LPMYV33kXm66\n5nwKUySGK6h62uHuNSdj9ym7Jz8VMm37Po4UlcSfJfCzKrMJMDBXIgJR6UowFlooYUSVXrgkzwl1\nW1nyrSvGNDy0+ytJpIfreWJmLUyMqP5Divd+7ln+IvsSS5/Yf9udA1rZixYt4pZbbhmz/JxzxkYj\nzj33XM4999wD7XIIIlatUjRfGcHdUZF6PUXS8CkBtauh9fBGzD0m807cyqtiMnVrhFLy9NWFZ3aG\n+GmdMCUQsWBgTozuQf9RIaKkI1MhfiAQkaIl+lVgVOrh7H41KLSQyv4kXtYgPx3iCS6tp9/IwyWH\nzz92GWkNMjsjdh+nkdwNQUaQ3hlTrtPo6stw9uz1aMT8a+OrLG0/ftzrfXHJb5m/fOyAGM8RheGa\nkZ7nmtk1o5rpJ+9k65oJUONjj9Mv8bIPP8JP156Atm5sBGJklu2yDz/Cz+94LwBPleZy1EOLxv+B\nRsCd7INQNa0AX2w/TjW4lQJhxEhfI3JivrfjHDKOR98kgbugjGWH+ANp8nMiMs156syQ/lfqCSb4\n+FUGie4YpycisauAX59ERBLNj/BqbfJTTHIzwMxBmNRI7YLq9XmkrlH7hy5kOklhQT257CQKkwW6\nIylmbSY+Acn2PEGVRWqbTZCRxKFGakEfOVFDWBVh9egkOwSpXSoSZQ1IvLqY63afxmnTH+eCdCvP\nDMzENgPK7hsTMbB3WlgTIvqmeuSWj836HAzeTEd0CGKwvdLoxd/fchZTp3VRfLaFUosg2TF6hWwr\ndGdNFlfv4uHt8zD0iMSMHKVGG32nQ3GiINU+fmQksocVeJPtQkWekSQ6KycEY+hHoCbbsN6n4+fT\niWtgUrKfKqPMnfeehLNXiejqYOy9+l7vjHHPp7Tq4B1RvzHE6jS45dL/5i9/+dcHvd14GMyKHiyF\n+B+3XDjq72YnhykibC0kFyZIGj5eYFDfkKe/q44dO+swU75S6ZSg9xWxDQ0/kyC7QSdM6hRmCuJ1\nSUhJjIpKMgJ2l+sQoWCdEdGcyvNw9wI29daTcTzWdDfzcjSRulSJ+0sL+diMl5jrdDDP2kN/lOS2\ndmUUtHXUAWCYEVOWuyAEQdakMNnByseUGwz8iT5hziC9TSNIC7RQEkcavcFYR2Sw3Yu7thoLJe7i\ndGm8fPcC9RbLmzxemgQxNM3o5m/e+yj/76ZL9nk/3cNVMK7rTy1sPTtHPMFF+jr2VpsgLUke1sfA\nQJIz57by6CsLSG0ebttRnOex9ZybAFjafvxBZUouve5vDrjO3virKx5gXbGFF3dPUS3H9kNnd2vB\n6X3Nhzgg7Pd3coRt8/U9h7HmkTks7Gzivw6/nfQzSQpT1Dj94Gef5J6fnPqamTn7wqHqiM743RcY\nr6HQTQPNioZ333zKLRHvqd/ETx8+fZRCbnB4AfMV9V4u/akery4e9f1gkPgbSx5gwQntHGubvHfd\nB/jvmbfxgT9dSZQ30fM6WBJnQT/e6mqu+Iv/4e5dh7NtYxNaJmByUx/nTXh1yBGdd+MVB1UC8Y2f\nfvL135R3AX4/cBRHNb7KQkvl5+KTB9CezoKnYQ2AWy/JLO6hd3cWjJjMq/sPPflZsAYYagVovEY9\nyjAF37j0Nj6x9XSsXh17U4r8Ym/UcUWogrYAfaEaLy9tnAYHWWpub0jwja2XoAWCMCnHZ1mFGjs7\navnjbPjHjRfgBgb5osMnF7xA7tlGXj7S5r+r5nFv+2Hs6c8QuAYOUJ4Ykmg3OH7JBvaUM/QNpDAy\nAatfmcqZs4cd0Zm//cIBg3gA5ak+ibbxA8zmmiRfuuRe1hQnjvlu0BEdxCUff4xbf33mQRzxjeHy\nSx5k+cBUaFhzQAf4ofn38THnDH5/m8pQhylJlIqRho6Zh42/mQtff4xUhQKhHE5J3+KIdEuBS2c/\nx7IHz6ZqsyCyBLo//gQspCR3sstfLnqeZ7pn0HnHFISUpNuGBTv2t/0g/I4Udz9x6tDffUeGmD0G\n0SSXiY399D3agllQrL4oISm1wB1rj+Tbp798wPsm5MEoDf2ZsPDvv68+SNWuJTqjnyvnPskXqtuZ\nffMVCAmNy2N2vUcNlMQejSAjCVMx0pBMvW/41HNTDHQf+udA4xF72LWtnh+ddTM37TqFVS/OROpQ\n97LAyg/vT2twSb2YJD8tpvlZ6DgngFgwd3oHR9du57aHT2biH0IGZph41VCeHFC1ziS3WEXM7F41\ncQSLi2T+kOS0zz3Pf7Ws4KiXLiZzbZY9x45+da373LJ9Kuu+Vnz4wqe4467xKRb7gjvFZ/051/LV\njhN55L5j8LPxKJGEA2Hv8w9ml4kjgSwaaK5GXBXS0DzAC0f+jhl3fh5iyGzWSe+KcGs03DqB2xhT\ntVGjMEUSViuKZNPyCM2XJHYVCGoSFCZa6AHkJ2nEphJssPsguzXAKEaUG0w6j9aYdvROgkjHDQ06\nO7NQNGh5UgUe+mfpOL1S0XCbQ/Ssj9zjkJo+QKlkEwcazkYHBLj1MdPuDehaYvOlT93J5dnd/CZf\ngytNvrX8POK8id359opKvdnIbJOjKGBj+pVVWiX1Hh1S/8z4155/X4GEHZCyfc6dsJb72xcyr6aT\nNT3NyNvrx91mJEotAisHRlHSc1RcyaiOhp9VlPjcLFVPpR02QHlnhqkLOrC0iG3PTqZqc6VNVFHN\nB//z/77LST9/99Sn1RzVxeOH/Yojf3b10LLz3/88dWaRnV4NXmSQD23mpDv59RMnkd6u4dZLnG5B\ndmuIn9Kwc7HqN9brUZiSwE8LSs2C8qSQ9GaD5G5VmpDoi4h1Qd8cfWjclZpVOyyzoGiDI+unzCIM\nHOFjdZiEU1zs1gRuk2p3lX3VpHpTgN3tEls6e45L4mflkKCB5ivFv8RujYZVAW0fhOrmPIsbd7Hi\nrtEBstJ8j88seZpf3TrWmChODVnxgR+w5MGr2XreTwCVST3xJ1/Zb+uhQaiaZpVtKi1095sZHaTl\nAvyhrL1m6i2oe3awCM4YwHw8S5iEwnyP6pdGm2/56TGZrRpNH2pja1cdDx6/jM9s/AS9d016zee1\nN779pZ8MUT1nPv4pAL5/3G38y/rziR8aPb5/9ZXv8onvqjFXanl3tgdp/dS1zP3ZFWNo815dzKZP\nXMfCa5ZSmhqOou56i8pEOXMUjRaUcxr0O6PWHQ8//sx1XHnj+M/Y3tkeqcHaK5fxr93z+PWvzzjg\n9QzO+cdfsIrn7j5siNY461ev/Zl+JyG5a+x7ZtVXlnHu+vNo3dpCZo01NH96NaotoJxVJOxKIJMR\nmTXKMSpNjNF8gdM1/DwUpsZgSJI79H228glT4M0tEwcayY02Xm3Mv37gNv7t+o8PUXMv3XYaq25f\ngHFaDwkroOf5ZuXgjkB00gD6n7K4xxRxXkwx4fw2bpx1G2f/ZDgXFy0qoK/eNz1SahCkJc7MHPHK\nP28btLVXDM+dB5MRveay6/nsfZ/F6R4h5PUaO+149TGbPn7dUJb0rmL6TQm+XP3Ju/jhzRfC0QOw\nXN03eVQO8VIVa65Sz9KOR6YeYC+QOaWT/FONQ1R9PztsFwdVkmSHxuq/XsaSb11Bw0U72PzyJKxe\nDXe2h9b9/5N33uF11He6/0w7vag3S7Zk2Za75UYz2MZgQu8QOoQSggNJlsCmb/buctndhGSTkFAC\nhJJQAg69Y4OxsXHv3bLVezu9TL1/jIplSbYMJCS57/P4sc7MnJk5v5n5zbe+r4K3XkT32CR5h7dU\nDQd1cQTTFPC507S3BsncMNBHCZ2okrHOgeEUkNL98/i/3f1HfvLYDX0KCmBzgETH6wiqQGXlIWqe\nHwfY5brJQgMpIXLrecu4PLCFcsXHrP+8g62/G56Y8UvlrZYTdtTIcNpSEfF6P9/IaOSM3RdiKRZG\ncYrOaRI5WwRytgiks018U7oQTIHClf2n3l6p4IhaeFt03O0CyVfzEdIiO5MlzAg2IqYFxLSAM2Ii\np0zy19mGlceTJj43gahDdLSI3ObAVetAFCzSpsyoFTqRMTLeFoPUhBRnzdxJZKKOo0mxm3g7TVKT\nk7g2eomWQdpUiJkpxFey/+pjd7yOKNhZzcrHvs0Hb87FEq1BjqjmPboRcaQjbfUwYAq6gJwQyP9Q\npr0+kzYj3jPmIpEKHd0togYE5AQIeWlioy2UuICnVkb3W8QKJdIZEqHJQRIFDpwRk8DeEFn7NDKq\nDHx1dkltaKxCKlvBkgTksTFMS8CjqMiiidCt4GqSiBeIpAMiSgx8TTpqpokUk3Bt9xAYG0KRDKxW\nF1ZKwtdg4Wm2cHWIuHc2IKbhlqBNQBE3nRTJ3eRmRTlxetVxj/U/AgSzX9/z8Ele8wmU3FRlv0yP\nkurwfeBDFE0qsxvZGraN31WrpxDecmxHFGDM4hoi40wi4xjSEQU7Y50oEMjYA746iyvHbcE3Jkwk\n5aSmIwtzbNLu4Y73n+f3GgdXbfw94fZL3jv2RodhbeVSPOLgyHDCdBDTHXSrboJKippENqbPwHDa\njnsqxyIVlFADApHRMrpbwHRKBKpi+Jp0m7grJ0GsXCeVbRPBRYtlosUSzm4LNcNE8/bLB4iaXSrt\nbrcI1Jr460yC1Tq+PQ7kuIBc67LXHZDIXieTuy2Jq9Wu1e6e5B6wL8Hq0YG2wN1h998r3TKFgQjK\nEGK0rionP8zZx7hzDw4eIMXipKe/y4azf4Vhmbwa95EpeUiNHj4tlCgx0AIWqVyT4LxWlKhAvEyH\n0FC5LxvTL9wz4PP39w1uxfiioXxoGzpyAmSnQfiEgdF+d7P93NR/MAbPKh9fWfPNYzqivSREW374\nEKHZw3vrty/7Gnc2nsi0dddw96xlBNa6+emvb8LrGEyS0uuIfpH4R9AhTY4yMPwGlx88E4Cc4n7h\nZsMFVpsTV04S58mdmIfFEZRtPgR16Iz64dstdPc/C0fKdhzuiN51/Wvs/qZt7I/EEYX+Of+J0Z+M\naPt/ZszccBXvTnyL2+auAuzWEt1j81ZISQFJssCvI3XLRCdqRCerWHlpnF32NVSDNvmMr1bEd9B2\nRJP5Q787zWlRpDoX3r1OpJTtHN//6NUkRtnXuuzdW9m+dDKxGSmie7OIvl+APj5BdMJATywRsjO5\nrg12ZvTdiW/xny2LB2yjJoafz6CHPTgiHJcjargs8k5rGvH2nwUv3fILUpbCJaeuP+a2yVHDk6g5\nexzZ3izpxd6R8UlcftXHQy7vfTZ//UxPpVKPI/q9G1/kjbmPsOuuh2jQY9R9dGxHFLAdUWDXnfaz\nKycEpKiEnBBwFMZRK2OUvfp1EoXQvrSEQJVdTZaxzkHgoECywNYPPjwgcjSkUgrmrgCd+7IJ7Bhs\nUzh7dF17HdHQJJPNP3mYWc4WrJMGRkPkhIXg1snYI1Lz/Di6T1CJltl2QsYekVGzmnn2qcVc+r//\nyv3J3OpBAAAgAElEQVQdx24D+FKdUTsqY/czprNMyNDYoyaIpFwUrTIR2pxceNEaOistQhUgFiVJ\nr83G1SoOEPuV4zZBUfcEhVSORejkNIgWHZqPF19YiDMkoEQE2maLWIKAqIO/BtI7M+yexxyVWIWK\nu03gsktX0RwJ8JfVJ5DOkAjU6sgJk9EvSOz796l9N4qv1mZnNWOK3RfpN3m/aiI3VZ+PnBx6Epq2\n7pq/zcAeBakSlXRpGiYOfiiV49Sjcrh0BMnCki10tx1BFBMiJ6+4k8ABgVErDby1MrFRAp42i0iF\njtebwvCYmIpl9wE6TLqnGygJE1G3SGaLuFuSpAt8OEIaomHZJXwapOdHaT1BJF4gkupy0R7zsn/z\naNo35ds9ND13s+4WKFjVhZQ08R+0+4SlNBgrs+hqD2AGdJRguodhGYqXx7F8HhJF/ddtrruG1fEJ\nzMs/xFhPxzAj8I8LS7afv8OZb3vZbsOVKhfnbaHjRGPICasXXZUmpxUdYln1BA7+eQJOycDdIg7Q\nPhsOukfgQHMeWdsEHN1Hv+989Radc0y6p1i81TCFC0t3ktYU/jD3KfSIA1fnwOctrH12sqm/BR59\nZeTOsuGyS3mPLOeNGU6ShoJqyuiWRFR3UhXKYVRJJ7obcrdp5G2ynylLsMnclJiJs6YTqSOCqy2J\nIwzpHuKCZIHds6177H+a3w4wSSp4G2xRbUu0nUk1IPTJJKUDdhmw4bJwdgl0TzNxRCzyVnfgqO1E\nDCcIVfjw1+socTDLklgBDdNlEtwPeevAGTJJ5Mo4uwT27B/VJ9l0OE4+fzsAr44f7Mh7qxSUqM3o\nu0tTETFZnpRwBdM45nUy77LBLLunz9mFVpzGEiG6Ip9kvsmiyt1YrqH7My0Rniv7qO/z7E1X0tqY\nycLLN6F7Rnw5EU4KHXObZJ7V5yxefNsKoqfYDr0gWIjywPPrbTlxRG22W+eWY5e41ukxxj33DcYu\nuxmpa2hjNR2EjJ0yq5+ejbw8g4efvqBvXfeyflXzZJ5FaMpxpitGiBtq5/9V9ns4jsfhHUoXVQn3\n8CW02dq9h/eCSilwtYuIm/3MzreDnVqgf65yN0uD9BDNWdEBQeF52y/tY9PudXyGwjcybHIwbQhZ\npKMhMV5l3LN/32zjfwvMK7LTSi881V95ISfA2SkhJ+HbUz7k+plr8TSJOJsV/LsdZGXGCZ5hB6/l\npN1OdDh6y2gNF32OZnScToYviWNixNbW7sFlN66g6upH0CwDyWmQzrbwbXP1VS4ZaQn//oFZdP8u\nB6lcu8JJ99p6m5++MHPANor76Oy67vr+5/9YyYheXHjOWpo2Fh57w8Ow+uv9sk7Hyopqfosrnvgu\n33r9JhqHIOg5EueftHnI5Ykxn31eeuml/lLUKeftQ5hrO2LiELG71JQk//7BZZQr9ru0WPaNKIPb\nmwiw5P7AUjrfQDDsZWqzF63LhRKW+MZl7xAts7dPzrHfB+lMAV+dvSxePDJegcAqN54WW49USlmo\nAbtCqheCAclcgf/+7uOccvNmyqc0ceWhM7j4v+7F8UFg0P4y1vZHzjLXO/BX2/wvALWH8pATFpoP\nlj587ADZl+qM6h6bihgRlFFxLE3kvBV3ce+E9yi6t4q8DbDuR3PxHxLt/lJVIntBM+42i9ZTTZpP\nkam90I5g+Zp0TIfdWze6sAvLa/BG1VTKzz5EMt8kOVblzovfpvEaleAddSTybONKbHLh2+7CU+Xg\np7f/iaWvn4rySiaj3zH7ekoPR/FHOrnbNCLlEBslIqZE7jz7XTDhw3m/o/bJ8WgeYQBZXi/Kso6v\nqeeM8zb1/e2Z3TEg0i9NDw/1lWPCVe9AduoIu4/NfngsaKqMpYtICRE5btes520Ezw43oWkmdedC\nsNokWWjQdqqOEpKI1gdwdkmImkC6UGPalDoc2Sk6J8s4w4adhc51kcyRqT3HTcNiATUA5ZcdQBAs\nxs6pRzs1Qm5xiNTeDCY83Er5A3sp+FRHnxxH9dvlvE2LsmivdBIbY6KNSROp0NG84DngQIhLuNf6\n0N0C3mYVNeggMiOPW89dxtZ0mhdjQS5f+3Wee2c+K5vH8fLrpyJOiRx7QP4OMf2MocXWI+UQGy0M\nSHzKCftDzicKD1YtImed1KdvNRSyN4osf+EEnKv9hCbrxJ8vJDY5TXD/wO0On+x6EarUsJrtMune\nJvwjYTogPAGSeQLZG0V8tSJJVWF58wSuGbeRRj2TmZMH1qaoAYEpgeZhzxnAKLfJZPbd8jC+yk62\nfO3XfT2cvsrOIaVUvixUXTu0sZw0FNpVHyIW7Qkv+ztzCa/PI/FaPoVrVMKlCokckUS+iBqE2BiL\nRL5M+4IiLFlC6oySvyFKcL9A8XsCzk6bSC6dYZHOsoiV6aj5GprPJibw1VvEi02UGGh+CI8V6Zos\nkSgQkVTb4IqO13E3SmRv7kZI2m9tQTfIWW1fj5wdKs7tHkhJCKqAnLYwZQHNK2LKAsl8k/ySbs7P\n3jbo9364p4KJjy1h6q+XkJqRID5+YNYznW1fs2sevpsfPn4T3/797Ugb/airs1n9lyMMtFO6WPfK\ndDy7Xbhb7Vfg7y96jHWvTO/rDU1M6rc6rrhmRZ/TcF3NQqb+egnpT3LwVimsWGqz96Zyj20MGG6w\n1h7buHK3Ccy8fwkz71/Cs28vwL/GQyoL9i94mqqFT7Hlhw+x9N6fDfhOaJqGI8ogJmFToi/7mX9p\nLaYMF/3sX/HXiATXu/BXDzQBdA94zm9Bm5LAf0H/c9RbWtwbrOh1ln9zzeNIgS9eTmLf1x5m3YdT\nvvD9HomhHMzhcKTjqvktlEkRPIeUvgxJwRkN3HTte5QsrmXZHT/jv772FBXnHGBbh83SqkQGzoUV\nqwaWDF5fsX6A0xn6uIBVNzzQJ0EHkKwYaBH33psz1l9N5W/vGvHvAft92Hs8wzKHJIL5/wFvbZrB\n9AeWkJg9kGhMidqVe7sTRfz5tfnESg2eveFXxCpTOGSd0oBt02k97ww1o4fL5KwWtJ52hF13PoTh\nM1BO78BfJdPaGkRY25+J3H7PQ/w0dzcrkiITX/omltXPmCv2cH1kZMUHSaYBuNoFEqNMdnzjt3z6\n55mD1t8weT3JsqErRJJlKuqk/gljpMmIt145ecTM2JPP2s/uOx4iU/Iw+eElIyrP7SXncnaLbH93\n4jG33xMuwHtq+6DlnloZLWDxbNSuVJz8kH3sKeftwzNv6ASDMTPKrrseQjBAC1qccdkGdr1VQSI6\ndHdrakoSMylz6LJH+5ZNeXAJwtwwZ1++lpLFw7MKiRqMOauGE8/rl6VxNUlIaQHdbffxiqqIWB7j\nUv/OvnHxr3Iz48ad7LrzITwXtSLXunCEBdTg0a9JbIE9iRdfVY3htjBcAukZCeYs3k06Q+Ckm7dg\nSXbl0/d/cSt7wvn8fOxSqp6dMOT+jnY8wykgJu0b9shkwbDjMaKt/kpQgxbJPAHDZZGOOREki/z8\nEFf6wmxeaad1m06VSZ8WJWtWG+8ufBDx1zmEz0jibrSjRN4aGW+The4W8TTbWbq2j4vIyo3gcakk\ndYXpc+3SrrnuQ0wvbiShOVCnJAhU22lxSwK9MsaPn7sOf01/T5TmkwiPVWg+WaZ7vELdeSKaz077\n+Gsge5dG5i6B72TW8Ni5j/OzttOJjRboPEkfRAoDsO+TsqOOh+Gyv6S77f+Xv9VP0R3bnt1HHgSg\n7h8cpRgKmq/fSEoVaqQzTaR9dvTcPIwoxqg4zi577GidpQs9DdfgDJt4WjRi5Rp4deSIRPcE+xZz\ntMpYpUkEQyBzr0myVMXRKrNz5xh0TcJfZ+JoTxIaLxEvkEkHBKxxcQrL28le2Ey5r4OpBc34HSmm\nFzbRFfYixwRSY7MRXE7aKxXc671kHDTRPaItNp9hYQQM/IEkpeWtPHDDH0iM1cjeKmI4If/Nahyr\nduKpCSGpFuOcrbQYAV7vmMmskgaKZzeR4bZfTuaukY333xu2Lx+6PMJwWYgqaN7BE0r3FAvjzWy6\nph17EnF1WCTzLbx1MmpQIHuNg2hp/z47TtJJlA9+GeaskcncaWfsjqzKTGcKpHIEUmdFoCzO6LNr\nAFAXRPA6VVrbg9yRuYXRche7WwYyrzoiFrdkrjvqOUsH7fKmiifuILY1m5lPfrsv8xjbmj2klMrn\ngTSpn2HpaFlj5TgCHjWRbEKqh5Qho+oSqi5jiRZ56yO4WuIUfNKNv1FHTloEakzcbXbwzdOmY3ld\n6PlBdK+Cv9Hu53Z22T2jus9E1EBKikjdCoIBsRI7eiqlBNSg1VfebTgtUtn2Z/8hW14ie7eOGOk3\ncCy3E0wTz95WXI1RsvboZG6TsJwmUtrCGTGIjAVJs3B2iJiWQJM2BKlUUiKdr6NWxnFt8+A90KNl\nOjPGvMu28KtLnwQgPk4jXqbz668/OngfPdDWZA1a9kms/zlJlBhILQ4QIDktyU9zd/et27hs0pD7\ndLUf+1V6+Fw8HOZcv4177voz13/jXQC8jfa96OqCmfcv4VfdpTwSGsXlPx/I0ZixY2CGM3ZKgtB0\njR9989m+PtP9e4oRjxGxT2da/GLCSxxY+BQrp73Cy/f+jO/d9Txv/6vt/MoJm2BsyoNLmLnhKr65\n9Fb8n35WYYbhcTxO4t8KR56TqYDPZTuGyWID6cRuWpYX89SzX6H+gzE8E57JD/5wE/veGU/X3mwS\n4wbPg1b1wEz2n14a3BOdJ3n75M4A5GZHX7ngw7fZjuiUB5egrxuejC0xViM5yhi2pDGdbTJrw7U0\nJI4dLPlngyWCf79M8QU1VJ1uzyNqECZeuo9EkUlgfiu/KdqAe0Y33nqJ2U4HjmoXM7MbCaluTEd/\nFtQREkjmW0TfL8DVJhAdp7Nw58XgMFE/zmHt3b9ClE0S02274rIbV/Sdx+3P3463TkRoceII2f2q\nvX2ixsdZaP6h3x8VlXVIgthnc+reXsfYJEeO4q4eurrJXe3Asccu6xi1sP7zDuMAJEtVTjxvB8+U\nvf2F7nco1HVksn7mS/zkpufZfudv+8+hIk3ZCfXc/9RXeT+hkByj8Ww0mx3vV1CeObQzKm3x92Up\nlbDA8r/MBUAcQms+OcrATEt9PAVn7L6QJ8K2PRJv8/Lyujnsr88/6rm/XfE261+b1vfZ1WXZARCX\nnfF2dogsKK1i0Uv34OroP4fNz09j7NLbadmRj6gJyFMjfQoJw8Fotq/1gbZcTKfF+Ev3497ooTXp\n56MlP+ejN2eBCHE7bsa4QDuXf3r7sPvrPV46Y7C9JKUtAgdELFHoy+geC1+qMypqdt+Qmavi9KXx\nZyT4l/JlbEqrBA5BvFDE1SEgbvaTeD+fSx65l+4Khey3XORt0ihco5OzXcOU7ZIxUbfw1dkpbq9D\nQ5ZMqjcXU+SOQFrkZw1n0xDNoCvhxrXdQ2xxDDkOqSyLqyZuAhO8LTreVvuNrcQMlJhF4ae6XcJp\nQOyaMHVXGbhCJtESWxz2K3vO5wy3wZs7p5Ox38RbNbj0SXdbFJ/YeNTxkFL2RR0q6iQewRDau+2x\noMREtAm2cejPj+HsPkyjzOjfR6+DejyQOhWEniyHqNqZUUu2s8Kug06c3bYB7Gq1S5vl/R4c3SL+\nQ3F8exz4GsByGkh1LuSURWKMFyxI5AsYLoEFZQfJdcdxyxqjnV3s68jDI6vMDNQj1LlxdttatVgW\nWsAimWehegXcbSr561OUvhbBV6UQDXloWlfEE02nMXtiNYnzIhhuwOlAcDhIjM3At6sNRdBp0YNU\nhXJ4oexDZmQ1cnrufn5z7WPHPTZ/7yiY2EayREc/4rJ3TbPI3GXrfGbtGNk9FjxgG2aWZPchpUsO\ny+D7NXJWK0TGjfzcLBliZTqSZCJUedmzfxT3/uA5vG/5MV7KBVPggl3XccOf7yQdH/yi3ZAqGnK/\nOXNHTn3/ReI7Uz7s+1s4ShWdNkTAY3lSGqBH2ouOqJe45iCsutEMCYes20zFnVHEcBxLkTAcIo6I\nhZyyKPlLA74mHXdDFD3DhWBYyGHbkHZ3GihJyyY0MQX0gIlUnMDZUz6dKFcRLLtfNJ1j9JD92BHs\n3rlK9wpkHDRxtw7saezNkAII8ST+bS0E6nTyV0okckUiY2QEQ6D1RMg8YJBIO1CGGCRvrYy3Wubb\nMz4csHxeaTXLD0xE6rHEqs97jDfP/jX/p+pC5l22hZeX/BzDCf6FR7/2T62f1/f36XN2MWpWM4lJ\nKUryugdsp2bbDqV59FasAbBOCJN7ZiPu8uGDDfFR9vkv2zGJ1ZHx/PGRoVnpn374XB596KJjHnNG\nSQPBHQrfW3Fl37KRyN14GwXu2X8Fl1bZvWdlio+r/N0seO5efvytPxErsXC32RrFfJCFr+GfTzt0\nKFx87qeDlpm5Kh3ddoWRu0HCOMIZfOa5/v49Z4eIq37wXHX2mRtJ9GT5DffQvXjPRHIwRvc/VyVz\nG5mxeC+JsRrzR9iR4Dmk4G6UEIIqS65/o2/5uVfYv2vinFqC7hSX5A0uaf9nRyrHfvberrAdJ81v\ns+HufqMCT5NIW0eAq6oXkVIVrJPDnLH7QhxhuCRrI3WvlyGq/RlRgJzpbX39vf4qmSuKNyF12BIx\nn6S8eP0pvJvtAM73c+wqkJ+2T0H3WsTGmJgO+7tmebJvP9nnNHLRhWvIXtw0oBc1dUKs77yNngCF\nXpQmlWPP4WvCx6bXVScmaVxR8pnHbyi4axx88vFUNAzWpzV+3Dbt2F/qwTkXr+WtW3+Gc87IKgmn\nFDbzTCSHpW2zmf7bfvkQ9z4ntZ32M7kiOonXFj/Iv719BUXzG9jx5rEzrofDuXNgwM10wKFLH6X6\nnMeZ8uASYmaKtC7zy2dsHgFPrYynXsa918Xr3/jZULscFkrcwtPSU23ottjSXkygqn+ejY+y/Z2M\nPSKmy8TdZg1ZQnskTJdJMk+gKDOMo1tk++rxaAHQTZEPE8WMWVDLuRes7cuQb3iyEiMtDelsHo6K\ncw4QO6JFNp0hUHHtXiqv38HMU/YP/cUj8KWy6U67+39JZVvopSkCgSSiaLJp9otMeOYOtIDBmDct\noiUygmGX4QKkgxKpbBF3u4kjOthoiRXZhEOdU2WSeSaTZtWyq7qIRZP24ZXTLAru4Z5Xr2fWyfvZ\n15HHBaU7eWH3bDI/cPc5oZpPQokN3He4TCFY3V+O1HSajCMkkCg2CO6VSC2MsmfeH5n42BIEE/I3\naDScYZejavkqpCWUjBTvnfwQ5z55NOWhvy9MO3MfO5YNnV3z19jEQrpH6MnA6DSfKuPqEMg4oCNY\nFppHtP/5BJxhE8GEljN0EC18u5yYil3uJFh2RE/MS6FHHCBZSF4NIyXjqnPYEfmTwiTjDiaVtFDz\nThlSys6qhafZ10XQRLzVEr5GE8Mp4GnVaZuj4OyCyHgT06/jPuQge49BuEwie6eK+1AXjecWEJmm\n8vFZv2KHmkO2GOck10DDbfamK4lvHhkxzz8CFpyzhZW141AUndTujB4N0IFIZQvHLLEYigX32X9/\ngPOfu2dQue7xIDyBvu93nGxLqvjqsPuSVQgtTpLxQc8Lolc0vgdr7vstU/8wWNOq/NRaDn4yMmKB\nvyW0EhWl3sG+Wx4e0Bt6+Ocj16mjNESHPUeZCRks8NQqdoBPhcwqDdUn4QzpIAjoHhEpZSKlTZSI\nSrzEg+9QlGShl3SmhJy06K6QsAR6SnhAz9JAF+1nMSwhlSTI9Cfo3J6LlBYIHrT6SsdUv0BGlYan\nNoyQSGEpMoJhohZlYDolHJ1JdJ+D0Hg3uZ+0gmWBQyE2IQP/1hZCcwtxRE3qF0vc/pUPePqPg/tq\ne5lsy5d/jfnjq1iQsY9ZrjqmO1x0Gwnmrfs6wqYAxWfWUd2eBYe8fdrKUmrQ7o6K+BidmVOr+V3p\nKxTKdi/QC9FM/m3zhUwd1cSfxr7FM5EyXm+dQUx1okgGp+YeZLanmnteuhFHeOAL/L5bn+HHj9sl\nmcfDpjsU0pk2y3FohkbGtsFesSlzzAzo55GC2fLDh5h5/xLCEwyC+/vnSdVv967+/8ameyTUTAuh\nJIHe5QIDZs08yJ637VI3S+4JSPUMUbLIwN1kj2HBGQ20LB+efMpw2X2oCJCcYLNLP39wNr+Y9hL/\n8sRtRz2n39z6KLetugn3PiezL9zJNH8jTz1rP2OeeR0kVufwH1/7E5Jgcs9r141oPP5RMRSbbrRC\no/qCxxj7yu34DkpYEsTGa4hxCakwgWu9j+h4HdGnIbQ5sSTw1olMuGQ/+1+ZgHlqmHi3G+8BB2rQ\n1gRXemg5YmMNfIckknkWmdM6SC3P5b47nuLeF27kjkvfYW1oLBvXVPT1kJoOC0+TSKwyhW+ri+33\nPMTqlMmdO67h2xUfcv+rl+FqE3Cd0U5ak9l2wvMs3nMBB3cX4auWUE+KIssm80sOsi+cR1N3EGH7\n0G1ZQmUYa+tfl0X3eLH7joe4veFkVr0xuOx4uF5M1ykdLJ3+B85/xLatT7hoB2lDJsOR5Jaclcx2\nOvifzvE8e3AOxrpM0lkWpsPCcprHZLQ+Ektvf6BPPgnsPu06PcnqZCmb46VM9jTxvy9czO1Xvs1j\nfzp30Pd1r8WDVz1OQExxy2MDy+p7tTp7ES8CtVCjYmwz83OqePLtRUfVEz0SyVyhT1M0nSng7LYo\nuLKWPQeLcAXTpCJOqs95nIpVN+BZ6SM0TQfJoqK8ibaXRh/HqED3DIPMbQPt5thokGMCri77HP6O\n2XQt5KSAGVPI90eZV1jNX2IBRs1uwlcYQ/VL+Ov1PkcU7HKu4CGNRL5IuFQhXiATz5fpmKbQeoJC\n91QLzSuizogjGAKHlpVRUBCiPe0jbcrc/emVXHLGWrY2jGJMZjdBOUHQnyCVK2BJ9kvmSEcU7D5E\n3S2SzrAHO3MP+OtNClcJhKbqFGWGuap6EZ5mq0c7EZylUbKmt+MNpvAXRJH2+liT+isYw1Oigxbl\nntxMquDzE0ts3Dp8SsvVbeAKWWQc0nF3WliyQNYuCyll0TFNpm2WQiJfIpnfTxOt+u3MqTeYQj6t\nC3VagjkL9lJ+Si0zZh3kvIqdjCrtAENArHMjJCTEtG1gm6aAy6Oye+dou4QhbEcSBU2ktKwNKSoi\npcFUBNIZAvECmUC1SXiigRwXEBSTwtMbADsaKicMzAwvri4LuUvhx43nUiBFCA7RpX73hOWfeyz/\nnnB6cC/nl+9kam4LpnNo43Ektf6Z2wdPIV957ztoWTqxMZ89axLcD50zTTpnmmAKBA7S52h5r24m\n4wM3XdNtZ6ji1oEspytTgzMQ1rgEaePvU55H6cmY9Dqbh7Np6j6LE8/cNYjASIjKmJqImZCRu2Tk\nbhlLtA1Wf4NBOigh6hZqQCKZI+FpSKBEdQTDQvcpeJqSWJKAqJkkc0RUv4inxZZdSZeoGB6TsaVt\nINo6tKbTIuBN0dYWRA8Y+GssNK/do5vKFsjencbdGEVI2F6foBtgmjgaunAdbEcMxYiMdWM4wfS5\nEXQDIZHC3ZQEwZ57O6coGAGjL8t5JL7bPIsHu8dw3qSdPDl6FUVyN5ol0mbE+e+OUxA2BXCd0kFd\nVyYlOSEsySZ9OV5HFMDVKvPyuA/6HNE9aoJT3PVUljRwXu4O7mpYxJpwOQtyDvDulD+zfPLrzPZU\n88PHb2Leop2D9veDrZcc/0kcgVClyjXfeA9xpl271+uIqgFgcRex4h7JnGNM+7Fi63Npks68fwmh\n2WkcoYHPvmPwa+ifAr29oj/vGjrL1Fs6mSi1vQlHt0BRdpjLTl7Pd898u88RNR09xvRht3evIwr0\nOaLJSUPfsNdd0lMVYNlZn2efP4P0niB/aj/5mL/hW4/fjnufPbFsen0q1cl+vesNs14E4F/XX4Yx\nVGPiPzl0NzjaZJ4IF+DKj2OdFiI2SeXquesonNSGVWOXD82bsZ8bpq/DMSZGxQybOWbTvlLUIOi6\niDuYIllgy70osf4+dm+dZPfTtwncPW4ZxrwwPzt4NqImcJFvJ6NcIZTSGK4OAdNp9TnLvq0ubrvl\nLS48cDYvd88hmVb4+dOXc9O59n2QWp6LtdLO/NW0ZttkWoCacJCIOamJZfHGxKVcNWETw+Gv5Yj2\ntpx9Fkx+eMmQjujRsGn2i0gCvPKNn1N0Zj1Pjl7Fc2Uf8dCotcx22u/Xd1sm43FoqBkWZn4ad4t4\n3I5oolzl8kf7mcP/p3M8iiBRrvho1YO8tW8qGyJl7Ln9Ib6TWcP/vfkZ/veWgZV1clzgR3svGZTw\nGApKTMBb5SDHFeeJD09Hz9PonjFykjItaJIotJ3CZIU9r1StG4OgmKj1XjJyYvy0fQpaSqby+h08\nvvgJSkvb2FdzfARVwCBHFMBXR58jeix8qTOPt9WwyUski0Nt2eiWxCi5m3GBDjRNov2iFMlsGcPZ\nf5qm3NPEW28QrNHommqzQLpP60CbkGD89HoiX43i9aSxClMoMWityqE5GmB98xishEyOEsNs8PD6\n+Hd5/tAckmkHhgMEw8IShzeg5aRNamSJAu4OHWfIQIkZZBRF0AyJdbvL8TUbtkGXIZGMOYmnHaSq\n/SwqsVNP9z3/VX5w1Ytf7EDuGhj10iYkaF1fYItkf044O4bfh29/N85uHSll4W1IIugWgmE7DImx\nGrrXwpRA80J8lEC8UET3CLgPOYh3uUlrMl+dvImZwTomBVo4K2c3PinN2UW7ufLE9Uw8uZpZMw7i\nPbWdeLGJLBuYpoiYFHF3WHTMtYXDLcmidnehTaTiBMMBvka79NCUBAIHJNytAvnvOGh/u5jWK1Jk\n7AVx9XbYvp/s9w/2RSVfj8xkhzr4QfSLyUHL/pGhWhIR3YVb0pg6ZwQCVcNA1Gz24o4T7Amya1GK\njO0Kc6ccYvRpdSTzPrtDmr1FxH9QImedROTs/nRS7MVCoqUCc0/YT9dMk32P9ffxdc4y+UXd4LGD\nBLwAACAASURBVKzaf81+heWTX//M5/K3RG8sZMLKG5BjAuuWDSZykZMCgmTPnaLWQz4hgJSEVKZI\noCqOu03FEgW7T1QWkaNpBN3EcEokC1zER/tIZ8poPtBdIGq24HZuXgQCGk3dQVBMFL8KAY1EWkGQ\nTcSUiO4W0PwCmhd8jSZi2sD0HBYEGKLgJmdlI/mfhhAT/cEeKZoiPSYbSbXnDn9ujKCUGPRdgPde\nPIkipZuk4SBhqqxPlDPb6eDED77NSztmUbK4lk2zX2TNSY/y9qS/HJV99Fh47eafsyIp8uO2aTwT\nyeGiT+/g910nM8HXxtpIOZolkjIUPu4Yj0d0MHvTldyz8Qomnr+fzvTA2vfrr/sAaePRCeNCU20P\nUj1is97yXYCMrQ6ee+QrfXIvAHmX1LHrzofYMveFvpLZdE/bX3ji0EaLUDowNXs8bMC9cNU6cbcJ\njLr8s88d/0j41iVv8vhrZw25zuqxZ6VIv2HbsK2Q1947iQfW9X9H91gjIkdz7xm69rZXsiWdY5Is\nMO2eNcV2Lo8F6wib+50t0/pIt8reuRUAMy3hGk4c858YchKc3QL3fXwhgmCROhDEVevgjWdPJcud\nQIkLGC7wymn+8vRCHpn1JzRT4rIbVyB3Knz14o/J9CeoLGzEWydi9AR3BV3o+R/8B2Sik1V+fWgR\neYEYFRltpAp0Lt9+M6/umcHisr1EJ2oYfgPNZ7cB6F54rm4ONa+NpTaRhZpw8LNb/kB1sr9Ca/7V\nm2gz4mRnxPrmO6FbwVnloiXqxyM6uDK4sW/7VM7IWFc/L0baRnY0JEtHfi/e2Xgio2UfChZVNf19\nmr39n2Wvf51Y2smc3HocIQG5aWhComPBc3BgoPt72QeImbaT9xXfLg4sfAq3pPJIaBTT1l3Dj/5w\nA+VKN8lJqQGtHV1Vg3kLhoKoQWJSihmBeqbNrMZzwDGk0zccAlUC887awa4bfssJ42oA8E3u4orp\nm8kY34XwbiZLqypR6p00xDOY5ohQ35bF1TPXEx7/2QMKljDw+tsEhUe/J77knlGLQK2Ou15BiztY\ndnAC391/BY+VrOaWyWuQ93pwd+o0nGvSXaHQNVFB9Quc/l+rabpMpe3mJHJC4P7vP04k7kKod+OR\nVawNQaL7MxEbXATPaWbB3N0YpoDLoaGEJP6w+2TuPOddvts8i+UznyTZ5UbUoXWuQvO1aULlCumg\nNKxjKpgDL1JqUxbN2woY8wpoXhFMSGWI+INJYt0eJsyq492D/QbzfVvO4883/dIeg2mfjRX3aJg1\nup7grI4h2dGMYbJgwyF4QtvwK7vCuBpjuJpjSLE0rvYkrk4NR8wCXUAcGyOVY6H5TYRpEeJT0kQm\na5xzyVruOeU9zizdx315O7g36yBXZG4gZSnsjeZTm8zGtATa4j42HSglqSo2k+reDOT1frxNAl2n\npTmh8gDOkztxZiWR4wK61yKVY9FVaRIeK9maiF0GBWsijHrpEN5mlUCdQca7HluaYlwp1owJHPhu\nOWUn17G+fgxLqyp5s3NG309cm7INugu9CdQxw2vy/aPhv3eeTUBOcWnORlrifkIV/T0nx4t7vv1n\nXC22tVNa2Eki3+KPZe+yIPcA8bGfj2mzl8038G6/gS8YMHZ+DesPlPWVCJ/7nZV0nKJzzWlr2Ncw\nkDRA91rcu+YKYmaqj0n3rw019/gkFo6EJcH++c8Mu97TJKDUOhHDcp94vafFQk5AtAxCFT4Ew8Tb\nlLZLb10yockBNL9CIk8m7ZeIFksYDls2KV4MnTMEMAW69mZDSMHjSoMuojh0pFYn2b4EZlxGKY6T\nyrV1DzW/heEQkGMqUncCrTATI9P2qCxZGvA/gOmUEdL9Roae5SWVo+BqVzFlyPXF8UvDX6O/tM9m\nTUMpr8QLcYoa69MaJaM6+ZfZduXCjPVXc9pv72HiG9887vE+HOesvJMH6r/CfXk7+NmTVzJrdD1J\nQ2GSu4lu1U2WI8EYTxen5+7j9biHuycsZ/+Cp1lavoya7kwc8zq58Cpbv/GPf1o8xBEPO7YISkaK\nRIGFIwrh8f0Go7dRIDwnTSob4sX9c7f3/BZWff+XtL0ympn3L6HsnVvRFoX5n+88xu4ldjlzcK/U\nJwtzOLyf+AZ8jo867Hjnt5AoGAlxmf1/49IydBeMv2po1u6/R3imdh97o8NQ8eQd/OaV84dd3xs8\numrxJ30s+lZhCjkm4NnfP6k6QgJS4rMZ6brPwn+a/S4umd7Mgcsf4t0Lfjkg4JIsHnrOSUxIDypv\nrD7/MabMrgHAU+Xo+/+7m6/4TOf3TwELKnLbuPjMtaRGqzx4xyPUvDbWduBm23bab+98iJvevJ0f\nlb7FT3N3Ixhwd/ZGWlsz2PSR3YfobuupsOupFIhOtec7/24HrYdyaO4O8MToT7jt1I+J7sxmfFEb\n/5a/Ak+1grNFxjO3g1Seie61iH+Qj+GCzVvLIazwrTdvYt2fbfskWqGx8vnZXL3vahLL8vp+hrNL\nRLAgHPGwNZ3m3A+/1bfO1fHFmPxqwGLLN34NDJ8F7SXi/Kxw1wwvK3ckWlL2O6dM8VF9zuNUazHK\n3ryNjAW29E71hb/nu+M/4KOXbVJQJfz5nOWnInlcV7MQgAVb7PaLDclSAH5TtIEFngNcN24DF135\nCXFLZuXC3/SN0yVfXcXvL3iMX3aNPeZx5KRFxlonm8JjOCGzpo8t3XAOPP/kohi6215mKgKei/o5\nEhriGZx4351srLXLbkszumhL+zm5oJbQJJNUrZ+Zp++jc2kxHyRGU5LXxUvvz0Mpjh9XFvZwCEcE\no8OV6jF9jy+9JkP1S7agd4eCJFmcWbiPtxIunjs4l0lnHqBtloKQsOvtkwUW0dHwcvUMXG4VtdqP\nVZ7gdHcKtduFvxpEwZYmkFLgiAhkuJIcCOXidmiEYh7crQJqxMkTT57LLwo383h4GmJcIj09gaCD\ne62XdBY4wwapzJFFIHSfheGxX+iiDpIqYMk9THspkblZtUzMbyM9NoXmtZD2efnqU3bttLlj5GUS\n6bEjqzfbsawCr0NFnhFC85sDJgspfXwPYXh93vAr02nE7ghCYxtiZwQ1w4kS04gXiAiqSF4whjQp\nSun0JpJhF5YhIHfLNKeCfDOjnt8UbQBgRVLkvrrz+eOhE9hWX8yynZN4o2oqkU/zkNsUEtUBMver\nyAkBT0tP1LHDQUR18Y3xq5hc0ILhsag8oQo9R6NoXDupHIvYKBHDKaAFnGhl+QiWhacxhbdVx9Ou\ng2miZrmQUnDX6OWoKQVNlXGK/Q/g4aUUjtrP6K314HBGxC8bTkWnNe1nZXQiXREPhs9E+oy+9gN7\nFzNmQS0d8zRCSRd6WQqnoHBH5hayN3zxpbG6W2CsrxN6MhGxEoFXqqczbmwLZwV2IDUMzCzIcQGp\nxcHcT2/rY9L9Qs/HP/i6Oto/X1WCYEDZ27cOu97XZKDEBZSYnRE1XDYzsmBZ5G428bZqiKpBMs+B\nqyWO7pVwhg2ktElkrICSMDHc9nyVGGWi+Sz0HA3LaRNoWA4L3ZDILQohSSbK2CjRlBPJp2NZAprP\nQsvU8dXbFSVCIo3lUpDDSaRu2woTdMPuHdXt58mSJeS2gcE3SxTw1cQxFZFEkcmUjGZKleF1fT/d\nOY5dJz/Lw9ULeO7gXG5+5Nv4HGku8u/i7PxdfKvC1gL1Vo/svuvVq1YDFoVn9TNKHjzjSd6c8A6v\nxz1YIrxQ9iFpU+HRmvmYlsDi4E7ihpMNoVL2pQtJmQq/7BrLDbXzmV3QQHRPFi+9P2+Yow4+B+Gg\nF0+LPTf76kSCFzYRnpMmmQv+rU5cnXbFCUCk3OST6S9zf/sJffsQZJNkwsFZHo2xf+lnQPSvOXra\nMzzeJHjANgPSmRD6qABPizBAx/to560tCtvSEsPwChwvjpRPEcaPTKT+eJDYOTzr7OfBfXk70GfY\n5+va5abyXLt9QO2R+NA9FlmntYxoX9p0O3ttzIyiV8ZYdcMDtNbZ2ZQSXzd1eoJ/a7C1X0+9ZAum\n0yZROhKWzACHuBcNeoyD7w40hvXKGGrqOJi5/tkgW7gknTMCu3ll0e/45taryT+vHjJVzi7dw6PF\nnzLfBYcuf5SFbtve0zIMTt98E3KTY1AlRmyCHYgdO7o/oH/HgmXsPfWPPNg9hh/m7ENKCrw78S1y\nJC9b73wQwwluRUfUBEzZQs2wSE9NIEdtaTNvnf2sxsoM/PsUEoUWdZtHDflzhGYX9x66HDEkYwkw\ncfEQxBCfAWqGSdW1D+MU7Hsla9bghEWyTB1W/kUfoZ7p8WDT/tIBn3drOYwrb2H19JeZtu4aAH7w\n0ecPtGy980EAfv705Wx6fzIAXY0ZTHlwCQs9VTTo9vN/SM/ie9kHuD9/O9MdLqKmyJwFe0kWG6xo\nGc+Sjdfy4KeDmbOPRG/L2c7WQl5vmIbvHHv+kNJWH+utJQhMK2yi6Hy7mTQ8TSPxWn9Afn+tzfAb\nWGXbPjXPj2N7eyG/HbUOOSESPCCw67WJWJLASy1zaOoK4q8Bz0c+lIx+nyM+CkKTzEFZz+Ew88Yd\nfb/B0aKgFx3dwPxSndFUloTuEvA2mbjaBVKdbjLlOM+3nYTLobF1SzmiDpm7bfmVwtUGus/C7dBI\n1fo5e+FmtKTC+rSAq0UmNM1ke2MRRkDHGRJwdVh8JXcXze1BVk9/mXTcgSNkIXfKmA5b/PverIM4\nS2KU5neiey0iM1TyN2jUXigQHSOQypRIZdlyI0dCd4sYLlsDdfTb9uTUXmkfV05atG3LR8lKcVlw\nE/8x5jWspDRiLadejJnf362s1A/vDB0pzdKyehT6tgyUqPiFlEwMBTOexGjrwOjoxGjrwLX+AHJ9\nB3mbkzi7Reqbspha0Mx/lf8FTIFxpa2Uzm4YIB4PUKdl0RgOkv4kB+rcOBscpLvc+OosfA0CWTsF\n2mY7UCck6Zjd44xasLe+gD/VnUhrws9/nPMS/zLqfc6bsYOOiBeKUjhP7aDpQo36Mx10TvUQLXGi\nBRREzSSeL6MVZpDIk5mwoBrNkpFanGgRBxO8gw2GKw8de+I4Fo5kRP4yEXSnaE4EWdlSzmmlhygc\n1z5AkmWkUIMChiVweu5+Fk3dS6E/ynXT1gOQKXmOyh47FI4sJxsKctJi2duz8fT0W5lOi1xfnGtH\nrePJttMQ1cG/w5Jgz7w/Hvv4x+FDqjn2j5Ojxzdujw2jHXokHM3DG4aCacvquNtsjdDevkglZq8z\nZYHoWB/BLa0kR/kwHALhUgU1KONqg67JEpoXuqYIuNps5j5Sdgm8qAqgmMTjLkqDXUQ7veT444Qb\nglgmyLL9ux3tMsl8gY5Kgc4T8xDDcfSguz8z6nUjaP0pGUE3sDz9gQK1JJtYiRMt6ETNkDHdJtlK\nHAfDl5KdM2sH19UsRDUk7pvyKouu2IAoWHy96qv84cDJ/O9Tl45obHthVUZJTU/iqghzWeFmuxf9\nVNsZHrv0di70Jvqkh9KmTNeHhWyrLebOVdeycuksdjQX8fDGhawJj+PlhkrW1ZUS1ZycumDniMuE\nRX2gQSelIfx6EcGNTtzt/T2g7jaBm+94i4NffYSZ9y9hbzSfWddtJ15kcc2MDVwwyX75O7pGfhMr\nh5HxOLvtPrdYicWC6zaw6vu/5Ht3Pc+YKw5iHrHLOddvQ9RB+TBI4KDYlyk9XogT+p3NIx1RAOuA\nb9Cy48VDV/1+0LJrzv940PH2fe1hVlz/8898nPk7LkHe2n++G+tLuOXad/vIrOTjyIquOdXObhdk\nRJG3+rj54OV4amVS+SbPjFnJog++wwtldu9ghpLsy86aswY27g5H+HL6c/cOWqalZYTOkWej/tlQ\nUNzFTfmfcPeTt3DFp7fzk6lv8+9lr4Ep0K4Ovg/XpzX8VTL6imxcHQOvbSrXQozbD03728VoPWSn\nj79il22nel50apY9uUxbdw0mJq9+9ZdcVLyNylP3kzO5g7PP24ARciClBKITdPLPqyedbeGrtvc9\n9YRDuFuGvq+UuEDDqhJGT2vmB9e8yMvjPvj8gwRMnlMz4HN4zWD5kuHkZMAODn/R+PEpb/K7UAkz\nN1xF+fKvcZ4nRdOyEsYuu5kpeS38n/bJx90fOpQtcLiO72tfs+eK3v22G27mf2Rnoc/z2C/k1Sn7\n+k5yeHiu7CMcuQm6Py5A3uojM//YUm6iZrchpqsCqG/k0rmugNAUE87pwtsEmt8OQB94voJCTwTd\nI3DbiSvZ/JP+uS1zQ78doXkFNJ9Ad7UdkPP1uBeiautQb9s/GjXiJDTFZMaNOwdUZ2klaVytEuks\nW/v9cMmWVM7ga/rhVttZ192g5uk43EevkvtSnVFn2ERSLeS0hb/BxFclcyiZy5oNE2nfmUfWToGc\n7Rrd8+xSs1SGhBwTiKzOI3diBwXOMJdXbuKmpd8keMAEA4wWD54aBSkFodNSXOPfx0/mvsWk1ddj\n6QKx0QIZ+8F5UienL72HH7ZOx/lRgHPyd5E7q5XMDQqWKOBskxBnhWk9U8P/tUY0n0C4TEH1S4TK\nFTqnKMhJEyllO9INZ0i0zVJwhmzxWUMRsIpTTC5s5ZJXv8NlL/4LYlwiVaySyh85sVDtyn7Co6Gc\nmadvtEsljiXNYkz84iPMlqZiaWrf30JWBskpRcSLnOgei7njazgzew/vRGbwvXlvc1nhZk7Mrun7\n/q+6S/ldqIR/f/8yQs0BUrkmpstCC5oo3RKukEHwkC3dk84yoc2Jq1UkUWDhHhthQnErN47+lNXT\nX+YX+87kmY55vLVzKqYhIjS4ME0RQgoZMzqIjANDsa9h+wwn7fM1EgUOQhMgrcs8XLcQd6uAoIsD\nyB16MZxe50igj0Bf8G8Nj6ISUx3ohsRH+ybQ/UkBvrqjRyw75hpofoFnfvoLwmclkK5oJ1pmomky\nPinFuVnbmR5s5O5su0el7N3hM3vDYTjjadB2Bggnhug4wcA3vZMpGc2kTIUZ/no8zT2lvTM7+7Y3\nckbWf3I8zrMU/2zT523Pfn4NRVenSua+FP56HXebhavLwhG2SGcKiJotc+VuU+meW0DbTIXgpmb8\njTqOiC1TpWaYaAETS7CJV/TSFEpmuq/PCU1EOeCmLpKJ4tFo2J9na8K2uEhX+/FXC+RtNslfr1Gy\nXEcwLSIzC5HbI6jZtsMpxPvLbXtLdYVECiPbj1qchaOhC0+LRqjcQWS0hCMrhWZJTHIMPa6JYoO1\nzWPY+tpkEitz+d5jN/Obog3UvFNGw3tjMD89voyXcFKIH09/mxWnPchbs3/P/6w9B91nsWn2i0z9\n9RJOmr2fsjdu48RLtvNq3MfHy6cDIDsMvHudJEYZzB9TxbfmLmeCtxWnrLPvtGdYWr6M0e6RMwQJ\nJqTesg063QWTrt6DtihMMs8iUWiRWmA7GKFZKndl1lL23i0A1IYz2d5RhJav8XLVDN5YOYeKVTdg\nuCxSI2tJIljZ70WmF0bw1Qmcc8ZG8hxRfKKLq/zdNEaDRCYNfDA3/nEG4UkGF9+2Av8FzSP+rUfC\n3N9v5Fc8ecdfRV90yQtfH7TsuTcXDDrW5DXX8Vrss83zqclJ6qsHvjeyAgmeeHagRE/3xwN1kYdD\njuTFkqH9oyJ23fUQ5+dtB+DglY8w/pk7kEIyz0RySIzWeXX/9L7vBb0ja0M4ku0ZwFJFxOOsnPpn\ngTHPrtj4ztavYkmwbf7vucrfzY2f3sKPTnyLJ0evYEVS5H86xzP9gSWMffl2rlkz+L7qhZQSuGD+\nRmKlBtvveQglArHpaXyVnUx/YAn5sn28b575PgBzCuuZ+O4dpCyJhz8+k0VZe0moCr8q3MgPTn8T\nwYRrT/qU7455v6/8NVlgsa1qeEkWwbC15evbspjtqueM3Rd+IWP1+vh3+/7WRtADfSx83nJegPs+\nuYBvZtQzPrsdyxKYvMZmhJ5Y0sLWZRN58YWFx7W/ky7a3tfuADbDfC923fUQyUKDSx65t49YUJsR\n45bH7sK910XZ61/v61V9P9ovabM+rZGOO/rketKfZh/1HHSPnRV1dVr4q222Wk+LhSVbxLdl0V2p\no0QtkotiCKbFhqbRfPydB/BIaU7aevmQ+yw6pw7v6W242iSmrr2W4KW2lJSoQttLo5E7ZTI3y2Ts\nEtn29FRm/ecdSOd1Ei2FjLVOXF0WefObcM/uxJIsUtkCligMqVPb29vqiFg4m2W0xqP7KF8qvaRg\n2JIekRIJRIiV67SkAkyYVk9Vcx6dmRKdqkjmp06652rol0XJeiETZ0gn0ZjLH2YtQAmLGJkmbSeD\n5TSxLEiUGag+jUlFrWRKHm4KtMG099gcG8Ob8f/H3nuHx1Ge6/+fadt31bubJFvu3caFYhvTewiY\n0EyCgWAnBALk5JyUk5OEFCAktCPTi+kEAjgGTDfFHfciS7It2Vav29vszPz+GGnltSRbtslJvuf8\n7uvyZe3u7DuzU973vd/nee57KrosYF2VxeA9Km8UTGbeDVtY/m/z0dMlvKfq+EaIOOsEwvs83Hvp\nyzzy799BKwUlYBDNEAgNMij6PEFgsIz7UILMCpXMCvCWimaaRZuBZoVxgxoY6Wlme2YR8n4bseIY\n6898hFzJyegnlnwj5/CG528f0HbSnpNfYe4Pos2GHotBQiOUrxDJFrhk/jo6VCeN8XR+kLkRRRBJ\nE+20aFXc1Xg6XtWBT7Wx5evhCAIYioaRryI02tBcGo56mYRdxNkRw9EqEvdI2Oe14o1mYyvzwep0\naj1phL+9kwc7hxHdmMWXRhYMUVGRUXQIVmZgDQqEmnLIOqBj69ToGKUQyzBwVVrwlYIcgkOfDSFt\nv45D0AmWgF8doHnbACEH/+nZ8L1gETX8YRsZzggEFJjkh2Y33UEpQ4JwvoCzvqcT9lTLbP33choT\nOm/NeoylrXNZ/W4uv7rgLS5zmosdIywbSBPtNCaCZH/Zd2QvniYc1aDZd06YtA+Pnl7oOmQQkNLJ\nrjXoiGSyMmTj75EJ3DrtC9PrFoP2dhek6xiKATGplyLtyULqJw1poCic2UDDur49UY8FXRJBBjFu\nnkc5bArRKEGDwGCJ3HUhvGPcCDrkr49RtbgIR5NA1i4ddXAMQTIQBCBkQ4iLCC6DhCohaWYNo9R1\nzwqCgRqwgGxgr5NRgub1Q4BQrkjCYdrCWL0GUlTHsFmxtpqFLYnctJ60XIuCIYpomU6ktgC6LQ21\nMANfsYWEQyCabWDoAmly3+JFAI46iXidOYBHCnQeuPBFxj104v3orSO/5Fp3Oy8FhvL3tokMH9pM\nrEjmv73mBG/bitEsXfQ0U6wdrIoUJifwymYX4TFRfjh1FbMd1VTF8zjPcwC1ayk9Zqhky0FCI+II\nIbmXlUTcY0Y/pZgp7qaE4Nm7/sJTbWfw4d5RrK0oZWRJI80taWz5mTkhKg4ugoRI6Wu3kr7PbG/F\nxGdQgWt2LyTXEcCX7mdebhXL9s87tlru2R3wUSbq+z0EKtMVJoSHdyvGQbuVN/eemfxMKNOI5IC9\nFXQJRA3SKiTerph7wuf/Xw0Xl+7k3jXn0x3TmX/OFj75cGCqnrbdqen/6oQQgS+PUuJyFEgzzJrW\n7oW5xkSQR164lPCIOOPWXdt1Hwrc8/aV3HbRBwy1tPGfW83Jd/c+H1j0NHc9vei49uvKChOS7Yht\n//dSdaXVaUy+eh8rqyZhGRfAIVoo+eutCBosSmti7s7L6VjZ01cLCQHHpv5LPoyxAeZ69vBp7Sn8\nuaMEdVYAp6wR/zybK25YxbrAcBZ62nhsxbncuXApn28cg6gKPNBwLtef9hU5coBAq4s3gx7++OEl\nCFk6zTEP7XYXg8c10ewtxNohYG86eiTbXqcAClfuueubOlUpUI5hcwQQKUxgb0ilGpGiBFJAwuIX\n+k3nPR5IfomxjywhmqNjbxUBcw534MNhnEjBzK8LVwIu9CkBxM1udIspDviTG96g7LnF2AOp2Q7y\nTnN+femCr3jn9dNQ3QZ/7iihKdbj/3mKVeHyCVtY+cbMAR2DHDaSNaK+EQYXT9tCxqwwr644g4TT\nIGOrDOd3EDuQjh1QKzzM/8i8zmXXVdJ8uYrvbz33bKgQop3pRINW0tsNphbV8u2sr/kZNyZrPLtt\nY7xjdNJ3m+OM9m4W3bp6wSHg25VPWpWAB/CV6QiaSPO7g5Ex0Kymc0bcIyT1PgAcjRBJHH0e/E+d\nJYdzZcSESUjDBQZiVGTnByMpcvjQAgqZeX6ksGgW0cZEAnsyaTpNN31AQzoYAvH8BM6DErnrBPI+\nl8AAW73CuSMqiCQUKuJhHvMW8fyhWXz6xnRmTqvEUMDealA3X+LR6S/z2aeTqJ8j0zlKIG2XZPrS\nxcGzD/79/avxD5bI2qXSOTmBr8wgowL8Q2SsPoPmaT0dd/o+FUeLgeoU0GWBnfUFVPrzMOIi+afW\nY62xMefpnzBhw9WoZf1Puo4HiZOQ0IaeiGm06MSFZvRoFHlQEaHxhUhxA4vf4ONDI6noyOO5TbO5\nt/U0nvCO488dJbRrAl7VwZaWIva05uFoFBGjAmgChs+CIRsoPrP7EFUDQTPZkSVg0FabiaBBuNZD\nPMOgbE4NZzr3cEdGLYJmquJZWmWISEhRAUunKWqUcBg0n6rTOEsmOj2Ec2IH4fERQqUqkUEaCadB\nOEfEkASkgMhe7/8eP9H+oCMwNq8JzRBw1EloFW40pWdQ6JigJ4lo+xQd1SUgn9lGXSLI9/ZexViL\nne0dhYy+poJ61YxIvR1yMcFiI2aobIz1PxE7GhEFyM0YoEeEYCAvaOH807egJSSWTF/FSFsjsXSw\njPOhHLSieEWKhrWddA1nX9BPUgypYf2JEVEAS4e5bzmqYQnpWAMaWTsjOJsSSFFom+IhnCeCAB2j\nrVi8AqoL2sdakJqsWG0qNnscKSJgiAayrKFYE2a9qGh63cWKo7R2urEfUMCAeIaOHDVwaQd8/AAA\nIABJREFUNhqEisyBJ5ZpYOs0+zxR1dFdFnS7gpbtQVB1ImW5aNkeDFlEiKtIHSHigzKIZVoIDrYh\nGCYhs7UJiJJOTFeoSxy7eNneKHL38hP3Q9RlKLW08HbIxW/+uoCv15bxy+K/c2fJR1zsqmDn7eUY\nIpzniHH2pptYemAuALEM896dObyGEmsLP9h1Nfc9u4CZy+9kQ+cwatQgbwTzeXjFBQhRCUPpnRUR\nKdKS9dlKCLxjE9xRfRXvbprIzya/j6vKQvPfhqLLpo3K5N8voebcp7EfVJICOQCtuswQ2UX7unxu\nLVzFvNwqfpG9BzVrAOkFH6WGTr3jEoTjCroEju123PtFfCM1Cr5di3huGzOnVpnZRpPjRGaepFHq\nvyjefm8Wluae8XygRLQb+mG8QKzqiQJoxxn5mVFwMOX1WUtN70SlWSHks/HB4vuwzOxA9Wj4NDu/\n2X1hyva7bivnrqcXoXq6ImhFWvLYuu1n+oJhCH2JYP+fQHxmgA+rRmNrFTl1SA1nV1yM64CI7tKo\nUYM0rylMub7dtZtHw49XXQ3AI1+exfUjNzA2t4ngqDhr2kr4ZL9p96OM8DPhgSXIQRElKLChdhhf\ntZbyiW8MNRc+yU+/vhzDruE8JFLty+GByrPoWFlolmMcI4vneEpOjsRAasYHiiOJKIC9Xsbi/+ai\n8NYuYSZb68lTmp999zVWdGVI/GrCCoCknc79z1+RJODhwT39bGKs2Se+8/ppAPzhipeojWaxrmEY\nm7oE+37SNJkbs1aTP79uQMcR95j7ufTWz5k4bR9fPT2NZWtOBR10l0bn5AS8n8m/zV+Bd6zO/HO2\nJL9b9eLIJBFV3WY7RlfXJtvMPmDDqxNZ/OENgOlB6h9u4C81KLyqlvTdIrGMnuvT3YbrIKRVmX+n\nXd6AdXCQNT94gFGXV9I5QUM7w0csI5WIJnGMyy0Yxj+v+5m94E9E00XEhGnOavEZdExNUDa8keo9\nRbiL/JwzZA9vfTITIz9KxiobHZN0XIP9RHenI2iglUawb3aQtds8we1jFMJFOmJelD1znmF1TOTG\nt27FWScSKNUYMbqejoiD9g4XeTk+bhi6jnQpzIuNM9m1ZzDpO2UiZwRwr3TROcZAtxkYosGwEc00\neT2MzG1hd0M+OV0T5nDMgvhuBt4xBjkbIVQkIkXA3q5zwy/+zr1fXJhUGj0cms0g4dKT1imqW2fM\ntFpaQq6jiwYNAJPPrmDLR6OPveExEM1P9Hns3RjyX2sQHQ70SCRp5ZA4cyq+Ugv+UnMFPXNMGxOz\nG5ifvpu/tU5hU80Q0xvRJ5uS5wcgVCggjvUTbXRi6TRrXNOrNcQEJGwC4XwRQYPgzDCGLqBHJRZM\n/Zp787YSM1SsgsL49deQZo/S0JSBEZawNclYAuAfaRpV6wEFJT1GuifMPSPfprz+TC7O3cYFzr3c\nduAyNlUUk7NaJpwvEJ8cTMmVXxm2csdLA1tljuUksLb+a/pZHo6yuftJ6CIuJcZBfwYdW3NI69I3\niFzsR/oiDYvPrFcInxdgSmEd6UqEvxSuQRF6RrkfNUxndWMxm6b22BW1aSFmv3B3sr3jQcJuyuhb\nO4/eLcXTBSxeIxll9Z4dwWJVMQyBSKsDy1Esif43oOS1TmL5zqQ3siGa0cq4W0JXQIpD20QBOWR6\n3oWKjJ5anfEBRFEn3Gkna61CxwSD7OHtOC1xmrweou12LG0Smt1AtxrYGyRE1UwnDQ3SUQJd7YZM\nGyXNCpmVGgmbAAZkbG1HiKQSSsNph4SGf3wWUtRAdYmEc816e1uHTrBQJFKgM21mFTfnf87tT3z/\nyJ/8jSJUqjJ+5CGagm58W7LxTGrnuyVr+UH6oZRo66BzD1C9dTD25qNPcqRZnfjbnMiOBNZtR4/q\nKyHTukFUIZYGVp9JBoeVNvOn4X9luX8yF3q20pDI4Fe7LmZ0TnOyPhDgmpp5VLwymrtve41r3e2U\nvn4rik9k1Nx9jPQ08+6rs1G6+KIhmPX1h2PWDZtxSjGWvzczKZq05WflvBrI4I+PXk24yOCpBUs5\noytBpCIeZke8gAUuHy8FsrjWbaa/F3+wiPRNVhIOkKIka2vDBf+7GY08gGjQyeDW695ledMEGj5O\nTcGM5ugpk+2Hb3qcV9tmsubtiUc2cUKIjYsgijp6/Tcv8vavhCMzFcBUBu+u8Y7kGSQ8GhimtZ3F\ne/zXOzhUx3AmsB+wUDCnDlWTmJFTyxsbpnPqhCpeHLYKMG113LssBMbEUVoU1DyVe057i9X+EXxx\nqJR4TOadWUtZ2jYHq5jgvZoxDM3spHr9UIqmNNIRtsMXqeUJia51EEPseSaPF2ddupGP35ne633N\nYlC5yKxHXObP5o8vLei3Deu0DmJfD7BeYIAYaBnPyWDXbWY2yr3tI3h652w44GDc7L08XfwOp5Xf\njXiKF31DOuGyGPZ9VuKjI1h3ms9MNFcnf3QL3gGm4x8Jqze174zkCWg20yLRsx86JyXwVChoVlDd\n5vzMdbDvtqKZQorHp3dGHNteK2Vn7+OQP43IuuyUz7u3V90C7/7wPl7zT2RtRwm1rwxn8g072PzC\nBAKnhsEQ0GISrgoLdy16g4er5vHk+Be44oMfIkZF9i14jMe8RXzaMYpt9UU4V5k3ZDhfoOqXP+73\nt/9TI6Nxp4glaIZ0wwU6sQwB1z6Fg18MwV4vcWXJFt5cewq6Q8fujKNZBQzJIPMJF2q6xvWXmkI4\nKStWjTq2FpHFE77grqZTzAFVF4ingaVDpGp/AeE12RhhmanZdfxp69lc4mxmYeEawDQWH5PfhCFA\n6eQ6xIhI4WcCdZsLidc5mZW5n/umvUnr1jyCK/MRBIPAvDByQMBXKpJerSHFzejCRn8x1maZ+Rf2\nNh2WokKKh6cSEKn+rOSkiSiQQkSjhb1XQo2uvjU+3IyuxLI1fnH1a722OxoR7YYeDoNhIDocSMOL\nieQoCJr5+/LGN9O2L5NP14znN8uuZsfHI8n62IYUkMjdqCPokFajooQg4rchZpr2DhimRU7cJRIs\nEs0C6DQQa+3Y7HFIiNyVvRqAsK6yKx7hs2lPcnbBHi4Yu5PRo+uIlUaJzw6AYGD4LEghEbXTyhvj\nn6VWzWGkp5kX62bw3ervEE5YkFwqhgSaHRQldclxReekgZ76FCK65+byo2z5z8W+tiw6Ig6CqhXt\nryYRDQ4xvaBCHXYsPoOEQyA0SMDxvpttb41h5aopfHvvhYz66npGPbWYXfEI9xes4fUJz6S0nS05\nk6Ir/cGQelb+DofqMaXwO8+OEE/vfxIQHKLTOQZCg83R1vO5nUiTi8uHb8NdYC4UGTJ8/1sf9Pru\nxHlVfbb50NXP9Pn+kTj/AlMFesTptQPa/mj49YJXgZ5Vy4FCDJrCOnJYw5AFgoUyCCDHdKw+ncAg\nU5TIECGSY2DxCkSLVKQ4CFvdhP02EMzrIMYFInHzACRJR3SqqG7DVH/WTdKkK+ZqedHnOrmbNDSb\nmW4aGK2iegx02dyXo0UlXJJO+2mFJPLTUQsz6JxRSKAsnUhxBros4B0hE84xiajqgvbxAoJhTp4q\n23LxakevLfkmIDoSlLjaOCX3IEpAILghm9Wdw3vVEdasHnJMIgqgrc3AWW05JhFN7r+rW7Z2ZTGn\n75TxvlPELTuv49c5u/jPmst4t2Mi4scZVL4yilnbvp387svFnxHON4jqCu+GbdiaReQIVLXmEEjY\nkkQUehNRgPKiddyfvwVHk8DLd/+J5+82bca+4+5k63+UU7VwKaohMeqr6yl54/uMtjj47VPXcsW+\ns/j981cx/KXFfL9uFumbrHgnqsjhE5/0/l/B2Asrefimx4+5Xf78OkRB59kRr/T6THf0nGRdgT2x\nwmMSUWH6wK3jjFYrkvx/80JaO8xFUAB7s4C7Wsa9V07W0N646D3AFCYaCErH1ePebUEOQZ49gMca\nJdfix10ls/HT0Vy+92zGrLmOt878b/IuPMT5E3dywbkbce+yoBkCH3w5iX8b8wHXjtnIgkfv5uHC\njbzx9TQiQSsVFYOwtwgcqMnpRUQPR8JumFobxwldho9r+66dThT3qKv+dvnR1Wm/aSL6P4lzKy7i\np1nVKNudKD6ByvdHcNrSuwHQN5hGzqJPIVIaSxJRAFuLeMJE9Ej4RpppulJUwLMfQnNDvHZOOf6R\nCW5a+B6VNy7lV5e/judbfdfsH040AdIyQkRHRNnXkUVnpwvrKR1YL2khXGB+rnTJyigBgzkf38E2\n/2B2rBtO3COw+mAxW35ezuCcTsSDNkS/jBI0WNk+DquSoERO4MgJ4TogUvbFQjRENq8bQbyzp+TN\nkP+FrV0crQliaQLhQgPXIRHVZZC1U0UJgDYpwIq6cRg2jStnr2dWUS1bflFO5mAvB88TGbrC4MU9\n05FlLTmwRzMkwnki0TydOzP3M6xL4k8aEkIbFcQQQHIkMCSzJurT5VMZmtvB9PXfwyaovHjOYyyY\n+jWX5W7hzz9fitsSRYpDw9mmPcq+qx7jrUMT+TpUTNY2AzEOwZ2ZFGb5iBepKEHQLKayZSRL5LPK\nMq667HOyLEFyZjWiWXouxjvfu59LLl2DLvV9gSpuKSdacHIejQC2BoUR8/Yz/8JNxDJ0Tjt/G44u\nYRfLXvMhGjqyiWY1jWcXPsKIeftPaD9iZgb6oQac9VHcdSq2VmiszEWKiAwe28Tfb7mPtFNa2PCH\npeStN/APlSj90+7kJJaYaBLHpNWCQDjfVFHGMKXC3ePbiR5yo6TFuGTHDbwZ9PC8fww/P3AZSw5c\nwsbOoQy1t7G3KQdBMoj6raRvV5D9IvZmEecBmZWhMuY6qlmUuZoDDVlUVRdSWZeHtM+Or8wk5mF/\nas3oo0XrT+icdNeenSyON81rIIhGLDQ3pVO5bQiR3C5/KtkgPCrGX+a8SjxdMGsWgj3KrRm7Ycee\nwbjfd+GugZsqruOrqI1SpXc9crfXWl/wnxeifabKyCsr6TizZ3DzXFuPMquDuWMq0RMiqgPO/NFa\n2k7v/RxMnV6Nu6yTjJ3mfjSrAG6V5piHSXn1AKgZGgvTdlB8aurS4bbPylJeVy5aSuWipZzniFG5\naCkvXPcwAAUz+u7kI5pJ3Kq/HNbvbxwoPvGainNVCwemsNsN3eXA0hZKprG7mhJYOuKIMfNeUT2m\nuEQ8zSCen0BNM0AXiGUY5M5p4NrJG7CnRUEwaxeDnQ6iCRmHNY6hiRjuBEJmHCkiIkW7LKtiECyQ\ncG9rIuE0LQeEsAQCBIvEruipQdwtYW/TMEQBpaGT9J2dWDtVDBGaTjMIDdJJOMwJtWY1Bb5Cg3Tk\nkEAobOXLQNnRfvoxsfP2cjbc9uDRz19M4uPXT2HVG6bvnBSD7ctHoxyROjaQmqgThW+aGT32Te95\nBvQPstkai+GN2hnt7Ln/ou/mJVN2J/9+CY4mgWGWVgKanXBZjEieTsRv46Nq0+vwyls+wTdaY873\nNhDOS+0/Jv9+CaOeNKO/oy0OJlh618jPt2vsOe0F9l/xOLviEaKTwrRFXMy+dBvFU+r4cOdYEvO9\npG/rWUU53B/1ZNCXqu7/K1CPsHnqjrK8XvIJ8+0au24rP2qanlOJ88CGc5j717t7fSYcJmD4h+uX\nUf7Cxcc8HmNjWko64dEgxgUS+/9x2hL/qlBd5mJ3tyJ5YJRKcKh5L8sRuGThlzy09ixCkyNggPuc\npqOmHKpu2L+tiEQXR9n55mhq2jNxi1HuvuV1RFVg28FBRMMWFrx2B83vDub9ryfwXtVYAsMTzLQf\nwFPqZXNoGPPcuwkN1nnal8/tp36Ea5sN915zkuSoPfoKphISsHb0P8U3RIiWxhgyr8exIVKQMBeS\nt3n6/E5murnSder2y1GOU0X+fxoJx4nPm+o+HsJl1ecmX8eydDiiOVuz2KdtUl/ozwP4aEirFFAC\nBvZmc8fOVU5uve9H/Gn+q6xsHgvAte52nh75Ipt/uZTOKanPeXR+arlTbEMm6eusBJtcOHbZ8La7\nKHL5mDTf9IiWuvQnOqckEAIyzRE3M06rwOI3cHzmYvjLt9L+fhFKmd8UlM0SyLUGTO0RycHCsg1I\nUQN5h4tHX7sYPTeeFDECjplh8E/PJ3S06BiCSDwNVI9Bx2iFzAoV9thoH+dGGBvlQDgzmab0wJg3\nmDtVhytg7k03c8dDr7B7VBHL75tH22TI3G4QHGae1BJLCz+sn4HVqhL0OnCO8xEOWokUJRDiAsIk\nH51hO7tmvcTKsJVTbSIhfReSoGMTVAJxG6rLwJ0b5Iyi/bwayODh0a9QHc/n1SkCadUGoipw4EAO\niAaB4QkieRJFXyTQFRlrjY3bztzA55ECgtlW3osXJH/3pc+a0uoiEMvU+PH8ldTFM7g3b2tym5qL\nn6RNC3H6071l2PtDX6m11Z+VUA1Yga/eN1dSYxk6Ky97gEuf/QlNq4t4kiKe5LzeDQ4QRiiM7/LJ\nKBEdQxSQogZiAoomN1K/pYA3CiazbtIbjF17LYt+9RFf+4ay0xhreucZpjKpJikIDh06pa7oqhnd\nMgRAFehoSmPomCZimoTHEuNAPJuAZmNvezZ2i0p7u4vKhjy0DivuvRJK0MDRlsDZLBDJEumYliBX\n9vOKdzq7AgXI9VaUgIDQVSDhOaATLJII56d24Mv8J1ZD+oP0Qzxywme0BycrlNMfLPUK8bwESsD8\nvZ79oE0M8qW/jECxhsUr8vrCP7Po1z8mNMhcGMhe13NvWSWN+Xazk9UMHUnoOW9yqP+BQN7mIl6s\nMtbdSM2nPcTD/1IRgg3W5mciOnXUNIOIpjC9rIbK7SOTtaa+MnDKcbyNHoRJBllbzaJ51zYbn3jH\nMeeU3WglUQRNYPqKH4MB/ck8dKccjXx6MZWLlqaIHDWuL+jzO4XWgUcbuvHbq17ml69d0+v9Lz6c\nkNz/8UCIqwhxFQQBm6oTy7Kh2yQc1W2o+WkIqoygmKuRmfk+7B9kEM6WsHcYrLr+bQAao2msyZsA\nhoFk1UhoEnZFxZkWIdTgRmxVsHYIRLNNshZPM1ACAg0XDcLSCXKDA1e9RucokdyNYdrH28lY30Y0\nq4BItoStoStVN6FhafSjlmWieEWzJlUxJ0Pd3pmuAyJS1CAgO+gYNrDo4uEIjYyz+eyHyZDM7zpE\nCzctfI+nll3Q5/bOqt53RLcyZDcBFWd1EtuZ/o1PunQF4m5I+9qcyOw/+xm+M/xMKl8xieTl7/2I\n/5z/Fi/UzWTa9dvY2lqEL2DHuTo1Ymw+e538OddPbGsO4SIFa4f5uyRBR8yIMcVZyzt5k3F01UL6\nS3Uc9SL21p52Sj6+EVEy+OGkz7gjo7bX8Y612Kme+xwAo55cwuZFD3LqW3fQ/VTdtOTv/K1hMoGW\nTKg+/msH3ywBNQQwhkUQa/7n002Pda/8unUMn4xZzthP+hbeGuLoZO++kj7TEe0NPRO7nz+zcMDH\n5DjU9zQvPDSRYnfhGtnJ6UX7eG/V1AG3/b8BStBcFOuG5JNxNHaJlc1r457cHdxzwY6U77xd6uI/\nl/Z9DdSRYZxfm8+BZu3qO/d5uHVWPe+GbWhWg+EFrfxgyKf8YtelTJ1bx7NDvuTXrWN4buNsrt3x\nPSLbMljuncCn207BBfx52eVEc3SsdpMgA/36gusyx8xMgq5F5n1WrpyxiQcwXRvsjUenBD8YvgqA\nztXfTPTvH4nusR1IqtseD7btH0R3b2Yv9aO3p5/wsfTlAXwsRPIE7M0G0WzTLtJfanD3BX/nsUNz\nuDB/Bz9tnsT61mH43ypg8y+XUnPhk4z0LIRqJ856sH3iTmlPdRsIukBhcRstaR5EXeCmgi/5yeOL\nkM/rQFhpRtnTtyp4xyX4aPTfzS/+chXLQw4OxHN49tELGJTZyeDB+7k6az3Pt57KaYP3c03NPKKa\nTGhuCC0hoUUkBL9C53iNjB3mb1eCR18c+KeS0c6RCtYOA8/BBJEsGatXwHl5I01p+UgRgXCxihBU\nUuplfl59Gasn/A2AVU89CcB/Lp1P4LQE7moZf6nBlMn7ALAJKr8rWMWF7UVEWtJJy+/kipKtLD84\njptLV3Nren2y3XQxDEic4zCjMD9qmE3sgQIGKTq+kgw+zJ3CuxkTydoo0X5KAkscOifoiBlxvjtu\nPXdkbWLS+z/C2mnWTbkaEnRMEjn96Z8QK4li3d+/QuspU6sp/6spQnDvLVtTPnsnWDqgcxnL0LF2\nitiaZKJ5CWzNMhW3mKuyhyv3VtxSzugnliAYcMPuYw9ohafV0fDVIBxT2whv6p+UGZEImeubMNo6\n0EsH0zjLw6DxTUiiucL406xqyr5YiOcjJ4/WmV5bV163hvdqx5Buj9KyOQ/bfoVIro610yDhFAgM\nTyBGRFNtTRO4eOoWLs/YRH0ig9X+EUy0H+CQmkW0xs24mVX4t2ahlUTYf/njnHrHrRgCuL7aBzmZ\niGUZuP8Gv9q5EN1iqugW7VexeGOEC+1EMkUwwFOrEfekdhwLPW38fkBXITU1tzv6cLRtj7VNN/54\nzTIeOXAm9asH9Wqju2bseGCpNn1c2z0S+jmdBLZlEMtLQJOHtw5OZ/8VZkrZadtNAuWs692RhF4p\nYHzWEnbcWU7MSODT4mRL9pSa0m4kHGakNWEXcDQaOBplVqyZ02s7KQruWgMQGHpjNQ8XmimxE+bm\n0lmdTuaYNtS6dHY+Po7h19WxvyEbsCHGwdphoLolnh3yJRdFXccVuRx9xsAzAl5e3vu4+8KQ2XUc\nXGNer1++dk0K8T1ZCAlzEUD0hUAQsAggqDqG04bSHsLqcxD0gKEYzMg/SEUwjfxdHbScms3Ytdfy\n3ZHreHrIVxQPGs3I4Q2MT2+gMpBHIG6lNLOdaJqPyr2FWIaHiTe5kH0iaqaGrVVGs0K4NI7SqnDL\nLe+hCBqvbLwQz8EExrMJwq+ZaaMdkzJwNLtQXRKBwRKRXKMrLdhMD5aipgqwbpWIZUDhl3Hi6VY2\nNQw+ltZBCnbeXs55ey5MEtFu3JFRy1PH0c7hUdCdt3c9x6eY/5W8+X0MxeDZs5/ih0/cehyt9oao\nmhMDcaIfYWMaY9dey8T8Bv5wx9Oc54ixTw0SNSRmj6jhqvvNhci+Epcn/97sO3QZIgUGtlYhOVGd\naD8IjfP5y6ML2PrvDzA5fgdzpu1mY8MQ5H1pKW2kAYFhOs+vvYDnD2vfO1Hl1LHV6IZAxStdpR85\ncOof78A3Qmf7tx/EJdqSx5E69Tk+dKdHd5PS7v9PxOql6rtLU9o7vI0jX/8jsfCa3r6OByM9qYuF\nZx3i+qK13Pt8T93dWem7+CxxdDJ436Jnkj6GACNeXIxm07E3ShjywOvqjvRdjK/LJHSpGbXde81j\nDH/55O7zf1UYUm/xn8OJXTcRBVK0EADqEkEGyS4ucwZ59dt72P3mqF7ti1258QknRHM0rB0ShgD3\ntI3i9efOZM5V23hysFlmdMkpZjr2hD8tgTM6qbngKX7aPInlG2bj2tYzZ5Ri4KzrPcYbMkSzDBR/\nz7Mfz9KwNR+b/MhTO/ly2jPMevzoSrsJZ4/ewAxbLcv8Q466/fmXrWO6q4bfvHj1MY/hWDj94i18\nVDEa297jczgIlw7Myq0vlPz1VuyQEvXsTs3tD90ZECdCeg+HIQkImnn/dEdEk/emAE88cgne0Tp3\ndBHFi3wF+AGfHuHB9qlUnr4MTjc3n/Lbnn7OXwK2Uj+Wjzz8tHQld2+9AXunwGL1OqTJYbRWF65z\nfPxy7LsscPVebL/EGWbcjtOwAE2vD6WJoWxkEoFiKJjYRCiuYLyXhTbcwLNXQLMIZt10ugYD1DP+\np6bpuup1HK1mz2lvTyCqID6cTf46M60se62M9QgVzD+U/Y0WLUSLZqYLBPUoocE6YlREdYGtVSDe\nFek6x6HyrG809QezSKQnaKjOIaxbWDHxmRQiChA1FObedDP7VDNxunsSjGAyet1iIIZF/MMhfZuC\nuxYydogUvGHhuY2zmfTBbSiuOGn7dYIF5v67a0KPRkSBFLJ9JBalNQ3gTIK1s+dS2ppTB5mKW8qp\nuKU8qeBbcUs5Fq+Id31vs2KAqefsTv7d8JU5me4morGcvtMNBLsdw27FKBmE5AshqnBodz6H2tJx\njTKl6qvOWGbWFokGPzprJVenryffE2BGTi1qpkY0R0cOC2ZtsADIBrpDN31HM6N45Cj3HTyPd9sm\nMNVVy00fLOJ3y7/NtWd9yc7mAoa+H6H0mq1cVHU+H/z5QbxlIvqwAnSnFUdDBARIO5DAfVBHTBgk\nHCKCZuCoC2P1G9hbVQS9p57rRFD8fo+3Zl81o/FhPZOIgRDR7jYucwZ7EdHuNvYteOy461NVt044\nX8A91Ec4bEVN0xFdKp7dChlDO5PbaUbPwCxd2dqrneBw8/l1iBbeCY7sk4gCRHKh48wocsTAf15v\nNU7VLbDxd6nRkTdKPwZgayyGqspoGSptrR5EZ4K26Rp2WWVGSW1qQ12ZgtMzDhA/Dj/fii9KGPn0\nYizjUjvi7OnNvbaND0B5unLR0iQR/UfAUA57xg0DzaEQGOEmWuAiOjiNUJGBfaSX7OIOZEHDW6KA\nKBLJEYjv9VCoeHnCV4gQE/FG7QyztZFuCaNqEjZZJZpQcOcGiQS6+i4RlPQo4QKDcL5B7hcKaobZ\nF0joNM1Q8JYoHPhwGJpdIFQkoEug2cx+SQkaWHwCemEUY0SIWLYGIkTySNalSlGNzD0JjM1pHC9q\nVpsTpAc7hw1o+3BR/2lT0RydnzX3eDc+58/FUSfhrJGZa9fJnt9wXMcWGpZ6H+oKiIO7FYYgErSy\n+7XR/PCtG3nMW0R52xlc9MltXPZUT0ZM8YL+1cDEBCQcOsGSnv38x4OLcNeY5/6xzglkDetkTnol\n+pa+z627tmf88E4w7++ykkYW5q7mwSErkp91R1TTqkVO/+OdSSL64t0PEBxioJ3SUAnXAAAgAElE\nQVTV03ccD0acWtvrveJ3bz6htrrJ5l2XvwP0ENtrLvr8hNo7Ufw0q/c1ix0mU9rw8WB+/XVqqq1N\nUMmae3Tf1sOJaMlHNzL11EoMd4Lf3bjsuAVeYtmpqdWf7jh54cN/dRyPl/SRGCT3pDHvfnMUoSG9\nU9P1BjsJpxmhd9VKKH6T4L7+3JkMu3R/koiuipjP3IgXukhDV/3nvXlbk/V7x/wtCbPGVT5M2H0g\nRBQgsSnjmEQU6BG+A5ZUX81CT1u/28ZHh3n/7Zn9EtFI8bFJoiGa1i/CJB8B1YZsPX7VIse+o1ve\nHA1zZuw6oe9N2HA187+98YT3CySJaDc0m5mqC2YaPUB6hcg1NfMAWFH2PgBpop1f5ezmiyh9QrcY\nZDrDXLH4Uy5xhlFzzbIZEiKaz8LUkbV8Nf3pXkS07LnFSVK7c+ZLyfej2QLeMTqWToHg2/kY75mW\na/LgEJ1TEgQmx9CdGlLnwOOd/1QyqgR7egXdIuArg87hZjqRHBRwNifI2pHac6wPl5IrOcmVzLXi\nyV/cyl8uWsZfLlyGbjGQ4gZ61wR6Q0wlrFlxVyq4KxWsrRI/yPqKArl3XcRcu05gkMxDrfNS3hfj\nBu0zVTzVAtZOkZzNOqHB5nuBYVA/H04fW4U9LYqWEJFiOq7Gf4zk15eL7k/+Pf6syj63+fFVb/f5\n/ugnliB3pVAdy+NUETWmn7sTcbyPTTc9SMUt5dx8hWl0fOTiAIDk8aAHQ0QGuTEEAbUgHXuLgO5K\noDU4SLNHkx1v9BIfjqIgD311NgvW3YJlkcDbX57C0JIWxMKImbqXAM0GQlTEfkhG6RRRgxa+aiml\noraA9fuH8ZfnLkfxSoyeUcOvc3bxo9Gf0TjL/H2X5G3DqyeIlUWQ6tsQdu9H3F+P7cMtOA6FsLeq\n2Nt1HA0RpPYAiAKeKj/BQRakqI7Vm/r7nvAN3ILDWneMTtB7fJ3kqCeXcOcC85r2Vzs66sklfRJb\neXz/6aRSREiaL08depDM4R0IzVbC+QY+v5Ml9aYX1mtje2IlLTW9TZq/O+sryj435cHdUt89Ydwj\nkDuzkdummIJjnpW94zxKwEhKoCf3p4XYpwa5bsuNRFvtIILcaMG+w46lU8ImqaytKkn5jq6Yv2nZ\np2dg6VqUSTgHXjuyY8bLKaJHD5T9tdc2g4va+/3+9hsfHvC+Tga667BV2zQnSlsYi19DswlEsmTU\nHJU8d5Ahnk4ShoS/TAfDwNZukMhR+cOu87h/+aW490u078xhe3AQVlEjlpARMZiadRDDEBAVHUM0\nUD0aiqJhH+lF1EwVXWetzIN/v4hFaU1ECxKICYP0fTpxT1dqvQCqQyScIxJPE8w03xobasCKYdXR\nZXNiaMgGnlodORjH3hA5ITGcGWeZE4inll3AzK1XMGLZ4qN6kDrq+5+w2VpFfp+3Pfn6u56WlM/r\ndhxfipqzNnVADgzXOKu0ikjAxvlXreXs0RV89/vvMX/OVu7bcB4r3ptB+hYL1sN4Xc3rI/jpbb1F\nbboxZsJBrFk9M9LDyeuHzaMJbszmoUevSGmzP6RvVwgVGezfNJg3O6ZxxlozQhb3gL9ERzm/96LU\nxZ//gOrrlnLnqE+OvYM+sKLs/V6pupYW+YTSd7u/c0taz6LB4995nF/l7EYz9P+xmtQNsdRFq7GP\nLGFLYxEXVZ2ffM+2KzWVeJq1g/ZVfZcHAOhdj/2IZeYEUWqysmPFKNwZ4aTX85GI5Pf/QHVbYnTD\n0nxyyXJ7r3nspL7/P4HIETXU8XTzdfz418DIH9XCnbe8kfKe5taQQ/RJKJePWJn8e65dZ11UwxjU\nD4MYICZdufOkvn8sGIfdIp+Nfeeo21oq+k/T3724HHtNz/wnnq6TcBrYprdz2Jo3gg5Fw9q4edRq\n/mvQCuRdJ1bHfCJRyvDQBBveGX/c36tSQ2jrM3qCWN8QpOhh9+ph52jPi6kR+W7C+INt1zDqqcWU\nfHwjJdf0jAGugyKDXF6e+mwe97SNQm5VsHoNFHcMMSLSEnYz+7/vYspvF7Po4GnJ721c+Oekrcv9\nHT1ZmhYvoAsp6r+xdAHHZy4yNsukr7eQsVXGs/cwTY9j4J+apusrMSWKLV7DVIIMmqq37WMUMqp0\nvKUKVp/B2EeXsOuHZuRHN0RK3vo+1maJiefuweMOc4kzzPKQg4LVCYIFMns/L4Yy02T2l/tHoLrB\n1mKuIg3pg4gCfBGFGTdv6UkL3HA1mUDhz/fS+NkoRA0iJTEsPivWTrC2W8xJU5vE6vgY0oZ3Yl3l\nwRA1uiudNauBFDv6RdBsBqOfWELFLeWMW3dtClFM2A0mn9qj/Hl47eiOj3urna1Z9CdmP91b+ADo\nM2W3P6xb2fMwTt1xx9E3FiU0vx958CBsjUEMRUJXRDQbiAEZMT9K/dYCHnPOZW7xp+yY8TKz7rqV\nolfWmb8RyNhRxJ0Xfsh/BL6F3GrW/zkbIJoLutVATdMRLDqd7xeS225wxh3rWF47k+EvtrOHYi7h\nPA78rYRBn3VQf+dsbkkrB1xIika8rAAhnkfCrWAIYOmMIcY17C068TQLUqUPKRBCcNiIe9JRHXKK\nx9b2eJQWtaeYX7MZSNGjX9OjRTwt3oGv/xwe7WxMBI+7djSxo//RVR0aIyszSKfPyQb/MOQGK5aA\ngKPFQKi08eWWKUw5Yyibp72G9apmYq/lkfV172Nf8eAc0gDmwPbwYJbWzKHwiNU1/8gExbYw5cvP\np/uIfvfzp/j5725K2e7W39ye8nrGB7eTvVrBDihOAd9IjbQqaJ+skVYpUfN0GdmYUVUlYKB9q4OH\nxpjE/XD7hcNXdo/EkSmzh7/e9L2/4BJ7ZzV8Mf4tRm7oner3/W99wIRnfpRsp3LRUsasuQ6twv2N\npugCIAjoLgdiMIzoCxEam4chCETTJLMWqM7CPksOl4zdjiJo7FvwGO9eZKNezeSt78whVOzG3hDk\nwEUuRBU+3DaOP815jUDCijduZ1PdYBKqhB6VkNLi6KpIIiERbnZiSYASMgjnCWh2nbLPbyB7vUTu\nZ/VU/LgQZ5c+S6hAIJZloHtUrA2mR6YugxCWEDJjhAcLpFXISDHTikb0BomOyiOrIkHHyOMbmpYN\n/QLoSa/985ASHttxOlVznmfcQ0t62Rx013IdjvAQjf3fepxRX13fJ5ENjzEnjbYWkYSDpCF5fwgP\n0nDUSSlpbgC2vBAfVo9CqbfwhjGF9E1WPpw4DiEuMntyJbu+HtNne/c+YkYbtvysnJsPncrXL/Qo\nqda/UczhtGbbplI8mB6uHW8P4si72Ds1xtzRVWx9cTz33PEMv3jwxpTPnfVdC7rLJifbtfjB4hdR\n9+ekbHvD4vdYnF7NMn8BrYkTS9btL3X2eFNq+yOac+16r1TgfyTCxSrPtZ3Ok3rPoseu28oZ/tn3\nqPmgmNi4CHvnPcvYR5aw67by5MQ5W+pbSTprbiPtqwoQu+5Zi0/gCV8hml0Hr8T2U17h7ZA5tzGm\n+hE29YxZ9qaefjs8TMXapNDPuiFyyLSSONEU3f8XUnvtzUKfqbqWPtZul9TPpLzInKvEDJWJq28k\n1mHHXSVz35Kn+bfyReQvSf3i8NImmvf0Fi/cfrfZN22KxXmhYzYzXfsI6VYcm+xo1p5Uz+6F4IFi\n61/HodlIuaaq2zipWvfdi8uZufUK/GtziRaqXDx1K1vb+8/02XbrIyiCxJilfc99di8up/S1W+le\nQr348jW89cEs5JBAdGNWVyDJPF7b9HbsisrDm87kieq+a/4Hiu7na6BwHJDJmNNE5xGKuLtuK+f+\njlKee+ncPr/3rcd+kvIcA0QKtZQ674HCO8rA2ili8fWQUc0q4DqQuogy5beL2fzLpWz+5dJkRHRa\nwSGenfFy8vNuiKqZPi5HBF6oOAXXAQEwsK9zIZ3ZTiBqZeyFlex9qYwtz4/np7cEuTp9PRoSn9x2\nP1N+ezdDvmOWMqkuASVoYGsT8c2OkLbGHF2sXoNoloDVa2b/HE6kpdixAwL/1MioqBpIMXA1Johl\nClg7zA4hlm3QfFmUWCbY2xJoVih+z5y4/jSrmrLRdWTv1Gj6XSkd9enc0zaKLeFhgNmW1JVqN2HD\n1ZyfvxN7k4Fm75Hl3qcGuaT6PObeZKYB1ahB/u6dnOx0Jm/8DtE96fiHymxYN5J4boJwngBxEdVp\nDvBS3LSV8JzdhO7Q8VdmEssAKaaDYKanHUlE5YlmyE2zHXaRuojN6CeWsPqUpxAPi2bJEaFP0glw\nzzUv9novQ3IkSeeROGXLlUkiqh9DYnmgkIsKEW1WBKsVPcOF2BkEHSwtQTSLGX2TqxzIQYGN+4dy\n2vbLAVj7wGMM22Cn9rezqHrsFELnBSmSvdw38U1UV1fKXtzAs1cyFenSVIywjLNRxzcc3toz0Uzn\n3V3FiIf301Y+jPyH1hAYkZbs8AFUv5VItgXfCAehPIX2cRZi2TYMRaRtvJ32cRaMwXnow/IJjckn\nmmUqhNk6jGS0ccHzd/LiW2cm2zwWET0eWCYePUzRTWpHPrOYec/+2ze2XwDXVhvhNdmkr7Ih11mx\njfKiWw0CQyCeJmBrN1C/yKLkze/TUDkwu6F57grqGzOIaz1EwhBB8Usc8qeh5vdEPj/yj0tauyTs\nvc/pop8sR/L2tBMqMsjabHZXWVtE5HDPPawEDGIZAt6aDAplHzVqkOnzK47vhByBykVL+ySiABdU\n9j1A3plpdtZ/vf4vgEk8zxpWSXzQidev9Idorh012wGCgOGwmc9dQCVrq9f0G03TEQQzS6QxmsZl\n1edyoSPKfEcV/ntjNM6WaJvsImOPQcJpYM+IENBtuOUYnVE7TnsMQxOQHQn0NqupsLvPiXuvjGY3\nCA4WMSTTksr9mYPMihC7/90cwKUYRHINNIeBvVlEaVGQQwIJj461U0AOC0h1NqSghBIwsPhNHzUt\nw40hQjjn+AbwcQ8t4ZLq85J/T/n6Kj5sGU3VnJ6o/pHR1r7EP/Z/y6yT3nPaC+y8vZydt5cTndjD\nOPef/UySpB6LiAI4ukQrjlwMsa7y4F7jwOIVUJrMSEH6NoWMIZ0kjGMPyZN/vySFiPaFfVeZESql\nd0a8ub9NVlZtGc2Wn5WnpH0mjrjlr791Jf4ZZsQ1OMggcUTgw1+qM8Vei1VQ2BMp5K8Hphzz+AeK\n8u88AcCMMweeNjcQwvlN14wemeoKkF3o4ye5HyetV8Y+soSxjyxBEAx23VbO3nnPpmx/36Kj20r9\nZnjviNRDyy7D3thb1OhwInokHLUmETX+d9swHxOHE9G+VD67Vf0/3juS4pU3UaMGsQoKQ7M6cVeZ\nH57niHHudWtpSqQu+ipi7zzgw9az+eGeq1nx2TQUQeOetRelENFPIhKfvj/5qMeuHfaMBkapBIs1\npGiqCNM3IbrmX2uO+/Y6hXe/nEpDm1k32b3ocTj6K88BmHvJZoAUZd/XN09L6Re7iSiALOnUrxqM\nrfr46kRjWX1nABxJSHfdVp781xeOJKK3XW8+ex8395/Cfu3Vn/SKxJ4IEQ0NMu9NOQz+CT2DVHCo\njuuyJvypiWBJwtntCf3skC8BWB5y0Dmh5z4UVYN0JYLrADjtMeJpZqqtvyxBjjPEj0d+zOslPVkt\n79WO4cd7FzDVamHmp7cBsGdVKZ0TtaRKdNHcQ4j15o59Iw38JWYatqAZqRFdwFf2L05GVZeALoN/\niIwumQ9s4gwf2qAo80qriRXHaJ2kkL9eJeNrhQX75/Nm0MPKUe/y5aOPM+JXu6m55Ale3TuVumiP\n39Kvxps1Lpom8tD6swAzKtpdQ1aquKhuMVd35950Mxc9/m+8scUUDRi//hq8LW6GzziAcEE7QkEU\nwWISTGuzTFqNjhIE36Q4aaWdhFbkY22WsXaaK4qaVSRQJOMdLqFZDKK5PSm74aDZW/RHaGY+dReJ\nhHkD33PNi3y56H4qbilPIY83XmGmEN5b3XuF5vt1s4DUKGj3v8DGHJ6/4SEqbilHTHwzhErLz0DM\nyULKySaW66Rt7mDaJ3nwj84AEfRhEaKFKrFsDY8nwnmFuzlli+lN9figtVQuWsqjZy3j7OI9TLVa\nSBfDpqehBeSogS6DHBYQ2yymrL0BgiZgsSS4aMEawpfPINHUTMb6BoRPi/jqEXMyWaWGmLppAZZm\nmUiWiHcEtMxTCYyJgwDto22ImoHqgkSanYYz3PiKFTSbQWRQAkE3UD3/eL+1+Lb+PcK6MerJJQja\nN6+mm3fhIaJjIggJsI0xF0ms7QJqmp5UrbW1G6QP9aIEBIoXpXpzjry5N9k7zxFDbrVQ+UlPOkc8\nTWDo9DoSH2fj3tEzWqbJEaZdbaZCypGe+zucLxC8IMjDu+eRsavnd7trIZIrEE8XiGUKeA8bF8IF\nAvF0g+KxDXRoDs784MfU+k/O46w7gtlXJLMjcnTF0Ctf+DHxHI3KRUt5uHAjNec+3W9bJ4q4WyJU\nYCEwIY9YgRtDEpL1sllft+M6KCLX2tjcNph0JcLk9EPM23Upl3z9fQqcfoomNdIxQ6VtkoDiE4m0\nOfjcO5KIpmAYApouYnWoSLKG4U6g2FUSLp1giYZ1WIBwgY6YMMUyQkUCDae7cO2Xyd4ioDpBS0ug\nDYsSKk6gWw3CgzTQTFEP3WIg6JBRYV5vOWa+jhQ5MSSh36hNN/qaSO9/r4RxDy1h5+3lhLZnUvfB\nUMY9tIQF++f32laY6e31Xn+p3M/PfIZ7blrGztvL+STyzczg426IZcDCGz5AHxrhrBvXMud7G9g0\n9XW21A3CdmHvOmWA8OlBQkXmcUaPcXsfngraH9J3yUmrGDAXEP57iTl23Lj4XWLp8Pjb5+JZb84+\nXHVCkoT7yjS8YxLodp1pljifRCQ+bx6Ob/OJKY/3hSWv3sLK6+5PRr0HgnimxshnF/f694/Ekamu\nAOHV2bzkm9artMKyw8HwV3pHD7sXBFaGe1tFxDIN5tp7xqNOLcyu28rRpwRwntbaKyIzEAiaWRv9\n/wPTsgVz/hnLMq9Xd+2tbaMTIShRrLgI6lHiuoR2qo8zrja94+sj6dyzOXVxsqKydwSxe062PR6l\npTIHzaNRES3EvdOSYvVz00eLkuTY6Cc5pLt/DBcYWJrlJOmRDlvzTJykHdyREU5rh8igHHPxfEMw\nlRHddc3f+m0nlqkT0ZRe7dlr+y9XCq7L6fezJPqYElnb+6czj3QOTf7drQszUIy3HQLgg9Er+t3m\npVd6jzMnAmcdpFWbmV4ZG3rOkW7X0QyBc+ZuQXUKxNMEVLdA/Gw/49f3qPQvD3WVqjnDYOl5vv3D\nDTa0DME3wuCKYVvNFN0gXDpjM6WeNv7rI9PH+tJbzbr6HTNeTqZkp68z+yRHk4EtK8LkcysY9J0a\nxqY3kshW8c2OYm0X0Vwa7t0WolkC3lHm/RfLMI8zrUpAdR59HisYhvHNmxgOEKd++09m+pQBzdNF\n5KCANM3LxcN2svLQaCTRoLMii/z1OpFMkfj5Pi4t3sHG9qFU7Ssgf3AHaye+CcAvWsbz0qYZDH1T\nSKrsnrr9clo6PGS9ZyMwRGTXD8vp1MJM+fsdZA72oq7KJlCa4LYzPua5vTNIJCSi/x955x0eR3mu\n/d+U7X1XvViWbBX3ho0LOKYbMJ1AwCFACDUQSEg5ISftJCf5IAk5JMQOJSQxHUwNEEw12MbGvVty\nk9Vl9dX22SnfH6NiWbItG5Pk5NzXpcvyzmhmd/add577fe7nfppc5H8IiYBI/PwIqioS9MY52BDA\n1mjBEgFftUbDBRqFBe3UNwUpym8j+edcdEmgZV4ae40VOQ7qYQtIqsNMkys+nfNP28T7b/a75qlO\nAzkuoDpM45H0ZpOopMviWHb3B7+q3UBOCkw4u2pA1jQV0njmwkX8v7oLqPpwoAOvb0YL4bXDy24N\nF5rVoHRxHXpHJ0J+DtGxIToqZOSelXh7h07rKWAEFXKzu+hO2BEFg+5mD54cs//R2MyDXJ65gRw5\n3LeyM/E3d6B4TaMfi11F6bLh32IhY0eC5lMdJDLNwLX81AOcHtrLAs9W1iSKucnXzL1NU3mntgJj\njR9r2CCeK5D26OheFUuL2aZCjkMy0/wuBN1sZ9IxN4Uk63hWOHA1m7VszbMErIUx0gfcyPF/7X5a\nQ0Ec142+Y+gV8sqbF1Hy0q3Y2iSSRYp5bcrDuGwKXesz8VSbJEFKQXJ6jJxgNw2tfoLv2zEk0C/u\nQBINeGlgDeknP3+Yihe/TnDLsa9X53iD+XM38emiqUSLTAlK22lplp39EGUWF//ZMoFnVs4mtKH/\nARMrEEgUK2RmhzGWZhAZKeA5YBDPEfjO9Uu5ztNMZTrFxSvvQK4+vlXVoXB4q5eTte/JQOEHKWI5\nVuydGo66bpQsF9E8K/YOjbRbJJEhYkgC4TINvCoZmd0E7AkC9jjrqotwOBVyfd3s3Z+DpVVG9em4\n87u5qmQTaztHMsbbzCuVk7DaVGJhO7ZaG7mzGzi4PB9Xo4GcNNCsAroVPLVpWqZa0W2gS2ZfUyEh\ngiFgeNOQkBAVEUE1F5cMERDAXwXdJQL2FnA3a0TyJQTDrE38LCYjh2LW5VtY/XJ/FjE2UsWRGUdc\nN/De6JX3bkgpXP/HY5QmfEb0Zis1K+QtqCHX2c36pRMQdHj2G7/hl43nsyC0hV/tPgd9WQbhUh0x\nDZ7SLnh3IAvtHqXj3Xd8a8rf/8bTLOuYQH3MT54rzIP5y5j92Lexd5jbkyGYe+EmPtxfimtl/0Os\na7yK4FDxreu/t9Z//2F+3jaeJR/MpXxyLZ1JBx0bT+6z5ngccJXcNNamo/df/KyQT0Lv2TEX7GbT\nutHYW8W+DE3x67dQffGjg4jlyXLqHC6OlGH6d4GzceD9MuLianbsz8ez3Uoiyzhqj+xDkcwyMAQo\nOaWOpjdNA7XX7n6ApZFJPLZ9Dux3YW8T+tRa78QtfGf7lTisaeyyyvLxZklJ8d9uxlM19JiNlKl9\nmdhDES3WsHaKQ2Z11aGV3p8J2XMb+HDca9SrUc59bKBKa+ft5uc7kkT3RJAoTOOoG3xNjmXQlcjR\nB8jSj4ahFnFeue1XXPbH/nI4z+ktRFZkDboHE7naAFXCyYKo9rdAiRSDGlAJbJSJFIGen8T7qWOA\nyZEhCXRNVQisM6/Vvfe8wAN/vJqN334YSRCZs/VyEq9l8/vv/IGvPv11nvzy77i78ku0bs9C82hY\n/EkemPYy//XgdXSXmPEwwFfu/DsPb5nH3nl/4bStlxN7w8wWJ4PmYvDXr3yT2c49XPvU3bh6SvMN\nQaC7VEfOi+Na7iKRKeBo7XGWPq8LYXmAbQ9+88if/WRfzOOBlNJR7QLt18ZIBzRUl0EiYaUp5cPn\nSCJLGnICRNXA0a4TcsVZVj+GcMoOmkD3imyiurlM9POsbVw0aQsNXzZNA0pevA23ReHi8q2kfCLx\nEeYoDkhOsOvIL4TM4Miv4JPiRFrcZD3hQEqI1J9r0DHRQKv0IEkG3XE79npT3mKJGbRMF/Fus9K8\nIQfJqtHY4aP5DA17l4Z3mxVXk0Fop/k+/nr9QySzVVSHwZ7rTOmQNSwOIKJAH+GRE0IfEQXweQbq\nweSerGqRswO1rH+brV3i2rfuGEREgT4iGprZzMPXPXKC39ZASIqAWlePoaokRwYwBFPambMmQs4n\nYSxxA1tHT3ZFMIi2uYhX+bG2S0S7HaS2+Vm3tozvv3kNv66bzwtRU+oy7YvbmHhWFd885X0sFo15\nkyqJFhmgGSheg4wtBtNPq2Syv54/7ZjFl7fcyENVZzB+zULe/8tMXEu9GKKZkTMkU3svxGSkpICr\nWUd1gavBwL8bMjebPZwMTWBktmlKY+1W8W3vQEwLGDs9QxJRJXCSIuXPEUcioqFTm6l47A4MyXSI\nltotCCr8z8TnWTN5KZ5q6Co3V8FsnQYXlW3jrJwqZpVUAyZJkF4JIksa7dMGBi2/aJswLCIKEKxo\n5+3dZm2cu8Yg7RH45WkvsTRsyvx+nrUNe7NEtLD/eEJPOXZ4cwapgNDTAsZ8r083nMq7CQePtM3F\n5x2GhnIYeDoy2LDpXwmWuI5mE4iP8NI1ykYsTyQZlBBV8NRrYGCO46SEKBh4rEnWHyhiQmEjFxdv\nY6S7A1cojlQapWJsHdEGLzWJEHYpTVvKzUVl29A0ERISms2gZncOlqgpeZVTBlLaQEpCR4WVeKGK\nZjVIew0sbTKGQ8ew6ZCUsATNOVrQBARNQHUbaDaDRKZA5ibT+EhMG4iqATq4Gk/e+ujqlyeR9prH\nS0xIUH3Jo9w+xpQyxfN0KhbsJjmx3/inUhlsHhMrOvmGdOJ5bZyzcA0X5WzlmznvYp/XRnSkxjir\ng5/lv8GrbVPoaDXvYd8e0XS7fXdwOvR4iShAhfUgFe4mnix7ns1PTeDM+00imn15DZFZCTS7gaLL\nuFa6CZebc13XWBUhJfYR0a4JaTbdtwhJEHn1sXl494k0vTQSr/UIzQ8/A3qf8cPB501Ejxdpz9Bj\n+Y8jX0POHzhP7b5o8aDguFci+OPWcZ/PG+zF/7711pOG2teLcey3kregBtU//Gf71NOruHb+xzS9\nOYLv3fo83nObKba4WbRuHtZNbtJZ/QZWmqGzPVmIJOrE38ui4+08Jq29hpJXbj0iEQWGJKIAhlND\nG50gcUocfZhDPlGS6jP4OxYUn95HMgGuL1zN2MV3DCKi7pmmmVnxG8N3vla8/e/BPn1oM8DDiag6\nNoZv9tCKkQF/N0wiCrAmOfi7vmjJQM+Vjs39WdpD780TJaKpCUePTQ7txemphsBG8/uXSqL8ZuaL\n6Gd3ctNdZoa2q8Ignm1wzZS1PPHd/2H1f/6Onz9ztbl/T8/33jaYc+wi1ohAXTrE6kkvsXfhYl45\n7/dcVr6V7754HYlsAXedOQnoFoF7Agew2dJM/dntxF/LxjDXlnG0GjibDWtDhTAAACAASURBVBY/\neyFXLruzj4gmQwKCYeDbLeBY5YbzO9DHRRn/lR2k3QLyMj/J0NHH3j9Zpith79SwfuQluFEie73O\nzRNWUR/zE1OsJBULqQyN5i8lCY+SqK3MJqVKtHe5kcNm76ZWTSWqJzln10X8Lm8dm+b+keciAcQ0\nvFS+lHVtRcTzDIpKTEfENUkNyWZKy1wHdTRF4qXmqQg9Eqz85SqBLRK2DpG0X0fb5ybDE0O3GuhW\n0zFKVMBbq5E11bw51EYnWR/LtEztmTh0U3oMcP1f78Z+UEZOCMMyDzoc8Q0ZlJ+xD2VUgv+85nny\nTqtn1y2LeOP1WaiR/hs2VZIc0JLjUNxwhdnvrH1NDnc+eeuQ++jSkQeK4tNJjUwNkBwDSKUlGGkV\n28EYkqKbbTtGuUhmOfGuqcHZaGBZ46H+YAB7vQV7m4CYMoPjdEA3CZFdp7ojyCiLOan9ecQKfJYk\n77aN4eLibdRGAzjKu2gf78DeKpDxtRoybFGe2zkNcbeL+PYA6Y0BlCovmh3cDQrZGxSCVSqZm3Wy\n1ypkrTNvIkGHzC0KlpiBu1HFEE0pqtxipWZtAXIc5IiC0BXBXnZkJ1pr5//egpv2T80VLlEREVMC\nelYK7z7YmBjJViVJ2iPgrwLFb05ML6+fhkXQONVXTSLbfC2WL3B78Ud4CroHHDsoH6FAbQgYSzMQ\n6/ozLJaIwZc8ncx27eE7zVN4LhIwZUoCdI7t3QcyVpr1h7ZOg7TbzLJ1nZOg3NvCVFsH2zrz6Dx4\n5Jqp48F/vXBVn/FQ2n/0bMERs6InOMPKY7uPuC09IoWlI4HjYBJbRxoxbZYRIEAyKBLNl0j5RLMm\nPy6AaJDliqIbApnBbva0ZbCzO5eNLflMz6sl2xehsjYHf2EX2ztyOBAOsuJACZs7C5heUIMnL4Ka\nrWBIBtaISSK7R0h0lou0TTOITEvirJNxtAi4GkR0GSSnijMzhpgQUVscyFEBQYdUhoaggqVbxBIx\n6KiQSbsFmmdIPQtI5uLjyYJzbiuWbnPcOrY5KH3qdh5ZYvZ0djaKVL5RhhY259G4rvCzLf2SO9Vl\nkHYbuGpOrs9f9yidzk437zw/k8cXXcSPai5BfTsD326Jso+u5+KNt3BD9irumPHhgL/TBis42XTf\n8bV0Arj+19/isTfO5bz7vzPg9ZQm88SsP+NqENj4/ATCFRqGWyVSZGDtkPDt6R/MYkLijoaZfKVm\n7oD3tbdxGBK748SEt+9EHfHZHEc/b/Qudh+OI9XufZLM5NIys0xhl2IGqOUvD4wPErlaXwu6pc/1\n9zbWrZD2GSQKTuKi6D9NH/evATkO1atHHJH8DYW1m0t5ad9kYiN0frjsSlZOfJm34zY822wofoOM\nnO4+olj66u182beNzob++lLj4wDufScWS3h2WHGsd+JY7xx2K7r75yxFTA8ej4nCwQf46+UDyxIe\nePrKIY8ZXZPJ2MV3DJnFHAqJwjS+inakqV1kz21gpL9jQNlFYsTQH+buSR/0qSBPFp7pmNmX8fze\n9WY/2cOTD+mgdlxu/MeCbdvRS3wAwqUGnZM0umb2L+wpzU7e6xqHsSLAX/ab5Xj+SgFXIzz3ySwu\nf+sbVLx1B44Wg9SsCCUv3cpzkf6kVumS24mWqGyKF/V9r5NtNlRdRPXqpEIa0ULzc4YnKZS8cxPS\nqv6xKqYNwhP6vxt7u0Fgi0SswOxheqhLu5g24O9BxB1uti8ZhyVqECuAkbPrjvq5/6ky3XHf+y2i\najZBT2aAs8mgexRkTzpInjvMum2j8FbJBHabF6FptoySpRLcINM1xsBeGGFByQ42dhRS0xIk5I9y\n7Yj1vNo0iYZVBdi6IDY9zoPTX+BiV5zNqRQLN34V1vuwhiGeZzDtjEp2PT0G34E07WMtuJp1NIvZ\nVqZ9nIXUtChUu9AKk8g1dtPx129gb++pbTJM5yhDMms7VI9OcItItBAEffCN3yu7PdyVVfHrGP40\ntgNDRBzHQKokecxepkOh/Ix9VH04CsWrM3pSPTUrR2BIxjFrSpP5af561mP8cvxsxMwQ8YpsukZZ\niRWYn8nWBckMU8KiOQ28ewR0q0kguipA6+m1qaUkigrayHOFcckK8wPbqEsH2R3P4YPqUlJRG5nZ\nYZJpmVxPhIX5azjTeQCA09+/G3SBSyZv5oO6UoTlAdyNOpaohqU7jaUzAapGqsCHqOqknTKiZhDP\nlLGFddIuM2jurBAQDBBTAhk7VGxtCppd4rZFS/nRswuP+5oeL4bjzvu5QDBIZWl4d8lERmn84JzX\nuMnXzI9bx7Hk09mE1sqEy6B0eg01HeakdkP5GmY795AjxdEQWPgTcxUxXG6aYh1a49k9CpQMjYxP\nh37Yqg6hr1Y0dmEEYYOXRIGGZ49EKmiQytDIWNf/t73uh/EcAUsUYgUGggaqW+fNi39LoSwy4a27\nyFgt84cf/Y7rnvrG53Xl/mlQChQmldSz6+MSRi05iJrlRbNLSEmNjgoH4VIza+loNUl6ym/grjed\n+GL5BqpHw5UTQ9cFyjJbuShrCy82TSOcstO6MxPbyAh3jDHr8zZ2F1HVlYUoGGiGQHu3C6tVJdLo\nwV0to7pMt3AEc/727zboLhbN76hEAVXEFkyQTsnQasOQDTAErGEBzQ7ORtMvwJAhFTAwJIOsdabh\nVXB1IzVXn/werZoNMuc00fHBwOyndkoEpd7F3Fk7qHA182r9RDo2ZJnGTsex0j5cxAs1DJtOILsb\nZVUIUTUNlXQJtnzPDI7mbL2c+Bs5xHMNdIsZJN2/8C9kSRG+vOYmPJ84iZ8eJdMX7ZNQnShS87oZ\nndlG3YslQ26PzI5jNNtNdUmjeY+fct0Wqrqy6Hw/FzkOExZu76vt/LxrNP/ZGK5MV/EbQ8ooh0K8\nSOW1+b/jmke+NWibNiWCtMmDc04b8VVD1+RqDoP5F67j3aUzhnW+Q9FbItSL/2syXcVn1mEeamo2\nXLmubjXnv2iRjmCAq9Y8dipooBYlERvtaE6d7NFtrJ70ElftP4vKl8u5++aX+c1Tl5vtynrWcOO5\nBs6mzxYLaPbPz5wqOKeZjlWfba7pheLTkVICUlI4Zgx049XL+JpvG3Me/fZx99E9GdCnRvjtlBe4\n9083fe7nsnUZ6LIw5IJs50QNe5PMORev482V0/BVDbxmndPNEkFhQjds8hI8vZk7iz/kF7vmE631\nYsgG9mYZJaBTPrmWZ0tfwic6+PKBeex8cgxdM1P4/HGemvRnrrvfnIdyrqrhtoLlfHvp9bhre84z\nVcW1z2KqpDSDaGHPopsAtk7zfaddAvE8Hd/oTmRJR30jA8UnsPMXn1Gm+8ADD3D11VdzxRVX8M47\n79DU1MR1113Htddey913342imJXTr7/+OldccQVf/OIXefHFwf35DkdoRxpbhxnQCKoprRQVkEUd\nUTAIFnQhn9VG3dnm3ZWxRSe4QSbtEpDiApNyGnlx21T21mZxUdk2Sv2t5Fk6qVufjxLUSIYMpP0O\nJttaWJPUmGyzceXozcy4ZBvONh1REVizuYz4F6K0j7WgWyDjazX0mqHZOgysm3vkFm020j4dzQ5a\ntoKomDU/iRxTziif1sHNF72Do0FCdQh92uvD4XWbkjApKTD3gk19r1u7RE6EiAJ9RPR4XXJ7Jb3W\nbpHaFSNMUjYMcyN7g4Wf7r8YRo/AcDuxH4wjJ0z3THuHOSE6WnqyHHkJusYYZj8iwXTYNVptaIoI\nOhwMe9jSnMdH1aPYFC/imQPTeXvnWDRVwulL0FoTIFrjo6Y9gI5IgeymQHYzZmQT9JB9u0VFt0Is\nWySeKaP4rehWGS3gJFJoJZZjQ/FKJDLMLEwsW0JUDdonCii5aVSHGcTHQxKxfDu2tgSbY0VHvQbb\nvvZ7vnPVkQv3h4t/JBHt7TtaefMihDFRBLtG/NQ4clTklYOmg5+IwbiyerrOSBIa38quA7kUBTuZ\nmV/Dd4L7mGMXiegW7tp7NYksgXiugGY18O8SSAUOccdLCSDrJLIGf75okUCqZ9EuOkJgcm4Dtlnt\nhNaLWMMG7hpANmif0h8UpYIChgyONgNL1MAoTKC6dS6bs44O3c61+y5FCpur2nXpf2157YnCWm/l\nrIzKvv8LaQ1DALktijVqoNtM4pJ2gqtJR0oKpPwCabfZyxPZIB61oWkibQkXtUoIzRCpCLTgKOnG\nZVfIkcMcSGZwMOmhK+4gkrRhEXWsVpV0WkZQBWJFGoIG6ew0aZ+G50DP4kIcEjkaljYL1jYJtdaF\nnpaQkgL2Fgl7q4igCcgxAbEnqBDTYOkWcDaJdIw1HXqVgs9mPnUkpDK0QUQU4IrSzTiaRT55dzwR\nzU5keTaWiIBuHxiUxwtPUiZKB1SBzhYPJRfs54N7zP7R+iGeHqsmvsym+xbhbBJw15peAnXpEAs/\n+VqfovJvMxfT9ulnCw67pioE3XGqVhQfcR/PJ068+8U+Ito1LUVTwstfK54kNTWK7+JGGmJ+/rPl\n+Pvz/TvD2iUw45JtJHKPPW6qL36UBxrnD3gtUWEu2kqbzHY5RyKiYD5Xe4loIu/4xun/Rk+Ek4ne\nxaBD4WgRSGYNwwG0xzRICKX6iCiArUPAtcmBtUtASAscbDGzTOu2mzHXw7vnIWqQPMSJeSgieiRz\n7cPrQuV5ptz1WOZvJ4pEkUJ75OQVo4qK0Bf79P57JBJ9pmsX320856Sd+3ggndrJ4qlPc/uHX/mH\nnbOXiCq+geMhsFXC0Wqw8k+nYIgG4TlJUv5DyphikpkZrXOTf2YdXluSX+6aj9+RxL9LxBKWUPw6\ntsIolXU5PNs9miv3nc2+cIiR1+xFarZhvBfkojfu4cnvPYi8oI09TVlUpXKxdfSfJ7DRbMem2SB+\nRhS1IIXqMnlQdATEc817yrdHgL8HUd/IQDuv65j9w6Wf/OQnPznaDmvWrOG9995jyZIlnHvuudx5\n5500NjayYMEC/uM//oNdu3ZRW1vLqFGjuPfee3nmmWe48sor+cEPfsAFF1yA3X7kjN0f31oDgum2\nFBuVJvtTA3unQH3QQUNbAFUQeGrqnykvaeR1aSzBnTqCIaB4Bezt0LojE7ldRi9U+MvYpUx27eeW\n9V9G1WTc+yVsnWbglM6AjfEiflM/jSeKVvJBLJvtuT6MLitiWmDO5N20hCyo2Wk6Ps0hkQmGJPZl\n85x1EnJUxNolkijUsNdaiFUoqFaB/OUayZCIfVyENtVDg+4GXSRaOHSPUbWpP01fs+fIza2Hi7TL\nQOqRXgyViT3Z0GwGoiYQqfUS/KQVIZEiPjqE6hKJFxhYO0XSHvDU6giqiJ60wogEad1KMgSOFrBE\nRXRBQrfCmJFNdCWcpOJWalMBwpUhxIiMEFBQazxYomJPT0WNJ8pX9b2PQvcexADUxQNEFDvhpAMB\nAVunWdSteq0oXgvWqI5mF3DXJ3G0pBBEicgICV0SSOTp2FplHK0CWRtSyAr4NjaCAZ/Yhu7114vF\nG0/lkx1Htvr+V4ScmyDhFFj8/iyKyg/SGXMi1Dvw74ammJ9lrkweHbGaNakA14z8lFxXhNrnRxPf\n4meHPcg9paZF+/cbz6A2EiCScKBkakydvI/wxhDyoX3OvAKWTom018B+WFmINQyp06IkBSveA9Cx\nMYNOux0QzdU2wNAlvPvMrHUqaNYjGzJ9bsvxbLjy1PXk2cK4pST7UllE3zZro9/fOWmA/f2/E9bu\nKgUgtDGCYAgYdpl0wIFuE4lni1CQJG0R8dSYyg3DYvYES2YAhoDg0JhVXE2eK4xbTrE7nEW5twW/\nM8mUYD3tqgdBgPq4H0MAr92M0hwWlY5ON4JLIyM3jCU/gXLAjXevRDJkuhw72gzQRXQ7qPkpdFFA\niEsYFjOrbVjM/oiWGCCC5jCDKkHDlMM2gbNFxxJNExl5ZLfFE4UlMjiyUybHqFwxGlEz6+Art/cv\nQh3eE9jSPXRkqFsGt445GqzjupF3OpHDEiVjGvj14sv6trWXR5jrbAPMlmPdYwz2bhqBtVtg47py\nbPUWrD2SuBfWzsE6DGPIrskK9ub+SE+XzfcbLtP46ILfsuTP52HpyfYpnoGunIcjfnqUd09/mIfe\nvpDnVp+GVJCge2sG98x6mzQScxydPLx5+qC/Kz+tmvbaY7uH/2+AqAjD/s4bqrLNZ9gx8PVT1/HD\nJwe6slqLY9B4AhOZIKC6TP+JE4Hm/PfW7FoiAqqDAQtivdCtpgkOguneL6nCsL7nVMDA1jqYTbnP\naEHY7Oa9ax7EK1pZY/XRuiuDbqeMrSyCbatjiKP1KIEM8+dQxAp1rN0CmmMggdYP9MeV+glOnarL\nIDTjIImAgXCwPzGSKEjjqLMOeE11Gvz9+l/xzMY5J3Su3qRHqixB2gWWsDToswKce+la2nU3r79i\nnud45tmTAaPBwVsbT8HyDyrNOjSGYl4X4j47iWyhz/ROdQhMW7iND2a9QqMTalb1K4jsrb01nyKj\nyxo5NXCAtU1FZHpixHf6UKdGkevsGO1W7LUWPt1eQUN7kK3nLOHq4H6+MWk9zwfzCLe5+e8JW7g5\ndyfPd5fwQeVYXAdEs3VLtvmMj+frSAkBR6UVqcuCvR00q4CtU8AaAbFHxabLAqkMKC5rpmR8A5cX\nXHLEz35Mma6maaRSKZxOJ5qmMXv2bFwuF2+//TZWq5VNmzbxxBNPcO211/LSSy/x61//GoAf/ehH\nzJs3jzPPPPOIx55+/YMYonnzpHxm0JQKCqhOk8ilQjpTpu0lZIuxsaWQtiYfRa8CBiheia5Rolkn\nlaux6Ly/cPfzX8U7qR2XVWGEp4OVa8cS2CnAgnYuHrGdv3xyGjfP+Yg8ayfPNsxgd00Odk8KvztO\nW6cHtytJUrEgSTpTc+tY+854smY2kVRlOsMuNFWEbgtfnfsRzz57JqJqGhRYJ3ZRkdHCxtVlFHyo\n0jRHJmOzTse4kzOAe114+74TWz/R3XWL2UzYGj5xOZlzWhsbpr1ApxbnlOVfx7pv4AQZnNlMx5qB\nK/DJbJWy29ci+X2QlcGBq7NxNhukXaYMT1RMsycM6B5tFmN3TtS4aPomVjwxnVihQTqoIqgiQlrA\nXS1SdPl+rKLKnvZMgq44be/kY+02UDwCL931K8os/StzbVqM7YqHzckRvNY4iQMHshAjkpl1SZsk\nZoCkQwB3vUEyIBAp0xC8CpmhCC17Q4Q2i2S9U4uWG0Rqj6Dk+Xn3hb8A/b0+/92Qylaxtkl490Hi\nom4EwWD9jL9S8bevg6yTsaq/BqR9skFosynD0C3mdxvPEdBt4Gw0BtasXNFOZGMIT/XA842/dTtn\n+Hfx0INfJBUQiJWaUk7vLhnFZ2bunE1HWdkVoPPsBIF3zbH5zn/9hqShkyu7mf6D24nlmf1hv3H3\nSzzdcCq1bQH0A66+lev/zeh16hUrouiVprvpyL9FEZNpxO44hstBeKyfaL5EZHKKmaX7WV01Clud\nFUvPgwED0qd1Mz6niXDKQZ4rTIWrmTH2BuK6jQm2RpZ0zuK9+jJyPRG8liTr6wo5d1QVMc1Ka9JN\nTWeAU3LNuo91jSPQdeGQHxG9zYarViI2UsOw6kgRMxuKYcr2MzcZNJ+u42iUsURNWZqYBiVDRe6U\n8RwAb62KoBm0Tj45ZFR1GZR9oZr9bw2UoMbHJinOb+PguydfDnwsWGKmGYRgmA61kieNa62DRK5B\n0fR62l4pJNVTrpMK6bjrxGHVhUWKdTzVg58D3//G0/zyd2bJQbTAzKAL2Uk8nzgJl2sYFgPJq/CF\nkr08VPAec37zLcS0Wdva26+07OOvkOWP0tAQ5P7TX+Spplls316EZ69ExoX11LQE8XziZMLC7Xz6\nwedstvNPxrFkuvERKs7agbWHC695n/syqpix6YvEVmZiSHDLNW9xgXvHAPfOlXf8mlmrb2V0VhvV\ny46crT5ZSGbr2A8OHDP/12S6hyMyJo2QFDlj+g7WvTCx7/XY1ASujYPJ46FybNUBqUwdV61I2gtS\nwiS7qaCBJSIM6z5Oe0x/hEMRHalhz4shfzLYDyFapOOuOSQre2YbqiaSWn/iChPHjDbOzN/DR02j\nB7Va2Xn7IkY/89lizuHgG9e8RmUil3de7ZeeC6opSVeKUjgq//1WnG1dQ9OxrlkprPY0qYiN6vMf\nH7Dtewcn885jsxEMg67xOs5aCWVyDNmiIWzworoNXPWw8YeLGf3hjVh3mWO4NzYQNIONP1xMWE9w\ne80FjPc08tja0yEtkl/cRmNVFmJmEi0uI7dZUAMqjlACywovkmK+X2N+J+GwE7nBhjUs9LUHBOge\nZeDdZ94fm/8wuAyhF8es1pYkCafTXHVZunQpc+fOZeXKlVitZrAQCoVobW2lra2NYLB/8AeDQVpb\nW496bEe7iiGaQa6UkojlCWRuTtMwT+b7Vy5lRVcZGbYof68Zw/ScOu4ev4R1p43kyXsvwtqtoQTN\nHl+GaNCs+vjSgo+x9TCQPfEsDI9KItOKkbTxUvUkLF0ST7xzBmLaJLxCQCHZYSf6qQfb7DBfKtnA\nR22l7Nqdz3Y5l1RumkTaQluTD2uLjJavIPgVlrx1BvS45KVDKjeNXouEQcskD/EdueSs1mibcORL\nu+Di1XzQUEp8Qwbp0gSWPQ7Ou2gt/5O7nnnbL+XgJ3kD9g9NaGXN5KV9Bki7r19M2ZLbkZKmKdJw\nwrbp521n3bLxQ26Lb8hgzAbz2EMd63AimgpqWMIm0da6wohFeUhJSGSYq4iGAJkX1FNdmYshG1hb\nJSKnJ5AMgd/lrWPa+cXolSGQDQxZQ45YSGQb7F5egjVspv8PigF8DTrxLBHFZ1AkW3k7bmN1bDTV\n8RCqLlHdHeRgqw9HpR2nAfHRCpohI3UIKAEdza1jb5Zx1RsksgRiuQLxfA0hLeBwKRxsCOCuMyW7\nkVPyUVwijjYbckyl4rE70K3GsP1nUjlpbM3/XCdHoyKKUDm4IfXh+Pirv2L2x3eiJsweG+IqHwUL\nDnBx5WXcNPtj/rTuNFIBwezLqgtkrDbHcvT8KJtnP8H4j25GkjUs6z0DHq7xHAGvpHHlxStZ9tBp\nA845y7ePfEsn0UIz89JPdg2sh3j16BaGfmAbYKl0krqkE78jabpiAy9FzYdzrwPrbyvPYlSwjXTC\ngmUIIqp6DEZPqOfAJ4XHvE7/Kug1R9IP+W5VtxVbOIFhtWBYJAQdusemEaIyBxMeyoqaaQx4iYUd\nGIqIYNOoCHXgsyQJpxxYRZV0jy7qTGc9f+iYwcu7JqPrAkFngkmhej5VR7K1Iw9RMBAEg3sqPiDf\n0knSsJBhjdKQ8COLGgfjXvY1Z4JXJZUhgjeNELEgpgViI1W8lTJ5KzXSThFnrdw3R4iKKdEKrZWx\nRk0Zv3NfJ4ZNhsknR6orxwR21ufSG7YoPoNt1/+ObzaezmhHC+fd/jxXL773pJzreNCbBZg2bj8b\ntpUgauCqF9hvzefD7z7A79tO5+8HxjItq5kXvvQ+bVqMcw4zHDoUXVMUHL4kVA8OVnuJKJi9QkGA\nfeb946syx4A8v4vVb07k9M6JfXOerUOk/E+3I+gCrlZoHOPgqtmfcpU7zH82ZmNYdMS0xPtjX2da\n4iqCl7XTrQyd6fl3hiEOzNgcTkTB7EO4xHEmil/HAWSc3kRQinJ/08B+4TZBRjnopErN7nsW33fD\n8/zwvStx1J/87MzhRPT/Ig5vn+LZZT6b1lVPHLCfdffQY1sYE4XVppQ6UZSmpOQgrbUFWA55rh0q\ncxz6IPSZSFkiJqnVHAZKSEOOSLgPSHBgaGM+Uz1k9J1DEnVU7bN9r5HtId5cO1gW3uuw+4XTtrP6\nzYmDtoOZST13ynZW/G2KGWerpipGjh1fpt4ppsg6nJVjqmiM1PDvBX1qBHGj57jO/a+EtEcAXegj\nomftvJj6dj+qIuH3x4hEHbgNA0MQkEMJYnYrdFtJywZWt8GtlyzjqT+cx9Sf3Y4Xs7xQUgySIVNx\nBjD6mdvIHNdKOOZg3aoK3K0CqYBBZHcOwggd7woHnaekOeesTcz07OX+HedxxlfW0pZys/69MTjf\nDmDMUJBLIyQPuImVqkh2Dfs2B676Qwb3UTDsEfvee++xdOlSfvSjHw14/UiJ1eH6Igm6QTRPIjJC\nQNCg+VQL6LC6exS/zF/GFGcNFRktfCvnXeK6BYugcv79yxG+2YJrVJj4yDRIBjd4W5jl2kuJrYVl\nP/gCy7dUIHbLKH4d1zI3xsoAeStUPAdM4xr8CpKsY2s2a0WTSQt/efEcpgdrcGXGiW0NMrK4hR+U\nv8XZE3cCYN9jw7HNgZgSsERNM4fCkW2U25p4uvoUUn/OwdmiojpFMrcMjqh/eu3TALz+95nEN5g3\numWPOcEt+9sMxjx6xyAiCjAjq4a43h9Zj3n0juOuNTwSEU0VJ/vsvv2nDrbO3nXLItKHuYnZOqQB\n508HHcQnJTBkM7MlqjA1WEdBaQvlZQ1IYyKI+x0EfDEeDefxvfJliIUxJLtGIDPCBees43uXvcIf\nvvwIyUyDwl+tZcTbYeSEWWuqZGo82jWaLYkRtCoeKjuy2R8O0dzsx2JTiY9QSU2II3XJuEaFSXsM\nbO0i/u0yyWyVjtMUFK+BHAd7q4SggZKSzV6IgjkG7a0KCGDpTiPo5ucVleFf4382EQUQKt3cduVb\nA15TRibRbQO/vyzJhZaScPQEIrYOgxJ3O8vGvEFlNAd/RhRbp0HGKgtSWEbxCXTPj+F+y81p//kN\n/O868Px9MOl1NhuoL2QNIqIAVkHl7fBEdAu46o88N/QS0egFA/WHqYCA5jQYGejkb+OeAeDyvefw\n/aX9gXYyJJDvC/Py6HcxEgMfVkqBef/IEeG4iWivo+6hGDG7nlU3/HpYf3944/vjwSPXDt2KSdR0\nkCUEJU1spBtDEvBUWbA3SzR/UMDexkxUVYKYDJKBZ5Odg88V8cHuesoiEAAAIABJREFUMkq9reiG\nyAhrG14xSaMqM9FRh9cTR4/JxNMWltZMwelKoWgSYwPNfK/4bSpsjWRKEXKkMDPd+/jvgr+xILSF\ny3I38d2py5hRWo1WkERstWJvktAlcGXFiOcYNM+SSAZERBVUpylrE8ujpN0Gis8svbB2a6Qz3Whu\nG8qU42tMfjTYtzr44M5fsf3uRey+YTE2wcKi/DV8K7if67becNLOc7xIZEJD1Id/pxkIa2d34t0v\nctbKO1n66XRGBDp5oeR9ADIkF/YLD6IcwSjav8mKbfmJu0irb2f0OSJGRupERxjoMqgjkxgVUTbd\nt4j9lz3C/dmbeTXmxrXKhTMU5+f3PMGUX9xBZ22Ahg8K6UoNDNirbhx875xMfN7HHw6mXrhzWPtJ\nCaGvJcTBdTn84vmrWPPaRF649Tc8fctv2XHXIpyilccueJzzy3YAEB+lsNDTzmlTdwGg2yBenCaR\nqzFq/n6evfVBFl7zPpvv/P3n8+H+D2DWhD1H3Dbxyp1Yzmgzf6IM2Ubl3VMX4zrHjJ3mTayk9a0C\nIuVpEtkGkTIV9RgGqtIXOqi4rIrEKf1tP+SESWAFRUT1H9m1JzpKQ3dqpvN8D1pafCQ3fbbFvEPr\niJOjTD3whZet7nvtg50VQ/5dIl+lqLiVRwpW9x1HUoTjJqIT51fyFW8bU3sMKw+FNSz2+YUMB0cj\nor1uur348I5fMfOSrcM+9j8CchxEq4Zvs5Xzdi1gtLcV26duSvLa6Kjz8/D0Z7jxzrfonp2AAy6s\nTRZszRaqz3+cqhsX863gfoz55uSuy0KfJ07G6U1959A8Gpou8vspzyIXR3nzrgfYfcNitnxnERu/\n+Fuic+ME1lt4e80kfvLpxcTbnfjkBNteHIuz9zApiVTSvEG82614V9qxhg2klEEs3yyfOxqG5aa7\nYsUKHnroIR5//HH8fj9nnXUWb775Jna7nbVr1/LUU0+xcOFCnn/+eR588EEAvv/973Puuedyxhln\nHPG4cxc8AEDrJAuGDFkb0tSeJ+GuEXtIjUGkGNzjOnBa06RUmfJgC7n2MNWxEDveK0Ozm3LP6ose\n6zvu1J/djqhCV1lPT7y4mQnNWaPTNkliwtlVbG3M43+mvsDD9WfSlXTwjZL3mWlvYITsZtQHNyLJ\nGukuO0JawHBozBtfxarqEoxaJ3LMzAA6Tm1j8finWfjCN8j/SCVcbMFX3U9CD84YPHPpFmNIe+1U\ncZKivHY0XeTjCa8MagOTKkmy/+wnhtUe5owLN/JQ3iosgjRo/2SOir25f+ayT+k44sSlVUSRjpJp\nK36+Fd1upfoKL6WnHaDmzWJCO9J0lloQVdOtWLMZkJdEqnaADkp+mnljq4ipVgLWONM8NVTFc/iC\nt5LznGFsgoWb6+aw9tlJJGdFqTp9yYBzfqVmLmvriijLbsUupdnWlIffHefcvErqEwH+NGIl8ysv\npCPhpL3DjSAZaEnz8wqSjq3ajiVitnpxtKpodhFLRMXy3gYSl8xAdYhYIxrNQ3x3/w549LpFVFhi\nnPrO3WSs7P+M+TfsZ05oL0/unUEyaWHGiFo6Uk4SqoWayhwC20Xyr62muiOIsMLf1xYnWiiw4NLV\nLP/9zCHP13FWku9NW8Zvn72Ugi/UcWB9Af5+Dx4iI81FKHedOQ11TDCd9cpmH+Cy7E08vHseXQ1e\npITI6Cl12CWVV0uXUfz6LX1OvamgQCLL4AeXvMQNXrOFU/mfbmfk7LoBxFPJUrG2HH+bjgnz9rBt\neemA15T8NNaGz3eMVN20mKv2n8WWD8sGbRv9p4a+37UML92j3LTMMDONqstA96jYvSmm5NUTtMZ5\ne/dYbHYFl13h7LwqRMHAKSroCNjENCvaSylxt7H+F9PQLQJdpSJSCoK7VNrHymSe3cCdRR+yK5nH\nAs8WLILO/U3nsam5gFRKJh22kVnQRUKxEG13mq2yDBB6a64Ms42Qpd6G6jAwZANXnUQqZBDaYuDf\n1Y3YHUf3OkllOKi+UsJZI5+0GqHtdw8MOsY/NHz5vWY35WG9cufh4kc3Pc1kWyOXPvqdvvo0oK/+\nByDlB1tX//975buHIxnCVGqURWGHB3vbsc9//z2PcfeSm7F3DHw9WmDgrhfYdN8iil+/Bd8OmfDU\nFJ+e/TuyJBfvJyQypRgTrXZ2KAlGW2RsgjnWyz66HrXFMaDNy6HtZX7cOo7n3ph77Dd3Aqi6cTHl\nf759AAH9Zzj3Hi7TnXHJNj7aXYpj12eTDW6982F+3VHOkmcGmrUsuOoT3nhhNmddsY73Xxpcj3si\nuOu613i1eTJ17w426vt3l+k6Dpqu3wDC3E6Mjz9bLfPWb/eP/9djTr777PWkCtJUzzfllBN/PXCu\niZSn+3qLKn4DMSUgJyDtZUA2Fcy5Z6jSlbQH1PI4eot9gHESDDY3OhoShelht2VRxsSx7jp2a5LP\nikP7m45dfFj8OjrJndOW05Z289oLgxe9TwSHEtKnIyF+/uzViKmh5fafNw6V6YbLDXxVArE8cDWa\nNZm9sthD0T3awLtXYPqNm3mvqgL7TgfxUQqBDRY2/rB/rpz6s/65Mu0W0E7txu1IoSzLNNux9KBz\nosa35i5jWetY2hNOflr6OssjY3huxSzTiLDdQD2vi8hBN45QAk0TuXXcSh6vnE2i1cmFp2xhed1o\nrO8OXhw9mkz3mJnRSCTCAw88wCOPPILf7wdg9uzZLFu2DIB33nmH008/nUmTJrFt2za6u7uJxWJs\n3LiRU0455ViHB8zVPmvPA1lKCURGq3RNT9F5WgpLt0BiQ4jm7Vl07A3yyZ4Slq6dzr6ODFLFKTSH\ngZCU+Hlb/0rNg99+hK4zEuhOnZ9d+hyeGgOpOEpnmYRuMVi3bRSaKvG97ZdzftZ2vlnyHj/ecjFn\nvvhtJv+/O5g2shajxoXFn0QKpfBnRqnszIIaJ1q2wpTzdpHIUwnvDvJS13TyPzIjjV4iakgCKd9g\nGUFqZOqI7mi2ajvNq/JpXZ07JOHsdczddcux+8p9+OZUJj5215DHOZSIAkddQbtmzIajnk+IJtDc\nVjw10J2y427Q6RptIRU0ZQD2VgF3jVlLplnNQFnqkFm+pYLGqI+YamN5RzndqoO1sVGsTJqf8bHC\nVfz060sGEdE7G05lfcMIcgPdKJrE9TmrOG3EfjRdZMma2SxfM56SF2/DMATad4cwuq1ocRlSInKb\nBSKWvsneFtZwfLQD52vrsW+pBVHC3pLC2ayY0vF/EWTNbDrqdq306E2UD8ctT97B+ZtvhLTY1x8w\nvqCbV0uXsWjdPNQNAYxaF+vrCxnp7uDDca/x5IWL6Zyl0PBMMfEeGaD1C2Y0nMxVWd0ydG1T1zkJ\n3O4kf3j0UkrP2s++nXkDiCiA54DRl5FJuwV0r8rCCz/iudGv8PMPL6ar3c3I0oM4R4WZ4G+kIeKj\n+M2bsR5iFqH4DISiWB8R7YXLMtAi8USIKMC25aVU3bR4QIb08yaiD13zBH/pzmJz3dFrGrWQh65y\nN5pVMM3D/DqGxUDslkmGbVR3B6mNB9A7rKSrvHRty+DD5lKimo0CazsF1g48YpKv5q0kIMdpnSIS\nWNPIiLfChLanieZJpCbFGenpYKSljbnuSmrVABHdymzfPmbm1XDz+FXkF7XTVh1E2e7Ds9OKq0bC\n3mIqKARdQHfqSE02lCwVIScJIiQzDWztArYuDc1lJZ3rJ1riIZZrxVV98ogo9JPPBzuGbl9yNPSq\nPY63F+NV7jDzX713ABEFSLtNQtg1Wekjoq4FzYy6ejfpeWHCFRqxfGPA/stueoAF8z/F/tHQRNS1\noLnv9/wrq9l03yLu3fbFQUQUeqW6MOUXd+DfLiMY4N9gI6IbFL9xM5WpPN7onsQuJc49+67itVgG\nP20dy49bx5kZ0aaBD7GnIyEeDefRqcV56sPTB2w7mZnL8j/fzssLHzxpx/ss6HPIFeCjqs9GRNMT\nY/z4xqeZ+PCd/HHNvEHb36weh26D/dEMlAnxvvP2ZemO83F1wRdXc5u/YUgi+n8B8fz+iUVf+dlN\ntSb++g7WptLsUuJkSRGyTm1m6Rlm3FT89tcG7KtbGUD+lJCObDZYGEBEe5/NR/JQ2HXrItS4jPEZ\nQxWrL4VSkThiXDpg338AEV1962+Ouj0UinJXYA/1Sf9JO+eo52/r+/3Hb3wRsSds+LyJaCLn6A+4\n3tYtrkYIXNGA4mNAxwKArpkpvnn+m0S/EGNXZw7jRjShug0c1VbSHoH5lRf27XsoMb3x+rdJHnTh\nsiqMvGIfv7j3CTb+cDEbf7iY6kse5a5ADV/LX0H7piz+4zdfY1l9BYhmiVXnRI1IhwtbIEmi04G4\n081T+6cjyxquAzKfPDF1SCJ6LBxzCL711lt0dnZyzz33cN1113Hddddx22238eqrr3LttdfS1dXF\npZdeit1u59577+Wmm27ixhtv5Otf/zoez/B02qrdwL8/jeoU0WUDZ3aMSSX1VBQ246nTcTYb6FkK\nukMzteI2jXjSitRsxRAN7C0iT77en4Gd59CpyDvIixf8nv/eeT7tkw3sKzwIM7soP62aUyfuZc+8\nv7BlxrOEpChrYyXsmvMkRlaK6Mw4VUvLydpgkO624fvAgfD3AG1bssw6p1Yrq3eMJlAQRkoKvLBx\nIOHW7CKJkEQsb/CltR2wmcZMJYNnGMWnk/aYg/OGK94d8jpdtf8sAO686m9cdsnKQduTuWn0MVEU\nv87mmx/ijAs3suuWRcMisEPhhVe+QMkrtx5xuzIyk2iBjfbZChfmbSftEPBVq4R26Gg203FQs4Oj\nWcLRKiClMfv2GQIdUSer9xeTYYsSU61URrL57s4r+o59qWugTO/VmJsDsSCSpNMVd5DWJVZFyni/\nqpyurRkISQnDn0bMSLG7Kg8pKeCol3DtteJokMEAOSrirdXI2pDEWR9DyM8BXUPv7iZ95mSSWTZS\nQcsJ9ekyxGNHqqmC43fTaVlzZMflnFmNSHuO7wFhm9TJXaXLCW2Q+lwzte0+Rr1wGxmZEQwR1GAa\nz9/drFs8hT925XPr5usw0iKdE3QcLSLpWRE6awPE8gVsrRIX5W/DdvVAiXc8V0BvsVPo7+IXX3+C\nnWuLCW0cerqxRM1rF58d49yJO/hx5k4+SAR5+NwlVM9/nA/HvcbCUev5Vc4mLhuxBdmVHtA6yTut\njUz/YFnnjo9GH9e1ORp66zaVE/gOTwQtqodfvngFF/TI9Y4EqT2CnDQQVQNLFNMBMpCCjBSI0Hwg\nRH3YB940akEKzWrgsyXJskSwi2ly5DBJw8Lf2ifz6oGJSBUR6i8rIFLiRnWI6Bd0MmVEHZeENtGu\nuXAJCquiZUyzQVy3EVFtfNhajsuiIIeSUBYjUqYSHaWi+PWeOUAHdxrNpeOotSDUOnA0SgR2Qs7q\nOK5dB5HbohiigJg2sMQ/n8zM/e2lLFp2LhWPDy+blvaeuLw6PibFqPdvHNIsJZ6vIaUELpmymb9+\n2yRXBzdns+/5MnbMehp7s4SrQUDxQtoF531xDffVL+CDPw+tPgBo3J3JpvsW8dp3H6BhaTFztl6O\n/P7QAduhUkPtbHMlKFyh8ZVdX0FISHSqLp7YNpsf1l1MIm1hQ6yYv26eyUcHTXWA5ZBbbdN9i3ii\nbg6P75/DXXUXoNs+36za5U8feWX9H4leuS0Gn8lIxZDBstXFT/9slhucP3nboH0StR7EFOx/vxi1\nR+UTmNvcX1t/HMM0laHz06xP2aUc3yLmvxOkQ8wgo6MHS2BjBcc/hmfYLFz48Z3MtEv8svQlptms\n3Fo/C8/2gS4comLKLs9cuJZYgY5739DBxuGtZg7H/MoL8ey04q4RTYfTYUI7pGQnFdRR0xKiqJMK\nmYsrh7aa+UfjPxa+gE/sl/kfnhUFaKv3szYlsO7vQ5ednQjsLSKdmnk/2Isj3HHd307asY+G4faw\njuXD/r05qG6D0vP2EcuDlF8gmSHg2WTnT79fgPsjFw07s6l/rphrF3xExXl7cM1roeXFEbwZ75+f\nIj15g8efn49/u0jNzlxqnyvhvt98lbIlt/M/nSMpefE2Zm6+kv+uuoDHv7SYzkkaxlshHA0SloiB\nf4dMYJ0F54dubI0WFL9OZGeQ5yf/CefcI/sEJYMnQab7eWHuggdAgLqzJArf0+gabSFaaKC5NTI/\nlYgWCgTnNHNwSzaCDumgCpKB7FRRoxaKXoWaiwT822U0m7nqFCtSqb7kUQB+31nEI09eSHCXipg2\naJ4pU3J6DVMDdYxxNJIvd/KDPZfSsToHe6vZ/FiOm//qFoO0X0dIC9hbRSTFbISMAGqmgijrZjq8\nLEXB6zJSqv8mToTMOrvkEG3Bep1x02VxLLsHEwnFrw9qKXA8GHfWbpaOeo9xqxeysHQ9T7581gke\nKIIo6ujbfEfcpfiFNtpPCdEyW6OstJGOpwpRHQKKH5JZOnJEQPUY6Dad/8/ee4fZVZbr/5931d3L\n9JlkZpJJJr1RAoReBUVARMF2ULCCYDn6PR49fvX40+P3HCvnoBFEBRUREQQFLIj0AAmQkF4mZXqf\n2b2s/vtjTWYyZBJCTch17uvKldl7r7X22u9a633f+32e5771IRnhCrQ0GMmxVDQXjFllaqqzTI+m\n2Z2qxLAUhIA7jv05S7QAH+86hdV9TZTLKsum99CZTVIRLHJh7UZ+8LcLkSxBuFtghUFfMYIiu4xu\nrUSyfS9apeR37MIFPeUS7Sgjl22E7TJ4Ytyvzcg45KYpVK8v4moSnhD0nHFonq92axFljBAatTZ7\nLv7puALvnDN3s+Ox/SMxF77zWR584MATyzca577jBf762LEk9yl1KtUIrJjHf13+a/7j2/9E6rwS\nsSeCfOZz97BY7+aB7DLOim5hbWkG63ON5Cydd1ZvICEXuWHPuZxR28aVidWoAi77ui+0Mnp2GS1g\ns7i+l/WPzUE4gkint1/Ea/ScMtcf8yifS7aPv7fVLBKWXKokjR2WxyOF+dzft5iRv07zvYn3Qb5Z\n8LMrf4QqHFoVi4iks+gX172qtvFaC4i2189P7ZVi+ooe/rHgT8AEAZ4Ks3/eA5KEGwrgxAP0nRzC\njHuYVQ5KzMQD3GHdj5q4Aqm6jDuioxQkggMCVwajyuO0MzcyMzRMlZLjhdwMHn5xAaF2FeFCqdal\nYs4on579GKN2hAWBHhqUDM2Kx38NnciL6en056KkBqNIAQe3oKCmFKyYg3AEcslfXBQeOEEXyZAI\nDEoIz0//jezMgGkhLH9CWJ5VDR6UalSyzdJ+wjBHCxZdvI3n25uJPhMcT8u1whPpu8V6j1ve/xPq\n5AIf2/Yhuvsq0Do1bvvQjzgpILP4B9dOtgB4CdZ9ZSXHfPvQ05Dnv38rJyT2kJCL3LT7dG6a/xuW\n6Tq/yVXSYVTxmzvPmSQylp3tsuvym8ZfP1t2+Oi6K5lZOcr21TP2iwQfdXAnauqKs01CO19/GyKA\n0jSHYI88np5bqnMJ9kt4x2URL7zyyIMd8vBmF1E3HLx/O9rTdPddIFLPGsZ6dGKiVjy+iL4xdEAy\n6MljDgrp/SfWFRf0MloMwhNJCo0u4a6p53GF6S7hbgk75M83Xw1yi0zmz+xle3ct4XWT67RfSZru\n641SvU2wT+Hdlz3JH+457aDb2mEPO+py6rFb+VXzE+PvT0VC98JdnENVHTaeeAcLb3z9nQ42X7/y\nDTnuvsef/9Nrx6OvL8W+abp703KL9SAZfrlLcZaJUF2kQR0nbiPlZbSshKv6irlTwQ4JlKI3Hhmd\n+cDHkTMKsd1+xDV1zzSKZ+UJPRohf3qRyBMhStWC4NDU1NAJCOTy5M/2ZhPu1Vs5EA6Wpnv4yShg\nhSW/trPk0neKQqQDig0CR/PrK5UiFBeW8UwJKa9QP2+Qnr4kFc9qRLv8kc/VBFZQIt8o0fyOPaTK\nQc6qayMkmfzu5+f4qaNlPzTuRW0iySI3LrmT69a/H2d9nGi7b0tixn0RlcCoR3668NVg0wI97VGq\nFpRrXGYf00XR0ujqqEIK2lT/VSeQmjCaLlUpBIftKWtGj3QYlQ7nnbiBm6c/87L1qc1/zJBrjdJ3\nqkfVrFHk2ysZWTpx3VzVww26aKMykunX7ao5QaTbI9ckcLUxC58KP7XQCzr+5Fl4iKLCJ09/hK5y\nBZvTdeQNnaBqEdPLzI4OIePyhzXHg4Cq6WnyJR2zO4wbctCGFPSU/wCqeQikHfQRA4RAGcxSmlWJ\nkrcYPD5EuM/FCvlRXD3jYUYEwZTL0NJDD4+aFQ7a6Fj9YqOJ3qVhtZRQd792ZcltH185pb2Mq3vY\nDQbhaBlrQwKntXjIUVKj3hpXyAW/blNZnEFaFad8fIFljd3E1TL/Pe1R9tgOaVfnlMDEwHpnLsnf\nUwu5tvYRVOHSZSf48qZLuXbOE8zT+zgz6Pq1XLMLmDmNULLEJS0beejHp4zX6gDYYcFpH3mOdydf\n4Mzg/hOgTjtPmxWnx0rycGoBz+xpwbElKh+dWCjwZEjP8/j8Ox5kd6maa6ueYJYaOSiRe7PgKS+x\nFzoE3PyBmyl4Gv/826sOut3sn/eAEDgVEbKzo2RnSARGPLKzwa430EMWpqHgpTQ83QVXIExfQMXV\nwEy6CAecpN8XXtC8FcuT2ZquY9faRio3wOgisGtM5jQNkDV1Lpy2mUEzSo2W4w/tS0n1xlGyMsKe\n8DQsTbNB8sARyAUJ4Qo8AW7AxZM9EpsUAmmXUL9FYPcQXiiAKPrMKnNcva/yl5ApX5bGeSaJUelh\nxxzCe97c2p3XC07Qt3fYF+7y7JRiQ3YI4mf3U3hgTL38vFFWNLRzZeUqftR/DrfPeAyA2b+5hmjH\ngVeZ131lJc+WHd7/0DUkNh243Wrf3cFf5z0IwAuGyfvv/CwNx/VRE8rRnqlgqDtBYuPEGFY4pcC9\nK25ioRbkvkKELz73Hpy8iijJk2pIi/VHt0/lcWduY/0Dvsd08ox+ejorCe1548f6N5L47oujnYw6\nYZdom/9cvJo++mAoV3kEhv1n09H99P59xzxHH7PTeBXfaVR6eNJen1sPK+EQ7FHG03z3wkxMrUvy\nalGucRBJk+qKHCMbq8c9iac8xwp3zMLmwNvYC/N8ddmfmaMNUPZUzgy63FfwtUn+klrMk/cfc8B9\n3cU5fnzcHXzmxffB8wcOlByp2Hz9SpaueT/26gOnhx/I3iW11B8HC60mWp+KPeboEd8ucHRB6aQ8\n6voIrso4kfSEQOxD8X7xLzew2WzgG/dcTqTLj7BqGZj7wW280NHEp5c+xso/vZ1I58T37q1dfTmU\nq3y9ikvPf4a//3TFlNsc0WTUisioeYf8NIVIj83QUpXq9RYDx6s4C/KInWG0tO9BKtl+BCfU71Gu\nEpgxDyfgUb3Wr1EUDpQqJVILPN/gfH4O15GwSirKsIone36UYHoReVsYo6WM0qNjN5ioPRqe8A2R\nAyP+d3mSH1Ur1YgxOWS/cNyMuVx4+gusHW6kp7PS9z4dgxX2B2VXEaTnvnVk0z3JI7l8kKFNNagF\nQXm6iRq2kLfvv8y2V4Sp+YEsuZYIuUaJygt66HumAaU45iHpCMJVRQqZAPKoimQIPNmvGw33+NEx\nO+inosnWmMJmhQOSn04rmX7H7eoerUu6sFyZwVyEsO6nSQ62VaGUBHa9gecKhAAxqqJlJKLtHqFh\nG6XooI4UQQhE2cKYFkfvyVBuTqD35uk5v8K/5gUPyYRcC8R3+LLqxfpD78wTywdJP1cDwPHnbRmf\nNL4Wj9Il52ynMZiaFEE1Ey5e0EHvU8etZOzZJS6Zt57v16/lB6Mt/PSeC1722HZrcdyvE/wIpltW\niGxXue3TN9BuVXFGsI9/6zuXb9Y/TI18aEutw06BKjmM4Vncna/jBzvOwfMElzRvZHu+FtOV2djb\nQPShMIXpgk2f+BGykKY8xn2FCCFhcEPXebSPVFAVLVARKLKltw5lc5hwz5i1UkRw+cf/waJgFxeH\nJ5aZDzcZPZDwxMGgLMhib4lx8wdu5pN3HDg9HnwyWp5VjVy0ycwOYcYEku2r1llRj4rWUUqmimko\nOLaEa0tgyEhFidguiVLNWPZHrYUWMYlHSpxU287ufBVbOusJbgsg2WAkPKxqGzViMq9hgHQ5SE0o\nx4YnWxEuhPr8hRwz7t+fbtT2o6R5FTUl+6I7Y57IWkZQsc0msiOFG9IQtouU8cOBbixEYWaMQq2M\nUoL6j+1mx8Ozjgqf2JdiXwEjYCwbyOWCE9azNV1L3tApP15FYaGB5wi+d9pd/Me2t/Mvcx/ifdEU\nW80id2aW86dbztjv2O65Kdaf8NtJ7826y6+Jiu2ceNae//LkZ+/bw3P57e3nHDBSM/f921CEyw8a\nH6RGDtPy0EeRVJdzWrdxenwHX3vuYlTNpj6ZpXfN/orwRxPMeotQm08KT710HU/de+DJ8+uJYrNN\nqOONX5Q52smoPiKNRz7LNb5gnh30CA68uVoRRtJDTx36d9pBX2XXWpHDKKmIYQ3hQajn1QsYvRzK\nVS6B4UObxxpzSrgF1S+LmgIfeO8j1KhZXsw3sXLaswD8NNPAf285i+JwiGhtnkI+wKeXPc7Pfjf1\nPKZUb7PnXX7m4xsZwTxcOBARBV+LRjgeRkIccDsrIny3kCmO5QlBcZqHFfPnkbGNmh95rRPYYZfY\nLjGJvNrnpym2JSaVRE35nWGBHYZyo0koWUI8Fx/3GS3VCIKDE+dxRJNRADsokZojj5NQM+mvoic3\nS7iKQMt5OCqUagWeBFrWX22yg2P1LwKUgr8KFd9jUaxWyM0QyAaUlxRJPBLESAhiHQ4ji2Q8ySPR\nBmZEUKrzw9vlSr/RPNl/4NWSS75BJtznkG2WcXQIDXjkm/yQeeDEEbyHKnFlSLZNKOjmpivkm/wJ\noZ5665DRl8JbkGNe7SDbH511wG2mPV4mP00jNVcw4+Quev7IKyTQAAAgAElEQVTehDvWfoVGdzxK\n6aqMCZn4ipB4IFkCyfSj0HbIv3ZW1I+UAgjLX+Fzgy5EbLyyTKhTwYr618gT/j3gqR6BIQkz5hHq\nF0imR3DExZMFWsZBNl2MhIInQbinjNrnK4bkF9bi6P6KUrFWQil6OJog1mWjpW26z3ptyohms0E4\nXuKcph0UbJ1VXTNxNx88tar51E5unP07Lr5twk/wwnc+y9865lMYDKMP+L2M0WRw3OwOFsb6iMsl\n3hndyGPFVoatKL+69xyMJgO9c3KasaNPtO0TV3+XC7/2xfHPMq1Qecwg5ftryZ1aRHQFufGyX7BA\nG0EF6pUIG8wyc1WZ7ZbDEu3l2+Y9u84lZwbYM1jJi6fdwvOmRqVUYqE2dbQ445bG60VeNAyW6Tqb\nzRJPFmezLNBJSLK4ceAcHt89m3i0BPdUYgcF6UU2Oy+5aXxinXFLWJ7LKbd9ccrvOVow++c9eEEd\nT5YpNUd9BdwWZZwUti7qxh1TNjFshZKlEguUGcqHyWeC4AnE6Fg0R4CneYiYSUWywMzECO0ZX9jM\ncQWjQzFE0VfHRfIXrsIdCmbCXwz0FI9gfZ5iJgimhJKWx+Xjlbyf7iMbfl8d6bH8lB4Jwpv9OmMv\nFMCqDDO6IIBS9LfLzgR7ZpngxqPPt3IvGU0vsMdtXYp1fv+1L+wQSIYfSam/rJ0TK9r57fbjCOoW\nZ0zfyXnxTXx39wWcUdvG3XeegfAm6jnPuGoNf1p1HL+/6EY+9v3PjR/zXR9/jK9Xb+GG1Awydojb\nnj0FVI/wdg2jwiM6f5R0OkxVZY73Nq8F4I/dSxlcV4uaFRSbbU5cvJM7Zz4yfsxVZZcPPfIJfnn2\nz/hHbrKa7jffewf/9/cfeCOa8bDhpWq6RxuOdjIa6pXGFW1/+OmbuWNoBc/dNbVn5pGIFe9bx8NP\nLSXcLU1JaN+oNN1yaxk8COycPP47i/J4e8JT2reUax1wfUu9cmsZfWdgSrVwlmaRJI9EqMToqrop\nNvBxw4dvYbGWYsBR+eBPP/9af9IRh30JZOHMAuHHwqRPNPEcQfL5Q8++2Jvi61umTW5wMy7GyeJL\nkTrWJrRHHXdLeCXflV7oktgskT+jQORx/yYsTIPgoD/39yTYcMOBr9kRkfs0vFTCDvkdoFICT5bG\n6vw8Yp02dkBgRvzJUGDY8wv3x+qJ9ka0XEUg2ZBrVNDT/sTbExB9OoQV8dMxXEVQt8Ynq3YA7Ijv\n5eRJvp9lqXYsXXMUwFcbLVVJWDHPTzEtSjgBP6qX2Z0k5vl1qmZMRin756/lPGK7BXZI2q9mtFxn\nI0I20VgJ88XXruL2RsIsamxe3XLQG0QuWOBpBEYFYdXACUDdsxZGXKZUJ1AHFOyQh6t5KEU/SuLJ\nft2smvPTTZwgeIqHmh5T3ZT9xQYz7r8vTIHcq+EE/Gi1mhW4uh+dlmyBVPKj1p4ERgWAwFVllLKH\nK8u4qoKrQHy3iavLeAENUTII707Te24VnuSbADu6n0YcHJEQ9it/LIxqG31oYj8tZPLzZb/k39sv\nYSAfwdkePbjo4fwchqPwoU0f8ds/6aDUlPjDumPRezT2pZZ6p847V2zgts6TsVyJn66+gBmndXBq\n1S6+csVd/PtDvhDU3hTfl9Yhd9mTO7VIJ0jHenzrn3/Bv3/7KkrVgtsHV3Bx1TouDY8y7BRYooX5\na1HngtCBlRUcz0UWEnm3TEC2mVXRzcX16/lYx/n8csbDqOLAxGJf4YL5mn+uMxWZXKCTJZrDjanF\ntOcr+OHy3/H55y/HWeKhN+b43XG3Igt10nHWGPt7/L5VYNZbyGllksjGgeCGNJyIhqsKcg2+KqpZ\n5aDXFAkqForkYLoKsnCRhIdhKwRUGyVZwHJkioqLa0mIvC/w5Roypi0zVIrQFEuxY6QaAci6gxo1\nMLvCyGW/jyy0WEghG2lMuKuU18HyU4GFh2/r4vjParFWoJR9oSrZcLEiCsGeAm4shBvSMCp0SlUK\nhWmgpQWBUb/2Feutu5h3KEhsUcZJ6F4iWmjwCPf6fytF3/rFqHLJP9dMV2sCqzeM2i3xp6bj2LG4\nBtcThCTTV5V3xDgZffiuE4gX4PJ7P0MMn9i+54M+ER12Cvz36nMRkkf19DTHVHfTMaOC9zU8x4uF\nJnor4lxR8xynBfv4t963EVQt6o7tZ1llN493z+ZfG/4C+/RIH/rHJ9EGFa7606dwAy77JpJeHsnw\nlYD3in2x30pwNY7KCP7RjL3WKp//8cEzUI40WDF45s5j2Ms3X0lk9UBwNL+uf29qrRnz0LKTj+sq\nUFmRZ0XdHh7IHktg0C9LUo5LYRYCaAfwEQ0MTJQ7BdqmXsS2Qx52T4TzVqynPVfJFALg43hbyAIi\nXLXzwoNsdXTAHAkQBhKrJ3pUOyhQSi9PEvdawBhJb1K9PzAlEXUV3x5PlCR/bm4f/DtK1T7BDIx4\n498V3yZjJEBdHyHT6iJciM8dxfl7FWZscrr6VDgiyGhgSGBFBOAQO6efkTW1BEb8hheu59ukCD96\nJpv+yvm4HHbRI7rbFwtydD+90tF9IhoY8VcGGPvbVQRmVMaI+yvzdghi/R7FWkFowKNYB57sYUXE\neK6/kRQEB6FUgy9ckBeUG2y0YZlyNVStd8g1+jWRVkxQaHKI7fAjbS/VXPdtVRRMXlvU7c2A3v7y\nAj7lmiCBtEOuSWLdlplU7/EYXqSi5TzkksCotRGGBAI/giL57Ss8v9bPVf02lksCR/ej22YcylWM\nEVc/HViyBK7uYUU8XJXxxQgE4PmF8HJZjEVc/QdJOH5EwRrrtY2kgp6ycba2oUyfBp5/LE/aZ38g\n1ySN13y8ovYalrFiLmpWwoq6nDtjJ9/ruYC31Wzh5BltnHCcynU9J/Lwn4/bb1877DKrMsWOXfVU\n1GcA0FIylhNixQnbWdszH6PJQFLc8TrUbzxxCTNmDjL4Yi0ycGrVLm6/92xaTm9n93tuBqDl3k/y\n+fc8yPXJDmbe9wmkskS4JcMD2WWTr2OVoCFQ4ronP0gsJjCWFjk10cYl4WE2mB7VssegUyD0Mtxg\nb3QyIgWYFkwzKzDIJ+K9fDrRBRxaDe5vcpVcHvEtWkZdk5MCEUDmxNAuVqsz+En3WQTWRCgeX2TL\nybez1bSACTI67BQ4QT+MCg6vEVrfoa9+Srky8kgOK1yLnnHJzpQI9MqU7TCZRABJeFQGCpiOTEIv\n4SJIl4NYkoQiu5imguUKvLCDlFbwFIlsf5R8OMBQOEKpoLE3k9Moqmg5/4VVaZGsy2LaCo4jIYSH\nPWbL5IUcXEug5CVc3cNVPNSs5GecFEEuWjgBmXJDCEeTsML+c+vofmaEJ4Gr+n22PPLWq7k/FBSm\neYR7/D5m32ioqzJORPdCT4OeljDioPwj4RPLseFj+7omkGBnYpALLnyOnBXgkS3ziG3UkCxfcE82\nBWdf9Szfr/ejnIZn8f4d70OPGLiORECxUcdUoqqVLGuHfV/ex7NzmaakeLp7BpYl86WlD7G+0DiW\nAjx5bPjoiU9SdDSeHmqhezgBIxMLS3NvveYQn/y3Lv6XiL61YEX8eYJs+J6fgT6Vcp1NdMcRMR0+\nKF7qQ/pa4ap+HwFjEXEXPN3DMaTxTCrw596F1VU8OCdMYFDGjLtoGQn7hSSvpYrZTLhI04q8Y9Z2\nBo0InY83vaxT0R4rz/Y99bzxRjOHF8mNfs9ZrhAYlS6SKaa06joYoh3+/64qxr1E9woaTYLwLWTo\nlTgUeW5X9fztYbxkMrbbQ0/736WPCXx5uyqRmLDvOxgOa5ru/K/+cPzvpRduZf2D8w/XqbwhcPd5\nSr0FOcSWQ7O6eavgldbEvZVQaLH47Cl/J+8E6DUSPPn7Yyd9vvFzvl3OeVsvAmB6OE3KCHFB9SY6\njUqm6SmqlSyuJ/Fva96Fa8ictnAHABHF5G/b5hMMm5imzO0n/pyr130E01CoSeZoTQzxXK+vIHzy\nzN24noQkXAZLUY6v6OSpwVnc0Po7PrX1g9y64Fd8ueNSdj04i42fW8m3h+dyx87jKXZHQEDT3AHm\nJgbQJZt3JDbw5c2Xct2cx/jPdRegbQxRrnGJ7SM+kjmxTHx1gMLpeWbXDrN1xzSkgoxsCJygh1dh\nIske7rCOXBpLvdY9Zi7rYdfWBjzV9RcJVBc1YKNqNo4jYaQDBJJlbEtGVhyc9ghOrcH0uhRdnVUI\n1WV6/Si9I3EaKjP0r61DtBTwPLBNBbVT5+1vf45Hu1rJ5wLE40Uyu5O4MV8JQgnY2IZMJFFCkVzU\nP0zOPBg62WbPRbdwzHPvw3i+gkjnW1tkxXvvCJc2rSfv6Hy7dgMAx/37NagFj3KFROTCfkxHZk5y\niKBsYXsSFWqBaXqarYV6DFdGlxxmhwZxPIkRazKBVySfoLieYHGoi4dGFzErPETGDqIKhxotS78R\nJ6IYROQyRUenVs3QZyWIyGVaNF/i3fJkRpwI7eUqLkqs46+ZJRiugoPE8sgeRu0Io3aYCqXAgBWj\nQikQkcvc+It3vbkN+ibCTLy1772Xg3vkz+lfE4KDR2+UF2DRu7fSGhlkmpbint5jmREd4cnOWYi1\nMZrPa+es6u28kGmmMZhCFQ5Vap6yqxJXilQrWYbsGFGpRJM6yg6zjko5T6s2yJATRhUOvVaSaiVL\nq5qh39Hpt+Mcqw9iedBmJZGFS52cR8IjKrlsMZPEpDJRyWTEDRITBhWyRVySebRUjSpsLgyVybgl\nem2PjKsTEDZxyaLLiaDhYCIzTc4TlQSn/fLoLuGYdUoHjeEUBVvn2T0zOX5GB893NOGmdOLTM5xQ\n38GGkQZOrtlDRDGwXJmsHaRSy6MLm6hcpuwp7CjUEZRNjo/swfIUyp5KtZKl10qyONBFQFgMOTEK\nrk6r1s8WYxpbSw2cFd1K2VOpkPNYnkzB1emyKqlTMmwqTWduoI+AZBEQFo/m5jNdS1GrppmnDZB2\nA7QZdUTlEmHJoN9KkJCL5NwABVfnptsuOtzN+4bCSB7dY8POLx24ZvSIyYP65vQJb5/N1706X8wj\nGUcbET3q4QoGzRgbstOYE+ofJ597sfgGv3j+7/PvJ6yYhGWT6kCeF3IzmBPsJyAs7h48nu9sfxun\nzN4FEvQUEpQdlfmhPloahin0h0lES9wxugJdtdB0m6ZoilXtMymMhJDGCEFTcJTOXAXbt09jwIhx\nccMGrljzcQbaK/h16iTmxvzau+NeuJyvVG3nY3NXIZImnupRF84SlC36yzFu6DwX1xPUqWkcW8JM\neOOpE+nlBuu+upL4aj/sEn4iwq6nmpnRMgiSX3PqBlw8R+A6gmhzhsDcDFa9iRNy6f9LI8QshCkh\n5WXUfg23N0ipL4Jl+GmgRkEjFi3ieQLRWPRtnTqqUCMmkurS1V6F5woGMxGii0aQJA9J8lB6dEK9\ngosS62hMpAmGTQxLwUuaYEo0NIziugJZd8gPhlGViXwQR/czICI1Bc7behHqH5IoRchPf2tPKMOa\nyaZcA31GnG8Nz+OefIzELpNwv0XlFoPU43Vk1lVhujJ9pRiWK9NXjvPESCsJtYgsPCThMmxFGLSi\n1OkZLE9mRmCEmFImIFmUHJVRM8zGYiNhxaDsqlSpeQxXYWexBkl4SHgMW1Hyjs6ucg0RuUzKCvPA\n6FL+PLqELquCYcvv+/6YOpaasZyhGjXHqB2h06ggKpcZtiOUHJVaNYM2hdTkn677zpvavocD26/6\nyctv9L84omEdBcN82VEouyqdRiU79tTx6ZpHcbZGSbQ57HncrzUeKEYxXIWQbCIJl4wTxPJk0k6Y\nHiPJqBMh6wY4IbCHtBNibbkJy1NISGWqlSyWp9Dv6ASEgyxceh2dXidE0dMJC5OAcAgIl4wrYyGj\nCoeo5JB2QjgIJMD1PHYbNRRcna1mkVHHIeP6UfsK2SLnKRRdHQdBQFiMuDpJ6cjPSnutcFyJJZFu\nJOGy86xbuXPmI3zruD+y+9KbaU6kaM9Vks6HKLkaRUcjIhvElBIZO0i/GaPbTCLjUaH5i5cZJ8we\no5qiq1F0dSrkPAVXp+DqDNoxLE+my6rE9BSq1BydViWDdozdZg09VpIOsxrLk+m348SVIgm5SKMy\nSr8d55hQBwNWjJ3lOrYY9awtzcDyZGrkHJanMOqE6bWS7DGqSU1RDPupj/i8IXzm4JvdzG8qdnz4\n6B8bjhgyevHN/zL+98IfXcsJF+9v/vy/OLLxo4/fxGXvf/xwn8brgnBNgWXhDmxXYnN+GsCUhPS/\nRlq5r/VvLIl08fieWZwU28UfBo7lW49fzPO7m1le18mT6+cRrSgQ10oEZIuftZ3Md1vupro5xVBP\nAlU4xAIGtbEcLgK7rKKELZZN7yGimNy7cyk1oRxVjWl6inFyTgAzrSPHLX677gT+2uFnFKR3VbDH\nypN3AoSjZYQleP7puTza1crO0SoSeonijgRfWPteSGload9eJ9fiInL7hzNCfYKrGldR2TqCbAq0\nYRkhe0iyR2lbgnw6iJA8kD3yC0zIqYSn53ATNlaNhVtp4eku8XgREXRQ+jVSoxHMVADHkaipyhKu\nKmLlNZyCArKHLLuEgwbptgrKeQ1ds7GjLrlZLt/vPJ+50QF01aJU0NF3BdCGZHo7KpFll8bqFAvn\ndjOamRi0ZMNXhdt44h3s3FlHZo5fdx7pfmuvQOqyTdlRaAqOYnkyC7T+SZ/XrTGIdsCLT8yhfbSC\nhFoiawVI6kVcTzBUjtBXiqMKB1U49BhJCraO5cn0GnFGzAhbM3UMlKOMmmEKtk7aCpJzAuiSzdzQ\nAPVahio1h+sJDFdBl2w6SlVk7SBnJbayLNpF3glguAp7CpVsz9UyaPqTF4AN+ekMGFEe7F/E33rm\nszVbx4PDS9hjVO/3e2eqEfLzjv58yO1X/YQnr/ze4T6NNwzutKM4nQZQc4f7DF47JOFhuxJDZoTG\nxhGKrkpk2QhazqXuWYs/7FzK8ZWdbEw1sCnXQFe5goKtU3R0ZFxCsonlyeTcIGVPISBZRKUyqrBR\n8aOeCanIkBNl1AnheBK9dpKyp+J4/pS0QpKwEJQ9GceTSLtB2u0IYclAxkMGLDx0yaI4RkCLnkxI\nsjCR6bWDPFls5R/ZBawuzubR/ALKnorhHVhP4NRzj445p+1JbMhPB2CzWaLbzpN2QlzZcTr3tf6N\nTzQ+gWNLtGV9krglX0/WDqJLNjk7wJ5CJZYnMyswSNlVkYQ71s9LOJ5EpZInICz67TiasIlKZaJS\nibwTICSZzFCHmKH6mTHDdoyyp3BScNf4tQOQ8QhJBhVynmNCHcjCpcuqIO8EcJDosZN0mZWEJJOo\nXKLfiKFLk69dcXGJ/7n3nQAUHqvhvk9/h8pze9/Eln7zMOeXh9+q7o3GEUFGW8/fNf73pz7o+549\nvmYBxZajc/JRnvbWFVg5GM4MulxfseZwn8brAvFsnC89fAVxrcwtjatYfMO1LL7h2v0I6e2/Pg+A\nC8I7aKkZ4T/XXcCmPdNINmTwTImHn15KbdMohVyAdW3NbBxsQFMc/l5YQFgzWTq3k+WR3TRGUrT3\nV7IrVUU0UUSSXeJqmWoth+sKklqRylCBrdum85styzltyXZUzSZZlSMeLGNUeLi6y9d738Ffexfg\nPZ0k3CUTHBK4Tyexnqpk9cbZeAKqYgXUvK9M7Wke0d0Sv7/oRgCyKyabln1/23l8Z949WLUmZqUD\nrsApy9hR37tSUl2kvOyT2YhFvi8CpkQgZiANaSB5WI5PPqxqC0W30ZJlKhIFhtMRCqNBhCkhRyyQ\nPayCiu3IRFoy6GET25HA8+1+LqtbS1u+hkJJB1dgxV3qT+zjkuPX4XaH8DyBJDzm1E+skhamCfJZ\nv4at+mmF+I6J35ZrPnKjo2ZcMHp+CemKIbIX5ileMrlYKG9ppIwQl8bW8o3qzbzvhv1Tz+K7TRr/\nYeKsj7MzV0V90D9GTzlByVYxbIXHB2ZjuApxpURCLfJ0qoXGQAoXwVnVO2gKp2gKjlKh+RKwUbmM\n6wkGrBgDVoyUHfYnr57MqBVm2AwTlE2ez89kVXoWnSVflXdPugJFuBiuwtJwFwHJ4pl7l7Jq5yxG\n752O9MsqdqxtojufoLs0OcX6pmt+xOIfXosastj4+aMva2Yv5t56DV8ZWHLIVkpvRUg9Adr+6ehf\n5S/Wu2/ZKKnrCRwkNo/WMys+zEkBmepwgWK1v2BZ+7Mgf71jBYrkkiqH6ChWEFNKVKk5ZOGScwLI\neOws15J1A1ieTEL2+48BJ8KIG0QSLgmpSEIq+SmgrorlKdQpaZqVEpLwiajlyTQpKZ+QOiGq5QKS\n8AhJMuZYhVlIMthu1TDkhHE9QdoJkXUDDFtRNmfq6TESrMs20mVV0uscWEXlqYcXv/GN+yYgVQxS\nsHVW/2MhC7Ugp/3l89zx5QtpS/uLfLJwuWjORmThUnJUbE+ivxwlIFl+arRiMGxFsDyZ6dooqnAI\nCItFwS6G7Sjri82sKc5CFh4DVpydRi1bjGnji4yjToRKuYDjSVieTIs2xC6rhrKroksWDgJVuMSk\nMu1WNUN2lGErQsoKk7GDtJereCY7m1vaTubJVCuPpOZRqRaokCd7Yn19+f1omYkx/NyHPs9ji+7b\nb472v3hr4IipGT0Y3iyz51eK8oISu86+lYU/uhZpedqflK2ZmEi5h3DKf7/6O5z3i395+Q2PQLy0\nZnTTZ1ay6H8mvJ/mXbiDbQ/OeZPP6vVBodUkGC/zsXlPc35kMwu14Hhq7iUfeJI/3nHapO1Pfs86\nbp7+DJ/sXkHOCtCdT1C2FdIbqrDDLhef8gK6ZHPX6hNYvmgXUcVgVedMFMXlzMadPNY1G1lyCY35\nqI4+X8PiM9tIaiX+sW0u9bVpXE8QUGxqQzlWb5zNisVtuAhq9BxP9bawoGqA5x+eP25K3frONtoe\naN3vt2383Epm3/EpJNs3z/ZqDXadfSstv/8U+ohEYBicIMj78NIVV62lu5hg04ZmiPmkEk9gpXSk\nmEUgaFIq+CRRHtSwkzZazMBtD6POylEuaAjZt/VxLRmhuEhDGqK+jF1SQIAaMnFsmWDIxDQUplWl\n6UvFsAwFL6shFySmLeujLpxl/UPz+KfL/sH9PYuoDBbpuWvm+Lkee+UGXrx1MZIFwyc4fP3M+/je\nlvMI/XF/a52hkxxCnQrh3iMjUpqeCzs+4k/WT1j3Xh5Ycht/Lsxk5f+7bNJ23ntHCGsmHe3VXHTs\ni8SUMs984QT6TtYpzTDRe1SmPT6xmLfnXQq1s4fJlQJURQoI4dEYSdFXjDM3NkhYMRg1w1RrOXTJ\nJiQbbMk30BQcJSSZFF2N3nKCsGIQkY3xSGje0cejqyNWGF3yU2yTapH42A3kIJDx+GhiM8fd+Xma\n/3LgxbhUq8aMD+yk7f6J+3b+JdvZ+se5gG9b8MF3P8JXq7ax+IdHps9cfp5JZNuBO/+pakZdmXE7\nHIAnr/weNXKYubce+Svi26/6Cc+WHT782+uAQ6sZbfunn9D66yP/t02FA9WM5uZZRLdNiG6Fzhkk\nV9KRn46/Waf2qmGdlEN91mfP1W/vZmGij4hskFQL/J+KXSz4sf+slRptZtw3cf/2f7TM3JpBpofS\nVGs5RqwwQdmiVs1ieTJLg51EpRIOEu1mFXVKhhlqmt1WBQmpSIVcpt/xF18qpRJlTyYkbHKeSljY\nPFduplXrx/LGiLCcx/BkopKFBGRcFQdBVLKYo4a5MdXMT357IfooKCWP0JCDZHu0XwofPPFZloQ6\n+b93HdxqyFV8wZ63CuaetoftT06Mf6HFKc5t3M7yyG4uDY8y5/5rqHzeJ4qhIb+T6bvCRFYczKJG\nVXWW2YlhGkMptmbryJk6jZEUy2MdbC3WMyfUj4xH2VOIy6XxdNmIXGbQiuF4EnMCfYw6EaqVHGVX\nJSEX2WnUoo9FxfusBBIeIdnA9SRCkoEqHHJugPZyFXGlxDeqNwPwreF5zNSH+GB0hDWGxT3p5ePa\nBd/9xeVTtoEdAGVsPuqckKUxmab3b01vVJO/Jvz4Uyv56F3X0HblT1h8w7V86iP3j9fCTlUzWrls\nkJEXa8Zf7/jwT47ISKkn+f/2fXZeeq5viZrRvdgbGQUozrDwZAjuPjKIqB2afKPsJaLWkjzuc4lJ\nRPRAKE+fHO39Zv95r+s5vpHwDiGQtOkzE6tS2x6cM+n1kYSm89sP+rnIKyiKw85SDatKk71W79x8\n/H7bP333MaxYfxk3T3+GhFYiUwowOzGMlXAgYRGSTLZnawnXFNg8UMeG4QaCukUhHaRay1HMBpAl\nl4BiUzA0qpcPsGWgjo0j9XglhUwxSHMsRceWelZvbWHajGHW9U6nK5dgRmCECxq3su6BBeNEFBgn\nosYUk1+nwsYOuzgVFt6In+ak5gSBYcg3e5OIKMAztx7L1Q1PUTNrBK+o4PSFsIoqalpG6QhglDU/\nZbegYMdt1IgJO8PYcYdkpIikuggBrikTiBp4eYWKeSPEokUk3UEZVvE6wngpDWtLDCuj07mpnpbq\nEWTFRU1LVC4a4j9n3+N7HC7KcW/nUp5Zeg9bNk4edK6ueQK57Cs1hzoUvvnndxN8IMbIufunCFY/\nK6PlfEW4w4l8k+Ck658fJ6Ktt1/DvIoBVtz9Bb77y/eQmyEYOmWilzdtmYBiIQVtKtUC36rZyOh8\nnfqnDURR5opLnph0/Jn32eQer0VXLRJ6iepgHlW4NIVTGK5CyVFJmUF25GuwPBnLVRgxwqxPT2dn\nsYY9xUoqtAK6ZJO1/dTbrB0YS98NkVQLxJQyNVqOOi1LZ6mCPjPOqB3m7PBW/rliN722d1AiCpBs\nM2kbmZym+9yWFuZfsh2AcrNBR6mSXVaeJz5zZKWz1pzfzY+vWTlORMtVHms/d+Mh7Ss5k2tGT/vV\nF49YInrO29bt995JgVemmdv662uOugjpR05YNel1Zqy1P5cAACAASURBVE0Nm1f85jCdzSuD1R6h\ndFwRgKKlYnsy0/QUgbH67Vi7S2Kni1yQyMyYWG2o+3mAnSNVbBhtIGsHKDkaxthqRNHV6LGS46TD\nRSIsGQTGjCZH3DA5V8XyZDR8kmR5Mi4C15NIuzoSLmXPJ/gOgi47zjazDglQBUQla5yI3pWP88PH\nLqD2ecu3/vMmLCpm3AsbMtPG00QPhiOZiH7sXQ/t915IMdl+9cSzFNb9NOmwZDD3nmupf1QiNOSQ\nWjjx20NrQjx/8i1cd/yjjKYjFG2Nrdk60uUgnicIyhaScGnQ06TsMKP71GvqkjVWw1vCcmXiiq9B\n0Kr306iOIAsXWbiowkHGIzo2mTg53EaLNujX8EoWlUqeoqPTXUyME9GMW+LejiX8x+1XsHzt5fxn\n1zvYnq3l7jXLGbYP7NOu7DO0y2ti/G3+Azxx/ZEzPlzxoUcoNrj8+8du54bu81Bm5Xm27N/zZ4e2\nk59/YMu8/v7EpNdHIhEFmLW8c79n55Wc6xFDRkvT/Atz028uZCzaT6hdRTjwrx+66zCe2QSU4sSE\ndfN1K/nuqE9S1A2RSe8fDFJ28rLxE38+htazdo+/toNHRoRmKkxpVvwy+ELfsS+/0ZuMwiyL38y+\nGzgwwfYCDorkkjaD9JmTO4Pg+qn9MvOP1gKwLNJJtj+KiyBan0Pu1YnIBpJwKWQCxEJlblhwJ+n+\nKELyeHRgDhQUTFthcbKXynCRoqnSVJHitLpdXLJ8LSHdZPXG2VTOGkXKKjieoJzX+NKsv7I02MFl\niefHO4K1n52YAHsS4zLbk2BIeCEHPEF8u98N7B3Q5Jn58WdwX3zjh1fSEMkgQjYIUII2tBRQ5mWp\nrsiiqI5v3VOWQXg4M0uoKZmhVJRQyMB1BNiCck4HxSO9vopCSfcVd2sN7LgDAsxq3xLIjdq09dXg\n9gRZftZWHllyx/ikN/BoFPvPvpFvfOvkk91Ybhz/O9zrEW7J8PD/9wMqH55avELNeQSGD99zZ8YF\nFaf08z8NzwFwwleuIbkZto3WUvmiINzrEW330AYn+g7DVPA8QU1VlqWhTgAqthp0n63x4dOf5Onh\nFuJf78RITOwT3+2SbqugYGv05uOMGGF6inHaMtVjdWIySa2EKhwGrSi2K5HUi+iSTUItIeNSr6Vp\nDQ5ScjRiShldspke8FU1905CLU+mSstTcHR6ygmO0zV+nG7kI1/7wpS/f3T+ZKsQY+vkSJI6ovDc\nlhYAQjt0nr17KV12jPVmhE985EGOFPxw9l18+icT0drAsGD+Hdcdcmrxj9ONU75/pAkbPfTYMZNe\n7yXNr+Y8jyZCeklsHcUxQgeT60fzM1/GZO8wI9QvaDvzNgACij+QDFoxVmf8iJvkgJZzkCxB8ew8\nfSsmIsCFoRDLqzroKiUZMSYMNxxPQhYuaSdE2dVo0QaxPAUJxglmeUyl1UQmIBxCksWQEybr+rWD\nMbmMKhwSkt8vuUhUyHmKnkzOldAFzFF9ovTlNe+m+X5f9C+x08IKCbLNE/3fxq1NqFOIo70cxJz8\nK97njcLP7nvbfu/dOfORSa+DqkVvKc6q3BwuO3WNb2UI6MMT0/34HpuIFOBD8Y2c3LKLgWKErnSC\niGYQUk1U4dJWqqXoaFiuPJaqa3NcoB3Xk8g4QQKSRVItjJFOl4Krj0e/+604knCJywW6zUrq1TQA\n/XZirK50mLQTYku+nptm/BGAx0oSxz56LanOJFUbbIK3JNBkhw0bZ1DdmOLy2IZX1FZJOcT8i7e/\non3eCORn2vz2t2cT6vXTljc9PRvluSgfv+l6AN734kfBPjAVU/uPjGDcy2H36qkj0YcqvnTEkNFg\nz8SE8qXmqP/1Kz80X6o/Mjr0zdet5CsDS7jtjvMP+PmBoGX3b/K2R1v40vt8cqQcgtn9Gw0z4XLz\nlSsxKvdv762feGWRzr/9/iQAig1HxrX7zIfvQx1R+Mbg6cBkgr3pMyvHI7l6v0p5dSWjRoi8M3my\nnJ9tccylm4CpRY2+e/8l7Ln4pyyK9jKvahA74XB8aDc7hmugJJPOhyi4Ohcd9yKy5jBaDKJUlCkM\nhnmmfyZz4oMosj+o/nH7Euq1DFHdQI5ayJLLtIUDLKnsZXlrOxeHi3zu5k/ykZ98bvxcjv3v68fP\nR7iQb7W469rJq4RqWkYUZTCk/Wqb9FVRhAOf/czdHP/h9Xzxs78b/2zPna3I/TqBQcknl+1hSn0R\nMoUgYnsYOWbiBRyskopTUHF0D1WzyffEkAY10FxwBHLYBgmMvI5ZVgnH/KVNL+SA6uGFbUK7NegO\nsuzEndw+4zFCkkbLw1dzzLcmJvzHfOtaEpf28LHrJtS4P5Xomfx7FIez13140nuFBkGxTkxKpU8t\nhJFlHs7LW+y+bhhdBC/+60qeWvIHHiwGOOHL10zYfN1VxcgxHqkFkG0RKPsYi1fFCrgIdNnhn//y\nQX4w6pO16Y+Y/Prvp5MpB/how5Po1/QxssD/QYERixkPWvQ81khPVyVDpTDNkVFU2cH1BBHVYMQI\nsT4zjSo1z8J4H4pwCSsGticzYMToMZK0lWqYE+4nIFmMmiFGrPCYXYyC5cnkHR3XE1xesYZbm57k\nnH/6KH+4/m1EekwyMzV6T9XpPU1naJlO3zUGNZd2wpeHxn9bYp+6XgB9VBBp8yevexdcrr/pU3xt\n5yVcn/SN1AqLDp8wTtXbetj4+ZV88McTKUilOpfikhLh1jSf6zueb37iVy97HN+Pd3+0/P3qI4qQ\nylNIOawqu6/4OK2/vuYtm6o7FZbp+qR6dYAl3/f7qtb5Pbz9Q09Tqj78i80bvrCS/NKpnxcj4RHX\nykhjnVDWCvDt4bmUkwJPFrhNJYysTsvp7Xz2xt/S/m4/6rj2345j/aNz6M4l2JGtocdIkHd0TE+h\nzawj7YRoM+rosZMUPYEqbHJOkDazDhWH3WYNI66OikutnKfo6Yw6EVRhj0dNE2NCOZVygSEnTFhy\nma5EeKio0vLw1TTdPnmhv9jgkZ0FXef6c8sZ93k8mFr6itvL2xF5+Y3eJNjN+1+3ub+Y/AylS0Fc\nT9BZquDayieZ/5GtAMw4t52RKwsMLfXb6fRrPsFF//ZFrqhew9dbH6Amkqc7Eydv6uzOV1KwdfKO\nzoARI+MEeTHXSLtVRUT2748OswrXk+gxkmwqTSfthKlU8qwuzCLjhMg7/uJvSDJ8ixdPo+hqhCWD\nf9l2GS3aILfPeIwqOczp13yCr/3zx5h2t8r0hyaekd7vzCa5UcK7p4rpyqFfh70aH1v/NPew1pD+\n/Jr/JrJHGS/B+I+fvx99VBA8Y4h8iz+YuU8n0fqPXj+sQ42OHjFk9FAQ7JNxj8kdNlIqjs+w+bqV\nLPzRtfzx96cCcMl7n5q0Tcvfr35Vx/6vO9/zms/v1cCT9h8crzjjaRaoBfSRV5Z6dSCluouveAo1\nd2Tcav/zy3chmXD/48cftLbJqLEpzTRpjoyyLNzJPfmJFJHIThVzbOfFN1xLzdu6J+0bGBYsvuHa\n8dXAdy9/ni9tvgxjRwx9SKEhmeF3wyeyNNyFY0nMqxpE7A6B7JF9sZKgbGFYCgO5KE5fkFs2nMru\nrmrkPX7qbyJQYlV3C1fUPMf5W985/r17a1pfij0X3sJ8bbJFtBPw6zeliIWah68MLBn/TLIgs8Dh\ne7e9h1saV/HVJ949ad9Ih6DYahCJltHmZJELEkZnBKPORt4TROgu0WSRaHUeyRYUR0NowzJ4Allz\nWTqnEyejIrXkkUdUksk8luXfa1rYZEbjENX1GSQb9NlZ7p71MAAz//QJ4s/uH93sGkryjvDWA17L\nkd1Jspsrx19bUUFxjsHXPvobaj7QwbxPbSbTCsnNUPmiQH5Jxowngx30LWJeT6TnwS8v+zEAv8pW\n8Y1vXuWfX0SQe2eefJPAqzCpWTrAivM3ou6zQF80VQZz/uAsHMF9Pf4kK9eoUbFJMLy7gpt7zmRh\noo/M4snPZc1ai9gmlf6hODuz1eQMnY2pBlZtmEPbSDW9+Tj/GJjL5kw9W1K1BCSL5sAIOVunMMbU\nt+Xr2ZavI6yYdBcT7MjU0FeK01tOIAmPqytXcWbQZdCZLDqROrNMucnEmGFQPr7Asvoe9gxV0DlY\nMb6NmILX5BdMvihOAIafqqfl3k+SPLePBc19r+IKvHZs/PxKTEfer3412C+hbwuSHQ5z/xPH867w\nq4+uqN06c2+9BqvxwKlchxtX//bTr2n/oyVCGpCnHgN7/9rEpyufIrrgFbrWv85Y9h5/EfXDS5/F\nniLBx6z1VboB4nKJGeEReo0EqSUOkuXhjurUNqRpH6mg3aziq6dNLAI2rLIZbq9gqBBhU7qBjBXk\nsdG5PJ+dwZrcTF7Iz2BzcRrPlpoZsmN0WRVEpTJpN0S3WUG7VcWAE6HNqqLfio8T1h1mLZ12krQb\nIO2GGHKiZN0ATUqEO3NJPnfbx2m+Y/+5imwI7LgNDT6Bs0PSeE37WxVKx4Gtad73/5P3ngFSlPna\n96+qOnfP9PTknMgZJCdFRUEFsyLmrLCucdVzzu7ZfXYfz9ng7poH0xpYDBgQWQOCICpJcs4wA8Pk\n3DlUeD/UTM8008MMwV33ea9P3VV35brvuq9/uP4z9dSMvMQmREEj39pInWrmQJOe9jA1bR/KLieh\nXkE0qdVb2qLw2Jbr+KxpOP2cNfjKnNiMYRzGECFVItEQRBQ0qoKJWKUIOwJ50TI+RwOp+FUTP9QV\nUuZPoUm2Ux3RqwNUhZ2IaDQq7QSyQXbgVSwsrhnBNfnbOLf1UoZtmH3SazY3a1gbFJ6q799pnW9Q\n90bIkZuv/6cT0p/d/inBVI1b3nkw7vrAt2k4jrRPQMOZp/9e/r9S9uWnwRBaERrs77aNuDUByScS\nGfrPDZ3Y/UAJvmYrg17UJx2zb1iJNKYpSkrb8MioFWd0nFP1PJ4pBDXWE2s9p4FDvjQm/+3xU97X\nyBceirv868p+hNNlZJuGr+Cf/zEIJWvserCEoTN1wnLe9G3kDa7uFN8eEyangTUpSIrRx0ZvEeeY\nYyXDd3+qD4wzZ6/miwEfxz3uU99ezlN5S1hbW8QFuQewNAoYfVC7LJcNi4by+y2XYN9tYddX/Qhn\nRHAcNGJyC6xYOAZ1rYvmmgRUq0p2ajPIIia3wIGmNPYczyKyJ5FfrL4+mqQ/c/bquOcQyFAZveX6\nGKLa9+05SAEBBEAAX67Gl6/FvsfpxQ1EEnRDRellr7H1V7HvZdJGM4F9SfgrHGgGjfwhVZhqDcg2\nDUOlCU0TCPjNXHLBJmzJfmbOXIeaEcJuD+Iy+7l23EbkiAElSSYYNmKzhBH9InJEoux4ql4jc6SX\nXeP0nKsRT80laUdn64E3XyMz2U2R0UHSVRWd1gOkbhbJGF7Tfk/SNdJWmUiRvNS/VcDq/X1IOAoR\nu94XmqbpOS5NgyCQIeApEGgaFaFpmELdeIX6USqNg3UvahsahmtRL2YoufvohvpzNN674TkmWkR6\nr7qdF39/XXSd0auR8JkDa42GFpKQWicWmVcdjbZx2QJkJboxSzJJvRsZ4Kqmsb+ZhPIwCeVhLNUS\ndS8XcrVrM6I/dqImBVWkkIZji5Wq5kQa3TbKjqciBkXk7UnU7U+lal02pd8WUnkshb9vG8trOyax\nY0U/Nrwygm//PppvfhjMtuocyrzJHPckoWkCvogJj2zmoCeNzcE8nqwZzuzb2z/GVRPMSMctiC0G\ncBu4qv92GkM2vbRPU7s7OpwY5/6dEE8vBeHuWUs5ctUreIJmPuv7ZY+Ec84m/Nk6a3avyAQg79Iy\nvU+1nWMYHPtNjB2zP0bYrSt0lyN6ZOobRHJ/uoT0TPHvTkh7fXA/i3ovj7tOUGHmlnvYMmohyoSW\nf/KZ6fANDzAp6RBNip+31k0i7Ops9cnIbcIkKVilMB7FgihoZJubefTcr/CnG0g8IHFe1iFSE3yU\nB5M5Hk7Gnd/e8SxVEs27UzhQlsn22myOeVyUulPY0ZDNuspCvq7sx2f1w1jZ1J993izq5AQ2eotZ\nWjmQBVXjWeYezBuVk1lWPxCfaiZJ8lMjO6mWk9geKKA6kkRFpF2b47fvzNZzROMgUBAGRcCVqM8r\nw3aRMl9K3LY9gXGgu/tG/0KYW0OQ/bIJv2yiIWJnXs0F9HXpUSdrm4pRrBoma4TGfu3fBHFHAl+u\nGcGkxAOMGHmISnciFV4nZe4UlpQNZk9TBlV+J8f9SVQGkzjkT2efJ4OtDTl4ZTNJlgCpZn0+fjiY\njl81EVYNVIaSKAumcjycjEe1sMVXSHXISX3AzpMpBwE9OsL5Ztey05ooYGiNuljfWNR5fYf5ayA9\nfnRG+Hs9nafPjIM9vpdngp0Pl3B/UgWWeoFdd7wYs66rtLC2yJ/TQd+35/w/QUh/kmq6kQSNa6ev\n6UT02hAe7OfZMe/zxBt3op3jRtgSm9gcyFFiwn5BD/G1Vp2ap+9EfHTvn5mx6FEs9SKZFxynemVu\n3HZt3tOeqOnGw29mv8dv3zu5tehsQx3gRdwbGwYRzI5gqYztJHvvLWHAq/rE6kQ1XWgXMOo4+TKO\nb8R9JAlrjW77yJ9WxrGvCuOeh2KKHwZ2ughkqrx3xQvc+UosUQ47dc+gyd0+Ovh6hym99HX6vjWH\n4eceYOOuXphcQdKcXv7c90PuefnnBJM1LI3t28ijPeyd+Hega89kG5697xUefuU+AmkaqkXFXt7+\nPspWCBaGMB03YfJ0TWbUsS3sHv8OXjXI+Oe7VibreJ2mFoGdD+uh5f94b1J0ecSpYqmRCCWrJB4S\nUS9qQlzW/qF3XllJojlIvq2JF3N+4I5jk9k2P1b+vnl4hKRtRm6Zu5RFx4fT9F0mpma482efM2/v\nZJz2AH/u9yEFBj93H5rFkR/ysZe3X18kEdRRbswr9T7sLdAYMfEAHxS3G3U6huUCeIpVEo6029E8\nEwPcNHgDv03bzYin5rL1VyV6uGsHDJqzi93zBtM4RCN5p0DuXYc4/rfeuC/zEq61kbpR31/IJWBu\n0mgcqiH5BRzlEJzmpiilkSpPAn2S6/XnoAls3FOMpcIIml7P9PIbVvPR/uEIAoiiRjhkQJNFBhZW\nUulOJNfZQr+EGnpZamNCidvONZAhYK3RqD9Hw1ojEkpWuW/6cmximL9svIgHRq7i/aenoUmQc9sR\nfLKJlqAFuylMg8+G/7CTgi9iJ2aV94cJ1dooWhTfCKQaBERZo3aEmdRd+rZi5NRDLgHCTgPV14YY\nXXCUml8Xty9PNOBPEwmkCfSfdpCtBwoQDBrZmU0AGCWFOo+DjJd0U7k739RJUEod18L/DP2U/371\n1ugy+/m12E1hVgxcEl3WncKubNOJQbyxq6fwDQpx5OK/xRzPNyjEY2OWUbJgJm3l8AIj/Fi32lAN\nsPvnJQx5Zi4TrtvKquXDT/vY+++YR9+35vQ4fz91ZA31mzOi/xWLhr1XCwmWEHUdlp8N7L9jHv3e\nnHPaRoErL1rP05lb6b3qdoTy+Hn5PwV0paYLoE5swVdrJ+Fg1zchf2YpfyxcxI3b7kT7vnvRwzPF\nA3cv5g8bp7NqyvNc8P3PeWXcfP5z39UEV8YKhe14rIRx265lVFo5eZZGyoN6tIJBVHg2axNFS++m\n8AOB6rFG5H5+ZLcJW5qPyMFEBAWyv28fY45eKmJsETH4BUIpKopDxXbUgCaCbNcwBAQCWbr2AJKG\n9ZgR1aRhqRNw99FzU8kKUpDeSFVzIhlODxFFoqT/uww1WfguCHesuYP8d2Lvs2IW8KdJKCaBnOtL\n2XM0iztHrGXFE5Px5BnIvKmMg6sLT+s+7r9zHiEtwtA343u7fgyE0+UYrYCu0Kb30O+NORSOL2d4\n8nHW1RbRx1nHQ5lfc/WaOWR9ZKLmer00l1pnIXdl7Dgfvq+Rqdn7qQs76GeroWT7eVisYdTNThSL\nps+VJjRzft7BqL4BwAtNBWQbm9gfzMIoyuQZGxlrKadFNfLkkWswG2RCsoE6n518ZzOL+3zFlQen\n0fjXgk7XIVtEZItuAJZCkLyv/Z0qnw6O0hNCsYcGsO1oHysCwwJdanq0eUc7ztMCaRpSvo9hORV8\nULyC3u/dz6HZLzNt7wy+GvCZPp4ZoXhkOe/3/QCXZGNuxTi+/zC+Fsodty5lccUwmlZkxSyP2MHo\ni7tJDOKp6fYUP1WV3Y74t1LTBT28YtHBrmP7TbtsPPGGHg67Z8IC/PkyEUf7Q5RcIZ1stEITiUtE\nAxl6Z2zL8dz9QAmBLIVgamwnvXbWt9x0wwr+VD0NS2sSeFdEtKe45equPaj/bCLKIA/7J8/HMUqf\naCtmjVCK0omIni4i65KjRFQY20yq5SRe7SGeTqrFyeeffgjeqzNfY9byuYy+Ui9o/eI9L+vqskIs\nEQUwVenXmzemgi1H8zG5gozNLyMQMXDTEj0MrSMRBTBsTGDIs3MpWnIv3t6dLbQdw0MefuU+fZsA\nkCATGNYuWSuo4NhrPikRBRB/cDLk2bn8oX509P09ER3zktrqcC32OaJE1NtPZ/uWKgnZqmH0CEQc\n4DsYK9TUsjibveuLeDHnB95ypzM7dT2+/Nhnk7TNSMu4IC9sPJ+KKheB/vosf01zL9iWSPAfGTzw\n5weYvOIhDm7LiyGioHut2a4TUfXiJhxHBSa7DkXXn0hEZQcxRNTdVyVhjTWqxtcVGkJ2GofqRBSg\ndGEfglc1k2gPIiaHkG16Hqm3UKVunELyDr2duxjUHU7KlhbRciCZHVXZ7K7NZNPW3iSme7n+6m9R\nBnoJDvNzyJdGpNnCJb33MCn/CFqzCXOZmfLFRRg+TqasyUW6yc1Wr+7NblL8USLaOFj/kNaNV0jd\nImCv0N9RiyDz7GczkGrMPJqsC50pJvDJJnLtzaTafGTYPIR2JXHDhbqap2yTOHKNRP1QM+o+3cBU\nNtOIP8OIaoi9/6Ks4c8wknRYoXqckaa+RkpvgSPXSDQMNNPYr91jGUw5+XhgapFJWm6l8qneMcur\nJogEp7kxeWD/l31I3GlCi4j4Qiaqd6dT+UM2+a6maPvEY52tUbP7bI4S0TaPpO+bdGq/ymX6vsti\n2p7sg27w60R0yJXxw7pvvnU56riTe65OJKIA9t1mXnx/Jpdeuy66TKvRybUow2/rBgJQE+haEbKn\nOHD7vB7nkNafQDiloMBtvX+grsUR3cdPJR918XJdX+BQq5DOvyU2OJESTq4Y/cfCRdyy43Y8x878\nXegJtnnzuW7IFqa++zhKSOKBLTd2IqJtGJBcg9rq3lcRsEph1FZ3jmhUkK0iqkFDrbVgrpXwN1sZ\nc+5enMPrKbuyfWzJWC9gGtyCtV4j8ZCAsVki4tQQVJAdKjlTynHtlMCgYXKGUCwaoZwIIRdkrBPI\nW66QuchMxZpcnIsclG/LpmVlJmmizAdeJ7ctv6cTEfXkGgg5JcxuDdUIGRYPWljirV36eyVbBKo8\np1/89Ve1QzALxhjl2jPFyfa1/855PSKioJPQQetuAiDX3kxtKAGzQea8pH0MNVlQG0xoEqgVViw7\nbDH6A21wr0lnjzuTq5K3UB9xIJVZkHc6Sd0l49qv4Tog43rLwfLPRlP88X0MemEuRUvv5tlll/Dr\nN29myfEhVIecDDNXUGR0MNxs5rdFn3Jz1jqy7S0Ew0Z+V6CLFR39oFen4wddEuEEAcUCoQwF2R47\njotx+lVHIgpgNHUdeRfPWaBaVUybHexd0o9VAZGi4RVce3gqlV/lM+TZuZhaBCz1ApVf5TOp5Be8\n40nh4fQV7Hy4BNWgOyNm36z/3/lwCS+uuqgTEYVYIuot+nGiA5f5z858/V+FnyQZFcMgbet+0Bh2\n2V4GvTgXkysYU9LCtMsWUww3Xg4SgLVG5PpZq6Kht4NenIu1SooSzjYs2DGGd96/kA1LOhdFDreG\nFvuL9QnU7+94q9vzBvj7ogtPuv6ea5dGfwdzIqjG07OYhBO793K0efb8ISMTpu9ACgmnnC/ahpGb\nrz+pgq72QxKrNw2IWWadVB/93S+9lkiifq0J59XAmBYav+ncuYNp+nXdfcsXQOeyOwCjr9zJf+y9\nhtTsFr7dOJCBM/bzwGv3kz+qgo9uaPfKL7hP/x1O1XORa77OZVThUa7rt5XaQAJ5iS3YKk/eVRxH\nDDgOdR4Mhjw7l8U/+1PMMqNXQGg2onja25+Ypwh6vayu8Om7k/n1ZR/FXWeti/3QBNI0/vu1do+S\nY78J1ajXO4wkKygW3TBjaej8gVJsKr0+uJ/bE2t54rl7iKR3/iA411tI2mhGNKrRnM6ZqdsJ5EUw\nXlZH8xCZjVOfJ/GwyH0PfIpvcvvI7CgTMDfov8VlLjyT/Dzz9SUAFH9yX6djiWGdkLbB2KI/l5vL\npkSXbQvF3kxvrsCBmrQowQRo6a/gP5hEy5ZUkr+y0jxIxTy+gT5DyxEUvZ3zEGSNqMYQ0D3Xmgjy\noQS8dXaumrCRWcVb+PKv53Je0WH6Z9ew8UARhb1q+Hz/YFb8MBjnPomEUo3AWB/1I1W8xxOZbDvA\nK7nraFEDTH1KV5etG69gbhRIXmZB8op4igSCKQKKTeXnrqNMO38LB29un7QYAjDcdRyfbCLJFEBE\nI5KkMsJ2lNqRZmpHGHDuNZC6I0TWehlzjYTBJ2BpVFCsnd/j+uECzb0kwokqLQNlxvQp5dpxGzF5\nNFQTNAw0480xYWmI0FKkh3uEXJ0nSaVXG/AUgRSOHXPMjQLmrxORp7Sw5P4/4RkRQmo2EFmbjLle\nJJwZoenVdiW+hkGdFaTePzQy5v+FN2yI/u7vrGHMVj3M+dIb16J1uMR+l5+ghtSKKn8ivvxW7YEJ\nzdHlry6/kG/GvMqXP/8TkTh6GW3KuCd6YFc8+DSGACx9b3x0WccxY/6Osfr5JNZwJjjdci9ar/Y+\n98IPF8Ch9hqmP6USMv/ugkZiBGxb2ifIWpzPH3qGoQAAIABJREFUxhVr57Bl1EJsrdFb2Ze1h9+3\nGVrOFhIvqqbA0sAfM7Zx8YVbsB9oLTvUhZDSVSmbsYp6aZAEQ5BUo5dEQ5CXmvPYcn4JhoCKFBRw\n7RZI3a6Sst7Ihm8HYDeFY0i4pVEh+W8OGkbJBFN18TXJL5B0SEGzqtgNYRSLgOiV0DQwNQvYXQHC\nSSqyRR9/vVkSGZtkzC36+OgtkilXzDy5YhaFn3Q+95BLwF0k0DhQJJQMa8uLcOw3Ih7Vn4ejUkHr\nSX26LvDhZ/Ej9c4EJ4oPtWH/nfO6XNdVe3mvbtwY5Kgky9xCglE3DB+XvWgOPefXeUDA4Ifk3Z2f\nvybBgc/78OyxqXz82UQEWSB9i06cgq72F9larWGr0I0L4/sdxugRCLs03GvSWf7OOG58+hf0mT+H\ne8oncts7D7C47hy+3TyQPRMWMNRk4fKD00k43pmQWZoUgqkCYafAE+d/hq2y7bz0Z2a1dR8yZ9iY\nQOIF1V2uH/jS3BgHgf2YFP0O3P/OfVR/lcf+f/SNu62owB/+NotrXnqcJ2uGI8r68f4rdX80xct+\n7OTzZtkKpVe8ijhBN75ee9Oqbq+pp3jgw7v/rcN1f5JkFOIr0q6eE6sIuv3zAfzPHfPZP7ldqTCQ\npTD/nmc7bdvRc9oRHyycEv39m9vj1wSz7LV2Gett2qWrmthaa6E+sn5WlNyeCV77aDqgh8VaKox6\n2EoXkPt2zrVtyz1tU+8dPW1X3G1/f9N8Brw6lwGvzkXd6WTt0qFx2/UUoTWp/CVrS/T/f96xsFMb\n24kh1Kv1mP6p123g0Je9sFbr5+z5NgM2OOMSzTbL3gvLphNMVbn36q9i1vuzFTYuHkJgdSqB1anY\nKiT2fNaPiVdvpebrXG58uT1c4OZXHgH0QaINU1z7ccsWrsvazIikch67Mz7xi7n25Pjv2JUvPUHe\nJWXR/8EUDVulGJPAHg/Shs6Wc2FCU3Qw7aoANOiToKLLdE/aieQ0YgfVoCHkBBBsMtPO38LYsfsx\nnsB9W8aE0CwqKX0aGFgyF2FqI1JT/HNu6a+QuNbKoJv3AHBTQgOlM19jTPoxknYaWOAeBBq88uIV\n2L9vr1mmduAdvnyNQ1Pe4sh1LwPg3N15YBfDYOhgZUwaXcsrjz/HgsJVUS/qcHP7TjURFJtGyGvm\n4kfa82pTN4koyREcwxuoOy9CnwEVGD5OpvHtfFI3irS0fo8CCzNRTDDm4l2Y87zICSrjBx3iL1lb\naIjYmfDgRgqsDZQuKyLtWyNlR9NQGsykbhbx5WjUTZDJS2tixoQtHLn6lWhpmot++ShSEIIpAgkH\nDdgrdRVfg0/UCWymRkGvWoo/uY8Xc34A2kmDN0+gOWIjrBg41JxKlT8R0RWmZM51pG8Okb0mhBTW\naBxgpm6okew1IZL2QfU4I0ZPZ/E3W4WAvVql8PMIuV8JHH2pL1seP4eE8jCpO0Ok7NH3B+As1ScE\n5vur+P3rL3PdC0spm2Gk9AoDRYtkcr7tPGHI3BDCdSCMttHJ7Q8/RuJmM6pFJZSiYQhC8Xsattr2\niaw/u3M/EtY5Caboy22VIiveH4MwsQnj5AbSjR42jPiQ+46PZ0N9AenDa7jipu8B2L+k88Ri08PP\nUb8sh/NH78ZXoJBi9/PxA0+jSWCrErnw+ce55IUnYgSjbr51OTsf0UPd24hoRw/qhc93kWMvwP13\n/CNqwf/46/Hx250C+r05h77f3nZKHk3hcHufM1X33II+YNKRHtWXbgvRPRu449jkHz1/VE6SGT1p\n34+y76fufyv6O54h3LbZxtC/zGXXQyXseKyEys/1cMVIAt0aPQE+e+hP3bYB8A4L8ly/96P5ecf9\nSdgm12Fcn4ClLv5D/T97Z+rnKIaxiWEKTPVcnLiTvyy/jMseelhfV6shWwR8WRINE8KgwUUZ+zAY\nYwmGKGuk5TZjatHHbM2gUXdNgOKiGsrdThQzqHYF82YHRp+GcYWT/GUKxoBG/WAjEQeIEY1j00T+\n5875fHrJ89z04YPkLe102vrxwhDMkGGQh1BOGOtKB6FULRo2H0wSkeIINp4K2gji6XpH/3rDm922\n6TOpjKKv7gIg4uzeOJE7riKGuO71ZVEVcuIyBWhUHFy+7S5Kp79O9ewgvqleEo/KmLxqpyiZtO0y\n9kqNii8LyB1fwaPXL6ZyVpiITSSQrt+3iusiOKoUwsO9pGzXOPRafxzHIHmnrtabdFimeYhM1jqF\ntZ8OI3WHSmPIxpGrXqFW8THkmbk0/zWfUKJE7UiJoEv/HnryDDQMNCCOa8KfqTLvlSuwNOvHbDvP\nNv2IrrDz4RJ+dvunuFfqOfzxBLqkCKwPKjGE9JbJ+rxg393z8BX0TBz1i/cmRH/Pd6fy8lszKV4U\nazzPu6SMyddtiVkWzJJZEZBQ17qYfsM6JjnObumZf+f80Z8sGW0jdB1J6aR5v4hpI9s0HllxI882\nFQKgGvVw3OsXd47pN/Zz882cp6P/TyS7mgC/feumuOdy/axV/PLWhQy6NPbFCTs1/EWxnqJhBbHK\nqt0hmBVBGtqCNLRzaNibt/asYLogaARzIgRbFbnieUNXbxzQaRnAf75zK5EElbTxZ0+NstcH90d/\n//7NWUDXRK0j8s3xlQbDBSFUIzinVEdFddpqvlprRARF4I0F02O2kfzxX+01i/QaeWoX87FrD08F\nIEny089WTR9zNb9J28PtibXxN+gAc6Oem9k2ae6I8i8Lo7/jeSC9hT0L3dDWunpUuzWYplL6uZ63\nd6KSXDhVIalPI3KzbkCpD9u5If0HgqnQPLT9PJwbzDj2G1FUAevYepqrEll7/V/iHs+5T/+o7F4w\nkJZBCn9s6MPw388l0uoaePvQOJpHd3b/+jP1e9U8PMKBW/VBdEc42Ck8tw3NQ2U61i1v2pLGGLOR\nS/dfGl3WURlYE1u9E7LAtc5NhJIF6ibKLP+fvyK6Dbw06D2em/wuB8szCDsFmgbo4brOA635hQpM\nvXIja9cMJBw2ICaFeTb/MwAWbR7JkjUjeWPVee3npAqkbtKv2TKgGWOTgfI6VzTH5i13OgNe0a/N\nmydgadAIpmjUjVWQQpB4RCN4VTNycoSjpWn06V9BlexF0VQiDo2IXcBRriG33lejpNfDtdpi723S\noTCaoFu7q+cGCaQJuPaq1IzSy6qoxvb+kborRMQmUD/YjGIW8OaKKObY/lM7uv23ahQp25HNI088\nwOvPXE7OwBoy13bPWDI3hGgYLOHL0zD4RGwVApzXRP3gWE+owdt5X74hQQpH62NrqLV/aWtcePYk\ns/DIOewIB3kldx3fDPqUx3stY7zj5GIVmgh1IQf2oxINy7Ppa7Sz68GSuOOUbCM6of/Hu5MIpmh4\ne8mIYttkqevjbHroOSpC7XmBJ8s3PBUIR2z0fqd78hfPkHcq2Lu6uNv81EeuWsLj1SNO3ugUsPrb\nwT+6h/SpKYvYuLqzOufZwK9evr1H7ToqtHuHBkke17VHpyOmru2Zsdux3cJNG++iStatKgt7f9Zl\neG4bQutSEAUNUdBrCmcaWig2eDFk+DH69HlFQrmM62AEQdYYVFTJmCl7GWY7ysT8UmpHGFHM7e94\naHkaJo+GtU5DUAVG5ZVjlmSaylxYGjSSthvRJGgaHcFWqxOBxoECsh1CKSreLAM3nruWoGrkjp23\nkrQXpFD8F1I1gRgUiRy1Y6ox4imApCH1mFrrbPuzBQzSmVdiOBWPZUdcc9kaHn3/jm7bHVxdyLzJ\nC3jimk8Yc073ojsdc+YBDrlTaQlb8MhmasOJXJq/hxeaCjDucJBoD+LN0r/Votz5PprdCq4DMk1+\nK/c6K/njqEWoBgHVCMEkCUlSaSk2MDy3Qk8jaVIw+jWaBsGR7wopv0xjxMBSyi/TSNktI4U1cmwt\n1Cs+xi1+FNcBfX7hLhZI36wQsQs09zIQSNMV0n0eCznfqjjLZAwB/X2TQioV10V4urFzaG9HPF49\ngjdK20miIRC/XVt9z7Z50YIVkwH922w/Gt+zqbTOF8MjY1PMhAlN/G6zbsDp6BW1T6kl0RTksfSv\nCQ734zhfj4hxHDFwz5d3I4/28G1V72jq1tnETz1vtCv8ZMko6ISx7/zON7aNSBr8ArZjBh52lekr\nWsdAS13sZYWdGmx2cv483XqdOLmGoqV3x7Q52QdXRWCC5Sj/lfMFs29oLzBsdAsYGg0xse37l/bp\n6eXp51plRNnhxNfY2YzT5kXpDgfOe5vSy17D0lqr6PANL3dqY26Mv6+QS2XzrGeoW5fFoAvjh7S1\nYe+9JfRa2f1gaqnp/FqZG+NPwiIj2jv3iYSSMTpBN1SZ9XIjqzLZf8c8lBPUzc1Nnfdtbu4m9zIC\ngUEBfMWxxoR9n+uelAnWcn6WVB6VH29SdO/zhbM2cDIMeXZuXLLZEaER7a69tnIhjjID/qGdR88T\nrXt33fYFyxaOO+n+AW6/aFX094nlhuxHJZKsQdIKmtD8Bo40p7DB14sR0/Z2Uqw1+EH9MhX1y1S+\nuuQZKmUDnuLOxo6OHk7JJ3JJwk4EBVaubBVr+SqZm0bE3jvLzJpoGJupRj/uMdnLbX/qOsm97fxa\nBik0D4vQb3IpAFUfFkbbfLh8ItAqCpUqEHEpjBxQylXLH0AMQUK6l5m7byRlm8DsZXN4aNVNJGwz\nEz7XjWsv0XxzQ2vAwRffjEKMCCgeI2+Mf5P1wTTGb78GV6Ybe7lE6mYRTdRLxiRv1s+vfpSK32dh\n4pRdGIz6BOi47OXlI+diao0KdZS3HscnkLJVom6ijC9HQPjWRdr3RtLWGgirEr+umkZJcxGpWwSM\nPn2bY14XNkOYLLubDKsHhyXEsWkmFEt730vZEyJrXQjnhwlwbhO1YyBjU4hgQYhjN8caP5IOh0ks\nV7DWRQimaGiSgC/LSOMAM6EkA0aPSNntKsenmGgpMmCrEonYRezVCg2rsrDWxfajYHJ8hpa1NkTu\nighKbhD/WD/BkJHghO6V0Y3lZg6VZvDzOxdz8YUdrM0CBHcmMdRkYcaBS3igYiy/3j2T/9iplyM6\nMT/Hcl49Vx24AkGFfWti1RnrFR+Cqufkms6tj76be+/TvzdtualiBNLymnBYQkRGe/jTXW90adwy\nC0b+N0Mv1l5wWWm316kUBUgc1tBtO4BDN3VvAW8z2v2YuD+pgiVfdj8m/ZTwfxZ3HVVyttBdveJf\nrLgh+tuxw0L9xp4JSlk29rzeorgzgXuOXEe/72+lRQ0THO3F00eOW6bqY28iUhgqAkkkiEHyjQ0U\nGNxENJAkjXCiRCC1Qz14DRpeKaDid3144Pub2PTeUPyFEWpGtbcxejUMAY2QSyCYHaHKn4hJVBCS\nwiSUyzjLImgCGK0RTB4V1SgQSlMIFYUQI0LUs/xNS388u1NwVHVttDU3aySUipgb9I4rp0a4oWBz\ndMw0usFl6YKhnCJOh5B+/PnEbtuEs/Rx9KH37+QuZzXvF63sZovO59Los1HpdeIOW0g3uXn3+wm8\n87+XkHRQoWlnKppBQDWefFxw/M3JrUfP5cklN+LJF1CsGnVTwlitYZxHZDbuK4oaJ0QZMtcppG+R\nMVcZOdriwlpupGGggSf/Mp+/5a/mqGzEtbP925S2TX+OCcdlkg7LRBJVwikKRrNMKLHzXHVk4TGa\nIvZOyzvi450jomHYEYfWpZdTE/R52vm7ryAyysPD074E4KnNl8VtD7pHFSBSp0/INBG8xTKfnfNa\nXMEk36p0dn/anytfeoLPJ75Ek6e9w9mPSaj7HQS+Pblh6P9v+Emq6Z4KIg6NiEshIcuDpzoB27Ef\nV9+/TSm3JzhdNd2e4porv+fjxZPJmFBJzdpsAByj6vFuSj35ebUq52oDPeyb9Heequ/Pr1L3sTfs\n5+q3ftHldh2VdOHMFCl7gqQp1TSv0kMuQkka5maBXQ+WnLRMgmKOzb8MDglg2dlzZcbA4ADWXVbS\nLqwgx97CgsJV0XV935rTLcn9sRBPCe5M4O0VwewKIkkqb57zFpWyi98+0yoQk6Vhq9Kv05er6WRf\ng52PljDwpbmYm2L31TI2iPMHC6pRn6iHk2D+Pc9y99N6WFdkagvGr53cMncpfy+ZHt1/y0CFrN51\n+JdksvVXJRQvuwvnhm5mcB0QmdpCZG8ikQSVocPKOLqwF55eKgmHRYLpIEQgkCOTWdSAoop4/BZM\naxIwN+lDXv1IlYRSCXOjRsNwDUEBx1GRQIaeg2kvk7DW6cq6SnIEW2IQ+5JEXv/tM9z9Gz20u7kf\nJO0H+ZpGJmUfYf0Lo2gapOfCTr17HVVBJwsKVzGwZC6aCAlHNVQDncoKIeh1R5P2Qt25EQiLXDJq\nByU56xm//RqU99OpP0cjdUurmMisOpzmICoC/ogRSdA4Xu3CcshC1toQ5ReayF4to4l6CR+Dv+ce\ngUCaEd8NLZyXe4jvK3qRbPfD79MY8IddrFw8kowpFQTeysJeHaGprwnXgfi5PE19TRi9oN1QT11l\nEsaEELmvGxE0aOxvJnlfe0cNuQyYm/SbUjXOHKOorZgg2C/IosnzuHHzXUg/JOIbpG+bkdHMhVkH\neCp9J0/WDOeLdyeQenEF9ctyAHBNraLp6/acc8WsC7SZ3ALBVA1LvX4/r715FR8tmMK4a7fz31lf\ncdHbj0cFznY+UoJXDfKpL4c/vD6r03NDg14zDnN/zioee+OuaFhgyKX3nRPzTMNJZ/eT+8Ks1/n5\nwru7b3gGcI2oo2lr7OQpkqDG1I8+UzXdfxf0xLvtz9SwVZ+83UN3L2J540B2f9ofQQFPL5mEw2d+\n8568dyHPHbqA4qQGNm7oi/24iG94ANVjZOflz/PQ8als/LBzOo5nYJh+RVXUeh0MTqvi2tRNnGdt\n4Ct/Jr/acgUGg0rG662TcQnc+QYsTRqBZBGjXx8/BVWvCdkR3iwDxoBGS5FIIFfBUi0h2zUy1ylE\n7CINl/sx7HYQTFUxBAQUs4YYFlDsKoaUILMHbmL+momkbZCwV3cfQdTcy0jzEBnHEQPe/mEyVhqw\n1iuEEyUqL1Kihs+fIk41VzQewqkKGFX6FlbjDptRFqYTsQsxeZoRu4jRpxJMkvDM8GJd6cBRqVA+\nDXKXC9SMEbn+ktV88cokmseGMVSaEGVQegdI/YeF6otk8j4VCSRL9Lp7P5V/6k3tTQGmFh3gu4pi\nAvuSkF0yhcW1HN2TRfoGMHl7lg+d+Eg5e49nYttuxXVAJpwgUjcthFhliY7XJ0IT20PivUVyVHVX\ntsb3kKZffJzaZbn4chXsx7t2+ux8uCRmzqWMccdNn+oO4QQNk0ePnLv84HSW9FnK5Qenc2hZMR1L\nE5+Omu7giYfYtaZ39w3/iehK2fffTk23DSNm7Om2zdDJB7l9wmqUDa6zTkT9uZ0Hvq6I6KQrt0aF\nd84WEkbXRUNvnWM6h4l+vFgPL2gjokC3RBQgEjQQTlRJtAepkr28s+gCBrw6lxmLTl4qZMCrc3sU\nOvzKvS9226YnqN6dTnCo7p5qI4EfeJ0n3eZEIaB4RFQdFV8Y6JabljO2qAwAX9jE+KTDMev/mUR0\nyc/+RGB4ey7w6ZDQkxV6FmSRLJcbUdTIlkIsqtdDf2/72RdRIgpgPy7oOZoiDPtTZyIKYNvTqhra\nOqiamuHO5x+Orjd+7QQB/lGlC4BdNH0LvlyNWyavpnZbBr5cjV4r70Bo7nkum2LVc0iUogB/mP4+\nRxfqITwJh/UhTQrqJQQwalRXJ9G0O5UvxszD3KQrLTaM0DC6RTiviUse/Y5nZszH3CgiyhrOg5C6\nUUSxQEsfPdKiOK+OgNdM3XglSkTrxisk7YemAfDL/l+yuzkL4+waxk7ay9ZflfDNS+O4O+M7pu+7\nDMWikXBUI5AhdCKixtk1qBJY6gR8l7tJ+85I6RWvMsheweGIF3NraNmcC9trGDa6bZTWJXO0zkWj\nx87YtDJMZZaoEnjeijBSSMUQUE6JiAKEEwSc1iCNYTsFSU3UehyUXm7k2w9HknNBOUf3ZWJp1vfZ\nRkRDSYao0EQbXAfCOCrDmF9Ppvh9lbzXjNEIlI5EFIgSUQDTCd1TCoN9p4XhZjPixkRM59Yj1hux\n7zZTXZbCvcnrWOxz8MHWUQTTNL4Z9Ck7Hynhipu+p7wihcDwAN4++ssphdpVtNsmNooFPjqie/DX\nfzSMlxom8dzsN/jZHfp+jstebj0ykw+rRxEZ7cGXp5A5vVw/OQ2EiU0c/qwXjyy4i+tnrSIwwo9i\ngeThen2/7srNdMTpKNv+GEQ0khA7cTyRiAIYPSIvzHo9+n93+Ox4nf7dEUrunogC/PHTq9izSCei\nwFkhogC//fh6LsvdzcNZy1EdCinTK7Bvs3LrxDUMWfoAq9YNjrvdlEH7OdqQjMdrJagY2RXI41Nv\nHn7VzODsKoIVjmgIbiDZgMmj4csU8efoY6qg6hEVHXMRAykSihnMzQqJZSrOvRKmZohkhPGnSzT3\nFhFFjUBBmIKBVWj5ATSjhpygoBk0In4jRkEBScNWe3IiGnRJyDYxGq6buiNC4QcCvmz9m2By6/s5\nGzibironok1I8XQhJUQw2sNUtDiRFQlR1mge0prC5RAJuiQMwfYUg6DbTChJoKXYQM5KAW+2hKVO\n4N01Ewi5BLSghJyoYhveiFBmRbYISGbdkBB2ClT7EqkbZiASMvDtwpGYPk9CVCDvC4FjO7PIXal2\nIqL+NImILT79OLi6kMxPTZhaNLxZEiaPSs5HRlK3df3s2oioL1eJKf9iCMSPUCiv1ysHmOt1Iqp2\nwUeLPr039t62EtFf3vVel+cSGuHDN6jdU2OaXB9TJaH082KKl93FK0UfRYmoMCHOxKqH+KkRUTi9\nUOGfNBnd+tnATssCOQrv3ftXhFF6COeONX1iRIikMaf/UDtCMYPBLfG72xfwX7ctjIYGt3k7/b1j\nvQGrF4/A6D47ZCVi10gYXUe2w03p5a8SsWvUVLeX3bjz2q9OsnX3eHDUSkxukQRziMt3tIdwtokd\nnYg2MSToWejwPW88cEbn1wZLnYgSiP1A/+6N+Hm9pwJxU6xlKzxcDxN8MuUg7xZ9A4DHb+Hbxviq\naj82gikaM15+Auu22FiqUyWkJ2tvqpeo2JSN32umXjGSa9FjR69NiBW6CqaBeEk9f7j3DcQuxOyM\nns7LxJDuYW3p3/ph1WBm1k5CF7hZ8+ZIpl+8iY8PD0czaNiPCySutZJ4oOfDkT9TI6IpPDFiGb9/\n9iZCJ5Trizg0PcxS1DCYFUy93JQ0TCaULNDSFxIPiiSUgbDCxeI3z+OhlTdhchOdGAbS9NxM50Hw\n5yqUVqYyfeAe0tbp73/jEA0MKvUXhhg9eR+/23MZVd/kUrc1g23VOYzYeAOT5m7ksT3X0vh2fpT4\ntNYlx58lEHEIehjxexmIMljqNfJczYiz6tgb9iOhMvvXj+N/J4tBc3Yx/61p7dfnNWE0KlgsEQwG\nhU0N+UhBoiWUTgWKqX2b6jFmPAVQfjyFrVU5lDYl4/NYSNoroIxxU9mciOQTOXqVFhMSbG6WERSt\nEyEFMLm792Z0VOf1Fna2oIeSNV5qzuOcK3cRCJk4dOPLfPfgn3lu6gJebpjAuzVjGdvvCC9d/TpF\nS+9mmd/Iu9tHs2/aPA6d/yaPTlzW5bE1CVirj68RB3z6j/HMr5kQrQX7m8rpHPxHH3YczeGyXrtZ\nf9VfybK14BsUQhvfgrZGf/kMPvhowRTEMivBDAVvsH0W1Hf+nKg392R4y50e/d0WstcTKOazawg1\nekT23zEP2Xry/U6wtHf+q97rvu7xvxIZw2owFHcfEt4duvP8Cj3kEieKCMlWCI4+8/OzNAh8PH8K\nt37wANZjRhqW5vCr+97hV6k7SNhrwn68vd+25ewDPJGpzyuUsERQMVIaSGWLr5DKsIttO4rREiM0\nDDQQSJEwhDQUo4BsBXs5WJpULI0KtlqZiENsD+cViArRmFsUZKuu12A7aKZpoIZs1wgHjQzoVUkg\nYmRkwTGceS0U960GFZI3GFn49wuQPBK+zJPfeEuTQtgu4jiuxMzFOoZriqZTJ3rxQvDP1HvZFe46\nNonZY9fzy2s/PG3Cq4RFJEnD12CjvsJJw1CBwl41lF+uk0JLk0L1GJGqiRLefIHspRIpe2ScR2TE\niBYNnU3aKeI4rmFu9SQHN6agWDSCl7dg32TFXSji7i9T2ZhIKE2BOjOugzJiBMwNAuXTYMjIUmpG\nS4QSpRgjReNwFX+6SCBFf0/CjvZ3MmOjghTWsNcoRBI79JEeDHGGOFoh8SoVmLfooe6GVs4YT/Ua\nOtc1bcOvt87s8hzMW+0MLqxk3DXb2flwCZtHftCpjX2PmSxDe7i9tvbHrzf8Y6FgzKnp5HSFf4sw\nXde51TR9l9nl+kCGypHrXo7xWlrG1/Ob/p/xn2/eHtNWk3r+seiIcKLGrlue55yXHgIg98JjPFH4\nJTuDebz2zqVxtznVMN208VVcl7uFkg/bY9c1UWPf3fNiVLI6hsqeDsQhLfibrVjKTUy6ZDurv9Rr\nuspWvRj1yRAqCmIu1T1hJ4bpFl9yhCNfFsfZqmuMv2o76z4Zhq8oQlKmh8i6ZHIuOsaApGq+/nDM\nKe2rpwhkqlHF3jaYJ9bj8VkwbdMHCEHVVWcHnn+QRb11j9Qyv5GLbREGPz+3y3JBXcFbLHernvvP\nhKF1zuMpVhFzAuw893X2RxSSRZmL3ngCS6sj3nllJS2Ls7veUQ+gXtyEt8yJJmk490l89R9PM+33\nj7P1VyU8WTOcZa9NQLbpuZodvbLdwVugcfCWeXHFjpqHRZDcBlSbyqhhh3gqbwkbg/k8/eIsTG5d\ncEE1aVhqRAwBoqG7QDT0sm6cQtr6WONLxC5gnlGLulD3FAWvakaWJQwGBcsnSfS9by976jOYVbSF\n17+cisEnYPTo3jdNAFu1RihFwFrTfjxVpUmUAAAgAElEQVR3sUDiEZ08O26sxLcgG9UE4USB5+e+\nzO5QDs98PoPkDnYCTYL6UQqYVNKyWqg/lIJmVnnuwgU88e7t5HzXPfFpQ8bvjrC/MY3/6reUPxyY\njndjKqHiILcNX09lyMmyHYMw2GTkgAFkAUtyEOWwA3ODgLlZw5ctkL2658c7GeqGm0m4qBr3itjx\nPpiqIaeHMZgV3hr3BhNbiXDxh/ez6PLnuPq7OQwsqGLfpgJ6n1NOnc/Oq4MXcHvJw1jOq6dfci1r\ndvaJKb8UHuXFtCk2/04xw565uvHtLXc6r5ROpiCxifeLVnJM9rLU15eN7iKOeFIIygZGpFTw+aZh\ncfu2t1+YueO+Yf7b02KWn+0w3X8WHrlqCc98cnm37X6KYbojJh5g495iDI0GFKuKFDh9O3z6sBrq\ntmZ0GTJ4pjjdOUo8jJ+1lXULR+DpI5Nw0MBHDz5Nmihwx5GrOLIkVhDmmltXMX/HWBybrbgHRSgo\nqCPX0Ux/RzVvf3k+GcNqSLIEqJlfiGwRMLeo1FwgU/hh5/ugSSBbRdCgdqRIzncynjz9xfDkQzhT\nJjWrBV/QhMGg4GmyMaiokr1bCsgZVENEFalrSkDxGrGWG0HTjZ6uQxFQT67x0RU0CXiojqoNnUvF\nnS1EXCrGprPj45kwdRdrv273YtuHNuLbkdztduF0GSQNwagi1pkwNYpY6/UbZq9WqB9qwFKvYWnS\noiJBQZeEpanrl+74RXq6R8ZqAXehiOzQiCSqCBGBZ2bO5+G1N9A3r4ay7wsQZVCNGumbY/enGgRE\nWaOl0ICtTsWbIyLbIW2rnieqiWD2qAhK+8N98bnneeChBwklSngKBUIuFUu9iChDZJQHw+YEBA0s\n59YT/K77qMCeQpX0Ui5ngtA5XsxbHETssXVGc6YfpWKprqA97prtZJjdfPquHuV4OmG6/074yYbp\nBtNUQoM7lyU5EW1ENNBfZz+uc3XVuenXrAd0b8CJ4bPBdamdiCic/iBvcgsMffNBIgka2ReWMyNz\nJ08dmUF5UB8cdj9Qgnlcz4Qn4kGxaPyq12e0KHpYaaSPHvK0726dgEohgV4L748S0Z7UD+0K/zV4\nKQsvmEcwKxIlotCze9NGROOhwt3ucTzR0tT7ksPEQ2JrQL+91Ehzpb79J/0W0cuih7hlTD07VpeO\nOJGIhlwaK0e8jWmbI+a8jT5dkOp/6/sB8Nir9/B49Qgum7X2lI/ZFRHVxnVWUd75cElMKZgfE6Zm\nkeyUFj7zpZAsykz58Bfsvbck6mlsWZyNZ+Lph981D5HxHXIydvR+nHsl/NkaO8OJ+HM0vGqQr96Y\nQGRqCwY/p0REARxHhWih747w5WkggL1CQJM0iuwNzG8ax//dfinhJJBuqMW1G1K2CtgrtaiYR/3o\n1j7V+j1oI6L+LP28ZKtOrNuIaP1olYXD/8bgzCo8NQ40CXrZ62iqT+AfFUNYfP1fcZRrWBo0/MVh\nDAE9V9RS1/7BUQ16HmkwVaBpkEbdCj3XMeQUECY3Mdki8/YfY4kogL1axn7MABGRusokpICAwS3x\n37uvIFLcs+cVdhpw55sYk1TKV8Pf5JuWATTUJxDMjvDu5Nf4j9TtZJrdiBZ9YBCCkn5flzqQM8Mo\nJjA3q1jqIeLQ71VT39NPlJetEv4slREpFZ3WWeoFHHvMHJzyVpSITts7g5cv+xtPHrmG5VOe57O+\nX3Loxpc5XJ3G5pEfcO+umwEIfpfK9k8GdqoDrB3pLIjRsQTY736YwbphH+MOWxix8QYSBJF7nZVc\nmbKZq7O3MtBVww81BUh+kZBLw9svzLhrt0e3L730dfxxYsTk/NNLtg+n/TjF0nuKNiIaOYNvz78K\nW9f0xdCoj8FnQkQBqqpd2AeenQgseXxsTLqnl0xwePdzop5i3UJd5Vjy6dc85+BsnqqdxMDEdvX8\nodfsYcdjJRz2p2LfZsVepWJoMtDotxJUDEQ0CUuDQGW1/lHw5grIDp1cmKqNeHIMhBP0/SsWXRxH\nUMDoVTH6VDQD1I4wYq1XSSiXMfgFhKDIL/t9gcvhR9MEUtM87D6Uw5QJu+jlrMdlCXBxn32INplw\nooYU1FMzZKsIon6cU0VzLyMOU4hwZs8jDk4VZ4uIAny/ZlDMf9+OZMIZ3Y8BieleJKuMIGqYmkVE\nRSeh9hp9HE/dIeOoVKJEVDEJBNIFjk8VoiKgJ8Ke4yF5q4jRr2Kv0ghnRRBDAq69Ar/YfC2iUeXY\nygKS96okjq/FtVfrJETUpt5rcmt4c0WMHg37cY1gkoTZreipH63Dry9T96Te8996Sow/QyCQH+Hc\nCbsZcMkBQi6NcKA97WNoql6UNDDs1Ocq3gGdDalnSkQBhIP69yXsit3Z0v6fR3+v/3hYlIgCpI84\nszrU/0ocuG0efceXnfb2/9owXY1oQeKewLpPJ0Krhy4CiKlneTqwT6w7pfYGv4DRI1C5Io/9/ky+\nGfQpNSGdQM13pxJan3JK+4vYtWgY1IFb5/HQgnu417WZsFPl0Plv8tzNr8W0N7XojyvcK9BlSG13\nWHT7n3nqvVncvPBBjCfUjJTC8UeiYH6Yi2Zs5O3bnkMYHD/fEvQao9FtBsQOCoe+1K2w/my9YwbS\n9YFwS2NetI39qH4+NtHEoko9h6t8Q06PrutM8NjMJTjF1vfwBMOUKMMnx3TC/od732Dp++P55Msz\nrxUI4O0bjqmd5c/S78mQZ+ey90g2BZd2r755pjA3Qra9hTSDm/O++zlauj4wGzrMlxPW6Pem+Zyu\ni05nXHuUln6xk9SiGw5SesWrWKtFNpQV0mv2ASJOlS2BQsLpMkZB4tVHn9NzSk8HAtzeb33c5UJI\nJJIAmBWWHh1ATSiRUJOFPXNKmFP0re4ZNUDd5Aj2Cv2hp24Uidg79wFblUbDMA1vPvj87eQit08t\nkqARVIz061PJ3379DCIaZkcI/6cZXL3gUQQF6qaESfveqOeuCOAu1sN8fdkC/kyBxiEaggr2chFb\nVWtIW7OGst7F4LW3xb10f7oBoxeslQZEn4Rm0Ega2IC31IlQ25kAebNNtBTpRFG26ZOE+iESjRcG\neffpS9gVTiDF5MVgiZCc3UKDakdEpDKYxOzBmzDtsmFsEslfIsSIC1Wdp090ABoGmnEdCOPL6nnu\nb0ccu1wjc3AtZrHryWLRF3dzT/lEnqwZTqU7kfu+uZ3Kpfn0Mjr43K9/Hw5OeYspu65s36gLY7N9\nYFMnxUVLgxBVWj9y0Rsck7180e8Lto5+n9EfPMrTjb24zBZkpKWMY14XU7IPMv3crdw+YyWCSWVd\nRSHevhH8wwI821TIRwumdDqu4VjXBr2TwVT3r3c5Fo4rJyGv/Rsw5NzuS0/8pJCnf5emTNnBwVvm\ncfCWeXx4/bMIBb5uNmyHFhFJtvu7VFA+FUjrE2kTCY04oPTKVzk45a1ulXhPFW31SwclVWEQVY4H\n29N+2kT6zG0zcEFXv/dUJrDtWB57PZmYmzS0oERT0Ipi0XAcV9EkSDgCzQM13AX6mOLONyBG9A7n\nTzOgGgXMDQKagSj5cVRoaEaNK+1eqg7phr2wLCHZZHY3ZvLXnK8YnnSc6kACqs+AqIClUSOYptIw\nUKJhgBF/mp4feipw91bonVDHkD5n38D9Y0AKCCSPbNcK2X/nPEovey0avvvI1UuQCzsbttxVCYii\nisksI9s1bFV6+sTxi2K/bW0pFapRwFGukrtC6zRWVs8O0jDIQGifE1udotcGTRFwuPyoFg1lRhOa\nKjK9z17CAwIYAiqN29IIukS8ufHnk9ZGBXuFiqCBu5deSq16rET5DA13of4eBZN1L6rZrb+TBj8k\nZ7ZwzOvi7qzvOf/CbZjKLNG+880+3WFg3W6NMSh2h50Pl9CvoL2k0pnkbp4Ik0fAn61iqW0n5fGi\nRjouq6js3vP9U0Xft+dwYF3haW//LyWjlnoRteDklox5d7fnK7bV9GzLqxmz9bqTbnsyT+Wl167D\ntyaNjXOfBeCem76IWd9WkzTQN0TRxZ1JwTefjKTXwvvZ+tlAdj9Qwq2J9Sc9l3gw+gQMAYFgTiTq\n8dwYSuGZGfO5p3wiQc3IgFfndgrLNR3uOYE/EW1quVJQQAoKhFIUZKtGML3d4qb097L33hKeu/k1\n9t5bQun01/lD5hpue/shtF09UxKz7o5/jtYqvWOOH6cXHK9bkUNJh5zU62avAqDZr29vcgus/NnT\ndIUznRBYJ9Vzf1IFvVboJWuCgzq/j8HvUuk7fw7/sfNq/u8988+akNGCC17Fr4ajE2JbVXt3dOw3\ncfQLvfSEYWJs/VVvn8hJxYm6Q+AEy/ue9wdwx9o70BSBwxe+yUvNeXgLO5sGk7Z07fU6vCkf5/7Y\n4eTiVF2AzDKlnqdGLSbT4sG5V+LdkmkkbTXSqIS449WH4u5P7clkTIN3S6Z1WqzkBJECIqF++rNU\nNYEV+/pROlM37rxw6AKcB6BhjEza97EvUFsZgI7wZQtIYYHk4XWIx6w0/n/cnXeYFFW+/j/V1bl7\ncmSGGWZIQxpyRrKBFTGxigkUMyMqrrq7d++Ge/fu3b2r7uoaBsWEgAEVL2YQERCQKGnIYQYGJufQ\nuavq98eZ7p6eniSy4f7e5+FhurvqVHV11Tnf+L65GtVjVL7N/V98mo4Xsz/kRFEP7v3dY7x1YDxe\np5FbH/oK/cBGBi86TNJmcd1spWKxjzlN8LX9gkbCAQlVD64eGtWjWujyfaI1IOqzUBmpKyl031WN\nU1BMYLugYSvWgSYRbXaT9ZmPXl/4qBxhonKEifq+4tj2Ui8xRcKLdD5QT/2SJo49kI/9ewtRd5Rw\nz4472VPbC8UvU1ccx78dvoEph27m2FND2PH4WGJPq/Tc5EXvUjA6VHq9K9Fjp4eMdRoVcz1UD9GT\ncFQEMirHaTRkGSkfZ6LwdonSSaYOM6YBvdOiaw2YSw2UVcWwsyqr3W0LHsun6OrX2LJpKB8eGQHf\nxfLmjNeD1Qy/fOVucp/No+/bi6jZkIa3i7KtF3PfCerKuYaHnvuiWa+R+2weA1/OI1NvD+pBWsp1\n/CxOOF/jzTLrB37G06n7GR1VhFX2sHjkZtwuI0gaxpMWVheP6vT4/xdxdmcG7iMhR6bg2x8mZfZP\nx3mxrmzePJR+KxfRb+UihptMnJyyghfmvsG6WzpeawKIOm6g/JueOLJ9P7qszj+uiahxIihuaGmd\n2OlW2u1zuxTY/O4Yvlw1kW3fC93xQ4+H1pFvtguCOWeyDvsFlYT9MpaDFo58kcPMvB08O/Mdyipj\n6fGdgrlWwZUsgQ5M1ToSDwvbLO5kKJDk7CGhGCW8cRqudD+qQcIdL6PzacwZvR8Ac5mMx6PHcSYG\npd6I7q1Exnz7EKs3TUQnaRir9fhiFJypEhkbFPrNLMSdpKF3aui8Gs5kPY2ZocxsAI6UcKvfGy1j\nSW/GqvNyYmu4pFNbbFjQ9T3w94AvI/SjXz97BwC13wtbN+CA5ryxiJw3FnHi7qU8GFuC/mxkYMta\nrMdXZ8bjFOXN5nqFpnQZQ334NQqUwzb2EhnP1o5o+QQxL/rqzTh7+kndqdDcQyaqCBwjXGTH10KU\nj/ryKE5NW85XZ3KY2ucU3y5dhqleIqrET8JRYVOej1yiMTar2MoVUncqJBz1k7pLoeeXOmIK/ThS\n5OC+F2boqBmsx5WqMTSpjMLiZPJLppNjreDyq7/HG6vS3M/Hxul/C45taEenuj0EmHIvrBclsz4b\nHBr7LnfM3xC23T13hnyD++/8nB8Ca6kuLHgrKZD92X3B145MJZzQ0KsT7XhZl6464h+FffN/nDpK\nt5zRp556innz5jF37ly++uorfvnLXzJnzhzmz5/P/Pnz2bx5MwCffPIJc+fO5aabbuKDDz7o3gmc\n7dyx+sWJuYAo6bUWCcPx6RU/BWD3iPaPETulHHVEE5kx9R2O+8WHIrs1Jn8JjGrghQ0hjUvXADfT\nlz6JL0qj8MrXKfoqfPLS2tEz7a7cS1tIQxoxl4jvdez+fJ5YdTfX2pxs+3IYbu0ShF7bYMs9T9Nr\nyrng68K5ryBlihvf3dOL36JhMvnZ6JJ5+lzomox6bUnEWBeDgVefxButceCTQUjjxO/z8+M/DX6+\nfO9ELjt0I4oWmlCS5VA5nWlSyOlPnFFK2ySKtxWj8RsP/I2usGekaC4POM/Gk+3fj6ZaCf+BWHIM\nlWE6oQDquMhS2+5gklmHVWcEf+eTp397eLTMfsrwoyReslPCgzSSAqYTFnqmiqhgmTeWmGMti9Hl\nnX83/dXi97CWRn6Ha+wnAPB/kci1tgq2vzkquOC1VKNz5OF86kdFZlzzH754RubUpAb8sX6kMjO2\nGDeJdgdmmzjGzYUzqTsRL7Qiv9PjjZE6jOACLP2Pv2Er1Rh+2UkqKmLwxSgocX4uG3UMgHuP3cGS\nszcg1xqovcpF7A4TUQdM5JjK8J6JZstJYay7kkPHUEwQXxB67Y0RRCD+KDVYJtXYB3w9QtelsbeE\nOzl0b+vcOhQj+K0SslvIy9R/kI43Whhhyfs9JO/3UD9Ao/hKI5UjhXd/fqaRf8/5gveHvsGSstE0\nDfNQXBmPrFc4WxOPVmNCMyv498ZRcyAZd7wOxaTDXBN60IwN/mDJlStRJvN1mbiTInjhixJGjytZ\n4qfztnDP6G34olXqB6nBUt7WaMjW4+hhELIBRo34OEe7WoCOXDc+TeEP1QMw1Ui8O2kZjiyFaRYV\nb4wWZKxtHugNSm8EJFXaw+i5BUwy6/j2kWdQDXDzoO8jtvGkKLzXFMdceyMbXTLNOV4Gbr2LtQ47\nvTfczUmfmAfuiq5kUaxwUldPfIXE1EbcPX00fyN0I72XmGX9YjF48ul/9in8S6LfSkFGM8vqoY+h\nexqesgcsFwz4YrpfstzUxx90/vpfLzS9DTujqDofIi/J/uR+btt2X7v7X0oEgjABrHOasJW0lNqa\nRAmuzyphqtMw1WocrEvn5fNTkWqMwWffXKVRN8VNVHHkNSiZqsedoNGUIeNL9mE7q8cTo0MxSnhi\nJe5M2A6ANLIBX72ZhIMS0Sf11PfVYd1nIfMrhcPf9CfmJMT3rA8a7AVHMoUWsEmieqie5nSJpmyo\n7xtOkGOrCC9nbU7TYTX56G8ppyvMWP1k9y/kJYThfCgCu/bz8OqrgBMK4ItV2e3xhZEotWbgjSlU\nsRbrkStMqAaN87M1PAlgqQhf55yJMjWD9EHHrzVSd7QEyIv1GBpaAnapEpZaBfm8mcPn0hjb9yz9\n+5ax4NwUlFIrm0705+2mBHw2qBkUCgbEHu1eRUfAOQ6UE4MIyjozRYY30diMJIt7beWZsVwee4T/\nuOpD7hm3lWtf+nm3jtEW/37Pu8FSX0+qjyNeF8MsxWHbvP6W4ITJ+MlZlr0VrkX6+N0fApF68B0h\nfkZZWLvIkNxzYZ9LLbbg70d+0u3v8K+CkSsf+1H7d+mM7ty5k1OnTrF69Wpee+01/vjHPwLws5/9\njJUrV7Jy5UqmTZuG0+nkpZdeYvny5axcuZK33nqL+vqOnUEQxEP+niIapHVgDzZuFQv6S3PejPis\nIwew/ttUNoxbyqn1oQZ9Zbhg/du26JnIHb6PwVwpLoUzy8fIbHEzGpqkdo8haeDM8AcZdgPbuJN+\nWC/N/Bs3BjONnoSWB3BwiJ3wd+/8eObYPtPCs7qXrXyCkxfENQ3ohsonbJgr9ZgvGNG7JPwHY1m8\n8gEubBUltBdDmBQox22L/WczmDpTiMBru2I5/Eg+9XuSSZxRKsorvDrqN6fi94cWy2UNaWTNEt8j\n3hoyVHNiI+vrT94VYqCbt+6hLs+zz+oHg7qluvF1wSiWbmIdjnQVpVVCxziijoFGK6b94b1mul0X\nWWYK9N20EGPDP1a7dGJiIVqb9cFUAyVHxH3x/rGRwfe7KqH1bhDZp8ah4Q6l3w49W9jiXKkak/64\nhP2/DjkHhx7PZ/K2xYz4Qx6x30dmzRY/E2Jknnz3Hpov636k0G7womuWsZZJuJxGFFXHI4M2MWz3\nrRzc0h+dT6JmhFiB3Jc1Yb/QvrMweNFhFv3HozTObuZYVQpmu5ekXTLxuw38oodgntwxbA2lzTEk\nDq7i9LTluFIlfr5oNUu+mk+f0cVYj5rxz63FNr0SR3qLdmt66Pdu6A+N/RS8/V1YLsgk7hXzkKVC\nCmZUm7IkvIkKcUdC56bJGp4EFU8smOtVPPESsae9lI8X+5dMNXJ2joGYkxLpm/1kX1NI4e0SMUNr\n2Nw4gD4GO8/12Ivm0RGzyYLupA1VleixHSSHjKkWLOUSlhoV2dP+vFYxxkTUeS/FVxmp6y+eV0OT\nwqgZx7nu5m18cX4wyzdMQ++UiDkm47PpKB8XnvKOLvZTN0DCWqrDWiZRW2ejojkq8mBNBgySzOqV\nMwC45YvF/M8V7zFg23y23PF0sELCfix0L3UmqXJV3GGuODaHqw/Px9nHy6fvXBb87Lai6egvq8V2\nVuaWKBGgWVM7htT0Okzf2/nNsgXYDpvpb2gVJJMMpBgaGGUyUtdoJS41VMpqvEQs6z8W4+LO/rNP\n4V8WgSxpv5WLODW/eyymeifYz3bNLg8i61J0/TIATNOrObRNBKl6X3sGU6syvqhTeqb2v7jSZ8cI\nF+6k7gU+/vv+5UHHuFl1s6Eh1J9oqtNa9Bk14Qz0kDhxLpUTJ9KDdlJTTz2NfSF2mzmiv84TI+O3\nq/T4TsFUryG5ZPxWDU2SsJX7caTBGZ8oz/X7ZQyxbsx1CvHHfbiTVSyVGo299MQfU2nOkGhotJFw\nRATDUrbrSN/iR1LFeXoSVGSXhKSGehLbojbHgN8Kbp8es9R1v+jfKyt9qWCo1/HYiXC9Y2N16B7y\n2gWxnO2ChOSXsJ824O7pJfpcuNNprVYiHNGqYXqqh+qp7yMMBEkR3AsN2XoUo7i+/miVzNRamn0m\n1g/8jG2n+iKleLDHuPj11hvwpPrCxo063yIrE9W5u1ExWqZidOh7eGJkVINQtTDW6zjTnIim6HD4\njBj0CkuLp1Htj+b9whHdvHLhmHToRr6oFdUAvtFNWBJcfNw4nFnW0A0w4oYQWcO5WhE0cg4N2aB/\neUMkUtrTMm0PdRvDybOKPg8n/Dx1g5h7fvvRLd38Fv9aOHnnUpSeF8eJ0CWbrqIoeDwerFYriqIw\nceJEpkyZwtVXX8306dOD2+3YsYM1a9bwzDPC2fvtb3/LtGnTmDFjRodj91r+ZwyVBgyNEoqp80lA\nk1qcwN5e5Ho90ycX8N3Hwzrc3pnlw3q268yiK8fNyN7FjIsrYvk7kfUEAWa77CuLghlSzxAnZrOP\nj0e9gluTGWy00Pure9CbfRgOhSKrnbHpTp+9j02fC6M/akwVTXuS8MaqGOt/fOV09tSzFG3JYuKs\nQ3y3LlLcurs4dn8+f6gewNsftf8btmXTDftsfB3KznC6akeWn7euXEZeK+d2yJzjvJf9DUOezwuK\nxC9a8ClLV4Sos73RGn67irW064XfOdCN9Vj3erJMk6rD+lxbI8CWG2BCU/VE6EMCeGK1Dst2J/50\nP9992PFEGSi1/TFZToCEy0up+br7jLfOXBfROyy4E8FcLUpidS3P3vAFBez8MhdzN9qpGyeIcdrD\n5l/9JdiHO/iFPIwXkTy2XVtOSWEi6DUs8S5M33SvRLxpkouYLWZqR/nBqJKaWk9VXRRapZk5k/fy\n3fNjAHBe14hpfXS793H1TA8mi48+SdVUvpkFgC9KomGgQkKvOvaMfJ9v3XD3zruIX28JsvPGnBD3\nguW6CnzvplCbqxFfIFE1QSFph0zdYNDS3Zye/iZfOQ386n/uFdl9qUW4WxGMve2VC7dGQ1/wxQvm\nRl+cStJOHbWDIXFYJZelFPJ54WBMBj/xz9sovtLI57c8w8Jj86nZnUL0qGoUVSInvorCpTlUjtMY\nPeI0x6uTibe6OHcmGcnmJ2WdEWtFyHgrulGPpUQmdVdoog4wJDb2MhJ9zkvhzTp6v6/it8pBfVNv\ntJ6yiTpId2EqsGKtEEauvTQ8gOGN1lM7QEYd2YR+d7hDap9REcw0qgZ48PbP+eu3V9G/fyml6zK7\nvilaQdPB4Ufzw5zVWbfuYLz9DIXeJJ6MP8N95ycxM/Yot0TVcdLnYO6LIluijGvk6MRVrHOamGX1\nsKY5mrn29vvosz+5H3Qa9lPh69D/VTbdtvCm+jCWR66x/4psuj8EIyadZP/2jmW9NJ3QvjXVdh1k\ncIxwYTD6Me6KCjp//1k1iDUrpgHQNNDL5bnHONWQRMX2NNypfqJO/+Mu4IR5+0kwOPiyeBANZ2Ox\nF+uIKVJozJCRNGF3yV6hj2yqBUOzRvVoBVuxnqQDkY6dqpe4MFOHsacDr1tP3LdmvFESTUO8xOw3\n0jDQj71HMwXj3mHa4etpWJuG3qXRcJUDX62Z+INy0Gny2XQ0p8sYGzRsFX4Us4Ts1tBk8EbJqHpw\npOlwD3di22nFXKOi6qWIrKg3WsZnlaie7uHO4Tt559Op/5Br+/dC2rhSNg3+mH4rFxE3pJqG/eE2\nTOJBFb9FaGb7LBLW6vBoQe1APdZyLYI9t2S6DmO6gym9TrNr1Qiiz/lp6K3HGwPuZD8Z66FylMxv\n5r3Pr7+7nvjEJlw7E4k+p+KO02GuU6kcqxGXXYf/m0Qac/wYq2VS9oSO44mRMTW0n6hQjBKyV8MT\nI9PcU+Ke29bxwu4ZyGY/0nkLl009zNatQ1DifOhrDfhj/SSmNVB3LAFLi0ySJ17DlNMAO2LbPUbB\nknyuODaH8vUZ+K0ioOS3iAyszg+2aZW8OWgFN+c/EbFvn9lnOPN5OAN1wGZ1D3diPmDl5Qdf5MGX\nuydtOPi644yKOceKFSG/I1D235G9+X8dP4pNV5ZlrFZBN/nhhx8yZcoUZFlm1apVLFiwgMcee4za\n2lqqq6uJjw+VE8bHx1NV1blFa8sDWEkAACAASURBVLD4gnpQXUWjjj4kJnJroZGeQ8vZvCXkZLWn\nEdSRI5pxeXhavPCKNzj2Zf+gIzrzxj1cdr3oZ9CNqUdSYMQ1R8NKdU2HrWh7Y/ioaRhPFs1l7P6b\nsMc6uW/I9s6/RCsEHFGA5we+B/CjHNHWOnNFW7IA+M+0dREkSI/e/HGn4/z59uUA/On2FQD8OvE4\nx+7P55prd3TrPKRx9Tj6epmcXhh87/Aj4rezndWz19kbZ3poMprc0oPl7KlgqhP3wisnL6M1LIPq\nu+WIajqQarvH5uno66W2rOuMptYikt3RxNBZ/+jO0qwOP3OmCm83r2Q8lqk/jEirLX6IIwpgtgon\nwNggAibOFPEdm3tpHFjRPUcUQC7p2OkPEkIhJvzO4EkA0zWVEe87Pkkl9rAeS7EBeVc0V97XPRbj\n+NhmnD0kjJV6JJ1GeXks0XYXvXNL2PKGkAvyxEmkRDdROybSoKoZrmE5bsZdbaG4vtWipoHcpGNK\nj9MU+ZqZYgZdsfie0adB75DQeaF+gIZPEfdrfIHELU+ux3JBGJg6H8hFZrLX3s+D6+/GM7uB6ule\nmjOkIJt1W0e0PkdkJ+pzWr2pE/em365hrNFROUkhc4MX6zOxrCkYwZw+h6kvieb8FUaUFC/PV85g\n1cAVzPjJfqqK46itiOZ0fSKmBpW4wzr2HuhLc4OFcyUJYFYwFZrDHFGA7I/8EfN088ONFN4kE33O\nS+0AE+kbdKgGHZKqUT3EhDPZQM3tDjSDxvQ+4lmvHqtQ+xMX5+5RKJrfUhIYJWNo8qNTwF0TGeBo\n2pIS+uo+WPrebOyF+h/siEIo0LTpkafxjBKNemu+G8sLZ2fwZPwZZh69lp0fDuOWqDquPnE1/Q02\nMq4+C4DJICaCHY6+5D6bxx9PzAo6tYHe0kdKx1CnOEHWuhUQ/WegdX/axaI9R/T/B3TmiAIo8T50\nHZD9tYVtv4Xjl62keaibdS3kZ1+VDQhtIMGrGdspq4tGN7QBc8XFO6J+KzRn/nCm45tj93BT9n7i\negtuAr1TxeAQUlPGRhE4MrTEW+ylfhL3ysH+ViAo2QJQ30+PalHpk1SNfN6M5Bdlv9HxDhQzSFaF\n6RliHog2uXEng73Mj1Zsw5zkoqGvGKdijIGawTKeyU14YiVcCTKyW0MxSTSn6nEl6LBUKzT39aGq\nEj4bNPTVIalQ39sQZNtVTBJem4S1yo/mlfFp3ctk/z1xsfqhAZTuSiPnjUXofEQ4oiCceMUknDtr\ntYIjVaa+b+g3ij/mD1Yi+h6soXSyDtUgkbBfwlNmZWtxn2BAQNWDu4cPa4qDhiw9mgS/23stUqOB\nhuMJpEwrwXZXKZpOBAY0i4p/YyIxhX4sJXpaX25NljA1KDgT2/8NZG9IjzbhiJ81/3kFugY9isOA\nYlM505CI3gUGmw9/rJ9hOcW4v03k9O2h62mqlcIc0dZZTID3m2Mo3tkTAMPwOnY88ldkd8i+qyiL\nbdcRBTi8Jxt3QvjaHLBZuSDWrO46ogBHPh5A/p5pALhaKhquvFyQsv5YRzQgA/l/Cd32fr7++ms+\n/PBDfvvb33LdddfxxBNPsGLFCgYOHMiLL0b2d3VHvlQ+LsqcnJnhV96Z7YsoeW1dLlu1OQ1jayeg\nzbrQmVD3+a97hb3u/dEDwb+PLM7nREMK29aOIGlaKeoecVPv/2xQu2Mtf+cqTu/ohWN7EsruuHYz\nq93BeHPo4Tx2/8UR08geKYLptqfezqOrRP9Jz8nnAfjztvY1UQP4xdt3kXfT58y2NvDnmn4sKRvN\nwGV5fPZJ9xhkXWei+dPkNXxd1J8hcwRJ0Qt1vXD09/JvC1fT01jDp3OeC27/8okWWmt7IBqqobbK\nqFonV/HX3EjRYOvkKr7Ieyr4+qNFTyOpQuanMxx+JJ+rbtpJVq8qiq55Nego+0a0LzZubJQummGt\nqd7a4WczJhXwXF0W+ek7cW1J6nSctmRFaVeJMnJXysVJLOh0LQ62T+g32ovFA2Q/1+pB0oX6Otui\nfqj4rWzF3TPIfK0Smvt/nU9Tn9B5N+SobLzvKTyfJYftM/D2Y8G/TbWwdvFTfPXqxG4dr9llwtCM\n0MxtNpCU3MiAhEoybXVk3FxIU7bETXd/g6LqggRGrpTQd0k4IOHM9GNNduApiMUTJ9HQD7zRghwh\ny1xDdktvWfzQKhr6iWCasUGiZoyC7JJwbBO/6fiH96IgYT8vrnnMSXFP6Ztl0MCyNgZdlRF7sUbd\nQKieEekkJI+soOeV51AyWqVwVbBc0KOaVEx1EvoGmaphJirGmBiSVcrazyeQO7iYy2fu54XL3qbR\nb+LGA/fy7fk+oNOQ9BqKKuGOlVGMgtJfU3RIOo30HnW4M700pxupHGHCnRByOuwXxG9XfJWRvKUf\n0LQvAcmsUDvQhOzWMNX5Wfz8akpu9+HoqVF/owOPy8Dsy75nW3Fvxl5XwMCcC9w2eA+Lh21m/oid\npP/uNE3peqEXV6UheSKf4dayU34buFMunntfMcEtRTM47TMzKasIR6aC7ZxMzYY0cp/No3K9MFYu\ntDDpTj9yHccPZxB3eRn7x7xH9uf3YZfdOHuoPNrvG/7ywKvkPptHlM5F7rN5fLZjJFOef4KktHqi\nJ/9rUvW37k+7VJh2xYFLPua/JPxSh1VBzdnh92VzpsovKoazYdrzwfK//rGhaJ9sVnCqXnwuA64S\nO4YmugVfO62teifYi1s9O5O7Xrd2rB7BzauXMMhSQoo9tAb6bBLGRg1vjIS1SiHhqC9ITtSYDZ44\ncCUIu8VcJ+aEpgw9jjQNQ6ybwTFlRJ0VjqYvSqOxxoYzTcUW4+L5tD0AWPVeVINGxSgDqTtUOBIV\nNMJ1PlAHNxMf5SD+hA9LjUJjLz3uOBm/VSL2jDiXrI8gaZ0p2GrhTpTQKRqyW2TYZI+GvcyPJ0ZG\nX6fnaGPHevX/KLTu9bxUaF2Fp+nE7xfIfFqrVGJPh9vYllrxWaPTjKlGR81gmcY+gCbhqgst/EpL\nvNlZaUMxC4kty34Lkgbxh6F/TCV1a9KZs3ArqgwZn0nEFLWU5caopO4MPQ+BntC2mdqO4ErUkbZV\nI/qIAdmpQydpeBNU5vQvwJboxG4Qz1OAfPKhuyITLdZD4UbMrz+8jewJwn5Ksjs47A3JwxgnV2M/\n0XEyw1Kpw1wj7ITWttf0m/eQOTJSjqw7sB8T83Ags/vV1yM72/wHQTH/36rA6ZYzunXrVl5++WVe\nffVVoqKimDBhAgMHCja2GTNmcPLkSZKTk6muDpHLVFZWkpyc3NGQ4uAtzcnW4vBoYFRSc5AcaOoN\n+/APa0Y3RvSfPrngwwgGu/hJ5eEObf/u0bTfd/sXWFoybr+/axWDX8zjwsZM0maeZ9WAVWHb9rmq\nEN/QSIelNXOXN1rj5nmbu3Xs1mjdkzlg2/yLdkiPTgw/52UNoYzZhoGfAmAu7TqafWv0UYa++jDL\n11zB+k/H/qBzMFfr+MObt6LfF8WuAhHmfGXlbGwnjfzpzXn8/o3bmffy4xH7Gc6LSUDnk4KyLwC1\nxxNYVTURX1T4b757xAdsdYUCC/0NNhwtbMuBiUJpJ3F3W9F0Pjo4knMnUxn4ch7Z6+8haWYJ3joz\nnlgt7NgB+L+PixyoCziGuBmUVdrh5ymmRpZ0s4crr2R82OvS9SIb1JXj3RGaa0JOsrFeEsZ92wCr\nCr7x7VtGsYdaxMtbOZWBxVAxQ9vgs6kVX9KIP+QRdSZ03prdz6eOyEzEsbcHhr2+8a8/RzV2Xvoe\ngM+rx5GhYhxXS48+VczNPMCw6AvseX8o5W9kE1WksfKT6TjfFv0bnjiJgiX5OHtI1AzT8N1YByYF\nVdURc1r0JsWcEvICSHBHdMhR9q1NQueTqJ/lxFKhEXNET9wxwZTrs0tccMbywdNXAlDfkhCxVGj4\noxU0vbin4w+L0tO4Y5D4TbiTkHnvKUrOJlK4M5Po6FCU1xen4rdqmCv0+M2Q+ZUXnQ9S9nhw+Iz4\ne7n5febH+FSZ2VY3R5YPJv55G4fHv82tY3dhPm3C4TKh92hYalSsxTJ4dPRMraOqwY7pvJGqURqG\nZo2qkRJnrxHzRs0QicLbJVS9xgBjBV/d9TSFV77OyDsOsfe/lrJx5evsdvRmTK9zGBskDDujkGSN\njWvG4Dtrp4epgcuTjjPKWsSSuLNcGVXAjsJsGgYJA8VvlSA2vHzXmR7+TCaML0czhd5rzYQbQPOA\njmWIJs05yJNp67j3lYfZV94TW7GMN0Zj1q3h1R899XZ2e3xUb0gnrV8VdV/3IOf1RTw77V3eOTMG\na5mO/9p3DWvrRhF3eRnDTfV4ozVsxS2EH5uThAHVBYHR9Vd3r+rkUuGj2/96ycdcfdtzHK7t0fWG\n/z9Ak9qtxkqbfY7CG1/BnaAFP5cU+HLVRC7fuIQ+Gxcy9C95TIgJaW6rfokyxUuv9Go0a/cDLMce\n6NpGaCqNwjM20mZxJ4bfj5oE71WO5Z70bcH3zHUafouEO0k4da3RY6efxAI/lhoFTQJHiowrUaZu\noMYfr3uHoemlFDkScCcI28jQJCHpVVSbwsT0EIfFqdpEFKMwmmsHyEQVaaTuEtfAOcDDmIxiEixO\nXAkyjlQ9riSJ2sHQMNKDOz50TsZmlcY+EsZ60Du0YKCgapTE+Stk6voZMNcqyG44W38R0hkS3Hnt\nNz98v38QvEl+Fs4KnZ+lRiG6uMXZzNRTMr39/Zp66vGdjCbhqJ+kA35sJdDzG5XopNA9o5hEcFDy\nS8gecIx1kTzrAvEHRaXO1o9H4E6U+OTsEHxDQ3b3hbl+0rZeXLBckyU0nYRzejMl1/lozPUiu6G8\nPoqo9EY+2j8SR5WVg2sH4YnV+GzySwC8tPy6sHEKluTTZ7Z41gJa4qZ6iZJ1wm60GbxE6VqRBB7t\nWJpRbWPTtLa9Uo2NVH7VM/i6ubefbx9+Bl03khjtJRRih/5wZY72ILv/NbgKuosurdmmpiaeeuop\nXnnlFWJjRabw4Ycf5vx5kWnbtWsX/fr1Y9iwYRQUFNDY2IjD4WDfvn2MHj2688FHNUQ4ojmzTmGQ\nxYN06y3fsOV/R3Ji8grUPbE4M/w8veKnwdT4kcX5OPt4cfn0YeOoZyPFzAM4sjifv9z9OopZC3MG\nfrv8DrYteoY9ec9RujGDq14W7Fz/vVCUq55Z3zusH7Q9GBslVmya0uk27oyOjSQA6WhUBGFQd53T\n1tp6x+7P59nVodcDl+Xxb7e8z8RZh4ga03kd5uTXL45Nbva874IPl6oHOcoXZMyFULlu4H+A5noL\nQ57Pw+AQv6kvWsXSQpIwZe4+zFU6dn+ci6FJwjlARMLcCRpDns/jT2+GmvgHvJqHrYVtOTBRuFsE\nouOnlzH31i0AvJO9ib69KsDuQ/aC7YSJGoeVycOOo6a7SRogJoLWxoYypP2saUAXtD2ZFdthc1Ca\npS3ciRonm0WgZtbx2e1u0xonGiKDOjPn7Wbjw5EU9IFzCqCtjiKA/WTIo9M7wZGhYG5n/jNviiSS\nqR8Tyty1dioDc7o3VsPbKhPq0XzBTGp7iP3eyNIXro94/88/Cy8v1/ngPx9agWdiE4bZ4fdv/fDw\nctLYaCdSkocJaWcpO5nEy1un8/qRCZhrNPxzaxm7eB+GZonmTEFkdPDn+WSvvR9rmcaZW15m/5j3\nSNpsxLZOPO+KGWqGaTRMcWO7oBEni5Vt+pHrqB2p4M9xIp0W77lSQoae4eoqDp7rybL/eE4QDB0X\nEevaXA17oZ6kHTKKCXTzqmjsTZi2YMPVDuquchFndJHYs56o3BpcB+KD8i6aRcF+HiQ/uNIUCm+S\n8UVB5SgT2lPJmCw+1jcP4dUM0ToQe9qLqpeYdt997HpiDKZaGJtxjqbbGjDdVY6jvxedR4dF76NP\ncjWqQcOc3kz/+Sfwp3rReSWmP7udzIkXSN5kYPaU73ng+O2c9Ytr9HpmyJBVNYl3sjcx4MpTrH/0\nKa7uf4RR1x7mo5ue5Y8phxhkLuH9qrEsODeF5VWTUT0ys8YeBCD+uIfo78OjSNaS8GWqYWMq9pOh\noJrlgIh+e0eL5/TbR57BfrzjqMWY6CJW1k5EUsG/Kw5Xqoq3h491707gxjvEPLHgTkFQNdYk5BEG\nx5dhnlqNsVHiN8sW4N8mjFr9CStb3x/J+cIkZj7/ZBhZkStZo3FjapcERmu/6L5u8YmFSzmx8MeV\nYN34dsd9OxeLee8sYXuL/vePQXfJg/6ZiDqlR/ZGyor1jqph2uHr+dNP3w7OwwGG2qgjRmwt9+mL\nr4Xmu/0zX+KF6mkoqg6DvXPbIADf+CaG/qVrnoFfTPscWQ5fD5qHufFbNZoGh45lqZTY+10Oc+2N\n2C6voClDj7XST9QFPym7FWRPuPMqKSC7xXv3PfeRqPCoFsG1F35xCzEGN6drRS9hU089rlQVzS2j\ns/jJTw+1MjU5zMQNrEH2SBgcUDXFh+zWqO9t4KOp+WRZa6hxWbHUKNjK/WjDmtBS3egrjcFSexDn\nkrLHh98K3lgJZw+J8nEGLBUSck8nDblifUjar9LUfBGyeBq89YngzfixJbZ/Dxir9MHzCyCQhYwu\n9tPza/G3IyXco/JbCctcfv+7pXy7dBkHx74bfC9lj4JmUtEsCoZmDZ2scPZQGn6rROouhcTDfhST\nRuybUaS+Jxaw2jsdTO1/Cmdy90ui3bEySOBMlvFE66gZIqP/PoqYXWYSvjOg80no9SoulxF8Ogb2\nF5lIU73E9asexz+miek37wmO15zlZ9B3d3Dm8z409/Ox/u6n8Nm1MFut6PPe3JL/OP6W5SZ5WMdV\nLAGSroIl+RH23rurZoa9thfqmfj6E6jfRSYx2mqgBmxVZ64IqOZd+2WHKiHtob1y3Huu+Zr+b136\n7Htnx+wMvpjuBdm6dEa/+OIL6urqWLJkSVDKZcaMGSxZsoQ77riDLVu2sHjxYsxmM48//jj33HMP\nCxcu5KGHHiIqqh1WxNb4XvTsObNCxuSJdf1w70jkyOJ8fp0oyjyXlAmntui6ZRFDFP3kNb4fFV7G\n2Rk76eAX8/jPU9dw/N6lDHhVTOhHFudzZHE+cbJVSG20wr+/uQB1RDdrZ4B5U78LMve2B/P58PE7\nKykGeOCmL7rNZrt5yNpOP//Tezfz3bqhNO3pvCy0u2jr+Hy0YQKWXk2Mub4AnR9m9jvOkgEiYtfa\nAQWImioefNuJ8EyQuTp0S9paGtQCWdHFozeJbWoif9/22Mxs50SAonZTD9a8K0gL3m+O4cz5ZNZO\nDZ2PujOOvV8MQaow0fytcPw88aHfxfh9+0GIgC5oawKi7uh/Jg+t4P3eGwEoWdeLWbd0nhlpHXUL\nYOPqscx84cmIiF1rrVIAY5KT5hxvxG8FolcTIOakHFZK2xH2/vuLFF31ehgrbnCsloCzpVzClRl6\nnocvexRTpUzsDe2XsVz/wOawDGsAD+0WTNKOyQ78dhi54BC/eG8+3korjd+3MPj2VTHMrqJ37woa\nclqV/h5KwGZzU+yIQ+/QYayR0c7aqBqv8O8DvmTj56OwlmnYizWkZBFGT9olc/3j4dHvQMlYYx/Q\npbqRJA1vdOjeK6uLJmmHTNx6CzGnwWeXiGkhwmzoCx/mvsmZmW/yVOksTLXifjI4NBS7iqWixUBI\nl1BXJ2Erkagd0TJp31yN/qCd5PhGthX3proqClXV4cnwCgNYAn2VgbiTXpL3+TBVyZjL9Lh6KFjL\nNCRFw3cmiv2NGWHfp76vkaq7nZQt8rDq53/h1cyNpEU3cqEqjqzMKswVOk6eTeV0eRJqLzeuKivH\nqlJYPHoTarqbN7+Zxsc5a7AuKCXHWs6UlNPkLctj2FN5TPzZg/R/axEj/pjHvidHkv3x/Rw40Jsb\nj9zJlrfHYJF93HFgIW83JfByyTS2H+7H9l2D2HquN3OGHQw7z4Qj3e9nTL5KCNgXPJbPickrcKar\njPxsCQWP5eMZKSL1SpuK1PtjSjG01P164jUs5Trsx414YzVW7JiEI0PhyXgRUe+3Sizq330wAo9f\nxj0ivAFa74S4y8uwF0b2+gUkZtrL0saNqELJjpy0fqyj+UNxqY736q2XZpyAzMrfAy/Nfe2Sjucf\n2YSvVdx723sjUTWJufZGRo3tmhF38b1ridFZ+LakD+fPJZIU237Qsy287u71lb5eOAn9jmg8cRrW\nmaIn337QjGZUI+TErOUt96rbhDcqwOOhIXs0TA1KhNpBIDN5e1QNsYU+zs3WUfjTVyid6+XhlI1Y\njT7MtQq1uRrE+JDtflS/DlkKrU+SBNXFsWh6wdyb9YHQIW3sp7Lw0J18smIy8tJQyY5er2A+asFY\nLyEpWpiUi8+qw9nHiztRQzEKo9+ZptInuZr4HoI9T+9S0R8XQUNdTvvXOmVMx9IvY2Yc6/CzfzZu\numZbl9u0lkwBcKaF1szZf9gUsX31UD2ll8lIZgVdk57mTJjV9xiqWUU1Cg1QTSdhuyBIkZrSWxh4\nd8Zwqj4Jny3STiub0L6D6o2RqM7V40wW1Unmao3YMwqqEZqyCK6X+iM27EV6fp65LrivsVFCvyeK\nZGMTjpYqmqLrlwUrBYtmv8rUjY9iaJaCbXnemJB9p3eDYoD5mbs6vHaeDkjncuacDDqova4OZf2V\nAc1hNmQAQ6afwjnUxcBrT4Rd/yn9hOxWIEH2Y3o+f5FwcWzcbY/Z0Tn8UEc3wCLeFbp0RufNm8e2\nbduCMi4rV67khhtuYM2aNaxatYply5aRkCCs2lmzZvHBBx/w/vvvc+2113brBKInVzBh8GmcfUIL\ntmoQfYaBPtHneuyN2M+X6+hQ2qVtD2pbNG5NYfCLeUEyjqdr+zD4xbzgvyOL83G2lHz+98IV+Iu6\npz0G8N63E5G6kR0PZDv1rvY3Dnz+yged93h2BI/WNYX5xeCqObuDfz8wY2PYZ6ZaCXbHcLZJeCbb\nPxrB/+wPaZX2XxG6iVsTknSEj7aMA8Rk405SGW0txDM03BhMnFEaUerQ1vEFGH7tUQB+/8btWI+b\nuO3l8OyAzgeKXSXzqrOA6I3oLtJnhZNitac7+st7Vgf/DpDbBLDuve5nRtqiLa1+Wxj2RmE/YYwg\nx3JPbwo5jWqIoKIj6K+uDhoSI/4Q+dwZWlXGt2YP1btAUiXq/ze93XHXvjItLMM6aaHQe9QVigi2\nocCGvhn2rRiK1s9BzFEZS4vhZGzQUVUSS5a9lrmTQwuJ7YLE9IxTHD2UiWIWJD8xpyAtu5onv7qV\nqKLQIvHRxJeDf/cyifTw2H9bxO4/LWX3n8RkbKyTiFtvQakyB53uOsWJr9RG9SiVqqniOhqaW/qW\nEiRO3LOUTL2dK47N4fQyUZ+bu6iA0Yv3o4/2BrVNJQ38c2txTG7GXqTHnSBxW9YenFk+yqtjeHHk\nO+y7/AU+HvEa94zehq1UAw1spRIVo014YmXM1YLZWpfgoXqURkOWkbgh1SzN/CzsWscf96AdiOHo\nxFUMNloY/bdHaX6pJ9HbzJTXi2iErknP9D4n0ckKvfpU0lQczdJDU5D1CmdufhmrzsinA1ezqyGb\nXU+MIWWPh/G37ee7v77MyTuXsv9X4tnr/aECOig/l4BxZjUHXhiOfl0sfzs9g4LiNJLS68kcXMYd\nA/awfv1ovvmya3r+tuQRABsHCT227E/uB0QW1V6oJ/fZPEz7hKfQlnRp0qEbWfeueOYCDiOIknX7\nGT2FP30l+N6pO0ILsrY9jqw2Gr0AdV93UZ6qRM4l1ccSkYsiszQDt8/vdKirT1xNzpuXzmG7VGPd\n9+7fz4m8VDjo/uFkV53h98M/wZ0mbA3DNDF33JkpAouBYGNnqPOL+7Ox2YLtjIEh8WXdOm4gw9oR\nxt18kKYhHlQNFCNofR1Ungo5dbYUB5Zz7bfr/HLQ+nblYaQ2bykGidoBYoyz10s8NkM4Bwajn63O\n/hieEzahLtFDbHwzkqRhsITbJF6nAUuZHtkFnliJhiw9frNETB9R3mho1ii5KbRP9LvReHKdJO/3\nYXCoYVIuercGfp3QA7dpmGolVIOG3eChrjZkv6XuFuMdm7Sy3e+/OLvjctw93wz8u/R7Xgr8IbmA\nW+Z82+HnPmtojW3qqUcx6TgzL7T2/SLhFA9cmCCI1wDTI2X47BqWvg1INUZUq4In1Y9F9hGfUY/e\nqbVI6mjo/BBdpOLI1CibJFOwJJ9tQz/ilUdeoGqYnrq7mimdJ+z7HjsiDRa/RYczVcOdqgiJHo/U\nQpylEVPkx1wtYatQkLfEBKX3njl/FaoMfjNo44W9tXrVjGAlQlvYj5kYccPhYAvFiYVLeX1RSId+\n3JwCHoztuO+zLVFloHLuxKf9yX0uj9zn8jj3RXYwGWHaZw9j237oro/xjGzmxKf9iY5yceSLHKyl\nOhyDRTD82x2DWbBgPZVK+y2G/whCorZOZv+3FjFk0o/Xpu6u8/rjdUR+BDQJsqNr2VucSd64Tfii\nNTyDXeh88PLbsyN0PFs7n4YCG0cW5zP4xTwWFk8OIzxqW/obgG5MPb6W/h1XKx3MAPHQtkXPBMe0\ntpR8jjOVC+mFbqLwppe5Ivt4l9t1le1s/flj8zrPeAKkTCwN22f4q492uc/F4OqYg0FG3lcPCdbb\ntn2WFZtDjofpUKg/8eQC8UD99MzlDL/2aFAC4Od3vY9/pMgmt8705Y4swpElFntzdhN5y/LCxgOR\nDbZU6CIc0LavD3wSIqHy2bXguK1RdO0y7krfjiv1h/U6BHoQAjgy4e2IDOn/vD4v+N0ChEUv1Wcw\n+aZ97Y7pt4ZnWX+sXEJE5rggitj9IYPEbwdvO2zoTdka+3+dz5qhbzAov+N79reLQv3KustCvRIj\nbjiMOZIol4x5hcEMa+s+0B3lvdj/6/xgKb6xXjDtuhPBXxUywm56cCOqQUO2+Xk9cxsfbRlH/bDQ\ng/r1B2NJ/F6HlOLGVK3Dpm4EewAAIABJREFUGytRtz2Vx2d8gfLTGpDAGy0x1BgqCb3FXsXYf1tE\n9ViV24qmM/bfFuGNlnANFAtG4j4JT0uZ/Sm/gZxhxegSvBhLQtdx95+WcuiJfHp/+ACDX8yjYUVP\nqsYpuBMkxsUUkp++k1PTlmNshNqrXPz59uXsG72a8b3OMvrGAobMPcbakuH0yqriv8es5aw3CavO\nQKbezvvLQ6VYikn8c6bocKZr+KI1rHutRJ/SEXPWi/3ZaK787eOM+8WioINTfJURhjVy0ucgd9dt\nJF95AZ9NR9xJL6atUaRdfh6dR+K8I474aCfuFanIbh3mfVbsm4Xh3P/bBVz+yyXEGlyk/L6Qc3er\nvNJzB31WPwjAmF+LhadkionxI05iTXJgeTVWMH1Oc+DanITqk2nYl4j7zR5semwS8Uc00reI69qQ\nbaTouvZv9vYqIgJMtpLFT+6zeZindt1vU368fS6DNYufDuMjyH02L0KrtPTr8Gxzew5yBOTIbQL9\nPFK/8AzNsUkrO81WnvkufK65FJnNS5UdXVwy7pKM8/fCss+vvKTj/f7124k6Je5V3+ZEfHb4n09u\n6Pb+by+/gqF/ySMlvhGdH77am9vudtFXlLPsoRc6HcvXqgjtmfSvMdm8WAx+ZC8YD9jDiI1022PQ\nd0DAdHtUDfGHI+/Xtn2jTVkSl8/fyU63wiuXv8kZt1jTFL/Mu7//SXA72x4LdTV2YqOFHN5Glxhn\nu1sFvw5rmUbSQR/KuEYeWbKGV3/zHPtGr8btNZBy6zlUT+i4//2nZWSsEHNtc7qeCzP0lI83cO4n\nMuXjZLLWaigmiB1cg2+oA9mp48CFdGiIdLxz3liEYVBjhN72GNPFEdH8K8AgdRyZNjiFTVOXo6ep\nt0rUg6LNLqAnOvo3i/jq8GDiZCtl/maa3kinx3cKtjXRaDIYavTEpTbiUfXUN9ioHelHsarU5ejx\nRUmUT9LIm/Ml/jg/Pk1hxJ5bGG+W+ebep3h12ErSVocW+cqRerz2lvLURBmfRcLXw4uhToeztw/F\nolExTaHiNjeOVJmYs8JWC/wPcGpbFrnXHEfvFplYENnLx+/+EM8I4dC1lczb/79Dwsps521aFPx7\n67bBdIZA7ylAn28WBu3LW+/YyODrjofZagVL8omZUR5myz675lpM+0RQ5LGcr/nTwuUULMnHdkTY\nH9YyHQcbM9jgFAGz9hzD7jqkgX0vhQP7Ud8NP3qM7uKf6owOmnWSg58PZHjGBXoZqzE0SpiOWPDZ\nNRbcGnkRAs5pAINfzOPt+55l9ye5RPeuj9i+LWwmb1BKpkffyL7JQC9Ya1z+8s/ROyQenb+WbYue\n6fIYJ30OHksKL3nw9I6c+d2pXXM395su5FHuj+mYCCeA13NWdbmNqv/x7FqypPK390WjuOGkcA7U\nGH9Y/0xX2boP+3zNqqzNZM08C8Dvvr2B45eJSKXWapy1/dZjLdbjTlKZltF5hKbvuw+Gva5uFWFy\nZoSfkKFZwnY20uAduXceRZ5kSLw42YOCJfmdaoa+ff+zwb+vP3UVD8WeZ+sH4expgQnshutE2c1f\n7he9k7+5811+KAIZ27aEFUBEj6i+GYyNRJTMRp2VGLBtPpl6O75Bzg6/328OXcvIBYfEd2jplahU\nHOw8l9Xu9kf2hd5vxSGAZ5uI4Msu0avZNMnF2ORz5Mw8gz0jlL59bf8krKUSUdstzDo+m5zhxcQe\nDN081jIh3K449agmUfbT//Iz/HXdbOrOxuG+vh7nRAefO0PO6IRfPQRAwvc6Ti8bQMPVDn718Ntk\np1ULAgQJ4pPEOYw1Gbgy+Simw6JEtzX6rH4QnVfCVqJRe6WbMUPPYK7Rgs/x76oG40jXeHTYJq61\nORmwbT5HqlPZsmsw31/IoPh4ClaDl++a+lKr2DBJBmYdnx3MWKhGQZAlD2/AkaZhrpbw2TVM9Rqm\nBvH7SRpEF3uxl3pJfd1M0Q160rf48RTbSdJJFIx7h42DPsFeIi6+vUTB49eDBI0eM3X7kqi/1oE/\n0YcmC5bKZQ1pZLxqwFbmY3dlL5r9JvKGbWHGgns4M+9l+mxcSPQ5MZ6lCnae6o3xmxgMzQqxp71E\nbbJhLdcwnTeiWDQas3RU55po7qmjOc2II9WAs4eE7NRFEJY5MhTMU6speKz9MvjCK97ANcKJe0v7\nusGt0RGxQ3+DDVOdFHRCpUl1OIaE5u6Cx/KDpdu51x9DmlTXlsi9XVhPd9y/OjSt/bk9wPj4j8DI\nvfM6/dzXs3vz4bclvbveqJtIHNpOBOtfDDq/6N98sUV2ztAsMu1FPhFg6HnN2Q739cRrwdaJb3JF\n1YzsbN8cu6LHcT6oG9PpubRm4Y3RWTDuiqJxg2CObR1Mb10a2BH0bg1vVCuSOV2kfF7UWY3zrji2\nOvtzpdXH/PjvaFbdRG+2hOlIWqpUjFYfkqTRM6aB8z6RMY3XudHX6Ym6IB6oF0a8S5EniXv+tIRH\nSsfw7Ij3+SLnC4xlYk6v72NgmkWlKUOPO17oUCqpHnQeMNXq8CYqNKXr0Tuhts6GwehHUsFw0E7M\nyfZLQ31Ho5HamGFXbHsYrW/3CDBP3L20S2Ijb4/OMxnr5kfyPvxQeFu4MVZ+0gFTUQtKpupw9FS4\n78qNVDlsnPE1oxqgsZeeRU/8Lxkf6xj5+0XMe/hnGFxi/jU2qUgJHlQDKKoOvyqTsMGMsVKPZlYx\n1Wo05vh5b86LTLSe4pmpq5lWcBPDU4RTP+nTx/n5Y4toThO/QVNPPT0mllA1y0PJTT6arnTQlA24\nZCQV4lIaRRWXImH/xiaY3tuB7JY48rGoOArI5JnqJf7yxk85OfUtXqrPaHe/1vZLa14BY50umBVu\ni2HXH2Vtv/UULMkn+9P7whh6f5V4gveyvwkbt8jXTMM3qQy75ljQntO7pKAKwtNv3My/v3pXhC1V\n67Hynx/dTP+3FjH0su6V2naUdfyhjujJO5ei79d5O+Lk6QU/aMwfin+qM3rsS8GiefjLHP56+org\n+0kjK1jx7hUMys9j2OzwOv2AQ3rF3N0su/dFbvz8EQD2j3kvuE177IVRl1XS5Ao1D3VEthDIvrZ1\nfP+28nrGvR3JAguE0ff3N9j4Q9mssM81V+RkuGBC55qkx+7P54mMdaiG7jmQfQydlxIfuz8fnb/7\npacdYaZFwZ0sJj/ZA36rhu2UMSJ73PsnhWGvhzwvrusD8z9nyPN5DHk+j+L1WQAUXfMqh7zC6GtL\nmS+poJo0cqyhXo7WWc9KxcGGvKd47Cefh+037aUQCZPlgkziDGH0eYY6I/pfAtg3ejXfVOZgOdx+\nGZTSBZNrYHIJlG20RV+Dxh3zN6DKwtFuLSsUwJGHxXf79F2Rdb7S2lIu/vqtnR+8Bf5Wp16yrhd+\ni2Az7AjOtBYH58o6UMWkHAZNlKMB2LdZw3otAAbfIcqfXZVWfpa6AU0OaXslyzaUsvblbaJPtT/1\nHH40P1gG7ExT+fnI9TT5zZxb3Qd1RxzmORU09VYxFZlpGO9GmlWDpkmUfZAVNo5ihvrxXmynjVjK\nJTLvPcWRkh4ggalKJsrsIXadlUfX3kX/5eETuqTATU9+xfaJS7nZ3kDTynS8MRLeKAnHfmFMOVUv\nn5YNDcsw1F0lvnfCAYn4AgnFDHfl7qDKZefOX4RKZr/86xROLVhKrvk8z9VlMTy9BIOsYstsJD7a\nwYDc8/SPrmS0vYgcUxm/qhjKiVNpyC0l/Y0znGh+Hb6j0cQdA58Noop0uOMlGnvpqBkc3iSp86nE\nH9Sh86hIKR7iZCt3nJ3G1AfuD25jqvfjfjcVKdOBXqfijVdQz9jRVxpwpaj4ojVePjU59F2/T+LO\nHt/xs/hC1r8lekKylod+04aBCrbDpqDsQ/VQE64kCaNDJemAQsoujdRdHhILPMSd9KOYoXq46DfW\nMl14e3lo7h3SurOdl3FvSYzIVAaQ+2wep6ctD/3+4xo7dFz9aZHO1dW3RWrYatvjsB1uX0u3YO1A\nXMdjMbWTrQVozvYHe1U704xrW84ZKJutdXUsC9UW2xd0HSTtDI6CzhlGDRe6JwPjOdK+0PzFoPpQ\n50z8/yrYMv5l7t6xMOy9654X5IdPZ6/pcD9TrRTs7zdJBpypWkS/fwBDLBfY8E6IUX3MTYc6PafO\nAqLW0q5NPk0n9DkDkFQwNSp4o0N2jK3Cz959ffmibAgj/pDHKJOR1U1ZNPTXKJtgoHysgeLbBeOu\nr9yKoko4fUbuihZBhtdqLgsGx51JemZaFN47PoroYj+f7hvOUbeorvJbxTbzF62j/1uLsNSoNPbS\n4cn0QKOBxMN+/DYNfbQXZw8JZ7qK6tbjcRvxxYueQ0NTaM3qaO0PQC4ykxDTPWcUhDPSGQxVnasX\nzFp5cWSRrfHajDdYWDy53c+qh4aC7ulbVGzFMmsvDOXr4cvpY7Bz+NF8Gvuo3BMj7Ct7mQgkrH/+\nBRoz9dT31RMb40C1qOhlhb7WChxpEt4UP5JXhyNNIvaQnrEmAy+Wz2SAsYLyqhg2HxpAzuuL6PmV\nuPb7fiOco0cf/hBNk5jQpwhdiRnTbjsxp8FcrkfnlXB5jCy8cQPWc3pqR/uJLm5/8pS98PBCUTFo\nLRf39LDrj9Jn9hm+dcNDseeDgZfc5/K65PKQfTBl773tfrYqa3Pw76I5r7a7TQDZn9zP36qnAbBz\nb04wMaPzw6kLyegnCS1fV5KGfXo4YVKd20LCcPF8/DEzUqbmh/RqXgyBUVs1jrbjbN3UfuXGpcI/\n1RkNlNZKGtTvTQoSBdV/KyJ6kgoHPw9JPAR6OgG+2DCGJ07cROGNof6epfeKG6499sKmbckcGL8i\n7L0ji/PpObM4SGAUeC9wLAhNhkAwqxqAK13BPKGaxq0pmCdU4x8mIqI7Pxkatp25LHJCev9/p7Zz\nRUIYuCyPB1bkofOJY3bGqKsYtS7LfgPEEPHjO27Q7w4GLsvDXBma4BLHVrQrh/JJv3XcO/+L0HYz\nShnyfB6vrJzN4UfyOfxIPp8ueipIZHT95oc6PKapUuaVle2zzs546UmuyP85S1fMAeDP974RdHwd\nWX68wxzox9VRuk/0dZkOWSP6X0BQyf+xOoeSDaJMIlAWq4wNZeNUA/zXfSsid24HE3+6P4J5bcLz\nP2PFybH85Z7XyX0uD2taeImeo2d4Brcjpza4/SBhVLdmzA2U4zYP9ARft+2ZA6EV6p3ZgDdR7Kv7\nKg53otD0bM1Oq5qg1BfHiD/kcdODG7GWhJ6B5iyNFJO4PrGH9dy09z48CdC7h0i79lu5CENjaIpJ\nnHs+jPyobe9pY381+F79UD+KTeXP667lwKpcVANYp1QhSxpKtIK5EoZn/T/uzjs+qjJv+99zzvSZ\nzKR3CCQkBEIo0ouIgCKIvQsqdsFetj77ru8+6/vZdXUtqws2EHVdKzawIKKISu+hhwRI73X6zDnn\n/eNkZjKZhGJZfZ7rn2TmnDn1Pue+r/v3+11XJepnSTSsiK0Fc/YHW7wbVEi7/Dj7PytAbjWSP6IS\nnRecn6Vz3a8/wV7QSlyxVgcYIvJ+u8A7j53LnD88xLjfac+NpVbF0KFiGK5lYFhEAw2dNowtKgGr\nQOOZAUqnLUdWI8+Cc7oLr6InIEucZz3AuN8tDG+vIujki84icg0NlKwqpOFoEnpJRn4zlQNHM1lf\nnccT/7ySVKmTXW3ZpGzQEXdcJfOmcgzGIHH7DRhbBbzJAokHZRBAP7WZ4XMO4sqObeCqAMfmw5Gz\nX6bomUXsfn8o9/z9TcqvjtyfuEo/kqRS3RRP7gqZgEPG0CGg6lV+dcGHJDwdmfDKXudn8cIrmHHd\nzZx3/W2M/a9IpzX+8a3kF1bjGiDT2V+k4S4PnvFO0rf4qRsv0jZIon6cSFuegZozNaJjqw4iJwRI\nzmjHEefGuteEsUFHIE4NkzllQjtf3fMY/ngVV3FstkmIqHqTVTxtvZNIYXIr5TOXxXz/aFrEIzNv\nbhny+A4SZmo1fCX3L2bMZSUxRDiYqB1Y0KIN4INWcBV78aSqGBt1eAv6yIXsht5qNge/vJD2XSeP\n8AI4FS/JUt/q8b3hPy2S9ENwuuq6pdct+Y8q8s586lfoDbED5s/cRgK9+b/0gQPXxnq1AzhzZH73\n3ryo77orV/fE2Cv2cIJszd73MdzLngcXs8/v4XO3nqBJpHmYgDMz0s9XzpTozBYJdqs9tFZK1H+d\nRdxFtVxcOotHP7wERQ/KYCezLtpC2YyXAcj5VKatzcrFWdozNufQHFYeLsZSK9IyWI+7y+M5WKNN\nwAx4DxavPpfJ995O/8+1k1n50Ayyvg5SO1nQSqxUASHeT+NIHYa8DoIdBgJ2FVVSQRZwfG3CUqEj\ncb+MtT5yf1zp0RlRvanjtmw/tYmQU6kf7Rl5/SnUeBe9cRsbvhgW/qzoI3108p7oA0goDTI2pYLf\n1s5gzqE5FHx9A+VXPEf+awtJfOA4TcU6qs8SGf7mPdgrgsRVyAyMb8HYIKGXFK6178PUrCJ1SkhO\nLYMl1Ke/mrOeIoOZshkvs2P206Rtk7nrsbdYv+QFct+7neahOl6vHo/rzQwqHi0gY4OMbAD7DVWo\nkjYJ7LB6+PCRGQgKOEqix80Bi0jxRVpwyp2pcMidHhXp3/3BUMo+zmObO5el7elYasRwn959HLXe\nG/kcKj1y5gcwG2Kj2KHxW0+RytDnWQfmkve2lpU38PxybOU6Vh3USFvP+lXrPhPuPVrWmC7HifOr\niG7KuVdtou5oEs27tLY3998PxRzL6eL7ktd91/f+Lvqp8bOS0ZCXaNCi4h/g4+wBsaFpT7qMekas\nuoq+QwgLEYFGHhe+FDtwD5FLv0PlhmMzY5bfk/NF+P/uZDcEnbvvqTRztYR3ozZoWJC7mczEdnLX\n3NTruoGC3lMAfgxI/pNHPENCSS2bvp/pszS8nTkXbIr5vq4kjcvP3hRToznsH4t4ZvV5PH+b1rCb\nvszEm6QStKgUvLKQhxuLWN42no0jtNnj8nOXxmx7xBYtGij1onj/hxt7T1v1di9AFFUC7UaCWxIw\ntAn44lXcmbE99XsLH8Mc5+XN8kjKbGgAHAxEZoP1Lniu8qw+ldU83YQfNrw7qlciKW52hM3PQ7UO\nIQiKEOMpeiJY92sDeevx6Mh7+qxKbAeMMTNv3RG/R4fvWBzm5Ei7NDVB+wQv3XMPRR8sXa6JaC37\nXEsDUroCJbZjAn/PiNS8Plj0Bd7MQNjT1lIjYO46hKANpiRH6i56g/2w9j5wDlBZMvMVENBEFhTw\npqo0Nthp2pxO/C6tkzr6Zn6vSrx+h2YR1NlkxZeoUvFVDrYqlV+fvYpGl2a+HndeHU98PYvg10lI\n7ybhvqiD9sKu1KSOyH1sHB9pL43T/Ozpkr1f2p6O+QPt/uldKndP0NK1JvxBm1RpGa7i+MTK509O\nwf9GGpc+pUVLZCM0TpCZvfV21tYWcP/H12Od0ogtq4PWagftg8Bo89HWYkM/q4lr1t5B0/JIneDx\ntgTGZlbgylbwpqgo49tRRQFji8qNeZvYurkANcuLJznSkbvT9Dz52yWoHolzDlzAvrsXU3L/Yi6z\ndbBv9j9xpWvr1k4wIpfZwnXZolckMNyJmOTjiZJo+fqeaB2mcmyBwgPPv06tz0FtZxzDio8z8sL9\nuCrsBDx6PMk6golBxlxWQsKQZjqnu1D0Kp1ZOqrmBVk04SuaKuNpPa512HpnJKrvTVYRNzkYu+Ze\n/Aky1pLeySZo4mMh8/Jt9z0dtezL0SdXVN1d2o8Em5t4k4fiiw9Q9Owitq3QBhjds26s5dp107m1\niVOdC6wlJswNAnon3D/65CI2J4I/9eSlHKNfuf+0tzv45YUnjRD9UnC66rr5ry0k/7WFPykpNU2P\nLvE5MPk1Jl61M+q7Xy+5md+UX3bK23yurfcUZ32aB1Nj9M3qy9Zlz4OLT0hU+0L5OdrkzDfuQdzz\nby06FHccLI2Rd5+1UsSdpVA3LjJktNRpz8LIpCr2VmUSiJdRbUGCPh2ry6N9ohW3LqwUWt3uQLfP\nijtDwZOm4u/qTzOGRFKz0zZrKaI9YWgTNT9Wv4hQbyR5Si3BoASiir5dQPQL6NoknDNcmJrVqG00\nDdOHvU9DmHVg7mlfr+74IYJGxWd9P9XTk6EzS4oSLOqJlXtG8PmOYo7UJxNsMjF2x5Vkjaql5Ykc\nkkuCZH2tkNqlGSr5Vd7N+wJfmsy8nK3oEQjYBEaOO4KxoAPFrF3fwwEXZ/x35FokSBaqLpF59ldX\nMXXhbWSvUXHnBKn6uh+uLCEcsQ2OdFJekoXepY253GtTacsXMbapiP7Iu9ZvEwmaBMrbtcwkS43I\n529N4Mbp66LO7dJ5X7Ojoz9PvHopoE3G95wTuvO5yPMzca6WZWAr1ZNq7V1heZfPhytLiQoOlNy3\nmAmX7Wb1kFXhbIO9R7Vovnm3xoA9I2PH/Iau/kzYH+00srUpB9EbfaBC7qlH6HvD6abqhghp0at3\n/aD9fl/8rGQUtOiozi1gPmjiwoSdMcvNdRLCjlPwnSA2tXbfXYs554AWMYsvao6Ksq5w2il6dhG/\nXnZTmIQGzSr77lrMuAtL8GSd+vSiN1nhmZVzqN6WiflQ74OkZ8f1Tp5evv7EwgTQt9iRbOqdFE2d\ns5MDty3m0XnL8SXLvLXgh5ucu9rMfLIyliiZmgU+fmsSRRujZ289wzwocTIb3PlR6wZyvRjaBVa8\ncRavbpsYjmL2BnlTrE+Tq0vl+JGXI2mr3i6FXUUPDy+bH/7eWq7HekwX9iQztglYaqKJm9+usto5\nlH0TX0fp2l9oH74ElXE50Uq51Z/lYGwT6Df7WMyxmXsMGrxJarh+6FRQduVzLM6KJfx94bHbYgk8\nQN3qfgTHdkbNvPUG2apg/DL62bpuxGbsKU683SaHdV3vxLij2utC7Iq0+mdoKnY5V2kk060Y0Tdp\nnczhgCsqdVvnhIdT9vepgN0dqqjy+/0XM2ro0bAwzi0XfU78VmO41lUxwOB5B4krj32FGdph5Ihy\nUjLaNWJSoT0nLz59IUFZYvCIClQ0OxdTk7bslsHfIaR6MVxTj2zSFHFbZnlAp9KRK+C8oJOjsyLX\n+/m/akIlpmvr6Jzr5IFELS091NYS90S3BWOLSuOZAfwOAcnhR95np77BgWJQuGmgliKatE3CXg72\nj20ILXq2nvE26dktXdeka7/DX2NrTX8yvlVxHAJPVRz1F/nwJgu0y2bi81vIS2/E1BqkcYSR5iIj\nxgV1xItenp75L3LjmnikqZBnWnNwKl6+8MRjrdNulP24Qr81fix1KpW3BlBsMuJhK0ZjAPsnkaho\n0CIx8m87+ezVF1j72lLWvraU62au58kJb3HPpmvYXJWDLIuUlGUTVEWERB8ERFoLBXJyGvmmPI8z\nUivRldgQ/QL240GsVi+f1RUh2QOInth7GlK31jXosfYhUNcTxU8uYqPXiKtIa7DFFx8gWbJyONB7\nJx8S4BEMCh1r0zm6KpeSD4ZEtePuWTcni0C9sPzkHsIngqHhB6qWnQC9ZYf8b0KIlP4UCPmgd0c/\nU7TBvTtdZfWQVex5cDGuURH1uMzzj+PsH0uyXlzWe1sxboktvxlwYaQExpkrs/WBp9nzoDb2mbDr\n8lM7iS4Mv2x/+P9nXrsIQ7ugvWtUEAORRiLIoOjVKPV/S2MQS73KxweGMSm3DGOiB8Ejofok4iw9\n620i/yobEvAlKUgZHoIOheQx9RwOuKg9mKrVpydIMQQCIGATCVhV0jNbwaBgbBJp85jwuwygCHiy\ngsjxQYKpAQKNZuzHI5M5bbl6XDkyhs7ohr96yKqeuzltJI4+tfpmVQdDN0TGJyVf559g7e8Pfzxh\nex6fQ8Jnjx7z9PtQpN+nYN5kw9gk4dyWTM32DDqzdNRc5adquoiwQDunuvESAVUm7TuBmdYDPFR9\nLs7hPvJsTXi9epbP0TIT7zxyNbZamTF/XMjUhbdpBPR9idbBOqrOFag5U8SxT6cJDgW1AFTzUB1+\nlwHR1+WdLYFntBtjG1jr5HDKcNAk0p4v4uwn0NAQPYG/bP1ZUWOx914/i90fDEUdHQlghfrkkHZG\nd5G6Le8Nx9WlKdLdF77ooogI6XVL7o+KcoZI6aYVIyIBh4lt/HlitNCoeVdsqcWN12uq0zp3RB/E\nOSBI1cG0cLpxCGr56WW89MRP6TX6U+DnTdNNVsLR0V13PhOuE+iOzBmVpJ59coWzkApudxQ9u4jy\nGi1y+f8K349a9sfl82NEMiS/wNgdV7Ju72DM1adu2Ft29XPoO4TwLP6MS7dinRw9e5qja+3tp9z4\n6t2nvJ+e6EuI4/nsjQx5YRG/eX0BxiaJq5b/MJNzx7gGTBUnLpiclx+x38k6pwLzXjNHz3+RNF20\nzYl5rxlvcpcheKm2ze2+SOize4Q1FIGMEkfySDEE1rTHwnXz1pxQ9dhvV2MMhz1pCrJZ5Z/7pjL3\ncEQBUAh21fK0Cuz+YGjUb5YvfIr5162h8tMBMfuIqSnt52Gg3hZTr1D81CLuXKDVBJTct5j8uaWU\n3LeYgvXXnzAttyd+9cLNfS4Tdp/E4xctOtoTVzq2MX/QFiiKLWZ/6aGnwm+MtMuP427RXrYf5K8G\nYNk/z+fwgiWMemQRlzz3K4rm78c5RZsoyLpS8+Ay9NAZC9qgrTg6AhRXLtLRaSE/rhFjk0jHJA8v\nrIooYSoGbbC37/1C6HZLO/OU8P72bhhE05EkLrj2W5rGKATiBM64aQ/LRrxCu8+EJKjhdtVeAE9/\ncy4zBh2iw2ukZWwAU7PKmsnPcnTui9jLVXQb7DTILsb9biFTSy5B0XVFOTdk8OQozee46Jnoe9c8\nQiXh+koyb9IGjynf6MMdY+6Zx7lp1AakeD+rGobzSNGHtM/w4J7bQdtsF1Kmm01eLW0XwDnHSeEd\n+/hr5RzMK+14E0QivhH3AAAgAElEQVRaz/GQthmSPjORssvHQWc67R1W6lb2p7nIQMpuH2JARXo0\nidt/dx8PfHADu58ewTvLpvPMR3MYs/QBHnrnhvDx1s8IUD/GSFsBjOtfweBBNZw5aw/Bg3ZQoXGE\nkfLLJJqG6djUOIDBa29l3O+1wcf6Byby6zduABXkQ3G4WyzozQF2VWch6RRMVXpsx6FpbSYJa8xs\nfGsUAbuKMtRJ5WwBf0DHsT2ZpK40krVeRjZCcFx0GxxzWQn544+fchqic6iPha/dgXWfFsrfvGUw\nxU8u4rJntTqtXfc9S8n9i3HMqGPU1qv5+u3RAFFR11D98y8ZjzQV/qDf64ecxNfpNPD0VbEp0P/b\n0Lkmnc587Z3lG6dNNoY80UN474qIWN2lQyMp4GV1KVHKtgCDl57eoPH2rHXh/23lEmOfiCjnz87a\n38sv+sa/BqyjSXYxec+lSH7ozA9irQ/GqK93FAZJy28iUBC9wNYlQPTd5qFIO+Owd4kFXdxvT9he\nThXBVK1n/rFpzD08G+egAIpJ4Y0JLzJmxBHOz9zHrLX30v8zGUHWbF7qJmqiRTVnRvoovVNBjlNo\nd5nJ7d9A6vRqOlus4BeROiUwKOia9CAL4eMACFpEOiZ6sFZKUQT1x8KppvUKQZAPxvbLCWfEimn+\nEKTsCoY9RXUeBdkADfM81I2PXJPqaSJX3bQW0xktzDh/O0MnldMxyQO1mg/td8Pfw50skb5Z5nDA\nT/ulWjtv9NlAUOkMmrhrxDqmmrSJn+Nbs2nL05FwTRWd2TqqLpGpu9qHe7gH0avVR3vSVVxZCoER\nToJZPnzJCpYjBhIOaGm33uFugk591EREW56O+rk+vFkBUvYE0ZkCqBPaw+tYKyQOlGUC8P9uXR7+\nnbLPTsl9ixEmtTLwfK3/jSvUJnZ7RgytlVJ4PBZCSBzpZOOxkvsWa6nDG+P569ITC8EBvFY2Lvy/\nKMNF137D0YtfQDUqDL7gcPQx/Ezpsj8FDt+whJev+ucJ1/l503SbIrtf67FwuT22ML9mbT8qGxLJ\nOedY1PfdfUmBPiMupgNayPz+ZbfGLOuZqrR/4WK2nvE2lnKNVUy4sHehgKC1h4hL175Dg9t1VYPY\nMuqdqHUuXf7DcsBHbb36pOtIw2P9LX8MtG858cvWlRegzJ0S/lzZqglZ5H15I39bfmXM+gvOXRf1\nebTREPZXGrgqcp9C3k6779Cix4/fshSdq3cC/mltUa+zqaCJ2Rg6BPROTVQmhL+d/2+enPsq/gYL\nxz7TZsVUERzZfV/HHF2gT1PhnunEcquRglcXMnp77DX45/KLwv+/N2gNxU8tCkt/nyq8XabKl89b\nx0XXfgPAHQtW9nosEPHj6g5/9EQjRQYzi9fPQLclutP0JsP85feFRVnq383BnuLkA5eNmyumhNcb\n9cgi2sZqkaiSt4ZS2iUqk2tr6tWfVOeExOxohupNhrtGfsWaysHYJjWiO2oimBrAOcVNR4FMwNZl\ndN0tC0bRQ1yZiFjW5U+a34GlXyfvvz+FxF0i+k6VdWX5zN92M3EGHy1fZtA8PsiqRx4P14J/sWEE\n7tJ4Ur7R0zYEBnYTBZONMPcP2jNcszcNMahFT+OOqTyw6wo+dpvwd5txdWUKLLlwKY/lvcue3QNo\nL9CiqN6xToZl1XLgSBbLvprGh5OW4JN13PvtNaQlduA/Yifo1XNu3iFufzoyUfX1hOd4NWc9u3bm\n0TpUm0XOWSphqQ9gq9Fu9o5Ph5Ke1E7wzHYUPRy9WEfCYT+BOAlLQ4DM72Qax0DWRcd46OIPCdgV\nzjt3Gy8te5qkPx1j1dnPcs+CD5DynZilAH/PfZcX+32HP0HGe0kbvkQVyRHA3KhSdyCVga8IxFX6\n0Tu1gY+lVhMxyv7ST8YXErr9VoIVVmzrLShGFX+8gOQHvVslEKdFWgJeHZdN3MKmiS9gbhBpzxWp\nnSjhyQribY3OMtm2opjKTwZgPfvUIhFSiz4c1f/87r9hrheZcXXEJ7lo6Z3kfXkj52QcJPhtIiX3\nL8ZZoA2gnYO0v92VE/uC367izjqxSmng9B7t08JrK0+sonkyBA7Y8Sd3+WX+QGJ6z9u9l6n8b0PI\n0qW3yCXARWsiz66xm4JVsCN2UjfQz8/QS09uBxfCb1+IvcZzDs2hLODkX5+eWIuiO0JlJU80TaSz\nS3k3c0ATqgjGHimygiIQlCUs1uiIpzNLh+64CUuNiLlJxZcAmf2byTE2MXG7FgVsHKEnfXOARIOL\nAdYWrMluLKkuGuU4xsYfo9SdiqiXqZmiQ9ELGNtVVKNCxwQPltpIf183To+qV1D32GnzmJAVEUFU\nQVC1SL8sIGf4MNboSTgcmZn22UVSkjp/sanprTtSTr7SaaBugkTNVJGaKwPINzYjXNKMr8NIys7I\nPZU8AnV+O2lxnXxyoIg8WyNxm83YSwUEv8gzrTmaaJ9NZP7jD/LrYZ8z99s7seu9oArIqsCrZeMZ\n+PGtZGyQsdQI6F0qx7dk0zbKjyApqJUWpAoTig7sx2SsxS0UFFdiMMiYDpmQbTKqBE1n+yDJR6LD\nhb5JF54w8CRK2KoVbDs0H17ULv9OfYD4aXVsvucpSu5bzNE5WunFf724ANDqL/UujUiqGxKYlqSR\nvMC3STgHBWKcFyB6PHYi5J1fFhVcuKdmLPdlfo5zYJCAFZx5gShLlxBCtavOA9HZflubc5h/bBq2\nch27Ng+KWlbwcexx/k/GjW/1rQsDv4A0XbXrxp1n8fFwzeyY5e5+QSxWL8fXDADAO8SDp8CHoebE\nKmXdfUe746uF3aS0u84+lN57e9VE3nZGRuc9hYhC6E6IAnEqg88r5e3b/o5QrHXkjw97l9c7k6J+\ncyIBolOBe08CtjEn9tDbO+F1QEvrLZ4ZrfLmH+ThN1e/+4OOoS+kZLbxQHrEikfcZufaa9dyfuFe\nhl8QrYZsm9rAe8dGhD+7+gcZ9o9FTPjqbgrPP4y1XM/Yi0vCvqMAo565G79D5aGXbu5VGXb2lRtp\n+jIzHHXqie4Kvd3//7B5JA+tuAFLVeTtIY5tY2LmsfDnnj6C5UEDY3dciTqhPcr2oTdYj0vkjK3C\n/01EjEQe18Hme55CNmgiQ0+0fH87BFOLgDyug1fWn8mH/9bU9J5bfkGf6/t9sZFQeVR09GmTV6Zo\naCWe1OjzNjWBqVGzXAnhityd/Oq961i3ISKesPMPizk6aymGdk3QZfKeS1EM8M2yvq0JlE+jxVqC\nFpVX/jmHoCJyZnoZW258AovDQ156I4IsYGyJjbCKQU0ReO9N2myixRjA1WjBmxmkPV8jjgmrzcSt\nsnFkRz+8wz0Y7D7m/uEhnrj1RS2FyCWQuFfb3rtXP8ntVRPDgkOhiY4tf1lC4h4BRR8h/J5WM/e9\ndyMJ+7rOR69ZNyzaPJ9bHr6f5O0i/iSZTFs7X05azF9y3mfi0CNcOGUbpYEUWtxmJg8uo2lLGvq8\nTsblH+W7moEY21Q8aQK+S9p4p1ObqVUtMqIMAZtA0zAjtZOMNIzWZghko4pOVMhJbCXuuIK1UqKj\nvwF3ioQ3SU/VDAElLkiRo5bHd52DqUFksKWOgXobv8n6lLmr7+G92lHIssCuxixeb9XSVp8991Wc\nFXbEwU7MO814ZndgLxVR9CLtuQZaBhtpvNtNXKWMbNAulLkpQHypQua3Cr54AWuldl08qSqirKJz\ngr5TxGT18+62Mczacx2eIg/ugQEcw5uxleugD/Vv11eplNy/GNv0vmuiAzYwd0t7OveZX5N1TgVr\n34zMTOs7BSy7zZxlixAB22GtX3nr3MXsuO+ZMDkFGHJR78qZhg4BSx9m6+F9nXq2fhiZ405u6fVj\nwdCVXh84cGolMX3hf3v676ki7qCe3DU38ZHLwp2JG+ksCDDl6h0UD4m17FF9Ilmmk1vThdBbZsDI\n+CpuK702plSkL3TmB3nzqqfxqQFW/Ssymej0GvHbJRSdEEXeLJUSHS4TaXFOWgojY6+4qiDWKq0M\nwdSiEBjsZkpaOem6NjqdZqqm6XD3D9I8VM/4uHKq3PFYjH4SrB4SJSdX2XezvS4btcWIGBSoH6ND\nNghIThH7ZjN6Z6RBebMCGBo1+5bWFhtVdQmIeq3Tl00KCCA0GUjb1o38m0U6Bgo0NNnDNa6ngp9C\naOg/hfRNMpnrFTLf1uNZnUrH7iQEjwSCdkOdmVrE8+t/jaV0dz8cDjefvTsBe0UQT6qAlOLlyXXn\noeihM0fkkfuWscDewN2jvqLeE4egU1h/fBAOs5cjXWm67okurHUyQavC+SNKsNs9ZGyQSd8sk/2l\nQscAidYaB7UddlQVPHl+4kv0ePoHMB0xYd9sJrgyGUO7doztuZp/aVuBiOiHxANdYnFm8H+TTE19\nPLdVnEv+ugUx5/9+ySj+fOurYVL48qsRdwt9nB9zffS7ese9Jy+VC6Hs4zwerD0jTEi/enssNy+5\nl5y8BvQuMCZ4e7U2DGUamFp61H8nVLPpuyEo49sxN0Qfl775pyvT+E/jVFKGBVVVf7buo/DhJ8Mv\n1p4qtj3xwi3Pct36WynoX0flFzm9rnO68BR6MR/svcbTk6bENNoQZKOmUOpJlzHXxU6D5M0qp2x1\nLt21dP5wzVs88saJw/iq8MM68xHnHGT3mkjKln+QB8ORk8/sf1+EiN2Xdz7Gy20jee31c2LWefSW\nZRzyZrLsX+fFLOuJlBnVNK6NTdUGrQZVkhQMu608f9uz3P7CXchGUAwq+k4B4+QmfN9ppMY/woVh\nd+/59r4EFWOrgCdNQfIIUTVgnyz6G2d98gC6NinmpdEdeeeXUfZx3knPJ4SAVRM/Ai2Kctn534Wt\nW/7PLa/z33vnhsWMXNky1qpTTxEH8I50Y+qqT0iaWUPzF5kn/Y0uNDgWiEp1ZVYLOfGtHH9LO7/8\naw9R+u/BUb/tzFPQ93fha7Cg6xSZcNY+tq4ehi9B4Y+z3uNPX19E/G49fgfsuusZ5h68KKx465nW\niXlddNS1o0BBsciILompE/ex481iRL8WtTW0Q3uh9pwZ2jSV3d7Si9uGBzn3jBK2LB8FaOm/vgSV\noZPKKdk5kKSdAgW3H2Dr2iHEHQPZJNCRpzDkjOMcrktBt9eGrVJF0cHQW/ax7eNh2Cq1C7PlL0tY\n5xEZrO/gzG/vInG19ky1FKv86YJ3GGuqYP4f+858CMQJOLNVbpv7OW8eHU3r0QT+65wPWdMylENv\nFHLTwo+5yr6fXb54ltdPoeT9IZgbtX2rItz8q4+4I76ap1oH8Ny+M9HrZTzldmSzQsZ6EW+8gM6r\nRWONE5qZ038/8+I3064YOexP48lnr8R+LIjkV6ieqifjuyDuNB2d5zvZPnEpFtHAoH/fQfpGlboJ\nIotmr2aoqZrHjs2i8ZNsVB04c4McvfCF8DndXDGFR7NW0ygL7PZl8fvPr0Q1y+gb9WR9HUQVwZmp\nw5MiYG5SMbUqGFuDNA0zIijgzlAZOrkcvyKRZWnni5IhpHyrxzqvhmNH0jQyegrwpKqYG048AE+d\nVUXD6uxelznzgtjKtH2V3L+YqSWXULMnPWqb512zkY9Kiwn4dOEUXuegALYjJ54Q7Qv+bgJo/uRg\nmAj2Bl1hB8GDdoZMKefAtz+ej+dPCeU0x1Cl1y35yeo7fwqYG4RwP+Ia6QmrxpYFnFzSZevSHc6B\nclj1P//VhadMGE8F3iQVUx/2Qn2hc4ifb859imydjUuPnMORD7Xaxc6hfi4YsZvd/3cUnmQJa12E\n1MkmgcrZKv0GNNG4IQO9E0xNKjqvirFdxpsoUTdVYXBBNW1eM817UggmB3h4ykcM0DdhEgLcf+hK\nhibU09/cQoUnkaX9v2VR9QQ2vziKzukuLh+8izc2TcBco0PvjGTtBC0qSoYXc5cHfSBBQRVUzDU6\nfIM9KF4dtsOaBZW9TMBxVDtub4JEyzABVYKsdZFzqZkSaaCHblryg0SIfg787vIV/OXdvsWx0rZG\n2FDlxTLmI0a8+T5Ur0S/TyPr1U2Q6De2mtYVWbSODKJ3+Hhg+FpW1J5BWWUqef0aGOKoQy/I+BQ9\nX703GsOEFhxmL0YpyOohq5i6ULMHc93SRvCLZDpH+RCb9BibRfzxKoZ2QRMhNSuYqvX44xXEVC9B\nt+ZpbbL78DaZyfxSoC1f6+MtjTJt+RLWGpWWc7wYDphJLtHuX/21XjIT26nelomxVWv3vSneAnhG\neDhy9svcWjmZTStG0BcCNhW9M/oZkvWa3cupwJkXwFamp+iig2zdXBCu/XRlKVirRbxJ2ruie7BE\n1sPQ8w5zaKVmb+nK1hTxdc6fPT74k+CNq5/mmjfv5chv+i4Z/FnPPEREQ1HMvkxnAW576S7Mh41R\nRNQwvqXXdX9z/dsx3/WbeTxG4KgvIgpgrhcZNTe2/mLfXYvDVhnPzHklXP8Yxuh25qbuidnXyYgo\ngD/hNDXZe6A7EQ2aVMYPPIYqfn926xtwambn4z++PyZ1NXRPf/PSTbxcOoG99yxmwHlHT7idr4pi\nvZVCKJv+cphgTjaJmKc0cfWl68KR0hARBTCaen+LeIs9mh1GikJqYSOZY2qjls9a+musx3Th9OA+\nj+UkRLSnsXggLvL5+WueZ4LtCACufjIjjTVRqronIqK9+ecCmHZZwi/kUyGiIShGcPbvsc3Viewu\n60fa5cdBhA6/KWqdQBxsvfIJJEnBXCVhrRCodCYQP74exyGRJw7OQDDLuKY6mXHZVl7tyIqyXkmP\nj61FtR8Wid+tR/IKbH9HI6IA7lztPjoOSpqcP73XubozVDDKfLdiVPg7V7bMmKkHuSB1N2qXn913\nBwbhOAKtxSqeNBUp083BbTm8Pf5FxAA4rq+i4xwXm78oChNRT6rWFhbumMekNfchlZlpz4d3//wY\nF529hXlxzVy6/baYYwqhcaJMe4HMkIlH2d3RD/e2ZBDgLx9fzLYNg7HOrWNrRw4T332Q3/79Fnas\nLWTOvIjnZcr1x7kjXquZ//ffZmMwBPGWOlAlSNkiYWyTSSj1Y6kPYmxRcbpMvLlvDOevup+791+D\nWzHy74ceR+eREWSV7K/8CIqKtS6IsCuOoo/vZMjzi0jdpnmNZo+oxSgGWPj1dTR/lE3ABqnbfQhy\n9DOxtP+3JEtWNnsHkK5rR4j3I3gkpEFOaqboqJglgQpBm0rQJFA9U+X4eQb8Uzrxx2v1+UlGFz5Z\nx7p1w+m3UkS9vJnaDVnYMzoZd9kenPl9jwZC9dmK8cTpsa5spW8imh8IE1HQBI9av8iIIbefvTER\nf4sJw7GI32aIiLqKfPjHRMKe3W2WQIuQXzTvmz6P72S+dcGDWqRS4ReaY9gDyvfg5/+TiGgIoYGw\n0hk54dtKr+11XdvRyDv9+xLRh2+P9QAETpuIAtw67hsMgsA6jxgmogAGm59LE7YTsIn4HNHblbwq\n+mYdVbWJ+BMU3BkKTaMVnNnaEDJgFkjPaabRZaXNaSaYEuDSUTs47ksmUXLz2yOXUV8fzwVJu7g+\nfgvTEw7wttPBZ5tGYK8IIgclJtiOkDmwCV+Bh7hZdShDnMiDXUyZupesVC1yrEqgaxeR3CIBm0p8\nvAtLuV6LPGX4onwpm0YI6Ao7UPp56cyO7Tf+E9HPH3sf/mSZFN2JU+l9dglPktbm+n0g4U2X0Vca\nEHxaCUTleeBOlUjfJBN4Jh1nDqAKfDpxMTud/QnIEuPyj3Jn/6/4R+ZWLk3YxurSIXiyZLIc7Siq\nwFkppVQFnaiiQO3ErvYtQOoaPZZaEWOrqvmHNqmY6iUce/QYWkHfLmLcbaHfShHBqcNXZ8F6XIfk\nV7EfU4irDuK3iVhrVNrzQfZJGFtBNgj4HBIcsSIKKvoC7Rp4Rrq5seJMzjlwAcp4rQzJk6b1Cebd\nZoqfWkR7oPdxfqjMSVBin6FTJaIAtjLtHVDvjosQ0X4ySXkaP7EVtsZm7Y3qYOnAleGP1ioJc43E\nf1/65qnv+BTwS6k7vebNe0+q7vuLoOEhEaMESYvueAb3nv74+xveYt9di5l7hTZY82/u3az70Vdj\na/SKHLWnpOTZHTtXDY35LrSNfXct5t4PF0TVvcojO2G7g9scNWFlRtBSdHumzQIxabPGFglv+ukX\n2C+4bE1MGrDOK7BzzZBeH7RTJaiq+9QidH85+x2GbZqHu5sCceieAihb4hn2j0WMTohNUeqOM7b1\nTti9xdGiCVP2XIrn22TeeWMaip7whIC70IffoWLSB5FHa6THPKUJVdCsfc4t0FKG91z1DzaOWEHV\nnmibm978OE8GX2LstSy78rnw/65hXi4/exNr79bSw+9+/g4+bh2BL0HFWilxT1lsWw0prnWHu9iD\nfWRzn8dxokL70Mu5OzpzFTryg0gDo/MH28b4id9moP7dHFC02tDs0TWYLtBSIvWdMP0vDyHvcmiq\ntdeX8FXRh9RVac+if088jk0mJuQcI9XQyermoqjt/9+8j2gfHDmetjP8MKuFzgEquvzOqDRqY602\ngHD2V7FWRNqi+6zoYw5aVX434VP03XiuzinS5jfz/F8vIXmrSFshxO8w8Ps/vEbZlc9x8JYlFGY0\nkDasgTsOzGPvvYsZ4qgjM7EDxxFwp2sens78APnrFqAcsjGgfyOOI7Du+sfwqgLv7x3JC+2ZWD7s\nPbXR7xCIO6zDWiEholLviUMe4uT+6Z+BKuAobOaPg1bS39xK0m6BgFXg5ks/56unJoa38clgzav3\nsZY8GifIuJwm7GVgqheJq/QjBrRrWT9WT0KpH/GwFX2pmT+f8y75CY20BG2s6DiD1nyNvbUPNFB5\nQ5Bjl6t4BgRIWy9h6IC6ySp+u45z0w+QZ2jAVGkgaZ+PzO+6Hgpr7++lBfYGppkVphccZtmcF3l0\n5ArId2Ht38Gy//MkmeNqcPVTMTRLyFYZSVLQuSB+fD2XJm+jw2tC0avonTL61xKRTSqd1Xa+/nYY\nxl78mV3Z2vmGUqStlRJ/vX0Z5169KVzP3B2qOXaCr+R+7V1pOXbqzMl2VBee+AodA4B1nxHDtkjd\nYE+bpUBKgK3NPzyT56P82HfCLxEnEpH734ijF2vZArVBJwnGvifTh/99EXlf3njCbYVEkXpiz4OL\naZNjlTm/L3yqDq+qcsv70ZNoGQkd/O7wJXgThHD5VAiKTsBeDsZyI6PHlKLPcYEjEC7n0PlUTLog\nQVlCkhSK8qq5ImErcZKX3x+7hOPHUxDa9AzQNRMvihzxpvHwv+aR87FCwCqieCVerZtEv7g2ZhUe\nYIC9hf7JrYzLOU6734QnoCcwykkgQcbcKCDbFMQgtHdYCVo1G5CsN/ThAIc7VYe9qBmryY/+sJm4\nqu8vXHTopiXsvfH0B/WBBOVHj7oamiQeePPE7UjnVTA3R957aRsERFnAWi2SsVGm32dgaYgsT98o\no3f4OGfdPXxXlcvx6iT+kv0RF3dZnfz52AXIzUYMzRJ2vRezLoBeDHLV/utpHiYxfuoBipLr8E50\n0p4v4h7tRp3dSvP4AG1DVcTR7dgrgqg6MHRomRPNQ3UgqGR/oZJ4IEj1NJGGrkoef7xA61BtEr/f\nhyJxVUEkvxaBN7QL1KzPRtzsQBnfjtJoYt2uIawZspIHhmpWWj0zGp/PWUlvCGW/6fp+bE8LTWuy\nwqnB1kqJjl1aqV7wu0QMZ2oldq5+MsnnVPPH4o9xiFqGlXVaA/44FVGGP753cm2Y08HPZdPSG06W\nqvuzpunmPfYEwcQg5go9+xcu5uLSWZSuPvX0x+4IqelOumg3Gz7UQvKKXuscQ1HK4VuuQd4Saxfi\nzvWTkNqJb1OkztM0sSnsIRq0qjHCOe7+QSy9WAz88+bnmGZW+FXdKFZ9pA0qD9y2mAN+90lFjJQh\nTsQDp690ESKifVnAnC7kQidyrQVD+4nnKkLE4Xc3vkWVPzEmTVcV0BQz9SrWQe2kxjk5ciwNg82P\nfmfkPN3ZMpYqCUUX8ff8Qcc/uhNpu5YKunLh35j5zd2Y92oP/tC5h9AJCjUuB01fRkcRvUkqslXG\nWqHrs/60J1xZCv2H1MVEJA1nNuH/Jjmq2P1UlXK9I91QYSaYGsB20BBlsvx9sHzhUyxYcl/Ud85C\nP3qLH+v6vtvbxbevY2PzQA7vy0b0C8SVae3h3nve5RLbcabvvAG9pPC3wne59/HI8TkHqJTOX0Le\n2huxb4ykiXvSVQZNPcZreStIkCw80lTIiuem40sC09hm1M+i66xn3rKRVR9M1PxPx3sxHTFh7MbH\ngzZIPbeKqSlHWPHKtCgi2zbaj94SIODWk7JeIx2tQ2DE5FKOtiXi3JOEIoGc4ePBsWt45VHNb+6W\n337IbY6acK1o+yBwHIlst3mEStnVzzFw9c1cOnwnq9+ZgKU28gpVRWgeqZKQ28LA+BZ2bRmEbFZA\npzJt+EGOdiThfj2D5lEqt81Yy0fVxbhXpdM+xkf8ZkO4Y2wvgIvnbORCxw5u2rqAFIeT9i/SMTeq\n+O0CSfujZ05qJxgJxKmYGwVEP/S/vJz3B32CJGj37Lm2rHCENff921H1CnGH9Ey9ejvPZm0GYPK9\nt2Nq6f0BbC4y4p7k5Joh23EGjaz8fDymJgG/Q8WfqJA3pIbjDYmYzX6c5Q5sue10NNowVWkKwkpx\nJ742E4MH1XBHv68ZY6zjS/cAnnr6ChIO+5ENIr54ifrJqhbJVkEwy2El3B+CEPksfnIRwXGdBMtt\nTJu2h03v9p66pehgyJzDHPpIS6HKmn0ci85P6crTt2LQTWlh59g3KX4y8nx0T9M9dOMSBr/8wwes\nPbfjzwhw9DxN2OPH2P7p7Pt003RPhtev/Afz3r7nx93oD0D3yLk6pY2S8f8GNFuV14uWc86HD2Lr\nMSnxyb1/Y87TsSm8J0PanErWDFlJ3tt3YK38YbEDd6bC9quexCGaGbphPrqNkUk0aarWTgFGPLoI\nU6uKpSHyLpcJgwAAACAASURBVPDbJQwdGoGpH63Hk+sHWWDmiP0ceVibtK88R2LgyGo8AT2JZjfj\nEo7xYcVwtp7xNnMPz0YnKExNKuWZTdMxOXykL9UiVg2j9My4bCt2nZdHUksA+E39SFasnYCS4ueS\nYbu4Jelb/lx9PiUfDMGdoaCYFEwNOgJWFVNeB+pWB6k7tZkQT7JE43k+3p+yhA3uPF555AJMLRHy\nVTNFR9CmhieNf4o03e4R0f90GrClTiCuUrt3lRcoJG/Q43cIoELceXXUNMRjLTGRcDhyf1VRYPaf\n1vHixqmMHnqUAlsD75WOQCyJw5su81/TP+RmRx1OxUu9HOTl1om8uX80hZn1vJ+/ij81jqQjaOKb\n6jx2jn2TQV/dyIz8g6zZMpxLJm5l9fEhuDuNSHVGZLOCzqW15fRNPSYLBai7yofeEMRfaidjY/Ty\n1sGRl4tzsD/sJ11y32KGbpiPtOX0at69SSo3zP6KPyQfJH/dAgwlFkRZ0/OwHfj+fY+sh+FzDlJS\nl4G4OZL55k5XOH/qdmo8Dupcdtq/jA6IdLed+bEQikgWvLIQXX4nwdKTOy38mPvuTkJ/sWm6qBCX\n4uSxGzQ5+O5E1D0ggC+xd0bgHhiISYMtenYR++5azLefagOMgF2NmaX9w9BPYra1767FWMoN+DYl\nsfSWSCFzS1V8+H+dS8BvV/EUaqNdRUevRHTfXYvxqtrA94qELVHL5pcs6PVcuuP7ENFH5y0/7d+c\nFMesJyWi3XHcl8wLa2eEP4cicYIKhnYBU5NIZ5uFY9uysZYaoogoECUg1BN771nM3nsWc8P81b0u\nV8ZEp6y4s+UwEQWYf+B6zHvNqAJYzmzkWHsie+ozqWmOlpG9Yf5qHIXNp+xhGIK1WqSiLjpCr0iE\nRYsK1l9P7orbKX5qEYFTtI0qnbacEZNLmVyosaDipxaRd77m5ekcEOlAPCPdpzTw60lEAeK3GZBr\nLTEz4N3x1tvTOFSegRAUMOdGrvPT/7icdkVG+TSZ5r0p3Pz2Qnb+YTHxl2hkx1wnsMJpRwlGtyFz\nnUCT28qcvdcBmh2CNxlkg4ovoKOjQOHqhREhrHe3jQn7ipoPRhNRgHGX7sEd0POH5L1RRBQRLEcM\nxK2zYDmidVbuDIHXr/oH5ybvp7XVhq1Cyx6w7Dfx+MZZdORB22B4at90hncR6/YCjYgmLzgeFjBK\n2i1Q8PUNSM167k9ZH0VEQduGkOSjtTyRipfyNb9Rs4zUIbFvyTAavumatEj28dymaQTeSMOV3RVd\n8EDAqg10DUPb+X3KRiabRA6d+Sqdn2lEVDaCoSO2w8rY5EMxadL57slOql8fyPBn72Lsjiu5sPQ8\nHt18HgXrr2fgR7dhTHVz/fgNyJPaCagig7+5HqBPIgqQtM+H2RTgk8oivqnLwzq0FdkAQlDAVi5R\nVpVCv5d0ePfGoyb78XgMFOTW8uj85cy/Yi25Kc2MLyrjjfx3qA4k8KfaWTz6ypXEVcl4kvVIfgVX\npohqkonP6MDYoENfeWI7qe5w9Zf7VNnNX7eAQV/dSMn9i8lJamH+eV/z9Ze9i9OBNiEWIqIA1Z/m\nULoyn7fvfLzX9XuLyIYQ/DYxioj+VBj88kKmzoyovxu6ospVwe+hnPQLw7y376H0uiWUXvfLE5UJ\nEVGANqeZN9rH8NycZXBma1S7uGTPTThzT78Mp/6TfgA/mIgCyBYFh2jmM7cxZkC65oyIh7KxPZqI\nAkg+BU+yhDdRQjGA9bABdCqbanKoH6OnbZAexyGB+k4bA+wtBBWRFUdHMj1LUzJdVfAp+zfm8tIb\n56Fr0WPYENm/e2AAsxSgwKSVzTzcWMSBjnQkn4Dq1vHpexO4p+wqdtdlovOAYukaXwS197O824Gp\nRcWZoaN+tB53mkhKYievNE/i6X3To4hoCLquGsGJu/uuvfwx8J8gonNnb476HCKiAP1WipibZRzl\nQTpzZTq9RnR6GW+KSv0YiZqr/DTM85Byfzkv7ZwMIuw81o83Nk/AYvJz5zUrefDsT7jZUQeATTRR\nGkji9c0T0B+ycH3mBu6oPIsjrhTG2I6yc+ybOBUvD436HICP5z7JF5WDmZlziOz3dNgqBQytWopw\nTyIasIi0FOoIBiQ8VXEnHJsA2JM0IQ5nbpDByxYibbGTNLMG10mUzbvD1CyEbZlKpy1n0sW7tfP8\nnkQ05FkqBTR7mBARdUzXrt/nlz3OPzK3cmhlQZiIujMUfnvzW99rf6eCglcWhgnhf5KIfnrtY3zn\n1e5F0HJykv2zyjUZOgQKkxv49bKbeGbmcUAjdHlv33HCFCrLUX2vKbdFzy4Ks+uQXcO9133AwM9u\nCQ9Ke/tNCDe/FJFjt1RGXxpDhwAdJoJWlUCWH/Ph3hurX5V4ri2LMq9mhyKbtJvg3p7c6/ongyqq\nvabahnChVQul/FhRUejbvzSEoDna/HpNfSGGtkhn2Zvwk+WgEVUEw6Rm/qvwUx5eNj9mHTGokc+Q\nj+gjN78aXvbKv2b1eizith4zYaq2jdz3bsdSJdHcYUUH+IvdjIhvYvu6QvSdAj1bw/J/z8Kd5+f7\n2AyfXXCYpTO/DUcvu6upGXfYCLWUg7f2XmjfE70tD9Wp2o5F2mVvpsrdcSIRLgB7afSyMTfsZtsr\nkWiRsRU8efB/Zr9HlT+RFWuma6JcAlz4+K8RANuxSDs4diSNeLSI+SNPzSeeaIxbsJPP9xZx9LyX\nyPvyRqw7zJi80FGgot/qwDimg3+9dk74pRS/K/IOMPRwpQnaoMBaz28yViMJPe6aot0DQYn8zlKr\nMv+te1AF0PuhZYSMEBCJaxURO3T89ZrXyNU3cfuBeTRmxOEcoJC8Xbs+TctzwhV77YMg/jMLZ927\nicXNk6J22zxKRRUgweFCifPgrknUvG19EoklAs4LOrGs1joDxaXDWKcHVJR+XuK2mmkpUnEcUdny\nlyU0yS4copU3OxP444qriW/V3iMnSiUXZM2jNdBgIxAH1lqVzq3JlA4zglfC/p0Bx1E/lefY+MhQ\nDECKwcmo7CoA1r62lBnXRbxrG0YZefOuvzP3q7uYPWwfcms6eknm/PQSTEIA8qHQWMs0c1fnfw4U\nfH0DZ2RX0+43U9sZxwNbryQ7uY2z0w7zbVMeu/022oMW2gMm0rdoJ6Nzaw+Ms9iHzqDVJdWPVmhp\ns2LYbUY29G5V1B3WCglXRcSCypeoYuxKwzLt7HpOzoZCRz2bWwaEl50MQUskjevKf/ae2dLXPXnz\nzr9z9T8fPKX9/BhY/0U0wf6pI6Ih5K64ne8n5XTq+KXXlS7vSMWwOY43dk5n06yBuDpNSMUupG3a\nu8n3VTKnO9W858GIyr/frqU4ngr6EkJcMOlbctfchG2PiZ5VdBZBu4MVQWcMEQWQfCqeASKSX0X0\ng6FdxdOuI39QI+KsBnZvzCd9k0LQ6KcjYMIT1OMPSpxrL+E39SN5NG0XicMb8X6WiqkFHEcjkQLR\nKTHQ2EiRsYbaoJ+1tYPp9BoJ5njJSW2lI8vI0bpkrNvMKBKYanQIKpiaVYSgdl0MHSodA0W8aTLY\ng1yWtZ/lmyYz4P2YU4nCxhErGLz9p2lb/6mI6N8zdrCK8b0uu+uxt/jNt1dgKTVgL4V2Qxy5g+po\nMAW4PHcXbx8Zhc+nZ/eOPCS/QOrweupb7NjSnCRZ3cRLbp7/9WW8BVSfJaLPdpH6uhltiiTI5gvz\nwkJU+zzZXN08nM17BpHxtUjLEJHPU4oZXVxOjcdB4ygdil5FNnazQEuTUEWw1WoCPoY2laG5x3m0\n34fM2rgIYlpqRHBo97g3KN6wCFu5jqAJ5l+3hue+OZvxYw6zr/rUvZdD4y1nbhDBL3yvMWAIQkDr\nV1SRqOy66mPJjJpbysFAMhahid/e/BbfdeTzzTtnYKkVeeT1q/DmBtG3np545S8ZeXobeV0dg859\n8v72Z03THfDqXzEfNrLvrsV87Dbx62Waf9YXd/yNmc9pKS0zLt3K2ve0ZPJTVZsNpez2/B9AGdWJ\nuPPEswNv3PYE17wQCScH4tReLUVCmHTRbl7s9x3feRXiRD/7fRm8WjORo18P4L0FjzPEoKUkvv7e\n9JMf/Cnix07NPRkC+R50ZaYoYix5wZOuUHblc2HyB9p9cucGNG+obggNKj3pCoo9qM2u9sD4i/ew\ntP+3HA04Gai3hYkpgCdViZG/DkEV4IuFfyNDp/1GP7EF39ZEfIUezHvNmKc00dZhwbgnmsB50hRu\nm7mWFRUjcX+TgjdZwdQknjRNt6famitLofyK507JJBn6JqRP3f489z1/O9vufZoxT9/b6zo/BnRO\nTcBIPIU62bbiIOkDmhEFFfdH2myeYgDdjKawLUv8JdXcP2ANF1rdFD+1KKLWC3QMUtBnu7hg0F4m\nx5Xy6JFZ1Jcl88eZ7/P0Py7vc7/tQ2QcB6Jfzp408KVpg6WQumtv/qV6l0rbYM2+w1qjvTRcF3ZQ\nlFbH27lr+dht4uG/3kjLCIUxo46w/Wh/TAfMTLl4J/F6T7hu05ktaMrZGYoW5ewFqgiuLAFvhkx8\niciOPy6h8NvruCi/hFqvnZkJ+7ne3sTAD28jZZN2Pq1DNREUS62KK0vAWq3iSREQp7Sye9wb4W2H\n0oW7o3FSkIRdOmw1ctjjs36skeAZnfyqeA3PlU1FUaGlzgGCitipw9S/k0CpnUBygNw3tOuR9Ugp\nB5rTmZZZyucVhYzLqODFft9p1zbg5Jab7qVukRZyjjP7UFSBjm0p+BNlRJ9A9vA6mr7MRB7diW5z\nXJeir8rIqYfZV5+Oz6dH9kkMyG6iutnBhJxjVHQm4l+WjqFdRvJrD5kzy4BsgI48KJh4jBSTk9mJ\ne/jTy/MQg1rdtXVv32Jzp4PuKbvdCeuPCefAIMVFFRxd1bv6bShN158e4Ojsl/5jpPGnQEjttzt+\n7DTdXxokrxAmhiHCCDD4m+uR9tjQecHZX+G1Cxaz8J/fr2Zr0c0fckd8NffVjuHLf487+Q+A39z2\nFi8eP5OaHRnIJhXJI6DmeDDtsuAcGETfLmHqIaDUmR+tkn3A72bRHbH9ji9eK6NpKRIIJMjYjujw\nJaoEEmUku59Eh4vWfcmokoq+U0TnhKRzazgrrZT+hmZePDqFTSM1jYyzb9K8xFsK9XQUBLl76hck\n6zqIl9x4VT2HvRkMMtbzuy+vAIOC+ZgBIQjWGu2dHrSqGNpExKA22S+5BQIOFd1AJz6XAdUjIdoC\n9H+994ZYM0XH3Nmb+XvGjv9xSrrdceimJeS/ujCmtKm7mm5rgQ7nYD/6Bj3pm7Xvm4fqiKtQ8F/V\nSmuNg6TtEm0FYMlvI97spao0lSsmb+bzikJGplWz/Z1i4o9E76T5ehe3Fn6HWzYy2FTLK7WTmJxY\nRrKuk4OeDN7dNgbRLWHMdsIu7f0gm1Qkr4Anz4ehxoAqan2nbFUwNkr4kmTOGFXGpIRyPvivmb2e\nc/c0XQB/nIqhl7G5MKkVr8eAYbcVQdHGXW92JnB1XOsPKnnqC0/d/jzb3LksXTUzLG4WHNuJbmsc\n+XNLqexI4FcFq9nQmc+Hu0aG04sDNhVfWhBbmR7noMD/aDsXuZ8XqTLSTwdSA+gbojnAidJ0fxFk\n9P+3d+aBUZX33v+cbdZksickgSQssm8iKMiqIu766hXba6n11mqVWvWtdWlf7m379r61bl2uvbQu\neNta61JUqlZRQVHUSEEgAiL7mpBlkkwy+8w553n/OGQZEhQsELHP559kzpyZec7M7zzP832e3zLi\ngq0sHryMUb+Zf1jhd7gyKsca9+Rm4msKjip2sd/Z+xmVe4BXl0/knX+9n7M+uAltfTa26/iKxs03\nLDwhYvS0OR/z3vqhuFo11HSmGPVOC7J6wrMZohEgWmniLohj2wqu9c6asG1AosSJD+0/Zw9b95fg\n+9jT66Sw+w7pkZA7q57Wt/ux6bvO6xIFgvyRQZrqcjtFcUds6qHERiacduQKtJSzinOkMaOHciTx\nnb2dY/qc7/PQzx12SVf6b1uj1xpW3YkX2wdrcSpUnL+bfa9W9Xqe/inee8k8WDf/14z+0y1k7en6\nXUw/6NHMc0NjTHI36NgGxM6IUVHcwvKRL/YqEP2X1hN9MTNGInRaiqqKJpqjPswP8zpdcdtGWuR8\nnPlbJQtg9mWrGeffx9m+7Qw0shj5/jzcb/aMEzGigubZCQqWOZ1jcKLN1dPfZ1ndMEKri9FGtyGE\nwu2jlvGfb11KVmkEIRSGFzWQbSSp+f1o9DhYnszatIeSd80+6l6tIGd2PU1rSkhXJBlftY/doXwi\nMTdFuRGmlezMSEoUGaCQLLTx71NJ5gv8+6F9iOCZK/6L09xdCzRXbD+X/Yu6CmGnAgp64uDORNRG\nNQVG2DEI06vRXqETGmuiZafx+xO4X8glNAKMNgXf1CB3DH2N3+w6m4A7weZ1lRTUKLSMAqU8zmmV\ne/mvipco1px14ZH/PR93G4QrBbbH5hszVrItWsz9/V9mbaqQaZ5WZqz5Ju0tflx1BumKJLm5UXTN\nxtAsUqZOS8hPVb9m3JpJoSfC+oZysp7OwdvUtYqTytFpH6ARLxVQFYWdfmyXwMq2PnfplM+iNzs+\nFqSzBQOm7ifbSBBOe6hfOqDX8zrE6IzZH/HogPdOajHaG192MarHFIyIswC64XvO+D7wteu4ceI7\nhC0PLz7h1HyOFwvMHAu9TcuIM40XCURFHN+Hh/ds+ej2hbweM/j+b68/ojYVnF/LOSVb+G7+Oqb/\n8nZsA6JDUwypbGD/OwNI5dm9uvq+edv9FGqZe0EdYrE36k83UE1nnBKKUz9XaFB8yT72NOVR/ns3\niXyN4DgF2yUoHdFIoTfKtmAhm6Y8mfH+7RU6oekJxlTUUeSJUOltxlAsGlPZvPDeJLSEih5TKFmd\nRrGc8jL1p2uYOTZaRMVod8bpWKWJFkhx1Yi1qIrg6eVTsV2Cyr/1PojXTdPZ8s3fcvuBCbz8au87\niicDeROaaF1b1ON4dzHaMFEjsLNjzLHI36Dia7RoG6SjxQX+BhvFPrhYW6JhxAQN02wUn4mq20yu\n2k0o5WXLB1UZ8Zvv/PYRXo8Z/GznRfx48It8/2ff5qJb3uGJmjPYOftxvrrrbCp9LVQ3DqRtaalT\n6mtcgsAaD0ZYoKUF7ZUqvkZBMk8hOjKJ4U2TDnopXQFaqndZUj9Z6xR7HWy4bSFDnswsmbThtoUM\nffsb2Pt9eJsUrvzaCp59Zhbx4Qlcu90YEaX3ki4usMeGMdZ8+obVkZT2Sp0WwfVhFp4Zzhz59HVz\nmd5vB39984xes2pf941XWPjiBZ/6nic7X9iY0Q5X1/X7+nfuXm645r/wT23KOG/TzQtxt3RNTO1T\nwyQLPlstbLp5IbEKR1XGKjMDSNNZPY09ML2B5AdHJkTj3TLH7txbzLTAVi44Zw2vRIcwvXInZ15W\n89lv8g9yIoRo/uR6Pnh/OPfOfiZDiHZweUUNi9q6BEZ0sPM9+/fo6GuzmT/mHcApS6KmnfjQV+bf\nx/7XK/F97AgFpSJKKiDInplZxH7jLZlxwb0R7+fYQWhFPx65/jeOj/rpbSjlcVra/GAqnef0JkRT\nOYJzh2+m6Jxa3CHliNwJPo3h7379M8+5dFvPmqt6rKcQBdjy0lCSExzl+FlCFODb57/Btq//FkVw\nWCHaQaLbOBap7Lof3K0w7rFbM4QowOQra3qUgvHU69huSGeBvtVHwsyciSYOeqencqGfv53yq3bx\n9flLaZ8SZ8FtfyL3QxfBN8rRXs/LiAk9VIjGS0AZ30a5O8R1OfU81XYaY34xv1chChCuVPD6u3w7\n505bxfIDQwmtLiaVZxEL+qgqaOG+5y4HXRBp8iOE0xe9Uz0KRUDwnCRa0klaBM6CQduQzM9pfKEC\n24DGdSXkbIe5Y9ayf9EQIhvzWTz5Ea6uWM1Lz2W68yYLbTwNKvFigSuk0DrOQilNUHbQF/X0dXM5\nfd1cNi/PTJjjahe0jhKEzo/hbjU7hShAKlvF32Ax6C8Wng1expXUMvm7a/jaBW/DxDZSbxSyPDSS\nhlA2rf9dgZ2bJufr+7Hy0ghgVc0QpndLsHbGJRvI35ykcmmKgUtM3vneFFatHMGZy27j3x/4NyZX\n30DhQz4GPemUiykubCfU6qcqp4USX5ippTu5ZMQG3JrJ9oZCqleOIr02j/ZKldAQF7ahEhztxtVm\noqYhsAPMlE66JM3oSbuoGtSIeTD31ecpF/Jp6FGIjvmUFYbPiVChfukA1u8ewK51vddL7s4d/V7v\n/D/v1KZPOVPSG4dmAj9RGAc/Vp/ulG5YEVf508xHuatgGzfmVwOQKBQs+cov+N701xh3ZmbZMzPP\nRNct+l+8G3AmwImizH517IPzj1iI2gacW/IJF2fXELYtwsPSpMZFGTN4Pztqi5wEgoeJOT1UiP49\nme4sC9IbudttPEGB5YGs/QItJUjlwu4P+2MmdSy3kxXcE1Tw71eprctnS2MxMyt28Gwkh8HLuzLB\nGlGBvtvDJysGs62tiD9vnYiq2HwUKkfJS+FtUMjZZqNYYBsKkX4a6QITLEBx+tFYpYkrL4GuW2yP\nFrGsbhiWrytBzqF0xP4Pe/wmHixdC0DZGXWkKz5HKv0+pjX82RmWL73oA/SrGp167O0qab/Cvguc\nhYR4P4X2Ko22gc6Y7W+wcIVtfHt0sgNxCnMj2EKh3Bdi0vRPqJ/s2EXDJI1ftVYx3NXKa6P+wpPB\nKcz73qsMdDexc/bjzK+dzBB/E6/8+UyaV5Tir7MxfaA2uoiVOrYTHqCSyrNpGS0wJ4WpKGvGtlQK\nPlQPK0RtQ8Hydj3X4WU25MmbQBWksrueG/Or+ZgtHv73RS8TGZZi8ZOzKJh5gJ2zH6fw9IOVASId\n2dG7xlEtBZ9Me4INty1kw20LiR2cO6YnhjM+8/vTlhIZ1CUUps9dmxEjnswXpJo9RIakSZoar8cM\n2tYX8vozk3ssbicKBMk8we8WX/iZv+eXmT7dGR2x4JcAXDb3XSrczYz37OUbq/8NvaZndEX3TKuJ\nQsfN07fTxbDzt7F+ZwXGftfnEhLxUgvvgd473+xpjYTfdeKQ4kOTqIaNe5O3x3nT/tc6BnmD3FXg\n1F56tPUMnnh7Gu4WjVuvctxtRjwyn1TAZt45K3n65Rm9CrvjRTrLxjgOxXQPvalMr5OEpYNknpMV\n0zOsjUiD85u6ghpmVQLvRi+z5/6dZX9xXJDiJTaK7ZSEEQoMPn8nLXEf36p6lwmevdy+Yy7bt5Xi\nPxgz+dWr3+TxlTPZefnDvJOA6ugpPbL5dpAosjNKzXRw57XP8tMlc/nK+e/y9LKpnWV6bO3o6kwd\nLUdSUPm6b7zCoj8cXeckFPjF9Y8yx5fmP4PD+fPWiYfNLnfhv77PSztGH1bM9Uai0OmsEwUCqyBN\n7ppMN2t7TiuJpIG1z0f2bpXp165m5eOTMs6JVAnyRgWpCLSy46mh9Ibpd5LCmD5B9phmCn0xkpZO\n4ztlqBPauGXEWwA89Mks9DcOjUx1iE6PYjZ5yNqjodjgnt0EzxaS9isYUYHtAjXlCE1vo4oRdlb4\nXW1Od9gyRmBURsl+OYtUQCFWKsjd4pRr6TinfZCCHgd3q3Bc1ksU4kWC82et5ZVV4ylc3WVzLaNB\n7R/DrvOSM7SFtrCP0eUHSNkawZif1o2FmAVp9KBBwdgmhuQGWf/iSHwHutoK0DQzjdFgMGBZZhBl\nMlendo7NqGH72by2EqN/lPHltSRMg61NRXjdKWxbpb3dy/9M/R82JAbw4JsXUrhaxd9gEh6gk8xT\nyDm7nsv617A12o9/L32Nv4ZH8cjWqQS8CZrWlmDm2BSsUcm6uo4LSzdyR76TWGve7lkciAXYtaWU\ngjUqbcMcgRmugP4rUrQNchErURh7wScMy2rg6Rdn0H9FimSeTipLJdZPIT4qjhAKStBFzpBWstwp\nWpeVHolpfmHo8PLwzmoivqLnrgV07YzmndrEB+MXn7Q7o4fLBPxl3xntvsv50e0LmbT2KtoiHrbO\ncHIcPBcJ8Mi+Gcwu2cxTOyeS402QtjRqdxdSNKCVxJtFTkzZ1FbiW3JxDWkn1uzDfcDIiAuNldlM\nOGMbm14Z1mtcsjK9lafHL2KEyxElk9ZehabatKwvwvIdXoB2p7ub8Q8bxvLMxtMoWurOKA3SnWSO\nRrRMpX2Yid7mzJvM4hSa24IDHoQGWtzxzHG1CUy/QqyfQK2KYlsqZsiFv1+UZMLAtcFptxGF8KQ4\nBfkRLFtBWVJAdm23eqFjDGzdWXg2wgq2y0nGJFw2ekjHFVIwvYJ0QCAMm34Dm6nfU0DVkp5T23iB\nRusIpU+z3R4L/GNbKAu0k2UkWffWsIznSlZb2LpCrFglka9QuNH5LusnawgN1Moo6YSOsdeNlnJs\nOZVrU/ZO12q4bSiEyzXah5nklrcTOhDA3ahR/GGXXZhelYYzwM4xqRrQxNSinTy9fGrG+4DjKhyt\ntDCK4qQTOsJU0TwWtqmgtLhQbHq85nDsn6N0ls/6f9f/nv/z6LWAU/rOt6Hn3LxXpnRlwB7y1r/h\nrfn018XKnOzNWTt1mBKC6q45RzpLcNkl1SzZOhaPO008YaAoUFHYyo59xQwe0MiInHreejZzHhQ4\nu54DDbn4N3kwJ4Ux0xp3nPo6Dyy57MiuoY8wS1PoBz47seCc2Wt5fdmEHse/sDujHbzw12ncmFvL\ndY99F3tX7+HDh+5W+nY6X8iWpafg3uX+XEJ01IVbegjRjlX4vBn1TC3ZSWJEnHRAUFzc1qsQTQcE\nD/ev5srAOu6oP5ULPryBF3ePccoTAL5uQXmudpVnX5h5QoUo8A8J0Xu+9kdSOTabb1hI2bT9vZ6j\nTm7F1jKFKDgxce6QQmJLDv7dOnpIwxoUR7S6sHWoaSnHN72JxJg43ga1s3yOImDnq4NobM3moW2z\nGKDZ0TbZkwAAGJBJREFUHHijy+UtXmwTTGcxfOQ+5tdO5oY1X2fRpimkAs53fmjtz96EKECxHmbb\nNb916gCWOr9TdGjqiHYg/xE6hOipl2887DlHKkQThQLrYN+gCLj9kesZ8tSNLFozjSWTHj7s65Zs\nHQs1RyBEu5mqJwhGO2TvUvBt69khqa/noW7Kcty2Lt/LAE9Lj4x4WbsV0n8rOqwQjZdA5JQ0Wsq5\n50cV1rN1dz/alpRhuwTfH/kGDz53GTfk1BGPH75TTIdd5GzRCI9M4W4R8Gwh4SoF89wQk7+7htaR\ngtZRkLVPxXdAHKy7anVOpPM3KGS/nEVwgiBRJFCEEyfbIUSbzjRRhJMYqWNRJlphcfOFr1L92IRO\nIWq7oPncBGfN+Ih++e2cNc0pXWAlNTbWlpLrihN9t8hZtMlJcvUF73BtVTUTAns7M9Cp3XRn0dtd\ntfS6Y0QsivqH2LFiIL46FU2z2dhQSs3WCgzdwmOYuA0TO6bzi33nEbE8XD3tfSKXhGk9xcAyFCJV\nJn4jRcxyYwuFW3b9C3/ZP4FrTlnF4pF/ZMDptagxldbZCa4sX9spRJdEs9jdns/eNeWoCceV2Nvg\nlJjx18L+s1w0n24SH5ji72uG8tLvZmBEFBonuKm9wEL7SiNDL9zGKeWNDO3fwLBT93Jl1XqyXCff\nboW7ReGcr/6d8N97F6LdaV332ed8kTlZRfSx5m/j/oetM/6IJWyeiwT4l6x29jTnsbxxOG7DpNTX\nTv2mYvQ2jW8M/ABwFr4UIHdUM2f23015RTNiuLPl2tGfe5pUVEUw7qLNRMdnDq4f3b6QmtOfYoTL\nx+ZUjNPXzSX5ViGx5cV4mpXPlX33ZyUfYZsqRuzw+xO2AeEhFmpWGjPHwsw30d0WCAU1rWB7bCyv\nQI+C7VJIZ0HeZhA7/ZhxnazSCCWBMOWFIcyD3mnR/gJhKzQ1BkivKCS71nRqjxoK0RKdVK4gXmoh\n3DYIJ8+BcNkYLTquVgXTJ3C3OnU0vcUxgq3ZlL/R+xyrY2zvEKAnoxAFiH6Uz8tDX+0hRDtI5Ktk\n1VmdQhSc/Al2WQJNszE8JqZfkMyzSRTa6AOiBMfotFfq2IbiuGBHBf1WqoQOBFBSCumAIDhWJzRY\nJ16gYboV9KiCq9agdk0ZT22cmCEqoyUaTeN0YuPiqPlJdN1C1QV6k0Humx6yPvJQvsLJxZDKPjJ7\n7V7HuXvtXe9GL9aRetBU5zLmV/M55U838b9PXdZZG/Rw+OpUR4gCia2ZVRiMiMJf3j0De4+f9Oo8\nEApmSnMSbn3spv61AQzz1RMZZFI8p2v+3P5mP7xbHM9AfXU2nvU+7l835wgvoO84EiEK9CpEP4sv\nhBjtmGydeVmNk7UW+PdvPJVxTvfUwB07WJ2vTzu7k7HK9BG5dBWf5ZSg2PRK5o1cds4+0gGbdEBQ\nu7uQV3eNRFHBOzzUuUPakR23g46svRYKq4OVRGuzmdl/O8OGO59xz9NXAc6u1cnID9ZfzqCxtVy3\ndxp17/bPeK6jJlIk5CMwtfeyCgDukNL1t9aLFneSD9QGc2lbV4htKoy+5JMeK+quGj+xDwt5JORk\nePXU6STHxrjh3OXk6HG2rK9gXbAc09SwbRXroI3YuuMKAgddIPJ7H1yro0N4MepDUQTDy53U21gn\n7oda98Lof/g9PEElI9NoolA4wj5o8C//fcfhX+dO9yiVcijxfs7Odgexsq4Hdrc+KTqg+70JdpbF\n1m1lPLf3VJKHlPUNje99Szh0ahrbjZNpz1Ic95jhEd5/byRGk0GsVOCtV7jvySsZNWM7D7VWkhfo\nvVq1bQC6QLFFZ41RAGt4lCUTHuFvK08ja49K3iZwtwjS2c7g627WnIQ55Uqni2j+RgXFVMjZ6tzD\nLWMF4SoFLGc1voOmWSn0wjh/vu+CTnEaK1WIFSvYEYP3l4zjQHMOyz8Zhra4gKxNbqywwZq3h+Ov\nE9j9EyiK4I/VU1ndPpCH3plNYMch16U77sepYmeC0Taw60dQTcG4wjq0sW3k7LLwvhIgtTUAmiAc\n8tHQEqCxMQd3XoKGWBbLGoezsa2MK4bUkJgeJlEM7qDG9pr+/OHd6bz/6lgSls6kwj38ds0szl51\nEzv3FWHlmhguk8neHXx119mcu/kS7lh9JY3rS3C1O5Pg4DiFaJmgZTSEB0KqyAQBWouBMGzUlOPq\nmJwQRXVbRJMuGmLZXNLvI3x6ir2teTz2ziw+2ZsZX3wyEBlssvzp0z93IfV04HMGq0v6jI4464Wh\ngSyouYy/J9OY+/zUtQdoDAao/ugUsBWECjHbhemBaIXJhH77aV9fwO5IPrX780nFnL6qoz9XbPhR\n+csUuiO4tjsdUqyf4Ppv/g1wagdfuOVCvvLQ953d1oNDV7ykq1+KF4seLsCH4/xPLmLUwDpMr4Ll\nzhwHE/ka6SwVd5uzI2mnVRSPheZP4/UlsdMq6RyL7H5h7IBJaKxJpL8glWsT6a/gblVQNIGhWbRE\nfbQn3GgxhViliVIRxbPdQ+5qN/kfpwn312kbpNEyTCd4mo3pEwiPDYqTAMeIKBjNOlpCIZUnEKoz\nHtk6pPZk4VnnQ49n3kemTyVcrpPIPbgTWOio0u47pCcbV+8667DPeVqc6993saBluE7rKTrpMVHs\niEFhdpRU2IVWGsfONVEKkqSafCSKLcKDbJpHayTyVBKFCrauoKQUtISK7bFxT2wh2t+meUaKaLmC\nGBLFN7aVdEka/zrHRm1DoWGSRusYm0RlCjtioO3w4n8pQPZ7XrJ3g6fNJne7ieU+uGirO79L2tdT\nknQ81/G3g/sfv6rz/7GXbmbixRszSt91vl7r/X9PUOF3v7+ETd9dSHRU72EbrunBjNqfnuZD7otC\nQeGgFpSD2fvFPh++DV60nc4ENOfsep7aOwkjpNH4eub8WTUdD7XOz3IfR3e8k4AvhJvuy9++j4FG\nFj9pGsmzz8zia19dzpNPn/MZrz46kvk2SlkCZY/3UzPjdideZuFqUTtLncSHJlGbXBkB1P3O3k/9\nm/158JuLmP/KtRlJllI5Astvs/OKh7m/ZTCPL+69PMkXmURpGlTQ2jWMcGZH0THp/s/r/siCRdd0\nHo8NsPDt6/oeknmi8zvzTW+ibW0hRlQhlSsQOC43iuk8f9rp2/j45WFYLkjl22hxBbMsiWbYnHfK\nZpbvHkoi4sKbnSRR70cvjDv1MlWnpIzpFYhTomibs0jl2uQOaSH5XmGGmzfAlMtrmBTYRYXRzC/3\nnMvo3Dpe+8vkzozNnzeB0UnBlBD6stwMoXk0CN1Zve8+4Q4PFGTvOky2WY1ed/M6kwMpdLYlXgLe\nBkjlOGVZLA+ExyTJzY+SWJtPeliMByYt5ie/vKbnGx6k/RSbgvUK0bKuTLqmD9b++2855U83oUcV\n0tk2/lrViXWNgR4V6HGIljnZc/WYcOxFdNlN6yin1JLlt9HbNXwHHNGaDghytnVdo21AuNJx5+uo\nCRovUUgUOP8rlrODpqWcyWKqwAJdMGboPi4s2sDCrTPwvNDT/Tg0AnK2QutIQeWrmQOX5VFpHmkQ\nGZHCvc9F1l5BuArU4RGSjT6EftCgDQFpR0xrOWlUzaK8oI0ib4SY6eKT1VVY2U7SFVdIQRGQGBPH\nSmhcMHYjLSkflb4W3qkfjGWrtLT5KclvJ9uVJNcdZ0uwmLSlEYu48fhSlOSE2XOgAJcnjZnW8a31\n4m4VxPopnHbJRkrcYSZn7eD98BCe/+hUiGvgsnlgxrPc8ca/4t/95Ul130GHmy4c3tX1ZOafzU0X\nIC0sxj78Xe79+u/ZkiylumUQumrzUV0ZZlpH1SxUVTgLp61uhM+kvLQVgPqWAMYWH4qd2acmCgSK\n5fS3rjaFv9z4AA1WFo/Uz2TN3grHpV21EbaKusOLO6SQCgAjwlim5nSpBzz46pxxuyObfSpHkDux\niYpAKzeXLWeGx/Fu+L+bL8J8uwA9KsjZnTmpbxuok7PLOdZeqRMaIbC9FqrPxI4YKKaCcNmoPhPN\nsLDSGnZKQ4k4otHMsVATTgiOEVawDcdzyjZAizvx8LauYPodzxg0gWLYiKiOnpNCCAUrpaIFXRhh\nBTUNZpYgnWODDajgOaCRs9PG09pzsKk/w8D0C8wcE1eTftK76X4axWttFOvguHN9iOadebibNYrW\nm6SyVZrOSyJaXagFKfz+BLZQiAT9uAJJLFPDcJkkmh1hqYecBVp/rROiEj0lhRLT0KIqVrZN9naN\nnJ2OXQhNYf8lJkpER006iy9GRAHhhLNYbse+O8K5bB189Y7XUW+/WQexIo1oueLcG92mGPrUFuJJ\ng3RS73TRHXbJVmreOwXPUWZJjwxJk9evnfS7BbimBwm1+aHRja9eJTI4TdbBJJgd88NUQHRunH0a\nqdMiFOVEaI16O2uOdifrrAbCb5cgJrWR2JeNFj/5dq2uPP89Fi+dekTnfpqb7hdi2Lj44TvZdPNC\nnn1mFn+8/ld8/cNvogD+qU1E3ytykhXZSo8sWh0cKjTAmSB27FqKCe1YQR++jZ8d8N0db50zEepI\nSe3d6iZRbAMKyVFx7FYXda05qMDtj19Hdyfe+PAE7p0ezALnJtsT/3x1Rvsaz4FP32pOFNks2HAZ\n2TOdmwpA+EyEqnUKOleo63eLrSwiNSiNts9ASQMGaDEVoTmrTh839iM+Os6g0iB7GvMpK2hDU23c\nmsn7B6ronx9iP7nEgz70qEra40KzncQEtuGk3Y/HXBhj2/CuziHZ4Hzv3e3D1qD6hXEkL9M4EDuN\nUNzL89sm4sfpaBIFotdsZ190knlOOn/9M3KzxHYFCPwDS1CWq6dYz9qrEKkSXXVHuwnM3oSobXSr\nz9hNiKYHxUlWqOSudjuLIAnwBRJEY25OP+9jPg6WZLjn9IYWV1C/0kS8KYC/zskqoMdh0OvX4W3t\nEKgK0TLwBEXnBDCV46y0Z+1xdgaEBqkAnYI2sB0st4rlUfE2ioPuYUBd12eHqxR89YLATrANQSpH\nQUsKLMOZUArNWRizvAreJkG4SjBgUBOhuId7K5/nseZpvQrRpikWiqUw9oZNvLmxlxpqAmLj4uR+\n4CU0ysTVppPOsVDTGsJrEciPku1JEop5ibV70D2OmE23etiT1GnKzqIirxXP4HaiLV7MXIEYkEbX\nLcpyIlzRfx22UHmtfSR1kRw0RTAwN0idkSaWNtgdzCc3K04iZWBvyUJzQTxfpVERKM0u7IQbFSha\nnySRrxOuUilxhyl2tfNCcALziqtZWTyYqpwWVm8exB3vz80Qor318V80yi/YQ+2rlUd8fir/OMcD\nHAeOtLzaPxMxO8W9zaeijW9jXayKHxV9zPmNw9m6tx/CVEAFK2lQOCBEsD6Akp1G0wTRpIt40kDT\nbJL5NiKQRonoZO3WSBQIzLIUvkCCQQXN3Fv5PG22m6hw0Z72kJMdp8AXJZJyU1ubj+dg6I+rHRK2\ngqZbpOIGevfs9wd3XKfO2cCiinczriFfixBbV4ALeuyKAvjrDxav96oY0YMGYCvoLouUR0X3mGi6\njdedIm1pxG0V1e3EBZp+gZLUUFMKQnMEpHYwwZAWd9oVqXD6S6GCKyfpxDS6TSxN4HKn0TWbiO3B\nLk6S0ly42lQn7jatYPudxbzAHiVD1FgeBS0hCJfrWF4nC/nJXDrjSOkQogDBpmxyK9vIXh7Acim0\nD1TJz4sS8Zh4XGnaw15EmwtU4cRzJjQsdNSsNIoCpibw7jU6F219211O7W4FEFpnbG+4XCeVC25/\njGRSQxz0MEvl2wifRTKlggAj5MStJkottKiKaqqYPoj018nbYvVIXmS5nXwCWtKpK5so7Jbd/718\nDCA5Ikl0dAJjj5uUrTNt1kbWPD/mU7+jjrwdHRl1s7YbpLcXkPZDckMB3nalM9lVVrcShR193+GE\nqGWAMCBRmSRrsxtrv4/GnX5sQ+DuZQyLvFWC6QdjVQ4+yNiFPVkImUenqw5Hn+6MSiQSiUQikUgk\nEonkn5MvRMyoRCKRSCQSiUQikUj+uZBiVCKRSCQSiUQikUgkJxwpRiUSiUQikUgkEolEcsKRYlQi\nkUgkEolEIpFIJCccKUYlEolEIpFIJBKJRHLCkWJUIpFIJBKJRCKRSCQnHClGJRKJRCKRSCQSiURy\nwumzCsA/+9nPqKmpQVEUfvjDHzJ27Ni+aorkS8R9993Hhx9+iGmafPvb32bMmDHceeedWJZFUVER\n999/Py6XixdffJE//OEPqKrKVVddxdy5c/u66ZKTjEQiwcUXX8z8+fOZMmWKtDPJcePFF1/kscce\nQ9d1brnlFoYNGybtTXJMiUaj3HXXXbS1tZFOp/nOd75DUVERP/7xjwEYNmwYP/nJTwB47LHHWLp0\nKYqicPPNNzNz5sw+bLnkZGLr1q3Mnz+fa6+9lnnz5nHgwIEj7svS6TR33303dXV1aJrGPffcw4AB\nA/r6kiTHAtEHrFq1Stxwww1CCCG2b98urrrqqr5ohuRLRnV1tfjWt74lhBCipaVFzJw5U9x9993i\nlVdeEUII8eCDD4onn3xSRKNRMWfOHNHe3i7i8bi46KKLRGtra182XXIS8otf/EJcccUV4rnnnpN2\nJjlutLS0iDlz5ohwOCwaGhrEggULpL1JjjlPPPGEeOCBB4QQQtTX14vzzjtPzJs3T9TU1AghhPje\n974nVqxYIfbu3Ssuv/xykUwmRXNzszjvvPOEaZp92XTJSUI0GhXz5s0TCxYsEE888YQQQhxVX/b8\n88+LH//4x0IIIVauXCluvfXWPrsWybGlT9x0q6urmT17NgCDBw+mra2NSCTSF02RfImYNGkSv/71\nrwEIBALE43FWrVrFOeecA8BZZ51FdXU1NTU1jBkzhuzsbDweDxMmTGDt2rV92XTJScaOHTvYvn07\ns2bNApB2JjluVFdXM2XKFLKysiguLuanP/2ptDfJMScvL49QKARAe3s7ubm51NbWdnqtddjZqlWr\nmD59Oi6Xi/z8fMrLy9m+fXtfNl1ykuByuXj00UcpLi7uPHY0fVl1dTXnnnsuAGeeeabs375E9IkY\nDQaD5OXldT7Oz8+nqampL5oi+RKhaRo+nw+AxYsXM2PGDOLxOC6XC4CCggKampoIBoPk5+d3vk7a\nn+Rouffee7n77rs7H0s7kxwv9u/fTyKR4MYbb+Tqq6+murpa2pvkmHPRRRdRV1fHueeey7x587jz\nzjsJBAKdz0s7k/yj6LqOx+PJOHY0fVn346qqoigKqVTqxF2A5LjRZzGj3RFC9HUTJF8ili1bxuLF\ni3n88ceZM2dO5/HD2Zm0P8nRsGTJEsaPH3/YWBVpZ5JjTSgU4je/+Q11dXVcc801GbYk7U1yLPjr\nX/9KWVkZixYt4pNPPuE73/kO2dnZnc9LO5Mcb47WxqTtfXnoEzFaXFxMMBjsfNzY2EhRUVFfNEXy\nJWPlypX87ne/47HHHiM7Oxufz0cikcDj8dDQ0EBxcXGv9jd+/Pg+bLXkZGLFihXs27ePFStWUF9f\nj8vlknYmOW4UFBRw6qmnous6FRUV+P1+NE2T9iY5pqxdu5Zp06YBMHz4cJLJJKZpdj7f3c527drV\n47hE8nk4mrGzuLiYpqYmhg8fTjqdRgjRuasqObnpEzfdqVOn8tprrwGwadMmiouLycrK6oumSL5E\nhMNh7rvvPh5++GFyc3MBJ66gw9Zef/11pk+fzrhx49iwYQPt7e1Eo1HWrl3LxIkT+7LpkpOIX/3q\nVzz33HM8++yzzJ07l/nz50s7kxw3pk2bxgcffIBt27S2thKLxaS9SY45lZWV1NTUAFBbW4vf72fw\n4MGsWbMG6LKzyZMns2LFClKpFA0NDTQ2NjJkyJC+bLrkJOZo+rKpU6eydOlSAN566y3OOOOMvmy6\n5BiiiD7a537ggQdYs2YNiqLwox/9iOHDh/dFMyRfIp555hkeeughBg4c2Hns5z//OQsWLCCZTFJW\nVsY999yDYRgsXbqURYsWoSgK8+bN49JLL+3DlktOVh566CHKy8uZNm0ad911l7QzyXHh6aefZvHi\nxQDcdNNNjBkzRtqb5JgSjUb54Q9/SHNzM6Zpcuutt1JUVMR//Md/YNs248aN4wc/+AEATzzxBC+9\n9BKKonDbbbcxZcqUPm695GRg48aN3HvvvdTW1qLrOiUlJTzwwAPcfffdR9SXWZbFggUL2L17Ny6X\ni5///OeUlpb29WVJjgF9JkYlEolEIpFIJBKJRPLPS5+46UokEolEIpFIJBKJ5J8bKUYlEolEIpFI\nJBKJRHLCkWJUIpFIJBKJRCKRSCQnHClGJRKJRCKRSCQSiURywpFiVCKRSCQSiUQikUgkJxwpRiUS\niUQikUgkEolEcsKRYlQikUgkEolEIpFIJCec/w/EFIsmQzdgoQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAEHCAYAAABbdJDNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXeAFtX1/j8zb2/bd4Glt6V3FBUQ\nxQKosceS2DCJhVgSo0k0xRS/iYmJNaLGRI1RY0NRUYqNIirSe++wu7C9vL3M749z33l32V2KIpbf\nPP/s7Lx35t65c+eee855zrmaYRgGFixYsGDBggULFixYsGDBwjGE/lU3wIIFCxYsWLBgwYIFCxYs\n/P8HSxm1YMGCBQsWLFiwYMGCBQvHHJYyasGCBQsWLFiwYMGCBQsWjjksZdSCBQsWLFiwYMGCBQsW\nLBxzWMqoBQsWLFiwYMGCBQsWLFg45rCUUQsWLFiwYMGCBQsWLFiwcMxhKaMWLFiwYMHCV4A+ffpQ\nXl7Ou+++y5133vmF7vXyyy9z9tlnM3HiRH7wgx9QXl7earlf/epXPPLII4e83xNPPMHEiROZNGkS\nN910ExUVFV+ofRYsWLBgwUJrsJRRCxYsWLBg4SvEGWecwZ///OfPff2qVat4+OGHefrpp5k1axYl\nJSXcd999n/t+CxcuZNq0abzyyivMnDmTbt268Ze//OVz38+CBQsWLFhoC5YyasGCBQsWvnHYs2cP\nY8aM4cknn2TChAlMmDCBFStWcN111zF27FjT0/jKK68wadIkzjzzTL7//e+zd+9eAG644Qaefvpp\nABoaGhg7diwbNmw4aJ3jx4/nySef5MILL+SEE07gwQcfNH+bOXMm55xzDhMnTuSqq65i165dAESj\nUX77298yYcIEJk2axL333ksymWx239dee41rrrkGgF/+8pc8/PDDTJ48mVNPPZXJkycTDocBWLBg\nAePGjWPSpEm89NJLDB8+nD179pCXl8cDDzxAUVERACNHjmTLli0A1NTUcO211zJ+/Hiuu+46Ghoa\nDtm3mzZtYuDAgQQCAQBOOOEENm/efMjrLFiwYMGChSOFpYxasGDBgoVvJGpqaigsLGT27Nn06dOH\nn/70p9x77728+eabzJgxg5UrV/KHP/yBp59+mjlz5tClSxemTp0KwN13380zzzxDdXU1jzzyCOee\ney59+/Y9ZJ0rVqzglVde4e233+aFF15gw4YNlJaW8pvf/IZHH32UWbNmccopp/Db3/4WgP/85z+U\nl5fz9ttv8/rrr7NkyRJmzJhx0DpmzZrFAw88wLvvvkt1dTXvvvsuyWSSX/7yl/zhD39g5syZ7Nix\nw1RSO3XqxHHHHWdeP3/+fIYMGQLAk08+SW5uLh988AG//e1v+eijjw75jMcffzzLly+nvLycRCLB\nu+++y0knnXTI6yxYsGDBgoUjhaWMWrBgwYKFbyQSiQQTJ04EoKSkhEGDBpGXl0dubi6FhYXE43GW\nLl1K+/btAfEY7t69G4AOHTpw7bXXcscddzBv3jxuvvnmw6rz/PPPx2azkZ+fz4gRI1i2bBkLFy5k\n1KhRdO3aFYDvfve7LFq0iEQiwdy5c7nkkkuw2+243W6+853vsHDhwoPWMW7cOHJycrDb7ZSUlFBW\nVsaOHTuIxWKMGzcOgCuvvJJUKtXi2unTp7NgwQLzeZYsWcKkSZMAUVqPP/74Qz7jgAEDOP/88xk/\nfjyjRo1iyZIlXH/99YfVPxYsWLBgwcKRwFJGLViwYMHCNxI2mw232w2Arut4vd5mv8XjcR5++GHO\nOussJkyYwAMPPIBhGGaZiy66iM8++4yzzjrLvM+hkJ2d3ey4vr6empoasrKyzPOBQADDMKipqaG6\nurrFNVVVVQetI02PTT9HMpmkrq6uWR1pSm5TPP/88zz66KP85z//obCwEIC6urpm92t6j7bw/vvv\nM2/ePBYuXMiSJUs455xzuOOOOw55nQULFixYsHCksJRRCxYsWLDwrURlZSUffPABzz33HLNnz+aW\nW25p9vujjz7KBRdcwGuvvca+ffsO6541NTXmcW1tLdnZ2eTn51NbW2uer6urQ9d1cnNzKSgoaPZb\nbW0tBQUFR/wsfr+fUCjU7Nma4rXXXuP555/nueeeo3Pnzub5rKysZnGi1dXVh6xr4cKFjB07ltzc\nXDRN46yzzmLx4sVH3GYLFixYsGDhULCUUQsWLFiw8K1EVVUVHTt2JC8vj5qaGmbOnEkwGARgw4YN\nvPfee9x1111cddVV3HPPPYd1z3feeYdUKkVlZSXLli1j5MiRjB49miVLlpgU4BdffJHRo0djt9s5\n5ZRTePXVV0kmk4RCId544w2Tansk6NatG4lEgkWLFgHwv//9D03TANi3bx/3338///rXv2jXrl2z\n64YOHcp7770HwK5du1i6dOkh6+revTuffPKJGZM6d+5cevfufcRttmDBggULFg4F+1fdAAsWLFiw\nYOHLQFFREbW1tZxxxhl07tyZn/zkJ9x444386U9/Yvny5fziF7/A7XZz1VVXMW3aNN5//31OO+20\ng96zd+/eXHzxxezdu5crr7zSVNLuuecepkyZQjwep1OnTvzxj38EJLZz9+7dnH322WiaZu7deaRw\nOp387ne/48477yQQCDB58mR0XUfTNKZPn04wGOTaa681y9vtdmbMmMH111/PT3/6U8aPH0/Pnj05\n88wzD1nXZZddxvbt2zn33HPRdZ3CwsIvtPWMBQsWLFiw0BY0o2kAjQULFixYsGChVYwfP56//vWv\njBw58qtuCqFQiGHDhrFkyZJmMaEWLFiwYMHCNwkWTdeCBQsWLFj4BuCiiy7inXfeAYQu3LNnT0sR\ntWDBggUL32hYNF0LFixYsGAB2Rbl8ccfb/W3Cy644Bi3piXuvPNO/vCHP/DQQw/h8/m49957P/e9\nLr74YhobG1v97dVXX8Xv93/ue1uwYMGCBQuHi6NO0/3Tn/7EypUr0TSNu+66i8GDBx/N21uwYMGC\nBQsWLFiwYMGChW8Bjqpn9LPPPmPnzp289NJLbN26lbvuuouXXnrpaFZhwYIFCxYsWLBgwYIFCxa+\nBTiqyugnn3zC6aefDkDPnj2pq6ujsbGxTbpP/zsfaHEuUpQir69sCB6aX3g0m3fMoSea/7/qZ1MB\nGPjwFPk9fqxbdHQRyTfMqOOEx6Cot+x7F3qviF7nbwagLuZh78cdm11n6JB0ybEeh4Q/JeedBlpU\nbmgPaSTd4rS3tZftBVKlHlIuOaeHdQybcurroMVliwM9CSmbnE5mJ9BiqoF+eRluf5RI0AmAVu0k\n5ZG6HbU2bGG5RzwrhXdvy3DqlFNVFzuSXvp6InK80PMcjiThBjcAdncc78fyrYZOlO0vNN3A7ZKB\n2tjoxuGUfkwldVKpTB85VRlNk3fitCeJJWzq3AF1h53NrgFwO+NkeyIAhOMOOWdPEIxJWZ8zht8Z\nBWBrRQE2m7y3An+QLJdcF03IdOaxx+nklX0d44ZOjkPGz2uzT8RVUi/P1+DixhHz5DjpwmuTe9sw\n1HU2sm2yp6NDS1KX9AKgayncmrS7r6uM2pSc7+PYD8DmeGb/SLcWx6kl5ZkNBzHDZv5Wq+7X0VFD\noU362qdJ3wYNO27zOpt5virlorNq5zn/dwcHItRBQxXFU/HNzksXCzQfNKtvk7lz0P1TvormHFXE\ncr/Z7+ZQsIW0Qxf6BqPJZ/ytRGBnZnzaYnJcPj7JKYM2ADB3bR+cpTJH569tPpYTLvXu1R97xDDl\nsZYCJR4wdPn/SJF0amabAKJZUlHCq+Erb3nDhFt+T9nApuR21RCDlEfu4dtuIzJc5vmTe2zhwyUD\npFBAybMqJ4ZdrUMiujm/AiS96nxIM9cw9qDIxJTDQFdrEsNG5jo9c2zYpJxUJH9SLgMtJv9oSY1k\njhTWQjbsan1iAIkskQ+2nBjJiFrGq8e3eZJ4fSITI+tzcNRnvsdwPzlvhOy480UuJuLygmz2JB1y\nRT76HDH21mUD4LAncdikvoaIi+IsKVMd9pJMyb1zlOzOdobR1UsOJZy4bdKPZcEs2nllzeG1x0ip\nB+7ozuy/vDucK/dwRHCpxXN5JEDfQGb/5+kvjuVAJNR7mHj2Yt575fgWv3+TkHR+1S34crHxdz9t\n87ejmsCosrKS3Nxc8/+8vDwqKiqOZhUWLFiwYMGCBQsWLFiwYOFbgC81gdHnCUd179epLRavgXNU\nHSzKPtrNOupI+AzTq3Y41r65P74PgFHzbsK33PNlNu1LhaNBI9JOHrjnwL282+8tAErqrmb5+m4A\ntO9STaybeHPcm8UDl3IYJLPF8pXUDbSIWOYctTbi2WKBI2hDj6o+3SbjwRHVSPhkTCV9KQxdjh31\nNlLKeqnFNQynOo7o2CJib9HqxeQU8TkwnNJmvShK2sjtLAoSi8l/yUYn7G1povKMEc/vR8OeZ/Az\ntwDgqvpmegHiyjscj+u8N+l+AE6feRv+vdL/2S+I63rX+SkMZf10OBMYhrLOGhqphPJG2w18bjE7\nN4SUy9ueRE+/H1uScFR5ozXD9J5Ggk5cXrGcJlM6kUTz6ag+4sKm7hFJ2Cn21QFgs6XomC3HjXEn\nfruMr2Bc6rDrSVyKdlAf87PgrWHyTGUGrmWSedTj13itaCgAZxZvMOsMKfd3J2c1AV2svctDXQnY\n5FhHw6G8lltjRSSVPS+gi5U5bthpSMk47+aoxKHM4BHDQcQQb0KOHmKoe4/0DSnqUtJnIRxmO3qo\n4bclrrEjKXNge1sjjgPdzEB9T/m7+YqplDxzIyCeRWfDt9sD921EnzHb2fhR96+6GV8qEn4Zl/bG\nb+bc+W1HLFvDWSfvqHqgvKMbTpjLG/8n++92AEJFaY+jgZ7MXJv2fNqicpBwa+gJo9lv8Pm8okAz\nryiAq95o9rcpkg6N+u7STm9ZhsVl2EAPyT/tF4fhUzm/vtNA9HPVPK9LAxM2J4byXqZSBoYSb64a\n3fRUxv0GGGlvpqrcrpneToyMN12Pg02tayIFqUz5tCe5UUeRc4jnJEGxvwxnimRSeV1zEuTki5cx\n4I5SViXyIRF0mG0PKrZT79ca2XGOyLz8NUk6vydyccc5bpztRTalPaPRoJNGrzxgtjNCjldkWl3Y\nTUjJb48zbno+AXxOuV88KfcIJZxkOaUP4ykbKdUvbnuCupi0KZK0k+cSb/TmxiL53RY3y0ZTNtZU\ntwfAphkklGu9f1YZrSHtTZyxYRDdz9gNQNm7nVst+03E+hum0uPV6wFwVX57aRlHVRktKiqisrLS\n/H///v0UFh4e1dZQE4WWAucKHwCDz13PL2/8NwDfe+y2o9nUL4xYrkH342TgJwydUfk7AIim7Mx+\n+YQW5Vf9bCqD/y4Us4R8k9x95cvkjJKP8mfTrsZT8fUTzudeuQCATyplgVQxs1Oz33PWSZvvPW8a\nz9YXA/DsqKf45ZaLAAi90IHBk7cBsM7ZDgDHSj+e3WrhnRJqNgjVV1MKjmGHpFfOpxTdBa9hKqi2\noE4iOyMF08YAwyEUX4BYQQpD9BRciqqSCKQYPWQTAJPyV/O7pd8BILoly6TP2LpGWvTDqEtX8reO\n78m9NA8bJz8GwOC/fTNpg5oSckUdqvnNHumDXs/H0ePJZuVKnoSyX4rAiYSdpjKaCNvR7PJ+sgIh\nUwlNKmpuwpE0hWewwY1NldVtKbxeeSmJpG7ez6anqAuKYcbvkd81zSAUlXGS6wuzq0FYF6EyP1t2\nioA1HAalulBjvbtlOsuetNkUcg0xF+HO0v689RkiSGNnnfYPyv3m/KQvvXOEwdHBLRSkLZF2ptLp\n0DLKrVeP4dZE8bZpBkGlSK6LdFK/R+noqAEgZtgIGiIp3VqcLKXcNqQ8dNOEnrQu1o6kmvz6O8sB\n2Bgv4nuvfR+Anq/EqBgm/XLOtQsY49/Egdh8xWPmcWCn/K3tkyJ/oNyvYVqHFtd8HZDwyLsPdpSx\nmL2l9XI3XPvWsWrSF0bsOFkkOhd/vky0Gz/qTqxIJiLn/m9nsvtUV1nk/mrEW/zfs5d+xa2xcCC8\n+zOaYv5q+bt0XBcaLpW5MbI5m8JlUiZcoJshN/69qRbKoj3SukHM0DMUWj0OtvjhG85S6rNIOjUc\noZbXhQplPvVWpMhb3/J3Iy+Gba802l4bIZYvxu7s9XX4d8l8vXWKyDHDkcKWJXN/qsppKrQpm0Ha\nkm3YDXPNYULLKKiGDRzK8JLwGCTd0ne2SOaaNF3XAFMx1WJ6+hbYgjqOeqk84tOIxEQujmy/2wxr\nqS7Pk35x66Qa04bNBG61JK8cohPJlXmp24wGGkeJnG2oF/miO1KmvC3XA6ZyGI46yQtIKEk8aSOk\njL42PWWGzqTPRRIO3DaZvxx6krqoLHYDzij7G6XuIUWlFDhlnlxU0Q2AmlAe+twcADp83EDaBVXT\n18+6s6Xubv4qWoXqI/dqD6MG7ADg9B+9zU1P3tB6+a8RVt78D4Y8clOrv62/QUJT+j0xhZ9f+gYA\nG8IdmP3GN5uK3BaOKk139OjRzJ49G4C1a9dSVFRkpYe3YMGCBQsWLFiwYMGCBQstcFRNr8OHD2fA\ngAFcdtllaJrG3XfffdjXtkbbWPVmP+49V45Tjq9Hwp90EhstDpv3iPfFu85NyWThelyTtZ/ZtPSM\nDv77FDOBUdpD+rcnLzHPnXvVY+b5rxqxbEWrSWoUOBoAsXKl4TpVTG2pN/Op6y3n2tliVNmFOvmn\n3Wez72Pxkv76zpfoaBdP0Q37xNsTGRDGuUmscfHczIt31mkk0wkH7AauCjE9xgMqwZEdkurY1qCb\nyY70GKYVMulIoSkqo61RN5MPRArk789Pm8H0cqFn/nXqpSR7y3OdNm4VG/8syQtSw+uopzl9etFL\nQ9h+8wcAfP/JKay9Sd7bqtun0vP9yQBfS8q1MVY8cB+OfJLxDzRJeqOoNg1hF3tsYpFMtnfi3y1e\ni6RbpgZbJEH7+8SKvHOSh3h7+Qht3oRJ340nbTgc0o+xkHwgUc2BrpIMOd1xEokMvcRuy4yluDpv\n0w1cjoQ6Vu9Yz9CAqoNePDOyAMh1QN4GRaeKNvfkAizv2ZXR/cXNlu8KUrE1nUArSahAxkzOphS7\nz5Bn7H5vFit+Ku32dxSvZydXjXm/Mf6NrAx3ledKOdgVzwdgoGcPWYqeG1Fu9eqEn4BNzo1w7WVt\nTOaIoOGiIiHt7+sqpTwp7I+AHja9q+cvEkuuZ6GfLlvkuWv6uClaKuyJ6d6x7D0/p8Xz3l/dA4Db\n8rY1O392sbg1/tmjA1nbWlx2zFHXC3y9ZTwmFuUSLpZ3590jY+C2217i/vsvaXHd4099h6Y7f6YT\nAKUp+ylXCv/Wr96LuPq2qUzccDYAe/n8Rthvq0c0jWStfGvfD1Txf19xWw6E6/hqop/ltTj/yLVP\nAHDzU9e3fqGOmUDm24CYL5MQEGDNzD70nSBJCcf0/pTpQ4YAkHivA429ZK5yNNhNT+WByRsPhJai\nVa9mazC05hTf9L3T9N8DkQ5PqBiuUbisFc9oyJ6hxwKnPrgQgLm3noSjWuZurVx8c54anbEjZR6d\nUz8ILalkXk4KXSUaSrOyAPNcyplZrzZLeKU1+d+gWTtAwo/S7DAtCZ6dMhcUrEngrhA5kHTbcdRI\nJywfOZiqMSKzAj1U6Eq9B29RMN0iQifJsd8XYfREEQS7gnlwu8gm/ScqEZO9iVxO6kSVx9XpSOB3\nSB0VMR91itpnt6UIJ6RMWmZHEnbKg8JaynGHcSpZr2sGWW7xom6uLaTMKbIwTTHu+UCSmn6ZdxUp\nkDrifujxdzn/8e9aD1+Yc5mEvX3nsZ+bCY7uuWV1q2W/Sqy5ZSqDP7scgNSnwsqyaTprbmme2PRA\nrL9+Kv0el9/W3zAVblgCYJ77OkIbXE+4StbD7r2OQ5QWHHWpd/vtt3+h69fcOpWBD2U6edWb/QAY\nf/FS3l4sE6Bv57EV1tE8A1e1mpxVRjY9puFY5zbL/O3piwG45taph7xfmuNui2EqMr857m18p0vW\nsOB77Y5W0w8b0RwVe1Gr4axT9LlhYZ566iwAGkpkZt3+s6msjcmE/f05P8OmaDjrYrmUJuQDOyV/\nE+t6CzXwrcohLFrdC4Bbx84B4Il1Y4n2FGXCscdFMl86NZ6XQkvHdVQ5iRQrxachTZkxzHhPw6Fl\n6Lg5KWwqBiTpTWFrlPJ6TDOVp4uHLgXgL/PPpvMsqSObBJGTpB2f7O1GcKKcv6bDBqbRvkUf/avy\nZKnDlaHnrrp9KltPexqAXvpkvEu/eoU0mmcQ7yR9qqvMtQU2H5dcI8r0vxePgbj0V6jaS+dcURC2\njdDxC/Ocrd+TPix+12EqqN1mBNl0jYx5XU/hVvGeLnvSpOnqTiV8bCniUbs6NkzFFRtm/GgioZuZ\ndlMGhBVFSGuy8qgOy32di/1496uMyJUtadRN0fupOI77pR1JQyN/rVxXOsZmLmQSPh1lZ0GLp8h5\nRgTorAv6A3Bqn00EHFLP6khndGUtG+DaS8AmtOA8WyMVSRGq6Qy7BfZ69sREWQ2lXOTZhI60O55v\n0ncbUh4zlrSHvY4z/ydGAv9utbiJGYQKpe9SDogUqDjWd+t4XBlETmKg+byPfDoegNvOymicekLj\nsaXjABg5ehNL2osynfux66B992UgqGwBt5/9Jn/94BwAvCnMRVeadvf9QBWvfE+eYetbPdu8n7NG\nrus35tBljwV+MPkd83jvO13N48YBsvjyrz32ff51Qzyg4scbNDx75YX3f3QKPc7YDsC6VV1w7/vq\n46Fq9weamSHTisNpnpZGr2b4hiii62+Y2uoiVh9SR2qlKAYxv2YqSXGllPrKDFYuk+9sTaQXPzpH\nZPnz0Q50+FA6qa67RiRfygd2qbCMJtntAZNSqSdM+zGaAXGvMiY7M/GfaQdF0qlhjx5acc27QWIU\njsuVv+sb27OysS8AuZsyL0iL6aZTAeB0/1oAXhg9no4LpJ7e/xXFLlbgZU4XmWtziutpaJTRkQzZ\nQeWYMOyZMLO08duwGaTsaeHW/Pd0qBGAXVF11VSI0aSsLaLR5Z2MUbR2gLyfnLV15nHhklqG/EiE\n9oZaZfhsdJvhL9UD/JzXRxwlr64czqygyLeC6R58Kgt9rwdFFu06M0B8kMgrXTeIRkQee7xRU+ls\nH2igPppZ99rThmP1suKaDbdT1h5OW5Icl9oJwdDMWNI1+zpQG5J+7PmADLTq/n5qpGnUnKWRjEub\n/EscbLpKaNSB9wLQylTa3dHS8Dfw4SlcfYWwNId7dnDrk20YkY4BCk/bC8CjtZ1NJTSNgQ9PMZXR\nA9Hnacn/kA4JA1FA0/Tdu7//PwB+//zlR73NR4JIsVqXlWb0MmN1Fq9e8yAAVzz9k8O6z1Gl6Vqw\nYMGCBQsWLFiwYMGCBQuHg68dH+iufYNbPT/31RFsV17Hn5SNBOC9l5sH8n7d94FcGlXeqiZGVt8K\nsRD9seJCtl4mZLQ+9Vfh+uzYxdre9MPpPPTs+S3ON6WdBjZlXO0DnOq8ATZFS7nxkyu4YvBnAJS4\ny0nWKauaLc6Jg4Te81mt0CzczrgZEF9m5JrZ41JBh0mDMTwpUJlUPT3V3leuGPUhscqVlFSwvlw8\nyEati6SyBOr+OIZfvFQJQ+OBE18G4KEdkgnQUW0j6VBW24RQIgGSp9aiq8y7dxeuYxqntOiPf3Rc\nBEDP7GE466Ts4L9N4a7rxUK18ZR/M2xp68HoxwKRQpVp2G3gWycmxHRSphLtajaN+w8A73fpw46t\nyvvuSrKnVqifiUCKhE9Rc7LFq9P1J7up+lkmM13JM2Ld3Hqxl1Cx2hcUKMgVN2PaIutzxti+VzyI\n/qwwXpeMfa8jTnm9eCETcZu5T1k07jCpvIkm+5e61b6nRUtD6ImMdbu2RGiutb3BVyrnCpervVFT\nTfbJ0wz2X62ox0EnWplMEkkXdFgoz6jHknh3yrUlYsxj0W+6ckpnofq2t9eZnsxd8Txy1P6jG6PF\ndHZKUoUdMXnW9D6lAMX2GsoTYsHu5qwgX5c6ypPZdLaLN/rMl+4wkw7VjJQ+6jDHTuVQRdVKQNGn\nKnlErhuX1pLykrdYnTsLGtWr8u/S0PuJlXvxhu5oasxXD0mSt/LYeaD+/vMn2BQTlsHfV52Oo1be\nravWIOmR45hiZayPhZjeW6zZgzg0BSntES2YsJfK2R0PUfrLwcs3/Y1+TrHcH7gHqn2/ylidZTTb\n6+//RzjayJy77T2RCVd/dy7PfDwGAM+eY7ssiRSl8HcVT9jqkU9zfJNkiQfSKL+piPaQua4tap/L\nkSCsjp2NmTnMEc5kxc3eKO+w9sQoO8My32WdXUbkBfm+s7enqOuuGEpqv1E91DzbbtrrF2ynm4mS\n4h6NqqEqpKPGhquuuRc05QBUIsKYT8MZbOklHfuLT7k8R+TzYxWnAFAfc9NujAiHMlcH8tZkrku/\n190Tc5nZIGvO5KBGdnpFrvR8SWSbszJEx3cVpfSkHPJKqqVNWVDvk+/e54uYMsutQk2qKgMkVRiR\n5kqRVGsZtzdGpEzq0GMaUX/a/avWPa4UThWe1OPVWur6ivzI3lBHfVe5X9WgHPy7Ms/+8W75hs7p\nuQaAV/eOSHcX0dMivPrZcQD4t9nxqf1h416N0rGq/aXSti5zGtjuVvuMd4uQUtl5G6tcNPjVjgae\nuOnSdroS1GmyHmufJfI/HHeQ5xb5GEw4zSRIdi1FMKFkb1Kn619V/58ua4HooBCDO4kHceXOThg1\nKmymLMXVP3oXgDdnnUbloMOjfAL8c8aZAGy+6rFDUmG/LPzlh0+xMiRsmftnnc2R8OaaetBbw2UB\n8ZrfM7SO5IqvbteRph7RNJIegx1qz/W22BgH4munjM7a3c88jhSlcO/PLEzT9N01Sint3nMYvq0y\nOFN2iOYpCmduvEmmzzDxj1WWMRdEOomict6I5QC8v6sEY5GKw2oyx8X9BppaKBtt+I+PVPkd4XK2\nqCcN316dH+0eDcDGsc/Se7u46A+VYbexSwr/roM7uNvaYLpxkExZf5l5Lj71DI1dk/h3tr1Y7TX3\nGrac8ox5X5ua9VJhO8O8sqq85XhqAAAgAElEQVSeWTOIju9Lu+c6+6Apaq0vIBN855xaGh+S7KOF\nARuh9oqi44J0qJ6W0qkZKhN7XKUe37c/l/wlMmR3OrPQVaLmXmN3U1qbZZZNKHqo3ZnkttkSp+rb\nJffwNxhm5r64RycmcyEndtjFh6UD2nzupth6yePNsuie7pVtOmyaj1W3q7jgY5xlt6Ff3FTeXXuc\nzTbnBnCu9DGxncSz/a3XK1y8VZRmhztBgV+UnYYucexBES6xOlFmVy3rh3OY3Det7AF0fSfO/ptl\n0EQjDsrLFP0knflYh6y18m06alxUKSZlud/IpLEPaRhq8/FYcSqTHl/VEV+ci8uMD8oM4ITPYY6Z\nWMcYiYCKb42KkM9bFySalHP1cTf5yvBRvSqAVwledIPq/vKM7Re0pP3GNmQxKyJz0QJvD+r3iZDW\n4jqOGrXwqNIIFStaVnqxUamblPfcQZWc1F5oiA1xNx3csuCtT7j5y/1XSB/01oiq6afPP2Q5uOfM\nbFyy5iFSYFA7QMXgrG1o0c4DcdMFQhl9/LmzCe2Xb0JzpEx6bvXwBO4LJBwg8nomHCC9eLRFDWIB\ntdhoMAgXyLGrRi0KaTtDZmvobK9n8uwfApC30kaoXXpONfDsU8aTk2Xx8mjFqabBpy1ceOU8Xvuv\n0I+DA9XkM7ujaYhxH6OM5D++VrIb9nN6M0qoDsHOssr17bRhdFabype5TWV0yIXrWPxhv5Y3PAzE\n2onscu47/AXZ1wZtDRl1/rlZ49h+pdDR+j96bObOyZeL4WPqgtNILJb56/jFX6+s/UcDh7MYrN2d\n04wBadJK1V97xMCupsnAMjczK2W7LMMGvnZpaq5B9vaMgglC+W2q3KbXIb59mfncETZo/3H6u01R\n3U8ptG5F7W7UiAXld39p5rpgB53kWJlT/9JuBfdUShjXnGWDzDLeQpn7c4dVUBstUm1IZeLNHTDt\nBZlPTrpgNQu3CyV3zxkyHjq9W0NgsxjDQwU5VGbLnDqk1252KgU0GHaSSm9touL/jbANXGo9mtRM\nmVZSWMFOpbDWlgdMbuKo/lsB+Gxpbzp/kFYlRQkFqC/JItRLxYauc5oyI9g9QOHzcnzfVFnTvsoI\nM/7TZjPo+rDU19DNi3+nzLUVI/zkr5fz4Ty1tUu+m+5vigFz+/l+89vs8EkCXcl1Z41B5mNuuu6U\nBuUDW04TYR/skgC19iOm02GelO+6LUjZSSLTQr3VwjNqMym/qUYH9rCUdTQm+LhGciI4a+NAy7kv\nrWBGBoVxr86oe65azfw9rYx2OGP3YW/7cmCs8pHgpRv+Dojj5hf/EkfIoRTRpIu258km6D79OgC2\nn/9PAI4r3oWu1iEfv9PcmRctlHGQzr9yrGALafzfhkkA3Gc/PIueRdO1YMGCBQsWLFiwYMGCBQvH\nHF87z+j84f/hhIVinWzqFW2KN4NCGbj5pPf5R1hc8d5SHU+5lI9GnbhUkouYzWNapWxRTE/qe1tb\n7tXjHF1FvQpQd673mh5Po61eOkKryalrzwMyCTsS/kxiJIAzcoVmsTQaY9plDwBw+RO3kRgq1qrW\nqLtNvaLBoWGT9gsQLlIN1MCzr7nHYMatf+X0j8Wi5N7rInmSWODYEzjoM6QqMsHr0XzDzCTn2eXg\nrSrJUtvdW4nnLkkYVPrxCPIWSZ+fdL1kOBvp384fRgt1IbBDM72ruZsz7rzdZxksmiScyXNXXw1A\ngy1FQ7cs1RCDdkvF4lKzp5NpdXK6NdpdKB7ajVuL8ZaKRWjAeRsA2PBiX/acrihEYY3OQ4UaMu+j\ngdjjB/eqpL2d+ZP2Njt/wnzxMm459Wnz3HO33M8VD7dtZW8cEsG3RvrSsDX3rqc9UP5x+6VsxIX+\nUes0jPQeb2gGgbXOVsuA3H/TarEI3q2fB4q2GQ862J0UK/DpJRvYgaRHzv9MBmlDtyaJGJrAHopT\n/Bcps+kaF85cMZvHalUiowYbgd3yfho62XDIEKZ4fgxHY8u02A3dvJRPkk4IrxMrqysGRUsbm/SL\nvMuyk1ym5zArL8jxA4SztGF+JqlPRHlG7VqKTgGhxFYP8ZK1yK36TSfua9sW1+OVevafIGPNVevG\nrzI3hopsxE+TbyXvCQ8ORWVy16gskvEEnn3SF9pLTjbQB4Ctl2eRdEmZkmcacLWXvvHv1vBUyXH5\nWHnH4Q4pjDw1IGodplXacDW3bjZNAJLGzSp5x1QH5H0mbavrbRCfJH3gXJ1DmUved9NUCulN6mv7\nGFCk6NflLpK58q6MXU7syjFeU5LxTgS2qCQe42pwzJT3FmqnYRsqfTTpkynYslVm4P463jLl/U5B\n9QnK0r9YPNr/GNe2VzTNQkl7RQHcW2SseU6tYPWwV8zzB9JlW8PYS5cBsOCl4Ycs2xSrb2uebKJZ\nXSnxiKbhWSZyKtnEJP7x0j6t2PYPE/Fvr+24KY159LkrWfjmkC+1vu9d+gFv7JE6jhUt+KzzJJHM\n62uH4triPkTpL44V1z8kf6OHzq50zqhlvPvmceb/aQ9m2jO67wToNlAor5WVOZzdaz0Av243lz+U\nSwK1dz4dSvuF8h7T9F6ASI6cqxsTYUgXYRGt/rgXhSukTHV/DZ8SqfYw5K1v3l5DM1r1UPW+cBOj\ncreb/5cqd6G9Xr7B7I1Q10fm8IriCO1UEqOKoZmxpgFFy2UemtevBFcoszfogWj3SS1oUsfehT1o\nPF0xHxoc5r7pOVukDkdjispBimq61yB3tXhX69p1IVv1qdenU3qqokErL2un9w0zoy/AngkySycd\nQFLuHRwWhkrlgd2oUXpBc2qeZjOIK2aTVmEHRIaWjYNCtYY0NI3KQWrcp8lCCTsutZVn9+mN7D5D\n1oLhPDsVx6dp1H78KqwEPbOWLVoidew8K2DKiW5vGuy+UmRbrycy3l6A8IlKrgedZpsb49JmR04U\n506RCWUn2rmhSNaSfxpVwsEwZcg8nlo98aBl3u33Fr1WSNZ6d8Wh59O48qA7ghqxLMXk8Rh49sm1\ns6YI33ji1J+b19x41VtmKFvvZ29sLedSq7BFM8lNm2JOqLnEcJdLpz9eK6Epo7K28cTmsa3es6lH\nNM0K/fO4V4HmiY8Mu2EmFDwY0t/F4YQvhJdIIsfwYYqtr50yesOuifx8ssT5/fGN7zZT1tK461/X\nABDqlGTbdyXOcuBDUwi3V27+nDjO9MeYlJgdaC7wOk2QL2rP7Ez2w1jCjnult0V9XU7YQ65L6A3r\n3upjnk+n7u5w5m5K3z+0679qlgyetQds8ZLGPU8IpfTky5aadLXLL/+AadtFyWv6/tNKiC0KwY6K\nDlLXfCR7+sgClAWZZefy2/4BwM/LT2ZkZ8nC1rvffmbukVRmWtnBR05R70pmqcyphgaKlYK9ET7a\nKXSKW0e9x2VPiiKWW2kQLpR+n7FGKAQz9EGkd/do6GZw3nh51sV/HEnCJfV3fifFicGfST1qQ2g9\nrJNU2XFHlOygeJIseHcE81m7S7L3Ord62P5JFwCyKjWGXyoK8OLpQt0JDkjgrJQvyh7SiP5brsvx\nabi/u++gz57Grn15+NRx45AI9t0tFxaDnQdfbPhXZn7XkpB1ZjkAFXV+XItEYFTXy1jsmF9HFRll\nNG1ksPVoJKom88DqQ095/p3St2v9HU0aOw0OjKhS8sLZZrZce5YIxJx3PfhLD85DL3kmwu7TlKGk\nhypbGGX/cXKv/JUpsraHzPLRfGlrTS8HSdUNvjID31r5p3h+RgE1r8lzsWuitN/wx0g6VWyroTF3\nnowrxwCVBbqdj25uJRwb81i9W7YZ6vSig+0XS9/lrLQTV3aXrI2tP1fRp7KAqByRhV2tD5IuKPi3\nvJdQkR3/XjGguFSGXy2eYtt3ZQFkD2nEctSc5ExR8nTmudzlIfUXgt2k7+pL5KPQYhq6ijfUEhpZ\nm6Qd9geqWRHNCPX0Ai2hKHF9FlzFxrHPSn/lp0g5VPzuXp1wXBZR8Y5xvJuk/+tODpM9v/k4dVXp\n6PvVJugn1BBdK9dFiuPkLRNxkWwXxPaZPGNaeMZX54BSeHNcMapWCiXOWauZ7zgeSOGqaULZq5d3\nGCrOLD7PWP8dWkNTY02jyuztV3Hs4Q8L6VUrWcm3nPo0wS6KKrvLxnlXLADgjeeaC+s5cxXNsJPU\n7d3TfN5reo80miqih6PwphHumMC/RfrOt9Nmbk1zpHBWS1vS2RXT2Ra/DHgH1hBak3vogkcR6cXV\naTnrePLHst3GkVJ2E37pW3sbMarhnjKQRnq3M7inGLHm5A/ig+kjPlebjwQnBSQG/e+nL6N78gcA\nuLcf/UzL6WybaUrj5U8fug/fnXFcq+fNLVoMqJkm72fiD5bI1iDAuCfvIFqghHkba1l3rQpl+NRD\n+QyhcPqKNOLKSJO3zjBjTRf9+H78ukwYn0bkvtf94+Zm9NyGzlJ2xaJePHLJdAB+sW8MsxfIOilr\np4pTjKYoFJsTFZ2afHOaZLsF+e6j2fJdnTNwGR99KvlIgm2EoLf7WOa4ur7ZJJVCiDdJtK/KGrtD\nzjUW2+g4V7Sy+h4etJS0f894OwXLpe66HjoO1TflD0m/BHbUN6svrdg1DombW9mlUg7wSd+UjrGZ\n2fyPX/5dQNGCFUW4cHkTOnSdTrBY0W3rDDoslG8hlq0Mt+EUDd1lZeOuipO1Q60rdfDvUNn15zcQ\nD6TzLuiEC5qrEIPO2Mh5hSsAeL50FP0V9TZGoVkmnuWk4HUZm2WnKiU3EKU6LHI1HrFToOrO2hok\n73KRm8EuKdPh1Br+t2Nkm7+lqbxrbpnKlssfb3auLWgGJAIZZfSBS6Sff/Gva80yZ34miq0OhDrK\nO2lvr6MsIW0ec8oac+15pIj3kTF167M/anY+vaZ46MXzzHNDJoizZSWZbamevuYRJj9zs/m/e4/0\n+Z3zZOePppL/cBTRSHECXWmWzprD0DAzzPvDwrfX1GrBggULFixYsGDBggULFr62+Np5RpeVdmJI\nlnjsWvOKNkV6s/Q00rTeiOFolrCntUyGG7eKt8QHRArVXknrs1qlUG1b2ZFLT/0YgHX0afF72ZzO\nRIeEWpxvC3dXSKKcyHGNuBdnqLcDLxTqy+zN/UB5Rs/NWsFLC4UG0/QpbE1YD7698tyrfjbV9LY2\n9E7gUHRHt/oN4Ka9JwIw/8UR5r6mG6qK+G2/twH4+aorcVe23e+fDn3VrEPLNkipfbUa+yTQIjKc\nzpt1C53XZii39ePEAnf1AMm2O6esL6XRfPUgBm++NwqADiTNfc0aO9kxlFXNo6i2i6c8yA93TgDg\nk1W9KftQntsWS7HoEaE1cwqMekU8qrEsja33SrKQPKQ9eRugdGw66UyGhuQIGfy3n3iVRizNWL5a\ng16asSk19XDuSTTSyZ55n+lkRj2myR5X/u2tB5EnXfD73pIQZYw7Qr/9Qvv1K0pNFX6CXaQvugwo\nozEq1tfFw1/m/bDc8/fF57JnU9FB64kp52pgrZOGAcrVZDfMfVzXrOhGz9flvKHLub3jNHI3tKTV\nNkXVQB8OZcGNNKq9RcMOusySQaolmpvGXFVyvv58cO5TiYZcGl3mtPSImtdUR8lfLlbbuhKdeBe5\nh21ZDn5FLSpaJtdXDvbR1S083k11RRjVYsmNZmvkLZXxVfhZXav1NPSSPg9saWTHBeL96/Z6PY09\n5XzBmhi2kIwlWziFPSR9E8tV+6HWxczsuHkbwpQfL+b//DWZPgx18eHdlUkG5dsh7e71P5l9tt6g\n4VGJGJomoqoM+XiqakzLRiujf6zRybDFlwHgLdNNL2TN4CQeNVfGc3XCJdJ3OYEQsSwVlqD29nPV\ngT6hEpDMkEFFU7LV22l3mTzYhtWdyVUZL9Pfqx7XaChTmRGrbfgUHTfhzXg1xaqd8VDkrpMyndXe\noiuiUapflsRmHBAtEOyskqDt0dEizW2o02/+Kx1s8o4fqeltejPjWUYLj2gambAFNd/0TNCuq4yZ\n4AdFePe27hHtPkuSMR1RrnP9c2bBOAQ2Tn7sqHtHz50kVNL72i8H5Sw7mnVEC1O42qDH3ZAjXM1/\n1hUDNa2WORTa8oimoTXIfPN69XCe6PQJAKXxPXxA657RdT+Wd/+97ad+rvakEekY5yJ/xuu1fcK/\ngaO/cX3GK3pkWPrDBxnxz7b3A2y3CNLf7pK/jSDyvRqzvu1xmb8CusY1g8Trsn6PZNj1L/GYIQBN\nw5o8lSm81wrttyHqIqkS5w2aeTNFC+QdVQ6VCwoqMhdGszWTjZG3RuPsrbJHc7AYjGyZIyLKCdfY\nVcNbosITFuWSdtEk/Slcak/bvA1xXBWydntr6VAKFQOm6yw5MOx6C/kl7Y/Tc5qc33KZA61W2py7\nOrM/qS0kE1/umhjB7iqDfE6CqsFSNhFIkr1O2pFOknQg0iE7mjMFbvG8ORxJPItEFhZ/WMPJAy4A\noLpOzjm8ceJqLebbnVmXdp/eiGFTYRJJwzyOB6QN+4c5SHiVJ3BAhE5/lvaXjg3QbpHcp7GL10x2\nVzFMw1cqxzsVS/XWvA389wrZm75iuJ/CZRmZXjpW+sAeMmhUhMQ+/85QkrfdJu0P5IYI5ylWhuHj\n1xtlp4eUK8XB/GdVW/MwuonA9O1oXbXp98QU1l9/8G8kvSdyvHMU7zoZlyk79HZUtSirL5E1Qqhj\nErJExj9dOppB3YUKOylvFXN7i87g29ySgzv03HVttsPrE7ZVY5ET1/6MPHLWNu+DpNfggc5vAjCm\npCvOTSLTm3pFATN0xt0k8+4lF80D4OVp42gLkW4yDjxZEYxVWW2Wa4qUwzAZUY6Gw0sq+LVTRksK\nK/jPcxMOWibYVxZTvg0uus8QF7ZXh3i22gpk3wEvqwmlNQ3nfnn0cLtUi/KgYpTUHOjZp/Pmiy0X\ngRGlgCYbHCwYI/TXybsmHbTtAL8vlE2Wn/1kNGdeJnz4W4o+IEc1Y1L1ZHp9KLQzpyvO9B/fB8DF\nD9/R6v0Silk84B9TSA9ZR04E9+bMkiktMOa/mBG6FWtl1raFNepLZORMOXcm/35aJpOmcRppZXZ+\nk8SjhtYktiKugfrWclfaKL9MFtvtX3QTWCAfxzSvxOiEN+XgU4aGXpO2sirYTdozxG4uXEOdE4wa\nIrSmjm4RKCEjzjXtPgJg2NhdvLRM4oWrTkpy0kJZMMVDTjrPTwuPFPWdVexjDzmnpaB4gRxX9bcT\nV3zbaI7GDVtkIR+OOlv9MNKxw49e+C/+WSYf7/KlvdBUjN26WC5nLxNhfHWvRSypkxk3TQk6EA0D\nM9zDFyrESPCGPQqplh/vHWe+BUB1ws+cclGwr9hxCs91mwvAY94GajvLO2zw+lrEj4ZHhvjVcMm0\nev8/L6awvUxM1bV+CMrA85bphNop2q/Kutd1ZpzKwdJJBauCtIb8NUGSHumcND0+1F7DFlFp7gf4\ncNephUKOjkOl5s//TMNdk1YywgfetgXy1kv9triXfSqbbrRPmMIXm5uQ8teG2a84uPnuIHtC8nw5\n6zICv75PgKyNLbPTBrZkhGe31zPl/VvTcTfZNHRXA0EzMFQca9e35JlKx/jNrUo8lU46vtdS6dUT\nrY8HXSm23f/tIqm2wkHLjAXPQzkU3bemxXXh9moB4Yvx+/4ilG7bdLW5TZJrv42wohC5y+xccL4o\nHC/OP8mkm6eNMtFcUPolpTsKGDZcsjxumNOb33aVMXjFkptoVDpjepLIHV5BYpXMJ969GmGVqNcW\ngdyThYJevrodaRtUIBPqxYl5ooz+Yfc51Kusy+79zZ/Rt1saeOlVH/DSVonzjNeIsa2nw8+0RhGS\nN+fu5GalPHZ/8zpcg+Udpz46OOV07NANLJ8mMcerb5vKhVvOAGDzm72bldNCKmvmEBmvd4yYw18+\nljnfv6H5NzfkQllorHyt/0HrPlJ8WfTc7ifuosgpY/7CLWfwWi/ZUuFoKr1bL3mc09adC0DZh53I\nGi0vOp7UzZwK++v9XHfi80elvqaI5aV4//y/AZCj6/R7/HYAbr/8Nc6+SBTT19cPxbmuZd7LLbUF\nh7x/evP3kt6l7JrXpdlv7r0OU/E8btIaOimZdrQQUzsJJI0UNq35emb9DVPp8ZoYRJsuapviYIpo\nGqN/LgZyXTN47V2RV8O5lCK/zI1uW4IB2WUAbKuUD72+xEGH+So7rgPKJsgc53AnuLC9rIP++c6Z\nXHqmyPXFVV2p/0Aml3afpWvOzJeDJ6/h0U7vA+DVM9/bs/UF/PWZSwBMemnKBqkB8k4ai1K4qxRF\ntTBIskHWRno8ZSqb7efaTLlnCx48NKW6rwu7iosNbNFMpbF0vMwzcS8Edkv78lbWEiqUfm83z6C+\nh7Sj21uRQ9ZT/KEo/dF1PmK3yfHeHQWoyAzCxX7KVsg8OG6chCR9sKavOU9FC3UcddLnkUIXZSfJ\nu+j1ciOhYhnnaYW1dKwvQ2v2Btg/QiopXtBA9QDpr8pTYnTqIEa7v3R/n0enCDW466U7APjbijPo\npQLKmiqigKmcdDtvO/9QytrVIyU0reHlYnrc36ja6cdd0UQ2/04urL0tCjvbVlk8+3T042T+Mnbk\nNPstMVzuZ1928JwokFGeUmUZCn0sJ8WFj7W+/gYwPEkuGSyd9/rGwUxco/Le7LPhO4gtv7+/rE26\n8MkdRS6+v+zgIQS2kMb4f4k1oO2sIZBc1TLvyMGUUJCM1na3fEOHq4iCGKf1g/swWl5zZMUtWLBg\nwYIFCxYsWLBgwYKFL46vnWd0/fweONKsDlvrWZt8GzIWi3R23HjAgK5i4Qm7PM0CnVvT0NPU3bY2\nI9djEM3L0DmLB4t1v3SNmPxvnTiTJ56VfRvbnbGHiY+KZSLYPWF6Gw6F9l2r6KzohBPm/IRePaSO\nuk15DB+1GYDBWXs56yOhbeoFygPSoDXz8toVE6Ohd4LAZnml7sV+rpws+6htCRVxT5lkGYuoe9h6\nNbJl9H8B6P7ODymyi+Xo97Mu5kRl0V81rT8x5W3uPlsSLrx0yuNmve2WJik7QSxwjtwoyaSizUbF\nIwoQybYRLFblnxGrlK2Thl15x/Y81wN3kaL0+Q0KV8oLLxq/jz5+oRFvbhT66WlLf8jZXcWauq6+\nAzUni0fyxB47+H47sWz/fuN3COeJFdtTnSRrt1h1FPNb+qmj9JGnwsBbIfXp59fwg86S7OTPjZNo\nLVlYmjJ5pjfOjz8Wj0mX4aUYKq3przZcwJ8Gvg5Af0clM/cJHfv0EdLmebWDm1GgA2sydqzFKrmT\n9/T9ZqKhgRcJbbsx4TIpbAei97PisUh6DFwqqNzZxBObZgV4lniJDct87kU+sUKGok5CKsFUPOTC\nVdfyydvyiDZFwq1oT8p7WdvPx+bLxWXv3q9RNSLdpiTOGinb6YMY9uARms8QSnWP5+S4tpcbd2Xz\n9mnJFDsaxTIfTDjRumaoSqWninWw+MPWabptIeVVCZPqDbR8+fiMhI5eK+er+kvfd//ONna/Iom8\n/Ntapx27Sw9O6Y8UOExPLGBShOu62/DbWu6Jms5orTuSTPDKc7mqNTP5iLfcQEtIn7vq4I2XFcuj\nfcqk59aOUfetdKEvkO/HnmeweYaM83CvOE/sP0X6wp2hSyUDMl4q1xXgqlMWZUdmI3WA/ctkzkz5\nDIw8NXFtd3PlLTMBeH67ZDb/cOizDF6e9tA0n5d/d5288Iv89fz7o5MB8Cvjec/3J+NVtOZfe6Dr\nOKET+7fYSW05vCQ8S94eaLJKSp65kUSx8lh0z3wPv6/oj71Rntu1Q+p7dOV52IaJlzTYJcm2i58A\nYNCDU5p5RNOy5FChJwfDaWeqvbHnSPKlQSdvZvX83ge75Igwq+/b5nGfN86kz4JeR+3eTVH2YSfz\nuH6hzO1Jr0FYZTJNeg36Lzt69FWTMdWjntNmSAjH++f8ncCoCgB+kF3OlMZugCTA6rtV5tQNP3zM\nTKCUpuv2/7jtdqU3f99V2qXV39MU2rWxMHfuvOCLPFILbL0kLZd1flImiVxmv5HZMeBQaZJO/c4y\nPnyr7czSdT10Ppx6AiDsIqdiprhfyKXWJt9YQxednXVCbVB5CMmpzFBcIwUaFw8R79Hb2wbwxGxh\nH6TcKZ7/RDytvnZBQifJ+0pn5k24NEId5HjjgwM4ncx+4J4fCtX3/f5vcncPkSUnXyQewhV/H0rV\napnLjhu7keVBoUtm+yLUdpP71Xf1kRvOxEIcylOZRvuPMjTyhl5ZBDvI7BFUiZLiOUk0RaXyVPmp\nHijnu8xKkrvmyGQPQPlxTuIrZB7t+7/mXnVXjfT/4nJJopm12mlOn+F8HUNXiez2hOj1cua6tEd0\n3/GyLuv5aiNaUmWNLwyQtyEja9LriA7ta6ioF3l0x5zLye4rz73zY3kn+Ss1YtnSh866TF9WDPeT\nt17m0tq1XbiuVL6x9Li0eyNsulrWCyX/CZmJlALbg2y7QOo7tecKFq4c1mYfJYc2oC3KaXE+km/A\nLrmfHbh+j4y19JxcNHgfdXPbt7guvSMHgKP+EH67lEatysj166Hv0M0poS43rbqc1KfKWx4wTK/r\n+ZfJWvOFF07juPObJ9lMo4dH5qf3gU7jZAG7Z97h7ZHaehsPr9iE8z4z545N1zxm9tf8DW33/YF4\n4Kp/c9N0YXfag/phZd/VDMP4cgJaDgPdHhPKjHeXrdl2J87ao7txeZqCph3myzgQ4fYpbFGV8ls1\nzdunluQnMsjW3JrhoJfMuxrnChn4eoJWkY7VbOdtRFeNKnQ3MtAnE+u86t4s3SIUz5y8IMG1Us95\nE4VeN/v5Ew+v3e1U2vC8ODavNCaltgfQdAO7U0bIKd038/0CUeZOdmey/IaLDGzdZVH87HFPAbAo\n1IsnnxIlPGdrwtwwufKEBDntZHWY5wsRcMiic83i7hkqb4Gcy8oKU79NJg3DbmB4pB39epaSUh28\ncVNHdL+i9GwTxTbWLan3opMAACAASURBVIrTLedSW/1kDxIOfzDixKE21m3cno0eU+9Kl4ymIAty\nAH9Z619FVX+7+cGceOFKFr3U9tYC6VhQkPim67Llvb3YkMtlARFSz9YXcKFf0tg/WiOTzOn+tVw8\nWwwLgU2HtgMFVIbdhYNfa3Z+bUwWv7MbB3CSV4wW02pH0tsj4+ovs8/Fl97y52QlNOfnEhoh13lW\nejj+wlUA1MQ8LN8kY81Z5qDjAtXn9YcnlA9EXU8RKL7yONu+r2hRex3Ec1XWvGqdaJF0tLPKRre3\nDq3oHoikx46h6KvpmM2m2He8n9CJcl/D0Eiq7Yjc+3UUC5H2Hx16QZBS1OO9p/jMOSSWbRAokT5t\naPTg/1QEULCzMlxpknkPoOsbR77oOBg23ujlX6fJd/jzv15nnk+3rfbEKF07yDexY3uRGY/r3wMJ\nr9rqKguT9RYtSpq0vTTF0FFrI9VZFiG2bW48+9W2DIPjpjDTYjoDB4vCt/6T7oDEYeWubl1gp7dw\n0RrspiHCWQ8NA2U+eP0U+Z7qDRc3Pilzz4EGxEihNNpdoREcJO0zwmqxt8dubpvz3e98xEtzRNl2\n728uR+xjxfCXWJDJOJjO5Ost1U2qXfcJ2+nhl8VEb89+HlktVKZ/Hvcck+eLgE1nJG6LinTeFQt4\n/WWJV9UP+JQ+bzbddBbdHnPEMOjYezBS1uHjv997GIAfrbyKlcf/D4BdiUb+VyeLj6fePP2I7mcL\nHVx+x9JzQY2ObaQsrKMbs9G6yzerbfSZ6wF78OitBSLtkthUNkjNgF+cJ4bDH2SXmwuuS/I/o7dD\nvtsudr+Zvfp7//qpeZ/Wtv1os071Xb036X5u3iY00k2l7cxtwHq+fAPO6i9OUBtz9koAxmZvZKxn\nBwDXbZGtGw5nAZvwG2a8be6m1hdKVSpbuS2mEVdZi/NXGVQqHXbkCZvYUSffVrWi7F911oeUuIW6\nuzTYnZcXSyCyrc6Of5cygvoxwwh69itl5yIxVhjdRF45V3vNnATe/SlzbFQP1ChY0TyeFKD6OPko\nbTUOipbK7/vOjuLYLnLg4nM/YlmN9Mne6d3w7pfnzVn3+ebr8tG51A5M5xFQGW+dBu5yGSieSoN6\nsU/iqtboPOvzxUNH2su6MuG14d8mgiye52HHWTIXFQ4UynvDvHbmWqbj3AYSPpnY7ME4Sbd0Xsqh\nm3Ij1E5+D3bUcTSoNaNXI36CrOeeHvEM9+w6B4BwwsHuSlm7Jao85tZejSqnhXevTsd5cl11fz9Z\nO+X7SXhs6ErRbbpVXEzFq2Zta74OqOslz5q9JciWS+X4yjPm88r/TjmyTgNCxUncKkZYT2ay3qbz\nAnjGVBL+6NA0/IMhZYew+tZxGNw+ehYAr+wZwentJdPtG7sGm/Vc9r0PAPj3p2MZO0jS+S97Y2Cz\nrV26n7oDgFMLN/KT3E0ADH6ieRzol4Epl77Ng3Mk9MRZoxNXsdiOusOfp+LZqVbLb/zdT1spLbBo\nuhYsWLBgwYIFCxYsWLBg4ZjjK6XpnnGceGfmVg/F0ZjOynhk90gnC7n7wpf581OXyrlcA2cTF/vn\n9Yim4SnXTUtgOjFi445s0mkO+iy4iliN2p+x9tBm0ws7yz5MT64eQ6JKrjOcKeblCC1qw5j/UrJA\naAy1URt3XzgNgFHuHQDM5vA8o1dP/BAAvy3CkxtGA5DaIDTFvJPKCcfEIra8ohMNcckW6C6eQ6dz\npJ7124v545AZAPzwH7cCMOK7q5vV4akWK1PBp3bqu4sH1z4sxa79YiHViiMk68Xcs+gUSfI0Zcd5\n7FKezOBHhZx3iXhlf5D3MVesuxqAIf12cnyutGN6rlBY7yqZyUM7TgNgb3eN0R0kwLuvp4z7Zsn+\nhFpSI2eAeIfq1uRTsFrRcNtIGpNG/roEUWWlW1HRxiZjCudvnsD03kKBvjSwFdRISHtFAa7KquSe\nStn37D+zpG+fcI/H00YCidYQcIpVcVbIRXubWEKHulzmhsoD8rYxPSjvszLmZ3Wt8KEvPHkRb74t\nlCpDZVRO9EjiX5pJzNGQUNZUdyNZBWKVbAhlUdVf3lX7T4/MM7p/pFBpQiqZzv7jHXQsFktttMhO\n1U4ZG7HclLnPa/FHbVAHDgFbuPXr0omWGnqkcKp9VKNhB37lJY4HoP0nrWQtbGKSS/rl+W31MYKd\npL9i2QZDThIP9J6GHE4vFkvmlmAhn1ULTdIeTNMvQDty5vFBseV2aVO/4r2c5mnp2U86FRMgprNz\nk9CNBgzYRdnSbgDUDErhU/vExUvCpFRio1NLNvHBeqGu+XPEC9Fo+PG6Fc2q3EPdcTIGXbucJNTw\nMdpHKHQJY2J1tsrwWGujto+8e2etjndf5nvL+7SpB09Zxx2amahrV0LGxu3TriZQLb/HAs09Yu4K\n+f/BG5/g3h2SYO133SUD9S82XUzpfhnnbzw3luY7pwr+fsOT3PimeBSb7iTtLW0ZzrFzRnfuu0nm\n3H5OL9lDJfFXjh7mvfEPARA5Ve1N+M6t+Le1FKNvPDcW+xiZDw6VPOlwkU4i1FrG9y+CK1+4BYBZ\nV9xHOk9wF7ufiHIVJ10GuX3Fq1y/Mv8L15dmq0Q6JAmoBFh6VENflUm4p0dbvfSIEGknY9Ol9me1\nN+rocbXOiMG9bwhVdubozbza8z1AMqI3pDJjosD2+T5m+zDx+G4f9QIA/R7/eSbTbR+oSQpFcusl\nj3/hjLprrv9Hs6RF8yPSjx0UZb/b2dXmXswHZhuO95V2ODa03F+9KWpKdJJu9W12iOHNlfmiqrOD\nVI3IkqUf9TFZF5NOXwLArws2sD8p8iVu2PnNWcLuOnHxtWglMkfrKR2XSsKz1SjGFVHJ6dR9w30j\n2LOlvv1bs8lRWbibekVBkqUBdHhPvsfGjhrOa8Urm9pWZO7P2M5RT4Hah3r90CiOhUfOMDB0ne0X\nq/2kg9Cnr4TRjCmQhG//e3G8GapQOTxFp/fVOE8YJP3yXLbGIxvkzhop72jIvOvtPzBI1atQiRqh\n23ZYn6CuW2ZOSnjV+A/GCXaUurO2BikbI+VzN8kYj+boRPKlb/PGlFNWIWuLGfVDmVEiIRVzwzp/\ntUnI1+YdXanvK9d6d8pckbs5I5vz1mVCTQxdo2Ko1F28IJOcyF2Reb6UQ55Lj6eoVl74qvM0srwy\nj54eWPP/2PvuwCrqdO1n5vR+0ntIQkIIvTfpKIpgxYJY1q4Xde1u+bzX9a7XXevaFbGtiooiKgjS\nFBCQ3ksgIY2E9JyU08uc+f54fzNzUkhCccu95/2HcM6cmfn1tzzv8+IrTO1FT7UXY7VKjgKH1cBv\nJhNEVoqyerfEy6y2+5efHdkcHwJMJ5U+f1GgyCJnCOGHMN2zj82B/UNonT0ZT9HSJ+ccOy2BUU0b\nza939l+EAZfR/Cq89y15v+gzldBJFRv7nNU7n07eWjIbV15B63TVd+MgmGjd6LKcCB/oTILUlZxJ\nFFWSf6oxur06CwCgKnAivJ863p8WhLqo682hS1ZcBul9etl1ADNM0ccDNHfO3Hzrnrdw96d0oKvY\nhpc+4yROre06xyNSNB02cZWPgzeZBunegVvx/jJidg308QPNXalDiixcTbkSxhoeSZcSFnxdwQoM\n3Umwmpyv7sUr1/4dANBX04SrtlFhXf3u7rNRU2dXoHolTUxhQiuagzTxJ5qKcGR8OQDgmkSCXMVo\nvdi2jKCorhgRJxhcfd7uByCaaUPRndLgz4dJ8Rt8NS2e3V8P7rK2tcEhoGkEfdNYb5XZXF2D/Vgz\ni8quXLyXlMGgoMLhccSWmFt4LwRmDVzyxeOIZWShdUICFk0nKI2mkTa6dwxTUO2gxZBod6G/gQ6a\ne+2n8FIynUS3DdqGEg9BhH6y2tGaww6mHGqTvkaNhAOdjZnaMSok76RNvbLK3rGyRDsp/a4vQESM\nsPGKgfeCoy9OeCgHamH6NtwXQ/kxm0aSwVK3snd4f2mee4LUh5cY/Thd1s+VLPfzStNmlDDG5EfL\n58rFmjmmfIl6AYBiCO/dTu80ZEwJChII3rujxgJXH+a52d7ze9ZMIKXHHysiazwVkI/Tk+JxoiUe\nD+eQgvdc8cWwZ5Byxi+PlfN/PAlqaFvOg9bJpHkQg5MkeSGcoHfThBW26bBaBBhUKGTTIWCnuWGs\nUCBCzYxVGqIeDz9OCTb/tfNy7DlEOKuBAyrRFqJrdu7LQ/Y3NJdOTaWxsheJ8MWwPtepwPkV47G1\nP80qXZvQY96oJA1jrBBc9IxHM9fAFe6cM6r2MUWnTQ1zDimgcxIP4rkx5FTRNGhkyH6/1DpMiCMn\nTmPQDDDDlP+ZlEFVWhj6tRJrnog5g8hhaBgaxNdHCbapO2bAHycTDOmIg4zfeoMNMwpoj1h/YACE\nAjJodXtMMvxV7xDlMYo5zOPCQZQT/efjBAGLZNg9ncwwCGjK+BkAcPPPxKT+yeRFuN8/HwAQijBF\n/aNcKJpM5ZoGv7wAXanbjHQZmg7EygVa5Wop/2eYToc/1hHM8Nkk6pfZow9g+DRSCv667xLo9yq/\nc56kfuwth0BXYhpMRuBtfbfjjW9pL0Yum68nzuXOneWSTx+XocAA8FQCKWhPzY8oP8AgmefCritB\n0fQ1Knwwm865I/1T8ddPCMYaHOiB0Ej7nQSvO1NRj25GKYMcZ/9A5XiuGb4H3x0noywj0SHDQY+u\n7ocCdT8AwIw5e1Dro0mxtO96zFz4xFk9/xAzQiW5f96Kdv+fsOixs7pvpKROpjQQFcfDL5JRsN5r\nwWwj7RGT+/ysXHzTVvlPiRF/coSaUnCsa4VYUuL1jUCITTfeqca704lvYnHTBGxdTJPiwBOdS2a8\n2ZKBNz8jR7Ev148/1dPgJ+wVZbitSs9Bx6xYX7KIYD4ZnqP60JlS2JCEQJAuFiyCDDttGheC9Qj9\nrXGKclqUN55e2pkXgi7AnIsuHrGHaa/7OGcsrHrqhD5pTWhITO2y7d1J0zArfnsVOeo/KR+Lx/us\nbvf9ksB08EFqk7FahRaWfp22/uwgugDA+1kD/UDpNbRf221NcKppIIMeamvAzMNeStcGrVq5hAsA\neBKpb1pyLXLKigSbdWWKKL6Z1v9zTXnwpVDffrp6Cu6YRwGDlnAywk+QQyopMwxTJUuZ0ND84wPK\neVd8owl5i2mvas7XwnqSvguZNHAU0PpO3K0YrHxQiRpljSe9OMHggk+gsV/eevqcZkmkoFGkvm6Z\nUof3Cohz4Pp3Hu0S6rv1IK3/3u6oHaG+YRVBgCVRSsuo0WohHXFQbA3i7e15JCTW9q7Et4cCOgnj\n6vHYx1RuMHLXOFcjNOGCGjRsTenyu8I2JYdWyoX3O63ImERGce1m0i0CeV5oizuzj5+NRGG6UYlK\nVKISlahEJSpRiUpUohKVf7j8UyOj7mLy7gjWEDgGqemqMKwkUkTUO4gRsRw2wJ3NityWqeHOJ2/8\nyPRTOKZjhe52KGHlBQsXIMyY9RhKFLOSD+M99BwZ7SicAEwdT2E8FUSZaMHv6blLjTXkA/CPcWFd\nAXlMh7y0QPYYa8winnznVvn67uOsisxIPIZPQN6S3w1cgxcXkad5Wf5IFOSRR+PYIYrO6etU8DHy\njkVzFuHJIioszAc4nJj1HgBgTtEsHD1EfZOcRW60o91AntPXS7AZHpWX0LjwLRrccoSgtxJpka1v\nMzxhGqtLp+7Bj28S7DilsT0EUYqI6vIp2nN1yj4sXEK16NJvqcJzOwgukjf5IxRP/QgA1Vr1JTJY\nQaobf535FfXHwbkAgIDDisrL6PuMFTzqbiDPXtGkjzFxD9Vi4/QhdLc0JGKhjtJH24jVtcQqN3zX\nPAR/Ic9WcAR5w7pjNJRYjvWNnAwrb1lDXqv3M5Nxh42e+XTDAOxpoTFZntfeG9tXQ9HAb/PWoKD+\nZrpvC5s9ofZ+Jw1jBT24IxdIo/XEGUPIWto7wpCi23SYPYJq5J70xCjEUw6KSg9LqEaQMX14NyQg\ndYvkEXTDfIp6Qtd8fqKiEpxW1LHIqEZA2CMxu4rQMvLBpB3tvZJSRLRxlBXuNLq+71QKzxVYa7Gx\npT8AID+9DoUnyBNYWJUMbzLNS2OVCppmuqfI0eLVusLQN7N5HBbhGErRsdgDbbAdY+E3NY/GEfR5\n/N6ui51Lkn/LMexdT3Vli/3JGKsrOe21XBhwOWm8n98wB4Ykal/IGMSUbPpdnc+Cj1cSbHzStEPy\nvFB7JI8yDwlr57dzGGSifeP1D6+EUMDIKIwiPm8lxs76etpfVbVanMwgOKrKqUJqFq3Z6lEiuGLy\nN7fZARWDM3uSOKw/Qu2K3dF74GnOsntgTqc+K535PgBgsTOhHSnRjBuoQOHqkgIMfrl7CKQUEXX3\nEWCqUKJw0u9+fvBFTNYr0U4pIhoUaYzfSNshf3fH1I8gochqQi7MfO3somqRMiiB0B9yVBQ47xHR\nSLmlgpiKP46MqnUh51J7VDAwqLZWxDXr7wMAjOxfJsNq9UeM5wxFPjjmc5kJV8fIrV6YtQ8Hm5lH\nP6zCppuofneK2ozRe+ms7GNolMdUgpeeqURC6SR3f+Hdb+HjNiIv+ctn153VfTvKG7lfAAAK3nlM\nJjs5sa0PZt/6dje/AkZoJXSFvkeIsHQWGRxhtAyn8blgYDFKAoQA2lCeh8IuIqISguPNo1MQMlH/\n23bqYHAoCoQUyeRDCrrDXKpGiBHHfTmN6onO46ZDyy7++IKfgTnKc96fSBGcZ9dcCV0DdbZEdvT3\nme9iWTPtU5tXxMnQf1ebES4vnUG+RgMyjvYuXaRqZgzcGdQHolpAMwsV94upxzE/RVdP+WkPtFSG\nYWigaKGg07YjpjkfEkiheztqbLAk0hkk1NI+pfaL0DA0jdoVhIYdMa5MI+bcThDVjc9MQDUtdVx3\n5yYAwKNxhyElAXxWMgpapiTnjanA9HWM5VzgkA8aW/NJBd3T0pfO4JhCl0zyach0oq0voQxaxvvh\nP0Zn09/++gHu20n1Re0lNA5hFQd9o4L6eaUvoZLuPHYTPH7qvH7mDsWnO4gvTsTcCymCu3LJBPnz\n2vI4fJQ04XQ/AxAZyVQkrFbm6Pz5P+KzzyhFzJMqyBFRSX5743d442PSTe1Ta9ESwc7rddP7b102\nHId/236tFK3qmQ29dXuijKx444vL5M8lcjQpctlbkaD5f8n7Gnduvb/LayRUHgCMvISQMTs3FcgR\nUUkykppRycZbW3RuEdJ/qjEq5Y6IKhUMdYqyLME3TsdGKzoUtX5gfwrnl5dlw3ScOrA+zQJ3K038\njse2trW9sv3a7ul49naC8zzzwQ3y5/ZptWjZ0JnuOVKKW0nxTtG3yiVQdHFeoLznwroAoNe1z0fx\npjCDvPLsoEmffHgxXvyPRQCABz++CwtuJ6r+B2IqZIZcKStn8rw9+K9kYvSatf82BDeycigqRSH5\nvt8PAKEX5N93JxLcI/PhIghO2pRramPgYbmpj1xM7/P6V5dh5F7a3GKPhmEMdM6Dc6apoSOEGlzN\ntMl+UDYBCdcTdKeiLQYqB913hkFA7mcEZeZsImIP0HskDWvEc4/dAgDwTmZlZyKGv+pKAbZN1COT\nP78bItOAxHD3BllNXXv6cKmIe46lCTUbCfql9iiwA90OM3oUdvHSB1/AHFY+QGCGwocVE/BCG83k\nKVkncPgAORwetwzHtTGkeI/RtVffClnZnr5fUL+Yqtobo1L+j7aVg6aa+lfQAmp3e4MtaNW2Y9Zt\nGkjvkZTRAD9bqGpOwGA7MQqb4+lA2dWShRwtHR6e9PYejJ6MUFHFGC+F3iV7u5PYegkzWJQuAIlk\nV+Q5+Jmd4soywctyYtReQORoH2nJF5E6mIz9I8fIWXPTtO14+iBpPbEWN+JTyLhqKotBqYv2hfw1\nCvti9jI68X0pRmictHG19TXB2KBsYr5kVuqm1iMboW35FliPd8CIAggz1kPH/akwjWHt4v1oEE6v\nOAkWATodfW9I98own7uuW4OPjrMc4r02WBrpfht2DAJM0v2oD9tVjhnbimIvOfX8I1zQlDK6/Qpi\nBgQAfTFT6vL8KCoh54mtnEeFhfZGTi/AILGregFfPI2p6OdgKJMOvN6zy8ZnO+Sc3TH7qOC6d0MC\nXPk04ObjGvz4OdHSd2fQHHqElALJ6FS7FTbdvpeU4ptcyhMd9rfHsOFBMlqmvfo4AqNpfRyfRPBf\nvxiEjqMfrvboGKQeeL2pe+Wnt7Ljp4E9X3QeRXpefkT5jKxxlVjen5hnpbaek6hpvFPyG+DYTGup\nKs1+1pDcrmTkngiDrz+N2VqPBlelUHmc1xZfgcn7qIi9kOyHtpzm8YfbLsbjrIzLlPce7zIlpSf5\nXd0w+e8QM7zPNS+0owgFblz9gQLaK9uQBYBWccdnLbz1rXaQXDNP/2nshbEtQV6vvftHjDCWAwB2\nuPviMhOdw7ewc0a63+iVxJYppYeoXTyQRcqvWzTC4Oj8jLAKEDTMmT/SBZOBzpucb8g5rI714Yp8\ncgLlrLsdpsOsbFy8CCFJKiPCyyV8pLomv//jvfIzNCoRPFMbBbcGAlO2dQ1qhJnRVXtBDBL2U59E\nlniZ+inlv2o4QXawflI8Ri6z1RIwYkcrsYqfdNKeazumnA3xTe1TMkQt7e2eNANMZbT3izzjNYjR\nQ9vUfQqHqFVT+RYA2VeXwBmkhjlNpGcEzGqoPVKedFCG6Vrvr8TSIpqb9tub8EE+sfRPNUjnrAY3\nlU+ld/PoEJtAkOInMlfjESfttb4dcQA6p4rEFCp6A0sDR/pfeADUn23mMJLJTsRzO26BehK9s7aZ\n2l873gKjlTmv43k8cCsZScEsHbyX0r13ObqHpeqbONkIdWeG5BxOlZvHD1/2jmclUiLtD8kQBQBD\nTed9agRjsAbQzhAFAFVlb8NJp5dSb0Knz87UCJVkSDo5mN+rn3Laa+q2KND1fTVkgEol5CJFoxKg\nZ+s1jHMzRqMw3ahEJSpRiUpUohKVqEQlKlGJyj9c/qmRUak2nKgC0i8mEghfSIPGHxWrXILhIgzo\na+l1I6ObEstXdtFdMJWQ17ayLAGmss5N00xwyNBJSYxH9Xjm6A2dru0pKgoAjp8oEvAtUqBmDmOv\nW3vaTvWz+nJSMV1xcwyya6leoAWAueLcPMOuoT7MNFKEIJjvRYKaoi9S5A4ArrqFIBnffDwFF2Kk\n/Lk3QWJ7A8rbKEF98I758JYQnLB7rj2SkI7atWtrf9gHEKMteBE5MeQO/ds+Ik8ytQC2su6hMWqP\niJRrWC1DBpE0aIIYG1cOAGgNGfDK0K/l66U6sOYKwMBgkm2vZMAbw+oaMqKrzXe9gL/UU/2/2+O2\nwjadrp3zwhOwVtI7cZ7ux8F8QI+8OsZs2cpBPZo8iA2r0s9qQQXGOaHfTtH0RU0T8eFYqkG3w0Os\nB76wBos3kWdug9APopbGaunO0VhmJk/nf45aiVutCoxlq4+8nbfMILjd0k+mtmOVjmSbdmbRF/oG\nHuWzKfol1co01IlouoL6w5LWhnGpxATdGjQgQUtezc0VOZjB2OHiVOTFnJN+CH8+RfVo0zaGETQz\noglXz+yUUkRUgt8C5Dm3lp3GY8y1/7exwQo9W4/aNqXOo9/GQbyExqrxpE2G2kyZeAg1XprnD05a\nCwB4+cSFwGEak0GzT8hka+p4H0KN5Ol05pphOcEgUoyF152khpmRJDXM8SP5G4bWGGeFroU+Fwxm\nmMoYvJcHXDnk0TadIri0P1YHVxrNJF2rKJOI/M+BS/HciPY1Z6V7AABnEOBn5Gl+wQAuXkEcaDcQ\nnFYi1QAAeyEH4RIpOkLRfl1zxPdGL0pchJgI1RsgxtL9mlMFTIkn+OhWE+0VmalNqCgh6J47Q4TG\nShHCoEcLTwatq+GDyqBV0T12lmTJAVFDfXcAdiBkBtTM8e7dkIAV6OwlNh8/s4hdR/iurpGTI/jH\ntmZj2AryzB965C0MfpkiaBmzy1HeROfHk/XE+LZ4+3iUXf4uAOCoLw2/3UV7i26PqV1t1H9nKd+e\nAV3B+ePw1VfTuqt3Jsn7ZdvWxPNyb4ldH9uVuoH8AVrHDx24S/7sv275HP9zlBgvhd12GUrK+yHD\ne8921JZ/o0TFz2edVADQjqD968CYz1FQeBrSIXZ8XXgppVHc89EChck3QiZtv7fTZx3Fm0j9smj7\nZNwwmtbps0kH8WT9WADAM4kKu74zLIILUXuTt9K/7mQOxkO0j3Ph9giIgInVBR0ahiGNFni2vRW3\npFMI7cW1VB3BF2fC94UsshUvIP9yqrkoMSCfTrb7BNywgaKrSRvU0LBUBIQ4qDy0aQp6EQ1D6W9D\nPVA+h2k6HP2bO64C2xxEXvdQ+josayadSasOIUNDes1weyUaAjTHKg+T3tgPrQjraHbLxENMuAD9\n32dXQWen/VpgTLIqXwRKjOMAsTNqhAuEoPLT5weKMnHrGCKnqm2VCPLMEHnW/xlG+K10b9dPZgSS\n6f63DvoJuQy/u9ZDKDaHYIZdo9R2HXoNpaEtbhyPEGOYjj+stKVmggWJe73svenzEw+psewCgok/\nce1dqBtD7+Q9GUbQTPur2i3Al0zXlz3G2HutdfhyIJGZaTkOt56gSKyjJhHiKdJJ6rS9Z9+/Y+LP\nOOok/fzgioIur7FNJTRU68audX1fnCgTIan8QNKFRBhmUAdRvpoi4e4seqf5yx44bTqdtk3ZAyTm\nXOl3vU24WPXduF5e2bMsy10HoD2CY/Ssw9h8jCDD+jIdYidQ3zh+Se6WQTfP2oAKVjlDBcCXohCF\nnqn8U41Rabc31PE4ricDdOGMj/DwBjo0gkPc0BXTpiCqgD13vwIAGPg9KQrqMrWsFOT2rUVNCUHs\n1K0qYCyDSUTkjEYaovNuJIjqF4unn5emSGUBHhu7Fm8fu6zLa3TNnQ8mS3HnIdj+8CsY97eHzvgd\nzAf06KclWKpxOpiSRQAAIABJREFUrwF/cF9Dz4hQ1L75uOvQvIEpTPaZNWhZS4uYQ++MUEm0btps\nUn4BXGWkpMZc2gStiuWPMkXUHyOi0Uztjj/U9QbjTuVgD9OpOmsYHXjrivvjex/Bx3SLYyG8RBDV\nb912/P0GKhtz6+5bIbLSFM01VmT8QM90ZtO9bi25Bk9kkgNjl68PNrcQDjkgEYgC0DX27BQw1EYw\n1LHc5zPpq46imkIH29ebx2JNBTt4JzPmvZ9jkHcF5fwdONpHhrklpzvQtplglM9WzsUNt1Dx+tea\n++ODQlKIhqYSJKNjeSMJkqhxUekiuggwsnYVzCem092b+yPvEy/7lQaFT9PGnWlpRpWP2h1ndWOw\nnuDyelbXZIcvC2pGL6ev84Pr4lAtu8IE+xBiKvWvS0CYoTYZWS2SdwZlQ8sxUgNDA720yh9Ga1+6\nqGFCCNYjdI1UVonL8kHbqlPazYZK5QOsb5LhFx6ogncsKUD9zTXY+zHBThf7GBu1DuBYFQsVJ8r5\nMzAEwBXREeJOBjwJtnb9GVMcRPUk+k9qfBOqppKSHZfVhNoautZ6VIP6kVb5d8nbqW+KfkNtMie7\n4HLQbBrfvwT7V9NhKgg82oTOR54nmTXQqZExUtZUJ7ifSMn4/OhMJF1Hjp2GJUp+PCcCgX2sHFME\nVNbFSJ8nJZzEqiJab6JZgLaG2jV0Sgl219BFugLaZx/PWY0HaojRVvTwGJhCDM0nVvWFN4UmX5XT\njlYXKaamg3pZaXaMoDmjcahhKafP3JkCTCclqFmnJrcTMhh7D4MMxIgIJDNYbyFNOk9qGPlDCXpY\nuTILX9z/EgDgrsoL5d+p+TB8LppXQ4x07TOXH0L2GmIJNx/VQcvma8Au/lsaoVK+F9dhuZ4Le+7p\nRO08//1z4kZShCWDsqNIxuorJTMg7Kb9y1/gha7w/DBC/tpygDEEd4TickPIsBAPWsGxrerHFYqz\nOWcdsXHqSs4MMshSxiHyanxxgJikx11wAtMslEc24ZF7UTuR+rT06oUovXohAKCfi+ZL/P4w3Mm0\nKEy1yiHU0peHj6UliQYBwhHaD2+5fjUGainlY9//62xAA8DBAMFEy4IhZGuUFJhHa4ht1cXo6Mud\ncfL69kdk1nBhUT4TNE4OqpFEKtBaawbvp3e15dDZW7Q3E6p0coJOzQtjqmEXAGCe34J9HjorsnUN\n4Nn+aS1lRq5RC5WH9JDaiTHQtbJSY3ZeNiT1zWGcmsj4DpgamLg3hJZ+7DMVEHOM2uqP06B2HO2H\nhjpOLrNlTXAhzBpjN9E5ra/XQMVY3FvzTHK+qr04jNq+pG/9vWIc3ltGQYr4/bTBetIMqJzJOqlv\nAJfYSO/6vnkYEszktNRUq+HMorPJmyKiepKB3Zue99jw71GgoXPif758HyN1Su5h1dXKRj7tc3Lw\n8TU0fgtvexfpavp7qy8slzURa/UQmb4zIKEOh9G5TFbsNHKMVh1PhK6J+uiLz3rW64Vw98BQfROH\ngJWerfJz+HHAcgBoV4qlq1xT3xAP9Ae71wYjf5dyEelONet6V22hJ5FKGGlb2rcvb0Zpu/8beQWK\nvuuHQe2M6a1DyOmdU3wPNC1SyR0OT964BADwzGJyFG1YMQKR2nKkERoeSOPNH+lFmhrOwRh9/vnn\nsWfPHoRCIdxzzz0YPHgwnnjiCQiCgISEBLzwwgvQas9z1nZUohKVqEQlKlGJSlSiEpWoROV/hZyV\nMbp9+3YUFxdjyZIlaG5uxlVXXYXx48dj/vz5mDVrFl5++WUsXboU8+fP7/Y+coKwCJhKyZtyr/92\nXHo1wUs2LlU8e4cffAvZyykiKsGiBr6xAJ9tpQiQrkEFP2OHNVbz7SKikgRsogzxlUL4vRHvYC8M\nh3rnOb3WcgwvpRHz4ZnAbh+5a2kEzFKLP95NHtB5luZekQdJ8thQgq787eiV+Ns0usfD/DxYmIfw\nqXuo3tIfvr4R+sbOnumq44nonR+jezHXMPesNoj9Wyj6uH4+EYFMrXsMdgq8oXaMCqYqeg9LtRIl\n9aaFcOIkRZX4TAbnBvBA3kYAwAe+K3FzOUFXP8vegCE7bwIA+J063NKfIqaf7pwBkUXnEvfSv7mz\nG/D3+okAgI0n8mC3kcfPmx6Cs5XVMtOJ0JwBSCvMCAAOPrYQfb9khEEne5+O7W8yIOinaFvfwacQ\nN4re6ejX/eVrSr/rCwAYeVUR9hRnAQDc65Jkr5Q3LYyBrHg9OJHWAICjUO4RKToWdNW2iWjrS201\nnRJhaKK2FH5O0bjggBAmLCQCh1/uGYWfBxORyVMNA3GLnVgnHw9eJRM7hFkoM0PThC07qdizZRyP\n5G3kJTt5iRmZq+lvtYvDpGSK+AZvKsfaleR55weSl79xeBi+YlrH2r6tqMhnNeMq9Qja2fxSiWgb\nTB4+YynzglcZZRi4yAONgxjktUWEykOfhyd7YNdSdOzLl2fCeSF5vwU/tUNnCsDvJA97rdeCPjaK\nXKcbW7BBxQhy3CL8rKaoRGBWF6NBMJO82QZ1EPG7qD8c3jgYGTIiZWMrKq6Q9icRnttoMDLY+2hU\nArweevbeH/uDZ1Eq7REjtuYSlMabwMHQQF8ELTRmKjcvr+lQVQwYnxj2/lcEu+ZTyp9j9l0L43IF\nzijJo3O/AwAc9yQjyCLMxgQ3PD5qS7K+DSWraU03j6e+f+jr25A9ksIoZS2pOFjBoPUqGmcAaKi3\nQlPLWIedIrzx9LmmmcZHjFxy1hACMbz8ec44ikSeWtU1iYVESAQoENzTRkxz3TDvol1OikioPRyK\n9lDUWGUXccUvFNmRah0CwIm1Ofj5nucBAJNWE1HLrlG7MTiHMZXrk8CzqLmUFgAAuKAF2Nqe9Oxf\nVTpGRM9GvAyWbajsWb04ep8ybv1+JlSP+tDZn0BS1CxSfPmsFqJbDUMVvVPb1kR4c2juGv5NoqIA\ncF3pjE6f8UNbeyxGf6YRUSnlJm0+sYsPt1fi460XAACG6epRzUJz03+/FV+upvN0wiMK7PeWP24A\nAHyQOgHJqzoHJbwZIeTmUUSrvC4O119B0NwiXzL+cx0huqQoKwDcVUnPXpSxFUO01JaHakbhlZTd\nne694SeCH4bVIgQWCdQ1qOS9UdPCy/UojbUiHKwecEJuE1Q87aVS1Czv41Y88y3BR7NX3oey2UQQ\n+UX2TzgZYikaIlChpXtsOUTw5UCsFgYWGY0t9MPNanZeePs2bH+Gzo/Fr7yETBYNvPQ46YylA+Nw\nYTbBkNeuHwFvPPWzN11ATCalPjWnmqGqZcRxLj0OtBBpYoaFIrwtfgX86SjgEGSRMtEg4NULSCe8\n3OTBzP+mKgeVFxKUNmO9E/mUIYTSq82YZqD2PVuSCqePnpcEwDGAzsigPYRxUyg9J9tI77aqYTC+\n/Q1FJUUOyHrjBACg4r5cnJpGz5lx/U45dUboT7rOJ47xuNJOev9jx6+FsIlQjGZRqTSwc18eDGxb\n9eQG5Mobjg2ky0+4/Cj2Lx+AruTmGwmaerH5MG5aSHu36+eeUwO4CNT0Oy0Kk2zHOqOR0lNUtKPk\nWRsAADU4P5HRjhFRSTpWX/ho20QlGsoDiEDPSciLjgk029pye/0evY2ISnJWxujo0aMxZAjB2qxW\nK7xeL3bs2IGnn34aADBt2jR88MEHPRqjGgbT8aSEIZoZhrpIi4lWWoxvPLgDg16NCImzPFDpMw5A\n6VW0YWX/cCfUBmbMVHc9GbStHGKn0wb4WTZtlk/Nr8fXnxF0NWQEjt2lHI7Sc/hqPXQTCU7oOEVK\nBRfkYKxi7F9JYZkNOFFlwrxJtLF+XzGx2/ZHSmS+X/7mW3BtPrH+wXJmRZLfeI9KtHBG4EoTbSZX\nXvoevpxMh9XTC8loK3r0LZmtzlyqLKhzzVvtKFV1MXj0cioOLW2808YexvvXbpGvmbyA8mZFjlPg\nnAYBVww5AABYcZSg2DabB6P1BDe0PP8FvncMBQAcCXhxY186lJZ+dyE+qaADO+FwZwjwjhdHoXEo\nM77qOagbaDla57bAsoY2S0sV0JLT+6UR2X9hKz3TH6PpEpbdlURCtU+YklFXSAeXpChzIcDHcneK\nvumHssdojg45rKwNc0nkuPX8XEMj7TycqECx/DEc/Ha6jwRnO3L5GzDytOlfjFFY6aH+Gm86gSOM\n3v+J9NXQsF3bzk6ZvhozuDiWN9hoQHM+HZC8nwxSAPjljhcx5wjNx9pGG0ruag/Lyl5xF6z96IC1\nGXxwS8ZarBMNTTRWF+SWYE+1tIkzhsQmHkGj1M4gNG7qSPsRJ1oG0u/C4SBmpRPUbMe+YXBl0PpI\nPkztyHq0BJ9mbQQAjNt/DSw6asswWxXcLLdQ5eNgHUb7whXp5F2p8dngFWj8HPenYtJ7ZLAvPz4E\nA1kh7+YZRqhXM3ivmkPbUcIDO+KofZxHBRUz/HTNHDRtNBaWUyE0z2LMxzrFarCWMBhNSIT2SoLH\netYmyeUSOsoFB68GAPwubw2eBVHs++00Z3QtIhqD1EdHWhWHnfeUGRyzFhv9Zux5qn35iP1+PwKM\nD2/MAA1GPi3BOkV4mFUcu10rQ4oDVqVIuKBVuAMk9s7U5GbU1RMEXV/PndYI7SiP1w6XDdO1nq7z\nHLW7zHDlUV+/OI1gR3969yZkX0aK95OZK9qzUz9CKR2DX16Ab5wEWzYXMQbdIoWl8XSZry8N/gr3\nVhJMUoIe/6+Wbgxa28Q6tG5J6vT5gDcXnJecoXmLHun0mf447VnerKBs/A54cwEMpb1Hbm37D4Jt\nj3/70fPwlmcvh9bmd/qsJ0P0bMSbROu0bCXlSx5NyIY5lyD5LzdMxcrjgwAACcv1iI8Y8JqL6Pz7\n/AsySJJL2+eHSOub9wI6lr6zePwieb3lrLsdyVvo2RcVULpTnN6Nahe1ccLf7oUnke7ROiyA7/YO\nBwBo69TgBMbFwRiM+w6vQq2T9jJ/fYycqqJt4eQ56uyjMM3HDvbg+RziobinkPbF8qtiZKippkmN\n55rIGfi7uGJZn9npD4JnN/ckMYb2XB7aLIKU+mMB2wn6fn1lPqwsb1+IWCfiQ9S+Yz98gnH7yRjP\nHlOJsgYyyrLjWzAjkVjEVVlhfPT1RdSWXQYc8NP5NzSXzhfHADNUAbp5/MEwNB56tv2JSnzTRAGe\nRNVG8CFW4m59Zzb3nGUujGp6EAAw8Kpj2FFF8yAJfvjSaO+MTWmVS0A93UBGYOAxJZ+fE4HDL5Cd\nYIEHaRvoOatiRyMUw87QCjrPNq0Zh1UptJcGrSIy95IDSe0OopwQvdAcN4MbTXNQF+IhnfeSfJq1\nEf2GkUNRu98MyxQ6C52bkvBFKbX7k20XYcQVlAu797tBndrdUdQRDLJS6RagayP0bOWttO0AgGfn\nN2PRHrIZ9GXd8yhESiA2jJLr3gHQPWu3pLsJLGDQjo23m8IF/hzSfXSlunbQ/55EysPvbd78WbHp\nqlQqGI00iZYuXYrJkyfD6/XKsNy4uDg0NDScza2jEpWoRCUqUYlKVKISlahEJSr/B+ScnJHr16/H\n0qVL8cEHH2DmzJny52IXZCVdCeOnofo1fsUTPY9FA/1i98yboZFOLHeTUVw26z0MeFvxCkg8Hyof\n4E0ms1/XyMswQ0lsKi8sU8mD0niw67C9YAjDv4XgbDwj4wgbBEi1+UaOKcYuBp3M/uFOxCR09jSJ\nfGcSmdOJbqcZy3cSK+NyTML46ylKupV5p/itPXtC1R2IR59ZSJ6+g48q0ad5E1gEt7T3EVwAcGcw\nT1uJ8pknTgV9C33OR7j80pepsTyNIpj32clz936mEhWdUzRL/rvqMgEZy8k/MrZfGdZXkBdYXc4G\nc6gHc9Y/QH/mVeLbvDXslwb8uY28g4ZmAZPvpyjpD+Fx7djfAEAVFJGynd4zYOLlMVGttgNghAp8\n154ciaSG7zAt/bFKey2Hzy1P2lKoAeNfwKXX0vjMi9mB214/c0Kr7sRYTxHMoEmNoFEiRhDlZ0t9\nIEVFAaD0tzz+8nuC9iQ/WILWAEGI3s/7HA4WDbSw3wliGCqVxNIryuuxz8xyHKugiNtrjlGYlUrR\nSU+SFgN+oSip2UCeuJiUNuTEEPxn74G+mDCCPMNWjQ+rT9CcMqiC8LTSe1gZMawnVZRrFUeSVbQW\nWGAtIZIH72YbvtpPiIjgDSL6fk4e15optLa2HspD3maCKhff/DaG7CTG7YO6NJm5OZAUQsthimoa\nM6k/Nxzvh5VTiExr7xcZyNKQU+6lqXtxyWxag+tWLsbIJRQ5VPuApjiaPzF7qA+bRwVhOqFi4xSG\nto2RcKWpEWQRAl7gILv32T9hFQfHHtrD9FOagR86Q0OPBLyYllwMAHj2pRvlCKcSyQQsrH7e+Lgy\nHAdBk0yVKpimEXpDQpVEyjCdDgPfoP33yP3KHtPaT4StSLlOxUrMatuUNePOofZxOgFCG01Ax+Zk\nhBjcE/VqZMwuBwCU/5QFlRftZPDLC+Ro6AvJ+3okMxIMgLmY+vpPxTfJn0swpsEvP9gO9jv50FUA\nCPbrCdM4vzqcXsKwr2eI572rbv+/ERFlIkFhuyIGcvl67/EHCMZ7OjKi7q71JQvQ17bv89EFpV39\nrFcyfd9vzvq3/25SPxqIL6C1rlfTGqxqtMuETzuXjEJoKu3tjUM5GYYfCbm+7STpLxuP5MO+l84Q\nQ1NYRuRo2zgUcoR2+E/hKjgXEdQ0GQpcv3YNnenuk4ri5Ldx8DMOm7hfNNC6aB8JmAHHMNpHDCxq\n5VyUDi9DQYXiBBjqGcFdWEEDteUAmmq6R02bVYYAP9PvWwDAQz/eo+goIvBQ7FH2Joq+qucErGwj\naLArlfSXkEGEJ4cUhYSUVtiX05q4s2AVnrfTOZCpVhB8bf0UBkWpLnt9gxU8I++pbIjBzzxBJHlO\nhJ8xpYc1vBwRzbPQmB3P7ivXhBQMAB+gdlftzEEMe/0HMAhxaM8M98jnX+D3Rwk1k/hnLQS2dHmI\n4HURzOz11JY/Tl2N7Yz9d9udFDHzJeihb1Cg8pKeAQABG82DoE1A3sd0EPhYJNmVokKYbQ2mSg5q\nN/Vda54J/jZW5cAWhlBKkW5O4Lo0XoomU/3nQfsXwLlJQWAEtynkpVJEdP78HwG0ryEaKZYpdait\npTlvOq7D9GuIvOqnpaPlay64munmy4bj8G9p/kcSHPUkvvgwyoI0Du+vnwbuDI4JiSH7okKFMPW6\nuZvw5denrx8KAH9k51l395UirP54AbrSM9uzJTlTJvGzNkY3b96Md955B++99x4sFguMRiN8Ph/0\nej3q6uqQmNgzHlvKGU0aVoembQq98vBd8wAATw9YLmOzI+G6kmg0Ah7/gg6Jy+94GxHkUBh8ESmu\nR1fkI2yie/C1SiD42UYydBZtm4z8PGJv++D6lyBxomavvEumXRbVIrQXsFIlW0n5DFqVjj66Ih/I\njsh33EPXRILE/LFilzmakgx5aYFsKB589C05N+TLnB/lawpWESSlu3C2dI+ioBtDXnpc/lzKFZXk\nyfrB+P7TMzNCJTFVslwuXpTp2o1NQrtrggZpU+agCndeYQULmdKQGpSR8rHbNZAMwpLmeLgdtBtq\nWbfpNCHoqhkE8vs+QBdke+F7G3FzLBlxq8Pj4ImnZ0sGpL5VgI9BUUN6wFxLzwtYlXfsSEEvSUcj\nVBKdQxnXgwxCm73iLtw6jijXv/771K5/2IWIPKCfQNDPNZ8SbOUHzfh2Yz7tyBVd/PLMpKmADl17\naRBBRrGvbw5D0LNcoU20Qb58cw4eiSUlrnjqR7j4Ncrrcj6eKr/T1JsexbRRRGl7bTxt2JcY/XK+\noTeRg6mG+nRx7lLMXkhQullTDmAeK6ExaGgF1L/QgWwoprXUdmcbmny0CtVOHjs3knEYMofBx9Fi\n3/XBMFjZO1tO0Vi6MzjZmOZCIox1pMwY6oNwZtGcijkeRN1omksJe0X0f4/2C9xJ+0LKpojOuhkQ\nt5IGVDk9IJfFEbJCELzUC7WMjrnfK378IYs2+8OnUmCzkFco2+7A6pWL5VuGWZF33hmGmeUXa50s\n5/2EVmaaNVX5EIihQzxg49BURYeqvV65h6S8qQKiDA13u/WQXFYFW29GIStOn6tR44t1tO5P59LK\n0xGt+0k+TjYstG0itg9b2unaEnaQzv7oCRy7v/OCDOtFtBKyDbZiDhqm/wg6TmaV5I003qoqPczE\nno+ADUjKpDxd94lEOZ/T0MEQlUQyQDNml7czJDt+DwAf3f4q7njzwa5vBODu21bi4sI5AIA1Bd+3\nc2COfYWcQifYMwbv61nxOF+G6PHbyHHwazDb/hqiPdHZUBd22+HNZrmaZdpeG5q9lUgYbkf5MudH\n9Ps7cwKd4X3bjnQ+0/+VJNCPleQoOvf8V0sJD34XOd9d7Gzgc5Xc21ZRj5SNdO3rf3kVfz5JyvCC\nU+NkyOHG/bRXp2xsn4zmTqG9zhcnyk60hqUZ0LP/NOfzKLyn/fodf2Auaitp30vcokbMcbpfwzBO\n3jsDdsjwXul5QQMHZJOHMt7ihaeKIKRciPQSAFB7ReXv1XaA0jmxqJYUenN1GBXfUxkPgwAM/oR4\nGXQODoceove8+pd7ldxy1qagVcTQvEr2Nhxasmn/mmtuwxMj6aKHa8bitVQ6L1tyaY94rikPwk46\na7Q6wJ9KSofoVKFYIJ1apQpDVLG9M8BhajydXW8fnkzvXCNCw4x0W7EbtePJgLOViKi7jIzAjMVq\nNBcQzDimkDblh9+/C6ZqSfdxIXM1BVWKqvsDg6TPQ3Ibf3HmYsMp2twlbT/SED0504LMtXSPtNfL\nZHZ9/okCeFJJ/5DyT20nwog9Ru+mjij/pmsWkNWHHLqV+1Ohb6Kx8g3xIMjylqV0v75f3Iu3L38f\nvZU/sn77DF0bo61uA0zHSYdxZ4XksRoExRjduox0cskQPVPRtvC47hClcBjqeZn5ONTfA/UxxVnh\nT6K+09UpZ4lkMEaWberOEH2mmErt9Ysnp0VhhAbQZ2oFKjYqqTDSPbuD/Z5vOSuYrtPpxPPPP4+F\nCxfCbifPwYQJE7BmDUWq1q5di0mTJp2/t4xKVKISlahEJSpRiUpUohKVqPyvkrOKjK5atQrNzc14\n6CEFOvjXv/4VTz75JJYsWYLU1FRceeWVvb5f/d4kDIuIZEr1QH8XmAtNEnn8BIe5EzxL3G7v0lPp\nG+pBYYMSojeVKFflb6bIjmYvKzQPoKqUPALX4jHlNxH3M5WrESiPa/cMTVv7KKexgroyYBflwq+a\nCGKayKho7MUUiT1ZmCx79gB0yZpb8+B3SGGJ8h/e8joA4O43H4A3idxThrrO9wWAfhoT7rljBQBg\n4fuXIU1N0OfJhyg5Xqolei7SkqOC3sHewyHAlcLgno1htOZSu8wnRVRvpxqy99uJae6NtB3tvZ8M\nZfBUw0B8/yZ591z74mCVvGCMTc2xOxEzZhEsYpN3hEx81DBELRfp/WbgJ0hU0egZ6kW4U+keSROp\nb9q+SZHJWrzJYbj60DubTp17zbshLy7AjbcRa9tz077EdWaCfj71GGFjBry9AGp39/e45uaNeCqB\nXb+T5kPH3zT9kNbxZ2csrj7Up/44DRL3kieyuZ+yTsJqGr/PXr0Yr49iBaovW4TXl1B05rJPH5Ph\nl3mfurHvMJFMLfgdkb187YqH7QjNf3eaiKaR5Nlb40mDroX+fuj3DyC3khZ1y4+Z8I9mkKSLaCz6\nGL0oryRvtoaLgH3wPIws6uJOFxF3mHnKWfFyfU4bQkVW1ia9AtMdp0PcUXp27TgN/EnUrvtu/BpP\n7aaaa/d/ShDUu21FGPQjsUMO++sCfPQw1Ti+8eOHkL6HvL8NE30oyCJCrbWlxFocvs4Mwzfkcczd\n1ArHENo3XAc18H9P/Vyw7H6IAyWWR7XMhity9P7GWhEhFpEI2jSoG6Vmf4fBMTImXhDRmsOIMGLo\nXpajWgQZgV2/1DocG8RqgR62YNjPNJf2/+EtrLruRQDAd04ilwCA/3yMIqd/fvFm1Ibo/Xe1ZUPX\ngi5F8piqh9MF9tH1uOQYeV4blmQiwJAjnDUATR2NVVitRHF9E50I+Gi+6XQMVeJToMfugT64yhmj\nIpRauK7cEMwnTn9sVa7MwuCV9G6e1DDWzn2x0zXlwc4MwtmXKRDOdz+cDVcue6cCIHv1nfQeRxXI\nek9QYE9aGNpmeueOKRNnK1JEVIqQRn52JtLx90I2K1xfdn5ZZbkg4I9XUmQkUTv+sfHFMCP7+tJl\nkyGlvRV/Anv/hrPy2/coS29/Cdd80HtSpNNFLM5HRFQSZ7aItgkUpbpvGEFEjrhSsXE7wRttpWEI\nDK507fLf4tsraG+UIK6AUvGgf90CxBYqkVFTDf3d1i8MLighcpRnxxwPy6y8NdNory67bBGeTKHz\n5euYYQiW0yY3aEwpjvZhiLpyI2pmsnrmWobSEoHZuUQst6EyDyEjzQNO4GCuZIiuCxvg3khxPa1L\nxIC3qF81o+ilnBeI4H0s/SjNA9PP9Ozkrc346Hb63boL3sBFWyh9COksIpnVgtYA9YfvwxQYPApy\nLvczOtAP/TAU0wXag99+l8b1wZcWwJ/DUsF0Ing3Y3dv5mE8QvdrywPi2dnrv7wZ21sofcvI6qtz\nggnOTJqvnmtDUFGBBYTVQMIPFOlrzufhHkMbU/1Eum/ZHEUnu/T4pViVvwoAcMkVN8Mfa5G/CyRS\nWwrbkpH45/ZpSZUXWmRCJG+uH8UJpIutztwio01Kr9aAi2EM+KxKRe00AbybEUU5dYgppH6Mu6cC\nI2Mo6vz9iVQZoq0/aOwEizXU8/iP7SzVZ1wzhO2da5L2JAGbiLRRpCs2/KjoWT/NehlgdSb8sSLs\nAwgp6WXpe/WCG9PffBxnKr48H7xVDAoc8bla0x5pqHKffv8peGeBvC9ERkml7ySJ0dM+X7g+r9M9\nVvdfifHSbbbdAAAgAElEQVT+uZ1+84+UszJGr7/+elx//fWdPv/www/P7iX6OfFqJpUTmJTwGPRs\n41erBQxPJtzW3r0K81UghrEvcu0hkpKMyyrHL/sIbmcEQR8BmkRaVefETSln1OPXwllFSqy2SSUr\nEWEt2kGAO4qgA0bPIoaubZsGwppMi1Es7noxONaQcWYG4MqmSWcu6xrKdfGrT8jQ23F65RrJCHWn\nhWE6RQ2sKE9AdhUpTpxTLRu6D965DHe/+cDpG9BBpP6KzHENsXNGHcGcH3OifT6mL47lZxhUsBfR\nj5sGcUgfTwkaq4sJupO9ZyjMSQQNOTT2M/n3nx8dhf43EqNlJA21ZKRzIWBjBeVNfHXPS9CwF+yn\nMWGPnwZo7PrfIuM7ljMyChg6lZwcYaYFV2cAuePLAQCeoBbBReS0UAXPQ00DAIs/vEj++xn27xsM\nvijly0mimkIwRInGHAD+vmkSRl1KirFuFH3fN7YRVU7asDzre4a/90ZsxLgOXxzgjaVtwJMsymPf\nXECHhCeJg53N55MhF/qxIuMFE0sx/1qCZD334nwk7KcDdpObjLJ3Dk+EkE3jo/Zw6JND0JAPf3MZ\ntKCOUPnUqJrGHAcNIkZPJ8Whv5kcC0XuRDTFElTFX2OXizmLasDNzomwVkRzP3rp9PG0V1g0fjQ6\n6D3V3jCqprFcoRBwitXCth0DLKzY+X9uu1JWYA44yYC7pn4AxuXSXGx8JxPvN5KTJOZYGKVXkzJt\nDPtx8Adqb9ZKcjz4UkOoILsWQbNNVsZz767GxH03socHoWbU/OF+bugOUx8EWIqnO1OEoZbma8Vl\nHPTMx6Rr4CHKerwIWzFd45xKRm5YrYU/jtpRWJoK6Bjst5aHi1BiyFl2D2IOUX85+wBJV38FALjF\nStDwJ6a5caGR5t9fD14ME1sXNz6wRs7h/3PDCPiyaQyvyyLHyVdbxsLLGJ3VUCB4Ya9ahhz7YxSq\nfP6QBYnjaU7k2OhgP75eKUNkOtR1KYqEjGa44qnvVNutXV4jibGaR182X6+4aTO++5TQOh9UKekJ\nEkv18rzVeKhmlPJ8VpR8wC83oeyS9wAAg4/2fEhLLNTGUzxCXTDbu7MFuYj42cq5wnQ7/v58G6GR\nEmmESnKmBmFv5eLCOaj8KVP+v49B2/QM2vanv994Rve78pot+Hbp2aWy9FbOxBB98sYlqGHlRIK2\nMDStv46BbKrikD2GNp3FZbQmkswumLJojzMMcqPNR+tzmLUZz1dfAgAYayvDayuoREnOaIKoaluV\n+3oSeDjZmZCySXl3dxIPYQpdeHicksogSVXIhcXbKGVF61BB66P5U7SuL2ynaL215UBmR5bKlk2/\nfTvq/LRHuGrM0DO2XZUP8LGyUgaRQ8DKWD9dvFzu585cYkFvzTag0EkG75c5P+LJ/mQU79k6CE9v\npnSZpyd9g9R4OksqA3SWuwpj4MykPso7onRCzrJ7ED+A2m5oFMA/RrqnQ6DNgr+kEUI14wVwq2Qd\nzJsSgqBlPAKnODSOId3rD/mbsNHBUkusVBLNXWeF3077VyikgsjQnto2Do0zSYFLS2hBmpb28AoH\n6amDtt+IeblUXiX8RBxyH7oNAJCLENI2kg4Q/EsrdFvJMC2t64Mslnd6/E5q66wRe/HWA9vl9jYL\npEQP3XkH2mpYvicPGA/SniOVRDPFe6A5SO1uLRBw9f8jCzpD48ALRaRTSXBqSZ5qGIiOkpVMZ8mV\nKQewcPvsTt/3JCLX3giVZIcvAy/VUzkznYOTjVA3yws+U0PU05/6fkb/49j2zdDOFxyytPvv6VLE\nJIk0IDsapJK8mfMlAODSDU90+i4oCmjZ1pnlvCcJa0XwgfOzn/86u1lUohKVqEQlKlGJSlSiEpWo\nRCUq3cj5KO111uJnEc6smFZ85yLvjr6Bl6MzadY21HvJQ+AZ6IOhkLwvhv7khRK2KZHH15v7wJNK\nbqT93w1AZKVRybukb+SAxs7e9AQjRXWO704EMsgzxkckCp8uKiqOIY9XsNyCvd9S5FYHYFQyeQV3\nIUaGpZ2umDjv79mrIEUGnfnkHuEjoqGmUzzcaSwCUqbBkQcYgc73d0HQ0jUvfHUVzoTjtaeIqCQi\nz8HNan6ZawUYGUlNwMZB7ZdqMarhWEZMeanVSiTVlUxesGzHnYhPIo+eRhuSI6JHAl6UBAni+NoC\nqqF025o7MT29HAAwUGvAoO3k6bYZvWjZRN7LjELlGfEHwthjJEiCVEssnBqG61V6H2+sCmEWlHRl\nAgl7O7MBnw+5fRnBjowdyp66j9D8DeaF5Fqjyy57DfP33AEAMqFPEWJxvsV8il5G0GkQsDBCHn1Y\nHvtm5nQ0VXLQaVjtuNbhyNWRJ1fNC3Ayur3bH/oery0jCE6OjqJdozIqcdxEEFvPrngE3qfx0cGD\nkEnDns1DYNAprVPEvhrySLbE0X1zLQ0YzdbST40mgHm2NU3KtmWu4OHMaw9pafEb5Aicvs4L+zHa\nQ9pyyfsNEJTcGWT3adWAS6AfHGwg+HqKxYnDX1Mkf/obO7H+S2K2+OovL2L2RkIZWAw+NJlpjNzZ\nDPZf6UH+O8oCqhtP87zoSH80D2SIDn1Yjhxq95tktm8JycAHeMQdprXui1cj1J+8y7YNBrTlKO2U\nIOjBNlrdlhYRoZF0rUoVhnqzRFAgwsz4NZxZiv+RE4GrGWPQM43EBvnduHcw7XPy8ooqEQ4G0dbx\nQUzaT3WjE00umAspOrnixAQAwIhLilB2WIH/SCgAQ4UGKrZ/cmHIxBqtuYDTS/fYdorQDjYdJxM4\nnE68AU2PEdFIiYTTSsRGkZ9JZFTZ394NzsRqXYOi6ADgqzb1CMmNFG2Lsp+rXZ2/V/9K0ax/RTGN\nb0RTCe1d+vqIeSec7hfnJmU7M9opNPq6cyOO+rWjomcqzyy+Xkbb/JpAZ32ziKpPaaPxJrIo5AAT\n7D+RMlA6zozkdELtVHyaC42H1cBWFcDKiDdPNVOEesWDzyNbQtO8uwBhI4PpXueG9Uval539BMxI\nKwcA5Ky9A6o62gSsDAqpWxyLWAb717WJYMFOBC0cmqm8JaylRMAHALUT6H0mWYvwYglVeUj5WSFS\ncqXxckRuUmIlVttojgoOFXgGj/yJEVymGVsw0EK16Y8EvEjSkK7iGGIHx2pPP7PsWggZpCAZGPOo\nvkFEzDqaf4JJC5WbNsHEbRwcDOTXOJLD5bGEGlvfQgduktkFTyxDfiSE4amivuPCHALsjOLCamT1\npXN4pL4cn7npbJqbRilMn8T1QeI+erfydDNimljk1xuGqorGMLGPE/t2075rPcF0o4uasYFF/1Ra\nFU5MI6RjLm4Df5J+p2pWot1cmEPTIHo/ezKFo3/+egSm76a2NPfToWUUtdt8TIv4BnoPTzIXkbrA\n0HQHbbA2MOKp6S7UM0LA6aZC2F6nv5siAqHTr9mFpxOINPFrKKQ99U56H1/y2Zk2upau9fE/rr4e\nag99F3lEJWfQOnCW9i6q6B1EUNn0BLJhuoyKdiFSakVvILTSNXOv3ix/JhhFTF/9MABg5EWE8V7a\nd7187ZCFvUdORsr5iooCACf2tg7LryD5f/obACB7WjkezSTyowffvUf+PhAjAlksYa7chKCdFqOp\nrPNE88eJ0DWdW8e4c4NQM0WXCysGZMf8UEkmX7MXAPDz0hFdfs+Huvy4nYQvoJXdm3ItkvjiT8/M\nK0F6h7y0ABPn0ftt+UJ5P6nkRW/erSexl7S/ScBEm1rjcCB+P33mntsG81e0mUjFl312lVwmJawG\n0ucRHLLNr8d/5xKl+u+Oz4UQpvvtHE5QwrKgSz7Ynm3MxweHCboj1uphZDll+gYRhubO2o4zjRre\nMiIAzkuHRPp6Ea196HNTXRhqn2JEtOT0bjPrbix6K6JaGZfIshhDXmS5bymiPBcl+Oa5SmwhGTt+\nuwqCju7ZMCmIO0ZT2Z1vX58GgBwxDeOpP5P7NGFkPBkvl8fsxVY3HVxfFQ9HMEANuG0QMRkvrxoM\nCzusa9ssSH2uc3+60w1wJzGFUQTUlxJU1NFCsNWC9Fp4QzRRSk8mAgEa47jdyvwJmjloJ9PvLs8k\nqPxHWycibh/d13IyiPoRjFLeIirzvr8L/EFShlK3+ND0MJ2OeXFKfWQJ2t0aMCDFSOs0FFbhuIOM\nbJM2iJr9ZGRrGPQw0N8L0y4ypuPnVKHiAEHycz934dQ0WgdqN7HFAgAvANpWlr8bw4xtJxnnANAw\nw4/4eIJICcvjEWLMwXwQ8LH64r4s6mfbXp0M9bWOr0dTC60V66auYZiOoQKMlTQu1smk3DS1mKEq\npP431omwXkNwvRGxldhYLZUWABJMZGkV7SWl03SShzuTlfKp56Frofd3ZQLGavbOIRHeBJYHnigg\n5ghj5WZTunlECJbjNLABK/VDRxHViqF4PsTFHHzm4xrZWB2x+3q0sDloOqhvVybsbEWCA+vrOTnN\n5H+rqJjSFrSIMtNlV5I4pRr1m1L/Ua913kQ8P+TI/7JiqBfRPIIWWVI6GRmOVhNsFlKk78vdiEXl\nZKg37kqSjaSZIw5h7RGyDv8w7gcAwI7WHOz4hvIiBR3gS2N4Q20YGmZ08jku2M1077rKGHAGut/8\nIcReerQtGbVv9e30np4EHp40WkshYxi6JhoYH2Og5YI8jJX0mbtPCIMHkkeu+tNsGfY499H1KHKT\nIfHT/gFI2kJ7kv12coI+n/M1jvrJQbmmeRD215HDtPWkDep42hDGZZVh2yaylEJWeneVl0fexwo8\nN6yjfbZqhgWpv1BbS27joWLpITE20nNj9F4UV7FUHKcGunplsoU11Fbd4BaMTaG27K1Pg4+Vgrm3\nP53d3zx8EU5Nos9mXLIPhx30/t6gBmOTiOOA58I49P/IEBrxLOmJTyZuwR1lBD1elrtOLhlSVqvk\n2C8Yugmv7yLdIGaHFi2DWOqMntqhtQQQrqC9M21YDTQq+tzzTqqcCqVtCcGVpmVtov3Bb+fgZmNp\nzXcgKFC7/YU2WfcJJAVhOkG/8w7yomQ6GctnUkrlTMWTQe8vzaNzFQnWayrt7E4KWsTTBqck6O3T\nDQOQzRz+f/nsul4/d8Zle/DjipGd7vmPzg89/qeHT/vd/x03bVSiEpWoRCUqUYlKVKISlahE5V9G\n/qkwXcGgFBve7cnp9L22mUPYRd598/gGTEkh1pXlDeMAKNEIgJg2L59HnqHlX7SH10gERc6N3YfS\nTSc0XXrBPalhGKvb2+0iD6zeQZ4ljVVEIIE8iYYKDfRjCV4S2qQw8C644zu89X7n+pBSRNSTLMLY\ny6hXd5G4nGUUWTajfURUft55jCp0FFWAJaOfUiGkZ168722oncGiD4Xk1dI7RBgbyOPkSlYhQUdR\nlvLmGDwYEQ0MxpDX7VIjkSLckroN2Rry1F5qOYjwIOqHj7mxUJeQN07owHtSP5ymuDSeKevUqB/J\nPPcGUYal+q1cl1DknuRco6IARXpUbFxaw1686RjW7nu1h2tHBHE+RRUU4Upj8FCtgHQtwU7ibyDP\nax+zQ/as1h1KQvLFBI057k/FQANFSVMGtCCWYRLfKCOGIEerSYbacA4tAjZqYO1YLQQ2N9QeDt5M\nmhu6Gg1068gDa2V9UZSRhZCJQVgrVUjcwyKtY9TQEloKrn5BvNr/ewBAQ4ied9fETfhmN72HxhmE\nl7E8W8pUcPaleRe71gzHZBrwxjY9PEcJGrUnnaKIY3PK8ft08u5fsf5+xDCorE/QwKJTcPtxgymS\nenMWEV7UB61YZWMwJY9BJhkpuc4CHStVHLApRDdcGGDIL0jleG1lQTTeSc/TCTy8GyRGYSWi5ktQ\nIoQFWQQjq9veB4Z61i8/JyI8kDzwafPLUP4d7a8at3IPSwQr7bahXwMAcj+/F5Y65Zqv+hPB2LvN\nI/DhYCooPnfJw2gRaW8Lm2l8vEkibEUs6hkLhFUKWYibMUwaajl4M2i81a3Ks73JyhqSYLzOfiHc\ndBXBjJZ8PF3+PjIqyk2kvUDccuasiZIYyhUPtQTHdRUEYChTwFhnsme6B9EcNR1uXyhcX//rkPb8\nK4u5oBmtrZQwoz/emZDq3zEq+n9BBD0HXS2tz3o/q6/axsOdT3vn4lNj8d95RDj5ddxo7HiPai0e\n2jgUEkf/27upmoKhKQxrRJ3RNhbFs5aH4WJpBu9e95FCzhhx9A3deQMAwH8gBmYLQ4/YOJnpOnEr\nByODfnrjVWBlJ+W6xbxKhFvP9pkQj8NlFNVMconwsPQiT1iL9zNJb3zHWobnQKQ3ju2E+FgQmI+X\n85cAAGo8VmjU1AfZBTWoX0vpPp50LUJJ7ExgMI9wkEfdBIKptBSEkbaRfc0DNePpRS37iVQTAFq0\n9FmrAIgpLLIbVsiYwAFtedSPmjCP4lY6Eyy6AOZksjPZQyid+hFaWMvovmt/HgYrI7pTzWnCyl2k\ns6bmNKJ6Hl1zai1VOfixehxah9Cz56umIfQC3S/JwkO4jQ6vFTWDoaukvdE2txp7B36HTsKqOt52\nchI2HWOkPwUquS1tF3Ewslr1lpPUpoT9foSn0Hl8d+4WHPXQ3vDLqlFyGlHyNh5NDOL81KgVnZ97\nGjFMbJQJh85EDjzwBuaemAUAOFHZOTLfUSS01unIhkSeovWnE42TgyAdGx3AM5ERzJuv+REAEGD6\nscTa3p10jIoCQO7i/5Dh/n+75X38djeR0qqOtmfeO581jLuTf6oxKuXX7Bv9hQwJcPcLwFQUoQiw\ngfX8nIC6K8mo1HTBxqfyAc8mHQQA7JrZBzVrM+TvJEVr0MaeQ9JdQbE6GqIAbRRaB30uaIF+fUkh\nPFWSiRbG5Bk5pC9/ezm03UzW3hqiABAyAg/NJzjrG+8pJXTsM2uA81Cy5WxFgmHYykJwJTPmt4Yw\nMlZQP7Vm0XXeOW3wbyEjXNABG3aS8i7qw7jurl8AALfG/IJLV1HpoOOnyIkwL78ZWxmU9gK9DscC\nNB8SYpzAZYTpG51wEt/tpsMRahHaWnZYpdPvQiYeMUQAiqbBHFR59LuExb/uQutJpI1s0suPyqVI\nJPk1DFHJrtE5Qkitos2mbCSHK0zlAIBb+zOm07V3QFXPnAhNHD5cPxUAkDm4BlpWxPrRPmvwbCkd\n4lUnCGIUk9mMtkJSZIw1HERmnMy9ejN2O+igb/Xr4auneZAyoR6nGunwDleRAqv2AmIiPSOsUqH6\nAtqp/XFheNMkulbgzZNkrBSV0ty3JzqRtK9Nbqu1mMG3EkS5nEDT6BA0p+h+rrFeqJiSIbIyJJ6Q\nFvN2EzM1Qjx2l1D5J6PFj+BRBjt3cZg6l9gHC910eL6RtgMpGsoHOepJxeoCUsI1h00IsUR2f2II\nvJeVcanhwYdYiRZmpNff7sWIZMol2rajP8wO5WRyZdLflgrIJYrGxpYDAJYZsqD2SvcC0Ejtq7DE\nYOz1BwAAez9Qyrlo3CJ8sUwhbKX3txVx8F9MfRc6ZEM8K5O05MMZWNSfGIWt1RzUPin/h/o2YA/D\nmc3guDlO8D+y3J08P7hGmj+imoPGRsaaZa9aLg9hHkUw6+AxJTfaXKzBkmLFCO1KJCM0Y3Y5Kldm\ndXvt6aQjwzWgOM0k6S0sOGATOxmhAL1f+U9ZZ3Sv/w2yb/QXGPDmrwsD82aEYKj856gxvtQQ9NX/\nVBXqVxFTbVjOjwtkMWdhuR5+gfYsm9aLO9cRrwHv4/HuE1TG5a6tv0HyKlo7hibFAM19kA7cifYT\n+MsG4hawlvPofzUx3X/TOhJFAXJsxqld+MPhqwAAap7u8cC1K/DaIYKGBtxaaGvosBx03yH8MYU4\nJu4ruR52HZ1j1S46U5rXpcj56q2DgtAYmOL1/9n7zsA4qqvtZ8r2Xe2uem+W5Cb3CsbGYBxqMDiB\nBEggCYQACeElIZAQ8pL+QkiB0FtM78U0gynGNhj33ouK1esWbS8z8/04d2ZWluRuMPn2+aPV7OyU\nO3fuveec5zyHMyB3E+27qHk0rEwU5Kld0/GvOeR8U3M4P1g6EX+20Nr0b5Wv4/dN9HljXSkKG+n6\n/lDyDi5qJoVqWWaGX9iA835CRu7Kngq0+MkQVqpCSITo+t3rDJpBkbGHxlH/6CTELvpeLoqir4rG\nE0snj/OmU+5TYygTezrIGDUaJfS6aaz1xGmCKf4kgOazKAXF1sJp5VByH3Biyp9ojfzxRxNgY+ln\n//nJfQBICf+hz+YAALa/OhI2l5pWxUFkRrbp9gyUceR4fumHLwJMnWUpm89mW2QsDNH11PmzoYTZ\n3FucgDSS2rnoVTO8TF6g90Jyunp5BbtYZYVPIgL+9jH1k9K2pKaGH6gGbMQy1tTfDwdjs9uwGkMb\no1d9bzGefu7sAdsFjse+9w9thKo4lOLtnPlrseS1Kf22harisGdRGyirXQOM0MHw7Gv0jLiMgZVB\njgSpKRQ3P3M1MHLwuoN86+DK9gAQy5NgOsbcfO08x+UoaaSRRhpppJFGGmmkkUYaaaRxBDhp3Hq/\nLX8PAHDd59eBP4Xi+cm17n4UKVWxdijU3jfQCzvl4q3H7yJTECnQvRJcEti7nTxfVgDcIEW9R8xo\nwM6VFQAAS/fgUVA1RD+Ytx7QxYkA4LZO4rOEimWs/PY/AACzVl53RKq5JwqBQlGL7vmqBS0JfGxt\nHQBgYfViVAZ+BABQIiI2nE9Fs92CFcNeIeXZd3pOBceiYu5l5Jm5o3YM3nyFOCDRXFmLTIMHzBOI\nXrqptxjO7Uyt1ajTIYs/Ul1OErzV1O0tnUAyyBT9igFHy8CwRYhFVFU13oMhXKDA2j50hHvLLQ/h\ngzA95Fsfurrfd1XnUdvUvzXsoN6xpBUpSnRHD6NvYCcbW9yKNqZYuztBbf/bae9hmY+oNl0RB1p8\nrECzQaeqeiQ7fO9SZK16DXlNO6dmo3KNLie69zLyoH7eNQyFNgr17tlZjLG1jXQ9QhL+5XQMNVoX\nKU1ookWxbL2uniE/jN+MI4+4J2nH/WsogsYx76yvw4E86I1kPpeivLFVuVCMTHk6OwyeicqE+sxY\nO4spNteTV37LlnL88xyqefeL96+AoZueW/EbMQAUOeyrceCTRmqb34whSu8jviKsD5QDIHEJfi+r\nkzoyAvt6iromnDxkM1N2rJYQZG3OMXpZqduPnihFJB31PBSBUXqTqd5MBbEs2n59Jgl9vB3RVQXN\n3QDHIhmjp3bg480kLGLP4GDs0+s0m1nU9VonCRU9CiC+myK/klPWam+KYQWZG1g92jyqhQoATlZ8\nXRoRQdJD76niM0Ngz1BJ8jCEVJEKBY5P9dLegWkUnchg12koCwF7BxbnHHnRbmzroKj3YEq6hxsV\nVQWKztt9HnbuJoqdfd/hT4Hfu+ojPPf03CG/N/r7v/uqSvKUzP3YWXTk50uDEB1OdKXBqL4nOip6\nzWU0zjz+KtXSTI1s3zl7IfJFGstufubqAb89FqTWCvwqitD3zaZ38/RKmpc2ZBRD2UljvzfLiofP\nehoAcI5Vn0d2znkUY03UDvEArUSGV7Zj33009uzDKKTytloeoPBYC6rxWcp2IZPGg8gZxFr6pn0n\nnnuLmDc94zjEWS3l7Z58/Faios4uUwS+GI2v7RuJXipkKBDH0VqSa3RBCtBY7Eqp+ynJHJ7aRWlf\nN41eAp5Ritd1E7OOLw4jlqQ+dvO+SzE5i9JXNkYrtKoP31z6Mwz/14GTchQLfbRWSU4KQKpkfXiz\nDYnh1GaRfA4cG/uDp9DvzQYJhj2sgoRogpJL8+yEKfXIMVJ7rO8phouJSfU0ZiLGxBn7Evr7kWC1\nUyP5Cky9dKFdEw3oeI9St0pOa8F4N0WjzUze+tEtM+EuorbhihVUZtG82XNTCbBeP7bKqpr82i8w\nYTKlzvWy+erGxUWY9z16ms37s1FCuqTgf9qNfBvNm9srRyAxkdYGJiO9UPeMeR3b43RPj7ZfgJpn\nqT12X2cCJCZIKR9dqsOna0f3q65xIA6Mim77+eB1OlXEXUo/1fTDxYFRUQDYdM79+H4drTnq4Tqi\n4xn6Dr0mVceRwxlDVOHCAyEXMbroIDTdoaKijmndmvDo4Y5fJ83M+MOlZJwgLwmRlWxJTggiGWUF\n5nfq9KfwKGoc646hw8fayygZBjVSjwRJmwKRLagEZigbEyKSdbRwEocFtc+hsiRs+/VmnXYp0eNc\nhjAauwfmxaZiKCNUhVriZcsvH8J7DUQjWTDvEeQyKp1xtWPI3x4tImzBbhkk5ynqFGD2D1SutXVJ\nmuqno1VGPIM67Nb1ZIxP6rsUP5u0FADw8JZZcAv6UFF3KRkF49ZcBoWV3lj37We1718cRYtjxWfE\nHVdQLscUcxM2RGmxtyo4DM6r9wIA3nz6dNhJFA/eKpY7GodWPsLZICGcw0rTtPe/j/J59QCALkY5\n8cRyYB7CiaDiYIaoCnXyPueWh7ApxnIgpQz8/DXq/0P16HCBctjnOFpsbSvEd7qJmuqy0sTwh+q3\nEGZ6/duEQtzOnEb3tsxFV5j623cdXnz31zTonT3/SgBA3pr+dS1OnbILABCXBSwo/xAA8H7uWmwM\nE/11YcNY2OcR7dq3hyhImYV+ZJipjSSZR5wp7P3PsE/weR8Zgbv7ciGYmOLddqa0l9d/kE68RcdL\nDlOgiIx6FDbiO7VEsX1x0xRMfI8o4aeMob5z85kf4H0vFTi/6vTP8MynRFFtn+VEwXKasOfd8Qlu\ny6L9V0XpGu5tn6tNzAlJQJKVrpFDIr7xfVIatgsxPLWBlKArS7rRzOjJJaxwuqxwaGAqtc64opUs\naD1XAheiNjB7eMhGRslNEUQP0CsGR4Oi5Y+uXzICIuvzqWOMd7yEzI39J5P1dz6MYZ9QsfO6OQvw\nfICo1p9hiqZ8WDirBfs3kvMtaWXj4i4b5OGsBM0yC1SPitJgRJQ5lQ6cPO12GsfDW2i8Z1VmNChs\nGPbfTE0AACAASURBVN25cDiOlQhUfeFe7fOi4Ysw5r0jnxMOZogOhte+RfS3+ctu+FKM0HguLewy\n8/0Ibsk6xN5fH6hGaKSY7q9h3mPaAudElYlR8cSLzAhN2TbrAiqh8YOMruNuKA5VsP7LhGckD/vn\nNCdv+oLGwL6JcTA/HroWF+PXUTI6b8pXtPn0W2etRJw5pIQgvbET3c0YdieNs0/+4SJEWWoBzvPg\nnJKdAIBXPp4BG1Pczr2gGV+MpHzAG1rJSDRzHFb+ndYFv2yfiDOdO7RrXdhLuXDLG4ch60265pwU\nb26slcYW/vQIpD7dVS9Z6XMgyGFYPuX9S+CxLUJGqKpP8qlSjbY+coCNy2vDR81U8uXKU1fg1RxK\nBxr+p4GdsGeiCzI7XbzDCnMhUSCjOSZcOXEVAOCl1llQ3GRslubQurKrz47EKWR0yhEDygooVzPb\nFMRIC6Vu1LmysfVZCsxYz/KjM0rzsFkgnmhbpQ3JAjpuzYNxNFxIa5hYVQwZa1l5nn352B8k5+9C\ngUrDmEsD8LYRxfmyaavwyg5q2wqTglgW3Yy1LYIP3tLXYyomrSdlVz4JPL+OclAFWxKtl9D3L1a/\niqkmWsvf/8M6FDLtj8eaaV59tWcKlmymUmrDn9Bz5QSPAe6R1AbRhAilUTfY3g4dzMTUYW09/NlD\ntS0OhqMxRAeAlYVcF7NjVxuloZ3IQNKxKOceTa7o7TXvH/H50jTdNNJII4000kgjjTTSSCONNL50\nnDSRUVW0KD4hCMnMIo7b7EjWkKciUhuBZTtZ6L+duggA8G/nGZBWDq6kqNYGfaliCWox4rCvQ60B\npxZDB0ipN5Ins2siz0yiNAarus86ByT2OzEgIFRBHlyDR8DqV0i9zPWN9sO+hkNh7D9uwLYUyu4p\nm7816H6hEkYxbT56n8NgEVEVkRwOZsZ4aT2dR+4a+myIyDAyVUyF55C/hjyHfSWMTpLMwmMbzmEn\nULTI9ZmXrMW/C4lyuHnqi9p5tsSpD8z76Eb85jSKzJm5OK5wkMfs7t7x+KCDqECeRUVwNlD7u6Bz\nqmwUdIOvUkTmLroeXlIGRERVjHWSF/LVz0mZWbIqGKAsdIQY+/cbsOUW/bmNN5nY9quHjIiqOJER\nURWTiptxRR5F797zEg18kW8cvpNJSrHLPNX42RZSOLxlxEd4pYNoJ2fvvACLR5Ki7eI3SHFVjZAC\nQPupdnAsWtgdsuFX5lMBADflfIqLWL3K1/aNhy9E7/f0ScT97Iw4UGRTo4U8bCKF9T7xjdLUBPve\nLEBxIz3nbqZbNX/uSmx+Ua+QrarxmXsAVJOH2igm8dIXFJ2EoGjCOmtX0FjhmWzFM9WvAACiioLn\n8ykiH8kHOiXyHgckMyas/S4A4F+1tK9NiGNTL0UNTcYkJAerjZwTRmuExo6V26sg2smLXd+Yi8w8\noi+1rKbfOfcCVdtYkU1JQdJF/YSLGPp1wdETGgEAF2z+kbZNrekZKgRsbfQO2lv0iCmXonng3qR7\njFUl2a2/eAh1c6h+2z2eYXjpfioaH83iNLbJcEsQ3uFEi495KAIXd8pwDVLP1NKlwNKljz99TA9C\nFhXIHcyjL+nUYxUJh15ntOi8/WhdVDbg2EeCvW9XY/QpJK61/ZTnD/t3ljO6NTXjw4GavjFn5ma8\n2UeUuMFEjU4EGs5/HABwecMZWI+vLjKatJ2YOqqWFn25cqIjogCQHBNEIsAEZFJUlzd0MXHE4pUw\nTqQIT3zD0Ss6D4Wvgp4LACYfYLuwAwDQ5WVsq6iIeCFF206dswebn6LInMIBYhmN4cv+MR22+fTS\ncvnUB955/jSNHn/1Px9JESDkNdGbNyIzEGMBr7ptRfhzDo3BhSYa+6d9eJMmWmTs47CYo4hpah/I\nahko5uIZySNjMkU95V4HDF59vPMNp6hask/CReNJGGipdzj+XUpR2bVMRfjq2hX4YytRhE18EpVu\nWnMkZAGV2fR57+05qPwrjee9E+hGLr55CZ7awSKEjTZEeuh8ggJMsJIKz+4zdmO4nRYmpUY61qq+\nYbAw1aW2iFMTCVzdVYa3t5H43PB/RhBlhRmiHgvKS+m3XTF6VtauOEoLaXxum1UIkUhOEPaYYTyH\n2oP32CH00qpDfa78Kie40TQPbvCW4PRhxCYJ3W1EnZcEgJZPfEVjAVn5BC7+jAk3RendNEwLoeg1\nOq4sighdRgvEqGLA/H3ELDELSYjsvqoz6HqWvD0Jwz/QC0t3TqN7kTISiCdZrdimjH5029uf/AGO\nN+rP+o/2+UTWL51RTMy757pPRYJR2o82MnowITV1DNl53UNHRNk9Vty2Yf4RRzpPGmNURU1+N/Yw\n5S7jJp3DrPiN2lplfbAcAFDm9mJHDi0MDX38oDTX2vtuQKiaXjZbZgRY7ez3fTRX1ii4ck0ISuPg\nvGkhphZup7/W7f3NB9V4jU8IgmcvT2VNK/wx2m9aTiMW4/gp3aqU3duufRmhjwcvWXMsRuiBUAt9\np04A7n26sccnOBgiA1cInKwvTDKak+wvUXwBwF8DzXhf+eBk/PlmGpCudK2Dg6Prn7/ipwAAU5sB\nCzvISLqycCVqlpPBk/+S/izkav3ckoFDwkrHUOnErvqkVu7F0gnYOnXDNBXtUeon8XyaZDKyQlCa\nj33BMZaVrkk1Sk8EMr5BiwnvMpY/E8chldrWLxmB3eNp4f3dCqJW7QgW4oswNerPCpegL5/a+qal\nV+CssUSXqrD04Ek/nedqJ523+N567PoHGYTBMhk8SzTJswdxegapKJ6/+nrEesmAsecHcV45HW+W\ngyi9BkhY5CdnToHRjwCr25NQBHQto+0lG4NI2GmhwkQRsaKzsp+Stb2VFipd04B/j3kDAHDzukth\nLaBFVLjPDLOFfhzMpb5xUf4m/Gw/5SOdmbkLt4+n3LE/vT8fl1xL0urepBU2Vubl2W4ysG8rWIy7\nQTko3TE7ZBctqEY721EXpAnd7I5CZOq9wYgITystYBjrFnxCAVh/lC0iOqbSffMRvRRRwsZh6y5a\nFHNRepfEMj2f2NamIFzAxqp2BY4G2h4sURBnpQMy1+gLbGOAzlfz1PV47fJ/AQAe+XiulsUii9CO\nsTpzGARWmkUVqDR5eByOFKBauP2iWWvwxloy8M3dA/e76/Jn8LtH6f2uX1WK42HO8SvpnR6z8tCT\ncaiMjWVHYIgCgKWdxpscY1ArffTSUeYYHSmGL7j+hJ/jcDB19s6v+hKOCclaclhdOmIjWqP0Bqxu\nHKN9H1xD7/GW2uhxN0K/KgM0FYEKCXyMlsZZbzN18XwegSp6Jz6rq4LlbJZbuMOJeBeZCD3nReH4\nhN6xvioaqLgCGRP+TPeUOMuPFVOfAADc46nFU8/TOJnZIMPPlLgtnTwW/XU27f89MqjKSnrQFKI1\nTiIDEINM1XcfYAjrY077LFYmpIwcBGflNuH9XeSkNjSZtLUbAASLmDpsl4BRZnI8L0cNFoXIazfe\nRPk9j/eehmob5Ts8tf5UzBtHhquJT+Lb+TRHGgok/PPPpHDq85Hj/Ills+Eup+sYOasJuz3kCJMV\nYEWA5tNw0ogLM4jyvTZC562w9EBgg3wgaUZ3lGayjqZMuDeqy/WIlv4hWCTkslzScTa65lcixfBE\nacTM2hZHz1h6lsGqBDLYPDy7ei8aC0i93MTqyl172nLc/MnlAIDd9QWYP4OubX2gDD1N9B68UuPE\nniitY1/cOwkmRuFU5964W0SgmNp2w60PQGBruB4pBKeR2iYhCzCwe/zkPaICl6UYopJJgH8yLeY5\nAH3MaSnGBh9Do9l0LHPPsa93x625DPFN9E4fH43YwaE+122thbDVD9SYORKY20TcdyU5Ihd6J+HT\ndwaWdBy+4Hrs/uHDAABpFK17DizhcqwYd/Yu7PXQ2Bhee+SldNI03TTSSCONNNJII4000kgjjTS+\ndHCKopwYTs1hYNRvyAO/7aaHNKqmwus0n9Q6OIMhkidDtpG3zp4bgrLq4GpUSateR1SlnBl9HBIO\n/Xzqdj7GIcaEN8Qgj4STfe4jf4nJ0//aotkskmGVYe5gtZWGxaAwCpptj/GIiqefDAiOjcK+ZWgC\nacZ+SauR6K0StUipZOC0mqPHAn85eQLtrdT2PeN4TXHYuU+PaoZzBFi7D5+3FXHT87F4h/5N/i2k\nIlhiIe/mR89PP7KL/4pR/M1GAMDOOhIpcOzoTwIp+CJ44E+w9woLTPkUWru5lqJ/NcYONCXIg2rm\nE0gwVZkt4RJ83kmCXBOyWlFroyjQdxxE7VkWzcV9jXO0Y6viQwBQZCevemvQiRwLRSGmuhu17yda\n6XNcEbAqWAUA6E3YNG/qF+3liK4hGlXJx0GEC8g72/JNep7lJd0w3ap7/XyjybPaV84jNpw4SzOq\n6rC1i9pGUjiYWKSyt4f2tTiicNto396ADdNL6Jq29+bDt4W8fonsJPKLyXs/KZvuf31PMTx9xK7I\ncQYxK48JYXRUI8YEuXz79XFKDPCaS5Bnnl9bmx4BjTk5bWyRLAogsjqj+wRN6ZkroEFN6jXBve3w\n/YuRbA5M8wJGv/6+hlgxetmoaLRge6OuoggAnsmMCr+JRaWTh37fk2YOMVZKNHd6O1o6yAPt/mJg\n3NM7Voat4UT6pk8Myi6g8PG7Ne9r1OcDoaaCFEyh1I32tV9dbegTgXgedaqG85444XVGTwRqvqGr\nvg92/SpL6FhEQU5q8IDIpoeKbxKdsDajDS8vJfaHbJXg3sQEAWN6dDJQwiM0hsYisY3e6exNilZP\nuGeiAoHNL6Ioo8hN84AnbEH0CxpTHTO7cNdwYq/MttD49t2GM7HvPyQcZAwNPs70jOWQZHUXrYV0\n8WeX7YQvQVHbvf4ctHbTuFtzjy5S03yOGxd+l+qBug0hVBr70zRCshEbQuUAgCKTFyt6aT7KMEZw\nduZ2umY+gmV9RC1+cyvliihhATXDSaG82etCaSatI6xiHOEkzcUuUwRjHRSVldlAa+AkSEymtzdh\nw/peErJr82TAtpzmtMzdMdR/mzqhLS8EgdVjvaqK0mleuPdsrQ60fxiPstOJFhyIm1DAFG2TsoCo\nRM9Qrec6PbNBO/cEayN+8TYxUwprO1Ht1NulhuU8Xefego/DFLG+5TMSMFo0598YaRwoLFS99Afg\nG2iedu9QEM6n86jq1Iagguwt9Nz2n+tA3mnUdj8q/RwfeogSvrK+AnKErrnh/Mfxh26Kej+zhESQ\nLJ1fn9jaz658CwBw92fnwdagR0alY1Qxuu3y13D3C98+toMcA35zOaUr/d8Llw76/e7f3zzkb08a\nmm75uTSJb99bjHPHUzmW5a8NDDengjofK/2QYUCinHq2tUlEfAwNeqbNVkTHMdnszVbI7LnzcXr5\nJTNRTFUwhjANsj46dtKmwMI42UPlqsi5RCuw7jBrxrS5zoRYDS1oR31zN3a9SQPqYJTXkxEHM0QB\nwFsjwEgsRERzFIDW3cfFEAV06keghBpMiAF56wZa9EdiiAIHN0JVxCU1v/XIlcROBjR8Wg4AcAy0\nOYeGzGFSEVF9WuNkKJi5OGzsQXzL3qfl/OQ4+jDMTPSlmZZ9+HsH5RaqKnkOPoJyBxlqRj6J9gjR\nt0qtXkQkegl/Ur5cO3VAtqCVVed+rI0ml6QiIJKkfVu9Or0+HjPAQadBsMSC3lrqH5lMkbAqowfN\nKUTdEJv4DAGgpJAm1W3dBTAbadHMcwocRnp/iypogbSjLR92N23zCRa0hGghU+zwobeYjl2W59UW\nAstaKBnSbo4hM4MM7HDcgNf3EK18ZH4nNm+nvEchxmlKuEmHDEsbXb+R1gmwdUjonELbFEEBV8aK\nYkdFiN00W3FJwLmHBqt/XfwUAODmu69HkESlByjTDgZLj4KEnY2DJqaKG1O0XFMAiGewsjMH+Cwz\n16lTx+G/62JUQYRNts0tWTC2DU1PsjUISLI1zfEoZfRlYf+7RLermXzlIanF/21GqApz88lQYOzo\nsWVLOQCgtveKQ+77xA8eAABc89TPTuQlfamwtiuI5NB73/wyORz3uSvhYOOTpbd/+o1qbDqaZTjY\ns4+x4dpXxcO1j8bIvFUAWNafr4qHp4scf6Y+BTJzUnU2ZeLnH1N5N3ubngdqZONMwsIhmsVSphK6\ng8zWAoRmkpFZzFIjco0BvLGeaKAQFTg3qf1SN0ZT1VOvd23HPrYW3JMgWm1PMgPnOakiwhSTHw6e\n9m+I5WC5nxTdXYYISsw0142toIE3wxjBeAd99mdbkJBpPJ9ka0RUoXFvQ7AMvQlyXMbYwjTf5Mdb\nTZQbOjG3GZ1+aqOEz4w4a9OuSSbNirtk2EY0RsgxWx+hlALXvhjqrqQ5z7bHiMAjlM7RPZ6Dp5rO\nV5Hdq6WQ5VlpkdAWc6EpRHPwak85vn8Wzc9Pb56Otq0sFYwDGsfRw/qgYxT276L0nOtmL6HrBI+n\n+qjtHm2YCYE9ILMljsLpPQCAyGQDfH6aQ9UKELIR6JxCn/lxftxV9ToA4N/tZ2nGO99iBp9ib96Z\nQ2k9r3bOxtcFCWYb3LOe1ktqis3xQqohqogKuOSJTw9JxV9eJfnko3ELfH1cCWmkkUYaaaSRRhpp\npJFGGmn81+CkiIw2JILYs7IcACCIuopaIkPRVHEBIMboTaYUpVtNXbLBCkuY/onmyECnqugFGHfq\ntAG1dp1KmVWjbypSC5erEVNLB6cVOFYpvUY/pxU1t3TwsKQU5Fajq5GCJBybKLKWLNPt/pM9Inq4\niOTJUBvmRAh0ONpOPK85UEwdwtGShMTqKAoJBeNc5NV8ZgPRc4UC5UtRtD1eMBxJRJRBiHLY4yXv\nqvr3mkovhokUAf0kYkCOoHuSbTxFDgVOwZ2FTOCnnUQpTHwSe310jBl59RrFtszSg6ucWwAAH4TK\nUMQiqZKiFyJX4RQj8CTJk5tlDqEvTu9YOGFEt5PeK/+0BACKcP6iiuhWrXE3mlOOEyqlF869nUez\nlyKcM0oa4GdFwqOSHqGzijQguDLC8ERo3HBaIwjGWV26mAlVLLra4nMiN4MaOpEgD2dOZgjT3cTy\n2BIo0mqOhpJGcFa6DskiAYy+L1qTQDudx9pF35t8CRhGUXQ1FjXoA0pUgMjGuFgmsToA4G9N5w5o\nu8OFIXjwyKax7/hmcSRt1A8ythkhhoc+9rj5O7D5jVHH9dxfBtRormndocUhkqWM0th0KC3trxdk\n8SvL/DkuUNNs5A7noN8bmIIuAHz/M6rL/OXoJX85kEVOSxMw++hDcm4f+pqZsi4nwNLDUgRkQIgP\nfN4mRvs3+RXIbM0lGTlEs3VRNc9Y2odTAPdW+py7QoCQ6K+Mq/C6CrghokDoYGkLBg6GCEuPEgF/\nnNVgZoI8Vj4OaxbRKmINDq1mer9jxwS83UDiVKWmXpxpIyX3hhhF9yZb6xGQaa75LJqNESai1meK\nQS1lZXu4CKt8FEGey6J1W4LFiLJop1sMwczRHBVVDNrnaksn6qJ0nsYQRRtjsohT8tn84SkCz5g3\n4BSEK+l3xowYHCb6XBfORrGZ1sv7QjTfiqEELGq6WdyoUT/5qiAScX3JbxJovmkNUD/vCDngMhOT\nrztkw7shosdOrGgCmBr7CEcnYuyB/jlvDRIj6RgL/MT6e90/CXuDdE9lGV4EE/RmhGJGdIdY+oot\nhHiU2kbKYykLKyT4K+i4vxr9Eaab6Vm+a+vB4haqP5p0SjB69Ejig74SpELh+qeSnGwIF0ngVJti\n+4ln3H3ZUVGgP8v0SHFS5IwC0OizO27Q80e/7jD5TuI34ziAk6A5AxzNuuHYeImCv88k7vhta7+F\n7PfZVM2aQzLqxj2g55zEXJzmHDCEFW1giWTSzia/jEgufbZ0y4g56TOfVLRjx52ctoBOmjnt+uJU\ntxpJm6KVvzD5FMRYEW7ZABhYPkq4AFq+MB+lc7i3c+idQvd45bQvMMdB+SJ/abgA+7YQN1IxKlBM\n9DuDPQ67lYw1C6ODhmNGSMywCIdNqCkgI0+SeXijLJ/CHAHHbjyDqc91R+ya4l17XwaMLL+xzOnR\nKCwiLyOU0OlxORYykpoDZHxxACyGhPZ961J9ID9rHpXTWdFeAdPzNCl2TVLVowEhwqicVkVTQ5VN\nChSeLSbkFAdOVM83VNi+EBXwrAi6IipQ7KyvJHgg9bc2uj45yTqHxIFjldYViUNhAS0COz0Z+j6y\nPgNZ7Lqc9vAcaltP1IYbyj8FANxXPweeVUQrStSEcU41qX7K4GBjUtwm5qWKySLsbFux0YOtYXrG\nIyzt2iIkz+DTFi1VJsqj2RfLQ56BDGuXEEZXkjqekUtqFK+QbEQGM+p3RwtwgYOM8xyB7rUxaURH\nkhYI++M5KGGy/wDg4mlxdd1z1+FA/M8lb+HeV+cN2H4g1Gd4LBNHLI/aydR5+P5ModaPSAstaI2+\ng5NyVBrzfyMuO4/ob7kG4j1e4tiFBT6ic/OcjKf3kAPs7LKdmOukccbFh5En0EIxT2AF6Hkj/DJt\nM0BATKFn4hYOrxj8icLIR4eev1MNi68rJp1NBkepxYPlnZRDOC2nEdv9RLu2G2KosdP4k828gglF\n0PLxsg0BCGCKqbIZMttu5WMw8/oYnSkE2T40N/gkK7IE3cvoEmgs4CEjrJi03/gka7/vw7IJcZYb\npDoQAaBQCGg0yoTCw8nKbZzz4K1H3zhfA6jq6v+tuPTXH2qfo7IBT++kEjNGYxKjc0ntfrqrXpuP\nHGxcsfExGEB9IAEBNo4WY2YuATOnGvhJmFmfkRTAxXiziUHSNdy8GWGFjhGQJbh4mit48JBZ/7fz\nuiNOUmibwPEIytEB3wPAhL/oY8uCW8h+6JLI8fcNa0JTFFfXeNqxUw6jZV6xXRQBUF8LIaY7FJN2\nRVunprw2kE36GKYGYRQemp5JIkPWq2/EtXgNZCNRy+l4rGJIQPc1ywbA3Ktox1PPEagA1l9F9zp3\n6xVIvJ6LkwXhfA7WjiHm6oEV27DhsV8Meaw0TTeNNNJII4000kgjjTTSSCONLx0nBU0XoIjo1w2a\nGFLi4PsBgGdSEpdNIbWzGQ6igvx57/mILzx5vBxHClI+JvdH+ykG7PoxPcPpt16HP2ZRoejTh+3F\nkjNJaS5vCetuHDQVz0gOB5kF9Ex+BTEnoyEaOLDaz5oyHC8BRp8ajYPmeeHj+rMQw9A8McY+RfOI\nZe6ijT1jOSQYg87WoSDGDqKIgPGbRL8Mbcih6tSgSB4AnPPTFfhzLglrNSSCqDDQQcyVb+Km+HcB\nAJ17swEWsbNbY0jK9DkSZ4qjvIwYq9+W7QqivY+iZsGQGXYbeQLbAw4UOymyJjOXmcjL6ArS+aym\nOELsGDynaLTS3T25MDDajd0URwuLiPrD5AZ0WKLwsM9GUYJkZt5NI7CHCQ7wb2TB1kJe0poPiCq0\n9zejtEgalwA4jjW6UQGnuvQkThMEk83MnSdz4NT3QuKgqO1pkoEYo9rwKS4zToHSx+7LSfckg4fC\n9uVMEjp7KVqoyNCeMW+UIIUM7B7JfdnjdaArTBG46yuW4d/1pOrr/Swf5e/qFLuPf0sCFGVZXgx3\ndiIVTjGi1TVdE6hAoYmeSUIRYWBe4oQiIluk+mj746QGmWfwI1+kfUNyf/KeGu2cbqlDt8TEGjgZ\nH4WIhpTDjpUlBPGxn2q0NoaykGGgvjEuoxljzEMrE13nasW9Q36bguPgguTiegQc0AXhDoQiKOAY\nJVna5gRv/++OShwOTKz/qBT1j8KleO5ZKgifcWYHrKx27erucpSbKSpeaPDCyiaaQvYOJhQJTl6n\ne1mPumz6sUFSZC0qa+X7X8OWa+8HAIx97EYAX/+oKECCNQCwJ5iLNqYIvfyVPDjrafzZcIkB3uEU\nXpmc1QSAoqEJFp3sSTjgZeGXbEMQBpa3E1UMMLOUAx6yFhF18BHt3OqYUmTwanRPCZz2O59k1cYf\n9Xz5Qh8kNs8FZLM2fu1PusFrEVoLRhj7j4H/v0EWOHjG0HiWvekrvphjQE/CDitbPJ1l344nemYD\nAKzbBWwopjmod5oN3y0kRpRPsmm/VfuUwMkIKcaU7axSgsIhwEJ9EjgkZMYEYxOyg+eQYGTLoBxD\niEU7ZQBRhfZ18gZNPbghQZH+HEFM+d6MbonO1ykFYVXZd3x/cyXKGErXffAjAED9/Ee1WppzdlwI\nz5vF2r5qdJLTM8sQd9G1Gf28Jioac+uMPCGi09Vlg9JP6VaNiGoR19TgIIeUiCqHeCYdxFHPI5KX\noowPoK9QgmMv3UfcrYBlKPZL5XM0AOOWUsS37swFeLuKxo4/3n0VvmocmHIYYvV7ExkyrMNoHIrs\nccG559DHSkdG00gjjTTSSCONNNJII4000vjScUyR0Wg0igsuuAA33HADTjnlFNx6662QJAk5OTm4\n5557YDQeuad2TewwwoxfIaJjdS+leQt5Lp/4yf245tEbD/q7hgsexytB8ko920n1ulaOex2vDKNt\nv3/6Clh6Tr48KTX4lXAwjnuKoImtS0KwgFxK7qldmLPjQgDAqr89gsn/S56c5VUuNFxJ3qqRTcT3\nN3n0uoa2NlmrOSVFdOGduIPThDBUL5MhpEdixWiKMIJJF6Qye2RE3awkjxVa9DSUx+TnGxQ4WqmP\neUYakLlT72/iXCbIM7kTHTspWqjWrnp94Uw4vkURqsnWesz9nGpwXVG7Bi+MehoAcPamXyFhp+P1\nBS1ajdnqIsofqu/KQmEm5Yl19dn13FBHGDy7ztQXUq3/5QlbEE/SN25rBBKLuDrEGBKscYLdNi0v\nc8S03VhVR4oDBhM1TJAz4cNJjwEA7u6ejfdluj+jn8OeZpJtH/HmDuy/niJyJRHyKlb/3w403kjb\noOglPjiJh2zSxSPUCLIQoeuRDQpkJlbDGWUoEeZ6lDkt6szFec2jqPDQPqu1xMAp4IzkelMkwRe7\nvQAAIABJREFUDtYMevcc5hjcTGhh/3sVKPiCcqM8I0nAQZoswcByfp9oOg29LE+U44HWsyiSYe2U\nUfEX8tzF/8FjX4B+q+bpmmxJdMVYzVEhoUUyEoqAWgtFJ6OKQcu3UaMQUdmAXpbDEpDMCLNIRrbY\np3mdfbJFi1SMMrdqeTpqjtfeeD6+eGQy/W5jH3qT1I6P/HAEbpxLQlGDQc25ORTUfJUjQTyzv3iE\n0Xt4kvRKVQjcbl3MRwym/Z8q9sbovXtk0yzksDIW0nO5UJiQmjefw32Z5wEAbjn/be13PpnGkHHG\nCJzcV1N66o6uMeiMEbMjIhnAsxDCM2XLD9hv0oDf/uTSRQCA+1bMhbl16PI+Jys8cRoLyqwe9LxK\n46zRo9cfqnpOAkDjTM+/qOSHQ4iCV8uTKIKWSwpQrihA40lAoufJc7IeMWW0H5cQ1kpJ+SSrNvYI\nKWEZIyehMUEsjVyBmBYSl9S2lRt68G4f5Se/21yLajexgQrMfuS7fcfSLF97JOZ7IbFyM3E7zUHB\n08PIfO/rVd7Nl7Si1ESMiud6T4VtP8sX7pLgaGV14euL8eCF1I/nl1Ppmgw+Ao/MapkKQRhZ/zNw\nSfBsrRJWRJhTwmEB1jetLHLqgAIzR2N8SFEzQwErx2mfZciIMiZFmM2bHjmpRcamL7saUpTa3+yI\n4bs16wEAP89cp503aYMmcqR2/4r3r8F1U5cBAJ6ueQGPX0u5sm8/djqY/AM4Cdq6UWPzcJQfClDF\nHJXJk8riUAR9jcPJHOQDyjMmrYp2PD7GQYiq61RA8bOc8G92YNGoZwAABaI+J17ecAYAYO1nI4YU\nN3UvpRDsVPclWDPhVQDAkuspsv35w1MG/9GXgANtFvX6XTs53Hfx8wCAGVN5TPrD9Yc81jEZow8/\n/DCcTjKm/v3vf+Pyyy/Hueeei3/+85947bXXcPnllx/2sSo/vBoAUP+NJ4/lkk4YDKfSpLJtykva\nttotZFz9vvHCQ/7+pYAbn/cRLXD1dqpJiIoluNROC+K7pvUC72Uez0s+akRy9Tpe0bE0yf5k7GcA\ngKeeP1ujJQsxQRMA+t+qxbjvxssAAO89YMbNvyIBozuWzsfsbRcBAG75DhWz/ssn85C1gVFYs3kI\nEd3o1JT5eA4mZvhGVZEhMcUY5gBRVdIzcJDVid7K6ZTdiF5H0dpLI0tfGQ/vaEZfWiXD9msyLEJ3\nFSN5Dxktv7r/RdxcT303PJLoLu4vTPCzzPc5Fgn21fT5vaWz8Ic/kMjIgu88iN/s/RYAoLkuR1NP\nresgQ8dqjelUWksMiSRdR1ISILLtAq9gv8fd73mYDEmNutcTtGn7ru0ogctCxpO5zYBoKe3ji1tg\nbKDBy8KYV7ykIHMqGUb3FqzDBwoNYEmbgox1tG/L1aMRHcXU9E6lh2x6biQqnqU2arq0WEvSV0Ro\n4kNCBJDNqlXJHo8E8CE2YgcFIGXwVlLUNrXPogJFHYhFNgsoHDhG5c3L9SPM6MnJF/Igr6WaZe6a\nJAxN9Dl3Oy2+PGNGaoa8RUxAOZUKaO/fnwP7buocvmoeYpQW045fAjtvoMlhymgq8t6XNGtiU2Nt\nzVptOADYEibxJ6cY0fpEjYWEIQKSBZ4kHcsphCCxKTaV3tuacGuGZ0IRMcVCCo31TN33uUu/gRzQ\nwtA32gnXdhojahb4sW5qOYaCwPU39FTa/IjHj10QLtUQPRIo+22H3GfqN7YBANZ8WHtU5/i6wcA8\nZ3mMTmndZAGgr3zUOs2OZgWxWlpFLewYj0sKaFGWI5Ix2iNJkBXqR3beBAN3fGvWDYYxq2lctL2e\noW3rmqqAj1Hfe8RZ12//VzeTMfr4lY8CAH72zE9w36qzAAA/nr4cz74+54Rf8/FAlAl2mTtFiEzo\nJyYbYPAf3Hn+6Tpy5HWP2Y/hDhqMrUJcc15Z+bg2thg4SRM2MnCSto/MBk8JnGb0GzlJE0QCJ2ui\naplCUHN0qdgeK8R/mk4DAIxyd2D3r+ma3OEkelAKANhTa8XEW/YfWaOcZDjzElqcL3n16BbnP6n+\nDH9rvgAAEJlDzoI9M57F9PcGisV9leieCGRuY5UjsjkYZ9L8563X149qfxhrb8b7hRMAABkNQKCE\ntud/7kPQQ6k8G/6H5jPJySPbQHOogZPgEkLa5wDLpaJ+qc8z5gOsJxmAh9WgTXUz+RUFmUzsqFuK\nqcsBMG1K7E3a8cMvfgiADC9bB3vHnDa8XDGb9r0spB1PDAGvB2kMcu5i6yiLgJc2ULqD5xobLnWt\nAQB8Mb8SPW/ogo2qH0gRWIoWB8gOdR0CCKxaR8Kp6MYhpxuvhoCeWiaZVCc8B5EVGuAUThfAz1Fw\n3lzql/cWrMPZOyml6/FqsiPyBBP+VPwOAGDYlZ9qQZx+bSoC/tPo4O43s3FPGdkPF7k2AADKb+7B\nc/86ekX9Y8IB8bNUMaOrn6Xay7t+/BAu/umnbOsJEDCqq6vDvn37MHv2bADA6tWrMWcOTSxnnHEG\nVq5cebSHTiONNNJII4000kgjjTTSSOO/HEcdGb377rvxu9/9DgsXLgQARCIRjZablZWF7u7uIzqe\nqZ5CLl4p3G/7b370MgDgji8ugm3XV1PNa8rFW7Gg9LN+21LLz7QsLoNxBtEi4iuyBj3GCx3T0Bej\nyIfooWavePfH2HoeCTzcNeoN/CxMkUXHp4eOJpwoeKbHwXvJp2Wv9EP2U+QnzEJi5lN74GH11+xt\net3Di2xB3MeO8VrPFJRaKJJ85+lv4cG/UbTw7uqLAQCTZ+7BWgPV5bLVGzQZbJNf1iKZSUsKnUKl\nQpg5zX3CJ3QahSwCJubtirk5sAAUklYOli7y1HScTgcpKuuCbylFQH3DgIuyKbN6/e9i6PwTeZwc\nfESjaiDA2qJVQkuUPIkJRYLIysD0TpIw9XbyZr32x3vw5+o3AQDXBb6HaDs9R5VaHAYQYGVerIYE\nAiyyaBYlZFmYTD+nwMNKM5RnUBs2BdzIZqVavDGrRtONSzLathHVb+Y5WxGTqMHWLRuBgnXUCJ4R\ntM3SDSzwl9O1uVp1/jUUhIroXqoXdKMtTvTdnIuJWtz4LROAQgBAyWPbUf8Lqv0ohjkk7GqtOU4L\n7EiqQE2qNlGSg8JKtCDJ6SVfAEDdLnGASRc/Uo+h0ow9fTZU/okiv00XckhewjzD8RB6asm7X/E8\nRXDL30mAr6Vz+KIWtG+i522K6lHz2jP3oGs6q5t3qxkjHqL2XX8LHau8oBfDndQGfsmKChN9VoWK\nAPISq0IRceaJjioiEqzjWvmYVopBAq9FWjuTTq2Ew6V2Px70kcDXu5dR9CJc4oAxQN/31nLomkLv\nW81TfqzYWk33gkNDjYhuvuY+jHvipsP4xfGHSlc6GEbYKGK0BkcfGa2YSpVlG9aUHGLPrx5ORq9U\nBYxiWQpsFFhH52kyMjeQp98QVrSyWP4rzLhvN9G5zizZCwCYnbELE030w5AUQbF46NqmR4vpt1J0\naLCZKXcNB+2FP7//dxYHefRnmfWC3mI3vYQnU1Q0lsVq/PYOHl3eNe9BAMD4x27SyqHYxBjqLqXn\nU/ViFE3nUOuIEaBwGUVxqp6n+983pxLxM+nYY1xtGgXXLkThTeqtqvaNbLFPo/irQi0OJaqxK3yS\nVYuMZolB7XNYNmm03bURohA/t28qgkFaexjvdELAwPrdmdvCeLZ1+tANlPKIT0Zcc+Ui3OgiVsu1\nF1O7rX5zrPb9tIu39Pt/MGSKQeSuUscreibT37oOth8Qsyb0VOFxvuojQ+G1xDo429mGNyvpXoQl\nbqyfRCw0MEb8Da3T0ZmgqGGmGNJKsPXWCohnssWU7EL+F8S+2b6MyhO1TXLi9IJ9AICEUUCOQAyM\nqGKAkaWSCFDQx8oIZXCxAVH4gCxrUc+wImjlgswcp4kZ0f/UXzfEaQ6+5sOrUfY2K9HW6kUsl9rf\nxAEmVgbsvk1nwpFyLpU5oCI+JQhxOY2BHz5xKv56O0UOPxr5Dn585QwAwLpnxuliRqwpJKte5ixp\nSREwiurR0Lhb1pZMnATwUv/7VkRFq1MvBnVR03Hf3Y4k4/SmlqWZByqfFHMB7pk0hq8Y+wYGgyJy\n+N3k9wAADyz9Fl6+9xsAgAX5dL4dNzyEy+/8OwBg7t9/pZUo/LIRKAccjfr/9mb9Ou7I3nXI3x+V\nMbpw4UKMHz8eJSWDT/xHU7pU5XQfWCPtL1sp/Nxw9pOo3fXV1B9NNUSHqoHqbaMFo22IQbv1hQpc\ncAPl07zbQPXI0CDi9ALKPcy2hvF/E8mw/039FXB82YyZC8iYNobNiDMFU/4jN5TRNHFt9hcBAKoz\ne7B1JS3IOVnWaoQ+05eN1tnUnWxRO5btIkpy/TeexJ/Pogm25BlahGyNDEflLDIc6rk82OoZTSks\nQzLSucUQ1SMFgAgrlO1o1muL9p4uwdJC5xPi6Jc/amT0XSSAnon0ueGbj9P1P3s9TGpN0kwFq700\nYauqtACwOlQFIayOWPSnea6ClpVkiK3MW64p/ZYuAmIuOuBdnWehjKlfzi7bh/cDRIcyNTNOh2JE\nZzFdKGeQIRpYTS+fCd4s6vcGg4T5lZTD8Uk7FZIOxw0wibSYcBhj2NdN7W/4LAO2M2hB64+b0fAS\nM1TsQM8YOk/2Fn3h8fCeWQCA66a+CEGllEi6YlxwZCZcdTSK7tlK77bJwyPIROncdjsq/0k19lqv\nGg3JxBTlLAoMfazma6/atrI2kCfy47qCriMJRJlCrjUJJZoyocQPIGoYZZw/jCjQ235ai8Y7WX6K\nuQc+P01WpXketDhp4pWdtE2IyVo+rt0YQ/VUepmifymAxPJM1teUISeX0R0vdKPsbWrHmr9Tw+z/\nZjE6JtDU57YVIswUkd3WiKZy7DaFMSqDJpLlXurv2aagllNmdiSwK0LvekQyotJCDrqOmFNTxV0e\n1Y3Q/RcQPdvWrqB7HD2/RF4cvF8fpkXvwYfswai5nVJsqN2/dKiLoVTa7zNvHrtR8nUwQlX4WV6g\nakCcddZGbNhOeXxckoN3LL2Qpi4BznqWN74uV3P81bvp/RdQg41iGQDKK8wUyQA6y74dDrYaiioC\nDMxTVCjS7+2caQCl+2BQDdHDwfpAeb//5S00L95UOkPbJkb0hVwsh60IMxIQ22iRK0QO7cA43hg7\nrhEAsHvJsH7bYxX07gRkfX5wMjVdM5/AxAlkIPS9WKTV3pW9AuIuGvONPvpd8SchNBrJ0dU6xolT\ni0it3MDrNMeELCDM0e96khmamneZiWiYW8IlmrFq5hMwsWfcmnBrxm1CEbAxTH1ieQfdS7DeiWGv\n0u9CxWaE81jNZw7IXadTH1V198FgPLV3SEf7V4ltN9F4d3XTaRi/h7Q4orupz6U67J4s/Ry1OLgx\neufmC2FRtTEC+iKufg85M//vdy/j3j9953hd+hFh8k0b8UARVWN4KeDGsz7mOKiS8NceWifcnr0b\nAGATYhDYpB6WjVAszGncK0CxsDzkbAH+EfS8yxaRIzywMxsL59HcdcnwjegW6ftQwoQMpujsECLI\n4qnPdEgZmnNEdYAYuCRKRDpeq2SBgaN9/TKv0XuzhQReCNA1/3Mxea+GvxAC7yXHbd+4XAo8gAIQ\nYaZAa9yRkrvLAfezXMuHf0kBnZ9uvwwRNxmjJi8w8pmfAgC2X/kA/liwGABwWtUYZOyj69Dourxu\ndBp9HJJWPTfUSJkUSDg4iFG9diinZRKxNZBJAWM4I1ws4/2L/wEAuGrHlYi+m4ehYPIBnVvZ9wd0\nT4m1gRBVcIWDUnnuT6k/qlJir246DU+Wfg4A2HzbQxjxBAVHLF2cpgAcLpIhhnRaMkB6IapzPpap\nQGRyOOZuTkuBS0XCxg1q6GqaLkEOnnHUvzI3Hznp9qiM0aVLl6K5uRlLly5FR0cHjEYjrFYrotEo\nzGYzOjs7kZv79S1ZkkYaaaSRRhpppJFGGmmkkcaJxVEZo/feq1ezu//++1FUVISNGzdi8eLFmDdv\nHj788EPMnDnzuFxgVQ55BZdGeFhnUWQhvDxn0H0jBeQy4KMckrnkNbTt1hV9Taf1ILyOeZWjBz9v\n+bkNeLfmfe3/oSKiABAukmDNIQ/QB+c9inMevHXQ/fYGyUA3X0y0tOibeQhHyX83vXS7Vk/stovf\nxL+enk/X7D3xIffgmSFkGxgdstcMkamy8kkFmZvpc10htdvInE4t8itGZCQs9P1d284ByqkNQncV\nQziTulZdIohVM4niNNNAHvb8J4FeL4XbuClRhIvIixIbG0fRs+Sq4VJu28eopnwDtMid2Sugl1Ex\nI8PiCPtZdLUPYMFJBEoBZJNne/Y1PwYAmMZwCBczlTgfr6nEVVh7sc9F9/Jpd41Gs1BV1gwBDm5W\nq1Sex2PKz4kC8mlTFYyfkCe2K2rH2k7yfnu8Nhg6qO+ZWEK8a28SWMvUb4sM8Eyhk5w7eQs+/phE\nBkI2Gc+FpgIAqgqov98y7EONjvdRqAqPPE1053AeEAuR97x+STXCJXR9SYc8qGqp8AHRjDFVVx+O\nOxUY/Uw9TgIsLeTey11L+3bOTMCyidq/dX4ZCp+hSGXxy3Wou6GSnU9BIoPePVsLnde2jYN7N3lI\nxZ4gAqOp/2Rs6kGigI7dcYoNwUp6FrwrDinEnjPrf4JHwM7byBvfeJMNViNFLz3NLmSXEsXIE7JC\nyqdnHKqgSKatMYgkc9cZhQTiEh2vY7oJ0Tw6X+EiEYESGkdydyYQLqXfWpvo/sve8aItRJHKjmIH\nBBaVCoqArZU++yUFDXw1azsmtLTSh65pdH+rKkdrlPF4QQIcE2aqLW/DNh9RvvhfOOAfQf2naDm9\n/74qM2Ij6XN5ngctG3R6WNLF6FKdA4fuEY/foEVGU/GXjrna9h4phNP+86sB+3xZOFohpP8mqPVk\nZZZzMCNjLzaAIqPG3DDi3RSdUKOiAODaC3RNp87U8A69d1uHlQJMAMzcakC0kMaT1wonYHxOKwCg\nPpCFLDONy2VWov0vbavGPSNfA0BUcrXmbWsiE3OtlLaQJxhx5q9/PuQ99I7hNPGx7I369tawc9D9\nHypaBQAYiYn9tpu6WX/oFpAYTuOFsLs/O+pEIzk8PCAiqsLUQPPzzCf0d8bEBs+WiBsOA409fQDs\n9fROygIQLGSCQj49opq3ht7dpiIr2jOpnfwJC3wxiviYhaT2meMUTM0mRsfKPro2i5DAOx1EZbca\nEii1e7XtY21EU6+P5eLjFmJpxJfRmDtsRQiSla6nr0KAxKIhSbuCRIY6bya0uXAwQc/DiYo6z+iA\n/9P8Q+53vKBGRQES8wu1sjHce3SRdUniBlUzNfipj/7fznPwvV9/BAB4/a65R3WOI8Wqvz0CANgU\ni+ERH733X/iHaf3SWSfjuS5iltx+A0VG1f4JALWWFhjs1AdtLSLAahEnHAqMfrpZsZsYQm5fGApP\nz/mFyFQYrfS7ZFKAxNKVTO4oeEb7NYiSJsIYDdFxLfYYziglqm+WMQg7W2h3xJzIYAo/TZFMrFhM\nYcDc3WzN7g3CM40ihN4RHOIFNJZZGox6hQWXApNPT+Hp+4T62vSxdA3VmT3InEd1fZfur4LtU4rs\njvj0GtSduQAAUPedR/rRZQHA2Kd/9k+Non7uf7T/r2bCXwmFx7wsKj67oG0GgnFq/+YuWiPwLWYk\nmAhS3aWPQKV5R9/NQ6CcCdI1Dt4vh9ouRPVF8GX1ZwMAPBMkZK3vP4dufmIM8MfPtf9Hzab2L7b6\nNFV+2chrtoTex/XjS2YOlvE0P/ibnFq6gqVTQV8V7efaOfAaJSOHUDF9L4Z1JeJUXLl/1gCV9cFw\nTGq6qbjxxhtx22234eWXX0ZhYSEuuuii43Lc+kX0Al4z9iqNepesoJfN1tD/8g1MQplPAiZmhEby\nZK08h8MUR5+NHYOlaZh6B+8Ih2uIAoC5MIT4Pur491eeNuR+vjhNNBFG+Uue60OijialuqIc/CGH\nFvqvBCMYcT7LZdxWqRXFTQ2R+5i6lrjfjAQr3uvcKSDB0oZCI2K4YzrxzN/pGoddS2lCs7Xpx1CN\n4pEZHqxvJZqbpU1EbASL19eZtX2llfTSrR1jhoEV7JWMHET2wjjeciAwjxZZbTNFWDqpXR/qmYXv\nZ5KY1X0TSEHs966r4d5Lg83tN76OPyy4AgAQywKaLmDPqqgP7sfpZpjyPRIWDu2zdAVX6zAySNxv\nuBBn9Bp7m4SWC6l/TBjWhE2bqP+E8ui49tO7YJLos393JrZ9QHSRF6//CM9PIhprmcJpqrHq+ypE\nOXTOZMc1hXBvmAyOskwvgq3UmbrvrkTPBaxtsyJAFY2iscTAXC57qwQP2ZxYvGskXLVkQfftyMKr\nM2gCqmE5CE/6q/H3OsoTEB7Ihp8x3iqn7Uern/pPNMsCQw2NqsmAGQkLKw8xnN4D9+4kvFN15Ue1\nWLPRz2kFmC1tIYQqqR/3nEf9i+s1QWXeGX2ANIIoYMKu/ah8nozlpotyEXPTMQLD6RwBmUMPU++t\neomHEKU+GivLghBmDoUeBUUfEQ+GiyVRfwUZh3E37Vv1eC84geXHFiQgsonPXexHKMqUdRMCFEYB\nDhQxOfguA0pttFBrCrnR1EN919GhAONpYS5GrbCzchpdEw0w99L183F6luaOEAqX0DF2X5MBMINX\nCosYfwblP3y2YjRszSzfmbHdWs52o3gx/S53Nfph99XUttu2lmH44/SsJLsJzt30uXc8Pcu4i4Pi\no/vr3laEjBk97AgCyiopd7Wj8/Dzl5a9PwH4Mb2Dj3j7l9qIMQPG1HZkJTZUQ2TMLMpf3Lak5oh+\n//8zMlkecUdyoOFmWumAmS0WIjmApVvNy1ZgbWYUf2ajcjIH6z51bgCc+zSNSmwFKWt2niajgeVD\nbWWGX7w6gmvXfg8AkAiYNNVrsSCMf/G0sHW+Nbhugb+K3kdzjQ/SBubcSlECLrL60TDI76Zv+vag\nx0uF4QiMUK1gve/oSwXJLHddPELjN8ZyQkxCEn0JfY4s+IwGgViWCTJLMQkV0/e2lihMvTSGFC62\nYDvL37dV+hFoJyPK1CUiZxOj29o4fB6jxbZ3OD2fjAYZkWw2dzmAZjulziTy4vggOI7dFIdcEu9E\nVp1OwQ0U03jCJYF4Hnte+TH4K+n6sjclUJ1F4/kOHJ2q//EwRENlSTRcRCXITtlMWhO3DPsIdz75\nPW2f+659VPt8r7ccACCvdONYXRh3jF+EO4O0bhVYagQf4+CkIQ7JFjfes44BAMz8xWq89+YpAGhe\n9LN0Jp6Vdsv5wIRgMVtztPQvuRUope3RHBm5I6jNlecHBlhUQxQAnvdOx9oemnvbPBmw+PX9ogXU\nZ3bGyZnjFMPoiNHYsjJYhYml5KjYxw+HiewNOOsUGMJ0zYqZ5mnFIMC9SS3v40Ikm7aLJmhpSbJg\n0NZGCU7fbmdjFpc0Y0MnOda7J3DaO6YIgMI0IcxtIpwNzKANszSEaXnwD2PK8xkykKTPnEw59QDp\nVKhpopxEuiKpWFtfBnSzfNY6Hr5auj/XSgs+OYV+OMciYfGv7wEAnH3XQKesc40ZtTtpvR8ZHYFl\nG1uzF8j4zgWkzptqG6yPUQNcsux6/GPGiwCA7zXOxvbnR2n7DGVsqpAOQwCi8RlyejscOvVWqzwB\naCq86/74MN6oIofJaVvmw8NSPsxdwpBlYwCW39lM6yR6++nYsfP9ELYNnKc8p9F9lxX1ILCFUpEE\nr64i3FcFZJBNjM82jQC+DGP0xhv1+poLFiw41sOlkUYaaaSRRhpppJFGGmmk8f8Bjltk9FjhmE1R\nuqGikGV5vfhk1Nv9th24r5gixPvAteRVerF3Gla8Tp6ajpWFMPUX6x2AVOrHoSKiKqLtNtR//+FD\n/sbOKD3eVqYIwwFwkffmi72VQPlSAKSwGZWJEtBS5kKXjSIq7hW6C8X1ue6RDTJK4owfrMc2L3kp\nYhsL8HQTee4SMg+eebAicyl6WZndi3IbuclCkhHRADt2RRyZn+nHVmH0M0GYzAB6W+j7qJvXRGzM\nXhm2ReThVQTAM5Miawt3jMO7RqIWza0kGkn7GRLKSXQWD//8Ujz20AMAgB++9FO4mFs9XudG8xzy\n6jgaWDQ0IcPQRx4u03A/zIxa3D0nhrIX9ehYYQFFprx/LUdZSqllAGhsykRJBXkjh03fix3vUGR0\n0l0/QwmL1rb3FUPOpv3VpG9Hk4JIMX0+9cFfIlxB+5a+zYFTvUGlIiyt7GyZQGUORTt3ZQ3usy34\niF6/yGVBJBiV9J75z+L2RqLh7l3DopAVQcQ85KErhS7w0fZuGUKM5qqUxpDDFCvLMr3YxQSI3Lt1\nyk55ia5wrSadKwadWhEq0yO4Sic9Yy4nBslBO5sajRDq2vUb6KTjharccOykyFpUHVIUoGgZndvQ\nFYQoMNEiRUGogjxthss60XA+RWAsyzLBtDkw8ikaCxSPF6EZFHFzbjYgUMFEfQrCKMoi13BjQ64W\n2Sl4npgFLT8ajWzGRTPwksaoiGVysL9DfdTojaBlDuvnioy89Uz1r0OPJqgY/kQfPGMpCtR9Vgyf\nL6X+7GwATD7WT2L0N2tjAN1TaN/wOQFNUdnSJsBMQU2UvePVji0EdXGhQBmrp2tQYGmje4q5FSQ2\nE3UqFz5YDTrtbzAMVVNU3b7rxw/hOZypbT/ciGju9Hb0BqkfS9uc4JJ0remI6JFhz1UPa9Ectdbs\nh72jEc5lhdG75KF+Ckczi+RPZdTcdgH2Vtrmq+aRsNMxZAGws+L2ok+AsY+peZfTmJX5ubkfyyZw\nMc0JVlMC8Y9UtWgZCSurqxfW940xAapkxIishoHX+njJCozEuAHb/asPriGRqInAsEcPdZgn0twU\n3TB4lO5YIqIqVCqgucl4iD37I8CioTFZRHeExsyuyTbkrmeRURcPx356r7nkwDayNUfUQfWlAAAg\nAElEQVQwjIJVaLjIBTipTWWDgp5x9N7bmxRNHCV/FR2LTyrIaKTjtZ9i1dIrxL1G9E6iY7h2Csio\nGziGqSr1gVFxmJ3s2rY4+vUDlca944haY3CEhmCvHQo5Zd4Ba6g7l36v3//NCRoPRz7z7YOmW4XK\nkrDtP/zz//2xS3HKt4iLuHInMcnENgPiTmo7S7eMSVlEA622dOLxH9K65Zf/ewOMJTSm+7aq74/S\nLyKqMrcCMyP49YQPAACfeEZifQvN0zxjHDj3yRj3cxIwfMxfiLEm6ijtUSe8YXo/kl0WRLMZm6kH\neOpcihSPNNL4vJiTNKpufThb66MJG6eNL5aeJOKMoh3Nov5vawiCk3U1fLOHzhHO5xBjJAg+TuJA\nALE1VBiDjHFo4RDOYesFD8BEfSEGOVg71HSlMAwdNH/LLpof/TMztFQf8IpGebc3y/AyllfOKe0I\nvF2gnVOtrPB8gPqD0xmGtIHaSE5Z1/hHSbjlnz8BAFx1wyL8j7sRALDxt7TWT6XtxjKBaD5bUwUM\ncJ5B6VFC1IQ7/vUjAMAd+hVo66g1t96D37QRe23rK6MQqmQidL08YllsHVs/cMwKligwBOk6W5LB\nAd+rsH6brsO3JR+u3UPuhol/vB4b/pdskbZOFxQH9QPjPmHoHzHwFxMDK7okR1vvm95zDqrc/+tp\nFB2+1tmG88TzAAD7PyyHo0EVh9L7RmaxD7/qIBvsHwchT5wUxmgsU8EtFaRYm1/txy2PXz1gn86P\nilHTfRX9wxaXB5tCZjMFsWs/Hq/tJ5sUINw/ZB4dG4F5C3XgVEP0hoPJnB8ArWzFIbD9PTJ8KueQ\nkubEzGa8vpK4mo6iEN4O0WDiEsL4DlPP6izdiEd3DsxPiLnYAmNkDJOrGgEA12Qvx/U9VJRcKY4i\n9Ib+5BPD2AJGoGvNMQeRY6RFiEUyYckcygN+0nsK3l+jU41DxATSKBGcz44MZjAm7JyWWxko4WHp\nVou1J+HtoVYXCsNYM4MGSydPB7k2Zxm+v4OK32buTuCOOjK+nPuAcB7dV6w2AsM+2j/EciF//P/Y\n++44OYqj7WdmNqfbvRx1QTqdcs4CgQgChAJBBBssEMECGYzA2Lw4YbBf2xgbTM7ZGFtkAQKBAAkF\nlHO8ky7nsOE2p5nvj+qZ2dPtBQkHfu+39Y9OsxN6erqru6qeeurWj/H2XRfSA9ebEcygCVbcFUd3\nMYPVLOxCcw0tCFk5AsxtJ9HY6+MYmkaTzhvVIzqJFECwxQQHg+MEC2IwsUUsamObupCEIlpDYLy9\nHnoN3ffYjFJ8vpRgH0M0FpxxOyk9V8yKlTcSLHnFbhrPcb1aaLn5vDhyCqkdb49+Bbccp7I+RRon\n5mXTdqC5qYT6ZaNRYcdtmyYhZqZvGDdy0GXThtbxnhmt55KR5zKZYWyRlQ+1s3WGgGOjP1C6IWpl\nxdV9vMICZ+iKKIi7wi9poWqbaoBxPK0+jss70CYSDXxaTRSG7dRho37ThO5prHC2njE1agBDM924\nYUEWzC10Y/shr+LAcG3OhYXBxl1jRBR/wmBDTnpedGwZ9B2028htCyJuYOx+6RpMYZuCJQW78eh+\nYtVDNn13TVBSCtPnGL0Ip1PfteitCDFm5oy9YdgZO5+lOY6uUfS+eU4ZntVz3AhRBjcKC7AwaK7W\nL8J2gsZP3QJqW9BhR9YOgjq1GhyQycH9BSIqXvKgPyl5n9679hIHYuPpvnl2r7IAi0YtmlwO5fyI\ngzHTutSFJlJMG01dXd/YHzl/tHT1D6FPknuaTNq35inXlflugK62t8MqUf74/dcAAPcfXoDg3tOD\n/f1fEnnODn/1Vlx50aYev+1sKII5YVMtw/is9cnXFSqlAvgK1GP2KlGBuRnbJPAxGq9pVZziKIna\n6Fu7RkkKe6RhaLeS72V9zwpjAuQ20QiV22RjOlKz34hktPEeMZi0zXdfTWUL/vyPy5L+rq004oz5\njEX8yAigDyO0l4zxAgetA5+XRE7VCJVFhukCQGUVweULWuJKd3QX8zC3UH8JSYzRRLHUcfAX0vwV\n9RJsVJ0E1voIImn0HI1f1UXtU2jz7h8SBx9m3+QEkL6X7pFxoLchCgC+IaxxEoeQk+auzQsYO+je\ngXwD/IPBCw4goWx630fP/RsA4OcvXD+o64JjadyED2b2W7Yqb14DeDZGn1j6LFa8+UMAxOlwsiQa\noouqLhywDaEsCd8cpvXNWEvrga1OhAJZtPF4/zA5WnaevQmPOSkfr32aBMdqWnvSmXHvHcIrkNKn\nrn8GdzxBfBlnlJ3AH1fTfsdSx8HR3dNZ7hrBwcJKSxRonZjB2N9/EzIjspvp/pw40iay1I2jGZjD\nVHHZ52QsXTFut8KuHIkLqG0hY23I0Sj0bbRfCAwxQxNkBlMnbeJ4rxqpsdaFFOZ5f75eKQ8jCRxC\nzN42ODnFaIkwZwcnJaQRSFC4FkxtEvTsXWVDFAD4ADlXM/eF4StmDmQ3r3AtcBJgYY6bkRe2YjtU\nY1RO3/rlZurP3DwXMhbT5tQX0SP2FeNlSICnPv/GfKy8jdaxQ5HeuipYEANvpv7QNBlQbKU1eVtH\nCaSRjN8iPQzLN7Swv3P3nwAAVx37Ppq2MIXsAOIsyDR3zgEc6yZHXGd1b8Z3SwMH9yTqgy2hgl6/\nyxJ4i5Wnu6gbvmIG//6sd/pXQrowvjj7MZy/iZCrvhkB2L/siWsO2zno3aoOz7dQutARRybkMhLy\n9z1ZHj1Me67scR/gmaFUWuiCSbdC2tpbF19dugtluoFLfX5792JKUpKSlKQkJSlJSUpSkpKUpCQl\npyjfichoLD2GUXrCN97wzB0470pKFF63alqP83R7k5MqJBMZ6pHo+9QlYVmT2vSIG3sdxtdvT+p9\n8CQxnkneqfj2TPyyfeyA589YvB8A8GAB1Txa4y/GlqFU5zKx4O1PWiZhbDZ5z1+tnKF42KJmOSIj\nqTDLKI/D7eQ1WRm4ChFG8iJ26hVoSCBfxLLz1gMAdrvJO9PsT8O+dvIcXVh0BB2swPaNjm/wxrTp\nAID07VqYGex0668JkjLhydshewpjRiDKakDFjSLMzdSoprM1StI/hoUx68mfAFBh1N3jI+CLyUuW\nfgzAX8hzZEEMrlHU/pvHbcKLdefRBczTtsE5XOkLf45GSeCWOIqIAkBnSxpKPqDjnWM4dE1gBeSZ\n57TknzHsHEPfynF+CxYMOwgAuGn6Jqz49A4AgOAVFJibtooenshs1vb+EERk+IkIXHv7Xaw/eGhZ\nFCJmlvC/K5cBAOws2usepjJC10x8C5N2Us2y2gQik+v2LENBGoOwsNnZNJcHxyJzhk5OIYdyj48C\n3fTdwmkcij6k/m88V4/MAz0je7lb4wA5TrE1FFcgLBG7CI2frtO4gmibRd5XRuAIIQL4D9OxeGc6\n0jqYdzAiwnXRSACA3hNXvKzZu+n3QI4WldcTtoeTRATGMwIgrQ1B1h9DPvUikkYzNPvdaoAVxRZL\nCcbeMtuIICPbKBnbDF8leSNz1+rwtkjzkxMkmA8w13A7sU8aXFnwRalfdEIcrR7y1nExQM+gR95y\nG7K3UQRT0gowNVC7u4fTh7VVJlDsgaKgAGDfq1WiTp0TAV8BnR/X0bFQFoeayxysz6OIWmn8Fa5V\nvcESzyNYQLoskC3A4KJ7W6rpmSUfuNHop75rnsSjfJMK6w0z9m0BPSOislwxfhcA4IO6WcqxSGYc\nuk46NxHGe6pxEPnavuJJiTVO/+fvS5Oe880NVJx75kt39/otZknOAv1/QeQ5BgDrmgkhY9SSBz7q\nNihRA0CNiHaX8AosM5nIEF0A8OfzYGVGFcgcAGjC6t92VnfceX4YeoWYQ4estQOPhJOjtJErXcAq\nNUovR2WfdE5Iev1bLUScdWT5Uxj5bG8oeagwik1rKOqkRwJywzvAeDjVqKi8BUhw+H90w5+w4KXk\nDPiyHFlOY3vksyvgDJMecoUSYMWdKjlc4ZfJo5PJxOASAZ7eMZitfjtJw8PYeRIkn1OJ57QeHpn7\nZQbzAUoDACh9nxZf5xgTnOPpulCmBN02ekbcYMARd9/1EAf9Pu30Lne9Tyi2k/ETsy8n6uXPD48C\nummBMzUJMB5IsglLkBgjnhxiduF3ewkWGOs0QspmqSDe/tMNZCLM/oSPAo+cTSQ0LzUTOuzAsSIY\nmhiTrBOYU06sLH/snIUHcyiV6k33WQg71L0ZAExeeFBZg7riFmW/drAzDxkH5MHXO+p075J3sMBM\n0b1MwYxVPtob3D7kC+y8nN5hfXs5Or6gKJoFohLh0zSxtWGcCF9ClFsmw9O5g0r003Ko/3w1basH\nGgt9E3OzDm7iz0EoPwZ9u5xCwkFkSC//EAZFPcEr8F0+zCHjEM2LcJoA27723g+KMAK9eifyNtI+\n0FuoRpVtx33wltJaeby7J8mTzIJ7y3Qi7HnpqYvBtqso/94xsKGI13/4CJbtp/EYO+jA0H9QlHrD\nElqLYibAN5TGEWeIw7aVQX3Pd6EtSPrFttWIyDlsXybyWLHifQDAUC1FJ9vWFcLoVdtmbKc+37x7\nMtwTaY7ZAXhLGXswS3OpXPo0xm8nVNzfWwZGY2o3pMEYSB6tlGXk5h9Q27I6oWHoQqoh2vO6xKgo\nADS+TuPLygGQktQTFaBA1g1rad/zi11LFRTXs1P+hlsOU9+KWg6GTvUe2/107yv6aTcnSUme+h+S\nUfc+AoDyC86eQFj9rZ+MRf6ZBGNt+7xQObfkoho0uGmDJjO7fhuJTKQONBqi6O5iRi4H8ExBGlsG\n3hSFxtOEPn72K0lzRU/+2LpLaDLeOXQdAODnOy7DmUNJuVk1IRgFmpi3Z2xSwFIGjsOFe8iKcLXR\nABDcGqQd790eXyHBIwEgmhFDbhHlgGSZ/LhvCOXbrvWSISZwIrax3KVCkxujTM0AgKPBPPhjpMjW\n7R8FrZWMiMo5BLvbGorjRw/eBgDoLgVEA3vHzDAcG9SlR2TKxNQponMsM5AZs1rGAUkxJLV+ER6W\nC6j3SAq7WsMCEZrOnmVeRJ2kbFajZUFFacQNQOGCWgBA+xvFsDaqhpjIGGl5Zsxl/bIahz+izWBo\nbBB8A7W5cunTmL2SJlIgi4et7iR4bx/iKxCUOW5d0oK646RQC77k0DqDnj3vLFq0jrhzUGKlb7Kr\ntRCB48wI5dR+HDW6HoeO00Iz5H1m3H8/gvnDKR/yky+mwMpg0tbGOGIsn0ITlNAxgfoxa2/vtgey\nBJiYIbnhuedQ/hqxr2lCHLRMqVsb4kj7nHas/jOoj/iYBOPWyn77gDMaIQUZ5KWAHCPN52bAM5Jt\nFNyCAufWejllYU6rEWHfTHBbyZ98AxdgOaMd47SIMMZeIQRctnAzAGDT/TMUSI95G3VM14XD4L+U\nXspiUHMy8UYmYiwPLmu7G6crsrFpntQJZwPpJJnpNFAegbGGQdSDQOHnDHKcboTGS4sSF01Oa6eU\nl2nwoW0mjY2cLT3bWflTGq/aE8k3b4kG4b9aksGC/13PFnX/tWXp3y4yRFZmN0ws4QJA2eCFMjgl\nJy7RWHWXM3hmjaTkdYKD4iQJZahzTNRS/iGgOphsJ1QWzIiNg97DmK7tvJLrE7FxEMKyju79LUSB\nAx/vffx/738et722vNfxRGPuuyjCeNpoRo/YlO9TOKcBtbtoDyKzRGp9HMaeT0lb7QEr2raQQzfj\nQBym5oGNwmQSzqD1Nm7g4BxBcytYEFPKIOmdbA2LqMZo3qbBG7yJEjdq4GPMuraaUI+cVtcvSIcH\nN2YmvXYwIucyGjpVx//ypcTq/+xrFyvtH6i03sminUXrprfSwTbWKp9DX+IvicFc2zvekujEOVnk\nfGyZLdzUqFEcMe5yXmEfP2/cYTQwh2H1tiFACe0Fsx1kkfg/ylXYXHM2DbyXDNtYnuWCdgyzU5Aj\nU+/D5hbaxE/NqUd7iAyfPTuGKVDYv132JK5/naCYsv69pOoChZ+kJWBDw07aT5S+74fQqVpM8Uxa\nb0QNax/HQduirjfxdHqec4xFSQsLp0uIMrZ7iZfAh1ieOmPK5eIc0vfL+ikCTZA5r8Mx8O7Bjdlo\nnl01aENRxC00XjvvCgKf9Ybv5y2pBQBU7h6CMVNoD1DjSsfj48ix8LOjS5QKFpGoBnYLfatlJcQw\nv8tbjB2tVJJPWquWMBJ1gG8SDTa+xYBYFilNfb0eK6+glKdPO4g/om7VUETYdu72az/ALXYyi5c3\nzuxxb88I6g85jWrHir9i7CoqoXXBmXuxdiM58xyHk4/tsIM7pXKP3cwHE82OggvSM+2H1Kojpyqy\nIwsitU/SiygZShwftXVZ4FhlA0OzoOTeggeWz/kSAHDv6DV93vv/phs6JSlJSUpSkpKUpCQlKUlJ\nSlLynZbvBEzX2KjBTfM2AACuXboF3/gJE/BqeoHCGHe4Nh+mI98+wV4W3R7y+ry74k84bw3BLLk4\nB0kYvNfBsI/gOmVdywdV4yryPkXNdiwnd8Wj099EiYYiJ1mCiAfbzwQA7Itk4mITuQ4fdpbhx8O/\nAgC8YSb4bPWBAsWbFU6HEtmyNKptd1l4zMomL5FDG0BTjLx4AnOpHfXnIk1Hz3gsfwd+3kZFiBsD\ndpyXQVHqr8zlOKv0BADg6hpi4EzXqfAOIQLELcyT6NOqsODJQRS+wUhjZmpgZOgMG4NCBjLUyErM\nIGDlHW8BAF68+zIFRmVOD4KrJI+Y7AmKGXn4C+jvwn9qcebviPTqjW0zUL+2BAAg5gDWRrXP5Yio\nLB2/K0MWyLt5701/w7y59Pf8Y/PRPJcl9LfzsNWhX2m4kHmGDFHFS+SsyVKiRh0TgHlnESRJLvhe\nk+1DNYPk6vhp2LiLGMaCpREl/HvoSBGGkCMZ7ZMYgYUmiL1d5KHXuTm4JlOb3aN5FNDQQOdYDaTx\nzOu5t3fUzNQRR/MZ1LbVfpPC4CaEVG+73hNHdAzBxnUeeob2QHXS9xdLCyEaqH3hDD1cNzGPsI9u\nJokhZGXQMV+WHmnv0HxzV3DQMdSpL49HGouIiqWF4GsacbKYNlNUtmSXAVKIxmtwejneLGQQ/oUi\nit9hkSa9jj0DiNWS1zeSp6q4+GTVYx/OMUPfNjhPbe2lDhgnEQzcdzgdMVZULc8QRqCdFbpnqonz\nC9BPIS9+ZGs6nONp3jkOe/uMiMqic7FwlSQp0faqH6Sh/HWK2lRfaYfeQH0qInlk9NzDiwCQl/xU\nIpSrrycSrkWv9K69prZvYEa+/x+l8jpiLxz+6q3K3/L/k4nMGqnvTO4L9hUx0o9WSanjHDVzCiO6\nvUqN7Oi7E5hu0+h+geIouBB9Kz4GhDMY4UUDnStqVfiu3iMp5CNar4Qo0+FxvcqamUySRUUBYKY+\nOYFR6Zqb6DqHCJ3ru+cDj+8jvZzYssavi1CVJKJbZKSO8YSNiKQxyGs6DwYuOmWR64+2zjIjkiYT\nDanjROulbxkzAdq+CTcHJUIwhrSq5CGRkRnE2Lkbpx8ZlfWrHJmPjvPjdgctpk9rTz0iKkt0C0XE\ntEYorOuBIXFlv5aMtddcq8GrtxAx41Nt52Dbe+MGfI65gc0bGTmQBnRfQp3uMAdRbKNvP8FaD7uW\n9kJnXHwCHsbw+PYuIjXCqNigIqIyY7IMS21rtUPg6bv/euTHCpnR4e5c7KuT9wA8Jl9IJIf3nrhM\niYjKNS/r3A4YdAweG9UgxuqI+wuMsDLCIC4cg9BF7yUwmDji6voUT7fAM5wQg6IWCMrpWCYRuix6\nb46DWoWBDVttixasyfAV6uA4TM/g/QkIpQEkMToLAM1n0dwckVGPqiQ1cFveLgEAOC7qxIF6Qiqs\nOuNZLPmCzdkYj5EVtLdwhYxoraXo5xPrqKZsIF9UmG69JZJSF5SPAIYj9F11HqBbw6Krjjj+9PlC\nAIAQZvXtoZJdPvzBIpy4gPZ8P8zagGcZEmH/uBCue4hsDTnN6/edkxWlU+3NwORplN92oLsC5sbe\nOvZUoqIAFEI0l0kDDdvznU5EVJb0fT3HdNiuQZ2R+vOW6RtwPEA2zp7nxyHEuKZM9QJe/JhS7u4d\n3fe9vxPGKB8FrGz27w0Uo1RPeXXGCjdEBsk1HD89Q3TEgkrczXI0b3pWrYnqL6Yvct2Rpbhs2k4A\nwNpVPTHbIktDkHgoEyyZXDhj36ByTGXJZmD3i00h/MPLGL84EVMtNcpxWQp1XfjFTmILi0dpIDiO\ncJBnvzEJDB8ATAU+VJhocRElDjae7nlPBkvmzKhS8hEuqboAwRi97LLCzfioi3J34kENvqwkmKTN\nxuAKa1SIdO7WGJrm0BASynwQdWQA5GZ4wIk0QPkYB88o6utQFivBsSWG6Era3AtPZuKvlVRoPXKD\nH35WwmR8RidwMcFV2p8mA8lXBGhZmYL2KRqsfp2M9+9duwkfnqAcj0jW4JiNAeCO129GOJsUcPGH\nIkpYn7oGqFYhaQAhneVAxnj8bAqNr886R+FwK8FUV017Ho+20gQctYWo6TdPfw53HrgSABCosiN/\nP/WLeERAZBmDIQUM6JhA/WiYzErvBHVoOkz5PEKaBLB8A0kroWtUAjS3n7ybjusDiLGF4+/tM+A4\nRu/tHSIoyslbqEXXJJZb+HQSGGteNrhuMuAElxfNl9HiGMyVoGW5yt8bQ3PpSvsOmBl+9tI9N6Nt\nNvVt3oa4UsQ9WBhD/hDSWLE0PXR6NsfDvSebbIgCgLHaCWM19XPUKiHKHCJHfkr50EJWEBoGY+Wq\nTIhaGbw3wik5qD0MUY6DqGN5MBlkTMfMPKxVNE/jBgkZZsZCGM5A+VSC4Kwd+RGWWWkMrt83AgCg\nsUbhbqaVRmeWoO+mfg5lG2FgzMCiTuhR0kUWjVc9JsPEc77xIZJJri7zWCem5hKsecOhib2uB4Cm\nzfRNfmyf2uN4XM/6IJwc/rM1WJz0eJjlZOnbey4VXy0jFsG5L6u5drLBUXOzykpe9s5yBW74f1US\njc5kBujCedvw4WfTlf8b29Si9wCAkxxfyfJE43oO7go5f52+YfrhnhsTTZB9426NAnPWFPkxdAot\nEgf2MEeTU91Q6HxSjxxTGcbOxcj4AQhWLET73wR1XkRj18Qnzyg2NNDxjJmtuK2UPGj3//17/d4T\nwLdiy5UlnM7mvPPUjeCytwlynLj76GaGh8MQUOCccd3pG9gdkxlDbpEIkZViQJRHxhAyfAL5tDaH\n660wdPQPTT1dqVlswrUOMnB2Y8y3vt+h20kHPOwsU1KYYhN9+N0kgjc+8OI1p3VfIcHXYarvX69Q\ndQQad18eGInBMI7IrO/yeObrDIiyPYl4yIbyebQ3PdNUhR/ZieZ1RdMMrD1K/Ak1Fz8PAIwPYuB0\nsihrlMxQq23Voq2L1vqLjvwEGcNpnxSKanDi3JcBAC9OycXz/0uG1NY/PaPc6+q3iPNCKgjBz9OI\njfq10DB9EczgYG6i/uD0WsVAFE10LJRthIGx7YLnFOeWpyIOiVWngCChOIPGZVVDDsAYnaFlXBnF\nIUhVtIZamqMAz8ZrtH8LSDLpwQV6r4n+kVnwsfJ1sxwnUIWKPu/hdJuV1K3rzMtgO0Dv5SsWYWOB\nF0/YAF06/S0w2HNiyRXZEJUl62zyMLVsz4NopXYI3YJSwiRwJvMO1VlgZiz7MRPw/lHaQ39qHInb\nR6wHAKxpH4vy7xHEf8cx0sXvvnUmbGyrVSkU4s5zqGRD7Bwe9a8N6/Nd+xO5YoBuVhf41WS8iwYR\n151DAb93Hzunz2tPVfRuCfqNNNY2lwzF4Ubaz9kB5Ayl/XsbMmFoHURpmX9Zq1KSkpSkJCUpSUlK\nUpKSlKQkJSkZpHwnIqMAsHgtRS21aWGFLOcPCURFfDTpZQPK20PXgbgnAf/wCMwM+inXoGq22LF2\nPUVERY0awvZXRFBRQrU+G9cWq7ATForXuVUPyqlERQHgmXVUN/Tay/bhaub0dcUDcAi9wb5XWjx4\nwMAYxzbY+r2va3YYln3klQo0WHHddHK57wwLmG2gF7ivg+Lk92cdwpUWgv9dPuwTNMXJI/bzxgVY\nlEnw0s0YBkHLImjHCW6o8r5SPamCr6nD6tINYE5idH2Ti/gcRgDQCmRR+Tg0XED3uvWxVfj9E+QZ\nDU8GxP3kvTGMccPQSN9nX7QYRgYHyXEzWOQW9dltU7XKN5lgrsN6xh7qL5JgvIciVy1vlcDWQO07\nGa4LAKJGgrmG1cXkRMRMdMNY/8R+8OUKyFpN/dwxgUNIIs/19XmbsWiYDGM2KLUuzWvoI1/yykpo\nCxgpRTqnEJgIcQneHcQUp5vggu0Q/eCeTO2ZW1aF3WspsX3Vbx7Cha8TlDJWEkIoW2bq1Shw24yD\nqhfyh395BwBw385FELqona1+G0IOVpOwQ0LEphKmWOXiyE0UVY9MHIoYqzdmqnUrREM1d4xGKI+e\nI1ijCixoRxdF2KaYaxBh2CPtGjsyWJPsWxsQyKGE/uL3uyFp2TnOgBIR9ZxPUUaZTKmXdHShYAON\nRE13CK1nkp7Iq6A2NzelwxCVC5VLEBkcMnqWB5lvqVGWaLqRPTuoECYYm1UcXDiLzccSP1q7Gave\nlA54wtTRr3VnYuMJ8l7mfcUS9ztF1FxOl5maOUjMM2xs8iJQRPdwD9Mg/6v+YUs6t8qk2TGePI/D\nHXXI1/dfq1SWzz7uGRntKyI6EOmQHBEtmN2oRF2BnhFRWQ5dKN9rpXLf6sufxdcsqD3H8O8hVvqu\ny1/yduNDqJFROa2CE2VfcN9oDtcIBgNrkJC1Wz7aG5oLAL5iOp45ugPtNYRMiQR02HeI5qSpiCDe\npmFRCP9IXsfT3Jy8LaKG2tE1gRHB7VR/k3gONmv/7JyyVNjblYhorCIAzTF1zZNJjsreXg59F9ND\npxgVDWeR7uQinBJB1ifAgkNFNK8MDTrknkHrRO3xHBhak2+FlHYkyGEXRa5GOQwzEEgAACAASURB\nVNrAZ9A81gSMiNhl1tJIr2v6kqobteANFO4zGCMYm0t7jm3HypRa1t7d9C3Nbg7px04T59qHNMyj\n0Jyu3AOBOzUIoCx3L3sbAHC9rR0Bkd59zKMre52n22PBA3sGHxGV7/vnl5dAfwZFWcKbMnvUgx/z\nGOkT+9mtaGphxHJH1Tj22Qcpgmg+3j/b7sly/xQifLyPWwiBsVcVzG5Tfh+nM+DTAD3HF1PRAOuD\nNNYimzOgSzKvYwZOgd4DgK+EHc+j73rb5PV46W9UE5UTOfjbaV+gCQKlnYQ8uWbKNmTfXKvcQ67t\nm7GfIbsiBkQy2TwwxJXUJ323BFFebzsTiIoyzOx5QCiH5qM/R91PaLJCiPqp/wzWMBwGmutSnAMY\nTJr30vzhPBqFWdhWJ/YgyAJLownnWqCvc/boFy7Yc864p9Ac07tiyCghhVmub0V/oqk1KKRR9i/S\n4J5Ae5JhZa34RykR6JS9vRycY3Dz0zs7gD1jiDX3WsvZsGnpGzUG7DBMZ/udSopwRsZFkXaI+kgT\nACybZb1mwoO1lDozdlIN9mwi2J3A1Io+AYCm9fB4t5n2eWZtBM4zSbekbxw8KrRrUhymRvoWZ+RX\n48sM0h2zx1VivpWqebyL3pFRUXv6NpYsza+XwpSm0pW/OorsuCXhmyAcGRgl8J0xRs3V9CFvu65v\ntqVvK7YMP+IMtiHD9UyHVAbYUF4cJpYzYD6mQ+MxWsTDDgkxG01ujff0IWfyJH1x4bMAgOqYCXJK\nm0MwKbDZv7fMQI6RJuCGTybC3Nz/IuGcyKwavwbBLMZYO9QJPUd9WqbxgVDtgJ5BJ1f50hRjVOB4\nDNHQ79/L3qrAhF8b2oRDRwn6mF7ZezMbM/HQMPbbkneBtpsYrDHGI/N9moy6G1pQ30Ibn+x1NKme\n/uBK7H2JFpTfd1agiuHMd7YUwdwgs/Fp4D+jZ+C+ebYG+Zup/T+8eg0++AkZ9fdsugLCYmpz8Wta\nrLqUyuRMLLkTRgbNcg2nf3O3qzNOE+CQeZD+76zQIv0Y/R039v+NhTDQMo8ZYl1aPLpxHgDAmBnA\nZ8UEg55ircHRB4i52AT6Pk1zeRR8xRhJu9V3a5uqwewLSFEccuZCs4KUbmgXQbi3fTUREvMCXP+j\nuzDnV3Tu1nfGI/0wg/rq4opx3jxHQPnUnti/eIQHGw7INXfDm1g8mjEba0QOeevYgquleeLP0yFm\noG/vqsiCdwI5RN496xFMYLDah5xDccBLjH1tAfp9Y/dwxBnwIufLVqCTFh8JQM5WthsXODSdSy/m\nK4shazsprFAGPa/5L+VK7lvBF4D1S9U4lXNZfWdVgJtHUKaWNrv6TuwzB3M4cOxvaV8a0o6S9g/n\nmBFy0OQLjdArrLX+Etr8em/ohruL2jG9qBHbDhIVqU8roaSIoFqHgoXIXEN9YOygh+g6AxihIqdw\n7CbqD36WmvsZzLSj8DmC21b+drSyeU2E6Qost6droh2hbMaSGtfCypKuJEFSyvN8G5FZlQfSaomG\naF8y6aU7lL9lo/PozU8pRdn7kkgxvbeu7l/HCfBdkge7ynv8X2bGFZjDJJjJw8BKDslOEVkcR/vX\n/fKGMa4DTC0sdz2WBTNjYI3aeIWNlTvK8iJdEpKVlehPZKbeRCNUlvaZcYxNG5yTZMsnat5eoiEa\nKoooeZnfZhToO2gkJ5aQkdn563cVKJvmUFEEX40myOjQtmWIeeg6TZCDOIrluR3uXVQeAJobaIPn\nDemVSjH+Ag726sElYzWeZ1ZTB4wh5GRQ34WiGgSYYSO4NHAdp1SE3L2kW1zDteBD/eedn6rIxnmm\nPgp3vH/mC5nRVpQ4paKBqCMjFABe9OTikVcu+5e17c8vL1H+Dm9W81hl/oqDq0cox5qa0pVAw+9v\nekU53vlF/ik90zmGvuiztXMAALavjVi5kjgtlto6lfOe8+TjRIj2LVs2j8LMWbQ2PdUyF0Bvxl7P\nYnLipn2ggoW//ONjmPY4Ge2VS18CAJStuwHv3/IwAGDxZ7crfBQ5m3hkl9La7Iyasbr8U+U+s7aR\nkSq7bQxdHDR+Gucxs6CwDsf0gBBi+wWHBaFsUh5cTOXkaJtGa7aphYOvmMaa1RhBNMS4EUQOB1pp\n78D5BRhYmRfZsa53S4pO0jW51RIhep1SxkXrHNihYnBSO1un6lBgJGN7hLYz6bly6RTOrwHPnAGY\n54TuII3RtqNFmPgu6QLSgANEG5jo9epecay1SUlxu6TqAnjCrOwNG3Nab+/rZdG5qU0dQbNSYlCf\nJAtK1AKNu2m8xhwxtQzVACIt7sKZ+bQfWn1wHLLn0jjZ3l6ssC63BGxYWXVVn/eImTjoPN+ewT5v\nPu1rVo94DzfWXQwAMOmiiIUHvncKppuSlKQkJSlJSUpSkpKUpCQlKfmPy3cmMirLey0T8cSri7/1\nfe694Z+9jiXWJ5VJJBJlwrhqVDaoXmyZie0HL6yEUEbeGcmZ3Fs6GNGxuqP/c4y8h2VpXXhDR/dd\nmf0FnDGKLh3cUYqGKnKLmAfwYEfNHIxN9BlnXrwfDzKypgfazsbDTmLt3eQcir21FOHUGxl7bNkh\n/GoPERXcO/5TXGqhSNrFCc7Rh0rewfIwwWr8e3J7PTsR+uot0CDURH3zzMUv4rZa8tbZo1ocO4+S\n+qc7vg8A8L2XjiUniNynxW/D5YVUh1NXEMOGCwj2GPYYYGIQ4UA2vZ+tGohYWXH1jy+CeThL1G6R\nIFSQt619ogkLbyLItzhPQut88pqZrfS702OHr4TcRUPWqp6vYI4EHGP/6QM15y0iL2Agj4gGACCa\nHkfNoucAAJVRPy5YR9GhNf4JKGLfrn0ygzp+FVPqnuq86kN03cCLQzYBAOZ4LkXTTvKOvXLVkwCA\n695ToY2mC7pQ+VuCWkujidgEALpGC4gz1ryVCz7CqzUEPf+4kyIRJlsIMpCuO2JQ6pOKOiDCXKoR\nu4S6JQSPkQT61zKjA12ddMKs8mqc8FBUoEs04ZVu+rshlI6z7MR6a0inPs0QfLj1cyo0PbLzGKBh\nntWiXATzaJB5CwXkbSaPsafNpNSY9VzEWCo8epS+Sx5SZ4UeNgdFPiWXW6lnatlwDMY2QjD4FjPS\nBocaPZA4QGIoKlOrhPr5dA9DpwQNc9C6p0fgz2fHWTS0u8uC6RXkbTzhysSf55I++cw9Gp4oeUXX\n1I6CkX1Pfy6Nh7jBAkM73ZiLxFDxAkWBJY2qbzL2uHHoEYqaS1bA1NA3ZDdjjxtEBwAcL8tU6sf9\nK6KiQN/w3dMSqfe9Rjy/Ah9fT2RHW0PFiFnoG8v1goHvdkS08rqn+2TFHay8+NF5SY/LhEPyvwNJ\nF4vaxE3Uh4Y2AUZWWNw3WoSRkUSYmzno3Uy/tAJyFDSQw1Aio4D0Q6f8Gj3EW8QrXndjI4+6vMHV\n/g7lxGBoU7cdMqxWJjj6V8nEHVfj/mveAADc9watYRoAoTSGcDLFlMipVBqGJsiiR0YJmj4iorJo\nnNR+vz8N5nrq07SaOLhI/+R5VTfQO44dXo12Pz0j3RiAhrGnhrUaHKimPYDRzaNgPSNZY8Mje0/P\nyGvEwWDBrsHDghOlfaoZ4OjacExAhkAR4bBDgt7Vey7LjLYAEMylNhtb1Xk8wVB/Wu04WULjGGx5\nf0IESyYZFtSIqL88AnMVi0yZIxBmUn9t9xOK5ecvnDmo54Xt9A7cvC5UTiE9P2MvRWVNl7T1iIjK\n8qePFsNUTuEt8zAPDnXQejQys63Xud4iHtx+hrgpAs5fsh0AMGHjzTAy1T/nAJFUDi3oUFLWcjaq\neBVR4NC0nvZw0y+vVY5XbFwK7qg8Xplu9auoGT6uRrz0XhHdZYwhV0MM0ABg7GJ1VIfxiBdR38dH\nhAEvhTgzLX7wDMLd7TUi4qLjphYBhi6VlRsAhKikIK28Y7Ngaqb7cXEJHFsDeW9AqWHKh9mYliSF\nwEi0m6GTo6ecDiJbV5riyeelfY+qO7yl9C7RLekwfUvmae2GNKweR3uVQp0T84/NBwB0BszYPpGi\n5cM7ltK5G9W2mRa24oPRrwMAzv/jT2Fgw8ezPhfBEnrfldd+BABY76zAkb+PZO8KxBlRlOW4Fnpn\n/+uCjLQMVqbjr5NXAQBqfRk4vIX2/ePOqMKuUQx5VpWLtMOsOkMSm2IwUdGYiYMm0P95x/cTgko/\nUoul2VQL/nfeBXAl50fsId8ZY1Rk46npsyGndB0/k5i9xG96LobXWLuUv/cmYefs8WwGXzy4ZRgS\nl8TrniEIBQ+A3/XtGP0ApXoH3DspD2BbqRVcO23EPo9OhI3IdHvkZQ4kQgQIMhjfhuphWOugsixG\nIYq70mkzfVd6NZYbZirHAeDrlmHQMmPv064xKGEQiLON6oIqgsOKkvUAgF8NvRoAFUyXJa7jEMhk\n+YRdcUiH6e+/jLkAopba1FHvwPDmW+jaLNIO+ivbkaFnJT0kDq8cp3wqmyGMaJiGZMXQZoTj9HdQ\npL63tMfRdB3L+dllhpWVivHn84j6GUtclgj/7bRI6LdkIczR8XmjyeB9r3wqHMU0ZhqyzSh6nRmK\nX6sLfTgj+aZCZikL50eACCnWmkXP4a+uEgDAc2/Oh4nZQaSk6T+2aqbIh2hgq+8N5fIOjyqldUza\nCP685FUAwCNNBP/Vl3ixoIx2j6t2TIWWlWjJ2xRD1MxgNa0ShMX0DX9kb8D8MTQOrCxncVb9CtjT\nqc+H29rRLFGbE/NjLfUcPBXU5kWzdwEAVm+dDEMOXbc0ezOcGaR0G6IZOMdE48sbNyLAaptkacj4\n+tQzFul7E8CfMfbeGh4xI7VZCAG1C0nZpx+W0D6Vjku1DMqUEUXFH+m9Z9uq8PBFxLpseG0E/Ll0\n7+4pZti/6WnM6Ns04OV6y37VRtJ7JITS1fzYKCujIElAzMy+USGNr9kVJ1DvJZ3S2W7D1nza4LQF\nbbiriBw+1x27CTzLkchfz3A3HKdAk47daMOQEbQ5Mf7UiJiNFvH2KUbkbCfXQHepAXUL6DncJILr\nab5OU3RFIF+ChkF7pEoLqs1qUe5TkWFnkXKJxgXUbRq8jj1nPiUqfrlGzYs/1bIxF7+i5pceT8hR\njZTShkNXMwCO978oJxuiiWVc/hMiQ+Q1IUnBMeUPJ5i4pyEXgRz6PXtYF9o5GhuhLA5ZNH3RNYaD\nlSH2TW1Mr0k8ThWme7JYG1Qd6RrBIeLv/xsm5momigyr/TYiMwfzEdWACu1Ox4QJvWutGFrYlqdF\ng1AO6aQHZ72N+2qYwRoc2DkjM+gKAQ7hdPo70sFDKqA+0PpERQdEbKzU12QeEyuOAwAs2jCcQdJ7\n4bgGl+eScVITzkLlCYJAmlol1dh0MhjiycYua6qk4wc0hJNJ+tEIQpmMqdeiRRfb7MccMehdvXMs\n5dQmYxuPE1dRLsKLnlyMfpx0AXfqTVDuKwcHeuSD7qf7/uDaz/Ham5SSkz23CR3ryGCXDVGA8lHj\n00l/LnN8AwBY5TgDuiRG9ckiO25KMjpQ8SLN67iJvt+Cs3fitW6CCC+1dWJlC5VuMbVyuG0BsZM+\nf+IMOKvIUN/BcuMyEuaXqU1SSrd4hgF/zSOs+1/zdmLCN/SONj3pwsO1+co8dy0MIOJl+xqNpFSU\n8MX1mLmPiAnyHN1oZk55VLHFnCM2bIDWWPm7hNJ4BUIbtXKIs2UzkM8g/dkR2CzUjlichxSmRmcY\n/NCwm4SjGoQ76UI+rnKsyO8XtPCIM51lcImI2qj9UYsAnYcxs/tDEJw9LcV4ugW+Ctr5av0i4gaV\n06KujfRaVUHvgMjJIrPcAoB7LMsfPXB6Zo5nXASP1pEj8eaijWjz0fzYNXkVyt6iPa28UPsLJYjF\nzIn+YS7O/7B3iTStFzDVU1uefoJymbvLRZhYAChuEFUdJgFeSkeFzsMpKViGTglhO51TvpBgw4GY\nDj9tJXb9LINP2e/wnARBxz6+ToQmeHq6Vg5cDGSIAoDjEJ074vkVWLyISF5uKt6I+48s6e8yau9p\ntS4lKUlJSlKSkpSkJCUpSUlKUpKSbyHficioxAOx0eQp0e05NRjsyRHRZHLtM3f2+7tMdnKyFy1Q\nROEVmdTo24rs5TY3MQ9DkwGuseS5KB3fjLuWfAYA2BcoxjtPDq4WUMQKaIayvtPG0BYl79Lq92fh\nrSyKOF49+xvMs1OE6dEaii7NzK1BZ5j6euvOCmyzUGh/YnkdROaGObKpDJF06oP0hIioLFq/COcI\nRvwQ4pXaiK6QEcsv+BwA8I2zDK7flwAAWqfTt0rfFoXwW2IyLLd2YO9+enbeyCYYzeQFLjK7ccxN\nBAH+PBZJC0uIesgrN+ziWjxeRtCEoVoLRrxAHs2dNzwCC0/uv5/mTcSXTQS7fnfXZACAtbAbvv3k\naRsxuxaHLiHoS+4GHgYXg4x18EiG1c1iMKk2rRaaAH3L0Y+vQMRO3/PTm/+Ey/9MUaBgNgc9IylS\n7ntSEXnXcJp+N8/8AjvdFK2anlGLVR3TAMhM0MCoT1fgSz2xsNUseB5n/fCHPb4B/QvUNxKc87MK\nLdZ7iV34g1VUf1UjAJoZ5LmbaqnBOiM9Q4gAGYdoAnAiMPP6AwCAdXVUzyu7tAtTsqie2r7QEIQZ\njCAu8dgtUHQvKgnI0ZJXequPYNYjjC3Y5qV+cV48EqY2eobsiQcA/VVtuKeYvGeBxXqcZSactJ25\nWzcGixFlLtfjoRxE44wV+4oA7BZ6l1hID/coumfGHupv51gRekYaEHZIsB+jdtgPeaDzqoy20mRi\nHVg1+UXc+EdCQUSsrGZWfJgSUs0pcOGQhyIWl+TuVdrPaUQEc1l0VUffMpyuh6GVIskaP4+5OQRf\n/vuVZ0FgUZczF+3BZ2NY9Wc+Ch1jkI5XM7ZsExBiUYi0MhfiX9J4dVRJCI47Pf/h8Q2lp3WdEhHl\nJKU/BhMVdUyjiLBre45y7MbL1/Y4R46IXnUJRRj++f5Zp9XGf4fcspDa+syHF/Q4/p+KiAJAdymP\nq5asBwAERB02tzH4VQZF/Ha3ZCvnRqfykAyMlO+4FrL+MnSpERAXBZTgOCqq3u5BQoRPFucoDgyZ\nD72LQ1iib/np9NODXMeMEqqWUtRZhs8OVuRoQunZtTixifBgfIzDwtfvBgBEWS1pfbsAy1RCj0zI\nasLF6UTzfu/flp7S8+Qoha5bjYzGdVBQKnwar0DoDAlQu1Cc9NQIaxs6WY3DVq8VWhbGGqLvgsAI\nEoOZHNIP9g2/DeYZYGxJTgTjL2LkKg3BXr91lxkRzOKV94iZaZxIzSbsLaE1SCaT7PG8XLEHJFeu\nHQok51lJm0skfFpeHJBE6OSUKeXe7Mb3ZFTBeyWDhvIR3HrbmwCAX7XOxWdfkH7SuTiETpD+nH+Y\nolI6r9oySVBJdk6WdkY8LnjtsDKk8cW3bQQAjDQ046+/JeKXpxKuMUFUYM3pxgBcMdLRKrw5gTF3\nCAcDqwf/+hWPQ6aLK/vsRlx63VYAgENLa+my/M345d+oLvnVl2/GP6vo/bJtPowZTUzLY02NOKSj\n9ah+ayHKZlKjqy4gfZD5mUGpvS0EAXMrvTgfEeEcxWqKZkowtnLsHPZvWIdoGo2pYJcRgo/aqePj\nGGMnnVNu68AaxvgqCkCEIYNkUraokVPqEzvzORg66HnGDhExPY0rUZMB4wlCLop2QkG1zrIqXSZq\nBUQYaomPcUAL6ZT6yKmhggSWCrLnF+qXm7TzKkhrB3cf+x4dakLUz4/H5kL8lCLkEz9dkRy92Kjm\nuEWZGaP1qdBhaw0P3Uk8b7Yqdexru3lEHXRuKFOCqZn6tuKKY5hqrwUAPP/hPJiJj02pQxq2cyi7\nivrz+aLNKLNS+p0rbFLI0To9A9tV7pGMPLTUC8Mamkvd5wZw3ySCFD/y0JXKuTKa9GQG3u6h7L1O\nSHjnC0oVu/SyJ8FlD0xa9V81Rv3FpITNdZoBjdCDdzylKKl3VzwEALjsqZ8qDG+J+QynKhdcSQph\n7aoZCIwkSO/6cx7F/Cd7ly/oS2JsY6vpB84bY+hDTcJ34Rn9/ANl7yvlVy42HcOl91J5lWv/8JN+\nn2twSvAfob6Lj+lGhYGUxtC5NThcTxNp7TOz8V4eGSVHfkgT8562CTj2GuVekIlIo6tu+zBlIbW4\nJIAVlu4BF0sQpkPhK+ARtdA5pucdePMGgrOsHP4FfjOfNlHpB9Rrj/yKcuYal0Yxfzpt8NccGa3k\ntF6cvg/fNFHusPYM+sadNgdsuQSHDD5YgJtATgbHz2thn0LQtYU33Y6vXqIc1cvtO7GjkzYnxiE0\nWe8e+hn+aiLoxbHtJUAmPS+YpVGMRqUYfR+SVgW4RrFNSGEItm9o8b/hR3chcAab0O0cwbX6EVlh\nbXGWIctAC9vre2Yg72OalmcFGQ34jW4UWEmpnPmj5XIdbyU3QxYzK4XzP4cvg9tNg63oAM2xYIYA\nZxop4cqiXIQdrJRJO4fGc+kbi3oJzZ8R3OOiC3cAAG7O2IjROnq/8X9aAXMrK26t57BqEWN8nvYc\nPvCRFhpupE1Ima4dosByGrI5xHXUaNdoCVyMjv+iZBPqwqTgKwwtGKejDcf3a4iRcEpanQI1PxKp\nRVsBKUgjH0FDkEZtE5+GUAbdO5JG7dQ7OaV4ubkZSuma5nMcyP+SPAJdox1YP51YrVfWL8CGXz0C\nAFiwnPJ1/KUCZkyg3XZXyIwyC42fEfpmVIUJLjR/5CF80kn91XAezfuIXUJaJTkFjCPd+PgRMrCK\nasOovoLm2NcfTYR1ErVDr4nD5STdNWEawfgqu7JgZGU//AfSERlB3zDjsIjmJsaIahOh7f73AlvO\nm78L69aQEydZPmhf0heM98V3LsCrY3uzriYzQufP24HVm+nZGv/A75kIn113Da0P573RGyo1WDnZ\nCO1LHrniZdz51rLTfk5/YmqW8MlDc3od/2wi23QCaDuLdNbENBc83axMR7cGnqEsl/GEiLCN/k5k\n5r3zbnLk/ea9K5FxkEHUS3nYavrXWf5c9i04SWHYjVo5Jc3m7x3Tk14nw3NDQyIw1KvwSrmcy8ny\n7rI/AwAue/nuftsDAGFmbB7bOwQ6plvSprfDs40Z6+zYkeVPYcxWguNuWjMemzB+wHsnE56xIEs8\nkH6QjpnaY+gcS/NbCANaP/WN40iA/QvUDqN5Pj29FjYdbQLmDT2MoTqyVLRcXJlmog7wDSF9ZnDR\n/Nd4o+iYRN/YXyBBKmHv+pVR0XGRNDVf0FvExoNbUtZ0X3kUEOh+xhodtB5WisQhot6nOvblEnay\nT9bYyiNQQP2cVuzpc78lw2wTjdWB5OAdT6Hs3eW9f5BTFcQI3n9Tzf98zUQO9fCQMMwJAQRDZ986\n6mRDVM6fhgTMmEIpLXVeB353D7HaXmiifeCk396KrGXkjPW83JNRfIuXjIHK43nQMrhqIouuvP7F\ndRICZ5GDcoZBwIseWj+y12nxboj2Sc+e9zIA4Ne/uREiMwr2eQows7AWAPDl3lFottP6t0E/FPiG\n1hhHs4hKCznUuXRqs60+hIiVwa/tvAKhjZkExYiI54QhddB6W/QeGbmV99vxxATKhVyx5RpIZgar\n5WMoM9L+qiViB9JY1QE3D0kjl5ZjewiBqlIAgLleQIT5V0UNj+w91L6wQwOpnNZ9Xz7tdSI2FRod\n10kQWbqYqUEDUzN9q6/bh+FURIbsjn58BQ7dTuNy95R/YuLawY/NtCP0Xt5CvcI4/8hdz2DZ16Tz\n7TvJUP7wnj9h4YOqvaBNQCEnQof7k7hRgsQzZuPMKCIB0pMnXhuO5fesBwA8d+WzuHE1BSNkSKze\nLWH7s7QPafz1OlRfSvua2fsvQ5GV9svdwYFTYeIWFjRZY4NhCTmTL8s/pBihju81oq6d5r1xO+kW\nb7EEG23R4KmQIBQyg+CEGfaj1L4ZBgF/n/k8e8ov+nx+CqabkpSkJCUpSUlKUpKSlKQkJSn5j8t/\nNTK6eDqRY6yrm3ZK1w3XqrWavk1EFOgZcQUA0xHydDw89uxTus/icoI3rj44C0IffEky81iipDHW\n3NkGXmHrOnIiH5m5FHXa+usnMOOB2/p9tuwRjG9Nw11HyGMjhDhw6eRd2nXf0xj9Tc9i02tqR6En\nlYQqelfvdoYzWB28Dg4Ci8j58jRIP0JeMokH6i6j49a3OcRZZGeprRNLl5CnBiyHueyd5cjdTG0u\nfA246emvAQAXzdqHu/dcAQD4sGsCoofJrRZkkJO8qW1o3yPD/mIIZjBf1e9LcPVfCBa88qVanHkb\neVnbrwqiIpe8zg1vUXT2rhHXQGJJ3booYKymXvCMikEToOmQfqCPjmFicMXBR+hc8zZjD1KivE3k\nXdrw3HMKnDbkYLW4JElluQQQY+/V4rViSS4xjnjKDNi3iDywfDN5s/JftKBTT5G3mImD3kP38BUI\nsDSpLt+Ml2hehO08Cr09IxzGrjgy9lM7/lk8SWHT7Jgeh7GJsQQXxRRvdLWPPJej84wo/ZSYkYsr\nozBtqVTumfUlY9l96FbMLiGCnOnMTdYaS1PIgvxFIgK59Pf6K/+MOV/9GADw+MOXI2fVYWrTC5Pw\n1RDCgocYcdUzB8/AeTPo9+VHfoAOFz1PajVAZF48U0YAYP0kRyP8RZISyQ9mcdAyuLC5WUTMTufm\nnd8AB4Nzu1bkYtxPGLPmQrru5lnr8eqHBJXn4kDTGIpILnDsRWOEdM5BVx7BiAAEhhGk7sEz38I9\n68mTmLnarhDMeMr1KBxGUePYxhy0DqWoR9gQUzySexjjtXW7EQEGqUZJCPnvM8ZIdxhchL6xqaQb\nvjZWO7htYDX+2TJitJ338uDRHkpU9F8osQODo2db89lUVJ8CWVDiOXLNZFGjEmycipROa8DakR8p\n9+2PtOjfERXtoGAJtPk+2Febe/2euaf3NXv3lSnF3ON6DhrmoI5YOcQY8vwEUwAAIABJREFUAiNy\nLqF3rO9Z8fhvSc8mEq30FxV1jWDIGH/v39KOq9ftdo4B+nHCJ0ZF+xKKlvZf8zJR9KzW4djzj+Gp\n4tUAgEzBDBCasAfs9+AMYtgdue/UoMCJIqfzaIJAlDXTVa5VyGF8Q2OYOZbIRVpqKJqj9USgX0/r\n2Svds8Az8kBjeRTnmyky1xq3QLTS8QgHOEcxEpd26jO9R6NAIKOZMeg1dO74Gw+g4U5CptRdbEJk\nCItAsVqTvCOMNCsNCHNUC04mXQkLsB9k0OIYrzJhTu1GeSYhQWo/UeH9eTJx1lcqkUwi824i+dAL\nyx8HANz07O199mPmuYTi+jSgV1Khxjy6Ai/d8igAYBqDdY55dGWP6+SxzR8fPCR8zpLd+LqBYQjf\ntSr12MEBez8lNtPZC/ZhjoHmyG1NFInVeaVeEVFZjnRTP5irtUnZSOVotH6kG98bSuv7jJ/d0uMc\n21H6RvfupjVWCwlT59J42PHFSMQYyRs0Imyfq7pAE1bnnGSkcfDSLCI+/MOT18LcSZ2kybUoZEAQ\nJUTN1M83TNyCN6ppfYsUUUTcbA6iNUb62WwNwWKgceSP65TUrWGGNgU+HbGLkKys3jrbU0ltemgy\nqM3hTAlRJ5sUPFCwnu4XytDCV8jGJkOixywSYjYGJw7w0HWy9K8AkH6ETqovyoOtVy+rEjP31E8y\nPHd9kMfE/12hHJOPy8cGI8LnDuW9zzaKqLngRQDA6Cq6R6Hm1NILFZRkQnsT4bFdUyXFjvBUSDjX\nqO7zbjz3KwDAu4fo+/kLOZgbafyduW4lai58AQCwedy7WFB5EQBgfE4zjp4ELg7bOfiL6LulH+DA\nRdTYZLmd5vrPM4/hhTMIVenZWYjL5jFysABbpCI8gjmMpdfHQdjL+oGTlL3kiqYZeCR/44B98l81\nRtd+yPLWBnFuosF4KhCQ33dW9Pi//gzKGQlvos32c56e+Qw92NxA7bOe3QbXDoL8hBkDn7laq+Da\nhXIfVm2lc819GKIxAwefjB2vVnMgE2VNxRoAQFnDDYizYscDGaKJ9xHCZIQCQPewOM6aRhv5MVuv\nAXbSQCx13gwAKBrSCf8p8PaaGDEhJ6lt5hKaL+o46JsZ5MIqIv0ZBh2eKkLgegbgqy9/FsMipJSL\nPgfuuJ0WrA3PPYc7mJGn4ePQeehd8rZQn3cfzYGWKfivXnoer3TTN3l15WJ88BNi22v/wzZwcWqY\nWGuG92Xa4Adms7zBgzxMjGrbVc4hxqAhgo9XcisGU2zYyHJA3GNjGHoVGWAHvi7HrHMJt7XKp/at\nDP/tXOaH/mXSQt0lGlhq6ffRZ7bi/s2LAACFHwsoVOC3qmFbyqAZQz5SOz2YycHS1LttereIjgnU\nj5kHqe9ieh4GN93PWWtBd6mMBwOCI9iCFxGU/DLvH6jfzv/pQqRvk3OIYvCdTfOp/ftBHD2D6MtL\n19wEf6znJvOXuxej8BBNBk1QB9csWlB+23o+rHtogdIlwJgtH1oRvIWeE1pE5575aTWcrBB7+7Es\n6FwsB7cDiLH8rGirDdY2xgbIFHzcEYV7ON2Li0vQkV8HnqE80o7Su0o/s2HKGTTu8uFCxV965le9\nnT8Bj19FSv2eh29G6dn0wbtFA1YdJ0iMQRdVYHr6a2jz9olzHOz76dmW5ijOv30bAKA+mI7NR2lj\nmnmtE5YYg/84zdB1MDXM0b9xPaA/yCDHbgmGLmZkmLTKnPB3GwZlhMoiG6HhnNigr9OM9QzaePxX\ny12LV3/re5yOIQoAa0d+pBie4pAQhn+t5hT+u9l0w2k89LQPgFDcR5Ibk7iWQ84GGked80PISaeB\nHgwZFCeJa1IMs0eTYWTX0hjfiYkDtsM9nIPGz+CoAhBJp86M5DD9w0vwuWnOJ0ITNUEoRtmpyvJG\nYnx/tvAbhCVych5Z/tSgc0hXlX0BoLfx3hcU+HTFwjgfJA6w1ZOOcw/TI8r6XJsWVhxqWo+a95m1\ni3aeQtgELTMUNwlDcSdz1FVoPRC66XvGTSLkymkcc+xqfRwCBdTXmVs1CNvJObdbX4gs9oycnXE0\nMHZUI2NBd1gCaHPSJleM8UoqDCxRSAL7WBIgZVBbFw49iE/ryECT05ZMR/Q9jFBZcia0wc2Oj3l0\nhbJ/mmEYeFdXV097sDu33IhQQsrWJ90En56WRfuXxICBaU4HAl/T257K/H6qYCvKttJ9uVw1dy/7\nnCa0fU3J1Ov2jMabrFzAuk8oV9PeD+v0kSq6ruKCOrhe6c1QLvMJvDz+b3ija1bSe8g5xd5iNnZq\nJIy3ESx4r38UHJ8mGtzJ25KZ3zP1IZKmUwINnChB66Hv7RtiUODKnVELxs87CgCoqaE13duoxSMg\nCHTwhA2ik8adeVEbAgyHH5I00Oio46NWDpxAbTKZaV0VThjRzXKSh+Q6ce4oYop+dc1cdA+jPaGr\ngoeBFbsIsCElBAGesfdKgprvq/VLCGXQXJHX//7EM4qVbkpXc+Hqo2rAKtEADRPSGXq3en3MpDo7\nEiV+vosMUnYP2aCVcyYDYgTd5ay0jpdT9uExqwRzQ+8NZTKnnvaLNMjfWNulgZ+VgcnY2XMu/TyT\nuDXeBRmj5y/YgbUnaL7OLGzAG15Kx7rG2oVDx8iRMnZEQ6/n+Yvj+MEcKin4pn8Otl/yMADgwn13\n48ALlHeKBzbCtpvGoCYgYVUa2TmmOlaqT68yKWOkF8EWWf/yMHawUpY566DnBjbWUzDdlKQkJSlJ\nSUpSkpKUpCQlKUnJf1z+q5HRUB5zKwhSj5pRpyLJEub9w1Vv5GtHp/V4yV2sOOyYTXT+Y69c0uN+\nIzf/gJq00wr/UGpfoT4Er+wl7lTvZh5NJCTuDgs03uSewIiVrtN5JdiOk+3vK2SJ2lYRjv10bPL9\nt2LXfeR1rz7vJeX6xgk+JXJ83tMU3TD0UQxXFDi8dhd5N7YEhuLx14kAKDI2AImx/t09+1MAwOMH\nz4beNPj6QVySU6ImDmE7q6O2KIQYg7l2STrkfUNeorFP34bDK3p6pqf/z604/kd61/vOG42v71G9\nhnKh67ZCG/yjyStrbqFIU1ptDF0XUmb4Oz4brrdRtOqBhTwydlI//j5nP+aGiUTD2M7BXUbX5m+m\nb1l7KcBvZ542D2Cm3H0EcnnwMfKqhdMEhaW2L/FMpbZdOX4X5tkI13vusnWYs4IimFc+tRH3j2XR\nSUYiVGj3IMQ89+5RMVSMoLDmvrYCWA/R+Ocjqru3awxdP/aRFeDzqD0bnnsGU35FUZnEcdA+RQOR\neSltNUCwmDHk7mUEA2N5hagk/+s4ukbTvdMqBcSYF9tXFoPeSed3TKB+068qhI+CpNBd4kT31wST\n/unYz5Vnj7y7CodfIg/ccSd5uzkOCGbTPWImDhKLGhzvzkLBK4QRrrt1NIo+ona8V/oY9BydX/oQ\nRe+r1mtw8DARXdkSSFIMLhEccVohnMaBY0QqsfPIQ/yHUZ/g1+9QXVxTC6d8S123hMrrKNI3/FUP\nDAyO3nSuA3q3Gu0AAFdzHD86QtCpYZtd2DuCYN78RLXPRZFXiEMqbOTq3fHeWBRtJL3QMcWObzoJ\n5vbxyLdw+a1EKCY86kXdGjquS5MQyaJvnr1ZJXNI303jS+sKgROp/V0T7QgX0HfV155e+Klm0XPK\n3wOx4h6c8QZGHDh1OOOp1CDtSx7+YBEePs1rv23UMvF6vt6AqIP0Qm+O0X+96D2iUvfPIMTRNZ88\n/BlrDHCzeoJhVrNT0InI/ITV/Ks1QptJLn6fnkOEef15v4ApabUAgMd2UNRD5eAlCTlk1m8RwUzG\nQp0dg/EgY4i2A5Za+ts3jK3ZYT5pXUlpMDCnBEmMej6x9Fnl2LeNZia7x6FIEJdvJ/08eDqu3hKx\nyGRBQCSN5iEfkVCwnsIdDVozKvUMSXUJITtK3w8gbqI+5OJA2wX0DTW1RmycQIzvI/TN4PMZQqPR\nhLiZxl08TM+zVwag76bnGVtVJMeJSUbEZ9G6qXNLsKYT1DR0hAZBZ8wK0U4fi4tyCNkZMsulUVIY\nNAEAU0jnfPyPWQCr2SmnLfUl7pOipfI+bMLi3lHNk0VgtUyFIEVEZXnr72cDAO6747ByTN7nbQ3F\ncdPXfUN/TxaZ4PJhZxlMjWxw8lDqUNcfyoM4hOnUFg1KdARL0MpEa5V9A0M5Pd1kTuZxrBaLev/O\nnrEjWIbdjxJmPGbgepBAcqK8ZtO/P7/vNfx0N+UzORrFHnMzmcSMHB4d9Q8AQBkL6XlKtbAfZ4iv\nUByhbPqGQliCtZ6Of7BnAkYPo/2H80IaS/aNRmi30ZjJaIsqe6fN9aXQlNDLdIXNSkUD6EQlSupt\npih9cW0U3hJWT9tkwT/WsaoQ6RJCDNUWyo2Bj7LIGvvsfASQtPS7yEkKfFfrkxRkGR/tGTs7ObKp\n8QO/OOcDAMA+fxHe8dG3W2rrxNJf9K9P5IhpoEDswXDbzdJlTkx7E4scFwIAGlaVKef7p5N+ftI9\nEuZ6pjvTJaVNereqabxlokLeKCsgS91Jmkj+Lw+kF7Cb7MzAlF+zahEPPI3OOOkZmbl2yzNTINOm\nHjaORGWQiEmveeBp1Cwk4qDxD66A9qTIujY7iAMMGWqrZqkNANKubkLzJtrPLa2bo9gHYTunEpqx\nqGcgl4Oplf4OhazQst/1CXvTu+sX4/s5hBC7DH3LaRujq1evxgsvvACNRoMf//jHqKiowM9+9jPE\n43FkZWXhoYcegk7Xv4Gpa2dQFt+3WRp6i8aobugT2W0TIbh9ibBTPd98giZj44li5Zi2W22rnK9q\n1KnY95MlzuoQwwu4J9JJvJfeWzZEZRnzGA3wgz9W29kDiz6FKcjPbIglMST5uITfN1He6T9Kv8Rl\njHU4W1ChS3LuqPkLC+Ls80TSOAgM1SCEJYhMKXgq4uDZQigzmsl5eQAQygbcU0mRp31jgn0hYXnr\nogklB0YFMHEHGQZ7ppLS3MYMUQC4P+sQ5oKM0fOPLFQoyffXFYBzU/8bO0kZeQs12DX1bwCAeTfe\nguo/f0k3kYDb7yEWuNI1N6HoTsLheusyoXEzpadjW0ldGB6G3Nb4gDhzMphaJbjK6ZyIHcjaQ7NK\nLuAcNaqlXwBg7giCStyYvhm7QzRxSz9cgrcfeQIAsKz+3F5Og7ouB5RCF4KEdlZEORjSIq+Sxqwv\nX8Cu31D/rGgiauynCrZiV5jGzpxbb0NwFNusdkloPIctVsUehNoZw1lFEIVv0iaogVIGoHVK4KNq\ne+RxaT8eRzNbL3hrFGG2GbXU0r8xE4d4KSnkUY42fFlMEJAb01qVewVmDkfWs8yY+wn1vS+gV/I2\n43rgzNGMmfYKq6ISi58+hPZ9xBg8ceIdOOcSyqvZcgEx297TNB8b7aRYjQ0aaBm0pe2iCPQn2CYw\nCqW0zkNjCNrZFbMoeUx8TFI2zZ5hPISEjYCtmt7LcX0HqtvpveaWEaTx2cL/x953BsZRXms/M7O9\nF/UuuVs27sbGxsZ0TO9cOgRCCYGQm4TUj7SbQm4qBAgJhEBooXcDwTbFHfcuy5ZkFauttL3PzPfj\nvPPOqtnGGALcPX+8Xs3OvPPWU57znFX8ulNevRbuBlJk3LOTsC6hQy5SA6jldL9VTWSsjl7Sj/7J\nZPAWfhQEPqJxWDDrDjz+8m8BAHsyBfjxfLpH9iM/DP00R8N1Wn+piM1juTi73ah8m168Z26W59yp\nR4hpGWwo7rrx/mG/H+k7ABDrw1C2j6ykZdwKZ+n8IkrDNQ8MMEiN/UentNfhinbGJNf6ITNmyr56\nAb7tbO42DDWL3ccEUGInmG6PvQzCZPpc7owRAyaIvRMAZ9cFqCSDtqd3z1FhYcu6+EO9vFXKI3L4\nvm89M6iyA/PWNFEGaRTKRHIepgO0Xi0HgYjfsIzybw/lZpEtKofBAQNhuMNBer+yn3KeFvu2wG4l\ngyuOkVnvedtNql6EfsDz6V9bpwoL4wBIO/Q+tQSASILleY6mcWhZ7IKL0urh3RmHd6d2dRz3jTkB\nADCjvBUq84aJFXE4GaNr6oAOM7R20kEt2wxouobGzWTKIHoMO8BDRgjNLO+vh+WzlykwRLUUBwEO\n5ozNWgTYummfaTtJQgHrmygArKF7zLuQEpRXPD8ytPvZW4j5+OIHdObjTS9PBADU1o4dBjjN+imH\n/fb6q8hJ/k3fvoOmYR0sB3WwxMansGkGsdSuSer7VaxcYeXbgK+d/Dbe6qK27m+rwu2bSFeR2f7W\ntSCL4vf19V91M50PG1aPwb5T9KDBK1g05PlZO43PvW+dzmHU8iBjdPU9DwIANqWo76eazfjFq3Rm\nqKLAz+kkRG6Qds9WUbSW+u7UW1fwKgyjl1NKV0FERdpNYyxZJcgm1s96dS6IEQMSWdoPaorJkRo5\n24zubhr37qQEIcPKiy13AtfS79qjbkhhplMVp2Aw0DWujdRHHccDNW/Qu2QcdigsNzpQLyFaycq1\nJEXip4C+t8oW8HPa3C/w1DNTVEG8iDlpPSpMOfp3LrxWkz/tpnGo9ASxdD/pFt/f4eIIZ1uXAOVk\nchaLDHa78Qf3I3kCOXAmFPZiT6SGru0U8LVp7/F7vzKG5uhwhLDT/udWHjSyHRjennHuE7lDfSR7\nQWunqxGYc1ILAGA19FI0p+86E9+sohKQ1u6hZYRGKtWV8oHrT2FSVeBzxnl5GADIqDRWP617Cbe8\nSXNp6+OTUH4lbVyN79fAv2HgWagZogBg6R347MgpTG9JOHDn+7SuLhg1wnvjCGG6/f39+POf/4wn\nn3wSDz74IN5991386U9/wuWXX44nn3wS1dXVeO65547k1nnJS17ykpe85CUveclLXvKSl/8DckSR\n0VWrVmHu3LlwOBxwOBz42c9+hhNPPBE/+clPAACLFi3CI488gssvv/yg9xkpInrZFRTxevqJEw+7\nTfEJKQ4pMW+2ASfof0seM7T48+GIVm/S0iMiVssS7Jv0LtOieLnvkbWrnPgBAKzdurfAt5YRtDCW\n0aRPj3BYe1XOYjvjJ7pX/pjrtmGUjaAjJoMemYuXMqhvcQrWXeSqNSSAq4pXAgAWbD0fVU7yAP2z\nZjm/Z67XWWPFlQZ5abQImnebiESRnkg+RFTAtYn63Lsng0IbeZdaLH5ofo6Kx4zovYkeMPa9a+j+\ne2y8Lujqqc/hlj8RdPqB2y/B7kf0qOmi628c8Ljk4jDmMc9l4HQJj+6myGH1awquvoAicr/dbkLV\nRHrvDrsHKiOECE+hNvhXmpBaTBHmaLcdRa8J/J1jpQw2lASSPvqdpY/6PFwlwNKvt2XpJvKmrumo\nRjpN19qbjLj0uTsAALJTRhVjun30zwQ4rDU68NBkgkVc42rB+NfJA+zcbUTvddQmRdH9QzJzY455\n/BaMmU1estbzZFQ9r7cjUcgiFV1uOJhnMdvlhJhhtelC1DatFpQm/m3svWokOBlB7nnXr8VTO4gl\nTdhL/uxQfRZnjCU3flvcg7Nnkqf8sXABXuomb3nGIaJ3KrVb6aUoTPkTRvQzWKGjTcG2x+oBACXR\nHehfTMn26pW98FkJKpTuKMapHoI7Pxai+37UXgWwulvJUhkiY1wUAibONJexqzhh4RYAQHOaIMIv\ntU/laynjFGBgyz9RkYFgofeO1rkgJRXW5xKUdvJGvytTJPY6xYBSM41J/IdhlNxFD9woT0bJ5TQW\nxqQVPdvJ523aobF/ptA3id67e5Yb9iqKjEQDGVz4N4ocuOd1ob+HIjO+Wb3oa6c+EwPMS1yZhHEP\n3a/yrRiaGNRPsKRgCmv143BU5EggtdkG5xAvZm5t0S9yVBQ4OMz30yIuyhWNEEg2CUiNp31LjVqQ\nuZQgh5Uumpedf9WZTvsafQgYydNftF+B/USad2eXbsFDTxNaxsUinRmnXrQ8NCcNYyvt4UWrBSRZ\nEC5aLsIU1vf8lJ/VF2aIHB6lBUVweqezM2O7yq8BAHEHoT+0c2fRWRuw7LXpw763VosU0COcr11/\nz5DrcqOiADBl7X8BANIbvcg4qZ3GiIhuBmdb+eYx9C+OGfa5g8U3l8LDfauGEvYAQKKIsca3qTwi\nakip2H8GrVNnkwrrZgppuU6ksQpPUjHhZKpWX2EJYuUPKZUkVmRAhkEn48VGGNk+kijPoqCI1dcO\nDK0YEKk0wbuCPocXKjCYGamMQ4RkYSgbBvFExMj1jJQfUA30H1unipaL6dmFxQEU2Ki/ogBGLyYi\nnzO9mwEAK3JIr+L1SaiMgMnebBgQER0sTec8NCDSGa9kLOitAyMsWj3paesuwy9ueBQAMOpdipRb\nt1lxJHLt9FWYd+/QOu3+zQIC06gdO2OlyKp6Td7+idSujdcTo2+XnMalK6hesWwB1u2pAQAUbwLm\nbCISxjd/OXxCQeFHQ7/74Lu/g0PUtTCNYPOfDbMAAImQBYWsPqkoq7B3sBQUs4DAMfR90VogXENt\nPt29Be+zoHjBG3Rf2STwNWgOqRytIBsFDqO3dYgIjqbrNZ1DVgVUlVGUdIy7B0tXUIqMYgRWd9B7\nFzhikP0Mqh81IMEYWE0MBVW8RkaslNZxxi4gY2fIMoeKLKvpLhgViCzvS07R74VMjg5tAdehE34J\n0XKmg0aG9udg0aKd7fDytIrBOBLtmtjxejHQ80fTPN+f8CHD2KgtM0N8Xo55/BY49uttTLN1bVr6\n8Qj+RoyIMkkUslSMSQncU0oMtNNPHQvH27SP9j5ZhVN/Sv2YvPVRAMAd716JKRNIJ9nWXgrPUlov\nV7cswGPVVKnCkGsCsdfoC9sGsBNPvY9QB9YeFfHxtI++cfFvsY8RQP1qzhmI7i8d0mYWSIazeeD3\ny+cSYuWC7dfA5R+GsWmQHJEx2tbWhmQyiZtvvhnhcBhf//rXkUgkOCzX7/ejp6fnSG4NAHi3ixZo\nbHwK9l0Hz1nQFrPFkQKgXzsA6sEm/gWNp6Dh9TEDfq8cBGKrMRJmZ0RgbBzKBjWcMb3rhgcOyfar\nGX+yiYzQg8mWv0/C/otJYb+wdhMA4JF5x8G7gt41VK5iwmKyJn5T9RLWpYjhLZSw4KtjlgMAJjx0\nK2wHYYU7mAyGXeVKyZrMgP8TmyGAOmDBS5SbI6VUGN4hzTm1gEG2qlPobiTowZKxZlzioIX96F3t\nmPJr6jvDyb1Y/wjh3Y+7kzb9RLMTiULaKKqWyGi7mraZ5gt0w9VSpGLdu2TsyH4ZVqYYiz0styqt\nwvg2bSA2r4AsM04OnCbAwQw2c1DlRmjWxvJ862Roy8XbkEUVVX5Az7UCN9ykZA50oseA9ssph+Pi\nn9FhtuTu/8W9j1CO8q+qZRTUkHXbm/Wgae4TvB/7ZfqdBhW9bqEBu39PxlxVTi5r1ibCv0PLp1Bh\n/29Sdjr/Vc3ZdG0MdmftG0g92HsMK3ZenUT5S9SPj62bC3M7reEU039K3hPxDjMOVRHYN4rGLVhq\nhUmiZ2fsIs5bTG31MZq4R+acjEw1nZKZ3RbUvED7QfD0CTznKrylECnGNOcQgTuS5Ly6ZDqd4qlW\nBzd6TCGRw3GL1gFJZoylp8Tx/ZK3AAD39S4AALT1euBl3eRuysLakWD95UC0ivqlb7wA/w62Jn5f\nDCc73INW6ouEbMRTG4g5zupOovPb9P3eEx/A97tIqS0wRnHfPmJxrniB3nv3jS5UvkX9YgpmYGAK\nfc8sIwIzaQwKRAWGHrpff9LL87Ed++nfZNTKi2bHKixAJbVfVAW9aLlVhZQYOb0hVZGGue3I8vC/\nciH158PPnzbs37MuBabAQGXyaOSJftrCcz8/Y9jt4YgGac+F8PUen4akpRipQPo9crYUsvNg8wKZ\nQwgLPwK6FtKk7zpJgWk1nQN/rvPBP6hkS6JU4QZd0dsmBJiN1jMTUFgOmGCTkWHzx9wPaIjc4c6D\naLkAR5NW7kTBwTIyl702nRtGilGFlDp4is5Zj3wHV1xIzulL3ATjP/eRb/O/W2cE0N9B+7kFgJij\n1C78m37dx5GRjFBNNBheyqUrj6pBgJnlscdLgDhjh53tIV6D4uIw9idoU10TqEEL0Tmg6hUZ3ucY\n6/ixCqzHklM1s8OP5vUs/WOjrsgpZhrvlFfQ87LarJBqacOYPb4RzWF6zoEe6hdVARQ3Y0O2CzCx\nXM1EgQCBOfuysoi9PTS/JACNbxCe7o4xlAuZC7W1bR8eSJ0sUAdAbzXJ5fUYbIRqMvpJOuMtPSK+\nv/JaAMCRmaDAX26iVJl1ibph2zHm8Vvg2U6TsP7EdnzUSe9oBpBJUN985wCVdnlr2XS42Taa9Anw\n+jUDxosAczp6pUOXIeo7i870RZuuRv9OOkMLNqt45ZeUuvG+j+CSne9XQ5SHwt8NKRX+Lfr/772O\n8qs7s2787qfkjMmamQEaUWGIa84jEb2sxJEhrldFMIVV9PWSQ7S8lPSQzj4XSp1k8cWyJl4+LVko\nQImT/pS0pFBXxcrl9XqgtLKZwYbdGJMRLaMOU0zQ4bEHBIRZeoDNm0Csh/rMqJ1hAng+omxTYWqm\nz9EKAVkn3cTRDKhsQ0y7gMwUGgvDNlbiLCdYAICz2+bmgALAGTcQg+ybfyP4PhbkfAYAlgfa2eEF\niIAZ2YIMwuXUH46PrKj102JvZxUpIjUqZBetMY1NX5Msm8iGw4iJaXujbb0VtkXUjz+d+grueZt0\no3ipwHNGTQKNidGTxK4ulhrXoa/NHQ/X46TLSFHKhdAywmhg70AAffWpzQCAnY3l8K+hjX6s0Y6x\nRtqfbmktgEMrV5RT/tHBiHpTHgExllt8zORm/LiTdKOuPQUYP3kom+9gOeKc0WAwiPvuuw8dHR24\n+uqroeaU/Mj9nJe85CUveclLXvKSl7zkJS95yctgEdQjsByff/559Pb24qabbgIAnHnmmUgmk3j9\n9ddhsViwdu1a/POf/8Sf/vSng95n4vd+P+z3ceaBsLUf2oOdcTFPyCTqAAAgAElEQVSobE5i86zz\nt2Ldi5P5/w8nCX+w5NYbyrhUDsnViHxGkosvX87Z4MxBdViiIU3CtcBpJ20AAHzw5IzDYrUdTrQw\n+TfPfQU3e8hrftKOc9ATJc9HKmXkHj/Xesaslv7kDgMhS2xaAFC8PoPFjFDo2769nHxn548mo28C\nPbv0bIISNLQVY0w5edfsxhQ2t5AHWJRUHFvTDABYsWksptTT9TYDhZL33T8O3XOp3eZuCWedR9G4\nt/8xFypzq/h2ZBArZQWVM3r9LtnKWAOjAq8xZoypnJFMtgD+SRS9i/+7CF5GKBQroTkYKxf4HCh/\nT4bCSAGSHhHRCkaCNKsXjr+QJypUZ0ByPnkZhe3kgTQFgegsco8JAmDaSS6zRF0aH5z8BwDA8Uvu\nhGSnZzcuIvKFSauvQKmbYHeB5ypgZgW2TWHdgxorlpBlkJjwjCTUJLVbclL0uvzJgVGyWDGDhFoF\nxFk9tHRhFucyGO5ru6nOlNBmhZHVtkyOS+LHs4kkqMQQwt17qDaq3xrHDC+F9dYEagAAu5tKYfPQ\nu8Z77IwQhRgGkz6NdQ4QpzEobLsDgofGuY6RIcUqLCzSAoSrDRya6mxRefH34NwUbpu+HACwIUy1\n3s4v2IBf/oaIusQ04N9ETActZ3t55MFkkOG6m25y4HgnIhPo2bfOoYLSPikGmcVlv+ru4PP5o+5K\njPd1AQAuKvgI9+5nddkeIPh193QRRlYjrfz9OBpvpH6ueEmCvYnmQ7DejVipyNuXZliZZAnte2Xv\nAc49NN4N17ghlpCn1vuWFb0nkZfS1HSExRyPguRCctOMpdMUPLrQXMX05XVo5kJcDyWhUayerktB\n9RQKaySztL/1ri+Gbzqrfxu3ILOHJtK8E7ZhSw/BqaKb/fDuGvi8rvkKX4+5EhwrcC++YlXg3kVz\nN+PQI6LaPuvaqyLG4HOKEXDlRF+1NgPgdZwN8aERs2RVmhNyHQ0ZTGykGBhhSvbg0dePKxpph7VX\n4aQrXbNFDi307pYRHE19ZziWwjUqgBMqGqldqogU69ClKydj8nQiCMmqIlqDtMmlMwYY1tC5UbpC\nj4wmSmjdS2kFGYba6T1G5NBCDa4LAEZGHhPvscPcTe1RjHpkN1KjQLFotRElHtWMT0ngseMeBgCs\niVPE7pHHT/9YfXTD1VQz/W+PLT7ktcWntKHrnYoB/weAjg/oOyk57M9GFA1irEV3NUlMZgiTNgss\njDX+5mtfxdc8FLWZ+MCtHJGSmkt7tdOWQqGdvjy1aAdnpLbtMvOxT8+IwvvqwaOjGqz2zAtW4e3H\nqZ7ukjvvwQmraB+VtlJ0z9U8PGuubBK4zua8rh11TjrHljaOg5/Bc3un0DtVvZWGYtQICEV0z2Sf\nnQqsHTQPfDtlBBgkOVFHZ5/VncTEYoJS1bsO4P1uGvu0LGF+McHGErIR+6IUQQ+nLGjfQZSM3u0M\nVlso8PqvxqjKWeoTBSJijOxPdigQGDGYhi4UUwKPrpqDehpKxqVH2x057MJHU4LT0hBYjVP3Dt3m\niJeoMNbTOXzZ6PV45nFKG7zy6nfw9IOnDLhH5LgErw2eKJP53gnoKRHiQCDhsKIRN6U8ArZ+Uydm\n09h0AeD02yiy+/MiSmvqlmM4bcNXqB2NHs7qa4yp6J+kpdzp/SszgtLBNkDSrxNjahKrEGCboZFS\nWpDpZukHe9j+lmOzxMoFGKaSruW2JhFYTQgTe5uKn3+XyL4W120b8d2PyBjt6urCd7/7XTz88MMI\nhUK44IILMH/+fMycORPnnnsufv7zn2PcuHG4+OKLD3ofzRiN1WVg3/fxifNVUWfguurKd/CXDQSt\nsOyxwDufFlX3lmLsuZLyEA8Fn035VZgDwx9cg3NGFcPAosvjzyKo7K7XxvLvtIV4OBIrE3h+wMcV\nbRIZ4sDCK9cBAFZ31aCXwTDs2yy8rYcyeKMVgKPt8J7raski5aZJaQ7J2H8afb7yxA8QYlrNia4d\n+MYKgpEUvUNjPOWOzVi2j+DS0i4HLNMI8pD6yIdEBWPn3Wbk5QlkTTEdG8NN9bQQX2ibivY2giMJ\nSQkqK2sCg4oallMZqjUgNIblxZayg6jBDpUpKd6dKkJ1zCjI6I4Nc58A304Ga3LS32OlIhKs4Lu9\nXYB7HzNWSyXYuunQ7x9n4HCI0BjdQaJBGvpnZjBhFCmUTctquLMjd9PJlX9FCQLyw+cuh49BStNO\nATF2bpsmhpDYRwqo7JQh2qhNVcV9cJvoBG96gQ5kZ7vMNzqoVAoGAMwBnYI+ODON0dVkaB1XQIfP\n5mAFdi+je9gOqAgen+T38HhISfrphFfwvfuvB6BDUqSZQd42xaTCEKF+/P4Fz+O9IEHrfcYYUmyn\n7kw6sXU5zQlt/kVqAROjRhdkPVfL3CcgwVhGT5mzBY1hytts7iT409+P+zuuf5FgX0VrAfcuMngj\no13ovIAO3tPH7kB3ihSAjzaPhinADORStlAkFfctIObm3cky3PvByQCAafVNUBiWJpY1ofVDgnil\nKui+185cibtZsfYnIn683ksYyJ29xYjtoFwVQ1TgSk/GAbhaGCMnKwPlbJM5S7KjNgSfnSZKYEk5\nNwqyh0aGfWJJ+2SY+oY6BHfdeD/qnqX+1YxQ85R+pDZ7j9qz/68Zo331bJ5ndQVNyx0FgPhFIdR5\naZ90MNjULypew4MBYiJ/euVcWEtoUv156lMIKjRBfvSXq3nup5Ht/b1TAUFmuZ/bdA4Da0DhhmSy\nTNecTD0GuMmOgsjKKKmigMBptBeIrRb4tunvlGuMfhnF2sWUaqte6gCL+pFM0V6WSRng3EAGQpql\nlGXGxXHf7KcAADuS5SgzkpG6LlqLbUFyZAmCiuleMoxqLL2453Vy9tU9T2eXYpHQM5UZowmVn/uK\niUrxAICpV+KGqdDP4JIWBT7GdqoYBGQYkbA8I4L6Eqpttn5XLSQ7G/N2KxQzvVjxGMZMv5zzwB81\nya1u8I0DxFUwytKDr3vJCV33PAU7eEmWYUTj9RAUAUIVnUcNCx4DMLK+51jYjeBHdGbsuuEB/uy3\nX5iNdD3ttVITHWSyRYVSyPK2ExKKP/j4EP9v/OgZ3LP7VABAf7sb1aPIgdS5upSvKw3OKqgqPwfE\nNMFzAaB7FmDtonW1/bb70ZaltX7KI9+Bu5H6QHNwFmxJI2tnxkJMRvsJjAtjdBTpNgpQWDtFbnSE\nGKFqwZRubnQqqgCHgebR9nApDCJzCqctSMl0CJXawmiP0QTvZYEPuzmNvjDtPZmoCWLUwNohcAi9\nbFaRZbnd3CiNiHrwx6lyA04xq/DsYOdiexahmo9vJwQnZzlXhHudGUlGTjvmJHrXbU3l3Hlv7pZ4\nWZ/EPhec+6hP46XqiCy5msTLGOTdqsK198j2QE1HS/qFAetDq0ihLPVxRl6tzFbT2X/FTW3k4Fj2\n7lRk3PSu/g0SslYtfUJFikFsWSYVpLT6sQzlQ4liANQzaF8rckTR8RYFB2KVMq5aQHr7zya/NOLv\njwimW1xcjNNOOw2XXHIJAOCHP/whJk+ejLvuugvPPPMMysrKcN555x3iLnnJS17ykpe85CUveclL\nXvKSl/+rcsQ5o5dddhkuu+yyAd/9/e9//3g3YYWVa5xR9OwrP+iluVFQreaZlNLvscixA485iHBE\nyFjw1qQnAQCTm28/aER07gWbseoFylKWS1JQIloR64HX5bLoAgOjorkejEkYO+A6rcbTcLBY2SRw\n2JOYBYLjmNfZoMK7XfesFF9GnsKduykk5tsoQWbJ6lJKhYnVWxJlFSv+OpP/To9THH6UwdEGXmc0\nty7lcBIvNMAaoI4I1hn5AD22YQ6MjNGvrcKDa6YRnHb50/MAAMv2jYGPwVp6pykwLacIp6dDwSPX\nUd2tO6suQWQneS+r3iZPT/sY4CwnQRMeTR4LQYNh+VJQO5nHOCWgjZEwE7yUrnE7ybvcW2pCISsm\n3O3xAXby/lU/LaJzDrmJcsfeFKF3SvpEXrsyPjeGc79CJDvPP7UQioG8am/fdg9KWV3Y2pe+igwb\ngAJqMn737Udw+9ZLAVBXafXqtqcTqDeRJ/bypkXY8TQRMGmwFldLTmH6PgW2GeRZ7dhbiMULCFb7\n+tbJUPvIZTZ2bDd2/ZRg6h4MJC7SxMEYHC1BBZ1z6N6+wjDqPeQp9zL3WSxrwmlnrwUAvPXqbJg1\naPHoFGeB/eFb1yMynTrtiulU3LjC1IcXf0kDkfGYEb2Dojo9WSduKKLaXSvjY/DUPpqvsiKidh5B\nfRs3MEKJ2gjibD0aOkyQveS+i/uApjP+xt+l9lUir6ofRyHVBw8sgqOFkSV0JyE7aMNIufU19e83\np/NIuCgDtc/rUF4AmHhaA36zj6BpiirA3sw8vJMVbNhPe5V/iRUlAWqT5XjqNy0qCgDHW1uwwkTR\n3iJHFMKxBP3q+0cVAlPp2QUbBKRYEXoDY6xWb+vB2QUUIUkrBqy/l9ILXHEZ7WfQWjhScqKPI8NF\nRQGg9rUbYR4Eyz2aUdEvszRc8wDmfOfmId9rLJfOZiBGgTIkCkWOtEht9WArKyZ/6SQi8nEKIr5f\nSGvz2cg8pCOERLgpeyWyGUZs1Kngnp/SnmoXaI3OMJsQVSiq+fW2U2Bih9nKf02Dey+DbSaMsHdo\nYb+h50DgtCTEVmpPblT00xCtjuhwNUQ/iSRL6L0tncOrQfKEKKSdQ4kLVZGlpqyOITSazrHuDqde\nKE9SOdu9rZOlOMQNeD5Ae12hKYLp1mYAQJEpgr2ddM6537dg6bm0vwajU1C6ku3RvyK0yjhnF2/D\nVPt+3L3+bACA0mvm75B2K7Bv11hV6VpjVOTRIEMCiFfQHiKkDNi2jBE6VqYhh+kH9l4B2+4ggpzT\ndp4FADgYkanGfvv9v117kKuGilb/dc2LOsvxvwH8hX0+HPCHVi+08OR2LKt/GQBwV9fUYa81z6co\nr/xsIaQSPcq1K0RRX0tAhbSBnppl3C6moAD7RuqX+tu2YfsHk4a9d9cimkvFy/S51HUCfXexI4Cf\nr6QBcMeB5AqCL3pG0Ms0nVHTPQDAUBzH9osf4/8//o1v0vMaFX6uXXAlnasf3jkHjr0EL4UgwNzH\nSGysKfQ66SyM2QTEq+h3KmPQ6+l3Iuij96+2BlBhojN7TaYGTT3U/qqCfsTS1B8NqUIE+ml9/Gjm\n6wCApGJEU4rm86a+CnSEaU9K7HNxyL6YEjh7rr2NMfmadaZl1axAMNNn+zYLPI2koyWKho+KJhh3\nj7V72D/jotnr8Norc/n/s+MpBFtloyhe67qBRFexsTSG5y9ag+f9xPztXndwIlUAsHVoc+qTpwVo\nkHIAeD9JdVMBYFudB76tDHG3jpEMua7h+705JcCxRT+3N32P9s6HQmV46LfnDnjGqp/ch+taCHa+\nfslEjsyMlQuwtx98T0+72BwNq0h52PvOC2KUh/q0+blRMLOap6npCVzIyOcOJkdsjB4N0eBnHavL\nhtAvDxZV0o1RrawDAF6c+fo1d+C1W4kG/r36OqxMEhalbnQnupoqMFgmnr0bAHAgoZMb27ZbcOLF\nBHNd+uysj/UuGgPqgO+OUQAGgVSdWfhWD1QgpbQKMMPHENeZWDMOEbkKwHF+ghO8cQ7lYeAcnc6+\nr9OJWZMoR2LnS+NgigydRJEaYOzcZgDALAaBeeX+hfrfF8UgNjCYRfuhjVBNMnaAVZ2BKaJy+Ktv\nlQkPs0XgFjP4fc8iek45Tbe/zf4rXh9HB8Z7B0Zj9eVUk7YhE8Olmwj7fv3oVbh348B8E0URccYL\nRNVeMqEbEZnaPLN6P9Z1khPAP7UbXXsop6F8aheHj0QYG5wUMiDSQZulYXyUF21uv1aEbSXNwvQw\n9dBDE2X41zN4ZsSEjUEymKACzlYa5Dtbz8HTtZQ3e+aszdjD4KNX/O9qAMDdd9wA+Toy8saeshcv\njXmL3V3nDVyzdhzOuJoW7g+KiZ24QLLCKNAG83TEi/ubTwAAeCqDeH0THeSl/5YQraD2rWifBj8z\nQkdyLBSuoYMmMtYDpYzB7QTg5fVk+BSUkZPnv2o+4vTmd5+fwJkuYnS+fOVXIfTQfC6/qAnXMyPs\nzQUE6d0g+yCBjEsJQM97xAb88olTsMND2vby7eMgGKn/x1Z0YX8fGTSagybeY4e1gNbVpWeuwmNb\nqBzCyeN2YXmC3vW+jhNhaadxi9bSGP+i5kXc9Z7OiNl+Mt034wQKX6drOhfIuORYUuRb4j4sPpOo\nCtvSdOj+dd3xOLF+FwDg4aoPccZ3aL1FlhRhDLQNSN+ImnrJofJQqAwhVqn8wXdO4dAqS48KS4je\nNVEnwLWXxiUwReFwbnERKRDTvZ3oZvvX2pXjMWYzHUStZ3ghHJohfVhRxxOsS9g1VLkGCHqryaGY\ncc0HjMjU0WFp3DeU8/KYk3Zjy7vjjqyhn7E0XKOXkvo0y7asu0or/2CFYmDjndXXpHsP/RsarUO1\nxLSAcC2D7ypASSGtyYYoaV/Xhc9HV5zGc8q8Paiw0Tx54+1ZsI2na3unWGBih9AMs37+3NlOSsiH\n+0ZhXBkZOe6TO9G9iRRzjRlWE4WxWIbPpHlU6Q0j8eZQmv8vkoxkhGqSCVownDvG3aRj2jQYZXFN\nH+rcVBZDgYBAks6dxn20D00b26LfV5XwUCedv+s+HA8TyzHvn5uCcQMzTPcAgkLjphmhU+37EWEe\nTLuYwqhiMq7aN1fxNCJTj4REoZaGQs+LVghIFdG9qsZ2odRA7W/cWAlLD6sYYDdC0Up25KiFD495\nGgBw+tvfGbGfPq4RCgx24A8suZOZTnPMuGHoXhWvT0KNU/t+uehZ/PwR2pdfGP8U5my6GgAQfa+I\nX8+2Ytxxycv4zXqCynpMAGaG+DWBOI1VeLTKU1Y8u9kfVWD1PeTMmfy7W2GHbiDmSq4RqsnSU4gH\n4oBM+Y6HI9ELIsBa0mmDYwXOP+C0J5FRqXHn7zlrQM73xTeRnvBsE53dpa39UO00T4R0FkamEwZa\nvDD66KwvLwgimqKzsLeVjNViXxiNYdKdPMY4Jlnp7N27rgpVb5Gi2j63ErJNh6OecBzlANYYaS6W\nGSJYx5J8DyRdcLJ0ofXddoCVqlP9WRjamHHH7JiUX4HKdAFvcRghBvX17JGhmDS+CRWh8Qxuu0tC\naCL7vOPg0OklT89F/dmURrfj7bGwrWMG9zHU5vt+MHyaFACc4qL3+1rnDTCMonk5rqgb32flFP5r\nBVWNUFISPBuOnoN43qi9/PMvms9EMks6zsQpLdhuIXvGz4zRbJ8FTpbDaYyqA0qtaLmmkWpgsFr7\n7c5j0Rik8U5WZmDvYOWa2lXuHNXWA0D5wNYe5jBnf884BcQmkR50Td0mzhjellD52J4+eif+wdJJ\nplaN/M5f7uSOvOQlL3nJS17ykpe85CUvecnL51KOiMDoaIlGYKRKAy3wkWQwidBIMsDrNgJE92De\nt8OV3OeMeoagV9ZO3b6vOr0Zu1rJM6pGDfBtPrzk93ipANuBocOy/u4Hhny3JG7GfQyXunttjV5D\nCHrNooxD4CQWMYaGNoaFYaOoI0lqmPpCprAKSz8NXM9UI9JTWNimyYayD2isem+M4/qxBNP92zOn\ns3sAGVY0GGvcA/pRk1k/vIUTNBRsJY9tqNaA4BzywqhpCX9Z9CgA4P81nIsrqimi/XVvC/7QXwMA\nuH/LQnhc5N2zGekeHetLUbCZ3uHAyVkY+lhyfxLwNDC4ynTAu5Oe3XcMg60VJFH6BHnz9p+rouIN\nVn+0XIIppHkKgf56+nzZgpU4wbmTtw8A/mfci7jjISJlGPzOvw4QXGpjuBI+E7X5/nKKqP6mbxQu\nclJR5h7FjEvf+hoAgms72g9j4QwjYobey9yXgmyj9RS5K4KePsbgWEDj09HlQW05eRC7Iw58bRxB\ngf64/UQIDN5zQnUj3txIsGDXDurP8ke3I3EsvVPLmRJ+cApBqH67/WQUuWjthRIW3DKWijL/cvUZ\nvN7Z78Y9AwD4Q8epqLFRtGF/wod7KwkZ8K32U3nR7KUrJsPAapX95pJ/AKCowU/+myLsGoMtADSf\n50WqjhEwRYxQGamBYFKgJmhtakQHpcVBJDPUL/GkGYvrtgMAljw3B1VvsLps87049YaVAIBeRoYk\nCipcrKDYb0s34Lr9RKq29uXJ8C4kUjUVwCg39emBuBvBBLnvq90UjtrQVAWHi+5Rco8JKT/zYE82\nIM6YD7V6sIcrspkReR2iruNIEVLVoEI4yqykB5PPisBIi4x+mlFRy4QgXBbat7o3Fh+UTbdnJiCV\n0Po3GmXEeyhq418noW86rdnacQQJL7RGUW6haOiK388e9n5v/er3cIuMjEWl3/9352zEsjSnepIO\n7H6X0Az2AypnLo2V6ayYti4F3bOpzVOnEkoiq0ro/mvNsM882gRGGkxXk/P2nIbdS0eNcPWnL5Vv\n6/CEzrk0PoliFUI1ff+V+lXYGqGDdnsPnf+CoCIcpXGYXd0Cj0mH4TXePjyKYN9t1I+3TqE991hb\nI+7cSWkeTnMK+z+iZ6hSznoRVUh+mms2G/2bzhggZ+leF43fiB1himhvayuDYzW1KTJKgeJk+lWD\naUBt0KMpw531h/OM4aomHI4UnESEgRWOIDa9PBEAcN9XH0RApv36QkeYk8NEd+mpBi5Wc9wY09dq\nYJIA/2FC0rVoKgCM++DqQ7LtRstpfKS5/TAbWepT2IZMP4sgGlROUFi4RIeMdp+cwYXHUEWGvYzl\nNnm9A6qFXSMCLWdTtCpRm4bE7jG7ugVdCTrrNeI/izWNRVXEqFRmDsLGIIiKKuIffyXdzXFAQaiW\nkfpMTOKGaSsAANNtzXSvdAH+HaA0o/1hL0Jszqf7LJw0TTUpEEy0F6kZtlfIAj97DZYMT+OyH9BR\nCL2TzUgW6VURbr3qVQDA/Y8TXN0UPmgXD5EUG+61N/8Ox/+SYM933f4Ufv0nVrfVCl4303JA4uRW\nFQVBhJPUv/2MJNSz/vDOY+NighLW+0kX2PT45AF/11AxwUVJXk1h8e7FaOxiaD9/CJeWU4rYH54l\nvVLMAOJ00teE1W6OjBCzGGAPaBIvZrVafQqsddRpsZAVvg+HfwdN9095VdjbWaoaq8CQdahw1NKz\nS5wRtC6j0KetU4XjEjqnzijdjtYkzcH7Z/xzxL75jxqj1Q/9BsChjcsjkcuuILjk00+ceFTvmyih\nRbT30gcHfD/chqrODsFiosXU1+7hjHZHKhoz1ubv6Bv6vf3V+PPzBGe1t+e0s1DgTFmWABCaQJuQ\nb9Pht6FvqgxbER2wlrddw17jahmak9h6kgEyK5hcsFaC/yqCay4qJKjEX5ecjJLJBD2KJM2INRIs\npfFyvU+vblmA1p/QIX3gOAZHsKmw9NLmlXbpkJqa41rR2k9QE68jjkSaXry/ww3JRcq7uJ82RVu7\nziY44YwGdMfpP9LvCzik9cA8CaUf0s1bT6fvzp+7Du88QeU9BBmIzCCtzbPKzFngrAEZoTpm2M1K\nYMMiGqdjVxKUw2VPIriVNpXSD2V89bdE+3uFM4CzGs4AAJxRtA3v9NCh6TdT3+8NFyCUINiN25pE\n9F+kTNg7j8wQzRVBVhEvoja7r27DLB/ByV5vIVhtPG5GHYODHVewj+dE1j1/E4pGkaFoN6Ux2kWb\n7JleMprvb10E5Qf0ro5fd2BTM8Gaa8t60dRGUDSnJ45IiMalqrQPWYXG9oQSwixuClbgjCKCyawK\njoLCYD67AkXob6c5M/bvCey5ig6u8ZMoz/L/Vb+K/3cVGaNSVIfSBqZ6EKRzEvbW3JI2MmyF1Nfi\narqvYgDE2aToe20JVDnJAH24+h3MXkdwsEirC9YyMqzHFFAfVdn78NpKyjMxREVIjC0wVSjDXkaG\nscWYhctC88dqyGBhAa2L5/cTzKq7yY9xD+kna6qYFN7msyUYChkr9O4jd6IdSjSD9FBw3cGS9tF8\nHJxrmiqkPcLcc/j7/KdtjH4WRqgmWbsCQ0w30AYbo7JJQP/JNK7mrTYOU0/59dIbxR+KvKi9tq/7\nL27DOBclSi3bPxrOF3UgVu9iml/XT1qF812UV740TvvpHzadBKGZ1p1qAPxbqD2KJPBcZku3yHO8\n0sVZvezCAWqc5rgbTjRjdPIpu7H1ncOHa9efTOtg+7/HDvv3wUYpcPTzSAeITjkwQHKN0f4JjPvg\n+DTsbgaBdIfgt9A14Qzt29t3VeLEqbR3vrdvNMaW0ridWbwVr3eRQpr9fiG/b8tZNpxxOjlYJ9rI\noHqsZQ76YzRuqaQJJjPpFumUETKDrvpKQvBYqR3afikKKsySfk5r5WNsL7g53K5njszPSstm22di\njB7uvQ9W5eBgsvrrv8MpW6nEl6yIiL9P/Xv/TfdjQU5lLI0Z3LdVgCHJmO8nsDI9O1VkbBoLrMCN\n06xVgDk0FHp7xffeBEBOcc3B/OKvTzpkW//w0z8DAH7cfA4aN9JZKXuyQJrWkr3FMADqq5WKKV/U\nypnvP+whB435ZgmpKlL+zW1B7LmBYMvZggyMNhpjRRExs5qVY9tKdLpCWuDOJq8pgVkuKjnUm3Xi\n6cYZAADDMjesvdSOad/chKmO/QPeI6NKeKuHdIftG2ug2JiOoggw+xIYSdJxE6RuMoZ82wB3IylV\nhu4wgjMpdSBUJ/KyfEdbInX0Ts59IsJzqJ1XHrMWT765AABgHK07tZXtrhHzUw8mGQfBzAHAvWb4\n0myaMVp3bQMuKiKjsyfrwjwrOQkufeIbmLGI0od29lK/SK96MeOrlD61rrMK/d10Dhi7jciws9e/\nRj97T/0aORCWHhiLyAc0NzT4LUDGasbNGMMtCtzV1OmhoA3mfdTulJ858mUBCtP1c5+hGICJV1Mw\n5mflr8HClm95xYER+ycP081LXvKSl7zkJS95yUte8pKXvDbOeusAACAASURBVHzm8p+NjP7jVwAA\n+65DM1V9HElPi8K08ehFDjIOFelS8kIeX0/e28eq38fONHlvLn7gW8P/8NgQ4mGWSN5nhGf30YO5\nKYspUhOOWOH5YHgvy5GKVncuPjoNs5MiS/Z3h/ZnyiugcBP1y4HjDChdSV6YzjlGVB1PHrOWgBcu\nO3mD/l5PbHAZVcSlT34DACCMiSLVT+33loaxYeYz/P6PsWT6/32ISgglC1RIYygSddW4tfy6R7bN\n5V6+tXtqwWe0LMDUxWC4DMqZHJ3CwvE0hpsfnYQMYwUr2KLDQfrGGWENkKdM8/JfeP4HePlJglwa\nYjohkCWowhAfnpxg/4XkMTJ2kccvU5BB+ZvkipZSKtouo2dOq27F9k6Kdib7Lfje8cRMp9WZkx0K\n9yoWPzaUMOZIJDiKvFgVL+xHYgJByVrOMMDOIBead31BcSNKGV3zZEsrdiQJGtaW9mFTkBLpXcYk\n7AbyuJ7kIe//D9aeh69MIQjrP14+kUdW0qUZgMF1yqsCPPBw16glOIcRmv2uT2e3M7Lw9zOtM3h0\nONHo5nBCeVQCqkL3O7a2GQAwxdWGV39MiAhnox5hzHitaD6L1d4rTOOm6R8AAFb11SGtsGLgZmrD\nqn21UIN07VlzNqA7Rd7GrrgTt1UvAwAs6Z+M5cuJfEOrhyrODiIeo/1MDZo4scDXbn4JzUmaz5uC\nFXAxYgcRKvb0k8e+r4G82VJZHO63KBpq65F5rduu+SoM/k8/MqrJrhvvP2R0tG5BMwBg3/s1R/XZ\nnyQy+llGPY9EDgbTDVeLnCBETAlQGLza2QQetdGke66KitHkoi+xh7F5OUUUvbv06yLnR+C105zp\nDFDU37zNypm8PXsU9I9n8LnRMTjZXt3X7oHkpP3JbElD3UC/1WrijiSJApHX1kyWZmE5cPRRT/MX\nb8aHb0w56vfVJFnJIoStw8PWciOjHQtpncbGpeDwUD9PKOzC/jBhACf4CAHUlXCiYQNB2Nxj++A0\n0zMurliPOVbC0v1k/zlI/ID24vaFNiSqqf+njKOzbUdHCUSJ+j/VZ+Xkbsm4CbdMJyhvRjFAYZut\nmRUP9Ekx/KuDmHy7X6xC4Xpqv2oS0TmbzhPD/D7ILJKqrPLCNI9QL+kVBOGULeB77ieR6ecR0mXD\nS8Oz0gLAO18jIkqNmR4AJjxE+5A0cnBtiMQrZFyzgPb4Z549gddSLD6lDe9OfIVfp6VYqb40jK20\nd4vjSM9It9lhDNP+e8xJuxFKUX/tf7+K14q2delrwnoNY1WvexVfeZkQUY5WEdaeoeum7Kt78cLo\ndwCA65Lnrr4Z2W42JlGR1xcfLFU3E3qoyBzFBDtFzv+4mc680T8KA0Zad7LbitZTqB+TBQrEQq1O\nuK6LKiz9QuwxwczqbVuO68UxhfQuY2zdfE79Y8kiGFgdZMuMPhQ5qBNm+QlRtS1UhoYeOs8SAV1X\nsRXEOfw4mTZy9leJEUimkwZYtzGU1EvdgEznfrrSi1ANjUnWLnCkQnhOAudNJBTW0kfmDNtHRyoF\nFxDC6lh/M6KsdMfOYAmaV1HE2nZA0Alzj7L1pEVGr7zzTXzD2wyAavDeXUTpTDOW3gZBpGuOraO/\nr9oyBtZ2Gm/v/E4U2yiKu62jFAJrp2Wlg0f1w6yubKYoA28BXSu+4uOsuOagisAM6v9vLngLK4IU\ncW+NeBBP0Z4YDLC1mRbh2ULPzq0YEpgu47kz7gMARBQL3g7Tev/VlOdHfPf/qDF67FvfBfDpFFQ+\nUtEgUJmJcWQjzJBxZoAOOr2dY0gxL3JE8es66tgrH7xz2HuVntqKGgflge0JFSLy/BeLfbBvigz7\nfppoubmimtg7Zb54+sYZ+WQ3RVQELqDNVZFFZKPUj75SMnQm+LvxrVJikr18/VeQ2ctw9/UBnFhO\nhuLa3mrUewhXvz9OB3tn1Ak3gzfWew7Ay/Cxz+6dBoUpSym/whnopISAZDFtdiKDSyoGFe7RZMjP\nKG5D490Eie043oCsVWcKK19OnzvnMia3qhjkAwTJcjcI3GAv3Dx86ZThJFRrgLtp6PWpW/t4/mVn\nkx8Cg7ZUPvfJYN0HE2sXM2r26DAbz+siWiLU1+eUUz2apGJEgZE2rBmWZmxJ0Yb8VXcHdxYstrfg\n+n0XAgAmuGjMJlg70JelDasr48I5bspr+XdkEmdce7jqwwFtWsIYj98IkoG3O1SMpm5ShhRFRIGX\n2pFIG5FdQ+1MjEvhlIlkAH+1kBSyYimNG8++ccg7N1zn5sXcrYVxzCyndy80RXlRbwvTWMxCFm5t\nfrXNQF+cDspL6jZiGsuP+Wv7QsxmB0acVaJe3jkGZgON8bsTX0FcIaXzodBYvNxBCnR32IF4kO4n\nhg1Q7DTeUpiNtypgzD9pnwlM8yAwheaGZ3QfVKZExDf6h7zff0IMWoHw/U4YQ4cPtEnXJmE0Uz8N\nx/D7WeWMfpry7ysoDeXkJ7494HvNGNVK+piDuqJacVMj1jdWAwCc3jhkma5JRCwAKyDv2EfzxNat\nIDCZFTKvi8LvJCOjY08hHM10TWRMdkCuFgB41xtgilIbeqcIcI2jM8prS6A7QmMRDdhg20dz2tKr\nwhg//PE42jmjn6Ukq9OwtBw8/yvXGM246GwL1Jsw6UKCpc3zNsIpDrWamlIEiXu5ZTKSLJXk7FHb\nMMNOcMiWdAE+YNDOrQ2VsPsHMvR7bAluMHY1FGL+bNr3bipejs4sQW8rjQG0Zmhv2BinefRm6wQE\nG2nPde8WULCZ7hsvsyBcw+bJ6CxcpbS/yqu8WH4bzd3Zr1AuXdWYLvS+W3bQfjka8r3rn8EVzsCA\n744UKvzCrb/BWCM5C0Y9czPn88i4VMxaRGN1b+UbuGovnV1V9n4sWc2cHGwKi540xP2k+ykmFYqR\n1oG5NM7zcDNhE6z7aTwTlbSniQkR5RNZSR5PN3ee1J7QjH+NeQEA0KdkEWOpKWevIB6IgjcHBmZU\nZk0Ig9T0k79FUMsrPGuwOUUO4p9to3St6rvigMheQFHQfhbpneH6DMorqW9L7GFEM/QsG3Mkd8Wd\nCISpv9IH7DCy3PUZFa08x/mDtjpkmCGpyCIczHllZeloobgV8VaWLmBQYS7S8t91vSeZMPF9Te2n\ntSYlRHgY+3PBxhCEOAVB+mYXImvRchYFJFjOqFqahMiMMseKwykC9MUQTZ8OzM3w8nW/6B2H+Q6i\nd346MAcbe2m8JaYztnf4APbZudWMZAHTw8eHUe5mDOyNpbDvozlqCbBnHJeBGKYzxdYhIuljfVuZ\nhMw4NH5+/Iv45XbKF3Zak+jpo3Q9EyvxJ2YJkgtQnqgmhgt6cE4F6ZAr++qQkumidxf9DiPJF/fU\nyEte8pKXvOQlL3nJS17ykpe8fGHlP1pntLOZPHj2T+HeyUIW6ej5ePZ22st+t9kG3UdlRKKUwQnW\nkIex7ziFQ01HqpHaG7VjXwdFj+ybrDAe7Zj+pyzuXQefHrm1K327MwP/xrxWsgxAos8h5nVb2VeH\nr4WJsczniOPKswn2+Ov3z8SzASJ/EY2KzljWTFEwR2UYRXbysL380TSAeSmLS4IoOJm8y9sbKlAw\ngbx/XX0uqAEG8XDQ+Ak2GdEYeTpDGQs6Z9PoFa/Lon0BzRUxCwRHkWco6yev4ZTSLuzcS/DRyPEJ\nHu0Nh4xwNR9edHRwVDTtYnPziQJo5ctcJSI8ew7rdp9IpE6KDqsAUERzdNV2H+rHtgEAHtlBRaJr\nCvpQYaco3argKBSYCZbzqJBFT5Y8oNvSTtxWTrXO3giRB/iRlnkcVvvHyc9gWZQi0D5DDKcVbdVa\ngQNZut//dJ0Eg0gRwhRztVU5+rGwkJEZhSvQk6CojaIKyMwg+O3CihZ8pZAgLAFWd7ZYSg/7zt5t\nArxsnu69yIG9DnrvsNXKYUgaaZSsChhlI1KiW2uWoSFJ3uUNwUo82UCQN1FUkWD1v7QI7j0zn8d8\nC3nEmzIqfttN5BXzXQ0wsfdbWLUXa0wE2Rs3vgc9SXqv1gBFN6SNTuz+JnkepU5A9VKb7aYMZxEe\nWtX4k0npccR+1ryn+GMRDWW3EiLhUHWiB4uaFSHZaNIfXgW+L54MjogOFo3hHACHyvZ9OAbeeopU\njvb18vFeF6+GrZwiV1EnratoxAj3Dlb7WHHwGny28ijiSfJgm30JjC8mKG/LMwS3CtbLUB0sKh0z\nILKTsW3GBQ7FLOpQIaiHPzKxUrZ3Dlp6mbGsHm3D0Ukv+LTlUFHRwRIrpZlfeuZ+DvVvT3mxwEl9\nLrN9JaMaMNNO5DATxrejJ0vj82zbDL7fzXHsxSQXQS5d9Ukc625iv6X77ksUotBEc2Bc3VJsS1Ca\nxKM9xyPC2JGziohdPYQ0S6fovqKkQHHTeKsGExIlNH8C9RLkibT/FjoTkBg6JAKgQKK9VMhQ+z/N\nqGhsfAp/nP8UACK+++Vb1Z/ofsWn0Bk21mjH0wzpk1vlAApwdRFFFr2SjUf9PvrzNDgZVJEBXWDc\npqdAxSoEWLrpPtmgAxlWu7WsphfhvQSv1up/ZuwC2owUCe9IFWPUAkLh/LjmZfykm87WF947ljOU\ns6MBoTqBR1/TRVkUrNEgkHrzu07I4nY/Me0bIeBv0Vq6vpGRTEopKGyPUIwShycLKZGTBPrNMZRZ\nKWqmsLILBlFBNSPq6/E7eI32tc01mFNLc3FaSRtao6xutywhLdPc1CKqRqOMY6bStWlFQjTNdLi4\nFdE+FsFUad8BwFFsYlaAoNB7Z7wWZCrpTIwXi5wd1hgBnM10fQQWZJ3UaeExNG9de748sTXXNhNA\nnJaYbmtGR0Znes6yPodE7+/wxmFiaKzkvCSyUepzZa8LjSU0kY3uFGI11HexsdRfZ07eircbx9M9\n++ywjic9TwAQZnWSf/7Upcg46fqk4uLzVEOQitnhK6FYjRlMtJJO8WpiEvrCh7by/qPG6KGKTn+i\ne39MI5T/jm02igGc2j7jUFE5keCH3z2L2NJuX3cZTCPQjGsbmSCocLtJbYwWWniOwRdFNMjASCIM\n0lW6p9MMLdqQgelDMlSS47IQmOKj9NIiEXwpdPaQEquGTHjeSAZoeU0vYgyTPru0Bas7agAAnmpa\nJKmMAdt30wEs2rMcOx+MWhFJ0L0Ly4M4sIsOAbEoydlH5U7aCAtWSeibTM/o8Lr5YdxWbIWlmD4b\nDDISDPYkxGjhT3J3YE+UlLmCJ02IVND3/VOyUFh+hmfP4UN2e6YZULCV5djOllC6kjGRRo6Oaq4x\nLxsSI4yhqM/d+GhSRg19BuzcRIpA0bge/veETOMaz5pQZSVFeWusAim2I0lQUWcm5etGP+XorLdX\nYm2E+qtbduJm73oAQEvWyI3Gh0N+9LHP42yd/Hltadp4U4oBLYwSPKuIsBvpRG7ZXYLqcXT9HcX/\n5gpfUqX27M64h31le5eM4GimXEh6P/clbTizjHKZNLhtKGuFxCZ4R8YLr4GM1ApbEAbGqG0SZV56\n5t7RlOu8IVmB12KkHCQVI+a7CHbemXVjTgEd0puDFaj1UD8eiLs49Fb71xQCFk8mBtTMJAmljEJw\nWc9Yfg0EdUDezyeVAysJ+pMLElNMKoe3H20xt5qg4OgVCf8iiqZ8ySYBzmb6zpBU0V1KiljaHeTO\nDqM5Cz/LqdYMVNETR8hF+5rQa4K8gfYsxahCYNNc2OFE43rai+NzyNL0+6KIMEi85Eoim6W9LNNm\nQ7KK9qT4BBVSJ42Pe+/w+4hWjoJKrjEI8GYJekLVF8cIPVLJstdr2FPGGbn95hiMAvVjtUTGY0vW\nizIDreOkKqGIfT91dAueCpBx8mF4LPZFyalVbI1gU4RSIjRD8/LiNZCZ4WAXU5jJ4L1pm4QtcXJu\nOaUkd3pppTu6wk5kTPRdokhF2snKWB0TxtQSygsUBRWdMTJmegr1vVHVDKOpMRi2014tDvQ7H7Fo\n8L5T63fgjvcvp/dqOPI9QSv9d1IRQRpfidnw80f+a8h1hoQAE9OgQ0oCu/tIXwjMUmAsIH1BSx2Q\nkgLSDHVqCoEz54tZAaYQvUC4sQTRUezsn0s6RCxswaQaciyMcXRjfYDG57oN10LdSOeT6FRhiDNn\nBVP4zUkBKWazGQMG3ke5xujx9Q3oYTDXPZlCvLCWnKPFW9kalWXIFvqhahB5XqO1Q0Kvj94r4LSj\n2kZnkGZNaMYpAJilLHdC93ts2NpNzlinJYUEK3lmNWbRH6I5UVXEHGiuHmSZU0YUVIC9S6vRg25m\nPIVCNu6AzDLqcFubAHsnTayuGRauQydKZKgsjUW2GmAO0ns7mwUEWVUU8RDlyr6IEh6XxX7mqP/G\nhqswu5Jycm8tXoa9LD2qM0ITU5ZFhBKaoS/AYqfJotZkkGKpZWpChCOgl2gBgDdXTONlxDxzuzgE\n12jS2dNTfpmn36SLspCNLO0tROeSo03gMOrQWGDBAgo07Iv48XaQ8kTNkox0/6F5bb48roS85CUv\neclLXvKSl7zkJS95ycsXRv6jBEbTbqZkVjED1H6FIgiKKmDzKkrid+zXE5adTTk/1IIDOUGkjF33\njkhJlZvZqqhDh4ScN9U8mqawClWLEglAhjkYZLNe9FtKqoiVMwYxllufSzqhGAXelrRTgJjVCCp0\n1q1EiQLrgYG2f3paFAtriUlv1QufHjvgpyXxCh3u5dhhRpLBKUxBARknq11nVCEziCw0r4pZhsQi\nU6KkwGgkz5fbmuTQTlFQMcpHMMkIq9XmNCbhMFJie1I2Is2SokVBQYwl4ys5XvliawRZdWCfT3B0\ncgIds5RFNEsuuO6EEybmubNIGcTZ97EM/dv1Xjm/R27E6BtXvIRtMfpbc8wPkbkht7eX8lp+GVZ/\n0dpmQLaevOeCqELaSl5K1QBkx7JE/x1Dk/EVox6lHwnpnSjLwtpxeEiDtFdB6QoGibEKfO3YehVe\ny7B3Cv3radCjtYpRGMDoKZtYRE8cyvT5cUWR9PWpraWMVYCRRWSSbpHXXzRFVAiyNr8EKAZG8sAi\nTaooIFKpz4NkGRvXDgnJIgbD7/5i++Gmn7kDVomRLbHJsT/uhYl9dhuTCLF1M9nVwaGAXmMMPonm\noCQosIm0nvwSeWEzqgFpBgssNwThZGGQjCqikK3ZgCzAwgbJqHlQVSDN1pokqJw4JKQkEFKo/6sM\nDoQUBtuETs4lMZKOuJKBUaB7zPvNN/nf025g581Un/C29mOxpY8gg6E3vliEcJpY+r5Y6RofV8Kj\nvnyRilwx9+mfN32X5uXTES9+03AKACD+UQHXOYyxwb8eiLqSTeD7mpTU9z7FSH/LFSlNe632OwPj\nSBJzADmqQPUMAYAhepHyAUaNVFw4dGQzWvnlnp/uQWkwkRNpkJxLP42Esc9eUl59/cVqs2g65yEA\nA4mgsjY9yvtFkqMVlf+8SpapfxmXij1XEiv8aTvPQvfzFFm39Cu8Bq7IIPRSEpwdPe1ReO1gKSFw\nPVUVVQiKpieB/yszokBBEXgqmzEiQtD6WQDX5bMumcPKjSxCnbWrvB2GuACVpeQJssBJCKWEwNMf\n99353yO++xdbI8tLXvKSl7zkJS95yUte8pKXvHwh5T+aM6p5+eIlAv5VRwQoN7XNhTFElnbRR1F0\nzyA3nzGhcIs+5WSeH1HPZVEFVocIVJpDu1ZKDYygamlWudFS/l1WhSGheR1UPYk9ocLerl9P1+o5\nM4oxxwOqUuQGoMhoegr9Ye/Cf+D2jlkAgA87WB3FFX4sb6EyFkqxAmvX5883kHGw5PHoUG+3IAsQ\n+gk7Hh2VhclLOUmJYgPUFLlnzAeMUCxsjFjyvCIAZhe5XgqcMcQYzX04aeaJ2BZjFi0hyh1U2O96\nYYfHRu5gpykFC4sMJWUjQilyDZkkGQVWivL4TDFeH1Ijv8kqZVC0emqqiBiLgEbTJhTaaKwMgoLG\nbsLlp/ooumkVwKOSuXl0f3jiPFQu0sujaDleKgBjXPMYsfwNEVA66H6KSeUECGJGgMKIloYjgjmY\nN1DzOI0UFc3aqdGGmN5mU7+IpEeLLAK2nBpoEiOlsrG52HtcGp5NJvbeKk9WTzsEnsRu7z50nqui\nVS0RBf6MASIIPNqp7QvGnDw12aznzaQdAiys1FC8WOQoh+REmn/uDwfmJ9x+ApUReujJxV/4iKgm\nGlkKAE5qEkyWobWdcs5GV3fxed6VdvFrbVIacYHlVxvCPHdKy7f1iHFkWKgmppqQYWQJMdUEEfSc\nDEQ42aYaYu1IqhJswtCcaYdgRp/KSkkoafSx+nGSIEObBs1ZyqGaaEzBLAydx3+8+q/8c4k5hDUZ\nymtO+VmZhcAXPxIXK6N3sHd8uaNSX1a5e9PZyHZQWGPCoiZ+DnQvIY6D3Jy/3EimlAbA/pa16nuf\nISdKmlvfU9AqduSgZXLBPxmHHmnVxBDVIye5vBVpJ2Bk0TFBBjJfjsDgx5IJ1+7EP2uWAwAmGq4E\nNtJeae35cqxDsy+BjDqUYebzHBVVZoUxr5KgkCtaayGucw17XbSG3mvfRX8BANzeMQvLn5z12TTy\nUxKOmLAoWJsixe/hMU9j4dyvAwCUDVZ4d9LGEC+hM0M26xFOW4fI94NEiYKsnUU7wzmbBDsuFYMe\nXVUl0gsBIGtTYdR0XAUwhTSSKQkyq3stsgippUfQ9bUooEp69FWziWQjoBgPrXf9R41RbSPEYr2u\n1O5gMWRmvDTcYIJ3PQsRWwSu0GqbtCmm8o6QMipEPf86l0OBG5uCAkhZdcAFqggYEqyQtEvkk0FQ\n9efIRmHAAAJU3DtRwhT9uMA3L+f+NCJVOr7m7umv8c9Ln6WFsuAiqrn4Pvww97EE9ukxKP1kMA1m\nJPxPynBGqCZiWuB9O++YBg4XXLppIsDIheoWNGMnIx0yBGkAZUVAIkMWRGdWhNVCi85izCLJkuON\nkgKJ3UNkA5HOSkhk6JD3muMwsO8DCRtXvDOKyCG7KcXA2eP6YqQo9EbtSOwgog9bp4Di1aRgJ2c5\nsY2xjNXWd0DZR2NhSbIXPMjZ1LqMIBTJ0SmMqiQiH824zBVBAUxBDT8+vKF4KMk6VF50Ghi0yQwj\nI91bm8ca1FaTcDWNkSnEIBYhA4KTaFxduw2w9lEfyWaRw2JHEu3eUlqHwo/0G1XUlSqFbWiSovLk\neDFDmy4A2HOKjLtaZD4Hj72QimC/kJ4O615ag4nKLC8e/dBBW/v5kUSlDq1anZRx/cNfH3JNPGtC\nms3/k4q3AwD2J3xIfEisjvuC5TCzw0U8QeVkFBlV4oRPrRkfCg00/8sMxKIYUXTCGVkV4BST7HcG\ndMjk2Kk0hDkBhZG1IaKYoDDD1gIF/bJGtiOghTGHxtUYYioN4rLoRPy7m5j8tLad71+PE605GEgm\np9p0b8wTu2ch2UttNLOBTxSrsHZ9PgzScRcTecrlxWuwJ0Wspt/27cWUXx+8VqJmhMpmIOn/chum\nKZ+uRE546MhqSH4eJDxDtxLlNht3ZLe9UIuLblgKAPjhN18BAEz91a06A2WOczFr1fc1c1CH5gqy\nDsPVRDHmONZzpoZs0Y2L4X4npWmNAIB/YSfen/wi/9vYf9xCH2r0mrbCgUOTjXxZRDNEASDV6oDE\nzuQIM8zFjAB7++drHcpmAVJaJz87GNHkrvmP497+us+qaUcsNWc04bWxbw75/qyEC80Y3hjVjFBN\nXt81CXu/RbD50U/dDFv759fxrKW0WXoGnlsauVDV+C7MNtOGMW/LpfC/S2vy5Ds+xGv/nA8AsHdo\nRqnIIbi58H1Tv8iNR2NU4PuMZsvkwv4h6E4sc1BAlm0BqkFPScsNwuQ6wKQUa7sPsDLey9DsJIrf\nZEy+UHE4INzP72jlJS95yUte8pKXvOQlL3nJS16+tPK5gOmG9nkBYqfG/2fvu+PjqK62nynbm1a9\nWdWy5CL3jo0xzWBDAqGGOEBCwhtK3lRSeFNIfZNfGnxJCCQvARwCxBhMNcZg44JtXOQiy7IsW5Ys\nyerSStvbzHx/nDszu1ax7JCQkD1/4GU1O3PnlnPPPec5z9k67WUsXPMFAED6kg7EShlN9P+40TuT\n3FXmQUY3btcJVWSB0+B6hqBeAzNu1mGBcRMHsNO9eq0Y5vSojZJ84k+sn+OZRvcomUZ03aeac8D7\nVKgch5id7uEtNkJI8Hx+Z9d1AIBPrXhC+277OiplMnFlEw4fJciZ7YBdoybnohysZ3QY3j9b4nMY\n80GDfcTIWmAivaChV4TkJO/MzqMV+PmytQCA4yXZ6GN1hVblHNHgtHU7J+o3UYkY4gJicbpHLC7A\nZqawcCBi1EoYWIz0e6tJgpnBeNt9aci2EeYoGDHCZSEvNccpMDAiohZfBkzsep+fBtxaY4GFjasY\nUtC5hJU9yFOweF4DAGAgYoWKOIyU0X3Njef2FptPmtB2muj4DYKCcA49yNTLqPRlJEdYE7pWsujJ\n3urvhJBeu09NShf9+t/N3cKINZ7GIyoCIH5W5YX8VUQh3vMCRXvVhHUA8M2IIG4m95rRBwjMAxez\ncjAEh3tnVe8tgJGhuYBGPpR0bUL0VF3fZxMkeSdQhzjbJA06L7I6eSUTetHdRKRSljYREWU4zjmc\nJ8Hc+eGtsZGk/j7y6n6+7SI87CkBAGzsnjritaG4ARlmwsE82b0UAK1Bezqrl3oYiLGSBKdqC+Bg\nUZywyYDGIKuJZ/TCbEiORPKQYWahm964EwUCwU1sQjShhI4AM1sgvRKrhwpF+7sMYEBmpQo4wMzY\nEF7xzsSGDnqfzoZsmBkUvNVKyImdFaV4Z/Gjw971r74MOHiabMb3HBAvoUiqsZDa8N2qDfjuH2+n\n9n+IqJLD39Tb3hn346mOiwBAiy6PJarXOmbncNNtWwEAG3657ANv4wclUQcHTlG97ue+XkU7CWEO\npgFad/9OUdFjd9PYJrbZWWMGiLMI9tM8hqbT5LP0eV8g/QAAIABJREFUGLHu/y4FAHznW7SnLPl0\nDd77y5xh95XMVD8RAMIZel9KRoAtLR2my+n7AJ+g94WQHlHlJf2z+m/piuSo08rjKwEA6aYgrJ2M\nqG7OELZOexkAMPGv94yjRz4aclvzcjxbSnXO7a08AgWktybObgNAaT9n/lr6obVPFc8MGfcsewcA\n8Pz/uxK2G6i0Wfe+XNhZltDAbJoUtmbdrE8kLfpXlD9/4REA0KKAAPDjvirs95Bd3PLm6H3/ze6Z\nAICf5xwCANgOWABadjj5yccw/Zf/Gu+uLKX96otVW/HbhksAAL+pfgkA8FLfXOxbO127VrXL+t/J\nB6gyCnZOfwlzX6A1WWXpQPdNtQCA+kfoAmuXjHCGfnBRERiSRdFQY1G3opme6jNkI7Qi35yiExUp\nHK9HOx3QEIpxq05WZGC2X7A8Snl3ABwNBviK6dqcN42IuFR4LxEvnUs+1MOoemDM2gfgZv17FXYw\nFDFDYJZm15eB/KepF4fKDdrvFdZpUafOaKtwSkIoWtHhgrHhylwyQjOkFV7PgzMNKoiy3NS+uTKu\nWUTQ2vYgQTwz9ogwBOh33hLAO5EdPPKCyHmKDi6BPANsDczKWDH8/ev2lsHWpxv7qhJRD6X/TImk\nqyxYAM9qbIkBDlEGGzB69HbOmETa7+hAmV602R3HHBMl1s7NasVbu+YDAH7VsxIKO/3ZKonSz7DP\nhUgmgxVIHNgQwmKNwmmmnddpBnr9yUksisJpNdRsNj88YdqtzcYYTAL1mUGQ4GX5o/6IESFWt9RU\np5+6VMayaBqnwZuEMPCjAoJUlxrsmLKZFBnfdH6QJQ2CFeMghGmyRV1qsqmi4fIVHpBFxhSbLcPc\nox+MVOgtlzhHE6C55m4GdzYrEMLDnQXjEc14iQFd8+l5uXtlOI3U/01sD8h9X0bXQnpeHEDMpbPY\nGhmc1tKnHxQTy2CqokJtgeRDpSxyiDInjupgShSFH17LFgDaV8jILSKm5a7abOTuoYve+QPV6/vu\nA3/Bg7hduz6sDF9Pov9fBxSiHkK/00OF095rLcO2E7RBiQEuyVGhCs8p2lpQIeqCNY5AMb2Xf7IE\newOb+/08Dp0i50K0RESehdahN27GoJTM3mzlI7CxFengQxhksN2oIiCbMe4aIGNASs5uLjwLG9jO\nvBxmLo4t/ikAgO19ExFZS9DVioNeyFa6RyCfdORAzI6uBcPh7QJkbPNW6e++lXRwZBkdlA8Hi5Bx\nBTkJT7dkwXl0pMzrf5wkHkInbad5Z9lt1/aSX2WWAflsQ8+OwrxlhFqKbGjN/QpeOU3zwDsdyKj9\nx7X7fETVmTXfJ4bHJ4Zy8XQrrbee9/PgOjk2lHH5pWQwbt8w6x/XyH+CHLv7Ucz82chGLmfQlZVa\nBUC91nxVj3ZYtTYZk1h2VePQ4IdutyRwXeh5ZLqznI/qRicn63uMpZeDWr43WEg3SDyIJra9OQ3g\n2RY7+Lpu/P4nyaGNkyF9gfhKwpmKxgDaPkg6JhYTEJtK37mP/vNTAaZ+hlIwvp+/ASveY3mDM2SA\n8WxQrXs29pnMmGkeGdaaKOEsGebeD28PrPuSqjN1XT1556cBAMJ+x7juMchSvb7fqztsJ62hQ1vj\n7X9ALYPsTv3tvdrh6sOQW8rp7HCZtRG/20HBqW/v+CwAoPbrj+KB1aQM3npmEcw9+gFOle1h/Yzy\nh+ZlmOLuBgB0ryBj03bUBHs7S2VzcNq5BQpgHtDTEeNnFWow+IEI4w6JW0bm1pHNMjgG3xdDHAy+\n5DXABUSN68bWKcPWqf8tdBnZC+F+C9Jqz33U/NexyFKSkpSkJCUpSUlKUpKSlKQkJf8x8qFGRlU4\na6KT/a++DARzKBLj7XPhuYuIyOOWzfegex5dWLSJTtz+CXq0y+yREXGyOncxJQluq7Li8qHhxC32\nDkn7bJAUDU4Ys/AYvJiiRI8tfAa/Ok2hTc8agmHG0vT6jKE8CR+7qAYA0OLPQN0llDBu7kt+33AW\nq3HIPFKGEj/Q59DaqELMbM2iBpUVaxyIORlUkUXHoi4FcReDcgZ5nSE0gfE15lRg8I7tyQvlMibW\nLh6SlT5b25Ohi1pEVL2VAmSZqf8VHlqYH50m+Jir1i0GNbiR0SdA4eiefga5VspiMHWwQZc5SAwG\nEPAbcDpEg2W1hREMUFQyHtfbpMJ0ASDHSn3U4Xdp0FyzEMOgQvPC67OCZ9DNOPMc287oidyO04pW\nkyunRoLhjoS+KUqGdtoyg5APuHAhkjmVsroDESOi9XQP89RBRFvos2KTgIS6i1q0mTVhNOjhhUZF\nAT3JPW5VkqKYxVaCbR5IuHXu++ogc2hfRY26cvoRvFFDtXEj3aKWuB4mMlfY2/Q1GMxLjkCrDNiB\nfA5GRjpm9HPw5ydHhG3dchLhUSid/p5f3ItyFy2u7lwX2i+nRV34DiO0ituT3tXFn4VFBiD69Fq4\nZ3v7/hly920bAEAjVwKA545QroKpwZKkmPMXUNSve6te69Zh0KGfg1F6vysnHcPGvTQmoiWOQDX1\nR8F6AyLttK4ar8pCh5U85yVpA5CYP9LAOj3POIQOVns0TQhq5GGDkg0DEvWrQwghjacBDci0mIbk\nCMIMdiJAQQ8jO3qmexFO9GfRM15yI+N58hJHLqlGIJd0gLOVnicbeLzhnTmsr7695SYcupbgXC/N\nnAXnIcYG7CAl81TNYiyoPAUAaLenYWRO6n+MJEZFq/50LxL5l9T1a+3iUHED1dE2C3Gc2DJ52H0S\nGVPFl6gOsrQsil//gJiEv/r9+z7glo9fPJOBxjspInosSuP+cMOl2DSH9ubVwm3wnywY9ffAv39E\ndDTZnjBuyyqpgOWutmmIqSznDPES3piNrBWkJKUcDtLbxNZu8iREIUToRIk2YtRNFFlIqEkaARLJ\nqy0JRCgFKynVYmPVG9p3I0VzxSBgWU5tir6VNc43/miJpVtBTZR0XzQnhvS9pDsGjCxkzClwFNMm\nFelw6+SZQ/94UqOah/6gfS574evaPq2YZfgP0UZr4ID4SoKB1s9/DgAwbd844KkKB/syIlv0b8se\n9meVSAcAyue3orGeUikUUQEfpj3D1M/DNJcU3lA7s2s6hKSoXqKodteSVYeH/W3aI/fifJNmDvSQ\nLf6LyesAAOuxTIsslr58N5qvI/109IuP/tMhu4EiBveubsd3MgmqP/2X3xh23dFoCE3+TP2LBDv7\nwW5CR8UUQYPhmtdk4chq9tlO+6bC62gio0/RqnlQ+pRKOKmz3qro0FAmp1UJESJAJF1PC1PnmsEv\naJ9lA+CbTMboNxcT2uKpn1wLjqXkDE7iEcliFSLcUWTZaa/IyOpDfazonH32oR5G4yadVrg2Spr3\nU45+fH8RWcrWgxbcbqRwNmfUi7nGGbzL3hZCoJDByOycFoYOiTxCWSo0EtqhLOoCDF76Pu1klN1L\ngBjW49ODE6lLfBPj+PYcKgkRVgzw/IUmvsp0aOlVNJiMYlRwbJDysD5TuBNPzaF7tG4u1hamXw7j\n5G2PAdBx/MJ+B7CAFB2/56yDzjEdqqCU0aCGInRfbsAAWwt9VssbAMAlN9Rgwx4y5qxtyUtbVQT2\n+WTEp1uCaOkjo+fiJY1aHutoEmbPMfdxWikJMaj3OS8B64bImH62dh74fOpT2azA2M8OoTaaqFxA\np4jOOqhAiKowABlGxtbqL3KBY4cTg5cOpRlHA4jbSAl7cww4OZ89OzuM7i6C1SDKw3KG+ia7UYan\niu4RLiDL0GvltZwlQIc9hdIFPNq/GADw05xa3Dh3PwDgxVrqlws9iAJAbz+NpeIxAoWkQIT9bmgq\npC8ZtjdSKZfEnKsPQox+Nj4GHhlH9DnUF6UDh5JL6zGQY05ir1Whn1cvO4yDJWSAdprdiDAHkv0k\n9b15UP9NooEuGXUmwECBALXqiGTitfIDRlagnY/r7RqcKCA6h8E+3s1Fy6VsPtqiMO1RodQS++/I\ngI/6+x7FlN8nFP52M2i379yHFxWeLGVHMa2UNPjJTRfOUph4CC3d8DkAgKV5BPgmAJthuDcirgiQ\nGfw4zUj6crK1E2+7Cc4qGiRIURqTiJOHu15N7LOjfwYt2sOZVhyM0ybBsxJNigAYcknfFGYMYnY6\n5U4ZOAl7+ksAAEV2D6psXdr3ABA2dWFvoBwAwX8bvWTgNLbmImM7vVd6vR/RZQRB9VQa4SulOcIx\nht30egVHluUPe1dng4jYNWpdLwFRttQ7PTR57MeMyKwmqNP1VYdxJJfu0flK8Yj9CQDeqbTI3Lk0\n2QIhE2LdLP81xCOeRn1rzQwieoKeY+3kEJhA7VB1OQBM+QPNKZN3lIcpdAgFgN8XvYkrMfwwmiiq\nMyY904fP7PkMACB2cRzZ25O360QYe9TJwej9YA3knkXUkFdW/j98vu0yAMCfJuwEAPi77bjyt2Rc\nKYuGYEswov5eCefEYe7+UE2Tcctrg3TIfuC+v+HHz90CALDN7sfQkIqJoznlmx+Cgx34lny6Bluc\nZIAavbqzPJwlo3oOlbS4M38nnu1eAAA4OUDXCjIP/xmai0p2EHYL7SXegxmI5tN8Ts/2Jh1CgZEP\nogCxaTpMdI/+Ea/4zxA1X/HnF7+Ab4VuBQAYPMxmEQCfwmyxshhED81L49Dw+wDQuEMAfR2LofNb\nFI4bdaxj+fPEn8LLOptpWr2AmEMvoWEynH9al2ySkWsjO67RSLo6yenNA3Ie2QC35u/DRhPtMb0h\nO8JxVvGAl3Fl7jEAQLCYJvGLLy9FhO2VhjIfImFmq9vDqGOH5UQZT07r2UEcVfqbyH79tnA9AMBf\nLsHeROPmOJmsP1TI7j/jUGq+rBe1s17Q/n+sZ7p4CU0D+mFUtaeNMeD5WrKnT13xZyxaRbZG4O0c\nxHeRHjHNJ8NqsDQOnlWhsHXqdlcij8dAtQJzKY13oJ8e4qwzIJqmlmhRYOlRy7aMPF975wC2dJoH\nT//oWgDA0CSdsTeWHkfmXur/YI4FXo5033/dvg6NrjOj9oEqF6TxA4EAvvnNb2JoaAixWAz33Xcf\nsrKy8NBDDwEAKisr8YMf/OBCbp2SlKQkJSlJSUpSkpKUpCQlKfkPkAs6jK5fvx6lpaX42te+hu7u\nbtxxxx3IysrCgw8+iOnTp+NrX/satm3bhmXLxmYDVCOdUIBPHaQI6JEFz+L+mcRu9uTelYgEyOOS\nmeXDAIsgdS5mnvQGEbZ2OqnHTVZIFjrlD02NYdbkFgDA4dZCxFjNR0czr3kC2i8lj41pQK8hGrMr\niLHI1SVVjagPkof9kXXXQWZO9kgGg8dGBQ3yC5MEf4zaVm3qwFQXebba47pn/md98/Dj7CPDO4FF\nRIVFHki73drXiUWJxTqCjHCMyCTmklG2kmBpDR05QD/9/e23ZkMpUN1byZFRFZK4IIcgPG/smwFT\nL73A9gN6VDQ+xwexZngC+fWXvQ8AePNvi/DiG8QSGUuTNW8dJwEvHCcv8Z8uehr3rL2bvQeHtBPk\nremz0/MsnbwGEfYX8sjfTlEboakT4RkUqfEV8zCz2q2qFzCSboLBR15Afz4PPps6KR4RIPYatOfZ\n25iHR9KJrPgg9YdslhF16fWZtIK9QQWtoXTtfU/4yFtYlE8+456TwyM24xXTcR0mevVF+wAAb55Y\neF73+KAiopqohCmDMgaqqG8y6iW8/yZFrtQY3VClDFu3/rO0Jpr/X3zrDhRPoujYZ2fvhI+FNTfm\nUtSnfaoVuZtoTGQDp0ViE71u5j4dUjJUzkNkpB6Odp0qMuKgAQpMiUAZoGfEJkcQ7mfrpskC01Ay\ny9FN9pN4OOH/1WioShSkiqV1/HBOFV1RPrcLeRZyi58cx++UmeSNtJiiCDPSifrFz+AzrcSAe2Pm\nvlEjoqqoBCRT3tY9rGYhBptIa93DYLq7B8sg9zBoe5iDTSUvEBQoBhrjzH0DiNkJXeDLUSCeoWfb\nWxnio1/GUBlFxztFO9aVkRfWccSkRa47xEJszadxnlhBuq4/MA8laeSpre/KRewM6SR3A4es7TRP\nepfmwqeSIyqA7KC1HHZTG4L5gDU6HFINAJkC3c/gisB4jCnenaSnQjkKREbmVG1tw+cz3gMAXJP7\ndVi6Rl43KslRsItBYieGNHh8PD0Oo5P2gcK0ITQ66dlBXkiKiAJUaN0wWkQ0QY78jUicHv5sz5jX\n9c5VkLWf2pFlC6BmDjGUT3v/UxisoqhYGqG+wMkEdQeAQEUUiyY3AQCO9ubC/GLaqM+IW8dX9F6F\nuQFmLSKqMrHam0RYu2jt9jc5MeVugiEfeL9izNrU45F/l6iowgEvbyI9ft3NNRohXXxbBhwM3eIv\nJt0ktOpEeFvXzYGTQSTDG7M1chVHC4+mLkIXfLWwBFXVhEoIHqT1avIAyhS6cWH6IH5VTtGXTwzd\no+326nwBRo+Iau0XgLY+VnP7/F79IyUq1Ppbu26EpYNVb1C3IBmQy2ljWl50Em8cJOikPyZqe7Ja\nYx4g9B0AyCadvVQMcbB2MmSNmYN/An2+9Yr3sH4t7QPZyyly9O7UV9AcI3uo9LWvAHZqSE6hB54a\nHUrtL6Hv3Ud49B+n+fFwScmwdwsUx2E7PXw9Wc8IaPDQXIsU0pzigwIsXSoEl4MUJF38y7obR+g1\nkr/yZBepCA0BgGEmwYZFXtaqI4R2ZALz9d9V/IWIhobT1ZFM+xgpuZqdlTD1j4x0sp+m7yOl9H6n\nrn88KQoZU6iPDJxuC+esakP3GxNGfZ9omp7elkToIwLhmaQ0vzxzM55tnQcA6GyiMbE3CfCX0/Nq\nZ72AB7rIFn7rmUWjPgsAlr71FVSWUxpOB9waAi4icLAeI53x6mIrutpon7ILOkrOe4qRqdZzGsLM\nW8LD2TKc9TGrBujhaL/kGElXJEOB+xirTOLg0D9DrX3K60RqYcC9ktonNWUj2Eb3sJr0PorlMWK2\nEyZt/gOAMJ9ql2/sn4bfFb02Zj8AF3gYdbvdOH6cint7vV6kpaXhzJkzmD6dFury5cuxe/fucx9G\n2QvH7RwiDfQWb1Sb8cj7l9PLTJDhdNME8NVkQslkeGSm6G3tIfRPY9h+BVr+oqFfRIef7peeFkC0\nRjdwsg5Sx52+hkHYwGtwilhWHO50UgQHugrheIZGOK8/jDP30kNNR9iASgpCBKMH5xcxxBbuuqE5\n2PdDVqdGJ4DE+rVLEbsp+YAYqIjCdoIMscSD6NmiQn15lttm8Ak41U5h+0Qz1uDjYGgYeXmbGWvv\nxm20SDizkmSQqIbmSAdRgA6hic8B6DCqIiJFPw/pOI1F24wMGIcYW64JiLMmSXZ2kJwoI62Opl44\nA2hdQcZv/o4iRNws/2/jACQHNWqonPq2dSUPWwt9DpRKMAgM5ifwMA7S81zNsqZEJCOnQU9kKxtk\nXoHCs9xEGTB5GGz7QC9+X6SyDlqQwxhHu4PUtlB5BJam0VTn+OXN9ed3CP1Hibr2FJ5DRj31TdzM\nIc4cHnOW0vo+sL0SI2HvCjYDoVIy6F9pnQ5/iPqGP0Dzp3h5B6QIMacioSj3UJmgMb/5Lw5CPEpz\nxjhIZVrOFtURYWoxIX9JOwBAknnMySBG55d75kMyqXTj9Jyrj9w+7D5jiWRVIATPYUCzV2jdXIxW\njA7/PFu4Q9Qfielf88w3I7CboDl7UD3m72Vjcl6aKmYhhhBLtvdFaZ1EJBHGAjKc+AMOrc2cDPiK\n6Br3QAA579PcloxO+KbSAokNkiZRRB7mAfphMI+DtZHGNW7V4dNGr4LcvXSNp4CUYCSbw1E7bZhx\ni4L89+jvjiM98E0nx463HIgyHS4OCTCzPFbV+SBZBK2cU6KEchRsDpHu/OL0rfi/91cl/V0RKE8d\nAMx8DGs8tMZiLgnGSuoPYZu+S0ZdADedXibCUgAQFGEpYmzBO5xQ8067YAejIsDhB3Rnxm9Z6YF3\n2yqgsFsI567ggqdqFmN4hpYuWfs53P5tYvW+L60N1XtuA0Alq+QRfCdmxmRtGjRg3wBtOO76sdug\nMuICwGdal6L+98NpVCNuTmMG5nkFDiudmPrOUD86o0CYlRFSRBmnH58EAMgAjfPfK9vu+gUAYNkT\nD/z9NxtF7rzhbQDAH9+5DMahsbkc1TSiiaJ+HafoButXjt2izW1Lj6ixlasOa1OJF3Ev9Z0YBIb2\n0iz4+Refwvd+e6d2z0AhY+XvEzAzjfRda7AEAOCbKMFVR5Ogt24CbsdXAQB8noLGO/QxPdchVGu/\nBPxwFhmJP9v1yXH95qMoXziwGgDw9vJHcPMumm8SY4CPpAHpNgp4nPJnwMgc+IoAhErIJrT0iho8\n13ZGd6Cr6zVQGQHHjCDZCEhOsoPW/20pzP10/S8nqrBOI6544esAAFHiNLumz5cJIWGLUtngI24O\n9tMsCHM2Xeo5JG6jyWs7RQ1dcH0t9qzXy4wIoeG/ue1Tm7G+lXgJQjsyR2S7l5ktm4j61dlzged9\nbgoCjSKSBXCIpG+ck/sReS9z1GsBIMIgqokHUf/0CKauuR8AsGv1LzVn5tuTX8P0N0ZfH8ZBDsIy\nPa/Ix3hLpEEj7Ieofx/ff632d44xVqet6MS2KX9l31qx8Vmyl0d7SzUQ5zhmwMZVBKuf/vq94CNM\npxqAMOOK8ckWLZ0k2JWuzSv1MD54SUirFjHSQRSgQ6qaHmXqUtPfFIRZnmgkHXCSLxOSEcj+GDnC\nTjbl4nJma7XV5SJ7n/YGdK0JWtBhYIoCgbVfsigIdpHt07gxDctXUBrj0TGoBS6ITXfVqlXo6OjA\nFVdcgdWrV+Mb3/gGnE6dTjojIwO9vb0XcuuUpCQlKUlJSlKSkpSkJCUpScl/gFxQZPSVV15Bfn4+\nnnjiCTQ0NOC+++6Dw5FAuKOMM2Fbi86QFxsA/tC+HFPLCbLgfXgCfC3kZeEv8eK2icTC9XwaRR7b\nDHYNZulsViCzCEwsK47uVvLSc9Y4DKyGZs78LpyeRfdz1pDrUjYAAebduH3+LqzZTx6NtANGKCxk\nKoTiyHmSPCSmAfKe98y1w0hoBGTP7MWibCIeeGrPRZgwijskLief/dWoqNoX6rukXdyFwQB5Ori9\nLgTKyQMnDDFymD4OgRLyrqlERgAgz/OC3ze8xlSgJK5dp9bROpvgaDxe/bOFi3IatE0MA45Wuvev\n/3Qj4qwZhgA0aJ7BRd4unlcQzKWII1/ph5El4HPbLLB10DUDM93wljJW2ekEi1T6rYjOI3ddeaZH\ng1uUv96NhvuoLyOZBEkAgLCb11jhTJ3kvZHMOgzD1K8gq4bu3X5tDnwyjfcfB8ux6QBFrCZXknfa\n5zJDHhVU8q8r3CzWdweTCZi8JTT+pkEFFuadFcMK7O00Cfc0UOQ9YwwsancLrTHRK0BhEDVOrVv1\nxxzNKxjI5mHrYR7EkxK65zHWthNW2NvZ+HiHe/QkA4eoqlZkoMdHc2Z+XitExpK8aH4DGo4SZDRq\np/uWugZQO0L8acrv70U4h7EudwsabHdT0IArrbTGSl//PADAcvqDZWS1LOxDaA95eNWo6HjkqU//\nFp994ovDvu8J6fq2N0Be3yGvFfZ9pDf4OCCEde9lII/6xuh3w/o2Fa90Fc2AZGIRUaZ7JDPgL1L1\ntwKrj/4QdenM01EXh2AO9Y8amUvUX9n7AdurbBG63bA1s5qjE1yIZmi3RkadmvLA2mkELs8meNaz\n0KFUQoTDM71ELrbr7WkwsPqiarTTNMDhaiftDXcdugORY/Q9b1E0Ao3EmEG4MAYhSvrQeZjev+LG\nRhzZWgGAYqIqG6KtlU+KiDbGKNL68EGqrs7xCni3XgdW3RPOFhV5Qs8bfX8M5nF47EnyvL+xsgU/\nmfYyAOBjtiD65tKzM1fTeFc/fK8G//NO4MDF9VrRqvQskmBkZCzRHJrjC755j/Z3bxkHZ0J7ei6i\nH1uzAoj10nOydwoYqKa1l8bg3Du+9WvYeXqp7WHggQP6Pf9ekUwKsgXbuS/8O+WpF68AkIwuGk2m\nG+ldJ//xXm0XiFuBuJOlfOzIAiZRLEi4og+zsliqToCgdG9Pfg2TTlAfiUEOJhZ8+ZgtiO+x+1mu\n7kaVk6Bte45MxIYnlwAA5t1G6T17X6lGoIDt35WD4LaQLTOeqKj6O9sZ3TgJZwDfeY1Il6wGoCYy\nCm37R1yiTBd8t/1azVZxNKspUQq+O5EiV1FFwJqLSQ8d3l0Bc5pqNNk1lmMVyeOrisF2knTPzTNr\nsM5AiDRF4uB0kQ0j1qTh6nsppWAO08Olb90FQVERcJwG4ZYzYnC+r89UR7P6ScGlX6AUqpZQBs6W\n/LI+dLsY022tRSOyFCJELgnoBEHjkY2dUxDcSfvXeMD4Z0dEAeDHfx47Ch/JlLD7JYq+XnzjAWzH\n2PvlnHyK4t1y74v49qOU7scbZJQtoIjenU03JtXaXXTrQQDA7ueHM3z7yyTcVky1XV96YSlMsxmT\ncsicxF6tyrwFlJ7wf8Ub0CFRf97TeimUxfS7gN8E+6HhtepVHe2fGUblDkKgmACtCgWg76ff23AT\nFi2gffHEiXT0X0XzbtnldQCAxY6T+Nn71KfBXB7WLnnYPcKZMnhmq/sraZ07a43wz6W5KIgy1Edn\nvGbByZMUyZxR1Yr17xG+OkeLikKrJJLWqH+XXq9A3dsibg62ZloUwXwF7rXsQPDxYV2hyQUdRg8c\nOIAlS0hRVlVVIRKJIB7XR6q7uxvZ2WOBkUjU4qyhXAWcpE/tzxXsAAD8zL4a3jLqWLsowRunQeXO\n0L/GIcDgZ3Cwtgj6pzIo2gERntnUHiXOQ5xCIe4SZz86WI6Emstha+WRNpF2hr9sX4IJ76gbcxxx\nM41kz1w7IsyWDzOjrmCLpEEd7/nMNq3EASQOPbOoWxNhsLIIrD9Ck39EMIWiTxzPztwkZjNrCym1\nRCNDZYxNlMSDaMypgI8xpqzMEAKM2crUM5xfMQeiAAAgAElEQVRJlpOBYAEzQs6Mn2BbiHJ6aRcA\ntk4ydrqXCBC9dB8xxGm5FZFOenNHAwdfCf1GOmFHgLFx2bOBCJsTA0ujyMikfLvSNMrbLC4dwDEv\nLZKGjhy4AmzDyHHC0UIvk3YyjlA6PTuUo2iQmGsuJQW0r7cIHc2k3ArfjUBh2JeclW34Te/FdE1f\nMe5avB0AUOejnAiDIOFDrJt8wXL2IVSVwDRSaOLeZEWp5h5Ym2jj805UYNmHEaXwHeq7wTIOIhtj\nfyEziGWg42L6TggTazUAuFok5Owbe/PrncmgI9kSDGzjXljSjB3HCApoKoyjyERz4oWdC1DQn3y/\nWc421CZi5JmYF/QDe/QNO5FZV5WRMxYvXFxLWIHqHhfM52AcDRXSXLW062v7de9MPHYXbehfeEJv\nb3/QBoEdyL1+arXYYkbhWsolj07MQyCfdFLMxmn5fZbOILgiwso4jvaDk8ihEGBsyIFCQGKOQd4n\nIFBAzzD184jbmNMixGl07xHGLs5HAftp9s4vHtRfiueAIwT5lq+Yj/x3VZ1KsHAA6JtO31k7FPRE\nh6cJyKKCnVsJSpo7vwtDG/LovZaSXnfbgxoj5q+qX8BzeQTT3ddRhAX51Kgt4Srt4En5osnOhlav\nW0tliF88BNlPfTdhTmfSddc+QxA6qye5/NJY4p0RBcdSChwHhhsmABDKYjpyVgDZbtJ73c8X4ydB\nqjf1EwDxm2nOC6wUlnoQBQBnU8Kk4oDey0hbTcj1IPIM6UxfWDVmE353KnkyTq0iw+71SW+iNU7m\nSdHH7FqO8/4XyUm37EdfgWcqvVPWvg+2XLkQ4TD5j//cUgznkjk1Nw/7LuJWoBhYsfk0HhyDkktv\nZ+Lw5TSe8jukb6b7RjbAJ+/8NKR8GgP/0Sx0uclgd9XrOuDJIrKHZgaqEaygCRcImHH9nbu1a84F\nzdWM3wmKVmrM2+eElZWH8GeZ8JXGW8a8x0dVzLVklzx7ybsoPUIOqSFW2m1C9gCuYhD1r3XORqmN\n1mBj1yQUscoEZwwOzQ7yVdLv7McNiDFVtr2rHHw7rfurL9+P198njg43oPGI9EnkaDK2GzW7LeqW\nIbAyKlZnGLEVtBfKe9M0eG94hRe/yCV9O+unNAeCFbI2L/MMMZhr9V1NSDBi1IBEeDrdNxGiO5oM\nbMk75yE0nM3Ybxl7qyrnOoSq4i72YNEC0ttLnI3YjrErPawpJlvtrtYluOQ2Mla2PjsPjTNYmpDP\ngBsFSv3rC9nRwfgmRtLE9lMCXj1Fuk4EgJ2Mm2KBHzjDKg3wwP98npiBb3WQ8+hQhMP9xz8NAOg+\nlKPtj8uW1yFSTmu57sXhLOqnLv9zErxYZUQPZesQ7duv24LnniE2c7skw76HxnNzHeWtHlg2QWOm\nTz+SPDoqjDp7HzBUzvY3F/171Z27sHYf3eOi6uPY01pCz87gITrIPqzfXYb0JvVu+l5hCOifu65k\nm2CMR+67zPGZKUEqpe/lOAccO7fL74J2keLiYhw+TJ7oM2fOwGazoby8HPv3UzmMTZs2YenSpRdy\n65SkJCUpSUlKUpKSlKQkJSlJyX+AXFBk9JZbbsGDDz6I1atXIx6P46GHHkJWVha+973vQZZlzJgx\nA4sXLz7nfVRog2xUtBqUz09cjxnrvgwASLNxcJ6kU7x9hxN1AQrdZ7lVyEkI0TQ6cXOKAnsHK17s\n4OHMIq9uIGiCJNGZu9GTjSmF5Omu58hbLE4KYvAkY1HloVV7tXTpuFWj14TWa+gegptcS+3XChq5\nx3c33YhTNzwOAHhvZgPq1kylZxdCq8HDxzksnkQuhkPHpozYH6N52bnhvC4ITaCL1eTzs0UpC0I4\nxKBO+x0YCfSUmHyuRkSv++QOPHuYvCUPLXgVPzpwDQBgcgExYp7aoNdWdDZRYV0AECIK+qpNrL0S\nytdR//tKbQCDbaveop45nE6gIwK2NurbgSnQmG7hE9HH6nv1tVE0ex/KYcpg3sGooHmRWleYoXpt\nwv0CrD0MwtylwFtC/bNhgN7J0sXBzLii/EW81o7+PU7ccN0BAIA9N4JvZxALiMAKFt8lLMFu6Gy7\n/+6iEnUNVIuQzLQQXc0S0htosvVPofkwVhSzbzpjaK2VEHLTGK6+ehsA4PnQJTCS0xD2NgXmwREm\n8SiiwqgjmQCaWU3MvdOQyQqNv9MzCwemE3FOwRadjEmF6U42j1zT6s/Va3Dbnq+Mux0fhAy9R95Z\n3i0noQhUiU4JQemmdfO/lxKJxQ/XfDKJ+Vcl70mUvk4XIOq1NwHAGOHQvZJwZhlH/LD0MTi0JEIM\n0bVxhxEcG2/RH9XZjVX2vBAHLsQIvhQAMkOvFMdgcBBcI3rGAgOD72YfoLUWcfJIayBPOO+wQwky\n9otMN7gsWje5u4IYmEJe3fztEkwDrMbhdBpj94noiARG5j4OP/3inwEAq6xhTPER4cjcAoJh/VfO\nVngk0tc/b7kVMYkxYvJ6h/NDou56HWEcBmsztah47IQTYjHBWp4qXwcw7Xn/mQUoWkiw/Zlu+nf9\nsZn49myCgD3WdDHyHBStPf1SmVYzbunkRgxEGLnbAZVOOFmMbG5ze2yIsTpwiZuzZATEtRRlizrZ\nmFQocJ0Y4V0qAKuD+laNigKAoyWR9ZNLeq56394nSgAAC5AMu93zc4KCrrmL6gr+6NWbYOmifo5b\nFW0NGgIjvt6/rYQn0Jz/zeRXAABfqblL+5u1iwO6aH+Ze0stap6lyFKgQAHHiE+wmPRsrM8GZzd1\nknd2BJbjtOalk3YNORQrjsF1aHgEofIJGgsuA0CErc1eA96xVwIArvONjUJzrupEvpHmw5lXSjB/\nOUWdNtTPwZQy+ty4tRKGj41fR3+UJGZPQAocp1UXYkiR9rZ8zAlTVNx/KAMxp1rfGjjWTmvr9ru3\n4untFHzh2PhEMhVYO2hcuzrdmLeE8Ix7e4pRMZnVqXZlabD/a3Yzdlkfp5FeyQYF136KYLz13jwM\nhEkvtFeZEQzRRblW3U4NM9CPYpLhzCVd3NrnRrSUdLSxT9DIJ8EBARa5WlpGdumB2uFEZhci5h7G\ngJ9mQcUzbO7K44PDA8ArM/6MU3GKQt77+PgREhFZxLvvk+298IZjmOWi/WG2pQWXWWhu39a8HO21\nNG7+UpYmEuBh6Rk73mvaY9c+T72+QYuIqrJ2cJ62dy1adhSNHlqTNWuTCQpVmHTFVVq4Ef4yaof9\nlACRpdbYOoH+6fT5vvRDeH4xRYcD291aLVELo+WRWrITkpKS988Iqx5iGtTriIZK6N+1e+bjUwsJ\nXbGvvxhSO82v2CVDiA/QZ9sgB1kYO+1SJTAamshD3Vxzt/EI5tCO6p02Pvj/BR1GbTYbHnnkkWHf\nP/vss+d1H3UjjDl4WMpo87+37UqNEdIbtaPgXZYvGZUTGEDpX1+JGYF8+h9/KcBZGFQ4IALtrDi0\nRYJiZJsAbwbHJszXZxKT3olQDl5qoxzUvO08zD3DwZgmTwRlL1BXSSaVTY0DJzFm3gIBFVvvBABY\n91rBsfNhNC8KMPixOSOIMwHG8HspHYgHtuSdV38lSuIhNFjEILatAoL5NBmUkAFgh3ajZ/xU+y8/\nt1SDEf/09E1gxLM4dbhs2LUZh/2QbNSOmE2EGGLOALcJzdfR4jUOchpcWYVUg6PyCQBQVtYN23zq\nxxJbPxq9tKwikoheliMYUJiZGOUR6aPPlg4Rg5PY1zkxCFY29sfNiLhZPuSQhFA2g0uxnMbA/BDk\nPtIIaTU9CJeSoZw1ewB9cTr8Tre0QeCSQQNPFL2HKTg3jOXfRSZnUGmBozKPUDqbS806gFxl2B1N\nZJFDej074Jg4+BnB7F/eIaizafoQohHG9ipYYD40/ralnWLsvlZRy3H2Toui8A0a14GCKHyMvVeu\nFiAyKvn4IXJabBpM3gByLqHNP10YB6byHyRGz8ggFGO9DqH64RqCMclGYC1jA3/w1U+CL6QFlKis\nRY8Iycw2pU7qF4MfiFtVpmsTOJbDYvDLsJyiVATFaoJkpXEJFNvhz6ffWnsZw/EEHmIWGTgmcwz+\nblqDtsygln/JxziNNdJXwIqMn5Eg9JMBJA3qFeGV4/qmG7tyFsyDzNm38QCEPDIKJmyiN/MWGWHi\nRy7g/mAdFTb/vWsI900hh4eNJ139XP8i7OosAQD8T9Wb2BsgXfXaS4ux30ueJzvGlsQSMKYBDt+6\nnhht3wkWopclwMvgILNN6I1TZPRkpXuxwkaJ1QMlNvz5GDlhjdDTNE4MZqGrmSzF4Rn9JIECtk/0\nJ3+vwncVETAsoT96m+idMg9w2iHx1YAV33nsTgAEi5cPqPD84YZE/3Qgo1b/Xs1njdl1xuSzJTHP\nFAD4KiA4kfS2ve2Dza/+V5J3LqciUXcdXz3sb5wEjdny3YZKGHKYQ6E4AKORGZhmmqPhXXbEmEfY\neUDnHjAEEuadx4hAoeoM5zQWfUsvK6Nw2QD4fbRfTbvqOGo302G0fpJpzNIsbacz4TzGUn1kYNMp\nSmEwDvH4esFGAMDdqBzREfSfICZmHy2p/QR8rDyHvZAWgt9rQUTNkZztw7QcOgHUteTD5SCH20vN\nMyBk0DgbjtFI8FH94OHeZ8ChLjJWCuZ1oKWPxlBoM+N/O68CAIjMsRh1KTCz8XY0CdgykX7nD5tQ\nmEb7XJo7AG4n3WP1xXu191BLo/FhHqEQHf1+OfcFvOGhIM7OF2dph2mDl9NsyAOnPphDqCrqmrA1\njvf4mSxX/f4bOtR3HNerzObPlGyFukqfKdmKY1FSwEZOxi8GqA8yTX7N8WpvHn9KGkBpXwBQaddr\n3Q3JNAd+lH0Ir9kpReanjVdj7yxyLL9cYcfaHgqEHHl5sgaTfrniLQDA7wcnwH5qeDv4mIK0Bmro\nJxpugcDWZihNQdxGtoTr5Llzfb1LqX1XVRzDhnras8yMHyPSZcXLp8imjYQNWLyYAjA7DlfBkkl9\n5zg9/j5KbE/3IgU5u+n/AwUGjXl9LPlgkz1SkpKUpCQlKUlJSlKSkpSkJCUpGYd8qNWlLYx4JJgj\nwN9HbkNnYQTfribY088O3YyuheRmsbcrEFkdQelW8vIPnEjHnHlEjrH/8EQYreSpjYQFiIN0oneX\nDmCIEXzIMoeefvJNPy+Qt2JJdhPMPdQNA5OBnjnk2Sp6OwbRTx4ETlYghMlNORLrLBezwnCUkfO0\nSeiZQ2d80RwHx6BiAY8FgR56x3nTKFowgDwEihmkdITCxOMVa6vuvRBYVGNe8WnUHh+eMK1CQEYJ\nQCSJGOAQqKA+NfiGe7m4g8dhyicYojEQRHAeRSQMXsDPiKeEkIAAK9AssNpYeTO7kGsjz+Pass1o\nZ0QZ32q/BnPTCVohcDLe46hg3WkWkRE6LBq0OOpSYJlIERjujAPmkwwSUAZwDFqYfkxB0UYGHfRT\nvwxNS9ehiTyP3hn0XpdlteLF5pkAgM9VBABQ+/ZGaA7MNxlQfy9BJ6c8+q9FrnEh0uwlz+qi/Ba8\nWUceM8nIacym5xKtDwEUf6kRoedprvnKqJ+/OmUznu+gNRZel39BbcysS4zO6nPcctSC6AyaCDlH\nJAgXsRAU+3dvT1HSfTo9tOZ/0HEVnv3cbwAAt/3fPw6um+h9Ph+JTiEvZmK09JlP/H5ENl2jh9M8\npFrB8aiiQTh9hQZk7iUokWw1IFRK0bS4TYAQYV54O6+lBgxUMfIVswylk54fK5QBI9PRXjPMjOxE\nnDyI8JA76dnGuijAMch+ZgZkFh1V4nFwIikdW20HIFCbJQAKIx1KhApb+VEgPe/S8wpua0VPLDm+\nWOfJg91Ev3t9YAZ2MyIG0yhRvpFEEZLTIX5WvwIA8MacP+JJD7EJ7u4oQbaddFVJBu1BmWY/vnDq\nJgDA6rz3cf/UrQCAX3quQu4EuqarLV2D/434bB4oXEbEQd6nCuFndOwxuwJOUcmKOMS3UXRVriDl\nPfOLR7SowJ6hUuSspHtMTzuD1zcuAAD0LI0je0fyszNqk58fymS14Wb50FNKY5+9c2yPeFoDgAYa\nvz0//wPK3iEWy6y3P1jG8dyLzqBr5xjF6c5TVNituW18UZtrnvzGmH9X14/zgAmTbiZbJCqJqNtH\ncGzJxyLUbt12iFsAkaHYnas64X1DR0jZ2ofrjDhTB4EuB1BK7c81e8FfTikkB7dUIpzJ4KN9nAYP\nVxFk4oCI5aspgrb16fl4ePZaAMAv0lfg7t98SXvOqc7xs6R+lMTgYwzwMg9rPlvfbtKdDWGDRu5o\n4gCeIQ2mlXTgkZJ1AIBd4WJ8/1WC8lq69X1R7X9/CTQodueuAnzuBoqKBatM+MtR0i2XTaS5s89Y\nBA+r5SsOCeDeJKRYYEocPSKte0+PA0a2xZ2JuFG6kXRVOktbUjp5BAWKKcrg8X5HCQDAcUk3unvo\n3ob68cQcRxZ1ft348R14aR3BkxNTzNTPshEYTZ2fS0x944+TPXJ4OQBgyoK/4JmSrdr3n6r9DADg\n1ZlP4AHGwlO54yJYz1xYDM7CYPbTLW24+AghdbZXrwdA0dkvugnybq58FT/tI9TCbGsLRJ7V0TYB\nhrk0r1YeXwkAWFvxEh4f5XkqSVDbvgJctJyYc7dmOpH9PiMbzNf3f5VoMKsG6LpYj1C+vpiQM5/4\n61chMpUeZegLMSuEcBPtpVnTetA0pLMWR5sJJdh9kQzncfqh2SOPmDI4kuTs1rWIo5nDUNW5f/ih\nHkaFKGMYbOURyaAXPtRfgI4QdVBkcgjmo6SJQ5mcdsgItBMcb8KUbsx0Uu5ObV8l4mms9EmnqMGd\nPrbyCIqMxHr2q4YrgGPUyWuX/Q4A8MxQNcJFbMUogJGVAOlcaISNfXa0xSEbGIyqVz+Nqrl2tnZe\ng2T4CwQtN2cgR8S8So2DGzV7iamt/rVK7btzHUJD00KwsIK2oRwGy+tOXkyJTLimw6Qp3o+WQWHl\nXyxnRE1BjOcQmihJ5WfOEiUWRfw0GUCC2w1LGx38bGlpCMyiPuXzo/jsRCrz8FQdsVyqC1iV3/YT\nM/PO+onY7ScIkSIqGozCzGAf4SxZU1JCCKjOJrjzYNogZi+hdmzunITuXlK4Z4p5CB4C6OXvpD50\nNAcQzmLOCasJsXk649tQC82rnZkTcV8a3U9l6QT+/kOoImJEevAPQ3xhmrC1/flISyd8TyAnHc62\n8WmbvumCRn8PADnXkRPBLdOY3eXqQrX5JQDA13D/uO7Jfgr+HE2QzNAgUl3zrZB76KCyqooU9s7O\ns/Ly2Jq3lUXOfQgdI6/wbIk5FG09CSFd+Y50CA3nSjCzHLuiy06jdXPxsGsSD6EPvnIbfTc4smmY\nWReHp0It18SaHgMcrXrDo9nk/ApniJBFlqpQwkNUc1A5IMpsZS1XG/oBMxo2ID9/QL0UnX10cShq\nhuhOPnDHHAYY2cFJyssEH2MKJxSGEiVdIHsGwRl0fRcuo8OVEKROHJoETDR3jfi+qjjFEH6QRdT7\nHztBELdnqp7Bj7qoTMdJbxZMO4cz8o4mvkk02X56+Vo8dnoZAOD06Sw0L6CUk+/3LtCet2egBCe7\nsgAAVfkE1TrYVYhsBxmwazoWoaWfnDyW9BCGdpGjznmOQ7EiACcb6UCSDSBYTH1ncEZh2U1jaBxS\nNDbde0uZPj2+EFsitJeYzDFsmfdHAMAljz2ANFZmC2McggHAP4GDvY2ujXodMDBDc/AaPy4rozy3\nN+umImsb42Zga3Pg6hDkHjJoI0oMzn2qcXt+UM9wLo29uUvEsbvJ2bfi2DVo3UHWdktTzrigemNJ\n5XIyRI+/W64dQh3zerE8nxJuX31lMR5Z/ScAwIsDc7F9w/CSD+cS/wQFd+TuBAB8ed1ngCLST1YH\nOcg8rW4ozLHjOqLvKYkH0USZc1stttTRXnjJNDqo7HpnGo5/lozL25qXY6KNIKPHqnOg7CAdqFzq\ngchKvihsmYsBDlufnq/d+9leclT0v1qY/NC+f7/SZR+kpFuCSLfQeJlZSsfC4hYcMFKZqbfnPo48\nUQf8RxTqr+9suQH23mSq9Iib05ySsewYzHU070yX9mkHIwD4/iUEjfz1ADnyhzIsaGJs2R6nDTEW\nDDAddcJjpmfbjxu1A+HLTdNhPTGcJds4QIP/9X03YmIuzZONVW9g2iN/vyO94fM6n8GzFeRwtiYc\nbkO5zE7tGvnQJ5mSWX1HEm4c+68quemkYAclG9QgAgAsL6D1/d8t12MJ6/PE3M9zybov/QI3PvKA\n9v8qU+8Ndi9etCfX8JLA4fbTlKK0png7rDxjkFd4fDyDcpQe/cImVL9FtpC3i/aoxa99ddTnq+tX\niHDYVkM8M5nFHvTGWXnKE3QBJwPIow7tWmbAc1eSjrj9+ftxwxq6v2mQg8lD86PfRvPlh1euxf/u\nodSg+LFs9C1l5yBOAfLpnHPb1P3YvPMiAMDAVA4iSysQ2KW2DjkpLzVReq+lexiPWsFHzu0ASMF0\nU5KSlKQkJSlJSUpSkpKUpCQl/3T5UCOjqlj64nCdoKb4ykzoZJEt9JsQczD4ST+nh4hZMm84LuJv\np4hlSggDAosgRtIVSCzIsNxej4eaqdJqpDZNq8228FXyGEyf1pLk/Q8cIFKNweo4Ijl04u9fpCD3\nbfJCxGzkkoqbOBgDMvtOh93wUUWHLMQ5HDhNHl6e14vORtMYsdAoUY+kvqnToyVnR0QBYNKqE2h8\no2LY9zsvfQRX/J4gRqtu3YXtXQR59W0lb70yfwjxYxSBvmHVTjy3n7ylaqHm8xXJ4wE/ge7tn8Br\n9cu+O/UNvNxLY/Sd2RuG/e6JoVzs7qFIlrXJmIQRcjeS17x/Cs0Ng4/X/h4simuECxsqN+CBLvJm\n9w44IRoZOVJhP463kOfZU0HeIIW3oXse9WN6nQOrq7YCACaZO/HWAHmP04yhYe1sivmHfTdekSzU\nzsTo2YctYUZw4Ou3gWPkCc5zBDV6ZwhYczsRl/26YwX2NNK4/TF/I7okmkstUYJ61ESi+MrxWwGM\n3+PlqaQ1ppIneYsEOFuHh0kzayW051IUm3PImD6hAwDQHqTvPP0OKCW0CMV+nQTp69nv4h3MG7sR\n5+GRjWfGYGkejhyIZNJNXrzuES0Sq0ZFASDP6oUKiEiMlGukDT08jENjzxVzbxgZMfLM+/PZ+ggo\nCGVQb9s7JchG+hzMFpB1kKLfZo8R3fNojSs8EGO1Q2ULPZuLcRrZFzdkgN9JzwgeT4Ni1uuMquvQ\n1qkzZccKGDGHP4J4FdN7e+o0mK4SiYBPI93OZ6ZraRBDExmLX3oc1cbkup6qBCZQ+04H01H62ucB\nAE9fQdGs+5tvQH0H6W3L+yPxhg8X72Tq+KvnEGbVykfQeoL01+9WPI1vdhNk/3pXDbaGqL9ObypB\nnKFQjp+kuZ+/sAOROL3f6Z50nLzkKQDAvAM3IzpOmDAfA7J3MZi0EeBt1Dapy6LVwz70rcfQw2oR\nXvQs1Tq9e9UmPFFPhEmhFgcWev8bAGCw6HBtlXF8NKle1YDmxyi66i2XMWsekTGtK39Hu+YKbxba\niyk6pNYlTX/TgvIvEEy06rX7kD14fhFRVcxd1HeXraoZsbao+vfzlXBuXPvt8XfLh/393vJtOBbS\n0wf+a/OdAIDi0l7UfI5Ii248cR2at5WM63mfvnIb7t9ExetdHRxsM2nwO09QJJ2iGOMnA3mi6D3M\n+BuRizy5kuqMVg9WY1OQ5uKhDZPxrc//GgDw14EFcDGbIxgyamRGqr0UdVFNdlVqnxuZsEaFksrj\nb+ZHQjzVtMYGThRAYGvv5PIntb8/YCLb4jHPAhQZCZ1wl6sLU5+j9In0Rg5nIwI4BRCraA48PWsN\nPt1DEbEfVm7ALwZoPiZGSPtiFLH7Yt47+IbvRq0NP+8n2+7xzktx9TRCaLw1NBNmZgvOKWjF0U1T\nk54dcyo6YqXLjB8uehkA8KI/Ax+0mJopIhpNIMtUxLF1QWJUVEP1XCCcF6C6ngBww3Qvvt9LffGX\nHUvAueimypARJ08Nt5FHk+hCQst1xB0a/N3o5TR784GuWajZQqiFSRNpn/vh7Fexo44hHou342IW\nKH6wexp+mqPmRZiRnk1zIvauDokdTdS9PG1Bt0aA19/i1v4eYR9jTllj5L90cR3urSNUla2dg9mj\npkJy6FtMc5uL0n2/W/NxxCvpO+dxEWIPDYZxkINsID3zV/9CcIuZzq/l0D9HvQfNLzHAwzOLvsvZ\nJmgRbcnEIes1hpxxKZCN57Z9OUVRPjQKtaUf+wUAIOrkMVRGHRSdEoQokhaNRUQYT9BhrPKyJtTW\nlQAAJrxJTe6rFjUmQCGis5fJRgXGShr0H1e/grYoDeTjx5dojJDmg6SyJ3/8OOq66MCiKBy4QxQ+\nl6wKKi5qAQAc31MCMcg6n51TXKckbbJkHg7AV0L3S8y74+7s0eCQ/kErlldR6P7H+cRgpx4W/x6R\nDSOXhJly7fEkOPBIEixk8N52AZF0arNpYPwHpoKf79I+ixMKEZxK/di10ICsRWRUWg1R3FlA11UY\nCdr27MBCbO2YCAAI7c1E3MpyNuyyBi8xeYCswxTm9xVSH/YsjwFsIdlPirj9Tsq9uMJWj7t+RuWA\nPFNlCEG6xjjEaXACpusRSZehWOm9DX2idkBMOyFjsIIp+Kvqk3IPAODGpstR/xYx2+Vd0o7OrWdB\nnP7NhJtF1knIb4ISYDTxO3iIEba2prGyLXUS+qpZcewJUay7jCA6c0xGzD9IuXIvVT+J0ww3lC8Q\nzGm9bzrWf++KEZ8dcVA/m3wjn/zOfJwmdMEroztGvEXUJu+MCDKzaPOYlklzrtXvxqmTekkLNe8R\nEgdLywfH/JkIvT0f4ecMIeglxWU+cWHQuOLXPVBE6sdQHh3A4hYOCq/CaBREXKzMgEvPI7N1KOi9\nWMXsKzB00gYUy2KnYomDsZc53lwyxFuy87kAACAASURBVGym8FpsEP3JEB0A2uE97ZQE22ly2PC+\nMLgIg+am2cH3ky6WPYPgiugAILksCOaRbh8sp+f5K2PYcAU5O279zddHffdIBs3RsqWUo3Pm5ZIx\n+2okKf0EGYLTXOTI2NlbhiwLtd9tDOL6dCrzdJU1gvvPkKNuxzNztEL2ZZdT+sXrk97Ef7Pc6L09\nxfhWBen2X5+6Ap2HaQ5azyTrVPUeKtW+rwyYtpgOgdWuDqzZvwgA4MgIoHY+FVf3y2HM/TM5NtRy\nLlPuq0O5lSB423or8FAplR+56y/3w3Vy7G29dz7LMdrLw1tG7bPM6Yf/KDkUDF4OQQYR5IKCZtjx\nnTRv04+Mfm9v+b+O0228Yp1DqTwDbWkah4RhpgexQ+5h15oGRr6HyiIazlQgMceNtYOllZwDlqhK\n6CKag3+e9xTue5gOMNM/SekHO+onYekUgk7vOFiFzCKCCtpNEXhe0/NqH/7SYwCA+//0Bfpi/hD4\n98gJFMlQtNy3oWkxuOoSIMOVtC/ywY82YO7sckieqcz2yQ9AZqlg90zbDgD4w8tX47qVVP5ie1c5\nousphzOUwyXlh54tg1MUlFUTi/tQ2Iw4Ky/or0uHbSrlDR6c97zGl3HFE2QLpi3shtVA+nl5diPe\n7SGbwyLGEIiRrm5pzYLzCH0Wg8PbEHFzWr7q+cBdEyWYL2tzN1FMS/pQM4dyjnukAC793QPDrklq\nywh2ZShPBh/hhn0/HhnJ1lX1qcEHqHQChvPgCzhbZt5E621N8XYsP0qBLG/YBIuB9shfTnoBdzxH\na9PUT+0PzgnBZiN7VdnuRtZKSh98rvI5ZAu0Pz82WIAtA3SIbXhpZNtcLdsSs3Pa3hpe5UU0ysq3\nGSVIh9W1TOs1o8yDQS9t8Jmvm9G9gh3CwwIy96hVQABvOTuXsDmuFIZQnM14DTYXaulR/soorCdp\nfjlbZMQtdH3fkhhsx+n7QBmrcuITsGwJ9dd7m6sRZ4EXdz2n5bwqPDRb5PDvRk+T+mhrnZSkJCUp\nSUlKUpKSlKQkJSlJyb+kfKgwXYU9XYgoWnRMkTlEAnT6zsr2Yvn1BwEAa2vmgnPQabxtBYtudkP3\nQHYCUZZIywU4rK4g9riWaCZ+9yYRXUgZMXAsOdxfTl6O3pBdY0Y81lgAPoPcEQY/h+ZNBMUyzxtE\nPE6eiWBYZL8Xobougjl2LVpg8AGWft1bFT5G0MGbrtqN15oIHnPZ6+QFm/3xehx6hRKTJQsQnUhR\nCMsRHZp7LjnbUxSdSVCuc0VFAUBkhesDlVEcuvK3AIB7Tq9E7avEjBp1K8NqlI7FkDZYxpiPTyto\nyyF4kuiK4tYq8gTef4aY1w71F2Cgjfolq01B3zzGvOvnYSYHNQx+BZE0tTYa8+iEBJiyKfKWWe7F\nl93kJT4Y5eG5iFzPSkSAyKKrtg4FA6xwsMRgiOasEK4pJ0/OQNSGpWl0j/9dd4MGQdvbWgSUJL/b\nuvJ3MAXkpRwtKhqaEIPgpflhHOIQYsyHKpQzVBKFpeXCam990KLOZ4s9gqCkulF5tF9JfZC9S/dq\nXXYNEaYscTZiWgLcQq2lBdiRziaFlacQ9H3u41iPkSOjakQ04uRh8uqu27iJ7p2xVY0Wyog4WRTV\nm+ziVZPlxR4jBk3kFfS56Hc8p8DSNly1Va04gYaW8cN1zimOOHABkdHYMSe44hFouc9DuJiksdeK\nQYYksRs0tJi3SECcIVaDxTFYWUR4aBLAGVgtYr+oedCt6bSuQn4TFAMjRpA4cCfpJuZ+Dt7ptMYc\ndSaNvc/VqNbx5RAoYjVJWwEhQLoskmWFpZv0q++qadrzTJ44YrZk3WLqMGBPuOSc7656oy8kIqrK\n0TOE4hiKUqSv0+PEl0o2AwC+svWT2NZB0Dzb7D4MdJAn2gkgwvaHpi20N8xYfy+8UxgkfEjEV09+\nCgDVCByt9qNao1VD9QQ5HGygd6mY14vqieRVD8UNKN9MjJBNlz2Jhs8RMUX5Fvru/pzNmGMiffLX\nFy/F5z0EE5VMCdGS4QhCeFYFYGbQfMnowDUfp8jP7p5SxPuob2u/9ij8Ms1ROz+cQuiPQ/n41YsU\nNRADHGwdqtd9lJf+F5fAAcYkm6mnBYwUFR1L1L3Y2slhvJy0oSxFqyMKAC47rZtvNt6ofXfoBbIb\nVn2yBm/uoHnpbOMxbTYhQbYemgwXdPnyIxQR1TTgVv2valQUQFJUFNChd/9JEs7kYO6h9w67jACz\nDx978WoAgDDFhxfrqc9d2/R1MFZUFKA1cfIUQ+cICipLaKxikwV8duJu7brlz1NkUbHT/bpOZ6C4\njGqAr6mfj/lFRAx4sLMAJhaZ40QZ3mqGWggJcNcOjyn9vSVjC6u6MdChk2upVRguLdDDyt8+s2LM\newQqoiOmsVg6P9gYmMGX8FmNiI6g98Yry5hNCAAxifbCIZ8Vs8vp3T/51j0Q2GupaRT2GgsiLpYm\nOCUKbCAb8Xb+ZtgNtG8e2V4BpYwRZI3y7LiZ5qLBryCcTv0kH3RBYEtzxcffx7si2TAr2Vi0hdyo\nPUDoz3A6h5yN1Liok9MqkIghPU0sWshQLt1m9O6ndjou70GM2YGiz4oZ1xByaHdjGQSGLLMetWhw\nbFM3TQj3vB70Rmjfj+bEcPs8mtvh5Qa8UEvpeTkbjeMKe36oh1GZ9bBvggATI6eKxSyIOdiOlg1s\naqWw9uOXPI0rWbFWldX00c88hrteuRsAkHUoqOUe+Qt4LLNRPstCs4DfsYG0njAh6mKdWUGztqUt\nC3fNfQ8AkF4dRG+IOnZyWhdeb6gGABgOp+HzNxL8ams/HUgadpci5qSNK+uiTnTvJcVj7tMpvSMx\nEbYpdBBbe3CuFvqeseoYAGCBqxkHeTqMCqHkQ2jdlwgOeb7sZ8ZDes6UCpH4042P475DxJolywy6\n12kFJ7HDO6/gjqbrAABH2vKhtWIEw2K0g6jc24eMeoKweCaZwFlZ3lO/SSs/8JVsMvYu3/9VuBpo\n6rmaQxisoqUpmRRIbDFae3WY4SBNASimOMJ91Lo7qt+CgSNFsS0wCQ/NfxUAsK57Lhoc1I6+LMv/\nZ++7A6sos75/M3N7S7+pkARIQggdlK6IoGBFsYN9bVjX8um+736767e7765rea3YVkVdXV0VERVF\nEZBeQ0sIBEhCei+315nvj/PMzL3JDQmo6/vu3vMP4d65z8w85TzPOed3fgfaTmpD66T73T97HYLM\nC/JN7UhsPkEsdiGzBHc2XWs09MWCFL5z14CLxdir+Ptbs98EACytpsPB6RqiYb0Ewd/3oCBM6kZ4\nT+JptRlgDh/JGETKNnru5rNDmDOO5ubB7TT3XVkCtr9KSmXNnGL8VqBJcUnBQZSYCIZ0k60VJj76\n3X7P8oRjSQMxscOY5UBnDYPFW8JKrpzFQofg8JpEmC5lBaZfS1N+3zSdgy6PdiDdHhssLK+6/Xpa\nuxdmHcRrNlKy084qx+ajBAk/sGMEuBLaDORSTABw6G6VHVCWUS8thXcEbSLGY9FQWn4SKynkOc3x\n1AH6ClZC4+xGbBi9UrnnYIVzuAEbrfVAAnOAOMLQddMCdWeaFT0kOAUlT90ysgslacRYu6VihLIu\nmF0LrSFERi0And0DHKY+5f1A8jZ635SDbhy9gfrEMYJuItXwSDhO68aXbgLs1L/mI23wjaKxcOQJ\n8LPNzFKrU+A/sk7mwxxagpHH6lMXd46E68/7HgCw4s3Z/V5nMtHYtruoD7kyKx4D0fXbIg7pvq2p\nsHnU31lq+u6qtkOR635g54TMwOxgPi2Jk5TyK+uyCvH0KILBPVB2NVK/Id1YINyEoywf9fgcymeb\nf/gyBFmCHx8AgkH6O7kc8C2iDdUf0CjswoZO6ufKs95RnqVnqhcJPNP4GXuBsRHvyozQ13qy8Oed\n5NAVmCOD4ySE2QE68QjgyqGxtNT/8KyfituXxcwf/SlFPrzr204/YVKGwmsi5svsG8kp/mzm7qhr\nx/+Z3i/SEAWg5KUNS2jHAdCZQp4vq7dOgI3Nv5RL6lHRSblyCYdi70yOAjqf6Lp4GNoHNjQVaOeA\nV/7riKFdIkgkANsePbwZTBcFWc71Rhss5xMUPmdJveI0St6jiWnshExMp2X5kVBKOtI9zQNngP5O\nMXvw7N45AICywsOYMJ0Mn/IWGmtvgwU5EUytLsYL8GjJGrx4nDZOXY0BkiDr0djvFZmy1l+JMW8m\nrWXeTvutfr9J0c8vF72Pq9c9pFwrz8EnM/Yqn239euxJtd3JKjH85CKpfTBYiLwsJXo617zQNQyO\nb2hctFZgx55xAACrpLLQRxZHkPOydT3qe5/YmAtRy2yODg7oODmngcanTio5tUzfCbhy6fOjLrtS\nxuzpTEoluaZ6Dv54zXsAgP96arHy+54CCWl71LZldme+m/Yr0RyGaxw7L3RakbqG9L1mOIcd4TwA\nQGKyG85KcspddfUGLN9GlS9MjPSio8eMKXZKl6lJTcL7XxOjsG1UB7T18rlJGlQeehymG5e4xCUu\ncYlLXOISl7jEJS5x+afLzxsZZbU7rfVhdI9gHt4goGfRLPfmNFx0FZHfyFFRADi0VI1kLJhFnpot\nxyYpsDRfqoRukdyU0/ZfhLCFPIQes6jAMMRa8hbfOmcDFliJ7SpJ48bIdCK0+FvbdIQZWU44PYS1\nbRSeSzdSRCaU6YfQSpZ//eF0aJhzPGDjYGqn+zk3p2LKZdT2TnEo/GPJC7FjJ0Fod6AIGsZmmTSx\nDdvHf9ynj6Zdvh/bVowbsC9luedGIrF48e1LleTw2UYR5dPei7qu6I27MGEOESqVrRqJYxXE8BYJ\nEOYkKGzGWufJ/aV8hl0hTzG3htHloA7RpPqUYsAAuXrGjTqBW+YSQ+AvP79BgQ4FbSp0TRQAXwqL\n3AbpGTKyu5BkIBjTB41nYFUr9efew3kA8xSOGVGPEIuepu7iYW4h31XDWTTVy9w5OOYkSJajzYIU\nluDNhQE+RG20jegLkx52Zi1q11GEV9RJ4PuBNEXOzR9LAjkBGI/3JbpJMnmxcSnVQ8xfeTuMjfQu\nQZsEUyF5V4O7Y0PNhC7GcGoIobuIjXGnBoe6yNv+xe+fAgDUhHS442kqjG7eboK1nub2dpyJK59+\nkbWmxT4/uR+LGYNrUIp2hQVZFMyfwEPjYlBgmwuhLTQnugq18CezaPk4evYzfrEDmxgLdNt5EjQO\nalPiJWhlkjMNILD50bKZyHHSrtuqwPe31+RD00h9p3FyQLcaEX1oyYo+/SKzMn9w2zO45vXYNcCm\nZdcAALasOvm6jBVxBSgCuuDy7QCAra35pxQRlUXscSgkQWZWC9eXZYLgoHHgQ2alThmyfLCvpIXl\nKuIUcq57tF58GaR30LGomtnoh5sFoU2GAJzMyStqAY+C2jJBYOQEtkJCfniG6pB6GY1b+4ohyjo2\nl4XAhxksO1lS6pS5ciVwYeYFlpl56yV83TzqlPviV0v/ju0umieREaiNF49A++d9IfWiFuDX07qQ\nvbE6AKG9an3S5IvIO76+5DOMe0IdH9lbrT19cm0EEhhp2mF6/3Mf3IJDM6hzL7AfhI8x4dw+YjOe\nXkBQ96Ozl2PKo3dFtbPjiZeVdbdk7S+hL5W97pISYbtweDk+FwnmGdpPD/9aTxbe+K9LlTbOKL0K\nACBKUMhJIuX2hEbMm/08AODJ1rkAqPZo0jAa+5mzjmJF6SQAgKX+9I4Uco1RRUoY9q588DVjAWDq\nfGJW2rC3GIaWf+7xJjIiKstwQ1vMa3vG0HkmsuYoADwwnNBDf37p2j6/MTbzKrvyqFUKu/J5Xz+C\n5x+g/jvLoEZd5TqE/YnXLsHYqu5jhmya1HLB+38HkQSVkI0PSApJm4GlWu353cvRPxjB/r0IGPUy\ni25HQHad+TQ+1jK9on8NpSZseXA5AGD+4QthMNINa5wpqG4jwrBLC2neThpdg1+tJ2JAwSnAyVCx\nv52YCyNbW+ZW9X6OYZRCAVAtYgDwFPthqqA9T2ZIjiX2IpqbNh3pkNA8Hi3fkr68+mU1KhpIUvsl\nUoS+RQcAqKg+4NSRfb3FmyH2W690ICm/V32OsU8N/jk6RNKjz62+QEm18GWEoD2q6hMZIWgagPWe\nYMODxxrI9cAlQd1j/MmAgSEompw2hMXo9u7M2IDZLA1t0e9expj/pnellDf63JvKQ2JVJrLyKRdu\nbEojjvQQinB8Uj1W64mJuCSjCflmYo1+MmMv5AIEk/ZcBTBkTM5cCslflHEQz++niH3IL4A9Ptyl\nqdCOoVBxtz8BiUcHzt/4mWG69K+1xgtIZAA0zBdhKycFHUgEnkjfd9I2FiTtBwB8lzpJyTdEtheJ\nPO0M52Udxjt1RH8PTsIVk+mwEgk3oKMIMElfp3xy7tBNmPcIaZ6m6XpUN+UBAKpZZxvCqqGWOqID\nC3KoePGq185W2gjaJGzYSgcBYwuPWKCFyIUbS14fsgWjcfJDb5DBpbQuDs98dgkAIJwu4vg1ryjX\nyJTXcgF3TgJ2VBBENRI44MkOKwyamnILfCMIwhHw0WBpOzQxy06IbR0w+Eipec7JB5dEf4tS32sr\nvx2OiqurAADnz9qHsk46iLVtyVRKXTiH8gix95Jh2xZdAOMTKZ+q1puMbCMdfkNFAqo7SakHwgKO\nXkYbyJkH74bpIB0q8zsJU7+xfZKy0eS2hqDroXniS9ND18PyiB19GVePVGcqhnp/huhgxJdORpSh\nRcCTNxGM95Hlt8S8VjZst/hEOGfR3R9cfqvyffumTCzPJWVSvfA1Bb6udXD9GqGy6NtJwZuKPGh3\nsVIfLgHNDfQ7+ziaFXYBsDTSM9dfHII14rB5/XtUSuLILS/jcIDgLDkaGp+PtkyByu8ItLM68omH\nJYQsNJ6hl1XG27L71HUw6547AAD/9cI/EEwnZ9QFmmtR10BjyHdr4PPTM2sn9EAop0O2DPW/ydaK\n5/LoP26PnozQGHJrQnOfzz7eSZr3yUv2wjuM5fxWRa/c9ZsJwtwfCCnSCI00NCM//2rF1H5+TUze\ngmfgOSZ2kTHApxJUW/AalHzPoBkIj6TD6gUFh7CbJ2PBWWvD4/lk8L2YvQNbGin3cU4OwcW+rilG\nWgLtgk6fHiE7HZqdWSIkL7XtltQ5MH8IwbpLTA14+ggZKlqXBLB1HxySAkcuWaYho4QAY+3VtWj6\nMClyooSaOlYKY8C3V+Uaaxeuse7u8/l3o1Zh3Od9DyF8EAplfyR8UTYmAolkhMqy/1F13Lb4aO4u\nfe6eQT+foygE2xG1z5wMciWXQPhww3QMG0t66vaERlxXTZu7CA7JX9G6Hxa8BWmIlimP3qXkckmZ\nBP+WJdVCY7/52Sk4+x5yiJYl0Hr787cXK21NefQu+DJZakSThJGl1F/hAg+GpdOGmmXuwaGXaB/z\nJ7FrzUDpvW8AAPJX3Y4zRlOO0W5PAfRdp68fZamY8S4AoLj81A6zbw0lJyfkfwGFsfSKspsUh+/p\nwoC147uAdQPnks67iXKnVEdsL2E5u8OuOIqqjykHTBKAt+pn9H9vN1B+r7qnyyydrqkePF5F+36e\npR+q3xgi8UCALTSdAwiFaE84tlg1wEa8d1esn/6vlqCFIx0FckIrTjGoRuhgJFBMCsPYojqv5XI6\nzoIQDMw5rHMCE3dfDQCwGfzRgQGi58CwT2nPe/Kyvdhz5i4AwLpX1D0iuVRALFxwKD0Asef0GNnP\nyqA1++UHdD5+9Y4XcQf66jXBw0Vxk2z39S23JotnSBgXVVK+bc1X+VHfedNpzscqURglHODOY8y1\ncz7Aw2upRJz5xODNFW/66acLPLiHnHOU+01iPRp9b00vQ/zAw8uUsksPL7vttO8t86PwITX/PmRW\nS6lJK1Mw7+5tUb+RDVFZDv6S9qtpD92pfBa0ApYM0oPXDqX59WL5bISP09mpOiMNVee90ed5KgIe\nFOvIJN8z6R9Km/V5VNLmv3OyFch44gENnPn096z5+7FpDeV82E4MbiziMN24xCUucYlLXOISl7jE\nJS5xics/XX7WyKiW1UjyJ+nhHMLqGm7l0VNAn+d94UHtLWTND9VY+vy+PezGG40EYyo69zhqPiGo\nlsnkx1QDtffA4WIk7iOPRdgIPHnR3j7tyDL/8IX4euSXyv9PXEgefS4sKYniMtuVN11SIoTdTiPe\n3UBMsfZuERoXeY4Ej0ZhCfZmigOyiAUlVv+Siw2vmbGInn3zpxNgnUWMa67v7dBGQCjSJhDhy5ax\n0RDE25J2sL+oHzVuDpoYCeamBgFBQmpCM6kLN+ZT5PnLeoqseqrSlIhwlOQPQdhI/Wyt8aKjlrwp\nGg+HR4upgLwc5fZmh/DqunPpZ58FceFzVNPrteR0hSDEa5eU2q6ilj6rakxFj4/GZNv4D1Gy5UYA\nwOGZ7yrRhL1rinF4GEVlewokpBsZXOU4RR6GtJgRzKEIW9CqhbaBeZK5FAQtGqUPekssVrjTEY1b\nnQP9RUR7ywwDD4DeqTdw9C9/I9bFv/T63JvHonoRpEmREXR/KmNU9elgSiEPb7DTBjj7VwmcQwvZ\nO1u/QMSvZ1L0aI8/gGusFKVjCHUklvNQ2KbTeBROoghBW3kustf3bfsDZxKq/Paoz17uLoCHsRC0\n7sgAx5hMTc08wkMZ9POoDUG2xkZcycggAl54DlL0QuPnFMhub8jSSjethYVmlxLB/PAXVOcyf/Vd\neOosgiz+36ol6o94IJzM3MSdfT3S/UFzn735deXvoFVSYO8hswpdlSUyKhq0Sghn0tgbKlUOPt5i\nRtjL3LPtFAXWmvUIpNA1PruIfFZD7GH7egx9hryhk353F962UR3LfxyZjTCrC9aUSowMgiDCbiKI\nZI61GztYPWBJB3BGGlwurFW8to/bSSd96UmA4T3q86bZYSSW0Tyqm2tWvMimZg7eNHq3sEH1/MrR\nPS4MJO8gHRLqj25wEJL/1S8AALYDsdesY2TopF72oK1/SBGtxVMTS3X0vfTDiDzPZiLUSb6tE0c6\nKVZZ8O5dMDUyqGCnqmfT1uqx44loyOD8wxei6y3yUHsK/BA6ZEQHh+P11J4hl8PaAxQJt2+k5+gd\nYTU1qfeR65O2ZmpRzZGePN6YA2kiS2/R0xyw1GgU2HCSGbhj3gYAQF1hIrp3pA/YJ4OVUyUzkqMT\nkWk9OezsECsN5lQluC8Jg4lDHXUyXRZR7njmgcsBAJvHroDQTnNzxfnf4re3UmrQ+1+dhRwzreUW\nDFV+Jxe3X7xoXcx7Wbab8N1jywEAZx28DC6mGy21vPJ7fVff3+m7uChyF90+6qfHi0fht2mHBvGW\n0fK/JaIq6tQUMX+iSl4l+KBETAeSAwEfwm6aa+fftQVrXqaItpBFe6no1sHUrLYlM3KXXvJaVDuX\nH6Pz6yVTVaaZhYn09zr0j56RheMlBMcSCsKwns5cMkR3IJEjorLc8WpstIc/PaxEvwBgUozmRaZq\n373g5Zjt9IbuPnEbocLu+Z72VqFbA0Mr060SFEbhb7pLTikiKouxhYupCwYSX6qE/FTaN5ug2hyu\n/DAumkaEQau/nwRTQ/Q+cE31HExK6AcFcQoSyUbuyWDoIrOK+vInctj4FzYvnlZRo8eDZCdt8g7D\n0xWEUJr/yA5sfpJqZJsbJbQ7aVNd1URIS/PXFvQQHyvs9h4UvUlr9sgt6jr+xDERv04lMthxO6+F\nmwBW0BOKF4ZGASYGU3fnqMiADccLYOqSIceSst5OJj+rMRqwspzMVF4p3hsycwp8qX2sCZf+mcqg\n7P21OpmHfUNQRUEXxmMTiOXWwAfxai3l9DXUJKB6Ag2OhhcRkKi9wBQ10WennybomXoVkhlpiA77\n+A5ockmxBNxauCS6zkT7BgztHJwjqQ3DIQtCDH4ZMvEQguqMisS7y9ADYwN1Ox9UmYEPLV2GexqI\nqWrLJxMUJrDQSI+y+W35hLCOHACzjoyNyNSlnfc+iyc7xiOWyBtyyQtLlTb6E20pXSsC+Gjb7L7f\nx4I9ChyERpqh4tA05RqfXcTqGjoMycZo9aWv4cy9lBfRMDtVyS+8eNZubKogmGTCMcDNctQUpG+H\nHqZ02lVf6cmFfivltozE9Uj6lCBLFU8vQxeD3Yg6Cd7hdKDy2OlUYOwIIWRieY1GHqYyBhk1a9DD\nStNYa9Xxu6N+mvK3XDIhFrOtLPJ49ieRuRe9S7+cTB5q6p+dNpbEYu6NdFqEE2ku+ussEGWYR0pI\nYQbN/5KgJh/OXYaGS2meZ3+mrpWcr3gs/+pS5f+bXnwVAHD2TmK3NobUcXNncahqo3FI6xEx5lfk\n4NjzwgQlT/et+hnwvETA3pT7awAAz22dh5yvGBvyMA4co1kPGYDEFTRHJV5S8ixGWskRE5R4SCNo\ng/aHBIW5trf8x3IqhfFwoqRAbm/6K+XHvnzzG5jPGFd/ZZVUqK8I/GrqVwCAZ48tVNqKNELlA8aK\nEd+Cm0h5E5EbYuT66W2I9hZOijZCZQnnpIFPpPkvWuh7Z74ZGg8rTeXgYdbQ/HqmbbaSS/mn//NX\n3FdKsKfEYxp0jKY+HWcjeLWGD6OsjRZeWORV7AxHRbQB2jDNdfTchZ/TBqbrECCyKcr7ePgZybOo\nk+BNUJ0BsoMpkBKGJ4saT9vDysTsa4NjLJlKzpzBs5q+50zBYivpnuUOO6oX/JW+WKBeM+7JpQo7\nuMnuBlfVl7U3Eo7rEanvRn9yH6xVvPL9cgcZGUpZlpNU6PGlqc6fqM9P0LiFPISRTJ/lQtcJsji4\nbB8MZbEtcdn4k43S4zuHIpl9Z18Xvd5vHE85yR8fnK0YoZHSsYA8BMdmL0c1O8hc8+tHFKivfZMG\nwSvJaPbnhcBvo/7SMwes4JMUBt3c82qw2UU8CL5A3xSHwUhvg7PoHIIQrixYA57lHokHB2ZaltfZ\n1x69sn4jRc6x/bEkEuYaKXI5gBA6ZgAAIABJREFUh6JNpGMWjDiE10f+jX1rUgy3km2LFdjmyqaz\ncUEyQar3RNAa58+uAQDlUAgAz3QOw0d1dB644favlc9FiYOoizaoIg1Rb7parq03y6gMU3/3m7Px\nLs7Gqcr/ZAM0UrTOSGiuapBr3Wq/yfmexVuux/dTCRptF8zIX0Nnz+RtOpT/hhyXVxxV94GQn9aa\n7FSTpTrCCL2qihzxb+Z9iVYP6YIVI75Vvv/FHnKyR5aGcucA5np2D6NaskNbr1fShsSIW4bZltdf\nXudAUnb/MuWczbfpYCtS4d/1ob6NHrqLdOeIDbcoZUs8Q8OwZqsLQzZ2pPFuPH7kYgCAuZIUjhih\notwj/fC10wZSV56B2Lt3Xwlao8u8yHDZD+97CmseIHf9+c/+Hxx4ONphHJlPamjnUFlDZ0UrAOt5\nlMpzYOwKJbe+tyEKAEc7U/FBPjmL3gUUVuJTTVlw5Klty4EsrZuDo4jOa4YmtaPKAzQOJTojhmvp\nPDRc24qbphCPyKhlS5HANr22qWFoWc7o0XI6Z1ktHELMsb59/McAMx2WNkxFo4d07cqCNbi5lgJt\nji4TDA56Pk8+/U7broEvVd4TAInR8tvWGCEEWDDCziv75ckkDtONS1ziEpe4xCUucYlLXOISl7j8\n0+VnjYy6s5iX3CZBYN6dQKIIXTZFNRycBToWnh7x9zsxanINAMRMtP3SY0DATLb1Gxe/hhbmGmrb\nla4Q9Bye+a5y/T2HrgMAaN5NQc49RFl2tX0XfltGHhskBDEjn0h26t2JOAaCHlmryf3kGCFBayOX\nWjBBgKWKXGmCT0JPHoPKZYZhzSHPUHhbkpJALNWotSHlxPDRzy2FJ4eiqyYA0y8gD+kbQzejpIw8\nN8PPp+epWj0MRk1f6MELXSWYbKZrSl5YiqIF9F6RXrf3bv9vAMCSV37Z5/eDFbl+qSYzA1KInrll\nSiKsDeSdCet5+OwMUpnnQJgV042MGO2c8BE1NiG67fH6MwEAfFBSIAty9MFWwaFWS+OwxTwCC2+m\neoLXJOxC8UzVj/i2gyKx1moBtedzrD36ztSsha6bsc5lcHDeRNF0SVDrrCUeD6LwbfLiLb7ge6Xd\nk0VEe4v+jE74dyWf9JqBIqIDRVlPV4I2CYKRvGQJO7VwzqZ5nJLoQncd9a8ckVxsvg0GM0WJGs/S\nIekg9cGZd+7FwT8R3EOuGwoAwaMUKkjuENE9nEUyCzzQ75MZGsMKg1tgURcC26mPmmvTYWGM2iMN\ntE44XRghBrcP2iRYGL+YN5WDcyg9X1JlGPXn0UQpNFBh8XXuYgRZDVCOV73d3jx1zRhrVDeyrrvv\nuD741q3YfCWRoPQmQPqm/eSMrwe3EbS1MndlFFnF6bDmxmIxBICgVQcpiTAT2m4G420PgmMoEOsJ\nAUdaqZ+HW9pway2hLkpbcpBkpRBI83Szggv6poWYNLR8GIUpxLK4tz5HYalGkFeYyL35AQTbGYFU\nt6z3OFgZ3DOs59Fdwgq0hzhoHSr8SobxaHt4mNl4GjroWu+wk68XWeSohdzWX5ZdrcDUr7x1HUpe\nIOj6vnteQMmmmwEAmhkOaDfR3CxIbUd1IDrK9su7oiGcct3cMydX4oMryeN9+bF5OP4Jkc0MJm5r\naIs9dvou6g/9ZIo2rCxYgwqGwvlL8/nY4KSxSN4rKHULDR0SOsZFR7wiarP3keV7CIJnb5Fifp/C\niJGKqu6CjYKQ2PXEy7jgyAUAgHaPGUMttHcd+W44fDmMlXEiqwHs1ir4xjeG/wM3HaVou7siaVB9\nM5AcWU8pNyiAsoaKDw68fioC1I9FWhfOKaeae9+MopSVsa/f+yM8WbTIEdGQMZrUpLyNoiu63bQn\n1mcl4tq3HwZA0dSNdzwJANB+nwAw8M3+R5fhtrq+BEari1Yrf8vfvz5kC17YTHC8B8dVKQy6wMnJ\nv2TmeoBqJcq1Ef+dJGil2o0AwR9lBlyNm4eR0KHgGUO76VsL7DPoBHlf4xkAYzIlll3SEVOSa7AK\ndI5ITaXQXDgCzO2OIPS+pnoOuvx0Vjmr9EaUTv4w6tmGfXsLkrbQbyUBSg1UU6O6jsNGwH0mrUOu\n3qCg9WSUEcApujFKOMSsjRpLRj+3NCoy++6Vy9lfRlxddrPyeW8CTsN+9VfnTCrHjsZcpT15xxXL\nzPCEoutt8hEFO82HBwEzjvEuWifgZhB1c60aZ7v6+Ydhmts6cJtMrOXquSzFqFJk75pIaTtj16lr\nzVnE0JG7UzF2vfr56ZK42Wro+X0pvALN9dqhoHoMEzsRZCSTl6ygM7yYEFLRQBFyaOkyTP4NnWOt\nGU6kMVK7NgM9s35PIrKHEKLoiuNzcXsmnXUdQQNWFqxR37uRUgZSturgv4AeShdg1RhsfgSqaCyD\nKSEMG07otHpNtgKNE3yAsXXgifezGqNp+6hTas8XoPEyfDEHGHSseLotBKGF5XvawmhwkJqVoRLw\nCwr8Ya7RiceuoJ1htlHE1x5aFPox3fAGafAOBHyoC5Eh2MZgUZgtwsyUw3vNUyDupUOKKQhs7KI8\nSdEchqGBniPIztR8CAg62aJJDCHgogkcSADMlJ4IjYNHfhJpvUpdEhbmlQEAPhOJjVPam6AYSWE9\nYGhlbJX5Iez4lGA6o6fkKorl2Fpiv+UB1HarBq2cw/loylGMWE+KwiAClV/SwSm/IFfB5RYPa+w7\nEKcocq5sqKUN/Ci6h6jh4E6n6aR1Swr+P3tcD4420KF4b0UeAGBe8GK0OGmTnpZVg1dzVHYwYR4x\nOOYmdqKqi7GnbmQ5nhbAwmAfyToPEhgG5WAgE8VsV81fdTtSdjM4oUnNE5Qp7LVOCf5k+lvjBdzZ\njFUv24v0T1h+qTeMICsr8/7nBFeKPGD57GFlrPqTgQzRn1q8Q2liGWtVo8s/kvrr+Jy3MPKvpKS6\nSkRcMILgX/fZ12HR+kcAUJ4nAKQmOWHQsPI4lVZ0TKW/93dkoXMs9UH2+jCWz6MxjjSeEo+zHEPR\nhIRqdXesqqVr09J7IJF+hNYYxNVLtgAAFtkoN+O7I0XwJbMi7wfDaJ1Ef4fsAdj2qxuGzOQpsMPx\nsv1nw3icvvcODyjXGeq0sTfpfuQPdqLbX4FZymezF5Ziw8r+IdPD1t4CAysyvvC1RwZ/s1OUoFWA\nxs1KVuWQ/vIm87DW0bhrvBKkClpjK7onISOH9JBZH0COlTYU21g/KmvJ+dDlIePk0tyDqHDRQXpM\nViNKvXSY0HTooCtka+9tM7gw3duXRHOga5QE1xA5D1aE4GZleLQSAnaWnlCnVQxJwcsp0B2vnRXh\nFqj0z0BysjH86I05yqb2jdcMnY4uLkxtxX33EXzplebZ8KcwKH8BHTZusqmHlchSLgBQmE4Q1MiD\n/A8RmVHbLLC8ZymIC7+kg8Vjcz6Hfyy9wfZwIYyN1GGjrzmI9btoP5LhujygQGUt9epmr1ncAvt7\n/edt3vfrf2BtFzlU3hq6STFw8lf/AhrmZOByPeg8RCWwUqolODiWUsPmiTbAKeVYXugqQeUJmjN5\nkxrRvCWSR/uHyQYvjwl696Cvv2glZdXrutV5NHbLj2+E9pbe7JrSd6T/WZEAHPuoUPlO5wAebTg/\nZjvXpBK8+siFdgTF6LUwr+JitH02BAAwHuMgu1PGHzo9p2WkISpxau7kv7roI3Kx+aAEMY32iEAq\nB3NDtIM4rOcw6Xe03nypHJLb2W8XUA4dAFyevx+2K+lcJbNwD6+8EwI701be9DI2Mod6h8+MYzW0\nNm+YvA1NjOn5oj/QXhHJ08yFKVADRI+V4AOkFnb21KjM5ZHGGa9ue4p400UY2nil7ZNJyCzhtSUE\nJV/66lKU6GgiP9A0GZ6NvbPOY4t8hu0t/jSVP8VdyMqTVar97hkSBu+l7w3tHNy5zLFpCsNygL13\nP3NV64itoz1rVT4KGZbbG64LAKMXVaDsk2Ll/wcrab2hAHi0RU2BCyQyp++RU0tLiGUsR0rIKDsf\nRXQXsXQyq4jcEbQ/1R3KQOKlZEAatpJ+lob6sLSB8kj3d2RhUQ6lwz2YXIXd/4/G8A/tI7G9k9iN\n/zT6UwDA60lno9tP43pgSwEeaicdpfEAj95GZ4SrEnfC3ULGpsUjIbyW7I78qyjoVXYwFzJhuM+l\nRW0P6f5Js49gVzWdHfhjRnSPGli5xGG6cYlLXOISl7jEJS5xiUtc4hKXf7r8rJHRrgLyKiRUSjC3\nMAKg29rR3EzWNxfilXpBhjoturyMIdPHaiQ2cnh8Gnl470rehYMscbc+5MION31+zbBS7E6mMPP3\n7iKUOhlLHYOfaTs0CvNg6no9EvzkuXBn8Up0z5MfVpxPcn26hCNABxFVwVypg85Bn/cUSHAzYo6Q\nWcTBveSNMAaAVR8QVE723UT6cKxT2tB+nLyp5gj2xYXDDuAD72QAQE4aMRHMzTiMt1cTNlKrVROd\n87+4Daaavp6a1AwHvJvIi1Jbmdfne0CFqEayeQnTuuDfn6S8CwDwIU4hQOANenBtFHHxJyVDyyLC\nAQuH1DLyZtXyueCYFymxhn53oisHwST6/rvj4/DsfIJXPpBUg9dGE8nDkt23Ij+VPECueeQ9a+2x\nYE52NQAgRefCa5/MB0Be6T8yEoKizU5IAmM8zjAg+TA9d8AqsGtFCNX0GSdJcBQzmGGTARoPzUFd\ndSsun0TP9NWnfRntBoqKDlYyZxMjQdOGnAGuPHWJjIjKoj9MXrCusz0K6QHv59HoJcRBodaMEEPZ\naBn8bIi1G4Ewzcfuki50N9G1Dw5bi/dMtADaDgzDihaKFqYcoj4MazkIDOoUGRUFoEQ1vbo0JNbT\nd9eWbMP5FkIO/LGRoILaWj0CDIlgaQRSyqi9riItZJRl/fgQ/D20btqS6GIpYg5zbnWsuDCw5Goq\nKv+3D8+N3XERIheVB8hTDKDfqKgMwe2Tpy+7+wau+RwlcmTb0KhVau8CwJSLKVrb8nE6PMNobXqT\nZAZqDv5k6tuUg0HoemgO+DMBiSkwh1+HqjAhDQRexLAhBMmtaabPLrLtw6paYjj0B7U4eyRhQTfr\nhsPno/ZazhAUfSHXjJVMYaRsp++7i1XGYc4tQN9M8ydgkxTIvbGDg8ZHferKpsYEL6DvUYt0Kwry\nNCM2//HCLXCPId1xyaj9uOVrIrSwVgoKiM5lVekxHmmmnAFJo5KBeEu8sOweLIXG4ETjpPeVPqM+\nnxy8EWnb6bOPRk5SrksY0gPdThrjXf8Yi0xGphHaqUY9F19L8/mdT8+FyAjWkvqJisqkeL9ZfSXM\n9XS/Ka2j0TqdrU9DGAVTyM19fHMuBDbGHeMkmOtljz19lnJLDf7QPhIA8EX9aAWJ0JbYl/X+h8hd\n794Jfyo932A4QiMjov9McRSGYavsuy/IEdPekcdatxoDe89J82CxtQMPPUf1JlMuqcfnJe+zK2j+\nHavMhJUdDdxDRVx9NtVgXv3WTGW+hgxU1/JU5d8lKhpLZFhsIIFDiC11mSBI8EfUIG1X/y585y78\neiGlGt1ga1fYh2WYu7GZhztfVdzfOAgNd/xwFqAlHbe6rgRfvHTWSZ9NTk2JFI1HUiKcfBiQEa+R\n0VMZLRdJllcysQZVq4f1aU8+03IilNrPk+dWYFnTHOWa0c/Fjr7393ks8Ywi5S+FeXjlNc1IdQJJ\nWoiMuNRUF72OhhWS3pufUY53D8RGFAAEmTXWDT5SKVevAIDE8+m8FxkVveMXn+OIR6XD/updlX04\nVmrPYKS/iKgsMhlQWM8p/WE5waMxi7Hdezl01ZDuSGeQ3h7ehm8DpIu15SYsS6Q+6jlvIx5PKwdA\n5GclR2lvqUqj/WFlwRqM3Hw9AODei1djWzfNje3H87HyS8od2Fg+VSEE7y7kkVhJ9zz2DUNpJotw\nsnKyyQdFSGyf2M0VwcTSVAQv4MseGJLGSZL0s6mhyTc/AwDwJ3MQ2OIPmTh4JxN0KiXRhZYaOmgO\nWQO0TSBNLB9oxMkOaDX0kkkmL2x6+kLDhXHkK4KPllx4BEvSCQaq48L4zwpiAA1/Q8aZZ7obYiNp\nIH07D28xtTH8NRHVC+loqfFwCnW1DG8w16n04IYuEcISCqM3NSchYRcpt2Cvfdk9jEEn5QUz3gF+\nFx3uQ2ZJMSplRdOfuPNCMNeoBqtcTNjQxkcZkyeTsB4IFtFOqTlmRCCf3ttYYRiwjWEXUIg+tCgI\nKYsM+SN3JMBYT0pE61Lzulx5IvTsfbSM+teVG3EDux/JiXToPz+nAoccNPX3lucDesYMaqR+m5Ff\npRQ1f8eRitdqSJE3NCYjbSODl4lAUgXdSNTwCCTSwAnMyRBI0Cj5IJ0jNUr+q60aMDexnN0aB/Qv\nkeFf+e3wmH1w9ZUbAAAffjT75J11EhkMO++PKXK5l63nPYsZnz9EH4Y4TJx4DADw8fC1OPcQFU+v\nqqNx1RpCMDNWytUT/gq7QNbqH9pH47NXCMLsS+aUOZN8hPqwJ0+Az07vl74zekLJTKnW+jC6ltBY\nuTtM0DcyuKaWfhdMDyLnS7rWm8wrc0rrltDGzuwXztqDUSxp5pmV9OyXzt+OLz8hZerND8TMzQ0b\npD6lXn5s8RX6YjLhnq4EkkUkjyRrIO3eIEQTte0qoI2qfaygGK7mRgn+JJb6wEMZi7A9gNQ08jTM\nzTqCHR15AIDaVtKzvxizBa3MA7C9LQ9dLhpvn1unGIfaWr2iq+Rc/9S9EjpL1HI1YRuDaPt5aFmO\nJCdyCnzMWicpBz+53IvWBSQfprXeWXR6rKwnE+cEmsfWvapZo5lLaQFOtwEpCaSHmpuSoGXpIcZm\ndY64c1Sj7IeIDBH2D6HOeHXWO/iPP1M5mnse/kSBDNeHXFjwArHJu3PDGD2GDMWKHbT7T5pxBDsO\nUn6yfcvpOcjapoqQTDRpejPyytI5Ws2Bkg+5XIELE7PJmbatbAQqLyLGUS0nnFIplv+Nou8c+Jog\nMxCC40i/mbb2b6TvevQFAMC1VecrcF73VA9QTwtE3ifsBe3wfU1wQ1Gr8iAAQPBsskS03yfAnzz4\n55QdFJHMuq4h/9qWacLR6P/LeZlat6Q4vuRUnoBNgrUmdjsyizsfktBTEN12IIFT2LTDRhFVi4ht\nfsT6m5GRQmPVeCwNhhaWUsT0tqEjuu9jBQkAFc6p8UronEC6NuEQnQlDJsQUX5o44NlSFk9OGKZ6\nVad4Suh8aCpX9zPPKB9Mh059f/NmiAqPgDyH+WD/77rgajq/f/XhtKg5/1NLYKoTI+y0P4REHo1f\nEOw0ZAY0g88cOCUxtbJASRgImtV52TOcOidzdj3qGNMwqknJpByQ0FXM9l4jEE6gyWSzu2A10MLu\n+j5D6V+5isPSqeuRLNCL3JrQjGEf3QkAGD/huPI8eytzkTuU+sD/VoYCHTaztJDuIkBge7rlBBSO\nA0kAXLnMWOKJOwIAqu97qN93H9TMrKysxNy5c/G3v1HUqqmpCddffz2uu+463H///QgE6GlWrVqF\nRYsW4corr8RHH300mKbjEpe4xCUucYlLXOISl7jEJS7/hjIgTNfj8eD3v/89pk1T6y0+//zzuO66\n67BgwQI888wz+Pjjj7Fw4UK89NJL+Pjjj6HVanHFFVdg3rx5SExM7Ldt2VI3dEhw5LP6NFUSAsfI\nI9iSo8HcSRRmripMQepLVP9O9hi4RRs8DGJw4bxydDB35OaVExQv/q7yYZiaSNDONyun4ZfFBGt6\nW0fv42hKhm4IeQd8vBnGCvL0tE0EOFFOHueUCFogiax9iRNUtisND2crgxZ3axWSo97wMnNVL2//\nLpX3Tix0w7DXwu6h1gIDAG8meUvkpO/IqOjoSw6j7PORyv0SzyFIQ/f6iGrbMUTwA8IB6mdfmhjl\n8TqZiFooUI+c7p3gcijkb6oTlBp1ITNgZCyOkkaCP01k96Tnt+8GukbS+3FDQmivp777LDgGnhrq\nE06QYGYRLRfjfrg/fS1ksNYcUw12p1KEoNNlgjOXrk08KqJ9HOvHBA6mZhleTF4+j51XIE2uUQFo\nWuk/yeUe8AEWzWluw8J0gkP+BbEjo29vJlKbHxL36i8iGmSkBf0l45+ucAwetM6bCyGJMbDuM6GU\nZ+84fC3uz10LAPjYTNDwTRWFcNeQq7VxrA51jLjmnYNTIJ7J6qRa/Uh+n9aeHPXkQ4C+XX1+OQJq\nXmmDo5DacJ4ZgGkrRfWMRjUCIEOLkss18CWy4uRJnOIVFfxA0XiKEt2YsgWvtBJkPZhI7ZZ2DlHu\nq+mIHWH7MaKiA0U+f8yoKADoOnm4trKUgvYyYGgWAJX0hw8A3pHkwQ5a9QozpKRRCS1K8uuRZ6Ho\nqp4PYWEm1XwNZtC4OcMGtPhpDfqCGozPJOy9J6RDbQ+t00lFR7D+OCMua6J3bJ4pwdhIz6HxcPBo\n5bHkwYlyhFaCidQTXNlq/0eSuHGhU8QzDyByvT13fhC2vX2Bnl3VBHmyHhfgYUXO+2Mj7S8qKjF1\nHAmnPpnI61vQ0bs+WzdPYZN85vC5OH/i6wCoNvStNxGT6t//vAAtLCIqU6NVHSqCfRCEXN1Mf/Ij\naQ0mW91w+agvptubUPolpbS0TRaRdIjVLNRwSupJchkw7yFCpFS5CVEkgsOOnUTspHfwuL1uNr1L\nzjcxnyFcRHuscMQc8/v/TSLXRIxkAA0bomvOamVitoiIaOJFhODo/iJLqcNrOqMdLpF08bGPCuFn\n6N0Hxn+HpzsI8mk7SmuzLdkK+WjRO0Kk/V5lh5bXem/W6VgSYDWAZYK/fxcJ69m+kgyYGAu4qOWU\n9A+FAIiLjoBGivx/XwqnoK1k0fVIcBXSBEnepUHPZQyvzUlo28Ng9Amiek6KCAtFjps3nbHpNkno\nKVRhm5FhJAtL65IhxSETB08xzSlTharzDG38SeeEp9iv4LVNhwzIPI8wwtWlOcr50GcXcdFsqlkd\nEgVsODSpb0MDiLFZfXhPFqu60Bgb1Xfd4u/wddPJ2et/KtFtt6JWWXGq/FRRUUDdy32pQCCJOkTf\nziNoYWmAH2Tj4rt2AABWC0Ro12zXI2OtahO0LFAHt6GJKZRCPzgnXZO4j87KbzScj823EKv3gYCA\nqisJ3TLzwOW4duguAIRQbN5Odpc4VoWCy3Bicz0QnEVIq1C7Dc4RzD4yhaBrkFGJHPxFAxe8HdAY\n1el0eP311/H6668rn+3YsQOPP/44AOCcc87Bm2++ifz8fIwZMwZWKw3exIkTUVpaijlz5sRsFwDM\nrbRYwzoeljoaBNcQDkNm0CKo60jE7mY6WIZEHtN/ReVOjv4HTU53pl45sFe67Kh3koa3zmxFt4tO\nIVyTGX+voYO1p96CDxLOoLYb2ZYe5uDvooWWMbINLcmkjYL6EEKMLddQ0g1vOW3CabkE3+zpSlVg\nZslzmpUp23MwQ4G8hCJSjYI2SXlWfhq1IW5LUg1NXRhf300FCs7eeC/Qpf74/y2gKPOf3rwaALDw\n2k1Y8TEZQyPMbdhnokOBxs31a4QGJ9JBRFvaFy4Utobx4mXESnzrqtujlEVvtjM+qDKJSaEQ+AbK\nOQuZEmCppd90jhPhY7lauuMGBdq1/O5nqU1Jh198yApkH7PAxPollCLAmEsJLz6vDsY9NC6/v+0D\nAMB4vV4p0J4sCDAKtCMH/FrwBrqHcyivOAFCJkBgrGxy/mIgAfBms1MEJymGT9CqBcdyI/UZaRip\na4rZj7IYmlQIiz+ZKY3OHydf6XSNUO+QXjDwXmI4Sv25b8xQiC30t6VOhH8CnaLe6MnA+w1UWqdu\nF7GiaSUoTNdXrr4X/zmH2AKlbh0SKmW4rQaeVHp3+cAVfiU6b232EIICfzl9HLRdDJrUbYCGHeD4\nEJB4VIZ+MpZRKw9DN8vhzhbgGk7jZra7sXwErYlvPUOx+20qMXPGdUcAAEk6D6ozSYFGjhMA+Iro\nhoYjP9xQ1NYPJovth8uN11Bpplc3zoGBsatiSCa4Zlp7NuYs6CzRIyeDdEt3ggGuDPpcCvBIyqAN\nQ8OHcbiHxmZaSjXOMBLkvjVMGuzBXVfh3BHUj9k2BxxB6qdEnRc3DyemT5+kQdcQ0k8daWRcnGhI\nhTeDzVteUtadqAG0jB3fViOhcwxdo29XIYIBViA8Zb8EXbeMF/xx+tY/lm5u22FScquuuPp7fNdE\nOnNiIvVh6fExp32PwRqhsqSWUh+0zaV/SxKasCYlDwDgbLPgkfqLAADbdozEnfNo7EfffRBlL0U/\nY+SBsrtQzWtO3RvhBCoGMiaRB6DrW1oTTXkmCG4an0O8CF8WNSQk+TH5Vhr7b3eOxV2zyTHlCeux\nfBvxHcjs9e84UrHPQU7Q8l+8iBGrKdfxzBP5MeFW/wpGqCyRRqjMJRFIkGBkDi5vmgRjr7I+3Lmd\n2DB6JQBg/BdLkTKdxiTH2o1znqSSL2cs3g8tT2Ox25GnGKG2C9le9GXmoJ5PTocZSDxZEgTPv5cR\nKotsuPnyAhA1dLax1ElKahU3nCwO63dmyAcK86JmuD/pe74KjXex64DOqbQHJ2/XwnaI9uHOCSHM\nfI7giQk9kUarulIic3bDBnYmMQOSoJahk9NXBL8EMDXpGqI6JmSQvafYDykUe1xP5piINFzdhQF0\ne0nHGyKcyseufQUvdBFc9dV3LozZjsDOt4G9SYqBKXHRUHDlno2xz0xD59cAAG5I3IP331P5HYLM\nUxi0iP3+tre4hoWV0ov/08XQyVLuIiD27eMlxVmx5JdfYYyB7KOnZ5Qq10z7jiC27eM4CE00jk4J\nSEymeWz4MBFnPLgHALD5ENlDpibgosdoXs59ZAteYE5oh0+PFz6iEpf8cC/EHlZeLy2IlPE0tp0O\nmu/egABJLumYKoGXq6IEtIqTVugB7F+yuXVd/+8+oDGq0Wig0URf5vV6odMxooyUFLS1taG9vR3J\nyWo5i+TkZLS1tQ3UfFz9KEL3AAAgAElEQVTiEpe4xCUucYlLXOISl7jE5d9QfjCbbn/8R4PhRdJ3\nkKvEnW1UoC+6bqChi6KTlxYcxMFugqLlWTrhCjEWzocIH+tqSIKWwSw/Hr5WaXfE+3dCyxgL+UIv\nOrvIii9434vji4i5NKmIXA/ddYk4dzKxeF6ftgW/DF0FABDXpGLIlRQ1ONqahrCJPBbBLwkmJ+ZK\nEIoo2jAptQ6f7yQmxoKtHoQN5Elomax6mng/h7S5BHlrXU9RJw4q9BZNCZi/g8gqenM3LrYSrG4x\nKzA8+rmlik/to89nQus+uXfzyus24IEU8orMKFUTiH12RhDUqcHN628BAJibo71ND0+j4rcvJzHW\ntx0JUUxioQIGFbSHYW5gntyjAhIvIg9Ko2CD2EnRlacbieVrfspBhZ3XPqIDn45eDgDI1FgwcTdF\nf7NfEHDsGppDC82qq/fa8psAAIGQgAQjRbnSU3qw5Zy3AAC31s7Eun0UOde3CuiexNyG7JET9ung\nYzU0DfUaWBroHvoOHwLJarTsljcHX5vux4qI/lCRCw431ansvHJNQ5koAQAWJu7BSj+xBLePA5aM\nIkiGgQ+ildV/HT2DIpk9ASOqK8gjn/0d8ITjMgCApZ2DxkN913Imr5AU9Y6IAsDc325CuZPa4H08\n0nepeJzWiQy6XRrx2dUE6eArLAi203MHEkXokmi8Xxz3dzgZhP7xT69CejO9Y76Z1skT6fuQX05z\nQJjshLeKPH66Tv60IqKH7l6msOVKAlBxJ63DG06cha2bCSrTH7uezHDKnyZJ1dBzT+CvX1Fxe0NP\nRBvBEBBmTLY8fZ5UAbR3Uz978wOwpFBU0O0woJvpwPycSowxkWe1PWRDQ4hgPAU6hultMGKDQBDc\noE+DkUMpgrPEvg1aFgKcafCh00bw3re6CaY1IrcZG3qIifCrPWMBhsoJZ/rBB0kP+hN5GGmKwlEc\nBHhGHlbGIPaVLnBBGkvXZC90x0kT6rpOq+sAAKYdFB3e/2h0TTmZZTD/C8awK/SKGkSwIMuEIPOv\n2I617/Rl1+5PnAXU4KjRtaj7NF/9gm2Nkps2vXNth/DxaGJptq/TYUcX9aOU4ce1rJ9zko8jfzrN\nafvWvl7+xEogmp+dJKkC8FdQNMfEbmxqidBXZclQqwYasa6EaunpPRya/bQPf3ZkrBIRXe4gAp0/\nfrYIeTNpHo196R5gKM0NkyEAGa3qywyi+mJCVP0QUqOhswhyU5RAk+fbL85Qvqu4fdnPSpjkmUJr\nzLxdZY3pHRUFAO/+JIwKEkt1cKoH4XU0JpsfWIGrrqLrXx+yRbl+1NYlCGXReO0bQ3UBhx27A6NK\nqC8O7c9ViOequlIwPbOG2nt38LBJUQBM3YO+/F9S0uwOdOlZ1L7OqJIV1dBnjtlehBws5vhJRkzI\n7pFZ76CCzYPLdxFCwJmvRdhA+nncqBOo26uy2AZs1IbOIaFzPOmIEUUU/W7+aogCjxe1nJJmEEgO\nI+mAum57ZpOCHZHRhuptQ6PeievWwtjyw84k5kodvJWEBvRmihgzoVr57l5WWPLVGL/zZIn4r+Kv\nAQB/2Hbtad3bkyViddFq9r9oJJ/E9gw+xwM0Do65u7+o6JzFOwEAz2bujvp86r4r6DkiapP+nMIH\nVNTLc1vnQWOmM+3lxVRP9BxrBa77z6/o+68XQNTRtVXz3lTaGBVcgp3Pkm4IMgSTa0QIGd/TPPn7\nhhm4/CyC/zqbrKi+Td0v5TrUG44XoLmamL8Ts8n2GZ/bgP1vjwZARIRyBNdcpbLla7wivGkDz8fT\nMkZNJhN8Ph8MBgNaWlpgt9tht9vR3t6uXNPa2orx48efpBVVPHYVLx60AeHDBBn79Og0hGz0RYUu\nG1oLy1EzMkB/mIuZdzd5WiX2bCYYVmFWCypLabF2jeSAbFrEw5Lo4Npu8KOJlbb4rGsini8hSOiN\nR5bi0K48AICYGoTOTsrGlUwTO+TUYmYOLcpvq0cia4NcTFiEJPTtVsEP1B1g0MEYUAmfXYSYQpPs\nN1M/x1NvXaF8N/wDCsEfv+aVPr/TuqLfXzyDJsmc3KM4J6ECAPDbN5bgI8wGEAGx5YAwMwgNrRro\nuvsyKWqnd6JdToDdkdDn+/DsiWgbR4d7XZILgo8UuKgBur4kI1VIBMIJdJ/dmwjWdXiUHanDyRkw\nLKEDf2I5f89n7ULp5A8BAPe8MAVrsnf0uWeA5X56/TqclU2sX1ub83F+BUHbnhn+ETYlkuIPuUzg\nHTQWfJD6qackCPtm+iz5YDfCRsbCe+QE+Ml0CJeMPz6T5+lIoJjmqq6i/9IS3hw6BC6d+R3e+qAv\n7XmkETrxAqKfX9mtHlhSD0i4azEZozccvQquFlLwdVpq9z+LVmNTEiWdfWEfjSCDtAfTRIX9Nm18\nC7CzbyHs+vNp3I+67djfQA4YfQcPQF0Acq6SY6gAbwbNzYfHkmPpm6xR2HuCYPocB6QmMKg5F8IF\n71CR8PS9Ihpo+uCmpK2sVRMEPSsxsztRgS8FEyRoe07dKByx4SYcu5uU86iXlmLE32k96jp5xOYf\nVeV0jdC7F38OAHh237kxn1msOgEhjQ4LYQMrIJ7NIczg6kKPBilDSWflJnWhvJrW49bWfDRYKZ1h\ntLURez0EuToRoLbSx7TA/SUdlK1eCRWTybGxP3UocnWk33f7g+gI00Zdz5Lcjnrs2FxFucecMQSe\nORE0xwyKQd5TFIbEoGa6Ng00zImWUkZOSaHDCXcRzSOpU1DKC/0Y4hJ9sPCqI2LcE2TA9JcfGlmK\nhyEnsfbdwRuirlwRX19MbPFXPP9IlJnoYXlg+jbqo9/8/hZw51IfzH5wGz7/mEoIJB/U49LNNM8f\nffh9GFJJH/gTSSfru9UDceuMsMKo+6vfvIu6AB0a3lx2oXK4jbz/3bcQ3P65Dy9VDi8zzz2IfBON\nsSesQyZLEJpfUIGVbtILf1y1iJ6tDHCU0dy47KFNGG0kZt0/lF+g3MfQpFWM1x8itZto/15z+xf0\nwe271PcO/4QJXP2InNep7wI4niaKa4gES13/a93QzgEbabZ5S4JKfuno7YuRZiW95peCmLaHDFbd\nRpuiW0ZvX0z3s3tQUUrr1XqCR+UJ0stcGNgspQz6+V95gNh7r9t4O1D3z0k1+J8k3nROydW8MX87\n3nz2on6vtW2I3nt7543KUqwjZ0RxOjnvNJkiXs+j+fqVOwtPgs4kopZTzmBhPQdDK51FWo/SPqdz\nSxB1zFjtliAw2KPlhHqYDxs4XFVMEM2VK2bC0hL9TEqAYwBx59EeLzOdRrLn9m7vgCYPADB69ckd\nP6ZGHn948/SM0Auvof37ifR9ymfzKi6Ouua8C8hw/L5+xOlW/FJk3XuUkoSHo41R9wbSWf5UKQqi\n/GOKPAdOViLGOZTG0dgK9Ixm+ce7NdA5aJxWVhHvzdpxhXA4af5xmT7ojtLf4/+8FPseo3PLoel/\nw3155MTb1ED79MXZx/G5fiwAYNiQNjyZsRcA8OSle/EfLfT537dNVRwlujITtGxqOVjS+wFehDSf\nwbKrEiFk0pnDoTfBrqppGNsG5oI4LffJ9OnTsWYNRcy++eYbzJo1C+PGjcPBgwfhcDjgdrtRWlqK\nyZMnn07zcYlLXOISl7jEJS5xiUtc4hKXf3EZMDJaVlaGJ554Ag0NDdBoNFizZg2eeuopPPbYY/jw\nww+RlZWFhQsXQqvV4qGHHsKtt94KjuNw9913K2RG/YmoIVs4bOBgbJXrQHJImki5pt6AFiFW9Fuc\n4IG/mSx+d4B5q0yiQh4z+rmlKGMw1g/y1+EJG0GIXl0/ByZWW6l9ggijnqKPMqz31tqZmJ5AcJen\nyuZhVdUUAIC1loOPBXt09XqEjKwwchHLwtaJ2Pw9hadzv/ZD8JJHwJ+kR8/wvpG1sIFYsQC1Lqg2\nxw3NHuqjsFGEoYbu8VLqbOV3niHhPkWAy+5fhnE7yfsU3qYWz/YnSQg3MchJLrDIQqGFBfc+izNf\neIAeO8ITo+86+fD31CTi/TKqJRkrVshJEjyZ5OEpzmhFTwd5sP3JGvgZKYmhnYO5kd2TubJcgWT4\nGQ2kSRuEXiCvzx310/BqDtWUejEiKiqTFl2w8y4kW8kTnmVzoCdI88D7fRo6WZ9e57wFqKI+sNWq\nrHlyMrW+QoOUnTS/uGAIfBtF2f2TCsD76Zk8WadW5L6/+li9xZ8qYtXC/wYAXPnX/ustyXKyiCgA\nBEZ5YDxEayJWVLS3bDlMNQnvPXOdEpHsGA1M+fyXAIDkId3QdrO5xpC+yxtnICAyqKxTBy5Mv0vP\n7UKHmaIlFm0AbTcR3su8nDxm7nQe2gSK5Jg1fmgZU3RSZTQswFpP/69fIOL+6UTWcqONEAdHven4\nxVRi8eQhojNMbdywaimy9lJne5N5wMpItnh1AHTlfYutnU5UVG7ruynUB770cFS0+acQ/Zmd2O3I\no78NQfQ3rSQrzfOgmSagxAOBFMYIbQjjRBV5eA0pXnAuWgAtZXaMmtWitJGpo3Hb56S1uyhnH97m\n5wMAko74cOYdhK6YaT4Ct0j6SYCEEgbrfaqT0B4z7ccRcjGUgZ9HMJGeWuPiEWIpDlonD57VJeXC\nQOoBWvf6HZUAAHH4EPBButbcoD0p2capyownH4RpPr1384kUWM8hby63Pinm9Y5iVqutQgM+BvFG\nfyLXc50y5QgWrKA1bulFcJSxgPamBB1DPpwbhvdTguZeO2sH/sE82BqvFuJMik6uaJsEXwfpA/9I\n6pjEMl4hqzHVavD5fxEz4j5/Ip7ZRPrA7ugbPzB0SHjrT1ST1z9ZREIezYF1B4phtbO6mLogzDpa\nVxpOxJeltN/YiWQcogbY9ceXAQCPt43Cb/dRBCMc5pW94p6rPkeW5gdgrHuJDMetuF2FkJ39xiM/\nWvuDFY1H/Vt7gHTSYEmDAIALqTEAYVMCusKEOpqw4X6I44jA7/Bjy1CyjSKiYXa936EHx5AFjjEB\nJBwYCJfRV3pGB/FOB8HubKX/flFRAFGoh2/boplau8bQl0kH+8ZpJD72Hl+48QYsLqbo2g2ZdH5Z\nYOrCuC23AwDMay1K/UXneD8Sk2my+HakwNTYd33yAfUzmWgJUOvae7IkfLCfdIQxRGy+QN8apbEk\nkgmaY2gxsO3MMzQMTQ+9t67XXtn7DHoyCUxgdd4bTDC0Di7edeE1W6MiorI0fTMk6v8yaeXC/AP4\ndOPZg36mk8nYp5biwMOqTrGcQ/sE923flKMfIt50CYYOOeo98FlEJqYKWoA/zF4BAPiN6RLoD9M+\nEEimjcWzKxXhNNoTeB8PzRjaMxxNFqVu/HejVuH5LApV3hwihNCupydBywgFLzyjLOreH2ylqGtR\ncT1ObCQ0ht4FGDpYHVRWitR3PFWpqTzhokqU7qeoa/quqOYUaPrJhJMGk9z5E8ncGX8AADTNMsNS\nx1gzs3iFhTZokRBiHa7t0CiD48+gz3iPwGB/hKsWmW4+dNcyHAgQDub2Q0vg/4JBhTiAO5/guYUp\nZJDsKB+OpFJGjR2AUvYjYOWUv3U9ADuHwTmOTiZSkIe2g36XsT0MY7PK6+7MpYOwI09diMZZ7XDv\nICicPyW6VIssMi5cM0AO6Mlkwz10ILmiYjGcfuoQ/+bUQf/enR/Cw2cR/vypDQtgPtG/wTr0kyYc\nv5EgfdIIDwy7aFZ6MiWlSHpYrzLFadiGrfGqStGTLUE3nIxmT6cJYMZO9SWvKUbo3E2Uv2k0BZBo\nogNcnq0Tu7+ljUQ3rgvONpY/IEgwH6H31rqhQNRk/Lr1uFMpH9FdkgB9Dy3igFWA1sVYcbsCqD+n\nn8rRvcSbHYKGwSYKzjyBC1lJmKfXXaBAu/kDqlPGMo3mnWtbX1hrbzm0lEFDl0VDY5Q5mhyGZGQn\n9iAPY8PgUPfGKe3wbaU5IfgBJ6Og54Iczj6DoLzTEkjbNASScJblMADgXKNqHXzgTEKZlyzWFr8N\nuUZaV2ea6Hd371yMcCctGmOmCykW6ouO7zORfJjaaZ3I4/z5tInLihIAusJ07d8cxdCzRb+2oxh7\nqslgyvpUPYR1FAs473LK/ShgCYlTjcdx/V8fGFRf9BZfJsuxbYq9+YbGuKA5OLhcFal3HuIAMvRc\nMsJ/l7cK37sJ0v7KzrNhrOp76Bz6xE4FpttyEeUjBmwcnAVMXyb6EGLGCxfkIOqZkXdCo+hXf04A\nc0pobJN15OQp7RyCpvU0rpIGWHQZOQPStQ4M0dEY52k68JdGMlh31uQBAMRuHQQXM4o1kmJ0Cl4V\nOgwAFrLDkLrfA00F5b+JTjqAh2aNRchI/X7iUsBYz4zb8T3QbOybJvA/XeQ9o7cx65pMOiz1WwYb\nlshZCQAdk8IoLiLIq0Xrh4fxJFTUZ+C96X8FANz2CulDuSRFb9nxxMu4qHIBAKDtjbyY17TOpnX1\n+IyVECKoPD9podzV+WnleOcEwZI7t2QgwMrRLJpLh+2HUrfALpC+f6hpIlbsp98Zq3SK4+9fVUKF\nap5ozxjqx4SDP25qhztHhWjyJbQ/ettNigEhM+0OVmTmak+WCGv1yQ0E15Cf7Uj4TxGNl0pSAEDX\nDD+StlDn9BRKSq6lrid2HwSt1P9aZ/T3nWfSPOD8NC6GJrX0X6Rx6RwGaBiDv84JCL7B97U/iX53\n/ZJv8WopVVMQWvSwHYu+zpfKnZYjL5Ag9TFCAYKUhjLJMaWv0UM4SZUOf5KElLF0xnFssUcxT8vi\nzg1h1gTadwrN5NT8deph5fsJu65BcGty3x9CZdk9z34Ib75xQcxrfogceHgZxj710+SgB6Y6sWQk\nnXP+sTx2lREdm1dal6TkJ/sTOSU1wHJmOxz7CJIvp54ZOiLW7BAvrJtog9d3S0owRvBL2PY0pfnN\nOHA5AMCxNgOuAjZvjWEkJtIZwOvXwbiOzjiCD/DaqQ1rrag4RKJKGbEp47dx8J5LZ/bEFSp7esig\n5o/ueK//IMz/DOaVuMQlLnGJS1ziEpe4xCUucYnLv5X8rJHRc+b9GQDgztRCy5g528cISnK5Y4QE\naw1jPu0QlVCvXK/Ilc0p0VBLraTUJOwZLsCVr7pkdIxMI2yUlMJgcpRV8HMKgYOxhYPWpdZykp8p\nYOERZveRvQTcGT1wt1P0LOtbXvEAeVN4BC1qVFARLiJpueunr+0VSJQGBQWQxV1Ani9DnU6J0OZN\nqu8DkwDUosx579bi0H8SMUphQSPqv5NhuiLCFgbT6xaUKKnsrdM5JZWwyqQ+o88uQWC12sI6CZzI\nCrAXkscmFBQgscgp59AqY8iFOMU7Y60BbDWM2bGmGwixm2rYQwdDkEw0MJ3jVIhe2KA+i7U+jM7i\nwXmepXFO+L3kFdc06PHry6j+5XBdK35fQ9C12nW5g2oLALx5AcwYRa7Oyi6Knrq2pSHEih6HdZIS\naQ5bwkjLIffrwwXf4B8tBN05tKYQ3uG0SIzH6V2XXPUdlpdTpOOzaS/j9gcJmuu28/jNQ+8CAL7p\nHo10HXnhk1ll5zA4XGwhCMdwbXREsDLIarFxEr730jw520ihr785xuHlUoLRXDNmN65KJI/gY9WX\nI9VAv/tb3gYEJRofLSdgn9/P2iUkQ7XfjvVtRNKh4UX4WR3Y9k+GwMIYdNMeqMKdWRsAAOeZaEKU\nB7y48vWBYdA/lcg6SSmcPkiRyahumL4FH/3j5BCkvBfKIOUTKVT3KIoa+pJ4OIfRwkod1a7UWg54\ndOC1jO3YL0AvRxxFDr5s6rNxhbVK2wfK8uj7IAdJw2rsZTthYKRWGiEM13qCMOkZNKynAAo5kWiQ\nIDA2c42PU2CN+i4JplYaN+vB/8/edwdWUWbtPzNze79JbiqEBAIhNKVIF7FgwYq9IKKuBevqWnZd\n9/Pz2+rq7urq2ruy9l1FxS7IIk2poSUhnfR2e5+Z3x/nnZkbkkBARdzfPf8Q5s68887bzznPeU47\n5BD9wPEsfGFsAeJOBic+Lwb9Llpfv08io8MlkrGvR1QRJZehvYHlEMzhcNxFxHb+4eYJ4BKs7Xw8\n8qcQeUT93izcMHUFACBDoPlztbMVY54gK75okJFgRHE15z8FUaa/BY7HdXsJcvXN80QouOl/nuhV\nnye9NI6e/etZSJoVr42MntHsWwqi6vp6ZhkhPx7O+xZBidBANt6ES2uJRcwoJLHuYy0fKs8gY1L5\nT8+zPZAonn5LM4fobPLqm1bvPyTp+5BItqyGVxxyGR5ZJT3UDeDh+m/xjO657AmULF3S57q9nlO9\nlT2zY7DsJFiCsfvwfnfCzvXxsO5PlPyjc6/YgA8/p71e7+dg7uhdRjSTO2DI0KDqx9AQg8l7Hi6g\ndd2YF4bwbd+5IE/1YYiL1oKkzOOaoYS4eW4v5S/e05ANEyMozXEG0PlFfr/veeAaYog93RL9wTyY\nP5QkbAeG81tb+nZcKI+HpY3lXnfyEBKa91QV1kVJE4fOmbSn537RG6ISyqd9ReEklfQyLC0cew6w\nNSn6E6+eRYQQj4xyzbvan0TdVK53ShwCC/3zbASiLqa79UiIM0TB5idvH/Dbf1RAjS5EjRZzGhFi\nuYQtrTKiGVTx3LUSZEHrHGWCKY1i7gRExjwWyeEAjj4+c0cCesaiGigGHIyVOubiVUVWH2KKpgNg\n525IellVOk1eGTEH6zwbp0LbVEW4xQbPBuXAJcLgVTQjAyIeoVd9ARAUiym9oWKauNbaH675D0YR\nBQBrlQYFjHmo4rWtWegvEYaiVMo2M5w76Bsas1wqLMXg5RHOYxtemFMhuTrWRNFMTp2UQkyGzOAI\nBh+nQnl5EQgzyL7cQIdSk5+DoBApGzSWS4NXRtLKYkM5IO5giuRwlwp1MHbTy/VtfsgGBstOyEiw\nw5ckaOXZ6kPoLhuQZ7N3W2y1g3cyuvEE8KdXKTVQvCyCY0eQUtl2DDEHR+N6cFv7P7Qkx9IgPL1k\nNz75giBv7vHEbMlN9EGqZQya3TyGn0QDuidqxlGZzQCAF5tmgWdaajRbxFPHvgwAuKntZwCAl989\nAToGnXy+dJZWfwm4/WtKp3Ni2W68vIJS+Fx74hcAgBy9DxtjdFhtTAZQwjQDOy9glF6DYow0EER2\nZ4IOnUHRhAnDKJVRkakT+Tpa3J4teQNDdJpSq+eorzbEEjjKQPMpKlN7ZQsBuPOoXRpimWhjSZn3\nTMqBN073nuGuU5VQRRLyjwv4OFglVBEhSG3xyspj+513qSInk+CiDGLD9oikFRDd1M6SzMFtJ2Uv\nbo4hnqQxH+P1SI6ggS55DeBD9M5t5UVUh4wY8kYQzCohCuj2UR8HuyyIt5ESK/NAchhLwTKcvdwg\ngffRO/TdPAx+zeinGI2MXgnmFjoBi5l2CBILzRhLE727VA8TOxBy9WY1nEHv/+kBePYXZ6oooYEi\ntkZO7sF/lhLDtYMDTJ1sHmdy6FjBDmUlcbxcRXwGiQT1WXjsKugnU0xm1GeG8xsaNZP+bwnCJ9BC\nOjqnHXtfJSbPu+54Xa3D5I20TvU0uKHLIKUy94JWtPtobrpcAYx1ECx7ZfloGBz0QQ0hzYBXwwyw\n99SdBokZeYtsKdnaAdxcthIA8Ej52QM3yE9MLM3a3mpY/8MroYp8V0UU6D/tzH+r9KeIAgQxDLJs\nKGMKW1BlJKOv8Qtrv/f/UHIwiiigOQE+ri6DnkF9ddG+9x2sIqqUy4laGitduLcSGiqlTc2VGURo\nJ60BBi+HUAkt7qZG2huEpt7zQXHAJDqsqNpLv1maefwOjPNEcdjkJ6Fne1d9dTb66wlJD8w20Xp3\nfvWZ/dxxZMvBxJUDQMckTQmMO2kPdNTIEOL9jBslFC4iI/srvXoxnEvPWVolWJtZekp2ViYdiGXX\nEADvKBbymADcW2hQGH3aPakSc2n7uwIt1pmSgEjv9hVziObSGcGwYXD7909vl09LWtKSlrSkJS1p\nSUta0pKWtPzk5Uf1jEpG0r7NXRLiTFvvmpqEcwdp16JBg19C1jwOCgzW6JWhYwyoEbegkkD4ivTg\nJNLWM3ZA9Woae2Q1kFbR7C3tEpJGBVbLqWXIvEYUk7RoDHoxFlctBHjVihThBEQy6VtC+ZxmadrH\nQ6IlIj6ybQAqc1rj/tlcJasROgZl9geNEFh7cDIgs7ZL2GXoGBGD0p6SPsUaJwE86xMhokFRIh4N\naqIE1afCipJmjRQvYeNUryYvyqq3XOY5yDyD9bLxIFZWQ3CR904sG6N6VIWYjCSrXyRvcORFiog2\n9vL8BKRu8jDPH7UTc5wUlP+HfCKEunPvGVgbJbIZY4VZzfvZFHKiqZNYaL9uLlY9SeGY5q2WzAya\nUdKj5pozDA3h880TAQC5k1rR5iXL46/nvYfNkSIAwDVnfAoAeKlyOkI91J/1YY0cQDJw0JnohSur\nR6rXi41ELNCdtCFDIJNeXBaQI1AZbWIEAjSY3mSjUldqiynGb+H07Ehppf1bnaca9SrpWKtIltdS\nfTt4I3l+t4cKsLqBPDymvQY8cNmLAICzrBq15YYYfUeRrh/WBABJmwxd8Mj1DOSOJ+9y939yD3iv\nHI+D85KX2jecYM0GP2DcS/0QchngstKE0QsSBDaonOYouoM0viNmAbLigmW55pJ+A1ri1P5yRFCN\nolxSS2itGxkAGMOnJCoTWYbIykjoeQiMyEM0Ur0AYnCMu8kULus4xEcwwjOPBh9S5iuKQjDsPrye\nisMlSqiHgrIJ1ThhYdNn5BlVaHqGWK+NXpkS7ALgQgKwi9YInnkTntx8OuLjafwbzAkUX0gQ+c3b\ni1HgIERBka0L19+9EgBg4mgMjF59OeKMdV02SuBYInmjLolEnI4ESYlHR5SRWPgEuAvoPad7CKbb\nkgxigoF+v23op7hly8UAgOr2rF6726edvdlK/9uETxz4nrQcWeIfAdjqaV7t/naYGg7kHwE4qn/M\nmu1fdAzNp/vchrgaM88AACAASURBVP68VQcrqR5RgM5qSoiJLGiv0Ac5lRTSN8YCQ8qYt+7ZP3EX\nl1TewQEs5EPSAfExtDdNLaoDAMxw1WBXmJjZV62d1G9ZsSwJe1l5G3cW4/BhEn4c8Wyi9mqfH4Ol\nnIXcODiYO/ff96m5cC2tdEpOJVNMJZVSvKS6qAxX5eBd6iri0CshOIRWfP0uC6x7mSfcDsQztLO3\nIXDgMn/UmNEJt/5N/TvzbKI363pvCKZdTslX178y8Uep1/cliZQQu8gQEeYBkgr/VIXlRP/vlFN6\nw81m5Ndh7UvaIrnuV48AAIycHqNWLQIAyBIPt5MOgbLMwcCUorYuLV7KwaCTCVFAsI0GSOmoJlTs\nJiisLS+ISETZERh82ZhAPEaLvtkSw1AX4aErm3MwZgjFlG3fNgynTt8KAFjbXIRgBSkU/DCqD8/L\nyHFqK0LTJlr4jT2cGiN8z4Vv4fdvXwAAiOfSjjNrzB5seY8OlKIREC1MqTfJ6mZl7OIRKWRwnSaq\nZ9IsqzGEkDgVSyoZZPAxJReOrMYW670CEs7eFIBCmKdnAZi6OOTNo8N29Q4tnkSI8EjaNVpzAJAN\nMgo/pHIlI4fm2XT9gbP+ibs+vBQAYK/l4ar66Z4kmy5PIC+TJuCq8f8GAIx8ZQly19F3750vwegk\n5V6nk9Sx6LZE4I2QBuoyRyFK1DYc6x8dLyGcYDGlALLMNH7qvW5YjGRdiyZ0cJgYqzgbowmJh91A\n16JJPXKtpIEmJR6BOL1vhKMTFT5SnEWJRwaLHQ4lSLvSCyIMbKes+2eJ+q2b/ucJnFNFqUoaXhv+\nHVrtyJBITl+DyK7rtNQCZU/9tGKh9hXR+N8RcziQWPf2b9BKhTj+lCXvgjpkGOkjjmIp8s63b8Wp\n62hcluW2wRujw3GhvVtlfLbo4mrqjUw9zW2nLgKeWZU7E3aVi6A7acUIExk8G2KZKDQSJLw6mq3+\nrWenZ59ohpNRuLYnHMhmoSIOPoJ1QUolcaZrMzqSFMbhl6huBi6J+hgxjufofcjXE8Tz7lcWfx/N\ndMSKflIPhjhpb1heuhw74tR2CZnHFVsXAwDMhgR0LBWaXqB2TogCbAZtXU8y66PbGEaSpXez6OJw\nsZRUOk6El6XXyzHS2aIqkA2PiYzXDl0EQYbDDSU1AhUjn0SWke5RDONDzT1qf7fFHOo4ao44YGHx\nXQ59FOuf1XSC6MmMZbqJzlHmVmFQ6W2OZAnl911b/nLZ8zjdQnv56Gd+2ntD5W9uG/C3I9tFl5a0\npCUtaUlLWtKSlrSkJS1p+a+UIyIjmG9CAniPctvFj/Pjs53kidF/D+xxR4qkekXj7sPHqns4ZfO9\nZN2f+LuftvUGgOoFmu6pAwBcmrEOj9+zDgAw8Q83YPofbwUA3H/ri3h12nN0z5pr1ec7G1zQu8nK\nKAaYp8mchD9A5vNR+W3Y7SePUSBuhOAk618iIUBi+Tkt+Sw5dsQAnlkxQz4zGpg3ShI5lFcQi60Q\n5dEaIeBKUuIhmhl7ageDWnNAY5Smu8kSV6HPohEYdRwRIi1ydOJ3zDyV+yXdW12QiYKTiWm1cUWh\n6g01tfMq256sAwztdH/cxZIii1Dz5CUcEvSMXZWTOLVu4AA+zOCeOhk6H4N2WiT1X8WLmrABvqhG\n66OUF88UoXeR1TARZh5liRUOgu/vuZTYQ8/dMw+OKnrO1iIiWEB1tjX1D+v9MaVlNtUt4ZDAx+hb\nhnyheY7FBI9jsigv6a44eTEKP4nD2EjW/7LtQMs8gvuGjg1BYOPHGzGp3szGThdcdrJyK79b9Ak1\nMoLnZLSFyeosyVzKdahkWTqGjw/ELKqXNSHycBlpzLeFber1T1vLMLqgFQAQSepR0UFe0jCbB3Z3\nGFZjX/anu9uOxv8WLgMAPLr4RGx+cXyfe/5bRJQlvLSYUBdXvHjrj1yb71+SDgk15z4FABj1Yv8E\nMz9VUTyigeESDD4a88zJ95OSjpANwTjtQa8WrWRXbch/ga5tPXsYho1gYRwxKyIsvsUkJBFnbIUK\n2ZyRTyLMsJ96TlS9XxY+jp4kQcX9SROqZVoLTHwCmSwsRPF0SjKPhhjlVrQLUTh4WrOisl59X1Us\nFwGJ1pEw88b5kybUhug5g5CLcz0b9//h4wNA+U8f/BmL6dHkIzTWspAFFTHyHt/o2oUNxxCx4ezN\nl6nrcjhO/WcxJNTnsu1BOJkHVJI5ZBrJo+1LmJBgXtLOhBUGtv57E3SucRgicOlpIrTF7JCYdzXL\nGMTeMIUZ5Jl86jhw6ukdTRGXGhZgFJKw6ensFJd04EWZldF7n9YxclP3DnpHxoWN+KzsfQDA5Pv/\ne9aWXyy9Cj9eboDDJ2nPaFrSkpa0pCUtaUlLWtKSlrSk5bDLEeEZdW7TgqBHeTpQ9xVZcnzjE8Ao\nli9xta3fZ39MGXVRBQCg8o1SBEaQlcZefWD9XvGIGmd0YZyHYv42Lhv3A9Xy8Eg4vzdW3zuFUYF/\na+jv9iNeWirIUlthIsvd5DwDJv6BPL7x430wrCAL4n2PLMbme8gjPL90O77aS7FunC2JhI8stMYM\nKoPjgDjzTkoyB54F9PcELRAZ4YugE9Xcjh4784yadao3q7PHDqeFyjMbEsizU9xEeU0BtjUSusCw\n2wyUkLdQSfcAAMGZVO7SSc/j8nWE3U/YZSwb+bF6j0JqoJBACa94IFxDntFIcRyGFpqrcafW36JJ\nhsTiQxUvHp9keX0B8AmN/IZLUv5K+o+WlkQyyRBCLOCdEeHIBrkXT0NHI4uDdccxfiLFMiUlAVv3\nsFy47Dl3nh+iiayw4VwOC+vmAgC6/1gEJ8gD7Ruuh3cyjVH+Kz0s7T++d9RXTG375a8egpuxgd3f\nMQYfN5fRDV9oxFNykseH1WMBAF+3URxlRmMPahaSN9TaLCPvM/JC7h7tQZDlAtMbk4hH6T02RwTR\nBI1Ho455OCUeVgO1i1FIwqKjv1vgUC3oBp2IUJzmdUKkcgVe6yirIYEAiwO1GeJIMgv8pUevQIyx\nmH1y2xwMCVJfCF3kzZWtJlTdRZ6J1MRKD+RswaT/+zkAwD8ngrOvWQ8AWPHMtAM36mGWEBuKkkA5\njwcro58lSz4nclh+1Z8BAC8tfuSI9Y5mzmhF11oaa7uue1yN6a34csR+n9OlpOmpXPzEf5V3NFRI\nc8Bew8M3jdbfaC6Nd+eOI5svInp8AKYVDFkj8tCbesfv/7xlClpm0lpR/O8EAkOIcyB2QTsyzeQJ\ni4o6tIRp5ipeNZfeBDfzlPmSZjV+NCbpkKWnOEOHLgoncysLkBFl7Id6xn5j5Dn4GAulTYiqHlOe\nkzDMRK7nY8y18LC8b492HgsAWNNejPbdlLbFUuRHlmH0/huh3N6H1OdIF/u0DjX9ln63Rrw41kNr\n/1nWMEqWzQMAvLt+HriryKPd1WmHYGA5vg3UzpnWMEKMNLHNb4eRpVrJMgURYx7oTGMIe/zUpmZd\nAq0xOl9kW6gvdbyEliidjfS8iCgjuGsIueE00JzojNvUmNC2CPVld9SCz8a9CQC4vvEEvFBIeUh/\n0TIJ6zqK+v3204cRQeJHespV2v3mEOA++u28G7/EO/84YTBNeFjFcA61/0gXpU/b8eJYNfbV9Gn/\n6QRjQ+IqMSEA7L6GzptHWvxo3C2qadg4kcNJ8wmJ8PnyyYN6/ohQRgEgxtKXVXVmQcf2qztmf4yn\nKmf/eJVKkX0T2W/5lUY4MXLoKFUJXXP3w5j5wM/7LSOWwVgLu+nQHFubiW8mUcE8NLbZI5mhb8fN\nj2Pso30nQWruNUBTQmdcuQlrX+ifHe3HkuKLqwAAO1aVqEl/+5DTMYWwLdgXthOrcSBVxVaU1Ftv\nehuTRhN08v7/nA3exnKb6mnRF0UeUojlapQ5SF4GXyqIIhphu6AVgEDvbvXS4mQzx9DdQxuOFNah\nOUjQI84swmYkY01ZUQua3isCAEy6uBxbXiUoo0KipQ8CtjW0WR0914iEnSmKKTrYFxFBVRp5llj5\n3Hs+w7/+QJvZ0Cva0MiTQmSu1spIuJOAyIiGWK7JpFUGn1BguiJkgSlDfg4Su1cyS5AVAjcJajJ2\nhVE1ppMh2amCySwRtSe+oNZ1+DvXAQB+ceJyVH1MB2BHPYPtXBNAOEptZ23m4dDTJtgyU4e8NVSe\nsyYBZw29p+2qIIR/U/saew7/KaThDGqbmgXKmmLBiC+uBABkuEOQ36P+9k3mkL2R5RaNCIjraSyt\nm/0KAGD07y9HpoMOIcd4GvDBcWTgGn1fB7qnkXGl+wwRupTxyCnJshkUSpI5mBjZUVPQqRIbcSDo\nliKBGCmbBqbE2gxxlfgIgEqSZDfGcc/wDwEAKwNl2HIhGWtM6NHKGkeHG/v2Dkidfefbwrq58M6g\nca6rM6OqgL5l1OVkDMw1+bHqmWP6NuxhllGXV6AtTPX3vleAcVdsBwAUmnuw/Mn972Nrr/wLAGDm\ns3dg/vN3ASAlTyE2OlJIjYSjiBhFUUQB4IGukXh35CcAgLIvD1xPRQGtXPwEKhc/0evaT1mmztkF\nANjx6hhYy2n8l99O/VfavUTba45A2TXrFYClnx637jJ4zL2TIj6c9y3GhacCAOrOFuDYTd/Ss8MD\nPWMBD3JGNd+sIt0JKxwsGaaRT8LO09+NUgZ8jPEpIQuwsINVWDKgI0lzKMhSGyQkAU5Gpd8SdyHP\nQAR+Ji6BK91Ef2vhDbhu73EAgPK/HAUAEM0c8gK0J9he5sA/c2C20P6U0GgerYemlh/3uGyfRgpM\nYL1HvRZY78Ge69kasZvmXjIuwChQnU/ZdQbyV9F3d4/WYchvaJ8znWrEziX03Ni1lwEAmnqcKlGi\nJ8Ov5S0X9Qgy42KeyQc9g+aOdbZgaw8RL9oZrNYqxBFhuSYDSSN0zPiQa/GrkF1FsQWAuVm0hv/c\nXQeAnlu5pQzFW8lwYMqIQmTM7WcVlKMWGuP/J0/SgOVTDm8KPHfjfU/gnvsqel37sSRwPEGc9Vtt\nkJnxt8ZHxFo9Y2QUM2JJL/pXRnl/73F3pCmhqrgS4Ho054eihO6+5vFB1TkN001LWtKSlrSkJS1p\nSUta0pKWtBx2OWI8o0ZmKPe4/OiQyM3/zBNnqtpyeFYQuh3k5mGGscMqikd05qJNAICRKxdjeE4n\nAMDaqFkDV0QdmHzZNgDAuvcm9CpD8Yj2KncTWQEz57aga2Xe917vQ5ERp9YAAMp3FcJS/92GyKq3\nJ0FiXm9jz/7vPRzyxB2PYkk5WQJTvbneiQnsmU/EGlN+f5MKJQ1GjH3KEOJAYAZZavcc/4LqGX3k\nsfOhP42sl8+e8Dx+vu0iAECWjSxjdXXZ4CxksYxLAvRZVEZS5AHmRS32dKFGIqtZLMzgSvokJAbj\nHT6iDY0d1KBmcxxn5lHev3f2Ho2tdzECqT9oVqg4IxkaflotGt/S0mIIKblf7247GgDBIe0s/xou\no+/4sHk8+EUELUm8lAOBObmjo6JAD/PsdutUmG48gxEYJQEuzmC3CR56RugRy05C56dv4eIc5R8D\nIOtkRLPJ4iqE6F5diEfSQe1VneIVnfDQDchh+bMesp4C9wzGElJP7XJa9g68A7LYpsJvDQGtv6M3\n9yCwmjxsua52dHtoHobyGBnCzsMDT2i8NImalG8DgBm/uB5ZeqprONsMjjkLlXydACCbRQg6aoM7\nW4nuPpnQobmBvKjjh61BdzF5HmrHlyFjPfWhaMhBD0P9RvOisNrIU2FiyeMCERNE5t3IdQTgjbD8\nZklBJZAyCKLqPVUkltRBn5IqoNRF73tm6NdYVD8HANC5KAvtx+XQd+VxiLGxIrvp3YWxTBQto3K9\nJRr24KbcL7DzZaq0aOSw+2vK1at41Z725WN5Ed1rq9u3hX94OZ7BhgGg8pVSAEDcDaz+huo84ag6\nmM8h71Hk3Zx+y1Bg2alS9tQN2HbtowCAmy56H4+9ceb3Wu9DEXGrs8+1F9+eh7uvqzroska9uETt\nwyMdsjsYD+5d+RTucAXGqGRGCplfYnoUmMAufpLR3+OHTZbc/C4A4IlHz1GvlaxcjD1zXwQA2M1R\nNV3L0gCtJ0P1XYjksvlqkDB70RYAwGefTkLLFvKSy0MjcLLUZXqWj9pjCqoERiY+oUJweU6GT6R7\nJJlDZ4IWObsQVaG8ClGORYjDJtA6ZeHjank3ZjQCDKP0tC8f9dfR/uYAeZpa5jgRzqEybDVApT/7\nkNrrx/aIKuILUnsdyIMkJXlsaCoEACwuXYcXF7G86iKPygJGoPhKACPtNJbnHsfOq83DVKJEf9gE\ngXlGY3rt+1uiThhYKpjqYBZMzAOrhGXoOEklteuKWlFkoxR5nTENmqv8CygeUZKpv6L6lO7UvPKi\nUUDHJKrzGTO24U2cpP4Wt7PUd4G+6Vwm378E993xEgDykv5Y3lHzgjbg38qaLyPOYMvNLPWeeyeH\njmHkrb79tnfwpzfO71OGZJIA/5HvNzTUmvq9XpkIDer5I2OWAQgVsAH17tB+f7d8bUNwGFuk2CBM\nVQJ/aHn6dmI49Io0MT7nR6GmjZSG1NTsd245Hw8f/QYAYB16K6P7k66VedhxM4NN9AODPVwSLk7A\nw3JAfVdFFAD0ASA0h8qTd5ExwdTxnYsdtLA9Dm8sIRjcukgx/AFa1O0piYBdm/UQTtcmvII2ctlo\ncz13zzz1N0sLB3+h9o7xlxEcr3zpOCQ+IgjNNZ1XYEJREwBgdxttglyEh8wW+MYON9wOKru7xwpd\nMy3m1XoPeMYShyBt3CFehr6T/q4zZUJmsJWRQ5rw6HqKizA7o72UUEWuPvNzAMAMaxVuBf2eujgk\nbTKW7SFI7wM5W2Dqpne31dAhpGLB41jBIJf34Wp4yBaD1uMFKGGCxm4OwRHUkIYOWmyTdhkYwnKc\nNlmAMjog8M1WCMU0HpJ+IzgGT5YNEnQKxNdFZen8Al6Z8wyrKY+yJ6n+rtYUuFWMxy9K6RvvnXMe\nAGCYofcA+3gDwbYyemQECukd3W1OlJ5EkOqqpmw44/QxwRRdwTuS2lyIympuSE7UoM2cqCmtXWNZ\nflUL4Kqi+hm9A0B+OSDjl3UAgJUln6mX5159Db3PKqPzaGVtk2EcSVpooNMCV5VWhsTGwcf1pPRc\nOGYj1t9BcNXfx87GiVNpXHaOE2AnmwU8/2mD0UdjtHWmEYEElRGQaRXjAjqE7DQ/cvN6oGMHD7M+\ngZ4wXY9xOjKgACrMNxIywGwli53ZkMDPR1CfPNA1AZ2LaJ2svC5bDUFIZCWQlUeQz55dNNa8JRzs\njX3b7K/NJyPI5putQYa5jV56UxPFjPqTRty3gOKN/vK3C/s8/0NINJPqsPPGx1H8HmPRNkhws/Yw\n9shIWqmNtjfl4cQSgoytys09qHz1E56+GQBBdm88wiC734f8VCC7g6lTVXxgZce53oSX7qT+GzpJ\nwgl/vON7q9tgROG0GDK+FWdaKwEAD2dqbL/21RZgLv0tSjx0bGN8rYWguY8WvwVDN43n3LEtaI3S\nxnrM8btQ/xAZYBLbTGg7kdZXOYsmwh541PhyjpMxxk1GGbOQgMT4uUWZQ4gx4MZ0OjU3pcK42hG3\nI8rYuWOSrhcU+JpGgmo2Xl/U55sjuTISObTgtESdsLF8m4cq9mkdvSCyh1v4HfvnTbFNJeeIGDTB\nZaVvbY1pxqMZhXVY1Uw8A3Vn2DHiLdqTN44mron/HfsB7tlMBgpR1MCv3WGzlk9aFFTmdZs5htYQ\nY01mxklJ5tAT0wxrbWyc5JgCCLBcoyHRgNeLvwQAtCTpLHDleUuQgd7QcADgRBmerfQtQ/Y5jsZd\nLCsFS5/On9kF6f1M9ff7H7oCADD6nofwwa8fBACc8fs7+2m571fKrtiFkVYyxpb781EL7VBh+Jj6\nIzXMK7GFFNMFU+rxp37Kqz376f3CXJUYUuDIhPA+0HLKoO478tXttKQlLWlJS1rSkpa0pCUtaUnL\nf50cMZ5Ra5Nm7QrNII+RdW1v6JKtnjE3nkwWoG6HC0KQ7/UbQGRIqZDQODMOGXyHVjd/qYjGBFlc\n7vj6AvYSAc4dfZsvXmvHyTMPDeJX8s/rAQB7BiAJ+kFlCjWOaZsT62rJoxt3yTB4D977vPnex3vl\nGk22MaKCHLKeRQtkuLbo+31WZk3KSWD5Ir+bXHE5EWt8GaKA+Of/cTqkCVQP0ajlhkuVhB3gMigg\nv7WBIFVLjvsKD9gpeN4QABzryUs03nYpyqf9EwAwERojsvMbE+q/IWIdgcWlDzu+Ce0rCD464pS9\nKmxWKJCVtJgwbbH0qVPMaUY0mzWGz4Bb5tI3PbbleLg2Kza2/lmLX3mVPLp331qF2FzysF304J0q\nXSknAcK3ZL38Q2mp+hznZHlWN12CP5b9GwDQPj+G7OVk3cxdIcA7UskRCrjyqGypgtpLOKob3kZi\ntB01sRFZJvKS1joyEFpOsC6jACRm0XOxqB5JiRrhkRNfBQDMNHUgSyCP3Yw7roeLDYhgPg9bM/1t\n6BTwh+2nAgC+PO2vAIBivQ1/TWkD5VvOuXktXv8nY9iTOVRUUl9Ya3UIHEuN7llGXuCe0XoIEbK8\ndh8tAgZ6n2AWkeFiLMcJHTpnURsoDMf+iAmdVlpw+IQO8VxaC6aV1WBLE73PYY326xFtu4qgaLr1\ndlhalB97VJIgfU4A4KmvzI4ookHqi0iY/v1DzjbMbyCCoNF/B75cQh5vUwIIj6L1y1LZBcc28hxz\nkgc9pfSso461Z0AEWD9Y9sgAT98nm82whaJqnRVCpFA+y6eoB2IORjhSFMI5b94OABj5TBtCpeQZ\nNfTwiI9lrJkyh84WtjBnUhvFggZk7GRu5xxtPO9aVgrPCUTMFGrNVefKh5tpnXrv5EcxwUDvfva8\nZvjeyUd/Ipo0aLq+H2jXYCQ4jP5ds5As7euiJui95N23jvFD0tH45xOySnr3zxnP4LkOgionRoWh\nr+gfkguQB7Q/z2fZUzeoZEbQnOb9Styp5bmMFsVgqmNep2Ja0+yuMAJeqoOxtm8Ywo8hqZDdpFOC\nzvfTs5P/rYYghOECGZamffZNGbhwA83z3bNfwdGLCKrwzb/Hg5HK/mDiPKcZp2cT0c/SDdNxt32+\nWqf+ROAlJBmtrJ+xpRbrbUha2Hr4QQFyLtwNAGiL2OErpnvzv/QhnEtzOphJ88BnllUYvqHeiFUm\nWjfE3BhGDiHvUWV9LngvbfycDBiG0fpa4qFzXiypQ4WXnjs9fzvOsBOs9DlfcS+PqGykegQLaWwL\nJUGUZJHrtzXLju5AKobt4GXDxLdwQ/Z0AMCK9w8PKWPCwUIfBgHT/GYSoUNGr75c9R5/2jAaZw+n\nsfbapqkwD6G2FUMaUZzlZdqnH7p6HrKc9LtNH0fVTtqvdAEeIut7z/i9WFK4EgAwydiKmgQdJFqT\n1O9feMdgkouY7gOiCR/Wkie2zWBXParrjn5bffeV52mIg6RVQRcJ8A1nuU/bJXASvdvE9T5vy/s0\nSbGrC74LaX/ZUz4Erl3UBpf84Q4svmU5AODpXz6Ca/9EDOVxJwvFGp7EEycRpPfvjSeijJEAJmQB\nK94gpNHVi5djE4PDra4qgfvrvutm+CRqu9vyPlXfAVBoCQAIMRmSTsk2wMihMjhYWhhZpnhoB97R\nz9zQyzt6pMlzhasxehAo0SNGGU0VuYkO+pEcDZKVKuKndLjBxDj2XPo0AGDUy0vUDSBplSGwFBO6\ncO9YK0Xi7DCeHB9E+bHPAQCMnB5jnqCDQGpc6lVzvlLhC85N2iAMDaFBZN3LIZJNfztHHzjLtWkm\nU6ZbnLDUakqZsUubXdbZdGAMrfYg7mZwhJ6DUwwZGR2E6P7ve/u6hxBmWuBC6WokK5XY3IN73y3N\nNHH/nv9Nr+vOCvouPyNCk61xKMxpAOArYwmQdwnwHUWKg6FFj4SbxagwPKirXBuugVkRmMx0r/5z\nJyTWLXxMe69vehTv7SWIZnM7Lbj5Z7UiS0+bY+e2ocg4dy8AoPtfQ9TnQsVJWCxUdox1yX0rz4Wr\nn0OD7gsXSrezBTVP7sWYeMfNBNd+q3UKAKD+rRHgaWhjx+YicEX0fdYmXoUFB4tEOCtpU/WNpN+d\nVTyMKYezZ3IJmpThCiIBc586xR3amFeI62ZvOxfGlTToQwUyjF1sfoQ4Nb3KPVkVeB/HAwCyP2KJ\nw4eZMf4osuycWVaOj2uoj927ZRWO2j2WQ2InQU24LCosQ59UDzsNXw5D3hm0IUYTOoRYGqCsbTJC\naxljcKeMrol0/Syroo1bMeOO69XvSpgZY2+3doqSS8K4unQtADowAcCH4d6xC1KU2pOHjKyt1Pei\nwYBYFo27hEOG1E7PtJxA1zK/4dA1kY3L3TqV6TqSI8OvJ4XpuKI9+HovGRRaWun75agAQxFjz9tk\ngyzQg+XVozGKxWKnptKZe/U16Dia7pEqqLP4BMF9AeCMYbtwj4e+b3vciF8aaayZjXG1DJFBZi+u\nPQHtcwgSFMnm4KpQNjygq4wlpm81g/eT4mzf3gF/IRkGgkypTFp4mKfR+tT2TS4ydlEbmLqSkHLp\nMGeu7oKzkr4xY70G+a4/n8riNtlQ+C/a0INjstA0V8nrI+GSMUT3/tqKWeBYnDEcCfZuGXFn3y1J\n75fhYxBh0Q2IZbTpu1dSfc53XIuvZtJm/GHZW5jqJDZzg0+GdzpLMbXOACHKmIFFDt6ZbKFgcc/Q\nybDm0wQv87Sp6Wjq/lmi1qPnmARqT3sWAJCQabzc8OebcPRCgj1+Wz0M+tlUN+sKq7p+Xvu3W5E4\njox9Ot3+2Zr3Hbv9ya5r9w/XNaSsFaY6I6LMCGhiiqd5mg8PzCaDzy3NV6lK4I8N/03I1DY1C546\nIqG6B5IgM7IliyWoFoMUw4F5JSkAi4bOwb35HwEALgqMh5/xDzjWmhFjKEPjgY8RqkjG3vueIkrq\nqmJTCPd7lPSvIwAAIABJREFUtgIAlkozsHojwfqd3f2X5zBohblYarO9ySB+u+B1AMCf/nEJti0n\n465jVju4Y2l/qBrixMiXaZxXXEdz09ApwLhXOzOxrFIwWeOoXU8hWZxdgmShvcRSr0PWClr8Goto\nbXXvjqH9WCoj68K1+EcH7VE112pphBIZJnSXKocA+sdmjqFiKykQhWNb0NNB7X/gGda/TPzmYmw+\nhtqgDIemjO66/nE13AQAnrjiSQDAkpe0fe7y878AQPtx6r0HkuJlFC4wamQzggla18o8bZhlp/Xp\no82zkTTRdYO2fcBWT/ttx7+zMelqUvR39eTAwc4hurAMo5/WzuT7Ofj1tEUAgEiuCGMeS+vjpVbN\nyvNh3igKD7nQ5lOZcz+vL8X26UsBADviEVz3C1qjbdAs7/4iZjRzchi6oBYAkPilR2XXN3K9HRj2\n+t7fv/2TUpV3QjZKAJhxYijw4t/JAHP2rx9UIbsnPkWs5ZYGHe6vOgMA0FqXiV16MmbyAR1c7Ltf\n+ftpSJ5GSsGvj1mOoll0Pv/CT8r2KHMreGYsv+S1W6Go+uFcDpZW7bwyYzHFOX3yH+LpEPJDMK2g\nuTJK37+xZDDQ27nbST/506Uv45f/XHTA+49E+emZH9OSlrSkJS1pSUta0pKWtKQlLT95OSI9o3su\nI0tt6Qu9raP559YBAJr/VQQAcG424L7JZJmwNHEwz6fgeBsnI/ihlgeNxcP38hAuuZRy3z335OmY\n9jW51LmTuhEpZJASr2aF+WDvODw6+TUAwF2rr1GvW/eSxcY3NqlCdjdOfhNH/5FZMgaIN4+uIc9u\nX7AWydhHb8CCiyjp7+9ufuuAkN1IHiMZaREgmskKs+icL7GhpwgAUPXxCCSPJou9botWqXnnbwAA\nlBksGPUVBXvrt1kP2ULxn+dZrr97vwFDb8A4qxPSR/S9jiqlZM02GXeSRxQAArPDcH3NWkUGTjud\nPEIfvkw5+lwLmuD9N0FHMlxBdDPik9GXVGJ3B3mE+M+diDGyQl2TEaF1DBLKuCVaeCcca8jLEi6Q\n4W+hMlIzPLm26WA8g+XNMpEJ8bwJW/D69nnYV2JOzQO9L1vyQ48Sm653EvPOQPNUOvb038qKVxQg\nj+i+4hst4mcjvwUAvPX0if2WYfADvilUf+e3NPgVTw8AGLs4RJkHkxeB5BiyTp5frTHVdY9hUM3x\n3Th3B42N43OroA/0xQgauzmIzMEUHUOW9JPzd8NdSF6zR9afhC1t1G+hnW5klWvPmjrpbyEho/rC\nJ3t9R8nSJfCkvEfPYLO+ETyc1fR3boYfwwzkyZv0W1ovrrxpufqMaOYBRk70RXspYi5q37hLUlmq\nTGO98LfRvMhdSb9HXRw86+nvnjEaiZBUb8fCUvLunWTfjs0d5FGPtdII0oc4CDVUli4EhIqZJ6w4\n2scjCgDNc3QqU7ciBr+M2CyarxX+HOg9VI814ZGIuhj8Mq5HMkHXExFaqzZsHInRq2gNbJqfq8K9\nh33ZqrLYxt0mmPwakYd9L8s5alTYe3n42bwyhwDnFrIAJz12GBsZS+W8XBx7FaEfFIbK4fYuVFQQ\nVKv0fi0ewrazE8O9dN1faMKHxbReC7kRmNeRJbhguUY41XIK864mtX5PWjhgPZVh9slAGz3nHUuW\naJclhq1xqvNv95wOcQqDMHxhw6QRZD6vWaflpztm4Vas2DOKvttE3794+td45XOC0u75RCP98I2W\nYRlGfV/L4PgAMPrNGwEATgB7XqWy9AWAtUnzAhl76BvGXL5LZQMOFir2+v7ljleuGvA3xXMZY9b/\nmhRIbyxLhLGz/5J1gd7X22sycdv6qwFQXQbyiCZLaQDpKi0HJF3a8R3JYQBg7Es3ATg8ZEaiWYaQ\ny+pcO9BOfHDCMYR52cR6NFUR43N/7Vb+yji03rEKAIW0THiI5Ye0HNgjOuNK8qxYhRg+f3YGAMBf\nmoRrW9+j3FfzHgYAFOpsUPwOnEmEsaYvxDAwS+s/oy6pEhiNYZDFs7depZLYcEnA0kYf1lXuQem0\nOgDATr22i5Y+RWt/xS0mGLz0PiEOSEXaexREjrFLUNfA3A0xBIbQZhJl+3jrDCOuPJfCGr7yjkLb\nbUX0PDSUgb/QgCjb42Meum5dlQUj+1TjXTbg5j6ffVAS3ZiBnkk0J/b1cA5WTtl1Rq//p3pEFVnX\nQ2On9L0TIDN4rBAeGKU2/HNaM0zNNAZacjUIrk9vxukWOvjeMlxSPfVDPxMRKKZ11F5LfeXZHMRX\nKwhOmcyLYdz5hOTZXj5MPaM1nySBizKCvrwwol10lhLsdG52/sWG++ZQtoI/75XRczy9u/qEF/DX\nbvJ0L330FEiMEDBppjqE8niEihibfoDHjgraV+0z9cjYPbiwt3GnVGBnO+0f26cvxXArtUsqpPac\nP96JMZdTPmAzO3sE5oYxLoPGeVubC+61NP74M7sg7dYIkXQfEbru8Y8WIMIIun52Ce3pf9x6KrCH\ntWcD0M1QVZwlCX2ADohJK3C0rQEAsImRRhU5u1EFCo8a9fKSAc/eCgx3IC9p61ry5t7WdBHeXkTz\n/rKXfz5AaYdXBkuqdEQqo4oyd911HyNfTxCQ+5deoiqhsxfRYXDV65MRZfi5UIEM+VM6cCXNqSBQ\nqJTkJRMbUbmTBkF1NIUVjU1Q+fMMKMeQ2JwAjKtoUnf7LXig7jQAlGIGIHbfqIcGcyrr7Kfh/mMh\nB5JwoZYiwdJA5cTGRbDAuZFd7T8WMFXuOukDAMBfl52FLy8lCMIQnQ1jXztRfYehqi8E4KOPSHmM\nnKxXN5qB5M3r/sL+6gsL3VfGPnaDBhP9KEtltFViY+QUFttYhgyDjykFpoS6eQdnh/HGipkAAIG1\nc11VDs69eh0A4P2qcbDX0NStaB8FfQoRm8A2tlTl0NSu/GtW41JlAdDX0Pdkn9fQ6xum59QBAI62\n0vUxxia8MIfiRcyrtMXe6AOMrP6+UhE7zqP0MKnMtq5NWh9GPTQWR55ai+r3CWakiwKBYfSNamoV\npBhRUiBYzqE+vLybGA731xMWB20C51xDCv3SXVNU1ueEHUi6adwJfh2GZJLysKm2EKYRSmoTqmey\n2o22SfR3pc2HiecSBKfq0THqu6RZPljfo4OIzHDIlqPjeGzrXACAY6sBsWOp0RVjCQC0zkvAtoM+\n8hc/e0e9fk4Vsa95Nvc+yflY3ZzVErwl9LfYY8cpY6lzH/LR/U/sOhaZJvo9buMBBud2G8OoY/aS\n047djL1h2lwCCSPClfR3hLGkikbAxlh7uWERJHbR95XNqlPZHhctuwGWJnqPi21sPWNkmDtYGfN6\nwAdpI6qc87L6HVPuWwKOZXHKX5VE51EMpsviSXrGSTCU0xjb2mPCb2w07j59bTqcPpo4IZkDx+Dr\nRhsNEKHKDtlIY61geSs6Z9F6WHFjNmQWr6OL6LH3RLqet0ZU40f9R9F6aOqWwbGY0axtUQTG0XX3\nz+vVlCpCDFj5GjVkoIzadk9PIUqfblO/UcwkhVzoCkLfTOMrs9mHpgwGZSwRESihb6m8jk6Ro55q\nhy4kq+2viC4io6eMxuvv5r6Gu74l1mTLFhrRZ87ZDgvDKd46/Av8vYate7Bhx+ekKJohwzue2iAm\nCRBZqiT3ZhqX9525Ez1zSSlZWTcV/lKqm2s7j00XakrouEdoXktFLAVNGY/8Ura47JO2ZeGNFNt9\ne0YNio8huK/7Gz0i/Wd3AQDESyKQ4lQ3U0P/a7+xnX6/r2Osdm0ARVQ0ytDtc5A1duxPHdZEx2Jb\nh8xpxN5V/bPcA8D2ax/DpG8GVqIPVg4HRDd7dAe6Nh9aqo8DSfWKYhhY1+1raFLkD3WnAwDmjP4Q\n4Xwal6I7CdfG/e/3H68heJ865oB+FVEAmPveLwAAl89Zjfs9OwAAtxzzBZ5oOo3dkRJSMvFTiDIz\n7hjC8BhoQy1k2rEk8XA9TnPa2OlDsJj+DhaHUWKnNaStyI7a8+jwXvwOHQByPteDk1g4xzgOVgvN\n02CtEznbWBjBZd3w1tH66x1hgJ8h440MRpw3rxF7wtRX214bh9xYX/KPzC1+NV7V0kjjO+aWMW7W\nHgBA+INsdZ3c35nKPIW+N/JtZr+/z3yGWJBvuvj9AcvoTwyT6Bzb8FXhfu+LuyQ1/cd1Cz5BgFm6\nX39n7oDP1Jz0PACgbA+tTUGvBXozKXCcQ8b8CoKoWlp5BEvout6fgKmjb/zW8HeYEfRqM94pIYfN\n1Ddv1rJdADDkkfKa/4QBYAaBzgm079fNl8EzFv1YxIrnZlAs5sM9RXhuKXE75O+OoHs0fRfL4gOZ\nh5pOr+CrJEydSt2iqGMEuK8H3AO2AQBsahgKqZM2jhFvXA9Tp6LaaXXnJKhMtwvvpLPR7VsuwPoW\n6hdFEQXQi5lX0nEIFrLzfjMHFlKNT9roHGT7cp/ztZ4+bERBB6R8+i7vWwV4+FWC0yocIImdmh5i\n7OTUs/K+MliFzthgPGKU0IOVNEw3LWlJS1rSkpa0pCUtaUlLWtJy2IWTZfmAtIKVlZW44YYbsHjx\nYixcuBAtLS341a9+hWQyCZ1OhwcffBAejwfLli3DSy+9BJ7nceGFF+KCCy7Yb7kTbv1bn2uBERLs\n1ZqO7BtLFuj+mGsBglwBwJdrxquMY6bO3vcMlsgnVVKht9KJPbhw+GYAQJ6egpgfffzcAZ/1H0Mv\nMu/af6j81LPLseG98X2uJ20ydEGyppx/8Vd4+/Xj+txjmE5mw/i6DKy/kbhDp/3jdpX4KCnyiK3t\na92LFLAcjplRVB5HVqt/eIdioYOC3I95+fYUKKYm/eVAHYidWNYBYy4iKMSupWX938Qk7upNFuUd\nR/09cVwtQonecKL2dwqx+V6qRypbb6pIeqi5DL1T4ipLnwKLHX/5dpS/Mq7Pcxt+/SjGvkIwMWsD\nh/GXkwfw/CyCxJ5lDateEf3gcvjuV3xTo3Bu2P/4COcwS1wbh0dup+/+2forYP364FkBY07y4iqi\ntLMxI4KSbJowO7cXwlFBJj9zF1nuwh4eoakErdpz/Av4mDG33vnk1SqjbfcYDi4aPuicRHUuO7oe\nzW8U0beOlFF9MUFwS19YAnMr8xye4EWIQVhqTnoez/nIa/bsb7Vk7ANJO3FCwTbch61TCUI//m/U\nP7YmCXEbvSOWwUGcTC55UeSQjNF4yP7MAOviZgCUO63NSyZJKyPFiTs42PbS90Uu8EFkMOdwox1T\nJlOyz9YHRyDAkp+FjiWLsnGTDcFR5A45/ahyTLETEcOWUCE+f5M82pk7kuDElGWXTbeGUxjRkieq\n+iyq5r6I43ecDQBoWVOA3HU0uBsvTcJgYuzUPuoTLiwgcwsjIjJxyP2arPGi1QBdB7VBrNCNaCZ5\nYmUecG3UPCwAkMh3ovoCsg7bh/jh72Gsq9Y4DAZ6X6Y1DN3vMlg7UVnW3dqiK5sNCBeSJ7l7jA7B\n4cwLHxAw6hl6X9e0bHSfxvLHvURtaK7pRtvxOWrdFAkNAYpnEkKhoduNZBX11bCpRD52Tt4W3MgY\nHOeUL8DeNrKgW3aYECqmd5ubdOp65RuThLWW3hkeQuvh8cfswFc15JKZMKQJFR8RrPfmy9/D9S7K\nFzx18wVIvk8hB0qu67Hn7Mb6SvIYD83vhv8DcnnzCRk9E6jsb878G7Yyxrw7H7xWzVn7XSU6JIGy\nEqpb9eph4JMHX65kkMHHD/xctIi8SkVDqJ9bVxeoKAchwuHic1cCAF7/11yIxkNjKv6piBKeM5Ak\nTvJB2kReOuMAJEFTF9N5Yl1zEeIsz6Ckk2Fp3n/Z4XzNO9Of+MaIGFFG61p9B5VrXWVT84yePXcD\nlteQR920QnPDJOxAZBzNx8yMII7NJfbdeU7yqC759Ar13tJnQvCOYetlawJtU2j9sTdKMHXTmDe2\nacQ0oSLyonZOEBAdRmujpcqATMacvXeBCJmhMbiIAL2XZ3ViKKKxTahmOd1LHtQgm5JZBz6iIcsU\nqVvAQib8HMJDmIfqrSiqrqQ5PxDi4EiQQ4X/pkrMI4JzUTvb7FFEd5DXufhdDT7WPtkGMyMCbCE+\nRBR9mETrNEZw5ANs8wm62r45B+Z26p9QgaSSg1qaOUSOo30l0Uz7pnO4lsYi1x7A9UNWAgB+89hi\n5K3ZP220pKd+r7mJA9dIntahXyTQsJj6uCS3Ax1v9PUsK6A+TibiPgCI5CVhamVIwywR7h3ahtJ9\nNMuJ3kX7rRDhVMjuvvJ/d74AAPifB6+Er0R7z8cXEQLxL+0U2rT+2Yn9Ph93chh7NjFPX+D5FpvD\nRMeusB1/9Mxs+EZTfdw7eITyD34NT5ZEoNtzYMTid5VYXgLGlsEhPz+/8s84awuFgoQ3a3pI5W9u\nG/CZAyqj4XAY1113HYqKilBaWoqFCxfi7rvvxnHHHYf58+dj6dKlaGpqwk033YQFCxbg7bffhl6v\nx/nnn49XX30VLpdrwLL7U0ZTxTcpprHXckCMFeWZRXkPGhszobfRpEu2m8GJ1JGZo7oQ/3hwyYmj\nWX2VV4DiRzkW1HDJ8G9xZwYtzkc9SAuFf0wCzm1axygKqOMbTcFI7D9HMaIeCaaOvs7pyOgoeObm\n3zP3RRQv/xkAwFJNC4VlVifCX2cN5vP6iP1YOgzm23xwGqjOG94bP6DCvq8SmqocD6SM2s9uQeC9\nvMFViIeawiVpA3QpcFsFFmFrYPEFFsA0lzorufzQvj/n/Hrs2UyQM3s1j0Axg8fWcr0UXe5Ugut8\nPJEgMNmCtRf09ocS74QEJo6uAwBs20AwXnsdj3tvIfbL/3t8Ifi++28fOe9aSir9ztMn9P8epoxy\nJhEzR9HYrnimDCN/Rgtn7T8ojiHq4uFaQAfevR1uZH1AAyWSyasKa8LCQR/uvYwkLBwiHuo3R72E\n6EVkcQhUucAX0KFHb0iCX0eHtvHn7MK2ZWS4sDcemOL8tv8lBfTBylPUhNviyxrsLpJJ8yrmJuMO\nAMw4dge2vUaGCNEAFR5nHe6Dx0YWhvjjNG5D2byqJMYdHGJH0eHKUG6BjoU9JexAtIQmTGEenTob\nqnJw03EU3/TUjtkYwRT9yk2FyNxCBUYzOJhYPGHXUTIkdniXWfoYLsaj6lyKmXs35MJdGwiWarNF\n4X6KFpWG07R1w11MB4Bw1AjdBjokDn239YBtCADQMyNfgtqwa3oO2o+jA58jK4QQMz4osFYAsLvD\naqLu4qX0HtFtheBjDSP17j/JQRtlx2QHcla0YV8R3XSQEXpC2HsmGSR0KeMpYeNwySJimHxu60xc\nP5Hi7Tb6aGN36iPY3k39puclnJxLhrC3647GmcPIqLSsbjy4j/rCvETG0BwokmCvY2NmRgAPszQJ\np1piOHcPxYpXdmZjTDZ978Za7VAkd1Mbmdp5YCLBEwszelCxm+KkTz9mK/KNNP7ffvyE/Sqjqald\n4i4JBu/A4KVornbgkvQy+MT3o+QCwFnnrFGZMD/+8Bh1b02V2fPJELx6+VEYP68CAFD+WekRq4wm\n8+OQGbO2vrt/qPJ9572J+9+5cL/lWBVFcIBlKuEA9P0w+KdKf+nmJCONQ0BjoD8U0c2nNWeEm/7d\n1ZGD04eRUvnWJ7Ogi7CwmA6o/ArGbmDSImJSXVE5CmMK6YyVYyIFYl3TMMT3kJI39IsERAPVr6dU\np4bcZO6MQxKYUsnScYhmXg0/iFu1NbV7nAxjN5URyReh99DaYTQmEGZrDt9A60bJtHpUf01zXYH/\n7ivRPIsK+WybTOcyfYiM3QAptorSsr851Z/IOsbCnWLsSVUa11zzkArf/a5yxyX/wiuNFJaxcty7\nh6SYxnJEdWzKBgkci4vXNxiR/zWt8/WXiLBto708xrI1mNs52Jrp3qSRg7+YpfXigWi+ZlBUmI95\nVxxinO7RtdHZVCqIwr6BcXLkyZBZjPCQl/XQ++ms3jXeosZcZm+hvUaISurvbdPssDfS+2JOAa7d\ndCi0/6UFta9qsf/9STRDOSvKsJGtEpKeA5/Q1iQ/C+e2MaOSd2JchcfzYu+1S1Fuze3a9e6JoprK\njl/ed0/xFwNiHhnvauY9r4ZT3O/ZgTeDNPFdPJ0n/lg7Hw3ltHe5KrhDUkYPl0hGGXysb/3iRXQG\nMtQdmKd6f8roAWelwWDAM888g+xs7aB333334ZRTKK7L7XbD6/Vi69atGD9+POx2O0wmEyZNmoRN\nmzYdsHJpSUta0pKWtKQlLWlJS1rSkpb//2RQMF0AePTRR+F2u7Fw4UL1miiKuOKKK3DjjTeis7MT\n5eXluOeeewAADz/8MPLy8nDRRRcNWOaBPKMA4GcubMfu/i2ZSr7QB698HjetpLrxQR1cI8hToeYk\nZaLAv7gUq6aPkWM4d2lQ4OAwSSXyMI30YUQGecp2t5FSvnrGkzijnKAr0Y/6J0I4kGd0X3HMIa9B\ne4UHtiIymfq7rfjdrH8DAC6zUx3OqToFVR+T1yw6JgLTzsG76FXCJF7G0CKynM7IrsWyfxNZEL8P\ncdkH1/8ZAHDGk5STKdWbu69nVGGNHT9yLxrfGD6o+vhnRFQSoZgnCQg0HHX2BGyrB2Y59I+S4Kg8\nNOuxYi01eAH/TLLcyT0GLJhJDKFfPjcdoTlkjXtoMiVoPt0SRJdE9y6quhBt/xo26Pelwm0PJFcs\nWY6XniDCAe8E6gzXtoMjxRqMJBjSV9IDc88mo1Fz2IkhFvLgrHuS8qh1TU/CVknvtzX17woIZ/Ow\ntPf9LZJF/RMYLpHXCMQwOm4RWen/OuQjHLuO2AStH9uINRUaRHh/4r6GYJv/M+x93HYvMZv6i+gd\njjpJ/VsyABPnkaesOeREfR0hJgzOGIRymqCuPRIMjBhIsdzHnIJahqVNhrmLft97XhLwUXu4y3l0\nT2IMgCH2Pk8cednUhmPcbVj1ObETOvZodeeTgLmT5qGs49Ayg7HiZjCIW0YE7net6ncWWGiiVf2v\nRhrVPkUP0UTjKp7J2LT36jBp/k4AQPcVGf22WyLfCUmgugrRJOpvpTKOKiDv9+aGoeDZfMya0qbm\n94xVOVT2S2FEEIk61nbkEIOrOgZ9D1lIudDg4iGaziAvaMEHmhd3150E6XFv0tbiuJODcTatVWWZ\n7TjeTd57kdlS/9UyERW1ZF3Oze9R8ySekrNTTVS+tqYY+hqy3FqaAf9I+hhHlTYng0X076knfYvb\nPCsAAPVJBz71kzd9dyAHLSHacHoCtDZJIg9BxxACcR0MbC2WDIB+Ao2DcMgI52rNavx9wXR/aIkN\np3401piQOYP6qGutxlI//ywik7sicw0ueuF29foR5xktJi+E2GZWIcncINAlA0kih63LByAbGoz0\nQQMxIjtb/XcfI/ETad1I7nKo555jTyiHXU/9+tVzUxHJZR7MkghcDmon785McIwJfUIBQX43VhXB\nZKd5pdtgVxFU4QIZw98m76ms4yFznPo3AIhGHl3jGXKgU0ZwCAvRmBhALMhQbwkORjcVKAgShrpp\n3lSWE4LJUc2DZ4zoWVvD4OOs8w68TSDuoflo6Iig6hcMglr5w0Eak4z9dl/SsMFKtDCOW2d8DgDI\n1flw/9JLev0GHBhmnHBKKmePEOVU+L5nSxLBPNprrG0SQjmMELCW2jOSJcBVQf0uCxziLuahjkto\nmUF/x12ymj85MiSJuRNpb/1PNWFYHatN6hiI5GhnxPz/BBDJpXZPWHiIBrpHGQ/8VC+ynqI9z9il\n7R+Tnt6Ktb+k8JYZf9qAZW9QZoWEVVZzyyvrjbOCh8JLmprb82DEO1qGs1Lx7h9SEQA076u5ncND\nNzwDABiq82H+x0QuVDKSkAeflb3fK5OFeGDn4hEru695/IBES/vzjB4ym64oirjrrrswffp0zJgx\nA++/35tdbDA6rsLQZW0aeOIqSqh8Yg8iu0iL+PIywmu/6Z+Al58ihq5fP3IVnCnPidX9wziVAeYf\nxZTcSqGXEqqIrT5F0Wl0ocZA746NZAnvN1yLvxxFisovP7oaa+4mOuVpj/x80LGpkhHqgnrHJf/C\nGgZKnzirCddmfQUAONqoxU2OfpZYBhN2GXoWr3MwiigATJtAp2KrEMeqlRSv+n4wTz1o7ivz3iL4\nyYTTKE5u8/ZiDORQ58LUV41vDEdoKOvbRk5Nvm2upUVUF4GaCoQXZJgZcu+k+Vsxx0kHzd/uOB3e\nCXRTf2yBh6qIAr1jVK026qy5o7fjyxema9dX02H710aKXzxr2j9x/k4ydmRbAugLNhxYBlJCL7+e\naMFfefJUxBja46Un5mPqIoon+nQHKR8559YflPI7GFGgsL5iHtV+miuZphDuyiE45AIdKaO5KwR0\njae+TNh4uCv6rtCWdgmtx4vq/Ypc+DMNWhlh8JlwgkdLmGbq/7SeiBEeUjKajPZBKaGKdD9LSsZ1\nFyxUUyQ56licaw6vQrIgA1tbifY83GXBYye8AgD49d+vUqFyCTOHQCEpmM5qphB6RXi20N8Rjw7e\nETQGuU4eQz+j6/XnSJgxjuZTkp32drbnormG2rNggk+FToaGALYG1o5WqHGbBp8MUxdTwjvoHe7d\nJjSyLEKznS345tdT+ny/Z0sSnePpfj5O/0YKklizieDVw0ZIMFeT8SqR40DSRu/zDtersaQN890Y\nkklYpmNcdQCArqgVZSNpdJ/k2oEH9pzC2tQEUzWLTeUlleE5yuBWuo0xBIcTRLhnlAuF7xwYJpyq\nhAJA3cW5cOcquS00ZdrgkyF/SErqS795HUsDZPx7qf5YAEB3yILHjiMY++mWKBqSdLo/4T83w8GU\nQGliEpZm7V2Sgfoikk39Zm6XYehhbI5GLxLMKrG0cwYuyKQUWCc6dmBrhObhR20EvWoL2CCxeOIk\nJyM+lg70o/Pb8PwI2h9O/X1vCF+MGQ+MXYNjtVVEiaHTBw4P76CxRjsZKUpofCQZ5HT1JrxfSftH\n49CJdKXZAAAgAElEQVT9s1z+6MJStwgAEi5q+6dOfgEnWzTLa/F716p/63v23y8cMz74pkXhXP/d\nTo9bbn0ME/9yEysYeO4Cguff/PcbBmTiHawYvqAFzgAgxsK2NrQUQi9oKVFuv+A9AMC1zmaMWUP7\nm2eTjBYnzfWAh7GeRgTIzLienBqAaTn9x9zKYe9JZKBx1Eqq0mvqYXF53VFIOiorOJRT4Y5XjF2F\n8SaK87636hw0NdN8z8r24/ICMnI8FqN3B5pzAGao7JhshT7AlI/qCITQwGk/2qc7kL1Og/XmZZFm\n1MrL0O8++HQ+g4nnPFQlVBFTgwFPNZAx2jOrBdEipoDWGVA7/1kAwM9bpuCbDtr/Wio9fZi0RYsE\njsFnhRhgr6X26hyrQ+GnZDjoGm9D1hZaq3wl1BbBoRycjPuBE2U0nEzlZmzXIcrSB/JRDlEW3mJp\n1GElKLTGXUBt653OQWZs4Flrdcgs1ywt5lZaOxIjrKrRV0k/Jq92oWUm1bPofaBrHI2vdXceg0gu\n7W8dcTssxxInSmeXHfoGFkKSTWOAFw29WNgPJPf8YikA4I4vL0bGZqozJ303JVQRSwt9YMIG3PY8\npXEzdck4+1pyePznaWKjH5txA6xMYedFGd3T6FuMjUduXPP+JDGchWDVHLzB55B3tV/96lcYNmwY\nbrqJFtLs7Gx0dmrBl+3t7b2gvWlJS1rSkpa0pCUtaUlLWtKSlrQockie0WXLlkGv1+OWW25Rrx11\n1FG499574ff7IQgCNm3apEJ2DyTBYVJvT2SKmE4jwp3oR9ngWb7J0zaSFdNpjiKSrQVfp4q/hMwb\njj08wnkMJtmi3cNnkmm/8PxW7OkgT0bEb4JzM1kkcv8fe+8ZJ0WZtQ9fVZ27p9PkwAyTGBhyjiII\nKCAoijmxoKKCumZ9dP2vuuvqmjOoqOsaERMgOQdhCJIGEIZhmJxjz3RO9X44d1V1TwKMz/N7+3yZ\nnurqukPd6ZxznetcWYriPLI+eeP8MB9lnhPGsJtznWzVP/z4Ioi5q4LK7pOahwrvAbRjSYG/zVyD\nr6uHAQAEgcPgFDLxrHZq8eiHlMNNfK7C1bX1TYQu8CG5Kf9zxxu4ZR8xWx1d1UcunxG7pF5UhuJ9\nBIkJqgU8MJ3yS62uHYA1vdeEPb/3jq5zwAla0aSkgKFcrqMEZ2KXnEkCCm4lC/DVRVNQczlZVnd+\nNgyJt5GZyFFmgoWROPS8jgh2Sr/KCivPNpolcx62Bf9959Iu69Wd5DMm1nVODdb0JA+UsViuu3Iz\necQfSx+MaC2Z8Q6XpaKLdFDnJZWMkcsVB+jq5ev7PmHMbIPISnZJ/Al8Ctkz+vaDbwMA7nn1nl9U\nri03AO0uaqO5OIjCCjIanVYI2BJD8GqRCEDdJiDmqOg27xrtoDaJA062OD8RSxjOJyYXYFw+sU97\nvklAwwEaazPuPoq9NTTHHD0EaJnHOqCishW+rssTPfmtNUa0t3G7YwWpqkEVwPtp5tw2eqeUAPzF\nYj/qBzK2vWgOQTa5Wnsya/AJ2TwqcIA9Q/ZmNQ6gcVl82SIsrCRv+tr9DI6b3AZLClnjH0zegJuy\nqX2pnyvRkk1rSEADOAZQPXp8p0RAw2C6jKHVa1bAxBjFm8bKzMmuWKUE720YoIS5iHloWP5VTu+H\nJY8WALeVg2cYvdeWXjzSvyJvp7ZKhZMLaL7tnfkSRm28DwCwuIohSQSg+CRBXnenpUP/CY3R7Co3\neC+948JoIzRsDRLJL8qnmdHzG1oTm3MS0TCWWHFbMzkYS+meuJ3t8ASMPKl8BpXNBdClTL6DvCVL\n7XH45wpiad96AyFkvm/rh7XNgwAAyxuV2L2cPpua5fETCvsFgKy+5CYt20N5p7NvPoXTn1FO0oej\nC5D9A8GJjs98G8vsdM8zO2bhsymUR9icTGtBrc+M78uoPJ4PwlVA/dUvtxqjVtEz2vsNz9cjKsrv\n7hHl0N0UBwDwFeSt4r0cEmNpwh7d2Pv3rddvKKoW6vt7lt2OPuOI6Xplr3UonvU+AGDmqek4tTu9\n22cILnkstc+hfb6i4Hi05TISlxYlUhXkSfq1XtH2ohEBBxstEKbKFL93mGkerHTo4SuixgicgJh9\n1MZTQUKVZPauRq6Z5u/uD4fCa2L7R4kfrWl0r9IdhMpOk7g1jaGa7Ao4U2idStgjh0nNMxegJUhr\n2cCYKlQVEr4yw9KIf/9MaIxYRirXbBBgYGQ0zovt8DOSNkuhAAfLd6pt9ELBCHDcSbQjhHpF/WYN\nohgkKtCmQleBL8OmUZjDgXV9O3z3a1luuxNvNPWRuomXcpLW70qC6Hc/cdci6d6LzcfwehKx/GNg\nx3qpWhTwMxSFwHNoy2D7iimIIINPxxy1w5nCQgrYcE7dKA/i6rFGpA2g0I3yYBJSCOSE5hwewRHU\nr4E4Dv8ZRt7Fe/OvBwDsuuhNTH2DQrocKYAjmd5V2nr52aYiOR2BO55a6IxVSog1Z7IOMcdoHpRP\nMULNftrs1SExiv7JtjRgL5cOADh0EfXNpLwHYSzFOYuKYfU5L4dWFlU2efwR1I+gMXX4cCa0yYzY\nsNgIdQaV7XaoYd0d7oJ1JHMwVMmLp9LN4NrtUJIrDtLZTsT9CHw4aVLxNPJ+Z353p8T2+39FHqoe\nCu5XbFFnVUaPHTuGF154AZWVlVAqlVi/fj0aGxuh0Whwyy23AACysrLw9NNP46GHHsJtt90GjuNw\n9913w2js/sguusPVjTLLWuhmaO8ZROsZwpfETG0A1rMD0xba8JOvK4C9juBD3JQmCJvoFbf2DqBX\nLk2k2tNpCIasPMmzSwAAVd+lAwDKkAmvyGBXwsM2iO0C3/fEpw++AQC449X7QipNfw7s7wV+JIu3\nSl2JKSymUhUS/3E20Y9rQEMZtaV3/gIUzFssfTf558sBADWbe5z7AxGuhLr7kcv8prz5UB+lBXr0\nLGLM27NiIPbMeQUA8N/WvnhHQQrC32d8g6XVhNGP1cqNEdl0uxswlsPU0V6LTLetkZm+Jbgurwog\n6yuKFXxq+jd46jgpKroo4MMfL6R7QqASMRpaEEoBtAykBcSSrwTHU/+HKqKHnlwkpX2xXFmJlu9T\nuqkxpbUBgNd/mAlBinXiJLptYxEtCBs+HItDT9CiF8gOYnierAjaGOTbfOr8Fo/xLJ3OmsDoTr+3\nHKH+/PTItLDrnSmhtt4BmAvOrXxdoh1BBSkkAQ0kBWbJY29gmIYOEe+V0guoGw7E/9T5c2rHUH8l\n5HHgCkSliUFRdeEGkyeyyajxSNKtePUvHwIAPqsbg2vTCZJ8KDoVpcdIGYj+C8WD2j5IRePldOgX\nSgyIze94Uk7c0XH188b7oStlip82CHMUzQOr0oHMDWSUicpRwmdkUPJqwFDdMYgs+vESAEDl7mwI\nUSzGs0mB3MsLpHueT6LYwpGTzgAAnj0wAz0T6OR3w6a7wDPoetmlAmIPUHm2RCBtKV1vzlHCzYxs\n4oHWY+ak2JeiZ3LRMIjaonABOgY+4QKAI1mOkQWAuCMKtGSxg4eRYi0Bio8r+Du976BdhTcmE6Q1\nXmGAsp6eHVSJBjteinVvc0TD5KB2i6lhAMB4xgRtM0t7w1iLo2dWIriBfugbYodiAs3ZWE5Ai5PW\naF+iGbZMOnzE7q6FI8sitQUA1C7AZqN1KjTkAgA0jEL6uWPTkDmc4H1N7BS1vakXTi+jseNKFGBg\nSui0O3dh3Xvj0Jlcn0xwqY0TqZ43xu/B06Bn/OA0SQnYVzoSMFhTLv3u0VNXAwDe70OHsHq1AbcP\nopjrmflz8ebVpKzeuma+lE7Ab+CgdPw5cZTuBD+0tdRPxpFk8Wrb1znT/Ik7ZCbfrkRkYr3vuhV4\n46tZv2FN/3g5uYsCu3J2LcANM4iheVXOWrBhgJyPOze8imEj/ijAFyXO3e7hmQEtkP+wrFD02jYX\nAKUiUtfR83ymIC7dR2WeL/hXNL5r6/kuWe5FSTHTDaueXAqfQJPvg6oLpTjVgAZQuahdFmZ8L7da\nUN5A8zWtwIO6IVTDqvE80tbTvq6ud8HP4gwdLBZQ4dWCdzPG6lROUrJrA34wmyO2l2Uhfi/9s9+Q\ngfhtLKTAxEKjhnhhLGaHuONGab2onGiQzpDaBi1i8mmN0FbLaWXEFDR+PYchBtJ2Siu7DnnZv5lg\np38MEF4WdZNcovdgR9h7qMJ54q5FuKKQFPaCzVnSPiaOwbiDQbSl0v4S0AJ+FtKVuAfg/fLBymWl\ne0TFDwDqh9Ia7jUD9i/JEKG3cmijYxLc8UEE2lgMcJQXlX6qq72afndf2SzJQKNpAgzVsoXRaxbT\nxsiWFm2dm/0FakfSD52xCijcVIYzy4sgg6y6AyocL2DnYQ6ITqJxPOLHOwHgvB0ES+tGASAjnxg2\n9s+kTdjPMO1//zwbTUaqR/RpoMlIe1MoE7d3GtWB/6nrrCGhIsKnRXH19EHXIJ+qd7np/SRl16Ox\nMRH/l2T1qtHYfSsZiC88/ch5//6symj//v3x6aefntPDpk2bhmnTpp39xohEJCIRiUhEIhKRiEQk\nIhGJyP+v5RcTGP0WIlq1lG4ZKhDK5po8oFZKIu4ujUXs5eTtLK0iy8Wpr2R4kOgVBQBTgQKVyWRb\nV0LOUwnIHlFRnEkCVIw5DiVGaCS4oRrzXyePqKNnEAETWXiUTUqp7vUusgY1BRXwWs7NQgoAwjCC\nOcToHWhQMzrgbNmf/1JT1nl7REVx9yUvkPZnHYomUcJe0asJAFtOUJ/pAVywSCbWEMOl3yicBPdu\n8kCvuXcRhh0Iz7nWVW5UQE7IHTWoES1F9D40zTxsI6lPR2SXAACq7GY4GCHG09ZZeHLCSgDAK5/N\nhrUHWZqEdXKi3A/TfgQAZI7sDcs+GR7RL5Xlm4XM3PtIjZx8+GxeUVufAD54+zKqMwDZPQ/oyxl0\nknmJFC5IeUYH3HRMus9n6Noj6hhH48qwy9Dp91cYyCL5TBeJ0c9FWhiU942Jn+Opgrnn9Btnkx4a\n1i7eL8/DhwqvRQVLlC76ThL71iH4U8fYb0ciDyUjknDGc7CeDI/6HzT/aNj/AYbPMhcF8fhr5J3U\nNgex6wJyQ4wfchJORiaDD8gMWzM+iP+O/AQA8E32COzPH3ZO7YMAmU3QxSHHSh6hM644qHTUX9E/\n86iYxJKgt3RkLKgZo0TpKbKgczoByWvo3uoJASxJX8Xu0uGYl8bji8cuAQAoi7QobqE1izd7oWUW\nfVdvDzyMFASCgG0fEsNer08XwG+mtUVQ0jhStwKxR+iaz6iQLN+xR2TvbUAnQ95ae7J8fYmANZNc\np02VFokc7b4JG9DAzNVfHBmB+zYTUckjVjfUNka0MIC8CSPHFmHnFiKmScoLQH9axPcBpVfTnBXh\nuAAgME+661Q8yi6ltkYvD8JcSIVXjzeJBNkomaFFNBEpw9vDAsNJqquhgOpQOzEenKKjB9Gv5/B5\n3hgAwA2j96DaQ2v7TiflnMuvSEHfqwnKX/alvBZ05RVtHuHDpQYinnrnjSsBAB/doEL6jXRtnz0T\n8VnU7uuNzbi8kHkAVUHsGvgdewpB3Ha4g7Dy5CV6OfdrtATIen79BXn4toXKN1T+Mq/ob5E7VPSK\nAl17REU5m1c0VD4uGQNPBq3rmuLzYA35XypfriZEzpe4EFyWo9t7RbI5TTOgtHf/fmy5DDVzInyP\nEJniFz+6GNe0EcEJn2+Cz0N7xfl6Rk2naQ3wmQCBFdUV7L1yGaP6fBJ4qZHgqCcqE6Fky3xUfpBy\ngoLIwwCgpUULfRmNpYqJMhmbuo2DutElPbt6DNXcnUiFxxwDxH01qATs2bT+piv1uOgY5U/GT2bU\njaL79YVqNA5kSA+GJFHWq2AtoPXJehLwMQ9ba5oSLX3FcxcPRxr1aVSR7OkLMveryi6g1n1239lv\nmav395TlvdYDADJO3w5lYzjoWF/tgbqV3pWg5CTvIwA09aON31DjD/OIAkDFZCMUownKJhyxSucC\nV7wAFRvnQbWAUTkEbz9ak4TFxZRzXsxDnL8lB55E2qd8vXzg8midNJYA4Ome6nFGxB2mOilDCKhM\npfQ7v46D+lHaY2JdejQ301lQr/RCw9Yzb0wQLS00V/RHRbIcAbYcRm51Sn6PrRNcMG2nex58cBme\n3ELjLv8H8oLrHPJciVcYME1HY+3BVCB6TwiREEPiqVvleAbuR/KIeoc5YY2mc311YRysxzo/I1vz\nGev+pdTPGo8K4ukTAG7eTF5eda0S/zdGYrjEKzo/656L/KnKqAif9VgArcx9JMHWwBRRAHjktmV4\n9R1SjIS+DDIX8r7bsgIwFdIqHFQDyq3tgV4ktv40+M3HqPBTcxdj8PO0CT/910/w0F6KR/L09YN3\ns4Fj8cF8sP2Gy6Eylcq4Mu8uKNLZxC4/+4LHHSAFtBwm3HbDFgBAtqYWz9TTxrBs6cSzPiNUxM3H\nleyHnrHrBoaEB7G4+tDkT04gqErLqc4hAO/0+xKfJY6V/j8wjJK/DwwQxbh2b9fMiX6DfOji4thB\nJacNT2duAwC8dXoSAIoLKQSVbzC7cJuZFp63mwHbGXq+CYCtL60QYryhOUQRtfUNIImxWAoKivEF\ngDVfj0F3PGRj5h3ExkKKm10wcCcUk6jOi9ZODYsVVbHziC2VHSZCUgsd/bx/h/s6E39j10cK+9gQ\nKFE/vwSHSr3mDMq/Dk+L8/z9H+Lx12+T7x8isxOLUN7Hi+d22+5Q4dy8BCf3WDlp/DStT0ZcNe1A\nIvW68Gl82KIoxSf6AV09fdNZWhfRgAAALzT2wvLnJwMAxj60DxuWMlhyMzBuMEGVfzyYiwT2nNpp\n1L4ZucfxwAsEW8u65RRarqTOtnzf/YLHeXloG5minAzsPk39aTC64bVTL3EP1iFQRHGNCpcAdwx1\ngpPR3StcgMJG7yR+n5ymxlTAwczLTHG3rKb6iYdNrxkA29hSP1eidQEpNcsGfoyb9z0EABgwoVAy\nEAkxQWhr2MGBdbTAUxJwAFC4AS/TIarHKpG0m9Y+TZOc1koUcwGPlhjqm0uGHkVeVbr0nYKdLAwm\nN7zltG55oUX8SapsnZ4OctuDvRCIpTJqhynh18azdrfBfEZ+z6aPaR3Zm08M4D02cIg9Sr9LfuQ0\nDvxIRq+gKghTFt2r9ivQlk2NzEiqkox5FY20ofd83QlXXDjcGwCUTgGWo9RH646MkxKRH6mjeRgF\nCrc4V+HsSjxdQ3TFtgtoXTxSlIq7RhCDeZKqGRNzTkj39zdRXN0TE1bjk1YaMy+fpN9rlAHcnb0N\nALC8doh0SPy+0QxvLPWtofKXxf78XgdjT6YbaKF5oGnq/NDkNQehtnUNVrTtjUfojsgPJCNiML/z\nfff/kghF3a8vonFI0xz+fsQ0Kboa+frr0whV9sPIIRIEL1Ehr/391DrcnEOQ8Q9qJ8JQfG5jJaCj\nNUoUKc2FFlCxUMmWASyk5Wjnx7zcdxdKMZK9k2txIkh7Mn9ABS4YbkCJ36WQIJ6uOB5BttnEHnbC\nmUr9JXAcXEwJ7ZlDe7qwJh5+MR6yVYUPpnwEgGJlW1y0P2qbBLhE9GUQMBUx49R0OkMYD2jhSqR7\nFZ4gvEbqI2O5Hy196LMrHtJBSODpDKar90LXwFJvuQPw+M//uDti+jHsX9v/7Deeh4jxn780BjX0\nd1oAgjL8XflMKnhN1Be8T0BLDr0fyykHoo/Txu+O1aLgTho0UQX0Mnkv0FZK81cjyBkPBIUAdxy9\nQ87P4afdzKFRw6FtPIOV9iKDb+O+BCRto3XDML8B9XyqVC+lnaVEOs2HKaGi6GrlAe14hxwJrUN4\niM1TckH4s2i95qs1COiojSNnU+jZyZZ44PsE6RltDI1t3CHv168UTJF8DtnTyYBZ/kUmWnKpkA9t\niVj0Ohko22dmNBTRWUvTIsBjYelr+lOdgzY13Nup7HPhFufX0F1CDzmcRm0ToLVQ+4SqX85KcnI+\nja+c/y6QUln9UXK21C7dyR8NjY9IRCISkYhEJCIRiUhEIhKRiETkz/WMijmZQuEkXpNsedTWc2gb\nSZaH464ejLVWlgx+PpJ7kufh9tQD+LBwBgDAmSiEQXND5eoRxMayKpqsXRmr5sMyhXCST785B8F+\nZE3MyalC7Qpiwrx3wWo86yM4p8iqCwDanbL1ws8oPZ3j7NDvam9T6Vq+/HKS9NnVgzrixD1vYOjb\nMmmS6UJisWvdkYDOROy/hyeuxaJPqZ4nL/gUFzCPIgAcmEQMrKHQ3M7ktiX3SiRHvT9ccM55s9yx\ngLGYeZILY2G9lFzdzW16vPZmONS3EHIO2NmZR/BcA/OiqAFtrWwfEYkPquvIcxI7ox6+1eQmOjP7\nPQlCbJhRg3V9iAF4WQ8z/vbdjQCAr697HfNeIkbLpGtKAAB17ihc1/cAAOCzJVPRmkvve8zYk9iT\nQPAl8x7ZoykymrX1FGDsIhG5+O6VssEb9jQBgkGEVXa0dn895j2A+RYOX/YGJh4nr1np8swOFqJE\nRWvY/5ZYsm7a3GZoWmRoZ3fiSBGkfL5KOy8xuPkMHJw9qZ6hZEANw2RLqAh50dgEicGVn1MH2zbZ\nux5UMk/qWYbL7ldGIiokW3lBE3neEnZxaOzPftxCc2xdYS7iGBS4cGlvqKVulH/vMXMSFEvXwBgE\ndQE0D6dJwXkUMJpoDWltNGDW4MMAgLVrRiCKQeq3fbgIKx30Eh9YNQcAcPfFG7DkBMEs1Zu0cMVS\nnULRGO/bkmEoo0q1DCZLb+I2BdRtdK1uqAKuBlojbvvbAwDjODi+OQfuVOrzuJ7NMKjJE1y5nwgj\nzGdkOG7FLT4oKsmy64+SLeAeK6BlDMwcy+lsqAmiheV423C0H2YPJmKdAdpy/POvxMj97aLXcbN6\nLgCg6WQMakcwGBvrC69HAWUUtUVdqEI9Q71XTzQg+hDdc+bmRMzSE2HTyzNepWdNV0LLFqL6gA6L\nmcXcL/A41Uhz9q4+P2J5NTHPPt9jJfa6GWnafmJi9Fr8CLCk8ZDRwXDHcBKjoiBwcCczOFcf6rfC\niR/jyTqCFm+q6o3mQ1SeQeYdCpOBg4tRaqcwAqGJmf+1QUyJIgzx/Bfuw8f/8xoAYOqJq3GqkN7L\nusPjEH8tkWvZy8kt7XLx+FcrEahd3OskBr7CiN4cAjCY+sOv56B0dsNEPaQZ3kOd29MTxpFXdlv/\n5RKM1jKa9oOWPZ3vB2eT4VmlZ2XA7c4r2pnkxlOdjnegnjp3+f5GGktXfvHgL37GHyEifDHUO8lP\nb8ANaRS+sWzpRGk9fuzTuQBo7m5V0BjtMaAGHjmqCNFKWs8VbXzYHtKZiAR+xZe/LxH1gQcyriAv\nz7GKZGjrmCdI03nCRDGcRl/F4dAqQmNdfd12DLPS2N7x2Vjw7EzhSKJxEHfIDaWNPJUqpwHaesas\nPV+FmF2MjK2fgItHHwEA7K6kvTSlyglFG62B7rggJuvkw15bI3nszBoOAoPnJ+90oHgWIzEzU2cE\noYUzjurhTFTA3ZPmfe+3XMj6huWgHGKQwi14xsJeNlUDRpiKjG8dKCim/ep8IND71/bH1FmUZ3j9\nipHn8cvO5VxylZ6vGIfSYmnfR+cqhScoEfI5kjRoS2MQboN8LjVW+KW88Il51M+uJ1vRJ4oQDj//\n0BtBho7SNHHSvu7t60LQT//w5VooV9OmVj2Y+j7nBzsKbqPxZ9iQih55MkKP99E9oR7QUGkYSPXz\nxHBwslymChckpNGeogwIPrYumQMwHqO1uySNJlObWyOxJLf1JNRje8n4Yb6UU9SWxZh8EznoK6hN\no3XFWNThV7Tva1poXPm1nPTZp6bKRR2WR5UzgUOvybQ/FtbFQb+J2hXQcOC99Ls2BuTRNHJwD6b+\n9xbpEGsk9FdjCB2TNzYAdUPHM6SYK5v3cvBnU58+M3yl9P0f7RX9tfKnKqM+E4MEWvxQH6aB5e3r\nQtFFFOv4RO1AzDDT4fHu1+7BXQ8T9O/Kl4m5tvjxRfAIdHDqs+EuaRvUNnT9EipdNHm+GkExW1d/\n8QAOzVwKADg80IPBGlIQBj+/EPzFNMmfX30FzF2knhFF3EQ8QR72NAbjaQqvhye643URqsz7AF0F\nDbhQRdQ4vg6v9Sao7G077u22DgqEbz7N22VlYdbPNwGQ4buKQ13DAPasoDQVnQ2Om27YjM+/JMil\nxyqz5Qb0Apy51AnJMTaU1zG4rdGFQ0+GT+9ldjP+ZyMdQJeuuhB6piS5kwSoHOxzPMCn0ATTHaBN\nyzHGAy4EmhhcS4tvXU8Bg9bRAs97ZXhFvidFgiq56inu4Oqcw8hroI2yLTMoQbH3nM4A7LKhQYRA\nimO0feqh0LihzfcSg9ik/Xfg2Ghi2Rzy3EKgrGMsVcsAGq/iOAOA0Xl3SBsk30kO7ys3341Qrjan\nm+bKyMGFOHGKIMd8ILxOorRmUf0HDStC8TKKsTNUcvCw9gU1gL6UsTkaBKgcMkOuLHRt2AOH8HbK\nXgDAmIfvgjFkvPnZ+ceZ0HHuvbd9EoQLGUQtROF1JPIIeqnPjQBijrFD0q0UCzwqpgRfl5NCKPRw\nIZmlkqgojJeUQEdaAIKKbXLbWeJqpwIKlropaFfCdZJ6T2/jcDiV8GCWQqClt6wgPHmc4gKLrnsX\nADDxtvmIZwp2c44SrgS2ERmDsAVpXD6/fSZULLWJmDqkdmwQFtaO2df8iGfjKXY2s+0uJO+gjcsd\np0B8HlNiG2PRYGH1Zwph2XResl/otT44xbHCAc4EBunlASVjvHQkM8hQvAKJm+hz3QjglaSDUvue\nYQr7tFUP4pqx9A4zMnbjxf3EyugLMPi1IoiAnx38koNIH0DKUHFlLG69by0A4OW8qTjcRP24XU9Y\nqJuMsvY478RsPJa1DgBwwp2CggYyOPgEBV7M+gYA8Fr9RdhSRvHCulx6r811VsQdpD5yJCgkqBW7\neKwAACAASURBVKAIuRbFepgdfofK81Xs52fjjwKD6Vr25wsQxVJMiYcAAEgzNGF9EYsXqmbw7J4C\nbjlACjviOAxU04zsb6lCkYnWmYN//xi9PiNYtoXOGmjJFSC00nzc89EQKAW5HHFe2bMCsByVx714\nmBYPgwhRRGfOysOqFWOk/2t3kSKcu2shTtwZvo5mN82D6tT5JxdflrkZuSBl9O057+GeT+4872e0\nl2+yNlE9N+X84mf0U59/W85HTs1d3CVD7vmIgR1cbbkBRJUweP7uWHztI8vN8XsXIWf7X+jenQzy\n28BBxAfaipKRcGWl9LxFpyhe1R/nA8q6D7bgmCIw9cRM+WIwJO1Zprwmp6bQnCwXYuQYeptSiu8D\nIKXTyNLUYo6JDMij4i6E+TTt5TrG9Ktsk2n69WUOeGNofqya9BauKSZDatH1i/FCI+0xG9tofpVd\nqoXAqPG5kOOJPeiW4JJcUE654zOqMG86hS5traexVKWPRiuLvZ0zZhe++4ziFAWVB7yL9neFV0Dj\nAAZ3bKG5prIB/sGk6Lt6GMA5QuYgM2hpq+RTjifTA82Zjnu2qIQG+9lRMJ44DMblz0bT7vNnO/09\n0sP4A+FnE4U7AN5L/WUq8sNEdgo4k3XQV8mKoL6SzoDBp8kZ82NfWZGZONmIpvW09riSAlCxPjWb\nHHAxpddnALgg9XnsPrkOUQnU505neBxJ9TgqL2lXxzxIrZkGKVwooAGsx+m5fh0nOVvMI5tQdZBC\n92IG1cHLuCzKDhKkd/bFeVgVTSFmp+aGr5XifCm+bAkGnaR30PoNtc+fJUAxiKxH/6rsPEWgX8dh\n/0OUXUPDqTDsGVpH3hj2FQBg2ngPMn6g2O/og0qcyKMzZkAflFLPKTwCmkaEH/BMRSo4mQF5wITT\n+C57IwCgrp8DF35EjLSdKaIAcOovpGz3WbIQytO0du7K6RW2F5+PiPDePksWhn3u6p7zee653B+B\n6UYkIhGJSEQiEpGIRCQiEYlIRP5w+VM9o8n9CdqjUgRwxktWJk2RFnMyyVK480gfWC+QGWIyVOTz\ncvQgM1/OfxdI1gFtiWzRCujQJdzl56VksZvVn4g3zNWylXDuqw9IUODMawpR0kLuf21DR529LTMI\n45mO1zMTGhBk3qGqTanwM9iZ0slJHtFv7nwZAHD1ew936gkDyLoKEBPubTu794iKwnOyVX5hpZy7\n0msR0LiNLEq/No3uvuZ0COKoGdQKbCHrl9LOQcOswE8/9CkeWE55RO09tcAIuj1jxR0AgBXT34T5\nONVk5xOvYvxzBMvyJvmgP0iWYUe2F3Axz0csy5MV5US1lcrLWHkHrNPIAnRzz6NY/t5EqY6iJ3bI\nswvBs/xrXvas1e+Pl7zR5rC+1+L5Byn/5cKom2BksAtTUef2GtH7aMsJ4MI8auvJCzpPgaS5tI66\nK7YyjFRGKnm77KX2WAAPI3y4bAJByk/aElB7WM6Npt9J86AAfcKsSaEeUVHE+p/okRgGT2pmEMLE\nHbxEVuRI5iTPaKjkvfxup+0SpS2VhyODLM2ihRsAlraRx8dQpkBURUfIWP7DoXkNg2i8jKy2TXvJ\n0lmmSpGgxW63DpV1NMcT9gNu0VUsALOHE+x6XSmN+YS8IBovZ4Q95XIOMVePABo2kzU0tt6HjDuL\npLqYtCEJegHMfW0F+qjJQ/tc+QwU/0C4mmBPL75qIy/ElCHH8eNqgp2aSmkwCdPbcHD2Uuk5GStp\nzKucHDQLyMv4bNo2/PvfhFTQ13JoNbI2srzAVrMD9sPkye+R24KFA74HAPzt2BXQr6E5pm7j4baE\n5xltHMChJZtB5XXheVP1FbQgJmU58UICoU36fLAAqftpHFRMot/xPg7WfuQhqQ+YcIYRnSksXtxt\nIdxrcPRG/KeI+npFPbkh+6nXSN5+873AE1fNBQA4c90QnLRgfL5mKt4aMoUqpA4iOZks8k17qIyM\nDY3wxZIduS1VB0VIwnBnEiPLqpbH56pL3mSfZI/anRVjsP8jqhOtFB3H8+oT/WHeJc4GkYxGgdZs\nmlenF8hW9VeSDmLrEspH90TuQPitYr9SmywnOHS1qgZYEYImgFC7r7qaFqDOYFQvJR7CKozpcB0A\nslluSlUB9dGVs/Kw6lTn93Ynoay593xyJ4R+5KngjhvhZXAv9enf10vZmfwWXsvuZOhP10kke0rH\nr4ew5fSrQIGKMbZzAtKNMjvp8QuJqGdkF3u3m5HprHTo4SgmTJc+rQ3ohIauNYfmt+kUD/PPLATg\n5zTp+42Pv4SLnycvivEMj6FzKMxm60nyfnN2+ZhnLOLR0j98DAPAa29eizls33TFcbAeo3t4N/0N\nmNRQtMr5IUsup9/2U+swbuYR6foBG9Ur5zUG452jRtBIz5CQACDvkpjjWOkU4EtgoQpz/ZhnofV8\nOAsFeHPqFNjepOdWDbHAWkjPs/UywFDjk+rM+endeq3yO1ar6d6m3krkfEwQ1IJ7dHhh/NcAgKc+\nu0mq06Epb+PqAgr9qdguE++Iwh+PQu7x396z+WvlmgzK1f0NR+sety58DPmjqJ911S7JO9mWFcCZ\nq+h9f95Ge83kny/HZuYd3dZ/OXJttwAA1AKAJvqdWhlAUwp7n9oAYr+R82UDQNWFRrw7iELCxo3i\nkZ0wjypRpUX2MlpnGgdEIeYozRV7T1rLamZ4wTWKpGocXLEM0eIHjGU0/uu3JcPIUDI11mio2RQQ\nGMvtpnfHwDlCHqOhcqqMhTTkAkceoXaLoTnPvPwXzJ+5DQCw5I3LO/29YkITNBz148et8RJseZpe\nPjcUX0ZoyyznXbCcpBuaRvvhmUobmdulBlzUXxZ2zrWnCtCfpH1z1LAS6VntWWnXzn0RADD940c7\nrZ8oW9YMBebv6faeriTUeyl+9me7JK/ruXo4f6n8qcpoeSVL3yEAlmRykztsVuwrp4P3Z5e8i7tf\nu6fD70SYzOHHF+HCo8R85bUGJWZATRde6tacAAwsZQfnlw8HIptuaEzqd9kbJdd+VSAGybNL6DNL\nDSPGR7aXLFMDCmxyKgxp8wuJvbx8KcFaVHw4dCXsOVtoEmsRrph2JoNmEvPjy4cvljDz278bKn2v\nbuHkrCXsbJY17QyK1p07A6Uo3qAC1nHElFd/OAGBJMYgWC+3754jN0j1iAqJsyye9T4AYGHlRDz7\nIG3W4597UFIee++cg6CaJqm2Qo35VxPUb9ERguWUF8XBwp536Mn3pecOeXZhmAIaKiJkR3taVsW8\nIeFZWtITccn83TjoTAcAKKs1XRoJ2osxrRX8JvbAC+TrKx59EbNepIXDs4bGw4KHPse+TyiGFV2E\nn6jaADBo0etJpIzaElyYNoPSceQN+lZKMdOdtAylRVl/miWMbtGGKaPWI+LBQJDiILWNAuwp9E9U\nJQ1Me7I8znt9sgAbbnipQ1nG8iCiJ1EAY+UJOY7teiNpxy83hSsENZNlRclULH/nr6canplHBqaR\nTyxAyzTqC59TDZ6x27qtPPxTCF/GlZiQqiWlJhiymlmZ0tbSW0AUhULBmR2AbjzVqSI+GhOiyBj2\nVnNPjIknuvr+b1DfTrz6AD5qIojwjgHfY/wZgjKmXFqHm40lAIB3C8dLcRuiHBqxNOx/aFiKg3we\nm/8iw6Ceu5IWqff6f46VNpqrXx4bDgBoqjEjdSTNsSiVB/V+ZvDZbEGQHa7qh/BSbL2hUkzDAMT8\nTN9HLW3EpO9uBwDon6hExRR6RppGziN08vbFmLKVoKmClcGinAo0NNLBQ9GoktYtIUZeqFbcPRmB\n+0lpWZa5WWwo6gKy4dA3hN4bV61H2kam8E6ERM3vifPD/wWNFXOAGYziDagZSWMgdP55ojmJmXba\nzAPYsYSsW7f8m4xYrz+6GBeywb1x/0AJ0h53TTnqv+54qFSWdB41dvpGMroc97qwopUOdh+vniTB\n/p9LyMfawzTJW8bSAUNTpIWutvN4UFFxFhThqRdEJTSQy2IFT4RzDOyfT7GTI5aEx06KSqgoq1aM\nkaC755OWpb2IRrTc4ws7VUI90cEuWXdF6b/npm6/Px85NXcxMtYTe7iq+lw5ws8u9mPRv+mBp+b7\nnhh2LbGBF32Zg9oyppj2A1Rc92Zf224a+5cPcmLXRDo8fre+cyb4ESOojAIWktFe/mMbGMZbsCh1\nKwCgz890v/k0L0EdHakCLMc69kLbOBm+aS4OIGCimigY66nHooI+RBnt0Zs2zqfq++GJxPXsahR+\nOkAw3RyQ4hH3E1A7hRl8kmQPwVvNvaQ6qe0Crh1MCmi00oEkJc2HaMY6fPe+dBS+TXtCzo45MPSg\n+relB9HaTAf5oEaAnrEYtwyjeqoK1XBU0FqWs9kmla0tVeMx33VUJ4XMubGg9FJszP0BAJC7/ezz\n6WysuF4WfqHPaIX/kKXTe4ZMpbPbofW5Zy2vK5llIuPitxwZRrl2y5HIYlt5kRHxl1QAAEab6qXv\nv66hfaf0SDJAIcQY9dgCJFdRP9bf60RbAu0rvSz1aDhK5xlFrRJ17Jh56Swaw7UeEwqZY2mctg53\nDtoBABg7phCP7SVjU+OFXrT0pncs7p/KCg180SyMJVY+F/M+DinbaF9pGBIFLTvbm06o0DqA6mco\npLHqMwA3DacQlCKfHdc+RwaaA08tllO0TJX75XIDja9nABxoSwcAtGZBgjUDQNNoKqM4ZF9/7rur\ncOrvHeNRRbnhol343EQGzPQeDWhaRetCINcPYyLNiym303j/5uAwRO2n/eHD42NwMp36bmdRdtha\ntdHZMfzh/mp6b+2VxDmlF3Z6vTs5OX+R5CxS2BXSvn/6ov+gz2l6Rs6OOb8rlDYC041IRCISkYhE\nJCIRiUhEIhKRiPzh8qd6Rs2MtKgtIwibk6AqCh7w1pOZ78vGMbCxnIrmQ7LNMNSDuYNB2DAAGLCX\nWFSRZwnLwdWaw3JFptkgnCLo7dOTvwUAvHpSZnrd4w5gtFa2aNYuJxyAAkD52nTpM4Aw9Fdr7wBM\nBfTNNEs+1v1M5Dw6dJ4rLiqXvDO3Zufh3c9mdPjemebHnAHE4Pb1iQkdvm8vIy3k1TmyqnPrmm+g\nA88OWw4AeHwV5Qv1B8PtEE7G7qkv73xIiN+/kvENZn1Jnl1DOQc3y4Ho18v5zThOQMq1VKfKZRmS\nt/K+vxJ5yaKUPWEezNVO8lTot4d7CKIYTk/HoBDKXbowMqQrCsnMdejJRRi4j9qV344sycM8Km7m\nweU9PEyFrO0h7/DH2kyMjiuhdpVxsF9AVjONlqyKqi1meBmaVlDKkFjJK8okY+3trEM4FD/BvLXM\nk/ly9VQEptAPi312CXYeKj88JHtUwdK9mnkd3KvJkj5ktdxv3otsUIfk0w21jk8fQMyOPx4n06WY\nj1QS1vbWdB7ueDJDBqP8sP4Ufl9UVVBiKv302rdxxatUNz2CEnx3zMN3IVZHXp5yczTai8opSJDS\n/zzyGhb8jRF0TQd4v/wSbp+4TXoeAOjnVkPwMqvn7igpR3BbOgfeQ+P0+Rlf4rFtNIcTT8veu7qx\nLL+cnUfTaPodx0Firo0ZUo7dDYQMKDqWgrR1dH8s6N6dYzJxZOSXAIBTPge8USx3GgA9T3VqrjIj\niZEVbftwiVR2zidkAdZXcoiaRB7cvFc+lL7PWHM77h1NJB2fNFyANceJ2dtsJQtwq6BDgOGAeE7A\ny8cop6XBLaBmNMsf5+WkfHzqVqpDQC3Dbfv8LEBbTF7QwH0WTPqQchmu2zQcnhxq47in/or4CvIO\np39G47j8EgX8apYXsFleI/omVyHze/IO96msR24ctUvMnThOy2PuJIJ12fvGIsiIXXgBaMylMRV9\nXICPoY+iyhTwMwelmKu3coIWfi1LJi4AQRWbs35IBECbykZC3Q56e/+LC3CQWarPXPkecKX83VB0\nhH76LEGgMnz9u3D+fumz6HEFiAztYIgV3DGexjlfSZNNVytIEGJvdABRxSIRi7xGqNqAzuDCc/rS\nGv/5CZlRPfe9jkRF7cVrZu/nPBlvRTlx56IwT+rZvKpn84oCQODIr88vKrJf5ny8AKqz3NuZ/OOq\npXjypysAAHzp+XCm/jLhAkCyjjxuRQgh8xOCUHDd91koekuEzW8oGxt2j4uBTFq9clvE/S9j+R2S\nh/OLRVOlg9yhJxdhyHO0vlo6QV0ZyjuHJ7896gvpc2u6Am2p5CFP3EnrpcBz8FvIC6ls8aBuL3lw\nPs8245mJxEJ9c8lE6Kup3Z4XaZ5YHgUaZ9Db7B1fJ5WxvHKQxODd3IuT+mD4Uwtw0ROU+7Q/m//p\nP7gxezStgabNBjQOp/WLd8lnNU+SH7yPwd9bGIImPgjjmRAPtVJ+J6HERaIcWp+LjAzaE36L0aNu\npfJCvaLt2XR/jUcUAMABjxRfBQBw7idiIUePAAwsLKNhcBRiD9O7SNnahoIc8mpeMeYIinx0XcyN\nvCMVGH34agDA3hcWI2MNnWWKR36JjHX0WcMHEGSJP9UeTgopEsnynqwbgGd2EBngv5qUuHgyQYgf\niS5C2gPk4a8rS4Myi850ir0mVmeZTDK9fxUqd5M30VgsNzVpVwBtKfQ+lS4BBisd8jk/0yP6e7G5\nmjyI9oAG7mh5rK/6GyG6Bu2bj6WDaS/OVdMafuCpxVIIhKlPE1Akn2GKp8r7tijGUuCh6qFh7QYg\nZa/QqXwSIq22JAU6N+uvRgUcLlonvy0naFz0MR5eFqYTbXJi23GC1hdP/0DySALAq8uu6FCPdavo\nGX3awez2bWB5cefv6PCb7kRELnYG1wUAvuDcs4SEyrl6Z/9cNl3WNn0lD+cgGliGUzqIKt+PJ4dB\nkU6DPe3qMxKcNsCQRO/e9Tb2u2jxmGc+AYOGFk53iCI6ce4+bFpGLytjUCPOgAaayBx3/Nbd0kIY\nGvsz+PmFUmJnQRGeYFqUVhaPaCpQwDuBNLEv6kbD9JNWap+6hTFdJgahq6HJ5t1DdXh3T0dFFAD0\nZUp8U0ZK6LlEtrz/xaXd3qvW+KXYiGA69VHphvTwMrtQQkWJSqKF69pDt0PVKpcU6EMnyatyD2L1\n++MBAPw2C2beSQnkl16hQWkRLYAv/4cWurn3LcK+v70FAHigaixm6EnpfDKkvPz5b+G5BlKCFFs7\nh7iIDIJDsFB6c/enDsf2D+l9uxIFie1NTCYeUEE6F3rNQOrFpQCAWK0Da4sJo6LhAf0+FruWQe/Y\nDMA6gaCTjV2w6PV7eyEsTCF3jHN0+P74F32R/4R40IxC5jd3Ss92M8R6IOTMejY4rqsmCgHRGJDt\ngjGPJkbLEC/WHiBGZIun89+29mIFCQLi6UwMt0UNRyqDVB1n9VFxWF3aDwCwUugPLaM0F+niRalo\no3cUuniLaS4MCMI3hQ5toSzCotIpyhdfEEtz3DximqzOS8bSW14HAPxl4wMAY4FU2Tm4WQzwPz+4\nCYnt4lF9Bg4KxpyodPAImOhzTLINpSWsw3gB0Qn0sjgBqJhE4z9hHz3L+l4U+u+h+sce8aF1JJW9\nutcykEoKKBy8lEYgVHS1LAY3RYCajb+bSyai7AXaKFMX1uOonTbbkrZooJXKbm2mPuQ9HKqbqJ+u\nn3IA+0+wA5KWQyCVxfQd00ljMzGPyjXfUom2elIqm0fEw7qfDn9lf+eRxjDMp+YsBthR/6d/LMa7\nLVSPj16gWBm/1Q9lI33PBeX4K6dfjT6vy9Cu1rlU13+B5nTFZYkY/AkZQDwOP4RaGtBKlR8OHdNA\neR6BkdTnrgY9lK0sZIL1Uc7oYhw/QbBa6xEF/Hr2Dp0CbH2oHiNGFODgTtqwo0rkPh/6D1npdBDR\nLwpuXYz+f6GBfOy//ZBzSwEAYHHaKkxmqZREESHxANA8yivlKOJVciqKof9YAK2erntYvwTVnKSE\naFoUEuuyL8YP7VCCZKnXdp625fNvSQm99Zr1+OhrGT8mKoc+UxCq1o5KzdmU0LHT87F77cBu72kf\ntvFrJKgWfpM0Ap3FjJ4PA+7fv70ep5lC+1xDbzwRW9Dlc3+NtAwhZchySIUUDRllvJNtUG+mg2bu\nJ3dj5IQT5/Ss0BCT9uK10tgT9+pQCO97l/wHjx2bL/1/xZ3bABBTPboI/elM/vsoQcIHqrWYV0b7\nt8IlwBcV/j6bchXggjRfY/MVMDE2aX+VDhdE0yG8fn8CfClU5639VgAArn5zCoR9xM/xj7ErIKp5\nFafjpUjvn++W2x/7UyvmvU/KdFIeCxpXAs776AzhnspB2UxrmT/GD08sbXDqEOODwJRY42kF4g/L\nB7emvh0P0/OvXYcly6ZJ/2uLO7Lp/mI5y3t4/MZleP6La7u/6SwiKAQUb00PuxZQc1KcqKiIAoDX\nqpH2vA8Kx+INB60/fx9G0ORnD82A5hCt1QO2LET2HlJo86e4kZtBfAcDoyqwI4XOXS6VDmeuei+s\n7Gfjj+LZmcRs/lxDb2Rr6czU952FcPem92n9Ue7j5gvomqpMAy+DArcsS4GJnVuif7bDxyDjHjOP\n5pE09/SFavgYC62RpX8zH1ajxUjntjP6WKhY04f+Y4EEXVYCuF1LIU/VtbSHnbn4IwTaqL88x/TQ\nskWxJVdeHPu9tVAKlzvw1GIpJOXZhmEAgO/fuQhNwxhvRoMSMLExWCL3TVQZ4NcypvoU+dmuITRG\nffvjIfZMnyULpdCUrth0zyYi6/+5SCiD7vCLf8ZPG/v+ojJ/jURguhGJSEQiEpGIRCQiEYlIRCIS\nkT9c/lTPqMhq6jMJiGYQNZdBB2WIU+mZmcR69tLb10nXRC/l3K/vlsiMNszuiz2DCQY6eO1CvHgf\nwebu3DQPHLPWnfm6l/QMMcg3/4v+WM/wkPYxTiwaSXkiQ3NodiWm0yyZcBSwYxRZiKa89IiUVFrV\nykm5k96d8SEe+HB+h2f0mkbR0oXrsrovrJ2IjLacP5wESbTePNfQW8rTZdU4cdzHGPsKfxkhhKOc\nMKpiXj5RuDNkibptbB5Wgyyr9hEufFVJwdVRag8sR6myDpZ/NXPDbVCVUz301Rzw5N4O5ak4Bb5Y\nSd5hfQgx6I3FFwEABpkqJKICBDgom6iMFfmDJAITryUI80mqr5hk3B8lQNPM4I024JYUCrw38i4c\n/4ysQfZ0QWI+5pnlFYU6VJaTt8cyrAktTWRBtByQrXxionMAMOwyYHYKQYsW3E0Q6cXvhEMtzKfk\nvrz8it0A0Cl0tytJ61WLcg95aXsn16Ia6VSnQ2rJa9+ViBBM8xn5PmeSAGUfaoS7isaLtjkIxVfU\no3UjAQPzBIqeXAD46t8v44rDRDgiWuPMvA76GvnZYv7V7kRkzSspJHxayshaXL2bvKdDrynAiZXk\nEVOOa4KnhcadobJjO5sGBiEYaM5rM1ywfGtk9Y/GvZM3AADe3n4x1F/QoFD34qEbTrg54zAypxYU\nJ2HLFGKw+7B5DKabiDEyNoTlLuYIh6rLw9n7eu+cg6STZL21ngTazhAMaf9kBRQDaYwGfkpEXYDe\nmycugNhMWmicuwhmJSiBKy6hcbm+vi+SN9I4qbrYh0GpZKGuWZchQeTrh9JYjfep4Gfw5cYBHNrS\nqIxesUUwKckC3X/PTUgy0zvemPsDfmyhNdFUSuM8dncLTt1B/T9y1lHs2ENecfe/klA3m8a6o6cf\nj1+0CgBwh5nq81D1UNSy5LUlR5OlJPb9h5Qj/zSV4TMAHht5MKIS7HC10RgTGWrtXo3k0QbIIypK\nUEPvee+pDFjKunfrGYijA1lf3YW0/sSIHAq1vbxwNnrcQPivoydkVlIxN6SqVg2VjcqYc+PGMK+r\nWCeZrT28DpK3tkQJoHOPaHtp9hk6vR7Qd+4ZPZuczSvaHpb71I0ER3/mixvOuyzg902ufr5ezdD7\nP8akbu78FcLL7/xeK3neswfU4tnN5HExlHP4LH0b3fAk/e2zZCF8mbQ2xkTb4Vsdd9ZixL0rVLK3\nErGh+oQOfpZVYPF172Oyjta7/ntu6hbi7IkGQjjMpHy6APDTt4REstQF4PaEjzsuAAgjCd3S7DYj\naTt9Lp1lBliuaJ81CFU7r/03WZvQewfNf1WIq1Bh9YBLklnK3mpmbPFKHrp6apctg9YbQ40fHPOO\ncX7A2Jca0FxtgooRuiEgk0WKawgnQGIALrreBJW94zh9MPoMlnS4Chy4gxA5w96/v5Nvw8Wd4Tmr\nR1U8B2aslHOK/1qvKCDnnQ0VRxIPpZv2gaAqhMW72YO4f1A9yx4TEGAs509tIc+2wslDOY761qj1\noN5DGRgGqrV4PZPO4VcdnI+Z2YSA2Rkln1kzNxERXurXSrSm0nOTrilBkY7GucIHxG2isp0JHFxD\naAFVlJN/XFfLwdeDxoejB5D+A+3DdcOj0Mxyc0bv4cAp6B5PTBDqo3RWahrCcsbWKKHfxM5PN9bj\nf+6hde2lV69HG6X9RFQpsDCDUHuvfs/6/2LKDUoioIl5Xwdll0vt0zYJUm7RUAloqP/tOUHMHbUL\nALBykRxa59dz0p7RlgEosggtY9xM9WzNAgwG2ptbk5TQVMuz95d6REXZ5Ew4+00h8nsy5Z6L/KnK\nKM/OcZomDiljaHHLT7HCxA7prkQBT24lPDz6+2A+Ri/KFc9YJCvkiTgquiSMFVf8rEoWYB5AB01f\nYax0/8HlhKvWXNKAwAa6Pqt3PtbbaEHWNAOtw2mQiLBbgBLyAoAiBP745Z2vYvIrxNzFCcDg8YSN\nP766t8TU9lHt+E774HyVUFE4f8drzjT54udfTpY+V/2iEtgzsxgra1FHJTaolpnoLt23QFpkgw4l\nFvTcBgD490kZAmNgh8heF5SgcF/vTp83/HqipR/w2kKwjCPIvYkgT8Wt0TiymmIsjjtyYQll3JxE\nB+yoLXKiZfNJhQS1FtNECLw8ZlQz6vFWESm3tZVWsLBGBDSCtHGp8mR2yVF9yXCwNGNLubekYwAA\nIABJREFUpxDaoEpmARV4IMNA484ekMeP+Dt+agMOPdERnnUuTLmilBbHwZBOi1tpkxWaS6g8YUMM\noko7HmJtYuz0KYWkhPoMcjqXCy4+igFGOsm/fWY6AEDbDHjM1Bf9hhSj5jBL5myRx1qaMgqapXTw\n/n/JZOQ53pKE+U+SEv5ByTjp3r6LF8IcciipHU1lJ+yR34u1B60FjW0GBJvpBR5WpADRLIZwSzSM\nrHmcEERQyWjUGbIkIQ+oH8o2YxMHB2MI5uOc+LGJ5pvACeh/P22qRxuT0NDCNodCaoelmMfPE2hd\nWFnSH7VJLLYlZh/u3EAHQouJQ68eBIX9uJVgZEkfa+BMoLKtt5QjVk0D78wXvdA8gPosJbMBNheN\niYFxtah3UdkNLC4bmiAK2mgjsb/QA32fJtjTO/FbcOXWuwEAMVoOHBtraetoMSrPiILAoEuGCk4K\ng3A/GIsN46ndfiugupCU36xld+Hmi3ZSnV4juOHRlmRommguxWva8PyltKH/j+J6KNk4id+jwPMK\nCjH4ahmLX6x3oOh66jtOJcfKH96bDY7tMvpyAZZTDGKnN8PVm5533wWU6HtR/gQpXZYrEfCaGET+\nFAfeSI3NTGrAaRcdkqz53W/WCheHptUEQ75aOwX5lZTWJ2qbAYPm0rufM4YOEMU+O67sQwaHdXvH\nwsPG2gerp8DY/sHtxB1DbdU2do15Deg4VqeO9zyXkI/vQ6m4mWhrzr49jzj46w+0j28jqLUWgDuZ\n+llb9UuiNoGeE0pxZk/a2W/8PyzqGuobd5wcP35VVCueDblng5PusTBGWN4HoJEOD83VWoSaHHN2\nzAEggv+7l749yLhy1J4q8QBsaB2AoWoyZurUPnRyNJAkVBHd8vjLOMCMV1dvWQj0ob0+cV8ACnf4\n2PPrAa+d6m8NMRKZzghojKJ5byrjpTPTcge1MM+eDT1Lz/VizVScaiHl5ILMImTpCfY/89R0nDxA\nymiWwgl7mlgmlROT70TdSFp/nSlBcHbak5VGHwIlVI7azcGvp/VCNI4k7rTBnURGy0CCF5YClk6j\nx9mNJ+eihIqxn+cSXyqek9rHqrpZ2JS25NydBF5LUMoS0KkIQNUFLCzJIkhwYfNxIxLz6LyAwyak\nT6BwGLuH3quCD6I1j/axJ2/5DC83EgfLk3UDoGAej0CAx5YKcnLER8kQYOMB6oXya9xQVFHZBYfS\nUMj2gUDPAJwDWfxxixqKMnqHInzW1s8PeFlaMhXgjpVZ1ZV1MuS4pS/NkqBWwB03rgEALLAUAgDG\nHrwJtlY2i1pN2KojNmnnFDsCFXTdFc9jsKaiQ5d5ptKep1lvQvQ+Ku+IkIphX8gKqAjDfXz8arz3\nOsXFXjrvRwC0hotGPh0vSA4ipVOQUudpGgCnmurBhja4VCf+3nc1AODhBnktVw6wYXAivZ9fCpn9\n25c3/6Lf/dYSP7pa5vbBA13eF4HpRiQiEYlIRCISkYhEJCIRiUhE/nDhBEH4DSgMfpkMeOA1qkQQ\nuPRWsjB8t/ICaIlbCK54AcEsRmyUp0dbFpkbxITVupquLVw+Zs5WtcnX4q4olyw8FRsYLGSkDc8x\nrf3+vOthNpMl07snWgqADqplL64orgvsEIrIyuGL96FnGlW66kASLAPps+PHOLj6MM/IxR91mSf0\nXMWZyYK3z3RutX5i7ld47mOCM/sGOqDKD4EUTiSLauO2pPMqr6uyAIK52nLJ5Pf6tE/x1GtzAQAt\nw73QGslb8/iAtXjtTbL42PrSvQIv5zpzpsh5LnW5LdKzHafNkpdEZIn1jrBDKGaWpSoOw24kL+rO\n4iwYdp6LXZlIi7xmGvLa3jZgN0FQlQ7AMZ7w4UpVAJptZIkVGXTVbUDCbCI7cvrUqCggC2Io1La9\ntDAmaF0xS+bcAjx2L3maHEEN9rSSt+qu+K24/ZWuLbF+LcBQlh3E1ovGs6AOwnK8e0+KeK+5kAfH\nmJJaM4G4QyyR9IVB5PYmq6FImmEq7Rzua51fhvIWBojOsyCKkQiJDLsZK++QLLLFV7wvkRXVDwPi\nKMUWmnI5RJ+Ql5+se04CAA6sI0ugJyGAi4YRDG5Lfm4YQ1fi1o79PuQBIiLb9+4QNA2U8/vqq+iH\n5mI/GvtRH/lMAhgfBzJHlKNqLZnjDdWMMG1BIQ6WEZkOzwchMPbpBQN3YMXjUwAAdUOUCPajRSLg\np4clfaNGa0/63DrAi57fUNmll3O4ehQxtpa7rDhUQSw7ydE2lNUQXJivJmvwoDGFOHCMSIvidysQ\ncyuNu6sSD+KVzwlSZSwV4EykZ4s5YVt78lCPJtfHuORi7HuHGP/0tX40DGSemotq4PJRH3j9Shxl\nLJpizrKNJb3RL4FIJ0ps0Xi+z3cAgNu3z5NYKsEDQQYLVIlkIkke9H6VsRs6PfAl0Pxp6quT2GY5\nP80BANA1BlF3OQ3qgIcxJGoCUGtojdNsNMGVwNb5dnk8L72L9orP88YAYB7SkFs680K2ZgsImKnO\n1gPyPDFfRbiRJoced/cm+FaBMxFNDDq7e2N/aBgJnX2gG5a8ruF4Lf2DsBzraN8NqjkJUaNqE6R2\nifLdvJcx+z8Pd/idJ8sNTdHvzwr7W0tAc25HilNzF2Odkzrmr8tu/T2r9JtKKCIrlHyoF2PRjirj\n0JZJc3LaBGITvcRyFJtsBHlfdzoXhh2ybzRwCSEVFBvODdbdXjzRgHYkoWKCG2PgYY8Rz1HtRSST\nuyrrMNwsVmrDkrHodSMRPjU+lQ5nPF03n6QDVOMQE2wX09lI+bMB1gJqHxcUpLlny1Qg9hLy5oyM\npTVrX0NP5JgJPfLPpE2YuJdI+1KtLfg05ysAwKg194N30BpgOsNLjNu6OoaAq/GjepyStYmDg5G/\nCCrZ66e28VLOyvQfaB/nPAEULKTDA6cJIG0plVE7XD7TtGe3FWXmFcQKt2r5mM478X+x9FzbBr+B\n2uhMUMOWxXKtNwjQN1CHGcqdOHMVjUEfWxfj8xSomyhCuwCeEevdPGknnomjfThr8zwEHfTs7F7V\nuCWF+ukfqwldobTz0A+hsaj93ArTGXoX9n86UHmGkEbJmQ2oqqQ9T1PJGJD7tkGzlfYMQ21A2kMB\nGYWYsLcNRddQnXkv4GUojtmDiNF22/ujYGdppV+47lNcYaC9ORRe25oBmEIYegEg4+ZCFH/WC2cT\nkfXWNcSFsZmEkjtUQ/u4vVkPjsH3BS+P6APdn8Wa+9K9o4cXYN9u8uAGTH6AMdlryjQSodCfDZ/9\nLeXU/+vaM/qnwnRF8RmBW6wUI7XcL8OVdHUcUMco9C+tha2MBrCuiAZwW1YQxqJONv/JzVBtlhd2\nMSXE/Sl78fo7NGm8LK5Tv9WMv2+dCwAwARAY6MKbIsCZw9LKHJQPIPMXEPPYksWXQTWVVvvGomi0\n/EAQsGB6ENf0pMnx8Y9ToTtJz5uY1JGaub2IMQ+ist1eulMMAeAmYyOeY5+vzT2IZaDDqCrfcF5K\nqCiK1u5hcK4EYODAEgBAMMTJrmhUgWexqeqBAbz3yBsAgOs20aSyHJLbobRzULN81NOnHcfaJfT+\nQ6FxRx9kLGYeLxLG0DuZfXQedpURZJQv1MPWhxZUfaUCrkTGclwo18nO4lW1TRwCRvp+Qo8i7HIM\nk+7JSaJNs3R1hnRNHWLMqP2ODBi24Z4ulVA3i03VNlHsJgB4QsiAl5QTXLvBbkCGlRSHa364F2Ji\nBHcMpMTOoijdskJuz/RLinzLAB8UdpZSaOwRrFYyBt32aVyYmAtD4/Hor76ag3iaSNzB44SaxjGY\n4cPVJ4CoIzSGDTVB9PkrbUoHanoguJ8advz+RchYTgmTRWp4pU2Biycd6lAHgvdS/aNPCGhLpToF\ntEDeGer32BKmKPMK7FlBbVJaBSkVgLkoXEFuyqXrGwtpUY91CYCVxkl0r1bYW8hwUHGdD4bDVDYX\nAPwJ1Eaj2g17L/rsHERQnMbdOYjNp3rsfOEd3FVOcSDvrZiKUU9QH9SW98Q1OaQA//j4aAD0nqwF\nLGa0gEP9YPYu1F5sKidoukXvgtVIL6DJocekHIL1lyXTmnW8Jgk9V1LZpbP92Nub4EjDDlwLr5Xa\n7nTzYAS5ULeyA0YVB15F9TcoPRh9DzHERik8OPQXUvBrHImIPkG7e9I/iyRlYOtnxEDt7O+Flm3y\n9bVmPPYdvVfrrCYcnPYV2ssTtfR+Spwx2PsXap/CzUlx2bxXhqgFtAJas6hdfgMPNYv34pgC6qwz\nwK+hRnnGu6HsQhFb9RHNIR2bNLpZNXAtl+NjQpXQ5qFUhvWgEuK48xk5+IyMJTiPxru+CihIpRjb\ndd+MhqaZvr9wXj52lJDRSFksG7ycbJoEVXIKGssxHq54pkDXCfCZ6LN/RBt0mzvGgq+/jWKS32/q\n/MCrKdLCnUT1V5q8UBboO73vf5OIaR/ORXI+XoBVN738O9bm95HODN0AMPEiMo7+9N9BkiF1k5P2\n4Ldv34uWAJ2CN/48Iux3Z1NCk64pAQBUf50eXg8WkaJpAoR1FMTPoWslVJRJabTepKib8eKhSwAA\nfA8BQcYg7YxXdaDmt550oukixpGRJK/h+hoB+jqa4I5+HnibaFLuFaiu/a3V6KmjCl207w7c3ZcM\nPofb0hDDE1Szx3oew/5Ga9XK2IHgGHbTaaP9M9jTBr+N5p7QpIPSKaZSCkIwUtnKGjWczMjMeeha\n5WQz4Kf5E71HA221SOpgxu754rjrfE79Fkroibvo3JK58dbfxKgkrllZQ8tRtr1rKLzXqpFCVxoH\nchBYfwZVHJyJjME8oIM/ifYBbTHV7dKHtmE/i90tqo/F2xP/AwBY0TwUQ38iJwenEJCeRenANub+\ngEEvsQwXvamfeQ8H3w4ai4FkwJZJkyWwLwoG9t5qnfFQu9k7ZO/MuNMEhVs0IAfBs3ATW38fYn5i\ne0K0Bn6jmLJNAVUt7a2jjKQYrsgeBW0DPffpN+dg7KOUzuWph/+LZ14mPoBQRVRULgu/yYEyxJoZ\nVLC9KxC+lqkZa696hxbHd5Bhyc8Mi9G1cqypvkSF5r6y4b+VOdEsJ+VJ1X9wCQDgpoQ8HGli6X2a\nVTCNp77tk1v3myihQ6dQiNvBTb8yhdCvFFGxjsB0IxKRiEQkIhGJSEQiEpGIRCQi/6vkT/WMikG+\nrsQAPm0mzwLvBSyXEXRK9DYCgGtNAoofJ+062zgXAGDMk61aPa4qRsW35Flpa9ZLniYAiOtB2DDR\nKwpAgu51JYZKDqjsCMlasvgyAMD3D7+Ime8+CgAw2WXPW89BVThpl72Q+fe8DQDI3TGvA8tdzMTq\nMI/ldzdTzq/Ltt8teVRD5b45RAjz/J7p0J+S6yYy6L7QKEMNlq27QGKEPF/xsRxJAYsfaOg6sP7/\na+/M46uozv//mbn7luVmhRBIwpYAYUcFZKtIFRRbFb5q0WoFa1OstlVLKd/a/tqXFpdWv1ikWHet\nFtEiRRREQUHZAyFhJ0AIZLs3ubk3d19mfn88Z2YSkrC0QFTO+x8uN3Nnzpx55mzPcz6PpR6o9lFN\nv4yrVcVaxzEBceYIeOKF2+HvRQ969wwKy564S8vxp3hFAWDlsWK1jkw3NCCyKrPN9WY/9RCaB9EK\n3MzR27DmFVJBjtkAPUtoLSQAma3OJ8yAP59W0gTmKQsZTDj6fVI+bq08eP2cTTgZZp6+3pr3sSOS\nd2h1H3VoysYmD3DLzSQI8+Hfx6khubc5KAxr2OMlqGZ5IBNxEWVNFFOSckinhibFHBKMw6hSxHV0\nbCBHRiyFeX4zAgCzbsGcgO0A3cGXr41AR9lYzdNopa3+aDqS92veXG8fdr0kCbY67XjTSTpfgj12\noVcUV99Onv5dfxmKDfuZQvM2I6w3kid5RcAOcwNVgjeDVrsP3/kC7j1xtXrfAlsB7ZdXh2OD6b7j\n3SMAEyiSTRJ0dVSvLT2ZIIxbK4csymrOLvdQAem7WWjxOAkZPal+5eWKQJkMmYV+NhxJQzJT5w65\nTPjVfeTdG2iswbJm8lBsbczDr8aR93Hh5yTMY20QUH8N2cwtR6ahfB+tRIu9wliUS0nCv+u5E2tP\nkTdWaYn0QQmeQha5UZCAECPbNydF0FxLrgwxR0JTHT3DfgW1+OpkHgDAqKdnHG4xoXEgnWP7dU9h\nNxMZCYZN0LHVZWuDjLTN9GwbxpNXsCUPsK8ggZDDs7xwM2EkSRaQGEjW0Tw4Bn8PqtSTnxXh0Vkf\nAwBm3PMZAGBtbRF0bCW96AlN7UR/lyof24axDvKyJFAI21gSWtpYVYDrmOLi8l0j0CePynlsVw5s\nBWTbS7/3Jl5ykdjV+o0kGpf/cQxV0+i+TQ3GVqHp2gp1OF2A2c28q6zSBQCBSfSQbes172XCIiC3\nF3ll/KXZaGar1bMnbsC7S0ngTYjL6rHrX7ySrt3qetveHgJbhClIX9OCsJ+eYYQpgdoPGdp4yJTQ\nwrhVQPZ3SY3xyNFsaDJoGj319HxWn+hcoMJcS89+//SlKDrY+Up5vH+wQ89pzC53qCJ6IWmdD1WM\nC0jozt07esNb7cOTv+6c7hFV+PwoNaqtN4woW4mG/bEEhmkk2NOZ5/KVR/6Ce57SPAeKKN9qFhkx\nDG2fv8GHc0MAAkx5VxaBp7qR2NGwFx6Eg73i4vVujEml5KFvOPvB6Gv7DAM9LEjaTM84/ZZqHAGN\nW6JFUTheIxtNcfrhcZEnbPpA8hKLgoRCE20RCoeMGGE+DgD4qGEQRv2RxNg8U2PQNVK449zhGzDB\nRts1ljVTtMaUpHK8UENCg7vcfaBnETJIjkFspLYs5UgC3TdQG1U7ntrW3GnHsf8YG0MKbSOZUnXn\nHmWgeDg7CucFgHBuDObq9tFIytaHCxVqr0QGnckrCgC+XAPS91CIarcvzai7ksqmH9qM9CVM0Mki\nInkblUsJKX915xjozDS++tGgzcjTU1t9h3ML1lSSZ21cQSXyLBS6lf/RbMy8i2xpfQ2NPV26FEy5\nlp796v0DAS9d23pKB0XH0dSo+cBS2Tad+nFx2I+SHRlCOlV8z1xjQHJlhN1/FCl7yb4kAxC6gtr8\nmXYq50fjKvDFEXoHi3rUYVoZCQ1m2Vuw8zFSU28dsqt4OgGooln2E9p4DlqK6U6xttpCkrqd7jXQ\nQ4bjGGsPY3KbKIOmIXTS/nomOhhNQ6gb2/LiFeHZRn35K3PeQyGKz16As/CP/PUAgEJ0nWc0mp7A\nX5tpzPdAdufHdelkVHkJUvM9eDyLGXDwatRtoYZOZ4e6bxOAqpD74P2kPrXUMha6z2iQtbjgXcy/\n/QYAQMXbA5BgvX/5Q9qejmHx2yCvc7Ypw+5fL0bBu7SfrVv/BgQ+pNry9U0g6TBT9c2SVWluJaH9\n1FcehalV2RbeRKkrqqLpaIpr3ZFOIKMc3rMa5XsK21z79NDZG1fRvkHLqY5DQJ97nUJ9WzejPSaf\nUD+//o9r1c9nm4hGnFr6ktaYx7gROk6TIOuRc1d4O+JKV5X6oinaJDNuhfoyDv3wZwAAXb4MxzHt\n2hGWJmTfVW9hGAvljazKxA9/yiYIrSbZyiRxbcUY+Fn4g6NShJHdbySNQkUAUtAtHEQDwgMV9DJI\nzhgK1lIakuRt2qRyQcYODHr/AbrGAd05xwxIRiCcQwNTQ4sB/36FQgh9A+I4EqGGpdJMZdg1f3Gn\narkGNmGKDAljci7t3Vlx1RAAwAPD1uP/dlCagsReTS1YdBnVcbppagMiq9tO3gEg2UQj+k3fewEj\n98/Vys1uPXNb2+NTDzAZ8ltpxBWN6rBm01A6FkBWFj3YgT+sw/qdFKrygmkits+mhZQxf/kFnWgs\nsPEzakzTmiSE0qhCDx3PxsKbaZ/i1pbe+PRVWoTyjYzCms32hy+jwYTnewFY11OvpAtr6rDpu2W4\nplFj/vm4RXiyniYWO5khyQJLPA1SVFUGVsUjjuG5I1SPsY8yEGLZFRwj3Pjb86SOd/sc2o/4Tnw0\nUreR/ZfHc9FrFZ0j6dFa1LAJTJGzHvsWD2I1xxJ29zGoiy+yPQ5TFVW0sNsBsYjtqVyRBseNtEB2\n+EAOTC6mgFvO1I7DEgb8jhYA0nU2HGQT2uQVNuii7PNul/rMRNZpxvPC8Jqpxy870QPPXEly/N+z\n+YFn6JhjMT/u2EchSw0HM9TUDoPTaQD41S0DUI/2aSf2luZhdJCUzaNxHTxVrI04SWUPFkaAFjaY\n8Il4j4Un/us7f8XPDt0GAPjtDcvhjpP9rvMPhCtMD7TgfaoXf65FTVgvmYAQWxST9EASRWKpE1GA\nZPoBIFiVhehgtlijE9T90LqQrKn4FWsKpz8vm4nIGBq4Jn1hUY9VkHUCvKPIvuSwDoKZzj0gvRE1\nbgcrh5YKQDIqIcnaOcQ4ULmPBsJvTnsBD+z8abs6VeiX5kIZ0jr9O9A+HcvpXN9vL9YZKUxaLk/C\n/h9r/d7Zfvvf8v1JW7Hqg4u3t+7Q3S+0+f/5pnu5FCzzJ2NCwREAgKu7HWX7KdwxZQ/Zyeh7SvHp\nx8MAdBYYijYTUQAIB88/DVs4EzA3nPalrC38z7x+E3awhbrWyrpvD34F/Qw0bnnXI8HkaTsSt7ii\nMLK0La4VudCzfZspPYPw5ZHtelwOpKTToGidi8Y6kYQeDw04Ttczx/DkSVLX37e3J/ptodl0cJKI\n/CSa4Ey270MftrD83jqyqc2D83FzD9ryUR7oqyqwJm81o5kplIfSdAimU3vSMoze3UkZB5HE1Myb\nF2ljLWVv6bnS2SRUoaOJqDKBBYAiXHFe1ztfDMNpMTZWSm2yslUAAGpH6+HcRw+/PiUJ/plUX459\negS7MfXhHGoLh+bUoLyG2qzVNQPxVRPpFugFCQfHva6e8/cuWjwTDBKKLOQ4qkyiheAnCt9HjM3m\nNiYV4MbBpJOw5mQRvBVkJ5FUWQ1jTzkUYP8CTQPp+blGAJKR7K/7BpqEKogstZwYAxK11HY/68kD\nAGzY3w8CS1dTuzFP/c2hSWaMeLt9mxFl2yjKf649q6kHp6JyE7279vaiu51i+X49PF/Q3EHo1wJf\nN6ZQ3GRQnSOAgNVTKWXQ1E8eBABsMeXD0ZPeg2hpqjrPuNDceONmLN9Ki++mhksz7Wu95/W5lTQ3\ne6Cw8+N5mC6Hw+FwOBwOh8PhcC4556Sme+jQIZSUlODuu+/GrFla7pqNGzdi9uzZOHiQPDkrV67E\na6+9BlEUMXPmTMyYMeOM5+31ykIAwK3DduKpbFr5WtBQjPffJe+S8VzDUE6jdZ7R3b9ejP4v06qI\n4tU8HV9/TeU1ef+ZVw1C2ZrIkBKuI+uBn91HqpPehBVvHqUViMjmNDWE9r9V0j2dkjtJSOmnKVpi\n3gt9jdYo+TrjVlkVWDK7gad/SSGvP37/PtXbKV7vRmw9rZTpItDU9pjIUFqBB/4d9PdJ00qx+RXy\norRWJhz2xxL1/0+x3JD/WPxd9e+hLAoTPp1dCxaj5BR529Ye0kITpBitu6SmtSC2gZUtpCkZWo0x\neHaSR0gfEs7L9v7yc1KQveeT2arn1luYUJOWp9xECoPrB36g3V8nHtLoJC8kptxq/lyTcWrJZ17g\nY+e2fqSEM4t28tombWkbKGhuaq+S67ohjIxVbUOKPIUCUkaSF04nSoi9Td5e79QAnB/QGn/cLGD7\nH9t6LxT1XAX/DKrQUNCE566k8OVfvHMPYrlMROGwGdEUKlNGqfY7pqmhroYDgLe3iH0/0WzlrRZa\ncX3+91p7E3ZSPTUXx2BngmeBQWHYKuj+/Plx2CvpWYWyZAy9inKVlZaRrfUuqoHvVQodEyQZLT1Z\n/svuCRizWO5AUUbmS1SvSlitvygKwU/nTT4oIsr2C5iaZTXxtrlBUN8nWQASLOlYIo9W8W8ZsAsL\ns3ar9zLsjyx/WZMEbz6Vo9fyVrHVjCM/ykLhGFJo2LszDyYPHdtn8lE0huhZzcnbhGMRsvM3y69A\nhpMasS1Dl6vnUYQTxBiw6B56vzf5++PVUvJUPHjFpxhqpogMn0T1GZRMajj6lnACj1dTuLNZF0Mf\nG9nPgZYspJmo7j4/2gd9fkvXjmVTJR37ngkmljc36LZCDNL74zgmtvE6ng1FOMjQKtTwd798DdNt\nLIwv7se0xykvNBO0Vj2vyu9DGfRbU5OgihmdD9EpPuQ5yfVU805em78parqK97Lfqz+BLnJxQ2kv\nBqpqrkgRCO2+v8Dc+N2tAIB/r7nyopz/XFFEUnRhrc+6Zt90nPqStRcDWlQRHkUhFDIQ7MZE9BqF\ndur8p/OXXy7BRAu1hwM3/wAAYPw0+Uw/oWtf14hQhBqXeIzeH/mUBalFmipefLWWb902ndqRTYPf\nV7+7bvosINH+GbpHsFyfWYLaHo+5qQxbasiTlPyWA94f0PsbYsJop7dl+R/OAQD0XxxE3dV0P91v\nPo6r0+gFnOyowP3lNMaUWePv9VohsO1CqXu1ttPiltR2XhfRtncoSrhbXXmwzmvvh666Mbmt5/Is\nns/z4WKd90zXe9xNERFvLKcIoV4faXHkzmdPYucGckel7pPRMIUMz54cQoqF+puacurTEzYJhhTq\nj42mOCb3onF9jsmD11+nsZfh6kZk/oEeQJ/Fh/CHbAoDnVpxJwCgb4oLva0Uh17mzcHeWvJIC4IM\n80YmZmSC6gFU8jkbfAJC+VQ2oyOKO4soZGvTvW3FvmrH0Dn0YRkj7yW7WruXPLVGawxRP5VN0MlI\n3Uyfm4tk6JhgkuM0JV0FxZssxAFz09nbr7iVjg+n07H2E0AkVWsXFDEmQab3BQA+m/0kurGtGUO2\n3U738VEKJAP9PdBDVqP67r91NZYsn3rWcnydUTyj+Svvg6mexkT/lZpuMBjEH/7wB4we3TYMJxKJ\nYOnSpcjIyFCP++tf/4rly5fDYDDg1ltvxbXXXouUlI52shGKGlZT1IZf1VMo4OoJDC8RAAAd/0lE\nQVS3xyD3uzTQqV/REy1XUgiX6YBFmyCcR1/3rCevzSRUCaGzV2mD+qSDmm886Qba3+BbpYV1JMxk\nYEDH6WRahoXhTVCjt6Z+ABJS+wmDeYwb4a/S233/n3KpJqHxoRR2E6+l+9OFBUrgzbiGpXgw+rR6\nkT5ORzBfkX4XYD/OJq8sHDFYl45wHp1kwwfDIbI5V+sJ6K4Fi+FOUAiHMgmNJmvhv60nogkzkHcT\n7Xd5pG4YPv6KbAmiDH2AJVK2UXmkbeloHQkRZyk5GqqTYGH78YxenDVmQFEyFePAT16jidex+xfj\nyyl0nR9tvxs4QA1P8wc5AID8o3Nw7MYX6f5OC9mNszlgZpIfeWwjz+dXUHhy8jYzbCfOPgmNsLFK\nuH8YiNPxp09CFRKsAdTFtJcpY5VZVZhTGvo9zw5BfRpN9lJym2Fix+t321E/mp69yS1iYgWFkG8Y\ntKLdtZr7ipDZwKh7ejMeWENhopnDXahnCtmRNAnJh+javjxmS7KWWkbSC/BMJXsoH/cS0GoHdutJ\nqEIwi6llH9eO+9NV78E1kgZUK2qHoqUXDZgCDcnYvZX2mph60TWCMYP6jHVRLbVOz9USlDTnwSw9\nqr7PUswz1UbTKQNuvIGUwVd1HwSng873SO+1+M3LlNw+nCnD3ED3qA8CErO73854DwBwi11bCcn/\naDZ6HaN3JebQqWmQAoXpsJykczcPpBcoZ2SNqogppcQhMzXKQ/UZGNSN2rXfb5oO0UTPrW9OAxqD\nFJqnLPg84qxUO5E+G+7Gff+mwWN2YQPmjKAQ5odSj2MRU118ds31dB8hAb9OY3tfkiOINbM4cJOE\nPXYK/cpLb8Kuw/S7oj+3QEqha7uHMBuVZHUhJivXo4adB3JkNST3bLTkAY7j7TuI3z3zQ0z/LS2Y\ndNPb1QlrUmX7Yw0+udV+vHPvbOJWAf7BLLy32YIalh7pbFzoiWjCJF+SyW3MSc9b2dd6senqSahC\nR6F0nw5YiauipEkRWZWppknZnUPvpu2kwJTLaUFb0WUwN4gwNrc/30SLhMdctA3ibJPQQK6M/Cto\nPDAopQarV9JibKI3NVqyIwHfbmrDT9fK+FvhW+yTBcdifnY+G2zH/W2OC/a0qWGNoV4xJO2ndnXd\nzoHQp9AkIjAesGxj471BNG7b3dQDd4WpzX291xc4No36v+sW/wD+PGrbC+yNaGASxZsC/TEqm8Z/\n6z+jfjylCuqYI5YkIMrm92GnDgkz1WOsVwS9c2jR61/ryU5oC0onG3wZF3rCeCkmoIA26S18sURV\nK+/wuH8UAcyB0nCljLQN1C77roujuo7q3FFLba6/QEYszJTukwNYV0WTXFGU1PrP/IMR8//5BgDg\nLfdo/KaOtr1YDXSAP2bCQ2mUu+2BYDqibGtE2pdGePuwCZqkOYYMbNwYt8kwOsiOeqZ72k1C6RiD\ntp8TwJZ/UNj7nB99CgB4de9VcG6j6333/i/xbt1YAEDKfgF3/uwjAMDRUAY+f6PtufVhWd3rL+mF\nDhcoW+PLB/Rk3rCzXXKGm1wI+KkfE3Y4VLX1eHIcY4tpoXva7nvha6FxdPIXNIaImwVE2Suj79MC\niW3D+iZORKOpCRg91DgemLMYvd+hcbGp5dwcKGc9ymg04sUXX0RmZtv9aEuWLMEdd9wBo5EGPGVl\nZSguLobD4YDZbMbw4cNRWlra0Sk5HA6Hw+FwOBwOh3OZc9YlTb1eD72+7WHHjh3DgQMH8OCDD+Kp\npyiXj9vthtOpiQM5nU64XC6cCWWl0KSLw8CWd3pPq0TZXhb2AWDZWAoTu2vvQ+oiteLdTFglJB1m\neQPj2nmHPlGC3Ux5t2hpCWTmkDS7NY+oouylCwPCZPJEeauTgVVtRYWUYxR8fVhS2kYRJopKw4rx\ni5EiUgHK/TnwRdnqU6tzXEivKHD+3lAlR5WiyHauRAO02FAwiDaqHz2RCYNXE1ZQwg1MjVoIc8IE\ndYN6bLIXwQit9piZYNLAW/fjYBN51KXd6fDnsbxiPSU1JHHXgsX4KkzHNA+lVbeU3ZqXK5IG9JxE\n7hJRkNEcplWpreE8daVQMsmq+qjtRMc7wyNhOqdskNso+54NsZW9mZkQxLDHS9ScUpb69us8ojWO\nSXtJKMezMqdNKjfF81Z1MBs+5rErzKUQKntBBIff6X/WMlmuovCYfSOWqXk/OyNmY57RZhmBbCqr\nrU5SFea2vU6rjmZIyPqSjnVNs0Isps9p5RKMXqrThBnwfkBLgX/MppCguY+9i6efo9xkKYcl1OeT\nzTTqrHDk0JsxvUc53ll3jXpt5QU3ebVVymAGlS3iBMxmsgOTYEDx1juobt7VBJ3a3J+TPQeXDpFx\ntDr+UvU4VK8n2bxwdgKyiXnvQyIEiXkUD5E3u0Fnh46F1Zo8opor1j3YgPQ9LAfrTV6IVXR9Jadt\neGILqkMkJFHcrQbHmskj8ezPboeBKRiLMUH1rjQPjuPKYhI+qYnR7+45MQSfb6PQI2eFqIo5ePNF\nxO3Mo1Ifguin5VkH8/5Gns9CdQFLDj+mBc7RZJi+kBkHXBSKldHNC7eLynzoRDZ0dfRclu6jfIPd\nb1qGqVbyskzttxdlb5MdSF9k4PWhtAq+bUIeyneyHL9xqrfi8YdxQwaJ0L1fPxzVVqowr9eKeBXV\nae1mByxM223/g0nIWcvsrpbuz9dbQCxK5bekxOBjdR5PknCu8gaK4nJHDP9/mohFJE8JDzun054b\nAuU7BICMofUIIeuMh1fGNO9TuBd5BcxV5y9aczqXKuRX8YgmzFoY3KVC8coami6S4scZ0DOxOf1U\nTRZ35tFrcH/BFwCA9/9nOMw6aiMyh1MIj36kBO8KaiNzx57E0VoaDwRteoDlD2/d/+Svng3LcbKF\n9pr+hLIF4PkZf0dvAw1GnmmYjEQR2ZWYoLrRuXTqWKs1gfF+ZOm07RoOsf0xkoXlEz0RgD5EfWzC\nZFTDjDO36ODPIW9PxCmrIY62T2iAdbQwF74hpKhUor8Ka78gb6dzsAB7FV1v7SfDkehJHWBxbg32\nnqIxmHMfXSO13Kcq5IYyZOhZSHgsWUaChTLLYR3qfCyE08+2uTRG2txLwt7+3TKPaILXS+U3Hbkw\nqreXAqV/Nw9oAcod7f6esNJzM01rQPMplsdWJ6NxAg1czHvssLPqUbbC9F4Whacv1UH9cCfMGdS/\n6EQJsbGsodwk4PHjtAVjfPoRZBnIaOtCVIbbsrdhagWFlXs2ZSP9FNlDNEXb1qYPA5E09j1T2ZeT\nYtBVs+i7p9tGoyjli1t1qrq+AcD7P6c8zTctpqwW8QFhxOx08JolY2GcQmUORJLxfxsouu7o9/+G\nlXMpT/hjf7kbABB2CqrdinEZh2dRBM3JuB/jPqawUn2zHm/cSpkx7lhVAmNfeseaulOZBXeSqk4c\nTgPidjYINcg45KFxbHxDGmzq68ZyqRfGkZ1HIfQNBzPUeC/JKEOMfrO2biheUQDI//ccFI84DgA4\ntKHgnH7/H8XXPPHEE1iwYMEZjzmHragqnxwuxIoxZAA3bnwIyYe0m7r3z6Qwq2/V5yj7U+xVeniH\nUKtorTR2qLzbWUPuL6TfWY4bYWQKu0nQQnB8QyLQGZnl1JogsX0wSaxs4XSoir2L6q/BL7I+AQDE\nJB0aWYLm0zXWjFfR4DCyja4ntN+2d1GQTOc/CVXo04s600kZlMKh7tMebf7uP06dRJIINdE9ADW1\nS6IsGXG2F5BFbOCoNw1eFq5w1ax92PYF7e20nNSpyrv5q2cjJYMe6LDC4wCA3ZECWGqo/lPH1iHd\nTKOCEy2pcLewpNgVSbCwEApDi7ZnryPMN9ZjWje6r7d2Xolgd3rGlgbhP342SZWdD5qTtlrQpKeQ\nXVEGWkazycRmLZQ2+YAOUi6do/a9vLNeTwlZMvqAJDP1Ln9uKsCQgTRRr9rXu8PfhSdRz2D+l41N\nBNui7CkNZoqwNtDnpE1mdRLrKQRSD2i/a2CCga99TBL88ZQ4kth+XCxLRtZatqeyuwktg6ic//7T\nJNignSOcyiZ0bN1GFoFYAdWRFDAgxUgDvFGlM/FUMYW0/v7dezq8Pz1LNRFJASIsxLxxjR3xyWRT\n9u129WW3uGUEs1ny6n2KKq5e3eMVSdHCwq1uCa5hdC/mj5NhZbYWYGtYFlMUpSdIubn760b4xlAT\n67kzBIDKL7lNkG1sMG2LYttOCscuz6GTWE0xJPeiTt64RdvmYPLISJjZIoInoH6vY0neq68HRBur\nL7cFrgQLgYro1VQ3AVgxZSilXakNJWNvUx7di5vq6383fw8vdmfKltkHYHyIwnsnZx7Aku0TAAAV\n2/Px+s202BeWqS7WtwzA7zdT2qvMz4xAMl07NabVbdgpwzmSBqamVVloZELEsX60l3Ns/lFsOkwz\ndm/IrO4hUiTzLyT24xf8lNAHZGAUPReP34qzDW17G+zq5wsxCb3UvH03peq6/dXO9wFdLLpiEno6\n8dXpAMkdYHGvlShjjfEVqcfx4SkKsVXGApIkovtN9C6dcKdC8jObFmXII2jQ7K2xwVHJdAZKjQiM\np7aKvcawfq7Zy4/nfqCqlk6xxvC4ewQA4KPdxTCz9Fy2M/sCMC7vKNJ1mvL/Eg+dQx/U4j7FkLbq\nqkwKJBPURVddWEDCytJX1YvwsxQyySzEUR8SUF9JDfpHVWnQdaNJZ2OWAPtO6vcko6xqOpQdyUXP\nFUqaNrp27YRkhNOUyQLU0FwxBpjdbDyWJsLPBh1CL7bvcUUrLwKAhKW9zewa9c4lC629kHx1A6nX\nT/iqBB29CeE0tm/4/Qz0LyM7qr7WgVAWPatIugQrC88NdqfvPF6zqjzf5+0YTk2gCaYvJw5zHdma\ne6gMw9/JZj4K90DDCJbuZwR1kJ94BsHxv/R3Xfc4asewfcuiDMlM19G3iGq4rbWGfp/5b8Do1fq0\n1ij7k82uMGRR6wtm7vkRAC0Vockag8GvjfjNa5WFahk2dp0Re36CN39N0vKTZ9Pe4s9r+yCxUnMW\ntU7/YnWS0Qd7xTHrX6SInnpIAFg4bWQCGwDUmOFj2UEkq6Tt7oiICITpWQT7xOEso/rwDKJjnbt1\ncLdQ1Km1rxexPdTfv/4/z+PuNx7osD66klgyldvgPfPisNkZPudJqMJ5q+nW19fj6NGjePjhhzFz\n5kw0NDRg1qxZyMzMhNutrRQ2NDS0C+3lcDgcDofD4XA4HA4H+A88o1lZWVi3bp36/+985zt48803\nEQ6HsWDBAvh8Puh0OpSWlmL+/PnndE6pwYyBRlolGzS4ClW5FFYQ3puievTEGNTwS0uD5oFLLqNV\nB9+oMBLHaC26s6TS4rWN8JwiV1ny7vYr0d6BcVirqEr0DUbILHm3rNc8okqidbMbiE6gFc2IpMP/\nVk8HAOw5mdPpfUa3MI9op0dcHMTI2Y/pjMpTFGJQ3UgrNq1X4WIOQMyk1cfeI06i8u1+AIDmEVGk\n7GT1KwFmF/N4sfSFDcfSoGPCQluRB10BrdwF/Sbo99DvLFVGSBVUXweuZqHYMUFdRRYAfLWLQld1\nrTZIiwZZDeUI9IvBdpj+oyjwJcxaaF44asA+H8vCK2neUCGOi5b0SAnv9feU23hE2/CJs+PvO0AR\n9YqbgYb1ZHtLBifDsIdWiTvzt0RP2Tr5C6GoFJo8srYibhBgr6FKCkVESMwYwmkCMrfR9839mDcu\nBWg5RauHVrTyembKqpe0Nc39xHYhk3GrDOselgcyDLScoMWtv967BL/YS6JFrSMf/Dl0DWu9FjZo\nbgKytlPZrI9Wo9hCHuGDKwbC6KUGJZKqg8DCTQPd6KbEKOCkaB4kjLIa/tM4UFRX5g1+Af5cJqDh\nYKuiW9PQvZQ8oA0jDdCT0w/6CitiLMTW5hIQs9J19CGjKnoT9NC9pvYIIbSJ7DLZo6mFWZokhDK1\nNzDUm0KALZXkybRlSgidoNXsXmsTqBlHz1iPVqFO6TFVfVBnSiCjkBrL+jp6vx3lJrgOUjjhy4VO\npKTSavWLa6+BwKJDrhlfhnc95Ar/YA/lwhWCevX9ae4HxFk8kq3Ai0gzNZpyWAffFxS6GsmXIGWS\n51NmXqKGkAOintlRVQoM/m9e5jHxIL135tr/TFE2btHCEL/udIVH9OtKus6Gxw7TFoyJ2YdRx4TZ\nwPLmCiEdYqwNTMR1MKexCIaDdoRN1ErrwqIqFCMZgbF5JP25o5YiLYLdZIyfQqHwYdmAFaco5HXp\nK9PU/k2fLENieQ0VdU9BQodbUIYntVUFe2UPiVR2t+lgMFOfK4apw/IWOWA/Re1Uwiir73o8WYLM\n3tlQdxkyiybzCqzPlmQ1mimaIiPeastXJJVtxzDKak5nIQHUsSgbZQtAwiSr3jFdQFC3TYkxLYrG\nWisg3kznttUqbaTmGQ31sKF+FH3fekvXN5WJm8mbK1d13I9HHGRr3j5AUzE7RpeAbKObN9QYVS+p\nouDqKwBkFqrt6W9RIw2tJ/RqOG3jqDig02zakEH9g3sHtev79mSiaSpdW4xpeUGttQJsTAA+bpaR\ndJyeTTidjc8MIuJ26gf0/lYKmQB8vVmkYUCCuVFrV/s6qe9Kn0J2/GHFIAgZVH6Lq1XeaFGLQpRF\nYObzDwOAuiVp3H3bsWoCXSP5c4uqeh/vFgFY35R0UA99kM0HBM1bK7lpBCKnxGE/SPfiL5CQdJBs\nsaVPAqFa6hMs9TooLtPUCvZ8JoSQYLlRQ5VJ6oTsrq0/+lrm3TybR1RB3tc2dDxuPXt/eNbJaEVF\nBRYuXIhTp05Br9djzZo1WLRoUTuVXLPZjF/+8pe49957IQgCfvrTn8LhaB/L3hF5g2rUxLVNISvC\nETKAmEOC3s/2pRnRTg69tapd0va2QVFKCK0uBFW1Ta5Mhb2m88pM3qtVh8EvIJqiKV4qIXtKWpNA\njoy4mwZZpWIuLCyE0PqVTQ33lFqNuW1XuxDY1D6Z/NcdXR0b7ofaB50ZWgBrMjVGpXt6Q4mINdYZ\n1MmcPkiTVgCIZDDlXbdObehiYYsaGy9kJ+AbwmbOUREhto8PbJCuy4og1EifT7msqlKu0SuoKqPx\nYj8SNfRc9C4Dgt3pmkmHyVgMPsDHwmNHZ9Sh0ksDer0tBksdPbBwZucLGhcK+4kLO+DUh4EYM1/b\nJvsZj/X2TyBrc/vrR5IFdb9mR6lfLG4JcRNTwfPLEJn8vyEA+LsrSazpd/ETeuiZvLksAmYPC+Xy\nAJJOUL9X1HzNDSRtDmgTdudeoKlYUdMFBCfZxu8qp8P0Tmq78tlP0bEtuSIi6czWmnVIWKhst2SX\nYtELN9O1s4GoXckbAzhO0m/93US1DIpN6UOyGp5saiYFPPosq3tNk7bQ9fw5Any92H6dJsDqovNG\n7YI6oQ1lyqrEvLcvILMUJlcOob2j+11ZSC/TOmTXULLLULYEMT2kPQ82CZUt1AmGK5NgYHukvfki\nEmxPrC4iIO6kShUC+jZ7UeqZeqLBQtdr6SuqIVmCxwgPC5+bc+16fFJP+4FLG3LhC7D2QIkhdMSg\nN1AdxCSLunDY0mSDzsMGtjEBycdYAvZMoFc3Kn+uncK5t5/sBZH18hl93Gjeouy5lCEzmxE6SDnx\ndcEzMobUHf9dSPHXfiKqFO/r+xi6hPn1g5FipndzsmMvliVR/G7czd4TSUBdNU1QdS06hFPZ4KV7\nDIKPbCaeHEcom94VWQQ2lNL2lYnD9wMAnD0PoCpI53juy2shWlhD2UNSwx3jjgQEJTyfTeaSDmth\nkUIceP5h2vvWIlnwuo9mc6vcQ9TQ4bhZUCehCmJMhhCjdzdzpwTXcKZSb5YhROizbJHUUXrcxsZL\nQUHTq/AJMLQoE2/qQwDAfkJEhI21wpnaPlDF1mSDpH5OmHQwNWoLm0o7E8wGklib6iyjVU3Jokc4\ng8YvzX30kEW59Wm/0Yh7qY/vaDQrGUQ499EAyzXGDLA+KvsLEXUTmZaHXdY0E5idCDFtHAVoW63E\nKJB6gD57++ihZ32MLADJX9JYK8acNHWjtYUPQYJa2eF0IOJkC7BBwFdAP1BUbIUEkHpA6/PUBXCL\nHhG25SNh0LVJ8bZ9Wz92PmbnLgEtQ1mqOLdRPVYWBQiSpuSrKOEq/fjGpaMgF9LfAzlaGLh1v1l1\nbCgTUYBMPG5h21D2KhWmLc4b3To1ZY0uICJhU3Rm0A6p0aTu8W+dHks8dGZnwdcJfTE98FCVAwZf\nx/Mr5Rmd8TxnO2DQoEF44403Ov37Z599pn6+7rrrcN111531ohwOh8PhcDgcDofDubwR5PNRGuJw\nOBwOh8PhcDgcDucC8HUMS+ZwOBwOh8PhcDgczrccPhnlcDgcDofD4XA4HM4lh09GORwOh8PhcDgc\nDodzyeGTUQ6Hw+FwOBwOh8PhXHL4ZJTD4XA4HA6Hw+FwOJccPhnlcDgcDofD4XA4HM4lh09GORwO\nh8PhcDgcDodzydF31YUff/xxlJWVQRAEzJ8/H4MHD+6qonC+RRw6dAglJSW4++67MWvWLNTW1uLR\nRx9FIpFARkYGnnrqKRiNRqxcuRKvvfYaRFHEzJkzMWPGjK4uOucbxpNPPomdO3ciHo/jxz/+MYqL\ni7mtcS44oVAI8+bNQ2NjIyKRCEpKSlBYWMhtjXPRCIfDuOGGG1BSUoLRo0dzW+NccLZu3YoHH3wQ\nffv2BQD069cPs2fP5rZ2uSJ3AVu3bpXvu+8+WZZl+ciRI/LMmTO7ohicbxmBQECeNWuWvGDBAvmN\nN96QZVmW582bJ69evVqWZVl+5pln5LfeeksOBALylClTZJ/PJ4dCIXnatGmyx+PpyqJzvmFs3rxZ\nnj17tizLstzU1CRPmDCB2xrnovDhhx/KS5culWVZlk+ePClPmTKF2xrnovLnP/9Zvvnmm+X33nuP\n2xrnorBlyxb5gQceaPMdt7XLly4J0928eTMmT54MAOjduze8Xi/8fn9XFIXzLcJoNOLFF19EZmam\n+t3WrVtxzTXXAAAmTZqEzZs3o6ysDMXFxXA4HDCbzRg+fDhKS0u7qticbyCjRo3Cc889BwBISkpC\nKBTitsa5KEydOhVz5swBANTW1iIrK4vbGueiUVlZiSNHjmDixIkAeB/KuXRwW7t86ZLJqNvtRmpq\nqvp/p9MJl8vVFUXhfIvQ6/Uwm81tvguFQjAajQCAtLQ0uFwuuN1uOJ1O9Rhuf5zzRafTwWq1AgCW\nL1+O8ePHc1vjXFRuu+02PPzww5g/fz63Nc5FY+HChZg3b576f25rnIvFkSNHcP/99+P222/Hl19+\nyW3tMqbL9oy2Rpblri4C5zKgMzvj9sf5T1m3bh2WL1+Ol19+GVOmTFG/57bGudC888472L9/Px55\n5JE2dsRtjXOhWLFiBYYOHYrc3NwO/85tjXOhyMvLw9y5c3H99dejuroad911FxKJhPp3bmuXF10y\nGc3MzITb7Vb/39DQgIyMjK4oCudbjtVqRTgchtlsRn19PTIzMzu0v6FDh3ZhKTnfRDZu3IglS5bg\n73//OxwOB7c1zkWhoqICaWlp6NatG4qKipBIJGCz2bitcS44GzZsQHV1NTZs2IC6ujoYjUbernEu\nCllZWZg6dSoAoGfPnkhPT0d5eTm3tcuULgnTHTt2LNasWQMA2Lt3LzIzM2G327uiKJxvOWPGjFFt\nbe3atRg3bhyGDBmC8vJy+Hw+BAIBlJaWYuTIkV1cUs43iZaWFjz55JP429/+hpSUFADc1jgXhx07\nduDll18GQFtcgsEgtzXOReHZZ5/Fe++9h2XLlmHGjBkoKSnhtsa5KKxcuRIvvfQSAMDlcqGxsRE3\n33wzt7XLFEHuIp/3008/jR07dkAQBDz22GMoLCzsimJwvkVUVFRg4cKFOHXqFPR6PbKysvD0009j\n3rx5iEQi6N69O5544gkYDAZ8/PHHeOmllyAIAmbNmoXp06d3dfE53yD++c9/YtGiRcjPz1e/+9Of\n/oQFCxZwW+NcUMLhMH7zm9+gtrYW4XAYc+fOxaBBg/CrX/2K2xrnorFo0SLk5OTg6quv5rbGueD4\n/X48/PDD8Pl8iMVimDt3LoqKiritXaZ02WSUw+FwOBwOh8PhcDiXL10SpsvhcDgcDofD4XA4nMsb\nPhnlcDgcDofD4XA4HM4lh09GORwOh8PhcDgcDodzyeGTUQ6Hw+FwOBwOh8PhXHL4ZJTD4XA4HA6H\nw+FwOJccPhnlcDgcDofD4XA4HM4lh09GORwOh8PhcDgcDodzyfn/iI0sw8L8U3EAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAHhCAYAAACbaWhSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd8FNX6/z/bs5veQxIgIYQAIXQE\nBKQTuoiIYEERUASxXtTr7179Xu+9Nq4VBaQooCCiIAIiSm9K74EESCGBEJKQnu3l98czM7ub3WwJ\naeB5v168skw5c2bmzDnnKed5RBaLxQIGg8FgMBgMBoPBYDAaEXFTV4DBYDAYDAaDwWAwGH89mDDK\nYDAYDAaDwWAwGIxGhwmjDAaDwWAwGAwGg8FodJgwymAwGAwGg8FgMBiMRocJowwGg8FgMBgMBoPB\naHSYMMpgMBgMBoPBYDAYjEaHCaMMBoPBYDAYDAaDwWh0mDDKYDAYDEYDcvPmTcyePRujRo3CyJEj\nsXbtWqfHFRQUICkpyaMyDx48iL59+2LRokV229PT0zFlyhSkpqZiypQpSE9Pv+36MxgMBoPRUDBh\nlMFgMBiMBuTNN99EcnIyfv31V6xatQoff/wxsrKy6lzeli1b8Pnnn6Njx44O+1566SXMnDkTv/32\nG2bNmoX58+ffTtUZDAaDwWhQmDDKYDAYjL80mzZtQmpqKlJTUzF//nzo9Xr8+uuvGDt2LEaOHIlp\n06YhNzcXALBw4UK8/fbbmDt3LoYOHYpJkyahsLAQa9aswezZs4UyTSYTevfujczMTDz88MOYNm0a\nACAyMhKxsbGCMPrjjz9i8ODBGDduHDZv3uxRfdu0aYPVq1cjPDzcbntGRgYqKysxbNgwAMDQoUNx\n69YtZGZm3vYzYjAYDAajIWDCKIPBYDD+sly7dg3vv/8+Vq9eje3bt0Oj0WDp0qX45z//iS+++ALb\nt2/HoEGD8OabbwrnbN++HW+88QZ27tyJ0NBQbNiwASNGjMCRI0eg0WgAAMeOHUNERAQSEhIwZMgQ\nBAYGAgDy8/ORk5ODjh07ory8HP/973+xfPlybNmyBYWFhR7VOTk5GXK53GF7Tk4OYmNj7ba1bNny\ntqywDAaDwWA0JEwYZTAYDMZflkOHDqFbt26IjIyESCTChx9+iLCwMPTu3RutW7cGADz00EM4cuQI\njEYjAKBnz56IiYmBSCRChw4dcOPGDYSHh6Njx444dOgQAGDnzp0YNWqU3bUqKiowb948PPPMM4iO\njsaZM2fQunVrJCQkAAAmTJhwW/ei0WigUCjstikUCqjV6tsql8FgMBiMhoIJowwGg8H4y1JaWoqA\ngADh/wqFAhUVFXbb/P39YbFYUFpaKvyfRyKRwGQyAQBSU1Oxe/duAMCuXbswevRo4biioiJMmzYN\nAwcOFNx5y8vL7crirad1RaVSQafT2W3TarXw9fW9rXIZDAaDwWgomDDKYDAYjL8swcHBgpAJAFVV\nVQCAsrIyYVt5eTnEYjGCg4NdlpWamop9+/bh3LlzCAwMRFxcnFDmjBkzMGHCBDz//PPC8QEBAais\nrBT+X1JSclv30qZNG+Tl5Qn/t1gsuHr1qmB5ZTAYDAajucGEUQaDwWD8ZRk4cCBOnjyJa9euwWKx\n4K233oJer8fx48cFwW7dunXo168fpFKpy7IiIyPRsmVLLFmyxM5F95NPPkGfPn3w5JNP2h2fkpKC\n7Oxs5OTkAAB++umn27qXtm3bIiQkBFu2bBHKi4mJQXx8/G2Vy2AwGAxGQ+F6ZGUwGAwG4y4mKioK\nb7/9Np544glIJBKkpKRg1qxZSExMxJw5c2AwGBAbG4t///vfHpWXmpqK9957D6+99pqwbd26dYiI\niMD+/fuFbU888QSmTp2K1157DdOnT4evry8eeughj67x97//HadOnUJRURFkMhk2b96Mxx57DI89\n9hj+97//4Z///CcWLlyI0NBQLFiwwLsHwmAwGAxGIyKyWCyWpq4Eg8FgMBgMBoPBYDD+WjA3XQaD\nwWAwGAwGg8FgNDr17qb7zjvv4MyZMxCJRHjjjTfQuXPn+r4Eg8FgMBh3LZs2bcKSJUuc7nvggQfw\nzDPPNHKNGAwGg8FoGOrVTffo0aNYsWIFvvzyS2RmZuKNN97A999/X1/FMxgMBoPBYDAYDAbjLqFe\n3XT//PNPDBs2DACQkJCA8vJyIUw+g8FgMBgMBoPBYDAYPPXqpltcXIzk5GTh/yEhISgqKoKfn5/T\n4zU34gAAyevmocVBRwPt9UEiAIAsSo2Hkk4BAEoMlLw7VmHNCxciJYFXLLJALjICAMpMKgBAnLwY\n5zWxAIBOymsAgAJDIMQiup7aLIe/WAsAMFgkAAAfsQElRqpzkk8+AOCMujU6KSnM/70+RQCAMIlj\nIvFcYxW+r+gCAFi6dYTT+75b6D/oPA5vSwEARJw0Oj0mbzin75DQ85ZHqGEy0nM26ugvTCJIlCb7\nE0UWKJV6Oo47Xio1IVBJ78poFqO4lJLFyxUG4TSFzGj3t1onF87h33lBqT8GxmcCAHYd7QQAkFWI\nEfUn1eH6QAkUJSKHe9G0oP3PDdkBALiiicC+jd2d3ndzxiIBzLKmrkXDItE2dQ0aFqOK2rJPShnO\n3POdsH1NZSgA4JPLQwEA+l1hjV85N1Qm0HekKKLv2iyzwOhL9+OXS/2FNuTujaunLHTsW0w+9Pdu\naLcGbrhXt6I+WJUrRdq8RXbHLCxtjSXfjmnsqnmNJsoMAFAWWPX2Rr+7t20CgOqGY/usSDDDEkrj\nceBRaqxlKQZARs+iSwLNjWJVZWjpQ7lyj5W1puNlWtzU0lgdoqgGAFQZFHg1djsA4LoxGEES2l5k\nDAAAdPe5Bi03Hysy0TzrgjYWpytbAgB6BWQDAAaoruCAui0AYHbQdY/ur9Nnczw6zhYd1x/Jy0QA\n9/pFbpqBSU5/JXrAzE11xNw0xyyF0OfBAsgr7J+5wd8inKMoc3wfrjDYtM+MpxYLv5O+etarcpqC\npAH0XjMOOE9FJdF49yzuNJy1qbTnqO+M3zYTqix5I9fIO8xyQKyvff/F/7xU674GDWDEAvUyGAwG\ng8FgMBgMBsMZ9WoZjYiIQHFxsfD/wsJChIeH13p8+5/nAgBinVhFASDiGP0Nm1mEMgNZOoOkagBA\nvi4IQTL6fUsTKZzTy480K1HScgCAySKGTETqqEJO6xYkUSNEQtbUU5o4+IjIssYfFy0tRbi0Qjgf\nANr6FGCg8hYAoNJM9c00VGFLFVnWNvwjlfa1lKC8M6kG7vYkrhcWdUJECWm/zXLSWIn19u8yej/9\nX+9Pz7FogALKQFL/y+R0rl4vBa/vMpu4ciSATkdPUC6n96LTylDIbVP6GCDlrJ8WC50jkZhh4n6L\nOBWTVGyGVEza7R6huQAAvygdNnw3EADQ8jxv0bVaZqUa5/ervEGqyhVrRgIA0uYtQmJgNwBAbA+y\noBfujnF+cjPgrelrAACT/crRflnt2uGw3gUoPhLVWNVqcFqPyAEAXP09rknrUZ/48Jb7fcHoso/e\n5Zn5i7CztCMA4Fj39bS/O5CwbjYAwC+v6YOn6++tRKcI8izJ/qUNAEBcIUJ1G/ro+vVPBwDs2t6t\naSrYROh70njEewD9fr099NtrHzubM+q2NP6prli1+MkLqY3yFtJ5wVcx+7mFAICun89r5Bp6jsWP\nxoe0ecvR6fCjtPFiQBPWqGnwyxXj/XE0fkTfR3OrCVtfQOA5GhM1rcnVRmOSQSGm+VSwnL7pKxVh\naBtA88JyA1lVW/mWYkNZTwBAmKwKJUayfpq58XuI6ho2ViYAALQWKrvcqIKUMy129aGxPFBswli/\nDL6WDvXWWQxI3jeL6hOgdth//nlqj2MvjULOdkdrnDaM5g4+xdR3mmVWi6a0UiRYOnksIqt1y6Sk\nH2KDCCIzt19s3cc58cEio/Ns95sl3ltEnXEnWENtrbcCiY6bbO/Fwk2uRc4d8u5KbK2iS2d+DgBY\nXdwPBzc1n7HSlVXUHfUqL/Xr1w8LFy7ElClTkJaWhoiIiFpddAHAN6qa++X8GFk1fczln7bC9v7k\n8qFKoI6wR9Q1lBmUAIAYZRkA6sjyDCEAAB3nh9jBJ18QMiWgHoH/PwAES6vhI6In6Ms9yQJjoPDb\nX0wd6nhfNT4qIRfkz/cMp+vudqyzf54J/nnUQRf0rvXW7xguT6OOInG1Y6fmU2J9jtqnyG1atSRI\n2FbQVyK4vip19DfgrBwVydTJygN1AACx2AyZjPbzLrlGgwRiznCv1dA2mdwIiYTeoQWAghNmdXpq\nxiqFHgbu/Godfbi+Cj0SuIEwRkHt5OfXhyEUdO6tZDo3NM3aq5llgKQWgdSW5IVzYGxH99BCRcqL\nQjRjYfRbmkxNnr3I5XHFR6IwfSK5In+9cXiD16u+uH/8H/h5870O23khVNWP2sG0+CN3hIugt3Q6\n/CgkBwIBAB3ujQMAXOz3DVp2KgAAlOZFN1XV0PJ+UhIm+d/ElsukwDN1po/MbBAje9BKu+OT0HwG\n2EbhCk3G19zqS/+9fwnaXiUlQuDF5qnWNKqA6jjqN0f0OAcAOPBzNzshtCa2QqlMRH31hzNW4JUV\nMxq4tt5jVFns7uV8HxLGki42/wm+K55/YCvmBpFbbdLXnt2LSQH8/RN6R9X9SXES3bYIpddJaZlf\nQQL63Fa7sfJGPwCAXEJjerBCDRkntcm5v8eLWiHaj+ZyeaJgxPjQ2MwbHbIMPsLyqxPVViFRIab2\ntruKlG5vhGUI+xaUkPC6ck0q5JW0Td3CAn/O7bj1w7RMKx1h0AfS3DJ+20wAQPbo5Yi/REKrb5Z1\nDQsvhPKIDYBES+VpW5ggK6P9siraZpECnG0DnExu73rJ/zYDEh2dY5RahGP43fUhiDZ3nAqhHG8V\nJeNf4Wm17r9ThdALc61zr45feOYuflHvqER5evlzAIDwQfngvNkhMjkc1ui89eQatJffBAAsLSKD\nz56fenh0br2Oct27d0dycjKmTJkCkUiEt956qz6LZzAYDAaDwWAwGAzGXUK9pnbxlt3ZSQCALWVd\nsf3HPgCAkHTOpbaHGBEnzA7nWJ4hFy+TRQQZ537ZOYRcJDv5XsM1PW8ZJTk7TFYluI20kRcCAPIM\noajiIkbc0AcKriE9ORffk9VxeCr0IJUtp+N+Ufvg+cNTAQDRGzxbRFzQu+nd4uqKK4soT+QxMwy+\ndI/BT5LbjOYj95bB0nb0birbknpLGqSHUkUWxspCzkousYD33ZUp6f0pfAyoKlMK23y5AEe8a67R\nKIHRSPWJCCKtas/wXLwcvhcA8Picl4U6yF+6AQDwl5HLcOFnbSDR0qfw6IKt+HT1BLf3Yct3z3wE\nADBYxJi29EWvzm1s0uYtcumma0v6LNLkJX7zrKARbq7wdQWsFhgAQjvi1c6bZ3+ABJmf43HNFHVr\nLhDMVavuUOok0M1D03fjh6+H2G2rbGNC1oNfAgDit5DmPyC9caNXvTr7e3x0iQIqGXeHoao7WUT9\nTiqFY0ZO+wMA8H7kaQBA0oo71/qUMYP6zreKyJNm3eb77PY7C2DkjIokGgv9M0n13VysAeLhtFyl\nXWgRssooYNa2zisBADvVsfj3yqkelWMb1KjDocep7JP+9VjT+kMbbkbmFMr76qk1sbmRMZ3apbv6\nOwtg5IwBTx6DmfMrPVrYCgBQdDUYu8fQWPhx0WAAwLDANPRS0NyrhZT63YWlrTFAdQkAECIxoBW3\nnQ/AVmZSIU5Oc71KE/UTKrEO64vuAQAMDiZ3/hmBBej2DvXhlX2pX2kfU4D0E+RJF5lciIJi8hYJ\nOEzlGJw44hn8LULAIZ9b3o9zvJutWQ7BJdfMBXeSqkXCft4Cqg+wCEGLDH4WwbLqDt6t2JaaAZkM\nd0CArbPTP4NCROMQb9FevGs4ZJWun8OdGsDI1iIK0NIZxS1H+cBdUCxnmLqSG4DkdNP1nXyQJVuS\nP3ecW7kKYNSk/j8bS8l8+2zYPmz1tfdpVZSIUNKeBmFeQAUA0Ze0jqZguAXJHcnVpMKoAACUm1R4\nIPAEAGtk3M5yEw5qyQUqz0Ad3RBVBm6aqEfaZ26PLioSpMScG2+ErFIQQrscpYFVui0I0UWOwrHe\njxpUVazIoa53KmOGH3MphPJUtJYIHe/XbSmf7BS87OIMIvgSzaqCL9P/80YoUMlF1o2MtUZJLsyi\n92X2oePVVwOg4DpwRakCWm7pjjaS9ot1YgS0IXef3uE5AIDHQ/60E0IBYPS7ezDMj1xAXp5H7g5i\nqbUXGOd7CZ86qbcuhdwlFOdUDvumfknXSJu3CD3GnwcAnNjcqdZn0GDUELxsEaL31YHLjy9G2z3T\nAQDSK0o3Rzczatz2+CWvCsqDFbNo3dqMZc133VrbRFKclLf0QfXB2tcR/iMsHT/AXhhFgDXSdPa4\nZVSe33T4Hnf9DjWR9NCUN6lBmaX0D7AXhPXc+Me7xdmi7UMKoXfTRgruw4C9EMqzfTW5V78//7TL\nejV3MmYsFoR+eeHtDa+iIFK2PTydBPX1y4beXuVuE59RJFAUldBLT9/RXtj3pO8kAMDWdr/i307O\n3Tz7AwD07fHYuuxe7PcNACC+jJ6dz3UZxDr7Mox+Fkg9nLTXNz5Fd6ZimRdAgfoXog+s7IXv5y8A\nAIzLorJnD9iDEjNJdZ9FH7M52l4CnBd8FYCC+59C2P6o/y3u1y2bo60dznjfvXbldHtnDnTcyqAr\ng78GAEy4nAr/bHpf6uwoeLLCV1Ypwu2o6HghQmLTZsUGkcN+HtvouXURRDssoW9Hchtr9JoCMxcb\nQCGS4aiOxqblmyjrxN0W4P+bmZ8AAHoorMYr3jVX4fSMuiE637QKvJqCqDMh1BPuzB6WwWAwGAwG\ng8FgMBh3NE1qGe3iS5bNr0r6wRDLqXhOUJVk1RZUdiTNSUi6xOHc2B0i3DweBwC4OIQ0Z0flrXEu\nltxE/zhGWltlbCU010hzwLsA6GP0mNdrDwDg/oBT+KmCckW+GUZBGMb7ZiDlyCMAgKDVvNbB0Spa\n2FMMaXsKXCPilFuFfgGIOO547J3ELzt6eXRcdSszYnfSvc7NecDpMZWx9O78rzmxGHPaQr9sCaq6\n0LtWyuhv7rkWsCipbFEu55qrFkFOjxtVrcwwB5FFNOgkaZ7UURYkhZH2fnTQGQDAC/OsFq/739sJ\nADhdGYvVaykwjzKKKlEdLRJyN/KuRIB91DZTBXcdJ26TPP8oTMHq1vsBAIOHBDuNrsvnFNS1pDav\nzJQLFmaeJx/9TQjCtWo7uTv17n8Rp7Z0dCiPJ2LIdVy90ILKLHDUM8X28SwPmy28O2/6rEWC5rn9\nlebp2tp+2Rx8+OhXHh074/w0ANaos/0fOIWDPzXPoDn5O1t6fGxNF1j/0z7IHkQWynjONfnK4K/R\npvQZ2p/p2LcCEL7NikRq6/ISiRDpUR9MfxVtK9A6iDwRMo+Sm57YAIT1ogAGFVfJs8HHC7fg1252\n9fjY5gTvmpu04lnUVya4oEAK8PdYEHn7pL58DjM+apolAJIRxSir4trUEUfLtsbo+I7VLbl+Mk8K\nGTc+7nyWLKTDFttbSHmX3ewxZL0fnHY/cq6SF4Aqk56orVU0dhh5M13b2cpahygzLL50TZkvjSP+\nfhpUnaF2KK32zqqqSdJBmVGfNozGw1uL6FPjd+KrzcO8vs7og+RZZOKCDBYb/HBOR3ndu8opcFq6\nQQd/LnDRYxfJHbtySwtUxnE5XBMqsKLrKgDAPQpqR8UmPrgl4C+m98+7dQIQXHPLUgxoGUeB6SZn\nkefApZ0J9WJ5Mvk0j7y/vSecFX632UD9tqqRLaKugg25o+2e6ZiSfBwA8J8ImmPfCVF+64q4Bxdk\n1YlFtC4E38cFINzvPMOBuImWb1i6Vwi/2+x4CgCgzPCpc3nMMspgMBgMBoPBYDAYjEanSQMYrbxE\nYex9xXo86EdS9oC5zwj7y9qSti3oiut1mCYux+WNgWYoijjLahW30wIEZdqfbxEDxV1IDpdoRQi5\nSPtvTCJ1U4sfXeu2+XpVtzKhRSItsveT0blGixj6L8g6dacEMPIkWJEzjEEmtNpKv3PHcWvMQjUI\nX0lrKs1yETSh9Ax8b9T+Do0qMcrb0HGmHrT4rH+rLJxZ1Jm2cWpOv3xrGWa5yCGnqX7uLbzb7icA\nwFsvzBS2Vz1D1pufupDVbOD2lyDiNLm8BdEQaF2PdGHOImE9k5ELBmCrlfftT++86o9wB4um7Tmb\nHv0Qk778W6337Qzeajpm7GEhqBePuqURqjxHa+zYybSm7Ko6BOe2tnfYz2PoQh/FpftWexzAiMc2\nOBCPt2U0Ju402upWpE7Mvn+psK3/2YkAgNJ9zT/HqrMARoEjb2B/CrX/Lgus74a3bmZPWOpwjrC+\nsVgKn2JrG1dza0Z9kkjLOz3xMHqrrgAAfikn6+U7kWfRj3tm4UqyZMyO2YtvC6lfP7uBrPjOvhHA\nfr0pHzxEk0KWXWl23TWsjQlvEU34ntKweLKm0ZMARtWxFpgiaUzJGrECAKA266G2kMVv2Afz61Rf\nADD6khURABTcWkh5heNx5Z0M+HjIdwCABZkjUP1L7d9FRXvqm7Me+FLoO7XhXI5Gm/WWk6bsAwCs\n2TkACpu0GQkjswAAmxO3AwBKTWqMS3sMAHCzhFb9yZ2s1QcAQwC1VZOPRQhwwq/DU8cb0KM9BSY8\ndbwt1afQs3E5aug1FOyKFf7POarArPBuyhTW4yaKT0S6P7CesLWK3nfuAdw87r4/y5i+WLCgykvp\n2TnrYwBAwy1bVxYB8ZMp8MPpM5QzODBDgoreXMqmSnpgQRccxyz94HKk9aVUOakXxyJ/O1m4qzvR\nReVKA3wOUAfRaeoFAMBLLX7HzA/tPQM2zv9A8PjozMX30FwKgl9u7d+YswBGtnQcS+lijp1NALgg\nRL6Zjb+ikV8j+soN8tz77Yc+0HNt3XbNaU0aOoDRV498AQB4/MBMZA139ERqs5Hm8IEtaez4udty\nGLgqHdZSYKm3f5hcp2vfTgCjRU9RALI5X832+lyDP92AuwBLgGOworeKkvHD+oEeXcdZACP+nRuD\nTFDlundm1YaZHVISucMitubFNcXRN3hl8NeYlUdpmv74uYtwbNJI+uY3tqX0fz1OTIb2zzCPruMq\ngFGTCqMj970AAMjbFofjL1LImGHPPSfs5wMYqVsZEfu7+0Zwq6ME6Eajqp+SVpKXng9DMPVlUFTQ\n4KgLFEMXTOUF5NQ94JDeTwx9IJVTHUOPUaIVIewslXknCKOXpy32WgjlMfmb0fJXuu+KWfTc72lx\nFSeW0mTV96bJaSAdVxR3tioTxAY+aTTtk+ituU1LZlRBfZUmKf6Z9Jxff+47LH7lIbvybvSToFM/\nmkSn/06ZlMNPG1GcQtfhYi1AF2aCRU7tI3vcsnqJspo2b5FH5ahbG6EMo+BIX3Und6U+PhK35/L5\npbQR9EwiE4tRsb/2SY9t9Mq6CJKNLZC+/vCPAICbBgp+403OU1fCqFkO6IPoXZ986GMAgAwSqDh3\nsM5Hp8J0JLguVW40apsoumLmzF8A8MFDCN4drteWlxBw2XGg4wXZoJgKnOq1DgCQdIBcnH0OW2d1\nR/9G/ffP1WFYkTcAAFBYRfurLwR7EUGWcwsuqsV9+C7A02cRNI6ixC9utxYA0EHuKIx1fdf998cL\nUZYBpJSzWESoLqayAs9ZJ9lGivMHXWfqiz7stR7jfel30lfPCsGsnNF+CkU3HRl6HgtWTXJbp9qw\n7aPa7ad2JpVyyzVOOA9FowuhccIis8DnZt3G3NoUfXbHxNNAJC9qnnlfbYVQHk+DFtkKo3zUdIU1\nliDKUgyQldJ9+15zbAdGznNbNuAWDAc5t2jH9Ihu4QVFZ1FjeddcgCL5AkBudQjOnqY8pEHxVOGp\nbY5j7ZJUqpfKsR7uhNGGgF8C1HUoCbrr4nc7RMG1JWTwDeTl0ATfN9v6jfL5UeXlTSeMCnWJ0eP9\nfjRG/3P9I41yzdsRRruOvggAOL2tQ31VRyB4ALnSHuq80WGfNy66dYmmGzuUliwMCKd57uptgzFg\nELlDH97c2eW5+k70cVy2yfM99MJ4AEDB7liH46X3lOLMPaSgbLfvCQCA7Jyvx3V1JYw2f2mJwWAw\nGAwGg8FgMBh3HU2q4iuoJDcMbTc1Ou5+GgAQbbOfT5MSku6ZNiT4shk3IklKF90gLaqiVzksGfYa\nVUW5GZoI0rxXtJagsjuZGWJ+8swVQxNCMnx1rAj6QNLa9utL5tfsDzqgpAOv1a+7hiqu1zXkHHPU\nTNQXdXXNtUV+Syxo/MpK6Ln/np8CRUt6XxVtJVCUcClvLjiusuZzlMqqzdAG0zNTFVB5qkITCrtT\n89S1pfejyPJBUQ86597IfGSup/fqN5MCYdW0igKAon05rmwii6iFawaVsRLBLa2sM2m7kxLz8Uj0\nEY/um0+RIq0WYcaj5Fa2Ys1Ih+Pit8xCTVuGLsQCkx+1a7GW7iV7/FJ0WEras4IuZAV87WZbt/XQ\ndyB3KOV5UktXt5IjdBClAbm1t4XD8asrSNM6LaDYbdnOsA1m1NC0H5SJ0b7kXhcqpvv7Gp5bRp2h\nD+bcXUIMEFdS2xp2mrR7fCAjABjeMgPbj/RxLKCBCBpYgPwsejfurDOuUEdZMH4YteHffqD626Ya\nWL58DADg01gzrkwllyUD5xijypMK1g2zFFD1ojZyfzS5T267lIz4X8n1PSamBABQaZOuocdC8nJR\nx5jQMYU0tfojlPPZ1EGDiaOpXvGKQvx3A32ntm7BPLJArsJFzl0ymwOJA3IAAJcPxNVbmXqub+K9\nHaLvu4ZdHTdze2t/FvdOO4k/Vnd32F7Vit7r38f+JGz74CylULBk+yLwuv2zNykAc0/qFBd2/QEA\nECWpAJ+EIOOpxWh/kILP8O6TtnzWagsA4NFLU2qtKwAkjeLcOrNaOQ0OZJvuZXYnyvX9+YlBAACZ\nk9QuFimEMQYQwcBZjmQuLEfOkATpkca5sX9UQi6nNft0FWehMnppeZK2r4Ax3ZMEI3Xj04ftXSV/\nV8sw7/uZtRztHpETZzHFTakR/6MHAAAgAElEQVRLi37USBqD/9tmIz4Pp0BCxVrqH25siPP42vzy\nKlsrqC2LX6ZUXH186EPpfvxhBF6mcbQsiOYga5ekorwD3UTgxdvzsAgbQt4JezttAgC0/W624Hau\niTRD6YElXhtuFs45v4WW0XSC8+U0f3uSLI3dfXLxyB7HNHmuLKLOMPpavA7c5Sny6/JGs4i6ouUQ\nGm/ydrdy2PfDrA8BAFNOzcDx/fTMjUla+HgYaMdTa6ozi2ivk3VzRa4N29y0trwa9ysAYKiS2vx3\nFUNw6PcUAMDACacAAAc3WYMz2qZieT7fGqzUk5QsvFUU8M4i6glN6qYb9+27AIDQkCqUltONuVuv\n6Y78AfSyPhz3LQDgpT1TobhBg4iU5u4IzqifXKDVkWL43iRh9Pogum7MXuvjrIubbn0Iid5cxxZv\nr+mbL4LfdXqW14dzbsr+BsR851qo5ydczgY9ntIkKf42iwSE/6WTECLfEoQnXt4GAPhy9RiEptUe\nRqy0HU3qRRYg6LL9cZWxEpi58I4qLnesrMosRNtdsXbk7egRnMLntQSAKce5icIZmqDYJrNXJ9I6\nMdVl19+BLkUt5Dvlo5zars2zXevKrw/j18d+MOMrvLLmqbrdCOyF0YZy002ftQiDzk8AABT8Ge3m\naEds3XRFvWjtyoFeFKmz/yLrOl5emfLqpJ8g4R7gytx7UbTH+2t6i6YFfQCdu+TgTCZFzHX23jUd\n6GaUF60DqDM33co4MzbdT7nNJq+iiYxU7TwXXeBIUlpoDFzfKDGhUkPl2+YEdUaHSeSSWapV4bcO\ntGi8xwkaeMN9q3FjS2uHc3hha8rEvcjXUfl/rKcBUmzTDxz/G002O331HO5UTG3o5UiynE94nE3q\nLUPJxXBuEq2pLDcpcaGK2mCEgtbRX9cE4f9FU/+3tYomG4v2D0XgxdoVGBU9dBCV0Dvmcy/a1ZWT\nB6dO24VsDSlERgaTixcfx4FnZDopM/J20PsV4jIA+OAF+raeXzPLpYt8wH1cpGUXywl4ggeS69ug\nKBJgf1o/oN77ZR5tpBmZk5fYbdtU7YeXDj4MAFBdUmDPHMqpOWC1Z3EA/v0QuVevK7gH565RVHUj\nF5Fdfqt+3NBvxzXX9nzbc5ytGdX7W12of1FTu359yVN4eNpuAMCGpdb8xpWt6SVdeZTKrk2wdAa/\nVl1Vi0v4qTeoDqUmci8MljhX1Li65u246bpbj6fvWoV991Id791B61v/1W8TPljpWjBpMZyE+R0d\nSKkz7ep9OPlz3fKUN5abbm1I2lN/ZUqv//yXztx0tYmkwOTX1gPAJ6VxAIAXg3MAAP8pbo+131Mb\n9e1bjGoP1zi6Qtdeg8yhX7s97qxei/t/o6wOylzXc2NXbrrxI7KR/Xt8rfv5vlyic75fyxkvMod+\n7XUuUFsBdvxlUtI9EkUK5n+vmupxOcxNl8FgMBgMBoPBYDAYzYomtYy2Xf9vAEBoYDXMayMAAPKq\n28vR2f718wCAZS0PAQD6nZ2IcjX5n/n5kMqgMDMUMbtv6zIe0ZwDGNlaYGtaSZ1ZSJ0FOgq8AmhD\nSVPle4OakVkCqIrqbnnOvZ/Kea3fNnT0obyY886S5qWiwB9pYz8HAHRb9QJUN/ggVN4nWiprS9aE\noCvWc/NGUXl+MRX1HsDm4Jz/ASBNLh+YQ3amcSIpdBlLriZntpKrSdq8RS4tmroWBsGbgGf6xB2I\nV1AO12NV5Mb2e2576M7U73Ny5gLMu4cqrnnuNWFrnZn2CEV9ey30srBNiBJ3LQ4AYDaLMTTuEgDg\nmjoIPbkgP999Z9X4e4oujPowSSxp78MDq1B8NJLbZ4I8lCqXEk0uYKeutoSvH23TpQUBcB6VVR9k\ngbzMdaTLp2eRZv1/R8glU3VJIURoVlD8GiROvITugaSJl3FJyib6n8GwXaTJDzjn2XOuaG/A+4PJ\ne+G1QxS05tuBy/AYt+QiIM11OYphFJVatzPcWmY7LoBR8d0TwChjxmIkrbD2nc4so5r+ZGY0mWjM\neLP7VvRT5gAAEmSO/QTvcn+0MgF/FpClsiwzRAjm5imTZtFAOMwvDSe0cQAAA+e6EicvxgRfq/lz\n4hXyUDl/nSy24ssqpM+ksSPTQMe9kP0QLh2mcrx1la2N6GHUVq8eifUomuXtom5LrgRJ8TfwcRty\nWZ705d8EDwvDRc9cbm2tlonf0vvng/HVJ/oI7psp9N7F35lllB9XPYGPgm3gHslbU7/D+ws9t5R4\ng35wOeR7avfa4INImltp4f+nYy5cntuyjIZa4HOrftvgOzNWCoHCeA8T3aG6W+6a2jLakDizjE6Y\nRO78+7ilTfnZYTg9jgLqBYod28FFvRpjD84FACgu1t5O3PHR9BUYqbI3Q6bpNUiW25fZdu+TmNzh\nJADghx0075CVi2BMsWY3ACjQkbcBjMxSa57RIC4fadn+KGEp2akn6Dl8UpKCNeuGelc4gHenrwQA\noX0mrn7WZSTn2pg6hcaZNzttqfWY5istMRgMBoPBYDAYDAbjrqVZrBkFAIuR5OLYLd5rxPk8o+Vt\nxFC3JDXBPwZT8IefC7vCaKayp0X/CQD4v++nCKkdYvbUsfIuKEuge9CGNX8N1eVpi4VQzrnHY7w6\nNzATMKjo2Qdl0nM3y0RCShZPKWkvhXQAFxTlClmGTCEGxMVSEJWcy2RV8gnXoFv0NQDA4ZPtEHWI\nzyl3e9b0mrR84xJObeno1Tl8rjtZhQiKvrcAAK8k7cTbp2mdVXQIadULK/yA467X5NUntgEM+Dpe\nemKxa8topBEQc2uAK6ktvznmR/zfEWon8pz6zwHZmQt5v77NrlqPSdg9HbJMzzSZtpbR+yeT5rSF\nnN7BvOCryDWSVnJ1WU8AQLHBD8MDyauivaxYsEa12UA505T5nvdLmmgu5+KDXwIADBYTZCLH8/m0\nKr03vOJ1SoraLKNn5ttblvudnYiEQPqOjl+nAA/6HD+8OZYCZWwuojRMZosIgXIq9OT3KR7XQzWC\n1gAWZFM6B9U1KRJSKejRYy2ov5XAghXX+wMArpYEQ3uV1hKpbtA9i504NmhDmn/fWVecWUarY+l+\n/z1hnbBtin+pw3E10VkMUIjIiyHp62ehLPBMa62Jouu16kP96cDwy8jTkpfDohjyKpKI7NtkNmf9\nfOXqAwCALoHX8Vb4Bbtjur47B+XJ9EJVVx0tdc7yNrtDn0JaeQsgrJNvLFytx79T2PU4rXUd+g3l\nplV1KhXSNN13jt6lbS5STy2jumBAF0oPxsylRXOWUxQAdDSsC94Z3nDgdYq30HnTCwhMt+9HA8fn\n42oOeVYEnaXvwDSsFJKdtXvs1MUyauYuKzYB1QmceVtkwbiuZwAAn0VTqhlX6VocyuQe1YDxp/D7\nCepz27ajtfxmiwg3d3oWwNLQjb5L2Sm6sb+aZfST6bRevaOc+stYqfsX7E26FVf88vQHAIAHz8yg\ncsNuYnwYBQ2a7FcuHMd7jlw3Ud2e/PUZDO91FgCQVUlW8Ou7W7q1jPr2I2+io91+8Kqe29UKvPLV\nDK/OAYCvZ5FltcBIc9Zvb/bF8StxAADlJccAdLWRmJoJANg84PNaj2lSYTR+zTv045YCZi4SVOx2\nzydllS2ph9BR0EYY26khzqLJ6qhR1DkcWNoLygdowtQ1lNw+O/lewwc7xwIAQs6IoSypX2GGr1d1\n9J3VKXgbPCn6oNUdt6gr9awB2WYoyj17nnkjqWP5JPUbvPgbRWpM6ECuixNanMaOIhIIL+TTQClJ\n90XgFSq7sI8FweeprfBBlG6XW0+RcKDO94PyunvhwywHxFxwGE0s1cE3uhLvpVBktQxtNBYeJTdP\ndwGJeOJTKYJs1k7rQnVXgZ7cYQiw4NIT9F7/U0zR5Ap0gdi5rYfL80QdKQjBnI77AQBf/Dim7pXw\ngLmTfrG7jruIvf8pbo9vf6rdhdZWGFXH0eQhe9wyj+ujNtOLHXj6MQBA5clQr3Oc2eZM9JSOf9D1\nasupyOMuzyifU/SyJgIniyk4Un4hzQhFt+TwjaeBUrTPMzdrY/9ySA/aK1Eq25rwzH3kfvMnF4H0\nzMXWgiJDWkJ9guqmCAZOhjArLJgx8XcAwJId5PbpUyQWgsvx3E3CqCduuuUdSID7fhQllL9H4Vlk\n90mZw3BlfTuv61TZhvrRUf1p4lSo8xMUQeVmehmBYqUwiUqQ+eGEjr6Jb0ruBQCoxHq8E0kTqu1q\nmpi8/ukMRE/MAQBc/T3O63oJ9CyH+Ry1N3EtATmaijtNGK3J8BEnse1iMgAgaxhF4vXGTbesG7WD\noFOeL5sY9hQpphSc5un77f1hlnP9RIwaqgPuBQhdkBthdjin0L4cBP8cx3lkRW8u+nyaZwrN6gQD\nfDNr/w41nTTIHEIBbPqdnQgAKN8bVevxtaGONkFVQ9lplgDgXoMzZV1t9QEAaQMoi5sLzsZgTVvq\nIP4YSoLTZaMf7nPyCOpLALXlzBwKuNfvNEURN5rEMHHGL8MxGltNKovTQGPDL44DQEIojzth9P6H\nSLHO97uJ3zwLUStS1l0aSDnqD2tNmLF8Xp3up+a11p2haLt8cKiPStpgyVbK4Suzcde1cD/1QRYo\nSmvvP1gAIwaDwWAwGAwGg8FgNCuaNM+oqJC0qSZ/E2J/JbnYmVuMM0xyEfzzyGTkn8dtPKNA+9dJ\nY7DtMlnVIgvNuH6F3DjUP5O7547Y7vDjcpMpS+rHqsZzK1kCvzxSb1Q3fHaIeqUu6WSuD+LfG70w\nxWkzzJzbtFjvqObRhEmQMptSB8wIohQRrxybDEk1lbM6kfIY/ViZjNx1ZG1pwb3nom5WzZHqmgR+\n10lleLMXNePIY94HMuLJf0SP871XAgB6ffiCECbbFUalBWJOOTy+zwkAQHffHHyUQ8FjCnbFusgQ\n6Jx1bSkvYO/fXkbrETkAgIxT5F5pkQDPDSWrkrO8ps5498E1wu+vTpFFA2VyuNNpWy6QK2V5Ut0X\n+HtDTctr+2VzoIsmi+bOER8DsA/k8o+wdKxSDAYASHSuNfmqHM+sTDzTrt6HIcHUNtVcIIm6hNOZ\ndvU+AMDq1vs9PufCvZSSakqLITi31XkuOk/4tZAsHwWV/jDtIRdaPtC+0QcQ5XpmEa1sQ9/e4Jir\n2BNHqQZ4q4MqTwIV5xoQICet/Ox+e7D2K/t8sDHjc1CsptRd/2j3C3xE9F4zH6ZUGl0WzBG8SHzz\nGz5ATWNjaxWtDVkImbrl8MyrpM0OSs0UcNx7K4guFBBF0vU+j7HmVj6k5XJm+1i/edtvroeCeo0e\nLY47lDnvKAWt8QXwYksKGPaCfBYAq/eIVxwPdK4p55uHF8ZJbTjdF5/rsT4xxXFpfO4ga9SO37vD\nEkLftTdpYHikt6g/re5fBd+D7i2aZZ2MEHMD948/DwAA+BUBwsvM8sxv1tYqWtaJxvqg89YpbHk5\njbbyVtVADvV2mgiL4LbqrcXQN1OG6iSyuin96a/oRICQK/fStkQkySgYoSid7qEuE+qaVlHAPt2V\nLbxrr5ZLC6bKs57L5xtvLDfdjKcWI+mrhk1B6BF6+q5bcO65Q7+cgwtz7b2SlpbX32ScL7vL0al4\nIZ8CEtm6zda0wErUIpzVUz/xWxWNy/NDMu0sop4SLKu2+/+mhz9yCJj0yIFZqI9Z201dAEYmpwEA\ndmmonS3aPgLd+1Ogx/RiCjrbKbwAZ36h4JiKUhE0MdwypQdomZKnaWSa1E234xs0yVR31KLFFurg\n3Lkk8C6wvCBqy/VhwIN9jwIAtv3YFwAQctEEvT81Vnll/brj2nJtLOdmvFUCbRCXhDmpwS7XLIg+\naEJBb3ofUUes7yP3AXrOrX6yDv55k+nFZg37Cm/c7AwA+H4vCUc+hWIh5+KS0eQ2NO/EVER9S4NH\nUWfqgcPP2DcOzbO0RkD/GykbArMcG0/uOAtabXE/wf104UI897fnAQASnQXFKXRNYSJTLBYmQOp2\nNDCpbHzmeZfMhHWzb2vSkzCS1ttlbm+DOY9T5LFF34wT9s96jPIMLvt2tEfl2bqK8gnlAQgRVu8k\nQnsXOE0u7Wz9q7Nch9Le1F5sEzfz9Ds7ETcuUTuSlYshVdefUJQ8JsPlWthaz1tYeydem5uu+T6a\nsYn3B3l9PWeEjKalDb90+AElnOvyfZtfAUDraGu617rDqARem0YReL/KpXWk5RofmPeG2B13N7np\n1sSZm67PKIpUfbjrj8K2KjO9ZD+x9WNtt+8JAIDqD+8TjvPrUoM7FWNHF4rgyEebnJHbHytaHaz1\n3E9K44ScfbYMTrsfAFC62RpvIHwCaYevZJLLoirbO2WQK9TxhlrL1ESZhVzKDYmtm+69Q2md+R+7\n6pYT0lt8U8gVtfpciJsjXaMP46NWO4pP3kTTVYymdlu9lyamc5/8GbODqM9o8yOtt/e9JoFU7V39\nqlpZhGjMCm7pnXFoGcbF0fP+7kgfAIBYI4ZEy0X0v+5Y78dnb0cbLgr8344+BADwOed6qi7qTX2o\n7mIgLj3p6F7J4836UGfEjaQlOWlXYuB7hRQ9/HpUV+7BAGDgoqXKqh3vuTGFUZ7GEkpdLZUJGUDR\nZLuH5SFYRg3uh/UD6/X6gyacRLicljD9KzxN2P58PrmzZpRHIvMUrfVdNZHmXrNWPAejP72T8K60\nZLD0gHN3bk+j6drm/eTnP7XlF3XF8AdJXtqx4R6n+5NHUyyPtG2eCTPqlkZk378UALkQA4DcJqo6\nc9NlMBgMBoPBYDAYDEazommj6X5OuRctvia0iyOthsZIGiHLkgjhuKoYCcqTyHImCSXxP+oHhWCN\n9A8l07VGrUBsOFk/jIu8X0heX1wfRn8llXe3rB9+ygJNON2jspgsiLHPXcbpAxRQo8UhEyzzKPrX\n/hRyPx2ZPgb5WykvniaSmt6Qwafx+1lyX5h1zwEAwNfbhggBkm51Iu2tRAMob3HuwGVmXH+ELDUx\na61Op3xQJLGG6hWzz7UbdvF0ajvy3YEIuEra4tzRgCrPXmNs6VHhNKiMMyvp7aAPpGfy3sQ1uKIj\nt/LVa4e7OsWeGm5s6jYGDEmhPKOHfyaLtLqVEYo65KRrDujC6R0tT12BoVzQs/dvJQIAvt5ofU7O\nLKPaZDLjpSZdREY59S9ZV+mv6ornwTi8xbd/EZYnfwMAmH5uGk70WO/ReSsrqG4LVk1y2OcugFF9\nwUfLbR9ciAgFaYQTfMjS8O6+sQjI8L4dDX6MtLE/H+0OAOjb+TLObyA3H14zrA2xIHUUuYPykSr7\nnZ2I4mORdbyT5oPTAEZcBNofUynaYFe5FG8XU4TNHy53AwDI93mW37ImfmNobJVJ6HsZGXUBJm49\nTJiM3mmGOgrbsqgP/kdn8r749MoQqGRkqVnfYQ0iJI7W2PYHKfCczwF/YVtFO7qOlBv/6pob1NmS\nHU+X8dQXzvr3Oz2AkTu8sYwmP0LRlCeH0zf9/85PgPYyBZ7yy6VybHMhOqOsux5BJz3rfytb07P3\nv1p3zxVn0XRHTf4TC6JO2W3LNlQhvkaO306fzfHYeukOfRDdiyHcAF8PAxyGDyWrc9Gu2jMfNJZl\n1BinbfRgSa4so9oIzoutsP7m3c8+QoEAF6+lZUQX5i4S3HDfe3IlXjr8MABAkW61tj8xhZYprFrn\nOG9b+BS5rs776hmn1/PUMsrfq6JI7HVuUlt4C2ttOU6XzqTx6Onlz3lc3thLowAA2b/HO+xnllEG\ng8FgMBgMBoPBYDQrmtQy2nrl+wAA/5BqzEr8AwDlAASAtnumw6Sl9YiyQhlem0CWtVw9BeM4cisO\nKilZxv7dinKKTlzzMoxKup3oA97floVbC179eDn8VpJ271ZH2qgqsHicAkY6hzTR107cYRGMvKTF\nnyZoQun53OpBz2bZyOWYfYS05e/13IgH/SoAAIVcTsW/X0/F6a9J46+OJC1XYJ9CaLeTFai8E2kd\nww9JobxFGnajinQmVTFiBF22qlhHv0tJYrf9fbCwLXc8vXflVdJaKossKOlJ5yjzaJsu2Az/bK7M\n1lRveZkYAdn0u7qFGGYPlJ6aWBMsKi6n3m1aRnmrnQ8Xdj5t3iK8VUSWih/X0bqHF6ZtwukqCma0\nb2N3qNvQsxJxC/iV1zwLs/Pfp1bj9bXTbqu+zR1nllE+/6esXAwjF3jEx8Mw/95g6kbWJnBBLdJn\n1r7uyBULShIAACvXpDrsayzLaPIksqobLWKkb6R1I+oY+k6k1SLog+m3LxdIozpZC//TnmnLjdyj\njx+RjeRAyq+3/jSlHJJfs1oKMmbQ80vTazDxm5dv53bqFb5egGdBinicWUbN3O3qOeOnRWKBgVtn\nFHCl7jpjdbQFI4adBADsyiGPlX912YwgMa2pKuHy3n17ow/+3oqsAAer6T1PCjhlF8DIGbz1/pMv\nrNZ73vJkVHGBY+px/XVjo+EC2DzV/RBW/0LjTGNZZZuK2iyjes74zS2ZQ1myEX7Z5BnBrwmtulcN\nvz8okBBvxa5IMCPwsndtWDuwEj77/N0f6AHliTZxHwCIDc6P49eKWo7Uz3p7WzTJjmll1B2oEx/d\nMQ27tlC/J+GCffWecBa7z5K3yLAuZH3OqgzFro6b7cp9pzgJK3ZSu1RyFsG/Wp7RxoAPWhS/+WmM\n6UG5ZX/PTIKIq47krGM/aeTW9UqrRdAmcfONDBobjZ2qIT3v6GlyO1bOusCnvVPlyPDkI78BAC5U\nkdzydasDwnEdDtGcXnzK+TcZP4LWP29t96uw7SMu3duKtdZgm64so00bTVdCnYRWK8PGfEq+XslF\nVjl23xcIllCn1n75s3jvFN1Qj9a5AIAyrRIfdNwAADikoUmbRQz4XuM7PZp4FneRICiDmzxpLcJx\nFY+TkGQ2ixH8DTWkV98lV7oXDk6FQkWtLPQClZN/nwiiRHIBLr5GnZWkSgyxgY7jO3D/PBNyb1Jw\ngbvd7CwyA/oA7mv0p0b9zMan8erYnwFAEEQB4KlMmqxU/q8l/Lh3Ux1DE9ibN4Lgx03GfPI5IfKW\nVegs7kzXkNgES/llyWdYXEbCWklHasYb5i7AJ4VDAQCHLpALoGF0GSSX6X3FDckBQK7gkb1pRE3y\nIzfE1cf6QqKlSuhCLA6uZepEPcIjKZJC9UEKdDO053n8samLy2ekbl17AnhbnLm78EIoz6erJ9j9\nX5VVNzehltKSOp13p6O0iVpoKKF3zQd4chUsyBv0KWrIa3TY7xQn4dlgcgHj+7SabK6m7Qtzqf3G\n+pbhbFGLeqkTj3RIMQDAuDtM2MYLhLUFIjqeS8oP4y0fcLKRTR8LKErtFSCeCqK218z7OR55IJce\nURea/Jtl1rzHPKtL+3pcdmMzfsxhAMDmX/rU6Xw+4qxPMb9FBHkZ9UH8cgblTe8nYlK1CNuO0tj6\nQB9ydw6VVOGL65SjN+sHcnEvTzbiyaNzqQ6J1M99mTcEwfE05pUUBUDERVQUcdGreYWeq2sDFDjM\neKT26M39HziFp8P3AQCmHpkJAJCd8YM6kR4Kn6O5sQIU2aLMICXjdxlDEDOEXCTzj97dSuba4IVQ\nnqA0xzGNF0QBa/53S4ABgGtlrY5rHgpqbpAe9Uf5PTSBDzhGfcrm+R/g/g9e9brefrnUZoxu9I51\nEUJ1XKA1RYnrb7NL62sAgEtp9L3pAy3oHEftae+GHtC24tz0R5Fb5DFNPE5GUiCcIzeoD9afCUZV\ne3omS8soW8TatUPrJXIqwzUJ388GACiLxdidR4oDd8KT1Ca4FC+ECvucCKKNyXdPfwQAeGDjiwAA\nTXstCjlN6NHNZCxKRopwvLtel3fJTf697vOou11eYjAYDAaDwWAwGAxGM6RJLaNiGVkso0MqUHCQ\nFmQva0VWp2nDT4DXpSo6lyFgFUnt10GapeJ+Ikw6SybfyCNUjqy9SAhvbOJyXWqjjLjlw2nvW5Mq\nvnVECa5fJquDf1QlDnxBi4r3c65vMqUBMjU9msIeJK+HnAVCOpMvSqk/aTVEZT4I6UIBevpwOSF/\n23IPLCa6tsnffHcHMbIA6hactZlzqfYpFmE75176dGC+cOilAnqvLWANMrRr3AIAwJCdL8L/Gr3D\nqhjr8+Lzh8qTyX1GLjWi3XjSJvqJfZDiQ9pG3u2mncwXu7LIFU3CGadkAKStqwAAV7g67O73BVaX\nkXZr+b5BACjuz8hH/gQAbLnSCahh3VJdluP7oV8DACZbKMefO6uooXM1ZNnuM42qE/VQZpH239iV\n6nrJUO3qlNuCzxf4V0Z5w96iZ5bXMR9iDeTnHN/3smMD0H8whUj/LGcYfkzYCQB48UZPAMCOH++B\nLowLSMC5kuXD+xxktSEeRJbwKfGUC3f+/EzE//w07VTQdQPOOW8TyqONq8ENCydvilWDViFNT/3E\n0+mPAgAOdd6ITWg+1tGkFc/i06mUiqquFtHa0IYB0hSyUGb0oVzBXd/1XussL4Ow/mTjUWpv2270\ngYiL68a/9UBbK1ceWYgCAJgukxU90OsrWzEeCXbI9WnqVgkJ18d+GfunUJNL91HKGXV/PYaeo9yl\nJfnkCnxPz0tuc++68kThgxFN637YwevEEza2p5RQfY6+4vW5f0V4K7+s0v0SFt4iyiPVAIFH7a1J\n7qyihiH0vSzvuhqPbKNvRVYuhrEVTexENxVcvepvTubKItpxLJcW45ckXNqWaLdPXi7ClV8ThP/7\n5lJ7feLLF4Vt3e+nNDYnf6a0QRIRsE9L3+ZX33qWZ5xRPyjqsc00NGnPLXKb2/PRUzSHlXBjrKVA\ngW3pTTu2Nqkwar5FnUNAjBa8B5K0iFwPK81idPsvPdCAfMeIqC0OWVAz87W0dymMh0iEvcnNDSSV\nErTsSQLM0AjqHF4MOYfUz+dxZwVgwCqKbKWOoAYXWWhdFOJziypW3NuIUM6hOzKUOr0isRk3r9P1\nSoIpwqRfrgViHXWifM+V7loAACAASURBVGTUuxWLBEKOL8kNem/mXhUYE34OADDw6aeFY20dDp8b\nRNHGZHw/rhej4F4uSl4mbaqIk0LUkfyCqopoQvzHyI+FxMYA8O6LlHPv/U9WAACGXxyHqG/o2ecP\noPICvw+EMY7eq4gbE1PPvQpTVypbEUUKBn+VFpvSSbi0APC9l0bS0lx6v8prEvyhpSjAkX50bqYi\nDGJO+cELEw8OOYyt6yl/qiVXhctcnjJXbqCqK3Jr1LJlFLXsgdPzHY7ThVjcugN5wnPXe992GXcL\n/HtpyKFGdUWOZ6/QdZLHZAgJpHfkWHN3NeRgx+fwXH2I1p5+GW5BQD6nrOtDyo+KRDECLluHAzXn\nGqpy4RpaGWfGE4P2AwA2rhzksL+iPWmJAtLdu5Pz19NV0/e7pqw3fthCeUj5tZlt90yHu1XR/LHe\nrOH0FttrvPDdUx6dc3Q6uUX1OzoTKHQv2vkUAxIuku2GKlLEtpqUhdwf23hdXzmXp1Gi46KSa4Hq\nlvS85RX1vwaLX5tt6xY/ewT1+RtyKTLwgKhMbDtFk5/khXOweBa5y9/HyR8qsRwPtyLlybL9lFN5\nXfxuJMO1MMoLoStmLQQATN39DLYN+wwAIOHG7weWzBfyLDtbW14bG6u8f/aMuuU/rAuWY/RdzZE+\nAv9MantiA4Ab9o6szqLpNgRqIylY6roOkBdCeUQW4LXlnvU3jMblkYd3AwDWfj+kiWsCt4IoAIT5\nkbGjsMJ713Q151Kuyq1f8fHOEfcZDAaDwWAwGAwGg3HX0KSWUT4P2YWj8ZBI7NVH9697BZFOLKLO\n4KO2BawKQAmvOA3jAmGUynG9hDRmb3Qky2i/s1NQ2IdOijpstYKqCh3D5AXkmLi/Itw8R5ax8va0\nLTqxCBXHKZ9p2nFyTdVFiKAqoHvR345v0x3ArY5SQesnBOBQ6PHFpw8AAPzh/P19m9ULAJATTZGR\nI/6QoIRbKx2USVqXsgQptGWkvt46gjTbLaR+6H6c8jr5L7U+3H++Q9rCY/9ZjIGwWmMBQF5lRmAW\n/ZZV0/vNHyCBmbMSmLX0N2KVEtp29HvfS/9D/0V/AwC74AALMylq3eGuPwIAkn+zaqDeHEPbpgUU\nYyvIMsoHIHGH6t5izD7zmN22qKHXULAr1m5bfVhFAeDzmCNojx71UhbDO87saYfn1UnuD3SDmeu5\n9YEWwXsjeFQ+BkdeAuDcUnnuRbI+Je59Esgnd2Kfw2Qm8BlYCly2BpnxJGKof47Y6XV4ssctAwB0\nSbfX1Jo431AT56kgr4SQH1dXQl/cqIAz+AH97c4T57kPjlTfFlFnlta6XKPERH2hIS3Ao0FXFwxo\nb5JFdIFkBACgKD0MSKAX45/pvR7Z1goY0ZkCt1XnWfNxT5pF2v0Vx+i5B56umzu/WOfYT80PybT7\nu12twDbO5VrXSYNnl9m3kbR5i/BicA4AYJmb602dSvX+R1g6ns+nsWXGMvJ82j37A4xd4uje6Y1F\nlOfzS4O8Oj5jOtd2vm44K70tyQOuAADSDrSttzK1XBAiHw9j3gWOz0feBWpTtxMFui7wAZYsv4c2\nCytLznbHPIuMu5PmYBH1hsI9teepdUd9W0R5msM3y2AwGAwGg8FgMBiMvxhNahlFPL9eT4fyq2Tp\n4gOLKEo9d7S31eKHpJMGOnJ0HgDgrDQG97Sk3KWdPiPta3CGCVGgk8xSwMDlsVRU1G4OqI4SCxZR\ni5yOswDQBXNrnTijwtDUkzhSQKG4kRbq8T3ciQRcNQuBMIq7kDY8IaAC5+8la4v/esfmVdhDigjO\nqnkGtH5IPaMc0SvsF3L4lFogjaLFTslyspZMzhpqZxHliX+KrEHPXe+NKi5dTI/+ZAU/rW0PMZcl\nRs/l9TIX+UB5wX4diTrcgtBRtLbYNv1Gn/vPAgAO/9wZpScpANLRDrSWSxNrEnJ7vr9qMgDgrXgD\nnIYs6skt3DruWH/1oTCHbbs6bkbyLkfffyOXQ0xa5dxKyoea5zX/tjn+Rk6i9BMpRx5xeq6ey70p\nd5Jm5k4jdBDlrbxWEAyLgb5vVaZnlp76CmbkjPrKuci3aZHJWt7jLQ9jRiDlOF4bQgFafGys6V0W\nUHtSATgzf5FDmd1EUwDQGlNlkX09tX2qBCuqp6ReHAsAMKiACZMOAgBOlLTCpSxaQe4bSv1/1VV/\nwZNFZKHr5hjCYeGWmvKWyKbIMHdUV0tSQi/Y+8QCu7XuzqhI4sYWLqDUvL67sOoKre3W/koBfMQt\nLTD603Gn/74EABC/fSYCT3nWrivvoQB+T3c9iLQqegdHIiOpbIMI/whLBwDcM5Csl6+enuVRuTVR\n3OJSadjkGeXXZvOplLaWdrUef97aF/MB3BaUJAhWVP4cPld1TVYcvA8A8F3eEGuqJpCFdOySV6Ht\nyOVwvlB7Egx1a6Pb9FsVmbS+ytNJU31bRDOmL3ZZ5tljFBDHs2zTnuGpRZSnfHM0Aurp2qfeoHfZ\n7Z36SbtVF84/T3Xg547Nkep46qN8s+uW6q0m+hZUnvxG/ZTXlPD5QTt+MQfadlyuz0t1n99cmLsI\nHb9ovm3BEwwp1ZCdq1tgQk+CI9VE3KsM5mPu16Y2qTBqqKRBVBVciTJuEDZ14yLWlvvAdxsNai1e\nuYLT+ylKauQxzzJOn8unXGCiKyqYW1M5wRmObqNio2shlEc+rgiKwzQpEHWmQfFmSQDMQXSuPILq\nvSjmME6HUc60h9JedFLS3YO8woy8yTQrFhdx71Kqh/Q6+d+ZFGZIdPZKhfcfW4mP+w8HAJg/pYlQ\nVbEvQmqUfauLBbPiTtltu/leApxxLI0CS4g1Emx4/RMAwOKiQQAAZSEwZhYl7/3uPEWTVN0QQ92R\nOiZff/pblhGIzUkUtXJSpjWf54pWNIlORmchb9T0pS9Q2U7qoqplQNhzz1IAwODjjoGJnJG8cI7T\nyJC1CaE8rlx5A6ScMH40CHDSH9dFCJ3xICVKXrEh1etzG5Jbe2mybfuO1G24BM9u8rO2HngVeTta\nN1TV6hVbd8PPlk5E3HMUGTywOwXg0u0Md3oeL5jaCqVbui0HAKQefhWDJ1LwmL0byJ1bfsIqTPHn\ndFkwBxUpJLU7i8ZbsJWUcjIA6w6RS6ZELYZIRX1m9U0aEGUaEZQn6U1V96J+VCYy4tK0hg9G5I7H\nv33+tst4JW8ccitrz7MJAAEZJEJUt6SxavWXI1HdmlN6ckKk/1ElLBLqC/ggWFuHLMTT0RRtuPqX\nKDijvCu9o933UVCfaKkCitDLAIDHhtD1rpSFocNSahOKW57fm5n7lMROZHZDgFUY5flXEeVHbKu6\niT1OypOepna28nQq5s+zV5hESBwnUIZAC1R5rqcxroRQHneCKGCNBMwrBBsL3t3XHXwwwcaE0x3V\nOUiPK2oKoXp/q2KCF8r5/O78fsAxHyqPJoIqKTKKIPFA2Rg74qrwmxdKbalPAbVm+Z6WrQ+0AKb6\nfe93gxDKYys43o4Qqml1+0rJ5sL9SWex7Zx3kXP5vKTJn7/ssE+dqAO4bBqqPCkCBtASkPgA0mQF\nyTXYd6y722swN10Gg8FgMBgMBoPBYDQ6IovF0mT5R0buIwvTg1En8enyiQCASi4dAEwiiLUkK/vl\niBE2lnJKBitIc35jYVuIDbVXvSyRJPWgy54FQaqNilZUTsKDl3HqAi1I79eZ3ELP3IxGSgS5A/5f\n7FYAwMqSvjjwNmkdCnrf3bK+yAJ0vJeiA2VtJqulwRewdCLV5IudduPDzeMBAPJEyh+Y1neNXcoX\nANi3dKnDNsu8Irzd9mcAwLMnSfMfsUqJG/3pfVhEQPQBerclHUirbfADdOFkTeTzdhn8LYi+h/Kd\n5lzlrEQGMfyyaT/vjrnqhY/RWkrlDfrf36DltKhfTiFL09zls4W68Sl7xPHVgibfU8ZO/kNI/cJr\n2C0SQFbecFptZxZB053viesSZwFK1G3pZauu3Pl5VqW1BGDhgwMZuLbl42HQqzPzFwnW0vgJmXgo\n6jgAoMxETucrs/pCvytMOBawWlcbgj5TT2Hvb10dtjdG6paGRllYf996eScDBnUh99pTa1KcHiMZ\nQVbyEz3WC9tm5FKQon0H6By/3PqrE586Q9OCS/Fyw9Fx9MlHf8PKNZ55U6TZWEhrpsiq6V5bM19v\nQ9CUltHGCIZka220hU+/xH+Dh7RmPP4r1cc3msZ86S7vU0U4g3fRtaXN7zOgzCCvK1vrJ79EyjZX\nKW+xNfoC+iCqt+812uhNapeQwTS/K6qgkyQn/F0dXis1LZ9zrvdBBxWVPTXgAnrvpZRuyjT3Vnx3\nGBq5fTYmEk1TLNYAXn2cAlQuy+mP0gPOPVDqg4bwMOAZOvEYAGDXxl4O+xJSs7A5cTsAIP63GQAA\n1WX3+YFdYfTlPGOqre/s4n9eqvX4JnXTTeci+f0nZwwU3ARfeZUmzLKepegTnQMA+DO3G8TcWxoc\nSmsBP+yfgKcGkTvsb285JrA2evhNV8VI4Hedi3SooocmU1tQnEIDqIlb93LmeAKCEsoAAEdy4gAA\nCh8DxoTRmsLVpZTYdPvSfvCFZ67EdzqyChHOno0DALTMICFQGyzBoumU93NB/kiEnqfnV6ikTnx9\nVSAK+nICpc0cpehJUjJYztOKk2/bfY+H/yQBNWatVXjgXffiN1mFVyO3SFPRpRTiEzQyhZ6n+tzs\nJUVOJrkDQ8ytpwwwQGSips8rOboqFOhylJKsB2UZkdeDzh+kdPIu+Zy4XgqiALB1/b3QpdC9Ks5Z\nV5dKetNIajxG9Tf4WyCvBwFVG26GKoSuh6y7PLyzG+4GIbQmFYlG+OVwihUDBPez6khqv2aFtNbJ\npS0v3ugp/M7elIAPYO8Sb+hXAQPnQttu/zQAzt3U64s2ymLsdbL9ThZCG4LA8zLs96XoqbVNk2US\n6sPmF9Aa/Z/Su8DvT+p7GjLl4uvDtwAA3tsxzkEgnRt0EbLHaNxd9u1ol+X0O0uK6rJ9jpPAmu61\nzoRQDRcr4IkutGZ+/bpBHtTeHn2wBfLSppkIN1Y0XnfwOYfjt9JaYkWBFIGcYkV/vX6EUB5n60Rr\nG71ENewN+gBATrpvyKoAi7ju761kDy33sG29vGCZ9NWzkHHLZpT9SeFzrPt6py62g87T0p/i3dHC\ntv3c3y8xpkH7Usbt88E3k+hH03QBt425WyUKtLWv5t6cuB1tvyODi+pW/SjybIVQT7i7TXcMBoPB\nYDAYDAaDwWiWNKlltGscF/E2Lxa6GHIl9OOsOCNbX8SPe8na6G8EZGJSf328bQxtuybGhR6ktTLM\noogLsmXW6LW+1zkXyGeKUL6LNKq8a2Loeasqze+6CddGkeY49lerbC7jAvfpueikIW1LUFFNBVg4\nH5CYwHI86k/X3iUlq+naPr1Qyi3mlZbe3bK+IcACix8X1pPTHZYkA2k60v71CcrCVTMFnkroRJFq\n95Z3QBB5lUH5+P9n7zsD4yjPrc/sbG/qsiVZtlzl3o0NBmNsTG8B00IHJySEEtJvQsLHTW5uEpJA\nCKEFCKGG3qtt3A3GvcqybLmpd62k7bvz/TjvzK68q2bLku07589KU9+ZeevznOc8ldq1rGZ+f9cG\nXm/jtQWQylR7Ib9X7a1ejFh2GwBg8CdA81BW30su/woA8M7OyRi0OYx4mFqBYKbIw5jHb9RQ50JI\naGFMTWcdXFB0KVoO03IUniADSvvrxKO7+UM7QrxHVEVLI7cJbZcuvaLdVXzddM0jOOMfP+5xGXUc\nHQIZUUyeyXx/RZ+MOm738Uyk+uxZo0uwtWR8wn5JVRDuhlcUAJa9fFqn+01r3FBJ3i0FiWwBTyHb\ni2QPY+rQQwCATZvpXbWXy/COE0rN+60wCYqdoZMIip9nlOB5nNutsp9saBXCRPYKfqNk4j89gWtd\n534V/2cU3vtC4q8DnQsP9Ra+m8LwiIEXvoT/ev7WdvvGL/0eNs57HADwpP3CTlWmk3lEewJbEcft\nfzefBQBQRgRhrOML6G5f3l9e0RMRzixOjoIpRqCGvvX8cyn2U/3OEDRNY9+UuvHYaH4qurqe6gXt\n7v/J8PXdf8WN+y4HAOz9NLlQogpV6MvkB9qEyCBWM4Rh/OqYVzQyjR2dvNEFu4mDtUqh/c3Vb+Bg\ngOe8+ur8rguoo19w8VWcW378thD8OUkZ0IbNLuzc3HF+86U+Gc9/iwrt7zSSJfVozoYeK+cG0hSN\nqWD26J5RHTp06NChQ4cOHTp06NBxgqNfPaN7PhkJAIgMDSF1Gy2VmVdSFjiqSDCEuLJ2HY5gcipj\n+4adTU/kmoqhOD2V4jmFTp7zwqVn4IHTKST0hw+/BQBYOv4VrB7BOLx71jK/Yj2smndUubMW9jZa\nln2Z9Iw1jwTCmbRk5efxfhFFwt+mvQ4AGG/mtnSDGQDj0L6z5hYAgNRghhz6v2FFTS0Gpp+7EwCw\n4/2JAABrvYTKEN/3CEs1HvjvFwAADxVfCgDY9PxkNI7j+b8fzpii8X+7Cyn76S2Y+z9Mw/LdlAq8\nslIIFI1mNX112nN438O4pwMPZOD6TMYA/WQH+fxyuRWNhXz31nm1AADjx1kwNtPm4imi51yyRzHp\nfLpnHx7I9DEXNecg/3OavSq+7UXR2f8UT9k9mXMtv93fey7qsvOeJ2JxUXu65wWIGhUYgknqmdj0\njzto5Zr+yo+QLFLyi9v+BAA4718/63F5T3bE54ftbVjqDcfVI6pByPnvacxGUARTmZtju117Y8/3\n0F0vAgAefOLmTi/ZMoLtzVohw5dPi7+7OHGIcB1ItGGqx7UONsA+kn1n9gj2kzXIgBLkOcHMCCxN\nx+fdnwgIZkVgru34+YrveFJLN3A8vZLtoFrz1TQc0fa5uY8XLipmLOgnhZ/gv47YZ9ttxdQI0+YM\nnF4Dz8oB3bpmxMaHKTiT3veepGCyVajf5djqX1Q0CUPH5JlTGqpIUXzPUP1O7DvYShM9mKF57Jza\nGjjXSt3SflTy5vC7qkyO5ukBpGzgdXrLw9oZZj3+o1iami6OjRfHc3SSEkgVOwpPbcEnhZ9wY5xz\n6iF/9+q8jv6D5hE9RTFoPvvR76y+BaULngcAlNi51uqpVxQA9t7w5FGdB/TzYtR1kCPi+Ev3YZ2R\nuSKlNtIVVwWG482rmTPyp9MW4q1iKisOeJ2dWfbd5Xi2hKqkhZk1AID9FzyLkctv5f6JXKBO/ug+\n7L+MOR7vibKbuXbhcrxip+hRFqjwCgC/H8meYp83C2elUjH3bBsXvIcjTvz1MNX/7hm0BAAw3xbB\nU015AIC8d9VFi4JACu/TOPpY3s6JD1tdBKUtXODVC0VbxQBsbGZ+wWcOnAmDEA369VQaCf406BqE\n0jmK/3YfF6i+nCjeuesvAIBLXv0JAGD5mtnafbb/SFWis+BbX1EFcv9lz2D4l6TsKo0c2ByFzSg4\nnbmNDjdxwGyaHoQjlXn6BqdRJKjA2YBHcleJa/K7NT85GEYhPBWpt8Ai9SzX1kQhftQRNPXaMS2Q\nN3OQuuH6pdr+24esBQD8FVd2eI2wU0FwIGewtlJzu+0Ac5AGRW4/VYG4IxpabeTUE/PpLo7XQrQv\n8dCZ7wEALnUcwi0O1pmD7w1LOC5kB862sn989T62sR/tu1rLAXr1bV8CAE53lGC+jYvRn1dPxpur\nZvaoPJ4xrJenj9uLzVWDAADhrWyDrmaguwuAZBTgkwmyKwR0shgFAOtMLtKDa9l3Gtt6597BVMDc\n1PH+vliAAoB/LPvbSLRz4pW9hH1QbUMW1OWGutiMV82MV9O9t4JKkOMdDPv4G3qeDzhq6rkhwDcw\nClsVn+e9a5lz78pXEnPu9RaCuUGYK/q3j24piCY1PHWFeFVbFX+c+DYA4FeP3a5tm3DDDgDA9lfG\nazlSm6cHxM2PfmrqmeWDucSmlaW79f54KZkaN7lwTS6puLs+6pgq2RVmXrEN5V5aHsu+OP55sItv\nfxKFz3+/y206+g/BVAUlN1LUs7uLwIhVQSCfBuOypZwH2ACMK+7ZItIrDNZyShDTh3BR+8vqiT26\nRjx0mq4OHTp06NChQ4cOHTp06Ohz9Ktn1OinKWrz8kIM2kDzVRudXfAGTbj2GyEhvs6J0ZfTQ1me\nxVyfLe8NRnguqR/NAVrBzvrBnYiRHJlTchCAyKW8dtZSWhoXDxyNJTc8DADYFBioSd7nCJ7b9voc\n/C6XOXdW+PIBANe5GpExhN6IceaYYMSfP6V3LycustnSrJriTu21ftm1IWT5+S4yt9NKUjlbxrYK\nChhNyK/AeyM/b3fOM+dUIbCF9JSKTRSgGrQ6gkXLmH8oJxJTNak+rb2HYeKf74I0jPtHLL8VVpsQ\nBRD5QY2GKHavYf1wjBPm2SgwM5fiCmp6oF8PWAKLROEFlVab6Y1xrswNsfs2Rrza36p3M1kOy8i6\ntIRt8SJD2jmbYwkYfplZrP391xc79oiqMLZKMCZJT2JsjXkRNOGjTZ3nQ5tm+b/rGT0VcLO7Tvxl\nx+5KCtMkk7ExeYG5f/1JwvaWKayQL3x+DgDAcL6C+TbWxz8O2II/LtzS7vhnmnPxj2euSLiOmkLL\nXMOhZGfRGPgHCspdc8LhHSIkNL1MLSd3iINcmjyBr5qb8aLii7BpOsM9rsuYBwDY/Z/eodAE0qII\nFNKz9PNp7Hf/sO5CuPuA5hiPdXMfb/f/ww0TOxVMssSlEoj3iHoLeLDaR++85wkU2qsAAH97MbEu\ndhcRq6KFAHUXtiqDlq85fvw/XuhvryhAOn5AZGyxJPG4N40Lw51DkZ6tp70GIHlKFgB44FF6ROPf\n+vZXKLzWcoYXrrXsACwbel5XVdp063R65I37rbDWJx7nT+ev3A3hPwBoGxkERHjB0wv+BQC484vb\ntBzmPUFPPaK+8T5EPWw0T573bwCA3RDAXc8cv9zOR6Lw+e+j+PYntb9Pdez6ARkYahhFf8B6Osd1\n/1eZ3Tre3CRh1Av8NlKSvJ7xUEO34tMV3jWeIrEr3p3a6X2eW/R3AMCbjTPw8cdkTdkPi3Zw2Ijt\nOziGbe9WqZOjXxejKuIVH5ub2SkNy63DP6b8BwDwyfhxeL6E3O3JtzFGcXfDAGyZ8iYA4Mq9CwAA\nsWVDe8y9mx/LLGiYlTuzsbygAADglv3Y1kiq7duH+UEyszw4Y/EPAQDzxjG2sDRQiwrRM2+u5/GV\nNanIW32Symv1AuzOAMzPpLfblj6pFtUHuG1bbQF+6abb/oCXlLSRqbUonEvaYLWfC6aW1fkJucIA\nYPeiJ9v9n7YnDFMbF4rjbi3Fi0OYqevRxgIAwPMlp2PPrTxHXUTOWHUXGoOcPMxMOwAAkCUJw966\nEwCQvz22CK2ZxuZw2nk7tG1nPhGbyCdbhHaGjtRu42lnwNHFmZ7I2P0dPt/of546z/Xgba/gGidX\nVy96OFD88d/X9GeRNJjNncjSdgDX5vaLptf/NR+vg1SyrT9NTDj/6MtXJERPt0zxa9cxxi0i7FU9\nX1CqVDqVcv6xN/mi7mTHu6Pehxoa8J2BzJP9Y/TOYjTqDmP/vH+12/bd857D5I192w7P/Bf7zBdv\negwAMMFa1jUtdrqwXGyIZZM0Nbafnoz7+11a35lYQ7uPozV4GKwcK06UvJ+9geLbxGKjg2eKX4S2\n5bJtOir4/lJ3GuHxi+8lxLibZ/iRsr7jtqvScF2pXnw2lboMOUYnhlcxx6HzIBd/yjmNaC2nhsfz\nF/C4ubYo9odaAQBDTTQmT91wLQxfcG4hH+J9zeObgepY3lN1sWplBA9C3Uyu6yiJGQR+9CwdI/Y4\n/8KOe59A4SrG4Zs286J33/w+vpda3u46tx06C+vfm5Bw/blXbQQAPJ63LmHfx14r1rRQe+Anz97R\naTnlWTS8Xzl0KwDg1Q/P7vT4nuDIReiptih1nkFtkYaijC6O7Bs0NrIe9cTcZWrtuj8bsuBAu0Wo\nis4Wof7sKKw1rPBb/KTzOo0BjVLfXVxw1df47O1ZXR53arvudOjQoUOHDh06dOjQoUPHCYkTwjPq\nLI8gauJq+/Th+wEAa3aMxKNuWup/nL0E3wh67nA73dh3DViGn1dPAwBs3sNgbunyMPLe7/qRIrYo\nBptoJvvUMxFpVnrRSs97Tjvmrw0UA/mmuQAA0Bi2Y0cjaaVNK0kGzitK7pGonM1nkU5xtb3Waid8\nZ9KekbecVpeavRkwZtL6KR204bUtFJz43nR6MV/fPxUL8kkHnOomffYN5Cdce8Uzz6AoyO9y80PM\nk9kyQ0LmTEHTGvQZHqzltV8vpnXn0hE7sNzH8twmPNsAsKWUVp2DGaTSPlVzNgZ/0d6j3Zon46Eb\nKGT1wNvfBm5Z2eP30V2ontBzrtx43O6RDLnnMqdqxZLE992bOJU8oip+8dl1uGbh0wCAGdZD/Vwa\naG1jjNmOcJh1Pp7UHkhj/bYcRX7ESQ8nfr9kcl7mA8dG/wycTorfPeOXozzAtvneWxQo+9Frtx3T\ntU8kqBRdAJj4/L3a/23R3qXP2g7GPDmqsN5TT17eq/c4Ep5RYgwU4oDuvQZERTGWtY4FQHGsIxFy\nKe08lEaZ48eky8hK2fDxeJiS5FrujEUSTFG6zM98tBhy3gGMcNGL8vmh6cflHn0J1SM6bWMiu0M0\nRQRG+eCOy2GrekRVuqu1AXDvY98z6U/iu0z1IzCXiT0ty90J11YVcq0XN+GsN+lBP+OMXXCXHuEX\nWZIG8xz2D/c/Qq/pA/e+jD+WXA0AqK2mR9ae4kNwMPs6WzXLJy9NbXep3lQ9lqKAN5d1fmMgiOKz\nqFSOsxKPHf9Y5+PgqnLOMUesnIL7L/wYAPBsCYUbPftSYavp2lfkG+/DvByOR2++NpcbnSc/Wy+U\nGoWp6fj7ylrXMpzPOq25T+m5Ey/ajS1LSd02BGJ9lsNF+l0UvcsMOri4QFNyHvnS97vVT1rj6t/f\nX+75OLLzbvJXVAgcCgAAIABJREFUhn6yCPZuHK97RnXo0KFDhw4dOnTo0KFDR5/jhPCMAoAUoTWn\n1kfOdGZuMz5fw3QuS3NGISeN1rZvDtILWjRkIK7MomfpLSsFiK4cuwUPn8e8kWf94M6Ee9zxv+8C\nAEabKzHLSj/CXNsWzZumYtxXN0DZQstbII0W240hSbPkZnTgEQUAzxAZcj7jGqL7Hd18+pMTUljS\nPKL+NL5PxRFCwQCqB1hywyj+pgAA8MwSerndw5qwonIEACAYpqmm+VwDBi3hdRoLY1Xy4g8papRf\ny/fdfF4AFiPNnPeVXYCt1bT+3zh6PQDggczdWLjvXACAtZLXMQSBYCrLZn+fJl9nSEHzMO5X40fC\nk1rx82W0ErvqEq1G3lEB2Pf0ridj2TvTevV6HeGZ71BQ5P6ia/vkfqcibJXyCRXb+9MDVwEA7h20\nBJFSVuL4lBVH4xHtKY71HmqKo+g4A/6znd4mJzVIYqmQTmLEe0QLn4vFWj1Yy0TLL66lFyQFvQNz\nEzD5f/uujnpzFJgH0EMfPhgLxIsaOZa/+Cq1HF6acRrMs8hECn5Nt9qRcZvhb9g3rxrMOpF7ZhUy\nbLz2rvUFANoLHcUjlCKEO3oYy9QTFG8djD1hMmxO/sRQnce9qqlZ5K3JI9fCo/ldQtvsMHGqo3kf\nlTYjdp3LfIXnpNCb0vR+XsI1qvdlovR6CqrcdijmVmwaKy5ki+Dy4UUAgEfP3KDtj4z8AgCwN5/s\ntG0tedi1li1IDiSWNV4cqSuobBIln52QUm3FvmtZxrFrbwQA+OptsJaTJ3LL0z/Ejnt7Fr0cSOc9\n1HQcAIDTAG+UAhN/OXAxAMDeDa8oADwy83UU+fl+v+pRSU5sdOQVNUxjbHl0Y2/1mjgu1+sK6WYv\nfrjwAwDAY6/EvI7R9akdnXLMUFO/dCWNFhT96dGyTEJHeObtpd0TY5MURek3n/7sq/6s/R1ws/LV\nns3ZlHu7Gb4sFk2KAu7JXOAsHMLF5rMfnwtlMDuNAelcqFYWZ+O6OczXONlBCugDb38boTSxeBRq\nqteftg4Xp1At8ld7r4Qkth/YR5XX7LUy2nL4IUIib6O1VoIs1H9NIi9c0yggZS//9g7k8baz6tC0\nSwRDn9wp87pEzlcRRI187vJz+W7cxUa0DhYPLgEmD7+rmj8uYlG0CbNjhEiEvTcFjsMx4QIAeHDs\nx/jJMi6ehgwlPcrjt8C7hZOZ08/bgX8NVnOFEteUzkfpvxn0ryaw9mdKMLN6aMqf3rwoTB7xfUXD\nUSwKFDPLbS81ITyZo+wZQ0gb/+b9RAGCkwXeIRzgLdVcgMv+mIjSqUipBXouNnUiwifoYLaKxOnv\n+h8wB7PdYMbQD74LAHDuNcLQcy2jfodnfBDuHe0HLH/6yUk1U0Z4MVCMRysn0Pj548qp+OiTWN5W\ndZE6Z/u3AACej3L6uJS9g9bBCgyDuDCxr40ZXpvVBYVYlObl16NxxcCE87uCOnGfPIs036JPRh1L\ncXsN4VOABtkZVEHJwut3Y/1+Gv8L86qxeyfDOwzpXPVZt9q1uVA8HJcwlOa7BQx12ePPweufk37v\nPMxrN00IYfvFVOh0GrpneZqy/jooSzj+H0tO0K4EjNoKWH8dB4xImctnmZV1AABQ6U/BV9tGAgCc\nA1vRWsN6/+8FFFmaY41R5Pf5qXIeVST8JWdTh/cb+tF34CjtWV7zy65dDQBIMfrwXhlFIqv3UljP\n1HzqEh6DOYl51k8lHK9ct92ButYJuTmJsJf1vq+y6Hf3d7jv1K21OnTo0KFDhw4dOnTo0KHjhMUJ\nQ9O1eOiVMnhYpNbBUUSdXKHL9rBGz3yphBric+Zux84GWltrttGjqTgjiIj1dUWItJ8nr3kGBUZ6\n4O7aex0AYE9rNiY7uF+SFBw4zCBmuZXneoZJiMq0Eqj50VqGR7T8kxlCRCeyMxtX/3QxAGBNPamn\nDX47Gsw813AcaUMnAuomGOHL43dJ3c7vZm5RNC+xtUFC0CU8jwbVAxlFRBi1QhvFN3AqaB3C72/a\nRprCf+2+AWedzTQ+TiMpLCvenYrgaLq8Fmaux/lFlwAAat4lfSoqAyEaIzXakBQF/GdTCCG8jyZR\nc4MB2Zt4QOAu0sfuGb4Mv/58IQDAVqdg8Rmk55y2qnvUhhMZ9oMnTDPX0U1ELck9oipWirRINWEX\npDDbm2IEcBJ6Ro/0ip7MkPbasfIO5gU8cxtzB9euH5D02Gw7+yUPTk7PqPOQBBxKDEWxizyM7jnV\nAIDy0sxuCVgcCUsD6/XOpfSIRtyKxmjpa4SdSrt8zv8XsGllIZwiTVPFugJIwzlGDxVhOGUWO0Ji\nfI9P59T2Eedlj4BhL5nfOpyQDiJ1uwmT2igyePqs3bCIAftHAzmfuv6xH2v5QNsG8R4Dp1ShbCQ7\nuJQ9nZOlW4WokfNQz7+ZrZz115sfQVsFPbEfNXPukJXSCmsmGXltZS7Yc8mgWvS6yPUYjVHQfeN5\nnNkSRoZwIS9MoYf0B3uvQ+ViepodiDG5sucxLYzNGMLubZzX2CtjPqPQFN7v9wO2aduW1DA1VEs5\n38mRNMlTCaeqR1TFHd/+DADw3KsX9Pm91b7V5Omf+WK/0nTf2cdYz+We0cg2cWD+12dMBO48IGmq\nbr4hIZw3mSp7hXYOcE7Zj1SZDTxDZgNNNfhgFxK2oTinb1S0dIPwgWcZwrBK3G+SDPAr7WdwMiTY\nDVyFWiT+BpSQ9rea6+qphjMxysqF6dee4QAAhzGAS1NJJf5F0VUILiZ1ok1QV29dsBwPZDJ3qZpL\n77WaWdjXTGrv/cOXAABGm6uRKjroATJjFb3REA5HWG6XFIZVdGAt4vkiioSAIuIjxblDjVY0Rttz\nFiOKop0zyhSbTNRF+D6LQzbURtziWN6vKpyCBQ6W+8s2Tg4eefsynKpwlHd9TGCBB5bFiYqBJxp8\nA4QKYj5Hd2OdCa4DHR/fOgRwHuyDgh1HhB3imTMV7Lmlfb7aiX85+anJgdRYtz1lHtWp1+0ehtRM\n9k3ebWn9Uq7eQjK60qiz92PPiqF9X5hexpH5kzuK8/QNjIU2AIAix/KxqpNXKSJp26AAEVdUHCtC\nXMKSZqxQczlHLQogqddRtOto24ThUFKkdgZV02COD3YraZrD0+oxwsEQivdLGcYgr0mB0SuMsZ2o\nmPqyJQTGk+Ir77MhmM2DZTERitoTY1ykkISogw8hecViRFYAUVcUe0RT9dUqUDiO/CU22bPb4G1k\nzIbkE1oHJkXTGXCUJ58StZ3PtjUghXOVHw5dgt88yTyTqtH62zcsxWsvUh8hkMnrpBbFvlt/onUQ\n3425GTBdzO/2jcjVvqDoUpSt4uJI/f5H4sh6O/rZkzPn5NHmmT1ZcNG31+KNzYzBl3wy3MWs417R\nn0w9uxgXZHA+PdN6QDvPYWAldYm5sUGSYJe4+DNJJ0akdFcKxSc7LLOZLSTf3YxtB0WsdTM7F2uV\nDExhCIjaB31/yHKMM3MNYhKdjAkK0uX238spxfROZKn3CbGNEfbl20N2rGylceSgj2ua72Qvx2kW\nPoNhYKKyugqdpqtDhw4dOnTo0KFDhw4dOvoc/crfK/aTnuSLmPDcqnMAAFlbab3xFEiacdN2yIQl\ndq62bWMYwDzY0gCHgRZav8JVd0gJIiq193I6pDAiUntLWAi0HgBARIkgJJzDsjjOJEkICW+pQazX\nDTCgOUraxRP1Z4njIni1nLThQxtpxZCiwOJRVIk1rowpdDkO8TpvPjcPbxro/b3lDrrk081t8Dv5\nKT5voIXZnenHljCpeGpew+aoBYOMLMPekBtDjB7xDCx3QJFhEc9/OEyP3ShTBE7h0a0Tim0tURkh\n4fEMKRHsDQlBAvHCN/mGYmkd3/fWXRQweHrBvzQv6idKz4LtT1VYFrvhzeXf9or+LUtnsFWrediE\nlz9NguomCLlYd7yTfIj6aU1L22CCT1Ct/Xlsb2kbT1yqb/NokVOzzgBrXXurfvaU6oTjH7zzZfz0\na1KynVtPftnW01IOAAA2VxTCY6HH58T9WjHEq81OWc8Qis48uqeCVxQAfllNwZE3F1NNtyPNdZtG\nfeRv87gwjM1y3BZ6HyNWMZbZo5oX1BAUgnAmBVGLcMsJgTYEDNoFpJD4wwAoxvZtR1EUqKlQb5+z\nQmP0JINTSJm+sXx+t/I6WhoUzBpG9b9NqyciamGNDWewv5FkBUpA2MpVN3BYguQX28RYpTjCQETk\nl7SFEfGJmh9UzwUMbl5TEV5Sr8dKjyr4fgAgY4MMzXUah2Zq1SClBAhUk2xct5Hj8gOnXQ5ri5g7\nCPLR+w/Pg0kVxTuD47O0s3/ZMzVniLmMk+8hNasZaya+0+6YxWM+xB0Oigyt+SK5WN+RntDdi548\nYb2jR3pxgZPXk9tTBKKx3j9nhQSjjw0yhVqM2LuvEE8vZD+bO5KCkdlyK6wK+4cm8Zsuy33uEV3j\n572/aJmAZVVk4FU1sP3877R3k56jUpexhz2pqe3k9Xy7LJyjb9tRoAmg2ir5DWQ/oHzDd3FoIudy\nK1NHw5rKdp1nbAIA2KUwAkp7KkZU8WtsT7mXfZBfeE34oJHrty8PjoSviXMqQwvr4dL0Qlw9kfT0\nhzvRsdM9ozp06NChQ4cOHTp06NCho8/RrzGjQ1/9PQBAiUhISSXnuLWYFpuoSYFBWG1lP+Ao4zlN\nZ9EEecXYrZjkoMcwVea5DkMADomWBauIHTVJUVgl1csJsS95eVSfarrBjJD4zypxdV8bCWCdn26w\nqjA9np/XjkPL/zLOQgrTElF5hgUps2oAAL7Ps7Xge3OT8Lq2xu5nO5/HPTXmFUSEqXrhMnLixwyt\nwHnZuwAAs2z7RPkkuAx8vhFGA/aKe+bL/G1TogiJr2kSz1gdMSNXKAEcFLlNco0++IW12a/ImGim\nJeOOQ7SMrlo2Ic4qH8PWn7fPqRWfO+9UgypznVrE9+AZocC9V/wt6qB7Vcyr9rP7/wMA+NMj1/Vl\nMXsV3nmsnIF6GyQb63/q14wZaSlAp3GmfY3xt+zE1jfGA4CWSiilOFZn1ZhRAAicxueKHKZnQ/ZJ\nyJxBj+nYNP6ue2PS8S90D2A5pw53DFsDAPheKgOY7y6fiZX/YW7a+JjRkw3xHlEAuGTPhShZVdBu\nW39K3PcW/nD9SwCAX7x2UztPzdHmAg07AH+GENazxWJDJeEFNPokRE2qYBzPkaIiHhRA2B1jDRl8\nMc8hAChmRbPEK6onVVbw+NyXAQAX2xNzJc3ediVqN1OcKZQihGWKjDD6Ov54reexLRq2u2CtjcWW\nNs0j4yfSSuu9PcMLv499T1RsgxIrryzKH0kPadeWDAqUgPAiePgbtSqA6hkV7wEBGXIbz1f7947Q\nNIY3vGTuBnywmnF46dt4zobfPomZP+cYKKQa0DBeQcZW7q89VyS+9Ji0+6mpTcyevqngnmESrFMp\n0qemsGvan4YfL/gYAPBOBXU7lo79QHsW1RvcHaj1+kTyOl556RoMtlBk6dG3EnUtTvWY0Ztv+RxP\nLmO+dfceGfYaEUvojXnLGkYLwck5jFH8ZeFnGCg8a/lGzqetkoQMA+eMxyPOUEVAYft8tGEsntnK\nOaih3KqlGFLL3zBWgqkbImITLy3Ctg/HHKfSHl+oXt5gk0VjhFir+K3sFQosot8IuEWKpDl+zBu5\nBwBwQdp2AECesRFZMvvTFIO4hiTDJuJ/ZcmAiPCcHst3XS764EfLFqCqjWyRxk1ZcAm9EUclx4SG\n0UaEZzLGtfiq33R4vX5lc03IJ7dxgM2Dah/dzyXD2atHdrqhsg0sDRKiQkQr/UsuAN5pm47aSVQ4\nG+3ghDLd2IosIx/aKhZtchz1xiQWqKkGn7bdIClwiO3qghDRIOoiYlAU13msZj6aQmyY61azoo94\nsRFWtLR7JkPIgqsGU8DoZZyvCUl8cefDAIA57/4ErlJ+RN/nlH791qF7sP+yZwAAH81j7q3rt9yO\nT6OcbE8uOKSVXy23SZK1BWVJmO+sKWJHnqDutomXN80s40CYzzBEUHxzjE4UBdnhTDRbMW0jVe9C\nyyi2ZOtAkXPSHzmJOnJReioip1AYFIo42YpaFKjctrsnLwMAvLjqQo3upi5CB12/H8UrSSfsjgjS\n8UbjaSHS8gBtQqQuqgEgYhEGn4CCVCfrh9HdhvLK9nRJ1wHAnyE6tvr+WSn4MyScfilVBJeXjIRV\n2ALcwziIojg5xdPyTWJiucpitj3n+GDvF/QooDGrZlL5e17eHrxezsnvZEHTvzlzNVZiWo+u+/qN\nj+Lal3/Ya+U8Vtxy+Zd4tLEAAPDkOxf2b2GOM37x2k3a3+pkPRl9sLswtgFOQUHzqAsGGTAEhYCd\nWdEWnmou56hZgaVJNeoKim9UQljkfVaPU/ySJnAUEtElpQufTlqO+MW0ppJb0b2pRFQomk+/cBd2\nPx+bMEplHFsNQoneZ7bCUC+EO1piC2e13Gq/a6o0a+JAEasCSQgYaQJPKQEoQvQPIdEPtshILe5W\ncbXF6qPXb0DReHLMmjbkJxynvrufXPQhXp/EdmtZzdCdMy7chtUHh/HcTE5kUjebj+uCVLmOiwwX\nAF+Q77GtjBPGlBIDniq7FEBcPuaxR3efI+t1fyxKVUVfdZH5zoez+7wMJxJMUgSmbI7loUon6oWA\nofMQ27+1SUH6bs55/VUUmfnbjfOxaAjztqcbON4YDFG0KiKESywVVBHP3sCeEAXRHq46DwCwZPM4\npG4TudCDChzV7fn+A9cB9eO67me2fTgGYy9hA9/1UWGvlbc34B3LBrd53j/wegtFTx/79xXa/nE5\nlQCArRXDMed0ZpNYtXocAPbbngL2YfYq1vmU1VZ8qZDOXJnPNdR381ZooYsRsR5KN0QQUnhvi2RE\nswjZSzGYtW3dXZiq4/enVVyfNPptCCxmRhKzETAIj5ilnnXH3CIjuol9D67q+Lo6TVeHDh06dOjQ\noUOHDh06dPQ5+tUzmmunF6DMm4pUMz11wQBX9FGXAmutEA8KAbK/vUU0d6mEdXW0GKzKpWXAYIrA\naKaJ0mKhyTfD4YVFpoXFLvJVmuUIDMLDGIWEIXbSWFRqR4G5FuUh5pfa0ZanlffrtRT1Gflio7at\nai6P89OpiLBNwVgrXWKeSUE4iml5CIjil179lOZhVOEuMgKCTTLOTAvxXaNW4sk9cwAAK4RU8nhb\nGWqFGXhxWybKRe6btghVJg61pSHHRs9orpXeorejJgy30ss32kJPdAitCIlPP+qF78NWLcW/2uOC\nafMofrHxy9HH8S7HBmUkLXVSiQMVB/hBVV9b6s6Y3aY1Qpec7Ypq1G2k59RxmPv21WUgNJgWoVbZ\nAueh9vcIOyTNGi1FEi3jqnBQyKHAve/on6V5Nm8yc9hB7Kmn1Sq6OEPsjd1XDsT+bv6a3kL/oBBk\nB9tMc6HI13bQAIPqMVcrSh85SH3ZvOHvbnwZj5SSfiRVxSjSrbv5lVwAWoTGja2mi4uK9AXfzV8J\nAJh5XwUu+tvPeq/QPcRl160GAOxuYX369OUztH3fxT0AgNyLe55v50Txir5042MAgNs23Yrwrt4V\ndBl9dikAYPeKYb163d7EMzcevUc0HmHVFSlooa6cFo3OmpfZhDwHx9QCO8eybc152N/AMUpNe+Kt\nt8OgpkZR04I5otr+357/VtJ7Hy29OB5qn7Z73xg0jmUbTCuSkEKmGYKXsPxYmRbzHKqcbSUmuGZs\nE+ln2ul0xEYw9TjDQVts7tBDhJwSTK2xc3819CMAwE9B798rLRkw3UBWlppL9p/7ZmNiFr0brYcY\n1rOzYSBSBOtk1vAiAMDyzBHwrhHj9+AIJk48AACo9tJzXF2dCqmRcyEljXMZoyUM5RArgK0mRvdV\nxxNflviWs5vx3yM/Z1nXXg25hvUjpZDzFvM3aRB6UzHP6DFixGvfAwDs7WNRoxNZRKm/MMxcg8GZ\n/NalWXbIAdaLhskcwLO/liFIcrA2cZv/5YF49kYKc0aHMDwky+hBm1AwU9Mn5sotGGHiNpMko1Wk\nDWyJcr6QKdu6JXpUFPTiwTJOend+TO/lgMNRWJoFS9EsadR3qQOmXmfYuJ85WmURbmXup/zEKiKC\n2Vl67vMAgPGP/TjpcUMd7Le3GIeh2kdvYlSk9moeJcFVKlgAbez4LM2AJMLFdhdSbPS3rZdgfCb7\nIEPcJC0q+keX0a+xPC1iUjfEVo+JtvZhj24poKWLORxOBQC8XT8dG6rIDGlp432Ne20I58XYCep8\nzV7LhzaEAEtj131wvy5GVRXYYETGg7mfAADO3cXJU9YWCZIIZ3UdDiBsZ82smM0iF3zoh7Wef7cM\n5kOHnGYEhTdYTS92MDumaKsOXLJfgrlZpTYBG50xNUIAsOW0IhoVC2GRe8lbZ8foF5ralb/sgnT4\nBohzUwWlIApkGLiomTFqP4q3sqF97WdFCSqHk76LIymwWcYWtImP/dZLcwEAr7kAC9fNyLviACan\nMpD2ibyvATD2qtYvBjO/qMiKhJoA/36sgopXNnMIni1cmNhq+6aRbqvO7dXrXXHJV3jvo9N79Zpv\nzSJV+uqS+5G2peMO9d+f8T3mTKpC2K42Mr5Hy2I31IxOTeOiCDkF7ZxtX4uT6gg2Qb+wIUaL9Q8Q\n8ZtFhi4XgFERLBwN8r7bPh2NtDOZh6pBrKxNbZI2mWt37xpu8+cBD03/AADw63WXAwCUMivGX0qD\nwp6XCsUzSZA7iQ9TEXJJMLXEjmst4K/zAH+9ORLslYnXaRSD59qL/goAmPfsz+AfyHbmqJMgUhNr\nbRlQtJi5Lk0rYuK9zceO9SqnBzOv2QoA+HLNBDjKjz9ppHWomBwMq0eehZOHj14+s8Pji3fnwdXL\nZVDVUhUJQC4nFo/PfBUX2APtjisKeuFV2N9evYKTP9PhxATkzsn1SLXxOmVf0ZB371Uf4doveY65\noveVuG/N5eTpikWf99vENJjBccJcn7zebPWx/59jPbYEviKcS6PcF6Q1wpjOevSL/E8wTBhcG8RY\nNyrbgY0BbksXISerfAXY1FYAANjbQkPVvtpMFM1+qcP7dnch2panaEYr1/7Oj03bxTZ44/2f4uVH\nSNlWxAKtdVRYKNwCUdEV+zMljZ6WDGGbpMWrqhPYo1mI3vYjLjo/rp6AmleGaNtltFeobIrY8bPh\nVMT/n1duAQDce81S/GY9J9nmwXy+DEMU6TZ+uDQTf2fmHEL4Ko7fbWEztlVwfLxyJPug+aN2oiRA\nWnBliBPBBzK3aRP9t1tp0FnVMgrvr58KANh08aO8h2zHf1r4HpWgAVI+7xnYQKOEGUqvLUJVGAV9\nfPa2K/HiTTQ8Xb/6uwCAffP/dUzXfqCG6r5vfXDmCZfrNDSDg9DuM2NtZ8Ijxy8X5lPffxwAcNOn\nfG7HgeTzlKnpnGfuteTAeZD9trWGv8nyyFqbImj8gtkt/nHOXADA0NR6eMPt+/hGvw15ThqM0sxe\nZJg411WNqEZDFLk27p9gZ/02SWFkC7pofYTz0zerzseuNTQeZpYmxrR6hsiaDcp9QGi+hLvflm07\nOeHKW8AFVvniwd0+t7fRNjQESxobXFd5UkNiBa6Yo6hq4WivKqSbWiQ4asS7CKlaNCE4yjgnMoT5\nbptDGVjhYvuX3Ozzo36jpkSumBTAxHcttbJOSBEgmsLrSCK00GQLwWzmtmCQx4VqbVpZXftYVl+W\nAtcB4URxASGxnqofFxvrXQe7TrSs03R16NChQ4cOHTp06NChQ0efo189o7IwfdR7HbhxFy2LBgtX\n/saAUaMQBlJNsFXRsqDmSqybZIdRWPfsItC5usAEY1v7e1jrDJo4SMZOrs4N4SiCTq7D23IkRFTq\nk4t0mPBuN4LZvKZ7B+83emmDdk1fPi0WwVRFUzVUaX9SUMbuIC1Mv8z7BLeAXqSvPCMAAA8tuQYx\n20IivnOYwff/zF+DnwRUwQnus8SKgPL3ClCOAgDA6zMoamIpsrVT61VRfwGpRMGACA5fkYLuZlcM\nCe2XZNftCUIi11pocACmQ5Yuju4aybyixXc8eUwKv6qqcDyCKTEVZJVW6yIrECtvfBc/z57Me0+l\nZfDQazGqIKm9wttIBwQi1hiltyuoQkHWDrwtR0K6uB4te2n9loRYSTBFQVUt2QGrF/0JADD/6Z8l\ntBMA8DCeHjPGleLjOuZCnDiElPNd5gH4Yc5iAMCiFFKtjT4gbBe0OW/HVst4r2jUJMEQFLQTkR80\naonAICxv6jOPuHEP3hi2FABw44FLAAD2GXXwV/BZosaYV69lBPsMV4kMpxAzUso7zlcJxDwnL37F\n9vbQZTvxz3x62HDdGgz9dBGvuSvR+5cMKkPizDk7sGI3wwYcu1jAoCsmIgMAc67bCAD4Sy6pufO2\nX4unn7u0y3u49vV+d22Id4CWsv7fV3q7RlkfkkWP7b7duVr/qHpEI8N9GJLNTumxEa8DAFIMEZy1\n9D4AwH6hmjvqxe/DHBM97XWoQkHLL17fp0Iquxc9iVEvCI9vF230H29fBACYd/Nf0TqEHbrz4NHb\ngh1ClXVPQRasqzge3Zx1L35xzdsAgP9UzAAAVHrcCKsCPhvYdkytQFAQhlRP67/u/js07m8cOvOI\ntgyLIuoQKrrbOU46yqVO1XST4W8rzoN8Dgfz1GWsg5YNMjKuZ0dZ/xrZC515RQG0u29n/VFHmLSI\napQzbOzgH6mcj1Sxb+G+c9EYsLc7/m/bzsGeOS8CAP5HbPvLo9dAFs5UVWzJaIii/BXGDzz9ACnQ\nC3fdjGmZfD4DFEQOcKB9fzOZEUvLZsN/FfuywFb2ZZ/PGAPltax2ZWgcC1x+3noA9IgCwLagH/9v\nK/vMK6dtxOdvzAIAOCoS30nNnG4khe0B6r8ZgJu/uRcAoPpFOmqL11++AgDwYNYubds3AXYUp1lM\neK+N76Ss6G89AAAgAElEQVQhxPyR8V7R/vaIqjCKnLNFp7EhjTHb0TaBddmxveNZVmhGC0zre8Zz\n8U7yYbaVbdmcJbJPmKxwlrRnm/gVE9rCgkqb7kfUzPfoLBPsjZbkXqq0PawLrS1kzW0YnwbFzvYt\nN3PsMYQk1Cqc65ibJE08SmVsSVEJW0W+4g9SOS81pAU0D1ugjGVxHDIgpySx7rXmsA8KpMVyHKv9\nUure7tXVoFvRch2XFJGdU3rvExj14ve1cvcFVBE1S5ofxk3d+9ZhlZtsUhD4SoRVjRXKuN9YEBap\nQNwV3CZFFBi89H7aGvitwoeMkIVYWyCVqw1rvYLUEtbL1nwLojLvY6vji/JlGeHNFmJGTSot2AyT\nYLdYxTzB2hRFxCwYe0LR31YraeNJ0B1jxqhzLN8ABYZA12Od7hnVoUOHDh06dOjQoUOHDh19jn71\njPpE+pS6Gjesh8SqXFg0rHUB+LK5Xw4okFu4NM9dyt/Kc9IRFZ6qiLAWRWUFrcO4HJdEjlJblQyr\n0EQQt0PYakBQ5OlxVCqIGkW8Xx0tWVET4DjMVzNgdcwdqViFvHU9LQxmjwuy8F6qZTC2SXit/DSW\ndUhM6GjxF4zrMI32AFWxONYj8c2rzHf40O2NmD16LwBgvYN8d+vaxBQVAOBc35mvFfB+RktW50cl\nh+oRjZpiaQB6gju/RSGFp989n9c7Cq+oewqDuj2bMzo9LplX9Fi9peZmkWpggAR/Pl+AbGclHfrJ\nIkCkUjCnsl4GZ4SQtj4xLs55UIhERWPW6UCaqHdxwd2qAI+hoA0Fmax7tW8mphKIR+NMWsYGGiP4\n3gJ6Lz+ppOz24a05sG/jl59rppej8LxSlL02tN01WoYBo6Yznm2yuwyv7aNV8+8TmT917LAWZMu0\nUJtn83s0NTqgCA+swcfflN0xq6Mi2lXUGPPEBIb5Mb6AQlrb9w3iu9ll1oRC1Lx+iwauxMJ9FCt6\nKP9DAMBbjmlYbKJXtlzJhFXE9aZuZ9sLOYEhqfQmHELnnlE1JtQ+vy7p/rULGH91ZS4ZG21LBiQ9\nTjmT90sTrr/BtgY4t7ev45YmCQWX0dvywcjP4vawnpwzsAQfYGCn5e1rSCX81ofErwkAGto/l7zP\nhrJ9tDxfsofeUHO9jE23/gUAUPgcRRqOpx06MsIHeS/r92cfzwAWbQBwfFNNLLuVabp+WX2GZoHv\nLi59/35kjmH7aWugl8vU0tkZnUP1igKAPM6DsRYyGQ41MF2CtNGtWapF6jkAgLm5/XU+bZmIWVam\nElBz0E37w93afkVOFBJR0oO4eCzPWb29ZymH4pGxSUYwhWNr/TS+0IyNMko3st9zCm9AyxCl2ylZ\negpfloR9HorWXbuTdca10wzV5fPW8CU4Zyfj54WjDqEWC0IKX0rtDMG6Ckmw1In+SHiNalblwiW8\ntlf86qfaPW/5b/atC7/4AWzDWAn8fvYJwTQr0t+mXzYi5BaO9IoCQCgtoqWf+/Z+ahlsf28Momm8\n32dbZkGEeqOBoZdI3x47f+ZYKkp5o32f4uq198/mL87u3gmLvu4Tj6jKpOtO21ZZa9f84yfaNnvX\n+j099ooCgH2rDRO2cgz/5R1vAABudtclxKhWhNJgEZO1UKsZWfsF27Cb8dNOkR/Sl21E2KEmLOaP\nsS2m1WCvjsLcmuhl9afyBfjTVb0Mu+YlTBOaGUembVHRKlgFURNg9IqTRLFVj1xXiBcrMnpjH2PP\nzRwTuorb7ArP3/k3AMDtT9+XsC9sA35xLdkPt7prenw/dU0kyVHIokmq8zc5GIHzIBlLUZPIp9wY\nGzxCNn6rlAMhNIzmdSwNgp3hUxDI4DajX4FVpF0xBPitI1aDlhZMrSfKPoP23TK2i/zQ3iAaJ3Ju\nlbGDA0rzcBsMIq+7P0uBImJcHRUil6nfAEd11ypU/boYDURE8GybrA2OKk3PEFFgaRYUAV8Uinj5\ngWx+mJxlDWiayM7a1CKUvLab0DCG11SFZcIOBe79/LthrFig1kgara41Pz4wmvvT9kTgLjpitAYg\n+cNxRwHpu8JoyRflShU5GBsU7NlHmu7h3Ax4c3lte4VIPN5NMdl3np+Lh+4mBWjdyp4n8PVMZE12\nb+sezbAdDMARWg1HtRA91oWgiq4WocWCDhh/r2TbukJnx9qqFY0iri4ipty6HQ4jG/W5KZyU/XzL\nVVhwJyfEXzx3hjawqUnogykxsZ5kCmOa6Md+B2rhaLfPM1KBuySxQ05bJxSbkY1n8zkJXXDeJgCA\nf5wRgb1UyVU205hxuMUJ6QglJOchCXtkGj2cMwO4chiFNMaa2dmpC1EA+GzK89q2Ectv5caWWKfv\nzxTiYEIFTlKA7JkUUYooEqpaORDLDXw5raNC+N3Z7wAAbnBxor7UJ+P7ucznqub/fe/ARKQIcZxp\n40pRdJB0WPU9tg4L42CjCNxPeEuAfwY71JDHAlcxv2FBSszYdCjM/YONTuQY+a6mZVKEYSUSF6OB\nVAXhA6SfD5zIRcArO2fAnnAk8MRQVaE00aB0c9rX2H0Fr7/nvVFJzj7xYRAU3tvPWoZZLyRXCjwe\nUBeiKtTJatqMruSUu4fAAPb5lmojHv026/2cV7mgkINAIJfPnZ/PeluzLtGoEL+QMzdLyHawnh06\nTdT/klQ4Dx37kn1KTjluf0oYBbydHyufRyPMxmlvaNvqIpzonPunnyYcn0zR0lBnxkBL+3HSMyKK\n9O09fxbV6DdtPI02BzaO1JLeqwrCFNvreEIdSJW0YyNWHucuTX6syoZrnKgmKQUOFbMNZmxVCWOx\ne+0PtcIfFmEugrJmrDfipgMLAACOfPaTTmsAQ9w0Qq/bztAcqbbz1YlkjUASIUuZX9AgHokbtpPR\na9U8ovcM2aiJnmz9mPOEqB1IK9KO1M5poH0SNWeFcfEU5mv+ftZyAMC4D+6D5VJhed6d3Oh9tPjl\nNW/i929cfczX6Stqbk8NTEfiaNRfuwt/Fr/nw88xN/zDSY4JRE3YWM+x3NBihNHftXhMMmRtDaNm\nCuu8Kgxo8nCOCyDpQjTkMKAtV81dzm3WegWOqu69FFksQBWnoi163Qd5bmNhN1b5RyA8lRf5T0sa\nrnOxXe649wnNsFS7NK/Dc4G4fMVxTTDZIlTFP258GvNt7Z914z1/w5i3qIhvr+yYjNo2NIRKL+cT\nis8IYWOCrZ7v2VHuQyiFBmHLQc5bFGds/FPXS/Y9dQjbOOdTF/BBl4RACt+fuVVB0CHCITw8p3mo\nrK29wuKSrsNh2A8yO4e3gOUyeYywNvKcgMiZbG6LIuSStedTjZ7q3Dd9dyBp5ogjodN0dejQoUOH\nDh06dOjQoUNHn6NfPaP7PRRbUZxhRCxcWasUmKbhFqTvonk3bDcilM6VvByIWWPce2nJNXgFJcGV\nonmdVOtW8wigerbYlibyP9oskH3CS1otafnM1BW/qzjRK5oMRl8Eliau5z1CtyatJKoFlG+fNkjz\niGrnrOyYonskfrJ+IQDAUdlzS/OAHNIHfduye3wuokDbIGH9GkrLkmlV93MDbr6NNIbZ267r1EMp\n0nUetcx87izSPSvDMXUl9X4Tv7m+R9cacFoVyipZH5OlrEiGL3eOxu/OfBcAcJmDdfWy2S9pIgxf\nXjAKkY/o1VXzh2bMrEJFKelg6fn8Rg21bjjTeL6yjt5+c1OiJSneK6pc2IjPpz4HAGgT1N/rd94K\nfEAq19rnpmrHhi/gfcyfpaIjKAZg/HS6Zf88+H180krhLdUjGlIiWlqBeC+pIqgdUSfbpT/DCH+2\nSEWzi20j6+rDmky5z2+CItImyX6eO2paueYRVdEUceAqp0f8x4qyecZ/8IoQV3i8dC7uuon03Uc/\noFjH7+a/jd98Sgt8vE859Tzm3Lp6EL3FKxpG4szZpMCX+vi+9oda4TKwPHeVz0JTkObB3fUdtx9L\nk6QJE1WXCZGVuP1tk2kifOaMFzHImOhtuLt8JgAg39qAbeXk4pl7QBHrDYTShax+Q8/tkqH8oNZW\nFGFCfmbLmf07qAicOYAusQ9xFP1fHM6aSF7o6g1jcI/oU+Q4RqNFpKqpqeiYZl18W/tciPvr2c+4\nbIIqdQxe0ZahUbj289vteG1st979oKv2Y2JKebttf20YhhefvqBb9wwIokr+xEq0iE7csIDt1704\nA8eSgLi4jt/LgvbCZ51BTYFl9MbEN7qCd4BgMlWpYTYKrCJ3pyK3Tw8DAJsCuajey347RYi2hdND\nKHRSHHDDWvaX9m3A1uH0sKaLuUjzCMAr+v+2QWxvWRsktClsO0Ny61H/qfDQiHR2cvvMSrFy54hy\ni/b2+IoF2jMERVtWjEBToTiuTtI8Huk7eI3GcUY8nrcOAHB+EftLgzuEQJ3IPdjhWzs6vFI+66jO\nO5Y0Ln0pZNZXiBqBEpGvWA1hKf4gkUlT6suEx8+vmLbz2BgXNkGrjVhiLAWfUXUXygiJAU+l9kZl\nhr7xHO7rrlcUALK2ceBrGmbUBMlU5mJqSQRNIzv2jjrnkA0zIrUOa9eTgvirCQxbWukpxAMbyBwY\nP6gCNV+yvXX1dqRudmW/u4MsRocUxBUlFKvbuouc42Ejq1C88B8AgCl/v6fDazj2m+AfKqi0HllL\n35KyR1Bkm9ogHxFVJLXGYi+s1bGncZVwDeMdzHm7HJLgT+M40TzMgPQi4REdJtip0ZhHNH03Bzhz\nWSzM0OgV4Y+RKGx7jyiEyQjnPvZlLSNdcO3nuiyYFvPiHv5WTofPrT2LoihHP3IcI4a++nsAgFxm\n1RaHZjH/dJZH4VYXhd1w8QKAZ0wKWnPFolbM/RQjYJvGgbJRKHFaamREBePS5JGQtZWLB9uhxOCd\n1lFCgdAThkGUw1Qb40AFs0UcXR0/gKcwBfYqfsx9Cy1wlfau8zko1hPmps6PO574wffeAwD85a3L\nk+5XF4QdoTeou12hszJ84TXhntcWJRwfXy51oawmaU+GQJqE/AWMsyxr4oeRDVFExGJL+iolYUIV\ndkhoHSIUKIewfk8dUIavy0WwxEZRRxti5wUFBTxiBQIZgopRJiMg4oKkAta9qflluC77GwDAjz+6\nkfcojnVQjTNYzyVTFKlrE6ccjVM4EDw9/wWMNrMjGpxkEaXiBU82/ryLNLXAXnZ6lnpJU+gMO9Ty\nxyZ6rUOi2kJLXVxnXX0YbxS+CQBY5xeqy5Bxsb1zK8WdZVRUzreyrA9k7sakhxmfoSRpdr/73gsA\ngLNt9UgxdBxB/YInG+fbuZhR6brD3/geHId71pYD6fw+xbe1r4sPN1C2eKrtAAAgpBixwcsY3qXV\nnNTWf5aHwGkchEwmfvO5+Xux8j+MzQuk9lu3nRQ9MSyNmcN3W7RyWIfHdDQJ2HoHcxiOf5mKncZh\nrVCKepdW2F0EBoRhqeZgHsgTcQwSYClrHzO+e9GTmL+LuSfL1+ZpFOLWZVy0xMdyqgg5j13BHOB3\nOfKbjLq2GBs3jAQAuPZ1XKebx4VhK+fzxY83zZPFalwBUrYmGu56qqYbj/rprOuTxhzEni/YTuzV\nvVvX66dGIKfweynV7AettQatDjsPJ79f43jR3wo9ikh6CGOGCYPomwUAgLZ8BY5y7vfmiEn07qMr\np0o5VvvTeBqyus3SpMCXJQzrSXJYN4wHFszbDAAYaqsFADy1eAGcQzn2/Hbc+wCAN2pPQ8mTnKw3\njzy68p4sMLX0jZpqMnjzaDCwH2Ue60AGv3HGJNGHfJkYPjL9qu1YsYcfMWWdFe5Dx27ZDInYUc8Q\nA/yZwmDijynaq5R6a72iOXV6G1Gj1ClVN5giHCjNEnbc+wQA4I/1fA8/zyjBZ14W9gJ7ANftnwcA\n2PFhN+PmOoB6n4dqxwIA/r18DoaPp6GvcjEN1G0jg3CUsJ9sK6SVyVEcm3+peZQNkRitOHzYodWR\nzG08x1LVBsnfgZUKgGLnNaVwFN4Cdd3Cfq7qdLtGm/UPiMIo2oA6zso+Ce6D7fO9Ova3AJJoK1Fu\nC6fZYGxmGSJ2sXCu8QBm/q2YZEhtiZOAygu4GN362P0dll+n6erQoUOHDh06dOjQoUOHjj5HvzKq\njPtpijR6JaQX05rSkidUooJRBAYIr2OtD1KovbUllGmHsZUW2ohDKEc1R1A3mevrYBatQakDWiCL\nHKCyENmIpvoRqaKJUQ5IiJo6tpRZa2gFMDbFVvvhVEFNCkZgrmmfsNFWG0LLYFoomKOpd9f7/ekR\nVfF6+fRO98d7GM+/kGI+j+WuT9h3PBFvBVOFOWa/SMW74MAQVHt+RzRiJYffuy3Ab60YAecB7gu5\nYiq4NW9QKCAiaF/ezAgMfkFDdSuaJ9taK6hkbYpGX8Uuiu1sRhqMggYTTcKRahvOemtsNEJKZZ0P\n+KwIu9kmDGG2mT0vFeIXObT0RfN4nPNb9bCb+PcPc0nN+sNL1yAZlc5SxXb0X0XfwtqprwAAlvtY\nVoMUxZwj0qbd6q5B6gRa1u+v/jYAwFUas1yqdZW/wktQFGtrA6+lV/mtke/hmwDb+nl2VSmra8Ws\nH2YzD2mLEhOWUjoxen/pofXyMseGTq/rMvixcNfNvPZi0i8dnZ3QAW66lAJMleFWzcMKAD9NP9Ld\nHsEFdrpPHsjk7zjPDUgXnuH/GvEpAOCh3ZccRSn6Bj2h2nfmEe0Kk56jR1StZf3lFQUAQ5xSo8r3\n2n/Bs5qol9XKOvxemxPla2NCGVUVbPedlfxYvaIqRS7Zd1lfUoCUTjyiKlJ2Jp8epGw5ClG8bkL1\nxJZtGAb7EX2UN0dCoJBuZCXM8qev7nlZMjbJ8Ge0z2scsQByEs9iPK49ey0A4D+ryMgwO4OYmsZc\noa/OYj+RtdgCta87UrG4p1C9n6ognLVOQSuHG41CbGlK7hFVkb4D2LhjCgBgCbs/mELAz8Z8AQC4\nbykZNBkb5CRZZnX0FG3jAig9j+EzR6rcAkfvEVVhqRcMoyQeURXVPheMgk0T7H50VadQhXAkBYia\nRX7w7CAUkU0i4OMYfKx1vjNEu1itRAezswsaonjBQ7r/UxvmAAAi0wxYUUsv6QVjPsKzQz4BADx4\nNScpAy3N+PfL5/eoPFdfv1z7u9DKUCDFFUaGlfNN10UlAIDfDv4AV5UJZXlv4kNsv+txAMCkv9+N\nQINQzgVgFqy6iI3vuDOvKADAwLrlHeqCZzDvE3Tzu/gGRhFNER5ySUHIJDKD1PDaURMQSBHzWjXU\nIaJA8osBRHhITd5YGYxxFGEEBesumHze5ksUAk8sfteH6NChQ4cOHTp06NChQ4cOHb2LfvWMmlpj\nEtCtA7lCV3NiRY0SIhYRexeKwDtUSB4L813IboB3AF01ag5DRIFgBlf/zixaJwoza2AQlsoScVij\nx46olRxo1/6Y5DGG8x6GkKLFj8Z7RFWo2yIpVqgenJZCEevXGEZQeM6k4PFd67flC263iGVrmeaH\na6O1s1OO7X6Deb+WCgo5JGbTTMTnn9KLWojOvam9jfteux0A8O8bHsdNX/8AAGAQ2lfmClOXZpjU\nFNafZpGO07LDBtXircruB4bEJM9Vi6VzvwyjN85SfREluJ8Y/yoAYE9wAP5746UAAPeq2LeSAx0L\nV6RtZKNonBhB2prYOZ7hQnxD3K7pjIDm8Ez9hsfV78tB/XSaK3+/mmIV9vrklvRAPj2o1w/eAYvE\nrzvXFhMMCyis680iJ1227MAVIk3Fr7L5vloK3HAdSHp5DVlX05tQVMQ8ow3Dg5hra+/hCCghrQyq\nZ7shCmQJkSGDJOHXhxmH99bwJQCACeu+DZNXTemU6CL9uJi5DR7NiXlG1TyBqjgTwDxtqkf0WJBj\notU13ivqjQZhN7R/VrUM8eXYefor2rZh794JAHCW6r6LEwnxsWdqnOg1pfMRFV67h8ZTYOu3uy9q\nd57RxjEqLOp80KXAVtO7cWyzrmZqpjuyVuLP5bT4732DYicpm3pboubYEDHHYiFVAcJ4TFhE5Z3t\nz46HIUTPgT/r6NJVqLAe0Qeq/W88Guf6IRvZNt1LHMgRbh9FeIYUBVhXXwAAmieqt1A3TYE8kK7R\nUAu/l88VgNXM+zjejbm8mkTYW0exqVqcaZtI85Ci4CsP085kr4n1Kao3/VQU/+lNBEW8vrkpsc06\ndlowYeex5bE8VtR5j4bHkxxqrGjQLTyyo4NIy+TcWFEkNDfyXgHBxDK1mGGv7bXbt0PlHMBe3vH+\n3EyOtysnvIs3WjkfXziJooUr60bg8zEfacfeup8so+FOivH01CsKAG++NhcP3rsLAPBeHdkHD53x\nnibY9eMhnwMAxplt2P0dxpZeVkKRuNLDMXbQe20xYUlJ5Og0NxiQViSoEbJgzaXYNQ+lwUOvZDjT\niUAGG66a37VxbCwVY3Qk505jcmpQUh1zT4abOF5FbGL+WidpKXu0VJdGA8JZQgDJK3QCIoqWZtPQ\n0kX+MAHf8AwEsruOW+7XxajqDlakWPJgmxgk/KkGZG7lRDeSYoWtjC/Vl8fKb22IoHWQoBCKCbxi\nBKwZ/Ehpdv7a5BDqA+0bp1xqg0MsHoJuIK2EX85aIYKHU2xaBUgqniQWMgZ/CL58qoQ6ynm/xkIH\nGicK5Sl7BDhO5JdgSmwRGhVz2+dnv4Dbm78DAHDt7f37Tp3J5fz6XZ3T7FSDQW/l24qn0gazeFFz\nF7nbVNzyyt0J687Xb3wU1778Q+2aydBQx+/q2iGCwiNA41RB/d4qqA+DwxiQT/GcZ8a+DAC4d891\n8LzDYO1AugT/PlLymsZyRvBW9XRI5V0bDHzZEoKpbBQpe0RdNMTUFO2VSpy4knzELzSBrlmXb8PK\nlcx27qLWBkJOCabWJDRdJxvS5e7NSKapqC4Os+WYGeL0rVcBAIyrhTGmA/GSNsbyI2JVcE4qC1J4\nGpUokynNWiQTWqM0+mQK9d5MGdgW5LaPPJOwMHsjAOCBGj5fW5kLHesFAxZrjEJSFGRHOsbM7/L3\nxiH42ydcNNirjm1h0CqMNnekVCXsa44GURlhxz7cxOd+qmkY7kk72O64iBKFLLHmGpt1AouK3u5b\n4hEQKtAqdelosHn1KOROZr3+1RYh8HZE3kbpoBDPEtXsiku+wufPn3HU94zHL+5+DQC0nHqAjFFO\nip2EF/K5Drw1vFfulQzOi6vgf6tjCmEyyEGlnULxkdhaQ6Xp7/7oAzz6Fg1Q8XT/44VoUMaEfPZV\nP/3lp5htZTtcNpaq42Y5gm+2CLWfY9BYqjk7hFRBfQ7P54R6ydRncFMRQwUWjKHx7N3n5iI4hwqP\nqsHb3KJ0KZCk0n1dB1nItjwJ6x+b2u4YX5aUQPe99vKVeP39OUf5VKcu1Bz27kn18K/IPC73aB0Z\n0nLBrnhjWo/Ora1xA0Ll3ngMQ0fbABmNY8UcPYPjbmF+NYzCqn+oKRWKcLgYRc5wW13vC+v5Mthv\nDS6sRJ1QnU+GhmWcd20ZFcA1ThqOrnFSvAsDN7c7Vs1hft8/7+yVMv7PoA8AqGP61wCAAyF18VeB\n84u4+B2TyjmB+zI/tnxA3vxvXiBVXgKFKQEKWIZSBPW5SYityQbAELcwBdA00g7PMOH8EmOibUwj\n2to4x8xNZ3/hCVg1IUT/PjdkMRUye3huWkk4NqaK7AxRqxEGP+e8iqAAN050a7lJIXFe5ixp1hao\niEYRdvPeYSfLX3mGEQUjKrp8h/osR4cOHTp06NChQ4cOHTp09DmOyjO6bt063HfffRg5klbBUaNG\nYdGiRfjZz36GSCSCrKwsPPzwwzCbOxcXcJVx1e1LN2qrbVs1LTCKJEHycfkuhyLw5tO6bGzjcRGb\nQctJqrqAJXsYUwcykPjcjCIAwF+3ngscoBVBzfmZ2qTAVidEYXwRmOrau5uNjUm09qHScgG5mWX0\njHTFXNoGepKc5UH4cni+z3f8hB6McUU2CKvyHWtv6T2PqGqmEB5reX49NpQy/Yjs6fwex8NroaK7\nHtHOMNliSUj9cqSH1LWd31OlOIXtClK209Kjpg0yeGXNSjjRzLqxfPx7ANmguG7/PKSb+aF+8uwd\nLH+TAlc3yqgYFbiH00reaCNVYsKYQxg2g7SSR3M24ILdFwMAikuEtVCRIFn58p3bWP7agBM5k2iN\nqwSpp0ZvokCKNxfIz+D9xpg7t1HdfJDW8luy1yDwPoUC5C5cAyqNuW2KH3/J2dTpsSqcBr7TMpFH\nNqAAIZGbr9BaqeUhPWQTIiKGzr1LTmuMA31/KSnLPxpMIY9/Pn9xuxyhPcXEq0jXqfU58fDwtwAA\nd5XPBQCMsldhpIXfoMDowyWLRVqSRna/Lyz8B460C8qSAadtZhmt9YleoOAA9nnm6r4jtxhG8ztE\nd/eNaFAwjW3L3Bh7N6FB/Ibmg71PNTXXHXvfIgeBum869wyq3t2IeJ9vLzm9UzGj7sIzIhrnEY3h\n7T2TAQC21cfvu1kvpPd1kKsJWwbz+Z2Hen4dNX2KYlAAkX5l+WQKwgw2OvFIH2blkBuMiA7nDVWv\nKABs2U+ax9Rhh5A7nJzE0Ks98wY3jAMcYj5irDPBfzZZWTcNJ9vDq8j42fDPAAA/XHsdAGDywhJs\n3sm4keBszjGi9WZkrW/fd7TmSx2mpwEAR3nivpbxQdiWtQ+8eShrJ4Zew+f7wxtX9ej5eopApmAl\n9EIb7Aq//s4r+O/nbgAQY+T1BPYKvu96Uxoe/e4LAIBfPXNrL5WOcJaY8EUDvdc97emM1WZNZMhe\n031PpdovebP4R+sgCZbBrJeyzBfVGrSgtpn9SNBjgbWcdcZ1gPcxJqG7HyvaBBtsmMODOnTsGR1w\nbhkAzu86w51lp2PNO1OOuVw77n1Cy3GvspwA4KH1DMPaN/9fAIBfVk9E6Qb2GZ/fRKrwnO3f0tK4\nGDfFZoRqSj9zq4KAW9BhQ6rImlljYKgCRSEXU4wBgMHJ/tJpjGDCULI3DniY09phCsJ7mPfJ3qLA\noH92KIYAACAASURBVM3ReUHHwVb8f/a+OzCO6t76zGxv2l11y1a1LfdeMM2AjQFjOsS00AkhhE6A\nkJcCvPfypbyQR4fQW8AOBEKHYGOqO7Zx77IkW71s7zvfH+fO7Mqr5g68Pf9Ynp25c2fm1l85R4oK\nL6hwp0vBCBK5fC5dgJuM3DUdjBwFkDTwvFBpDvR+sVeLJBB1cY1m28SxI3FiMar20pHvDvu9kpk6\ndSoeeugh7f/33HMPLrnkEsyePRsPPPAAXn/9dVxyySW9lqGo+V9xBeZWPmxSvAg5nkTTcYJ1sDEB\n3yDx8u1C182tIJ7Ha/KLuSg16uM4Lpdi9lVGTo5mSxSxEHetljZ2qIRRgi7Kv6WEkrHxCpU7YNmV\nqTkqR7vusizNMXgG88UbDKpgtg4hodPDPMN9g7+c19p39b4hkLshrbKv2Pf79YhuBmmLjQvBWPS7\nlXOUjumnMLTl84/H9njOsGd+hovO+hwA8Nrb3YchqRtq/WQu7n474kPcu4ahFs9MfgEAMM4YxTdR\nbphUBs3Tq9ejU+Q1XVb0Nb7yMU8rOZltNPlZjja4qIhbpa55pgB0YQnSB2z/bnFsa34BjhVMrJXv\n/gSXTmU4SLCCbbDNb0XyW5FALRZt9a9WamUqIjovXBSHpbHrpC/FJYRinFge6hiOoEggGmRkzuuF\njhpMeoEaUaZ2Fr7cNhqWfsSnxa2Slgs+feg2/K5lFACg2swN2qWONuyMcVCvNGQumLsL4y3R7cGH\nwTwAwK3fXAYAyNmsQ2/xcsEF3DgPX36Dpmf8C/ykz/r3Bv84GqauKvoCADDTkgDANvHLIuayXrj+\nCjTWc1JwbDJoxgjVqFETK8Cx5szBWumFGlj2H/780cO1CVWhD2SOgQd7ExqtEJvbGtN+LUz3B8YO\n8V07+D73hzk3XMB2rrJ0A4BckMlv8GHQBN26Q/fdAoNEWo2fY96aZcMRt6svsn87x5k/X4yLXWT6\nfqWD+VZ/Ll6Fz8XjWEWe1FW1x0NOqGUeAp1dUXTbJA7+95zwLv686hQAwITOi7Bqyms8rY3j7fqd\n1doivCdd3L3RfCInbqM9ilCC65LEgAjiHrbrmNgRvOmdgA/2MIwvZwXHk21rhqJQC6XleW3jMm9s\n8AOtE8Sm3qSgYEnfAXClA9vgczLMcUuMKVHVBtsh34SqOBybUBVz7R60X0EW+EefYyi9vzoG+5b+\nsGCkYOiU8eye4wGkdK33dwzxDxEbiW2pOpi6MUL2B0avpOWzmtv75xnwluvROVbVSuamxOQMoyqf\n85JfrPl8ESOiHWyPlt16uDfzgfWhQzd4xoR+6FjHbqxDz7qgt1fQsLwoJHfhulAx+qH9z+XVTeM6\nMLHEjUB5Kv9x1mN3AQCCIzhYWTeagaJkl/sFh0fwxPlPdynv8zFvpur1Tape1lZRbwWQRLhs1CGM\nAyU6TZ0hksvzRk2sgVcoPhRauWfJNwUQSrAdDXNxH/TlrioYvKmx09wuHHhxVTs5gWAl147WzXR4\nKGZTalyLcK8lATCE2U7CZayMqTWE0ACrVkcVnUM4nsRzY2iJ9D0HHbQw3aVLl2LmzJkAgJNOOgmL\nFy8+WEVnkUUWWWSRRRZZZJFFFllk8QPDfntGt23bhuuvvx4ejwc33ngjQqGQFpabl5eHlpa+KbXi\nZuFNlIGYgzt5XUToI9n0iLhFsq5BD3MHLQGdI4XlwJzEuMEMz9MLn/P29nyc5yDz3qJgBQDA1+hA\n2SoR0tYhNBrzjWgfRktP7uYIfNW0CIRd3Js7d0YRLRQap6qOqAxIEVoEIiXc5YfdaXUUbzLmkJAI\nC5ZTc9dw2v6gO49oYCpDcmzLLClj8yEwDPeGjt1OGHNp/TEOp1sptv4giVj1gap/Msm8P3bL3jyi\n6ejJI6oiLkLAQ520+ASSJjw6iYy4asjWWVvPwboaho0Ya2idWuYqR/u3TFxf4R+tkRAlBWuZOZb5\n4fRBRWN/VcOCw/lJzQOpwrLAjtc+nQUAcCcVvGolQ/F1474EANydtxUdU9ng3LoUMc+zjzGcN2c7\n7+0dktnGkqP8aFxHz+FjdTNg3cG3fcw5ZOX8rLMatnpxsiJCcgIZxXQLfVCBbzrb8KnudZhiZr9t\nSdCb8rx3AO7/hN9YivGZZx+3Cjv89HyekE/irBHm3SjT00JZbTDiG9HHYxF2Pmu0f51C9YoeDKgs\nmj9dQrKR5dMfxaRPbwQATYPt8ZNexI3ryO4cGB9CMsbjjly+wL9sPhm/qaWVccAQjptN6wthaRTh\nMt3dN3AY4xWPEOReSG0OFow1hz/KQ40S2FfNaHlWGwJr6GFX2XfDBYrmHb1x3CLt3FoRPnbD11cj\n5xBqU9vq1RAM+vuTRjLh741QgSAMFEyktnoJnnH8wG+/eQzeGsVx27yEc2vyxxL+UExtaoMgyvhq\nZxVy6g/dxOcVvHyOLSIKa7oOj04lq/WacBk6Ehxb9UE+S8yRhCQ8tb5y/quSBAEpb5mvXEJ4INcO\nsodlS/VG6EU2UKLViMHjObhOsNYAAO7deCYM/+C3NonJPurMfK95azKPmToUmFTvez+9042rimEX\nXpK7as4DAGz6bP/1gL/ruN5FWtZPztoCALi4aBkqTqZH6MrHbu1XGUaPhBYRdXegURVHjWbE02tn\nLuzxnO50S7uDHEt51XR9zImto0VbHxtAdSG9oIEY1/F2YwRFZnrbymycd9e0lWhrT13k0HpEVajp\ndW/Wjuv1vNtfvQoAYDgEc+OaqSSGO9VxRhdW3pN/tAxAiqF/ovtC/GMsw3NVcsSe8Hk3GtAGL/cq\nulgSCZNQGBERpIFSGQnh8TUIUsNNDYWIt3EdlTtGqA5ErUiKqKppLobrbnIWosnK+iQNEiIufneD\nSHuMFKU8l23HMJ2rdaICSwPvY2nm79aWBOSYqIOXY1pogBXtw1leqFCBtUEdH1PP5etHNOV+bUYr\nKipw4403Yvbs2airq8Pll1+ORCIVDqAoh3mnlEUWWWSRRRZZZJFFFllkkcX3Cvu1GS0qKsLpp1MG\noaysDPn5+Vi7di3C4TDMZjOamppQWFjYZzm2PczXiToNkEUOpyLyQwz+OIw+WmjG/3gtflZEi9FU\nEz02wWQUf24jMcOeiIh1LowiV+YjjTKRSlifE4VvkLAc+EQ+alSBUUhbRNx6xKxqwD//aR9u0vL6\nCryso7/cplk6FSH74i+RtdzKgMir1oUB2SS0CzPTTnuEakVQrwmUJWGr5Q1zHLTIestMsA4mZbX0\nqTujjEOJnE16RF20jgQH06SzLxkW6fIs+wpDx0GLJu83QiLu37KZFp3f62dj+4znupxT/2plmpSI\nsF6/XZBGRqLA3Co8GPlyl/P2hj7A4zFB2Z83uB1hkaS+9ih6ZCv/dR2g53nHjtqKFZ+MAABcdcJq\nUYpN84guCvF+p9vX47lTmYeF94VXpVHOrMcWGwxC4yphTcLUwd+XzqM1Uh9UMozssRwJBm//DE+J\nFnqO98TcuKWB9Xmi6h8AgMvnnQ+XUDZR5XNWtg5C4y56RjftYu7BtKE7UGWj9fqj+hHIMbMd5ixl\n/464odX7cCHWwfaRU8KOuzBUDPuartI9d226JkWO1Jie1y3kHACtzfh20ip5IGRKWXy30R+PqHdY\nAr+fNR8AupISCbnm8f+PXhJzi4TAQLb5GbZNWBLmqPyu92gAQM7yQ6c7DaRkxcL5QqMuBm1oCQzi\ngGGrVzTZkIg4zzdYwX3HvQUAaIi5cXceox8mfMHnWt0xCIa9iM6UXQe/V6geW2mKB9L6rlrmD79+\nBiIDOB7dcPRC3FJPjcBofkperHk6fy/8PLWUCpSwzOkXsP6PDVyi/faTumMBAJ/tHIxgqxgLHDEM\nsrFRDNQL0ro9Tuy9gvIOSSJ/5cH1+oRzxTca0Q55G9cUbw2lPuKEzosQWnN41xmHG6pG9cjHbkD1\nLHon195GTUh/MqyR6PXklfQuOHA9agC4suirPs9Ze9tjGfXwD4lBsgjt2bWsqz6Q8tQqOiAuIrlU\nL2bSIGm6unkb2X6TW8zYcirn2XuOfw8AsLB9OCxCA6TYxHXnOmmAFg3QHW8JAG09bQjuv9c0ZpO1\nyElV/9bXYUNvrCiHwiO6N7buLsTof6e+QXAk1yCqZzT6dR5GTOY49b8dFQCAp186HcoUvj9VP/zy\nXdPxzb9GZ5SfsHDwiTr1iDr4HlVde2OnhKTgiggP4ssvfM+G0PkcMxoCHL8MchI5Jtar3Mj1klkf\nB4q5lwk2W6ALq9JQ/Ddd2snWyDahD+gRGiB4diysS2CQHibSiEAReun6sAJ/Fa8x54fgN4qwQrFW\nRVxCY2ffUZT7tRl9++230dLSgmuuuQYtLS1oa2vDeeedh48++ghnn302Pv74Yxx//PF9lqPz8+VY\nPGHE89jMOoYKxtooNIa558q+QG1cZcLkZGuVjTAIlpndQW4JRuQ0aoPH+khK/0kNvwnn8jdTJ5B7\nLsNiInE9phfSlb22kzvKYMyofcyNw8kgW7QM8JaLzazohL4xEUCE5Mph0eGDEpR2Y5fz+oMNN3AA\nHPdHNnTrYA/WXPxql3OGbvgZwpv4rAdKVeQdzcrlrOv/llJdRFWWknhm9qT1eOSfp/dyRQr7swk9\nklBy+H5OOGY9AOCjL8fjBiFmfGfhJ/tcXiyHHdPgkzIE1juPiWC4eKeN89jeEu/maZv9iR/x3aUv\nC247+WN8cX4NACBPzmwNnUkOiL9cfx469ji7XJ/eLpOCeCvmSsC1XoRkNKWS0H3VHGTcq3UZ+9f+\nbkQBwFbPst9pGIO2DwcCAM4K3AmAGzHPcexv7i/ZR/OqgygawVDDnW+ReWnTkuFYXaAShQGJRpF8\nLypmyiQS3SeoZETlA9q0OvYFx3YOoYrQk73vix8fWCX6iVgZx0NDbd/hL3szR3uSIUx97vaDUo++\nWKn3Fz8//308+kb/xhbbBIaXrZw0Xzs2/Onv13izN3ac9ySqP7sCAHDRCS9ox4e8wudSjReRXCB/\nHEkqfEkj/nsXSda2Luc40lVhm5h+xXI8VMIQ2KEvsTxbvYRQMfuRZR90dv1j2WfUhXDUrcDB6RTe\nwSyvc0YIiSD7yb9OfgQA8Pvdp+PyHC6UJv/2R3ixgOkHljCv8bw2ELi/6736qlXMLkEW3CLqAtbo\nSY1RhZfS4tX8Srl2zHE8351OTqJlqFjo1aTeWs4GjsJP2Y9DLMi/bTV8lrhVQf4ALjLDuVxvmNsV\nWI7nc338GY3lv5vlw2/z1wIAfjOAG72v37pLG9+LZzYgIFacb3TS2uDcoMfeA276RnTpH9nvBi+8\nCgYjH/qVKWQd/unvb4FOhAD6B0mwdxPa3Cl4YJQqhvb9bvi/cf/auQC+/31nX3BVLdepugiwfjEX\niq8U0wh6aRoDqKrbvS9run3BjW8yjWPbpY9n/KZqYlcbzPjNT7iZWerjnPgj93L8z+5TAQCb15Is\n0dqa1MJ0pQRgCAgmXEEuI8UBW3NC+x0AWifKkMVm7sltxwEALqpciaTwwFSa2E/25Lqw28k1aDjf\njLAgnjJ3piIjoznqJpK/6SJKxsY0qZcQKFI3yTwWs0mp9KiipJbiZhFy3bp+6LMfKqhkRHubw6wb\nWKfRG1Ib1MGvXQ8AsDSnnCjScq7BRi/vPdTaWss9T8JugizGBE+l2KYpgKNWJUwTY1FDBEERkptn\n4Qs7Pm8b3tvDje660CAAQIHFjzqZa5RgaQKKUF0wNLOcpCkJgyAMbBnHY4qswFnFRVU0LtY5ChDc\nxI2lLFKq4mEJktCbTSRSY7DOy2NJAxBJ9m1I3K/N6IwZM/CLX/wCCxYsQCwWw7333osRI0bg7rvv\nxrx581BSUoJzzjlnf4rOIossssgiiyyyyCKLLLLI4v8A9mszarfb8cQTT2Qcf+6557o5u38IFNOU\nqXoxE2VhnDeYZESeZAgn/fMXAIDqp+me84x2ofMCek5mlDPEZ0F9NVC8CgDwTaACAKVd/C7u9BNR\nPq53eBgPVr0NAKjS+/GKh5pDW9dQC2jT3Edx0lpq/MnFNDH6Sq0IDKc3QgqmXpsUT5EwAUDMoUDR\n9+wxChcqMDdn2nhHPUyLiVry+ZVrtN/WR2k62nr545rVUtEBMeH5NnbjEVKJcPRBYM3dXb2uA8+p\nwZph7/OEOanj/UWDlzd+cM8MHH6BicMD91JapT700rrtGtzB5H0A71opTdKdJEtPcOzgvxE3rbDp\nGDywBTlGtrPGftbvJ3+8Rfv7wXFCW7TYj/8dOw8A8I4IYfeHTYAsvA3D+a9zU6ocNRzdulsHwScE\nXSj1TGdOZn/6954psOyDZtneMPh4bX2LG45AZjlO4RH1CqKj0KJKRKpEGG4aO725pfc6qERQ+4rI\nVD/sy+hvOnvSGjyL/nlGjxT64xHtCU7ZckBh84uu+DMAYEA3kjsHC4l+Eq8AQGAVPRnDVx18j86m\na/meXvO5ce+8iw56+T1h+JeXwfo13QTjv06Nz3u/cVM7sHjcGwCAZZEErHpVIk3tJ6n3GBbBQqpX\nFEgjIAIQzadJ29LI+TLqAnTCaxEcmIQcER4Pm0ipscdRPYgek60iqFRqM8I7WCVjYx1+NvYLXOuk\nZ1BNI3itciGGPcvv5QC0ELF0qIRB6jWUuui5/5tmtSD5Jh9Sfxq9Wspbedrv6R5RFUNcwjvrrME7\nepIoNZv4HmLfurRxK7LFBkmE56o6nRG3hDfGPgsAOHE71yehaSFsmSg89JSJRNU/f4oPl5IwTw25\nW/+fj6HyHcpKXV36FRZ2MOViZXsZACCakxnp4a2SMHTGji7Hbp2wEC//gREEk45j4Ukd8OvfvgQA\nuHveZegcxnOjBYLIsVWPuE1Ivwjyt3DSABs5fRAckPGa9guqd3rv+e67hOfKKMk1BmM0Pec/PH0h\n/00771AnCqmEZGqb2HnmU7hg+8kAUqHEG6NB3P0ZvdfbTn8SADDipRuhF6GW6WuxvaOvAMDPpoVo\nXgLJ1cJLKk5T5JR+qreI/e2xJSfh7mM+AACMF2lvHyXGwOlkv+xwG5A0pGRHACCpk5BTx3YWcbI8\nT5WM/HVdPaOhXBmeYbx50iR+k6HppCthHaS4KFP0GVO7pK2z9xUJI6MtDwfSPaL7ioSdnUaOJjTi\norhwCEfykoiMERIyK/mNas7RI/d9el1PvvVrAMBzW4/GiikvAwCOWkl5zTJnJySxDpRcUbidjIjw\ntXJ8NLXKKe//VO6xKnO82LqOnlWjh3WJ5CfgbFKJZUWlldTvsVwdkoJkyVbPsSWaA/SnBx0+xfRu\nECpRddbiMHrZCNWYaSjAG99yNB96VBOKv+56rXNdJ+Imup0n38O4oPeXjMejQ7ihtIsRMBQ0aS7k\nsmkMzT0mfwfu2MBOnf9LGUkr36phDs+7oX463hrFwXzWN9cAAOLHRIEm1leKigk8qdcE2ROiwTi3\npeKw/d3o89rHtqFzO3P37DtF5x8WR87mrp/in8+eiLdmcHJ8cuxL2nFVeypcqCDqFq52b0oAVxlF\nN/+m43hN1es/xRv+rvHau9+qAO7m3+OWXZz6QbSXpA6ITWU5pq8c2BvRJay/zvrDJ6oydoqX8n4u\nxLoMz4GT/6u//AvOWHgTAMC9rH/hzt3lNDZ8XIo2T9fjik6iBm4/4F4j+swaJ25fRFZaNVTCmFCQ\nzO+6OIy4pYx6GLyAdygHEedmCXGrGHwETbSlWcHlN3Fimlc7ib/9K5XVFCri+Zam3utssUYQKOWu\n10ZSXXiGKXBu5vX5LhqYmgYaMLCQg2Iw2j9B+c7RSW2taq/ZNzPJPeM+xAPLLgAAPPXy6QfVyOIb\nGtcMAo7N+6Zl913Ez2vOBQD8c8i/D9k9Hnl/dsbkpG4Mgf6HEm669vEDCjtUr42URjPE548/9Vt8\n8VH/2Lv7QlDkfapacOYvMsfdnvC8l/3wDNtODLKyz6wqEDuAnRa8esf/AAAu+NsvtGvO2npaRjlO\nkbKx+h4aL6+pPU4LH71/0Du4eTvnzM1bhKEmpIPbzIWpqoUJAB6RAiKJReaduduhBritFHp1d22/\nAI6a3p9r1n13AABW3M/v3lc+uLoRBbpuQlX4S/lu7XWpcsIJtrIlnVXYsYvvMW8x34MpbeNrr1PQ\nUaWuZsWzKsA5q7k+uGvWOwCAl2uPyrgvQ+I4j6QviBee9lcA1Fa+yE7d63O3cW6J2VP3vu933PCe\nZo1o323mhrP4TC8MhP+crvTg1938Nr7yDWU5pRHAr64y+c+AKQ1oD3IM9nuFPmygdL/0bnvDd3UT\nOt/vxFw7w6snrrjwCNemK6w1qflhw8cMu8XPuBkdYbRCZ2PfGvHSzwEAheOb4Nkrb7UnhtuEiW1q\nyNAGbI9xcVr6sUhx8chomsq/c74UmpFlCj7vYB3Oc5B1WJYUSGIHay0KwDOUa8u8b3nM6E+gZSz7\nVMIs5rxdisbam79OGEQCCnQh1RAmWOOTQMKQqntCKBAYPeKsRCofu7+wT6exbMn41w9IZ/RwQRYa\nnkgCBj/X9yaxxwhWJmARIfnqRtBV1gnLAoZNv/ULpjp4z5Iw4lW2j4TQfA5HDUgkWI7VluqYer+6\nyUwCbfw9/1nuc+b+aSG+tPHlL39rDACg6AOgfibLdOzg+YoEjRtFF7Ig5lDTplLfT83N7/XZ+zwj\niyyyyCKLLLLIIossssgiiywOMo6oZzRQzNs7ditIGoXVskawNiVMGLCEO+s/tZ6F4TeQfGD7p5UA\naOV5+eKHAKQYdh+t7MBGQWu7roOxJm5nAJ3CknNT2QIAwFm2IF75NxPX89EJOUhrRLScFoMVL4zD\n6QFavAW/CxwXNyKkslV5U+y7ajhU4XJaC4zeBBRNZy3TvxL/JB9nXk5tok93TgWADK+oiuRCeiCn\nTuHzqWFLAGhVyk8lqQMkGPrnUar3gNYNx3Yd7n+0F1KVdFZeYZSKuZVuPaIq1MTyeN85yf3Cted+\njKffPOXgFHaQobLSxewS4iJGziKIc0YZLdh52tM8KBwNE+/fdy+M0ZNp8ZcSCiznNAEAQm/RMxic\n4Yd1Ye+hkd2F55jbeKxjkAjnrc1slzEHNO8kkNIDLDeTOu2bM9rw4sOzM66b/hOG/H3+1JRe66X2\niSp3O9braclTNXqdmwHT2bRgqiGHlY3XIvhW/zyi/gr1Hgos9fs3pD3w1AXa3+tvekz7e+xf9t2a\nGhgowlR2c5xwbD2iwyy+CrM+V79Ca+nmax7HsC8u3+/yuvOIPtpZqv2thlUdiE6oPgT8ci7bwh/m\nnw+AXsrT5rC9RQqF1bi5ex/2Xy7Z95QRSRBmbTz2Je1+Kkx1xozz99crmp5CAQCeUXE416vehL4q\nKf4V3Tw5swP3fUkv2ZWnP41NHvYZXT0L8g1Oanp3wQrOcyoTb09Qw2fHnbgF1Xb2y6s2Xob2JfTA\nlExjMoE/bMKy1fTAqbE3ih6w5vPBIjs5hywKyThRhG5V6WnZ97zWNQxetZyrXpBVv34MlW9fB4Ah\n0j3BXwbYa/l3xygF7vU9W+AtTZnH1i2k58dep0Ae3bvn9dghZFtduotpGq7NCjo2cI5uKOeYllAk\nrb4qC3LhZ91HQ1z0axK4Lf3j49BJHCtm5W8EAGwwVCCcy2OnWVOejDeGvNeljONwI+4eRVKko+5O\ntVfVWyq3GGEVWoHhPP5bGyyGYhOhM2rgz2eTkNtP18T9F5Hd/bevXdK/C44AVM+ytdKL2Fpnl98W\ndI7EXPtiAMA3k5nWUrXrp7B1My8ebqgRTWP+egM23PZYl9+mrb4A902iB/7SExmGPmZp6htcfgXb\nwTu/nqmtCdNhF+oMbdVWWAdyrKudw1QA53oZgz7lzaNi6ZdTl8SKCo7rG4p5sCNqQTzB91Tq7sR2\nHXu+0Z/yaEby+bdKcBPJlaBMYntMbOX9OobLKS3UcCrVzbwrNc6qIcRGQcAUdu17Cs5DI1QS0MMT\nkRQoj8O2a//ne+9QvmdrY1TT83Rt40QadZkQjAgvcqF4J34Lxt29AQDg0DOEd7apEy++Si+p4FdF\npN4ORccXmhgQR+cuVcOYMPhkOLeLdcsODsIPPnUepl+8EgC9nwB1ac2cEhATZFNyLE072wNYmPmg\nrZ2lJPold5z1jGaRRRZZZJFFFllkkUUWWWRx2HFETfYq2UjUodO0O1XPjhyXELPw2OD5fmz3Co/o\nSFp0bh+7AFd9cyUA4IIh1FlMJCVs8zFvZE4JCRPm10yCVVgWf7nmPADAo+5O5I/k9l0xmxEqpuU4\n/1OaEewNUUSc/LtpqsgJ3VEAqYAWipjQBzS1yjCI/NBgEc8P5cuIi3p3Z50CAF9s/yiq54k8EACI\nOhXYdmRae67bSkvZgpFv91iOd3wE1c/TitqdRIyal3q48F30inaOollHzT3UBxRIya7vZehLP8PW\ny7pSsX/z28e1PFzdhy4cCFSPaOFcmv5nFm7Cncdt135XZR5ytqddUyz6lIv11/skmDp4zLVO7e4K\nfOxOmgzD3t5ZK/kK8Py7MwAASy/7C27Jo/u3M8r+Uje/KsMjGhgE2Oozn6VzAvuO5HFBKqPnJFjA\n9ltZtRvvVjMfVZXP6W8OLgDEHXxWXUCGuZXPsb9ERgC9od/eQat0eDIT/WMhAxzrM71jKlRikmd+\n8jCaE7RuFuqYd33dozftd10OBn78CfOI1drvr/xKcnCoy/8b4n6NxOjnLiYAP4QD84imQ/WIpmN9\nJyNeevKIqrjj71cBAOZcmymV0BOenPRS3ycdBOiDXf/v2JKahtVcIFWaIwN7Oe/kBW5ccNVi7f8R\nkQMZK6QXdOfsp7XfnGv716csgqBixaoh2LiL7DdyDBDBSwi8Rw+pYgRy9vrWgRIF8hZ6S1xiXLrq\no2vx4CwSamwMcw6LuCSYOlMP0x2B0bFjmaeW6MVmrnpFAXTrFY05JO2dGfyZ90jPH3Wv63nMabXY\nSwAAIABJREFUiNkkvFjOvM6RIVUfUIEkUrxen3cCAEah/DVEoqv7qljev//7Tzj/P+7ssex0PLyW\n5cglIQSKM597+D8Y3ZAu8/Lof/+oyzkF19SgfVkFAMDUIWnEc5Zm9QwJ/lKOBunP3zJZzfHqfezc\nH4/o/MuZHzv3xdsyfjvQvO7uYBC5cHt7RQHgky/HYcv5zMOsNtC9s+P8J3vUEj1SGP4U63Pmmezf\ngU8L8e0AeirPtTUAAC6oWo2bJ1Pj8qY65hv3tO507qTns36bGxVjOcHvaOLzR51AQKxhbU2pApK7\nOdd/PIxtviNihU7mfBtJ6BEX7IJNU3ht7gYFeiERU7yUvzVP0iPnX5wT95zFtbgSSULfwbFKEt5g\nSUlp/FqagZxa/pAwqlIx/fedqREmVz9Josd1Nz+GsWcy6uDbd0b0u5y9cdaFX+K1L6nhbN2tQ9mp\nNQCA9wUh6PaYH2c/ftd+l58Uzx8qMMDk4fuLOsQaNJgiTLU28l3cNPtjVBhaAAD3bCSXg1GfQHgE\n52rrWosoT4EkPNWhFiscwkseLmSfL1qWRPtw3sfo4/idMAMbRaSN6vmMDAtB3sOXq3o+5Wiqv8lx\nRYuwDIq1qN6P3njnNEiKohwxFprxNzwAgOF6RSs5qwUL+dSewbKWwCxHAVmQBlXMrAEANPnt8Pn5\noudP+xsA4IKvr0eOgzN9lZthDFvaCpBn47GanSQoGPpCSixK5wkjkUNntRTnW2w43gHfCNbHkS9Y\np1rskEKiM4h/dP7UZlR4yBFxKakO1SRpf/c0QPQHr91GAoqL/poioAjnK4iLRGGVCKkveEewc+ds\n7N4GEckTicf93IyqQuc/RNjHs/08OophHjf86UZNk/Pi6ximOL9mAu4extAYlRBhb4x8TIjTt/b+\nrhKmrsaY465dgT0hTqT3DOJAN79zqnb+Vl8BtrYVAAAiQug+5jFBDrItXDeLIemrvKVYunYIAKEV\nCobNqCF7jk28Vkp0H+KbjqiTdcydwYmwriYfJ49niMjK50TIYg+El9fdTOPILNtmnPwhFySOIhqW\n/jT6n3i5mQP8hhf7N1EkDZJGlGKp4zPoIinW3gPZjHaHX/xkPv7nqbk9/q5uXtOxPyG+/UXEdXj6\nXjSPA5exTYe7LngTAHCNk2GayyIxXPbyzYfkvtIPd2iBuaVr2/QOTcDgY79ViSDUBVp/4BGGniHl\nTWj8gItV24wUcUfVP2mMyNnc+wbeO0ksFEVsl2OrHuECEUoXkjSCm+6MDSrL5cO3PIaXWo4FAHy6\nnRtPJZF63mRcZcmTABFy5lqvR0TY7ayCAM1Xngr3Thp4zL0hVU77GB7LXdv/ft5xAifpZEwHCFLD\nvBW9vxPB3wbPsWEMG8Q43wo7UxdWPjQB1su5qK/ZwbVFzgYDzO2sW8tRghBuow6e4exHeqHlt+Xy\nx7Ww2vKfboFDz3e/7tEx2r3VzeGfZzMsdqSxEVf+5o4e69ouLr3k1M/x6vtk77XtljTGdC29Js0C\nrWo8dowCxh/Hzf+3InT5UEM14KWrBBwOqGs2INVu77l6nqYr+l3ZlKqaovObaPDd/HbquwQGsW29\nd/YDWhj+WGEEdz+TSrGKOuSU7mOE17SM08Mymc9anceNjDeacpBs3MoQ+gELdPBWCmfMJBpWjYY4\n/D6eqyQl6Bq5drbuEQbvHfGUdrkgQfQMkREuYiXyS0mwFo3r4G3nRljyq/qnEhTR152bdTC3s75x\nsTbyVUhaez1SWHdz5jwP4KCRI6nrxKQ+RQBm8vI9tI3SaXsiQzXDnvPsQdxYuRAA8G7bOABAta0Z\nz37DMVidSE3bzRqDtmGwD7FtbCMqi3PxkgC2XcTvWrSYxwIlMskXkSJtNRYHEQ2y4xpr+W/ClAov\ntzZICAq9arWuSEpaPXbc3vP4lQ3TzSKLLLLIIossssgiiyyyyOKw44h6Ro+ZS49f82QZThrlNO+L\nHEvp60hKSrMKk+iBOrtqLXYEGZL7owKGKfz3ptmwGuktiSe5z44lZAxw0KqzZXEFAIb2WFtEArAz\nZTnylQsJDJsClNIEE/dy9y9FJUjCwmsWOkKKDM1arJbnHygjUEErqGOLDu45tJx2vJep8+KfwnvY\nl3cXLLt/iB7HZ5VFKIX+c6emHxkqSmr1l4VzWI6lQhrU0LB0j6dqqQeAuEhY1gcyz/uhQQ1ttc2i\nNdy3qEizLKsWeykOjLuIWrg6YflZtHoE5kyiRuwjA5fiwyAb7u3PUwJAjgGBaroW3Mt7D5tTdaY6\nJ/BjuVfqERA8MUk9YB9OgozOBoZVqJ5PAOiYzGumDN+pkZC8/8Rx2u++CvEM4v/2mq73VsmF+pJT\nGH3FegDAuhdG9XpegHJVuPrsT9AaY2jnAMFWIktJPP8kQ4zkaP/blGqBVS3/SaOkXX+wPaN94Yvb\n/gIA2BzT49pHbunj7APHwfaMbr7m8f0O3z0UePDiZzXilsPpNTkc2Nsz2h0CpYomxZCzjfONv0yB\nqZ3X9leGI5wPmFv7Pi9QqiDu5kR4/bRFAIDXd03AxEKGX3/y1TiNuK+78mxz6C0faPfgePc2AMBT\nz8wBQHK05654GEBKP/anqy+DycAx6qahi9AUYxTIPx48OaPs2BnCm7LKrWl89oVIGtlJqJjz3v+c\nzVDh364/E/5dvF9fntXqqyjKPNqxB8+uPQYAcNIQLlZWPT0WFZdT43zLm/RaWVoUbeyMHM+5OBbV\nQ6rjJGsTHqTAQAW563qud3oIc28IFUoYez6jU+4b+C4A4KpNl6HZwzE2UWNHwpwUzyp0H4dC0zpX\nPdHNJ8YwZyxTmz75YGK/7n24EbMrWjjggSDdM6rivZv+hK9DnFy/9PJbfjZ/kva7fzD7hn37wcts\ni01h+zAs754s0nIivZa+ZYyA2ju8HwACpQksOZcRhotCXGM+9KuLtCinziF6LfRf9bpFXBLCU7iI\nGzuI4rIlFg/GCa21D1oZkrv+k2pEBnNRaLZyzWI2xmAy8F00NbngWMX1ja2RbcwQTBEZxWyCjHSA\nDN84juVFRezLiiLBF+K1oUa2VcWcgKGFlbU0Slo0oaqPnDQpMHYe3nldxYwLSJwXiJuw9C0RBTbV\nAyzLDAM/ENjr+f58pal9iVguQVKASK4goSyjZ7TI4YcsQtFUma0dnXlo38CXlivSEVvq3KgYzLWs\nN2xC+26GouQvE1quBmhyfmq0QNwKxIQ3NZ7Lyuh8Oi3cV/0SUiwVpislgKDw2ptaRUEKEBFhwzsv\n+VWPz35Ec0aTgmFT75OgCB0+teP4qhLQ+/kwBq+EuKo5JM6bmbMeNUERiiKzoQ/JbcUePxvHtKIa\nAEChwYfXa8YDAGJFnPw6CgCvh49uqvBC/zmvieXwJSbNChQfK2Js48dKGAGLuohQhYJ1gD7M/7SP\nEKEJ7oQWKhnJBQbZ2fk6kLkZVTehCUtKXLwvnHf1IgDUIe0Oxi8zBza1bJWpGAD8FWLQKIjAuI31\nUDej6RvQdKib0P8L8FWz8wXauNGbcd4azMnlJvOOd8hO7Nwi4csVDCs1FPIlO4p98MY5yP7NU4I/\nLDyTBQ5hG3UtMcLwDXez1nO4gCuxe7Dt5czQKJVtzr0y1U1VbU4AwE6yNqZzTarMspIItVv7yTBs\na2TZqqEnbgXMjNLRWHP3Rl+bUBWr3uTEZegjKUCdRJ5592TEhD5uTjEnY92HLm1A7S8UvaQZqLzV\ngnVu/ZEL9Jj06u0AANvQTo1lzvA96i/fpY0oANy07GLcOeHjI12NIwZbvZSiMBRQisMw1GYaLv3l\nImc6IsHSqOaM87f+bEQBLiKKBtK4NcTERUsiKaHGR71Oc5kPilqfz1K61YFB7LcvDmco6dkf3oxf\nnPohAODBktTC9MoVVwIA7hzDFId1017BtNVksP79qtnYcsILAIC3L2CsqWdRMQxHMxzW8A5HuL7G\nmHSom7mOUQouPukrAECVgS/D32ntV3hvxC3BouOaYd6OibCs4bvfUcR3okjUXQS6hr6qY6fBwjG/\n1WOCVMK/A4K/MncdEPsRny+wNhfJSs4fuR+woECJBNuevp/X0qxg6Zecgy4ayVBhj9+MpGA8Tbji\nsO40iOfhNc4tirZZaZnGbzSiag8WN5b3eb8jCYNf0rSGPUm+r6Oevf2glD3n4buwVrDXXuRYCgD4\n8xWtePGFUwEc3E0oAATHhWBN24Sqhv30tVdoETehiYmcSF6e9hTmfsWQe6toiwaPjGlC63zHLOrR\nPpqWbhPOVzS9T0UwNpvbFCRXc5La5SCraqWtDTGRU3ZKPo0bw89N0U/rRILgJOtO/HE7uSOUsE5z\naqRvQoMFau6hUJjoVAAP22BjhPczOCOIhXhMZd017zFCp2bQSVw/A9D2Bkjd4rDjoRJuRkctvhSR\nMWx7iSYbbAf5PuYOro0CA2QEyvi3YhQb/Q49LI18tz477xzwmeF0chM61k3DQjShQ6CKa8xjikkK\n8k6HHQnhoPP4rCitpKGjThY7fQXQOYQ+tJhjLC2Slv+b7OS3SphS+wB1/WXwp/LxI25JS6lUjakJ\niwK07K3SnYlsmG4WWWSRRRZZZJFFFllkkUUWhx1H1DMaFuEsjlpF22X7q4RvWp+EfgC34Dp9AiYR\ndjq6gOQpa0LluKuEFtjxJl5cPPB9zF1CbbJ32+mxuWvCx3BbacnoUGiJMtijuOaozwAAuyMu5F3N\n+7xbx2vadrhh3iOIXUR1zC2pJF3V86FIgIfcMEjkC1aHsE7zAklJ4OWKRQCAcRjZ43tI94oqJ9E6\nnVjm1rzEsWqeoCSB7SI0OVCWxPkzlgAAPnz+mB7L7g4JS5qXtKZ/IcLBgQqsu7tak+MVYehr9o8Z\n+LsOfaew7gnNqMXWCgwy89vceRq1vv6UfypcX4uGuz5lI1sHl/h3FFJ8umn6WQlajBo20ZJdPMmL\nX95Oz8J9z1/K+0/tQORbXq0y2/YHyVK6t3UiLEzVRAWAQIVKWwfowkLX0KT+LmlhGvpg/z0QBm//\nzlUtZ1FXejjx/rMNS3FFC1VM94gmzEcmjMcqPFJKo/swKZr9sLH1xOd/cOG5+wQFCAkiiNggetXO\nH7UadVV0b9l0nG9Oz/0Wd35AdlNdaQCePPb7MyevAgB8/kLv+r8qrHskOKdy7Lj3aUZ++KviiNQK\nL6Cc0gBNx7hjGKY6v5P3cQ3wwiYmzbkzvwYABJNG/GsZQz///A8yPr534jYsGf86AOC+lpF4L8h6\nnzxgMwBgwYnA7nq6RvL69QTUKlVZeTtO5LMU5nnxntAFnb9pAgDAvN2E3ugdvWJOlyrTYqE/dUMS\nq6Ud28kwed5Pl+Kewi8AAFOGkMgrVCVpoYbxNsbXFX5mQOsE4SWwcR3jrdRhmJNRUw2bctFSKkIa\nz2X43eiiBux8Yli/njuX0bUIN3BtoAxQNEbcpBGw1/f8rJKT7ajBm4NjS+hF+aTfb/zw41COCcO/\nvAwAsOk4smrfmbsdLx6ie6meTQAIFSrYdik9vhNXXAiA+qfX1DKt5pmyLwEA/9U6Fi4n16orb6OO\nckxJIKao7JiZbO9JPWAo4zXRKNuj0ZMKxWzv4LqlNd+Oq3MZQdCSJCFShaEFiwMkIVPXndXmRozL\n44KkzWtDuIBr6qiTnSNuV7SADl1YDQFVtNQ2bX5u1sOU7KotLCVS64RwQVo0pFfMrUdQBnbwvOsB\nAAXDWiEtP7ihuemI2fiQBr8CxSq+q/AMxwdEEHPxPetbOcbYh/mh1wl2Y8G25jaGMKKQXu2oOFaY\n59WiOKBIsOjpBc0dwJd/Ysk2uA30sH5ZPBgAUNfhQrBF6NBuYDm6SNpaziFIN6MKwkInOlAWh6k1\nFfoLMLxa9Zb2hqxnNIssssgiiyyyyCKLLLLIIovDjiPqGVXzOlxrO+EZLbwkwgrgKvCj3EVPlFUf\nRYWVSW6fNtJSk1RkDDPTQhONMPfswg9uwpSxFDdbvplCin9edYpmA3Xl09J5VsVaXOdi/p9bZ0V9\nvCsbxBvxcfBZaRGQvcIiEJW7JPYCtPjohNXJZqKlIRAwQx/iNf6xEbzmS8/o6xvSpzw//cMUFfA9\nuEwhGETsvq1W1jyi79zxJwBAZ1KPy/7adw5Ff/NTAWjkR9bdkmapV/OSts987pDmmm2+htbCI5HP\n5qhR/xKt5+McnPvLbwAAv951DgDAts6MIGUPYW3Yd0IZ6242qK011bhnMskThsykcF79gjJY23sv\nUyXKCJap7vsE7hZ5ds84Se2dqElZud1r0giOpgoSpTQ9z33xiPYET7UCa4PI9falyvNV8V/HjgO+\nRa/QhQ8NgVFgYBK/O52enN4kXr6vSBqg5f/8X8A3Vz8IAJj47KEnmwJSMhb/e8Fz+I8Hr+7ym2dc\nFM41mV4NdZy1NNJr+E7N0ZBH0XP2wPh/AABOs0bwCxv7/+DCVrx/PGWgKt/7CQCgLxu+Z7zQ/zUk\ngbfKAABC8hs5m/S9SpKZZzfj9cHUa5y+lh5PT4cNZ3zCHLbyMuZo3lDxKWbNIlvPw7UzWT9bm1bO\nMHMDTrZwDr93E72YAxxeNLcU9VH7rgiPDMEk8qeM33Dca99l1rSUU5mufeS3C9mEu0Z+hHuXngUA\nyA2ktJkttSLXbYqCNVGWWjKAc3T8lSJ4zhTriWDqm+avUr07KtGHgnvLKHd13UU/xqpx9MG9LMhz\nfu6qw1GgZ7T8pyRM2vVk75IrKkEN84R7f0bPENbjxCH0bLsMQejlI5iUd6SgThMKEG2ydvlpSyyA\nqed/CwBY9sbYQ1YFS7OEqjeZC/renL+Ko1bNI6ri1/mbMO8l6n5Xr+OayDmmDW+OZa6oVc4cQyQF\nCLcITpAyRgt4LCZNH1cSY8vWggJszmOkVqMgE3u59igtOiG3iH1iWV05Ih5eI5vjOPOsZQCAwWbm\nIJrkGLaG2G+/aKSHranBBcS4JlD1oY2dEkRwhyafpOgoOwcAwYEJ6AT3ijoGmdoVRF1HJvLJ0iRI\n5JoK9+t6lQjIEOi9/o4dHDv0ISt8lWJtNogLdldOEMEIjw0bSVLKjU3FcFr4XWsD/FaDrJ34dBPH\nDpWe1lRn1PKREyPj2G3hN67IZd76ee4VONbMZ3zPWgMA+ChnDD5RWI5nHL+5scEAX4WQixFkelGn\npEnASbY4osI1LofUsU6CLtz3dzuim1FfmdAZ2yjDKARejc2iSkWAR2gf1Xpc8Mb4d1snQw1OKdmE\noQZOaOV6dsI/njwPOyMiib+CHbA1aMXRxbsAAHlGfug5Oavh1nHgecOfg1VBkias7iTlZzhsAIQe\nmvoS/SOikDtZN1kIz5ZN3A292Bxu2UkhcGOjQQsVOnfCEsyw1gMA/t++vpuhCTi2suOqTLyL7n4M\np28m6+iDNz+BWx5i6ECZEJ4vAwAR5guxqY3lAAbvPt48Demacuri6HDgu8buCQDfhLlYe3sow8Nx\nK/Dndg64d+bSCHLGltnYWM+2YLeHofswMxQ1KUSc0zdrzi/ZvlvATampm8VE3CppG8ZQoYQRJ3Mh\nUeflt27vsOFPn54BADCKUAkrFAQoGwZrk6phqODx6QxFurmZC+O92XT3F84tkjZYxaawv1kX2g/5\nJnRvqAx0/WUd7QvbL3pC+/tyoSn6N08JHnn6nINzg8OA3jSP5RggDePLUjbbD2OtDh/cUziBLx73\nBroLaTuUUBded/z9KmQkNkgphu5uNTzFlBi3KrAL8qC7vyI79y/jwNlXckHoiVlw+S6S+jm/zQwW\n94zkprWovB3hDzlPOld38x7E0NPTRtQziuWsFmG2AFC3k2QrzvV6uM6kkXiokwvUEy17cNT7twIA\nrDWsV0OoHK13MMR1Qeex+K/nqJEYHUfjbvz9fOgEt4a3SlRIBnJI1KstWs3TW6HXsaJXDVyPZ5Yx\ntDGvl9BUILMvmC5owoQ8EoD8Z/GnAICJ796KvJUpA17MKYjSNnFtMNzSgC/9XKy1eWm8Np7fCecb\nmWN+WK1vmoFx7lIaDNzv2XD8Qurv+YZzl/C39QaYxYdQN6HhPAn+MtbBuod10IcAYz9TJVS0nhLG\nsUM4X/2XSHU65pNbNb3HQ9kzVAKi70wIvnh1gUFJ2Gr5/KrOqH1GE66tYOjqMhy6zSgA2Gp47wtW\nsk2sP/qVjHNmbjhL+1vdCIQ/y8fsz+4CAE3FoTRt7WDwSIgV8bjZwsElf2QH9rRxMxJvE5qhALZG\nuIl0yNzc7N6Rr7X/pFEQmeklyMKqE3PokRTEnRfmkPSoMaHDYCNDRAMi9+7DZifkDnVjKZim8xQY\nhWKBGs4ZtypQhtCY5LKF0VnjEteodTgyG9GDgb42oSrkTpGamGvWnjsh3plOTmpMxmt2ca8ysLAT\nY3M5btmFMKldF8HkITUAgAsLSbz01x0no3Etv295VTPqmrlmPHcE0zka4y60JpgCOVwsmtYYvRjg\n4uYhYud3SZRIaBaknhGn+Ka6JAxGtrF4VAdEhOGtiPUxbrP0i/w0G6abRRZZZJFFFllkkUUWWWSR\nxWHHEfWMGj0ipM5uhMFHi2DCJIhVFAl5Zm6na2oLEAzTXlcqQlY/3jMcnzUxZFcnwkt+VfkefvUR\nLaxjp9Lyt6VhAN7bQ6vWUaN57BSHDttj3P3viZXj7RoSF/lrhcnHFQMEnXJc1T01JiAXC8tyLq0F\nTmMIa2ppoVBJC8rfD0LnpUXglfVTMPeYFRnPHSgVobZ1PdsCVK9oOsb98Qbt71twPe66YV6X3y/Z\neZLmEVWxP17RQFkS5kohu/FZz4Feh9Jz+V3zigLAA3+jFMFfRK8ZduYWrG9knO4LumkAgJ8N/xwP\nVNJjcP/uOXj5t68CAAbPpxfbuSmlhalKraj9YG/ERIK4Suq18+y/ab99FU6iUxANzBlCS+Z522ah\n5u+CfSPNOhrL4d8e8a+UG4FDZuiHwSNlnL8vUEPX1FA4AJDKhSDaJnrYwvmSFkK2L+X0F57j+PzJ\niE7Tbo26BB26/+DY235SdyyeKv2qy7FX6/tHDvNdQW8hl8AP1yOqomM5vYHDlx/esSVuAU6aznC/\nLz7K9LDIXj18QsfQWsfBxeBPpUgUnsLomvDSgdo1KrEeACx6fmqP9845owG/GszQ3Z+/fRUAwBOw\nwLQf3V31iO48KzUOrY9yHHGuTy0lrAZ6YBZsptdwRWMp3j+VYdE/XnslAKC9zoU7d1Miotbv1rSX\nLx5OS/3HC46FrRvitif/g+XM7+Qz5xt8eHzlCQCAeQtmIK8f+pxxi6SFJ0OQqOTH9Rhrp27W5M9+\nDgBdvKIAMHEc1w91S7nuONO+HasjjM56uYZ18FuS8M1g2c5v6BkydSpaak9ESdNvFn9f86t/4Znf\nnw0AsKiRYd2Mx+ECRQv37Wu8VkkW5QTQMULI5gm90TnDN+CRgZQv2SJkNWaPWYfFL5BkKlR46PTD\nD5dHtHgavTyNSwb06/zJk7biktP5Tn7zt8sBAP6FRbjmNsqvXSNkX1Sv6aGCVaR7Vb59HVwDuHhb\nNeU1AMApRRvxMgb1eK3qXQVSg4OSNv3ZzVyXFtu8sBv5d5ODBEStHjt2F3DtWGZi6Gb1sD2obWY0\nWOHKtAFHoPbsJFojnDPahPeuJpaL9zrGsRZJ1kcJ6jTiLkO5IFPymhBzit/1IoTVFYbFLOQXWxyQ\nRZlGX9f10qHAupsf6/b46If27XsfsBauifucqEOn6eHGRNqfXk5iXDG9oOuMbNetPhu2GRmVMt7F\neaIjbsWMXOojDzYwOuWlES/iah3JMQdYvfA5eZ/2BAcKX9KMR0NiLyMWCpsCRRiSw+s9MU5GHWEr\ndPkkPTLp2SZiCR2aOtmOkhEdkMPjrsW8Rk4o8PfcbDUc0c2oo54Pre8MIzCYG8GEncd8TXZsTAg3\ncEgH3XY+bE0BX56iU2Ar5YbJ38GR/s/yaUgKTaWt73LC0OcqEJG0aAvz2o99Y/BBPdltFUViWC4A\nSUxMJmtUc4fn2riwTioSAlHRUIT7fN3uEhR8wAnHvaZDey5/NTdw1QPqcN2mSzOeu7dNqIqkESif\nw5V53ZuV3Z5zqaOty/+X7SrXdI/CBSJ/pB8C6xn1q5WB2q6b0HChogllq/guhtLuK9S8VKDrBliZ\nze8pfcABOpIrYeipXIzseJuhudvnVeOy6xYAAP7+d+ZC/XXnHJhP54D6+0HvAuBgvX1uKsxz4v28\nT9QtNofTPBicy29Z8wbLlqOKJrT9yMnMJ/o2GsbaCBekz9Ydi11NDJ250S80cxsNsHazSHFtFN9N\n/JMwW3DsTBHmJfaNoWKpC/Nuf6FuHu+6jRPmHzedihOKuahbYqZuneGjvtnn9mcT6uWrgtHE9xTf\nY9Zysmz1B3fiWjp/HMaCk+yply4GADR8PfCQhrTF9hIx+z7plvYHCSvbmy74/Q2/6g1qSOLz3kL8\nYf75PZ5nr5ERs7M/hgtTRhQ1t7/tX2ImL973/vn5mDe11A7HTjHv7MzUou4L3slh7BQ6hum49C93\ndPl/qFDBpl1cKM0cwQVRW8SKiIiLvX8E8yRvbLgMa5+hEThxRgdKSrgAfnUVN5k5Z3TC8G5muOsk\nsVibVLQaADDh9zdArlR1VnuovGheQ64kU+8rFZ8gpHDD+HWY72JduFQzLrkXZTLE+yqg5cceBa4t\nXvCMxW4h3hnP5Ziv6zAgKZZVnrE8ZnKGoVvF+3gn03BmqDPB/T7XLa5JAQRKxLiVpi0aHCBCGieI\njr/TCl+FUCCoyWwL6m9xmwKDYCCN2RXoRNjcwFFcWJ6buwKrI3xZ12+8AgAQfacAviF8j/p+hhR+\nV3H0KetwV/FHAIBzl9zRx9nEN7WluKWEGrgnzF0JAPhs/iRUvn8tfz/1IQDASRcux6fzDtwIGbcw\nxBrgOi8U5xq0M5Riw64QYuBDF10JAJhSvkvTQr21YTIAYMFrPRuiACo6qClnKpqCDoT4xU7/AAAg\nAElEQVTjwukj1rwGQwJLmzlfFw7kuvpnZYvwn5M4dtS7mI+Yv1LSUmCgS+CsfPZDn8L6L/SORF2A\nfWJHC9cnpvwQ4jHer8TNjYycq8AX6ao96Q2aEQjymKHFgNx1wogi9timpIJw3ne7bR7QRhQAIhyX\nkvpUOXo7xxGbIYpQgu+5wMIxwWGMYHM9w2+r7Gwvp7jWYk+M32BLjAbYY8y78XQ1Q79nfXYzzh3F\n75arYzmtcQdWdtLwMCKnUbt3IM7vMdVZAwBot9mwO8xxucbHNuGPGBFrFdqke3Rw7uQ4Ise4lwvl\ny9reqjdkw3SzyCKLLLLIIossssgiiyyyOOyQFEU5dDEZfWDStQ8AAPKXdSBYQc9o01SaQeSRPi15\ntsjiQ1KYN5dtr+DFHoMWYqPk0HJgtMYQi9ACowiNI9t2A4IjaAU02Wh1UBQgtptuB9cmCdEcoZEz\nhlbLsuJ2LYwhEKMltsVn15ipIjW0cjo3SyhcJkSS4ikmOtXL23BhFGcNY3jWJy8yjFPR9R0up8I3\nlCfOnEImwmV/H9fteUlhYIpbgXAhvUQ5m/vv9Favl3uyLPeAUXM3YuXC4ft20XcEY04k+c/aRUO7\n/T3mFmQV62ivCRVJiOTy2KyjycS8rKEcMeElP6pklzhWhvAWegLvPWc+RhkZa6Zq4aZj6qofAQDa\nN+Vpyd6nDtsIAPiivgrxOMsuy6WXNhQ3oNXHdmu3RNBSR+uXqYnfOmlUNMItS1Pv3Xrxb2jpnbzs\nCnHA1W/N0O6QMPG+a+5OhbsMfYke4P3xevYHnaMEmcdAhtxLS5zaMxxsNt0jCUHYCWNayH3EdcSG\n7cOCzdc8/t0hOTlAxIeEoN+W0hVUQ+cSQkfP4JERy+lKTNMXs3FwAK+1NvTdzuPCw94fEgmAmtIA\nde10BtbrL1PmY6iB7LgjjPToVf37auSs6OpFVPRkngaAAuGJmzlgC771MKLjxoGMJNkRLcS6AD2+\nejmBTR5a928oJXnQ/+w4VSNFyluRCpf92R1vAgB0Itzpvk9TBGJ7h9UCQMwu4Zs7HxHX8N2+4c/B\nsgDpvVVPw7tfT0Tutz3b5h/51SOYZhZj/d1sl0v/+DhO3UjCuK0b+Hx6vwy98PSr3zlSmEDuaqEj\nOlB4Ly2Ktg5QZGDr5Y93KZvn8F+VuCVpSDHmquXoIqm24hkuGC2dUegFoUjUZ4Te2jW9qCKnHWvn\nMTIsnVBJZdiF9MMeW9Twxy7Hjm9D7At68qJibFX14gEgMJprw2UzHkaTiNi76NH+eV27wys/fwCv\ndHBN+HnjYPgX9swcHZ3M+e2pKS9iuuhuK4UH7Ynmk7BgKSMMTG1sn4XfpEJqO4fo4ZvAupcUUtc2\nxxRGIinWNcIj2+yxw+1gmJTdyLJnF61Hvp5t5uN23mNpTQXifl6TU+jHOZVc36qhne/tHqWRjKpI\nJGSMK2MIqduYknIICIrxpiDX07sa8mDeygfM/zauRTRqzzJYj8QhlLVXddhvP55e9SdfmnPobgYg\nfwbXhq0LS7RjZa8zvLz5hGIEBolxZBQ91cOLmlFmYwSJ6rG06VOL9j0hrjsHWTsxzc4oPtVDmoCE\n9/aQqHVSXi0GmtgWFrWRHM1lDCIY5/doFt/DHzFikJP7mzIr16A5+hB2CM3ZlhC/c4vfhkAN7138\nNWBqFymXYrz0lunhGcaPWXNTz30m6xnNIossssgiiyyyyCKLLLLI4rDjiOaMJtISrsyttN5E82gO\nHF/YhKNzqQfhkMOoMpKWX41d/qhppOa1TEdHgNefNkp4mAYORjxAc0okKPTBDEkoubT+tE/WoaCE\nVoJp+bRUNIRysKtD5AqKfNKYzwij8EA5hMSJsyaKmItlh/NE2QkFngqeZ7b48fa/jwIAqApWUiKT\nVj5Qmuw2j1QlMfp6Nz2iN/z0HTz4L1pi02VWVI+mMQIYO/r+pFEn80oAwLpH2mePqIqh9masxPfT\nM9qTR1TDXsZhS7OChJnv/JMtfGa53qzpkS4cR0vzxdOWYKmjAgDwp8cv1Kj4J0yhJoGadwQAyyZQ\nK3DlyChu23IhAKDaynj9x45agjf8dIn9YQuJPtp2uKEXhDzxWgecwmKe0JyuEkJFvF+4OKkeSkk1\nCEkiU4sOJontVb+A8f/xA7Q46iK8ycT//Jl2v33PTNs3GLzC22Bjn3eleX5i02hNNCw51LU49DAe\ngDRTFkce6V5RALA0qWN3agw3egQ/Qpo3ICykTagb2RX98Yhq9++HR9Q/LYTzR5I8qDnCPpNv9Gty\nAQ/XzsT2enoqVW9oTjflxM2AbQit6eEox5hf5a+EtXDtXg+wG3CRjCOixBAspDVdlVw7a8ybAA35\nmDDgIgCA/L4bZwqLf1iEKb09aie+XToEe6PkMoZjUIar69w63rQH24SMxd93MffOvkuH7kiBgsV8\nz6pXNB2nbZqDYU7KWOweSM9AdEsOMI4dNrGV71GRFXSM7KrNl7sOaJklpA/MMRy9hjnFs+6gtuQH\njx2n5RQiJHLn9Km1g4pQkYK4g43GXMQPbdAn4BBkNQGzEUUOjoUzC5nD+2HjqC4eURWycKipUhv/\nl6B6RYGuHlEVtnVs8yduuBO/vYa5d8/f8L+48rFb9+k+gUH8VufPv03j87jqig/xHDjHB0VUgaJX\n8NYZJOsaa+S9hy66EkZBcKRKvzxV+hXGvM71YaAsM+ROkQAlxEYzws22Wm5p0zyZMdGgtuQUoj3C\nEArVW7qksxJTXDUAgJNzN2hlqjKLO9ryUB/iOtknPHXBiBEWISGj8q2U2jtQZGIb9IqFRl3AjdYg\n7+fxi/HRY4C9TvBopI2DcbHuirhTebaqNqmcyau037DVsNAnaw6tR1RFbQNzLq3d/KaPKDB61IgI\nfiu7IYJhYn1YIDzWnQkbPmkbAQAY7uD3XecpwQAjx+ARZo6x81umwqxn2xlp3YMPWunpVr91KO5E\ngZke+In55PwoNPhgFmEXuXr+9pVnKMLimoZOzgChVivs9Rxjg4VAUsffE2J96hmegGLqW8P4iG5G\n00PpYnZVbIjHVteUwmnkBvU451aNOfQYK8MrZ1RtxPoo3dtfebmxaAw5UGhlo9/u58RZaPPDJsIO\nojlCr0iRUJlDd/fcwuVwyew0u+PsWEt1VegIs4N4BONdzG9E3MGOIrR4IccNcG5n2eFcHvQMBuIF\nPPbX0W/jj+ZTeU0DJ7+4FYiO4f2UBqHxVBRBokqUE+IG27DZAtGeEBP3/cvC06ET9/ZXJGFuFv8R\nr7G/YVhGD7SGfiC4r2A9XsP0Ay7nOwmnGicndnoKIEfF4NDEY46alIi5ew3b1r9qj9N0AaNTg0gG\n+Z/t8xgOUV0yFOaRNH6oxFmyrOD2MQxfW+4lWVXl17Ng38rfVSITh5za9CUNksaoaYimFhb+KnZ6\nlXn39M2nY3szV7XKdg7+lmYFrQk2lojgCDlog/phjPBSJ3Nbnbp6St1c+oGHmmXxw4F3eAKDh9MQ\nums5Q1eTulQ4YUSsk01t3V6uheFK8e5JfAIi7Na2O3PMLzmvBgDJLz5r4KaufTXnTlOHpC36om4F\nsPS9oAgNTAB1XKSoovXWKb3TfJkkA0y6nndAKpvox6MMuLn2TADAeQUkmbmm5AusOIULrlsvXgmn\nbOm+EAAJhfVfEKyGT8T7qRqlsW6Gi1ChhA03dM+yCQC5piCuyCPD9ruLyURrrPJDloXOcq4YVBVJ\nMzyHSjmvxK16WDewDqEiIxpdfEd/byIhjblQgmOXYBEVrOpJE+AVOqSGHK4X5C02yILsJNTOZw8l\nJXglu3ZvWagNzK+ZBADwL8tHTndsvfk872CsDX6okJLAfz5FUsq4BZDE8iC936nh1erGqfDUeph0\nbAt171dklPnov0+BXKA6B9hnopP8uGLNlQCAH1XSSPTStGcwQSzqz9tGYqHpeVsRLBHqDLWZbLoJ\nE2B0sXKy2OGNMO+BQSwefElWttLUgoDI19od5TrYHzehQ7DoRYSFIt/kh0XHNqjPT0AW82xchP1O\nK6nBBHstACAoyqsJ5yEp1tG7g1xweCNmdHhYdjwsGMR9stbW5ZisbWZUpv2oOwH9bpHGdxA3oUcK\n1o3deAAMIs1QliC40WAS73igpRPFem4KKkTKhMHYhKkDaXiriXOiGGHZg6YYjWO7ohzLJztroHOK\ntBApjrlF1B9tivF7JCBhqIkb3TFGlr0hmoftURIgLfMxrWGHLw/1bbwmGuCYpfPpYAik1qX+QcJJ\nUMpBzzQgCKOh7w+WDdPNIossssgiiyyyyCKLLLLI4rDjiBIYjX77twCA6QN3oF5YTFofrgAAdA7R\noWAmLZ7HFuzApS5qQDmEla9AZ4IetJKoxARHEp/TiYsCOYj2JC0e1z5/4xGs0aFH+Ym7sFPQd391\nDAkYpnx0C/IW92zlVvRAzKZav3hMH1S00CDVoZXUSUgKg7ounLK6pEW2QVbN2eo1Bkm7Xgs7lVMe\nY7UcRQdE3CxItVibOrp2g/aJbGf5y4982zoUcNRGM47tvFKEyLQaM0g4LE2pd6tKjiRNQFLHg7KI\naJDiQNKkfi9xnr5r2I32jYW+WNKiQBcQYYrie0jJVChOPF80FFkBYjzP0KqHg5xRMAmdVlNnAt5y\nXhQsYn02Xp/ybIx4on+aYVFXUpM3iOazQrqgDIMIpUyOYshKtN0M2cG6yfVscHFXAnoPxyVzNa2Y\nbmsIdfXsJ1JAB1lo++lL2TBL8zoRivFl7WkUpFQ7TJqpMCrIbYydqbaovmNLk6R5tzde/xjO2DIb\nAFD/z5QcVDhfeGqqOEgZTXGYjax3oZ3PUtOai6FFJJzZ481BhUsQJcSEdJU5iMYAPV5quM8QR6tG\noKBaxv0JEzZ2FAMAcs2MABlk7YTLwL9fWXEUcvL53NLCrprIADSCiqFnbMWcAoZ2vnjXWRnntYzn\ndw4XJKAYRYPSKWwjoC40AEi6VL9ORNJiHIWlHuJbQAYkQdajiDYmmRKQRHlKQtLIfBKxtDFB5Xxp\nExEtPgmmNh5UQyGDRZIm0ySHZPy/M6g9/MuvqVvsWnooBYIOPlTZATne/dIhJPrebRe+BQB4eNOJ\niK/JlGn5vqK7tJb1N/XsQZ27YyY2tdLDEBQpQ8m4BKldeBYiEmJutg9JEC/KBWHYrCKMVy8kEqIG\nLZom4eW1si0GdfmjtLCvJp0x6NpE1E1MQqxQlZ0RRHcmRYv82TjzSQDAy95SvNk0AQAQO7Ghn2/i\n+4ktz0yGySHe7VKGUp912Rda6KpDx3EyV+/HlTnNR6aS/cTKSFSTO1Ix6uFDq4V6JLE3sVtwfAjb\nZzwHICXN93327MdtfZ/zfcbm393W429HNEzXL8J56t0u7PbRrRys5mDs3pxAs0yGuqazWzU23R1x\nhp+YpQDydUf+yw0RGlBKkwi51SsYOaZW+11dDPd3Ifx9wpZ1g5A/mIvW/2g4GQD+P3vfGRhHea39\nzPa+WnVZsoqL3Atu2LhSjEOJAVNCNRAggAMJ4SYhN/dy+QjJDSGElBsMpoXeMaab4m5ccS+yJdmy\nei+r7XW+H+d9Z3a1K2ltyzaQef5oNfWdmbee85znoOri51B3IU1wL3/4VwnnCGE5iTFH2CTTmHgc\nsdYtAgJb4LDDI3q5M1IHRIgqtmBitViIyAsgflxUJy9Cecxn9wwfbJuM0nWSIZVFqDdHgKkf1dpv\nO0KMul57iYiqC54FACypn47PdlPAlhBgi7+jKkkxl6uAChEBak5d1vL3IEgLWJ7fTu2HNGkXBVL9\nBRCTe0qUDAr8XCESc5yXTdCCAnLIJgVDWxDtY2jyFWRhoVG1Gp1MYVffJi88Um17/mJaoKs7NNKC\nkS+SIQAhO1uMuHTSNsiPTWX0qhBmE8vBaUTHrmzOhMZI26LdGkQY3XGwg+I+nH4DXFsZNTK2QGwB\nbxlCi9rgTnnxxuMO59+yGV++OEPa/nHpZwCAoVNvBQBYtxthaOPfiMW35wYR0tP74XF9OWkuKQa/\n0N4FF4sL0qqoYXYHDUg30CLSwChnvogWuXoqW0uEPoIrZJAWoc4gXWNCmhuvHaDcfPa9OoBlZ+Vt\n3VMcga2cGRaZUe9/Bn+M/6m5jMqYxhb3XXJMVNZumfZTexVb6LXopTzV0LMc1poIgl66EV+YimEV\nVCwOJ8qT2AmA2EcuNDGikpKzS2ER2gjCrfSMBat7p7AauoB0SnEJV76Aayz0zq658HkAwKSt3w3V\n4EAaiznvYoquBYDGHb/NVSzTE//61uUJ1/i+gi8AIkZRyi/L8cfBH+BBgejFbgejQnbb4GogA1Uo\nKwRVNxvEsmiRFOnWodvFBrMIGwdNERgstJ/TGQVBhMVMjcbNBkqtJoIwr/8HTdBWxi9Wonpg3Fmk\nYcC1A26zN+E2O/UdCzDxxF/EdwECEK6meSS3Y326bBbCC6i/XlBIsbVvVk9Gw2BSi/1t5uHTX84U\n8NOy63FHCcUZ32ZvSnrM0B+Q9srRdqpv4vb+835/V/DXs9+SfvOc8ffUn411b00+U0UaMJTdydYO\ny75/a4dk+H66fRQoUKBAgQIFChQoUKBAwbcaZ5SmO+ztRwAA4XYjVA6y+GmZxVqz3YrsHbStZr4O\nZ80qBwBclrUbAJCr6cJoLVmY8zTxeY1ONWrC5Pmbv3kJBr1AVseQhSzs+s4wai9g9Bu/0KdnlAsT\nJct79V1AxCTioSveBgCU+4mat6erAH8solxwo3QmTHkwidWfe8mYUyKqFiR6Ag9M13hFyRPHoQqK\nCJtkiq+aCfdE1fJxsV5SgDyfvmzmQZ1Enih/gxnpexLtMDfeT5bhV5+4CKokuWD96XQdPxMbsB6T\n7631frc8pJymG9VS+Wvna2AcSu/nN6M/x3+vXQQAMFWT5dw7PADbXua3Y06giFFW8uU03IhOplzz\nbylEZfqlKijTbyVlSEGUxKEkCq9W9rZy1dzMfRHoO+iiNbdH8OE51LZuPbgYANDSaoPIBKMMjfS3\n7K6lJ8VK4GUMlvihaaCH1ZXSe/K0m6CzUR8VPUYVOJIbgBim8qZn03GdnRZoWL8WaTTCWEwia3l2\n2l+3brB0v1RpxSxNWBzmLN6Oj7YR1a7qchKw+lnDVKx/eWrCM3mnkvdSbyAKQZrJJ4m/mTQhSezC\nz/IwGtQhtPmpn+UKfIMtnVCzD+ZidN6oKCDK3NvcM1pdnguVj76vpUaFYVdTX27V0rv7V+EGqWzP\nO6kfydC40c5YMC/+ljykrWepoBpNZcx6SdYgDNjofpHrOtB+jLzHIqPXwhCVRPHAPKOCWoTIaeU6\nmZrLabrSewqqJDqvoIvInlP2V9OqhaWOftuqZU8t9+S2TaL75W4SofHL/cO6ZfRtSj67HQDg+EYO\na1h0N+XZfLNyMnRfJtOrPb3gIRWa2R0QV5H6oyqZ2g9D5/gIDM1nlHB1ypGq+vwDN9PYuNjWJokn\nTfnmegBApsWDWiYEEo2oEOb50RkFXGWMEfzgLHRNFCo1E6sxUiE6WmzSfpWbvffMAFQN1PZ0nYlz\nC2GqE/unv9ZruRcM+n57RhtXjILm895p412j6B2fO+0A1nwzBgCwduFfAACFp3muGYuQGMF7bhIj\n/O2WKwAA5n0Gaezd+0saO3qj6S6+/ksAQLU/A+uWTzrFpT01SJZ/WTOb2HnfTHkdAIXt/bZ5PADg\no9dmnbayHQ/8k7z42QTq6+91ULzRuCeW/FvTdBXPqAIFChQoUKBAgQIFChQoOO04oyZMjYbFYAUE\nTCsi60CNiyzbTRPVaNKQ9btgTRAVtSMAAEt/SHz30rRW3Jz1NbsSeRisKg0sqpNMmJgClhy9GgCQ\n9Y4RqhBZMD25smfUzKzl/kxgra/39f6PF6wGALzy7vmnsrgnBX8hedCqLn4uwVNjrhWwupNyHGXq\nyVt89MOhuDztPwAQh/+bR4jHH+chlfJe0l91WJQ8dFq3bHXXhONjtEIWQYopUwfkvJ98f9gUI0TE\nrIWuElkoRyinuLb0I4nP2TlOxH2OYwAAw398iBceSxRN4YIkhg55m/p05jI5AUS1QPvZZE7M2ih7\nYEQNF3BikvKNKphG07d+8IurpHhO71AmdBQV4M2lY7mMvcYjQONlF5RiQgWI2vjvFtWQRxQgL2nP\nPLuiRj42EuNV1buo7eR9TTf0Z2jwwctPAgAsKgOe7qKUTu37Kd7SOLQbqn1MSChZ8q4YDD+f4mgq\nVg1Jut+fS5VT187adaXcr/irqB5pwgJCTChHxYVyXFo4CsltmcPEgTpq0xBSs7jX7AAyLRR7yT2i\n/sIgqi5+Lu7+qXpzz7lpJza9QlZuT1gP+yHq0ks+Ja/bsnkvYftFhQAA32eUXkqIAOYt9IK6J1OD\nEkVgEItlrHOnIRCh8gZCdL0sswflNXR+fl4nAKDRa0eeic5p95NJt9jaAQ0z1e+vo9RbtsNy/K57\nuhcV7fS99kwjIZ+Jjy7B7t+QVZ/HPe0OBJCupvfny6R6oG8X8M5UEly57bX7AZCIjr6b7te1KhM5\nF1KutfYu8mCEnHqomcgUFzDSm4MIsnQCUT930wNGlgIhFKRtIZ8a0MreVKmOs2fJ3CNC546nUPjS\n1ehcQEGT+gP0jjtLgay9sqfr5W7ybkwuPQYAOPqNnPPYzvI45dm70d4jk6c3DzAxbRkeLy9ET13/\n48sRMOuiPQCArz+aAEMSj2jXSNqWdojKs/XSv2Lu84laAf+O+NNL1wAAFt+7VBJZ5GlqPvEasC1z\nKABgR2ehnNeceUgjYTWiLGZUy+pluMUo5esLmek4S7oX7k6qZ1ED7VMhuUeUY97gyj5Fbgqw6Tif\n9LsFjarvFEVpZfStVptGYsxY0v+47xh5Im/I3YorLac+8fOBoA9FbIxe7SNGwn9svwbWDSyntnSk\n3CbHbL6hz2u+/Pp8AEAgMwr7OZS+w78pc+AKPcAwzaQy8vRL3etzkh4X3kDvZ+IGEgwdcVm5lM/d\ntJgmHm+9fN4pLWuqGHzJMQCATefHikbKD8s9o3+7exnuefnOM1W0M44zuhjNS6NGXRtWYW8zTVxG\nZ9NkpMNtQshGDa1lsg5Zu2lC4X+FVOnWzs1AaylNOHiy1lBULQluDDeRCtoQfYuUk8cjEn32oL9A\noqH90FLWJ/WiKkTXbo3qcfd+auzCCgoE1+hFtM8mehoXXkEZYK2niYc/U4PBLDntORdTIPymT8dL\n1672p6fwls4MuFiLoYbe2dBVt6Kn5qPaL2J2GlHuDAJ9n0/V58B6jPYP+fLHODr/BQBIviiNQewi\nNAFsl7aH8JHa3+N/X8w/MSI61mPxqrvJYGyUjQZ3pdXjhd4PlZR4eyrwfpvw2IM0aZ9njEp1+Ecb\n5UkiV8SUxJ30QPBDWiSohokwNtP7yJhPbaemMR3qEtbO2GRdt8soiZJySq65Q5Qoy1wcSt8VjlM8\n9qfT+XyRETEKkkIvWNSAxiMga098bqqv/74MAC0KLz58MSqbqLzcqOFzGYDxtLjii8fJO65J+n4y\n9LQgrEi6FzA0URkDQ+l6QqcOug4m5uSU64rmSA/jVzfga6H+oQr01xBznRlDqrBj5ei4U2IXon0t\nQpNRjjfUDQHTDsLzhRsxEdS/kFAQ8JeSBdg84T0AwJ0ZJHS09dWzpPNVjJrqr7FidwUtfkwNiRPZ\nZmSAy164dxGVtsMG1GloQc2piw0T7dDupP7U4ut5FUCtjmJKLiXVnvio/CzTdpGBb1ga1bewqMLb\nQyj3riePypO9K4x3nbTwbriSJhkFb8kGlrTKMNweGh+yF9GitN6vgcCUjhlTGv6QAMFA/2hb6Tub\nGwR0TabjVMxIKvjVUFGVR8QO6BrpXukHqY7q3PKktmEWLXTnn7cLW56n9zvoWsr/5g7qIe7Nlo5d\n3kziGjflbQYA/LZgOMx1tG9dBy1Mm12WhMFZ4xHguJIOrN5D42XEGIWmm+XP1osSpd3UdOJ9E1fD\nvWnRKhx05wEADO3Jr/foRWRQePQQ0U+zvwWigqcCD1//Gh56ve/Jfm94qHUMHs46ELftEpMfl5jY\nth77euI9N7XL2EUQzxP9RNsMdBfQAqUrRH93fTQafWHN8u++uMvJIMPsRTvi516dU0NwbI/PAuDY\nocVBTxEA4J7zvwAAbPMMQZaGQsXmJPF7HAm5EWFWKz+zug5SR+Bg+W/7y/xwIEidZmvEjEfq5wEA\ndn81EgBg7adN67+iehLoR7ha36aCdRz1n7bzKGNFy+r8vk86A3Duo/FT2913GJu3gPphUx2928Mf\nlAL302L0vzNJjOotnNnFaCCDvl3tJ8WJO1lzXdY4L+XrnXvpTgDAmo+/m3TrZFBougoUKFCgQIEC\nBQoUKFCg4LTjjHpGZ2SS5bjqwEyEmIW+TCBXfOSwFRo/SyVhEKH2s8D9Rvqb/o0OZV6yWh1MY7n+\nWnUwsBxvm01kiQgMDsKSRtamSITW3v4GM/R5xC/8MH0CBCbCMczaJpVtmIks68f8RGP4tGI0Mt8n\nOgy3PLVOBkSWA8zYJFPRtC5O3dLg0ud/Tc/FhYwge0bXf0wW9KyZjWj9Oi+ld3Y6MGZ+OQ58WRq3\nTVdhRGQ0uQnUB2VP8uZuohr9IY8sUX8/txmhd8kLkL5ejycmEw3y/nSiRTqur0Pn6wW93zwm28dJ\nIZaJ08e1IkZOD0790mrft9cj+sHv/gxAFvX6xGvAZ51nJxznd1B95e3J3CDCUkfWUn+WHp4xLA9b\ngDxsGRluBMN0Dk+VEYlxlfvy6DrGZhXUjJJraqJ22TVMJ1Gq7VVhBOz029hG56hDInwZ1DZ5+oic\n7bJKyF+e56I+epx/kOjTDZ12GLeSFyatklyjkXs64fQxmi7zoHq3ZyYVEeOiOcMtYwHIKSp6IiOD\nKob7SN90ppJzjwEAqtYUJ+wLpkehZx7UHUdkr8WJ5EDlCDDDvn5NGtyjw70eV5Ypu+QAACAASURB\nVLV1MEBMeiwrIE/c4uu02PsGPbeF0XU9BSJCOfThQt16SVzN2MTo2vmiFH7AoYthq/E+0fh1cpZJ\nxkLy6LW6zdjx+viE/e5N5OWunk19Z1OrHWAM6gWXbQMA7No1Cc+tnQcAUkopID5XqaWRznd+St5b\njAvB0MpYAKxehp1aZBzkz0LHB2wqFC7nfTj9DZnk+ugcroG9kj13jEeUhxeE7XSdL9echfBUqvch\nRr28ashurIbsGd1fT339lcPpBf6hTi7/7q3DqFTWCCwsfQdnhOi6RVTV0XsyFFG99Ht0EL3UduxD\nO5FhpnGtfi15rH0FIQhBRnNm6Y6MLYn9l7sIGDmDxuMl+SSssbT+XNS9WZJwbCyer53d5/7vC7a6\nhkq/uRgbDxnpD+++ORcP39u397MvJKOF8rR2/5uzV9r2iZcKtlM9WgqBUJCISem1WFFAcxDOSCgq\naEMja5fmBvlYTj9fGroQAFB5/dN42805Ik5JzDJHTQy5V7umIVNLImt73XSPSxx7sNDsRU+4o1SB\nNvrteL+DPFwbaqieRSIqmNfSNzadglCglvXErDi4hMagJWnTv3WiRv15RDmiOt4fy761Z5z0fD+x\n08fcd/9SjHvizKRI8eWIUiq2ZJhfRmmfjhwaFJ/arQ98tofGb+SFJbHG7zrO6FPwJMPQiNC4aaD0\nVhHVQBeQ4wPDRprQAkBaZVD6a2BJnDtH0idUBWU6kamVrt3VpYeoov0RB+3LrACCNuK21Vqt8BXT\n5KFcTwthMSIgN5c6kuZW6nhKXhQQ1bL8ehlMLTcIhFjOwEhMLWo6O9UqRVg/7n2A0jqe0Xyk/kH0\nfGUtybn5g9JpUGyGPOHc3kTxaNVZRHFpbk6DOYPRVDJEvFRJC6H7p9Fi9MtRH2EKes+r5xlE54Zs\nUWgKiYoUrmWLjoOCpIyr8UJSqBR6n4vD1JC8I4+yhZQqyHNeyh3Y9dajvV8QQPY1FEdytCUD0Xqa\nzKfvS63jdBUJsFafmsVs+0QRb3TTRJ8v/n+562r4u2iSkhVzLI8549D4Rfgz6Rv6ioOw2MmAk26S\nuZZVTbQgEzpY4nUDELJS/Xewyb2hMwJ9Z/wHsdbLNF2IgJ/Vjwm37AcAZOtd2NlBk+ful2RDheq/\niGo/Tkf3G/LFbQBTjBQNEQisGnqzqO/IM3oxJYu+zee7pvX6ngDg3AOk0NrbIpTDvS21mJpki1AO\nTu/lyDgnPh9cf20+MsqTsI3HtOo7NJg6Vg6CDs+jGE7NWuq3TE2Jz3d/7pe4BWPjtpnrBKBO7re4\nql+UbYqYoph/Cy0K391FNL+qi2R68d86iwEALy67OOF+3aURfDWC6JwX/FmminNqttYDHPwpTYo4\ndTc6MShNrv+W9w0AYFL+VFiq6Xm6mKqk82wgd2vizNteRe9H49NIyrod06if19f1DDgAtEkMTFpv\nFFo2h7Q0JOwGIMdc829waeYePHZwAT3fXlqhv+SajsGxJzXE8/s6zwrDsYvqte0IPd+gH9WhorWY\nyuGSj03bSmXvnMpCBeq0UhxpV5YZ2SxOWcvWL4bdsUO8/Iyd4+idOfZR25k2pwyvFq+lZ9lJ1PbI\nJxnJH5qhe5YfTw8h5fS78LM+j/2u49OPpku/U12ExoLHaK5ZQsbCWDpz6ct3Q+tkiu+sq7DNbMGW\nie8e1z0uMVHB7h0uK3+nOqH/d8JFtr14t4iFKjAKf/f7eQhOpD7D3JA4LebtcpVPjTebaGx5uDUb\nJj31KZxSaqkBvLk8/zm1t1X6CfjtEGrEC4rKAAAOrRef1JNSb1NTGtTt2rj79AdOpTeeYJ7zQDqN\n2ys8NIguzd+C0RpajPY1nzqVCGRGoW87frKm5Sh9L8d86gibduTiycNzAQA/YboEAC1IAaS8KPVn\nizC0MGMjHw9HuzEmj+5T1ZkhxavGomeu+74WogDQ9BmNDuaY+/QHQy2NA+PmH8a+xhGpnTRAsE5r\nBQC4tmX1c+TxQaHpKlCgQIECBQoUKFCgQIGC044z6hm1MylOXZYXll1koeEeG1EtwnGYvKDOITr4\nsmh7s4MsfjnbAzC0kwnHUktram+uIImndJbSo2l8pGoLyFbC9glRcCuxqVEF01EtuyfzDBWF0FRF\nlq6S5bLVXVTzXIiyII7A8tXZj8gWKmMr/eZePqBv78fbbjuuYUqWpwI8X6Mq1LeFxsAsgtEGe9L9\nz494FQBw6cZfS9v82+k9/T3rAgCA6FdDz7zT+nagPY2+66XlFwEAPi79DL9+gPJBPfan6xPuYa5n\nirXntKChgiwv9iPcZiJK1iZ1UJQseI7riWtT0+aA9Yt405J3kJDUO8rVXTm6hwHFWrL4XHzguqTP\nz9HxMnmDDZd34ZeXkPX6YeEqAERTNSWxVrZPoG3mWkGit6pjytA6ndG969k30AC2qvjrhExCn/lM\nM3YLWJZHebWeFulvqMsAjVOdcKwmEH8dY0sIbeOpbakNEUR2kFfHe5gYBI2zBJSOI+GZVhu9484q\nBxwlpKwaOUqNTBVO8q5DInwZ9FzeXBWeuPV5AMB77VMAAKvrS2F7gu5jAb2UYz+O4sOhlKdvST2J\nD2iNIYSc1EYFjYjQaOo/2oayvI7lg1FuZ6JG7N5RrYgh79wFAHEUmKYN8YINZXctxbz9lwMAmjcO\nSniGgcTG8csBpM6CUJfR+x5VJh/vGET9RfRgBnavJ0r98xkH4PNQ5bLGnM+9jcL5RG3dNfVN/Oan\nZDH+3ctU13Ux3jdAtuYWLCLq5sG9hSjrJuqrfQ/dY+KeJfDPohO12+iOsTXt5fufAACM1xkw8dFE\nhdVAJlnntR6VlIdRQlCFJ2vpu9/XyESJ2qPocsTXZXWg7z7N3BRByyQ2FrRxAaJENc3Y3JnNU+ke\npXOr4Hy8sM/r8xx/u76mb1BWKrNKgunUptPX6cHpwAAkcTD+zOYjWrjnkPfbsp6YFs1uq2RhTwYu\nthJIEySK9NwRFVhfQTRfe7D3fqJrRgA2GzEevG10cprWh9L1lK/Xsi7RPO9PF6Tcy1xNuyS3Des8\nI3sv5ADjgWvfxR92kudddYQEYVQRAVGmZK2K9F0Xfvkjanf7vAX4/KO+mRN9QcplfQIepF/W0Tj4\n94KVcKjpW3OvKCDXJ9eGbIzZQO122mX7AADbPhiXWvmKwopHtA+M1bmgUiW2D0M9b3C9t51fPHkn\n9OdROJe3xYwQG1stNfIxPcXDIgYV1EeI8bcGiSEzjoQtvYN7XY0TWZjCyuM5W4aQS170y81yfNLB\nu/vOUzrQSJtLDKGudTSunIhXNBadXxLNWg/A50tkv3BcduMGfPBq/+EFui4BtguojPlsfl62YgQO\nGUhkLhlDwpcXxQ0XUAjQK3voW5v3nroMH28PWQXcSUJ/o5ad+u9WdudSadwau+2eAb224hlVoECB\nAgUKFChQoECBAgWnHWfUMxpi0td6XRiefBYrsyGQcJw60LfAjKmVTJQhk1ayLHIBDlElIMzEjIIs\nVUzUFJFEHTz5UZjr6XfQzCxaIQFpB9irYTmpIloBqiD91jFBCVEQoG9lsvrMOhsxqKCR4o9Ss04+\n9OoNuIaJmUhiK8uWSAa6ZAIsyaCb1IngzkRLWX8e0VQ9pxdtpvtz30TEKAATKDjpR1kUT3Zg15i4\nc8xVZG08ECFefMnR27FszksASDQDACzVsWWhv91f5kIzhbwFQTtZ6r2FEZhzaFtkvV2K96xfQ9e2\nNsoWSSmXZRhwMSGUvkJB08a3wSuS76yuPBt9RQq2X0AmMe0eB/4qkEeY1zvuFU+4fpkgPR/3iHYx\np0Ik3w9VW3yKoBuvWI2XPj0XAOAgdfIEr6iXxY14isKsDALQRNZ27jFKPyKXLRbRRGcpMvdS27PW\n6dB6FvNQM/aB7YgelUHyEg2bTGZg9VARbh/3prIyumQPUAeL5XaOjABp9NCiW4NfvHIbKy8dx/OI\nAsDRq6hgz814EXbmillfTd6eoEtH+R7BckXWUb3I/5pt6wjj2ELaxu2iqpAAfXv/7fBUx2pHWB9U\nvvipAblXJEoVRQBQfgulTfp920jp/STDB2fxGE8LrrWSR3vXVZRT8PN/nRN3bJCluDz2GQnYnHPZ\nQXSH6CM7J9K3tO/WwbDRip7Iuow86ON1skX4uju+BAC88ex8aZulWraFjnuarKySPVsQ0eRi+VwP\nUZ3W+MPI3E/1seaH9Jxhnxp11xBdYtByXVLPvIaFPRspBBnufBX0LA+jqY3qmKiW897mbKcfdQ0l\nsKJ3JZiAXQW9kyrxoI10nOuYHc6Z1D84iukdOz0ZMLfI5/GxadQrP6X30C1Ctz4+MW7kkwwYjb2r\nufF72DYZJabOxrVjYa9OODQBhnIDQgJ9m9/d9BoAoCtixqZ1vQuYxI6/vI8+Up+Fp/fQ9+RcGh6L\nfSqQrnbDYqbn9kfk99WXR7RoTjVWjvwEANAZISbF428tOqH790xjdSLY8SHFas/CWExeSDHzB+5d\nimGvkY6CviPxWVL1iHKYqpNP6zRnU310mHxoXXNq2R/fdgzPowZZPpTGNNsRodexOxYanyjFUgsz\nArDsTTKQ9kDPFHQnCuc5fin3rOkEPKLW2fTM3ZuzMTqfPH4tLEVQbAzz8B9Q/HvFyqHoD7wvUwep\n3qoSp+9xCIylzvitc5Zhsp719kzP7kQ9ssGp1DlpmJiouNOOkI/e06JK6p+WD/tSOv732fvw9hSK\nGdZ/kyi4x/s330g/stj8f3oaMYTKMCKpR/TiG2gcnWkpl8SqHr6ARMv+d+IIvPbm+QASGXkApGWC\nuyQMQ/OJL8kiBvYt/APPiii7UxZbHPvMwHpEOc7oYvSrZpJ5jERV0gcJprEchl1yj2+pD0LrZcmg\ndYkvWu1jdKfmCDx51DlE9GwBao9C42XUX/axIMj02vR9AqIs0DzKaLjqgAYaNvH3ZXK6rwh1gCuP\nhthfwJ1PDYpPgsJGFby5qTmcc2aRKsaItGas8lG5/1JD4hfLb30ci174JQBZHKQ/7Jn2BkbtPL4G\nbT27FRfm02pneSUl4T14zqtJJ8xFWTSY1TEBI7VPlDqAR8ovBQB0nB2CyskCyvcLMLAO3tAqK1Uu\n0d8IALC0JU62OA1X1yUizBID+kez2WRIDYuBervmkWFk7KBrxioHhs1M4MjD1EBbRPgE2tYxgdHm\n9iR+n+jyTDzoIJqauUeZesJooh4lc0anPKgzymH7pKgkXJC1RR6oeLnCRnkyo/HQtrFFddjloUl/\nlAnqVHkzEU7nbSCxmYYsgvSutF3sPQz1IMoUozfPfhIAcPGDv0z6DFwFNBnceWoUrGKJ1s10bX8G\nELHHz8LaOyzQVRJdzl7FBgIV0DyNFqHeAiYi41LDwIQiApPcsDIVXGut3DNzgbLFM9cDANa4RuPR\n9mIAgMXIlH03WaXBzhkxo2AtU+P1y6tt/u45IiYRau+pp6xFdcygE0x+r/LFtGAcqEWvp5Km/5pZ\nLozfRlTbf014CXsLiX68u4Zoo6YGAa4Sej8LHyd6/eTr92KqjQbXA06iNkV08bRxPsmIsn50y9ej\nYKlldfM3jM5VsQTaHtpKgdkuTEqPzyMamuvEV1Mp7+1tv9qNqZ/8AgBgPyjXax2LUhDPoz5G6DbC\nwwwdkZFMRWiXTL0q/EgiYgOg2UN3oRq2msSVQnoZE55Lp7o87IbD2FVDBiznMaq/JWfX4sguEs/K\nX0fvy1qffCHqHkTX0XiBtnH0DFxkyH4sDCvLfVp3Lolb6F3xdSKYwZSn63n/kNjXeAYBeWfT+ND9\nfqLSus1KfaIgygt+c0NsCABd03ZFI8LMcOH5iOhwIZsIK31+PF5BKqH+1VnQ9NHnqWNov45LSMDD\nU5ED3WCqAE7Wa2L5ICC5/t1xIzqKJpmqMhpvHnjtltTPZUaZfJMc/nLO88n7wt4QGeGB+jA9V9lP\nlmLUMwNrsOIL07W3b4TWc2J9VMguxtF8+0J4Ky1g1t77BkZsp8VvfwJu30dUh7UoK6d+0pGiYFAy\nmA4YwNtuqIfy9amA4aARIeZQ4fNgdR90fA5xMjkMeNYIX14YR1aShX6eisInQmO8eHE6ZVd/ZgjR\n2eepf9WvKrPWldr7yz2fQql+XkRZF6SFaAx+vngF/v7y5SldLxYhP/XBBy94EQCwZPBM7G2nedn/\nDP4YALAjIMTdM8NO/ZYbiYtRaQ56TI/2vXSdFzT011sUgbmarTGMwKIriZL7+2yi0i+qnI8XmEeB\n5zJ/evA6aK+nMWjZZ9TfxokasU/41SVP4NIX5BC4vuDPo+vtDfolo2/+FBovmjYOXM7Yfy5eNmDX\n6g8KTVeBAgUKFChQoECBAgUKFJx2CKIonjpTTj8Y9f7/AwCED9kkCWWtm1nktQAz5MDUEoU7n6wR\naRVkvg+b1VJuQlMLyy1XrEH3WDJr6GzkQrGY/OhoZCSiMKcSqGBooXMdFRG4mTeVCx0Zm2UqrrmR\n7peM6tgbOD3Rn4TrOX/hdnz54VQAsvdB6xKktCpcRGjOpbukPKQDhdzZ9QASxVsevpGoWg+9ekOf\n53O6cOmLZFW1HQEMV1M+Vq2avkEoooZ3BZnGuYUJACJ67nUWpSD8noH+PeEupOOCDrq2EBYQZal0\ndO1qhBz028ByvEZ0orTNflAt3S8VBH/YBd/hNFYuAfrOJCJE4xk9m3nfNB4V0g7HH9N2bgC2bxid\n8awgwChki6cRjWNPVwHKW0lkJ8CoJFGPVhIu8g9lrj+3BqKBnjtrYx9KJr2gi6WJNTcIUpuKBbd4\nWupld1jEwPLwpqsl739nKVkTvXkCAoNom7adympoFeDJp/ct5FC5I24NDOnEYwm0EJXOXKWW3mfA\nIUheVJ4CJmjXQLOECQWYyZOx4ws5H2dwGHmBogE10jLJWxLcki555XROdu00AeE5TNhnT3IRrjOF\nVKn2qULfJf82/IDoV/6V2bjitrUAgOUvzANAfagvi6UfOZ/SCvx60Erksva60lMkXeeJpdekdO/I\nuXRzT50Vuk6qM9Hh5L0sn/sS7mskYaq1L8kiMZEYDYfM+dQPLR1OIkrXPfFLhMlBKVFqA7NdMOqp\nbuoY+0L/VKKM/vGAe0bFq9sRZgwC7i3obLIBTNRE1U31u2BN/51+yMy8jjks1GOWC5lvUL0PmVj6\nFWf8dVx3UB3tOsbEg8oGzibMUz6EjfQsQ6fW4Mg2oiJGLFSOtAOp3y/IcgL7sqOwV9BvnhZG16nG\n+RfuAgBseUEeq3gZYlEy9xgAoM5J7XLvtDf69DSaJrehq5K+t8458Dbzsp9Qe/xzB1ERX3h3Qcrn\n9kdF/C7gmTv+CQD4ybOJlLuCP2463cU5rbitvAoP/4vmOvquk5v+8jzEJ3udgQQvE4duOokd8TCN\npogeGz2UDsTCOKeF2nbMMFC/bldRZ9wYduOCp1Lz1CWDmtHCDdowPh9PoVlctAuAlKP1sl23AwDy\n7U5Uri+mc33JPa6xc8qe+Nvd5MU7FBiE662H4+63OxDARD3Ny9siHjSz/v/WA8SG861JPU0JpwUf\nnv2ytI2L+iztKsETm8j7qbWwtUpQDW0NSz/JQ+HGuaBW0znBAI03/5j6phTCFItYiiwXKXruZmq/\nMw0q3FNPQkkzbJQI+/ev/yjlZ+kLd1y9UkoRyDFr7yK0b8494WsefugXve47o4vRkr/9BQAp2nKe\nNldTjc3bGbIIErUxVsHONZTRZmuoYnWPC8KWSTNUj4dmPwVZnXAFWG62dqb42KKT6AVCBAksKZ2L\n1EwBwFrHJkIdqQeK1F7I8pAmoQeW3bX0uCekPN7sZOmG/kJqHIaa5EpjZy2gyeoISzNe/IZiyAzV\ndKw41oVDs14BIOem+v2jN6HrPOrMfj5xNQBgq7MErT7a3/hpIXSsk/YUsDyU7ZDfN3sctU9ExyS2\nqGGxjmmHBAQcLF/pBJrois0GmOvY5HemU1IO5dBUGyT6GUfYJEiU6z4hQFJsNraIknJkLHidjF5M\nnayr3AFzA53TPYIpO+e4YdRRj7ntrHfwQPNEekbQ8002H0O+hs5f7aYF13O7Z0Jop2fhRo+IIwzr\nftpm6KDyt08Ucdt5lJD+04Yx6FpLnUJ/i/qe8OQJcJTHLwh7om0cPayngC3A1SKsVfGTQueEIO46\nex0AYEUdBX54AjrkWYmzeKSJOvjc5TrJGGFqShxN2sbp4ZrEAjGYWq65Vi31CbwtmppFdI2k8mSU\ntkvxqthDAY4zL92DZwd/DUBe9AUyolBn0bV57GF/iBjFhMEwkB2BviU+PihrZiNav06kUJ4OxC5G\nOSLndmFuAcX7fLqF6p1ojkhGuMVn0yRzhrkSv3qGBr3AJBpYs9LcaKyk72Ur7z8OCqD2wL9RYCy1\nUaMxiKcnkOr2bj8tdHM1Tvypgib7D434CP99gKhY4ip5cemdQf22aTPRIrMuq0UoQuWoayV6oWOV\nQcof3R8CdqqrzbOiULvpdw6FtcN5rQt81Av4qY2ZzH64q2mhxI2gg9aLcSq7J4Oghcqgc0dx3u83\nAgDerqQFnNdplNRxTxZ8IejPpnbN84gCgKuY/hpaBWg9J/5cLooowKizqzDEQsqi658jA2vYKCBk\n6/3cQbOIrvfDvL1Y9k5iTtrTAX9hsNcxMBUIrAvrzUAt5ebVycbmM4WQTTxuZd3v+2K0eJsRX26m\nkCR7BTNKRU6unYdNPP+5fB0Xs/MZW4QYHZFERPRCykbzVNBzMWqbQw6DzRPek7YlixVNhiHv3gkA\nMDamNibEYslNHwEAfppW2+dxY7eQYcDTaoK+ifpBtR/wDqf5qqlCbqt9LUZ5HtFYrPXR9x2s6cZQ\nrUzJvfHYPADAsW4ag5xfHf8Ca8W9j8VdszccCPqkRa/TTQt9QRCh11EfncvmSw2fFSbNM1owh97f\nl6M+6vM+e4M0z7nn8HVo3XTy85LYRXAynIh6b1+LUYWmq0CBAgUKFChQoECBAgUKTjvOqICRjeWP\nDKQBaUfIzOjNYtvSAT1LpRTRQ7IYcGEiUSWrRrmGkbXcYA/AbiTrQJRJ36UbPLgwlzx+z7VT7sWw\nLQJLDT26u1CUVPK40JFfyzx4ANrGcbEKNXK2987P8WeSRSdoEaArpYDxyO6BoQqejEc0MMwPfSV5\niXWNfVvfd31OglK7MAoSq46ZK4T9VoBeH/7zFS70I0K/nyw9/gn0Pi/K2IeX62YAgCSmAchKXwGH\nIFFEdTGpVS1HGYWOPaoQERFm6sa/mEh5lB5ffxEiOiqQ4XMbpt5KaoQbjxLVStctgLtduSdOVMco\n67L7hmwCtN3xlsiAQ4CxhSsiC1Al8Rzw/HreIL3HWxasQbWPlPXWrSLPoJArYttZ70jn/ClnNwDg\n5W7ibB8NZuH9NlKt3L6a3rfJLSTxbmqlZ/GnM4qzDxikI6/qjwbvQNatVM/+cx3lOM3alLw5c9Vd\nnv/UP9oHVVnvdaFruE767gauRCsKkifbOZ4sln+c/R7G6SloXjuYXu4EYzVqQ/ROnnztSgCAvjOZ\nhJwMU2sUqq1U49QhmRkRZVZQby4rd4asjNtWlQ5THRdXov3PDv4a/90Srzypb1cB7al5RDmSUYR6\nekUBnLBXNMIolL1RkU4U6jVpWDWb+NnabOK7ZtrdaGwmOujyo+QNePjsA3hwDnm01F9QvfTAgj4c\nWsnvFwCyF5Cnq9tP3++8/HIs2csocFqy/HoDOomKNETTgT+NIQv9vXuJnmVsFSSPKIdRE0JNG3lE\n1cfo2t1DAVNrYjnCBnqP3hw1nMMZdT+fPL4z8uphVFNF0s+l8pQYW7FsL+WZy/yMhVQ4jDCxauLN\nT+599WSzPopVBUtjal5agDyidB81TKwjmZBLbWfh2N14bPu1KV8rDhd1YPHQrQCAZe9cjGWLyZr9\nQSf1MWv2yXkNrcforz8dCcJTxwPOPqmrKsGhuZQDlvsHXKNCMfkaE9GwkUSilqEgbjunzR6vSJBx\nUjt8OzMStj9wLeV/TlN78Z+v0Xj1+Y8fAwAUaiwYuupWAIBGR9+QiyT1LFOy8tx8LSlzvvz6/IR9\ngEzjVfWTA/d0QNstSOMopwgmVfT8N8L2pkIYWgfGI8rBPaJRrSCxKbhid19eUSD1UKIThXMTUxSb\nIG/rzyMKAEPfvkvKiXwi6M8jyrF/+mvS7//rJHfyhs5hOPDJiOO6nzNKYx6nGQPA3+qoja4Y/rm0\n7Y7amdizfDROFO7R1IDWeocBJqLG1keo/5hjkCm7Kzw07hZrgxJN+aJ91Bc1N6Yh2krnNLT1rYx8\nZD8LqxvVd7muepO8jic7rwg6UotJ5J7T3YEArnnrvpO+t+IZVaBAgQIFChQoUKBAgQIFpx1n1DNq\nrQuzv3KqCW4lslXJ6VL0XQJcxbRfx+IfQhZRksjXpMuJfxrbyRsZDjCvSZoWFV6y3uqq9ex6gKGd\nzlWFBEmkwdgsy3QLUS5WA1YuQUo/wT1ksakpuIWte4iAMZkkKFKGRM9obLyofzBZ7A21siWZCxkJ\nhghKC0nUpXptEU4U3CsKxOcRlcSI1t0MdVkfVjJmJBHVkAKlY8G9iWtayYr168KVqOui5w46RCm3\nH4+vMTWI8AymcnSNo2fN2K6W3mkoxkAdTKOTWlgQku2wJs6jue9ZksaX37KIAPMicsGU8GgP1Ifo\n+QzkDIJrSATpu+PtMPoO+br95QU7t7gCAFCg60CJnlw1f7jpCwC9WxyfqpoLAOjYkS3lvc2olMvd\nF1xjqJ6NKGnE6k5KTnpx+j4pV+S1lz4LAJgx+Eo0HyVPl7mK6r+xTZQ8op3MsmY4aIQQ6T0GunO0\nHCunb6f35C0JoeqHzyYc+4yTvNJcCKE2lIFHtl8CACg+1o8JnlXHtvECwunMDcpehTnLi9AB+u7c\nO5txMARXATVIIaKWYnhvuHC9dMl3Pib3/clY2ZLFhyZD0BGVBHyOBwPtVCk8AgAAIABJREFUEY1F\nwEt9yZ9nkGfIFTXgsa/Jc652UqMYUnsnrp5N3rTP+8yomxxhE/8rYlYWxag+nEU51SY+ugRFV5Lo\nQfk6Ci58+oZl+Pk+ElXIUovYF6QL3H4FtZnXnlmA7iksbyYT/9q/rwjqdCaKZaFKYWpUwVmsiStD\n+qGwFN898cZ9uC5zCwDgrk03AQC2bxyJcAYTtbNSfQw6x0EI0Xfj4kJ6ZxTdhbxuMQ9SKIr20bRN\nVAHmBipHx2jWnmaFYaig8mbt7ltTgF8nYgA+qCMXxe3FFDvK2QWpwMuc8cYJ1PYzzV6sbqM+ITLS\njTms35uTtxMAMAlyn83HOUPHwHliQl10wzDLiWpK9yJanzjuTf8BpT7YsjJ5zswTTZuyc8pb+POQ\nRBGiP715VcKxC2LSJqQSMdpbmR7IoP7/ZST3jJ4q+HOiMJyApyqYQ3XTnMG0F7Z/u8TdTjfsRj9C\nAyxC5aZMUQhbI0g7yMTM7HLeR87sSyaMOFAImXsZV1K4ZUSMQi1QuX9wiMbvE6lrJ4t7HZQoeauz\nRMpJytl3/WHa1xTfGissFOsRfcZJ6Vm+2jUmSUKX48dB7yDcZqc5+nY/eTfdukZ0RKm9XWCiSmZX\nGfE1Sz9zaQGx+Rqy0rDhrd7zOsdC3yF/h581UGz+PwZtBwCUfHIHDHUszvaknkaG6Dg+6sREvV5K\nXQecWCwpcIYXo1qXTHPi+Qw5NH4R3cVMrEYjUyw9Y9nCs1sLXRZ1rsFWmplEHQFE2EdXd9Lfo+YM\nVO0vBgDoGDUprTIMbybdL2iTlVO1jE5hrQ1KtFsDjfkQVaK0oIrGvDVebi4Eo3XrcaQjtQle1SU0\nuX+6Kx9/f5OShXM13ZBdheqqE1+ExuLKRZQLSc0e4O335kr7yue+hG3TabJ2/Xv3AgC03YmdkBAB\n1tYOS9geYZMQnrfrbcs0iZ4XCgOdY9mi3kH38Hn0MNeyyeVkpsKyPQNB0paCL5ep5XbJHeu5FqJZ\nr5g7HvgordfnDGQI8KezvKZsARNoMkLPFDqdI1guTEsY/U1HwmxSFzEkquWVGGkBWqxtwzwjpzTI\ni9CqEFEEtQLwgZtWgHeXkNDPQ1WLYGjiFSi1gSljM9XFxv1FuOR2SuDeGrYB6Iw7bvOE97CqlOrj\nkm+IKqn+2gIdW8A76DWiY4yY9NZ158o5cyNmeq7HLn8RAHCJKUmm5xi8VU8KqhkGD9DK1ceSqw2E\nTVTG2gXs3bYLMGUzldwQvZvi9A4cGsqMNDupfQctaqkNmhtFFN9eDgAYqieBhmFrboWpgxur+ixu\nAhZesQkfvk+iXaksRAHggR98iL++cfx50U4lVEzp+YFvFgEAHDZvAi3PVqnG55XnHNd1d/9mKRZW\n/AAAMDmtBgDw/vPz8PrKOQAA/UXU5p0Tgqh5j3LYcTPYfX+/Cz4mUDRt9b04Op/y2Q1fewUAajl8\nESo9h08FoYYmIWIatduIQQXvKKqHpjI6vm2sBkPmE2/UF9HiQhPVud9MXQkAeHzFZTDYaVJgWEud\nTG5NGO483sfJYxDPURrV8PYZlejzWp8ID8sfff5sot5XdmehwciMnywfpcaXnOLEBcO6hqnRvIdo\nc+U5JJrxaVvyBVpPdI2K4uhVpBjJ81LfvuZWGJnInNENYE7v53PV6d7gz5ANvQBgre6/TJdM3gMA\nWFs1GQAQjSafwP5fAVFbpyK1Z+0P51+yQ/r97IekXnmyk7EQo7P+8wqqn794NVHZMhaBsb6UJ8on\nAy6IpMv3wKelvtBYl/rTmo5SPyoe/fdehHJoVFE5k4F7YK6ZNoEs3a21DklAyMxsTEJEjMvhfKrg\nn0TzYd2++LAUHhaSjMa6I0AFu/7Vn0thagOFO2pnAgDGW+qkRWaqeLpwJc7+6P7jOufX47/odd/w\nV++WMnYcz9SAO6M8RSzbRaMGFge9546QPOe7wkJel4vLrsGiQaQwfqOtXNo/k2UqmGk4BAD40GPC\nBqS2GOUYtWwJBs2msJhpzVdTeeoGRvguFvqjhoRtE1gucxHArqlEq+bGi4GCQtNVoECBAgUKFChQ\noECBAgWnHWfUM8qpuaqQKNFiNcwB48lRSVSsoD0KzSCyRozMJguUM2BAl4csPI5C8hCpVSJafWT9\n07LcZKbSAHwRsoiLbOnty1AjaJOtQFzsxjmE0ZjaAENboleH52FsG0/WiIhWJ3lq/KX0Kn05UaSz\nvHjJjGGxeUbHbCbvldUYQJQJM3HRA+0A5lZ7b/nsXvd5o0FM05NlvfL6pwH0ngsxmSCTRGmNUrkX\nOnahxkOUBcvcVmyrIKqeigtFxLDZ/JvIg6wzynTfILMquguBudMOAoDkfXTV2GC10n5PQRS2Sl5/\n6Hr6dhF6JjzVOY4JmbSooG+na/uYOFZuaSe6f0jm5jQmeOV9O17a2zmCCRJYqMCmo1r48ugZhjNP\nnOwVjcfNh4gi6H8jF96FJDIUCpElWxAFGFtT84gGLifPsT9A9S3UasRUI1Egf7L3RlQUEP2cUzYA\n4HwjlZFTVX5bOh7vfUoWSjuxy5B+ANB448VXAg4NBPYNI2khTB1B3qZkHtEtfjr3fedkFDBBJQ1r\nCNsPlyBzX+8WVn+GBmEDV8WicwLFATw3nqxtv6taCAA4uL8QAktJ4hlPZXAPV2PwZ7St/SYPMvXk\nbfu/yvMAALkZTjTl03c93vbDvaLHA/MpTDgYskWTMhT6g2VrvKcmBNOAdPKrfGqMsFK9/6JxpLQ9\nYxyxBN5+7nwAgKkXxn+cQBFjN1bMexEAMKz+blhq4+tMxBqBOZck78emU58/8uxm7O4i4ZuzJx4D\nANT5HdhYQ57Y8BELVmRT/pa9jDcXLfTjulKirL67S2aE9CU+lHaU2rzfoYaxQz7Ok09lPPQIefda\nJ2ow9WKiXbnvoXp3+LPhyNyfSNn1ZbJ8pMURpO2n3yuOkOiZ361H73wPOZXKudMOSNtu/5K8dpaj\nGmhZTuzOqfKYxfNnHg8M7bIICwC4Znth3dC35++zDSy/aA7rC+vNSTknU587Pi9Hb5h1EXli/5lP\nNPPhr9wNTXBgPDpaD12nP48oT4tx2cg9WLl/+oDcuy/wbsZfbz4pQZm+IE7uxsFzKCXTgj9OPCX3\n+LagutVxUl4Yd6H829jMUgSysdN2SCPNR/ic9lRCFAR0n0Mez4uGE/Vpzb7JccdwpsPTndTfdITN\n+KRqDADA00Xt2zRAXlFvURimahpxdrcSW+7azC34goWPTGQ5ybYHMvpkW1lUBvhH03MZDqbGPtjk\nJOZeVSAL71VQHdZspbl/oq8vNdx8I9F86wM0p93aUoTWA5QCbbtYiCdtNM78ZTsNagvH7sUTXxDN\necPU4QCAV4q/hFaIZzIsNHtxXyGNLeaa1FkODRsK+j8oBXx5G4m5zX8+MY+sfzCtXK45ej7eHkLi\noXk2msdWryvC2F2Umzh3FuULXzPmgwEp0xldjMbmcFMzepOljl6EN1sPNs9FVCvgomG0MPlwH8Xb\nZGc74XNRFQvoqKKPzm+C00IVNzySudW1YXSx2FJ7uaxu5s7neQ9FOEmAEho2GLVN0MPYQudwHn5a\nZRBBG1UaFh6HzjEitC6WP44pw2pdAtpae28AfCEKAGYDPWtbpxXaAVLe46q1XGkYAOzTiULg3JIt\nbSv5nAbczCwXJmWT6tmygs0AKJ60dN3NdJ2+4kkBePMY9eEIVaUl5hug1dO7v7J0N+ZNo+TDj++m\nxsoXhgBgmkmTTO/XmTAyKq2dxVF2zfPj3LSyuHstnLkDG/fQ+xPV8qAQZsncS0Y34mgFLSrVHvou\nV/1oHVZUUSc81kHyzDadD0dZrFxDG5sGnueHcY9RKmPUxKV3WbzivEbU1pNq42E/C9wyVyAgMqVO\nQaZLFNtoRXwIufB2s1rAkhdqu1TQ+JK9yXi0TYrCuJU6wBV3Pg4AGKUzgZPR9k57o/+LALglfTNG\nXkl8odcbKH7s6JZCWGvijwvYVLAw+nR4eFhSo25jE683ukfjyQPEAVTvpvrtHSLnGVWr6BsY7X5Y\nGuPrcsiqluJDm6cLmD2TJvDDTVQv6wIOPNlIi5kFOdTOKxuzYDBS+5iWT4XdXFOM2ovpfd5Vug1X\n2IgueXMbU6jbnQNVakJwA4Kvu4cnbAtkRKU4W46Hb3wND716g/Q/j9f+0EPWtgdeuSXhOtpuVdKY\n8tMNzyCqE7ev/jGKi+l7eT6lNnbFbWvxUBZ9rzEbyID1wM1v44ml1/R5zZl7iUL89fjlAIDKG57C\niH/dDUCe3KltQalOjbNT/b3IuhfzrNQn3PsWKfHOm78blw5lqtqWIVjtJFr8pheIAmWwCbBPoAan\nmUYDir8uDYbOxMUoV+XV+OUY6zyWctGTq0ZUS9trFtJf4zFgZyNNRn4/jgZk/y3f4HevEKWJx5ia\nWiMwNzHF9zUCmqewGx5lea9FQL+Q3m3TMepjbIc0uGAxxb8u38WUcctLcbGP4qgde/gERoSopnJP\nGCqrV77x5IUJzxcLvsDtmZcZkJXkVU39TwLtFfFtPWgT4GH5AQ11J57LszesOcLaHMsnHM33A5Wn\nniobix8foXjUqs9LTut9T2UMn7DDhsiM09h5nkGoyyyS8ft44csRUDKNxqNLc/fhr9svAAAMNVEf\nU5suwtQ4MOVMBYIoItpN44Oql8S3xiaqN8nUn49PZ753hNmCF7ooii48BgBYPIjmk8sa5+GX+RQ2\nwTU1LjH5URcmjnSBJjlxdng+9Ym1B1MLV9v27njp94AsbASg3ENj3b05tCi72rENN1XQWLVyyjKp\n7H/VMn0TvxWDR1McaSaLC3zfk45rLE70RNmV/wQATPnrzweitMeFnovQx296Afd8RfMoQy312/tq\nR2AUelc0btpIxoZRG08sRrQnFJquAgUKFChQoECBAgUKFCg47TijntG+YKmPImRhND29iE+/YB5F\npkQ6fdwxbEExAKDYTh4vqyaAaj15k8ZkkXUiLKrQ4STrBvO0w5MPBAuI+xI26xDJo9+WbeR18WfI\nYg5SnkVBVszleQ1V+T5EVfTbxYSTdNV6IJCa2921ldz9X972GC4+nOguPxEUnU0BznXryGJ/5aIN\nuMJOYg83brlPOs5QRbSy7nod1gfJS7j2ZqI+aYUwVOX956ECICnD+rPIMpS+Tg+Arv2/s/dKYj5V\no+hZV62aIZ0rvk9eAO/UMIxcNIYZ90YXNGKxrS3uXnk6J7wXEXVPddQqCWwIYbKpLF/0Fs6q/ylt\nszOVTCGMy0v2AgBeP0B1aHheC1qdZNGKeOm7WbPciKhlC7vGydQvc6lutDgtuGAMeWVGGMj0+UTH\nEHzYQNa4L1nuxNKVd2LeGPIGd4wVYTpE78IzhLxcQi/swLbJVF6ReWTvmrYOWnYweURPDIPUcl3s\n8NF19F2JXnhVGPBm0vbR+U048BXRBX604WdULo2A/DC3JrN3EtajekJG3LX9DWZEmYhO0EYWW0+u\nSlI3PnfWHtyX8xUAYIyO3vfTXflQMcvqH9deCgDQdajhy6fvGorSMxRldGLUUGrXD2RUoDMS/xz6\nLkFSMDxZRHWsjSehAN5yNYmxfNIwNmHf8oV/x3X/+kXctqeq50m/f37tByhdTxZI9cG+pRQGwiPa\nPdkP244TJSkB+ZOorlfXZGJCOtFy1oIsou8/Pw/vYx4AyooLoF+vKCB7Vid+KltUe/q2xCYDXIw5\n/3ENUcoKh7VjtonUe01jycu54cOzJKZB2Ais7yZxoAAjgeg7gGfLiKZuMlC9DZmAoIXat62WWByN\nM9WSyrG1mr79x9c/DvX19PtIyCFRzOZsvgsA4CsRkaUnL6BJoGsfC2di8LnkOXEYKLRkX1MebO+R\nF1Tnikrtz1Msi2LY9US3aWZMjFHXHMLybeRCdeyV23DT5kQvAR+XYpUjYxE2MY8vy4UYXtCFCsas\nmPTI3dJxrtn0ImOpuSEeFlEYgcpH7ZFTqnMuq5GesfxVsqCLKtkjGsig/kvf3vd4yHOMAv2r6qqY\nqNWL3Uwh/zR7RQHg7oI1AIBf4/R6Rk81hn3+EwBAKb45wyU5tRDVJz5GGJtFHGliNE1TERaOI9q4\nK0R97DF9gcRUGKgcpv3BsY/aV8bMFJMHC4C3gIUf1Z7cEoCLI7EhGqYKHaorigEA/+8smhuMzGnB\n9ZvvAABUstCMFR4L/ovlo45EqF9R77JK1xXVvc+VThe8eVHsbKGx7rKDNK+0HNBLUpUX/UOes/Ne\nqDnbKrHKVq6jEIZ1TZPxYBrPYc9YNU3fLj/gL1/58QlTmQcK3643okCBAgUKFChQoECBAgUK/i3w\nrfWMmppDAOllwH5E3s5FhHaungTnjWTJ1TnIyqNXheHxkidqgo08hNu7iuAvZgoAQTpXCKlgPkzH\nhU0iROZh4UIQrhIRERtLAzKMzm1VySkyeK5Tb1gFsZOswIZWMg3ZK6PwdLH0LClqSJ/31X0DZpXI\nMJB1rI79X6JvxY3/uq/X42M9P3e/dJf0O9UIVpEfaCfPnz/LAEOMQM9rTrLu1/soNlNzZSvC72XF\nl3l7ouV8iKUtYdvL5dOQl0aB1HMW7MSrn5MgiZ0ckbiv7kKsmvcPAMCVj/4KAPDSkfMQzGImNj39\nPVSbC1ULfTcLi8OJVDmkGFbXjkxJCCnKYj59+RosnUn5LHkwutPYio8aScxk9h7Ko2hK82HTKvKY\npVeQFwYArCx1iVjuQM+8Kq1zQnj4nBUAgC0uCsJ/IKMCt9aQ8FTJJoqnVJnCOHLev6TzbquhnJqP\n55OkuUNtwrVVJObTHaRy/2zwKjy0gVJoZH1N9dIIEc4h9Pw8Pk7fHYEvi/aPsDbDsyE/roxCONHK\n682LYuUWiuHm1matVwV1kOqCN5veky9HRJB5SQoMnbj6G7KS5i3V97wkhrBUG91Fasz8AVmdP9hx\nlvT8jS6ynk6qHwpnJVEdHAdYXG9zGG3j6RmiJ9mzJfOIcvA8gy++kxiD09MrCgBNMe/y729eNmD5\nwFLB6KJG1O04cQ9O41aKj7a3Cpg+mzritZg2IGXrC1FDFMXZxHhpWkWiDU9sXoTb7iEv2q6pb9KB\nU4Gz/pe8aY7yMOrOo/bMBe+C+y1It1KfyAXv/DP90JfT78YC9jWKvDCup8bKGTm3lt0kxbUO1YYk\nT/xVpbulcqZr6NpRZtcdZ6jFUTv1bxPMFMMZFQWUFZD4W3qZHNdlaGTtsUVEw8fM4zmBPKRvlqwG\nSlYDAP5vDu371z8vTu3l9QD3iHLsnfYGHmhOFKnhglKlAukFCJUmBDNobD17QiWy9cRKWVlJcblD\nbW1o8lnjrqHxAkHWrPvziCYD95KOemZJ3G+O311B3/3Tjr5TxPBzn+gYgmff/cFxl6MvPFJO7I3T\nldrldEF/CtJEfBtBIpEn7rW0baSxtTbbgR+VkGDahx00RkV14hnz6G1qG5LagSKg6R6YUYizSdRJ\ndDC4p7MCVlTeS+1x+NpbAABhnwamSpqDJCvJmfaKAoCpQYVgA7EGU00H07JSFhiK7RnkVIWnLsf4\ndx3fusUoz9up8SSvjWp/lP0FBj1FlXnDjUQpnDz8GNLtNDnwRmlfht6D4gJaZBw7RtSezO0qmJha\nblQjQNjO70mUK2st0DCbRlQ/q1vhogiMjXQcV0tT1xqgYY2RL8DUQVHKW8onNf2h6qLnpN+9Kdmm\nim27SeCBT/Mff2PRSV2vL4SsgiR24S2Ip2sAQGPYDX+UBrhDz9ME5ptHngLYPGjKgzJFrCeCMauJ\n99wk2uGrs2JcMa08d3QVInMcBbiHDtN33ffsWCxaSBN/ntfLegzwMgq1jyWm1raqYT3Gr07lbp8a\nwQQHKYNuHmRHgI1VajNNxjR1Box8h6gaaqY8Z2oUoHPFD2qRi92Sai0AaNlEULuC62UmGQT9Kjyy\nkyY4xh00IX7xjqNo9VMXmJ5Hwe9GbRjTfkvvzH2pCz6WX3fyIUaRiwowHKN6z/SScK/lxzBISnny\nvTkNnQtd+TJViLBK88nyGchD/0qxt52/Bs/tpAXxNROICv7equnSwtV2jD6C7ppOmLTUaL74wxzk\nJVGq5ojqaFJvqw6irIt4mpZKqkMatxamNipk11AVrCxHnL2KU+7V8JacedGfUwX1RGdSReu+ULe8\n74Wo+2yaRfRU4eUwtsp92G+/IAqu7bhKkBp4CAWnfaUd1KA6LZ22ldL3zdiow5suOvBaq5xjV80a\na95vKvFZEQllzPsvEoVonRmCr4rlfdazhWBAJeUX5IrNW2cvg2UuTTJXeKjdXW6WkxB6o0E41NTe\nPvoXUydXAe5J9P6iHpZ43BrChaXxwmv1brukDA/I+T47J1NdNbZoEWD5ka+fsB09YVf3Tr/b+eBT\nktgcICtdx4Irxy+8dqO07aP3SD3awPqEy+5aJ+17aNLHAIC/rL8GatZ37svJg99Li+IoC21YeXA0\nBuV0xd1LHRTBJ1yjzqOOsGx1otAX0D89N9m2h98gcSh/Ecsdm/TKMu5PP4pn+znmeNFaTvXpZAWF\nFl9PdP8HMiow5v8GRgTkZMAXFt93hM0ixE5GpRWPf1EqCiz7wvJBuHc0tb2ho0lkLWqM4uQz3vaP\n2EwUHLVrSdExla+oc57eb83rN5c0G3hpMwXfdSg0XQUKFChQoECBAgUKFChQcNrxrfOM9uYR5fBl\nkwXa2CJ7V4reJSvP3tnDkXUWcXvLmPpFpt6D2haysHN3kd4VlVLJ9GbDGrSBLK/eHLqfq1AleUQ1\nPrqOuVEEc/xJtAJ9Zxh6ZrR3D06kIZ5q6JvpiS69nGS1Pz4yFthn7euUE4Y/U4SZNE1gNJEXbMGi\nPVi3lFKI/PDhX5EnFMCnl41OOL9gMeXMrHs5kV6iESKoYdLff64kKf1pU8rx8WoSIUo7BLzy4F8A\nAKMeIbfDlAfvhstNHp7YvH2mJpZnlHlGo1ogxLwF2m6eckWNLUfIi6Rt0yBaRB6PaUWkkrQ5OASG\naj07n9G1Y7yibedRfTk66xUMP0reS8chIMgEQHp6UGORtl+DyIVEgTO0U/mXPnqltJ/X0di8teGw\nCpnMo59+A1llK+qyoSMWM/RdjHJeKMBcH3/vkElAWiVVWJ5jV4gCAVtiWUMsnZG2O4Ku4WTP7JhO\nJTm6cS6GvEvXefs6+i6OStniytsOREES1BrUltzjWnsBXTtvM12v5sYoVN/QOYXfJJ6Tm8jiRstZ\nGtwwdQMA4L3a3nPrflcR2Xt8XlGOdb+mdjL3sf8AADgnBGHfw2jqvXhEk8FW0b/F/9GfPY/f/IPS\nRm389RMAgFmP9Z9jkveZQZavL2QGIswr59hG9cjcEsFf/nQtAODa3z8lnTvoRspP0vjoMIxZRG2v\nkOUHLfxIQERH12ycySjclghMTdT/+9PJHvtM12jcn079UaxHlOOKw4vgDtE743lIIzoBOif55rpZ\nFya0qPFFI1E/PtfQX3WOD/bqxPbv2CF7700NVMbfZ+9LOG6fd3DCNo6Sj+7AsGFN0v9fucckHLP/\n50sTth1cQttiBYw4HvpQ9oAbOpgY2TY77N3xz9A1VoX6EI2tjiRlu2vQWgDAlwvb8O4OCtcw1MvP\n3J9YEUcyui7vi3tDX9eO9cimek4s+vKIRvVyXtD+wFNtrL6g9/QJA4lLr6E8RR9+cE7KZfw+QhUS\nJEG92DRrAZbjnI+dvYF7U0MXOpH2BfXJTQU0xxICct3gaQG1nhOjBPcUHgvaBIlBYT3GBHH0gsQM\nMbSJcc8BAKIGEBLTHiv4HqHsTtY/Ljvz7IqTwRldjAYcdHt1QITGG78IFTVC0jg1rTsxl1LQymm2\nAkY7aDEaYHzRjfUliLK4zow9LCdoVzDhGr2Bx9QJEbmT4p2MEBWlmEmRjbFBuwZ+x/E5nK+tOo9i\nhACMuoBRm75KTm1KFR+vINXasruWYtS+xErKF1Sq0InTNYKZEVir6D2L26lTfnjaJkwcSYvRtEPy\nsTunvJVw/lMlpEA7p/RXsJfH73NovXirm+IRp2RR7NWGVyfj1Z//HwDgnj/cgydbzwUgJ0AP2gWk\nraZRJmzmHwZwlbActkdZLK8ZkhHBU0DHGZsAVy5bjHUJCA2hc4KsHulMIVgZBdabk0h7zVzNJkcX\nABWLaaI8+qklUu7OvqD1ivDvoumcoY9Yln8+9A/c8zCp26atNGPKT3cBAPa2D6IyGkPwz6CRx1tN\nmm/htBD87Pm1zVT+6GAfbG/SC+guoucLpolIK2d5EZtDlBsUQNsYemfBdBUqr6PnGvX1TQAAzUEr\nXIPpOHMGrYI9+TY42LfkE/2uqgwM2SjPfmovpHLkbKNytY1XI2s3/a6fQ9c7ct4zGL2U6m1nKR3v\nKJfbraiiBTQAuPNp/w1XrUZL8NQYXr4V6CcNoHu6F5YticrLm/1kmtn9Gxq0xv59ifR74qP0jsPz\nnNCsTVzsdk+hGEbbN6lFtf/mH7ehexj15V7x+AN/tMyYEkgHBA09cNdY+mutp5ydAFD6Ii2iym95\nCvsO0WLNMkIDDVO37S6i9mirDjPqKKAtYHGkLSbo2DjC/75xbAoOuKkd7XqJ4hF3PigveN8e8Q4W\n3h2fDy5gU4HlWZeUvbUeEW6mAm2vYgveNBNELhaulftbWbFdlCa4IzaQ0vLh2S9Lx+3tlGOOM64i\nNYD2dyl+JL+oHQtz90r7X1gzD0C8MY5jwjaiuO6JyVHMczV/WDMWU8y0GI9Y6R2HrBpJR0HXndgv\n2Q+oIYiJYx1f7L3cTXTWRr89bhGaCsp+shTD3rir/wN7nJPKgjI2HnXks3T8+PMPH9e9eiL3fPou\n7454E9PeIKOPrjO1sfXzUR9jzFenbiLpLSYr+sdvEzVbBcA7jKlAV/77ESZNTXJu3pOBam0auqZT\n/8gXpRgVBSfKnugilIMvQnm4lxABwnbep7Kc94G+7yGqvv9Riu4sa+ccAAAgAElEQVQRVL8thxP7\nGPcwmg/dNXMNXj9CBrHoxmSms4EDN3So/af0NhK+64tQDoWmq0CBAgUKFChQoECBAgUKTjvOqGdU\n52JUQZ0K3MDKvaUBu0rKcRbRkeIgALRNpXPM1XrkbCdvi7GVLCMavxr155OFqthCSowaVRT6Nua9\nU6VuqXKWMC9Ynmy97hzNRHq03GKlgpo5fCTRIrMQ4zlLDXs+H4mS/KEAgJfmk9zCnRiOsruY+/04\nRI34OZ94+/ZknIxHlEMwRMAtdPz7/aNjAm66kMQwPjo0FxP+RGXf84BMjQoxj0mehoRCKm56KkHM\nqClgw2aWw/PnIyiv26elEzHdQPdrnxHClqcnAQCmgP7qIMKXzTydrL6ErILkQfPkMw+hS2CKeoB/\nOFMBLo7CcIy8KYY2Ef4w3efdoZQTc0WuBb8RSJU26CMLnCpsgKE9vk4NXXUrjpxPirepeEUBwF0g\nSLkNk6HzQuIS3b3/BomyG7myHXuYR3RkGgk5eYP56Oqgd6pl9VJrC+D+8asAAGlq8gyZVAH8bjUJ\nL3BhFX27AK2X3k9nqQ7dc+ie5w49gP/P3nfHR1Wm3587fSYz6T0khNB7UykiIFhWbNhQV9a1F3Sb\nrtu+6/rbXtx1myKWta1l7SsKioDKCtKRTgiEQCCkt+n9/v44772TZCYNQtN7Ph8/xDu3vPe9b32e\n85wHAJ4pXKOW58/j3wQAvJI/BWv3sN2iiXTPkk9j3ku/0I3J3KQHhEpuw1gzLpi9BQDw/RtZruu+\nvANr7op5awCKVoWThBDS5hjPyFXEfumoDEI28BsqtKR+pia8eWB8ghrsHGGR33TtjX/Gec88pB7v\nbd9ThHfKvv3kcYuQHSsSeUUBqLTZn4j/bzvoKx5SABj3WXy5E3lElWuGP70A5qb4562ZS1rwRY/G\n8rB584TXvVpCSCRqMwpdHm++rNJUFeGtQG4IUwaSfnvUwzHduSsPjiNsR5YGnv+SMxMVl8ckan5W\nyzFjyfppceVyfMS+oXhXAcBVwB7leCoV27OYF88hfp/wq3vhnslCmrbaoRdNPSjcjhGTrI6jipBI\nw3hA1rMfBdIUD4mkzhOtQ3RwVIj3F2zg1ql+pHzBeratYhkHuO5AxRwK203NpMfyHXMRlg9/n2UD\nx8umz3Px/KTJPG/0PqSWth/Xp98RE0TSL2PBJyy7F3d9ZzEAwD6SHzDP4UJIZss4exRVk3dUD4XR\nFVeNKhKJv3jye0537QrDn16ARL7URJTdY70/EPMa7VhxfFRZRfF52sof4uKrKeb26TsTe3TtiRYv\nsh2Mr8mvo0e0LRLlAFWYb86BYt4p73qNpA/KkL3tl9Cpe/rev2N0szzu/oCxSay3pJ4JMEVNcpfK\n8F8F2MvYvv0TuL6xbInNg/b9/D7PuC4AxPp//wMLVZG6h5+6uUfP8Gfy2ukzd2DDW2O6PFf/NabA\nHw80z6gGDRo0aNCgQYMGDRo0aDjpOKWeUSUm1BCOWaqVeEtLi4yIRaSdyJHhE5Z1nQgQ9+ZHcXQ6\nPVlJigdKAg4fZF68UBEtSC2HUqHoUQS/wRQZrkAKLM18ptEVH9ck6wCnCNkMi/iZcJJOjftRPG36\nYCz2UPmteZCkWt2UtAEAIBvij7WFElNz9wudW0nPvmQnNn44qtPf2+KHL90GALj0noWIWETQ+2jm\nYfFuzOzRPbqFFLPKKSJBNcFk/DCbnsz3MUO16imeT/+lTngaabnadckTvFZnQtNYVmq6iOu9MWM9\nLk1jnslHdl8BADA2x2wnFXOexbxhzL/Z6KerpfW1AtUjqkAXBCJ23lsKKl5uHUIiP4Wxnl1A1rVp\nRwDSl9NTcU7qdQCAhkYHRhRVAwDcIpHeUXMyIttoYUuq5rUZKy0YsZff0J4g/rN1YPu8uW3rriOU\n7DYlOVTrqVhfiJCICTXuyECzeK+WGop1QQbkwSKdisiFG5AlbPcwpu63uYxLfrZ1NFxCcEURssjc\nEUAwlQ/0Z0mI+Pj3qk9pBRxoGo1H5rwFAFjayGPMhchvrcSjNQ1LQ8solrHgE/Ydc1MYzUNpifdP\ndmNhwToAwP1VIidqYxJ+10DPxM8yGbv181fmI6VSiWsWsXcZBlUoLJhigCeH7cF+KQVcDgUyEdza\nu3gQg5v11NYr2h1K3mQsW1sJlbJvP5n45NMUSqzouw/+CQAwwNg+k9ofvvsvADGvaiA9xghRkMgr\nCgCX/PlHccds1bFxz9ghU4niFW0LQ4sBGw4WAwDOG7gfALBqRA5knUjTlCOYD7IBK30cfEsD+fhd\nDuMnf/dj/jvj7rvUeyqx/ofHSShcLsbEKjYoT64eSTXt54LmsREYhShAxq4wzv0V2+0QK9vbx40j\nsW4L04pFqkW+4rQw8vNZMcEwy5pq9aF8J+M+LQVuoIJxzc5R7Ks5GS409+N4k3SE5Ro7+DB2BclO\nuMCxEwBQeUO6WjZpDsfyvw1/FxfZyO74We1ZcfV4d8b/4I7G25yf/ifHVC+nS+xOS8VzEr3JCwrY\np++3D1FTP7WNGfWnC4+vG2o8busQkZJnUBO8m9vPL8FBPpj2H3s+zrZe0AHL2B4T8X76wiPbFaRR\nIqB5c9fJjRSPqG84g8ase/oqi7iGk4Gkw0p/kdvFdSeClKSwdvo+nUswRRFZ5P/rgjIMnt6lpFHm\nt5OJ0FguuI3bepqd8zghqqKtR7QjrLUSFB7E6McWwDKTayplHuHvnSOSxDXIv4pWo2QMx3xjpblN\n/tD48mjoHSRZPoZES32E8y/4AwAgbNOrfJnmIWIFLsfc3VJUhkukywunsfNLXj1GjTsIADi4mCtr\nvQ9omSAm+HzmP6vbnwFFZUifJYLNV1jRNFrZ3ErqRtFeKQSOWmU4BSVLoXNGbDG6g6KqGzXG1NjM\nTbJ6zKfQdLsRHOkO3W1gTzWC6VGk7WhfNudgoEwI+AxZ9W0kr+h8gMieT9WPpUOX4hUXKXJ//ROV\nHC+6fw1CYodf4eFvI5OrsfggxUX8m9NVldimGWwo6asSKywq39LoilF4vflis5YuxFEqdDAIwYFA\nhhSjhU/k7ymlerim8mNH3Gyjt0xegzf+MxMAYBDB6oE0GSLFbTsBJwWtl3gQqmGdpO0S7TKBnlba\ntw6j2sVFq+4TbrB82bGu6jgI6MQ8GBCTlsEvI2zl3wpt2jU8BH0SG6zypb45ciM+eGI6ACB6KWVM\nW+ocsB2gQSRildVBVqHx6ia0wusW9evieW/O+SfKQ1kAgMf2UxnymqIv8dxbF/N5op/krQ2gaTiv\nlS5uhLOM76MYcn5x8TvYJDr4mhe4kEvfE891iRolRI3CGJWlR9NY1se5k3YDALa9Pkp9yUQ6Rhdf\nyQTly947J/7HDjgWinxH/HL+KwCAefbWPqfumlu6P6crREQbDUzkznD1tIW46NHYhnzQdVShGuag\nINwHz52n0nOnbKPSs+/DnOMrRBdIqQij5hz2/4sv2QQAaAom4fDvuRDwpfM356VuPDSa+RpfrJwC\ns4Gd4tBG0ibz1sQbGxtGGeAdKARcylkRmTvjJScrL5NR0J+bvqpDGYC+g6HLHEE0xHKYD/M+1lqg\nZQzvNXIYhdc8IRP8YmPatCkbSRS/hvVK1u33SlbiVzuZZ9i0nBsdZwmAAo43OmH005UlofROfoNb\nK6kW/XzR55izdw4AYNHANzD39+2NKoNuKsOe/9LQ01ZQpegGUn8rmrnBdVekIGoRRjsr60xnisCw\njwNAZwYzBbd/h7lJn3j1cvy/m9nuH3n1pi6vOVWQdbK6JpB6sfqxTmBbCKzN6NH5vgLWo7XqxOed\nBBCbdybXwvm/Y++b/X7/RR+V6PRE/b1TenSeawAQFWuw4jHstBV785C6s2tCoSJSpszB3YkM+dMl\nVbVa2fxKEcDbn+OIqV7Jby+p85tiCNS1EflUlPHDx2736ROoTpve69d1C13nKcp7hWAK600eRGqv\neXNSwvN8eSLrhjDKDZ92AOXvD+ybQiRAOHExvjLY+8gPOv1No+lq0KBBgwYNGjRo0KBBg4aTjtMi\nz6guLKN5sAhCzhDUXa8EWx2tEmGLFPMyClPmjEm7kG2musLh6RRmaD2Sgvx+NBnZjbR8uwrc0InA\nZZOwmvsvDyLDRBOLLEtoqOT1siSoVhYgmYZjeIWBUd8iqe53hXoqGyS4+wmLlmAmSWHAJtK+BRLp\n6/cCp6tHVMHYCeWo3DGo3bFQagQBmXX7wNgVeHbFFZ1eX/FpMf8YCmTpne1++/jxczH+LlLtxqVQ\nNv+W1E14aQvFOpAbRjiJJrjkjaRBuS5yw7JOCPi0oZUlC1qsT3xL5yAgeb/wNgT5zQ0eWU0H482L\nwlonvI1u/t46LAI00fQ8cnQl31XW49obKNb08nZ622zbrDDNEEkwS+Mt6EGnGVlfdv5df/Z//wbQ\nPtfh2QZ6i4scTjT66Klo9uWqHlVrvZJzDAgJZsyYS+iW3VjRH5EWlvvOaSzrp/VDVGEufx1diPmF\njaixUChGd9Siegz8OTRvyi1W2PbxPikH2Bl/MuwalX6Ytpv3WzhxFkqm8Xu5X+RvIYceLWPZJj4Z\n+y8sG0RPzUYnvaFB2YDP3qZHNLkhRslV0jjpA/xXF5KhCwlaZT8DcofRs2TWiTLqYt5jgze+jnvi\nEVXQU0/m5DnMC7luKT32wfQoTE1sM4+8TM/QIz1+avcI2/h+5kT0oDZQKN66TnLMKW3Htpam2IvW\nxjxqrWOD2P8mPZD7wX/dRTGax0ejXwYATGy+F98bS0rn9cn0Tk9940HYDx2/jTOQooOdjkVsb2I7\n+knJh/hFxnAAgLVRiN+ttOMvugt4zBzE4UNiIBYMmsMX6JErHD11Z7HOko4Ambkcb4KZHENaPWmq\nsJIinGVw+IBn6fkvCsjomCShci6gb+K8pYRuRKxA8l5W/r40Xpue7EGKmdSJ8PhGRI5yXDDpY66D\n8E56RCUxBllrAcNBm7g3y+MpkDHos1v4HCf74rktWRiQzDnv/Ld/CCU5z/hvs11ueXkMjAnEWhTr\nvuIttaZIMLWKMSGD5Sc1sWuvjpJ2Qi8maEujfNp6RBVI0WObV31b+N162rpPlkdUQdF0zkvLhn8A\nMCvaCRdHOtPhzxQ03IYEaQSdEvSCDVeRzr5scHbjFTVIcA5mv07d3bOWYmmS4SGRA+EisiH0VRY1\nFZ26JvYBoWSxbkkwrp8IT2Rv4S0Mw3b41G4rPIXRNlTrxFDGOnTiEVVgFeEX0SkM8TPoIvCLNYal\n7vRen59pOC1oukBMvbZ5tLLRk2Gp5WCevjuCqtk8nl5IftotJevxeTM3QpVO0v5KUhqRZ2GjyTXz\n37VNJehn4zUb65lU7cURL8EoJtm3XGOxsaWYv+/kBG1q1CPpSPuyRg2x5MIKNbduVhAIiAnHJChO\nbj3yPuehpuEndzIC+oZe2FPknlcF13/y445PvZe0ul/mrMJyH4OS/vDYNwG0p1k0jRMrOAlI3cVO\n33w2T8hYY0TgMn7DkKDChY4kIWsYN3qLhr+Cugh3Xv9zDwMAvLp6Khz9uMj0ltISYG6R1AW8QmNy\nVDCBNBCjoRo8gD+L54VTIsha1/7beXMlzL2BH3Z7KxfHF2ftgkVwUW90cCEw5rXvIX1XF5XWDdK+\nxRX4suEfYE+QFJKoWAS/0XoW3GHSXXe25KOijosjexIXum6PBQOySSW7IGcPAKDQ2ISFB2cCAI5U\ni5gznYzUtbyPfzYNOr5Gqxq37M+NzXRFH/LfhlEGdYMaEot1k0tC9ibSaUPJrK+j5+lgbuC3zF3P\n36rPNWP3vWyXu4I+NEbJI/p1xeUAgIot/ZDG4sJxhPUZMenicg8DQMNolnvwtWX4QcHHAIBb3rwP\nAGnRTbNYF6Z9p4irNNoF7DgxuU7DSbGYoeOl6R4PFIpvIno50P1GuCdIqYhdbPgerXu/LXlXVdP+\nYyOD+pf+7Hz1vMqrI8jPI+28tombu4jTBJ2f7TGb6YhhckfhFZvQ5gvYXp6a/BKSJL7QbVuoNG01\nB9Hq4gBh3mmDTcSF2xqEMvQog0r3MvjERq4gpO7fJD+fYT+kQ3QaxzJJkhHZxLHpkqsZg7rXlQOL\nnu3+wKt8r2CKBFNr+6nZly2p8f9Rk1D83C+heQLrKm1L4kWgsmFUjKh9iTl3rwYAfHiYRgJ5aQbS\nrqkCABxd3a/Pn3c6QNcmgqCnOQVDDjG3iLHTWnNySGmBjCjMjb171teBphsxCcNzvogdP5j4XEWp\nPTCKiz6H3QdnBftvyl5JNfpsfIM6Cp7CKKQckZv5857PQUp8qELt1YVim0vFwKrkMu6sjIoasPL/\nX0X0FU33WOHLkbuNLz0eaDRdDRo0aNCgQYMGDRo0aNCg4STitKDpAoBN0K6wi9ZkX5ZOtTa2DtDD\nKkQf0ofSQrXPl43ShmwAzCUKAJdmbsdLRxicvh30Xh3YUYC6YczDOD2XfM0hxpj54aH0ctzvI7Wr\ncEA9AKAl14IWOwlPqgVTinnTAhnCCyoBtmwKgHhaaSJNKdPD0qiYTk++Z/Rk5jg8eDgLiaQcPn/+\nbADAw7fo8HgB3RE/O0+IR31iQfNIYaFPoZlr8/mP43dTzwUAfPrEZPU+5g/4DdrKEoV3kS7z4I3X\nochOL8i+Fh4zZvlgMrAdOZOFWrLHAL3wWgRTRB7NUTLSt/K7KoI/gbPcSLWzjMGVmehIT5OiMY/o\ngUa+dXNaEiLClLkhwDaWMqwRDVZ66mWdrFJtFK+EoRsLeuX/6L0f+/4C+Caxbd08knU4xFKjemJX\nHB6K/Ax6W35SQvelQ+fDuRaW5zMf//3twUtRu4lquzrh0bIMdCJiZns1G+lVkauMKv3W6DaoXpnK\nq4X7KwAYkvm3dJAWX8UrCgBGJ+u7/5I21ENBo551xWb12OFwKhZVzeTfq6nym1IlI/lgezebIRyB\nP5OeWm8m36VlVBgjRzBJ4w8LluGWTbcAAIqW8dqGsWaYLMfhjusLHINX9O7rl+Kp1+d0e97IyQew\ndyXZGwql1FcQQXJZ1+OMkuMzfSzHN/9H2epvpot5LLgsC8mXUi3auSSvy/t15hFV0JVH1NNPRtKR\n3lmWD9awv1UWpaPMyTYxyEyKdt0EA7K38IHJW83wirauz+U7L7zxWfz2B7fG3VPxbtr+w/v9MvMK\n/G/0uwCA+0aQzh6S9Zhpo7rza8Mn4c3tzGfs2c++Ex3tQppgJUQE9TPqtSASYXsdMIge3QORAhh2\n01ObXA7VuxkRtuBdpYWwl3OciIgBNVGuuqhJhr1S+b9YHbb1iCriKUre07BVgnsA6+ee80ip/tcH\nF7S5T++hCKUMvXYvLkmm4vnSpbG8rnWuE6ei2Rd5Rv1FQVgqe5ZnU3neNyvOx+YjHK90W2Pv99C8\ndwAAv11xJQDAejRxX7zgwi8BAFvq6S121WQnPM+fI+jOtX3jJ+itV/TrAkUFWlEI92fo1C7VlrKr\neBt9ImTqgsK9WGtmeEnr0VxsrGGbUNaqUo4fWWlkG7Vkk1XRUeEfAJrHRGA9alCfp3hBFdaR2S9B\npP2FtV7p64mZDb5hfLh5HVdKwTQZpuavrnf0VOJEekW/7tBGKg0aNGjQoEGDBg0aNGjQcNJx2nhG\nw2bui0O2mLS1kgNINsiqKMj+Q1ShSRnsw00DGZv49Armm/xF6xV45Oz3AQCVQXo79yfnwOWnxeiP\nOVvV55WF6HWySDIqvfRkqeIXehnGHMbr+fT0Apnr9Qhk03ylT6PZ2p7kR1SRiBfpPvT+9tar5Xcw\nj9+Fz8bn3jvjkcBQF8iQYBY5uVa9OREb7mVM0d6ZzFt49ur7kLqXddZkY50l6yx4NJeW49ZfMl5l\n9iMPJHxkWLSPA4eyceQoPZXBTH4XyRaGZ7v4hv3pQQykR2O58kTQesgBtAzvIARwMAmBYbymbU49\nBe6hQdR76Y4ak0M3/ZsHxsN1mB6Pl9ImqXViyWXbCpc5YFWsrNcJUaM3u87x6jgUe7ZuNZ+3eBnj\n4gJpEmwX0SP0x1HvwKEjS+ALL+PMHkovxz+b+wMA9ogEgjUfFSKlvv37eBtS4CkQFtgwLflJR2W4\nCkWwvjkWF23fzb4TmeSEfh3f1T+BfcOfYYalMd4NVnENv+s54/YBAB4vWI+GCOvkRztvRGQD+5uS\nKcOfISHQxGuqp/EbXTtjHd7eM47laWIZTBl+XJXDdvJwxVzkvqjk76M3wTfJjZuHbgQAvLJjVly5\nThb6zWDc7/LhHIuGL1qgxnIr/98W3XlFE8WB/+pWigg98tz8bsuj5Pj0V9MbkzSnBp6l9CAGl5FV\noKRtAYCSsrtx4JqnAAA3VLAe128fhJQ98dNFybX8xgfeYhsMJcXyiCopBpS2BKDXXlEAiHr43D2+\nAlhE0NAD6RToemxKDSoLGQudvkGGm8QCPHjNewCAi2wh/LqDtzARpMez4H6SHobPm/kuKUYf5tgZ\nAL6rNQ/2FL5IdDzH/+sHfokrk9ker/r0PlFYwNBIb2uFzL5uG+AE1jDOLOSAOm7uaGa8/U2T1+K1\nJOYINe9lpXmKIpgzmfPVp5XURkhaEctv2XwO3dNpG0zwzGSFJ32WFPeO/rM9mDeM3sttTnrlaN3v\nWfxoyCHiTV2y6hEtuPIgAOCNkpUYvkbE17a5JryN76p4FQe+fg9Mrcdu91buAwADPrwDQOI8oz1F\nT72iADBfxNuvXz8UpgTiNb/9pGuPqIJV70zo0fPK5y0CoAkPnWh4uHRAyr6YdoTB23mfSBVex7ed\n50CfIdZ/bkBaxra+5WG20V/Wj8B7i2YAACQlLfAlTchI4pxpNXD8ch7Jg0+Z/zJ1kG2cR62HOHbI\nOsAgNAy7yymqlC1i4btMm74DG94b3eU1Gogbb14JIJbfHIjNswbvKSnSCYGsl1F6B1MuDn/q9Bxb\nTpvNqJKbyCB6qD8rFsAdTo7CLwQbTEfZWXfa89DgI11GyubgIMvAs4eYf+36Qm5U4dehMJVqHx97\neW0UOtjEvLKkdRxKjwqZVUV11x7jodmFII5L54Be0ErDHt6nxWmCsZkFTxGLrJQD7flV/Qx9R1na\nc8/CLmm4y+74Ey4+mZveYPzkbPAAjdNYfxmrTbjj8e8BAK74FsV/dG0ofhkbWXe/mTIKj2RRjTNF\nx2XNpl8/icEv3ctj+2LXKCJSOlMEwSw+35jKRWSo2YKIlb9nrGfT9uZLKq1aoVxHDUAoTahxGoWI\nkizBsJGbJINJhq7NAhoAJL2MEWncCGaaOUusOzIEmZt5T1cxyy2FAF8B24eh2AeUiWWa2IQ2jQSu\nuWAtAODTv3ed70xRuvQI5VtIQM1hznA1A1KwO8wZtdTNjecjEQte2sR7pm1kGaz++InMWxSBqYF1\nf2ExB+EPi8+Go4LnGr0yvNl8L/sR1k9jhkNdAcrV/OPoJWHY9nEi/Mcd3LwcDmWgNkR69Y8zYh/u\n7OVsB5mfG5F8qAMHUQK8P2Qf3TaaOQq3BC3YU8ANk6mQE3Wd14E/bmUO07SlNth9bEwHbmRZV0xZ\niP870rl6cyIolEnFYNERbTeR526/GgDQ9EVul/d8eAA3oQ/VjFePHQt9/rZ5ywBA3ci3RZaB41LI\nISdUDu4Kyka0Lcb9YYG6IVU2ogCwvVoIlOlltI7gd0jZHZs2lE2oAqMHcE4UAh6bj2fLEMNfZ70G\nAPj7wdk4Us8+2jSchppPRr+Oayz85qYhYRxsYf9Y38rc03elHMXnj/N9Jmy6HgDgeCYFiXBtGfOn\nPj3odQBAS9SAhQ1cWI5MqUY4KnLchriZOejLwC9auBkpKSJNv3ZFP2TsYj21lLDvJ9WYYfTyWNV0\nPW67+BMAwEfVIwAAr6ybgnmTmAP3vQNTAQA6v04VLrtqIFXFX62aCkc5++21Y7cAAB69+EvcX0VD\n2BefxW94/nzWm/j5olsAAJ4C9mVTMmCtb3+eP1NS6YmKwc/dPwKTmN/CNgk5U2mEWzp0KQAgIkdh\n/aT7+e14NqJAe0pu37SonmHeVasw3U6jx2bniITnWI/0bShO201oT8WR+grB1FOmZXnSERvvFfV1\nGc2jFaM2/zUcNcFWw/Nax4gQFa8eUiX7dcvZAaRt4Fgw4ddcq3jzACWzupI7dFRWNVqCPFpWS+Of\ndZtVzRDhKYxC38p2ZGns/BvIegnuwpiDBqCAWeydBP1f7nsq6a7vxOZBRdHbvKPzHPInCt5xXJjZ\ntvaNQOHSoyMBtN+MKnP+yMcXtFuvnslQNqKnMzSargYNGjRo0KBBgwYNGjRoOOnokWe0rKwMCxYs\nwC233IL58+ejuroaP/rRjxCJRJCVlYVHH30UJpMJixcvxosvvgidTod58+bhuuuu6/K+ESG2ovdH\nVY+oYtTRhXQIJcdSfyj5HhV2UehIEhoM/D1XCLm0+iyoa6Wl9s9V9KAUD67F1HQmDVVSgDSFkrC+\nhnyupvpkSMIjakyi57M4s0kVx2kN0Tx50BhGYxPvbaoRgedNEkwiwL2tt0dJU3Mi0FXqlpPqFQVg\ncMZbhfV+GenrYu+vfM//7CINTZ7pR9oqxcXGf97/xwxc9nNS0iaaY9f+e97jAID7f3u/ekzxlkfD\nOug9IkdoFb9L8tF4q6LBA0hhnufLjaVFGDqU6QfSzeRiVDjT4SqnhzyRNWzOyJ0qnXt7A71Fsi2C\nxrGCpi3YqrJeRvo21os+YI1Lc5G+C1gykNa4CXeTAlj61Mj4B7ZBkkgp4S6QYHSwcL/ZfCkkkWsl\n0kjvpK1KD4uoWkMCj6hP5FQbPKwK+3aSsvfediak67clqubzPHK+HrIQBQudRy9w+GgSzEMpzCC7\n+bzMNA+uOosUwNlW8WGsdQDq2j23OeLFxMEHAQANbw5QjzeN4H1m3boOf8nbIo4Kr2soTaXAH3GR\nCtW4MwtFHykfJ4iGMbz+7zNfAAB85BmO8uauadAd0ZlHVN/eERkAACAASURBVMGg1+4BAOy/cRHW\njKFYyfAvuvZy3rqY1zx00fu9KktHPJROwbXhix6K++3OjTcD6FtBhXF/4Htt/clC9W+lN5oABNJ6\ndp/eekRDdqD/hQcBAEffLY77/ec76H384Yjl+OVhekHfWM+csf3Oa0ZREsfqlR+Ph2kE54KD7vS4\n+2w5ix7PGc/cpR4LC2rbb//wDAqFt7kpQlbBE3Wz0BykBT4qS2gN8L1m55UBAHa25qPGTcEqWVZS\nRUQgRdjplfy/unCsL0bSQljXzD5wdAfHm7RyCf9NY2qIcHKMxfHRevZN+wGOJ6YUCkABwH9L+duj\nuV+qInHj9RNxwW1r1eMKXr6KVv9N20j31Y1thbuMlF9FyEjvA1pG8tlKmi1blV4NWWgeG0GRg/lM\ndwXpnZj31IMwd0H3Hbvhxk5/Ox0RMfNdtn7r7wAAm850XEJJXeKsVmBTYg+9gpPlEVVg6iZ38VcJ\niTyQeg/72YwJZGnVD7Bj15ZiAED/IobZpJp9KK1luINVJyNyMdcPekHXtVXHP6vI2ozVZex7sliL\nBEf6IYvUT5JfD8dBIdI3jH1QtkVgFAy9kJujsOTTqekOLU3xz1Gox6lGX/yPxwnFYx+xyjD7Tl07\niQb6lonQuoIsoe3D/Bhjaj9vfVW8osDpS81ti27zjHq9Xtx9990oLi7G0KFDMX/+fPz0pz/F9OnT\ncckll+Cxxx5Dbm4u5s6di6uuugpvvfUWjEYjrr32Wrz88stITU3t9N5t84w6+7PDhUXS79bBUUBQ\nEWRrBGY7N3tBv+DUB/TQWbnCL8njQNHoscHt5QI1ycqWZDGFUFMt8pAKKpU3ZITTy4bnbbECQilN\nb+f9xhQegTfM8hxpYfmDAQPCdVyYKHRPa4OMlPL2LVY2SGgewmv96X2f97MtbbA6zI3CrFMUj6oP\nJE4WrcBTIKmDZkA0g7RpNWoC+MMfFgOAGmMKAN/8AamJDwgDAgCc9fC9Ce8fZVNImHtKiW8KpsR+\nV5RsvTkyxs/iAu3Z/qScjVlxH9I/j22EdR1SXP7q58/h9QYugMuEeq8/ZMDQdPLdkgxsBys3jFLz\nGqbsT6yKqZbxGuYEdW/LQMr++N+bRM7dWy78DADQELJjXW0xAKBuXybSdsXiqwH2nUTxrkPuYhLP\nYhufl2dqwXN/u4zPmCDioN06JA3iQt5blopoPivLaGKfyEj2oL+Di/5qLxeyJY5GddG/csTiTt+z\nLOTBM41U23xr60R1Y/rWwBVx556/ixuPgxXZar80C0qxrAPMTTxmbZARncf3UZRMfzT0Y6xsIZ1u\n9ZKxnZbnWKH0vbn7aOhSlG0BKnQCjEdbJuLEj8c4tOeehbi1kiEH65bGx/8oeUbdk72wr+t7upSi\nrKvE0VuqjDA39+0zFE2AsE2GrVoxTPK3tnlGI/dxfL+8YAe8IlnwyzvYF03mMKxm1r0sS9At4Vgf\nFLn2LNMbcM/A/wEAbk+huu3Albei3xscPDw5bFvO2V7cOZrx7W7Bj3xl5zmIijaYn9OCJCOfU+3i\nBtTjtkBfyXNDORxkdKYIbGKuUmInszfH3qXychk/nsYx5/EX2da9/SKqkmfKbrFAleW4/IHePCBv\nCqmyTR5+82DIgD3n/ruzKlZjfgHAH+Y7H3amQF7aXgc95JDUnKlKHllzs6Qa0dwDQxg5lMm3a8UG\nPLIkXks9apQQEHYAJb9zb2nkpzva5hm1ncu26V3TOyNYxBLb/CpaBp3hezf/FwDw95fm9uoZx4qv\nQ55RN0VwYWd4P/wZkhoj6BrKvjxxRAXKGjnX5yfTUHV13pfY6xXq9JKM9/bSiBSp5dowZa+kKvTf\ndOtyAIA3akJNgHOmR+QJX7NrMJJ3G9UyeRVDeQEHwLFFR5Bm4qbyyzruMpsb7SotOBGc03jt7MGl\nWP3u+E7PO5NxIvOMekUYQ/n1jNt+oqUQi567/IQ8S9bH1m1toeUZ7QImkwnPPPMMsrNjUuTr16/H\n7NkUDTr//POxdu1abNu2DaNHj4bD4YDFYsGECROwZcuWzm6rQYMGDRo0aNCgQYMGDRq+xuiWpmsw\nGGAwtD/N5/PBZKKFJiMjA/X19WhoaEB6eowalZ6ejvr6DioJXcDaTDNBzRDhBbFFkJlHT01hcjNs\nQoWsKUCLsEEXxc4KWoxqnLTUjsyuQW4BLVhHvLRKZ5g9yLDS5FXVSlpMitWPARl02aXm+dAiqFge\nIUzhCllwqI7vEmqlJUuKSKpH1HGYFhRbTQiygVYwxRsadFCNFAAQjXkv+wonM48oAIy9mAIO25YN\ni/vN0z8MS0PntAlLY8x7qXhQ67bnIGMSc0VKU+lqCa9MU5XsXv0rvU7rbi3DKwM+BgA0nitUbquM\n0AlPRdIRGZJgcbfMpgXRuNeGpCNCkEYIHVnrY+JYCpVWkoFsMymnq/xsJ90I1mHBklsx9WzWRYuH\n7cV31I715WwnuSKXLXQxSm7T+AiSDgrKXq2sPluhLjfVCaqcU1IpkIq3KJQWRm4R2+hLuyhQ4rD7\n4NxNb0TmnljZIubY+/myhHKoKINzZBDfy9gBAPCIhjnSfETNFTlkMD0tFfXpSHme/Sg6VILXxHND\nwuDv8pvhFBxgT5BtvcqbolJpFbGey1O/xG8r6HUdk0Yq9GR7OdbWkZo4ZWg5Xh3wabu6fahmPJYc\nIFVZoR5n5rci1crvWpnBygn5jIiKccfoBpLNdFF8OpLKqUu8FlS6e8glPQZ01ffaKnT2BV1+5s65\nal0kwpxb6cX7z+ddi2AdK5Rco10TCY8Pqpe7G6pxzS4aQp9rnYKRefTYpqcKxeqIDoEQ+9jw7Foc\nuEx49zawn8jvZuA30y4FAGwYSfrdQxM/xp9kjjOSyNsb9Rix8HMaWPMH0NtltQXgcbLNN67LRZXw\nfkuCzmfw6BDKEh1NjEtRWY+QWfFu8qeISULNZM4dphQPnthLUSSlD+r8OvXvkEhTa3LGPKIKbNVA\n6zsMEfDN4PvLlUkYHLoFADB32DZUePjeB16lsJQ/XYKvhDfXmTjHWnZb4+i1vpwo9MKDmaySUmT4\n03nMvt+IyhyOla6jLGSinubJl2EQ1PevmkfUMp7jcXBdbJ1jMvD791Z4U+8HpGjP6udYPKLeIpbr\nkrO2Y2cT+3LjZ13nD/46QVEYV2KFgqlRBAV7y+DgmJBrcaFfoRDWa+Ja84m9M/DLkQy/mGSuwW3p\nawAAc1Z+FwAQMZvUkLOnt5ENdPuYL1Dr41y/fUcxAMBxQK+yxQIFQcwaxbXFnHSKlWUZnGpYWW0y\n+1vLwc5ZhgAgVXGs+sP0lZiGM98z6sttLzwJAGkXcvxvXt73bdlWxeeMfuzEr7ETeUW/7jhuAaPO\nWL7dsH81aNCgQYMGDRo0aNCgQcPXGMeU2sVms8Hv98NisaC2thbZ2dnIzs5GQ0ODek5dXR3GjRvX\n43vKOpHPzClyQeZGMTSd3qY8SyvsIvjOaKdJIQoJJXY+r8xJy/lRdwoa/SRdK/mcqn0p0AkT9Tl5\nhwAAWSY39MKtNtBci6YIBXC+aGYMmDdsUmPlQnp6PHRuHULJIu1MOvfwgRTFBQp484RHqyCoBqZb\njhqQ14epXU4FNuyjR8uc4LfkfBewuXNrnd4vqzFgSgxnyl4ZpRHeM5TOOjbmx9JT2IQI0Z7FQzEq\nZQgAIONA27sKz4dFgl+ELOmE1LqpNZYXT/EM6gMyguKYp0hItrt1+GAnYz10Ii7TluyHKteSwGBt\nrdVhzTaWx1Yp8qO6Y57f5nrGkRgcMkJZscAGRcAokCa8Bb5YndhLhTc9WYYIhVNjTKWADjUVfEFJ\nxDJ7N2bCJG7dNFKGnMsb6Y6KwPtCL8JuFii/iPGU2cYQbnLw780Bekj+1TAdjWNE2pgW+r4MO+3w\nC2l/95Ag9EKQKBoS+X9DBjVWThFrcQfN8ARY8NVhptJYcXgozEaWN9NIVoBfNuKXg+m9nG2NYEOA\nL3Hbl7cAoHch3U7fglHP5zr9ZhxtoTU5qAg4uA3I2sIy1pwn4/cDlqItdvsLcLi5a+vxmYLa1fld\n/v67HFrQl+6fdjKKc0LQ4/gf4UEqzmyCSwjKFTjImilvyoBFdIoqdwpK0tjW+1/FtELv7hqHpF28\nZmUD56O1g4thsvCaoI/9JSuvVY09VmLafUEjZg9jbHllvzQc2CwCzQQjI+yIQhLx4eZ64Q2NAoF0\ndnrJwRPDVglRG/+eN2Qr/luuiBXxPpGMEHR1LEeimO9EsK/iPCfrJISayBb6cNuUuOstTTKCaSyP\n/ZCYy8Lxz2ibIqLj9QpaRE7ltN3xNmzFg9o2f2lYpE0ydCMSdiYgmBrFTQMosvfaulgcbsNmilD9\n4haKY93kaMQ5X1K40bM6q8t7KgIpgXQZUbPwAlX3jUCLMketquxZftOvG9z9Wd/J5WJeLvIgI5ls\ng4cGkpF1qa0VOrEYKM8kS2eZewQ+d3IdEHHocI2dTLz3ZlNsccWkEfiskb/fnElvZ10wGXYjJ/ak\nAjKyvOkmzBlCAUOjFMGFKfxbYS+t9w7EThfngH21sXbkzxCx8G10NjzUIkQ4k2Pa862jjrFWTi+0\n9Ygq0AthRQ1fPXQrYKTgn//8J9LS0jB//nw8/PDDOOuss3DllVfiN7/5DYYOHYrLL78cl19+Od5+\n+23o9XpcffXVeOutt+BwODq957BH/tpnL3I6wlrXs4WF9apaNLq4uAiIXKiZmS7YjGJD3cxFQCSs\nh8nMY6FgzI4QEQptclAHk1BbzUzhRqDZbUPAFwuUBwCjOQyT2GxHozp4akTUtOj7UlCC0SXyTFbG\nrnMKIVS5kIs1udaM8hsWtbt3ddiNeyuYr2/b7v4wNYpFWoSDqMnZoyrpEToq1SaCrINK51XgzY+q\n6swGITznKQrDXiEWkVHAm/fVHvQsDfED/Xe/TaGMZ8qnwbe6d4IcpxvCfZOG7LRFV23+qwCpzfu1\nzXE37wCptLuWDD3ZReozCBsNRt1I2vDLxZ+hIsSDt5XdBABoXlxwSsrWF+h3DcMw9or83XK1RQ1N\nUIyOwZwwhg5kiMC0zHKkGbgRcIgEzyYpglR9e/Jrqs4Li2gYEbFJMEpR6BUDJSQ4xO9CJBkhAJEO\n03CqTgezxLHepuMGvTXqQ4UwvCnG692BPDijwtAphWERlO4/PNG1SnDrMJGPt/S0SeMeB38m3zGQ\nSePf6JGVqHybBsVwL/TQdJMZavPyuOfVYy3R9qqkWTqvmjM3JLOO+xnCyNRz3dEc8cKma79GMUtt\nxH2iQjgsEkR5iOTwi2wxS5YSIlLtp2F16+LEOWEVOCqj6EIE+oyHkiNcgbLxTh9CmrleF4VvWXbc\ndWcCrBfTQVUnDPVJ+S7Y3uV31weF8vdQHUxC4C9t/wlUPOoFgg6ugz25yiIbMArDodklQsuCUdRN\n4HmldzyJYc8mFu48k1H28wc6/a3b0XLnzp344x//iKqqKhgMBixbtgx//vOf8ZOf/ASvv/468vPz\nMXfuXBiNRjz44IO4/fbbIUkS7rvvvi43oho0aNCgQYMGDRo0aNCg4euLHntGTwQ0z2gMLefR2ygJ\ni27EbVAD6XV6kfMxYIDRHBbnyap3MyQEPCymEHwBWhT14ppIRIeAk9QPhXppMIZVqmWK3YemPbQy\npezrHZ0qZJcgDJ2wz6oFADRtzlbzlT14x1t4rJSeDHxOi2YiT+WJhCzFhET002kZ/PLs/3R5zfer\nz8IHn551oot2SpHIM9oWjhn8nq5VOSejOMcFTzH7wT3nfop/v3IhgK+vZzSYys5lajluOYBTCinB\n+/mG+WEt7V0O01OBxfcwtc9AY3yIxiP1I/HesxQwck2iF7B81vN4ooUU4JFmin79o2o2yt+hCNHp\nLHbhHCxSQwm6ctJhCVNvpoq+W6RH27RklBriksIUrQikSXCX8CMPGXIUkzPpTbUJ7qpZF0K+kV63\nXEOr+jzFOxkSqnT6Ni4uhy4Im6SE8cTgErEUKYIX7tBJ0AtPXX2U17/nGoMKH+mQXzYIYcTKdBib\nBVsmAgQzhcdzV3svHgBYL+F4Wbs/E3ov6yJ5BCnjvnWZMLkSVN4pwk13LVNzGP+xkW3s5f1n48aB\nmwEAr746Wz3XW8j6PHDVUxj1j86FXYbMIS3+t0XvISQoVn7xjQ4EszHDerjd+X4ZyDdwXXI0HIBD\nhGkp3y1bn4S6CL3lRvGtIpDhFcvVTOHRXu1PwgPP3tnl+yosJyV9lONQ/ALkop98jiuSmZv3xte/\nBwDI2HZmuU+VtZgvs+ux3zXBj2FFTHNV9d/iE1yq44d/Klkje897CcPXfAsAEDpEr7qU74cswpQy\nRWrluqkyDBkcW3Pe4EJAyaF+KlA3zgjfINK09Q0i5EgGrDWCLSCmCXMLc3wr+Lp5Rk/rzejue/lh\nRjx5+idsTYTebEYVhC8hvyAc0SEc5mAeEjRbW7JfVdj0tFoBnUiqrue/RlMY4RCviQjKkd4YVeNf\ndeJ8kyGMlmZ2Zn2tGcnlvX83gJtRBa5R7GyOne2jS93FnMyU3Ju2mq43vHKbnxOJiXaVWxRoo5zb\nZgFnmMFFgZL0PhHKQ+52i8dBr97TZTnPdHS3GVUUev15bDuKKvCZgq/SZrT0To6Dw56JjYOdbUbP\n9DFTQaLNaGcIjiad07Sj7/OtHgsUWnHJitsAAMMKa7B0aCy+edzv+W3cxVwgzZmxGUtKGedl3sOG\nmzOzCrcWUqnzsYXzeOEpXhsHO0gr+/MimDqeMbV/6PcBAOC8Dx7AL2e9AwB4/vC5AIBD1RkwVHFA\nMbqENkB1LE6+eWoA/fM5Rg9Kpg7EkKQapOu5Gck1ck60SCF1MxoRG56orINOWDeTpCAcYmLwt9ms\nKtTQdL0w7gKoFclUP3AyjniXKw+byvsDAEwHubjN2BlR5yBfug5RI8sudxHWGTXE982iaw6oFNhT\niVvuZhv8ftpB9dg6PyfKW1/8jppHWKHpPnbHM1h0dCYAoGzpYJWSG13XuWL5uCt2Y372WgDUCgCA\ndL0bI4wKDZv1/qE3DSNMwuAZNSJHyElbpNgCwCKxoveKtcxEs0nVPfjEMxwA8OLLF3f5zp7iMCqu\neBoA1M2041AUzmJhPJnGjA8bxr+J8RtvAAAExbrLvCI5TtH6dETNDLb/VXMeAwBc/peYmrunn4wJ\nU2gB2vtmfGhD+mU0fjV9cHqFBRguaEB4RftQoW0/XoiSt+8GEIvRN3oA22xSd5u20ZhkbpbUXMmK\n4yN1fxRGz8m16tWNY/v3D/HDWCkWVIrz5hBgEW2rYTTbfNgho/S6JwAARkl/xm9GS+94EkD7TXVX\nm9Ez23yuQYMGDRo0aNCgQYMGDRrOSJzW7g7Fur/73oVnvKW/pzB8SDXQyMVONfel1EwLiyciwZgk\nct0ZoqqnU2+gxSfV7sWAZFJR6/308tW67Ei20Gvp8tM64wuYYDzCv9sKFB0POnpEVQhD59J5fwYA\nXPuPh7q8TyJvqOItleT2HtGQ0F0SRlfSVDqwMWyz67Bu3Ftx91xQNRkAsPo/MbXBKdeT5/FUv7Vd\nlvHrAEXVd+Qw0qv2NRarXg0NJweKR7Q3UMbJ7PMoDlP3edeqvKcDAkN8KJ9NAZRjGednDiRF8Isd\nY/u0XL2BP4sDT/kNizDyn3wHxTl/aE8xRn7MYzfduFK9JmrkYPfRvhFwrG/vyq/cmYdf1zNf7/h5\n9D6WvX7yRZt82YJ9E5LUsTeYJo6lBrG1hh6VfsWcb7L6N8Mv0y2RZqbH+qA7B6E0zlERsxDbk3RI\nLWed2bdZcKSW7bR+EO9jLIzAaBPzmuJC1QER4eVM0ok5TbbAITHExS8bYJPD4m96TkyIIqjSRjl+\n1USS8F4zx/0tTaRHH65Pg2UfPaLppXyuP00H+xHez+GNomVQPD23I9p6RYNCMsNmCCJwHnm65s9P\nvo7GP77PcWR6G4b7gMV3AYAqMGhtjv3m6c+X+Mw1HGVLB6vHu/KIKti6eAQ2ji8CAHxr+AYAQJ6x\nBQeCImxIfD+jFMYXPioizrAewBFBZVGEqc616FThoonmWA5nv8wla1ce0Z/f+hoefpdezhsnrUt4\njrdYeMk/pTdt0YACeHfy/ZR8u55+MjwF/Dt91+nlIZ30w00AgGUHhuPds54FABQlyNxgrZXwm8LF\nAIDrEL/2UsK1frTgdfxp4fUnqrg9RmQGKfnRsCHOUzZx8zyYmhRBTB5zD4jAVcm8vzozv5EvW4a9\nsv3Vzv46mESmDvvRCKToifmeIZsO1efx7wsncz358dZRsWcfYT/w5uhw9By2wUEDyBAYmVqN0f+6\nH0DMq3gmY6Wvd8rgmmdUgwYNGjRo0KBBgwYNGjScdJzWnlEFI55cgJV3UhRi9jM/6ubsrwbMy5Lh\nG0rrTepexSNlFP8lRhB27AUlu31ZvMY/xA+byMPnaqX10VJmgb2hZ5ah5nNFfqwdlh7lwBtxdSl2\nvzNM/f+MYppcdwTyAACP37cQ9z/RO++H4i1tK0YExDyi6nnRWDyPS4jabE/gFR327L0wtcZ7+T5b\nzvihrd/8rFfl+ypj7/piAMC/bnwS3/6Y1vQzLX70TETpnQvVeK5b/v2dXl9/uI5WftuEFkS2nJ65\nV6Oj6S362ejlx3wP3zA/nhGxlfjOGtUrebKhpLjq7vmlnpggmK2Kg1XqEBeqzxHiKhs4RhtdEsLZ\nHKOyzRTw2H1+KwyfdgjcPMFIGkumTXhVhpoX0+gWY+dhKxT/7939pgAAmvZkwDKQJ2YIz6hki6i5\nt2WzksYAkETOlfTSENytHFMCDXy/dYb+OGDPaFcWmyEIm8gfPjCJsX4RWQdnmC6/NKMXY4RQjkd4\nU/WSrKaL2SLSgmx0DkCVl885dJTPMB42I3U/vRaBZKG34AcCaSy3wSerea0tjT2ru0AG77dt+TCs\nuv1RAMDU0H0st9OElN29G0ddxTHaj+Og4mFOzCZScNXtn7XziALA4H/fC/sQeqD0uzk2BFIpoAIA\nBQMYt/vauslISnBP87n83b82M6EYofFLeuieC0wFAFw3egvW1DJmtr6Vv0Uqk1TNi997JVw2Zz0A\nYK+L/aP0aA7OF4wH5Vs5Axa0fJbb6bvu/C49wN8ovRRmIaK4+PVp+N13t8edm1PIdUlTMz2jH9WP\nUlliQZH/19IE+Gax79WmMpA2Z82pZQet/QvHmZKPbwcAyD49ykN8h0HGurjzdSGgPsI++uYDbIPX\nPRbzkDYvISNhxoOHcNOPWX9j/3hyx1AlzdBjNz6PZS2jAQAf7B6NjhyC8IpM6EU8cyhFNPqIBH1A\n5Ir18F8pLKmshOSDbKBRg6TGqLcMNCBtH8cRJQ48bNGpqQIj4pilNdpj4aOwhf2xdpKEvCH8Dl9U\n0fMvWSJIqeDvziKOJ+4xAdhTOC4NTeb5M5NL8RHOBgAMeeneM95TeN8rd/Xq/DNmVTnt7R8CAB66\n8T0AwD9eu/JUFuekILYJ7T2s9bL414wQOFjFSDbdbyo3P0KawBtuTgS//fKmHj132/JhUEYRowsI\nfMogdM8gjgTGSM9ERjyFUVxyLmkO16ZvBAC83zIO5W7xLmYvfBFuzGu9fGCd046BmVwpLB78Udw9\nlYWiKZj4meYm1ve8/3wfMJ5etJxTBXOzGJilkCoE8R8XW9Jvnu86315nUESoLGfzWzXXO5C0z9TF\nFV8ftKXmHssmVIF5LxcgO+59HhUTuKC69NnTw5BnmMiFYHgz29FfdlyN2+/tGSW5o0CZtdSC/07l\nAndukhvhcXxX3R4eE2zOOIQcon8P4IapbMaLCc97wUnj3lRrBa5a1J7mduf8paoYTE83wZsXj1LN\niQaRRrPBmYQnprwKAPjJBi4yzc0S9BYOVFlCirU4vQll57ICbGviKXm9QYDMNoRtrIekI7G5xpvH\nY6G0CIy7eaLB0vm4CcTCQmxHdSgPcENhFpxVe6oX/lJuekLpIr+1Qa8uBC11PkTM3PYodNFGYwb2\npwkFdrFKMbhjC881BYIPG0UsP3ZAp+7MZDF+65NDsFhZcE9jbO6xpbPyLfsFNXd3RN2EGj281lWk\nQ9Qg8mO7gKDIyWlp7Bn9TMmtPfkbO/DTKtJKzSJPeHJ/Fxqb2LbSx9WjtloYjIIsQ8qe2NJMCUcx\nFXrUnOHJI1lR/ewtKLTx7zdXT+Jv+/R4+8GYorNCdx25lBthpESg/7S9gUrZiAJASQo3my2HEm/8\nfOs4p//7zr+pFNpESru23azbJbunIijUlBW6It8i1uaWvcmwGUUZ3XbIgLXbe0a7v+L61QCAMRs4\nH/WETuz5hHUvCcp5UVITto8pBgBkrRP5ZsMyWo6y8i0FIjkwEvc7Rcn2RGQKqOP+BOU3LFI3oZLI\nluAoNaNlZtdrqm+9z29z4ZRtAAD3WT7YN7UPC7j0Lz/CNrEZvevu9wEATz91ed+8AICwaMOGNg4E\np8jHW3Hl0+qxn/2TL6vPk9Uxytwkfjy/Gamvcj1aQ9sXJBmICgOXwpBPKYO6xG0exjaWty7Gn28c\nYUTIxg+mbCI9+RLEnl2dM6JGHezVvJEyDnizdeq3liUJujB/b5rCPnb56O34+ACdMZGDbCt5m2TU\nniOE24awr8pNSaoYaYmVhrVpllq1jLpOxtpbr1oBAHj+3QsSn9AFTmQb7Quc6ZtvDRo0aNCgQYMG\nDRo0aNBwBuKM8Yxeeh5zYDWFaW0IpkRhatX20icCilcUAH6961IAgMnbM09hVC+rFJm2+N0b1wEA\nfjbvTXgn0io9dcABAMDWt0bFnW87qsNe4ZUozHYCAP6StwU3H5oOABhsq8MLS2cBAMK5NCNtnv1P\npOnjrYSKWIOjC8t+xAR4hXCDY59B9Q58neAtoOVfoQ+2xfXLF6DismcAADc4aN1LveNf+MuhiwAA\n1csLu7x3MFVYxlvaCKF8Qd5bIirYyUYgJwxz7akbWuSvuQAAIABJREFUDrMnV7f7/6v3X9gn9/1x\n7Tj8MWdrn9yrr6B4RI8FiXJu/t9zNwMA5n5nIfae9xIPChGJzjyWihiX10MfzaNNAzE/mZ4Do0gv\nMWNhzBMaGutWPZrb738cAKCXdBixkPc/HvJe0GtCvsil6RpAs7W1TgfjZ/QCXDB+JwBgdcNA3DmK\nlOR/7aWnzdLQ9b2dg6KqVyfNznH36NF0ICzyTO+IhX20juMAOW8CxVEW7x+NoI+90xjt+g1LP6bQ\njSkElHvIXrkoneXelZSLqmLhC2ug+8FWK0Mf5JggBcPQ+8V7V9N1IusckEXuSSUNh9Elx4RHBKdO\nFyGdFqBHM+jguSFBtQz6dfCLPFX2Gv4WMQPGHazblAqO+b4MPQx+3rt5uOI1kWGrFe8tA6mFdB9G\n97anD7dF2zzaEQcb6/WZG3Dv5/MBAIZ6ehJtE1zwiTRn/o+yoZCvFW8QALSOEWKFXiEy9KUDdvGu\nzjDDXrK/fRhvbGFObCmZA+ui7y9sl6Zswhf0pqXnsY0FVrdPmdERq/cNYhkRo76WfHw7bKWsR38+\n3+vbT31f/b07KB7RzhCeQO9/0pYYObPgQvJmq5YXdXrdzu8uxJBV3+YztvV8JrFX8SPVjmYdNwWT\ncM0UCi59WEm3mz9Lhu0o24J9I+vTl6WDp5/IdfqlDH+aoHSLtuwaAKSQXQx94PjWEEq+0PIbWMdz\n910MsxCwDFRznWOri+L2FOYMfaJlcIK7AP1HcG7ZJvLn6o2JU5woqW2UPOwZC17D7xceG/upLYJp\nQMjB+jZ4Ymv2Jy9sz0Y5d/vV6t+26vj2YjJE1PQstqMcT3zZMoyibel9IletgbRzIDY+Rg0xL2bG\n7hBqJnH8UHJ9BtJlle5uFQ7KpLqY0JHyfa0NQP044TmPAIFifo9BhaTavr9tLFK2sY+nlrM/BpL1\nMJawfUeFYJSp2giXzPb6RQYp7CMsVXHv3BEdPaKXXroeS5ZM6va6nuCB68g6/cNKesRNTSd3f3Xa\nbUZTprIltH6R0+74ktUTAQDmRlbQySL1XTSXA9TH/z3nJD3x1GPCpusxKosDmF0o8QYBhK2Cm+/r\nfJBNtBEFoMZolvnzsH/mCwCAO0UeukQITHBjuBhkb9/LifwPg97GZRlcMP7mqZughsLUc5LcN8OI\nczrso6rDbjj2dd/M9UHgxYtIF7l/39dDubkjpDSxW6+KT9L555mvY94BJkNf2J/qfDXhbByo5sKm\n7RX+TE48Si7TqBGYcT7jdta+m5h65R/N+IloE3t2ZkkTvJ9nHcfb9A4/nr4Ef3vz2Kn/s+ZsAQB8\nsnRCN2cmRt06Li7BkBlkWdxx5/zvtkcx/bmu1ag7Yl7qBiijpZKDdMgL98LgO72Ukd92J/fq/MHf\nYHLkfR8NVI9N2XYN1o59GwAw8A3mCbYgZmSyHYofB1Zc+DcAwBWLfoSnU2lYMSUYw4zb7CpFWC/F\nJulN9/D6+46wb2x4b3Sv3gMAkjebMdfzPf6PiWOrwQO0juJi5rVGLo7fGvoGHqkVu+zhXNx4Kuzt\nKLYdkVbSpKqpR6Ji7qwyqt/fdQ773cNnL8FaJ+syx0jjXzikh6OiZwsSuc1pB53cUW0xFwMAfCEj\nwvUcIdJ28ESDT0bYosikS7DUcKMcsXKRaa9wo+5stgk9iwhdKEahVfLQWlqisc2fSVLpbSGHWKAG\nJOgEtTekqNtWy0ipYN3KekVhM4SWgXx2xCLUgsOAtV6owBolNFSzPF1F7Q6+pgwZZm6oP/uYGgSP\nH5mFG8dtbHfefz6fgkQtXqUkArCXirhX8U6u4iiSqlh/T//g7wCA8SYdPtvWfm2y65wCWKRDAICa\nSDJKp/273e8lB+6BtUahJPOYp58ca0fNsdXVL+tHAAAmDDyE0tIhAADb4dgkq9BzvYWRuN96gycm\nkqb+vS13q8e624QCQGXY3atNaEc4tnAVUTy2EdPszMf5kcz+FkkNwy+WyA4RT+qc6IccFLncTQZ1\nLdQ4k31MX21WN6FNI4QS725ZNagoMYzNwyUUTOXmw6iLoPWZeGPuCw/8FQBw7nZuCFu9VvhbWN7s\nTUqHk7EhwLb87EJBq+3wCQ7X0/h35VDOwcuDQ1Vje9tNX/QT9ttXhtHYcpOjEb+cxnFGL2jB+lW9\nj1k3NQOm5g7qtiNCmKQktgU31p+Mfh2jt3wXAFWAfaKMVlHGL8a/hgvBcd1WIzaJfkndRLYOZxsM\nenRIHs4QoKYaltfSZFBzjzuqwjAIxWQld3LYEQHMfEe3yI8r6wwq3Vcn4tsDaRJkPf+OGGQYLKz7\n/fs4f/f7WII+0CblA4CmURKCrfxuxnre29wiIZjBOtnXyHWOJ6eTjBRd4C95W7AEPduMtqXnfnwL\n44cveiG2nnhMrH9OVcCU5lrUoEGDBg0aNGjQoEGDBg0nHZIsy6eMjzjskb/GHZtwyW4AwPP9V2Ls\nIgp4/GL+a/ifkznWpicz59qvXj5++kBX6CiUETHJ0Ae79ya8f8efcLkQCrHWnVlUz+ZRIih+vx7O\n4TQ9G0VeJ8ehmLJu2hpacEL2xPXRNi9o/qW00B5a1Z/3i3f4IGwF/NmsaFlYp/4+6xW0CLGjXb5+\nAIAPX56qKt2ZnLHrXSNpOq74xrPqsZec9Nj9+Zl53b63gqBQaDO1SvDmnaZR3n0ExWvZFtOvoXfv\nmvSNmG3l95i7j3TA50veTUiBVrylNR5+mKZP8+LOCSbLCWlaAUHdLZhQjSM7KJYh5ZGHZt4e/6xg\nsqwKmOg7EaZREI537p4RUASMhj2zAIFcWljNNfEK2m3zGXaH/5v/OgCgwEBLtF824oEXbz/OknaP\nYAr70P5vLup1/lCpk/fb9R3WT3eCQYF0ti1zk4TZ19ArtfLts3tVhs6erWDA4rtgbOb4OGTKQQBA\nxbIBSJ1BRkfLqsQCMB3HwLAN8AzgC+uTOZbZNtvgHs1GPmMYPTbXZm7EGhe9U69/RqVSS52u3f0C\ngkEaGiIEeiwhlGQIL4GPfcq9JFYu5xD28yEjj+D8rLJ25Vr0+fnQBThOmJt0MLWKH9pMa61j2Ebt\nmXSx6T5LBc5nOwuFWTcBvxEpq+kZMLnFd2mJIigEg2w1IeiC7amDnn4WVW3XWSxoqvWyKn6mtA9b\nfQTOopjH2ycIVYqH1OAHzE1CkEl4S/NXNMDbny6RpN38VrLJiEARPUj1Y4WHQopda6uPoHIOD6eU\nxp4nGMDqeBSe2YphWWR3HXGRK/iP4a9hvEmobUbo5l1QcS3Kl5WoZdV3EUKSCK1ifp41fje21HJ+\nVOiVbbHYY0OuoICfY2blPd2ajycWzeUrim/Z1jMabjP0KnN5IF2GpbH79c+6+x/D5Mcf6Pa80Hi3\nqro75aptnTJmOqIjLTiRcFJHdAw/cRyKze0tQ/hdJl68G6lGfpuP91OARleWhLRS4Rk38d1zb6vA\nnrVUSTX4JUiKE0xMpyn7Y/eunSrEwSr18OXyuOKlT98lo3UQL0oti19rBG5sRrPwxF95FoUcP/zw\nbISK2NBS17LhJV9VjUlZBwEA7y3mmNDWuw4AbkH9LxpJttvY9Cq8t5Ve++Tt8X6wgrm83/cLl+MX\nZfSWtbg5oZrXOFRV2kQiO+7iKPR5HHsmFB4BAOx5I5ZdQVHOtTTE2pIiZHTu2DJcm8UQgR8s/yZ+\nev4HAKC21Z8ueA2LHriWz8lnHwwlSepc2DJCjKE+HSJWwc6q43nJB2R48vnMzB0xz2XQwTbRPEQH\ng2BgKGsHf/8g9Fbe07pVjJ0lYcAg7p0SgN/NynDs4PdI3xu7t1JGT4GE6HAO0sFG4SFN9yMrlcdc\nfl6bkeRF9doTkxfcPKYF/xn3LwDA3+pm46l+awEAI74g6zC6O3H+40Au399c0zck2rKfdz42aJ5R\nDRo0aNCgQYMGDRo0aNBw0nHaeUZ3t5H4H7jyVgBA2ax/4TM/rXrfeeHuuGsW3sLcSwteuKdPyhUe\n6YZh17FJ51vOboR/I83TJ8Iz2jSJlpf09Z3nGz1ZCNklNQ4nMoxWHr1ehnFdYitLZ/BnyYgW0iMW\nbRBiE5Xd20m2P9i5eMLovwphkR46OG+59SO88Pw3AABJF9SiftfJi1c8FUjkGf3jHc8BAC61+dVY\noUeydqu/rxEiI0oM2+MF6xGQhfdOYnssWX4bbHs6JLbrAMUj+t3LlwIAvpN2SP3t7iO898c7RsIu\n0i8occuuVe3jyDvCWxBRrd9nqme0Ldp6SQEgPNgLwz5aaHvjGe2IqKH314dtshpnczLQmWfUn802\nWH79ooS/f+Tl+PENG9vMOn8Eky1sE73NQeobGoAshH6S0n3YOfkVAMCtlYzbHJZUg+ffodBUMJ3e\nl8e+8QoOBCi89sxbHE/23LWw3bM7ekZlA3DB/HUAgA8r2O/knckIi9jFaD+OjaZ9VoSHsk8Y9rId\nBAb6oRMxTPZ18Y0+alK1ftS4Tu+gICzJIo5UpB+5auh2ZBoZH/b862RD6EKAZzDdHxeM2oPVlfTk\nBasYo+coj40h7iks1zn9D2FLFT11YeEZ1Zdb1dQKBq+I60oxIJjE6yU5Nk5bGpT8fzo1jrRxPD1E\nsh5wi9C6YJq4QAfIwr1nbNVD7xcpFGpiKRkcVSLFzD56CMPJFhjqSa2JprAepVAEsl7EAiZxLAsl\nG6EL8jmyQYfGETzeVd/x5Mt44loydPwi9uyKJG/Cc3/TQI/RW8/O6vyGACbNp2ds/cvjE/6eetlR\nAMDPSpYAADZ5S/CzzL2d3m/a9qvhXkrvuNImfJM8iFSz/VjrYt/Vlx2NO9YVli74E+Ys7DyFlGcA\nv+/EERUoXTKkR/dU8PidizBTeLx64hHtDG09o3Ui3LZgRC2SzexnuyvJ7sn5MN5r2DJEp4rxmJp1\n8PXn+2SsZyczemXUzGQbN7TwmKVeUgWTaqbz3+y1euhC8evDlqFCZ0EvI1LC8uRksN2uGfMO5h+c\nCQD44ksyBU1ZXhg2c72lsPkMHfKvK/BOYjuM1llgqRWx26JpWi+ug28Zxy3nUDZwKSzh/13EGPxH\nPqW4kKXWAFMzegTFw27wxtIzXXPzZwCA9w6NhnMvY1QV1pSvIIy/z34ZAHAgmI1/Luf4qQgUBfsH\n0O8d3sidx5fVhaF6PEUGLEgRICSW7+Zm4YltltW2bnJGIXXY9ijx4gCgF0JmzhIgKmL4kc3x0rrT\nilCSiOv3Smr9pe2PeUQV4bXmISyra3AYpgaWN3kcWSpmQ1j1iI7Opsd6Q2URdGUnRs6x8NwjcAX4\nvJZNPVvblt7xJLYG+N43/Pv7fVKOrjyjp+1mdHMgqOawKgt5MMQY/5EUkQpF1OhY4MsLY8vlFKFQ\naIgDProD1or4gejSq+jafjSXk8OjTQPVidtXyMZYcdkzKiWtrzej3jwJl13BMiytGIFkGwer4H+z\n+/Q5PUVnNF3bbCqL1dakwiTU36IRfiPr5nj6ZdHlFfh5ESkZ89eRPmhLcF5b+DNlTJjOCfehfOYU\nffjgXJWK5l3ZuzrRT2+Caz9pVbajuq8lTfent5LOeZOjh1ndEcvD+EY1FR0rlxV3e41Ch75pzioA\n7Te8yuD3SvNkHPJysrogYw8A4K6Uo+3Om//UDwDEVBfLyvNgq1BESHr8Cl2XdYDYCFT00Q37CIkW\nxGfN2YlNS+OVqTti970LUfKmEPhJ0A6OF8o4ueTASB7Y1jtxIqDzzWhI5Css+/aTcb+t8UdxlpkL\nQcU4MuKJBceVV82fJShZ9bpuN8IKjoS526yNcA555NCVqFg2QP09UaiC5RKOmYNSKf9Y6UpDto2r\nK1eQba/ek4SWZpGP085+8vCopXhsPxUWgx/1bJERTAaSpvA5Nw2gQF+hsQk/3UI6XGc5TBVqqCL0\nYbCGEa1l2VIGcoXq9poRFoZjuLgYMzfoUfA/YWw0CuGclgACWbxW74siYhbzQ5VYUep0kDy8xjOU\nIRfOYgP8Qgg2IPplSqoXLQ2ivFEJ1oN8tpJn2+SWkbqTKrjBLNadwRVUVTKjJi4SDS0+RJO4WNPX\niFyAyUkIJwtaXW0ramdxkxK2dW6UcZ3jQ/ms51lfUfL+UnTxRoKQHMGD1cytufLts1UhoWPB1p9w\nzfSNUirf/6XkLYw0dW2NG/BfKswrlOPb716Cvy/9/+x9Z2Ad5Zn1mbm9qRfLTbLce8c2mG5aqAFC\nDx0CJARII7tfNmx2s0lIlhJ674QSukOvpuPeLVdZlm11XV3p9jLz/TjvzFxZV9KVLbmwc/7oauo7\nM299nvOchzzkbOi4/Y34VL6ATGJE2r4n5zyJnzzysz5fW57L76nlH01fjDadJoSHrCmU5dNA0f46\nv7OjzZi/tU4SFObhUdi38t3aOgyjp0bTllKGkrOWrzKer+p0Z1WEodi2unQKcDrqj+S2QV/IOoU4\nOoxzKIs7iVQ7+5SJ42oBAFW7S2G1ss8bVsh63vhWZmX7DkHJ923qKjKlOLrPyQwYC914rkEDVmzQ\nlfGjJWLR15hd3YnnArYZ/C63jv8AAPBE7RG4chjVwi/2tWD8w8IIKwxw7u/c8O7mMwSHskBSyvgG\nMZEz1rtDQm5NZxEhwFgkRgos+vxAy3UcKVF1o502tqoWQBaheZqoWSI/pQvhuZpUeOu6DlTRfJZN\no2FHyxJwFvC7RwPsY46YsAU2mc9S3U7nVUPAh8QO0UeFJFRdzTFu3GPXZ3yHA42qqx/cp3u7pvL7\nvjbtMZzyNIWSTJquCRMmTJgwYcKECRMmTJg4qHDQpXbRoHlFAXTyin4bpTVhrtOyTx5RDQtmrusi\nzPKLOR9izrFbWA5hOX0oUI6f5tV2Ou612mk4+5wvAAB/LFmzz2XpDvfcej8AwAIVM4Vgwt8GrUBC\n5buYHmGePcsXubBmmQ90oKDKwA+HMf3Kk8G5KC+kdWTbMlrrIjPDXbyjOxaOwLWgWFUmf2gm0aKk\nT8HiLRUAgMsaSOcO1Xvg28oqrVnJUi4jV1gmaAIU+Lwg473/L+GrduYpy9Yzetbmk7Dl3ZG9H7gH\ntDQ/Ty2l4MJtpxie0WkOfpBpg1YgqNCa6JW7eiWnORz46md3AABOWMX679nWM3X9oyv+CgBY8GT3\nNLI9sW0BqcsaVfZgxgh3C54RzJLKVxjO4GyydGJtaPjtiUzP8+dPTwMAuOr6PhTEcxXdcrzp8q6e\nyi8bSOsMZExisXc4+jimJ6hO0L3okyXc3UIP0x9L1uBPzeMBAM+/QGGtffXxqDajP1UL6KHQPJ9D\nrd6M3q+hVnrqjl7EfqmsOIDesGAwWR6X5pOu+7f6E3F8HtvFt0G2sQuH7MCZnu0AgJRQEXqufSIm\nFlKE59ujnHB83nuIRMqpYkQe2/iuGL1F/qQHJUJQI3Ii211rbR5sAUF79yrwlolQjE/IIImU2KAI\nD2Uswfrj/sqLYDm9O5LITWpvB0KDOJ576oSXJxiDO0hXjBSNAwrPUerpIZZ8PgQPpze5bRSvrdiA\naAk9EbLM508qMiRBU4ZVgeIQx9o1oTMFyVx+G3uDEFlq9kNNiNQuI5l7MZnrQsplFe+HHmZbXRsk\nVYj1leUhNJTX3FMgJh3OdS4sPoLXPszB+25NBDvl/QSATYk4vMKdti9e0YTXYKc8MorMluFW415v\nhLwYa+M7LRbvqcjiwcWHk73wvINpIc71rcPdZYIu3LJ/YxxUueccoYWiXl6z/NK98p5oHtFMKHqX\n3zd+nh87dtNDVdrWdQ6l5aMMFNoQH8U2r9qTKMrhxyty8W9zxAP/56RAa2lcogFZ9+inhEvOmTbE\nqhagbQyvX/qV8YQa1Tzl5Lg246ht2B4Q1FbhvsvxRvCGEKY59nPOoboLMMvkEdXQk1cUMIQ80+u+\nnOZ8zNYjqsEeAPApv8tfF50PAIiUqnAOT6O7TiRLQutH2icl4BOpjTQvZmSwCs9uTRRKlFXp6nFW\nZQktE3hStEjFtLlMBruunl7wWIcDDsE2UcT9pM0e2DTqr9imWiw6s8vbTVpQp58vy7nEEGULDuJX\nkUt4nWW5w1Cay4vvXsYyzDqqChvsDEUKr87Hz3axbSbdBi14f2JfPbKRVfy+p6z6NRK+3tclBx1N\n90+XMmn5WZ7OXCaNK/9cxWcAgMnfXYTU8rx9LkPR/Dp8Pvn1Ltvv9VP9NT2ebU8831GI/3nu/G73\n9xdNNzCG19lyoUEPa0yFcORTvwIAJMWHztuwfypr6yx2hL6qrpP/YGUKklCMQ0kMebnspFt3U73Q\ntyn7WNdoIZ+rfA5V2ZqDHqQ+Z2ccnhlGKsrO5d/mMfbwc/8YrH6VMVdah6HYGbMBAOHBIv6lsh3S\nl53rjioZyoIA/k/SdDX0lshciyf95wvH9Pm+oeFJwMoXXXUq76NRKvcWo55np5lOL+uvmNGeBoKq\nax44YIvUTDTd5IQQNh3NROJaPNq1+ctQYuk60buo+lgAwMr3xu9TOWIidm/rBT1TVzOp6cbzROxV\nW9e62B1NV0NYxDLedeSLWNhCZchv35zSa3n7iu9+eicAYPI7N+oUcA3KjA78fToVTP9Ww/imD8cv\n7HKNGUvPR+ybQv3/TDTdaDHr2bqraHh8L+JGhVA/LhU5/orSvuPNghb/9oez4dnVt34/WK7g96e9\nAgC4NKdZ367FhN9fx4X8qvrBiNRxEqW6UpDCnMyqTtE3SipkQYv2LTYaXKSkc5uxdwCySBqfs0Oo\nU25rhRTipD5eWQp7LWfn8WF8T4FKJ5rmidg7oTBcWtCO3VsEFTlHLCajFlg8vKaSlCCLviXvM076\nHW0K8pZR3Va1ivLvqgdSvLbkESbIgjxIKREf2iFWh7EYpFwaUpR8L6pu4fvPXdF9PsBBZ9XgvXFv\nd7tfwwdhG0508xl+vns26qO8z/p/MRbQmjnMtAtmXrQaeTYefEcZ1dAfCQzGRb5tADob8lbHaTh4\nrPlI/OtbkQ9ZvEeogJpgO/RsOVCZBvcP0mm6GuqPViBHDOVoAEh4VBStEnlEp4hctUVJ2HxctBw2\nfAfWNXHhOSyPFNkcWxQrFnJ81BajANAylefbhCHW2aIiniNy3O5S9NjV/PXiuGDXuWN7hazHPcYn\n8psPKmhHw2ouYL668H8BAMc+8Gu9/sTzAHtbNm8lDaI7OezCVVgmlJpTH7NdKvbMKroaQsMUeGr3\nIWxuHjvHTUc9o2vGnD9pGQDgxTWzMOR19sGawnYsD0jkGDG8AOBuUPUyavGk8QIFI6Zx9VjmDmBX\niPM/n43fcvX2IRhe1tnKVFNTDEnUCWeDuF+hAhSLRWuHDXnrOQeVkiLvaQzwNLI/0mjBWkhAOhpn\n2GCZwQ9jlVn+QMANq00sZF1xrD7sBb6LBPujM57+VS9v7+BFUhhwtl3w/7o9xqTpmjBhwoQJEyZM\nmDBhwoSJ/Y6Djqa7MSryFHo269vSreojC2nx7w+KLgA0f1kGTO687faW0bi1kPffIShZ6dQXDRf7\nWvA//VKKzEg5hDLgSFpQbmuaiPNymYfp9Ld+gfyd2pED7xEtOG8nKn20oms5iqZUdfV2jBm/E5s2\n0JrmXeFCArSY901fl1h0yd8AAGVp737TNFqJzn7g13puvvseO0vfHymlFcrV0PWdWIOsM7GoDalh\ntEZpSm0addQEMHXxhVglrHIaRj93PRyt/fCObCqqT9Xooj17RO/2VwAAbs7fnnH/na2kgfa34Ea6\nx1Pz7iRHRWDdcnBL9CabnLitiaJBfygWnCV09YqeXHUqtn85HMC+WyMd/uyukK6SvmcZ+5KD9MIL\nPwEAvPACKYX/b/OlWZ+bCRqDYvOlD+phD9Puu1HfP+d+Ci5kovDLy324Zfk1nTeOZ25HAPgqSLXQ\ndK9od3BPo1X+1I2nAwBmFezAqSL0I6zQzH/VjvkIJOjp2vIyr52N9mKcpBRES/l8loiMkz0a48e4\nwpchkcs7n/lGjy/YgKe98/T9Te3shwfnk3Zc4W3Fsue7eqNtwT1yAStAjhAUcTTSQp4q8CA2miwX\nVZKQ8NG7ExjBPiEwOwZZ5PPLy6GbJ5a06nmorXVGLtCkoNDJURl78rzkFBCYzmvnfMLnkosKoDR1\nDkWQwlGoIeERtdEzqCaTOuWvcV4+BpfRwxpakTl/LADcVflPZK4thBZ68EzjMfjJan7D/z3uRfxq\nzY8AALnCo5UuDqOJrQTHx3SvrKYW+sn6cXjhmIfFtXkChd66hjZMsXPbjlABtp3Nc25tIKvg/ScP\nx7jzqwAAa7eM63IuAIQqON56thvTRmUWY2dsQkQn1QMl9mDGoEUy2ivYlw1ewHCsHV8P1fenXKxY\nxthFj9U9NvZDK1pI93Zb4508ohoKhYfVL4go9g4V0UIhnlMswxoS+48WwlxfOqFahRe1ldfLqVGQ\ncIlzKthOGreXQqpkvT1SeM6cWXrV90T7VJHjeDPr/ze7KmBZlNvpmB9c9DXee+pw/f9YgfhbJiqr\nVQVq996z7vqGFfvkklMxvYLf4YxcCoa+vWw+LHHeR8sPmnKoukCd7g32Sbr4lCY6N3hsI04sZdiD\nU0oimGA7WrFe5Ixtt2DCBJEfOs5xXhku6X1ePCYYIhZAjQvxJG8S7SOFKnFIzBMqoogvcenHAlT0\n1bylmlCbu16Fv0awLnLFu1MkyNtZruLDDcniQ9kjqiGbuZPpGTVhwoQJEyZMmDBhwoQJE/sdB51n\n9OmXmbftaZyA+HiaOtLtLP3lEdUQqTQit0/aQDGPrfXFCE/iXf/x7lEAgGRuCktOY4xreuzO9Rcw\nPuTBF0/tcu2kS4I10re4US2PaPnQZhQ4afF6YSRjIncnY/hbI2X85dj+sSMowjoXTth0j2hP2PVe\nObypXg/rFarU2SOqQROzUqyAb3PX6pvJI6pBE0CK1rghDLmwdZge0T2R+jYfqdm0KK6M06K3r15R\ni5DXr97D49odXg32LnpzVR49a0/g5B6P2zOkBcWkAAAgAElEQVRfZzriFSJ1y3bDk5DpuEyWvcrX\nf4L9GV3VW4zq6Im78M9XjgYA/OF6vputiSAWfHITAMC1zYh16+/eY+I3FwMAojt8euqTa2qPAAA8\nKuT6NRhe275D84j2Fywivn3eqnOwcBL1CjRrujMtt2KsSIEjizQ4I966FjcdyVQFr6xjXshskgIF\nttGjlD+JnsO2hFv31M5dehkAQP64716nSKmKiUdRjO/yMn6H3646G/O/Ypz1r6Z+BACY6NiJpzdS\nMMO+yGh7N9zwBgBga7QErzTyeRwW9gnfLJySsf47WzjmaXHNrpYUbB0c16KD6TVMuGV9bAyVWdAu\nMt8MnsX0TcMcUVS30u0SF/lK21s8sDeyz/dV8/iEV0KindtUK/TcrJEiflfFKuvxY+7xZANYwglE\nx9Fb6tohxKViCSDKvkDyityjDjsSw0RamRFAkY0X6klv6MI7f4VHbvk7AOAwR1fmhxbD+VzFZxhV\nzYf+7/suQe4ex6WLw8SFJkTuCgc8P6D3plgI5qzdOVjPo1v5OvuGbT98uIcSAoflb9f71zVtg/l8\nY1Koekl4RDM4dqecvgFLvujsMT3lvG/w7sv0nPfDkL/fEM2XERNkhdwtQjjLKkE+jAw0LR9j7oxm\nNBSwDr59Kud+b4WK0JbiCxppVzDew/ranuQ5y9+cBB/28IxKADJMA8NjOPd0b3LAOp6Tk0QH60fb\nZAXHz1oLAFhzD6l77RUycqsFM6CVdb5wjYpWhXMiTSTG2SQhNLR7hlgmlJ+9DUPdfP6vVol44kV7\n1krgjU1TOvVnmqBRfISIHV/mRHw+hXmi7XwnOauNXiIuurDecpXWfFaODddx3L5qx9H6dlXi8+Ru\n5XvwT5CQFAVKerR7KAiJ7DaqiIm2WVJQRMDtN4FKrN5JT7YclsV1gYTCdrQtIFKt7M6DvY5t2NOq\n9ScS5LhgThzrR3Izbx4rYHks1hTaRQospxAFTORIsId47biH13G1KEhuFTHsMt9TZJBRSaYZtMd+\nT/Gy9Mq7MOuJW/rlWv2Jg24xmg77hv7VN11w5hIAwEdvztZ/n52/TN9f+xkHKzuA5+uY2Nwu3O+2\nkBUbE5yQ3t/KAPUL85bgriVcHGaacHRUpmALsLJ7d2Y4QMD5wwZ8NeW1HkrOBjHCZsOGNg6iuVt6\nOLwfIYvA7MibpUAW+iBSP41KicM6Mm4/YjWTL0cqEhkFlLKBJmi0J4KiQ7WETMLA1Hv7ns+tJxxW\ntiOr43TKpkKKHQD848gmAMAnU5/FNjHBnWJ3YsYr7FB7I4D0tIBLX4T2FVoi6/5ATwvmbFH72XBY\nZ3Ye5T8Lj0JpKSfc7dsGLh9xai0nLsrwGGYuOw8AsGzmywN2v/6COo5hGNePWISjHmEutDuEiN7/\ne8KgACsOFct/xkXGjPtu6vZ67horHq0R+Rr7UA7PDvY529zs35tKPBi7jjljc5Z1L5jTG+SEhOEe\n1olT3XzWMw5/DlftmA8AONlD6upJ313fRYk3ngs8tJnjYGV+C0YNZju8t5Lf9aT8XwESy21PEwy2\ndwgVUKFoKydUBEZxLNdEW+S4iqRQp22fHIcrhwtBzQAbiLsQahc5Pp1s9JJNgZwwrsnrAPmbOBFs\nnSCjdCl/x3JEjr8iCblb2ZEoDrbX0BAnICa1Di23aDQO5LMOq21cGKRGDUEih2OMwy+hvsMnrsPn\ntHSjQPpG20wAwPU7uXgLtHuw8mhOKF8Lkvr5Xwt/BG9tdgsFV9p4tXu7WBxvJVU4NSGmCxNpC549\n87I/1MaJ9zhHHQAgrNhhEwphu1+vAABYDw8iYOH79tQY08LwOD6kxxqHo43lCAnxsJJ0eft+gkab\nTw+bCU/g87nXZ9eiYgVqj8bTRA5gEa+sgULcyK3wIyRy+J4+lYvAP5WuBmh/wVPtFQCA0fZ6PLTz\nGADApt2lUBKd5wqlGcSROobLumiSVn8b5qqQ21i3Jp9WBX+U7aPVwcVTaGsR1t7NRWgTbUQo+U5B\n/dFCqdqVFNexo/Rb8eHFI4eLAbdQ/+1OCK59nGhTojxr15SjVbTRaJFov5VReBbvMbpuSQsMSFtk\n+5YZ38b+NdvJ4FM56R01uQmDHewgXnviGAAUUfPWdD/PsgeA3zV2jp8LDVfgbhLiUl6tH5Gg5LN9\nR0v5boaNbELtLi4oRw2nkvSCkiq8vJ0fs7U+FxahEq7a+QCSCiyu4/y/YwcNNTnVFl0wyiIMZ5Fy\nIFHKb3Tu8Cq8uoPKU5aoUPlNWZA/mM8aK2Y7im/JQXu5uJC23pRkhAfzH4ffCBXTBBPffnsO7ria\ngmQj3rmax3X7trLDsCP4PXanUvoCV8tOcvlz+zbfi5WI/N6Nez8nMmfdJkyYMGHChAkTJkyYMGFi\nv+OgS+0ykJCn02IRrvX1mNoiHS9eRWn/c/9xC6yRPlIVVcDV1PX1xnO1wHVDDjou8qel5wLU8F6Y\nNpFyqx9nPf9LAIA3O0fTXkOzPHWMoxXokxPvwjshRt9r+Van3DFwaS1+fMX7+HXBVgBAc4rW8o0J\nF66/v389dukIltO6I8fkznleDiJsuYgUyFH/uG6frpNt/e8vXH8pU17Mdm3DP/20JmoUr75As1RK\nXQ3QnaCldlEcKmRBxdTyjA61eg9o3tDUaIYfWDYbzA/NM6p5Oc57+hc9XiNTapd0KCI/pmaJHyg8\nccW9AKBTBdOh5QK9bssFeH/8v7rsn/D1Jfyxqislu7fULocyMqV2yQStrrdPYh9sabfoaXCyTdcQ\nnBtBvkivtWjacwCAq2tOQoWbAj5/KmXe1pSq4MfbmdJlcQ3TmqUCdkDk85QjFkydwf44LpL87Qrk\nItDGOpyz1PCM+HZ2psek7JIu5hEcwvLHc1UkRFogKSHBWsY2MX0orffrm0oRFNceKlIu7GrMg3sN\nG7a7juUKD5L0NBhSCnC0i+3FvE+kRNVZRDk76OVLeK1w1/IjKE6Re7DYKH80X3hQB0twNvN6sXwJ\nwUpWytwNhudQo0N6drKd5Z++C42f0BMZK+C+98/7G67dfBEAoOFDekatEfQZkWIV/7iE3vmr7roZ\nAFB8Zi2a3hzW5TibYHSpEmCdQ894SMwjFh7+AH7wDs/PrTKeJSXYlGoGvlzStXdl7gn/dgXzot65\n6Xj8esyHAIDbXrkAQO/hM6rYPfaUzdj0zugu+3oavlMOIFrGb1leSc/Zj4d9i5lOinqNsfHi97eN\n1+cgJ1cxDOvHQ77Ff63kb6Xag2Qhr6N52ooNop2O4FAZVi1bkBD8scSA4Hh6mItLA2huoTfRupPf\nyF0nwXMqKdknllFYKphy4NW1gvrv5rnSshxExnHMsO7muVpOVAAYcfZWHCXEOO/9hu3bt8GGgpNJ\nL/5sEmn4rwZz8F/r+VzRtUx7Ym+TOtHFs0HSA/1Ze4N8HNu18klB1tfXxr2EIHFEShUUj23udMwR\npdtwuI+NfpydomNrYoPx7x+RsWMNGClytH5JGhKBJFKsqDvo/XU1SHC0Gv0MwNQuPz7hcwDAq9VT\nEQqy37h08ncAgI3BUlS383ncNr68RMqC2mqRkkrk+nXusiFvI+8X9/Ha0UJJF8oaCMQG8eUdN2UD\nZucwzuG6PKa7SacA/8f5ZL7890vn9XsZNv2u+3nNQU3T1bDmuvsw4cmfAjBifPYGygrScPpCn7rg\ncb68vXlRSgYWaeu0FBadygXuD//n18aOWt5h5jKjUiy7ja70k90aH8gNT21299aUeC2xzJU7XCqU\nehuM/VqjCI5N4IiJ7MDCST5EQ8qlL0L3BcHJMVidbKTOJd2lZ4Y+CADAEV/znVhXetF/xMiu8NYY\nVw+XHZyL0X1dhO4tkjM6UDX/WQDApHv6vpB78BmqhN6dp+p0r71Bb4vQPSGn9Rc311B1+ZWRH6F8\nPq05NUJVdn8hVpaAY3P34Qea4uW+YiAWoZf86GMAwHP/PF7fduWTN3Y6Jl0197j3SKO2N1oxKcCY\nUpslhaQiZgIZFqEmiIQXGHESJwx/KH8TALAuNljPCzr+YbZBR2vm8zWoTQ4ExCQrqLLfXVxTjrpi\nvvvxW6YCAG6a+AnuGEaD0aXRCwEAdauGdcp3uW1r50k/AGT6gs4mkYfPzv5UsUmIFnB8swfE5G6I\nCikuFkwyIItFryJWGYoiQxW6CA6ryCMasyAlxtRYvqAhpgzqryUOdFBgG4kCPmv+oHZ0JEjZ6xjB\ntuVqUBEsE/FwoplYI0DzNJZBtYtJqUNBtFCUux2wBIWCp2iilqixCA0Ig8EYVxB+TZRXLAjPueM3\n+rvZlwmXJS7h6tWkjt94PcN6NkUH4X10XozGi1NwNfFOgWlxfDfzMQDAjzcxJ3qhRUX1WY8AMPK3\nr31xAiwitjYpCqlYjcl/fy9EAWYjAID/8HtxgY8L5j9mqeGgLTbTF6KpXujTGhSbCt8ghgGNFO1p\nR7wQYcG/Trk59/l1wVZdsf0XwxkHfsPrV6N4OW/eeGoUHmEcifSQlzxlB2IzafxwOERdViTcPpkG\nuvO8Bsf9+Q7W1Q2RwWgXwZAFYnUXU6w4YdwGAMB2cVztTAAhWhGUcvGR6o3xZfWqCsw7ljlnhwzj\n+25sKkXjIsYK31pMNeX3njocq24VfbfIefqzXXPwxXOknLdPYP3OWd9zaNThZ67SNQKm3s4+6qKr\nP8S2COnln37E+7kaJLS1ctE381yGCizfWg5fDzl8U04Agl5tEY8qxyQ0NrIt/34u+6/LcxrTzuL3\nmWj3o/6Y9wEA9606BvJ2btfmExZbClE/37csDLmKTUJwuMhTOpo3PH/iMtxWTFXeUlsADQneW9v2\nrW8N/iPKecY5Iu/v5/4xOPlw7l+4i6EX7QVOtDjZe9rFfCjVP0N/t9AcXU+1l0AWcc1aSE06BmIR\nmg1Mmq4JEyZMmDBhwoQJEyZMmNjvOCQ8oxZJxsYr6SXsS066A41YSRKFc2h5i75OYYrqMx8B0L1H\nMB0z/0CPYOthtEpVn/JYj/STtrEqlDxa3gq+69mCle4R1RCaItQEFQlLPiUlN2cqrWnXr7kY4bWU\nQtMoxdnkDl39S1rbJt8plP5OfDwjvTcpjHmaJd6fCiNHKA86Fmd+X6HptFZ5Vhzc+R+/D7Au9+Hk\noq6K0X3FvnhF9xVrP2Fev3Hi70CgN8VbR50N+YeROuRfXKpvP5C04WwQz1Uw1lnX63Hp/XN6q9RY\nKb04Lb73iE6IwLanKEgGxApU/GvMu+I/ej5mOgw62oafsF+d9uee6417l4xYmJ3rUZuZr84el1Bv\n4bZ/u5CUrNcaZuK5HVRKaVjNeunZy3yF1jYxjogIoES+C94wqbuBkezTFacCazs9jd7tEibOJuvm\nEeGB+qNnFl4MzgIA2ISSmTM3hmiJoNUK5orqTMG3ge8n6QQSBULJMp9lGJ7bhsjR9CxpAkQdG/P0\ncVQT3EvZAcVNb4G31OBRx1pYb+0BQ2gkMJ4nWdtluOuEuudajreb1o7t8/vKFvYAoH5MCuC9H5/d\n7XHTJ1RjTdsoAEDFsCbc3kgRKo+NrW/+c7/Sn1upFGNohuvE85QBC+c458JF+m9XlROPzB68z9fs\nziN66vlfAwDefon5MeWEhGANv+vtwmucniEhPX/DLwq2dbqW4lSgudM93ijUFNty7kZtXDPmVQ2H\n87c1pOKmKZ8CAI5wkT5aakng+upzAADnjX5fP0dT6m1POvHfg0gHvaqarCJ/zI1CIfBV08K5mLza\nB+c0CkkV+bivocgFZ7MQxfFbUGqj5/VLTSRziuG1fPc5vhMJwPQlpEivmP0iAOC+Id9hKugZPXsW\n+ccfrZ+rlzXpRifmBAAkVRmVH14JANh2q8GSeTxAT/Q9l/GZHJINjwcowvXn5afwPdXZdfqtLYN+\npSUK2EQ+1miRIfoTzmcd7ewR7QotX3nd+JV4JUW6s2Un+6NE3AqbT1ADWvgNLDFDUOuuOaSUn5HW\nKZLiuqvTPeY6LTirbCUA4L6qYwAAee4INraSptuxjh5tFYAilL+1nMGq3Hv4TX/gLy+fM/A32QuY\nnlETJkyYMGHChAkTJkyYMLHfcUh4Rg8EtNinffLEqoA/SCuL9wxatT+LyDjG1bfANymUXaSk4kv1\n6hHNBOcP6alxf0ZLlcOvIkQNBiTfIddfTqm6P7fNlX3kpuYFlfb4Px1Jp2FhCw7nu/kulo8Uevai\nbT3uSQDAmFp6kDVr4N4ilt9ZatuEgVBlAu+NY07dSR/0jxfvlstoqb3r6e6t/P2B/kib8vJld+qi\nQtMWUFBi5UfjuhyXzT3SPaJ9QW9e14GEPSDjP5695IDcW0PKpcLSVxG5gwxlxQEEe01GBHh3ZPec\nyvH+HvOPWqLQvXeJY+ghObliA+4Q8UwaLs15X08Bct0UWvvHPHM93Lv6/r6llHC7ifQpkmoIhUSK\nue26Iz7FrhiFUhYun4apOfSMumV6pS4v+AYvhOmFqdrBcSkvP4SY8OjaSzhgJBNWdIwWIjK+BNDO\n8S8R59TGbY3j5qEUx7lpjYiZXK2iZTLLkcwRIkopCbDydyggvk+7FT7x7pytCpIukQ6mSeQMHBVB\nLMZje4vd3Z/Y+O5oeETcqn/3ELxZXsZ/BtF16OiQDBGtxu7j153NMqKFQnClpX/b3T83T8dHdfQi\nh0ckcM/TZ/Xr9dPxTeOITv/LCSNW8N92nwgAcFniuGfwki7nvhykB/Wu2xhH/Y//uR9zzzHmP/eO\nLhfbT+n2/mPmbk/T22BM5PMdg1Hqokdz0rcXY+3c5wEY4pDIq8W4RylWmXIID2tEgr+Rv5MjhXBW\nCOgI8pohBz17jjYJ7dP4rX1rHXh+FxkPl+cs7FI2jbk29fYbdCGhxCy2X5tk0fOCVrqa9HPibLaw\nRgxtDa2P2dBaCt9yehunLudYterWB1Bh5/njX6cA5bazH8brDfROKn4R8+pVYIny3Sa8QGw8vfbe\nJWxjwQoFOZtl8U5YhlhhCpYOnvO5iCc9qpvYyxlL2f7bavNwzrzFAICiaWwIDy86Dsjn+7MK0aaU\nHbjpTMb1ntEHmoj2DZ8W32NXTSFsfhF77jfiQ1XhiJVSoi/yqEAvntG9zTlqmdj/aZj6G4fEYnTC\ngzd0EsbYV0TK40CcldpV1/UVHHn6in65T87gDoSFgl1+PuUPr3zvGlx55KKeTuuCw2dtBGDQdrtD\nwdK9+5yt33Cwd/tFR+eU4Nml0U260nlVa/+K+6z/6QP6ItVVz+/SkvLipfrZXe89n+9R+jJPP6e3\nuG9NSCo8hJ2slJLgqe1KCjAXod2j+rRHdeGin11KQZW/fnIa3Dv3XlJKG6DSkZxBfo51eTYk8P2H\ndHXbTIvQ/YHuFqIpQfexRL/f9ffui57A1jhzpT7w7Ok9HrvuRmO8mHjvwUOB9i8ahGzNhSMWXgMA\nqD69q8K6htWHvYDKHT8BAORsztwW40Kr54npzJ+aSfkYMJQVPwizhMNm7ULLrqFZljYNSuexQw4n\nEC4nDVJblE53bcethZz1TfLsQoWNfYGmJv28/wjYW3hw0iMUhIvbAZHEPtbBcdXqSiKvjBOtySW7\n8eUyhpeUFnLhfWnp1yi3cn97PfuU0u1RBEaLRa2gCssJQLGKZPZiaEi5VL28cgKwiefSclg6sqBb\n94TAdC4YcnsQbdkTIZGb0LO7+7Zu20PNVM/nWNP38u7NIjRSwpWeq7F74l2kyQ15KQVcMlGE+xMN\nbfzuWruLDElBdYoFl6CAuywJbIhzwVEsFE+LLB5dXOgOK9/Dpngp5joNunxDQkh4ZZgSlY+jGq5B\ntzdw27LTseWYp/jP0G/07eMfYl+14boHkFOtZVsw2lNwGN+pR+SodTcqSDpZf+QjOHZKSaC4hHU+\nlizG1ipBgR7ftYyaQFP7+CRyhEp0WKySciUXNlzLfnTeKoPaqSl5R4tVTJxHGnNzhF/xyymvYer7\nnfvbMzafjEov39nqs/4utjqx8dsKANANPnsi2mbv9L8lJkGwoiHHtbLIem7OK76+AoDhpAAMQaiL\nfS14asrTAIAps5w4YQPHj2dGvwAAWDhqMurXcmzRxtFQRbJH0c7Po5kXvrc1TQQANNVwJW8LWOBq\n4DXztnK1GSox+mBtYR0oVvR8pb3h5nPfAgDc/coZWR3vccYx5nOKn/V2h71d8O4rTJquCRMmTJgw\nYcKECRMmTJjY7zgkPKPp0PLaXb3yUswZzLxQ37w9pU/XqP7BY/rvCQ/egFghLXlbz2MOx5vrZvWL\nUFKwwwmPj5beUwatBQAM9/rxUT09K1oqFXtHz57GDU9nMGn1I/ZMl2GNZi5PgJoIuPMUUkp+/9Cl\nXY5J2Q3LsjXa832fu/FO8cuJjjG0eF817wsAtGT9x3e06Gn04I7xcVTP+QcAYMqX2X2f1b98ACdt\nOA0AcEs56Vo//dcVCA0T8v3Cy+ut7uwt6K98nt8XpKdzue+ZMwEAz157Hy75gO/Hsz37riQ0lh6B\nPJk0nPS8cAebR3QgIU2gJVtd3/dnjhWw/jpa5b3yiC79yd0AgFkP39zncw8Urv/oMhw3bX1Wx2re\n0PuvfmggizSg0Ohnk75lWhyNypeOs7ecgFuOfw8A8PjmzAJjkaG0xk93aB19z2yGpWF6S2oXD0H3\nJM7uofjoLrA00zsjqyrcIgVKNI91/Q9bTseJQlDl2tzd+rm3NVEw5d2a8cgR2b3aR/DcIncIDSnh\n5lUE3a3ZgbBFhHZ8PBFOQeNecCTZREyLxhGkdDi5tFvPKYJqp0dMo9zKSWO8UsTr8e4C5IQQNdoZ\nRUd5drkXsk0x0hePqIaePKJanlAtRcv+wJWXsO498dzJ+rbpsynSU/V290JxF8/7Bm/UHDmwhRPI\n8fDDRkQ9sHbISIqmsLyJnv/Thq7FFes5n2nYQbrqsBFN8Nr5EUdcx/r0RuN0JNQ1AIA/vX8W/voD\nzkc+xhFd7rtjraBHTwQurTkKADAjhynFPEvcOHfYAgBMNTbvlxxHoycYHy84RPN+8n9bSIW9TaPs\nclt4kAz7XNbrE4YwfORtzEdKtI/IIBW+TazQUxeTanxy+Qb9Hk8/yu+WnqLpqL+RHrwqTYDom6mv\n8hrv3YCOSr483zYZW94ZCYDhAACAKcZ5mkjSW6Pf0397b10KAKj853XdekQ12Px7+MoqQojH6YFN\n+ITXuCwM60Z+V9tquk1H1V+HEdPJ8mh6g2mPVl/5NW4vXalf6sPxpCy/ESIr8Myhq/CAyLNs3cn7\nVoxq6FKmHckghlt5vwm2EJ5pJ01bS7nlT4Xx4kJ+a49IU+TdqUBOsrxxL6+t2Jl/GYDu7VXdKaC1\nZ/+g5q3UvJfXXf1gjx7MRA7v276sKGvP4/72iGqQVFU9YAkVx9121wG570NXPKC71wdSndc7twk2\nCwc9/1eD9G3HDmYeqzLBd3j2nu7jDQYa/sNjyP+ag6KWuy3hU+Hd0fXY0gu4+H9n7DsAMsd/piPp\n7H1BCgDnXfYJfldU1WX7ZxE2n+ueJw3t38/7p97oe7u3hujsICxV7DziuexELRGpV/pRuIe8Yd8H\nDJRK4sGCZBojTYsZ1ZBN3OXrl/0vAOCHT/+qX8uVjn2JZd1X1b1+iYkfQEj7QVVwTxx2JieZi9+c\nPKD3sQW736cpK3Z3zPxLqWp53xAmWd+aCGKkjSfNX302Ah9xnAkPFsY2m4opU7YDAN4Qqp3vhR14\ny894rS92cuGZXJGHWBHHqu7ovntCsRkhEOmqmsUr+I+thXzReKkPocFcKdnCLFftScCS0zj+pyuZ\nbkrwnJ9sugh1fk6RVTHZLJjViPp6Bqw5PJy0J3Z7oOaJvNWbHUhO5ou7cDzfU3W4EKcVrgIA3PrV\nuQCAwWV+BMLsIOIbeY+UU4WjhX2ivphTAO9ulldOqIjlcH/S0zfjT7qxbV/Q3XWW3XofAGDm7T/b\n95sAGHQWx/mdH5T3euzan3fuWyfdc4O+bW/yUfeG+66hcemKz6jY6tls7+nwjIhPDeGqSVTYdcis\nOy/tmIn5paScvlHF3LtFC52IFPGb55xGJfH7xr4Ap5AiHmyxwCsU/6f+jc/qrjfmDVr+W3u78dFG\n/1zko9w+AoVvsQ7WH5OCHGabu+f0pwAAd9ecgC1b2JY91Wxk1rCRp1cRj90yJ4HiMlKJ/zqOC8ab\n7rkOR1zCmPChDj9eetzICw0AY3+0EX8exlCbs+/8DXpC+oIU4AKzfbKIrWy26bGimY4f+SIX2N4a\nGe3j2aFvOZ3fb8Zfs6+rWqaFaIkRM9o2hdfLHxxA2w72CZaQWOgNiQKNnNNq7aVkMfD7/yF9V4aC\nphTb/R9W0ID38pxHccXqy3jt3dz3q6PfxTgHDWUJlcb23//3lWgTvqGSaQ343zH/BMBsEwAQ2JkL\n1x6hSznbjcVoaBD32TtUhAeJ+nE4M1a47Am0ZKknoQjb/77OA9IpudrCNbeSOX/DKwv27eIZsOl3\nv+h23/d7RmrChAkTJkyYMGHChAkTJg5KHHI03f7AdU/uH29AR9iJ88bQQvVsKfMM4etivFLEoOqT\n5q/s7tQBx7LbaBEZ84zhko+U0qpn98vQIvI1KkFHpYK2nbTaPFQ6JKt7ZOMVBYCXnz4Oz82hWFHV\n/GcBAG+F3PjtKqqsLr2SFvS1cRveCJGm1TEhDt/63q2iziVGjlJbh2l7ORigCQ5oyqiqlQIhBwIx\nkTPX0di5KxxIj+jbl/8VADDu0Z6t0pmgeVP31aM5c9l5+3T+9xED7RHNBj15TQHgy2dIY53s4N+E\nz6gTo/Oa8OUMWvUtMvvy8mI/pubt7HSNzzvGothOingySUu9NQw4svSIapATmdttSggkSQUapc4K\nezvLEy0QuUW3SThh+VUAgAsql+FXBaRB5okuemrBLswooHjI26AgyIT8BjT5SfO1CGpuvCAOqVUI\nD9kAReEFnl/H8WREaQv+3Ejm0cxR9DyGKtgAACAASURBVPhVNZUiGuE5qXwhaheXdM9ASnhGLVEJ\nKRv7KMUiITRUCBf5s3s/gXHsW3Kruk6zjrp0CT5/pqtAXyZoIkpabtA9cfH2BdkVKP2awqGVydO6\neTWpjdnIHfWX9zOThzUTfvaoCAvp5XqOI8igClQVdmFBDSv2Y5abXtAHdx8LAGgLurGwYxIA4OrJ\nXwEAHoodBfsu1pPAdmYVeKJoPla2kNp7dOlmzHRXA+jsEW0byzqYt7Eru+qLVQzRKh7mx2u33w8A\nKLMac5QR71wNAMhfakOJEKKSk2nXEY/SPJMf7ro5i3BVHueRN9fSyxcpVXFiHsPCzvIE8RI6e0aX\nbqnAewWdQ7/Gn1eFF0d8AsCg13aHnDXdz7s+jwI3/l1QctO2V5/xCO/zFb2PsUoFvm3dz8cSPiPX\n6OiTydevfm0kYkLd1y7yCM8s3YnFos23t7JWWOodSOWx7bmqWdbm6SreaWM436KdoyCLin/uWL67\nAksCNisbmL2ZDW5R6xjcu/sYAIC6mU9T1pwERHtuVEpx40v08LYdITpCVwpaGISzVXixrZIeumYL\nCpp1VEVIhKYVu/gswVj2tP2+ekSrrn4QY57mXL+7uZatnZVrIDyi2cCcnZswYcKECRMmTJgwYcKE\nif2O/5Oe0f2FGyZ8juYkLSpnzGMMy5vLpsNRz9f+6cIZAIDX/u1/cdtOSk03hmn5rV0/CFY9ALp/\nyxXPlVD5KuMw86uN7XlVmgXRMJfKJ5DPXmZPYNduWkzO9NKK3X/JdgD7d3zuiRZy7y0WBepaWvl/\nmP8jAMCxxZvw7Gu08tltAxfqnNwb1Q4TWWPI4RQXaPiIFmbpAHlFga4e0f2BU5/qu0cUAH5x3hv9\nVobI4qJ+u9ZAQLEdOG95yXGsn42fDMHLP7kDAPCjpddAWpbT02n7FZo4jiVmsFvsfgmpCbSy5yxl\nJ7bb68WXxwuLdyFTlr28fia834r8mANQNmuEHgY5zr/hYgvCpSyDr1aIn9SqqN9JlsuTsbl4w0ev\nxUXDKXDitcSwwLcOAJAaSZv5RQXfYKKXMVxLA4xnTKoylkQY9xqzqrBt5XOpIpZ1+86hUGWOFctt\neaJ8EhSPyC+qlTkkQ47zP+3d2tuBaKGWAzD7OOZIqYi9Eh6UjgoFvu2d7f7ZekWBzB7Rlb81Rt83\nQpxj/CeyTzkVGiqE+0SKkKTLEMVxDhMuqfrcTudkK8yk36OcL8xTY/SxmuBRXTwX7748r8s5/eFp\nDY1IAF+xf8skOVXq6kCxhW5HRbiI817zYNxNrG+fNDL/qcWuwD2ZbnD3B5z7fLF8tp5W5IPoILxR\ncjT3g/Up4ZV0bYp0CF0unDeH+S0Xbp2EY5/6NQDgjouexB82cv436GPtXRnzG0WklZGTKsLFrEe2\ntDjUq7eRQbZ6dQUAwNcgYbK9XuxN908SvhUOfFzJuiJCIbHh5XEYNZTPrXmdfafUY+yTIod7Y89x\n0gsu/RYAcPmXV2JPOb6OGQZFLiVyamrx2d0h6VURF3nfV68VzwVDbDPeQY/nlzsqEQ0KT21ClLEs\nBkudo9PzQQEWrmQscMkiG6bdSI/oC98xl/GL7lmQG3iORRRtwxtjkRTaIblCQ6XucCuKZlLYyBFx\nwm/nmOCqYRnkOODwayl5eI7Tn0LSLeJZRb+Uskuwi7h3LTY+3uhGus9Zi+c8e8sJAID1n43q8Z1p\n+M/zX8R/vnRBp23jHru+k+dx2vEbs7rW/oS5GB1AzHFv0YPdp9jZLb6TMwGeZXztM66ksMKdDSfg\n5cqPARg5igKFO/Hpc4eJK+39wuvPv34MP/n4cgCGOmPuZiax7wkF53EFPC2ffxVVwk0TmKfumm0/\n2uvy9AbL1xwA02kaDe+QNvQihum5wsIzI0Br11WjJtwxbiYpWeuqhunPbW83JhvdUZ4AUtbiud3v\nN7Fv0Bah+wtvhVhP+pK4+mDEtbm7cdSaHx6w+8fzBI2/beAJNQdqIQpwEarhvIepLHkwZ3B17zJK\nl7O08/TbFgRG5TCHZ4Pgnz4292lc2cIcptmKFfUFVj/bWTKXC8OER0K0WNB0mcoPRSsk+LawHoVD\nXgQqOcZFxewxkrLhGBfPKbV8zuNUKxZ4KQCzsI6U6mDMASkh6qMKxIUIkyTURD3VFkDqvMiMFQA2\nkV9UG1qtka7UN1tQRbJYS1Kv6jS23qDlFNSw50K0PzDtL/u2aNMWoRqsEWMR/fA05l782ZLOSvLZ\nLkK1BaU8KaJdXd/3ectoAMCWd0cinsv72QP93LpSPV9vVm4NFoW48DqrhAaa244egVQLBYOOLqMa\n8OadJUikWE8s4hEscSPbQNtoGakJ5NUry7no89YaIjsQC9TGU2Ow2lgvv2uqAAA4PstBxwjuv6dm\nAQIruXguyDDXkxRjm7a4KprFBVFKlbG+juFT3u1GWy6zGMsa7ylcmAbfHaRvW/s1FzYFx1OqN/J+\nCTw7O7+3cNymL0KjxYLC7lLh2dG1Pn/0DBd1mXThfcudmLpc5JHPsD8TXHUSoiKyTbF1fX5rC2eC\nSoMNFpFn2y6UaKOjFaj5bMyKS8z9WmSdXhwYreKDtZxnFw+jsaFjcTE8u4XyLG1bSPigq3b7pwhB\nOHcSdZtZMDku6W1bo9+mHIBvF+8dyxF5kl2SLmBkF8e1jrdAFkayaAvfyp5z8r1Vtd1zIZoJKz9m\n/cfVn+zVPQYCJk3XhAkTJkyYMGHChAkTJkzsd5ie0QHEJd9dhWSUFpxtJz4OALhq4jd4YjMFBz5a\nwyByR04MPwjTFffmGOY/umn3EbCGO1vJFIsEOdXVcmY7k5bvxJvFCB5H+slZY1YDAFZEKjBvEi19\nR+VvAgDIkoq/LGZ+KdtOh57GpW2slsNKwjKRh0nD1kQQR3/InIQFi4V/sisDpFtESoTlyKNg9HjS\n4OreGa7v10QaQuW0IP7m2H/hr0tPEg8u6MprDFKZe1lmLq3i4H02flsBAJC8im7RtfbiGAtNoyXX\nszJb+52JQwGaR/Sa2q654A4lVL72E9hbRF7EA3B/zSMaHcQ26qy36FZrOdG/3o0lP70bsx5kf7Nn\nHmQTfcPXrzCNy3GjKNDi3GlDTpYiPHsDyc/8orZWppywTKmEewS3BdvYt7aNseseH0eLhPgw1uuE\nyFkgSypeDnJM/DwwBwCwaOdIjCxo0fcDQDIlo7CCDzNvUDVmeEX6sWZ6Tmsr81BfTcFApwiPcTZB\nF0LRGDJSCrCGxNiqifsoxrhkDUkG/e5MiuPE3y/e21d00CHhhZ6v+C81/ZNqzrW26zi65d2Rxj9p\nXcYVO5hzVJ3NOiMt2XtqkmdHz9Pa56tn4bZx/wIAvO0nddPRYIU8nN83JurgyRPWY2OArvxgK6mU\nmocLAPI2K8BmzkPqj6Q3zFsrw+nv3GG51roQHk+qaqtIKeRqV/X+tH7hcBQ08JxAJbc5AoCU7DzX\ni+dJiJSIa0c5F/rWPwKFb7IMjbNFTtwaGW7Z8IzOLKIQ2L9Gs776NlvgEilZGvJIP/Yd64f0aX6n\n+6U+LtR/33L2WwCABx8+Uw9jik2KYNwQel1rXx+B/oazSRJ/2QiDFYouepgUnk9IgORgI47abfq5\nVhf323L53pOFMpSlnLAqVsBex2Nb2viM7mltaC3gN9YZEJKKGfM4Z16yUTxf1AJLmN/IHpAQFdEu\nqqzlhFXQPInX9u3g92gvt+i5RDUK94jptbrXvaaJO5MuFbbg/uXgHKicoplgLkYHENJWD6x7sKBu\nzF+H9+ZOAAA0v0862JpfPKbvv7OVNJYPFk3Dnt1xpoUoALSsZieTmhfHtiNJpZ2/mnEEZw5dhbFe\nUjper+OkZNOOUsh+0XBVoF20M4egOcw7bbV+7X9vYCxPU9xnLEIFEt7e1R81uATdIzwjjkl5jPup\nO5KkjjenP4oRtq4r2+sWPAEAmHB/dpSk8CC100QCALzVFiSzyFUenBzDvfNIT/rt6iuzup8JA+mU\nq2ghf/eWy3V/47Yy5llcgKkHuCR7B20hCgCxMTScODbtf8OJs94oR38vQjW4ZfuALULX3WjE2028\nd//mWV134wP6PbPtO3uCcrwfqw9jv7UpEcInoTEAgBVBGvq+e3Y6UmJemrvGlvEa/Q3F39bp/6RL\nQqhWqOAW0TJonxhAJCzyWwdscNs5eVzUxPFvuNePD/1cPH+0muOlFJWxfiNHxaSI+YQi4S+n8PnP\n8wb0e1baGfbySP0xaPRxkhlLsq5KKYu+yNTo4AkvEBEUYm1RlvSqkMSYm79BhdPPSW+Bj8+3Df2/\nGA1MZoFuO/JN3P3AuZ32JTyALdTvtwQAqDJgF68vm/yiABAtUvYpX7W9zeg7lrxB44GixaVmeY1Q\nRRKe7X2bxrbW5uGPMpVnFwxm7FxydBglHjbItoTRp+76mnM0h4gddjcYc7Bb/+s5/OUPlwAA8tdo\nJe46R3M1qPDVaItDu35c7hYeGy413qGrWVCAx6lwNml5bYXhpTwC2zZOZo4ZSgfDt/fOgkXc0zqE\nRtdQytAa/iBsw+JG8T1zWLdihTIcYmzO2aAFjXZeiO6J27+hgSIHxtxqy7FP6vunon/70Y5RKfi2\ndK4FJeOaEPialGRt2LH5YkhoMaNe9iGyRYHdwWdVRUywxaLCU8eCK/M6ML2MDpFVDYMBAHZrEkEP\nz09YeF/VqqI+JHQCBKXWEpKhWoXRIt/ISZwQuYf9Y2S9T2mdKGJ9EwbFfdhU5quVocJhEQtqh6AA\nJyUc3AEhAwuTpmvChAkTJkyYMGHChAkTJvY7TM/oAMLul5CzgDSGX9fTK7lw4TxMOHYzAGD7RJpL\nRj1/PRyttIjcc/XDAIBXzvk7PgmRxvv8vSf1eJ+/nP08AGCQtQ0z//BTAEAsn9d7bq4Doc1UEcyl\nMQ25dgnhI2gF/M3UD7AsWAEAqI/Qev348C/xx2aqrb388eE8Z3NXi83Qo2p1caFsofjteGMRhZle\n/uE9AIAz7vuNbm1b/cuuGr1avtLwIBXueiEoYQfCI2iCkuyCnrLGgUw21WzynW478XFMEvmxZJMW\n2GdoIhRrf/4Aggpf+Nz7fnEgi9QFN9ec1eP+2BCaOR27uuZRq7rmAYx7dP960XrCgfCImth7RIbS\nqzbx3hv6xSOqoSLf4NuOsXkwJo8W/z8m2Zd/MkyFq37/Wtslu2g/Nk4vLFEVyGVf7RAeiyG5AYwa\nSrprW8KFaIrHHl3AsbE16cHOKL01eSVUslM+KUDZV6T7tkzh8zXPSWKuc5e4sxfNKboOt8fpDXLI\nSZQV0+XXKNg38ZgHqVx6JaQo7fGSIkFxpzptUx0K8lewXPaQAkXk3N7UTBeqFdC9zpqHZF9Rfeqj\n+u+799g3EF7R8GB6edy7+15H1NIY0Ny5H1Ks2eVAPOLsFfjqteldtmcrkqShr15RALCELMh1cox6\ndwe97lOG7kLtkxT1WTdF5If0pODVaJMZSGm/X3c6UMK6onnd0qHlltQEj7qDu0HRFXPtQiXXGpQQ\nFZTcidO3AwBq2/Jw2TmfAgAef/oHAABv3LivupUeUWWo8RJH2vxoqCEV15rLSpocFYGjpW8pA3JW\nG2Oilo/3Xn85HntM5DYt4zaN/gtQgRoArH2ot6HDyPjxeqLAFrZ/TVjrlhFf4C+LBVtAuEZzvVG0\n1XTOOisngHCxqBeiOJYOCzqGi3a9IhfRErIFjx3G/uakvDV4q5T18YuF/DvsmB3YUkf2g9Qh+gG/\nrD+/q1FCcLjwamoaarJRhzXWUHRQErY8bix08mV0xJ3Y1kCOr7WJjBW1H7XkNCVeDQcTHbc7mJ5R\nEyZMmDBhwoQJEyZMmDCx32F6RgcQwTEJRETgu62UVtcLz/oMNqGasCLGYM3cLUDkBFp8b36Y+T9/\ncOHX+LCW8svd2SxbZ3U2QR7hlKFYRB4nIbaAd/O6xJ7aTmqGtJKB2yNnN+Lvu44FAJxWzjxbI966\nFgUrRBqYHu6b6KNXFGAMp4Yr7hMCJWn7p9xB79PqXz6A8Y+I2CqxL+VLISSSQNmHhSA10rrn3bj3\nsVCaJ/aziJyVRddEz+iPPHH9iaprDE/72k/G9HhsJo+ohnGP3qBf62DwkKbsIoYl3n9er/XXG+9q\nwoMH/hkHCvs7TnT0yVux+b2RvR+4F6j6ZgTuLGQugl8UbNO3f9FEL8+c+Ruw6rUJA3Lv7qBWMA5L\nSghhkSIJELFbWjoDpyWJ9iQDBAvsISjCtbCyg2PK78re03UEnsqlJ/Ie6Vg0RenlCYzhdS6e8y3q\nRQLM4VZgo4j3m+igLkGzNwfDXa0AgH8lGYNaOLMFgRhj74JCCMYqK2hr4v3kGMuSs0GGu1nkI01B\n944NyaWntQG5WXtEYyy2nq6su9RFWsqW4edsy3xAluioFPlct8lICc0ESxpDSCuP3S+0HMpUPVY2\nW++ka11Xdkb6GLr250Z/ouWrLJ1Fplgmr2h3+PllzK/8569+AM+W7vvo7pDw8cPZRN72YdN2wyaz\nbnaE+HJWNFRg+hWkjrUuF201JSFYKYSJtnGq7B8vIX8Dryd9mg8cS2ZC9AN68VQr4GoSdSZLhlXz\ndEk/dsRsptJrWjEUKOSHWLONcavevAgeeoUe0fzarhcfMpt1vmHREIAamRhp8yKnSvMS8q/35Ho0\nlQkhpbq+jx9aupfHHjlV35bpOn3xiGrwLNbqlAvycWy3X8+g+Oczgcl6XHN8BL9LR9ihixlZ/YY3\n1FXLOWGskO8p5VZ0Vl37KGDlYvaP20bz+33wziwUHUZv6ZxT1wAAFm0cDe8q1g/Ny6s4VD1mNGWX\nULJElEfktEm6JQj9Kz2nqCVoAUhOxCAnO4DVO4fAsZrzV+14TXdjIHDV2R/g8ddOHLDr9wfMxegA\nwpkfhfsjDnAvBJiHad6UzYgrYkEm6KWRE8JIbGFtVsXAcXvpSry8hImxT7yKCXqXPj6t0/ULlvLz\nnXMqF7KvBnMQGcQK7dmFLmidzRHw9EHVuOfKlwEAKVXBXZP5++oPr+J1V/TMF9CoRFOqBm5SN+WO\nG/RFaGgo31PFyAa0vMeOOTzIAu+2vec1/PX6xzv9vz1RtNfXMnHwYsLXl0BZR4OQNIEDgbo+Uza0\n3nEwLEI19Oci9GBEQIn0ftAhgg31pRh/8lYA6PdFqXuXhGcepjL6MwDuuJlhHjvbaEasXzgclh5y\nKu8LVCsXMQDgSctbKQc4C1V8nMGlHCqsu7mICAoRobURO6xWFkxRJLicQlwlzjHtL/IJuGvwIgDA\n5TnMhZg3/m0MmsTZ6HMtDB+xpSWM/iBsgyLIXstjzKm4NFCOBhF+kudinUooFjjES0naOJH1Bzx6\n7kJnM8uYtzUO1zpO8OOjShEp4jPcOfKfAICL8cus35WD82q4TuGEN/JuaY/H73i1Eit/y8XcyJeY\n79NXnZnINuH8DQCAle8wrMczrxnqNkOQxpIhTEUrj+cHXByG3jFyUCb7xuDsFhviFNQZb3dj4xWd\naYOTPs2+L73naYZXeHo5LhNi+Soc/s59Zam7Ayt3cR6x5ZinAACjPrscq8QiVC2ghcG2y4Gkj3OP\nsadTVbX20dFomczrFa5RgJfYzob9lEJI55Ysxa2fnA8AGLTI+F4JN8+xiQwJ0QIZtpCRYUDD5iqW\nK3+zhEiACzNNvVzZlIf87V0XoTf950sAgP9ey4VqpMKwkOxIBhEVmQy0RWTw3UGw5mR+X9ngxMu+\nAQBs7ChFzWs0hGkLr0xGlngudA6mPUsV74QXSK5jHbbN5MlbIiV63bRXc6IcK7XCtcsq7sN346yX\nkdAqi1jfWYIWNM9jW89fboVTaKy1RGiVURxA4wq2yV0l3CbbU3peUw2KFbqir6NNRbOwqaQ8guIf\nk+Hwd26nUgpQa1nwd0W4nmenbGR5EPUgMjIOa23fjS2ZoNFyNbruBGeGBcFBBpOma8KECRMmTJgw\nYcKECRMm9jskVVUHzjfcC8bddteBuvV+gatRRYdIm7LpUloo/KkwZEkEX8u0fN3ZWon5HlrWWlP0\npP5m7dk4r3IFAOD5jfSQal7WPbHsNl678sMrkf+1o9v96dByuN360fnwVovg7Paeq8I9t94PgHRg\nwKDUDjQ6xglzW0qCb/O+O/ODU6M4bOR2AIBV8GNWv9qZyhYu+36rGKXyaCXcG9rToYCkYPuk03Q1\nb9ucx7P3aBwoqFYVUrJ77+f3nVK+/nojBUqkjFZnV10/KjzsRygOQE6jPmoCRqFhXb2KhxICE5OQ\nnPw2OcuMcafscTJ55Fy6X2ouq0RkEPtTaxm9ZTmeKHKEiEx9wKenYEgIz2hJQTuOLiVt8tbi7wBw\nvEyovN/bIi/3inA5/Al6HaZ6arEmPBQA0Brntva4CzsC5MhZLSxDMiUjluB9ohH2f0rQBtdObnPX\n8bsUL/FDCosPZ7PCP52hLb/6z38AAH6z+BzYN7OjcWTp8dGETjpmROGqoncnXdAqMIEN++zZS/Ha\nihkAgDnjSdmtemmc7vHJJGakneveYe2zSFZgYgJymO3L1bBvPgrtGTXqaXJGB6rmP9vpmN7CORLT\ng7Ct6EMi8z4gMikCr5d1z2Xn3CIQciGZ4PM7V7LuqBIQHs76lr+aD+WfrKBoCX9b4l3nS02nR3HL\nNKYVeqOOTLbgY0O6HjfLEKxR3Ckgxfpf/B03WmJGmrpM4knxHO4svaAG1c2slz43nynXGcWHIk/8\nI4HB+OtyCmAaFNi+Y8hZ2wEANR9U9JqvfV+gMS3cdRKCszleK3Gj37c10AWrCW6FDw8BNfxemsfS\n3mZ4oJMuISJUaNDPo8UK7AF+w8K1/L5yQkWo1CKO5TmKw8hDrFGONW82AHSUQ/ec29p5PWejBEcb\nj9G+b7RA0qnyWpqenC1AO7NYQR3O58zxhRFaYeR2/T5i0++6F7U8oDTdpFsoh4UPzcE4G6ScfMZf\n1nFguaNsub7vT82MCT3JtwYzHdqigC1m6oxHsSTGWJnxU0kV+h3O7LQgDR3PEWdxTORUSsoIjOb9\nfnzC5wCA3xatghZ1mVLZcL6IWvH7lWcAAApWWSDCcHpE21hVX4RqCJan4K0Z+Amir2rf8uOFhoiJ\nUIj1zLvKifWrxu1zuQ4FbLnoIYz6x3VdtldWkPpWt52Tt+/r4mbcozegfP4OAEDNl8MPcGmyR08L\nUYAJsgHAGjl0+84pJ1cBAJKKjPUfdB/Pe6guQjXIe8TgJUQXfqguQjXkrreiC48tDVq+UUeritBY\njlH5Ps5kx+Q3wiKxDo/NbcT2YOdBqK49Bx/t5vjYIlZgh/mqERaJKL9pIz0wmrLCKuTPC20FaI7x\n5bosvF8kaUOui5P0lMLxa3dbHlJhofQbYN2yxSU9Hs0WERPZXBeQywl8rNCGcDHP/zRAOmxhfhBx\nf98m+NoCLWepE7G8rvtz17Ncr1lmwl3Ad7XqQ45VDhiqzLaNLHd4sKrnjNTO7Ysqp3asuygMZVUm\nhYi+Y89YSetyH0a0XgvAUL9NOYHUOM5f7CuNOU2klCe79nEhOuQE9vm7Puza5ysJGXZBEX9+4lMA\ngJ9uPR+bVzFeWYvhczWpsET5guLi1Xi2W9A2TsTrR2XkbWJ5Y7kih+1OF+5oJV3WJhY8lkpJNx64\nG8RcJChDGSPo7GEbBn26R55SCV0WoaoMtI3lfWKDWb9/WLgNTlHXW6NsJ40LhwGsorg2dzf+0irm\nltr0Le37ZIonzoTqTysAABN/sAmbX+lZeyEuGOLZUnI1xAq4CNWginJbCkk7VhscKFrJlxIcyuNU\nVdJz2Gv1Lm9rEimH2C+eWY7LiOdxm6tehiJeSccwvve8zUmknJ37Y2vQ6N5cTcbHiBRryseARSyU\nPbu4P+Ex6k8iJy0GW8uLKuag/okKFLeI63ZzgAi0ew75uEnrpHYk1+4dB9yk6ZowYcKECRMmTJgw\nYcKEif2OA7oQ/z57RDXkbBEqgZPogUKaZ3SBby0AYElkBKriNE292kAP6oy8WlyYuxQAFdEA4NmS\nRqw/htdLBBwYnEPL2u+rGeC/6IS7MdzKYzVKYkKV4JDoWbRIPNcmJXHE8GoAwLZzC9HWQKu0/Wta\neeWUqlMVwuW0ulWfbuQ/03EQOyw065ScBDy7/u/aXDJ5RQGgdimpQ/bvqUc0HdcOI0vg/+GSA1yS\n/sOh7BHVsHgleUrO+oO4IxkA9Gee0QOKbqI65AKhLBqjRyOeI8HaRFdEs51iQoM8HXBbuV+GilG+\nJgBAvo3ewHXWMkRTHLfWtpYBALZ3GBS2XAfHt46EE/kOnvNNywgUiN+j3GR+eKwxrGplX9fcIfIw\npiQ9T6ElJlR+Y2lUOuEhSeRYEagQqpwFhirr6laqBcffL9bLk62HKR2Otu735a6xIemmO67wGIoM\n7W7MQ85SZ6fj3LsN9U4NUi+CVUk3dKqldmxyQw5SY/lOLWv6P4fxnvlALVHAsrKr93NfKcIaMnlE\nNcg2BW3tpHa+EJgFANi4aYgu9OWt1dRSAXejUGN1aPVFhbNV+60gJrxtqgi98m1ToVrYn2leOVez\n4YrsKOfGeGEKOd+wPjI8ak83qPFTy0EqJ1W467hNGk9vmgwVVY0U3ont5Pv07nEpa4coSIbIo2zr\nq8Ya6M0rCvTdI6rB0do5760lwnInhXc6p0ZGTCjOClY/rLYUIiUGtRcAIAHWaOeHtYUVJFrE9Zyy\nTnP21vGjB4dYIAvatdA5Q8ItIS5o8e2Vkl5Grc1IScAj6oqjQ/wNqLpYlSZMlHIaasma6q4clyCV\ncm6dSsniWQ79ydjeekWBAxwzOvE3jBmd+6NVWNbAxVricw44wTEJXDOXk8hHl82Hd13XWMiDESkn\nEB/P2uzIIH1u4tDAup8x1nB/p4HYH9AmVenYdPmDGPPUwZ8YOVukU8Uckzjri63NwIs7RGELGovR\n9BQK4x9mfdXiY8Ljo3Bv6DyBqob/ggAAIABJREFUPZih183vcci2pHQ1JBxMaYP2Fb7tXfuXlun8\noJYwJ16e3ZIe/5j0qHAKqqn23ZMeI4xHWzCqFkARaRW0ybpq46QQAKSUBFWkjokXp/Tr2dpFHJ4w\n4FjDQLSws5KpHJOQO5YSswuGUjn1lc/momB1128VF5TM8CBVTxfRMYLXee2Mv+P855myTFPlPdSw\n5+JWQ9FJVOScnM+woU9fnL2/irRPyFnAxbz/SyoGpyu+/viSDwEAzz53wn4v10AhWvz97Tyl1KHZ\nprLF7PkMXRniasOHT87r9jiNXh+aHcGkobs77ZuVX4PxTm5rS9Ho0pz0YbxQ1G1K5mCIzd9pf22i\nQFfcLZTp5MqVY6hN0iC2KkrjzmBbG5wSG5BHxJ+0pdyYLFJpvdk+DU+sodK5e5lwbiWM1Djr/3RL\nt8/0f9dlZMKECRMmTJgwYcKECRMmDhgOinjZX5R+iNsSpwMANoCeUe8mG/79NCrM/vtJGzGull4b\nW/uBt4xEi0TepjTLZ0xYWucesw7PlNOjO3HdoW/l7iuKj9mNps8GH+hi7DNubxnd6zEXX/gxnnrn\nOACALXAQ1MsJETjX9+6Nz+QFPdS8opsu76oQ3d0zfJ88opmgCaH9e9FGbPgJPWyaWqXTE8fvrngd\nAPDHJy88MAXMApp3d/qSCwAA4dX5PR3+vcP3wSPaHaRzm7FtOnNz3tpAhdHXN05BSlMvXe9CShCf\ntBTckA2PqCYCKMclPZ+hRlNPWdVOLAjNYyAJGq6UlAxNGOFBVWyGYJullHzVWUNrMcFLDuTrd7FP\nLwDgFyLruVsA2UjfCAAom14Pl1W42RbSczDN4cDGK9k3Tf3r9+ubNr9PuvOMq5lncsKVu3H/E2ce\nyCJlhfaP6BFdc8t9AICp9/xMVzW9tXAzAKD23AJ89srMA1NAEyYElnxBsbJ/XPogpoGe0dOu+gIA\n8No/j4S9ncdpVGElJWF9HWnaR1ZQddsmpXSPpzONBlCb4NrKAkXfHxKCcD45qv/WPJ8+xBFVRZiC\n6HhDigMThde1XIiA5VtiOLnqXABA/evl/5+97w6Mqky/PtNLeggl1CQQCCQh9CoCIkVBURRUmiIg\ngqAuq+zq6vrz26Krq2sFFWwgoogovffeSUIIKRBaSCAJpM1MMvX747nvnZncqckkBLznH8Kd28v7\nvs/7nOccuJIek7tQ/64JMTMqQoQIESJEiBAhQoQIESIaHI0iM/rwwTlIbFUgWJ78Ic0sps9fiHMz\nOC/N1bMAkMR2Q4PJQTtmRI0R3LRrLIX+x7YkAc/tbehTazS4U7KirCaUIXbtc9Betn8OX+wbCgDQ\netjH8hXDUDfTmcDA0IrzYfQhK3qnwzEjeqdlc33B38evBADsLk3A3m1dfdomrYIyFkk/DoMuhvOP\n5X6THg9FZjx9k7o4rtbjQmN4a+2wOZAKTvX+CQDQKe3ue7Z/VHQIL0bnA1MAAFVF1EZpr8iR9ABl\npXJS41HZgfPIvMRZrlTZaxdtMk7AxUT+u4CD9ZHS/v7YFDY+CyqttmdGmVAiN8kPi8IGIyce8lAc\n1WjpzCo+I8pwM8WGoCuc6N/YG7D80tTp97JN0Sjm0gAy7lx7n5yAeR12AgBSF1Afc6dkSFs8RHYo\nV3ZSlldW7Xq9D5ZQFiR9/kL0e4F0P6Z87r4WrLGACTgC4MeTDHvz46Brx7WdlxrFsNhn6NtQ/6+9\n8scSgrsbEZRv7wwHTCWx0x9TqTb7wgsL0fF76heZz2roMTWqomj9U1oaB0S1qYSFU8+KU5GQm8Um\nRU/1RQDAOWM0jByFRMbRSmQSK5RcujXfZGclVVipve6guk77gRQt5fSdRMholLG3ijKidUWj+OrM\npUr8PmQLACAZwoY7+cM5SJ9PDXvOo9SIdNo9HZpTDTf41qcYoE11Pp6ujZXvrHDcnpy+YbHnpI1J\nRANSnvEU1twZmPDEbgDAyp+H3NbzqCsOzvkAAD3LHQb6KFU3nBtySRBTNhN+ItqBxQAA/YEowW+d\nHshB1ibvFN9AYOyE/QCANSvvaZDj3W5kP7MIsZtnAAAUhY0roKorGLWv0zf+B2FRSnt7U1O1sjrc\nhp/W3QsAmDCa6HUn27dBwbY2tT3VgENy2yT0Gjeqm1IbpCpqFN10rZFa2BLPJBwGAKzaeD8AoLyD\nDVmbqZ20hABRRzjfTGJUwhRsF5phHn5mtYQXD+JptlUSPmiSWAApR19j3tmOqtMWFSduFGnBZ0N+\nAACsuNEPAJC1uDMqHiCZ43P3LAMATMwbiiM2osBbDCrBxGR1hF1kKYgTFDNuj8IH2ycAAIpnbAYA\npDxxBqk/J/l2swKMqqY2qIuEJSRmbigjN9iXXdvCBaE+6t84jss2vfgeAGDEVwv8UhRuSMRuor4j\nCECfU+MBAEc5+rj1UAQ/gZf0ME1QnN6ewKsONwY4qiA74sK4LwEASR/fGZMeItyDCf0UmCuxbVd3\nAEAo86MeDmQ/TeOEbu/Yn7WahqOoyKRGb6OlCwa1JsquiQs6tbJq6GyUTdNKq1FkJtXbFnKSSU5W\nFWCbLsHpXBSSYn57RvdNUBSiGReEDkwbBwDQbWjhtF15R2qEPxy1HABwXBeL9V8P8nrtIk1XhAgR\nIkSIECFChAgRIkQ0OBrFlKv6uv00TKE001hTqMiRsgsAuUO/RfIp7zNBVqXd78nVjJ0xwgYpJ3Yg\n9+D/NrnrUaw8PxgAENyLm4rYLcyMAcBXt+yF8HdiRlTZ9yaMRyIFyyeHHwUArMSQBj6jwMBOzbVn\nuF/8mmjfNQkumnPu7TDe77wKAPDCAaGH54ios3hhBtG0Zv02E6qS+pnv0bcz+5QR3T/nv9iopyzY\nv797AgBnV+PC3qWxglFzO343u1HQogONrGcX1SojylDMzNBcQBlfjoz+y52WTa0KRV4UUXrUxQ0/\nH8lEaBwtFjrsmgaA2nURBJYRrW7OZUivN4ru2m+EBxlQbHKWtQjNtWcq5Q8Vw9SNWuDqHBIbk5ol\ndvuCaM7j7xZ4Cxgj8xuU2bOf6hIbTCHc79Gch1+ZHDKOpmvR0DYDU7Lx6mmimgZtIOO/0uEG5HAZ\n0Q16avvT13RGZBHXTqYJ/fNUt4DnHiNG1/dLRgEAZPeVwLKzidOyp2dsxisvbwUATPlovi+3rM7Q\nR3PZ5CYmqDmP15BRZHFStr0F9DF0f0IzuY9RYhdocmft4go1x2Vn5yzk7aV8ES1pSARn0n2wyQD9\nXqJcv9EqWbDeT7HUf2PmzkaVbXSXpU3jPOptdWzKcyd+AcC9N7mI+gcrs/m2tCf+PGYtAOCLRSQS\n1u2dOTj9Gn1n618lJsKY9xfw2wZd5WKmq+E4PJxos6U3qd1VXFXyLA6pWQKrgrPN4tpOiQ2QdqQA\nKFhDVJORrcNh5WogYrj069bSRJy8QeNJ43aKfyQAKtoTnSLkvBSh2dRw7xtAnrS/n01BiA/X3ih6\nN7nO/kEZ21KLqDjj2leUcaazn16Ev878GQDw7uIn3O67pgIeA+voWva5hhAl3fy8dXH876yGhSFP\n3wRhfYh/rdvZzNPl4MdsMlL2VV9V39oM7dXb/yhYsBa3/Vm4IkAfq6p/ap8xnD4SZWng1GnbDb8o\nWBa7YSYAzzWhAAV9gL2WCQBeWOK+sf502VhkzKP72DSxCOV7m/t3sl4g70v+UNojvqmNzr48Bkdz\nYwDA5TNtrHhq9F683TQDAPBWUeJtPpv6QV2ouY5gg6ckJAh+kxwLA2rYlS1ttxftD3Wp0zEBoiiy\nejxvqI6k7zq0cwmqXdDb1en0dv7au/am2d5g4eaXGiuN0B1YENphcB5GNj0LAPh81ejbeUp+oeB8\nU6QphB0xo2d/m7gUi4qGAAAytET5yj/RkvdjZcqnQfmAgpswVhfRv4bmEr6jrYqS8PRTmZba7T6d\nz/MKlXNGUkC4tySeD0JvdqV9nx/yHbJNFD299Du17xFF3ifsfrrkrMD6XdfvMWUnBZzlXemal/w8\nCvc9mwkAeG32CgDAO4vqpmyt60ORSdBRYQ9mCgG0BdxNKVDyy/MLqM+QN7XZg1AGh0vlFYktvp+P\nY1DKFL1ZH6u+ouCfoSvKcH3A1YSXKxwrEda6PZj1IABgY6eNOPHixwCAnp+8FNDz8wWtR14CAFzd\n4rkeb+LJ6QDAjzvqGkyKQentx8rFw7D/Lx8CAL5wWB7/A40VciYL3QQcYd3GKee2pu9Oc10CPSfn\nQvWmLr7DQmoTTVzouB52am15PDUGcr0UWq6u1XEPIeeFMyEb11IJhNYg+MklRJquCBEiRIgQIUKE\nCBEiRIhocNz+dByHrkqatu4SQx42l87EulxPxdF0rporMYnL/b7ZhlLEvJgQAENz+4yALoaiekcF\nXjbrV7ylFYprHGPUxEMoNlJ6e3cazap+23Y3uux8AQBg60kzqKoTDvQ4bpogdswFPNg0HQDw6UnX\nHlzPT9oAAPhiOc1uB0dXwnr19nkhsoxo+59oJkzjhrr3ZAhl5f7h43717Y3Qnld6X9EBgcyIAsCi\nGQsxewnN2iZus1NufCVPa2uhrJf4KR0nY95CJO4NLM3H7CUjOuCRVADAgbUpAIC0zQlQJldwv7qn\nHjc2sKwoAKzYcO9tOw9GWZOaPa/nDwKVEWVg3o3ukLCflEyZMAsAPDH0IABgZwFRaSr3umZ7VEVR\n22qJNOP53nsAAFqObvLJugd9EvhoNfwysnOjAcBlVtQRr596xPsOa4k7LSNaE7l7YrF+5iYAwOe1\n2H7pVMry9FEp8F05Pe93f37c4zZWpd3j01fUzEA3OS7FxkeIcjZlxjAAQM6SBJ619OhP83Fw0n8B\nAH2z5gIAggslKE+gj67JMeq3Hf1EGR3XogJkKSTCYTobComFW26gDzdGW4Lo4UcAAF+k00x/2FYt\nKtvReuefoG9x1tX+2JFLYkWa69T/mTWA3OA5O1q9zVlhd8pH8/nMYlxbYlJdKmmF6WfoG3wy9gSd\naxCgCACN1XRPORT7iU2g600piKBjzhwYIze0UF6lvphRnd2BjY1ciTZ6w6e32mFeBGX0XruHxjkf\n/DrW54yoU0aT20Tfih688qbUZ0EhczDHsLrl+bhbOq8HAIySjOYzkNnH6d+VrcIwIZjerVemUWnO\nf7/1/L0AQPhQokMXnqFvTGqUQFHBZZN8FId6e/oPSDMQE+0qPGdGTWc5Nkk/3/btDmIm9PZDomZ0\nBDm67qSxI+MKWVRApz4XAQCVVmpcty54HyPee9Xt/njqLoAO/ei7vLY6hl/mK4MgNMc3pWaLyq7C\nzfqOahWgNXj//sXMqAgRIkSIECFChAgRIkSIaHA0msxo3FbivQe5qRWtiQc+WcAXzV8YT6xqVrcA\ngJ+JAuwZUV1bmnVQlchQ1Y6mZbU5Sn5WwNqfZsGGh57BrN1PAwA0V2jqoNtHc2HjPEXNJs4OxPGE\nuAnUtfGb+UWfOvzMso+Jn83BgdL2AABDNJ2PNDcMvly1oWM1pCV0Pkm98pB2JgYAoG5OU6ySk/7X\nW+k7GJH4Gd23QOXN2LXGrp8ZoD36j03PU4H34M1/wpLpJH0+56fnAAByXcPUrfzlejfYuC9MEsDM\nmjtkzFvI1z0dtFJmFFZAmuZL+XjjQGPzEQ1kRhSonVgRE2NRFriWb9rw8wCP28tP0vPvlEPHzZq2\nCL+uH0h/T6f73eHs8y7FjNgyW4kSfxlFvpDtd5LYkMYLi2HixB0AgBBZFb7cRrYRujiTS59TJtyw\nsS+15Y9k/9njvhsDzCE2yCsapi1hSFhce6bF1KX+1735kxFlqGpC2zBLFgD4pZJqmJbF0DvRV57A\nt4kygwQXzJS1O38fCVjFlc3ia2UlVmF2UlFBy8p7VuPPCeTr/XSfHLxbTJ58r0dRBjLTBMxMp6xk\n2FbiwxiaS5D5nLPPdIVJDclVygJWdqaxgeqqgs8cyAwSBF8Rnger3VQoqC9vHVmKvELK/uedIzbA\n5gn/xazsiQCAPcXERPj71BU+142Wd6bvX1WoQK/hVDN8bFdnAIAp1oDRU8myad26/oJtIx68hr5N\nL9J5fO+5naiJmllRZjvhSZjoq29HYx43LuumpkyMslTicx2qU4aGu91xyfkAgAvXoiB3kakdN4UY\nG5VmGkVllEUjf6Nvvoe3LPT8HOsymY/8336fiL+Ec96jUb57vLQIKgcAjB1FLKXVV7rhUMqvAIA3\nbpBg0u8rXFtdnHnJ/l7+ZR2t421cdnYa8SROV3tJb4lo9Hi2xwEAwPfKflCfZe0VJ/Smk+BsKr2n\nvXdTXfr/Jn+Nss70joZleg7nHDOiDJVdKY0ZesIegTR/hPyGB0RdwHeHSCQzLMO3UFFWDbR+LA8A\ncKuKvtWa1i/u0GiCURaEVvWgj1590plIqW9N/AbtVfuAiSmdsQ/YJgeqmtCDs2poffllGcBRIwb3\noYb8+KpkBJ8V0kff4xqMoZoqBJ8T/q66SY1Ui55EV70R2oJX/bU6jK8yjMKK3c16+8MeEpEFAMhq\nSzSOj5N/4qmknqDJtu8jZ0t72OKo05RxxmA+MkCcoM31jUZrV6L1HXljFuORnJEA6HwbAlVd6N4/\n8AWpjKm6VWB+Ovm+texDFPCYkJvYnU70a21e3fRZDS2pd9VcE9IY1q8c4LOIlScw8Rf2/rnDhAvD\n+L/nTFkHAFi47CG/hChuFxyDUKBxBKJ1hSMdl/1dG7gLQmvCogRkbgTbAOcJOkalZN9nTdVnSd9S\nAIDtCHH8+o1N4wdSmjOeqXv6LkQheiHyNABgQtZ4JD1E3n1n1glFlgC7P2pnZeNXHzdFUEuruHX7\niEXnZlJ7nGnU49HvX6m3Y6zV0fNoryjBh4XDAQAHtnT1uJ3qpnDZJSMFaH+9HgPAeXKuOtIKNddI\nWbiopWX7Inw/ZikAYMw31JYHX7YHg8W9aX2JTYICjoe6vyoMnTXUxiduopKaqINyXim9+dMXAQDr\nO25CgZmUkD6/SQGcXGpBYl/y5kvLaw2AaLoqjuapLXBN12UCQqkL6HkkfTwHMo4iKuU+2/8UjISU\nU2s6l08Ds4PBHfDCrN/pHL70TE0f0f0MAGB0RCrWlPQAYBcCqghXoVsQDR633rIHoyZu/nFl5+XY\nrKMBrG4SBeg7NvSEstTjIV3CV3VcNtnG2rzKxGqoLtPYRVHhdjO3KNxEdFV3LcPqZeRy8MHziwEA\nGpkJZcOogavc4VlAcNBn7r8dVYkEIQkUWP7e7WsAwOAb8xGU537YbOymw4zofQCAf+ZSGdaNklBs\n1dPL4C4I7Tg6x/n/S2dD7YVizCCTUDs0+Ys/0YKmtRkJ/nGQM2UR4pc1zvHFiBAq8dsc2QWVZdwb\nX2Z/DxS5zn3OC+un4ZURRIdfnPmQ38f7ZhBN/r18wk7Rvv47TRz/hrYIq7F+ebzFK2X36q9UYql5\n8Lpf5yLSdEWIECFChAgRIkSIECFCRIOj0WRGGUJDKDNqhNauHWwDrMFsKtWeyauZ8UkYnY1iAwkP\n5Z8iioxjujCtKNrjsUdraUa/w48vuLTB0HfjMp7baD/GdhaYO1Ca26KnW5mwZDbOzRBmQbooSwAA\npmQdIjlDU+blOfuI/9QrQ3Mrvr9vCW3vQ1Y1EGBF097Asi1SiRWXy2jWmmVWExbP4Quc6wNWHT2H\nqU9tAwAsXTEc7M1Zxs2ctpYHY0PUMQDAgrxn63Q8VxnRQMNdRjToHvI3GN2axH6uVYdh/2/dAQAn\nmsUDANrel48bO1vV+znWFUMzSOwr/1jL23wmgcPDOaP4v2sjVjRs5CkAwI4t3X1a31NW1BHxy+yz\n7hduURvUZvglXN1qp6qxjCjDkd89Z8MYDs/9EP2OUsnFwM/sVNsLXIlD/7FncHJNkm8nysESR+2O\n7ELjEOC6nRnRmuis1MIUxmVqy/w/r7h7LwIAzu9vx1upMMSumwllMbWnFiWQO4n6tQR4fhdqiv5U\nxAIjgym7d7SKZs1/H25A2A7qZbVtKjAtfSoAYFM3mqn/U9x2NJfRsas4n1XNDRkqYmif8weTv+d3\nHz+I5UZSbjkQG4dXYml5+GnGJrChdDj128c6buLP6b9FJIo2PIzazi6RJfiYW5ZeSudoVVmhLbDf\n02P/outPec/e3zJGFFumub8Yc+OIanfVSN/WP5ul8+sXd6L04rdlXdFCTulJEkqCAJXt6LlOjaL9\nzUmbhIoyumes8CIkR4b3cpyt7do9egFybnA05+JY5JSQyJLlEInfKauBYM5ztHKzbxQ6R7QZfREA\ncGVDjMvfmQjhf0qoD8ob+TVvyee74Z3vmPYMlUZV2ehh/DXqGJaf7AsACHa7FaE6hcabawcsxPhF\nzlnSkCHXMbkdeat/XkJ0xXeG/oK/VdH91hQIv7f3ev2K43p6f0p30b19/MmDmLWdShuY5KUx3AZp\nexoHOgrLfXqL2mBvwkuOeLmgl8/rikCDZUU1nej7NmT5Lk56UE/fjEZhQtsnyQ7q7E+d3a4fcl6K\nxYt8y4jq2lC7PHLoSTzXlKjtS4opU//gs/t59sb6r11n7wFnISNvJWiGjf7ZGkpsNpt3M616QuKC\n/wmW6VOoVdamalAVxXlTFXv+MGMfInpN+vnWUBRSg8Q6Cc113z/qrS9SneGIT+xGshYuKrUkVcJU\nRXf/3f5E531t41OQVjOaLudX9uQX+OhWDABg8fIH+f2wYOyGRYehi4TqVxY1Z0Jb1bA1SO5Qs8aj\n+5iz+CFmNwDwNaa1gSlZB1M5TShoL9WNIusvPFGNJ+YNReoGh4/+tn0V/oNRhRXlUsT2J8rWlW1e\nFPhC7qALrAVcqRYao+g+KYvrfwLBF9RFVVdRWft2whRkg4Krm+77SBoAIFyhx5Zf6ijHCGDk+MMe\n96OLNyIoR1gasJCr4buXizc7fd04aVSBQM2gzx0YFfdENc0yTFr6cr2dkz9g5+WufjXkorBtkU8g\nZVmLlQbwRVfsquCDUs7hL9EURF4003KLTYrBGprAHXScJgxbh5Uhu4BKWyxcHyIxSqC+wantWoDQ\ne4kapt9MAyFluY0PIhkKzJUYsJW7l2YuoFBakdL+Ci2y0bLcG1EI2UThTElPKwb3ojKfkz8lC66P\njVVShmSjnZZ4yqtOUJDQIa4QKzuSJ3q6iah3m8u64nQp0YHjgkuwbQtHv+XGOvpoG+8V6s0fN+JB\noiabuXsbH16Euc2pNrenSvitxW6aAXkR9b3aQjpG5Oh8XDtME4HKssYxBvEXzDVBXShD3zE0AXB8\nlfBZ2Rya/6quNN6MiqiAXEqdBqv5bKkpw4CQXAA0sQ4A/zz7IKozKLhgJVreYJMJEyetRlzmlXwd\n0X4l52jgItB1BYsKeGwc0YJ3cMroRRlNPW1yR4OpZd+tsLWmj/znAV/ib3mPAgA/SewrTd4byntV\nwcapjUtMdD8Tkq5gQVua1DldRTTd776wxy9VnAi+uqb1iJ9I+/hPbn9rPFO8IkSIECFChAgRIkSI\nECHiD4NGR9O9vxMJXRxM7c7PEuqSqnmBI3NfqoB/KXEn/rf6YQDA1TIqs3UlSuQNplAbP8PlmBFl\nkHH0GfOFINiaklqZjEubyfQSmFpwy256vpX3pI0DADzUKt3l78qulNK3HPXsI6lvz6kA++jfWR1p\nheqm/3MOjhlRAHxW1Bfo29E9cZX5VKQHoWHzoXawjO72599DtJxmvJmanlNWNIDQDqSpJL2Dv+LQ\ncSQksWt1z4Acw5EqXDMjamhtgeZq48gE3m40lowoQ6B8Rv1FWI9ilNyk939fHgmLKVODoIuntsVV\n5tJX/L6vD1/ioGvHKVE6ePW62zfLiF7lhGVE1E05N1AYNYZoih9FH6/TfgovkZquvJy+wd4DsvFE\nMyqVaCEvRZiUOpz7NdS/v1ucgoeDqG3+qusPAIDPCodBySlMSnuQ8r1mXSgYjcXQTALTKs7bkXsJ\nbw6zpxP1Vnq/f65IwoSedD3RnJJPvKoQrWS0T0Ylzo+IwMZNRN3VRFfi27aUgUqBMNvGWBdZqzqh\n/GFSkU2MvwrArioJAH1V1Dfe2zwNaE6shJWVYbg5lK4r4xfqh1hWFHCTEXUoYVLI6NjzYnYCAPZV\ndMSkY0SVfzlpJ9pwJULfF5KCdlCOkvcPLk+he1JxNhrNelLZx43z9KyCLjWu9tIVzMFAVVu6hrcG\nkJdtpqElNi63Kwc/NGk/AGDd8nsE2+8cRJ4HVTYJZueQuvGtanoWTzU/iseCKUuaeGgSACA+qhi5\n5Z7HaDVhCrHx1GULp0HpmBVNM1Zh0inK/kd2oKx6iTQC2nzv919WDaz+hWiVvPK7KGB0xyLoOLUV\nj+tfQFgajZTfnkft3z8+nezzfipjmD84tTeaCyqeTvvjoMX4qIDE6M79RIKC+W3CMIQTfV1XGsnv\nx9CC2taonsQ48VUZtzYQM6MiRIgQIUKECBEiRIgQIaLB4VNmNDs7G3PmzMEzzzyDyZMn469//Ssy\nMjIQHk7c+enTp2PIkCFYu3Ytvv/+e0ilUkyYMAHjx4/3uN9qzoZFVWKfBdy3jsQ6HOeElFojmKun\nVk3qN5uLkvjZpupDNJPnKrJu9eAl3nPKGEbHc6yJsPkYjqtKJFCV0Kz+/52jGQprcxvi2lItzI5R\na/l1LxiEnP11iTS7ESHTYimGC373lhFl8DUjymCr4+TmqfVdAACJ6OLzNg1dC+oIa3eaWZeecu+t\nOXDXi+jYhmZ6rmx3XVvJ3gtXtYe+Qt/eiOWJJE4w6YCdK/9ZqyMAgLjOiQAATWb9CbM4ZkWt3Kvz\n87QP8fiP7rn7Im4/YvpfQd4xsjSojUetrj3NiMpL5FBx7eSZF6nWL/nIRGgyhBJttcmIqrjM/80r\n1BcEXXbIgl5y3b20HkGZI1YL0/z+qxiZOQYAkJ1DdWt50xfx9VMN7eUpwo7N6/sAAGKju2PJsG8A\nAMM0/ntFRR2hdqikFzVPff5OAAAgAElEQVSo81tuRYmV5FzSq9pgtYFqPD+IPgkAeKvpWUy/TJms\nWC29Y0f2dYalOR3bdoveXw3sbbXmhr1W1dCM/l4x8CtkGulbYLZBw4MyUaWl8/mWE/A4Wd4W1/Xk\n072cq++898gsoDW9ezM6HUKeyX3WPvQcvevGUOD/Ymgs0E9NxxiT/QCqbHTdERJh33ha1w6Hc+IA\n2IWJvMKhLPe3Tr8AAB7LehwAEKYyQKmkRqONsgTLrlOW8PgF+t40vcvQq0UBACDzF8qMBI8qROke\nynp8+CxZ6rz55VRfz8YrdG3o+oOuBDb/Ia+0M+LevfoYAMpEhg+md6Y0J5LPiFbGCZkaQ1eRaNGm\nxz7Aji703LofexIA0Ep+C31O0d9VV+jJpBYF8SJEvkLp4MfsSrxx7I65iGxGGdibuZSV0hba75On\nsYi+czW0mb641Iu4E8D6ekWJnGc/vLqNMvbqcPhsyRR8kV4aQ2tq+8xBSljbEMWin1qGk1eoXp3Z\nJUl2RGBcJMUlp9O5tkgOmIOooSk6Te2zdFAF1Pvqx7feazCq1+vxj3/8A/37Oxsqz58/H0OHDnVa\n7/PPP8eqVaugUCjw+OOPY/jw4XzA6gqOQSiDzEFVTpdEX27QUeHFp19uyd9IqQev3w4hxcgHNcLD\nR1FHt+fnnhg7mSg3N01B2PcziQeYQunG+1qYLtdL+AbMEbt+IuNtKO0Pc/AJos2k9VkBQwvOm7Kw\n/mkw6qKGT377EhDWF9gxU0aTEpkr+q0mS40rWZ4FfmobhDYdeg27k8g/Lu63WfhT7gRuh/QPe/ZA\n/QahjmCqZ5mzmIBTw6qSZj+zCClHqUE1nPVdWe6PjIuH2tRKd9LQghv0nadBr761BSildobRgmsj\nfmRIMrj0F72Zzz1Plf2DMXE+i66OEzm0AGoZ9bgmrm3c0WUtpl2moCD/Ylt+3YF9qUTgyPZEv8/X\nX4R2L0H5qSb1fpw7FaoCBbaWEz11mOZ07XfEBVEUqNHg6J7cvtjfdbVg1QOXiS678yZNhMolQPBF\nepcdS0+Ywm7IZXt5CZuE/bW0N/7TnM536iWi3L7RchOW3yK1VTYxeLq6Gq9fJMGQz29S/200yhFM\nzF3Mj7yAnv/HCQ96sMK1dNbxQSjD+o6b4EnXdVVWN4Sc9i2gGDyZqM3b8iiIXNRjOfZU0TfYOohG\nql+12YvkQgok5+6ZDNVVCtYUcrr5xlgrjqR2AACEcvut3NyCHww+EkRB95s+nZF7OKrusiCUlVnJ\njwR+bMDGbYpyCfRlVBYjS6gErtG9T3/4EwBAv0/n89uw8VFHRRDvBWpIpcTAjIPzYEiiAan6Oq0n\nsdZuPGXsTvdUdo7OZW8VoJbQwDUoW4mqXDpfjYtxBxuL6GLNAo9ThcYElqgRcfdAm2/vO0PP2dsT\nwz30Hmn229uTilh6QYLjqLGa2P44Vnw1XLAe8qn//rV3KLQHhO3RhV9IyZe1CQOmnkRLFbUpqxbf\nBwD4+omv8YT5OTreocB6gnv9spRKJRYvXoxmzZp5XC81NRXJyckICQmBWq1Gjx49cPLkyYCdqAgR\nIkSIECFChAgRIkSIuHvgNTMql8shlwtX++GHH/Dtt9+iSZMmePPNN1FcXIzISHvha2RkJIqKiup0\ncky0yBHGPTSD5GtMvqD5DuQ+SNts30QZUAWA386TV1rL8HIo7qUC/17NSCLdlRy4S3SuwPIKmk2f\nFEL7+PRWOxg5Tz25TgI5Z6FQUUQzEUPOPAKbIrC2Gvo4KuBX3FDUyfLBX5i6VkKRJpxhccyIWrlX\nR1oLqmFtMGBsKgBgcRvyZsPcXeh5grKTPZrlAwAOrkmpt+OzrCgA/H3Yb3j7EHlAablHbpPX7dkz\nmf/QXkXQ7fdNwv3sbPeWNvWJ01M/5v5SouIyzbc1OsW0uwzqG87zi9EdilB2leh3dWkbzt/3LZLO\nCAV1gi7SE40eTrYYBTltPB6n6GA09nIZ+q+aESU37tdZ6NcjG4CdXgwAS9vtBQB0Qv1nRsWsqHes\nWUt0zzUY4GVNIUzB9E7YpML2b0bMfuw20HvLRDSezLsPqgPUj2i4V8KsBVQ3hdtH9qJSGX2yEloV\n9YU9Q0kIhmVFAWDfOZr5fyS/LWYkHAQAfFdOk+zbb3ZBPieE+FYnysjf3+8MplqI0VRprfLIwGIw\n33DlUO4acVtp375mRQEgVE7Z5LmJuwGw+0XLRrWh7+WE0YJ/p1A/tK6kG0o6ELG0ykLfqlZuRI8k\n+l5/vkAZD8f++esyai9Sxp1F6mrfy3MAEhQydSThqTZBtwAAVwaGw3yasreJHD04y3dCcq3AWbnj\nv71Woqgb9T3BUiEjyOpQmTBr79MAgCBuzKbvXI3FA4iy/NKZWX6fw8+zPwAAJCo1iF1D2aTs5+x9\ncfzSFwFQXlPiYVig60AvnqLY3nuGDKEyo4rd/nk5irg7YOKG3YpKICSP6/PzKKMv7WCFvhW9UI4Z\nVoa/nR7rEzfu4NIeaDKWRNiYxeVBfTwW9lkOAPhrMImyludE8LTguqBWY8OxY8ciPDwcnTt3xldf\nfYXPPvsM3bs7G7P7Y19qk9sH2XKHsozKztSxBGf6X8tU2Z5a1+k5T6FwE9VeGdsSh0dqksFyjhqo\nq9VhPA3iiIQGJL6SZxVHQ/DuUTJAfrsnmQBZbRJYIug4cp0c+rZ0HnmjF/PbJe4WDupq4zMqCLwg\n9AC1qOx1Cvp47g+TFDDTcbRXax8eRIbqcaMjUVsUHBVIrnc+/8znF7o8r/pAxtyF2KwXduwneq4E\nABytpkb9IAIXjA54hJ7Bwd+F+3z/+8ch7UI0H/Z+Tx14AO1/olq42pBlmbJicW4T+DrsiV03EwBw\nbgw9C0sDWQufMtK7Ne2n2WIQ2kCoSS8v2x0Y9bsOu6bx72sVp9boWAKQd53aTm/vtGPN1HNhNPm3\nIqEQejO1H4xe3FAI60G1ZWUno7ysKaIuUFRSmyOxUf8Qu2kGXulP3qLJ6it4+wIp48/dTrVMMgN5\nhDpCboBL/K8Tte8/lAzA6ZJWAIAhkVn872VW2rBvxzwAQJjCgBUfjAQAmLV0PlKzDXpiBWNHMo0A\ndFYtxiVSMDv0Td9q7B+95ygyjHS8RKWwhc40UqA27ptXEFLu0y55DJp0Av9s5qzG/3ZRF7zVlILn\ndVzN6yNBlYCKBlJayRHEKIhq989rDwAAxjY5DRPHY+7zOCn67kztjNBM+vbePTUKAGDWKTyQi53B\n9D/mPbwRn2wgf8Ki1rT1QzFnsFJPyvEnztFN9nW/dcWr3z/LT8a+Wthd8DvrT+fk94O01LmXkpQq\n8NJX/gehDz9J6r2Oz3/qgANO67xc0AuqW1wt/0sLkfSx+/FRUC49F12MGdZ2NCa2HuRq+Pw+uzsb\nKQNyAACpB+Nv85k0HMq6UAwxqNs57D9Kk0NGzlVDWaCA5obzmPur9SMQVCMINYYDox89BAD47Zxw\nrFqWZELYGWHfW7KGa4+5/3/9xWj+NzaRY43zX0PAFWr1Lvfv3x+dO1Mt3n333Yfs7Gw0a9YMxcV2\nR9QbN254pfaKECFChAgRIkSIECFChIg/JmqVsJg3bx4WLFiANm3a4MiRI4iPj0dKSgreeOMNlJeX\nQyaT4eTJk3j99dd92p/E7JwRZahNRpQhvCVNO17d04a/yKDL9pynhdt1VQszwKkDBmfUvhBcdYKo\nMDYZoG9lnynIe/grwbpM1IhReAH/MqIMM5vt5v6iGY1/FicI1nHMRLSMJtrMga6r+UyloZUFNi3N\nvGhz/Lv+iv3NIE2imd4Tz/wPANB34Xz8v2dIOfjv301ukIwoQ+ymGch7YAkA4Hcdzb0yMQYA6KOi\n+2STAvc/QkIQO1b3rvXxbHJ7VnruOLqHS8uj8M9TNHukABAZQRnzkih64d6ISsOqosE+7d/AvUca\nF35jmkLf55G0F+m6k5YTLejNh3/xedu6YPWtXg1ynPqAKYKyf4pbf7S5Z2c8/ATN8q/9+R6YOBGO\nYbE0O31gdXdeoVyR5buYQdIn1CYwdd97m+Vi2T5SvFT1rBCsb46h9IX8YuCFt0qyOP/LgO9ZhCOM\nYdS/sbbM0MmEB4NIZG6fIQZlP1FGU2MRsjbMQbStXCf8TddSgon7ifnxf33WwsRJj358lsQVn+u/\nHF/copIcK5eV3XauM+RcYsUcRm1sk+NShBNTHH/PGQsAWNFlKe91Gt+pH8LtyVa3+O1wb6yPSgIA\nZA1ayi+/N53Ekco2RQMAajOyeTzyGD68SUqXz4VTNpRlRQHgteUkWvSnViZoL1CbLzcA9085DAD4\ntu1uAIBMIuWzxVlVdD4sKwoAFiM9I5aR8wRjb2oTnkog7+x5EZfwPzW1ndNbkkjkCI0OW67S2MR4\nqmEZCFIj8FUZlQO83+IUAGAT+gvW27uqB880qk6hZ65JrZ1Ay785/1hHrLtE78Sv57vRgiNh/G9j\nsh8QrK+6pxjV+53vVUqXS8jdRL7QrYZfBgDkb20r2PZuxh8pI8oQdpZ6p33yTgjLpfbNGE4tiCt1\n3ZpZUYDEAqu5mjmLQdjbKW7KeQ/cao7l2bJJGfJPU/tgDqZ2UmaQ8pTcinga8z4/cBdOpNB7eK64\nGd7oshEA8OYpakedRJQ8wGsffObMGfznP/9Bfn4+5HI5tmzZgsmTJ+Pll1+GRqOBVqvFO++8A7Va\njT//+c+YPn06JBIJXnjhBYSENLyaqggRIkSIECFChAgRIkSIaPyQ2Pwp7gwwEhf8jzsLOPlm1YSh\nuQ1JfS4AAM6vo5mhcVP24IedZAegzRdmL55/dh0A4ItvHhL8pkuq5sWRBj1xkrd2CTQsGqDtUPLU\n25ywgV/OavjyHqI60hPVRkxd/LLf+2f2JT/G7gLgvS7TlEwzHor0INh6UOZYcjIUcyZz9yqL7qf1\nmG/2G+2GX0SkimYR57bYAQBOsvaO55Mxt/5rR5sMLkDJnmin47mCxWZF18/net6Zi/fxmUlU45Rf\nTYXiH0UfR+KndD2yvpR1thxx7Rd75IUPAZCIAtvGExwtYhzXN3SiVLcmy57FNnNWGurEUphrHF/f\nzgxtDb/HPmPTcWBnktdzuJPhrzVP1rOL8OktsvuZF3GJX87sUBob6ipU9uVznwEAJm+m+mVHf1BH\nMKsYTaEUB+aSIMfAz/5cp2N7gr4lzcBeePxLwW+dvvb+LGaP2wQAeDniok/bZE1f5PN6vhzfF0is\nzs/u5PSP0ONr/9v/xoqQi96HFH97fRkuVFMZD6vfrA0sj96EzkBtYdagpYjdwPWtnEZD77/NRlkn\nWvezx4k1M/vwZChzKQ8WfMl+riXd6V1PSqHvXwob0s7E0N96KSK4JCTL8nrDL396HwDw0NJXoHZh\nY+cvUhcsxF6uxvFsFWWSm8or8OYy8j3v9eAZAMC+jI6Q6Kkfjoi9hVDOm/3jePJP7apU88JNiy9y\nHpyb7bXlieNpXJH+m90WraqHHuqTtcsUps9fiLeKSIRs9TLfWEH1gfT5NCbwVJ8ZCJx5yXns8eK1\n3pjchASzntjyAgAgKE8OXayZ/zuQYDX9dyMklrvbczroqufrq2hPz1ZZSjGPqsS3/ZalGPHzMOrr\nJh58DsFHqP2zDKXUqmynfcxfGUPHyH3qC37Z56Wku5Opa4m9+cTOkO6wjzUr+hDTIjJCh2iuGP6z\n2FUAgIf+t4D3T0372H3tfeNgJ3npu3InLeL/TgY1JG83zcDbT2QAAOJWU5F50EV7IPTjZff0S0eV\n3s1HUlyaGLOGK/nD2jdchlZmWGwuaH41FvVUKfH1jE8BANOXzPN5/yd2crTc6bv4ZZ6CPkU6Xam+\njRnakyR2EHFvITJ01LG1i6CAKg++BaPPtd7L02D7p5Ji7aGUXzEwbZzbbcxam0DkqK5wCjw9CCEz\nYYkJX9VuMN2SE4J4NfK84Dd3QSjDhBy6Jxs7bXT5OwsoGXX71bjNiN04A4BdObrJkAK8FEtB/9+z\nJvPbyrnAZHzcKaw4cp/TfmUVQorv0TXJQIj/c1DZz9B32PG7xhmg1QWvFnbH2o39AACfgYLT+kDW\ns4v4ANcYTYJayoKGFe2R9buFGUu5yZiWniVCHeng9RmEMsii7HUFTHAk3+C7Ny0LQpOPTPS4HvOU\nDlSA6Q3mWI5qnKeGqT21Q4rzNCDQSmtfjnInoCweCMtxXvbV1XtxeXMMAEDjbQDgAaV5EQjP5PqT\nQUC7dqTg3/tv9ucaxtFr//Yvak9J85+OWdWEtlWX2PgBnpKTlj11vAOapNHvJd1sgJ/Ov6N2UVlE\nSB0DUZMDyy2nmoLG58NJGT7lvTlgrUeonL4dqcqC4CiaeDbviMJN7vcpIH9Nq9yzuv2hTJrwV2sB\nuZ5bNuhz9Cmi7595hrrCoCdO4kYVnXDWmo788miFCz5hA4Mfy9W/vTsAYIeBDrTzl97YCRqPOo41\nAx2E/hGQM4X65fhld98YxBc8MugoAOCDaLLN7PaOb/GJ8roCRRZiqiqyNTBxL+KbXWjyNqFbIZ75\nkAJFRsN1t2/29RuaURuquSGBlaP2f9TlJ0w9QCrhG5vSLKChqQ3aAu9t4B+7IEqECBEiRIgQIUKE\nCBEiRNwWNNqpGduAMoRp3Wi5g6gWbHb7wjSaLUk8NAnSQ1QYntKEbAP2QWhtsOul9zF44asAANUN\nGX7i6GdPcjP/057Z7HQeACA5GAZfYA4C5DQpiTcGr8Xhcppl/HcxzRK8HpUFbZ4wE+JPRpRHRzrQ\nwzmjBD+NGU+0kH83OymgpOaNdRZVYn5nmmz3AkaGVhYsGLoeAPDpD1SY3EV5HWyub3I7mrFxR8NN\n2D8FAFm/BIqyW5OK64p+awq1QVHuflbGEM2JBBV4ny598whd96T7v/H3VHFpawwA4F7joy5/z5rm\nnIlL/HSOwEu3ZHc02nd07927YsV9gmWqm4HLQjdkRrRD/0vIPdTOr23MYVbIy2o3v8ayogyBoOc+\n8ACJZG3a1Nsp08r+nnllIABgb0HXOh8LAAaOO4UDq4X2BTVhPhKBzHkcZY0TEzKG2qD08J24Q9iQ\nQgB1t5AxNCNq0Pkh3/HLMstpnzn7YnzaB6PcAkB63x8BAJ3OuH6OTdpTvqj4MmVdlSWuv3+2TyaI\n5g8UiURXMmWEwlpt339YKKWb9JxkSocVzzfejjgAqJkVBYCipe34jGh5HBB6oXb7Vt+QwujQNetW\nRPu0XSlH3Q3PsmdlQ8j5BZfySCQl0mH9Jqf9/zYkpcJ+vjyFspehqb6LBSo4Db7ux56EdRed1Scu\n1tu3nOxTokcVomKz++/Rm+d38DnK1Fsc9MKm5o7HhfFE25uYR+JQjjRe/hwcSp4Yu+xwlQUJqgLP\nB62BURMPYfOPQqEhXRLdP1ce9PUBRmxbMYvKbCYumu91m7n5fQEAW7fTvahv3gPzZm5oW6zbiT9q\nhnTHdzRO6YZ+XtZ0hqpEgjZyYieobtqXv7XqSQA0/qy+l8QDVXuFWj+2YcSalDhQcx0tZcJO01v+\nwum5vIPwF0dpvOwrub9R9IEWtd3viaFpSCWuHSEVNFOyBQqJ82BBYgGa9yp0WpbRfzmSD9HgSumh\nxY2SBWH77PcAACM+WcAHoQzzI+09YzBXb6Hz8VrkDiueqIzB7t000FzMfTxdPp/Dk33qWlNpvUiB\nYEZ+DABnj7/1v5Ax+X/mnoYrsONkzF3oMQhlsElt+K2ABrrKvvQ2j/32VWRyJs7d1JcE21RFWaEu\nptZcdtr+gqccfcrr8bxh1GOHfbpXZq0VinL3gaa3INRR+ViTyd3h+30/zxbDyDR4R5e1AIAex5/w\nuD5rXN11YJO+8s3vrjHAFE6BvqLUf16UYyDKWeJB4sXOqraBaCCR9ewitF9JdZibNtlLBRyDWxaM\n7t0WmCCUYWBoDg7AezCq5zzKHOGuuTRx779C53owXnSK/O4c39cfZpEWwOQvfX9XrcHODzfut1lQ\n3PTveXb6erZTQOoJx3qQN2Xs9RncEuE76rivR4Iq8RcP+3tt/K8AgLcPPoy3B1Ctd4GJOu6dYZ0w\nqRUpmvZUX8Fj3zv3N9YoI8495TzBlbC44VTIA4lzMxc6UWR9geN9/rWSykc+zhsGw08UUFU15ai0\nRUI6r9QM/H06mbB3/mIOgn2g/FqVQM5UOqY/51rZjs7DlYKl6wPRP6kLFiLlPXqeqiv0pXQefw6Z\nvwjV7z2hc9R1ZDiFyIQ/PU+1Wf/74nEA8BiI+gN5r1uw7ad3+MqGGIAL4JlGRTKEwagr9FPL0PPE\n4x7X0bXjasUfo1pxV+VRT03dgRVLhzktM/WpgOJo/QhlOtd+qvll3mpOFzSnUprdZT3drmPspoOp\nIkDeyvLbJvty2/BHC0LrCqkJmJslHHdrCqlN6/bOHHiKAhyD0PrC7R+9iRAhQoQIESJEiBAhQoSI\nPxwaRWa0ZlYUAIq2t4KSmyxP+mYulGXCmflbeo1gGcPBwljBMl2MffY9Wk60K6uSvKjcQbezmfsf\nvaBfSC42cZ5jbxd1AQBYulZCniqkfNWGsmq/J/SvoZPwRrrar+MyX4+ruSbHlrFE023/M2V+1Ea7\neNSFcTSj6Uj3Y1lRRzhSaxOP1n72/4Pok1jdnmgw2vNKft81r0fdUgcUhnrdX7Oh+cg/Rpl4R6XS\n0G4kV6Y/YPf8SlhCs3Jd78v2ut/CHa3pD3r8qD7URLCOekAx/7ey1H5sRkP3RDNuzHCVEc1+ZpHf\ndF9vGdH6QE0Bo79c74bfNwhpY64g96J0W18KvVtvJvHenYx+CwAmTqyKUcEdf2Prx217FvJMO7fi\n45n0Pb+0eJbHY7pql7up/KfQrRlBAm7flZNfmbKpHpZKaic9tc814asgUaaRqLLKa+6zEr5kWnsP\nI+XRd355DACgkANvHyMFd8l1ug+5E7/AsLMPAwD+daiVQAZHeVGNGxai1DSTuZLTu7vR+2+z8fVb\nlE1/9x3h8zN0o2el3mbv75knXsKYbLy+lmb8I67YM0Q2bmQT9kQ+ype3ctrfibd8FydjNM3qCAlC\nelOJRPW2ph63+ealjwAAT658iV+WusC5pOTBrAd9Pgf5MOoflsXsQIfEDgCA0Az7e/tM6A0AwP98\n3qNvYFnR2oJlN9PnL4RCRmlid59y0CWZ0zau0FJ5S7AsUFlRQwurwLvbMQPKsqRJH8+BoTmnMH7d\ndS5nn4Fj9XhIWGYP/t7pOI779xfhTYjHbXKRNb/bIGZEnTFp1hZ8+zOpkXtjbJSvF5YwvPwCsSo+\n+twzc8ERZV2IRsX8T2uCCa6x8gJfIWZGRYgQIUKECBEiRIgQIUJEg6Nx+IyCPDkBQOZes0iA0Pup\nZvTaZco25Y1ZzP/GBIMcawyGPkmCIp+0PIb+qTSTXZzWDOoimquu7EARf//kHJfF+f4iff5CDDnz\nCABgUUcS1Hj14mM4e4lmKDRZarfbeoNjPaa/8JYNdgXHjGb8D1xdY6mEnyUMaktiHb56lAYCrrxE\na2ZGpb1LfTonWZ9bsBx1mAnmvgoD53sIKaC56pzpazfiIs7vp1lQZldjDLfh6EQSxLpn4Sv2c+UE\nY1x5jE54cjdW/jTE6zkGCvqO1VAU1J+sQmzfKwCAvCNtBL/VJjNaG/jrM1pXsExqmdWAPt95F7mo\nK9z5jBpTKMOmTLVn2HQxnJ/dRftMZnUkveA5k4XZUgAuM6xsGUPNbeoCWT/Op/cwfYOrZ7+PUWvo\nPirqoRa4eR/qO64fDUx9nSmMXjjHcx0+iuT3NxxPgbLY3nbU9Bl1xLsTlwIA/vrj1ICclyucm7mw\nXmtSa/qMutKEqAnm8dnklP3+sazk6Bf3AgA2fnQv/9vNFDqG1ChBeKZ9P1YuYXizB7XbTU7I0HMm\n6SacKiKWytHuv/DtsLaQ9qOPlkBbQH+bQuj5WFSAri3tp3mHYhTm0TgjNNszocw4kIRAlAcoa1fR\nowpHh1Lm/y/5lMVIL4nmM6xmBwsVV2BZ1ZT35qCiA1dbOc7uw9vlINl8KfZ7ZwD5Ait3eTaZMyuF\njdHOzra3A75Y36XPX4jDVbSjmQuFQo3p8xcK9jNv+u/46AcaO8mqBZvUCtVR9HyVt4TfnyHZAE26\nkGmnS+AEk87Z2R4sixm7ZbrTcoDql187QjZumjMawTaB8jhl77k52Ca4HtFn9M6Fo89oFUfGUxe7\nWRmAeWgZzvRbLljuq+WLv+j4RBZWxlFN9JjsBwAAGTmtoc6nF9LauRJPdz4CAPh+HQlqsrpU4E7w\nGQUweTxdoGPwaGhOjYcl2ILg88JTNVmogw/OFlKtvl9LN8JxyD0m3C7mU7mDhDckUfaOMziXjpGe\nW/dAlKHgFnUQYw/RAPypLscxt/VOAMDc4mkAAFWJ/4Ot2gaigH+B6KQnd/B/P36elHscqaSMqmK9\n3nBBKIMvFGNfg2NDdjj/rkTcW4hbe2iQygQVAGEg+XncSqhJLBnDjxOd0VIQjAiZUD/sq7KWbo/t\nayBqkwFn51Cn1uP4Ey4pv55gaMF1UvXcoLsKQhluh0epKZwLFErrjwhSX9TbmpAl0EDXkk7tSs2B\nmixTSPN0DEIZmMoyE4ypibW62hnc1xYsCGV4aOkrqE9tyEAFoQwsCLXF6yDJoWewNZcEahwDUW+o\nzyCUoaHFkVwFojdTbIhMtbdDjkEoA5tQejSUgvqNsAejb45aDQD4/D+P8cuqHi7jVZQZOlQ+j63p\niQAAeRG9Ub1XzYaWm21k4mg2iX2Ar6jgVH7jrVDeovNKiiyEeSWV7Bi9COuzIJRBfk2FYR+Qen9F\nPBdMPvolkvfQc9gz+33+d1dgSvQqACG5wndpYXe65mMJVJr0w5KRnk/QRxi76YCL1A6oSiR8ooCV\nHL0YeRxV3PhJXey+T4ndMBPjepxw//v6mahZuNRNfQkbniORye9KSZ129bLBiH+YpJlz1sb7fT3K\njjRhjiPCB9isSeQwyUoAACAASURBVDnKFBQ8Sh2sl2sGm4A9oMx7aSGSzjl/Sz8W9HMKQgFg5ITD\n/N+GZLqJrgJff8DO0VVgLeLuAAtCy3tyCtwnhO+ifFcYuu2id7CsGw3s8x5Y4nG/SU+dxZkVXbwe\nv++UUziyjAQRmafo8VMd0Hk7JfpYHCFP0sOspjGGpUiDxbpBAICwQv/eTZGmK0KECBEiRIgQIUKE\nCBEiGhyNIjOqS6pGiUk4o6+5zkXW112fZuVhormwucLhmQ9hZhui9Dhm7xhmbadMpERtATuayt2M\nHgvT68h4qClWtCp9MN6emwEAUFQEfi7AmMQJc5wJTGbjajVlLH7XBSNzU0e/tq1qasWrI9cBsHuT\nBhIPPn4IALBxFQnLmLpWYnDseQDAwTUpfu3LHG6GkvOFC1VVgUkldNzzNABnwQGGET+/ig8epeW2\nYzTbqgHZ9wBwEir5eOkjfp2PS0hc03x9hU1BL7P2vJIXtfkjoD4zog2NmCZkq3SlGz1L2xHnzL/M\nBeuhOoJ71twL6eg9+9Y3k10e5/Wvn3F7DoGk5/oLK0df8LfMoL5gbEkpivSRnwEABh6fhooILhOf\n67oNHvfwfgCAVELPZdWaQfV9ml6RdF82zuz0r32vDVgm0jEr6g7GMFpn/CFinTi+6R98Q4IbageV\nGMesaPdj5J/XMvk6rDbaT/X+5oJjMBpq0DUbSnpYuXOj9iLytBSSR0nALrc8SrCtr3CkqYXk0A1I\neW8OP8QYtPhVSLgBicKFh5zqIGVaX5y1GleNQpGaadvJJzw0MzBcAvaM3uqxHu+quSzrAfvdX7Vs\nCP0+/yxvkcNotlaFc2YRAIKzFPhgNGW3k134I7pitk3//CXBssVzPsX0UxxzgNuk5rFcobIzNRaJ\nkdR25mrDBLRom00Ca1dinUhPeBZF0rdyr6iXeq4tP7bUdaLjfhB9kv+9rhlREX88aEMZtcSzMCDz\n+oyVToeGS/4ry+jfto9fQHoulSn8ELMb/R8kVp1ho7BNZGBZUcDuKaq5YWdmGDlSleaEFmauqwvK\nl8GVTZovaBTBqPKSCh+McN9YAXYfKoRxBr9pakF9aeGmNvgHJrk9DqP6yu8ph9nLg2VBqCePQ3OQ\ns6+or5h2mQYfVS2olkt7OTCPwRBtgSZAQSijLHUNovq/v33rP33MGmbG8+H5AIBPA3JWzthxlQZP\n+jhq9LVpwTiY5l8QyqC9aO8QRzQ7i8WIAQCYq90/G+UtCV775hkA9prQgWnjULonsBRABokXs3J3\n+NezVIf2/vkRAIDSK/VzfiLqH/+IIQ9LLfcyPK18Gvp9QnVPfRtqsGxyK9SR1JnJvAyyvGFlJfVw\nCaNJRTpzY0eo+tNg3XiQOjdf6gNZvSobSCoqfKfzsCB0yEgqudi9pZvP2wYKyyZ/AgCY8uOLgJnO\nfeBxmuhsH1mMU4We7/OKI9THvTF4rdt1FF1LYUpruNKHhghEHaFvIeHrNd2BUVqbOKjoFg+g9z7q\noOt2+bKZJBzDNPQSzmy3D29uo8DVU1GDTWYPQsu4WyE1At0jiCt3fkknj+daFyjLXS/XR9s9rgFg\nelgh9NbLAICrZvoQRn+4AIGpFLWDjXUSlAV8gJ98QDgBNS53OFZ32AYAmPw0/fttZj9IayjcWhW+\n1ZZ6w5TD02E20HMP9qMvnNDjOABg43LyXrc0s/EaDwyVe5r5PBjW5tOg0FX9Z9AF+zgifcRn3F9q\nft3qJvRMrdFVkHCzEeo0MUAV4R66W/R+dB+fgwu/uKenV7ajoEV1WcUHoQxXSsPRP4ESNSsrw6BV\nUOc7YsYeAMDbTTPQ9QN6R2MevgAAWBu/GbFrngPgWjmXtVtWhWclX2Oo+zbOEXdPykCECBEiRIgQ\nIUKECBEiRNwxuK2ZUeb7qW1ZiaUcDaayE0XswVnO1A2biqL+NfdSBmpSmmvFysoEmjEMPmeXLjL0\nIE6GLI9mGIa1zsUO9PHpHD15HNYmKwoAR9cmAwBYDnP78+/h/i8W1G5nDtAU1C49XhOmZB1Merr/\njvRas4Zm9YJSiO5SfdizgI42V1kr/1RfwY4fKKmVZkMpi1tpsasc26rt8zWGzjTbrskUqiDH/UZU\nMnmZtE7CK8p+dG+NhwPjGWbrWY4YOWWv6itjK6JhYGxmxsTlRF+7d3gaAGB3ynL02feyYF3tFdYW\nyGAw0N+yME5N0oU3qDu0HXkRAJBztB3+3zfOrBMJ7BlRBm9ZUQAYOZRYMPvy4wAIxYt8we3IiMYO\npKzU9gryjjZGWjD/nq0AgG9yqVQgu7gZlEXu2+E/PbaWZ4swvO9ivYbMijYkWH/qLSsKAE2OO8+V\nWx69ieD97H2zb28Oovf5vKkSq8qJWhaqohfxze2Po8kJ4Zw7a+LZ+yqxkJcoAEirad/xgy7i+EVS\nS6+b42btYG5KYyEtp3x+otqIwwZSzPtgF/mUBsZl0xlVTen6e6rsY6iokfko3uLs15qzNh6bn6ey\nqC93k2Bk0GXhu+8LldYXqE/639Mbuhuw8hCN9VjBlKqkYUR/gqX0kjlmUKWc4JzqTO2yoUzpWFpL\nlpSIOw+Mfpuqag1bL2qwQo8Lx6DBl9znFvVpETh7g8aUZ2EXaF0Dou6+/VoG0v4sdKf477CfAACv\nSKjsISzDHjIyL2epya60LTXZGXzlnaixD83yLS4RM6MiRIgQIUKECBEiRIgQIaLBcVszo0EXKWLe\n/8gS9FxBmc7g665nrViRu3qk+1SlVQG8M+hXAMD/y3sKADD6sUN4v8UpWmEI/eOufoFF+hY1IK/0\n+TLcosPy2d4qUwEgIFnR2sImFXoy2mwSaM8LfSgtWpoxPdnrZwBA4mHhfTQF29x6IN5u6GNoilZR\nLHd5jjd20czvG3PXYAVopjfvIfKuff16VyS1uwYAOJ8ZJ9i2pgcpQJ6jroS0XOGlqVQL+FwYHcPV\nvfUHhmjOQmDAD0j81L23U30g+xkStWhoG5f69jBdN+W/AIAxBzmBqvMNY3/CPEwdYbLR8/210r0A\nAYNNzjKivs89Mk/Rq1wN3qgtgWujdv/a0+1vH88kK6U5Pz4XsOMFCnkH2tK/oH8lkVZ8tpoyVDaO\nDiHxkgXSW33pEe5cnJu5EL3/Rt+gMZzaPmWp9yzozWRaJzJd2F5Wj6WCpCdjTmOziiwJKn8jloes\nGtj5F/ouH0h/BkYzxwL4jbIATQCYtbRPJn5lkwIGLvsXRmVUqGwt4W2SWD9ntkoRsb32XuB1hfqi\ncx88ft08hOTR9dWn/hzzXXfErsQ1SN4i7JNe/YLEk6I5z/fyS42DfWMKpRukOVX7ekxbnzJIjnr2\n8WHH6T2UzG4PpHbEuD5Uo+qqprQ2YyNTsI3fVsyI/nERckTD15EzwSB3/sQPPksieRu/uQeAXYDI\nHboefQppfVYAoLEuAFzUN0FGEX3PIQ7eykGj6VsvLKJvQ6awQHOYeAcSC2AcTAWiT8cTA+q3rCE+\nXd9tDUaDh10HAIRJNbBEccoU1z131o99Sn5cVU1tgkYzftR5/GsxBaEJnB8VH4gCeKso0eO+WXrZ\nn0DUzEmnhfQpAgAYdtnFRFR3gAdUzUAUABSZrgfZ7VIoUHr/Znu3+2tsgWhVMyviu5II041K+mCq\nL3qmF8f/MBs1Q/FDxbG4dpS8Qq3hXOdQLhHcP3OwDfJKNgiTIHF0FgAgY4NnAQwWhHb6mgZydf0w\nLzxOg3omllXfYAEocHuCUACI2zpdcN/i77mInP0xATlORwV97LcrCB2e+RAuHyJazfcTSRwjTd8G\ns6ZsAAB8uWy0y/1oXUyUeMKpeZ+CKeK1ltd0APQMfZcqaM/6P4B/+9kfAADDNB7qIhoZFDftwb23\nIPTDp74FAGy6lYKl5dRZTw314GZ+h+HcTCHFqzyJ+nRNnhJB+Z6jJ1dBKEN1BlGWvzP0gzSHvr2p\nc8ir+/crXXlfZ9Oapi7VpGVVdOzKgaR4aC5VQl3ItRQ2zss8Xg9JNu1HaqRzKVnW1mk/Jd2psQ+5\nEJhyGIYZMzdgXsQlAHY/6s+/fIQX/WB+626Py25dPQaoH96MQ4sHqB8t3CT0kS7fXvsgtN/4VBz+\npXbCg+5g7cjVUB0Xtl9VTa1QF3mfmPMWiAJAaAqVwPwQs5sWsH8BbHEjxukKTKGXiSM5orGNqUTc\nPjAl/MRHzwEATuzvBLShdm1aErlLfL/uPvy7OZXx/Ps1+rfbO56TG5VlGuzgynkKqum9P72pM5rd\nS+PS0LHkL5F5JBYmHU3wWHU0A6uKMjmVMxpuUDv6254hfl2bSNMVIUKECBEiRIgQIUKECBENjtua\nGS3M4zJUKUBwhn/0JVdUkvPr7Bm7nLWcBPL8bfyylyOPAQBWY7CfZ+oe1c1oSiA+mDyq8iC0WbjT\n4E606V9xvwEApi+Z14BnUzeob0hxZXs7r+vZJOCnZn4Z/xEmfeVMbf1vh18wdaezUIwh2iIQjZLX\nmMVcGbcDAJAIz5nRTvvIOqem5LwvYPZDhlgjgiJolqzDiucBAKpi4XyTobUFcj8om76gobOh9w8/\nhYWtDjstk18TUsu/a78KA/e/EpBjdvqmYa+xJlhWFAD6qemhP718IEyRnH9sHfcfPZwyH4eqZbiX\nS24yOrCvsFXWrkt5LJjSQJv1dyeNdbSWhCfmr+iBoDEcH/QuyIy6yogySGSc4J2XrKg3hObSv8em\nfY+aXffrUVl4uaAXAPfes4y9IpPTu/xIv2PYsJoEp5hokSpVy9uZhV0S7kPfQsLT3QMtIrNkyWgs\n4W5R6gK6n8XP7sDP3wwDALTpTYJXxetbu9yeZUQrOtD1heTWLXNb3UtIDTtaFoMLaVTGYuNs9oIu\neT5OZSK9597GdovbHEBCHyp9URz1X5KJlVcxZtu4KXtQYqSM6J7j9pIAXRKdj7RI2E/UFsd6rKzz\nPsKGFkJ3sfY+tiL+OGClBOd+SgAA8rS9Sj3/sixqL+RG4N70RwEAe5NpzH76tYUus6Mjnz0IAOiu\nvYQmUuL8XtURE6XD8AsY0oRs3CaEUoa1dXww+p0mq6zqSvpW5dmhTv7fYZm1GwPc1mBUpq//xGzs\n2ufw0iBSPPz62wcDvv8groYjL09YR3g3wSYB3r3i/f4ZOlZDk+2+86mKskLtIkCqCyzdaCJAdtr/\njixjLnX+W/UKjNAS167TvpmCD0NnU8KUQp20IpU6Ok2BDIaW1DFrrrnumH/X0brMhzTxU2GDkDFv\nIZ7MoxrV9NMJHs/Xxt06idVer2JVcqMRqQ22Y0Sx8NT9/z76Yzz+Y8PWkQYajoGop0D4w+L+DXE6\nAYcjRddVEHzDQjS0h0cfxqaV9mu0cXMZklqM/wu2Ef1uDvyvV44ZlQcAuLg51u9tD8z9AABRf+Ye\npTILb8NpbVeiDenT7Dqnod1LUH7KMwXfX4T1oICx7GTtB4tNe19H+59pckgO4JeDfQEA/3n0dJ3P\n73bCVSCasHgOgrkg9MKIrwEAvfcEZhKn9xuzceyfztT1aZcH4cyXSW63scmADtOoVEIjo/Z9Z348\n5JxHueqm5w9FH80Fq/1KoOXqUMvjaBt1HVVZHYNaFoTOySdq58JWh9H6eaKAvrWXBpau/ETLE8wI\nPUc7qmsQyjA49rxgWefgQpy5Tn1T02EUHF+PDoHssHuX07yR9PyTM1y3J9VRdB/jtk5H0Bn/JqGY\n77zylhTyJJrIkkhp1mH1MtfJBvY+phx9CpbiwOgjs7rQMy8tFCzzFWW7WiColseX9r8F66HbofV8\ne5Azhb7/+GW3d2K4PpAzZZFHOq1VIVSmNobbPT5VN+3rla+PBgAk7qH9ZcxdiNOv0TvqeIw1OeTs\nUdw2GK+lUZAZlq7g9325lOKaJeGjAABVTS0IzaF2xpEAX55A36O8Qgptfu3aRZGmK0KECBEiRIgQ\nIUKECBEiGhy3NTNqiRTyXIy18MLzhOBcOb7ODXxGlKGyg5k/zt0IljkE4NIzdNg4oj4nBdFs6cfL\nHvG4v0BnRQFAoaBZGRdaTF4x6ypllQwWBT40UGZ1RuIBfHd6pNN6c9OeQosIysCWcHNCNjl48Yia\nvnUAZTHnH5oAAEge/AkA4J5HT2H/b92d9j0m+wHkbfGeUdLHmfiUl7xEwWe/eCpusefZ5epkomF0\nVd4+hchAwVda8Oiw0/gVA+v5bAIPb5Tg+z4nIbczLy7E6JmpAIC5i5/nBbOOpVPJQtCl+muXzBqg\n2/0kpHDyClEIa0OAC5PaFS8lV31Tv3TMiDIEOisKAK933AQA+MvJKX5v+/cJROH7fysnOHW0Fx79\nMhCn1ijA/MEdxZgY3TV+9zMAAH8cUyvbUYMafMlFxtIGXqn32L8oQ1IzK8ra4WbjyRP2RmUwjubG\n0OZ6egpRR2VQ+aD2Ux0pgUVN65VeCQd7u8wxXCNfUnulVsdzlVYCyyto7/+vBZV1LC1vh34a4gur\nCoXfcHkK8fVCUwNPa+fFhOYf4Je9EHkMOQ83AwAcOk991Tt9V+MdxQMAAPM+yhrr2lmgKqbMCRNE\nSZ+/0KWDQfZUeobu3A1qQhdrwYxBuwEAZZyxoQxW5OqoNCp9G5XC1LxbzHuewVIPmUSWDZ01dUPA\n9+0KVVxWWf0HyooCd29G1Be48utVlto9PmUG4XoKGrKi49LZ/PcmHV4C6zZqbxgtfldhIuRVNI4s\nS6IdhJ1ROB2H/nXNvlDdoOU8S68WEDOjIkSIECFChAgRIkSIECGiwSGx2Wz1KAjuGXH/+wAAkPvU\nF0j6hGaWmMS1Ldjst6hRY4M1cHXyDQ6WEf26jCTbD5Z1wOG1XQXrsVlwV7M2jQ2GVnYxFkk1zcCr\n29HUUUb/5ejyOTdD270ckhNUC8NqPYstOvzzBtWibFnTB4D3a66OsvI2AaYw7tgaC7Qeamo9nn8L\nKzSFtZ8/YtcCNLzgUEPDlWXR3QTHmtJXCynTvup4L8jKaYaSiVpprjf++cYOD5xH6lkSGWOZXFPQ\nbeuWagVWv60o987oyZruPBOesLhunsKNDUzY588TVwMA/rVtLJqc8v89NAfRvZTr7O8CE6sp6UeN\nr0RuheIytadB14DKwVRLPSd5LwDgk+2jEJFB+/G3j7IqSLgIAOQGQF1M52EMu7utNlgta/p81+JU\n43KHAwCGRZ3DEC0JnHx0/X4AlFWdN508s1spqIitr6oEI049CwAw7bWzFwzR1Egn9LyE80WUYZek\nUqZGVgXo2tDvM4buAgBMCz+BLBP1y7+X9gAAHCiwa3UY9nH7qKG59sKzawAAz4cTe6vLwcmQHnNf\n63onYMbUjQCAJUuFrL+qpndv5yex3D3fnquMqDcLlrqAtZ3TZmzEJzuI+SeJ5FgDNrtVi5TT8gm+\nLHUrZur2GFK73SXLyjoi7WP3WiW3l6YbYr9SXTzdlOBMiuB0be6el+5OQ5PBBdjLMZGmh5HB7Xur\nHnX5stwJQSiDxoWHF4pJ8CfxxBzerg0nhR3Vi5fH4OT2zgCA6EHUqd3Y2crj8RyVbBXl7O7V/pOr\nSyAKAL9W0nUN0hTUaT8iGg867H6Gp6mHNquErAUNRJoG0aA852oznp5Yn5Td2sDCzcmknm3X6M7N\nX/gShDKw4JMJAMmTy2BO9+5peKeA9QnXTXRNNpUVtSFhOQahDEwxNWo/E9mQwMQNfkoTLcB1UpZc\nvoXoo3Uhble2AyyxVNoQvE1Iya1sa0Xw5cY/2RNo/F/bdQAAGWy4YuaUN7U3AACGcWex8QaJokyJ\nJt9DtUSGF+L3AAA+2jeOdmIDZJxyfH5ZGMa0P/P/2fvu+KiqtP/vnd6TkISQAClA6L0IIgqoKHbF\nhgXsDeuuu+u7vruv66u/3VXXld3XhbUrIqIiCiiCWOi9B0ILhBJI75PpM/f3x3POvZPMncmkkIB7\nv//MfG4v555znuf5Pt8HAPC9nkSSfLuScNOErQCAFDarff7MVaj20vstd9NLr2swwbCN0maifYEX\nW0iOuTpI7SktoR7linJQ5w+UjFAV5zdyP36s1UJW8YD3nR/+++qw1t+KVIMmqWkQZQeQxq9shMaD\n/7yeVIUKFSpUqFChQoUKFSpUdDo6lab7xzwSu+ltLMX/7rwWABAKkH1stnoh7iTPqr5BLmnBfyFA\nqq/Fw88hOd9WUrMRtWG0DUFeJh9PhJZRKcND0ly4gFNWtF5BOp+nG7kYNA6/VLuMQzxhlWpF8ppA\nv1TwhGkAaMhksuo3z8aMN34tLd/zXGOqz8CNd8NdQd5NwSILWAkaergie/86YwB+F71QPSu5EvBp\nYTDT/2BAC7OFHrDHQ9uJIQ2CbH+Bqfs4HG7UN5ALx7KdzhsyhCV7X0pUol1jFuL5UqIh/zltr6JY\n0y8JAfP5RYNsKQz1sp88wDx4Ok+Ujc9DcAGLXyo0XiBklP//kqAJRMZwPOnUF5qKz+8IMdA2EYvz\nAbyWtLFGxJzfvglArvs78qXI9IeawSGIZponmOzUmC0mL8x6euf1HiO62SmcUOGiMarBbUTPZFIN\ncfqILeb0GGFi+yRbiPlQ6zXBqKVjn6mk+VJGci20rMzJ2OTjWHyEBIm8THCpe04FihkjKGFDpJid\nJ/mXzUpLubgY7/afDwDoq6dY1PC/zoJ2Colw7RhFwmPfu/R4ZM09AABDCZtjCPI8M2QMQWRtXTCx\n9LKgIIdofTQX0bg10nawM9pASIBQxXOcAFHP1lvp/RosPoSOUsSXsy40fkCrUEuXX49nNLUJ03Y5\nvuZOE2Eupf2dw9gAWG04byP69bn0fHg5o3Dw8kgApNrDK76hlCpjtbxd0Bj/3DzAAoe8FJTP0bi+\nME+H4fZESCdC4+epWfQNGqo00DdEHjc8bYojZ+nDAIAPpryLT1hZulQD9Q2f549CiI0d5kP03eoj\nSwJ3OjhThYvR6usFsFvA3tnnKE33pJsU2F5M3Y+P06im1oltTJVxgAuhMdSCgpuSJOoPbxRBEyTj\nMMRr64XZheH1GLnqKK/BBwEQWS00jV82MkPhT0PkBqrIzifCOpCuZ3LGcQDApjPZqKmiJ6+ppR4h\ncWAlqs5QR28tlK3jGXetAgBsq8nCwW/7NvdozjvwZzfjjV/j4UeIxvP2W9dh2Ctk1HGjdOHod3EX\nyx/xMiPS79HBYqPeoaGMnmfIEITGQC+0K1OxrfMYEQrRiw0GtKivpoHbZKMe2mT2wOOjY3qcNIDX\nO80I1tMy3j7Cjeja40QzKh7hxJeHhwMAvv1wAs4qX0JFh8HZ34e0bjSpa1jdtZOvRkVL8EszQqPB\n090P02l98xueB/D28kBfdH5rPTQHY41sbAebkENnPvEd5r15VaNl1uNaOFltUp+eBkqfVwdNIs1Q\nc5KqUOOlWa/dSGOZQReUjFCHgTldfXq42fhWJdDYl2DyoN5Lz9tkpn0rGyxwmMnwqAlYJCM0aS/N\nnF1708BJ4S4qRwjLf1Dmxp09t2L6HpqD7Bz9mbQ8uIpyTl/MHAgAeCE1Hw+NWQcAeGcj6UVoXBrJ\nmSTqRWlyKfJcRr8GAl+vYwENcwgaplQaamATJQHQ8H2CsjEqeugd+TR66NjqpoYMADizyNDp0r8S\nvpWkJvy/I5cCAP68/Q5pO0PvOqCU3ra2hNoJN07PRfgYf1TUiJKhF17P13wqusky7FU21/zdHMxO\n3w4AmHf7cQDAqx/cJhmgWq88X5U0T4JhgSdmswuhSO0JjR+SsyGkk+0RfhwhJEBHzH4Y6iIN/rpB\nZMhcOLAAOSseBAAUTn1XWq9lzoq/HL8a3iBd0E4vpYOFqgwwpVNjyLisHABQvqRn1OfRkXCnUvvN\nvfg4ultovpVlokDP9yUDcKIwtdljnJ/uERUqVKhQoUKFChUqVKhQcV6jU2m6D22fCQB4q8cm3Hfy\nYgDA6gMUNXQkuZBiIy/AsYJuSMgnL0FjKi375aq1QuPoZwTClnEarsYnQMMFpZhnhGi8PCJKy5IH\nl+OuLKqpOSf/ElpXYEPQyOqi1pBdnzP5OA4cywAAWI/Icro8UutNEmHIoUifZvv5nUQfHmG88X4S\nKFhTmovqbzOk5fz5cS9XeN3SYVvJgxcIauCwkDuqzkU7aDQinCzyaWRRU602BIuRPEe1ThNCQToo\n9whzahIA1BWTKp/llA46Bc9iUwQsMm1i2CuzJEWwXyr+U2i6jktLsGEoqXoOmX3+UK99o5ww7LA1\nWuZJEXHf1J8AAB+suLQzLqvD8EuOiirRdM9HHHhkjqTkvLGMak9uGLoY/T74ZSp1H7qP1C/7v0v3\nZykGNv2B6keP3kp0zu4JtSgooSiAY50sDiJq6Z3XDKHxy5gk5wykOBqQ7aAoQkENRecqqu3QGxgl\n104DmMPoQamT+gQNa0JZCVXILyXF+/5dSwEAhdXJ8PppMuOuMyFpW/So+84/yoqenGL8S6fp+ga6\n0COFojend1Jo2Hom8p7veGgVnks+AgB46swYAMC3BwdDYBHGkFmEaKQJqcFOcxBfnRHg3zc/pC4E\nQU9zEx75hFaUabx2P7Q6Wh8op/mPzqmBpST6e6jrS+dN610B93dpAIBet9C1FizJldI4hF4N0O2h\nNuPOYFTxUq0UvTsXUN+H2vlvJn6HuQdpbu097EDQRs8kMZPeVWBNMvY+y+Zor8pjOZ9bhtsGv3/s\nUwDAdDuxGd+r7YbXPifxrHDKbjj4HD1A007onZER1PC0P1EX9p+/8pAcLW0p9vxujhQtBYCkFLIT\nfBtIhk3nBlwZ9F7N/emZ2ExeNCzv1roTthPcFzkxvf8OAMD+unRUuKm9GbX0XlPNMpd4wbh3oh5H\njYyqUKFChQoVKlSoUKFChYoOR6fmjK46QKUyirutQrGLooT6Yoomaro0oM4jJ9fXjSZPoiWflhlq\n5URhyXthkL0b3DsRMId5L3hljxCgdTNevyYsIspNc1FOXL7pss0AgOlJW3D7xkcAAEE3HUinBRwF\ntBMrf4XX2MK5WQAAIABJREFUcxbhTCZF5Z4+8oh0/Zx7bqoUgEraeMWsVwEAkz/9LYzV57438v1H\n/gEAeKt0MgBg+6dy3dFKH3lDqpdnNNqnoTdL9mXewmGvzJLyR/dcQN6raQVT0OAnb2O6tQ4AYNN7\n4UymZbU+ehnegA7Dk6msSmrPeqwqJhl4PRNwqGywSP9NJfRS44mKAjinPIUqmoeok6XKY6HaaTn7\nF9OO8CaS51OnjawVZ6oQ8HzKIQDAB/hlR0ZVnLs48Aj1388Uj8bKpRc0XhlZirpZ+JKDMFQqlN06\nR+HLYiJExUbcdPgGAID+e8rLK0OCVDaBRx1HvvSYpD2RtJvGpdpcK8QuNDaWi4I0biUYaZ4zsm8R\nNp3JBiBJWiDdXId0M42PxW46y+HKVISYaAYfQ7vanDi5NpPOVxbJgKkZEALY4+bR0PAI6fmKP98z\nDwCwy5WFL76YKC0fftUBAMDu72i+CVFAyWaKiH4xYzYA4N43IoVVPn1nCj4F1VR99SmK6PQcXoU5\n2yYBACyHjQjp6UGG9ExsUS9HyXQNspBNKJnVxWVCVrzcFkD1HUMsMsrFNJWiosJlVRB/JJ0Vx2E6\nb1kgFXa2/tiiXPqjp7ECACZNOYDVWymqayukfZw5Qem/9wKKWoVOWDs8l5RHbx+dQHVkU3V1aKil\n+b29XADK6Rp3TqO83qFrZknl6cLhGkWTt7+NWQQAeOFfM/GXucS6m85EjR5IKMEDD0VGVTlELaQP\nLWBhwjtOQRIr8qZwJiUku0MIyIJSLa3HqYS+8x5DAovQBybVou5wEgDAwIkNblnMqo5p1XTPqcWZ\noXQRCXsN6EgMnp4PALij62asqh0MANhfkg7spxZpJLIHjmaGcNkle5o9Xqcao5pyengeERiWREbG\ncT8VP3flJUnGoUEEAlb6mF096K2bSzXSR88Tk0UN4GcKTr4krkpECeQAIHBahE+Qkst1LgFaD1Mr\nC6Pr9h55CgDw29T1AIBb8u+WjFDTKbrulLygNMjU6ehRDjBYMADxtcxJX/wGAFAwYy6KAtQpTJ3z\nu7j2PRto6EsPwHpYuVFfYKSv4oJMeibDwmYeyQa6/vTrT6B4SZa0XO+gl2PeJFMO+3xCA+CCW4ji\nVO83wayj97trP9G9fn3JSqyr7gMAyLQRryKX1TIDAJPGj5dzqbj2YR/RFE77kjBvy3gAgKMu9r36\nL6YN9Ovkzu1Hd8snRFNvJmfFd4vHAZDFsn6J8DEVaUNJ5yt+xmOIAkAwGB/5I6QlEYPOgLNXQGo4\nnL7nO25rTQUwFR2I8VP2YeOqwR12Pk9aAKbSzvv2uBE64G02mWunvu58MkQBoEc3Go/qhXTMzKBa\nmv+TSWOe7aS83ezqbADA1Ic3YMXbFzU6RsIRASE9GY91fXQ4dZIml0FutGSLCDCxvjOnyQApq3JI\n6v0C174JCuifTuMi3z7dXIfyskhhk+rRdOyM7lVwL0lrtO7DuvjF3dInFQEArum2D+8unBr3fmcL\nwohaAMARL91TuCEKAAtyyNgZCDJGzbvMcDJq6LS1NBdxAPBPpOMMSqPa6tuPZcGxnYyjp+c/BAB4\n5a4PAabY31hYiBmeNsDv4MYMrTHWaIAT9K650qgrKwAhxAMiYkxDopYbG8wQDYf9WOzxrZ+lBKvZ\n/+SpNMcOrO2O+sE0L7NvpXmZN0lEwwiK4Fh3nf2Rx3uBE4cvJufB1w10DanaOtj3RYqfVQTlB73L\nlRWxPlRB+9xopQf+Qti6cFEjjm9//Somf/pbAIClmN5BfX8/tMzGyEimdnD6QBrMmUSVvTqLnMAN\nASN+OkyphCGPDhoTtSPdCWon3AnQHFzponRuDnOYA6Kh3IJug0ikqLSMHF3BU0YYapkhzOaqXYwu\nDOh9BgBQ0pWMwNAPkdWVRa1s/Pu6BGFkhr6GOT+CZhGmcl5uhH6izWUfepQESh9PJBvpe5ceS/eT\nLcC/l3DYTmrwp26rlA8WBpWmq0KFChUqVKhQoUKFChUqOhydGuLQM+njHL0NdyRuAQB8nka0H0OF\nFtbTzHOkBeoSyHNk6EoheVc3O8yMgsKCchA1FFoHgKCRhbttgOEEq13poe29SQKCJubJsorQDyBP\nCC8r0q/vaXS30LIHj90MADhTkQiBJZ9bi7jnK4i6LIoWeiOdVs3CVE7X9a3LhGsYm5BTYe9/6+mW\nH7CVcKdR5DhaRJSj1yqSQz825f2IdS+m7qc/qfsxbIlMg+AR0Y9/9XcAVPrFWkTPfsaCpwAAvqQg\nHIeoKZpZAPXr4mE4dow8nY799Ix3AghNosRtzepEfMTOUTeAvFP6ai0EixwRj4Z7HlqBj96J9Ojm\n6muj7xQFr6fvBAAMmUHe4v/39c0w1J37lOvWgEdEDz1AlK5+73WsUMmhB+a2+Jy+ahM2eyia4LiU\nPN51P0Um/GuCgH80eUH12+0R688mnrvkWxT5qANZsoCE3JQkR1wZMRq1ig6DYTD1E2czKhro54Lu\nUGOKeWdHRQe8dfYEwO6//gcAwLzDNP4HDp674n4NrLyKIIp45Z9EB0y9jvoW90k54vhWPn3LBy76\nGCtwEZpC46exKvGAHBPw1NEYfMySDNsamo8YqLID+l1chEPriDlkOS0fJ28Yo+TuoflJSZTrvrD/\nUQDAwfn9I9YtLh0ZZa9IFK+m8nu97vkJ+bMo4jRwTueIw+XPmoOjfpoAXveOMqusmLHOhl51EABw\n8LP+0NXQs5p9OUXn/nvH/dCvoQjUgAd2AwB8WToc394bgEw5fHr1Xdg5leZoV2bcg/qtJFblyaZI\n46wxq9FTTxv/z67rAACBSjM4We7OSzYCADZV5KDse3qOARPg7sqEacrkuYMrnZbFjJr2DyBBoeZm\nOJxDiW2TxgQe3d0DERHIgEVEz64U8S+7kCKEuk3Nf4OScE+cLInAhcRI+/vwRdJ7qQlSVP5//j1T\ncZ8Urawm+clmqr0ZfmX2Y42ZFT4HYGjCjBv26iwpOtpDZ8N9V5EQ4EfLKN2F5pj0XRcNl0Wm3C56\n9ukG6vNrNWa8MY5ow731lagP0fo7q6n9mypiszzc3bjgqYC6AfScHQciR/vUHjVSSSdXAkWs/QUm\niQVqLKPz7DjdE7ldKYJ6SXf6vpcMs8N2iKU7MranL0GmEgt+AV7GctOYGcWswggjq7NrNdBOxwu7\nSul1PIo/Z+qHmGqhi/iWiY1+UDxBMSIaDr3Q/Jy4U41Rntc5uzobDyZQR2FgNLVQjRVB9r3oXCL0\ntazDrqSJoisrAE8aLeu2gV6wp4sGQcYwcPZi4fNaLQzVjcPPobB3r3cK8B6hpu3oR4ZOUNTg5x2D\naBcLHUfQijAVUwMw1rOPOlkHdwozepk66QGfC0vrh7XoOeR7uuMaCzUkToUdfn0+di8d2KLjtAbX\n3L4Rm5gSYlVpesxtLQdYg5sSuS68nmjKdWSYVSzrIa1fWE2TjPQbZBqvqYxz7+VmyKktFct6QDOG\ny5LJL0yzOjHi3NyQJQM0eqP3TSBj483tk6FkblQFW17r7/lSoif8OW0vAODemXMx6M2OGZjd3ah3\n4d+Gzv3LNILbYvwKfkEqSC+p6v6k/H64ERowATqP4ibtCm8X6jMmWo7g5nwqdh1rKLOcUYksLYVt\neCWcuyNpS61BRzphmhqibcGQKUQxy1vVjxYMrgf2RfaAL981HwDwh0/uBgD4bSIK7qJ77v3TfTib\nGUnvL738LB69fcFrWYfSBJhL6Rvmfcughrtg/IHmE+afyLOaU/EwdDTEwl7YzLFZn/7tuH/j0Cia\npE8wkUquXWOAMZfOnbOE+ost176ByXN/y/aObREoGaEcRyuS0dLqsP30ZfCLtFdHG6X8fEB0I5Tj\nsrd/12if4egvqecOMdAEPPvmozj+JRmeXxfSmH5B+kns6U/zP27wJeTpMcpL+aUTR+djVzUZo95U\nWj9n2yRcM3gfACDRTvMXlyEIXrNiwRpySiRk10j1LAMWubpD+PylKY1TCQkHdXCnMUNWIefzVvtB\nfJs5BAAwPvkYAODkph5o6MkCEKdoTLGUaDD4Yio2W2ahdrt3rACB9RNKtU5dGSFoMtgc7QT1VyIA\nc3nkdegn0XPeO+pzAIAz5MGfyymlatmCCU3unODMbOx89dsAB3sPvaeRcvDRxbnS+l7fP0B/ugZh\nqIscSXt//ijtc9u/Je2Fzyoui9jOvjv8SyCDYsF2edK7zEDX6+0iItidXmJTg7gp/u8panuPfkDf\nhz9BVDRCw1HtoXP37kLP7iCSpHV8nlxfZUKvXrT++0L6vnv2qERxOTnceTvXOQFnLrVlS4pLoqL7\nWC3TPQ1ZqNtObdlXScdOANDQndrWv26mWqhXWPzSNfiZ2E7emtyYKUU+B+CJo2iLOrtRoUKFChUq\nVKhQoUKFChUdjk6NjHIV3EWnRqLCTx4YQZCVrLjHR+cSYOC1gZj5LCS74S0lb0xNH/JKmCtEqUYQ\nr0saNECKlgYs5CXwJYYkimzQCOh7U8SM16k8ejADllN0THc3Fr3zCzBS4BTeBEYfFgBrMV1jSE/L\nvqobgVWl0T2QSvho/pX47VNzGi2bn70a064mz8nh5blKu0kUCUn9q0H2LXlS6F5MFcr+hn1h5zvc\nZQMA4Kr8ZwGQOFRrwSOkTbFwDym6iUEBTckfxiq5Hqk2LCJl29bY3+LMCiFkovuSoqFATEpuOAzr\nqY1F8/AnaPxR1kSHNxT5CSVPJA9j5ZrYkWbpGIPcMO5vmWhAeL3WjorEckwvJGrLgrv/gTvnnz06\nOY9EcUy6cjdWrxwec58ZN5BYxWfz6Rqtp7R4r5a8hFdbC+I6r84DOHPIi2grjHy/PofcL2niFFJS\n2j95GAmPXP3DUzAVNR93eua+xa0S2fpPRntGRUftuK1djhUvvMkUJTOGCfx4MqiPKryO1D2bo84G\nzKIcEWUIhQRFLzSPiHIU3DUX1x6+CgBgONIxclqP3fgdAOCZpOPnbL1SVzlTshxXAhcTAsqdT9dq\nOy6gaYQyaa8WwStp8lCbTgNdwkZlWlviPnozd+17Fqm3kEBIz14UdR1l1GPIG/S+k5x0jtfHXQRj\ndduVpPZf+AlG/hD5vGNFPJ8omI4fBy5t87lbgvCIaEv34fegNcgqqJO+IhFJXYMAzkVwFhJd996h\n6/ADBkUcjyvZbuqaDVOTZXV9gH3VNO7/Jvd7AMBbJyeicimxxHgsTDwq53URBZjeu/Vqili1pHak\nP4EmQObSyLHh9oN34udBSwAAf66gfsBYLURUbxCCwM+LRwEAvIMp2jlj8BYsOMzEoMLmlj42gbOc\n0QBnmi/I7hrlwrphlNrlF6kf+cGdgk+3kOijlc/po8zjuLinXi5Xif3F9IzDvyJNJWMspPqQfj2x\n84qXyoJHtuN0otVuDSYxUdNXHn8PAPDEljth3Ra9j/NPIN6v2ehD7WF6d9ZTGqCk+X4xXDxJGE50\nX/O6hJj7lBcl4qIhFP2t89Nd+vq7YdhC55OmqiFBiojqmbiZL6hFIIVtcIbmFVqfLOAa3JeA7UUs\n4s3qsSeURUaz/RNrsemCtwHIVOmTASfStXQN2xuI7sFFkKLB3dOPb5zU9mKNVmpkVIUKFSpUqFCh\nQoUKFSpUdDg6NTLK636eLuqCZR4SgwgdI7568qEganJpA59DlCJnQZabKTYYIJp4Ri5tZ6gXEWR8\ndRdLFPalBiEwy12XSmE3MaiBj3kb7IVAVTr5xNwG8pbYjmulxF/BL9d94rmmxlrZE+m30npPBoVI\n1lf2hlHb8nDJfSdJ7OCDzHXSspcyyet4O55V3IcnjYdHRDmUIqK85ue0kTsUj3flBErcX/tl/GIG\nSggwZ1l4jU/7LuLh73luDkDO9kZRVG0cOXrdB5Vi7ZCvIvaNhfo+QdgL4osm5ehtMdd3nUyqEWU/\nd5eWnXBFKlc9mEXv8BXEF0kJj4q6sugdWU4o5xOER0S5HL9xHJH8vZvbJwrUHHb9RF6uO9GvmS1b\nD8vQaqkEkDWXogqP9V2L1YgdGf14CdXADY8zvrzmegDA31OpQcbjgeMJ+0rQBOQcdJ+dCRLUx5+v\nG8imxu78maIqsVudjDHm47h1y8Nxn+eXjI/vprJQD+2ZKdUrPhu5nOHR+faKsirBl0hjj6FGbp1G\nhZInpjPUL/Rdcw+A6DnGnjQagwpvfDsieioejR3N4CVcXqvqjQM7KbLQURXs5n5Ng8OC4RXtcryg\nSZRKt7UVOUvp2+Osq9K6NASGM/E8B00YhELlXF/tStI62PT83wAAUzf+Jua57ntiOTL0RAebsYOE\nA/PHz4ff3rhsyKq3L1Tcn0dVyxdFlnhRwpAtdyqKpv29qlfUfcw6PxbWUx7bdDtd6/ZHZ2P0v5+J\n65wtxTN3fS39X8vmC4++33JWkC9RlISCHEcjRwPRQM/4s6qx0CWyiaDCVNm03o7agfT+rxu9CwBw\nf/J6PHV4OgDgNhtFwb421+N4Dn3f9kL5fLyWvSszCMch+pLjjYhyVhw0wOAhJwAAJw9HvquT+9Lx\nSSb1Wws/ovxIZ1YQOhcrT8PEFkN6WezGspPVdR+ow9jLSJhy9yKan4vaSHGgcATMFAkDAK2dfvtn\nlCLPR+1ku4uu8d2dE2A/Et388Ixxwqil9zCncnzEetOmyFFT15PG94Bfh1M/UL+ldIan/+9RKVr5\n79OTACBmVBQA9OspHBwA0HwsuDGmF16KhTkkmDQxk7Rh1l7SG9q10aOjgk+DYhedU8dCxkGP3Nvz\ncj+CRwt3Pc2tA2Z63g1HE2BwsZI12WxcqdNI2iKmSsBU2fwsKDelAgkaspN4mapTni749iixBUyM\nadhcrrnW7kexP1LrpSkEUYwjs/QsYeDzbwAAGnr5MWoAZfbv3Em1JR0FGvjYu/I7RFhPsVqgAbpc\nZ09ZHcpGEXl4EwXJQPMk059AUgCp3Wsanbf8TCJ01dRMNT5I9Uy5AIyxSl7Gz+fuKsDbmxmzjCrn\nyNfDzRTPAumkMJXbowzHSlPoOHvlgamhH62/fOBBbPqKBI7Clcgastnk4fq3I55T7sc0yWpKrWgp\nls96FQCQqZM/ZFfIh7drqW7SkjN0XeU/do/cGUDCJKKQVGyjSXS8NZWawpnNjf7YH4Qzi23H1JB9\niYBlNE1SAj+ktOrcAOt4m2HkBhR6nMumbQMAjLcT3XOi+RTSddFNiZzvHoTlaPtN48INUUCeHFlO\nUlsOmMWYIkauXtSBWY4ZJMGtcxWa/k6EDsZrpkUi3DhsyKKOQteFvl/jrpYOJ8po6BGEtYgVEmeO\nHmOJXlHsoT2Qe+0R6X/e5j5n5yTnCDTetu3fXmJDsY7TlEbedDuhH1kM4qHG7VhyZjQDby/WXo/F\nVipsC969500AwIMfPSEtu/cWqgn34SIFpbomMIwgI8S3SxbXCBna3rf4HSFJbT+UQ7RBTeG5UXnX\nyuYb1cNkFfiEqZSa4fw6tjGx84/UZka+pNwuq4dQX/WXy77ACR+NcZ98QO9h72/k/n/Ey2SECWHT\nt4CZpRQFAa2v9e/Akyy3T278jppwCHu/i0w/4hTYAz6qcjDAYGl3ESNuhD6ccEZadpLXZX+7+brs\nTWm6AYsozV0khVGFx9WQIUoCMM0h9QYy/gtOpMGRZ2h07PpeIdw9mRzUS94j2qsnRcT/Tl8AAOir\nL8O9b/wqrvM0RebNx1DuovEsy0HfYv5i+T35bUCPS+jaCnfTvC5cCI8r7b40bgleWErOcwurdylc\nXI1rssgY/Wb+hJjXwQM1rvQQeg8mp33BMfoWnh6/CpMsJBh008onAUDREHV1EyEyA9TQswGeckZJ\nZfRS6ymN9ExjwZkVkuaM0cCViidMJLGp9cd6w7K1/UTjwhE0AT2uIIdBQTEFEAwHzdDXR27LqcrO\nniJ0WdTGL8ok22hbSU+4jpBRF+pKA2RO9wokGKh/rPJQO6hssMBZSmOOwARYjcdMkiJ0NPAUR1d/\nOvaxK96TKhGUBMkYe+3oFajYTvP/cOVnyTkiyEFG06Wk8lvvMkHDUiAP3PSnqOdXaboqVKhQoUKF\nChUqVKhQoaLD0bk0XR4ZNAVxqII8BpxeKmqBhGNkTfutAoQgeTJcabST7aQIbxKj5DKdGFEjSqJI\n3Gr3+nQoF1mImFHvBHNQ9ogFBYg6Orb9OP36bTINhnsLfIkhoJ7cP7oGuka/A/A76EBXDDgAAEjW\nN+D4pkhqjPUQBbN/QH8UMvEg7nXgpScA4HMneSA4xQOQvTfbvh4Scdzm4EsUcXgm9+BHRposGgOe\nSToOAJhmp/Ms794Pb867IWLbN/pRfaX7V0eK1nhS6dlp3UKjRHMlxIqI8uetcwEhG3eD0faGmuYj\norzmqJUJzyjRf5uLiuour0BgU+R5/plBkdG7j08CAEzPro7YJhxrpszG6ouyAQCvzGu9+EnTiCgH\npwatTBoAAAidsMLdhZV7qWblXlwCgsPJBVc44WMAHS941BrYLR4Mu4Kk6Nd+P7RtB2PNqFsX4hdV\nt5hoowweFaVz8PrGoiJtvqUIj7oaLiY2gEYQsedUj1i7/eIRb8TzkSJl+mJLoXSelDFUaqPvmnsg\nFFgaXVd4KRlvJXn2DYgeJW0KT3fqnEyn9dCdbmmxjZbjIhMfy0IQWMR2Q1XvuPb1ZPnwj8GLAABf\npFPprvXLW1bWjIOLsOicdD19BxWhcBPVz/zjyG8AAP+v8NZWHTsWhFx6L74Si3T/0dglXFxp3ptE\nJbac1EHLapdX/USTEEMz5VUuybsJAAke8jqjjpuKUflDBgDAfJrGred/uA3W4/T96920XVHAiX9U\nsDrE11DUIfCNPE55LqB74fVJW4rsO4jxc/B7WTAxZSiJrClFRd095HSkdW5ialz/2Q3Q88fXxgB5\n10soEhoeEeWIJyIKAI/d8W3EMmONIJXV8jGRMHt6PTQ/JTXarrmoqC+sOlLptzTn02aEIgQVzSUa\nLFh5CQAg1ItWigLwz2NEmz1dnITYcjYyvIn8Hug372BPaSL9h8vpXn8P+V3pncDR/dS2bAqlwWx7\niXXxh8BN0Ogbl5cR1yVh2XrlsiscfL7dkEusK22VTPa2H6T/p0clYXmQxnDLCdnk4OxFHhLrP+Y4\nBjiIfffXtB0YtmUGACC4m57Ocw9/hlfn3h7lSsLuqZmoKCCXzdn5Gc2pX3r0UyzsTn1Y/kaiEiuV\nymkJeE3R4RMO49AiSmkK/zJ5GzRWRZ5H5xKQ7CCK1U/76H0O6H0GB7rQEbIzKDWrMD8d9kya1/i3\nUfv1poSQINHB4zfxeCqkxUGT5jsLJ8MXoj4ow0z2SPHRVDiYbcXbv7tnAF0Y+7S6ygYbq4taz+qQ\nvjHic7xZdGmz5+9Umu6A/yaarrt7EALj5mtO0w0YamSjRt8gwscUbLnCrr9LANAwIzKFXlp9sR26\nenp4OsaZDphEGGrZfxvrgLoEpVxQrUcj1bu0nQmx84WkcLk7mY7ntwmSocRpf/bDWrgy6Jjpw+kj\nKipNQsJmuge/Qs1g/YVV2DVmYVzP54Vy4mZ/+enEuLZXwpgb8xrlocbCkC13AgCmZh3Asm9I6Yw3\n0AFjC3F7NzLG/vIBdQhad+QxAhZg5xNUFPqCV59G3XAK+VuO0MTK3d8D0U8fioMVc77x/jV4MZXo\nIL2+fAQAYD6jRWA4NQDTxvjpmlfcswkA8PUqun5LnDSbiPtQGM+9ydQoCu74d1zHuGDXrWjYkNqq\n8wNAYBjd/6GL58W9z14fdSQ8t/CRQevx3oKpAICZdxD9bt6nU855mq6oB4QWihvPuOFnOWc0jKbL\naw6bTzEHRctFk5sF7xsQaluN0gD73sKP4cyW8/+GzCZHgifl3H5/bUVbabpnE0FGnw3W6qFn1G/h\nSPwGQLw03c6GLyGEhD7kcJuWvQeffEkTCp5TusJlRKqWHF23rCSar6lY1y403eZSDs4m/vvmLwAA\n/+9LZeOX03TDUZ9Nv0FbSFLEdafJVFA/m3sEbWxiYfNDW0xj4pTLdqHIRVbGwY2kUCmEgC4jyRB0\nemi7fw1bgI/LqU7lj9sphw92PxzbqNOoG806DVGAYwftw9OMWoJwmq4SuBF61ai9SDXQ+//iC5qj\nPHXnEvxzQaQju6WYdss6bK8iZ8Sfskk7Y5xJiy+dNKkq8BJV8KPPZCp5nynkvCxYJedOpk8qwhVp\nBxpvKwAG5uvXTiFHX5rNiTNfZdP9dWV1OxUURpuCp3NJ88VUMaLOpuHKctQ1NKbaX5RZiLVryRCy\nFrVPOx8/YycAYP3Cxpof9X1pwLMfJuPQb1WuG9oeCI6vRWgvGY98/u7MCkJk6rXcQAWo0gUgU8H7\njj+OO9K3AgBus5Wh7zdUF9R0mvYZd3Uedi5seUCmLXBdQPTztlB4gyY58KZl41o05WCuVAwB8KSz\nwEpXellulwFigDc49l079dCw/F/bqba1I17XVdOdJvZZXatQUMDSDpiejq7UINlToZEyz3hMD6Ih\n55VloJ619d+PWAEAmF80FicO0XGOz4qeK6/SdFWoUKFChQoVKlSoUKFCRYejU2m61jPMW2jWwNyT\nrPGaFIpE2k4a4GFBJW+SIHkJEjMoJN0vpQyHK2kDt5dcLBqvBibmlfIlsPqfPTzwCWSpBy3MHSEA\nky+gSNyWM1lwphCdKmQwsOuSlXM5nVfrFeFNZApsTPkspAMs/Sg83eCjHax7TZJ4gF+B3FBblACM\nie/5LFo4kV9uq3GgKg3IjG/bvLELpP+WGyhSPW8zKZktzV2Bgf+iqEwsD4bOJf93p4kQ2MX/8CiJ\nJ71SPgmz07cDACquII/PmG9/hY/9RAcJV751swT2Bc/MBgDMfPuZRseXrnUq0eYuSz+Mqxx7AACv\nzSAKa791M1sUWQWAlOuKUPJTJB1SSG9ZyKstUVEA2DyeR2Dj98oNNZga7XtD/l3wpFK7n/dp84Ik\n5wotbMdmAAAgAElEQVREDSAyz6kxl775zKRqHF1PKnnhUVCOP6QcxMdovCykBQzl1KYCg6m9aVsp\nYKQUteTg7VJso3tP6dim0k7tplUAyL//Xxj4/uMAgILJHwBgFN7K6G3pxmsZS+Ob2JThkE5UjJYG\nTSz1oZ3UYGMh+cISVG5qLL5jqNXAvYMox5/suFRS/OXopq3DHR+S8MrK+18DANzw/m/b5Xo6KyoK\nAC/vugYAjbuH7iP69bjdt6B6V/T+3H6cfquHh+DMpE6AR0H8dlGq5/df11PNx69KR+DM5mwAwOb3\nR0hzC1uNHMkstdH5eE30/7HeiLqviA4sjqD5kFCjl6OfLI0ocb8GbebINsHQqw5KiqDPFlPk7buv\nxsHTh26Sx/3aIyoKAF8uvhgHHqUIfJ8F9N0tvmU2frPuQQDA5YMp2nnnbT9hwecUsa90R46TPw5c\nGiGopPEBdX1pYieWUSgqJ7EKfjZNiCciytE0wmUuF6QoGJ9DulenIulSmqNwkaGJiQexNiRH+cLF\nLFuLjR/Te/GliNI4ZKwWoK9qPH60JCoaZJkC2jiZKr4CB0Q7PRQmoAvbCS2UdL95rVdtJd38/qPd\n8ZlAk+O9jhJcOJho49tqiaa644shaGDRO9vJtg20/N00l7JlyGu7qJFSqljQKD9TLvgTNMrpCiG9\nKEU8PR5WP9WrheCkdykk087aOo1EOW4J5PRDZqs4gkjNorYpssY4o/sm/K2e5ozO00zZ1yWLxAbD\norRHaqivCoqC1Jg/OknjXvGubnDEwVBUI6MqVKhQoUKFChUqVKhQoaLD0akud2M9eQGEgBY1leSW\n4gnQzkxRimSKhhDSepLVXllD29U5TLAZybVSc5LyLaynNZIXQqcjS9wfFOQyLcybEKo2Qqchz9jI\n9FPY4s+m9WMovFF9OAGGGlZKhnlOdG7Adop5EVhtUUEAgiE6uLOQePIONxCwRPcCvHT5opjP5DaW\n1J7/Tb82RUQ57MbWJV/xHM4Xr6Pf2dXZ0MQhq+1LpFxRADj83BwM3Hg3AGDq6yQ40OXa0wCLjB4L\nUOjLckIHVx9ez0v2oNmP0P/7Z1PdMs2kGmB1ZL2iijwSv3p52JcY9grlLhmvIIGH5ePmoPfF1GaG\nbb0DAODOT1RMTvc3E0Cd1PtI1HXPl1KCfpEnETuWDY59oDiR5yf31SXxlUlthFNBapenznSBpfz8\n8zlpvJGlM64/MhWr7qEITKbOJkVBlUps+FnASt8g54/6tdSfBCxQjLCHw+dg+eVdWd7GMT2CFlqm\nU4hUhZ+vvZE1kfIxBs6dFbWu5H8a2lq6xTiEGC3evObrnwGQoqIA5UrGug5eRzY8IuoYQYITdbsi\na5WGR0VHXZkPANixcmC7R0S9Xaj9G6vk/mDWbSR6Mufza+DpSX2w6ZRyOSpeA3XUDhJjqzqTgKRR\ndF/XfUy5QJ3Z0ySNKI8ZvWwpeFQUQNzH1dXqkDqComDuJZTXWNdbhImVTX3tCxIwEoXGYibGmsiQ\nWOJBev/Vo+m9nChKgS6b1iXtoqmbJ0WA4TrKLU1cpnyNIT2fy7Q+7LYw5ycU+ikJcEelTLUyFZwd\nkS0hBOSsoCjoxRfRNzHUYIK5kNrmhkISytoAwD+QOvMNQxcDAHKr7oU+n8ZOpTIzGr9cPz4lh5JH\ndxzMQUIzwovxgkfvlt/yOgDg5n/9Voo2bdlLQk/Hs7ogcTB9O/4zKW2KiHJI8xdRQMDGxzoRxkx2\nYxUKIibNIPdKqou57zRF5C07LLBPIX2U+lUyk8LLImxPXbsctzvofU1YT8/e7bXEFW225xtQkECC\nXAXlKdBtousNL+hkYOWeuJZJPPXpldA0Ihotj1bHdFFsU+menSviqwPbHMIjzTz67MoMQFfLRvhk\nPwZkk3BXQRk9E509CC97jI6tjM2pXI4+JoJGQBhL419PO7WN7tYa5FioPe6opu/7sCcdRh1jEDAx\ntfDrFnZSD+ZNElHag/ojnSEALStFdrqU+j97nLotnWqM6utoomeq0ELfwGozMdpDfa+grG6X6oXV\nQB1yaR1tdzDQDZpSeos91tMDcyeL8NmZ0FE6LTNa/PDpaZ9QLf3qnBqUuqmhl7utsJrpCdfVUwdm\nqhak5OqgWZ6A+hyNH6onVUTARRvyQsmW8hCc3aMPyX9cdQs+HkgKCG/0IqGE35+4CfmbKOmeG8Et\ngWsAfZHaUmOEMlfBiTQ812U4AGCynagtLx65FvVuajC/GbgK9zrKmj3HYVd8H6GhTqZn5Hz9MApv\npLqpL+YOBAAs/mAShn3DOqlx9PWbXUBWTxqtq/dmRD22s9oCpe7UcprumRvyAOD9ngbml5OvkgSc\n9lzwKQBgXv8UvLjiFgBAiCVmOw7ppIT7Y6dSFYmxeyrYtYWJJX9ST5PLJV/ErsPVHNzdqb0OH0Ii\nDI93/wmXKJQX5PXVVruyMdMRvTA8p+v26lmOkiPnpwKrkqGRmSt7DJoaoeHbKw0sPvatWqMYou7h\ntMK824KU0TSh9Pipi/QVpCiq3jn70KimYfW89HsjayH6EsJE1MzyABcvTq8garJqiMpoS/3QQw/M\nbdP+T396v3Sc8GPy6zp86XsAZANW6OdUNEKVMD97NQBgAAa2+vrC4UkPwFRMbfjYrUTdH/CWPEF/\nMokcHXMQ3QhtCtd2mhyZAOy8jhTWB+zofIXu9jJEhWPU+/c7Fn8bqe1H43/CIQHuQpqEBa6kCd9H\nQz/Bk69RW7AUt/x6Jg2iGo0Jejd+PEk1wWszaO6TsNGEsiP0PhK0XDCpsWXT1Ait6wU4jrX8Ota4\naY5yuoIcOK2YBzcCr//Zf/0MaPaSNOfoa0jR/2BVGp7tReP2GPNxAMDShi7wMcNTOEn9rN4pSIbn\nC4NI8PHIpA+BSXQORWM0AKme5dYRNAcbGbwdobz4vtHmcMMkEuHpq6fJeu9rjsKko3GiqpraaGV9\nKjTM/95e1XP53FnrBVDHRGYMkIy6eFE/iC7M7PDg2FJS1g6fD5050wUAECYmDLEPvZdvSwdjaQk5\n5m8bQIJKdbkmfLOfKMlaPV2keUcU+useulbr2AoohVEMNS26lbjR3JjcXkZoOOqG0nMunPouAGDk\n9ttRzXSVhVo98veTUairJXvCUiKg6ZSwOZqxElxD3XhjMNXudWjIdrBovDjmo6COy0HjQF9TMT45\nTUKgQg82Tz6qkSjuFqb2r/UJCFbRPgGNHsZA4xq+8eL8C5moUKFChQoVKlSoUKFChYrzHp1a2uXi\nG4hyV5utkygGPKIpWoKAj2dhhyC4yAqn5HygZmAISex/8j5yazRkGFGXQ9vxcg4ajwZCVybF7yYP\ncbeMaimRfPfp7hiaQeHw/cupFlDQKEdWOA3AfiqIuiw6to8xu3yOkJR8zClMyftDCJgEdj0dI8Lw\nj4feAgA8uPZeCPV0jzkDyQU7ssspLD3CaimNIPEET0iPVz8kqpWoAYTRRFUZnEb7cKGCcAzbegeC\nmxvX4fI5xAi6qztNxPPTvgQA/O8PN+HYtLcaH+cVZQ96t+tPAgBKlsZWW+IlV3StoEO+9uQ7AIAr\nLH6M2Un3LzB+DI+kAoDfHl16+2wgYBExZCJRgA2MC70g52c8cJKirbvKugMAdo7+TFq2+kgutDq6\nyMMTP4p67OdKh+ObL8ZHnvMcL+0SDdoBJCd+VU4+Xk8nz+tWL7kHZ8x/StquUWmXPo3dh7YCPZx9\nyStpO0wePWdfHwzF+oh9Of3IqMBYcA9zIyWJrqeskLzq1hMdE79US7u0Hstnvoar58UntHPPDdQX\nfrTkUlx1NZW2+m55nAp0UdDRpV2uvYGElL5ZItOGeXmW8ChpiNUZ7DKKmDI1m9Nadb72KO1yLkOp\ntIv5BmJSjO9aiJWf0HPmESaEgKQdrY8j9pheCIBEBPt+RNHamdf8DABYPHcyqofSmMEpfvYTjffn\nNN2GcRS9emnUEtxko3d84ctPoSnCS7u4s6jvFFxaSUipvbDpUaKxvlczCO8unBp1O+0oCocFdyTK\ngkltoAcb6oCG7tRGR1x0GACw/VgWHNsVqEgthCtdxJu3UqTriI+iaae9Sfjqaxq3L7mGhBV//mE4\nLCXtTMNn07PwOu/eJBHG6padZ/gtFJ3evUg53YizBrkAET8PAOgaBFguIsbWzJwtAIh9kbPsIdqQ\nXYqxWC9FI5uL7oWnwLQ02iYdww6YxhANtbooAY7DnS8KyEupbLmVvoOVrkz8cSUx9owVWqmWbHsh\nwELwvuENuGMgpcodqKc2atd5sakoGwBweTYxMX462ReBPIrUGkhDEhq/fJyWMrwAYO/sX0Vd16nG\n6ISbmDHaSyc1OA6tF3DmUiu9ZsRerCkiuoCXKUv56wxw5NP/hONy8eXqvtTI+L7mU3p4ujEDl9Ul\nTcuqwqAurC5oQyKMOto/j9EZrUcM0gciKeLZZJ66N5WOp6/RwJdK+xpL6FosxaJkyHi7dMykY99T\nNLHIWfaQVJPpyhuIKrJk+whYC9tKqFFGQ28/wCZWjoPyx81rwTZXNJgreulcgO5y6sACP6TE2ENG\n0CQ7CkbekQcAWHe0D6xbo5Nefj+LaLrT7dXSMp6XItTrMHX8bgDAhvkjFeuMni1kXHYKBYcpJyMj\nh55DgtGDKqYOWL++q+J+AZbD6O/BCk6XGeKmeZ+vxmi84AalMyeAW8aSEbF4P9HVzfvMcKfRR2op\nUZ5gcWPPVBH9eSZcWoIBSTQJ3bCMcpjCB2glhHREEwNkxW9O4W0JVGO09UgYWYHanfH1M2cDHWmM\nerK9GJN7HACQt6qftFzJGPV0Y2kzJW2bqP0nGqMc3kQBl91M/U2VjwaR/I8HtOo84+4nwyXLRJPo\nzwpHYudookWPfImM0rqL3UjrQjPFOpZ6o/8+QfF4//7dPwEAd29+UHJg7vbSh3b/q89I24Ubo5wW\na8hvu6poOO65fRVSdOTIe/2Tae167ObAJ9bhcKeJUl/fWoMHoHni8/fQO1pdQyqwPxf0hW1L43lJ\nXZ8gND46X4+hJaj5pnF6UngOI1faDVhiaxLUDmpcTxQgpdZY95N29SkAQOlyOffIk8zGvsr4+ynn\nMEb3zDdJc2c+v3N3D8B+pPV9Svg1Nr2Xxb96FW9XkaG/4iPZ6f7S4x8CAP74r3sBAKGJNejmoPZm\n1AZQ56Vv5UwlfSvWNtQRbSvsLB/1b32/wH3zngRASuqWOHMt4wW3sYIj6qUcZn8ZtUtboVaal7SH\nsnM0xDJGVZquChUqVKhQoUKFChUqVKjocHRqZHTy5X8FANT3NEihXz0TF6nPEvCnGZ8AAG6z1eK5\nUopq/LkrUfPm1OTg7xuuAAD0WshUd3UCTl1KXqEgUxMzVGoRyKWDhnxEY+mRXiVdw4CkEpxqIH5D\nqZO4wi6PEX4/bZuwhi7Mb5VVeaUaRUFZCSvIvMF6pwA9OWDgb7l4WavgGUr3Z9prkegSLaVmtAZ+\nu4jLriDv7Yb5IxW3aRrx3PPcHDxxeiwA4NV0Eij4wZ2IZzaQ0q19VyT9xjmG+AC2bbFT/fc8Nwc5\nSx8GADgOkCfONdYl1Yri9TafufI7bKsjUZgNm0goxHZCA3c3FtEtETo0MgoAfqbeqq/rmKjJLz0y\nKtXuMot449p5AIDuOuK93LrsSVhZ8n3DQIoMfHjJe3jgc4o2mBSEipSgn1CJmmpqKNb95GkNmCFR\nkcIVe312FgWtjzy2q1tIitA2ZDLhtTJtRM1RZz+flLqgq/9lyxnFGxk99MBcTDlwHQBg1YBlbRIm\nUjp2ex6Po6Npuk3ht4nQO8/eNbQmMupLIbe8oaLz6XPRELDKIkWxkDmd1IF6WKi/2fi+8tjYHHb+\nsbFA2wGfC9d//iwAwF4YuV3OEhr7kvZqMXgmqeDvmzdI2q5mAI1/OQOLUf0lpX7U9aF7Wn3r33D9\nX4i6Hh4ZPVvInzVHUVyoI6AUGQUA29VMMXW5LFbD53quDFbf8kTs+E3dKA+OTXkfAHDfyYsBAKv3\n9EfC/vjYaXyOGZ4mxFkwOpfQrAp8+DUDRKlVYutYLiOatllPYcxTuzMg6lhEtIzVyW2G5ROOgdMO\nAgC25PeG/SBdQH1v+qbtR9v2TTcw8RxrkUZKm+FR24YLXHhx1DIAQG893dODbz2pWBfVP4FevLvS\nDMcBVrUjm73X42chLsc/ozi7w189uggvf0MsASEgwBpHZPTLZ19Fbz3ZLQvryY55YdH0mKxEv1Vu\nZ7xChs4FOHvShdpOnb3vX42MqlChQoUKFSpUqFChQoWKcwqd6obUepjnpAioGEoRMZ2brHNRSxFR\njlfSdrN/ZD8/mXQCFWM3AgA+qSMPVOpOIJDITH3mjfAlBSF6KYogMIP/ivQD+EMKeXI2eEIYnEFu\nlAQNRd6+d+nx5A6K1CUcJfdQyKCBN5FFU9LpGoQgEOICRqwAkMYLaH0sl69dKoU2D9Neme/eERFR\n6bxlQtSIKIdSDuib3bewf5QJf73Vhd/beRhIjozyEjGPDl8LAHirZIrkbbKelP0oLz4xT/pfeD2V\nksH19DPslVmwTKW8Pt0KEuR49+1rZI9YmKfzg9v/BQCY9Y8nYt7T2UBHRUTbA7zeptZ17l5zyMhK\nLRVr8OuttwMA7h9C/YVoDIEXSjl2xXvSPv+6hYQnrrD4ceWBawEAZ1ZGF9TKTKiBP0jH8Xahditq\nAEtfiojwUkLhGLz5LgT2EWWCR6csJRoph1W0BNn1a4AmdSYFtxY3j6dc8K9/GNfME4iOI3fPRe78\n1kf8howrAADkbe7T6mO0FeGlVNpaczTasc8V/OVu6t9+P39muxzvbEZFW4tzOSLKoWtQEDG7lNRi\nzD/JJadOLqQSKCfDtuPRS57rGQ94PdvJZjrHAIMFgWSWkBemAzFuN4meJO2V2RLhEVGOxAM01p10\ndZfKcjgK6J5StWenXmg0dFZUlEOpLnR4RBQAdv/XnIj9hv91FhKvJcHLmm8yIsRcvp44Bwd81Jef\ndNIERhuFxeKlCikwykQ9PP4IldyYM/dGaRnPZXWnitC1cMz1JYoRNT6zrz+GC5KOAwDe30V5lkK6\nB0cv/aDRdkNfj/8duVjN+KyscpSdoPxXfY1833fduwoAoGEh33lHxkJYH73GszdRvldjT6bIVOSQ\nor5crClUacRd9kq2V2y2kH49G3fDl7Vh3nXfQ8vxwTtXR9+A2SDipGoIqxuLf0JARMT05Z1XS4wu\nY5R8Xa7HItdAlvsdroWybeoWLPmJ2IdKUU6dW1mgM5RKts7uu2hO9GL5QCxYNhEApDbk7QKpJJG+\nBXV546mH2qkjgKihG9TXeGBlSpa8Tmg8SeQvphIVZXFvEg8J7kuA1kFPKtjA7t4SgFDDPhSmMMsN\nUQC4yKRB00pPV1j8WH0hdURXrf8dABJJ0nk4RYBT7kLw2aiDd6fRdQdNgLEW/xHwpIowldN9uzLY\n5D8OasHUg9cAAFb0/1Zadm0vepcr1spJ6GnjqdN/ZxnRsa1N1Of+5/H5AIC5JycBAF4IU+Ld89wc\n6bfvPJoAhL9lJVrGfVvvjdjuPwrskRy6LzY9seAOqld4NiiM7YVQWM9m3kNvdNhYkpm8btRufGeP\nnKxdYZFl/VYO+AYAMLD6bgCAdmsk5z7vVAZQRpM4C6P2Xn3HxjDHmQyvSMfuk1yBrx+k9IMhs+XB\nXsOcWVqu6KsgapSUVY1JDqoV/DVab4zmzn8MR+6eK/1vKZSM0LYcr63os/peAO1fh7Vp+25vo1cJ\nN924HgCwsqi/VM+zvYzQzsQjN6wEALy15MpOvpLWo8fY0wCA6qLu0jJvMTmCmxszrj18FQBg9m+p\nDT0+dxb0zuj8PeP1ZXg+nwySYIg6ZtehRDAbohE41ZKzKv1WAfqG6MduqrYLADMKp8KbeO45KdoD\n7h4U9DAXyYNCLCGgzJtjF2EtyiOj9aZ7N2HJ99QPa/z07HpqQ7jjyK0AgMqlJIhpC9v3mVmLAAD3\nOsoaiYfx2o2Z+kpEg7k88v2IgkzjVVpvrBYiBIkCIY00B/7DFHku/EgRqUC/1YPUt+sH+WBLYnVd\nYxiOAPB0DzI2LzMHkbub+kc+Jigh1EeDT9ZPibpe4xfgHkABipFpRJ/emWmDvZC+hVvvJ5XzL96/\nFO/V0vt4IIG2E8bVAGtiXy+HdhDjbK9TFv1Sok1zxDREAdSPpOsXK63Qd2UBKpaOwMVXw2HdapEV\nkaO0T9kIjY7X03ei61TKFfz0nchn7EkWI9pKSN/YMQ8AL6Tm44X78xstqw668FoFtfnlH0xo9lo4\n3KnNc5VVmq4KFSpUqFChQoUKFSpUqOhwdGpkVAiStexOt0p01yCriWUpjl8E4aXBSwEAz++cCbOZ\nRUYN5IHwnbBBYIIRPw9aEvcxFztJjr12JFF4dW4DLOXkvTJX0K/PoZEiMLzMiKFOhKma1ru6nfvU\no7ZADHNlSPShMwbFbXmkMrzO6MCf6L++Xl6/AnJktKuFvDvVJY1lzzlutpFX62YWxRq2VD723ccn\nAQDmZ6+GdQDRFwKVxIvx22QRA0GuCgTzpnAf5n8gmPevuchPe0eG/A4xgi7jd4SJrLSm5qsmsv/Y\n4yLRqoaAEQFnpGcyPFKZ9wy1x/zxFH0fslVe5+7KBBVsHjgD7CMooQipUlQUAOpD1C99nbtSWnbB\ntL0AgK2Lh0p1TAMKCvO8TNULuathEpopyhYHwmm68UY020rtbW+Et0Ht0dhxqVemfwwAeG7hjJjb\nNRf57AgmwGUOYoh8tT0+r/M/ZryDpz9+qEXnmD5tNRYunhR1vVLZl3hx803r8MW3kdf+r91E92rJ\niMijAP0+ODfaXdEWioiGa9sJQdZHXcW4lt91idivZkAIlzkoanMJKw8XKyoKAHdmbpdE9jjl1q6w\n3c4/zo2g/saKinKILGdJYPqVZ5wJMNbQfyUBo+ZKhJzL4Kk7/dYxhsGG2ON8L1tF9HW3HMGxRbkA\ngFKvHZMvpf6+3k8vdllDJq7oSuyVeciK2P9eR5n0/zfTFwMAFpy+AGBR1KnTaL75X1HO72ONgEfO\nhBDgT6TxyFweyQ1pyA7AcpK+Om8Xer9F32Qjp4D6jMJr3pG2PeFs3Hb/cOE3sGuJf/zy+rsAAK70\nECzF8sSv741Up/UyMzWOnKUPozBGRJTjKnse3u55GQDAeoqOJ2rkCGTAKkJ/ksbU/kMpzepASV/4\nGEFpc1WOdKx/HJoMAHiApcXkjV2AYWvi67v2X8hYSptmSaVNwtGWevOG43T93cYVozqP5rABiUkp\nKooMNUd9/XcN9UGPJp6Oud1zyVS3Pm0W0TRf/fgWBJiIoiZMmKp2MM0nCq99B/EgSWvB1ASatyyH\n3M97WSDaWCNT4Pnz1HrjE8PqVGvJk0YvS+OTDThvgpyPqUTn3Oyh7R7Luwu7xiwEANxopTf469Qg\nJqdTpsZP+6jGk9GpgWZQFPk0EH3OKDSemAbFED4qpFC0bT/LpRBEeJLoYzfUyy1U72I5ruxJGutC\n0HrbV6nUz1T89Ao5K50JMaz16Cr10jJB4aPmRuie5+ZI//NnyQZquJHKsX0Hdfrhg3B9Lr1/+xGt\ntE/9CG/EdnmfkUounlsN/0bqZPkHIQSVr1FFy9E0vy6eCXvTSb9S3savLv8Oby6OTYNRAlclhoM6\n2YaBAVjz6Rv+dD4Nfg09gjBn0Gh+4xGiDX6duxKudFZ7tFiDnJUPAAAKr2xMXQEAR19yboxLP4F1\nG6PnTA/+J7XPfU/Nwfj19J/X9wOA+oCcZ+rKoHbNVX7DB2ZdJX1oa2r6YUtR5ASnpWiNUdlr0SMS\nDVbJgD2XDNWmeG5n83UMz5Zybkuhb2bG/4c7qYbhywsoDzqcWh4NfNL7t4X0HEp9kZTzRfe9jls+\neLZF16qEBWvHyzlZfdiMucCK2wftAABs6ZYNQDbs2hujJhHtcMfq/mfl+E2RcJj6rvdvpLze+797\nJmKbxAMavHYLqc73/Yja2GEFIzIcf193JdZc/XcAwI2ITCloCYJGukbPhTRP0ubZoBtNfZiL5aV6\nG8yIlTV6tg3RPY/9HwBg2Nwn2/3Y0wsvBUD33RR+tijcCFj90QX057+2R2y/uM8qvPgAGQJfvTdJ\nyis94CM66yc1YzHBdjjqtdSGyLhL0JglWukru5Nww72bGm3XkCFiwqR9AIA1B/sCAExHjNCyz51P\n+A31gLEyeoJCeH1PrVceZ7niLWiKjbUeQNOksOQ/3p2GvzxGysDGyWSgi2sba4Bcn9rY+frQ+DVR\nryUc3bRBqZ4lR7jhZy4TUJ9Lk7RPdlD+o90n5+aeqCY+q7u7CCvLx3y2J43Fr6fvhI3V7nSuaJwH\n3BS3HaM5wZCbDmD/F83XA17wzOu4+SPqJ43Vsbc1stSd6uUZqOtP96Kx0Qs0nTCjjtWFdYQpLSup\nAAd5fEcA/r6ExFBe60nRL70hAG8NOUJ0NfSuj9w9F9VBao/9DZSa6O3vhlhNBzJ65PYSrxEajsf3\n3EnXGn6vNfJ/JYpxrHrtHCpNV4UKFSpUqFChQoUKFSpUdDg6NTJal0mntxcF4bOSXcwVxtwGoGYr\nCdJM001BqasxSWXdqA8BmBotu3/SGlhYDHq9nRTtfMla3MzEcThWuzWwsEJ2eZ6eWFJGNUxzbUSh\n+CpvBOy7uTAJeYvqewqwlHClXybak6aREnO5F0Tn1kDrbUNsXwE8ksQjLbEQK+G6vRGuLhhwkOs0\nUK+T6qwqQSkCqoTAJbVAPX+/ss/WfiTSC6hUm5Sj37qZYMxviQJpUBCYqhvol5PKO9FF4xlIrj9T\n/vkho9Rr0SMAgGvH72zX47YmKgrIUdYgU/dbMO3/8ED+07SMNZP+Q07hYF5PAMBRJkw0csLtMJfI\nL952gG3M9FZCWrkm10sDie7/zOL7pB4opNCT8m9wwNuzYGT14e7MnIxNh3o32s4W4gq/APc3hrLD\nGsAAACAASURBVH+/Qja5GntbyrF96xAAgD+lfdgXzUU037uF+p4HFsnb/b2ql/T/ysn03lf+3Lpa\nih2BQxdT1OrqrtSmjq6Xo8sjLj3UKdcEAJ508pabiuXG88hHsftHHhENhxKt1seoe99P+xuuff93\njbaf030zBqDx+wqPiraGnuvtTZ5641GTXGe0QCa0frn8IgBAMJu2O1tVchfk/AwA6HcWI6NKCrrT\nlj0FANjw+9dwDavXqYTD98hMkskPkqr8z++OlZY5mQZfas9q3BjjOBw5Sx/G0098BwCY9+ZVEevv\nePx73OHYAwCYsoW+4Utv2AEHCzH9OY0od8P/Ogtc3tOdRREb84n4amM2RZ8pJABUsKpXM1vK0Atn\nr27y3u+itwUeEa3rG4TjcONrGP7XWdjx3JsAgFGvkMJ+0nWnUb1MjuqP2XkbAGDbyM8BAC93zZOi\nbeHgKqgTX6Xv7E9PzpMYfcGgBhvLiHY6/EMSEQrlhLB6L123to6uS+sDGgbT96Mzsrq8G22N1HiB\nSCptLCgq5vajH0+qiGssdL7xwz6k6//5N402neloTGl+PiWyP32vthuGm4ix6GdysTO3PgbbydjX\nKJjpHm17TRHreiZSKC794pPYvnAoAGDFImIzvv7kTmwYSmyQ3gcfpWNEqSM6KoGu6+1VlyGeJK07\nZz+Lg7+j/nbg3Fkx57rhcBzkfbzc1zvirD0bTnG1FLPJbLE8P2z6dN6r7SZF3fUB2vmiPkdxsIqq\nSZTrkiCyeaYSRm6nMab6TAKyepFNdGZnOgAgaBJhP3Z2JshqZFSFChUqVKhQoUKFChUqVHQ4BFEU\n2zfBsQUY+Ps3AADmMhGudLL4OY9c1MmJtgGbiEAmeWgMTKyi96RCLMmlXFKtQDb1Wg/wfR1FDpYe\nHwwA8Pt1uL5PHgBgkLkIALC5vg9K3BRpPVWXhNykcgDA/nLil4c2JiF5P3kHPay2qDtVA52L527S\nr6ubRqqfY6qgZTq3CL+V1+RpnxzPfU+RJyaeyCjf9qK9lB9Uuzo2Z74t8I9wwrSxsT/JeEU5vN+n\nRmzb7XryQJWElV+JheDEWswfQfkK98z+VcT6kB7QX0Iy6MEfk+M6Jo+M6jxoVhQnYI29/nxHwNxp\nn32HoMto8uitHfo5Rv6jcR5SwqUlUn5M9Y/k8QuYAV8ueQste81S/TgedZp68BqcXsEEkHo0zu8M\nR94zcxoJIXGMuInyfzavHhR3LWDXULqei3ofBQCsy+8L2yGK+HraKTJ6rkITljvT1pIqW++j3LsL\nPvh1xLqAjfXbHVh7U8ME9doiFBQvDjwyRzr+C3eSwMeislHY/0Pfs3ZOKTLaCeB1+s5mjqPWTe+P\nl3gLx2u/eRu//dvDcR3Hb2Ol7cLEjO57YjkAqqPeNKeU1yoF5PHd49dBXB57/OPlZO75kURrNE6t\nVCKjdgBFn8JrlPLzdGQtUK4f0RHnNIRJiPCSKqI5iIQ9yuKL0TDqzr1Yc5R0LQomyzU61zIxy00N\ntO5gQzccqaE5UdNapvGAz4mFOD+r2oEBKVc0pAc0cWjehZfp2/ssvYvakBuvVVD+7MtdaQ7dZ8Gj\nUtS1vr8f26bOBgCkaGnC1OvLRzB+FEVH7+i6GQCk6CoA5CyjNmg/HDsq6BtbD+1umqM3yqO8mBI1\nM1lkdEnutxj5WuO68A8/vAyPJ55qtGxawRTsL6ax3hSnUGVDdxHW05HjQn0vajP6Onn+L0UsodwH\n8TR9TwYr7XJIF1FnNGCOXXKoJeh7G72DbfnEThg1oBCHKroCAJzlVlw3knJ9/5mxTdrncyeVt/mv\nFdMBAIYaDbzdqfEYSuhGlUSXWoK9CnN5jk6uM8ouwitCX8+/OPoJ6YHkfWSN1uQaYNlDtLmAid7g\nAUcWLnIRReLV/lS76dn82zA2jYpo1ZdRg7OmuOAO0oNcV0v8g1q/CSYtNYqKokQ0bKKk7IRCslCE\nYAjuLvRoePKwuUIWJvJb6MKNVSK0PkbdZTVTvUkadDlAX09pl/YpJB2PEcqRy2vuFdBs+my+YCU3\nhvf7VIiTqcMQfpYL/cZrhHJo1yTgnjWRDdfHDulNDsIehxEasAI69oHrGFUyYJH/K8HTVVQscH42\nwYV32lKEWYWMLAe1QSX61+ljKRBC9Jy5z0HnBnR7ZeqLqKX30fvH+wAAmd1kLpS+NjqhpO/amYpC\nIBsLaVAwx2mIAkDIR9e+r5wGUdshA5w51G/pohRS/yWircJCSkYoR0caoZ2BcEN3fjHR2I7+nBNt\n83ZFZ6jhdoTia2Aw43auifRY9tLFX2Sc13/U+AVJkObvWy8HAGRc9IVkFIYbpUsbyKPqXkKUu+qR\nAcijrDIe/pjaQOpocrpXlDugOUwTm3AjlOOWo5fHfQ/thb4f0j2213yFO0Q0vtjft6ij7X4/fjnm\n7Lkx6naudFZHvViQnNobT+Xg2v55jbarCDbgEhO9zB/r6Rk/kfYj3tNeQvsgtjHKDRm/DfAz9VMz\nq6/utzQ2pKNBsATAn6TfLkpGT7gTtKmBawqrO/lyBdGD/5ByEEs/vpiWPUv3ach2AsVkWdkP6nFX\nL6J0/ncOVTSwHddig44cXXnpNG6d7rcG2+qozzGdiY+a6q0ww95EzKfLlWdQtIeO+c1dn7Kl8ljs\nHE3O2zVVfSOM0d3HMnHrMBJRW7FpPOKBkiEKyCk1pgr527l8Bhne33w3Fr40ZnCG0XD5u+QpGXUD\n/TCU0X/+7HXRmbMtxm5eC1lP15q/oq80x7RVClgmUGrioVrqR27L2I7/m0sOrnB5O1NFpIOG91Xt\nZThzqDRdFSpUqFChQoUKFSpUqFDR4ejUyCgPvxvCyqG4U8g+DhoEVAwlq9xcJofguAiJtUiD8lQK\n4y+uHg0AqKqx4qcto2gftn1ar3rc3oWEAt4vI+9UlqUKa4r7AAB0NVrJJOd1cYSgKHmojBXkWfDZ\nNQiYGtvumgBgrgiw6+aPUoDWzeuGtE9ktCUw7lUoVHiWoNuvTHdwnqBwv+GieoiHaBsu7exKFxtR\nGqKhvlcoIlHa2wU4+FBkvVIeTW9KewDkqGijZS7AexFlnhs3RFZvM9QKioI0ZxNqRLR9sW0reWed\nWcsj1glBAeYMim74K6mtNvXy8Rqn+jzqSSpschTEUC+/K07Z1aUyAZedyt+EeTd9l+FCSOFo6ql2\ndQtBYLVS/etlBoC+hpV++c8JjP5icTLQTFG5dkZHRUSvmrqt+Y3OY/TqSukhZYiMjN6x/148+wyJ\n2bw++7aYx7Gf4P9EaS6Uz0pJjXzpMSy/5/+z992BUVVp+8+dPpOZVAgQWkIJBIh0BBQEFQQUQQWx\ni6CAqGtb9fv25/ftp7vrumJdFSuIYhcpKh0F6V0ChACBhAQIIb3MZPrc3x/vOXcmmZKZNAJ7n38I\nd245t5173vM87/MSG+Urz/2tikqWbf9/7wAAlpmTkHwDmcg8tcCfgXYaBYisHxnYltKUBnfLw7tH\niQUMVJP0k2Sq234N/uz3W3NBVdO037/6GFGOmGP0oV+Tlo6qHtQxR5/y71y5cs+SJCKqgDFZ20xY\ne3IoAOCnWBp3tkkug2UHSXInTaNyLf88Nwk55aFVXDwtxJLirTnHDXzMiex4Whc0u+rPH9LonOC2\nNtxYsy5CSX6//5xK4XyP66V0EF5S0Vqml0rouTXAhTWkeHuwH5VCMwHQsFIzVQKt+e7OqWDiRKi9\nit2AcMTQ8UynvQMw+zDqJ10ehcRW8r6zi8qI6hQao5v200U8sb8X1j2+HQAQr2TrJZXix99IGeLu\n7YLCRmPLQMZGbuYIpAzS1ugsf3Z301Lad7uJF1C8g9hbXtdVWyZI7ebxi6BxI7o/qSgcm7zlcvhz\n0FiWVPMHjUOcySw+6epEzFFvu03sHC4eofv3LsJXLoZSFTYGl1amy955UQXUJNJDYaHavzCdEeFm\nNqilN9pgyKC7pC9mckazCA2TomYm0c3v0q4MhSeJnuYyDZXgwRvnyBLTwSKMgxc7waAlCbAr1g2F\nm708XakNmioRmiruossukQdQ2WiZuTO1KzpXRGUK3VQzM2hMONICNratBOp6JCPaHSZkvFA7eAwU\niDpN8HMle/yGDfg8Z0Lt/ZUB6XuoxtHSp97y5pKyjjWSwtyBglAOhT2wO+qViMHXs7p8v7VMXb6W\nwpgRlKNZ7PYvKKusUaBnGxrAqa6ngtoHD3dHVF7wCM/jEQLKSP5r3M8AgHc/Cy7x8oXCDTiNvA/z\nvgs1HWvnoSqcAnTH/Cezxt5AuR6/bRkQ1vFktF50UYWXu+TqRV9/1YmGTTT2up5yjk/81r2eNZsG\nq3+lAfrb9/nXabwSUPRD8IGb4+e2eAMUhIYblLp1ApRsbMHztgDgt0MUePb5mdxCHXEenLrnQwDA\nVa9TPVOVVQQmUgpB1Sgawf5ryHKsKCG35AqHHr+kkttu6hcUrO5N6xowCOWIU7bchHZrQcbpzoCR\n+uAq4ikQfUqJ6mF0TdU5FKHwQBRgtaB7UrCjOU7vcmVZG+jZHNNZKwmoDxzpBoWDvh6BRh2+aUMK\nK63nMbihZTWEtdtoK7cuPHLD46k/EOfuvqFyAEWFl0S4eyO50vrmetak2mE6Sm3i/wJeObC23DuI\nUoU5LtNU+rfHweTO5YfaSyyTb9+ZM53eiZ7s+TYUCnjhPQqO58yh7/P49lnYqaEZn5xfU6TxnZPd\nEHU14Iilvz1qujZKW+QTJJVrO4ALW6tT+MBUkFyb+aSTUKpBxUWaoFCwihwuvQhNFd1/UVm79m2k\n4IFwTJaK7dv7W31pavUh3NzlSCHLdGXIkCFDhgwZMmTIkCFDRovjkvI/5m7EWiQedEORwBgBJq8o\nT/NA1BDLqDqngyOWwnEbM2o15gmwsUThmZ12AgDGGfLxdVJfAMCqgv4AgH91+xH3HpwFAKipoOkB\npc6NimKaWVGaFXBFMTkcq83mKFdAbWYzVGwiSFvqlfHGnqT1atopYG1P27q5g6AIKKto+uN/Z63E\ny4vvbcwlumww7B6qZbbjl/7QJjHNY44JvRbTbBWvhXTzzO34Zg9JGqLZrI2ogh+D+vknEySJCJ+d\n63p7DvKWkxHMnVlPwdOFPR/sXjni3ZL8gm/jihKhLZUlsMEg1eXDlcWMLupCMp0NNf72HrpSARlZ\nJGVISiaGtGfv8yjIC8541JQa/OqQmXs78M/dVNsvPI6L5LicEeUMqcIuSIwol/1qS/1Z2v97+Es8\nt3sagOar03glo7GuvE0F7qIbLsJlRB09rJJayPdYzenWGwjZ931Q/0pNhL6jTiFzW48WO14kuNdE\nct6b/vI6Ri4lyauR+aqYR9egX8cCAMDzndZhPnMEffUtUv5MnrcVP384mu2JfQfLBFz1Ot1LyRne\nCrzSZyUA4JiNVGHFLhOujc0GAJiUNpx2MpljFDNoXFef5dF/HtR6J7QHSQLL2avRD+zD3iL6TpSr\nqV/ufcM53JW4FwAw0VAOrUADxEXpZEz0Uc4oONbTIFXFikVHn1QFrPvO7+HD96/B56doTKTbHQ8A\nsKY5MDaZ7uE6C41pow+Gx4w6LRpoeMn0IE664bii+raZM6I1SR7JwM+XDW0OONlHVbB766yKAeiz\nww7S0y64YykA4IXv75dMgT7+eDIAIOP5hRh9gZQGD89Yh88/neC3H670e+9x6r9yHImYGU2u/Lx2\n7IllvaT1q3q7fOqHEtxa7/OjK6bGCh7vfbAmMhOhADVW7SPNcDNW216khzqAXDxc9B9Jz06SnqTA\n/07ah2cvkFpiqDEXC06Oo/ZubBN4B5cAMjMqQ4YMGTJkyJAhQ4YMGTJaHGExo6+99hoOHDgAl8uF\nuXPnIj09Hc8//zzcbjfatm2LBQsWQKPR4KeffsLnn38OhUKBO++8E9OnTw+9Y8Z8WjqooWQ1RWNO\n0TJnlAB7HMsj7ekAXPS3/iw1ubqbBwJz/eAzkEAUOqspf0LDXEIyHUlSflhGRWcArCQJ2x8E0ucD\ngMJA1KdYpYO2jGYw7HF0DEeMd8aD57JCBJztqOHGLJoliiq0QdRRG+80VuLl0FcgYnQYR1OrG9N+\nlpZFUvqlufDrPqrraqoCsN2bGSH2YCwpY6K/33QNcu+lmaf+WdRuTbl3P8/P/w4A8NrCGeg1OhcA\nJDY0b3k3yWK9/zXZOJCdTMdQ0vU2nVLCOYqmt5TnyKDaV/fPy8KozKFrbznivDVur1RwluhKAz8v\nt0j9yDclw/3WcUSLMObQM1ORRzPahe08CMU/GU/5mxb8efh6fLhkckTt88234AxpTXuPNIsaqHap\nZhT1Xx1V5RDd/zksf1MzmS3NiLY0E+vLikbKvjYHmrOkCy8bAwC9Wikz+tdiYrS+WTsa+j5UF/Hg\nTCpJsaCsOxZuI7ZleA//d/6ltpn4GaP9loujaD/7hy4BABgU3tILEww50r4/+J3Ks6T0uoDDCZ2b\n4nQuW4RTw9SwK0piKi2dqJNes3kIjGepv02afB4AoICIkTryGdAKXjOh2TGFAIBx6Z/h1US69hu2\nDAQAuFNdiGEM2r1z1gMAPth8I3r3o7HcuKgsvHNhPLWDde/R+3XYuZ+YLN9SG2HBroCHPVL2WBH6\n4qb7ZgwbfgJDYsh5a8lnXnbRxaRvqnoMisKFMwpofy1d84LdSdLyQOO2hzPvBwAoFfTN96RYgeLa\nX/P+r82HmSnp3j17fcBrypngJ3zG052f+AgAUGyl8aulswfuaIoXVtz4Hu4uIN8S7lVi7e6AooLu\nNWc/HdFAVX8KHqIzgrPJwjETuo2ma3uyuFPQ9cJB1hoycDzUhk7qyWmb8UaHgwCof6jKpHzV+u2w\nGg6el6wtE8KqdVtvMLp7925kZ2fju+++Q3l5OW677TaMGDEC99xzDyZOnIg333wTy5Ytw9SpU/H+\n++9j2bJlUKvVmDZtGsaNG4fY2Nig+xZYDZzoHCvOj6HLwl3LVFZRusHG4xrJMdXSibbRlirgsdLJ\nFrkp4ElURuEOIwUjd6T9Iv32A8htN6kjBaoCvEnDDrcSVgcNNKtKqQ3R5wSpzmCbo3QVnQYF7LH0\ncJk7cWcsUQpCo3OpsUqLE4LN3zSlqZCTweoHpTXbIRoEZTy9bNU9tUjpfQEAUPJzJ+jrFBiOOidg\npcVf1MjluVyue+8LC2s75gKwjjBDcZrukUIQAWYK8NqkrwEAL79/H9TbqJt5bB5Jl976dio09P2W\ngl63HkCIl0Nd5XVUu1LB69XdGtX01miL730fAHANc59uqcH4R/d8JP2tFOjYvx9P9etwlXbvx5k7\n2xoKIheJRBqIBoOhMPCxeT2vRf2+AgC8XTAemnM0+PS0vFG3jDCx/P43AQC9FgWvbwoAj5+/utnb\n0lISXf1gmhC2HvC6hgYq/t7UaMkappGCy2wnP7wHmz+le72oF01+PRd/Gt8cpgBk0OFHaznmArVr\ni3JUj7Ii++qv2f/86/9xrLnQD7FHqU8pP9oRG0FjhuAjsSsXPBCtD6LCa+rCnX0dXi8plP9M1/D8\nyBhcffxJADSe3HHV8lr7ufX156W/+SjHaVShMp0GHDqBER46DwpWJAMAXrj9dmlyNJiDa0RQixDZ\n3Gny0HO4uKbpJiOOrEjDUdF/8FlfEFqdRrP7pqzgz61H5U2FGzv5IFL0VBd3aUVHv3W5m26OMxqP\nd6dUow9yrwMA7Br1PpYP7AkAeHUjfaMNBUpMvo4M1d7usB+YRPvp/1ro/vFPn86l87uaBo9CBxtg\npXs1QKtF/5vIADLrB0pzslmV6DUwHwBw9kIyAKoNqwkRhHLYU2w4V0FvqakREl3AWx3AZaRnefyP\nf8Zj4zcAADqry2oZcTU1Kq+ie63Lp3ttSxBhKKz/ePWOwIYOHYp33iEb8ejoaFitVuzZswc33ECz\nemPHjsWuXbuQkZGB9PR0mEwm6HQ6DBo0CAcPHmzwCcmQIUOGDBkyZMiQIUOGjCsX9TKjSqUSBgOx\nKMuWLcPo0aOxfft2aDQU9SYkJKC4uBglJSWIj4+XtouPj0dxcXHonVexsiidNVJ5Di6VEBUCtBW0\nUPB45bK6Im9SsJKZHQ3/7QkAwP0D9uCltpkAgEN2Yup2WHvj6F6SefJyL7Ep5Rjcjmpu7TyXDE8G\nTYEZ2eyOtsID0zna3mmgS6Su8cAWz6TClNMMlZVqkgJA1HnaWFHjhKj3l/Q1FfTs/J+9MAjL9xLj\n25xUe7h4rP8WAMA7v49HGWPdqnq5EH2i9iN23f378N9fPgAAsA+ma2Y64KUhfRnSBU98AgB47t1H\nAAD6XUbob6KLv+94CoynaN8vZ91H+0vwmhW9tvpWAEBUhf8MvTJIDScXu5CBapNeaThlpxl6ROU0\n+b5nffUYgJaTAk+cRHUNx+g9GJdFM6Fcxi5avTOMlo6kqtAVKQLW87J0ZuVVzvrPSlo6e82xTjGZ\nefrboWdVzb2ZhP948NngYLAmeuCOpWnizWYyXjhwrrNU49SmbSZ/dRmNxu1LQzOiHL/+MrjZ2tBS\njOiTM1YBANxsXvu9A161wJXEiO598E0M+zy8+1oXmz+9GtWs9Nv7/74NAPCP4XZoWf1IfZEoMaF1\nGVJfZI9Z4rds8IE7cXV7YmJ2Lx7YoPZdifBlRMccrb/sVlWqC8oaVnuSyStFAajsQ30wr0capXeg\nhqmzLBntcV/0GADAl8lb/PbZbRqZyGT/1BPdUkjau76Y+vJ7h+7GV+4RtOLylLAN6XgtVEMBM/Wx\n+pfaMB1Xo6YDfeuKqsO11guNw8/S9bzqjdr9inskGeR4jrB63dVAdSqxwIKD1/JUhmREOZwmEfGD\naXz3+4pB2MhMS/UB1uWlXSweM/50ZAa1ZS/lYY22zEWfdiSb5nSbRwlsPktsaZ/c3jg28ksAZGwE\nBGdI+figOp8Ud6pEK5SsZM0LFwdIZlb/NZLYW5PGhawTJLFVJ7DyktWCXx3zQLi132H8mk/y2qYq\nn+I1qhLwxcf+pk2+4OZQgcy2woUzChBY+qXTxMyazobHwobtprtp0yYsW7YMixcvxvjx46Xlohj4\nqgVbXgss/0kQgagCWt9QTC+/Ry1IHzNRCehJYQuXluWRdlBAXc0e1iKiwL8sH4WvEqnGmYLdzehf\nDdDHcVktc+qNNuK30+n0+ykFoi6ywvUW711wRtGl8WhYG12Q1uM5o+W9lFLd07K+FIC1OeSB4GzG\nrzDD+h+Gt4oglOOdXZQnEX1CBc8JmpRQJfk/A78vHQrX1aSHMe0JnqVXV6LLYV2fSMcJ8Juva67A\nXMkccSR/AADTwdDaWx6EukIlD14heCaegtBfrc3ny9pS8ty3O3jrGebvpA/BlmQ2aeXyPhNR532E\nIAFk2jwItSZ6pEmfur8BwLWHbwcAqK8thXN78GLm+tORB6HStkUKzBhPjsA/5lNNUc2BphlYXC64\n1K63MurHOQf19T+uGHWJW9K8GLjqKTRmitmUV/v/sbu1kGbgfRBInsvR4+t5cCdQx7XzBlKrlZWY\nsHtN5EFoZS9Wh/DElZeD3nlsfq3/F21NCrKmFzHH/YfC2gpAW1F7ufhrPESfcc3Rbym4HIA+ftvn\nLKPgRwkg5wyNW3hwdO5QCmL8tggNpxG4dmgWAGD/GvLoCFYv0m2gsaw5J6ZJxolvlhGhIyq8wUpN\nkgeGnXQW/OtYneb1dwlVtzsQtOUCLJvaSfsLx/E3TWPA4WGUh51SMAcAEL09GgcH0beX121VWwD3\nbgpWrV1dqPRQlBmjoFB373PvYNiCJ2vt26MCnppNMuxJUacAANOOPYCyLPoO7y/tgpUnWQ3gchpb\niiVKRJdE9k65RlFAn6wrgeU8TVBq2ohSRYiWQmOCUA6VDdBl07WIdDIyrESpbdu24cMPP8Qnn3wC\nk8kEg8EAm40G+BcvXkRiYiISExNRUlIibVNUVITExMTIWiNDhgwZMmTIkCFDhgwZMv4jUC8zWl1d\njddeew1LliyRzIhGjhyJ9evXY8qUKdiwYQNGjRqF/v3748UXX0RVVRWUSiUOHjyIv/zlLyH3rWhL\nAa1brUNNB2ZcZPPOpqhrKFRXm91wM0ZU42Asps0DS3talzOkXda6UNqPaC2WJw59qRuigrlaxdIx\nojO00FQxee1FJ1Q1tE9bPM196kqdUDITIlHhdc51meh3RyJdNk0VEFXI6gKWMarF5YEz9gp3vwmA\nm/sfAQCsdvaHKZuujyFIkrTuD7pHMZPI6KhodwdoGfNd05Ex5OcFaarEzpwX+Dp1wWvBurWA2syO\nUUTHFpX1M6IAYLsEM1GXEpx1upJcdXk9PQDYbiG5S9fehSg562+AEAp1WdG6qPyNJM4eVejZPGUY\nDnLBUNPegy+ODQMAuF3Uz/0HEPb/EdhivXIqqoViRN+ZsRgA8OR3s1qqOc0GdcWlv2fRpwWAqS1u\n3vscAKChFUNFBWf3rrxvXq+Yi9LfoRx0G4pg45pQiDnccJUMh9oMnKkiJU6gepu+iO9Mro0KAbCf\nb3wtSe6c63vmgUz/wpHjhgIrkBG2TLXIbcG/S8kxn6vhqvo5oDlLaklXF4oxzB0A435iQaNPqDD6\nxLMAgJiJNAbdmr4C1YNqK+gULuCtLPLG+VR/DQCgMC8BQjzFJWf3d4SeGfPwEWZVLxec0bTMlBMe\nMyweJHb5ndJxgI7iCU3l5VlJXHADmsqGbVtvMLpmzRqUl5fjqaeekpa9+uqrePHFF/Hdd98hKSkJ\nU6dOhVqtxrPPPovZs2dDEAQ89thjMJlMIfYsQ4YMGTJkyJAhQ4YMGTL+U1FvMDpjxgzMmDHDb/ln\nn33mt2zChAmYMCF0kqwveM08W7xC0hd7WIuUDhGCS2TLBCm9QuGkWQmFA4g7QeylpQPNxjiilTCe\nY2yqhdcrVUBfSn/H5ND6LqMSmkqem6qAwkYH15cwwySXCFFJsz4eDf3r0ntnKnjNnNhTGfdUuwAA\nIABJREFUTihtHmk/ACDGaCG4mkB8fZlhJ7Oxjj6ugodPjo0uh91OtKXTRjdWofbAXcnKU2zpQOvp\nRZiH0qyUx0HX2VmpgbMvJUQYAuWWCoC5K11n4xm69gonJKqK3yNLB48022bMCz6d6Eq2ASU0c6aq\nARyxtfcjo/WixzfzAADKGu+8rZtNHXc2lqMEkTGj4ULRfBWc4IlzwlND70lDDJBktF6M0VO/lTLm\nDAAgd0vypWtMM+JKYESvVMRmXXqmt7mwfv0Q9LEOvdTNaBaUbaYxkyLE7atJ8sBzhjhzQ0dzeLl4\nrQSRGvckKqPw3THKsxzU/zQA4ODh7nAaWY3LbBrT2RPdsAyj8WTUXu94snItXc+U3DlQmmiwZ5xA\n5kdmmxYdTdUAgJOsHrm2SAkn8yARzvgr7uoadtZFNTOgispTSmNLW08yS1WoPBDYEOY/cdwpiGE5\nDTUPUv/21qU6dItAVF3ZjpcqiwBrKr1I+pNXVuHDSdN2AQB++WlE0HWy5ngd+9I+bhn3yqaCLYl6\nO8OZ5nN+bm34Ze5rAIBbPvLWght2K8nLTSob5rbZCgDIdLTHB3ljAAAVNfQxu7/7XtxmOgwAKHDT\nx+wanUKSXHJZsFtUYE9ZMgDg2gT6OCoFD7pqKJ9ep3DivJMGCiYFmSgM1+dhwi/k1Kk/H6a05/JU\n8YSNJqm3d4ngiKZ+X1MVWM7nCmQPyZA1j/qU7t/Ng6b88hlG2tuwdJUSJbqOIbee57quAwDcoHdL\n78mjn9PEkaoGMDPXzWeu2SDtp4bNZBoUDiSpqbafWvDO+iQqaXAYo6DvTpJKgIcNYYo9IirY9j1V\ntG+toIJWoAFiKTMtKXYr0FbpYfsLz97lR3M0DlupXuPat0b7/V42jh7YsT1OIuODq+rdnzNKgJMJ\nxzSVopQOpLLyCXjAEcM1i/SPyuKdrOcmeyqrj1s8nwMXvTJOp9F7b/isrDbJgvQOBQCApSl0jz6v\n6ooP/z0FALDrxX8DADIcQLKKHMHnn5mCIwVkBOQspIPHppRjTg8yWatkfWKcyoLeWtp3eyU5AjpF\nBWJYQWcnGxLZRAVMCmpwjSjAxKKQDqqGm7TtYMTAp0XXId9MfaxW6UJqNDm0vtRuGwBg+MfPStuk\njD0DAMjdnNzg47Y2NJUTa2vEsUepfxybSc9q0W8dYY9ngWcZM62MFaGpaD3yc2snNwRH7WogwSCy\n93v1w68hRU3vQrcNs2nb01o4o+hc1ZbWc36R4PhLTwf97fL52smQIUOGDBkyZMiQIUOGjCsGYZd2\nkfGfjb6jTiFzW49ay6677SAWdtwNAEjVUe1Q9WHvzKbTKEJtvvxmcDzq0IyoPY5mYNM+ni+xo/zf\ny4Uhzb2Farj2fe/yaG9TwJcR5dj7E5V4cvU344yFzCFKrQYUV9BznBRfBYAYmz02YkaG6s4CADbU\nxMHJTO3TdMQGlLqNSDaS01YM893PtycgTXdeOmZbFe1zT3V3AMDfV0yHvrr+96TtmAIUb6m/TMGV\nivSpWTiyMu1SNyMkHNEilLaG93m5zITr9IwPkfbh5fNu5kz7CAAw6cQk5G1IBgDEziEmcklVJ7yx\neBoAQMPkZwoHEJtBqox3oq7HbWmHAAAdmPvFOYfXmiedvW9uCBIjWuwhJk7jNqOaOdh1VblR46G+\nuYClAKWoAA/L8XEzBtUguKGI0LjnDmMVYpXHAQBr4c+Mxm8kyd7Oo/1h78vYTSbHNp1SSjXTOUSF\ntyyHyyBIqSQeFSsl5wG05azdOlrmUUNKV1Ix5YDCCQh2djxWcs6tARS8prYdiM8gzqFsILXn7/1X\nYa+FSnVkOWjZnJgCvNqX/q72EBs6TBuF/q9RuYuqqxyYP2wzAOCjs+MAAOXnYrA1gRQho+NOAgCc\nohI5DqqikKAjhjxG4Yadp1mx8zcpPNKyTko1PGClSDx0YnpBA6Xgz5U4RToxteCVhpx0EgP77gWq\ncVtsNeLBTjsBAB/kXocMF6Vp3G++TdrGnkDHW9NrDQAgbfPl867JIEaUw92GnlcxhfoGOFRARWi7\nv7q15+sF7y4iYJ2tafQsr7vuXUzY/CdaWBRcQZj5xEL0+YCew5s/fR6qwaQM0Z32bsMZ0YlTady9\nduXw8BvUQuDj49N3fQgA+LY6Di9/eXe928nBqAw/ONo7kTvxU7/lveoEo7+vGAQ8Ti+FbxC6Yu4C\nAMBtHz0H07Ukkane3rrL/OyZ/yauXkhSSYUT3rzXADB0JqmYuzxGCj55MGpr54LuYut6rW65tX7J\nsS9iRxeiYmv75mxSq4Mqw4jTGfQMD7zlGMw2+gBUWmmQebqmLUqc9PuNhnMAgEJXDJKZ/HbpxZEA\ngNvbHsCtcX8AoMEzQHLcAzUpAICX2mYi30UBx39tvAsAwgpEAWBLv5XouyX0oEkYQIN58VCkVewu\nHdz9zFAerV+e19oDUSC4NDdcTFrknTDhkt3LKShd02sNBi6j9j78OpkeWhMBfYii78JZHX50Ua3M\n63plAwDaaMxwshFjqZueDTcEtGXSzxoPvZ9nRQUsInXWVaJNkoZy2WeeS4RJQYNVHr5EKQTohPB0\n7j02PwQAGJKchz2ZNHnUNsT6URdEqNhkxLNzfwQAvGydDm1F7fU01d5RrUcJuPXM/Z3FX6oaUQoo\nFWZa12ESJAmmyCS5HjWkfdvZmFXwAEom99WWe48ZfYLO+cV2U2BaTdd0M+ibsOZvr6NfOgWPT529\nGQAFdUPuotSE3T9dhX2pyQCAWeMpKP38p+uxJ5eWuVjDU41FGGig/Zx3UTVwhaoSUUySq2NJcVpB\nAY+HTtAsOqEGX07fziqPV6cfraA+WCkoagWhAHDBZcYaM9XcLLdRAHJuV0d8dIQmPxyxAkqvp2ci\nMdbrtq4tpfZeTu9WIIgqEb2vo5rhJ37tfolb03Sw9bRJ9Sp9saTKfxxpkFLE6N9wHBbq1tR06+pJ\nDYkgCNWNpDHBvV0zAACzsu6H/kTtIPSFB7/H2yfJqbf6WHzA/bgOBPfK5kHo9Gm/44dl14XfuGYC\nl08Hwl2mcrwcxj5kma4MGTJkyJAhQ4YMGTJkyGhxtC4K5wrA8UcWovcnl+ds24mH/GtO9vrs0ZDb\nTDh+s9+yOw4+AgBIGZ+L3A0pTdO4ZoZREX5t2KPDvwIApB323mfOkOb6mBplOqyYtuRZXGosaE9M\n3S8IjxndcdVy9N16+TzD3895AwBw58dNc63/+KWP9HdND2JVfq/sCdFJc3ernIMAANcPOIaFZcQg\nXywg++WcigSkJ1Dtsult9gEAdlT1hFFJEqJnLwzCL+uuBgDoIzQhGH5oWr3rXA6MqLUzaTVfGr0C\nAKAURLxYcTsAQH/u8jfUOvJ07VnilFVzYMyJ/FObsvZhAEAuY0i7bZwF7eng/ZRHK0JhvzRpEZxh\n4myuL/RF/uubu4gw5lNbjWcF1LiIOfi9kt69lD4XMKMj1Yu0ifRMlLmMiGIyXTW4XNOF8w56B+0e\nNQqYBL63hhwxTQonclzEAnZWEjNW7NZgmDb4c/aThRi2v749E7w43YmdvcEM1lHDRCOGQi9dUtGb\n/o097pXXvvzzdADAqulvYnLiYwCANpv9ZXoKN+BgdA5nZxRub/1sblpELCjtmzOobp0gGWJ5KxF4\nZbwAYGE13KMuMGOt1UZUd2GqjXxaNul//oyyvrT+87esAgDkGxIwLIpM2LbGpuPgLpLkHrH0ojb0\nssBTSeez7zBj5Xy8m9qp6V6UuY0wsPvWXV0q/X7GRfUvExQWSX6tE6i/tYkKpGlqSy3dokeS7q6u\noffgq4tjsS+vK+1nDS3rWOiQqhtoyzyoTKX9bB/9BQAgbefl820DAHcaMbs7r12IUZ88V+s3wSUg\naxtJrq8kZmlQSj6yotoBqP1Ne2nzVACR19yu6eqCIc+nD67DdAZjRSOV89YkO5E5+HsAXpOl8t+9\nKrMXHqTf9ptTYN9FaUGN8cpvbazonTk34Oj6XrV+f+WBL8Laz5X0/MqQIUOGDBkyZMiQIUOGjMsE\nlwUzejmzjZcD6jKi9bGhvji7qavfsppcyhV5Z9DHuHXwXFp4oHUzNiMy7kDaRDJhyFqb2uD9+Joa\n9dXopb9TVs4BAOiKVEi/8QQA4MimXoF3wtB2BDFsxbs6NLg9wWAXiZ364GFq36Ofet+vjysvD5Oc\nlPG5AOg6A4C9rxXaTPrbM5DyehV/mAJvHCYMp4LPW+7O99IAfKbWktMWu1lW2W4fmsDWhuVMlSga\n3Ok2NO+aMybNWRc1EujPEuXz6ld3epexf13Mur6hJkD2BJYrV3ppGEJfVrTbCur7jGdq57k54ulZ\n0JSFngvW5dV+9nLGLUba6eDfwfpYUbeBrk1segmq94TKfGw4uAETADjoMwBNlf96xnwBXe8k1i3v\n++5wxBP1YDpFD+uZ+ASUJNK7OymW+uWLbg3ULNlLyaiNvho9+msoZ04rqLHCQvlXpczg6LxbLdUc\nHqQh+iNFHZgV7bFlJrVhR2DexTaG+hRbMT2thkLvffV0pn07CvTQVFHb4jPpt8LbjcgZtxgA0K2S\nfQ8FwHCO1dSOFuFoR4wgXKxmttEJvYGWdYmjxM+OhkocLCLjFstBYhUFN6QSMTw/lB8fAKq6AYYL\ntWmgm5/+HZ9nUM6ZKd/L1PL29r2DcuKdohI7zPQt9KhFKc/SEUv3YECn8ziioG+Fo4xYyf2nknHU\nSN+rjnGUv55XHAeVirbp1qaUnUsFtKxD8ogKFNroJB5oT8ZDOsGJYg99oxJYCaxCtxHZdqZEcdJ4\n4tCFjui8mN8HJ2urQqpHLyoFKFhZjReL0hEJsuYtxNxzpCba+svAiLZtCiybRYof/n1L+/C5gOsp\nnJefSaQv3Dp6PhUOAfZu9B4d2xB4DKYtov7hLzO/AwC8smRGWMcw5KkkQyF9VvgquHAZUV6SpW+v\nc0jdysw8M7w+CNZOtKN/fX6n37ZNBX4dG2OgFwl8GVFuvBQIRSx3vD5cFsFo70/m4/gjC6W/WzNa\ne/vqwjcQjSQIrQsXG+ioagToSuijtdHSC5kjSNLa94D3utRXh+9SoGpbO1ShXVjrcknu0JuO4ouu\nW2st8/3btw7pnslUU/eIIxqfXRzlt0/+gddUeAeofkFo32q8M/BbAMCTXz4SVlsB4K7c6/2W9fud\nts8es8Tvty/yhsPJ7pG6nnvEpWSXokhzclRZrf9PSD2GzZlUADvrmqUAgL5/NN/7KCrD/1jxd+JS\ngPedKWtI9qnPa4wwqHmhamT9tLpBqLWdB3pe260Z6+/5BqF77fQy6AoCm+R4tNw9I7xnwlcC2xhT\nI2UNXZvkmDLsb0tBm7a4aQvWPpx9DyoG0PnHHKbOoXqkFYO65gMAsr/xTsDlfU/STms7EapqagdT\ns8PjVOB0DQXMa9TegSmX6d5r8so9fVMsJhlI2nvUQce+VmeDVuDBZ/BBaPrb82EKYbIEALFGsr+t\nOMonuLwPFHfTLR7pRNudtYdV//23OXjmv6nf/nbyewCAmYuflKSB+iJAyK4dINsSVLC2pX2eAg3m\npk5ZhU2HScas7EEBWrSpBu4aCii1OVQzVekAam6lGQD9bzFS7dKKCXSC3y4fA0UqbW/uyKTS573n\nwmXRG4v74IlOmwAAP3VKB0rovLuso/t7NqMnHCOZXDqOTsa0OQoOE7UnL4HWV1oFOKLpmT9+hgbo\nxzu0h9tK9zw1pRBmJ/VJ/8OkjRqVG11jqH/vbiRDGKvbe41WZ5FpUcwOHQAK2rk0V+H0oKY9res0\nCNCxPiHH0gaRoNuPc5FzB7lEv3QHBdbf/jgmon00FPSe8yA09Lv+yHSqFfvuDjLEudxSHXjwFMy0\nqPa69O80I8nwX/H5zdaWTfgW+/er7oHVMGpo8sMdoB9wGUTo0skJzLWHjINcRhGqMKtB8MBs+KFp\ntYJQAOh0Yz5OnuZjueYrEM6v4/+77zv848vgQXq3G3Ixrf0BAMCmMupPdp7sDqGi9nPDJ598sX/u\n2zAoao8fQgWiAPD211Prbzxkma4MGTJkyJAhQ4YMGTJkyLgEuCyYUV9cLgzppcCDk3/Dok1jAQAq\na+gZHV9G9NkLg8La/9RJVCJk5Rp/I5zR48gCfueq/tKyd7+cgnmP0/3KZP/2fW++xIg+c/9yAMCb\nS28P6/itBTHDyJHji65bMfQgyS7mT18NAFj4g9fQyVeyO3YvyXQ9RwLLlX0ZUQ5bIs3k6Zg0BZkm\nPJkZPiPKMbUNGRhloLf3eEeZFG2M//rlW9uj41iqi1m0uaP/Cj7gjOj/PPgNAMANBT7NvzasbRuL\nnReSAQA9s6nkx6tDlmMziBl1i55gm9ULjzo8pjcQK/rA3RvxxTfjaq83pBLi/ksvU8+dROWa6pvJ\nvJKgv9jw+daek7NhUNGDcGB9H6kupC/enfdhrf/32XkfusSTXlLpCLxfpblhs+NpH86XmNHGMKRH\nNvQCF2fGDKe+bGLHY03C+hRs7YTrJ9G34PdKYq/U2XocLOwJAAgkmvdogP4jqaTL6XxiQRWVamzd\nSrLK3zvSth6nArBQX7g0jaSk/ePO41/tqEbpVhvw5JGZAICKi3QkU6IZh4d9E7S93ZaTbDamHlYU\nAGy/kHLGWBOcYo85okbJUOoY2uzzPntv/pPKOO19hb676irAwboEZ7QA49na+1RZRMQx8pfXIP30\nX1N8ysrQdajuokdsfu1tKydaMDKJmOhMcz/o7iYWyXOU2u/pVQO3nZ5BRYA+jDOjhRYTHt5CpW0g\nAEI7WtmSRMxIVIEDqir629iRGGtLxyg4GQvK2x2fKfqlCBQP0oEpd3HS5U0L6ZxSDAA4f6wdKpxk\n8HIgmgx6lBaFxP503cxfLgdK0xkzXEbXwZYgoLoHHdCYo0JUIR1o11EqTReuSFPt803+a9tjAIDy\nKQasXzUszD1EjkAGYPVhSym9M7rzlxcjWhf1saIAGQQBQJ/vn6BtfLcPwIhyKP8wgT/qHi3ABBYS\nVDWCxIhKy3xYUVZJCnfdtgU3mY4AAGZ/8gQyn6h9v6q3eVNpuFlRd00R5mx6POR5AUC5O8AHph5Y\nuzihz6993+80FuFextTyb73LIGL+rWsBAE/FnZHWnRnN3OWSt0jL+DaBy7U0n6pKEEWxGcVLoZH6\nt7fCXnfR/SRvuUbnfeBaJCBNozwRZEWeeyaqLtmlDYmG5oj6SnGB+iV10aMuYlf/H2st6/te5Pfs\ntju3AQAqnAZsXjHY73f+0XNGi9BU1i+rEAVI9dqCIVSdUWkdpYgTs+la+sp0fcGD0WC/NxfqOy4r\nvVdrksAX1vbUdT97IxUFX/jl5JDHs/cl2deaa9/DxK3U8eqy9KE2kRwhfWt+2frQfnTHQm9baz9s\nbG9NcsFwlgZptkQm2SmKPBj5y4Pf4ZXPw8tFqYuazt42NCfEBsQzvh8XXlx+2EfPhL19n/GUuxcs\nn6cpEbLmWwQYdedBbPs+vMk2Dns8dQ7r71mAW9+jup+iwr823fi7duPJtiTTv/ldWs81rBpGPY10\nBNbJWLfUzs90BXi0w3VtnDl9IwDghQQK3pq7TmLfcXTP/9xxPR5a8kRY28ydQX2G2U1Dxe9zBsKR\nQQO9QM66AFDTga6V4YJ//23pRL9FnfP/zWkC1NXB21I90oqR3Sg3Nd1EE2zPxZ+WnC4rVoY3YVbT\nQZTaprb4fzy4Y+1tM7bhl0WUhuFbS5SjZAx1vIoSNWJP0DYVvUVE5TP318rgHyZLkiA9g3+fTQ6V\nr/zjfun38U9tBwAs/2GUJLtNnHkGadEUjKrZw/XNoaFo+zt94GwJ1AbBDbBSn5jx0K8AgMPVHbEv\nhzwhFAU6dPqNAoHyXrRt7CknFA5qkEdL7b8wQgXTGdpP6TAKCFVlKhjP0s7jTtC7UXKVN1fV0sWD\n6GyWj8oCdFEBOPvQ4LxdPEmOiyuNSFhOk6i6UidbXwWlg9dhpX1UJSuk9BFtORCbTeta2lO/bO7s\nfY5snZikPoi01RlD55d11/sAgLRvHoO6qukFhYGC0HDfbVdvuk6q43Rt6hvbuLUilJfIdbuxMA6n\nyYqSUhqPR5L/yfHXh77CS5/dG9a6XcefAQBknegEAMi99WP0fdd7X3gw6ruM443ZiwAATy+dLY23\nQiHziYVNPlFsZc93Xem2rTu9h9njPgEApG19CKpjUX7be9T0MM2YQt+5l9pmSr+F29avZ72FexY/\nDQA4/tLTQdeTZboyZMiQIUOGDBkyZMiQIaPFcdnIdGcvJbaFy3RbDA1gRFsrRJ+phywHzaZN/Sr8\n2oycEQ0XxcfaAv1rL9MOL4VSQbMtNTvJUGDK9O1Y9QNJOzVXk2nBiKQz2H2BZmW5ccF7HfegL/yZ\n0asmHQcAVDl0yNuYDMDrpuo5afRjcOubOQwXCrdQL+PJf+8+hpxfT29pmbqrPTaTvOrUnIUh28hd\nfuv6R+oLI6PeuIvtTdVPw5AfXrfCZ/nTJp6UHIwjYUSdRuYe15McPA0+zrkNYUQ5GsqKAmgRVrQp\ncCpMB8Z2o4lNWpz6FW7cRsyYf6XE2nD1Ic3jyes+l5b1/pTUFy3t/DjAmI+NbcgJU1cS3rEfmbwB\nACRWFKjNij7w4HoAxLDNPUeS7B8fXwAASFVHIf2t4O/bqDsPYvPP/kwtZ0Q5E6OuDPz8LvmBjndy\nEkkux926Dxt/GlrvOTUUmb/Se/mQJxX2BGpbVBdiqlx/xAbcJstCZh13J+wBADwwaD/G2emaeMrJ\n3KOuDN6tp3fZzMzZjXneexWIEeUIxYoCgKdEi4woYj8fb0+M37TTE8NmRDnqUwHxGp5XGfKxindh\nAdrWZguxisUjXCgdzpRGpeqQjKh0jAJRYlbbKr0WxVUp1LZ179M31Oj07qtoSTKODekCAHh6LBnd\n3D1gH76toVQbXylxOWU7YGsJyVnPlMTDY6X+rNN2N6xt6O/4Y3U0jgAUdno2tOUCzF3o+G120fo1\n7QXYyS8LebfQtzw6GzCdJ+bUEauEYTKxtxVnaEzQbrsCrkK6kKUd6esUf9IjMaIcKqtHYmf1VnqJ\n9EVA8UAm3a0Q4TTRt8zazv8eqqPpXNx6FZR1U5sEYNa4zQCA1J+p/9K1MlYUAD68msz6Hj8+N6z1\nPSrgxCw65hdVdL3fOz0W5t3N47DdlLA76ZnyZUTDNVHkEt8x+gK8FMaxMp9YiFdKyHAtLy854DqB\nGNG60t0JcxcGXK8xCGR4GQi+jKgzjcb86iwDNPnUD6V/SHFVsFHLQ7eRgRlX4nxvjsH/LQ2PVeYY\noK1vxECQmVEZMmTIkCFDhgwZMmTIkNHiaHU5o0EjfkZnHX/Ym+/YXDmjPa7LxS+paxt9jNaSM+pI\noBnD3Fs/lpb1+GYegMbVJPKdLfbN/+MW26dneM09Xrg4AAAwPvoIHt4wG0BgFonXRHzxXm/eHq+f\ndPzhDwLmnO6b/zYAoMzjwE0fPu/3O89/XHoLPTtzPq0/mVw3guzkaw5EZgff2pAVhBn1KOmaciam\nLhNqTaJrdsfIvQCANcv8TasCIfPxhVIJEUMOzb65dWLI5+zJ+1finaXh2X8HOybQsHzkyxUNyRnl\ncOtEpF1LtRlPbureRC3y4qoJpFSosBOzsa73anTbOAsAoDsVXo5PQ3NGef/B674pHP65nkDgfOX6\nYO5OTM6miW8CACbtni/VVzTm0AEtXd0YPpDyLI+sTAu4n0A5ow1F1ryFKHETEz3qk8B1CAPBzsxo\ntBebvtSAvQfdvOHdSQ0yJCYPR8zERG7JIBO12MO1c5icrBqCmpcpFSBVTgk3n9Z33XZTyMDn5KkO\ngIeZ3nSnhNWydUlSCZlQcEQHrpEaKGfUF20ezAMAFFvopMz72sCUV3sbSwcB2hHkUKRaHh9wP5Yk\nandUQdOMI7i3QskwN67pT8/oyY/9n9GqSXQT7BU66dq1266QztsaTy+PvtwDhYPXNvTenMpu1O97\nVLStPQ7QUtUMKO20vqWTII31PAY31GX0/rg70rOj0bngOk3XL5bKcsN0NnDinT2eniXBzUrGVdZ2\nSypPJWYm7iTd9AsjvUyNcRh95/+v9094ctVMAF5VwvJZr6Mt+07GsPJBfZc+LpVIaiwCMaLDD00D\nAFTuDq+mdMrYM7ij/UEAwOvfkBGkr/LLaRRx+3gynvx5+Ui/7X3rX18qdB5D72pBVbSktgimXhPq\nGGGFazbYHHji/lV4d+mUWsu2z38d1+5lJpMRmhY6YkSofcbUPW6kb/SpTWTgZUt0Q1cUWX/ty4ZG\nikAGRuHkif7t/i8BeMtwdVZVYPoiUmCGyhltdZqyxbdQwDRG70H3X0lqqM7RQ+xFH9xfWW2qG/Rh\nFvhrAHgg2lJwdHBCc6H5nNAeGLEDgFeS8Y8fp0dc7ej521fgteW3+S3npkbOTvSh0J/UwmOiHmN1\njQ5HrZ0BAK8kUofZf8/9ENgHzt6PXhSFIEJ9hJKnueuer1SSBzJ1gw1HLB37pWJyt+OuinWhaU/H\nCRSEfvbIOwCAQ7aumBNTAADo/v08ZA4mJ7S0A1dmgDN9MpldfJ/FJIOFtZPX9axG4vJjNIkQrk1A\n3/fm+0l+HQkeqeZioI/M+yeuC3PvtWHtTQMXp9h8fUHPm8j8JHN3N2h70si0NTjjBoOtLV0LHasf\n2e2GXJzamgwAMA2iwW9ZeRSmtiOH5ZmPrpe2veYwDWbKd7Rv8PEnTt2NtSuH11rWZ/P8sJ+fxmDs\njH345ehVAIB+KSQvPr2uG+z96f0f15OC5LUHrpKk5JEEo2MGZAEAnsujflCz3+jnLRiVp8SRvMBB\naHOgx9fzJEMVZ7QnbHOVcILQrHkLsaiSngU+0A0HqvM02N9bTBK33ZpUCG7qw2NPBW6fFIRy+PQT\n4dbyBbyBfvZRMhyJPek93oUykg/rgu2PjwPZsQMFouGg5HOmNWaHNnn8O72oCyIey4q8AAAgAElE\nQVQQIAh1RFMjHKOr0DuRaqbmfkduwvUFwb7ghkpOkwg3Nx6spmX6AhVO7gn+jCoOs3SHzk4M7Uf9\n3+mDqTAU0qjfo6J3xxGlQFSVf4AYVUQXuDqJ1jMUidCX0Itm7kjPnT3OU+u+8m+8Ipd6CqVFkMYo\nprN2to0KKhsLfq3ejTVV9Lfg8r7MPEDVljmlIPTMFGqPtth73LQEkgebFDbMHLcFAFDupC9YmsaA\nH81U4/XvWZPouE0UiAZDWRUdO9zxmUHlwOwYOofXA/yuNgsBg1BXFF3H5gxCE0fReKpoW1LI9c5u\n6SL9bUth48hcDdSDyZW8qoCZFV3wD1ciCUS5qaG2TCEFtb0mkvw0PaYAX+ym62Q4E95YvG4gCgAv\nFY2OOAjl0FQK0iQq4A1COXRFSthZfWDtyfBmNBsThHbbMBvaM9SXR9IH32Gs3XEuqeoa1nayTFeG\nDBkyZMiQIUOGDBkyZLQ4Wp1Md8g4quf0ZfIWvF2eDAB4Z+c4TBlEM/nT40g22E9jx9WLwjffCQeh\nzJG22oBqD83aPfvVrLD211pkus0FX5muixlQnJj9AVJWkSlO7hSvLHjuOZJ5jo/NxP87RDNK7lyS\n4WTfH1h+Wx+4PHPwAar1+c+0FZi75UEAXokoANR0oWmwUf2JGdmTnwxVBh27840kqco+1BlP3USM\n+Idf3Sztu6VLsrQERMH7rN9+igxRTqzrWWsdPnNan3FHc6KmM903/fnALBa/RxxNJdO1x3ugLYts\nnq6mJ82+G7LDS9ZvLOqT6X49i/rWcM0DgMbVHxUGVAIAMkd8hSImG01UEtve7Yd5AJO76QIwcr7y\noy5j6X08vza82VQAcLNT9JVe2toyyV65gOceXAYA2FVFkuQNB9IRdSYyZtTc0wllVG2NmCCI0P3h\nP/Nsj6Nja8v9350jTy9stnIsthQ7dLlN+/zFjyTW5Y3UH2Bi9Qmm7iQzF15KIhh0pd6/I5HaRgJX\nFKDyqRHKzXN4iS9NZXj7sbUFdIwxq0/CHQlD2VCUDPJA3Y5YEM0++lbpSxp33PI+9O/AkSdx5lMy\npnJG+ZersSbSMt9yRrHZbpSn0k1sm0F0lFsnSOynk5Gp8SdccKtpe205vS+5dyog2OmiiqxUhP68\nSpLiu/TeEhL8OVE4BSRtoxfao+Y3BJJZERR0jPIeGlR3p2Vd1gamyaqSaSxgOkftKRzmZb54WZTs\nMUuwm0mNB7NXKHX1vKAlXxoLdx8zTo6m8jznXGYsqRgCAPj6JP0rHo6WVGeuOGr3NenZuCUhAwDw\nXi7Vky/d6a9iqc+gUTGwEg473TdezsPa2YmJA6l+5nOJZFqzytwP6y72BQDkbw6/Pw4Efn8ba2BX\nV6ZbH+6++zcAwLenBkPcR4xl/1uy8HUKGVP5GgsteuRdAMC9Kx8DELpuaTDY+1nRvT11JKeOkDpD\nF0Gta7EerapbS9fRncLk7MebMOejiTB92u8AvGVgfMcVoWS6rS4Y5fANDN+v6IwEJel4/u/bu5ut\nPZE69T6UPwq71qcH/f1yDUYHjzmOA1sot6fvqFMAgMxtPfzW8w1Uht1KHdnz7dejjAXtAzUuPHme\nOs3725JUuKPSjFs/8s/rjBRvzfoE4w308en2I7nICU4Bp++iPFUe/G5fOdBvW7fWO3B19afnigen\nHHUDneYISi9VDVLfY/uipXIu3QPIZlJ5KDKn6v43ZyFjtVde9s+HlgAA/vuzmU3VNMLgSuBAZFKb\nZ+5fDgB4c2n4csbGoL5gNHDBan80dV2zjHnvQi3UbtxeuxPDtDSoeyBvNPav6QeACnYDQO7Nn0jt\niB5BeX2WzeHlTDliRWgqvP2QpRMNTO8YRU6u6/N7w6Sjl73GToPSYR3ysPMH/34hUliS3YjKo3M1\n96ZAzZgVuEDxoaeoTrZSUDR7bdDmwg2TDwAgV3OAHLvVJ/wHQ75BaHPj708vxjNsMlL9h9HPXbcy\nzY2YrMiSUipT6RmKORl4ECkw2a3KGmFjg8ARLSD2FpI05mdRcKG/qIA1lZ7bhDZ0UuVZCYjPDLyP\ncMAnbRzRAtSsBqrKJze7eBS9jwm76F2taS+g/W6vRNZhpOthOs+CPo8o1Qs1naVArry3ElHnWF3Y\nQoocLl6tlvJVeaTk0QDK7iw39YIBJubQbD9MOYNKqyDJpHXlzNegyAl7HI3WeW1Rj1qQclNtcfSv\nWyPAUETbOI0CtBX0t8gD2F7+9zVr3kKUuykwHZ8xEwBQcSwBKnPzTMYmjCzEA113AwC2V/TAvrXU\nJ9oTmSNwBzOUSmr3gHaUcnDeEouc0+SirTsfPEgOmm/JJgxtNRo8NpAChr2VyQCAQ+c74vi15MrL\na1A/nDcJh9f1btD5AcBDMygFZKg+F4uLyOm5xEbjrOvaZOP3EpoAP3mB+npNGJLScIJRawc3hHjq\nj3XM5Z8HpQBwlT4fT269BwBgOOXtrz2D6D1THAw+LrElemo59dd0o3fBkMNk4SNKpfrS13ckCfCa\nH0L7bfzPzG8AAH9bcnfAYNSazKTLZwJ/W5oaD95JtayXZg+D54/IJcfX30rfiR0FVDnCvt+bjiDX\nGZUhQ4YMGTJkyJAhQ4YMGa0Krc7AyBframjWbdn5QbiwM7K6YI1B6pJHJTlBKLb0sy7b0BvBmdFA\ncMZ4gtaQay3grCgAHMqh5PJg83DWjjST93g7quF2y8pn8M0UkjsYFBrcEEuy6zfP3gQASDY2zbT5\nCXsSxhtI0pdzx0cAgG4r5iLfRbOtN8eRnGVDl3S/upe+cr66jCjHv0pp1o7XV2ptCOaSGw4mTd7t\nt+zd8sbJcHzB3ZSDyVwiZUQ5fFlRAHh2HzEigeYLv5/zBgDgzo8bIOWPkBUFgDEGUhC8GeT3l2eS\nw9z/Lrkv4O8p48l5NHdD09ShvcDeA6UgSHJZXzQVIzpxKj1L3LQodc085N78Sa11OCsKAF903Yq+\nA8jU7KP+3/vtr2oXzZKHy2X5sqLqUaUQmAHIgvaU1rF8y9W460aSZJ2zxwEADhZ3CnPvgcEZpqgz\nSlgHED1mPOTPEHK5Z+9bTkIp0H9uyroFt91G5mErVlzbqHbUhdMkQl3dfLL6X39mNZ7nETP69ciP\n8eCJJ2utY090Q+Gku9dQA6BwoJ5EUribDTZ81+UMAECb7Mb+L2oXto6EFbWxMovBGFEOM/Nb4S6v\nDYFbC5QNpG9n125FmNeVmKrePUkW/dAbTyOK1SQt750AAFBbfSyGGwD+3dMX+++jeLgbpgTSOyuc\nxE7G5HjgMtL1U7i9brZuPS1TWt2IzyJmqLoLq/9YJKJ0MPX/ppX0r8LhTWPosJ76AodJgJn5s+gu\nKqFKYaZH8ezbcUEJAzNC4nLfun/Xha7E+7dHQ/dQ8CihZHVXC69WsHZ71+NSWACIU1LfYd5LRo/N\nOTge1+E4fikis7WjR7pKtZu1LF3BUxQDrhLfnkDfo+mjd2N8OzJR+3APmf7p8sNny9xHaT8JQ4pR\nwuyrJyUcBgC011VJ6U7VmfS8NTRFZ8TNtM8dpaSm+11MlUxB+TFe6JXtHVv1YtvF3YHKne0adExf\npPY7h7MbaTwTex29Ty+2Oe79/fNHYajyPzdbKfXhofhZLjPn4Iwoh+VwvFT9YcFg+gZlju+Ai2a6\n3t3jaPybubqXVI/0nKuue1ttNAcj+vaD9I0+ZvfGVbsr6IV8IIba/cLwbPT5I/Jxwm8/DW5Qm1p3\nVCRDhgwZMmTIkCFDhgwZMq5ItNqc0UsBzoL2/mQ+pty6E0DwciEcoeqQ+uaM/u80YgFeXnZnY5vp\nh4/uImbwod9nNWuJmLrwnTnrOu4MAGBNrzVSTdF/tTuEv5cQy/rNt9dHvP/oUWRtz3O9rMdioWY5\nHH0nnYBGQTOnn3elfIBnC4dh449U5oXnfH5bHYe7TGQRPiLjDgDA+KTjWPZd6HIiiqFUGM2VERtx\nu21JNFusK2i5exEOHDHe+q8fV5LdOi9nM/rIbSj9vUOTHKe5jIUa0oaWOnbiWMrrKdrcNAqOzMcX\nhmx7sJzRULmiG2roeXzq80ca1bZQGDX5D2zaQezU0GFUy/CDLr9IrAMAfFjBak6W05R4oLykcOuM\nWvrZ8MNoyhMfrPXOIPN6fUWnEiQlSrthNEtevqlxz7m1Pa/NG95c7pGnvfck/a35EEdQ7pb7UNOW\nCLIlO6BrobwiAFgz+zVMWlQ7/z9r3kKkfkEGR1Fnm5alFZVAVSr1+Q+O2gYA+K82GficlQ744ORo\nYEPgmp1NiYYYGJWMIVYxZ/wiAMCdOTdg3zFiIvR5arj1PAeS1o/L8t+HPUaAtrJ5hmtv/e/7mP0l\nGbfoL7L6phfd0FT4M5EerYK1VYDK7GZ/07LKFDWqerJa8ey9s3VyAC76O3EHdVwqmwcl/dl+ulnh\nKWTFn9grpS1RSPmq5b1ZndDj/sVhzZ008LC+UG3lhWkBtZXljBoUKBxFf6tjaXtllr9SpDnA64ge\ndtgwY/Ez1DQ2JlT1q0KsgSjawiPtQioaeF9v7+yA1kjnIBwNri6qz8Bo5cML8NipuwAA17UldvLr\nHyIfnwVCv5tOoEcUqRamxlLu4NMnZuBBlh87Sk8KojSN93vA1WxtFBr0+/FPAIKXnAmVM8qZRl9T\noifuXwUAqHQb8MXX40K2XXk1jRPde+L8fqvpTu+v4XTD+lfN8DIAwMQupBT89sgQ5Ny42K+9gXJG\nh0w6CgCS10JjEWiMcNJpwb8ukHpx1+qrmuQ4gXBZGhhdCvBgNOWnOdBe9H8q9s8mEZ5R4a2aV18w\n6khgNbBYnTV1RdOR0Y5E5lbHZHG9Pnu0yfYdDnyDUdUwepHnpG7HW2tuBkAfVn0ETmJ1wSXA+vPU\nG2+a9xpOOKnu13lXHF7cQmYxhjz/oI87sbbpXIF9g2rLAa89fDsuHCM5YLBOz9NyY7oWhz3Og7FX\nUwe3qMt2aXlTBW5NEYw2VnLY0sFoU6OhwaitPb0zooYFTPlNNyHi6svMvjJJcnT1zUewZ3V4aQqh\nguRAkuFgwahmNGnxHFtJShc1tgi7ByzzW2+Hjc7/vi1zoCxnEsIwg8f64NaFbuOQO8jMbVqbfQBI\nSsrR/dt5SOhFUq3iCxSMRiK1a60YOYmkedfHZeH1f8+oZ+2Gw3odmYw8k05pIb+V9caBbTSpYWzi\n4DcYGhKM7n3lg1r/t4tOpG2cBwAQnQq03UHPKA9GI6mfGAj1OQJzlI+ngKhvxwvIOEn6467L2bZi\n7dqdJf0pKIw9Td9WldmN/AnU4NgTdO3NnQSIvamfcF4k2aMY5QbY+EdZTR1X0jaPFMgWDtciaji9\n11UWerm6tClH4TqS87f9wz8IrQ+l6cxYKd8NZxRdjDIyhm12h3gehHKcdFowZdFzfus5mZOvuh5X\n6kjhG4yKAuCIo3uYkEr9jnl3W8kojqdFNBVs7d1Q1LCHryNzg84ySDVD9Rp6sO/o8gcWHaO6nh5W\nd35CjywkM/ezT7+bEHD/kbrpNhV4PdITa3sGDHrrg9NEN6XzMJq0/rXPT9Jv9QWjTY0tcxZIqTuv\nlFDfuejXsRFXEGgIZAMjGTJkyJAhQ4YMGTJkyJDRqtCqDYxaGpzlDFapbciiZyLep6Y0Mlv5SPDI\n1VsBkOESAFy6ipCAay9JGxbunRz0+kWCTjfk42Qur6FF13Dkhqcw72oyenghIRv3TiZGOBCDZDhL\nj3bN2Tbou5N+52zZe72+we1FjEUu0fltCwAeJqdRuC7lVW0+VDrpvN0izZr+vSR8Cci1UynBPVDZ\nHNO1RdLf6XvuaXD7lFYB8+5dDYDqvjYUf535FV5acm+Dt79UCPRM18eWAoCukPc3TdPvOGKZ5K5C\nITGinOX8U8FQrHx4AQAgVe2Vvq2uoWfrf45RPeGDQ74LeQxrigP63PDYQeseYkT52b2cugr991K5\nL5POjn+lEks6e+njtEKiC+5YNp1eGBkD6RhihvsssRbuBCdybyKJZb93vPfAOZSYOs8pujbacgG5\nVWQAkty+nK2lx2EHsaP6IgXUfYgRUhmoXfEjy1AWoF7g5QRfhcXrTbA/S0cRUedr973WdiIcNXQP\n3zh8Iy3MjoLxwqXpo2vaCfCwERRnNEx5Xlqq7zxSnzg9SnxVTc9ENaPV1xSnSyVbZnfbgU/33Aqg\n8YwoR7j1c+M2EHt59o4YqRaoR0PnoLSLEFXMCMjlQfwxalzhCDpZbZkKXdYRa1nal776ChdgNdM9\nYp5daJ9UjsKzJJ+OOsflvApEn6H75lEDGhW9C04rMa2nTnSAiZ2DK4pJey3hFamt6qqR7suF2xxA\nCbWNm8+oLM03JvNFpoOYwWmL/VlRoOkZ0UAQREBpo+tcXEhKDD2anhHl0BUq4Uwjxve+vnsBAG0G\nVGNjMRW5PXwkGQDw3IDTiE8nw6zZMZQ+ke8y4/3SpjV1ayy4dPfEWjK05PXX62LS9F0AapdxcUbT\nuuoqQVJ5Ff5G5nnrkrWYv3YmALofAJWk0RU3/7O5xZqErZWUGsPNhlqmOnpoyDLdZsTlWmc0XDSn\n3OWG2/dh3SlyTx3S+SwAfzfVSMGlxFWlUfVq/1uDTFfoR3aU4tHoJt/3uFtIQvjLDuqMIpFT1yTT\noOSvo1dhwReUm2dNooFCzu0fSev1WkQBv8oa+XNyy/Sd+OUHkvFcd9tBAEC82oIV348Ka/u776I8\n4qPVSTiyOrJaab4y45R1DwOoXY8sFPpOOoHMNb0iOl64eG3WYjy/eBaA+uuMXu4IJIG1JLsRdSay\nE4+5oRBt9DToOf1L97C2cQ2jICHrmqWShMrW1wr1aRo2qM3e9ZwOJgFmbrrmHk7kTq7tJlxrUmZn\nLMzdaeCtK6BtD899F6MySNpaubt5BonNDfUg6lsPD/sGA/8RnnxNezNNXGmUblT/RHm8182iAeyq\ngwMRe6iOU2VnEfFXUT5a0WkK7mKOt8yLYEvw1k/1lekOnE+eErsLkgEA2pX+HgP2qRV4sAc5EJ+3\n0++bvhwO9yjKHe6TWIgzn6ZG1J5hj1GfuO2rwdBWBB9nWDoI0JewiVUW6NpjBFR3Y3mUbJDs7OQA\nHwmmfEX/2tqooSvxRsc8V7S0D90XS7oN6jwaxmqYO6ljiBlaLfNMWEHnWjrOBo+D7pPxOPWjMafd\nsLSnZdZEb/Acf8wbcNa0pd8rrqL3JSZThfgsCn4retJ+YrMdfudc004Nl57aU9kTcLWl9ujZN7+5\n+85rbyYn/+2r+9ezZvOgvpxRZ5SI7Ac+8Fv+RRVN9L36VeN8TZwsYAt0DF8cstO9XFpGAdzKbcOg\nLQ09DglHppv5xEL0/pTGHv3Gkrw2a03o96umpwOGbP9v/GuzKa/z+UWzpH333cUmt/c3bc4/0DIy\n3UsJWaYrQ4YMGTJkyJAhQ4YMGTJaFa7wOFzGpcRXj7yFez8JPhMSCh5RAfVhkr5lHCZG1HRtEaq3\nN5w54FLiphLHPDJtHT5ZFjjRPhRsnWg2V3cuNNvWHIwox6RYMhz5JYY5p130EWoMrsTOqz8FAIxc\n6F+n03CGZsYXnJkGJWOb7+qa6bdeQxhRDs6KAsBvuSSR2TD8A6xAeMzotmKqcXbu1y6S03PexuSI\n25E7ga5DMHmsi7lg8nONhBWN1Kzk33k3hr3vyx2iwl9qGHVGiedmkxnZgkXhzd5X/toelaGOw1gS\nwQ3Y4+leDu9E9YvT35ovzdYaMvzriKr2mmBPJwqXywKNp9RI+5CeFZXVbxMAXkaUI9PhkkyY0nZf\nnoZbzoPMgXJY+NuUVFD/btrh7ZFL7LQs9pAalk50P6LO0bsluACzjfopfUHLSgPEftWoKKNnQMOk\ndDGnATV7SDOGfQMA6FkzE9G/03q8rqd2ZSy+xU219qeFCPxE/fvBfiZE6gH8jw5bqA3P78HAv9Mz\nk3hHPgAgvywOj6TtAAA8EHMEc3KnAqBvKgBMSjyC7RXUPx5cRekZcYmV0jN4/VezAQC6EifscfSs\nVnZTos1h6qhsbem+5Ny4WJIf32si2rjnF4+izSb6vhWOoPs2o+8BfLOH6hA7uHTR7IbxAp2LpZMC\nnYcyN/IakjFakt0QdbSfjmsZgxrvpfw4I1rZXYOY07XZ0bJ+guROnPCHAKeJvrP8HXU032cVwKVj\nRMNFMMbygWgykXprCDm/2vdH7kwdyqjOF76mdfYEeofqY0XrwwfMgLTbsrnQs+/xnA6U1vU0QjOj\naoMDgSqWv3lmPABgyp3eNITmYEQjhdPI2Of7vfeS1ysd/8nzAbdp7ZCZURkyZMiQIUOGDBkyZMiQ\n0eKQmVEZzYYBWq006zVlDOUCrftxeFjbjo3JwmYMrrWsMaxocyASVjRrDs3apX08HxoTn8n1n4kb\nezPlAm1ePajR7QuFRzc+CAAQDP5JGFO6HUGMojYT5IgRoan0ZzrdjG3+voba+0q7w6j0BKGE6iBl\nfC4AIHdDCtw6mumbffsGAMCSr71MgkZDbXzg+H0B92NLo+Ppsrxt7hlNuWXZ7Tsi6wTNtjeEEeeM\n6AsPfI9/feHPxoXD/vrmoPoyrFlzIys/81CnHfgbuoS17uWOuQ+sxtsbJgIADAXeOdNwGdFw4Wav\noMoKaMvoXv6xPHwzr6gjgQ3QwgEvuTDjq6dwYhbNcPOyEJxdDYZw12tpLKoM34jJlxHl2PkHKQti\nALgMnAljeY3RHvAsUkc6maRoAuzDFxUDHYCDnp8xg6h45/4f06Gqqb99HhXgYCmgdosGnVOoTzmr\nJcaoUtCgq76k1jbZY5ag/166J0q7f/KeuTOdy7FHF2LYXyivLf5o4D7EHsuWs3+05d79jXvRa6Y4\n6nHK/9/93hAAgAnAJ5n0bXpmTg7+nbwCANBJRazzosr26B1FNbx3tCdjGWxNRH8HGYEl+LRBW059\nb1SBAmdvIobyrxN+kH5//3+nAwDOvUildtbdvQC3FREzE59F+Z9r8/tAHUM0saKAjM4qemjgYt21\nK9qNMgvdx1fnUo5erKIG71+4AQBwwEglXnQ7jbAkaVh76Bsanef9frmM1D5DgQBHDL92onQfbAls\nWZhWHm6DiJOMRWxt71lj0OeD+QEZzBI35db/MfRbWm9/+Oc85taDDW5PJIyohwm4FD7VfhyxdEMf\n3Mz8HS54VRNPLwqvprY6wxhwOS/Bwr0DVqF1GCypzfQs57vMyGHlDucvaRpGlD8bqUsebZS6LVLI\nBkbNiP90AyOXQZQGWRwD990Fx5765R/db8rB6fXdQq7T/2YaXDTW2CgQmtrAiAejKesebhV1BUUF\nPZvXTSADjm0/D4TgY1bIA6hrD1Mt1/KtoQeZbccUAAC29FuJlLXsoxDEJIq78W77idx463N+lORV\nPa3w2NmAI8e7788eeQcA8NAnT0rLAhWp5tIW3pGHQlPWKa3PBdfay4anh9Bg7om4vLCOe6UbGHnU\nDasza+lKD3FUXngXyDqQohL9H83vbAkA9z2wEUt+8C++Xrc2YbiD36x5C5skcA1nPxzOaGZ+UxV4\nEMmNfhqCvvdSUfiLVhNy/z971x0YVZV+z/SaXgmEFAgBQu8ISFUUUAEFGyqKWLCs3V13f7pF3bWs\nYkMFRRBQUURARUSaKL2ThBRKgBDS+2R6+f3x3fdmkimZSSYF951/Mpl5/d133/3uOd/5SshQJWQv\nRS33LNqMn0poosBgpbCUMz4CSH4pr/O+7bCbqI+q0qtgPcJkxQNpBbtdBFNlEym2xAGplqSpkjMq\nqEpZUMzGrcpKB8QsFlr60mIANAG7y0DX5bl/Peh2DPH30gTcprQt/HcjXngYNUzdH57nXLZ8VGP3\n2H9MWI/3/zPHbZu6rnRcphhWT/K4CJWDqK9ziABRJI3cVRrqExtqlejVnYLRM5djaJ3tStRSNgS6\n7nTKXqv60uhfqnegagBtP7Yn3eD9g9bxMt0fKyjdI+fLPrBNodSNkC9Izii7vwR1TF6ty6J3v/Yi\nUDuWJO4iEaBgktzH+uwCAJzSJ+DdBAqye35J9VgjskSoZWrLbttp+eKxCqiL6VwNsew6RNidzrn1\nYnTZR9fRLqXfK/r71ze4PpO9VtLEgaSVg/PmnsVgTDI1Z2DkDU0D1N6/3wVxZkiL1vUGTzWlA4En\nA6OYifRcXyik/sJfs8Hm4BADpx4JvKZoS3H3Hb9g5dfu74b2AncPW3uPfEEwMBIgQIAAAQIECBAg\nQIAAAZ0KV7RMN5clLHP1Qa80LLudWMOFXz4ctG0yjwK/64y1JaR691nEY8O/QsYB9/ulHE1yJ+M+\nmt3yxIo2ZZi+SNkJAMhA8JnRliLngSXos9T9/LjvCrz87gkZk/MBANnbA7P99wdc7bHdm4md7HPN\naeRtSXNb7vcB6+lYdvs+5vJdCfShHyArl7n97so0cvVJ/Z1j5tgHVxmuK1wZUQ7xCayMz9k4/jtL\nDG1IpnM/vpbALnUemy80x3Jun/AuTlmiG3237aHXcfWXrD4du1Dymj9mzVtPcGVFORmWP+fvrLPq\nH8QXPLcpX8h8ktpy/7cDf+88H3Ua52bQvd79g7NOL8eEcMzIkQcWY+jSJwLeflP0mFTgF8sSCBPj\njRENBrLXkGz02F+XgOvWB7M60TkNXfB00s8AgGezqKSUGECP21g/+YvvfrJ2I/VREjjr1PJqv1wt\n5Kx5mWOISYvrVs2XkNGWOtuehBGHrs/+A/+ge3Xw1Q8xQUUv34R7zwEALn/mfJeVfJYCAHjv2SR8\ncXEY/z3HiJpDaT/yOgdCc2h4dsf9vwAgg5lXU+j30AIn/cWxN5zsFwDsKjqHmH1SAJyUnP6qAVSD\npK+RLo+UuQtzUhOzL+0ORJ6iK2SMkkEaS+kQi1J3AQAWFo7BskQySpKJSKb552d+QryE9j194zMA\nAMXrUdBNJraKGxMoq+0Ymkb37bG47Rggp2ObdPcC/njGPkPHeNtk2scazRtlQv4AACAASURBVGik\nrKNtV/ZjtUPFDr6MC5cSJLICknpqo/EHbZAYaB1nz+BfH+H6TLiuYU6j63B28mcBKRhc8dpdK/D8\nqvluv3ekHLiYGeDcztJh/GVFAWf5KttRZ2kjf9nSlsDQle6pqkiCy1X+OVJlP+ZkOa+aSeV39m7w\nbjbFPVfBhDmCvcuqnQ8eVypvX5VvJaC/OPXwEp7dfOMekr0/u/I+j8sqmFnVseFftSkj6g+u6GC0\npUFo7sIlnSKADWYQyiH/Hgpw0z8L/rZbAk8DcdccOm6ZmrMk30mbQjLFwm1JbX9wAcCUYoSiwD0/\nzDUX1PVvMNAWQWhTiNnAymhrHKD1+IqkUWdv+yjgbcrq3IMGLh+lteByS60ah89ck5Jid+dkdQGd\nY3OyWcA/ea4l1A5FVesH5jM+fo5/JtJW0XMrrxUh7moqBp6gJT/Ytqpf2lnRkEEDYU22/yW5Jabm\nl3EFlyfqCaYhDejVhWphnrrQBf8Z/W1gG3fBvLt/4T/v3D4IgO8hsVrsn9SsucHr2R0pfm2ns2Hw\nK4soIHXBwZWDceOTJPEfFk+1p/fERuBIJg3ibpm5D9s+HQ1/wDlZK3bSQNYQ54C6hNqCupSGRfUX\nYiGKdZ/Vdc3dbIr+ixfBPpI9r6NZwc5Xga162uHfXqYUhlVvTOPXsSqB6kEseNzvbBV1GTRIXbuE\nXLS/NUxBz/kk882Oo0Ato3eh2zEcfPXDRoGpRUPn5VoflQNX11BkAZ4ZRYH+yt0zAADKGqdM2KoS\nQZpJ+uT3tJMAAKFKI1I2PAAASOpJz8mzqVswQE7y20Ov0FhkwMHbEa+iQW83bQ0AIKemD7KqKPVj\nlWw03oin+1p4LbX7xK1mVP9Kv/+WRZM3KQYbrBq6PkmzKNDPOp4MkZ3Oj5PQagpFsLFXdX1XKSLy\nGsudWwv5aZrAMk3yzwa9aSAKoFEgCnSOnNTJrXBhdQ1COXDBjWtwFAi4nHFPpIaYSc8dpWo+35Mb\nwXBBJ9BYXuv6+a4YmuDYC9/Oxy+VZwR83L7gGoRyeGcS9RN/WT4/KBGZ67XmglDXiQHX341HaNy9\ntFdC63fcSggyXQECBAgQIECAAAECBAgQ0O4QDIzaEO1tYJR374dI2UQzlfLKtnc4cTUwuvM2MmBZ\n89Vkv9fnjGw42SbgnA0zd7F4NMCRsrqWXM3QtkJTAyNv8tsZN+4DAPywyTkjb2XsndTYeWWV4sal\n2ZD96BLepMFVIsnV0bQpAQWb1fNl7vOnuzbgnVUz3bbNwV9DoIHTc3D8J9LpdQbJeXvBqmFtpxlz\nsI4wMOJSAMZOI4nTnh/arp6exOj797DJxBoXFUZBmx8c2TUHVxmuriexH7ePOIBX407y37d0m66o\ntpF50lXLnnH7zdVQyNSTLobiTMude5uCkxpyLE/46FLU7IvztYrfaI2BkStq+pEONjzLhS64lhi2\nO3qQuc3np0cCe4mV0fWyIPx4YG3BwAza5bXOfqa5ur/952UBACLleux9b3ij3yS3lmHfwOYZdFfm\nMhBkPET7/qz7b76PkckmsTccuh50HSO7EiupkVtQ9yMZP0mM1N80TNHh8+Ek6fvzQlLF1KTJeVOg\n8Hw7bAr6zBkdoWcD+ieQecyR/GQAgOKSHKZEerm8M+4LAMDL+dNhtNA9NJno/sxJP4bBalJBPb/p\nDnTfQhe9bBipIBp6WBAZTwxzqJJJhT/rAkM0dUJ1vYjtDMuVQGRjahk1M5jSgE9tsMsdiDtIy0ob\n6G/xVf4rLYIBV2a0PRjQlhoYBRuJE6jubeGu4DnAcwZGSdeeBwBc2Jrcqu15cueVjKQx5skRX7oZ\nF3330BuY9dGzrdpnUyRew9SAvyTxSoX2gjGWnolzN3/cLjJdwcBIgAABAgQIECBAgAABAgR0KlzR\nOaMCGiP9s4c9VK5sH0TL6gNex5UR/fT+9wAACz55DAAgPSuHuR+rJZdFmX99rs9H5m6alu2Ihts0\nPxRozIhy8MWIGuOsUJYG5+jNPRm7cSZwE5am2G6QwKplJRvqXWg3Nl2l8JDr4Cn3sikrClAeZOow\n99wmX+iqqgGub3npnoxp5AhypeVZNseIdiQ45qgtGVFXmIeRoYb8sLMGHFeKBQZmxhKph11KJSTE\nVmfdUM5kxl+TKVe8WkFtxiYHtGeIyZk8JRuPXx7uazWviJ16CdflTgcAFP2UxLOkERLv5WT6fLSI\nZ1TSPw1+/j/HiHIoPRuNQPkiU7QNioogUfRcs3dhdRoxohy2Uo7TKiXVIRbbnEymN1bUTM2DzzeH\nQ8SvY0qgD6YugFhP5xJ62vMcfX0qPQD7z1Me7piUc27L2NbGYmsaHce1atr2GFYeCwD2MEM4Vxx8\n9UMM/Tvd46oh7rmjrtizi0rb9OzeAwBwV8ZBPBxJLHGshGp4Vtv00JWyZybNgvCTdDzVSjKkkcTU\noSGBXQt23Z/otwurK6+i80ykh0jWAMjO0XKV/UWIO0znr71I16cqQokjumQAgLiWMZ/xFshKaX9P\nbbwbAPDajV/gxcwbAADmanpuo2X1iJcSU2uLsqB4LLU+zSVOGSJDXRWZR9ku0UGaU5zHG3Karo8p\nzPm+5dQi8npnOTBtvgMNcRL2fcdwLynfL4SyKLjqjSsBwWREm2JQ+CUAwAUku/1mSLBBdbnx82NT\nelbbiD14DJiySGnharRp6EMrB5MV/dPdGwAA73zuPmZqLyjL6Dp1tHkRIASjAoKE149dCwAQh7Ss\nPiAXhLqCC0I5vJW0Adc3BKewb6D4tDYeC8JKml0uZnQxyvd18fp7sAJRIDhBKIfJKhuk0ay3Ltbw\n33PBkUPklP/sZov1lfk2JbKEMOe4WhEubQ/sxZSmKsXmdf6ZkXCwDaqH5DgNuPwNQhWjSFNo2h/V\nzJL+4/OFVHPw9i/J5dcaZoeqyPlyDBlLZh9KKUVJhdnxCO9J8sPV/VcAAB4/eysub08M2jEFE5xr\nZSDFyluC7tEkl1q4cCMA4F/L7uTrgYZOpvqQJeVhULsEm5Im8vNAAtGnF6wDAPzzIBm4SDL0mNeP\nZPgLN98PzcXAAi9jNLX/d3uuxYydjwIAtACeKCYX1cVdDvtcn6tXOXRSLgDg2M9t5xquKJPAGE8X\nS1niXx+l6KIHKvx33PQGh9h/KX79VTQBx9UebQ42Bfj6yTY2eWeziKENo88oY0GbXQS7hjO68dyu\nOQfyyHCaJPkk8Ve89hQ9yxvemsQv99w7CwEA1/6FFY8PL0eIlDrNFXWkC67tCRyb/w5bQ477nvgB\nANBfSZN2r/e+HmUrkt2OITyXfcil8/9x63hsupkCVJmELmLt/lhoWR8tq3dAaqB2GL2Lm6qOhoP5\nssyfSo70IWID8mpJpq0tpnZQNlgGVQWtq6gSoYjLwHHQfkLOSGFjMxiGdBrVJ3etQMYQek+Wmeja\nRkl0CFXTAY0fehYA8N4v12HosNMAgG2T3sF2PZn1LXv9JgBA/UgD1CfoHHVJtD97tAXiCgrqHGK6\nRzaVAw5WP5RrQ64TUHapCGHnmQR4SMdM1f8vBaKmCDsU1W33XtAn0Y3lUiY2YqzbMk0DUaD5tA9X\nuE4Iz5i7FwCQV0fPRv7pHh5rnQaK7MeWoO9eci3uvNPP7QtBpitAgAABAgQIECBAgAABAtodAjMq\nIChQZHmXnAUL13/0HAy9aYpLlRs8Mw9/8Oba2VjwQPN1p3yxop0Z1TY9wkKILdBD4/a7qynCAT1J\nxB7+YqrPbbaEIedqSr6zaiYiWGmTyv1k8d/UdKkpOFY0EBgOEyNq6mXCuWs/BdDYZMkcythdD+Vq\nvOHuZVRzkJsPl+mcM7VNyxoBAPo5P/bY8QgAYFJaPi7DnRmdOOsIAGDHpqF+H0/Q0U4GGf/t8Q0A\n4KaddE20Lr/Vbac20ZJexzBYzzOsrpilJSOJl8uIQYnoU4nPNxDjpQmgLesTiKI5eyuVRdqiD4f2\nlFMEOyfiIABgzMlbfG7nT5m3AgBSIqr83ndr4C8jysNLHUKOLfO3zI7IDugSWaPq7mQvwyNIeSGX\nEmNZWhKOST2ITfvtQn8AgKbI932RmJxlXLR76J6bJtbBfJKVooimbYfmSX2y6JobSmDZRW2upIjM\n8xZFjcHd0axExHwqL3P5q2TI6+lcBh68HQDQ0KDEwgG/AwCqrNSKI4aUY7eRrt8TaxbwdUNTF1J6\nwaoe32Iqnm50DBaNCBIzLceZCNlizYjcQH2YnRG7IX48oJHZbJvXUt80SnUBm5UDAABlVmq/8lrw\nz7rIDojMdK3FFvpbn2GGXEudcpiS/o6IvoAiA11bMXtprKsajsoTxAgfyKD92ZV2HLtI/ds1Z/4E\nqZLYy/jbqM9PlVpxScHu0UV6HynPKmAOo2PjjA7FVkBdTJ/DztExFF4rh4rVhbWqgfJB9DzHHqXf\ni0d1VDLTHx9tyYoCgPpCYH2Up7qeljAHZLWN+43Qq0tRt9vdwO21uOMAgIyvaUzgz1uAk4uLPFQU\n4sY3ACA64l991P8VCMHoFYy8eztXTdH2QHsHoa7wt4aoKZJ6IUWV/7K+8JGlAICaA8FxtHSFXcq9\nuL13pe9WDcMrvb8DADx0dgEUCTQQFB9zDji5Qd0KH0GoMdYOZVnLX0jyGucxVu9mQWiLt9Y8uAGo\nKl+Bssl0zq65sIEEoYFicXUyAGDZmml8kPrKcMoj+dfK2z2uc214JgBgBzouGA1GbVV/MEBOz3pi\nAgVj1ad8T/R8++gbuOkzyumR+lCQewpEM59cgv5v0+CfE4AaSmMQqMDONrIOZ69aTcejo8HG35fN\na7TMGCXLudsbz38XMrIcAFB/IIb/znyUgp48tK1zeLBhiKP+RnvR/2dHW0jLSplPgPWnaGz9M/kI\nRLNcyJSfF+DT7hTU7bqV5HNPvvVQs9uW6Rr/z9UWBQBVM2kT0usrAAAvp23Aoj20L5GR+vVfDg7A\n32+k+rE1Rmo11UOsiDhG21RsoGDKnCzCUgfJCaXnqU2HnQFeBNUADIWDz3GcHUOTTTOynW3m4Ksf\n8p83NFAwm2ekZ+GTzVN4F1mZjq67KUIEZZV7QGoOoeXk9Q5YZ9MzdaSa0ic2F2YgVNlYy6iotUNd\nSkFi4RQ5ItPYc5hLebsQO2ApoWepPsbZJ/wl4ScAQIacrslbVamIzKTjmTGN5JUr6kbjiUHkwG+y\nyxAmofs+XHUeAKC3y/C+inTBVdG0j9wLXSCR07vVaqALJiuVwRxG51WXzCaRsgELe21VD7Aj7BSX\nX9p2FuRc5QSRj3esgNZj1E0nA1reLuOeAxHvBq/tW4XF/dYCAB49Se9ZT4Fo9mNLsN0QeJvxFIRy\n6Dq4GAD5AHjqeV6c9yUA4J+rPb//WwrXOqNA++aIGuNsUJY2fx0Fma4AAQIECBAgQIAAAQIECGh3\nCMzoFYwXSgd09CEEBS2pQ9ne8FRn1KZwQGJynwn1xIh6cuJ1xfI+qwAAsw+41xxsLXwxohyiZfU4\nZkgGAKhKxdCrmFup63aa1N/LfnQJ7xRZw1jM1rCigcKQwOrH1dE+ZTrf58nJfqt+j/domDLxQ2LV\nxMNrsGYh1UC+c5mzLpZtEDlG546le9VcW51/x88AgIfDszFyyVNuvy9bM43/7G+7/8tn8+lDG9cZ\n7ciZ1Kao3uabEbUw/e6MvYsAhX91WjkcfeI99sn/Czp4NtV6/O1Eb2jP0itUOZ4YNL1JhjX1JJv8\nzye3uq377aNvAB5k8BwjakknmaosL3jmZO0NayhHDQQ+vGjYHw0AUAC45j/0PB77K7XFgqmfos+e\nuwAAk5Pz3dbVX62DxcT2WU0smUNp491kAz6Wrg7cnkh61jcLp0LB1NJWjZj9tePJwhsBAL8zl9w1\nKVH4PoPcpk9u6Q0AGHhNLs5W03mlTTwPAMis6cObAwFOhcabr97Bfzd40fFGx/NedRKWfUquzFwd\nbKkcvCyYg7LKgYph1MFFHhcjdT5dK72VVnoxaRNCRNSZP3luDgCgpk6Nv/feBAD4L+4EADjEIpQN\nJc21NdyKmlPM3TaK1k1NLMf5zAQ6Hitdk0hpA44YSX6bIadn4qnIc1jwGvWnY95j0uNYOz44NR4A\nMCThEu6No7qpmaauAIDLlnBopI113j0Sy1DyM21bVkfnbAkR8UZ5IYX01xgugsTETJsOiSE1MsO1\narrIxq72oJsK5d7vZK/bo5YoB8mgWtiOh7Xb/joanDLCX7iOR7h3vmlfFK4mDzlMSiTZ/y8HRvDL\nZT/mfPc9/smDLTzSxrCEUXssLCOVi1Lv+f30Rv41QdlfZ8Kowfk4vqV58z2BGRUgQIAAAQIECBAg\nQIAAAe2OPywzmruQZjd6L+ucTFsw8O3mMe22r7x7P2yz3NSM9xfx7Cj3t7MxpJ4YTU+saHPwxLAC\nwLTNZHrjb0bsn+ZuxDtf3xTw/r2h2ByOL/ZQnTkVAPX55meOXe9bxu72v19iE5cr5d994HJQTz26\nBOnLqS1LPcxQ2g+F485DT7p9zxkk9c30z8zg2ciz7JPzrgarXW+4/w0AwMxPglf3rCkb2pFoSHQm\n3uh6k/GINtez8QifE3hUA6ufhCJX65NjRL/WNc8uGAYRa/l50m4AQOrpnjDEsfncX4n50vewemRE\n591NuYW9ZE5W1J5BBy7K0/C5Zm3BiBq7EZOlvNQ+JSakdS2n7T2ZCA1+hZ4ZYzRg0RLDsGeXe850\nRpdivNKdygAdMlIu5MvHpgMBZv7qr6b7kj/uc/67fl+O57fClVeR3VaOg2eSAQBpF+YDAE5PWIGp\n6u8BAHdOIF3Jh91/QEQKfe716z207aeWYFoeKSMqViZ5PI57o4kFWlxNhnHvH5+ISJYLWk2kK07f\n/SEuWel4x/1MfdaUAadwQ+QxAMCZCfF47/cptLCUqKGjscnYUk6uadPjiOX/4PdpCB+lb7R/VZUV\nCpYz39DbBkc35iDH8jXLdRrYVbRN5Vnq4w6lJOH6aFKQvFVFpk5PRZ5DmJjatZkxRN1/siDl5fMA\ngDe7buVr7i6tJSa20BiJShM9KyeLiH112MWImkCldFQyatNFhxP4jrguiZ5FdYkDhlj6MuaYu4tW\nW5Ra4djQbuMDq6fdWmSNWoM+xzvXWKmzwxLiwOgTNwNokis6rNb7OgPIhMBqkkLCDO7kHmqvewNn\nmCSr9d2/1zH1QbBbaN8PF8EczozJatqHg/zrPMrLfWW1+/vQE/6wwegfOQhtT3AmSW2NHDO9CPvI\n6aXkaiJzpcIudSB9XAEAZzCb88ASN8luzgNLkLqNzCxQ5t8jGcxAFADW5Q9qVAvTGEsdlyOSBiDN\nGUe19ySCJcSB8WNoILV/U2By9U9r4zH1OqrxuH39cP77xCnkplq4zfPgkIMvgwJXTMiiYtYX8+MQ\n7BDDNagJFjgprqWFtYKDCZHNuX9ppX+vZn1XO9RFzb9oVyxaDKBxYPuvZXf6XMcU4cCZiZ81+s5h\nFsOmZdqvUtovJ9ttiuejTvOfT5rJKEacQ/riR+d+j3c2stqmBv+uu6MfDfitFzWQ1fk+5/YKQgHA\n1lcH7W/aZpczxAIqiivIfZIpTWX13tdRVgDKCvfrY2W5BMdyk/Go+TYAQEY4GYXYSvx78qwqIPa6\nS7Sdvpv47z+oSfR6XFqZGeeuWQ4ASF1Pcr70Tx+Gon8NAEDC3GSHffsUfp/9Jn3HAsLF1cnYnL6Z\n1h38EKKPNT4vi1oEppDFXfsn0DHkq1A3jQ5kw4ilAIDXKgfgichTAICC6cv49RcVjQIApKjKce0Q\nMj3buW0QAGD56zfyy33YlQLdebfuwAhFY7lv6VAZbComey+TIKIfyW7L68mYSbQzAiETqRZwg5be\nD7k/9IJ5Gj0D6SFkyjfp7gX4fDnVVM2fz0wXHQ/j/EEqdlp+08+IYK+eB8IuAwA+cEiws5Asg+XM\ntMiSo0GViO4nd1wiKSDjamGzx8AQI/IYhLYHLv3aPrWhcx6i9+171b7fVX9UpGy+H0DL3NRl9SKP\nhkU4zCYkWXnzjPecYxnZSXrftkVPes0t5K7+y7oRfk+stwTtFYROuekQAODOEKrh/oqf6wkyXQEC\nBAgQIECAAAECBAgQ0O4QORyOdqoa545e/3q7o3bdLuDsvq9ENGVEPUl0/TUJuRJhb0UpMmMCSYgK\nZixDgYUkVL/oewFwzvy64o2qHli+znfNzmCjuZqdHJSjaTa87lQU5LXe7zfHjE4+dSNKdnRr9fF5\ngjHWjv9Op7IZidIqvp5nIOsDZGpgH0wMg+U8sTiKACQ3HQljNGfG8ceeR5QYgTcepLqvD28laWNi\nj3KPZkZWRhKLrIBjIN3X9Fii3fK39oCkSVt3SnSdeK86CUtXTG/0XfS1RdiZsZH/X2+nDY18J7B2\n99Uj/+XLXLgi7XPqU8P7VaLByAx3TlLZEava4VFC3hTr73sTs5d7Nz27atpJ7GQMlKKijV2vGJSV\nzS9j1fguvwMQewo4GVR/YBhP9198kiT1imrPy+mS6N1sDSNdsDzchD7xxOSNiToDANDbFNiwdILb\nukZS0sGmdGDKNSSHnRCWAwD4T+51GBxbBACYE00MweOHbuMLNctkxPLd0vM4/hGTzW9zxDEyEsI3\nJPeuHOBA1ww6HpWU3icXKiNgNhI38+BgMvxxZdxdMfzoXABARXkIYKL7HrPf+/2v7y7C0OuIYb38\nIrGl+jgZykYxc6BzElgYDWXtx+q/KqyQ/MbYpPF0oesuh0B9iZjR2Il0HQrLI9B9Oe37/N20PZXG\nhDvTSJ1ihwhbLvcFAGjlxGieLYmB6gjtkFOiGKMcMHelayGSMEVCrQzKctp2yAXatuay75db8VUK\nn79fCeCUEaIs91q/oit32NksvriPYobbV5Ak3d9xTFvAGGOHsrzl72HO1GjQWDIYy/4xHY4rXKs6\nb852PB9FfWH/jx51+z33H+7pTxyEYLQNcSUHo/7gSg5GNWOorl/DnhiPv7cmGG20HVbniisU7gpT\nFKtHWilB0tUkEe0ZQsHf9h/bto5kMDpxc6iDr8NpCaXzVPauge1g29RFHD/rKJZ03Q8AeKk8A+vW\njg9sA0MpJ8RUEMJLupQVvl8m+lS6UOpznatQuqN94ooOg8QI/PTY6wAAC+tGr1/xnFvNSFfYpc6c\nNFsCDWoHJRfi9PdpjZZr6GaH5hLd94Zkegajk6tQmUdRxt2TKSf0pZhTmJpD8tmLVRGQHmw88NMn\n2KG+3PxgxFPwCwBzz1Edxcyt6bzs7h/lNChfeWIUoiLpZCvKab/KAs+DaGMCBVTKy60byXDSR3+l\nwt7A9XnqEu/bscsBGzsdb9JcLv+X61tUpb6PyxQOKGq8/16TQdepa2oFolUUUEnFdP/1VjlyzpCT\na/hx32I8XXfWxpQO/PVaqgu8IIycuu8omIg0LUXPmbXMadYhxsnjKQAAiZHOQdRdj6hwur8r+36O\nEhvNqAyRk4T7sEmN1y9eBwAQs+jiycStSJdRH9ZNSpNoi6uTcX8YJbH+rZRqmf6Y1w/SPBY5OgBz\nBAVuoaeZ67jeOS4xsRqdhtE6JMVQQGn7N80ClIxW8P2kKcaGhJ70zkwOJVths12Cs9X0zNScodqj\nolgTHw3ZWBAcEaWD2UptM3QttWXr3ZWoayBpb2yYDuFKysfOPEMTmYpLcoj6UsMw1tByIrkNDlbj\nVVFC90hRAyiqWXsro/srNnuwSgdQl0J9eEOXK3fc4g/+yMEo52vw4CXS0v7+3eCOPJyggBtris24\n4oPR5uArGP1jT68LECBAgAABAgQIECBAgIBOiT94HC5AgGd4Y0SDDU+MKAdFpZPeurCbjAgu4Mox\nJJDXiWDsSzPaylPMWCJIrKhV5YClO7FbUgXNeG/bPhgf3EjSr82FGQFvU19O7INE5GRETf3IOEuR\n5dkKgWNEg2nqY+VMQVwYKK5Wnr/7eO7OdQCA19fcEpRj6oyIk1CbOsi7JgOmSHbtmIRVYnQuL7YC\nykrG1JuJdjudmcbXIZVSU+VZUQAYO4QkRRKRA9ETSJ5ZzRxxeq55GKoy2p4UgDGGSTsjSSqoOSOH\nXercd1PoE9wZml0GMSYwB9K/dfsRAHAr0lFhI6budAOxUpoQI88cRTJ3Ul2RHOZIYvKUJc5Xd2sZ\nUQ6tYkS5VR2+GVEzqZChT3UWLZaVS6Eqp3VcFRvc/TKRchUNiQ4o2P2VNjZ+BeCdFdXH032LS67i\nDhGnisnAxMJYN3VMg98uq1wbA0Q4WE+M5zEd9dt2iLC/gr7LLyD3bmmFDOLudDKxkXUAgOK8WJRf\nonZ2Xf7TkMbRCdnt1DZteinCY4g5nZNCUuDD+lRsYY15TgSZnmy8PBAff0OuvHYJk6mWiWBhJL7m\nsgMNFtpm7QjqTyWlckRQs4cuhdrizLQsHKkkB2JbKLUnY08jNNl0faQXJCiJIEmuTEJtME5dj4xo\nYoQvKujGGa1SlJXRciKxk6JTyel+F19LD4qkRgs7qwVbWKXC5Xp6F8oS6Tmwp5thK2T6eyUz07NK\nITLTudjljH2Vi2Bnt80h9tzurFratsjDMyrgysTH3fYBADJw5TOjHSk17kwQmFEBAgQIECBAgAAB\nAgQIENDu6NCc0e/P9QcA/Pmj+/jvetxAtfnOft+j0bLisZTPYP+9bfLRggnHVZTX4TjcfO26Kxkc\nw/NHRFNDm5PPOPO+xp6cDQCo2xrfrsfUWjR0oxlmzSUxNMX02aLlWCcHoh6kvNVB4Zfw9RbKP5L2\nJFbG4RBBraSZ9XodMVYWo5OREctoexKpDQ42uy+T01S0VGrjiRObXQyzmWaqueWkMhu0Ktq21Ubf\n1dWroFTRlGG4hliFrtpanK+l3KRYjQ4fpX4DwJk/BVDZFgB4d+lst/N/7REyxNlcMwAGG83Ki0V0\n3Nv2DkRUGjmvaORm6EzErEWqiLEwWGW8uYbeQuuGKoxQS+kYw2R0SpXykAAAIABJREFUjHaHGAlK\nomhqWdKb3SGCjLlwWBwSXNJTaYS0kHL+90MVxKyU/UZ5Zhatw41huvXe7XghOg+AszzIzB//BIeS\ntl1w/Sfof+AOAID8J2ffY5fSdurSGFMnAhTdiHVRyNg9kthhs9NyeqMcDgdrF8xwRSy2I1JN51hn\nVPDrqlm9P5PV2RYMlsZMnVJmRT1bRyJyQPxj8324Pt7l3LkpU8+pYFcemhA4pigb3rp+DQDgL6vv\n7oADCh5MUTZoCv/YCc2u+dpcTuWn978HALh/6WMdcETBhe3K9/fxCV/lg/4I0Hf5447LJB1Tsafd\nwOWUA8CpRTTm7Luk85c4tGawHPxsDf956YhVAICF3zyI6IGUR39g6n+8bqNDZbrT1TSg+rPLdyMi\nzgMAzqJxMGpmAxwxk2RYQh2QMfMUsQWtAmd64cst1CHxv76gaC8NBB2dy/NEgAs4U4ybxx0AALwR\nfwzpn7o7BruiaRB68pkl6LH2IQCAprBzigxMI3UQn/Je90+mc764Kj+mgGg7kiDtwWq3ZZKuzhxm\nR0g6q4/InAwlcjtEzC3B2kAPpizMCjMnpWL6KbNYCgerGymWOPh1wkMp0NMZFLwkUc4CWI3WCKmY\n9lNcRsHb5cIoSNT0+8qMlYgUuz9giTLvVp7Pf7CA//zNE28AcNbrvLpPPCrq6XO3kBqkshpZpUbS\nu4lEDljsNAqNVlEgZ7ZLIWf6TCv7TSWxoNJM15szRzHZpRAzCZ1KYoFSQuvUW+mcT1QmQPcztSlO\nKOip3hgXiALAZSv1MedmfYwbT5PRydC/P4zMv5MLdoad6mYqfw6F2Er7VlTSfbGEOmCopxGniD0H\nYrEdNjY5IJdbYWH9rZ0FqDabFCYbMw9hAazVJkEDC1oNZjry+JB6WNl2Gkx0f2QSOwx62l/oLqer\nrCGOtYnBtTAxl1DX33n8AYLQ5+8gWfVrX7jLqs/d8jE/iXKlgiuo7pp6cCVBfnUFdMfJjIczZfMH\nnIs44DxvQwZN2qiyg11duH0h6l+H3rHk6JuzPa2Zpf834BCDn0zydzwoQEBL4CsI7WyBav74lQCA\nvtmLIM2mcdSibBobywDU7mF1XX0UjeicI2gBAgQIECBAgAABAgQIEPCHRofKdO0lNNvW/y1ndJ/5\n1BK371xhiqbDjRxQzifKy4poBl6qE/nFktpljdlUKyOOROw7VykAZ7XsLfnd0/Ea4hgTcYXULvQF\nbuY34333+3GlynTzFnzo8XtXZtSTTPdrHbW3lz8i1skcBuQupOuTsuEBAEDImc7hCXbb/O0AgHvD\nj/DfTV38HADgpYdW45W36RyYShXyOs/3sn4OaZoaqlT8jLBcS9JUm1XCs5wcg2Y3S3hveYmcGU/Y\nAbuOmC+RyoaQcGYaxBi2mnoVLHXEnMlCaNtajRF6VnvRcolm2mIPAWELC+n8Eg5hxcWrAACmz4hV\nss2rhOUnMqay++dFghPPOuXX3+qIBX6nYDIUUma0wS6QxS6BRkbHVmciRlMptcDGdHrdNCTNlYrs\nKNJTOwllZRqMVhlilMSmhsv0OF1PJjUF1SQ5xq/+pR4YoxzIu69x20397kFoCoiVkdc5oCMPEvQZ\ndw4AkFsaC802d2a8aghN68sj6BjlcitvMqKRm2FkslsrY0MlYjvkzLiE+81okSKUk257kO5W6YkZ\nUsst0G+jc5aYgU+eXgwAGKqg+/v45eG4KeIoAOCDokkAgJxtVy4Tw5Vp6fORl1nrJq+FnAeXoOfO\newEAsvzOz6b9dj+pCm7Pvw2XdicCAF6640sAwD++uN2juVBnhX4AsZjqk/5fd1eZbtbjdK9Tt5Lq\nQp2rgIHVM1aVXVlz/fZhZK5kOUNqEGkrS/x0JEzRrGyah9q62uEVqCijvj4ky6mu4d6ZX62Y7Nc+\nbIqOk40OuIVqwnZR1uLn1aMb/SbIdDsvXN/f6cvdlXh/vYVSj/6zeq5f2zu1aEmHsaOGbjRGCo2v\nh+Wwf2OY3H96L+3SOUbOLvAWhHJQVFAHWZkVg17DLgIAirK8O5AaYxxQljfuVJsGrFIPtet0PehC\na896v0SZTy3BzNPEO3ODX7HFtb7oldmZmyIcOHMnPTRcofc/AlyD0OYkuZ7wWl5jjYG8FuixgwaR\nBTOXAgAGvNlxsglThMMt0L4m53acye8CAOCqJIZLGvhnwN5MDxAXSsHo2uFLMXzrnwA48wgHdi3i\n68xxRoZ2h4sjJJNwGo0yKGJohzabGEYTk+8yKahFJ4dIQdvkHBjrdSrYy5jTZTFtr+QaMyoOUrT1\n/pnukDU0fulKVkdBwjSd+nj3gWD9IAq8Qo4r+e8GvkH368SzS3CzlgZjDUm/4YvLIwEAvUIp1yG7\npgvs7HwqG8gFM4LlUAJAtYm+yy2NRWwYdShdVLQ9jcSMOAV9VovNKKpn+Zx+BqEcnC6eQL6F8jJm\njTqEnwtH8d9zEsPCNakAANMgG0wj6dpHHnBG6JoCuvYGAx23WWuDjl37Wq0ZNpa7K2ZSabtNgogw\n5nTJLrvZLIWZTSiEqejayiQ2hMnpunBy5twfe0HB5ODm62vxa0NvAMB9i0leLDU48N+XqH5sctJ3\nAIAZeC6ga9NZkPPQEu9BqBdck3MDJqdRrcjd+Z3XHXLHAqr7Gi2hyQ0uEAWAF9ffBsBVrOqETdnY\n9bgz4In71gMAFi93zy3n6sIeN5mwvJJy53euHe5xO/3epXvt6sXNBaGbF9H1qrLJMO9j74Ow9oZj\neC1Ehxr7WdilwKAu5FR+LLNPRxxW0DB06ikc+bkv/3/T+rmmHdGYNPckAOBQ1gB+uas0pwEA0Qvp\nnff+spk+92MJcfDkCF9vuA3jQF2KDdGp5AjNeR1szBuAibeR2/K+rzpv3/G/jqaTyJ4CUcD/INQT\nDCk0VleEmCA+2bgmNkQIWttcseAdAICEbfClCzfhHFrv5XNlTd0JECBAgAABAgQIECBAgIA/BDqU\nGf28Ltrrb/pudqgveY+VlWUiFG1uviZjU1bUXzTHiAIg58o9ZK7ieqTqIq4WVot23WFwmjEAb1SR\ngdSKL3xkHF8haMoWtoQVfaF0AK5PpOJsmzCO/152luRdM7pdDwDod3MOsr71PrPc0M3OM33cTJXI\nxaDFEMuMbsoCb7eu5zn0CM2wWXZGo8kcGSwOKaoG007jfqf9WJUiSE2079LRDsTtZc6qn5K765z7\n7kCvZKopV1RLs+r3xO9Bcjdyuc6Qe5e5FVh0SJG5S0UXFRGjV2bUQsykvUoJsXj51bHQHya+oT6d\nvhPXOOsRyhoCd7VJ6VoBAKg43s3tt/eqk/BYBLkJ3x1agW3VNDv+QzY5fqNGDoeK2FsJq4mnU2kh\niyDdUJGV+gGIgOkJWQCAM3qSphpsMuxiKQlFlyMRmtnyjoFjcifOozqDw7UF+FFNLK6iCpDXNp7+\nDMuVYuFD3wMAlh+YwX+vqG6aSuDS34lkHmdR7SBGmXMQlWlFKO/J7jszaJKXSFHA6sMq82l5m8aB\ne+ZtBQB8+OsUfLaHGFG5wbmTt6qILX0+6nRzl6BTollprg9c2p2ILQ9sBAD066R18568bQO6MNfq\nPh+7n6OrC6T7b212WC2Crq/JJyPK4a4lTzr74xbsZ7+xKwDgxeM3In7SZQBAxY6EFmwpuGjKigJU\nJ/fITnoGr1SGYuGcLQCAZd9c1+j73qMLAACndzC1SKQDd8RQncpDcDKjj39Ahiucys3sQVXXCCl6\n/GXQzwCAj85eDQCozYqC0sO7m3MolnBCswBYqvre9P5TlEhh2EVpKFXTSXViK1XhlbHbAACTOmnf\n8b+O5qS5/iJybAmqfm9sdOcq0VUVyNlyVahqOupzAOa+lD/xzoiv8EEhpcNw461PUzYiQtK41nqf\nPXdBdKLp6BEYoWicA3VuW0oLzsYdV2q/I0CAAAECBAgQIECAAAECrmB0qIHRgkPzAQD7vxno9ptx\niB7KoxSp6zJM0GZ3fPErQzwzJijxL4ZvC2bU3I9mN+RZ6maW9B//vncFAOBGjdN5gpvBkeq9zwy2\nhYGROYYZq5S7Zx+5mtJYYy2QFzXvUtPSPFFP5lNcrdGXK2gG+esVk1CfQVOdIdl0sxsS7XBEMRMe\nl9xEDjYFYBlAuXdWE7FR2pOta9uuNVAXFo4BABxY6/5MuS7PGabE/OC+78oBIkSddL+3ZdOI8ZKd\nI57ghVu/xt2hxDbaHPRsVNsNWFffCwCgZImpfRVFbrNpgDMfWe1SomUTy8d8OX86YjU0+3tmdzJt\nr1wEVYWTETXEiNlfjmIGIrPps6ec0ebgamZ00Ur7nraEchcDMU644Z7fAABFRmJLT5Z3QV0O5daq\ni/1jvPXD9VAf8v6MSyfRdV/Uczfe+YRYHv0QAzaPfR8AMOujZwEA5ggHVL2YuRLL/xT9EOlz38Zo\nEfSpdG9ERmZgpBfDLqdrG3KWrq3E7PDMoMpZbhYjYHpPPY3/JG0AAMz977OQGN1XCp9L+WoKVvam\nYGeyz2PsDODYUKAxI9p9PHkZXPy1u9uyqese9Fj+RDuc7qfukHe1UEdAPpiUDydGfOmREeXw9l1U\nw/fJVQs6rYERx3z2f9v9PDKfXII19fSM/ueTW31ux+Fn9Zr3F34EAEiU1kHBHvvrlrR/LvSgG8ns\n5vimvj6XM0XScylt6PxeF8Zk6pAlChuiw6mvrj0Q63HZnAeZaoG1X1m9c2wm9mGJYR9bC/Hv3mvF\nW1WAaAjVlDefIUMkVWnwrl3v2VTKK3d9us/lTFFc6S6mZhIMjDoUmgGU13t02Fr+O38ZUU5hYoq2\nQ1HRZAwTxLxPfxA9rhgVv5HfCKeGcn3n9dpNNbGlWd5LB3JYdh+NS8Yln/W6TIfKdHfuJomEvbsN\nmouNe/jB3Qtx1EEvc+0x/0QyDUk2aC54f1MYWbK5ssLZYYy/9Qh+XTvUr+17CkI5J15XE6QF924G\nACxbM83jdhxcnaoAG5a+pxmRIfSmN8J3MGqMpoGnsmmD9gDXIBQAZp6e6jMIbUt4CkI5qHvX4B8Z\nJDlMl5Vh5qqn3ZbhgtmCG5fy37VEltsUDpcn5W/RZDayMm4iH4Tyx3hZDFMXL9bLYPe8gO7dczM3\nAQD0wxQ4XEuS832ZJOcUG8QQW+geqEo83wvXIBQgV1JfQagnVPWlbSurRFCXUJuJOulAdR/6PiLH\n2UhjN1PgWjaNDGrefn8u/plM69jU9Fd7Xuo0R2K3Ut/Vznt5aS+I+dqm3F+bQoSK4bR+eCarUTmx\nATWZNDCXsQ66USAaLUbdMNL/SYrpuNTpNUC298FDc+DMqM5O+gzdmSSRe440Rf4Ht9+vHOf2nb9T\nRxbWn0SENcDkY60GA53zNM0ZvDGSJMWqwyGYc5iCUCUzd1JWAuhDz4ROT5Mjw+fnIGeFdym5ssIB\nZQVNHlQNYsX0HIAsgRWzvmk5AEAjsmKzrh+tw+zGfyjpj4q1ZGwTNpbMn3JK43HbF88AACR2906v\nPhmYEkUB3PyIvQCA2Tuf8Xp83pA2+Rw+Sf0WADB+2bMBr+8vwkaV8Z89yXJdg1AOo45TfdFzt3zs\nMag7NORr2t6h4BugOZiEmnvviK3+9e2OjHqcGEEuub4CUQC4Tk2jRH9tejKfXOIxKPSFv97/JV7O\npneq8Swb/DeRRHoyHjSywbqn/SVNJwnnVr0M/1xHqQ3WrvTMq4vE0KWy7Z3zPVSysXlHV0nyA2sf\nBADkz/8QP7JnTzSSJoYcB8J9bg8ggxxXyOr9u28WjQMvzqX2dGdIJW+y1BwUVaymMJufNEXaoaii\nfs+YZIbyQstn1y0hdE1l9a0T48WNIbnz+DiS83+RPdxrEOoL5lD3sWBTWHJCwU3VclLZkFznpKrU\nAGAPvW+4EaolhILd1uKHJ17HjMXNT1xY1YA5htpo91GURlNw1D0NRUD74Jt5b2OAvDEJ0RJpblhq\nNczdWa3vo2xM4yVemDeXXKBXf+10gbaq2cSSyzj+73evAQDM1dZiC6v7/fhhmnjzFFBygSjQOJXs\n6eIhXtfxhjHK5p97QaYrQIAAAQIECBAgQIAAAQLaHR3KjEZnlAMAGna4z2zlbEgH53kSe90llG1p\nfrbHFysKOGfBDF3sUDETGVdW1BzOyg/EW6DN9W8WkGNEU26gun4F36eir6LI5zocI/rCPUTjv7rS\ntyyIX09ih3GffzIufxhRDp5qiDaFVePocPmOMTMcz2fe5XMZV0YUCIwV/eautwEAc1a5z+83JNmw\n4CLZ/F9qoFltT5IcQ5wd6oPUcGUTK2DZ2fh+ic3Odvj6YTKHcljFCI+ihhSS798j+e4jH/Gf0z+j\nc1RU+r4/Cxf86PyHsYlWLTXGuhgbLBrat7LS4SJTdp+Oi/2JzRc77MS8AdDH0brqUjvKWBUErsRB\n7EHXtd2NhyQmB2+kxO1PsUGNsmlEMzjENNNYco0VMXEki+qm0SHnKLHJmiLGnB5vOSsKANojbH57\nksvRRjOat6jt0gQybsnBFyk7AQD/KCcp3bGaRBQgxus65lJiTd+qGIfoUGIsdcYQNwlsdX87HMV0\nXeITST60OnkXUq8ig7KIvZ77OXMoXdOh/alfe7LrVsz7hZieh//9OL8cx5x2TSWZaWlVKK5/4DAA\n4N2EQwCAidk3oc7ufRZVUSXCn6OJER3+G5PSeV3aO07vTEVsmsbte2MCMQfKy85n68nbSTb89pfO\n8g2mOFabsNTze+SqaVQO4tPuvwNozIraZXTd19/1Fm5Z7q7YqN3P3nGDPB972iqWFuH551ZBZKN7\necssko9/nTsYkpzmZ7Vzx65qlhFtCvWwCph3N/+OCpQVBYBXPrmdL5bmqpXizWFMgPoiXcFhN2cC\nAG6P3o9H1t3vtq2mkt2nsRDckyCvob3oUq3NMqKcfI2ra6m+5Gw7XJmlYqsO05nI4Xw63YNHRhY2\ny1jyTOgI6vOGdCnE73mknFHn0km7lmlpSKJ2/o+J63FnSKXPbfuDQYPP4vgJMv0R1beuZbaWEeWg\nlbNUERFdb2le85qTIyZ3LW7YALo+nFCj6XsaoDQkBWtxkjr/tNn+sqKR111G1RZ3MysjM8za0tCL\nl02b4+kdFBFbj+fSyQjuhX2UmqE9qcD7k1YBAB7fNB/AlVpQsG0xeGIeju30LXcOBlxZ0daURaw9\nF+Eu0/UCV0aUg7QXa4jHQ/nvPi0kxdaluFP45CtWVs3D9ozsPXju5o/dfmvLmqYdmjM6dx8Nbg6e\nSYYm0z2/riUYfDM5WR75nuRjYjMgu5o6HsvuqIC3ZxpKAz3FEfdBTnNoLmf03QV0s5/JmgPzAd95\nXJ4QO5GC3rKdXQNe1xf6XJ+PUz9T3t+Ld5FM618rb3dbri1yRluDpq65QMslup5yRrvdcB4AcLqY\nBpaqw84XITcg0idZobrEajh2tzSS9QAkWQ1NozwstZxeMpV743kZRHP5VvaxNDDJGrUGKZseANA4\ngLUw8zNPL0VXWW/fD6lTMXCSYrkd8hDqPOVHtLwrq7zO9z22qlgt0Uj6qy3y3+VWfA/JHSsOxfG5\nlBIzqzOaBESect93vydokFnYEI68fGr38b+6d9otyRl1BZc/+lJ5BgBgw4rxrdqeJyim0GRcRlQJ\nsipIEjMhgeRn2wrTYd/l3idwx9VrBbVrS4QNST3oOlZuS4CN9TnGGHYfwixQ5VPjVFawens3VUAm\noReOcX2c2z7qegKzryG3yd9LaTBacSQOa+9YDAC47RAN7jXbtLCxZDjjOGpw03tkI11NcrGZWjqX\n+87egpxL5AIYvttzP181hI4n8igN+vTxnodU8iH07HA1X5cNXIV7Vzzmttzzd6wDALz2xS38dza1\nU64a6MSat/zQQJHz0BK3AM/SywBZfkv8Wr3DnEZSevnpwLfL5dilrXrY73SN4dfRe/fQln7tkjPa\nfyY5m+utcpz9oUdA64rHVCM9mknINwY+QHXNGeVSEcQ29+XCJtBz8EraBqjFFERxNXa3lvZF8S+J\n7iu5YP+jbwEARr3/FACgoYcFmrON3yffPPQmau30fI9SOg/soIneLfd9/Cd/TqkRuHeZJdQOWZ2/\n/hj0bInNwQ+FjHH0jgpJqEdDPfUf8jP+t2tTD5rUVJyldV3fjU3zLZtDfT8z4uJJaq3fFrg82Bsc\n42ibfWJKAQAlDaG4VEz9v+Ic3RCZzvO6TSHkjLrjnduW409f3Rfcg3FB0zqiQMvkub5cyb3h1CLq\nr30FivfftoUPQANZl/udgz/BKNcXvDD3GwDAf3Ov4dM9xPHe3fIFma4AAQIECBAgQIAAAQIECGh3\ndCgzame191J+WAhtfkuEWX7sQwYsuotMbz5afoPHZfQJxCJws+XyWj+NAppJVm8LN92ka84DAM7s\nS4JMF9xZyFlzSUL0cmwmn6S8MZcMcWR5Koib+PI0x4yao20QMROeWWNIsvfD5pEel91+zxsAgMkr\nAzceaaljrivW3/UWZq96iv/fEzMqGU8yR47F9lQ/z6bwPXvXkGjHlDEnAADn6kkaVPpjIj+bKe5G\ntII0S0MGCYBTd+MARt5K6+75YSCkDX6dGu/K93Xqdv671HWkSojb57kN1aXQPJVNScdlVQFKNnts\nYdLeyGwH72hb14PVLd3v3zEBgDmEPW/1Dv4cw+4vBABc3J6EsHPuLGttKu2v66RCnD9E0v3oE+7t\n0Bczqku0Q1voex4uaSbJUweH0/Gs3Xi1xzbREhhG0hR37y7EzmRlJiHkLLEadkZyN33WOHDM6NC/\nUzuv6e0AYqnBubKOqtk0wx6rrkfB19TPcu62xjSTuzz3hkoYDlB7NEfYEXqGzvXvT60EAPwrbwYq\nz0UAAGS1dO26jCzGp+mrAQB/KbwJAFBp1KDwEDHWIQV+XAwANX0cCO9Jz5ZxLx2D3c/Xwfr73kSS\nlC7a0KVPeFyGk6Jn3fkuAGBQAGzR2vuInRogV/rNiBpTWJ3VAndptydmtC1gUzAW3ORss82xVxwj\nyjlaP796vt/7u28O1Vtc/s3UNmVGtZOoXe8bSEZVLZH7tha+3HSfvGc9lpyhmpORaurAf+nzPf/7\nvPMTAACnKuJg3hu4UotDr2nEMKztsQXFNtoPZ7oGAD13zQcAKE8G7rrPMaM2lQMSg399XvgoxuiV\nhEN5PrgpDcYkUuxM6puLvT8NaGbp5iG2+K59y0mvIQb0/enazuxL793/djnKLzfgTd9tj6tRGzeo\nFHVb470up0uxwaEmal1koMYlCjdDJqeXgHy/e61HVzR0ZyZ7F+nABWa0/RAsRpSDL2Z09IyT2JFF\nygrFZXpB2pSArK75Z3TPg29izMeBmwIamKu+6pz/wYyhK7VbVRG9l08tWoKzFhrzpCUWe11PYEYF\nCBAgQIAAAQIECBAgQEC7wy9m9PXXX8eRI0dgtVrx4IMPYseOHcjOzkZ4OBm5LFiwABMmTMCmTZuw\ncuVKiMVizJ07F3PmzPG53YuXKE/q1lN3o26b95mjtkbmU8zM4K3gzrK2BTPa3uhzfT4A4OSeNLcZ\nGH9yRjnWkmNavTGjrYGNHUff4eeRtzsloHVX3kn1j0YpJY1YVU8sWNOaoi0FN/PqapdtYXnmsjr3\n5ev70X57JZWgoJxYWeVB/221jcNZXVMLm9K3i6AOpanhkG/cZ12tKhGkBrqmXOkXRY3zemgu+5cX\nypt7RIih686VcXH4zZ5WDmBlZ/pQPo3xVDgShtHM2sXLUTy7Z2EMq+txtTZnVDeUZsR5U6MgwrWe\nKQCkbHoAoXmBGYRIWekWQ4yILzs09caD+GHXMADAtVcfBwBMDjuFEitRotkNxFj+cro37MzU5vb+\nZDY0N/wQ7nmTlAFis/O5tqppufoUO2TxRHlpt1P+/M2P7sB3F0k5Mas7MQer8kbAdJl+lzJWRdqz\nHtZ8amch593PpeZqI8/qcsZJ1mYIHdcczveqychqydrpsDNGMO9e6neuybkBl6pYGY1M3wyDr/14\nYkVzHlrCf/+XO6iURq4hAVl1ZExyensqv+ydt+wAQGWh2oMZDRQ2pQP599A1a+3xBZsZveEOMowK\nkxrwyY9TADj7zmCpFQKBJ2Y0bsolAMD2vpuw30gsl2sOZ1PcfeFqHN1IvhYNqRZozgWmDNv48OsA\ngB4y9/fA86WD8MPXVwEIvHwc4GRGW1vOJdiwSx1+lyWyhLJSMh5yXo1drH4ZBS5c8CN+q+4JADhd\nSWZytl8jqVQZqPSPJ/ScSaz1zNhjAIBPLoxDWS3dJ1eW08jqY4vszpxVri8XX1WNKYmkaNpbRmMa\nrdyM0h/d84w5FQlXUq0zM6Nn7nRnEnuu8Z9J9IcZNcdbUDDtEwBOltIcbYO8ws8CwX6i++hLjVQP\nAPBWVSo+3jA1oO38a+4XAID/+/oOv3NGuT5I5CFXPViwhDj8LiflCq4Ns2pvOLVoCcaeJMOtvde+\n5nW9ZoPR/fv349NPP8WyZctQXV2NWbNmYdSoUZg6dSomTpzIL6fX6zFr1iysW7cOMpkMt9xyC1av\nXs0HrJ7w5DFykV1/YBhUzOnQl3wiEDT0pw0FyxipJQhWMBrC6vWpZJagmxW1Bp3NwKg5cIHxirpY\nZOvpOn77+wgATukhh6aDHFOEA91Gk2HUxTIKCF0NjPyFTemhjYsAXTL1KqrL1Mu0hRyFa49T5hzE\n4XKqhVhUSFKx+B3B7ahdoUsUw8icAcPOALIG93bDGeFITL7bVOlYZkIjdiB+t/eAsyXBaN0AJq88\nr+Al0J6MSVqL6+4m59jbww8AAGbvfhghx/3rp+5ZsAUAsOZd5wuPCxiN0Q5kXH0GAPBZKtWwvfPM\nbJwpI+nrrekkMcupd078HcqmgEl7WoaGfnT+EXvl/Muuthddb7vahsgj1EfXT6RoIym2CiV1NLjS\nldJgK71XEQqrqc/nCsHLetRjywhyf+4u1fISYx43VOL6RDLDocAsAAAgAElEQVSk2bh6HDsn39fB\n2JVGXrOHHcHmjaP47x1SOl4TqzesLG47w3hHv3qIsuj8OcOkZFkFJqhosMoFqjkPLeEn4zZvHNX+\ndpfejbHbBMEKRrl3+LkpVNc2/bOH8c6t9PnZjxcEZyctgKdgdPhMMlb7rPtvfm1jQ4MWzxykyXpl\nZuATXo/fQ27QD4Rd9rncLWenoMJAz2bFDnf3Vk9oSKFna3jGOWT+0vYOpO0Nm8IBeW+a9W0oo4kz\n1+CUMzUSm0R+mwa1FsZoVnubDf6lI6txQzKZgr0cS22r2KrDVb9QKgI3IV7fywqRid51r15H1Rn+\ntum29jnoDoCvcZE4nW6WsULF93nBDkCbIm44mZTt7v8dAGDEsTmoOUnvW0+B4ql7PwAA9P3sEViT\nqH+TXnC++z0Fo64pF5NuOgIA2LFxqNtyjfbDjId6/07VJ8QnA5+I9ReGVHOzMl5TFL0TC/7k7jTP\nodk39fDhwzFgAOn0Q0NDYTAYYLO5X+UTJ06gf//+CAmhkx4yZAiOHj2KSZMmuS0rQIAAAQIECBAg\nQIAAAQL+txGQgdHatWtx+PBhSCQSlJeXw2KxICoqCv/3f/+HPXv2IDMzEy+88AIAYPHixejSpQtu\nvdV7Dc3+m14EAExMPI3Nv1BxQkVFcKaNgyW95UplmKNs0JxvfpZFNbEcFWeIbVKV/rFTcq80ZpRD\n/wmnkbmLTF1WzSNTk7tWP95oGV/yr/qezFigSgJFVWDt1RjjgLK88Tr6BDvssSTFlbJ6lk2XCSb6\n3pwLOXPI2buH6lrGHGndNu1SOl5zmIgvC1OXQt+Z4myYNYoMrHa/PxJSY2DthmMirCoRZDoH/5lj\nBJWVTnkux7CaIgK7fnW9rAj1s8ZrsKCdSrOqNQ0q6CuICozvTkY+OqMC4t2NVSX33/8jHou4AADu\n7CLICCgyjdbfOehzAECeRYxHcu4AACxK3QUAuGiOxncXmBHID8xEpZlbYgkRQTeAZnJjY4hV6BVR\nhv0XkgEAITuIYahPAVRMVj2iy0UAwN5LyTCdp45UlVrHly/ILCampkdMBYq/SG60P2+lXXyh+/iL\nuPhr94DX8xemnqxExBnvLLZDAtxwA5XFmRx6CgBwndqEUcepxEzt/thOVQjQkk40psyPeo2+YI6g\nZ1BeLXZjRm0j6yA5EOphrcDQf6azHu/jl2m8sHPt8FZv1x9kPrmEN0vyxIxaBhMrkzfuc4/rc7Uu\n6+3Udh5d9lCLjoNjLd+fTLUlp6t9S8l+1CtxykgqoO+L6Jmv2tnF5zrTbyXlRrSsHkt2Uw1DZWmH\nlqQPKszhdoiZsaKqxBMTRX/9USdx5dImZFG9Yk+1Q1uKhBnU1y/tSYzn+J+eREheYzm3MdYBORur\nyMdQCcO6vMDLBHYWcDLeXQYx7l//oNvvvu4JZyaUsumBNmdEAeC92z7BIAW960ZtpBQXRZwechmN\nrWanUOrKT0V9YTDTfaurpPekvNizLN8TM2ofQC6pruymuQ8r3ZXjW1XhybTuxbu+xG0h1Y2WO2k2\nQsIGAXM+8c5eGnsZocxvudo0959Pev3N7x5m27ZtWLduHZYvX46srCyEh4ejT58+WLp0Kd5//30M\nHjy40fL+xLj1F+kFtfnUcNxy/R4AwPdrxvp7SD7RZw/R063tQs3h9JL9fsZi/ib5khLr9sZAwx6Y\nlsh0o8ZTTpzRKkXDHu9F7wW0HFwgCgAhIovPZV1fTPW9mEtYIbUq3u02AHgKMn+b+yamHaPajbW1\nrJMqd3am5nBW87OmZaPYpi/XU9/2xtR5NGAW2ZwaPmMUTZ64BnfNoWQcLbttOrmO/tKQjhgpdZ42\nNup+fudcaKW088oJJsRtCezB4OQuXCAKkNusp+OsGELfhRQE9jLyJxCVTqoAAFh3uBdIbwl0P5Nc\nVgpAGk/ndvWIswCA7/IGoOlrhgtEvSE8R4Rpk7IBAPMLZgAA+odexv5BJCHdoqeG8N6ZSajX0dZD\n/JwX0CfYIWYS2HgN3d97Yvfgo8RtAICRivkAAEupFvazlKMqZi7lERoDimPpnkvFdvTUUH3VAhUF\nwkW1YS120vv5/tfxva4PAOD9rzy7pfuL+HEkwy/5zXMqxHV9KLjceWaI122IbMAG5kD+xgTKGdtl\nEFMQ2kG482bKV13zrbtKKZhBqDcEEog2sHQF14lfzu1+VfJ2zMifDgC48GNg3gAtReaTFGysqfft\nfCvJZLmb44BqG0XjERLntQ1hCX33fOzZ8dkfmAfpkBRJE0ExEs7G331Qm7p1Ac5d+ykAClanq6lP\neTaS/s5QXI+8/ckAGnsBcDAxS+8TdYnQxFO+gq00rMXH3dkgsnkOQjm4BjyGOOrzVKXO5Z95gPLD\niy0R/Hcb+1IdxXFbvA/k/QHX1tWXxbj8A+XCz8BzAACFh1ugLHMeV30OC0KvYA4kkPxRDg/P+qnR\n/+0RiALAY1/dz3/mnkJ7jRZcePBFFtUmN0fbMGYAea+sHrELAJBj1mPmav/aiieJrWsQ6ssl3dN3\nTQNRALjtk6dgSKI+ituysYsNyuLG19JbIMpVWHCt8DFlJhEQP+0Y5pfjr1/N9rfffsNHH32EZcuW\nISQkBKNHj0afPjQAmDRpEvLz8xEbG4uKigp+nbKyMsTGdtwLWIAAAQIECBAgQIAAAQIEdF40SwfU\n19fj9ddfx4oVK3gzosceewzPPfccEhMTceDAAaSlpWHgwIH429/+hrq6OkgkEhw9epSX7HqDKIKk\nK7JiVdAYUSux4LCcp5lKKQDlBAqSjbsCZzQ0rB5hhlyFyLEkq6szEsPg+D3CbXnXWbWrbjqBwyXk\nfhamovmSq2LOYeM33s+18lffEppgQ31VBfR7W8b0DJ6Uh2cTyFBlqIKYj5bW+fQErj6g1EM91ZP3\nvYsByx93+z5QzFzle3aKu5+6gUZMSCeXvCP5/Vu9X26bANBFqsXNKeR++ln9aPqxwDnzZYoltkBe\nEzjPbwkhF0LAWXPQpnA69FnDuYKWEr8ZUc5hN/3qAqQwxvOlImLi9mSnAVJW9yyMzk9ZJMPX39Es\noVzsgC9NaF0yPW+h530fi9jivg1zqAh/v5ZYwP9+PNevc2kOXN1PY4wDtgJ63tvCCkDNZuq3fE4u\nmCGTKqC/is4xZ8wqv7ZRNcqCI9UkU+2qJvnQyhOj8Ess1SYzrI/jl/X3HKr7032YPCILyxL3NPpt\nl0GMcf+kmp0c1x0uE8HISKTDnwzilxUxI6SwuGq8GncSAPBtPv3OufO2BFM/ea7F6zbFhSLqB71V\nSdz5vXdG1BX39GtsF/3wypZJMoMFcRs5F1lVDp+MqCsGzyYzlmPr+7n9xrGPgOe6oY4ImrGXiMRB\nYUT/9cDn+L+ld/u1rL91TF3rAq/XkSlYqYWorO8uDoTh98DfsVffTIZjS7pSe1pUNAovxJESoZtL\nTdENDfR5poakwovHfIleu+n8buqViTfijzXa7qy4Y/hmBN23S1uT3ParZS+9TH0CjEbifGQiBNUA\nqzlnXEuIHbJ6723LGEcXXFkqhUPCXGlt/imHbKE24LIf7fbqajjO0D1cuGAzgMbqlLOW8xh1fD4A\noKyc2H//Pe4bQzeI3pW9ulEKwwVdkpuzvrzW+bm+Nz0TIbky3t335Rl/fAMjT/jwu+vpbwcfhzf0\nSruMfQfoHZy+o0/Qt++tbrQ/6LvE2b+pLjRWWcSmVKKu2J1QnHkzuZtv+JbimHlzt2PFD+6qm3cT\niBm13XkAF61c7kYrZLqbN29GdXU1nnjCKS+ZPXs2nnjiCahUKqjVavz73/+GUqnE008/jQULFkAk\nEuGRRx7hzYwECBAgQIAAAQIECBAgQIAAVwRkYBRsZDz3Nv/ZPpqmfay5NMMkb2H9MM646KSZZpru\nfP8pzL7rVwDA+lXjW3ysroi9jmqKlezoBrG5+WNpioz3O1+duZbAqnIgYRRZyxcdosT9YNY9Mscy\no6CyVmT+9moA8gNnXjgDI27W8fitizErj6z4PdX68gZf9aCWPvoegMb16Aa82T5tw8KmcDmzEW1R\n86xo6VSajeXykc5adFiQNw8AcDGXWDdFhQSaYsZo65111JqDbD7NCJs/j+PXKRlPKypL6P6H5/ne\nUJeHz+KJbr8AAB57L/DryNX/HPiGc12uDMuJ6q4o/t6dRWhLOFgXyJlkuMKTgREA6BOYkVQPSmhW\n5KqgKm95F1/L0qtj+pVh38BvAQBlNsoji5Vo+OOoGUf9rfawiq9Ry+OGSoQqiW2ZHJeHXkrKi88x\nUG7mpg/c++WWGBgFG3aFA2JT64/D2NUCWRUrXWYQ+W1gxJWnUZS3PAcqZEQ5yi8So889R22NpgZG\nXz3yX2TISenR4ytiiUU2EW9WckfBRGRucGcMGroxhcUlYrFumbcL61ZP8OsYLCGNS2UEE54MjFzR\n0IsGBZr81tV2y3q88XP/tS4MN2so3+u4md6NczY/hnOzPgYA9FlK/ZbECIhGkjLiuqQc/CeO3Okk\nIrqOxVYdrlniXVHAMbI1ZhUyy0ipZT3uvURfS2CXO1rF6LjCV01RTzBF2qG9QMtyZoQhZ6QwjiBm\nWX6MXo6G/gY4rLQc985zxZiTs1FcStdFeyK4JQSfeeBrLL9IzJO/pkhR11POe+Hx4JkodTa0Rck7\nbzDHWyAvCaz+b2vRXJ3RpjU8W4JTi5bwhnp1e9s3lTIoBkZtDfE+kkO0pPu+7g4yY/n2t5GoYAOl\nmZvI3Uo2XId/xJCpx3q4D3o0k8rQsINuCHejjQP06NWFansW/pjstk7Zlm50zM0c124jcLWHPsqQ\nTgM3VV771kAVDaOAv29sCbI3U/2wf9+7AuESGj1wx5q2az7kWf4ZW1zez4LQIB8r0MoglEMLAlFX\nONhN7v/D43xivJm9wKT1Et7YgJOHc/UpORgGUVCgPuLueuYahKZupbp5nMzHHO5wMyzSDTJC61KP\nkjM2khi4Y3DwN0LaQB8M8TZom7hA16dbEHGcrq0pnJarTRXDHEkv9fAcEV8LlDMoGphxAetTvmVb\noKN89sIs6C3UWau70YvcUhfayGjIX1hWsCDU5bv4X7knzD/58Nn1aah65P/bO+/AqKq0/3+nZjKZ\nSS90CT0QepFeBJGiqKhIEymCmGUVFVdW3d/6vrurK4ivNYIIghQBAREEpUmkhZZACCFAAoFQEkhI\nSJuSKff3x3PvlEzJTDLJBDyffwh3bjl35tx7znnK90n2+toCtotQgfkRFJKyQ9EOX6F+F6NCwfqJ\nORQCsyH292qPUd7i+0QXmhAHFNTuHSO0oXdUrmVbtIQ6+2OZj+ONN0nMo5GUJr+vyKYgKJCuLd7J\npzHsiIAQcbaqXWOYIsiooVDx+0WIEFDsueGivvDFQhSgMPWaUJtFqMCJ7j8i7kT1hhljEGd5Z/ia\nTvJAxG6bAwDgIyqRPeVrtyGwlcGcZREqYLsQjX6MDMJ3djez22fMZDIebTpFKrsiswzTnyED1Wg1\n1Wuc8tUbltDgcjNvRBErMIuf/J/YQqqzFS1MCMql38AU4PlEuLaLUFfsLY7HIMVuAMC0b2gxqeSA\nCVdI8dZWWJE7ToukyDbleOk6zXs6BFGa0b47HdxeJzaQBMY08gCcyaubuua+WogalRzM/PsEpa4C\n7O2RakXQ9KRxuVNT+k7McSKsavMjAOClxs8AAIJlOpy6QYZnV0Zirk0tVgVu+PibCdDztblNPR3n\nEIKYom191Lu/8r9V4/uzykFDo74Xop5Qm0WoLe4WoR+8SIrg76z2LJXBlqC+hag4VrO0v/tYd4vB\nYDAYDAaDwWAwGPcrDcYzWhvydORVDbouRiRvte/bk6SUjZwYGZVkWXIWrit4RQHgqYmHAAD/jk63\n1CcVQm1zjeUY+7lnYhlm3qDizCuq5wy48uhKAMB7XUkI56dNg1AZT95JTz2SNeFc33UAgNhfZiOI\n95KOC9I47Cf1UO7fEGqG7N6Dbc9Q5tH9iYxiPPNiEgBg3U7qPwqbmrhVPaIC4lzHTmB08vUqsu2t\nuk7LuBTL8fW8LwEAr3w5z2EfXTRnEdwSqOoVBQCJ2oCS9rRddY3OwYkAEx8iomkkQshlvozHITpf\nx355aCy1l2fIKY5AWTZZ4BWxVGog6IZjs+sKXRgfatWKL+fStghr8/v69BrCPc8JuYWvfHpmz8nc\nTJ6MjkEdcD7Beeh/VQJ+q31dRwAwBVA/GBJ8EbE7ZwMAFgwg0bLCjc3xCchzoGlMfUedxwFwHY0Q\nckkEa/yL8K97S76Zb4MnnsrKdnz9tUvu66/d72S+TP0gbplzj03Px847bNM14z3SNxwt/nXlFQWA\nPRoZfudLP6VX0ng74Ox4t8fIqykFIHhERQOKwR0hD7y2uwYfxZAQ3K5LJAT26dxlGB4o5EjQu9hk\n47hUiWnb1KtD0TaIoqFO8J8JXlGAvKLaRnzaQEH9jHmzrw8AAKQVUvSR5lAUvnie3rMim0fm/C/t\nXZ5jzbpHLX+fhGfCe4fuUmz+hbxoGHkBI7GKsyvbUBVBZC/gju/LalS25Z/prEBwnfj7zyA9krZ9\nriEnqaVX5xMZAMlV+t1zU0gQyywHdjWmv6/+3Mqyb3U+buX1mk+hhRr2sjIXnzcnV/yVYd/RhmHO\n92u1byYA2EVNMRg15YtrjmJEnlJTryjQABejTUZTONiW9pvR79M33O4bMoIvGl/pOPEo0NEkcnRM\nBsavofNw/BjsKpjj57WD6F8MsmwTFqXeIHZTujJAZJ0I/LTJeh1fLEINwZzbej5CrmrOvERL0XDb\n7QKeDrVdulxF5sFW1e94H1IWTyGEEgXFRShPKbH6MP1eUidfkKCG90X/9ZiXRHmU6vNyp3VFQwbc\ndthWNc/Kri02ITmvfDmPtnUwWGLeVBdoyBwxIA0Hd1K9X1cDHABEhpaj+DI9M8p8mmBxYqA8ls4X\nfs6xzQcW9cfZD2maFiejPlx+IQwd++YAAN5rsQMAMOPUawgo8SxMqLwZfZG2aprtv6McxIszvkbs\ndgrtizhFE5yi7mb07UZGpislEYhVldieDkZOggkxpOD2H7TzqA3VMfXqUADA2pZJPjlfbZBVAGf0\nnsUKFvWgyWF4qgQp79vrDLZJmo6QJM8Wa2EZ1Bf+Fv4MRnShBU5qqWO4sjKv7kLDqluEZs619p+4\npXWfc91syHUAQNvgAo8VdusbZ/3V2SLU1wx/PAV/bOoJAHhyChl3552cjEtDVgMAYmX0ont3f6Na\nXac8jt7PqiNh0IdR38seugqtf58BABBG0/lLX3Y4VgKrSm7Xp6lPr22ZhI/utnXYV0izMJXIoMqh\n6VJ1OaO+IukAhQvb1gLdvtE3VQfccbWYFvfDWmVh7wXK5XW1EBWMIra8mUfPxK7tjoZBQfnWoOIg\nL3E90xg89jQWNaG0hD6r+XlgfBmWdKdQ2gUZtACb0+wgFopbAnAd4q9vRWNzwBXeGKHkwEXTe9Qk\np23KPBEWZ9DC3ZuftzY5jO7G6I8TliNaUs7/z3HGmmekz54+Nx3KDLYI/bMgGKMFFdzzCYno8C3N\nmTwNfY/d9ZJDDXNb8pKaufnUOYLRWlKL1JYH263FYDAYDAaDwWAwGIwGiV89o9JBRQAA46Fwy7Zb\nv1KdvH6/2ntFhXDZricmAQDMh8NQso+sq8W8wdd2ZZ3/K4WPfYfmHosiCeGT7rxUNeXZyyMAAJl3\nYoCUkBqdo+vYTKTtdF2nyJ1X1BZbT2gn9Hazp3seVK8oAKgz+F7DWXuP6rJrm+mVESstf78eJLjG\n5VZFHhvH0YyW9iI7lw3lcIvE0evUMy4HiS1/BgCMyHgLALAnpTPUTqytVRXYSk5EI7yKMm15czGU\nfIjt3XEVMBaStTXmKC+EFCXGpGX0TGqbkNft2OSPLWI23U++AIAUljXRfGgzf4nAQucma12k9b7a\nryTr3v5piwEAcUdegaSCztPshSsAgC+b77ITffrqHj3juXoqbJmnC8bC3VRjzVlRqWFTybMrE5mw\nZ00/p22qyoqH9vJ/+d6rJH2E6h8bf/c8tGX8H/TsOlY4tkcIl9v87mIMPz8ZALC/43YA5EFKepi+\n2zc/cvQcOT3fpUCcSOkKACjnBTUuv/81UvTkoXo+mbzYnnpcvaE6z2ddekNNCl5EpLkO8iy6ty6h\npFr588UunveKzvyDma5GZSg9D3IfpDi8N3kj/r3++RofH/IwhaaWHHcUtNC30lm8SdUh1DL+sulx\nvD2Z3EXnSii81HwrENOuDQYAJOfQmOHqrEteXg4AeHPZbLfXU2XSe9kssyqfd/6/BHgbX5T2U0cA\nQJyyo9NxP/CMtT9XdCYPm/K8954oI38aqdbzYwKcpWrUA+U3KMT/4OnuEIU6vrsDe94FABTfcj6P\n6a/OBgDsgqNnVKgFKi+pkmLSgt4jj3S6AABY1iwZ4P03F2dQZMdBHTBjO6kxC6Py39dOcyqeqGtJ\nfXBs/DnsuWwfxiwvFkMnpzNIbTyb5rN0P752fGuamKH0pK6pDQsSZyN4JEX+He6y1bK9xEwdaHoW\njXPFKVEIcBOJx3jw8dQjqmtDnT0w23lsaFWvq9Nr9SiBOdXxua+NR9Ry7lqfgcFgMBgMBoPBYDAY\nDC/xq2fU1iNaHf3SSG47rc8PAIDOh62rdyFHU9PN0exY3t4AKV/jzVn+3ruzf8B/lpO3VbDA1yRP\n1JbU16l+pJ4zW3JEN7feBwDo9GvNz+3OK1qVjHl0L76qacqJ7EUTPOH8zK/QceVffHJ9T7k4i6yo\n7Vc4r8PoispIk6V0CwDoIvhSE/w9B9z13PKjOGkVcDn7Jv0OsbupdIs6PQBbblFOzZwQqtH67o1x\nDufQNDUje9JSAEDbNY73Qv3JXihGneX8cTbyhnwZ74AVO8tz4WDJvdrQdzn+J5faVHC0JQAgsMCM\nyhCyXSlv0vckeEUBoCKD99W10aA0iixvwZnUHm2UGIEFZGGPmZuD20tJKCLyDF0vNmQOvp30DQBg\n5AmyfIduDUJpS7rePT1ZyLfc64VllZQLHigxoE3gHbtbOJTRDo2OCiJMjre4K4u8IJcGf4898Mwz\nOiaT3juCV9GXFOWRhdEbqSGRxLPaJ5VhtF+sTGVpu/Bek5d6n98Z3O8ODNuiAAChh/gONRzoGUAe\nhuyhqwAAPZO8e+68RXhH16U31PYaQt03SZbVQ7akMdVh3PWz1fPTaBB5S/MPOS+F8UJ78sovLx8I\nxVXPSlB4whT1XfzbzeeC59oVzjyiAp/234C3r0z3qB3CexcAciooUiEtmyIXVPlinN4aD8C1R1Rg\n7m+UC+hpQa7PZy1zmhcqkP56otsSMgLVRkOJrNEv8ee963v6LhoEnK07YUJfw9lE4jjz3m/pSjU3\n0+Kc5/0+o6JCTu85+cxVblnO6G+rbVcraTnkxdQeXVNejMtF2SR1GP2gp+82hVTK6yLwn5llgCqH\nxjChzmhAkdSSwzlhOuWqblpVcyEXW7z1igqU7qHvt8se1/1NUgc6bUL93zbr6vZdzvCe1vspJ14Y\nQdx5MQGrt7PcrEPPVY41PlfN+gwAMOmnv9rlobo697m+69AxtW7G3gYnYCRQHleJBf2optbSlU+g\nfD/VIey836pyW3XRqDwTiM5n7LepLsow6HmaPBzaaBWbEMJ+bc9h+7ezzwWmvkihe6s3POqYwC4G\n5vJ1vVa0OOxw7JKZK/DmylnObtmneLMIHfXMMQBAK76+WOLaJyyfGbrQCubS4O+t506eQn+cdz+N\nlojENV4cuuLvz1Gtyw9/fMbp57E7KLzL60pvVdaatkq5VTHzJ9fGaxEeSjK6Qq23Ta322+07/Dwt\n6tTp1gloz/Bcu33Ob3Gs+5Y9aSn0HA24Qi1TADi7wFEwQjmCFmVyiQn5KY0c2q9rQgOu5Co97s5E\nF9S5Zqj5Zk3Rz0ejfrRQNijpPCIzEJJtvxDqmTIBRXyoVqN0GuqNXbR4stNxAMCPF2kwD8y3Hleo\nDULbV0k0JOUWP1kVc3gtjcKOQrZYFXvVuXRcQRKF+x280RjlTa33dYD/ShXUbdGoyP1CLfA4f+7B\nbnez4/ZePpm/o+fHeEpwpvehv4PbUgjc2UPxbveLbk2hdG/ld8fiRqcBWN9pttzghTCe/Pdbbs93\nrNtmoBv93eNf9Cz3fN/mmX6Crtd0Sg5uriNjQ1Efvv9elVsUxhV3AYmO+kopH+UffMXxeuH981F0\nlPqysPDUNTFCcYv68LyJJJj15YYnHA+2IXNuoscLV3Mn9+Hy7hbCrhahApNCUgAAa3KG+6QosysV\n3apMXTXf63ObAun3eXvtdMu2yrZaS5iyO9p+/woUvOEugH/cKpqb0KQdPaQl1QgXBV3zLkiys7y0\n+p2qYFJYa3KWt6M+qrpkfRaFvmorRJg+3zMVa2fYLkSXzSE19Je/mVfj89U1inz308IfSkigauXe\nYXiKN5gKQm8puzs6FTWy4KLvt9pKBoUr45e5PLSZVFWtirSA4TQZR8u6F4NLt5+nyG1079TZjvcq\nLELPLkh0WV+0oeBN2LensEWoIxdnWo1tQkqRP5AFeFdo9L07pKC9dfMg/GsaVdN4//spls+f303O\nosAisVulflU/en+3XftKHSQsESxMl8FgMBgMBoPBYDAY9U6D8Iymv5FoJ0wEkEDB0kyyek99cS/W\nrn7U7hhnXsyq2wGgItaEdkpKBD/kRZuqnqe8lRGK2/R1nS4lj44+ygxFc4rt0OvJXtCjxXWc2EKS\n7Hjd0TM6SqlHQiMSgBGS+eurbpkrftviujajrUfUgiDAFOg+3M9X3lAB21CwDwHEDiBXXs6RFpbt\n8js169LyAucWeU1T8rYpb4pR3pp+t/j4awCAFspi7P6dvO0XbpMITbs+TfHzqx8DAJ7/fIElRLK8\nA5ni+52ciQ9izrpsh63ns1/KVIfPx1wcAwCIVJSj3ExrPnwAACAASURBVECuwWbqewCA1CstABW1\nVyuhPhV4RwT5Xbo3sfuIPQthF8y41phCMj/82wYAQLikHK+tJa9zKC9+JF8fjqp+jsL8YKzK5Aui\nCd9dvrUcgml1NEb88yAAIOtzq7uxpA21t7Ar9al/PPUjPvvkOf4eeK+rAgi+6t77aZJX73bqujgB\nZr6biKsxNEr472ynpmHI518t8yy1QbOPwi9H/eUni9dBFEo383XftRipJLfPI2vJI2or+MSJreJT\nRb3pC0rSijE0kDam/sP6HAqCGg+vJHGrmzciYK7yG3BiIOgm/YZmqfUzQXhGHwYEFNu/SwSvqC2K\nW1L8MZsEroYsd+/JFfAmnPfiIHrXfVBoFTwRvKHTrg2uVWjwmBWe1aj2lqj+eSg42tjy/8o2NXeV\nqPuQ9bvsRJTDZ668ogsmbrX7v1QrQvtxVH5JSE0BgNabKPzeWbBqyPD8aj2mrhj+uft+YBuiK5SQ\n6piYgMpQ6m+poyhMrVf5G5YQ0KefpnF7780OONljk+O5aqFw88JOGhPbjbyG3zrsBADEf96wvG+C\nGJXY6PxdumYLRQFJOpZbPJQGNb0bqvOaCGHvtmS+nIh2f7wIADiio/NUmANg4L/osUoaO/ucfg5b\nO3/nxZ1YPaS26KI5KO54Fp7gLBJJwBuvqS6KvlNnqWLOrtH50wSL4CCj4VCfXlFtLI3XgTnWOD/x\nWWfSjIQQ0XFhdqIlxHbrZmv5SFuPqEBgJIWznx+31m3I7wm+pFLH5Lp7V4k4jqu7AnHV0Olv/weA\nFpOx20iNUXXFuphw9wBXh7OQtHYHpwEAAk6pHD6rLXpeGdQQZoQqi3qFKQAY/xwtgbf+SJ2i46hL\nSMmg+DRlboOwBbhFE0uT1pyxyx1Cf43VLEZ9zcVZX/t8gesKYaJs4CN8ZDbRYGVx9J38c9DP+M82\nChcWirQL4V8Cb8zZDAD44PRoALDU2wOAWblUM+7kpi6WbbYD07ybDwMADt6k/lJ+PdiS6wJYnw9D\nBI1aQZdlMKhpW0CR9Zkx8glY0gpru5S3adC3rc2miRFbPiuNpb/nTqEJ01/DrqEqr97qjZNLejps\n9xZNIzFenUOT2lkh+ZbtL9+gvM496Z1og16MoGv0zGhamBCeSm2UafjFaqAI8XPOAQBSN7ov8J72\nFh+Gz08wq1uU+oqRLyR7rORbFU0MByUfsi2tqN2zp3uMOnSQgga8grwQqCOpg5TdUgMK6hhrh1Iu\nb58ADtkGiu+e+sGbjueL5A1rhb55JwSOv427ThakdYVBzUFWVk/qpXV4GV1j6sjfPkp5ffO+t+ZT\nCiGObda94lA3ctjjqTjwi/c1UwePpRBwob4xAMx8jtJrvl/9GADALKXQWAA4PmsJAKDMbMLoL7xf\noAcNo5SEigOuc11tMSqBMeMoDWXPBqvRVTGElKx1f5ARURfBWcKLNV1pQT+6/Xl82ZRSDiZcGY7M\nn8lIUV91Rg3dKWxcMJIAVuPPgC8dn0GfXTfIcTFqlnMeqXbqmlfiiW5pAIC9O6xK/YKCtETLj5M2\nOaMtBudid9wvAOxrlOqa0Tgr58OGXS2OvcUYyCGwymLUGGQ/PgJU3ztn3Dcuz9Pu+1c8XtRWpaK5\nGR+OJf2To2Vt8WnjUwCATeVk6J+gKkG71TTXkVbw73wNoH+Y+oQ4g+awMtvMgsHFAABNVmiN2nQ/\nUJu6rrVBCNOt68WoM2NNfZA4YykSvptrt+18QmK1OanecuF/HfNWBViYLoPBYDAYDAaDwWAw6p0G\n4Zp7+UY/iILIoqtpSuvjgCKxU49oZW+rtbBqKO3IScew5weyfrZbxVuVtCJUhpBVzhTOK6fVwT0E\n8IIxAYXWQJXoIbfw0ybyiAp3cuZ6s/vCIyqQM3a5v5tgob68orbYeUTj+ZhNXmL3fw49CbUby6hB\nBbSU8bUk9fSbP5r5BPbGkfiK4BF1ZoF1FgJk68/nJFYrmuKCzHIe9SXHviVxErkneER14fS8KYrM\nFm8pAAQPug3A3iP66i2ydJ8tIrGWezuaIBD2YbN3+lit3xHp7r1k+SPJ8p064gvsqKBQa42ZvmOl\nWI750SQG1bw3WXy/z3gYGv49wWmkFm+cLJeuU/SIDi0DSUgnlb9GWVc91GmOT7xQ97CyF71PFMdU\nKO1CZtfgs7V7QxgHkkKG9LC1HpeJj7T5eXdf1FQAUWkjZGVQ8/deVjNPpKaEWvFO/G8AgE9+noDy\n4dSPws9IUNqG3D/tZdR5ZKIg/K6xr9dnVIog5b3SvvKIChzushXgAwbqUjlXwKVX1Emd4NrS8zFe\nwGu371WxhPeIrcBLVP88u32qekUBVOsVNUs5p54pW4+oQOLJoQCs7yuxERg+9iQAIERM/a7vNwl2\nkw9ByVuISAGA8o70PKrO0/MY9+RFi3fSWZi9tpvWri4oQN4kW4+ogOARFVDYqKUr0+gc/xmaBKHW\npXDd+qRSYx/0uvReU3z5/ZN1fl1nv7OntQwV1+U4HG1ff5yTWKMOhNQkW3IPtkDcQcdnXHGjbqRS\nnHm2pRUUyQZYvW/SEgnaJE0HAChPUYC5emQ+jvB1Py9N+9oyTgvH6mLMCMqt3scjLRfBwBcA3/9D\nH3SS9QFgDbV83wyYwmlsFebBxkBAkk5PVWUIPS+6lgaoz/GDy0E+JLmx34IdH1j8KVrkC6rzclb1\nigLO1XSNQZzFU+9rmGeUwWAwGAwGg8FgMBj1ToPIGW0y2pozIMTML9wzEU/3I2vq1tSeCMgjK5I+\nmkRkVNlSB0uWN8j5nJHi3DAE8Xl4b71EYgWLv53g8XnajssCAKQfbQPAvqTGzlcXYfRSx7yY/k9S\nTsWB7HYAgICMOigWVQMEq1xo39tI7kolVARPVe9Ea4mAX+cuAgA8utozEZH7EcFCX9aJTyIP0UEs\npkel4jYlYaqzpNBG07aqOSgAoO2lgZm3BAedpt/47IJES60oYRtAXk0ACLxJ/bxq/kpVyjpVQp1h\nX8BGH8bZeRYAypmqWkNPF8k5eC0rg0VO608WPkFJsBKpCfpiSvx6OP4yAODc9g4WafkukyhXMyHm\nAF44xpcuyqX7i0zz/BWTP5y+hxGdM5F8syXdl446prFEDmkZPauRp63nFERxwmbk4nox5csIXsm0\ntxLRdbFri6DgsWw5Ogdmjs5zc3tLj9vrL2qbM+oMbQzdf2CfQmhSyHNk5msOLpu8zCJg1DuV3o//\n6fAT/r7oJa+vY1QKOVCu70Ex/rZTEaMHgnrIGVXkWf2Oj42jGqe7t/fxaP/qUPWmsfPx5uewYetQ\nh8/fnkR58h+mjQIAyE+pUNGJBukrIymX9fvSSBwrozHTxIlw9Ed7D2vT0ddw89eHPG4TAAQOLYA2\nicSXBLEiAB7VGQWAis70rvu0H4m2jQvSWEqWpP1k9WLXV86opV0teU2Aq/UTUWWqi9CxOsIs4yA2\nePZAGflcWGOYEeoqZbVsRdvcXk8OqAZT3vIPnVahhZQ8pt2XWEv1CFoOrR4mgcVbv3jXj70l6FGK\nYrp9m8Y+cYHXhe3uG/yVM1pf1CZndP0sWk9NXuE6LxMATArOkgPr65zQ6nCXM9ogFqOe0H8CCSUc\n3eQYFuQp5n4UPidODrEIDgU4qScpHVSEymOkWvnQyKsAgJwDLcHxKnNSDR1TGczh0nT6UZ3VI1UN\nv43SQzF22zQPGSAPpSdKmkYhFwF970J/LKLG91UT/niFVCkjJUGWwuir7w4AAHze5KRlP2f1SjfP\nIbXYp9bUnYiCv6m6qKsOI7+urK7ul7NQ2g7jL+LkudZ0fAnNdGxrizpD09QMk5JGT3UWna8ylLP0\nTXfKuWXtjIg8TtfRRdD+jUZfR3YO9dXQVDkUxXTuwm70+Zyxe6AW02StbQCJDP0lZTK2P0x15lYU\nUd/Zd6MdZBJerEJM/5pXeyY24tDOFhS4ISL7E1Q3nc8WtFG038AXUpCvI7W5rK1k6El7KxEmjo7r\n8bHr2n5pbyUi/jPq6xIPVYf9SV0sRo2B/CJRy6GU1gkY/QgJa/yW1RHmGzTxmjKS1JDX7RtkCbtT\n5Qr9joM+nO+7fBMDijlU8OVawYksyrruSHnfqtjraZiuqWM5JOd9L07nS3qOOo/se7TQLzles+fC\nG4Y/noL9v9ReZAyAZRGta0rh9c7CKDNfTkTsTlLdlt6l95JtCKxA9GM3cGd3M4ft7tB21yDwtDM9\nXkIfzsGkoL6lzKN3glliDeWNfZwK2hrNYmQn0wJB2P/zcavQWU6L7BZSax8S6ken72kPQ4gQNvlg\nB5S5WozqmvC/+626qjRYP3CdyiA/Zq9KagwC9GH0+wbd8Pz31UUKaQrux+uKZryyvNAvpb5bWJV1\noN9FzafraB7gMF22GHVE3IPWNebUEJf7bJu9GE/xCvTnExIxLosMhdl7KaRe11YHRVbdVwxgAkYM\nBoPBYDAYDAaDwWhQNFglHU0TM7gIclEEpSswK4qs8cveSHbYV/BK6sM5u5IWVREnWy0HzjyiAsZD\n4ZAMJNGUGyV0jD7GhCtPLwMA9Dj1PABgaOOrWFzU2uF4oYaZQmpEaZXPRAYxeja7DgC4G0nhnjf2\nt0B902f/qwAobKpnAIV19OQ9oiVmLfonOno9d/Phuc+fn1YvbRTqivpDuMgpvHS6IBRQ3tpkCfFG\nd/6XPhps+f3l96x9bMqMvQCAb84MhPDYTZxOAj0GToLTwVS7NvCSa8u/LcqbYpR1IpO/YBmVlEgh\nL3F9jGRIEQAgQC+DVEd9T8V7qW7dC8b03kcBAD9Hd0b5IfLUR54hi+7WM9Y6v7dH867DUhleXEj9\nRDadQoV0RyNR2Yfqnq7qtgoAMA+vWo69M0YPpYrMm70a03Nw5GoswnfQfduGSqlz6T/6UPfWwtJe\n5LF9OvwU9pdSGZgstLN8nl5pcHs8QLVHDRH0XUiceHKqo5IvASSv+sDXEfc6UFtDL7hva2WwCBWx\n5FoOyeD7qhi414N+w5HxGQCAE3kPQbrTWpMvoA3dyPiwFADAkQO9LJ/9kkXiTyEAinpSH6wYQOdT\nH1AioIgvOaSytk3w2MtLPLfaeytc1NC9ogBwW6vGsW4Uxhp33PsQKSHU0FZEYtdMei+PWWlNCUmZ\n/SkAEgKLg2eeUaH0i634kS2CFzE4ikS/Km841nAEAAkf3RHZlcIZy3+PcdjHW68oAKde0WHPn8SB\njSSsRmO//fNgK3CU8wsvrCMCuG6Uu8AVkhuwlbTIziMqIAgXSQFItWS793WYrraRGYH59n4BU0DD\n8wLd7x5RgapeUYCvheyFR1SgOo+oQFQH8rrfaxbosg3VIoJTITXBI/pnIKY3RWXdPvmApnDUAHce\nUYGnlr+F8wnWOssCxnhewPGc+7Hz9CtUj7n716/VtJnV0qDDdOOeuggAyNzmqGQnHVSE070pt6Pt\n97RYyZpmDe0SFjDyEu8nloOeT0ViU6pN1nojqUw90j8dNzX0o8vFNLm7vLM1qoiJotPTF7Ah9nf6\n20mIa0Nk1mRS1FyxfpTb/TTNaGRfO4pCM2eu+0udtak+a4o6w1mYrrDINLeliYzsbBB0nSguNyKM\nHmqTWQTDAQrDc5bXeXZBosfFsoXQX0kvWtyJDlnrh2mjrbXSzPwlRGY4LZRt4Me91yduAwAs3v4k\nIs/YP/a6iffwWnvqt4futcOBi7SYCzlBoRuKIjN6v0kLk0AJLe4OLnJUqdREi1HakT5vlOQ4a0te\nstRS2PzNC5R7WHw6CuHnvHsNlbQRI/4xej9sakWL+ta/z4A8mx/s+UV5dTmjzrD9bqtDqFcq4O21\nvGXrfFp4jNj5BgBSvvWUMn4uLmtbCrOZJl6ZA9a4Pea9O1Sv9dfEgSjqRZ1LVkTGFGMTPdYM/BaA\nVXW3975XgUpeoZmfvBpUHEKyPG4mAArTbbWVamQG3PHN7P/vk0kTYFpwoWXbqlIKlf1o/bM+uYYr\nKvkQQHmxGClzaKHYc/l8d4fU7Dpt6He4PPw7AK4Xls7QNaLfN6oFGd3KTkR5fKywkH3ndhfsWE/1\nk7XdqC2BZwJR3pbeCapsfuLMWfM6+5x+zpLr6Sm10YsAgLkzSNH8L6FkEEvRV1qMsgK2uaacBDj3\nKrU3/nPfP+PNRpJq+cKHfgUAzDw8HcrMug+bc4azMF2DinOqwuwtZjlfw9RDdd7a0mJwLnIP2hv7\nZWWO+0mGFOGhUOr3mYfpRTl61ElL/U9hzDbL3afAVIeeN3gGVGPwtNV6qGhB7w4u1ABRMT0/Qddd\nL5xZmG7NmPgEObw27BhcdxephpqE6Up60vzQlNKw6suumkUL2OkrrAtYFqbLYDAYDAaDwWAwGIwG\nhV/DdHW8EqnCxgsh1E+S6EVOPaICmrNhmBo1FADwr6c3OHwuhHi22jcTQWe9szAe2tgDxxKOAAAu\nP09ewI/utsXvyeQlULoJ5zib1wStTpE31ZlG7uwpu7B83Riv2lPXVOcRFch5imrYLb3XvC6bA6D+\nQnOFflL1mtpGvEpuPvVNU4BN2O1JCnGFCAhKpV+5oCN5bxQheujieEGBDOeqdmcX2HvTWv04F6pr\nYss5AeCZaUlIL20CADCa6dxp7VQW8SNjTCVwh0zY7iy1BjUwZhx5+fcUkiIkiSPZW0/LKxQYFEgC\nH9OD7wAtDlNbh1AIbFZlNJ5RUejmTg09TydmPoS8ZGpjWCYvHHLHDKUTT1ZFE7q/PRoZ5m0mBVZD\nFH1POTO+xrOXRwAALm8gj6xUw6EymFc07kFtUGQpoH2Ijvl62HcYpSQz6X4tXS/0oMLiJTbbRC6V\ndeXNqaXW1506x7W3zVOvqCHIo918SmsZhdPsGkPetalnPBcRU1/h/7gSjNAJNwEAv2moD12ujLZ4\niQBgwNnxAADdVgqxvDdIhxze29bqJ/JYKs8r8GrYRDpgB4V1h9tdsXYW+peHkKd+1Y+PVrOnZ3y4\nnjzxH/rkbJ6TOTcRoy6MBQBcS3qoTjyiAoJHtCYoo0nC2xuPaOthOXb//2nbQMukwrbmpyrLMZRQ\n8DxyYu8Fhl15SAxq6nPO6sYKnthLhgq0lgpto/dSzwA5Lhno/p/50lEl/tyriej4VYLNEb7ltw47\n7f5/5dGViM9sOJFVvvCKAp57RI3tNZjfjSJevtz4hPfX6UKhMbOaH8J7AZMB0JzSFaY/wnGFf3sZ\n+LSGt6OSIFTLVY+k8NCvO6zH1M8pKsV2HPc02smZR/TLeYl4cd9su22/jPwcFyrp3XuojMbE7ck9\nnXpEDXyEpazcoyYwXFDfHtHIXpTa1DuKVJd//bU3tE34qgq3PF+aeesR7THmPNa2TLLb5ktVXSEc\nuNVmEoz0dPXFPKMMBoPBYDAYDAaDwah3GkbOqJPEbK5/Cc71XQcAWHqvKRrJyNL11k8vACBvap9n\nzwIAOqjyAADfr3rMcnz6G7Q6/740stq6oUbewyHUdlwydzkSfqZaiYF5nq3XtY0prj+8w11oDpJl\n2ZnQgT7CbC15UNTwbQGLZq4EAIxV6izbupyYBADQpzesGHVv2DGNytO0k9GPH7t7FuQ3rJ7MkB6U\nV6bbT7+lpqkZEi1ZNW1FsgQPquA11XXUolEk9dXiw40canwCjp5RW6tqWXvy/I3vlYKtJ0g0RlbM\ne109FEsArHk//5yxDr8WdQEA/HGSPKOqHAmC8uyTnbu8nobRYekAgD334vFm9D4AwP/dodIGB2+2\nwqPNKUdzfBjl0chEJvQJII9HoYkenif+5uipe+7dPXgjnNxyxSYNXrxCXrdBEZRI+FJIOnrs4vMK\n+LqW7VvlQSkll29rFf0WAWIjzpY0BQAopZUIl9OX+2sK3V/AbSmUeXR8STv69/LEpWj1I0UqCFZl\nswzQRdP9q3KdP4O6vnxi/zHXif22+aKe5oqWtjdCUsELofCXVt4S2wmtuGLlq59a8tra/ED3FHKx\ndh6Lot50YXm+FCreMVrcxYwxD58BACQv7wGAaoO2feYSAOBCAVnsDRnBFi+yRO/bYaT1tEtI3+M6\nMuZ+4PVJlKO9aNc4yEps+lkdpsudnP0JAKD38jc82j9hAnnk1uf2wr1jjkJD1SHkigrELUtw+s6r\nil394/730Dr8LgCgT9hVAMAPa4Z73RZXCB7Rt293AwDsWt/fLgILACQ658c+MZkiRDRmOfZvoDqt\nQm1pZyVrasu3c74AALz0zV99fm5P8VWdUWN7+oGlF5XYOIP65YQT5AEUZTgX8DEq7cvn1QR9tAnP\n9KPautuzOkNcRdhMH2mCyk1kjGW/CA7KeMojjYskL1ZzZTEK9XS+D5vuRrTEPjymy8cJ0PSi+84e\nugoAMCt3IE5u6uJw/o8TlgMATmla4dmQVADW+ciq0mgUGO2/o6V7HnUrsiTiBRYrsu7feVl1NDRR\nr5pS2cSAnFG83sJKa0ReSHea65Qne5dD7y1aXv/liV5UMjO1sDmKDvtGFEqY1zir23tf1RkV8Sq2\n3OEwPDn1EADg39HploHko5gzln0n5wwDAJy4RjXDNvdbhhe+cl/wtSrCotWWDt++Allp9S/Dyt7l\nMN4khb/LE5datgvqvmabKM3+T6YBAPafikfgzXqumu0l+ggzsicttdt2x1SB1SX0Ql21nhb9xsD7\nM1E+pk8+8ovpRS/Kch5rWdmYD7U9b/0RhVph1anulbekMB8uwAz1RcfwtMemkiJ0awWpTSZ++6TF\ncCEIHCjuiGDoR0oLxss0+HkSPlremq69fjT16xCxHv+4Pg4AcOknq8Js1cVo9zfO4IaGBrH0K00h\nElM72jWnQfhSZjMo8qiRps60UPus50Z0lNMk0laJst+btFC6Q3M3XH5+KaZdoxCYC0Ux+DyOwuon\n7aX9bIWObj9G3/vyQatw00BqnY2ktLi/aojCt1eonqlxR6Slpquk0rEffv0BJc93CwhAq70zAVBY\nKe1vnVC6+k6lj9Cg0FhNv8H1n2Md9jm14AtoOFowD17iPlxWuN7cJ3Zj6TkSeDFWUiiOqFAOlRtB\nCoFt8xdhaREd+3MWpQwE7fONgqxBLYKszPF7NI4hcYRKgxSqQJoJFBbQsxOeXHfF1VPe/xqXDdTP\nRh8loTRJph/ion1ARP983D1qM9DXj3aLW8L7UdihmaPG1HYhGvcNb4zh4HQxauajzmyNLhWdqD8F\nZQRYFowC2yuUePeb6R61w3byUx5LFxBSSmyxFSTSNqL3X1UVW1uef+F36Ph4/xHqDCSsoveVuHpx\n7vsaXy1GneGLxaYrdA/Ru3hEp0wczyPRIsNpR8XnmAG3UPRbE7ttFc3NkJVSX9BHUR8SV4oR1Y7G\ngUcakyFuqDoT24pJnbpQH2QRz3OGnrN2lOezHwcAxIfcAgD8kDTAUj974vAjOHyHqjJEBtI7L68i\nGDK+TvfdCppjarNDoMxz/N7K+LQgmZqeJ/P1+/M96QkPymLUFTURMLqfYAJGDAaDwWAwGAwGg8Fo\nUDQ4z6ggPGJrfRw+6QR27qVaYqZGZP2a2PUk3omiUIzDOiq5MlBRgn6fug5POj6fRD8ePTcRR7ps\ntWw/W0kxOlO+dB/aNH8WHTMrhKzK8/N6Ye9mcv+MepZEYrLKo3HuLHlqA/Matge0Kn3GUZhmniYY\nw6MvAABOl5CF8dip9gi8TbYLTQs+tK/g/ro/b3BW2sXXCOHhYoNVhEiwShtCOMs223ql1VHWiQ6a\n0INCaX+60BWSC3QhW0n7qp7RgW8dR4sAqkOqlmjx2914AECliX7jMoMC1w+TcJVg3W7WNQ8zeaEj\nM2/XulEZjj15cQAArYEe5gCpEcEB9Ix1CsnDnjX9AADKfF6yXgIs+l/yxA+2yXZP4uv6Ha1oCwA4\nW9YUxzPIghyaJoOiyDEORKht2XUW9eUVLQ7jK15wS8LXYTpZGotwOYUVG3iX9I4/etl5JzW9yb3z\n3170zL+f8TjEBx3Dn8pa0jmFcD9nluvyh8xIfZbedQe0UdhZ1JX+PsR7N296ZhP8cf5ifJRHUQln\nC8myb94e4dGx9xsp73/tdZ3R+4YHxPitb63DS91I6G/NFmtYreAZtbzLOmqgcFIj1BmarhTuMLXz\nCezPozDtkv1Owsf473BDwhJcNZL3a4jiHlRiR7mM2G1zAACqHPeiIPowvuyIgU5+YbbVW9vx6FRU\n8pEM8kwlv59Ht3TfUZee0bpAqH9rakZjjFKlh/GM61BVfbQJqsuOcxeO7x4mPuBD18gEaQSdc3Zn\nGueU4kosOUWCav/tuwVvH6GSUP3aURrK+tgDlvPl8JEd/739KJY1o2iooeeeAgDMj91n8brfMoRh\nX0EHAEBeKRWslkrMKLxNfytD6ZkwXgh2KoAUzIsrCWPspVMPubz3+x2hNJAzgbIHgT+zZ9SvarrO\nsH3Bm/hxZXtGF3BhtAAKj6AZ9Y51A7EtgELW/t+0HwAAKrEewyaeBAD8cpxynRT5ElSG0oRxYCrl\nm0arrLJjQkgtYH0JRw7Ow8HOPzm0LXYXqYB+eoHeVrLBdzF76i4AwHw+16XzJwkQgiTMdRfFViec\n2N7Z8vfx0RQPsSKW6rH13xln+UyZyyu63qdhug0FIUfZFiEMReKhomtVZAU0wAkLr45N8nHlZOtq\nj8sqi8biRqct/68wUz5niZEmXhcqYqB5mM6traR/c29FINE4FAAQJKdFcI/w65BJKP5ICIVWKAww\n8nUtt53oC2FaOv7dvQAAtViHNC0NoN/kUzhs8pVYS81Qs5T6WWUTA0QGOo8xCECR430UDaQv8I/D\ntJjG5MNYkd0fAJDaayMAYG7oTcv+xSaaOfcem4ODJRTGnLSnG8xm+v5TKlpSe3qvRH/RDACA/hxN\ndCobG/B2P6oL+Pn6JwFQTmi/zvTdiUXU7sFhlzAqfSoAoKAoGJKr9GIL8jAHOHwMtVdjluLwNaqB\nF6LSenTsg4SiZxF0KeHV78ioF66MWOm2jqnlndo5hwAABrZJREFUXebhQhQAlGn0zG9NGwLTw6Te\nrWtB75OgXOsCovnoqwCAx/e+CrGC5gaXh3+HTeVkmP7X8imWfZ0Fsuui+HSItpQCoNfJwF2ndn4+\nYbnD/uaMYPARlE61IBj+Q5jAmwppAleZq3Ab8hdgY0S3Tb0Rwr0FY0pAgQSyKzSb+z6FjIDNx17F\nzG5HAQCb7/QCdHSu4yfJcPKyTIeL9yjkfe5DfwAA/tFoL7aUk/GwhZoGLZ1ZholqSklbURKAi2da\n2N2LolAEpbAojuan6UoOjXuTPsq1y1QfOa7DDfylOamOn9eRnsIlPLiLUYiFOeeDvWj7M8LCdBkM\nBoPBYDAYDAaDUe/4NUyXwWAwGAwGg8FgMBh/TphnlMFgMBgMBoPBYDAY9Q5bjDIYDAaDwWAwGAwG\no95hi1EGg8FgMBgMBoPBYNQ7bDHKYDAYDAaDwWAwGIx6hy1GGQwGg8FgMBgMBoNR77DFKIPBYDAY\nDAaDwWAw6h2pvy78wQcfIC0tDSKRCO+88w66dOnir6Yw/mRcunQJCQkJmD59OqZOnYq8vDz87W9/\ng8lkQlRUFBYvXgy5XI7t27dj9erVEIvFmDBhAp577jl/N53xALJo0SKkpKTAaDTi5ZdfRufOnVl/\nZPgFrVaLhQsX4u7du9Dr9UhISECHDh1Yf2T4FZ1Oh8cffxwJCQno168f648Mv3D8+HG89tpraNu2\nLQCgXbt2eOmll1h/9AWcHzh+/Dg3Z84cjuM4Ljs7m5swYYI/msH4E1JRUcFNnTqVe++997g1a9Zw\nHMdxCxcu5Hbt2sVxHMctWbKEW7duHVdRUcGNHDmSKy0t5bRaLTd27FiuuLjYn01nPIAkJydzL730\nEsdxHFdUVMQNGTKE9UeG39i5cyf3zTffcBzHcTdu3OBGjhzJ+iPD73zyySfc+PHjuS1btrD+yPAb\nx44d4/7617/abWP90Tf4JUw3OTkZI0aMAAC0bt0aJSUlKC8v90dTGH8y5HI5li9fjujoaMu248eP\nY/jw4QCAYcOGITk5GWlpaejcuTPUajUUCgV69OiB1NRUfzWb8YDSu3dvfPbZZwCA4OBgaLVa1h8Z\nfmPMmDGYPXs2ACAvLw8xMTGsPzL8yuXLl5GdnY2hQ4cCYOM1o2HB+qNv8MtitLCwEGFhYZb/h4eH\no6CgwB9NYfzJkEqlUCgUdtu0Wi3kcjkAICIiAgUFBSgsLER4eLhlH9ZHGXWBRCKBUqkEAGzevBmD\nBw9m/ZHhdyZOnIgFCxbgnXfeYf2R4Vc++ugjLFy40PJ/1h8Z/iQ7Oxtz587FpEmTcOTIEdYffYTf\nckZt4TjO301gMAC47ousjzLqkn379mHz5s1YuXIlRo4cadnO+iPDH2zYsAGZmZl466237Poa64+M\n+mTbtm3o1q0bmjdv7vRz1h8Z9UnLli0xb948jB49GtevX8e0adNgMpksn7P+WHP8shiNjo5GYWGh\n5f937txBVFSUP5rCYECpVEKn00GhUOD27duIjo522ke7devmx1YyHlQOHTqEpUuX4ttvv4VarWb9\nkeE3zp07h4iICDRu3BhxcXEwmUwICgpi/ZHhF5KSknD9+nUkJSUhPz8fcrmcvR8ZfiMmJgZjxowB\nALRo0QKRkZFIT09n/dEH+CVMd8CAAdi9ezcAICMjA9HR0VCpVP5oCoOB/v37W/rjnj17MGjQIHTt\n2hXp6ekoLS1FRUUFUlNT0atXLz+3lPGgUVZWhkWLFmHZsmUIDQ0FwPojw3+cOnUKK1euBEDpNBqN\nhvVHht/49NNPsWXLFmzatAnPPfccEhISWH9k+I3t27djxYoVAICCggLcvXsX48ePZ/3RB4g4P/mP\nP/74Y5w6dQoikQj//Oc/0aFDB380g/En49y5c/joo49w8+ZNSKVSxMTE4OOPP8bChQuh1+vRpEkT\nfPjhh5DJZPjtt9+wYsUKiEQiTJ06FePGjfN38xkPGBs3bsQXX3yB2NhYy7b//ve/eO+991h/ZNQ7\nOp0O7777LvLy8qDT6TBv3jzEx8fj7bffZv2R4Ve++OILNG3aFAMHDmT9keEXysvLsWDBApSWlsJg\nMGDevHmIi4tj/dEH+G0xymAwGAwGg8FgMBiMPy9+CdNlMBgMBoPBYDAYDMafG7YYZTAYDAaDwWAw\nGAxGvcMWowwGg8FgMBgMBoPBqHfYYpTBYDAYDAaDwWAwGPUOW4wyGAwGg8FgMBgMBqPeYYtRBoPB\nYDAYDAaDwWDUO2wxymAwGAwGg8FgMBiMeoctRhkMBoPBYDAYDAaDUe/8f9NQ1XF+RrFiAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAHhCAYAAACbaWhSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXdgVGX2/s9MJlPSe4VA6L1Jkw4i\nRRARXXQtqNjrV921rquru2tf64pd0FURRRZRehFBQJr0XhIIIYX0NmmT/P7Y377Pe65zw6QQyp7P\nX2dyz3vre9/33tznnGOpra2tJUEQBEEQBEEQBEFoRqxnewcEQRAEQRAEQRCE/z3kZVQQBEEQBEEQ\nBEFoduRlVBAEQRAEQRAEQWh25GVUEARBEARBEARBaHbkZVQQBEEQBEEQBEFoduRlVBAEQRAEQRAE\nQWh25GVUEARBEM4CHTt2pMzMTFq+fDk98cQTjVrX119/TRMmTKBx48bRrbfeSpmZmV79/vSnP9Hb\nb7992vV98MEHdNlll9GIESPohRdeIKkCJwiCIJwJ5GVUEARBEM4il156Kb3wwgsNbr9z50566623\naObMmbRkyRLq0KEDvfLKKw1e308//URz586l2bNn07Jly2jPnj303XffNXh9giAIgmCGvIwKgiAI\n5x0nTpygIUOG0Icffkhjx46lsWPH0vbt2+mOO+6goUOHqi+N33zzDY0fP57GjBlD119/PaWnpxMR\n0V133UUzZ84kIqLi4mIaOnQo7d+/v85tjho1ij788EOaMmUKDRw4kN544w21bPHixTRx4kQaN24c\nTZs2jY4fP05ERBUVFfT000/T2LFjafz48fTiiy+Sx+Nh6503bx7dfPPNRET0+OOP01tvvUW33HIL\njRw5km655RZyu91ERLR27VoaPnw4jR8/nubMmUN9+vShEydOUEREBL3++usUExNDRER9+/alw4cP\nExFRfn4+TZ8+nUaNGkV33HEHFRcXn/bcrl+/nkaPHk2hoaFkt9vpuuuuo2XLlp22nSAIgiDUF3kZ\nFQRBEM5L8vPzKTo6mpYuXUodO3akhx56iF588UVasGAB/fDDD7Rjxw567rnnaObMmbRs2TJKSkqi\nGTNmEBHRM888Q7NmzaK8vDx6++23adKkSdSpU6fTbnP79u30zTff0MKFC+nLL7+k/fv308mTJ+nP\nf/4zvfPOO7RkyRIaMWIEPf3000RE9Omnn1JmZiYtXLiQ/v3vf9OWLVvohx9+qHMbS5Ysoddff52W\nL19OeXl5tHz5cvJ4PPT444/Tc889R4sXL6bU1FT1ktqiRQvq16+far9mzRrq2bMnERF9+OGHFB4e\nTqtWraKnn36afv7559Meo8VioZqaGvU7MDBQvVwLgiAIQlMiL6OCIAjCeUl1dTWNGzeOiIg6dOhA\n3bt3p4iICAoPD6fo6GiqqqqirVu3UlxcHBH954thWloaERHFx8fT9OnT6ZFHHqGffvqJ7r//fp+2\nOXnyZPLz86PIyEi66KKL6Ndff6V169bRgAEDqFWrVkRE9Lvf/Y42btxI1dXVtHr1apo6dSrZbDZy\nOp10+eWX07p16+rcxvDhwyksLIxsNht16NCBMjIyKDU1lSorK2n48OFERHTjjTeyF8b/Mn/+fFq7\ndq06ni1bttD48eOJ6D8vrf379z/tMQ4aNIgWLVpEmZmZ5Ha76euvv6aKigqfzo8gCIIg1Afb2d4B\nQRAEQWgIfn5+5HQ6iYjIarVSQEAAW1ZVVUVvvfUWrVq1ijweD5WWllJycrLyueqqq+jVV1+l2267\nTa3ndISGhjK7qKiIrFYrhYSEqL8HBwdTbW0t5efnU15e3m/a5Obm1rmN4OBgdhwej4cKCwvZNv4r\nydX54osvaNasWfTpp59SdHQ0EREVFhay9enrMGPYsGF044030s0330yhoaF06aWXUkZGxmnbCYIg\nCEJ9kS+jgiAIwgVJTk4OrVq1ij7//HNaunQpPfDAA2z5O++8Q1deeSXNmzePsrKyfFpnfn6+sgsK\nCig0NJQiIyOpoKBA/b2wsJCsViuFh4dTVFQUW1ZQUEBRUVH1PpagoCAqKytjx6Yzb948+uKLL+jz\nzz+nli1bqr+HhISwONG8vDyftnf77bfTkiVLaM6cORQVFUUdO3as9z4LgiAIwumQl1FBEAThgiQ3\nN5cSExMpIiKC8vPzafHixVRaWkpERPv376cVK1bQk08+SdOmTaO//e1vPq1z0aJFVFNTQzk5OfTr\nr79S3759afDgwbRlyxYlAf7qq69o8ODBZLPZaMSIETR37lzyeDxUVlZG3333nZLa1ofWrVtTdXU1\nbdy4kYiIZs+eTRaLhYiIsrKy6LXXXqOPPvqIYmNjWbtevXrRihUriIjo+PHjtHXr1tNua+PGjXTj\njTdSZWUllZSU0KxZs2jy5Mn13mdBEARBOB0i0xUEQRAuSGJiYqigoIAuvfRSatmyJT344IN09913\n0/PPP0/btm2jxx57jJxOJ02bNo2+/fZbWrlyJV1yySV1rrN9+/Z09dVXU3p6Ot14443Uvn17IiL6\n29/+Rvfccw9VVVVRixYt6K9//SsR/Se2My0tjSZMmEAWi4XGjRunYjjrg91up7/85S/0xBNPUHBw\nMN1yyy1ktVrJYrHQ/PnzqbS0lKZPn678bTYb/fDDD3TnnXfSQw89RKNGjaK2bdvSmDFjTrutvn37\nUnJyMo0dO5YsFgvdfPPNNGDAgHrvsyAIgiCcDkutVLIWBEEQhNMyatQoevnll6lv375ne1eorKyM\nevfuTVu2bGExoYIgCIJwPiEyXUEQBEE4D7jqqqto0aJFRPQfuXDbtm3lRVQQBEE4rxGZriAIgiDQ\nf8qivPfee16XXXnllc28N7/liSeeoOeee47efPNNCgwMpBdffLHB67r66quppKTE67K5c+dSUFBQ\ng9ctCIIgCL4iMl1BEARBEARBEASh2WnyL6PPP/887dixgywWCz355JPUo0ePpt6EIAiCIAiCIAiC\ncJ7TpC+jmzZtomPHjtGcOXPoyJEj9OSTT9KcOXOachOCIAiCIAiCIAjCBUCTvoxu2LCBRo8eTURE\nbdu2pcLCQiopKTGNPXlp7zhlr7z5YrYsfUQIdnIoinQ7/KuV7fKvYm1cNvy2Wz2m++nU/E65sW+R\nzlJl19RaWJteoSeUfWXINmV3tbuY3yOZvZW9YNFA0324EKiMx3ns/GohFlThGmWMi2dt3DHeVeHW\nSn6+PS7vfh4n/m4r5W1q/DVb69m18eXMz8+GvhG4BtffrxLr9jj5uivCYX9z6z+UPXHpA8wvbJc/\nnatse3KGsru8c4+pX3lHnC/nAecZ3aczhc0Nu7w/j4tzbjr/Y+FKk2qUfWQqYhw/K4pifj0c6cq+\n/bkHz/yOnYacIRgzQnbZlV3av4z52fcENNs+NTcBmXxsy+uFaxnVBnNdzTx+Lc8Xitry3wdvfter\n3y3Hhyp7++fdz+QuNYjSBFwn/Ri6vGs+dl4IhKSgPxa3RI7L7hP3M79tP3ZUtrUjxtjgAD7fFhTj\nGclmw7o7xWQpu7KGP4omBhQoO70sTNlOP/7MF27HQP9hy3XGQ/FK77/j+g29ZbOy187sx/wq8QhK\nFu2WteAQyIZHxt9QrQ1hfvyUkEefVrVHDcNjJ8Pfe3j3b6iIgL33bm3OP8f67U1Tl7Pfj0Ue8ur3\nRn5rZX/02WVsmcX8Mf+8xKp17x2PzWDLOs68W9mxfTOVXbiIP2OfDWq129dSbe636/WHTJc1aTbd\nnJwcCg/HU3tERASdOnWqKTchCIIgCIIgCIIgXACc0dIukhtJEARBEARBEARB8EaTynRjYmIoJydH\n/c7Ozqbo6GhT/22FScrO78xrpdmL8SJb/SN0B3kDoVVwOQ2SjQBINmwO6CJsdXzLt2mai3IPJJYL\n2i9hfrpU4NoZf1B24qoi03XTZPNF5zIHpnuXVXX85G72u8P7Fcrefy+uUfQm/I8jfkkGa3NiEiQF\nVdolN8py/dwWr8v8yvH3GoMittZPs+Nw/fslH2N+m7a2V3ZBD2gKQuKKlW1dEc7aOPJh3/Aqrn/n\nq1KZn6cdjj3730l0PpIQA4nUz6PnKbsuae+5wN57IWvp8Sr2tcrNO8o9ty5S9icfc9nPuYQ7jt8T\nrkz0/YgdsLslXa/s8qN8HH3osoXKLklCm6DjzfePQsvVmBP8NcmeOw7X5fCIWaxNlz3ndl8zQ++D\nndfdqGzLdvNaoIFpGLgmD9+p7E+TRzG/4JSm2MOGk9uf668c4Rhjr2i/S9nLPh7E/Ho/j2v5/h/e\nVPbMpLXKbtu2K2sTcuTsl0B35NWhmTwP0SWb96UPYMtWLbjIaxtXDsaJLRs6sGX+mjQ3KQITZIvA\nAuZni8bzVysnZOhHyvBsGOvgz1H7i2OVXeXB/VFQzsOi3m41X9kXbZ2u7Lx0SHutgfw5MUCTzz4U\n/aOyl8X2ZX6uLO/XvzwStvHRUv/N7LqGW22ZHl6iy4GJiK66c5Wyn4qCZFqXHRs516S5vcbtU7aZ\nLNfIg+Gpyv74PJXl7np4humy7q95v0Zj901kv53Z6I9pKbh3/JJ4Rwk83vxj584/4Pheym3Pln35\n0aU+raNJ93rw4MG0dOlSIiLas2cPxcTESK0yQRAEQRAEQRAE4Tc06ZfRPn36UNeuXenaa68li8VC\nzzzzTFOuXhAEQRAEQRAEQbhAaPI6o3/84x999o2wI4Pir+24JEKXOLRaBAnHCSdSnLl78lRm/eOP\nKzvZBWnYzuJE5hfjgBwz1B+6iB5ByJj7VTGXac5/BJ+a/ZOgqzh0Hf/yG3rw/Jf2dN0A2V/1vhBT\nv1N9cOyD+kB+kfcGzl1lS34eWyyAbDdjDCS7RR24jsWDRJtkL8Q5dWXDrzKUn+uS9pDjdG2JbGO7\nMnm2sU7d05Rd8D6ktG+/8Kmyp//IM4+WJepSYfw949vWzG/5Y68ou193rEPPsqtnaSQiCtDkl56R\nkDjV1PDjKy/DSQnZCLlSQQ8ct+s4l6Q6uGLKJ/LWxuGHViZYlyASnfuy3f8SvMvBfh/uBgnYnAde\nVfY1b/k+djULLdzsZ0kM5GqOn9AXdg/8QtkdDnAp/b1h6Ov33qllVpzBr11gOvpkRQT6XV0ZIUs6\noN8FHUC/K2nD5ZzWA9C1RezyPj7meOpIS3kOY7wn9lViTqtLmqvjyMW5n/cmpLnj79nM/IqrkIJz\nx4fNk302d4B2Lf34uBW0FOP/S0O2K3tBFJfpdh4FOd6r6cig/3Wblco+cs17rE3yD7djO4e0vtWx\nkvmFbcd9UBaP/asKg3QtMNWPtbHx28qUiqjzM+eFLsfVqUuy6eqP5yVKQciNzY1zELWdGB0GI/xl\n9ynMsV91+Jr5hfthEDlerUl7o+pQzWGIpqpaPAz6W/i1TP4e2TmfGva9sj+co8dI8fG/IhT2lJcf\nVTYXAPMwID3LqTPXfLd9xVZ2ep+ii3lH1aW5PV/CtTyToszbruHhag9HHK33Orr9gufJxxMXK3vs\nvquZX9rq04c1+Z3W4+yiz30pkz8w9TOT5uocPJTAfutP4iH7tFe3sxTRYMz2+198leUaOfuBGYIg\nCIIgCIIgCML/HPIyKgiCIAiCIAiCIDQ78jIqCIIgCIIgCIIgNDuW2rNYDHTS2vuU/XjLRWzZg0/f\nq+zilnhnbrkc8aM1dq4gPzoFqv8arRxI8rc8hqmwLeJM/FCdhPI7wW4zr5jMSB8F9bYxhoW0OD97\nVpOH5DYZZuVbiH5bwsUMZw6OtbgXTmTbj/Sc5jxGzD8DQYy1AYjlSLkqgvlVJGF97WYh/uf4pYib\nCjzBmlD41enYn38hTrjdHfuZ3+5vOytbv/7b/gQNvFHTb9Pi5Qq6oD+F7eXXuBq7RwsfeFnZV2ix\nKUaK2uD4Hh6HUhwfzbic+ekp5fVSM+VD0Fdda8zj1LY9qcUM+hjvueHufyg71MqjatZo5+Suj5s2\nfrTlKMR/l1bhfmXxrHVQV1yYOwZjw7LfI8Y32R8xTHppmHMRRz6OIWcA7rcp/bYwv8XzByrbLJaM\niMeT+enlBYago41qyVPxV9dg/C3Vgrx/OshTuwdtx02h73d1IMaG0hZ8GrIVnx+x9w2Jow7INJ9y\n3bE47tl3vMaWFdTgPGZWI/Dt5ZeuM11frTY85fXSYu8K+NwZmI7tJk/FdR4XvUfZH7x6hel21jyL\nki193+Xx9o5C2JUj8cP+I45BH5uMtJ1zl7KNJV8qteFOL+3lcWrxoy21QZ6IQjfjPJZH4e/OHOZG\nBT0RKKjP5X4VvvVNdzKeDVwp9jo8G0dd93Xy0luxD0cdpn6r78A4OPaFR5RdHgMff0MVu5Je2gRQ\nhABLWwm/RhG7cS1OaRVkXpgwW9lPzeV9+ODN3p9P9HJJRESv9v5G2X/ZP0nZtfMxWdrK+f1WEer9\nG0xhP95P/NNwzfS8Dg3BuO6jYz5Wtl6apaA7ni1eGPkNa/P3j36v7LpiTisizJc1lsQRyEHwh1bL\nlD0uAMeXvOAO1qZnZ8QWZ5bihi3aEEP1xc/HeG+dlhNS2e+0ha3rvQ6P9uij70NJJ/78n3LZR17b\n+xIjSsRjkz2GIObqAPRjRy76Y9VQfmNWlONeDNpsjIT+D8b59vD1uN8OViF/w3jtHY2I6MiomV7X\np8cw18Wu1x8yXSZfRgVBEARBEARBEIRmR15GBUEQBEEQBEEQhGbnrOpId+5urexp6/jn4Db7IT0M\n4ypLhbXSw367MvFu3fbyI8o+sb0N8/MvxSfqvM743F2XNFfHmaOVQehdxZaFL0Ya84IOPq2O8ezv\nvlL2M99cW/8VNIB3Clo2qF1ANuSl1QchASpsh/PjzOfXyD9L+/+HJuFNWsZ1J7mP4/fxMZDc2LtA\n5lUQwiWpcXdBp3XiZvw95Z8dmV9ULqQVqZejjS5PsBnKWOgEH8Ft4xmdz5bZVqCUzZhZkDu1uSpV\n2Qe28xTmowbtUvaXx/uZbldPKV+ilRfyZAQqu6Ibl6S7TmBfbz0+xHTdZlz87h+UbZQkdvf3IT99\nA/miwxxlv5ELqek88k2mq3PlTT/xda8YqmxdmttcVERyiYylPcod2H9Bny5pze+doFTvie0DjuEa\nH+gUy5a5srCtbm9CSrP6vleYX3mcti3NtLkhVVuwW6vzQ0SXdYGEc/UuLcbByo+vehBkRE4X5Fx+\n/4ZGcuiIXazNhu/5ts4l3O1wDEZZbkUkxkRHrm//683thxPerj1KX6VWcb3dpED9fsM4+LL217I4\nLifU5e75exC6EHSMuZFrMkph3Ry/zus2XxrJB8XwHyF3fSZ7gLJ1Wa4RdzHa6MLV3s/z86jLdh0t\ncX/QEV5qTJfjezQVqqNAOw+ZWuyEgapA9NXPb3qTLfu/A5h/W3RBeMnOJZ3IF1q1gO73eCm/L53Z\njStSUZc0d+y+ico2k+Ya28/X9s9So8kB83AeF//xZdbmsm23KbttMo71iRY85Ore3Q8oO3or/v7a\nVshOXZG83w589C7yxvoXuHRdLxsT3AUlZe7aiP4UkuJbJFroZn6udMns2PHblL1yHuZou6GvJ18D\nifuxQjwLhC6JYn69N2vSXE0O/tElnyj7j6/dydo05GHd49BK0vkoL6+L9NV4VnyYbtVsYInj89bB\nFW0bvV0zSrtjTFo+4i1lx/thdBnyK5d2s5JkB3kpPJ3yPhj7nL+in5UlYIw3k+USERXWYHAyloly\n5Jz+WhglyaVa6UJHLo7vlV5zmd/j701Hm/5YybzBkOK+mD7edLu/ew3PrUdMyrcQEV20darpsoYg\nX0YFQRAEQRAEQRCEZkdeRgVBEARBEARBEIRm56xm0231PqRiTkPm2VY/FBndf0ONg7c5/n+QB9zb\ndY2yl57qwvyOLUpWduKq02+nPhS1g+wvt9u5mxHS12y6up8xy27sFpxvZzaka7Zs385paadoZWcM\n5rKllv2QGTdtE+RlI0dvV/ahJ/l1dabm+bTdsvaQzAQcgrxo32P4e9gOc/mGTnUA/12ahHMS0wa6\n2pc7QUoxfR6XIAWnnrn/CRX2h4xleq/1yv5yzijTNpXhkKG064PseTZrDfPbcxjXpbHZIo0SYJ0F\npTjJj8+62af16fK9zx/g0q4edsj2RuyerOyLIiFpbK1roonow48n+LTd8mhN9nctZEP9Heb9KXnh\n7cp2pWpZKQ0ynSpNURyU5n3Y/uufPmG/71l/vbJrPRiPomP4PdoiGDLEtJntTPdVxzY1G/tjh/S9\npJL3BasF+5q1BxkUazQJmTPLIFvkXe28ZM1dmN+GvQfpkzGbbl4vHGyX7uiDryVz+VWwdh5XuVsp\n+4pAjJUjnjHPVqjj+F0W+90h7JSyb4qGTDfYivHj09zBrM0NkRhP9Oy+j3x1E/MLyEK/q9aSO9aV\n8VqnoBf6Vtj2M5eVtjSBX5dOg1OUvXt7a2U7c3wbr1feDlnryJk8m7q12ujdcCpD+c1iL8T+9Rq3\nT9kbduO+Trn8Q9ZGz6YdkuLbzadXOYgZhT7o/jSe71+wVmGguP6Pm/0fhLZ30xsXsWVZwzHfWtza\n/mwyf/Yyy6ZbF5WaOrxak3Y/cfW3zO/Nt6/2aX165ucrbkUYyWcbBynb12eQ4mTz63+hYZSuJozH\nePlQq+XK1rP7Gnk7H2PnBzN9m9fNtrm08w9s2Rv5rZX9YHiqsq9N4c9bO07i2Wnf4H8pu66stMUd\n0NcnDcQ9EWoYSCeFQFJ+kQPjpa8Zb9l+GmS6bZZBmh28zTw7t06lVu3hwFVPm/pduL1WEARBEARB\nEARBOGeRl1FBEARBEARBEASh2Tmr2XTtudAqWKrqcNTQpbl5nYwFXZF17/0DyBxqFCLHXApJScVO\nyMYcOQ2oqGug2nHuSnN1dMnt9CtW+ORnpCxaK3ofCyll7Bot62MV1yPtexKZcRMSIJHtH8Iltjuz\nIfWxuXFON33aW9nOGC5Pcaaa7ipDl+amXovtTOgF6cO6HVwOpFOF5LVU2buELUsIw++icsgY/k8r\nesxzAHO6XrcX+7CPyyWDI5Ht10/L2lsXR0dDttl1w/V1eAJPEM5rhQf32/GViczPeznlhjFyzxXs\n949dv1O2ntFzkibn7fwBl52YjSEt/cxlZ6u7zff697/l8IyZeqZOP3MFEDlPoa/WJc3VSZnwode/\n93iVH59/iVc3xmO7p7DfNn8ts+EJ3KO5hZHMr3YHz/b4X/IugUzTuYdfcXsljq9E6+vVO8KYX3ki\nLkyr7sja2iUc9tpv+rA2Ht9O3TlNlF/g6Z2IiLT56b02KHTfwmae6Xli4Allj3jmYVM/ncow9M2b\nWm5lyxL8kRW8oz8k3PHaPgRHr2ZtOvjj+KamX4x1DTzJ/Aq+w7jhqzS3qB3uWV2aW2v897mJ6lNT\nNFNFKF9mlu038CSfu9O+QRZ+fRUV2tBbHs0zhzpPYU685ENIc8/kf/3rkmVuX9JZ2a6euK4PZvSt\n93byO/Hzo2dqNUpzdSovxXartVCPsiM4q1HbyJSfP8a+utvxfYjVEqVnD8D+lEfgnJQZ5NeBaeQT\npYlaxnon7JowPNP8VMAz9fuKRes233wzXNmhWt+srSPhcoU2xFqqz84zp56RWZd5NydHtrVQdpt2\n+jOk+djbEGmujlGaq1PiQQhQ13/inOy5zxCGhEhB6q49G9Y1Trji8ABQWo359o34LcxvxG5kuc1f\nmFDHGr1TPgjbuSd9IFsWEILngeI+uCdc+3Hc/a/gmfF/nd0dP64y3658GRUEQRAEQRAEQRCaHXkZ\nFQRBEARBEARBEJqdsyrT1SU27jaVpm7po5DKrCJck064DPILO+QTrnnQMQSncV2drViXNTROmnts\nAi/C7cfqgp+1RMX14pPvRjeonc2tZckcCt1JZTCy5P7hNp4RMqsK0pz3tgxTtr8hU2vVNmihIvZj\n3cEpkKoe+R0XvJaHQypUoyVdTPw+g8xoMxoZE3/+DNLcKn5ZqTwa++enyYZHtjnE/H6eDxmxvQGJ\nmo9o8smwKK7LrKmtvxxnVpGWvXQXzn1da3KlYVjISkusw7PpyFrNt9NlNaQr5R1xU+my4313cOlL\nl3e8S4X6LHuA/U4Zj0LVC8sgL3l4zi3KduTyM9SQEvVd1t+g7NUD3ld2jI/yzdZXHGW/U79rY+IJ\nSlK4JjFip9mV9q0vDWt3WNnFrXj2vD0rOig76Lg+1vFxL+gY+lNZAvS3S/YiG3ZkDm9TeCmk2R/0\nR7bBez7hmajPZcz6o5HaAIxvsX6QQu+sZJMJLS6G3OmbN3wbs3OHYF5NjIcUN8LGx5biGtwHx7SU\nt58Vtlf2Y5F8rDtShXUcnYm+kHsx18tz0bZvBB/1/n9ydwzvJwGZ6Me6fNaRr9kmstzTocs0A9O9\n3y/2uDL+h1N1BWE0DndLnFdXWgN07Dswqf2Q0o8t8iVHcfh+fu5zLkP/DO2D0JeLIo4zv2XvIAuz\nrRzrqGCyX77u0nhc/9IWmHsDk/jFLNb0qjEb4ee5FvuT7OLXKDstCeseij58RQcuL/xb7CZlOyw4\n33p292feuJkaQkFv3Jf2TKzbrQ2xet8mIirogesffABtnIa5qiKiQbtUb1a6GzIrNi2uTPSTyZvv\nVLbDH+8C1WsbdkICRyFb/Bud5ij7kUzIxl+J4/ryfx/roey2YzF/j9vPpcHpi1pRfbGtwdz+zB+W\nKrvHP3imbosPmbovv2Ut+/39rKHKdq5HaMbuMC6/9/sJ+6CPdFOmr1Z2vL2AdH6l7uQL8mVUEARB\nEARBEARBaHbkZVQQBEEQBEEQBEFoduRlVBAEQRAEQRAEQWh2LLW1xsInzUfyW/9Q9pNjeYmF1vZT\nyn4x9TJl55UhnmVAHI9NWPclygP4F+Gwwg/wuNCjVyM+Rk+x3aPfEWWf+JiX1cjph3gEVzq08nZD\nPEpBb+j67VlnNyT3TBO/DuJ0y8PQ1+tlOYwkL7lN2bYcxD24DPER8esRy1HQHjF2ve7fruy1x9uy\nNl1iUSpi1xrEOlWF8njUWjt++4cgnjh8EbZTGcL3p7AzOoo1HG2sqbzchV4ewI3QWXKdIlNKWqCv\nHpr2rrL1mEMiIqcdfat0B+ItHD0XAAAgAElEQVQgrFpqd2eu+XZirsT9krYqydzxAkAvIVEexYe4\n6mBc/wNTEHd60T/ub/R2izvgnvh0zAfKHub05l03l+ydxH6fWoQ09o78+g/buX20chl7+f8heay7\n1mYE+nrAXn4QeumB6kDsT8hh8omcwejPjhAe139Dp83Kfipqv7J9jcM8k+y9d4bpMl/2LyCTX7sa\nLfyvSht3qgOYGwWm1f+aV16O+J1u0Rgfawwxw3Yr+m2YP26ey8J2KntcAL9GhTXwu0QrL1MRztdd\n2gpjZ+gBdJqSQYjlaxvHB8ijGzE+2cqwPj0W9ExTqo3L9g5IAFCzLdSb+wVDSIr3UlhVAfy6lsVp\nfTUI5yrouMEvXnsW2+e9D1eE8PFIL+0zYtBuZe/5Zzez3TaluCVft1kuh6L2/LhDDp3+W02VIUTY\nv9i7X8FF5jlRbE7ce61jMYGnZPJyW4dHzlT2iWo8H419l8cM1l7Aj51+ja++2CB2PayVsdGey8oz\neP6HwGMY3/S8JRWRvG/VaNcoMA39zOpjicvGEjOJ1zc6WYB48kEtUpUdYqjFteIzXurlvzx/P3J5\nTAjgDxM9X8KcuOv1h0z3Sb6MCoIgCIIgCIIgCM2OvIwKgiAIgiAIgiAIzc5Z/aBfGw7pwqtfTWHL\n9t2Jz+K370bZBz3l+4ZqLmMo0WQWzmzt0/eUUuZ3a8sNyp4WtlXZT6ZDDuwxyOr09PtlSZCaWON4\ninyHVj5Dy5BPflzhdEFQGo/uU7whAQu6wvysiF+jgFB89u/ZEbLofV90Zn7HxiO9dN9L9yr7/Ra4\ndsPy41ib4REoPbDTCpmuI4enIO996UFlb17XSdm5YyEvqMnnye57dEtV9o7DLbHuYi5Jcg+DTmdK\n+x3KXvzxEDIjqW+6sicdGod1r+b1ZSo0SVCAiRyoLh5otULZj9D0+q/gPMWZYyjLoPWHlW6DFrKR\nBB/EPTG9FGVIhg+G1OzjpJ9Zm04f3a1se0H9y/fURW4vjFVHr0J5mfbuu5mffxG2q0t2I1fr5VwM\n5RcmoBOGLETnLGnFjyHomHdpXtQ66FNzL+L36E+RuH91mW5d6PLZ5pLzXrzjKp/82o1Bmv+TnyWz\nZUyapam5nvr9HOb3l62XKzt0JQ8PMMOyGvVOtkahDIYufSUicmV5v0brCWUMnvJpi7+VFwe1hC7S\nHYv7Y1bfT5U92Mn/L17WAc8GX5dAnv7mP6823a5e9qXVYMjQXDaufTuUgznJ/qO55DbwBM5R56En\nlb2dLmyZrhn+ZbyPhB41k43zv9tKTz+mOYq4jDH6V9h7fvVNmptwB54n9i/D+KFLiImI7EXe98cX\nWa4RM1kuEVFhPzz0hW12mDtqhXVyCDdP7UAukRy8E8/IZd/j2cdYlqe5Srv8L9H9Ncwn+kwVOjSP\n+VUf08KnNGW2K6P5vvvteAzzoC6R1Tl8mD87B6RiLt60pqfpuisicS/p5e+efBvPk0/6vqsM+TIq\nCIIgCIIgCIIgNDvyMioIgiAIgiAIgiA0O2c1m27rf76q7MA0LtOyIdEexW70nv6s1srlFgUdIe3M\n0SSXR0bNZH7JC+5QdptvIL/1LzTX0qaPgmSypA2yn0Vs4/vtvhS6Dc9+Q6q1C4yIPeg6mUMhswlI\ngxSr1TcZrM2h2yAP8CTgfHM5IFFBB9gfT0WG2du+hrywKrxab0Ipl3+o7OQfble265g/87NoiiA/\nTUpx8y1LlD1jx3DWxlOIdbw6+itlv3hwHPPb3Odr8kbbOZBshhzh/wPSM/UevRJSyt7Pc4lFtSYd\nt5lkP600dDm7JiMaPR0S54XfXsz8ymO8S9zPVyo6Q+JkyeJ9KyDd+/HpWU2bOqudR9uFppDs633Y\nPjpH2R93+4z53fosstdt/vu75As9XkW/Y5kw93rz/i3D7tvIfi86Ct1+eT46sbUEY6dfBR/L4/og\n8+vkRMjdP5rN77czSWNlv61Hpyo7zI7+ePCTTsyvpBXsmAE47rS0SOZnz0QHXXTjK8q+5rlHfNof\n5++ylJ1XwrW0ewd9ruxrU0Yp+/AnHX1at447ll/LK34HWfrzscjO2+4LTSpu5Y8hh3//nrIranEz\nDnzh/5hf1Siks9898AtlTzl8qbJ3beCZ8YPStIznmrTXlW0uJy3shDHameVn6qfz1xtxTv/8rxvq\n8PSNvXdr/fFd9MfKzmXMz76vcaEHejbdilCMlY5C71l2iYiyhuP8BBzl821wmnk7M355Gdd/4KN3\n1eFZf/Rjqou+0zDubPnMXLp4tnHH8N/Wau9+vlIZomWRNpE0ny18zaY76943lH3NvAfYsoZIZv98\nB8aWv35wfb3b+8qZzKarZwfXQxDqQ9/fY/zeMruHT22K2+D+T73/D6Z+5/9TpyAIgiAIgiAIgnDe\nIS+jgiAIgiAIgiAIQrNzVmW6l/yIQtmpW1uwZf5altKKjt6/zbd/w/yb9pGpml6xBW/f9rXT6xhK\nWvFitievwLb8bPjsPL7DHuY3MWy7su//6rbTbud8pjIS0hzyQzcKjkGG4YpdYXoT+ubG15X9azkK\nm389cTDzq3gP6x4WfVjZP7wJ+WxlKJcatLwiRdl7U5Hd1+bg19t/J65t8li0iXVC0xrmz6VPq2ai\n2G9xMq5/cIr5/3O2PQlZ1dSjlyh733yD9E1bhS5Pd0dzNxevC+8TZbG4LrYukLvX/tr4jJBRwyDB\nzlkT3+j1NSV6reayRC4TM5PplvdD1m3n5kCvPucKNi2zpS77DbruJPMr+TKBvFGXZLf/tt8pu6oa\nksQb225ifu//e6yyQ46SKaUJJpIg7TJUBfJp6NA07J8ukdWls8Zl5xoVndAJa9wIXYjcaJ7EXpe4\nGgulhx7Asr63YZ75Oa2Nsl2LeAbu3AEY+1ImfkhmJC/CXBW5wd/UT6dWOwyLNsSWJvLr7dQTTl6q\n/VhunvZTHzt1jKELusx2zGVblL12Vj/TdTeWivDT+zQFuizXiC7TbWp0ma7OtU8sYb/X5CJj7fZt\nbZUds7nx+6DLdNeVY3+2l7difh/9ExmmrR70BT2MoTKY90eL9thSl6R125+8n/9nT3VR9vwPRpiv\noI519dj0e2Xv7D9b2avdGBQfes1cnqxnrDZmr7bUXxV93uCrTLepuWbaKmXP+WxUHZ6N40zKdN0X\n47nctSGILdMz8Hb4FOETrfqfYH7ZC1BJwh2nVRWpxD1W2ZrHkFltWkb/35vn2pUvo4IgCIIgCIIg\nCEKzIy+jgiAIgiAIgiAIQrNzdrPpfv4CdiSXl+4NSkaWvKJ86BBaJeYqu7SSt4n8C34fuA1ton/h\n2e8idkOOeXwcZE2Ja6EByOrLi4qXtIG2o9YJ+/VhXzG/x2ffCL8L/FVfz7TmPIVuFHtTqrL37kzS\nm1BMO1y/X3rNVXaHz+5mfu0GHFP20bWQ5vz9WmQ1e2wzLzhvPYZMnZG7sT85PbhMR9/v669dqexZ\nCyG/eOGqL1ibv72FbIhVmsLBv4TqTUkSv+U8DvwOOIlO419KptRoErm6pEadf79P2ftmd1Z2xQVe\nt912luQ8VRdjbPHfcOayaZf2xgGGr0G/N0okbVofcuaYD/WFY+EYuhQS5fxumvTNw9cdhq5FhVDs\nUXVCJfOzncS4HJCJdfgXm+/P139BttgJHzxq6ndeYlAtB2Q0bgrO76plPN7DV547CLqviBgtK/0P\nPFOvpZEZOHXue+Rb9vuj1CHKbhOKzM/VNZiX9bHJSEE37FzYbnOJsxl6xl0iosr9mPMDT/qWVVLP\nUl5b/104rzCT6WYblM+6pNATgWtkz+Ay7/B9jezfnXGNjOuqCvR+/fxL4VcZxH1q/fC743X7lb3x\nQBvmF7aVP1/+l0l3/KTsf60dwpaN7IuwrZ/WdVO2J5TfYFFxuBerF0d53U5DqTBXv5/3NKtMd3AB\n7PVauNkZfGNqapluSSvcy7URWHnwNl5h4A93owpEeS36/TvvTfZpO7pU3GI4P/o12/X6Q2TGBf66\nJAiCIAiCIAiCIJyLyMuoIAiCIAiCIAiC0OzIy6ggCIIgCIIgCILQ7JzV6AerVg7EE8I19QMTUpW9\nyYKYwVPFiGeKDOLlNxZ+h/jNF3KRfvupSfuZ30Vbpyr7wXbzlf3RxSgvMjZ+O2uTUY4gu2cTf1D2\n9gpeOsFeoKXmjzhr4bjNQmlXpHAO/R5xIrluCMhbdMxmbQoXowTISP8rlN1j8CHmNzwCv++/bZGy\n/5DRB+uOzmdtjhXGKDunF+KRPAE8Bmb4JTuw31otFVsprt1VQUWszd80W48TvfOe75jf+zOuIG8U\ntcE+uFoXs2W7ByI+1Vi6QKcsHv3JkYd9rdbu4qix6azNzgWIxdIjeUZM/pX5rZ7fh/5XKNfKQTiz\nfYsZ85UzGSeqM6BNqrI3VKKsQtTPPF6r/W0Y+0qqESdyNJfHDB7U+mBHyzRlhy/xrcRNdaJWX8Zw\nSq1VWtp3rfKIv3YblMXxRsn+PPX8+UJFFO5zRw7+17vyzpeVPWgJj5sJyGjcNBx0XP+fMp9zItdr\n/cESaebWpDy7fhL7/fpQzMvPvom+pceCBvMQJlauKGXSB8ru12Iq86tecvp4O/9VPEDez7fKNQw9\nTrTTpZib9i9v78W74VSEa/0n/+x8KyhNwHYDT2J/6i7ZghNUEWKILZ9+XNkp65BDwtMWwWR+KTxH\nh05dMad6bGhuN2w3KA3H4Cjk83+FVhLuwJedsJ+mW+Es+ADl5YypF37d1wM/tDk/5bKPmN/OSjw7\n3bT4YfKFootxvkI2mJ+vxnL3tQuV/e5XE9gyvdzQmSwvdE6wztce0fzoMZpDrtzGlv3yRW9lBx3D\nfVBzEoNsUTcenLquCOPYpgxePsmMskTce9eM+VnZ388c6lN7I/JlVBAEQRAEQRAEQWh25GVUEARB\nEARBEARBaHbOqkw3ZC1KEhR04VIKlx8+Iwc6UCqg1A351j2tV7M2E66YRt54bRYvNTC6xUFlL8ru\nrmy7H0q2+Fs8rM17SUuUnaUtem7GDcwv4WfIO1MmN49k72xhzcZn/8wB+LsnFXKwlCs+0JtQcvpt\nyi4+GKds15s5zO/+1cfIG/O2QU76x0FL2bLEZMh2v8/tpez1acnM75GYFcqe9tAflO2+jPcTnRpN\n2qWn3zaT5RLx8ishR/F/n23XfuHF+/QEZJxeUlrwXSL7baZIm5H4C/vdhZpOpvvGLR+y3w/OvL3J\n1t0UNESau/OPkCdNPjRW2Ue/a+vN/Yzz50RIqSZuNJd5Hfqok9e/VxrVhQNhHhj6mbJf64pyB7P/\nMVZvwcq5BG/DWF5jmFWcuRd2uIKOLs3Vibdh3kqZyO+PvhvvNrrXi7I4nN9Dj77Llr1T0FLZM/8x\nsVHb8ZUBHY+y32+kjPbqp5dpKWrH539bsfd7dFTiQfZ7GdW/LIbZWF4XVUE4x/PaLVd2lyaW6TaX\nNFeXWxJxyaUuza0MxnXwOPk1KU7Gg9DzY1Ea4o2/XsP8Cj5BH6wagHXP6D9b2X/ceStrU5aAdf/y\n8vvKfiyrF/P7Zp3+4AHTUYjrVRHasHOqh8VE981SdteIDGWvXNOTtVk79VVlh1pRIqP33x9kfiWD\nER608FGUsfrFDYnkB6nDWJtQK85dIUGmWzGShxTRjhBqDLo019hPLjRKOmAA+G7M22zZ9f/0TT7d\nlBS3RycOPuRn6qdFl9G6b3uzZXqrou54pjVKxXV6voT7v0rrPjETTjK/zAK80wSsg12XNNc9sI4a\nhRryZVQQBEEQBEEQBEFoduRlVBAEQRAEQRAEQWh2zqpMN2YL0ikWD+O7siwF8rLxyXuVXRCGNFKf\nZwxkbV6ei8/Qj14NOejirK7M76p4ZBLtEJOp7E4OfJJ+9ODVrM0Px7AO1zxk2YrfyyUSR6bi07XV\nXPV5QRB4ArKdGihSqERLwNl53Y2sjZ8TGRQDIvD5vqx9BPM7WIVlkz96RNmjJuxU9lu7RrI2yy+G\npOSZr5DVrjqOywQnbXoUy6DSpuj4PGXr8jYiInc01hF40jeZp7Xa+9/br76Z/Q5aH+DdsQmImHxC\n2UdTYs/YdnTONVluU7CvErqYpED0k6N0dmS6/y6CNMfi0bPV8r5pL/IukQ3lyaup35/qLxV1ZWFb\nZtupi+rJkNXXVHJBeZd3zv9MjXvvbR6JW0AmroOepZPozEpz83ppmV9zIQ7be4qPM7HBSD+uZ4H0\nc2tOUVr6XCKq1KSVXf+JvmA3KBKr9GTPWtfXM54bsZWZLzPD0grz0YWQRXRNufmyPC0rbcRuLVst\nj3ahiF24Rk+XXqvse55YzPy+emGcsmv9sb4fi5HpvcYQT+JMwPnW5+ItuUnMzxKGh6yIlQgVyNWS\n2kbuNGbT9f4NpiSJj2FTxmxQ9twf8azp6glp5+Hr3jOsBXL83n/XpI+GiK0vLoZU/8PcIcr+9uf+\nyg49YC7TdE6EbLiyzMmWNWVQxNnq69UBOApbGfpjSRv+UBV0tJGvMNVYd3PKcoMuwfUrWYnx0lJd\n/xAivzru5ZBd2oP5ZTB1Wa4Ri3aK8xfyaiGGpOde+dO9PAztz99c50Mr+TIqCIIgCIIgCIIgnAXk\nZVQQBEEQBEEQBEFodiy1tbVnLdXhmP7PKvvYRJ4BTE9m607Ed+PYJEjkso5zaWdYPDQ8HaOylR3n\n5NqevEpohdbu7qjsgKPQihhlPh5NCVHSFvuT0JpngT15DJlk7afOqgr6jOPSspLWauoCWzm6lIUr\nZKgqEI7uGM3P0Asj+uD6ZWWjtHRCbIGyP+n8L9Zm7BJkrEtchv+z5PTgcpeADGzMb2KusitWITNj\nl6v2szYHZnvPSnqu446GbS+ErWeHJbowZJE6Nvfpfc5FdLl7ZQi/KZw5uHdGXIcK9MsX9FN2UNr5\nk7m2WJP9BafwZaUJ9ZcrnQv8adocZX+fg0ybOxdh/PjrTZ+zNi+8dP2Z37EzQF4P9LWInbheuf08\n3tyJiGfQrYtKTdbo7gQdWuhmpxfvM081kpeyZ4ELkYqOGDxrqrTvFTX8ngzZicHKlYuJ3jktk/nl\nleHkVW0PV/abN0CqOibAPK3xrKIYZb/yGQ+fCj5eY3QnIqLSeOx3YIZvMl13DP9dEYPnPP9w9EFP\nJp4fk7pmsDa/b4Fx+dUdyCK9cTCX81otOJcDPoE8tCIB58GVYmdtKsNxHE9PnKvsZ9ZcyfxcaWY5\n9M9/qoINc2IDMuOfy9QOwkOa30+hdXg2LfqY5tHGOnv+b30bw67XHzJdJl9GBUEQBEEQBEEQhGZH\nXkYFQRAEQRAEQRCEZuesynTv2XqDslNLueQ281+tlW25ElLK9uGnlN06IFdvQjFaqj1/TedbU8vf\nuaNt3v08Wjq+MCtPuefUqmPvLU9U9s8FvOh1kgsy4tm/IANbSDwyB3/TmxefvWLTXcruGgfZR5wT\nbSoMleSrtWNye8xlGYlOyFrztNSDof6Q4jgMaV/3FMYru8oDievSzj8wPz3L4YVG2GHv8h8ioqx+\n6CfBKVwmEpBj3u5s4I7QZdGwAzL5bV/QqVZbhr5VEa5J8XafWxLQojb8vrYXaMsuQnbObaP/yfxu\nOjJZ2ce+PjvZcBtLhTZcBg5AqEDOSS7tOZclW3pB9eQfeAbmgFTst7sjJHKuA+e/RvKD23h/fOi5\ne736lcXxsUWXUlm15LO6tNsw1bEwiRotk6m1yiBvM1G7+feCTmtn/9nenYio56bfKztgDu+D1mps\n1x2JHSwdqRVDP6SnxeXH4VephYNY+RikT4u1ms3Oj+EWqHFiHfYCbMh5ivvp0tyyRJzIyA547rB+\nGak3oYIrcEw1R5FZtcUqcxnqmeRUL3SOsgQcw5GpxiywwGxe33MfD+149lQXZX89Z0QD9/DMYNxX\nnd5/u3CfW4iIWl5zVNkH1iIWIrQ35on72v7I2gRqpR+CrXg2TLTxEDd/bUAJ0GKrAi1WzYcPQlbt\nm5efJk92WMznprIa7E9ZLe6dS159hPkVt9H256S2nToyzJ7L1I7EeFt6lI+jNQE41qkDNim7R0Aa\n80u0YR3BVpyIAC1Nrp8hLi5Y++2s41qaXbM15Rhn3s8YwZY91WKhsnsl8X3VkS+jgiAIgiAIgiAI\nQrMjL6OCIAiCIAiCIAhCsyMvo4IgCIIgCIIgCEKzc1Zrj2zKTlJ2cRmPBfKLgrbcfxFKbpy4Avrx\nKAevv+KoRsrtYE00HqAHkBBReS10z5W1iIkM0droPkREaRWIDVmVhzT9JXdGMb+iGTiOgDSc3p69\n0pU9djFPb6zrv1NKsZ3jZUiD7vTjMScx2rHbNB1/RQ0vY1KlHV+EP+JZQmzmovpjixBn4MjTtOXP\nmTa54MgYxjX1ASdwHgPbQ5Pv7FbJ/E6m45olLDv7pX3cWtyZvxb+YTWEMNWEIp6gNEKLH93nUHZF\nOA8sc+Q3T3xsRTj+Z1Z9CQJD3dk8zizkKK6RZTP2u3fJg8yvNhDHGjQa67OtCGv8zjYA7RYl/zGI\n6/lrp++Y35yc/sreuLC7sks3YgxyEafD6CPKPrji7MfHzr/tFe0Xrl9dsa3na5xoyNAsZW/o+a2y\n+z/pPUbUiDGuuywW9x+LH9Xv5brCurV4LSsftli85eVT1iv7pdjtpqtLXnCHsp0ZWEFQtXlpl+Jh\niEeLmo/5Oqc39/M4tPJbFdhvSzUfgyx+2gFrm9Wnb2M4rD0f40nEXvN9LWyDG/PINYixXFaGlb+Q\nezNrU+qP9ZXE4iSnD+NlOmJ+xdjpX2K+Dw3h+Fh93sF2tJAx6r7xOtZmY79Zp12vMZZUj8t85r69\npn5nEo8W/2vtghwbfbZco+yKX3hcL78SFx6RDjznOfK1+X8WEg385fJJrM0DF61Sdhs7yupV1Rrj\nP3G+9awqdi3m0FPL+7O/Hp+oTXb5NTwvy73HJyh7xw+dle2njVXGezn4qBaDPkBbn1ZrMHCTcVZs\nfkpb8mel4UN2K3vL7B7K1mM547pkszaVc2KVPdeNfDR+I/i6/bXnG6v2buBkeXSMOQP03Dnm17JM\n+/15IZ5B3tk2XNktvuZz+RWXPaDsY3eSKfJlVBAEQRAEQRAEQWh25GVUEARBEARBEARBaHbOqo7Q\nqn2Svq/rarbs3a2XKzsoE5+Gixai7MiS+DjWpjoA67NEQprrcHJNos2G9UUG4tN+zwhIaXMqglib\nI4WQetR+Hq3s/Gv55+7rwnYpe09n7OvfEhcpe8rHXVmb4EGQzH7dZiX2R0uXHxVUytqkFGB/xrbY\np+wFqd2YX4Adx94uDBLAY2WQbKR+ysvTOOrUetWP8s5u9tu5r3GSieqemjx5R1AdnvUnZiSuf9ZP\niWxZ6FHIHQr64X84JatimZ9fDM5dYRstjbkmd3YU8fOrl18oboF1G0sShKacXhab04P3x6oWuA8C\nNkCg5FfJ9yFkJ5YlT4G0c/epNsr29OWyeL8lOP+2cvM+UxWIfdKlvrr8xpXNjy2/M/yuvfwnZX/2\nK+QpgSn8BBW1hu3QyryE7uPS9bI4nONdYz9WdneCdO1MSnbL4vm5ajEQ/S4tB9t94vVbmV/xYIxV\nvkrNzKS5epkPIqLKMJz/q4YgbEAvKZVayuVuh1egb7iTMM5Y7Fza0631SWXrIQqu9MZPP7oUtn0Y\nanNs/b6bN/cmpyqIn0f/EvTborXa2NCz8dtyFGBbeQNx83Rvg/4TbQhdaeFCSMGRUsxbW060ZH6P\ndF+u7FtDM71uv/+Td7Pf0Zrt1n6UtOD3W9AJ9IeYf0M+77kF85HnMO9bjlysw5WN47bx6YT8S9Fv\nPQ6c+xqbxatPndzKa7uUZYZ7dXt87xRl2x/IZ8vsHowt1kKMT7VtuSQxvQX6fm0V2iS2RNmYQjeX\np09ps0PZi0+grEqbMF7ibmJoqrLf//dYZevS7oiP+dwZMKD+4lVdjnv79Xi+iRt1gvmt7LKg3uvW\n6bIeJQD3DvqcLavSZIO93rlf2Tww68wx97GX2e8IK67lqBf+2KTbir36mLKPrWmlbCdXc7Lyguu1\nkJuKCOxbu/f5PTHj/mHKvr7zFmXvs/LnoCGBB5Stl0U8pZUATPDjfb1cqx7pZ8E8cf2uW5hf4AyU\nMgmIRZuwo3g+zu5l/vwYuBGy/+LezdUDzHFrx3D72JVs2ZcfXeq1TWwwpOZp+fwZxBqNMa3tXAyE\n32UPYX4/DsPzvC77ddgg39VLNhIRjYw7qOwkO8YTPwvvJ58cG6zsE/sxvwWmo28VtWJNKHqjNkfW\nIdNt8NPAyy+/TFu3bqXq6mq68847qXv37vToo4+Sx+Oh6OhoeuWVV8huv9DV+YIgCIIgCIIgCEJD\naNDL6C+//EKHDh2iOXPmUH5+Pl155ZV08cUX03XXXUfjx4+n1157jebOnUvXXXfd6VcmCIIgCIIg\nCIIg/M/RoJfRfv36UY8e/8kAFRISQm63mzZu3EjPPvssERGNHDmSPvnkk3q9jP5j0xj2u+0GfIa2\nVmhZoGz4FK9LJ4mIsvvgcKxZ+JzvyOdylwBNEpjXElKchfEJaG/INtj2rcPKzrhGk19ZuUwr1Q25\nUc9WkKuM+QUSJ6O4dP5bI5X98F92Kru0DJIm/x/MZYNzOuAzfehBviyrL85dzj5k3QzbZ8xL5p1q\nl29+ZrgC+YksD8e10DO91UVZEuQFAXVIc5+8aY6yrw+G1MDX7H4/dkX20n5fcklaXifIEEYmQca6\nysMlzv57gpWt98+SBLS3GJInOorRh9yazLc6vJr5haZwacV/0TP/BiYW8YV7IH3pOG2/so/O6Mjc\n9Ex0eeW4x64fs0bZ44N3sjY3pN6nbHsRji/oOL8nqgNwnSt7QW5eewzbqQzm4esfXodMjfPy+5I3\nqg2KHU97HINjXQCZYa323u92DfhS2Y+04uk9V3x8sdc2BX14/46Nhz645KcYZd82DTK2B8NTWZuB\n269WduBa8/4drB1TRfeDCh0AACAASURBVISpm09Yq/g5cJ5C3/p2A7L2UrAW4pBvULq0g3zq4nYp\nyo5xFjO3pd9jfa6mTRxK2QegD90wFRlrv70ZWWCfnnUDNSWXTNms7BXf9fOpzdh9E5V9agA/CdEb\nvd/XRvw05Zk1HxLQPdtaK7tr71TW5sfNCAkJ24t7zOXHr/+tQ7xLc/s9hXHQeNcUjse9HLoYmZF9\nlcUWbcD94WeQO5e3wn1lc6PfuXLMO5BfhSYHrDR149vRMnW3DSpky7KzMc+/lgdJeukO3HyXXf4z\na/PDJ0OVXdsO+9qjRTrzK6zE4HX4OM5D7i8IPdLDjoiIPk/Bul3Z2O/Lbv6R+X15cgDWkYx7NOQX\nbPP45KbNhP7hF5eZLuu6yvv8+/Pdryr7UDUPuWhvw7hjlObq6NLcxlJruA2N87Q3Hjs+mf2eFrfe\nxJNT1B7nP+SQb6lbhkXhGXTQjYuV/dA/7mJ+5Vp8T2UkDqL1fPNQmtZvYx9mjxmhbGMf/FcO5KVW\n/fFEc6uIMISAxMDRmY59a7mCy3kzLsYyPUTJUutbNnWtmAbZj2PMeOjuuczv9XevpsbQaspRZR+b\n14YtCx6PcfSWlr8qe+YH5veHToUH7zDlx4PZsuRNuJf9U6HNTrDxULHi45gTq7Rx3pmGCcRmGP+X\nxEOmXaZVYAg7wm8CRx7uy1i8LrEQqSpe5IA9/9VFgxIY+fn5UUDAf6783LlzadiwYeR2u5UsNzIy\nkk6dOlXXKgRBEARBEARBEIT/YRqVTXfFihU0d+5cevrpp9nfa2vN/wMjCIIgCIIgCIIgCA1OYLR2\n7Vp677336KOPPqLg4GAKCAig8vJycjqdlJWVRTExMaddR1klvsVH/cglYFVa4daATMi+Qgsh362K\nMWSEy4LOQs/gWdSWvxxXBcFPl2KEHoIdPWc36ehriPsZUrwTo7l8dv1yZHGM6ItP6ZWZ5rJBnWF/\n+T9lt7wGWSiLf1POHujS3Ny+/LN65BbfJGA6bi1rV3ls/eU879yKAuEjXLx91y2Q7OhSDCtPeMwI\nOO69m+pFt4mIPLXY1pGqMqO7V8paa9mGv4AkLbaU95mI/fi9tAMKMv+570Lml9IREol/rYasirQM\nzmSQiepyl/A9sO0l/NoVt8T/jnpchSLjiTXw23acZ8n0aFlSD33cSdl+hozJViv8hsRAhnxX+EZl\nx9v4/Xb4+neV3fFjnLviVvz4Kjvgnq1x46L7JeHv+0bMYm2+LQlR9hvxyO6XWgIZvDuJS7tcmrTr\nGCGLbNhkLpHTeSO/tbL17ICTw7YyvxUEmW6VdhqsDn6/ZR+CFL7/JMiijdJcnT7RkPOvt2LctDSt\nko5RFWjIAluqyXkytX6XaT5+VNRgzD6Qh36/fVNn5tc4oX/dODW5oi7H9/TCnFH/EfA/VHRF/4yN\nhIRz+feQ5pYn8YErQMvw/NzNkBcyqXB7numxLBbjW0CWb//IdZ7CcVd0w36mf5nM/KK0TZ0aDu1q\nipZF2oieNVe/dhWh/Eo6HDj2nL7orPE/kU+E78e9k3kF19VGL4c0r8Zmfk4qwnAePHYtm672OKFn\n8yUiKotBj9Dl7rsX89CFmINot284MuPbyrCdr/f1YW2qeuA4gg5iJw6mdmB+sRPSlG0pwfWP2YLJ\nwK+SDwBl0fArnoL++MKu8czPvg7yvriTWhZ4LbH26O779CbUcSaueVOXWAgYhKzJZesxPg551zzb\nrD63P5+D6/LFV5f4tE29va9hOr7Ico0cmc2v6zPUwcST46s0VyfUhmeaW9ffhHUZ/NLKEHrmPImr\n6V/s2zNR0jL4ZQ7gz63+2nORnt3bXoyTV9yC9yDXdhxrQIb5PmiHR9XaHOvxMQ9qZXesICYC4Uqe\nWn6uH7hrnrLfem8KmaIPd9oQpEtzoy7nmaMHRKYqu5MjQ9mDb/iV+a37HOOGOw4rzyrU7t0NfHfs\nJ3HP15ZhzLfl8xTjoVpYY3k0xtG8jgj7+21FB/yO+RVjmD2HXy9LNcYTPXzSY0c/8S8zhGk5z6BM\nt7i4mF5++WV6//33KSzsPy9jgwYNoqVLlxIR0bJly2jo0KF1rUIQBEEQBEEQBEH4H6ZB/wRbtGgR\n5efn04MPPqj+9uKLL9JTTz1Fc+bMoYSEBJo8eXIdaxAEQRAEQRAEQRD+l7HUnsUAzzb/eE3ZoYf5\nsshd+DxsO6BJWkI1UYJh109OQIHegu6afMrP8Em6FO/gelbZ2C8gza3p3Jq18SvA/lgq8Bm71s6l\ngpUtINtNuwSfxYNTqVFUBfFP3f4lzX/Z/K/i1ZVZUXcNo3xW57oUZA7esbCzqV9jqWsfLt5xlbI3\n9EQGTl3OY8wi5zyF82/Xst/mDOAZb62lkIAFp0B44CjU2vQ2XLtoaOnCV0NWUZrAr3mNXcsW6dak\n1JrsLyGOF2FPPw5Za3Qi5OXWL3mR+fwuWN9tVyxT9gPhkJp6DPfb4jJIrp6cc72yAw2q2EpN3ufB\nLUHTpy5VttPCz2M/FzLW9dOK2ftZcE4fzOBZdseF7lL2E6/fquzkaw4xv3ntlpM3vijGOcmqCmXL\nPvh2nLJdhiLjZmz7k/c++EFhAvt9Ryjk+LokbUtBEvM7kofzXbU1nM4lavzRN4yZenUqO2Mcte8z\nD10wk8x1vewA+71lWztluzIaKsitH5UhOFZjBs5HJyIjd4kH9/LbG0fBqYoLkqJ/wUr0DNE2rr7y\niRrDv5d1hVrBUGRjdO7jYR+BJ3FMxa01yTYUllQWZxi3tJ+hUPb7nE1XJ68rP5GVbXHwIRuwryVJ\nfB9ittZ/W9n9tHE5D8dqK+V+gZma9PB6yP4qdmOOr23LZWxBa9CndZl9aEodcSgmlIfzi1kW4z0j\nuyuXnwNnPsbS1BuwzBmA55aQgHLWJisDxxRw5MKuD28vOL1PQxl+6yZl//QxsohX8OmWHLlUb6q0\n5KqlybjGYTt5PwmchIyuZfPxjBa1q/4DSkU47wvZfbGtSi0EKOgY+mbsJt/kwL7icWJsyOnmMPUr\nScb+TBiCMJtuhgcSfVz+IgXPENUrosgXrKPylL2t31dsWbvVNyu7V0tIeHes51UXAk5i3Bl6A/Z1\n4Zaeyo79mc8T4fPxfFNThnPsF8ZDBYtHQiqe1wnnrjIMY6ceakBE5NLCQ2K2lCjbepjLkC1h2vtX\nFfpgbQnaeAp5RYfsexHitOOth8iMRiUwEgRBEARBEARBEISGIC+jgiAIgiAIgiAIQrMjL6OCIAiC\nIAiCIAhCs9PUWbzrRSQk0GSt4rEglWHQqluTkFa9OhSa8bxOXD9e2BGBFOHx0C1X1/B37rJCxIMF\n5EBnXtsOMVp+B4+zNrUe+FnC0N4THsj8Tg6BHr22jpT09cUYI6qXX2k1JlXZKT+2Zn56LFBjyc7l\nScSdJn5dZiD2sinKU+jxnx0+RQp6/2Lz2LRhu65UdvpeHtua1C3D6P4bqoMM5YAqsK2qYNjdO6Ux\nv1170YeKtVT6cT3gV7CBxwJGLUA/LtdCAW2G0AtPjRbfpIV/+KfhXsk5zo/VmozYoKqFKL/hIH5h\nqkLwu5UdgWIOixYTbTjdw104j1URaG/fzx31eOeAflj3IxFHyBzEOiwpw/n5tay1sv8vajVrMWrx\nw8rWoyi27eXlLghhhrSpQisHU4GYkW/e5yUEzAsrcdwmFa3KahCv1cPB+8wHhSjHMzwIJReejOLx\nkb3/rpUoiKBzirriRHXqihP1hd1LePkNVxOWv6kK4fe8f5H3Y7Kb/J2I6KUtY5UdHYnyMnocnh67\nQ0RUejnmqsDvjYUa6seW5941XdZmGeKo65oXglO9LzPmddA5NRBzb8JK3/pCjT/8AtMMpbT26sHl\niIGr+jHOp3XXRcxmk05j4fudOQn37JH+s5WdfOp2NMnjs2DYkfrHhmZdhL7Rdhxi5U9k8MGkNhXP\nGnEbcQx6LCkRkVNLG9DiWzziFSVhX7P78VjA+OXwW/9a/cui/C9R0F2L19zFH6H1OFEdX2NEyxK0\n+6A9D2IO+An1ToxxojoZOXg+DfGrf2GtsjjcexlDePuA1gi4rSjErFhWeebijE/cgXvKud48ZvTe\n0ch18XDEUVM/nU8OIp7R14wDNasw+eb04dfoqs7blZ3sOKXs7uNOMr/P96Cf7CnAmObMxHUN383z\nf1hDEDRcPgT5Vgra83Nf0FsrLxWBOag6G+OHvYDnuvFHyCdZS/DMaAngTz7utnhGshcgV4n1iBbD\n2oWXNyodUkK+IF9GBUEQBEEQBEEQhGZHXkYFQRAEQRAEQRCEZuesynSDTuBzsn8hTzVe1gKflEva\nQJ5Q1Aof04u7VLI2vTscU3bbIMgBl316MfNL2od2rsPwqwnSJLYeLuWxatLcylZaiYVQ/rnbnQgJ\nh1+J/q7vm1yiLFaTNGaZS6mceVh2aFMrZYc2hSxX29Xc3pBfWXLNJRKseRNK54i4lLIuaW5FN0gF\ncn+CtNsoJ/6x63d0OoylJUIHZSm7SzjsWAdPY33fpSuV/fzRCco+sgXS3Jgd/BpVa6VLajRZTVki\nP5EBrbGtK9vsUPZn6wYr25HDxSY1FXpqb/zdUcjcyBKGe2JqkGHh/+eXcn5SZmSNV3bMevPropfC\nmd52g6mfGV3s0Di1skG6squSy9gcWSbDmZ2fxzfyWyv7l4I2yj7wZad671vH6/az35+2RrmaBzMw\n7rg9GCdW/diLtVlwzT+UHWbFviYvfpD56dJjvbxIXbLRpsSdwMvvuE6euemjOlBLQ1+K46sM59fS\nkdu4/6dWRGry8rzG/29WL5lSbCLurrUaSo1t0ssI+TZ+V4Rp40SCb22iVjetlE4PFbEGYYwubMOP\nO/So9zo9pVMxznSLzmTLugQjBMCj1aeZV954ma4ZeZ359Y+Pxv6tK9f6nXa6LT7K07P68nOv9+9a\nC2w9pCgylEsAM8Mx/+b0xHgSv54/B+V2xrZqtM1G74BfxAF+rKkTvfch58V4Pirf4Fvpi4ZQZQiL\n8S85c2PaTfcuUva78zGHBaT7tk2nNs+EXcnLhhT8O9HoflrK4nHsesmPquIgb+6nxXEA919glkmN\nLAMpk9CmOhRtgmKLmV9FOfqdXzY6V8Ja37bTEHq3QHmRfWQ+Rw8I0OMIzMfyTj/fqGzHumBTP52i\nTpj71k9AScooP36N7oj4WdlvnkIZw3B/HnN1Q1eUAJr3yQhlR6diO1XhfBzNH4gngKrxkEvbrPwa\ntXbhXarSg+c/TxraJ6zlZX5sRdr7Vzqeb8kg03UdhvS4NlAruTUcpWuqXIbSZWG+1cKTL6OCIAiC\nIAiCIAhCsyMvo4IgCIIgCIIgCEKzc1ZlupZayBOs5VwCVh6Oz8uTHv5R2RcHHlL2y6njWZvr4zYq\n+3AFsoqGHuPrrgrEui3JkcquCMPp8EviWQ0decgcVdISws/ycP4+71cCOU9gur7MXEpVHQBphqbY\nodw+mkS2hktIIrZj3aGHqGnR9sFxCuekMrz+Uoy/3/IZ+/2nmdPqvY4bv3xA2XV1WMdu3zJ1+pIh\nUJcGEhGNS0CWU70P3j/7Nub3VRikmUGp6Gd2ptIy9AVtU4Ud0X8eGr2Yuc2YA9nvv4oGKDtl8gfK\nfi2vDWuzPh+/D+7lWc7YHuVjB/WMxc7OkIO4vg1jbaq10+1fR/8u6IxlqeWQej2ZhdTBcxcPZm0C\nu0KO2zEKMo+LQiHF/z69B2vj0tQl+jkN28olcp9uvcx0X+vLxt1t2e9nAy5S9kk35JdbN0PGUhPG\nx6PLlv8ffthw/cO2mcsqm0uaq3MmZblGjPfff2msLPdMr88XglP5NvVM6SUtcdx7757B/LZXYA66\n6c2HlN194GGvPkREU+dA6s3v3sbjyNfu+e2QbFl592ZzZHkkji8mENK1L5N/ZG30DNoe7WZednJo\ng/fXG3q20KBjfFmEC/v3TT6yXwYegVSx1tB9yqJxj/zyynvKPljFJbeX/+uPyq5KgHy2qgZzhuv1\ncNYmpAu2G7mXS3N1IveZL/svFaE8nMOvHAfyfA4yVp9Jaa7OmZTlGnkwPFXZ0Vd/rezrg3nK23wP\nrv+oF3C9nJrqMPUoDxVpyD3W4mJIfVd2WeBTm46fYI6u4ZFi7HnQXoRntho7rnFeRx5yZW+HEKBL\nk5DlPq+SP1P9mtbC63Yceehz1S7et2zu+j83lkdh7tt8FGFodQmX73z/PmX7lZv7+RZsxvlJk+bG\n27AX7xS0ZH4ZWizUWwmbfVr3PBqhbFcWdtwdywPM9BC+inS8nwQn8lCxonIc4dgWCCP6Khp9tTSR\nn4XqtthWyUQ+7ug4czHmu7RQwZMj8dzizOKDoqfAN7m5fBkVBEEQBEEQBEEQmh15GRUEQRAEQRAE\nQRCanbMq07Vvgxzg5LSubFnYRBSJfSqKZ6z8L6/78c//fRxosygPEr6svlw2cO3la5SdpGXqjPOH\nJPHhrVNZm9qjgeQNP56UivyL8H7vr2UR1bMfOgq4pHHZI68oe/RWyD5TtELbRjnAB0cu97odj4PL\nXf7v/rnKfnYD2qSM/VjZfZ++m8wI0oqR5yZx/ZW1JbJ41Wz2LlBpiCzXiJlk70xS3Y5f2H/pRYqT\nkKk3apdRnqrvK6QLJYnm//fJHgmJS8JiaG6+Wsdl6BHa+sJHIdukLicaG7SHtfnnj5cqO1C722ts\n/JzqcsXQI9hOZVfYlhpjxkPyibB92Na3Eb2VHbMUUhxPX77uUjeWHf4EsrF9wcim5zrFM6v6uczv\nAzMKO2MMSeoAnW/hdwk+tQ/byTVSi3cO8erHRf+N/x+gngW2LqmpUeppRpd3Ty9d7zN+L/v9eevV\nDV7X6bD1h0y7epO5bKhMG5NSJkGu7osU/3TsuQ/nrv+23ym7dF10o9ary3KN3Pv775VdUsO1Zr0c\nkFLp2b7bByPD4ZS1fCzXp85Nz79rut1OH+J8ubA6qtSSTdYaqsK7k7Vs+Nm4D/wNEvKRN0Ku9lIc\nsmkfqMJBXPSXh1ib757CnHjS45uw7uQo7+fV4uLPCfELMRDGtEe22KwgPoelLkCIw964ZGWHaVK1\npGmHWZs5bZco++uSCGUvzePjwvNTv4B9YBy2mYWwIT7j84yer90/U9mXGI5v4ParlV31HfpqeQSu\nS3UAP1fBnfKU/cVXl1BjqDE8VRpl22cbfb4c6MQkNngnf1ZZ12OesvW+r997YTsMGtkGkLkS0lfq\nYu535wmEAI0Ys13ZKw7wDLMhyzEf6BLZ1ImQ0kdt59ffvQMhJUXxGGcuj9rB/E65Ibk80RrPxPZi\ntLFW83UXtMNcHpiNeSv7Ij5v6X3Srxx91bXbt9cUM2muUcZsrfLuVxeX/+NRn/wqtcTo3xfWP6TA\nlo770N2FjwBszj+FDtn3ojTmd2csQh5ePoFnyFp/tM8cx8cM1wGMsbW98FxfXsJDhdxJuGa1Wt/X\nnw1rDY9efvtEpisIgiAIgiAIgiCco8jLqCAIgiAIgiAIgtDsnFWZrnsgsntWGxKhntgBKeQNQSOU\nvfsr6Bi2P84laNemTFJ2bjkkBGPHbWF+z0ZDyjihz1hlZ3+Eb+xP91rI2vy54gplu/ZDkmCUBkTs\ngwagJBGnt6QNtCrV0VwCOvzjR5QdeEKTOEAZSsFW3qY8QvPTvovveJSfk5F7sN+R67RP7mM1J8Nn\n9fwuWHf4HiwM28LlUpWhDclLpm22L4qK124JrcOz+Qn+mXdIXYZw36MrlT3sjZXMb/CDd3ldX1B6\njde/ExFFrcF1qbViO5lDudzFr0T739EMZJibSA8r22OQpIQH4vq5NXWhUUqjZ2t2R2uSXQekeI7p\nvMB3XplWKHsFsi66cgzyWe0esflDHlKUjO3s+t0brE3X5ZAb2sprvdqlBulzZYhWPDyDfKJDFxTU\nXtIJ9/zCNjyT3VOvT/dpfVqyYPI4NemKtqtBxxsvO/c1C+wXxZD9GbNF1pf74lYa/uLn1a8pZHo2\nLQTjlutRpD7axgt8P//pNcrWpbm6xNZXya7extiuIhzX0tINMj+7jxm8dYyq07I49IeP/olQik/L\nzOW8RVqm9T9ErVP2Ald35rfp+U+U/XFhnLL/vnEC84tKqdXaQM57bcooZW/czzN1W+3Yh5DDGHjy\nu/P7/414zL8PZkBquPlFZJ6mCGK00DJW1pB5PEBpPPpgwHH8PeywR/MxzlNYlqNlerRn8MEz+Dj8\n3BchS3HtIYx7h3K5ZNu/HfZnahDmt/fu41LKq2b9DPsiZHTt9sv1yn50xmzWZlwA9uGW45AAXpK0\nlvmVVeI4qmPQt8qjcTx+bj5+FBahH/ORDwQP4cXri3+O8ep3Lshy3Yk4Vlc6H6cWlUH+qI+JZQvi\nmF/vBbj/z2SgkB3dhPZU4jmvoIb321ui0Gf8Na3wpoxWzM+vwkXesLXH2JkRza+y6xieQbYvwDP2\n1Fs3Mb8qD86lf2dkcXWswTYzB3BpZ3kLPBN79qBvWnnib7I4tPFOO+GhR3GsJQne5xwjyVMQAji/\n/VK2rOdLjQ/hMKPGro/Z9e81lW0wnrjyuJS2VusO5a1wTo+X8jCWN06OUfbWPdqYbTOfT3QuaX1Q\n2f+PvfMOjKrM+v8zLVPSO4EEEnovUhVEUBREV8R1XXtbu8tad92q2/R97e7ay9p7wa6AIojSew0k\nEALpvU+mZGZ+f7w/n+8515kwQAjgns9f5+Y+z53nPu3eyXzPOflNmexcxRJIyum7WMoG7Cf+eFZF\nxTRH97nyy6ggCIIgCIIgCILQ7ciXUUEQBEEQBEEQBKHbkS+jgiAIgiAIgiAIQrdzVH1G23rg41Py\nuaNBUx7ObX8dGvbBlyBW/YP1/VidDfvhCzC4J9I0fL5zOCv3ZQHSyPTvAZ8465tIwPDnqT9ndaxN\n0KpT/6+YJkMY6wHQxFuIpjp1A+o3n8b/B5BQemBN9VNF09ixxQs9Ok0VcFfVaFau5R2kqGjuj7+P\neJT4Qxg03sk8Owj5zM7SmBw8x5qfKCXz/H3suOGl3tq+aRP8erZNeoOVW/7YM2GvF8mXVCmlLD70\na805cLAcSuawUkoNSajUtn0m1su7C5A2wD6oidVpa4IvR8r38OWoH8bHLnE3CatOxvmMrHxtv1U4\nltUxE/9WUyc7ScoVcOY6JQnplyr6YPxdZu5nkvl1+JD5NCWNL5HPx0NJAVT1AfxtxiisiY1/4v6D\nj/98X9g6T9zxBCs32YG1ffm+qdre+jrfg7qLez5FSpJ7mw7+f4/+OPTxJEdkf517arCndoXPmGcl\nnG+fXzlb2+7+PlYuksemMS3K4WJvIHOr4eD9RCkWo6/UIfRXGvHRKf8ZFp+nIZLHn1LP3j8X9Q3n\nGpE9SQ15DuvAStw1UxuN+z/WaMalWB8t1fzqs3dh/Gra4KPZOgTzyVkd+Rl4xS7st439+RykvqEU\nfyz6p62nIY1FJs5lfkj98rivK91r7hj9lbYf8JOAC6X84Tn5zetx7XlF2q4dwfc3yudujJl/B95B\nZk3yhiuulFJq390YsDEDuZ+wZwoGLbkY955O0nl4DNmSqlMO/CoYyUf0QGSfhv2/dDGeo4fi1x0t\nRj9RyofVSC92SfzX2r7wxq9YubefPl11N5c+cIe24+fwwAd1rdh3Tsou1vZl/bhf54Ignju+BPIc\n3Yz6aRNraRXlSSV7SAGeyy+UT2XlapqxfkNkWdUPxfy2tbEqKlBLYqeMg0+sqZr7xNLnd9IuXLy1\nFxnL6NwP1Z7PyHeD2yKXi5bNd0WXIo362Oe/O7iTkuHxpKAfre18P3Ltx1ieMneLtvs4eCyI9U1Y\nY5Y27HWBWFwvbivvexqzZ9WzJ2i75XQ+mL5sPKwsPoyrmTyWOwwuywFHdO9l8suoIAiCIAiCIAiC\n0O3Il1FBEARBEARBEASh2zGFQqEof/juekbc/qi2HfW8GS05+GnX3oC/n3HtCm13BPl36YX7hmg7\nN6Ve24VVPPy62o20L/4k/HTtqIAcwJvCfyJ31OCzqKTI+BO0l8hffEORAiDpG/x23TRQMeKKcQ0q\n2aT4z25kx7bPksKWqx/B6yfuQrtp2/xE4uiq4PcQSYbc4eTljCGcf0q09+Tyr579a7Td9DVCwLtH\n8ZQ7Zgv665mJr2n75tch3/KlGUJ2uyB96PklpBj1g/n8puugpS/mp70W5UJGtdVwhHN3fgOJjS+R\nj2VcCa7nTcT17E2RU9K0nIdrx8+PPBncPXC9lJmQ6VrMuHbzG71YnUjrgErnWvL4PcQTSZo/9kgG\n4wdnXvM9O67wQuK06bURxuJdhjflwGUOhnPPw318NH9KJyW7hzPOhfTsqw8mdFLy+CO2PPIj152J\neRsyKA1p6qJkeKuw1DA2QxaUILmGvSny59ZMxJ7Upx9SeJTXYT4HKrn+ylWBdT3g7EJtW82R94zZ\naVu1/UoJ0rz8shdPv/bAkrNxQC6XtSzipRlUzjvmZzvYuRXrIXHt7Ho1P8feHh8L2XdDHfa6kJ/v\n0b0W4rjyRDIuBom8P56kqyKPECpPdNVE1m+3E1ll+g3F7Ny2zXAjcJJ3mhiSFanDoOZuG4n7o6nr\njgVoKqSbz+cp95554yx1sMSQV6lBxO3r7bxvWLkxay/UtnsLXp6M70uHQvMA8t5ZjblB07w0juTj\nP2II5M6Fi5Gy47aLPmLl3rn5TG1XnITOY1L4n3Fp5+SsvdruIBtPtSeOlRuWAOnw698gvVCfz5Fq\nxB/PX0LKp6K/TJmYZ4E27opjIa5wsSVEXkqmozGVYndxx41Iv/TXr+HCF18YXaqZaKEudy08k5ay\neNCPwRFYzLlp9axcRTOk/j3iUW5vDXlpCPE53FGNvZ32vTeFPzNsLeS7CvEioN/fWnsZvhOlY67v\n/c0dKhLyy6ggCIIgCIIgCILQ7ciXUUEQBEEQBEEQBKHbOaoy3ck/f0jbNWP492LTEOiNeiQ1azvZ\nDunrHdkLWZ3v6J0IbwAAIABJREFU2yC/2dycre01xbms3D/HQdYwIAYRS/+0F9EG967szeok55NI\ndCloa9NQLqWwtOLcnOmQmn379EQVDfWj8JN2yAHbFsejSNpi8Lljssq0vfPFISoSATv9iT26YW9P\nRx2zIXDh1luPXDS8IxlpLxqshohwfc5DZMQyIoMIfskjR7pqI0vUfqC5jyGa8mmIklu+L1XbSVu4\njMVVQ6S08RiX1t6wXWO4/Mb5OuRFDQPwuf4Eg5wbKjtlbT/4LaE5l8jYa3h9TyqVoePvrsoD99XB\nQOe3UVJ+uGSdX6ztivdzu/Tah0JXy3SDRFnVFdFwD5cdNx659T9s9i5tb/9iUCclu46kqVjj/rcz\n2bkmEuU8cTfsRkPTrAMgubpq8EptP7Vmurafnvoaq3P3P68O2x76mUop5cuCzM5eioiOTih2la2N\nr+u3/vagtueshxvCCVklrFwtkfrtb8B+9NDI97W9pIU/t97bioiOWZ+Gj6xtpGIa7BBxlzB1GCKH\n74C0zlWDh1rFFF6uz1BIEus/hxtB2wS8g5zQm9/r5m/hg2OmEe8Nz5Os2ZBcpjpwclAc3kdeXjOZ\n1cl7L/y+7Enmssj2dOzFNKJ/wn6M8d6L+LUsdvSDfdvhRYs+1olpDP/3jX+OHDF1zD+P3DvIr+fN\n17aNhNa+PIFHvH2jBe8GPay4iSkOrl392QXXarvwcqwdE5WUB/hc/+tMrMWqDkjzVzfksXJ9XJCE\nbmtEpoZ+pK3723io5p3rIBt3laMNJsN0trUQqSd5/XZWE3lq16pio6Z5GNZOwvbo9iNKwKB8jyQ3\nTijBOiybbjyJNiQmYQ9Ki+ObS5BIcAPElZG6XNgdflbn87HPafvVxnHa/s8KHk3ZWYq9xk7WUUsu\n+a7SaviNk7zm7fpr5NDG8suoIAiCIAiCIAiC0O3Il1FBEARBEARBEASh2zlwpuMjiC8e34VtzVw2\nECQR+crr8fOyNQ1/rwvwSF/1HYiSu6kCspq8HlzuMMoOWevjNUhSu7cGMghDsClVA9WQsveGbNjq\n410YRyQu9f5YFQ4qfVWKyxrttSSiWBn65+JbF7M6X9cgoe7ruUu13Xc013YlFOB6Vnd08sv6kejj\n5G1EVmFQVT7TyCOg/pSIq+A3W9mKCIofjnpR2w9lcS1FqRtRjuf3RxLtEY9B5uMwyFjVi0gm3pP8\nudEgpVvzxye1ffbOOdqelIBIv0vmj2V1fERlE3Dic6dN28LKbd1y8JFfW3pjbiQUo7+qJxkjOmMO\n2hvCS3Nbc/j/xWh030jUnsCPTUR5YiUyGEeNOmy+GPQFDv4Ec8y93S8hP1RolGzjWvamQx7mrDiq\nj4Uux53LJUnP536m7ZPUkZPpBqF2VdX1kPYnhyn7AzTKqT+N66Vj1uIa73x5hrbtM+HS8us1F7E6\neZeVant3QZa201cb9G67qfQs/HNi+b1PsGObCc/fwBYi7fPza5/eF7Lo/Hy4z3zRe6S2vy3lm13i\nanREC5HsDT8vnze7EW4SyUE8Vx2vRu7l2lG4v0biFjNn3EZWbuEniOLsG4eQt2OJNLe8NZHVoXL3\n9A2Q3Plj+f5WvDJH2xXDoXfb/BnkynnruWtO3RBMKFc12u2s4/PE6iFuRLloUPGlqHPXOO7i9MC6\nmao76C73G3df9J2rKCZiueYTMa7Ttp3Lzi0dDneuO295R9sP/euXXdFEzROPn6ftR+94JmK5B/Kx\n5s2LML89GbxcjoKE09yGtZg6CC48Hj/f479uGKptpwX7ZeH7PPXDHrKVZvwcUvOzkjdpe5sjh1ZR\n+RbIdFsG4wK2Ot6G5pEYM5MZazSuBBGBg66udb/ZfFdkafYCNz73rsd/FdX1IkX+jTYKsKsc89HU\nweXyOVmQSJfV4j0zJ4nrzrOcCMl8RtJ2bd/vxxqfkLGf1dnpw3zqb4erQJ++1axcVSreg91kvw3U\n4cZDhp8444uj+81TfhkVBEEQBEEQBEEQuh35MioIgiAIgiAIgiB0O0dVj+UkSZ2b83iEKr+HRPRz\nIbtq8XrIfG4pvJTVsSWinGk3fuLe24/f5q3qAm0X7O2hbTOJKGftZwh/R6RH7U34Sbrfa1zvZnEj\n4uHqaST5NPnab4w2SnFW4VzzDLThzce4jGbd35/W9iI3+i6mjkukopHmBg3BwVK2kKS3Sfgp3t7I\nr5Ubw+XPXcmRlPC0D4JmYsG0x7U999nfarvyRFZFBSshxzq1cZ62HU4upXLGcEngD9DIw0byvrxG\n2xYn1kR2Gpdf/Hw3EnwXFELQW1IGHZujgY+RkyQj7iDRZk8+fxcrtyZ9FOrURBflNn4/yq16EPKi\ndw3StUdWcelgOOJKDz6ybsDJ67hqsc5jmo2lDw8qxzXPOnLzntJhUPkbIzwfLEZpLuVoSHMDdsxN\ni7dr5VcUVzHf4E56KnLi7a5k5s8QTf2rDyD5bMvi5WxQ2SovUZemL+dj4iERlH1kX074grurUL66\n71NtT3jtxgM1WSnFo/jmjIdLi83Eny2P1CMrO41QalSkNfqRUH3EMMjDFu+DBLBPSgOrkz8K99Tz\nKzyPbshawspdvxDrMmEv5pOfKNzu/NObrM6mNjyXtzVjH/1442hWrucOvA8svBbP23uqTtL2+mIe\ndT+WRP6sOQHtNvv4/HYhUK966KJ3tX3vU1dpu+xkPm9jy3B/ITIUNSO5DNWXRCIJB2H3zMAgfVgx\nhtVJWId3Gn/k6XTYHMnnunc45KmDesA3o6SoT7jiSimlgi3oY1c2f5YPfBnrZdJ0yB37/HKPtve9\n0++Q2kqvsWUv3mlvWH8J2uPg7dk84S1tn5M8S9uFi/uqiJD3znYf7jUY5PNxxV5c48Kh67U9/fI1\nrNwnq+AGNCMZe0OxL13br+8ez+ok9sPajrPjnjy9+P5WUw7pqYu4DdDMD/4uDvSc78OcGRLDL77f\nn2osfkCileNSSXLCFqxfbyqRJDv4A9tmwX7UOwOS3TY/X/80+wiNznzngEXaXtY0mNV5uWoK2ubH\nXtA7vp6VS7JDRpxfiajw9hqMZfZS3gnlkw2hhCMgv4wKgiAIgiAIgiAI3Y58GRUEQRAEQRAEQRC6\nHfkyKgiCIAiCIAiCIHQ7plAoFF2+jyPAxEsf1nZTX/69uP/pRdoeFI9Qw2nEwWa3m8e0Xl6CPBZp\n8XCwKqtJYuVi46BpPrsPfAGqvAidv2QnD/lvKyE+rMQvJHEvD6tecRKcOXqNL9d240dIg9KSx7Xg\nwRgMgdmLfqCf45zG81O0roBGn/rHWdsjD6c/loRihhuPctQe2hSgfqtH0hfkaNDhNPhe1qDv2jNw\nzurmvheB0fAZDu6G881Dv3hF25MMuUau3P0LbV+QtU7bLxRPYeUal8C/OZ6kPgnEoA3Tb1nJ6ry7\nDv4bsXvgh3H9ZZ+zci89PlvbMS2HMB9oN3TTjlI3gvd9yg7Y1ZPgX5G0/aeVqkQppbwpBy5zPLPj\nxu5JAXE0iC3nC6RmCvzMYwvxnDH6H9mbwi8smg7GaqhD04jRWAU1U7lvuysRvkAhktfMYsE+493J\nfcGTiNt5aw7qeHoEWLnfTUcqnZNdu7VtI07Maz3c9/LsWKSkeakJ6U52uzNZuaJW+HXd3Qf+sZMc\nhtQ1hF/tx776zQaktOi5hO8nZ/z5O23fk47NJe8L+Pj3z6tidfathf9fTCOuZ0wVR9P++JLQD5Ye\nGIfMd7mvVcMg3JM/lviPGra3Dhc5ZyMpYDLgH9fjOX7tumFoUIdT/aSJaTxwmR9Bxi/nAryb7ptv\n8Nckr7HNw4jPp4WvXVcBfAPtJyLlStNuOI1fetp3rE65B++xV6bj3DWv/JqVy/ka41x4Gcb1oomr\ntG0z8zXa2oH27G3Dmsp28c4qaMY7t5v4KlpIKsaBiTwdSEkb7qm9A+8gJdX8IWbdgzmZQdIiVZ+A\neU/XlFJKmfhtHDe0ZWM+xJbinlLzMWf2GjIIXTJ2tbb7O7Dv+AwbwC433hMTyAOhgaSKcZm5P7LL\nguPhTuy9S5u5b+mGWqTtKdmL7yAZKzBGLX34GLXn4tr7rrpLRUJ+GRUEQRAEQRAEQRC6HfkyKgiC\nIAiCIAiCIHQ7R1Wme8riO7Vd18bDKns8+Dn/j6MXaDvXhrQKfaw8f0OKBT8Vu0yQEBhD0h9JXiYy\nhm9JjPx1H4zotjZ0F60DIfW65+SPtf1NA37a3/vAEFbHF0fC3XcQOVEn/xYJWfCzvylAJM0GiUaQ\nDHPQhjpWD5/iVN5JpWYxLZCa1A3ncyZtC+TY7jQyz2qPT52Iaz/PE3LtO5C4/WnTHG3b1sZr294Q\n3VZhTBUUtJLxIwp1mrrE6laMIFGe+KCeV2aiik/dwSXyjSSF05Y7IqfSGflweNmnJ43MLUOGHpqa\nwZuCmzB3cEkKrefLxIGlEW0LxBvmDJn71jpSLpbL+eOKMe884zB+BadAAu4P8WtP+B+kIWrtTdL8\nJBjbEIpgkzImPv6OOMhvOkjqqw43lw3FxJNyZdjnHTXUJYFfe+DVO7VdeQ+kcC29eRj7llzSPDIW\nHUTGaJRy0WOzn0gpDY+JkCXC/kSG3DhPiLqUyd2bc3GBV697jNWZ9/vfqOMBXxyf6x2u8H0XmsbT\ntLSWYAG7SrvvWXykoGO+5c7I+wxl0HeXs2NfE2SRVro3kHRHIZdh4pL5bfJhPoUcvJzJj3MWN00v\ngzK7rn5aRWJmz9ERz/0UKHgGaZaGDS7RdpzNy8q9kfu1ti2m4+d3m5EP4fnWcRLekdsbIYON38H3\n0eMFC1eXqo1/xPprCkLiPu1/uyd9V1fjw+uW+uOV77Bz971s0O0eh+Tfe1vEc8fPChMEQRAEQRAE\nQRB+MsiXUUEQBEEQBEEQBKHbOaphJov3IDJeWjaP2tVaDWnPvwuma/v83E3adsVvY3WSiH7GZj5y\ncqB3WxFV8LG/XMTOtfbC9/tbrp2v7XUKMt3gpCZWx7yKRyk8ljj/0qXafv/1aexcrxxEgXtox+na\nXjr+OW2nPbmM1Tn55uu1TaW0/hguAbP4iWwvSGxDVEIKux6JHFw/jJdz1OEcCTymVv/vs9qeeuN1\nrI43kUQyTCBywDb+/xxrO5dWHm2qxqHdmesg5zJ7uN7lt4swj/sNQRToUid0I8bIwVZ3+IiOIZMh\n4h0ZPip3pNFCjdEm6TjHluEC6/4Bedn1pSeyKou/DS8vM8pyW0iUw/jtkCs5avGhvkQuG/XHk3ul\ncnBD6OCAK8JcjWQrpfae9XxU7WafE0BH9l9ylbafnfQqKxd7dqW2bW9jv60fzudtIBmSZ5OVzGEy\nMCEfr+N1G/TY/x+zncsGrZsRVdrXD33/xtwntT3abmd1Lt6LPb+pL8Zo5NV8z9//p4Ha3jsXk9Da\ngrYa1MUqSD7KRLxUaBRSpZSyNeMaLOI5kfambuP3Wj0WdRy1sHO+RpTtml/Fq0i0XoRnQ9xb/LnQ\nnkauXY8xMnXxluNJwf01nYRFmvElHyNvKsoNmwNZ9bZPeARG7oDz04JKIo1QCe+uk/m6PLvgTG3v\nLCMPoXrMdVO74bcCchhyYt5ZmvhrXMiGueqsxBgFp/D3jv9WTETWXPtCH20XDuIb89TxiF77zlCM\nX5YFM/pIynfdQf6MXubBvnHzZ9jz91zwTMRrWFfgPXrQ2fu0XWDtwcrFbeFr+2jTOgr7jom4SySs\n4qGe8z69Vtt7f4bnKJXvjrnv6EdjbzmxnR33TMP3nWUjPtT2sMfR1p+CLPdgkF9GBUEQBEEQBEEQ\nhG5HvowKgiAIgiAIgiAI3c5RjaY7exmiCJY1cUlSYwXkBYk7IENxZ6G5qaN5cl3KSRl7tZ3jqGfn\ntrYgMfU9PRGpN80MiUyBn3fLd27IwZ554yxtBw1C594LIMcy/S8+d8Hgz7Xdf+mVrE6gBXK3uN3h\npW/dSdswRJUz16BPQlbeJ+mDENl4RGqFtpctGqntXb/iUfuorCJ7AflfiFGmeZiz0p2Oa7tqDTo2\ncm1vIsqtuQ9tNcp0KVSya286tqLp/vpBHoGtpgPr6J0/QBpmr+MSoOY8yF+a+5IE9lmQb5oNsrH0\ndbCphDB9i4eV8yZhTlt8GAtvAvrRl2CUAMN+794Htd3bCsnnwFduZHX8SRgLUxDXK5r7LCtHI14/\n+Or5aBsJptjal4+rvQpttZFAxC1DeD/G52O9+Em0YG9/9Mn1Y3gy87tSC7XdmTSXRgju/9YN2t59\nEWRaE+/iffLiPx7R9rAYjPHAl3k5GqXYXh8+Sqox4i0ds9YcnEvczdtdN5aMSyw+KP0rSMOqT+X9\neP/k97V996Zz0AY7D1+b+U/MrfYeuL/9mOoqMZ9v0p402K5KtLutJ293TBPuL0DUYT2/w1hWnOSg\nVZR/ZKu2HQ60tee9aEPfpwpZnRWvnqDtptHoh7Tv+bOgdgL60dqCgQkSWWbQyfc6Zyk+11GLcg5D\nZOyKGbh2Tm/s66UVSEzf40venuAVKLdqNMZr+L+Oviyuq7FPwb16v8cEMkZTptimo876se8ekXaF\nY8Qj6P9DkXBnPbKiC1tz7GH6ppe2i6pTtW1fH8fKUdeM5y7Fu0GOBWs828ploy8152g7yYIHxVh7\nGSvXz8Y/6wceb4Bs+OWiieyc7Z0UY/GwuDMO/BvT32/ksvH7iGzcszg9qs85krBI++R5a4ymS78P\nuCqwX1OZrpHuku16k2GbeOB/FYOvCerPv3ld23e/dGlU17ZMRMTywOrkTkoeW0g0XUEQBEEQBEEQ\nBOGYQr6MCoIgCIIgCIIgCN3OUY2mmxSDCFN7V+fxcyS4boAooRKJwsm7H3I7pXhS52VBnPMlcQmg\nn4T3mxGPKLcBEjFRZfAEyAMexcXNCPSoOpxc7lQ3EvIL75ckaiIJMOjcyOMLbr0NkoIRj3athIDK\n7IzJ33/AGDlUNWNaOKvRd73O3M+KFWyFJKUmFroDB5H5rfLwD/1i5r+0fd0C/GRPZbVKKVU/CvXi\n96A9diIvq53ItQ80eXjCHnLCGE2TzHoqNbypbJKKhpoZmBsDs6vYudo3emvbVYt7qBuKD00u5H1S\nNxyD5ICyS8WX8PvrcKKPaNReem0qy1VKqUcWQVLeSxHNloWvCZsb52i0YEUi2QXjeXuqJ6Ld2Ytx\nLqaEJ703+yDBj/sfyJUK6yAHaq2JZXVmjNqh7beaxmj75fcRtVnZ+cA606HtNa/l/UD527dztL33\n11h7VEIeXxCdXJ7Kco1QOa9tMzaxq6ZvYuVGPvzbsPXdPbnGbr0XexBd12+0QGpWN8ogpbeE1+kl\njqxjx+Z3cA0PUYO1DIIOsX0s1yReNXyltt/aM1bbqeObWbl1Qz7TNpURu3tgns0YupPVeblssrZf\nHf+itq9/8BZWrnos7jdjPeRzvb+AfK5mDKui4kpRJ2Ub5owpwPfl+kno70FP8+fBD7QP4se9U3Dv\nlauyyBm0bWRsCavzdU/SwACN6MzXaNZSrP+GITjn7Uva1s6jyCcVkn1iOOo0D+DtfuU0RKK88lNI\nwFO20QjlvE6KncvxjxSWE7GftO3h7jx2ErE4kiSV1ldKKbcb8nD75uhi/VJpbqTnqBH/EtS5PpNH\n/v53L0SZH/MU5nR7Hubc3tkvRPU5FR2t7Lg9Cx3hKpPfG4xc2Qsy5MdeRMTSuhF870zdiuNFzXhP\n/LR4uLZbW7hMP3YT9p0OMrV6TeNrPtaKcd66Ae++6etRxvgEcmdiLFuGY81nLj541662II+eu2bM\ne9oeubh7ZKzusTzCrHUP+jKmsZO0CQQqzW0cG36PNmKeiZes4MK0iOUaT8AY2VzkywWJMB+7nG+K\n1lm4dnMBHqQJRZHX4T//TaS5kQOtM54Y+Za2p07g52hE3q7m/esf0vb5z97ZpdeWnUoQBEEQBEEQ\nBEHoduTLqCAIgiAIgiAIgtDtyJdRQRAEQRAEQRAEods5qj6jQaK9juFuRiprSY22G0bDn8lEZP2p\nm1toFdXcH4LrxoH4nh0yyM8DxM/T2oaT1Oc0dRXX1AdjiEMKuR7VrCullMUXPicJ9QVtHcB9r5YR\n15u/XPuGti+Iawpb38jjNyC1w7xnbmDnIvm3tPaFj589lWv3rxgEx4X3X5+m7V17eO4DM+mSFj/6\ni/pk/ur5eaxOzxnwnWjNgn+Tq4Y31NKGc94U9GlrHj40dR2fvrZWlPO7MC4Ng7gfVfIufFbzANg7\nGnqoaAj5MbcK8rPZOXs2PtdF/D8ddWhbc2/eHv9A+K0lToD/T/Va7hOdsQFj1p6Ka3jS0ScVviRW\np8fy8PMxZOLzNmEz0iS1p6EfTB3o47oTDXkMyL+yOhw42P/zLFasI5b4na7or+2kfJSxnsf9uhKs\nmJPPLj1V2xYXCeVeye8h2AA/UToHjelSqFsGPReluwb/TMMOau4IX46mZYnkI2rEVc7/V3jVE7fi\noBfGvMCD8Qqk8Aac+gQ+a9staMPzw15j5a614trMz5zsezMH5NMqav7jGBcP8UFceOmbrNwiN3ya\ncq6D03/Jc6j0zfIRrA5tw2UrkALMYohiT+MJtFXDSSu2BGsqoYj79VTPxEZfNx4+vwnb+XzK+ST8\n/2ppCpm0b/harhiAue83+uL/fx5/bQ47TitCH7enoa8ah/GxjK1Ae3yJqBO/AZ3grOGOkxWn4Dih\nkMQCGFvDyt26Db5zPUhmD5o2puokfu3GdYgZkFeAVFgG19JDor0H2edt6IcWg594JD/R9hHYP/ZM\neIudizb1THsmLv7BXMQ6uPzxyOkJIrHybe64PGoS9sHzf4FUT5+8erK2R+6I3M4OklHEyh/fKpIX\n7JmXYWA/e/ckds4SnbvdT47mPKyp1K2R8+B8/RB82FsmYA4m7eB7RExr+Gu07O3Fj4kdbSKV1j54\nV0n7jsYqiJwHr2UIntlmJ9bRPq/BVzIeMQQuvHKxtt9++bSI16bpV2iKI7Mh/YpnPIInvDTxJW1P\ndvC+Oy8H8SB2f2Rwao9A02D0yUWj12r70uJp2n49dymr8z9DPtT2XQsRJyJocL01mdGv6Ul4L2v+\nGs/b62/6mNWJt+BlviAH5b4eyoMLuD/DuXGXbdb2io9GqWiINdFOjhy34nDZPs+YIic6H/tDQX4Z\nFQRBEARBEARBELod+TIqCIIgCIIgCIIgdDumUCgU+Tf+I0yf5x/QdsoGrndz1pFUEzSlhQd/b+zP\nJVLu/jQUM3QDHV5+bUchJKXOGtx+wA6ZlqOeyy1SNvBUCJEoOTu86GLCz7doe+XnI9m5gIO0IQ+a\nG/s2/CRuNigkDwUqD44rhCbBcUotL9eO/vGVQYux54JnWLm8jyDNSs6GpLihEnLJZMO4mokaN6YF\n992UZ5C74HKqLYfIPEn6HUs7l9VRyXXiXoyfxRt5ipdPRZ24fWhD4l4ukasfgvto641zjmp+f54s\n9PE3sx7V9i3F52s71d7G6ixfilDxVHFjlFinjIWUtrIMesWcT9HupjzeHlc1WUdEupxcyNMyWOsw\n71oHIn1Ccw7WmN+gY42dhHlTtw/tCcXwtdPzK75Of8DcgZutOJ/rxJK/hg6tmWR98ieTcXXzObP4\nwge1PfM/vyPt5u1xVYT/H1yAqF0sBqmRj2SK8WZi/OMLo/N0uOf617X9t2cv7aRkdDir0Xc143F/\nMT3cvGA+Bq3PFKRmio/h41/UAFcI23spKhx1o/k6omk13rgOc/223Rewcm0+dKzNgkmdSFKD7F7d\nh9XxE7mxyYfPGfiK4f4iUDID9201VGnpRxYW8eFw1PJ5kb0Y69TsjyC/yzNIgMfher0XYhKZgui7\nspsMm/l2tDU5P7JUMBqa+vJ7cOfis1zF2PMTi6L7nJYcXM8oY/ONQMemfIn12taT78ttA9EP95+M\nFBJ//88lET/X3Rtj5Noffv84VE48j8jiSnO1bVqTGKb0j6H7slEmTPuISs0t3ZMF50dQGTttw8C5\nBaxcwYcDtZ31yAr1U2bIeuzZK/49XtvmwMG/CnsT+XqzN2FC0LUTXxJ5vQVisF4iuXkdDO4MfG7b\nCUSufupL4Yr/uH4Q63X0qzyVlqP2wClXcucUseNPBiwIW46mKlNKqcvWX61tbylSJMbux/0Yn8uU\ndX94QtvfeTDG8Wa++D5sQhqyNzYiL0rSeu6aF4lfXAcZ85S4XezcyjbIi91BPPdeXctTO9EUXqMG\n47lcuKCftm+67FNW5eYkuLgtJ9+DjHLnfouv0rZjh1MdLD+W5gJvCM+TE564JWK5SOTfG9nF4bB+\nGfV4PGrGjBlq/vz5qqKiQl122WXq4osvVrfccovy+TqZNYIgCIIgCIIgCMJ/NYf1ZfTpp59WiYn/\n99/Ef//73+riiy9Wb775purTp496//33u6SBgiAIgiAIgiAIwk+PQ46mu2fPHrV79241bdo0pZRS\nq1evVn/729+UUkpNnz5dvfjii+riiy/u9BpUmmtv4vKEtkxoXKjEqT0df2/vxXWMVhItzOnEL7OD\nckpZuc1lkKR4U/BzuZWoJ9sz+Pf0mhMRfSy2Ep9ja+NyTvNkRAUNLod0cXYKZLrfuXjkSHs92uAp\nwc/q7n64h7idhxYxy5OOvostgobo4euf1/Ydz17L6tBJYSHdcPm+qaxc2jqMRepgRBtrUCSqaYxB\n1kFkKI39cfHYMj7+7ZlEcjuCSKTnQ05YfyqXXyR+DU1SzWjUjy/mbfAl4Th1E4ms7IkspUnJxzj3\nOr1c22NP3M/K3Zq2UtsZFkhNOoK41xX78lidBAQYVa5azOmq8VyeRmWNK2e/oO2l03Htm17m0ZT9\nLbjXJhKgLm09Vy6YPJDJNuXhc6l0dcdNkeUb5yfO0Hadh0sXnRvC/8+r4gxEHqWSdKWUahhKooUW\noX5HM9pmnVLP6pSTEJM2TEdla43uf25M0mYQdtBo3+aOg982qTQ3YFjKnUmPoiF9LYkcfiFfEx1j\ncPHnB7ytlm1lAAAgAElEQVSt7RnLb2blkr84cJS8pJ18HbWejpiQX7TA9aC4mEeBzukNOXeGC3Xy\nqzO1bTK6IVjJvlWAMW8cxOdWfDHu1/7PKm17SjBGFht/TiS5MNddryL6dFMub0JzX8ynoAX33gwl\nlYov5nX6vdeqwlE7CnuBy8HLZE1D/9Tnc7kypT0V49w4kkjFe6BP3x/9H1bnV3fdrm1fwsFLADuT\nF9Ymon/qySPNbvBoMceg/yNJc8/85Up2/OU7J4YtZ2TGBWu0/fW7kNw5T0afpji5TrutAwvQsx8S\naaOg7dyLEOX2o7cQ5fbhG/DsvPMp/uxk7jRd4FpD8REVMXVj6bwOxrwjB+NAZbn/bXy5e6i2kw9B\nmkvxx/Fjdw/sEzbyPulJ5s8gRwNxNzlMaS51vzHi2kJm9akRizFKA5i40chyjZyXuSGqcmPt/EG4\n4yS4soxZe6G2A/vDu40Y2epDu08mz/Kdfr7/f7gHz6popbmUxdWIjHtSbCE710JeIhxkM5gzZhMr\n9/U+XGPfe/SBAvNfH53N6tx85dPaptLcAj93+zoUaW602E34DhFJzjvs8eiilRs55F9G77//fvX7\n3/9eH7e3t6uYmP+bXKmpqaqmpiZSVUEQBEEQBEEQBOG/nEP6MvrRRx+p0aNHq5ycnLDnj2JMJEEQ\nBEEQBEEQBOE44JBkukuXLlUlJSVq6dKlqrKyUsXExCiXy6U8Ho9yOByqqqpKZWRkHPA6GSshaW3t\nZ4hkR9QBDSNIZL1M8pN0C/ktXikV6MB365ZGyM4KF/GEsymNkEhQyVyQqCKTinh0z5CZyB1zUcni\n513Y0oRyVFD2h/VztT1jxkZWZ3kZZJvWDZD2OmoPP5mtJReSsABRh55Bog1vvY3/3D7iUfzMTqMF\nfr92CCvXw02iAIfQ9yY7xsudxfsnYTdsTwbKmf1ckuohScvPzc7X9ifJkEv1+Jj3TyuJ4uggCk6f\nYWrRaLhtRBWXvQj1q8bx9lhJ5N5bekKGcl1iOSu3xos2PVw7WttBErUzdimXGlJpLoVGjlVKqSwX\ntKJvtECufAlJWL3jRj6WY9cjsqnjO0jNTUF+7eppSMLcOgrSx6IZL4Ztm1JKvd2CubqxGP+YilvH\nZSK9VIW2fdmo4yFbxJjT82kVtXIXpCvtbejTDhfmXJ9YLr+7aOGN2jYE/o2IZzzWh2NtXCclgXMC\nJID+pWmdlAxPZ7LczpLZR0PjFt4e2l+/eO+32k5W0TF6HuRF3xb3Z+d8VdhjXzNBIpmxjK/5ymGY\nW2fMxjjTqNKbPhrN6tTG4Rqhk6BJbDfzeVvnhszqsewl2r7PM1vbLR4uxYp/HhuCsxJzKGTiUuWY\nZqzLhoGYg8EBaHe9IXqtKYA5lLIDc8uThvXvd/Pn1vYauDVkkb+39eTXPvfKb7W9rBpjUbm8l7aH\nTIgst45pjvxPYm8i2tdCnhNpmyLXCeZgnzCVOSKWG9Ebe+Tubf3ClolWlnvWhTzS6/2ZmJ/DFeZg\nO9nrygzXoMd0p4o7pZqVo9JcCn12Hkl+FL04DfMxpim6CMPOKvIiVRX5dW/LnXhuzHxkdMRyPwXM\n5sP7saQ1G+uyfTjfpM2lWAeuCnzOoUTq7YyQibghnV/BztUv6Kltb1J0nzvsCbzzHUrk5/Ye+Jwn\nd09j5wYMhXuIMfJrJDaOR52R30Yn+1zejj1xfwfeiX7/yq9ZOXtjVJdTjrPg9tFG3uvKG/D88OXy\ndbisCm24OAcuBH9O28nKPefCnvj0N+eG/XxbC5dI91+CKLkBEmHeVXDwUuPp561nx0vmI8Jwvg/P\nxCEx/HnyxypInO/L3KK6kkP6MvrYY49p+/HHH1e9evVSGzduVAsXLlRz5sxRixYtUiefHH4jFwRB\nEARBEARBEITDiqZLmTdvnvroo4/UxRdfrBobG9W554b/ti8IgiAIgiAIgiAIhxxN9wfmzZun7Zde\nii6p7g+YSJSr+J08MqY3ATKb/oO4DOEH6mO4XMZpg/zSSyJeupP4z9gtefj5O2SBvCBhD76b14zi\nsqP0zdAu1I+BVCxkkHxYqsP/ZG7fAGnml40j2bkhgxHtt6Q9WgFdeFoHcQ1gbjKknbWLIOfKq71O\n23vnPMfq/P6ad7T9vy/8UtuxJVyS4CYyy7qV2dq+be4X2l7Z2JfVKVkTPopf0m4uVb3zGiRHpxLg\nt3tM0XbQxtsz+TzIn1eW56JcgP/Pxewm8t5ajFc7iaxslEiFhqAfT3chYfiTjVy6PI2c+3ABkZ4R\nxUWPcn6vtcMxV5NPrtT2r7N5BLbbU3gy6Wg4p/c2bb8ybBKaM59rcWJayDwmJpVlvLdwMquTNBxS\nmCCRWWeu4dHdGschauqw27Zqe2Ys7vXTMr4mLHUYgMAAyEZenPSythc186jU9fMxBwNRBpSLJM0N\nGnZGMwma7fGhbUaxXPqZWMvNHuwhvg6U/GrsC6zOjMcgn6XSXG8K31to1O1IJO/gx40DDz4aImXR\nOvSxJYnvLQ/OfEvb9+2aRc7wPk3eDvvFuFO0vfFcKGxOSR7DP9iEex+cDrlUvI27T6wuhc7+jg2/\nQAsWoQ22OTy8a9BK5PgTIei2eHh/D74DDXda8KxZuPgEbQ+ZVMzqtF2KvaWwElEg817Eeqsw8/7x\n9cG1K2bBttr5PvHqqpO0nfUN5tM5v4d0da+fR+rtcOBe60fi/nZf9AwrN/AVSNxTt6Jccx72TrNB\nXh7wkmjqJPd78wDej7u/CC/N3XYLpKG3Voxj52hkXMqEWL4H9n8D7Y4sFI6O1m8P7FqklFKzd80+\ncKEuwGxQA8ftiU6aeyj8tpKuv592zA/raurEETlaNMVNsiuMPgebbIU7gZWr3IFnkDkQ3bUPBROJ\ny5Jk51Jh+iZNo+GOeARyV08aH2PnIUhzA+RVNxiD6w1I5sFL32vAWvYnwcVpsoNPcJsJ83uB++Cl\npy889bOwfz/4K/0fzcSdYmzPEm3HWbERbmzPZXWqm7C3f2SD3H2AvZKVy7UdfIBX+7aui5JLZblK\nKTVg1h5tn//snVFd42M15cCFDoIu+2VUEARBEARBEARBEKJFvowKgiAIgiAIgiAI3Y58GRUEQRAE\nQRAEQRC6ncP2Ge0qgnHc4yNtLfHzWYNzgXjYtr9yrbzNAh+b7HjEb94wkl/bthO6bj/JskFTgLT3\n4v46vgRcw+SHL4C9gftxJOyFdt7dQ4Ulroh3+xdz4GM54ovowlhHwhTD/RSa2sN70tA20FQuBwPJ\nVqKIW6dyB+E3tbWaJitQauuTz2r75Juvj3jtiURjv9ANv1NHP/huul3c96qtA94Blq/ge+vL5P4R\nVtJWC0nZUn8KHCcsldzT4IpBq7X9WeswbT+y+nRW7uFW+BP12IzPrZwS2Q+n92n7tH1GBlJfPJ/P\nfTRnjocPW7oF47zVB7+VG9dewuqckAMfxuz5GPOG8ZmsHB0/Vzz88jb9Av5eAxT3e6h5DL6Tccnw\n6+yI5b4NFadhLbVXIgVM2R3w0YqL4U66MX9v0XYgHz4+V9bcoO34vfx/aX7ibm09BB8YCvURNfIu\n8fm8aMUd7FzNl9nG4j9ixne/PWAZpX7sI9raG2PurI7OF9SXSW6kgIw/d3VWyTyzjiYxH3VsM3lM\n/Af+gbkW7YMkfTXG7IzVt2s7lMrLBZ2YM9sXw888/zqeukj1/k6bd1XBR2d+Efy1A/u5H37rCWjD\n2bNXaTvOyv1R/5a+XYVjxCCsCZqySSml4mNwjax0pKRp7I/1ZvRHTtqKub/xj4b7I5x0G+b+6Dvh\nTz43EWH6v23nPvoh8niifqIDl13OyhVc8bS2J2yE721bFR6KFgdfFBZy71YvbsqfyX3BYhoO7LX1\nWNY6drz+BvjBXvHMrdrmvsncJ45C/VGH/+vwnqlG8vcgdUa0KaSMuGYgjcwDg9/X9q+f6Nq2RsuX\n72K99FIrOil5/BM6hLdeVzX23rUlvbV97kCe3mJ+Qi/VHVC/913V3NfZZiz8/6Fp+qzuw4sloJRS\nFrJdxu7HnrptP3+43HLtfG1ftegabccXHjNfP8JiW4q9b2soMWyZlYZj+uZTRXaHO1Xkd91jgcIF\n4f36uxP5ZVQQBEEQBEEQBEHoduTLqCAIgiAIgiAIgtDtHNXfyf2p0Mja6ng6iJAF+iJTAJKtQCyR\nBj7ABQme30NGVtkG6WJHlYuVy/0KkkJrPf/cH/Bm8ZDdzbn43m5D9g5la42s53P3OPjubRsG7UPs\n9oMPSm2z8/ZsGIc0LSO+gwSIyrdMXJEcNX6iUZpxOtKqvPESpKtLbnvQUAtj3v8uhEjfff9QVuqu\nMshdVxXnaXtgFuRNn016g9UZ+DJJT1APTYo3mf/PxUazHxD1bGA/+jvUn8+L574+Tdtx+8hc6MHl\ntwWXQ+52Qj7ak/1V5DDvBSQcvPtfkPmkG8o9koN+XV2OlBbuZiIhb+BrYkPRIG2HiOo3Yy1vjzcR\n99TzYVyj7CzIrB+c9zyrc/vz12rbk47rdcTya5t8kASZFkAyWTMVZfyxXDb0+fgHtH3VS7dp21WI\nwPW+nlw6U387xqzjW4PuswsZFtN1IdYPhtgSOo8x7xrI0jGmdpk4DCHb3z77m4jX7v8mJKCpmzEW\n7UTibn8ncp9aL0H6lZx4Lufd+8wgY/EfYUyrYq/C3mlpN5YOz4dfQmqYuR5zsGo8X/8WD+5vWUV/\n1B/5ouGKcAO4owLpXFKfwx5WkZfEatCUUO1kb+hZjn05ZOLPBXtzdKk0KqbjnirXjNL2U3MhNb56\nwxmszo5/Pq3CUTD1VXb852qk8GldgZ0nrRxts7l5uxsGkbQvxHVl78z/sHIDHVdoO2YT+q4z+SyV\n2UYruY223IKbsbdkWzHG0cp543fADaV1FPcHmD0U0u5lb/H0CRT315BWFvWNLqXModCegfGLG9Kg\n7dZdXLrurDx82ebxgjFlzg94k/g+YW8M/8z2tWL8393IUxLRbIN+F/rU5j74dDnGZ2ILXoNUQiHs\nxI9jWTmaco/uR/S+bTwD1BHlX8+fp+1DlbVHojWHzO8S9FdbL/w9dXQ1q+P5nLsoRcJ0CBmOaLob\nizdyua5k+zzu2jHs8aMj9T9c5JdRQRAEQRAEQRAEoduRL6OCIAiCIAiCIAhCt2MKhUKH8GN013DG\nhL9puy2HSw2oRIFKZIMxaK4xoqRvOqIXpsdDsrdvHxc89vkQtmsvkZSZ8TlFF3BJmtlHD2DGlvHu\n8yWiTTRqYmeyWG8yrtFjLCKWLhuBhvZbfBWr49oSXir4/I2Ps+NJDnxw3kfXaTtu7+ErtH0JRMI3\nAv04MqNC24/lfM7qfNYGrcmVCZBPGCVS2TMRYbbRg3v9bMQr2p7wzTxWJ/VbEk3Xi7Y15xnlN7Cp\njMmFZqvLf/0lq7O0FlLDzbsRETZ1FZfFXnPbJ9p+8w9noQ290d8J+7mUujULYxRXgclROpdPlFA7\nmUQWsg5SoGPsKORCmJzxZdqekg7J5mdPTWXlXDWQJFWPRX/dNhf3c0NSGavzRgvWyN2fIwKns4r3\nd9o26INef/pRbd9XNUPbT/VaxerM3gWZduAufE5HHCRSRb/gkaxz+0MqWrcguqiGuecUabv4E0Qi\n3XIHl76MfBjz87vbHtZ2ojmyZJfW6Wqc1Ye3ba++P7x8UymlJm+BrMr9KUKCb/wT75Mx9+L+YojU\ntNe1u1m5PfMHaNvWhnL+OOyVjlp+P7VnQP5oInM9biV3ufjjPEj1x9oxP79qw3p9/e6zWZ2mPMyb\n5EKsRbOXt6H8FKzZmIGI4p3kwnprWsxDprfmkbVtxfUsTSQqcQt/bnnTsM5DTiJ3PYvL4ilTt87V\n9qwsaLM/u3c6K7fiUUTQpdF42y/mUmqXHQ84C9Gntb+N+zNGIbUS6WHNePzdWcHXP5XwO2oO/v/f\nV1+2QNu3pxSxc/S5cSQj6Lp74h6om4aR4BS8g7QXYy+OLT1+/u+f9chPO5pu06WTwv7d+J4Qg6FU\njvrwkt3q8fw4Y+1hNY3hTeDtodke4kqx9kyGV3h3Bup1kMeTNUp3h8OlZSB/v4kv6DpvQIuPH9Ng\n5s0DsI8mFmCP96TwOj8/DxHY539wsrbtDSoiNMp5/7ciR/Sn7TkUma+vq3XMxxj5994W8dzxs0MK\ngiAIgiAIgiAIPxnky6ggCIIgCIIgCILQ7RwzMt3yqTx6LZUAUelr/DRI8ZIdXHdQUI4oWbYYSAW8\nbTGsnDKTWyZm5kKUa0/j39Op5JZGyfLHsWIsYlmIqwgPmhBpgilyMNajRutQdIRzDySyV/zyK21/\ndvepEet/9+Sz2p6Zz6V0JQ2IUjmu135tL1+N0KHWVi53o5HjeqxCh7VkGwaCVAtECFgcMEwZfyKJ\nzja8Bp9pSHpfU4IohTlE6Vt2CgbTUcvnVup2zNUFTz6h7ZVeLgG9biUS1Sd9hwi6VPpYfxZfE8FS\nyBrTh0MWXb2LS9eDMeivpO2Y7C15+Lu1jbd7whnbtL2zHmuvppRHGHXtw8Ccdh50TNsbEam3rJ5H\nxu3zEGxLCySbtRPStN14Jo94HLsMizFAus4zjpdzrOMuAeE4+9Lv2fFnr08JW65tNO/vmEJ88FfX\nIGrn7H/97oCfeSDonKQyLYpxz4kUKbthGD8eORnhGdcX5GrbFgtd1PaTX2J1TlhzmbYHpWFulTw3\nQB0uHUSNm3khJPvt93P5te/WOm2X74ec21WMOWc1BExv6YdOMQWwfhN38bXcMBLlnBVYEwHiKmL2\n8zp0/3f3J5oyOlw+vo4ycxEhmkZZ9aTzMZ51+jpt35mxRNu37ztX2xv29mZ1Qh34rKyFuIeK07mU\nzlWEyeWPw+fGluL+nHX8IdThxDn/XGjczGZDpO7v09QxBR2yKN9+3L0xF+L2RPdg96YQN5b6Ixet\ntnU0j+i7fjqeIac8eudBX++/SaZL3/OctXzeNvXDudCwFm0nfRL5+dEwGOOcQBTlFl/kidbaC5/j\n7oV5ZnEbZcO4dmwFrhcy/KTkTer+yMjU3clhmOumyAknDhqjTDdSG4wufBT6zu7uGV7aq5RSHuKp\nFxiMh4h1B8a/M2nvoSAyXUEQBEEQBEEQBEHoRuTLqCAIgiAIgiAIgtDtHFWZ7qxhf9R28c+5bJBG\n7gsRWe2JRBq4ubonqzO1F6KFVnvwe3ejj8sdvxj0hbZrA/j5/cTvbta2LZ9HbaTRK5sGwA4kcB2c\no5TIw7opehnl5qs+ZsdPvjTniH1Waz/oL7IXQhYx+PcYo1nJW1mdvz53qbYn/WKztr/f35eV8++H\nFIJK6UZMQqTONj/X2BZuh4TPWQHJxY8kzkTBQSMZB0gky+zFfFm0X4vok3F2yJNPz9zJyj2/4hRt\nO8oxiVN24toWb2TN9d8feUHb79fzUH373ZAAbyvG3J8yEH1ye4+vWJ0/Ewnfji2Q8JmCXMbiqMb/\npai0M+Agtp33SepWEnUznciQDZEH//7X/2j7vboJ2v56MyTXee/yOrZW6B3Lp0JXM+pcRA41SqTX\nfj9Y253JdI4kbdm4j2gjaIamYG6Zvk+KWK5lGDRKrkLIKiNJdpVSypOKfqDy1B/JE4lCKX1V+HYH\nDUERzRHkV51JhdsziOyzk4jAyTuRlT3uEYS5PjNtGyv39MOIKls/Bn0/dBik/fs/zWN1UrdjbsX/\noUTbczI2sXJf1WN+bq2EpNy3Gy4lAReftxYiZe9IRgdZWtEp5p78weB345mRshq2vckQJTOTRJUn\nLgl+ohpM3MPb09KbjOU4hAdNfPfg9WBBHjhcxV5Zru3ibdiPgi7+TIzdY6h4GLx54yPs+OKnbz/o\na9A9394QeZ/4+CbI7E9f+httx23Gppgyq5zVqV/A30l+IDC5iR1blieGLUcjpsY0hS1yUPjJMNta\nIpej/NRluvVXnajt1t4Y/xgeYFqZyTTOmIv9pKgKsvOMlGZaRVXVY29wrcM7pKuar8v64URyux92\nB1nLxv02viT8e0PNOH4c04g1b2tWPyk6k+keSWhEXkd95HKHi8h0BUEQBEEQBEEQBKEbkS+jgiAI\ngiAIgiAIQrcjX0YFQRAEQRAEQRCEbsd64CLdQ2IR18O3ZuN7MtVRb6qCXyBNJ6AU9yFzWuAX9Oag\nJSoS37TDx6OjEX5YHX24ON2Thq4KxRNnKYPbU/rm8Gk6Jv7r1ohtiIattz3Fjkc8epO2c2YXa/tI\n+ogacVSiT7wk9cl3C0ZpO/ZsL6uTsJ/41FlxLn/ya/zik2GefPP12t7u769to0+FjWZSIOfMvAkq\nSHzarG7MmWBM5Jj/bR7MjQDxt3xpAU9dYyJ+lf4E3Gv5qbCTe3JnoLj/wFHo7tuv0bY7gzvf1Y3H\n3Dp5xC5tz0zZru3bdl/A6rS+ifntyCb3N4o7kzh2YJFRX8BGuGH+KER74wCs0WGnF2j7/X5fq0jc\n+MkIbWeux99Pfpj7Ke1qRaqYwt252i5rQ19VLeVpPs6ci7QxS9/i/raRoH5wNC3H+795kJUbaIMz\nz8iHb1KRyBqCPemaM5EeJt2K/v7D01ezOpH8RKdeuJ4dL3t7rLZTZsJXrf21LBUJRx3mYwuWjkpf\nw/8Pufr+p3EAN0yVtwDz0VnE8x2152LBpRJfxxaeXUQlYWp06icaiRYffPT2eDLYudNuXqnt9zaj\nfz4bSPIq3cGvN2sOUtL47kSsgh3PcH8/+gxhfx8E57Lh6ZXs3KYFQ7QdsmH9xu5Hf/v7cJ9Kczz2\nBm8K+rhtRisrZ12PNbr+N//S9rBvr8W1djlYneRT0L7ySvicGz0WvSR9mjeZ+NE1Y7wuvXkhq1PU\njr5rX4m+u+Bu7rf+bNlsbVt4FpKo2HYLnn0DX+U+RzHGwlHQmZ8o5dIdV6BOkSNsmYq1fO1FyBQW\n0UfUyL0Xva7te/5zKTtnDj8dOyVaP9GOA2e7+sngSSP+muWY3w1D+d7krMKa3bMxW9vUT3z5tPms\nzrmFM7Vdngj/Ubefv6x0lOJcSx4+J64EbXNV8vZQ/2/67pO8jZcLnoN0Vx1LU9XhsOXOpyKeG/lQ\n5OfgkaK5H/+ekLDn8H5P2/jHyPc36kHc35H0Ez2SbJ8X/v6GPd79Y3cg5JdRQRAEQRAEQRAEoduR\nL6OCIAiCIAiCIAhCt3NUZbpBB0Q2Jq5cYuHqfWk42bEHkrZNXh4y3tuG69mc0LRc0MHFM9VuyJ1K\nt/TQdkJ/yCfjHFzbWVGNz01YD8lO8m6unfHF4fu9y3woIqLooLJdKtntTmgodHsTkd+Wow++WMjl\nkv4z0F8rHifn7lsX1WeaOogU2yCdSCzCPPEkE1lcHJdltY2FVmzWUKQKWfvUmIifO7wH0kuszUca\nGmdfroOybYT8JrkA7aEhyasv4fMikItlmFgMLax1bg0rF+/DfF+xHGkn1jUM17bdEJ7ePQtSv54p\nmN+V33OJa+MQjJ+1lYSajyP3kMjnenwC0iJ1Js39czWkuaFUdMSqB1/UNk2xpJRSl9T+EgctuG//\ns1ivfX+9l9XZ1ZSpDpZI0rdzn/8tO95xE9YbTbFiq+R7ULYdc+uRnafhxHfJKhq23NGJLEpBhlq2\nAfLAlHCFw5C+OvL/HifedaO2qWTXUYy5am/gdeL3hU/ZQWW5neHOwjxr7ccHIplkTGrvwOd8Wjyc\nlXPGoJ6pAeXeaIE87ZL4OlZn7zlIFTRkapG2G/08ndf3Rf20HfARyW0iUrOs2jCQ1TEnYR0l5eP+\n3ETNabdxvXtrPuaGjTwHrRt4nP+2XNSzm3Cvu6e9rO1FE/iYuEN49t1WeiH+nsnnAn3eWsijj6YG\n+qZ2EKtT+Vou2mqFVPDfS2aycq5DkOZShv8Lz7cj90RVqv/sPez46bwPtH360t+FrePL4GNpr4su\njU3LANSLL8T+/7dnIM1NizJtTFdgbTtwmZ8KNPVUhxPzu8eQKlbO3RezbWJmqbZL2/AumLfwV6xO\n6nLU6XslNsLyVi7TbiXp6mgKwNCp2GTNdoOr2E7I4tOJB0f1JC7TzST7S4TsW1FjlOIGyKu0IYNX\nt2D2d23Ktsv3TdX2q32WsXOJs/DO1/JpZFeYQyFEtt8fpR7sQo5FOW4k5JdRQRAEQRAEQRAEoduR\nL6OCIAiCIAiCIAhCt2MKhUIHH96wi5g17I/aLp2dzs45ToVEMTse2kOrGb9pN3i5rIri7YisQE5x\nuLXdOxZaz+/LIb9sqEhgdexEjpe8C20wyp3aeuHcyVMQ5XTdByPU8UjbcGisYrfxiIJucq89v8U0\nCpCotMaIt1WnQjhibsZJKmlTSqnJ10G2+9VnkPM6SYS51j782nH7YDsaUa65Dx8j3xhIV3PSMLd8\nT0GKYQrwZVF1MfrBX+XUdsjJNRYxVeHnXWIh7KYB/ByN7ugj086bZdCQUmlPE0QyVHYUSOLCnHkn\nLtZ2fhvu7+stQ1k5Wx3aTaPmdrjQD0HDtRW59YlDIHcsauQR/HITscYe6f2xtrOtkEvmfXIdv7YF\nn2slbXPUow9+/6t3WJX3KsehDZ/0U8cjVL6nTHwOxhdgDxr/iy3a3vbk8bm30L3BbJhayTuxRndd\nS/YdG19vpmYii0yCrM3uwtoJdPD1n5qEa1ftTtN2yMl9RawuIndrw+fE7oYdNKgy/fEYM1cF5mpg\nKiTyniIuv7W1kmia+1Df5o78aK4dQ/bLXGgs/W1cyOrYj+OgDddL3WqI1JmDNsSXoI99CficxsG8\nTsYa2G1Z1C2Ct/VQosAeawTGwR3DthLjlz67lJU7N2uztp//z1kRr0ejvfvInIk20m9neNLIHBqE\nKN7RRvTNemTFgQsdx5T85SRtt2djcp43jkcvPz0R7297fIjiHW+Grnaso4TV+UcZxtxMIvLvbkxj\n5WJjsFdNSMOLi8uMv29u4q40O5YiHHpSAa5dcwIrpm44A9GsX3uRS+aPF+gcdtQSd45RXPOfuDZ8\nlP4qN/kAACAASURBVOvjFV/8gcscz+Tfe1vEc/LLqCAIgiAIgiAIgtDtyJdRQRAEQRAEQRAEods5\nqjLdoX949Gh9dLcQVxpdmKyq6USjRqSYisiqTG08dlmIyBgVVfYYZWxuUi+EgiEHJGl2g7SURixL\nKML1ag3BZndf/IwKx+Qt52m7opDLr5O3kf9/HObMCxn+lcKikpE+aRjB+2T5OQ9rO4tIRe+vg372\nhS9mHF7jjnFc5VwOljUHUqGC/YhYG78xUhr3o097Fp9APU9A9LuaJUcu8uSxgDkQ/u9+Q/J623Ea\nJZOo1dTm3yHCcL/FV7Fyceud6lhiwM8RQTNShOkhyy9jx59NQPTiP5Weo+3CV3j02iMZdfFQaMvG\nHkLHK30ajwJbsxRr0Z+ANTtyMnwXejqbWJ1UMnETrXCrcZi45tdMpOwJRD5pI+H5/SH+7Ey3Qroa\na0LDt3hzWLld7h4qHMuenKjt2kmGaLoV0G17M3Eubc3RiD3KsZwP16eZvfLZuS9L4bbhW4hn9m9v\nhivEg0/+ktVpHog+HjmiWNtBxZ8tLiv62EomcS8nXGRqvVzb3c+Ftha6IZF1Wvj4B8g7zeLCwdqO\nW419wWsIZN7ze4SLrpmHuTU0nUfTrflLnjoeML4HtfWENN+dif5py8F4hex8M8lYflQTa3TKeb/F\nPvrM6lP4SR9u3lGJe/Al4/76vdeujgZ1I+BG2GKYSvY64nJFntEb/4xn3dAnj59IuNGy8x8i0xUE\nQRAEQRAEQRCOIeTLqCAIgiAIgiAIgtDtHLO/zb9yw2PaHmuH7IAmwP6pkLkEw1A1GfICczuJmGrj\nkkSzB/9HCMZDfmGL44mS/SYSXdGPOtZGEsl2l1EvG14/m7aRH48tuFHbVIYQvxf2hCt2sTqFW7n0\n7GChiqugjcuBLF60u34M+mTvOc8ZrgJJ0B0VCEX3cNYGbb+gftoyXSMVHyM0cSyZMu0nIvKoc6Uh\nTOZRxlnBx7/hcyLNjRxo+7hh+7yn2HE0Cay/v/pBdjz98d92aZu6EndP7HV7LuCS/1EP3BTWNs7A\n9onQODlXGzTK3YDfEP2QSnPzFv5K2x9PfxKFtvNK59mu1XZLE+SFAy/cz8rVvtn7cJp6SHiTSWR0\nQ+Tg0FBEmL18yCptl3mTWLnP0yF3ddTgGbRpDaKDVg6rZnVGpkLqSyW3QTP//3mASEIdRHLbFoR7\nQazZy+o0BjBPnqw8Vdtb1vII3Fnf43nS4SB7DVGGp63ir1DUfSY4EJ9bN5pH/Uzd1D2/A+RdDdn4\nu30XRyz30UuQP6adgwjBf1k9B4UGct+AhAI8jLclY+/Nyajn5WyIgGonYbP3tCLCrMPC5c77PClo\nTwyeQfnNXDpdOh8vHpmzK7XdeArmQv6Jb7A6Qzuwn9wx6HNt37fwXN7uwRijlJ18Dh1tym/E/VGZ\nv1JKXfwX7Pk5s4u1XfcSnvHVk/g7nv98jJnt/RR1NKgjQeFDVrTPTKTdzmIeLbw9F/1Ao3Yn7sJ6\nbRjEXwaSCiHbNQW71kuxdDr2Ftv4Bm07l3KtuCedRAs+pU7be/2t6nhnx838vSVaubH8MioIgiAI\ngiAIgiB0O/JlVBAEQRAEQRAEQeh25MuoIAiCIAiCIAiC0O0csz6jVzxzq7Ynzt2i7aTpxC9gSfjQ\n68czmcvx/4GWPrDj93UW1x++G95k7lXVOBJCemsTyqVuiayVn3f3e9p+oxxh7OtfiOyzFMiBX0hH\nFZxqqtzcPyrr4mJtV7yZG/F6bTOgne+bDk19YQXCvAeD3GcwRNLi7D39xYjXHvUgNOzWNvTDeZem\nRqzz3wRN03BybpG275y0iJW78NE7D/ra1O+sdTA+KGFrTJjS/31QP9HTdpzTScnwTPzgDnZ8z9Xv\navvBFy849IZ1Ea194RvWp291JyXDY0xj8M+xH2l79slIzXDiY7dr28zd0VQH8fn745VIXXFJfB0r\n92A9fAhX1vfVdnEjfKo2j3uH1aH+rQnk7+fZb9B2fC1vT79UpLHYtXygthvTedqaxlPh65T0zeGl\ntGnP4Hunsxr7YEsu/u5Lx/Mjda3hdWERnjWv28Zre3pOISsWjMcA+D3YAHp/iWu3bM9kdZbOhp+X\nzQpfxbxk7o9I04gMisf403QucRbu77ekEim8qrbjedJrKX/GtmbhGm3Z+Ht8sYoIcW9VZguud/ZJ\nG1i5Tx2jw9a3k/QUzmo+Rk3EZ9OagbngdPB0JxOy4Gv8fM5ybT/WkKvtfy+dyerEk9eBfdWY3wnr\n4OvaNIQvpKmXr9X2slcx/qXZPK1WVV+8A3hLMGfsdVjMoVEtrE6gA+f8HvRJoiHVmP8UpAS6q98C\nbd/9+JUodCKrojxZ6McHt56ubWcl31xa8sia6It52+cL9Hen6eUOk5ox/F7fmfeQts99Hfv8c/2n\nRLyG24/navKVxAf9Zf4u95s/wdf9f+dibrg+TIy+wRHoIO7SVrwmqpf//jAr93YT5tDbn0zV9jOL\nMEYOQ0oz5z7cH8nypAJ2rB1XDa/UOAB7Jx2/gIOvt9gqkgqHnAqZcVA7hteJH4bNvb6E+M4PNjyE\nSFsvyF2v7dkv/k7b/MpKWcYhFVJgXZI6aOgFj2BCz0NNSSO/jAqCIAiCIAiCIAjdjnwZFQRBEARB\nEARBELqdY0am2zaIpySJ3YWf39dUQFLgjOGSlCOF+cQGdhxcmRyh5JGjc2lueOwNvE7mtyQXSpS/\nzefYIFfL391L22kxRuEAiN0A6YPVTVKsfNGLlRt16RptF5yaru34b3haBhP5qNFJCDVPZSfl67NY\nnYIreIjzHxj8PJcNxBJpbtCKD/IFj5nl0O209MW8iS/C/6gafBjXITE8RPqQC3ZqO//dwdr2GRQk\ntjFYS+YlWEdUmtvSj0tpQkTal7CJy5W6EvuJmOvelQcv0/aP4qHYbZsPPv2Nu2/4Pa1ycTY7HnQm\n5I+Fnw0wFldKKeUq5/9fvDwBsqHLb4UEeMRjRydFVlwR1lhdEeR8awZEt6+3jvKw43ufukTbF/wO\n9/fBPKS4+dlrXE7uqMWa/6AKqZ0+r+VSqu3vDcHn9iFpaH6JNDRX7T85qnbHrsHasXj4PpwcA8ml\nn+gl+yZy2fCpWUjT8XYdtIcpmyP/T7l+ii/s3811PE9L9mnYY10dOFf7Pd1jIz8/zMvIor+En6Pp\nxiylWPMhC8YhdWMzq2NvxjryJuD+9sfwzYWmc6jyIc1HS29c2yidtDfgPrL3Y8zrhhpy15BnkDcH\nUt/44sguBW2zITcdnA759XdlPG2MsqFRad/her5EfGhbL97fjio8y8+bijxr7yzkMs3nJ7yl7Q9a\nIRb3Eh+JxB0WVsdHNOWmUuz5N9zwsbYfe28OraLuzlyq7Slp47QdW2p4TyjFxSP1XGpyEzsu2g/5\ndOIm1PrV9Z+zculWzBsmze2EvPkY8+p5eO70mbWXldvzDeZTiLwaVEzG8yhoSLnnqMG9m/04Z21n\nxVTNZLLXkHRAfd+ATWW5Sik1e8k8bcc1ERmqOfwaV0qpfbvRj5YklItN5WN09+e/0Pb505Gm6YMR\nXOOcujXiR0XEl4DPakdzfvQ+UdiKk4461BlxWr62dz0/hNXxpKMclQO35WFjiC/j+6M/DnW8JItN\nwM7H0kna4CN16P0EevGBbdmKd4gEIrNvHsifLbZGrL8drXgOmgxqXgqV5s6YC4n81x+OD1e8U/qf\nUcSOy5qxRuk9WNsiv/N3NfLLqCAIgiAIgiAIgtDtyJdRQRAEQRAEQRAEodsxhUKhIxhXqXOG/uFR\nbW+75Sl2rjUIOdY9VSdpe1MDpGuxNi5PKPqirzoc3DmQbDjLuIyFSnZMhohelBPO3abtgieGHlZ7\nKPUj+M/lKVu7btia+vH/SVDpib2RSCwy+We6ynCuNReyo6R8/L1+EpffpayCVMiXhHKeNH7t3ieU\nabuqGdH4LMsQ3e3m6z9ida5LLNf2lC3nod3zeaRGxs8ghasvgwyCRh7+KeIq5/OJSm5/2xNRCUfG\noB9spuj6ZNT9XALaQRTYNHrd1huf0LbFxOdg3qfXattkx9yK3QGJlJkHyVSedCKL6kZ5SVdCo+ne\nWjGOnft0GY5dFdH9HzHjDMgv423osD2f9wtX/EcEiK7OElkNxujg6iuVf93By4MjKc+W3/kIO369\nGfeRE4O13BbEPIk1TJQ/PnF1VG1wZ2E+FV4GF4DrSyFd+2oH3+OzsxDt9bxsSClfen62tm2tfK8L\n/Awy9qZS7G+OzDZWbnAGosVuWYP7DnWyLE2ZeI4GSFRSk5tX6tkfklLausY2SDbbK7gE3dqKOWju\nC7m6t4XL6s0t+NzeX0KHRqNfmjoiP89aehM5fx9DBHUicYwh0kUaJd3ezK+dmA8praUSc6b29DxW\njkbQbOoPO4GoOYMGZW/OxZC/vdf/C20b985ACHvahL/frG0qO6aSX6WUiv0Cz8GWWejvywevYeXO\nTtisbQd5WfGTzfeKf9zO6jQMRx/F70U5HwmmGsOVtIwxF0O/ufHNERHLNY/DfLTa0DbXythwxZVS\nSmXOQRTYhUM+Y+dG/++B9xMqxVRKqZ7LsB8UX41xsMVwjWTsYsz3+kkk8vsWzG+/0SuDTDU6lsao\nu85aFEzcg2vvnYMJZe/J1/8/R0Eyfec3F6KdGbxc7EeQXLp7kPe3UZCU2gp5NG5vCsYiayD2ArfX\nIKxeiM6MIfsY/ZxWg8td+ne4p6Yz0VbLFt55CZMRXd3tQx2bBW1zvMrd5dzpWFeedBWW2FK+/lN2\noh9qRrmMxTUt/Yi+n2RuCDrwd2sbH9jcT3Ht/Wfg2t4sgxuKFW1yJaJOaMPhRy+mtPfDWAzKrdD2\n1dnfs3J/fQW+FTtuxvP69PyfsXJl3+QcVnt2/uO2iOfkl1FBEARBEARBEASh25Evo4IgCIIgCIIg\nCEK3c8yED325OYMdX5mAn+wfziIJo4k96D83sjoGxUxU3P2rN7R9QRx0KHdUnMDKnRC3T9tzYiEh\nfbBuLCv3t/Tt2p6kDk+m2/emXdo+M66KnbvoIkTTmvUpJDcZKw9enpi4p7OovUROUMnP+ImyJmkn\nkTGcRSIR13EpRtNAEsk2DRKC4XllrFzZG5BMWWJpJDOUWVAzjNX5n1Vnoq0FkNI4OokC2bAPsg8X\nkWb7ko6aev2o4O6AHGesPXK0yEgMWHqlto3CFytREVFZk1GaSyk4GxFLmcTtDJj3GMb/zQVTVTj6\nzeKR4/YsOLCc/9/XPMuOf/PC9Qes0xUMezyy7MwR4e+2KZAazsrJZ+feWzRZ20suQoTZi0+7jJVr\nWMwjU/9AZ9JcKselUtxP2vgM6MrIvU838jH/bcoebf+zFhGdRzoh7YtWlmvE2o59Z8DreNYUXkqi\ndmevZHWagpBcXbL7PBUNVgv231kTILEsbuX6wgHxkM/1OxVRkj8vQp+4FsSzOmo75HjeZNxP8owK\nVizBDvnk9gK4wtgr8FQNZXAZY4cTe2SoAbPT0sIlqVT26aiAvDQUQ14/Any/DdlQJ2gl0WaT+LMq\nmIg2dcTiehl4PKqkrTwyvqmZbEgOPCdS1/HoxSY3+sQfTyNbo61mg/pudgbkqvl+nKTuDkop9Zfq\n0bgHEtGdRmClslwjzmU4N3M8D3HqJtrhkY7wu0ZwTj07PjOrWNvf78U7TWfSXEpn0lxKwjq0h0pX\nW3L5uMYX46SJ6LmjkeUa8aZF9qsK1WH8vXb+BtmrEJtfaw7mIJXvd6QbNkgPxjlhJ+ajJ8Mwv8lU\naxiIazsryXtUHR//33l+rm2TA/c0NWcPK7dejdG2q5K8b1mwF8SVGVwFStDfHevg1mQzvE7S53eQ\nTGkLCXKe8W3kN/HYpXhpNM2uZeeCRBc/szfchj5eNEnbZsOS6CDtoe8ZWStwUD+EP4/2/QZzzV9F\n5kaI3yzdt7xEHRxTiRvvsZJLpH1J5N2JzFuTl7/ruNKwDwYCOOfJwX72/swnWJ3LXrhVHSzOPWjP\n/j19tP1X1Sdc8R9xKLLc9hz+nBg2uCSqevLLqCAIgiAIgiAIgtDtyJdRQRAEQRAEQRAEods5ZmS6\nb5VNYMdXJiBqWmkHftLOtuJ3eVvr4UfMpNJcysR4Ln04yQEZaZwZbfjgzVNYuQ8UjuNUZ/LXA7Nq\n00Btvzl3CTt3RwWSrTsqqQTo8D7TSPUZkKEUnf4iOzf2r5Cu0Whz1l1E0xDHJTKJBWTMCiAhKFvB\nIxmOvBpRiV/q/Z22L9x7qrb3NfPIahY7PstMlAIeQ4Ln9iyUi9+DvqMRGH08t/pPnn3ziXT1rvBl\nNnl5VNIrHkNktMgx6TiPXPWfqMpFE7k3z17DjmmEYCohjUaWq5RST14DafCNr93AzvnSsa4+mPsv\nbV/yXOTocN1F4z5M1vvGbWHn7ruMHmPfqmzgeice/zQ6QmasF38Ia+qcWDcrd86tkPB+0AqdfYkf\nMtT/vDJbRcOrhRPZ8aeukdpu+hJS4/eiuppSky+B24c/yOdcB9ERLv9muLb7voe5kTesnNVZPPQT\nbY9OQiTjEsX3N0ptOSIoZuY0a3tWNh/Ls1x4Dp6wFtEPfyTNJdAE71Ri9z8DPmDlaPThBwOztL3b\nBvcZk5lL+5wZ2A+cX2Jc/bF8v3XWkWeSmfz/24RyLQO4O0flSaRYBkksX8llpyYSqZdGgbeQrcqf\nzCOHmvN3wyYy3VCAP6tCPjzTWk5EIvjkxZEE8zyie2RhvVIjXZCubTq/WNsV7+Vq2xTk/d2CU8rS\nF5F217bzuXVDEnd5+QF3EPdzUd917NzzW6doO9Je3p7O2+NPIMckqnFCQXRR101kWlBZrpHKj6KT\nFEbix+3By4GjGp/bnsvHv24Y5sY15y7UNnUNGPw9d3foINLztK24Hr2WUkpZfOgv+n7SEYe/p2/k\n73LeUsyn2vG4ttWQ3iFAPipAdLZGaS6lLQflvH2huTXVcpcdcw+sxbjlJFos8SiwN0b8GGWjqtb3\nUtm5BuLVZu5ZqO2eJ8CloGl/T1aHbtkx2B5V6XTIgXudymWiaWTiFQXTtB3r4u83TYm4hpO4fdGs\nEmWn8CjQ3hScS8ErrErYx/X8ey4g9ejUj0HbDsVdqisY+uThudU4S/jXynwPWb/hPamUUvLLqCAI\ngiAIgiAIgnAUkC+jgiAIgiAIgiAIQrcjX0YFQRAEQRAEQRCEbueY8RktW9SbHffdjlQKNOXGoWCa\n1ImIndBv8VXaTkzkfk/jeyBVwLMknH/idJ7vpGlJD20398V3/YSiyL6cF/xhkbZvT0EaigI/BPZP\nNg5mdRa+h3DXCSVd6ydKCfmj+39Fyiqib2euCYc2dtRPlJLjRJj+wlcGsXOJ7Ciyf4Q5QPxE/x97\n5x0YVZn1/yeZkknvoSehQ+i9CNJULNh7L7uKBV0b6vr6quiu71rXtSCKXcSCFVEpIqDSewkh1AAJ\npNdJJslMJr8/9ufzPec6d5gUEsDz+evc3Oe5c8vTbu73nFOFclVtqa/Tnyu1C+XZou7a3lsFn7F1\ncwc06nj1E/DMzjb4ZZhx2b4ztP1F1598ljlQkxjQsdLvnsm2afqUmnj0nbvehi+gsdU7CvCXKz5B\niPXGpJPyd37+Uru8dStCvd8+a5q2g2LM86/ccBBOGpu/ht9jY3xEjVCf/R7z4T8+Y8JX/ByiEML/\n0ohysgd2YJ7ESgWv4M7cZappzt2bCztou3MUT3eRPq+3tsdeBf/NDZ/CT7XwQEdWZ3DVldou3w2f\ndu5ZxHHkoBV9eYD0MYOb6VPPIh5BoO0ueAKu6e7uK7X9WTH3vS2uxRnmf4dw/l2mwO+1Z3Q+q7P8\nW5r+DONl9EEe2j+4BvvKesG3tGAw2k9YDz5H0/tVUYytqMO8Z1pcxG85ivj/JZC0Cl7uexUyFs/P\nuhv+aN4Sfg5B/THn2uy4pjpyOGPqIxrT4NPOPyszetmxbij4CD5VVnIfaSoepZTyxMPvrN6NpZuZ\nj6iR54uQTmZ9CffDrMsNNRZXSilVNYo4+R3k3qTRqbhf9Ut5GqKG4jE4qlrJ8quyI0l3k20eJ4T6\nRNucpsVUWWc8wOokjP8RCTxNx4v3fqbtOQVwYr6sBB0zNpKvE72fYL50kqGB+ogqpVRFKklX1xV+\nmPWlOLf8S6tZHdt29IOQAqxhln02jJULIunvQop9r2OcHfl9pOdgOwTf1JhMVkyVpKGd2Cvo2gll\n8kdxH1Z7HK7DvgEPKSyPn1vsTtjP3rBF2122YZxpn8+PXZ2I+1A6DGuLYCueq9eQsiWnBOOyNR33\ntG4o78y2HDwLmromvi9iVZSv5Ckp6yJxfoXD8Lv1Fj7jRu713Y5rR1b4/Htz0PccPMwz4nkKuJfn\nXNSkY7sj8SxtFfzaQgoCe4eQL6OCIAiCIAiCIAhCiyMvo4IgCIIgCIIgCEKLE1RfX99qesS0v/87\noHKTr1ij7UWfj/RT0jeVnblsyF6IT/vGT8q/0/eCXWx724+Q7AS7jaV9Q8PL15AsJGedt56VW7Rw\nqLYzb3nD57HW1fAfveexu32W89r49QS7fT/e6jj8H8JabZCQnAG5yuSu+Jw/LXE5K3f1Px/0eWx/\nlPUkcq5Mc8nNT//7orYfzDlL21ve7dfg3wwUVxuaBuHEk+leOfk3bX+2aIyfkseGpkHxR3kv9J2/\nj1/A9r0+KzBpR9IFCK2eGgHZYGNkv/VE9W2IaM9wE6lStzP2s33zuy/Utj9ZbHNSG4325HXwtrXv\nCqSUWVONi/rLbN99XCmlgk2u3ZCdxLRcY3CcXsi2O0VBfv1VtyUNPl7nb27TdkQW9xgJNlcen/TY\nnOZjiycM/XLQNdvZvilxW7U9Y9Z12raXmx+vaAT677XDMI9OT1jHyr1cNETbH26DhNdyGJK9+lQX\nq+OpgFg4fj2eX9xOLl2sC8W+o6MgV/MSrXH4YN62ivPQgUOiMJGGL+UpYOhcXB2He+fsgzoxG7lE\nLjyXdApy6wr7887jDSFSX7KECIdyWVV2UgxvZ9yj8V2RnmJpBnezif+l4Wkbev4Vc3FOJZxSnJ/w\ndBc0BcxZ5/IULr8Ta+PPaMFMyPlpG6TjiVGS3FSeu2e2tkc7uDxxzHP3+6xjUFyqiiHQT0ZsRVv1\nt0ar6AwJZ7vekJ6f1obPE9MTIGu/Zf+l2s5YA5muMb1gu5Vod+WpeMbFfXkf7TIA0uolvb/T9oT0\nC7XtcnMxfmUNjucsgq7ZVsDLxRIFpvNCuEK4jqLv/PX05azOowmQcGbUom1c+g5f40Ue9D3WFEzC\ndZ/Zm0tAfznYTdv235CGqrwfb1AhRBYbvQ+/U+fHJ6FoFB70gXPfNi9I6PYJ3HFoOqggL3+WUXuw\nRnZMydP2P3p8o+3Dbp6eZpMT8vf9TqSNcdbyMejQ7jb4nUx0stooddzYeRfcgZ4p5C5ucz6bpO2I\n0ZAhO1cF5goVKLueNk+F12if0fnz56u3335bWa1Wdc8996iePXuqhx56SNXV1anExET1/PPPK7u9\ndfLkCIIgCIIgCIIgCCc2jZLplpSUqNdff13NnTtXzZo1Sy1dulS98sor6pprrlFz585VKSkp6osv\nvmjucxUEQRAEQRAEQRBOERr1ZXT16tVq1KhRKiIiQkVERKinn35aTZw4Uc2YMUMppdSECRPUu+++\nq6655ppmOckX223S9iLVcJlu+IGGX+YbyVySONbdy6SkOeV9IUN4Ysx8bbe1lrFy6zIgkRo5HRKC\n4r6QDaTf8JoyoySNRO0y/HshbofvOo5iSFXyJnAZs/UAIox9V4oIfIsKh7JyXDDlmyl3/cK2ZySm\na3vQMySqqSEo5hN5iBxpJs1d9cQrbHv0jHsCOCNzaAQ/dyAX18I0VZrbGKzlkJCEBwcWCddI/nxo\n2fIV7A4XZWk755vUgI7lT5rLypEm/VTyt2xfn1fNpSJmdDwD0bT3HoV0xZHOo1BOuWKVthd8jgiM\n9jL00ao43t8ClQpfcdVybX/x8XifZZpTlqsUj3IZE8plmnsWIOpyP9VdNZRAuxgNhnqyynfL0yAn\ni19nPh/VQsVmGlFcKaUufRCSq6GP32FaLnwfNG7fJ/XR9j+SuAT4iUSEsnQMxLnOW4Go1mq/74ir\nRqyZh/l2PHxU+s5ABNaiaswzb3T/hNVZ5YIU8vn0M7VdPJA38CC3b3eDhETIPi+byuegj+bgeHVQ\ndqqaDobGRTShbX/GOFiA6VqF5/AJ174P92jLT4jay8V8jSPz7d7HLqSU8nSFdHV5NiSSVVWQCtbn\nOlidOCJrddNQxkSV2RwyXc94rH1yPZAaT9wamMtHkEElGrXB4bsgofb0crYdthZayGnnLtP2VZEl\nioMbcU3btSh3Pdw8Rm65jFdZiWsqHEMkpGdzCem0HB7N+nde6DZP23OL+Vr363SsxaxF6NfuWN4n\nyrpifAm1Yl/6JW9q+x+FfD3b9VOsO/ddBbcRy2AeYbq2CAs1FqSa9JVrE1YrCs0+oU6DOWDd1ayc\nZx8OWEpUpPZSHNvK1eUq5EjD49kn9IZLQLgdjTprO5e7t7ssS9s/9PzB98FCeYTxm6Kw3XnhX7HD\nME6FHcF4UnfsJqyUUuryK1Zoe97n4/yUBNXt8fyXuzBWUVmukeaW5gZKo15Gs7OzVXV1tbr99ttV\neXm5uvvuu5XL5dKy3Pj4eFVQUHCMowiCIAiCIAiCIAh/VhrtM1paWqpee+01deTIEXXDDTcoGgep\nFWMiCYIgCIIgCIIgCCcBjXoZjY+PV4MGDVJWq1UlJyer8PBwZbFYVHV1tXI4HCovL08lJSUd+0CN\noNeU3dpOz23H9lk2RBqL++S12yBDmDp3qrZX3vSCtmMt/tKUB0gtPou/nQWJpccbmKtuUBdEtR37\n0F2m5WJ3Nu3lP3obDzRlI8mMLbWQEyTddoCVyzkIKZXXSmQI5PIWvH66oixQ2N7wBKTHg9dfrLat\nTAAAIABJREFUy8r1DUe0uUXJvqMND3nSXJZ7xd0/afvnfB457PDPydqm0VnDcnHd2x7gUY27f2Qu\nhTuV2XM97sPkjCls3+CrIfXb9ElgUY4rkyEP7xAGyVZGTy5djcps9P/J/sDAkJBjFzoG2T+hzfhT\n1VBprhlBNY3LqPX5p+O1XUeiPQfXoO9ZAoz0PeEKHtF72efDfJajsqjcRZ18ljneJJyJscBZw59l\n7U8JxuJKKaW2PgQZ64DnWiZisj+idlI5mfl4bUwEHwgRVxzVtvNzPifSZOQ7hn0a0PE2liUfu5Af\nghy8h3jiMJf2j4Kbxu0pG7WdYJhv792PMT+ITi3VvO94ozFutGkLSeEXfd/XdkcrF4S/HwqZroMI\nuMJyueTPE4ofDi2Ai0LsTqZPZHXqyC5/stbSHrBjdpuXo7iSyPnkk+jcBqVi7FJ6/2EHOgray49d\nRimlgiYhMnr90jhtVwzjcv7I9b7l3S/NvCLAM2oaroIwtu0gm8/umqztVR32sXKvtMcYOesgZJFX\n9UU01eiQalbHoyDTTT8LY1BJHZ/fXuuwVvmiTuEZ//Ial/ImkkNYSJaE8isqWbmqGqyDLWvwXF7v\njvF77m7uchVS7HtO2j5iLtvuuwZjaWVXIkM+6x2f9f2yIpZtRhThmpwdcB9q4klbt3K5qzsK+z6u\ngBj+3DC4CsRa+PNfMxDxbGhU2Q8rOrByn3f/imwFqKWlNQ7S6MBew15sF/chMmSneZYD6uI24y7Y\naa+bz2/1VvzOLd/finMzrcGj7vo7dnPTqFXRmDFj1Jo1a5TX61UlJSWqqqpKjR49Wi1atEgppdTi\nxYvV2LFjm/VEBUEQBEEQBEEQhFOHRn1+aNOmjZo8ebK64or//mfrscceU/369VMPP/yw+uyzz1T7\n9u3VRRcF5pAuCIIgCIIgCIIg/PkIqm9FB8+0v/+7VX73oZs/1/Zz7x0/qUjoWETtKsyBfKNDShEr\n5/no+Eia/XHxI0u1/cGnZ7J9VqI88ZDv+S/dzKUY//PcLT6P7bVDahBc6yfB+7mQVW0dzqMp1tRD\nAnJPDqS9D7SB/Pbqf/KEzJSynvjdkCIuAKAROc0Sxpd3NT30KUHYEXM5yPGkjii2aMRbf0nKGwON\nApt+90y2j0avpTJGWwXuScpZWazOwcWpzXZuNCquUlx+649Ppr6k7Wtn+k4KHyjb7+X3pN/LrS9l\npbRG1Nyq4TxUY9i6MJOSTcPm9DMmEmmo1cXL1U7BePnZQIzFFfXQaV713TRWJ6ErpJTLB3ys7fFb\nuVtExXpEUAzPDmxJUBdC5OE1qJO0upiVq2kLmWz2eEjX5l2P+b+9hUcEvXb3ldp2ulHnyCEelza4\nEn4W3hBI0gb0Oajt7pE84uXXGYhKasnCBEf7v1JK2UtJHAyL+XMxoyIFdSIP8jquKdDChi7wnene\nGBmfKoJpVNnJ9/zGii165dhR1+sNwz89XuFYdL7ozebi3i2PzDTdRxn4r2OPLWsf/g/bHvHs33yW\nS7yQR2ou+Na360BZL0wu0bv4N5fkS/drO78SbdNdx2941Ua4AAw5C9Gm2zngXpJgc7I6815B9Omw\nArTpI1fwAe3s7hnaviNxubanH7hU21k/pbI6sXvQvquvRx8b234/K7cqF+5Tf+v2s7Yf++1ibffu\ncoTVaROK6NM7Z/bV9tp/cXel3m/iWVI599bpaAuzSrnc1V2P+7++PEXbmW/0UWZ4yDqheAieZZDL\nwspFpOBZVO3FGttCXFdGT+IpJaxBuI8dHYig/P6601i5M/rjmXtIZ1yeAY39+f22sToLl0D+HEUe\ni62S9/+ifjg/T3u4ADh2ByYHpu5l/jIMDJ2Ca1//I55rxu287/Z8F25otQk4YOjh5nOXUkqpXU+b\nZzJonPOSIAiCIAiCIAiCIDQBeRkVBEEQBEEQBEEQWhx5GRUEQRAEQRAEQRBanOYVBJ8kHE8/UcrA\nRKQkeKr/u9qetO52Vu7xxz/T9ot74L9ZuxQ+C6H5xtDQgdHx9r3azvgBWvf35+F3orP4sfPPhANf\ndCzChi8pM9f4U/z5iVKsP8Rou8tBfk9UMI4RnQy/gHNXwE80WnGq46HD98bDRyOogPu92Ct8nx/1\ngfKXfkFoPK6+CPsfYRLyvyUx+on9TnP6iBoJ1EfUSH97w8PLm9EYH1G3IduVrdJ3ueYgUJ+Y5sRT\nxafDlIvh9LNjS6q2Iw8cv//h+vNHtC/AeHn9gge07UokPvrxfCyvqoG/5TOFQ7RNfUSVCtxPlEL9\nRClBVTzdxdGR8PO0kF0X/ojUXOMHZdAq6ukuX2t7ezX8At3J3Gfsrb3wj6zcijQWu5bD6T+zjgcA\nsNHHRy7BamjPFrhyqdoYsoNnLmHQOcif37OZnyglyM+Uf/dD87T96dHhxzyWEZomRinus98tGT62\nBZtx740pZMx8QUdfv8n0d2k6GPdqkg7GG5iTuJmPqFJKudqQNcMu86VtlA2NsMKGtUGFi6cAqo3B\nAzjwci9t74rCvSvrxo8dSvZVpKKtOhw8KMLCFYO0vX8I+kfN00jN1NbK74krwfc1fbttANse0QMp\n+K6NRHySV1bgAWZ4uV9ndgb2OYdjwDU+YytJXeQgqVi6Lb9J2/EL+bw+4p4N2l6zAmtIntiFUxuJ\n+xh2AOfmieBjjvMQ+hHr1qR5r1raV1EcfeB7/1NBmrYj9vAGvnof7mttDPndJDzLn+fxlGjRBShH\nfYaN/t+ecHKCpTy14u98c9vzbPuit6Zr29+cGDEa+ao2LMC10x6fXssHMYuLpI1qZj/RQJEvo4Ig\nCIIgCIIgCEKLIy+jgiAIgiAIgiAIQovzp0zt0lK42kLm8clFr2r7yuVckrr3rNna/kchPqv/+BxS\nmtQHc1lNkBePLW8cvtm/PeldVu7xPRdq207C52dvao+/l/Fjp09D2GenF5KWwR/xsMxhR0lo/2rf\nzagmlh/bOwzxwAe2g4x5budlPusrpVSPDxF2OnK/aTFV1da35NIoJ7QRmW4FoqCrlOHZ2s7a0NH8\nh04Bmju1i5sonOq5kk7Zy1SLE2hql5MJKlHyhBE50NGW+Z9iTQzv41TiHNzMUlqaembAc837vLY+\ndPyObcZ5NyL9xg/v8tQbgaYKoRQNxQ2fMf4rbX+QPZqVK1yAcYzKGKP2NfgnAyb+7dVse/fsYT7L\nBVVhoBg6ZA/blxIGOeeGomRtF1XydDuTk3dp+7GkVdp+qxTz6KwlPHVZ1D70Fyo1docZ5iqi2qMp\nwMrGYU6MXdp80nmllIq6BnNi+VwupfQ4SHoZk/m2sbgjiPR0EPTJ/lK71EbCtleYFjP/TSL7r+3H\n0yqFrwksrZIrCfchND+wOa3tRUj7k1MGZx+Ph09cdXU4XsI3OJ/IW7FOyP4pmdVpuxb3ztkR8svC\nQfx5xe7Ase0k7YezA2mbBjl4VQeUC+6BlDKe/Vxe/PwlH2m7nz1X2+d+CJmnpZrfq9o4rFXjt2Jf\n1cV88g75AfdrwwykfRnxyB2qOalsT86hPcY6WwWf6zzhuCdBbuKmFUo07oau4miHBaGrCJJieyGX\npwZ1xz32kntsL6XrXn5sKs2n40fFEF4wiLihWQ5hDLFWtk7KvZZCUrsIgiAIgiAIgiAIJxTyMioI\ngiAIgiAIgiC0OH/KaLothTcC8oJpO6/Rdps2XPrQ/StIHCYMS9e25XpEtav7KInVKUnD5/z/G/eF\ntqc/fxsv15/o58i/HkaMydT2nuIEZcaI1+/XdpAhklnZAGgS4tYaQu39f0JKeJ2qbYh+Vp2UZ/q7\nlOAaXGtpb8gvLDVc0hC5v+HSpQsnr9H20tkjsSO1wYf6U7PzLkgfZ5AIdUop9dW741v4bP4ozQ2E\n2li0H3uJQbpOjtdaMl+rM8in3RxQWSyFRt0NKW05CdG22upjFzrBqRiMa/jqu9O0HdEIWa4RSxTG\n3huiCmGnzWflepdcr+2oRVzOd7ywxMfx7XLIH8O7Yu5LiIBcLtwQOfT2+F+1/e+6Sdpe9vMQVm5Y\nGvw2sj34exjRyw0YwjXJuzq10barnEjk8vkcFkQeU7uVkJGWnIbrMUaYDeZBUzW10bzv2Mt8t4Gl\n5PkNU1z6GKg0t7IDfstBontayC2uTjDvy/6kuRR3NI5tq8Lxnr9rNiu3oaqLtt/fOULbYavQHm1+\nZLn2yYgOWruIR4EORJrrMQRtzzyAiLVBFvN76tiH+1BDrjVvG3HhSeIhj6sT0CAicnDDI7KVKYX9\nSETfXqQBWfmxE5Pg4hT0KdZs+adxH4mLwiEvfam4v7bdJDqwYx+XJEce9n0fw77mOQtqYlCu75pr\ntW2JI3NTFb+n1gCH8tKesD1EZjt4EPrv1tXdWR1vGK6dRsOtjcZiN9jDr60uCfvG9sc6eGsel8U7\nnRgbQkyi7hsjzFvIeOAh+2JiuK9YWTnaO3WT8zbDGxldi1HSXj+x3ZPky6ggCIIgCIIgCILQ4sjL\nqCAIgiAIgiAIgtDiiEz3OBLkwrv+B30+0PbX5YNYuV2xkA0Ni0LC4u1FkJMY/2sQuxNSiKsiS7T9\nf6FcTvD25He0PSkUkoZ3ytpq21vfh9UZOR3RfiMV5BJrnp/Fyg15suER1MJycd4H5yBj9BDVzVdx\npZRSNcMhd7GUQAfhL7KuPxKuPKztRxNXavvnupG+ip+SVHbkUprw7KZJMAc8e2JLQALBKM2ltJQ0\nlybH9pf0vrmj1/5CpFT7a5PMC7YCtTGw7aXm5QKlpSLoBhUjmmZtKqJsuqp5BNbQ/IbLdmN+hvZw\n6M8Yh7vctJuVC1ty/KS5VFYXk2lezl6CRl1RhvOuqcXyY/9B3uZuJOPyax3WanvlrTxS7yYXwqHv\nrsZ8ua8Kcs6duW1Znfp69PMgC5EuFvP+33EhIvrWJEFzN64n7vGmzf1YHbvb97MsT+P6XWsJrj0G\nAYFV/3VXa/uqe39mdea9CbkyjcBcdiaPROsug+wzPMcQ2vz/4+zBZdH2PMyrodWBzQVmc8bMnIls\n+5vui7T96OloKANXmffDis54LpEGaW4gUPmkMZp+sB2D54sj52n7oS+v5+XIIysZTSIMr0P/LRvB\nNahhUyEp3rsP7S7lW34ORb1xv+vIcBC+z7e7k1JKqeVEmjseJ9clJZ8VeywfbXJbGaSnievRD91h\ngY05+aP5RGMl7gGeQkhNE4js3Dg31UaSyMEVfmTRhShXTTzHgolePjSXt7lKG9o3nTtpVFqP4Vqt\nWzAmbt6AqNs1sbxcMHk7svEuhmPH+P67UkpZoZZWNavj2b5wNCdV0RPPMvSQn+cfIFSOO/bCzU0+\nXkshX0YFQRAEQRAEQRCEFkdeRgVBEARBEARBEIQWJ6i+vr55syc3gF6P/1vbZlHoTmZopL2Xb0KE\nOXsQ1zFsqUbiZBvZZyES2Rc2n8Xq1LkgTzh/4FZtP5i0jJVLtkKSUFeP4/VddaO23VlcyhV5ABKH\nq+5You2H43li8t5vQg4QdrTVmpFPqGSjJo5LOxyFxz7X8q7NfUatw57rkZi6+0eQ83k7cHlRxHpD\nyMGTHA8Jzhh1Oo/aXP5LG3WyQ9u35SQdO2sGQ8cUsomPQTS6b0vJalsKo/zaGH3ypIEOq+QS4t/m\nUtp9L8D9ISENkX8dVoS/jQlxsToHS2O1Pap9lrZddVzGtq0A0tyUaLir2C2YRzdnd2R13LkYHEJz\n0ZGoC4lSStkriRS2Mw1Fj4jA9sVRtAqLWOsPM+liGfFWcScZpL3FuPaQItQPKeXnTZcXtK15HKhj\nqeV1igegYNQe39LexuJKxG/RiNyVHfCbISX8u4idJxxoMGUD8SCit9jZvvLuuEGThu/Q9trPB7By\nEdk4vzo7zptGRo44wtdyJd1x72wV+Lvdye93CQk4b3HheO1/g36z3sLXLWWd8fzrz4OEvLSEh3S9\nfiBk7cGkY37/0jhtG6O2ms0hxmixJUNQMOkX35LS2ghD5GhnYONbdTzq1ZGAzu5I1I/mS1BVOBjP\nKGkd6ocfxXmWdebPn67LqYS7zhBEmj5ziqUG51MXYrjWcnKtZJfxnlR0IW0rDHZozsnpOenqgLHc\n3zXsevo+033yZVQQBEEQBEEQBEFoceRlVBAEQRAEQRAEQWhxWlWme8Gv07S9LYsnnD07bae2e4cd\n1fYHL597/E/sGNDEv0bJ1Rf3PK/ty1+e3lKn1CqQoISqIg2ymMiddh+lTy7+ccf7bPvJlyBr9kxG\nSM/6lbGsnC1ASUpzUpECO/Kgebmlj76o7dFvP8j2ZUyFLJLKr080rrpkubY72ovZvhc+vUTbQVCN\nqOr2XErlONK8MrTWIASKRLX5MTy7h/MGsnIrjkL3V7PgxIqSS/nbPV+w7ec+vqyVzqQFMMwZ825F\nv7x89gMtfDLNT+JWD9u+7cUvtf30Vszf9ZmQZkdm8WMY5W+6jlEBRlVxxK6NhG0jUS3/WxBm+VC4\nK4RHctcFtRKhMmP2YwzJPoc8QCt/mI+N/F7bb7x4sToZqTcZHi0XFLLtOi+5kQvi1YnK4Fu2sW0q\nx932AMbOQf88cee9huBMOUll/wEQ1MxR5E80/n35e9p+cPPlbF/YTxgvK1Lx97qOfNxqmwiNe50X\n3xup6wKNUKyUUl6ymI9zIHRwaQ1334qwQ0aeGo7116EqrIN3rezM6kTtg71p9v3KDPkyKgiCIAiC\nIAiCILQ48jIqCIIgCIIgCIIgtDjyMioIgiAIgiAIgiC0OK0aRzh9TRdtTz33J7Zv3itnaPuu/0G6\nkm1/RZj2zW/3P45nx6GpPmzlsGtiufa6hw2xsGno8vCck/+9v3Z0Bdu2rYZjzsnkJ7rtwZk+/97/\nBfiMPPjFjWwfTTzhzEE4/xiDj2jpCPjOxqw9fvekehKehW0rTS9g7i8Sawkz3Xci+4lSf1ZKoOd8\novuI7ryL+C2tv0rbNeviAqrfYwXaavAe/oyD09BO6ifAdiyLVK0OGRJvispnu55r4VNpTcz8RGlK\nA6WUslX49qM80Xk2A2nJLJvR7qq6Y6x0VfGx0lHkexxzO/g9sNSQDbLLStyojH5mMRfn4BwK4Rf6\n/sD3WbnLy2/XdmUK8kFE7YTtcfBjf9B+lLa/eRzxIy56qnXiR9D4FjQFjNEnt3QobmT0JuS4oClg\n6uYnsDpT7vxF2xnXt9X2vo96NOGMm5/ZnVay7Uevwzj4TSVm9rIRhnRnW/BwWTtrJepIW7OQU73g\nthWs3NxFp7fQGQnNTa4b45HbzdctG59Amr6RD2Fsyg/jOWnKwuHnGRmKhhJqRbobp5uPt4mhyHFT\n6cE+t5e/t0xMyNR2VjX8xPNnp2o76TqeSq+ouyE/kAkn/xuSIAiCIAiCIAiCcNIhL6OCIAiCIAiC\nIAhCi9OqMt3wbEhFbH5iNt/4T4QD/uh/EAb/5ovbsXKerxO1XWcjMhTDK3ewG9KT4hH4dB2/GvKb\nyg5cxmLtBm2uKxefneO28oP3XXOttgOV5lKpb0hJy0uxfnngRbY96Jt7tR25D1KBzglFrFy2aj6p\nn8egILVW+S7XGKbd+g3bXlONtnbba3f7rBNca3wOeEbde0HmVbCjEz/2pFe0PcJ1n7ZjtzVdKlqa\nBtl3yA5Ic0MLzaW5fW9I1/bgp+/AjhM3y4dSqunS3BOZSy7/lW1fsX+StgOV5lKeG4rUGTN+vYHt\n2/zXOT7r9NnM76O91Gcxv5jJxozURsN2dUTfi05vGfm018b7R7D7JJG7GqaP2LG52i75ta06Waip\nwbzadjvSvsSfgzxU2x08tZttNZkQyOMytjOahsRajedcNhQS4OjYSlpFHTwCedn+M98lewzStaWQ\nvzmK0W4r25L5+gye7qR9BNIqXLL9Zm13uzmTldv7Xk/VFEp74RxidvH2XJ2A7doolHP2xL235/Kl\nX/wqXLvXGlhqkAUzIQelEsJnpx1i5T6ac6a2qVT4eOK14h4MmXGH6b5vJsDV65FhC1m5M8ft1vYl\nzz3U3Kd4TEoH17LtmE2+3X4GhfF8bnMb8Vt7rnvD59+7z7nD59+F48O/M7AWGNtlH9v3YTlk8ov+\n9W9tT37kPlauoB7rcncF1onOcjJOGKbAvET0S1sqcmGFObg+febWcdqOX4QFAH1fqi2NYHWC9olM\nVxAEQRAEQRAEQThBkZdRQRAEQRAEQRAEocVpVZkuldUcqglMnvZE9vnaXjPwC7Zv6NeQFLiJgtRr\nY8WYvCx2PXZGXH5U2yX5sazOxE4HtL18v3kU3+XD3tL2pF8RQW/k1Zu1vfpIKqtTewif0kNKfEvX\nqtpweYunDSQcwWXkGg4G9v8FFzneE3lj2T4qzaX80PMHtt3/O9+SySnX/6btBR+NCeh8mlOWq5RS\nPS6GxOaznKFs32s/XHTM+mG55nKigi86me47+5kHtb3+0Re0fda2B30VbxAxO+mzxfk9fv9H2p6T\nO5LVWbUqTdtR6sTFTJarVOtIc+sNXcCPF0FA0Ii5RtLm+b4+d7QhmmqZb3npI5sv1naoYV/XTxF1\nb99Vs7T9zl9fZeX+MhtydTuUhqqqA85hxmWfsjr/ePdqbVP5pPuMMlbObsHN82zj4+rvXLDnbJ9/\nbw6aW5brCcU9sbqOn+TX+LxX9v9K22m/NrxP3HjVEm3/eLQP25e/or3POvVkhRDk8VnkD1S24Z1n\nctcMbDwJ85cPhmn7tqmLWJ33d0zWdnw6ftjj4PNb9bUl2h7SFvJQSxCe0dL9PLrrHUMQfXS3GxLe\nKR/zMTo8Cve/LoRcE+mWhXvjFaUgCqPsaT0hs8ss5n4RkVce0XbFZ77vfUUq3/Z2ccEuhIS4+lwe\n5d7xA84haAT6ouM3ROq0l5nPbxUpsKOw7FEeQyRjun6jUcA3D+PjxMeeM9WxoNJZpZQK9hBXqqF4\n/nEb+JLVdSauva4ObSNkHaSCwU5lyqdD39b21W/ez/btuXy1tq3nQI7t+ZFHFaaUDcdAGBGN5/VE\n2ves3D/+c53P+tfcgX7w3q5Rhr2+ZboXhfMLbEzcZpHjnhjUk2656qe+bN/yNr20vazfLm1XJPMx\nMXGDl2zhgHnjzGX6CVtRrrwzbNda3tYTsnwfO5QEw6+s4NF9o/IDmyPly6ggCIIgCIIgCILQ4sjL\nqCAIgiAIgiAIgtDitKpMlzJ/1RC2HUu+7DqJKnL/B5Dc7H5sPqtTfBqkq469+FRc08vFysWuMGSq\n/v8MiYfMxzmPR+pdkQ1pricGsrOyrlyStMFEbpxTBYlMiJVr/mJ64ht32QH+u78Tlsc/dUcPKtZ2\ndkXDQ6OGkuMtmzPctNzW6ebyQjOeabNN26ffyaMITn/rL9oOVPYVKFXtISHYU4TIyt3jC1i5pQ/i\nmvq/0DQJKI1cqJRSDhLZ9qxnmibNrY3mx6bSqpJ+aEOPbb9Q2yE2N6tTF0nb2gnT3f/AM4U8uuRH\nX04yKdkyNFWWq5RSS6c+p+2NNZBYXf/2vb6K/4H6jnzcUmVhPsuFrDSPah21F/9vnJYzQtvf7+AS\nINUVY6erEu0kOAHR9J7afh7/XaIO7HPdTm1763m7XbOvs7aDOhM971GIiqd2WM7qTFddtF2diIfh\nKGiZCLx+aaV/4aa9jrGKyr57vgeJnaXKXBL1waeQS9am8bZlJ9V23oljX3NggrbfSvmR1Rn+Bpc1\n/o6jzMu2D1ViTsypQGhlZzLGs5waLt8ecxHcWn6rH6TtkFE8ont1LVxU9pZjzD+6oqO237xpFquz\nwgm525PZU7CjC4+66yFRIS+/7Wdtf/XKRG1PnbiU1Zmf00/bVyet0XZWTCIvd3SAtuuI/NVCpK+9\nx+5ndVweXOuh3cnaTuzNZZqHxmGsmdgekVZXjkLDrSjmgv74dejzVJpLKe/Po7vGrcP5BP9Ant8w\nVkxNvGadtn99y7Dz9/oec9mwUZpLsZG11NAOWL/9WoxnHLfFfMx4NAsuDvZyvm9pNtaaqTFYb+2K\nhXQxpIRVUR3b4g8F5Wg/r2ZNZOXKu6KPUPeJJwognw9ZFphjzfTcQccuJGjWXofsESPmPHDcfsfd\nFv3FlutbYm2kUyzC2u/uxOWubZbgGOv3YpwJOY2PieqQb1cYazjWht3HZrN9+3qhTUd/Q6Ph8rG8\nohPGkPAj6LMWkqEkqJZPkKFF/BhmyJdRQRAEQRAEQRAEocWRl1FBEARBEARBEAShxTlhdHvB8Ty5\nam00kaQF4xOw93zIJSYv/RurYz9CZCNErWgmy1VKKXc4JDI51ZDS1oVwuZPXgnNon4rIaoUb2rBy\nZ4fhOh4mf1/QAxKnAc9zaWhRF0hNzAR3riSDjGUh5LzmIj2l3CTfrK3SvByFquwWV+GenhXm9lH6\nj/R4H7IxRyG/j1Wd8Mk+/HDz/i8k7AiOV38EUoXb7vzCV3GllFLbmijZpbJcI6V9ca0xO3BuznH8\nQUSs8J0U2F/Ew9jtkB5VH4X0rTiFS6kc2TSUdMskHG8Mx1OW64nk122tOH4RUCmT3vSdKH3U+dvY\n9urvfEfntqf7luUaCQ6sW6rv10MaaInmlSxE7hZGk6tnUjmfMVYvWH8YssHgDJ70OppE2qPReSnn\nhVWzbRoR8oSQ5hKslS3Tfr6/7Tm2fd5baE9UstuYu2Pfaf4s6bHPv2yVtiOCzedRCpWaKqXUtm2p\n2q6PgG9G76GQkNZ6+VIkxYF5PmcydKO71qeycqEkUuOBZIyjthCSxN3gD5LlQgTco1WQQqa1y2Pl\n9oxAn4iz+g7J+t7XZ7BtWz9Er7175TXavqAv7/PXdoCE94OLMDfk/QR58cHPurI6llpcUziJFmwN\n5jK4QamHtX1/G0RQ7hEOad/sBWexOkWjMB6EZqH/h+bjd6gs1x9DZrRcZNbqdKzZdtnwnC1RuB7X\nmTxUP5W/2oNRh0bCVUqpM0l05m1FiHhs4UtVRsV8rMssZBgsqeGrtFemvavtL504n48dlSk0AAAg\nAElEQVR+Q/aBaGWOlwzR3+/vY15Q+APHU5pLCVSaSwkm/bpdm1K2r07BHS8ih/T5z7kst7IdxhM3\nWft0aYP3lp1ZPIL3XwcjA8Znlw3WdkUOl4onrT625DZpdePmR/kyKgiCIAiCIAiCILQ48jIqCIIg\nCIIgCIIgtDjyMioIgiAIgiAIgiC0OK3qM1pDUldEruL+UZXtiZ+onaS0KIT2PnY992Eg8n9VNgF+\nArVB3IfFYoXu2eOGx03GPIQDt9XwOjG7YZcXtNX2S7e9q8yoI5GZXy5JxfkYInZH7j+21w/1jWkI\n9Y34dwO9XdNfvxX2Hwr6ru8JJwcw+Iw2t58oxZmC50pTUjw481ZWrqIf9kVu5+Gzf6fews87qC4w\nf8sbpsE3+OdCtKe9R5GqYvfpH7I6g1c0zceG+q06CnmfoK5YN0/7QdszP+dpOo4nGVPhl9v7zaal\n0mkMLeUjGihmPqJKKeXqQtJTHeQ+J4Gkm6lqz9tpcC2u/fzhSJfx67u+UywYcabgeBEH+X0s64MT\nsu2Fv56Je51SSqna9ri+ede+ru1uy3gfWHXb89oe/9YfRp5mw5VMfOUOBeYT11JQH9HW4sulI7V9\nE/EfbQidFqENTfnXcm17yeT0cPweVie9Fqln5u4dqm2boS/bnDh2B2RfUbH3ws80zcZ9ASs96Fen\nJ+3VdraL+16l78OY3bZ/mfJFxCG+veGvc32W88cLTvQdfzEIqs5GLqVuifD/Sg3nqR1CyELovv2X\na3v3DvijBicb0kY50fbPvwTP+adZo/yduk+Kh3N/9NADuN81cSSOQmbTx2V6/ysrkT7H256kfBmy\nj9XZrpDW6qtu8Km9N3woK5deCv/PkvXw1wvlLqim2Mg4WNGF+9oVeLAIfGop0ss4jmItaFy7VSei\nbdA1VqQhBYw75cSNDSH4J+fbVG17DCEjavvhucZvh13As2KqsFT4mtbthufxot4LtN19A59vZ28Y\nq22LA+NHaFs+mcf9BamLit9JVs2JfBkVBEEQBEEQBEEQWhx5GRUEQRAEQRAEQRBanFaV6VKJjddu\nlEXC5nKOwKRUAzpla3tjZirbV1eOy/ZG4IecQyFd8ZcOxpUEycXmKn7sx9IHattNpBT3xmZp+w0r\nl1F4bbi+QNM0VJJz3TvhPW0b08ZYiRrH1Qa/G0wygISUNE4uU9EDn/PDs3BPIw7ifxyPTv2E1Xnm\nzasb9VuBcPboLdqeSULnP5w2kJX78aPRxzxWoLLcirFc7kSf86cHIfsJHgyZ1/PFPGR/oNB0Q+Xk\n3tM0L0buvvMrbbvrWyZFRtcJB9j2PUcCk4QKSoXub3g4eFY/zyilRTsJVJpLWXfNi9oeM/NBti86\nHe2pdBAGrrAc8zF6xqhvtT2/HP2y3hAxPsniO91RsxMkkjZ/2Eswll86+0E/Jc3xhOEYOTWQwlI5\n6WP5/ViduVuGazvpJ7SnkFKepiXyQaQxyTyCNGu/dl9ISnG9W2YhJJeHynE+49rtZeW6D0PqmR9L\n+PmZUebFfBAdbJ4+Z2U1Grx9QYxpOcrl3SGzn5GYblpuYw0m96PVSOFS1+eItj1e/h3iyH6kevg5\np0dA50Pxngv5nrXSsHYaCJl0vZO6xTRtrDPiKEJfThyPND2XJGxi5ahMt44MPD8s5uNjh6G4X8Zx\n1Yzq8ZBSZ5z2kbaXuvjcGx8Mre/1Y5BWY/5b47Rd1Y6PTdTtqy6cDph/nm9Kth7lbNu9O8qk5MlJ\naCGea3kKf6517eBeVuZCH0vcyCfPylTYkWQp1vPXG7RNZb5KKVXeGX0x6gDW8nljeB91RUG2m0+6\nS9J61WT+PK1YEARBEARBEARBOGGQl1FBEARBEARBEAShxWlVmW4Q+bpsdfHPxpEkSlrRaMhOwqJI\nZLwN0YoSSiLR7S+J13b8Wi4bK+8MO7gt5GXRy8xlNRQqG/4mcwLbV5OEfT/c9hzZE6GtMWduZ3Wy\nnHHaLvy+owqETknF2qaRB43QCMPDT8/Q9up1iPRq719Kq6igFTyqoBmWSNy7JXe+pO1vnT21PTks\nh9V5JqAjN44b4leSLchinm2zhZUrvALPYv3n5pFNKXWTcY+2Dof0+PsqLkkaueUybecfQBt8dfIH\n2v7fF282/Z2SgXhgB86fzfb1eB8R0Kg0t7Q3iVCYwf+/9MJnl2DfiDzVEuzOTWTb+zI6m5RsfXbe\nNfPYhZRSaa+3fBTgxmCMuBuzzfcQn3DpYbZd+GUnn+VGr5mq7UFTMti+7d/21nZUemDuE/9+5Qpt\nD78JskNV4DuqtVJKXXf5Um3PmTfJtFz4CEQYnd5jkbaf/Oha0zrXDl2r7a8OjjUtN/4CSP2Wzx9s\nWq4xTLxoo7Z//maIn5InJ16iUNxShPmtfThcF7Kf687qdCLt2BhVkpKxOUXb0yd/p+2aesxN52Zc\nyupU74Asts6J+frzblwu+8Lpn2v7qZnXadumzKXdg+fdp+0fL4HEffKSv7Fy8WsaHrmZSnMzaiHz\nfL+Eu518/SMi4Np7Qdb4eF9E01xe1pvVqciCTLcoGfOjhXiURPGgtKqsB+7DuR2wkz5jpZR6u9cc\nbV/9TOOk3g2l/GtEwt18e4ppuaHPTNO2N5U/19JvOjT4d+cMfYdsQeL4XNY5rNzBlRhvazqirQal\noeFH7+TS3rJhkGkqz4kVIb6lONVkuf6IOsjlt/VWrDUdhcbSIPxL3KOybmgnnRMRdXvPYD6o0qjU\na56bpe07c0aycov34L0hPBljS14U3p2GdDvI6hyezcd2M+TLqCAIgiAIgiAIgtDiyMuoIAiCIAiC\nIAiC0OK0rkzXTyDDosGQK6w94xWfZbYM4LKaO+b/RdvBTnw25mJepYaO26VtpwfysKzzIE/dNpxH\ngR36BE8Sa4adBPu6bMtftX1913Xafif5N2XGgO8DkwMe2g4Zirsb/qewdTqXHV51YKK256Quxw5i\nd1t+E6tD41jWkFscMqCEldsyFFF8H82FXPm7TYiSefsULjXd+MCr2h7y4t2qKWx70CixDCxaLJXm\n1pLGYfed11wppVRYSK3Pv/uT3NLWmTmuvWm5hY++oG0aRbTnu7zN9RqL0GjZn0L6Gt4JEfxUBm/t\nFqJqr5mPKJIqSTWYr25+gW1f8p5vyZUlI8Ln3xtCdSokSY4scwknpS4UA4q1IjAZU49fEGHOuh3n\nHah81x+evpXa3j3uA9NyTZUAV4yBZC/yN3NNY1lvjKmbe3/H9vULxzlYcdrKsSxS2xmKS/uc/SEp\nN5MD+2Pd+4O0vft/XjPsxZj2fjqkQv5+Zf3gz33+/UnDtisZsrjPFo7RtlE4ufMOtIHdbtyU5Sow\nma6rA+5PUA2upz6Ma6lf6wCpcJo69WS61XG49twsSPjLN2MOi6wz6MsJ1iqv6b6wIzj21VGIhnvW\n1L/5Kq6UUiq0C8YGRzGOXWkIIjvjTUhz6wNU1cam49jn1WB8bLgoVylPGB/D3i/HoL23GpGDv9vX\nl5VzJ6LdRf0Ayd6zi67RtlHOT7Edwng7ZALWSudduI2Ve+klSO5/bNdH23vGv8/KfV8VrxpK5SRE\n7QxfinG5IpWXi8zyXZ+6gC2YeTrfaTKIRGbx+11PPtW0vwQ/dPQLw0kQFlUg6vIDezBeln3L53/q\nEBaaF1hU4ej1vudBY9TdU5ndN77Btnt8ENi6/FSgrjf6xFk90RdXvDjSV3GllFJ2smS3BqNTJPUu\nYOXevgRS+pEPwdWgwDAdJcKjRFXHYq3R4yLofKmLpFJK1cUGthaTL6OCIAiCIAiCIAhCiyMvo4Ig\nCIIgCIIgCEKL06oy3boQfL611BikBsHY/s6JkG5vvHSxtjfM4J/s912FKFBUflfVhn8mntt5mbYH\n/QPytG2PNV2aZ63GeXuJDjnaAindgOe5LG/olVz+EgiOQvwf4fLP7tX2nhv4PekbeUQdi/D15tK+\nevIclgx5m+3bWguxyYWxiDa5JBvZcPu/wK/1j9LahkHrd/+QSzTuOv9Hbb+ydLK2I7LM5bs1HSC/\ntVRDLuPsyqVhMVTiOiCwcy0ZDLnUiDBIyOaoyawcleb2/Q/ul90gpaLSXIptsVGIDuxlzSfhMZPl\nGqFyWaWUsrjQ/zKm4vn1ftNcnkqluVQuFWSu2GO/EyhUmusPTz9IZPzVofJeKr9N23GnzzLNQVw0\nJKS3TFvC9r3+7oXavvS0dcqMmjg8s4SzMGYULURESYshaHfEft/Txzm3cjeEH2eP8VmOkuWpYttn\nfH+/tkOPNu80df/oxdr+z0Ia5dK8/fSwhfv8e/RoHqE6mIz59yRDfruwAFLK3Yu7KjPM2s+JDj3v\ncbfdxvZFHSSy0YO4x+P/+Yu2r4jewOpM+QEyW3sJxu/ETXwAiJ6Uq+1JM9BmiqZg8ExewKqoLY/4\nPtfkrwz/mw/CeR8+E+cdUmL+P/zUG/do+4uuP5mW67YM7h0xyxw+y5T19rDt9Cr0xWUzIc3b+RSf\n84c+7lu66E+aS3FH4R5nfojomXOfWMbKvUTsqBVEeDqeH++8MPiKPG7ym+fcYRgz3sCYYbkAoUMj\n5yewcjSib/Tuho//zA2JJxVQW/7ue5xOi0G/NNbZUJqMc/vW3DVn8//4Pvagfza8z7ujeZ+wuOQb\n06lI3AKs0390QAJujeDt3u5EnwgtQttI34kIzgnJvOH+5bH7lC+oLFcppcpT0LZotN+y9xBBOzjU\ncD4uP4s2grRaQRAEQRAEQRAEocWRl1FBEARBEARBEAShxZGXUUEQBEEQBEEQBKHFCaqvr2+1uNCD\np8LroPqccr5zLfzg6khE6/CjOF2a/kUppQ5c+Ja2+665VtuJkU5Wblmfb7Xd72Vo9Cv7wrch7tfA\n0kn4g/q0Ts6Yom2nm4fydi5q2+Bju4nbms1pXo7iJa6TwQH6j7x5N1KxzCkazfYt/R5xn2sScMCI\n/YGlWGkq/vxPu3w1Vdv+zsfZFeddb4O2/e7RS1m5cyJ2aPuJ7PO1bTU4MVJ/5MFPw3dn9C3wqV31\nLk8NUXsm2r59SZQy45H75sJefJW2Y9ID+5+SEy4DylLTcP+aQKlO4WlwHAfR3gP1GW0qxN1L1YUZ\nfFirmu/aX7r5Hbb9WjZSKe1f4tvHt7FUt0VbjdyHNh1MbndFZ36tVuLnGZqL695s8I+nvvPX3LlI\n23NnTg6oTlOhaWeUUmrggP3a3rWke7P9jlJKubogbVDo/qaN8x5D2/JEYjxwtCU5craSfu3HhSZ5\n0kFtH1qa0qRzM9JS/qiJW7mvI40NUdYZ7TZuF8oVp3G/4NhM7Iu7H/fkiJOPjzVLkCpm60O4vicK\nkGrk4x3DWZ1t497U9ulPEN9UJ3+W5akYV6v7oyOZ+XgqpVRxPxzDUo3rnjhhCyt3XuxWbX9fgiAE\nG99CWrTz717B6nz61Xht03H0gj1ns3JHPmrauFPaE3ZoPq5h+328/z+ahxRpi2adZnq8jU9gHTRk\nBubEp6YjNdzjz/MUaZ2vg+9tRj7S2Lgq+L2PXX3stCilvflzjdqD51raj/gzZ/A26GqLeuHZZOwk\n/p5GH0/HFPiQF5fDzzxz7IesXGN8Qyn+1n/OlFM31Uugfs8nK3HpeHYlPfk6JTYT+wqRFU3tvXqW\nMmPkQ7drO/9MLBSSlpj3m8JzMD9Grg5l+8betF7b323BuGUtQvKqkO78XS7iK6SHW/fhA6a/26jI\nEJWVlerhhx9WZWVlyu12q7vuukslJiaqJ598UimlVM+ePdWMGTMac2hBEARBEARBEAThT0CjXka/\n/vpr1blzZ/XAAw+ovLw8deONN6rExET16KOPqv79+6sHHnhArVixQo0bN665z1cQBEEQBEEQBEE4\nBWjUy2hsbKzKzMxUSilVXl6uYmJiVE5Ojurf/7+yjQkTJqjVq1cf82W0IhX2RZ3T2b6lP47SNk3N\nUt4FZWLS+emPSr1U244fIefJ7cBTX3TJgIQzrgSfvkN+9Z1OQimeUsLjwPnQVC5G9rmhn8hdgJDf\nW6dzucuARQ2XbFBpRi25PHcE14CF5+BCApXmUjnvvbuu1LZrSRIrZyMqAls5KrmScE/OnLSZ1fnt\nEy5RbQppq65j2x43ziFQqbC1DPcnoi/CXc9ceBYrd/81kA3u/A46pjtu/I6V6zwfqQJiyd+N0lyK\nP2ku5ZlXIT2P8QQmxYm4CKkPSg5A0mZp5nQZFCrLNXI8pblmNKcs18j97/3luB3bSMce+dqOIbLB\nw59hULQ5+bXWxmA8sJL74E9iS6W5lKUu3qfK0kxkwzXKFDdp6lRKHZ3Bj70r37c019uvgm0Hb4/0\nWc4fTZXmpk7M0naCg2vkVu0naVu2+u7XSeN4uq38FUgBkbkHNhdINR1/0lxPX0iKrTt8p7FpLDRt\nm6PI97gVt5NLe4v6YnzKXYn2bTX05cS9qOeuR3tcfAQpSbylfDw65/Zp2g6zok5xTz4mVvVGQ64v\nt6lAiNvue6zZuGcg31bYdpPUDDaF+zPvk/GsTsY9WDfk1+F5Zf7KZbkN7xGcbkMOafuWjki5QiW2\nSil1wZ2QEbvPwdxp+zGGlaPrIIpRmks5MAf9v+MVh7W991DDr87WvpJt1+aRY5Dm6Ezha6eofQ0P\nqVK8AWukzL9AnlxSx1NXUSltxMGGz0+BumYJJy9G96K8iRjr2vyMsarfUT6uu6NQr2aCW9u7z5it\n7f5hN7E6/xgA18UdLqRp+SxjPCu37mW45sWFo93WkyZsN8zJ7rDA2nejAhidd9556siRI+rMM89U\n1113nXrooYdUVBQm3vj4eFVQUNCYQwuCIAiCIAiCIAh/Ahr1eeTbb79V7du3V++8847atWuXuuuu\nu1RkJN6GWzEmkiAIgiAIgiAIgnAS0KiX0U2bNqkxY8YopZTq1auXqqmpUR4PPiHn5eWppKQks+qa\nERMhzV1xtJtpOS9RyKSNhlwye04XH6X/S8UZRMZiiGTW45cbyBYkSZ5QIr91mb9Q+5PmUlKtYT7/\nPuB5/lk95SJc08FvzK/JDHsZtQP72E0/qwcZLsfVDnKVYCLNve1WLkl9821ElaURj2kEvuaU5Rqx\nruIyOLPGXJ3IL9BWjvNzFMLeNPQzbe8bwHUwK6vxLO3lON5rn57PykUSRZCbqBVsFeZtxnJekbbH\nt0cUwaWzR7JywQFIc6vjuSTi/La7tf3dN4ja7Dp292w0w87ewbbXL+x7/H6MMO1KtM/XPz7fT8mG\n025CtrazdkBKGVJw/LJjjTh/O9t+L/lXbf/l0BhtHyZlHEZBCvE3CPITxZVy6e0/a3tLGSQ7D744\nlZXjzg+BUTsAHcRTgMiYKb1zWbm8Xzr4rN8YWW5zUNMDsuij5Rh3CiojWLm6Ct9yzoiReDDL+37D\n9qWtwHwQeigwOWhz01RpLo3UO+rB29k+ezkaXliBb1+REoNENn4HibT7F4zFzqP8fvc4H2uI67PO\n1HZuDpwk2q7kY2JZFxqJGmNqsJsVU/Vu9J3k7/H3yoYHv/eLzel7XK+N5n+/bN8Z2k5f2kPbkdnN\n+8//S9rBtebi8GJtP2sotywP51CRi34ZZyh3xTPTm3Q+hZ8jDHyMn3IU6s5lTedjhp0E+7TvMF8C\nl3dHu6UReGkk3PKRLlbHakf7XliFRdH0WXzNF8Gr+cRj0OnT9hnMVe3CKUgC93BTxWmYGzw0w0gu\nn9hLh2OOjf4VbX/ssrvwd8NvXXoaOsXkMGR+WDymFyt3tB1x9arAuBqDZaaquJi70kR+Hdic3aiV\nVEpKitq69b+hyXNyclR4eLjq2rWr2rBhg1JKqcWLF6uxY8c25tCCIAiCIAiCIAjCn4BGfRm98sor\n1aOPPqquu+465fF41JNPPqkSExPV448/rrxerxowYIAaPXr0sQ8kCIIgCIIgCIIg/Clp1MtoeHi4\n+s9//vOHv8+dO7dBx/kw5Rdt9/yZR2qjH3YjiAxl3wJEKwxRXJ6SexTSnKsHrTP93ailviVJ/qS5\nZhSN5Nqe+DX4lD74hWnG4j5pjDS3qRiluZSwHN8fzOdlD/H5d6WUsviJoNkaUImsu20t2+co8B1N\n89zMc7X9Q88f2L6/HThH21QKG1pgSHpPIofddRMilL316gWm5zqxAzQOCz/EP3EsKrD2WEkUjQ9c\nyiWAz21CZFRb4vGLKkuTsB/PiLmenohKuGf8+2xft08gD+xxRpa2s35KbfLvLk2br+20ZS0TEZjK\ncpVSqvMPf9X2f8ZhrN00GVJatYiL5ByFgf1W6SCMY48l7MIOYg9SPZQZlckkQfwh83YW/qvvsffZ\n879g2zf98jfTY7QGIbuhmatR1OaYRcB9ofe85j+pVualm9/x+feSnnz+iCDtITzPt0w3NtNcd7h9\nRGDrirHTICNPJvLbI2N5ewxOhey3fh/aYzgPcqySv0W9wn5YKjmKceygACPU+2PDU4i6+kwhIrXP\nXs/VZVkfIMJsOJkbKjvw6wvPaZps97ZoeiMgaS4eanhGX7bTJh11KlJ4sciDvn/n+nt+1PZrC89m\n+6J3BzZXeS0oVzsJ/kpBtXhedVncXao2CnWoZNcIleaasW/Se6b7qJzX30K7tB/ua8x2lLQGIOUV\n/jxQKWzheKxpw6KqWbldIz/GBrx51MiHsD4qOZ9Hd6Zr38zsNtoe1oV33rPGYD3w0WJkS6EuQPWb\njCLgwPyDjp/DkyAIgiAIgiAIgiCYIC+jgiAIgiAIgiAIQovTKJnu8cBRYJRl+JaahJSaS1DiV0Mi\n+/VBfJ/+flAfVq454xU6DtkNfzn509pQCe/lNyOy5jsbxrByISMRNSsqHFKB6qWJygw3CYbY1MTN\nzi5cIxWxH5IiGwnoZdtunuR+24OQl75UDLk0jYSnlFIeL/5vQ6MXVyfwdusoxM2be3i4tjf9L6RY\ng582JA+PRvSyJdWjTM+1EkFclb3CdzjkWa9cyOrQeMOP3Af5xhMfX2v6O43heEpzKYOSETv24Tye\nSN5WjmdUXuNQzUna6y1zfTQqqbENhh7AWGMZD+lLXDgkNwdGcEla9NrA7kPMZoyKgzYHdq1lI9Hn\n6z3k/5p/GBN9c9atq7R92B0fUB1XR+4WEZqN83YlY19zRKVNGgu5Yv6v7f2U9E3caYgQfOsn6POZ\nN7/hq/hJx9lhvn0z7r38W7b9yUPnHfNYzg4Wth2Rg7F93NTbtP3lzH+zciOWwxWmHRkSD51PouSG\ncRmb9yj6SMdV5jrbio44p+o26G+1sfih6N2qUVB3jmwPJsJHEzK1vbN3O1Zn1+re2i4nyQei9jbv\nmsPpxf2yBZHIww4u07VfhEi7Zasg7bv6vBWsXJINWth3/zNF27urEJbYnyy3qg3JcjColO3zeHB+\nNTlYXMSmYzyafv+nrM6ji6/ANZTzdtcaUGluoJT1RLuNzmz9a2gpdt/Ix84eH9xhUvLkgV4TldL+\nAdLNY9aQtUAtn2+Hf4t7su7/cOw1z83Sdvc5/L5lutGGqEvK7pU9WbkdMYium5CNMbEiGf0t6mCA\nYfsNyJdRQRAEQRAEQRAEocWRl1FBEARBEARBEAShxZGXUUEQBEEQBEEQBKHFCaqvr281J8f1BxED\n/Jo5hlD+xIXALDT4iY474vil0jiePH/XbG0vrYC/LU07opRSXuLq0Bwh7o8XNbHmTfycc9dre/5K\npK7Zf9mbrNwNB0/X9q/boaOP3cz9PeqDSKh5EuHaHYlziDisGLROEOmO9O9KKVWDzEUsvUCg3Ps3\npJf4v0+u8FPy5CfIPFPEKcGsv8C39LYN12u7ppz7mdoK4TvpL+VKa1A6DD6HjoP8vE/k8YTiCeX9\n0Oo69j3eecdMtt35u1u13Ry+rq1NxOgCtu1chRgCiVsD65ieMPyf3FoFH6T8wYbxlrjLeUNIeqHe\nJTif93mqgWB3YGPn0dE4eGwG/l6RjGcclnfyx4gwQlPNzK+Ef63Rr3tRAdYGB4qR3CU2jOckSY0q\n0nb6+6hTPAI+3iER3P+4vh73eECHHG0XVfPUUAcy4VcbswNthqaauOruxazOzFUTUWfrydnfvGei\nfQcviWX7nCmnXpv8nZNlXjgWRt/X3/HrM9pEXJch2El1eoxpOXsZScV1hPt/0jVpHXFVDSbDep0h\nRIutCu1x3YcPmP6ufBkVBEEQBEEQBEEQWhx5GRUEQRAEQRAEQRBanFaV6c7OHKvtf64/l+2rr4Ic\nJ34D5DJUfuE1RMT2Wmm6C2J6+SXWhZCdZJe/T80VPbAzqi3yhjizuATIGwodQdQuSEASzsvWduH3\nHdWpAE1jYrs2T9tFFZDSZJz2Eatz+vaLtZ23AaHdvYbo5PRZUImrhcrgDP9KqTdRyFl4ZH8VmQW7\ny82Izd8n8qi2v/h4vO+DnSLUnZzqpIBxR6HNeOK4NPBklWZRKtufulIspbjc9VSTXAfz7DSqNgbP\n0l56YkmpA6UmgYzRVSfnNQRKeA6udcPTXG7Xb+012vaugxSOPmOllKoLx0KmPoQsatzm81tQDf5A\n6wTV8ftdH0zm5VhMfp5CpGywlfKDx29HHWfHU/sbRa+LkT7nsY7fa3tPbRIrd2kEUtL0noV0VzT1\nXZ3DMA6TRxlMnqWxHF3HWqqJa08MdoQd4c+BpjUsGoJy7btyWbzra6TZKemDcpZqkn5jnzrhcIfj\nPlD5vb0c1+1K4m094jCRgD7jW/o69AmexoStE4NM/q4M7xq2wMY0et51JKuah2dcU6PP3qbtd5J/\n0zZ1B9tV3IbVKcyCFD4oulbbscuaN41dYyibBGl+u/gyti87FzLyrOv/bnqMU3vUEQRBEARBEARB\nEE5I5GVUEARBEARBEARBaHGsxy5y/Bgftlfb/zZEU6sidlkPfPuO3kN2GL+cm7xaM/muoR6Vg9aT\n+o5JXPowvk2WthesHqzt0Dz+o1OuWKPthbsQffbIb5DmXnrjr6zOl19DrmwvV6+Gm2sAACAASURB\nVCcsp12ziW1vfGWQtnOLIFeOXwjZQNqWO1mdL299Qdv/G3YBjpXehf+YlciQXHj+9cmQHXmLuJY6\nuBYPNqQQzyUi21zSuP+9Htqe+MAu03LCiQGVwfiLrOdJgBby5zNeZvsu2fpQc59Ws1HWCxcVvYtr\n1zc/iiisPd7n0qNTjVNNmuuPk0Wau/3+mccupLik0R+eCIzLVueJfQ8ybse193obfY/K6pRSypkP\nF5XzL0Wk9p++GcYPSBYbdRFo7EGhRL5bamdVVCykeaqWSHaNqzgP9ll2RWjbToLcvjn1NVblNAfq\n9H8xsOd3ohFzFtxsShcjym7VYB7dd/2Ortp+0nu+tnPe7sbKpT31orY7jkMI/EOrsZarMzwiK5Go\n11vN1x1UAkrdkEKK8BxCC3j9gmGkbRCt8JFcHk03PBrn4GhfiTrbo7Rd2otHSXXk43cbE6m/UUwp\nYpvxDrwD5P7WQdvX3fCTtgeEHmJ17vniFm2P2nqptlcP+FLbG2Zw+e7wR9F/qXuYJ4qPQTYiD65D\nN2JuX0EGL0f6PuFvLb99Vj9tH31qobZ/3dKL/BA/dvhhnGw1yRBR1p0fm70jHUe63QK5+8FytMGc\nAh6pNyKa9z8z5MuoIAiCIAiCIAiC0OLIy6ggCIIgCIIgCILQ4rSqTHdpFSSSZ6Rksn3L5gzXNo0c\nWdwXduJG/lm9CioE5SUBM70GKUUwUQS7ukEWFxwDGcwtnbbRKmr2xjHajiHyuXrD6/y98YiMtVBB\npmsnAaa+mD+GVlG7pkICNC1nhLZ/nTtEtQTOZC7ZiDjk+38UMzusYdsjFGS6y8e+qu1LF07XdtzY\nXFbnqv88qO2ws/KUGSFReEh1YSSacjDONa5LMatTXAotRcRW8whjJedBuhL7PWRV8440/H7fffM3\nbPulzy/Stq3SWPrkZsT529n22u/6mZRsXgaei4zzW37oHVCdoEq0mQ9Lh5uWo/23vDuRyGZafJQ+\nPkRfcETbZbva+CkpnAi4emJsCs0M8VOy4VQnYX5z5PP5zR0J21ahWgQqzX29tBPbN+vd832WCxQq\nzXUM4WN59cY4Y/EThto4zEEZRW3ZvnY/Y9z429nLtL1hD59baCYAZwnaUGVn6PxolFWllKqz49jW\nEhzAE8s17UFh2I7NwAB39Gy4Lkz/O5fi1lzH778vKtJq2fbb49/T9n0zpx6z/vHgjbsgN562/Rqf\nZR4ctJhtv/LJhdou64YIw5UXcV3lucvu1nZqx0JtjzkD8+BvP/E5MGEE1ju52zGWO7ryY1cWIrxq\n6GEsVqlLUVk3/vwT1+NZVqRgX+RBPld5wkg05TBoSvNSsCay5fOI8lVd8WxdbdG2Yneay+dp9Nmg\nAJW9CVdA7jyr26ds39+yLtN2eS4OOCFip7ZvWH8Lq2Mrw0kMS4SEl0pxjVF2V//zdW33nT1N29VJ\nvB9ZXLjfIal4fh3jSrRdU8dfoSrmdFC+qI4zjOVE9nvh41gvqzHoo5ZQ7ocURFIghISgnKNPFStX\nFhSv7dA8/G5NHJEdhxqie8cQVwEbxjfbQT6/rbkJ0vWvnHCt+781WPca28x596xTgSBfRgVBEARB\nEARBEIQWR15GBUEQBEEQBEEQhBanVWW6VBZ5Tpt0to/KWMKP4LNvRWd8Qi5P5e/SDqI0cZEIZeE5\n/HfZJ3Oa2JYkj37/h4msjpX8VFg+Pp+Xd+YSiZeLuATXFyEl5tKH1zqs1XbaaQiTZVsZxcpReSGN\n6FZnUKeGlPr+neX3I6rtMwWnsX2LPxrls87iKpvPvyul1HP5E7RdMJxEwi2MZuW83YkMaT6STCfw\nYMqqIhU6hlAixaDy66Aj4bSKijeRipSk8W1LBtFIqKZFjrst+gjfvhVytX4vBxaV0EmkWREHAuuS\n2+/F76TNxO9Yan2Vbh7eS+ZRoCdNQAS1o8s6Gos3iZ13+Zb9pSlzmW7wEGjh7dvR7nqH8gGACqtp\nVMOIA+jLVW15uwjLRRukCaytXCETEKUD+UMaHAUJWNnu9g0/oPAHXB0wRofmNF1yveiO57Q9+Y3j\nF42ZSnM9fHhT9cFok6/e8aa2737jdtPjOYm00kKknaFH+dxpHYvJc/MwLp/7HSrLbW6Cg7mrCI1e\nG2h03tbg1q6/se3nh0ACesEstJPqEfz62mCaV1FZ2Jd6DmSMETY+KV6SuFHbX+QP1fb+93uwcvYK\n3+293ULz+XtEW0gcf1MJ2h5zFSLo//bpYFZn1GREydz2AJ7X8YzGS3/nv5CoxL/4lnbfHsPH/3dy\n0I/ahELvfiCdj719BhzUdsE7qdpecTZ+x+7ia7l84irUvj8kuznp3P0iiETatZDHnD8a41bSKvNx\nK/Ig6lck83MILcS+R7ojUutTnvO0Xb0/ntWxdMVJ2BPgX1R7mEfqpfNlVQdsOAqIpLWEz539b96h\n7XExcMe7YNNtrJx9Iebsqja4puEhaLc1FVw2mngUv7VoEfpE7Wisqfq+wtvjjnvQhuJH4hnVfmru\nIlNohY/E4bU4z9pofq10tXvjQwvwOxYnK/fMm1eb/tbv2IkUVymlqtrj2i2ZeB9w9ONRievaYMy3\n7cfLQQVxQwqJ5xFug/ei3bpjUO6b619k5erIenlRUR9tx/iRc1d7zccddg4BlRIEQRAEQRAEQRCE\nZkReRgVBEARBEARBEIQWR15GBUEQBEEQBEEQhBanVX1GD66Fn9mbXbk2PdwJbbI7EnpkSxXen70h\nXK9tQRRr5lNZPNQQsrkMWnx7CTmeE5pseynXQNcQh8TC/qSOnZ/DlzuR7oS6/FgmQNftWc71+gPW\nQT++dfgn2n5+4BfafnQlD2lNtfvWat+2ka3ToZV3ehv+f4jMGnN/trX/gV4/jvitWqq5E+tH/4Cv\n6vWrH1Rm2ImfKE09k3EZUsic/sg9pvUr26N+7E7+jOotvv1EE0Oh68837IuaCN+C89qnq0Coao/z\nDjtifr+pn2hVW1Inl9ehfqKU6u546OHp5ilt6PmEFDT8+ae93nK+W52/hT9JbIcyPyWBdyM8NkJJ\nlUeWXMXKcS9mQP1tg7wmhRT3Ga2J4W0ppBjtzqwvWsr4sLtpTn/zHyPccPD0gMqdyoSPKWDbSeHo\nswcWddb2/kvgU9nn1ca12y+mYqzqaIVPTfrd5mlM6G9VJ/r2qTJSh+wSyuKifze0rUK0rb9+hVQa\npDpL/6KUUlcPQlj9+Z8hnkH4RD7CVf4M//0724/U9vJv4Sdo9GCr7OSnkzSQqvUJbLtz7q3aDkok\nvk4Fgfn/0nk5uNbcnylQus9BqggHmZv+9TP3o227kT4z2OMu2cLKbVk70Ofv5DnxAAuDudPwxanw\n6335NcSTsBhS1x2dgOfSbllg4/ziFTgfMryp1UdSTeuEBeOHN9Ycv2AFq+57iWzx+a0x/qm10Xh+\n+97shSN34u1kT16itmPI3+MX4hxKp3BfwLS2SFfXMwr295VhrFxcOIINJAzEMXJmdzvW6SullMqf\niPsdZFjPhBZiHfvygTO07dqAdacnktdpF4VzKKkiI8ppPOiIZQnuRPRu3C8Xhg9VPIL7Ola4cT6v\n7EZsEeojqpRSrgSShiQebbjfWqTsSfzV3P+QuibGbsIca63m13rPkWHaPpKP6+EjECdhM20bOF6o\ncaFIeHHdWdqeNnQZ28f8bcmaISQHfcoSzwNSeEPJeJuAe1xRyftEfTXGyLIeONeI/bgnIRsiWJ06\nB87h4UvnaXuBk6cu+jwLcX7qvybvMeT2FI3kz/+X3K7YGKBMkS+jgiAIgiAIgiAIQosjL6OCIAiC\nIAiCIAhCi9OqMt168uvuIv6pOQLKHBWah0/NtUSGVJtACimlnB4c0E7VBfX8MunnfJsT35cjD1HZ\nEf+0X+Lw/d4e0q+EbYeHQD5RRQRUJQU48bX3Pc/q8CNDmnNeGHR+j/r89WPz7j0vky1IACKCcb8v\nitmoKBkXttX23nyIFzKq2pn+DpW+dLp8v7b3LO3Cyl3w/nRte86GJu2sHhms3E9LIHdO3IBjn77B\nXJpbeBbuV8TGUNNyQXW+/75hDULkG2u/1/sjbfewGXIumHDzxOXa/mzORPOCBCrNNZPlKqVUfh3C\nr6+ZCOnyi/15mp70MjyzGSnfavv6t+8N6HxaC2s0+lH12ng/JQFN7aJ+hgSoPtT4wI8t9QvNN5f2\nOZCJRVUZosGzKOYmMt3IA+b/A6wmWqHqdlzu8l7ycm33Vn3Un5Fx7fay7R/m+U5D1eUnuDWYjwT+\nuexN324EVclw+9g05WW2j6aUsZXiOVcnEfl9Dn/+VJpbS2TfRlcRSmie7322Cr793ceQ5tIaXaJ5\nOoAtDujsftwCaZatL+R7C0fz8ejqnTfgeOR+8+QLgVEXxufboBDcxzYdIU8tLTBPv0AJVJpb04b8\nTpdCtq90NX4rqjfuV9B8jEe2Kj6WlJHpjqa4WLiO69PsfXB+7i4YKBwrMQC42vNx6+rIydrOJc3e\nmF4qJI+udwKTUtfFEFemo1gnlOZi3WIz5E6bmo2T2FwAl6t6w60PakT2NO9pGMvpWqXKay4HdvbH\nfYyJrTQtR29J/jiMsVHbuN45coHved5N/hy+jJfZFwVJ4raUVG0HG1LAHGmPiSJvP9ZbMcqcWuKu\n5shCL2s/NpuVK1UdtH10LeZ/B5kew/IUI9eLc4jMwt//+CzxML0W7KxONFlUKaX2l6C/1C+GXWu4\n2KRxSJM3MB7XtKmwE37H1MlGqdidprsYa16DS1nC5ejzBWP5uGwrwDOK2RXYsSnkVqmPX53M9kWE\n+Jb92svx14pSPnNZotD2vR6cq7uUvzs5jqD/h+f4dhswUkOexVPbkQLIYTekl9mCtEa1g9GRQtti\nnugZy6XdcSGB5b+TL6OCIAiCIAiCIAhCiyMvo4IgCIIgCIIgCEKL06oy3bAcfKou7833udqQSF0p\n+DwdElWDQpVcVmGpweW42pBP0sH883R4V+gVPHV4Hz+aCslF3BYuvwnNxzGsRFZV0J5HpQpZQ24p\n+fQ9pEeWtpMsgck8aaS4xsYDHBJiP2aZ0wwS5AU9ftT2W20QQffVdy5i5cLIZ/8gD+zUcEiaXON4\n9LMxCfu0vboI0S+Xzx/MytmJGsd6LSLZej6GdKpwMH+uOye+pe1/9YcsKr2Cy4t3f9ZT2yGlRHZi\nN5cxXLv9Zm2vH/y5aTlKoNLcxmDWhp5tw6M29tiF+3DTD0Saax6U7oRgVGdIvaeNWqrtQXa01aUu\nHqHw7DCMDf1Wkb7j5H3ZQ1QtZhFvKzvwtmArRw+0EykkjfqslFKWGtUkqAS4tiuPAv6Pwr5NO/gp\nQDt7YJGVQzPMo0q7SMTq0NzA/h/b6cyD2k6JgGz0xaIRrByN9l7XBRNFfbEf8So5hdoOGPisu3md\npsaEpVGgtxztwPa52qOtRWTSwQH2I5145FhKclvck7y95lHXzbBUGfrRXhKxdK/5s6RUJ+PeOQ4d\ne95TSqmQPIwNefU8nub+2yFL7vzDX7XdrpzK6vg4kTsG25ZaHDu6I2+3pTbIX+OX4/rsFWibXjsf\ntzZuhwY4tIBKwLlEsu0W3EsvWY4E8+GE0W4JCjqhuFWLzoYM/ZPSYbSKmrNoHM6HyMabHrtYqft6\nY8y/MwfRnX/a25OVc4yFm9TFnTK1/WK7Tdo2Rtz1kCUbjURrjLpqhs2PAtgdBXvoALgUbNifwsq1\ni4Me07MwMEcCewVpd2QOKsnjfbk6iUjAo9CeIrial0GluZTS0XxCo5Fa4zaizSR0Rf/vF3+U1Vnz\nLaLFO9y4hhCu5lSHjkICWujE+qZ+PaS5QQaVflhewzXgtE94F6DPJ7p4uToyhBQOw31MWB/YnJG4\nwnwMCvLivCuSfT8vawjv13VkDgkibghx6cYe5/ueUBeistP4wicpAe0xPhSy2vS9vG1Fkci/VGZd\nVYY2vNvJ563QXWT89u1Vo5SSL6OCIAiCIAiCIAhCKyAvo4IgCP+PvfMOjOJI2n5Lu9KuVjmSc84m\nRxONwRFsnLONMc453N17d/Z9F51zBEeccQSDARuDwWQQFogMQkSBctyg1Wq/P+51P1XjnWWVlvDW\n768aTfdMT093z6zmqSpBEARBEAQh7JxUmW5MET5Jew/zptSQ6HoR0Sjny4XGIraIf562F6IOlWJF\nenm5ai/OVVuLfRYXkVjZeR0q56xsRepUcClNhEnwui2/IEn1Q45itm9hDiJjRq+GfCdUucugK7do\ne0UOT5o8csul2u6UCA1geTU+q3/TZbHpsW9LRISzVw0B0zxJgVu49ACi0n4y8G22b8ZfH9B2KYop\nbzN+8PR1uBfFqxHpLdaO+5CWyc/f3UHkOER+8/rYOazcB1fhJq1bRyS7heZRVotLIRvZUg2Jw3+O\nnMfKbf3WoDcPheHQq2wd+nFIVRY4IX2gUZeNtEyFPKxIhSYPPxXY+B0kqTcp2NvvgnSOynKVUqrn\nq7j/NtIlkR7+Pzd3GllbyN99NiLZTuCatliSjLq8I5HSxfNxm5QFLQyNukglcqFKeRPWcfnWN+vG\nYqNlPUJUngG8/dHkBh/j4lEbtf3DF0NMy3n7IULgnqOINrto/AJt7/fypPcbB7VFnSxEgYzJD/J/\nX/LMeHz4fG0/u+0y8zoh4hoAydXese9p++4jXF68fAOSmVd1wJiO3Y81cevXfG3b+iDmYp/nyNrL\n1fNhI1Rprhm2fL7+93gD18SFwrhhVJarlFLWNCw86T0gIXXN4tJlPrMDz2VPR76u/zrhVW0PW3Mb\njrU5XnHQPhrJ1ns93jt6p3Ep5a7nA0fnppHjvz/Sk+0zi+gcKhOvWavtb3f1ZfvezDlb2xmxmGO+\nPIOk9QjaN3TmPhUK9B3t3sGQA3+y9LwApetG80mHtN2OvOdttrZh5cp/xDuNw9+wtdxv4feBRld2\nHKXrTmjnKR8DvWryz7y/KzoYS/+Xgnzok7ca9t15Pda0579HpNb4HL4mxmdilpX3wDt6ApHP0vfw\nUCnsz+vYicQ99qj58SzEVSxUaW6oVJLhcNnFK7U9dwGin6t9vO8Tcxt2ztKeGPijOvO5YovEmp/n\nwr2kEYWVUsqTgv6Ky8V66U2AHWkIeE1dHIMhX0YFQRAEQRAEQRCEsCM/RgVBEARBEARBEISwE+H3\nN1Aj0AAG3fyctmsM0p7O1+7W9p9bQxa10gm560tfXcjq0MiW1Ym4LF8Mv8SYjogcFUF0LBXHIQG2\nGCJw0kT1bgT9UrVR/NjxCLqovPGNEVfuxKx/+EVtj8m6mu0ryk7XtiOvcdtT3hd6w4yfIJGi8t3K\ndly3/M6lb2j7mUOQ3G3f2J6VSyURActwy1nUt8KRPCHvnUOXaXv2N+dqO7oXj2S4ZCCi7o6f/ai2\n3R1wPXE76pO6vX5UD4QMyWJBf3ncXCLh2ALZho80j0ZTjD1kLjWm+E7xaLoNhc75geN4xurMHyE3\n7DsBERi3LYBk22/4N52NDKHSAdChxCRwKZ11DSQuVI5bQxQ3xmPXEnUhXU9i8vl8rWxD5MXmOcbP\nCKIqQlur3r0Na98QGwZ1r5fvDFRcKaWUqzU6L+aw+XzpMhlSpj2LOpmWqyuR3hOXaSwqe2CsOvZh\noM2b+RQrd8F7WAejKlSDMD7LQ6oTZ5C7Vobn2RkqPuoekmX+ypQ/hawHflxDxry6P09+fPYltv1F\nJaS+//jqcm3vvul1Vq7jkunabv495kTsbUe0PSDlEKuzrxJRRXd/A/+ZqlZ4HsUeafi3CyrNXXkM\nc8r9U3qg4k0ClQ26U2hGB+6akbYOa4M7HeUceeb3f/j9G7S9YBfcS1K+55LLytY4nrM9FoTUjZCn\n1hhcxSzVJPIvkeKWd+TlHMeIu0kU9kWSSLbFQ/kiFJODtYE+t4zRos0oG41xb91rEKGTbBbBIvqa\nQduakMWl+O0uRdT9Ki/2Ob0Y98cOpPIDEheuqCL0dxJ/TWgwZPozubyR+OswL/OWI5R1sHE25s51\n2j4/KYvtu//Nmdq2FZF73p+8ixsObT+Gsc4iFDfyr8PMWQ+a7pMvo4IgCIIgCIIgCELYkR+jgiAI\ngiAIgiAIQtiRH6OCIAiCIAiCIAhC2DmpPqPnDv1/2i7uGcf2rf/368biJ6TzJ7drO6IGgm1fc55L\nIWfiOyc81j8Ku7PtH/+AUONVzUhqGIPvHQ0bHi6f0ZMF9X2qJZl57EXmQ2rdk7iv+0hahHNX3MPK\n+Uug/7dmILa3fQPGScTZJazOcpJGJtkCx6VOn93OyjmI7wvVx0dcXaDtquUZ6kzmdz6jZKjefBVS\n/bz7ySRtn3fpWlpDff/VsKZoWqPgJ+Oxy/gctm9/MZy+aSqdgzUYj1W1/P901zzzsLYrRsBhx1fK\nfVj2T31LBeIwOXZrK1/rer4O/0Yv8Z2LO8TXjzaX4zp2rjKJsR8E6lt21f7xbF/mz92MxX+Hry33\nj7UcRCh+euyu791R57YZMfMZ3XbPawH/rlRwP9FQCHbsxjxPMJ9RN0nFEhfL+7tmZYqx+CmJ0Wc0\nZlCRtl0bDf5bpwmejniHoH6YBQP4OE3PDPzsW/38G2x7yJ8wR6wu1Dk2EvaYIdtZnX+1/F7b0x7B\nepQ3hsdlSCe+jlY3jlfVnKS0OMbrdHtgm7Y3ze0T8BpOV9yp/J4k7IdtIVMsfxyfmPsnzw54vB6r\nrtd21BqeVmfwFUiz99MWxCZo3oan81vT70tt05RkrcbDl7f8vdasjicZY42mODGm2LN4/AHrOHvi\nYnPOOfE7sFJKdfxqJttO3hr4+9V9D8zVdmZVe7bvhRYbVSAG/s38OVHeEXZtK7TbZuf36JquOPaf\n0+D0SedXMIp7o69Ssnk/0tgO9L3eNQUBJGK+TTQ9dlFfHDu6jPdb3EHsKyOPXosTbYg9wsftv/6I\n8XiuI7TAA4P+gn7wEP9oWzE/9mt/hn86jb1gTF32QSlSoc1/aUxIbXBl4Lw7/vmAaTn5MioIgiAI\ngiAIgiCEHfkxKgiCIAiCIAiCIIQd64mLNB01sfgcTMNWK6VUoa9K22mW2JCOR1O2VB2GfCIUWa6R\nXwp5KP8aB5G4HEcIcFcq70JbBdIGlMU3rHtpOgiry7zcyYJKc71EeWiHKovJco10ikKlNWNfYfuG\nLrxf28kLcP+rEN1ejW+9l9WZ/KeHAp6XSraV4mHRKf5PSHj5FqbNPjMh049KcylGWe72uwLLGqns\nyAit0+0dSEgsLn6PbEMga/KsD02eSNO50NQ3+VVcFuvzBf4f3CSS5mfH7eaSTTuRCrmrYkzLUYzS\nXIqfZBexF6Afqlob0l00Yj6XTzv8xLa7msh0n7p8jranxnLJTmPIcetKfSSylqFczu9bl6xtKs29\n+8hQVm7ZVwPrfK6GkpyI555rGU93ETEK17FlyCfa7vOceZ/4R0BSVl2NgWbbyMdj4jnHtD0gDVLB\nZZ8ODqXZyjMQ7a4ptrN9Vh/OS+WuthzzdCd0/vV4I7R7XtMdC7t1Zz3yywSBtxWavU6DD7Jy5Zlt\nYLc3/1//D/9AWrvzHoJ0LbYN8uqUVfN+pNJcKvsd8QB3Q6GLOXUjcrUgkt22vMaxjT21TUcGXZua\nMp3U4Mu3sO0Nc/s22rFnXLyEbX/xJNK+UUm5LY67c5lhtaIjbpm+kO1bcAwS54yVeEF6/m+fG46C\njvWfhXv+RIdvtX3j5OmsRsJKjAcvabfX8GihqVm8sbjnsVvJeDqH1/H6cU1REWhblx5HWLnDRzFw\nUsfkafuGhMKAdjCofFMppeyFaCu9hpg4yHQrCvjFvvvjWG3/+SrIdAsHY46mbTCfh79e9YK2x/+Z\nS0ipNDftRuRsPPpVe1LK3CWtNgYH8LkNadraYTtpJ45RExN47iql1LMH8F52bo/vTM9L6X8b5tUv\n3/fT9v/c+ikrR6W5lA5RvL97xGA8zCd/py6JkTxDUsipzOTLqCAIgiAIgiAIghB25MeoIAiCIAiC\nIAiCEHZOqky3tDOkL8ZP0uNefETbnkGQh93e+xdtP5jCo2SOaIUwaUuIXGK5i//m/qIY0qPcKkgA\nj1dC2hv5OY/65yWKKYsbx6PRypRSyupuvAi6H814Xts3vmQehYry3N1vsu0HX5lpUrLhuDKIpMBG\n5AoH0Acdv+bnT1+Lvpvw4CptL31uJCvX8trj2q75pZm2afTbhcu5jI7eMSohTOLDhEnCK9ugrXGH\nT1pgaU1le2gc4nJP6vQ8Id3eJTLNzpDpWQKUDYRRmksJVZprdrxpF2CdWPDBKH7sAdC8d5g/Q9uR\nSTzCJKV8KOr0SoUO/cDP5tH0+j4LeWH1UEixfPu59CUiGuPOTtYPb0cuiz1ckWR6rlCoj6z2mX2Q\ntP3VzWWVEZ1wz5tSsjvlCtzLbz8fFaRkYKikVSmleq0LLPsMlyz3DzM+Y9v/mXWlto3SXIr/F8iL\nFYIaqhFXbNb2yvn9WZ0vB8zSdo9oaPv6bOR9UPZjc20vU81VXfEfwLFtTj6va46TcZvWdFrPPWPf\n03aPnQ2LeBwMGkG3fHE7tq/nPbu0ffjlLtouq+V+NomRgeX9NLq3UX5Lpbk0ymnsVeWsXPynCdpu\nPROuLAUHICEe32U3P+9LeF+68DFI+D9/n0fdDoXKvjwKdNwWu0lJ8HbbX9h2X9V4Mt0573K3kxgi\nraxqhb8nzufr8r0d8Z44f9NZ2rbEQ3d4f3Iuq0O3+027WttXL+br4/4piLruLsRYmPnW3dqOMnRb\nVRvihkKCuKdu4e8tpV1hO45R+STKGSPZ0oi82fdBIv9Aux9YuYcUpMO3tlup7WDR4t8uw3oyPx9S\n0Zh88/ctbwKRF39P1o9BXAM6esQ2FYicS/Ae3MF+K9uXvhI/Noatx/UYhf2udPRJ4fuY5xfej+ue\nN+dsVsdWgnbTqNYVbfmaGHcosEtRZLUypehjzN9Byvx5u/HvcFGLJFpjhAdkcAAAIABJREFUdxsc\n/Kp47rpC6fAd3oki7Hy9tu3DoIwl8yiqwvxeWkJ0MZQvo4IgCIIgCIIgCELYkR+jgiAIgiAIgiAI\nQtiJ8Pv9J02b2P92RJSLcvJm1NjwWZsmbq5oi9/PI6ZmsTobj+EzdlkZPrpP7L6DlcvMR7mKTIg7\nm6+FBMBn57/TI71EkmoNLH1QSilPAuq5MsL/W7+8C5cxJOxpOqmnOw3XnoRAZqqY5MyOO8DlCTQC\nr73YfOg5m5P7DzWgmjpzubYXPmOedNdHJC4WrhpSJQgcqJJJXnEqVfGFFiS1UaAR/cwi/TY2vsDB\n084Y/noDpJlPvnw121fWA9KT2P00QTzKVHTgkt3aVEizYrdDV+Nsycv5yXBP3IP5X94J5RL2ma8L\nbqJOdrfkczm6kERgPMP/jRhV0XjuDqcaYy7NZNsrPxsQlvNWdsMYjtvVdAvAP2e+x7Yfm3NTk53r\nZEDnZYtlfCJm3AlXofzXOpgeo6oF6kVV4Tk45DZIrtvRsPRKqSsSsO/xo+dr+1BlMivnmY1Q8K40\n0r5zEaE86iteh75jtb8XUuPsr3qYXkNjQmWnSillCSJXDAXq9mWM5knlof6rEPm16hcukaduOzTy\nq7MF1vKZk7mM1Uk0l5tL8Z65/SiXvicvxEOfyjSrWuI8zPVJ8XenlGxlSuFA1HMcwf2PLifXbVhe\nI8ipzrsDkunpyWtYuQnfIKKzPwEd26vDUW1v38ZDNTfriD52LobLldXFr88bh0ZVQ2muPK0wGKb0\n/5XVeaHFRm13WAQ57j1DIDV/I5u7dli3QUbM5LIhjkEqufX1qGL7vCW4mYk7ccN8hsDhVW3wDpKW\niXvkjcWxLe76/TQr7ofxSV0Ko0twbE9vrp3t2hJucfkfctcDSo2DvJc7696+zFkPmu47w19pBEEQ\nBEEQBEEQhFMR+TEqCIIgCIIgCIIghJ2TGq7TSSQJ0WVcN1CNwLbKS+yYAthFHh7/6vIOkLHkk0oL\nd/di5bwuaDjo1/Pjg/F3OzmPUkrZS0hUqlT8hqftVEqp9CxIF9resUfbu74MnFS+sWlKWa4RKs3N\nH4frjjqOfux2zU5aRW3YDwmAZRW0tL1v4FHR1h5or+3KEpT7Ia+7tmm0M6W4NCeKBCI1yh2oNJdi\nK0U5Z0z4ZILhkuZStt/1Gtvu+WrTRZ88GexytzDdF5kE/Y17AO553GqsJ/H7+f/pyuyYV+5U1Gnb\nK4+VK/22lQoElebWGCTgNbGB25mUzedyi2m52t67xlxKI3AmTNvAtpd+OdikZHh4rdVatt1HBZbp\nujP4umXPD7wmUXcJeyEvs/VBzPM+z4Vnjl8cyxe0x5rwXN5ukJtF7WpC3wrSrUZpLoVKc2c9iWj4\n1z77ECtX3htrUOcOkMhlFrTW9vJVfFzcfgcS2G97F+80MZceZ+Vqb4QsclAq1qefVsF/plkQCeDH\nHZZpu68Kj0y3obJcI0Zprhkl29JQx2GISnshJJheD9bi83vgXWVSHH9vmbrgPm1HJOKi7Nv42PTZ\niWT2YsixfVtJToAOfB4l/miM92oC8Ryh0lyKMQsEdZla+AZkrXNbc4mrnUSsr3FB15q3tr22uQBc\nqeotGdq2KvNxF1WJfRG1RK4chRe7x9KXszq7vSjXvAUixL6/d6i2L+vGpb3zbb217S1CpN6kS46w\ncq91gavP+cvu0XZMDn41JC3m94S+g7owtJTVEFHWcQQuNyU9iVSYRK9Nyarft8KoZjjZD8Ox/t+7\nf5q2s3ZzKXUwaS6lPtLcUJEvo4IgCIIgCIIgCELYkR+jgiAIgiAIgiAIQtiRH6OCIAiCIAiCIAhC\n2DmpPqM1RKPv4K5XKqoCdnlH2DQlxeR0rte/LfGoCoTRZ5TGsfa0hHOBpQQHj+XycRZ2uoakDfEm\nGvx6jkPnf19LhP2+UzXMZ9Q5mPsP7Bn7nrb7PX3y/f2ij6LvvIlwWti8nF/37VOWaPuLxedq+4N2\nK1i5JekIKX7PZwjZfSQSPhUJo0tYneqd0P/XDsYAiljKHXsjiX8K9VXxximhEbjtmoVs+62Pzzcp\n2bhQP9h/FHY3LWffAv8dmgIoGIk74OMRfxEWKzMf0WAY/UdoG2xkSPe4mqekqlVnbroTI9vuwb3s\n9XLD1rdw+ogmjIb/3oc939f2xW88WudjmfmI/q4c8ROlPqLhpKqt78SFGoEdt5tfX49dTfgcrIer\n1LT1t2n7hhlL2b7O9mPaviKuLGD9Ee/fzrb/cmy0tjc98brpeXutuVbbP+/vpO2YfPrtgaekOtPY\n8pD5OBn62B3aTiavkMYYFGojXghq+mLRfqXVOlKIP0BG9EdanMyFyCFnH1HIyhXlI3fJwCSk3Mk5\niPebqB0h+ogasBK/zuKheL9NWUdiogRJq0fTvMQd4vsiL8J11M5HW30kFaPFw49dQdwR4w+Yt7vW\nQtKGjMd5bD/D+bKFlb+kLSxDypw28aXa3lONND1zd3Dfa/ruPORbjIWqj1qycjOvxjxSHjz/b7sK\n7zcvrp/AL8KLOZaUhf52Nud9kriPVCGvp/7WHlKqfj7wjhXooxc7Y804P2Ortvcs6qQ4jecLWtaF\nb9tKQnuOhfRldPfu3eqcc85RH374oVJKqby8PHX99dera665Rt13332quvq/b/Tz5s1T06ZNU5df\nfrmaO3duHZovCIIgCIIgCIIg/F/ihD9GnU6n+vvf/66GDx+u//bSSy+pa665Rn388ceqXbt26osv\nvlBOp1O9+uqr6r333lNz5sxR77//viotLQ1yZEEQBEEQBEEQBOH/KieU6UZHR6tZs2apWbNm6b+t\nW7dO/e1vf1NKKTVu3Dj1zjvvqA4dOqg+ffqo+Pj/fnMeMGCAyszMVOPHjzc/eSU+30bU8s/EFvK1\nOhEZUpTPhnJPz5vC6vS6/FVtzy0ZgvNk89wJ9sHQwlUehlwiCQoLlbSXfi5XytkMYaxrSa8lHOTt\njqxEvZH2xnPJdWzgko1hSZc12rEbhS4Igx55EP2dxDO7qNdbj9G2rRPuP5XOKKXUuichQ6LHKBwA\nuYTtmyRaRUU6cDwfkcG4mvE2JOwLLEmIrAn4Z6GO3J+cy7bfaqLzGNPTULx+jBN3Kt9H0/5EIaq+\nckHZw1JIGfdd3ypL23OUeQqZyjYkbcwhc6kKleZ6yJDOKeMNz9+L7ZPqXxEGbjgw+sSFTkHKV2Cx\nuXhF3aW5DSVc6VuUUqp2OOSlTZhUhdHjjZPjktJ/EiTzubtCc7lJ+RLPwc9acDmfJwVrwwvbYK9+\n/g3T412YhBQVeTVYxEatuIeVazbfpgIDaW5FO/5uEn/g9JftVvT2BPx7h4W3su0MYle2IfJSQ3oZ\n6o7lL8H7X99nMAZfv/sVVmfP60iF456A9rgKElg5RxJkv4fegq4xSplTOMmt7YTVmHHRFfx9JqKG\nvFe7LKohPPLgp2z7qReu0nZpL4wZayXGU4RhKAWT5lJK+0FS7FgNaa69wlxCmmrFPMhci370peBl\nLrLM/Gm5/l94zxzyJ/4OWunBPR/YK0fbr23Fs6l5c/7BLX8XXhR8ZBpSWa6R6F5YRyuPN9xXjKYy\n/Pk1pLj5mZSJMcpyG6jg95FUiP4ofgB7obF0YE74TmO1WpXVyou5XC4VHf3fG5WamqoKCgpUYWGh\nSklJ0WVSUlJUQYHhjU4QBEEQBEEQBEEQVCNE0/X7A//XwuzvgiAIgiAIgiAIglAvtZfD4VBut1vZ\n7XZ1/PhxlZGRoTIyMlRhIb7H5ufnq7POOivocWjUVZXHZWyOAnxmj6rA5/vaKPx+jimOZnXu33mX\ntqnk0hFtkAB/BS1csxzIJWptkDRYK7jkI86LttZGQb8Rk8+1HbUOM4lM4+L6IePEhcKI1wWBiYV0\nd0kPXi7qIPrHk4w+LevC73+3dyCZcMRjX9pmlHFm8DrR5Tixj0QepZGZjZR1Rrm4Q6hfa1C3RIYn\nWOQZQc9XwyOl+7QimW1/cBR+7YVOSOTsRSokjNJcs33vz5qs7WD/zQsmzTXDm4AxmL8nje1L3IOz\nVbU8s//Zt2le75PdhCbjT8f7nuwmNAqRaxID7xge+M+nM5sX40GWXA8dW2xerWE7cLkRD9weeIdS\n6on/mR7w780C/jU4/jMwMLcttjrg3+N3RBv+grUz/kCI6+h+utKjzoOP3/X7sv9L+lLjeSnBBLmB\nqa0kdYLcP09G4/kbPf3cVWybnjZ5W+NmhkzejJ8jESF+zFpejqj5VJobdYz0laGZVI7b/05I3wsH\n8znqz4O0OvMgfjNYy3FA327uAmhrjR6iEYurWvIbFpNPMnrsxDoaaT9Jz/UGqvQtLrQ7aXv9Fpd6\njaYRI0aoxYsXK6WUWrJkiTr77LNVv3791NatW1V5ebmqqqpSmZmZatCgQfVqlCAIgiAIgiAIgnBm\nc8Ivo9nZ2erJJ59UR44cUVarVS1evFg988wz6g9/+IP67LPPVMuWLdXUqVNVVFSUeuihh9T06dNV\nRESEuuuuu3QwI0EQBEEQBEEQBEGgRPhPonNn978+f7JOHRb8DQtkdkrg644ouZadXJIw7sJMbS9Z\nAUm2vQAf3C1uddpA75dnSCXbF5WJKGezZ76s7W5RXM599isPN03jGpns+3gk2n5PnpwolU0GUYp0\nuISHstv/NRI+u4bhPndtDi3utj2tWZ3+3XK1nW5Hnb3l6axcqQsSfj/RwsXZICHzGTRyqTFObR/4\nuqMyo7wX3BXidtdd5nU6EV2Gx1LJCPRd8upg0reTTw2J6G11Bn60VieZy5i23o952eeF02dO0nbf\ne3Qw2/dSyw3aputMiynmYTaTbHCfibdijU2JrmLl0ogPRq0fzx1bJOZKVAT3sSirQWT6P6XtUqFA\no9dec9sD+PsI/v/86vZoa+xWrAVpW72snCsNDxvavMga4moSzceJhRyixkaiwHr5OKPLS1VL9En8\nxGPa7p3CdcJvtl6j7XlV6J9dHkQLX5jHpfM2C4lYGoE2DEg+xMo5IgPLZxOtWPeSLE62LyoCx3bX\nYq1LMLxQtLEWa/vdwrO1fdgJWeWENB7S/9Uvz9f2DVN/0vYnH/KIx6cr/sZVz55SZN/L31uoOxeN\nXhufa77G0v4xRv41hR4uxF9MSVOPaPvoupZsn4O4JZ51/VZtl3gw977pspjV6fUy1k5ff6x70etO\nrY9+Wx7i92h41jRtr5v0H9N6Z/CwFQRBEARBEARBEE5V5MeoIAiCIAiCIAiCEHbO9NzpYWfVzGe0\nPWL26SHZ3DHztRMXUkr12MllY39p9qO2Vx0aoO1WU3Jx7J1c7piw69QacoOu2qLtjZ8iyiWV5Rr5\nvgLlquK4BIjKXyfuuEjbeUvaNKid9eWV25BE/e63zCM1Um6csUjbNHLsqUbGxVwOlj8vcB9TWa6R\nmLW4zzsGEelcNf8/3bY8yNX6tz5serx4W2BJWt8USHaohEwppfZ91cVYPCD7L5il7T67A0s4Kzvy\nSIpxOafWfHOnQePUdiD65ODGVqxcNPKAn/LSXMqL92C+uf2QF/7PU7eEVJ9Kc6n0VSmlOn+M+RuT\nj/FZS25xZOMF0qw3a1/mgQv7pkK264MKTR1e0k7bEUN58nhrcmD9XILVxbb3OhFVPjUKEl5bpLmM\n/fH07ab7KF4/9LMT1qPv49PR4THHDJL7bIzV9LvgHrDLwdeg5uugufUkkXWHSACjq3gf1Nhwz60e\n88jv9BgxBdgo+BVxdzN38xi8N8xAfxW6sSam2CCf9dXyNXHf5rbaTuuTr+08N4+y3MGBLAtxRGbr\nrDWf17GRkDvbI7ym5X6s7KXthdtht/0cndLs+bWsTlQl7tmpLM2tasXv/7ih2dpe+y3eQTy9+Zyw\nb41p2oaFgZoBkKFaMyFD7bPuGlbOkXfiyK1uHpSeRdevpUF3DcOsPnLeZx58U9t3brxW27befH3z\nEcX7u21Xarvvs1j/+yr+jGfT3NLA8LeNwCt34fk02m5ebk2/L8mWyHQFQRAEQRAEQRCEUwj5MSoI\ngiAIgiAIgiCEHfkxKgiCIAiCIAiCIISdU8uhyITtd0Kb3PO1UzvcfbLFceJCpwDB/ER7vBlaH09+\n7lFt07DalJtG/MK2Pz84VtsG95+Twk+/9tR2RH/4szi2m4vgZySv0/bn5X3Zvq+Lkerjhx7ztX2x\nFb6X2w62YHWi98HHw0L6pKojd2Jo2Q7ODmXLmpu2jzI2pu6+BXP2DQmpnJ+sHhEnwVdtTPoetv3+\n0FRt39gbfkJz3xkf0vHiNgbxtdkDP6rtkd21HaovyY/xCO1OslHUiX5PkXlp4hJn9BF9YsaH2v7D\nN/BhsRec2NemKbAX4rz5i+FPHvW79aPuGce88Tg29aO0lRqO1YjJzDY98brpvp6vTdd2DDmpJ4k3\nwFYa2r3Yew38Ualvaah+oq5+WFws+/n6Fl3esPFw2b5ztF3ag++zdMKAj/8O86j0PPh4RmRzP8PK\nofBVHJyMFDD9Hbms3MWxKLfbi+MtJL6E9yfzOmZ0+pz71KduRp+4xsIX3NICf/fG8XtZnYT/79u9\nGNTPX/82K/dIFcYGfXZSN0pPM35jU1ohjUnZ7hS0x83vHfWDSyRLpKUT0tNUVPOYCIf+1k3bPf6O\nVBMeHyZS6WL+3FKD0PcF2fDdXZbOfeKXl8BBztG+XNs0HUyfDJ5qJpak80mKwrjNKuG+5XuyECeg\n29vwy3O1g5/hc3snqvpwz83faPuNPUgb4/0lNVDxRmHcFUiDRFMiKWWY8+TvKUk8DZ1TnR4+o7WG\nXx/udDxMHZmB05V0Sili2wcUxlp1Av4ejWGmqpP4Q9peiN6jfqHlnXm52MMnTlF4+cylbPvWH0ls\nAJJjKeI4n28x+WQjtNcthmU11staw7tA3Ggc3LkU87KiN+ZUekY5q1OSDcdaqxPtjuJDS11/M9LN\nUD9R6utqxDYOPuObzjctJl9GBUEQBEEQBEEQhPAjP0YFQRAEQRAEQRCEsHNayHQp4ZLsulpziUzM\n4dC6irXJYl6uMYkfUqDt0iwex9riwSd3M2luv/VXh3Qe+4Bitl27DFIhdz9Idnbsgvxu4cULWZ2v\nXGPRtvGQXPh+Mpe+VI+EzCt6FZFvGJRlNUQ2EFQCTOol7KT3FbaZ7FgppT4oHajt7IqWbN+WeUSj\ndh/kvNlZSGPgOBLawIgu4GOuLOfE0twbr1/MtgdnXhHSuSilx9DH8eNKtB2xLJmVo9LcFlMgpdu1\nh/dJwnYTTSn5V5izBZe7OY6cWDb4zooxbDutA8bnPme6sfgJiTkX8hbXkgzTcsGkuf6x6K/Kg9AN\nxeeEaTEwUEV0f3uug6T07iNDWbmfPx+oToRnQBXbtmXGNrB1wOI5cZkTEVWBMVQ2Broq289B4s4T\nqMxXKaXaXrRf24e/6qDtqmFY65y1PJVPr4V3aTuiGVKD0FQsRlmlWQoBKstTiqd6obaxnBkxWZDv\nVXbmLgC23tBj+VdjnreajHl9ZFE7Zcau+V213WHSQbZvN1kPqPgu+ldI13wDuXb9+C+o80Ey1r05\nzbim7Vj/JdreVIH2LdkMaeiN57/I6lBXmu6z79B26j5lStw2PBBSt6HvXOl8jS69AP1Y+wzSp3z3\n97NYOZpGgtqJB7CoRnr4mujMwDOy+dXHtV1Yzuehz4X1trwNxmBELcadxcvHoCcR61NlDdaMtcsh\nd7YZXoFi16Ify7qj3fYc/vC0YUlU/lzIKr1kMKzqwK/BWohrqEnBsZM282dJ80JMmKKBGLdVrXB9\n/jV8LacrsTsFfWwv5n2SV422Pt3rC23f/8tM1ZgYUzjVlaISgwTUpBxNARTpMykURozuBY68E38b\n25LVnm1TcX80V55qEvYajnsu3hMsS1JMy5X2xcT84+gF2n7/wDBtt4wuYXWStmB82i/EHHVv5amU\nKIdrKk33meFOJeO2iI/bSa12aPvTFLwHXdp3s7afbZHJD9gf5uMFmPN/S99m2gZaLhjpsaFdn3wZ\nFQRBEARBEARBEMKO/BgVBEEQBEEQBEEQws4pI9OtMUSls1bi03PP1yFD2n5HwyQNwfD2hPxq/9j3\n2L5TOYpvxXp8ijeKAb3xgTWF1+wfp+3qzckByxhxZ6awbRL4T8VugGTn8pt/0va8Kh5dOPE8RM3L\nL4O8pLoz142ktof84baOa7T91qqLtN3jsp2sjpPIi7Zlttd22948Ul/xAh6RLxBV7biGJPYApsrH\nH004YX2llOr9IsaMvxuV84Um2YyqqHuEyzcX88iBe69GBM7eK9Ge7rP4eKbCKnsepCYR5uoSxgXN\nsrW9f01bto9Ge2PytLGQyzh+4mMrFEYM2MW2t36GyMiZEXWX6QaT5oZKxHLMpcDxAMPL029Dpn3D\nA1g7C6tDk9gOmobImivWhibL2fqA+Rrd5/mmW0f9ZFrFxkKmW53IhWvR5eRZQ0zfiDJWLu/j9tr2\nkECie8izYfLOS1idsX2xJm15B1LR0tEkUvcW82iXNWS5tDr5PirHHXEZJFf9pm7XdtY3PVUoGF0A\n/HsDPwMOL4H0tao9XxPjcgO/PrSN49K1YcMhd/6kZLS2k3ai8yuz+GyJO4x9/kMkKmUt77vZi6eg\nHPnXumUi/DQeP87l/EtyEA07IYg01xuL89J7QYLAKkc+75PIBEjZD04iN/MvPOp61UQ8l+NyqYQb\nB69qxvu3oh3a0zYKzxP3D3yRjj+ENhX2gUQ9ciTuS0Unrot3leAJ8Mvuztq2uXDOtC0GaXcRGdP5\nWE88ifxdjrpzeFKIfJZ+Cqk1RgTGMVLXoR8yVhxn5WpS8Q4R4UOfWrxoT62FH9tJoiF3HHxI2wdX\n8udWrguy6ILqQaoxybzvZbKFhevLSrh2PDH7OtP6Vb3R991b8T45mN1e246z4cJF3xNvvJq787y+\ncSzq7Azio9SIePryBa6mEi8KsTmBXXsifAYXBwvdF/g8bsOrQLt4uAQcV+bvHfeMRKRci8LYKq3C\nGvTiy5exOmNuWa/tMi/K/arMX6RyauIC/r2yD5+j0QdwX6wu83fDrz/AeudriXZ/uxwuDkuOD2N1\naN99ds8z2nYaQh5PzL5K2xU/BHYbS5l0lG0v7EZd9bjLBEW+jAqCIAiCIAiCIAhhR36MCoIgCIIg\nCIIgCGEnwu/3N2IK8LrR/a/Pa7vnpN1s3xedftR2/w34NPxKn4+1PeOduxu1PTRSrxGa1Hv74q6m\n5Sj+EANo0qS80aWN+/8BxyAknE2w47P/sV9OLFVVSqlmI/HJ/fgqHiWVJgKedMVabadGQapkjGq6\nrRif9q9vj2izb711kaork29czbb7OiC5eer1K7VdOcgQWjcfcof2fXF9S3vOMz0XldyeTmTfhzHd\n+yVcw8hLN7Nyaz9COLVaotJxp2F5CCXCbSA8RAljIwGZK4g0O34vnyweEi3OVkLOS1TnCx56itW5\n4NlHsVGPpnqJWsbd2RDetQJylfh9aKuzuSEK8LH69VFdMSa6/o1eU7l0/Zk2GNOtrYHlQEbqI6Vd\ncA/uRa5BdjTjE0QsjS5F/1QTOV9NO55VPGllaBFwa6NwvIqRkH35nLhfyRk8UqtrE+R3jrzQHn8l\nozAe/F6s0Snr+I3wxtGE4Tj2U4+9pe3732x4NM4aolb1EheXmIKGj7/Lrl2u7TVFiCIcbeE6uP0L\nOgas74vm23SsJuwPLJGuL7QfPMm4dhJE+ndyZ3sRTlydiDrRpQZ5qUnU7NjjNYF3GDCLkhyMI2Mx\nbr1pXBbb/ovQ7q0zA8dwpZH50QvS3tYL+HprdaKBxweTSLY98SxPWWCQu1egTnV8ZMC/K6VUQT+0\nh/YD7R97kWJEeolMdytuYKSb9/3RcYin2vo7yFVr0rAGHT2buyRQmfW5V+K9xWNYVG9L/1nbUxbd\nq+24nIZ7t5lF0O34NdYGawV/F2w5AO5GhwsR6ffOvitYuXc+nBzw2FUdyXiq4WMpqRVC0Y5sCVn9\n4j09WDnbFu52FQhXb/6+Zd+OcRNsHriaYWdtPO4zjawcdyjEOTAaEVx9h3mbBwzdo+1fDyHzQ3oy\nf0445584e4GR8uG4dnrd0WWBSv8eX5DHHnvXIIM4lCjEdeGmmxdp+933+VgKZR3b8hAf20M2X67t\njef9y7SefBkVBEEQBEEQBEEQwo78GBUEQRAEQRAEQRDCzikj0zVCJbOTdlyo7UPL2gYq3igEk+ma\nESzKLpXp1sSgm4NFwjoV8PeCXKGWJsreweV3VGbT/mwkR/+gy+favmLHtaxOXDTkboe+6aDqSvzk\nY9r+pe9XbN8NBxCpcU8p5MHOxTySGVXjOFuQqIYHcUFZj/Kx0Jgy3fGXb2DbP80dXOdjbL4X0fj6\nv3RPSHWq+0O6MnvIB2xflgtRM2e/dUGd20PxGsLIRhH1S2U70t8HQvtfWMUASDjjM6FjiZmUz8q5\nFiMabptLIDUKdZxVdCSy4ZzQNPYdLuHhOPd/3SlguTgybisXcflPeT/MiYSs0CIZmsl0g0WypXxU\nkcq2/zP7SpOS5kSQ6JwT2yCy8e8SahPKaiFjSoyEjKnD97eyckb5qxlUFkvH1hOTkKT+P9lcauRx\n49hJK0KTA1NczXDOmlj++IzPgV08DLK4/ZNna7v3Wr4mRqxNVA2BSlWtLvNyDeWfM95j228cHqvt\nfauwfjjy+PONypUbSsEYLl1dfc4L2p6cOUPbni2QMQaLmEupaM/bHZ8buN004nHi/tAku0YK+hHp\n4RisY2kOyGJ3bG7H6sTnYL1M3sP7IRTcKVjToqq43u7oKOxL3oG/p2xHe7wJXH/tTiaSYhJ52JXB\n+9FL5ojjOPaVdySyzBjenvR1aE/iPqz/ETUGnWAkjudsQaKNkusr68TXEnr/lt3ztLZfLh7Cyn3+\nJaKSWrkXQYNJGI/nQUEp3qtqijCZral8MseTCOHl27F+24sMEWYB+uILAAAgAElEQVRNHqtV3fCc\n6dGeZxi4vfVyba+tRDTleZ+NCnywIKSN59FU/9RxgbaLfbjWq+J51O2OP9yibceOwOtyVEXAPyul\nlCrtg7kYQWTId4/9gZX7aD8iI9cuStN2RXvDWp6LY3hIsHEbabarGa9DXU9mXThL27cuu5mV+3Ei\n1q0798INMW8hft+40/mx7Y3ggvEbqZOPsO1SJ8bd5sGfarvvs3V/73UPrmTb9g2459lPP2BaT76M\nCoIgCIIgCIIgCGFHfowKgiAIgiAIgiAIYUd+jAqCIAiCIAiCIAhh55T1GT0ZUJ/R9R7ukzHEFtiH\nKZjPKNWPt+sPjfbRla0DFa8T1Ynwibh/0vfafu3zhvn71QUarnrktfATG5mA0Nn/MvhrWVeG5h9V\n3h36/3494I9a7IbDR1uDz8H6g9DbPzMQPmPHapJYueezJ2g7epXBwfF/qejE0xg4DofmQ1idhHtO\n01icCpxzxXptz0hdyfb1iobPQL8nG+Yfm/noK2x7wFN1T8HkI35wlnr4wWU9hrnc76mmS8tT3rua\nbSdkR5uUDI03iS/wzCC+wGY+o1dfv5Rt/ykNvpwX78Fc3P9d4LQcwahqy+dEdDOkXLBYsB55vXyu\n7B7N/ZN/Y5ETPl6PvDmdH7ss8GOppDf3Gcu57M2A5cZmT9X2gb0ZbF/KryHm3DLBk4J5bSvm7aQp\nYHLOeSdg/Q7zZ7DtuH2h+ceaQdMv2QvDt+Z0uwjp2DLs8BNa8cUAVs5xrGGvGNQHrtmNuWzfpPTt\n2n5u1bnaTl/V8PQbZoSa2oVy38ufsO0lpb21/fPX6K9oZNhQSXv5O0iw9CmUUFLKHB3J+6fDyIPa\ndr6EtG9x25FzpXQAT9NW1QInslbhHpd15ffbWkXaTd4ZqL9dTQJfWyJisN3qW5JWa1shK+fqiLxh\nVhfui7MZ1pb8QXxONOUcefV2PHdGE7dHmlZNKaWquuC5YT+AZwb1TTX6fjpboU9iD5mvYbQeTfs0\nYRLSuWUV8TR9ZcvrnsaE4hsIZ85hbXLZvqNVeOd7suOX2o6M4OPk81LEzvjm07MDnieYz+iQG3F9\nvxzC862mhveVY0XgFGflnfhkSdiHjiw9C3Nxw2T4e078zyPmDSJUjuT5pVaMwjvS+U8iJR1N7eIc\nwF98HJk8tVJdmXbDcm0/TtZNpfi7Qe68ur8bhIr4jAqCIAiCIAiCIAinFPJjVBAEQRAEQRAEQQg7\nTadlOQ0JJrmtD1GVkIM0hjSXktoN8pnX5oZPmmvGqo8gNVqlYNd3gEUlQu625QBkQ9N6Q4qRQTVN\nSqmta3tq+y9rb9L21Jt/ZuVap5RqO18FlunGHK2flK8xpbnOllw24jjasP8dLfoOoevzz+HXvfko\nxqeZ0LRqCJeNJMRDejKsBaTUloiG/48rchgk2J5qjCKbiazayJ/z+9T5nMZ0PhQzqa9Rlls5EH0U\nt6nusppg0tyHbkfKpKffviJgmU/mTODbakLAcqFSEwv7xtFc2r2nCvLXD9sv1/b5u85n5Za7MB7G\nkhQOkx2Y48HETjRVROIuPi9HbblU29ZIHJtJc6ONWsXAc9soL/xs2kvaHmjDfe788e3adqfy+X5J\nr1+1vcpNUs3sn4JChukx5NIt2l7/Vd+AbQtGOKW5lF3zu2r7NZIi48Jj/UOqXzgB9z81hacDKMtG\n6oroElzftpxWrNyB75C2Kb2g6TyOPEloQ6QP46dgkoeVa/sR1qoDV0NW+Z893F3l+GHkikgaWgz7\ndfP1jUpzD10PSWqbOfwpS6W5znTss3rQP7YSPmb2/NpG2x0LiVbUimv1JPI6LpJ6orYVsW38Pnji\nIXFMJvOXvh8VD+J1YnZDZlsERbOKqOUpqeJ24D2ISnYLBpCUdI2cliUY0Qr3/IocyMaNcum4XSd2\n5zDWCSbNNSOyGv2weOVZ2t531Ru8IFl2jJLiULBswrjt1/MQ2/duW/rcME9dNrum7mm2KC+1WqHt\n7lt6aTtps3lfO5tj3FFZrlJKWc+DJHz/gM/JHjwUK0YY0u+sxjOfptyKW+1g5S5OQBobD/EiozLt\nhspyjSw62kPbH+0YxPbR9CsnC/kyKgiCIAiCIAiCIIQd+TEqCIIgCIIgCIIghB2JptuE+BsWtPGU\nh0bGo/z9rve0/fCmy9i+mLWhyQFizs3X9vEDkN8k7AqPstxnriZREcMg8/WvTTIvSJh6NaQqnywf\nyfbF5OF/Qp5+kL7asri0ozGJH3ucbTsXNdM2jUTb62VIdqw8IByLOEyjmr5c0o6Vm/1WYBl5eV9E\nFIxN5nIXy8+IwNfmkv3aPvQ1ZHnOlnzpchyFJMk1HLI/r4tHK03ICnxzg8l0h2y+XNueHxBVstag\nAIokwXXp8eZV4V6OiSmiVdToZx4yPS/FMQn3rPKnZkFKngGMwByL/h5jwX9hMSsW8V2Kagg+G8ZM\n+SCu50teFWQR+F8q2vNtRx6RB3oCP1qrWnG5484ZGCf7vRi3F7/6qDJj6/2o0+eFposWHSrDpmVp\nO+u10KTGRf3RPzFteZhMXxaJuk66y92cR7JNXxP4IVsCRZqyd+MPquhFOHYwCacnGSeu6I+C9r2Q\nE8655QVWp6MV7bt0xn3armzJn1vn3wdJ4bdvj9F28m5IWj2J/NpsZVhvZ76IaPF/3jSFlYuJwSK0\ndejH2n61FFLc13aM5u3pgOia265CNM3iIVjrWt62j9X5qvMP2v7VA7nyjL/fz8pFTIPcsea7NG1T\n6fPAi7NZnTgrrmHJz5CXtlvIIwzXONBH5e3Qx1QiaSs1yIZTQpO1n2pzLFSMUXh/I/te8+cbhboX\nzHwrtEj4oR6b0u3dO9h2VMWJ74txvtLnb+xYvDPW+nEs70IeBZpS2RZjI+4gP/9992CO3ZSAY/f/\nZ9ONBV+ISuUtD5n3d99nG9a+7+57StsXvmj+DKoPEk1XEARBEARBEARBOKWQH6OCIAiCIAiCIAhC\n2Dmto+luv5N/qm7saLhNRbfxXO6y66dOjXdwo9LhJIiw/zT7Jm3vvs8gJyDqIBqhtKILT3pdfhxS\nqlcmfoBj70IUMqOs0iziaWMTTJo7/vIN2v5pLpI4/yNjq7a/yQuc0FkpLs119uCRGh07TiwbDJWC\n4gS27TvLE7DctnvQx/2e5P0bvy+wRO7lb3k01Rum/6Tt97YO13bCRqKlMupdCbvWtdd2BEmU3nrA\nUVau+CgibXpLoXeJKg5NL0/Hj3FsUWkuld9TWW4w/vLqTab7Ol26R9tPtJ2v7atmPcjKORcTaS5X\nHp9xRP6MOeYlyv6oILJcVzoWv5gQI6tWkSigochylVJq0xOva3vgE3cY9gY+71OPvaXtOzdea3rs\nDlGNG9XwP7e9o+0/vHWLablP73xW21e9Flg2XmMI7mglyvq1X/bTdkyID53UzbhfVW34vu9ugVTs\nzr1Xabt1bCkrtyoFsn0aaTt5B9pQ2JJr3yr7k2cNiVgaXcLXieoWmNzxWTiGIx+VHj/AJbLfdf1e\n27nTyA4/lxf/LX2btud78VD0xuH7QPmVXLp8XntIad+8D+4ve9+ZxcpR14ruW2D77OiTmkT+vF3w\nK9bl9pYCbVtdJEqumf5TKfVJ6VBtX/bAj2zfG+shQ06KxD0///I12n66+WZWZ0c1fEIyeyLSe/H+\nDFYusoZcE/FqoWt02q+8H4+M58++UPCR9fbpm0ObUxQq+VVKqYk7LtL24BREoveR70MLPxlR12YG\nJViUXCqzHWlvum9UtA31eYR5DcujqyXmVfUmPKMdxzDOzpm+htX5ciuifSeuN9fFNqY019juKBI8\n3DUG4zN6XWjZAoJJcR+cAXnxOwfgEla6pIW2Kzvy+f/A2EXabmxpbqjIl1FBEARBEARBEAQh7MiP\nUUEQBEEQBEEQBCHsnNYy3frKct+4BZKE298Jv7S3UWW5SqkdM80ja/V4MzzX5xuNiIWWFZDYGqWz\nVP5I7Q4Lb2Xloo5BtrmgBNH0aATXcJJ17yva7vcSIsxdde1PrNzHn4/XdkP/09OYslwjseu55m7k\ndZnapvOKSuGfvOdtVuexl6drewWJchdznGvFb0jaqO2568erUKgYgAPGZ0JK4yUqluLvWikzrKXQ\nacXk8/bMfeBpbV/+/CMB6weTfFO5IpXb1OUYlE5xiDZ59VuQ5np68AjDUZsaNwl2XfENLWfblnV1\nl7uFijudRDmEik0Vn8Xnv60Aj7DYI3X3SUjIgf3WH19k+y778S5t77+ASyHrymg7JJ9PDviK7aOR\nOqmcz5XBs97H5EcGrBMMMxmhqxk/9oU/3KttM6Gw1WWyoxGIncfHUtthGOslH0DD2+x2PgY9xSiX\nNIlE0/wMkr20pXwdrSVvPdWJWBuiy/j4cbrxDLIXYV/R+VibYv7TmtV54zmsSTvPx720RXBR4rhb\nZuAa+qMNiftxX/wbElmdLysgL8x5x3w8Zt6NcTzwZUT0rU7FsVv9yNfEhLtytV31K67JnYwxl7Wd\nR0nvcuQmbQ/vgIn0ZLtfWbk3/JDp2i7APTrkStZ2vq+K1Tl/IYm6aUe7I4fzQejYgvtPo71H+Mi9\nrGfCCDrHqICbvo8EwyjNpRxbjDE9X7UxLRcugkl461rf3ZeH3X/grKV1Pp6PeO1YiCuMqw2Pppy4\nDfNq9A1wkbovfZm2L3uKy06bXYio9M4ovFtUtuVr4oxDkLgmTT2i7dJvzN87zAj2nhAbAxcprwpN\nphuM52ZBwk+j7q7ogjIzP+D3e4ezhTrZyJdRQRAEQRAEQRAEIezIj1FBEARBEARBEAQh7MiPUUEQ\nBEEQBEEQBCHsRPj99RTUNwLd//r8yTp1WPCHllHitCUabqLKMr5I276fUut8rJQLjrDtQ1nQsPcc\nnKvtnIUdcc7A2UgaBZ/BXXPtPc9pe9jLDyozqjrBpyF2H/wZvAmYZlHlxvw7dcedDv8Ge0Hd/6dk\ncfPtrMcCp3Dxkcjnm+99mdWJisAAZ3UMro20TxKyQwzoPq4E9rJk83KEynbE3yqNpGXINA/fXt4V\noeETdjfchb7FxXBwzP2lrbZtxbjn5b2434uqwb4+PQ9q+8DXHZUZtSchtYs3nj8qoioaPo7NqOyE\n+5LWGuk8ig7wsRDpRhvic8g8IE2l6R+CUXtBCdv2eDEeUuLgB+X6qpkKhbQrD2l7916sZ/sv4v5+\nZv6fU65Zyba//dg8JVRD8SShj2ylod3Xqjbw3409RHy0j4f4ShHsNCaHKDqL70jOxkEiSfYUmimq\nuDev47dhnYgqNX9IJ+2AXdka5xk/dZO2lx3szOpkJMA5bGbbFdre5eY+WUc98AdNioIf5K/F8Nes\nfprXKe2ISe8eh3QQPw19nZX709HztL3+2z6oQ3yQbW24E1sc8VuL+CwNbYjDdVdzF1b2bPC0Iett\nCvf/HNoCa1puJVIzjUiDn+mmkraszu417dEecl/txXzQ0NRaFjfus5XY/khex9mi6dYtiieFzKni\n8JxTKaWCZOBpMryx5P2mqumu9dbrF7Lt919DGjkPybhnIxmgjM/KSMPj9zd8htcE50Cs+b4qHCTp\n14Y/fDtdtVvb+z7tatqGM43spx8w3SdfRgVBEARBEARBEISwIz9GBUEQBEEQBEEQhLBzWqd2+b/M\nyluRnuLs2YHTU4ST+khzKcULeLjsWGIfOAy5oqcF5CCOvPBJX+IiQ9NP2I4FnlLBpLlVHaBDit0f\n2pQMVZpLJTsRteblLt07UduV7VEwLhcH6L/uBlbH8jN0W16SmSGqghULSZpb4+DbzmMIcR5PuoRK\ntozEHSAXezC0+2WtgEzv3plIufHcnEt5OR6t3pS8eUh/QJXeNI2RkS3V0EzP3HGtabnE8/K0XfLj\nSQjF7g/ffLtzFNIBvLZigrZTsszHfbOrc7V9/JN2puXKifp54oTN2i70xLJyGzdDgunaGlrI/Qvv\ngjTzmAeTonAT0jd4LuQ6sUoiY48j0v5Ptg5i5QxTpFEJVZpLodJcSlVLfqzYoyaaW/LngrN5n8wY\nAonyqLhd2k6K5P4Ft/4aWPZF5ZtJO3l7SqBcVRHktIl7+TEKRmPnOb2h2f1+V09tD+2Qy+pkfddD\n239OvVLbMZ14SprUWCwolXMxl/tMz9b2eS9xmTblb1sv1PblDzzE9tVG4XozSnEN3jjMnaIreZ+0\nTYBEPb8cUnhPEhZfZ1u++FqqcLz0ZvDZWd9/Lis3YfvFOF4NjreuqL22+yQdZXXan1Os7e93or+d\n0XxdjzuA6/ASSbErg8j3DxoffI23jhklsfQZG05p7smmKaW5lPuTc9n2+8Sm0txq+j5iSKtC0wvl\n78N7a+JOvp6tHIV0fuc/ydPDmGH2vlXai8+dcalY0/YpyHRjz0HamaofQ3MHCcbKB57VdmIk/Kf6\nPhu+lJbViaG5bciXUUEQBEEQBEEQBCHsyI9RQRAEQRAEQRAEIeycsTLd7XdCFtfztfB9kg4X526+\nJSzn2TET/djjzcbtx2DSxX5PBT5XOKW5lL8VQCpUS2ZNpEE2ajWRq2Tfh2vt/SK/ts5dIL/M299G\nhYJlOGRVvjXm0WaDSXMpe4sRQdHsGqgsVynzCLz1wSiDTdhx4qWp2nDZ0SWBy5X34BJAGs2UjrN/\n/jhF290n5rI6u7IQ7XHfFW8ErG+Eju/HC3ppO84QyvjD2ZNMj0Ep+x5yvv5XQs63+aveIdUPxuSr\n12j76eaQrq51I2LqjNfvafB5QuWRlH3afrvwXNNyNTEYq3vWQ5qbEKjwb+VueD3g3wc+cQfbpsOr\ngkh7X7lstrZv/56vw98dxH1W8yEB2/QEPSeXrTtyse1sgQnr2GoIS10P3CSipzESaVNRE1v3AP2J\nW6LZ9jcrx2v7T/+GpG3gJoOrALHH3Y8xvKciXduH3+YRb9PXBZYXFw7ii+X+83Cfu/58o7b9xWhr\nz755rE6LyyBXLfZC9p0WzbWCLUgo+vmH0NbcJ7pru+1ry1mdmVuu0/a1XTZqO/vBlqzcwQqM3EIX\nZK1tkqBjzLAYpOJeOBVEl+Gh5kpHX1nLeb/VZEAL7YgyCVGqlFrac562qTzwslsQGdUovxy3DWtx\nlA3t8aTz8/gP417EFOH+RRSgTNxBvt4W98G8aqiUNvte/g7zZSVWnidmX2cs3misuRfR/Ye/ZB7d\n//8q0eXm+57q/oW2by6+Wdub/+ddQ8k4bVW2DRwZ2SgBNnvfiirjc2f2qxcFLHcsF8+M0BxDgkOl\nueHCMSGfbVcVh3Yl8mVUEARBEARBEARBCDvyY1QQBEEQBEEQBEEIO2esTPdMlOZSXJsaFr02GLNv\nfIVsNd3/K6jE0SjZnf/gU9q+6LnQIpk1JXM/HqvtYD1STZLHDxi9K2AZKtlVSql7jw7Wdp4KTaYb\nTJpbH6pyIMG1eSBDqegCmWb8HvME8Y0p2TVCI/W2GHNY27nH+ByI3hBYkmI/ymWRgzOvwLGhxFH+\nWFzrkW/bszqkWFBpLqXDghnaTtjW8ETZXqJ26RUHeeBm1XCZ7qJPhmv7uxjYVleDD10vZh5GGzzp\nuC+xh83HoN+CuVc8BNK+lPX16/t/PwqZ5rkOyAP/UQgppa3A0J6tGJNpVx4KeNx/FXZj246Rhdr2\nr00zFg9IpwsgY963oJNpuYj2VdgojjMt11CqWkGflpZpLn10p2KfrQT3K7rcb1puyB8hnzbefZok\n/ott/bWdlIjrNtah0X5drTC2Flz4vKEk4hcnLYJdMBx1IhVv99fbztJ22+aICOuN4634c8ZqbT/4\nTo626dryQdFIVse1I0nbg3qjzm3JmazcV5VdtP3SjnHaPvY5ZOxGt4hBd0Oav74jXBJolNSqdO6T\nElGJ18eDuxH5c3D1FazclLZbtL3lITwn/pyPsMZev4/VsVlwruo8yJ2jK/jYolHY/WXYl7KeSwXZ\nsYsbLy51nxdOzntmaW2QsPJnMJs81ScudALuI1Jx6s7x1kAud3/9lanapitndTAfEBNiD5uPW2c/\nPGTjNzeurDZsUXPPho/U2rO+YLtYG64xP4R8GRUEQRAEQRAEQRDCjvwYFQRBEARBEARBEMJOhN/v\nr3vou0ai+1+NspgzC7+5ouyMgAQEPK0o7waJS8KuwEp1ny3gn+uEWQJkY7RJTytIAK0xaJstq+nS\n3BsCuoaGQX3nbInr8NlxgfH7Gj7wnS1wbH9byFj+MfBbbf/7tavND0DaWtGRS8DsRFpZnYR2xx7C\nDXM14/coqhwHbKh0tTbasE26K9Rjp1xwRNuFS1o1rEGnIH2m7tB2uRdazIPzO7ByURW4T9UJuEeV\nPSDnSjBEaqUSKVcPTIRoO4/U+VT/L7X94LeI4mp14jwOHkxVRZChxiPomkPlivNyIbmuOM5ltdGF\nWKuiiSTRk0wiPZbULzqojyiZLeaBUU3xk9MaI4zbC9G+0h6B6yfsMRyPzAlPMpH2lvJ5Sdcxev+p\n7LdgDL+g6FiMjchIsobt4/2dtEMFhEqIJ167lu1bmINoyu5SjNsIl+H//qTDzuoPyXWqDfrZ1Yfb\nsyr9mh/Vdoa9QttVNfxhtWJJX23TCMrVROZvjALqHgxZc0QOJkgUkcX6BlYoM9zlaIO1gMviaxLJ\npKDD04q11xLD12h/PjkemW8WNx/fCftxjOSteCGJcOEeOzulsDpFfRruMnEq4z+DPzF9OJP/Zrj5\nmQdOUksaD5qdwX/GOk7+l+ynze/XGTxsBUEQBEEQBEEQhFMV+TEqCIIgCIIgCIIghB35MSoIgiAI\ngiAIgiCEnZPqM/rcjonafiVrLNuXsgQhjkuInwkNkWx18qZHcreDkPDG4nhRVeZdYeb/Z6QEUf9V\nTH79/HdOF2oaNwp12PA5cJ/vmPq9tt/6+HxtO47xsfDDE89q+9WSAdr+9OPxrJy94KRNp4CUdYVN\n/clSs7lj18FLMagTUuA/VLUXKV9q7fzarBWYFNTHyx/Jy1E/COpTVxsdpK9qydxJhv/PhG5IlzOr\nzSrT6gOfQDqI9KsOsn0pxC/rtuY/a3v66hu1bYnii0mNG35GEcTXyWooZ7fBP63Gh/6JjAyythD/\nMf8G9Le9iNcx80F8rrijth2RHrbvg79dpO2KdmiPsyVfxOg9i6gJvG7VxhgWPlosgtSvNvyPk66d\nXlSiYyGymp/TVkS26a5Ta3qFTOQohL6v/YWnZXr5jje0fc/rt4etTY1JDXG3jD1y+tyk4t5oa3wO\nH7dRzsDX4Y3DgMx6hKfp6vQ57l/cgdPzf/00pkJUEpxyo7KaLjVQOImpxzPazA8z2LvgyaK888lu\nQdNhcZ7Z79TR5bCN6Q5p2qdOl8LJft9XXdTJ5vJbftL2vEN92L7C/fDZzr3zYdNjhLRa7t69W51z\nzjnqww8/VEoplZeXp2666SZ13XXXqZtuukkVFBT8txHz5qlp06apyy+/XM2dOzf0KxEEQRAEQRAE\nQRD+T3HCH6NOp1P9/e9/V8OHIwn5Cy+8oK644gr14YcfqokTJ6p3331XOZ1O9eqrr6r33ntPzZkz\nR73//vuqtLS0SRsvCIIgCIIgCIIgnJ6cMJBwdHS0mjVrlpo1a5b+2+OPP65stv+G3k5OTlbbtm1T\nWVlZqk+fPio+/r/xwwcMGKAyMzPV+PHjAx5XKaXuT87VtqP/ErZv9pIp2k4mIdaL+kIX4TfI/FJ+\nxW9rKr+1lfFyNJRyRC321ZKI3640LgeIzUO52U8gvPTiyl6s3Jx3J6nTnS0PQx6w2wvJ5mUvPnIy\nmtNgtt/1mum+Qh+u7y11vmm54lqMuy9mY0xPvWUlK7fo5VH1aWKDoLKx9+/noc+fOHixtgtdsdr2\n70xj5Tp9QPVG0F+f+9w6bX+9bCir42sNCZe/lKTPqOVzh0ow/VYyF0kxSxX/v5iPSIJt+5AiYW8L\ntLvD/BmsToQXx6BCyH0b2rJyBcikoMY+sUzbv4x5WdsT1nO5ZA2RsfpriDzZymW6bg8WEeoAEeeA\nfLasjKfsSVppJ1uhScgWOFHnk2ex5hSO4mksrAPQyc02oK3uFEN/k3RDtQ6MBSqr/R10yESSexzL\n+ySiChruXv1ztf1Me6ROeSmfPyd+/mwgNk4f1aeach3Wg28/PFvbRmku5Z388K8Z9WHrg3wd7fAd\n5l9yc6IvO8JTafiiSWqO6pN/M30XQjJt3Yb7csfMb1m5L/PgjlHyaeuAx1rk5GlVosowr4ZdvVnb\naz/pX7/GNiLlXUlKs9381c8zHGlb7NuQAybywOkjzfUPxBis2Y1rMKaDKR2P/FlJP+FZl3r1IVau\n6JM22qZy3OpEku7GkKarPhLgUCkagHXVno5r8NUYvikdaLqUcEL92HG7+Ttojzcgv/WPxdpEZblG\nbmixRtuPpXFdNn13ij3cuK4CcZOPaZvOqrnvmP/OizfdwzlhS61Wq7Lb7exvDodDWSwW5fP51Mcf\nf6wuuugiVVhYqFJS8BBKSUnR8l1BEARBEARBEARBoNT7Z7PP51OPPvqoGjZsGJPw/sZJjIskCIIg\nCIIgCIIgnOKcUKZrxh//+EfVrl07dffddyullMrIyFCFhYV6f35+vjrrrLOCHqPXmmu1HTs/ge0r\n6wQ7kkjFUrfQUuYSMqM0lxJZE9imUFmuUkp5knGuYh9kEHOfOZeVsxNNmTul8SJ/VbXhYdtiDzXe\n53cqyzUSLmmuN573d1QFlXaScgnoh+hi8z4IJs3t+aq5/MGMd0vwDxfP2ZA0fbR+GCsXcTYiv6as\nhIbHnY7r8STxa01EYDRVnYRy0aWh/UMn6zFc62PHuZT28AeItDrnL4gIPGXIQ6xcqxU4V2FfSE2/\n2DCINJRPlun9IBXpG4OItfYILhXd5Wmp7esSoLmfXwX5bKfofFbnuuW3aTsin/TjOy20nZLA55ff\nZLrVpPP2qH24vmG/XqbttWd9oe2hrQ+wKquX9kZ7SLTZmk8bGxsAACAASURBVLgoVi6xa7G2K4mU\ntuQY1reUjebLblk33IfEXfyCaITg6EvQX2UkmN7ArrmsTk56qrbzbJAktvjFPAxkUS+0LxLD+XfR\nyn3k0mk05dooPm77jMUA37EQ4Z1v2fOgts//63LT9pxq9J+Wre1bm61g+25cCukqFThedv1ybX8x\nZyyr46wxaP1OIYzSXErcbgwAayuMJ+PIOtnS3D7Ts9n26h8wl1ff9Iy20yyxrNyr78JVyGaiFX/s\n1elsm4p2a0kI1pHXZLJyqz4eoMJB9Qg8qxJWmwvmIrKJNNdrWuyk407no6s2GY1tFYco6SUVWG8/\nuo27rjySgzW/REF+XTC3DStXRiItJ2djLXa2QBvSehayOlXLMrRtK0F9KlVXKrQ5UTyaR0ZP2Izn\nSbkdI+3sHrtZubUHuOuYED7c7fDA3H/ebNNyVJpLqdmAZ3SUYV9FFzyAH3/1Bm3bf1cu8LPdOgFj\ntfg4/7110+DV2t5ThTG8dW5PVm5h749wDB/aM3XRowHPqZRSMefmm+6j1OsXzbx581RUVJS69957\n9d/69euntm7dqsrLy1VVVZXKzMxUgwYNCnIUQRAEQRAEQRAE4f8qJ/wymp2drZ588kl15MgRZbVa\n1eLFi1VRUZGy2Wzq+uuvV0op1alTJ/XEE0+ohx56SE2fPl1FRESou+66SwczEgRBEARBEARBEATK\nCX+M9u7dW82ZMyekg02ePFlNnjw55JN7cvFjNdawrzodn4AjSDTO+IPmH3NdGSgXkw8ZRLVBzkej\n6Vb0gRQiZh+kD3GHuYyCSi4e/ftMbRcM5dq1pJYkquDPPKrgb8ROPM62q35oFrAca7Mx4bzJR22v\n4fd/VEXAYoxt1S62fdGKu7QdQ3RHFq4aaVSoLNeIuyWkOIN75Wg7+/turJyZNDdUWW7PyZC75L7H\nEwmPi9+ubUtX3IsFL41m5cqgQlTFfYnMB9VV5DCe8sjVBfeyNitR2/5I3ie2Yhxv6n2IAvuPwu7a\nXvrK7/23f6NHNOTlEQaVUP4AiELshdjZ6ROM70Pn8MiRNILap0QrYhwnNGH4p4fO03Z0GWS/Bf25\nVNFKpMxUpn1sIupEH+FClhoi9U7ajr5LWWsUvADvN+nYIF4F9zX7kZXbcqA32aKdZxi3uyCLDTUO\n5cV3/aztb3L7kmOZR2DtlFik7eOJiDB86C0+bksHoa2XnL1e2wvKuZw7bQvGdHwu6qTcCPm1NZKv\nQdHEx2F/Ca774e4/sHJ/XjZN2632YDxVtoC2d58zXTWUIZfBh2P9F+jH6kTDWt4H889Potx6Ewyu\nAuVEmtcPa+QH7SDN7f0iX1van3NE24W7Wmn78XQsAF+osazO4CRIwneprqoxofJp74BKbUdvMB+d\nZtLcPs+Zr6Pr+yOv+KBv7jAtN+6Otdpe9vow03IU/8UY62W7+TM1fh8WFw+GoEoZiaiPm+byJOxj\nr0SU2ynbrtd26c/N+XmN+rcAuNP4mLEXYsycFY+5Y3RDaH0zomZ+9u6EgMcu78bdIuypGIPuQkSB\njSq1sHK7b3xd22+UYgy+vnqKMiOavCe4hmKc+I7imWEvqJ9rkC8GfWRxNcx1Kb07l8Xm5+Cmlxju\n328crOHr6L6dcBtR/bGmpWzm12c/ju2KduTZspO4aezk65bFJJCtUZZbNBj3NnUDHnBdb96p7U3L\nurM6cZMwpl2ZeGc81Mb8OSEopfoYXoK3Nt1HMjNprpks14g7A+PRY3CLid9jUYFwD69k25GHAw/C\nmZ1/0fasCB7B/at3x2r70/vhulBxL3+WP34cEeKXzRkS8DxGqPuTUv82Lde4cX8FQRAEQRAEQRAE\nIQTkx6ggCIIgCIIgCIIQdiL8JzEHy83rb9b21jf6BCkZGgUjifRhPaQPFedUsXKJ30MU7E4lCbnd\nKONsYYh4uhd2DRQyysoVrgyzaLrp5x9m2zl7IC+J3xNYOV3Zl2sf/T4iXd7WsGiMtaPK2PZPg9/S\n9pRsRO0yyolpP7C/E7mkrRs/tm9jUsA6Ay7YzrYzF/QMWI6yaOZTbLutFdKzVW7IHWa8fbfpMXqf\nt0vbVPbrOGaQ1QzF2LIW4x7F5/LjUak4VXBS6aqrNx80ji3oSHcKiaa6lxVTJWMwQCd1R1Ta9W8g\noXqNg4+5sv6I7vbd+Je1fcWbPJpudVJgSbGHRPe1eHifOArRx2XtISFpttGtQmHflWSsR3EJaMoG\nSGuTd6HzDt6O+xCVxaWGLdbgvCVduaSY4iKRjc2SlFPprFJKffnBWJy3omFLZskoPpet0UR6HA1t\njm0Rj3j301+f0/aI13D/nG2InM/YNDv6NaKSyHyMih8SITi6BdbL5kmQOCXZ+LiNtuC8WUcgBxza\nNpeVW7kN0tNWi3Disg6wq1qHFi28qh3XLvXti3Ptm48Q7JGjIIPslMKlfTsXQ8oczPUgbRIkt8t6\nfavtYHJVD5Ft2ohkk0pfjfVdzVAn5njDZIzuDINsND9wVPIIQxT5+khzKb5hcE9xLG46Gdyc/3mW\nbZ//I4Iopq4zl+NTiobD7SN1TWh1KN449GmtYR5lTMazfWnPeabH6LQU7z5xmYEfpOdct5Ztz1sK\naf3lE1dp+1/NWIoBRr+n6x453pNcd1mtsysmkmO3+dpbLwbhHcJ1mI+tmGMn/p7ias7XlsTdqOMj\nUmzjul6OQPTqiUs+13ZmZTtt//w6d3egFA3CWpW6MbDEUimlivuQ8ybjeR1ZwN/rknYEvhfsnUP9\n3t3gTMLirPv62G3CPra9a2knk5J1Z8ft5tHGQ5XmUqLLzfdV9Mf7TcxODNznp89i5R55BRHdW1wM\nF5C8eRi3k29czeosen9EwHNmPcqvr99TJ74m/9gStn1fN7iUzei20rSefBkVBEEQBEEQBEEQwo78\nGBUEQRAEQRAEQRDCjvwYFQRBEARBEARBEMLOSfUZHbP0YW2Xz23J9lmqjaXrRkU74lN5wPwSX/rr\nK9q+9/+Z+xbWBzOf0VCp6AbfFmXh1xC/vWF+oqFS1R9+YrGbuW+Lmc8o5emb32Hbj7x7S6O0Syml\nag1dUNMZbY3ejsZdecVyVu6HPIRM/2PnhQHb9juf0cHw/6Ch9BP21L2tkV6+j/p80PQtTj4llCeD\n+KBsMPdBoZTRTB9t0T81ZbzzOn0GJzKfHccubwdHM1uZwWf0WOBJakxJU9QbPkQ+clrqW+qz8f+L\nlXZGwfJO8PmpdcBusZzXoe0J5jNqRgXxETL6giWGeJ9D4ZK7l7Ht978fp+2EfcbSwDIFvo+13yCd\nS/kE+HiO6WDwjynN0HZhBXzl/X5+j3o0Q9qA46/Ap6akG/rYG2fwR+zK/cF/w7WP+7oOGQ6/7Csy\nNmj7wYXX4ViteHh6y1p+jN/oc8kOtv1xB/Rlr5fhz/Ls9Le1fdf8m1kdx5HQ/gd79Q1Ltf3JB0i/\n0X9atra35vNJen0npM8Z4cCgWVyBmAhfzBkb0vkbBXqbgzzpR1yBdCerP+9vXjAEjOtEfahoD/vW\nKUu0/c3hfqyc58sTp0VrbKjPqHckd/LaPuLDkI5x4W6kuNq1rr22HcdCe2fIesTcV63E59T20FW3\naztmXWjJptzDMBetv4aaoKrpoKnBIowZ7kwIlk7G3QwHiS7FwY1p8KLGYr0tyUX6lJijeDgYYw4U\nj8IzqFkzpJAq2M5TwMTk4bw0zVplezzjLxyeyY9djfV70xLE1EgddoyVy/81/HMiVHbf8Lrpvq4f\nmKeE+o1gPqPulniHuXbYGm1/+uNIVi6qvGHf4Lzd8B61d9y7bN+oLZdqu2gNYsFcPJX7aM79Bb7G\nXXvBz5z6ddYawsfQ9GL0Xdw4J/521wfafvgbpK6KPRLa2kL9qC1Bwn/QtFY0pZXf0L1bHsZaFdnc\n/EVKvowKgiAIgiAIgiAIYUd+jAqCIAiCIAiCIAhh56TKdNt/8B80xMK/NacutRuL14mf/vG8tsf/\n+YE616fpH5RSKmECpBDeT81lEDRMd6hyMEpFD2g443fUPex8OAlFpnsq4u0FGVP/toe0TVO72Iv5\ntHCnkfFAdjnyQps+1YkkdYZBxtb6hhxt71kMiaSVZyRSUZV1n6q1ZAiVDMHYik3iaTqSPoIcy15k\n0BGbcGwY5ujISyHzO1CZwsrllUNy6dmC1D6tfwqSV4NQE0s0s2SZqHHw+VXWEeWMfWxGVSvcl9gj\n5nWK+0M+lbI5NIm06bEG8bwaEW5cR2wbaMWiv09k5TY9AYnTqHtnapumSBl2WRarMz19hbb/uA8S\nogPbW7ByLVcGvnaasqeyB5dln9tnm7aXriTyyRZc2+MrheTano5x5y6DlJqmfDGeNxgtzzuo7d05\nuKa4XXVfOyu78HEftwfHcBF3hZjN5gufZyAm7e4x72u7wze34bg5gdN3NQXeIRhPUeuRFoOmk1Gq\nfillamLJBjlcrGFNLO2G7aRdgc/jbMb/7jiOOt1vhjT7r60WsHLX/ONh1VQ8/PCn2t7ibKPtBR+M\n0nZFZ55qKOeSNwMea/rBUWx742d969yeirMwr3ImvmNabpET82qjs4O2h8dCInfPezNZnSiiko+b\nhHedowdSte3IPbXfR0KGDLWYfIyzWsPlVSegoL0I5aKm5Wt7Tb8vWZ1Bfz2x1DQY9D2j90U72b5f\nl+L9JKoC5YzprqyVp+c3JirhHZs9VdtHM7GuG2W66SPztH1rO6QN+ffHVzRFE5VSPFVMSwd3Vfk+\nq7e2m7WETPvBzj+wct8V4Xm54XvUoaldfpfu7DDuq7M5SQdWwPskggwHKvX958z3tH1xLN6BlVJq\n9NZLtF2wGv0dbfDEMUtDRqW9xtSF9m14Xu74p/lvsdNz1AqCIAiCIAjC/2/vzAOjqLL9f5J0Z+ns\nCQlLJATCvgRZBRRlE4Fx2BGJiLiiDC6gg4jOoA9HUJDdGfYR5DnmDajg+NgFBlknIEtAgQAJO1nN\nvie/P37Pe+4pq0OTkG6E7+evU133Vt+qOnWrqvt7zgEA/KbByygAAAAAAAAAAKfjPL2QCZ7JLCcp\n96q+Wrjx8yxreCQhVtnpfaRsLHTbjSXAxixpsZGcBfLjDgOUXeuQfJ8POc5/XR/8wDzjXczs8aaf\nEzlPmpvTlKWC/qer5gZN+7Jc4bV7WIYwfuWLZs1vipIATRaTzce0+yCWg+5ebz/rY2Fd1ip4X5WS\nP+sJm7ITTjQjM3SJDhFRTD/2rcSV5n1+heYaumzU//ErotmMBl8pe5D/68out8gxWGXCUYco8+Jt\nBB9k38qMkX5bxwFp7l9XLRTLH1/vo+ztZzhDMV2TmWyDfuQxWOyoL88+Ln3QdoGXdSlVUCJLey0F\nUp5Ub2Iib291U/MvMqBLc59/bYOyF/3UQ7Rzy9bnjOrJdEPi7V9vGVaWS59/137mQZ0SLeHljkS5\n39sOtVJ2xHd8HupVllpVQ5enzu4kJWklFXwcdhbcq2y/XVLGqkucH43mTLQbk1pqraqWtfPKxshq\nboGxZMrzUqEtVibN1XHXwk2Gn+Xrw3bx5ufYEn+5bMz26QhudtS3VZHlGtGzgrtXkv1++ZClyp6w\njO8NCa/w/XFLvrzvTVzxvLLb+F9WtqOy3FIfbc4pkL5uGZLK7b6SWU51Zs9+3HyF5mj+ifbngq5H\nhyk7f8vNZzg1Zsydet1c2ptSJuM5Fl3iTL2dgpOV3duHr8Pi5lJKZ41n/y4urbnHQm3KEHJCI/ay\n4ZYEynOp+50xa67dbXvzNvQwjRJ/KYss9+TluJfmKbtQ24mG62UFhlC6ebIbsx12L0ukDyREi3ah\nHJFAuZG8D3Ubp4p2qbdxNt3KcCSbrpHUPSwpnbHn1kpzi4O1rMuZ/Lx0ajufl1Mk0Z8S0mw8Ubyz\nLla0c8RXdVkukcxS62jWbXctIsgozdXJ2sjHsUgLPfDMkvNbRQMtzKaRdnzieV+3dZfPiRPrDyNH\nwD+jAAAAAAAAAACcDl5GAQAAAAAAAAA4HZfKdAPOV0+am9ZLZuM8qBVAb/gNy3zm9vqHaPfBNi4E\nmx7DYxja44Cym/tcFX3WXOIitUZprk65Awq+f732kVjuuY6lR74Xa+73Ab34bGVEf8FSKqNUQOfk\nnkbKHp9XfWmuji7N1alMmqtjlObeNIavP3I5QtnudXmlV6Zs51HI/pTNh4cCWEFKW1p+KfpY3Vg2\n7KPJL4zZc/1Gsk9mfltP2WWagtDDkKC2VM9ypiVQ9T8rL/3Ue3lZlxQXDuR0ak2tvqLP1h9bKNs9\njTOmRn1TiWbPDtFflBo+MS7/mtR7pdzes8TLTkvHWDZvoLITDBLZr/NYhjJ975NUU+iZehsHPC3W\nreq6wrRPreMsq7nmJ49BxL7qzbF1Qvn8d/KW8vKRJ55SdmRXLtx9zi9CtIvYxj79zfWuytaleBWV\nVLPX5bJulbhFYbhWhDvl5mWoeuHuqqJnrD1FbFdlVq9Mljvl+Thlz1w2Utl5bWRIygP3sExz/xmW\nbHtlyH0t09zGOIfYozJprs7KFM4kq0tzO06zL8uzaFPNPxew3Dm9g9R2uufzkR380EFlH0iNUvb3\nMXK+FbC6nJp/L69rjyN8/nRJqUcl+912lv0QnOqSraWvj/mYv6eos4zf8N7Pc1V6X763bLrC87Vv\nvH3ZuadFu8gqHLsmdPmsNct+n8qkuTq6jLGgDs8NFZ5ynvAI5JPhcdxGjqD7emk4O3v35mdEu73n\nWI751PuTTLflHWHcV8fm21Ib9wtI5D5FiSyxXfv2fNGnw+89yYyqyFvBjdGluVXB+pNj/ugoldwi\nHWJPIW9g/IIJdtsFRXIW4LJEKTy3HTTfp5xovrAHz51sfxDd7a/CP6MAAAAAAAAAAJwOXkYBAAAA\nAAAAADgdl8p0M7VkimU2+R9005Ys+3oyYr+y3/2aM2ZV5MrhXyhluYo1gOUb7y4cI9p5alKK0GMs\nl9h+uouyd0m1k8O4OyBDmX71EbHsiDQ3v4PMfmc7xDIbveCsh4Pj1o/Vo/Pk3+q+xsZ2KG+gfdlJ\nx7JN/lYoDjJkYDzKki2Ltts/vG1f+tzxT+byGaublBC/n8aZaHVpbl59gwQojnW20U+xpOjohXuU\nHbBfngcfbXsF9fgasyRJnyvRsgdnacmCw/+b9/u9Rnr2U6K3O/+vsrdnsAQseb/M6OqTap6pd9vn\nXLjdmBFyeWZ7ZR/LYdnnpHqblT3x1EjRp6zc/DoqfCRbLOsZRr02BZj2eeVKJ7E8IOiYabuqoGeX\nJZLSXJ3AXVKGPDey7w237Zkhj8Hw9/gcvRacpOxHfnxUtMv7m5TW/kLqIZaN9Up/WaxL7Pl3ZTdd\nxb5e95B9PZEuKXaUJ5/gTN1rVj0s1h2fZH79tZlTfblkuZbgVcwH9Xku9j7smBQrP8I8MyMRkcV+\nkkO7POGfruyZ2udDWh8R7UKtfF39kMHF1XMbSb2z3zm+lxbW0uTODkqXe49iiezGRDlPNPVNUfaG\nPPPj5TXsuvxgnXlGUK8Uea14/szjGxR8WNm7FnNYTcd19mWML0xar2wPD+m3Jf58HHSJnEcV5Nxl\nhggCR6TQLf8mfVjPpq6PQJflGqlKFt/sAp533IrYV/OjpT75/IDlpv0HnBoglpO3RCm71MbH1JLP\ne+HWKUvvQgld/tt02wPP9BPLpdqcn3ycv8fjPo6fybki01Jbs9mHfE/xidmTJf02OMGBjKeX7cty\nC2txf+80w/NEvnm/4FH83NvBy1yWS0Q0OqmHsv2S5LrcKLvdwG+Yo5PtVOf4WM4T9qTwT3/xB2Ub\nn9b7PMnvWNs+60L2yI3kidDvAl97vsnVDIsj/DMKAAAAAAAAAMAF4GUUAAAAAAAAAIDTwcsoAAAA\nAAAAAACn41ZRUVG93P/VoOMzc+yuy+rPsS6llznO5Ozji5XdeaqMBen56j5lf7O2m7ILDLEOu/vM\nU3a/+HHKthenYPyuzL4cMxS8Raqv6zx9Xtkbmmwy3VbM7JpL/24s3+LId1l7ponlkh217G5Pp+Un\n5tseOmK3socHxot1scsn3nA8lRHS/ZqyM3bXEeu2j+OSOb2XVJJeWkOPC7LmcIyHRYboinIn2Zzx\nnU6PlSVAdD5I4+DLVet7KfvQ03NFuzZbWct//hHz8h1EMjX3/d78O1LDr19QdsAZGUddooUT6XEr\nIT/KoKX01hwn1Cr2pLIvvd9E2Xl15Lb/8z7ve6N1fB0FNfhZtLOtDlL2taH8vRXX+Dvbdjwr+lxa\n0VjZ+YM45rOkhGMTgv1lsF32vnBl+1znff25hZzizo7kOaTDu+bxZBldZJzr+X4cH2Wvj6PkNpDL\nfsnm7Yzk9OT9DV/nbdrmykNy+dywJQ5t+4FXxpl+PuDPO5Xd1iYH+jubeYB6iyVyXvBJ4ePvpV1H\n+eHsw/6XZKDL5d7c7vygpco+VCTn8rGfvGY6Bj2W1NH4UWP8qd7voZGHlL0ogkuA6SXEiIj8zljJ\njDr9Lyr72sb6Do2nMj79A9/D9GNg3IcHjw9RdubWuuQI3j34fvDzSU7tX1m5nC2v8NzbbZvhnBTy\neQ61Ex+dHy63bUtx7LEk8kmumXXhM54z4t/juclYQqbMUysbwlMG2a7J73TXwmr12NJPlg52aGw5\njdinO7eXZUN+XNvc2Py2Ib82HwdPrUxLt8FHRbtl9fc4tL1WC/k60uOw3bUp9sTLjpWdu1Qqy9g8\n8jfz+3xBM+0+Uyh9LuAnvo8VB/Ln1nayTtuM1l8pe9pMWWbL1ZR58XnxKJJ+m93Y2PrmOD2Gr53b\nrWyMR371y29VhR9fZP9ssbjmnt89s+2vy7uHn/8qK7mos/P12crudfgZZdu85H10j53yV/pzHRFR\nwpCFyu462/zeWxnH59h//sc/owAAAAAAAAAAnA5eRgEAAAAAAAAAOB2XynSvXa6n7Ps/f0Oss13h\nv+Pz72N5mi6LPfiBlEhOvR6j7GhvTif/bOA10W51NstQF80c4dBY8+vwePIasr7EmmmQRQaxNOf8\nQJaXbclnfcqE/3lO9HE0fb4rqIpM91Zz8g/mY4jeLqUzXj/duvIy7rLyAZVrp9n7Pi6rUPLvUNEu\nYgBLGTc1/5btfE4h39ozXfQZ/N4flR0/nX268Q65f2V5PAg3L/azilL+TcmWKNPB62VorNl8qQed\nkzLdgjDul9mUt7fyGZZldPGWcqcWe57k8Rzj9PnWHNGMah3j7yp/iyWARctZNrh37mLRJ7ecB95p\n2SRl66WLah2XUtrLo3k5YKd9X3h50jplL5g/jPehkqojtUayzDIt7uZllkX9WH9jr5zMjci4j/cv\nYqO53LHER/6+GDCWSwWUV2hlrFpuEO2iv3hR2dYc3kavAVwu469aiS0j7d7nuaAwTK7T5Y9eP7Nd\nYuPxeOXIshqX+3A7v0T2+/q/SxLtLn4bZXdMjqCXxTo53v5c12gbS5x8j5lLpJ1JbmOeoPTjU5nU\nuDLpckE7jkvw+cGxedT9AZY1vt2SSwg95ifLdMzLjFL23kyOcYg/ynrCkCOO/S6eESP9JOSYeb9S\nb/atI2/JY9JoLUvP2rfj8IBj2vMIEdEbbbcp+4XAK8puO+vm73t6uRwiok2jZyl78DxzqWnsM1vF\n8puhLPWtyhgcpUSvvqM9mhjnx/z67IMe+XweEmPlXN5sJUs9PYp4g6/Ffq3saE9Z2mfhpT7KnhvF\n8/XM67K00/dftTPZg8rR7+36/cRSIM9R/H/ZD8H5hY5/dkzGWhQkn/EC+/Az6feaRHJWBl8fqz+V\nJQAL6mplNZL5eGc3lifGkn/n/sd0N8l0jXOGvfeECsOjQP/Re5W9aVU3MiOvvpxHE0fxNXusmC8K\nD5JjiJ33uun2HAUyXQAAAAAAAAAAtxV4GQUAAAAAAAAA4HRcKtNt8OmHytazVRIRNdrKsijv0yyL\n6j+UpWK7Ft8n+mQ8wHLAgHjuUxwkmlFxIP9F7Z3G7+MVnVhe5PuNY1K61C5SIhG2n/8zj3yWZTU/\n/IclSR51ZapW7//4OvRdNYXxb/7jE1mS8HUep2Ndc62LaHdyU9MaHZcrKZdqVyr1Y5/RpSJeP0vp\nhKcmQ7Q9xlKcZkEsG58fsUP02VHIvlbfwplon5luX9KQG8nfq8uObFfk5axn3dMliYFJ0m/dS7jf\nhf78+e5HOeP1wwekJClwPftt1EunlX34381Eu8jNUhL8Cx3msgTUatCAdfXja+dPJwcpO/9IiLKD\nTst9LRrBx+49TYb63qynRDs9K21pseb8mow1eK/BARwkszX7SXACzy3FmkxL95GqIuTX+eX2G9qh\n7FmZQTvtGKcVLfPm8W0dzNn4fiqpJfrMSeqr7KLFjmVq1eWTlkL7x+Gfcz5Wdt8FjmXGvuXol/Yt\nvEvmtZFZiH2P3zrZr1Gm22TnWGWf6fGpsputkNeynjVVR7835EfKa9QzjK8j60GW6Vu6Z4h2OXm8\nf593XabsUXs4C7jvYSkNzmmmSfCtfPCDD8psxe7akDLa8HVwbjhnkTZm07WHdWiKWH6nCYdZTPuQ\nQyZK/JwjFTz6R3kueyRwFt/MjfWMzW8ZpdV0x/xGMnzCdl47Z7f4abNC+zvFzc40WO5lWPbQQgAu\nap9b5HnNjeJ2pQHsaN/153virJQ+os+ur9orO1+r4hC6T/qt13CWJResr81jsPIYSgyPhZ5a+Et+\nXR5bcai8Lq0/m4dw3Am4SqbrLCrLpmsP/34yDDFnE1eZmPxSnLJnLh+p7N6PHxR9dnzW2aHv0p+L\n3Yvtt7MHZLoAAAAAAAAAAG4r8DIKAAAAAAAAAMDpuFSm2/GZOXbX5TTgv+P9O6cqe1yj3cr+wVA9\n/vvVHZTtmaMVvTfUl9Yz9XpqGUYzW3KbMl+p+RjQ+Yiyv01orey4HjJz3LjZr/L3tuP/sa0pLNMo\nbyBlWmXZvM7/jMzOW1P0iP2PsufWPSDWebjxbxQx0lthIgAAD3dJREFUszlzWPOhp0S7hI1Sjnkr\neXsMywv+snpkJS1rBmMB9MxWWkbQDE1+GSjb+V5i37Lm8rr8/qyxqaiQUhP9CtTlbl6Z9i9N3fXd\nynl7tquyj5sm4c1sw+vCpUqDCkeyxDUriXXtodEsuasfIIuCh3lzAfK9lxsqu12dS6LdlbdYon5+\nIOs83OvwdRC5XEqL8urxNaEreH2v8jV1qZfUX7XskajsLxtzJsrXrnYU7XYv6aTsJ1/dqOwVfx+g\nbH1eqIxSmzyXlnznTKfFAfy9Rsm1TmYTPq6B53lOSxko56CKFNbm6T4T3Y7P5cVMQ7zDEZaXl/rx\nfgeels10aa6Ob4r9ca/8mO8Nwxb+0W47HT3bpM/V2+t31rwYPt5DWh0R67b8o4uxuSllmrt7aMr3\nev0vKNvHIiWSXzfZrGxjBl2ddsMSlP3DutambfIayPPlm8y+1S92n7LX7ZWSr5CjfC7SO/A2Qg85\nJifM5gSjFHBWrvu5J4e8eB3nNLD63JnZUR4T0ubLZo05S66e/dxI6/l87DyqIE+rjKJgHqslj8d2\nq7/HUezJdIuD5dzmmfnblEwWhvE84Z/EvmmUxfqk3nguLw40hOlkmffR/Z6IKOg4P+d5FDt4z7AT\nNpAbKZsZQ4zuJMoi5H3L88ytq6BwO1AVmW5upHxX8bvAPh3yu8vK3tFqvbIbfvu86GNNZX/0SWFH\nazDknGiX/FWjmx+gBmS6AAAAAAAAAABuK/AyCgAAAAAAAADA6ThHE2oHvRCwu0FJU1iXtWL+/+Qs\njjNbDlH29EFfiD6L3pJy01/oPNWYTc9cFlFaiwcxpsM+se7zEyzto0KWF0147xXRbut0Lmbday7L\nyyw90vl7doaafr8z2fk570/Hh6LFurJdIcbmREQ0PDxeLCdQzcl0Dxsk2DXFyT9wxsKWn7AUqyhE\nym/8k3g5rx77T7mXlEjkNNKzpvJvPX+J4eyuw/ykFqPVQv7eks4s583NlTJUn/Osv6lw4zH4atJc\nXWJJRJTVm2VsfjbW9vl+LeUtMXWTlb2kE19XT1/oruzJdTaLPgM2syS93jbe1/imUuYXqMknX3h4\nu7LLtFSIy8feL/rU/Yb3Kb0Ntwt7kWV1i+/ZIvqM+wcXsydNpvvt1k6inaUOn6PP5nPq4Ipgcogy\nTXZ6dLLMeNnhXccyd1aFR17ao+zTuZz99tr8aLPmREQUfIblYde68LgfbZYg2s3rIa/tX2i5d7Sy\n+zc8KdadCOEMunVt7NMH8tqIdpY8tgMu2Jfm6uSUW2/cyIA9aa4xu+sPmn+3PThK2eXfO+gADrJs\n/EJlj9r+orLP5oZVaXse5kmp6cpG1ukZs+lWJs3V2XOAY1TKG/Ek4neOHxF0WS4RUW4L1pHOqvOD\nstfnSNlxXgT7Xchh3sbKt+cq+5m/2Jdv6dLcMk85Lwft4HmshFW6Isvu6f5LSOfp5N7Kfi/iX9oa\nP9FOz8K79U8fKbvf3Fub3XnUoF3KnhbG11jbWY6du5pEz8B+K2S5enZmt0qmgrCePM+n7rj5zMEN\n+iYpO+m7KLEu+CTvR8a92iD85M3z+dF8r9qZxs86uvTdSMc/m8///onyUVuX5taKZZm9zcLXVFqB\n9MdrhzhLaoCmnvROk+clv57LIu9qnJqU5frflyqWcw5UbZ52hKJolhsHBnFW8sLD/OztmUXVJuPb\nCGU3vPSssuf2+IdoN+2TMab9qyLLjX12q1j+fMXDDvXDP6MAAAAAAAAAAJwOXkYBAAAAAAAAADgd\nvIwCAAAAAAAAAHA6Lo0Z1dNgG8uvdGrNgSJP9eFYqd/ZWGvdZOdY0Wd+MMfb7Wu7zqExPPnH/1V2\ne5/zyn5p0QTRLjhDG2tT/nzgpB2i3YyU7mRGbh4HX1gMKcT1mCpXYIwRPfbGX03bvX61vTOGQ0RE\nG790rNxBVYgZ8NMN2+RFyoAW2yWtRMYZ/rwoxFCSJIr7uWnhpDM+fELZw6b/TfTxSWPfyirl7Xmk\ny7g525Ubx4L4P35FLNfy4DiYi9v0OFyZIj05l31g/GU+9vsuRCl7WunvRZ/3e3yp7Cd+zzHRMR/L\nWKc1M2cre3G6+fXheV7WE6j9Mh/kMC229PgFjh8ad2206ON3gcwxhDq5lZs3E+UgHpABesHfc/zu\nkSnm10dluA/k45NxWl5vXum8f5WVE3gsiMsxjdj6mrJrk50dMlBnP297c7Ysv9EunZfzHuAJqewa\nx+h8mdNO9AmK52OSe539PoQciwutjLMlHK9T3ZItpbvl8W6z2zmxeC8cY//0O8XX8tlT9mN8q8vg\nM4841K6imwxIKr/ONyW/s449Fpzvv1zZq7M5r0OArAZA5R7sd2VefDEOXcc+vGTKUtHn7VOcG6L0\nK/YFYxkMvUpWCVfFoqNv6nOsnKOPrOf42OG5bBu3ndeXS1eNOMkxVcVc0ahKpRiMfPlpD2X/OLyO\n/YYuwKPwxm2MFETI6/+BDj8qe/cRftCzXWA/K5fpEaoUJ+rWiX36Wg47gzGPQnon/sCWrJXcs0o/\nmV/QV9mNmlxT9pjkB5W9usG/RZ/4/5L39l9ote8JsRwcxI7jZ+V7zfDwQ8r+8Cd5LVtzzGu7ZDeR\nx9uSh/+YqkJNxoga+fohfoYYuXKSsovC+Fx6ZjlW+kov5VIZAUf5InvdOkKsq9B8yP+MY99rD0dj\nRI3AawEAAAAAAAAAOB28jAIAAAAAAAAAcDpuFRUVLssD3fGZOcouNyiDNGUeZXbjdNduHizZahKR\nIvq8G8XlM55b8rKyI/sliXZtgljK2NSb5RcfbB6s7NUDpRQvvYzTbB/MY5nV8EBZEmHIRv5eYzrv\n25WCjvli2aaVAGkVxscnfpfUUlvyqp/q/XbFdq3mLgu9NAgRkXspf1eJH68zyousuTceU/bDUvNd\nksvlYEL3sSQp6KyUoT69ZL3p9uac5jIIGZeCxDpdulSu6eWSzoeLdmTRytAEcamZIBvbk6M3iS7n\ninkbn51jCWnBAZYD1vteasgu9WIZyk/PsVzqw/Qmot2boSwBHnepq7J3JTVWdkSIlDG2CLyu7C3b\nWK4eeq+cg9IyWR4WHsJSrLahPOdsP9dU9PHbbtDt/x8Z98l6V12bc+jC/sO8jXq76I7j23nzlN3u\nK5ZzGsuLANcxfdxqZf9pCctYLfJ2QnmRfP3rZVp0sg0VBNwa8TxmOcr33vwoeU00jb6q7M0t/kVm\ntPyrlGXrJXLyNQl4nZbyWt4Tw2EIjT/n0jw+1/nhxN0wR98JlHrfuM3tQoX2iFVwD/uGLcl+aSi9\napReUtAzR7bLiWLfCGzG5aF8rHzSr6YGij5ne/9d2bHneyq7rre8n3hpjvPdVZ7LrydxSIF7sfyv\nqNymyXG1e2pUfVmS5PKhm5c4/1YwPgFZ8u+sZ9BbIfu/nTk+x34JL/wzCgAAAAAAAADA6eBlFAAA\nAAAAAACA03GpTBcAAAAAAAAAwN0J/hkFAAAAAAAAAOB08DIKAAAAAAAAAMDp4GUUAAAAAAAAAIDT\nwcsoAAAAAAAAAACng5dRAAAAAAAAAABOBy+jAAAAAAAAAACcjsWVX/7BBx/Q0aNHyc3NjaZOnUox\nMTGuHA64Czlw4AC9+uqr1KRJEyIiatq0KT333HM0efJkKisro7CwMJo1axZ5enq6eKTgTub06dM0\nfvx4Gjt2LI0ePZquXr1q6oMbNmygVatWkbu7Oz322GM0YsQIVw8d3IEY/XHKlCl04sQJCgoKIiKi\nZ599lnr06AF/BE7ho48+okOHDlFpaSmNGzeO2rRpg/kRuAyjP3733XeYH6uJy15GDx48SMnJyRQX\nF0dnz56lqVOnUlxcnKuGA+5iOnfuTAsWLFDLb731FsXGxlL//v1pzpw5tHbtWoqNjXXhCMGdTH5+\nPk2fPp26du2qPluwYMGvfHDw4MH0ySef0Nq1a8lqtdLw4cPp4YcfVjdAAG4FZv5IRDRp0iTq2bOn\naAd/BDXN/v376cyZMxQXF0eZmZk0ZMgQ6tq1K+ZH4BLM/LFLly6YH6uJy2S6+/btoz59+hARUXR0\nNGVlZVFubq6rhgOA4sCBA9S7d28iIurZsyft27fPxSMCdzKenp60bNkyCg8PV5+Z+eDRo0epTZs2\n5O/vT97e3tS+fXs6fPiwq4YN7lDM/NEM+CNwBp06daL58+cTEVFAQAAVFBRgfgQuw8wfy8rKftUO\n/nhzuOxlNC0tjYKDg9VySEgIpaamumo44C4mMTGRXnzxRRo1ahTt2bOHCgoKlCw3NDQUfglqFIvF\nQt7e3uIzMx9MS0ujkJAQ1QZzJqgJzPyRiGjNmjU0ZswYmjhxImVkZMAfgVPw8PAgm81GRERr166l\nBx98EPMjcBlm/ujh4YH5sZq4NGZUp6KiwtVDAHchUVFRNGHCBOrfvz9dvHiRxowZI37lgl8CV2PP\nB+GbwFkMGjSIgoKCqEWLFrR06VJatGgRtWvXTrSBP4KaZNu2bbR27VpauXIl9e3bV32O+RG4At0f\nExISMD9WE5f9MxoeHk5paWlqOSUlhcLCwlw1HHCXUrt2bRowYAC5ublRZGQk1apVi7KysqiwsJCI\niK5fv35DuRoAtxqbzfYrHzSbM+GbwBl07dqVWrRoQUREvXr1otOnT8MfgdPYvXs3LV68mJYtW0b+\n/v6YH4FLMfoj5sfq47KX0fvvv582b95MREQnTpyg8PBw8vPzc9VwwF3Khg0baMWKFURElJqaSunp\n6TR06FDlm1u2bKHu3bu7cojgLqRbt26/8sG2bdvS8ePHKTs7m/Ly8ujw4cPUsWNHF48U3A28/PLL\ndPHiRSL6//HMTZo0gT8Cp5CTk0MfffQRLVmyRCV/wfwIXIWZP2J+rD5uFS7873j27NkUHx9Pbm5u\nNG3aNGrevLmrhgLuUnJzc+mNN96g7OxsKikpoQkTJlCLFi3ozTffpKKiIqpXrx7NmDGDrFarq4cK\n7lASEhLoww8/pMuXL5PFYqHatWvT7NmzacqUKb/ywU2bNtGKFSvIzc2NRo8eTQMHDnT18MEdhpk/\njh49mpYuXUo+Pj5ks9loxowZFBoaCn8ENU5cXBwtXLiQGjZsqD6bOXMmvfPOO5gfgdMx88ehQ4fS\nmjVrMD9WA5e+jAIAAAAAAAAAuDtxmUwXAAAAAAAAAMDdC15GAQAAAAAAAAA4HbyMAgAAAAAAAABw\nOngZBQAAAAAAAADgdPAyCgAAAAAAAADA6eBlFAAAAAAAAACA08HLKAAAAAAAAAAAp4OXUQAAAAAA\nAAAATuf/ATUMbBM6300/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAHhCAYAAACbaWhSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XdgFOXaNvAnbdMLJaGX0EICAelF\nUESkKcWCBRVEBGzYjuUcj0ePHvVVbChSBARERVH0oCDSRRAV6YTQew8B0nvZ74/3/WbmemAmu5vZ\n2cL1++u588zuzO7Ozu5k73vuALvdbhdEREREREREFgr09AYQERERERHR1Ycno0RERERERGQ5nowS\nERERERGR5XgySkRERERERJbjySgRERERERFZjiejREREREREZDmejBIREREREZHleDJKRETkRhkZ\nGeLhhx8WgwYNEgMHDhQLFiy44nLnzp0TSUlJDt3nb7/9Jnr06CGmTZsGf7fb7WL27NmiTZs2YsuW\nLdXediIiIncK9vQGEBER+bOXX35ZtG3bVsyYMUNkZGSIW265RXTv3l00a9bMpftbsmSJ+PLLL0VK\nSsplc6+88oqorKwUNWvWrO5mExERuR1PRomI6Kq2ePFiMX36dCGEEO3atRNvvPGGWLNmjZg6daoo\nLy8XCQkJ4vXXXxeNGzcWU6ZMEVlZWSIjI0Ps27dP1KhRQ0ybNk2sWrVKbNiwQcyYMUMIIURFRYXo\n2bOnWLBggbjrrrtEp06dhBBC1KlTRzRs2FAcOXJENGvWTCxatEhMnTpVREVFiSFDhji0vc2aNRPz\n588XL7/88mVzt956q+jQoYPo27evSc8OERGR+zBNl4iIrlqnTp0Sb7/9tpg/f75Yvny5KCoqEjNn\nzhT/+te/xNSpU8Xy5ctFnz594MRv+fLl4sUXXxSrV68WtWrVEt99953o37+/2LRpkygqKhJCCLF5\n82aRkJAgmjdvLvr27StiY2OFEEKcOXNGHDt2TKSkpIicnBzxxhtviNmzZ4slS5aI8+fPO7TNbdq0\nETab7YpzHTp0qOYzQkREZB2ejBIR0VVr48aNokOHDqJOnToiICBAvPfee6J27dqiW7duokmTJkII\nIUaMGCE2bdokysvLhRBCdO7cWTRo0EAEBASI5ORkcfbsWREfHy9SUlLExo0bhRBCrF69WgwaNAjW\nlZubKyZOnCgmTJgg6tevL3bu3CmaNGkimjdvLoQQYvjw4RY+ciIiIs/jySgREV21srKyRExMjBKH\nhoaK3Nxc+Ft0dLSw2+0iKytLif+/oKAgUVFRIYQQYsCAAWLt2rVCCCHWrFkjBg8erCyXmZkpRo0a\nJa6//nrx8MMPCyGEyMnJgfv6/7+eEhERXS14MkpERFetGjVqKCeZQgiRn58vhBAiOztb+VtOTo4I\nDAwUNWrUMLyvAQMGiF9//VWkpaWJ2NhY0bRpU+U+x44dK4YPHy6eeOIJZfmYmBiRl5enxJcuXTLj\nIREREfkMnowSEdFV6/rrrxfbtm0Tp06dEna7XbzyyiuitLRUbNmyRZw8eVIIIcTXX38trr32WhEc\nbHzNvzp16ohGjRqJGTNmQIru5MmTRffu3cUDDzwAy6empoqjR4+KY8eOCSGE+O9//2vqYyMiIvJ2\nvJouERFdterWrStee+01MXr0aBEUFCRSU1PFuHHjRMuWLcWjjz4qysrKRMOGDcV//vMfh+5vwIAB\n4q233hIvvPCC8revv/5aJCQkiPXr1yt/Gz16tLjnnnvECy+8IMaMGSMiIyPFiBEjHFrHP/7xD7F9\n+3aRmZkpQkJCxI8//ijuu+8+cd9994lbbrlFlJeXi4yMDPHcc8+J0NBQMWnSJNGuXTvnnhgiIiIL\nBNjtdrunN4KIiIiIiIiuLkzTJSIiIiIiIssxTZeIiMiLLF68WMyYMeOKc7feequYMGGCxVtERETk\nHqan6b755pti586dIiAgQLz44ousUyEiIiIiIqLLmPrL6F9//SWOHz8uFi5cKA4fPixefPFFsXDh\nQjNXQURERERERH7A1JPRP/74Q/Tr108IIUTz5s1FTk6OyM/PF1FRUVdcvtXr75u5eo/b99B0iNt8\n/KjussUJlRAfvhNTsqZmN1LG074YYrje8gj8cbu0TrkyDrmIL3FIboDhfTnDHmTaXYHilsX4h5wQ\nZRhYgtsfXIhxYBnGCb3PKON1bRcbrjdluvp6lYf793W97H5eLR6aZd5+7gny61PYvBTiqAM2t6y3\nrHMexKVFIRDXq6P23iwuw2NL8R+1IQ7AQxzEaU9NM9yOlKn6x05nlKfmQxycduXPIiGE+HbcexCf\nLo+BuH9EGcSJS8cp4/Dj+DwZsfthcUxlivo8B+/Qf469RWlqIcQNamdDnPlLfd3blkf5+WeDbx86\nL3PgAce/l8nSH8fjVIfNdyvj0k01q7dhbtLwzd89vQluc+w/PTy9CU4rbYCfG7bT+p8VIQX+9eZb\n9ugkiJs2PKu7rKlfSS9cuABNwWvWrCkyMzPNXAURERERERH5Abf+PsKuMURERERERHQlpp6MJiQk\niAsXLijx+fPnRXx8vJmrICIiIiIiIj9gavXKtddeK6ZMmSLuvvtukZ6eLhISEnTrRa92YeeN/w/w\nWNxJZTy5Lda3BATgL85Ptl8Lcd+I/cp4+Bd/c3UTLSPXvB7pN8eS9WprRM0k16i0mveIy7cdc6I3\nxBvXtnV9w0gIIUSP23ZCvPZgK4jD08Kt3BxFSM9Lyrjsd6xHijzoeo1oYX0s3ow4ox57QnpdhLm0\nztW44FwnDFMn4/srddhe3ZvKywrHSzANHbhuPsQpafrv+Ts2j4f4H6k/422n3gmxZ/YSz2hy/XGI\nl7f+CeLkT9xzLDVS2Lgc4ogTjn+dsaVFQJwpInSWJF8nf/5W59CyvcvXyrjNJuv3efJ+8jUBjGpE\nZRWhGAdiuell12FwlxaDDivjltHnYe7nbxyv2x087XmI97ypv6ypJ6MdO3YUbdq0EXfffbcICAgQ\nr7zyipl3T0RERERERH7C9Ov6Pfvss2bfJREREREREfmZALsHrzLkqdYucgsWrdazHU+prEpQseOX\naZYvIa7lzKXIq6NS+tdEYPmVl/v/tK1dihKx9UT4Ufe0npDtecS4RYSWM2m5ZrZ2qU7arrtcza1d\nNjz+LsQ1gjBFr+2H+vtJs8FHIG4ZhSksSw9hGnXINrVMIaA7to9I67YA4jsO91PG+5Zi6rAswE1H\n7aparmgtLsASjKfX3w3xor54X51C1WPCZWm5kopq5NKVxahPzow7ZsLcjeEVECeuGKuMf7hhKsy1\ns4VBbFa7GWdbuxTXVQ/EYees6Quzd4LxfmCUlhtYqjvlFzzV2qVC+kgNctPzbGZrl8EDNivjyfW2\nGC5r1ediSL7rD1D7Pe1UObaNGjDjeXlxj2BrF991WYpvjuP7ammcVL43dCnEY2LU1NuIQMe/n7f9\nyPXPPfl75t7Xn9Zd1s+/khIREREREZE34skoERERERERWY4no0RERERERGS5q75mtKoaUW39kRBC\nHL5zhsO3NaoZLWyOBR+b+38Ice2gSGWcvPF+mAvcHm24XmcY1ao2WzkW4vADeN3poK5ZyrjgaCzM\nhV7yzP85ljw0CeIhs12r4zCzZtQbXc01o4XJJRAf6f+p4X1p3+fBBa7XG+1+0rgOb15ugjJ+d+4d\nhssW1cNrvM8cMksZP/XJBBe2rvqKa+F75uD9WCutrc+M2itdw15SnZpRb1dVzWhsN6xDzryoHu9t\nh9zXUGbciOXK+JmaWBvtTOsW1oz6NjNrRr1RdWpGtYoT8BhcVbs+q7Bm1HeV1sNeLpGH3HPtlcLW\n+B3IdgLXE1zo+nukSPO+uLbHHpj7opv+dy3vePcQERERERHRVYUno0RERERERGS5qzJN1yqGabqN\nsW9KxAlrLtk/7t5lED9V45jusnJ6cPFFTBELP23NNjujpCamzriaLsw0Xd8mp+lqU2TXF+OyrUMK\nIH7tXF+I1y3q5PJ2lGlS+vaP1W8pVZXkGZgmGSw9Bu3rGYBvAcuUSemL1UmHu5rSdB+4YxXEs3b1\ngjjkgPtSc7W07Vxa/Toa5oL2RcqLg8Q+x5Tx8ZVNXd6G8kjch6qTFu8uTNP1bWal6colTla14KsK\n03R9l9yyrTrpst5oz5ts7UJERERERERehCejREREREREZDmejBIREREREZHlvK/ozwSlUt2gzUNt\nRoxYVSMqm/XlYIg/bKZeh79/u3SYm5CyAWK5vjRlunfUSGh5qqWMvzk4yvH6xpbzjVscuarShgUU\ngaWu10+8kHGNMl51MgnmSjfWcvl+q6KtT2rxJT5PC+/Adk6dQvUv4773YaxPSp2M7z2z6kRtvS9A\n3K3uCYh/TmurjKP24faaVYt1tamQCrjtmcZtb8xiD8L3V4sFDyvjkDzj46i2vlQIIbaWqJ8jo8RT\nhrftMES93P/2JSkwN/zmPyBe+k1Pw/syyzOjvof43a9vU8b+3qqGHGfUCo+oujxVI1rUtgji8N3W\nXKdAi9/ciYiIiIiIyHI8GSUiIiIiIiLL8WSUiIiIiIiILMc+o25k1GfUF/388CSIB8563kNb4n7s\nM+rb5D6j7lJUB4s1wzP0n9jQXliPmbsXa1XHD16pjJ+redhwvXLNqL/x5z6j74yZA/Gznz/otnUV\nNyxTxuE1sC7Inhbj8v0a1XNXVWP5wuhvlPHbn93p8jZUR/pE12v/kua6p0beW1jVZ/TAA3hdglbz\nrHlezaptL47HY39YpnkfqjG9M5Rx7oY6Tt2WfUZ9V4gb+yoX1VX318N3zoC5GdkNIP54/jC3bAP7\njBIREREREZFX4ckoERERERERWc4vW7tUZd9DanpI69n+nXJjpkEzpLTcIM9sB5G3MErLlZX8Vhti\nuYHHZ58PUMfSXHGClA7s8FrJ29QKLLBsXcktTivjo+uamna/Rm2W5BTYNlMwpdxTqbla8jbJ23zb\noZuU8f6fW+KNo6wp4QhunQtx+T7X06q9kVVpue5iZlquLCJETa/PNViO0LSRMyG+MbxCGf9ZXAFz\no7983JJt8hbh59T9dWp2I5ibPn+I1ZtzGf4ySkRERERERJbjySgRERERERFZjiejREREREREZLmr\nsmaUdaLkTp66ZD35r7Dz/L+hv+geZl2xvZl1oo76Mg9bFlV0yIM4aHu0lZvjELmG1Buk9/gS4qR9\nXvA5Ih+GKq+4lFdLf1ytD27zsfe97kIIcW5tQ09vgk96dMF4iPePVb+Lycdd7ZwQQiR9qv/+6nLj\nXoi/aLrO4W0yut+qbHjsXYhrBEXoLtv2I8f3ZW+oEZXxGw4RERERERFZjiejREREREREZDmejBIR\nEREREZHlAux2uzVNs66g1evve2rVliiLxqfWnX2pPMHuZ31GQztfUsYF6TU8uCXuZ/evXfEyIS2w\nTi1ws3/16Avw2FHbHPnNyiGOOoKXL6gIsXJrzDfotj8hvlQWqYznNt4Ac8mfeGfdmqvKorGQMLBh\nIcQhO6Os3ByX/ProO8q4dlAkzCXNdbwGbP8YqS7N4LbOLOtOdv0Wsh5jb1oEccAx1zsth+R74QOU\nFDZR+4xGHHfuYNjwzd/N3hyvcew/PTy9CW4VUoD7ZmkcftAndjmpjFckL4W5ty9iP+SccnyPVGh+\neyyvxC+Aj9deD/GNi59Vxv8esAjmJs3DPtHyeU5InvoYyiJx7uA/nxF6/PwrKREREREREXkjnowS\nERERERGR5bwqTXffQ2qairPtV6pzW3cJKvb+dJDq8Lc0Xa3ycB/Pg6yCv6fpbr/vA4i7T9FPD/FF\nvp6mWxVfT9M1YvfDhmqB7XKUcVkZfjD4QlqurPuwXcr4VEEczB37s5HL9+stqbhGvDFN10xGabof\nPDgL4qfnjHP35piOabq+qzwKP9jDM/S/qElZuOLnByZBPHQbtrlpEKseo2e2WAhz/ec9B3FwoXsO\nAnvefFp3zs+/khIREREREZE34skoERERERERWY4no0RERERERGQ5r6oZ9TesGfUy7XMx3qnf7oM1\no74tNMu/33u+WDOqrXEpSaiAubAzjh9MgjpnQ1yxJU5nSesUJ2A7k6f7/Qzx9AU3K2N/rBnVCiw1\nnt/1+MfKuN3Hj7t5a1yTPnGa7pw31nmayd9rRg88oNbttvnYO9oqpT+uv79VtY32jvi9ptEdu03Z\nJm/k7zWjcmsXf8OaUSIiIiIiIvIqPBklIiIiIiIiy/l5wpBnlcZiLp0tx79/gvd6Bmm5VtKmCcla\nzfPvFDDyLmlPYXpY6mTX09YCe2ZBnJsVAXHoiVBlHHncOC3XqLWLnJZbEYbH2cX3v6eMb5/1rOF6\nqmPPY/qpdSlTvSP9zxPk8o0AzMiG1Fw5HbbNFGuet7L2+RAfuG6+JesluhI5FbeorvqmkTp4iIDO\nOfiHLbFu2iryJW2H7IM4OeocxK/E71GX/cj7Pp/4yygRERERERFZjiejREREREREZDmejBIRERER\nEZHl/LJmdN9D+jV5QgjRerY1dXkH78ft8JbLiJNnsS6UrFQehnFwsTp+9HR3p+6r++07lfGsRhsN\nl038aRzEIQWOr6dGb7XeJWtDXcNl5RZartaJyjWgct1npU0YztP/kmtEjbizRrQsBmuJQ3LV/aQs\nG98U8nbce88aZTxn5Q0wZ2ZHs/1j9L+r+EMLmZdu+1YZv/79CA9uyZXJLVXM/I5W0qYI4tB0tfqz\nOB5bQYVewt+F3hn4lTK+PQpbt/B7JF3J14lrHV62uDbuf2EXPP+7pOe3gIiIiIiIiK46PBklIiIi\nIiIiy/FklIiIiIiIiCznlzWjVtWEOsuuOfUPqNRfjhxXGotPpC3H8f+v7HlEv08g6zrJmxS2KYY4\ncneYzpKXC2wv9aXbpPal2/BtR6e2o6o6Ua2Xei2B+I3Qwcq4qu1/rvlKZfzihlEwJ9d29th5O8Q5\nv9VxeBu1zldgUWtIF+yburPrV8JV/l5funeC+ppUWQeqKfEtTsG6urB0uaui6yrC9WtGI44bf/V5\nsfZ+ZfzlxRthrjzKLi/uMm1dqFH9qK/yhjrRgOb6xepf59Vw23pDDfblsEz8ntJ96C6Il15qr4z/\nsS0R5gxaMNNVzJneoY5/e7AOfxklIiIiIiIiy/FklIiIiIiIiCwXYLfbzcs5cVLbZz/QnSvogOk7\nEVElEAdsiHPLNlXH78+8D3HXGc84fNs9j2Lq2S0HBinjQ+ubwlxJbbx2fpuUkxB3qnFCGZdV4oXo\nF3/Xy+FtqordzGvcewFtqlmvXbfBXOEPrqX+uVN2MqYox+11/H9LRXUCql7Ih+wdj++flvP9O806\nPNO/Xj9ZpY8XkOx+Ur8EIHkmplMFpmIadaAmjVoIIQI1H31BJR77uAZZ7fAz6OjwmcrYH1qSGKl0\n4nPv4ChMvfWF45IvHllmjvhEGY//doLhskGF5jzCvQ/rv8edlTzDvDT+8kjvOEa4gy3bF/dOx9n9\n7OdBuaQmsO5B3WX97KETERERERGRL+DJKBEREREREVmOJ6NERERERERkOa+tzIncjpfFfunh7yH+\n156RENty1FzyggZYSxd1HM+5y6LUcUi+c9tVHqmO5dYgnbaOEq5q9etoiOvWzFXGgaWYJx9+Bl+2\nI2fw0t9HBMbkmORP1LqNJtcfh7lCqzfGAVXViBbF435TGqe+L2y5xrUXidcfU8ZHf23q7KZZTq7D\nE2H+Wzfjj2Y//iHED8540i3rKWhZCnHYSZsyDiqWl3ZcSXvjI0TiD+OVcY0M3Dez46MgDpc+lW29\nLyjj4t9rw1xolnv286IE6TPnPK4noo5+uwxSyTWivlhD6o0OSM9jKw88j2bWeRJd7fjLKBERERER\nEVmOJ6NERERERERkOZ6MEhERERERkeW8ts+oLD8R+5oN7L4T4t++6mjKNtl7Z0NckBcG8ZF+c3Rv\nm7QBa0aD0qJ0lqza6LtWKeMXamFvnpRp3lGrYFafUW1/z6rsKsXCrrvmOt7LVZZ8Iz6ve9e0VMbR\nXTNhrnwp1mr5gqz2+J4JjCpTxrZD4fLiLiuLxhptbR+3/WOny4uDy2o9TVLu5zWj7DPqmIJmZRAf\nHTJLd9nEH8dDHHnUeCM+e3iyMu4UaoO59FLsk33X9L8pY1sO7pvFUm13USLWtYoS9X/GH/RbAFMV\nUmO6f31+H8S1e51VxhEheL8J4XkQn8irqd4uHC+mkF8WCvGpbOzzXZirfk6GnMbnwl0adjuN27Sp\ngSXrdabPqC/yxiOLXCPafO0YiINO4fc0I2b1GfVW7DPqu9zZZ1Tu+an1TT72tv77iruVcdg58w54\n+/7ztO4cfxklIiIiIiIiy/FklIiIiIiIiCznM2m6VanQZBEFlZh2t5eJH3xKGT/XdAXMPbXtTogD\nd0W7b0O8gFlpup7y7v2Ycv3s5w8q47IkbNUQs8G8tFat/OuxRULUr5E6S5qrqI5/p7swTde3mZWm\nWx1xN5yDuE3NsxC3jTyjjO+IToe5m6Y+r3u/cppu1jWYTh8Rj8eEIk2pyNBULE9ZfTwJ4oodmG5V\nFqOm0NdOuQBzRSsSIA4qUber7l3Y2mpZ0jKI7zxyI8SJkReV8eJlPYQ/Y5qu9cxs5cI0Xd/FNF3X\nhXa9pIy3d/ka5lrPxvdTYIl7nmem6RIREREREZFX4ckoERERERERWY4no0RERERERGQ5v6kZ9Ubl\nEZ7eAvfS1iYEFftXLn/oJYwDy817m5TGqs/V8Ls3wNyyT3qZth4jrBn1bawZNZ9cr9N84BGIjyxr\nZsp65JrR8kiptUsdnI/GzXBZzrXYFit2I7bD0LaYCcvEbdAes4QQQnTLgbCiQn3yKg+43tLMTPvH\nYJ1h0lzX6wy1WDPq21gz6rtYM+rbjGpGXf7InzRpkti6dasoLy8XEyZMEKmpqeL5558XFRUVIj4+\nXrzzzjvCZrOm3xgRERERERH5FpdORv/8809x8OBBsXDhQpGVlSVuvfVW0aNHDzFy5EgxaNAg8f77\n74tFixaJkSNHmr29RERERERE5AdcStOtqKgQJSUlIiIiQlRUVIiePXuKyMhIsXz5cmGz2cT27dvF\nnDlzxJQpUwzvh2m6vs2q1i57J0xTxsmfPGrJOsPPuy/VpahvvjIO3I7tf0KzrEmx8VSabqmm1YQQ\nQthy3ZOXwjRdx/z59GSIr9kwDuKwLda0GpJZlab78tgvlfGLP+A/T8MuuOc9Iqfpmim7B/Y1697i\nqDIeHr8N5v49/16Iwy6Ys13xI05CfOzPRqbcr7dgmq5vY5qu7zIzTbdJ/2MQH1/Z1LT7dtSNt2+G\nePV/u1i+DVYyvbVLUFCQiIj43zOtRYsWieuuu04UFRUpabm1atUSmZmZrtw1ERERERERXQWq9bPE\n6tWrxaJFi8TLL78Mf/fgNZGIiIiIiIjIB7h8MrphwwYxY8YMMWvWLBEdHS0iIiJEcfH/Xq0vIyND\nJCQkmLaRRERERERE5F9cqszJy8sTkyZNEvPmzRNxcXFCCCF69uwpVqxYIYYNGyZWrlwpevfubeqG\nEnmSPQhrFQIq8Nf/xner/RcOL2kOc4XXFEEcu1bb+sC/swj2jp8G8d1H+0K8c1VrKzeHhBD2XtnK\nOCIQr3h+4PrPIG63xbwa7dJYdV+35Ximbmv3k9N0515zU42olexF+JF+XY0Dyvj2yCyYe8ukGlHZ\niuSlEOck4fGv62fPmLIed7VuISL/U5JaCLEnakRlKRFnIF5t0Xr3PIafgylTrbkWixGXTkaXLVsm\nsrKyxFNPPaX87a233hIvvfSSWLhwoahfv74YPny4aRtJRERERERE/sWlk9G77rpL3HXXXZf9fe7c\nudXeICIiIiIiIvJ/7umrQERERERERGTAom5uV1aGLRZFSJ5ntoO8m1W9RbWGPLwe4lfj0w2X77Nb\nTUuP7Hse5kp2xeverige69QqbVjHVdqgFOLpvb9Qxv/cOwzmCjfXhjg80/P1qMkzPVOLMHrwLxB/\ntuwGj2yHNyish71dI36LU4Nu5q2nJA73t/1jsabvr5IyZXz/F0/AXIC0qwYXmFO/KdeIvpjRDuIf\nv+5lynq8RY0d2ARzfWorZfz2+ptxWTdtA2s3iapn7UOTlHHf2c97cEvMd/B+/Fxo+bnrx4v0ifrX\nABBCiGYrxyrj8LQIl9djpvII9cPu3Z+HwJxNXthEUx78xI33Xn38ZZSIiIiIiIgsx5NRIiIiIiIi\nslyA3W73WC5f/pkmEGvbDLR71/OXGq6ucu/ICjDNtUN2QvzbsvbKeO8E43QJT6TaVsfs0R9D/O+j\nmBL7TauFENcI0n+xO27Bi33l7ampjA+Omi4vDqZmN4L4sbiTuss+dbYzxL/O7Qpxdkq5Mg4773iG\nvtyeReapVFwj8ja3nO9fqYPhmeaksRbF4+E/JB/vNxi7cjhl19/wNUhc/pB6vxdCYK4iTEolPo3p\npq7qO2IzxGu/7WLK/VaHLQefc7ltVE5yBcQtk08r49zSUJg7vx9LAOw1MK3fXqned4vGWD5w8duG\nDm6xcwoaVb2ML6s0Z9f0Wr7f4MhYUKF/P8LySM+X57iLnOL7t7MdIX6v3jaI20yx/rvJwDv+hHj5\nou4QF7ZQj9GdWh2DuT3LWwkjgZ1ylHHl1lgXt9Bz9v3nad05/jJKREREREREluPJKBEREREREVmO\nJ6NERERERERkOY+2dtHWiMryksogjt4forNk9TQddgTiH1suh9iodrWgAxZUVZZiMUn4UXdeqNl6\nv/6CbRHKa6p1Xu6sCdXWo8q1f8FFrtd/BF+TDXH5DrXlxXunBsDc6bVYCHXjor9BnNVZ3V+PDpqN\n91vp+P985udie5boQMeL9ooq8D1SKb27g/NcK3aSa0Llekw5dlcNaUlNrKUb0XuTMv7xh54wd76i\nwC3b4G/Mqj11xNGB6vtiwqkeMHe6MA7iY6cTTVnnR/WxZrStcE/NqNxCJnHJOIgjj6jvzZKa+JyH\nXsIar7jdeLxYcdtSZby4IArmhrfPh/iOw/0gXtR8tTK++2hfmHvrhQ8h/jjjRmW8c15bmMuTXg67\ndEiLOSyIyCR7H9a/TkPzNWM50DO9AAAgAElEQVQgth0M113WzDYq3kiux1wuuussaR15m2QBher3\nsG1HGsNcmLRswvVnIF7XdrEaSKtJmWre967ew7Yr4w0/dHD5fooalFe90P/hL6NERERERERkOZ6M\nEhERERERkeV4MkpERERERESW82if0ed2joD47To7dJdNXPYQxNF7HK/HLOyEdXcRW9Uc+/q3HIe5\nVjHYi23Nd1hjFFTi8Gp9os/onkfV2oSUac7lnNv9uN9abDfcD/KKsL9f6OoYiCuD1Tqw3C7FMBdy\nAm8beVq4rChBXU9ZUiHMRUfienNycAf8Z5dlyvj1X4fCXNg5x8vHi+tiHcCBIViX0m7WRN3bWlVf\nGttV6qm4K15nSd9U2RBf68jt+nVDniL3GdXqsu1OiCe2WAvxpLk476ryTnkQB2+NNuV+hRAiqEeW\nMt7Z9SuYa/uh/n5dKV3+IFAqq7FlSx/Jgy8pwyda/QJTD0ifV69mpkC8NVutSeog9Sh+NT4d4o6v\n6deTFdfGOle5ZjT8vLrN7DPq2/y7C6fv9xmV60mTZ+Cx5mrqMyrzRF/R6rjpjr8g/mEL1meGn9C/\nVo78/Xv3hI8hDgrAg/SaIvUGN4bj9TearXoQ4rADcvWqOdhnlIiIiIiIiLwKT0aJiIiIiIjIch5t\n7ZJXjj8Fay+H/3qf72Huzk5bIP55D7ZyMKJNy5WdWdoEY4FxQK8ciPNPq5fWD6qFObvlBfiTevhx\n97SjMVOJvazqhf7PEyN/gPjDhcPM3hyvkXG6BsQ16+J+UB6KqT5BJWpqTNwfmJYrK9a0dgjFuxUR\nt5yDuOiHOhBr0+HCz8v7Ncb2TvjapoapaXrOpOXK5NsapeXK3JWWK/O3tFyZN6blltTE9DC5tCKg\nWE0TsodWwtyojhcgnmTSNpmZlit7u636GfW3sx0dvl3YBXyeSuOqSBtcVlMZ/s+u22Hq1VqYbtWh\nzVGIjy5tpowrb8b1JB/AbTbao+RtJiL30abitvoM0+e/y4+RF6f/U9iiFOKIQ9a0VwztcVEZl/xR\ny3DZwqbq97JQqUbDKC1XFoCHfpE67XGHb1vUFL8bjuu2HuIvDtworMZfRomIiIiIiMhyPBklIiIi\nIiIiy/FklIiIiIiIiCzn0dYuledaQpz8iVpPVlwPc6kjTmCdWhB2NrBMhabMNQDLnkRZh3yIg9Ki\nhDuUJGGrmtD9jteP/f2+byAeFaPWai0uwO19et09EP+j108Qt7Kp9Y2PzH/Y4W2QlbbEx2M76Pl6\nOG1tphBCBN+CNW1hwbh/5i+ua8p67QFY1xUgvT0rwtT5gvrSXDQWESwbOBniZJva6sWdtZsP3rFC\nGc9ZNMDl+ymNwTeYLdfx/52Vh/l3jVt4Ju4nz45T39efn+4BcxnL3NNro6Ahvj5Th8yF+Je8ZIgT\nQzOV8cNxxv2NjFqjWCVlyH6IB9dOg/jduXe4dL+2HOf2zdzm6njXPR/CXEQg1kT9WIDtnL4+300Z\np/0XX4+QfPPeI9rWLxXh/v3eY2sX32bU2qWqtinusnU8flaHBKg7WbtPHL8mgxD+3dpl9CBsbfVS\n7X2Gy1vV6qWogfrdK/y0dICQdrfUm9VtPpMfC3MX1tczfdvMVhqH+5ct2/EjBlu7EBERERERkVfh\nySgRERERERFZzqOtXWSzR3+sjO9bNx7mxt27DOI5nw42ZZ3lPXMhLi6ULgWdi5dajjqi/gSf1xYv\nI52cgKmcxwSmvZbFqD9vh+S6ngzjTFpuQAfsHaJNy5W9c7g/xHJrmsnHh0O851FMaXHVza13Q7zq\nYBdT7tdMmSew1UtoLUwtLu2htvmpqrVL1jVqim+NHfgWlNNyyyJxP9GmSPTvsx3m/lVnNcQRgZgu\nMjXbPemasudqHlbGs5IKYC5of6TD9+NMWu7VTvu+XnqhEOYy3LTOsEx8fZ7ZMQLijvVPQfx2nR1u\n2hK0+0n945JR+u8Pj2JDmVF7R0H87hLX0nKFEKKso1rCUXoE3wNRx41vG6O+nUTb756AuXcGLYB4\nQMR5iIcmqmlt15Rgmm51VNrwuKRt/VJg4mFm4UhMX7xrwVPm3Tld9TyVlivrNJP7tSP+vJQI8cg8\nTGv9YxeW/mHRgvvYw9U03dJUbPnYrA5+505b2loZ97oVv8NtEI6n6ZZH4XfFA6OnGy4/JUttWzl9\nwc0Or0fmTFquM/htj4iIiIiIiCzHk1EiIiIiIiKyHE9GiYiIiIiIyHIerRn9NAfbYYQEqLV00bux\ndnPGqUEQ73sWc/3bvWuQ639dFoS7un6ljF+/0Brmvjt6DcQFNtyOkhxNvY90Be1mURchPiaaQqyt\nE5XrLVOmuadWIb3Hlw4ve3tDrOmaLQYaLq9txVMdq5Z4pkZ07wSpXsTg8dguYP2l7VA0xEGwmxhf\nWl2uEzVS0BjbtdhD1PtevjcF5n7elorblI/bfHvfPx1eb3Vo28ZY1QWhLArbjASUu17XcHAU1l60\nnP+Iy/dllQ6b71bG9WJyDZY0T2lbrE0d0XwXxA1C8bhrFVfbwjQPwRr/nF9cb9c0e8IUiO/74yE1\nCJGPD47vq+Hn8P/Hb7x/L8T/jsH7Cr9ebadTiZcAEIFlDq/2MoGl1rSPuCbUuP6eyJ28paaU/td/\nWy6F+Lpdd0Jctyl+B8/OqKOMA7GU01QRh7RfAPGc4VRaY93bZRTFuLzO4Hw81icuHQexfM0XreJ6\n+L0yskEexBVb4lzerkrNwy9NdLwHJ38ZJSIiIiIiIsvxZJSIiIiIiIgsx5NRIiIiIiIislyA3W63\npvjjCpJe+8BTq3ZYcT0srAk7q5+HLQvOr3oZPfkt1PrZo0Nnun5H1bCuCP9XMXH6w7iAj/8rw9Yb\n+z+VbqitjDXly0IIIe4dswri9HzsB7Vhp1p7XO8XzzwxmZ2whiC4EOPH71yijGfMHWLJNnlKk5uP\nQvx4w7XK+NHfsc4u9q8wiKNP4YsfWOKeQ2RhAtYO5zZXxxUtsI/twT7zIG49W7+Odd9DWPNqtKy3\nCr2o7rsBlQYLXkGX+3Yq41mNNsJcfiXWsEQF4mtv5L5jfSBOO68eA3ZqrkNwJdf8j1prVtjAYx+5\n1vDzh1drFz7A4lp4vC/RtKQuaojfHyKO4feHmGNO7twOKqyL25TfUT2efNB9IcwNjcTa7zYf+3Zd\nZPrjWOcpPx5trXRxB3zsYdut6kzpPiU1/PcN6Oxnga9xpodnWVes89zX63OIz5bjCUh0oPp9Y9g+\nrLWd2GQtxEMi1OtOjD7eF+Z2fo/XKnFG+qSnded8/HSCiIiIiIiIfBFPRomIiIiIiMhyHm3tYiSq\nM6ZQ5m+prbOkezmTlmumqEPqS5P6vnlpM3889T6uR5Om9mcxXu554nTfTteRpT2F6TtyGkO9Tmpr\nh55PY0ryjD/7QJza6iTE2lTqljEPwFz8j5gKmN1c/R9Q72HbYW798RYQB27DFjJFyWqaYZ34HJgL\nW1sH4ugTmNMy++C14mqxd3sTiNfEqKklvVoegrmT9WpAfPb3BhDHHVCfx7BL+B6pCMP/5+U1wmY2\ndk3WTbmUAVYeielUIZpLtZfk43FnveNXSBfPnevg+MJeSpuOVYIvj6iqY8zmL9or4/aB7WEuryW+\nfgFxpcp4QNJemLMFYrr2LbV2QvxF03W62zB4/2DjjSS/EXaxUorVcdO+p2GuW/djEH+2s7syDt+H\nnxMltfB+gwswha9UM9+yNa5nYO0jELcIy1DGclru+5eaCUdVlQKbPOgAxPXD1c+oj+pvdng9N+3F\nMpIjO/GY3KBNBsTrU/+ru01GoqOwHCJ+IH7vPLNcvy2HO2nbMFWnBVOVtLuU/2b3+qWQv/C7oeiF\n4SNHb4f48JLmQs+/xCgpth5/GSUiIiIiIiLL8WSUiIiIiIiILMeTUSIiIiIiIrKc19aMZu2vCXF1\nKjd/GPMOxMPmPleNe/NtDxy9BeLDl9Ra3PINNeXF3aagoVq7FXkqyGDJ6tHWiZbYsfii56qnIO7W\nGutstIJycRuTY87pLvtel28gnln/eohtpaHq/QZgoUbJmUjcxiF7IO5XU40PFWON6LdxCRBntCuB\nOHCfWnzneEML51VqjipS2Z25DOpdKsOx3mrp4h7qNrXHWttbmqVDnHzXHxBPOdhHGV9MrwVz0SmX\nIM45j3UcMbULlLFNeq1L92MxZEFLtX6xUcOLMDd67UMQhwp9S5Z2N5j1PSXNcD8O3Wr06IUo17yF\nggv0lxNCCHFBva/fN3WEqeJ4fL0mP7RF926WF+I2nfm+aRUr9m0HRmH7oFbzfa99kNaB0dLj+czx\nx1MZItVyRqnxpSIsFN+fLx2ze89QxneUPAZz8fWzIX43+VuIr9McxLMqsA60RpB+i5K9pbjsrL14\nLYGeQ3dB/NuqVN37kmtIW/wyBteV3koZt+3cCuZ2d/8S4sRl6jEu4ogN5toPPAjx9y2w1Zqrirbi\n8fzrh+ZC/EXdZIhnzrvZlPXKxoxeDvHczwa6ZT2y/v22KeOPG2yCuVbzfPs9fbV56Ty+T3cdxzpr\n/GbpffjLKBEREREREVmOJ6NERERERERkOZ6MEhERERERkeUC7Ha7x7oLJb32gadWrfh97LsQy7UW\nyTNd77VpD5T6COYG6CxpnYJ22LAwclc1qger8a+MzrelKeOWEedh7qsvbnT5fuVeoqmT9V+/CqkQ\nOUhTUhp9HGsOzw7EetOkJlgz2j9B7VH4TE2sPR2wF+t082Y21N2mc4NwPUNTsbdhasQpZTzneE+Y\naxSNNUY1bVgbNK3Bn+r9fOBfPWRlAfjyiZp79Ju1nemNpfP1O5+FuKBUrV/K3oM1RrKYZKz1rBmh\n9rE7dLCe4W1rN1Rfv0rpqHzpZBzEoRfcV2ftDZ4bofYNfGPVMJiz2/DJiU13z6UPgvpjz8Gtnb7R\nWVKIxKXjcJvS9K9yUNjA9Y/csTevhvjTn/q5fF/OcKpG1Af6FVanRrTWLqn2OwY/1/M1rSlv6r8N\n5i6UYuVWYbl6bNm9C3sjR0jXUiipgeu1B6txRQQe8I4Onyn0/O0s1kavPpkE8c6uX0Gs/Q5Uv9cp\nmDu6D49p4Wfcc1ySa1NlI4/eoIx3/oR1nmWpWDhelqPWd9/RFXuf5pbj96F7a+P1Ax4zqff65Ic/\ngfiRzfdCHLo1SuiR94PW1x6FeN/GxGpunfeSP9dvGYR1rkt/7mbh1pjPlm3eOUKZ1IY0JM+0u3ZZ\n+qSndef4yygRERERERFZjiejREREREREZDmPpulWnmupO1ed9Fhn7B2P6R9mrveTUXjfj03zs9RI\ng39lyCmwP42fBHFiiH4aSosvMWUqPNPx1IXiWrg7h13Uv23wtdiWo3Pdk8o4/X28TPbYfy+GeHs+\nplT9tFNdPvwYXpY+7qCUW6JRFI9PYnaHUohDzuMT2aSrmiYVHoypp8EBFRDPSMRt/ueZ/sr4z0Xt\ndbfJHwRhNrqIzFBfg4AK3EdO34zP2z0d/oJ4d259ZXx2HqZARZ7D3jVl0ZimFpKn3vf5zvha2qWM\nNrtmV62UUlHL4nAbQzP9O0136r1qmmFmeQzMvfXxPW5ZZymuRrz5wHyIO4dian6Z5iUa9uHzMBeo\nnxVerTRdn1DFw9t2v1qe0/Fz/bQtswW3VPPUyg9GGyxpTE7TlZVpWrvIKbxB1+FnTlmF+j4uLsbj\nQ+CxcIhDs/C+ok6px7RLbaTPuZZST6NDanpwjQ6ZMNUiDtPRN59sDHHwTvWzujgBP8vCzrvn94yS\nmrieQyNnQNzmY9e/S0X0VB/v5o6Yep+88X6Ig/9yfT+5TE+1DOOPLnNgqseHz+jerNZNZyAe12QD\nxG98fhfE5RH+e3yR03T9jZlput6IabpERERERETkVXgySkRERERERJbjySgRERERERFZzmtrRuVL\nrQeVuCeX2p01o3Lufth5/8oHL6mpPr5QKdddbrHyzqXmEM+fP8D0bRBCiME34aXaly/tqoxDpDKa\n7rdj25Q1+9VL3Nf9Ces+z/bDmj1bTAnGm9W6muiTWNhQEofPTdyI08o4MgRrRJtGYmuQtYu6QFzQ\nUl0+oBDrBiMb4rW7S6QapOB0tW4oCDff79TajUV79mD1NQgox30m8xp8ngIMjogFrfD1sp3F29b7\nDWtIjRTFY0uSUk2tWXZ73P6Qi7hsoOOr8UkR16i1dSV/YDudkHzz1pPXTH2v3tXnd5jLrwiFOESq\nyf5hfztlHJqGLcGMtvFqrxnV1kYbvdc8SW79otXjbw8b3ja/ofo//uBeWCNaUISfK+Xn1bpQewTu\nX3HxuBOFfY3tnbSyk/B3hbj9+sV1+Q1w2aRhByDecRJbj4Xuxn3bXV554EtlfGdUDsxVp0ZUZlTP\nbSbp8CGKmqsfugFBuONHROEHclm6WsDe/gZ8fbYew5reiJ1YWyy3fvEnbXsdgjh9fQsPbYl7+FvN\naNozeB4QWPeg7rL8ZZSIiIiIiIgsx5NRIiIiIiIispxH03Rn7e8N8bsLb/PQlrhHsInpZFpjxyyD\n+NO5g92zoir8a7x+Wo0sdbI5aTYD7/4D4nfqbnf5vh4/3Q3iX7/tpIyjjzt3DfG8xur/daJP4G1z\nmuH/fGr1OauMb6iLKTjzN14Lce3NmIpbXEtN45DTgS90wBSPewath/irPZ2Vcei2SOHP5DRdZxTU\nw5TYi300KVR5mJY7uOsOiFceag1x1K9qilvMccdza893wvUUNcHHE3oWt9HfhDnRzskZeV2L8A+a\n1URvwnQ3d7na03R9QUUjtTdU0MkwmKuqtUtliLpTne+Bqbd110v//9fsf9r0XiGEyG+Gx4tGidiS\n5eK6eso45pjrPS8yO2Ecesm/f6OwKk3XU/w5TffAA/rp80IIkTTnEcN5b+dvaboVeOgU+15jaxci\nIiIiIiLyIjwZJSIiIiIiIsvxZJSIiIiIiIgs59HCI3+rEXWX/BZYO/JUjWMQf2rhtmhp60TNqgm9\nEnt3dT0XSqMMlhTiz2Ks0ekeptZcNl87BuYidrleI5bRA+MY/StWi9gjWM+Tn1VXGa/KqgNz9YQM\n6z9CCvXrQWpvx7lV27Em29ZU/39PaU/jJbhTP3Df6+kJ9iBNa5cKfJ4utpVa4EhlhfYSTd1uCL6W\nv59tCnHUemyD4EydqFbCVixsysmWakgT/LcuyJ1sh/E9H3pRZ0E/dGAU1lu1mu/b9VXuJNeJOiOw\nTH1vXlYjKimqrc5HSdcACCzBr2cZF+tCXLMadaJaMYewTq2kpil36xeG3bsB4h++7K2zZPVE9c2A\nOPsP9XuB/HlE+vY/iMc4X68hrY7aA05DfGFFA8u3Iai46mX+P/4ySkRERERERJbjySgRERERERFZ\njiejREREREREZDmP9hlNeu0DT63aEu7qM+o1LPpXRodbdyvj7f9ta7hsQRtMUo9Md632R+7VdWA0\n1iKsLMQavse33KOMAw5iD8/AcqzJqbFPrfWRe8v1uAv7pqa9197BLRaiJBbXUx6BcZlms4JKje+r\nXFNa56malcIGWBMVVIiPJzRLvydXaLZUF9pJrSUOjsEHX68W9sgd0mAXxNM23aAGpfh6hZ/Cuq4A\n6Wgav92cpnaFdXA9uc0cv21JI3y8oSdtZmySW7mrz6g3YJ9R31ZVn1Gt810xvq8v1iCm56pXCTgx\nuyXM2bHFtAgucv2JvXCN+n6qvcP4fnIT/fs3Cm2f0fwWeHw+OmSW4W3HnFBrRrd8l+ryNsjXaDAy\nOaspxJ/OM+4rfzX1GU0vxS8nt33xjCnr8VTtqb/1GZWlT2KfUSIiIiIiIvIiPBklIiIiIiIiyzFN\n1438LU23w+27Ia4qZdbX5LdS0xnrrZLSIqW2KDHSZfWHvbRGGSeFnYW54ZG4I7T9SG2bsurRSTBX\nLxhb16RuGglx9NcxV9x2IS5P0w2UuoqEFKhv9QEvroe5RV/00b1fqxS2w5SbwzfOhTjxx/EQHx06\nUxkvLwyFuYnfPwhxvd/VNN0zIzA169ANuB4jiUvHQfz69d9D/PNFTN06mqv2ScguwLYixYWYLhsZ\nraaYB6+Ig7mieHxt9z6sn+Y18ugNEG9b0xriSs1qA6tI1zZTSR11hwzNMO4qxjRdH+bnD09O060M\nlo+76vyqdybD3MK8phCPjT2njAfsvQXmDqU1hNgehOt9ou8KZZyej20bVm9rgxsdqn5e1dqIJSZy\nuzB/T9MtalWijDs2Pw5zHWNPQvxi7f2691NV+zM5FfevEvVzp2toiLw4eOJMF2W8dA9+pkSmGZce\nXU1puv7WuiW2wwWIi36J99CWuM7eUy17+qHTJzDXstFZeXGFfx91iIiIiIiIyCtV62S0uLhY9OvX\nT3z//ffi7Nmz4v777xcjR44UTz75pCgttfBf7kRERERERORTqnUyOn36dBEbGyuEEOKjjz4SI0eO\nFAsWLBBNmjQRixYtMmUDiYiIiIiIyP8YF+4YOHz4sDh06JDo06ePEEKITZs2iVdffVUIIcQNN9wg\n5syZI0aOHGlwD+TtavU/A/FvB1tAjA1MfN+rvRYr43f23Qlzco2obMam65Vx+5ZYd/K9DWshmw06\noowfO3YrzO1Zh89xzXTH6z/kdi12g7K7V+L3QLxI9HF4Pe4SsQtrKlN3YU0OVtOigRElEDfvfALi\n4/lNlHHDL/A5TSx5COKjA2frrmdp/48gbmPDbf75Ii4fFqzWScbPjoC57BZYN5TXTK17rXsRt7E0\nxvEaSrlGVGZlnahWVXWiviy3C7aUCjuIdV22bCu3htxJrhEtrim1nNJ0inr69I0wt35lO4jHjlVr\n4LrUwvrFA6H1IR7WdRvET9U4pozfrMCa+f8OnALxrT9PVMYB0kdZWYT/1mdfSWS6+lztT28Fc/sF\nxl8JfP2i+mY4vJ7Ws7GesVJzuH/ttq9h7uXtQyAO3ap+2jn7PSu2nfohlF+E+0XFQaNPUe/X7LsJ\nEBtX3voeuUY07RmsO05937hO2RsUnlL3sbtteO2OrY30b+fyL6Nvv/22+Pvf/67ERUVFwmb73ytj\n1KpVS2RmZrp610REREREROTnXDoZXbx4sbjmmmtEo0ZXPs314AV6iYiIiIiIyAe4lDe1bt06cfLk\nSbFu3Tpx7tw5YbPZREREhCguLhZhYWEiIyNDJCQkmL2tRERERERE5CdcOhmdPFntnTVlyhTRoEED\nsX37drFixQoxbNgwsXLlStG7d2/TNpKsUYltD0XbGtgT6MSBOhZujfsVtME6r3fmqHWi0SexsKag\nPiYR5F2Dt623TH3yzq9KhLndnbEmp123Q8p453HsJVdHqhG9eFshxKGb1Hz8gAqYEpHnjOtatbaW\nYOHg38biBcdSQ08p4wemPeXw/Zopvzk2Sh3X81eHb3tgLz6vAS3Vut2CrgUwF7GxNsTNirAuJaBU\nff0CS/C1jGmDRaIxYVi7+mRTtf/sc9ffD3MhUh/i8HPqPlZUE/eD2CP4YnfcchfE2zovFOQ5MZuN\ne/+R/8hKxrhWmv5xd/dk7BEZJbWJfudSc2V8uhh7C9fZiJ85aS2xhrTZbw+ry/6J9/tVQ6x1rHtK\nu414bMm4FuPwM0GCrix/rf53oPxk/EyN2mvTWVKIN2bfA3GoznKu2NzxG2Xcap5/9eEMyfHvbpSz\nHsVa7/MVxTpLClHeLQ/i4E3RbtkmWX4K7udBl/A0csINa5Xx9lyDIlGJaa/sxIkTxeLFi8XIkSNF\ndna2GD58uFl3TURERERERH6m2pc3nDhRvUrb3Llzq3t3REREREREdBXw2mvtlzTDn6dDj1iTBnXL\n0D8gXvpjD7esp7AhpvZEnPJ8+kGN685BfCS/FsTdOxyAOO2ElK/kYyLT9fepChumY4ZdwFSm4N8x\nsWbUKz8q45wKbOHxQq2DuutpfnyM4TbW+j5C+ovjqbhG5NTbpx78HuJOofopRu7S/JbDEC9uucLh\n29526CaIg/Lx/VQeoF4EvnQLpuWWNMbn9Mitn0B8qlzNp91diu+Jj0/1hTj9KKbSPZt5hzKuqIlp\nxwGVePgN0qQAB16AKZHXCFPnSnfUxAU6q8N9D02HqcSfsXVN6Gn1ubj55k0w99NP3YS3y22Br1fM\nIXytc9qVKeNWzbDU4NTqxrr3W9gYX5/weEyR75+4D+Kfl3dRxrYsPF4EYbY2+ZF2vfF4fjqthc6S\nl5d3RJ7BfXfab2o67dGhM/HGkzZA2PzrhyGus1l/G6NO6X9OZHbC2B5ZLi3BNF1XGKXlEjmiexi+\n917IuBbin56YpIz3ldaAub9tGueWbSpoiiVCE7uuhXjWtwMh/uIz/C4GDE6nPH8GRERERERERFcd\nnowSERERERGR5XgySkRERERERJbz2ppRZ2tE946fpoyTZz7q8O3uvBXbRezMbqizZPWVdtH0cijF\n3PD80BCIow6b89LcN3oVxHL9YuLi8cq4eTi2vAgLLoN4QeIvEKcK364ZNVJYF2vA5Fqf0Gxc/t2f\nhirjV4d+IxzVvskpiM+J5jpLOq8kFh9DVlv1MbROPQZzhZVYA3td2q2mbYcRbdmkMzWiQmB7moNL\nWsJceSLWQdVbr/7fzZaD+3VAJb73umy7E2LtpfIbBmMx4MBWP0Pc6g/pUvqaUuPI8/h62KXSrJA8\ndeHgYqxRzk6WapYL8b6arX5QGduO4Wsptw0oaag+frlGtDwclw0uEl4n8rRUI9oWX8/oePU4m7EY\na0TxlRaiQvPk9OuYDnOzGm2EeG8p1pC2vDVDGX+8cAjMyTWjOdeo+2pIprwV5EvuqfMXxG9G47En\npEB9r8qfG7K6v2r25aH6ywkhRGWNMukvmjr4aDwelErHfu37OBS7UYnCOFyWvJz8ctmvuBT5gRfj\n8Ro2sYFqa79FTrRNqY71Q9+DuP9fWLseIB3iwvqoF7woXofX5zDCX0aJiIiIiIjIcjwZJSIiIiIi\nIst5bZqurKJ1PsRB+88ISVoAACAASURBVKIgdiY1t9egncr4y91dYS7kYLi8uGlqx6qPYWM7bKUx\nI7sBxFMPD3N5PWnPTKt6of9zdLh6OfmfCjE1+uaIYnnxq0ZpDOa+RGRIuTHlOJ+wRY2nbhkBc1Ol\n+x78z3XK+PsWmEbdsxppujnNpHYmUbiNNXeq8/cOwJYebWxnIG7f8rgyvi4V15P6gePvNVl+M0yf\nXT34fU2E7+mqaNvTTHxwMcy9tRkvN14ZrF52vywKn6cKKY81bmosxKlt1Mebn4SpckM67MD1NMb3\nTEWumkoXVIqH2+hj+PpoU8Pzb8SU+cTaWRAfOlAPtyMlTRmvPNYZ5275E+IlS7sLPd6YlivrcOtu\niLd/3xbiwN14yXu47b1pEK//vY0yltNyZck2bLNUJtSShzmdsRdP0V+YnmRVau6Ke96BeMBXz1my\n3qtJdCC+SeR0ezltzVHNvp8A8ZHbsMVU3ZW4D2W31P8tIfIsHlvKw9VjS8wx3MDiFGzd4G/KI/G5\nsGX7eFoy03KvGrGB+ucj03ZeD3F1zlzk72Uv9PlJGX+T287wtnsewfONlYXqcerxtIfkxXXxl1Ei\nIiIiIiKyHE9GiYiIiIiIyHI8GSUiIiIiIiLLBdjtdo9loFeew0uit5r3iM6SvikkX2rloDn1d6au\nRK5fDG6O9bOlpyNxPXFqXVv4Abmxg75R9xi3gWnzMdYKpj+uX5v6XX4MxK9/eJ/D22FE6sIhAqWr\n3ZdiuR/UwAWWCkPb/6k+npSprtdF+oJKW9XL+LLw857eAvcqi/b0FriXXMfrT1ytKfQVcusQ+Zj8\nzCj1egkfT7kN5grr42ddSB5+hgZqSpvK8GNP2HIxlt8jwZrOPK2GH4C5Rc1XC0e1+sy/vqdcxuAb\nYVkCfuCGnPe9NkW2HP2a0cI2WPMfke5ci0FvUBblX0Wl+8dOV8ZJc/zrvde+Dx6HDl6MhzgkGOu5\n8/7CeW9w4y1bIV6ztJPusvtfeVp3jr+MEhERERERkeV4MkpERERERESW48koERERERERWc6jfUb9\nrUb0ldu/gfjNz+6C2NVaIVsu1jj83G06xJ9mdYN4aMx2ZTzqwFMwV9gQ+wlF1lX7GS463gHm5n91\nk+F2dd2u9tP8q8O3MHd7FBbwvD04E+KyZfq57/mNseYhJkUtQiovx112zjXz8H6lpm8Pzp2ojEMv\n6a6SyKeE98K+lps7qseeth+ZV+9c1AZ7KoanO97NbPcTWFNu5naR77DlYPzuV2qdaPM7j8LckVWJ\nEL/+0HyIh0fi9RKMvHQeGyT/OL+3Mn66wUqYS944GuKKw2rP4/JI/OD2mebsbuCLNaLOuKxGVC4v\n9YJyzN1PSsfVDz1/XF01Gvsb3/QZ+xs7Yue6VhAHluEOhxXM3smoRtQZ/GWUiIiIiIiILMeTUSIi\nIiIiIrKcR1u7tHjrfU+t2hJya5d7716jjLdkN4a5uuF5EK9aq6bMypcif/L+xRC3Cz0J8bGy2sr4\n7ugsh7dXbt1SlZkPfayMV+e1hbnoIEwwKJR6iXz3SV/d+81ug6nEwXFqT5b72vwFc+0jTkD8zIp7\nIY7di2m7RurdcUwZH1vd1OHbycqijdsTGKnT5zTEGesa6C7bbUgaxOt2JEMcflI/ocwXW7v0G4yX\nEF+9TD89xN9bu2jbEFXFqvTYgqb4vo2qgymV9k1xurctjcP3TFCR4++Zl0YuhPg/C+9UxgEVjt+P\nrDIFt79Dw1MQ71zZ2qX7lcs1yiPwsQ+8aQvEq3/o4tJ6qlLSClOwQw84noJtRG7tYiRsSAbExUvq\nGC7/P898qowHRpTA3K5S/My555NnII7spZaKlP1k3CKhVLOrBhfgXFFdL8jVdCc3Pbz4jvhaZ24z\nfq3dRft96tWxX8DcK58at6DTpsjK35cKG+HxT4RhW47Ifa71q3I2LdeotYu2TYoQQiR96nqpnDY1\n17K0XNcP507Z/6D0PFnUUkZO0/U3bO1CREREREREXoUno0RERERERGQ5nowSERERERGR5Vgz6kZy\nzWhhkzJlfHTILJiT6w/mj5usjEfNwvYszkh/3Li27JXMNsr4hVrbYa7LNOP1bnvsQ2U84tAQmEvb\nizWxY3uuh9ioZtRIaV/sE9CkJtbEnl3U1KX7FUKIxx//Xhm/98VtBks6J6wbFlENbrxHGS9c2Qvm\nQnKMawY+f2iy7tz9sx3fT3yxZtQZ7qoZrZQ6GxQ0wgLA6CPW/H9Prhmdmt1IGT8WhzXk7qoZDeyO\n771akYUQZ67Rr3eWFTTGequwDNcbaOydoD43yZ94vu2BTK4Z3fOI8TE6ccVYZRx+xLW6M3fTPoYO\nr7v+nLe5bw/EG3dg64NWSWeU8fGLNWAufF20y+t1RkEj1oz6sqCWai140BbX95mb7/4d4sUH2kEc\nsi1KuOrtcXOU8QuzHnTqtkY1oz7Pv0sqLasZbXL9cYiXt/4J4up8bn4/5l1lfNvcZ2GONaNERERE\nRETkVXgySkRERERERJbjySgRERERERFZjjWjblQeJRUHaU79w8843v+yOoK6Yl1XvWjsZ3pki1pr\nZg/GXSH0ovH/Km4ZodZMrDqZBHP2FbWc2k4j5ZHq+L3xWGs7Yc0DEMftkor6DFSEYaxtjVqi3xLx\nimJ7qT3Uzh3Hxz6932cQPzN3rHDVnsfU2qyUqa7n9bNm1HETHvtBGb/9680wF3YWaxvDnOixWB2f\nPYfHznY2dWe2qq9oidQbNDTbvHqXCk1pZFB7rBOv2Blr2nrcpX3/fRBre5L2GrwT5uqHZUP8anw6\nxMkz1dczAFsXOqWoPtblhp9xvS7XiDN9RmWPTMQe2m8vH4r3fUn9TJJrbatTq+oM1oz6Nm2f0YKW\npTAXedD3PxhZM+q73FkzGtXlgjLO31zbbesxwppRIiIiIiIi8io8GSUiIiIiIiLLuSdPh4QQQoSf\nsyYV10jFX3j5+wMtIyCOgFYizqUIrJzd09XNckp+azWVpmMoprRFHnE8LVemTcutymP3LoF4wYku\nEG9sp7aFSfkN08Wqk5YrazXvEWXs7Ju3tIaaNh5ccHX9H6pUk9lZKLURiW+EqewhQZgLOTb2hDL+\nZLd3HDK1ablCCPHS+VRL1rv7Cf02JO5KD/aFtFyZNi1XtnFpe8Pbfiuuh7g6iVtVtY3RSpnu+TY4\n06cMh7iyI6ZR/n2QmsbbfccdlmyTLzowejrErT57RGfJq5s/pOWS+b697wOIR3yhn17qrUpq4feY\nD1qr5UZPbzbvO6lZrq5vpEREREREROQVeDJKREREREREluPJKBEREREREVnOOwqgyDIRB0OrXsjL\nRNUoVMb3HbwT5kLyrdmGqV8OMZxP2WBOvZW2dcsV1+NEO5fKULzEuy1L0xZBWk/rWZ6vF3On4EL9\nubJl8RhL861OTVDGTnb8EQW91R10btd5MNdE2qhLlerhuNKOlYIPpo2C+Ms8bB+0+OveTm7ZlZXG\nSvtMDm6HM3Wh0kMQAV7YcaBNvwPKeFHz1TCX+NM4iMNOuV6f7g2GHxwA8YHVzS1Zb2F9fOGTex9R\nxotbrjC8beIP4yH+z+IRyrgiElunXVZZLP2rPae1WkMV1xivPVDyB76fCpurtaorbvoQ5m5Z8KzR\nJnulFt2PK+NDfzbx4JZ43u4n1c++th/69+ceuUa+JoMvCr2I16x5+nPvqxPV4i+jREREREREZDme\njBIREREREZHlAux2u8eSp1q89b4l6znwgHSZ83nWXOY8JL86F+X3AZo9x5bruc1whxJn8zFdFN79\nAsRFf9a2ZL2+kKZb2qQEYttxx1PM943Dxzc1u5Eynj3VOOXaGUXX50FccTQK4pBc9RggdSUS0/82\nBeKvs7op48n1tsDciXLMRx887Xmnt9WXVHigmqAsCj8K3XX8DqisehlfFnoR45w22GLgyK2f6N52\nbymmrk/NvAHin3a0U8b/c90imHvl27sh3v8gfu5rjwGPxZ2EuQ6v6x//sq/BxP2Qi75X3SS3etG6\nrO2Lid8IG3Q5o4xPb65v3h1Xg/b7oD+m6crHMb/i51+pA8s88wCLG2ELrbCT5rQ8qnPtGYjX93tH\nd1n+MkpERERERESW48koERERERERWY4no0RERERERGS5q6Jm1FP8vWa0LLVAGUdGYH2fWFkTwkqp\nK0J+U7VwKuag8f9EslPLlXFcmnG9Tv61WHMUtTHCcHmt1Pt2K+MtS9s6fDshhFgyfpIyHjLT++v5\nfKFmtDrkmtH1xep40aUuMLf1QiOIC5fUdXg98n4dKPeF0dj+T9ymyVlNIV50sqMyPn0Ma4fl/b4s\n2uFNtMxLY76C+PW597h8X87UjO6dgM9r8kzNvuyF5VP+UDNa1BB39HBN2xu5ZtTI9pfwtRu8fzDE\ny5KWQdx9xx3KODa0GOYOHMX3bdw2/bqnzqN3Qrzls/a6y+Z0w/UEn/G99mhOkd4z2hpLq6634U5y\nuyqzlEfiExdc4Jnvf1dzzWivfmkQf9r4N2WcNMe8fVeuRzfrvj1VM2qV/a88rTvHX0aJiIiIiIjI\ncjwZJSIiIiIiIsvxZJSIiIiIiIgs53sNs8hrXJt4RBnPbbwB5jqsxBpEuZauqjpRraNDZ6r3m2Zc\n2+hMjahsw47Wyji8imXlmksh1P6ST9z7A8x89OUwl7dp8Xjsy9QqJFIZp0z1rzrPqvQbvBXi9Gy1\nRiwzL0peHNQKLFLGH9XfjJNSvDUJe2499O5TuvdrVCMqhBAvPfmF7txTNY5B/PEOtadi+Gn3HZoL\nG6p9HyNOBTl1291PqPt9249w/7s7Ogvi113YNjPsHa9uY/Inrr9Hlj04CeLEENzHmn03QRmHXnDu\nebRK36Hqe+bjBptgLmW668/N0SGzdO+rzh3HYS5jURPd+5H7e676Bx7v2r33HMRB6ttYnJfuS24N\nXSmVdgZqLmtgVCMqC7xgTs89f+Cpnu3uoj0WCiFEk9bnIM5c3cDh+3JXjejrD82HuH6wdJw9gX2z\n969PdMt2+ILfVqdCnCTU2Mw6T2du6676UvlaCbLqfPYZrces+5Xxl1EiIiIiIiKyHE9GiYiIiIiI\nyHI+09qlWfcTEB/5s7HZm2M6f2/tUthIbbkiwjDdJW4L5kht+Ae+1iMPD1fGJ79pZrgebUuMDm+Y\nlyJQLuXiBmtSwErknK9qaHwjpq2dWKOftnZ5+i8yKzXXH1q7aNu3zMtNgLkHYjCJL3HJOGUcEI77\nauymMIifnvgNxK9sVPdVo3YRQgiRkyTd9341fbPr6O0wtz2zIcRly+LVoP8lmLu5STrEi7/ubbgd\nRoxSbY2Wlcm3NVpWCCHyK9UWGd0/fsZwWWdau8iM0pdaLHgY4pA89f+xS6W03OZSWq5Z6Un+0NrF\niNzaJb8pfsWIOuaZz8VKzVs3sFR/uaoUNPLj1hlCeGU7JDMZtXbZ/SQeO9p+qP+er3PTKYgzVjXU\nWbJ65G2SydvoTGuX/WPVFNKkT30g5dq/v1JXq7VLRTi+7gdGYXqwq59fZqbpsrULEREREREReRWe\njBIREREREZHleDJKRERERERElvOZmlFf5O81o7Yc/bmCBrhb/X7/uxDXDlJblJhZB2oWM2tGnSHX\ncrqrfUulVPp4Tb99EO9Y3Vp4u/IWapFv8CEsAE7ofhbi7CK1LrRsRw2YC8s0b5sGPfQbxD/P7qWM\ny/tlw1zwav2d7NWn5kE86fBAiLPX1RXe7qUxX0H86pf3KOOgKmr2qlMz6qriuuUQh51zT3sdZ2tG\n9zyiHhOq046lOorrYC10WIZ+Kxu5ZtQZBQ2luieplUjij+OVcdwuE18f6aM6p7X6eOu3xAPE+e11\nzFuvF3r3js8gfvbb0R7aEvfQ7lNGNaHuVFVt6vePqi2OHtx7P8xdduyXvsE7UzPqc3zgK3Wf/jsg\nXrfyGodvK9eM1u+NdclnNrinLlmmrROV2zcFlTj+IlTacF88+A/9a0Xwl1EiIiIiIiKyHE9GiYiI\niIiIyHI8GSUiIiIiIiLLsWbUja6mmlG79G8NueZL28NTCOwdKnvuXAeIV3/aw+FtKovGOCTP4ZsC\nd9aMfj1O3e/vnmXcb9Fd5JpRmbaHpzt7kIa0U+so07otcOq22u0qqYP1fnFpWE/27BMLlXGjECxq\ne/J96fFV44iYk4K1dTMGzFHGE1aNgbmx166H+HhRLWXcJw5reP8nHWtGxV+xrm+kD/BEzahVzOwz\nqq0nvZLWv6n1ZoFp0QZLmqeqmtHszmrBcNwW4wNRSU0pTlI/SJIbnYO5098kQiz3N61IUNcb+5fx\nDpbdSV32qxs+gblRCx83vK3P8+OSQyEur0PWuqxnZ8d8iEO2Ye9hV5XWwCfZloXfFY16i1ZV58qa\nUcfsfxD3g6Q5nu+zWp0+o97I1iEL4rShr+kuy19GiYiIiIiIyHI8GSUiIiIiIiLLuefa9VRthQ3V\ntMOIU97/MsmpZ3IaaHYK9nLYWKze4Jf8FJj7YUV3iCOFvpwuJRCHHcT0K+12lEipMXJKROglgxVV\nQ3E9TN1sZwvTWdJ7uDM1V6tsl5oP3XqX6+sMzTB+j0w+eKMyvqkBpsAG9Me8QvuKWkJPcTzGcluY\n2D3Y8uLpU+OUcVBqIcz9dLoNxLXC1fl3598FcyHSdsjp6L5u9xOYlpb8iTn7X+PrTkC8InmpW9Zj\nlY6D9kBcVasXb/xvc1WpuVryMTn0D7WF0+k/MC03rxl+CEUdx0cfcMzx3O+Y3eo2zm93rcO3u9rJ\nKbByWwhfUzOmAOI8oZ+mWyl9BAWWX3k5IYSobFQMcYseZyC+IX2YMs5c3aCKrXTdy3d+o4zvjTbO\nr0/61LdfS5k3pOVaSduu5e2LLWFu3qKb3LLO0u3YRk8M1V/WGz+riIiIiIiIyM/xZJSIiIiIiIgs\nx5NRIiIiIiIispzftHYxuly3p+oWqtPa5Zn7v1fG739+G8ylP258Of+kDaOUcfBOcy5FfiXa1i4y\n7aXxhRDiHz2WQTw+FmsktFqtHwVx5Ab9x5CdioUZAVIdaEiC2gqgNAtrNaMOY5FHsKakrzqtXUpq\nSQW0CVjXGro3XHhCaQ11u4IL/Ov/UMGpuDOGrMHWJ6Wa8LL9Vn6b+sCV8f2tZlTG1i5XNnn0LIj7\nR5RBXFUNqRWqau1ilkqpkDqw7MrLOcTgGGDHMnBRWN8HDhDVYfDw/KEmVPsYrku7FeYura1n9eZU\n2+j7V0A8+7/9Xbqf/WOlVifeWCPqX51PRGldPGh91RfbSI35bKJp69LWjMqsunbC/lee1p1z+co4\nP/74o5g9e7YIDg4WTzzxhEhKShLPP/+8qKioEPHx8eKdd94RNpvjFyogIiIiIiKiq4dLP49kZWWJ\nqVOnigULFogZM2aINWvWiI8++kiMHDlSLFiwQDRp0kQsWrTI7G0lIiIiIiIiP+FSmu6yZcvEX3/9\nJf79738rf+vbt69Yvny5sNlsYvv27WLOnDliypQphvfT6j8fQBzX5bwyzt6c4OxmWW7fOPzZW26H\nEXZB/7bxw09CfCQNL98dfdjzaZSN7zgC8bONlkM8/gsvTOMwidyaxt8cGIUpOW2m4L5b1k69pH3I\nLqPmOtaJ7IV9VHJ21FbG+8fg40mZho9nz6P6KSrysj7BzzMF9zymvl5WtRmySphFaayeUhTv+M75\n/9q778Aoyq5v/FeS3WTTgCQk9BZKSCD0IhikiTQFpIkIWBBBiogIIo+v9+2rjwVRb5oiGEAFNIiI\nKAooAqLSO0kglNBDCBDS227298f9e2fmXDCzbWa28P38dZ1cszOTzezsTvacOY6mBvo3LxTGpTm0\n3MEYSdtl+J3R5rxlLKK5giU1ad518HX3v3e7wuLj731Wg3tOnmUxYou3zEHLyFzzL9T7LBVQ6mO5\nrBJ8+xxfE1Buexk5Vu7P3uCRCyQ+my1+Xpqc+CeZq23MJfHqrC7C+Pyvsc7vFCftXZXTdK9cucJK\nS0vZpEmTWH5+Pps2bRorKSkR0nKjoqJYTk6OjbUAAAAAAADA/crp/zPcuXOHLV68mF27do2NGzeO\nSb9gdeM9kQAAAAAAAMALOJVPEhUVxdq2bcsMBgOrX78+Cw0NZaGhoay09L9pMtnZ2SwmxvPTbAEA\nAAAAAMA9nKoZzc7OZnPmzGHJycksLy+PDR06lCUlJbEOHTqwwYMHs3feeYfFxcWxESNGKK6HrxmV\nktaPMuY5NaTd+h0Txru3tFZcVqlmlHf0dfmatjbv0ZopC+1QclcevbGQOYXfh3/ltCDxj190J3Gp\nA7VB3sYXakb5utBmX71o1xxjjBnz1Kk7KYmjbW2mdthB4l+zxWPs2u/1VNkmY4xZ2haQ2P+4fC8U\nvp7UK2pIffelxxjz/tffiefp/RKMfmJ/kDbve8Hx5QJHakY9VUgrsYaq+HgEmeNrRr2dlftKgv88\nEd5ZLLkq2Betwx5py101o3pBzaj3cqVmlFfSooTEwan6tBQsaii2Wwy9QP9gqteM1qhRg/Xt25eN\nHDmSMcbYG2+8wRITE9lrr73GUlJSWO3atdmQIUOcWTUAAAAAAADcB5z+P8OoUaPYqFGjyM9Wrlzp\n8g4BAAAAAACA7/Pue5ADAAAAAACAV/LYDOy9bdaT+Gg8rT0b9ZV87jFfb/pNi1Uk7rd6ljD2M9P8\n+v/75BoS9wq+RuKkFbOYvSqNNPavEMd9nt1D5vj6zLeiU4Vx3WGZZO6N+j+T+AFTAImHnu0jjM9/\n11RxH5VqVb/elUTiKoprAk/D14FKfV9I/5pq1YgyxljqNPljipe8pp9q25Uan/APiVce7yu7rFfU\niNpQv/dFYXz6fC0yF5zpfQWYvQYcFsZ//NLOjXtinz3PzSdxhwPjSVx2TKw75Er+WTlXzhxYwDwe\nX7vlb773ct7qSMdvhXHccd/qp11anfZFNd1U/k5CWieaPome2+OXev+5EzxLv2F7Sbzl+wecXpf0\neL3fjlW+RrQoVrwAyXx0OZnrmTqYxDnb69i9HWmNKGN314naC9+MAgAAAAAAgO5wMQoAAAAAAAC6\nc2ua7qkJNOWj+fLJ9xw7im8D0//AbBJLExL3jf+IzFX1p19tN1v1KokduXoP6kV7uxTury6MN6S2\nIXNLuqyVXU+FhabhTvpkmgN7Qb0/PdnuZaf2+o3ES6O7kdj/TIgwPvU8bRXC6502iMRX/7E/DQDU\nl2OWb3XiqhaL5F+70T1p2ntptJgyZspR739jK7+labmhD4ivxaK91fnFvd6W5pvFoLnysglL3JOu\nFNntujD+q9UGMhf7/UQS65WaKz3/d06e6dBj6ftXCJmTpuXa8thwmlJeYqH1HTu/6SiMpaUeeqo/\n7DyJL+TS38+8x/7fV8mLQ38l8csRF0gcl6xPyqxe21FS1IBLf7uozsc1W2m5dy3f/rYwvmKmfeOq\ndckm8Z09NZzfMQlLMG2/8srgTSRe8C1NKwRR6lT5MpnRmT1JfGxzvNa74zCDf6XthWSEdZLvpzh2\n+HYSf72+t9PbcZeySPF1Ya5iIXOGfHqdEHSbll6FnhffV9LLi8ncl3G0PHHAdnrNJHXyJeUyrEFn\nxNKr87/GKi4rhW9GAQAAAAAAQHe4GAUAAAAAAADd4WIUAAAAAAAAdOexrV30wteI8vwrnG95UbGV\n1qb1efqAMB4acYjMteTu5z83u4swzt5Y3+l94PULoS1yPrzdWBjPijxH5l6JpHVCr3SncfMz9tfV\nqFUjumwMrU19iOuT0OzPcST2zwhVZbu+5qNNtIZXr+YfOTtqk5hvc6EVX6wT9TQNH75A4l/ifpFd\n9qVrHUkcdIvWu1jV6zSkyNE6Uakma8Tzn6HY/h0ubEBroj6ocZTE24ppzejZR8XWGpm7GpK5oNvM\nbgWxdLvGfLrP5dXEeT8LnTMF0GLV+tXu0JX3F+Mzu+k+OuKzDf1J/PJ45XsR+DK/UL5fjj4f194Z\ns5rEw8LyJVEYmVOrRpQxxl4fvU4Yj6siX/vHGGMLVNuqb8usoDW+oYZyTbYzaxxtxdg8MIvET+4Q\n7wkQck7508bP33W1e7vRD9Lt/Jn4g+yyWtaItu2bLowvFtD6ef6eL62ri/fN2L2ltUPb2TjyY2H8\n9tWBZK6mKZ/EP6UlkvjZ1mI7yRFL6b1wlPA1omVW+l7QftF0u9elBN+MAgAAAAAAgO5wMQoAAAAA\nAAC6w8UoAAAAAAAA6M7ParVabS+mjWZvf+KuTevCxJU95LWW5OtX0pqcqidonZAr8ptJ+g9Vofnd\nUVG0huDlpmLvpafCbymud2YW7f23eXNnYWzmSm8NJfbsqets9Tdt/oVY11Ven9ZLnH+E9lxttOkF\nYWy8Q/P8fY0xT6eiPE5pDVq3ZsrW5v9hVt/+8zHmprN22hT5HmM7S+jfskcw/Vs3XjdJGAfZ6Clb\nqVcRsxsE5dK4weO0Fj8qqIjElwrFGqSsnXXJXCAtE1JU9ADtLfdiqz/pdsoihfGx27TG/+LpmiSu\nVp/WjPapd1oYb/y5C/NlxiJ67jSH0BejtH64vA19v63IpVXyxjzxRFVRg74/GW7QF0FQrj7n7Pp9\nL5BYWvsdv1S7HsXpk5T7F0rlWuix3H7TDGEclK188rca3PaRVxfSz0TbS+hz8VLyRH5xuxXHcsfn\nLfEz65mxyp/DWixW57ip5MqmayTRvuU7W24ksfSeKCvW0d7janLk2FXScqH9z5Otfp+OrIv39Jit\nwpi/l0zjlEkkDnbgM1zauzNk5/DNKAAAAAAAAOgOF6MAAAAAAACgO6TpaimetmsJChRv1e63PYJf\n2ml1h2WSuG90mjB+tuppMtf141dIXFxL/PO365JB5jJS4kic39xC4sBb3vW/jAYPXibxxb/ryS7r\ny2mCjOmXpmvhercsfGo5iWckT9Bku0jT1V5FFboTfKsQV/jy689ios9bTOtsEl+7HEXiKmliOpwf\nPQU7JC+Btgp51HZBKgAAIABJREFUr+d3JD5Q2EgYH75Nz425P9nfmqsk2gMOTg3xabqjR28ncVKY\n+J67IbcDmdv0d3sSh1xz/kRV1ERMm2zdlL63ZRfTFiy388UWZ8YjdI5n8cLXnjRN0lYqsa+n6QaU\n6l+CUxJXSmK/APocm9KUWyjai0/T9Qbzx60g8cAQ8bkandmTzB3/KV6XfbJFmgL8wa2mZO7rNX2c\nXi/SdAEAAAAAAMCj4GIUAAAAAAAAdIeLUQAAAAAAANAdakY11O/R/SQ+eku8Lf+VHFozGrbX+Zz6\nKo9mkfjPxB+EcZv3tLsVe6kDtUF87WBA6b2X0xLfBkba9oXnyzVrjDFmCeRqOmy02nBWcSxtLRRy\nXr0WRkq8oWY0bTK9NXvCpw68Vn277Mktrz9rc9qGw++Ucm2dswJb094uhzquJvFNC+2L1W3dq8I4\n7JLzr9Paj18gsbRlB29vKS1OffIP2hKi6nH5P5Cv14zW7XKVxNsTNtn92CY7niWx6YT8+35pddoa\n6cATH5M4IiDE7u1mmcVju+eqWWRO2oqGMe+sGXWEr9WM8p9rGm15XhiHnPWtP6Y31ow6IqDc9jJa\nKGtVLDsXdNz+84wtqBkFAAAAAAAAj4KLUQAAAAAAANCdj3/p7V7bUzqRuKi+mPpU5TTNI0wYlU7i\ntG/tv8Vz/s+1SNzmZ+1Sc53ljrRcnlJarpoyxtG0mWZf6bNdRziSllsWRdPFFgxZReLZyc/JPlav\ntFxeeTxNdQxMV+fW8lqSpu0OP/cwndvaTO/dcVjalE9tL/T/ezmLtrzYtqGTzJL60Sotlzc1bheJ\njX70vaCWge7H2dFLhTHftiLojvK2gvuLbWM+arSem5VPv3rARPepYYMcEucet7/Vi685fymG/iDB\n/sdaiuU/cpnb0VZwryf+RmJH0nILK+kb7v9m9xbGfFoueDf+c01AiJiGfHzKYjrnR9/3WyxW57Pi\nr5Pmkbj/0tkkTp0qvjeotU1Qj5qpuM7CN6MAAAAAAACgO1yMAgAAAAAAgO5wMQoAAAAAAAC6Q82o\nhgJo2dpddaJSjtSIukt+M3q7/8Bc/C/jXvSqEXWlNnXa2B9JvDM3jsQnfm4ujNt0PkvmBobQeiRa\nHUJVhNPb6Gc8Q/e5xSKxfmTkqJ1kbt23PRTWrMz/Eu0lFNBeLK6zHKrm9HrVVGalbW+C/MT6Wm+o\nEa3+EG0plbAEtUD2eG/XoySeV0TPo2efXMrkhHS8SWLLb9UVt1VUJrZ2iA90vi7owtkaJK7q9Jq8\nX9smF0nccqH9x72xinxbEcPhcBK/e20Iiedz77eltcXzR2ime2rzwfME3RaPk1ZLpmq2HVoHSj8F\nNHokU7Ptgm/C1QQAAAAAAADoDhejAAAAAAAAoDtcjAIAAAAAAIDu/KxWq3wRg8aavf2JuzatC3Mo\n7c8YdtG7rv0raAkLs3Ilr5VGtx06mqsMtL2MN/Oj5YoO9Z5LnUb7SUrrPm0t23r/kyQ274uwe7uO\n4I9VaQ9PXsKnyjVflYHice5f7liPPul2bW3HIR7w0uP7is663pbEm7/v4vS6XXn9nZog7lfz5frU\nsSb0PEPitB1NZZc1tqLNQQN26FPDXNiAvh/xtamNtjwvjPsnniRz/3zdzu7tlER7wMHpIHMo3WdD\nkfzrvH2vUyQ+/pPn3+/BERYff++zGrzv+HREQKlv9ZGtlJZD+/afjgWUu3sPXNd3xF5hvOFwezJ3\ncbz8HUa86+oIAAAAAAAAfAIuRgEAAAAAAEB3SNPVUBDNxmJ+Zvfsh1ZKvTAdy16+nqZrzFNO5ZH+\n/v46pY7wqbV+lnsv58y6XEnTdUVpU7ENjumMSWFJB/nuS48x5tuvv5pdrpH4zs+13bQn2vCUNN3T\n42kbqbhkdVpute6ZQeIDGY1IHJrhXQdvUQP6wcSU5dsd/5TSdB97dC+Jf/r5Aa13hzHGWFkN+jcI\nynb+b+Dtabqzxq0n8Vu7Bgtj01XfbmHkC2m6Id1yhHHx7mgyl/buDNnH4ZtRAAAAAAAA0B0uRgEA\nAAAAAEB3uBgFAAAAAAAA3fl2cYCb+VqNKKgvYxyta2r2lTp1Ta5SqhP9ZPxyEj8SQvvEKLV6UeJK\njSiPrxGV1oVauX/BqVlhM2bkdhKvXtdbxbVrL6xrDon3t/2OxAlL9GmV4stu7KY1ot5VYehe0jpQ\nWzWgatWI8g6cbExi03X6MaooVjwfhp73vBq3u1q3BGhX47t7wofCuNvyWZptRy161YjyXKkRVUuD\nPhdIfPpqDRKb0oI12e60MT+S+MOvhpPYr46KHwzAZSdfkr//BmOMtVzo3GcEfDMKAAAAAAAAusPF\nKAAAAAAAAOgOF6MAAAAAAACgO/QZ1VClkT61IVne3f+Jhz6j3stWn1ElI0ftJPG/otNkl3W2ftRV\nqdPka0Z9gu++9Bhj2r3+Tk2gx0Xz5fofF6Zbum9SV3r1GdWqj6gt5nD6+wVf1+d/+pVc+al/xb2X\nc5SVeyvgt+NrlPqMamnPsx8J48FpT5G5PxN/IHHzL5w/lj29z2jrgekk3pPahMT+wVzf23SxVrXS\n/aW1mvKGPqNHpi0icdtF0+x+LPqMAgAAAAAAgEfBxSgAAAAAAADozse/9NZWecNSEhsvBZE4tEUu\nia1ZkZrvk5Y6jz1C4l1b2rhpT8CdLpREkdhdqbhqMbcoIrEhNdRNe6KPsvgSYRyUrs3t+j3FvNGr\nFOeb9zgnjE/tbKywJMB/GQrckwapVlouz8/HU/555RGVwjgwl34fUxZN24gE5QTIrufU8zRNnE+t\nLYuh64oICBHGfFqu0rpdSdn1RMc2x5M45K4lfDxPXCNF9Wl6c+gl+y/vFk9YSuIewZUySzLWcqH9\nabmOwDejAAAAAAAAoDtcjAIAAAAAAIDucDEKAAAAAAAAunNra5eGi+eTOPSyfH6+J1ryIm0T8JCJ\nzsd/7nwtXZ/HDgjjT2rtI3Nx39L1GvPp/xSiu2YJ49xiWhNmPlrN6X26i8KR03XAcRIn1/+LxBar\nmJPeZOsLZM50wf19VdIn0b+tN9ZF8u1NpOKXKf8+6S+Ij7W1rEeSL3nwWOVNxVrOwDPKtZx8/Vjv\nYeL5Yuc3HVXdL7XEDhLrMzc23Urmmn1F66IWDl8hjPuFlJE5V86rnsAc6ttFeoYiz24tYY+pT/wk\njKdUu0zm+DZR/3lmOYlfXjVBGFdwbWCMXL1pZNJ1YXwjN5zM6VW7XtKI9pMIuiL//rtqLG3r8IBJ\n+TPbV/nVhXFH0yUy968rj9F1VcsUxot39CFzgbfV+2zob7a9jDcLvOPc4/hWfcMH0c9s2WVVSHzi\nVi1x7hK9H0poDL0PwxdtvhLGT+6cSOaqHrH/854lyPYy3szqXZdADkt7D61dAAAAAAAAwIPgYhQA\nAAAAAAB059Y03RavfeKuTTut9eNpwnh1w51krvG6SSTmbxvurD/GzyNxt9301srGDDe1Z1A4cvg0\n149vx5L4lcjzwliaysMYY/NP0RSd9W2/EMbNjDR1KX6pNil7Wt1GX0t8Wm6TtfR4DLolHo+VNtJd\npGm6PL3Sdo9OWEDiNsun2/9gD0nTLasu3t7/7b7rydxT4bdI7MixbCySn+vyBG3BtCelreyykX2v\nkdhkoAf+rWL6eiv+R3ytBtDs2buUVqcniE7d04Xx8e8TFB9bESaO0yfSYxFpup5NzTTdskj6Qg66\nLZ7D3hvzFZmLDsgn8QeXB5D4zB/0Pche/PHHp+m6ovkjZ4Txhia/OfTYmxbxJPDQ57NU26dKhc4a\nsQ9dIPEvcb8oruuNG4nC+J2YE4rLFleK6cLtkl9WXNYV3p6mm8aVhyV8Ro9HZ9N0bZGekxljzFio\nzXaU2ErTNXN9YgzF2u2LFpCmCwAAAAAAAKAjXIwCAAAAAACA7nAxCgAAAAAAALrz2JrREzNoXvzO\nEnrdvP42bV/QJCRbGC9bS2tFqiZlk3hMg/3CeOlKentxHl/3dGbsZ8I48RPl2hE+f10tFWHc7eIL\n3XQrfQdqRpUcLaPFZ0+upHnlhrZiEYT5iIqtaRR4Y82oI2zVjErx9aO5FlqI0TX5Vaf3Q1oXGuRH\ni5WumGlRSp8Vs+1fMVczKj0etaozvhdpu5ZzvVeSOVf2Q6lmlFfcnv69Qg6JJyYLd1d9pXZAjDHW\n/tBIYVyxs7rCkowVtKSv6/CT9h90SjWj6wqrkvhfa56ye72e4H6vGS1rJB4XQZnKx0Rcr3Mk5lsC\nSX14uzGJZ0Wek1mSsRsW+gLq/oX9NZd+FtvLqIFvGTPt0JMkDjjBFfHZyRxCjz9DMf17KdWMtnn4\nFIm/bfQHiZfcqUfiRd8pf75yB2+rGeVrRHl61Yx6Als1oydeoc9Vu4NPCOOKP6PU2w/uNi3Sv9G5\nCvq5pf8aem4Jui1/fkTNKAAAAAAAAICOcDEKAAAAAAAAusPFKAAAAAAAAOjOY2tG35+4gsQDQ0qV\n17VIzJsvj6C/UqWRxjXjbwjj3L9rkrk2/dJJvLbRDtltNl9Oc/X5vkta1Yx6DBdqRpt8I/bANObp\n8z+Rmt2ukvj67jqyy2pZM1pWXSxorNniBpnL3VWTX1wTfM2oJY7WUAWcpv0lNduPAPEgOj3+MzI3\n5kIPEh/aJt+bsmnP8yQ+s532FFQ6HmN/mEjioGz1CjcsCeJJISDN/hovfn/5+lJHakYdUdCcHvgZ\nA5aSOG79FGFsDaHFc+2bZ9LHbmzm9H7wPe18yf1eM8qk0xo+FZUGunJ/szr3VtCrZtRdlGpGfYG3\n1Yz++cKHJH5omXJ98/1UMzrmadqb97WoM0xOy7303gJ+/1SVWfJuVgON33xuDYlHhuXJPjb+77Ek\nNuwLl9+OB9aMnpxOP4u0XOD8vS5QMwoAAAAAAAAeBRejAAAAAAAAoDuD7UXcY9bK50gc8GwyiX+5\n04rE0tQLUw6fjkPj/GtiKiT/rXihmeYBDDhN28T8EveLZLU0DejEDJpmGP+5Ni0kaiZx6aZ/yaeb\nukvsepr6eH745ySe0X+zMF78rT63f+fTcktr03wd0zV9Xg5BN8X/AemVlmtLRR497vXKFvG3iK/N\nVfkxZE4pLZcx2nImfpnya63xH88K43O9aIsVV9Jyj05cQGK+PY0j7VtcaT8jTWvlywV44X2uC+OC\n3+jxF36K7r9xIH1uwi6Jx+6wcX+SuVUHu9J1Ke+GxzMHcy0wStzUQsvLlTYoJ7HpYqDMkupSKy1X\nL2mTaTpcwqf6taACz2UrLfd+UtSKlusppeXyalXNJ/F1Zn+ablk1+l6glJbLS3/waxLvbCe+h85K\nH07mSnYrt0tzRbOB4nOVsbmp4rLS1NxmX75I5rQ6e+ObUQAAAAAAANCdU18FFRUVsddee43l5eWx\niooKNmXKFBYdHc3+/e9/M8YYi4uLY2+99Zaa+wkAAAAAAAA+xKmL0R9++IE1atSIzZw5k2VnZ7On\nn36aRUdHs7lz57JWrVqxmTNnsl27drHu3burvb8AAAAAAADgA5y6GI2IiGCnT59mjDGWn5/PqlWr\nxq5evcpatfpvHWfPnj3Znj17XLoYDaBlJmxm8ngSa3V77syfYxXnE38R6zj4O6AfKuN2WiUVVSpJ\n/ESdgyRewDyvZjToJq01c7QGzln+rWku/77OYq3x46dHkLkru+qptt2AzrnCuLKSZr9bD9hfm+Au\npuvuLx//4NvhthdyUmBGsDCOz1DvWJyVReskF9Y+QGJH6kBdeY2UxYq1NMbjJsVl+TpRJdtL5Otp\nv/2hB4mDEgpIXNianreCzon7Zauu9egLYi1um2XTbeylNlAjqg6takTTJyq3D9Pqng16KYvkXj+3\nUVXlq0I73yTxgXbrhHHCZ+45jvOb0x5Gs3v+TOJFqwcLYyM99WumcZ0cEh8tKyNxmyB674uR53sL\n4+u/Ov95zxRnf42oLT2Cxdd1aYV+n7s2NBHb4LRkyjWj0vYt+lT4O1kzOnDgQHbt2jXWp08fNmbM\nGDZ79mxWpUoVYT4qKorl5OQorAEAAAAAAADuZ05dlv/444+sdu3aLDk5mZ06dYpNmTKFhYeL9060\nWn27qTcAAAAAAAC4xqmL0cOHD7OkpCTGGGPNmzdnZWVlzGwW82azs7NZTEyM3MMBAAAAAADgPufU\nxWiDBg3YsWPHWN++fdnVq1dZaGgoq1OnDjt48CDr0KED27ZtGxs7dqyqO6pVjaia5pwfptq6xg7b\nLoznVj9N5ry9FkZLlcdofWbHY6/osl3LvginHlfcgB7YIReVX5JJjx8RxtsOJzr0WF9jq7eoHn7b\n1JHE8ayjzJLaCpPUiSaNOkzmTufRfwzm/FpXdj3lVWjcO9hy7wXZ3XVCfoH0WB7YOJXE3bucEsb1\nDblkbtziGSTm+7WCvs6MoT2zm65+UWZJz7GmIMrdu+Cw8vgS2TnUiGoj7UWx1pi/z0f7IOUKOa3q\nN3e1Wc39RNwP6f4yZrtOUnrvgSB6mlWU14KevzMHLSPxuzfjSKxXnajUlT9p3efYX2fILKmuwjvB\nJH45qwOJJ1ffJYybGUMV15VlFm+YUHKOvuEq3+3BMUVNKlRcm7ySlvQcFnwyWGZJZU59en3iiSfY\n3Llz2ZgxY5jZbGb//ve/WXR0NHvzzTdZZWUla926NevatavtFQEAAAAAAMB9yamL0dDQULZgwYK7\nfr527VqXdwgAAAAAAAB83/2V16exs6drkdiVr9y//l68JfWZ/p5Rf1vRjH4dbzzt3Nfx3qDrkGMk\nXl7vbxK3WOR8uk5xPTEdZmhH2qYnM4Gmmklvx80YY+sKJWnI7eh6/8xqS2J/bToNgQeSptd+Wmcv\nneQ6P21vJLZrmfHpRDK36ZkPuTXTlCNLV/EW96ld1ji0j7Hfi9sKu0BbxhQ0piliepUiPDXsD2G8\n5vteumzTG3hDWq4vlKtMaPWXMFZqo6SlksY07TPoUpDMkr7BXa1SlHT4/GXZOT5Nl0/L5VlCJDcQ\nzXWgPZWxUnF6+YFuJFarYV1Rl2ISh+4JkV3WUKTSRh0Ulkqf8+2pnUi8NVSM+ZZM1iAa+5nFv0no\nda4NoIqngNCz+pS6OJuWy0NRAgAAAAAAAOgOF6MAAAAAAACgO1yMAgAAAAAAgO5QM6qisEz6dJrl\nU98dsvfXRNsL6cBSShPafbn5Qo2gfMX51Gm0jkOphrQ4lt5ie3ffT4RxXUOYQ/s1MixPMt5D96G8\nLb84eLCyGrRtyvnHPxfG0tvz2yNQcri2+sj5mij+tvT8una8LNaUjjw/iMylb6K3/ufPfwHNJLVB\nF+hk+Dl67qxw7GXhNNSJgju9FnVGGCd86p5axuBztB6u0pff2BljlYliTxL/E+Fu3BP7/FlK40kr\nlY8TvyCr7Bx/TjZITslVj9K2Nkl1htL1GpRrSu119HX62WlRbgMSLz43gMTBNxyoe3UTaS2roYj/\njs8zvvNruUCb80tRQ3q/h4Bi8fc13bD/d/eMZwkAAAAAAADuK7gYBQAAAAAAAN35Wa1W+e/0Ndbi\ntU9sL+TF1ErT9VhuO3K0519hexlnSVN8U8tpu5wWgfQ22a60kFFS6dt372dMnYwijxXZ9TqJC36r\nqcp6zV1oerphTxWZJbUlTdNNn/ip/ILM+1p8mEN9+MTJGDMUeX5anS3S9gxBt+n/7P0s/NL2M3TI\nJfHxTt8IY3el6fJ8PU331ATxfOKJbV5cJjm9BObJL2ZLSQ16ngrOdv51XdpNTI0+lfS14rLfFkSQ\n+KtrXYTx5c0NHdpuUT3xdRx6Wb3v3sqr0edG2pIl6Jbzz5OarV308s7zX5F4ztpxwthAu/awtPdm\nyK4H34wCAAAAAACA7nAxCgAAAAAAALrDxSgAAAAAAADozntbu/Bp2U6W4VhMNA4ovfdycH8pqUUL\ng4Kz1Evm16oOlMfXhfqX6bJZ0EFxGb0Nv183sRbNujuCX9xu7qoRdcRNS5Hthez0y3PzhPGAFbNV\nWy94N75OVC3mg9xrs5Mmm2Fpk2mdtafUo3oCn6wTlXClTlRqxeglJJ7yyVSn12XaLWmhk0Tn/pPb\nkMQ/ZbUi8e0i52++omadqFTgHe+vi3dWrxEHSHywqBGJpXWikb2y7F4vvhkFAAAAAAAA3eFiFAAA\nAAAAAHSHi1EAAAAAAADQnVtrRosSaYFm6AmTzJL34ECNaOKQdBLvyYgVxmFptLCupC1tjBN8RL1m\nodJ+ee7qjcf37PO2Hn16qdqAFl6UZ0W6aU+chxpR31VcSmtGP2i3QRi/uXscv7jTyqvSE21gnvO1\nMmZJC11DifxyPC3PUY2MYbYXAtDIqMxemqwXNaLy6ve8KIwv7Wjgxj3RxitT1gnjj5eMJHP5Heln\n7ioH5D9zu1IjqoTvrb7wQG8Sd2qaSeK5jTYL45d3T9RknzwW93b7+QuLhfFza6aQOWOhNnWsJ6fT\na4bxl2jR7/bvO5K4om2hMG5c9abd28E3owAAAAAAAKA7XIwCAAAAAACA7vysVquTTVFc12DphyQO\ny9Qma/jEDPo1c+In+qSwmLkMXz5FVqrZqhdJnPHMZ7LLOpK2xm+zzFpB4jbLptu9rru47cjRnn+F\n7WW0YOVeAn5m+x9b3IAuHHKRrqy4ofhLmbKMDu+bV6nUZrXpk+Rfw4wxFr9Un3OLketuUin5c7py\n7BbXpk9cyDV9/l9p5rLF+NeBLzGH+vCJkzFmKFIvXYx//2qy8xlhbDytXgmNI/wstpfRQmUgPW78\ny7VJy6v08bcGfwfeU71R2ovia+aSuZDMXTDTsoQ3zjwujPN/rqXaPpRG02P1o9ErhXHHoFtkLsdC\n32NaBAaTuMfJIcL41rbaau2iR7La6CBY1FysvVrdfTmZe9BEn8fY9TSlOeSq/e0Jeww/JIwrrHS9\nn9fdY/d6Gn87icSZL8+UXRbfjAIAAAAAAIDucDEKAAAAAAAAusPFKAAAAAAAAOjOrZU5j3U6QuId\nmR1llrRtwOh/hHFmUZTT6+FVcs+QK/UGSrWefDa3K+0MpCnejqyn9SOnSHxsW3On9wGc40iNKI+v\nEeX5h0pX7uOFQRrRqybUUWrVOOtVI8obMvwvEv+wMUlmSds8oYUWqINvfeKuOlGtmMPE2joD15rh\n/adXkXjOl8/osEfg7bIkdaL1DbRGdF52ZxK3q35ZGO9k6tWMVjalLRL3FzUWxrGG22SOrxHl5f4q\nqRO1v+zRJ4WeEltRTjyl3HrHlTNlk5BsYfxyxAXFZedmtyJxhOSGFsHZ9n+ewDejAAAAAAAAoDtc\njAIAAAAAAIDucDEKAAAAAAAAunNrzejC2gdInMicrxn9oMZR2bnRmT1J/MDwY8L499R4Mvdzr0Uk\nHrVEvi+OmlKe/ZjET6x8xe7Hdu1/nMT//NpKZsm7Ne11XhijRtS3mVLF2ozKIIUFvUS1zmJdw519\nNdy4J+CqH9dxNaKB6qzXHEdrlww+VnPo7UrrlZPYdJn+4X39PUlaJ9r8kTNkblAoPXbn6LJHjFXE\nlpDYeF65pg88y6JbXYVx7yqpZG5xnX0kbv2BWFOvZtfabx6gPTALKsVG0vGByufgCZcfJDG5j8Z9\nXjNated1YXw9LYbMOVKfyTs5Xbl/ulTf9EdJfHVbfRIXJ5QK4/N3rXeG7HrxzSgAAAAAAADoDhej\nAAAAAAAAoDs/q9Vqtb2YNhLmfmL3skWNaO+C0Ez3tKZoN/ikMD5yvS6Zs+6rRmKLifmU9BfoV+7N\nVr3opj3Rnl8ljU8/9xmJ41Z49+8eUOZ8Uk7ai/andLgi4TPn23KURdI/oClH/L9baTxNQzOlK6eh\nmVuLt8pPanCezPEp8VFdrpO4qExMO+xfP43M/fid/e1LUqfS5zxhiee3LEmbYv9xwv8+Vh9Lx0qf\nJD4Xccnefe6wxerW4h/tBZSomdDoeSzBbvtIqAtDkf1/P2vrAhJHhottK3L/qqnaPimp1eMKiZc1\nXUvixkbavqXFYs9/b3CWWi3M3OnEDPn3RVc+8+jl2CRayth66TS7H3vqLaTpAgAAAAAAgAfBxSgA\nAAAAAADoDhejAAAAAAAAoDuvqe7o3PIciQ+G09sJm46Lt4vuMewQmXu/1i4S51jEe0U34vLtHdHy\nR8/P77aldpJYj3Dtr7oKS97f+BpRV2pI/ePEGsTK084ff+7C1zXw9X1+FvvXtfH5D4XxkC9mubJb\nhLRGlDHGnhm9VRgPDz9G5h5Nn624rtqRecI4uf5fdHIiFyvwhlqex4b/Q+JxEXtIPPg7seVU4B1a\ne/XymI12b8dirbS9kA6ktZy8+KXq/b3IuozKNXmnx9NzS6OfJgjjwBvKb9kvDfuZxFOqXZZd1tdr\nV91FekypeQyB/vyOhZP478lfiwHXQS92w0T6A+5lbg2VvDFW0HPnuAfoefe777oL4+0Jm8hc3G56\nTAWcoJ8hzGHiho2Fvl3f7I22FYv3u2kTdMeNe+IcR2pEHYFvRgEAAAAAAEB3uBgFAAAAAAAA3XlN\na5fSKLqbP474mMRjjz8jjAsKaasGY1oIic0txTTJHx74nMy1CFRu8yDVcqFyCg5au3gvvrULj0/T\nlfKGti+utHbxBkqpwoZOuSQ2749wejubJs4jsV632bdq9Ofj27Ek7htNYstBsX1VaS36JJ8fSs+l\nvKTjQ4Xx7d3KbRG0au2ilJa7KLcBiT9NGajadivCxfevgFLVVnuX0YNoScraTd1lltTO/d7a5a0x\na4Txa78/QeZM17V5clKeo5+HWgXSDx+OpAujtYt3s/XZxZvp1dpl1vh1JB5X5SaJHzrxOIlzf6+l\nyna1vGYoqSs+ecFXlFtjStv3qdluBq1dAAAAAAAAwKPgYhQAAAAAAAB0h4tRAAAAAAAA0J1H1Yyu\nnSTWPQzfQ2+TXTsqj8Rdo8+TeFNKklP7cPIl+Rqie0nOE2udzpXGkLnssiok/mcLd+9vH2MJ9OHa\nEu7fNH72PS4RAAAgAElEQVRmGpdXp/VymYOWCWPpMcIYY/O+p/UFSswh9Dk1FGtT33I/14x6owlP\n/ULiZWsHaLIdK1dK4sfV6HR+7IQwXll/t+K6EpY4X2tSGSS+DvzM3nes9hl0gMS/beoojCu51i58\nK5e7zh/r7T9/eIL7vWZ09wSxXVX1gFAy1+SbSSQ25jn/fYBS/TMPNaMi1Ix6L71qRk/MoK+tvumP\nkvjaFtpaUi3uus9MeXwxiQPTQ2SWdA1qRgEAAAAAAMCj4GIUAAAAAAAAdIeLUQAAAAAAANCdR9WM\ntnosXRi/VOt3MvfkTlpDGpoRqMo+TB33I91OlbMkfvXqwyTecbaZMD7bcyWZ63RkBIkLDkSrsYse\ny5drRp959A8Stwy+TOJZKU/ruTuCWp2yhHHWftrbauygHST+elNP2fWgZtS7adVn1BZT51vC+HCH\nFDLnSo0oT6s+o56Arxn1NXzNaMbT8j2Zm33pnp7MC0esIPFL3z1n92OtDUpIfKbHKtllHanVtIW/\nn8CZcfLPK7/dsE5in8QlLdaQuadXTicxaka9m141oyU1xTfZ4Ov6nLAdrRk1dReP+wPt1iksyVji\nJ9r0BHeEljWj0t6hWeZCMtd7+WztNiyBmlEAAAAAAADwKLgYBQAAAAAAAN151E3Yj/8UL4yfZ/Fk\nLpRfWCUf/ziIxIvzlFM4AiXP2KiGvchc8W6alltWl+YKtky8KIzP7Ih1ZDdVYzZxrUNKfTtlxVlf\nbupleyE34FNzpZTScn2RXxux3ZP1aFW37EPqVHoL+BaL9Un1GTqCtlVJ2Sa2tjLaOIe54k5mhDDO\naF2k2Xa0UhFHUyz5UgspNVMs3YVvGyMVl6xPiuyW4iASO5ISqyZpujCfHsynEiulDxtO0bYH8af0\nOU4cScvlFe6vLoy/r9NRYUmAeyupQz/PGgrE77JKatDc4OBs93zPxbdkkdpWTPuWTdxJS63CHNhO\nUT36XJwf/rnssqMy6WfJ1I3NHdiSNpLWv0riIJnl9IRvRgEAAAAAAEB3uBgFAAAAAAAA3eFiFAAA\nAAAAAHTnUa1dfM3Jl2j++vYS8fbXU7+eyC+ui/QX5HPqeRYrrQNouXwqnffh1i563R7dXbyxtUtF\nGD3ejIXyv4Ovt3bx73iHxJaD1VRZb2nTMrqdHNpCK/COPseNVq1dZjy5kcQvVL0mjPWqEb3fWrv4\nmoASfV4D6ZPoe7Vex6dSaxdHamvVpNQeyNH9UGrtcuzFRSTufGg0iUv3R9m9HSWdHz1B4v6Rx0k8\n55/hwth01rGKPl/+7GKrtUtRYimJrRXi921hp9RpB8mYcm2qLYWV4j4OSH2SzN38S/6eILyK+GIS\nG9NpLXtZBD0Qzo1aKowTPnPP/RDQ2gUAAAAAAAA8Ci5GAQAAAAAAQHe4GAUAAAAAAADdoWZUQxaT\n/NywIbRP4N85tO/omLr7hPH8lKGq7peUUg1pkx3Pkth4JpjEjtSMZjwjX/PRbJU+dSeO8OW6C8a8\ns2bUEb5eM2r17T+fajWjpXVokZHpqlFmSf2gZtS76VUzWlrbTGLTNX2eWKWaUU/hSu2qtGY0bbJj\ntX8Jn6pTa+fIdh3dZqXkc1m3vrQWdXm9v+1ez6zrbUn8y/oudj92+lham//dtfbC+OzZmmQu5KL9\n52S+ZjS4Rw6JU1rSvtED9ovHhWF/uN3b4fHb2d/2OxIfLxfrQFsF0g/+jTZPIHFYhvzvy18zpL0o\nf5y4q+7TFagZBQAAAAAAAI+Ci1EAAAAAAADQHdJ0NVRSk+Z6Bt6x/9q/tIaYomPK9oy8p6T+x0i8\na3srp9clTdtVM01XrXRgpOl6txOTFpO41ZKpMkt6puK6NEUv5Ao9ByBNV+SuFhjOQpqud9MrTddd\nvCFN1xVKrV0cwafa2kqnbdbnnDD+3wY0jXXEFzNJ/D9jU8Rlv37Cof0qaVQujDP7f6G4bF5liTCu\n6h+ssCRjScdpuVhBqdhy5linbxzZRaLJ2kkkDrot/znZVmsXJeVV6XEdmGf/cbB52jwS1zeEkbjJ\nN+LvUMmVr4Vesv/NTKm0z1Ntn0Cfm15fzBbGftypBGm6AAAAAAAA4FFwMQoAAAAAAAC6w8UoAAAA\nAAAA6A41oxryxvxvRzjS2sXboGbU85XUFQtIurQ8S+aObY7XZJvLnqe1qC98oU0tqpmr2zKH0Tjo\npm//H7Fer0vC+NKu+m7cE+co1bGiZtS7oWbUu6lVM+qpnP3sMn70FhI3CLxJ4msVESTecK2NMN7R\n4kcyx7cd6T9krzDOKaf1lod+amn3PrpSM/r1ZHq9MfZT+fpFd/H1awaXa0YzMjLYww8/zFavXs0Y\nYywrK4uNHTuWjR49mk2fPp2Vl/+3YHrTpk1s2LBhbMSIEey7775TWiUAAAAAAADcx2xejBYXF7O3\n336bdekiNrxduHAhGz16NFu7di1r0KABW79+PSsuLmZLlixhq1atYl9//TX78ssv2Z07dzTdeQAA\nAAAAAPBONtN0zWYzM5vNbPny5SwiIoKNGTOG9erVi23ZsoUFBgayI0eOsBUrVrDRo0ez77//ns2f\nP58xxtibb77JevTowXr16iW7bqTpejdfTtO1hNDfzVDoW6k9vpCmm/aimAp5xVxI5vounc0v7lPc\n1dqlPFLMAQtUuAW/qxxp7eJtkKbr3ZCm692QpuucykAa+5ffezktuZKm6w18/ZpBKU3X5tuGwWBg\nBgNdrKSkhAUG/vfIjIqKYjk5OezmzZssMjJSWCYyMpLl5OQ4u88AAAAAAADgw1z+17bcF6tuvC8S\nAAAAAAAAeDinLkZDQkJYaWkpY4yx7OxsFhMTw2JiYtjNm+Ldt27cuMFiYmLU2UsAAAAAAADwKU5V\nd3Tt2pVt3bqVDR48mG3bto1169aNtW7dmr3xxhssPz+fBQQEsMOHD7O5c+eqvb8AuvC1GlFfIK0R\n5dkqk0mdKj620eYJZK5Lgj5tYXyBK3WiZdXFv9KzvXeSubUp8vcW8AZWA80E8jPj/AEAvsMSRM9x\n/uX6nOOkbc4CK3zrvMrXiIZ2pu10ivZV55YXn4uAUs9/LgY+vof7iQs1oydPnmQffPABu3r1KjMY\nDGzr1q1s/vz5bM6cOSwlJYXVrl2bDRkyhBmNRjZz5kw2fvx45ufnx6ZMmcLCw8Nd/V0AAAAAAADA\nB9m8GG3ZsiX7+uuv7/r5ypUr7/pZv379WL9+/dTZMwAAAAAAAPBZ2t2bHwAAAAAAAECGj3cEAzWV\n1jCT2JirTTPAjGc+I3GzVS9qsh3wbN0eO6I4/8DR4cI4fw+9WRpfTdFi8WRhHMLNrR24g/5gKhfL\nrIexu/t9+uEm4oKIbtdJXFJuFMZa1oimT5KvLebFL51seyE7uKtGNO25JSQO8KP/X45LxrkTwJfM\nHrOexOuvtydx5rZGTq3Xyn01xfcrNRa45xxXtZ1YR1myM1q19RbG0s+zYef1uRwqbCY2Sw3LMJK5\nWuH5JD7LaM2oVnWitv72jtj4/IfCuJkx1O7H4ZtRAAAAAAAA0B0uRgEAAAAAAEB3flar1W2JZQlz\nP3HXpnXB37bZ11gCfTcn0ZU0BW8QUOYZtwWXtmt540YimVtzqDOJgy8E2r1eP4tr+yWn++OHSTwl\nmqb0jlw20+l1GzrlCmPz/gjFZfn0YEdYQiS3hy92bEUljcqFsX8BTWuqDKYvmuDLzqc9WbWpALhL\npaRdgb9Or4lKo++eNxljzOrjxT8BJZ5x7tSKJdi3j09DkW///aSfXfjzqFbvi44wc8dXRTXufSNL\n/uTvXyE75bITM+TLOxI/Uaecw9F9SPhMn+26QqnlHs+/5hn5OTV2BgAAAAAAAMARuBgFAAAAAAAA\n3eFiFAAAAAAAAHTn49UdAOCM8ipiXUdgvnY1NpuLxcLqDd93I3PBmm3Vebt+aEdjRuPylsUkDjzJ\nN5KRV3S2qjAOcmLf7NW/3wFhvG1DJ4cea7ok1u3y9UdtBpwm8dHL8bLrGThsD4l/2P4AiV1pIzBh\n5BZhvHxdP8Vl9aoTBQDQmyfUiPIMXM21oUSnGwTYoFddqCMeG/oPiX/a0FX3fagIpzW+/HuzI3Wt\np96Sn8M3owAAAAAAAKA7XIwCAAAAAACA7nAxCgAAAAAAALpza5/R2I8+JrHppm/V75RX9e1+Xa7U\ndSmJH5BB4uUNNwnjyxb6/5M1ubTW7IMaR+3eTuxvz5E4+JRYv2gO9e2/XVCu57/WLFzhZNfBx0i8\ntO5uYTz56oNkbtevbTXbLyXSvpWMMeYfWygG6eGqbScw3/5lS6PoPoW2EPuZbm2XTOZiAkJd2i+p\nVh85X4MTUKrabrhFUR3uOb8qvt6Ka/r2ucXgYO9aJX2G7yexuVKsL7tdTuux9++JI/FTfXaT+K3o\nVLu3O/mq+L4yJOIQmXt51QS71+OJfR6t3FcQfE9tQ4nz6z4+k/Yc/OBWU2Gckknr6+9cqkbigEJx\nx0Ka3yFz1t3KfZcdURZp/+vv9LOfkThu5Yuq7YdWQq6Jrz9bf2tvw7+eyvm3VO7Uo/Q+WdatgMQW\ni/jg8FD6BhQaSBucXsmmx2OVgyYmZ99rC0h8vkJc1+NfvkrmAsrk99dRNXtdIXGUqUgYP1fzLzLX\nO5je6+LBo6OEcdHf0Q5tN3WqfN9R9BkFAAAAAAAAj4KLUQAAAAAAANCdW9N0E17/hMRBSTeFcdlf\n1TXbbnG8+F14SLrzTRROTqdfR7dcQNPSkKbrnNRp8l/z82K/n0jipglXSdyy2jVhvGU9TelVgjRd\n9+s/ht7WnE/Bbn9opDCu2EnPF+VVtNsvT+BImq4jjD1ukriKieYNXb8jPrGlt2jznfAz6nUK87Y0\n3bw4mn/ZqT1NRzq9trkwdlea7unxXMphsjYph2qm6fJGjtopjFcdpG0OQs4Gkri0Bs1JNGWL/3t/\n7el1ZO6J8CwSt1s8XRiX1KV/W1OW/a0o0iYrv5clfKpPO4nNE+YJ44HLZysu60qaLq+orvg3MOXQ\n7z7UTEl0hCNpurwNT4mlZUPXvOLQY/mUXyk103+laboVYXSuqDFNN/UvEo/lKmf1+W6quBZ9/oNu\n0/OF0nHBp+m6ouaQiyT+rHGKMG5kpE/c94X0A8Xbi8eQuLS6+Ds1736ezN0po++TO1tuFMZt3qev\nf/7vxZOmwLZY7Py5I2nIERJ/Xpe2WovdIH6ufrvPejL37pdPOL3d9HdmyM7hm1EAAAAAAADQHS5G\nAQAAAAAAQHe4GAUAAAAAAADdubVmtOWmN0l8vNM3wrjTkRFkrvhPx24vLOX3AHeb8L3VZJa07afJ\nYu3FY58q116gZlR/fL1pkzViLQZfm6BEr5rRinC6Hb2eU2+oGeXbBDRbRetqTLfE38FMuzywSvXK\nFxWZQ2ldmqFIn//vaVUz6im8rWZ09ayPSHyirDaJP1j4pDB2pWa0ajta07u/7Xckjl1Pa+jPD/9c\ndl3eWDMqtX7ifBLHB9KTQItF2tRjOlK3tu2FeSSua5AvCpub3YrEtypom6WFdf6kca5Yhzwr8pzd\n+2SrTlXNmtGCpmZhbIqiKy7Lon+vsIsqFgQqcKVm1BtIa0ZLutP2Jc/G7yVxnlmsZ/xmH72nRrUT\nzr+J3mlXTuLXu/4ijNuYaK3m7DP0s37uZnru9BcPIVVrRvPb0eLU848kyyzJ2Mws2paoXRj9HZ4K\nvyWME/6h9aRpXVeTuPH2Z4Vx+AFaT2qrZlSq06ATJN6/KVFx+X8mi+9RKQWNydwLVa/xiwtcqU3l\noWYUAAAAAAAAPAouRgEAAAAAAEB3HtXahW+VIsW3TdELv0/9Tg0Uxle2NlB8LNJ0tde4H72N9pW8\nqiQu2xPl1HrR2sW7WLlfpyLcPfuhF6Tput+R/xHfGzIrCsnc0HnyJRzuau2iJqU2MdEds8lc7q6a\nmuxDQOdcElv2RWiyHZ4rqYJbuLTd7lvFtLXgi0aH1mUxicfR6efk24YwxtjGIjH/b9HFXmQua2dd\nEiul6ZbE0GM3KjGHxCPrHybxqpX95NdVg64rOFuf9yRfT9OtqCOmyCqlnvL4NPFfk5PoAgpPWylX\nRffW6DUkHhYqvlYD/Oh3YPvLaLuZbQU03XRbVrwwzt9cS34nVJTfnr4Bvdn5ZxI/U+UGiZusnSSM\n3x30DZl7ff9QEofvp6m5Uo6k6RY3os9bSKZj5w9nffLcchLPWDHB7sciTRcAAAAAAAA8Ci5GAQAA\nAAAAQHe4GAUAAAAAAADdubVmtNOW10kcGGARxovjaN716M9e0WYn+DIFFZ8NX68ZzXhGrFOJW0nb\nBBgKtan/+GbixyQ+UNKQxB9/RfPznYWaUe9WXsXde6At1Iy6n7ROypQjvxxjjN1JFPsTBObo08LC\nXbRs7VIaLbZSMuW453/paraXUEtJPVo/FnyZ1o8l9M0Qxusb/07mbliKSPzwf2aROHaQ2DZmY9Ot\nZG7q1c4kPp0fQ+LsX+op7bbT+oymLUpGR4rxs4tfVnysr9eMjhj4lzB+J+aEwpJUo8209q/aUftr\nEIuS6DG0L4nWMEcEcL3XHPByVgdhvPPLTk6vx5YyScfH9En0XjGxP9CWWcFXuJOA5JRXWp22ewu/\nYP95iq+jjkvKJPG5rbF2r8sToWYUAAAAAAAAPAouRgEAAAAAAEB3uBgFAAAAAAAA3RncufHCXbS+\noO9IMe9fzRrRkho0h/vcqKXCOLWcNtV64rOZqm3X17VYJPZ+VfNASp1G8/Wlf6NHf3uJzIWc16e3\n0v0suv8VEp/PrEHibi1Pk/jo+paa7xOPr7UIKPHtmlhQXynXkth0S3l5pTrR0Meu0x+UBQrD4hx9\n+mH6InfViXo6vkaUl7a1mTBeN+4Amau0Kh+P0jrR/+Q2JHNb/mxLYv9yet41Ka7ZfgXx5ST+qNZh\nbolABv+1Lr2dME4KyyBzaaV1SLx4Vx9hXC3NsWJoS5A4/lc72ofTlRpR3o7LTYWxlu/qfJ2oVJXT\n9j83xkLnz1EV9cpInLGT1oh6YLm6anBmBwAAAAAAAN3hYhQAAAAAAAB059Y0Xd7WdQ9osl5pWi5j\njPVJf0wYZ23T5tbj4LxvC2ja0NurxHRg9ZI/PMPp5+gt0ONWvCizpLb4NkSnnv9MZknGelQOIfG+\nSw1JHMT051dpexnwHnnxYpuvqunOJyeV9iggsWlnuOyyttJyzdzJpyRGfM2EX6AJZEU/1ZRfUU3f\nbi0Bnu3fXz2lOF/SxCw7Z/KjLWRCrmnzfcbxmfIpk7ZUeySLxFcyaDmYMd+3v4MJ/StUGE/JfpbM\nBWfR371qofPbKWgqHicZpfR8dzTwGolvVYonz235iWQuq5T2YbtRQs/R/r+Jnwe1bKtUWCn2Eyu1\nWhSW1E7wKbUS25UNGL6HxL+s76LLdpX49qsSAAAAAAAAPBIuRgEAAAAAAEB3uBgFAAAAAAAA3flZ\nrVa3FbAkvP6Juzati5PTad1Ds1XuqQfUirHAd9tnmEMde1lIaz/dVffpiKBc+rfbO+M/JA7xl79V\nfquPJsvO2TLvxWQS9wsRb2WedHwomcv/TaHuzobyKraX8WYvj/iRxJ8mD3bTnmjD1Evsm1JhpoVC\nNcJpHWj29w1IPHDCbmF8Mq82mTt+vCGJpfVjFVVp4TFfq8ofU+89t0oY/59U+vxL65x4xT5eM2oo\n1ud9gW8BFvvbcyTWqv5Ky7o1T5A2mT6vDxwdLoyLt8fwi6um5dB0YZx+k7YPm9psJ4nHV+VaJymI\nX0rfryqDfPv1F3JNfP2VcH+uyjhaJBq6O0yVbeZ1KiVxjZg8EneNyRTGG3d3InNVztj/nZit157/\nw7Twv/L3KJkl7z6fB+bbvRuaqVDnz+Gx0t+ZITuHb0YBAAAAAABAd7gYBQAAAAAAAN3hYhQAAAAA\nAAB051F9Rr1Nm8FpJD76YwKJfa1G1OtxpUypU2ltTItF8rWQ0R2ySfxXqw2q7ZYSrfqQfjWV1muH\n+NPuoBOviH2nnq3+F5kri6A1N3z9qZQj/eLG1N9H4nmNHiVxWKaPF2s5oHvIGRI70pWv/mNi/c6l\nnxqptEeOsXUM7W/7nexj+dcpX938TswJYTyEqxmd0WsLiS+VRQrjzedb0BWl06IivkZR6uOQEhLf\nCqY1owY6DRrQq0efr3PlngCuOLkhXnZuwZ/0fgILHFivkYvLXGiEXbfzVWF8ZV8d51ekE753cqWJ\n9ok19L8pjM2/Vnd6O93j6PvR8ZxaJD5wU6zrd6RG1FFKNaI8PwdaiRY0pPcTCL+A7/HUhmcUAAAA\nAAAAdIeLUQAAAAAAANAd0nRd8HG9zSR+YQDN/0j7O1bP3dHcP2Pnk7j7p7PctCdO4u7o3jf90Xsv\nx2ynx8YdtD9dtrw6zQcJvCmmm1qbFJG5jIe+UtyuIywm+gsHlIqpkE+seZnMVefSkAskbVW2t48j\nc4HNaWsNtsf5PiqzrrcVxh/WPELmdralqT9pmc2d3o6vefSHV0gc6sBj3ZWa+8v0ecK4roHew/7D\n243tXk+17rStQ/FPtAVQ2/+VTzM8/cwdEu9e214YN3+cHm8b/me14n6syhf7JuT9SNOBC9vQdLjg\nS3yyoCixB93uiZ1NFbfriU6P/0x2Tqn8wRuUJxaT2JgW4qY90UeXJ+h5eE9KW5klPVNxLZpSaSxQ\n7zsXb0jNleJTUQO4llO5DcXPCOEOrvtOolkYD69+gMytrE9bvTTb9bQwduS9SkvGItvL/D9Iy9Ue\nnmEAAAAAAADQHS5GAQAAAAAAQHe4GAUAAAAAAADdoWbUQS0HnRLGSWteJXOBfIuLqlyRoperHuAp\n2f7quPJ7fdm5xusmkdiVF4q0RpTnd5Y+p3Fn1WsHJK0R5fGtNKQ1ojx/P3ocGxyoEX3oxOMkzj5I\nt2MOFtedOOAymUvbYH+NaEFzWqMXdE2+Rs8XjOv1J4m//6qHW/bDEf0PvSCMT3ReS+aO5HGvxchz\nwnDpHVqnxdeIOmL75vYkLmtdJozn1PuFzDXaNIXExmq0DspaKf4v19qV9m7p3yydxOEdxMdu/LkL\nmfPGGlFeXLJ43lKqH7Wl7WO0XdqRnxJklmRsXWFVp7djizlEPC+d6bGKzCWkeXcNrC3zav9B4m7M\nu2pGfxxO25YNXf2KzJIQfkH+M4ItfhXiY986/RiZG8i15go86lufHXn57cXz+/k+K8hcejmtOX/y\nY3rdAP+Fb0YBAAAAAABAd7gYBQAAAAAAAN35Wa1Wt+WSJrz+iexcuyEnSXx4Y0utd8cuC174XBgv\nudqLzGVspulW5V6eppvxjHK6lbfdst8cyqWbFsmnqPDL+ho+TVcr1iTaSsPvr2qabKfX6P0k3vJz\nJ02244pTEz4l8ZgLPUh88Df5lEQelznNjAX3Xs6dChPLSHz+kWTZZZvsfIbEb7b7WRjXN94mcxty\naart7pUdndxDxsoknQ6CcumclftXrYV27mIGmplLFD5IU7Miqop9BPIOV3dkF72OoVifcwvrkEfj\ng+ql7aZO+1R2LuFT73rfc1Sb/jTFfEj0YWH8zudP6b0792TlKl/mjE8Rxm/sHErmwjNoyUZZpG+/\nt4dc0+n15wb8351X0Z2eE4y75M8J+U1p35t+DxwTxv983U5xO/teW0Di3ieeEMaFv9hfRlJj8CUS\nX9kuXzrmqcoi6OtJ6bNl+jszZOfwzSgAAAAAAADoDhejAAAAAAAAoDtcjAIAAAAAAIDuPLa1i6M1\noieny9d4tFwgX+Oh9Lh7PXb6sokO7Zc34WtE/6SdDNjz39K2I640z1CqyXGlFrWcy1+XtttRqhEF\nbZSX01NMeWMzicPPOX8KenXCOmG84lKS3Y+rqFJJYmO+e/4nt7rhThI3CRNb2RgKlfeJrxEtaCo+\nr5mDlik+ttVH2tS87Z3xHxIfLA+0+7GWfLrsv/cOFsarHqK1pptP0fcG+xsNMfbqSykknr/wCZkl\nGfOjhwkrjeZqzeqJRaNhf4eQqTEtaA3zPzdjhTFX6eiS488tJHGrFS+puHYPp2KNaFn1StsL3ScO\n/UFbah00iHFMn+tkLl+hJZiW/nrpIxL/n+sPCWO+RlQrp59VvqdG3Er12rR5gnLuRBuYr/8+5MfR\nOs8qp2kRqVKN6NE5yp/127wv/77IP3b8pZ4kdqROVOrhGrQ+exVTrhmV3rcggN6SgaVOVf79Wix2\n7n2/bm9a15pXZqIL/BXj1Hp5+GYUAAAAAAAAdIeLUQAAAAAAANAdLkYBAAAAAABAdx7bZ1QvR15a\nRGKjH81Bf/A47VmVt0M+N7winD6VfJ86X2Ms0L8GM67/GRKPqklrs95aaX8ftAaPXCBxUtQ5Yfzl\npl7Ml+nVZ9QVVm4X/ZNoI8j86+HCuEHsDTJ3fU9tzfZLiu8d2ny5fF1Gt37HSLy83t92P5bH1+tI\na0n42pEeJ4eQ+PZWdZ6b4zOVa1SUxC+lv6uxiM6bu4i/YJ0IWmV5/dd6JOZrO/laGq0U1xTP92MH\n7yBzYQG04D69qJYw/rzuHjIXl6xebVlFvXISGy/bX7erFt36jGqocb/zwvjcllgyZwmm7/P+5d7/\n+0rxr5+yduKL03QwVOe9UR/6jHovW31GecW1xb/1gz1OkrkjaxNlHxc16AqJtydsIjH//hVE26kr\nmvbiBmE8P4VeX/iX80s7T6mG1JH60cljfiLxp6sfc3qf0GcUAAAAAAAAPAouRgEAAAAAAEB3Htva\n5S6daarWyQfWkHhudithvOlb5TYP1k7iuvi03EvmQhJHmEpIrHRbfj5ttbyqb6eDuET6VNl4mgyd\nxfTMoydoytTpX5uSuDi2gsSZA5fLrpdvIXORNRSDUPzt3M2P+xNYd0eQOFwyvhQcSebSn19A4mFn\nBgnjtxr8SOY25bclccrG7nbvo63UWj6NV8mk4b8I46XrB9j9OMYY6zdsr+zczpYbSdxqq/OtXYrq\nyFJzykIAAAX4SURBVLfAWJZH03+PFtLb1J/Lry6M+bRcXkmO2Col50/aU8Bg4Zd2j5Dr4knsh4ut\nyNzPrVeQOCf0lDCOS5ZPVXKVWmm5p8fTthVqphJ7g0B/sVXSR+Npa6HJ/9BSEFMG1+rAy9TvdZHE\n1zY3ILH1Mm1bBOAtpCnLSmm5vIE1aUpvz9TBJK6oSt8H0yctlV1X45RJJF70mZiaG8QtWxGmvF9m\nyefS7WM/JHN9l84msSOpuCW16Jvq+WGfC+PiSpo77HxxjjJ8MwoAAAAAAAC6w8UoAAAAAAAA6A4X\nowAAAAAAAKA7t7Z2AQAAAAAAgPsTvhkFAAAAAAAA3eFiFAAAAAAAAHSHi1EAAAAAAADQHS5GAQAA\nAAAAQHe4GAUAAAAAAADd4WIUAAAAAAAAdGdw58bfffddduzYMebn58fmzp3LWrVq5c7dAVDNvn37\n2PTp01nTpk0ZY4w1a9aMPf/882z27NnMYrGw6Oho9uGHH7LAwEA37ymA4zIyMtjkyZPZM888w8aM\nGcOysrLueWxv2rSJffnll8zf35+NHDmSjRgxwt27DmA3/jifM2cOS01NZdWqVWOMMTZ+/HjWo0cP\nHOfg1ebNm8cOHTrEzGYzmzhxIktMTMT5HHTltovR/fv3s4sXL7KUlBR27tw5NnfuXJaSkuKu3QFQ\nXadOndjChQuF+PXXX2ejR49m/fv3Zx9//DFbv349Gz16tBv3EMBxxcXF7O2332ZdunQRfrZw4cK7\nju0hQ4awJUuWsPXr1zOj0ciGDx/O+vTpI3yQB/Bk9zrOGWPslVdeYT179iTL4TgHb7V371525swZ\nlpKSwnJzc9njjz/OunTpgvM56Mptabp79uxhDz/8MGOMscaNG7O8vDxWWFjort0B0Ny+fftY7969\nGWOM9ezZk+3Zs8fNewTguMDAQLZ8+XIWExMj/Oxex/axY8dYYmIiCw8PZyaTibVr144dPnzYXbsN\n4JB7Hef3guMcvFnHjh3ZggULGGOMValShZWUlOB8Drpz28XozZs3WUREhBBHRkaynJwcd+0OgOrO\nnj3LJk2axJ588kn2999/s5KSEiEtNyoqCsc7eCWDwcBMJhP52b2O7Zs3b7LIyEhhGZzjwZvc6zhn\njLHVq1ezcePGsRkzZrDbt2/jOAevFhAQwEJCQhhjjK1fv5499NBDOJ+D7txaMypltVrdvQsAqmnY\nsCGbOnUq69+/P7t8+TIbN24cs1gswjyOd/BVcsc2jnnwdoMHD2bVqlVj8fHxbNmyZWzx4sWsbdu2\nZBkc5+CNfv/9d7Z+/Xq2YsUK9sgjjwg/x/kc9OC2b0ZjYmLYzZs3hfjGjRssOjraXbsDoKoaNWqw\nAQMGMD8/P1a/fn1WvXp1lpeXx0pLSxljjGVnZ9tM/wLwFiEhIXcd2/c6x+OYB2/WpUsXFh8fzxhj\nrFevXiwjIwPHOXi93bt3s6VLl7Lly5ez8PBwnM9Bd267GH3wwQfZ1q1bGWOMpaamspiYGBYWFuau\n3QFQ1aZNm1hycjJjjLGcnBx269YtNnToUOGY37ZtG+vWrZs7dxFANV27dr3r2G7dujU7ceIEy8/P\nZ0VFRezw4cOsQ4cObt5TAOdNmzaNXb58mTH23zrppk2b4jgHr1ZQUMDmzZvHPv/8c+FmRDifg978\nrG78rn3+/Pns4MGDzM/Pj/3rX/9izZs3d9euAKiqsLCQvfrqqyw/P59VVFSwqVOnsvj4ePbaa6+x\nsrIyVrt2bfbee+8xo9Ho7l0FcMjJkyfZBx98wK5evcoMBgOrUaMGmz9/PpszZ85dx/aWLVtYcnIy\n8/PzY2PGjGGDBg1y9+4D2OVex/mYMWPYsmXLWHBwMAsJCWHvvfcei4qKwnEOXislJYUtWrSINWrU\nSPjZ+++/z9544w2cz0E3br0YBQAAAAAAgPuT29J0AQAAAAAA4P6Fi1EAAAAAAADQHS5GAQAAAAAA\nQHe4GAUAAAAAAADd4WIUAAAAAAAAdIeLUQAAAAAAANAdLkYBAAAAAABAd7gYBQAAAAAAAN39fzqv\nroo3a0uEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHhCAYAAADtU9rZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3WdgVHXe/v9Peg8ECCBVehFpdhEV\nbGDvsqjYRXRRsSC6t7q3uhZAEFgFBcW+FmStCIhY0AWULk3p0lsK6aTM78H+l/96a64vcvgymfh+\nPVKunJKZM+ecTyaZKyoUCoUMAAAAAAAPosO9AwAAAACA6ouhEwAAAADgDUMnAAAAAMAbhk4AAAAA\ngDcMnQAAAAAAbxg6AQAAAADeMHQCAHCQtWnTxrZt22afffaZ3X///YHW9c4779g555xjvXr1shtu\nuMG2bdv2m1/3l7/8xcaMGeNcX0FBgd19993Wvn37X/x7KBSy4cOH21lnnWW9evWyp59+OtB+AwDw\nHwydAAB4csYZZ9gTTzxxwMsvWbLERo8ebRMnTrSpU6da69atbdiwYYH2qU+fPtawYcNf/fuUKVPs\nu+++s48++sg+/PBD++6772zq1KmBtgUAgBlDJwCgitm0aZOddNJJNn78eDvrrLPsrLPOskWLFtnN\nN99s3bt33/fO4bvvvmu9e/e2M88806688krbvHmzmZndcsstNnHiRDMzy8vLs+7du9vKlSvlNnv2\n7Gnjx4+3iy++2I4//nh75pln9mWffvqpnXvuudarVy/r16+f/fzzz2ZmVlJSYg899JCdddZZ1rt3\nb3vyySetvLz8F+udPHmyXXvttWZmNmTIEBs9erRdd9111qNHD7vuuuusqKjIzMxmzZplp5xyivXu\n3dvefvtt69q1q23atMlq1aplI0eOtLp165qZ2dFHH22rV682M7Ps7Gy7/vrrrWfPnnbzzTdbXl7e\nfj2+jzzyiF1++eW/+vepU6faRRddZPHx8RYfH2/nn38+QycA4KBg6AQAVDnZ2dmWmZlp06ZNszZt\n2tigQYPsySeftA8//NA+/vhjW7x4sT3yyCM2ceJEmz59ujVp0sSee+45MzN7+OGH7eWXX7asrCwb\nM2aMnX/++da2bVvnNhctWmTvvvuuffLJJ/bmm2/aypUrbcuWLfbggw/as88+a1OnTrVTTz3VHnro\nITMze+WVV2zbtm32ySef2D//+U+bN2+effzxx3IbU6dOtZEjR9pnn31mWVlZ9tlnn1l5ebkNGTLE\nHnnkEfv0009t/fr1+4bRRo0a2THHHLNv+a+//to6depkZmbjx4+3jIwMmzlzpj300EP2zTff7Ndj\n26VLl9/89/Xr11uTJk32/X+TJk1s7dq1+7VOAAAUhk4AQJVTVlZmvXr1MjOz1q1b25FHHmm1atWy\njIwMy8zMtNLSUps/f77Vr1/fzP79DuDGjRvNzOywww6z66+/3u6991776quvbODAgfu1zQsvvNBi\nYmKsdu3adtRRR9mCBQvs22+/teOOO86aNm1qZmaXXXaZzZ0718rKyuzLL7+0yy+/3GJjYy0xMdHO\nO+88+/bbb+U2TjnlFKtZs6bFxsZa69atbevWrbZ+/Xrbu3evnXLKKWZmdvXVV1tFRcWvln3//fdt\n1qxZ+76fefPmWe/evc3s38Ppscceu1/fZ2WKioosISFh3/8nJibuG34BAAgiNtw7AADA/xUTE2OJ\niYlmZhYdHW3Jycm/yEpLS2306NE2c+ZMKy8vt4KCAmvWrNm+r7nkkkts+PDhduONN+5bj0uNGjV+\n8d979uyx6OhoS09P3/fvaWlpFgqFLDs727Kysn61zO7du+U20tLSfvF9lJeXW25u7i+28Z9fpf1v\nb7zxhr388sv2yiuvWGZmppmZ5ebm/mJ9/72OA5GUlGQlJSX7/r+oqOgXjzsAAAeKdzoBABFn165d\nNnPmTHv99ddt2rRpdvvtt/8if/bZZ+2iiy6yyZMn2/bt2/drndnZ2fv+Oycnx2rUqGG1a9e2nJyc\nff+em5tr0dHRlpGRYXXq1PlFlpOTY3Xq1Pnd30tqaqoVFhb+4nv7b5MnT7Y33njDXn/9dWvcuPG+\nf09PT//F33FmZWX97m3/t+bNm9uGDRv2/f+GDRusZcuWgdYJAIAZQycAIALt3r3bGjZsaLVq1bLs\n7Gz79NNPraCgwMzMVq5caTNmzLAHHnjA+vXrZ4899th+rXPKlClWUVFhu3btsgULFtjRRx9t3bp1\ns3nz5u371d233nrLunXrZrGxsXbqqafapEmTrLy83AoLC+2DDz7Y9yuyv8fhhx9uZWVlNnfuXDMz\n+8c//mFRUVFmZrZ9+3YbMWKETZgwwerVq/eL5Tp37mwzZswwM7Off/7Z5s+f/7u3/d969+5t77zz\njhUWFlpBQcG+qhYAAILi12sBABGnbt26lpOTY2eccYY1btzY7rzzThswYIA9/vjjtnDhQrvvvvss\nMTHR+vXrZ++99559/vnndtppp8l1tmrVyi699FLbvHmzXX311daqVSszM3vsscfs1ltvtdLSUmvU\nqJE9+uijZvbvv73cuHGjnXPOORYVFWW9evXa9zeWv0d8fLz99a9/tfvvv9/S0tLsuuuus+joaIuK\nirL333/fCgoK7Prrr9/39bGxsfbxxx9b//79bdCgQdazZ09r0aKFnXnmmc5tLVu2zO6++24rKyuz\n8vLyfX83O3XqVOvVq5ctW7bMLrzwQouKirJzzz3Xevbs+bu/HwAA/q+oUCgUCvdOAAAQTj179rSh\nQ4fa0UcfHe5dscLCQuvSpYvNmzfvF3+zCQBApOLXawEACLNLLrnEpkyZYmb//jXfFi1aMHACAKoN\nfr0WAFDtvf/++zZu3LjfzC666KJDvDe/dv/999sjjzxio0aNspSUFHvyyScPeF2XXnqp5efn/2Y2\nadIkS01NPeB1AwBwIPj1WgAAAACAN/x6LQAAAADAG4ZOAAAAAIA3B/w3nY8//rgtXrzYoqKi7IEH\nHrCOHTtW+rXt/jLyQDcTEWILdb74vucCrb/DnCtlnpn223+78x9ZHzcMtP3yxECLW3mCzlfcoh+f\n9/LTK80uSd1zILu0T/uxtwZa/qGr/iHzR17/k8w791oh80VT2/3uffpv5QnV+7fnUzbrvLCHfm0k\nfxHev23LPrJc5hlLYmRekhEl86L6FTJfe9lv/43j/noxt77Mb6ixTeZdHg/2+nv+7lEy7//0HTI/\n/6avZP6/mctkrva/NEUuWuWdfOkCmc+e2NXr9ovr6jxxh87zmulzX3mNMpknbYjTG4hwoer97VnC\nbp0vuj/YfVnnJ4Kdu4KqN+ZfYd2+T5vuPzHcuyCFHG/XlaXpc0/yZn3dji71e9+W3Vnfd0Ql63Nj\nzX/pm/pFz91VaXZAQ+d3331nGzZssLffftvWrFljDzzwgL399tsHsioAAAAAQDV2QL9eO3v2bDv9\n9NPNzKxFixaWm5tb6SflAQAAAAD+uA5o6Ny1a5dlZGTs+/9atWrZzp07D9pOAQAAAACqh4PyQUK0\nrgAAAAAAfssBDZ1169a1Xbt27fv/HTt2WGZm5kHbKQAAAABA9XBAQ2e3bt1s2rRpZma2bNkyq1u3\nrqWmhvdTIAEAAAAAVc8BfXpt165d7YgjjrA+ffpYVFSUPfzwwwd7vwAAAAAA1cAB93Tec889B3M/\nvFo2UPcxtZ0wQOYrbxwr805P+e1rivmqhsyzTOdtLvtR5u80/1zmzT65SeYpq3XhV0yJjK3DKP34\n/f3mA+8SdK3b4g941WZmtrqkXqDlg/ZwQlt50msyf7jNETJ/b01nmRdtSJP58svHyPyMpZfLvLSZ\n45dRPtBlhgnZug9sU5n+1PFvihrLvHGcowzPs1d3nSTzhQ8E6+IL2iOqFByuu9BS1h/w5Xm/LL0j\n4GNjfns6XT2cLmnr9LFvpq9bJRky9i7kePqj9OHjXXznbJkvPlZ3WLd7Ibw9l66ezbOv/+YQ7Qki\nTZSuv7a4XH3uKamll0/arvOCHgUyH9Dha5knR++V+bhRF8h8bw3XubVyB+WDhAAAAAAA+C0MnQAA\nAAAAbxg6AQAAAADeMHQCAAAAALxh6AQAAAAAeMPQCQAAAADwhqETAAAAAOBNVCgUCvneSLu/jPS6\n/rJU/S3E5h94p8z+iC3UuauTJyHr4O3Lb/nynuEyz6rQpUMXPDf4YO7OQVXqeO7jHM99RcCezqqu\nPEE/Pj9erztoXdq8pDtuXUIxOo8q1/mgiz+U+cL8JjKf9XMLmSd+rns4y5L08TXpjmEybx2XIvOu\njzoe34Bn79xuxTKPXZ8o88Td+vuPKdY7GIr1e24Op709cmVesk4fW4k7g/1MOORY/J+36GPz6e2n\ny/y7l7vIPK9bkcwTEnVXXPznun86qIRzdRHonm91B26kC+ma0oiXELBCeNH9usfW1fPpW70x/wrr\n9n3adP+J4d4Fr+J0zaZF7/U7lhU00nnKpmDrX/TcXZVmvNMJAAAAAPCGoRMAAAAA4A1DJwAAAADA\nG4ZOAAAAAIA3DJ0AAAAAAG8YOgEAAAAA3lSLyhSXJ65/Web3v3RtoPW7KlMiXbluTYhof/TKlEiX\nstnv+otr6UqPxCz9+GZ30p0v685/QeZdHwlWSVPVVefKlLTztso8a+ZhgdZf0FpXjkTlx8o8eYv+\nmbOrcmXZQF0p0W3JxTIv/LC+3kBAfx44WeY31Ngm8/bP+q3EKMnUVWUJAStzXHxXpqy4WR8f7V7w\n+/gGrUzZm67z+D3B1p97RJnMayzTr98/cmWK69xzzILLZV74bZ3fvU8HU0K23/uyN4Y8LfML594i\n85QvdJWbC5UpAAAAAICwYOgEAAAAAHjD0AkAAAAA8IahEwAAAADgDUMnAAAAAMAbhk4AAAAAgDcM\nnQAAAAAAb/4QPZ2+ufrM4vIPzX74Qk9n5ZYP0H1R7cf67SJzqe49naXpuuuu5ooI/7lahD99RXVd\nPaeHaEc8ST638q7HPo3ny2Wff/Wcg707h1SNHrrn0ncPZ1Cd+/0g87kfHSnz5bc5zv2Ons+gywfl\n6ukMOSp0ozyfm0oydcdxws4Ymbt6Qjs/Ed5rc3GmfgATd+ongJ7OA3fEGP3c+15//dM2yfzz9h/K\nvOWX18q8okzf9zSomyPzrPxkmcd9o0tsfxgxqNIswu/IAAAAAABVGUMnAAAAAMAbhk4AAAAAgDcM\nnQAAAAAAbxg6AQAAAADeMHQCAAAAALxh6AQAAAAAeHNIejortrWSedDOHNfyvsUWhnXz3kVyT2dB\nszKZJ22OPUR7Eh7VvafzrF7zZP7Ni0cfoj3xJMKfvuJM3TWXkK2XzzmyVOY1f3CUDXrW+LK1lWZr\npzQ/hHty6BVn6o7cXqcslPm3E486mLvzuz1x14syv2viDYHWH+4eThdXT2ekO76X7mFdkVVP5sWf\n1j2Yu/Mr3w8ZI/Njnhwo8z9yT2eki9KnTost0nnq2bojOdpRops75TCZx5QEu/FY9NxdlWa80wkA\nAAAA8IahEwAAAADgDUMnAAAAAMAbhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAAALw5JCWF\nQXs0q3qP51MDdd/XfWOC9X3hwKWs04d4Rbzf7S8f4OhqGxverrZIF/E9nAFVxOsezEVD9PHX9ZEB\nMj+j/2yZbyisJfMV77aVee4xxTJPW6JLgi+5eabM33uhp8wfvuNVvf1oR2GacIf1P+BlI0Haev0z\n67/3nSvzLhasp7MsWedFhzl6RJNLZF5509z+eWyXPvareo+nS4OTNsl8yzeNDtGe/LaJTWbJvPMb\nwR7fgoa6yzB+jz43Hze/r8xvGvCRzD8cU1vmqLric4P1YH7TcbLM38rLkPnQkj6Bth8E73QCAAAA\nALxh6AQAAAAAeMPQCQAAAADwhqETAAAAAOANQycAAAAAwBuGTgAAAACAN1GhUCjYZ/fuh863jZB5\n7Lm7ZF70VabMyxP09uPydR5TrB+Ck2/8XuYz3jlW5hP6j5F5/yVXydylWUaWzFdPaRFo/dGlgRav\n0vLa6m/usJkxh2hPftuew/XPheJz9LFblqI/tj2vVZnM01YdklalA1ZSy/vpK6xSNoZ7D/yK8vz0\nFR6mj//krcF2YP7DYyvNWr2q62hCsXrbGcv1vsfn6UoQl+IMfW7Z01wvH1uo9y/SuZ6flTdW/tzv\nj7YT9PHhXahqP38rb9KVMicsvkTmhdPqBdr+4sF6+0F1GhqssqW4dvW99iVmVe1jM6hQNX+7b+mw\nQZVm1fxbBwAAAACEE0MnAAAAAMAbhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAAALxh6AQA\nAAAAeFMlSvjy5uoeztLOhTJPn5UUaPs5bXXf0dk1Fst8humezhufHyjzmX8eJvOef79X5qstQ+bh\ntuSeYH1Xxy68rNKs+HN97NjJ2TKO2ph+ILu033Z21n1TmYv0sZe+Xnfx5bTUPzeKLZKxs4fT1YHb\n70+fyTw1pljmz794nt4AIBTW06+vf1wzUuYXf3K7zBu03CnzN/JqV5rF5+p9K60hYyu/UPcvb12n\nz/uhVN3Ba2X63NLtyFUynz+1vV5/QMWNdYdy4sY4r9t3CXvP5h9c9ne6h9Nx6XIK2qMJhMuSu/U9\n91krzpX51ilNDubu/ALvdAIAAAAAvGHoBAAAAAB4w9AJAAAAAPCGoRMAAAAA4A1DJwAAAADAG4ZO\nAAAAAIA3DJ0AAAAAAG+iQqGQLgo8CDrfNsL3JsJqb7ruY4t0UY4jJMpRB+fS/pKVMl/+XttgGxBS\ntumuuigdO2VfUiDzjPdSgm3AIb9heH+uVJao81hd4+lUUsv76SusUjYGW/60m+fIfPLXx8m8xkq/\n5zbXuSWost45Mt+zPVXmtRYceJV1rK6XtuJa+rFN3VIu8y1n6pNTzbp5Mo/5WPd85raQsZXVcfRo\n/hyvVxDQ8H4vyfyeV68PtP5QbPU+t1ioet+3JOiK7ohXXLv6Hp+JWcGOzT0dS2SeviRoi2swoWr+\ndt/SYYMqzar5tw4AAAAACCeGTgAAAACANwydAAAAAABvGDoBAAAAAN4wdAIAAAAAvGHoBAAAAAB4\nw9AJAAAAAPBmv0rIfvrpJ7v11lvt2muvtauuusq2bt1qgwcPtvLycsvMzLRhw4ZZfHzlnVxlSbpz\nJ7ao+vYNVQdBezhd3mo2U+YdzV9P5+dDR8v8i+J0mQ/89BqZ15ypewCz2svY6h+/VeZ7Jh+mV+DZ\n//R/Q+b3zbpM5mnLg3X5xbTRXYTlP6YFWn9VV1xHn1uH1V8o8xZn7pD5CyvPl/l79w+T+f2b9PKr\nXm0jc5dW/X6U+dDGH8r8or/dG2j7Smyx7tFM3RJs/cm1dBFomzr6ud2YU0Pmdefr7X87aoLM2427\nVa/AYcUtz3ldPxBO9c/7WebbPmpyiPbk4PvxhrEyb/PiAJlfdp2+J/yfOrrbveU/bpG5b+WOGtBo\nXXEc2OsDR8j8qjF3+d0BwflOZ2FhoT366KN2wgkn7Pu30aNHW9++fe3NN9+0pk2b2qRJk7zuJAAA\nAAAgMjmHzvj4eBs/frzVrVt337/NnTvXTjvtNDMz69Gjh82ePdvfHgIAAAAAIpbz12tjY2MtNvaX\nX1ZUVLTv12lr165tO3fu9LN3AAAAAICIFviDhEIh/h4TAAAAAPDbDmjoTE5OtuLiYjMz2759+y9+\n9RYAAAAAgP84oKHzxBNPtGnTppmZ2fTp06179+4HdacAAAAAANVDVMjx+7FLly61p556yjZv3myx\nsbFWr149Gz58uA0ZMsRKSkqsQYMG9sQTT1hcXFyl66jY1kruhOvjk1MCfrR89tH684lPaLtG5t/P\n0pUdCdm6tiDSzfrzcJlnxCTLvONw/dH2Tc5fJ/P1nzarNHN99HRhQ11b0KzzZpl/1u4jvYGAPilM\nlPk5ycUyb/2VrmxJnJci8yV361oCl45P+60tKOxaJPPVPSbKvM1EfW6p6lI2Blu+JMNVV6WXjynW\nfz7xrqMypUWcrgw66n+DPT/zH9YfzR90/S797/yg0uyF4RfIZec9qvd9RFZzvXxuU5lvyq8p842b\nass8/QddZ7RXt0lFvFBsNf/ToVD1vm9JyA73HmjX3DhV5ndkrJZ5TJR+z8h1X12VuSpXphbqTpL7\nnr3hYO7Or5Sc4KhqW6uve2X19sp83VkvyjzofVf5ibkyj/mXrtNyWTpsUKWZ84OEOnToYK+99tqv\n/n3iRH2zBwAAAABA4A8SAgAAAACgMgydAAAAAABvGDoBAAAAAN4wdAIAAAAAvGHoBAAAAAB4w9AJ\nAAAAAPDG2dN5MLh6Ol26Pqr7hvIqr3E0M7OyjDKZx6bossfQ5iSZJ+6q2n1XS+/QXYwdRunOH1cX\nZiTLb14u88y5+ucyOW30+lN/1nl2J90jGrtHb788Ub984xzLx++RsTU6d73MN318uMxn3Kl7HE9/\n5l69Aw55bfXBGb/D2QpVpbme3/RV4T339Bv4qczvzFgv86A9mnt0laWlrw20erNzd8v4gTaVd+09\nMfRKuWxOW/3cru47TuatvrxW5qtOfVnm3e7oL/PiDH3uKKxfta97QdHTGdmqek/n4sH6vqzPup4y\nXzjTcfMRwVw9na1f1deNpO1+j+09rfVMEZcdo1fgeLsvwTFTzBs0SuZP7uok8082HSHz4pmZMndR\nPZ280wkAAAAA8IahEwAAAADgDUMnAAAAAMAbhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAA\nALw5JCV2UwsTZH7vD5fIPM6x/rR1Os+Nc3Tm7NYPQ7SuUrTSVEdXYn6wzqCCZroTKCpRd026nH75\ndzK/OGOezP/8d93zmd+pWOapixNl7pWjim3HCfqxPexrR49nK53X+V7nWWcWybxbM11EuGhSB5m7\nuHo4F971d5l3GaF7OMscT32sPnQivofT5c+9Ku+BNDN7rsEpMk/9KjnQ9ovq6nPXzF1tZe7q6Qxq\n+VX6+Dv+kT/LPP3SLTLflZ8i88efrryLsyJRP3Ypm3R+99auMh933GsyP26I7rKLNX1hi8/XJ8dC\nC3Zdq3XiNpln/at+oPXjj83Vg+nSaai+rwnq4tVnyHzNZEe/fe3q2yP7fkGqzG86d7rMX3/xrIO5\nO78SXeToT2+sb1xSFiXp5fXIZAlReiqavlVfl109nGWO24bYQp0rvNMJAAAAAPCGoRMAAAAA4A1D\nJwAAAADAG4ZOAAAAAIA3DJ0AAAAAAG8YOgEAAAAA3jB0AgAAAAC8iQqFQt7LftrfP1LmhY11F2Ly\nRkfPZkCl6Y6ezT26jyxIZ42Z2Rt3Py3zI+J1p49vXR/VfW9V2YIHx8q89VfXyPyxo96X+f++XHlP\nn5lZYfO9Mk/aEC/z0hR9bGaslLGV1AjWpVfVpfbWXX9bNteSee1/6b6rWsv1i7uwoS4aLc7QP9fL\nbyxjiynWz9/Aqz6Q+ZjXL9AbCDPXuTN+jz7+bxv8nswPj9sl8z0V+vk7P+XAT+5tJ0TueXN/RJdW\n73NL/bn63L3+An1fEp+pj52UGbqLsDxBP74lJ+fJ/KZ238r8tXG9ZD580PN6/d/qa+clHRbK/NT0\nFTIfOFWvf+3Fev9a/uMWmZcn6Z7a2vP93neGHBXTUbqe3Qoa6+Mj5Hh5RlXhms+oYNXzVV58js5z\n2+snf90FL8j88V1tZJ4YXSrziauOl3nMzJoyXzJqUKUZ73QCAAAAALxh6AQAAAAAeMPQCQAAAADw\nhqETAAAAAOANQycAAAAAwBuGTgAAAACANwydAAAAAABvHE1Bh0bCjmB9SLV6bpV5UqzupLmtyUyZ\nPzDhWpmXpcjYYgt0fuXTd+svCMjV55XwdZrMoy1YoVNRz3yZJ83UfWWKq4fz8rWnyTxxnn7yah6j\nu9b+dt2rMh/0dR+ZFzUvkXlaht7+zky9/+lLdA9oUCHHSzdw35aja2zPzPoyj+msH7/y8/Wxua5N\nhl4+WXe9xThqHssT9GsrydHTWdV7OF3qn/ezzNfP0UWmo8ZcKvOievrxLamv+9DOP3e8zF3nlyBi\nO+yRednSdG/bNjNbeaM+t7Yfe6vX7Qe1fMBzMl+yt1jmd83S319Uuj65ta63U+YrWurrXt+zvpJ5\njZgimXdNWi/ztdfMl/lpSfr7i92cIPN1zWrL/KOPrpf52pv08ze9UHcsh+rpa+sRjXTH87b5h8vc\nJfpiR0dwge4ITvhW35e5hNrqa9u4o1+vNBvwmu449a20nb5wxq1IPkR7Eh41luvR7KRmF8s8/xN9\nX+Tis6GWdzoBAAAAAN4wdAIAAAAAvGHoBAAAAAB4w9AJAAAAAPCGoRMAAAAA4A1DJwAAAADAm6hQ\nKBSsD2M/VGxrJfMj/u74aPKAtQtL79Afvd1hVLCPfj/uoiUyn/9Gx0DrD7dy/cno9vQtulagYaz+\n6P8rxunKmCjRSlHkqMQIlevKiaSUvTIvyEmSecNP9IdLbzlVxhZK1ZUNUXn6o7OP7rpa5j++20bv\nQIRL36hPDllt9fNT0kEfPwlL9UezN5ilawtyWumPxS/K1Menq5Im0nU6Z4XMV73YNtD68xvpx7fd\n6atk3iJV1x7MeOmESrOiut4vrWEVXaof2wF9PpH52LfOOZi78ytFTXRV2rpz9HWr1zlXynztFcEq\na1xHx2Gz9bltZxd9bShN1XVOUY5rY3yOI9dNbE5NL1sj8webfCTzG5++U+bdHJUw0z7vKvMa+tRg\nFbqxxRr9aZ3MV8xtJvOk1jkyL12k67wiWXFTXXeTtNZxU1rFxeunNuItGTWo0ox3OgEAAAAA3jB0\nAgAAAAC8YegEAAAAAHjD0AkAAAAA8IahEwAAAADgDUMnAAAAAMAbhk4AAAAAgDeHpKez/ft/1V8w\nt4bvXfAqVlf9ORU01E/B4qtGyfzEp3RfVVDn3jBL5puLa8p88SsdZJ7bSn//o89/udLsnORiuexb\nebrL6tWLz5T5jhNryTx5h+5S23K57opL+1b3gNZYr5ffdKXu+VzdY6LMOz0VrKM23A77ly6L29Mi\nReY5rfTP3Ypb6eMrfr3uCzvR7bedAAAgAElEQVT8A91Rm9VBd/0VNNRdeZEueZvfy09WB73+Wkv9\nPb55h3tb9X5ZeeNYmbedMCDQ+l09nVVdcX197m49IV/mW0/W9y21VuoO6Kx28TLPb6p7Nlu9Gqwo\nc3u3yL7vcokp0q/9nNN0x3LNz/W1Oaisjo5z0xL9+ipoHNmvP2XFzc8FWr792Kp9XxO0pzP/eH3s\nps7xe+y60NMJAAAAAAgLhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAAALxh6AQAAAAAeMPQ\nCQAAAADw5tD0dN4/0vcmwipoT2dVF13m9xDJOb5E5jXnVN6FmN9Yrzt1o85vHvihzF/ZcLzMe9Rf\nJfOf8uvKvHXqDpkvuqqdzIsbpsk8arBe/47pjWQerZ+awBbfp/u43snXXXKPTrhS5j/cGazvq+u8\nK2SevUM//nE742QeclStreqnuxZbfH6dzONX6b6uaF3zGlhpuj531PjJ7/bDKdw9nb5Fek+nS5Op\nugez5XP64B16mO637vD+QJmnNNTbL9iTKPPk5TqPK5BxxMvpqDuu1507Xua3bzlG5luK9LVpUosZ\nMndp9+3V+guW6WtPJBt51Ysyv+uVGwKtf8y1z8t84Mv9A63fpai5vrGqsUD3f4dbbgf92tpw0+BK\nM97pBAAAAAB4w9AJAAAAAPCGoRMAAAAA4A1DJwAAAADAG4ZOAAAAAIA3DJ0AAAAAAG8YOgEAAAAA\n3tDTeRBEek9nzJm7ZB6aUvsQ7cnB5+rxbDBLFxXu7qB7FvNb6OWjynSXXeLWGJnXm6/7kOKzimV+\n+5vvynxmbnuZz3hV95QGVdhQn34W9tXnjiM/vF3mMYX652rfXzFC5hNyj5T5uxu6yrzs4zoyL4/X\nx4erx/SIv98q86oueZv3y49X2UdUvv+xBdW7x7K693SmbdDH5s6ee2V+97HTZT5qSQ+Zf3+S7hK8\nZs2FMl//XguZR1XIOOLFFAU7t2R11MsnZOlrS1yXbJkXr6gp8/TVMrZ5j+oO53YvRO61oSJOP/Yx\nxZF97rm5zxSZj5p1psxrLIs9mLvzK/mH65ND445bZf7VacMrzXinEwAAAADgDUMnAAAAAMAbhk4A\nAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAAALzZr8/dHTp0qM2fP9/Kysqsf//+duSRR9rgwYOt\nvLzcMjMzbdiwYRYfH3/AO1FSS3888qqr9UdDdxilPxp6b+cCmVeEHLUWi5NlntvOUZtRqmf79NXB\nZv+M8zfL/IIGi2U+fmU3mSf87j2qOlI3Or7A8cnbFcfnynzdCW/8vh36P84+44pAy5dmJMl84taT\nZP5qM/3R3TMsWGVKSDfC2Kqr9GvbLFGmqWv1KSymRK89I0a/tu+ttUbmL006S2+/ht5+0nZ97nsv\nP13mD17zD5k/tPA8mcesTJV5tG6F8C63pc7LG+vKoLTv9OvjwYGvy/yL3HYyn/XmUZVmJRmRXQfz\nRxfbd7vMG/9d1yG9sEi/9n4arOuQOoy6W+a1l+v7jtj6+vgrT4js2gnfai1xPT6O1/cmXYnivGP+\nAz89kV6J4nJnxnqdn/+CzDsv81uH0+e0b2X+xsJjD3jdzqFzzpw5tmrVKnv77bctOzvbLrroIjvh\nhBOsb9++1rt3bxsxYoRNmjTJ+vbte8A7AQAAAAConpxvsR1zzDE2atQoMzNLT0+3oqIimzt3rp12\n2mlmZtajRw+bPXu2370EAAAAAEQk59AZExNjycn//hW0SZMm2cknn2xFRUX7fp22du3atnPnTr97\nCQAAAACISPv9x4QzZsywSZMm2UMPPfSLfw+F+LsVAAAAAMBv26+hc9asWTZu3DgbP368paWlWXJy\nshUX//sDHLZv325169b1upMAAAAAgMjkHDrz8vJs6NCh9vzzz1vNmv/+NK4TTzzRpk2bZmZm06dP\nt+7du/vdSwAAAABARHJ+eu2UKVMsOzvb7rzzzn3/9uSTT9r//M//2Ntvv20NGjSwCy+80OtOAgAA\nAAAiU1ToEPxRZsW2VjJvO2GA713wKj5HdwpFVejly3RVoB17/g8yzyvVTZoLlrSQ+aOnT5L5lWm7\nZe7S7c5bZL71ZH0IHttlVaVZWYV+s37rGF30V1A/WEdqVec6tiJd+jrHiyvCnfXA1zL/8NlTAq2/\noJHOUzbpvP+gD2T+/MgLZF6WVH372Fzn/UiXvEN/g7svLpR5fLzumby5te6K+35PU5mv2F1f5o+2\n1cfuoNdvkHmkiyrXeWmKvi7HFVTt127KJr3/+Y31/qduDO/nlYx/6BmZ950w6BDtya817vmzzDfO\nbBJo/dH61BDxCprqb7Dmcuf7gWFV2D1f5qsue7DSrHrfcQMAAAAAwoqhEwAAAADgDUMnAAAAAMAb\nhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAAALw5JGUwkd7D6RLXY5fM5x/1jswvXXO6zHP3\nJsp8csvPZG4tZsj4z5uPk/mSwsYyn7m5tczjZWoWk69/9pFdXHnZ5KYZug+qpvkty8s73LH+zBIZ\nh3L1o5PRNFvmhfPqyDxGb77KK+pQJPP0dbqjNqiCBvrYTNni9/h6OHO5zP/0l+91/rd7ZO7q4dyj\na27tyc/Ok3mGXtyp8Djd9XhM0w0yX/ZOO5kX1dddfKU1dZlh+srKL6EnX6Ofm9ENdN75iVtl7lJU\nV39vSTuC9SzG5+nHpmJdiszz0/XyWc318qtyMmWe+0NtmT/y+nUyt7Y6ru6C9nAWNdBdhElb/N5+\nFpyTJ/PUT9Jk7urJvOKNO2WevkbGVnTeHpl3Tgh2bVt+23Myb/9s5ecX3z2c4Tb/9lEyP2r0HV63\n77uHM6fLXpmv6z1B5l0e19eeTg03/+59+g/e6QQAAAAAeMPQCQAAAADwhqETAAAAAOANQycAAAAA\nwBuGTgAAAACANwydAAAAAABvGDoBAAAAAN5EhUIhXeZ1ELR+bITvTVRpCVnB+q5c9rTWfVhRyboP\nLWGt7oOK6Zwr8xpv6b4rl90d9ONz5tnzKs3mDz1KLluWoNedfU6BzC9o/YPMp27QPYAxX9SUuUu9\nC3Rf1vYPdF9WWeUVp9VC0g59+so6Uufdjtc9mPM/7CDzGmv99nRe+9cPZf78yAu8bn/WQ7rPrPsj\nwfrM9jTXefJWv+fOoPa0rfzcG5Wsz8vnd1gi8y9fPlbmZ1w3W+bD6i+UedAe0JprSgMtv6WfLhE+\nr9VSmc9/UJ/7g9p+bJzX9Qe14mbdw9juBf38Runbgojn+v6St3q/9fWqoEHVPjcGEa1PnYFFHZ8j\n89CcYPdtLnH6ttOppIbOG/bcKPNd/2wcbAccFo8eVGnGO50AAAAAAG8YOgEAAAAA3jB0AgAAAAC8\nYegEAAAAAHjD0AkAAAAA8IahEwAAAADgTbWoTFl541iZt50wwOv2fVeihFtcnj5EEhy5y7YTdF6R\nXvnnZzeYFhto2wX1/f7cJe9wXalx+kmLZT739S4yD8Xo7d928/syH/3KhXoFnpXUdBxbOfq19fgN\nL8v8/peulbnr8StLcRzbjrh9t7Uyv77BLJnfv+QimSdOS9c74FCWrB/f2ELHN+g69TkWL0vyXCfV\nRn/2ftOWO2Se/UmDA952lN82Hat53haZb1hdV+Y1VgQ7d7qe+0VDdKXH7VuOkfmM9W1k3qH+Vpm3\nTNkp84/eOEnmZakyDrslN42ReVyUPrm1HxusMqeooX5tJW0OeHwFNKDPJzJ/dfjZh2hP/KAy5cAt\nvUOfmzqMCvbacAlamRJUYT19YU7eHuzYojIFAAAAABAWDJ0AAAAAAG8YOgEAAAAA3jB0AgAAAAC8\nYegEAAAAAHjD0AkAAAAA8IahEwAAAADgTbXo6Qy36t7TeXv/yTKf8KjuesxvpH+28fKAZ/T277u9\n0mxHV/3Y112gD29XT+f0e4fJ/KRvdQds8r902VtiL90T2CA1V+ZrJ7WSuasrr8Nov31UQRUdUSTz\nNadNlPk7+TVk/vzPp8i88CXd01jWN0vm33d9R+bNJ/WXecbSYD8XLK6tXx+Ju/Xr4+o7PpX5nRnr\nZX7UX/Xrw9XTufg+ffy6dHpKH9/RPfXzt/CYtw54/b57OnM77ZX5Uye/K/PHx1wp8xP7LZD5tG86\ny7zTUWtk3iQlW+YffXW0zFM269dGXutSmTf9QMa2/dg4/QURbsXNwV5bQXs+fYvRlw4rbKhfoLWW\n6HNTeYJj+yU6d6m4eLfMi+bUCbaBKszV0+nq2bxpYzeZz57cKdD6XT2ex120ROYLXu8o8ymDh8p8\nZlFTmQ8fc4XMXRY+oL//Lo/r75+eTgAAAABAWDB0AgAAAAC8YegEAAAAAHjD0AkAAAAA8IahEwAA\nAADgDUMnAAAAAMAbhk4AAAAAgDex4d4BM7OylrpQKXZ10iHaE/yWYe9eJPPz7pkj8xaJuotyTWnm\n796n/3D1cJYlButQPXPYvTIvbesolHKY03mSzDs/GawLbdleR1lZFffOSc/LvDQUI/OH39RdhIld\ndE9jUrmMLWdPssybz7he5nVb6i620qUH/towM7uj3/sy/35PM5mfkbLCsQV9bq5zxUaZb/uwicxd\nPZuuHs/yRBnbgFazAm0/iAcHvi7zR8dcJfMai+Nl/vhifey7fPXPrjLP2KnPvVmfHS7zJo/qns7U\nn/XPxDN+0j2cNVfrc39u8ypx+xM2Hb/7k8zL5mccoj3x44s7dMd2nZgUmbeIukXmtRbr46vZDT/J\nfGNeTZlf2Eh3Pb4y5wyZL79NnxvbP1u1e1YVV0+m7/UXtNIdyXP/qXs4Czrpc9fZQwfL/M17hsvc\n5eE7Xg20fBC80wkAAAAA8IahEwAAAADgDUMnAAAAAMAbhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADe\nMHQCAAAAALyJCoVCumzrIGj92AjfmwirhKxgXZDFdfRTkLgr2PqDStlWIfOsdvpnFytv0n1RR8zW\nfXJly9MrzdI2yEWtPF4/dqGAVW17K981MzNbfqv+3oP2cLqU6RpJ63z+cpkv+rB9oO0XHqaPnZfO\nfUHmE7afLPPlu+rJPD2xROZ7X6wv85Ka+vhJvGi7zHflpso8JUnvX9THtWQe6cqSgp3b8lroItVx\nZ78k83vH3BRo+0qUPvSdDr90jczfbzVN5p2f8HtuqblGd83tPiJO5qmb9AO04zjH9lfoY8f12o1y\ndPCW6ZduxHN9/y7LBzh6IMeGtwfStX8t39Q9nBnLHPcOuiLaChrp5cdePU7mX+S3k/m775wi86Tj\nd8l8/lHvVJqFu8MzOlj9uT10wxsyf+TFYB3GQcUV+F3/8EG63/yekf29bn/x6EGVZrzTCQAAAADw\nhqETAAAAAOANQycAAAAAwBuGTgAAAACANwydAAAAAABvGDoBAAAAAN4cksqUZqOeDrR88ubwzsYN\nz9a9HDkvNZb5rKeelfm92/Rnw38z9hiZxxYHewovHzJd5hNf7RVo/VVZWVK49yCYqy/5XOZL8hrK\nfOHMNjJP3aS3X1hffyz83lZFMq85K1Hmua30sd3n9G9l/ljdH2TeaWh4PxreJWitQVW36H5da9Bh\nVNV+fhqe+XOlWc4r+roQ6Qoa6Nf+jVdPkfmE186WeVE9R+eM47KXtEPfNxQ21C+upC26EyMhx/ut\nk1fZHfX3n7omYJ9YmJWH+druu1ImITvQ4lXa3rRw74FfiVnBzh1ZnfVrN75WscwTEnTdVdynNWVe\nlKnP/SsfoTIFAAAAABAGDJ0AAAAAAG8YOgEAAAAA3jB0AgAAAAC8YegEAAAAAHjD0AkAAAAA8Iah\nEwAAAADgzSHp6azY1krmD+88QuaTXztF5rHds2QeF6s7bb7r8q7Mjxyh+5QKGus+sQZtdsj8m46T\nZT4iq7nMx8ztKfN1vSfI3OW6n7vLfGKTWTI/8pmq27UX6T2dTh3yZJw8IzXQ6uc/PFbmX+u6KBv0\n1IBA28/rUSDzpDnBvr9w+/zuYTKvE5Mi885PhPe1l3H+Zplv2Fpb5snLdI+rS70zdNHs9s8ayfyV\nW56R+VEJ8ZVmrb/uJ5cNVeif+daaGt6T047uZTJPWRMXaP1Lb3d0tI72e+y6tt/10WDnJpfiOrrr\nLnFXsFuzvel6/YVN9H3R0gvGyPy4Z+783fv03yoch0/88fq+rmxWLZmHu6fTt5eu08/Pn77oL/Oa\nCys/d/mWd4Lu705Yqp+8ZQP1a/eYBZfLvPDbOjL3zdXT6erBjHHcV/W7dprMP9lypMzfafeGzOs6\n7jui66+qPJNLAgAAAAAQAEMnAAAAAMAbhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAAALxh\n6AQAAAAAeBPr+oKioiIbMmSI7d6920pKSuzWW2+1tm3b2uDBg628vNwyMzNt2LBhFh9/4J0/rh5O\nF1df08K7dKdPUDGZujSnUVqOzNvM0n1uGR8lyzy+je70eS8/XeaZsXtk7urh9G3u7ZV35b2Q21ou\n+0Oe7uH716cdD2ifIkX8v9IcXxGsC+6o/9Vddq6uuPiA24/0Hk6XF3M6y/zOWsu9br9f/6ky/3q3\n7mDO3at7NoP2cLq4ejhdrn5RdxFGl1aedb9oiVx2VW6mzPPSHOf9PP3aKbwoV+bFRY5rdrHz9iCQ\nn0p1x65vrh7QGMehWVhfP/5x+frcV5bktyI9fo9e/9KLnnet4eDtzG9wdS26tF2srz3Rpfrxj3TH\nJ8bIPCrmwI+vIn1qspU36eeu7QT93KTN1j2cucc4iigdfPdwfn+b7m9OjtavHdd902s36PXPKWoh\n82cWnSbzqOgKvf5ifQD87/BrZL5Q1Lc7rypffPGFdejQwW666SbbvHmzXX/99da1a1fr27ev9e7d\n20aMGGGTJk2yvn37ulYFAAAAAPiDcf567dlnn2033XSTmZlt3brV6tWrZ3PnzrXTTvv3JN2jRw+b\nPXu2370EAAAAAESk/f79mT59+ti2bdts3Lhxdt111+37ddratWvbzp07ve0gAAAAACBy7ffQ+dZb\nb9mKFSvs3nvvtVDo//9d8f/+bwAAAAAA/pvz12uXLl1qW7duNTOzdu3aWXl5uaWkpFhx8b//0Hf7\n9u1Wt25dv3sJAAAAAIhIzqFz3rx59tJLL5mZ2a5du6ywsNBOPPFEmzZtmpmZTZ8+3bp37+53LwEA\nAAAAEcn567V9+vSxv/zlL9a3b18rLi62hx56yDp06GD33Xefvf3229agQQO78MILD8W+AgAAAAAi\nTFToEPxR5hGDR/reRFgVdy2UedR63UlUa7l+CrafUi7zK4+ZI/MPX9PvROcdsVfmqSt151CF40cX\n0WU69+mHO3WfVLvndVdbpIt1VOG5uv5ciuroLrSorrorMHG67pB1KUuq2l1sR16uezR/eKe9zKP0\nS9+7cn3qspiiYOsv01WU3hXX1X1liTucvwxUqa4XLpV5YZk+r24crztQXfoN+Vjmrn7mh9+8UuYx\nwar0qryPBgyVebM43RHc+hXdxRefo89dz/XX164Y08fuo+vPk/nmKU1lXtX94Ohfbz+2el/by+P1\ntTt5u79rY0EDve2ULcG2vddVL17FuTpoXT2dvo28TxRpmtmNc3UPZ9qX+sK9cOxdlWYHfkUFAAAA\nAMCBoRMAAAAA4A1DJwAAAADAG4ZOAAAAAIA3DJ0AAAAAAG8YOgEAAAAA3jB0AgAAAAC8oafzIKiI\n03lRmxKZ153hWEGYFTSovj+bKHP0ELqscHSpBe0BbXTyRplv+rqxzMva6A7ZshzdFbjuwhdk3ukp\n/f3VP/9nma/aVFfmGf9KkHlOG336Sv05vMfu4sH6+HDp/ER4u+b2tNRdgGsvGyfzWzcfL/OvJ3X9\n3fsUKZbeEey5b/7uLfoLYvSxv/bi5wNtv9mHN8s8Zb2joDnCnX/FNzJ/vN4Smbd7Qb92YzvlyPyH\n496UuUuLz6+TefLigBe/Ks7VMRzpWp6+VuZ3NZou80EjKz+/LHxAn7t6LLtA5s+1+ofM+w6/R+aR\n3tPpkpjlfewKK3o6AQAAAABhwdAJAAAAAPCGoRMAAAAA4A1DJwAAAADAG4ZOAAAAAIA3DJ0AAAAA\nAG+oTDkEUrbp2oFwK02OkvnemjqPZEErU6q6hCydRzkOzcv6fy7zBvHZMv/bB5fIPG293r5r/+Y/\nPFbmy/YWyfxPY+7W2y/X23dVonQaGqzyxLV93869YZbM31h4rMxrLNCVN2XJv3uXfmHANR/JfOwr\n5wXbgENBq72Vh6X6Z7p1Z8cc5L35pTPu0pUfby07Wua1pyXKvKBBeK8LS2/Xr70Oo/Vrr1y3RVnx\n4eK5NbOM76t21ZlLaUr1va6buStTRlzzoszveuWGg7g3v1bUVB9fSRv0AZqgL71VWmnPXJmHvq9x\niPYkPCK9MiW7m66BXH/V/ZVmvNMJAAAAAPCGoRMAAAAA4A1DJwAAAADAG4ZOAAAAAIA3DJ0AAAAA\nAG8YOgEAAAAA3jB0AgAAAAC8iQ33DlQHMbpuqcqLK9SdQdW5p9O3Ff11l1y754P1OLrE7A3WB3Vf\n7RV6/VH651Zj1gbavNNPpQUy7zvqXplHBazLav3VNTKv6jWwN9zyicxfHHeOzMPdpubq4Vx6h6PL\ncVSw11/Kqsq79OL3hLeL7bMRJ8m89iHajwMVtIfTxXXdTnT0JBbV08snbQ/2/FfE6utudJlef0Wc\n3+t2q/NXyXzVh628bj8o3z2cywfo49el/Vi/9wY5HcoqzWouDTYa5HRxdJBW6GOTO87wGjjovYBr\noKcTAAAAABAGDJ0AAAAAAG8YOgEAAAAA3jB0AgAAAAC8YegEAAAAAHjD0AkAAAAA8IahEwAAAADg\nTVQoFPJeJtbmryNlnrQzvH1mLgseHCvzI0cG61OqfcYWmW9ecJjMy1MrZJ6yIeZ379MvOEqTHr3p\nVZl/ktVJ5tuL02ReO6HyLsZ5k4+Uy7pM//NQmZ89dHCg9fv22J0vyfy+8dfL3HePoUvLs9fIfPWU\nFjKPLTqYe/P7labo/I2b9bnvitfvlPneBqV6A46+s+h8/doPxepzb63F+ueS5Yl6+3++bbLMM2P3\nyPzB566VeVVWlFm1r2tBJW8L1qa3N13nrc/Q54b0eP3iX/KPDjKvff4mmWcVJMu8dHYtmRc016/d\ndeeOl/nWsnyZ9xoR7NrkOnctvy1Yz+SikhKZD93SSy8/pV2g7cfozVd53a9YIPP5Y7oEWv/eS7Ir\nzYpK4vSy2/Rr4+iuq2W+4YXWMncdm67rTkxx1T73hqKrdxPp4jGDKs14pxMAAAAA4A1DJwAAAADA\nG4ZOAAAAAIA3DJ0AAAAAAG8YOgEAAAAA3jB0AgAAAAC8YegEAAAAAHgTeyg24urh/OIvI2ReEtI9\nlMdN0V13mY1yZP5dl3dl7tvuzxrIPC5eL5+4O2APZ0AXpug+sT3lP8r8r/MukXmQntH8Nntl7ruH\nM7dducxrrAj23P3PM7qHs7iZfu24HN57nczXf9pM5q4ezvdbTZN5B9M9oZ/eo3tWD4tNlXnnJ4P1\nkJam6XNbXJR+/BudsFnm+a82lHluC933lbZB79/AwZNk/mjRZTIvSy2T+QtPXCTzejfo46v4eH1u\nSZyjn1+ET0EDfeyFGhfL3HVueCb7cJmfeIs+94wbd4HMQ44fybvO3OnLdddhl3p9ZJ7/Y4bMdVOi\nWYXjvsFlk6Mn9ILF+tpTNKdOsB34g3uu4RyZH2fBejrj36v8+Ap46NiGebqH0yXmnN0yX9D1HZk3\nn9xf5jWX6Rd37Ut1h+9n7T7S25+kt1/jx/Des7vcMVDfF4wac+kBr5t3OgEAAAAA3jB0AgAAAAC8\nYegEAAAAAHjD0AkAAAAA8IahEwAAAADgDUMnAAAAAMCbQ1KZ4nLpj5fLfFNWTZlnLNLfRtki/dHd\nzXfpj/4edPTnMg+qPEHnZUcUyDxmQcpB3JuD75mfTpN5kEqUIy9YIfPZP7Y44HWbme1p4agc0a0A\ngStRgoop0pUaHUYFqwxxWT1FP/6dTviTzJfe8ZzM27x4r8yn9Bsmc5fUs7fJfFHHyTLv/OTdMm9/\nhT5+txyun78aa/QBuLuTzmdkt5d5xWG61iL+50SZlyXJ2LKKdPGD70qUCt1qYdGlXjcf0QoP08dW\nyhZ97NoWfXAM66TPHU3jd8n88b9fqbcfZte3nC3zCV+cE2j90botzModx/6Zz/utE/ujO+WK+TI/\ncoS+Nie7bj4c9ohrS+0T9XWv9M16gbbtMrDlzEDLh1J0lZerFGbI4VMCbf/LC5+W+QVP+X1tLfyL\nvm96I6+2zJ946QqZO04dEu90AgAAAAC8YegEAAAAAHjD0AkAAAAA8IahEwAAAADgDUMnAAAAAMAb\nhk4AAAAAgDcMnQAAAAAAb6JCoVCwsp/90Pm2Eb43EValqY4+Mod2F/wo8xUftAm0/sCCfXtV2rEX\nL5H5gtc7Blp/3omFMl996ssy7zpP9yWVf677lsp1jWLEiy0K9x74Fb1Xn54XPDRW5p2+0z2onx01\nQeZ1Y3QH8Ne6xtPuXq47mG9o/q3Mx46/QG/AIa+L3sG0hf5eIEWZ3i+tgfx0rT52Wr88QObJ2/xe\nGBYN0V1zZ/94tsy3/PPwQNsPBfyRfNFxul976NHvyfzhZ/sF2wGH0qpd7x1Y3yt012OX5PUyHzJO\n97cH9cNd+vh2cfZ47tDnn7lPVv76P2aBPm9Hv6PvO1x2d9T7lrxFv/hii/yeW/eesUfmg9p9LvO4\nKN0TOnKMfnxdChrp7/+na/S5vcvfgvWz5zXT/fVr76q8n5x3OgEAAAAA3jB0AgAAAAC8YegEAAAA\nAHjD0AkAAAAA8IahEwAAAADgDUMnAAAAAMAbhk4AAAAAgDf0dB4EQXs6q7xq/O39cGewrqy2E3SX\n3QOXvyvzfum7ZL61LOYRSrMAAB2WSURBVF/mZw8dLPPq3sVW1Xs696bpfNh1L8n8jg+ulXntxcFe\nnDff/0+Zv7bxeJnnvXeYzAsa6u2vvFH3ibl0Ghasb8ynqt7TGZTvnk7f9qbrPE6fep0WD9bXlk5D\nw3vsVvdrw/Lb9OPv6rkMt4wztso8d6o+98YW6PNP1tGVd0nGZcXKZTOWy1h2gJqZvZWXIfOhz/SR\neVGmPvck7Qx27nXd07s6fOP36O2HoiP73HnYpetlPvWUUZVmvNMJAAAAAPCGoRMAAAAA4A1DJwAA\nAADAG4ZOAAAAAIA3DJ0AAAAAAG8YOgEAAAAA3jB0AgAAAAC80WU8/5/i4mI799xz7dZbb7UTTjjB\nBg8ebOXl5ZaZmWnDhg2z+Ph4uXze4Xr9aet1HorSnTZ53XRZX/TGRJlXxOpOnfQ1evtf3D5M5j1G\n3ytz34b1f1Hm9z5/wyHak6qnxTu3yDx9tf65TJJj/SP/frnOHcu7VOzXKxjhEp+n87+Mvl7mCafk\n6hUsdpQNOjw7+iKZxxXo5V2HX+pGnWeXF8q89w/9HFvQ3rpjuMz7jLon0PoRueL36NzVxRduVb0H\nNNyafXqjzFMP0X4cqOzPdA9nnbM3y3zT/AYyP6rdukqzjeNbyWWDGrW2Z6Dlg/ZwusTlh7djuU3f\nlTL/8c22Xrc/c4i+bp6+6NoDXvd+nVbHjh1rNWrUMDOz0aNHW9++fe3NN9+0pk2b2qRJkw544wAA\nAACA6s05dK5Zs8ZWr15tp556qpmZzZ0710477TQzM+vRo4fNnj3b6w4CAAAAACKXc+h86qmnbMiQ\nIfv+v6ioaN+v09auXdt27tzpb+8AAAAAABFNDp3vv/++de7c2Ro3bvybeSgU3t97BgAAAABUbfJz\nIL788kvbuHGjffnll7Zt2zaLj4+35ORkKy4utsTERNu+fbvVrVv3UO0rAAAAACDCyKHzmWee2fff\nY8aMsYYNG9rChQtt2rRpdsEFF9j06dOte/fu3ncSAAAAABCZfnfhwsCBA+2+++6zt99+2xo0aGAX\nXniheyPN8/UXrNcfXl16uq4NWH38GzLv+ugAmYdiXH/aqn+N+JviejKv30v3BnzW7iOZHzlSf/T5\nDddOkfnja86WeX6rUpmnro6TeSRzVaL4VhGj8+hyne+tqfMY3SYEh0VDdC1B5yf91hIkfxKsEsWl\nPEHXQcUVBPsTipgSnZ86IlhlyeJ7HbURw6hEqapcr62Wb+o6q9Sfq3anSYdR+twQc2q2zEOzMmT+\nR69EcUldoav8It2NTb6R+XsJXWUepBZldyd9Xfjz5uNk/vmR/5D5SR/e8bv36Y/k+XtGybz/cP34\nJZ+3TeYZMckyH9tBz1xmf6s02e+hc+DAgfv+e+LEifu7GAAAAADgD6xq/6gQAAAAABDRGDoBAAAA\nAN4wdAIAAAAAvGHoBAAAAAB4w9AJAAAAAPCGoRMAAAAA4E1UKBQKVsS2HzrfNkLmOcfrMreYbQky\nP+HkZTI/u9YPMu+TpvuyxmQ3lfnYN8+RebjtPaJQ5vHLdCeP6Sq/iLb8Vt0V59L+Wd2VVlxfF20m\nbnMUdQYUoytYnX64M9jj4zIiq7nMJ77aS+bFnfWxXa/WHplvWZUp87WXPC/z/IpimXf6QncEp89O\nknl5oowDSz9T93Vlzaov8+W3BTs+Oj3lt2vwtlvel3m+4wF+Zbw+/pQKfdmy1B7bZZ7/he5/Dvra\nPPKZYI99medjM9ziCnTe8ZLlMl/yXvuDuDcH394a3m/9wiohW9+4FDSskPnqvuNk3u55/fqpiNeP\nb3kzXaJ9dmt9Xzvz3WNk7upIrspiiyL72PzqwZEyP3HkXYdoTw5Mh4tXyHzp5HY6Hzao0ox3OgEA\nAAAA3jB0AgAAAAC8YegEAAAAAHjD0AkAAAAA8IahEwAAAADgDUMnAAAAAMAbhk4AAAAAgDexh2Ij\n9S/fIPPsHxvJvM1x62U+++sjZN62t+5DM0dP5wVpui9prFXtnk5nD+cfWPuxumtr+QDdhZd0/C69\ngTl1ZFyRoPuookvCW5IatMvPt9Rv9LG9rbkuE6yxVv/crduSi2V+R/PPZe7q4Qy35jX08fvNbZMD\nrb/Z+zfLPN31Y09dped0XspPMj/l29tk7nr28rpUXoZ3WH19XdmelR5o280/u17mKcuqeZFmmPWr\n+63M70zSPZ2xuqbR2ZX3ZrMvZN7x6ap97g63lM365NNpmH784p1bcFy7d+lr11ffO3o4I7vKMqxO\nuHGBzFNidcnpjHEnyPyURyvvqTQzs1QdB1VSSx8cP143VuY+zx280wkAAAAA8IahEwAAAADgDUMn\nAAAAAMAbhk4AAAAAgDcMnQAAAAAAbxg6AQAAAADeMHQCAAAAALw5JD2dKzfWl3nrVltkvuXtw2We\n5tj+pPWdZb48/zCZ/6nuHJmXd8yXecwSz6U8DlW9CzKcMrptk3n7Z/12nbke+6Jme2WeUstR9jan\nxu/dpSqloHG5zGusiJF5mqOH06V2UqHMn3jmykDrdyk6Wm8/aV6wDt5F73aQ+eUXx8l85eQ2Mned\nm4P2cLocFqvPvb1aLZf5V3N0V17awoRKsz0J+roXtMH12JbrZf7WGTNlHrSD95jeS2X+atOvZd5u\nnN9z64pbdMeyy1O7W8n8FMe5wdXD6fJsk08cX6Ff+2ln6Gvb7u/q/c49wh/F3pqOL3Cct+P3HLRd\n+U3zH9Y9k9nl+rV5+mN3y7yojr4vGzxokswfmXOezFN/qPy6cTCEs4fThXc6AQAAAADeMHQCAAAA\nALxh6AQAAAAAeMPQCQAAAADwhqETAAAAAOANQycAAAAAwBuGTgAAAACAN1GhUEiXOB4EnW8b4XsT\nYXXxgC9k/snmI2ReI6H4/7V359FRl/cex79JhuwrIcGCBAgKiMYAVTQsCoILrtQjYlPkUrWCgSty\nVSBcFTxUkEUPqwQhVsopJTYcMHquQqVSqQYoRsImInhlCRKSkIWsZLt/3HNy6inzfcRfnpks79d/\nyYeZ35OZZ2Z+30yYj5qf2tH9itf0r45McdZX1u8tvdPnSIp+/U+eGqrm2R/eeMVrajbWd793+dV6\newXO1BvqrAKKPLMObynrrReihZxy9nvD6hj9ARBYYLfD10evYTUy9cktGP9HNZ+zcoKzBSga7Fax\neV1doLdXYFeHCrvXv+iZdDWfsfpJq8e/FKE/9o8+pXf99V33THMup9mPb7p8VoXec/ryWxPV3CT3\nRf28aNPFKDVfkPZrNS8fqBfBbh6apuYdlZODB96coV624fYSNS8/H6Lm4V/r/c8Xr9FfGG5M+F7N\nT2+MV3MTUw+oyd4a/cRrUID+85v0W62fk6+YuEbNp781ydHxTQ4tnu42451OAAAAAIA1DJ0AAAAA\nAGsYOgEAAAAA1jB0AgAAAACsYegEAAAAAFjD0AkAAAAAsIbKlGZQHqfnrnK9duBSpH4X+JfYrS0w\ncnh4U6WKqZLF6nVTmdKi1UTpd1D8LafUPD/TWd2Q7+hCNW/4qJOj6zdVfvjpbUqtXnkv/aPxBw/4\nRs0PZvRrzuVcsYRxR9xmuVu9uzbbqExp3UyVKa1dQLGzExdT5UniYv3cIviufDUvq9QfQK5/RKj5\nB9MXqXmcK1TNNddn/0bNDyf96Wdft4hIv1X6bRdU6GxvxozTzwsKMvST9oFPHFDzz7MS1dy0/tpQ\nL5/TOxT/4Ak1zxq20m3GO50AAAAAAGsYOgEAAAAA1jB0AgAAAACsYegEAAAAAFjD0AkAAAAAsIah\nEwAAAABgDUMnAAAAAMAaejqbQXXH1t25Y9SGf7z6AH37+1W37h++tfd0HnxO70qbU3C9mv9xz2A1\nj9zf4YrX5En1Xu5CrAvWc1elnlcPKlfzoOyf3yXXIii/tm1o2VvLMXo6Wzd6Ols5i3ef6XXHdn+0\nq6pt780LiXo/dcgpl5r7tvDzukOLp7vNeKcTAAAAAGANQycAAAAAwBqGTgAAAACANQydAAAAAABr\nGDoBAAAAANYwdAIAAAAArGHoBAAAAABYo5fBAB4wasw/1fyTrTdbO3Zr7+Fs6QY/8pWaf3byGkfX\nn7XmdjXfP/sNNY+4P0jNb93/iJrXfBir5iYX4xvUPPiss98LNvjrue8lPa8L1vvSqrrofWM+5/Xb\n16ncmXqPq0niwhRnC9DvPkdChp9X8939M9U8YanDnw2A19QOKVNz1xfhau5jem5STn2c9nCaXnfq\nDC8Lripnx6+8Sj+vW/L4O2r+yuLfOjp+RVc9nzDkczXfckI/r3Gq0XDa62OoSX3sP3YYjkBPJwAA\nAADACxg6AQAAAADWMHQCAAAAAKxh6AQAAAAAWMPQCQAAAACwhqETAAAAAGANQycAAAAAwBqP9HSW\n9tZLX6IO2+1KLO+mX3/oaX19f52jd/0NTn/hitfUmgQU2b3+wWHH1dz3V+7vn0sN+hZ+q+tuNe+3\nqm132QUWGgqXLMtJ66/mdaOcFXJVddbzW9Kfd3T9JpcG1ai5/8kANXdV6L/3c1Xp99+lcP25LelX\nuWq+8uqdal5Qr/98a4tvUfMP0m5T88ALzoouB0+f7OjyIQ6LNn+4u879dR8zlNUZlH+md8De8Jn+\n3HXoOb3D9Iblzp77ggqcPbeU316h5i6Xft80Gsrmpl6/U83HhR1V8zuWvqjmB57Xb9/PDF2HUy2/\n9lzz0LdqfibdWUdy/NPfqPm+3b31K2jQ77+Oh650RT9WfrWeH5mi339DDjys5sW7rnJ0/cZzj6/0\nHk7/Uv3xVx6n375RR+2VDFfG6q9rYfn62g2ndWrHqIhITazeH32L4aS2bnSJmpedC1PznPuWqvmI\nRfrMcCBV3zs9P3pKza/pka/mE6/+Qs3XfK+/bjeY7gAF73QCAAAAAKxh6AQAAAAAWMPQCQAAAACw\nhqETAAAAAGANQycAAAAAwBqGTgAAAACANT6NjY3qZxfv2bNHpk2bJtdee62IiPTu3VueeuopmTFj\nhtTX10tMTIwsXrxY/P3dfzx8w7lr1UUsLNLzvywbpeYlfdRYIvVP9paRU7LVPOdCNzU/s0vPWzvb\nlSkmpYmX3GYpt36qXvZPa+5W80v6p5I71hCgfzS4b43duqCQH7xbmWJyw9P65+LnbEpQ85qo5lzN\nv6sP1G8/v2q791/wuZZ9/zkVeKFl/3z9X9iv5ueq3H90/rH/0V/XTA49q39s/vxC/YVvdif9hc9U\nmWI6fs/3n1bzqAN+am7SZdz3at4j5IKaf/HOQEfHrwvWH9u9xxxT88xen6j59dm/UfNBXU+p+R/i\ndqm5yaDUZ9S8aID+2PTvqlfe1J8IVfPIr9XYsfKr7T43e1vyuL+p+Q1BZ9T8lcMPuM1CMiLUy4Y+\nlafmL3b/WM3fyR+m5idXGup2DEqu1d9Pu/Xeg2oe5tL7jsZH65UjH5UlqvmWdcPVvHKw/tgK/iJE\nzW95/Cs17xZYrOa7CvQ6pfytcWp+YNl0t9lP6ukcNGiQLF++vOnr1NRUSU5OltGjR8ubb74pmZmZ\nkpyc/FOuCgAAAADQjvysP6/ds2ePjBw5UkRERowYIdnZ+juFAAAAAID26Se903n8+HGZPHmylJaW\nytSpU6Wqqqrpz2mjo6OloKDA6iIBAAAAAK2Tcejs0aOHTJ06VUaPHi2nT5+WCRMmSH19fVNu+C+h\nAAAAAIB2zPjntZ07d5Z7771XfHx8JC4uTjp16iSlpaVSXf3//9E2Pz9fYmNjrS8UAAAAAND6GIfO\nrKwsSU9PFxGRgoICKSoqkocffli2bdsmIiLbt2+XYcP0T6ICAAAAALRPxj+vveOOO+SFF16QHTt2\nSG1trcydO1euu+46mTlzpmRkZEiXLl1kzJgxnlgrAAAAAKCVMfZ0NoeeG+erebdYvTOm/L1fqHlN\nlN7HdHC63jd20yt6X5VJRRvvg5r5WKaaL131iKPr35+q3z8jDj/kNivO6uro2LZ7Or3N1NNZeHO9\nmvsE6Xn0Z+77eT3hYve2/dijp9OumgjD/jHExTc0uM2C85z1VLZ0/qV277uaSP3GDyixe3xTT6e3\nVUfrP/+0MR+q+efFehdffEihmm/8fLCad9r7s8oRmuxdsFrPa2rVfOK6aY6O39L95XdvqPn1/kFq\n3net+57e8O/0vZWSulnNJ4afV3OTpOcnO7q8SfYbaWqesFTvMPbVt54En3P/uiAikn+P++55EZHw\nfYH6AVo4rafT2bMCAAAAAAAKhk4AAAAAgDUMnQAAAAAAaxg6AQAAAADWMHQCAAAAAKxh6AQAAAAA\nWMPQCQAAAACwxuWJg0Tt1DtnykXv4TS559fZah6/ZZKad3R0dJGvn9Z7Jq97W+/8aemc9nCaDNw3\nTs0b/hpt9fiaI1P0+7bfKv2+NXVpjV37/BWv6Ur0fOKYmv8zfoeamx47Jov/e42aP/HR79Q8Oqd9\n/14s6KF8Na96v7OHVmJHfpKeNwTqfWf+UdVq3iEn9EqX9CMRI86pue/hWEfXD/cO/6f+3Nv7Xb1f\nO/R0c66m5Qks0ntE16Q/oObbpi1S81H/1J/7nfZwjnn+b44uPyigg6PLt3aPrtHPHWqi9efOmKPu\n89Jr9Pv2kwv91Hxr/gA1P3L2KjU3nfEVDNT3fuQ3+uXHfHu3moee1m87p2z3cNYOL1XzDjsjrB5f\n077P6AAAAAAAVjF0AgAAAACsYegEAAAAAFjD0AkAAAAAsIahEwAAAABgDUMnAAAAAMAahk4AAAAA\ngDUe6em07dO3blVzpz2csb85qeatvYfT22z2cA6fuFfNuwYUO7r+upBGNX9wy3Q1P+GwB7TRUFX2\nnqGHc/ihMWruW6n/XurFWRv16w/S+67++oDeY/pYzotq3tZ1D9P351HRezpLkmrUPDI74IrXdCW2\npi5W8ziX3qMZv1nvCswYtFbNH/f/rZofvEXfvybxJ9yvr6JnrXrZkP9t3T2DOS+vVvOB8/QeTZOt\nFfreaOs9nLYN+fRZNe/0N8vPDW/coeei59XRelejBF3pin6sKk5//Aad8u7jN8zQJVnZzdQ16f61\nvdHwdtSIqKNq/vtdekfsVZ/66QcwiMnRz7vqgvS9kZ/WU80rr9JvgOBzhtvWsDVt82YPpwnvdAIA\nAAAArGHoBAAAAABYw9AJAAAAALCGoRMAAAAAYA1DJwAAAADAGoZOAAAAAIA1LaIypWiw/tHU0V94\n96OpL1QFe/X4tn39tF7b0X9B662E2bFpkJrXhukfvf2HGv2zr00PIFeFfnlTJYqJj/7QkZtf0msL\nSnvrl486puezgh9T83kn9Y9Gdw25oOf64Vu8tx/XH1tPb9Dv/6NFsY6Ob7sS5WIPPTdVojz/w0A1\n9+14Sc1TZk1T87rr9N+r3hmuf7T/yb1Xq7lPt2q3WfAhh50NbZypzuf1b++xevx7J/1DzbM2DLN6\nfG+7sUeemp+VeA+t5PJMtR3Ro/X15+/s6uj43q5EMfGp1/Ordv3895R8DecVFxsC1Tx6j+mVWz/v\nMilK1M+rAor0vLyf/royoNcpNQ926TdQXoVeWVKV5Wxvelut/rKu4p1OAAAAAIA1DJ0AAAAAAGsY\nOgEAAAAA1jB0AgAAAACsYegEAAAAAFjD0AkAAAAAsIahEwAAAABgTYuowTP1cPZ78rCap/7iYzWf\nc0bvYvtlhN7J85dlo9Rc9Cq3dm9/qrMeUL+7Ct1m1V90Ui9bGa/3KQV937K7uGyLMPRwmvhd1H9v\nVW+4eQOyotS87qFi/Qr2d9QvH6z3gbkq9T6vuY/9Wc83/VrNb9PrzKQ+SF9fxQH95/vm5dVqPnCe\n3tNqMve/1qt5jw56z6qIfgPkXOim5n7fGW5AQ99b6E3unztERCreNvSlJepxcIj7rslOI/XbpmCH\nfuyI4ef0y+d0VnP/Mn1vO+V0b5k6ZC9JjKPrN7naX79/GgxnR751zbgYLzjyud7DWffLBjXv9KXd\n9yy6TvxOzQ+e6qLmThuK33oiTc2HB+m3j9MObm8KKtCfVzN+r3fodnDYw1neTd9bIWf0y381Wz/n\njN88Sc3/GP+Bmt/54nNqXvbIRTU3nXU2GP7BgRf0n8/EdM4dOPq8fgUf/fz+cN7pBAAAAABYw9AJ\nAAAAALCGoRMAAAAAYA1DJwAAAADAGoZOAAAAAIA1DJ0AAAAAAGsYOgEAAAAA1vg0NjY6K9QBAAAA\nAMAN3ukEAAAAAFjD0AkAAAAAsIahEwAAAABgDUMnAAAAAMAahk4AAAAAgDUMnQAAAAAAa1yePuD8\n+fMlNzdXfHx8ZPbs2XLjjTd6egloZxYtWiRffvml1NXVyaRJkyQhIUFmzJgh9fX1EhMTI4sXLxZ/\nf39vLxNtVHV1tdx///2SkpIiSUlJ7D14TFZWlqxbt05cLpc8++yz0qdPH/YfrKuoqJCZM2dKaWmp\n1NbWypQpUyQmJkbmzp0rIiJ9+vSRV1991buLRJtz7NgxSUlJkYkTJ8r48ePlhx9+uOzzXVZWlqxf\nv158fX3l0UcflbFjx3p76e2GR9/p3Lt3r5w8eVIyMjLktddek9dee82Th0c7tHv3bvn2228lIyND\n1q1bJ/Pnz5fly5dLcnKybNy4Ubp37y6ZmZneXibasNWrV0tERISICHsPHlNcXCyrVq2SjRs3Slpa\nmuzYsYP9B4/YsmWL9OzZUzZs2CDLli1rOt+bPXu2bNq0ScrLy+Xvf/+7t5eJNqSyslLmzZsnSUlJ\nTd+73PNdZWWlrFq1St59913ZsGGDrF+/XkpKSry48vbFo0Nndna2jBo1SkREevXqJaWlpVJeXu7J\nJaCdufnmm2XZsmUiIhIeHi5VVVWyZ88eGTlypIiIjBgxQrKzs725RLRhJ06ckOPHj8vw4cNFRNh7\n8Jjs7GxJSkqS0NBQiY2NlXnz5rH/4BFRUVFNJ/JlZWUSGRkpeXl5TX/Zxt5Dc/P395e1a9dKbGxs\n0/cu93yXm5srCQkJEhYWJoGBgTJw4EDJycnx1rLbHY8OnYWFhRIVFdX0dceOHaWgoMCTS0A74+fn\nJ8HBwSIikpmZKbfddptUVVU1/UlZdHQ0exDWLFy4UGbNmtX0NXsPnnLmzBmprq6WyZMnS3JysmRn\nZ7P/4BH33XefnD17Vu68804ZP368zJgxQ8LDw5ty9h6am8vlksDAwB9973LPd4WFhdKxY8emf8Mc\n4lke/z+d/6qxsdGbh0c78sknn0hmZqa88847ctdddzV9nz0IW7Zu3Sr9+/eXbt26XTZn78G2kpIS\nWblypZw9e1YmTJjwoz3H/oMt77//vnTp0kXS09Pl6NGjMmXKFAkLC2vK2XvwNHd7jr3oWR4dOmNj\nY6WwsLDp6/Pnz0tMTIwnl4B2aNeuXZKWlibr1q2TsLAwCQ4OlurqagkMDJT8/Pwf/TkG0Fx27twp\np0+flp07d8q5c+fE39+fvQePiY6OlgEDBojL5ZK4uDgJCQkRPz8/9h+sy8nJkaFDh4qISN++faWm\npkbq6uqacvYePOFyr7eXm0P69+/vxVW2Lx7989ohQ4bItm3bRETk8OHDEhsbK6GhoZ5cAtqZixcv\nyqJFi2TNmjUSGRkpIiKDBw9u2ofbt2+XYcOGeXOJaKOWLl0qmzdvlvfee0/Gjh0rKSkp7D14zNCh\nQ2X37t3S0NAgxcXFUllZyf6DR3Tv3l1yc3NFRCQvL09CQkKkV69esm/fPhFh78EzLvd8l5iYKAcP\nHpSysjKpqKiQnJwcuemmm7y80vbDp9HD7y0vWbJE9u3bJz4+PjJnzhzp27evJw+PdiYjI0NWrFgh\nPXv2bPre66+/Li+99JLU1NRIly5dZMGCBdKhQwcvrhJt3YoVK6Rr164ydOhQmTlzJnsPHrFp06am\nT6h95plnJCEhgf0H6yoqKmT27NlSVFQkdXV1Mm3aNImJiZFXXnlFGhoaJDExUVJTU729TLQhhw4d\nkoULF0peXp64XC7p3LmzLFmyRGbNmvVvz3cff/yxpKeni4+Pj4wfP14efPBBby+/3fD40AkAAAAA\naD88+ue1AAAAAID2haETAAAAAGANQycAAAAAwBqGTgAAAACANQydAAAAAABrGDoBAAAAANYwdAIA\nAAAArGHoBAAAAABY83/3ro1SVnE4iAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "96sM4Avimbct", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "A few remarkable things to note here:\n", + "\n", + "* The first layer acts as a collection of various edge detectors. At that stage, the activations are still retaining almost all of the \n", + "information present in the initial picture.\n", + "* As we go higher-up, the activations become increasingly abstract and less visually interpretable. They start encoding higher-level \n", + "concepts such as \"cat ear\" or \"cat eye\". Higher-up presentations carry increasingly less information about the visual contents of the \n", + "image, and increasingly more information related to the class of the image.\n", + "* The sparsity of the activations is increasing with the depth of the layer: in the first layer, all filters are activated by the input \n", + "image, but in the following layers more and more filters are blank. This means that the pattern encoded by the filter isn't found in the \n", + "input image." + ] + }, + { + "metadata": { + "id": "quwE5geXmbcu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "We have just evidenced a very important universal characteristic of the representations learned by deep neural networks: the features \n", + "extracted by a layer get increasingly abstract with the depth of the layer. The activations of layers higher-up carry less and less \n", + "information about the specific input being seen, and more and more information about the target (in our case, the class of the image: cat \n", + "or dog). A deep neural network effectively acts as an __information distillation pipeline__, with raw data going in (in our case, RBG \n", + "pictures), and getting repeatedly transformed so that irrelevant information gets filtered out (e.g. the specific visual appearance of the \n", + "image) while useful information get magnified and refined (e.g. the class of the image).\n", + "\n", + "This is analogous to the way humans and animals perceive the world: after observing a scene for a few seconds, a human can remember which \n", + "abstract objects were present in it (e.g. bicycle, tree) but could not remember the specific appearance of these objects. In fact, if you \n", + "tried to draw a generic bicycle from mind right now, chances are you could not get it even remotely right, even though you have seen \n", + "thousands of bicycles in your lifetime. Try it right now: this effect is absolutely real. You brain has learned to completely abstract its \n", + "visual input, to transform it into high-level visual concepts while completely filtering out irrelevant visual details, making it \n", + "tremendously difficult to remember how things around us actually look." + ] + }, + { + "metadata": { + "id": "MwwsTlg1mbcu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Visualizing convnet filters\n", + "\n", + "\n", + "Another easy thing to do to inspect the filters learned by convnets is to display the visual pattern that each filter is meant to respond \n", + "to. This can be done with __gradient ascent in input space__: applying __gradient descent__ to the value of the input image of a convnet so \n", + "as to maximize the response of a specific filter, starting from a blank input image. The resulting input image would be one that the chosen \n", + "filter is maximally responsive to.\n", + "\n", + "The process is simple: we will build a loss function that maximizes the value of a given filter in a given convolution layer, then we \n", + "will use stochastic gradient descent to adjust the values of the input image so as to maximize this activation value. For instance, here's \n", + "a loss for the activation of filter 0 in the layer \"block3_conv1\" of the VGG16 network, pre-trained on ImageNet:" + ] + }, + { + "metadata": { + "id": "_WTrb-a8mbcv", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.applications import VGG16\n", + "from keras import backend as K\n", + "\n", + "model = VGG16(weights='imagenet',\n", + " include_top=False)\n", + "\n", + "layer_name = 'block3_conv1'\n", + "filter_index = 0\n", + "\n", + "layer_output = model.get_layer(layer_name).output\n", + "loss = K.mean(layer_output[:, :, :, filter_index])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ipmArd9Dmbcx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To implement gradient descent, we will need the gradient of this loss with respect to the model's input. To do this, we will use the \n", + "`gradients` function packaged with the `backend` module of Keras:" + ] + }, + { + "metadata": { + "id": "sOI80EURmbcy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# The call to `gradients` returns a list of tensors (of size 1 in this case)\n", + "# hence we only keep the first element -- which is a tensor.\n", + "grads = K.gradients(loss, model.input)[0]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ssRtcXgGmbc1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "A non-obvious trick to use for the gradient descent process to go smoothly is to normalize the gradient tensor, by dividing it by its L2 \n", + "norm (the square root of the average of the square of the values in the tensor). This ensures that the magnitude of the updates done to the \n", + "input image is always within a same range." + ] + }, + { + "metadata": { + "id": "TufU4cYQmbc3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# We add 1e-5 before dividing so as to avoid accidentally dividing by 0.\n", + "grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pRIajq5nmbc7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now we need a way to compute the value of the loss tensor and the gradient tensor, given an input image. We can define a Keras backend \n", + "function to do this: `iterate` is a function that takes a Numpy tensor (as a list of tensors of size 1) and returns a list of two Numpy \n", + "tensors: the loss value and the gradient value." + ] + }, + { + "metadata": { + "id": "1gXXi_mfmbc8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "iterate = K.function([model.input], [loss, grads])\n", + "\n", + "# Let's test it:\n", + "import numpy as np\n", + "loss_value, grads_value = iterate([np.zeros((1, 150, 150, 3))])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "c1X7pDCmmbc-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "At this point we can define a Python loop to do stochastic gradient descent:" + ] + }, + { + "metadata": { + "id": "antpG2RpmbdA", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# We start from a gray image with some noise\n", + "input_img_data = np.random.random((1, 150, 150, 3)) * 20 + 128.\n", + "\n", + "# Run gradient ascent for 40 steps\n", + "step = 1. # this is the magnitude of each gradient update\n", + "for i in range(40):\n", + " # Compute the loss value and gradient value\n", + " loss_value, grads_value = iterate([input_img_data])\n", + " # Here we adjust the input image in the direction that maximizes the loss\n", + " input_img_data += grads_value * step" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "3FrDRnu3mbdB", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The resulting image tensor will be a floating point tensor of shape `(1, 150, 150, 3)`, with values that may not be integer within `[0, \n", + "255]`. Hence we would need to post-process this tensor to turn it into a displayable image. We do it with the following straightforward \n", + "utility function:" + ] + }, + { + "metadata": { + "id": "Hs9ANoCembdB", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def deprocess_image(x):\n", + " # normalize tensor: center on 0., ensure std is 0.1\n", + " x -= x.mean()\n", + " x /= (x.std() + 1e-5)\n", + " x *= 0.1\n", + "\n", + " # clip to [0, 1]\n", + " x += 0.5\n", + " x = np.clip(x, 0, 1)\n", + "\n", + " # convert to RGB array\n", + " x *= 255\n", + " x = np.clip(x, 0, 255).astype('uint8')\n", + " return x" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "SIIx325BmbdE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now we have all the pieces, let's put them together into a Python function that takes as input a layer name and a filter index, and that \n", + "returns a valid image tensor representing the pattern that maximizes the activation the specified filter:" + ] + }, + { + "metadata": { + "id": "38XE-MWfmbdF", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def generate_pattern(layer_name, filter_index, size=150):\n", + " # Build a loss function that maximizes the activation\n", + " # of the nth filter of the layer considered.\n", + " layer_output = model.get_layer(layer_name).output\n", + " loss = K.mean(layer_output[:, :, :, filter_index])\n", + "\n", + " # Compute the gradient of the input picture wrt this loss\n", + " grads = K.gradients(loss, model.input)[0]\n", + "\n", + " # Normalization trick: we normalize the gradient\n", + " grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)\n", + "\n", + " # This function returns the loss and grads given the input picture\n", + " iterate = K.function([model.input], [loss, grads])\n", + " \n", + " # We start from a gray image with some noise\n", + " input_img_data = np.random.random((1, size, size, 3)) * 20 + 128.\n", + "\n", + " # Run gradient ascent for 40 steps\n", + " step = 1.\n", + " for i in range(40):\n", + " loss_value, grads_value = iterate([input_img_data])\n", + " input_img_data += grads_value * step\n", + " \n", + " img = input_img_data[0]\n", + " return deprocess_image(img)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "cdYOBYPImbdG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's try this:" + ] + }, + { + "metadata": { + "id": "q5CYWXeEmbdH", + "colab_type": "code", + "outputId": "fb3e7161-60b3-4dc1-ca87-83f241c328f1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + } + }, + "cell_type": "code", + "source": [ + "plt.imshow(generate_pattern('block3_conv1', 0))\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAFNCAYAAAC5YlyiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXm0bldZ5vuu7uu/3Z69T5e+Iw0J\nIYFAgACRKOTaAF4RCNehdS2uNbhSiMOCEghxIDAQlCtqFU0hlKO0JBoRuNIEA0QChISQkEBCTk7f\n7775+m+194/nN0+KUSa55oR75I41/9lnn72aueaa3zef+bzP+7xeURSFla1sZStb2Z5U8091B8pW\ntrKV7Se5lV+iZStb2cp2Eq38Ei1b2cpWtpNo5Zdo2cpWtrKdRCu/RMtWtrKV7SRa+SVatrKVrWwn\n0cKn+oLvfe977f777zfP8+xtb3ubXXbZZU/1LcpWtrKV7V9Ne0q/RO+++247ePCg3XzzzbZ37157\n29veZjfffPNTeYuyla1sZftX1Z7S7fydd95p1113nZmZnXvuuba5uWm9Xu+pvEXZyla2sv2rak8p\nEl1ZWbFLLrnkxO8zMzO2vLxsrVbrnz3+3W97h/0fb3qjfeRDf2xmZmkUmJlZnFXMzMyrDs3MLMrV\nzUpLf2/UpszMbLzWMTOzXhLruJgLFznX83QdcrIaYUM/G+rPyBIzMxsUG7rviq5fbemLvxiH9oY3\nvdn++q/+q+4f1HVcoRutbui4lN+9gdakWkW/FzXdx495rkjPZfWBjh/r/jbUdceNTOcX6ncR6Xrh\nSIcFfqrrRbUTz/Xrr/91+8hHP6YDOD7v93V+wnV4zmCG88YakDhkDY0zxk3HVzN+zzSOXqupbpvO\nz4KxnjtWx3qZzvPT8Y/0ux5F9vp/+wb78Ef+jPtqHMa++uNzvyBSf6phpOMC/T7q6ToDT/0JC92v\n6Ou4KNB4plX9/0TWtMQ09nGRcYzGNog1l4opnVNpag792utusI988uMW9dSnnGfwqpMagypjNdD1\nqtWumZl1E/Wh4TP3Wjq+XtEc21hZMzOzzkDn13O989RTf/ym7tdirCyrqn8V9W+zM7A3v+k37c/+\n+I/MzGxYaOxCPiPNWP0M2xrD2R071Y+a3tXi7gWN3VBzJuVd+rw70+3M83T+VF3jkfCOk74+E2M+\nPEWcM546r11v2K+9/t/a33zuUxqfTO8g2dTz9NY0Tl5F58VcJ+F+9TzhPF2wbjquaOn5/ZH+HjX0\n+0RjWn/X6ba6oP6lPu8503vI6b/lhb3hTW+w//rn/8XMzAJP49DL6zynPruRr++WiH5lOszSRH/3\nI43LTTf+rj1W857KtM8bb7zRXvSiF51Ao6997Wvtve99r5199tn/7PFLi4s2v3XrU3X7spWtbGX7\n/7w9pUh0fn7eVlZWTvy+tLRkc3Nzj3n8hz/2Ybvpxt+zd/7uu9SZQKvX0FO3JiKtRl69bWZmk22t\nCnVfv6+vHzMzs5XOppmZZX1Wu1jLSehWt6ZWx6nGjJmZ1VpCC16g1Wd5XaghWNdqljZ0fuQ17V1/\n8G77xP/1fp03o1Xx0LJWqe5Y6GLY0ypc62hVLSJW7QroxRcizSqgEP3ZUhOSjgs9b8hqaCBHLxeq\nKEC21VDwIY1133Hm2Xvf81676V1v5TSeqwL6GOunWyabNVDCUCgqZPVOUvU7SRg34EaL62RNjbeX\nCM0loKrRpvoZNkDMMdcFNRUzLfu9G2+097zrfeovSNJLNAAZCL6m0ywa6x/DNP2RvxcjPffI17jX\nUr2HkUObPsi0GViFMRib/hYUOseb0DuYmWJM23oX//71v2nv/v0/sLi7qP/32a3wDP2qkFvW5aUx\np/K6nrkFkmrPa4ziSO9y/ZDmVJHo/Bi07rGbaFV0ftTapn6yyxp1NZf9YWw3vf/99rtv/j/1/xlj\nO9J1opqeb3qH5vSlz3yamZklqZDYffc8bGZmnY2j9EPP2/T0DgcMerOqnxM7TjMzs2qmvx8+tKp+\nDdl1VPXc1UTXb8xU7Xd/7932Zx8QUo4dABzoHfc7GvecXeLQ07hXfc2dONV9C959LdHzByDWGruS\nyqze9fz55+i660Kgi3sPmplZNmJ8mRNu7letbu983+/bu9/1HsZPz8UUspQdQGAaz7lJ9a9bYTfV\nV78rufrzlt97tz1We0o50ec///l26623mpnZgw8+aPPz84+5lS9b2cpWtv8/tKcUiV5xxRV2ySWX\n2Gte8xrzPM9uuummxz2+BjHj17X6+75+D/tajTeX4E3SA2Zm1oXvqG7V8XFPq2OY6risqi/siaZW\nj6xgeTStjpub4omWF0F8sUNSWs2zQMPhw9eEvs5bfuSQmZkNaiDGqlatNtxhalo1c/ixwuD0uH8x\n9rmukGfi63dvrPNHVf7uVkvT81XHoJm6VtkxfFbW0/XHFRDxUV23kmuVDuEwh/BXlUTHd0bqf93X\ndTqZ0EkUsnqDCsKBONXYIeMj+3WdKfFSp82JnlmuLKt/G3oP41j9GYEmog31Z9jVc4xBHxlIfSrV\ncZsbGodJgSGbrU6Ymdnqce1Mxi311x+rv8Ncx7cKzZeA8Q+y1PKm3lkGqq3l+jmGJ15b17udasMN\nmpkN1q3f09+jgHcywWDkvItwmTHR2DZAmCFzYPMY3CnIKy/0TmPmQuhVuA7v2tPP7LjmpLFLSPh/\nN/RRoJfoDbleDR55qP52jgsx7g6EOMeZ+pVsMHd8jVmrIgSYxTwPY+/Hul68sKTr9XU/H8SbtKqc\nR7+Yc71lvZs9D96n55twHLKuP1XoeQt2e234/xGcb6Wn/x8TH1jjM+KQKhS1NRN9povx/fp/fTXY\niPEfEz+psGu1nkP+zPGDQqxW0Xub3TLN9TV+4aZ+drlvGGm8DB4+5Tvp8dpTrhP9nd/5naf6kmUr\nW9nK9q+2PeVfov+S1iGSmqxrVTNfq1NvBNdVECqDdQgrWhWSoVafEE4sDfT/OatHP9cqVM3gFgOf\n47Qa1SKhDD/S8ZlHJNDX6hywCveJ+vZSVqmxeK+srusPuxq+1IPro/8FHKPXJzKZHdf9miBYIsY9\n+Dc/FpLMN3VeZuu6DmqCaKjlNwHl1GbmzczsgguuMDOzi6+43MzMVvcIjXTgEqNUz5eP9fsABJvw\nnDk8V8zq7k3pOeouctvTec260MB5z5fy4uLLnmVmZvd95Z/MzOx7h3fznC6Cq/fWBaUNNvR+47qQ\neTvWuIEdbL6t46940cvMzOyMs7eYmdnnP/sPZma2dJ/OH4GYDc57zPvPeN+1QdvSutB8RuS+6wnV\n9mMUGBug8kUUCGY2WFuyAI5wZps4/Kuue46ZmaXw3T+4+/tmZrZxRIOVg3RGKCs2M70zv8JHqqZ3\nVyfqHodEe/vqV1ZoThWg6Pa0rpMz59MVzYkBCoWCuV3lM5ODMH3m+MqDR/S8Q/XDpkCc7PLiEcjQ\nhLwa7Loy5vpgk3GrMEeaOj7vEL1u6O+VXO+wBSLeedYF6ge7qQE8/LhPdJ5dRsb5Hgg1B5HmIO92\nVc8xzjTXKmwixyhJ1vZs0A+Np8dnOXBKET47hdvV9pkTpuN2POM8MzPbfqF2UcmqYje779O4DVe0\nI4jr6n9lu87L6e/jtTLts2xlK1vZTqKdUiTaINI5Almkob71gxDNHtxhwxOPkREpi0yrTIVVvIFu\nMvO4XguEhf4x6MBLoVnLPaGAAXxHNgCJQodMsJoFIMX5K59tZmaXPvsiMzM7clSr7K5v/EDXRYuX\ngPjqRPxqk0IxQSE0NHOeENZGF73jUVBDolUvZFWtJuJoCzRwjUTnxRIn2MyUrn/amRqXVqR+7kJd\nMOro+mFDx1VY9dsVuNsUwg2eLZzQeCRoAS0jnA+nusx7qu/Xau3F95iZ2YEjimiHREQDTu/DG1bg\n+Tw0iK0h7wcxntdEZ5tofBITWlkF/fkOyVfU3xBdaq2q9+1QglNZ1KZC85tnmJnZxorQf4q+s1HX\nWE2AxDJ7lOsq8prlUZtnJjrdEadYG4JcN9GPoi9MGEPAt00Huv6opf/vDPlowbWl8MHVRH2emdXx\nl7/wmWZmdulLlB79rbu+a2Zm93zumzoPTrQx1HMkHlFtLl+AuL1p/X+90FwZob3dRAkRgJxbkcZ+\nwBypVjTXWrNoeEfoanOn+dVc7/f1Lp22OmQKbYCYC/SvY/juabcbg4v1ZsWZ5mOdmA7R7Xp6lwPm\nWK3HdwHvNM+Yo5EQ6pi5Fg/YvTLXvIL3Ezs9rc4fNvSZWFiSkmdccxwzuxtI1j7jNV3RPPBDuOHk\n0R3LY7USiZatbGUr20m0U4pEx0OtQhGRtdQhSrRuNbIJiopWsantQlwV+KC1g1pdMnSeY8LLUUgG\nUQhyreo6mx2XiYNudLuE/tFpWhXX0bhujrQ61eFge6CPuAFH2SCjqaLzxj2hgQgE1yc7IoPPufgZ\nyia55nU/a2Zmh48oYviVv/6KmZnl6/BFKdkUBIYDIsqTZ0pL+MzrxdMtjIVg+3DJnVVFVmuODwzR\n2aI9HMNjpSk8VUxktg1vBhqpoGtNzGnlQAUg7YcfELo7ChIf8f+NZsRx6jeLuDUTouduBwDyB0yZ\njYUucjKUvv1FcazBWOO5znMGmfrpIsUn0Aqqi0k0fs/9xRfYxM5zzczsH/+7+NTl3Ypep3CLVufm\n40ej82mzagUKj0MHNXdWVoQIDf446WlMW/C5fg2EB5faPl/veBb9Z/J9KTpi4Hw9gdskA2rAMw8i\n9e/hxQNmZra5JLQfNsnSq2tOpMypCISVoBwJE7fbADnNa0yTXH9vwplOX36h+p/pugu7xfHmXTS/\nIOkkZG6hGW419NlrVFEXpHruDlmBPfSdHhlLNTLDNmf1vDvPlOTihS+8xszMumOd909/91WN3wra\n7ByVQK7zKk7VEIDgt6nftbre9fq62xGwqwHpI2U2HxVEgESls4HSZuFBPQ+ZaWmu8WpVdVxOlmSx\nrt1RGpVItGxlK1vZfqztlCJRa8J5QcFVC62CeUWr5zBn9SNKXodbmyR0N2ro/EFPv59+Npk1U/r/\n5WNCqGniNGhkyrC677hQ/FEOmsgysik6EF052R1LQnoPfE6JBOtd9bO3AneLJnBMps8k6KPSgitl\nMRuT4VQhy2WSaH28TGTSJclHLhOHyGlLr2nEuAw6Qi97795l9otme9aFeqKanj8AifcG5LTDh9Un\nWM23aJXddtqsjivEaw2PCGFmCShoLqAfZJ311a+uL8TusSPoDtWvakjkFs4zRRdrq6Cuin6vk40S\nwk+5/m0wUOM+KAs9boSmMQR1DHLGt63ncNkwG3HNWuSUuxz0MCTLytRXr0d+PijczCz3G85uwaoo\nFvpDkA4KiTpjmjc0NlWiylX+PjknxNYHAUWg8y6a216q682ApiNf/frON6U/Te74Ns+oMezwM6ho\nLGI0sR1P16uRqdOPNAZNdm0BKL3f0bv0d2qXMT2pnxHa6EpL795DmXLO888yM7MtO/WZePBu6T/z\nVd0fmwobIuAsQOiW8Du7n3SKfoC4/Wn1b+pc7aaqIN+Jmt7H8VyfpQbbl1FIRhlKFJ/+nXbOmWZm\nduYVikscfVi70EPfUVxilOIXETkdru6fkqk2wdyMa9plDuGsG23NOb/O/eHtwwZxl+oTJwuVSLRs\nZStb2U6inVIkWgOZ1Vs/ugpkJ/SGWq1HaL6OH9OquNTX6l+M9HvrfK12z3rtC/Q7mrs7/+LLZma2\nvEurfR6im0yE2A7u2mVmZkOiwuOhltsGLkH1Ghzeuu4/qEir5tyXalWQHjrUARHNyGUqwZXueXiv\nmZl1PgrqIBI52CS3HwRb1NDieQ5F6f4HDotD7X0VLhaUtLZJIjB53UNW2QgO1EBLRVOr9Bjd5s5n\nKA/5mpe/1MzMAjKd7vvbe83M7CgZWiuL+v8OEV0fF6ZR0Oc5eH8g6wS0NYj1PuZOF9o5/2pp9I4f\nP2xmjzr+hGRMbRIo953j0RTcdh++Dx6OQLvVIY2r8GZjMqYe+Ju77IFZ3XsEv52OtXuJ4GejtsZ4\n2IW4NbNsNTZ/myNqyU0PhL6rQ5CgQ1ZjpznWHOgHeqbhYbS+8L6rnt6Fl+EWNNB9Q5y8QtyWPOZe\nwW5oDEpvkV3W20DPSWZPxjsc8dGdJlo+WRfSHHQ1BydamuNd5sruux8yM7Mg0zt1UefJC4SgL37h\nM8zM7NLpS3UdXJx2f10cYtJ32XTqR9QUhzq1U0htoYPmG8K7ieLl8K4DZmb2+Zu/YGZmDU/Hb24K\ngYZ4GKx3Nb7tnHgCu8axoTvtavcV4QBWmXRKG+d0RtZigHIDVUMK8u0zvsGU5mSD74IYH4gh8QXn\nL5EV6lfmiP7HaSUSLVvZyla2k2inFIm258STnHWOIngba0IPawvk5xJFbzTRfK0IFVRCISEPBBeR\n1ztCF+od0Sq3TtS75wxFyR6JJljN13TecCDulCC+Nee0CrXxHqzlDmnBZTaEUjpkWaRk5DTJhHIO\nMTk61oh+ra/jcFPA0+E8UydROsCBKG7CDSZCAzl5v2sLiz9y/TZuVMMpxgnOsohGjIf6X4EHszoP\nyPN2h+KVErjdXq7rdwboRvFUrPis6gOybdrocyvkNcOL1UCO0yDLcy8Rj3Xxs7br/G/pesuHDmg8\nyLX34aucFVA4IFee/nugm2n0wzEqhLyvG03iLdDd3LQu6HwSRUCtQWbPGr4D6D5r5hyzzFqzEzbi\nnaSFxjTFm7YgFzwaM6aMbR2k1HLuQbnj2nT9LXV0jpHeXUp0e1gIGVfgg+dmT1f/cC5bHeqduwwi\nD2TUIgoeVhncyPHj6mg4gW9DHU/aGh6tZCqtMPdacJlhEz1oX/c9/P19+v/LhPw290olkI5QISAM\nrYbiTKfRuW47TxlL6RHt6paXQHZwyxPLeqdrYz1PB+VLgUbZxwS4DVIcgvRruFbVedcrh4VE7/ri\n1/U7LlHOB7bBeyvYccTkxk/i81qQdReQuTZCr1pF2+21yejifQYg2sB3eXWP3UokWrayla1sJ9FO\nKRLtO94Iv88Kq6WPX2aQu+itVpGUiF4UsOoSwVzE3/Ouz95mZmZhrtWoT1Td4GGiGDQACVeva5Wp\nN8XZuVxyD1QyhrurE303H7SBNm+igYfkFH6XzvkFfiVFq1cFuc5OC4VsnXUIGCcakGynBwc81vM0\nyfttkaGTkHPv41A0aGqcql0cfkArpDXbDBlg5qmfPXSVj9yrfOHjR//WzMwCELatgX7gKtu4W/Wd\nG/sUjvRVNIt4ZFoTvSlqigy+8MEH7rVX/dL/Zt/6+h16Tjwax2RGDbtE8VFTNNDomccOgwit069O\nzkmL2dim8Tjw0CN6LhB4GDWtCscYzuKDAI8aYDI03GRuTT6KRBvNwMIB+sdYu5gxFuoRCCwbUfUA\n/eT0uXrmF71MfgKT25Up9U9fu9PMzI6Tk72ETjMnK81rMNaMea+Lz0EkTnW0CVJiDCaYeyl4xznB\nV8h5n4bvPm2H5kQHjnDloHZ1Pvz/TB0OkZz5gs/U+LjG694vKkPqodulj0031Z8a2ugGu4EIPWrB\nOxl1dZ8Rvgw1Mn9aaL4LdhmdBe1+Riv6DE3MipssPFchQONad7CO3Y4faA5ugPTXDssfwoMP96r6\ne85uyUdZ47E7mdipz2YTVcS+R/RcKfx+e1rHxTlbD76LIvwy4v8XX5ElEi1b2cpWtpNopxSJpota\nRdfxcpw7fYeZmU1uEU905JBWnc1FdI6uVhHdDshuiOGpxg8Q3W2A0CaEXFrULtqAZ/ELrWqrrJ4R\nvEwNIiwirzo8U5He8156pZmZjYi0rh0Wl7gf9/J05PKo4UjJnGpg2z0gP3fkaRWsLgrZDXDMCUFH\nMQi7CsLOq467RbXQgh/DzWiiJ3Rj5Pu24XeGhcbTT4QSIrSMzYaeZwyf18GvtcL1KmgRERlYCHKN\nDSd50FF1APcLj2eoLMIZPc/EhJ6vaKk/M2T38BjWPkfvuYrjT4/aVOMxbk+ggCBwnge63oX/i7Ju\nLrpIWUm3fVn9OXy/1Av98bo1UjKGUD4McdiaY+yqW3Stsy+UQsHMbOuldTt6r+4doj1uUiUhJxru\nw6EGuPOncI1RU3P1tLkz+CluccE09o11+HF0o0HB7mdIlQKy0gzP1GYNZIR21yq8Sx+dJ34CbZQr\nWy6WK9HLfu3ndT2A7lc+8UUzM9t/SIqQjE1ZTkZVThR/XGXuo7Xuwc9XW8rmG+N5a22yCdc1LquH\n9Hy7fih1gp+S5TerOTkinjGZu9pJZD5leg6vThwBX4QhxgsBiDLBUzhDl1vgPxFSwyry4IKZqwnf\nDbVJ/f/2s4V0X/zKF6of9P+rX9FxB++V81gE55s6v1fedz6t+3rRE+PMEomWrWxlK9tJtFOKRGe2\nKXq7Y4sQY4XIXM9FOvtCDSHIapw4Hgv3JYLubSKfOeF1rA0NGacNhu7/hST7LtvEOflgU9klOjw7\nqb+ff4FW+at+9iVmZubjAHTb55TjHe37nk4ElYRoBCsuR5xMG1dRMV3lPiGrM+5VztGfhCSLifIH\ncIaJUw10tMoncMXjsfizrCNUMn+houBVuNaDDwt+xMCT1GVikYTRwjMyIPofEfmlrJD18RONQGUB\nzv1juFmDi3VqASO7ZMtpUls87xeU6//Kf/cGMzP7+qdvNzOz3XcJOQ7wPXWWQBk1mzyi/haCTGvi\nKTfXhHq++4h+X1rYY2ZmBcg1y33LyBjycPxy9ZwKeOVznq0xet5LrzXXnvuKa+272bfMzGxlhdxv\n+NvsqOZiF8TkVdBHUj1g/8PiPjtHtTvZdbeQ6EYHLhQOM+jiE+H8Qg1N72mKdr/4Bml22xdKsXL3\nLfJVqKOoGJIr7qGRTZq6jqthtOm2D85B3pWfpAqAy/wZUzm32nAOWEKIEfEAp/3tbmiup2TxRTFx\nBafIINuuCZJNUQMYiK7hPAbwP915tj7jTXYzC3u5T1/vcscOPXdtTuN74EFqNMFFe56rvkk1jJjM\nJvS0NeZmw1UOIINrBb1r4ZBm7BAwjmIu+61Glt+I52Sc3M/HayUSLVvZyla2k2inFIn6eAauLwui\nrVIPZWWVHHp8Mp2DjE+02jmZ50RUh3ggugyiGL4oClyeMvrMNtwd/qRGnu6AbAd/TfcdkqN/lGj5\nvQ8pj3iTujX7vi8EmtH/mTN0nU2i1c5Bx+CvQvivBL/TAGcaK5qMg56/wO08J/feOfDXWeTDilbR\noIf3JXrXmdPEF112jbJNAnjB1FNdmiU8BAr4sCac6LDifDw1ngFZI2M0kQM0eKnn6tXrfWTkuueu\nuqfnanjreTpEOlcXOnbuOWZHD5DnTObYCmqKHsd59KPSBpEDmJtwoQER3M5RuUj1dmscBodc3SNq\ntqc1q4MLEnSYY3jmxU2NweRh5+mq33e0zeLFIzZyTl3oGEfHUEqQRZUD7aJZHLHwYxhTs+nYcSHD\nEdluKYgwcMoGMmNy5q7zCc3Qyq6iza2sKg6w2tOzdbpkNDG3isIpO/CkfVhI6+t/IdeqAZlFxw4L\nIfvoHSP0sh5xgTgEYaJrHbDLc5Vbq4yj8/Tt5RrzCWySCuqAVXaQEUYF2aQLEoZzLdroM0HyMRlA\ntUldr9HQ/c+6Rkj1eS+43szM7vqGdgb33yHuskbWYm8TV63C1YunHhi7rQgutrag8XsIZ7CUfiUg\n1gEa4xOuWlTkZcpZFYey4n/QEz9WK5Fo2cpWtrKdRDulSPT4slbdQ7vEdUXUzGlMUMsIPiRk9R2M\nXA63jqu4KH2h1TjFuef0nTr/ql/8aTMzq7W12tz/JTnlHNonrrCP3rHFKjcE8fg45Kw88LDZq83u\nueVW+gfywvF+59O0CgeT4nOy/WQAbZKXCyrwEtyLqGLpCsEXON4kY9ANGT8RiNTI3Q9YXU/4cJLF\n4TSMYSJUsrCoLJOGq6JpQm6VluMapVftDYS2xhvKkfeoAJmRoz4iW6bAvT3cQn/yNvdDc4iqIXGu\n58v6/TjVWW/bfcyuuuka+8ePfl7jgWdkHfRi8JZ+4iocwL2C5COQftjR9dcOar70nMdki+ugZqiG\nFeuZ85eEz23omBo+BAd3691/6UPK5b74HVfZbX9+m3VXhIw2iY4XLiebXVBjEtQ+EHLcQ132h3aJ\nl83gBBsT1NHaKu51iLN9BT/TjNz5AFf+LNHfHwAxfRdk1lkSwqqym+oioGzDm6f4M+Qcv0L1Bk8A\n2yqRousJn5E+2mu/4uqA6Xmcl2uvp8/QhKsIy+5mdkbR9Oqmc77Xzz4qhXwd1yvPPRfZZkTRA97D\n+pEf6r6ImKvw7yHcZRe3qF0HtHvafUzjOsg0zl2+Gwp2Ky5LLmHX1c5wuk/IfmMXmztuGn1vEWkn\nUkVJkrAzCKiI64qGxmz2/KJEomUrW9nK9mNtpxSJBlVpuSKIiDZZDL3cuROhe9wAkYBMohn4lcjV\nfVfLiai6SOw0Os8aebT8t9WJyHkj+JGG/jBJTaIRWjUAo8Xk2eYueg1PVMfJpgYyWoQfy4lsBlS9\nzPFKnGCZ61KtNIar9HHttpa7L2I/x/1GQoaTIXVsyJM2Mn+KnlDG7ju/o/6gy+zzfG0qWG49TZHY\nI/t1/PoC+eVEJos+FQXwYPQI+DrvzKSp4+JJVBP8Paqp/7mPL+kKx0NudulnCGrowcMN2QkERP89\n9Kox9YT6oCbnNdnw1P9J3M2TDrzeQH9f7XVtjOLCxwF+NNLY1Z1Gldzx7iYlTs0s24jMb2s3MYWO\nc8SmIc+EZIcjEGVTEMXVgHTuS1OMQVHHV5RJGXTRBPv4U2aMIbsdb5qxSoXEkq6u3ARJOQGJS+bq\ng5Qr6CpH8Pb9oXwPGniwTk6qIuwIxNYnyy2G585xS2qxe5uYIz7AmGeBxmdzVR1ojBrcR+cNmRPO\niyCgsmwVrrIySaYQvD6SaOv2yMl3TvJj3ffBe+R0tvs+IdAYzfMYDXTFzRWc3nLiHymcZrup93T+\nlapVVZnSXN52thQ2x491uC6+o8hwu8w1w7c1wyO37jKoEvft8titRKJlK1vZynYS7ZQi0dEGEUgi\nkwNcgyLn3UjEr55ptY2dw3vi7i5RAAAgAElEQVRGtN5zjupEUHF7OnTggJmZ/cN/U9ZGhkN9SnTY\np659BkoIqMqZked7wmAeKFrL9P/9VaGHhRVF8TcOinN02rYBKTltao9HjG7IKl0Q+WxT2D1exn3c\nGWVShbQO3xU7jV+NbJbTQRd9oY7RYTKKGlotQ3SdgC+bOU+ZQc99merbbKNG+N33yDc0+ao44v4a\n2R+5q9EkGNYG48cUpg9ngGfkpycRUJSsjzrc7XiaiDCoL4Dz7DMuI3TAdTLOUleUCY9LV3u9iebv\n7EuFJp77uut0nq/rf+Gj/93MzPY+KEQfjSesOkWOOvWvcnj0vKaxbYwdkiPby8yqedWyWHOn1wYh\n8UwhuskExOaTMx74Qj5zIMM+u6J4iON8D11n13Gr8ODmXJZA75vqXxceuEJ1TSPHvcPfPRQeeeiQ\ntu47yVzqkpHjFC9Dp9PEPyHhXTbYRWVUAHBR9wuvUBbYtrPEpS4cE2I8+qA45IVlcaYh45R7mgs9\n6tJPVV2dMY2bcw6bOe8sMzO75pVX6DooNe69VQqXMVl+bBJtRB20AfGHCj4MCeLmkAy0jPczwB1q\nvF1c57bLlYlWw88h3UId+gN44+L8n7H7qVI91GM37Pxd/QL+f/LRefJYrUSiZStb2cp2Eu2UIlGv\nqdWgCXrIWb18tGQJkUCj2mODyJtHPfY0dS7Y5PU2iSASETz6kDRm+SYZRRWtvo1Aq0wLVyiHfIZw\nd1VXEBJ36xweKYIfaTcVsXS6z+GmW9V0fBOHIA++pdgiVLLjAiHWtSX0kZw/2uCGntN3irepU0v8\nrMufZmZm1//Sz5mZ2eHviz+66x+/oeNJacK21Aq4xRBt3Ap8UFYVuljeIwR9aKX/I8/VrAldNHpw\npUSEgyk91xyVJJfRNqabuEtRoCjuEsl09W7wZkzqRPHR6E2DKjapsJnXQGFw1Rgf2YiUtC5I3VU+\n8Cf1Hp2rVQaXnHm+DcbUEQfF16ao894SL+yTlVZ3g2VmYTOzxha4PDxq15dBPCC4KtUiB2P44Ej3\n6UyAzDp6V32ysMag+gjlQBOFSSvQs9fgbOe2qh/Tl2qX4Op8HX1IuemTDSHNYQIfjpN9j3eWoPmd\nxvl+PNRxo7VFfodLdL6a+DxMsXsb9CEHB0KIR3ZTW6oPB0y1hS3stgIypsYgzgkXN8j0zpGhWpUo\nfwgSnpsWQgzQx+6aULXR1UW4ylT9m+Wzk6HPTAvtHrs9qpDCWYe5blSrsatc1/3v+fzX9PdaxS77\n1YvswPfwVegpyh/kmuP1CG4VFYGrM9+a1ndRfUJZdwZSf7xWItGyla1sZTuJdkqRaIN6J1uoTR2O\ntCptwF8kdXglMn+mtgpBOif440d0fAF3maOps4ya0UQgp2bEX4XkO1fhU6yrVWZ1Tahiah49Zo18\nYoLgKTXA4w7IGH1mnVU2nCT/NhTKcJUip6a0Sl5yterXPO8lP2VmZncekA/m1//iS2ZmNo71HBW4\n15HTwsEVZ+Sm90HKvcjpS6mwmDmEjksUvN8ApHn3Z6W9KyZUZ2cw0OpO0ohlRIIDl3cMB0vA2M65\nTB4HT3+53Kwe+aFczO/7mrjV3CX3Ox9Qsj/ak/BN+LM2uE9KjSYDyVoFRyNqq4cTPD8v4NAxIee/\n//O/0fWnNa6947qOq01ehLEVcH2jEQoKxqbokLUGDx+1H63iOH/xafacXxZvfGxDiOdbt4hPX95P\n5hJZUSG1kgKytTIyZRpUrs1jNK5wlgXoe34eTStuQzk1oKJnCaG97OWvNDOzxVgc5PqmvF6HaHVj\npBJVnNsDfo9RKCxvoORgGxVVXQYPShWizZM42leYw1vP1mdn5/nKGDqwR7n/y8vk9md45ibUD6N2\n0pC4RFJFf+o01OwmCrIDD+3RnPvrv9K7Gg3INtuvd2ojPtNMoX6bzyqIPiu28nfqi3XUb8IfVplm\nF0lViMP3SUsc+rnZr5oNyWqMPF23wPN3iN9p4rvKurxHqlk0EeQOlsvc+bKVrWxl+7G2U5s7T3R2\n3AFRugKMZNhEK87rT6vg3NniIp9+lfijXSCh/cewR4L/SVltEjRfHdySKtQAT7vwKUQUt12iqPfZ\n/DyyX9zh+n6hgiHZDDk6UsfrdOCVhptaXXMygdwqmW9Dj0pmzZB84wlqoNfQwI2BhNkYBOjq4OAg\ns/KgMov+YfnT+vtR1ApDvADINHKres+5RG3AvRINz/HtrE7ruGI7tZnQWSagjJxa5mFzyLgIDVw2\nc5X6ez51ee5QptkSPqsVMq8Kx23iDDS1XTuNOo5F64eFBr1CqG9ENo/Hew5dLryvHcEYL4RgRVH4\nderSt3HSH1B7aVRvWIVdxBbgQYrD0+qm3n3T5X5PPopEJ+ambHtViDDbKi7Rr+nvPtlwLgusUtMc\nCeFKO8w5w82oAprP0XFObtG7nz/vfB0GIt5H9H60pv7tPabdwnF8Oo8SDa8wd7MJ5/VKrSjmUg1d\nZsbYIRowjzrwlQ12N2QYFShdIqogXPEM9eul1/2imZntuVaZRd/5rHLXj+zR3ElRnvRxDqs3HQIn\n245dQ9X5kc5Ldxui9V5+SFVDR3gQtFPtCgMUK2O+C/rURxvgx9CEu/R8uNIUhQc8/HAZjwL8SSuR\nBqCF21PIZy1GCx2494gqICba3yPL0O/q/l6s/ucn0gQfuz3pL9H3v//99t3vftfSNLXf+I3fsEsv\nvdTe8pa3WJZlNjc3Zx/4wAesUqk88YXKVrayle0nuD2pL9Fvf/vbtnv3brv55pttfX3dXvnKV9rV\nV19tN9xwg11//fX2wQ9+0G655Ra74YYbHvc6KV6Iw00hk14P3SGRuSarXEjFwx1PU4T19AvE3+z/\n3gEdvluRxRQu0FXtTNACjnELSo9QF51Um2kQ4gWXqk7Oz17/cjMz22vi/L72cdVsqpAXPeypXxus\njiO41Qo/a0QW686dG17s2/dLE7d3QWqB7rLzhkTnWlE/Mmom1TK0jWj9ukTLC1b1gYumw4/lcMI+\nTvTemAgkNcxzVvsaOtgeaMSHn0uoJdVC/RDATQY85w/uUhbJKPhHMzPbs1fjs0rWT4SfaoHfakKO\n/RSR7OdcKz/WSy7XON/znbvNzOz2L8kz0wlbC3LwEyLSAWihQX51pYb7Fplcrhpp7FLRMjMPH4EB\nnJfjh1vzuiaJLBbQVzOz++6537ogzjU4zhWqEWTUh/dJQcoxfY3Jqms2Qc24+Qc+TvRd6j7xbF3q\naBlVAcIJ6n0d1PG33/xl3Zf6XCSpnXBVqqNQSDHLzYdwtehWKyhUrIeqgKGKW3CWmzjZ9131B12n\nCB2jh2oB9UBAtDrB3yB3TvJU+ayRqZVSeXdtUeM3gzNaOAXX2cLr1+k8YRAxx7IGue1hCz4fhUqL\n3aShAuj2XLRfJ454zxHjUUV14PS3Hp66zqUqD8kUo978iXQ76olNoPOtMC593L/a1SdmPJ8UJ/rs\nZz/bPvShD+nmExM2HA7trrvuspe8RB+Wa6+91u68884nc+myla1sZfuJak8KiQZBYA2qAN5yyy32\nwhe+0L7xjW+c2L7Pzs7a8vLyE17HB4nlLseca0a4eI/QI1bwQjy0V1HtEdd+ZJ8iiVYnDxltYNHX\ndUYVrW6+i2K30cilul4DBNnbEKd6dCykuLGq83pwtQNWtaFpdfVwfarDuVbPFmc4T+QzhnfLVsSv\nrR0iZ36/UAbyVCsCF60WWkg3qLXkMnjIs46INA+oYDiNy9U6EVm/RwZUhUwhEGRBrnqAFtAhXZ+6\nN1U43JSqpe7vEXrMAXrd1QfEDa8e5X3sEBrxqKIaE0nN4XIj3KjyOfg4ajAtD8VpHsMrs7/OewOV\n+C0haH/gIt/Ueo+d2xPobhoUiStUfETX99KKeaBvH8WEc5oKiHJnoPhx8Sh+GKwO7O4vwNnV4TjR\nkUY4v08wNzMUEy28XKtEwTPm1iB27kpwe9yn++DD6lfP+YniC5o4nSlKkjN1v1qL6gaYyTrv3AzU\n30AnWWdu9jAHiGY0F1rMmaTqkDKons+I1dFr4sR/eOkD6ic+q8vs2kJ0pzXeTet0uVONXAFctNE+\nSDIZO49gzZkuKoaCemFV1BOhq2PvzAHIdgsm+EyQWTTgsxG3yBTjPbZrbe6HC1PVVU8Vp1ygzAnr\neg8xCHmSLMd1NMgtuNak7hQeeAmwnR0SX3i85hVOH/Qk2m233WYf/ehH7ROf+IT9zM/8zAn0efDg\nQXvrW99qn/rUpx73/KXlJZufm3+yty9b2cpWtlPennRg6Y477rCPfOQj9vGPf9za7bY1Gg0bjUZW\nq9VscXHR5uef+MvxY5/8qL3jLTfaO276D/oPIElMBDOkNpLPahFMajVyjuceDutulRk720tQxDqr\ntI//p4vwBWSFzFdZRdvUu5/DXWkIqtjo23ve9yH7nX//O1xYPxKQYm+Aw02NrBYymca5i+jC9TXg\nJsnq8ImCjwsirORJ9+GCG+RXh/BVzqnHOelX4QCjQcXe85/fbW976zvVMRAkEj7LcF+vVHHEh19q\nbCfve4sOXKZq6eYx0ELTuVXpOgXQOQngnKmEmBBZHoLoc2pCWejq+MT2rve9z973tt9Vf9C/Zjjp\njPtCO1ko9BXAezmEOtV2Dj5wri3GAXQ5IHvFJ6PMC6bM73NsoWsHaGrzRKi7AN1XWlIKvPMP322/\n9/abbOCC7PDvI5BilWy2AbrJOlUQ6qdpTLadq3k+wON2Y490ihtEw/1IWmiHJF0mT+GRkx2pn5PU\nLoqIMg+Hid34/g/au96sueehVR4mer7aKvpIONiBQ974i7pqp3O4Ojmk5JEFmFAlIQMBV6dctUzG\nq6t323H+BjEkq3OCt5597H0fsje88bd1nst2YxMVoxiJ2c0lKDVaFX0W2nUcw1I9f2uHFByT064+\nvHSkQ1ddgezEwikyUAFMgSh9SOQpuOnTLjvfXvXLr7ePf+J9ZmZ2+OAKz8UujR1A3HQZUlSyZRdn\nk5qTzVj9efvb+I76Z9qT4kS73a69//3vt49+9KM2NaUP5POe9zy79VaZF3/5y1+2a6655slcumxl\nK1vZfqLak0KiX/jCF2x9fd1+67d+68T/ve9977N3vOMddvPNN9uOHTvsFa94xRNeJ+iTCUSVT4LL\nVvVZ9eCnElaHYIxv5Eirb2vKuTDxGBVXW0n/v6UQCiiIWA6H61wf5x2yT6prRPyImvuslhX0ks2K\n41/wfAQxO62ggcgK0EiInjSCw2wRcbQzzjIzs61EmfevSP+ZH+X5OK4PapogT7p9hlQJjVn1JwPR\ndvaIy60DkTeJPHaB5BXvR3Pyt29Vf57zai1wzzz9cjMz+94uaRS//QXRMQMirT2i90UfHWag/988\nTPYMwx7gMUDi0Qn0l5BI3cXLIOlq/GoQajFR+ALnHEuotTRNfvmZ4t+akxrvpdUfmJnZEJXCaE39\nmJhGi3nxuRbi8L5wUJkymz1xc06Tm5jzGRUyMTOz/qNjv4HTe8EcG2xqLJvw135bu40LnydnqV/4\nGWUadU1j87XP/J2Zme36gRQjXVyPUuZc1sAr1dUaohroRgDnx2egMsN2Yit6VvxHHfLqz4K8iMrv\n2Kmx8rdqzDepFjGERy56uEyBrNsxtZHO1f0nqc5QQwmxWBxQf6iV5HtOC03mE3OrDaL22eWsc58G\nOfYT2xQvyMkWbMBp+k096OS0/n71K15gZmZnT8lN6h++JCrw4P36jBxd0fkVsvaacKjOqDSdpD+X\nahyueZVqNb34dT9vZmZ3/K2UIN0lvfeVTc2h2iZeAFi3BcQVnGS9Vn/UY+Gx2pP6En31q19tr371\nq/+n///kJz/5ZC5XtrKVrWw/se2UZiy1T2NVf5YQ0ZGHVKFwuEKGDcc5p/chesYmOfQX/YyqW15+\niXLT77/nATMzO0Y0ebQiZNlhFTffRdfF04x9avWQ31yFg/PgAJ1jfIaTS+xqV7MaN+EuC3Lz62j2\nClfXBa1bjkvVxTj1XHaJnrf40tfNzOyR3VIdRAEcL0h4Dc5wR0P/f/2vCEFur2m1/ru/+SszM+uP\nhEgHID+Xt90G6SUpnGeu35dQNyycrvP66EadGiCD5YnhnQb4r6bwRw0itQOyZCZwLCpA2D4owaGT\nYEb9alB/x9WGj/CKrHbgMXFn2nau0Mk1L3+hzsPG9I4vaR4c2yUXq9Vc/ffoT9Ea2Rj2LyW6ffr0\n6WZmdg5+md0VvftH7jxgrvUHHcvZNbg65vFIc20W5UKREi13FWXXqSJqOLW7DCYQ2MD5i8K9WSZE\n2WVsQqLU0P5WIxNo+1lCuC//d0JQv/of/42Zmd39GVFlB9BE+wfYNc3r2c98gc7bsVPc4jfJ0Fp7\neJHnwdUK5NbFZyHY0JzoLSpKnzvHeTKx6ryzEVl7PplGPvpZV9VhxDttpU7LrP6NF9B6z/JZLPRZ\n8o7hhUu9reV19ac1pbmZDPE6YJdaoSrECF8Gy5iTqCXqVD/dPKTvjvt/8APb9vTT7Ogu6nKtq/+r\nFDTI4Ywdz+9qKxnZc051Mao+cXS+zJ0vW9nKVraTaKcUiY6xbnGRxJR8Y7eqF+T3jvCnzOCPpts6\nr0EEbS1DkweCPbxPyM6W0PBNOnchamMTtXZVRFPcwkN0iTnuTt0NnZfCXzXxI41cXjKo40TEl2yW\ntTZZJZGeo1ao/4sH95uZ2S54rYX9+r0fq/8+WsRJfDizNlkt6CFXcMKvbdXzdRfF7/g8RwMEPSZL\npE+0PCB/uIer0/23KWPooPNbhVvsLLCqo9WLc42vH8Epg/LGrM7O8aZPNouHh0BB1k8yy/TqCGUN\nUTVUKuhVcRhykWKf97O+oZ3EyqK8IKsbVC9dFKLuOP0o2SYeaoeFXWtWULUywpu2eYV48TMv1y7g\n+CEhk+BhXITMrNmasqyBfwPXas/iLEXufRSSkw363vcD8bOH9skXswFHuHRcfexRzSCM5hlLXafq\nssSG8M34YcYxyhA+A17FfRbUxiggsjUQHPrPSfxMQ7jOBC53RDUBV10gQQHi4ccQQb6ud9Rfl92W\nDIia049BjKsRu8AMztBHIeEZWmau689M8nxCjOMBfDgVBgqqnNabIPZN3f/Wv5Gj2TSfpeVVdjeB\n65eul8GpRsQnnI52cla7l/6q5tLX//af7KVPf5l96RZxofkyWXp8d1SYi2Mynwp2kRmf2QEZVlWe\n+/FaiUTLVrayle0k2ilFouu7hQqOPHyfmZkNR64WNAQFus7Q02oYmVDAoaPihVY/IxfrSTRkY2og\ntQtxc8MpEBMc44ZplRrjjehqHVWdI37/RzN15s/SdbaeLk1hh0yqCtU0B9Q0ctq46XPFu2Uj9W9l\nt1bZIUj6wC7dd2mXuN8Eb8RpqobmLaL+8D3RlP5/3FV/vvPZ283M7OEp6s6gJogarp6O+jGGH6oQ\n8S3I7mhT9z4bCrEvPYAmMYanSkAP1PUZ1YV0MxBnlefOcRAaRELQLVQWDtlH1Pu54MqzzMxs22n6\neRBvSed1GZB/bU1Qxhr1dXz15/ZbhSKiDvwV+eLOVd2oCNmjJnnUGVqKkmBqJ9lj5LwfeUjvpHdU\nKNdpS83MvHDd0i6IBhek2R06f3VR9+wcF/cZN6SUcDXvx2iOraFnmDhLcyXC9aiHIsRb/tFqnj7V\nMEMya6rTus7amnwKPvdf/tL+/etvsk9/8CNmZtZntxDCc0+3FE/ow/Xd9X9LYZGzSxjBKbpcmhZj\nPu7pZxjqHW5pM8evOE9/72hOHfvhMcZG/cqd03xFc7pGbvxZ5+i5dx/RZ3nMrqvBHPD47KVDPitU\n//QnxKlOu3dP+c0euzRKXVkXTXjOrs8KlwOv37ds0YE7z5KfRopyZfWY+kM4wWpk2eWpxm+T+zSp\nMBCz46iAQFtNvaexlZxo2cpWtrL9WNspRaKTWswsAdlU0OhVcBFKycMdwzXWXUlAVqV8Qat8QV2U\nqTnxX0NqhTfgTcb4T1Z8rUIevE0dp5/eQNdxyQpbz5KT++XXPNfMzJ79umvNzOw7t2u1Hx1QxDNI\nhZjOuEJelC95zWvMzOzIQKvgd/7+783MbGGfeLqiI1Sz1tWq65H/3MI5JqDmkrHoxuhYfZ6/cwwO\ndL+rXaQBjGIhzMQ9JzrNDB4sWFM/1/FgjPBDdYb0FcLfRabx7h4gFx1kXpsVGkiNiCw8kkfec4E+\nNWrq546LzjIzs1949evMzOy6f/NLZmZ261/KrX0ZVHf6OULu86crorz7HjjiFRyK1qmp7p6LmujW\ncDWz1O+ay1IaxJbjI2l9vdvDDymCf/gROVC18U1w9ZvMzApvwurbNcbPuVaKj/Oe9XQzM3v4W0LP\n37tDue8jnKv66/D55Fr3mWs1FBapc0cCGQ/5/1YLN6MInh99qofPQQ4Pf7ijsVhmLKYdsiOXfzwm\nuy+g3hVVMrt4A/jw1DlILsDFycPhvo+fxFRLv8/MaSyHE7hYHRbijHGhitkdNeDLr/x5fTZe9Ebp\nZKu3ytt3L3XjV9fFOfuJ+tsi2y4GuQ9clhwc5MwWkHxdx8dkcoX4MEwSPndZe2yOrLeufu1/RD6o\nI74z2gXa7aarfcVz9FwFAup2Ue3T+O7xUFWM4YLTSolEy1a2spXtx9pOKRIdkLkSmMsEIsKYwbGx\nStdcjWmQ0Pys+KB6g3ryPVx/3OPgGp6y6qxRbdJGrq45kUZXs3qTiF0TR33yazeHQoxrC3CLuGh3\nei7Ch7s2qONgX9Hk4/v0c3kDXgVON6xSc8j5fSau3gtOQ0M8HeEetz79LDMzexqc4sKBA1xfWroa\nzzfCnduncmGORtBjPIoQTpP7pfijZvieFmPynHEYCnHcmcedarYpnm9jUffdJJ8j7qCvrYFI0anG\nZPnsOX7U5rZfaEdxpHfeCFVqtVfYCVSaVHslt97Q2UZDsoQ43jxEfnChGaiqxhYiLCo2SZ594Gh1\ndIDpBhlIIKqphuaQmVnSH1tIvfcNKrQuHUFDy7agDuofoPv0qCeVoYtcW2bM4QR9uDaXEz9PhVm/\nRsYOSLig3nxE7nlI9c5eXZk3dXSqKUqE47vJcoNLrcPN1qiI63sgZHLXKyDkUVXHVeHJ29T1crWT\nVpbFgSbMEactdu84CZ2vAwoQdk3r5MbnXXHNHp+pGr6lVtMuzOP8NjWbfDjHqoc/gnMg47oDfCAq\nKcoOtM+GX2iEjjWpkMV4fInraQ6Nm7wvsvcKPHo9vkt8ELi/gcMbcHKIEqVN1mDmPVoB4bFaiUTL\nVrayle0k2ilFonU8/LZt1SqZwhGud/GLJNoe45QegUA6y0IJMZqvNvVYRqlWDRd3DUElzVyr3LjO\n6gsiDVhDIurYuKqRPfSVD95xn9mLfsFu/5RUAEmm+9bI8Q7qQjOP/FD81b33SHeZ9agbT2gwpmZ4\nhIN9u9ngelQ+xLUoHVDfZycR0ymhkenTzzAzs6PoYJOeOFdXk8m6ul5BHffWvMYLQ3/zcE0y+LEY\nT8kKGsUxGVizcJ9zW8XxXnjZhWZmtrgsfuvIMaLr6GpnW0IXQzSKTme7eFQ/b//EX9nVb/99+/pH\n/1rHUb/G+cMerwhVHdol5L5KnRsXsa44zrWB69UI1y34xT661DGOS9vrczYiUj/24QCJ8gZbcBlC\np7jixsTMkqKwaqE5suf7ytw5dK/0n8cPw8UlKBgKRYEDEGjf7XIALFFVqL3q6s+D9FyNppS555HF\nlbHrGjLnc+rex8CbDMQ6gkuMnA8qUowcl/9xjhcv5lCp48V7jmCnThW7u3objTOOZWsP6x3k6Fsz\n6nMVziAB96dlrvPtL95tr7zslfaFj8krYHCY6Dta4pma5npcxU2LHP9wCrcq95yLmhMrKDPWOziO\nBTp+CheqCfj9TefcSeZV3TmNmeIhTTLB4qpzf0Lxgg9Hm1z4AZxydU5zLHJuXWi0h04vHD9x7nyJ\nRMtWtrKV7STaKUWiGav1Oj+LRXLmWQ2HgXM3wucSLi7HmX2Lc3FqKaLXJuOlt6BVZS3RKmdk0FTh\nwwIQaoIr1MQOlzet871EqKB/FN6E1Xe6IuQZo02r4bjeR3tWLbSqF1updIhjv+/0pS6KnTg/UThB\nELVRA2mTbj/wHaGi3QeF2HrHcKgH/DgEFoOQx3DLF227Qs91kVDR3u8SMd0H+qJGesyvQV3owPGF\nm+tCuocWyTDyyYhyCJDslDx1EWPnkclj8L42lokYo9WsAJPCug5cWsZJCWTcbgt5WybU2Ik3GT9q\nceH7GgX6e3WGSo/wXVmS2DQc4ghElKEpHadCaiuRrllLHkUYc2fO2WkXCn33QYQrq9pdtKbgz/sa\no4LiQN0xdclBpM6DNQn0jpz0oelysKl2EMBPn3mOMplWe3rZC6soPhLtQpiy1gMptit4rm7Hh4Ax\nHUygM0VZsclYpEN2KexWmjVXRYCqDpO6z+RO9fPIPj1vuK7zJwrdb73QczXhq3sValitak4s8Vmb\nJVyeM5f7fThiyOnmeUKKm8san/VF/T0iPlDFV7SCR0E9cRpxuOcZfDPYbXVx3Pdxqq9mKG9cVQje\nD18tNrtFn93tZ2rc931/L9dRf5qRy8TSvGihve7zfh+vlUi0bGUrW9lOop1SJDoCulThHRZSZyiq\nH16PDJuYap3oBKd2Cjme9dPPNDOzi65UXvR20+p5z32ql3P3579tZmbdVerUwD8V1DHP6mj41tE9\nFvA1uHmHZPq0nBdlDUd2othj6ukk1KtpO54KHixAw8ZtLQOBdkBHnU31qwE/5fiwiNX+0AIc6RFW\nR7I/oqbjcIn84ru5MhKCrFyEl+OFWnWbSwfMzGxpkywWrIMyeDPPVdsciY9ahke66jxl57zoWb9g\nZmb7fuoiMzP76ue+qf7tFXowMok8fF0jovU9+D8fFJi5WlJLGt85VBZbcIc/99kXm5nZxprGYe+d\neo9rA/F1Q1Cg01a25gGdZMcAACAASURBVIWmog6qgPyYLa7oGRpEu/0qSNJBu5re2dr/4BO5e/G4\nLVJbqEUOtcdcrCVCUH241JxMG7puM/C3Xfwb8tzlqJPJNNCzV0FIlzxHc/WFr/pZMzPbdUS7hAc9\nzdWDB7WrgC63PvrOfqK5MIHD/aCm6zXhQr1teq4GbkhJjhYZVyqvAhcKIrvi555tZmbPv+z5Zmb2\n0HFVpP3u34v/XziA3yfxgvWh3nXOOERuV+c5DpfdWF9IP8Sv4nnXvMjMzLZfrXd751d1/eG3cKNC\nsZJGVBmtOd6b6Duf/dkzdug+KYh671HGQe8nSRzHqn71Qqod4DFw2pVXmpnZ1Vdfpueqyzv3oXtU\nuXaEbnYC5Dwa8yVUe+KvyBKJlq1sZSvbSbRTikS3na3V5eznKvsh20NG0CGt6ps+q10bjZeHLhQ9\n4vo6x3XxdGxTHz6hngrI1WviH4qGzD100gUBwovUnTsU/IiR4RNQr8ePH9UjmpklcIX1kavOiUs2\n0XnPuTuhw5ydxIsxcD+lbYvJwa/W9f8pOeW1OpUWG/p7i0ytEd4CU00h79MuEJ83SwbPykDXPXq3\nVvsOKofIOemgFYxcVgvPmUzoeg2c+VfIFHqoJ9eopT1CGWu4XDVAI/0poZvQ1bAi06qCPMDzHL9F\nVdJJjVuGO1OxR9H/atWhNl1v6Ot+McjWh4OOcH+yFactBPXFodWncdlvU6/cVdtcFcJLqZlTzwlj\nm1mxntugr7k0godvwN8GVc2lKjrFAvejjGdJeccF/pk2cBpnRaf9glxzClYFONXnaEim6igrWkJU\nkxVdx2vgqFWQa45+1END23D1tqgKMBqucF/tmpwWd5DoOjW4xhFj2sFTN8YTt0ImUoKSJR1JnzlA\nZ9ugmmlvpP4V4K+U6qMj5nyM4ua8Ce0Szn2B+Pkz6lKY7D5dCo99DfH9mxt4zzY1Xtmm86/QnN1+\nvr4jXvq/v8rMzFrw/n/3SXnpdu/X84yo8OuBSHM+5ZUBNbOcg9m9Qp4rR/Re+rhd5XCfGU79FeqP\neaPSxalsZStb2X6s7ZQi0QSE0hlrVUx7QhodeByrOrckrS4t0MUIvegP7hE398i9coGa2oKXIc47\nG8dBkkT1M1+rSup4L/rRmtEqFtR0fkhNppBa2j5ooInLd9oSClkFAI1yEBXVJ9ttoaEJX6tagvN8\nfQZ9KahkmlW/AypZG2q1DAvnWoWb0omMIvVn4oSJEf6pD8nRv5jCzaqm/m847eGynstDJ5qNnPO+\nxmWKfPOYCOh4oPG56wtyUfrObXLg98kwcxq/FKd8WxUKWiBPPCQ3v0E9omrdIX4QaN+VIxWiPbRK\ndow5r0ihlMUVjVsVhO3jal4jPzyDO44Hup8ftmzbGXqX5151iZmZHViQssGjasIG9wasq01OWWWs\nsawShW6D/j38P70IXSIIL14jo2VI9U1y9QM8YP2BqxKgPkMt2r5v6l31jojj7OG4dXSvkF/COwvJ\nyZ92uka0xq4SLIIK86uMbeIqoeLMToZTFFCPCiQbUDn2wa8r1/3oQ4pSj6nu6XZ3I3YFAVU0R87X\nYYqMMHZxdbjfPEfJwXit4+f61c98w8zMtj9N/Pqhg3jCooSpkfU32ECSAjdpjGN1AmQN3svwLy06\nDiHyWUY36oPQa2TZuSoV99+lcY9GvDfUG7NoloOa5uoA/1WfLMCCigeP10okWrayla1sJ9FOKRJd\n3S/ObvfX5RI+ZpXJXc3vIdkEU6zOZDFEE+TUo52bmQIFwIesgQwrPF0BN+eyPWIq/BWsdrUmXCq8\nWDGh1e3MefE4O87UeQsKCFqyrOPSdTKhcDX3qcGUkqUxDqlBtFOI9NwrpB/dOCgYtBDjYQjKmUYd\n0AcFDeBgJ3rUCHfQmXGZ2aKo/FlnapU/eERONjZ2qINoPmglgoNMzCFBam5TS3w6FC8X7nC1uMVr\neRvwgPQzR+vo4YjUNz1HgzzwAB6qiv4zrQsV5FWyURK4YtQFZ54lL8tzL9NzLOwVsq2N4QepRBBV\nyX8PhU6a1HIPfHi/6dCuuPp8MzN75jPFs3/xe+rz0QeE4ivw7H4LHaWZTY4Kq6Iv9fCjjMlYqTqn\nrovl7JWQNbUPl6KsRhSYOmAFY1wlWy2lWkEFD9gU5cah+5TdNnR11Luu7rnmSuSc5Z3QsaKfflt/\nP+cZGrPnPl+Ie9cj+gzd9w3iCvhDDNntOV9R54o0AikeAO37rgqor89UhlZ6k1z4ybPktJW10Wlu\nguyd9hkXpBqKj96ijlta1px88IHv6jEijUeL3P6hK+/llDrmalCpP4f3i4//9Cf1mQuamhPdgRBl\nc0q7lHyDXRv3D3yQOch0Ev+K6k7NuTky2EJ8L1bQqDs/ihg/jcJKnWjZyla2sv1Y2ylFohV4noAs\nhGbIajkWwovJHkiIfo98HVcxrSJbLjvLzMy2zxPxRJeY5NIVjte0ym5i0ZIMqO6JFX2dDKEQB5lq\nrNX1rMukP33la37OzMx+9o2/YWZmd3xGHOH+hxThWyaCWGf1y50LFRHabFa/X/kiXe/5L/hfzczs\nYCLUkH/8q2Zm9sgh8WEB/Tec4mtEgsc40k9CS7V3ir+56npVOX3Vr7/ZzMz2Ld5jZmZ3fvk2MzM7\n/LBW7YSsl6GrGAAPNbdN1xnj6HN8TVC7vukcdoR4A8/VksKFHES5gd9oe4j/KJUsoeNslUoFw2NC\nbVhhnqgMWSVPOc6X6a/eV7cAdTTweMQV3eXBezn8YcCN6urHztm67VtSvfXjX5WX64PfVjT42CFx\nkFUUDQ3qR5mZBROFjYn8N4lG10CsOy5+mpmZXXeDosMZPPWn/1o1gVYf0XUzdg0+fPeA3VSYg2zH\nGsOw4Zy1dJ2capaRUzCQ87+GrnVMzvkkfgXVLTp/xyVChvPbVOWzi3PZ7pqeP99ALzoW8puCyyx4\nOSnVA5zipAIf3WcXl4Mst2xTdPxFr/kp/T/I+KsD8eQTcMgh9cfyxFV61c825G2lJaSfsWsYgXAj\ntM8+aokgA4nzWcpWdb+FnjKqcnZp1b5zk9Jz9GJdv4GPaI8MpmxIFB51RQbnmrFNHZBr3+noPY7x\nNp6ou+quJSdatrKVrWw/1nZKkWiOtq4gFz6htvWA1aXed7WDcFgn13tIXuyx+4UcV7Zo1YpcjSA8\nFEmyMBY1axBpy32nk6Qf8B7JiUqGutG6rVjbZq1DbacYTV7SUr/mnybOsEi0em70hKSKio6routc\nG+p5VkzOQCtHhBaWO7pP1dX2BtE24MmcG3oFHsuHN8pbut7BvRv23KvMHllQ9c6FA9R06hPBhFfK\nsASqUzP9zMvlRHQezv2HqOO+8bU7OB8ETMQ1ABVV8Nx0EVBzPrC+c8rHVYuaV2HF5a8zvqSVNxoa\nL4/zog3xUavsNDL6WUzofTgvhYJ86tRFilOXaYZ71PLAFnGCOu8SeaFe+rIXmJnZxXo1duAuIZpF\nXPPNzII4tCGoOiKH26MGUkLVgC5RYKaAeS5ZK3H+oCgTGIMYJDdzkfSPBR6tnWMgV/L/fZ4tIjtu\njey9kKw0Z2fZ6em8df2wb3xVu5jjh5XxtLhf6P3wPh2Qx4whyHsSxUSPd1ehGmfodk/AKTYZluJo\n1nQSaDTQCZrqgEwwg99mqlqCU/wYbwKf7L50RQgx4x3XtrArxGe1TdagwafXWuTiE1/oBHDL7PLW\nByD3TC8kZAdQ8/mMUxvJz50SR/3ujnTecbLt+kPnCKbP4uS8/u6qXoxR5jxeK5Fo2cpWtrKdRDu1\nnCh6zck5fetnIxDLgPxYEFSFDJUUb8MwxMtxQ1xaHx1pjO7QT120WKuX4YDv6tJE5NMeWWH14+dM\nSz8f/pYinPuOH7F3/uZ77dPv/3MzM1sjL3scaXWfmMFFG06uBnfreKUNtGj3oMn73veUC16s/WjO\nfqshtBICjX34KYL31u3CbZLJNDymVToZfc/sta+2T/2nz+r/Rx3Gh+c88fxkKsGt5nDBgafVt9sn\nkkkmVkhedgMkneDunhVNrsNOAa45Bk01eC89vAEIKFsDrV/inHWo0TSDK7nnw5c1FJUfoVvtMT4Z\nvqfh2FUtJSsFF6d8iJtWd8NaZwhh+ZHQ9gTVLBcXNFeW0INu9IGmZjZOlqzFmFhV79ZpkY/sErK7\n9WMa4y6Ki4Uj1LsiE6iCY32GXvO8c043M7PrXy9ePUAL/BV8Bw5+T/rVTbTLOZkxIYqRgPuPRihG\ncHpvNqjLxRz0PL3jaZdxNA3iHbhdAg70J6oduM8IELfJrgV1wCijgixc5GE40+LTX9TzgWTToxrH\nCaoVZHCIhk8CAN18Q1mDp0DRcEoa9LRD8dtjais1QLZ9nNMa7M5qVRc/0XlTOIcNEpzEsCTr836a\naJkTVBJ+19Wd13wYUCU14r3VqKwbomTpE82v+W7X9ditRKJlK1vZynYS7dQiUapz7rxUFRbjI1qV\nVhYPmJnZMnVxbKDVcwIPxHSS1ZjMnk1qIhlZBhXykJs13H58RaEz6s+43PMZ+JQuHKrP6pa6+ukH\ntNp2F6nZlFLtklztVYSjMRxizCpeJ6o9gZNQheyJSRBnBReq0abuM1zHsb7LT+q+e/AxE2RRDMiO\nqaIVrNadKxW8Fwg0mXT1gCCqehrXDKei3Q/puMNH1f9V3MTHRJ6R4Z7glQIqHo6rGq+cnPmMSoo1\n561JPZ66K1rKKl8h4pzHuDyRq++LtrTJOdzmF1BRbLjce/19tErFAmosjTc0rrNbUQ+QyZYEczYc\n6xl+8EPxvD/4tnSKKf8/AN2H3qNR1yCvW0Ed9phqkXVc+xOnp/yBkGvechwb985d9Ughny1kNJGM\nZuvLGvvqnNO6whWyS/FaDjm7McIBH0eyNv2qzeJnOq/jjixIa/zwfvHr4SpjPSdHLOfDEOGIb33n\nK0EFXVdziL83XH0svhIieOsG47C5BBmcOp9Qx1mC1NbxEnC1n6j5lOJ6FZ+I4qMFpw5XlyqeF22l\n8sDFes69uw+Ymdmog/fBguboEG43wJsgwlejhhqivl3fERc+TZPrnLO1I+guau47rjad1fmuFlfV\nccPsIsebjqt+YpxZItGyla1sZTuJdmqj87huu3zdrKPfB130oGQ3nHaVMoeCWa0yKwuKyveoptmi\nQt8mbuKjMfVw4FgLosy1KtF7eI96U2vIJE70xVioYQJdZRXeqVXXfStEhcdtMmbW0UfiMtTskrXh\nE3lNyEl3kdwWvpt4Hg5xJ+/GzolGxw8beEEWZF+gEayBSgxONyR0W63hyYjWcLiKOxQ606SPLypI\ntQfyzIl0TpDrn7m8747juX4UWRYF1TbxiqyRHx5UnWM9PBSR3RC00nRu41RYbE8LBbzgl19oZmaX\nPk0+pd/6rjwef3ibdLRd1AtjIuc5jvdVx9ni/HP6udJKrhw4bJvr4ir7ALAMrjMlmy2cRAFAhpGZ\nWVz1zAZkNLG7GazzjC2qd6IfjInu1uGTE3YLFXwBUrjPpQfkLPYPx1VfqjKjsd04qv/f6GsONJlb\n5qLl8MiuOkCOO9F4O5lRfRDtEMUEGVRG5pBz0BryHHnhaisxZ8hOq6G4qE8JuUZkn6UoRQY+dd9d\nTj5zsw2SzkDgTjHhoyZoAcF7G1TZHDnlhq6bDKkDRibXHAj76hteYmZmM9uVhed/+lYzM9u3W7sl\nb1FzuIbqwLln5T0yvhjfZ1z6dDMzu/w6+Yc+7UrNrQduU8ZUNmYn0cXFCie2Mdl45nxRUWPkyY+Z\nEx2NRnbdddfZpz/9aTt+/Lj9yq/8it1www32pje9yeL4idOlyla2spXtJ72dFBL98Ic/bJOTQmt/\n8id/YjfccINdf/319sEPftBuueUWu+GGGx73/AH5rkdwdnGasozaR426VoeYWt4hq2yHWtdDV3uJ\nwKDnKh6iCy3g6vroTAt0ixUigDHR4ZAqmh7ZHAHc6NjpG7viw5Ip6rpT86frctRBgGlVq3DRJYOJ\nioM5HOcRcsHzAVU3qZdehaut4/wesToWJxZBkCHRdx8d5grjMnKaxxDnGTK9gj4ooOpy0EHWIPAs\ndbyeTh8y7s65Z5qoeQh3ecVz5A05e7qQ+1c/dbueg8j3IIVPI7IcogOtjuGSQcwkBdlyT6jsCA5I\n6z0h6GHuvAzUsQz/Ux8dcT1Ujv3Os5VNdMnV+vlw834b3iXE0eEaMW5BPk5eMbsJvwZUNbOelzhw\nbwU8cgVus44LUBdE5lFNtIe22Cc67bPb6eOQtW1SCG/baeprPq9nbJrGLtqr6Hw6RAGB1thd39Wz\nj6h+4OpQZS1eVggCbsGP49jfAUH6xAkykFWBbrWJLrJGnasRn6k1HOnbDXBVC26WXUatA2dY6DNw\n0RVC/9e89jozMzttSpNkz17NhW/cKqf87hr14MkYinFAc0U0J+HzfRzPUnAdQXfLcKHKXPAfZYar\nzpDinNZAFN47ru+ShUcO2bkXnG3HdzE3qe2Uo0rImJsDuO0Ku9ic74g858P3xMU+nzwS3bt3r+3Z\ns8de/OIXm5nZXXfdZS95iSD5tddea3feeeeTvXTZyla2sv3EtCeNRP/gD/7AbrzxRvvMZz5jZmbD\n4dAqFa02s7Oztry8/ITXYBGxpENUm2qdQV2rQ57hi7kkXqR9Cas7TixLaNVSp9UjDzZllc4rRDbR\nGbbhYQwPxA30oaTZWp3o/niMqzX6ysqkouvbztRqubKs+3TXpCFsubrvVDws4B5TajC14Iti8oQH\nZGq5KHWELnREBLVI3TgQXXcdxMXKb8D5NtHIkY2RoyoofKf31M8ZtHleDychIsBdKiWOj4mTbjiu\ndVrn9Tb1Dqfp99ZzpHp41tarzMxs4RnyKLh/hTxodKaTqAkiIqsd3m+VCPmICG/3H8VfPnjrd/R3\nOOwRWkNXD6mG8z8Usw0DcddLx5WT/8D39PeVhx86Ubs+RikwhC9voD1tonvsjh6lm8JibNM7Nbfm\nmuJdl/dq99GJhWxyEKLXxgsWrtUnKp+hz0zh6VdGerbeIT17a4CmOBG6txzNL+5KXqB32h6gqQUC\n1fBMrTU050dk82Ujdm1wjOvw5wmItQjJ6OG5A1fNYEJzedYpOLpUpPXJdCKbL8dnwqUw9UHaIdHq\nnM+6MefSBg5eE2ivqczq4gSjFrscEKTfQYnD7ufrn5cXQcRubnW/1BXIWy0EmftuG8NnwUOrHMD7\nf/87B8zMbPe+Xfb8m15kex9Rhto2uNYJ1ALHD5BdSIbaKCGO4XaX+LnGblv7OM0rnEfWv6B95jOf\nsWPHjtkb3vAG+9M//VPbuXOnfeADHziBPg8ePGhvfetb7VOf+tTjXmdpadnm5+f+pbcvW9nKVrZ/\nNe1JIdHbb7/dDh8+bLfffrstLCxYpVKxRqNho9HIarWaLS4u2vz8/BNe5z9/+GP2eze93d7y2+82\nM7Og4TJT9PcGv1/5ggvNzOzSn1bE7f7vS/t3x+fvMjOz3lEym8hbTqgd1ABpeXgXNrahNyRSO4Tb\nbOCkE3skd3eFKLedW7E33vQuu+fbqlB47nMV+fvaXd8yM7MHblP2Sa+j69dxkknhYmvUNHL8S8GQ\nVHDUWSEK7urAxHX99NCbGvxcznhsIfo9c6UcfC48/2y77sqX23/7iz8yM7OH7z3Mc6Cdo8ZUjC9o\nBPcYMz4paMZH69eeBFGTCJ0fx+19VnDggpdo/CfaOu7Bb+p+fWqIj9kBxBBe/srY3vcXf2Rv+aU3\nmJnZpT99rvqNB2YCN73rXr3P9T1Cvou4egXkR/fRBhY4GlXhXGOXbZKDzsysMU/mS0XP3FtFUYGS\nIOHZQhy4/vBP/8je/Nv/wc55lqpRXnyx5truu+X+tHTsgK5H3anqDnF/K/u0OzpKdc7t07gQ1aUY\nyNGX5mu4FmUOUqEMwQPXJxusQjZYQnZeFA/s7X92o/3HX/0tMzObO0NzcljD73IIQmX3s8qcrfgg\nJ3j2AdUhIpzraxP6DGyd5XrUTHLa6IGrfAsQ7eMJkOI6lY70HI1m1f7wvf/J3vGe3zYzs2l0pQnQ\ncZW5PaZ/RrUFj7le4GVbYTxaTsFBtmE6jS/rCN9RVA85iDtnt1Ubai6Gjpms6/5BFNnb3/Ue+8Rf\nftDMzC6+XNVNe/Tvu18Q4OvilZtOugoGfAbBlo1Qz/WOd77NHqs9qS/RP/7jPz7xb4dE77vvPrv1\n1lvt5S9/uX35y1+2a6655slcumxlK1vZfqLaU6YTfeMb32hvfetb7eabb7YdO3bYK17xiic8J/dA\nBRmZKKxaPjxFgN/ogEjrJtxa94iQh+PcXNR9RL7tBOe51JsZshra24QUO6gAPLRsPtxbiiavDsLp\nwtESOLWBqZ9DvBBj8oIbINvuUNxiKxDvVJt0NaypJtoSFK2diUv4D+XAs+mJH6p1qE5KFNrQQ/rw\ncTlu7M+4QHnhz7niWjMze9bP/bTGoVB+81F8RMdoEWO44j79DnHQz6bgCXHMqZM5lDvXp1DHXfT/\nsPfeQZal5Znne8653qTPLNfluqq9o6Eb26i7hSQEggGxIYGQ2w3t7uwEi2YQGpiQGySFNmJGfkCr\nWQ0SM7EjRkh4hIBuEN249t6WzzJZ6fN6d+4x+8fz+6ro2KB7VBVEDRHn+ycrs+4999j7vd/zPubl\ncouf2Sbl130P4xq1jgM9GUixc3+ilVqlE17fpuOYXJA3ZY5VymhJlWcEt3ATBVnagasYwKGs4IWJ\nmYBTp5RiMHD4v+VZszzc15VVlDyoxHoOVnYOXuH5Wz/pDWzttDC4CTxMNzv6PdzQtSns1LFvI789\nAmMbO6esWBVwxD1t4NH+PBhhpHsiRmXmeVR+ZAV1yEmf8dzqQO/fuV/7f8UtyqsPJ3WODn1HnrYd\nME3nsTri+BNYM57jO3JcCd6xYxzcCxP63DKYqwee3drSM1bDzyEa4LvA/0dkLIWb2v4GaZ85PHEd\nR9gKznmLX/M8U3XUbo5hg1quVBK8N3eNKv7pqi7ciWeETbdWlYYxhNky4Hg8+ghlPmjMM9M8SWJt\nUQ5q3lDHtRqLNVAlXcFZvRXN9VOcn+tLo50X/SX63ve+99y/P/axj13s5rKRjWxk4wdqXFLFko8C\nJ54Af+irgurTUU26mk0e+qaS+o48q7yVMfjWRkuzU4GspQBcp4C3oIciaPv1qtxu/4W3mpnZiPTN\nv/vPOPMcwVneOb9UqdTwAf3Gl+WzmTxGZblOimabJMRA1cLkbtyY6Iw6pVLjLOqWafEiC+to3plF\nSxFYJcLuPF6GNGKtwPbiZX3ew9+UG9TG6pb95Jv+uf3jF3DYOYNKJKQiTOnM0l1PJ+hwokoZuUwo\nfDkbfH4H3KtIRb8CBly8H8zXZY+joR+A98XlF2La+QWAtQUd79PH5Y51ZEl444CUzhi+a5LquMvb\nUNvgBt8bcyICLQmGrlqjqsuPydtJfetyLAPynih4rOSSRMHi+sH5PPF8nDvn8N5epIpv6lr7rIKc\nwqk8rer4ctyi5hdUka6fVmWzuaZz2Cc/3uVUJWUqRqrsM8MVPl3brXMPj6vTL/h7fo/u3ZvfIkbE\nBH4G6ys4tj+pyqyMk3w4p4o5xR0q5RrHvuPc6l7Pb9e5vv2tcqzfd5lUgXd/WT6l9/6dVgkdrm0Q\naPVQnwX7BXPN4QtRowKN0aYnzo/CAfrcgxH3YB5HtcR/YTZSGUZNMdTrG7gzrayIidFr6mdxAv+E\nWTFGtnAi67Jd+B221RV2vfGs3leJ3Vce17fOdUXRNeDZqfL5hLW+6Mi089nIRjaycRHjklai9Wly\nz/cJ//DInbcuLth0IscDVY6nVkjHJK0yQPNdQA/rT+NLCRbofEMLeAXOMa1sYpE/i8v2CIXSgK51\n3uE6k5rtNsHF0k2HocLjRM1SLWr2n5zTbF1gNm71td8796hCnb5K2xvgUjRMXM4MnUrwGR9OXIFu\nvI8KJrdDn7NvlzDVpIRTzhoqGhyDhnQwi+ib/SkwRPiXGyibYqS5LWbxEJ/PGphpEe18jw5zmwqw\nNA0WPXScPVRBMfsLv7ZHNtJWT+c7he/pfEaN/fThpdbQ1HcL6NtxGCq4cCXe56ELn/DwnFxQNXTF\nLftt4BQ58AOjLfBtOLIh6q8Caiwzs+L2GbvyalV8lSmd4/FxuLd58six+zl9XFhpgKJlbRmFEMmj\nLlsp4l7ucy6KXFPP5yA4hoBVUxlcfkjXPSSLaKWl43j2iJ6R2hRpmuvyj4hJvewHwhJz4NLDEkqf\nMlp18OYSyqHalF6/+zLdSxMmBdLktCrS/Qv63HGs14X4Q3QivHldjthpfX4D96aaTxIsee4leJbT\nlIYtsM9CkQqVinbc19+XN8XUOH0GzJTtUUhbZUL3yNROPWuTu7R/jWO6Lu4Z7ThMk2RcgzHTIZUi\nT2LscKjjcUopv6gdDfjusSBL+8xGNrKRje/ruKSV6BaqhahBN7bvHFY0C0RkR+fJBA/PqTg0m47p\nlIYNqoBlba+KG1R+UrPY0YfVmfvPI82u3SaqlVOaRWOXRw9XbUjgTECFO0JdUkBb7+Gw34+cG5Pw\no0GDDiWOOnU6e9e8TvzIO98ul/PltvCZz/zHv9N2zpLdxNUoRqhWwIidCfkc/MxgRpVXkU5nbQbO\nXwO/UjZUJh40xFW8hyZ+ikovrNKNn6GTi8a/QBjSKJbOe5IKOMf5rFS1vQ3YEuOuMMsUXLGLCiVP\nhzSC6zc7gz4c2K/PiiEBr2wtC1fso+SKuN5VPDeh/Z4POEJdcsXLxTt9y4+8xZYSnduzx3VNlmBM\njOneplQ20XcplrZaAzu6rNfNbuGChPLJnOa8DQYJxuj1qGycXRQKn9TTtUtxYi/BR81hUJDk9PfZ\nSfwFUKN5Y13boQ++TFrD4JSuxd3/5W4zMyu7FAUWbdt2qULt93Xtm1SEE3SZe84xfwgDhdVXb13X\n7O5PKsE2mRLn3ebCzAAAIABJREFUef24jtPK+ERwDVstnZ+hWxXgTN/nHsyhTOrOkC2Vp9LmeAYh\nfQeXwYTWfaqom6GEB8CY89AA246opAPw8l4J5VZH/99e0movJic+j6LJn9B5yuWd5652Ox+6nDXd\n8zGrmQD7rCqOaZUpYa2R4/e+yMgq0WxkIxvZuIhxSSvRCnhITDplbtO5Z6Ptdhk+dZILC5qt+lQB\nIXk5RTp8ObBNf16zzCyVUwjecvYxVSlO6Jq6vHnfJQcyy4WajXoplZkxS4LzRKgxUmb5DtXGsIBL\nOJhosaZZtQ838VxiJLk2ZZRLTPIW4kIV0/Uugol6NZ2HDZzoj5w+ov2Ia/bm237Cjp6Shj0fqWKs\nUD2MnH68pOoiRflToCobgImW0NLnxs4z0ymEqDTX8GXFRWrLd56OdPm7XEe08YFL86TCnyuog335\nLaoYZ6c1y598ZtHMzE6fEL7XQU0UwqEsVXQd84lbmYDBwieexI0qZUXQDlu2dBJ3JMfcALusooUe\nUAkl31U/FLyhtY6qW97iI/J1HXONVUmv4Co6be+Kmy43M7MrWQ0dO6p7sbdEdx78NyQHfYwfg09c\nqEfueYxfQx+ssJyffsGx5Qpwjh0Doo2CiH5Aewt+qHOTIt9q4JRBcGyHPCvcotaEvdDaUsUeDHko\nMCjocc5d4qvB+U3gjaY8G2Mc9P0Sqx+HcXLPB1Vd0x2XazV28+v2mpnZ8mlVkMu4LvUbHG8ZdkUf\nVgD31pivqnSLPgn731lDrcZ3RtVnPwyv2ev0eV1Ubo3TqBI9d7x8d8Ab7qbanlsNpuMME81GNrKR\nje/ruKSV6L4bpFN+/VvvMDOzxYelgGks6qfLpR9SMTnsLUTPmzglC1jlJBy+Gp6H0C8tmMAfkw5k\nk4oqRdtuPTBZl3tDFVBco7IlfdSn0kqcnhescftudQqrdEhT8LYCFdLiUyo1m/Gn+ThVDx18QEMq\n7NwA3TAuVkP2w0/4OaNKudLX8fnOJ5Wcej/PeWrhOE/ncaImVsDMNXp/8xguSps9ziedY5yJ6nnN\n4mO642XO9wQKoq1Q12GDzrTB2aujM06dkxC4lcuN95d1/rqRqpD1xhr/r88vpvpcLCfNSCe1Lth1\nE6wV16p1ionOt7Wfy6c+bclY53rk1GcofwK6632c4b87xLFiU9YI9L6S6VrvJpvniltvNjOzeZq1\n3/yGsMOtNqugOamwip6OaTN0fMmUc6JjiPDGzTmXqZ5zHNN2J8Eggx4MC7C/XOowROcIBv59Bmd2\n9vfym8UuMF/bOfS4utzeMnh+XvtRmnbJrbqGObBcf17v81i1hVuqED1SL0Nck3I4q7mutU9+Vh6W\nQZ+uewGeaxEGy64rha/fepX8R5eukmvUN7/0DR3fGqpFp7AiHWKQ03FGpE2k5ipdONCs+qaohBNW\nKdN8F1Tx0C2l2g4iR4tW9R0zHrusK7BmPBfS1CUOI1d8kZFVotnIRjaycRHjklaiY/CIVSqSXk+4\n1Dq8RNeF9ZjNA3wxJ8AyQ0NdssXsiPdjWnS8R7KD6EZ3I82+Y+fjOXb+lToNkxOqWuZmVLFuzdJZ\nRUMfoukPzXWp6cjiju0x+zoX8t4IfIxO5HLnDMejvwcJsxyYbsysXcAp36eqSLp0IqmmKrzOx7d0\nyFVM8PWsk1G+7QbN/q97h7T1tW2qmB++W7N/+KDYCs1V+KTs94jzVIUWsO9adYB33LjPzMxOrQtb\nLpe5XlTmXpP0UvKGZhK9fwCH8vSGsNvqps5XDH7ouYRNHP1z4GktV+3hjTAhyNc80lt91CmDhvb3\n1NpZq07hUFVSVetzjYlhtzxOUF1wbDOz2Gue42sGM7rXpubFlzx4zY36bBgE2w8Ljz72hI4lfIbE\nVHxFK3TFa1NUqCijOqRbdl2ue1nXcO/8FMeoc9zdAlttO6wSFR1Mj25Hq4cyDJFrbrvdzMze+FPv\nMDOzlVgVV/cjYn5sLS5q+3CAm21XKet4FvZrf3feoCyiCIXQ4DFSNlva3xKrq57Lf3cppyiSYpcm\nipdADSeuQV3n8+izqoy/Nqd7utvVs7p4SBj20jFVpiHn0afSdOmnnoe7FVr7Cfi4eSrWcaD9LOR1\nLyydglt+XP4UNSrNCqu6XlnHnZ/i8/CLSGiYRE0q0eCltfNZJZqNbGQjGxcxLmkleurZY2b/zOzw\nfXI2tw1kDcwGYzBIryi8KkfXvI/6wjnUBAX4o3RgR3gCxsyeEd3uLhlHHjrjalWzUISCJxpoNqz2\nVUEFdIm9ChXrMumgl+nze/BaO3DVGmi4c7xvknyayoI6fT5C7gRXpU7TicxJGHQQLcqfPB4B/Zxm\n7XALt6XdzM6+c+pB0x6pojeqnGBG1VCF3zs94UBnO6okt2JVO0VSQ8eOB0sVADRqAyr3/mhRfxi5\nHwP3Au0fFfkEHdoAh6AR7lqDVee6RHYT2vcITHSY6jiL4G9JDW4g3McK1YePP6yrHt1NHJtvHfa9\nRqplMUCxxDkvRyh2Ct+FdYUlKyD4T+niHj7+vJmZrf+1Ks0CWFtjXVr1dpd0UPw/p3CMz0Vo4Fll\nbaL/z1W0XzMobgLw4wLd7kGqa1PX220YOX9L7Vfg7tUemvJNruUpVXJPHZMfwfKy9m8AhzcFK+yM\nqP5Tl56gz2l7zseBZ2eTa4a2vDjScY9dPhn3gsv/yuF4Vqto/6pDlwIKvxPOdLShn09+Qc96nnsl\n6mu7s1Wdj3gKlyc8Avwm2Ut031ms2JDrmubxm3DMF1ZTE5cJ25zRgsJsidx58s1qfEf0+W6I8/RZ\neBaHie7RoPLSzvZZJZqNbGQjGxcxLm3uvHN+wVMxV9PvCzPqcm+hz43Ipx/jPO/cfaaoZGyGrvKc\ncKUQ7lgPBVOX7B8f3qWdm8X0c4YqIoCn2CfZcXNDs7oX4ymJ801C5eWTXhmjnCklONoTVRgPVJkm\nqDmuuUX42twOza5PPyxXqs2jqiYGHXirTH4BVc5kTvs3RPWybW6fjn9KFeR0Hc8A9NrxQPvfOKaK\n8+ufllvVJtlSfVI0A7iKKR3VPJ3IgEo4IAtpZU3elWuI13tt3JdQlRTxgCyWqGJc5judzxrkRNet\n75NqeuBGuclPT6o6O3xYmHEJfu9UTmVZ8/CimZl1tlR9xbih56hmUjrfda94rkt8xat0rndeIXz7\n5INSrR1/WtX3uAOzwMzMD23cQocPPj7o4cJ0RquggHTMNCJds6B9jlHw+DAttkLnIsW9iQdsFfH3\nFqqr2lirni0YCAeuVXf9hhtfZmZmTx7G33SH7t3VDcdMAddHXbdJiuU9n/iqmZkNhzo+l27gJeRm\n5cFiE53TEd31s0vaXnv1UW0X3uosGvkiPqTFEEAap/w+GGuRSm77Qd2jddPrTi/q3o7QsrepAIco\nvAYRybUwUMpkQKWukuX3keOAF7Rdl/oA5dlGyNgS/Ccu360K9BV3vNbMzN79L37WzMye+bYcxJ55\nQCmkTfi2JZ7lNn2O3DnaBn6rgZPJfe+RVaLZyEY2snER45JWonN7NKvvuHqfmZk1T2lWPNtSZXaO\n6IlLeIyb9dDwKmSWOHCtso9u/3FFkhx7XrPxQ5+7x8zMklXwISrQGLynAwZYw+vx1p/8CW1vQUDK\nV76oJNNqhVmQrPI+lecknc4A96YaDut5cJ5OqP1wGOMQ/uagIsVOpaP9aYbCgqt5nH+YFV1+vJfg\nyINgurWiznB/C0f5VeE9EXzWojklmKqojZNgsFTePlzDBA28P9RcOnSaf3ihAWyFV/74q8zMbBac\n6fFvPWxmZs88pkrdzdrn7iYc+aEY2mWvkSv7/pfp57ipKmyMb2kBH9eFq3WeB1Ti45aqlQa5OTmq\nFodPDvDMLKFs6xci2z2r1cieV8qNf9ekGAqrizpnpZrurXaLfTazQs4s79RauA4tVHRNPdIru1Ag\nCrgkten6x2CJMX6ZJbTXMRgdIjfrubRKHOwTKq2kpHt+7hXCr687oByr/gScZPanDbd4EjelSXxM\nxyiTYri4VdJKDUyyih9ql9UFYZvmj/RsVXG4d+kJE1TQAWmgiM9sdka/t8C1e2CyLgVickKV9MI+\n3dsbDd2T3b5WQwn3VErSwBRKLs/HGAJlk+v2O2YKsV8WcBxr+HxGcL2rsABilGMbAx3n0gaYMY5p\nmyOnatPndXvqH/ikKmAjYRH3XlzRdl166ouNrBLNRjaykY2LGJdWOz+j2WvbZZqFe5t4Na5qtnGO\nMTlyVkr4UkbM4j74Vw+sbYhruONRpngGxkVmPWZjx/tMqYS6G3DBSO305nGWj1V5OYXUGIefGI0+\nFDbL93EKckANvNQqKaJN9NqnHxUeczoUPtNBERTgsDNV0v4mMVgrOTVAulZAWbS1BV6H4/sYBVEB\n5dIw1X5WUW30U/xDE7EIuj3N4i1c3nMtfFcD/X2Io87CAemO979a1dE+FFnLA523tRP6nNbApYfi\ns8ppiMmgWjurynPP5WR5g9k+/4hwsxgcMj+p/WjDwuii4Mq3UWiRuDmAx+rD+RziYZDvetZCS/6d\nz96rc4eCaP2sKtEC3fnyJCfVzNJK1Ywu79S0/DWnrtSxbpxBibQknmMenuFUVdhiFzf/2ggXpkn9\nXmiDNcLx9eA8p47xAU/RyL068pA4uzmTs/xz9z9qr/rZ220VbXsex3fjcwc9bT/Bgd/DpLWPXVEO\ndkKPLn+K85lzlfIct5kc9mLsEnLplu/Xvfeat3Ltd6myv+9erULGd/G54NNnTupari7q95WzwrdH\nW+SblfWMFyZVCYbccz2DDwvXu0hFn8/p3hmS8lCHkVFjNeqjtHJObgWOe7Cmz3vwvvvtp+74Gfu7\n//JxHb9uC4vIpBo4dyvuKedKlWO15oG1lqlUX2xklWg2spGNbFzEuKSV6NrzwtQOHwI3GWt2mb9C\nji893MgbuHdHOX3nTzh1CF6Ga8c1i3/5o3pdgJPNsEFVkHfcODpu6G3HMe7mzOaPfFoplk9NKM9+\n6WzD7J1mfbKHErZbpjNaQKseokFfOKAOZZVO4ilyXfL4bPZwBHKZ2RO4jCd9vBlJyZwuavsY21hQ\nozIlaiihWkCwZD7qk2RSVcU03f+Xv1667xgPymceEEdvZVl40Q5P+FmXyj6iihvSuWy2NFs/dbfO\ny+Nl7efS8+JOduDJ+nAJCzHsACrxFAOc1eOLZmZ2Eqf80hzsBTqxDu9qnoX/CocvSFV1FcFCE/DH\n2tjhZ1RDPZ2vJO9bmwTXPq5MMVXzhEvdqVABuvhJM0v6saW4IkU5GCFga+4zCymeqgWYIjVtZ4E0\ngg6a9BqKmggP3GpX7wvhoYYJTvhowX1ywDaeE1b79WNKKU2wsSx7wmbLrK5GHbcKAVsFj85TD81N\nUrkd0CovbOhaL5/QsxF2dM0L8D6LdOM97qFmTpV3uSPMNQX/b6GgGnT0k0LW8vBt107w/y79gBVA\nEUe1lHwsl2bQT3hWEbPnWIWEBIvNT+h469M6f1EbXHyDipV7PwLrNDBdZ7zgo/Tqb9AnwOHex8+1\njlfBGH8Jb4J7GXzeUJ5F4Ut/RWaVaDaykY1sXMS4pJVoBCerR2pmDkwvISso7Dlwjcomr9m9VMSt\nCHxrlmnRZXiP4H5V8JLsoOEugNENCppdp9D/5vDxHJCj3l1lFi2hlkCfW0Kr7YPhlau4iF8tHO2G\nd8ih5urtwhL/9uOfMTOzNaqLck4YZdthlGyvP41LEpXqFviUD84V4/U4RjlVwq177DKOmD07VNRl\nuuq5OXVK675m94jSdryMtyIdzpLLqvJV9RhsgPGSsMwnjrpUVVyZxlT6UOgSn8RK5/ADJzBX1Ofv\n3yX2xFV3irt53Y36/YmHHjEzs2OP6HNsQ/vTX9fvKRX6qELH2HH46CAPwOOK6LlnFnI2zpMWWYJP\nSJc5HcA7hKfYG5zXzo+sa8NNVUyNs6qyj50SPj9b1TmZraurPARTLOF32Yu12ijgvDUALzeSTIc4\np8fwSEvc4wEqLI8sIIgR1kIR5ENt6IEfD2F8lGKXdIoqDbVeys+r3/pyMzO7/ZY3mpnZ0XWt0p76\nhPwSTp1Rxdhe1TPWh8vrU5nmcS9q43J099/+vfZzqL838agts4rrNVgl4vifI6OoVlZFPHYa+p7z\n/XRO8uz/dlJD6dbv3qEK+mVvFs/zxit0z6w3VCF/879+Xr+vwdAhk2pMg6LHvVHe5LxswmmmcvYh\nYfuo4ian4SL3tV8Jz1rCd4XzcXixkVWi2chGNrJxEeOSVqIuMTHfQds+1Gw1IubFR+dbcrMWTiwe\nwt1SlwoqcO7lmm7GOLOMqBYifENHdPCKXTA1Ev2AJq2EhjwhEbADhlrGwWcErFPv4gxPLsscld8M\nP0um2W1iTvt3+jA8Rjwch2CACcCOc6LvgfFV2f+5XeI4tqlYG2vwK527uec4gLiYg0WutlQd3fd3\n6vQOqUQbi/o5vUdemYVFvX5jSedpusLsPqvK2+O8jR07IFBlWaCzPAuhs+/p/eNE+FXg/FTBjBNS\nRq2n2X/1LOdhFe4lHxCA0daoZqZIKe3DY93s6/gD5/RDdVEgM7zjBVajo2891Exoz9NNl8Pu+JTn\nb/1CUreQCrA4SSUDdujh3NUnYdYra3td1F/Tc3rdjbfLBWnxjPbxqW/LPchDdVYB7x8iWk+5t8ts\n1/Eip8EoB6xGRg2YC1SI47FWM4WcezbQ1sNUSVr6+1JLn99DkRRAuPSWdY/PTOMABhPDa2sV4LHa\nm5p1XGV9/sKsru1lB3XOlp+CAw2vcg7mSx/+7CgBwIcJkwdz9cAaDezZQ96W4FTfZXWZoP0vcn4q\ncKTHaOubyyjPuqSpOjUiCQE+q88ANZ0jQ/gdUhpmHBlZ+zXm7+581kizyGe589nIRjay8f0dl7QS\nDcEdYmaxAq7apTIKGniSFTTtMd3rCC/ClMqpgIohpJKLB3pfiwoyQH9bcu5CuIZ7Of09QjftqdCy\niMrIB6gaUvHE+F52E2bts/r/0yOpH+79WyUn1ndKp/3sk8+YmVkPNyaHwnmGaxKzZpICLtb195t+\nTLjWy16vnycOi+P45D336/eTVGRdx1vV2wMIpQl82SNn5H1ZJif+6lcKX7rxVbeYmdkzzxzXefum\n9re/AT7V0fl1yqYSHd8A3MwadNPpmI7plgdUR2mAQosVxRJsgNF/0/kpwG7YQHtfwjVrVIHvCq7p\nkVAwRgnmO8iV8zYB/tgkNTYf+RZ7ek/F02cWK+Db8P8cRzgZnsdEc7mBVahE4yGrEdIqfTT0HTTj\nNHFtdkGV2S3veJ2Zmd1x1ZvMzOzI4Ekd+9LXzcyst0bXGo/XClzakNVDG+5z3jEtqqjFcLqamGZ/\n4OIOKeoLANLl1CXT6u+P3QfO/KhcqMbcdb1F3bMDzl11p/a/XtfPLrh6t6HP2TiLQqrA6oDg+H34\nn3bxBCj0ndadyhg/Bo/spbTo3JX0/jTUfmz0hD2PuIcneH24Ls71A1+Slv/Jxx/T9pra/iqetSzq\nLD+l/RnwjBfAmkf4TPSawmzHsAKc36zXxAk/0P9DCLHqhCp9v+JSGrjpXmRklWg2spGNbFzEuKSV\naA3XpZ1X6Gen43Lo4XHChfPpzg9wogngJ162H1drNOnNLRIbR2RGk7GdpppVEswICyYcZgHe5wSa\n7e07NKs9e1KzUwvnnBwdwAKZ5YajfcwsG1NBHz2uCrH4NPnpHllHGHPm6V73PefojisUXed6ggJo\nQ8fxzFGpQNrPiU+71cZXFc2+czpMHR4Gt7E2zazrOtVkLDnU6Niz6jxvLMFJdF6NE05VQ6oq3fgK\nmKTLPMpP6fUBaaBbp8FAUYbNFjEirWs/y2C3UQIwVcLrESXXYAblVoMqkQ54dxOvA/xec6hVUqqf\n8QjPS1yfKp5vOc+tRlDEoFDZdoUqulJN1fqJ00t2bhRjS3HxDyt0xzuoparg9jA5CjmuFUKW8bKu\n1bF9qpyefU7bjeGDItixMv6iIUyGkK59EWx0580CG4ep3ncIx/c+uWL5yK2OSG1wTvmUxjv2Cuee\nn9e9v3XW5ZPpdbmyy88Cf2a11RuQtglfMqEy9OFfjkzP5KFnpbY7eRTuLmkNPv2JqIavKH2OLtch\n4BqNnDMZ/Ysy7lL+LM5lU/irwq8ds/3hUYet4rGLqq8E82SMk/7YYc1grkVf92Qd1sIkWVvDCVa5\nm/r/fMg9xCqwibvUJI5qXvGl68ysEs1GNrKRjYsYl7QSbW2i1e4JNxrB3QtxWSoxqw3osNYppfb/\nsHiGP/a2t5uZWRud8l1fFIcsPur4nnSPC8KdSi3cjWjgDvdq9vmhn7jNzMxeflB5Nft6Uiz9w/8r\nbl0ZL8nOCHUHapcAZVG5xuxJCzDy4cIlOOr0qEjN5bzgFo6nYyVEow9b4OgDwjJPPkaePFNdDtxn\nog4vlqqiwizdJbuJwtjqVVgAiSrjRZRGbbLFx3gz1tn/fIArFO7uHlXQmbHeNxOp0zk9q6qhxuw9\ndT0O9FQzIT6xBu+1T1QmRZzFONi3wYI9c6oV/X8JTDXh/HhgsB3H03XcPSrQHXvF060XRtbf1Cqi\nSVe6sk3n9uq3i3d4zUFpwO/67FfMjepc2Tp9vGpR4Pi7SRFApVXm2IYrugfOntI91lzXuX3ga6pE\nC+DSWwTYFx23lTZ2ita7xCpm7jLxIu/452/W9ngWWv/1k+w/+DnYbK4LkwUVWh7n+n23iB2w55X7\nzMzsyD1yuj/8lO6lIUqngNVKH75plzyzCl1wq0iplJ9BPca9HoU6zrU1Hfckz0R/mqTWSV28/LxW\ndbvK2u4KSqkB3f8SGG5C5VmapjLGUa1JXlaeTKkcKaVGRdsj4nWUc0orVpusMouwGCo8M/U9Oj/7\nr5EzW9jS/pzwtWpMcEwboxwrc8+mJeei9dI80Qv+Ev385z9vH/3oRy2Xy9kv//Iv21VXXWUf+MAH\nLI5jm5+ft9///d+3QqHw0hvKRjaykY0f4HFBX6KNRsP+7M/+zD71qU9Zv9+3D3/4w/aVr3zF3v3u\nd9ub3vQm+6M/+iP75Cc/ae9+97tfdDvxUCqEmApstKXfPbhfY6dgArdok/YZMUuN8RUNyfIpTqDT\nZRb09lLBdnF7wlWpSiLiYCQ1yjE07vWD6mi2UcrkYQd4VI6RUd2QJ2MkLo7o3FZhFdRqms3P4vM5\nZBY1Ms8hDViNSjaFdTDhKs5QFZ83qeMLfFXSUzt0fHsPylvgxHNSo7h8+EqCjyd4VlLXeZoCD+rh\nijXHfkQ14Uo9OsbWF/41NtQmOf2+a5uqgcsv0/l68pgcjaItba+0oP1yqpU4hLeL/2qe6ss50ifk\nyDvaQwltfA5VTjevz/W20LF74FwFSHvgbUU6yqmH+3xgRkFj/i664Hld61V8ARZwDRp65/1Eh2Fs\nATlQffwxS05bz88GDIQiLk1zE+LwToM3h/BPG0vaTj4kiZZKNKmDteKB67TqSRGHsFT3/pAUhQoO\nVTH4/ZBr6uECNT0Fpojv5VpDuLl/Qse9voWzGFlQIasKx62N4ZOWUejkpoWpxnTZfXw4ezmHDcJ9\nvhzfVHDrCpjozC7dG694q9gKu2dJln1cWOqRe8QAGZzV8cQVuNqrrKI8PYOYK1kJuoLnSBQ+Phc8\nSi4R161uPFdJl50fgyrkmX3qt7zubfIabruspa9+28zMzjwrTDsEQ43BZBPcuUouTOpFxgVhovfd\nd5+95jWvsVqtZgsLC/a7v/u79sADD9gb3vAGMzO788477b777ruQTWcjG9nIxg/U8FInnfgnjL/4\ni7+w48ePW7PZtHa7be9973vtV37lV859cZ46dco+8IEP2N/8zd+86HYazS2bnpq5sD3PRjaykY3/\nAcYFY6LNZtM+8pGP2NmzZ+0XfuEX7Lu/i/97v5c/+6VP2//yM/+rfflBNYSWT8rI9cQRLU3Gy1qS\neEjgCsgop6e1VChcpuXd0iIRwFta9lYAi5Oasx/T63IdZJUBhGxiJTY9LS/rE1q6hCyhNo+v2V/8\n1cftVz/4L83MrFhgiQX43OnS+MAEeY4lTFDREm+4rKXDmGVq7Ax6J5GfYloRd2jUwCYfIHErEk0w\nNa/LdOUPK8TspltFlv/a3d+2n3vrO+1f/8r7zcwscplawAQTsWvcaEkXzCJdZLstqE054kl6NPJ8\nmg6FqpY2r339VWZmtm2fqEuPf0sE6FViV3o0K3zsz0IMc6MosQ//2R/a+977Pv2ew1h3Sp938FoZ\n9Rb5e3sNitoWdJR1lrIsqXwac87EooY1YgmCepQbW6GubZMsYv28kwrrHFaQBzbWtO8f/vd/Yb/6\nvv/dupgtl4AMcjStemfdslj7UpvQpH/N5RiKX6Of7YGWyycfWOLciD4WQSwrAEWVCjSo8AnM0SSc\n263lch/D7WG3b3/wex+z9/3rXzYzsyTW/tcqzkqOCGPMe3pY9OU6+rwWsSLTMfJH7BTLWMSNoP/l\nkCjPAEFt9Hhmxsgx2d8I+lqZ2JN+GttHfv8/2gf/z181M7OFGwRvXH+bTJxre3S8zz8syOnEgxKe\nhFtAO6ApCeR5D0gscPBB6KKQtZ9DqEw+ht05hDBhQdcpD6Us5/H+8sB+90/+yD7yp//WzMxe/ZZb\nzcxsAFT4yN9LuLLVjni/zmsP7loAXODEA7/5wV+37zUu6Et0dnbWbr75ZsvlcrZnzx6rVqsWBIEN\nh0MrlUq2urpqCwsLL7mdbl8n6PjT4i2urggXyru4SHLHgxi8Y0w+SqgTPzqmTmHYQbOOWqGPtXqy\niVMO2vFiBUyNK1jAf3MnD+eAL9/8EGBtGtwKIGnQdl1t8CW+bAzstrnc5v/15RnjFDNbd2mkJC2C\nXRZIA+2DCY7goeYDOrlwEzfplh99StzBDTh0Jx99zuyt7zSfBynPg18m9dMvogaZUod61437zMxs\n5Yi6/sOQpybfAAAgAElEQVQ1nO7HaNh5sMckQjpXqT6OPxM3iMv4oz/zVjMzO/yAeKxf/Ypwr3CV\nSQWeahChXwf/K9X0/9v3K4HzJ37qJ/W+SJ3Sr33xm2Zm1mlo/7rO4YjbNAW/c1jywk5hutv2C/c6\ncvhRazbhFeK0VR3qGo8il0SKl6uPPM3MiuUZMx6aHjxDlx6Zr2riCHHMcnaka6RdjnF9IpDWQrrO\n8xV1y53n6wh8OYl0jYowIxImns5xnLuKTKjci+XIfUloOwMYItO4KOXn9foqjvBteKZTSJiKHng1\nDJck0rNVZ7s5VH8JX0K1itO+86XG/necf0RPPwt8WUUoqVaPiAXQ2QDPRk2WtFTYBE7T7rDg4Tni\nqJmZLVypido2NZH2G3zJ0w/xS/o8l5OWw0vY554qjMndAqulfrDFw7rHG38tpk0M5zlu6lkd1bi+\nTNRj1IWOex3iefBi44Iw0dtuu83uv/9+S5LEGo2G9ft9e+1rX2tf+YpoI3fddZe9/vWvv5BNZyMb\n2cjGD9S4oEp027Zt9sY3vtF++qd/2szMfuM3fsNuuOEG++AHP2if+MQnbOfOnfb2t7/9Jbez2VQl\nefQU/pFtzQYVlpt+pFmgVyAPhqTFCL2xlegUzqEIGkI0pBMZxZqlc7hDVei0Fop6f38DdQZuSn3U\nCmO4dwnd5gC3KJe8OEk0YC/B1okKOGB5XOprP3LkoRfLLDXQ3rsKOAcXMcI93Wcplxr7Qz582tGS\n8tAZVa61U2j+cZ2K5lSV+B3XCdbsPlPQauCmN4pXe9tr32ZmZk+fUqf0y5/6opmZxXhHpnTp/RF+\nnUPtz+IzOn+leX3O3G5x7s6eUhUW9PBuDHTcQctxIqmEWaqNx8AhG+Icrp9SxZmiI++dUBXTa7CU\nc+5O+MfmyDEqkwv0ijeL13vr1fIEeHxpr933KfEjO1usBny03K6iaMD5zZ3XRHebvuVL8B15XQGO\nr4/bUG1WFU7EKmS4qe2fXAGqQdNeJJfe5bNvrrPqYbXTraF5514t49+wfYe4rhiuW4uu+mTVQUdU\nWG2OB65sn5z7EedkXMeVCZpCr6nX5VzXPaWiw5m/FOgaVXZRecEw2Tqma5Eb6XX1nKr9eJ4KsgXT\npaYdDlB8tVfwUYh1TxW4J3yejTJwhD9DTvxNZDi94gYzMzvzmBgyzzymFIYR8EOEQ1kZtsPM3st1\nfDwbHvBDzbSfI7jhtQnds8MzupfHuGU59aFPCuvYMX5cWgOeAT4+py82LhgTfde73mXvete7XvC3\nj33sYxe6uWxkIxvZ+IEcl1Sx5LK+c23NFuU6iqKmZomhC88EE4xx9UnAhUqOJ3gWx3rwFr/gfCqZ\nlZuaHasHyYkPNRv3h/BJqehSspd812AB5C7SuOiGzO4uAAecKI60/wVf2ytOw9dET9xtAY4nql5e\nflANoh/+mR8zM7NNALWvfuKrZma2fgTVBhDuruuu1vFOqbJcPi2wPkJD78PrjKokPnJ+emj8jx9W\nVVPbfsjMzDYaizqPfZ2nITkypR44XJGKkWpmhGPQmWc06x/5jpomKxtq6OVi4YsVxBVJ12Wwq8op\nsH8lKvjulvbz6x+Xq1PMbL+FW3nkuwQDHX8Ir9WvkbQ5r/OwhU3U6VCNyM6q2YiGRJt8rqRBikCK\nMgX+YC44z/8rjgJLyWCKqEjHQ1X9hS6NCu4pZ0OaQ1VVqOFYjwdrNNK1XyZzqOCcx8bkglEJOepw\nCR+BIikACaq3whb7754RsMEpHopgl85l6lIZejSAqq5xAwaZcy5PVMxo+J3qK79Ln/+aX/pxMzO7\noaQK7zNf/1szMzv6HVWGI5REI8cfpUkb8jn5sq7ZNMqhHM9UkVytdAjn13G+4WF2Az1LR04KU223\ndG/77vp4uncjmsG7XiOO9A+9WSkSJx7TvfjIPcLT11e1uvHJ+xri3D8u4wRGk9pd/XM5ZQ4rp/nq\n1+CcF7r2UiPTzmcjG9nIxkWMS1qJpkOXIQS1B3eeGIysUFKF1kd7npB1VJ3QrDKI8dPE6T3OMVt3\n0OcyO9b3iH5x05tVAZbQnD/yWTm/j+luV0gkjOjkdozKjszqYsHhYmCHaNkj1A4pxp493JiKdJd3\nLQiz7bTABlOX40LXuqjtpVCu4tS1esm1GUvBVCe5criu7Z9a0qzbGKrqmXSejbipr23qczYb+Jse\nktIocMIp8nv88hSfq//o0qEsBbiSd7XfjbPOuYecd65DgljfqWMSjjvvssH70G8crjWn89xoMsvj\nFzoJha3jvD17dFDp5A7oaKcbOCE9oPNx+puqYtZPt8/5E/htutF5l9qpj5pItU9BznlaKbNrDGY3\n09e5W6diCmEouCTT4rTuwak92uDVrxKmt/uAcrUe/oboXxFUGgPnd34CYYwTO9hrmy7xsUirhPzA\n8dS0/W5PN1+Vczq7T59fZLWwuqL3bw1cbhddde+FOH1Uc56t0OvwLaA5bmW60yPuSY+0hREVdH8k\njLPThllCvyHmHglK5HeBe6esLlJw9Sr9gTyro+ZY127xsSfMzKwX6vcqK4KYSjR0LAWfXC9O6+nl\nRTMzW2uoEt1c1zOwwT3qpFmuUo5IZQ1Qqo2cRwLUtCKeu1PkjeWn9TNsZBlL2chGNrLxfR2XNu0T\n7pvjeg3Avoo4qMd4BObQwybk2sTgQglVxdwcryeLyXDcydNN335AROIrXqauMg1bO/KQcKjjPc2y\nAfn2PbrACV1yp+X3IL3X4eA5V/IxbuoxlbGlqux89M3ptGbnGp3e5eeEM33+P6hL3YKQjbWj5cic\nCmEJnHn6OCcMbBFSfhWXdpfTY+Th+DSIiQOyIXkxZaqSwiwuVFUy03Hvjsfaf5dVVb8MnI/kys66\ncnv8aVy/88KNChXOj3PEoVxISFa0KWe9r89p4uXYgwVQ6gprTSCyp+jDB+x3rQqbgko7RgffBHuN\nKRaixCxfxTt2h3DTlBTIWtfdIwgQ4vOCkOpM2cacg4gKbnuIJn5E6gH4eWugazadiGR/2W6tEi6f\nvdLMzE5v0+rg5FgcWnbRup7D+LhWAV6rZPtEY6psutzBLNp/Ksv5HXNmdl6bPjWre/epb8g9Kn5K\nQpUzfXigVN5R0eWtUwG7fgFc6xUqty/9p0+ZmdkMnroO03V2mqWihBG1K7T/A+cBUHBCDZ45eKQ1\nKtncrK79tXeK7L7jKlXs992lVeDW83CluR4pPhUxyyWXLZWCcZ/4jlZTy4/oPHukI0z6Om/1q3Vd\n8iQZlBA5tPp6XZl7K4BP2o5JFiCPba2MQz7MncR9p7zIyCrRbGQjG9m4iHFJK1GfSXmCrnO5JHVB\nC0VORCVa245H4TZ15gyMbuWMKrQW/MvqkOwh56/pa3trZCg9ehc4x4QO26WLjpHQhZQ0+cT5dmoW\n23ODZueJGVUd/SIOPaf1eT3kiWPCrWuOM0hGd4u899kdVBV1eVqeXVNV00NSmE/0eQUwzRj3qTIJ\nliNYApP7NdtWHJuAWXcIj9bv0gGm0zuBY06cav9aQ1VyIxRjowGSR1qV+2+5zszMXvkOeXAO8Gv9\nzqf1+uUzmrWd72uMJC8/fCE7YhJnn2t/TNvp4FB05klV4gHsgiH70V3HyYgu/yQd8G7F4WLwd8eq\ngMdIFyM4j4GZdahYRiPtYzHQuQvJzCmwypnbc/7W333rvLVOqhpuwOtsxvo9jlBN4aRVwK1pa1kc\n2a997ktmZna3KVOp3wG7Q7GTA9usUoF2Ep2DFMVNcU7XasjqpQCGOHSYZR4pclHYZ5PlytA5v8O7\nrMEIqYFrDwakH/gA+ltU4uxXoUrXH1Vg47i2v8Z58AKXqAr3GI71VsvlvOv3VXDrSkv32MCt4qZ0\nHiZLOq55GCZ7p/UsP1dVZbuJ924NZdmY/kKE/DRg1emVVXkHeA7nnRtVoL5HiBzVa7BKYbu9rlaZ\neWfvxXkO8CHdOaPP3Xa5WApnmqrAk6Gr2M+7fX2vkVWi2chGNrJxEeOSVqIT+zW7HLhRs0CbHPJk\nGfyJrrzLzQkEC1kAtlig85meEU8whCe582X7zMxsO4BOc1Gz0aOPybE+poPoj126KC7hYHxFZq20\nCN8SDl5c1XZyYK1FLOfrk5oWR3R2EzqY/UgVXHdNPzvrqj5mdtKBDV1ujPCcfIduNrN5yTUGfeeu\nruojXsH70mGBpGV6sBwKLv4zR7YSRilpRdWUP3JGI/iB0omuknA5xP/TZYh3R85bkoq7pO2kuLjn\n0JunVAVxj6xzXM5f9gYZpvSpHAOyvZ/9jjiBAVXOAP13nfMypNwIOqqiKvMYqNS4bVOw8YDzvDKy\noEfFReERgkXGRfZpm7Zx7Y/faW785Nv+J/vmc1LIPHa3mAxluMk9mALQNW1qj+7V3VdJ/98Hzz38\nkN43OaUKqwwrYB2OrT8S9lei2z2iuz4CS+QWt7QKhomPQQkzmvaq9uPbn7vXzOycwsqnO560dQ/0\nUGqNYAHMoP23Oaf60+c1I+1Pec3lXulHESOOBEVPv8kqw/lNFGDUkNk0Nwn/M9W1rrKKyINxrjdV\nGX79//mCmZl9Z5tOZOc0lbTL7xqgxOLaF6mUyxivpLH210NhlaJmm8BgJSbVtOP6KDHd/YFLbeB8\n43fh8exeeVAeBy9/gxRThw4JYz6Kx3Dae2kzpawSzUY2spGNixiXtBIdR8IfVs/qZ5NZNBjg1OJ4\nk3TSVk6qIxeCceb0NhtOarZZ2K6fr77jJjMzy1ekoz304NNmZtYid2YMphpOkJFExROh2U+GOKVj\nfZdHiZRuCf/pYm2XbFKl0F1P0fp7VI4JNl1zOMObJwx0QFJjSpa3wYEb4JRfAs9zju6TBZzzqdxb\nOPEUiJKcwgV8CIZYHDAb04kckzpqVI4F0/64DPA+VVMDK0F7SJjl187INSqf19+b6LcrA3TH4FL9\nwgu7/10c7Lewtrv/H+UiXpjDJX5Z1cnAJWCi8pmkigl74IXggjlwuS0q+jwY7zin8wdd13KhbyMc\nngrYE/rwDstUdpUA9/32eU30+njJGoeFr/caYKNUzT78ykpVlVOTLm+ho1XJNjjA18EX7bMaaZwQ\nk6HHOS2Xdc4LqK6qdVJDTcurNdyX0jarhXPpDSiiENWX6FoXYGIMRzqeNrxLIxPIZT35KJXOVe0u\nX73PKg5+aC2mYs1jgTdgVQSv0xKXeAs3mLTSfo/KuQRWyipsdpvzc+Decm5XS8K9x9zzPpXoEFeo\nCTjDCVxxx8gZ4QJVrePfwDMVbvHMNnmW6eZHKJWc+rDM/ha4Z0JSMda7eiZPHRVPt0/Ka0RfJXLM\nlxcZWSWajWxkIxsXMS5pJerh/RhuCNMc0vlLwUGKrjPp1B8tnGHATSLE1dvww8wx65581HVAVVWc\nWFRFlCSaxYhVP6fwCVHu9GI3S6rSes0d8jj8qfcpK+qZe6SueO5JqVLaoXPCIY2Sgm8EHjRVA5sk\nObE8qcrYGzjPQ3w3qTS7TVQyqGlmwMN2Xq8u980/JGzxyBFhicce1H4gFrE8ldt4Tudtgcpvg4p1\n64xm3aBM0uKMzt+Mi4yaZf88cDE4ig673UPO0BqKJg8vzO2CCc/5v07jcdBv6fOe+OJ3zOx8F71E\ntZWCV9bJshp3XUKmjnsyh0tVAZPsvq6Pz0qAhYqlsBcGg7zVqYYNzLE0QcXJKmHzlH7/xqfVTf+R\n695mf/0nf2Odsy7XS+ewUKcCcZAYlVmX7n/3IdI08WcoUY0738wEZoXT2uep1IBYbeGAutUHrxa/\ndPFx8UrPntY9Pl5zvg6oxvDYbffA0VkV+FSYZdyb6pgrO1WdwwBTeJAu0bWPc9kknN4QY+zQuVnP\n0L1nVZhihO1WGQUqdctr9ZhbI7cropIf6nOmD6jSnt8tL9ogELa5oZdZ0NR5aTuPAZfoipKoDSti\nYUrX49XvfKWZmV1//cvNzOyJb+sZOHKXPG03cTIzmDWz4OgR+P6QnLEcirG1k1ptjZZ1b4VlONN4\n6laCl64zs0o0G9nIRjYuYlzSSrS6Q3zJW97wo2ZmtrGqWWr5KeET3aZ+bxdUQQ7AseIcShascFrg\nQhMbmoWO3i+n/DazStpVRTOk8qt6mu22XORACbykopLqsu36/z23avbcNym8K/fDmnPOrIHhhvBM\nO2C0YJMVXJnGdDqLVLqtFK4hJVQDr4CQqAM/53TLKIDAenfuoGt9pfZvfrxoZmaHH0IhhTN8Hnzu\nxtfJX/O2O19jZmZPHFbVdORLwiY3yBofUlH2UJmMByRDes41HLzsnCPQmN/1/tIcTkJ9YkLguyZk\ntefBAafrwnJD3NNHcDZzKKGsjwPREJYF3fp+T9VEGf6uwzPzcCzzVbBZio9xKbHaAK5tHT9I/DbT\nFE9ZeJJtGAtmZhurI6uyKimU8B8YwB0GnzZUabOkdg6H6sJHpIOOnWtUBO5MdZ2aqv1hqNVRUMOJ\nHszPK+l1Ewva38YZVGOc+zoVbGXbZeyXqvsufp45uMI9Yi7iBhU1q5vYJcCCK/vwI2tUqCPu+QQ+\nbelycaFvvU3d6iHPyunHpYiqb/BMooyaoVLz8bBt8yyGYLQr+JLWcEcKK9rfJoyLIpWhB1Y55LpU\ni/BB+f8engjrHX3+oU1h2A2Hm7P6ivHjqE6gcpyksu2LPVB0Phx558wPf5dK1Zyjf1U/I/+lvyKz\nSjQb2chGNi5iXNJKNIF7Nhg7PAZdK072YwLUDJxrqqrZJPHoCG5p1p50Hox7cLghaK4HF22Uc1w3\nzcYRHcVaAA+VLrqHu1IHn81D9z1sr3rLa+1rx+QAv36/sMjBChUlXf5xSdVFkQo0hftXCl5YBaQe\nGLDDuZxjTp9qpew6r/BYfe3/8aPohD8l/80BnDm/4PJn0BvDvyyQDRXA35wF3zs2oZ/OVcm5ejvO\nXZdKs852RiiQiszGk+TY736N3LCuvUU/nzssF6XH/1Fpr5s49Bfzwpm2uk3ODwos5+gzpf2rsqKo\nHBQmuxPn/LWncakHh+uyX33csAaJzmcByNzP581b4JZ24Ya07vtgbQF4dxmHdzOzgtUsIefdo5Ir\nsKqIyO8qToXnXm1m5uHu5Hw+c/hdeniyjnD8ysN8qFLJelyTlaOquleXoZig3gq5pwpUePuu0zl+\nw7vl97m6qUr0Hz/x92Zm1jwB35JMoiE5VBXa8CFx7ZMwNGI4yT0qxWpKzj24fm1Kjmc3vv5VZmbW\njbU6WSI8MtqAOWI693EZ1RjbnwUgn5vap8/p4a60hLpv6NgHjous/SkUtL1a3WGW7Dh+CwFc7ucf\netLMzJ6+R4ybc7xSHM/GVPhj3K0aZ0hfSLW9SoFsrYg0hgQWgqfzkKdf4PbD9zKeaDaykY1sfF/H\nJa1EB0uaxR79h0fMzKy5ie1Q6pREcNtQfYxIwRyONMuU+i901d5zmTDWhSuEV40eVDd9+TD64bFm\nO6+COxMxumGX5EW4hTnkLkefes7sLWb3fvQL7DDKpgl17jxE8qUW+S3wJst7NTcdePm1ZmZWLap6\nOY7/52BVlXKDw+0zi7qcmJgqoo2bUnKIiu45eSdOoOZwbXkXZ0vhasfuV8dyuCbVxeoRsRMaq8K1\nhjj7BzkSLLejOmniktSh0qaqaSKdKtFaTuf1uRN7NKtPR5rtq8/pvMR0YJvE4yb4jyYkBUDBM4RP\n1oeHu/ta7c9VB8RG6DTUsV5bVPXlU9VF6NCLDq5Ew1/ycpaj0imTurnvoLrVKyuL2qd1MpK+K8Qx\nGHvm42fpD1UZjeGVzh/QMe1/me6t1WVdgzOnVGGN+mCoKIESx39EQ1+epbIkHnsAP9PQ8PdXYDrw\nvhLGp/52VlU7UechKYrJbmIxYT1jvwPh4eUFl4qJaxHXsL5Tx7HjwG4zM9s4qr9voA5MwV43xjrX\n3/wGjIqebqqtszp/XfiiARr9FHerCDennS+TAuja68U6OLnIKuoRKuVV3tdCSUZ8eKkoLHbHDpzD\nKABbDbEVvBLJAKSstnzXD8A3wj18YNDjvF43RJVHYWk+TvpDvIMDKuKpiirw+m4c8EmraLOqfLGR\nVaLZyEY2snER45JWoqOQTplz+y6T9Y2HX4ySCIjUugP4n8zW0bzKiSEV2fqmZq21UD83zqoCi6j0\nXGaST0UVMstGdVUnc1PitE3Nwv2b0++Tl6maGTRRIuHn2T2NFyLKmxy8zpkZeSbe/GZ19WPwp9bn\ntD+L4EwpXLgpOHXFGiqPiqvgmI536AT0ung2ksHdx4F/MNB+VskM7yyqSnpqTThUjjTOIZXcBFVD\niMIpami7IRV+zGxeKtGppBJ1HMFDD0iNs3lWVUsDfm+4SXcebwIj5bQwod/HZFTF4JP5nI5/32Vy\npXrF7XeYmdneiircx+59WO+jY+tH4Io1ViAlVDlgoomXM5ridu1bxCO84xXC9h4/Jk30I3dLIx9v\nQlQ0syjwzPBjiKmKp8idnzwoHP7GN73azMxWF1UxNT8r/Dcd4YiFOa7HKmJyjyq/V75Bq5FWrO0+\n/9AzZma2dVz3aEhFNMk5j8kZS8Dxn3hQldziikIgY5ggI9yT/BR3IyrblO57QnU+HqIyq6tS3XuT\nnNA8/A222rqWUUPvH6CGe/DLOk8eXesCDmUu5wzTJBvAh52aJOEW5sn6s9rv3qpWQ10q4hQeZ4h2\nvUDSrVeGh9rkGcXhf+D6DGu4RFW0f2Xeb0Xd+yX8UfsF7Vg10v5sX9jN+dDnt/CVLaasZvHoTWr4\nU8BNHsBprrbPp8J+r5FVotnIRjaycRHj0vqJogv2ZnBPYndG6FfjVNVCN6IyyuMxiD66NoFWHc7b\n0mHNqmEEVw7NvY/beRmeZoiueHqXZp29B4V35Wc0pyxvgMNEKmucw3ofJ54RKosx4vEJOHkJ1USR\nybpxXJXnGEVNk1TS4Rkyh2j4lqf1vhwVdcdVrqhJymC0PpXcZsNlOHH56Fa3YAPM5lU5V+GNbudn\nq6PZt3MaC/2hy9HBRR0unkv7dHKdNqXekNyiIth156zORxKRU4/Ix0emM7FHiq9dl8mftLEuPHGI\nM32KE1DR1/XP4x3ZSPHMxG2qRgbUCNVRCX5piLt6CXZHHIytAHPjzAnxCB8Aglxb1+8+1fvIOV2Z\n2bgaWoz6LE8lOSQffuOoqvonvi2ObZP0gzDQuRyQWgm8bAles9V5MMiD6lbPcozrq7q3RgNSRcnL\nGpD9E7A6G4Kpttf1DHTwIQjIGSviSuTB8MjnwV49sqVY3cXg/zG/+7hOnfNHxUN2VFBFV4BnGYG1\nGr6aQ6fZx+fAxxHeT3RtqiTGnr1Pz+CzPCuuMh/Rbyi6VAp8IhKympJlnuGRjrMC7j1ZfmHybkqX\nfmJOK4RuByYJqQxRi/PCo9HbAkcPHObsXJx0XaKhVlNri7o3R02cz6ZV4RfhpL/YuLSyT268Ahdk\nhClxhPxyiCFITMGcNyhOJaR3GLfWncGGk3RViM3gIfUgtY+Ij50kAqLHDdKCQJyu6wE4u6ITmxK/\nEbomwoDtN7DngjIUEqpVgr5y5rD2v7mlGNcUmWeuowe8SmNqMu+ihAnIcwFvIwLbViUayEGGD/nS\nrMBbGYywoHONIkK1ot36+16WMrP79KUan6LB9IS+xFZbhKBNYeQBHNHHTDrAms4LsVEDXSgQdlZh\nKRlDBzIaf4b5Q4E3DIETOptMhpGzHNTkcvqYGl5rH/mkjoemT9PZyEFhG2/wwLmuA9SriO0X5krm\nI7s8e0jNru5RPRwtqC8DomOG37VMC8exuYTetOys1ZDKIiB47AmZsrRbWp66YLsccR6GKXKRb9Mm\nMc73fl20tGSI2Ysj5Vf0utm9OocpX+7xWPe4Y/cFGHLkmNBLBZbNfOmOnWmwo9Nh4ZfDqDsHhSjY\n0HE8d78gkqZucSsC0YzHmMKwTC8M2C8MzCtMuD7PVh5aXBXILUcMh2GkMlXSPRoxEddSfUmHFAqJ\nS5xzUmWgpVLK8dFACrkOUwv6/9e+8w4zM7v6oGCSx54Tve7pz6sJ2Wzp2etDI6zz5c8jZD4nNgH2\nSCd1XmugO54TdPAtPOqfN6r5XiNbzmcjG9nIxkWMS0txYhnWxVhiwFIhrbJkGDHLOR8MInkLSNnK\nzPoRFd30OW6+ZrHNHksaSP0BsEAP+oohVzw9VIW2/4e0/Lx+n+gOa4uqJvBGsKCrWdKfwraMCjdX\nde7JLOtTR1+hgVTQkqfO7DYZOwNaVUVHT6rZsGu/jH5vfcftZmY295SO68SzIvmnWzTSkJPiwGej\nvIt+oHJr6fiOH9HsfOKo3t+h8mxvsgx2lSMVX5GqZ8wJb1OtVVkReMg5ExfMlzpDYaqeKZbCyGlP\nPKNKenFJ4WJFGk5BRUumHLBBxBKy1dSsf870ujzHeSK6murKozGVcr8UKgTm+aEVL9O5vvZmUW2m\nZlRpnD2lYz/2rAj8Gy01VszMKmHZ+gS6xX23zNWx7iD47Lo7ZRjSaWPw/R2RvofrVGhAOs45bdKD\ndL8INFHSamdsWkYGQwQD2Aw6FWrOo/LZRFLLaqM6QXwGjZlWS+8LkDI76lOJZX4CNcevITlG0JAe\nZ7WDZVwwqWsZDfWzhuw1KUJJwpAlil3gHXS6Ce3wjn36vO0H9cwsHdaqot2E/E5FGXURumAuQyal\nFWj0jGh6lnLQ4dzNDS2xR6Xe3NT5XJpR03TzpK5r2Ndq0UXNxKGe0S5G5h7wjY+hd5Htsfiz3oLO\nc44omoDGVS6XyT6zkY1sZOP7Oi6tAYnPbMisX4fuELFbHgTl2NmPMQsGbeSDE5DmqcAi8Jqxz6zK\nbDxoM9tizJoi8ZusqyqYgUL0qlcqMmLugHCpr39aUQwBsRn5Ao2hgYtjxRAWPGeeKqhBXOzmuqqP\nIo2uEQVrEzzLo7FWmdD+zR8UjuSUaakj08fOdFnbq9chbgfOElCAziQWeo4gHJ2iMs4jSyVLeWq7\ni5TKbxwAACAASURBVIRWBRcRO5sQh2I0dOpgzLi8mc95CyJn2affd0BQvvx1qtbWtrQ/jz0uI5kc\njbwqEsk+1VaCsYkXU+FSgTpsu93QCqFDxc9ptWpB162IGCGkuRPEvjW3dE+tQ2HyqXbPIleMMaOZ\npJlpZpbWZyyg6cYtaANTBXPytKrp4YOYA1MJbh4Bxwezq7tmJz6LbZ84ECqrXVfIQCQ/I2nrsYcQ\nXmA0HVPpJQTPFV2zj4puBXOYFBPiacyS8xhvhDRXIydxTl9YmV59y81mZlYmmO3Zb6ki77uKFrJ/\na9PRAXUeIkIcc0XuZe7dHTMYoL9Jz8wrrpY89Qv332VmZg9/4X5tn3iRkQvY41olCF3OCS/AUKus\nMp2cNj8HDo6E+IG7tN1HHtBKIGpCtm9QwbPaSZCxFsBeq5OIBIghj7FTTAsOp9fb+0RsFwHJE0yr\nX2xklWg2spGNbFzEuLQUJyIS9mHY2iJ6YeOUcKcmBrFV4jZqptlqYpIKhlmkWNJsXppGMoaEr4VB\niU84mLPVcsYhPWge+VX9/cknJD+tndZpWdtUtZAwK7o4iwTjkgBi8TSxHbteKalbGdpKPNRsv74F\nLoQpRg3stIQZxC1vfZ2ZmR14ubbz7LMyin3+xKI+B4y1RKUdIwEs0mmeojNcxbij6qmKWl9HAkkJ\nPO612C8wRyhDA2e9R5zIHJhwEQrXAIPgTodIazSHzsasvRuMtOA6tVQZVNAuCG+EifMInK0MXrlt\nh467vlPnr0+FnhBJHZ7CLJtywY+oKqEZ+Q4nLPlW7OozjjwsrOyoSQLbb1FxsGroJedv/WS9bUVP\n18ijunXd7TzS4s0noGfBnMgh+ChD+I9hZgzAuSfpvk/uFqZ6x9veYmZmsxO6Rp/r/TczMzvxmChB\n/gAZIt32Ydnd41Rmie6V6pXQx7Zp1TPu0FZu6fUDpMntvp6J0V69b+J1qoRv2K7VQnNJVf7hJ8EU\nQydPpesPra42zWoRKo2D/33OX76AobkJk4wcFsu9NLVNqzoPGlyD8+mwyTyv7yF5HvLMFooYdUO6\nn8DEZxPMOiaiuVqF4QJzJYUNwGWxynadv53If8cIdpaPiGVRCF1gIJHa2FJG9AnC5DwV7nuNrBLN\nRjaykY2LGBdUifZ6PfvgBz9orVbLxuOxvec977H5+Xn70Ic+ZGZmV111lf32b//2S25n26xmx6te\nf72Zma0SYBZh2BpuqRJ0PMQhAIqLAckR33rNrSJzv/wdt5mZ2bGjiq/98ucUATEeYYfm+IVE+wZg\ncKuYUrQf0eeX+XvTWcXBisc31pLQRSRr1lqmC995RF32YQQnENFAKXYYKLxS5q4K0sLmsqqJhx5W\nBXnqGRHDra3Z0MMIuIh5RYiJsQ9uM79dleMNb1BH+uQylXxXBiyO9xmPXUQyWCJ8WY+OaXWCSAs6\nqj0w6wa2ZwnhXi4oboAN2dIxYZ9L62IBeG3YAlR1DkfzIC7PEmXt5KAt7NjCHpHMSCgHsc5LYYbK\nveXOH6PKdgBtR70VK2J6PGS1MOJeKji1Ip3+YHQe64qKiQXYIebAOCtQMpKUCpZj9+nW+onkn2Pu\nRa+n/y/BHS6PHcle91qPaxclWmWsnFRlG7JKyVP1e1yjco/oGDiwxQmw1atUyd76dt3rK8eENT77\nBck0O5EqzNApb9nOynO6J6IlYYnLy0iekT3W69r+IHE2ivA00dH6I54RVjFpU+//1pfEg/1a8W4z\nM9sizHHoQhG5x1LMjj3MeIyo5xGshsJA23NY9cxeMTPaK8RhD1XpTsIVj8DTOx1MuGO68ogHAmJU\nJg6oYr/zZ4Xddre0vW/x3dBc495C/ODiyUdU5BWkxi82LuhL9DOf+Yzt37/f3v/+99vq6qr94i/+\nos3Pz9uv/dqv2Y033mjvf//77d5777Xbb7/9QjafjWxkIxs/MOOCvkSnp6ft0CFVH+1226ampmxp\nacluvFGxFHfeeafdd999L/kluoUU7eQpYV9rK6pIhihZ8kQge3Dqii4OFfymMq1ZskJ86nZmqbMu\nnnbg1ApEBICzFAnZSsBGqzUXNkYUQc5xy5idG1jppWwXDtkkaocOZg7N51VBdl3XnciJIYYqBU53\nEXPozSa8zW8TpIdZseO/FsF7vAFVCTZkKcBUgPlDn8C/xePCeRqYVPRWeB2z7CStZxfb68V63cwO\nzf7VCVVD62sYmWxou8WcM40A/0MiOUVneGYv6hRm7fVFVZAjDF56rCTqnDdncFIOwNtgV6ydOcN5\noyqEleGkbSkSQh8O5p79qvYmML/YOF2xjjMWQXbozGzycF/HRPTWiN41M/O8oY3BMouBM6im604U\nSdKCg4t1WkQmSQxlIGV7ERVXsyccd/V+rabOnNK9EcxQTZ9VxVYrIWn14OL64NdwiZ2V3oB7uDtS\n5TlC7mhD/d6hPh/DnChXhYWG4M8P/L0MWFwMSBGz6TJd/pTzk6/XXrAf4QoVOJhrl4C7KlLc1obe\nv97WvVzAc26OeBZOgw14pgt1KlM4xiP8IEtY6+2/Wd8h196uUMbjDyuA7vDD6i/ETpw4jSoR5k0S\n614bwBP14d96qzybayiZUDmGsAbGVNh503F3uEfLGK+M4pe2wvPS1FkF/dPGL/3SL9mpU6es3W7b\nn//5n9vv/M7v2Gc/+1kzM7vvvvvsk5/8pP3hH/7hi25jo7llc1MzF/Lx2chGNrLxP8S4oEr0c5/7\nnO3cudP+8i//0p5//nl7z3veY/Xvmtn/e7+X//LPPmwf/PV/a//m//o3ZmYWrxL/UHDda1UYZbdd\njDaKzJIFuvvTdWalvXrl0knhJ+srmp0mquh2wcNwfDOfLrcPYFaZoeOKVtvPpfarv/Lr9u/+4A/0\n+Zg3jwfgJHAABzknzGVH4a/myFBuY1hiKLQCJziqaDYvwUXre6qi8szKONHZ1KT+f0Al6XCy5tbI\nfu+jf2wf+J9/Xh8/r4o6nYFoiu477urvFTrKHrrhuZ06X6/9Kc36Fa7ht+4SP/b0EUw2OqouAuJB\nuuBNZVQyAZV/EQu/GG7jVje2//sj/87+1b96n04L52lmQq+/42eEU+3cJ+7kA5/9RzMzO4pSrH0c\nLBfVTqsIN7KmqmHhclYQVLS9XsO6mCOn8EXHxFYX8BVIYQQcuEoVzy+9+9327//4j+3korTxVRgG\nB24QY+QmjLWfeUDqr5XD0uS3wbvzdOFjZ/JLiN+I1VI11edN7aTiw0x4NNK91GeVkXrO+JpQxfWR\n/e5/+n377V/+gF4/of/vY6Axgx1il5u532b1UsGUONX++HCZ0zbPDoyO6RlhumUipQdo4YdUqm1w\n/IQY6xJmPnnu2V0z2+xf/Mv/zf7kwyqUzoKF5gvcAyjCIhg2ZVZVFe6ZFrxWp+2P6c7PXb/PzMx2\nXKk+R/OwVlcbp/BCAC83ztcQf4uAPkHc171VLw7t9/7D79lv/eZvmJlZdYZAQVR7XUIvyzV9x6SR\nzlcMp9swi/Ywe/6dD/2mfa9xQV+ijz76qN12m4Dtq6++2kajkUXuw81sdXXVFhYWLmTT2chGNrLx\nAzUu6Et079699sQTT9gb3/hGW1pasmq1art27bKHH37YbrnlFrvrrrvs53/+519yO0PUAwG62mIV\nGyrckoZgexvwOXNdhxVSMYKntAkXWyipAtt9QNZ22+ZVAZ7BPNnbcpiaPq8y1vu7RAmEcNvGDSze\nprDDwg0qn9es1YD32KRTmaOrHE2CZ9G172DPlcP+y1nalcHZvFR/HziOHDhRqarPvfY2cfpufKV+\nnj4Kt++rwok8MNeFverKO/13NKbKaRBVAb4TouKYqKrinL5SFeCBa24ys/PBdjsmNfv3AlVnnSLH\nA580T8d5BD7X7+jzyuBRebru02C7k7hlxQTxVed0HoOdWiHk8/pZBGP1DuG65ezd8ECYSjDwxVB3\ndFxVRcsp0wZ9m0WRM0CpFKzCu0QRNDMpw+wdN15ubkxesd1qXeGxAd3kOrEg1QPiF840YAoQWdNY\n1z6snFTXuxESYeKBE5fgmy6AsYHv97C4G61SoQWu8tU9u/dq7dcD90iZ4xZ1PvzUGhVuc4voY2JB\nSnp0rMkjnVKxJm2MzVEEbavoXI/ATreWdQ1zzikLP4UKvM4IjDDs8kziX/EssSZrx1q8HyYL90AO\nZ7KD+1VM7T24z8zMFo/onopPEjLIPRkVdc+3Tmp/Vo99S6/DkS/gGR3hFpWS7xLDGU6RWFXAsgtT\nwsur51R52m8vr/NVQ21nsTOjRhUHe6AIqyNXBZd/kXFBX6LvfOc77dd+7dfs537u5yyKIvvQhz5k\n8/Pz9lu/9VuWJInddNNN9trXvvZCNp2NbGQjGz9Q44K+RKvVqv3pn/7p/+/vH//4x/9pH06DMYTH\nmVbRwdIBLOFGFKOSKLvKlUrSza7TNc3SE3MKqOujZji+qFmyta7OXAGNdoWgt8R5SNLJ3U08SOVy\n8VefeFoMhMUnxf80XKVGYLIWabarUGElXZQ8zhsSFUV57HS6hHT1td/ATmZUipHjv846FyPNovVJ\nKuKSsN4BblA+nDinrhjj1NNp053HZzWPI05p7LwpdR62ljSLf+6v5OMZERW9iRFwBWPPXOw8J+lU\nUjkXPDUFffTZ9Qm4gPBr+4SIjcAL85hqbyyLT3r333xC5wess7XU+e7TYQWOK2AlMCBkDDm37bpc\n/NgrtwnfO7H0rLVXde5a4OcB+05CjG1RvR76lnwo33z9q23lxIYVHT8Q3PbYw4tmZnbmSf1cobte\nr13GMWrf1kfgzvBS62Pdi2vOHBnmRAOtdjxAhdXU6+f26PXVG+X9um0PWOX94PL4PZgzccZPoso1\nHMFpjju4PVGZhXn8IvBfKFJJDjh5zrO3xPHOXafPdU5qZw4Llx4vg6Pjy5CHOZHCBtgiqK7gtPuo\n+PZrc/aK219jZmbXoa0vTOpaNs9+1czM+qwiE7BoH8y1wvZDzKEHNBwSKuVkAo1/h1WNa0sQXzLg\nHm538X/l3i6zWizA0e7BHY8dhxw2Q5JzXf/zMOX3GpliKRvZyEY2LmJcUu18NwKrrMCFa+IwT8TD\n0Dm/43hvY3StqEpCtNjrtO/XnxCXbIlZKASfmcetyadyzaNWccF42xdUwb7h53/CzMyumFZH9mtP\n/IOZme26WtVHd4PoBniO1by21++gjcdHc+gc9FECWV6AVUp4WITHYQfuX8nDnQkeZoiHwJMPKbZ2\ncVEqkwEqE6+F4/9Q+9EiKK6D0qhY1Wy+c4cwz/4IXG4d7Bdd9vAUHDoqwJ0H5We6fYdwwLVTYI0m\nnKpIB7Nf0H7mCs7dHVYF7IGECjmBzTBIVP3FVBFbAH0LS2DaqEPCNa4rfOAC+vWoQmVOPEpeBahd\n/6O3mpnZnQflPfDgk/fYo/d8w8zMuvhJDjdhFhCTMQh1rM9+W912+z/Mlh9ZtHwZ71Rw5bCoY0bS\nbgf36Z5IJrRP62fwa2AV4uPiNI50bSbRXG/htdrranvjHgwDnrw89/Lxh+UW1XlG+9VdVAUVgy3G\ndO2dV67he+Cq9jIc4ly9wOdwDWj49oeqPCPnxTune/KWO8VSuO0t0vaf7ms/vvxXnzIzsyU+z/l+\njqlkB+xGOqZCpFueY1UYgC0OeX/fHNeaiGYc7OOI+BMc5PNsOIGvW5rRfk5AEB3C6+w59aLp/eOm\nc2+i4uSrze1v3kPb75zzqVyHOLR5bK8AFjyuoXxyq8UXGVklmo1sZCMbFzEuaSW676A6ka/8YcXb\nbtDpXD2sWSPEQb24oFmufRyuGkqjsM6stqbD2LZTFWV9uzDEZSobL0QPjB9p4vwwzxllajbaOiu8\n6hDYbGtd3LQA/8u05MTz+tGKcEcnyC0Ek6yjWqlM0Sl1LkwlNN7gMyU8IuM6eTZ0DGt5cBlcl5ab\n2q8ZPt7HfzR2jvQosEbor1N+bxJKNkYrH+ToZCb6fYoO5s4D4kRec6uuR7tLxbilPJ4IxdiYuFoH\nMGLzaROEp+Wpgoo44Q8qqp6KqGdqBe3Xzn3q2BbnVeEnqFk6HkkCdJ6HeCPEPbcCgYsYq5o4dVz6\n8y+OJPI49dQJW2ug3QYzDCa1k9NgeulI5zjOn++6lst5y/P/IauDXEmV3uXXqTq/7Z+93szMmuRv\n3fvxe3SMIdjbAHUdPp7Nsa5RDsf28ozuzYU5FE9kDnd6en/rEa2izgydW79bbeAb4Tm/BPiecHYr\nMBjiAdgv90SOvoLHqsmrgQXCeAmon0asJhq4MJ1aBrOlMiuz6hjBWhjntZ1azL26g3sRH9V8gApv\nRdf0S5/9spmZPfQPipgedXQP9jv4R0CF5JG0HAqwgstbG+oZ4xG1FCwzN3ScZxzNwKS7nM/dV+he\nvv2NWq20evpueeYx4fHraPUDKt46Wv6kinLLqfTSzMUpG9nIRja+r+OSVqIJzuxj+ITdJjG1aK5n\nF4g6LgrbG8yoUkmaeAqCx7iUyhbVRZ7ZNwpcxSQ8qura8cxyIRHAy+uafe8dq2Prhdpue61r7/gR\nsy1c0aMOndYU3uiIDiwV5NSUZuuo7/AoeI/4YDa6eFbSYU1cR7OnWdQH3+nAufNwcC/ASrhsr8DA\n6T1y8jl0jyrFkPNoLgNphJKKitHDiX8w0izrGpG1ovZrZUkVbw98qoHrU3tL5zvsgRtNabsxzvqu\nY7xO137GYdc1nI+GnDe8OteJklw7pOsxvYyahuprPNB2wiGAG/SFXNGdZ90PvZAO+zdV3TwM7jUV\nDs65DpV9V8HpMzacphp3ofzwPNhVLXk2pBTKU3mMUdwMzqCBfxxfgnVVon0UL7kRajCw0SJpkkMI\njmM05FV8MPtwoCOUNlW6557jLbLfCQ5ZHRz3Xax42SXdco9uhx+Z3093m/yw5rI4xTliEnoDuuq0\nsQcwNx5/UBjskaPyNW33dHzDLfwm8BowuMFFD8YEFeFoDcyzoEpvktVjf557mPN8dqB7zGGVaU3v\nb8NIiXE4SzmvAzwKEig8JVYKZSrHGn6mscPNh/gtsIocTej3ZLu+O0ZH1nm9thfTV6jOsh22m2MV\nGcc6jpJ/zjPse46sEs1GNrKRjYsYl7QSPfW8Zr9D3yI5cQs+J7PPek+zQw+cp+9crvF+LKKxx2Dd\nAlx/mjGab5xd8uA7AyohD+/B/4+9Nw+27CqvPL8z3vnN+XJQZipTQkgCDSALkASY2QiMG9sIcNjY\nTQQRFd0GOxzGTQN2FbhwuZu2u03ZJqKrqDZgbFzYeJLNICYBAoSmlJSZUko5vhxfvvm+O997zj2n\n/1i/nYKolkQ425Flx9n/3Mz37j3zfXvt9a21vil6jM/PCNldcYP4rxqdDvc/rC6VYYInHV/yFmSi\ng0xoogR6iOjBbRGz8KS2Mzul81g6i8+Z9PESmkKPvM0ByDZpUY2mp9L2ayW623XD9doeVffF/UoI\nCqqafXNSuXNyNht9oSBvikQb3CulDFREOtIIHevSEaGQEahplGAXISa8jN60SmaAkc5Uguea2IWa\nItBxbIIyALzW5/wGLl3rNL2cXKWaWd/1fvfweSck6U9uRyNYgX9DQOxeR1nNYpdnQLW819Y1dPxv\n4DqjCjhpVDpWwjkU0WMHys2eOC5Ed755l35Pm8oSnN4IPWEZz/yILgIhfHgJJJfS/zxj+zW4xQHJ\nYQEcXKXOOVJVn50Tkqxfr2d01CK16ZAcVv05fe6m17zOzMxuvE7PyJ1/+ZdmZnZ0vxB0ZwDXyTNb\nC4VsSyheWqvki8LlRnwHamU9o9t36JmzQM/iwhHVC8o8OwHIeDSHq4wuFFMk0ru+9GkHt552Z15O\ntX2TLqI0iJ/coet32fPEm+c4p5YXhSjbtEcd4s6boI/Y/K4rzczsJa9Wl4Qdu/QdWFvU57fMqNPA\nDE6kDvcnJ+cic99hELefPTvOLJBoMYpRjGJcxLikSHR+J46T58n7PaTK3TqrWXPptDi6dXpKl+BF\nup5mswmXnF5mtuNs6nBsgWtZOAnvQTJ6DKJNMyHDVfSNl224BBdmVdKXWi14KZxSaSJ04KHrHNAb\nOyzr/RPbNOu++DW36PVmuTa+/bA4vCNUYpt0VkxA0F1SkBpwtTnH2V4U0nvyMSH3fJ+S+1dWxVmG\naAS9AVwvyfND0qEC+g65FKWB69qZ04MJl0lYEepoTEtn2k7lSCq5FPINzdb9kdDdDNd9Yo9Q3rYb\nhZba57Si6K6Lu3Qoq5Zou04H7IE8h/CCfoAaA69+FTSQU4necp1Q0IBsg/UF1BGoHpLRwHo4lKKU\nrgLoFq+6QZ753VfrWXvwG/Kmm5mV/LKlpBitkbJUItmrhu/fX9MxrKMFLoNQqq7nEM+kT9pSQFW7\n30Yji1qgFru+5nCJKDWSQAjTc+62vvZTmdO12nWFrrHRH76/qeOcAFHNbtO9apCLWZoAzePACfH8\n12L93KUqjUHxaVc/d33Pprke+TT8NoqXvE+feB/ukqq4V9b+3aqgg1PLabtLINMxaoAUTfOY++Va\nyk7O6ngvv1VZAq96s+zjAe//6n/9kpmZnVtVh4CY1dGgp/uxPtTfjmNHZuxlN5idfOSgmZm1Dgi5\nb4B4je/ymL8Vwwr921ileS4zIOb4nmEUSLQYxShGMS5iXFIk6nbe2tBf/3VmiY1TQlgd0rSrk2j+\n6FWdkcVY2aNZZOdeafCaTSHG7hn6w+Mh96iY5n7nh/bcp3+Ojz70K+e03wazb40E+Pl5zcIJRNn6\nEn3nQWK5iXcZ9l03UO2vsU3IqUzl0ceJBH1mmFusi/84JUd0mGl//hzuECrLi/fJw78eaDvVoc6j\nR2U3HLp0K1AR/uMB/X3GDW3nsqvFb11924+bmdnGcSHcx79PNZ6qu19HNQG3OSAPNUxdVV2/3/vK\nq83M7LVvkuPryLKSer7yqS/ovDiuksuorJF5ySzvmVMzkDlA5Tgkr3vXC8Tz/dRbtP0nFnW8X/8v\n/6jjo09OGobmgXysSo+dSd2La2+TM+fqHT9mZmanzohPNjMbhLk1O3jJe+gia1TRWZxUXGZqyfHA\nAz6r39fJUyiV4EJxaWVTePhBgBlKlKbj/51nnDyEHprmGM3v2jr8+SHdmzZJ9oHpmekua9XxvS+o\n19Gh+n1mZnbs4ZOcj4uBop8VsKlJMlb3NB70ROh+ehvJWsQDe2iln9ikOyariDrc4c55ef7bMf2x\n4PtDlCGuk+yYVUxKh9YI5Up9ClVCVd/NEfmqmz1pgJ88omfeI3Ft5ZxWp9Dkjpa3EG55QK7pvge+\nY//jW95m37l7H/vj/anrMqG/DR3X+QBn1dCtFOjS4LKLn2kUSLQYxShGMS5iXFIkuoar4dyjSsjp\nprgy0Ig1aqog+njkM1wek1s1C179cqGKV7xUlckx/tyv/YUQ0LH9KsEmpDR1nJ+Wfu+x835fIa5u\nhjTrHI6wtym00Ic7xCJuVarhLim/5DpFkjZUQut26CvqY39km9Kg1p6kwyPIcmOVnkmJpv0KGjdD\n95mN4WVm4Syruh5XodNcJeOyTGW0OyZdHa5xBEcaTaOB5Pjm9tBl9VpVMI+TxrR67LtmZra0oONf\nI4szLON7LnHdQPYx1yEhvSpjTr5sVt77qR2qhE44Om8Ty1WNFUIP9ADfFZKkNOtTIcZTX6az40ZO\ndiV5qFu3ilPP6aMz3hjaCP41HmvbYzJaD39H6Dh/DgjkmKruZmbRILQAZDVGv5hQpc5RhrRieFq0\nyWN0iOmm7oFzuvholUPed9lOrUauuFG8eGlW1/Dhh/RsnHlSioiw6fSI3GscQv1VIcFDTVZJFVcP\noNpd1T0/95i2s9YS9zcuETDqXGwuSxYN9QDEG1W1vR6rn4jVEo+OTdRBjJfpGdlch7ulp1KSU/Wn\no4CRlFbBwz5w7kL47dl5PRsltN3tHt0iyKR1brtzjwr5rhyRQiYq6yEK6ZE0QXJYyn5cqta4RP94\nMgtyEG/Ad6pE4SSBo/VxyyXkafgklNVdRwASyJ5pFEi0GMUoRjEuYlxSJBo5Qyy8UIWklsC5JErM\nzjhtItwWJWbPpKXZd72r2cpp6zpD3CIjkCjaOI8ukcHYedNJ754HkdLpMHWOHaDn6qrQxta98uNe\nfpl4oIUj4uYGS5qVfTIbR6SaH3pcs2l4mkoxs2d3qNk6pRJbJVE/o1IbGz2X0NSFiV7LeNDHjSn2\nR2WV2TjZdAiWLqi581/j626gRjio6/Vt0q56dGRcIjuy19b1KYPiQnzZDYiyYI4KOLrbk0fkR/7z\n//RpbQgeaWldqooBPOCYLqoJ3noPAWkAJzoewGmjEnA84eGjQleLH5f2MYJTXV3R+fqcv18f2RSK\njBRlQtbVs7ByUNtYPaCqbmtRqNbMLO0MreL22eMZ1KW2sif+2EtZNfj0l+fZLV8hDvHKG4WwwkRI\n7dgDWn30ekK8U5vkMNS0vSYcZDJwCI5eQXCqoVNMsBpz3u6EjNoOTiB/Q/fKy3VvBvTPqvC+gOrz\nmMR3l69QxjEVgrhqqAtcMrxN67huevF1Zmb24698rZmZPbak8/ruX95pZmbrdLrN0YOmqBAm3D2p\naPs+99jGen+GsmWKP0HxFj3TowlyU/nL5FHtLztkyfH3gcpjlwns5J1jt1wEsaNz7bCKDVNWm2Qc\nBAkuQ+odEUlvpZDv2o8AMwskWoxiFKMYFzEuKRIdk4A+JP2olol3yciPDAK4M6rRXTIUe+R69g9o\nVjxxkEokPaLbq/ijSSsK0BG6qJiMSusIXWeH3Mv2Y0KOOdmTYYtXeKerbibR51Wqan/r7zQbPv5t\n8Vt9+riMKIGWp6nWtzWrbYA6Us4rroPsmB0Dsh6dVz1ANztEZXDqMaEpLP6WkziUNHX8VfibIajC\nWbkquX6fMduukA3ZWxQX3aejoQ+P58FNugp3gwp3QNZmgFe9NIUmEN7rzKNC5ilul9JY57dJCO+c\nHQAAIABJREFUz6k8ZLaHt/RRLZRK2v4wEzIOQZNBREWb81/ukr7VoytqU+8bkt9qNc8G5qCJXua3\niv/deYWSqnp0vex3dKxmZuMgsGykZyGh+p5T5R92dU998jEz9J8j/Ps7prUqec3tr9S5sOMv5cqi\nXXhUN+vxh8XJ9h5Vtbl7RtuNIz3zOfsNXdfKGtzipLjAFH7eJVy1eJY8VjF1+sfPzjrnFVwo7rnJ\nLUK0A1Z1m4mO38NT38ftlrH6alCUdtX1ttG1IQT5sroohagWcGDlOdpmkPUcGbJjVAoTM3CsDb0u\nDfWdW3JOMNx/KV0gKq7bAt1aQ1YYVX7vcT9SPhfzzPfbJLE59x9dFjZxQ1a6ut9RXdufmSRrmP5m\n+RTfyT7I9hlGgUSLUYxiFOMixiVFoiX0hiE80KhGZXANpILWLIavikQ7WaNGZRQeZox7JGsK0Uwy\njboW1Z2eZt2Yyl1AulDskCo5l0nHieiYfUAfPsTIyQUqul9VJ8JjJ+U8CqnotR2yYrYOyvBp2/Gw\nk3XZ6uh4ajX4ryEulL5+XiWpp0THyhx00fG0nTpp3E00gwYqMNKlPNBAwucnqO5HW8Tf5S0S7tsk\n1lfQ36JfnaRCPaRnepg6n7E45gzU4eNxr+3QcV2xV7N4Hx5rvYP7h/QsDx6uT0+tgM6VAVzozG7d\n4OfcKP/zxJTQxfkF7ffkAV3/4YAK7AQ5rTwHfStZRtcAmjja2jqdWwMhz6RHbmT5KfwQxrGlKELq\nI5dD8MPc3MQUHCthsgOUGaNVHdPjBx/VOeKdXz6lnzvusUVeZtDWBht0WwhwQPlwfgPyR3dfqWt5\nwyvUifX8WVKkzqPXXNa1GpMI7zqjtthOJdYzXJ3SPbr8hcrtPP6kjis9ys2mPpBwwXLuVdbUvX/s\nW3L8LO4Xou659mIrPOPst8t32fViKqMpTunmUME1+LKfVb7n5VerU8CD9zxgZmb3f/VhMzMb0cUz\n5jvtMnpzFBrRQM9ahma8jBpgs04yPsltHXozjUhOS0CWEZrlIPzh7AOP72yJLqlJk+MvHEvFKEYx\nivHPOy4pEk3p0e30ljGGoohEczcrprFmod3b5c2eu0Y+6JUzQlIry6q4ruN9D33NJjU4w7yhWWh6\nRrNrix4+6RG83fTuCdGSeaR0J6RExfSFWX9YvNTGQWnjbCgElZRdRdVxvOK5lhaZrceaDX042zqV\nSRvq//lYaMm5V7KKft5c0899dKD+DE4kEuQpctuwpAvnExSKYcralN29rq7z867VdZu8Vp8/8Yg+\nd/YcXn2yIMMRVfkqnRZDh2pcb29tf21T173XFsoJm0JXGbzbhWScFppL7mN9CLcNX+c6ZVbozVTb\nouOdpMLa3EJe6FaXM8oretIh+bMDr2denWQtvM8tPOYbTwjB1cpUge2pnMj2cGx+3T0r6Ezh1uZA\nu6U5PRPLiw5hoielv9VDn/+Wtkt26nANvpZmSiO6j3roLmnlc8H1ZSCoCbjYHnrIYZ/eTKgCmm2Q\nEp54istWQmPdQx46t0XP9I//nLznN+ySpvqe7epBta+rHIdNkrUA3hbhmQ/409BBqbFOsld5QGde\nViNRxyF3VhsoOcYGD0+HgNocfc7quv6eyxWFZ6/XSVsaiu9e2aRqzzM9xXY8tN0B9YaZaboq4GJs\n07NqnuS1aVZHOb2ZeihkhuRuNHp0h11Go14iJ3YCxEs95plGgUSLUYxiFOMixiVFor5DiiH9YdBy\nVehO2Xaea7RsG+gaE9LHl+khlK7DiVJJI2DmQse+a64Qf3TLv1FHw6XT9Mn5i6/o/3TB9PG+B6QI\nVUiGqQeaPWMyJ/1As1SnATdHRmSPXFC/jEqARPn8kI4zmKHq7PSXJN7Pb9f5P+cm8UTdPh0pH5VL\nJWeWHeI9d06qsENSDn7vuOzSxHWcVXipHJ91uyPk3AENjUgnpwhu1nVcrs47doCPSvEtb32FmZm9\n5Eo5nR54RHzWQ19TqtSp/UKmF9wgcLUDNIsNdLEpmr5y7nJB4eGWdT5H7le+bJ1c1I2+Qwv4sQeu\nwyRIOXe5pHWLeqwOKiCYCadFRqsKcnL5oWZmXmSWN/m/U4ZM6J7c8FZ1Er3iGqUK3XOX+qUv3CNt\nbDzS+zbp2VMhbyCs8krf8hikNcrh2HBreTxrHujd4DQ3TwvxLj2qazHEgRWzSjA4QR8kF6G8yMg5\n6KGwOEvfsjC638zMThyRkqXHM9gncb7KcfVZjQTcmzKKj7Sk91djVflTp5slWd5SfUe6sXPx0fee\nZ6+3rOvz8N33mJnZfTwbw7NaDS6xGur3cY6RXO9NaXubcNXT9Mx66R3qeXXzDS82M7N7Dwhh7/++\nuOmVoeNEcSTRPSLGHRihgzWS7CsVva9S5fe7dZ5x59nbfRZItBjFKEYxLmJcWiSKO6LhZul1kCWJ\nMzNzrg+LDnPjpBwwp0nVdhW8UtWldDu+g1mSfjYdwwiMhi8kS7CCK8EDRVjJ9dnhv6CRCM42BDUM\n6HtTw0WySQJMbmREwrtMMHsO4H7jNki1rtfL5jTrXf+mF5qZ2Suf+7NmZnbUpH89e/IvzMzs/Am4\nWfieUVezt+v7XpqGSzT6wpd0XeZiXdcWWrljjz6i398P50xltroFczvV/xh+bQSyrtPNswSnm4Au\nXHU9Yn/zW8Q/Gb298waaPFCZhxvIh2P1qdJPzeGRnyS5CK57jW6qjbK2V8b3ncMdp/RW9+BUB/2R\nJVS3GxxbjvY251EP6S8//IEeS/EottEIDSqro51X6px375QOdMaktJiu61iO0+r0HMqFKZCitVxC\nFe4xcjxHaGuzJjkOKClidKE1+lKFVSHnOtxuew096aT+PzmjZyahB9NoiWei9MP9vFqL2u73viTk\nfBBFRxf1gE/D+hqrrAwu1i+5vvKoD9CJRpC4Lr8gQlHTJbG/nOk71ChLAVKdxLNO1XucCFmfPq5V\nlEsWc7meoU//MLqh9lm9eGiYMzTEPquoAd0WVulS2qX3lZGUP97Ud6RHsluZzrNZhdwLJ7ugjlHZ\not+HM9IVT0zp/vfpMPtMo0CixShGMYpxEeOSItEY/eT1t0kXuH5M/M3ZwwtmZjYgqaaMhi9PqQKX\nqVAyBYxAaB4cWYVOfa5Pyplz4oHu/L+Vij1CN7qySgYknFqPzyU+2/HoNLhTx7GdRJ7mCc12q2dJ\n8IEHisck7VeocmfM9jigAoSrIQi6zyzYAWEf26MsyAMH5Wo5f1qzYIaWMMvodUR130t1/SZ6pEfN\nusqqjjtC5zmBYSuGF/SpnA5wg9RBJz3UCeUNfOTwYGOu4yNf4PjukXZwjdk/X6XHFKhmSOrVGH5u\nOAYVwMM18Py7+3/Vzbr/194in/aRBaVdHfu++MAmFfYYx9rIpW+hHUxBj5ftmTYjP3O1o2OLEl3b\n6SukTHCIp3NM+zAzi73uhX7u0Lm2clbn8KU//Vu9HzQ9PAYvX9G51qfQMJP21CWhq1zR5/0y6J5G\nUtlW/T90nWLb+P8HKCRS3ZsQzfIsCLU2LyTs9I8bC0KEA+fcGXLPSC0q1UHnI3IT4O3LVSHFEO9+\nyuqoT05FTiJZGT66RPfUKgnyGdd3bZXeSE77zGqvOhDSDOhOum1e3xmP1cNgQ8/CgKSxHulZI1QO\nTRLBEr5TY1YUNXIxNnBsPfhXd5uZ2ePzuPo4jkEO754LWTbobOAP9H+HxCMPrhaKuuT6pm1IeeP0\nxhnP2jONAokWoxjFKMZFjEvLiU5SQd0r5JYZFT4KZ611tHKpS67Rz4cNUAM8VBUdZeTr81UyHcuk\n/WxQlT55Uoi05PSpbfgrEGdGr/BwTL8Z0s1f+q6fMjOzF81Jc3fv46ow7vuHb5qZWX9Fn2+XdVxD\n0ruzLczmpCl5zKY+s/ZkXefdPaUTe/QfhEBbG9re3FSD8yf9qQuniotjhHsmYH8xusp0VeexSlp7\nhQprHx4rGIOO0G2OW/BzlOPzKqneOJICMheHTd7fFgqJRvpcQlZlx2UTwCEPSU8fDEgKQnc7pvof\nkGA/pqLt4dGfho/K0eu2yGfNUGMkoAPnvZ+cIL90fosN4MTqx/GWm7Z54yuUjn/tVdeYmdnXuHdm\nZsl0ZNEm3B2PVm8gxLRxDD0mKL5R28L7cM0NhOj6q6RHTfKQJi7PFIXFyHVn+GGvukvi7w/0uQo8\nerhD9/55L9Yz99I3vsbMzM4MpYC465NfNjOz0RHd+5RVzYjvRALnGyIaTup445vUAyqsSlh1TWxV\n9uuI7IGsrWvdpv/XeXpWxehAMzjfrTu0/U1CsVyu59IpIboNunOWnd4Wr3/NFw8/Rgc64i9RzHfW\n0MFWea3Q4dVIKOtSxxicwLOPeDkllzXM0GRzP1NWhU4cMSC5PuIZXR9tsB802fDvsefqKU8/CiRa\njGIUoxgXMX4kJHr48GH75V/+ZXvnO99p73jHO2xxcdHe97732Xg8ti1bttjv/d7vWRzHduedd9qn\nP/1p833f3va2t9lb3/rWZ9zu5oqqsIcekC93iM95bV18VrCO2wMUkFBtNlLG/QG8jOv7jq50g/Tq\nikuMnxB6yJmNQ2bhXJOP9WnYEnep+rqOhLFmobU1VRZPzAkpLp47rOPFZWJ0+zTUBlUcUA0qszkI\nMF1G34jTaYFsxRofH5OfGTR03CP0mc41kaKdG+P0mcOtceubpN+8+selmXvi3u+Zmdl3viJOMceV\nkTP7ZhBA8dDpNEG26+hgyYAcw0u5/WbkhwZkMfpkGHikXIVNh5Dp2b015Di13S5oqZw6nkmvh+6V\ntu/YQ/QUd35w+uUEAyeX0P4mychsOf0rLqH87BnzcDPVHVKsg44T3ey1rp65LkhT55dYSvdLb4xT\npiakE6BMqEyIS/TJN1g6pWMdruqZrdM1oJKQRFaCF0bjuv16oeUeiVorj+JSI3GrRKpRAPLhltgK\nx7sBFzpEU+v6VgW8cmvNR4vbJ0ezRu7pEIVGWNL+psr6Tlz1hpeYmdkLXyqFyJNnlTb11T9R/aDD\n9uuROM7JK7SjDeoBy+skiHn6fYfVZYoyZgzCdzpYlwXcQe/qNNNTJHmNULgYPHc4pHsp5zHi8xnn\n6SGlydB0eyT/T/JdMu5fzT2zPEsNEG+HnI2sp2e4BHcbsL9S8pSz7enGsyLRXq9nH/nIR+zWW2+9\n8LM//MM/tJ//+Z+3z372s3b55Zfb5z//eev1evbxj3/cPvWpT9lnPvMZ+/SnP23NZvMZtlyMYhSj\nGP/yx7Mi0TiO7ROf+IR94hOfuPCz++67z377t3/bzMxe9apX2Z/8yZ/Y3r177frrr7cGKOqmm26y\nffv22atf/eqn3ziui8GSfM19HCuOE5xEb2lo3GrkfzZpsZhQmaQti/noLiNSgXotoYW+M1UMQUS+\n8/9qlpomX7RMBXZAX/UuPay/9fd3mZnZQyYu1McZ1enwfnoBhfiau+gmhx2hh2hNs6xPMr9DgvUe\n/A5V+wBNWvNsn+2SkWjijxqgqoiE/tp2zZ5Xk/SzPdxjZmbnniudaenraAnhUPHuWBvDteNUc3gh\nH8SZwinPbKUy20APe5p+OWNXKcUNQr7nGOdZta4K+MwU/uVdyjxIVs6w/y7nj7+ciKO0K3WGT7JO\ngxVEheyDTZB+b6TrVGlqfzkpWusnU6uiTS3Rf9339N5D9wjtnvq+kNaZJZYhZmZZYmHq7j1ZtWhQ\no9gpGUj1CeBva7qHU3CcOWX9iESwClzeC35CSO9Fb1Cn0pWuVjNfypQEtnaCKrBTB1Dd7/T1+vj3\nSMhHrzkg+3ZlVddq0NC1cg6fjGe40td3pQ2QidFQz+J+65AuNURH2UrWeD/LIuDVPN0wp66SOuCy\n58i5dbSu4wpKejZdvmmJ1UqKY6rCKiVGg+2jpMn40qYp2mY8+T66U586QgPkPCB1KSRXdDSFI6qp\nZ8mqOu6U7hJ112uLRLYyq9morv9vuHQu59RCX5vT2yqFU7XQfWuefnh5nj97Dd/M/uiP/simp6ft\nHe94h9166612770KMDh16pS9733vs1/4hV+wAwcO2Ac/+EEzM/vYxz5m27dvt7e//e1Pu83l9RWb\nn9nyo+y+GMUoRjH+uxwXXZ1/ur/BP8rf5j/91H+23/j137SP/PFHzMys6vrMUOFL4MZWByTmuK6f\n9IN3TqPqvFDAj918s5mZ9U5qVn38ATl0RrgfEvy+KfrFlie0MrNFv49i8V6ual0fte2Dv/m/2f/+\nOx/Qfqsks0PbpOg3RySxR1Q2UzIPR0MdfwvXjOMOy3RUHEeaRatGQk0Njz6uik4bbhK0MAQNWUXH\nsWVu1n7rw//W/vpvtEqYvFy81KnHxDEvHCYJv6nrM+bzXar1MbNtymzcACk3pnR9b/gZJfhffbN6\nS33va+JaTz0iTnitKb4upBIcgSr6JORUt1XsP3zwN+2DH/uPOv41OkOOdF2qpHTl9JDKqCTHPse5\nQTV/SughCFwPdY4TlYHLfQ293HKnsMicE4Y+58QUdQOEoLkQ2oc+9J/swx/+TVtdB9HgBPIqLG8G\nJFDhdHJ6y2iSNCK4tpBkqjL87ARc3Y/9zPPNzOyVL5bC47sr0tp++290LZcXOF6H4ICAceDbR//P\n/8N+5zd/U6dcAyGvQZGlKCequgZtXFsJOsgWnu+QVd3UbiHR+TEOJZdFC/9d3a3tjFGYjM/j7MIB\nFtN1Ityi15X1Vfvd93/Afvl/0ncjrDgOVNtLcCrFka5LBQ1yQML89h1omOd0PGcWFnR+5JJG1C0i\ncjL6dKsY4aTKy2wPBNkJ3QpApxV3Bva7//kP7UO/8htmZnbVTepsEKA5PrmifNkxmcLjBO64xHZL\nLpdV9+MD7/+QPd34J1Xnq9WqDZBkLC0t2fz8vM3Pz9sqSwwzs+XlZZufn/+nbL4YxShGMf7FjH8S\nEr3tttvsrrvusje/+c32la98xV7+8pfbjTfeaL/1W79lrVbLgiCwffv2XVjaP90Yk2KdLDN7oRfM\nV9E79qno4VqYoqdPn6T5ITyKB8dXmxYSmyDNe7WpP/SbC0Jk6y6LEE3ZNhJ40nVmOTR9Q8cN4jQa\nNElz2gQ5USEN8fznMYk4HSqgcHRe5BL34XVa4lq9EC6yis6yjj+Z1xbawQ5Onzx0+lA4VSqaaVPI\n7r4HhW7ig8yedC2N6zXejwuEWbYC6kkyV8HV9jL4xHwKZFgjdzVwoZVkVuZCMeUJuMutQhNJl0pz\nR2hh7ahe15+QPhfa0eqOZuqTKYked3oLlXBfaDGOdD+66/TCwtMfkZLeGZGjSkKPl0c2wzllEySd\nk7R11U3K06zC87pEdTOzca9rDRBJSleBcihed8u1qqoPmwIIJ9aU29BZ12pnwrncQIJl5/xhVXH6\nIZ3D3575GzMzO7sh/r+LS83LqArDBYZOuQCa77RYfbF68qdFf/nr4gBj3GG2CRrHEz43p/dvvUp5\nBntvlXIjW9K9O3tCHV+H53VNz1BtT4Z6Rhu+7smQ6+K6THQXcXpRvXaKGB8vfDzLM0CV23UjzT2H\nTHWeEy9QYtk11ygRrH5c3OqpJ8W1rq3ovPIe3Rfm9N22ls6v1XFJ+vpxxuokI2Q33Krr+sI33mJm\nZi99pVZVi2fktjv9Od0Xn7zUBO15GS42QYM8HD77ivpZ/4gePHjQPvrRj9rZs2ctDEO766677Pd/\n//ft/e9/v33uc5+zHTt22E//9E9bFEX23ve+1971rneZ53n27ne/+0KRqRjFKEYx/rWOZ/0jet11\n19lnPvOZ/+bnn/zkJ/+bn91+++12++23/8g7d26I1jJaL/JCc9wFRrV3y1bxMPUGXvg1zcIhHOkA\nLdqx7+8zM7PKgPTyM0Iq3sj1YxHS6Zbp4eS52R//LfrDEpVSHx4twyqFmMAuu1ZdP3/sZzXLdahW\n7/+i+sQsHRXKSPo4cgByMalI0DwW5rg3qJvHJOTHzOoBHvwR0204iz42EhopQQlOkb7kOZkC7++A\nShJEhwG83Yjrm5XhXEtCGR4JQm34tAe/oOLhI9/WebVXhUI6OMQm2f8Iv/MQ/a5HxmSO+6MKZ+z7\nzucNhwqb5Hua9adB4u48NhxtV3LdSzm/RNdlwPuCPjriim99Kv/TKCemdula3fBy9fbZVlMq04mF\np6in3PNsyLMU9tHSQnyffUKIxaP3Tg19ZVQCSdKl0h8I+eb0iXeP8JnHpTFOHlswM7Mx6Uw+z2Id\nZ5NLHivjTkvpNOsQ0vWvELc6v1fV8eN3Kz/z9AHyU0mD8smGdU6gDZ7pK+kIm3FvHA8/QPFhaLLr\nk3R54Pcl8kUz8hli0q4S+OvGtOt5xP55tsckfmWZ6zhLdZ7Vy8oJacG7IMf2ip6tLkluGc9svENI\n+vpbdf+ax3V/DzwuJN1jdVJFyZKRidthf6cPi7/fRwrW6ob202vhkUd77qFm6NJTKXZcNylTzzQK\nx1IxilGMYlzEuKTe+TxwfczRRYZwYfh/d86LJ3nJGyX0r2yDz/rSg2ZmtnBWs1mM3vHUAXSGI81W\nJfqqOD9wGb1jCZ6nM3JIkfQl3As0Hb3QwwjK0JItel9lWnxZtYTXf4MumMy+HV98WR9t2xQuihBd\n6ubIzdJsF9olBi0MQRF5qs+nOLP6KB4mca+08TGXZ6QqsKrQ0hIOq/UTOr9GHecUDqwoQE1AX/mc\nrMtaC36roeu8Rp+f8RJJ/PB8E3CbKXmgKWEH09NoJqmWp9yXEp0Axh4XNEMnipe+TeJS67hQ3LgE\nd8x2h2XXkIj7NnY+aO2nTv+dIEqtkugYnYRimRyBR/cLTZ/aJgTSOf2UEWQ4HJuV9OwRFGUZnFuy\noXuy+0rpJHe+UFXeU+cXdOxrQqqjrvbbbwkZdkmYilmNVOuCiBEe+gwvec7v/cT1T0ePSrW5hm5x\nZodyLrfBDR5pCKENynQzZblTQWPbGnMcp+HNafcQd9HmntP593HFTYK4nNa3PE1dYIPEsQRkSF5C\nmOnzY7IDXFkco5FFE7pXUztnOA5dJ8KgbH1FPPm543Cz6DqrJN5vmdEzc81r5KS68QV6XZgWp3z0\n7HFdtyW6G9Azq1KG2yah7ShdSlN6XV3/gj26bruuNjOzVbju9Yz0K1aNPk6ypFSkOBWjGMUoxj/r\nuKRItExXzjEuiwk4whEav4TE9l4kZDdONQsnHsk5RrUWr7bzHVfJamySE1qHk6s5xOY59wfaujWS\n1gf6fCeDc0U/6Ti+IS6So4fUU+j4SXplU40fth3ZSboUro1xiXQnnDYB5zk1o/025sSzNfAd509o\ndtx0fXeG2t4E/dyzCrN8Q5XjrbPi+fp0CV1kFq5Pi1+q12Y5T5CutmozdIScAR4cOyF0EG+Srl4W\nijB0uTkdBvpwkRmIcs9WHUcJDeHGISUNGbrOGBSUojqo15wemE6TqA+iKmiG+5lVXYUYDhftXryC\nZx8N43AKjeDIsyzQOW9kQMpNEav3fZH8zEi8+YD8TzOzcrVkOVxazyE6+Nw6xG9EWlErFQJL4UhT\nVxWGOoundA1SPPLmktjhrQ39qePhI3IfAjJmXd/2rOecU9rwPV9TQr2HQqN3Hu0sypVJtL8Z2uT6\nlJDxthconWliTlrf1VO6DqNNqQyq3INsGn4+5nOX657WLtc9O34/nWNxTqV0tK3kdFyNOF8yCF78\nE+Iwt+/aY2Zm+/5GXvwzJ3R/Irz1Pgn18UhIvTfQM7VG0tfiw1qljDcfMjOz5SUh66Cln5edU6un\nz49Y7VRxudW2Uz+o6G/H5iaJay2tVFooeFI44HGZrhQkjA3KT/XierpRINFiFKMYxbiIcUmR6IVm\n18ziAT7lINZsugxyuu/L5HMSKbjcFOLqksodwc25fEoPYquMq2Fqr5DL1t2alddJ2PGPkDlIhW+D\nyqBHCtQYp1OPLp0uQ7HT1ecnXf945qJS7Nwdmg2bcJoZyLMM4qvM6/e70PC9+M3qXHhZTVzr1/7+\nm2Zmduw+8TmVUNfDVen7VG5XU/FDBw9I+zaquAR9vO+z8qxX4GRbeORLIMuXvEL7veEGIdlHvqHZ\n/uBD6mTZw5fcArWVQUElHEa7n6+0+Fe+Vb7wSfSpX/lzpcHnR3XcfdLfKy04XlYSflk3dM81Ou+r\nb7jWzMxOLgglHX5YfJmNQANw1SVQxhA012/icpkMLCHlB2u7tejXlYE4RgF5BqTwm5kNB2ZD9J2V\n3HVRgHfNyDNY5plcEiJbgz+OajqHHMnFqE96FPfaR7eac85ODzp1ue59mcMYHtV2o3XHc6PY8HTu\nrTM6DpeQ5TJi65EQYUzma4dkrZCk+GU02CtruqcpiofMrfZIxE85v4RciW2eW4WhoaZrRJlnKKc6\nH+Ge80HE/pyOr8GzsG2HkODe56l7QdgWX39uTUhyhENsSLqSx+rPP6P/nzqv4z72gDjQmL5mJRxQ\nHtry0oiOvawmM9ezCuXGuQeUmXDcdf8cuzqJrmMwg9c/dZ179fOJZ287XyDRYhSjGMW4mHFJkWjm\neijN4GoI6fXcRyMHX7O8rFkrQU/o1TlsZpGE/ullNGnlCZxDkZuF9fn1TNNw4vgPvPT1siqz1T34\ng6kUBhFdNuFsA3Ixt0xLNZAAjduL4jA3mpplQzz1Je+HeyqNQVRRCu9F1bpa0/ZquCRKVPUH9ELy\nuB5OYOrNaDu7tou3yvFpj1aEqCfoXNgcogLok20Z0UW1ofOMNCnbyjn9o7lJZ0M6N7b7Dtlqv210\nmo5DzcgeqHFdQhL7462kllMBjtHsDQCUOUn1Pujvmtk9ZmZ2y42v03E9Vwj0ON7/oC+OOkHXa47j\n5nUK51rVb1jftJrogSjKIKshLrVyPse2nnr0vbBmrpVOQufWMUh0ivShaariLe5plrt8T9A1Vfc0\nwANPj58QzjTm3tb2CIHe9jNKd7puxw1mZvbQd+U6O/SIVgObyzx7uMeqILYyF7FC94UL+LFjAAAg\nAElEQVTUpU7RFTOCfx7wDI8WqRd0dC98vOtGf3XX3TOEi+209L5D99zH9WI1RheIyNP7ZrWos+3P\n32FmZqePS49ZwhV36MD3zczs4KNaJW0cgcvEheg39Oyn8P6uj5hPnmtS03FVhkK8Zb7jdVavJRQZ\nbZcrMXA5sCDsJtm8Oc4jPPYRHKpbrYWz2n6QcL2cNtwpQvib8kyjQKLFKEYxinER45Ii0XEHbmxD\nSKNN9mOIqyOEzzKqxBH6yg6zekCuZ0yFzwcFEPRiE2jOyiTghGRBTsxr1umf1vuxfFvi0pVATn1c\nE4t98VVxh5SiZYckhTxdT+vGPOoB0EIKl9gjAzEk17NHJdhOqIr9hc/8vZmZ1UGO62fhmeA+O6Cf\nGhXjK54rNHXjy9R/57ZXyRf80LcfNzOzoUdWJlzhWbIep0jUSSd0vR9+BHXBt/X75pKOx+vjmoFL\ndR0XSyDRARXnzqo42a/85V+bmVl1Qtf1+HG5eVokDq1v6DoZSHUGvWqOY+rkOV3f+zfkm+7ATY/g\n6zJUFBdcKehaq/TGauwUqtp9zU47uywU3Vtxqfzal0OMPbjAsUGamtlgc2AZPY9c18f6Be5N12rn\nlXIKedNCXvu+K46tjrvsnEOKXT1jfRQFI9M1GKLhrZFTukJ3g1Mrx8zMbOm0nDRDqu5rrB5WuYYB\nCCpyihGQZgOdZ8A1zTKXzK5nOYA3di69KKTb6NitkuB+QfU48a2PE2uAk6pBv3uP7gIv+EllEbzh\nXW80M7OvfVmfP31kwczM2gu6p5s9rdJG9Nmq0020h7Z6hFc9ZbtRoO8QAhobulQrvjMDUrJGPXI0\ncMHtfL50tF06Cawc1bPccrkK1DfMrWJD0qzGuPXQYns1kCrqi8woxDzDKJBoMYpRjGJcxLikSDSY\nJYV6h7g9g5PrtsXrlPGzpvBZOZo0j8rjegtnEqdRcl0qSR2q4HzavUsEzs0//1ozM9tOAv7ff+7z\nZmZ2Yj9cIJXLIalHUaz3TbL9FH/0Kl0vJ9EETs0Kic5uE0JcgiNtLuOvrtKbCHSTklGYoJU7s0/c\nHy2gbKpKyTam8ut6IFHZPb2KX/rBh+y2vTfagceFQFv0EfKaDlHjWUfbN+wKpZ0juX+O3uA2Dd90\nhdBWCNJvkOfaOoPGkuMow5FGpJSf3I9mDz1sPtZ1K3EdZ6bEA3pdfS5lhRBzn5aO6/Nf/BMlHcUd\n9LKrZBuM8caDmkqB69Eu9HLNbepX//o33G77D3zLzMy++l+V17m2qHOmUaq5xc0YTs3MzIKyzZBg\nXgGxTW7RvuZxCr38J39Cn6Mv1NkzOubTDwllVzddRq02WcPhQ7stK4EgN1f084f+Ssn2+7HDDc86\n77eu0cDlHZABEFbpaMu5Ox4/pd9Wp++6OLBD3jfiu5N1fyDJ38w8kt4RophXdbw16gC+Y2MycCto\nfqOyjvc8Tq2Dh9QxYP2cFBVjePvpy6W02I1GubNCIv9ZkvQ7QortEZrsSdQM0yBA+Hok0Rd0pYNI\n37VJPrflZv3teOkdUoi0z4t7/dqf0uGAbICEVV3OM8fCwSpkEmc4tbZv19+K+k6+y6fO2rONAokW\noxjFKMZFjEuKRCfmlIZ03StVqeySLn4YvmmtL57IIZgSnGcQq/qboWFzlbWSQxEVPPhMY8GU3jeD\n33jKpEucLYnfWsS8Xqc3kkuPcilEeaT9VWok1YDUDF5m9ZyQ2uqGeKA8RWfahtgBEXoVEHNZs+mw\n5voBSaeZk8TTxrXhuMjN3CW7gzJWNdseO7tk9lazxaO6TjG8mQfvFODlr+K4MvI6ayTLZy6nlJR0\nv0U6OdX+TZc7ylMSkBXg4+setkn4gatss3LwHYwoa3+JMwehow05n6xNLiwe+nyBvFLXs92HS8aL\nHyW8DyQbgV7GVaGbTRtYj+4D/RBlwATaXdevfAKnEdfWzGxcyi1Jdc1jFAAdEsamIp2zywFwqGNM\nh9iEnkgBusnahQbqOsadKFDyrTyr6EVbmzh/eDbG6FsddxehLojoMlB20V9Un8ucp3uGNo/rGniV\n4Q9tL0InWZog3glO1iHLMR57Q6kyAW89RP85JCl/k7rFChzi5tmuveV1Zt/+tJxIXToKTE8KuZcv\nBwGTIbC4IMR+/qT250QCc1ulNfa5l91N8eyT6Dz7m/oudzi+GNXEBseX8jdjaUUrg35TrymqjJGH\nwgVEOyT/tUGn3TYHMlmmDjFNt9Cae14KTrQYxShGMf5Zx6X1zuf0DUfDllBN9smrLDWFZHyquPmE\nZkk/d8gRtwGaLh8vfbYqdNCmyn6sDbIL1K1zEoR55KBmvSGasbKrxIFEU3SqHoE/I/SRJZJ2RiPN\nYutUhC3ss304P+aoIa6VNignzzULRpvsBy2igYSrINlBqOOuoDPN4FbLnlwg/QZIE242wJs/gucp\n4b4ZgIDDsX6ewhXnPpq4AZXrARXTJdBMWbP2tm1CMbnzf4OCaqSvR5ESjtKySOUeHRYTXCVGRmbk\neqJj3q+QvFMq8fs6SJPLmZLaNECV4YMmSq5nlqfruP+bUhkcPbxg+Rjdo6fVw2BGz1ivh7uJNP0g\n+AGdaJ5aHw2ywScnDW3nEE6ZxcX/R+cM/33+hK51iWvg4ovKvGYkiblnMO6idyS6Kx67JHaXF6Cx\nmSMtoercD1yUmF4vg7N73S+8xszMKnjkn7hH+aJHD4irXDiN55xVTUYV3Ckbtk/qWY/IBjh1Xtcp\npFPumFVPg+4PyYRed5S0atqGPvSyvfLInz0nd12HrqKn7hdHu4mrrnVaSLRG/kWdVKs6cojuBg4w\n8hNiuM+8QUoU7YicRtjpRLurOs8H/k6IOOX6D0jhct78Skr/LodIyXGI+EGGCmMNxUyKcqjXf0rF\n8XSjQKLFKEYxinER45Ii0daSZr+jd6sXd5+E9D4+Xh/N1pZYXGafXt6lBChTpVMfSNWjK6jhhMlA\niq01zU6PfU9cK3GUVh6SJo4DqBYI0a3jkMlBCbnrm+M0hy6ZHS5whs6PAfpQn3SqWoPsRrqYtujD\nMyYNqeXh42UWnoV/GuJYSkmiT2fhVl3KNvpI56Ef0WsoRNsXQn/1Xa+iRFB6gjzWINAbuqghkq5z\nRpGKNaHPNUqavTtwl1GD/vL8fwCCN5BvynHFJBOloJ6ElKvA5YCOcZolVEZBO306T+ZoH4fweXEN\nfS062rUOyfquBxb3efzYOZvfrWrt5GVCxwP6qCcmlO10k0P/B5BoYObB05bpPgkIt9FY6LqzDBeI\ngmNALkJYJbcBDjVxOk1+PpEJ6QUJqVA1MlRdYhm8+gbcaIxjakj/sch1IZ1ELzmBvhOudDQQD7+w\nJuR3Zo1sW74roevWSRJYcJlO7IVvu8nMzLZervN95G5V2U8dVBfM0jIKGJdHwaqpN8W13qDnEwqS\nGgn4mytCnn3qGH5J36m5OXGlA5B2ymprtKHz27ZbTS1veaVUEKXtuvfHH9bxPPnQMbZLAhvLwzHP\n2NnzOv8K9REvFuLNeeZ6VOUH9GMLcxQkZA6MUHr0ycVIXE+rGg/CM4wCiRajGMUoxkWMS4pEO1Qc\nN0EqNTRu/oxm2yoNY0L8tlGk2XV2m2a/FtXnETmfOZxa2sbH7NLFSXOyac2KM5HLscSF0RF6aOOx\nH8OXxfAlVdLCx6CCATrJxEXfg0ocx1hOQYZbhIYum5fm7LFDmqU7XVwoaAfLNKbJmJ1T+JxtVwuB\nX/siuUPWTdfp2D5lYiYbmn0dp+syEf0m518jzZxK7c7rlQ7+opfr9fQB8X37v/mImZmde1LHnVfo\n5d0hxYnMgXRN6GTOdD3qZBcMXTYkSDSDc/XIHEjJeGzDkc7NgFRDsjdJ4yqBUnp4/HdP6rp14cm6\nKwvaLnzVyNf13QK/5lVy6w91TMfRcQ5JzU8j7iUotxK6VFWzfJhc4Bxdj6Z6ikZ4+x4zMwtQBHTb\ndEug2+aYdCPXf97Du14lXWiWfu9tEHFrWddyMEARAb9bIudhaPp5leSuscsLIKt29ZCQ5xc+/UX9\nnGc8Oadnocz745LOt8cz1UfDu5U+VsazsrKk1cUKCDbZIBuXVVed7NhNvqurnEfnUe3vsYPK1g2G\nXFefXNPLdB4ZCNhI8LcYBQcCjhTEPLtLyHH+Gt3zDfqtdeByu9yfnMS1Mn8rBjiQJltoyKtOLcHP\ny2TdRig/cOG5/bdy8jtw4+UoUHKULlZySW1PPwokWoxiFKMYFzEuKRINSQmq4+PN0Xk6RLaZkrEI\nathxlXiV17z11WZmtnhOesl7v6Xkm+4p+C+256FLTEBMldIPJ96HPXiiXNxgZY9mt7lJtGnLmg1D\neialE1THE/rNk9TjjV31WMddJan+tjt0nC/ZoR5R39knF80D31M1ubUE+mgKWXXInM/IcqzTk2ma\npJke6UcB1f4AFUDF6WbpthmtkVjUdw4fkvZzfMkgbIdWZip0R90B0saJREtum/f0uZHp/WUSc7KK\nZvFGxWke6aI6rf1d/lw5oG59wyvNzGzhhJxZ7UW9Jrh3RiPcJEzpozO6nqdCVUonttFLCX7Kh+cL\ncVS1yfb0rGYZCg1zOkzcTmFNGw/QOZa9pxDGRJRbSkZqBQ5tuSmnCoFWlqCf9OBSeygLfDJWa5O4\n2FAUzNysXkxv+En6nZ8SH3/3P+gZGJOu1KFP1hBuLwURefD9Vbox1LmH2ZCErf10EUUXWuFZdKlF\nY/j1PHPpRdpe0tH+vv9VHUd3U3mdA45j64y4ybG7J9QZanyX+qwy+i5hny4SZRLPymixQ3SW4zaI\nn+p3DeQ3oMdU5LqC4ra772tS0DxxiG6eLRxdTbaPm6/l61kI4ajTDB0pCLM6xWqqxeoKLXIVhc1a\n32UXg5SRDUeBji+ocPykZD3TKJBoMYpRjGJcxLikSDRmNk/gU3xSu2tU20Nm1SZdJ3sJXS9LeMQB\nE96YntFUvzMyCaOM/uSkZmcV+Bj6yA/pp1Ons+AtvyTt3Qu3qRPg1/5G6UrVQLOuy4oc+K5/vKY9\nr0PvJLg7I5FmbU1I+Ym6+rcvLqnS6FKJOqSml+CFJgZwwiFIcKDZ8vB+zcqLm9IAjuEqDf7JS7Wd\nAXxgAmL0QV2u0vjkQ/LYryzoNWuDHEFBFRBwDx6sBuc7TLkfJAcNqCSHVPeHINoaSH1iTlrG57xM\naOz5r1clePkvdL3WT9HzG/TgeLyQfNV4huQh+uDM18Sdbr9SGkXntDp5DJ3vqq5T0hpZkuCtxgFT\nQksbUcGPqMYG5CKYmV01d7VN7dSz0sd1dbyla72+pmet28VpQ9/1oAoyRRdp9ERKpnQPtl8uRHdZ\nrET36nN0bc88X6uaJ3JVm7undS9HdGeIctKFcLX1yT0NnHuL/AWH9Kbo2ZSAvHtDlz+hwyqRExrw\nnbjALdKva/vlzzMzs+e9XM6h+oxWUd//xwfMzOzYg4J63oQQZg/72RiPfQXuMQWJ9obiVl1n2jq9\nk5xnPUDz2+AZTyZc1i7aaNKrQlx0c3Wtgnr0T2uzSorobtHDeTYVoaXmK1jDtXfF1eLNz58Q4k64\nj3US3XIULRtc75pbEbiktdoPZCw8zSiQaDGKUYxiXMS4pEg0hcPzt6P3JOmli1sjIH2oNkufl0Sz\nyLfhlTp4wPtwaylV/IAKZ5eEmxG8xoAq8GSIBowU7grV+xD+prlNFd21NaGGbgceyiW6kzhv6Dh9\nlzhPRuUGCPLg13Wc+wlHDNY0O3ZwEMX0u49wXCWxtheTCTBc1/ktdMUhxiBBG8OX4Q8OOZ9pqv0p\nlcVKWeihPRB/1oTj7a4JdU2CAEf4ntM+WsZZXCpl+DmyArw1KqU1rkOL7qpYjLrkpZZIr3rs0RP2\nyh1m3/n6N83M7OyTcrXkVMCDms4jB/1Vt+l8brhO6oENUsvXVnT+504pbzQPSBxa0nF2WNHEWemC\nsmANzWsFRNaj2j3FOcXrTyWWtzeftCxXnsJmrms1xrvuQ5aVyQHI0AC7nvdh6LS92laEY2b1pFYd\nX/e+oP1vav/njwiptY6TwM89mKqL1+6CEG1Zz56hiGiiBd4xrePYcb240ituUILVGBvY4w+IR14n\nT2GDcN1xoOvBi/X5eXu3EHlrIMQ31K2zEde+SgbAKIBzRA/qtMoj+HmfhLMenPL0biHAaQLampxO\nTtL/qMt1W9QNemJdChGPrgxl9rPWdbpSOGj6p/Woys/yJ8ynDjJLQtsNb1Yexy/9m18yM7N7H/qG\nmZkd/f6CjmdddYgmQDPm2U1cFwnUFRPu/88wCiRajGIUoxgXMS4pEq1t1Wx15QtVxV17Uohj/bRm\naT+DK8U0PVPSLDVVE29Tdf7kebISmcVbpFJPdzQrjUCOgx79XCo4hUCQ5+mN9MW/Um/v6QgNGvzX\n5Hb5hJ3PdsB+AHA2ptI3BsmVUpeUA6KDN3KzdEQ/njFJNAN6L1XIpMydZm3sEDIdFhsg8zJ6WDjM\nCDVDd4jTqqztTMZCLRNz6DHxHwe4PjJ0rRGzbXUbOs4dQmWnTut+RK7v+xA9LDbmahmPPagixsm0\nAW+W3LPP7A3vsqPfkBvGVb59InWGcNgJDY7m9up5uPGlQleLa0JTD/+d0NWC8zWTtFNDbVCHn+tP\nZhbh/jJQe4ZusAJPPKZHkOviaWbmlTILdutzTTqUjtap+KNljXC39emHHrh8AFxk5SmQKg/F4YO6\nF8cO0f2Ae+QUFkP0oTWXjEUPIBreWg99ZH+k1/mqONYBXRpGKfUCSMARq6p1upluJEJaMfx83NB3\nJgNZBzzbS6f0/s4S3nNc/AHdGFx3UsC+jWJB2ZDtVF2uA8c7fZmu180vukX/v1Krlce+KwXN4hm+\n23DJIYi4g/ssaJOvQDU/RJM8htcfoKk2FDvrQ13PLXjpffI0RqQ5HTsjN+TaST1L/XVptPu4HlOe\naWJiLcbl51PvSPOnuPOnGwUSLUYxilGMixiXFIk2yj/MO5zvuAR2zVbZiL4xaNiW8bQvndDv+8xK\nlczNKvp/rU9CDbpQl2sZBqrm5vA4FZJqnL5xcIbZ3cNnPSmeyqVyW6TZPYGzdWggp29P1QkrZ/S5\nK14ibm/brP5/AHfH8ScWdJ5NUBHe9oAqd0Q25VZm9dk9qpy2ljWbrlOZDFaFjlq+UFVMb6oADnZj\nnd5QeOX79J8pIaYLQQMzV6nqffNPS9N49RUisr7wN0Inx+6TZtL1szF84L0eSTz0mBrDGc/T3ydH\nVTHlckAjtH2glgSfs7Mn1+hDlNTQ9p1Ff5uR5DPlUrzgwKdIXEp1PvkosnGNarnLMM2dokL/nS7r\nnk+/kHaVZvbq9/2SXdkQ+v7y1+80M7OD94rTHKyTu8kqyPHNEfc8dx1ZM1QAwzr7c90r9cx2UQ34\nuOScPNEb6ZxbHarWrjvDdj2zM7ix+pN93q8TO3xACovHF8QTx3CXwRAEXSNAAYQ6cFX5TbJg6TkV\ndOlrj0c+RokyRdK/65LpsbqaG+Lo4fxKqAMy0rEysgBGpB8NcLOlPNMN3IXDTN/h2i4h7Jtu2WNm\nZp2erueTT5w0M7MxK4IsRiPMvc7cMwUSbifkMizoO/79tfP2ppffYXd+Sgobl5zmdMNj6i1BjawE\nci+G1Bc8ktxi/9kbz/9ISPTw4cP22te+1v7sz/7MzMwWFxftne98p73jHe+wd77znbayIjb6zjvv\ntLe85S321re+1f7qr/7qR9l0MYpRjGL8ix7PikR7vZ595CMfsVtvvfXCzz72sY/Z2972NnvjG99o\nf/7nf26f/OQn7T3veY99/OMft89//vMWRZHdcccd9rrXvc6myDv8/xob+JAXj0uL5lOJm46EwPrk\nc5bwoqermiWaJOaUKvTKnhT6KFF5TbpCLtGEZq9de4RMl1bgxUC8A3od2UC/r5rLFqTLJX3cu/Ao\n09eIG3U8UXtR+xmu4arI6BCJoyddIq0Jz3sTvm6IzjF1U5iv2bHNdi/bqs/d8JaXmpnZ8/ZcYWZm\n3/zmXXrfg/iVyUbcuUOo6rIbpfmLmaW//8Wv63pQeazDkfbg0RI87X06OoYN0qOoxo/4eYCn3TnK\nqmXS2kkJH8Av1tDsNQd6rU8LzUxO6v8by/BRdBwoARdTzvvJI5qMBz1VUjfOaUUwgHNtUPkOdgi9\nTF6p8+6e1OcOP7ZkVR8dpeuhBLIIQFojKvtpSasDM61IMrzkQzhPH357AG9eZrUUw1GOySdNGigl\n4AjTWM/0xEh8bZbjbqPza5ihhGAV1QWJhrHrgoBjBiTtBXrGvPMgIqrSY/JOUzTDTrGQ8VA0Ki5X\nEz7dJW6NnIKD7g2T2t5UQv0BAUhGVqu3qf3v3iO3oJfyXTqm3IWMdKsQnWZKJ9wDd6vXlfeQzieh\n+VSOiy5GRbH7uueamdkbXvNTZmZ2sicefu2Q+p+dXNVqauhWI64/GXrRAI67QlZtEAuBT5hLYJvg\nsqEDpuOt0/3SYNh6IasfMgMielt1Jv5/qM7HcWyf+MQnbH5+/sLPPvShD9nrX/96MzObnp62ZrNp\njz76qF1//fXWaDSsXC7bTTfdZPsIyihGMYpRjH+t41mRaBiGFoY//LYqvM14PLbPfvaz9u53v9tW\nV1dtZmbmwntmZmYuLPOfbvTJsVxaFOc23ZD2LdpOv5pFzUJtZtsRXJg3Q1JM6CqHICX6s8/u0Gxy\nzWvkmLnldS8zM7OjJ8QpfudvNUv2zoN04V4H5FsGoIOZOc1qL3+jnEy33PEqbeeoZuFvfk58i+vM\naI5vIbPS9XV3LpIB/WxqkXixDITmejUZGrgc/WhzTbPyY7nO//ST2m+3BZrCSeR8x40ZncfWOXGa\nyyfkDFpfEL/Ux1ceo3ro4pTqrQp1fOkv/9HMzObhg84sCQmGoA+Xn+oqx+OB0EEJrSOgwOZBoNe+\nUU6ln/iVXzQzswe+Jd3sChrGzTWd/wBnWn5W2ztMd1Ej2cgngSma03a3zou/nL9SKGa9Q7fS4Kwl\nOGc8FA5W12dccvwYLfH5J5/q4vi3H/8L86usajb1DAyHuqb5SCupccIxgLK9CRxD9Lyv4GHvtrSq\n6ua61mPaffJoWpVq8BQ9jkIcO1t26LvTRe/ZGqM4wQUW4pLzUGiExv5x2w1ZrY3gJlO+K43QdZbV\nPfRB/W57A/raD3kWDIdTzD180etuMDOzl/60ummePirO8buf13FUJ3RlN1n91FArtFxnV1aFrgvC\nEMTr+Tru9obO88m1BTMza57RMz5GS1xDj2qZi6QHWePdDydApLGuX72Gi6/usnxZgfBdbztFSkmf\nT1ihZG1WFOhNs+1s3z1HzzC8PM+fHa+a2R/90R/Z9PS0veMd79BJjsf2vve9z/bu3Wvvec977B/+\n4R/swIED9sEPftDMzP7gD/7AduzYYW9/+9ufdpvLq8s2Pzf/tL8vRjGKUYz/3sc/uTr/gQ98wC6/\n/HJ7z3veY2Zm8/Pztrq6euH3y8vL9oIXvOAZt/HHH/sv9u9/54P2K//zr5iZ2WSDPui4BcKhZqNu\nE38tXSh76CBLcHAl+urUxkJiU3OaBbffrKrz7FXa7tKJBTMzu+97qmiOzoJ4A7RhY8craXsTc779\nu9/9qH3uzj81M7NX/A+3mZnZkUdUub3/LulK11fhqVAJJKRql9Eq+n2yIfFbO+RKUI75Q+fGwJOO\nR7/cEBooMxuniauUwsmOUvv9P/gD+/f/1781M7Mbbn2xtlPV5w7dLSS8cgbOeeS0j2zHXAoVszmo\nzeDDjAqusb1xl4wCHpsRn5titg8yoYCpy/V66x2vtpftusVWTJq9ex/6spmZPfE1+ZhXTgshp3DX\ndRLv+y6FCzRVpbI7hpsdkcg0v02IdNjW9Vo8vWABaUwR3S1LdXR+JfSNKBIqrDre/+HfsQ/9xv9q\nPlAxntL7czJnk1WQHOlALiE+gysdT+PFL+lmbrA66CzpGjZcR9qBkFcFBUNMf7EJkNyu18pj7/qN\nHX7wSfvd//gn9oFfe6/2D2LycbXlhjKBdKkq+5ngmRuiv3TFZR9VwRDN9QZ5E/4IZEdVvsx2t28X\nAn/FT+mZuv4F4ue/85g0vw//9d326//ud+x/+ZVf03XF256EbodUt7muviPwEz1LJcTGKVVyv67r\n7Tq6jl3HVzjKAZ8v0TC+w3bDAK2yUzsE+u7VJjP78Ac+YL/1O//BzMy657WqTeCkqySQVVFzjFmd\nZbgXp2dQN9Dv7Td+7dft6cY/SSd65513WhRF9qu/+qsXfnbjjTfagQMHrNVqWbfbtX379tnNN9/8\nT9l8MYpRjGL8ixnPikQPHjxoH/3oR+3s2bMWhqHdddddtra2ZqVSyX7xF8V1XXnllfbhD3/Y3vve\n99q73vUu8zzP3v3ud1uj8cxq/3oNN8ZuebwzmIXuuniSJn7cMhyi8yf7PSpnSAJzqrwJqddtqupn\n7hKnGN6n3z/3uhvNzOzaa+Wr3agJoS2fFG+T4g/20dz18OoffFCavE5LHOMqKUzJJj3O4TyHfZJ9\nqmgGZzXrzk6pitzPSENfpqLK8cZwoRGV3hiONqWX0wDfcE7P8QykGqC7zMmIPPOIHD3DtpDfeQzL\nARmXnu86PnJfUqroJBrN7BWXum1Ss/nyqvip5mkQICuBIYlIMZXvtO/cLXQbXdPxP/HdB+xlP3eL\nfeUfpSo4t6gVwHlSywdkXU6CNuauoGc5vdqXTgmxbqI3zUHGyTldt6OsLFxFtlyrWwmtrTcg1WhD\n1yDH3VWZAjUnT+GHPJy0Cl0AciLPiWWwIRyah4stodOp62oQwjl2WYWUSFdqV4SqO9zDqdBVv+nS\ngAJi8vmqA7z+Z95gZmYtdKcJq5UZsnDXRyS3s5rouGeGrpXptNPDkn8wo+PYUpYLrLW+xLWEu5wl\nGzbTtWuhMDGQ3rCn/38DHvs79wqBts9rOxsbruMuCfoDl5jPd3HAlxMEmYDQXZm17l8AACAASURB\nVP+xHkoPV9Yo0Y0i4XojU7UU7jOBs23BbldYlSB6sIwViDfS8fVRdAxQF0ygD7aGzm+0wX3DdWgh\nHDLVe5+6gMsZfabxrH9Er7vuOvvMZz7z7Fsys9tvv91uv/32H+m9xShGMYrxr2Fc2m6fzF4pPEiD\nymAHPqWBs2jgem9nVPzgzEogP9eju2FOsyZkFU1plt1ztZDgta96uZmZbS5p1tm3dLc+ngoZxfA1\nHrN6FR+tBypYOKKqcojOcwwv1ojh2UDSI1BHSBV9MZV/Om9iQMapU8bXPB7rNSMlaUQv7hIIz6/B\n06EaSFMyA7gsG1Szl86o4uyjkZzCqeVEh2PSvaNun8NAJYCX3+PnZ5jdl05ofxsrmt1LIT2kImks\nI2bvjrsvVF4z+L6jD/XNfs7s2ENP8ntcN+g9K/jGq9NCY3PzQsBVkPEmGQr9oVYMI9wpAajCB+UB\nhmzK4gs9e4YguomaQ/daZXgb6AXtqRSnpNWy8yDLdCBOss4x5hWuEduL4Luf97rnm5nZtVfvNjOz\nB+69z8zMFs7rXtfpmpCgbBiSwRphQm+U6O2zVb/vgrASGLa8ruNsA9WiJR3/GJQ+DffpOURN1u7s\nlD73yne9yczM9s5eo+O7X06sx763oPNHINnZJKMX8rSC0mIIQt1g1TSzk3zPHXu0vwqZvnXOE/lD\nl1VDBJ8fk7sQUndwBGIMMnVpnb2ynpkSuRRdUqXiAas3tNsZq6kR3z3fVe1TMoLh+xt1Mg/qOjC3\nQpjZpdXW5lGtUNb5WxCSvdtidTQg5amUPTsULbzzxShGMYpxEeOSItHZHZoVrnrV9WZmViVtunpI\nXOYKPXmcc6iHV911+ovosJhoMrcebgaoQ0upuC2ckGpg86tK6x40NZutHKUrJ7NujHc7pdq/AVhp\nrTPLUQls0JPIq+DnJS19ABIN6Y/edrpRdK4Z2rwaB5yWnU9X+0nQwKWuhzmI2KeKHiPEjMpK5AlA\nmAFOrYxe5SU6GnaYRVOq6MguLUq5QM59E4lDXTqIOmBugp9ru2V4oszRXqCmDi6RCjpOHx1pjJqg\nx/3pNHFEATsmQXMj3j/qCmkePwDX6onb7XSlM05c50Xm/HLbuXZAJUPtfzNqm5EINU3/+N3PU0JY\nh7yCjbM6p4g0IjOzuJxbt+34Ye4JVdrUd7pL0o/gfcec4zrXZINk+Y1VEvDh/qJQqyCPxK6EvlDr\na3r2mg/q/RtrOudNui5snO+a3WE2WtG1CUD/GauWXqrtO6/8GEfSDF5wL+JLYUKM6+Q/tFO8/Gd5\npVrtcS/HFX0nx5G2s327FC5brlF+w7iv71KK7nKjL+Qe4fbbdrkUExNb9Pnzqzpf/6zuZYSDKEB5\nkcQse0g6M1aP6Xmd95CVxNjHycWzV+q6PAZyJPj87i063qtfIg3xrj06nyoqhuc8b6+Zme0nE6G3\nRq8qVr1lvuMBdYkwKHosFaMYxSjGP+u4pEh0DGJKR87xQvUYfqY1xkEERzhpjlehtzbOmTpV7ZHR\nY4iq9whH1Coo4Twe/ZiMwLpDajX4L/SIVdwnVbRil12j2csl+YRUAnu4PUYk6NdJ4B/TuyhGCzfC\nD+1RIR5WdNzQblYC6QVV3Y7nPl9I8/Lr5bg6e0qI/PQ5JcMnuGYq9HSqbBWnWHO5pfiKa/BF/U2h\ngO550qhCnccW/NdxKNSw2hIPtNLS/iZIAqrPqcKbgHaSttBFrSpVRQ3EWt8qtJRzX8IuFW94RQOp\ne6gFanCqXdBbvyvOeVRCF+w6dDLX912yfwWeCg49oi9OnidWoxPoi16vBK2bXii32v27ZEHu3fmg\nmZltrgDLzazjZzbTQKu6V+e0tCR0nvAMTaIAcOlBh7+ne3Fiv65Vi+xTn2dtTNU8iHGpce9d5qwf\niLPLybU8STJZSqK77zqbsuoJQWA5qVD+Jlpd1AQDnDXrdFL98l/Ke17jK75Bt4GB0yzjqJqAq8zq\nJKbRv31zU8czHOg8Tp1VdT4kSS0lk9ZbJxeVXkQ7rtaz+7KfksPp8cekbHnkCwd1PdfQLKO0yMv6\nzr7kx6Wc2Uoi/oN/L1fhmRUSzjroc+kkkMTkno6c4gSlxzy6T8oBvbYcVk2Q9vQZHedgjJsSzjbi\nb0/P1/Uu4Tr0fwQvUoFEi1GMYhTjIsalrc6jXTv87f1mZhbn+GS7mn3KVPA8ZuUy+aCjNulCc+LW\nxqRgB/BEQ9wOCbU/2rNbai4HFERIj6cqbpByXQipC1c33sCh0xZv5C+Tfk530uFA/BBRhlaC38nI\nWozpyT2if3wwdqnqcJEus7HE/kGW6z7op6tqe6svvWSb2TPpkssJ2um0dL2cdz8H4g5I1gk7ZFTS\n+XLXpNDCjherchvQXdV/XH1uWkep/tPBslwhfQlVRJnq+aCHW4TuoKmHf5uVg+s5nmziruF6D1EZ\nTPR1XNEsea+goTwhRR71QgV/tHXpVIDbKKFSm8BTlsYDq8dC5W24wqapCltFaztE+Df+Aa6rXqrZ\n9pvFoe24Qkld6UMkou8XwuwhSAxQIPTWtM985LJchaima7rG1bEQTYqSw3fW9DLOm46+en0enl6q\nZzlq6Nksw/m1PdQCTV2rIW66EpxtPKv9lqja9+mQOnyE3ASMNxHf9KCvaz3JlyKc0rPg0yWgx3dw\nvKbfb5rOL0FvOUV3B4/tVnjGeiC3Gt0kJkDaz79eKobxad2zhce0/f5pqu58lzKQdRN33XJP55Hh\nVqyS+et10SaXnFKHBHoo4I0lnXd+bNPsJW+2wYB6RE+fO/O4EHGrq/3lrBaHNefpJ70qwz1ZKpBo\nMYpRjGL8s45LikRDqsk1dJaEVpufg1BIJaqg/+yT2D67XdzbDhwuR8/Ky35ugZaCfZw9+GN76DZn\nepquAma1cUdIps2s3tih1zrJOxtt8Ut9kmYyWgOO4E4jfNhDKq8pPFNGhbdU0XZCPO8ZPZRcGpJL\ntCmTFRCT8nTioPi2zsaCmZnN79Ks+JqffK2ZmZ05KGT65D55z33cI0PSkJwEco2MxDKujPI0s+2s\nq/LTn6etHus+CUFbrpnl+PS5PojSH9BDfICKgRzRiPOtlckXHQs9dQUKbIDDKRiCvNFKlmb1euut\n4i2nn6/7+tg94i9PPXLIzMyWqfBmET5v/M51dKMh17M0Ub9QnV94XFxc87iuYXcFnp2+XDZ4Sv/X\nag/M2y/U31nROa1SzR7hRPJAalX43pmEc61xbUCcGf3TQ1YDnstFGOrZq5MjmlC9Tz0h1qka7jSy\nZ9s86w0S5UsN/X4CBcrampBh6BLM6P5ggXMKkTTPM5o5T32Ed9zXveivotwgNcljlRbAVyOzNI9r\nPgSplrEPpmwHoYmdfvywmZl9/s8+qeNq6Xp2SdoaLzmNMg/XeR3/Q3dLZ1sF2boUrhkcRj5dIEYV\n/b6Cdrs/pZWHX3FZAuhBJ6QSeP0bf9bMzNpwvKefoGPBirjSzaqQuU8Oh+NGI1aHI/j7ZxoFEi1G\nMYpRjIsYlxSJZiDCPrrPDO1dQF/zfEiiPelBkzs069x0h3Iqr9+t1/IBIadx6x4zM+vC9wzg8GK4\n0TZV8QZ9X8Kq5pCtNyiO79XvVEXRetKO3f/Fb5vZDyS99Jjd0ZXmZSp7VIQjWgamVdevnRRvtH3O\nTpwmVLFL9JTqk14Opzs7p+PfMafZ9BV3yEr7vKkXmZnZ97YqDal5igrwNF1Qqfx2QR9l9KFDVBA+\nHGr7pBD2k+vweiUhxzYOsgouGnMaRJB5QNZlQvLOTFn34/ofV6L+rhukyXvyfs32x7t6rcFRd8hF\nDWkwtG2nNJR7X6Tk/m3Tuo/Nq8RDnj6zoP3irQ9IRR/StXVcdkQj+aittg2ppvZXxG2dRwMb5bpG\n0ygOoh1OR2m2dXbGzqzqGqx39P4RyeYhiVkhGt0hCC8futUE9xpnUYziI6rTpaCsazLqoUDYALGi\nYU7pLtBaJ0fBua9wnXlwqNNX6Bn14aFD+tCP0HN2OugxXWoUCCvheqQ4lCKuZQrSNBxLHvUHG8M9\nkiE8donx4K2Sa7ZJ0n+Z6n0JL/4g1bO8fPAJ/b5LJ1Y+VwJpZgN9BwL6aXl43dtYn+ItfIcd4o51\n3nW8/X10nxE9o9wCI51VneLEk2OzN5k9fgDVRE528Yqu0yYcaeaTKUy/Nw9nWQAED6zgRItRjGIU\n4591XFIkGnmaFTwcPq5PTB8UkMC5VZn1ZyD7WkeFTPcH4l9WjihtaDCAd+m7Tn70faG3UQl+q8ts\nN1nVbDgNEnb+6pHLx6S67kqrAcixDk81guOLYk2DCVX5BA7Q810fehAxPFlM3/uA6vz4AsfqeqNT\n7UZLd/hhVRTXtorHOU5aU5fe2zGedm/ssibpkgm4KMEXWQwnCW9IgwArT4nvazS13+U1oZME5F0G\nUft0rMzpCRXUdN7NEUlJJ3DftEHWFWb1CL0vHHgMGlnZECL+/peU8hSQrXn2lCq03jIVWtCTi6ev\nDNCF4i93Pc/DqGJBps9EvLk8iwOmBdfnk006+1QXhonprbYNZNNMdQ4+RHLN9UhqoThIqQqTmzkV\nuvwGUPucLurznyu+/urbpIA4uV/Kiv13qz/WaBm9JF0Mgqpec08/H+Cgmd2j433Vm9TjbP2knvWH\nSadqtnVtx+QsbMKleiPdgwClQ0oiWsx5VehzNbNVSHmWZP3mcb1//QwIbYpr7bqFkhg2dFVsuNoK\n98KPdL1n6BQw6YINWBWtrqN0IRUrHek7OC7pfBolPTM+Hv7SHj1rU3Na9ZRAkOcX9V1IyDEdoRP1\nB/QrQ+Fz8OtyKQbUHaIct+CQzF6eZUKyLCSvNQThR3bBpve0o0CixShGMYpxEeOSItGE6nS3p8qZ\n69g3GpFC7np7ww/16E9z4kGlAvXu1WsTvimh508PF0a5Qyu/JpVEOv55lBJD4sqfOHjMzMyO/7Gq\n4iHJ7v0OGZHkZg7LmmWHQxJn8KCPmL1K8Ew+Wr4ZUEqOsyanu2mfz1+IMszRFPZ0/D4+4faSZucn\nviCeZ0woQEIkfkSKUQYKSTHHx/SLSaogcjz7rmK85TlCH7e9TqnlN+5UdsF9+8Qp3/9N6XZdpmUP\nDjJHW5lzHZ0YoHte3Gdvk/46KzqPTSqq/To91Wv4xx0aOEVq1FmtKGKcY2HkEpD0/horB3/k0Brd\nXTmAlMqyP85teq8Q4LadQtdr5B50F6VoWNyAOzwjJGNmduTAoxZPwXmSSBXX4ZM3te3Ic7pC0DlI\nqoPG1hvqXpUSIdd5+tpfv0PXuDqpa7RxRPfyGEgrHTgvv5DTwKOflehhu+qma7WdbUqWX6xJ17n/\nGygzMiHXEAdPCa9/EuhZrcDpNnFGjXFExTvFsb74DnWf2PtcBajf/Xl1iN1savUzRE0wwqk1UQeh\nX63rnJOZe2xZ17NSAfnTDXW1x7NIQGvAn5wMp1HuoxYAufZH9KOny0L5cl2IK18k3n34hM535Zzu\nZxfuNqryHe24ZHwUOpO6H7M1kCyuwPY5ECxqBZdBkJJf8f+2d+7BcpXlmn9Xr9W9Vl/3LXtvSCAB\nAwSVSEAcicQjYrhYHKkaEEmlNhZVWpQKyJQyGDgZ4xQjGMRbRatQxH+IlkJwMIwe4WDMTDwEjjGQ\nkBxCCEkgyb5f+35ba80f7+/rDBoIp/aEzjm13n92utO91rdu/T3f877v81hUmhhVqLeLCIlGEUUU\nUcwi2pydR02a2cvP6uuc8WsB6ZnJYHpcEU6ppJ8v4RHudeEbb2rkqLWrT+n342TH+zoV8QXICdVr\n8Gf0H1uv6fYD1M+70CWtk/UuV0ymUFFOZg5+NTX6rJl148yyEzFUtakOOI06yN5TFaW8vkO5zXE6\nowIjyghHbBnlerjgFNyt8dyuhW/u+w2KdJMkTd82CBWlnpqxvKzpecqjsp5HjdyhRjBFzeMMnGyM\nXnnT6RWzdXunnq5o5sMrlK8741R9/fwfnxMRkV1/UYSfySkasGrGXwfECepLgwLiIbWLVb0tkzn0\nQvPUs8Kx0mQiVfi/AmpPMasm89G7nH/xeTpGOmBezqP2M6bfGZk4quJke7GWolUG//canUR2F8gT\nXruOzkEK/QQXPnaEzweshl54VmtcDWdZhW8umUoMsvmptFG8gsNNcU9yL4/tVuT6R08rMsqvafFt\no4gCGZ5P9Zhymg7XzGH1EPBs5ebDv3u6vWS37m8KTyf/oI631TPfi/I9/L7HKmLuYuV4l35Ka3vP\npzJjy+/0mtfp7mtAMvq4kJqa6roY5wGy34bXR0u2gQvn8Ig+G+583c6S96kHVYgK03RRr2sT19Yy\n42yyiqtlqNOFfx/lmQmmOP+sXj1Wd67LeKmu8Kghl3fg9hkh0SiiiCKKWURbkWjY0N0XUVLx8qhK\n47ToQBrG4KOMEnsB9XKLzGNpmM4gD5UifF1SaTQYURlKdOmsU6aLIuGamjidhRrMXrGmIqcmmV6H\nWbOrT9+/5NpLdbzwS394WnmkyiA+7cbbG6/vRJce39kfVcS2bPHFIiKy9WxVFNr5T38SEZH8sHJ8\nebonqsNwvZ36fv9C5aECaupeJVNbmDZK+SBmNCRrU7hlwo1iyS6Dg3o+849qHeyO1GYREZkZpvuG\naogyPju+yfpz3k2tXxM18CIdXcNk+8dQ+hkbV56shuq6qfM0/coNvJ4yIEq3YbhnNAemQOTGlx50\nVeP8JMj2d7m643paZOaQcpNvoB9q6kUnqQ+cntCxxsjKiuBZxUuTFc7gKw/wFAcdgSw8t/FW8vFS\naqbO0DFZ8PKHFTFue0UrEOJF/XyVLHVAPabbS/dVHFUnxhGQxX7pBe3hf91sx0K7tap/k/DtVfzB\nfBCtUc6yqM1tUuPrxgxvrffWC0+rI6xr/4t+r4IXFKuVGIpZIddoFP3Qw4eOyJJFIpNlni1qqStU\ndNgg0FgDlwl66218upq2XgevV1cvCy9W3Vff1uv02g59NkI46W2chyS+9pPTuvqb5BltUjGTqIIL\nbR13mRVAM47rA6ugJG4RaRBozNNx51DAN/dgvII309tEhESjiCKKKGYR7UWinXQQdehsUC5pp5DT\nUgfSWadAR0qKDKQzv4vPKcdZ8XVWk5iiAstXNBDGyJLDXZ5zwRkiIvLqvoO63SF8Yqg7bJpuDwsV\nI3RBCzM6q84hE5mgpm96UlFPnXaJWh4/HJBoCgSdMD3jIMv95xh9UOV9RqdNL7qp6aPWDf4oaxt9\nTUUrAXWrqYwqDqVzeDCh1t5R0e9N0hnUpLYxCafow0XmQZrNIbpS4iDfJvqfKaoZ6PyyqUcN4J3y\nZUV5f35cEW0VLrZu1K+mQbRT+vkEXSFxsuyYqgq2RpI+Q2FfR0b3M0LNZg0OPIxrZtrBKZKiBGlC\nhbuJUA4Mo9I/BGdGXSH2UpJM6D3ih0d7590wLTZuBrarY//gRzQrPmeBov8Xn1DEVsAlYQJvIzet\nCKuO3mgc76RSYBAclQX4XTkgphLeQa4PErLZDsR1iQ4fLzR+VjrutK/7iaFsVSsoH2zu4fkLOUfd\n+r19u/XkujxTDZBrDPUkB1WrTLeOLzlHleFfeUM7fWamGSc95F5R97ftyPPy9//wn2Vwp/LeHroQ\nKbjjWqD7N5UZMa5Dk1VIguoGO2m64vR4psv6TOXiypHmR/TZ+svvntHtUXDTMJ1Uxs+evIPl0hVX\n7+C1bj8XQ/EtZmq29eaZrFCvi/ZuJz5gdhatATm6YnmriJBoFFFEEcUsoq1ItK9XZ6uLlmmN2jCu\nlZN7tatjdJCsLbO5gBaahis0Wn9MFj5cWZLMZpyasA9/UlWzL/3QdSIisntKa+Ceeeg3IiIyOEiP\nPp1KNWrt4my/DGc6gzfT1t9uEhGRPHxbAQ7QQYU8z+csZjsHfujFbapO9MJuMqHj+MIndH8tD23T\ngZNR1DFJjd30s4qGUnR2SQ21dOo3HZSJnG5Fkv3UhdbphApwSKzX4bFwFPBBwDXcTsvoddpw1v4c\neEC8jJKgF+MJXkaRCGlNqdEZFe9S5JzO0hViVNuNxxP7lflaC/je6/Q6GXX0Pz6mXPHYq8qtllHm\nN1qQ9bh+P2Z4tkZDHOAt1JqkOvSzVl2RXGAcQ/l/EVUUsjlm73RFZKddoGM5O6tZ/ukP6MHtg3+W\nEZxIp+AQ0VEYod4xgYJXmlrnOLXEFYj+CijdVKh4KI41phUZ+bhexujgKaEkHzq6WivTlddk1dQz\nR/d33pWq35mmI8uJ64EOvoyk1iS1t2w/S0fX4o9eKiIiZ31kkYiIdPxPzbZvf06fRa9E1xrwv1JD\np3MQJMz2fJ6Bhugz0YGiWolnyHS/GVfW5oge76t/0Ge/Bnfan9Pz0UcnFFSsJHgmA3j6OLx8jaVG\nxTjn4lPmUi+bzhhXVPh8o1wPN92solFrfmrKev684wPRCIlGEUUUUcwm2opEm/jRzEwqz1QdMs6H\n+v9BwtTMGTtMEBGKMyX4JYM4bTqFjLdRjL+H4UBfnq9IcP+wdiaV8cg2s5vF6YixnxKIz5uv3Q65\n1uxOP3FOp6mOtPItxSn8dOAe86HOxh5ca8F0Q6C23SSDGIb0IxuP8Vavvf61Ouivxh+nUkAhCPQx\nr1/Rk1EKclDOBzxIBV6rjheR6WEvJw2PhEYjtY9JFOXtuOmQoq7WMbwWWXxcN220Ks32kzF65I33\nkak3Len4qo4i5W54qt5uPb7T36soaq6tK5RsUjO0R+Cm69TsuQnj+qooo+orj+WFoSQCI4BpdDup\n3UXBqm4UvOyjHkuueFKjtjiY0vef+0fNVr8+R7upDmw7KCIitbxeu3JLZYnVi290RMlK01VWRl+0\n6dOZE+j3uueqQlfSONUW4JtB8VbNrE6o+YUz9UGkdgccZA3vJ1vPwd5ddH/hmjk+roi5UdN7QOAE\nfYcsP5UY47iKpl/GGXdcPx+nvraS0PH1sL94oO9nQJhn4pG0aInWkf7Lb5UnP7xfOWq3hLso18w1\nTrNZFLpQqzrVVAWQZQ8KuBeI8ZdnlWZesqqxCjyrcMZNuOoENdZWlVpsnnEWnZKg2iGFY60FN5vp\nR8cifnycGSHRKKKIIopZRFuRaLWks9n+ndoDX6GmKwAtuIgrUjYqHfN1ljqlR7sW3hhSRfZmWfme\nOqjDuGv6zE47n9V6yqFhPLPhBCeYjlJ4YTdAE7XW7AZXWlFoPInUe2NaUYuX1++PMauFINiGqTW0\nFVWk+nARTeGaWdfZOYl7ab7IrN8y4tE/+SqoyfB4ZGjnoDf64Su1n/rarwyIiMi+P6lH0oHd+rdw\niOoDvJcydDyVUUvKUm/agLv1qQVsVuBIQaxhqPvPpkzvu872KTQOaOGXhP3mnvcSSjkNjssyqIy6\n0WlmfY/r/eIfdaWwD+WgVw9of7ipI44nlCutoyjk0XRUgSufGRFx8NtKw7e7NYNe9VxnQRZ5070l\nIoEVSLJXj6mMfsGunTqWV0D9dizD9/Wvh85kg3PT1Ut3GN1WRZSsXM59E92Hafh2G+Q3eEjReZBB\nL9PRezEHfx1jdRLCAQoVEAncEsr4rltUYNRe1MqPIrXCCXrxY3CWOSpdLLrrJoqKkA9v+WcREdm5\nZauIiExN6D2QRJs3yzNF8544KHq5vYqoz3y/elTNf88ZIiLyco+uIuSA3hwNugtj6JDG6Prr6ND3\nc1163AEOuhVqhMvUFsdwuQhS1AzT5RZQNZDg+H2HagCjsEY+waIO1LhMuKYSJqDOl/rdnjl6jxkk\nX5+KeuejiCKKKE5otFfFyXBsIKIYqbA0vEcVzs5r6vtnnHWGiIjMe6/WshX+ZGZzZic0E314J9N/\nbOd0VrGa6HbSU35KB4r3FVSj6EqposcZJ9PqoytafIUOHrLxJcbv2jqLumQAm6CUGbLledTME2VF\noH59zJwAERFJ0koUxx+mCU+TsI36Et0T8EKpLnrQe+BS6aHPU2M3DoIOQdoOfdI9Z2td6WkxRWmv\nv6hIT/DpEbhU4+Xt4z7qwc3WyL7HycwmuvCmwm/+tCVaU9mY1tl71wuqXGSDJBMg/iBO9URBz9PU\n67qSKBXJIHeQicbxscPT7H21hP8OaGKGqoMk1QGpDlsyPYo4575vgW5jVBHZgd2KDCsgjkL+aHq+\n3BTJ0cmSOUUVrlwIZYva5JSp2DAulKJ/u/r0nL7vY6qE9fq01v6+/qeDes5m8OzhWoSsUgIQ7BwH\n20y4wsDw803dfqYEL22QqfFoQv8hAf/efapmxbtOUZeAI8Oaxa8MKrILQ+OUC4JOmM4dRYQ5rnWe\nVZqjl1RiuJiWUEIL0bcwnUGlCb0X/vkPz4qIyI7dikCH9qrKUplrb6NU5pokOVzl5Ihel4lpVoU8\nO0nyAP3n6vWYd85ZIiLyxiFVzN+7S+8ti2consYrqYT7KXkFF16/zqrIxqfLd/W462jhxnx9bTQT\nqmTrw3KERKOIIoooTmi0FYm6zFJWaDy96eYg++2CFmy6KcYbOmsVDynHOVbS2a4BUjUuoRY8Edbe\n4tFzXfCN55G+XydD2wBhNVETT5E9DujuEHgTU7uXwH8l3qnZ+hyzXUCnUc0x3C4I04d/oc7SJ7PL\nZChVTLMTcKO+x+znGGUZ/XwDP5iZQzr7b37yD7L0/cvkfz30iIiITA0qMvfouhG0JDtPUVhx9nmq\nuNNE8ebQAUUr/hjlEHTdhHP0ONNwjVJ+s2OAQchVEPgcNBv7+5XznczpdZI9cJkgdt/jetKf7cC3\n+WnjVkrXDs6cyYbRUmB71MUGXI8kCkC0d0vdCcXr02P+4MXK0TkgrdQTO0RE5OBLeu/49lHvHC9l\nSYUuq3pZz2EcM6FkAd1QGx65TOEgvfWnLVbkt/gCrXWODSnKfp1OnnJeEY3rK5qOUVGSQjG/1ouv\nGPdEDD5a0EhFpEmyOaN/YLrNDMLV/x/DtTNf106jEh1CMVYX9ZbvPdcShnx46QAAHfVJREFU99EG\nz0oAl9v0TK01NydfLHKSXeosEyD3IjXQU6+jhH+IDikQtkf2vYHWLF8TZFnFQmHfKuhDWAbW1bnG\nWc5z9mzdjmXpuJwhszKAczZ1pKzqeufps3n+xarnenhUkWv+DepbXepCuacsnHqnTen5JMg7YVR/\n3zreERLdu3evLF++XNavX/+m97ds2SKLFi1qvd64caNcd911cv3118tjjz32TjYdRRRRRPHvOo6L\nRMvlstxzzz2ydOnSN71fq9XkJz/5ifT29rY+96Mf/Ug2bNgg8XhcPv3pT8vll18unWh4HisqIJwS\n2dZOOmFqxlUTj+2ZGeUQm/tRyKFe0C7QOeOa7DJICm4xJEtcBym6RZ3NikZJxwLxxOBTAqNSDu8E\ngnXpRfc83W6mT5Vnerv12EsziuhmUMrx2a+ALhpkiHM4TS68SLPq896vHOLLf9EOqn3PqVe6gJBt\ndE4FLjdBDaH4OouWR/V8TKFcZHu4fIIorV6y7ah9v7pdu0+KTaoMRL/XNVdRUoFaOhv+rOqb20OP\nPwMHmvThZm1626d1PDtf1e3lJ0CUoBrh/JvUbkiGvEL/utGatHx8eSgCpAFNLOp1Gxx/hm6TJuMI\nuf4p1xGf+sU6qD2JV470serog3ssHW1FCUOnVYMsrDYwXhXTXGXDkc4wphS953u2a2VJLdRzMTxC\nRQcarKZG2LLhtRN6r1W4Br7heYGUDpygndXV0KnvV/7/kku1DvPQHuWx929V76CpIigeZ9z6sO63\nnMA33vhTsUqzqdnNuvr/IT39YdZ053Ht4PNDVIzM9wL48QaasgF5B4vVj4WDbtHhHp4BYePm0MTj\nyqI1yE7TUcbvRJPsustKYXRUj/f5Z/UZq6IzgQCbNOOmnhMeHa7VPZNn9GxdKeRZfhYGd3C+GHeH\n0fDFWwlYaXRdJfbWv18mjotEE4mEPPTQQ9LHD4eJBx98UFauXCkJCp937Nghixcvlmw2K57nyYUX\nXijbt28/7gCiiCKKKP49x3GRqOM44jhv/tiBAwdkz549cvvtt8u3v/1tEREZHx+X7u6jDord3d0y\nNjb29tu26ZChWwEaRxwyhw5AzKUf18qgKA9fJPA7CWbJiZpRzNH/joNgQjpxBD+VJA6E8azyLlUz\n6YCAy0b0HB7Ih8PzIU/dQX1/GK3DLGpJnXy/UocHQhGmSAdPKWQ2pvasapD0DPqjCf1eEhjURFzS\nKAtVq7q9FO6cLsg9kVXOs45GZon9NhlPDVQ2hZdRjExpQKp0qq6EkumtDyn8tCGw0qCKWEDtHL36\nCVCLU6KLZxcrBZTyXQsUxqzfAJHmjA3pONwqal2IY0m5gxUJ/kXm/FhcxjJaCvUYbrBQyFajKF5B\n97n59/+oY0Ttf2KU7ilWK3V4ahGRoJiXGpynAzJL4AxbrxgukEoEuufM+0P7taJg7JD+TYKsnED/\nuii8lxpGZ1O322Wa8EDfRbL+OfjmEg5c8ZSey044vhpI+cBBrZHOojAmrB4aRZ4Bw/mCHJPw4FUQ\noZM2qza0Z8le16keKFLD64huN13H86hhuEJWZ9wDVWqEzerCx08sgauCnUVdivxFaHrWuRcsut5c\n6klDfprCGd3O8KTeozEExtI85DF0VOvcPAGIc/iQ1oTv2qvVAhM4xxaTnCdUm5L8dpQ4jgR5hIDr\nV2sc33feCsPw+J8SkXXr1klXV5cMDAzIzTffLKtXr5b58+fLZZddJps2bZInn3xSXnrpJbn77rtF\nROR73/uezJ07V2644Ya33Obo6Jj09fW+k91HEUUUUZyU8W/Ozo+MjMj+/fvljjvuEBGR0dFRGRgY\nkNtuu03Gx8dbnxsdHZUlS5a87ba+99BDct8/3C1fX/N1ERFJd5KRSyiyaiLdUgIhuV36e19BdWl0\nEo9wMo+xlCK0JvyICzI1qt65fn39vou046ljjiKyF7ZoL/3kQc3MJvE2qsZCWfudb8qqW3R8cRTy\npaSzWrqbGr0zlFOsTyhCmx5T/qZeAfWgquTSPVGFJ0uBiP2mztZ1kGkdiaF4j1Ho1+9PoZjjUiPo\nVD355ve/KXf+l7tERCSgb9wo+3T3KKrq6tPjLNCHXZtWVaQqfFoRpBfHBdVDFsuiw8k23TCuntcs\naMjGe71/HmiikyqKGR3/xGhD7v/m9+Wrq27V8zZNJtYDuccpRmRFUvJxNcVZUkDugU8mmY6nEA+o\n/vecysf0PpmZOSypDsZmus/gYW0PtF4xXW2Kzr/7wLfkq7ffJck4q4iq0S+g5piKgRQdNg71nUmU\n4/OoJNmGI0zDtdIF1pgmW200UelcstJ0sSX1XIzntYZY0noubMuXe+97QP7bmq+JiMjcBerL1ajq\neIoomQXcO9iFSSkF1whTl4DbDVC87+vVutZF/0nrLsdHD4qIyMsvKF9eDnT8bieKW3STCYDXYnVY\nDX353k/ulTV3KGg662LdnoMP/cFXtXImmNFxdnWqR1KiW6/Z6H6tp62AwEOeLUwkJIHPWCyHjqq+\nLQXjykmlTsB5TceNJoCOO7Brcu8935Kvrf6v+v/4g/loDFdBvgmQdT1h1Lb0eG3qgn1qtP/Hqv8u\nbxX/5h/R/v5+eeaZZ1qvL7vsMlm/fr1Uq1VZvXq15PN5sW1btm/f3kKlUUQRRRT/UeO4P6K7du2S\ntWvXypEjR8RxHHnqqadk3bp1f5N19zxPvvrVr8rnPvc5sSxLbrnlFsmSYXyr8Mhie9RdNgtkXftx\nSIQfyh9Sf5Qgb3gl/XySroQ4NW0V015cR9Gd2bgDpz83p7PQ6R9UJDr3FJ09aYWXWkWz49VBUIWR\nQ1eAJTGLPmXcK99/hXapfHDZBSIiMvi6IsUXnlDPpaE3FNmGTc1aBzFQEXxcnf5k38bvhfFnObdn\nXfwBERE57RxFuv+6Vf3gh3cr0s2TnW5SMyh0V8TorT/9XM1MnvNRHZ+PMs/Of1KFosOTigY68Zlp\nonlZheHJcT0K1AbmSEMm4LA7cSQ4b5meh3kXqRr8qy+p7ulzmxXhC10kdfixbEOPb8HFWp0w9z16\nHfa8oH3b+1/TWkcfAsyBN3TqqHolQFOLdb/xnG73tW2W2CU4P7LRMxCmdWprKyVcMtNH782OpC0B\nWfJU7M3Ooglex1OgYVSFRmaUA0104mKJ6n8cYj9krD4IacF5OubOuYqIE9RR2kkd3wu74SLfOKjv\ncy0aDUVor+zRKoAEXGJA/WYqjUF9n16TbvQNqiiG1Sb08x0oXfWfoffG4gu1NPHgYR3v0Buqcduk\nNntOF6sXqgZCqhFsansd/O4TGRT7+/S47EDvsSS+8WMjeu+f1qfncz6rhxqKY7VX9XgD4wrKqjFx\nun5uyTK9p7yMJrb3v6ReS/u2G5cFrisOAVl4dOOVFWc1WjPeU9TFhgn9vAuHnSpRLdFEyc1H7zR9\nfI+l4/6InnfeefLII4+85f9v2rSp9e+rrrpKrrrqquPuNIoooojiP0q0tWPJcXU2duDcporUPeIb\nk2E2M+n2TrpIAmbDkhk9mVOXzqcEvJVjOqJoT5aCzkK7/4/WZR45lc6nV5QjrJR1NvTpNc9RbxlL\nwWWi6OP1kC3HSbHYVC4vhCPMUx3QiKNlmDLtGUbxnl77tFGWBykn4aFQqumeBwRGqUbooKonQeLw\nVTnQUBllmhBeaLKo4556mT5qS1FCHmTuUQ1gdFQDzIoM+mrCE5I8bynn+PRvl6nPHJlGa2C/nscp\n9EsrcNpxahKTKOk0qCKoT8HJBvB7IOsktZwWFy5BX/Vohe3QVz70utYQei7ocUokBjdYM9vEubXh\n6L10+pn6uneB6l6KiCR7T5WJkqLyBGpFSbjKjlMVQZ65UFcFB/fqPsv/Sk0wWeyAwsWi0W8gC56i\n48bqpvIho8c+VddrEh+jthdOsNSFWpGt17AjrQi4x9LsfNOlOw+Ssoo7gZcyXWBoxU7iMWU+h17B\nzISel//9rFJyMa6Ri2rR+Yt09eLlNOE7tEerAIbzXFN0JFyjuE8Vw8gO7dCq0glUwF0VqykZO6L7\nSVt6/qo1rQoI0f2Mcy+HPPIplO/zgXF2neB40Y5lZRCP4yZKLXTI3wbLukSn/s2hqSChagNPlnQl\nUQR5ZzjfQj2vwI2GzePn3aPe+SiiiCKKWURbkWgcHsmaQ1ae7oMm2e8ss0jsDOVnTI/J9ITOsg1m\nJaFWLI4+ZxDX7VboBzYOgEbVeuagzobNl0xnEPtBwSX0dH8G8bk2nF6IDwxdEwdfVh7p8H6dhR0U\n4KfzIDB4Kofqghp8WbWkyNXifc8gP+o2Y1M6m//5KVUHb4AAq0VcTfGzt4BdjZj+v9uDOhLak+P7\nVVtycu9BPS7heAQ9TlxC8/A/Fv40GTjRhm9q8eiGoW417aIeRdfNtq3Ksf75RXglVKsqNEhbcKcW\nNZZdecY3pSuB6U2KAsfJ5Jp+6+4F+rk83TNpUFYMHmxqhN7/GTQow4I0SihPdVBLyzW16X5L9isf\nfs6HlYcVETnzvV0iuD5WUIIPqQQwqDuuAEZyReX+irgxlHApCFgNhbS8xKgwqJLOPrRf77nM4EER\nERmdorZ2knsXPdHQUgSYZRGSp44yS21ugFNqEZ3Qal4R2lTZuCjo97yk6cQxtqH6+YlJ5ZuHyI77\n6BpkevVemHT1+NNGU7Zm3CLoCiRP0ACBV6r6+aHX9NrFUcB34dmrKLNNVLmHtytfXiqC5Kn17sCT\nKplRxD1BJUt+0/MiIvIaCLzIM2b51KGmdKXg4hzc5HsFtH4b1H028FqK4QQcTLN64fjqHVQD8Ctj\nuuhCnq23iwiJRhFFFFHMItqKRItkEIv0qCeZjWx6x2sgoSw1e9PU8FVNbzqIKo5bpuFTuuiuqMLB\nJeFIrZTORn4aD6Y0yAkXykbdqG+j8IKaeQ0EVyZT6gj80hA6lvTyV+jQSbK9Gd8gYjNLgzypQy23\nTLRRJwLBGW7VRZknhhGPAw+UoFyggOS/A3froEzfMJwp47SaRrZKxxmHU6434O9Q2Kk7Wqtox1Ec\nSul5sOqG59PN1OgqcZP6uQzIdMZ8gA4rh7rUsNU8w/nr0TcmRumJt8n0UoeaJvtfAa016N5xHY4H\n7thj+wE6rtV6tpWF5paQEK5vBg/7kUlV83nuOUWxS8+9UA6+8YaULWqO4SZtalnzVeXOdv4Jn6q8\nHluBa96V1rFOcy+mQUrp07TnPWQ7/dQ7unEUqOAOR6kvLcYUIcVBtAF+WuG0jmuopsfclQEZ0rVV\npXPKLisijPWQrccnq5tOJ1MTHLI66OyDqw1MNh+F+73Kazsg4Fpdt5cC0TnoUiANK105stz4yIc5\nkDt5jm6ulfHFKnbqeYyNol5FIWuZnnqHVWO8qttrMK4Y9b05ePgaq8dKSc+bh6MsolnisQKxUNIv\nT+j1DqvGD4zrzIE4ocnKo2UMvgyTkZ5oFFFEEcUJjbYi0brxO8f10wKJ1PMglCa95/SoV+j/Fc+4\nSNLvC08VAw1M0gct9O+WySAKCvZWkaw5LptBXWdx3yA2EJyLincOPqlrHtxo03hn0+NuEBHZ86m8\nvi5SU+ji/55ZpHWRp/Xp7D41pLPjxNg041H0kcBLKZMkswxX3JEx/vA6ynjd9J7jAMnoazPobMIT\npaiZTJIpbnl+w1MJ5xkRKKlR62dqHRM55Rfj9GeXx42yvGZu056iHbcLlIVbZwMUIHDTBaORSTWC\nA+JMoxLlZpSLrtDH3DDqXRxwANJ2qQXNp8mgc566nLLkM0ZtCJcBjsWln38a3nWiOCgmJsYOyynd\nSnqGaMTaZGVnuJbjZIdjNdMBpWMeRz0p5ek5zvTS4841MauLoZIeixMq6jZCAFYX7p913X+Jcecn\nFGHly9x79MKXuRcyrCoS9PqbbLnFs2EZvQbcOt1Ar2F6DvqqZK9LXBOT1U7iKgrFKgnqK5tZ6inJ\ntjcCEKYNWWzuKfj8GSO7iiZtw8U1FEQbmkYoVKIsVjEN3CQsVh22T60wnHAIhxkEKK8lGC/jT+Xo\noTf5BqNsz/9bcLaxlN5rWe6psnmmqITx6WDK5Mnav01ESDSKKKKIYhbRViSapTsgA8Kx0JEMO6lb\nNN0fOPd1wJWW6T03fcwtDckJNBmNDibOiD5IhyYQiVXIvHkUFVapzcNZsO7DAdJ33RwzRAtIlKnH\n8Ft1PM491JMcst6d+NJXEvTa4xSZL+vs75PtTnj6eeNYaBCtGXeAg+UMXRXVpkHsOltWJsnao9OZ\no887UaYqIE2mkqx9iuoFB4+pU89Wx8ZURs9DARQ2vE/5MZu6TKubmkTQQ5JZvmoZ4xzqSJmbm3Sc\nhWRWc8z6gVFz6tKulN65ZPvxLRrBlbVgav84D8bzqkqdawZ31yLalNn+Lumn53miqufMGUcRjGPr\n6siyTWC3iPR090szSU0qep7NKeocQVSdHENAF3eA7mV1ippZ0LLDasY2NbV4Gk2QzY6jYRsHCcVL\ndNfhZmB64VMpHeeCfu2ZD6hscOp6L9bo/U52ozXr4beORm91WvntgGtSJLteKJN36KQLjHPZwOc+\nid2Cz7mOU7khvqmNoSef1cKMgBDRWw15dmx61Mtcj6JRR+LRDMgvWCDJOP8fp9swDpK2O1BQo140\nrOt5scyyyzUdaiBU9B66jMoUrg4hyN04+Xp1w7fD9RpvK2NnynEEcX403iYiJBpFFFFEMYtoKxIt\nM7sF1BuajpnQ0r8pMmM+nkdJGz7FNU6MdG80QbDwOXUyhSk4sySzdhEKsJFhf1B2LjyS3VSusjM0\nTeJoSfbr/gvUrybJspd8w+9Qw8cs6JFpDFG06WgoT2bcOE2rlUG+lo1qErqdPrNmqWl4JDqJ8Dhy\n4MXspL5/ylnqbFn3jZINCB4uMo4bZkimswDqcMj0GmTtm44w0EW8G6RNJjVrkHGf7tehuMCjFrJG\nRnUGgVYL7tioMvkoH5GwFhe0w2FKkXEGHFfPPL0eFnAwBvL0QOymlSpAxqsUhGKDMOrUeSbQXG2C\nEGNwh7Z99NYv2ElJ0ctdAa1XQiokSM4G8LU9afWRioHubVdRc22cekSQm8O5TOGnjt17SxWpGhgl\ndt2vj/BDPYPCFQWfiQ7js67bhWoVn2ckLPGMoKPZBDklyTqHHvc696rh10MqYsToOXA6aqaSxTPZ\nbfaPCpJxg4gLNbvoiCZTaAikTD0mWW7UmAJz7UDkPj3roWVcOI36FBxlhcoO42vWoKKEZzxOlj5E\nN8L4lnmuqfhAO6BiECrPKquhBPdHle1YDVOVgRZuGcSbgBx+m4iQaBRRRBHFLKKtSNRmto7RW26V\nDPdIpwxJ9hi/9UZNKGPRTQIXWsZHBqsksZm9fJwRqyi52I7hPOFFjOUg+pTuXymyN9HtDKmxS1Nf\nWQFNxJNk+siLh8YjKiBjWzdq32S5qRoIGIfDuI2vfA3EZlFnGsSN7ztcqwsfh+K+A4KOkzEOTI1j\ngcymqyjHCk1/N90YbLcBN1wa04yxfQh0ZJCsZ/ZDfSZTbrMIQk7hxEgXjfGrz2T0bwXesRPEWWe7\ndRBtcUIz1lP48jRBOSk48DoaAw7I2ImZlQlcOPW7QQkEG4Yi1FNmDedGPWUTrjNWoD6Ray0ikiiX\npIyjaspwmwLHCG/eZN8z9Hyz+BCngWdT1nCh7Ica5xqVGbZlRG/RO/Dg5FB69/lcinu7xudnqjpe\nz3SR0VGTxIWyVAYhssxq1VinqTDhGYhbJq3O8SeNrSbPnlH2515sgPziOKqWqSbw4OuhfCVuKidM\nd1+FZ41se4Jnu0IlS0DWPYsOgnEU8Dnuim+y6Oh6wm03Qd5GHKFRYNxmNYIzbACS9U2XIPsJON+J\nKu8nqbct6XaNw26NPILL6yb36ttFhESjiCKKKGYR79geJIoooogiir+NCIlGEUUUUcwioh/RKKKI\nIopZRPQjGkUUUUQxi4h+RKOIIoooZhHRj2gUUUQRxSwi+hGNIoooophFtPVH9N5775UbbrhBVqxY\nITt37mznUFpx//33yw033CDXXXedPP300zI0NCQ33nijrFy5Um6//Xap149vF3Aio1qtyvLly+XX\nv/71STc2EZGNGzfKNddcI9dee61s3rz5pBljqVSSW2+9VW688UZZsWKFbNmyRfbs2SMrVqyQFStW\nyJo1a9oyLhGRvXv3yvLly2X9+vUiIm95zjZu3CjXXXedXH/99fLYY4+1dXw33XSTDAwMyE033SRj\nY2NtG99fj83Eli1bZNGiRa3XJ3RsYZvi+eefD2+++eYwDMNw37594Wc+85l2DaUVW7duDT//+c+H\nYRiGk5OT4cc+9rFw1apV4e9+97swDMPwO9/5Tvjzn/+8nUMMv/vd74bXXntt+Pjjj590Y5ucnAyv\nuOKKsFAohCMjI+Hq1atPmjE+8sgj4QMPPBCGYRgODw+HV155ZTgwMBDu2LEjDMMw/MpXvhJu3rz5\nXR9XqVQKBwYGwtWrV4ePPPJIGIbhMc9ZqVQKr7jiijCfz4eVSiW8+uqrw6mpqbaM78477wx/+9vf\nhmEYhuvXrw/Xrl3blvEda2xhGIbVajUcGBgIL7nkktbnTuTY2oZEt27dKsuXLxcRkYULF8rMzIwU\ni8V2DUdERD70oQ/JD37wAxERyeVyUqlU5Pnnn5dPfOITIiLy8Y9/XLZu3dq28b322muyb98+ufTS\nS0VETqqxieg1Xbp0qWQyGenr65N77rnnpBljV1eXTE+r+HU+n5fOzk45cuSIfOADH2jr2BKJhDz0\n0EPS19fXeu9Y52zHjh2yePFiyWaz4nmeXHjhhbJ9+/a2jG/NmjVy5ZVXisjR89qO8R1rbCIiDz74\noKxcuVISCBSd6LG17Ud0fHxcurq6Wq+7u7tby4J2hW3bkkpp7/WGDRvk7/7u76RSqbQuRk9PT1vH\nuHbtWlm1alXr9ck0NhGRw4cPS7ValS984QuycuVK2bp160kzxquvvloGBwfl8ssvl4GBAbnzzjsl\nl8u1/r9dY3McRzzPe9N7xzpn4+Pj0t3d3frMu/W8HGt8qVRKbNsW3/flF7/4hXzqU59qy/iONbYD\nBw7Inj175JOf/GTrvRM9trYKkPy/EZ5E3afPPPOMbNiwQX72s5/JFVdc0Xq/nWN84oknZMmSJXL6\n6acf8/9PlvM3PT0tP/zhD2VwcFA++9nPvmlc7Rzjb37zG5k7d648/PDDsmfPHrnlllskm82eFGN7\nu3ircbV7vL7vy5133ikXX3yxLF26VJ588sk3/X+7xnfffffJ6tWr3/Yz/7/H1rYf0b6+PhkfH2+9\nHh0dld7e3nYNpxVbtmyRBx98UH76059KNpuVVCol1WpVPM+TkZGRv1k6vFuxefNmOXTokGzevFmG\nh4clkUicNGMz0dPTIxdccIE4jiPz58+XdDottm2fFGPcvn27LFu2TEREzj33XKnVatJsHnVyPBnO\nn4ljXddjPS9Llixp2xjvuusuWbBggdx6660icuzn+d0e38jIiOzfv1/uuOOO1hgGBgbktttuO6Fj\na9ty/pJLLpGnnnpKRER2794tfX19kslk2jUcEREpFApy//33y49//GPp7FQR3o985COtcT799NPy\n0Y9+tC1j+/73vy+PP/64PProo3L99dfLl770pZNmbCaWLVsmzz33nARBIFNTU1Iul0+aMS5YsEB2\n7NghIiJHjhyRdDotCxculG3btrV9bH8dxzpn559/vrz00kuSz+elVCrJ9u3b5aKLLmrL+DZu3Cjx\neFy+/OUvt947GcbX398vzzzzjDz66KPy6KOPSl9fn6xfv/6Ej62tKk4PPPCAbNu2TSzLkjVr1si5\n557brqGIiMivfvUrWbdunZx55pmt9771rW/J6tWrpVarydy5c+W+++6T+DvwXTmRsW7dOpk3b54s\nW7ZMvva1r51UY/vlL38pGzZsEBGRL37xi7J48eKTYoylUknuvvtumZiYkGazKbfffrv09vbK17/+\ndQmCQM4//3y566673vVx7dq1S9auXStHjhwRx3Gkv79fHnjgAVm1atXfnLPf//738vDDD4tlWTIw\nMCDXXHNNW8Y3MTEhruu2QM/ChQvlG9/4xrs+vmONbd26dS0AdNlll8mmTZtERE7o2CIpvCiiiCKK\nWUTUsRRFFFFEMYuIfkSjiCKKKGYR0Y9oFFFEEcUsIvoRjSKKKKKYRUQ/olFEEUUUs4joRzSKKKKI\nYhYR/YhGEUUUUcwioh/RKKKIIopZxP8FmyTVXuMCCJYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ofIhwoKqmbdK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "It seems that filter 0 in layer `block3_conv1` is responsive to a polka dot pattern.\n", + "\n", + "Now the fun part: we can start visualising every single filter in every layer. For simplicity, we will only look at the first 64 filters in \n", + "each layer, and will only look at the first layer of each convolution block (block1_conv1, block2_conv1, block3_conv1, block4_conv1, \n", + "block5_conv1). We will arrange the outputs on a 8x8 grid of 64x64 filter patterns, with some black margins between each filter pattern." + ] + }, + { + "metadata": { + "id": "Ka2HqKCfmbdK", + "colab_type": "code", + "outputId": "54283b27-9891-4cf3-ca72-1a2093ea1e91", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 4522 + } + }, + "cell_type": "code", + "source": [ + "for layer_name in ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1']:\n", + " size = 64\n", + " margin = 5\n", + "\n", + " # This a empty (black) image where we will store our results.\n", + " results = np.zeros((8 * size + 7 * margin, 8 * size + 7 * margin, 3))\n", + "\n", + " for i in range(8): # iterate over the rows of our results grid\n", + " for j in range(8): # iterate over the columns of our results grid\n", + " # Generate the pattern for filter `i + (j * 8)` in `layer_name`\n", + " filter_img = generate_pattern(layer_name, i + (j * 8), size=size)\n", + "\n", + " # Put the result in the square `(i, j)` of the results grid\n", + " horizontal_start = i * size + i * margin\n", + " horizontal_end = horizontal_start + size\n", + " vertical_start = j * size + j * margin\n", + " vertical_end = vertical_start + size\n", + " results[horizontal_start: horizontal_end, vertical_start: vertical_end, :] = filter_img\n", + "\n", + " # Display the results grid\n", + " plt.figure(figsize=(20, 20))\n", + " plt.imshow(results)\n", + " plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAARhCAYAAACLezhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXmsbud13rf2+M1nuveeOw+cLkWR\nFCWKIiVRshwNdh0nStIkjgwUaAI0MZABThsncVQrLmBEjeOMdYAWaQrUaBvENRLHjq3Gsh0NtiZS\nskSKlzMv78Q7n3uGb9xz/3h+6zA0LOlcgCiTdK9/7j3ft7+93/3ud1h7Pc96VtA0TWOttdZaa621\n1lprrbXWWmuttdZaa639f2rhW92A1lprrbXWWmuttdZaa6211lprrbX/P1oblGmttdZaa6211lpr\nrbXWWmuttdZaewusDcq01lprrbXWWmuttdZaa6211lprrb0F1gZlWmuttdZaa6211lprrbXWWmut\ntdbeAmuDMq211lprrbXWWmuttdZaa6211lprb4G1QZnWWmuttdZaa6211lprrbXWWmuttbfA4jf7\nhJ/+9KftqaeesiAI7JOf/KS94x3veLMv0VprrbXWWmuttdZaa6211lprrbX2n7y9qUGZJ554ws6f\nP2+/+Iu/aK+88op98pOftF/8xV98My/RWmuttdZaa6211lprrbXWWmuttfafhb2p6Utf+cpX7KMf\n/aiZmd111122vb1tk8nkzbxEa6211lprrbXWWmuttdZaa6211tp/FvamMmVu3rxp999//+7fa2tr\nduPGDRsOh3/g8X/1r/9l+5t/7ZP2qb/xU2Zmtnr8oP4drZmZ2fZr183MLExrMzMbrqyr0enczMyq\nWWNmZjvbW2ZmtnFzbGZmveWemZn1V7tmZjZaWdXvdmjnto7b3Nw2M7OkW+g6TaTf7dtnZmaRH2f6\nN84Vw2oa/ZtEiU5YV2Zmljf6Nwp13aLS+VYOdHS86fjtDb/uyMzMlvf1zcwsDfX91vaGmZlNJzpu\nZW2/7n+o47c29f3mDd33cHXZzMwGHf2+2T8wM7POnPPdvG4ZfTQ6eljXXF2jzVP1ycWFmZllOzd1\nr4TrmlD/ycLSzMwOHzyqa450b9u31KnjmxnH63eLQMcv9dSW8ZaO239Yfft3f+7v2V7sp372J83M\nLAkCMzMrl3SdRZOrnQM962iqMRJ2Chrgz0Z/15X6LugqSJgV+l13qN8Vc42pKNINlPRdUOs+S64X\npXq2aan2TPrFG9pX5GrfyHTcNNDvggFjZ6LrNZH6p8/vmlLfh5HalQel/fif+u/s5//vf6zfRzNd\nJ1d/VqGe1yzR8YNa561j3Udd9jlOf4eFxmYS6/dZqOuGNfdV6d+8r3aHlb6vYrUz4bh8lpqZWZww\n1hsdn5uO66X0V6Z+yTo6T10xh0vNBWs0d8NAxzcF/UI/xXOd76f/4t+372V/95/8LfVRucM59XnR\n1/LWG3MvicZ6yb11YrWlrAPaqmeXMIRSNdEWrAsR87ke8izH6ts4VZ8ECXOlVN+EIfca6bpxwfyk\nfWmle2zok2zI7xa6TtYwJnnGvfnuD83MbN5RAzt8PmeM9iK1p6n1/YL1qZuoPxas+r0Zc6nL/YU6\nrmh0QIffJyVjK9RxVuv7sMt1GRthwbpX+zoY0Q+6j4DzVYzxLmM6n6lfklQdHzT6vjD9XcW6Tmr6\nfZYX9uf/q5+2X/jfNDb++k9qjnwv+5s//rO679jvS/tJQzuqCXM/UHuiPv3BeIhD9WvI2I0TtWux\n0FysWCvDmPuZ67g60PO3VHOvzFiruJ+I59E0mZWV5m3HdM6yw5gLdO0e60nB+lHl6vMubcp5VlXI\n2Ij0+xnzMRrqPDVjK2WdbPzZsvA3AW1f6O8oYP1hSOdzXSdlDtXMndlE5wu7+r5b8/tcf8/YHzqB\nfhczdia+7hQZ35fcP+vBVO0u+Tzv0V6eTS9h3ZnN+CCgvRpLn/of/xvbi/3L//Ov6n6+rvvffPRe\nMzO7GWn/vCf/lg78pnyK7eFpMzN78SUd//4/pf31c0+cNTOz5f59ur/1K2Zm9thZjbnwkO7z16tL\nZmb2A888bWZm/0/nA2Zm9idZR1/5vpfNzGz9VzUuvnjvIR1/UL5BuqP7vHJL5//Ef/vT9n/8r//a\ntl/TmLvnrnNmZna+924zM7v0NX1+sv+8mZkt3XnDzMy+WpwwM7Mjr10wM7NHTghc+/Jd6u/T09/S\ncV//ETMz+8gHf0XXb+4wM7OrX1C39Bbqr/F9nzEzs6NPJDb5+CkzMwv6GhuvPa9/0/439KPZO83M\n7OVTassPffEBMzNrVjUxvnb18zqX/ZCZmV3/Q59Vn7yg75cfOGJmZt/6xgtmZvZ9j33czMw+99uX\nzczs8Y58mvrhV83M7NcCjbXHz3zYzMwGJ75pZmZ/7i//nO3F/pf3/QMzMxs1ehadSu0YFEtmZjZP\nNVZ8neyw34Sx1pM60XFRwXqTyr/ssH7WPsfZBwyfo8LvDbb1d2dlh7/ZO9kPZqnO37AflHNNknjA\nerbQccOu5uB0rnYmjeaOz/2KPTthP6gSrV9Bxb6U6jnWub4v2V+jUu0e1DoeV8jqTGMp6+r4ONIY\nLubsewP244a1beK+Desu9xcmrHE5+0PEv1M/r19Q7chZiz72L95vX/6Tn7Wsp+PymX7Hdm5zfJE6\n0fWjud5bOh2db+ukxtGP/utP2PeyP/3I28zMrP+ixuRf/Wc/YWZmh05qvXj2uW+rrax3M/yybsG7\nBs8oixlTQ/mt6UJ9kUUaU92Ae8nUl31w9ojzjSPtI72YvXVH7woL417dL1vF2an0++25xk7C2B4t\n6/eLnL0+cP+YMT3XswqXeaaM3dTU3gKnx8dMOtEYKljPQ57xHKerCnXdpsde3Og+RgX+JPvJdsl7\nRlfPamyaE4OKsZLJ799e0/nWxrqPW/RTF9/H8Kebgg1uofsYsDcXvLuFrB2+n117+TkzM1s5pPv5\n6Kd+127Hfuaf/oyZmV28eU3X4/Omo/8tNWrPZK5xUfLcBwO1Y5Lr827F+w79kaWMj1LPeymoOC/9\nFKi9s1xz9pN/4a/Zz/2zv29x0rVF5c+exuDXlv5+yzvLgneWIMFvHuv7aqi29DO1Pci0rhRcuzvQ\n72cTrZMNe3nE+fwdLGRzT6a8s+B/d/u8s3V0rzu1rh/gXKz4gkMfbhd6lrW7OMzvgneXtNbfAddr\natY1XmbDQJ+vBRpLVxe8UzFW+zPGTkffpyvaqyfZtTf0l8FP6eYa65/+u3/wu03QNHhzb4J96lOf\nsg996EO7bJkf/dEftU9/+tN2xx13/IHHX7t6zQ4eOvhmXb611lprrbXWWmuttdZaa6211lpr7T8q\n+2v//V+3f/B3/mAQ4E1lyqyvr9vNmzd3/75+/bodOHDgOx7/T//R/2Q/87N/x378z/9ZMzM7fOik\nmZkN9ytQ88zvKQqZEe09NFTUrwbpXD2o41598RUdt6OIXH9NEbDDd95tZmYriSJTZ68Klbr5otCg\nTkcRrT6RvQDmy8oRIS+Ab3bt6mtmZlZO9X1Pp7M5Ue6mC6pIVLkXKUK4THS2G62YmdmFDT+P7ufO\n++40M7MwJcJW6jwvnxGKtQW75Z3vf9DMzBZzRe7OPqUoe0R70wO63xPHhHYNiUZPJ4pcXrp21rZf\nU0T17kfepWsS6b28ob4Ixwrj7RA13Leivi0KRVKTWH21dlxMl/V9Yto8/aVnzMxssq3oYe+A7vXg\nPlhK60IOt68JyQuHivz/zN/+lO3F/vbf03FZT9FKZ8okRC+DoZ55mSsamecgvwS8e43uM9jR5xlQ\nbwpjpuBvDwoHMG4GRMzzSufv9hXlncDgiCKiwiPaVejZBbEGRx90abHQ7zugVADgNieK24ftFQ4V\nnc4mRI3r1H72z/1D+6lf+HGdvwNThXZx25bDVshBjzoZaBmMmSTQmKlBKRNnezgK5wAJgfYocpSO\nsd2HGVOCpoFKWabfxwaDibEbOYrVBX6q1Y58oftNUtghLD0NDKUg0veQJKye6T7/4X8tdsN3s7/3\nT/+KmZmFPVCmEiZdrDFYmu4prUDbDQQQ9Kia6NrFSPfgKEvp7KlQjQq4pxrmRwUimIG6pKA+6Zyx\n48gez8QZLiFjZwbqE3ZAIuc8e55ZyDPvwHIoYCX42K8KjoexEYD25MyFhodbwxbo8iyaDHQNtIvb\nsxLGTQxVKIDJ40ydea1B1wMBXoA0NI6wFjBohmwrme6jAwOHpcUyULO+r5sz5gbsjqYPE9ERU55X\nXaodWVrZT/7ZX7Cf/Z9/zMzMfvIv/jPbi/2tHxc7r7il88XRKf3b5TnDRkl47pMShifjIp7AeKH9\nPRDlhsPoLmsCxjLtz+jvDghPlek5dWr6o6f7SheFZT1YTaBMC/a+PqjNvGEeA/sUPRgvsK3m3Gs3\nY/4yB4IOyGSptoW1zut7XrPQWDPGZlrCegIlq/zhgWrFU9a7HnMCOlEGWyhgTgzZq23KswTpa1hw\nMhBbg+HoqFINK7UHy2gOkycy9VXF3I15FgVMQe+XmrHfWdLvf+of/5jtxX7uL/1pMzNbbIkF8cwj\n6pe7vy2g6eAjYqnurKodzfRLuu5FtePCHeq3Dzpz83fELL34R9X/l0uNsXt62n++eUn76kNPy9cJ\n73mvmZk98ZyYOPsOwVRc0XnXT5zXfV/VmMrGz5qZ2fCOHzQzsx/7cz9i//yTf8au3KPrvga6F43F\n3Olu3KXfb22amdl9nWNmZlaeFqr36ob2/RR238FKyPPXj2mQB5/VcR+5k0F/l5hATyxeVH9c13N7\nyLe7Fw/a8iNXzczsq8+I8XsDjO7jQ/k/L3b+jZmZDb6scwWhWEMbp3SNW4HYN+llsYyiqfyi0yaf\n4sDBR83M7PlGjJdspPO8s6u++tpCfuW+Z+VXLT8uH2R1IX/sxkH5e3/5z/4N24v98/uFcK7c0BhZ\n3ZbPEw99P9Fc7MD8qCe+PsPILnimMJt3YFAuwe7aihyxhfm9ozGTM+ZT9s7pkvsi+DDM+XCm79M+\nc5Y9OXckmr09Gqh/S9b1eZd2TJmDIOMNiDAEP+uyP2aRfr/EurnF/lc7M6dgNYrkt3dD3z+0Bu3A\niq0S1kP2nyzWHO7xe/ftyh6sDvYZCEg2T+lnEPGkYJ+H2dPH1/lg9v32m91/b13YzTbW+SCfWMha\nuQIDNjDNzZg1Z+MRvT98+Mk/Zd/L/sJ7xEx77eu/Z2ZmP/zHlUFwx3v/kJmZfenXPqdrNGpzd4V7\nh8Fd40NE9H0XVtC0cRat/u7Td3mtMViG+K89/OQd/VuNuMmpfpd3YbbgG8U83CDSvyV+34w9fMD+\nkEW+zurZZzBrhuxDU16a0hDW7hTWKwzOEF+lhMFZVLDEWN/nAcx3/New0TNw5nUzwtea4gAH+j6g\nnXPoHUkEixmfIWQfyufqj3iZMQyTxmDm+P43mpM5wBirKn3e5+UvZ659/YtaYzTCzf6v5jL/O2x7\nsf/hl+Tf3ti4qHbd1HXKvtp1clVr08W5xl4Es7WzpLE6HDAuYK7ukN0RwmAqd3hfwD9P9qmlq8e1\nv1zYOGdmZj//Y//I/so/+VvWW0usmWlvqmOYZ/gWAWxZ94MnMM0SJmKQaUyk+2F2M7Y2L2mv6eJ7\n7LtXY3UMc27GOpfzd1AxP/Gvupu61xnrx5HDeq+/VhJrgDUcXNV5okD3OLpDsYf5Te0TtTOZ8fem\nmdoT885TEyfow/gpcfeMObV8XHvqzo6eucGgW5xTe3swOweHdf3rZMQEzva9CbNxCybPd7A3NSjz\n+OOP28///M/bJz7xCTtz5oytr69/x9QlM7PePih7I73oxyuk86zrNwNo6yVU6yaRw5BBe7xxWZ1t\n6Nb0BurUux8SHXZ5TQPv1mU9vKvnRI/tQAnfd1TfH7lPjkl3oL+XoARWpSbAJlS7Iakcxx/QhBt0\n1O6rEw26CgpawQTv4WwXOdQ7Xi72nxaF8cTd96h9m/rdZAwNnvtY5aXHU2a2t/VQG9bXfQRIVvZr\nEKRdDXZLtVBtXz6jf69VtrSitgxZ1DYvqy9GpDQ0pxTQsVtyeFYIpiRO7SfFY+2YHByDYrZ0Qs/s\neF+Lx5HjcrSSJfWdpwFt3VIfpQRJ9mr+XhRA6a0MejtBmhlBhoDTdnAs4rH+LYiCdHiZaNiUGhZ/\nc0oeATZ/CRkz0TtsInMWqi6bVcCLVsCqPSf1olvqPP6SEqSMpQkvJ9D2exXpR6RPOWV4QPAky3W9\nGY6ap6L55pPxElNAtWt4UW5IR4vZ9HJe+FPPKyMNrUN7FxMofARXAoJaCdTAnM0oYFGvmBuBv0CX\n0Fm70FRrfx7cby4HuENwL8hHtFPndSqzpeqPmOfpqYR7sU4CTTvn5Z/FMpkRjCFANg/1bFLoyx4c\nCAiWJDhvE+4t7WnwVTiHMX08w0lLSAnz1ImCPp+6Q5Axf2lf7n1SsaGynuQ5wRufGwEvzLzANQQO\nG38WNQ4bY7MuNVYixgLLlvVZPwto7MWMF0lSyioowSnpQzkOScACk0G3j3mZaHDAcoJbfebIgs27\n8ZQV/KU65n54GVhAykx2U2NoP3tUTKpMTcphGfqY1PUi5n7CfUTZ7W1fHjis+wTZCABEPKeAAOeM\ntWJQkl5FgCJm7M9HHiyCcs24CUhb67NWzRh3ZFga/qAN6N8x4ymYEbwJ4t2oSsMe1SdKOaGtsb9Q\n9QhuVqS+EaBzpxeWtRWFnrGnI/oQbNiLyIiwReQBNo5nQY0rT+kiEOW5d/w7IVgT5rp+Z8Qzp50z\nUvhC5runctSeKsBYDHjRajoay03MywnrUgfnnKFlKZ1ZstemzKUax69DgDLsfncH6PfbxZPax979\nwcfMzOyVryn94N6HAYh40f/qVxUIuPsuqMvzHzYzs+4rSpH57fVzZmZ24r/Q72/+lhzJeq6U7Mkf\nUr8uH3vIzMxuvaTzbp++ZWZmK5V8myMX1P6nDwoEqS/oPOtbXzMzszumb1fDH/gKd/Aj9o3xn7GT\nv/OEmZnNHtR5PjZVqs7WwS+bmdnXl/Q8pmM5ruW3tN/HG+r3u/6k2v3Vz6mfP3xG6RhfeERBnd9Y\nkv9w7CUBRPveDt1/SWP/d3P5Ce9ZP2GvfE3+zT3vk59yBOf6id9QEGUnVl9++MO6p8tPqU23XlNb\nHn1Ez/7Wy0+qracfNjOzr5Dus7RDqtij6vvLmdp680X16Qce0XmeHsrfuvra53XdB7W+f/Rzt7eO\nbJ5mX+mS6k0qd5oR5O6oLzLS05N9ePekNwW8fGwzZ5sG/5R9Jyd1rRqQXtpn/+iwHgPM1MzRcI25\nx1z3oEi2TOoDc7gb6KXlekK/4TcXXQ9CaO68tq7nUyfq9xH76oIUkzGA3mCqAOVkTf1YkBJBVpYl\npDqbaUwvdgBJBuqfKtL9TWlfdYQX8Epja7pgLQGwGZDCOCVN2Zb0uy0CiD1e/AvSq2yHoNU6L3lm\nVq7NbZMX9OGAl0xAkIb95/oIH4jfr9U6/zRIba924oeUatdf0ljevFeBwoMPaexGkeZzd6ExkpMW\ntERwuSGtBjfRir7WwSGpsasATzNPCfb4G//Gq+rLjKBHkLMJVa5L4IFBB3h0fI9gfcFeOyzx30gL\niiN/J8P/Z+8PGx3fB1DpVvqdkR4zz/FZlnmfmOuZ9hLdR2c25L51fE2Kc593vUmldxsyZaxDek5M\ne6f47Z0Zv/dNdxuwcJW9Hvi1t4VPQYpySQpK4kATc6dPPwTsl7MJUhNLBEO+qNR5hZ3NzF6127GY\nFMJsDT9+wj4Wq5/Sgx4Y0feTy5pzs4X6Y2lV74CzWut8Z4l9dab+XQMkWFzxQIT+7Scaf2v7R7tt\nKUaN9YPc0qHGbLOittyYap0IeAeMPWAWqS8WY97NCrXtQEfBi+1EfT/vqg+3xnq37Lhfe1DXHk/V\n9rgiSEzqXujBX1KSOwTcwnUHz/BBOK4gVbrT0fHLywDWPMMaAGiCv5f0Geusu1WPdZu084B1b3ld\nfZ2qqy3HL25mOn684n4ifc6cN9bbGH95nDJ4kb74TvamBmUefvhhu//+++0Tn/iEBUFgP/3TP/1m\nnr611lprrbXWWmuttdZaa6211lpr7T8be1ODMmZmP/ETP7HnYyc3hKC89poiZVOQ02xbkbeNHUXW\nTiBud+CEkI4UlH+2rYjVRRDJGPZEDLI8WFKE6tlv6/wRCPQxxLaO3nXczMyWjzgirmjk1edFJTt7\nTe3bvqS/U1g/x1OxQZzqNrumCGFNWtKBB4Rm9WjXDKrh2pqix73D0KCgsS42JvSH6LTzK7ruKjQo\np4/ee5eYQicPiwbcQzBp+zK0TZCUHulbs6dJs6hzO/o2IXIJSOoMdODI3eqDA7BtXvym+mwE+rFv\nvxg0NWk89ZKio9E2VNmJntWVW0I3yhnR1ENQyBCO3LwptCTaf3saQiFoiYtJ9UBpShDQHkjB3Cls\niDDNeDZdEIBF4RACbAJQFU8hcDrnAHTfaY4lKSZdUCQXNU1dDLTSs6sQ1s2gDQZQaBNonE7J7cB2\nqIjYD2GqLJwinLh4LFFfEOqMMZ84DOWIB4hBAuWvhgUCY9lCjs+gv4bQEhoUxULSA1wYGE1tK1KQ\nBp5nRf926e9ZF346iEYJu6FHCs4U6GYIs6cBdStg8lQulu2iYQj9GpRmH1d7sQx6ZRfK7tTHCOki\nsdMgZ0TKSTvqx54uBMJYq405z6Z2xkoIRRZ0KiDSHQBLOYIQwJxpuhxvsIPmsJGIzDvbKSeFIyFF\nZQryMCDdZ1a7oKGzl0DREDbjNnYprQWMlg5IgKdXBaxDZeCCaqTE9Bx5BIGFzRBz32XhguYgwaxj\n5s+esZBCl7ch7Ag/LndEQO0bQLWeky8VwbIoSaHJQVS6sCYyxKNT6KOLmjHJ80kSKEF7tIZ+TqFU\nd1JEv2GsdHkuvQiBZBR4PZUm7jPOSC0qEhfw5PwOyIJydivGeohAJukHxQLWYiT0MXP6b5JaA6Lo\naNEC1o13eYiI/II0yhD6ct2FOTOHyUejgsTZVaxb0NQj0GIXb3ZmSUCaYoHCYQDq3q08VY/zgEyO\n5v45qQZQgnuNiyKzfiC+F4BmWR8ksHZmC+g+z6ZyQV8XrwfZRU/YEtgJgYujsn4kpGwsFqyvtzdE\nLDgrJDubKx3noX1iznz9y181M7MjHxMzZf81MT/39YSKnVlSfz7+nJgwWaaU494RwWsvHCAN6pro\n7d2XT5mZ2Wv9c2ZmdviI2r9qSkfa/La+z1bFOFk6I9bHhT+iDjj1FTF5/vVHhNH+0W+yv/2I2Si9\nZMGGjnv3Vd3PF98lhszyzfeZmdnbu7q/Zy7K53h0oPNMc/k2S19ROw4lSqf63PdJ6PcHXvzj+t0t\nCPuPqZ3Hf1npGL++rP19Hcbkze1ft33vkw9xQLdqF4+ImXx6ILQ26P6OmZl9/ksaK/d+TKkf0wUT\naij/6nBXffrccfXFsSfxOR7U+WZn1dY1WO3jU3pWr17UB9mTSiVJP6hnMr8iv+nJvrOM9mbJAQ2q\n2TasVHyJ7WVE/Z0ZDSKcIxAeB2rvrKd1votvUFasm8ytiP2jHmpMbY3kB8fs3U7Dn3e0fiyRwnFj\n5umqsNFGOu8g1Dp3GZZuhKBlDot3B5ZbF5ZTvmAsDeSz3cIv9xSTGJ/gGqLhfdB3Q7A4HLFGwcZa\n4M8vs6+MV5yJAiLNOjtnf7X9+r4idS5Gmf7WkvqhDwtgan49xhrrcWeT1B720XEDg9zMqoOlhame\n24zLkZVhnQSW3pjUR1h6O7HGSz7eu/xmCnN45V6xtmYD+f6Xz2t96MDUqAONwQ4+xnbP1zX1QZf0\ny3gMW5Yxscme05+6HwtjkDTVeAd2LKkm3scWqA9T2Pe7/nFXfY3rZENzhqP7pZ7Sjbgpy/gObNFV\nUpDnfZgaiLvOIvcB2Idgm46c2bhAbDom3Yn9ZsoebEM9u6GzyGDPzhCjHeCH57A5lkn72YYVG64y\ntjPSchmD7r+GU95nSPE29o94ByY5qYER+1HcaMwVpMdyehu7/kGBmuse950u/Qox3RY8x2xDJ7zZ\n1T7TRxZie8b4wRcsRv5+45oaZAYwd+oVfb6xiQzDTbUv2dEcqtc6u20pZ1t2Y6OyY2tkXuD3uchy\nhd9bw8g2fPdqm3nDmF+CIVhMtU4HXnhmG19/S2P+wLo+35x49oQzcPDbeUmZw5Za3NAzWUr09/CI\n5lQYap26PNI9xqyPda6+y3bf1Uh9I9UuLL2IAu94+P9TqN5eJGEHMew+GTENPk8zhE1105mGsMjw\n60uySTIGx+AWc9pe7/M/yN7UktittdZaa6211lprrbXWWmuttdZaa63tzd50pszt2PSWosANOVde\n6mqBkNuB00KhDp0WehOjOzG+pMjcyhF9378pLZhqEzHZAZHzc4rUbbwmpsuIiF26rIhYAisippzb\npQ2hRWfPv2RmZtvXhWwcokLU+lEJzY1WFDk/96pQr8vPnDMzs/33Kd9630DHxyC9FeXVGqLWM1gm\nFTm9O4jE3gDJr0G21xE+PnVSDKHNi4oIblyXOO8qbBYvf7pzTVFcRx8PHxASdfjIITvwNqFV2+fU\n1i56DKv7KJE2VluvXtO5h4fUpyEMkq3riGHO1UcNbZ0jJLa1ITQro7zhQXWxzSmtt0P57pUjLom1\nN0uJbo5jtTPsUNbYdRxABlxzoICd0Gdol+iIxAjw1l4OmUi7wUZI+XceeNlKfR2g/+Fouet2WA9U\nDPHlAbohYYYoao9IP2hMt+sMGSLzaMTMuJ/KxeZcnNUZNSAOLiDsM3ZXdA8x2ArdkAA2QQDzJnQN\nHrQnogEiXk6zGLhWDGJXRK3LXSIM+Z8xmjuhszUQnS1cUBi0n/MFO2hCeLSd34UwARqoPBlIfjf0\nvG40fvYuKbMrTjcBKeyhbZK53o4jrqDuPSLa8xy2AShV6JotaLEE9FFBmcGIiHvC9wlInOv4RrCq\nIo5PvLw5kXmWA6udUuGd7I8WllSQe1lidIkYSzFjtOC81RQRbvp85mNrwvqCYG9DZH4EQ6YkN35K\nSewebKucdShHX6RL7iykDesAqpmOAAAgAElEQVSQ278AbeqhrZNznY6L6sGGckHKug9jD1TMEHt2\nVK5XwpLw0qoDLyVLf6EpE6MPFbgAMIK5ezUv31wx9mJQQheQnIPi9dBOSEDHFqwhJbnLriXja1PM\n+Mpg81UuqJmQI83zSNDvyvpe9lPfx84eySoLgcwWDJYGJsi8C7spQdh8DAI4Re8GUWlD/6By3aHY\nWT/kUcesn5TnTjN0JUBOQ9DqLvcwh7UUU649mbmQOOgRjLcC5l0ncDYQc4dn1EfYfIGIDVPHKsbC\ngj4KobbEmeNFfM4czRnrLlzhDEFfR9LaxzzrPcyavdrJ/OtmZnZmR3vt9kg+wPDjav/FX9UJVyWD\nYlvfEhJ+tJDmzGsfEKJ5tBYDZfsptesPP6j7vPyIWL/pb6j/Ps4c+SYstgdN2hMvvFPHP/iUSqze\nfFTP6Ye3JXr7Ul/n34/Y7M6110uxPnKqts/21a6PLUk0d/YbGmtP/QAlYRv5TvdfVZGEzT/2ITMz\nG13T8/mtJ8SIOVL+spmZPRDquq+9S6yW7S+IzXLsyr8zM7PFfgmZpg/oOW0+JX2YYvUeu4W23Vc3\npbfw+PiP6JjHVF78HAzig9vyc4oNtXmlqzZuPAtzJJN+TYnvUXR0fPCKfJUrkfy9H4rFNN5AQ+bJ\nL8rneFuHZ3lOTOm1dwj5vH7j23Y7NnNm5RAdp1AinAUofQhzMc4RekRJ1nWQvDRrturFAPT3HHZZ\nd8h6GcBegPE9nyFkGaO/xno444TRksbIolE7htDKbsReulo+WK+n7y/fQp8KhmSJ/lxJ0QGjAEWB\nRAJkvN3iB4OM9sE2yJm7PfaZHdgPo9h1U2CI+oZ5gL3eRVzXtt/Qfxur+nzQqN01DJgFWjILmJcl\na+YAxs8WLN8ZgsUR/WZmthFMrOeMUXy4HK2HwQR2IP2wgJURjV3IpLS92iKFqbIiH9y1T8YInsfo\nRjpDOMK/i/jdEF9iC5ZsB78tNK0vy+wL0x7FTTi+STQXDP8vQqsmY511Py3ZZi9dQsuLd4Z+qP1h\ni2c4ghUVofdZwATfgd26jK5RaW8sH+zaLF3888op2BBJSlincY5mS4iWouvN4QNM0LIZok3oOiBR\n4ZpqjJGh7jvj3XGZ9syYezOKFfQZg67MW9I+iJo2z9z3QysM/7dwLTT2vYgyzem9eifsPysGy8Z1\n6VshP/I9bYxPkcKuaNbxfa5qLmzw7ngYFoezdJeG7PtM1QZmfQ17r2YOrCRiepZD9ddr1zUXZvj5\nyaHX38e688LyG2bLByjp7Jp3qd5zG94tUhjiIQtXFKjvO+gLGf7qJiyuLuvCZAWBYN7j+7CRvK3o\n7VqH9SqkGIuXX78Fo+3Kjt5R1wdiSIbo6nSW0Zoy7XU3XZAJZgvJITaI9H5e4W/7mJnikyDrafPD\nznhXOzeZG5a6YDuMQ9YdW0MYHHZYyj5VbRLXYN0cDr/7O3DLlGmttdZaa6211lprrbXWWmuttdZa\newvsLWXK1OTIDpcVdTx2hxCM0QjVekJWXmb3lS8LQTl3SSjWoavKFZ5ti71Rg/R6md6bO6CGVNxZ\nPU6VJXJ4a+C6W6XOl10TkhLx+bF7T5mZ2dvfJlQIIMRKosEZjJUYBszRNUpsgfw+87wqGGy/cs7M\nXi/1mqPyHqC3QvDaZqjy95YV6Vs+Jb2XBu2Gs8/pfJduvGxmZnfcp3aFuSJ+Vy8oWrt8SFHl0RGx\nY65eOWvzJ76htuy4VomigzduKpJ/8zraKF6eNtDfc3R/zv6e+j6nfGJMZH1OWbSVfYqWnnxY6NT6\nfiF44xuKXk6o9rTa/87VuP5Ao+RqRdndYEr0kdzbLloo5poqhEMrqpc0VD0KvPQ0+YK7jBIi3zXl\ngin+YQ3IbgATxQr9m8BkWeQezeU6sBFK1Nwjwq6u+J2if5GjUt+Qb9ijjHpDJN6R6cQZKa5FQz73\nDMZKA6pfL5w9gVYM5Zr75IFXMGTC2Ks88bezGJw1APvAw7RxBH2D0tdduqFCW6dLIvYMbR9nEAVo\nwficDWAklXyfg9iEsES6E/LHqUJVglSk30Oh/D+0hGcRwEQoqIDVhQFSkuC7yL0ENdeIPJcVvSRK\nGXdAICOYIq5vEYD+R+Til4yFlD4N+F3pjAjyez09unRGIBoDFQr788bHKlU1yLfeHRu7WiSwumAL\nuAZOVVBqlAj9HE2CBEZO4GWN0TgwdIT65FFnsB0Cqj+VICQRYygaggyD5vTJsZ1Q9aJDpZwCJIGp\nYxXrsGXOmoLN4GwoqDALZ5akrvGjMbOg/8NGk7LPQjlHeycK957jb2aWz70sFIgNjKdu5uXs1X5H\ndL0yg1c7STvOpGINijw3GZSK/nWtoQkaEUNYLF5cyyvV1szxHFZMP22s5t4jL0HP+pMzFrzsrbOn\nQnLlDXZljYZLQ2UTn3dDxoI/69g1agpfP0H9YZkWlEDtASHOqJaReTlZJykN0I5iLBaMrQiqW0JF\ngtLZVDB8MsZCH6hv2sDsocJKBevIKzLEvmeTS5/S3jnPsgZhrThPSWnxqr69an/JYx8wM7P33hLT\nY2tJVYluXRAT9KX3U3Fn7T1mZnYXZY/Pj9QhWy/q+0PXpeFWPS72xgsbVC98QYyThIpr2xtP6f7v\nErNls2YPv0f76CsmNsfs1J/Q9Qsd/+qWNGGO7hNS+7WH5dv8eTP77RdGduBtYgd//tkPmpnZ97Ge\nf+vSr5qZ2Q8D1n2Rteb7ttSfXziq/To9LJ9q8xLaCUflc5x5QVWm/lhP5aU/exfs3L766yP7/qiZ\nmf3OAfku1eUrFjyqsfngGfVtekPz+cqLD5iZ2XpPjBl7B1p8rIPFy2rb6gExUa5De7r+JOv6x6QR\n8/ZfE1J68z36/Bub8nsOvqj5eRdo+YlUTOabaAO+cE7afMce0Odm/9L2Ygu5TBbAsPMqP0iaWHBd\n578W6z5T1otmGS0rCIMZY3oFCkq3AyMGdqwdhLkIC2xWwQKAVTqeuD4cCCz7UbGj626tMCfmQtvL\nNfZ65nb3FAykCYsBmmCZs9LwebqsOVtLVI7cVnt38H2SdVi2U11n6tX9FuqHugvTBY2ICF8uQROy\nCwtjG8Q5Xqdf2Rfn+DQ7INjhSGO0D4EldO1GKgllkeZqsA1bos+GZGbNgQ0rqc5YTdCYgBnp+4L7\nWhXVsXxttXTvGHazrT5chbW7TaXWipLFDaybmPKiDZtCyDtABfupl6EpA8szdMbNrn6c+m6HsRiF\nY36vZz/q6PsMfbMk9/LssADw951ZPUazbIl3mKiHPtBCfT6CeVniZ2foyWXL7i/ihzsV0vX26OsF\n70rLvF9MR/7OhgYZeiR9qkbNM3RDAs8uYF+AxTym/HHI8SGaNiFOV7gJwxNNm0WMz+QsKtgYQ9he\nU6rGOvs4dbYFa0/ujHokaAYHtD/UpnX78gsae3s1bt+2eEcNXAvzGJXTuM/rF9Bs28Ln2K9+ifEh\nInSt8iVYGduaY9u30DAb8j6zpud1HT2mQ7deF7+Z25L14tkuEw5pLAsajdEhtP851OkYnZrwFpUV\nD4qVY7B/+l33NXSiNUplF7vvu2hEeWHaVaoMFxprHXyZmgVzcIf+zZ9jfbym9/Z9a3eob1ao+DXV\ndbdh8lWwgqot/XvPIXQwyRK55tXnYD7PeReKkaLKcdxmU3wi3ulKdDZ9fU5z9emUDJiFeSVZKkHy\ncjVgTH8na5kyrbXWWmuttdZaa6211lprrbXWWmtvgb2lTJmQ6O6+niJg+w4KuRhvKdJ09mWhMflM\nEarNGyhRg4JFntsGs2R9QMUfKC1jkNUR0O2xk0JEhuS2eV3xtFTE7uYtqnFc1fnXyXVe3q8o6vmX\nVZHg2iuKiG1cVnR0gBp/b6TrZ2gQTKnKtDVVxG6woqhqEikq6mrWASjm8jIRQapHJURNL7ysvO/t\nmc5zz33KO7/rHariNL4Oe4Vo874Dypm78apQunNPn7fhUcE7+9eVIOzaL86AuPe4znXssJC3g8cU\nJjx7TijVYgNF6v3APLB8ltAmWDmsax4+pmfYEE0d31AfTAPPH1Q0dK/mzz4C3WgaV39XdHPhyAIR\n/QGI4JwKAj1QG2chxTBUOo1rD8CUgb1UpWjXgAhURE87IA/TvsZCh+ho7do6sZ5Nj0h8A6pee3sc\n1QE9T0DE877a7dHYDvdVwrwhzdzyBbmiVFXx+1qQk5uSh+lSLDXofwWCazCKgsLzsJlDIMwx7Idd\nRXWi2RVaFlkOoj4gr5KKQmGA1hD5lUntbA/X9CEvlX723N0uFShyIvxF/sbqL3mwd+2hRehK/Dwj\nmCjNwjVjuCidWcAs6zKmcthAPa8g4ywhNFC6zNdsRN60swrQtXCtkcCfAXoYFetax3Na0R2qSJ4t\nmP9VCTrDs2+872AXpK5BwNyJQVUKmEBhos+LGciFM/AYs7GzJ2CGFAiAVDALA1CgHuyGqlE7cpgi\nffLKp7CtMkft6O+sdH0lxghVlSLXIXJWFxUR4t0KDTqfa/zUCWww2HcR7Q9AKDP0nYIcBk3/9rav\n/kAIyWQOusSaUMKEinieKfopdaa1II+dFgKzBpZDxVpSwESK0Y2KqIQQ0y8la0KMfsA8pUoXaGMv\n03HjsDRzvYMUBX/Q4h6VomYgjg2oun+fMgcMpssMuIW0aZuynpBav5sPXXGdBn0Gb1PJM/TB538O\nyKWv6TMnohTmbDLGGsirgTrlrqvT1e8LdI0iZ8x4UbmC9YWqFJGPUdar3coG7AMRrIGer9fMrQ7r\nduIo+B7t8s0vmZnZU3foPt5HFblL58W+eNfyF8zM7LUnft3MzL4ca1/9/v1q32iqMfOZB6VT8kEQ\n5jHnOX6H0MRXA7Fsr8II+vCrp8zMbPvoOd3H+d/W75ZUZeltz+m+XrxTOnPvfUDr41MXqFwZndi9\nh0n6pC2+LZ9m+F4xc4qO7muQip0SfFED48ZpMW6u7TxjZmaPgqS/cEP7/8WhfKbliQbO4REVLlf0\nnB6g/wfHJbITn9c4u2tbTJlzo5G904RkXn9V99Q9rApQJ98thsyVzz+ue7gh/+reQ+qz7evyX5bO\nPmJmZl/vyzc5/RH1YUI1jsvHxeY9ikaWs2F3zunZHBrAgDygPn/6BR3/jnfq+Oef3LbbsQHMwRlV\n1SpndIPWBzAIhwsfq3pWHfTjJmN03br6/tKU/QiWlx10hqL+LGGaVOwLMzQWilW1O4atcAvGTWfo\ncxomzBLaCWM9q+uw7FgqbHKYipkTWLZM9gV+di+SH1xGVFkZqZ1jqCrOxOzij9dUuTPWpATGSV7C\nqqrkn8eHQcZZ/+KR7meO9lvE3N1cpXpJ4ewIKmyu6j6G0P7G7D8rHOck6mxL/Wdmlg1fZ6ZPYO2O\nHNGeaNyFCI6krCndHOYAjNq9WMVvp/gAPdde6emhRu4zUHFwDjOlgIIRoB3WiWE4oN1nzhzpu9Yf\n+hx8XcNeWmLvXbB+djJ00uiTCJ9kvqtjB+ORQedaijtUvhl0Yamij9HAJOnDJuix7he8u0xgSPdd\n5w79nsj1hPCze5XOH6EdVqPPtoUO0epQ3+ewNRYlGo+wzJK+xmSHPTdA47Jgf+jgf7qGYceZ53w/\noZqUwZawyFmusJFnVICEDZzA/PGqq+lI2R23TAzG8QWtLXu1Gj2jOWys3QqNXf5mnIw31A+ps7fw\naRPWgpD3h+4SfvN12GysiYePor+6z8efPr9ZTnfbklhlwf5lMzJXZlSLa2pnb6EDBMN7BuO5Yr73\nJ2rTRgcNJ/ydbXyNTt+Z6mrz9qusu+grrQ+0rldUio0b1jHm6cT9YWSTLm1qXjcXpK/WO4ROE/5b\nZ0d9OJ6zbm3iZ6IT1F9XXy0zBzZhPnedHAXDJuVdL+N3JUzOOKWC5DrvfK65mKnfEtobwHqboo2Y\n9b57FkDLlGmttdZaa6211lprrbXWWmuttdZaewvsLWXK9EdiVwzupYLARJGz574m/ZMplXv6K4ru\nJSDbBw7p7wMnlEedwl4IUyJYREFvXlMka3m/wrm9I0JOPC9vZ6yctIZoZIbS9ZwKFiXI6Zknlbv8\nwnPKq06orrKyrOijV9lYgJjUqLZXsBJWVhSRO4SmTUmUdQXdlRTF9Oy68tFvzsUucfbBFN2AKSrw\nCZV7Lj4tlCyA7jJYFkvl1ZfFbrn57Dnd39Ds+DqCOOhOTIkadmABLVNtaXZGOYhPPyWW0vYlcsxJ\nmD50h/K+Dx/TPTn6PVxRX1y7JjbTleelQXP9kthEDVWNwtsrmGI5keAeke4yVN/PqBiQUommIfJb\noeLeIYd04vl+BbmzsAHyCFSqBqVxAhBMjQxkM3LVdRDsOKRaCRBx00UnhKpCQYlmDQhJBWOoaTzC\nrXbMicS7ZkNF5Z8GRCIgXopEgwU0sEcYt+H+YqKzDWMlCGCwgP50GMsNbA/XL+m71Djp1pnnvaPV\nk6Jh4YoMrr2TcJ+ORIS5V+4BQQe5cQS9h0ZMCWoWDdGAcGCCA0MQjQjEoDvZe7w4jF1HA10gurqm\nGlAKWj+lulvfyUNUQggH5MqicdUvYLqBKKbkfccwbAqqbxRot3TQWQp2K36BCDDXgtRZSeqDuSOi\ntKtPXnAGut+AbhWMrQQEc8DYqajQEOVvZOp0QOdCmDdeYCuAqZIz1iPa1cCQ6VNFpACZAAix2DUK\n+l5diUg//RczN8LUq6Ho8xAW2oLqTF6NYwZJLpxREQH0KUXN3stTBeT0x7vt9LFI/4BWZXsHLs3M\nrAKRbkLtOz5OMqptWONzT5bDHkm96ghzp/x9WjYpWgQZHbPgb6/qVLKPxSDjlrkGBf2JtlEvTi2K\nQPbm+jekclex6HKMTlHTRwEMxJJ1OHc2Uo91xVmXVEpwdlJB5acuY6dmjIQgcY7KN65B0B3TDlB1\n142YoxvBwh72dI9eySpwbSyQ2jL03Hnug/Y6PFSCKCesCzWDKmv8fhlrnDcpvOIMyDG6TTVaNU1y\ne0yZbiTth/3nNbieOqjKj3ff0P2/+pj2P7tDvsQHX1XVpei0GC1fNDFpTv2KzvO5RPviyan25s/e\nI5/j+y/Akni/5vTXH9R+OX1G7f3Io9KC+fWpqkEdPvReMzN78atil4wKtevUPXoOFy+/snsP77n+\ngL1yP/veU980M7P6A/Jt3vWrsC72awx+dPGDZmbWf16fX/0jYpPc/EGt5x84D1J/QeeJQUdvHNMD\n++bZB83M7LGD0rC5Euv32/c+bGZmx65et+oF/fa5A6fMzGxsqth0tvwhMzMrHxdb54Nflu/xpZMa\nE0vpD5iZWbj4TTMzW9svXZ0dqjk98LQYOE9+SFp7jzwlH2b9XYzV0+rLi/9ez+DAKc37P3xaaPbX\nl9T2Ufak3Y41MCtDEM8FFR+HlWsmaGxepbpIL5VP5FX8QvzE3HWfHFFlfaxgiJSuzZX6dfldqGcV\ns/+4LkdKZZYt9DdSzh9Q3aRwltxY7XXEugGZLldgDoJwFyZWxmSVNQhNhoJlLAbVT2F4j9dgXcxh\nUuKzNe6z4Z/3mLOTsdaIPto3E9qRoq+yARtvxFpX7IeJxHWbHfn1i5jPR7rfCftGvaM1KaGfzMy2\nD0zN0NRxfbwYncLInJWNFtxV+cxzfKFZufe1JGB9DNGhWDjDGzbtokHvAg2VFXTXdlZgHpdeQQpN\nP5gm8SpafbCO8kB9UFWueYjfuYVuzoA9DCZFBkMmwRfqbMMmgJXVo2JOtquFiP4GfzdL6A7xbuO6\nPx32B/cvB6XaMcPvq6EtLfc19jbZA1dKaA+wcl0XcAXRsmam+5viE63gW2VopHSoULagCmGNlkyE\nT1PDwIkZSzOaPXDtRpyABXM3cU2cDmMG9lYA9TSkClaAVtuREytcR3bx8u2x7jL6pRdr7av9RQQG\nT8cpqgd4DmgxbvDuWqDhGOIjpbCKi2X0CjmPa8+ka7z/wCIpp//BC1mY26LbsRmMuCljtMvYKeiT\naKo2Li9p0BSr+Pg9Mk0qGISp5kuP6kVdKujm6CS5n5q5Bg0M6ouXYG7jGpxg3a4rraP5CqzgnOrF\nO+rz4Ujv0wFaXhH6nctrXAfm8uWbOs+pg+rT4RBNq9L9Y/dn8d/w2wsqljWwe3OvegdrOcFfHDMH\nCh8ztNOlqeLud9e5a5kyrbXWWmuttdZaa6211lprrbXWWmtvgb2lTJml/YoJjYhAv/K0mCg98hXv\nfETVhYYoYldUbliijnpGlG9ylUpCU0UbJ6S0bV0Tk+TY3UKVorEidi8/K3Trynnlog2JBs8WilKv\nrYEirqp7plQQuueE8qQPnhRCkwzRmgA5WQUxzshDDEiULz1P1LUsDh3j/hXZ6xL1PvuyctEWsDpm\nICYDWCb7jyii1z0gBOP6VVVI2DdUrvV0Q6yUF18VctRBE+HEyaM2z716B3mzVAMqyVm9el4I1xO/\n+1Wd84A0Zu68QyhTJ6aiwb3qy3yG0v5E95rNdd7rLwmxu35erJ/eis6/tE/IYu/w7SGXHVCn8QAd\nCKKO/UZjYNF1JJb4YuglTvgTpMHRmob7DkZ6FjHVf8LU9TGozEP+36x8o35Rh4j0nJzPCJRsEbs2\nC/nV5lWsQF08H5MqSTHPuAb176BTsoCdkIAahQPGAir5/dwhZa8ypf7oUQGorLyykKLEkVeGIVod\nNIxFUPtqDmUFZNyrLSXoiniVrRkshgokouqS00pForBydA61/sARcHJwQa8MVsDCKzCAIBm6KF2Q\ngWxANHwPlqJLM6fKTR8tEgps2XSmex0Ak8wYOwnJ5R00QhY+RrjH3oSKM6A9PSLgIahOCfLpQy8o\nYFeRl9wgMz9Br6cbwaRjrHVh2JVUtwhh6jT0XVJT+QbUbVh6+2AxkPPfYRmfc3wCFahgTGVE9Dsg\ngWHkKBhsBzRaaq+ohU5UQqWHonHBD69Y4JUjULWn8pkjshmIrusyzRlrcemVg0A6p45qea4uc5uh\niJSNDWGyTCaaawMYkwHPYa9WsJ6GEdW2qOLkvJcg1vdTKpbFwRsZTym5ybFXU4IdtkhBUBjrcReU\nizx3V+ev51RZgUGTM2cjmI9VFFrt12TMlDD3Kphqht5RQPWKCGZgtFupyittoUXDPRUxCGzoemqw\nejhvN6AvYC11YPdkaBfYTHtPA3On8faN0DECTc5ZT5A7sqYLsw7KnwN/zlarnflDRbMQlC2utZ+U\nfN6Yjw21c8YcKWuvwufV42AIUekli2+Pmhneqb3d5/T6L8tXOPV2XfeFDSG7Dz8vbZcrMyGWwQX1\nw+QOfX53pb357UfUT8+OhKi+t5LPcXah8z36slix6+/Q/V19j/rvc09pv1x9pzRgvv2szn9fV3v/\ny/e9ZGZm83Oq2vTuSyd37+HppU372KrO+5Wzuv5nnhRz5YPMwRePymcYR2IBd8/BxAEFfd9AzJ0v\n3K3+/UgjJtClO8WIufHLmoMfea/u/4Wx2nG20X2ufln7/wOn1+x310CxqQpUXZdv8X3Pfln3sK57\nWrv+Dv19/+fNzOyOsXRu6vvle/S/LfbuM7C91varj5fOqqrTlVXp5szO6Xp3HNDYudaRb3PwJojv\ndTGJLzfS+Pv+D+xdv8zMbAemS38GjTV1nSfWu4wKKSsgyKDyJVVE6tQrK2qOjRzV576mjfzZHnt1\nwhxeRG9keOSg/AnMjwLG52iHOQfboGCsLZnmFARGmyxRlYnqhINaz6GB8ddlb04yPbdyqB/O8QVK\n1xnp41NWrh3DfnaECp1s5dEMxg2Vh0IqN2Zo0jSxswFYW2BlbcNIilgsKvz1Hgwer+zjuiQurBc6\nIbV4HZnO+pmNO6475ZXmYB2z7+1cZ3z586lco3Jse7UOfVTYGytBNrwLlCvo1dHH2wmM9IJqSfgQ\nSz2h+hVMmkXiOmxahypYRznrZgdfZcI6H/IsJyPd65BnMcNB7gRoldBn0yXQf5gpJczwZMu1bnQ/\nS9C3FjB4qh2NnSV0k+ZUnOmx9883dZ260XEJ/uMYDZk+2pFT2MCDAZU0Ybd2Bk7DxW+MNGfzbf3b\ngy1Ve3FAfMCS/bDAp+uyD5Y5fioVv0ZeEY39b4BW4yKXj1a5H40mzgimzk10SfxFerZ5e5oyXa/M\nCbPU2dQZvkqEzl6Exlr3KMxRfLaU/c/1TmYLjZfQuTuwtP09piDrwisb2fB11u/wcN+qsLYZ/miS\neFYBfhbvLAW6b8kqZehi/xyGdEKFQq8Mi19U7uBHM++bEWwvfj+dat0LS7IRtvAPIVN5n1/hvXuV\ne3ItFwvRH4LavJudwMNZ4O9miZ7RBtXhbI7PRRXTiPuqZjDw8D/38fkcfbxdFtauNiHPiu5K8bMX\n3P/u+0Px3auGtkyZ1lprrbXWWmuttdZaa6211lprrbW3wN5SpowR5bt8SeyKa+Rx3/NOISknTyov\n+/nnlHM821A0ubmKjgb5mlcvCQkpUDAfLOl3J08JYTlO/fSLF3Sdsy8KZeougQ56HmRP0eAl1Kf7\nS4rorZ94yMzMRgOizyCc42tipoREgzdgyFw5d9bMzG5dUUSxu6zocGdF7TpOBaScPMenn1H7L79E\ntYGDVO/oSNk7XRL6dBTUcv+SUK5gVe1Y7+u8Zy6KGWQg0Ct36T72v+2wDUc6BpDAFmgHjGCg3Jrr\n3EcfeLuZmd19WijSIFYfXHpJ0c8XzghZ27iMDkcJOkPFm2tTRSFP3qc2nnpAbKed69e5/u1VX5qj\nTt5B4bsh0XAao8dBXHE6cG0EEFNYCx10GxzF9+pDBTBKQQWVuvJ8Qv28pIJWCOIQockygbUUzF3V\nXVHQQeE17mkPCeJDz1/2/ERYGSVaBwl5j677kcBwyUDnI9eG4b4XU9ffQEcJZH1Gf8SgarMJGhSw\nAnKYUgaa58IgOdVXApAAQD/LczRiQL1i2B0VWg+I+1sMEl7RzilVrAaxVxdAzwWljpDKNzUoWw6z\nKCXqPOf3npe+F9tFDWr/T5kAACAASURBVIho15nr5/A5uZ5zrwwFmypEN2gXwZyrr6au+UIAvgFd\nmDsLK4f5ARrTp9MC2FEZg6hmfevBmHONqACWQQYcnwKXNIwRm8OuYmx7NSi/vt9fRASe27IALZNg\nwdiE5BDHLopCfzla4iwmhEoymB0dqocEsMX8PAnr6wzEkvR4y0EIUhCAhnbEaPzUhY9ljoft1Rui\nyQDrI2FdncLqGsLemroaf981G3hu0++OOPx+86obEeMi8SpVsDwCr8oE28LndsG6Hjl6BxJSwf6I\nyUfPEUoqeU554ueDldgBYSmcxgf6xaI8zrpesMRCUO4SJlqPc8b0jQviTGALxYzZDmOsydCbgFHS\nhcE2Yx1zdmoWuZ4afQPKFLs+G0zDmmogcyek1OgsgWyGaMrErA8lukIBY2II+2iKHkTpmlXsqSnr\ngFeumdNHIetwwrrg1URS0PUCdlnN+kh6utVo7aS3qWF2x2d0g5snXzUzs2v/pXyIzQ2d6MA2Okgr\nv2JmZqN7tK+uDrXnT0AsT2yofz7fSEvmPXeIxVFU2hf7l/X9zkndx3O/yfp5j9giHz6q+/+Vz8Pm\nfe+7zMzsxYuaKw+/QOWJ/WJ9TO5/YPceHv9A3578NTFYxu/V9bsz9f+ZjpD4wSVVj3pkR/33bx/7\nDTMze+eZ95uZ2VPx/WZmdvchMW5uLuTDnEJv4MKjGutPl/JRHrymz6905Sc8OHIWxGX7aKjqSr98\n5xf13VWxen6pJ3/noXXNs28F0ooJruicO4X8tpc78peuv8sFIaRJM/xtMY3vewiNvmvqg7NTaRDM\n1+U3HknVly/2z5mZ2faynuEDM+nzfOG5nt2OjaiqNGc9cEaH6+VFyzA/YKgk7vKw/gSwUQP2VK8o\nE4w0+busjwWVdBo0znx/6bOeBOh/II1mMXocJYzMAEZljYZhES7xLz7VlP3FNVTwmfI+rIs5+kMw\nU9Ih2ipj1gh8oxJfJMfX6eG7ZJXGyDCEYbOmzxMDKd9xVjOsktrXEj6mf0LYfDkdOMjUrrnJL+5S\nESyfUVUKJs4EJuTugm1mSa+0IhPinfbxGW/xHNBYG+IT72SaKzUM97jZ++tSwV4yYB4EW+wBXTRK\ntpw1xR7CqSv2jIR1txrpWUygGw1gQTWwk7wyjTOnEzS/EnR4soH+Xp3q+jNoqAMqNZZdqiDhq8xg\ng1YDmDTofjiVxBneJdonEYzLcqj21GifZcto1qBd6OfzCpQlrISVjp5hybPuw1wvqca54N2ptwMj\nHb85hnI5g2mesF9twcBZg6XR4MS5v7lY+P2pH4b4LhlVB/szfLMAXRTYUTF7dWheMUzn2Z/RfvWS\njZ2qs1eDNZfD2uoyBkNnOzNFnFVcsu+77tMWbI79PbXjOhpyTQODflv9tXJU/TruU+E41LtiM3t9\nTM+q3II0sSrSGt7kzoLnPbl09jpZCg3aMKyHziBedSYfrKOF62ri5y7w3wI0aaKF7nk7Z70JYTFR\nSWtnS+yf0T61PRyLIdkMYTiimznGPzTGTgffwLUSV9GUXazqOhns23hHY7HBQ11m3djYVh8N6PPB\nMusBzPDxBusl1Z0PU4rs8qbedSP8/pgxNt+tGtoyZVprrbXWWmuttdZaa6211lprrbXW/qOzt5Qp\nMwepTokwDcgdm4HkPvukkI5XvyUEpSEema4KIYmpXnL8xCkzM1u+S5ov+4gSNwNFWT0tfvJ1adYc\nJ5/64ENCpepNFMHJET6wTxG4A8d1XAWKd/OK0Kdrl5RnfvmSNGAOnBBaFs8VQbv6svKuU6LD99yr\n8+w/puNK7u/sK8qRvvItoWw1SP+wR/4+agch+eibTwm9uxgqklnC+rgKMr9zVSyV4bIikIdhCh1c\nP7qrL1EU5PuB3tzcUGT1xk3Q8VuKvJ57Xp02nur47U1FKyPQmKPcS79Q22ZbuvbRVaFUJw7fZWZm\nU9gHNy/oPHbw9oZcHz2NHVBt1yDoEylfUFFmMFdfT0gT9JHtTJIeehkZDKGCakO9ISgNlVxS+rwi\nZzYdoW1AInbqiASwGIQZm6J1MADtmY2JdJPvGBMldSZOBOo1z3X9HtHYkGokzmIonZwx13U7jR5c\nTpQ6AYHOXIuCfMcK9G1egzij4TIiv53gtwUT8iDJPa26IDcl+eWgbqQO23gZBhIaNznVoDrQKYo+\nOc1o94QwbVKiy80yKCGIhME2yUy/78NgqsK9syBSqhRV9KUzOwLyajPYWUP6qKR6UYaORpcx1KUC\nVMg6M6uAPiv0bmjSzKss9YiUg6ANYCGk5OuWoEwLRyZLZ9aAOMLgKWGS+NgqQCQTmIAD0I+MfOZ0\nAHsBHZ9ggpYMedcLmDQp1ylhS8TAcV5Jq4o8Pxl0h/4rvZoV2gkp1TrKHowf+tGrLxVAwTnrmmv6\nTCgfEkSOhOoyCf1bw8yJodxk9H9KNTmvrlRzfAyGkPscHdwepgBYZmMq+pToGzlzZsHi0g1c3Z8K\nEvyd0v8Fv3Mu14JqJ6FrFfHcKkDGkOoqpEJbAMOmzLwqlhat4aC2ObpHIToT0dSrKIE+sSCkzphx\nZko5pW1q1QDdmmbulQSE9vZA6evojToMEbo3OetozfENzL0YFKnHWKwFMu3q7lSsZzXz1qvdGQy9\nAvZRHLCO9jxP3dd12oGGVZGAYjl5DF2JEYzCKfoUziarYQ/0uW4OY/H1yl57s3/7Ee3tH2Pwff53\n5VO8D8T2pRvyRXprGpMHOtKgufic2K5XlsXW+LfNOTMz+8FTQs0uLFTp564DT5mZ2ddOyIcZbn3c\nzMzeA9r3715B82VFLI67GSMXu9LLO3ZAPsD2RfXj5W1dv3n366XIfu/qAXvofrVz37bG4me35LtU\nK2KhPPSo2Ceb31A/f2iuv5tNsYh3VBjJmltCJTcua5/v/yvN2Yf/uKpDJWfU3gvbGh/31OqHF0+K\nBXPsyKOWRdKG6fyOzvGlj8mv6z6rZ/T0i+rLd90vRs2Nu3/NzMwOf1Z99/IhjckDL4nF+1j4ITMz\n++KDYvEc/5b26GcOwHA+oHu/cyyW7nOb6rsjJ8XQeTR8Vn36kM73J7blu/wL25vNYIF10dzqg6oX\nffZe2FTdIXpLC/lzJfpvBXO5dG2Bnnwul3eoOloP+ogTOAM8wQdZLNjn0F0b4BtlsHBj2BFTfL7h\nQr9zFkYP5LjE90nQHixhrFglNkcDmy1Dz8L9W99X5ujOLfk6xjrubOEUPacC2TrD9xqzL46GsHUR\nfwuopNOwBvj6GTjbrYtu0wLWRozPik9qMHoK9oc+7Lpx9LrPOR31LACpjzdgIcPq7eOvz9HuWcPn\nsp6v9HPbq8X0wRytlApWezmGqcbYSCZaV6a+PoZeLQnGg+tcwJbfZctOda8163kf36KO1Yexszyn\nuvdb+BZdWLjjVHv2iot/sZ4u+DxB0G1G9kAzd+0ZXhxy/GnW90Gpd6aGCl7xptozQzdv1KD3MVY7\nVoa678256wvBsF7BX9Trhi1WYWhCBw5gdlfuHPDMmgQdJ/bHrY7aPaA6UdDz/QUfD92UirHgFYK2\nYYGkrMdOLC+HMJ74XWp6jluwgRmqFi5uj3WX8w7n7KySaodV7HpO6LrAtkigO1f4bDPXeYFRVbpG\nJP79zlWd/8YNrZW9g+rnGdqZ7iubqWJsaYnVrG99r9TIOtFDc2m2hb+Mnxnga2xtUm0u8mpM7mvo\nIkNYYVNzBrH6MMX3CLnX7goVdGFQuv8V8W7To2JZAUsshKkcTLW+1jCut2+5P67rrh8R83KK/zzB\nL9u5yXnQ0JnAturkVEudwQo+wJghThDS180Uhrn7KKuaq8WWjsthqnd5t5nChvpO1jJlWmuttdZa\na6211lprrbXWWmuttdbeAntLmTJ9ImZdVJVPSMbEKtD58U1Folb3K6oaLyv8d/i00J7VgX7Xo376\nBCRz47yQmJ1C+dYZWjTXrylae/f9QqmWAl3nDFWMHAEenFJDamJWty4JSXnpVaFIG7A+urAtMpCR\nnBy4GLTy9AP3mJnZcW5sMtH9bk8UtbxwDsYL0dpTh4VWxfvEQunCrpjPlVd+Ce2csND14nUQD8DA\ndEnR6hF5rCl6H02c2vlvipVzgb4ZgVhWoBnzqdpeop+wllNZgD442FNfH7lPyOHa3bq3hlzP69uK\nQh5bV95eQNWkc0+rEtT5i7qHfUcO2u1YQc5oigr8nLExAw2J0G7JYMIgPWNdNGSm3F82V7Qzjfy+\n9HlFnnJCHnJJZyL7YQWR9b7n3Dau7QBjhhzfquPVnYgWh47Ge2UdItPOShiha0H7F41XM3K0BxSJ\nfkw4Xwy7rEAbgIC+9WFpzGEQDWBFZPy+D8NmSgel6JkMYORUVFXJAE4WsAH6oGvlbh57zPfcJ2yH\nWcernsCsyRRlbsjBzZ0mUKFnAjLiFYoSjw9zvXDxOvL7vawhZ7Xs6zcd0AaknozUUmtcR4Mc9wgW\nj3mFGxgtc6eROeLHM6/hRoQo/dsMBg1I5Zx52em4bhA6SGi8lFQuqGlvD0bNHDQqd0EMZ6AwxmvY\nEF7do4YhaLCRavPKO45+oM/hFRj4PA/fWJVpyHUCWBMJOhwz0LIIJCDn78arNHEfBQhpyN8J2jwF\nFSW8ElCfMVFUrofiwkVcH8SlC2OlgplUg8Sm7A8d/nYRne789ravBkQnAYKNch/LsDboh8wronnR\nKTTH5pSoqFkja3KYA5iZIWtLCVMoBN2Kc+1PJWhcAXOpIr++jw5MVeUW8IxjmG5pB50iUBuDOVjR\nB4nr9aAdlTliyrNkaNmCHPuIPbdGtyKCAjcHMutQxSjmusZcWcCeyjlPmJKHPQFqAx1rOq5NQDUJ\n2J+Vr9egRDWIp82ZK4Gz2kAi+2gQ0PepaxeADMY+h6HS1HPaC8vM88qj+vZwpxMbYpfWF7QH//BM\nvsNnJr9pZmb33qnzn7tTFX+untEz74207z0ooo099zFVI7pwiYqR9S+Zmdm1M9o3i7t1nytb58zM\n7JsPqb3vPiWW7YHndN1zrJcfe0H9/Pyyqh+eu0NMmvd9A127Iz4X/pINL/yWffukKjwe2ob5ePpu\nMzN7z79HHwko9cpEx60+pus/u6bj3vnbOtt1KkWuc70zV8Q2Wf+yfKLHl6TTt4rPc+m41sbFis53\n5luvWnxU97KWyM86/NV7zczsgUNs1mv3mZnZxnm1bWVDPkb9Q1Sv+DJjJJYmzUs84/ecFSJ569Qj\nasO2/L1HMyp99fUwvv9hXfd3X0ZjoFAlqodf0xz5zMaK3Y41sENjr4Do6yhjdeTV4/AZ8saFotI3\n/L5bOpsMlim+QgeE2pnTGchwiLZM5PXiuF4G06WhskzFes+ybPMVqpT4GgBbN/UCiSDYY+4nyvEv\nvcIZbFzIHJagLxWzXk+hkEIStiXWzzm+kVFlJYDF0EfHZA5zplPKLy96rPuJM1lhadC/rlcSwrLz\n/aKhvzqg/1NYdxCGLIYtbGYWVwtLYKHUMGhC+r3Sa4YFVK4z2uF6LQHn34ulOB2V6+6gWZiEzurV\ncTWaYIWvx1QtmtO2gbN3xzAD8Rcr/MwMFmm+5LpA6Pt0nO1AtU80uEp0zwL+ncNKCvg+hnGS4D82\naKREMJljfI1iSZ0Vstc3VFarGZND9qkFbOJJrneTobmfqPsfOWOcd7csUfuLwFmssHpx5jr4MF3e\nmXLaV7GeBbCbvYphMYCFi9+dDL2yoh7AgqqCQexVl9gPA6+opuNTnkvJO9+CEr9eGdL5MWVKhbM9\nWslcmTgb1983qEpVwyILeR4djss7MEP5vGCf6nsVp7VTOu+mdFG2cn2/P9C+VtDuvlcoMrPQGgsX\npY0CrYfTbb2nBjBORqel9RquiMbkz6yCkbZKtkAMYzuHQd0U7AlUOTL3CXKvaMs6UzrLFwb4XdKQ\nuXVLGSnZGJYw8zuJ1M4x5084r1fZTCash/gITco7E1WWSyrndo96BUfWYdhkU9oz4h2xTxmoPhUn\n60zfz69Io+bqFbIlThCvIGtgxphxPb81f7n8DtYyZVprrbXWWmuttdZaa6211lprrbXW3gJ7S5ky\nV68p4nXleTFQGtCxClX5U/cJlTl0XEjK5lVF7gZUKekvKbJ15VUhITsoh2+cV/705kwRrOGybvPI\nUTFWRsfF6rhy5Zza8bLytE8/phzkZKSI2ILo79kX9f38sq7fIb/+1H3KEz9wRMffuHqOGyPit6br\n3bilyNq5M9KO2Z6DNOeKOB46rN8P9yuKOQYN9Ch72FWUOe2I4XP8bdKoOXJaqJ5nqHVAnBvyEQd9\n/W57mtmtW2pbvkmO5qqieWtEvA+fFtLXDRBl6ei4zVvqA2dMdFd1Tq+5fuZlPbuE6OQUls6N18SM\nuXFeUc51ntXyOiVt9mgJEeqmUGQ4gSlSmTMtPM+ZaCSaBg193CPSXe4ireTMghjPyEf26koJNecD\nor0RCGxFYvMSaE+5i76APIAqLWZ8DmoVo+FSw2DJdtFzEGAi36XTOWD2dKjwE4E2RQPyNyELBCDa\nHXKHZwuQDK8ogBZFBCxWEp3tkfc9o4pUStUqoz0liEmX8wZUVMhhzhj5mj2vfgKy3SMqngGnFX2v\n1qRx1Ict4tetYSuE6JTMiZY3XjGpUVR7L1bCLkhARyLQgpJqEqVrkSCEEYD6dD0kHcLKQS+jQy65\n6ydVMVoA5JqnXi2Dii9ekcYGRNABBFzZvs8znYG+hOTkN7Cfkrki9g25rs0MLRf0iHJYUy6z48yX\nBTm2Mervu2MeVhOyP9arvdoUSAY5szWDqZrQDkflQKk6UEUaZ4yAdDhDJhuhfzTzdYo5RrtTKhRk\nPa/OBKuC62eB55PzvGB9RTCXYlCuBNZUHTrC4pUIvntu7u+3EgQ0oJLFYhdAZW4sYBKxhs0rZ6FQ\nCcOrD8RefQtmDc8jBSkyNB8yxmXQjLkvEFoGXhqBBGde5SCwEP2yKnWmB0gZlUwiUPWcqnQ9WEz1\nRH3u8gkFWl4JbKo+TIaSdbuiik4MwpiAWEYjWEE+3dH3CWG0WOSoOJoBjM2I6zgC2uV6Ccho5loz\nzJW6fGM+esic8opXxrofOBrHIOywDjUw/hal+mfkTB3PuQfdnzurbY92+Ks6/+rHnzYzs2+DQEYj\n+QbjQJ8vPyUfY/BO6ZVsj9XO88fE4n33tlito/PSkFm7V/c32Sdf5kgkzZVv3JCP8/6+GCfJU/Ip\nnt+Rr7A5e8zMzPYn/8rMzKZDsTw+cljXD6/JJymf+ujuPYyv/DF7rPOEmZl9bVOMnWMv6LiXTqn9\np/ZJT2X5FflI038jhk7/I+rHF9+hzz/2e+rHL71d+nunH9d9vbxzzszMPret+77//WrP1W9RsfKq\nfJ/O4x07nuv/Xzr8HjMze9tV+QS9kVi7l+Zi+9zkXHGkNtdTsZOmue65WFMFqoNLX9e5l6Rb190n\njZh3R/I5vvQZXWdr7RtmZnbonHyWB1dhA71Pz2TrJf3+5CPSGrT/3fZkCWOxhGUaQHsIvFoSTERI\nAtbAmJmz3g4m7HUgqF4daMHvYq8gCdu0N9NcH7s/OIKlUHkVOXwXWMRTmJhD9JTGrrXmVZpYz3em\naPD0aS9rRxb5foPvAUMnHejzHa+Uxv3vamuh9VIN8W+pStUFUc6dZUyVJK9aWrIO5vh4WUcbwXBM\n9ZYlKDoakpb2YIO4jt2Y9RU2buK+zEDfh/nrrNtoUlnO+t/Bc5525PsmGzpuALNxE59pH8zNgipW\ne7EJ7ktn5gxBdNjQEZrH9H2utq/08UepytSHfTmu0M8YqC9XeaeZdfTO0GNPClg/JyFsM55KuUy1\noYkzd6h441perLM5VTurW1QrXYX16VqLqZcQU/tz9DsM/3W+pPMt71ApcglmJQzwsEL/h6pHOazU\nZglmNct0hV/bxa+e43/HMN8j9POmbBP+HuDs49WunmkOmzWgH2r635lIrvtXw2au2D/iLns4WkDO\nWCmcBYI/m/AelPM8nfvQD13Uco/GWBu4GCasuoLqVovCWV8wgtAbta72pYB9dHrTNSfVnvW7eV5H\nNbazUB28NXGmPHP1dRKZVTszC9LUbIDPcQ3/+QZ9cYx5NdTYmy/0Xhyhc7QBk2WVzhgtq4+ulBqz\n/ZQxxr3kPOusj37ldY2RbKzrnDyuPsn3616LLfx3qjO5fk7DmC/xOVz3x6jq2U3RlsX3uQxju8M7\nTF34O5F+Vifay7qsq1u8V1+5cs7MzBas88kqvtF1GOaZ3uf3z/T9Rh+2Gu++MfpG01mrKdNaa621\n1lprrbXWWmuttdZaa6219h+dvaVMmXqsXNJbO/p3ifIYEcmgc9DBrZuKQF28JpTmWE+MkYBo8Qsv\nS22/WynHbLiCijo15k/fLURk/cgpMzObUvllWinf7vQDqmDw9pNCubZv6Xrnz4gFcvOW8qdj4qH3\nPywk58g79LvZa4qsZdcVCTt6UkycffsV0XvmJbX70uVzZmZ2z/2q0DDqCEHqoZWT7ocxY2p3PCQ6\nPFPE7eRJRT1Hx5Vr1wsUgVsUiiTeuCWNmq0d1LJLRTLDbt96I+UD3vOI/j16l7RduqiXJ1Siee1Z\n3fP5q1v0KZVD7lUf7l8Wm+fKq0LWXvuGNGO6h8Xe2SoVnbz1nPK7B8d1/KE15YlnO17rfm82c3gn\ndZQFNKkLyhx6bizVkqgilLmqPNUnIqKrceyaJVQ3QQeipupICCOlR/7wnKhoPYUZgj5GFKPhgNZC\nd44aPii4K4kb+h4GKuaVZJrZG6smDb36EWyKnLzpYER+JRWEclgWA9CvxW6FF6ovkV9dekI1iEhO\nvmUXRCEGAc89PAyCEaPNE4J8B+QkJ+iJeO7tHCZPz6tNUdGoCxNohmZNF62LhnYnmd8H7ALQqICl\nKIW1MgC534uVsHmS/5e99/rS67quPdfJX6wqFHIGSDCLFINEipRMJStYlu1r2feOHveOHqP/tu7n\ne91KlpWTSVFizgkEkYiMSl8+sR/mbxVMd1suPKEfzn4Bqur7ztl7nx3W2XOuOUHdcxDCApQ9cdcf\nrxvP0K1d5mhLdejMSceV/GG0MDfc8aYBGQgZczVoSbrtZACCiap8MEcTpQcToyEnFmS0HqA5AnoT\n4XwTgF6FaAFAxrJ57do1+nkGYhrzjEmBtx7srgBKSA5DpQT9aWAnuVL/bIIbB1N0whwIYD2lkbPV\nOOmfwHai3VWoL7rmTQXTKIPdFtJvI1yZhvTnfAEyAxOpk2hOjnPPK1c/lIn+7SKGkC3+Dcyzg+KO\nFL4C1bC2MhDhGeMnmrvbAHpJsOeGjhayJozJSY4L1yjiuiSYd2EcNYyjCd9LmaML1q4603X7RWAR\nYy+mj8buDAYTrWCdCGCsLcihdx2jbbc3cs0j12YK3cWBOUFdp1Q6gU01K8nPhqk2N9dJcxYaY9aZ\nk6BPzp7qkONf07axRxisXzVWLDHrZkw2fgk63wXRLF2rCkebAMS0Lj3H3l3rdL0J7NoMBNr1Luqp\n+2LsrLxyTHv1tfPSUhkdkF5Jas+bmdnmq0Ld7j6imOCDn6uefz1X7PCrRmyNN3ep3s1dT5qZ2V6Q\nzPvO/cLMzD75i++YmdlC8ir263flUFR+4SEzM3sabbGtfxGL472XpSWzcfD/NjOz4egfzczshRPq\nr88//iNa8D8sOvG8/fHCM2Zm9lnYe6dxHForv2BmZvfyPE58TWySi2saF0f+oJhkHZbCmb9XrLH1\nT6rfZ0Pt54PHtM8fToVmfv8l1e/oVKzlfQfUj1fOz20EK+fJN9ibjyne61dyURqVqvupgfrqjVNi\n+Zz7V/Xt7q/hqPWrn5mZ2T1z6d788HHFQ3/xOmzZp3AD+obm5f04U51GT+Ly/eqLh3E7GyWKl6Ir\nT9F3/5ftpJTMhdANBF1qBFcht43LWQ+7sM9CdwZzNqupHjXaZgFjNoL1O2Iu9WGUDIhbx+5Cwno1\nhWXrLNMEL5gx7lD9iPUf2kOwAtMlJ3aCwefs3b5rgMHGKxdaCwi9rIMuCsunTdBkWQKlR87JQtZp\n35+W3fUEZlGffhotEdNtqT6dQgi7DWBX0K8p7weurePM1QHr9MbEWbbqjwwnySp0Lo9Z3Im3GUWd\nLWIONCNswO9DxdN0n5XLIOLBbTjrTF1PQnVbcs0/GCLuRpl6mFOojytihIVrmkAP6s7Uhi307gK0\nuXIY4B2u04v1DtSgjxcv1KY1brNKbOBOYOEW6zoxUxW4EJHW0YQxXLKHz9k9lwk+NtBAGRLvbaFJ\nAynKVmDArK/wTGFWJuhvbvHsfF/rETsUQxgkG6rfiPizJFYL/ZlWGkNLPfoHtl0d4ZjDGM6393r0\nmhoc02Ca9FgjqoyYi/qP+2yUrjMEKzleh6FE/d2XK5rvXHfIzCyiXlvEVGnkcxvWHa52C2K5QU3c\nDQucKW91o+d5nQe9ckPX2bdH4+EabJBRsckX0OiJbrmclr3Qskli9RCHLtimHSb09JrmRaejawaM\nkZz10CJde8QzHmSu8ci7hWsyjVTppd3aW3q8M12AMZ71ndWvjyfEFsY6WobeJ8RCU+JCYoKg5+9q\naKqyLM8JbLulntYU/aXUbVV9LrJ+1HvRmnEdPNj9/u40R9euXGYOEhNt0W7jvR3CvHVh6C/qP+8I\n2TJl2tKWtrSlLW1pS1va0pa2tKUtbWlLW+5AuaNMmRLU/fApmCqPiEFSc+K1eVG5xhcuCn3pgFQO\nAyEkBQhDwmlqmSlXOR+RPwnyG8VyNVqD8XL6I+Vr5xucsuIYtFYq7/rMh2J/XDujvO+jDwqZObRX\nKNKeo2KZjC7rem88/4qZmS1A62J8yq+i/txNdWL36MPKFz/4iBwYSpDyeY76/MJdVDw3WceeH59T\n+69e0M8HXLX+Lp2pffK6mEKX6acczZ2Dx4TeHd/btQK04sY1nagur+rn8SX12ZlPxHyZcY2y0dDY\n95By4Jd2q+05PfXuVwAAIABJREFUiOqVc2f1edD5/T20U3D/WD6iPj/1mFCymrzEzfmfPyX89yX0\nBGg0E5wF0N1CzwEWQ3eJfMQZuhV92AZ4zycgzhb4aat+jjlGDUCopzmOXpyqhqD0oavAx644jrZK\n6BoGoIDk3DYwYhLQnAZ0yRBnDxFfSNCraBAmyTkN7qAyn6DjMYM90EmEAEzRNQpAECKcHIIINfkF\nuaMc8M9AOObuIMNc6vG9EMZKkXouKwgC9c7JA03Ira3JB512YBdsM3J0vx4aOtMuJ/JcLwARqUFW\n4j7sA+7fTNCVqm+pwv9npdP1QaG6ev52BPtnTv5zWDvTA3cH7p0xNJrUnV1AY+izBjQoIpd+4qwt\n8ql75Po3I07qYXQkaJJAlDA3gon9RN5Rn0LrUAoLYM6JeolGDOCNVZX+3oHtkDNHhzAypiASoaND\nrC8pyEXGuuF9nfU01iewrhwwjGD+hFBoWE6sQvW+cKYKeklFwpzIHbaBYQPaF9NOZ+Z0YZiUIBUA\ntdadwVQKXLvFMQMQYFxVFqA+Ft3eWlI546jHOGCMLRibNWyUiLk2L5zdpt+PWPuiCdpCVC8I3TmC\nX8zIo8fZIun4WkS/FiArOCcF9OO8u9h2cClxROmO0TdiEMxZP/vskXmhznOtpgQHsgI0uGLQVejg\nDNlzF/w9gP2ZOFIau3uRIM5+qDbMGmeducsH9XLnKXLtK+oR+kJA2zowWuYVqFblLhzoKVG/BUht\n2Tjbk3rCunL3EHfZWwxwmhky11iHA9bvKGLy7LDsu6hY4NEjL5qZ2bl10POOGKY1zJarr4pJ89Sx\nP5qZ2Rv3S1vmkYuKLf547rtmZrZ/6U0zM7t7pjH0i6+rv76wpd9HODSc2dD1849e1X3flC5K9IQY\nKitD/fzEm2Kg/mRJeixfgA3yA/srMzP738zsxDy1WazY6cojYp30Doq9+5mtE2Zm9vs3pFGTXxU7\n5av3CsmuntV4OP0uWmC1GEKHv6j6v3adcfiy9vcXl/jcHjFpr1Ri+979oBg+xbncVk+KkdIcVozx\na5zDvlRoXb58WpoxDehzfUl1fXSv9HaGa783M7O379F68XqjTTTcUh8895Se/dI/6/eTwxpT95z8\nqpmZlY9o7Dwequ/qf1W8tW8qxnX2RcV9Oy0VzMNFpPt5EF3Eqv+wwUEGnTdnfPdxNfIYaca67cyU\neYc9E0S5Zv3cZnayjrrTmgs/DXBynLvMx1D/6U5wckRfKu6iu7SlZzlgnXZmacn+NybIWgZArmGv\n5jByuqDyW9AJ+tuMT9ylxsxJ2pPQX80mzB1HjGEMudtRg8Onz+2c/cHYH6fEJj13ICIGy2EXdIj1\nMt9vWbfdMdPMbJI0FhRinxRdjfkMZuQuXP7cCSl21gJr3nhbvfE/L66RVRMPFrjc9Tb0TMaBxmgR\n6J7uANVP9POCOvWJ/xqYhQ26GYb+WQXDZgH1sYfG34xnnVUuCIc+BuvrAPZBtOx7Lm6c6OeEsO+d\nRVy7FiLagBswMIfEm2FP+0VNjJISm0wjOCSwxKYTWFnoCA2naFzC3nI9vQJ2RtD4+gvTE7ZXTX/0\nCaY2CF5ciTD2uJv9csCz9rFSu15ThH4czytLtDZkMI4mE/Zs3FULWNkl33N6rO8y7kK605IR2yzV\nn9YPrWFTh7BWEjQsOzgObWK76vp3MQyskNjkxkd6V1wpYGkfpT28FzQEde70ZmbWjVKzjlk9VpuW\nDrjraI97usMTbPeOs3Bh7wzQpuKeBdfxOHpz3fWN1OZjPTJFYCO5jGQ+V9tvjnQ/H8INTJXUYw76\natzRe/j2e7O7WTafZuV20BMNyDDJcJErK9zr0KDpcsNmyDsJDPoR6zjhvRUwaGI0Y2re5VzXqXan\nWVjNJazVeOvPO8u2TJm2tKUtbWlLW9rSlra0pS1taUtb2tKWO1DuKFNmeEAnXQf2CiXKOjphW5/p\nlK9a0tHZUU7gDhwSGpNzwr95UehUiOPLGvmB/d1Cuw4f1XVXj+i6772pz187IzbIyYfFgDHQu7Nv\nKw96A/ZIr6uTtbtO6L67Dus659+S7sq7Z8/q6zjdLB85RLuUdz7IXBVa37vBKezaq8rvdnX66UQn\nfRlnZE4mcbeVGsaNA9qDE0Kprl4UAnX5huoboe1w38MP8q/at3ZhYTcuC3HbuKrTwCHMkS1Q3elE\np5K7eCaDvdKAOYFuzsZ13evca6r7Na5z4KTQpvueENq1yelmmpEjO9PP730sNs/yIeWk77TUMDWy\nhXvao2EAWyCCtRCB7iSwAozTzxptlhAW0zj2k23YCGSDum5I0nVdDF0mhK2wcAYIJ/KluSsUOaYD\n1xmBkYIzj6Ug1mNHsjlh53NTULMu2jKpM3qo3xz0qUfy6Nx0ytoFsXAqDOC7NWhMRJwOL3ArSUt3\nQMBZgdPoGXnUGSyFhrzIFM2YgDG8TYHx1Fo/TSY3N4Q5U4NweKZqAsPJ8zznIAt9UK45+itdnHTy\nGuQFB4adlAKUIIH102zr9ujvA9wapgVoFd8rcWFYkFMag/iV5IM3uDEFIKA1TJDG1d/Js3Znr9BR\neag3MRYMcZeKgCAucIVY0PYM9lNIhRNq2IB+FTB1SjRqnLET4VpUwGzpJrhJ1C6iQ04wDgMTNHAy\nUJ45jgiOFgXuZsHYcRbDrILxwXbRgR1WhNQHZDFkLKQZ2gkwGSvcsKZo2mTuNObPmDkQ9EADQdt6\nPJ8ZufxRqjUnZRDOa7e92lmpKsezYFHwvCsYTT0YPO6ktkidBeL57jBaYMSUrq3DOIhmjix5Pr7+\nPod9kqCR4yzEGN2UnDWns2hsAQqUwSYo0FUw9CR6PFtPcY8Yaw2IHl1kJc5YQQxajgNYxcyMYbQ0\nuD1UIKcpe6s7EtSstxl7K1InlnkaNi4XrtnlMj+hz6k57mqsHxHoVR7qgwEuU+kIZy/cJXow8PIc\nRBAEeIBD48IffePtwZmLZzAHCexEt6dhdunIWTMzu7Lxd2ZmNhn8xszMbjyv/tp/UJos933xf5mZ\n2f/80Vd0n+Fvdf9z0lb59okfm5nZTzf/XvXbJf26U68pNmlA0c4ffdfMzJ46oP3zg1AuT/le7ZcP\nv6H+uD4Tuv/rvvLwk28oVvllLDelIz8T48X+u9nF5UP2+LOqd/w7PbAfgzSfvPCvqv/Jb5iZ2Znn\n9NyunRIb5fxNPfddu9Xvn/z4s2Zmlu1VDPQ4DhLnvycmzLGrYgzdyN4zM7OPQD9XX1J7kuF79tIN\ntXnX2+qDh3Eo+T1MmV3PoEHwa13r48+LRZRsaswtPa/5dPc/KCa5NhP75zNvKg666/eKQZ7/GxDZ\n+ISZmb38khjPj8MS+PExMbGf2tD9Lj9E3PbCzl11zG7tTSkUyAVuTK7X5s5mGev4gnWygbmZwFyZ\nudsQqLiPiQymY4OTYzhwGyeQWpDpgnU9GbEu92AS4uTiGl7ZUD9vEUfaEq4kW6DvriEzY42gnpt8\nPMFGKnC9J9egARG2mbvK6f4R7I+po/tL7GNbsA4i10pjjSJGClwLDkYr24KxLVmATl8DG4Ft5hZb\nz50dYWWMXdtt+ZbORzYZmKEHGMKyM3RV5sRUUeHsQc2dWY/Ys7tznTtLNV+bQAwFZ6lOTHqVQ9yJ\npjAhC/piCTelGiZEEOr71QDNQcZOho5ZsuyfU5/PcTyMPAbAfWjF98qexsKCudXMXWNFfb6BU1U3\n1X2TRu2Y99iDYQ3EuHYWIY44EQ436P24W2dG/NhlrIz92cNyDWlvAqsr4PcVjHUL9P4wXai/lmFH\nrKd6l5o0qmeMq1DuuoEs+x302hKYnITZNoOVFcOYaYhLp8ylFAbOAEb7hP2qyxjNXY4v/nfuS+nt\nxSSla9ngXFnBQolg0S420STiPSXW8m/JqtbUYAELl7HZOU6c/zGMWFh3+4g98tj1VnB080lmZs0s\nsjILzYdOF1Z8tYssiFRsqAyXsiOr6vuCzl5j799yJjAaMd2h9rAxDJGQeenx+QIdnG6GjtAQxjjx\noDvXNud1PaarHb0XpnktdubkJu9ysWcFoFuHe9Jate4tNTOzknecCmpeyvwPzXVD9ekUJv5N2GsB\n78xdZzDiSheMyN7wjB60sgqyIIoZTJp/0+f/X6VlyrSlLW1pS1va0pa2tKUtbWlLW9rSlrbcgXJH\nmTIriU64xmtirrz4if5djMQcWV4Vq6LGTP36JTkFJJy8bVzVKeoYNkM30wnbnoMnzMxs/106Fa5c\n9XlNp7679ssp6G40XkaXheC8+ZqQlXRF992zisvJkk6+NkFYzr+nvPEuKs0HH1Lu8wI2QzoHsVjo\n9Hg0VnuuvCx0aQGC0TugY8/Mc3s5Te+BrJRQZardqsf9uEcdf1io1UevCWXzHNy7H1XC+6lHpQNz\n7YJONj948Q82QZn+yBEhWXZAbTxOAu6UXMlhV3128OjRT/XN6y+o7rOFntGhB9XmEyekj4Nwv3U9\nDxp0+fo7cqMor6qSS3fdHlMmAd0uQKcDTq5r/o1Td9fgZBl0uocqe8mJ/YwTc9d/CDh9TUBaZ6BQ\nriHj7IjCnCHC/UBhGtyJQo7eF46SD3GBcp0SxkQX9kENMh0zpkNXlQcZNjRxQi7g2jPu+FNPyYGl\nPu784zmlDdovYax6J6Wf5IO4DzgNpl+bnBxZ0HrXoFnA9CmmnlNLPTnBL2ArdNCoMJyDFu4CxZSr\nYO6kSJAHfVC5ISwT9EMKXJkaEJX5bYBSHZxZKjRBEnP3C/oOVKCzbUsEWkD+cgRjJAepDPv6ewYT\nYg7DpPBcVPo8ql1TBZSeXP9uoDlUDkAGcDqZBhpjPdCcOX0RkLOeJziKoZvR5cx8Qa6swUZyFMwZ\nHJ63viD/O0EV3p20prDAXEumpr7mbCWQxy46IU4LA1Sz+QREFuTQoRRnZzlM1IGhVHMd1ydqyLVN\nYHuEAc8YLR4fW3PYGu6c41o1EWMkgjEzRYshvc3tq+F6ObnOBooX089jGDwxVhYVOcMNTg8Fa0mH\nPPDa68OY7dK/OWsQAK4VrunDbQv0tyrXTfE5OEi2ITjPnU+gnrhif0DbS2fowdKq0E0oAtccQGeI\n+deFLZbXrmWlvbMhCz/HLanL911HomQMeV50k3Md2uyMmwpGCvimLdCCyaivsT51YA2NWffc+aSi\nb7ssJ5U7lzF2uhVoHaymAAZPwDq/AE0vWb/7II5Z6r4YOyt/hRZDb0VMmMkf1e6TgRijP7/v52Zm\n9uHz2sce/ZZYs2+/KjekT26+YGZm11NpwDz62X8yM7O9UzFsrmEp8e4xab48cF6TbAaKt3tFf39v\nTfvvJ7HYvR89rfZ8ebdclZpLr5uZ2emLcoK8ONyz3YbBpVfs2lT78+CQYoGVPylWuJTo53MdMW2+\neL9ilJfI69/1p6+YmVl1Uv3wzce1/7+wEDL9h/VfqZ9+gfvTX0onZmyKcYY/E8Pnp08LyX3k6iEr\nayGq7x5+TPc8Ly2Yxx8Rk/nVWM9o7z+orZ/b0LM93hVj5p8/VozxzMbvzMwsuqkxeOOoNPO+f0zX\n+9aLeiYvXoRZeFhx2pkrYsh8+0diCV34umKgJ19U/Bnueddup/SJCUpYt+EAZJZ4MMBdJGVvTGAX\nzIlDB32cYWr1aY2DC8uCLWCeWKC/N+zVGet8BNo9QYOwZG0YsE4lXcV9E2KFAFbsMhpqzYT9hzk2\nd/06d0uCkh3GWhu6IxilK7BwYfqlruvUEVsixk3KmHMhNnRF44wY4lsc1ea0M0K/qoumWoHmW4Jj\n46JkTg/U7tEIXSnEHbbZAkusUTj7JH3X3bul85H0ChuB0A/Zd4Nd9MtFZ/ESU8KEWqa9G7ABd1S4\n9/Km3jk20c/pJ+rTddeP5KFnMA7nrqXnTG1YtoFr1CBktjCPBWAowp4NXNesdI1DbzjufcSfgbNW\nicuqFfSBqOccF1VngLiTIKQEa2BVFYXWj7irO43dmZIYYMrfQ667BGOlIN6tccuLYFhPcHPronUS\nL+OSyiMcTXnXI07u+B+GevYT4nN3yp2xL87QbOmgN5plMJliMW9SHHmqTPfvRf6zxmSfOVDDOKxg\nrgSm9vlbSFnfHs/BY4h0rDVtsFv/XiGWKHOtqzdvqF19Ntg9y2rHJ8QOiblWD/ED+iXrW8Qsy6rn\n3ONzd/q8JSljZRpZFCwsWnhWgdoyZF7N1jTmLl7R3rU/lbZqD2ZLPILywrtk5fEWfRvxzjXAObdH\nBsz1SlkYXRgp5RA2EvVoYB95nNqgi7qxrvXeXUHnsfbQsgOr6RBjCBepKVpktbk+KO9MrA85c7a4\noOv0iXc7y9qn4gZNMvrLM10S3tsLYrce2RsJ2SIe/xluecPOn19HWqZMW9rSlra0pS1taUtb2tKW\ntrSlLW1pyx0od5Qps7aO3shpuRwFIAn9w+SgTdwfXCdNs5s6MbvvASEvC9TW19EeuPcRaagcPCQm\nTL6lz29tCs2J+PyRQzr5msO0ef9t3X91WceQDz35qJmZFZywuV7GhXc/Vj2weu/v54SOnNPymv4Q\nHhJKlcCiiFCNjg4rB/rkMdVvL6fCN7YcWVD99h3BKWOoXOkckZmuIwHkFM85qatXdHy976Q0ba5y\nkvjaG8q9tiC3B554yMzMDhxQ212wJlvStfxUcjzTKWGAVsF7H6Bs3Vdbnnxcjgarx4WELdbV9g+f\nl2tEHrn6utgHly/I2SDZp/uscKq60xIap5iwHyJYBrUDwsU2RGpm24QNm4Ja9VFbnzJG6gHuQeSZ\n1x1U5xN3YuH0lHzvBI2V7sJ1MdC9wIu+II/QOPnvgABP/biTv6eukcA5awkDJsj4YKL6pJ6j6pou\noEY5KFSfk/CG6zUgLvxjfVfpRxejgYVQk9+d0U8TTp17nv8NMl+589CM7+Pu0nB+Wy6B1sG8WTTO\nGPq0XkfNKbkj5FO0bOKF9x+K6OTqViAlJQ5K8dgx9/+8uP5PAELX+M+e+Bv4PdFSwZUtHWie5CB0\nXU608ylq7BkIIKtkDzbVmLHizlU1bQrdTY0c1grmijFWUndNQmcjQQuLj9uAvPG5o164RzQgDcn2\nsyWHHsZOTQ5+hzlRFmpftWAukv+N8YLNYj27vjv6uH5I4zpNuHHkIJ9d+tWEaM69v2hXg+tT7AwY\nHCScmRQ5E8jNn+iHAahf6cgz62yJE0+Ijom7jiSgVxEuIbPO7eVvp7S7ZMz3tseqI65GP9C/aMU4\nwyhpVJ8Z9fG8c2fsjEGahzOQbFDLjLnsbLeY/Syu3HmM6wSFjVmXATa3Hf0aXMw67AUJfVOjPRWl\nrosES8ATtnGAanysollVwp4KYchs55qDqtcMpmruOjo8C+ZthrNMgMvdDJeQyNxtDbYTbU1YZye+\nXrvsEQtXg57c9hih+pE7W3VwbWKy5M4kRIuhE7jrEmMdhHThYmA7LL+cCFE8kIuRsvVNOSvuvSIm\nymH07pbu0X1e/ZNYHP/t0e+bmdn/2tL+GLFXj55XPZ4/rH44taU9enNVrN9rEEc/+I36+bEVoYbB\nKZiLK9J+6b6l2OLn9+jfr98tlPKB3XJ/6oR/v92Gu450rDkrZs57D/1C3z8pjZePPxD7xBoxcQaJ\n6rHvx3+hdmc/Vf2rb5uZ2eXd0pp56AXFGLv/Wq5Sa80Pzcys97svm5nZ5w4KRZwcAslOpUVz8fUz\nduPbf1C91qV7E8d6yB/u03f2XDlrZmZHfoNL3tc0Nn+5pr7+q4fVh+cvqg31NcUwB+6XQ1Zn/Vl9\n/ohYTEd2w0xe/5KZmd13SvN+ACts302xhIKnNCavrO3c6c/MrKpce8CdUVgPGNvTmL2+x3Wn+rfv\ncwj+gutGTT0WYF0qcQWJWVdCd6ODNTdDUCnM2IfYZrbYJ9IaPT23FWSuVzBKg77HFOqPgdfKRQxh\n2AxhA1jXtczUvjFs6CjGZTBytyiePZO7rrVfBGMYL8vaNypiutCZoz3NuZkb9eDUlsz1/ZS4PGz0\n87YoHDpaNdoRQ9agnLnnDMg6uBVLNOPiljvgQr+vYE6yfdsm+/N+4v9yE8bR8S3baalhKOQZbCAc\nqGZoD0Yj9C/RJxqj/RWhJTPoQ0kp1OYI58MA0D0kBohK1SkrxfgIYTBDurU5TJJ6HQ2aOczDAQ46\nMHVWiBnGxCThzHXf0D4seFYwMHMYLAEM/JSxkfAOF/RhrMA6Ldg7574+E5uEXdcYUz8tE+eP0eVY\nsN85U2iJMboFEzKl/c0U5ihaNDX6ekP2jdEUR7AemofBMh1Eu7vENMTR6+yHA9IQxrCrExj07q5V\nQhd20nA5vj23v8WGGDslc8L3+YrJEC/rPSvb1L4wvqn1f3AIbbItdwzV9ZZ2aU5/MoIhy1zdyPRe\nV8113ZIYNoxuUdIzW1hY9axZRdeGugW8y83XcZwt9POQuHcxdGaZM4tZD2Hbz5lHNU6DSV/zvd7D\neqLbWM+cJe/2afp5WPq6SLy2m/iPPsr2wpzG2atgHXLGeABDZYb2axDjPJu7jo9rPOq2MS+RjTNf\nYq2QS6b39xsjnCnJ0phOee9nHdnMnfVLXIxGWIk+XuXvJf9BaZkybWlLW9rSlra0pS1taUtb2tKW\ntrSlLXeg3FGmTDXWCVOU6iTs6EExSLr7dHK1uhtNGZS9mwUn5WgazK8JETl0rxwPjt//iJmZTTgl\nPfO+HAEuX9DnYlDFQS2k5PKGkJoAZ4cTn9X3k4FOxsZXhdSM5jpCu3pJrI95JURnNRFjp1kj/xCW\nxmCIivSSrrMG6j/YQPOmDwOHQ8rRSKegdx2XVszKwSP8XSdq1y4p5/k8itr5pu5/6ZJOP/cf16lv\nF8bMjbfkkFRf1sncvV980A6dVP51zE03p7rG2jtq40aiNuzB0eW9c+rrqxc/MjOzzzykvuks6++v\nPafc8aJRHa5f03Hnyl7VZeFMFLRD9naFEFad20MurXFnF05vydkMQOVLUHNHcF3IIeKZziauWwGT\nhfzjCSh3DHNkBrqVBp7njCI/h5quBN5HXb5GMyEgl7bh9HXKaTFglFVoItQgy56bO0OxO6o+nXc+\nAaCIXWslxFnBnXA4/Y1Q7Y977gwDIwVE3F2TalC6DHcjd1Xpg5jn6HeYu7RQ/5r2DOnPPHbFdNeu\noR60PwRRCbaVzcm95bQ7hW7SkMSag5z03GWGcddDryN0oaQdlDlMkB6oe57gpIW+jqdpBwvXGQI5\nhEET80wnPONO6TnvsBA8jxgmBUPFAUXrwqYqQCgT9DgqdHJ8XXAEoQtiWkPxcabFhHo0oE1ZpjmY\nVK63A1oGulH6CT+IwRy0quvsKHLy3RHMYBN0FqrnnHp3QHsmEUgIWgn5RN8bgAQvmBsdGCQ5DJcs\n8Zxe70/VuwCum4OcZp7HjJZBAdIZA0/FziRijsQ4gwW0r4LJkzodbn57mEKDk1tsqtcCFljXGT3o\niUxAbPoFyAqsiwljOXDV/cCZnOglgcotWJNCtBlS9FYa5tLM2XgwjZy12FSJZbE7k3huPLpEIF4L\nxiwyC9bL3C0J1pL5fNXnXZ9sSh26uEzU2xpV3I8908j3Dh3NgQkDqcgGPIMFDLh04pseSB9w84Ix\nGNFXOfM8QS+pxIVuwlw0mD8BC26z7QABY2fBusK6mIF+u5vUnDkbw+gsnGT150Gp/1f59kk5F35U\nvWZmZo++qvq/cUjaKmUmbZmPptI/OTaWzknz0Xd0/z1q32M8pysbQtf2g6L1viMtmL99RQyYxUFp\nzvzuoJgqydu63zP3Savm5kwxTP9J7a+9RHPrjatih9xT63uXzr1DC75nbz+4ZJ/vqP6fXFeMdVdH\n13n4hPpp3yV9/v3XFVu9+5jaMdkDEvy6Pn/og++pXp+RbstPX/uNmZlNP1F7v3GK/euimDk30PPI\n7hKTZvPp2k6N9KzGfTlFvX9AcdP0XTGBv3ldfXKzFvvngxtyoOoe+4GZmb1+DVR+S3p2R0+IKfPS\nlpgzX8sUx3WWvq66HPmlmZnt+YMYOjcf1u+vnlYsM3z+a2Zm9tvvqe+/+dIzdjulYTJMa3ek0e/d\n0SQE9e/A/JvBcrA5Y549GoKIpewDE1zn+jDzRqD3zlqIYZvWMGQC4uYRY2sZ1u0sEXugu3CnStew\n0v3CRut/Bu1ijAbOkjNMQo2xjVQVjLjekHrkXY2pPloOW6D8sWuboTvXgcGyADkewnpwZpA5URCd\nkI672vlSFCqWrGELT8awn0UGMIO1XKAjVRNzhL7dhY5M32JChXHHMt4f0uUR9dYFO5tozPBc6ivs\nx6yFs+nOmZkxuhENcSshgeUd/Wfg6zS6cCyfNu2hd4H+Rbxw3Tq1tcuClvJMNzL1UbyOMxXr+wTG\nerWtN6TruxPVbIyDGMGRxw6dFRoAkSREdw7io20SpyXg+a4Z2DCWXIduljvTXD9nXGfsml817x0D\n3ajPmFtnXU9hAg3RnBmhfemOkSlxcbjJDdCqKVdgdjNmnG0RLeOAwx5cFs7+VYNr9JtmsI/7xH62\nihsdekj1DOYSblebhvsU3Zat3B57l3DXQkhYg+O6355ag3BjiTm/qv7eLNRvXXeJWoepg2bPKs7D\nfZyDI2dKEU9EJSwO3z9dxM3MRldzS7LMdvP+uhmSNdG4A6z6aAnN1bqrvtuaa/2NiJ/zGWxdZ9fD\nJDGPs3PNt3TmbF7VYQRzOpyoTxvWuRCByh56ndOes371LGaexcD3a94RS9ejG7sjrjP7GBs4ftWw\n1Trmepn63Nq66rd8kYej44lbOp1oSPZgN81263u7YHF5DLMgdkvRWJyVf14ws2XKtKUtbWlLW9rS\nlra0pS1taUtb2tKWttyBckeZMkt7xJ64Gy2Yo4fF9JihKN4DtRuQH/nR22K8XPxETJeU0+Z9R3WE\nFXCKfPFPYnFc+kDojms9RPt1jLu4hu85PuLDFZ0u5viyf/SWnIYuva786xLHmgWq0t19yi/vLOmk\nMOzqekuoFqQnAAAgAElEQVSrQn6aLvnka9fNzOzaO0Kdrqzp5HHAcfShU0LRgtPSqslWcHkh9+z0\n+6rHR38SqhWjtbByUu4BD35W/+45rP67clUnhxfPCcXbe5f6965Tp7YZER+j33PlglCnjSs65Txw\nQmyj+LhQqJtn6DtOjmecLL8PgnblvHR6Bjhk7V0WytUB+SwdhXfUCPXvdLpzBoSZWeB6Gan6pEAB\nP1rAhAExGOBCErmqOyyCkhN3Z0WELo3QReeC+7jae4mrSNkntxa9jBSP+QbGiJEvPnfd9TF54ORX\n5+gINTyz0qEGrtvDeWZu7nZCTVBTzzkl9uuFtSMAoDf0bwXDJuTnEGS65DQ3HXJdEPPJxBsM0kBO\nbVC4a5WuE7h7kkvD8PcClleyLfqgf/x0uQKBD0Aush4uT87+gI3heEIOayB2HRZOk6OdS8pYSL72\nnBPvwJ20YMwEIJakU9sAtMXV0qMOebzkvgc4UTF0rJO7rgUn93NnssCkMdcEANUYw/Togf7P0DGC\n6eKWCM7+ysm1baDe9DPmCCwng1lS0k7E5a0BUsw4ic9BaucwQHowXura2UcwPnA7iXkWNWPHWQXz\n0PsF/RHYWduCTaB2DYhIkPvchA0FjaNbgtSikeNwXY2bhesdLWB5AYZZ4Uwfd2uCtRXkGlM1EGv6\nb5wDdlJq9FFKWHYpCI0zfEJ3RHMHILQvCrSKYryF0oXaCwnPQnSeOtQvLnWdKWvFhLnen3l/w7DB\nvcsdImpb2BBUN++4fg7PlnmV4lCQwNIpFozVwh1bQGUynPtYbwNYS1N0F4IeqDj5zikouOtXzEBE\nB+6mh45OsQAhpe0TZ1+5C1zBmAEFD9CziHFYiVK39KJ+6FakrBMh7iCTPsioOxwwhg103qdSANQY\nuY4HaHyHfO/sNhh3Zma/7QnVe5B+/per0kF59orYHK/uhrGExsw+mE0/w3mi2xMb5J23v2VmZs88\noXr9BA2DA89Rr2d/YmZm019/Tte/KqbK2/u0n16biJn6t4fkCHmRudj7ocbYkUCuhi8+rj3+ux1n\nypg9+vH99sYp1XPf26CMzwntGxxR7PHHhdgoz+xT7HF+TWzcey79FzMz+0UutHL8XTltXHtOLJO/\nATQM/vafzcys+l96Ts8HqveV/dKSeeiGtHaGLz1gFzrSpXnmId0zCxWfvNQTm2djoe/85j7V4cRB\nHGnQ9zn7upysnn78X/TzK+rT5S1pyqzDJltFW2Czqz698ACONb9TrDJZ1/x96knp3x27Kj2c955m\nnf0/bUclRDOqCxsVksG2htaW740TXEDc8RGmpOE6Mtka8KP6ehGjj4E73mDL1ycGO6yCcKHPZ8zF\nBSznonbWAFQP1yNxN0JiiqpA18RRc3Q+FjzbsFE/DYsx34fJmYqtFdZCuks0GQaZ7uvudZWv68zZ\nlH2u3nZ8U/0y1y+BKbTF/hU4E55YL4fpGRKHT3BFilhv0yExFxtCQOyTz2CmxrfYC6NBYeF19kFi\ntEHOmrlQ/ybzTztbzncRjHR3rhfi+kI1e3c6RPvFmd7UKRjhgNiBtQOT2Z0jFzyLlPjWiKMKxkTX\ntQd72pMS4tGCdd5dPgOehbO0kgoGCs42S0s4NcL2tUr1DeaMJRzGevRNRvbAYgnm5iaxES5/Xdb7\nYDakHarvYAibq4HdX+pzroXTJ9aqYF4viI977NUz3tFSxsR8hTjZHSZHvj/qxwVzKUW3rYCHEDUw\nZDquE8R7Clo2xZD4GV3TLdgYSQ9GObHHEvpOt+LZ23DoMrOMd9PzCJUuKRnDurRrjJNvAT0s5H2g\nJNaspp923QoLH6tidtYl7n7s8+Elsi0i3a+7a/92XepxYNZUtkQsv462XkVGRol+TXaKdWiF+YF2\nawOb1dny+RiNMFSrOmjIBDDopqXej2MY7b5eVsRPdQ6baZezg9X3QxgtM95dKterbDgvwOFsxMvO\niHe1CJauM53zFGcz6FwNmlv1PjQHN1Wvran29n2x3tc3I+2JJVozIc/IfH3FdW+Oe2fKXJ6yPxTO\n1PkPSsuUaUtb2tKWtrSlLW1pS1va0pa2tKUtbbkD5Y4yZTbRMti6IPbGBCS1h0tKXulk621cj869\nItSos0ufO3yf0KQ9J4+ZmdmF82LQvPOmEJck0sncgbv19/4K+hw4viymrjmB5gF+5X4CuHVQaNie\nFf17dU3skhLEePdR/T4Cye1C6XE1/os3dMJ29aZO0sIZKN4SavIg7ekeoUxTFNkN5HrjfZ12NqB+\nJ+6Xg9LJR6Q9E4DkzraEYHzygdodImJx7+P3mZlZEeb27p/Ud+uXdEI6Aa5vyBdcgaUUrur0LydH\ncQXXnoTc/j0H9Pljd8u9oT9UHzQRJ/2czLoCtp/gjnBhmt6eOLnNQXliUOZgSB4hiEADlaMi7xDx\neks4naxgxGScPzbu2AI4hgmRFWgkuNtSuA1MoJXgmiqc+uYNKBIiMFGJThCodw767si1Q7sNOiM1\nqE6YOoqlj/XN0SFOgUGSS9rXhYkUzjidZuwW7hjT8ZxbEAlOr2OQb9fB6JJX7rnKIYhCjeaOu3Fl\n0Bdm6Ik4jaAAsY5AmZqIjocl0aC4njukwFiNnCmFW0y0rT1EfiePZ5uBtIPSuDMBJ+k1TJgp6vAB\nYz3iZHtBLqi77OSwoyLaVvn33IGGXPIaXRwXh7cx+dTk/pfM75ic98hzXSGa9GDYmLtVpDBrpjAt\nYNhNIpiCoet/wHQJnd3FM001FhpQ7bjg5z4oHOtnDvpV4ZjVod0Nmi7W03qUwXJwQY4FqMsidUcw\nGEiwGpJQ950wtwaM/SL8NLujDD1PXvXquN4HCGs88oxsHBJSRxMZk67dAkWoRKMg7NweplAxJzs8\nwBidKadQLWBdpIyDHEeKPuyOAnRw5q562ICk6KFUrJHzUv3YcS0h9KcadJRi0LQM9LNBR6ApOjbH\nGSSZahDlaIjEMPUWznBxzSr0iSp0hrqwjuagWh2QxQadnj6VmgLmp+j5lCCYzcSdwfSsR54fDSod\n4l7XYV1xnaSYZ5U7EuvOWW6zhMvHBAeVmHzvDPYXU2DbsTDBIS0ZMuccxXcHm8oHEY5lrDsBLhnV\nzJ2ybm/D+cYv9P2fD3AGOqq9Nr9f/z79shx+Xl/5RzMzu+s9MVR2J9p7331WaNrnFdLY8x9pb//S\nXKyQwXFp0jz/hn7/1L1nzczsjDMGyePPD4s5s3ZV+if3BooFZn8nVm/5shitf3Na/fTD5oSZmf2D\nmV368H27cVB7/74LYtGe3avn+OFlsUQGVzR3Z3+h5/PodaGfv4jEiDn6iJ7LwddVn2sg++cmcmU6\n/onm5O8eU39884C0bX6x9jPV+33FBZ/r/oud/JYYxBfPiOmyWX9G1/xA69HVY2L7BJVihF0fihH9\nNk4mj+2Ss9Xvz6nNJ0BSn3xIcd3l4oyZmb020LN4sJBez+y5fzUzs/Sg+vqbzzxtZma/CoR03rf2\nnJmZxW88ZbdTCrSnSrS1BqxvM3dCg1wQTon7QPHnMCL76GtsppoLObGHwVxx58U5c6qLe4ihG1W7\n7hTs2xq2cA1TsTtDk2FJFZlOFR96bDEjJovZbD2mqbdBftB51yTbYs3JcHCs0IhoWO+ItfowEMew\ndzvsc3P2j2QKiwIdjhp3khlzNvYYhJgrYH1e9g0Ux7UpMlfbznPsw6Wz7XDTS+kfZ+CYmS3NMpsQ\nS2UwNjP2nyJ0GrHmcAe6X4xGTopD5U7KGIbesscYc82vFFZ9kDgT2h38QN1hP9kI1teS+iJytzvW\nz5q9rGZPKvqqawdWUoDWS+YudeizNSz8zqoaOGOH/aVXa6ENGcQ5LIQxbIjuqp7Flrn4DHuz63HA\nkJ46q584e8ael4x1/XxF+9vKOntr5HEmsQz2g1GusVsTf6ZcJ2DMzRlzS9QjwO3KXZsK3s2WGQtT\ntBO7MEdqdEWiPqxj3gkj4tUx63LH9YsIXmIYNBO0gzwScZ3QnZY5MV82QoOHd8UGbZgINloMw77y\n9ykcgMoExkyhz09gujbEnkNirIT3vGnJ3Gaf3Ru4QJOZ9SKLstIiGB0d5ldRqI8ynK4C9HQi4hfI\n/dZxfTvGTAJjpefMmModInnvR9uv68zlvl8PJjQagAt3rIXttUA3KfOxJdKoBTjXHjio+8a4P9Vc\nP8+53ibs0V28w8DGncVa11Lm7hQWmOvkxW77FrJewpjOiIWy1M8tjPvq3zlMwBAGTdb8+UHSMmXa\n0pa2tKUtbWlLW9rSlra0pS1taUtb7kC5o0yZ+bpch9bPCyFp/OSso1yz6+v4pG8Cn3O6vO/ECTMz\nWzqlfytOfS+fVa5yxon+4X068U534VfOidsUJHPvPrFD+kOdMnI4awWo2+59ONlw/QpWgWvZxAOd\nGO6G+XLlE+Uuf3JF7br6jo7wXEvirgel23LiuBCeyVztrm6onacv6Xur+3XSt0me4b6+TtmHu3Xi\ntjkSY6faBMmfiZGzWNPJ3eohac2kK6rX6RdP27kzQpP6sAD6R9T2vYeFYp08KQTvEuyc8Q2dxK70\nQT0OqQ7HD4oh43oK+RXVsUEExI1eFpzkzy6oTWsbquOwe3vuSzEOB7FxMszxYzqA4QFTo8gc5gHl\nX4DgoraewAJYcOrpTJkSZCFDN2LG33ucNFc0yHVHDHTMc239dLbxy5aOZpF/ydANeu6GRD3JkW0m\n5ARzxL5IXF0fpBuEZO6CH7AYXEOmqNzJy/MrqQin0p2hIwo46aAU3jAXqgnMlj6oHjnMJWyShOcY\nRWg/0K+jCMeExlkR+l6XsT6FHRAnnGqjgJ6jbZGCZCQgR9ukjchdqXYuGBJThwC9nRyXi4hnE6bO\nYCNXnZN4HzKe4jmF4VGi3B/hNDNn3emhqzNjTHZAgxYggj3YAI3nrII4ZjBVChT8S5C+Dshgl/sU\nPPPY3R44aY8Xfeqv683Jmc9AAMvEc/bJjcekroEl4WM04+cKRkinA0uicc0D9EncucfROFyrcpDY\nfFJ8ql1NJnSrBFVKA9dI0fUqmHs9cvxznlcDIlwP0E8Bqk1A82auH6LmWOioIiyL+DbcMMzMEhAa\n13hJkdMvOyA4TupivZ/DAlnA7vI55wyrPiw41+TJ+V6PdueMi8DZYIyLuuc6TmjMgCyFQWolGjER\njmIZ+hDz0B2qmPfk3HenjgaBIDL9Y5wQXO8mhQE3c/0gd3OC6ZfC3JujT9Gduz4FOfOwxsoJufWg\nVe5qV4HiV6yT0dSdtib0Kews7h9PPr0uuYhVAKrebOfma4xX2NlFrM8TntkAfY+a6+RoCmSwqDq3\nQPIdletPv2xmZs+88F/NzOzVVC5Iv31fe/IjD/2t7vP6WTMz+xF6FvfcD1vsVc2F51dVz63jYoW8\ncEz733dfIZf/ygkzM/v5Bs+VOfL1B8USOf2aYpdLXxET5cSPpFEzP6G9//Xr+vz5b0nDZt5sbLfh\njdleKy/p90+dEivk4AfEOJJ1sXMwUF9/SXHBI99RPbsX1P58KkbM9UelpfP1S9r/f3dSMdbme4oX\nvroi56IPL79kZmZfRm/khYVikM3yafvDS2LffO3mw2ZmduGoFqgndot9lICSr56Uht7b74ml1Lsg\nZsv+RPd4YkmMGduvsfcDWLoPvq22PD1XLHPtiRfMzCzuiSFz7IqeoU00hv9yoD78Bcy+z6/d0uPZ\nUcEJ0RoY16wrSY+9fOQ0XH2O5cq6bgNITNGHKdKwJ2foKc1hL8ROFnWWHMxKR2zrPuw3kNgFkPW2\nFBn7wwoxToMTS7DtfsQe7VpYuDXNYBtkrNfJUGN0BIthQQzm+1S9pc+l6NQt1+6OAgMQDS3f+12r\nK96EzcwcbdjHhqwtY9e+QROimrH+whyqYY5OsApKYC8sYG27u1N/fOs1Jw/n1sN5JryJ7gtORQ1I\nejrRdTsL3Kegd0fFwHZa4m2mNSzdJdVhnToO0OabwoQYor82J4Yw5kQzwl2HQLJPzNDwkEvYPumY\nZxJpHVjgDDuHJRWEzqxG94f4tD9TX7jjYc47WAGa3xkwhnD7qTdhlCzDEEFQqUY/Lx3BGnbnS5jb\nw4HrwqlPB8QgpbOAu3pmPXSE4pHHw64hg1YOrIuQWCWGRTVbUT91x/q5h17bHOefddP7ToBDZ9El\n5mD/inn25ZA5wL4SwZCpWC8HaExu8XwqrodZlUXZ7W04HZguAfv1Os6+u2HwzNBHjKlHDfs5xDEs\n3u8sM9xb17Tez3AOSlb1vdUV7Sc3GWeuwVYXN7br0q0bm8xz24z0uxr2UAmDLCQS67kuUulxt551\nmROnbrueEX/TV85udSZbWKqtc+JTf5cI0GHKK3d41Pdc6ybZhTNVonrG1GdxTUyeKtTfV+ibm3yv\nuaY9uCLzZDXVHNmECVfBgOnwblOmrr2FY+9MfesaNjXtzwfMAd7pypnbx8HuYu4lZNjknT//btMy\nZdrSlra0pS1taUtb2tKWtrSlLW1pS1vuQLmjTJmUPLfgoE7Y+od0wtWgvXCc3Nn8gE6qpmOdIe3a\nL8aJa8ac+Uhoz9o5ac8kMEv2PCxWxwouTtdGOjWNORlfPSSkNPdctavKn77BaeX6OZ2MXfhEyEoG\nOnfqrnt1H07S1jdUvw/fESI0QbelT/5/uKpTzYPHj5uZWTnQidrVM2fNzOzSpq4fuy7INU5fB1LG\njpZA/WCZBORJliDHcz/Z4/R587Ku994b+vyFN96yHvnJhz+jvjt0QihV2NPp4NoFsZM+fkuOU4k7\nigxdCZv875ti92xd1T3WzgrVinuq064DOpG+flWnktc/FvMm8hzT/UKvdloqUKiGU8YFGjf9AOSX\nk27P66s7npvv+b+okTsqFbpDj34dol8RuhYKf5hxMt2fo6vB50vuWzN1+uhPBJxAV5WedVq6jonr\ncejvNd/39rgmhMH4CWGILLquj8JpszvbQOsoQG3iBhYDEHnX9ThACmzEc+yTE0vub47S+BDkxfMg\nAzR3wgWMpsohHxwLyGkd4u6ynS8JIpQXMJPI4wxLP4UGUYcJUIN4B3P93lE9JImsdnhxB6VwVg7u\nCCnsnNpZRy4dQtsztPKnsKoCILVurXkfbDtE+dgAzYcpFzm6Tz5xulAfzdDRSGGaRJW7QhWf6ovI\ntVZgCzXOwgI1cqTAl2fAFMvp+z7Xn7B+RuRxd2FiLBwZgKUQst7laJqQ+mu3JGQc3QGlgjnTcN0I\nHaPUXTpoR42WT4qLRYEwUhl/2gmixo3D3aYqkIcejJ/CmYdzHAJg6HRh8sydtcb6mKWgbL3bczpY\nuJsf7JAc1lk3cx0k1btEswfQzKYpudVoDAxdQ4L6hzy/njNxeqCMuISUPMeO6ySBAE8rd2uigsnY\n4r7uFePqUIAaOxUvnnl+NM8IFteMPu36/GOvYmha3MHFg59rd9hCH2NOfnif+8xYt3w9aUB4kwSt\nqAQW1My1DHhGbsu0rfMEiuWudBPqRx/3YPqNa92/YAw7uObrdA2COkOHLnJNG5DfGPQtn8GYoRpN\n98+jUv++vDwWY2TvA1oL7vpY++LWFzQ2PmFd+8IuxRjF4yfMzOzXW3Ib+u5j2vd++tZPzczsa0fl\nHPSnX+vv339GzpCdC9p/vz0Qw+Tdx7Rv/v5ttevLkRgpgxfu1/WPaKzefV5j5v5vqr6nP1Y9ootH\n9Iv/3WzXP1TWeVV6e+cekYbMav2gmZm9ONO+/cjDYuTcZJ9Y3xJq+OhIzkVv7dbnjq2rI9+8LObL\n31xSva/iTHPzfsVIR14Rq+XmQaGXTx0TSziqA9uTwWa9V5oy9/yr7vHcbrXxO0cU53z8GzFi1nq6\nxtFK8djrXxUCuvyatGJeH6pv99/Qs+qzHk0qMW3eH3zBzMy6h8QyqlJp8f0KJl7xlp7Ro/fq2Tx/\nSn2005KyzoXovSWsCyMkB1LitYS5tMXcbJj3mTMA+XzO3ElCZ5GB5hMzVVAfkwnMRHcfWdYYdbel\nCK2sEh24rHIXJH4/Jn7su0YN7OGc9Rw30sHUWa24Sfn+ABsvnhNjsG67np+xppTENPUE9gX16aFT\nV+C0aMSkt/TscLpxti9jrI5xWQJxjtGAiIcwULdYhxPX4UOPyzVz/g05O1r0rQuLL4bxEzDGXSOu\nO4XxVLsWj+qzmdzGWgKzb5TgMgSTLSNu8xiiz96yyd6wCgNmCuN4iXiwIu4dwZZNYOgto/tWErtM\n0K4JXNMQp6subn5zGIqDAX1F7ATIbyGOXR0cwsoYpywYzdMOY66E9eRsCdyjGvouceYGTJK0dGak\n6l+7LtwyTHzYSK51YrARMtZ366BtQ1i/DNupN3THWl1ny1kJsNY6zvSGujRDs6fI1U95ibMQLlSD\nGQ5hMDV76JJUY3XQJmM2YE8f8J6xzVOc3Z6oTD3QWEVuyQrXIkKjMatgJDm5rat1emuuejewrxtY\n0iWOP82GrylkFuxWe7NlfS8ZsI83S9t1KZYzW44aK9nrnbFR+bNM1NZRqdZ2O7AvkZgKiBvDuev2\nqFETrhejY9mwLvVhc03maEyhYxrgNDsg7h67AyNz5gD6OeVU10v3EtTQ91cva33fXen6qyfVx9fd\nZY335k4ipuW17Ky+P/b0CT3rFRaOYi8aMszVDiyymOyQnLi9ob4pOnbJwtlgOFiy/m0HN/9BaZky\nbWlLW9rSlra0pS1taUtb2tKWtrSlLXeg3FGmzOoRnUDdve+EmZntOywWh2saDJd00nb6vbNmZjaf\ny9Kgswxqf01oz7nXhD6lnOgdfkio1Op+5Rg3IA7js0J1uivupCM1/63LYnvcuKbT5K11oUSj667G\nrBO0g/dIC+bQ3UKlxld1Anjh0lv63if4noc6Kdx1XCd6nS4OGDjgXH5H93vr5Q9Un65O3O77nJwS\nsp5O8GLU+we7hKL1dutzAYjIO5fV7usfqF1jGDvBLnL2roIwre6xQ8fVF8c+I5aPo93XP5Fj1cU3\n5B4xQ3vg0F61tbOLk9yRK+arLUPy9q5wSDmBSRNwIr5xUX3YAZ3ec0J9NlxS23ZaHJ2fMib6MDYW\nW5wAh25to1NKN1QpOaUMYUPknCh7XnDk7kbkYdepM1JgtOAiMoYJ0kNfokCpP6Q+xQxGC/narm3g\nqI4zQhp0QZwJ0oAUuPvTvA+qBZLR59TWT+S7OQg5aF8HDRgHlVwHw9kffdDJOQh0NMVxBvX4JkR1\n3U1SSv3cZBozDFmbOmsCBMOVySfO4gBlc5emBY41pI/bfIR+Cw3tgr6F5DA7+jZ2lgh6Lp35zrWH\nOjAOchDJgJvXri/Es6xgFTTu7kCueZej6UWX3Hvvc77vpCN3AGjcgQrtE4aGNTBnIlhDTc18hRVg\nPMMOej7uDBPjShTiOFOTi9oHJRvBvPAc/wnMuJi88Jqz9YLc25CxFKKd465B7obR0I4FYz0DOY1o\n94L6BqBSDQ4O8cxdl2A3gRg7uhPHsMjQTsgZawl55jVISzf0ZH9YXzBKIjR1qgLmk5HbX+GQgBZL\nQz8Fze1pyvRmut4I9GgVNsjEWSc8r4i87QpHtazyNULfG6P90IcB5LpM075rBMHEcaYVzKdmm40G\nesdcz4tbKv+hj1EYJEmsdbeI3H1D1+iw/lSVs7309xn5zQF91zhjZArahOtEgHZA6eZIDja5OwWM\nl8LRfRbWRe0aUbrPBAS1ZF5HMyGmYQbrdcLYYW+uYD/5+lpQT3O3N8+ZR4NgWjiLiT6K3amGuQ6q\nFcDstJQ8btC4XrVzxp2Z2Xi32LZ/MdHe/eNcyOIDaGnd+LV+v3GUsRnIwae3W2yMsx+LafqZR9QP\nl3kuZV/sj+p5sXMrtGJ+vPl3ZmbWBz1Ljqu/LtwUi+TCGT2vXZ8RC+Sux/S5X1RyZ3ryupyLlp69\nha89+avd9tsj0pQ5+QrrfSM28ZOPax9+Ezbgnld03SPJH3Xdu4UuHvtQ9b3+gfq52C/08Vygdr31\nFdhhN8XAebzU/a5eV4x29aB+//DzE3vwr2HX/kC/O3mfxsZfx9KYee5VabpUa4pNvvw91fHVQo5V\nn/lEff7Hr2nP+4czOLUc171+ASJbTdjTXtAzfOqbavuZMxpLX2r0eXfJ/Anx5YEzPbud4jpzKfof\nOXppS7gUjWDjph2QYfYb18xa8Pd4g/UBQQp3WqkcjYdR0kc/byt1hia6UGgKNj32Ia6/jG5gQ0xQ\nwpLo4aYUgGxvguAmsPNqdKGcUZjAmmgKPa+4r9ig5OcOzJQYfQpn5WW4tSxAvp1NPCFGitF0qLfU\nnh5rTRX49WBVwHpu2KemAewMdDt6OOUUHiqwHYQ91XvAOjytEXEzs6KZWDPWOIkmuF/Vrp0D22Kd\nGJf7lbB5m/nO15I+8WYP17igqz4bw3ycwcwu0SpZZu8rcXxJtlinV4hJcNhC+tAy3PXyoTsCsjcT\nM/ieP4QBAvHEopr1tPZ9Am2Vjuq3oJ4VjJZoU89gE0Z2wrOKSrIOhsQ8c2fnMpZgjpfs8RmsJ6QP\nLc61zgQL1/lUPTowWkpcRRPDkbLEtQ9a6YgxNEDvrgPVpFkhNhoRU9XuOsRcafRAOn3GFPqA3cbd\no2A7L+Ne6qSuxBkyaMvUrsHDe4k+ZsVtussmPJ9dxzzmUT9dh11iOKnVsLmWjpI9AVt4a6r9KU5d\nu00VGPX0/Zto1XTQjsm31M/LvIt2o1tzo58srBpkNoZNVBHf1Evo9BBD3EBzZhV2UraiZ7l+RlkR\n6TLvva61MqJuxJOedTCEzZQRPxUb6tNVkimuEwvEjPWAd4XkEPGgYbs01jrb38ucuI6701x71iDn\nHbbrekTq8xtznMBgJvo73MzfjSLtW8GWa2PhQkWmSsN7eMR6XqI3lLB+OcN8wD5xmT09XW/dl9rS\nlra0pS1taUtb2tKWtrSlLW1pS1v+f1fuKFPGujoSm8NEufD+WTMzWz6gc8erl3Vydeltfr9LJ2Kr\nkXQ8p90AACAASURBVE6yPr4kRCQHYbjrsw+YmdmD94hxs3ZNJ13vvSlGycaWTlv3HsT9qK9TxjOv\ncR2Qy1GjPPIIiHzfIbE7ekPV6/q6rnv1jJg6k6n+PXmXmC67jgoNi5Z0otbHKz7jBG3Eafnunq53\n+KH7zMzs2L2q//p1naiFJWrWQ52dXTwtzZpLHyqn79qaPrevJ2Xte56Whs4UBH+Mu8DxBx6y46s6\nYV3jBPnamffMzOzcx3ImmPH7U08rh321rz5eu8lJLENlFxozJaeYjq7su1tuDH2g2fWRfr/Hna/Q\nw0k9Z3SHJZ3AMOGE23Mok8jzmtEimalvx+Rb9x1Z5oQ8zHXiHILouktUCYqTcbLfcz0O2A5B7Or0\noOLuLgIjBAkZq7cZI0a9yFcmv7rC2aBHXmMJy6FApyQkhzXqclprqm8FylZw6tqDJeE6HBGOBBk5\ntwkIdA4y0cURYQFrogSqiEqcfDj1TdEfmVLvOYrmXZCMBjRszjiI6K+AE/tmhKsT7Z8544f25Li5\n1IwPdzpbeH64A93ompTk8u6k1Bk4BToWDcwHg+Hg9hcxKH9EnnEGgyEkFzWhzSG6PXOcbbxyMXnf\nCSftZalnkieuGaP716D67mDQJU+8gSUwgV0Vkjc+Z+wMYLLUIIYzdH1cH6RGNygFjvF6+u/jgVN2\n9M8chLByLSruk7pjg0/FCf8BVQmm5I2j0WO0dwGbKcPNqhnzOdeKgdWW8BzCibsNkc9dkQdOXnyD\nvkjG32vPg+c5TBkkvfLTLLQZekvbQkg7LFN0kGqQkQWoW+haL84igx1SUo8SpGOA60rtzBiQki6s\nrw6WdCUd22Vtcoe1irmVos4f8LzcXXARx5aBkzQJCBn3CLnWlPkWJdoLQ+ZnCvtqMWFdhg3Ux6UC\nCQAL564JY1wfx5IB8xzWzpix2nEmHbpE4cJ1l2hj6Q5kzDWYKh1nBdHHc9btbITrA8yZjjPy0CZo\n0PkxWF/WIw/cHcIKt7nTWBoz9zq4gBiIbpBsi9HY7ZTBL9Xfz//jz8zMbCVUjPLR1lkzMzsEy+vF\nw/r5CXTfvjJSff649JiZmT1lYp5ef00skK9fF9v14hPas8+9+1V9f0Ms1+ac/v5mor+PTPpzJx4T\nGjjoqd//+YJ0V/ZdU3//6knFKp1XdZ3//j/MXnjiZ/bZga7/x9dhPuIGNXxJ/fR4Lh2VwR5d75/R\n/3j2J4oHTn9bz/ehU0JBb/xEMc07uxTrPHZescjp7qPqp+NiufziY8VGg5vSntlb/8nOfV91O/YV\nfaaEPfV7nFLu2hCD5djdQunf+FDx213Ml7eP654HXtCzuMxY3Birj74zPGFmZi8d01hePq/Y5o3L\nioceS1WnK8cVo6wGjNm+4sG77769MZK6VhY6EwVUyxSXti572Jx9wFH2LmMyCDR3yy5zif6I0F8q\nfZ0oYQVs+l7LOoOuUgryWzK5yy5sZaDohSPL7hK4AWoOGyHCaTGagfTCSCyXNHlnOEz22Ysb2BDu\n5JPi4DZzXRH2rWSofq1hVo6Z+33m7oRYI2XbdjbzGIZlTMyWEuu421+KLmDQ83qg1cPS0++zb8zR\nmuH79fyWbkYchbYB628frI4urOVtJzcYSeEy8fp1XS8b7Hy/mcAirTruCkQlM9879fsBwkJTWEVL\nvvfh7DXB8WoFVlGEjlrEelfBqI6JZXydd52junC2L2xVp3SMFddvDHSfLvFix7ReBDBPcuZIwLtI\nh/hyBit0kOvvU9bz1HXzOmLS9NBEydFGhJxmM9c6XNL9QlyZJlSwh4tp7pqRmzzzWAH3nL83PS7I\nnO6wsU1i1/dA9wmKacl9ClhePsdSYo8xczVC1zTj33kfJ8uZs5x5nyC+hohkaeIdvLPSQMWZpsTh\nvNc0DOr6Ivs3+2Z8gPcFWF0zXLdCGKFLsOjiw/p7n1hsTCaDkfGwYBx1ySYxMxv3M7O8sRANqwgt\nvwxGS3hC62+Dy+/sJnvLbt1zE42mHmycPQfJRImUGeK6mnPenWJ0bcIxcdISzHHW926o649cqwY2\n7KR0bUScKclySHs49a4TX7r1LWykjGc77K7yfbVrjfgum/N+AJt4A+2pulZ/7GYMuDZj5VKQzNka\np2K7oOts9dUPK331se8bznr7j0rLlGlLW9rSlra0pS1taUtb2tKWtrSlLW25A+WOMmWml3SCdvpd\noUlhoTOiE6gr31wDZedU98Tjyts2EMZruIPsv0eIyX2fUc7yGlozL70krZfJmk66jh3TidWBY0ri\n3bohBOXmTfIlQRVXhihVH0TdGY/3YowLFPmPrpp/5Nhnzczs5COciHECf/qtC2ZmdmNLJ34zTpG7\n6Abs3q3c6XhJKFmJhsz5d9Uvs+tqty3hy76u6wUguftO6H533SeGzeqq6v3OK0KKFuT3r/QHVnXV\ntkvvKOf9/TeFiB0+ob57+ItiDx0YyGXh3IbqMEE359CjQq+Wl4Scvfue0K+bKE4f3asT4n1D2rRX\nbequ6vcjPOSdVbDTEqBDUbtmgCOyPnTJe1xwwhxxiukuHmUKcgrI0aSfRnUqqB1TWEWxizC4UnfX\n88Fh6HD7JubUl5PzEG2FCe4ofU74565L0eAW5bolkAx66IwYbIYJqHsfNkSUOUKN2wl5zZ5nXYEM\n15yY55zUI/thEzQn+qbvT1GtH7hmBOjaDHpF15w+Qc5z4lovGgd92lc4WsXpck1epcWwO2A1TNCu\n6JAjTCqu1bBQuuTPj+ivChSvv7nzcVLCJuqV7nAFwgZCGMIQiWBPNai9B4yRPARlp43uJhHCRgoY\nY1HjLktaF7pd12vw7+NywXUcrQ/clYcuimK0VgD9a1gHQU4OLsnxYR9HGhxuwj6sAE1rm6JzUdHO\nJNJYKHEXYojaAOGhEpbalDkbkNfuOiauV5Ix5mYwf7KGn6nnwl2b+FyGhkEIihZ1nRnC3ARRdQQm\npD01OkMx+hYL1jXXPQLksin1645dIEX9Mv9PVOz/fUkYg+6q5VBHBuq2iBF8qlzHxBPg3S2JsZyh\n/cD9p4zljDWqxNUkCN0ZCKQ51LgrcSEIaUeDg0TalBbOQd6Ypwba28CUC8mtT9DTcSeDuesFOVBX\nui4F6A+aA7OuCySpTT1QqxmIYKfS9RfoQgQZDi2wnAKYfQ0w9xxUPnMGIM/aUp8bn9Z3MlApY70d\nM3YiWE8Nzgiuy5bAxNx2CXGUHx2IyHWfYAB1QKFKhCbKVQQ0dlgm9RNmZvZ1fn5jr9yR/vL7/2hm\nZh8k/9PMzOL0v5mZ2Y1fqR2H7vut7h89q9//Ws5AG09rvz2wpf10+oH2x3tOqX4/uPK8mZnthnXX\nnJLOysb412Zmdtdc6OTLN9BR2vtDMzMbXf+umZl96x3FBO+fvLrdhnT9WXshU+wwMMVWu66KubKa\nKLZ6Ax2WL5wUMyf7ESzcB9R/q++qf/90TTHFqb/EPWaX5uKLr3/JzMz+y71q16sv4oxxl1jF998r\nzZzx6bstAE1/6U1pxHz2S0+ZmVn/wx+bmdmH39UYuLapZ7104VdmZrb8mNqwCJ/Uv41Q8gsPvmhm\nZt++KpbOT5bFatqP88u1sfq4d/Cs/kWX4vgNtWHjtHR0nn1N1/vNl3auX2ZmNgGl7s5wDWIPd4aJ\nOxymrPuuXTZ3pibX2XZfwiEMWQhbggEzBjFOQHxz9uzZAn0NYoA4ciYLiC16VAvWuRoEO+Q+zQIG\nYsRGgj5HMYfhQgzUc/kmmD+Rr2tLrIewe2M2jhT3pBLNrA5rTO37TZeWo8tXdtB6YI3qwhwt6LeS\nNaaB8RnAVImcFY3WjnXd1UX1T4kHZsR43X9Dzo7nuRUrIOSsFb0pbBBDA4KYxB2D+tjwbdrOY5IC\nRmPKsy8RnmvQ8Vna5ZVyhofavEH81/Uhybq44BlF6LfNePfoDKkjDMn5DGY3dY3ZOxfMwSH7ywS9\nj1VYB04WXV/XjXus0wlBSw7zJEI3ryGenRB7dFjnY/T9NtkbB8RxDQ6H+QgdJndXYjZM0HLpxa53\nByN/U3tmDwZIFbKuEyt1YbpswmZOeYezEcxxxnrUZy/vfJoF63p+wUzvWAls4Jq5UrLfVDCJYmKE\nDBbxePZpnaF8PLfbKSFzx/e/2GM6MgNmuE+Vhfrh2nUxJ2MYnF1irbnv0xNilI6zxOh3xIjSrrP4\nXKfplqZMNC0sygIrcPSy2t9zecfJePfo0ke4ZaZoaQXojW6iZ9OBgVfjotwwppZgTS24fk1MEsNw\n35rp9wuUepYOwCifss7C1q34fH8F/Uz6fuIvP+gEzXFdLjZUnwqGzpQ+6MyZUx2yD3BjTlf0uRhd\n0QWstxqmo8dzFSzTDu8dJQz9dAs20jH6h3cnc0ex/6C0TJm2tKUtbWlLW9rSlra0pS1taUtb2tKW\nO1DuKFMmJi9+pStWxcFHlLd89JgcBQYXhcJs3eC0F7X1D18U+rP5kbRgjj0opsj4mtgbL78sJ4Bi\nS0jLvY/r70cfEHqVcYL2zgVdp0OO7JHPnTAzsxP7T1FBTknRxygz1SvmtLtc+Km2TsY2bkjt+fTH\nOs3c+FAolKFlsO+gcpx7+47xebUvv6J6rsHyuHpGSE6N00SP0+ndXfXPkQfEkDl8n+o55wTuw3fU\nH5feel+3XRbKtbDCYtTcr18SohajlXLomBC0w7vFkDl/Xt+9+KbcGlzfYhiKpeQ5nh1U1++7V8je\n/n3Krb92RfnhN2HS9Fb1jOegERbdymHcSSk5Mc9AEhrP3oSZMnUGTOjONjBIQGdC0I8axLmCUdNF\nZyQD9s9hdMSo1heos7uuRy/EEQDUKiUPORpy+gnCkaAVk6MhE5MHnqODES/I3wa+yZ3hg0aPlQ5P\nMeZ4bhWq6gNcjkpHn8iTzFNnK5DDTI7sjCmeO3qFenwJ8l6itN7vq50zcnIjXJt4/Jb0QARgBSSg\nYvkC5wsHwCtn3JDj7Lm8sB98wanGQEHki8YFp9j0WxDCWthBqXBHGKG9FIB2hDhOuUtGkXOSDRKW\nwcwLUF1v+L0TJCJcjwy2U+nPFIZeTc5+CZLQoc05bKwKNfYUetWtXFlYROht9NytB4QyhQ1Vw3IC\nqLQSlGsBCyGA0TGkmmOQ1G4XN47IWQOc8IOYZjA48i6OB+SfT2BNdMhDj2EMFWjWhIyJ3N2hQLty\nT66FjTEFyTTXj+LHBg2GypkzoFGQzSyiXTXaARFrTVA4egSaRD57ept6IeZOYAFrAvUr0fZyDZic\nejiUva1RhBbOjDFON1hN/n8F66zra04ttCtijsWwzwoYQrMp44+c6GQSWzCEETd2tzK3c4B9VZNT\nD+uoghHSLz6NeEZow1Spa8/oWYUNziXQqBzoq/l83cOlAp2LKetQELoLE9/DHSJJXL8C9gAsr8XU\nc+PdXYk5iOZBCfJqc9ZFGHkFml15jYsG62rN/buwnRbuiFXDROw4owjGDQjwnOvvtHwvFbv2J+9L\nf+RgqLFxNhVDJXpYe+6jS7rf+hNyLXrh+c+ZmdmVZ+Q6uHS3GDb7AjFv3jPth8d3a4x8uPcPZmaW\nfA3E97fScss+Vvu/mH/FzMxef0r7af+s9ulTS983M7NX7v4nMzN7bv4FMzN79uZntttwMOvaF18X\nuzeAMXX6pFjBNRo2N0Fcf/eeYqO7v6zvX5gpRrnnoPpt/9Gzuuav9Fw/wAHyQK5Y5+dLijm+cQG3\nj0isll4gJHfjO7ssGms+fO6P2vtf+KEcH+/+0gkzM9vzJroax/Us1/ZrjF39tfqg86Se5eYj0un5\nxpbYOL+EEfy5SPHTnr9XH144o++vxGL3vrWmMbPnPcVDV5/V5+taMc0DW8/Z7ZRgDAKcoDNB/Jds\naW7GzohzE48MNhho+3zAeoJuh7uNpuh+LNjPHEWP2acK9o0gUzsq3JEWsOW6xBIeNy6hXZizD4Y4\n4bhrXQVD1J2AYoT2GpiVAYJPvr8uqPf2foVGzMDtnNB0KdmXpl1nDcBWwP1uaaDvjUH/e7i7bE71\nuaE7NKIls2ANCHF8CzLcXGBLJDAXa9h0EfvqAMbQLLzFBsgHw20NOWPNS9El6a3DBildH0Ws8GrM\nvui6MDsoyZz1GwZIwboaQ5HeqNFy4XM18dUAXaKKvS9hHc1gD42IUWpYrCHxWo0WS+1MG9gHTQ7L\niNijwW2nN1F9nL014/cJrkOls2R5FpVrFcJ+cqesrNJYHCXsL8SZCVoyRQftQmeksGcHOH5twY7t\nuI4HMcgApvjMt3g0xCbEXgPeB+Y4ZDXEJnMfw0s8w4kzKxmzuMf1YW/kxMkFbNkZ+0+HWKlGczEJ\naB+M0NmUsdj19w6V/DZDkkXkOiOMPdc5xFFo9wqM1qEYjvled6OSA1LsJqYzYlTY2yUxW0Ks1MBI\nLcyp/sTbo+VblUliK6LUMt5DQ/bcTulOUBqz/Z7W8XGjvWThzPIDaKV2tfc0vKMMR8Q/aDRVtd5j\np8RHXTSnnHHX8G7W3WLM4E7cd0esy7pvRBzb26W+mfPu0zkIM5z1acocmOBMlm3BysLpbApjPinc\njRVdp77GRJb6WPy0ZmXD2AtgYc2J/0PiSmSlbATbl+Xdtq7/eTZVy5RpS1va0pa2tKUtbWlLW9rS\nlra0pS1tuQPljjJlOrt1Er28z3NLdRK1ta7T5BFaLMPd0j0Z7kG1fkvVvucJoTslKvcfvS+dlMmm\nTqI+e5+0Xo4/LK2ZKUjr+VfJn/5IbJDdd+uk7cS9+nxCPqbnP15dx2VpUz7sAayCAY4GozX9e/r8\nWTMzS2EhPPikWCQZ8OXKvUJ44kDfv35Gn8/J0RuNN+gXMXJOrOrEsUTpe+mkUKxDB3SdMSrTlz5R\nvT546QMzM6vRaBjuUp5kMyts0VMfh8izr7i+w6pOD09fUJ+8/VuxjDo4CvQP6FTTOMm9dEmoyPlX\nxKg5+JDyt2/Aarr8kdq0gcNJb6FTygiGyT5OxndaQk7EZ31QIxCEkGfuug6d2vMW0W4JYUMAilSp\n597yM3nfOcm7EXoVDSfXKZovdXfB3zkLx10kwEGgi8PANorFqescNlYfpGTqSDcMGXcm6M5gAXDS\nT/rytpp7uC3BgIZN7swTWAPOkIHF0YWyUvnvt2kIzt7QqXMKmhSgqbPYpH/R/InJr5yil7IoHYGB\ngYNIjzOIAhCSCYhCScW7rucC+jRBbyXixJ60zm3tif4AtsLNnY+TXuD0ANhYIH0NTBdXsi9xU0t4\nxlVPvy94FjGwQw+9igBXohEK9n1nmDCWnBUUw5SJOrCeOHGPcXFoyCcP6EPP4e8DQBTuDkWOfI7m\nTeruGI5SwQJLYCvUU3Q5fLTA6MmZYw1sthj2Quxq8TiO5cA67gAWORJAuyIfQ42zFdC0oR/naKw4\n+8K1DcrK9ZjIDUZ7IWaMFMzpEOZKp+M5wPrHx24ByyEhR9k1alJHMpPbW0tKUERL3KkMFBMU0mAq\nBS72U5A7jWuAo2EF63cF2mYRyDnaFSUoYmCe36+/JzCoFmN3RmMuwXQsO5XFM3THcBTLYUs1zF/X\nhmpA/jJ3XQLh873GElyVvGm4LcRoQJXoKQQ+Fg09CcZkt3EEUXtZwsMpfH2kLYVrwvgzgukXmufw\nMyZZtyJy2CGzWeYOK/wc0jc9ENoxqH8AM2ZGzn3Yc/so0DPWyX7gCDFsst7tjZE/PCVGyrFzrNuP\na0/+eK9iiAc+0H1/8Jo6dvlbYqCs1to/vzMWgvnRuvb+31+TA8U3eK4vHRCjNH9OTJrVZ9Xvj+yW\nQ+S1XV8xM7NfD35iZmZfgMW2eBnW1VcVMx19V/vyvcELqvc3VL//w8z6mz+3f9n39/r+e2KLHL2i\nGOGPY42r6otyQmo+UL++X+j7yWtyc9r/DdxWfqV+WP88Gmd7xNwZnFc7liup78yP6XszWGJnj4nt\n+8DLoZ09IPbQYFkxwre+KXT2g39SG7aegmlcSH8n7OnvH30ezapl1eXpnysu+jFj6Jm+ENN08LSu\n94FikzyQzs6116Vdc+jo78z+H/be482S67r23OFuxHVpynsDFAgCRQAkAZAESdFLJOUovdc96x71\nvP+Wnvaovzfsbump9SRKFA0oWgAECYDwBVtVKO/SXBu+B+u3E8T7nsCsUU3iTKoy896Ic04cs+Os\ntdcys999gZ+feVR1/rJ0e+qVB+xuijMNq9zHMsyQkYttwUzBVS1cgyEIM8X14cawFIpttFIG7pzI\n3AZBdmbhkH1sBnsixO2jh55GWX6U5dCyj/VwciyIDRpYBw1s35T9bEls0/cYDeQ5Qgsmad3Fz//O\n+gWptZgTS0GQHMJIrHz/QUMmgAEzdFYgl1uB0TkHK85W0PNzxBvmj2vnpKzXLZN/Ry8LNvCItS4L\nP8Se22ZuQ9iGzp6uiD2W7r630Pcn25prfaizRX9guy0hfTn3vcJdPolVWt5F3PWzdD0Md0ZkQczQ\nbZvj4NhzZ0MYFAHuPTXMEEPfoplorC1hggyIP0t+zomXk6GzfNERcVchdYGVsEhH7LXutLVurhek\nf8ewJebsiRF76zzVO0hWaB2N1th3NmEvjV0LUn1dEE9GQ1i9sHBnsDcGy4z7MIeIY2PWyQQtnwWs\nq5CxW8Ek8ZhhwliLSt03h726h3h3i/YkaDYmsKoW3DekniO0HN0rdBx8VGPmj5WeuxCiM5cz1nKc\nLVvWkNVT6sce993gOTprIyGGanl3dRZJTb0D4vGMuZrTv8viD/bHNLZsvrCG+TeHodLbFisyTrW3\nJX29jxfo6yynWncjGHTI/Fg+1+9nWxp7K6Xa0D/K2F+q7otcn4sz3gF4KZhMtOf1YKQcSLWXXg70\nPl719AwHOMmGZEtEkTvZsq/AUO4d1e8D+nyzUh+7NldAfWr6pik/mnVRUr+W4MV1SQPW+xHrbYXr\ncl3r+vNaY39O3DpKP95ZtmPKdKUrXelKV7rSla50pStd6UpXutKVrtyDck+ZMiX5lJsz5fjWSnO2\nPTEnagPlJR88qJ/He8UQudnTiV29rZOoy68LgclzXe/Bzyjv+9Qn9e+NGzrpO/eqkJjJB/o55JT1\n5CHlyNW3dd2X3lKedLWhk7r8jk5L5yDrJw9KEybeK7To5iUhNvUN1ec0qNWBY6r/lRfVsNd+rxzo\nmlPiW5fV7tWjum6Ksvj+g0KQegd1invtDSFN+1Ewd+2I198Qunb9/Hkz+xCpf+QR5YkfOHxK/bgy\ntNtoujTk7eVoCoQgodFMSBeHinYQNs7+T6it2ZrQq+AtdHA4yS3RPri0jcI1LKVHPys0Kl4RKlFe\nU1+m+0m03mUpQItKdD8C6pvDTBnBRpiTr+35z3FOAh/HjhHuHM6w8Wef8L2A+wBGWc3Jc4hmygJm\nUdvodLhwiodr2ThC60rjKHjPEk7yZ+RVhu74A9PHHRpApivYEL3A28GpK8h0k6IX4rA9c6hHfQsa\n4Nos6Zj2ei4srIeWU98MVKgGPQtB2hcwfDJyZkNyiZe0N57q+gXgUQjaz2WtmH00bzIG7Utad28B\nHSzcIggkB8Sj7xoZuygB7Kl2yqk/+j2e/2y4OwxAFpfoBtXknEfcu0eO+gy6QBZ/1JWjhtkQuxAH\n+kEJrk4Go6XhJD2C3VCiq5ExPyegVGnoGjKgZH6ij47FHOZODEPEnQEC8sgD2GsDUK45zgwpucCl\nyx2hszHzsQXrqkWRv567yjyoCiyyJVopnutbm7st+XXJh6f/c5iOxudaWA1J9lGnsgS0p8BJLUbT\noKR+rUvRxKpfBSKbUC8MLaxgLO62RANQqAnMFx5jz+sbqv+c+QTJyyI0Cdx9KqHeDayOcAQLjc/1\n6Ddng80yRzEZPyAs8yXICU5DbVpZ43oPCXo/9OEsc30IVXoAm8eduipHLkHjG7SwWhDSGgZb3IO1\nxLro2iwtmgM+H5epI2g4JDjJiPoUoD0tmlmtk50cgaWvi4m+n6KNU7ioDDoYAQhoRd/2eCht7o5m\n3Je5U4MkNjPQ+z5sNUKZnL5tQRJXFx/vdPDfl/jX0np543timJx9V9ebvi49k8uH9PuDh8RiPbEh\n9O6tI2LZXq2kI3fnpva5M58SqhdcFKPm2OK8mZldfELtfuLfpAnTfkbMmOnBfzEzs0eeEXujabTf\njh9Wvz97S2yR6RdhE/S0T58KfO6ZXT9qdpC8+Z8+9G9mZvaN+Ltqz1D3uf2uGK4rR2C3Pfuirode\nxz8W2q+/96jGzQ82tMZ8dhNHyhMg6KyFm0/oc/t/JL2YzUTslQufPGdnbuuZXxrqmsGW4pl9f6tB\n8+Y/fEa/f/QbZmY23/cT9d051fUIbNbkE99WH54U86V4W/Ps6lKxx/vriusGI93v/iuwCc6rzw7t\nY/5/SvHaQ1v6+7lX3rC7KVNnPoKuJ7AFEhBdwzFyBtOx2oQZQnznm/eM9TPj94E75rAvRGiDTVrf\nOzXGh+w3S9w1mYJW48QSESfWaLi4e2cfRmXJ9SKYlhEOldGMtWHkOlHMxdZZeCoT9qEha9AEXauw\nR2xQ4ASDnlHJ2rSGe1M58NgHJBq3lQY9jQQNhwmxV8g6GsIqbkHAY3ekpAP67D8hOlMFent/yJXL\n8sDmrP8rHuyy/4ah+inGwWgVxs2Afr1zF5oyLdccwcqcVYqfnc0UwcCY4QQz4FnExBy+l/dwM0pH\nqlsNs2G5UFv7OPeV1C1OifN6erdIEo21BYyTBL0j1yiL6KsyhmWGxsgqYXq1LZQ/R1tlxOa/DcPH\nCZEN6/gqzJc5+886Y2GGzkbAelyvsH7l7vSj+4ycTcZ+VMIadvvUBkZJH5bGFm6ELaxcf9juEpjB\nOJqNfGzgFph7nA7bYuGbPczPRveN6Icp4jb9MayMQH/I0Qt0fkzJe8Jui7Oza9jDkXcrsYgxhwuY\nS6MDzNFbMIlg9vh+3hJLLXA2cnMt1/eLVmEno000i/8gTi8qi+PMGtIE3A2ugkVf8V7e2+sOobc9\nxwAAIABJREFUVvp7hFOkm5BWxG2B68bBCitwXTuS6L14cYtnMtB1B8QeBTeu0JQZE8j2V/XMhwe1\n5zYTfW4LHaF0pGdSwVAJYBz2XdcO9lrFnHRB0oAxV7m7W4lensdlxGIQc3Z0Q0t0j5ZT3iecdbzO\nfWqYgrW77hHb2cfHrR1Tpitd6UpXutKVrnSlK13pSle60pWudOUelHvKlPH0d4NVsAdmyJFHpKK/\n3BS6dPmctFIMt6X5bZ2MXZsKGWlInH/oCWnMnHxQTJUbuBu99qzyvaeFEJLRYaFcKxxLTkjxuvCm\nrn/rPf179EHV4+RR8hJHOnk7evqUmZm1QKm3BzgbcEo9AOm4+ZaYN6+9+Hs11zUahrrO/r1ixGQg\nD23uCLtOrW9fELI0Jwd3Ccujj//78rLan6CKvf6A2nVgv+oXr8rV6uadW3brqvpgsaET6bVjQsoO\n0abznIQfPiFmzElcJoIeR8UcJM/xvT/xKd3j9Fn19aV3pDHzwVJtGB/UiXvf9P0LoRDEduYPfXel\nipzJgqMBJ/8pTJkc/ZAwdh0IGC4xDjktecyu9eJuI7Qn87zAGH0JcjRTc90I9DIyfo9qecWxMKmp\nxqGsReRzuyp6Dcq/46yAeryhCxLBaAlh2lQgGIZ6fQRUDFhoUxx9UnKUQxDommPrEJZFD9Stgg3S\ngoAOQKILtF0WjTOK6F9QvIRT6xLtnJB8yYbn4WnapHlbjcZNTXZtD6QiIIfaEZI52hVRotPx0OsJ\nWubPrRh9lKXycWWBg5O79fTCGffkIXPiXbl7D3nS7mCQ4ChVgx4MOfGeLzXGhrACSC212PPCGTMV\nzJo8dn0O8ppBGkKYElMQyoxltyWn1XU3XMuqKV1gg38Y4w356TNYVAOebQBbIENTxuGRAMSidRV9\n3OsAUyyhPvUQxwdcglLWRc9Dr2FBFSNHTkH1YOwFri0AcjokN7dlLLg7SAM7KoD1laDT1IDgVjB6\n+iDRJXMQOSornSk0R4ek/Pjc3P++NDCXeoGjZGj4MOXCEeNnDiJEvzpqOWJ9n8xdG4j8f9h5vYH+\nXoBu1iw2IWo0ni8/wA2sBsEJYGi1ZWstE8r1EgrchmKYbg36Yzm54iVubD52DBezHPQ9Y50IQCRz\nUJ8ZSKG7GxUgcy67kzIWwhTktvFnqA8MQZNa5p5rIWQ9z7NmnWBdrmHeNVBuUtpV8f0+GjkLEEnX\nL4pg/jGlrcARJmZsxWjuBL5POHKL443n6O+27HlMe/6nt8SuuHhVTJTZCaF7ezbl2Pg5GCQvYV6x\nHMjBZ89vpN2y/wkxam6/Lpbs/HNfMjOzy+hq7N0Wg+Xlp1TvJ9/S/Qb70HT4nL43+43a+951xUC3\nnxRb5NQvxe5YAzE++CeP7bShefObdrB6Wp+/JCbOteH/Z2Zmh5jDD9xQv33wsuKAkytiC9+3Rwj7\nzZ+wv+xT3HDosOp9M5H+3vtvqt6rj/7SzMw+/3PFLD9e6Dqf70mv5YPqETt8RuyjS9t/ozq3YtNs\nRYqPpk8pdvjL6rNmZvbqb75jZmaf/OL3zczs6kTz8cdnFLt86zYae4n2kufW5By5nzbsvw0T5SE9\ni+1XNFY/wZy4XkoX542bqs8Xv6D62P/5f9tuSgwjo3JGYsaeC3NxDkK6EhC3sd62fR/EOLcwF6JE\ncd5shgbgGsyRqWuNsW4zx1jGrV6BseKxCuvwEn2SZsSNcWmKQXZLNA4GINSGLlTd9zmJKxSaMr0B\n6ziIdAj7d4qeU5+Nqlq4EyRzE82cVSe9sfEE6H0EuDNV6FwkrAEhDKIBsWLB+uv7Vd5T/WbcJwLJ\nr8esOdSzRG9wZfEhiyyaBjZAE61Fs2yFdTu6DVMVJ7eK/XSB5lwS/yHn5uML5kK2XcEiwIVoZQar\ndUg8iJZhApOhzzuCr38B7nYtLKNkh33kjGb2iwwG9QwWLkwT3yN70E+bvsePvPrlMHFgchewv0rY\nRA3sggF9MSE+HsFWWhDrrFCPWQ6TDkvIBUzLZEG85wzKJYwb4uIee3GbuHMj7AdisihHN8ljONhg\nqzBH51swgdjjqwyNR/Zmv26DzpHHFDH1mTOp6lRrSz9xdjExJHt9RODrZqlJz/d4lUF9d5kANYzP\nHpo3hgvVmPi36qnfnAEbm2tDqp6L62rn2h59Lj2pNXByQ2taOkQnCb2XCMa6x+kJbDC1LbEqqix0\nN053NIQFFZMpsoR1G/AMPT6O0DJteEY5rmrRba03lul9dT7XHhJz3TH6eQvuF23jyIgW33ybZ0dW\nxniv7nNjQ+t7cZO274XxgsZXgUteL4W57M6uMF1Gqfb0jZh3ow3mxIra2YcBvbzj6xLaW8T5ATFZ\nwHozQccuRPMrgXlTojvkG0FZffw60jFlutKVrnSlK13pSle60pWudKUrXelKV+5BuadMmTkaLtNr\nOvXb/6gQj9ubOll76xk5AfU4iTp95kF9finGS7ytE6eDR6QGffCwTr4iTtTPvyIV/q1Nff7Rxz9t\nZmb77td9bl4Ue8OV0o+fOaXrnNTfT5zQv37ydvWmTuYuvSomzSY6LddxUdp3VLlu431iqFw5LzSr\n5KT//gels3LwE6pvBQK9mOo6N64KpWo4kV+BxXL4iFC0BF91DkktHICkgFxnffzaQUOTLTQy3rtk\nN26or0tOuPc/qGtuT3Q6efGc2rT2CenkDHBueudl9eH8hpC763fUl6ce1rMIYUSULqFP/h9Aqm3c\n1ufPnVMfPSAAcdfFXYYa8pD7nOwv0fcAlLYM5knbcCqawrzgZH8BkhBzilvBODHcqOZAxEN0Kpbo\nRpQwWFIQiCVuHq6pEvRAgD31FceAJtCz64XunoLGC3nUS3eBwnHBmTtF5K4iwGEgvgbaE/kxKir4\ni9AFOMgx9hN++r8XcaQ/d20aUHxQt2SA1hDoXgQzKC9hg5DXHeDm0ue+M5CM3o67Sv2Res1Bv3qc\nhkeNi/WEH2keMizWi13rAkZOvXtUKnO0HDQj93uAlHnecAr7yBXnh3T6FFeFgTNMyDUfwmioltTN\nWVZUvgSFCdAk8YTmFlRqgCuGoRMy5VkFO441sBBgyEHmsnaAgwFMihAENM9B0V1nqcczRSMnIF86\nAMGM/ESf9kdkPoeeuEy/9eawyGCyLHFfSryd9Gt/6toyICKww8ICHQ8QztZRPv4ew74iLdwimCPu\nAOD53d6uINfkcB0iiDbGkLQh7U7ru9u+Uto7Z6z2WavaEW4pjbNC0EfKee6o9TvLY4wzUIWelSMj\nRn1C0LuAz/Vhe0DIssZdUeasnX69MLKahXPYunMK9ybnPKfvgqGjMq4jAZsTXbUA9KrYGZu4xTGW\n3fGvRAejRZOkT3J6zVyYwQYYoPNQM8YXPp97mugjZ/3A2GnRTligR+TsK98f4gz0Cb2IfE6fMwYq\nnFEyEOR2rnoPGNvLypFYXEqgyMS1ULcSJzHXnNlt6c+1x8+2xNp94PR5MzMbwmB54V+0712MpBUz\nrMVyOLD1uH5/QMzR47ek0TY+TB75lZfMzOyzq18zM7OfHhbj5dv5j8zM7Noh7ce/u6rn8Sf7xL7d\nN9balB0Tq/bQCObinz9pZmbvxD8wM7P3b0ov73+1/9nKQz1bJ2/+M5fEQsk+J02Zf21+Z2Zmj55R\nbFNe0s92VUyb6Rk959EjQjWXb6s+WxPp11lz1szMvma/Ub0z2A4HpQcTHlF7ftrKKTJ57brtfVIM\n3hItvUPHX1BbfyMW0oFaGnhXcJOcfkPsm9sKPeziisbEsTfFcJl+Uo5P1fOgxIWe1f256vjCuhjS\nyaZ0bb7zOfX9Tw4rhlmeY+9r1Ybz/w6tYZdlCEt3isbCiLE6h3Lt637BHDW0ERZzjc0hehwJTA/X\nCUlgjjQwo2N3ygGRXfU9GRmOGYj2NrHIGKfIAJZE7owad3YhVumzZhTo0QUhwnDsU2Gl+LthrWlZ\n90LYrgMYQHP2z5J9Yzh2RigsYFhwNWtAQHui2B1y0P0Yor0A89y1aKJVZyfj8of+lWtBlLU7wqGH\nB4Oy5fqrrbs1ffh8o2rVMlxVwym6epHbILLfN6whPKcQhmZV7X6czGE+OKOv7Oma20P1bQxrcs3H\nSqJntF2LcdafwjhBl2M6nNIXYmJkvtdsE0jCemoy1+vR91acLMUeHaJjZqnWrarQ9RKY6GPfo3EM\n2y71bGp3D4UNG8zQfGH+5+zJJeyqYlPtXyEGWaJZE03Y1wZ6R6onij+DNV2vLvw+zKml+m0PbK2I\nOHeLZ+OaKgPc+Ar2oQQ2szuDjYkF602e5RAnR2ec83wqWLCLPu5HPXeAJIsB3aEpc3LEfu1crK36\nLjMBGB8FTCjXIZy7oF2jfmt6omRec4005vacfdplU07eVD3Xx1pbXSNzmWg/Wm7DKEIr0qoP61vk\nE2vD0Ib8qefP7qiuVRM/znjXcVe4bZx2GdIWp67Jws/M7xytqjuXYSYy39bXiBUmxAK8Y+UrzMf3\ndL1bGxor433o+bD+NFDYnbHsjrQLGO8xrNxJhTbMdf28ekaf27qlPtyCrZ+S9nDokPbIjVRz9s5C\ne2Kvr0HVct3+AdhwzY59qNrPu14Im3kGC63/R95tOqZMV7rSla50pStd6UpXutKVrnSlK13pyj0o\n95Qps7WhU8DWlaE5QfoAl6StqVgWn/ni5/WFsRCR6fW3zcxszyExYwaH9Hs3xNkEaZ1s6QTt0GHR\nM+575JSZfaia3CO/MkE35eBYTJNN2CBbV1S/RaMTulu/V3717Vs6ZU7WdaJ26gHl8R05LR2WHFRz\nM9fJWoZv+ZHTYqGM0JS5cvk9MzO7AGMnheVw/Kjqu3ZC1924rBO8C78Xm8VdUrYWat8x3KNOf1IM\nHFceLxa63vZ2Ze0WJ8OZTqgPcvJ66Y6cEOYoWZ8cqQ+2Lupk9d1zr+qaMz2bPas6Ac9nqtN5/n75\nddVtz1GdLu5d13WuXZXjVIgbT3/97twwhqAuW/VH1dHNHW5AaXJcIFI850OYMDW5pH2YIY4YDDNQ\nIvQlMthGC2fGOCXFURS0FNw9KIx3qC1mZtaMUb8HVdrRqQC5aECEF6A7Kdo4SwZt4mZOqKY7q2BO\nu1Pa3QelamiXf85dtVzh3KhfQj50w6luDRMnpR5VQu4qWjct7lZDz7VFoydzXRMQjLhyZyEQbpwO\ndjRlGs+31P1yjtGzHVcYTsNhJGXopZTuNjDf/TiZoxnTR8/INVJ66GDU6O7M0NFxVtXMc9xnumfO\nyXoNvDAgRzR3pog/Q3LafShmoFIhDD3XJUpwOVpWjEHykXPvQ3cCA3Fwx64IFkBd60Q+Ih89g1my\ndKMBHMR6sAPqgdrdcr+K+sToj9RO9QHlcQOFEBSqx1hpqZ/10RXB1Sonr3lAnvgMFCaM1R89XK58\nbs5BVgJQn9rdRqYwgzzx3p0ScuYgyGcAqyudOsKq5xyAeET9u9u+Wvq7NkfLeK6lzw3QROZW7doI\n5OWXjHH/e+SuUdTH51BvrP2kAQWcMMd8LTDQuIB9oC1h8c37lgz13WLCPB+5UwDMO55xDuurhz5P\nDMOtzTz3HEYhILjr97TO9nK2lndO5Fo1sKtAPgfsySXszR73aUJ3IhNstkz9wi7qQg57AipE28cg\nmJPS5xhjn7EVoLNUwp5q0D7oJ6DzEXniaAO4Tobr0s2YOz2ecRTsXpvKzOzACTFSnn5R3zt5XD+P\nW+2x1d/q91/eEPviF5t/bmZmG0uxer96Xvf90be1p3/9tS+bmdneI+qfX6b6+zHy23/XF/PkxG/U\nLw8+rpjj+ee0l3/vsPbTO1d/YWZmoSn2eG/veTMze+rv1T9vO1b7v5vtuxXYM+jL/cmTOEs+q/oO\nntDnD8Hy/eCOnI8ePqJ4YDJ8Xp+7/BUzM/vNZTFx+iPpvWzbc/p5Q1o1xTOwEeZiDu0FFT28dsrM\nzFZvV9agUfLYi8+amdmPW+nYrJ0VK+lsophk7ZwYNO1LnzAzs2daMVsOnVJ8d5N5d/aq+rY+pblS\n79fvz4Nwfj2Qc9XlN8UO/vXl/2xmZnvOwR6Yaw69+TcaO4cabD//i+2qLGHW1RON1S10l1bHaHCh\ntZA26tM58aOzdHd0mDLWsbk+l4KkhuhYzGCtxTA93BFyyd45JCYrYQ3PGVsx118hCFlQv5TZPkFb\nZwBbbo4rXsu/s9RZvcQolcZchrPkFAahs9BS1o4apDvqORMITZa5u4vCwoP9MR46Kw9kPXNaB0yY\nbZivaHk1iTMViYmIVZbOpBy6/gj94uzi/MN9YloubDijP2DnLXC4HLo+XzmlvWhilK5xtnsWRDXQ\nsx2WGtsholglemt13/sCJgoxSDvUWIhW2QthqgxgpkyHWh8GS/bmdc2NPHddOPTgRuqjCUySJtMz\nHG4Ro+CsVQYwVRD2KXGaaqe6j7OPe7Cw6lxMkWDA/rTUz4tc1494hxnAeF46A5sYLaT+rbnGofpr\nizmZwVYN5q5JqPvOYFgGaCJGrF8tDJeixEkSFlkw188DGPYV+8lyJNbDkLmQo8uXMlfyIbp4/qxh\nv1X8XEfoWaHntJzAFNenbXiXzEynAROi2cpIz396XkzJbKT+W8NR7tK22h2iObOOxlqzpXpdP681\nb98ZrY3LNVgaW8QkxMB0l42cMWNmYZNZ2vasJssg49kFY/qeOLXZRsuU2KNNYesSRw0a1mXm65KY\nxfWSFhONlVEkBs7A9K44W0FDdRu2Jo5Zi2Nq+3aqPcadbPuZ+mqc6u/uOJYyZ9pY9RgQQ1QbYugU\nrnXDfdOBxmR4FS0aAuyIMT5Y0aDaSnQu0BR6BlWFg+9Qc3DB3lxdZt1hzJw4qvvksHfb0NnL/+PS\nMWW60pWudKUrXelKV7rSla50pStd6UpX7kG5p0yZEB2J1YFOtkbHcA8CCdhLLtvR42KYvPa68qOX\nF3UaePRxUKZjcgwqYTXUIAU9zi/bRKej77/KSRmsgQTE12BPXEFV/+pr0oK5Sb7mCqeRznxxHY37\n7uP+jyofvOHk7JVXzpuZ2cYHOtlb348L0jWxTy5fgoXyotCrAAT7/seVj37g6GkzM5uCJl4+p1zp\n8zBqzjwqJOmh46dUnz06yRsg4jCbq39y2C93phPLOSE9fFzfHYxJttThoq0eFSJ46pRQrCvXdVK7\nF1ZA/6ROA4+eUa54ilvT1Q/E9tm3T98/+Rm14Q7OUFP0dlZWdKq5mukZ77a0BegzaNCCZxFgbZOC\nKrUghc4OIOXSYrQZKtgMxRDHA3JyE5DfJayIfuhsBBgd0CEaFPtHMHMc9XedDpdYyDlNTtFcKVDs\nTsmDHsLMaVLU8sn3bh09xx0jAJ3pD8itRccjoT4RGgoJWji5S7aQW5uBMOTODgDBjsmnbmDCxGhM\nGE49RaIT92kBS8Pzx0HMY3J8Q5yOSuaawXipOPJPcG9pKq9v9JHP9+inAOeKRUFeKPouJcrluykZ\nOaWeS+5OWyX6QMPIkUeq6g5ZMPQqxgSi8tZz1kAwpM1cF7Te3SbcPWmZ0Ve4CPXcTSfCAQzWQciY\niJbuyABLyF2KQL8iEMTeDH0m9Dla2E+OeIaef83vnUyWeB6xk8pofw/mx3wBk4cv9Bxld7oWLLOm\ncE0cGCM4AzibbABTpzb9m89c3d71nz6qpWI4g5VUMGOuOkzkzJgdzR1QrIo57poBFQjyYuGzfHdl\nTs5vtmPwwNrA3CjQlwoZF0mr51uDGMWsoZ47vUAzAnkUSxgvi9Lz1D2nGSQYVp2l7kgGct7XeJlb\naK3n/sMcSblWCUuqBEnMYO/kPJMW2lKNA0Lormc4pbg0Vc7v00xoT5GjKYB21KJP3dG5qGHyBe7S\nxF6Vwhyc+brC/O7x7BpQrhAENt9WX0IesxidiMWY7yGU5jn1Y9bhGc5mMxDmiGdToJvmjMBwqXYP\nhzgkwM6aDe5ujPzmBcUK/UwxxYOp9El+/Ctd//SXXjQzs5/a183M7Msf/NjMzF6Ya+xeDMVM+Qr9\nUo21D/7dy+rvPx9o/6we0PV++ivdZ/8RuTHtm/2JmZkFPbXv5qswUQ9Lr+6x/WLjZi/Lmei5U9pX\nb576UKxtZfyG3feM9uMtdPpe/pKe+2PnxWi90apds299zszMfvfP+nk0lPtU9aock1b3at8fnNXz\neir/UzMzu/OO1rqz+zRufjRWrNPLpF1zJlKM89OvvmHfeVoxR/kNsX+K34pV9IVXxMZ5vZIzVHRA\n97rxOen2RM+zN/9AbVzP1KebD0sH551D9+u66OTdN1G8uOlj7MTPuK7ir+xXcoRaI277UqE47+Iz\nA7ubUsIgGffcydDHGOwA2FkZ62LLOtDAWshxNBw3MEP6GhszNBLHfG7JftaWQnJnXH+Azl7lcnLo\nhNTu0FY7YxQWBuzd2UJjNKM+0ZJ2gBTPGl/32fdg/jQzrREh+8UAtsMENlyM7lTD/hLw84x9Le1/\n1AGuJtaYwGrOYFLlsDZSNLwg1VoLe3iAW1KFw1zJupmxP6fs+wv2jaLV9+L+h7FEGy5tucLahB6h\nk6LDAtYEjKGY/cBG7qC5wyv8o6VPW5sa1g3XSpyxTKzRwlxu19AbwhmrhG1QNu7Qp8+tsIdO0QxL\n3AkQza5h7Mxx4kP2if6qM5SJAWBLpTgEFmgLJgv2B2IiI46boP8xItDdQpdtlRgn532idgdJxmSx\nhkvbklhmprlYwv7NYVM1m2yqK+h+MNZaZxIxp8Lc28vcQPdkTocGm+w3MCoXMIz61Nv1/lp3oWKs\nbMZq/wA9uAZWg+shlcy5lv5K0R3M14n5VCuri7tz+3MZktRZ0/S3600FxD4Nc3lxU5kNq2jcjPdp\nzbt2Wy9yi02tuysbYmes4PJ1I9A+NMThaIlGXPGHxJ5RbYtgasEG8yjQPB+isVQRA8Qj9XHK+2kL\niykdk42AmNXc47Od7ALXpySTBUbOkQBHW+ZxBJNuCbNuqCFjFeyr4ora6iyq3omD9J2uc+0OsQTx\nabNPe2fO91tn8cLWWpSuH6r6JmSVhGQDOGuqv6H6h7zrJGNVbIuH2EfAKNzU/eN9uEKNnKUE88/Z\nw/9B6ZgyXelKV7rSla50pStd6UpXutKVrnSlK/eg3FOmzOEjYk0cOyN2xvH9nGhxEtVHu+Xye0Jh\nbr8n9kZ/r753ZL9Qpt4aOic3cAxYggJyCju5ypF4qO9HNfmM5IJt3xYDpdiW/sk2wHHTdzcRnRRm\nPZ2M7R3p5CzE2ebC26qf67BcuqkcZXeKOHha7dp7UBo4xZQc3cfk2JDs0fX2HdCJXw6DZ/O62lNs\nqj1HT6ufHnxCTgnBVBW9cV0nh6+/J9bKndfeUv1wcVnmUzPycg+f0cnq1lKnoNff0HcO36dr37i1\nQZvEStogV7XZIuczg4UA+l4tOS0del+rbRfRmtmudVq5via0q0jv7hwQMMUi1NODSs8u6rkWiqND\nsBBAewp0d0K0FWKcqmo0ThLQ6tw1TEC/KlD8kJP4BHV248S84Uy8QLfDwa4EllIMC6NA7CUGaZ7D\nluglc+rpzjMg06B9y8mQv4N0T91xQWMip14BKJc79iQwWSrYBvG2Tm0DBxZab59+dpX5eMRpMuwH\nd+5pQf8yntccVXlnfySF9y9IAo+1gUHVePthSyQNSErkeie0G3aIz5Wm4dTc7Zt2UTyPuQKBC3aY\nF9Q9wI2MexiIWBPDdgp1kh0x3x3RdNeiJnXUhpN6xlRQwpCZ4mjFyX4IO8HnyMBdM8htLVu10V2b\nahgUzkQxEIYFaIZnoNagKUvYAMMFCdTO/Jji1kS++hDmn5tGuHnFkP84plOO9IFqjhtTzyk2IKqg\nbsvCtQjUn+2MsQqKlCDbn5PXHvvk8OIILnSJ2JzaQz/zfOrEnXl8rjA2YIE16IUE0e4duszM+iA2\nQcRYRFSnhlHpTKia/PMI1CqiPxe4ZI12HC70PBfomDQ4aYSM8V7kmkGgb0DbhbfTdVhgPPV6oRnr\nR0Tu/BLksgeKEzH/S9ikGcyXOetS2kMnAfGYGNaWI6sBzJsUPCZivi1wPEhBZCPaMgN5TXE0K1kH\nAncS4+8VTl0VGgSugeNoVDDW2KlZ7xKeYUpflKwbeY42gDNyWGcC1uslekVD1l9/JiXryRDng8ad\nD/K7c8N48gE59mweEKv27/5VenZrT5w3M7O3f6f6PAWSPCn/zMzMxttyHVp7VCjZm6mcFu+7+brq\n8eW/NDOz+M47ZmZ2uYKR8tjTZmZ2egGzhef49gHty9fPijXySebs5tv/zczMkqPfMjOz3jOq50Pz\nSzttuHDuup1c/ZSZmb0eSwNm+w00J7bUb5dBWp+asIYd0PP5yZqe19l1xQerj6odrxViCF26oxjl\nMytq108Oi/1y5Fd6fptfE4vl5jsaB/c9MrTBMcVdvzmnz+y5LXZO9jeKm069pHXkzlh9/9Xz6sM3\nVvXsHvigoC3qu5uXVdcTG/rc8VyxS3VWMcbgd4rD/vnL31HbntUY2/vgKTMzW+aKgV74x78yM7N4\n8H27q8J6v8hcs0DXL3L1bTuAIcge3AdJLfowStx9jn0pmDJnUmefwWpgjGcjYgMXzEDnokBDpgb1\nj3GmjFlPICdYBtMkThXvurbaEo2aMWvMgD17DsMUacQdtoY7s81oZ692XRR3jISFzLofuKvU0DXE\niJmIldLS9fQ01mqCkznIdR9EO4A1EtAPASzCDMR5zlrRsJ+kqSPdaJ0tP2TKJHsDq2+qHlurGj+r\nE40bd3Nq0UnZRAdmNNXPeTWx3ZYSNkDPtfbYeyKYG03iuhW0CSahRaDq2OnEMJqjkfp6kzi0hXU7\nYD/YQtvP9YTm0DdTtMA2eJgjnuHQ92CGHtuL5cRAFYyQDEZ4jDjZItGzyjJ3GIQB5IxKd7BCU2fg\nY9mdD1M0CHEMc326BVoqNe8bU8ZGSH0LWKtjHM8y1yvCCW3As97kvmul+pHlzZJt2rlk6bwDAAAg\nAElEQVTqezeaaMyRVWJFd1EKeY8YsI8u2G97sGZzxmwCI8ojnXJ2d/tNy/OsYndicwY8DNhI74w+\nmdOF7juHlbEKayU6ojXNcumezAqtue0MTR9nf5GVsoLG5ib9baZ4rV1UFvPMl1CC+wySJVkLM2fA\nbKLNSgwwWNEethnpvbUlJujhYtpjfSr5feTsXGeaT9D5QVsq5N2hHOD0xZypYAU1Sgix4Rr6SanG\nRjwl3mddWDuusXAFHdEYq9xJSd+SvRCx/i5x6t1c6D45rnmLbfW9JWIhHd2ves22tN/Mb9K+iebe\nmRMw9lhf3WE32GFW/o9Lx5TpSle60pWudKUrXelKV7rSla50pStduQflnjJl5hOdLN26pRPoxZti\nqvQcpbutU7yr7wkNcvmKozgiTEAiizs6VXzjeTRnQDKqhZ/g6STswIqQgmivTsjWU6E+5zfRkFnq\nZGx8QCd4B2HiHEFnpeZUeLKpI7o7G8r/bLZv87NO4PZx8rf2aWnDnDml3GeLdXJ2g9PkvSdU/ztX\ndJ13r4rhsoCqc2eiU09HKo5wauqnqbdv64TuxnkhTtduyM0gABkYwOhZH/etjjgx5WT4zqUPzMxs\ng9O/U+vKs55fRffmHSFvp88KCVuJ1PZrr+l7GS4hWzBrNjdVx+Ee1fHQw0ICD4F8Fgs/Jrw7dXJX\nV49gORl5xTnoeguqnYIWzUmSHID2h6BYJShO6IwX9C+GKQ4qsbsagbbgwFOAntToeCRosLimwhJN\ngxbGTROhJ0LObr0E8eD6NXmKASrtrjnTAz1zBNidcdwfJXItmkr37TsDBy0cyFzWBzmvx7A5FuRx\ngpgEE9gX5JU7Mp2iWTHj+mHmCAUoGroteeTMGI2xAsTcdUESWCAhcyXocZqM80REznHoSDvCJxV5\npDVuKm1v9yyIqiXnNfFccXLZQQwL3CcKxkRE22qSyQclKDJN6VWMBfKxq9SRS3RvXImfBakhh971\nLQx0J4FJE5AD36bkpGbqk55ryKSwCRgbc8Zyhgr8DETSncIcYZya1wd9JBCG0l2oaG8GVaYAAc0j\nxhoaDS0sqTZA54iOaGhfPXDGDv0RIqICozHmeinrlI8NZD4sBW2CgGQ5jJ6aQdt3tw3QqiH56jno\nV07ucR8dpRn9Bvi46xLGrq4Porvq7aVi7BcxCKxf3rUO+szpGchH3929dlxSYPAwHBzYdmcGZ50l\nBYgPbLA+c71dzKxxlzNyyhPYSpByLARlqdFJqJ0E2ifnfoljAPNv4ewdwOIemiwL1r/aTeZAABO0\nrlzDJaZyCXpDLIfWq11TC32kQmN46fnlaLlAdLGU+7VgiuWIijPmfbq3rsmF3pB/P2JOZrCO8sQZ\nO7rfGN2eBgcIw/Gq19wdm8quSiPm1WfVns9+UvvZ6ffFTr12n5grrwy1H31yr2KHMz9Se154X5pq\nX4GRMu0/YmZm33lGe/v1AzjEjOREdOyAYounnxWUu/+Ixsa3QIJ/+aza+8Ix9dsDj2nfnW3p/mf/\nAgS0PbvThLTK7YWe6vWtC4ohXn9K9Zm8q3+/cFWaOD976/81M7OHydtfuSadl/37pX3z0jnV8+iq\nXKay+l/NzGzxpti/a+gPTL8srZutH+jvj33l22Zm9t72v9itRjHE2YXG5PkTGjPPvK2++EKjWOP1\ny780M7Nr30BX7HeK1678lfrisz8UEvrcV4VUXs71941/0/WufiDtPdun2ONoKg2Z1VjPMHuddf27\n0vI78Y7m376v6PP2f9muSmSwGUqca1LfD1g3ZnpWQxxr3PkQINYC9IeWrHc1CG4GOh8xB5cw9JYN\njEpil2gM2wzdjqB15qbWYXeR83i5HaCzgWtIP3KtK5g7uMAF6J8k7IdVQuzFOt+UzprT9Qo0tXL2\n8Bhk3XVLAvMGs3+yNrS+H+FWkrDGBM7KYK0pWV/7uNOFkEkWxJ7VFqwC2B2xuQ4W+wtrXvEHLn11\n07Ml9V6ZwMBBjyUgFgqIxRKDaQMzZ7PZvfZQQF1D3j0WO/GPa2MR5+AMNVnRs97TuCuoPr+AER3D\nUEwHWpfiXM/ANb1Wa42ROYJpK/x+m7ZFM13H4+BCTbeUdb6CNdXUsGDRkiy3YVmhDZNuaQ6W3hXb\n6us5GmJjWK5b7HFjuCdBX7/PKhjbuEEFCxgysJx7xKXplnNPYGa7eyrOZvE6Wja11oKmr/eQNZy0\ncthSo213KSU2nMB6cqdK+quBDezM/Hnr2mywKIhtFnwv3tTfl+vExdS2wUFotyVyAcBNnlcB/cP3\n570w2dGabCvclGqcHRu1O0k0fkZofG3jRNaDcVNuqF41Y/j4Ed5p45s7dWnKwIJhZTFjYsQ747zH\nmIMdNeRdbrvFLYl4eD/zfOraLDhZRa7xCLur4Z0rZUx7XHeDuLzPGHVmeuDahdy37vu7ldp2E2bM\nvjXV9zqs2ZzsipB3msEe13WiD9FcHaANFvTRPDxNhgksNUv1jlzByE8S9X0D47JIcQALWXcivc9P\nKo3tOHIm/0cZh/9R6ZgyXelKV7rSla50pStd6UpXutKVrnSlK/eg3FOmTLHQSdu1KzqtW4PhcviM\nGCoVitkBCMTDTwqlWj+lv6/g972sQB4XnNqCTI/36aSqHwtRcTbAgcNySNhBiMc6kVvj+Pfhx4R2\njQ6KSRNzSnvzXTF2rl+VBs3quk5pDzyK1svDnH5zYj/o6/4O1r36e+VlX3tH3w85iW8nysHz09bj\nJ0+ZmdnJ00KrbuNBn8OQefuFd83MbHrlvP4+c2Vx+u+InBiOfkLfH6/EVoMwDjgB3o7EqhkNddpX\nz3S6uDFXXU59UujWZz73RTMzu/G6cty3yW1fPa6T+q1N9W0PPYljDwlBG6JY8fJvhYJNtnV6eCwA\nkttlKWd6tiEnwTlIssuWJ+TetqD3nv9YI63f4PIR49a05JS1hSXgKvV9NFdaTjXnsLAyHp7LbMxB\nINy5IALFj1y3AxTfZ1bsaBXXdb2Kknb00VZYes6n6xgtXL9E16tgugxdQwHou8WVKZihu0G7kjk5\nt4HrlGisDUCjZp7/nYKwkPDY49TacLrpcf8F/dqYM3V0vQqWSIzafQh9oZox6HFPGcASs9r1UvRz\nHzQxB0Fp6b+s3H1ubo7OUB/3oyD2HFQYHeSmpjyzhaNR7vIAWhW0jlyigwOS6HnNFYglwJ31diRT\ncFqgDwKYGG3tiCFjFgZGBhNl5kMFRk7AGElh0i14Nu4ulcPiqqhAgGtFTD656yqVgX6feb4wXR+g\nO5TG7jrHeoUTQtJ3zRtYBjyLutJ1crgjAWyHKmWsMicCkNwBEGULereAndHn71lPa0cVCnGoyaOv\nYTZVqSMUPtZA9+Y48zj7ori7/G3XQalD0L+KtS9m/Di7DUR3Sf71cEIOMvVfYaUuQXYg1VkA88q1\nIuIQ54jWXaroR+gf8ZD2Vq6FENh0wVhEj6GfwkaChTNtXE8BJho8nJo9YMZC1MtxHgP1ascggaDP\nOXvnsETDBc2r2p1UnGCydOYaKJGzp9BBWqLV1eKKl4JItjD2+jBZQtalOUy5DK0s196q0VsqUFBK\nUneBQp/JmYqBu5e4HpSqWTBnnBkZOwvt8MzuplQPUO8znzUzs5Xnf2NmZt//quq59qb0R76Bxlf8\n37T3/+ThvzYzs79gUv/7Oz8wM7Pgb8UYudHo5wNXtD8ef01j79D96Kp8SvW/zpRdf16fK78n9sgD\n7+L+9K9yMmq+JfbH5ae1Frz/sNr5v5jZ4PNP2eB17bc/OCP9veyWXJ0OrWl/n7PWPfqGdFfWD6jf\nv5YrFruI21J1Tborr7+p+3z3uDR0Lp6Sdkx59TNmZrboy9Xp27g7/v6tt83MLD201149KI2902ju\nzb4MgtgItf6nc+rzLzz0kJmZnTuvuq2itXdhItbPla8qrvmGvWBmZv/8Q8Ue699U3xx/Ti6Y51bF\nkPk0GgdvbKlvL38d9Pim2L4JSPCNl2Hh7rJUY3cDQtOEMZ85c5tnOIUFVo9YN5iTwQjnG7RkJq1r\nuTDH0Kkw5k6AqBiArtWsg2704syUEF2/CDbvkP1rMXH2A06N7Ddh5Xp7MDojnBVh1HhMEbgOHUzD\nMNN6OJjq523qF8HyXbqtkTujoRXhzMkMp590S/dd9GHCgOL3YCfE6IhMar9v8pHfNzF0D/RPIhxz\nnL23jftSgiOdmZjPfd4nDC20eJMYZ6wHtx/X1bSn8blg3x6lU9ttcYfGCuZexLN3HbGYOGkL9tEa\nbNw5GozuxJiA+k+dIY3D37zlGTWaS4ZeT7tN3NvnobA314ylFR9MODvW6BwNiDfLUn9PXUcPFqxt\n6bobxCh9WAs5122n7K0rMFSWqtdixTUDxTZwScmqcA1E3O5whJxB4VljzOXUbwEjPGMszBfoOcFE\nr8b6fQ2bIZ+z78A6C3roBqHZlhCHF86WdidG2BxrTl91tyf24Rm6RyljYmX2UbfX0fLumJkBMV4x\nRr+Fei2HapcTabYXWreDA+4mpbWP7nfDTGuJs4fEIDnvfVWu7+1xLZ0AptV8Y6cuTZrboA6thCHn\n70wFmnk5DLY+Okkh78UNcfY2ceIAtlLgDljo/mQ4q8a4JIU79FjVbUxcuLEhducQRmLLS9Qw0zOc\nzdQXzV5Y+zDKK3Tp2h6Olcz7DWxVCVFswnyPcKJyzUZM5myMnmfN95ahx0DuSEt/zDQHM+K7lT57\n7Sf4Psz1fBN9qcA1Lu1jS8eU6UpXutKVrnSlK13pSle60pWudKUrXbkH5Z4yZfwUb7RXJ2APPCGk\n5DDe6++/C/J7A7eMTMyU+W2dpG2AXOeuSA0CuSfTKeKRs3IO6I91nx4Jg65nceF3Qncunte/63t0\n/QTkIOZE8J3fS+vm3d8rL3y8rr+f/JSun4Isv3f+gpmZLSv83WlXflMnedfeEtNmDoJy/wlYJo+J\n0TIAWT70wGHVg5P/V18U6jQld65coqzNSeD+VfQA1nXUd+yIEKPxKSFFvbaxrU2cqVwxf4Y2ygq5\nkaDvEQ4r5s5VaMZcuXPNzMwCU9uTNfVVtCL06yhod58j25deUp9dfFM6P3tXycNu9Ix3W8oBuawc\nqvbIF65Q7m4zkF4YHGnlVjQwWWbkZ6foN4C0Orqdo+3i7h0GY6PvSCzOAeW2xswIZHhB3nVGxQpU\n9YPW8wY58eYUeSevHPci1/aZwtDx09cFLIeWekW4fAQVbAjO5AvGZrAgVxY2R8upbYWrkoNWxqnw\nHBRq6Ke1IB4pDJoFx7gpx8oV6vg2AaXi1DgakyONm0pN/mgDcpBy2rzwfErGV+MIv6OGsFXqHowj\nNGVqt47YRYk4gW/dlQd2ULjghBs9pABWQAT64jnuLEMWJvT5UmO1wA2phXESwizpc/LP5W1Anm+N\nRkiVeG4pbkx83hl3loNWMBb6BXnWqMX7M+yDwLqrT7rUiXsOQ6aHg0oDk6ZAiKgfudsHrAqYIV6/\nGPe5lrGQT72ernHDOpOBhKDTZPycw2hMXP8HJkuD88+StSNZ6HMZObc5jJABDmH1DB0i+qHou4MZ\nYxjmT4hmUEM/Fq7h4mjWLssS1xDXX0mBoRat5+Mz9kt3uOA5Jq6rQvudPQfrpIEy5YyXjP3AyKtP\nsCZb9oW8tqxpFaiVuzSZNZZmS77qLCvQa/KRM9YvN4VrQF4z1oU2d60n6tY6Aw63OsZ0OtMYmOFm\n4S4Urp0VQa9KcG1qmfdl+VHtp8iEHmcwFxeum0NeeYW+U836GoPmz9F/ikCPfC6OWE/nE5h9qaPm\nuk4OwyMBOS55hiljZ44jYcrcKHzs7rL82zNihn71W/re2uEnzczs4Dn11yE0IrZ+Llem335e9xm/\no/31jafEQK32iEGy+c/aN9dMbkjRQTFj3vlTsWY/uRBzdOPap1VfnHWurIqZ+p1/Ur/9Yk3tG43E\nOsl/pn68+hdikUxf/IAW/G92el9m993SeLl2S4yaXw3FbPnCE/r9qyP0PAaKFVZisYN/9rDQvul1\n3eepgxrDFy+oHRfef8DMzGapnJKKfTBZb6Brd0z998FEMZW90re/eVCso1ePKRZY3VBc9MpptXH1\nL6S99/JPVafvfBlNq5fU5/8Vd80z++Xo+P4/6Jn/yZdYt9bEnH55/oyZmR36LPoZv1Ld9j6B9kBf\nz+TsBcU0PzqrZ/npV56k7/4P21WpYdQBU/fRuVuiDVPiEhfB3mpw26xg5uxosDCnV2p3hIHVi97S\nnHVpsNAcmw1B80H7W5giGVo9Ba4hFazWHmvAuK/PLWHqtayvKXO2nqufliDkoTu3DdF6hPG5grNa\nCEuuggnY7zkDUP25woYawMh0LRyPMRKcLtuB+qVHDBSioxH2FT9PF1qbItwMhzAUq8jXX2cxgGij\n2dZnbRvD9pjXH77m9NPIUvarKWtHiXbFGrHvdKDvlWjsQJi0pe1+v6mIkwNikhIdH98Lihgm8kh1\n265dr4O+6XPvGM2uDfVJAWNkBTemZuFMaNit7OEBDMl13iE20f1o0CJLcAlKcOZy/Z2U9X6eu44I\nfR1qzkaZmC0RcX4KkaYkhmlw6MmHHofrn2KiMRricGi4/WVzjc0pe+kqrLEaVlQ9Ic5dGVMPnGnZ\nBwIo7D3mkGskrsJGc323O7CjBgPq2W7xPRiiK1xnroe9FasdA9z7XDZwFYaMx99t86Gzl5nZ3K0u\nd1mSwlnaal85dAczWMkwXto5sRrdGvIcZ6Z2RJHH4cR+DIssc5qdxtMCPcJyi7n3BzJJvTixxbzZ\n0fgrMt4vYxgqrd67qzmZGe7kxDOo5ujWEDcV26zP7M195u2cNodzmNJXeRlbVRsT4vklmrI+ONfP\n6H25YN43vKNNSpg1peaKZ8jkvINsk0HicXOAQ1frejvBGu3Q/bZu496G9tRe1teNFeJz4sEN3Jlc\ni7C5zbM4qD01G6v9G0v1S+tj1j6eTdUxZbrSla50pStd6UpXutKVrnSlK13pSlfuQbmnTJkExkpK\nvvwKWhC3bulk6/o7Ql9qWA/1HZ2I3Z6i+XAQV5UpJ/4LnYCNHlDu8SmYKFdgqlz8QOjNykgMEkfv\nHzihz7eclpbkI1bkpt18SwyY4bpO2h7/yuNmZpaRl//K6783M7P33xaT5vCarj9aFeq0mAh1Kjjd\nfPQh3e/ESTkzBCAc10Bw3n31FTMz28IZ6c41nVpnnLY/+LjYJhEsho3b+v46rlJ7jx3/SDveevUN\nu/yBkLSYE+OIHMoAVKA3Fjvp/pOq29VrQsbuwDRZO6gc99BPBTegYHCYeT2i7s8LKdy8IFZQhA5G\nsld91YR3h1wGILIF6E8FgyTlyLhArb1xHQ/yCnP+PuC0t8+J89JPptFIqEBphuS4Lvh9DeOmKUC3\nUdYuGs/Hdm0YR7vJiYVNkJBfaYmLzXCiDltrCiLQ51S54VQ12nLnBOqJXkpCPY0xGYGkO8rO4bZl\nIDQFLIMWLZrQWQIBeaKRPtegrN6CTEegdPH2jhiOmZmloIMNWg/N3FErWAQzGEcx46PhulQ7wFki\nBfXLQbGqWggB5BKrUGS3uwAcejAUCtD4AD0jZ8b5792Rq23dpULfr1kGA9ChxUh9F01guMAaqBJX\ndSevmLm0JP974Er+OFFVoZ/IwxRB/yNyWwyQtwIwowbBc4cbwDSrQbl6sK8S5lQI466scMlAr6fA\niaa30PVnsLt6oG9WwNwgVzhwZx3YBxWMwwDULEN1P0QfqMKdogVl62WeDw6rgTFfgOZFaPg0noPM\n0tGEGoPLhJxbUK6aPPwUnahZH80X6rVwN5D8oyjVHyuxq+wjM1LSD44GpuTfu2xVCALuLlueZ19C\nP6vdFcvZhzz3MHD9K10nwEUlWeA0hENZDZITgqwvFvmOTVK/B7oNUS0e4AYBxc51K4x1qg+jJAD1\nrWBXxaD5NeymwJ2l0BYYkStv7uqAU0I/dmcxR9d5dvT5kLHsGgBNDvOFOecuTuUQHSZQrR5z0dlP\nIWywFE2bwPV+RqznaH5VA5xp0MeIYdzloNtlMeX+aIbB0OvdJex0+PP/ZGZm01flmHihFINlNBPT\npH9dTJFX79d+dxC9t4sjsTWit+Tkc3KqmOE4+in2tNbXdVD/n/29+mn987rOzQNikTSrYp7eOikt\nmtvPi0Vy+rP/rusNxUS5s/EzMzM7taXr/vLosZ02PL+5tE+f1nPZnmo/fyCUps38NX3ugwdVr/tO\nq5+vX5L228P7VZ8LS+33xdN6ztO1d/T9p9TvZ3+n/n0BZPnBED2X68+rEpd1n/vzI3bx8A/NzOzI\nzxQPPXPmX8zM7Mz7Yts+elFt+sVjckV67iXYt3Pp13xur+q+n/XiuaHudei24rAfvi3dn6+a2Dvn\ny/Oq8xc1dlcv6Fl+/udyNvnRSY29b72g+99M/9nupgSse0vmhGtyhWwofRiPBY4tgwYmJHtyHzZD\nzn4ySfUshmjD5OxfrvkyYQ8dbcPkYB1KYCWEMD8zYpWwcpErtB4asRuGaLaEsHLnMA4D2MFearRl\nhrGvr/rcDFe8hoWtjzZMDvtjyBxdcPvE+wFkOIGVW1F/10Rz17+pa9Ogf9ELhDDv6NRFrtOi+iV9\n3b9w7Rr2lcVIfw+IpUbJh8h0EdVWsOGuoemTJTAaWbf7sBXD24qJPbZpXeBjF2UCayqBhTRahe05\n13oREs+2sAkadIcmK/r72jZ6PSO9AwxSdNfoC9dwaWEY586iggI+KlkX0erKiItDdDdDGBU5FJAS\n06AhOjtB6PpE+v08drckmBYV8SB7emrOdoWVDGMxYszFPOOlu3sGao+7pRrZDJvsZ2msfkiJ7/tk\nH2yhJdNjE69hkibEgAvmUh5oHWuIjwfMzWLOuxQxSsgG2ww1dwrYW67dU4zY76b6+x2YKSOYMrZg\nX9NP1q7cHVMmoP8HCXE3Wi9zGKM92LtLbBaHsHKdERWj17dNDBvGzmDX2J/A3M/2qh9bmD9X59dp\n14fvY8Ni1TaziS023B1TvyfJwCbMFx+rzqjzMdSr3YWUsVGrrwydpKCQlmuxjobXVfXdjVx1GRHf\nNtQ5x505HuKWzHo2WerZZPtww4TJvr2EtTuC5U+QNGLdyjhvqBDJ8vU7djfMEffnWUQTWLyHiAuJ\n71IfS4zVmHe7ZeROmWp3zueChjnDM4mDj3dx65gyXelKV7rSla50pStd6UpXutKVrnSlK/eg3FtN\nGU7WwhU0ElZ0ynrxzdfN7EP/8TMPCC06/pDckHL0JgZjnZh9cE5uROuHhMSc/ZTQrGKuE6pLL75s\nZmZ30EfpfUr3G+HV3sKw2SyFKOQ4EI05+W9TnYAdRXOmT379ubd13XdfUW70MNGR4uHHhMycOHrK\nzMxu3BLDZzAlx3efmDTLCmX1izo5vPCymDbXp0KKViLlm6fkR+4/qJP7Ayd04njlg/Oq94bqved+\n3S8gkfL6LV3nyoVbtsx1+rcyVB1b1L7X1kANVnQaOSdndeOK6jy6T3Xde0D/nn/5NTMzu7wp9s8S\nV6XpDTRPQFZPHJN7U4h4yXigtgR3eQw44ER4Qr5fjG5GkXL6iYvHEjRkQb50j7zmkpzUJAFpRusg\ncjoCJ/5lA5rNyX3Ms1mCzgzdXonPLROdylaFxmAvF2rTgylTmutL4B5CvngDWyEDycjRVghhB7Qj\n8stdCwdWhAWuv8HpK9XfYV9QTzctijgBD0CrGhDslNPiEuZQUsPi8PtW5L07SuYaLzCBEnJdlzBy\nYk61G9gYoblrFI4UqOVjcGSJJxm7rornHA9Ujz6n0XH74Qn+HysRiKOP+xCF/BKNk5S+z2FYpJUz\napyigt4FOf/u+hY5aYdnUMDiwbTNQk7awwEsKvoqdvTDxyD1qkApevRh1Hofe+4sWgSOLDLk3HHM\nNUt6aApUQzRYQC6XA2dX6e8LWGk9tFt6MEVaIJCMOWSNOy2ABOKs5QhHA5Nxhj4SoJZN6IgadkUG\nihfCyojQvIpgd4WwBAyGSAbDJmfstrDPKugNieuk8JzK0J3XGHNuR7LLUtIfFar/PRDpAew3V/l3\nbbIwcFck1mm3IeHzJYhtGjlCg5sIzzMOnGmD1gTjKiaffjnX74csikHTswqmCxIrNgAxLHDHiN0V\ng76p6GPAIAtM61C840rEfxKcoFyfgRz0qbN1cF2LC9c14vtT9Mp83oLclbCs+s5OG4L40jfTucaK\n6xn5M4xwmRs0PkZBmdBAiGAClT0Q1xjnsTmIJQyYKXMkG4DQso6lrLfO7NlhFO2yPPHM18zM7Jmv\nMiZ/Lc2WTz0ohPW3jdgWXyoVO9y+ITZu/7p03+43fe5CT7HI+xM5Ro4H/2hmZicekztRe14xy/Xn\n5H70+HGu/wUxVI//nTRnXvmfYNf+12+amdm/f0q6Kp9+7+tmZvaz+Y9VvyddU8Zs8+fv2ZuFmDvX\nzv7czMzCS9q/9x84Y2Zmf2mKOW7dVP2vRtrXT7yt65R7NBcvbXke/lld/JoQ4xtfUP2/4PvEC2K5\nvHpNDJvRt/R8Ttwwu35H3/2glW7Ng9cUOxxGI+DXD+ren/it2LVbD0irryrEbH59U2NjfEbPdP64\n6n7jWcWJUa64LjhGX72pPn73oJyrBhc1Rq+dUJ/8OXv2q+jgHdnjLKP/YrspQ2ipc/a6Gu2TAHQ7\ndZcNGIARY9wJLHXmmlP0LevHrGQ9x/EshiXgyOx2/6MaVTluIQnrVYluRMH3Rx47mGuF4VwDU6YP\n+3Ueu/uePp2jO7E9ZR8CGa9hSGa4orh7ao8YY0mMkDXuXKN/KhiXNftrD9eSANZzga5IukKMgSDG\nfKB+7S1dm4bmsP8WLf0Oa6QHm2OOjlXPP5h8uE+UTWQJ7LwIhkwEwygfsC9uqiPalNgs0nWWye5f\nl1b7etiTUGPN3YP67qBI3aZoIq7O0OdwnUzisVWYLpgiWTaBIYJj7MTbDlM8ZC5EaH8AACAASURB\nVOEOiBm8L2M0Bhc4nlW8Q8Wwz0Yj1WMLTSt3DKtj6k1M1TD2F7wTDaC9bsJYHLC/tGi1FD32XOLi\nAfF14wyhPbAr5mi4wHIynkkRiHXgcfggdVci9gGY5lEGO4pna4zJiP6JuE4OcyZ3XSJEVUq0d0a1\nmDbbMJpa6j9BkzGDrbEgdouIe90HMpu6iOPuyhKHI4hGlqNj4o6NjbsrbRL/oyu43K/ntuqaMbXm\nVFSyr8a4IRL7GWvJoK9+unlb7JS4/yFLbhnOrJ3PLJ67fqX6IjgK27PSO6E72ibmToiwrZgnvcad\nn/S9XgU7Hq2oVdaB5pi7qsGGZWxEqfZOG8qluIZGP0ebq+S+BfGV6wbl29qbe2S02A3dd5N3vQOn\ndH6QsE5OStUnIL4b57wr1WScjIi7ebqhM5wD9bWvB0O0tQYwFqeMsWTOWOW8IGcB+2OvwB1Tpitd\n6UpXutKVrnSlK13pSle60pWudOUelHvKlBlx4rWCNswW7IDbl3Qi18cl4wBuRBkq0ItASMnmVCdW\nWNPb/Q+LUdOiFfDKa9J62bzB9dbF1jh6QidhYU+nsW//Qk5Bl6/gUHQQt6cBqsyrOmHLBjrxunJL\nJ3LnXhY6Rtq8HTzAiSJIxVuvCmW7BqNl0OjvpZ8IgjJuTFFWb8mvB/W776FTuv9JMXRGoIfbF9Tu\nyy/j9tS624z6czMUQ2ZxTe1JktYq8vzOPikUKuvDmHE9BU7W339Jue2X3tcp5WcPCkWahbrW1XfF\nCgoTtSVBfn28V6eAh+9TnY9/Uve5c1ltvw4baE+jfPDdlqU7EwToCIG4FiCoS1DnEDS/DyOmiEBB\n6MsGNoThjAIAsaMLkXLC7loEsbuauM1JrvvkoPVNrv4b9B0FgpGDJU8Os2dGPnmbksuK6j0GPxZV\nfjqr+7a4mwRcL4JBk3Ayv8OcAX2L+JwjH1HgbiWwCVznQ0PdZrAomtbzLBmLUxwXQGpadEkKfk7I\nkc7RqIkdaQE5D5Zo+QQ6hY6duQPbIwGyjlC/H5KL7A40TQ47ZekaOR+fd/mHpUUqpU6dWaFn0yvd\nUYsTau65BOWpYQ21MEXcjaIFhQlTxpozHxh7mTtnAcCN0AqpUIUvdvJ99fccVsOo9Bx76gWyWrp8\njw9R3IsCmHVtX+tii8ZKwbLdggCkjNHMNWbI1Td0khK0rKbMgSEUoAXfS9F8yfl+wxwI0azKUpx4\nWrQUGv08GriTGR1Cx8xZf43c/JYxz1A1N00qQz24Xgli7MShhrx7HMAGXH4Jc6ffOhvt7lCpAObl\nEE2hElZYDfMmWML8CdyNSt+b4bAwgEk0g/3V91zp0HVTQJxhr9SMo9YdhmC5LFzDKEPbCJ2luB1Z\nhjBCC0KJkYj1hq6VhXaK34M1P+La7mjYJ985Idvd9YIGPJs80+8HaMH4vK4aZ3/BMoN6VzlrjDEa\ncd052mQJmgGJ6x9l7lrnP7MeoSFVD3bECtRe3Nyaqf4e49wSzH0u4dzAeh2x/rvLRJ8xuzDXIHCk\n9+5y/J9fe9bMzB56Wnvu3u+pH77/rsbK/re0fwVnxDj55ed+ZWZmf3VVbkw5k/6VZ4RERsd1vSev\nSzfl6o/FBvn2k7Ct6h+ZmdkyF7vj0K//s5mZnf+u2B9nzit2Se7HxfCwXJzOvaNxcPopORtNX/sQ\nXzv15aN26DeKmdJHcIA4rZjgJovlgSvSkFms6T6X1xVTXLr2V2Zmtm8mbZj5t6SR86lLcjYaLvXc\nnp6rf85fgX14VCyU4NgTquemxuGLGzft01OxZw5l0qV5EXbOKNN3b5wRi+fRT4pJc/iGntm/PPSv\n6jtQ4r0/0Dz7+1jso+MP6HtvvYmjyjXt9b848RP9/VnFILdYDjeuCml9/SncLS+qPqsXHrC7KQWo\nf1rAfANsXqAJU7h+XOPMRZjZPKISN5CoZWy6w4yvD8zFCNbVAsaeLd3BRn8fu34ccHqAwN8QfZHZ\nkmfDHj6DlRGz/jXbOHCt6u8VDNJVaBlT2hUtiUuJPZrYRcHQmHCtBZipM/bLFg23AWyMnHW2YC0z\n3zeYywlMUddmGIL+O4UngcW3gOWXsua4C2LpGHPlayKMpPhDpkxYVDYaapws0YQLcjR0bsGu66PD\nUazxJcW6sW3abssMjZZmhMMLe4hrAWJSaX0YhyHaMfkExjHr+B3avM5GUNDGHF3NAc5kieuAkG3A\nozSD3Tmt9AzWQlVsC+ecdkv3TaDl9ldgKsLqbNEenBOkhOwHEHlsk/sM13gXW/L5gWtOElO0jAH2\ngRqm9Ggb7THYtjnfy3hHKojnMzR2mjX6K+e9wx2xAteFQ4SN6y2IAf1dMuV9pbeldW8bV7s2Zz+D\nQRMRQ4V0pLu2bsK66m+7eyiOm7qr1T7mdllKYtAZcfiK9xc6Lk4Oq4mzFzPVZ5/PHWK0yBnxsFDc\n5aq9ovW+HrB2nNS776iCueq2i2YWJ6ll2dymuGE2qWcD4MaJ7uQKDOlyFU0ZKIA1sX9NPDQm3lzg\nirbYcidH9dHqYdVldlnvhq4LOjqh+VYnrmsH8xA9uZJ5P2adcMeqBAZkyRxbuKtleYd/uS7r5CD9\naAy1Ndf8Dm+hEXhCGS8NWmAZ79muczp08cEBsQixSYg+Xlg7y4s5TQDcLljX/oPSMWW60pWudKUr\nXelKV7rSla50pStd6UpX7kG5p0wZF2teXNIp8AfFeTMzyzd1EnbqrNCodXRP3j8vRss7L4uBkpQg\n4qlO+w4FYnVMcWm6/r6QkGysk7rjR6TFkkEbuHNTqNWVa6hBg4SWsVCgGAT58HGhdzcu6SRwek25\nzuMV/X7fQZ34pZxWzsiZnS51UtYjV/i+s6rfkcPKmTsPCnbtvPLIc/IqI9fXOKLr7hno30sXlYv9\n1mti6Exdc+chneitoRezPUO9egtV++UdG3A6maHfk60LBdi8rlPEGW3dIH/3BCeqh86ozu+fk35O\nDUL76KdPqe0HpB3TkpOZJWIj3bgtNtG758S4cS2S2K1Pdll6iCOE5CkvOLl2OY7aURNcpGocXJoC\nNIiTaEdhAtCsGnehBJpVOQQhBglYOgoWkggO06jFraThFHeHBUB9A1CrjJP2OTmp/SVaMKBgfjJf\nkx8eoKMRViDEroEzoh18zk9RU0RaFu405K5PqMFPXV1+R8sFNxKYQgXuSAWsg3jgLi3Un5P7BJZG\njkNDiFNYQM5xDOWnguHTgqBHtDtyRAGWmTv+uIaO929DfujcHXs2bNeldPge9ldTOJyPGxFsJHdb\n6pN328IWyEBHluRjc/Buszl1pC2ls304uR/AgHAWQZ27swy3d/X6CBchzz8Gxdnxtqhx76B+Faha\n2XPXCnR6Yhg7IKw5OfzObIn4XgM65ohf62nWOPjUzMUeCGfONpCAsIb0T45LRRvo55o8ZVf+z3Ey\nqx1Vc2YOWjE1c2nHCQf0z8dAjHNPDvLRh0XV+hiF/VYljjQ4O4I51+6eTWVmlvCc2g3mInM/xF0q\nR+dk7JoFS9Wjx/Nbop6fgAQHqTNkQJJBumfuXuVORsytACZW3uCg4LJWrKllNLUUlNpdg2Jy9kty\nz33+57hsJCnImvc9Ez5y9hXspRYaUgPilrKeBej4BIyFEZ9fwl6qQeRCUPACpk0II6Ql174MXAAJ\nlKlxXR3XQYJx03d2K7pBiWsVMEhhRIawsZZu1eXIpeskMfcWO25UaHihz1Hi5Jg0HyKBuym3Lis2\nGD3xGTMz27MUQ+WRker5+0cUG2xdERvjLw+pvvMJeebMvYdHQt0WPMgLuIScyhU7PP3S91TPJxTT\nHDkqNskjR582M7OXf/45MzPbX0hH7oeJWLGfeFTskfWvfc3MzNqLuv5vH/xQPOel5/bZsQf/Xdf/\nOyHjX1qXk9Gv/0T1fOklxSYHT2n//+qqmC4/eVD1Ofh91X/Lvm9mZs8eR+vgkJhCX35ZrOTzq3Iu\nSm+JvXIz0v3ewZnnzx47YOUPxRZ65k/Vxs9/X23aA6KZPae6LNBZ++Cb2gMPvSZ20eia2nLDxHD5\nmwf0jH+OtslTe3TdyyP1zWc/+GszMxt8lzHypuLFF6+LLfTXd4ifhmLS/GL7TbubErDuFTAyAtdp\nK12zS88ihUW2iF3zRPVeol3QwhoY0u5l5bEOriLEk0N050q0yjK0qFrQ/6REcyXU2I0Sd1qE7QbD\nulqCLMMeKGDajCZo0RAjTllkImexwhpOanRQcJMbUt85+hsx1Jp0lVgBh8YI1lxCrFSM2U9cz6J0\nTQlnIBE/uwYac8i1H9gGLSjV3gRWQANinbI/TAY442z+wWtOW1uF1k+2CVsQZmZTaG63m+gEsqbU\nWBA1+Uddqj6ulOylWeiMZdZb+jKkzQ2fy4mf57CIQsZINkCjC0eqYau+aXGKSYg8P2SmsKfVaHmN\nYYi0CqgKrLz6zmJYg+20TTSy4P1glViGUGrLXUn5RYlLUIyGTAGzue4RL8PqXYHRvYBF0bjunLvz\nLdjviGOTTfbCgbNsaSfM8wVjeguNtKDUs0xxBfQ91nAK6qOdyZCyEJe+bVgSKZpqS5ipNe5UY+bs\njGBw5uQw2A4LH2vcD36OVe3dvVKPmcMQY2zJPt3C+AxwAEqdZXwILUqyMUJn5BNNOrt6SP0nvDcN\nYZyOYY5uu67hH2iuzcrC4rpvK0eICVxXc4aT1QZaLCu61qFUTMU5TF+n9bgL2nRMHMR6mFxDH464\nKcHddDknUyTRO+k+9vYJTOmGdWnBvG2JNVpYPgvW4TFx1ISYYYC2TDLB6ctY5/hcQzbAAMbNfMYc\n3KQv96HDmuqddplrr4z71IsYbFK6Fg4xFO2t6HvPdqiIN9vo49m7HVOmK13pSle60pWudKUrXelK\nV7rSla505R6Ue8qUaXFFucUp7gGccPad0on1/tOwMEDVNt8WelPf0AlVby/6GKD4168rjxtLd6tA\n5wZ7j5uZ2cEjQlRacmHff1dMFeO094EHP21mZifPiskSRzoxv3FBjgTvfyDngxC08OEvPK7PZZxt\nUc/+WEjQ4LZOxg49rly2tdNCo86/K2bMpZeF0AScJu8/ImbQEiTWT8xuX1O7XnxJed7jTCyWL31J\n9V09tod+4PN3lC9+9cr7XCG104+rD/roVeTX1OcXnpfLg+frFe5rvyaGzMX3zquu74v50h+oT1eP\nCrXq48hyE1X2SzfUVxdeU18t7ui6p3G6WvLMd1sKUPqYPkocNeeEuZhxwg+CWrvORuJ5fmjO9GGm\nLOgkTrwDTjtb10yIXTsGxxm34CG/OYOhwmGpte6kApLhjJmMPMxhQD2h9gTungRDJCV31mkTpR+J\nU828Ir8TBHzElHVWRwJroUCtvQDVH4JylRyFl9SbP9sQFG/KaXM9c8cfcn4Lnd2XjrBHOqWOlyDW\nVHgaoqPB6XUAylegVWHkuCbknSbuOkVeegKkHyxgzDSOjOzeWaciPza0q6ojzywINH9b7jXkRD0H\nva84Kfd1qPUcVtdoInc2Bv1uYE/loEUDHAZy9C/iwJ1rQEhrd2/Q94b+7DhB72NPUYPIhQNnD7ny\nPiyv1BFFkAdvX4wLE/2QRM4gcccBtb8CFUnIZc1Z/xJnCoFwVKw7NWyNmJzcFopRgNNXg2tHHLpD\nge4TuYtTyRzxnH2us6QfahDlHvhSj8/NQakydy0CpUqnoI2o4dfutuUUoF2WihW1HOLmApUpd90W\n1oRZ6P0IjATLLWXtyWGZ+HhocL2au3aR23OheROSJ17j7tS4VQN59T3GXRANDfMlm4MA2o5TC3VA\nK2vGStNyMWem5TtwlTNWYLr4PXl2FdepQLENt6Jl5Vonfh1GF+tYCEpe8v1e6fpLMHZAjfqBawKw\nPnmfOCuAy/fp4xxmYwsC2TiC55YwMPsCp5PxLHrkd4cDR15Bt2EDJId27+JmZvbtr2qOfP/Xz5mZ\n2cM3FDPYttyGnlrXXnvtDOvjRCzbB9FsGJ4Xo8Ue1T4YXBFDZeO7rMP/8BXarz39iStCG0uchvJb\n95mZWfx5OQdd6j9iZmZ/2ldMUqIV87NMrI/jbwnFO/7oGztt2L8YWoCTZO+4NGI2l6/o521pxFw9\nqrn7yJpirJ8W+vfPWGPeHgm1XHxWscZ/elnP5+9Mjkfnv6m19vSP9fvD+/Wc/mEmjZ1vnlFs9Pyd\nl+zBrz9kZmbfeO23Zmb2ziExVd7q69pfvA8HqN8pFnn/kq798H3S2dk8/rdmZrb32X9SA1+S89S+\nVn3w2wh3Tdil5VBxUntZ30+m6uPPfEV1nWyJId1eUZ8c+TbuS/+P7arUzvbEWdJd2RI0BFI0WyJ0\n3LJtPgfyO4QhlDPZQ9aPAc6QEKYthd3r+1TEvjKFGT7e0lidwIRxjZVqSqyDK8gU7Z4ABt+QGGMK\n83MJS9jlOEbs+VEFO8GdbFhzRsSKIWtTsMr6P9N9KtaEgjXL0KZocWhzB87+Nqy2PnOc/QdZKYtn\nzvLjeywhrcc0O3EyzKXc9TRww3NRnD8gVCZZsONWuGCNimHMjPw+Pa01+YbaNZp6rLT7/Wa89PjM\n3TPRp+u59gl7CRov2UR1WMl07/lS9y6I88Zj1kVntc7dRQiG4A61EgfDbdZr2A4NXIzlKrEDekLD\nTeI/xkpBfftzWPc5rK8hf4cNnMGojGAAGQzvwjcwtBbdhbRuicVw9hmiTxcMcH2K9I4UlqrXoMJN\nz21GmQuxpphlxCKGA+8mMUKCG1NLTJbSfwM3bmRste7Sx36RwCquGLM1LlAluqUNLOO+s5zd5hSN\nRo9W2/IueQ7OoEJ3KoZVYQPXE4RFxntLxqJSZ65vB+OHWCMZwx7jvSfjuaSwUyL6o/b3huzDyZE0\nhYW90ObMO3dCLFxnE13NBhZ7dHyVOmkva4nDl8TbKe/DNfqby4o9CYbdvmMskCOxLxe8Y3hbgz5j\nh3ephvgpZOzPeKfqEaNMYV9FxOEN7yjNkPWaONPQ/ApwdAyJUfYe0l5/e1t7eE6Mk6I9O9vR8YGB\nR/9kLDABDP3WHXidIQTbrIG9WxUfny3SMWW60pWudKUrXelKV7rSla50pStd6UpX7kG5p0yZlXUh\nJevrnLihWrzn/2fvzZ71uK4rz53zN94J80ACBMBJHEXSZIm0Jlry7KoKu6Ki3zs6+v/pP6Ajup+r\nXGWXLdnWUFKVaIkSRZGUCM4gQICYcadvzLkf1m9fmNUh+eIJL3legHvv92WePHnynJ17rb3WEaFF\nySq6HDNlvjNYDI8+K/Ro9YwyWyH1mEHrNa7KYG1fEbvD0MHwpO72HTkI7dxQ2vXBM0KJTj4tFGrQ\nKp26dUuMlsu3yN5SU3rmBSEwpx5WXfXVT4W85LA2HjijTN2vP9fPYxDeBe5OFz54y8zMRhtCiJ56\nTur/S5wMdvFbP4xWzbu/EKJzmNq2s9+QA8PKQP389AOhePM7Qu2uX1bmcuOAMpAnnz1hRzaEFhU4\nyHx45aKZmd3cFlvIazFHIzlNLfGGz0yZ4tOP6Z7UucaiAV6ecc1X3lUfPr8hDZnxEWUXn/+G3CF2\n3FqGur79tj6Q6m6oa+2jSeAJ5aSv40ZLnc+B3Tl11gMQ1TkZ+wQNhQZkORiRBYYZ0zQgAjB0EpDh\nAB2PADRrQe1oQMZ8CPOlpO66bFyTQf2pQdcN1CtulIkPyWjnKHmnXlMKgydzZgk1yK7dEEeutcA4\nMF45Oiol11lTS9qgudOb6u9Vhq4FGhCum1LBJskSkHTGOR04a0L3b4Gjg19WmsIK2aU61p2NyErP\nYEfEXocPKyF31yWYQI7mJTgZ7afF2YLvoFvjmX3ccVJQgkWCdskc5gefN9gBESyhhrrrkHsdJF90\nb0o47pLP9xy9BwlclM7WooYfzZGqD2uLfi9AR0LGtoHiV4Ew9JiTrtdUon3iddTpnHtGffeerAca\nBDHaLDGuG+4KleLi4Q5dU2p2YxbIiIcoABGunF6FpkpJ/XXB5/2eYvRlKYhiAVOxTb64PvcinT8H\n1UphJPapgw68bh2dEVfzr7GsCEFU8tK9CfbZeCaiBfsB4x5kjCOMliR2pIZnc8Z5eNb61AQ7Ipwy\nji2IeQ5KmC50XTWMoJC5nYGm5bir9GL0rBYLC2BtRYHmRgUa1MepcMlcS1zIiPUtYr3KAmeioUFT\ncBycoHy9a0AKswUOUCxUcR/0vnVGH9cKk64aMHthA4Qgb+EUlhduIxXPlMs7eRugLZC6u5qj7awX\nGcSdJetJwlyF4GlLHBqC2hk7aC+AGJZ9GIGF61jcG1Pm2tYrZmZ24Mv/YGZm598Tw/TCAWmm/Pvj\n0ql7/7L2oxWcXD5Z/pOu9+S3zcxs+4SeycMfaV/cfkP9fepZxQyP7Wjfnbb/bGZm3zuqmOKbp2BE\n/UTXf+gxfX8BG+Ldc2KdnFiXTsv82B+bmdmx1x/fu4Zv/tFb9rPy35uZ2c3fiJViQ7FPeufZF9pv\nmZnZjePq5wt/L4bLtQPScVlrtI8//rHG9WfPS0Pnz8Yaj63r6s8vH9L9fOZj6d0Vx54wM7Prr+nG\nH3nqy/az/JdmZrZ+4hkzMzt1WSygRw+IORyuKe4qDgqCfewDXCpe0T3MVqVrc/mbX9e/N6Qdc/BT\n9fVgrvjpkZ2LZmb2EYyVhzPdq4tLxQw7fcVbrx8F2f1E5/+L5a/sXtpgRf2a45STrcAWRXMrj9wu\njknL+mdzPWML1uUAd6TJCmj7gmebZ9rZXrXr6oFU91iH533XPkGDDHZbNSSWQM8kQ2di5k4vrnGD\no8wSG8Fx7GuDzrcEmYbkapXvzczFCbFLiquKoflSEQMZ62jb4jrKej9g/6yIgUqYgn3W2RD2Xzzw\n9X1GP/X5VRxDZ2PWaXRHokr3OWM/WXA9VXWX4RING9tlnNZhlDpjdQSDKJj6/g2bAK2xYbH/tST0\nsZiy12U4u8zQKYOlVLBeL4doI+La1Ec4Z0kf8xmsXa4lHsKArPVOUMOsadjra7Rrhgh8zGF4JDPi\nOhgzi4UzKYnDGPuaaoBV2KQhjJF0XeveLk41Xk2QoNsXwuoN6HeMs01KzLAz1L0q2c+SCQ68KXol\nlY4fjNiPiIMb9IZcMibHcith32vRmhmM9B6wcNYVDNAhlo+u5xTQnwo3wzVYz/UaMdiCG8E7p8f3\nKfH+1DVs0L7RKJj1hvfG3p3A+lrWHgsRm+Fuuktk7/0vXK+E6o6UeeHOPiEssF13UILtluAyFcLp\niWGkVm4hamJBZWHfRq4711PFx1ahddmZKywH1kxhdREYZegJDWDCVP64DOdcm39PY7t5C+YMDBIb\n6lm44+/zxEUD3hGm0H3d8bVlnW1n/hLC3s96mTAnloxBGeHsyDOwuKN7n2Ran7KHYOas6W7eYg6k\nuG0GvDuvMAApjlabzqCBuT33Z5x1uELbqrgE88Z+d7VIx5TpWte61rWuda1rXeta17rWta51rWtd\nuw/tvjJlsqPKQDm6t7utbOwZmCb5Uhm2azBexgeU6VpMhYRc+VifP3Fc2eK2UWZvtlCtcT0RM6XZ\nAXk4znGp6S2o7Wp7QkzahXJUN1FZ/vQdOS/s3BQDJYXZc/SU0KIbV3EYOq967mMn5O60mChbe/tz\n9QNOg/Uel2bMA6eElh188LSZmU1hn1z8WMhOA1x45I76US8psB95naBu28U3PzQzs/d/rTrvACT8\n6CM6/iNP6PirvYP2Kdow1z5XvdytK0KLXOPk0Dmxjh4+KyengDrjVWoOZ9vKAl56T3o1s12uaqhr\nvXVHrKIAFPiRcxqj8Vkd9+YbqvsOlveWByxBldqexrqhtjSnrs8duFzfIXTHAmdBoDkQkfmvcX9q\nYQf0UZtvAwqq0ZsYorWwIAvay9yVCfV6CrBbHARmky961xegMc44ycnE99yRhjRyDfsiQpslKFy3\ngrQyDBOS1FYPQVgYlwy3rAYm0BDEu+G+JuinzEB/qsxdp/TvEuefCjX6hv5XMFdSMvk5WeuGmuHB\n3Ou5YUnU1ADv2VDp85PY2R449YAspEucGtCDmoLUBOiS9Mv/BWL/HS1gjHLQ/xCkr83ciUCfa3CG\nqkHTa9cSIdHuzgMtzlJZ5XMFJg2K/w6Y9UBCG/QsIhgyQ1yLDMSgoM7bGpgqhesY6fgljJM+SOYc\nJDFCp2MGajKgHr10yMERV+55DhoWc54IV6kF49GfaawXKdoyjH0AasdUsdxV4wPmLONXoPFSN65F\nw1xzPSd/xiBxZCl144XmxtL1TRj4BBV8hwYCEMu89LpndWjg2jsgKpE7J0TuX7W/lvCsOeNoCNuv\nQherBHVrYKc5Qj3owXgCoXYXgCRxxpFxfaCCPMsFD61rEixR569AsJ0tVjnSkkRWoQEQwgBMuGbk\nGiyJ3Xbui8y2pnVHFuYuc9NB+wV6RYnr87DzAyZZBcLZgp7X7DF9mH1N6vXYzLkFTBbXrsEZxtzp\ni3vei2EQst4tHHVC/8IdrgLmUhD539mzqfVvqCMvWZ9a5uaQsVxErlex/MJ1F8m9MWXyWnvq4fd1\nvBPf1n63+aHYGD+Z8WwcFuviQCWW7YnntZ/+l+98x8zMvj2UA9D4lDRo7pz7r2Zm9tbfiLEa/4X2\n+od3FLu8uCtdkx9c0gD+u+wrZmb2zorON/g7adxMHtM4PXZL519/W/vi94++u3cN3/+fC+uDAD/x\nVRDjXOP91Dti5Dz9gNgm//BrsW6fW9X5rye6j4df1PX/6Ac6/gPP6O9/t6tY6D9sCD09dF7M2q2H\nxKw5fV7s3JVjur7NS2/ak7Xits+f0Wc2N7SO3n5DP7/yoj77yFnOsSNW7suv6ee3/kJ6OgcmYvuc\nLf+DmZmdb/9aP/+h4r76M8Vni23FXdcOnDYzs6NPEYe9Kd2enon1tHFOY/HZhQcZuf/H9tMKtLqS\nkBgAxscM56/ekodrwJ5OXNmyHiSg/hUshr4JqQ1gEVfOMmD9m4LDZ6D1ICb7BwAAIABJREFUzlys\nYGNgjLa3PzSONLssFM9AwjOVsknPFzBDiPUWaGL1QNNT9vy0dWYgTmOu2wEDNSxYt1O+T4zk2mvO\n8qtA/RscHms0eSp0PcIV2NoVDjusv725zr8KCbeApcf2bCNiQcNpqHb3qxYNh8S9ccyKed9GMFeX\na4wT2l7RFc2TtUTzCDLBXffEZNv223ZKGB9riu3HhPAT9qwkwzkWZ8VsTdeQsxkG3LzG5xCMkvlQ\nx21D7ISIkyp32dtCcwQ216JCY4Q9PmedHsH0KAKYJbgxJa5nx7XPNoircaTxvSqCBZxyb7Ix7q04\n6gz76BKhCVOxrgyIs9OZ5vx8TzMFBiS6IAWOtTG6H7WWO0u2YO6wzteudQZbuJnAkobFALnLEpgj\n1QTmKOMd8ixbSwVAoxNV6AEOYUvNW38Wdrle4/PElPrR5vN/YWe0jxZGrrukf2p3ZIQ15wz0xlki\nHiu49g8M9xbRnGqq8R8Rj5cZ44rGY4rr68h034t/oZNUV4nlm6VVMNHWTuqat1ivogM69waVJLcL\nnFh512mdUOw6nrwrZL4FH9Fesb0rlujyqsZq5fgG16JR3K1xe6IcooFdNXTmYOvOuuzFLvtZu0aj\n8Xvd69VYc2NS4hKXuSsSOno8aydiXdf2Ib3LRuhq1i6CNdH17qJNc2hV79ntHIfhHqxe4sgZTMrI\nRRsJFPPsd8ckHVOma13rWte61rWuda1rXeta17rWta517T60+8qUuQmT5PaHQkCiNWXMdr2m9aJ+\nf/kd1UWffkgsjmtbIB9XqWusv2RmZkWk31/+QJoxcaZM2Yk1oVOtZ97IBvdXldk6chCUkOLZAibO\nFjVljtj2qevb/FyZvO0bcliYbSsDN34EDRy0Diqcc9y9JFtVOrR3QOjY/LaO8wFMmwJmjGvW5CC6\nOTV727fVnysXhPjMbilbHq8oK3rwhLKf554Uqjfu6ffv/+oNu/iu+tqQeT37uNCiEHSlD8rQ76lv\nhjPLpxeEHF58X2NaUt93ZKTPZWgUPPGc3BY2t3RN2VDo1S4/b11WzXn2gOrH99vyFM2Ywl1/hByM\nuLYCVCVwFNoLHp3ZQdY0wfklRJ+iHWksJ+aIMN9j7oXcsz6Mmjn13APqpOeg+SFZ0Z6LIeA2FG3j\nyIIOUUTNbD0HLcIzp0JlvSTjnvXVz75XbnoGvHYGC7WiONUUA5wP5iDc1K9HXO8MtsaQ/OsMnRR3\noRqAKDSATXXsmXh0L9CUaObomIDcF/456iebobtW6dkZwMIYmPo5g/nTC76I6FegiCH3OQBVDZxu\nsY/mLmtpz9kDoPKwtpLUnZ/QEcK9Iol8bEGJHEFkrBPmUAF7oaXOG2KMFWTYScBbiAuR62OknNd1\ndZyF4Cry5RwnnAH9caEkEL4WFtSgARlEw6R0+IcxDyeMFQIeNQwZQxNm4PI8ru0CwhBSn54xbi2o\nXQmC2QO9WvRcZZ45xuHq1Oua+R5aCD0cIUoQFgcaEKW3AoaIO/U09Nf1S1zFvufaNlCZEpDX1p+9\n9t6c3EJYclaANhpoHIhJDvrnTmexKzW1Wmcj7rez7vLE7yvHYZ2OYCol6MFUXFfiCLZfP+ObgKDn\nVWMtiBhDbiXodOrOA+4g5usiGjR1q3VnAOpc8ZzlfG8E+j0FpWkcRoeZFvMslEtHan3hbLh2F3vR\ntTLVrVk6DY2afNehcAAQZLbFASFg9pTo7QxYz2pYXw3n6eOWV9K/BjQ/wEUuRNuq5royUP6asY4y\nxs32r01lZvb+imKKh1952szMvv/XIL+vyjnoVCXNmXklNK1qxAR97x0xasIvCz17/Zc/MjOzcyZm\nSfCRPvfyX0kjZuc/6zo2/1D78vH3fm5mZn/woti0/+UfxA751j+JAfPzlxXDrBzWPpznYtL87RXF\nAt/q310vv3yqZ++c0bjO/knHP9NIh+/mI9KOmax+Q/06IpZKXerzJ+9o/N55X7HYyVd1/OWmzv/c\nSL+/vKMY49REjJt3f6PY48uvSp/lHeiJXx//iZWYXOY/kXvS8LiYCMOHdW/Oj3XsR3Oxa/8yEIp+\n+Tnp2Aw+VF9PzX5kZma76PpMTyjum/wz2jRnpFXz5anu0TX2hfOmGORs/yVd85M/NTOz8hLMt9uf\n2b00d5nDcNFqWGqrsCB2QGjjuWsRaP1InAXB+riIhMQiSWNBgkONa4mh/zaG1YCskyE3ZSusT3ni\nsQ56TsQSBbHEKvtas+BZ3YaBONT3d9F56vW1LuaNYiNfLttUx+sPiY8bD5bQyOFHljdjm7IRWg4B\nDM6gxz4GOyGGWTTgGZ24Xp6z7WDKZGhCLhboRrFGtpm7sOCGiMtVxHXN2S/G3AddxK7NcPYZw8YI\nibN7seZwjhuTwRCa+7/l0PbbNmA0zksxL0LW0RgNxgmofm+sQZ7MWd/WdXN7oOzOpB6N1NdiAgMb\n7ZQ2gwGz6wwczfUaKmQNY7FAH20NNvAER0HXGnQnmpiYpchcrwjG5ZqO10MHqW587yJGgCGz4vGy\nm+2xH7Wwp/yetn3FibWzZHmmMhjpqXl8yzjgpFUSE0BUsZx7GzsjhzlaMzdXXftxB5Yu9KeW/mYr\n6OTxbC18P2J/rXmXG8NebtEdqmGmL2FF+2vHyGOzfbah6/w524S1og1x9/O4nzkesC8W19iXYc4f\nGGl/2am0ljW4M01hurcwra7d1LiPccu7mmzt9WUwaq2+U+3d815ABUqtBTyd4TB4FHYS8Y1b186h\n+4Sul3RTYxnjkLWypu8XR3W8G5d17oQAMcOlySl+BazYDD3NpblOJ7pKxPmN26t5zLTFu0rGu9BJ\n2FE39YGY6o+wxR3T13GPi12ba6Tr2IaJXm/p5/6KZl+PKoyS+HVAPDmhv852SxZcFy7NjeuB/pbW\nMWW61rWuda1rXeta17rWta51rWtd61rX7kO7r0yZBdnLBcVox1fIhF1XNm86UcZ+9ZgyU0ceUL3y\nDkrggyeEsDz2jJgllz4RKjQFgTh0WtnDAbVeAdoAEWncE4dUs3zohBCaoNDfL10Q6pXvKjP26JNC\nv048pvPUDa4A6/p5eFLnWXlIx7v6vr5vSzQj1oQM5WRRKdmzD96TzsqMzN7xI6pPXz+g4/SpnXNt\niZgscgIauPGwzru2pePX1OSN0PO48rlq3c6fv2ARGfGnHpYDwtEXVLcd3FIG9vaOascp6bfdW/r5\n81/rGNNt9fGpl4VOHT+hvsaICCzJ/H92TUhjcQfvdrKFd2D1nD0kBHC/zdHmGuRhiQ6FK3snwDJz\nWAhRo7kSUVNvPc+iUmM7xiWocXQbxwHQq7DS90qYHklPcyBmbkxBsXoofRcwPSjVtGDxRfX7CAQ7\nc696lLgDdzWaa246m6MABQpQiXdEwp0MHCn3XweFo1eoxIOMzKh7jMkG5wOcg0AyKtD+Rav7GlOY\nWThkgJBIkns9pP5egVrZlPEC3QKwsQKEpgA7aBinwFkj6Ke0e4rmsCSo3Y0T9E4EMO+rJTjAxKXr\nA5HBhykTssxVuCgs0PXJEJ7I3SnKyUm46VRLnyM4vcD2abwOGiYLphuW4gyT44yw4PsGql9xzWEC\n2hHr+xhmWQGqM8Ctx/qaG0ucZAxtgCH3sHElfvrH1/eYOa49NY3RjmHuhrAgvC68ahxBoF7c2Qnm\nWgTuFgKzBmZHSzfLhAsAma4Z15J/ByC3OWI8oT8boIfmDCbmXuQGP5mfBzV/tAOakTuW3ZvTwZS5\nmiSOxOB4wbxIecYj12fJXOcIZIV1H0Mzi2u3m8IRDu2HBQykwFkmzM8G1prrSWWM8yIHHSxLC1jj\np8y1FApb4H1nXdurRee5X/D8zkHGEP633Pxe6BqSArYTehA97tEMpl3COlHPcemA8rKkLrsPG6AF\nHscswkJ0j1rXumEdC5mbEdZcrn2TobRW4wJXuDsbLKWWe1LgWNP2dP6EdcXdqVz7wKu0fUo1TCLX\nOdpve+nnqnu/MdYCdHaA3twFTrSmf89fVL9feBJk8yEYfjtC/756UE5BP3pCDNGvfqTjfjf4WzMz\nm/yl9s/Tv37BzMw22Uef/pn28v/Iszb5qhguL2/JsREyhV39jmKf/qvap39+Xt/7383s0oMbduZz\n/d0OqV/ZIyC74983M7PV74gx803Ybudf0d8fXNN+/8RH0pppvydmzvrDIPo89DtvwCp4SQzZ/E1d\n5/c+khvU43Pd33efHdh7ODGNYOStfKZjz59W32e52EMtWkz/NH7VzMyOwIrdOKS59P2R4q0H0I75\n9iNi1NR/+HdmZnapkNbMlVuKH5/Z+r6ZmR03MWfeuiQXy/6jmhNfWdX569Nf01jZ/237acVM/aoT\nrYtDGIK2UH9i9D6G7P1znoU8xxkNpNSdaYLWNWlg1hHzrPLs7IIMD2GLLWGLOSNl0ep6hzFub5Gz\n63jWQfsHDZorrl8BxTODcRPhWtXCMA+IfQJiohx3uQpEuQ/bYglLYRjp30mmzzs6v4zdqRJnR5Dx\ngqApZXw81slwvHRHuAqNr4w1MahcpwqtNJxoYhiLro8SYg253b/LliutbwlrTENMMo80l7dgrRwB\n6d7ZFlNgbMS06f5fl3ZgtKz2nAnt2nowL2CiN6VrZBFHweBIoLcOmRtz2Adrvjmyh2/D9hnDdJ9B\n3xoTt+2i4bcK22pBIBqXX9T06nl8R2yUEAxFxPUxmi276GP0d2HzsgVmDSwI9OVGMMtz4kV3UFy6\naSCOWQF7Y4te0mziGjm+fzgDnLnIz9t+z3lmPP5MZ+zBI3fEYY8diLEUpLqXK86oJHTZ4d6OsXea\n4tTTxJrLAbpCNXt1H22cfgMz3DjdOjHfPtsMZurC9zVYwSH7cka8XFXOVCdmncAegbU2PKbxveFO\nnoTta0c0HrsfaE2a1/r3YF+Mx3p+l9nThqnV7dRarpUw01qcrnao7PBqgo0HEfpBQ2uJq1Ho7Hve\nPabXdHOOrWjstkb63qEHePeg6iEdo2MKO6jFdbnlXW3EO0KOTk5JLBMQRycwzuPPiduI5zYmeo5z\nHLf6BAnBAK0o8gkNrpz9vqo8tkNVriQV+YMMfSfmTJ/47xDr5dbENXA0cGOe0RkxTAz7K3Ab6N/S\n7mtSZtTTA79yANsvbNruzDUY474G8zDJlYAAYnemQezxwF2/qLKlW1dF3eqtaHNM2aT6RzWohygf\nuuYvjLyQ7iI8tvmRvn/jggR+T5xzq2wFRhmCndMt0a+2r6v/U+zhAoRElwgMh9DY1yhXGvT8pQCa\nFLT5FfqZnUQQc6Zk1PKW+nfnsvq1NznX9UAdfAiRrl1N3ju3fGXS9V6/rHFZHbV2+mkFQg89Knp0\nzYZ6Zaq+Tu4oGLv6mc4VuL3rHHtuRJl7JIi2rikIq/qakHc+089bn+jfB48rmK2WCGghwjo8pD7v\nt6UkU6YktEJWP3RhrYTON8oRhGTTKaCkVohRjQYsprxMVMw9V4lKeVmYutAs9EQPHEIX4GTTyaGi\nRSwkHkgNCSACXswahMFqFh63821zEggEBmWP43vgxgth5dbdldtcevkBgQWlEDGbdYutctDnweeF\nOMQiMHZBT3/xJMmVshlGZAwDFuIKumiKYGfBQpQiGpiwG85ZaJIxZQr+vs0S45twPtJ5hgTtUxbI\nvr8sDlwsdv800IgSugXCi7EHGlhlV9ARE+jZxnNfLaG+QkmtKO0reY6bPZo2G7xXBSFKmg6wQEUt\ntUHcziu7egShi8wFc7lHjP2enThJj4KSsopE5pKkQ9+zLYx9ywtwwByNmCMZ51u65R6/HyG8NmPd\naSgFdPp47RbPvFAHBCaLwEVXsVdO2ayn+l4BxbYmMOrHnhhFeNg9ugN/kWZTZZPqpa6QS8kfD3XO\nHGxIjPYRvW1ZTxuswK2+N6pwQmnNcuaBFSWGBEDNCGFJklQFdpN9knwuaJwGrrrLSxTJPw8sM+ay\nEURUzMOMtSR3K9q+v5RQzlYlFrosPHTvhkkXkdgrEDn2fFRGVBkn3kcsWKl1yCgLKpkzFWKcyRSR\nUt97eAEuPHFEaZiLSMck+hYkBn3vdtvf3Od07S9eWK56SRcBUcPv79pqsn6x/jVLf6EkMPPkFDT4\n0i3BvSbOy0JrX69Zh3imstG9lS8Nv6KypU/OK9h+/tCPzMzsgxsIlwcCFR56RTHIpduKFW4xR6ND\nv2dmZn83EzBzltjkf5BIOLYjgOeZl57TCac/NjOztwBgrp5Vyc7712Qt/cTK22Zm9mH/z83MLO8r\n2XL0nPr14vd03WsvH9y7hu3Xt+2zo4qBXq21v18ksXnwR0pMfHJc9/3kUt87/RuVhm+d0v26dVDX\ntzbCCveYAun+Ve3r81LX9yHgy5eHEjq+UMnie3BC1/vWj6/ZoNWe//tPyrb7Rq1SsMFEyZfz7wvo\nufGIEkCnn5Ed+Y2LOtdjPZVQz99knX5S5d4hc5zKKetdU1zWP4BY5wcas/RVlSv90Yt6Bt6/+Ydm\nZlZe1bX9IrxrC7uf5nM7oQy2Jv5aEuQP2fO83DUmAZqSaJxRcl2PtB/NeeYD9qMUsf8lpYYrvg9h\nUBGRuCXXYj1e5AI+V/Ey0EPUtBx6IteBLa3bMUmjGhAgaBD/JHmeUVphvOA3vAh7XOtlnz2ukxDP\nRvWI6yKWKBxw4SXF90mSKC3C76vEZgtizJoS7aav41UkbWJP8nhZEXWxY8pzE5bQAFHUxtcKM0vm\n0R74khGD5fSvhwHAdKH7NaA0JNjUXI5mt22/bYTt+JxrHRAvBczZ+UzHHo1JvlCGOkMRuCp0LwbE\nzyVlNnXtZfyUfLifBXtOixjqFLBxzF63JB6sEcgdUqrs2XtPCoTc89Izdz4XHBjGQjkZYf9LeX5L\nuUxBorJw1VcKjVrW/xXmeARw1XM8hzk83OUdy0viKKVL53qm8cuwlvgxWdc9m2FFHWMO0ycptIs9\ne9PTer5SMWeIkZolMQ/b2bYL/PbciIN9zLFR7J1daLfNdX1U+lm0uDcQIE5d7FtzfFkRsyLCHbE2\nFA5esDbUK3yPuHu7wAgl92QZVtsktyoSBQ1xQLjU54aRp5PMoqKwnbS2iCTvzVz/+juXC+o2l7Wn\nVH0Z26SHHVQSkFHMfQ4RwxDv7JQapWZVY7c1Q5YD85nTrcgICe+ITa336qb0OF3n9/LJAVIKJQmr\n0uNoFoB0R+e5dU170+pR5qKX3q1o/Q9vEDNd1hxehwSS8axMSYovMNjIWe9XN5WkCo+pv+FQe/2Y\nkvOSZ/TAqgZwdwJY53oHv6V15Utd61rXuta1rnWta13rWte61rWuda1r96HdV6bMMnKhHJgs62KU\n9A7q3xSurtuBnX9TFN7lLWWkRqfEZNm8LnZHDiqYIkyWHNH3Dh4SupSDwpW3lOG6s62M2uFjZPgC\nZc4W0NAfP6yyphSU8PpFlUftInp682P1Y3NLmcPhS5QbUdYQZDB9YLb010EJsSeOyZ5X2I6urCjj\nNj6kDOTsstgr8VD9OX5MKNuxsyv0Qzm16cxVWtXPTz4UknTjitCsQbpiGyMd0+3Ad2DEXP0chstF\n/esKWhsb+vzqydPqGxn/2TaZe2CaEjbOAlvvtRWudRWrY+j369ArN0aIHu2z1YnzI6GBxtD4QP1b\nLy3hZ0etE1gHMQq+c0d3QMNt4aqjnCd29Bx0B4Q3dstnhBSD0tkQTkFDTIrDzdxqFkGxHihMmYOW\ng3QssF0emItCw+qCwh1DCWxgV0SI1lWUAYRQ9TIE2pj6Fiy91IJMP8wZZ/gsoDb3ePQLr0aKvZyI\nUg7YApXbEEN/9fKAsOf2yLAysAgPffzI6Peg/DWOfCPgW2En7EKfOcdpEcJLo/0vTTXlPZGXtiHw\n1SZOkYUuTYlGmjmNGzE37kHmFGO3IzcvL0IE1dH+FqTRBWy97KZy8VSYNsyBOPC5wr1wy+ece4Kg\nWBb6nMYCEAvmHNQmouxlCSui74wW5oiLUteI0rmoc8LcbnkWE2ewAIEUMy7EBXdhzKQgJCV0+Zyy\no7SPUOOC49XOrOEZQ/AthWY+Y24N8i+c1pqcZ5U/LLjnPYCEJVRpR/FSmCch6FbrVuP7bCyPFqP+\nHVGy6HPTq8ZKEOoaxtKUfzPYcAWCj15Kk4JieRlZA2W95lk06LZe2mOUYQ1d9BDotgoiayiVSkB7\nareL5Xktl04vx/6RMkWvO3WEsHCtShhnmQsVwriLnR3l8DZIasw9YIpZAJvJBSC91M2Fzql2shhW\nU4n9bM7624KARrGvR5SPusA8pQQzxjiInfrsNvBuXUrJBwyiiLntgpXDBkQY1D4DsV26heg+W3ns\nP+m8F/69mZndWEqY/mvNRTMze+cR/bzyfQn9Xm7/jZmZ/cWrigHe/jG2y3+g6zgXKtY4kIvFce0r\nOk7/l9qbV18RS+Ql1oJbv1Z58TQUO+SDUIyZhb1pZmYvb+v6L11RGdJHY8UIiweE5v9vZhbvvm/t\nS9rfL11WedHkpBgytf2JmZmd/lSMnJ/3FPM8ewsE/wExXTaeEYPm4wti2G7cEmp567hii1Of6jjV\n4xL2nd5Y5XNiAJ09IJT1oz+4YcVNjYGLNG8d+KqZmf2mVTz3aCQm8juhxmb2GnvLo7Bx3lFMcf3L\nMD0uqTTs4k2xjP7qJa3HixO6J4PPxLh584ziw7PfUbz0j7HG8tVYMcv0IayoT6uUy/4v21dbgL73\nGo1dBbszXbi4Jnvm0EU62eMRpbZAf+8TG+zxMXlW5+7wDEutYL8p2Vshu+0hsRUs1JQYJ6P0pWLv\nLSkrqmBPDHm2GuLODEH2xrD7hQFj7NERLI0l63WPMldnSPq/jdsjB5RTwUwHcLeUNSePKPGGrdd4\nGW0PhitlEC3M1gQGzK7HNLADIlghrTMsvbQ7oozLSz7Gd2POugotZr3dpbziAOUHy7lYcOtHEM+9\nyH68rvu8XPndVrb/shWVi+d7iRTllo2LHutzjTNcMuy2+accUxLL5we8k1SwOrc3mXMwk2vircic\nqQhzcIgw+673Q2M34ZobmJY9WPgL9oeMsvja12/iyJgYaMaznGD8Ea559QHs3SVMEugNQ8Skd9lH\nUsRPA8qogpRSvYSSFUwQQp6JALZqDAs3cUY3LIoxc7ZkzucT9ieeTS/rmsJwj4mFYlhvc5hNw7GO\nvwxc2BhmDePeI0assZSeZnpmXGZ9mjpnZn+tcmY8LDovAVyM/L7q76vsd+WA+J8NPtrQM1JTBhVh\nHJLxbjnn/rCt7r3X1FQWTJd35/Q8rWy02rOCuRYXmox9Vih/vpjSdoT1wK2l7xD/RcQ7axtUjrBH\nTwmwGqoeEr6fX6c64ThlRqxzMy3ntkYJXv+YmDSbtyX0Pux7GSIVJC68CwvUS7LzXZgzY633IezP\naEVzsL0qQ6Gbd/S5s0PtycER3eNZob092+BebSJkXClvME7IQxQ6Tk7MEbjQ+1HeK1ifg8HvNqjo\nmDJd61rXuta1rnWta13rWte61rWuda1r96HdV6ZMQJbuGForazBfShDR+bbQpevvoeFyRYJwpx8T\ng+Xss0JxFtjBHQNxLRD6aRBdvYnWyu3PlHq7fV3IzeophHLPCv1afoR+RqQatEwAjU1Ift7aVOYw\n67lFK3aZK+r/MQR/XYRqBw2BY6dPm5nZ57eUcbv2zgf0W/079IAyeIeP6vqnN/S5SzBz+iDdG4fV\noSX1npfePK/jXtXnQmyGlwgHHz6EreW5Jy1ao35vquzeldsXzcxsdkPX6rIVGwjxHsb6co0xSmG6\nbH2ie3HgGCKo1Jre+FTHaaiJjBFzyi+q1jF0VlD/3nQgKur6ImeCYOtYk40N0XBZoiGTFqAsIxBm\nGB6OVgdkuiOm/sJtcak1bTnfnPrnPmythPRw6faS1EfWsBRiOpjAhmi8vhHUvaU2d44eRYjtb4AY\n6wg9jimoWM/rvPlevWfrTB0lCIc7R+dQXnpeP81xG+qvY9AwF/4sfPxA/YYwaArqqQ3EO3Gx3MgF\nNzV+LloYwXRxm2UAdAPUspB6dBdFDBsX7+NzoGQJ/Y1q1yWxfbdl/UXh2AGokYshV44eIQgWLN2W\nkb5RUFxwrb098MC1XEAA0K0IGXsXh06w/S28hhbkMKE+2/V1XOC1AUHtz0DiuMduyYy0jdWh20O6\nqrXmXLZAhI5+D2AzlDB+fFGvGfsQBk0KMluAPGSgUQ2Cjm7FncHSaKhzdrFZt5uPYW1NQSgsclE9\nGIrOCOLZcmW0AAZjAPOoBu2KeKbTvmsKwDRCTwqwzsoGNtnYxQGZRPtsbsdeZg4boYWArXuf8Wwz\nZ42B9jGRSvrnnuCpWzA6AgQi1AtBHXkI4twZSjAA3E+6dJYY6GS/ssDFokFZQtBs9xVPmHsROkZt\ngd5C4kK7IHqwiJYwMGrmUJ8FY4m2VYRKdYPgYkFfa9hezqwZJW7zCBsI9lnuCucw/wIEIaMILS3E\nRdM5teysiw3i0DUMwtSlEhForMAe3f68REy0YX2u6W9C/5c1zzb3poDFtXLo3vRCXvuZ0LFvjMVU\nib+s/XD7upij2UB77QOPiX376wPEFK+rv6cfxN73Nf38G/TmJgOxN059R0ySrUhW1z/+RJoxwUWd\n/8zj0nz7PTTAPvlQ4/zCcYncnn9fc3L0BMLAh7Qff/dtHc/+6v+wcPCC/dsL2nd/+JSuI31X4/GB\nyXp79/ekq3IO/bqsp7jg+vazZmZ29h/FgDn0rGgOP51JqPjRNf397fbvzczs969qrr9/Q0ydk2P1\n9yf/Q9e1vXzIng7EiPnpy1/Wtf1MrJ/yCfWx7Sl2eKH/spmZ/eyIPt8/xrqxJTbSibf+u679z3Xt\nN36pe1NfVxyY/lRzZ9IXC+jqKzChjwp9X7+qyfHdP9K9efXvFWdNFUbtu7VocUUVaD96a05ac+HZ\nAmbcEJ26CUy7MPVnkz0WPaEYvYdVNGPmvp4MoZogwFk644V9pgQoQ5UUAAAgAElEQVT9X8IyjdCV\n8mW5Zs8PWBvcJCFibWj32AIu/o3gL/HtFP2JgT+LMVoMXLAzChM03QJYBLvbbhKgtcY11fa0bIh5\nqhx2bql/cxcH53uudZYwjjUMSv/+KsK+rTOSYBG3iOSWwd19ogx3rE1WuR7dh13YiSP28xra8WBd\n1x1O9fnRcv8sCGdkFzD7Mtex29Nhc/ty1kU9hjYYaOzmoPsF7zTBFgwUYoTekLGbqo+rsHhq5sAc\njZp4iXECe7XHKg2xhJuJBDBLUhe3hxnewFCclup34/p8LjA/xo58oXjf9/4E5kvQurYL/WQOLHtQ\ngmCIZ+htLGEJDyI3DdD50iEsVazCDY2UEEbO1F2HlzpewByp0GxZZS/fnQ4ZP9hVMGliqiSquWKr\nsA/jhnctN+KYsy81Cxfvh5Wl01s/vzeh35j3if6EOBtR2WSs30+uitVXIXR/7IgYjDdg1jTOKlth\n7rpwcOBmDcSm3Ick0USbxLpfWXx3f2wnmcVhYwE25EvYUQ1jaYgIzzdh4VTYa8Noaxe69py4LR/C\n4F5hLqD3U8C88TjajSduljreaq1nYIglNhJclszQB0XHdMpcD9B6cc0pZ+fGI31+xt05jO7bLRg/\nKz2srUPt4fUtjnMSFhp6eYkz7BEqDtZ0nOu8y2Tb6ncK6zdnLtesnwVxdgSLuZ3/7pikY8p0rWtd\n61rXuta1rnWta13rWte61rWu3Yd2X5kyh9aFrhx8SMyX3RvKnl74WHXLwZKsL5mo0VCfP3FGddcV\nCPDmppgnBXXRS6+r/0yZqjPnqK9cCA1aO6yM3iPPyXFgckeIzcXzqlUbu4U2NmoZTjr1thCSK147\n1urnIWr2127o+LObyl4ePY4L0ib11T8XehQDOZ99lto1gNvdW6qhfv99oVt3LgtBOve8aqGHK+pP\nMVUG8Np1/X0K42ad8VhbVwbw1Cld37GHj9nWbfUtQB18dwsdB1DqJ16Ua8QIJftbO/r8OjWdA6zy\nLoNqDCmKjdGXyNbUtw2cpioys4slAhFDtx2+t0zyHq9mxj0ks91n0EKYGtHc9SfIklI3HYHotlg1\nh5Wysgu/x2SaDbtJQBcbpo6agHrBpElgVxQcpz9y62vOA9uicboDqJChTh/AOClRvy+cmBK6/gj1\n33P9Pab+OuP6WxBmZyE01KAO0IKoK9cFgSEDolxixd1zRwJQpQA3FdeWqXFbqmH4RMjOF7DX+iAH\n7k7F4a0AuYlcQweWiOuZ1DHsCUgZGeieu7E4orKErdGf79/ueAgyOYd9VDOH89pRfRgjsLrc9SeB\nIeG27Qmowoxa1SF0nir2OmI1t+1doOkUg8y5DfiQMVxSNx2DpO657cC6QjbIMqDLPgyNJfZNg8Jd\nk7AshSUV9zUnljBshrDQYmeR0X93CaoTd9bR90cggbVr3jDmId+PQR4adyBj3AJYEYUzBB15Zc5V\nUIwCrMBnkd9zLFax5E6o1/a54nomzvIwmE5Dd1pgHOsGa1YQm+QeHLrMzBa4bNXYzY8rt/wGvaOu\n3K29kwFItjvR4dKX4PZSsJYGuAgkXljOuLdA1bWT16hP92fMYKEMsOOcNan1zK8NrSqQzCk27Sn1\n2OXQLe6p9Z+AcrM+NOgROXpkMAkLzt3G7nzlrh4wcHCbMKy1ezjMzHByMVwzYneigsU0hxUUuosa\nKJfvJzl/T9FdilxnCfvcgr20ZEF0tztfV0uncoJ8hjATW9aVAUhzjVbCnD22Ke+NTXXwpL7//tti\nrW4dE42ivSw9t8dfx7Z5KXTtKy/qet/5/RfNzOyr39XnR69qklz8gRguJ16Qq1N66xdmZvazG2Ln\nfutdNHYelTX28BiOQqHG49gmuidXPjIzs82+9unishwrHrsmJPW5Rw7tXcPp/kV7/VHN3ZObZ+m/\nYqfqjBgw5QeKMa6eU+y0E/+BmZk9e1Ln6Y++aWZmb//mH83MbP3rGuedVho2s2f/nZmZvb6DPtJI\n/Xljqr+fxp3r+MGh9Takz7N9HZ2cqVhHZw6IsfwGLMqqr/jn9CExao79RPHgJ8/re4tTYszsvPZD\nMzM7kP2Ffg+7rH0JZskpsZheeF3P27sgnd86rmuf3H7MzMzGT+teBaeOa+D+X9tXcw2qXdhmY9df\nGrGfsI4lzOGlyxrhhDLGvWOKc2OxdJ03kGYcDYfstQuE6mLYvzHsgJnbwrO/9NB1CkGQW7SrEpgz\ngWte4cxSwYQsG9YQX++5HwEud45kV5m7z7EeElMlxDIxCPm8FetgAEvXiJmWcxg2xIzBUv3L0awJ\neMYDZyOwv9Y4qJVzfW/sDCHWcUf920L3Y4RmTIvuRhzfxZ6HQWoJ12EbekZ6bquIjXUBCyFxXRXY\nFc7a209bzrmHXHtI38MV3HVgVCDNYlGsBSwsNEYB+pKV74mBayn6esq9Xt2mj7rGSZ+AEnvfUaDz\n5h5f+h4UuVsdDGyfi7CVwtBZuWhEwjLOGZPeOusSjlkRVtMW6/dTtw0uccot9E6Sr/KHKXMI9kG+\nq/70+Lmecn70N5fM4T5zeJu9mtDmLnMHN75eoH4XU2Iid+xiLi+IpUIC35rjpez51Q5M8hV3/UNj\nxllbjF9JLObR6hIW8n5bhEZl5fsXa8pwVeu1u1D5O2hAVUZ929+HYIdj415XruvHMxBrngxWYXsQ\npNTMp7K+6wS00YusHK6YTfidm47Sh3Rdc7Ld0j3doq9rhZ6/HutIuOf8CvMEJvECh8YI56sEjZZw\n0+eiBqEfaS8bHNU9nBZ6F52kjPU2YzzEEZjnPeCZKD0e9qoGKnGmufq7QOTq8LrOg9GZ1TtoypbK\nBwToEJWso02tOTwYsue5o9WIZ2eqMR7xDuy03TpCU8fZvU6d/y2tY8p0rWtd61rXuta1rnWta13r\nWte61rWu3Yd2X5ky6WFlcW/jI377tlCa2USZsQcfE8pz9JyYNA31cr2+MmMffyiU58rbQlKSsTJl\nQ2rcDm4o27hxDkYMuhXXZkJ1XOfk4q/183CozNipJ8VgKRfK3H1+Xn+/Rf11Q23psVVlxALq/fJa\nGbzxMZ13NFYG8faVi2ZmNp8qm/z8i1/RdaziKvX6b8zMLFrX9R08KuTmCEyXB04/qPEiI3j+7csc\nT5nD44/r7ycPqe57c1OZzh0cOrZ/8Wu7dll9iMn2z9AOyLiGAyfV5xKGwvwTMus6tO2iYTDD6erX\n13H/oVZ1XqGPkD9qZmb1TC4Un6Pfs3ZA6cjE9o82mJmVIArF2jZjAKoGA8cNWGocdRJ3P3J3JbKl\ng73aSjLsIAINTgkB9dVew9uAOkVkSWNnkOASFLtGDXomU+7FmOMt5hqPPm4gSxg8LXN4yL2ZUYdZ\n4sDjrigNiHTi7kxeZ+1IOZnxFObQlOOkjo6BbESx5uYSl6YS5e+I60lgJUx5pkYl6BBK4W3sDg46\n/hJkIUD7pgXlJ4nt0heWgVDHsBMi3LqWMIW8sL0IcYdZOEMAHZHqHlgQIHbR0B1qQH8Cd5LRNc98\n7rSucQLq73ocaJ0wFHddK1CJN1hTdc+1Z9DHqR31h63lgjnUIZeuPUOGPAQRTLmHAah/M3cWgDNV\nYDchsLOIQEFAQp2ttmROm9fao0cRu1sROj1x5O5QaKvkQlojLjgHLWrQHanRTWr6rKugTA1oTBW6\nqxAMFNxCSq/Tpv685JlvnW3F9cxAt2Jnb+GWFQYL+uduehqXzLVaYJNFDuXss/XQ2Gl5Zhvq+3to\n6OyiCRRQVx/DEnNrhRpWXA/9kpK5nbROhXGtHO4rxw+53qWr70du8wQizDjasrZl37VT0J1Bdy1j\nHUvQ7cnRaMlD2Fe4FE0ZoxHPQAbrKgxdp4d1hKFbMEdj7nlYuRsIzxTodwVzJoP1VPKcFjBuemi4\nNHvrJCgRz30ESypgDEocwGIYPL4tZMwhX7dnQIUDGDHulJZz/AC22ww9C6fipexL/woo9f9rh469\npPNMFIvcWJHjw+OH/6eZmR0+LpbFn61pH/znd6QB8/SD7+syEmm1bA2/b2ZmX0KLbRvU/oEHhML1\nzz5uZmbDi3rGvg+T9dGTOs4DQ13P5m/0czPTuOc9OQ790cNok03kXPTRf39HF/B/mt3YPmZXfqjY\n48XnpN9yoRH7eH5L8+qVWlo09a6Oe+moYpzyTW34n74i/Zbo9J+bmVn8jjRkRldw+On91MzMNpZi\npdw+I9bJ48Uf67hfPWNmZqvFf7M3qb3/4/O6ZztfEwvpoGmsn51Jt+7CVGN29ZTQ9qvHdQ+f+L7i\nmncPauxeXpGuTXTuH3S8uc51BLbV7deo+T8jZvJiTXPmw/LbOs9PNFSri9NmZjbbvTfGXYijTFRo\nD5/6c434Qd/diNC+GqDJssvcnrF3huyRKetz04PpCYtggd5IDJMzB61vYcb4/jCa4ES2ChsDPaoV\nXIlK1orS3fFgoKfDCcdBewV0fQSLbdFDK2vu7kboxsFGiwHUgyGaaK6pwz48YX1OJ+wP/H6Yu8Ml\nTkDEHEue2UGpA6cw0IvG91v2VfY/36gD1sqGNWNC7OeIdtHcZcsldW0zEOuDc3cm0nkgc1sIwj+q\npd9h7GPu5LOfNlplzObotK2684z6OuVcGfciHsA8x8kxJ55OE1imaIxEaLwMiG2WW+h/4Ha6sstc\nhAnuNyXquW0mrFuY0aEbwUzZL9Bbm+To2TXEf2io7L0xFjBO2G96hd4jluiGjHEBiha6x9M1WEm7\n6JFwb0dzvR+E7JUt7yWuKxRoGbM+71bbMGNWmDO7A31vBfbWcAeG0QpziH3NGZN8zJaJ3idc524N\nJtMWbIfhKnOcudiDEjrFZTRpnHnkzppqw617c5dt+zwLxCBz3klb9FMy5vwE9vJqoXfQYBXWHDqK\nObHrgPe0INP7XFiJSVkS282g7S520HfZuRtD5ZPKDg7HtrOiezeF7lRxbtdwymEP+bow2dU5itK1\nG2Ha+bsKNp7rPP+7OIG1MLAbdze7oT7dXtH7+5C5P2GuFbDBVmIcp3CynaQ6f8a7a4x2zCLz+FHf\nn11jfcZhuM+6srah/WanhYmD1k3lAnVjxpp3ny2Y7isEhit9Hb/c8u/jhHkQlvOSSh/eBWest7+t\ndUyZrnWta13rWte61rWuda1rXeta17rWtfvQ7itTZvsaWi6XLpqZWYS7xlPPq/76+LnTZmZ2+5JQ\nnQu4L13fVYZq55YyUCF1k2f5/AYuSMlowHlU/30RrZYWdsDOLeoW0Q9Zen09tWefvanzLUtlVVcj\nZWEPPSaU68GHVRd+64quYwf2xuGT+n2GtsuVizrvkH5mGzrfVdygbuKT/vxZaeVsnHrYzMymt/T3\nzz4Qk+b2TWVJd65+rusDaT5zVP3KHcnfUX9XjsCcqStbGen/owfUpz56NAsys9tX9fN8hi7OjrJ6\nAShOHyQ2p1a2BCUajJVZH1O3V4OclrmynyXaKytDZxPdG7qdoGIfkZFeAn0OyZb68TKyoblDru6s\nU7uWAqg2369AjmP6NydrG6KM3YMlkbuDjGvCzEGEQYswe7qrnQDjJiVh3i4cEQYaIbM9h10QkZ2t\nZ6j0xy41znVUX9ReqfqwOkBYlmSPIzRdgqm7pwAJoNmQDkC4XbYDBfSK+5pQt14n7jwDEgKiPeTv\nZc+1a2AruIsL7ktN5qicuy2BVlHTnKGqv6QOvQYBiQYgGq2zCRzC+ddbCdMlQw9jDhPFNWRK9Cz6\nMF4afi6YKyUuDRE/NzEsH3Q5UtySch9Tvh/A/FjCwMi41iUsgtBRKndhAhkMYVK01MQXaAg48WNA\noXndg8nCdfZw62hAp1pQlJYxj0H+jLEsltTG44iTJpoLC0d20WbJqQsf9UF4F9SV8wxNQVgLWFEt\nLiI1KFjI3OvPXIPH76V+7ifuDsUawjo14tmYgMAkrlGT6N6nIXXUJaggGEKGJkB1L2wqM1syPyJn\nOPnxQYIw/rGZuzqhfbB05wJQupkjQbDlIPpYn2e8gA03gMVnIEruAuYuVTMYUTFrRlhX1kOPZwpy\n1qNvOfo1FchlEwL3gKZXsLdspr/P2WuimnuKJk3JFAmnMPcIAWqfg+5wEjjzhLnNnpkyt2NQsGWD\ng1UKc4XPu0tTyOdyd7xCBygonFkJiwqWWYVehjtAhMyNEtSs5ZmMYRoWzJUBbnkl6FkFuh1k94Y7\nbX7nl2ZmdvU57alPbqnufHxb+2f2JY37a/0/NTOzR0PttWu3NGe+99JbXJeQ44MzGDJv4ob3lPRS\n3vvgNTMze+GPvmZmZt/+mZgu/3xeTkIrB7XXr3xTscRPP9B5/uRhxTx/+zosi98Tk6Z/44/3ruHM\ncGmbx3X/tuxbZmZ25YzGef2W1oDXd8ScaT54xczMnp5p/3/vuDRhzizUj6ffk5PRa6cV85w4hTtK\nKRbK37Bm/skbWmM++NZ3zMzskdfVl8+ff8i+8UvN/x+/oGv5Omv8f/qZzvmnL0s74JkpWjI/1LW3\nuca898h/NTOzL9V/YmZm/zTXGNSburavX9Dxt87qpG/eVPz3ciwU/ihMxOnb3zUzsweeVp8/XlW8\ndeiDh+xeWoqCxJJ1OGZhSHiWylBzJ3TNFGKiYKG5Ga6406HWoz5jOHG0G+ZcCau0Zl3sz9ESg/GZ\nsUcvWe9TmOAV6/h0gjMMDjku0JeWvn/Qb1jDe+5yjaunwajBEahkPxlMQHx5JlNYAyksgpI5P2Qt\nqDJ3R9KzM+etI+yD+i/8ulnX9zRtQORzzdkKtm7jDp4uaDdhn12FneH6fktYDYO7sUSTZjaesCa6\nrgrr9gCdjl4DPYPx7scaxwl6KvtpW6xrq2gLNrB5Z6DsCeuasc4FMBx2Mliwiy+i6cECZiR7djzT\nNY7XdA8WMB52YVGtZE4RZGwyjd0uWlsjWElL+lWYxrgP+h/gsrnntrcDuxfmSQ6jJQ50D5FGsZhY\nZ4d1fAVKZg+HqzBwN059YYZm2oBnxRktvUzshRls3XAGuwy5jp2JM65hfqzhGIbuZsP+t8J5XOOw\n4ZlqJpqjGc/GgnEaDVind4j/U+Z+o/eZrKfjz2Zaj5NM99eVMnfH97bfJEt/1mF24j7l+3Rv3R0x\niam47pT9soUBX90kzocRdZiqiWvEEzVsuYh4ISKur/+Fpsz2tdu2HvVsfFB/23YdHdaHFmZ2uu59\n1e9vE3e6dlaEBlRxG4dayETxMa3/ESwlZ9aEI96RYAVPYAkdfwCtqFqs1K1trefjWiygww8SJ7b6\n3JT1KsLJap2x66WaG5c39Z7eoBeUHdLxSpjgIXpuBetfiQZWlrmWIlqHsILnjM+JgfpjsE9nqa+3\naDeir1dSzRD+bqJMx5TpWte61rWuda1rXeta17rWta51rWtdux/tvjJlJlM0WlBNfuhR1TM/eEZ1\n29c3lcn6+D3Vd2erylgdWheycfoBsp9krjYeEUISkX38/D2p+X/8kb6/nCpjdvKsMnYjatzaA0Jq\nPrikTFo+V78GK0ppHRgILTv2uOrHA5DeHbKPF2+onyksjAJEO95Sxm37+qbOQza8YthD6hRHR4Qg\nrIzlSlCj+zJHw+byRWUKq1vKIB59Sv04eVxp47Ujqnu//MG7ZmZ2+46u89xA9earq6ntHlDW78hB\n1cm+R8Z1iZJ1gJL00UPShFk9iPvGAfVtNhWDJuIeGCjG8CFlkg/ivjQ+qXrx+UCZ7hS18N4qWc/g\nd3u0/68trJVtzYeg9zBmCsa6CdwLXvcqhoUw39OuoZ9uq0RddEPdtyO3KdoEhntJ7Y5boOmDuSuJ\n43gAE8jZDK5xkGHFsMSpJgPRragBbrxb3OMM5om5pg1p0hANhoVrI4C2h6BDAWhQBLoU59RdJrpf\nLVoRCW5QhbMCmLsxz1ziSV3qMOcg5SGOA0HPmU2gWKjPhxzXUpAK0C1noUQg6y3n7SH+k5ded1/9\ny8u2glrXFCQnH7iVzT4aYz8DyXNHqZo5ksSg7KBT7hYUOpsnR8sFVfgKNlMMitTw3BqoRE0dckWt\na9ynr6APEZBB2IfZ4cwcNAeWjN0Al4cInCXgvE3hc43G8Uo0TxIeoSU1rwGaBRUMkAFIao7zV4VO\nSYs+U8jczkB5Sh7p5cydCniWcLOKYpASWA8tTl+DvXJqdz7jWXdHAcazDXAMo78JiLC7Wg1g7hS4\nNw1neBnAvliCHhpaCRHsqjC5t+2rh4YQALMl1P4WsM6iQOftw9gM0a6JDT0T6G8R3ath5/UjGDVQ\nZqLI9ZNwhgP1anAmytBqSKdaO6esDUHY2rxH53AeCWD3DBNnhqCLRI3/GCbNgvXB6MsAhkgFK8d1\njGLWrcIRWRhvOXPL5W0yGHzBUscDmLUSXaEA3YU+e1mBVkHirDDubYv+Ts2cr13TgGevz/qdMzfr\nHgwhEGV/Nuahr388wziG9QqdJ69wRuC8E/aZabB/Fzczs09DuSDFv5J2S/k11vEHxRz57ofSTjl1\ni30ETYAfb2icDi+eNzOz0fs4J66rP3+TiJnijKSvjeSoeOkj7YvHXpSO3YGPpNVy/jdybTo3lLbL\ns18SGved13TcZyN9/yEYnYuzv967hiu5WQzz8scXxB45/aca76fGinWSTV3P2+9rrn5ySrFG/bye\n1UNv6L59eFhuT8GvcWMcSb/le1d135/5c+nf/eKr0rnbvsF1P6M449x3r9u1x/W7eoQ+QisXpUOv\naMzeufE9MzNb2RZr5/a39ZydeF19nzz8si7sh7rG319qjD97TJoyN8awQG9rDoy+IZT4R0tpDq5/\nKpbPkvU4bxQnPvQ6TIyn/tbupTGlbcz6XeCUEzojDvaYpTxMEDtqZ57AkAzgQM5Zl4bEnXP2r8Bd\nSlwbjPPu6bjBAEnpxwynm37jGmdokcEMidGhKNHKSnCDymtnwGj8CnRL2oR9wDdp+jED2V5h7dgF\nQR6tKOZbwrLOEhyG0EJb5QImMIY4nNWwL6IZ/UKPpMDBq6zdTQodD2KrnAOMYIfYriPROIWxDvcn\nTlk0W5SVhbgWHioVP0foVi1hgK5uwdQqNYfnreLp5T28Lq3AXCw4doJTjK0xNxjTinP6uttjz3YZ\nnICYJTKeW4OZsoa24QTXIxiDARpgS/bgnP1jgF5dL9E9KtCdi5iDLdpXAXpGKRTwmbvkof3VMFcy\n2Fg1DBp3Ja1gviTYCVXsMw3HTYilxjXsI7TPApzFFsSzhKFWwuxI1zQOK7zbzYewzErdm4o5MV/o\nGYhYE2ri4B5BToNDbcs+WxIvh3PYWDDnB2Mcx0rcq1o0MdGtWsACWym1fvNoWri4N55D668daAa5\n41lZ635VMH5amEy3cKBM0dvLM/q/ZF8nPvf4oancgY1xhGU8hQkbr93VwImiyLbyqY1LzZEWFpKv\nX645Fa0ST9Yak4LqCoMh7dp9yxZdTRjRq6n6uj1Fp8fZuT32+Jt61+vnPBNO2GOODndx4ip0z7OB\nnt+SZ6u8dpX+6PMPnoYtzDo0XieuG8FwZL12zcSG94JZ6PExcxumZY27VO2E53ri/9HnD6FrSvwe\nM3dDX56obMny3x2TdEyZrnWta13rWte61rWuda1rXeta17rWtfvQ7itTxm0tTp0VQ+bxL0tVf2tX\nzJIP3xK6FIJQPva8ao7Xxur25xfk8DMhs337l2Ks7N5RFnB6XehNTnH/kRNicfRhpsTulkLq6+AR\nZaNPf0maLgtqVetdMv+Z+juZwGD5jbRiJhel8fLo76EJsyEmziZ+6D1T/+cNWW0yj0fWlYlPjyhD\n2IK45y0+8BelNeNaN0efECPmuZeEqlVLXdflj9WPWxekQr3xgDKdyViZwUU5sTsfSh/n499cMDOz\n7Zv67PohffbIYSFeGbWkEdomk22820GBW1CGFJRkZUUI3sGD6lvjWicgqquJrnGyqSzj5khjt98W\ngPqkrhYPe2FOrWsPVL8mg1zyc0odsiO3NYWNtWsV7KLBMkDzBNbSEOSxpgaWHy3HzajH9RewqBKu\nMw8dmcbVCDbBInGnFx1/QH14zjhXMHAC6s7bpWsmCPkY1V6/Tb24M15AFkKcBgpcodx1yWkWc7cf\nccTC3aNAwyoX1Q/0TCScL3UXKpCJnLrr0cLr5tEvmmucMq47SGHKjLhhoILl0h0YXNcFRXc0IgKX\n0IEtUS3Iou+jtWTmIxC5kLEOQBt8TgbOjkJnKOiTCQc9qNEo6cNGWqItErpzVuz10PwexLI3w9GM\n3w+o/3VW1tLruoFYYzL3Rea6R+6WBCrvEAFjMwfMoDzaGo4bRhr7Hho4LU43JbpPBYjmCFZFDVts\niYZWArJRgIqluIUE9RcddNLK9UdgTzhZDoZLH70SSGNWF+5ypc9DbrCa9T71OQeDZAoDKYU9thyi\neQC6l7H+17iJzLzu2hfSfbYKdLBqhaTHMzR6cL5wJDuk3yUIiKN2BhvNcEbr75Xt40gGO6UHm67l\nmQjR0onQbGhhNAXOpAF1S6LYKtg0DRoAOeiU6/iMmMvmz4lrOw2dpaW9pKJ+uQGxbbjHeUwfcZdb\ncnzXAnN9CXd9Aqy3mvrqEc9tyQIToq3VAxVqmMuB6/2AojurKWLOVOy5BfvMnrYUzJ4lz0BG3XnK\neZfQswbszW3P2WgwJkHHIxDY0B209tnW//i/mJnZMRFWLHpHMcHbgdiyB3tisw4nmkP95xRzZJHW\nz+WHcmn6/FExTvNfady+/qLu9c//m1geyxMweQZ/Y2Zm1zaF+p25ohjn4lA/T9/V9y7/6rSZmf3b\n47q/r90EuX1PPw8eme9dw7lyy2YzxSDPrIuVslpo3/9BH7btB0I3V4dytpy/oJ9X3tQ8+ekMhlar\n2OabtxWTfbcQG/fgWTGKzr/zsZmZHf9ELkzPPKu//wC9lj//w0/tZ7cUW7y4rTmwFSoGOP6PP9RY\nvKi5tjMUo2brBzrXytefMzOzQ7+AuUgc9f63NEfPXdYe/Lg0pFcAACAASURBVMbjYji/sq0YZHRB\nuj7/fEDP3eot3cOv/Bvdo5uL/2RmZj85KD2fl3dO27009/KJ2R9iGCpOKtgzU0M/Y4DOQ49nugT5\nHQXOxoXtFLsOlJ6JAXsty72V6OsNcHMrC9fZQ0MFd6eaDjQwcAIO0N/RM7WLrluPGCV21q1rQUxc\n7w7NGpxoBrAAWtbBeV/nj2GrlSDj4RrruGvkoJ0zH+lzfXTupminDWDE5K6fBws7GMFcxF2wdbdA\nNBkCNMtq9AErNHJ67lLFcl0O78YS4yaxGug6YDwWC31vLdIz7oyYGvem8W3NuyrZf0yyRFcsgx06\n9bFgfZ+hM7EKw2UyJa5bYb1zjcMt/TtBS2Uw87HQvYV0ZO1SYxyjRdaHzdufw5bqw8AxvYM0aKUM\nYPOnxBDTsTMYmdu4Rzlzp2IPb4l5erhMle4oxvkyWAGR3zv27l32BeRJbAQbIVjgXlrB0oAZX8OO\nTUJnSeCwMyfGgIlfRD5uesZL2AhRwb10h0TGx7XO5ujxNSN9bhVmZs5+k7L/pTtak+YDMWPWvT/E\n8a5alPScM7O/5tc351kYhh5z4JQ2oFKA63DHohbmesZ8aMbE62hVuntXSOyZEyvFPBvu6LYnpGdm\n4+N9W7a19aDrrxMfF7ByIuIzj937sKcq7Iyc2+5uowX3Ooe9en0uJktNXFSh0deLtB4s2ReyIW5I\nc63rQcy7Aszp6Sbv+2gfDtdhvsPGb2A9zWDCHFw7yNjpHpa4P91mvTzp7qy8c2QDnlHiwYJ3GEjK\nVhO3O8s4Yr1IXUOG709L4mqPC5nTLU6Kv611TJmuda1rXeta17rWta51rWtd61rXuta1+9DuK1Nm\nRP1jgrpxCy3h6ntCXwoy2M+9JMRkhczd22/IjejyW0J/GhDq/kGhNUfGytytPq7a4QrNmQEI7MZA\nKNd4TdnixcdSTS7dh/wOiMJlMXE+u6WM3eFdoWQ714WO3bqszN/qqs63cVqZ9grk8/ZH6t/OtlyU\nRuvKJgcojQcoffc31I9mouu9uq3zfXpDmb2BZzdR17/yqbLdm5eEYn322SUzM4tQLn8ed6gMFsgn\nP/3YLn2qvrSh+nD6EbGGDp7VmMXUF3/ylhg1Fz7Vvz5FBtTb3aG+d0Td8wqaKLcW6vNnbwgpi3Bb\nKsmWbn6s4z3wpSftXloLI6PIKMyDcdHnWisU8SPQ9ByV9L06SFCjPoyWmqxvAjJQgSL1ErQPSHTX\n1Mz2YbIsyEznaB70yWeWU1AlHBUGMFGmAM3BwtXkXYuBuU721cjgN6A3/QodEDL/FUhFSNa2xZUI\nYNvqAh2PUNnhIvLaXxDlROMxN3cWMDoG3ESddzGF7QCaF8AIcumYCpaEO0SEZMN77ljk10cNs6vZ\nZ2TVDcRowHyoeNYiWAXFABYGjg7xXVH4f72Blgd79bOgOSjPL2E2ZGTm4z1nLdhSoPY1SFiFmvxo\ngLZT7Yin+jwnQx7DVOMW7Km0z2p3o/iiflFEqt2NEQrGKkNTxFCNz0ew0WCQJOhtVKUr9cPGcgSB\n685rKDWMpWfwvT454lnNYCvkzMEQqf/Q5yT3NITSUoC4uiuUgdr0YTmUPJoZa0jLsxXW7siGvhG1\nwrXXdc9BDpjTEXSpyJ2G3G2jdDcs0EDcPIJ2/8ilmVkKG64FRQtMCEpDHXbNeDWcJ+C642zEZcMm\nQSdggUZGhhvTkLXKr78FtWpACVuEWUKeTaSArMd4lsXcElCninsQuNZVxlwCvY1ggFT0qeF5ijm2\n65clzLGK3/djPQQLGDOJO2SBvOagPRV9r4w6b5aLWcV6485lPEOtayQMcBhkXQ5hf6YsrGHqzBjW\nYeZiCrNnClLobLMS1Cl25xPYaSUIp7vIhTB+Bu5kBYOnv7fg7a+9OpF+yefn9P0Pb8slqfeUNF7W\nfipdkzdXpVf35H/XeZ88iq4HmgvRm/r+8Jyu42ef6N/jfyrXoktb6ueTM+movNn/H2ZmVrE/nXwI\nRwkYSsvkZ2Zmtr3xh2Zm9rUdxRSXdv7KzMx25z/du4bYHrbHD4gJG1f6XvX3ik0WI+37vSNybVo5\nDNv4+2KZ3ERfb2OiyfnkBenxhUe/rut/+Vc63w3p3K1cVuxyakX93AU9zX5w0czMvvsH37KXAvXh\n2m30MG68aWZmxV8qDnv+qs5dfCqmzMsv6+e/gaG8hR7EqyfOmpnZ+29q7AbPKJZYwv557bKYyQ8e\nF5N4sY0TWfh9MzN7e6bzTa79pZmZvXRJcdSVR561e2ktz3vN+tvuMRf1d5/jK5CXpr4HgiX3gIjn\nPRiAsApSd/ED5d5Ga2GYohexxHGN9TwMWDdhwcUxTjHsRw3OOBHr5U7m4lYwS0K0Y1iHQp7FGH0L\nSAV7LkYT2Lbjyh0U0YZg/wrRCYlCHHPcpTDy9RsdEWgXKyxtOf1J3RmncvazOuCacJOejpvy9yFI\ntA2chccaCRLeb91hc0/8zGqr9jQitohhBykuUrBY7ADjcA1WYAxbuWhtv60PA6YK9d0mwCnW9Fyv\ntnqHqHkHSn2dRHOvZG7NM/YWmItztLOcATFCg2YKGl8XotTsOkHaNHcq1vmYsXa3o8kQBjQaJAOY\nLWHiTo7qd1Rqbs05XokTbYtAW7SjubZk/xjDWKkj/X4GizmB6dLb0vUvErQmmYNsb3vOjRUxzZAY\nYh64hpn6MWCyj9g3doiFUmKL+dj3Zs0lZywNV9G+8X0pRw+KW5xx/6YwagawinOetapEz8l1j/Q1\naxf35i6LIaiNmGMLHC2d6TSCGTqPdL0pbN/CxWgKmJKhxjE5SHwdEc+jFZcRwyzRR6qIUXt7a5PZ\ncjyweHPH5td0b04+JrblNvpAt3EXjtxpEZe1iNg/hbm9qNTXNX+/psIkLPTviq8z7nQFayw9RCzA\nO1TJ8x06Y3uo42+c1d/nazpP7rpMA+LMFeJiXPp2mVxDmHCzVvtMtkl/TqnaYxst2AX/rsEmToZo\nBpbKE+zwLA4OEd9yvTM0JlPiSWfgL2AABmjNFNXvjls7pkzXuta1rnWta13rWte61rWuda1rXeva\nfWj3lSmzQO9i85pQn0/IiH36uVCeM2eFZK6dUIbr+qWLZmZ25QNlrCr0Ok4dF7Jy8mExY46cUebr\nwkXVSVdTHe/4qdNmZhaAEjrCWyx1vHwbXZKJtFxu7ghJmVxUZm0ICjQl25sYtXQryk4vt5UlvXNL\nKNJ758VgGYPMHzilfo7XVDN35YrO8/FbQt8SVOgnM2U/E5x3jjwohs4AFsHmZR33Nlo66zBtkhEO\nOCvUyKFyfefzTasDZUrPvSCk7LEn5KJQT3TMj94Ww+XieSFnOeyBc2fV5ymq4BsT6r3JQG/T18kV\n/X5Gzvjh0xqTyx+LTZTDrBgfvwdXHTPDjMfC0LOW7nCFngcodOkaCGQ3I3OXDmo0ycYaDjcOQMfU\nzgcwRlwbxt1KIuoH09xrOdGzmJEVzb7oKLNEq8VrYNPEs6kwUND1aF1rIXTNBHQonGECKyoFRQ9B\nr3LqKGOQ4gB2QUiRbgtE0gNZWBSaC33QqiWMmZBxCUA2GhD1BrSqov8hjkbu6LPE8WAYepab4wBa\nOQGn9TpyUMQUJKMEikjIkgcRKB915KHf8Gj/S1PDuRPWgxx0P4pc94eMPmj63F2Rlmh5oDHTuBbM\nCEoNOevE9TnI4BtaICn1uM3ckUJ+X+Mu0dOYN9R7F4xpFPj5qAvmbNO+xjpFG2ZKQXMfDZJ2iBYO\nKFjeODuLeuEeLLHamUIwPWBTzKA9JZlrp8AMcl0mmB5GfXsFQ8hZYc6+CnCRKmBj9Jg7tnTdInQ9\ncCcKQZUKjtOipeBsqwyW2BI3pBCngdTrvjn8gDrrBWifI7v7bbPQz0dN8944MB9A3ebUZ/dn1GeX\naH6luJHg2NagGxD0mFewTTKYP4UzZxrXmnF9KK6HOnwD/bJ+z0KYEUNn/oFktqwbczSeEpBHZ+VU\nzM0scqYaeknUjlfoOdS48qTcO2eyTZhULYzEHn3v8fkSF7l+31lirHdjGG5U1WcwdryOvBe7nRxM\nP3cZwdmrdb0iFhB3jpmhT9FzASOYOa7L5DX1EBr3mJ4162E5QadiD8PcX/sg0T74+a/U73NnpQHz\n5h3ptqUPqT9f+kjM0Bt/9qqZmZ19TXvya2OQ2hWxM1a2NU4PX5Bj4vEd7Yu3nxN7JPqprvORr3/D\nzMzW/0y/370klC9o9ftHEjFd39/6ezMzO/iIjvverlgn9Z276+V/fbi0p02xRfv4n5uZ2aX8r83M\n7I+Gur8fjn5f53lLjJlnI2nL/OdjinVWnhAT6H/+vfr3VftnMzN74IewkP9AMdbsM1avvubwh5/p\nfEcFtlrz9g3bhMHxcK546jePKfbIP8Wd7S3m5gs69uTnQn0fel5jffzrupbPPtW9f+4E+jhXdNwX\nuUe/ePcNMzN77KuKA3c+0dw/t/YnZmZ2eQf3zrOa21s7etYeOnfL7qUF6NqVzuzA6SZmD24KdzKE\nNTaAhQaCOo9hTIOs+v4Us/4XxB42w0kmcVaZfl0G6P3AJMnZKxP0QgLXjVtqfCrWDmciprBwc7TF\nGrQX5iDRDc5nKSyzqtBxVtFpWrgmDTpRjhRXrFVLNMwS13tKdP27PIvZxNm1aKCxpvVgss/R5chK\n2HqJsxlw3gTJToYcB3aCM4R6rpHDfjL9F9pjk3FiI9jPo3U0MaZou2V65vKbrNsw8zdaZ0bZvlsO\nmzXAFXQ80p4WlorZdyvdo5XChYj09waGuetIDnCimqGvtsK9n43V5xnsA2cTVAMdf0yc6gxl35sL\n2D6zVRgZMAt3Rzpvr9LYLktiGJzEclz7DKb9ijMuXK8u0bo2zDQHd9EZMlyXagTYRjA2ctNcH5Va\nKEquY+JaOjjoNKsal3zbhfV4Zkb6u7tHTSbofKBD5KThkv4tRzyLxHzT2jUP2UfXGK5dWMC8B/Rg\nR+/yvWGPeJ79bJk4k11t2dxlZe2r8fEZoVd1G8ZrCXMKZlXsjBjm8oFY78aLHho6A+1HM2Kt6bbe\nfTNiwUNH9PlrJe+yMH/q6u77WDtrbDoPLNnVvV2gc9ZnrmRLj2dhxRbunsy94FwBz/nwsN5zc94Z\nd9jTK1yUDu6yrpxC+5R1ccE7ToO2X9TzmIAYgXWmKl1PSNc8OKD1Y4CG1PQK8ec1jU26oeuZEyvs\n3sbRalP9Wz+gv+fordVo26wP9Czc4bWg5Jkq0P7agj0VEGuVfXc8Y50i9sqN+DHjWfotrWPKdK1r\nXeta17rWta51rWtd61rXuta1rt2Hdl+ZMi3ZxjxHE2GizNKBIdnKg2KINNR6Fjv69wCiDAFe9Ief\nUO3boeNigVy5IebN5TeEAh15UOr/4ViZr9ll/f3GHTFadj9WtnbjjFyg1k4KaZlM1b/5mjJng1TZ\nxgiV6AVo5XiVtCxuJ+EnZClRqV85fdrMzE4c13FDst2TK8oqu5PF6kiMoBpkZHWszx15WP1aR31/\nEern8Sdi+NzZVv8fPKfrXEW7ZrGj464dOWwHTyiL+Ngj6ssC1e/tO8qc3vwMj3dqOZ99TvXbDz39\ntJmZbd7ROa5cxA2JLOFym8z1EWnT/N6K+tbb0LXsXNJYz0fU0mbIyO+zOcElcF2GKZoGFDy36G20\nZN5DMvQD1zYB7UnM2Qqg/9TuFjBVAuqzRzgqGOyHxmtGqWsOKn52Yg5oTDKDJcC9i6nZdIeemrkw\nG+rvI3cdApHwOZ5nX0SF8r7Ssxm6HzU1v4mr4rtmAtczHFKPiSp7jG3V0lE7EJk8hEWS6PhDjttw\n/SnIy3yMqr7XvYMwTLguZv4es6Uwd0Sgnhw9l5Tj156hd7bInOw7SErWehZ8//niGETOUaE+dJ02\ndtsfV/xHwd5dKgBzor67F8FcCTWGi8pr0xnDzPU09Pdgip4RiOGS2tFyiGI+9yyl1tUWoCvo6PRA\nvxpcnQasa0uYdV67n5fOumK9bJwewN9njizofLHXjzuaAyo3xFErgOVQNWjaoBe0cKQXVCkp1b8a\n9lYB08gRAX68C+HCvghhU5SFrrPuo0JPtzmcJa3Paf08YHxmOAm569FggUueM1pSWB3hvWEK/uzm\naB/0YaPFPR9P4KrAGTrUMoMuNu58htNQjGbOsnR2nTuooW0EE2jJvKzRkDD0mxZo/yTosKTz3CpY\nOLGhGxG6tpTu1WjoqAvMNtaBNNBzvXBnsKXG3hFbd0jp/X/svVmsZul1nrf2+M9nrHnokT2QzeYk\nihIpDiJhzUOMRAgCOIDvYyAJjCSQAiU2HMBKgsBBLhIgNwGCJEDsRLYh2aYka6BCx5Q4qEVS3Wyy\np+qhqqtOnfmf9rxz8T6rSu1I5KmLpALkWzdV//n/vfc3f2t/77vexRww9q7WsyjRtjG6RSlpPWJQ\n/g70PoKBV69dZIZOgkFHk1jboY1DVo0OPR/Xwik9cxfr9toJFyCBM9b1de9IK2gcbecMwTW6FUjP\nWBOpfIOJ6z88IDMThNYuoG2FMMij3ySjzRdUwRcjZVf69Auq5xdPxOZ47NJPmJnZ1Fl4mXyFkw9p\n/zs+1v44BuF95wPyQR4vVK+TWMybuyDT6UxMmH6ibEYfO5UP85vf1HVDJUGyi39w/V4dPnvwiF0Y\nyNf4J9/SuHjumrRi3rwOa/gfftHMzN54n8bP+Wvar68fSzPmqVPV48aP6vrf2tU4eA5od/kb0vX7\nlzt67nn69TlYC1fJEnX7fZntfVV1frGQL/CZk++amdn6E2rjm0M96/K7etaXQIc/XSn7Zvv3xayZ\nfRANv3eeV5sxVy6l8vM+OpP24O/lYjWNd9VH39jTGPuRy5oDe5G0+N59Wm14Z3hsD2IT2AslDJmI\nrB8tPtEGy1IFs7EF5R7CgHQNBhuhVTUnc5hrnMEQSaZot8SeLYm9lbnL1mktPsQCTYce/zRmXzM0\nvDx5UAFzJS/dh9DfE2fnMicLxujQs6V4UsCeLCkwfHoYNylzder6d3w+Za+P2Xc61pQYRo6nXjxF\nQyzx7EhonBUV62aOLgsZNFfdxnue58v3Yov9/JQ1JruvBbOxbKykPCVrxgbsipLfJ2PYiQf6wfHm\nmufc19/4QVYc02cwMNbMmxHspi3X+nKWEZlS26XqmGag6hXMyZHa2jVNRkv50UmisdWibzeIYEfB\nZihhxjWwdeOZ+nzrmD5mLMfsbemIPZnnTKEHjWAArsnO19EWDcJAJc/zLKID9o9h5llRYS3h0Lv/\ne0LWz03YqEMG6ZDNf83e36Rqh0GmsTBHL6jBh5qxbx3B1kgb/W6ElkxZ+nqsetTsL8Md3XdYqj3X\nG2jdnMJ6hkKTpVojCiIGxhvo/KGT5/l0ps5QOqvBEht7llfX/6v13AnZpcpX8C3ukgXxfXrfmu2o\nPd8iG+GI/bnaZ62h/zZ4L5h30tUqySAcre6LN05Ts3PXLtrdY62Pq2P9ZmfrMd1zwl4Ow69DXy5z\nfc1DvfcOx0SQEN0wYh2c78NYJ8qgiZ3lSxREpraPT1k/ZhrLOeuiE6NL9taYdWLgzD9nZ+EDrGb6\nt1zChOG9OHV9I44/qlP17fS89qkF/nTWq22uXNP5wggRwMkFnoPPVMO2itH9S2ClLZizyZrMa/iB\nXX1/PfqLLDBlggULFixYsGDBggULFixYsGDBHoI9VKbMpXNidjzyzGNmZjblNG+4p39bkNO7d3Vy\n5/oV9YbOJWtObaf5BnfU57vfEVJyutCp8/ULYtCsTnTy9fa3FJN8i1iz0QUxYN73kcfNzGy9p9PK\nt9Cw2T4vXZWrH1Q5y6VO+KbogpysFH+dc1KXPiqGz8W7ev7FyzqFTYlhvfuGEKO33iEj0TNCgi5d\n1Inc229I1+XRx8mQdFXXx2QFqVc6kTxFi6CAYRRxUhdzWPvWDcW5H7570zamarOXvkoWohXMjVOd\nhpatTmCvP64yXHpODJkFfdAQo5+hNbCxoZjyCQrbw22QU9CHb/+pskzc+p4QxA3Q98JFAM5ow8rj\nBoltnfKAAnR5DKKM9sqE7D6EZFqM+rhr2kycsVK5tgKsiRokN/HML7pvha5HAlsi4qR/iPJ4PPfs\nHyDMyb+itM2paYSCN4CErYhLj8gokKAfNKzQ7/DsSzBQejI29Pcy7sBU4hQ2BzGuOd2NQa8akIN8\n6mgcqBbK5imsAUfMI9geFchLPCQml9jiHFX4qPN24lS7ce0ctGgoT0q7unxGASLioFOeokUx1/OX\nnCZnD3BeHLl2B4hi5AwU9HzWrBsD9G0mHpNK/HLvMbI5nZM6AsrfW5gxEVklfIKBuHmKqnimNhoz\ntmLWhxJtkgEK+23s2YkYpCB8HcyXIRkbenPtE5gvxKQOYdAsQAgjtKRGzFEPoW9hQw2IxW1AeRJY\nBBWxwA0BzSnZhLoVMcRc35O5rCC2d8TYaVP0RhJHZBPKCSuDsVCAmLSM6RzNhY6x1btmjsfHM3dS\nxsIKhmDKuuuZwVx36aw2Zv0sQaciMpOVxCT3tWss6Hcz6jtHG8d4bsvYr2EiDcgOVTOWncDTwZyJ\n7tUL8SNHlAFM1tS/HAwsA0FsYbQkoDEG22oBEjeDubKibz3HUGyu4USf0SeuSTNee7Y3R4O0L4zR\ndImI6y5i155ibPOEgvUp9TFMOdMW9g8MzBSUKnLmCWNkDT1tgoaBCwaloPGux7EGhZ+iL7FC16n3\n7EswcyIfeojV5GTnqMkmMtt5sAxdBWvB4Oonzcxs/zvScNm5JjZH9BvyGc5d/mMzM9s70v3f/6R8\nh8XxP9DzJ79oZmYNehSb49/Q51fE9lgdykf43LNivsRf116/PxZz9cnvwBz8nBgsMeh/98oNMzP7\nfK+9/Xezx8zMbPyzL9+rw/lPHNtvvS0NmCuJvn/5m2gLvKZyZR/X9+X31O5vVtqnn3xH9f6TXTQl\n0Jx7/vNi5UZ3lBmz/dhTZmb2bxRizJy8IPZKy77z69Vvm5nZs//ymu1d1HfzXf1biChj3/ia/JrP\nnaptFlO18fWh2vj3v64fbpCN6SMnGgNHj+n7ZwcwGG8J/f0T0OsPTVXW5DaaAbBDRzs/a2Zmj31J\nDJqLvdr2j87v03L/q53FFubsUjS2nP2JZtQ91mvLXreB5hgMGNcOjMgC5xTCFOZil8NgdAbkEM0U\n2LBNBYtiwt6eoIWS8hzXOsQXKkDPE3yfnLnlDG0nkhRkZvOsgM6ardk3ZzAwJ2R49OxP/b3MaWQ/\ngbkzgnEYeTY6dIdimKaGRllCM4xg4LggSI+WzDCBbeEZf/BdO5hSC9p9CsN1gG+Wut5Wdl/nY7UZ\nW4yGTJSzhpF9qUdTZwRL2WCqD0/V3ndtz85q05Hrb3hVYW5PYdWizzMgu1IMM2MI67TPXStGz0ae\nwnKyoEbo2Z2wTs9arXcL1+TL3M9WW2zAEPGxW8WMEW9810dzFpWRuRJtmwatlB7fYQgzbujr/VB9\n1MzxHXL2EzRoIjJidWQSi2Ote2mPT5WKGRINdJ+CjDll45nF2HdgS20TbVDBGl5McXqWjEHaJ/ZM\nPvhYGUxs19mr8c08+2mHNs0G+wtusGVzlTeHWePvgE7GdpWQVf9g2ZcSzyKIj1mOYU7BTJ+vxOLI\nT9CEpLxD2Bk5ek8z+j1jv5z7moDG5OCOPk8vaO4uXU+quv8+djrvbHdjare20HpFbyhd69pJCQOc\nd7LdLcYEujoHN1kvYBKf90xZaDZu7MDeQpxliU9ycaHnLfC/Tw95p8N/3NrVOcHpSCzP6JSxRRa1\nCH80ww9vWP/83XCG/mnFepCjKdnu6vPdGhbWSuXydSTCL3RtmwyGXpvjr/WeXdSjC7R+FLw7RguY\n3SlzjKiGeRyYMsGCBQsWLFiwYMGCBQsWLFiwYP+fs4fKlCk5mbpzk+xHoHQN2grTCtSQs6MlavTF\nCRkCLghByTZ1inn7LTFWbrwBmrWrE7MhOiYp8XVrTh87Tti3L4v1sXek8tx6UajTFJbF+z6s+OwZ\np9erU/3uCD2VN98Qc+XK0zpZu3SJ58EiOCVm9oqpnG8eCOWKOW3ePKffL2udEg9Qfd++IjTt5I5i\n4r77Z2IAzSlnRVzgdKR48Qjk/jaaOW+++i3Vcz2ynpPr5LauPbe9SxvqhLq5qzJu7go9yjgdfOWF\nVymD+mh2QWVdrNUHB6c6vdwuiMk8hmX0LaFcA5gew22Qt8Ix3TMaStmds4Ac5SaDy7r1eD3GCIyQ\nAarvMWyINFW5VpxmDntHHECcSeHTc2LdrR3dIhNApOuWnEhPYS/US9gWMGpc02Y9gznDiXbNWPB4\n7dh1kWAFNKBKvSO/aKxkoPQe9+2ZFHIYMwOyHCWgW66tU2ewNUDAE2JoI36XAI95Jp2WgOzaMzcM\nyAAG+h/5+S1ZphIQipJMDCPKWxTEkcKIWpOhIm1cSOS97eRskII5AvhlqbNIzmA1z0xQOXftl4Fn\nYYJFVRM/nXjaNfQmogF6QaWf9IPyuz7GGoQPJK2izxvilUeZa4yQLcKZErARABat4fuYP/Sc5EfO\n4GD+W4eODzG8CZ2/BoEY5bC1OHFvadua7BXOGjAYRDEZtnqYHq7hNRmofAvWm3Tpcem6vO5Zb4cg\niLRaROx/V5JpDO0YgA1bTsjYBULr+kIpcfV14vHzZJyAXYa0io2XzhwhXhsUsIucmaN+LaoHW0s6\n2r0GIR2CBuagls4yiWEQ9bT3mHj1Vez9oM+TnLFLBiFDvyUGnSxhl/QgJGvKS1i/NYjyNFyfDpbW\ngnZ3nikLrZHck8exnsxBz1M0qkZkmViiRdOCNEYwHaMZY4+saYVnPwLN8kwplWcSgNV0T7OL63Jn\nAuI5NGRNW8BKmw0oh6NLsMpyhINSkN0CdlCKnlJO31RcPwTBLRGyaGFKzuiTNetm7mwjqJEZcz8D\nvar7B3Nx1mPFlf9Y9JtmZvbb58Vife7bXzYzsxvvADhcpgAAIABJREFU05hN12JbLD+rvXf9gr5/\novkFMzPbYh+8+YzKXX1D5XvnE3rOyVdARh+Rr7H6mL6//lXtq3fO/7CZmX39xd8xM7OLnxGLZPJx\n+SLr6INmZnZ1T5kbt17+gG7818x+/WTXfv7oaTMze/0Z/b5I5Cstt8US7m9o3199muww35DvlMb6\n+/I56a38yMv6+zd+R/X5qQvySb68Uju9+jHt/82PPaZ6/vHfNzOzX7r6UTMz+0fD1+xnlnrG4cUv\nqUxXf0p1eFP6Nb95VX7Rj7/0p2Zm9hbyOD/LXPid1b8wM7Nb6EncflEsnW5XY+eZiy+ZmdmTH9BY\nOfzH7PGXJLiz8WHV5aUbut/3BvJNfgm9jWd/7xV7EJsypgq0ynL+BQ+1dgxLCy2X7gRdC7RUIuZm\nRYbL3NnDML+riv1nJv/V0OlJWATytcZ2xXo9Yn8YgXBHS5BmdybIGjcc6N+KPblsYHb2ek7f4VtQ\nkYRshp4laclkS9DniKFvtCN0BtGA8XU7Zq0Y4PukMHwa9uVlAQt4C5YCbFvPxLYaqFxxiYZN5lmS\nqG8lBL+CCXNKBrkUVkjF601/fH+f6BetdWj65HPWWvpnWmrsJzCDdvC1nEU8hBl6FlvDjsxnMBQW\nuneJ3zaF1XtKJprpJsyPUm2UsDdGjCVn5a+dmcy63g+d+eiZH9VmUe/+GUwS2LXOaEzGsHEZIyUZ\nDTvGpGsp5ujDObO5dWaKZzndZMx1ni1Un+9lA810n5Vn3aPv6jlsM8RUFmjpdDHMTVhbaet+pMp3\nWhE1gO/CELEEfacReibO7q1hqk8nnt7IWV/6vIDJ7RqHG2jqHNWuM+fsMH2ew7JK8Jupjnmsxub2\nfY2Ws1ibuoYivimZfmKyPC3JxrjCZ2mZg6e0VwlbMManS3EuLpBt6fQQhj36MOllRUJUpRib8cn9\nssSr1Ib5yM5f1DtgVaguc2fBogWTwGRJx9IdLXgXWjFmBsyTFm297Vatc2webcC6xfpuvDssXOMP\n/9w1+8aRM2JUniEMwQ6GcgHDMIHB4utXi8arM+Z7siavoJLnE7IW8w45wD/OrpAFDub5/EjPmcP0\ncy3D9DasMubScEdzfM3czCauo4lu6B7rWPL915HAlAkWLFiwYMGCBQsWLFiwYMGCBXsI9lCZMqtT\nTgFv67gu4tQ1hRXx6BWhO/m2TkdP99E/AQBwJsnytpgxb3xNav058YQXHxdKNN3W6eHtm2Kc7Bd6\n7s6mTgQHnJynnIJevyYkZnYV1IgT8xf/4P80M7OKrCuLVvdriMd85H16XrPUyd2y10nbiBi6+aOc\nKKJtM9zRidnWTM85eluoU4ZS+Zqc9V//ytfMzKw+4NT2sq6bciq8eV3tsLNBLvqFnvvIE2q/81cv\n2zZsGhc8GA2EOt09FHLWkgng4qNCwN54ReyfN18ROycmI8zVge65f6g63PozoU7nrwtRLBspaA9Q\nsH/kOSGKWyOVrWu+fzzdv2oViCpECssGaKN4ViZiTR3l6Vz9nFNNQG1bcNQ/4eQ+BvVetWiwEB/e\nEWuZg1YlHjcI+hK5lgOnrf77PlcfR4mfyBP3DaLdENS6BikZcj2Ag+WFytWixxGj9J2iA1JD24jI\nbuSIRoNuRTritBiEOyIWt4Y9sua0e0Q7VJz0J8RNDkCtnKCSgViUrmUDUhPTfs6YGYPcV7AyRp4h\ngtPrMeVdpyD6sCB6srF4eOWK9CnDAjZFd3YWhHNqKnQ0xqDmC/QvxjAT1kvYPK6LAwrTwehoctcr\n0gVjsip5iqnGkUE/4YdVtaTunqXCx6KH646JX449e4X3Xe3sBfqQcpVk3Bm4Sjux/XShRbDPOugK\nHYr9no2pJz66vafnAYNj4Nk00HJZwIAhBraH9eRoTETFE+Knm6n3EYgEGjeVZ9NgbsycIZLBQOo0\nZvoWFgbZsVKQDFsRVw0LIvNiOz0MXZMWdldC1qYsf7C1pIRd59m5aubCeOBonZ4zJEJ8Tby20V45\nzMp+AAuFtWeAftIK9snCUzGwL2RrUEfGTUsWkvUYhoyvIZZZ7rHkzKOBZ0gheH1F36fEdzfkfSg8\n5h7MLiM2P6vQ2AIRrNHQSpzN44kEQIsMllXGmO1hqrh8UsX61MECGLiGDRnNatCyGeuFuU4RD0pY\n98YgtCs0FbqFf8+YQAPMiS4D6l+grdDRdg2TbGCuDYZ2A8yeDFT/rPbMgbTQ3q6lvRJt6X7f+2n5\nBOcz7ZcHCKMky7fNzOzusx8xM7O4+mdmZvbhfY3Rr4FE/uSHxEx9490f1e82df30ec29L/XSlPnZ\nxzQH3i1eNDOzjy+0x9+6o/69cSoW7CeviT3yLROD5tkr9b06PP+tuX11W7p0T/2OkNH8s/KRPruQ\nPt+LxfvNzOyDv6G5sP1X1E7v/pHK9SlEwBYfVr2ePJRv9c9P1b8/Xun52YH8hV/Hd/vCJbXbF0d/\nYGZmFyYftO9FN8zMrEhVlmfv/p6ZmQ3aHzMzs9HbYrrcRI/i8zDzvv3byjBS/bw0BfqvqA0+Dmr9\nciOGy0u3VZdfuCpdnPIZMaF72GGv/q6e/xpZnX70F3W/3/tj9eVHH32/PZB1nq0PtoBreDkFrvKs\neujXxY7EMubH7pvo74D6NmTPzWEPNGTPzLacUYmO3kRzu6ePanQ/WKasw1eYjdjb2UdWrC0j9v4U\n1kMTubYXjBYYJ/Epc3Pimmzuc6D5OFX5M2fjcl3CmlNRjgbWcTtj7tfUg3qt2PMrWHWVa7S5LgsM\nmdrXGNh8Dc8ZwYaIN2D9wpw12BvpDK0aE5sWaTjrcCKdDZyRkYhkhGbH6HWgDVHOH4CZiZ5Pjj5b\nCSPiXiarxBnP+ACUtULzJIK9OsZHiMh4U4G+5/gcM3yAEn2fluxOWexMSLXFgE11yDp8THY810Oa\nwvOCGGJzfIUKFnC8UJ91ZEfyvdBKWE4wg9rEWVIq5ym6Qd0Ydn+iMTtxp419JkE/KMavTGHHHpln\n0IL1QDvUaKw0sCkGE/ZH9u5RKfZdMiWbUqW536Kfh2tiGSywpNPvOvZbZ6qP8T26sTNnYH6SadLn\nqA+ZeeOb/9lsSAayEfTqZAt2F1EkZaZ+Ssg+mJGZsqd/Ct6hI/bvfh8G1Xm0dC5p3T9g386PeQ/E\n11vv3NfAaasDO761YcPz6HCSubXBbzKyH6fsReMdGIlopZ5saZ7V+It7t1xTlaxHjJ01PkY5wncZ\n4f8tmZiup4cG1jGZCHuOKwreJVLecVr8x+Em7yyuWRj7uun+Pu9A+BJr1sXmgE16pDG+u619p+30\nPl432k9mrL9MGbvdqG1zMpstYAFn7tPwvNSzdsIU6tffP0NXYMoECxYsWLBgwYIFCxYsWLBgwYI9\nBHuoTBlPnjF5VCyKa48LTcqIt9w8L1X9iHj5OdmUZn7aStzd3s0bZmZ2WOik7YkfUrz1tWvKiNCV\nnKLeuPuezxc/IobJpQv63YC4zpxT7ddeFBLz2k2hTqt9ncBd4BT7yYtCtzavP2ZmZufPqx57e4ph\nPnxXJ3ybV3Vy9tafqZyrI5CcXKegBwudMLquSXmg718uhVplIMoffF4x0hN0UFyzYApDJiZbiYES\nzs6rfP1pY/vHOtUbntNJ6Tu3VKe3X5G+zfXLOh2MQTL3D5UZqiPbxbPvF5p0/nkFfK+/reseI1b9\n+seVWeH4VcUqdo1OBZ/6oLI43XhLbTKf+5nyGY345HoCcoyyRb1A6yVzNF3fZ8SaVqBOBjqfEX9d\nwyTJyPxiMGSMWNi085N7TvzvoUycyMN4yWLXREFnyFxzQeVIQJ8Kz2FPPHgGeyoh60gJWtZ6nCJ9\n16Al03j8JPpKuaeV4h9HNhYtaDyISDt8L/LsWj49kHcKkpM6Ak4/u5aEIx35ihN4EPqGdCe5ebnQ\nM5mBXICcp5xSl2TJGlPPwpccEJ0UDZt+AGI0BjFpv/9p8p+33nUuyJpQeQx45hohxKaOQOYoew9S\nNkEB32DSdFy/WBJjOvaYcpA8R3lAM3LaxlDudwZJjU6Pq7VHnnwH/aAcFlaFfk9MVp98BcrlWaIa\nZyfQJkPaegECwByIYEHkIJkFyGUOGtWC7N6Ltwb9yVH0d62VtkX7gLXA9YKiQutuyRitYjIjgA5l\noDEtc3Rdq70ntIezHspK9XWkeHyPoaT6r3ws0D897LiWzyNXb4jPrjtkdr9fVszJGf3gawwJ0CxF\np+keIu6sLY+7j2AmFZ59ANZZSzuwtDTMjSZ3LRzmMOjbGEbUPfQua60GEZwsYbihBdaitxCTJW84\nhKVE0QYR2S9oQ4PZWICWe7a9UcbY7BhzzJHBPZAYFhDrSYz+hKPenvlrRR3qseswwZBZ6foGpmKU\nknUOjZn6npYVY5FsRympqDKDGUhmmp5MDyVsthhNqjF6bAvqGROn3dJnCYjqxM6+jpiZ7V/TPlf/\nlliwH/5pjZHvHGpf251p33zxFTFn/k3i3W/e0L74GvvjIpLGzOfjL5iZ2R9+VYzT4rO/Tr1ARP83\nPffJn5Gv8W0yTW58V8jt15IP6weRshn9wl3psbz1bbX/h8+pnO/afdbYs4sb9sb1z5mZ2TfOS7Pm\nx3a0v59MP6vfbOr+e+fxcV7Qc7KF2u/NW/ITBpvyTS7sapxcO5XPsphLa+aVSqyTT3Xa39/tlY2p\nuMucvZXbM1vSvfnyt9WWgw9oDN0+FbNl8Ijm0w8di3X01jvvMzOzpx5RmT7yT+QH/dFPq8xf/xO1\n0fJ5UN8vPmtmZv949lUzM0telj9kqRjGP7H5KTMze3XyFTMzu/qlnzczs/hTmgPbv+e5U85mJetH\nR4aWmvV981T1m5NpZ47eUtSDEOf6/YTsfCWTbgSLbZlqDudLMTScGTiCbbBGZyMBsc1gukSwZJGe\nsRRthBqfIkud4YLf6BkZ0ckboG/XMlc6EPIidRor93WfaPDe55TomiSxa7oxtj0jJaj+CIZ650wW\n2B0xbN4IHyUlG0rakJls4u2IboizuNA76TzT48JTHbHOIi7helhmZnE9sRq2SATz56TU2jQhI1HM\nvh/DYogrPW+Ynz1z6OweYQJtLPbmEvbtYEXGJ+pQNq4NAqOFviyHnnYJdoD7KLwTNPjBI3SNenSS\nYtbdxjXCYHfW7HmDAlQfp6Qeq1ynsPwT9uhR5UxDdDI6z3qE9lfqmQt9/YYVhe8z5jPyczZNvc9U\nzvUJjPORmCyjnExbDfdln4pOYHENXL+OfQT9ug5fyjXXSlhTyTF+9dD1m/TcIVSZFaziGEZThQ+2\nyXvBIZnbpmiiJWTDalxjDcaSj7C+uM9YPItVaAatYYGNYDdHsGc942e6rTkzJjvXIXOtxXcdHnnm\nUBhLJf68s+Vcwwi/O2/YJzNXwzGL84mdpseWoKVaLWDQwUAvYbO3jNnDTut3v4RRzdgr78IoRu9n\nMNV7drHW+t36O0pzwvWuf8e7AsyZjnXkHktpqT7JeM+tqcOgdeYfmSMZ00NnLWkZsX6u65b8veE9\nPDmAmU6W5DXrepJrz1+zsFa06dZljdVdMiJGsK2G+CJ3Ez0/h73c8c5W9fheyfdn3AWmTLBgwYIF\nCxYsWLBgwYIFCxYs2EOwh8qU6YmfzJecdnKCPdzi1JMDpW+9KqRk/qpQIdsBtSP2dnxODJunUM5+\n4tknuZ9O7G69pDjso6UyCI0mOsK7+CiaMlOQm9fFDnnrdZ3ore7o32Wv08pnPiI2yOOXxEBptjgJ\nu6sTv2++pGxHxU2dwLUpbAXquVyJqZPPOPX0rCeuZk1SmBOUxh9FWnzzGWVS6Dit3d/X/S+RtcCz\nUr39otgrr70i1MrRx9V+b1cegY20qdPEvdf1m5NjlemZD0kTpnGFanRwhqAn5x8Va6mjrLffEaqV\nO2vnjpCz9Rg9m8v0AcyQd28K3RqALJ7VMk6QS1CUJZkKZqAvret1EI/ekSll7DGxa7Wha7u43gak\nKmsnjkbBoAFprhIUv9EbcqZJan6yDVIx1fcDMsus23tn5vp95eiNn77qlHYNijSGUVMyRjpHv0C3\nvM8d7205Pc464qzJppSjK5Khi+HMohi0zLVrIuKjE66PQVgaNIAyz0DkBCJYJYmzBnpXwwdpB5Ex\n4sYzTurLIYgP7b6CITXoHOnQvy3jw9AJKYnVzVqEXM5gHuPZowPEQbetiddOMpgqC3RtaMOCOlSk\nBmi5Ue66QPzbgxys6JOJa7x4Fg36LEXjpIWJAnBgret2uNg8iGPk5YXp05JBzDVmIjRr7jEsKs/M\no75OkvfqaHgGgZax5xoyDWN3PSIrEmM3ASEs0QYYelw4CGgHm8xZZw36QCkxuwmxvREMvw52Voc+\n0dizdqALNQXdGhInve5Vj7W5lgKoIEhlG4OSkd1pAOK84PftD0Ac/lXzzD4T13CB9RWhXVOt0GGh\n3i2aRObJlUC2I9C0ksxsMWyOdEzGjBY0jQ1sgLZE4sIszDnzDHFT5uBiZC2/rVgnPXtR5lmVGBNr\nWDY5g6vlnvGQNmcMTD0LB2OzQH9h5Ew30KbCMxWADrdkpqqYTD26an3m65JrG9CWTOPFUNdPWGe8\nDVaga4MajRxHnXOfrGrLBYheGnvWPY2BQe/sADSqQAid8QeB0TpnzqSeUebPpZc4g52mMF1+XJoo\nxy9prB1fly+w9RXt/Z/qpI/yx+i7HX1YTJbPrbTv3S7FEH3h7hfNzOxHflpaMsfFL5mZ2bQSo+Tt\nn1T5n/0z7c9fPi+dk+WnxYq9usMa1Um75bd3tPd/ckdaL9/6p//AzMwOPvnBe3X4P0Y79v4D+QSL\nXPv7rRvyFW6U+rz1ftaeY6F+7zyuzz/7nPRdvtX8pJmZPb0h3+mbv6t2ufmL6r8vPKP+evsFledA\nEnT2gebHzczsFx5xbZ9DW8JW/YWp9OW+9tti55QDXfTTY7GOvnpHbdbtqa+/9Vm16foZlfGnDvTs\nl9hrLg3VBqtPawxtvPxDZmZWPKbB+PWlWLxf/JTm5ey7aqNXLqjNL39J9/3DdNsexHrmXm/M97XG\nyJyxPmbPq2C3jRMQW3yTAmbKxFlt7P2jWv+6vlpUk6WI7HyezWnpWf3wH6tK5RjBdu03NEeWMG6c\nabgB+r/ER4tZj9fMyckaOgP6gpnPSfdFWO9b/92U9R9GZc3cm7H2LFaMMTLKFDXaEjCLfKNunbTM\n/jSKyUAUiaXlGm5LXldmlftO+M2szwU6ifUJGhR8HlT3seeuO7WejJ5r9vUBa8oJtOPpjjOPyCaD\njtIqPrteSJ/wDuCZVmCmGO86vgW4/9NMYADCGq0PYc3y+TT17Hasz6zjJTo9/RH6GJ7AcezrNess\nLCLkLqyJYAngCwxda5I9ccU+06LnM4jfq20T0cdZT0ZDMuasB6y3tWucqS0b/L7jub5PoBKl+Aoj\nMj165so1fmzMc9ZTGCwdFdx0P1vrfIFP5KyIlKyFzRg2NO3dw4hZJxpbHXMvoWEy3gNO2fTzU92w\nYA5MB5ST94ol+xdevo1GnqPybDZcoksF06cfo/kGW7pFM2iIL7eExdtPqS9rSYHWTOEMdzbEEfVP\nyAhUder3CPbunyPKWHfObJ1VNuE9vMk1f8al2jyZkuX3On4b06ErGEvMD2cOdzi8CzRhYtranxmh\noXiIXzeBkb0snFFstAFjFDZuif5SNNT6XeFbJOwz6aZHMeBX4a+6+5Xiv/We1QnmeUu5Mxj3LVpg\niz18l5nqvdOrAm8euVaj7re1qeuG6KbGjWe0dUFUNBmdmf+XWGDKBAsWLFiwYMGCBQsWLFiwYMGC\nPQR7qEyZpceZc1R+dCxk4PRYJ0rv3nnVzMxufEMxyfFEp3uXtnRit9on1m1JPvVT3e/Oa2Jx3HhX\nqNDqphCZGsR4ek4ngEfvEDu7kt7KSy8p/jriZP7ylk49R5mYOJvEg+4vFUt39w2dth7cQuH7QPc5\nd1EneI/uKBvTaMdPQzlFnXE6TpL7E+I1PRb2/JZO6EqyK+1z8v/OC8rIEIMU7N0khm7B6e5cTKKc\nGMA4E7tlutXaFBbR8YHKPK85nTyHNgGxr3uvqc3bOagxMaNzMl+9s6e2XcEOGgweUxlvqq1LTiHf\nOFVZIfHYyaG+v3JVbXJW6yuO9j0DAMjCInLdCU4f0QGJ0Rsq58RaOgoNM6Vdqb4TTkU9PrwEcY4d\nqYg9vpnYTuIgVyiRxw4WERtcZ+89Nb13KuzMENo3IsY3I8a1RIMh57MzfTJnS8DKWHs7NMScgpal\nif4tUFPvmUsZ8ew5EEFbw2LgFDeHYVOQ8SYh+1OKfkqXw3ghLrsBCpgC/Pjn0tX+OdauamcTUB4/\n0IedknKhZ+qpBmhleEw1rJOYU/EzGQ9x1lQGApYS77uGkdKP0AAhQ8AY7agaNGcISuJR1F1Dhhcy\nJuScYc9RW88nMFdQf/fMW4n3BayBsiKTFqhKjI5GkYP2g4D2ZJKJR667Q31AhitYVWms+3kLTYnf\ndkZH7SjWClYTSEAc0aegXSnlH8IUalxDwHWFQD4qYmpjkIPaszNB3wK8sxUZx5JO9y9aZ3V5bD9z\nkT72rBoTmEILtMNy5l4Me6oYwZZgriYDsm/AdjurjejHNSwxjxN33CIh7t5T/DTE30/ICNFxfQYj\nqIHF4mL6GayNFgZWjn5LSr1LGD8+xpuUeP81DK7J0mqyBSUwSTxL2mAAIw3NKkeBSsbUsPQUYbBN\n0RNyrSoHaxIYcSVjwZHRZonGFGytiAwJzpyZTp06h2YXCHDlc4+MOUZM/II9bgrTMQXtL2BnRUNH\nZtG/cOYNcdjG2MjuMQhBaO+xphx9AtGFtVC6tgyaCNXgwXCnT/2BUL+vPvdRMzO7utCeurMWq3a1\nIQ2VZKD98PZIe//1K580M7ODL6m8L35U5f0rT3zCzMxe+xbx8z+qdpyyBv3ZPxcL+O0nxVR9Em2F\nb78tn6M40PNWN9WenyuVBen3PqP7/9xT/7qZmf3G137/Xh0+N79m/zT+QzMzG37iYyrvqdC9n7n8\ngpmZfcXElH0/bI7H39Zc/c7y82Zm9vFPCiH+4lAM2J/sVI76VTFzNg7Uzk+CEdetfjf7YWWD+s2p\nfCn7TbO/+vPSiPlHr6nOH4GVO3hRbXtENqEPZuqzyemfmpnZl2//nO4d/+9qg5d/WGXeZb18Qczm\nO6kYM+eKPzIzsxcj9UWEls11NEou3REb6ZWlnlv8FGP7naE9iDWsH55BsWAsTOGzRrBAczI7nsSO\n9KJrF2uM1WSDusdmI9tdjubhEFZtx5zpWI+GaNas8RVS1smeuVePYdfN1J4ZmVk6FsyE9SZjf8t5\n/op1fRQ7UxT2XQYVFebLwJk/7AsF+hbTRGvUCU5fvMHefkqGHsrtEi8Vrx9T/NWKtWqNJsOscpYe\nWaPc94N1EqPJOEJ3o0WnZAgb3PVNnIFvZpbWnfXs02s2rghkPU3QQzzROFkewORBDzCqz57J7XSt\nd5QJ6Pjm2rMusR4h5lfAgJjg/6yA8+MpmW08S2WrOq5P9feJswOO8INB31u0UmZkijyuNe+HU96R\nKs8YBpuLMVTVZEpkrzW0w2r0hfqV7uMMyc6ZlJ2ztDzzJPpx+KlJ47pCuu2QzbJCIzFhnU/QpFky\nh2ZbzpqlzV07kr1zyf6WnrIfknE38n3M2cKZHnyM/l2/ob9vUM56ofoWZAa6lxYK1uwAtlVVaUxX\n5j4iunQDHFysXZxdd8jMrGKsp7zDtkO1czHC91jjG/FelbHmOAHKs3xVEx/DMPjdJ/XsV2QndLZu\nCWMr7+8z0qN0YHG0tjn+c8K7UOw6SGj6tRPtDd2abEvssRnsnuEFslIyXw9WsMPw/fsLiM3AbOkJ\nW1h7elLPrDWjj/C7FtR1QB0S1yfCv488KSrzfoAW4Jr53rp/nagvBwM9Z85cmMMI6ln/GvrYMz/6\nO5Svu0vYVgP8PH8PcE2amOiIIe9oS9anfPn995vAlAkWLFiwYMGCBQsWLFiwYMGCBXsI9lCZMld3\nlPXo8vvFntg6r1PCBJXkJtNJ1uTjQkKGM2K2OKnr0VTIpmRj2kYhnDi7rZlODS8+p3hoA5Xf2Sb3\nO9oG2alO3D70UcUcJ+iJjC7pvhGZHhLQ/abRCdmE09jhM4ovn8WKmR5uqR6u+O1ZV0pEJnLypncg\nBBknatVQqN+wJG6UE8HjuZg+1x9V7HUOApGggXF8cMfMzK71qmcuAMY20c5JBrkZp4qHd3Qq+b6n\n1OaDseKpN4jxnJM14xqxmuc2OZWkza6OFKd9cVex9Rcv6PqCeL1syYk/GUVWqXR8di9+QG22c3at\nEDOzau5oDQrdMDxGIKYRSOtgTQE4eY6Jh0z2QemJX0w5nW07Z2ioj7bRqahBh8ZrVM831JgrgnUd\nvR9znRF/aNx/dORaL7AQiPNe0ccpcYxpQjsRK+yq7fkazQU0JOIj0DROq4u1Z0WBgQNdIiMD0KAm\nC8sMpHVf9xmBbHSwPIy49QnlWp6AChHLm6MKD5nCPEFO5xklyNKSkhGiAhnJyOQzARlag7jbCVoR\nxO5Wa/qVcTnh7y0n+t0DaMpUldooB01xYCziXiPXr+HkPAU5bFqtI4OCNss8lh1mCSjOqPUMCrrv\nyINTybZRk7XBGXYtDBXX5TFQnSFxwwWsrAHZL+JjNGZY79pG92udxQDTIoLl1BCHPURHqKHvPay6\nB9kE0LV0rrZs6PMcdkV3BNPQs2eAkDSdZwgDmaA9M9px4esYGYKWoGwst7Ym5nfEmX9BBi5HMhzV\nyxqtkzWshjHZNiqnrsDWGp+AAKcgySAr6fDB9KliUMsRc7Ul/j1KfCzrd8u1a8sw11zHxTPcsOaM\nyR4wYa1pga9aMpZ1LPwNceLtWOt4z2LZoZsyaPS7ZdbbkMYuQSAHCdpYZJfr0PWJPeNIzTq2pbL6\nfBvAAqpgMnhWtVErxmLPXrMAvRpP1EeFx0Gyp72nAAAgAElEQVSD1OWFj33GGhpiE8pXMEfGoGT1\nBdhlMPBKkMtu471jpkbvrGafiGCH5SPPngc6FWlMxjAf+10xU1yfqS/IDjV27S7GbvReRPqs9qWf\nhjH6vcfMzOxDHxDb4msH2u9OEvX59jWhbZ9+Wevs8Lr+Ho/EEB1fVPajwTelpbZd6/uTr4hRsve2\n6vVzH1JmoO+9KNbHt95Sv5x7XGyKxbNqz8uV7tv/kLIoZbXa4WQuRL4b3NdXuju5a+up1pAPNGKd\nrL6hLFBvxNK8eeTzGgdf2dXY3aq+aWZmT38GJitj/rO4iPUTKt/BC2LfNlBF++flww1LsYdf/KLW\n4i88r375cvqcffUVsWauvK7MVoef/10zM7uIHs/8tzVGfv95aedtzjUWn3/jj83M7HQkfZ34nNhK\n/3CsMvzkJTFebp9I9+YJsmd84k35HDcel1928s/UNl8fie3z409q/fjmi+rD/e/etQcxZzJWIJ4Z\nC0eFPtOQdcL1MTZYptboMk0hI5xkx9yQDGhoXsUrGHhocQ3Z6yNEB09gN03Yz9qha2Oxni/whz1R\nI/7mfAI7jTWjmOj58UJ9hryezUHnZ6x/LetUzrq+hq0wylxbB9YGmXpSGCzpHKQaFH8EYp6QQSdC\n6+GU/WWKpkTdeGY1fApYGwPWzXyGpgTyIoauSUl2wTLTFym+jU3vZyarhyNL0ZBpL6A9ARPnyIfB\nSOv0aIP6fheG0cbZWRAjiI31EhbPDhpbp5pXU/RrUvYSr0vPWOphLNfou6XmWoP6nev1IP9jNZp9\n1Uh7aJOTuQpW53qltpmSHRNyq41nuq5oNBc8M8wMdugChjbEPqu3eKc54R0E1u8allSLT+LZ5Rh6\ntpGhy8N7RQcbde19jD+5wfPmsE1nU/196Zpqnm2QLh37/th51lAY6CVjEgZSBGMmRn/vxFkLaPIk\n3GeI9kpDRjNeFyzDjy/Yb6IclgjsEe0OZnt7PijPZkNYaxd6rWmefWuRqr9GZB7a8QyQI/cxNWcT\nZwDRMCvYyQm6VgPmzpKMRilZaM+R2a1r77M2riRjq23XzJnKK/bo3rNQoud5z09WXzq7t0IbZgST\nO4bZV6PtGqFJU5A1dDrm3Yo+O0cUQrkJYw+tQx9L6Uh7n68zvuV1rKtr/Oop69vIta1g+4/RpVvy\njjc6r7bfmvCOxHxPT2CGZ9pPqnPMPd4ZE/zaR7ZUnqpWOziT/lJ5nt9Tn1zMu0mCRu2f0/H5iyww\nZYIFCxYsWLBgwYIFCxYsWLBgwR6CRX3f9z/4Z/8PPTyKrO97i6Kzx2oGC/b/FwtzI1iwv9jC3AgW\n7P9uYV4EC/YXW5gbwYL9xRbmxv/79pcdvQSmTLBgwYIFCxYsWLBgwYIFCxYs2EOwcCgTLFiwYMGC\nBQsWLFiwYMGCBQv2ECwcygQLFixYsGDBggULFixYsGDBgj0EC4cywYIFCxYsWLBgwYIFCxYsWLBg\nD8HCoUywYMGCBQsWLFiwYMGCBQsWLNhDsHAoEyxYsGDBggULFixYsGDBggUL9hAsHMoECxYsWLBg\nwYIFCxYsWLBgwYI9BAuHMsGCBQsWLFiwYMGCBQsWLFiwYA/BwqFMsGDBggULFixYsGDBggULFizY\nQ7D0YT78P/6V/8rMzP69v/3fm5lZnFKcstG/Uau/x7mZmVWVPg9SfV+1vb4fjnRZWZmZ2aTT98t4\namZmeV+amVkWJWZmVtQ6i0rjmPvrvutspb+3lCPidy0fLTIzs6bRv9m4NjOzzjL9PdZ1baffTwpd\n2MYN9fPPlJf6jWpdV0S6n3W6QdZFPF+fa+qddapXPdL3UbfW/fj9KG8pl9qnrDMblvp/wz2iRG06\noAx9rLZZ6VaW5HpmVOl3fnqXDNVGfTVWGfimjwszM8tjlSFuVJci130T2igplmZm9vd+7d+3s9h/\n+vf+OzMzO93QfaiydQVtxlBJE5U3zQcU1CgX5ZtrDPBz60f6/cDUF95pcaN6FOlQz2lV3zybqb61\n7jNuVZ/e1GD9UO3bF3pwxVgbmdq3HnM/2ttKXd/a3MzMIvrOet0nj/X7X/4f/ieeq6/rXOWJ2on+\n7fXFsFE/NVHFc1TvKNVz6rXqNWRsRT71M31f5DRMtVD9Oj2/7nT/iHKn/NsljJdE7T2o6F/mUkV7\nZpGes9bXlqSMk4r2op3rSD2Tnup5Wa5y/Nrf+Jv2g+xXf/U/07Wx6j4eqwxFrXnS5Py9oM8y5m1L\nn3Tqg5Qx7U1TD1l/VvpdNVJfT02NVaS6T9zr/jF9dHzCXNtTXXcnzLULV3WfXM+z4sTMzI6+o+uL\nY/358mW1afbkJZVjpDlTVXp+Q73ymsm6qXJmBc8d0tjelqaxsk6YxUM9f/G67lseH5qZ2WxwXu10\nZVM/O6cxX9QqZ1zRDqU+r+nUpFFfbW6r/bKx6rtMVJ5aX9toquvbSs9tB/p9Pqf9aE9LWNeoTzHS\n2Bg2mquHf/KWmZn99c/822Zm9j9++X+2s9gv/4f/rcqXqX3rXu3W1KpHyprVMAAYmlav9feepaWv\nVL5JrDHeNiqnpSpfzRxsmCvTVnMlylmPWRu6Xs8Z9rrfsqksTXTNsNa95rEaL23ZC9jrUl/Jev1b\nl4xdnp30ekY/Zs+LtG5YozEwZZ0xU6W6RmOpHalM0VLXxanut6Ix+kp1HlO3krp17HE5613Uawwk\nFKtcsNf53KLOPetoltHn9EnJ93Wmcvr63jHJxq3q0a31nFWs3yWsI9GAdY7r/8u/8zfsLPY3//Nf\n0X3OxdRH7VPSd8Z6G7PvJQ2+CH2f8LuW341L9zFY7xhbVbng75pjcc4Y4/dttKY91O4Na8x4whzv\n1LClP+fPeXJ/63/5VauXar9iov5J8Y2Sjv2I/WEUUa5Ez4nwbUrG1T2XLNF/srWuy9jvVg1z1+if\nhrnEuOuKxrIh84RnJ4yhlpvnLFe+mdcD/d337qbS50mudaMuqVPNGMcpiM3rwv179UmFP5jwb4z/\nx3Jm51r18a/89V+1s9i/8yvyXQ6P9vSHodbXtJFvYPwzmLDe4SNkkSpaMVdKfjeM2B9o+3aqz+M1\nfbCh+0+TTa7XXD5iHT0+Zf9iDG21G6rvSPXanOnzmvsVLMiLSut+u/a5pva8kG+pXPipG9saownr\n8Z1Iz1svVI55y/P5vqL9Y3ya4VT3uWQqx3SsehyV2vAa9tNBq/Kn2/rdmLE5r1Xu1UrPOSgO1J44\nLcWAscY+ZB1rHL7nqvIBZvZv/bt/zWbdju4/0Ry6uKXxdbJk3FG/g0PqxbXD3XNmZvbf/J1fsx9k\n/8F/8XfNzOz2W+qjnTEvBbh5i4R1ir1jGKksUSufIWYsFLTBkHWs6/TvlDmS5LruZK0xNmK9niXy\nERY873Cu731fYOuyfKjPJYOxY076fbpOfZc1GkunRhvjSyQ1c2+o7yP8+ypRm0+p8Ih9YDrTf9Zy\nIexgfmRmZv0wp5143+Dd7k6p++Wd5kBf6PnTDfxn1s/5Uu02wq+f0i6Hh6xPzI2KfSOhHrNc9Rtv\nacwXta4/OdYYS/h9w747aHgX8/W8UfkGA9X/8lBj95f/tvaRH2T/0d+Sf9vhh4+Gqo9vz6s93T+a\nsdbhk24M1b8963E311yuuLDe8nKq3bZilW+10pz1NdHS+7yM/+S//rsWR7UV756amdl6pnvkrFsd\nfdqxTuTs8X2jPjTeY9myLOYdoPIxxztPuaE6zHK1VT5X36xO9G89VZ3TVn1YxSX3VVmHqcbU1N+3\n1/yOsdKzJ0cjlS/Czypq1X2GH1otNSdWvFxNd/Bn+13Vc42/1u5TD9Xn3Ma2fsdcPGbstbw7bm+p\nXhm+3O27GmvrXs+7/uT77ftZYMoECxYsWLBgwYIFCxYsWLBgwYI9BHuoTJllqtPJxRIIMgO55IR+\n3OnvMaexFUjmEiZLOuJUEDbDEKT7GBQxBd1ZtjoxSyeg/aBw65QT9g4mzUqninXiaNGY73XCxYG8\nJSkoESd5GeVZc8Y1aHVidzfTiVwMW8CRoIxTZkBLqyrVa+CsBY4a1zWsgrHao4lg6IB6NpzqpiA9\nHYh4CVthwUlevOospq0K0CRrvO0cJQGB7XSq1y2dCcIJ/QzkcMGpJCff3UplGKVq4yNOxmOYFI7w\nRZxGzkDHz2p7xzpSn69BoVOdQvpp4iCBPbDi9BZUfQkSmEXAUZQjW8MMqkAkQRwykN8VzZOclnyv\n+07W6tMi099TEITY0TdYXG3FWAapdVZVZDrJTgtYTo5QNrr/YKTylCu1fwQS+foJzJXekVQQa9Pp\ndNro8x4n9h39MIJ1sD6CfQDSkWeOsOg0vCg4fYaNthpxYg9lqspV/jFj0bidgYz2QLT7FUj5oKB+\nqmfWgsB4MTqQC+ZWH4EMOQJPP02qws5qAwZDMdU9ipWQuNiRxk2QMlD4olSdBmPQ6FZ9WbSg/LXa\noh6oLKMMlDqCVbVSneqpKjU5hV0wVJ2S1181M7PX/8Wbuu4nftjMzJ76oFCQV1+6ZWZmt/aBi17y\nk3i12eSJD+u5m0L0jluNgTrV96Me9ASEtj8F/ZiBzHb6fsTYdsQiS/S71YHG3PoFIb3H76g+j31B\nJ/jxVEjBkPXjFFhrkrD+zkF031b9NmYqZ7qpdk+mLJSHQps6xtw60pizXu0waGDgbMCEBPnOG9B8\nmE3rW2r/fKDfp7C4ru3ouWe1mn2kYD9IuA98I0sLHxeO0KrdhoyXiDkbg9zUQO1lovIZTACDxTAo\ndf0RLJAUFmHKWG/uIfugYM2GVSCoEBCsHmxSOqBNFqhFr7/nzM+y1HzpTWNkCmOkYp0fZGJBLVjH\nlqBfPnk61sOOvSrvWCdWzKGB7rOkDTtnbZZqy5Z1t1qzPoFqpQd6XhM76qWKsVxaz+ee9X0FyzNt\nfC9l7LDOj1qhVEtQqBakL17CvmJsVaV+P2buntV8Ly4qxvwFzYWmh2lU+7oNy2uD9Zrvl6CHE9aa\nU6ZCDPOkzGBodjCYMj2nw6cYUv8i5Xcr9lMQ9ENYfraGDQIrsGVNMjObN0tbTzOeo3Y4gR02cEYS\n7Tl3xifMRXPCFb7KNFf7NynsuhhmE8zYZKT+TkEL6ym+TuK+VWKL2tm4KmMCc6KG+Tdm/sQbKmNr\nfPZNY6Yy7zHWqIp1E9YF5lPEWO6dkVLf0e9gcw1BVg0kNwJxXUSdPYgNz4FSp6rPEB9gRVtGF0bU\nQ22Sllqnl0Pqzxzzroxg6i3YCyPYu+shY5ox1x3Jh4hhgGxMYUzCaKy44dGh2nu50O83juUrtFvq\n3OEY1Bw2gSPKLB327hHMnoX2h/O1/PQtmJQx/bF7/Yp+t9IYzvF5DirVs2I/Xa607r8EK2I8hw3A\nPrFFe7x7on1wUlw0M7NzY/l66UT1SrbVTvkSv3wXNrIzK/tHzcysqd/LLO0v2D2LN0c2Zl+MDtWu\nET7QBrS+Embt7BHGPu1RLNd2VktTPXRzdlN12rlmZmbHre6dzjWfahhlDet3DUM6p4wrWD8QNmx5\nqjaaM5Z32Xvnd99W/dhjdh9Tn03Ze48itUnW8E7E9XXNekxbRq3G8rpVXbteD57BuqphgtsE1gRu\nWgTTxWBm9E7WPVLfH9zRc64TLZA+rvYY3NFYOLwtXyIdqz47l2Az3HJWq+5f1u776PsZY3/9Zxpb\n8abW69kYZjvsqYJ3tWjGO6Wzc+nTrWsqT5s6RUVzsJ/RPjBAi4X+no/09/IYX2qpOTBKHoznUPDu\nWbMmja7B8uKdbh8WczeB2XhNk3SQa//vTrTvHB+ofEfM4W3WqGGudthoaY/0tuq5pJyX7rPIho9c\nsHjvwI54txjC2Msf1bzq9mDtjmEC47+cnKjPx/gAyVTz1hnBMSzcmLG8Dcv/PO9QBb7+afyOmZlV\nvPenl5yV6cw/91GIVmjEXGuOdf3Ra8z3Xd33+lNimt99/a6Zma2I/ti5qOuODvT3jD2/vaj1bSfD\np3lX9bt5C99qF7/xGkyYlcpzfPtFMzMbXNTYHbxPcz9619cLzdligt+8Q2f/JRaYMsGCBQsWLFiw\nYMGCBQsWLFiwYA/BHipTJgd2jyceRwhjhRjTyJHElFjixmPwQYmIpxvDeDFOwizVSZvHB0aJ7htx\nOpg4i+MeMo7+BvHXPSd1I06RjdjkPuXkq+JUmXLEmU4IJ8ThL0C50nvaCEa5Va8F5Rm7pgHHyiVM\nGStdF8R1Qoj/c8mFxpk2xIFznxTEaU0cfEZcZjvqzDjhzj02FbaQZapTGnvMvE5UbapT0dJZTMTX\nJSCmTmTIYO+sqZPR5k0Gs4a435aYy7Z9MORy7CfSKSfdrn3g6PKIU1p0MloghQztgQZmyRAEoZyB\nZlFOQlBtDTqfg0LlxACXoGgl0G7P6W8Jq2sGtLgGLcs55ozM4yldy0Xt0BF32FGOjtPjmnhHQ3tm\nsGSMrDnRBx5cgqTGpeZCxxhOElgcIN59ASrH6ayzD3pnuMD6iNESqoacBs9Bh2CVJWhbdDCG8pzf\nlQMep+fE9G8JkjoivtNgP0QgMw0xzB3tH9NgHXOmK9SfMey3s1jjOhMLUKUjIaQ9YzmegeIwViFI\nWFc5cwG0HpSkNNe/ANGEdTQ/0eeNCUw91gFIC7a4qRj5xStCh56IdVL//O7Tut/5J8zM7Hj+dTMz\nK+7od89dETPm6hMfMDOzi58TanN3LqbJ/l2hbXGBLoTrfnjMvessMcZnPuecIITGzXrBXKKco6XQ\nlOef/zEzM/v0L37BzMzeXul5N5q3qJga7GhfDJ/6m+rzbRMy8Mizz5uZ2fCc+u4G6H/dCOVJNmAa\nUdA41dpywthzZMD1QRLGzsGb75qZ2ekNIQ2DK0+ZmdnjnRDaNSy/s1rUM7ac9AVKlQ5YZ1kbR+hx\nJMROtwONRdc2i33sgyYOGMM9yE/NGlTBpMrXxEQXMCdZUqMl7DfWnDYprWdMtRFrOEyHmvUjZqyP\nXJeDPXOc6/t14nHQrA/UYQlDZghy6mM9Q8esg7m2coIaz107g6MAZY/fO1cq9t4I3Q/X6mpBXBue\nF7ueDnHnMfWMiZFfwaDLC18vYN44+wF6Q4e+j9FmruPRwhDsWYe9T5Lkwfab3Q2V7x0YP9EC/afc\n90uoJIyVGt+hZX1OYLXNYVexVFiTgSDDQGxntD9IdLLwfUHtl9Sul6H7jda+3qq9JrD4fNuNuvvo\nW5WYjdH1qNF4iYcg37CQY8b4EAS2hV3sjJ4ePZQG3aoWTboROiFrZ30RJ98yhyrvD3cto9bSMQgh\nmgIdY2PA/I9g+BaR11Vt3MLaTGBBjYeu1cTChmZf0cGgWMHKpQ4R+jsDNGic0dYzJlv0IabFyB7E\nLjwj5DinnAVjfxsXajRzNFvlOzxCe+VE62G+wQ/x35zRvdsJgb061vV39tFuOdV6enekdXBjhj86\ndrYWrCXQ9X6KNiIMzg36fLR72czMHn1c+1KFVktDPyxi7Tcn6KAc7msfuHlX5T04Epsh3tJzHp1q\n/R/BTnj0iu47cX0L1pZbd7Vv9IcwdtC9mLJmFRvU51D1WMEiee1QSPYjW4+YmdnOB7SPXp/6fsZ+\nsVZ9B7xHdAPX54MZ2d2j99qjzz5rb91Uedad/j3aUzvOJir3FvW5+vwHVZ63heAf3zk7ezem7i16\nStk5PeNcoj6+sa++2UTvoj6nMbyEldrAxGvwDzuY0x1iiR1spyXrXoM+zt09jZGLXD/Z0lg6PxBz\nZo32VXms3/XotCW8a2TMlS5VmyI96XIhNnCdEfzvGlbYKVIz+QY6djgfJUzwRa+2PjlSG27twgjZ\nVVuvVhp74035bN2O2Az1kQowZB+oS/VRbbpuMtLYWI7l82W8q+VXr6tdctUzWrAesiDXRypwv1K5\nKtp1MBFbYj69zWe1X4T/XKZeL96b2IditCb3j/F7z2j7ztLg/WsHnRX+bMsdmOZDlXsOhXYDIa5k\noH8PC1jMYyIFYDK5HsxgSwzTnnfg+aHaZRW5tpxZu9FaXM7sdPUKZdAYG+IfL0q1icFY7La58Lye\ncezairR5x14xhpG4PZBf2x+orw/2YPvjEM1h3PW8h5ewfJoRYw1m8iYMu/WO66DhbxGh0qIxtmBv\nWk805uYl6yLvA/NDtFjR4UtTlaeEkb6F1tQCxkzMe0FCG/u672wn11u6xrthP1a7rGBQr9FIu3dO\n8ZdYYMoECxYsWLBgwYIFCxYsWLBgwYI9BHuoTJmC2C1rPRbfMygQnw06NiZObwIas4YyMuDUsPSM\nNTBDIGkYYZm24rQ241S54mTMKkfzQIWI1/cQ2xWIZ0qsbosWQQeql5lnTQKB4YR+xClyDFuhBRGp\nBzBeShenAW3i5D/q0XPhlLv2jBYOebv+C4GcDUiAM3Wq2BkyxPE7cpNkZuht9KBDMah04U1PVhxX\nZx/wzJQY0B5l/A5tkuHwvl6N2X1E1RkY495ZTqDOKPM7YnpWS0qdlm7CpDgCIWhBvUoq6Rmz1pzW\nOjgyGjv7SZ9T0KGygAEzFFuhcYV+NGP60iFOWEior9ecyk5AFmti/ccC++7FqbcUYMqYaUCAu5nu\nn8OAqR1hBDXagHnS5BozGVo+TUQMLae9pWdH4lQ2QTdkBOMlTV0TCAQUJk2xRH8J5ssahs4A5LQe\n8zwQVqdERbBGVox5V9Vfwf5y9oEjGt3A0y0B5ZKlqW+dvUY/Ofut8YxrIO3Ds6OX6Ugn2/M3FFe9\nfE3P3H1cbXSBE/pyrr4u0SwoQYEj5u2gdvV1lWFFxq4WdJwDdCtKGH6cyJ/skaHmG3r+5Fh1feqT\nnzEzs0sffdbMzBYLPX+Uilpz6Ypu+MSTHzIzs+a62vJOrPu8U9/QcypdFw09s5nQlMUSPQuBYDYA\nDSrQ0ajeUJvefVnaABtk0JkuNKcuPCGU6crnxHS50wvBePlAMbLHhRCP5lDtsPwjoVHNbbXTxc89\naWZmly9JA+BNkMbsVAjnCAS2Q7OnQW+oAXWPByqPM1Mq9EGqQyEm7Zsam0+P9JxrTz9uZmbpIQu0\ni3yd0bKpnl+egMwyx1zHqATRWIJupgUZJVgzfc3pmHs5c2x1TyPCRSL0z721MnI2AoxMNIFakO6G\njAj9NLEcJl4P8haVZHAiex0EDquYh1HsejSudeV7oZ7d9K7t5aiO7jOB4bEYaA5MyOjiGiLGep16\nFrch2SvQtjJYR0PQqNLZqp1nc6J8ZDYbemJBzz4E43LAOpzgC2SsAzXrQEYqm7ZiDPG7HigxRVMl\nYr/yDDKe/S9+QDYVyecsm5EJwlkZvgcnvu+BCMNsXLEXtyDOU9C8wsUgPNsJY86zXZUwR8esrzUa\nMi371hQNH9e3mpAhxvfz5l52p/softbmVuMjtWTMYHu3kv1hwjp9b//GhxgyeBPzLIvsMzAkY88k\n1nsmSrLtefarlEw9nSPmhS1glEyZPwWaKXHmGbU0HzwrUov/V8HkSyYw3PAp7usRoRUDO6tkzPmq\n4MyRjjGewDqw2LOIwLioH8wN9qwd8Vz3v3ZFkPHbp2IW3npF/05ylf8c6+PowmNmZsa0t562T5gj\nJfpxb92BSdjr7xeuixWwsy2GjrMXWvzJC6b9ZDRAY0aPsxQWVruEMX3Affe0zu+hObNYaL09D5qe\n74IUb2t/WOVizKxWMFOGet7dI+1T5YHqMdtHg+3KFuVVv+0+pfJ7gscVfu2A/nGdw/U1jbEF7bj3\nHZgskcp38PILuo4x1hcaJ2t0NTI0MC5ticEzGei57fb9fSJOzYxxM931ucicZkwfozdyeR+WIv76\nIM7trFbiI5y8oz300q72znRLvkh1l8xd22qrx7b191swLw4LsglRpgpWZbLr9ASV8ZT5mG/oPicL\nzaW3TsXuGaMNObmg+48T9UkGO6xBm2tAG5ToHg09SqFF5w4Nl6ObN/R3xsAVGD5N6ax/Xb9g3YvQ\nxRvDPD94RyzdaE8s2G4KwxqtmC3eNxr2MYM1sfZ0RLAvXFfkiAxizi8oUIg7OWC9mjvDf8jtVN4j\nxvoxvtXBXOXagaG6hSbNCXM9oxwR0RLOfG+d4cT1vfu7ZzTPRBfxLrpy3w0/P4E9tw1Tc58oitE2\n7LsDMhfBUJpeQFfQdVR5FzytxQLZ3FB/Hk9594QNY2a2XK9sHCfWTjyagHc5fI7DwjOrsv6hYTgY\n8T7O2OrR0qvoQySg7FH86rwRG6kqxLzpGYMNTJQ2d3YnTBh8hoT37Ao/LeI9OKePpj4HjvV5H+bL\nCq2bkc8dz2rs77Ywy7vc9dbwfS6qbXbmuu/RoebsKXTijaEz8zRWRmhpWeZZXenDJf7kFkzp7Ptr\nUwWmTLBgwYIFCxYsWLBgwYIFCxYs2EOwh8qUcUQkdt0JTjFrUDoSuFjJaW8z0KlfAoOmIK55ALpT\nto5MEvcMA8cB1boipgyks+1R4obl0aD30XqcN6yFDK2XgSPoTnRxjQGacQ3K15O5IOK6hvjSHgwn\nB/1rQFIbGD9jTtiKKafVaF6s1sTmkS2mKxx2QxWe+PwRp8elx4c6ulqtLE9cvZxLHT2CuTDkwDSO\nPHbVUxSA3A08Jzyx6Hy9GqpNJ2QZ6tE48AwnGfF8Jaeo59YPlumgGxIjmenEuCZrhXFynqHXUKJV\nkmaOaqPQT5vUsCAczd6gb1acPI+J1Y/ok5LsIU1HeRcqRzcGcgT9a/idK/h3zg6oHLlljHK62679\n7yAYlesHqX3LmKxF0L3WIBUxfV4AOTvql8H86ejfJSyuaEkcOVouhIFa5jHKjgCAzBQgMxOQ4gp2\nVwYTpwW57tEvWjtZgUNfR9R7EJN+yNj3rF5LlbP1DBQrBhB6LXUMagryW7ZnZ1QNGNOn74KeE8N/\n8VPP6Xuylx3EqK3PVcmc7BMrTsyjxHU5QPdBx7O1fn+KftCIuqanMDvehF1V68T80R95n5mZPfsZ\nxaQfoon12uJlPWdb121GqMdfVdvcbIk31WgAACAASURBVBSzP7/j91d9SuKgu9rHqP7tpmSoqV1D\nBgbfvv5+92tCHKtb6qQPfEzaMdufkLZAdEnIQXNO171+97tqJxDUCQjh3itkMLit333yIx83M7OP\n/uTn9L0JyTxcgySsdR3qVJaib3EM+2yag6bBTKwZRB0ZBBbvgqhEmvPPffxT+v6jGjO3/vAlMzOL\nj+6jPGexjDFXgYxnsA8gylgKeyCHXdK6HkrrGTBgFzgaCFtwXMF2g02YMndjtMBadFgi2GrRCk0i\nnl+j3xEVkXUw8foBdABwk5a9Kamh5KXEQXeuR+YMB/YeNERisuoMyNRVIXDm88t1kToYMo7YFYy5\nmL7MQGx7GG9D1qMYllnOvG0Y6zlMtxJ9syXlSJx1mjhDQ+VKYIyUzvZ0Miv7ieXs3ayrBSy1utRz\nMpg3E2fyeEKs7QfTC6lnzDH6tCaj2gC2VAqDaQXbIgK98z4dO02KdXLA2I7IwBMxNkrW5XuSN6CJ\nA/aj1vch9FdSspo0+EyQKyxBcy2OfLZpje1A+/q5Z3wkLp+MEYVnbfI1rfZsUDCMnCEFC2WMP+BZ\nm2r607PzjWrP2uJsMpWnnUTWgyDWPqZhODSuUwQDsCPjl7OHerSckgXPYgznZKrxLJglzOIudp8G\n3wP/sCd7UYTW4JqMYp4IcpQ+mE9S3xL74cbeDTMzW1XSr6hhsxoaJwVzZrVE744MLdOpsnOUoOqv\nvK1sffUBehFbzhCC5fau6u2Zs568LgbLyYn66pSsTEtYA2+fwMpAh6IQiG/NUqyAKxMxSB7Z0j5w\nSP0TxkoL++3xp7SPncz0u6LT9Sv2+IN3tV+tF6rHd177tpmZbZdiNF5ciE2xuaN9poW11lUq0Cn9\nneFXXyDDz+75Z/QvWjKLY7E+7ryuelWV2r8Fka9jz1Cm9js+ERPo8Eifn3yfym9mdm3nmo031J53\nFkLS50f693Sues1vv676fVVIvmeBvbCxa2e1CZmuygR9IND4KetCBOtgb191c03HyjPPmutR4Kf1\nrnHoT4D1yrrYwspKtqS3tjhR2Usy5YxZv04611tyJo6/I7CeMxaKu+rTKbpos6GYNjfQ+8lh5HS7\nYm9dGKuPS8b8XVhehs6mZwVsYJbssz5N9uWTRf475ugJGlv9Cm0U1oJsWz7BuoEtdeR7ufSMYjL0\nrNGnair5JLNN0cd2nMG4Unm68xpje4yZdKT23tzS7w/8XQsn4SJjNt5QfVf4xYWpH7P+7GwqMzOD\nJVKjSTaB8d8ueDcsxChaop8025TP2M3Zn5jrE97PdneumpnZLebIinfeEe043H3MzMzO72nN2l87\n08is2l/bbjKyC5tkMSYK4GRP69bla7rmGD2eir2+5Z1lRLbTrnc/54Ab65/jLfX5LmxWg02/v1ZZ\na9eBg1GSceEajbAcJo2hwRUzl5yVvwnTOmEv278DEwdG3MY5tV3l7GPYTntrMjueqD7HEz1viwxX\n7qsUROx41EHF32foI7kPVi88kyLtQVa6HIZgu/r+fmtgygQLFixYsGDBggULFixYsGDBgj0Ee6hM\nmZSTqpLT2yEoXAyTZMiJV+9IMSyDFIQhhy3RoOPheiUR7I6c0+WIE/WME7pVjU6Gg1qggX6/iNPL\nDGYLh662Qk05JkC8i8iEA0rkLISSILwUhKaHbTDgBM0zB5UZ7IRUJ/cLUL6IOPIVMXkzEKA1DJ8h\nscQdLJEo8/uqfGPPKOSZMpL78bJ971oEIGGepYisPRUsmwmo74BY8xwAsoxU1payDUA2YxqzMc88\nxb+ecYH4unr0YCfJPWynduV9TDxgCzoGUpCAoN7TNoASRKIUm3KKWoK2taBl01w/WFCfFAQ6BlUf\n0E6ubWD0aT3V7wYNMfeeAIxT4dYJPSCLjWcf4nTX0BDwTAQl6PvQ+86zaiAG4Jm8spKMD5lnJ1J7\n5iATKewDCE1WwEro0GDoYa4MiY3tmHNJ7vQvlW9I1ijXkMlAdjx7Sw2y4xnCWo+l5dTaoybHHhuM\nVs+o9Kwdnp2KuQRiPkQLIlufPftSC/LmmVmmvdCCx3aFphymaKMsPfsGbQAKMqUMBToP095ZVmT7\nyFwzBMV9OCArajmGMXfhOSGLF58X+nJnpjq8sxISuiLjQUr2jQQ9n3ePdaJ/fCrELuKEvXR0DCbM\nxKcO141Ax1cgGsZ6WoFmjaEzPfe0GEMf+9c+q+ec1/WvEB/eHek5ewuVI2JMzUHtNyYaI+9/XoyV\nj/zVz+s+G7rP60di5BQLdKcc6Ualfg6bIU+0kC5JV5Uw5jNYZidvqdynr6g/P/EBPS99RmPmjUbl\nu/OqGD3p1oMh3HPYFB2TteO5NWN34BsCWa4KYpEHrGGpedw3SAhsk4JMYamzN4jTTmBOOguu8v0m\n0ZrRk6lnBuq5btYG2dNGleteeFYjZ7bAdAHhjHjmiHkYwwJasV52qWdxc90EZ1GCRBLTX6E1lfSe\n5Yh1H42bAobIqPWMg2iawLSIWd+dncDtbZSgFeXrC23YLh0RRhdpzOBmvVu7fkPrjD8YKq6lA/si\ng+2awiSqWPBT1htH6c5szP0+F4I4ciSUauWOY7kPQvlcr8jMkXAYPWQ76Wi3xGl9C3wUNMMcAO/p\nxzphvfasesyV1jXfGKsRDNCoW9yrQtI21jDGMxaNJZoUMfsQJFsryLLX4SMNGdsR4y8GYV+N3SdD\nq4DPA+Z2OcJnglWWoDtQWWwz2nReMt6pbDkkw6NnDBx5Ri3mjyOTsF2rzhFL/DnXtWEMJfgEbSTE\nc1FAtWa9z2GDemYzpGwsah5skERT+oTMMPtkDbl8XnvYzod+yMzMzvG78hbZ+/Zf03PJFDkc4WOg\nkXL+ksq78ZSYHTuw1w72xVB581U00071uW51n9WB2m33gq8/INwqlqXOUoAF93at+9g2ml48d2co\n/Y+7b5KZ55bW4YG5do/abUbGruic2AmnrdD6A/QEl53YCS9884bu6zogE2kzRKxl41b1fufoDTMz\nu7il7ISXn8afhsHabkqDYvK4ZzFRu+/gN09Zoza39bvytspzYlCE3Jkys+NbdyweqZzPTmFJoPPk\njNay0j6cLLg/yH/55+7zgyyfqq4j0HZD82sXNsDxZZX18EDPWrBuDlknK4STtslAcwyjeOTLWqO+\nr2gLz3Y2QU/H0EpJmCs2g3kxR68NvbTuXtbV92oQ1gv14TBWOTdYn69cUZvdfVNjeWtPfbf9NJnA\nnMEBkzDZEbPlkIyKY88e5X4iOkozMrTVseq7KFTOCRnMDCZmFcMUmTojH62tXa+P2un4iGxER2qn\nQQ5T1Nc33iO2Jugj3dB6v3cAy3qGL4gG19FttectslKd3/R25d2U96Aq0u/OakMYUTGs7HWp8k7O\niU137q4YOYcrMYqmO2q/O6ca27fINBrtqH7XttD0el3MneExzEhYvcUU5iVMrob+MzNb3z2w+tIF\nm4xpk7v6riKL285VNPZgVRUw0SYwuOtz6GKie7ZcaN4sYMK0I42BaJO9CSZdX6mvN9HxgSxsNZl1\nN9gfWnTNVifUKfM9lYyvMHY8A2VHSIu/T9ewhLNMzxmSnbVdqQ0LsrDFT6uee43KVZKF6XysPukL\njY1bx/q+4L3g/DkxiUZklNx/Q98vneDD37vZ938HDkyZYMGCBQsWLFiwYMGCBQsWLFiwh2APlSkT\nOfzEiXhNvu+OLEkj1PgNVGzoMbaowJfEP0ewOnIy3FRTtGc4zHTmTFHCYAEmSipH55y5oo+Thphg\nTuJdP2XibAMYMo7crIiDdDZBDCJTEYs6AO1cobqcgFZNQdkAJc1g1AzRN4kR1ZknZMgh1nfBqSxh\npGZLj7EjnjvzDAmevSm2BkbGhJNfA8mrYd8MQL56RyT5fQKiF8Ps8DIYcduOoHaom98TrYENtETz\nYDhBRb46OwNCZUfDALXwBX1gxEt7XT27UUTbNyCOEQyXJW2bto5A6n5zMnPlZHWqa9oQRovHiK5R\n9p+AhNYMlnIEkwV0vAOlc7ZB6toDa8YyMa8DGCMdyMEYVMzjER0xTtbEwcNAGhLv6Kr8K4+Pd/SP\nk/vKwzYbmEE8vmWw1QyeMWOZ4WBp6ppCGpuTOXOBk/ae2FaDhdW4Sj8IS8L9J8TX95z7rjzjBppF\nOUJPAxDnel7wXFnmrIUz2Old4qrfQMH/UaE5G1fFmLn5xg3VzRE7tGMWKTH+IGEJNKcGHYcIIZ4V\nOkEj4rOjgyVlJpPVOaFTw139/mQEI4RY/wUoxxIWUj4gexJzJU2ElnlStlGJrhDMjiYDGUVba8Tf\n21rP6WFPZcSuOhKZXVG5HvucmDLFVX3/6mvfUbsUivmdgIYXKPkP0SPZIMNCDbKRPqv7nW7quu8S\nt35yJFQth2EyoJ5LUPUxSHSMLkY6VPtlDNI5Mikbrr01I2vHh57W81nPjw7QSgBRT9qzI5dmZiO0\nKBa9I/DMUdbJcgGLIPcMSOgjsSYUoIUprJMMRhPLtUXO2kA/qkbnqoahNYA+tx56BjZdt4Bp83+x\n9x5dlmRXlt4xbfbsCdehMmRmIjOhUQJVXVVkN7nYzXGPufgL+Ac54YjstarJLgKFSgAFIEXocO3+\nhGnFwfnOCwRWd8JjFBzYnXh4+Htm164499rd++ztpbEkKPVXzIQAtoAPk2FgzUlhceWgP9IyL22M\nGWMBek6NNsgAgyaDkRNWhkrrfPV6Y4Ha2kqbkLNuml7m6mCf82HcmVuRJ8ZigNHB2uh75jSIDlys\nYx3SxJYVGzMmC+JFDgNmgFWbBDaX0ahqdA54sCpytFsm70emkgAnLHO7Q8JFhqmOSctvH6ACmXOW\nxX9b81soj7FJA6FX1OKK1IKW9TiRNTBhfHOcYGjHrCd9CEMJbbYutPFA/0m6fYa+TSVOzA1R/28S\nm/sisY3/T9fGRmYvw7pm7e+wd5mg81e0xsyk/9BN8s25zpi3jbGKS2kY9z57hKI35yfYNuwNcmQo\nehrNY29Ro8thJNuSODgYackcaIgHDWupa89MY5qrnr9dZdgXvoerjojILuj/g0N1rZvinJjWet8V\n2i0dAX2NXsVVAXL6B7S/Hijy+uAz1eV4dqEuR1dffykiIhc+uhW9aei0XJ/1jjiT3tLPze7r9RYD\n7klT00yECXKi6Pmra5g3L56KiEh1rH1231OGTrbUdevsNWMN1kKLCI/7WP//9l3VGfGeqI7JZz9U\n5szZc9XBiFJd1wpQ/R3WWdnV+n364JHW+4Ver2TdPf1SEfrbD/T6927rOuTO9DnX1zonTtaKwD9b\n6bow/QMuUcTQfKnr7svh7V7iq//7F+Id6HOY1k2yp+yLLx59KiIi8yPYLTBP82Ptv8lJKzctLcwT\nj3eb4kyv4d7VNj7aBaWHFtCxH1yeaZ13dhlTc+3T1SVubWjOOLY3YF1wUrS6SlhZrF172IJmxsSA\nYeMaSwvXtk1GPUzvAvbBG9qwO9Y2CedoJMIA/Oa51usTHLpKtBxr2AnTRzDCVX5IBuKJAyO6Y/2J\nb+newp2jQXaGrhvrzkBcmdCXDppWAXN4AyM83uhzxDAlXRx3HIJHRV/eZW9Up7D4XuOwCaNmec37\nkDn7euau964ra1OypwlhAlU3HyMiIjExcYXO1kmpc+/zSOu92WN9gMWxd6T1Xj97KiIiCxzXdu7r\nXtc177mG9QJWWwarxNrRYqnFBhGRJh9EklhcWFQhzlXtrvbxAKNvDwbKxTM0pXT6y8Tc36Y6Vqb7\naF79Qdts+Urd1PYfsr+F5TsjA+aUsbmC4Ren+nsfMSbQioyJ35e4yt2G2dPs6XVml7DLyDzpYPFK\nDiv3QLWh5gtls82f2TuMrcXM+5rnRgtteqRzsSt4Z7rU+FNMdD0IDrQel8/Q+Kr0pwuDMprq5/rh\nu/etI1NmLGMZy1jGMpaxjGUsYxnLWMYylrGM5QOUD8qUaVGyNrckIVfNIw+9IE+5B4WaVCAhoPri\nGSpnPuN6EuaC0A7GokD1vbNcVpgm5iDjbXCyMHV+fgrIS2s+6SAvDeyD0NLlO9PX0FPn0tFTzQbW\nwZA5f1zdrYtKDWo44Xl7kPkWQKExn3PX3KX0VDN0TeAFZxtQwwLnHSHvPDTnnX4QH4Sub9BA4Vlc\nmA15t62cXnPrOBLQdjBRipprw3SItA7GMAlxuukMHfbI40ZNPDVpgRuWHpZQW4AEgtp7nAQ7IMEV\nzJIYhk6E9sJALmpvGi50giGwMUhDDngWw6xxOK+sQbsTkN6aB7CJ0xsyiqK3uOYEQf1AuQSmibHD\nOnJaDZH1GBOhjW1OgzscxzoQ6wGV+tq3k31z3MIhjOc0hNqHjTHQfCE5ug15kC0sNId+zHKQzoTr\noRnh1zjwRKCbHLCXsCDoZulgQziwIWqQeXt+OwXuTYugM0Vzfa7UkNfw5uhlhFNIT+55+JmegLug\nwqfo43i93rPkpHqGtknPM+UZOfY25kM9qffMWYy65ZycpwXuEnqALtmutlVRKRK5uVZkYNrq53xO\n9CPH2FtomuBMZTZx3lTbOrc5gy5P0ZgTAHEClHyArQV4JktyXt0pqNWR/v3XLxXZeL1RxHSKPtTl\nhliA+0YBGr8z15N974EiGw7WXF/z/eyV/rT89wENlmCJjgZjvAf1c3G5EBDTbsGcBQW8hukUzxVx\njRf6uZNzrXdzRruC5Ei/nSw3KjVshZi5nJkqPgyXiBjS4HAUwh60fPEENKuaoDvCnK/ot4EY6nHd\n1mIU6GEF7SKC9eEQIwI00YK6lYZFxeLPYBQ3mC6tgb6ZucnBvANl7lhTS+Z5ipuGjzZXAbs0atGs\nMcTMZIlAAns0uJDUEoe1yoZga253IIMZzMkUbRcH1yUXOsOAw46xHCaII9Qge4BlElTm8oSOD8/R\nZsYWBTWD4ejwfOlgbkCGCFrceT+qjDlv9YHNeR2DEWPcXOZ6nrdm7zGQ7944FvfZE7BmD+h5tLBC\nJjmf33Yvew8QZgdmoZg+E3M0YI71rLe5uTgZI0dEpGtli8WVJk4G+kl/mKuVw77AJ5YYAt7W1t/m\nDsh6mVhcRxeAdaBnnbMYZbydrA6kQ//BdCvEAYFMTMeOtcbkiNi3VawR5irZ4CDip+/uZWLYvSXa\nMROYzk1vTBieiWcNEcgb2G/KezJlspI1dqlaWutQ4+TJC2UONjBydtEeq0CEI5DZi0yZI80rdfm5\nP1e3oggG3nWFHs8Zc+lQ48e9zx+JiMgU1tY0ZuzBtljhCmVaEKeMkThRJsj+HUXff/oT1T64OtL6\nPX+jTMfTU5y1qG8KBbA6ZO9ksaTVdeAYPZRuo+ukQ7w8PNT14t7BT/V5HWUn5KfKunjxTDVtipf6\nfBMccUKY6xa7BLeS8Fz7s2bdTmB/PNpXJs0JmmgX6OQNjt7HQ9Mnjt5OjuowFJegdkV9ohfK7Dl/\nrut1swcrnD1J/Vqh+9q5+eZ1QC/S9N4i0PWK+RjNtI3qDXHN3N7WOjbqSOkH+/eJ09cwW0xzTNQd\n6GpAywvGXYiGlHPEGoZ+xoZ3HGdDHFtonzUwYwbWnZR1p4Ktag5n+UbXXgeXpX5X/56gVZOz7704\n1zGxP8ddVHRPNsDqMjPTlL3P2QxnRmNwnKCdsoDZj/7a8prnIzYsFmjVGHNmZe6nvC/wzhftKrPk\neqVj8PhYx/p9HHwSNFrSA61nA9vXsjUWxGEP/bos0M+dE2FnplcKW69s3zIWb1IaMgGGxtYt4ntK\n+6F7OJD2URNnj9EZDdAXHfh8dqrtn19qO8wmygpxzf11BcuD9SnG1Vav3ci66iUOTTdTx2hVm7Me\nbKAD2LuvWOMLqwOsnF7H8PxIx/AU5l3Du4YlyAzsm2awpDLiT4CGTWnOjoyxNDXmNSxetGBz1hMP\nLVehnnvEyZeXGq+un2vf3tk190utd93YOxjZDpm5NhN/0XXaoY1ffKPP4+GoGN5B+wa9uNMGJj3t\nOIHpl8MAnfyZY5eRKTOWsYxlLGMZy1jGMpaxjGUsYxnLWMbyAcqHdV+a6AlWARo4Id+w9g3NQ88D\nB4nO1ROtCfnOkusJWWY5xCAuxpSx08ApLilmyFByXOvCiHHNgQCUK1yj6WJMHSg1LvfvTUQgeJdV\nUfnvIqoygymDfgdgk/SwO1ryx0uQHR9l9hZtGGNVGCvFD02PxU4E9f4bTpMFr/sQBNkDyY3jRrrO\nNFP4KHoOpWl88Ow+yJtjKIFn3u8wKEAKMzvxBzyw/OYMhC3iVHFTorvAM3ko39+0DDxrAntgWYJq\noaLe08cBaFENOtRy6tmCMLtoAbiIp0zQdShgOaWMka4y5BF9DfLEK5y3+hVsLGNTcWLuTdFcMPQN\n7ZkI/SPhFLlhjFfkpIac+rqgeA6aOaE5T4Bgh4zxCg2YIdfT2IS8ydwxLRhtr472qdEFkRwWlani\ng6j3fN+QDB8WgEc7BegWNSiVzwzBR3PHASEeGE8tbl0+6KSAes0MUafd6hgHIYY0pjHSu4ZE/zH0\n+90lLEGzFQCUW2i8rGEmeK2iPDW6F1OYFki3SMKzh7CLalAIc2MTnKFcmDKDOaAcov+Bg1dZ6Al6\nucHZ6o22+SpRpO3uXFGmUxh/cwgyq1jbfM5YKhBZ8WnLAb2kEDjcdDeGyhxSmKugKAOoUgZi64L2\nXHV/0Ho32pfNqSIa7akivMNaEdUnzF0/URTlnHxxE72p0NLJLR8ZZ4nW2Fzk4rY4k81Bw64Sva+L\nLlX5ldb3/JeK2s0u9L6H97Qeuwf6/a9M64Y4WkWKCGfZ+y1fMUj9VUxePihUF5rmjV6/x4XDqYmn\nxipDi8iDVWCxMKZdygn5+tA+XGMdAm92fF4sFkIz8AvGSycSwcwwglkDK6AxtpZv+kesDYxJjKSk\n9Ywxh+4Qa54xNkJjb7K2OVw3gwmTshab656gIdMQJ300TvwefQnmTIAbXA7TJkFzxSTAOnP3oJ45\na1YEYyTk77VHXxCfAtZ6LzZ4jevjGlLTlg1retuZow1tDPvgxgWGkM/PlPiWwRLoQNUm1DcHmXVg\nzoTE8YqYUcMcCmFYhoyNGlStA7Ft0BxzjBnF2MkSGKeF9nsNAiysI7PGWARvdTNKKWXCOuDiSLSG\nmRRanGccObALWnMzRNevYw9msSUwVxjGgUeMEBzaamMkEVuLwLSPHOlK04dg7HEvM34JqUPGM0Ss\neT6Ms60KHVo0MX3gsjgWzEsXJHYDQumyN0hwzekC2AgwEz2Q1Oj65muNiEi31Lj55qnO950dY7iA\nauN8U7OHuDVVVsPjH/5QRES+RTdkVaAlhrtIuK/x55NHijAvImXW5IXeJ8BdcP0KdgV7G9ur7MEU\n6mBH5OwtLs+eiojI6xfqAvj4kboExhO9/g+o15sLZYys1tofe76uown3qSZ6vYtM61OdozVzoT/f\nPNfnLk8UnX/42NztiB22jjLEVxtdLyvmdLgxNyuN79Wv9Xpfs7cpYckFc33O2491b7N7W9v3/qFq\nwqxd/V7cMMaHtzqGn/+bf5AYJ7Qel6rspfanLfc5464i1jWsu8llJDctLnU1Fv9sqnUwVlNbGDue\nee1pmxahOcboPjNFH8O91jXYTbVt9+7q2nxW6ucm7O9L4uFgzjK234M13FhWAewHd8J+HwZjS9xx\nQ6X/enPWNvRFYnSgwh10PLbsXBjrsFBtn5vBsDH2hZFbG94zgghHG+Le6Qq2E/vS+UPi6LE+f4gr\n53SuY3jBOnKyZ/pvusc6P2UNJ/76rNG3D1RvUPZ17G+IDVVrmzEde6no8yV3tX4nOlRlis5V7pju\nHFkKMFl23/ON2uG9Y87ewA+1XlHBGOVdsSful+g7zXb0c1PeIfcyre9qqWwvSIgS4YgUs58vYGLt\n7+geawoLRESkL0Xy5lRmO6p7FJD1ULBfXV7rGL011fgUz2GYwM7vcX7dFNrnw10dqzP2/JfnrGmd\nxr3YUR2cSx8nMdi7/j4ZILbPYgwFMLsnMATfvGasXPF+P+PdzpyoZsRP9qcXaFDlsD9dnseBae7B\nDA+YQ2vm6p09rnOCq12m+2WfNdD0nE7pqzPiVUNmzg6ssa7mvX5l3rT/9TIyZcYylrGMZSxjGctY\nxjKWsYxlLGMZy1g+QPmgTBlPUNWHNZB7pvNB3ltIPjbMlw40xvLQffKzQ3L57dSy6/GYN8Xx2PLz\nYYOAJjo56BRHUz7IQj0zBBrWAShTS45yAiq3pn4pGg5+b44R76L9E5D3Hi2FekquLyeQA9cpcNQw\nnYDO3DuAQWugJQfEqI/t2Bm3Ap7X2CL+hPaoXRk40o7wqe+ALLcuHi06OO67feALp3soUwfmypRM\nuLa2WYCcd8CJ98bcgiBMuMZAAX24aWlhnjQ4CpiGQIdOTzdhLJirB/o8EX3cMsI9NBditE1MoT9k\nbDSwLbb57jgN+K6xp0A6yDVtQHKHCcjAUvsyjYGGYSdk9IGxuwZcoEJU8ntcpDraNwFh6VIQD2Pk\ngCz4ghuHIbowYCacyprdhgta5la0dwItBHeq3lJfO/1HWhnbS/+7xVVlzelvAjtk04J6Rbgy1aCN\n6K+EjLMKHY3AfZch5HWGCGs7ZiCzIY4Vlc9pd3Fz9HJjuaY56P+O/v7q5Gt9xELbwoHJ4Flu/MbQ\ndfR3QGzTEHZRaywFmB20wRwW2QB7yTSimhVjhD5pYBPdR68nIJ4Yi2AzMWcdbbNlYiwI8n9xPPFw\nHtsiqiu0FBxFPTYxzJcV+k3n+lxT0HkHBLb9Cs0A4uCGzy+/1Hb58U9/LCIitx8pwnFBO3mXIBYQ\nY4pzGIIg1O0VbCt0P+Jd/X60T9+jAeBfKkLSn+rznf9f2j/9Wuv307/6n0REZP/nMJ3ITR4q3KzI\nyQ1wjPNNW+uGZSCOuqD7SH+9dXCAVRKxLLopmjKM+cG0XyqLwzCuYDM4jdn0wXCCFeHDrDQXwIr7\nGZOmdN9qajSg0hNYoB2OUObSwY3TzgAAIABJREFUJj7MCK7R0Qc+OhmG0ArzWdBW8TrLSWfsgCBu\nXAuQMF1Ap2KYhiXOUD5j2KnMhQlmH3EoRq/J3KEKbI8s3DswaHxQ5xZ2aE08BWzbxoXaM20z5ihC\nawP1jI1RgoZVY85lgbFMiTPp+7EgNq1pq4CIVji/4NzloxWRsXeZsh5uYBRNLf5uWRxaj5KxkHB9\nj8/XxK4AJNnckbrQXErQmYL118JOi9CqqOjfwHk7F9x0Irk5DhljBZe+HGQ0Yl2wddXbsoe5Bppl\nDlQrnznTo/9hLnoNrnsxe57BdJqIxRsvEIHJEbR6LxdmGmZCUiJQNon0/yvPGA7UiTUlZOx3Nc6R\nwMExqHK3dWZhXwSLqeKZXQ8GJH83TmsT3ZwBIbI10pKDA63nxz/+mYiInFxpvDpbKqp//Vx/OmuQ\n4W9VS+UQlH7vjiLSSxiOTq71LL/VtdDfRWfD13bzr3HgeQ1sD7NyTV/MdnWs3rqvSLYHO/f1Bl0R\nmJstDB2fORIzBvfR34hhOnbUe7Gn7lBGUC9T1qXtPlX/PztRFP+b56qVswTBPsKV5MnPn4iIyM7d\nvxMRERfaRJHr8758oyh/1CqKX5ngEgwrl7Ecw+67fqGff/VUtX0ePvhcRESmBBOPGHTtYOciItVX\nJ9Iz1ud7aModKELuwxbxcNJJuU4wRa9juZKbFmPhhMTzq2sd7LeZT+Ua1m6ibZRn9PFC9dQctKMK\n4vwKDadZpGPM9l0u707GLEnsncf2XWiddOZoZmx/4veA/oa9g1TsQ43938DIDib2bmH7wYj6aBtd\nsW92YdC0tmeBhZajgzdhTptJa4qrqdmFXr16KiIid3HImsL+X2XEY6x5kuD3IiIS454031F9oZz1\nxIMpWaCBGSTMcYJODCOzgw28ytmbwOh2XN0TJYnuZXwYTYW54PFuVxIMOt4NveH91hvjRWxw6fqI\nPeCbc9XAWV3rXF88xvkSys6G95Z0X+vfXWj7n1zqGG15r9g/VKbP8ljHTcb1EliDzt4fxT6vk81Z\nI/OP2LsjcGnszxLnXGM8zlONKyE6RRn76SveCRvuEeA2KjBVMhiG0x+w1r2GGrn/rl5Q22qdKzRa\ndl3V89lNlA2VZRpnMhgtBZkpHjpsPU5aLQy/OntXf21DnHNx3j3ADe/VhTIZ+xoGN3uMrtEx0iyJ\nC5+yTrF/K3rdp+7j7BXASG/X7L3QbFzfGTVlxjKWsYxlLGMZy1jGMpaxjGUsYxnLWP5/Vz6s+1JB\nntxUT6piHHsq0DePfLuIk3EP14qW09beUCk85B0UxCsQgI78+bY2Jwhyz0DGM1My56i/hWURD3Yd\n3EFAsTpOnTdoAQSgZy3ovoCgxyCptZ1Sg+h65o4ERmM6ACGOE+Ys4Vueuvml47Bj+eEOyH3owCDi\n7w2n5NOYfFU0HtohkC4AZekMlQXN54Q6Rc+mz8z5ClVx0N+Ak/+OE/MOu6ICRseUk/4M9fAp6E1W\nG2NC22CSvZ8bhp14u72els6oT0Uq5HzL8DCXJBxwEr3fjHz2AV2ewoNpgjNCjXvQBGX/ZgKqxthz\nyB0tTAfI0LhAT0WHDLQJxLSFcdNODKEGDmQsePRDYy5RjPUQ5k/DcwwwmTyQ8MAYLDjBzIyZZAA6\np9pbgomxqvhcSY5yAzMmGrQdKpBpH40XZ2VOX7AsetOy4VQZVxLrxam5RJkhGKyA0NXrt+hCmfZN\nCbKysDntz6knWhUg6N6w9Q/5syXuYKrt4Wgw17a7PCZnHVQkFosf1qd6Et6iAdOiJXX3kY6BjBP5\nwVd0ZgCRzWJty/YclhMIpg+UGO6CooM+OXcVuRw6cmdhIYToSBS0fYCrh7m0Wb5xRaBK0PkgfViG\npSKuzTN1FKh/q5oA/rfEgb9WV4990+oyhwfmvr+CpQSC/dET1RaoIVWdn6kGQY7+yCw3ZED/3qy1\nHSru60WKKn38hT5v2Wi7nV8o6tOBcr34J/38rVJv9PiHPxcRkYf/8fv690afZ5Pp/QuYSBG6Vj0x\nq3+PMSIiUqfk8lZazxD0rUOXxSPmQZjasuHMtc+n/2ucIwZcSFp0QWyOBqb1w7phFjumcSGG3IA6\neqZD4g3iE2fMLScnLgesXbZGmFhMQADocGVrYQP4xH4HF7UBra/O0Tr3rDk+a2drLKDAmDAEEhgd\nxjJyYNoMPIuDO1wJM84EI0KhDQLTfDG2KAwa0w8hLjstcRnmRkBcrh1zBzGNGJ4/Zs4SZ1zuXzfE\nW56neU/g0tuST3F8ZE8wgGTW+ApNe2Mq2d4D5JUAnEMrmzK2BAc4Bw2H2phMrA8O8dHckQZzTjTn\nIdahCIi5Zs/SsY40dh+9mCAJIxHsuizR66WNxqAuhXnKutyilRA572pQlKxPLQxPH003z/TvjDGK\nxk4II6eG1eA0vQQgpuYwWHDNjrUjArGsoa61NWsHGlKDubvVjD32FhHzpyTuBpExqxkrsAKkNh0l\nNEnYH5n+Xe++nyXkJYjxSxDV+FeK2Ea4cPzsyRciInJ8oIyP519qvHv6pTIDd/Y0/jx+qJoKph22\nhAX71W//WUREXqNxFTDGJjv6vQInmQFnxJr9oByzx3it7XUbPYx4rj8//VTr8+Yl7fKC+HyM7gfh\nqUQH8Hf/oq5365c6Ru58riyO+/ce6X3ZEwio/XpX2yPbZazjHmX6gtWJ3qczVycYiCH6c598qu3W\nPaA/GZsVSLTtqy1+nuE08+ZYf758puyJfIkOk7GdjZL1v4ocP3shy0IR+4D3gs508nBPDW/hdvUD\nrU8U6u/p+7DuYEUOMMxmO+yDI32W9RVovq31rGW77ONqNKEqUPYYt6aefd16yT4r0s3ABtZ9wB7m\ncM+YgqZnoXPwDNapucs52O9tHSxz06GE3bmre6DySr8njD1ztrp7Rxkq0RXMEcZCgGOOg16QU6Jf\nR/yYwKhz0FDL2GN4rJk5ekDnq2vqg9MNLk8vLrUP41eq7/HRD7V9IlgWPWzkgfp05tKKBo+/REMt\n0u/touVy0rOH6vS5fRjvCetMSNxzB+2fUzQmAxiLZjB309KTZbGzp891yB7q9RrWGGzq3Vs4+HwL\nW7jTubs41HaJYdtF7Olqc/ljf992+hxnpzp3rj3tx1v3bm/rEh150pTNNjugZs1zeR+VFNbNtd57\nGmtbb0rdZ58fa1+EKZow6PgckFWx7MzqEY0mXO9OGGsN2jHrmWpEySVrqjkfWlZBhr5ojgvSrt7P\nmILG9q353Jo4E8P+jMwpjLXQWWgbBrCyYhjqLXuJgr1JW+nnjx5qH9k5RX6m9+kOyXaAvTUwJ05e\nn+jvrDvxre/WuRuZMmMZy1jGMpaxjGUsYxnLWMYylrGMZSwfoHxQpkzIaWkASlSTT5caDN+Tdw6C\nWRsDBucCF9aHgLQ4nHQlnGZmOBNEsbk34QwAipSQV1mQhxiTv1nguAPJQFpDJ2G6hGKnvJwug4QG\nqCtX1GOA9dCa8jknhwGQhMN1W1DPlnzF3vL9yE80x4cB3ZSAk8yGE0EXxCjgRK8ChTTNGc9zxAE5\n9cmTheSzPbnv+Q9DjSNQ+562a0CTWu410FYpJ+1ZaFQJvsczm6tPR952DWPjpsUBzWpNJR53oDDT\nPr8e7DQ3fOd7faPPVeKQ5fLcA05aoU89aHMhz7zF6SACDS/QNBC0azDjENIYxeusT3CUgIlTeKjf\nN+YoBuuqBKWK0KuocJ4Q62OYQWgxlIV+L6Gde57DoZ963JVsjLWMDQhGYsC77yMiA/qUG+uKuVOB\nuDp8f26OBYzlnpP2ipP9ln5oQerTOqF+oEmI+TimhcFpt0cefGfuWJG5guCogY5L1N2cBeEkoErM\nm/Ozl/qMrp7oR1w734CwJvQlJ9n5GSyuu+TI4obUYg2VV6ZHBDL5ChX5Z3oC3sIgObylDJFH9xU9\nKkAjOpwOrrZzBiYeCN5gcQydCNOSmniK4pSp/n+JJc8cd49L4lB7okhhfq5t+sWROgykR6AgMPlq\n9DAsBzYotF127+t97nyhP/9l9Tu93pVeV4iH7j2Yhkut9+l/VlTJfaof+6v/oNoD01to0pzr3x0Q\n0tN/VNRrb4PGwF/9rbbX3yqjJ8elaflUEZenF4oWuYxdFzpWEcE2m7875/9c8UHq3Qnxln7pceUK\nQNidANTfcqO3rlvaPk1grlywDmGdBDA1N7BIJsTCFvRvq0VjjkJ8b6C/E8cXr2GtY9pMYB6aA6Dl\nnjuIQkE4k4imCCubh+Z+xNjCrclHOywnQDggbALDr5vC2GCRrGJ95s4MA5De8o3hAWOkH0yLgHjC\nfSNzyaMtQlAyH6bHYDpFrHGxsZlydIMi2BWFxXm0WEyXB9eLiDnVwYLtYIY4g7FTb1b6wJ6D+9LH\nAN/iou1iehcDKDpArwyx2V2xd0FrJ3TROGBd9ScwmmCYDiCthoR76N0ZCVdAtjMH9t2UMQS7woOR\nKiLid7V4jDFjvEbmjkIHhuS/m6Okb3pIvcVd+g/NGDN3atBSKIyhCTPKZ0E0VsMASzmQQXrGCtss\n8TvTfkE/CDQ9nqKdx9rk444WJfr5HP2LODS2LmwsUHEXBksIy6ig7imd17J2FcDZgckptH/EMrpB\niWewlkBYT66UKdOglXV6W1H2mueJbsMGyPTvz841vr5ZqxaKP1MGy+FH+rn4kO8bK8rkk0BqV4zR\nBEcyYykNtKvHnDl7wbrQKfPw8itlA5xdKqPFdO7q13qDnSv9+wJthZ3PFQmvLvW+33yl1/tYf5Xk\nFppa5zq253u4IN3T+78ONY7nb3SsfYXGzilx19gFPdplBw91vYqn+vz7aJGlsDdOC9h0MFwHdFce\nP1StmsxQ/2e67pc4Gt3Zx5ZRRB7+6JG80mVbcvRG3NJYDoyThc7J5VrXLdNfSp2p3LSY9uJAgA7m\n2jYNjl/X11qJEEadOfn16HVMYUgLe/gUxmEGu2eD1lfHO4XwLuWV+szH3+pYv/2J6hYZawjjGmnQ\novG3rnh6vX6jP10WlI/QGTohLr15o3urEKZ12OmY6enL8432eTqgm4ROyEdz/b1g/VqiIRgQJ1y0\nt5xdHXON6bXBVphMdI506Le57EfXrc6hs0uNWwd4tc1ZZ2YHOpbLpc6lFyemSYlD0IGOlQ6WXQx1\nydxRK7Qfl5X21yFaYvM93WNBTBJMjeT9VhuRFSy5GXqjHfe7utJ6mTbbw6m2i+uzp2Lv2pvGGa5d\nOe8rqb2/oMNa8Z5Rs78X7lvsvN1DJd5MpFtKh4tdGLPvvGLvEBgrU3/fjbRP0qXWfXOu7KXO9C5h\ns16e6FhZkr2wC5PGY151sLfM0WrBeUCHc9Qha9sOemrZN7go4aokqc6p26Y1yzunx7ttwlre8z6e\noVHTMsZa1rwI/dI57yYDc6tDe/ECtuh93KEuVxoPW8QI2z3to5h9Iq+scraCmc9Y773vZmaOTJmx\njGUsYxnLWMYylrGMZSxjGctYxjKWD1A+KFPG4Dc7LXYsj9zcKtCj6EAGtgwVDppaU1kGKXc5p3Qb\nQ5phZ6DdYDldiSlkc6Jn+fbmrONxmuhwMggYJy3ovwcjxuPkrue+tTFbxBxmcPLBLSmakNcv3AcE\n1oVlEZBX6m9wOMDhxuOEr+LkzsgIHXnbnRhqSnuajgAngo34kqJ7UBrCib5GiNr6YNoh6Bt4oPi9\nuV5wkh+AAIYTQxD183EJGo9TVcWzBY051KD8H353Pt2fFsALmZBXfVyAuqGgb64TUQhjxzEnKs6s\nPdMRAUEFwe05mU/5ycG4hIyBglz+hDauQDgbPO0XOTn5sd6nRMMgKlHy5/S1gdXl8f0S5LZBJ8TF\n497S2k27oUEUIADRbmAJOLBBrmDSxIyRllPhGrRsMNcoY/igjD7AtOnIn+6NecShs4/mhBcpWlVx\nKm5EJNO6cUGZ/JRxwymwz2mzzyl7x9zuIxAj+rEB+amAyruCccUJfu3dPDR1e+T9lvoQxVYPQxkZ\nGWNkBrK4eqFow8VvtBHvTvT7ezvq3pAc6XzaXGhOvV+RI8oYbi4UeTz7jf78hx/+DyIicvBT1Qio\nYXA01yjeO8qYya4truGWAeug4Kc9cgijxxgZCxgeNYjx6gymzQtYYLUyfH7yD98TEZGHC0VxGlCq\nq/qK++Joc25zEAbQE0WThhn6Q68URSpwE3EY8wfDIxERef1M2yU61va79ZG226d/o5owF4N+vzzR\n+61ALtvXiuLd++xHIiLyF//zT/R6sV7vWxg/Z0tFpQJ0LyboWfUxGgCuMRffT5/KWAtRabnN5ATb\nOsD6kpneSmI6Kvw0/SmQ3obY0uMUVKDHEYAqdrD0GtwDDfH2PVgi5kzH5+usEMdc0kD/jZQzMHZT\nI7aYlopprASgT4nO3xpU1y/JQefeA0hsDxNiyNEaiU1vR39ksJO2ZhLE9cBcnGD2uRbnt+uGftxr\nQZtgWQ3ESQf9iBrdigERlwGtKYf6FDB9Amt7kN4KbZ2e/3dh4DW1MXaIw4T/6D13OAOaZNVE23HK\nuscSLDnsMoe41xETItPwosE82HmdoXmst+YOaKJcA/n0PdpnpoHjByDXoH89DJQEZpJjex3cmTbe\nW3wtrFyRNPrj24gLe6KBiVn2+pw97LuB2BKh+dYZswptHRd2WmfOSTA+HRDyhoEzwHppQPrdPpcJ\n+mSNMXjNOcvcJmEuZjl97hPP0Y7p0JhJB7sOYw6tJwd2mbGtvMAcy2ArhTZ/2Wexf3NhjYb5+7kv\n+TNlAt5GV2PAefH4+bfUT+u57+n6s9hVlsAx+hDykjGwQcMAp5oG9tN+zNoLmyyGSeJYXGIPt9hT\nFoOLe9IR+hg++9RrHNzKC13vaph6h9C6Nrge9bCn3ANzW9Hv//DxX4iISHZbmTXPv9Q4/V9+/Y96\n/69D6omGGQymCHbH9VLn0IS9SWvXh2UWRabtpv+/eqEsi2WtjJo1AXJg77BizxLNYSWzT5aLX4uI\nSDfXdXC60PqvYFP3l1pvEZGn+YlMjnS9m6IJNrD/LkIdL1OYjvlS16MN2jhte3MeRBFZHLM+RAfj\nVNfAVMwlSZ8tRvskP9U2iPZ1jC106MhLmBEpjJYJ64Hg0naVw2xkv97X2mfOFU4393QsvmLomVta\nTsBxAhwaO92rLF/q2n97phWI0dF0eBlqz3VOXpyg1wfDxbeN4kb3RoI+x+Ih2QjMzTOjEaCt5aE5\nFnjqsCO4Uq0YGwN9Y5TFxNxYdx5wGx0L5yv0ggqt//yezhHvQO8zK3GqZJ+84X0inNg+Xp/Psigi\nx5iLMEBhz3p3da9HmBYhi6G7uUGXfo1Nwc4OGnKw6XpHL5SgS3i+RiMHHVGX+NzR3rPhXe0z23e7\nxN6Ad8M5uosZDJoIxpGIyDBxpVxVsrrWvt3QdwP7LsskiYnP3RvVdFmS/bAijsku7xowThohDuzD\naNlXRtv1iY61kjEUPNS+vvT12SewuKJUx8T6jfbtaqPfm32kTB1zmbP9bEef9tQ/hhFzCa2pglVV\nLnin2r5PmwUkc/dU27xx9L7+R3qdKNQxFa7YM7FXaVhDY/TjBtbkDgvKCeteJN/N8B6ZMmMZy1jG\nMpaxjGUsYxnLWMYylrGMZSwfoHxQpgwAouQBp5KwEgbOilzcNoIc9gKe8JKbmjK5xrgkDfw99wxx\nsTxNkBcQkQ6koCExOupNQdtQMU4tybkdcITxOUHzMDqvOGFrQEhDYMIJbJLWXAdo5ZxcvQiUr7VD\nSk4xo8qcJkDJyK2uTC8A54qGk30Plktjrh+wXQIU3z1O08u+l5Y869BUyTkxr2l7Y+34dpoHoyKz\nnFWeyZ2YRgCaKPLW4UlEJCZPsCKnv8fxYADdib33Q7fXII+l6THAAjINgcoGkVnCtKAp6PXUIIoD\nufCm0VCjyZCRrxxNTeMFB6yGE3I+NxiSvEHbBV0KF3QuBMXpyIdsOaEmU18G1OSHQJELU3GvQJQ7\n0DsH5DgkFznsUN03RXH7f3SJSkNkQTgn1h+moN4aO8sYUbCzGFteaO5WMIhgh9Ug4qZ/ZEjEBDeU\n9YSc4mttB8e1E36QCBDcktPjOXmdNXOopd0dkHuH42qGnZTF2xP8P1d80y8COc0q3IzIiw6Zh/mF\nnnhf/Fp/1r/V79/6h09EROTuHW3rS9hMG2APv0adnTHcn4FoRnqC/6P/8e/1+vv6+a+PFTE9LZQh\nUjOnegLGHrodHXnCAc5ipgqfkSvfgz7XoELVmV7POdXn2w8V/dr/Qttq/54irDkspfNqSX31eRL6\nZOlqPR0SzOdoJLy8VkTxjLk+hz52Rfy9PVWtnPNE87gL0LFHf61MmfSu/v2bi/+i7Qe6U620fk9+\n8rGIiPz4v/8bvc+uxt3XLxXJvTzRnxigSQ9y7niWn4/WluX4E+dvWibondTogNSFMYZAOtDdAoQS\nj3WmBMF2Yd9VsPIcxrIPMzPITdPLdKZ03Pi1Xt83xxruGhJDHVDIPIwlIU6ZdkjFd81FrTexKRDY\ntjcmHSxL4lfv8qxIjYT0YQ+KE+LsMkyIr9bGxM2JMelwvDEnPx82pxeiLQLryJmgmUXO/YY10qce\nCZpTAlNyACVvieuxp2OujIwNgB5aZe5FxR8/ttQgzRPQ9B4tmgzHwg59JmMw3rRMYchkxBS/QYek\nwAkH9gWSChKyDuS2Z4Hp6BH/6y0TE801fnTUMyZmVTAHndacGJnzpilj7nU+Ny5sL6LXnw5vGah5\n7IuwB0hZn9rU/g7DR4x9zLpGO/qRjtkGjbk6MEatlsjMwYy9C2PSHMo8063KcG2MUumNZQNLJ2It\n7IjLFfuv0FZL9Mw27Fm8XtvCG2w/pj9z4vTEGCWwkBoHFBgWZuNYo+vPgWcKjKnsvZ9Fl7mEEmZl\n754itr2SGyRcoe8GQ9vlOb734AciIlIf6nrT2L4SFyUnNd0nbcvlUtkOOeh92Wk77QeqTzJ3Nf73\nINsu7VYSj2Yg27MJDod7uj4kP0Y7EeS4ncKyfabMkNWl/qw71fSaHykyfOuJarPksHshZ0gKM3XJ\n3sqBZR1aLMAt6d5H+twFMcenfSLYGdcr/Xx+rvctYCdEPIdzV/+e3FakPUV4qz5hL8Z62ZtW0Vrr\ncda/XSfCtS8Ht7QdvEQ7zDOdJhhZOVpuAWyN3tP1srks5KYlYq1w0acpA4u/MGTMecy3/RZaVWgI\nXmTKNHEa7evSWPzXuncxxvRjWFs+f1/D/skKY07DsMHZLEV7poTFFMPo6djnNRPt624Fm/hU67Hz\nSFm4w1T/voLhcVgyF0xDZ0fndnGue49nb3QMu3eUWbKYom1TKMsixB0qGXQOremDmuvtMmdDaMWX\n7JNrXGKDqfZdTfxdv1aW1WSt++y9mdajuavt1DBHYosNO+iPFjAaYb12rC/LDe96azIF7sL8dNGx\nGtA3InaFOHXetHi8o5pW106EEyR7DxcWSNbiFHSk4yne1XrMWP/znHdOW2dgVl43zC2YSIQiSQKN\n87YnFREp1qUkaSRzmOdhoBqBOXFoveIdA8aby3us6fMc4W7UJcquqkviCVpeGftKZwGDZqOfC9Bu\n9GjzijVqP9Ux4a/0769hcHcIrfnErdxeUdlPxWRxmNnlbKr79M3zP2g9mBs+bC3rgwA68a2FjpVN\noG3X4gpVFGgbwjJKQtxIS/1cUeEwdqg6TrE5rLEu5ayt3fDduqojU2YsYxnLWMYylrGMZSxjGctY\nxjKWsYzlA5QPqykDU8VBJMZOP3sQ7mRiCtgwTMjfFlyaeigkKUjHhpzPxLPcY/N0N30RcnNN6Tqy\n/Du0Y8hPr1CyDkG4HagurUeOLswbQYU+AAny0cvoObprTfyGxEOXPO7GQ90anZGuJ28cax+XQ9uC\n+g0c+TUgszHslgZmjAeaZw5BGafxE/LPPaeWipPXMIRBEuiJ9LBl/9BmoB0RbgoxkKC3tSqw3PF3\n+85H26QjP7kDD3Zrc9jidNVsG25YQlCSPnn3hNruYzo8G07YzSYCkF2SVNswNocb0OsEVhRp3dKC\nBHug2TUn5NYnIfncBXmHOVSjBjEWFy0EDy2aGFejDWwEd0Ky6WDq7qBAgIMmtVMx9jtzNSEP3bRc\nIrQH1gxpx8TUQbZL8std3DtcHBxMY6azHGdTOIdhs45BTkqYOzHI7AYG1JQ5Rv+b1o9vef+MBx/d\nptIcNeiXFafRHjm5AaHHpb88xqWA7EbOzZNzHZxNTL1h0hgaT9uBPhdL9BNe6ed/9OgLEXnL3Kg/\n0rb7/ctf6YXQ/ugikEhU5CtyZT/5XL/v39cx9e3yFyIictwo4yRAe6T6GlZRoIhlGigC4KDTkXFw\nXpveBMy7lOcoQerc32m+eYPuxeKR5saHaMJUMABfHv9eRER6nNKyjd4/gfUwRS9k51OtT3+E00Gm\nJ/2ug8sH8dglz7k+x+EhR1PhPvnf9/T7z8qvRETky3/W+1fHipTsgZ49+dmnIiJy8ZE+99VzdSG5\nzFVDJjJ3PNqtM0SC/utwIBtgGfjkh9+01D6ss9yYLMSUyDRd7JNMKhDqAPZDz7rgQl/wyN82xzBD\nXG39yRpzBWTcEWtD4n1tPw0N7BrZwMLx6neZK30OE8acoYg73WDziPiDdou56XQwKmoWlcYDIcOZ\n0KPNh8KYEgQi4gtSKeJ15pCIbg71ccgjNweTJsDVB7elCEZOntgaLlzf1m7apoG5Z65QrD8l7ZF0\npiWDbgbsChOYK7ifA3LogrQmrnEVb1bWrNE164qLZkPgmYsFY4I1uUUfI6bPPcZmgUaENKaJQL45\n7N+1uUPRbj4sEsA46RpzSsMxjj2KMWc6GJXm1lV528ErnVuKAxssN/cSYyayHjqmQbPVkmPcsM6Z\n49GGdUjQljE9PYf1oZuhJ8IejeaRcGJMVkcmsLcc9CAKKCaA9hLl+tBOaEw0qsYjRRE6STgdRqwd\n5mKRm+sGfR6iVeOwd6CVgOYHAAAgAElEQVQJJCR+WJyNGtuLvN+eZAVj4tm5ui6d5cpmmB3irHOq\nbIazb5VlcApDZXcHKg1xbd9R1sEuLk05+h8tjeiwlj8+0PXiaqPsgvylNszZtV7/BDshc+yhS7f7\nyKyBsbmrY+LBgdZ3ClPERU/j7BKBjGtFfr1TGCOufm7/NvGeKXWJ7kbP+rvf2F4DdhZOMg66JflG\nEfc+0365dU/dCmepMiiv1jCk5vr9NY4xtyPqe0+R9YrYWGF5s/uZ/p2toXgzbYDDz1VvxBks6Ig8\n+P6TrdZbsEQvydxd2avuxCDj17AqWm2HK/fmzMwWRvHOnHgL+8mlTXwYKkEGewCmy/4tXZNnuB6V\nMBkG1vLNEmZkr3W8QO+jgDXV+sbOgmm51jHTODoGDmARfAOKL8SVmHekZBf9n5W5tOn9F1ji7j/U\nsXyc6XXPS/35EW6jix2t/xoGdc6eZA2bK6e+7TUaJ6wnB0/QoiLety+ULdXvs8YH+ny13k5iWG6l\n6XNS/2iqeyHr8ww2XWxyQDD9Xd7tGp4vgHUVwF7uWJfOSuYEulfxANMn0no5oe2zlT1suqM3LZFl\nXRitwzTW0CXsya6oYFINsJdv+doPL15rv3pXGnPcBzre4h29jjlHxvd07nqsJzukV7TP3jJ72vMr\n6XZ3JEcP08F17RLtGJnrdy73cYJiCalZy0qyFTZv0D0KWNNj29Pz7slPr9N5WBZkqmT6/fCuzueI\nsRwTt3PcjsKHBKAdnZdHaAs66OMsYcy4xsIyB17YwMtznTvpQxzB6NsS/btmo/UyjcH1jo6FI5xu\nHRx7d3k/f/6cNZV3xU2s7VWz19o6y3L98s/oqo5MmbGMZSxjGctYxjKWsYxlLGMZy1jGMpYPUD4o\nU8aQwgRmCYLYUm+desyiAEYJp5LCCbqPMnXrmkK28DtoP6ehrq+fbznlDMlJdkG5PNCwyhTGzaUE\ntKxFVd5BW8Lj1BvDobc4C6ikyyl4Qv6/MVwkQusGJ4aqQM+EzzeIzERASK6hWZySdx6IkbmFoPvh\nG2qG04NvzB70YNxkEBcGjCGIpqIeoVDdgPClaIMM5FYOlmtqTZ9x+onnvA+i2YNYAmbJBJZShRaC\nI6a38H7I5YAmQE+e9gpChdMaqwCNFfrWnBmSGCQCZklFnwYgzDU5saE5uYA49rRpmKKlUBrqBmPE\ncj5x+3BA0V00ZyLcLFzyuH3GquPo2ImAijOeq4M5Yw5jQ22IuNZrg7K5h/6Fy6m0D5vAS8hzrN7N\n8Q9x5OpBNF3QKg9XpwK0qjfEBiTBtBr8ljFl9i8FbA9OfQeYRcHMFMdtrIO04KYUOzqmJ+Q612jX\nDDNOt0G9HO6zYex6Rnu5Qekq02dANR5hmllOLicaKt25XvTWbc2V/eF/93O9931tu6dvcH04hqVD\nQIk67ctyro00+1xPzJPH+v+n/W9EROTkueZhD6Au579S9CR7rW3+2Y80r3qyp0jAVanMl95y12FP\npYyNNUhv+0zjxtk32kaPuO/jL34oIiLH/UsREXlxpSf0DmyknrE+zdGmmunvs0ZRHjfS6xjt6dJV\nZCS4IFf4pY1pU/DXvl98pGOrBm0BSJWnv/xS2+k/KVMmFUVnPv57dVmq7uuYvs6UUVNuFOEt6HOX\nmBKAXqWluajgroI2xIDzTRHePMdf5G28HNA/6TOQYPrLA2FvU4RYYBc0jCcftkZC7nFr7AkQmKY2\n9qBePzGHowDWnbHhqE8X6/iagRwNfbh1J6vEbHj4SdxoK4tXaLHw3Q53j6wyfQ0QVeJ5SNwSNFqc\nDp0kdNxc5mdLXwyeMSN1TpWOMRV5COZ5koXvtIWPZhVp31Ki8RUWtlaBSoEyFSB/Fgf93mze9Huz\nGn03c64BBRvQERmwWfJA6cx9ya9gX8i1vE8JGqu/abDxIDgsTE3/B2akGb1FrEc5qLuHrpVvLlYu\n7cvzuMSmhrHt0Q9xwVyFmRTAjOoQozHWlg+jyDNbreYt+jbbDDKAUFfY+hX0ixGhSljBA5oMxrb1\nYBfW6LdM2brUxPGa8WiuiwPuXzU6Mf6U62zMUaiUrZoNOjtsg6Sfsm9jn1QxdgeeOaVv+8HcKVlL\nPWNdGssX10nqnLO2++ijRWxKam4csV403KftvtsN40/LAvefW4PG8aNbBED08/o9NMnYC4QwX07X\nuj7Imdb71fULERHZBXLuYlwAYbAMoPp7sLciXPneXCmTJUpgQx3AiES7YYITYghLtw013ndEnrNL\nXSee5cr08VmTwyfKXJke6bqQvVIUvcSlyc+UvbGDlliBC4rNuQpntQjWmotWmUccbVnjowvYwCcg\ny52uO1fsTRZH+lzXrD+vz3Rd7s5Vq23mopED83V+G2YlrLToCqY6ulW9MeVF5PjLr+TihV4vgn3c\no4UROu+6zVys9Ll3YUjuz47kpqXLTR8TpiLbXnOLm+Ay6frapstL7Ytbc1gIMKZXZxo3HJhnIWyn\nkDiRL1lz2KcLune16ZjB2K6JawnovQtz/HCuY2KCfsdyo58/Z9Ze8P3oQllOh4kyNDIcwpxa49z1\nGxxxbumaX+3AKOlVX6OBsZ1afKWey1PdI/nomFgc32RoX9JHC9bFhPeSkrcuxzXmEWssc7Bca4Nn\nMAD3YC7egQmeG5tsRbuhv+mE2g419zV9J8+HIX5N3K1hv6XaX+fso4f8/Vh3Ocz9YINmTK+6fFHE\nc/DeZsx+s1Hcm2o9T5gbuQ/7ZC/iuXmejc5hi4XzUGPLlPe2y+Ktvknje3L7aE8Oe2WQlGjGLGDO\nrRljOX2OVIs83FOtqZevmddvdF97DUOvh53lWfw1HTM0Ak3vs3Y1TvmkOWTEgw7mjr3TNYzdTa11\n30u0zepjHaPZmd6//lTHlOlbtvRxzP6uQpPQtMziCaw1loMYvaF9RA4d9lqOOVrCJjO2v7PUvrrc\naL0PdmDT3qIvaYdo+G6G98iUGctYxjKWsYxlLGMZy1jGMpaxjGUsY/kA5YMyZUxToSI31QcZiGEt\nZCAECTnIVWcaEeb0Qq7oYKg/zBCQSg9NiIDc4Yp8zty1U1iQFtgSPo4FruVT48eeUp86JMm5RAUe\n9NIYNgC7EpconINkBJz6Tsxxx9gowGw+CK3pfVj+fzBwqs3pcmvONeTje7iGGD2lx7PeBzHqEvNZ\nDyUEMbMcSqEug8spH30AcUZ82EQeJ64dJ+YxufE9dWs5yQ3RPnBBDCtObjsQ1MCYKc37OaZIzIk7\nzjQTTk2bmbkUgbKBRhuQG4BIOqiQG0HHvOMDUJGmMZN6bhea2we6RSDCDeiTYw4ujK0YRKEAMRwi\ntBM45U1hyNSlXndjJ9jA5h7sqtbRU19T0Q/R5AkZ6x7MoxYkwdlqEmh128EYOlwfZ4fEw/XJfhrj\nBhZF6+D0xZjvW3Ok4HlgaZWgiT0Izxzm0dKjX2D21DCDwph2I6fXhx0WwepyQBQyEOiIXNwpyIfr\n3dx9qZrDnINpNgNFJsVdsiVsLfKr0z3TQtG+eQFyeAWSmWyFemBLeXriH+aKjqT3QGl29efX/6wI\n3uVXyvzonsN8eaFtdXeuue13F8psOXqo9339ez3Zr5mTIUjyhk4NQEvqc5DhE+27uz/7voiI3PlU\nUY9XL36t9T3DKQY4PKk0Tjm4uZluTx7q8yzJS9+KOKAT0r2AnXWuPw8+03o/+PyRXo92fHml1znN\n9flff6mo1/qp1v+Lnyvy+unfaH1/VSqTZnOMdgJIbndM3CWXN9xTJlMHQ9GP9f8BXmWDhoHjvt/y\n5cG+cGpFgjLWG4f47pPfLrW5dxEDGUctMaiAQRWCNk1NuwEWojuFjcKCUBBcvIocaVA7lomt9o8b\niwzmOAWCZoO4A4mLWfNqHEJa9HFatF1mxLMapkdC3K25x8B8DIhPxuKMTBPFXJpA1syKqstgL9j3\nUlDoDcxC5kxvn4fJF7Fm1zBIgsKYlrjioYPhmLMZcS/CgawGtvJBu3w0YzrijTlmJcTlEi0VBz2g\n1tyLblhC037gPgXrRGh7DPSVTNOgoV9K2ACTHEeIkNx+tF7KDcwbKERJonMrh7HoMLZ6BlvsGmOI\nPQvtkOL2VLC+tcT5oX+Lr9VOKB3Xcfn8wH1cBEdSnis3vSb2FIXp6dEPdt8BxzMJNMbG7Ely092b\n6U/T9vFgmkpWSAUTj+m81drzMthGrN0R7B6WmO1aNLBfEmP9MK9SHKUKGDPGh3CNcc0+asqYcEHJ\nbe2rjVUl3+2G8aelhmA4cXQORqLIZ4smyfceE+8f6c8QWL7Cxa2+0PsVxE9j8lxV9vz63F9/868i\nIrI6UUaNsYF3P9H4eO/JE30+V92Ijq9Vh6O81L6a7yia/mCh9evR39ic6eeuX+CmMtH/n+zr9Ten\nqt2whAlz/Rv9ff9UmSK3f6A/P95/JCIia9jEKXN/gxPcptW4fULMWZjjJ6zb12e6jsxxJRGYU/tz\nZVespjq2X7zR55/bvjzT9WN5ou11fQxjHj0/x1hlDJs2ehsE1usraW6jS0X8XiPqtnMAUs/cme7q\ndXc2uu43/s1ZEAEM5WpJ3IY5V1xrWw4T3YPs3da6nT7HEZH9UXqIQ1hrGl1ohKW2/4NJbcw1NLb6\n7X7PnK1gwrGnqEP2BKX2wcVzrY+rZAeZ7eJAubC9h7Z1fao/0ydab39HGT7VM9U1ipjcC/bFZwH7\nQNyWChx63DNth08e6Q1XG71/jx5oR31nh8pGtj3dpaOfK00HjjXZt2wKnLyM8WI2QyWsjeUUB15o\nvVmNICh7RR8G0YA+iUfaRmPaWMTXcxw8j5Y6tz0dGtIZgzV+q+11kxIyZnPuX/LOFs55/3ijc2h9\nxfvNPvU0Fy327yVsQx+WlwPjMfR1rk5hQlYrHSdvYAJlk8ttXdzbvswPfDmFMT6cMr94xgRdynUD\n49rXQJjjDDXAIDGXOLad4s2MWU28LbWPX9fapwv0cwL24x1r99VKn/3THR0ryT19xr7QsTSB4ZfC\neJwmOiYvcD3tYNKVCft3GNaTB7r/W9Em+Yr3Bd41CzQkz3Bd8tAivHUfxiFMGMEdzh9wm6q1vqu1\nfi+eo6mFa5zFP9Nt/W+VkSkzlrGMZSxjGctYxjKWsYxlLGMZy1jG8gHKB2XKmBpzjHNLhUZBhTq+\nBzrTD5xso8IvnPYGhmCajD/58n5kGitoB1hWM6fMHcyZAOS45RTZgFcXH3OBeTOAdIaoSfuJngwW\nsBQiU1VODFkHKUdjoE9NM8Z0ATjF5lQ34zR4IG/Qsvk7To9by31G48YnN9gPzaGDU1W0JEpQyoD7\nBF4rGeisW+hnJjBdClyTYssxBxmz0zojktQpfVUbWwl2DhoEDowV4T4DTxHg5uDBvCntZPuGJebU\ndY2oTReRX52bKjkIKgI/gGmS4dwVgSialoy5hOSe9iEArpSwIgS9nhKNhoixGWYgi4xNF5ZSBhIw\nA6YryatuQAEbWAs9zhKB5ZxO8LiH2WK6SgiQi4/eUpRaHxoyCjIO0lnAzBGQEd9cmkxXCESkAmlO\nJzbWQJdgzsSVuYeAqDN3atCphPzPCkR9zSl1gBjNwO8xSGrHeHInaDuAFGWesRwMCUYF39HPrwq9\n3+Q9EO64Gri2ju0ExgIpp5Kgy3P4RF0edlBdv9rVupxcKcNjU+qJeoPTFNNYOrRU3Ln2fdZom179\nBpei3yjy2F7pM+7t6H2O/lKRyqN7etK/+EKRhUvQiqK4or7kpoJ+TcjFba5wQ0Kf59GhojyHd3TM\nLRtFMp/D8FmAVE5h8q0BID3iUEhf21iYTEGeGcsRAbC/oyjVrFNU7MnPfiQiImWvz/v8jbmhaHuc\nbRQ9ashvvxuods7OJ98TEZEAFkV2rqhaDkIxg/WVv1S05nil1/98H9cl4vopcT2EOeSumTsm0nLD\n0tKPHcueV8BoYezaOtKbbkhn8Vj724FRGYK4C+w1S0IOyWs3lt1gzgygbh4IUJ6bHhQsEjTPZPC3\nTk2BZww+8qF7y3knLqBTUcMsi9F6KtEocbefJ66b8hnaYcYydWgDc+1ocOeJOmNhgm6x2LZoaTXM\ntSAmDhMng9zWBRgYMBWppnTklbuwJVxzDTLpKpiCDc/d0x4uKF0NA7OF5erDFMnJC0/QZapYqyft\nW+eVm5SeseozF4LK4rf3zvP0aIjVjE0XxlFtmjytaYShm0fzl6wDnml3mdsSGhABDKCK2OWbE5sx\nV8i/D4wNy3XCP9JFGZxAEtpzbcxYkNiuMq0iY8LqzxSWWMXY7GEFBLAeKp4rIBY56ChFE64DUu33\nMGTpcCd2JGKtqngGCHLS0em97TZYmz1YUr1jukCwY1ub77jW0eZuiHsZbK7aMUcs/XTtMr9Au+3v\nE5tD8fvRqbKljtmvf6HrRrHQ+OsFitTKE2WuDLC3Xtcaz4sluk+9sa3QHQE4LXa0wjOYI8MtRbnr\nwdZMmI4XxKMFriULbbcvjpSRWN9lTwCiu0V2YaXtP/hEREQOPnokIm+1VK7QpHHRM9ps2O+y9zJm\n5fUv0cK6g/MLc3JOjDm8ryyCBHpyGWrcd06JNZVe59EXqgVRMNe7V8qIKa51HfjiU11HD/cei4hI\nL/q9U/RNlq4yU1vYxJJq3N1F78NPtR3vfES/iMhP//bv5QJWcsvmtoK5s7en/eazF6mv9X49OiKb\nk5trmDUw4nw6t+Rdo1rqPN9f6Jo3+LrG9mgyrYg3Du8+MXv8g5mNbfR+YGWt2iueBUaMaXjRFxeu\n9tGdtY6JdKbXW+zq/c6fa1uWuHAezGA0L3TvUl6arqbtD4lfxP8r3gtmYm5GaIGx/1+yRtZr3atk\n9j4Bk8a/TV8hunMNO3eAneCm7EfRpIkHYzHDlNTfpDetSd55PJg+wyWx5VLbIXmke6h+SZaCZ+wH\ndJNY8300tBxc5WYT3LB2tT6vj7X/dmAmGTtvsBeQG5YKrTVjoXRopoWse2em3cW73wH6UC7vYdUl\n6ymup5VpapK5sEPch2gkZ79VZ9D5Htke+2/1TZLdmYR+JDPeOzcwCHdu6X5wA7uVpUBCMkGqE7Rc\nCthRc7RTYH0ZMaRLTd8MJjdrEPJj0vNeTtKGrDodMxcF7mvoLS2fqoZikbLG7LNH4JkTsjoy4sX1\nhv22ZYfwjpqtYO+yJvuw2+ZkyPjXfH6qf99B69ExR0X20VOue0Ec9e0deas2i/ZgbzqAbzWu/mtl\nZMqMZSxjGctYxjKWsYxlLGMZy1jGMpaxfIDyQZkyHUjFgAuFabv0ppsBKt9wSphYXiUsiJ58+4Gc\nXIx4pCTHNeHMqZyYCr85FegPyx8vDFLhBK3HsScF3XdgP5gbVA7KbyrNjeWd4xrVwM6QKWgi+eYl\nOb1TnCYqUMKE/+/IC+w700t5lz1h9a0tR5ZTXB9U1JS57djWNaRiyLfIZIhj1QaazxREtg+1Dsay\ncUJjnvA7SKg50gTWR6ZIbbn8GXm9vinuw6QR0wR4vyHXwrTZ6k8M5kqBlkFj7iO4/zTmhEJfVrgg\ngTiYVk4KU2Sbr079cpgc3Rp21oScXk6yTSOmAX0zTZeCjHZzRerITR025DuS4NyAIDfoGnkdJ/Ig\ns1Pr84B2LGZcH7ci0MbK9C4y2j/A7WNrSoWaO83tg0oOzJkCxDsMDa2kn01XCS0gh0nlhZbEq+0W\n0b9DDjuLdvRBhMxBpzVoBOjWY6x2Nh5BAjxzxjF23Obm58U14zxGUKikzl1Dm6DqHv5AkbAV+dfF\n8rfcizxvxAwmzGe6RsIC5oOvJ+9Dr2OgsjFAPHjwuTJD/vLf/I2IiMx29XPfvtGT/ZcvfyciIsHH\nc+qHqxxjp0dHxAXdefW1IoF7r5TZc+f7P9DvP1TUZgOk4BnrDVS+FlAhx1gNnPDjwOOsYHAYCg9T\nxIEROMy0vSZ/r/fJO2UCvfzmqYiItLhlxLCuqpfEX9rnwV8os2bvE63XUzRsLqkvoUPqFn0R2FUT\nAurdh4r4nlaqVeOstT51BXuLeL7Vg7phMW2dnjkTgGq1zE1zPvNw2UtYdwoYkAFjtEVfKkaToDFX\nQJ7PNfYXzKTI0tyJfb2GFgmJHS6aFF09yOBSR+7dgSKbS1lvGl+wLCNjjsCAaH1j0uj3IR9IRB0L\n4pKxVDP02tyKNaUzphzXNfRqAuoOam6aJI1prQBVeqyRPYGxExLLcVWqzXHB1hGWFYexlILWD2jm\nWDzq+GADo8ccbUK+V8Kwo1rSE6+8Le/0ZsULbC4QhyL0OLiuF9lzE3NoNge7uAFEOsApwjNTFNbm\nmLnWUN/QdN9AynPYbrFZScL46czJh3W5ZS64UHC68C1rLJhU0sPmMl2NGEZjBYPFM2S3hNlI7OyY\ng+ZEFghBsKS/iO9rWL0z4nnB+hFY/9s67UYifKaHqWaEF8/BFRN9mgHNFI/43OEYZXpyDYtbCkpe\nssYEJoTHGB1K2L6DuaPxZ/ZjobU1ugtB9t05/n9aEtpg77HGx90QBBd3v7OvVZOhqDRObowtS7wZ\neO4SLa8SZ67DiTJj9u7rz0cwWk4LvU53qYycl796qr//WhmKOzjneI+UeRLAuMxOYZScK+Lc4Vr0\nyceq2RITD90GTZlAfx7cVa2a9Eg/J42ujy9fKeNFjnVurKGidi90nbpe6XMdP1cdj+iuskAmR2Zn\nQvtPtX6psbnQ9+igjf3hja43j419l+DMw1x7fF/r9+ieauv4vMZUMFg9dKaMmdT80Z6zWuYSsd/f\nER1XJcyg+BKdJwbo65fa3t0FGhH+W8bNnysu+8AWlq5p+gk6ZiWmcO6+Mi7C3f13vl+80D5zQfud\nQe+d7LOPgkGyOYPhzRjzma8dDmE+Gowr+sifKutggWPYm5fKnDCnWWToxDlmTrIvLtjnnbJmNbwX\nzHa0j1ewl+ZLHCoXWq8r3lGc2zpGG+53udax99mc/S2MDR/txRoX0Z64h+ybdNA0ZjxvyxgZTMqF\nfXO4o8+5hH3rok+aXesDrGBJTGLiFWOiQ6/K9EGnuJgOMJ+8A1i7U52jSORstTbD+rtZEH9aPDHG\nqPbbOmP9S5Wdsn+LPUhv75Kwk9FrKmHUODgK+eYcjObkHuzB/lyf8wX769y1d9C3DMuucyR3w+07\n28Ua97VDrWOcaPyIxNhBXJt3nDREN2iifT1b6OdPOo0bHro70V1j5WrbXr98qs98qr/vfqpahOml\nxvcdNP78Wu9zTp9UsHz71hzOtL62B5I1up67jC00xhqcfI2F5aKnlsO+3WGt63hnmQR6P5+90xWa\nMT4bODeiPahvmWu8DBsdg8GpOquZvqbcRcDpv1FGpsxYxjKWsYxlLGMZy1jGMpaxjGUsYxnLBygf\nlCnTglTUQBk9p5EuJ0oNTJnUEEny1zs0XCSCPYHf+DZPm1PTihy2AYZMxal1ACvEPO57y/kHsa7I\nJ+QATHJOkQV2gcPpoo+TUADLoTHHHMsvhwHT4hYScNRv+fhdCTJk1j+c1AWWEA4a5oD4tJzGJrAs\nOlBHD5ZCwd8nPH8fWZ53LC0aHz4Iqp20S6mfaU1BH4Ry3elFjJQTk6tvbgwuEKC3MWQMRHOCm4cJ\nVIP8ViEq9Pn7uS8FtPUk1vpnMH3shNmYIC6MjAHXBw+IuAeOcbHh8GnbAVTGgU2RuOZspddrzAGr\n0fYoFtwHrQXTCujRvBGYO8FgLkzcF3S9aAweh0nDmHfRP2nE4HTYBPRtB8JprDDLKzeGShxsaAcY\nM7ST5eh6IOyhOccwVvrEkFO9zwIrGI98UJ96R8zJmn7z+VwPQmsBJASlzLfaQeRlMndMmd3cnIKE\nk//KnGj073uuaVEw525QZijYt4326QQGWo9SvW9MNXJer0EmnWvYBYYu4YjSw86KO22zAUV9Hwac\nORssUsbmp5pDf++zT/X6IAb/7y//s4iIPPvf/5OIiHgHqrXy7x78nd43VxRnzZh7fF+v//Q3IJhf\nk//9PUVAP/73+v0THw2WZ2gZoD/kT3AFYiw7G8Yg6FxBnAtgG2w67gMKZUikRFqhs+eK1v3mV+Qh\nzxQB2fuJPq/AzkhAUNwDnST3/+2P9c+gVldr1QroyZ+ewza7yrVd26f6PIczRQP3F5pnfv21MpmE\nOWAOPak5FHXvp0/l0E4YREhBbDLExyEWxhPmOChdz9h1iGEO7VjA9hoIGslgiK1eP/ZxIbH1AnrC\n0MEQiEHhWEecoJGQNcGJTP8HBhljbgBJ3Or/ID7i4FpBFaXCyYaoIg30JC+xtQdWGIxC1zPdDtAv\n1qgI1o9pvrTct4At5JvrG9O1Yf5CfhAfZLNG72wCSi64PJnElodOyACNqGdOm2bZAAPSIUE9xgVq\nA/rmwwRqDXnEPamUtwySmxRzaDTnQmP2ADyKRxyu3HfZWsby7dCjcktbk2l3xlje27qKnhLskGnM\nGGeO1OhjJBtcW4jf5l4YxuaCiIZQ+5Y1VpeOCLosAorZUc/WHMa8d7WKWsZbwP7AISgUnWnQwGKm\nv2aw8Go06nzTjrD9gY23zpMSRqFH3zk4cLXo6STk8BfMi6FD/wbmYg0TJsHxqkbfyIEFVSBAFsKu\nHNAqcGBn+QZew4Rr0XEzDpW5rN20ZCvtg+VK42PJejOs9Ocd9CeefKxMDmcXhsUODBmYOoLzVYbu\nh7l/5mud07uwnTzf9NlYp/Y13q5A1ZeXysxx3ryhhuxlYH6bM06+VLbEyaUyNtl6yMzTuH54qNcP\n7qHlMiVQzjTe791TdkB7pPVL9mAInVFv1rP0iv45QPdprkzPZ7kyRl99/Qf9/LGuFwvWlQXuJi9/\nq5/75aki7AGo/uGO1mexon7onFwP2g5XuKhcZvq97ETrs2v76//lf5N//ad/kv0jfQ4vUSbQEmbO\nC2JUPej6XexoLJrBYG0GaBE3KEFnVDScv3CsiRc6FmzerenjdMdYlvq1S5gyPWwFJ9Df99Mn1EnR\n9iGHvbvNCoDpvJef1okAACAASURBVNBn9K/0768vifcXtA1MDAfWaQk7oCy0nouFxSc0vohXFbp5\nHZsFD+Z0UekavoYl8NH0kT4ITjYJG/XLQMfMqxwm0Etle81g1Czm2j4h7KjsUuvPNlYSshEyGCIR\nbFuHeG/UxT2kUvwetgLvJz1OW4e8A0aM8RwWX0b9097c7qj3mbZbgkNZgEuVc6Kf90m/8Pr3Y2Y6\nvKOmrCcXK33e+ULru6IfjqIFzw97GV0+c0yr0H40V8Rd3o1NV+rkGsY/c6acsteZv63vNNiX3TaU\nBubuCSx21zQJ0Xat0T/zCSAZ9z7/Rtk7lYY9OZhqX8/eaNsuVzqW+wPc2Hy9z/EaxuARbkedju0A\nVml9qv+fZzDC2ZJ4ZEm0vbZFRJ+Z7JAxJOe8M17CyIs2+vngkHMFNAQnsHo7mJBpYQxwshPWaN+u\njR6lceXWbd2Xn9U6pkNemnd5x7w0pvoSxmT93e82I1NmLGMZy1jGMpaxjGUsYxnLWMYylrGM5QOU\nD8qUMZ2OnpPsjtxOz9PTP6MttI45H+C+AXrXd4aYgtqBoFSW32fg0fY+MFNaY2u8+/ge9/HMwQGm\nS2JOFFtmDuiSMW7QIam5Xorqvs+ZVwirpIbR45hSOorZgGfiggo2nNibg1FKYngPcuR2pr2DIxA5\nyhNONI3p4xgjYAi3p46WMx6RH5cZ4tmZmjmor7n8mPMTGgQDJ9URKLkDIrbGqcpHg6DGFSgqOL1M\nzI3h/YZcZ0wTTi1LMXV02A/ktk6gNTkZqvWmkbIC0UzJoUQfpIFhEoIl96Fp64B+g8yuDfE14y+Q\n4NY3Ry0Uv8UYQ+S08v9+YDQE0LQCtJ3TVx/Es4atEcIC88gFrskhdUEyO99Obw2h0FPbgfp4IL0N\ndACX9upwVZE1zg/oJHWc9m4YowiRiwf6aEhwOEt5DPqVbtzAeggZewFaNDG5q0Nq/YbjD/ndG1My\nNzYcDByZaa7zZKmn4zcpFXWvYC1FiDCFMBVqcv79CbnhoAYlji0uKHUASu2jX1GH1lbkvpoyPoya\nmaHjuAVdloq4XeKedPJr/T0QRQK//3c/12dN9GRd1r/Qevvah5NA0RAfZl0y098//56iY85t/f36\nxdciIrIs3nB9nB0sHlke9pSxBrMkiMzNjRxhxr7pELXkI69hv9X/p2oDyJV+7/P/qFovMzRtXh3/\nXu+zi37Fjv580Spym6NrVJwoyjRlDq7PdWx03yhyW59rvWe39bpxa2MErTH0LRr6y5uC0k3eT1Nm\nYIz5MG6mMIYqg14mIPHkn7foYgxoIXjkNPcpkwSHNYtoDTCnB21kAMmZ+NuFiHqgJcR6FRE763Ur\nOQwN35wJcb8pyZ039yFznmpd05bhDsY0w41naNEGIO4HVgdbEy3e4QRjRjUOfVDwTDEaIgGs0wbd\nNR/GSgM85RGv/KkxMNH9AO3OTacNVGsSGetT+9Z01pha4rNueSXaK8S1BkpQSD2l1bEWoPXSgVi6\nOzd3TBER6XlOIX4HuJxAkJEG1G0YbK+Cthrx34OdNmDHl2xwrSP/PDJmEnHchWHSw6Rp+NzQg1yD\nMHus5bVpu8F89WBm+r5xopQ5NzDnvcjWE1i03K+DVRI5oIOs87buyZT1k3hueldhZuOJOcC6a7pY\nHuy7hj1d37WSEJ/qzvYnMBFhZW14lgQtvQo2a8KaYa5ltvb39LGDfkPCGmtjv+a6AwhuSN8Mg+nx\nMMbQcTCtm5uWnrW0o29a1oVkRxl+S2D9OyDJbQbSe4k7oGtrOmsz+kfnS/3/F7/7FxEROWVOOAda\n748efCEiIj/6S9XsGmAtPH2pLlCygvUb6zqx80DjaYqOyCW6IquSsVRqfL/COfPipcbpoxOt7xRN\nmdu3VePBT3UuFcb0ga1renlTgTG5o+1+VSp74uxSEfQAnZD4lsbXlL1APdPv37+njBzbXy/fKAth\nKfrz+kLn+Jv/5x9FROQZMdI1O6+FIvkVYz3dxw3VhKtEpPJKuXqm69MApXyxq1pz0wNcDWFs3Z6i\n23IJMn5+c6aMuaIFMBB75qE5OQYwiR3mY5YT11KYdDPVahkWep1ljhPjGfve28TDqTHidKzNmNcB\nbSqH2ocXIW0JM7oszKVT75OJMlamMGl25vq98g4alOhl+OjJhcQrn3Uot33kRvv4fGH6beg6sdeY\nTLWPhl1tjyvYFxen7IGIu6Zv1DowYdiLtbz7sUWSHgZPkaE7Yg5Avtb/3pHOhZNX+v/naLEkp7pH\nO5zSbgHs3E7H/j778hms3eNv2DuynrU1cQ9nnwBG68GEd9cblgl7kYT14BaMyOwNe7Y7rHM+rO21\n1v/171WnxL9H7II951O/dIoOXwuTaqWaP84t9lpo6LT2giMi3sSRNy/fSHOu92hj2O7EuZ73cbcl\niwDW/56jceYcbcMQXaHI1b18zBqabdDBgakS5+wl2Nd1aEEtYO94uL9VOIC5ZIjYuYA5Ucad2Yza\nfpF3CdboZg57FmdIL+DdxFU22ZT37eIc5g+aMZtbXJ9sgYysiiUv7DF7qDmaO+GZ9kENY9DDmXDe\n0Ke8c1fZd7v9jUyZsYxlLGMZy1jGMpaxjGUsYxnLWMYylg9QPihTJjYNGPIAzaO9MXSnsZxgmCeo\n6udoDLiGgIAobE3rYaT0fL7hRMsBcYlA4ZqMPHcQmR6kxZ+Qn2l5mp2e5qagV6aNYE4VXsrJHuwR\nS8NvQEorGC0uSO1A/nxSmssLaGBleifcF/Sxw9GgtRNFcugcWAhJBhIA0tTj4hSCDPV+JQG53yX/\n55b2rO+6TbScPEeZnu7VnACHoEshqO7GNEdMTADEzqzZDcG0dO6BE3VX3g/dziY8M3nnMboNDsIN\nho4NnZ58R5YDC1uoRNwmpk1zTqQ9UJYal5CWfG47FW1AllNcjXJOX1ec7Ds4Q4hpGYAgB5ywdzx/\nvnUf0R8pCKMDAt30nEbD8OkTxjztFM85pc5pTxhMhu01WLuYvoZPrq3lnJobUsfptWv587BIWsaw\n2+rJ+gBKmdn3cQgaQBByEAwxJB6UrIqMpaJ/NuS9Jg/UnruFARRvQNtAeCEwSbTBRct5i279uVLj\nyiYwzQJcJTYglVGKivwGNIGx0AfkosqCR4LVgz7D4BlLjLFGtEy4TwUKZij/JldksAdB9HBzeHBf\nUZu//slfi4jIL779P/Rzz5XpsrijLhuHviIL31zRJrCIOtwrVtd6Av8yU1TLBVXJ+dwcpsuA1k1C\nPnEzMRYVyIS5nfC9vjdUijH9AocCcvJ/9Nm/FRGRT36gTJl/LZQhUzN2ahgmjjmfETfr14rOdOiI\nXJ8qWud+Q7ujB3Lvr5U5dOt7n4mISJUaKwCGDEIWIZo+3UYR38EGzU0LH6/XxCLQroFxMMCScNEU\n8kwLDB2kDcMssDFODOhcY8ww5gNijLlqVcRSGFkhaGXtmoMESL9MJTEmCfO5BFTBOEsqdA0C0Bcx\n9wTTigJNignEHfoZVavfM6eyyBggxFNhfXAjW4tApZJ3XY2qwdx+cJsD4XW5f42WTQjqNUT8DoNv\nIO5GIW2O9hVLn7is/S7sCZd62/IysLabq1DXWy69xpkcbYKBOJzKzdFt/QJzpDKGEPG5Yyyyl5iC\n8pWm94G2jjkxsgRLQ3yLTP8oME0e/dVjDLWwsBKcIwrmRh+ZM5j+PWLsNBF7EfqpkLfx0vE98ejX\ntmd9Yu8ywE4IYasUxqDNDRVkz4ELoENs9V2NBRVs4Qg7FAdqVUd9B2JCzJzokkB6mMwNjGIvhz0A\n68uFbdXDfHFgfVYFayB1DdEM68wdD8ZaR3wYmN+mtyawaSvEBf4/9t4t1tL0rPN7vvNhrbXXPu9d\n56ru9om28YFMiJl4AmiUOAcJFAlIsC9Q0GgUiCJlSDyEYZCATGY4TERgUJAcAZYlFCRuwsVIJjcT\niYg4MMZjt+12t7u7qqurau/a53X4zodcPL9nlYvB7V1w0aPke2629t5rfYf3e9/nfb/3/3/+/xpm\nWuLoXOfRtxq5/FwjIjLdVObIXqprgZg+MP+GMiMfPdK8dwqT0UU3bWNzzHm1zfc9zffevo7l29cU\nlR87qsmVZ3p/i1Tb+HGjeb99Te9je08ZHh/5sM4rM5x6etYKMtPrikrtY7sv6PFvT1WT5eRYv/8Y\nZPf0gbrdFWjVLB+oltjBhd5HzLp3gWhjCtvCGEgZa62uNC0zvd+rzykbY+umzoM7d5QR8/CuMnWO\nHinz88v/Cg0u2mnniiLwkc/8vI2bFQ46E/Radnb1vrp1WCXk0DmsiMhBz09E3HddlfN7epzlOYg5\nTPM95qmrIaxg3BMjV4+zvLg8hm3uYzkUa5/1oJPDeOFdYfO6spgW6HSkDX1knbkl1LbqL3TtUjJX\nT2Gcm3aVhwZVcaB6PD3s4DvPa9t4uIkWc1gL5DNnR9u2gUV1whpmA4ZJesr8YW6hDlo0VA9krDfd\nNdxKyZcZrIAEja2e6aTgc52rz9ZFS6XUri01VQZFA4sNvaAI1z8XjbAWhnzD2iustV0dNGHWbyo7\nWVhTzabMp29pH8lzHaPBGc/6Jk6SB/r9ag8NzF3VQwpTPU4B46c5Q5cPXalpr885jbTdLxsL8uU6\n78JIYsrx6zib8X6ztqV6hX53yk/WRKesNXZgqXXa0GcHOGTSD0sYPw7X2fF+U06eaHzuOxOZRYVM\nIr3XZFPHw2NjILI+6kyvZsS6hXFRwZKsPN4lejSd0Lk5/gYMdd5FzlmHV2M0G2OeWc4aiITu0ydK\n1uE967KeOccZUYVxgt5QZe+s9Jle+8qU8ezQh33WGOVS2/AI17/1fb2/W6ky1Gewv/rMnLFYz42p\nkDF9I6pGFjCJOjYkQnOZWmrfkvLt2bsDU2aIIYYYYoghhhhiiCGGGGKIIYYY4h2Id5QpY3ohFTv5\nPXVuQaW/B6BPhiRW7FK6AbAZu80p6FPBztSIGriSnwloVIfXe16A/lCD1nTGHgF+o1Yu8Kl3hy1Q\nBlaHr99PHHOOoQ4cVMskayJYCaYxkIHqrfRdQPMMwV6AnJobSkLdfIFGhgPLIE2poaOeUdAXqVAg\nd2CJeCDifpiIoMQf17orOQf9HVfGNgJ5RRm6SPTzKfoUJbWSDcyZkWmq9IaM4qZDfbSbUVOLy09G\njb/XP6lhvFSYOxS7kYXVFVojgSQbKuOjct/Deuhz2A6wohxq5x10hxxqcCfQm0yfxIvZscclJGJ3\ntmFXtl80fI46QVA5p7c6Sf05LnHIMukDNAhSkMsFqJ8/NpcmrhsNGWvvgrGQ8L0chozbPe2WVJqW\nDXpFVk/vjnVsZTmoYmV6FiAEQLslVkABDBv7vqGabFZLAhJS2OMExawZO35rDhn6vNyY+2H32oeR\nVfG8/Ll+vuG5VgVQ8yXCpd7YhfW0ymrG/oHlFcFcyBinDsyLLNVrGM+MTWZq7Bo5z35CH1yivyQp\nGi5oCHggwiWuEc4jHGD2tG0ePlI06o9/5//Q84HS3HxR3ZVK8lpF27Yw4bbWFVV6q1DXimah179G\nzXtS08dh4C3Q+1hDn6OEZpCAVJew4/rS9Im0T41gkWXc75U7WnP7we9XhkyngKecvQQ676P7cwFK\nzvUenel9duY69A1Fk6qvgP6c6rO/9TeUIfS+j35ERETmvaJdb9xT5NRYHT1112VoLAjgpMR4eJcL\nYz0UK80tjmeaZQtDPPTzzQjUkvkoYczUpq/h2PyBdkFMLTEoX2NMGWqL/SXsRPq+BzITGuvMz6UB\nRa/N0anSczXMDZCgpGHuqGtjeTJ3cu0OyGJFfnB604xCi8Bc7HDbMAeyDoGhHm0rx5iNILQeqFXI\nOHVBu1pOnDIGOpgSLnN2ERoDJn+qDSVBCwDGTWT6PitHHFwxyPNj/r80xwVQK2FeiRk7NIv47bPp\nhfiZuTihoQAzp1m5XcG4RJ8pZd40ZNwB6uxh7Fi7eNS958zJbmdrA5iegbHxrG/AVGGN4lgZOoxT\ncx6KOX73TZoyZe1I4tmaity40raByQJTKYYx24JAd6yVavpTip5SzXrBzlJwHa2x61auS7CdzVCy\n8MXHCSoyNhQaIH2v+cnJNU+bBl+BHp25yJmWnsNP05gKjOXFcavKNFq4hhz3vZBx5pt7COtBHF68\n/NmYMg6sryDT425d1fzd7cKQRN/CsyXKNdYQmaLZc+a8g4Uip4s3FbWPKxjZMLU3NvTzL1xVBuEb\nJ8pcOTtWTZRX/+xfiYhIAcOm87RPLE4ZA7leX3+ueXV0VZHo/T1lX6xPtd3Xb2hi7/j7wakyYy5e\nU/rC+ULzmmzTl0o9XzFl/YlDmdjahvXo9o6e78q+Hv/RI9ol1fnA2H0u8+gpulA9zO9yA90q2MST\nEWwA3P6OD1VLp1EirOxG2n4vbN7WduB9oGi1fUVErm5vygkMrJNK+9+rD+6KiMjhI/382lSZm9d2\nce4xva2VNti3D/to1MPKgjFTHMBIR+8mZp3VtPqMzPVTyKNj5ugQhsPWvrKbzIA2MIcx3pFmMNeq\nh7Ql2iKbaI7M7Z2GPmEWaAVsshRX1jzTv1/Ysze3N2O1sa4OWXNFMHMgL0iFCFfP8VMWjh66d0kF\ns50qhM3nlJGSncDQZv16E2euM/J9xdqnRaMsZAE6p885sFSPHqvj49pUWRGTiV5fsQfDkPeTC9Y6\nNxtjBGo+j40pTj7evKHskbMT1j5ovZnLbIHW4jy8vGuoiKwcdyPmw4jFays61l2qLXLmo4C1hsfQ\n86Z6X1vk5wtctnI0yPb2dO3YX9H/331Z16ZzmFhBsr26lCrspatdOUNXqJvB6PV1vMaVPiMHZlrt\nwVwUdHpYX5nupgO70+VdzGdFvax13ehuKeNw96bmnSW6o72VmjDZ2L3nsDNN+1XQ5DqCYbnFnLUL\nI2ZGn80y7Ws1c9+1db2vk7uaR5vHvGvAGqtDtLjMCe0hGonXdSw5e7C9WGPFF+w7wAprzlhfmkYl\nc7OX2fry7d+BB6bMEEMMMcQQQwwxxBBDDDHEEEMMMcQ7EO8oU8Zh99Rh98+nPtpF1yJb6OWl7IgF\nOOr4oFVL2BqmlxLg+NDjHtI46KA4prIP8tJRSwYbBNmQFcshox4+ZDfWQ9vABwHtXT1f24BUizkS\n+FwXqCbsjAaYK6EevEX1vQDJGce6u+rkIErUUFe0B7IAsrT7A+1s2RkU6vgdGEfm9rSiMXTBSpG+\nY/cwjtghN7SKrmA1oYlnrj76u0udnwGcK3V5dvIzdsDbxlyC9HMeTlNjD5V53xDQy0UKU6O1n5E5\nZOnPwnYhrabfs5pWrtN9mj1hytvOAoSCJjR3E0FPRHxTy6dPggQixSI1jJtw5dahPwxJjEHJc6ux\nB9kEgJCgN52Mp53FAmMz5DGHBbEG8M3pGxF1kAUMmx49IVee1mqoqJfvxTSBUPmHVWU4sgOroaOP\nBvRx4yIA7kmE4nm2qpdk95pd8dbaDwaOC21sjn5SGKGm7+hOvuubHgxsA9gS/Rro2yUCwE0q2tin\nz01AubMQmBmmQkyNumk7IS0gM/JOjF5RBty+Jta39FmMGXc1Nf85KJVzqojC7K629VqqSNvuNUVS\nw7meKE4UGfjwv/1+/f973st1gmjSlyLYDKOrel8nLz/t1pOVTyPHVaLXtwaBpYcRE8M0MW0s0+1p\n0Mzx6MM5fX6cKFKQvAfWwC19Fm+8qejNYqlISgNjJZ7iGFQrkhCCiGRAmAevwFR6Veuh3/Ohj4mI\nyPu/Wxky51zwNx4rQ8b0j3r0RZKV45iepzIG4OzZMIXadLSsnh79jr7ALQC9pBp2gblW1T65DVQy\nxmGtAWmvYcnFaDl0Me1B325XTE9zsABdNDYJ81kvjrg2lzAeMK9bsbYK5hynNtbo01om5n6UoXMW\ngDC2MBpNM8zFcaUS+gSMNh9NLiOsSEnehfrQo29WoA2TxsaoIUEw17rMUR3uGXFnuiLkXTS8ApwW\nje2WAQEHpfbNirlxDDKYkW969OIq2Aq9uZkwLzmwH8o1E5q7XDgwWMawOUxzx5gkwrN3TBcoMEcI\nBi1omOmgSP00M8n1zflMowX1M/cq65uuuWIVxhbhudPuLboepglmaxsRkVFQr/SiAnN3Ip+boxGy\nSdIaMpzofZUwphKQ4ox5N0SLRgpzg9IOkixwpgDhT+l3/fIJY9Qjf/bmmIiTYoDWh8O9ZEzGIS4e\nNW4X5gjYj0HL0RpsmMNGAY42MDW6UO/Jh1lTmH4ZTOcQx6+aObSrd+VZolnianlszoTatrubmu8L\nKEG9adbAYj2qT7kvEFxjStNmZ6eaV+tjzaMZqP/UMUcYZZxcf1F/vvqa5styrtdzUsBQ5Fn5U9ax\nqR4vJ8995QtfERGRMc4+O1dviIhITJ/f3Ydd8SIMz1oZPcvG1r3kT5BygUmSmnYPfev8GC23r2t7\nl/yeXFN0frSt971//UP6O3ocPg5k1ble/+wCvT3GYIhmzPIcRhXsrCNckjZva/s0CE8l36QpE8UT\nmV5jXnO0vc5PzPFM7/us0fZ88GX9/w5r2421iVw2yoR13QnvAOZAhm6NAzPuGP0eW397MOyMfVRn\nuqbwS2WsTDaVsdGMlLXwmPyStdpGQa+6PdLfFRGRR/eUTbQdaB/fSfVnONI10BnrxnPGyhZ6SYke\nXopj3inIaw4aY2um6TLRsTXnWfi8ZxhDM0AMzSEf9FxntYAhuc78EeizX9oYwQGovoIOVawXVKJt\n2NFepmHWky875o8lY2LvHJ0lWGemYZMbm2Op3z9fat9MR6YnapaUMApjffbuxFjVmnPme2jyvKnP\nJ6ueaLRcJlqY8Z0x9E1TDaegYkfbd8R7QRfp9XRUPmyiuZlSiXB2rmP1LNGfe76OtcjGqjluXujz\nWdt9soZyFiJRFYkfKBtriTub5fpqT39Ocb9s0HYqGXcZL9LdhPf5ydOOhKWxQ0v0J2E6H7fax4sj\nGNG4vRUwStwpVQwwUgLc3XquI6O6YwLzb3RT81lzV/vSOfNIR5ofbdn+AXp2vNS1tOkUTR0xFlhn\n85ae/wbvNoew+Q9OWLfDeD4P9H7c+9p+pim72MAdLnn7d5uBKTPEEEMMMcQQQwwxxBBDDDHEEEMM\n8Q7EO8qU6dkN9s1BBk2FcgGaBGJZUZzrLfX/NUiHsSUqPtdn1N3ByrCasAbkssWJwKcmOAIVyqjD\ntHq9AG2bnp0x0wfx0KSpQBP7hOvqDfcC5VyVnrI7jrtHAlLamRI7tXYlCKvt0jawPgRkOAOBjmDe\nVNRBtrEiQgk7kQVoWQpUYY5F0nnioUlgCKTD7mJJD4jpCl1vauns6KNh0oxROYcd4LNTXoBSmctF\ng35FBKrSpfr7EhZQkr69R/tfjCX3auiXuXSMUlyVQJkvYGgkaAz0IMYe6LYDC6Jb8vvYWFraRhF1\n5qak3SxBctm5btBq6Xt23gM9T12gk2HsKpDFAsaRA5Ol4HoiNFuq0dOaCYVHH2SjfQwiagJFHYhq\nzG5sQd25T590zN0IhMZDG6E2R4oCHQxO61Jfudq9BhGO2d3uqWVt0RyKQlO/hzmE9kVBLe4a6GAB\nymXIvAtrRSYgKIzRMNRd495ThMHkYIKVccblU5OLXsYUJK1kPM9N+wV9m2yCZhO/G50rHlGnXMD0\nQEXeBT0q0VWouOem5pmD2CZ0yjdf0h3z8IGe/4UXdcf+xg1FK8Jb2me+8z9RjZY771GmzHmnbfD4\nQHf2w5jaVhDkHKR4MdfP2Rjz0TdyTXOqtcGBXhE6EhMYGUGqjVy4IH4gnj21ry7IbEQnvAAhfFwr\nQ+at42/o4clzcwfnAkP5YD8Yc0/uwmL4hmoT7Dz/XSIi8j3/6d8SEZGTid7faakIcTlDk4X5YA0U\nKYcpE8xgLYxwsElWifZSYe5ZJc/fjbUPmnOOB6pXm4ZM8MS9TkSk5PcSGl5Q22CCnUYuNP2VFeul\nMD0Y/g8YWoIs+bAYOgmkxP1t5Rpk2iIwZCIcCSpjnnAvibm5kU8cY5XCjGhgzhkKY3k9YtwasUOW\nfI/6btNJamDEmEaAC9JZMg8kzJkOrNKMz4W4BHkC28gkE2A4urBZfRC8ijzTwsjwzbEwNeEQG8Mc\nHxC8gCG4cuIxrRZjsFwyKpwlepwge8Z4xHxRzsnz6FI4iPwsK1s7mO0SaxPaz0NLx6UPZczR/ooZ\nZfehzzfg+Danu+Ya2OqYCmDf9rBhW//JffaNL00Lk5SxHKdcD2sP02QLXZDswnT09Dw2D3og3wKT\ns6KvM/0IJDyJQWprsTUKz72PVm5nTcJagWPkibaVW2he9OgrxmI1pZeSa4+wIiMtSQzraAkTxYwB\nA9PJo7cnNqnCCupLc4iC7eU8Wx6Zcbh7914WEZFFode9e0tZCs9dvaWfg5G4aFTT5AKW7tZzet6d\nkTI66m1lARSdotsznHDuf11ZDtkf6/cr2KN71xRJ3tqC0fJunU8e5Yr296wZEvJaua73fXGg7lD9\na6q3UfCM772lWmWmqTWZ6tiKb6DJxu/jBP0PEOmk0793nMfdYUzgVnI8UycgFzaGh4vg3gvKHD06\nV62GV76qbn4311WrImAMJi2MTZhJSxYvu7d1PnW3lGm5SU45uaf3d3BX729kSHj8ZM25nsfiwS6o\nd8nb27DKWAu2x6wPpnrggLF9Pru8XkhQWT6ErYq+T7qlzyIQXH14Znvr2rYnrK9dWPnVhc69MY4t\nHnm5hbnewjwPyZvC3Nge6drj4Aw9DBgzWyNF8cfXtY9uwIJ4BEsoQ39v8Vh/HxuzmbGWHekz7egL\na+iuzZCoMUa7Qx+0dSWvQuKahs2FPqsJ+XurV3bGQ965jOVrTM2atVhPfo9YuwSsZVL0ku59TS9k\nXpp7FevSyt7NyN8wggKqEU7JITPYZCHsh9ORHn96Q/v4Ixx7lrCVA5wVXfrURfNsTJkI5y+f9xeI\nkuLbux1MhQPDxgAAIABJREFUneMKdp652K7hxrcFaxDNocVC30/Gm7x/+OZkjAZOa5o8zHPeE821\ns/6RjKfr4pDgatYcNXbF3hpOUQgHJehAPjjRPpWu67q122D9yjtEj/ZKCJNxBmN5F3Z+VJmWot7b\nOQzIq5RltLBoF5X2vRydn8mG5oe81nXjOZUu13YZY7hCze5/XW+QOdOFfZTB/rrwzKlWv2dGiZDC\nJIC1VDJXR67eX1Lh1IU+0a3nNa/NT6mEYVoZb8LM38QRyxuYMkMMMcQQQwwxxBBDDDHEEEMMMcQQ\n/8bFO8uUYUM6AFVpQPlcQ7RBl7ocpwGgE9NyEZDHAFEJ25QtVqwN/UICuigg3E5qFhZ6ntTDVQW0\nyUP93UNzIQIJaFenBXFewi6h9s0cfwKQ7NzQKP5ecx2GxI5BoebmBMQWnbEE7GcAvOijGVFXepyY\n6++pB49BI0tcQlyO7/St+NQkFqi9G2JpO/oV92SohwdC6IEueebKQP2w7YLSRNLCHlrtJsL68UDg\nHOr1PBCDy4ZPjWgRUKMLaypHN6h2jXWk55+jMeCCVqcwUiA/SAD+loEYhmjnlMBsCTc0B11pWlgI\noOi+Y0gqDBPa3GH3tgflDzJOCJPEw/Gn49n7xvICxfPQO5GE85ZW766fMxeTBtTQAWFucZxIQCAC\nHLkymEEpWgUljJrGt+Px4EwDiDrtOU4ZKe3k4zDWm5q+ab9Qm+vAMlnCkvC4X5Ol7xAEWGFVIAwt\n6GKUPF3XaUi8557JZaOF4TbDqWoCem/4ZwcNx9Bjcc1hixpPUIbUMxc1/g7q6xZajxzgriMB9cWV\n3sPhY+q9D/Qut3aVAfOh7/1eERE52VD04vWLr4mIyFGojJiTN/+U4zBGRO95TqIb0zZnM0VOCxg7\nLii+t9C26lH+8dhjz3P6NrW47QzGBwjyKISdhMZMDuMv6PX+z80xgr6Tn9OXYB+01Ax3tHe3qssm\nx5wp+hcfUA8dKgL6/He+T9vvjp739Xv/j4iIHDxUpkwboyUBmtOTS1w0cpYQfEKQC0PdLhs99fdp\nqMhFizZNz302c9hnoIelUR5BO11zj+nMIQiWSf20A1CPxsFipevBGKRHxmPLz+Zox+9NKSPYouaG\nEdvIAW2qI+vV2vcC06Vhcopwfyhzbfsc3Yox2lqVURsio2bAUOGejezjCK5PzIkuzI12ZZpEvmLS\n7fh/BtrsQFMtYcOWIHUhyF1HfqiWPHPmn5Q2Lz1zNdL7X4CiTYxgGC34P23s4nrEoqKj/cLk2ZiZ\nDshpBkKcjMhzGYwkWLmmMeM2zA88877U+1nA1vVl1WlERMTDzc8ZgYiL6Q6Rk9B4ExBoE/UyvTkf\nF8SMvjxGb69fUZ1EGjcTl7E6sb6JhpCNKc8cyGBgOrbGQEyo4/m1sIBjrqurOF6Hpo25GTJ/GB3N\niZ8407msWyLYQUueJU0gDHdTcZCGPuww97v00SV9M1jJuOHqYRon0H47RPhc3DkBYiVqV51HREQK\nWELeN7GMLhUe43VX0fnTmebtkz9XxPjOsbrKVehPjPYNzdd5xFvyDMnH6ycsxkC9j+iy4RWuEwQY\ngri8dapaMg8UOJaNfZg0sT7TDTRqHs6UjRDNYASyXt57/jm9ri39uzmIvfUGGgi4leQwffb3VYxh\nREO2INkhDMsFawPTaPRZ+4z2tH0ctCGzY2VrjJiPylSR7pZ57dFryk4oL3R+9Iy56eHidEPbL7/A\n0e1AG+AlHGcWJ3q/5splLLB1T78nInLva1+T6zdu63GvqrbbvjEXWSRewF5wySXuKQ6XxblcPtDo\nYg3RolMXok+2ncI0B73fRZslo48Wubb9kvVlzTr6VEmnEm3yrgDrrIQSndr6e0vn3I1tbYu3vq4s\n1wAdjK111c2AfCqTDZ4JbIGzzFzYmIvROMzRAxnD6DT9Sw+nx4C5cYHrXY/zWc71+ej8WDGAh5MW\nSwkZ7aguE68ZUrNuFc7bMvjrUxxvYn0mDsexdWnJu+M9dE/GEx2Dc9ZIPmysmjzf0N7OBO0aNLWO\n0VKrTAeLtaXv6tgJ19ByOeS9oHi295uOeXbB8e29KUz1Omqua65LQBlz//EdnI429b5mj3QN5e7w\nXrarYyvL9ItjXvV7mFQ1GpOe+0RPa1l3su+n8nAMW2quPyfXdb3kwe4yPbuTVsdpE+oCrUn1Geyu\nad9rWRdWj9TNrWKcp6yLLD+3MNo68n5WwHplLdSwNnFhyY72yKdUS5yemRuo3ke3qeeXLTrRXXv3\nQsPMpkq0Xkaw+avIXJ/0Gdo2Q8NcmjJvpOgXFYUx6UwHVNvy3NYgF+xDXKWvmQ4oek3fKgamzBBD\nDDHEEEMMMcQQQwwxxBBDDDHEOxDvKFPGau5b0K6yAU0DjWmB7VKusg2pRQadcmET+DFICbu6MchK\nA6rVUNNfw7ZIQFRy03ox5xwQatc1ZFR3vHx21AxlqtjNdjlfCdoVs73b9tSqUh9ecX8eiL0TUQ9O\nvbvVXbaoPMe+QUdWj6n3V6PH4aIb4rDrviz0/BEbgx271XVveiP9imbkVeYGxD1R27+kvtrcHxoY\nJC33GoEAuoGxeUCJQYddMeYMbcNObBnAfMAFRNzLu+qIiETUYVem/QLjxsGPJERzpgYB6NjV9EP0\nQGZW2KfnDVF/d1u+DxOmZge6oE7SgT0Qwwwp0K7pIkMaYQmADLarvksdJQhtB2LqgFyHtE8NArlC\nKM2Zy1ykDHWH8RLhJlLweQO6exgtBX3OHVEP7qA4XqFvgaVPVZhWDYiK0dU4T0hta7eg3RAPCEpz\no+K8aDwkM56PbwX9tAu76WOQcgdWwsI1pxlzG2BMhnrdzlR3qcPl5feLE9D7nPFSobNRG6KJG0Vo\ndcU2XkfaZgsIMBVtH4ByBbCKWpg0MbW0ixC9DeqPhTrw7X29kP0Xn9fvXdW/3330hoiInBwrkhqa\nzlCnsJcLW8mr9TonIagz7K8lbKMx91GNGXtozFQhtf8gfD1tHYHyFBO0GtCnyNFVikGxIvbmjZyU\nwqRJxoosdD7OAvTxmPpzc89b4HCwfMB5YHVduaV17e3+u0REpHlOx8QbmdbJ34chY6hV5xvTSe9v\niX6SERsdtMBWwkjhsznreNTyWtW36Wg0JE4fVX2nNWYkOQB2SUY9ecfnG1BM0/toeH6RPK1xUQAD\nuuZgBNrmwp4IXHNIG6/0akznqIQpIo6Ne1ifOcgm19CgP1QZMYNxKLAmF8ylCWwolz6S44BgiKeh\n4DVMyYB80IByJYyhJrSxARu0MVce7YNhbUwLvQyr7e9BjtMG1Mr6JnkzR+OqJX8nVmNPgXYBwtyT\nj32Yk4E5WOEu15qz2hOBt0tFDONRTOMLHbscbbSE87S4QlWw73zXXDRsrKGdBasuY6xYH7C+HMB8\n9BY4QODM0JlWECyOGn2sVZ9MQBFhSnb5k7HQ+4G4xkgCaRXLHcwbDmOZy1rN3wI7gaWW5AnsQfqD\n0Q9LGJQBbN4KBDyGaVNxnC7wpWWuSTobZ9ompRl2pcwZpk9j7B3ySCHmggFzJIcVxiTYA2mWMOlc\nnpnrwuapcQZk3I46m3N1DRCZNtQlI4HRsp6ACF8wt54pYyU/VwZH0Cokevu2MjJ8H/YZjjqnrykz\nxdlRfQt3okjzGPR9d/OOXi8aY1PTGpszbz1E+0zMAZN1LnoaHbpyG56i5uv7OuaOLzTvv/qqMlf2\nXT3vzr6ed/OKuiGV5Ls81/x//KoyUZZHOlEUExzIbC7n5xuPVdNlfUvZGOm+5qy37ur3Gxg4125e\nExGR97yozNKTLb2eRw/08zM0G5YX+rwOTvX7O/Q9jzzrMU+HG+ifwHa23HAxYz4VkTfvPVzpPE1n\nqumzs4tmIyzoNTQxCp6XrdmOzy7fT0o0uGoYgRk6NX6lLCQHV6YRbkwx176T6jO6N2ecb2gf8wod\nAwsYxQnr1w4nP98xR0I9/ugK2mRoohyQvzzmIgf3pjX6fok+h4ejzcFjnM+MjQYTpqOtTe+pgylX\n4UwZsN4L0HuLeNcZkQePL7TPN4ztBWyJGDpszTtQRB9OcQ0KN/T4j9Gdy8507RBuax97jjn4ITpN\nDWuXguuvZ3r8NNF2S+mr5zAQHbRpNlgTSqz6UJvb2v4Oa8P5sR7H2dTvbYa6xpml5qT4jK/UrFFr\nchKGZOLBOrtr7OO5jinZ5rnD5vYDc5slHy+MOav3UTvalwOYN+FU26dDh6W1NayItGUu9bpIHug9\nhut67PFUGSAJrphHJ5rnTPM1vaNtlbJ+WvXNR7q+nfFu1m/wLrWuN3nK39MruBqfMAGcKgMng8k3\nhsVl76Yz+oyPA6OLPupFoffU78POZ63SoYmzEaJTxzttY3OuZxqz2oZpayxS3mHJC1P2BQodYtKZ\n7ijOYS1rgLUEtzuY9A06fRHvoElho+cvj4EpM8QQQwwxxBBDDDHEEEMMMcQQQwzxDsQ7ypRp2Nlv\nYHqEVv6dgiaB5hXmdsTuqn2upf67oZ7dpa4csXfx2AHrYcSYw9BKEByF897XHa20t/r6p+unG5xt\nOtCfGiebwBx9cJzITcMFVofn2q6y0RpQmwaqzUHVApChEqS4XPJ9ULQA5k89tto6/X4G6pjApCkM\nBkOjJsRlwE99yUA8HQ+EzGrhQTpT0KgehezOQd/H0Bd2/SBwSB+zpZvr8TrT46Fu2VxAInOwGsEO\n6p9Nndy0FCpYToBt0qKR4HL9PmhZjBZM5lsdIH0IFw+PnfEgpGbXJBZQe/eoa2xzGD5jav95li2M\nFc/0fWDadFyHx26qIRiG7i3pIx27pCmIZwhUGYCQzmEUjVpzEOP6cfkI2SV2qdmtDBGnTr8FUXZA\nVg21b2DMBJzPD80hhv7QGbJJ3wZVjLhPA+zNOWbEWPFHdr8gNSDNtT03JAgqmC8pjCRzMqrpqwBB\n0uVcp3t5VGpOnhhRs1nSN3vqkXvry2jG1LAOSq5hxM0VPIMKvRufWvmIGv2qAnGl1jZ/RZ/pnqto\nyq3v0lr9/Lp+7s1CEYXzTFGOJSryMShQHRmLSI+T0obetqIZJc82OwL159lb29axPTPtM+MMJML+\nbvXfLTv3NkZBpvs590tbu+sg1Knej4u70xIkouPZlas6bxgtDxTR9F/X9n3huz4mIiI3P6ztcQ4V\nKfcUAVkconZPog6BzCMcFvIZeRSWWgZzJkxMv0l/Hz8jppDDSOpgKXjMJx76UFWELogYy8v6NjoZ\n9O2VppnpJoESJmijOSXXDdLsoOvidxwPJ7cSRqRn7i+9KyF1ze3CdCD0mBX6E43LNTKXBCloDqyi\nyLTCyC85eSQmDxp7tEevo6O+O6MP0kUlBJXy6YONj9tchzYNbRDyLMTYmXY+8mJuTga+sUb12Tsc\np16AesPyikGz8tX9klcY0zGMjYw+a06EDpo15lrikP9XgiKXDActMp9n2secH0ZKxRgK0YDpYSJ1\nic399AVjMIFIup5eRwgtt8nNJZCxlxrrgDnfNMRgMobMdw59uLRchM5KUj5B3xy/leVyZauo3zdC\npE2g/CP3mX+43xb9ksy3NRN1/47NA8w/HMVyZM4apqHfRTClmq6SxJY/UGGMfWsiTb45VxkThgWS\na+MKXaWOyScFHc7RHHAr2K9oAwSe5r2Cudh0jJzGtAeNiaPHy9GYumy4GWsBnpEDcybaVMT44pQ8\nQJ47elP1PLZGqpfhJprf24lezxrofYLjSgGLrCDPe2eaX3vQ9NKQ4UYh210YNGtb+nO8qQyUnTlM\nHjQXAtaNN8f69+bYmN+KjJ9/DQ2JXFkTPaI/DfOhw7M/gzXh4JC2DXp//d2qpdM/hnXMGnNua4Zb\nitbHsIaPDvU5TXqdF4J1/f/7PqQuJnnEec60vR8++gbXg1bMFb2PHZyLHhZ63bNCmUgRbOp6CRVW\nROT6WM4q/f+jLymj6R7z/9quPpcbN5UZEDMP9tmc411ewyxiHDk4hkWb6GYY4y/Te+6OVBPlbEsZ\nJGmi7CgbsBNf5+6LACfDmbbF6Ioefw1dsvyuaod0mR5nckcZJAHr5pght2SduuA6ZoeIlaABNe60\nLWPyXIf7j8e9BzjFWt7wcPtxYH9WvD+4D/S4/b624WQdRv4pa7MULTHyyhmMlsAcZ0/R/9zgfiP0\nTGCUm5ZjCMOzgJE+2bR3PHVzMmlHWaiuSYpeyfSGPuMjckdv84TRICwW+vmCvnHB2m+NsZ97NrZg\niLrPxt61ebqojAkFg+qanm/3Db2BN9EtvDCH3RvkRPrZFKZ5nutaM3uouSZ8Xv9+Poc5n2t/a1gj\nLpdPmDLLQGTpXUhueQZG9z46NGewu05PdV07ReOppgpjGsCWYry9eax9sWCdtHENph8aTwX516ob\nom291ow1QsRa4PRY898FLNh0nTkGRnMFo21tzPq4MY1Y1vGmp0kffIBVWNagR7Sux53i9oTJsYyZ\nQz3GkLkzeVTIBDO9juUWfQjW2DoU6exU80u5UE2sFoZ74w5MmSGGGGKIIYYYYoghhhhiiCGGGGKI\nf+PiHWXKdFYvTp14zc56h6rxCJS/BOk21WRTcw/Ylc3ZGYvYbfXY0a9z037RnSnzundxUmgC3RVO\nqC1emGc8LIO+QVcFlK6jltmj3rsDtRo7pgeiny+o36ypXQ0LrpM6P4edtIj/mz6Hay5TsFNK9E8y\nq3VbmjOCtsM408/P+fyqxtbqQGmwpu5WrJ3Q9AvYOS9d04wB8YS5YISWBtQqBAmtqNedgLB2tlNt\naJRrTjL6e8OziApz73k2N4x6BPqVaNs1le68h+wsZ2iljFAt70rq/2Jj2LCznGhb1uyIp4Z0ovNj\neKrVxvZjGCqg2x7IcQjDxDP03jQYRnROkM+avlEAT5mOUMr/O3vGXEeJbpEPwmhDs1zAaDE2A+3e\nJ6Y7ZIJIHN80f/h7BrshKk3vSMdWzfOI6IsdfSYB+e6maEygx5Rzvx61s6E5jtFPrP6/QfPCkPbO\nGEGwvvpMv2B6UU5tdfHUo7IrH5MDLhOhaT6ZZD/soqSxZ6a/z2AX+KDttbniwI5a414X1CN76Avl\n5CmPWvrTlxXlmsBM2fuAMkLi5xWhPPdhxqC+nsOMEB9GnbkgweyRKTvwc5DXfW2rNZgZjxdam9vD\n1OthO3Tcx2SO+xTtMQJVN+OXGXXD3jp91rR1eNZOrMhFbCwJcsAyQ3cJdtUI5soMRk8BOuf9OS4d\nN1RL58X3qcvSsXdXREQeOooYZGew0GAe+Y458ZA3qUePxlZ/z9gx5iMg1gxmTVVS/33JCMizBUiH\n9Vk7zAgNhs7U9WFbhLDqQlgUhSE7sN8am2ci3LDof1FjTmd6n0vyuYO2jcu85cIucYNecjH2ll6T\nsbNMias31ibOXCHjxqOveLjymLZMAHPDNYajSabgEBhCFfR7Y0IwF5tRGdcekKeYEiUi37vkYWNK\nmrFB2dOnafMcJovAZjW9tA52UUCbmGOi6ab5tMcCRmaIloqzcqQBzUIEpabvt50d5wkSeJmouE/T\n1BmVliN45jBzGtwHTWvHsfuBvVpw/zEIZgXLrXDRBPKMGsjzRfvGg1naGotKjCEKfAe7rA/REOC6\ns/SJg5C76MT3zYEOBoutichxxpyKQDkr3GGi2AT86Ju4puQwqaIweer/LWwKxwiwlqMctCDyThau\nMctMWwntLtNN416tb0YwKWrQ9wLWgLkx+Yy7lHGXm1Mgfd+xtQ5joEZHIwHxLJhjncp04+SZIoUZ\nsydoLcD0tjFwtoDZsqOI8dFLmrjm1zKuR/vy2bkitT2M6fFCWRHv3rklIiIP3lQNlTdeeVXvh7WL\nv0H74DR5X5iPTvR6Nq7q/9sLZQe89UjzdEre3bqqbIwbt5TZ0y8VlX91qe6Ar375SyIi4jJfJXu3\nRUTkuQ98QM//nDJZ5q9oXr97Djr/ljbkBs4+L2zo8ZcB93+h5zk80fY5ekWR9MP7qrm2Dhvh6k3V\n6RiTAwo0ZLZDPe65q8f7yhdf1r/v67zb4jyTwvYNcVcM0HgQEdl715bM0JjxbU1CLpzD+viX/xJN\nIMbumFy36z4Do6o35hz5nD9XqV5LAep/8aaeqz/WMbD9HJpbsKcWC+3TJczC42NYnNMHIiLitsoO\nOimV/TPi89khiVr/LRksNJsnLmAXzzPmJBgeYaVtbFphiYeuHOzidkOvv7aqhAsYQbBDbe1lbpzN\nUtt0gjZMscE72Lq2ZWPuejACAxh8zQX6ewn6Jq6yDXrecYT1tI+bbGLvG2hmlqYLyCLoYgHTH8pQ\n1tj50D9hXs2YL/sLXXMtefYjrtvf0uuoyGUXPJeMtUzYPtv7TQN7LyPHbZi7Ii59azgZyV19TtEW\nTj8OrlWMjXUHBzVYdl6juWcfrVA30OMfnGv7JFeUeZSmyepa9stQymUjUaidZo3KjAnvmVmmfW4K\n4yNcN+aLts3URyeO9/jyAle2m7zz0PenrHvzc/3/MVUFIayo8UT7is86zfrQ9nW9roT8d7rQ/FlR\nYRKi09nwPmB6cO6GHm8r0Px47OjxNsa8q5jODhSZeMRkBgs2Yk0xZexE54wF05TZZj5B78mcJ03r\nLGIt4rNGCKZvXy0yMGWGGGKIIYYYYoghhhhiiCGGGGKIId6BeEeZMjFe9y06J2FjWhD6/wX6JEGj\nu4S+Oc0YKwN1dR8HHA9kM6dmuY/NIQDkFQZMh2q/7+lOVwXi0jswXNDXGE3YDc7QdGAXNKAez4e9\n0IGm9dSVS23aAuy64qceG2JOXXeFynNE3aIXUB/KDl0wYhcTsM8cDloxrRxFShLYEN4C7RlqtWv/\niYOG1YrnMCx8ENEIpLUAfRqZPg+MCgf9nIq2NkCuBV7uQdY8kEBzI7JdQpdd09q85t3LMyBEvglB\nRadnBrLa4cCy1ukzKk1CACi3Y5fUA5HsC93VjTfwlrd6xhKnLWpZfdrJo684hhCw45yh+WJ6RDkc\nm5i2X6ngo7XSgPD6DDVjB7Qdeh8gKXPYW35syt96Pwl1nSXIQ4dukTGWrMa3Rdk7q+gTsBoEVkML\nat+JsRHoD9Tdj0FqzeCmNYQdF6e24rroF5WxzyJzATEWGayM1rQi+DsssjpF34Xd8t5DWwGthSLX\n52DuYJeJlnvtcayJQV1KrklKrp0dfUOJIT5IGZhFDDvh3ENmegx39feHf6bI5dq5ohR3vlsZMhsf\nVGbI3Fd05/BIa25dBm5HnhgZcw3tABdeQbfU616CTJqO0GEGql0pIlAY66jE1UL0767/NBrSmd4Q\nmjCG5La4dlSm96TAhjg8YyFPLkBGvNgcxmBPPAS1e5O+e0JuoA9dfR8I53sU3Xnp1S/q8WpjjOjn\nJ/T9JUhoCxqXZKZDhG4HmmAOLib1COcKYxu4TxDQy0RNO8fm9APaNo6oG18xiECTzGqG9nPRlklw\nZmtx0ukYiyaVkadP67hksDlixkqJphCkDPHJYbmXrWrkBQ2pBC0TB7S/A/HsS9wTcOuwvEM6WOWb\nagLzbUUqom/QxxrysjnTeORth5spQP8NufNA1mJzNIQV2jBmHObQ0H8akbS82jNXuqBRMRpdS/TQ\nYpgtFawIhqAkMGhsrPjGbqCPlrBOazEHNfJwbdydy4VpAoxpnxzGi1+bnpI+a4exHZvbIHm57MwR\niAaH2TgyBuqS+ckjL9K+S1i4I9i/Gfl1xajMebDMHzHMo541Reo+Wco1SSqOb3X3puX2NOuM5pEC\nGmDK9RgSHRhVytZKtvYwRwvmRY+1TMAYcIxBBCu4ClwRGIsjzlGDBXqwNJ3G1m2sk7gVc4qpYEqP\nXGPz6rVUOD255H2f9VZX29xteYS+1xt7iDkbZrRrbNPLRoaew6HOB+2uMkJc3zSvYBWNNd99tVTm\nyfhA543pFBcm9O8e3Nf5YnaufSPe0fx5Xmh+T7dhs+J6F25pe3gwHMu7yjx5+FBZF/lj5h/6Xruj\na5+TXJkpR3+uDBoZ4fYE++wCN78xrkkz66sPX+Z4aH/toyHzwntFROQVNF9inf7k6FjbZesF/dyy\nMZdDRairxRHtwzwz0ud8Vui8MPvq57UdFzh+st6WMc45t3U+aNZhWaCtsxUpw8iYMjHssnRNEXIR\nkVtb18SbaM7Mr+LuxFr28Vton0XkDNauDQuFU2OrXSaMHQb9dM762Bz5PLRiRleucQ/aNs0hrkLk\n1Y7vTfaYAxl/c3tJwg10il6ReNp3MvJ3NgOdp+0i2AH5SjsKpgkOXBnr1TjQnwXjPGHsPr+r11ss\n9VkdobHSsT7vYIwn6+TNTq/bHAgdS1PMpeZ0aey2Gg2egrG74N1sjPaLoMnYwDa7QLdtjXeoKUw+\nYwiu7cF0gb0wP9f7Xli1hH0f3ZM1WNKTK8qIKemTp0vtK95Ix0aDI2cIJdVyTTl6tlfqDi0uD1fV\nk4Uet0TjZ4RGTniABg/reWfBmgr9LNK7rMF4PUcH6gSWtcu8VuljlvUNve7UmKui68NH9xcyYriM\nx+jyMG4f3Ydhdo05zSo2TpmDYTzGS96HeccU1jCbsHlOch2vJYzCCK2WOSzRKXnh4Fjv7Zg2ubqh\nbT+iVOTwdWUANlPWz3e0r/msHTLyVc15HuI62jNnt6w/R1toRp7qfebn6BnB5rf5J2DuP+FZNby7\nuCNYwbyrnp1QEbPNPsWu6awyd+Zvr3M3MGWGGGKIIYYYYoghhhhiiCGGGGKIId6BuNS23iuvvCI/\n8RM/IT/2Yz8mn/zkJ+XRo0fyqU99Stq2lZ2dHfmVX/kVCcNQ/vAP/1A+85nPiOu68sM//MPyQz/0\nQ29/YMfq33Fi8czJAaYKghUl/uc1Fi2GUrkg3M3CUCxQHzboXHbczH2lAvl0C/sArAPQo8A0WQIQ\nbdO1AAkWQ/Gs3r831XyOhwNCZ24b1La5Gc4T/D2EBdCB3FsddlOjXQCcVRr0yvfYvJaI3eSS9nIW\nVrMXuY5LAAAgAElEQVRNnaUh29S11n4tHQhi4jyNBre0dQCiOOderNaygYIycgyFp8uMn3bbsOr2\nGPSqiNktZGvckMyt+NmQywU6DEtU1+MWRX123k3Rus1xLbKt+Bo0HoTVdDFWmgyGaLKzXCw4DoyN\nFgQwMtYRz6aihtXcn0xbxTdHiBAEuMI9xUo22anOqUt0PdNUgfGCg5a5SDm4sPRo2Pho4+QL0yNi\nhzxix5saYduEbXDFGPN90yDIWmPs4FY1xwXFdo+5YENkEpTNIxCTvDEGDQwp4P4QrYUO9oDpMKWZ\nuW/BVoEJ45p2DewJD1aLy/NyVv3q24cDCyfq9RwNKFDDuF/CHnIdUBT6QmEshESvoWz1OGysS3ZP\nEb32Nd1BT+7ptV37yHtEROQ9f/OjIiIy39Id+4NHWnPr4NbQrFhR7JjThgEsqhYE2Wfn34UZsjzW\nvrw8YmcdtNuIIcltxv1M/46Ri7g5yCZtGoEQm75EB6vAtHJqkGWvBtEkcUboKfUwfChXl/ldRV2a\nA/3e9Q8qU2jr31GEQrYVhnl8pu3w8FhRvwRnmTiFlYFWTYo6fm7QAGMqYcy5ro6hc5CJibHu6FOF\n82xOBw4MF4dcFJAzCpAOCenD+dNORbXBm7DwElhz5qbXxKbThe4SubQo9fp7EBKrtfZxdAtAdMwV\nLPBiaXDFCM0lyeZEWJ0tz7QEdTI3ttVo6Ux36Om2qWEWJoz/BuZHNNI2KAtq0dHA8iJQIFgEEGBW\nY6SAmRFV5uCiHwhWcw4MCubE1jd2EOyHzNic+v8oMCoPeQPnhdp0oZgrHZBQY8HFJUgtum4+Wl4e\niG3YP9t8AyFIap6hrTUC5jcP/SObZlzmkdZ03XASKseg7rDbHBhOAY5rghbAyr0DpmLT0mfoayP6\nXs/nO5imxjLpcGasTHRIRKRuBRKI1K65gpBDWMqYE5zpWuVYWjrGFmMN4S5hek5gNIKYO8bCNXYY\n19+iD9Azj7jdQnzuueaamhVDBiZcZBpZuJYx1xrzJIJ1kzFXxqD7Ht8zw5OOsSEucyOOYdIxjs0N\nk3Wnx3whwbNhk+U5yOvLb4qISIo7yGhNGSmP55r/dq8oczDcURZDSv4Jr6LbQb4+JY8ZK3U5R6eO\nNl+/rt9fj82hizkTePxwhzUI9z2f0+emer/Pv6BMnrZUFsUCLZpG07ksW83T0Q2Q6G2YRrX+fnas\nH7z7lmq/dPe1DxxfVy0bE8CqRjpBlSyQ569pO7SsjTavKPI+uq5Q/DSBpY2uxjmuLo/u3xURkX6K\nBhh6hh5aE5Ox9pOtvffr7yO0Lc50zN3/6j3uU+ftKzdwX/rbIuWbpzLFadMcz9Yn2r577ybHxqqN\nJrD/yhNYG68qA+gyEbKOsSX+iPzbsgYpF+i0sS6qznkHYH2UMvdtsO7NjSG5xvoa6mM+Z70OKt/D\n/J4b8wRWZrypuhk+67MYW6Ktd+kcfgazIoMq3cAuDm0tA2NkbQ221lT1PeYsDkoY7EI+7GhTHyfb\nJeveEdzHjPVfyXoyQd+pYw20dkWfaeTozzxT1tjaRK9rGmkfupjpcc4O0BepbR0Ky6xTZs/WVPt+\nxdxbdeRxctPymLVZo894445evzfW+zyERZHYPGb3CXvK470kqFg8XjJinm/HOrpAFytmfT7e1eu+\neqrX9+hcWSYejKZgn7GRGBOLNSXvd8ucqg5oLfE1dLBo3/T0CUuwPPHFb/uVrtokULZQPOPeef/M\nYcLUBfkztPdTPfeSuf3Ju4FeYwwzJYadZPpo3gZsTlheE/pIjStcvK3Xug57yT1A6wqWUWKOt1R5\n1DB4EtzToiXrM8ZzlejYWocVtQGr6sGF9tUzWKI7e3p/AUy5kCqGBWuO0abe9+ZIr+vxA+1zFzPN\nl/VVWK2sFcLShFrf/t3m285GWZbJL/7iL8pHP/rR1d9+/dd/XX70R39Ufu/3fk9u3bolf/AHfyBZ\nlslv/uZvyu/+7u/KZz/7WfnMZz4j5wiZDTHEEEMMMcQQQwwxxBBDDDHEEEMM8XR8W6ZMGIby6U9/\nWj796U+v/vb5z39efv7nf15ERL7v+75Pfvu3f1vu3LkjH/jAB2Qy0Z3Uj3zkI/KFL3xBvv/7v/9b\nHrvCFzyFrVDhUtSGhm5Rr71S3AZR7kBS5tQlskvYoPhvVhOmsh/4usvb4Tsepuz0gRYay0HQrimp\n7zbtggTGSm3Is5Wc4ucuniHz1D/CXCmcpxkxUQ0rw7bPE9ApxCviztymYD+AjhnYV7HllhtLYwlS\nbnXrpWnNGCuE+v6+kwBlaEGh2qMmHWKGuLCSnA41cm7SC1AtByl02PE3lL1BY8RlJ9zA66Yw9w3O\ny+99//bK038xxqBrVqd9EtruKEir0Zy4V28KmmRaMabHA4PFmcEYgUUVe+bQA3uhNL0NEAkwaB90\n3Bwf+gSkk67ps/Mem6OWhw4SfWcGCphQ5+g7tjvMBeIMkZkLBghxi9NMU9qz1OM2SxwfJvVTx/Ns\nlzqhhhSmUwGSYQwUyGUSs1tcUKMb8QBXGjqcP8GpYIxT0UrDx3ah0cCwWuQQ3ZA+ZczCcutBkGoQ\nERdnIJe68g7kpG1AOS8RHtpMM2tzc4iJ0ZqByeCCGtlOekzNel2ykw8Kc/6KoiUn/5fW3l/t1a3i\nA9+t2jHX/sN/S49/U7/30huKNM7QZ6C0VFJ2/JfodQjX6fCMMH2T0lf0w0cf4ui+tl31Rd1xv/md\n7xIRkfHz2xxY2+giw+Gg1++PjZEDs6SGkVfD/HBgV+Sdol9T2BgZSEay1PbzQMNbWFbn9xTxnH1J\nUaBbtz4sIiLPfehv6PE8/f9hq5vwzgJXkzl6FKBw7j4OCmO9PzF0TH8Tl7xcoGljjMeYsb0gB4Vj\nvY7EfbZc4hSGnDMPmPtUARLPfOTEer0ebLfOPgcy03YwaTxjdcHcYQyN0YhpyaGdg9sTLBGPecgz\njRlyZiDZyh3PEMOW2nHH8gVIWAyq3hnKzzk9xxA7GCSWd4W5DSaKGZJUIK1xYo4DaMfA6ipwIOnq\np92CfFipGXnCB98JYGDUMBKNWeExFhuYFBVzrAsK1cEWjdAVqpl3usryNawJ3EVaXPnaJn6qHcLe\nNHTIU5PLM+5ERCLTN8FVo3GVBZb55uJEn2be6VhDpGgj1Mwjk8L0ksiPoc23aC8EMGQ605fivugr\nMTmrgPkDQVNctNJq7tOFqtJ/kwaX64q4jjGGTNvMnCD0PKMCFxhzqkCHK2Qt1sBUquiHQQFTFN2t\nFpbYEqQ4RierNO0a9AXaPhQfPRwHFq4xPIxpVjmaD1Lmzgb0uuXaWthdMWxRs8NrYDQHrPeaFlcz\nc95ibdIaqwy0v2Hd1cbM/caYuWSYy0e0Ddt1Q69rnrFYWdO/z2Frrb1P29prTPtMr2djQ9kL70ab\npbXFGJqJLYsLn7FQXujft1j7BFuan0JPGSaL68psWRxofqxp59ljZTPMcmW2bG5qHk7eB9MbBs05\nTjw57LiWZzq9iY4HRjDdgc43x0udn+Ie15VK/370WLVr8pbcwZpsfxt2yCntBptvFCoS7o11rCXv\n/Q4REXlc6XX76F7ktWl/8fzQERmxxqgAgQNzPyVPH76hWjsiIl/8v1+WqyNltk629YauX4ddgkZb\nnuv8uIQttwbTsY8v76zTwnCsWa+6uLk5rTHXdBwtyRfuDs595LcT8m8Mm8eZmZ6cHncZ6D2OLE+z\nIHPoy71pj8BELJij3FzXKl5hWjVo18ByujjVZ+rxLnO+1D4TzvVZzB/CBNxmrVOgl8f6b2NDn+Uy\n0+PPmDfaOXMoc7zN/Z6tB3mHM/fA0Nw50fc5eaB/399Gn+Sqsq6MilTillSbFtiFtss00mcZ72pf\nzujjHiyPgHmrXsN58x4urSU5iTVLCis5a2B68y4WGVsWBumzzTYiExjsh+iI1qd6nMc7etwd1pDu\nOs/xofbR8Vyva3ah15Of6tjLmGc9W7MwZs5xn0K2VNZ4l87leHUtRX0h7tiVjnXwMeN5b8z4R6PQ\nF+0rKe8yLjpvuZ3D1zxkFSFZY2wvfeanjbatj1bWOFWG9QXaTgWaLA0unGMqWmrm0oY5zMZQjU5d\nUWrbzEo93kbCHIUuWg+TJrTqD/TxGshNM9hW7hbz1ATntFzvt/VYry31veACraub2+StNzSvLH3N\nK+bqlxmbmLWXk7y9hpnT933/tp8gfuM3fkM2Njbkk5/8pHz0ox+VP/mTPxERkTfffFM+9alPySc+\n8Qn58pe/LD/zMz8jIiK/9mu/JleuXJEf+ZEf+ZbHfPT4TK5AzxpiiCGGGGKIIYYYYoghhhhiiCGG\n+P9a/I+f+035mf/gJ//S//213Ze+1Z7OZfZ6fum3/kB+7ef+jvwXP/t7ejHU+obUdBWu1VGDwvG9\nkstmc1Uadtw9U0dHo8GvQGRiQ2ZALmFR9P7TaF5LfXY0wp2D3dzI0EhqoGuQjBhUM6PuOuE6Gw89\ngM7qxEHxqEnr2V2uV/XqMGTQhBmBcDQgtX6gu7cZdeshCHSfWN02SBE7gBFMGXPO6CWRABSm5Now\nU1ppjbi0fcPOL1Il0temQfM0IupS01pzXEN5YlhOnSFurWnL6DMZj3Tn/X/6uf9SLhOf+pVfEhGR\nBTvGpzhqpQ3MHXsGFJb31BeOYEm1puNAGy3RaglyEMQJOhaICZTsMAfmnsH3MxBDr59wPyC96HSE\noOCmcm5uJxV15A3HT+iDPX2yLkGyfRBJzpNVvfz+f/dfyY/+8v+i94uWQu7pbnQ4N50Q2h9Wleuj\nm4JzgkufidCe6BFDyHHd8tmN7lYOFHwfhkyagNpxvwXaAYE5p7X0RXQ+TBclMSSVDBPRH+rQ/o+L\nE6r9FQydMcjzFmyPX/77/7V8u/jlf/IPRETkAtR+zeqqI92Rjzmmm01oA9hG3FuHE9cIhLV6TX/P\nvqgI5Ac/9HEREbnyMWWsuDvaBvcef0NERF5+9IoeF1efJNbjt6U51sA2y3B98LRzBKavhOZUf6yo\nzuyPVauggQn37/3nP6DnvaNtdA80q8x1Z39JHXgAehNWIA30PReE1nQw2gxUbcR9oicygtVW0vb+\nY73Pg/9TkU//Ne2zH//EJ0REZO0/Us2Ez7/6pyIi8vBrX9H2vKeoWjpVNGe0T334NUWGjyu9vxCk\nu3ctV2g7pDRL4ZmWDDkIHaazf/FQ/vE//2fyM/+x5pB//M9/Sy4T//Af/K8iInKaKZLi0g+CpWnD\nwDpAD8Xc7BpD7RpzrKM22TPdANAsxlrjWM00eil8Lxdzg9HPFwnnRyeqDgNJhWdnTAfGc4e+mTEj\ncmOmwCKwazOXnNycvciDYWCaILQlw73HNSjlmku0YbwxiCFtEMMQyX1YArBEXc8Yg3SuBEYejA6H\n6zQpMnMrErQN3MpchsztiLmV/ODDpFnA6jJW6Simr676hh42MCc2HAoTEMz/4df/rlwmfu4f/bSI\niDx0tQ+PX4BWB5OkYC6PQaqNaRTZecn/DcxMcz30YMjUjD13xPOyB0GuqCNzP0IbACeZ2lzwmLd8\nmK/m/NWDTP/mj/3P8vf+t/9eGvK3a45v1PNHPI8KdDNEPwoynXSgmwnHzekXrjEwYcR2rC08GAAt\nGnI+Y9jIwI104kMdZKqWyp4tbVlY3zXWTmuMYti3sC9dXOX8Hs0txuUYMm5pKDb5JASqrGEJ9Fx7\nU5n2nrbNBjpAv/BjvyCXiZ//7K/p+dHluLqreVAmtt7S6Izpg2aiDxPIRVPgPu5NHs/irFQNhfVA\nP5+sKQK7zso3uzBOIboT6wpoFujRbe5qHj+ewU5D/+j4TI97/9X7IiIyjTUf765p39p/n7oWdaz1\nTtHjsOXz7ETHggeivYMmQ0f+u4AlvDxWxmR9YGwD9PJA5w2pPjvS412Pr+v9jfS57LxHf282cZVC\nz6Rfgy1xjrbLQ9W2OXpN58G9iHlmV/ve1fcp86jAoS4lP/+9/+zvyt//rX8qG1ATz2AlbLBulzXW\nIr72r4NjGEanuo7YH6s+yT/9J/9Ivl38w8/87yIi8taBoupr5M8INtASVu/sGLYoCcy0nCY80wl/\nD3DkqtHFmNMXlqwzR6wfe9YUPfmpPcfxil45P1Q035gvex94UUREfBwQD2F79qD7UaFsiQq9kPGW\nXocHkzlfotcz18/t3NI2crdUi+XRoT4j85tpW3Na0+OPIx2ri5XGI8x01tMB7XZx8hrtqP9//toL\nep59XdMdnJET5mienaD/Ntb/X7mja49vPFRaRCi2HoVRRJ52H9wVEZENXKpuvajs6Fcea7ss0Yxx\nTLuNdvCOdC3oLfT95nd/65/JZeK//YWfFRGRcxgt1teLTb2uF3f0/N6ZtseX/vQLIiKy/V5t325T\nfyYz5iec6BYwZTc8Za2cHurYN4bVB1/UMXJ2pM/vVz7x38jf+eWflmrbk2gKazLScXgTbZnXX9a2\nWXKtmzc17y07bZP0QsfZ7hasq3t67INOmWqjO7dFRCSGcRygbpJfaN+Zlfoz3YZ1OdF5I4XWO8LF\ncoauzjrvIA1riUNck9ZvaJvcmKp+zt2vfl1ERE6o0th971W9L1hlj17FNfVEr7O9pflxa1vve4zu\nzwhtqbfu6rOuYOTd/pvKnM9f1rF1gbZkE7Fu3GWsjvS+X9h/n0jwxPXqL8ZfyX0pTVMpKEc4PDyU\n3d1d2d3dlePjJ1Sox48fy+7u7rc6xBBDDDHEEEMMMcQQQwwxxBBDDDHE/6/jr8SU+Z7v+R753Oc+\nJz/wAz8gf/RHfyQf+9jH5IMf/KD87M/+rMxmM/E8T77whS+sSpm+VbQ5u8c1CCU1/SWOAVFo7iXs\n3qKrIRFIN4CkK9S09laHDYvAXC+oH/RALjLQxIidfkNWGr5vzhQpdeAZ12kOCFZ3vQTRdazWGbZI\n45pLgLk4Lbku2BbQVAzVq9Fc8BpYH8b0oXa4AfU0/3VzynFwGHJwbBDXkBkU2U08o+2kMOcRnKei\nhPo4avhdHK6cip1mUKYA5XvXJGnYwV6AKrug3QkIqoDaO3whMBVwmDjj6lLVcqvIFxyHOkeHZ10E\nuAOhUWBaCvUClgK1+iUODQ76DSmOMo05raBjZA4wDUhnC6spBdULa92tjWBXZRmo2JJa1TEIRabP\nfkw9Y2tOX+aOUZqrCAjxCG0BriPjmZnbSAsraw46v4bVThvCmKEmuUHbxWpeR8BTDcwa1xgv7ND2\n9KWAQZSBjIboawTsqC893JoMcTfXLlhlrrmVwCbrqAGuYW2Za1SJy0fMmKrYpfbKv8BGAwGeW339\nJeJiATuKPjnjGtNMd7ylUbTIdHVaakmF2tSxWK0rDjVInoxeVDTm6r+riMBipAyPVx4rAnD+6Ksi\nItLjwuaM9TwBecKb0xY4w9B1ZWSotJpEyOHJq3reh/rs22N9Jh98UWvrn3ufOiR8NdMd/6Iw9Msc\naWCxAW0auh3SN3PaNAJ1r+gT3il5SEEkqWH2dej8PP66MoUg6smND31QRESmH9Z67vm5bsKfvq7I\nQfnnWq/evq7Xd/N7PyAiIvvXb4qIyPFEkeFAwUNpYWmYyM84wlECISh3qc+vC9EEI1eZjog5J1w2\nSvRJAsZ01+t5m7HVX5MjQYg9xoyHw1ppqctgP1gbjTEuGVMRehqdsRRA6E0zqEDXKYQ9Z7odjh9K\nAU6y0iqhLzWwKEP6aop+Roa+Wgi6XsAyDU3TA7ZBzxziVeb0Qn5iDu3QaPFgWGBothJIcrjGnnxR\nkHdSWJ+JacnwPdMzSsyliHxtc2hGH/WYs2LXGDm0FSwjcwUKM/IGLIGlGSg2MP7ETqz/79B/MFek\ny0bOWqDHoaUwZ0NfB29K51jCDIpZo3imoYUORQmT0zR2XDQaPHKUacWYC6DlDIGtEDrG1kULzeU4\nsCZ6nnNAny2DbxoL4XylMcR0Jw15tkGHKTBNAc5vukopaxIkaGSMdlDPg8xZDxjLxNjJhpyXNg/w\nvALHEZdrFJh4K4cq2sbWQQFtm5mzoulwGO2Uny3sMY+2cshb0cj0gFiz0IcEnbIK1pRptvjmXNY+\nWx9ZnIMAww4Y4fK0hs6bx7ryhL7omZ7T0jQYYObx/WBD0Wyhj9w9VKQ1+ooyQjzml4IxtWYMaGNf\nTfS+r17R43ToxG3uaJ7eWdfPRd+BU9ch88dMoer+vn6uRdcp6TXvrm2ik4QGjnNO+4MYh9t6nimL\ngDnM7XBX739/rBNLgDZDADNq8aayCZZoAy1PcU090naaoOEgsD8SR3+f7qojzoPGWIJojT3U49U4\nF9VHr4uISD7X6+3MxVREjvMHsuA9IoWl1zIvurAmtrYVTPZ2FXH3X8NlCsbQZaJjrTGDsTA712d/\nA62ZcaRtN7nG3EI+ODjEDQ120xnMkW3W1f1En03BOPZY4p+hG7SO3sfGpjJyDnPtY06uz2iyo8+y\nWocRCUvLmerxbqNJ4oT6/XysbIkztG5YxkkI03u5YC4jT83P9b6naOnUzLm1sVDRSnTFGO7kfd7Z\n1sgfyQRG0QImTqDshvZMF01Hj5TVsL+hDlzTsfaxs1NYeS6MmJAxyflSmPwF7w0OczZEGSkKvcFz\nV8fGJo5gN9a0T5zCbD871/uuYNuaXlzQPtuapEHjJoAhuUys/ZlHaA8PvZWIMTqK9cE/wnHs+EzX\nYm6k7ba7o333SodL1lv6/xHvoDnVIaOFTfQi+ekjqZKphBt67DmupbNO80pEvmkutK8t0ZwR5roz\ndCF3NvRzMSyw/oE+29k9HUf7L97Wr8Fkyw/o25WOkfOKdyCrbIE9POedIeQ8G71e1+NMn5E71+Od\n4S56ZUvHiruGe9IhDl6mQck6t57pdblXNF+lGziFkYb2RBkz8wNljJemZzrRz11Uetx9HNDCE82n\nb1zoQjdiDRKs698jnvm3im+7KfPSSy/JL/3SL8mDBw/E93353Oc+J7/6q78qP/3TPy2///u/L1ev\nXpUf/MEflCAI5Kd+6qfkx3/8x8VxHPnJn/zJlejvEEMMMcQQQwwxxBBDDDHEEEMMMcQQT8e33ZR5\n//vfL5/97Gf/tb//zu/8zr/2t49//OPy8Y9//NInT9itk87cSHRHrAIpqQxRbK1OUj9ujBhD51M2\nnhwQ8pBdZFNL9tEmqCrd5UxBJCpU3UtT/LZ6aXzUW0Pp0GqoYJHUrtU7Pq11s4ShkoLUmKuJg77O\nmB22EnSvR0cjAdXLOK4Dk4ayTvFRrV5JUISo5qPjUaSwGNCSaGE9dKCYvVOKD7q8Ugc3/R7aQMqn\nETQHl5+MWnQH5Ct3zX0C1BrxmYJdzi4yfQVjmOBNX5sjgifPEiGIXwZq1gfGgkJ7oQBlA/0PaGNp\nUU+HgbKEeeGb/pDgyACKFcSGjIa0A44H5laF61QHQpoaOoRmzghks6JPV0tFOjxQpoZnVRmjBsTa\ntABKnqlHrXGD9kDAEG1B4xuxWn69TdOIcTmuUxqLgK1/2AVdaA5j6B+BQi1hBfjmJGMsElDElHar\n0drxcPypaK8YxEFAwQJU6guYPF2m/SkwfQDTGuhNawiGE+yDACQlNObMpQKNDpBXH/efdoSWC7Wo\nPX0osLpl0BnTJgjnMGYKRRXevaf10w8b3Ql//MZdERGZnYLejEFIYQf1naJf9Tn5x9yIAkUvnAWa\nVOSNUxDRh/9CGSQf2vpOERH5zg99TERE9v7WbREROU9wd3pTUSJzzjLWmyntV4w5A36XsKtSUPR6\nqedfHGsfW5vqs1qnxrei7yxOQZ4dRck2P3BFREQ+/DGtnW2vKAr18LEiue0h6IuW1MoL71V3pu/4\n29+tf9jQdn3zPloysOqWobnn6VhtQWJGuemX6NczxrQLfYOuJIv68mwqERHHtTECAk82bNOn+1y9\ngP2A9o/psySMNXOHkghGYku+FdNBgQ1BjohD9LfIETH9xe1NTwBtI7cVB70LD8abudi4np2bem+o\nd2mH0wj11T1soxJ2gIe+GOlSAlD1mjwQgvIvc/IRoHKM25HlqQLmXcK8YVo0Ba5sMahWSb5OmBeq\nDAcZEzRqjNnIfERbLQNjL8D2pE+GJew22BQJF7jS7fEsT2s7uMzBDmzVyn/G+QZXJJvvkl09Tm06\nTbCzDLn00cOoTcOMsU2zSO2hUwErL3CeZjqZe59D3g+4/8XYmFHcD6wsnzVCCTsux71vbNQhEcma\nQEbhX+iTzGvOmIRvrnqcPzMrOHOw42O1a2w22BnmcsX8NGcopKy5nBJWMcyuWhpp0egwMlDMuPFh\ni9Y+c0hj7C5Q3MbmRrTyVkxm2FBGcAmNIc36ydhO9LUqMZ0bnYs8nFVajtc9WxpZufrlh3dFRORL\nn9e8tokOhekwGUOkgIU8n+u8srum88QJzI5rVPknu5pvO/terPNHVOuz8Zk8gzX9fWEoO+D84Zne\n1/i+zk/dqZ53ekPnsc0r6iJ4f67zzv37L4uIyPLBF0VEJIZVcOWOshLiRq/zyr7m/xkMzcOv63w1\n5fmlt2F4nqNXxPWc8/nmvv5scQIbMZbLRPvgrFWk+ujrOoGME23PeYZG0DrMn209T4H7oLOr82rK\n/L2Oo+beVBk1x7BE0tCc00S23U05n+t5Hi4UYX8LRzn3UO9nbwcNi5uqIff8u/T+j9vLd5QEtN9l\nLe/QR88utC38WufQaE/vwTSfAt9cz3hXgXpoTmE+zLQQZk1N3itnrHX4PcOhsGXeiHkHyhJzAtPr\ne+uCNn+gbbW7rs9welV1hmxONiez1Jxp0bba29Xjdan+zFesMPIc+TdG2+WM6xwxX+Qw5/tSv3d4\nqM/k5gvKTk6nOPOYaVOu9/cQqYz9I+2LG7f18+cbery3znCvwhGtxm12jKOYoLVjukgu81OwgcPl\nXNdc5w9Ui+X2u/U6KubLE1fby4MN26OD1abPxro75yUv3kSrbRdmOcyjJWOgQ/8vvaJjOTD9Qrpk\ny/wAACAASURBVByDPVtrRHp9I3LQ8SH3IXq/yRpOvUwXc/eJX1TTOCKdK0mAM985rNpI81CL/uRi\npv8Pmct8+myAXaaDm+l4A2evr8GGH3MvvKdP6UuWt5wp66IxTJg1/f5sBnufd6XxrvbdBw/13i7Q\nxenRbEl5hgFrgGKmbRShm5QyHzx6rM+w2db7mUz1GZzj0jcWfeYnC2UGHT/Uny3uSu6O/t/0S/1U\nx/J4qt8Pzkw3U++jF9z/fJzDvkX8lTRlhhhiiCGGGGKIIYYYYoghhhhiiCGG+OvFX9t96a8TiLNL\n6ZgS8dOODI1rjhKggC7IAEX9HZYB1QimCOhNyV5TgnbMyn2kNSQFv3Ugkphatc7gIVC4trbvsVNH\nXaLD7m9g2jKoUbMxJ7UpeVNL7XH8Oa3t2E4cyKmhmonVFRbmmMF1sOteUJvmZAZ7gtqxm1525ozA\neUA13cB5IsBDXXJf6MWWkamsg2yx6+exo5ws2GkWdv5dc0yBiQJcVYuh0Oz8GhII48QFiVt0z7aT\nXIGSh+zojtidzSrO51FHjK6OyUx47OyXwHOxUTRqE1FAJAfUukSR3x8ZGqf/dpunEWRzaGl9Ox8s\nA5giEXXrPYimSx15Q5/1oDm0aBa4rj1Dc5jgRNQ5m6BHQF/JQHWsPl+sTh30yEZ0CRLhGhIOm8Lc\nPvzGGgrtBZByZwSjx5wu0G/yS70eNn1XfduFndJx/77t6LcwrmJYI6BqOcyYiDFTg6L6Be3umJvV\n5feLY5lzDNPP4J7QdHGMvYXmQG111rSNA1Lr0nmmL+hOdnCd+m1P0Zs3H+nOfM213964LSIi81zb\nqKeG/RQtlvWp3tPa8/o5j7ad13r+ieiO+3t29Lre/TGtj37hu9QR4ShRFOv+Yz3vw7kiipOJtm1m\nDDkQX38By2lNn8kSrYUsw6Xpnn4+5bp2plpvvOSZnDe4JsESSK8p4nDlliKFF/uaHx+hPn/ydUU0\n67m23/4d1Y75rn9fmT7TG/ocvnSq7lTzVtE7NwS1B1EREMjKxpaNVervu5C+F6AtA6PRaY2jeLlw\nQfsbconnWV81ZB3k3OrLcYYwloDTG3sBRpJP/Trzg807Pkh9C4qVwypLcNUrYJ8F6LqYflRWOysH\nGifh3qh5b6C6mERKgE5QbXpmno4BpwQNgmHRoqdWW55EPKtDc6uCiTMyjQCcwGryow+7VEIQUOqx\n3dYYLDwjrhNSw0pLy3ThqgaWE8ii0T5DXI1qnBEaaFAebn82B/cx+mqwnBrThXONOciYp+a+yZnH\nngHdFgEtFBGP+a6zuZ681MCYkRR2AKw8L4Qlh+aNmI4QSKgh1v2KHUIz4BLVWl+GYWRuWj3tLbDg\neu4nYr4KWDs10ZN51e9byWHOpLjddZbu0W8qPXNagwVGfyntudSsiaDdWbvEDuwxB0aXOVf2TzO4\naiZMX2rpYJbFOGYV5pTYmX4OrCvTNClgnZIHYhaKjm9zJteES1pZmk4F+R89Dz9iPLeGlGobzGFQ\nT8T62hO0+DIx3ta8vd+o1le7xtgj/4+29Zns31LGho25BxWaDEzd/lLz+cVMvx8E2of6CWzcRPNz\nwLI0snyDpoxzgaMjn1ssNM8fXCgTpj3iemu9jhs9ji2sm9evwSh5S9kGBzjXdK8x52+qZsNOp65I\nI3KOsay36HubkR53ekNzxTHr+LMDkGwQ4vVznU8n+/ocn9tWp54c9tYC2u6EPniWs67FbeVxRTvB\nBtkAoY9A/80Bs2QNO8UBKCiejI3J7lT6bW232TfQS6Lf+bCuD3I9j/f1P9fr30ULor98PzF3ntSY\n54m2zfxYH4rlSSQFpYYZYy6YCeygulT0vYeRXLnm4Mc6nnE35lkZE7srbG5inMMOMH24Hhax6Z2d\nn+jxS7RsCvKvN0VvCHefClayu1RNF0+0jdev6ueWp/osDmbKZNlO9fhX1lSfr0drspxZNQKaaeh7\nTFpzOYX1zxrBM3moVFlcPZ+/h+bLFNbvmqvtNl7TvjanukEe6jN1Y22XAq0sH0Z5Q15O1pU1kWW6\n9locMm89j+YWa0SIgFKwNlhS1YE61KWjZqwUjvbxKNIxOeb9omCeDXlnjLf0/p2cPPxA12wVmpv7\nOKtFzMeHR7r2Wid3BOuqm1Kjz3WePWGRTXbGUo/XJGpMv1M/8xg9sgk6pOMt2PLkNWeddzzyuGPr\nuAueJeu9LjUWj/7ftF8qtMTqLdZD9NXVO+QxeZLhd+u52/r9WpnaKWzg0Quap9ZguJy+Tmc/Ze2y\nB3uU+WNRatttxrrObaj2SJiz100zFq2wCqexeI/3dVypet59Ti5gwtAnM9YM/ZhqDiZhx3+icfWX\nxcCUGWKIIYYYYoghhhhiiCGGGGKIIYZ4B+IdZcp01ACnpswNRNlTf12DAFcgkzGoILImqzrNJXWW\nBjYlICEVNcUREImLXkUBC8C0arJEd9ISdksr1N0d6iPrxlA9vU5AuRXbxBHQrAB00QOJNdYD7IIO\n1K+lrt/q+DvYGaZ1EMEeaNixtKp42+83Ro6hig01ei67tT3oVmB17X0kLoiZ6WqUEXo20GowBBDH\n2padZM/Xnf4+MFcl/X9cG3PG3IXQCuB7BahWuzSHK22bkfts+4BujPK21TnS1g67nT59RWDk1CCb\npuuQmNtQoW2Ts2vbAzm77PzXPKsIJk0O82aUwDqAeeKDPETWnpXplOhlmLOPqdGLaw4uMErMnQOU\n0Jg/5oLhw95wrQ+5hkzr4WLU3v0lbDHGQInGQQy6X7bmLAGzCSQ0QKijBb2PHBCT8mn2VwVyHRiL\ngPMWQLxj04ax/4/oQIwhz54HQ6CA/eahH9LBHotplwVjNAZNzJZYIF0iTJchcbWPtFxcxDmFPmlM\ntww3ixCWlOkqmKyCSx113uGy9LqiGOFryvSYbCs6lFKLevqS7tgf/pnukDeoyb/wt5Txsrahnz+p\nFV1qgH2C6+Shpf7fRcOmvarX/5W3XuN4en53jb4PM6Ufgebj8FCYAxrgUHlKXryvf9igbffuKEKZ\nJipmkFd6Ho8a2DP60p09rSsPQBheP1K3qaO7qO8/UFRtHd2gve9QRk1+U9v14OAlERG5f6Kokwfr\nIgDld0GoTTepA9VyfbM3Ir+ZYxA5Jcn1Ofy/7L1HlyZJmp33unb/RMiMlJUlu6urRnQPMDggZgAC\nZwASh4e/ggv+PHLDDXnINRZDkGcwAtXV1V06ZUSG+pRrdy7e50Z2Nme6I1e5cdvEiYhPuJubm5nb\nfexejRe3LhpnRBvQfyqNI8ohnujgE9lpiJAUeaiEtk6JNux15vM33POFgB/6lE7qo/pvfAGkEibW\nG6CMhYxRASrSDDJhiydWzBg1YC6VkYCwhWTcMkgupB5Diw78fyDhKkZB6xldBmT5SEQOdBIWJDZA\nXBaMWWmpJEJ5h3F81NkAhRbTn+5iv8YLKNWxFtHnn99A9PUowzGJjEpQEVSLJZZ1qOAiZKJOhMzv\nUFe3LCHjS4xXTU+a3gCh2BbMUVAJmzmU7A5qDQ+xkfGnaUVF4TOHVF3g5da1Gnf8+yvIohnpW/LW\nURpVg0Qb02aGjtSn4DU11lthKd4wInC6VL5FtF2ohADPtB3kTIZdFpYTFoi+xSMsgGhM6DubikQl\n+u8dNEU+Ms5abJHanBL+GGsq2kgv7ysprzlEm/Ae6CQFYYVKEuM+ltpdi8LlvpZ318D3EGBjMfOj\nBvoq7t+uHwlQRNVmPyEd79UO0gSvmFcrr4trCMH4hDEPH43s0c/MzGzBHOQ+dNyGsfpq7d/zcuMp\nHkwV7NGxv37/oaveEWN2wFyu2ff++eLa28D5d96/n137+JTjWXP0M1eW6wTPn2u/+KenUFjPfFw7\nx2/wzj1v26dr/5wtfikHg6eSiGApD/z8HtxzeuLeAYQMSvvFc/zxvFrMmLMd5K5w15hEzkkaWv7U\nz/MQVT/ahyjCX2vzg5NBX3zh6YR5xLhJJxaS9mX/0/9sv/n1l3b38SdmZvbe5z4O7sdOJ1yBFs16\n///1mZ/X3dr5hzLQAf/h0tGGhzWeK/i5HRz6mDt2Xtdn9FMFFE5XQOXTlOVHOZAemuH12AfqFyFm\n8F5R4FhAv5DmXlcJJldV6TRV2vtxHTz0a3rBs0zfep1v+NyUNpThMSaSvnzOPQgxP26gHegf6pXP\nDS5WjIXmc58BojAiRTDES2bOvLK473OgmPSnDXOCmn54jza0OvFrd4pnysDYffzA3zdorvRSflNe\n3/v4gewPoibwHuOeKyFzNiMhNY3fe19/620hIEFHyW4jz2yyQBxvntJuV+aQkmvGnZC+Ybbn1/P5\nD/69+dbP74OPfI6V4PuX4wPYLCCKILL6nV+XhueV2D/OTo6Ysz7z/589v745ltWss2h/tDlkR/g9\nYz9jVPFTr/Pm3MmVhrTPgraxhvYq6XcPIBz32NGhMfvy2ut6ze6AgnnwSOKWKJ69wsnrl5lfg/EV\nVA/E8RnzwpaxZz/mmkGyjy+8H9yRVryYex1vN2+OmXPInGc7r4t2y/M3uwrmpGYGXNuGZ8Elc4EF\n89+a7xPNNn/obS0/0E4Zknf/AL07kTJTmcpUpjKVqUxlKlOZylSmMpWpTGUq76C8U1KmQ51pByXn\nQL4gUc45ui171Xrts9Y+bZSUWYGSymqrMtjlPVOhzOQsZ8YBPh/yT4H66DkeMSlpQnIC1EHMqnWA\nkhpI9Tdf/c1R/XaseksZmkF1DHg8JGs/7kbO36x+G/vOaxEzKPex0gLwIKhRdhVoUeB1UKL4RChJ\nsbxzsuiGypGPwoACRiCMJahGCfvqWvZO9qxk36RlVFwLFM0B+SmE6IiV0kMaQ46rvKin/u2ES3ao\nm80gXXZLJUr5zxUr1gn7kHv5CqH05SiWCW0qYSV60Kon19DY+9txSyQojTWeDFECflDxwRm0gmAM\n2l6LUhssvE0oQaugDQ0kAUhd71EqtUc1pE3WyHAdCqzFIle8UVSkUHUsP8dK+sJLIJF3Q/E7ahEE\nTsh1lJt8q9QqVP0YKqHBWyJA5Q/wehkgnxpSQAo+b6R6ttAoYamkI0ge7pEBGqNB3YxFhbHqnf1W\nYsIfKmEkuog/rFFtaP8dbb1nhTvNtA8YVYJrV4MphKjkI/3H6u+c9Fg9959//pM/MzOzI+7Tr1ac\n0xM/p588+CMzM/vks1+YmVm19AP7/oJzos123Nfr71yhu/vwG//9mv3QK1+5H+aqM4iYJYlgeJZU\nqD1xSj/xws/v8ivf15088+P86C9c5dlDwbwO/f/NOcQQe127fe66R37tTnHHv2RPf4d6dn/pqk32\n0PfW7n/uv2+3nhJ1ceXKwU2/Sdpcv493BNL3Vj4qeCrIY2aAogrxqer38UOChJzlyPq3LFi/WEa6\nXgWtFaIUFzsljdFXAbsFEJBbyKsUqq1XKoy8aEQCcCs1JOgwvFkGfVYNSiTCa4PPaQazFK+skvti\nnkAN4RuW8B0VnlnyKytRHhO+bCBdrhHhyHe3dDRjL0qJ+5gxbaE0vlIdNf5o+N5kN4OyiDquHbRD\nyE24UZoSY3GEah0zNjWkKqWMKy1teBxEAvG+mDEWVQtxzArogJH+Lef7e65Rm8pn4u2mODF+JEoV\nzGXo0as/Q3nk++pAqYB4y4AUbSGBYlKQ+lBkKoRNq+uFzwhtPaX+hgKvscDPf7dWfUIg5rQLKaXd\na7JwqMrXVCB9R4BiGvL9yYLOEv+oEA85eZGlzEki5hRpJg86FGI80/IIjwbG4wx/qoT0wzaIbvwa\nOiYsGW1VvjkJhEwI6dfTprJWdBS0Kd4xAWo7Q611vD4nMbApoJCY82Qz5ls0njhWkiKUVvN2k5It\n5MjlMyc0CuYUz595f7rDe+DRey5P3yEN6MGBExdKGuvxQAvOSFyE6MwKH0Qf06/eO4bk4J4pGDvr\n5/6+/Ufe784/8Ho52fP3X124wlyt/Pgunrl3TIBf0h5eXdkHnlzziu70/NiphtJ/2PKAuQ0kzsl7\nflyXKz/eS7xsApTxkOt5Ae21Xbmy3uNN0ZxV1BtkUIQ/ITTHBvpufuI/9x86ibRPOlSBP9UVqYpR\n5vUc3Pfzj0tRbfSRzOHMzLLjwhbMUcbRqZU7+EM1a6+AuRKKGE9TFPb+srTbFt1vg/pteQLKM0/e\ngLGSIfE3k5+ZqDAoeKtFMJIom0G2QcJs8cFJGBs3K78mC8bMZeJj/rOK16HmH4ZeB/Vjp3V3K3lB\n+XFXPFtkdC+1SJA9//shxPWS9KAj5qMXuKsMeNWsmNd29INKC2wga4JLnzPsHTuNEZJYVl/7ed99\nCAWBH4l+VnfxSeL1F5XSqSAaD0m6ZVzbnPk9sSA583DfKaxvn/q9W4C3zvY5zZnX25j792/oF2O8\neDLGpR1zhkHz9VuWRoQQNGFBf3o0ODWyfuU34RXjS1L466/wiLtIlTRKmipE0DFzKn3eJVRLyHiR\nMZ4vZ6KSzWZ7R7bXR5ZBAC94Fip5JrxfcEyxt6323H9uIEKWvC689GO4gKZMUr8/C+1M+dH7oSso\n1vSQe4H++IS6FlGSrrUjhf6dfijAZ20OrX+whBL6njkUnlQF89mK1LoSQnv5gDQ+GWU+Z37J8/yi\n9kZw3rzi/dy7pEQdRv7/betU2Dnz8QVU0oG8ZKGaYua/yT0mhP9EmUiZqUxlKlOZylSmMpWpTGUq\nU5nKVKYylXdQ3ikpk6DatKyot6ycFVJAIEti9hFqK1YfSC7zP3QdHhGoQggx1rK/fYQaGEg30lln\nrFKXKCyh9m+jXFbVm+qVoU4G7N9vQvmM4B6PIiSvggH1sQ61fxvVLcIJHV8SI6kmRFUsMlbFtfc6\nx8Fd9ilL9pGy+lnxPdqnKSXK5PfRbyyVhwhqsDxkQogMHcqAOjWymtixahhAPMhXZ6SO6pulfaiE\nmmNjZTrWsSgz3nx19bYlMV81XZOwNVDXwiJCKb+oVSMr9fJGCTiu1U3Cgh/vfMbxsaIelyiy7L1P\nkLuHXN4xeDKQQjJCgrSoVyP1oP3z2hvas1d1RdvJqJcZe3h30FvZiLcLbT+L2HubyPVee4q9EQyR\nt4l846u0N9eB1eQA6krVX5NWEu/UJpVIgbrf4JfEyrq8YBbUww71K8FToqb+ZigDndJR2A9aQBM0\nKOsiiQJW6LVaHZV+niHIUUaaQDXcvmvidrJmh/rPnvmgVOqSX9sbvyDqfGlS++VZIpUDouGMOr30\nNptc+7HeYz/zVeR1v9zS73z2kZmZ/cW//e/NzCz9Y79mv/rP/9nMzM7XvuL+eB8PAlI3SrqXKvWV\n9zZQggx1knP8mSsVJW2lZx/yjNcTGGAv/873Ie99439/71M/rp/9wj1urvFJ+pa9taKfLk9p85A9\nhyjSv3rxo3/vKz9feeTs0S8d3fd6fhm4qhNfsu8cPxQlCjUkuvScT5P798wieT6gFIOoDDOSEGiT\ne7TREtpvJ2rtliWGPmj5nB6qpMCHaaD/7iFjtE9cpFWKihbizRPS1utc9x7jA8kHhuIbzPAOow/J\nUMSVutRBYQx1aTVjWMJ+ZkNR3fXelkaU03SQCQk/Uew67vtIlAHpEMY5Zjv6TfZDl/isZSIhtrQ9\nxYKIvsQPrYMQiSF4IpS6SN5cUE0ZKT0R6ld5Q65wWqhTnfzbuDeV/FAtlZLnP1vqYU7br1Ge1V/O\n8fYa8cgKM0nNb0dBjJArxlyklodO6OejbmnL3COBTJQ32QYCMsAzLIYYHfFTolYtZHxKFrT1Xufp\n/+8Z+0cRU4LIWpFGeh+KaPq6v0zn442H0Ayfkx2Kd8xcqBGDCvHZQ74Upfxc2CevcC9okhFSZyA1\nsEVVJYTvxtdO49NQ1zbLRM3ovoFs4drUpGyMmahOiDrugagTVYDqXUEWQ5SM0Jwl5LQSvULukaj+\nndSLBmWUxLImPLC3KSPn3JImdYXvBNCUff7YvbjuPnSC5eqVjx/DJdQanjPb595fPnni/XWLv0Se\n+Thw92NIRAjC+Ql+HWf+ul/+g6fgHX7j/fPiA1esM8ObgWu8+MT76/KQenrm9ffNE//+Qzxf7pHq\nl0RO5pwxHuUQTntQbR/83JN0RNVGzJvXOyUxQoVx73wrApG5X7t8k7YY8Vuqa2jrGYmMpLWonr6/\nxtuNuWhyx4/3pz/z1MKf//xz/97YKY0Kf6OL6reU6SizX//GPWf2oHa3UM2vSEUsOid7nr5weuMh\n9bCMj+y2pYRUjFMfMw0CLWfsGkVkQ3BHnNNQKKmPeeGhn+M1GNOw8bYSB36ND5j3bbZ4hzE/3nKP\nzOn3Czxeri78Xqwu3B9nhvdKvIOQZAyWf1O09GuxVUooY6dxHqdXeOc88STGEMrIEvw0Tvg//fWM\nZ7k1/kaRvHSgx16RYFaa31PRqdO29+64z8/5vn9+2HtbmoV+rTd4XiX4DLX4HeUt82Z2HbyiHjLS\njfY4jzltseBal1Ag3dyv+Z1Hfj5nz/zeDVolfdL/Ms/vRKjfskR4CJU83B5BzjfQyR3UiUikmueL\naoXP010/j+HQr8+OvnD/2Ospx0Nm3ng9JpDyxji6W2lEMmvXa0tOHtvpK8joM5+v9g+9jluSoGaj\nvBm9jo/x7Vyvvc2teFBd4PV1/2Ovu5FtGS/WeGxBnswgrlvu11nkr9888TZwBTEeQj3lek5mWNhx\ni7UiMHn+XuE3N1AXInHkl7mYQ+RcsDvhjOfue/STjLmya5vhWdnJz0lzriv58viB5B+4V1j51NtQ\ndOn37JrdCPXd309TTaTMVKYylalMZSpTmcpUpjKVqUxlKlOZyjso75SUMfYQJ9pShmrfoaKl+FZE\nrLg3rE5mofb8s88Olf4m8IaVOjmXJ1AWVskzgn3neAv0MekXqHEhymwvM38og3aUJbr/KKo3XfyD\nhO9liS1lddZQzYKWff6oeZn8ANhA2i5Y7UUBr3KOS+YxSvjh9YP22CoqAyf3ESrDRG3ECxs51hap\nMsa7QA71ATSPfG4yJMgMVWuEGOl4n+1Y5ZTHACvFDXtmWxTVdpDaTxJW/Xp/723KjuNIUafn8t2J\nfVV2EDUlmol96hn0VI2qleDjEeJVMuDkX0Xy72Ffu9JK2D48ovgGeBz0KW2Qlfq+x+WdPbMtrvst\nF2sGGdNDDZTUU8TPEZVpJO6ilZ8JyWFS0SOEjC2mPHP2IDdIqHulyB7/+42Azh7jRI12Jn8P2kYn\n7wFkPuol5npvtyi/ja8C9xBPRYVHBV4EAfeI9vJ2XJdU+1I5nlY+GnjiRA3rwjSLXavV99d7Xf9Q\nkW/FyB7Tkfu4R2VHuLMZMU1Kzdmy1B7SpnvQiHCAaEDhrFb+90c/cUXug5/6HvwX5f9rZmbJA/+c\n99/3zaQv33cV6PnfuEfMF//r/21mZvc/cAV1+T+4ynXRu9J5b+n7lh89JFUilpkJ54XYv8HPosv8\n+A5Q5bc/+LVZ/9K/L3vin/P4w8/MzOzn/+Ff+/+P/dp+8/3f+XHTbVxfu3JRfe9JBvsHvs86/G9c\nJbr+7m/NzCy6JkHiQz+Pds+/58sv/X3Bzj0W9u+60lFBY/SiFaSgrFCDSG5Yoe4dJiijEDhK8pEK\ntUMJ34qOw0vstiUgKWbsvP5DlJwABahiIAqhBCpSreIZtAqkS6SBgbYv36oORTjJaXd4FwXyP1GC\nGV1VghdSi/A/FjMbdxAWeIxs5WmColjgmTLi3UF3bSEKWQVRE8hPCUJyNHl/QXHy+oQxqVWSFRTT\nnBtSyYYFhE7FWDwwxowl44jS46TEoVB2eBOkjIEtKSKF/OOoo6KS6k4qx5p+R+PLoH7I20DHWFvU\nIoQYQ8HmojVjP6kcty01CnXNfvTsDhQTlIXSsRLGgyRTciLjH2SjPFfkGZCy5z+S/wltoYSqKtS2\nZho3Ge+oZ6VetYxjOf12S7/byTPMzNpqbjHU1hY/lnmFQg25oylRw/nmdNA7zrNAEa/oK4MZyZeV\nvo/rPeO6kQZocz+vYAuBugytbaEmuZ8jpSrNGJMCeQX6uStlc11JnWfMhVQbORaGSEu55jtorFCk\n9Bzfn+7NNtxCyPQmSvbtpsH5A1dMPzxxb7H7x5A29M+rl35gT0gF6s/xQNl6P3nnEPoY0uf+Rz/1\n31u/9xYn3u9WZ05sXG8dgdxcOMHy0SeeSvL+H0M5MWafr1zZTit8iMznLp/e8+NdHrki/Yg5wPp7\nf3208/rLHvv49T6eY7Pc1fXLF/66X37j49WjMx8fapEy9BXZHAqZxK9x6X9/7z1//Ya5QwQFHEOJ\n7KNAr5i7VcytXmzloYMHDhRBesz4zc34rPR6GjiftPD3h9AP+9ACZmZFvLTd1q/LWrBhyZwHYqbc\nh7Ymsqaiv5en0W3KgvneEMjfkjk5VPwSH41XtR97C23ZXPrvS1LnUlJ1TiBQnj/5zszMjhYQFCcP\n/ffRx9wXW1ftF3Ov8y1jkyD9GdRAAhG3feX36/aQ+xyPqTlekDd0APOxLcc7kEgz8uxTixoQKRlz\nLS/883P8fpbQByWo/lxUw8JpjBhqavWDn0d35df0wStPCjuAlngJiRRA1825lwOIwayFUGROKCua\nnmemkXHpBdSZyKW9A//c5/glhRH98TUEOONxKZKIfnqgH01/qx++Talr5ny1iFXaAWQ6wORNSm66\nYq7S+5xvA7Uib8kHm5Dj9Ot/HSqZE4JW49DK2/a8//HmWIpVanvxzJ5fPedYeL686/1Ox9xioC4C\nJh/7JEUa/fo56ZwV88D00NtQxrPLcMmzJn6Um1gegqS3DX5uSuU8XPqxdnOlzPHc3WlsZpcDU5hh\nwIuRIWm2ZOyroJJW3lYfk2RVbn2+PkCQ9yR/FRDb8s1bVxCPtK10cD+mp+xOqKCcl/jSybdo9ZR+\nkfPMhW39E2UiZaYylalMZSpTmcpUpjKVqUxlKlOZylTeQXm3pAzpI1KVlNzAoqOF7A1uIWm2GQAA\nIABJREFUOvbHaSUL6bjfsarIamZAxnzBqmiwID2pkw8Kvhp8fcfK1aJltTLHs2Dtq6v5XPstUW5I\nUojZm9aRb97uwCq0z5594j2EC7CF9SjgiKDWIfUMCvRh1bXnfHIUfKU2Yf9iLV4ECU7adS4VlPri\n7xFKetJ1lvKZSqJiQdZilMsWZXFUChCrfyI+5K8QpCiVUEY3K8YosPzbAnnKsD+8lndA+nbKZYjC\n2nM8A3teIxSAiISsfkvSAuuMozwF4t9Jl0AhiDjQFIU1LbmWoi7kjZLpfP33BGU2YRU5YqU+IgkA\nAddq7XccaOOsdC+Mf+T+uSHqfRkrbcX/Lf+gHKoqoP623CMtCrO1Uky5F3CFj1AgpIBrr38TyCMC\nDwklfEEryFMnRKWc4aVge7Qf9i6PeA3RDG6SzRrUzp57pVWKCzdlxd7q2c4//ybFSUI9Cktjt1el\nOhTKLFNilf895NjTXiQN5AYr9MFmx3f668tnJGNtUHleoHJRSQ8+dAVzNfNz2XznikKCIrCj7l9+\n6e7yf/t//I2ZmS1REv74c99rGq79dX937W3jaOnvb/FpegVxIhskggos20P9Ye/+GkX2+//0azMz\nO7z0F/7pX/wzMzP7xX/8c3/dgX/f2cr3yLctbvJ4xrQQHrunrlC8T9rFvUPfXz1nz2699bb28T3f\nu/8P21+Zmdn1me/Rv/jGX/jzf+FK68Hcz/u6duVipjS7jHv5CtUdAie5AzWAqnhFnxSUfh3377ta\nNuB2vwzezi8kgDKIclEi/nvJfvkMn45eoj+K/QYlehbj4q8EG6iBknt7TPEXQREeOO5a3g70tTnE\nZ6M0QRT9pM1ee1olIhLZB02/Wsnzi+8KUMCy0l+Qk8oQo2LV8reBAOwYu/T5SiiLb15GCh3k5Byv\nlC2Uw4z+q5opvcfvoUh+btzIo/yEGMx3A75vsVIi6DdRvUoa+UhKW0jKRIRnS0DdVXzuQomM/F6b\nEg7o9+QfN38736EI0nGkn50zhtd4Zw3Rm8pkj9dKCPUAdGsxGFo7KkEMJRSqoEdZDiEKW6XnCR6B\nBO2YG7WhlGGUX66f+oah/a1xNepvUp80TOz4vLDDg2Dw39Miu3mPmVnInKqGekgZ/yvqd2a6OVAR\nqZcGAgfQx7o5KS5lYT11NYeCKjGwK/C8Szp59ZFwwjkG0AOykau5CQrNZVCtO3yTYqgv4FPraaOZ\n5gAbvAAWUGfMI5Po7bRJ0aAtHgobqKntEydhnr7wcWHkuNLMz2vkXkn3SaxZeD95BZnx9DsnYh5D\nIUVHfq3uHzpFsFvjW0HSzgcPnJII8Ztgmmtnz12p3uz8eF4+9Z9r5oktfnCbrR//6crHm+SVK9Lv\nfUCizb5//3t73u+KGmsi/5x9xsEeT7Xn5/45oX+9JfhNnXzq7w9JuHx418/n/LkfV597f37AvdHe\n8f/Lj29Hfey/7+0l38czB4pCFO+WOdoaL7ZD+SKFr5XpTz9+317s4VFJXxbRzu7wvDDIV2vBHOXM\nx6/zXz2z25aWuXtaK3XUr9k9/NqKOf0IHn8BSX2XV6R+kp4UMCHMoLPab7wOTl95m14WUK6F/DSZ\nx9PmUhCZHdRRyFxj/4h5I/TwHcicdt9fd/bKP5c/272HJFFCyCQi1pUGCD0gX84S0m63cbLm4JS/\nk1hTQhCOTNbme94mdxAwLTRUAhG6hvQ8UHLWqd/DI6TgSN9Q4191mOHJuIDM5FkrIWlrZNK3e+n1\nHJNYNqfN2b4njA343p3SBiueM8IU+oo0pppnrr2ZEnxvV2b4m1zx7Piy9nby0wXX74QUK1lzdsxx\nIRNzxuk28Ht3wXPF+sJvQlEp4wFz3lapVn59W7UbM9vslXa5WVtL3x/Q19/hPl6d+/163vn9NvJ8\nHBz66+YXkOIvvR8b97zOVsyz7uAJdnTXr+krnrcTHiJG+uE92oAde1verKA+a//e0xLPqEhjPPMx\nzuOM41sce13dXfrrOyiz62zN+32eu9KzF6TcDPK9ZTeIPGUjniP0c80zyhY/I6uVaAvt/4Dx6trb\n1sstHWPw+9vIRMpMZSpTmcpUpjKVqUxlKlOZylSmMpWpvIPyTkkZ7f01XIk7JbSgnvcBSi774gJW\nqDrUtxByJsQvpWeVuMMlfsDRvMBhW3vDehTT2cieNlS1mBV/qVUjvh2V+esXqF8Vn1uToJOjPIQb\nVlNZQctRYuqU1VlWyBKU8xFFqJC/B8SNvJkD7RdEeU21ijuKOvHjHlA/U9IN6liJSKiNxWC7mv2A\nqms+K2UFvcPfIItQ3KCOIjxo2k6eMki2MSv+Jk8XVmzZ/zuKjBCSg8I71ybJW5aAz29FxuSoQh37\nCFEIc5TVLoG2sjf9RGKIkxnkSzCg9LHC3ZKI0kG+LFFXKhrp8pBGUaMOgRQtEnm40CZQzWIkSikl\ncpevMD7KoAYiZPkEqqNkdXZkxbts5fmDYjL6efe+0G09bTPBP6iDvMljX2kvSJjZopwGKLsZ51kq\nKUFqP8ffoKDvVB8kOoQF9Q5lFtHGsQcxpT91KMSJks1oP9yitqO9KcUlNf0fr4L69l3TDBIhqPGg\nYgV9ZC94oNQOmU5BUfWssHffcUy/ciWgW3u/8yD1lf/wM/dQufeet+1XlSuhW+p2DmVVJV4Jz576\n9xys/Lj+7J/9GzMz+6O//HdmZva//e//i5mZlV+6SvPZf/xvzcwsOUEGumZPL74fNXvn+5rkAfbQ\n7r73RlA89zr+9M//OzMz+5f//q/MzOy7uZ/Y2am7v78s/XO7knv9CnKPfcrxB5+amdnJh56uEaBY\nhJkSBvz4Fofs5f1Pvh85+C9+7d4LXF368L5774T3IEnOvjIzsxZVaAdtNUAKHZgrs8sjV1TLladt\ndE/xZIBs+hxjpV+a2vrb9SUj/XKIr9UIPZKi1DQotQNttsezJs5RhBp5dEFlRG+27ZjEm5JEtgE/\ngGDDeCasgXtrqKRIKYGotniU7xEkCcc+Z696HclrCmoT0UX0wQIvl0H9NuRIodAFfh811iaoVdz/\nrRKldv45jTxtIGFa1KCEYw9n0E/4nHXsw44KqAW8SkK8B2JRQpAeIWNxjLJap9qj719bQ1zMRdxA\np/bcyxGvj0YpxfhcqD+vbjqmW5WBNrXAt6jifOLMv6djbE1R07OF+inaOtey1vWjf91RTzn9YimF\nnLaU04e1wrR4ncbrlMSeFjphwXXYMPbfpO2ZWWSt9aX6d1RA2l47VwIQqVjMqRLmIB2oS4YibijR\nEXMdJR2ZwgxRnAORsxjpjdT/aKV1Une5f4fGr8kG+mlBI9+STVVs8BbgWOZQrTX/36CJLhgzK813\nYu47zSs7UV+0rTn0a/1mmudY//40jN8tl09d8fz6hy/NzOwAwjmA1LQjxp3UFdoExbj81hXaH555\nvxn3Pne5uyVdk3r5nn4xgSYt9qEUSEP5zXf++z4kzfsfusdMGjsFcYjX1wd4QXzzo3smpK33p7tz\nfDEgt6NDPCEYF7/9wcfBuHHF+/JTvCGOULBLkn0W7q22fN+P/+7g42RPWuGI31JCX7V66sdRXZPA\nuYJsga5bHHnbSgs/7r0ZhNBLf1+39vrbg0y9x3gVQUwOH5BE1Hg7ePXM6+ubr/7BVL76+1/a0ZFf\nr4MZBidbP46WvkohXfUllHJJ+svNA8sfLiFt+2rlpEh47sdyxVi6vmDMZT46Y4w5P/AxdHvpY+DL\n1tva45WP/dGSOQC+FZd4/rVQnCN1LTiog07LL0iahDRfnXtdJvimJcfehkJS08I1XiNMSdKEeT8T\nzxnzvwPo42v6oRo6P5ePJn4+HeT8Fv+2gPfdJBmKEJWn2OCeKCsSbU6v8NPbY/4LKXrTbyoUiuSg\nF41fs7v4KXVQUGHiPiAjz4KnnbetOzd+g94GfvK+z0nUNhs8xozzlmdXxHVr6avq69sT3mZmI8+4\nOd6eJYmcm/fp0xjXA+Y8a1GCDJAFaH7CfD8jnUobEkaeB+Z0igP+flu2XdzfP745lr1saetuZ8mC\nc1g41VTg9bKh39jHO6Z7SBoo5N4dqMv9Ao+tlySG7ZPqdtfb9tHG7++rJ+5RtdMc48CPvSdRag6Z\nvYOUmUE9NXinRlzTJY1UPpwXGz/5BQm5KXMRUVcZiVMt/VQd+r25pk0VvZ93DGU8MhdaMJZuWo0X\n/vP9IycWN6S2lWv/3BJabUVionY7JOPv9x2aSJmpTGUqU5nKVKYylalMZSpTmcpUpjKVd1DeKSkj\nOqPv2buJkjonyaGBChhH9uRGIk20vxtFk/3YGTTCwCpmfLPVSz4eJBfsSH5QRj2EzIiCKS+YgRX4\njj2niHA2xKhIjfZhQ9DMSr3AzMxa6IQc+mGtNBgpO6x+pv2bmfehFJyAFCiImprV5rT174lIYEil\ngrL6nJLgk6BubraZzQv2mrJS2qHqbiBmQtSirmGJfY5qgS+C0hdGVOCE/cHWKOHAVzeVeKO96CI3\nClSyVilAtywDNFDD8YfskY1Q9haJlDnUOFItBpTXDvIjECEkimKU7458HaCXtn68uwy/H16/wz+i\nR31TdI1InAR5pYfkaaEBMpTeDoW4QHGtVU+Bkin4nAAlROlMCBQhJI78UXaJf8+cvco9CS+pvBag\nAir2QyYoAL08YyBccrweRpIa5GmRYTKxXStBB98PJJitQmFSRZFBAyglheMdAxFDeOKwB3nG36tO\nBBKkFfdaIC+bW5SaRC0lTAXQAusCJRDlzNgju0ANH3Dmv3zOCvePXpef/vTnZmZ2/6e+53T+Pm3j\nkV/LM5EcOyVN4bsEFRVCoCjNYf8Tv6ZPy2/99T+4OnN04sri47/073tprhycsfe0S5U+QjJC6nWS\nQcS1EHjRB36cH/zbD/00P/Z74OI3Tsg8W7niGeHRFaG+rOm/AkjB+x+T5PCJn9eLyt+3PHbVquWa\ndJ3X94/f+XlcP/P6+1f/xtNI7i69jXyXv+J9fjwZCrW9cPWrfE4a0/v0Y3Ah66ckm/3SVbn5I08n\nOf6rT/x4K/ewKbu3I2Varn9Hm+1po4RtWU7fVpLelZHu15AU1tHOelSmLd4FQG02Mm6FpHrlJNBs\nIG4C+q4aqiPFV6CHDIjz6savwSrUc/x3epS8YfYmeWiQZREEjMzCBr5rxjXemdJ/IOVInRtQaocb\n/zLqguOooDrzHZSZCAmuVUA6kJJUAhIR5AFW3iRQUdcQcBFeMPIsEwk4FwlEv1iL6IE8Me7pBsKn\n5/UJe+wTxsqww/8nvX2Km58H3gsYwTXREX9HwYW8iUlOVH1sSJZQvzaG/r0h41OCf1WDgp4sRL/5\neZd4mc2UrEhfpv39WQEtwnjc4zWRo/iO8u4ysyzKbsanDF+TLeM7w6h1M3yU8PCpUAPlGWdQfz0+\nLK0oXwzxlNw2jBrHuE4cQy0qOTHL8Y7ZQkCH+GfYFnLuJjnF/1zy71jzIOaFCT5ohvdAz40b0Ra7\nSPMifN9ijT0kmZFE1pCOptfJn+nWBQLu4UNvG9ncleF79z40M7NiThoHbbALvT87xd/oFSl5C3yI\nZg+dUvhs/sjMzJ6ee/9/8ZV7gOmeTfBaEaFXbvzn3/71F2ZmFjL2H514mzt56OPLg8co2oF7gb0c\nvF/tSMBZ5D4+LRgfqkvGuR/cQ2UgyrHG6O7Vt942mtAJlJMHTlaekDaCJZud7ryfv3jp41CEcv4t\nxI7mDCMU3AhlsHxG+t5HPu709FW73t//4itSAg+dhrg3c/pByWm6KfehvE5/K+3k7NkLe/K1n8dx\n5uPb2kgUQtE+Gkm0ZC63f8frbxbcPllnIElrJs+me34uMXP4audjZzD6Zy9HT4IpDJ+d+3wn87o1\nhMkMPx0jGaplXptXeCVmfq3yhATBKzyfGCpjPifCy6rZQR/R/3bMg3f4bBREVJ1dk4Z0wbzsyK/J\nku+52L5Jdormz6Gr5K3VQ/bI7ynh+UEpq5FAPPl9Lv18RxIZayAr7Eis6SFWSNjpdyQi5n68vShj\n+o6Sez+GElvy+dXaP/A3X+Kv9MBpiaTn+5l3p6SZtiYPRdquvCbHt0uE1JwqptOb8Vylft0aeevg\nScn4OsMjErtTSxj3YzxjjOeamOeWOiDxc4sfTKR5+mtKsP7+wqr3Du3BiZMs++wGKF/4Ob146fRU\nBlkX4Kezgvo8hjzbu+M/TyHjdk8vdJBmZna45213SDX/8dcff+DHuAj9990Tn2cnPF+vlyQ41t5/\nxTzf5rkTOOMp3rKn7Dp46HXVQRftQRw2pntQ1Jb3qwfHzG9JHjsb/XuO8eMxxo+cZxgl9e5Iyrog\nrTUtvT8tHzFWMy4NexrYbiZR/2iZSJmpTGUqU5nKVKYylalMZSpTmcpUpjKVd1DeKSkToy7FrK8O\nkC4lqr4UyAj7/V6LhyiVOYo4i8U3e3J7lOTOfCWrIG0jbiFPWKUNSLbYsqIesDc4xg8l1RZSVnlH\nvjerUPPwMSmhBthWaTmrkzf7KJGV0kieOZw3y5yDvCNYI8s4vhrKJB6UZCS1Cg+L1M83QlUMRB3w\nvZ3Uu7C1Tukb/CxIREg51i30TphBwigxSp4wwAYFq4hW+Ulv2MOaZr5qKo+QAWU3Y69rSR3M3rLJ\npZ2vWIfyIlAEVSTlUH5B/ucEtCRmD/5SCi1KcklyyqKBMIFSKkkCk6FPAA0VQA5F+AuF0BUdng29\n6KYVvkIorPGM/7NPeYBYkRQgbS6eycsBjwiuT83e37lSN2Z+AZTkEpW0Req7mSnZBVWShJqQ803n\nUAKo+xs8gPIcZZYF/g6fFOAGC5d4EUCTlbRhJd+sqV9JMTltM+i9PnOUXt3bUj/7Hu8I6rVjb+0C\nv6You716maHe7iBVIhSveMVK/5Ufyx4KbfHAv/sU34Wsc6IjPnDF8qc/czIj+8xVi9PkOzMzu4bs\nODsn/Qe1u4WuKnHyz/G7ePjzf2FmZrNPvW1coCzkdyBcHrDX9o7X+dOvXVFsRQJCOxXcOzu8s1a0\nkeQ9UukWrPyT7PDrtSuAP1w4mTOnP1lf+7WYsze3Hdj7n7gycuczV/OeoTSufulK6Ir93LELw/bq\n1JWPe8fs/f3A3/ev/8f/YGZmzYdeP+233qhG9ol3eP6UV/h9XPjvD3/iSke49uvU/uDHHz7jeD9j\n3zWBByJW5v3bUXcxfdwOhbiQMj9wD3ETzOUpQJsNQyWZ+fdleD00xn58xo2dlPoKz5o5NBq+KcON\nmibSU+obSnRdWArNqeTB3uRpgjqzQa2d07+EosToBxnjNNaV0AnRDB8gxq4WJTTB10KpDGpzUoVC\nKE+qyEJ8d0T99BAWI6Y1ifx26Id6qM54SR2Ziv9/zvH00Actyt3AWJYxdpfsDy823HNckzl4Rccn\nN6TGtdzre29LZjJOdIzFucjLtWKRUN3ZB7+hz4mZLCgpSJRGLSoP37m+RtFmBMigNdpAXl1cF84/\n4jquaTO51HrupQEaN8Q3y8xsDGvr8E0yFGENPxV9S6E5CkRkuGCfPor1CNGkRAulSTX8Rf4aIyrp\nAKVRQ+ZYjH/MUFlDG04ho0fGBoFuMWNfOygZkgS+DXSu/DFIAOtSKab4EqEiZ6TtVBDWCUrvTume\nkHGGap4USiq7PQFhZrZ34lRDeMC8q4QmusLbRFQt16hAQf4Ej5c7R67MtpX8PvCZwx/pTx64V8ru\n6B7nz1yE873onKTpL7wffvoNHjC9ksr8OK+/9X40W0Fv3XWFOj1k7oc3Q3/uivBTiJzF3Pvj4z/2\n8+wC1HvmXgEJNs23rpx/8/Xfm5nZj6ItuFXmJ1B4IsEZ7zqorjkDyoifRnxDz+FBg7/GnYdef93a\nr9P61M9fxM7L3tMH0wFa+y5UwZ985N+TvO518o8WVr3047lS8g+Udz3zelnVeN3Q3qo1c5vq9p4y\nPSRCNPM6n9H2zoWsQKAsSEbs8GAZud8LjkV0vJXMT+l/Avld4Hm1WfkcZgGlep/UngvS4p5XzAcb\nbxw7aE0RNlegz0vIk9k+norykqHfakTx7jH3YB4sErKnnwgb3aOknDI+5aPGBZLYmJcWpOy1tIGE\nFDw15oY2QhCkpameJ6DSdjx/LGmbPDw2zAWjClr3Ziz3ew2Q8WacajnP1EEba5f+voKExqRQoheU\nBPd8BZHTzd7u+SbmujcF7QDfkdMzn5sNjG8jhE8HGTqHxm1XpPMxl9q9x3NPRYohj28RVMpIH3Ef\nH5S+vbw5lqYebd5uzRLIXsb+zQ9+zdNQ1BcUJ2Oa0eeH+Oqc3PH7evONv2/F/E+VHeM7lkZ+b3TM\nGRZQSP1z/7zVGc9ozJePH9APQAlVzMeOSdaNY9FB/rOE4mU6ZmvmKCvIn3Xp/WOMr05Y8P7ar/nx\nofd/SU9b3/Nn0TPG0CTx87xHKtRmxzMR49flCJX2np/ngXyJghue7B8tEykzlalMZSpTmcpUpjKV\nqUxlKlOZylSm8g7KOyVlejYG3rgpC3fQihwqV406X6CGtXgaBCQEBNpjix/GHLWqQ+2r+JwRaSa7\nyQlnBT9hPx5/1mpli4o3R+HZ4S0gL5uBfZMFjuMNNIc2PIbsWRvYY0xQkKUkUTRSPyXmsfpdsRKY\na/VVV6ljBdDkecMqMIrrwD73DEqkQfWr88BCqCJjJbrckbpzk4IjDw/IDfbdBVybtPD/b3WOpC/N\nqPMyYrX0Zm8r+wWhEbTHdBvc3ivE7KZKLOY4GvkNsZI+Q7lNqPMukT8Q11D7//ARivBg0DWsqNy5\nErAgRyr2eGrPLkCQlbjFz1A2c5SABkUV4dIS2uYWTwMpkz0r1jH7zQNU9BA1UduicxRzoAjrTcu9\n0FEo2iWfVyudqmOPP+qcvCKCSklE3AOtX99GaiNKeZpznVEfjZSOrlB9U2/a87qjnUClVYs3U1XC\nUN/Pir72vEIMzVi91l7iRm7yNR4WtymknsUzJYb4tbhGAYzZ5L534nvPlRjSf+dK44sv/PXvf+Tq\nweJP/XXPzUmTp0+cYOnkYM/eVpFpI1RUeuB7YtPqvpmZPfrMUyKekmhz+h0eKyfcI6hLz69cUdjx\nM6ARtDP/f4aqJD+iHJU+j7hmqNIXz78zM7PyDN+O1NtAQD9WcC9UG1cgmjNIjsLPf7tE/b/6wczM\n1t+5AhvgtXInc++AgY4yxNX++M9cCbi+5/X9w0uvt/O17wkOY3/d+TnpT196Gz58QKrVA1eEv77y\n72O7vf3Rv3TF+OO/+OdeH3QdC/qWOn67vuTGwwv/pE5eXFApI94vHbSWPIpC6r+FWhMlEIgyw5cj\nhv4KuYcCkuqaWCqb13NEcsIIKamEt9Cqm8S8OudYlHKkJJOUtDzGMimmgZKd6N/GhVRd1CworQLS\nIqQyG65hrTGNsXCo/fuz5E0vsprxIzMpvP45Cf1tGImc8x81iIb83XKo0H7OPcj/AxS8ng50oJ/q\nUYbTUQlZjHmiSUUdVTpP0vIgPkIlO9y2MGb2+JbIh2jQ8ZKQ2HHcC4jT8cbzhpSshtehAs5r6pn6\nMlL/jPpOGSdEAMW8XyYNCeOH7OzU/2Zc/7Z9TQP0TW4xc5VR/bj6klGeQ5yuSXHn9czBRtConvG0\nGtTmdX3xcIMQykSw0o8nGe2rDIzbxDatjgnyAAI4hLJNSvnx4C+xRBnFbywlpimAwtK1aoUn0Tbn\nJBuWrf7OGKSxEEW3ElU2vF0bqc69n/rmR/e26jdKseOeg6BeQgDt9vx7PjwhxWjfFdYj7s2vnrt3\nzMkr+pfC/394z8eT9XPvr7cbHz9epq7MHkIr3PvYU+ta/KHqMx9Hnj3z/reHat6DKP30Pe/Hn43e\nb28DHwcvnrufxmLJ8advziEuWz8O67iHSeFrRUIyX91P/bgC/E/u3mHuRppfov4QmiKGsDnCz2hD\n2wsHxxVSFPblPpOjB/731Q94juGvtDn3e2BDe5pf+vEGfppmZnay99Dee4QfCuOmhPwaqvDi1Ov5\n7Ddef1uImkA+ircoPffRHGJ5fsfpo5751jUU6HpNHRyTMqrUULz+YsaeiDrtZOa0wZ+MNKdGY9TK\nx9g9fMpW9ItKVxugS4sQn6GFt5Vh62RGct+p1+PSx+RTiJFadD80VRSKxGOcgNw8nPtxr/CKKUnC\nGSCh60wTPTwrOZ4WWnRG27gTO71QQhtcKwlX82FIwB6fvb09nlOg3i7WSqWSdyTPYlvIwBR6j3G0\nusM8vfF7D5jW8hfeBoYcKpgktXqrvgqCX15b9nbUXaW0UZ5rROjvY/4VkzS22/h10jw/xc9q+MKv\nW0YCUiGSSuME1z3HG1PPc9eln1eavm7TeRLYrszso4V/dnvm1+S88v5p2FdCH7sHGEsanv1e4LF4\nB2Jldcevfd943aWMSbVS11Z+/w57XmdLvLnSM7/Wa56f4zve9rejUo/974t9v++veJ7fZ+7QMwYH\nJIv1PJOeHPq8fI9ntheBaCSeXdmFsIDeaqCmTs+cCNysoU6PIDP1jEkdDuzSEPnX8ozacu/IvLBU\nUuQ/USZSZipTmcpUpjKVqUxlKlOZylSmMpWpTOUdlHdKyiQdCiEraEoRauSpwAp6xJ7UmgSBXOkZ\nUuX4nJz9jwMrVZ32MrOK3LNXtW/Y76zkhh379Wakbui4yEFvRMzgtL2DLpkrTYNq7CL5jLDyhnt7\njI+HEhOUjCFVKUJl0iL4yL7ThsSMcYt7M8k0hiJR4PNRazWYJf+B46nZr5j0vWW4rbfsjZSnwHCz\nf5DVvcw/a8FnlbyurHRwEB6gDTuU3AB1KIKQyNiX20BK5KIK3rLF1Ts8BfZQLAdc7Udfndyiji1Q\nXUa+P0LVjmKlB725atmVUo9Q5RZ+YLuatsSezX4rZRcFEaIoKFFEWeFOpLKD1ETs5UXQtYA9oyXS\nZ4valLLyPcPFvsHTpUP53pEckaCESjUyVvoH7pUODwAZLO1Qwgs8ZyqRKxy/VK2SQkljAAAgAElE\nQVRASjNkTgt9EaJkFMicG9PxU1/sQU6gxDacV8G9NEZv7l1uqYeQ66HUq25NWgvXVfXWxLf3lBlZ\n2aYpW2m+Mh/hJdOt/f+ffPbHZmb262d/Y2Zm2ydeh0czV7F+9rmTGdGB18H5mctEG3nB4P8wp38Y\nKv9cOfrvcU/0H7Mi7mKPXe5cEdiFrsD1KJT5Xf+e705diWihq8YF5y4PBCCIgHtqRGU/p+6vf+Pv\nb37t6scHf/GvzMxs8bHSRfxaaZ93SFsvUDYqSI9jEtm+f0EK0W9cQc32fW/+8oGng1yzVzeBWKxQ\ny65Q25+fOupSoXCPqEHND17fK7x3/uLn/87MzOafPvbT/b88feru40ecx1/6+0mEOK2dwJGfRle8\nTtW4Tem4V5SONMhzSz5R0A5Kx4sb0lpmippBMYXkjFBc1MZnhTwloAJDlBXGm4B+vkMdHPieHPKo\nrjIrIUEK1OmRzwwgFGMIjUjiPr4YW6SxDA+rCNpzJHlMqWw7UoQCUoBixpAOX7UMdT/hC8ZIJIv/\nv0DJbVCnIpmOMGZVqN29DOBQr6RGNyQtzqAmOqU4UScZItIOr4SCxK6WS50p8WDDF8+l/PqvFYPo\nFhpq/pagzAg5GULKiGRMZAmGV4ESE7dc+wUDW9vhU5J4HxQrZY7xpi0gO9nzL2JyR72NW9T+FIUb\nOrbHW6LGcydB1W8hUpQYaeaJJCn77VvqY97L545UqkGJlfLLUF/DeADREwVv0mFDrWRMxns8jTa0\ni1DjZMUcKRhsgzqbJYyNqOghIu2m0VgZcPxcU40lzGN2zD1Elfak5OTQSCJfNB/M5NOAr09PQuKM\nz93Rf8Z2aG9TSqU7FbRZKIZ+j7S/Fu+UGyLI78knP5JW96WTiA8P/Hv3mXcu5k4pPH/mBM7Fd/59\nr0iSOVy60jvX6w/890FtgpTR6wM/rqtHTmlcnvv4tVmRLPO119Mh5M7+A/dOuP/APdXaFf5UZ8yf\noQA+PHKCdGM+np3jCWEAqHMU9DsLCEGScHpIkx3KtYLctowD53jjrCFZH+35cQWJK+fJxs9jL4b8\nPHBvByn1C/yohiP/e7ny1KhxD2+Z8PX13Ww39uSFH8cJ3jgzfELu7nn9Hz12UuDOY/eWayGPVpCj\ntylNS7LYhZ/7OPdzuLvvc43tXT+3mDFsDZ1ziD9cCxW7WkHR4t2V7vP5PANFXPMo93PUboDNhvnf\n3D8napgv44OWovZfX/n3P3nu1yLMvY20zGNzfOTi1j+/ZV66Ym51hj9TvSWp8TNPghQN9c2lH2eS\n413G546Q1UrSLamvtPd6Ko55RoOI2UEOznm2ajn/AX+/5JAEn3t44fA9m3LL55PwCCW3D+mTcu3X\nTB53A947+ERdMhXrtn4PzndeIQ3Ppo3GTebzxVsA3mZmMaR4y/g9Y37eYqRVViS3raFKMr9uH93x\nuerlff//9YYk0S3+iJGeab2eDsPXnmNmZttX+CySMmVmlj7Ys2YTWEdC1pj4d1Y8nyf4Q4q2PeA5\n8+rK7982JX0IYnx5SB0C2O0X0F6krIXMN0N2whger7vAv3fDtXo4I+UOWji7ZOxkPhXmeC/iDbW4\n4/3SWenXMiA5dvWCcePM++FOybbMA9MTP56i8Yn7gtTAZy/w3dnz45uTjKZnL2NOlTB/XDKJ2WeA\nK/FhYpODJUvt1PnHy0TKTGUqU5nKVKYylalMZSpTmcpUpjKVqbyD8k5JGUPdGUizqFB/ZqyQNThP\nh5WvdDXsmU2l4uEOHZAmor36G/6fQD2krC72KNotqk/RydOFfZzQCCyCWtRpX7WvMippJmEP8g5V\nUeYEM6UGsNdMdEoFbRDhEB7N5ajtK3d1hZqoVCnokoiM+gF1q4eq0L7yjtf1KEOG0tRl8qTx40j6\n9uYctH06QEkNRT5AG7RKsRh91TDj3AJSlxocpkXMmFZkS/Znc04N0maHUjhmkCnyPrhlyUjCGuWF\no73rnPM4anWVvfEkM2Ssjo6NaCF/W8L7o8JXVXfshwwG+fxQD1BZIXtgA7xTRtIsGj4/mJNosFG6\nldef9gSXfHEIOTKyN3aJl4D8Qza4yY8okAlUltKLOl3bhvPSfujAjydHBZSCmZHOtBn5P0kyHfdU\njnfLllXxfAZRpLQS1MctbbOg0dUoAjmeDzuu54K2WKO45rTdDVQYYVkW9xBMKLklhJFWvXNW1bOa\nqJ1blAGVpVZizFPUjm/9fju66wrgHOLi2RNfss449w8++9zMzPZ/7srjWeXExtlzJ0+CYcm54NuA\nWq/+5ACfnHgPVZxz+p4UpK71lfncXJUI7kP80baVvtaIroIaaiqUY/yNcjyjQpK4Ioi9Q27/Nek+\nv3jk57O763X/44sv/HtE8G1Q+VHlS7wQDklsuP4//XjHJ/55f/4LV7/mH31iZmZPv/hr//yX/v7c\nt59bjGlWt6P/RYGo6X/38dXoer/3jt5z1VApF+fQF4sPUZqP/PNfdV+amdm3X3h9SsFdNL9lFnCL\nkrJPu73CywU/pmTNvncIGiXnVNqj3NDvy7uMcWCO30ag8YM+cRjobNhfntDHMIzZLJZvB5/HeNEH\nleXsiR9vUiqUAkQ/BzYV8N1WKsKGMRFC0GKpNxAaKJcxqlRKwoAxLugcAzxUKijRCEosQWkciE8L\nODclVClXKdsyxsn3jH61pm0a/fOWtpGP6rcg6BiP5vgQNUoxgcho6G8yCJsI/7QdhGBAfeQQG0P/\ndnv8lcYXIeeLZhpIvRrwREshTArqW7TcgPfXAOG5IOKrnUHfbvD8khebqClUtwgCdIbP0ZZxQwls\nFX1FiMyXQrC2v7VNvUgTayBsIojIvnpzvBjnjOf4sdC1WLIhpWsmGpAJg7yKciYfkJQDSvmccbGD\nElGiWNMNVtCmmh7Sjz34HSl1EfOwHfSnElq6QTSAH/sMr6Zmy30b+u8lKUsLFN1OiYu/Q8/KBm3D\nWLSkv2173a+3K/uH9OMzJ/x2MxLAKldURcNmGGAkhfdTmzX0whNITPrfNoGa5Z7MTpwULFyQtbu5\n9+cx6UwDiWkpan5zARlCUmK052320efukZZC/BUuotuA8rvC0+qwxu+D1NN2g5HImby2GHe41VuS\n1JbcWk8u8Vw4dZJECUNd5ue/N2hc83bw+I9+ZmZm1/KJYpx79crH20vSpDL6kNJ8PJzTh6WpUxvn\n134e+V2vh8efu0fZce7j+MnszRRSM7Plcmabc/eIO3/un1uhcOdHfh2OHvn7GR4sXTFXe4s5SZH6\nNT9f+7nceYEfJGN7l0Ph049UWz+XI7wPH5FclV3767YZCIbGvNonSjm+PzkqfpP6GF4xpjd486X0\nQzFkzaA01T1va0Pn37/mGg1X1C3pqw8fO0X0Xe1zgbBzKmJ15WNydeaNq3qILwjpPnHmFEUov85C\nibL++85IMzpzQseuyFfa8/Nc3vP/h+fMf+mHAnnpdP76p8/9exKiE1NSU2dQDDUkzPbc662q/LgP\n7nqbiZXk2Ktfh3rN/DgGnjHPmefueBYrKpGmeFC24BC3LI3oaGi6cWB+vvQ+5tX37hFUcI8Oe5BD\nOz/vTmQt9+YlfeAC0vP4E7++4V2nTeof/TqtaAD391/TxnlxYNXVqb1aMf/jvpk/9u9s78hHiORD\n0u7O1n6MZevX8NFDv3+MeV8EGbNpNG8j6YtG0dNPBMxxrqGGlqQ07Z/4uW9K75cufvS2N3+E9w39\n3goifYU3Y0Q/tc+zWMjc5Vwpxtfe3+yo8+6Ot90P8coKX3hbUXprdMg8jWdZTWnmNf0DHmZR7fUy\naifLK54NO/+csfr9c5KJlJnKVKYylalMZSpTmcpUpjKVqUxlKlN5B+XdkjKiJrRfHIKlxiF7gLoI\nkdkjVgFLgsfn7Ake2B+twJYIsmRgP518QnqSGGJ8Oloc0gPUvgE6oCdZoEHBzaEdWGi7SZoZlY6E\nehmy31/7rocUGoU9tUqaUEp5zYrZXJ45UAU79iJz+DaS1hRAKbQ4q0em5B5XYLICmmELoYN3RBjm\nVrVSUlFvWY8bUIV79vNJoaxw61YCCdYqNpODNiRJEoseYr8eSq98c0J5HehzgtcpEbcpPT5BI2qY\nlLqKPaapUkBQRHOU4VoCX6qEB/b2hlKW8YEwebf4n4NaKUrULf4d8jfa04J66nXcQ4YEKJqBEl2g\ntea47Tc5CifKrxRdtdGCNyrlQsfXopjmO//+Eroig7jp8LbpeX3PPTNA1qTsa2xxIB+orwrvoBia\nSr5Feez31qgNlyjAXeOrxik0StvjSSEECU+bUQll0ABz0qoa+XWgFBltviikvKK0c53j/vbJOkEj\nbyqv8xWq/27ln7n/EW2I+2pB3bdLb+uP/spJmlPzc7x65Xv+jQSrhmuyRNmrSlSYyNvKOCoBQb4N\n+CiF7EXF66BJUIHwC6np79LKvydEvShZuQ/xmSjk78QKv1J7+sYVgesz2mzmKlm44PPYx852dOtr\nXTP6E7r/uZz5c1cK9iL2GT/0tnfvU1e9zlvSkZ5+ZWZmq9/4NVo+9PSPEB8NrFasMFcW0ws/jmvU\noLsfusJx/JnX+5f1r/y4jkjdgK47a1zJ+P6a5AXSNk6/ccXkJHP17ralgn7o8JoodtTTDBISt/2I\ndC6assWkPLUVSq1QRVGF3DOR7t1RVAju/0gf6s8H+pyEvcc16mgwjjf+aiWqUsFYVnM/x9Cc3c1+\navoDFM4m9PsroY0EUDhjrVEHmjMSCYPKQxJgRZuesye/GkX7kK4mDzLGzoT3p/Ky4n4uIAkT2n4l\nzxOohFhkHd4JIYO37gmlDY1KSISuCFXHVGrFHGAujwEUz2DLuHAAnnTLkkAWnkOOHqF6benPC/qE\nHQppDh2merBCtKr/umXcLai3mvq5SamC9s2hqYz+vRIJhLoWas4DyTnIB4lxOI1e62u9RZZBkTS1\nUqEYhzr/nAWeE73ql+SJCEVe6Uz9DILxZhs8bZU+quc6t4y/aSoqQeP/3Oo5YzX0p0iyjHndwFja\noW73JI8FUFQjimoDOSMKSp5O88GPUX4ZkVJ+oMnkLVgoLaQXNep/3xt+fxrG75asZCyn7j4/9H6s\nrLyfLOV7wZja4Z2Tk9AY/XOvG5Ea7VNXr//LV//VzMwe3yW9iP5cfkTdtb//7NqV7Ie5e8H0jD8n\neMR8eOJK9ZZJ24i3wgCxvZa3Dv///pc+jlzhX7FhrFePEeH9UH9NIgzd7uHPPvTjB9Nav8JvTwoy\nhOfLS//8hr7tY9pITcrTIURP+4R+vicpR74p9KdbJWtGfpwBSUBtRp92QRIQ1FkKTSEF3szswfGx\nPYREOntJStUXPv58/fI7MzP7YeXkT49Pknz59urMbluUIHbwQP5C/vsVaZYpCWKjTLnw/RkTH9v2\nHnkbGI4hJKCiqg0eYZ3ejxcKdZpvUeEDedkwX+O4FFwmun+5ryQzb0vzmZMhV2d4leAXUhx6WwTw\ns6vM5wqB5r9z+jdw0Ix5vwhvE7W05plpIV9NPE8O/Hsb+stvmcMdrukLeH/A+dc934MPUN37vXTK\nPacgzm0j4h8CEKI0ULoebX2EGE1FpNNfHu/7ebdn1Lv59bl74N9bQv68uND8+u36kljPkgwHEeTh\n5bW3zY7xnSmJ3St8bvb0W78uRp9SPMTAENrtnMTMgnpNGWe3kPYdmEfLs6WZ2Z1gbqeryrpXXkf9\nsZ5flayoeTTzJ+77goTda20c4VljD/xS3l3rnZ/T8tjbzuzB/TeO9XoLoRP7tdyS7CeS7jDye+GS\neesGH52lnrmgOzPGop6fg56fqetD5tNPmSukozxm/bg3l972cz1zkjrVMG8PGS8qCJoV99o1xE7O\njp4lz6o7xr2E/rab/X4ycyJlpjKVqUxlKlOZylSmMpWpTGUqU5nKVN5BeaekTCc1DCWgwYlcueEJ\nSQ1do+QH1Bl8RDbs+8tQGsMF+5whSbIN6Iz2b1dIFiEKJit/yojPa19FHG4WxKEy+H+BXDSiWlkg\nHw68GpAWZlJ2QvmGkB3Pqipb6qxANdywoj+HthjwZJDfSc6qZocPifxAjNXPkT1tLSuKg/all6hl\nY2wDlEDIqqGEtVAyOslOvRTB8k0aKIGsqLkWkbxWKq1As38b9SIkoSQhWWTHamoav12TC/ELqdiD\nW6J2JbSBELU5QOFtUckQ36zSHtAt+4YzfC9Y5a0b9gmjZCYogx2ESoiq1EoAlNs6da60qRLbdQW1\n9KhLHZs9Y5JztHl/YBW4xxMghDhiIf/GjT1Wioa8FPDSqeV1kL1JzowQNQGO5A0q2gxqSupdSv2N\noihG7d+GaMHDYcQjIUjY188++AoVKcVjoRUFJh8mBJsQlaqHpIpbHNhZDW+ol4jruB5cubiL6nmb\n0gf+mSMK5h0c9duTD83M7NGJK5lRrNQbP8bFCS7uJLicnX7nx1Y6EZJw/8vTYMvKeUJMXFP7in+d\nXnPufhxzVJsdr5e4n6DsVtzH++BZa9KM9gbIHH6P6B+7Of0h6lYjuOgrV0BjfEc+/NTTpfYe+jW7\n3Pne+d3aD2Af3yIpoTMpCvdISOCaHj/iHnrPVZbkkaswz1d/b2Zm4UuSuK79vN+LPDVjD8KwgOKI\nodYuIJliVK74wc/9c+/68ay/dKV4ieHVigSK6BSqioSZGKXyAIXjwSeu7t22FHjE7KACA+7ZHcp5\nCIUgU33RWwkyVUgfl9CnrLnHU8ijnjSrXN5iSjZTok+qBDnRMChQdFZDEliAkqpEvg51Z+B+jemH\nW/zMRgiTEC1UyYSNqE3opJj+WmQJ4Ithe2Y96QxLEgy2JAnmqF5YjVjSKIWO/pw6Gqi7OSpUhWKb\nk0jWQifFW8Zw7sVESTx0REMrxNF/tNwrC46jpz+pZt4mEnx85IcRQr3ytTdeBrctLel2i9Hbdse4\nIuJou2GfPVOJHTSA0q3UX0flmwpyQ1JQCum0gZKdQZoYJNOIh8NQ0QekIpZQ9VDlOu61CDJ1m7xW\nPNvQbMC7K6Qv6ZWexDjRov5bIP8+ro+8h3ZKffL/p524CfbF87pAhA2pUyU+ADkkU1j3lnL/d4No\nIv639e+ImWNkCeo+Y4RIiI5rEkAflGA8GW0tYUye4aMWLEjg2uIdhl9ahYodk7opq5Fu+3aRKWdX\n3l99/QIPlFeuWsfI8yehjws5CTsjFOkKCvfRnvdb233vn/MF49XMU/QuNn78p1+7shzu+TXLGFsz\nxqsnpHq0l/7/behtdvU3/hNh15495XtqXVOvtwNosIw0o08fu7/GKR5bF3h8bS79/A5yHw/mD9xE\n7PE9pwV67tH6J3gCQZJWEE/pzu/VJ9+6981ApI1I9c8P3Vvs/odQWJ/QdqFrLyMf5+oVHg/Uw91P\nSEthnnxFmtPT37i3xTj385rt+71nZlb/eGFR7O2rxi/pHufzgvSYjrSnmueGJdr1haiPWxTNHQLG\njiUeM4tEzy7eNsrSv7Oif1mtvO6//sLb1uGHThMcLvxcvr3iHimU8unfl9F/VCIloZBC7lt5ISZQ\nAT3PAddQAYeM1cs9r/vx2OtkzT1ykyJ1xL14zTw492tXRX6Nz4GDdzH0LkN4xLNTtGDsVSIayZCx\neX3s7vPcQN1fQ7mN7DYYeHApoOisEEHpx9VCG1/TDyeZEm/9fPfp93ISNvcip8t2zDdfvfC2M6O+\ni/fxGfzGPWhmEKz7cz/vTJ5qjMez6PaEt5lZgsdjCbVXKdmyZQ609HbTk4aXkobXbp3mku/o9iHv\ng+xsL70PKEhzkmfYTimtsV+o8YaHc2p/0ee2w1NKXk0bxrrZDjKYucUKP5o2p65SdoRkmtcwxpy7\n58zuGYTIxz4f3zv0/uHi16R1ntMWHzrJVs7985aM7Q1tPMDncnZIwhbPEgfQtA1tdH8fQn1grIXU\n6Zj85MyZWq7ZwLPcjufyw0PI8X3v5yqInohn6V3ix5vt+3EsP+N1DHM7xptmCUW2kH/f7/dVnUiZ\nqUxlKlOZylSmMpWpTGUqU5nKVKYylXdQ3q2njLG6h/dKxP7nkT2iNWpayIpTjSoYQBEs+NkozYKV\n9XiJQrlmFRK1KUSJCSFr4pn2MvvRpNAINXvoEuzXe5TNtfaGKfUoeFNFGlD7WvxHclQ/KQkDKS0B\ninXfQ1egvCuZBxsQG/Ee6EZUQXnIQNSU7N+UWmiki+Ts5+6VZDPvLUAVGDbQAkv2ti9Z2e1ENCgt\nyI+1ZuU2VpLAKE8CVkHZGzrekB2+4ly1UkJJpoEEmddvt5Ickq6Rb1jlpA4SXNhr9uYXrJpWpE7U\nUAdSdsNICSf+uTmrpyNJX1qdjKER6puN4FwjlEmFnTRIsJ3SntjXLloJ8c+aTB4I/mMxI4mFNqYF\n/wAPl462m0B9tKjsCQhNSRvX0nfKB9coqTkKQ4VaH+iLkc06rlOAuhjRhnoklwEKKyDZR8lkMwid\njYgZ7t0Q1/kKNSyjnocdqSBQaWklbwpUSZTZTc7+f9TPJYRSELvvyG1KDEnSU5c16ULDYz+nde7K\n5pMrVzfm8t2R23tLgsA1fkeko5W0sSUqdML9pDSdcsYKfeXK2wp1KISQ0Z564/0d1FhOnY/4JRn0\n2TUqV4SqE++zFxZ0r9un7bzgGpEscPczT0R470/9/C4TJ31+eO4/Z2ADdeRtOgdD2NL/LEb3hLkc\n/QSHfT+fU9LifvXyb8zM7IIkiZjUqof33Qvggz/5E/98FIG2caWlzv1z9qHKStTzg3v0p5BCLy9c\nSZkpySvw9w8QQCNEz/4RyQ7v+3XLXos8tyq6dwKuT6/OgH35eadkBbxyIDe3pXyfoAoYMIIZdFrv\n9ZqhPpZ4lhVSXiAht0plKmnjEJgJ9GDahNYqYU/eJCh/GffvKAKNz+6hStte6UjUGRSB4UmjveuF\naC0SbxIIwRAPp2pQv4IqBUgY02YGxpqcMbQjOSZBVW+5z1P61ZJkxaiEkrrx36Hfgn5I6D8HqNBt\nKLJOHlWMN4xHc+0Dr6FjQ3mAQTYW/r4lpMdtS9J6PVyjYC4gTlISDRuNrRv52nFP0p82O+gAKNyk\nQcmlbfSi7fDXUIpHRN9g+Kpk7DuP6Q85TetRHyOIVqUxLfA7MjNLy9EGBhbRX0pnKphLiFyUd4Lq\ndaStBzPIR9q2RfhdkbpXtLQvfLRsBp278z5kjUKdhIn1mf5HGy69n6uhc+WvJjq0oF/qGcty6IIt\naRbCYEfu31K2GKQgtVRWNHrjjVo/phB/ozSB0uTzGw3WtywBKnvPXOocr6rZhX/uxfk3fu6HrrK/\nd+z9chf6HKYPlPLmn/fJ3Y/MzGz30EmVkX53d+31s2Q+HBziNQYF8OrSv+/ZDxCR11AX166ij/gD\nLrjGw0zJkzmvh3KFzqgXfh0ef+CK7ycHTkg+wWsmgf6qVq6yD1dez6uVkyUrqLeOud4Rc4Uw9M85\nOvIxPTzEE+17J2euX3zn50FT6kKnFe4NTjEUh/4zJ3kmPYcWO/XruiQtqTsmze7Qv/ebp/75wYvX\n2vMXX/xXOwz98+zA54j3fvFH/vkfku4CAXq1Yp4AxZJ8d3t6t1Kd4zVyXbtP3fITr4sDiIfrljn7\nzOs8mvsxneIpsruCqmVun+VS8yEkadMhJEoR+L2mZ4uQ+d+M+V0psk0ek2v/eU2CzoP3SHS86zTX\nk8Hbrki8iOPJ8Vlr9Gyz58ddMadJKggXfi9SeZcxt6LfCpgTbJlP5jyrldwj4Yr5OX5IYSKalTmV\nyETmnekOEltoO2PxyLPk1RXpoFtvY/NPeX/s9bbmuDP8/HqIwaHFv2/tbePxPr4o95zq0Hj5tpiD\nvNv07FdBup8f+j2WQL5a7MRMPZAsSppWCAR2R2m5jPPXdGkrxqeUcetmLsqcLFQ/bmbBkFgejxZA\n/ew1+OkolRi/MYYAW+H3Uxx63WlukEJ5zngGe0kbX6/ktUebnKk/82O8vKCfeUSbm/u1rGg7S342\neIq1IM1zdlOs8AbM73gb2YfaHHl2vF75tYvBXIOt5udex8pWO4f+X+DnU+7557fn+LuxqyDY+DvW\n3OsB/qX94Oex5oEh2fd+T142yfz39yMTKTOVqUxlKlOZylSmMpWpTGUqU5nKVKbyDso7JWUSVpwk\nGYwNahfbrFNW8zpoiB5lZc7qXskKW89q6wJvgJpVVFv4By1wad6xqhtplRGlJYT+2LHXVn4r2muc\nskLXZvIRYQ+aVEgSG8pWaQHs70St6vFKSPCeUbJBzEpf2fA5rCCGqIaZEjRQUhteP5AMFON30ksM\nxLeFhX0LWFGs+9ZyVKiaz4pQjZUc07VvJrIk+N9E/D6gBrXQO/JESVCLpI4oralAaRwL9tYj1bW/\n5YR/mxJCJ6WBr1LO2KsrtV9u5fGlH8+O1dcUV/KW1do4R1nl86Ry1xXKI0kpIWRKjdlCyD7soPDv\nD1CaQyiKHmW1j9jDy+JriwI9sIczXEA3oRD0vF/O4BFqXUzbb7mo6chx8TkL3jdqDyqKZIZC3g1q\nDPwdRbuh0YXsR29I/aC6rMW/aSS2SsTKhn3ySsIo5HSu9BSOJ0aRHVEaatroAs+civ2btfybAl/V\nTlo2HZPmscU7KEJNvU3RfuaBzZzzPW4Arl2IOrMbnYgZDmjjeDKdX7oqEcjTgLa7x7FWtLWROqxQ\nu2d8X5+hjlOHK+7T2RI1CNGmpHEkC+2pl7M+VMGIh0tEW+P+b9Uf3ahcqDmZK6wf/ulDjsP//+Tl\nt2Zm1uz8vCL2W2e1r9w3W/ZtH/txz/b93rhG+RCMlZ6gHuEvVb1ECaU/Pbrj6t7skatGv372//hx\n4+uUVbjokw7XLn3vcZD7PbkhJa6ljV1BR+RK04M8zKmv5DH936U3wtPnrhDfutBGG/o0fU9Yy7eD\nNCy1RQiaOd4IFfu1Y/p9wwstYvwZ8DkJUK06rlOeyWMHwkppgihPDT5ZRcNSXNsAACAASURBVF/b\niLIZ09ZE4USMgR19fM/vYaL+jrEH0qFEb4mU0qPEL5m1KOWoVX8OgkNq3k2YD+NCyNiMMGs7xoeA\nve8i4wIIwsGkwPkHZYyJJcTdHCoqwachYEwNEz/fBDpsgEAZIXI6rlGEV47u7Yb97lkhzx1Rt79/\n//bvlgDVS9RuVcivhLkJSq4IzRZaTckOM/xSWiqw6xiH5AkDCZMw3kQx6SpQagHjaISCKj8ifX6P\n31xLfx+j6O7C1+pbnO9sOyhBDEW8E0HJuIOinq0Z5yF3EvoK455PcuYstLuZUq+oh6xFue9I7CFd\nKqf+GttZBj010rY6UjRS9vY3arvMKQLeW4tso38suDY1/kItlBVBU5Ywx1EbHaFYO9TzAZ+1Da+b\nb2gb+FLctgTU4b3HR5wP81gSdLZMwELop1PSksolfkiQJTWef4b3TbrHtcFvIy1d2X2yJk3wB/+9\nJ4UzOfZ6PfjU+9+s8XEgYRJR4AEzQFVFpOrtGBcuL/y4nn/nFMfL3/y1mZndvXBi5/4jJiPMI0v8\n6L78u9+YmdlR9SX/JzVrn3uWceblK+/flvR3wSOU7D2v7+fPXvI6JzAzFPcOIr5q/fhO9pzkfPSZ\nEzEyb/zq11+bmdn6mRMxhx+4D8q9Rx+amdk1kn5SvvYM6u/OblIYd1BdIceRL/w8Ht+HPL3HcXzv\nx7HafxvKGx8MKKfuHH+eK//9+GO8Aamjgmi+qPBzCCGhS+ZxBX5lderHUPD/BW3g+lzjBv0Sc5i+\nJYExYOxlPhlBnCRcux0+TucXJL/yulzjhtJIIVYa5iIAd7aAaiihQnv6PXmO5aPTDwEpR68gUELu\n0UJEy1wJW9QfxHqu5xNuWZHqM/lMlfS3/H9PpCcU9XHo539BH3R9ijfihf9+5yOfy2T4hyjtabMj\niWfh9/qOZ85XSgutncIY5KUWvt0jdZ/RJ+J7FR3WHK/Xl8JNr86hPQrmGHPoWsa3FTsh6kvSqZiz\n7IPShLT5jLSr7ZK+9sYrzCyw0dpksDwRyYcH6hOniuo7B3ymX+vLxAn0OzMnz2Z4PXXPRcZ424vw\n+IoYG19B3kW6zwn77Ln/Vnrm2cNvcs/v+/U3EHKivI79OHL5YWpc4L5vmd+3pX/eNVOS4yXztcCv\naYtnFY8ytmB+n0J2RhA+JXWVkzLaNd5vzyPvd9en7glW07bHR5BF+D9lkIRD/5pq/cfKRMpMZSpT\nmcpUpjKVqUxlKlOZylSmMpWpvIPyTkmZISBhgv3wKfSCsfIVk6kex/ICQAUjQSIseB/qX4kqNCOl\no2Z1tWVvmdaglBCkxJlKSQLshQtu6A4SC268CKBGWI4NMym6/uk5++XDSnukfSUNUdBqVlOVItKS\nFpWgfkkZToW+sE9UCT0z1K0WVTHAayHO2Z+PuiV36ZrV7CCMbAulY6hRMcpdzV79iL3m2ofcVniE\nsKinldyAfYMdSQLayzmyD7Fif16Al8sAIaOUieb3LxL+/8rBvi+jRge+cgz8YGHt536Fh02oBIBs\nweugqyCBWiVU4ebekTpVsFe+x2Nmy8XaY1/hqLSQVqlEeBZAiswiX61tIVS033vAdyNX2gltpayV\negHtII8a9stH8qDB0yeAoKlIfjGUVCwcXvuNoN4P8nDh/AcU3cBwc9de4xyFtRE95p8fdeyXZ89w\nwYb9XukpEEAbCJwBmiyDwOojnMjZIxugHBSoo6Wc2ZUC0oq0oWHQrvr49Qr+HypBjbV8iEN/hfp8\nxHek0DsvfEV8QyKW6qLQvmQk1pZUnnXjdbYYFZfm999YQ/GQEtRCJ8SSaCFkGoQ1qtYwX7fVlsSB\nPVceQvqvmNSmaqvUB9qS2ugraLNXfk3f+5n2X3udftu6clnXrqhmqCPBDD8g0ud6PK0yFIroE1c6\n1p17EQyHQnvwkaA/2ePe2XK8CXv5bennc/WS74UsDJU+R1LB/qdeIScnvlf5zFwhDZSUwB7fiCSg\neeHXq1/7960W/J97+psrV3hvWwLGhx7qo+T44oJ7V6l67LvWvvKyZB87+7Kjm0Qg7mnuFXngaO91\nD61BqJ8l7HPPEyWo+d8LiKEoHm2ABGxE9OF/tMXDK8NjRpRpxus3qfZxQ12GIji4j7iGCIc3yYNr\nEXTQqjn0Vgu90zFuaOxbKGyiYQzNUa+gIYSBdjtRpH5uJZ5ZGUQGllo3KU7joP6Oz0UiHBjzQ3kQ\nMICM9NMt44r22ItOEmkTaty7ZanxpOk5zkzeXxhWaawf8ZWyFiIF9b6GNAwgLUUUFhVqHv17iOTb\nGIQMFFZB2xEVV4by1eN6F/J84/sqEUY3kZHWNYNl9P/jgv6fuUIIVZhB5nSQMSMK+4gHT4da2om0\nQVkduVcDVE5RbrFsWaDHOuYJwSy8ST0aSeRKe/rHSqSgf/cWM72eMWOe+1jQ7KCxZtBD9GcL+Rwx\npnaNv34J/VWjwotcDpRguJUPjr8+rt/OnOpoRqpS6Md15/9j781+Lcuy9a6x+mbvffom+ozMyszq\n7/W9ZS4IySAkS37hTwAJWcLCCLCwjAwUBglsIYGMkWyExD/Af2HxQiPr6jZ1b3WZWZkRkRkRpz9n\nN6vveBi/caKyqObEC4HEHC8nTpy915prNmPONb9vft+M9d49xhDs2wbtsGKN1gt9ur7U/3/5uWrP\nrD1FwS0PNqzFfNDwMNNEXYPoJtRnjaNOjy7R+ZXmw91M83k4Q4shxZHRhxnCPBbuo2dBW5/7+v1h\nrfPQz//kz/T5HuAmdV+ZNwnfa2BjLLb0fkdPYRvAyLn8hTJQylHnhdpYwLAQtt7HqStQ/ZLZI/1e\nYxo1n6kD0eZCmTCXP9XvTwewp58qQr051+sXz7Wej77N2u4J2hGtlltEJHrvUG7QhtgwXz37RO8z\nQ4vmwRo2WGAWnjDdx225a5hR0yJTZ8JVgl4b68qR9djC1uEp7C30jvY/1Lm14V3g+hzmyrXWzf4D\nrbsQRl1BPgiY2/f4ubxkrkZbpGOdW6KzNNvSubiGMn0Jk7Ggbw+wrmasWerQtMSMqUi+py8ksEE3\nuHSGsJAf7+jzjDAsQ1vnku9b9OfC3hj5rJ9tfjEHw8rWlUwg5h7KfJfAtLy50DGVFrynfKjf393R\nPnp1ruyPsUWjxdPyPTjQvngFS22PeWTvfe1D15c4bpaW/5kf9DeJmrfTMBtgeDb75DzeiU1bZ3iN\n/tY5TBncF7eOtTz3cmWRbdAguipw1kSbaMbz+joUpb5SdnG2q99f9W8YlsXUSen7srerc3FekUcu\nlJHWk3/Cff1uuuGEC3k6WZAXV9o3ynP9vMB+PzrWnwknWmqYNfNjHSMDa5WuMP083jGYAy9xQtw6\nZp0+wxEYy9tkjQ4Pek07qfaFr14qg2XDWmr3nrb1Mev2c5jXPuu5Ldza2gvcQGFARuSHBN3QdE/L\n/WDQvvscXTdzW13E+rxr1nc1bNt02zFlXLhw4cKFCxcuXLhw4cKFCxcu/j8X75QpE4LKeKBZDciu\nz65uZo4HhsKZlkvAzhjomjlQJOiHdHjOdyCaiYm4cL+wwjEBNfo5UKYxaGSj92sXoHVr0yDgnDRI\ncAhLpOlg4qCabyhmCBvB0LzMDkRyLrNHe6GD9pDSHAHOFQM7b+2tcjo7kuhxNNRPyjlv4dx9jctK\nQHmCJJZkMG0BUF/0MjyeOQQtCU0AA9edEh0M00DJQSJ7kFbTCDANBGMFmUOV4GQygG6l9Ru177vE\nEoZIgt7GiCNWAasqwd2ioY4iDrl2nLmNBmOkcAYT9wrTuShFP5dt9D45zg4DrKeYnX1zTAlu98RB\nPtkZD2egYCDIua/3WZs4Q0Eb0ycmkNOpNvcNdomNORIxNminEGSgg80FkC1BqLvRXq99dka7DOwy\n19Y30GIYccPK0CTweB7TKkhgUhUgE3nLuU80DTzG3AxNhx59kA60M61MId0QBM60wjozSaGRMTLk\nJc/FGDFEx9DMO0QHWhSDsJa7es2AnfwOxlnD2fzU6AJUTYku0LQFssr3AG9kog43oFpZon2xb0Gb\nQYtjdBdixk7FOK1Hc9zS681CRRTMcWqynfQE9Is2aXG0ujlXBNBv9O/3cQXKj7Xvn3aK+vRnOJzB\nBFqDUMTkn1mCuxTMRHlsqAxaM7hPDStjkICWXSsKc3NDnwD9y0GGrzize1Przxz0fgVrLt2BSYRj\nwfm2Xk8u3zBERERG2A5VjftSqw2Qg9InjKEKukLXg8TcMQxhlluWGPML7IsUjTGTOvNN88c31oiN\nJdDCnNyCRo/pQ5mbVgtLbc48VIDiBabLRE5pcMeavFwS2r5nXMxIPwEUQbBbGXGOKYFkMyDDknFk\n7NEAPZ7Awx0D1lcKU2+BZsEGVqppn3gkmHgy1wu970AfrntjrJh+hpY3tzEFw8TjmXPhDH9vrnxA\nnKDRgemDMNbMBTCHqbFBP80YID4ucZZf+om+DaPIRwtl8N/OWScFcYUAKBN6HMPcXKTIl6wBEnPY\nApkO7P/Jd+auVMNITcgNE0yozDTa0LMaR9MQwlUJ9l2N01sIC2NDT/AGtCTSN2yPPglumUSCA1xu\nZGHyt7HdRq6D3ImUlCciv6cwlSYjDYxou4F2bmqcxnBY8m2tNefc/jDIhMZWY53Z1nnmtmnjgrpt\nA3N81LJOlDFcw3SBIW1lL5nL54nmixZGSsj49RhLrTHhmJsgX0ncvGEZ3SVWV5ovn1eKwJ6h22Br\now59jNkWTjS9Mix29xS1Dvc1v519/B7PZYxE9NzCYz6vz/Po4Xs8J/mGvF6gzXD+GscwXARLmB5/\nsVYGSE6bpqw/8x0tzwd/RVH2gwPc91LVWFieX4mISHulDJU8pxz3vyEiIvcequaKaZ21V5rPT599\nxX8oGt/TqeJM2RiJwPSBFdIkj0VExIdlnMCu2sf5J4Z19fKZlufk5OfUj3bmxfv6uRBk3FwN34e5\nsyfK0IzHNzqGT+bHsgHpLmbaDpdouH11cs5Prccelvcch5vD9O7aQ15nmlasu26ZcTBaNjj5sVbv\nb7QtNzDsjtHducb+blzStiuti13YRulj5p6vtOzCvLD/gbaRB1p/dcPcbszBmvJY/jX9HRJFj6Zf\nB8POM0Y8fSnn+RreG6aedzPTZLzWul2gGTjjnWZtpw2YIzO0airewbbQA1zADruxV7JeWRDmlNM1\n5njLGob1fcA6dljCsu21vsInOvZWzEPG6KxhRqaMrRxX2ssT/V4BO3ZvV1lZ/T2tnwucgjacojC9\nz2z67SyIXw1j/MzMGc7+H51SY7T0pzDOSa+lMSBNUxKtyw0sM2PGvn+o5fXEXFZt3sURMrq5LcuY\nTbJ9vCcz8lS7sbkfXTNfr1Xb3OubZimsWBjqAst0w3v2rW5mpPnl6qU6fV28Uk2akDr1yZc+Tlzb\nnq4zE9i/mwtYRROOiMwnCxiWS9r0kPlkgumyPNV8He5oXd9Met9t6uL6kvX1qOvT+7CQqkH78ASr\nrI00n2QL1ulLbYPX53q9zRpmJ/sKPmso70r7ko+Dr7z/299tHFPGhQsXLly4cOHChQsXLly4cOHi\nHcQ7Zcr0OATkqMk3ICU95+Y6c8mAKFOCPKegbS27fZM5BYxfP/ctIKOh2YnACqnYbgQUk3pC98M3\nrRhQNtgBIRoAHWeVTRugYic9wOnHdpkNZutBwwYQ54bzkAlnnTuQ7xnwYmvIKUhHBEJs58k5xikt\nO5SGuplGgnCfrOx+6elFhqmXCQXokR3uEHQpyHERYjeyBhLzQJN9zpLOQUwNZbJ7zvi9gqES4hgz\nodPQDJxZ5+zklL2d+1KPI8xlqzvlFSwFc24YcR8ZS9N0wZ0oN2aL9pne3DTMpYK+4rOT33DGN0bj\nwOdsbAFygYGKxCh6t6AtAgLgg1hOne7S1jFnamnjyPQ9QHOGFP0f2FAeO/K5OdWE+pyBOW/5xlSC\nwYQqfgwTaIJFNqDt0wXGXAHVt93qECTcNGxAzjsYQo1HPTCmPHavszXaAiAxfszZWZhMExSYcYBB\nszZ1f63fAW2ctgDV4jlHz86Pco4bZ4z5Lzkm/K4IctgAK7SaYGfFjOPOEFjqeAH6NMG88Oj7FXUx\nJbTtDWf3Y87gJ3rdkDww4OaTgugJLKnrAqZfhfPBhp1x+n56H30d2AlRgHsFaPkC9OP857oDf/ET\nrcO/9n1Fv+TJEy0XTA3/S9qehFbD/Mhp62oDEycz9peVn76z1OuXk7nEaR+4fqn3Lz9TFO5x9i0R\nEdn+Q3V9GkC1lrVqEczIs3a+3dCYoDSXJS3PqoRJQi5KQOtKvufDGBJYaBF5ccNEkKaMqf7tpi+P\nPttdw0JD/2gG8tOYdcOtngtaYuR7c2brAuoNloiAWiUlqGFmdBHyOihkMsCGAGIeZtpOM7R0POmk\nwn0iKGDXMP5nsemOoVtmjJPOnAk5r0ydtzDO4jVsLdwqBAZJPxg7AHYXc+FI3meYS/8rDDdzcUhN\nxkmMEUJfQ9/JmDiTh7NY/3VtmNY0yrheXprlInoV1FlDfjEmpuWvDfcLoZ+l6G/UuEBFxnp9yxVO\nAOrnkYeSVstTog2WwohpyL/GzMzJm7b0KGACedS3lXPwTHtLPwfpQyoYqh6sAWPn5caOIOfUxsQh\nr3uwDqT9JS2D0ZcRzZs5P0v06mSyNQxrLnOHgWGZg6Sby5XPWK1gr/jMfx7zhVeYPhdIumkBsaar\n60BS5uq4Mdc79H/QymqNwcwao/VNTwjNQVzSwoS+c+vsBcMNXYu2sbmI342VuYHFY/nSdPFgOFfp\n22GTA3NtBJugYr4pYYkGMJ9vllqeraUipd2BPufD7yjq/p3vKCPGHG5Wns4XF9eKzJ6cK6J8/ZnW\n0w6ssACdEf+esgn27ivCu7/3R1qeDscY5oVj2MEXhTJahktdS335qdbTe/tPReTNWm77I2XOHF3r\nGqRh7t+cKQPmEt2PttX7lGC77Yr2pA/dhyEzn2s5t3ZhtjB2l5RnPGOtdarPu/PBRyIissBN6TGO\nPa9OlbkToV1hLOBq0nZ4dablGhvVVgtgGcx+iSmz283k+EDn0XuPtDwrtGW+imFH4CSWT+aSiCtM\ne/e1a9LBZpq0TVOY6mmP1seujsNd1msvXuvnqo3+3NomwZocDlpSHWzfBvefmrxizJQEFz1jMpvr\nZsl4FJxz4iO9782SNQhaMyM6Gx06HSnvKrbeD5gofPLgCDs24V0IKTHxYXBuNtpGL07QQjOyEcxq\n02/z6TvnZ1r384fKkkjn+nO95HO2fjXKCAyZTtD5g3kTwAypzTUJ5vUGqzYP5tL1ua5tLi9gXxwo\nG6xCu2dmDjvv6ZhoTUtnBRvP1lisewNy2l3DZyI1XaiSteP+lo7Z3RCXPBhLTaPXz2B1DLBw8y3t\nVwnzPdKQckqO2qcdR05XJPTt1eUbtnEd1bI57G71RMPBXEhxzGJ921xaPqauyZ99yvt6pW0Yk5dr\ntFT3YTLGaNBE1qf53hoNvzl9YxsG9TXuT12jbeXv71J5+mO90c/NWNfuo9XonetzzMwhkrn8aNA+\nsR/p524mzYf9WsstnA5oBv19+4D3hWNjssOgE/3/qwt1ozMdoARGzvZcB++QqHZiwVjrhzc6Pr8u\nHFPGhQsXLly4cOHChQsXLly4cOHiHcQ7ZcoYrtThADCC9ObsRA04BXTsJsec5e9gc/gFqBjAyTAH\nrWebMIMB45kzDJoTw+2upv494mzZFNs5dc6tgy5NwFo+rIkW5MfkQmLOuCEBISloWAcLZTK9Esox\nghjlIMe1+Zbbwe1Ad/aiFvclHIZ66kFgyhTG8MHrPgXVFHZPPVylymKQHqgzA5mc0G9ozHGKHfCJ\nOp5z7wZXH9vJNaeZFKRsYmc3Ra3dR/NFDBXmzGQ8GEJ3d60QEZHYnLFmuitpCMAKZFJgKeXsOA9o\nGfiwIyZ2O0N0NgztTvgZxjBc2LE314smNFQE5gkIYwDyG9JGPrvAm4qdc9gOWa873NZXRpg7MeUO\nQP8TtHaaBkQWVCeHtWCOXTm7sAG7zwO7wymI7hok3DMAAR2mhnY35BNSgIR8PgEhCWENNHbmGDTT\n53M9CPzI+esNrLI5iH5D/5gi60egnp45atBvYLVMIEY5qKOYlgSIcezfXcV+WJomh957QR/sYU8Z\nSyhnx7wv9HMVbZkbK4zxFMLgkB3OysKUSDgPvgQZ3anIW1aQBWPl59onTz7Vnf1H31dmyXxLkTlk\nkGToQQoZK7NK+/DqWhup+kKf68G+Io3f/+v/moiI/FyeiYjINQlnlcGwoe8N7ddZC+Zk46PHkfXm\nVsdZXdoqgI0xoulS/FTLH11oWz39N5Shk3xPNQ5OT1WV//mPVEtgQJNl6x6svA1aBzP6KmNp4jz5\njFx0Y65zhfatCLZIwfUs9wCgS4feUhu+nRYE0j23jmUBjKgGd5duBsOKPh30xrzSdhjJAaYP4MMS\niGGlVDhnmPteIjbvcF6fMTMyxkyzxtxpvGCUie+mUPP6DmaduQmN5lSoz9LgLjExF8ZoCOTMYQ1l\nGy1fcVa94WcOstqhe9SjNRDM0bIinZvUWMf1zLRhSs19CP0z2mYE4esb8i/OBzGIa4mDljHyWlzZ\nQuZYY1VYXhoCy4c4OKBl5qMXFdi8BEJrbh311tud8R94nonnLExbhz4YkE9zmElBg85RAQKLhkRE\nLvDMBYnPm8aZMRN7+pQH89KYiDO0xgab/1hrhMx/E3iahxuX+G/GQhIYD1GkGLX+M/LvCGPUA1E2\nDTKBqVSSzGKyGhI3tznOa02PBZYgiHWB22JMDgrQH5DYl4pnzejLG/r/jD7SDsZcY13HuOtNAop1\nT2BzEyhva+6To7ksGfMRlB4dojnzQs+aoAqt7zCWVmt5m9g+VG0B75Eitjn6HmVpLmyKvL58rT9X\nseb56eqZiIhEn2ifeIh73SVz8ybTchQbnHpa8rD+EI85McCN88Oth/qHWj9/RZUnuFw97xWhHSMd\nrKXpm2AH6D1TBHp9o/V2nCsr4WDAje9Kb7za6M8Qx8XjB8oauEIbcQ/9k8VjkGSS08Q8WuEcdKtx\nGBrrQn9ueu0zr8+1vua1ulId/b7e595DXfvdu6e/R7iurEpc7hIt75eFMmlebZThGaP7URdvHNj+\n7I//LznY1+fcgnF5cF/n5f0f6Dx9Oihjpin0++OX1N+ru7MgzCEsu9LxvDTG8xK30Nc6Z/qwcHYR\nrvFmjAkYLZAyJVmozsd8rn+P6Lstfb1jnT3WsAlKnauzbdz8nqPnAwNmb6bXu1yz3mIOangnilnP\n16yhQmP4ieVn5iNYvQ3lSHGpS3AAq3Jdu4zkg1VtbFi9XkFO6M2xkTq+munPPRjn+QEuUcYIYu7d\nYf0e7OqYnFirvTrQ33dho56Oylpo0TnxYA2Pe/r3s0st175nmiz6PBeslXZgn3mTjtkyRu+OeWmC\nfVeja3rXiCN7L9K1g8e8dXIBw9xcSWPGTqz12TNfBNS3z3ucj7ZlBIu7xRkyon/NF7hIoZOSmU2Y\niKzaWpI2lZBxuVrqeOxgofq8XIQ4UwV7eq0aNufM3j1acyXmXYW+1aI1M8IoPFnrOJ0OtC+mCYxq\n44ow129Y3ycL7VOxNu0t03G0tVBv1pKsQXgfDntc8ChgwVpjKtEd4hSH4O4Xsy7bsLbyyM81bNHH\nMHpCnrta6c/yPmMCV9YoNedc1r28O3X1b3f7c0wZFy5cuHDhwoULFy5cuHDhwoWLdxDvlCkzhOhY\ngMMsgIOQ3ZARJCRCn8TcVKrMnGPYeQNBHUBazbve9ExM9yLhbPLADp6HhsGAcrhvf+d8pGm2eOzw\nFSaVwPn4lPN5Dcrbgf2EzdCwyywxzB9Qt97MkkD7UpDqCvaK37A9DioadOZKBavCXKVg2ARoU0xo\nyhjKN8K+8ONWYs7/lZy7NoeXDNSi7LkHZ9BHUG1z8ag5lxxR2X6F+wYbuTVomHB2NsS1ITWboBmo\nxtuZL0nDM2+BiiznX9fXGTlrX8XmTAWjw+gIGWc1OU+YgRL1pg8CpBigYzGYJgGUkpZd3QbVd7+C\n7QSrKWIXNWUnuoW5U6LjkbBz7Q+GPOgO9QRyEA92PhO0rzVtAZAL2sdnUCQojSfcxzddJphOLRo2\ndcrnGeIeTJ7BxCIYA35mmCqIB33ftCJMn8ljd9lDr8Q3/SYYNOaUZgf5R86Dhh26ICC5LTohHoj4\nyC76CPtrr+T5uzfo1u+KGNS3QYOg4x55oGhGDTJazIwtBGrNOC0MhUbLyUfVveN8bgISu8LxK6Yt\nl/T5XVgIlzgg1H+iCOXCU1Tl209/oM+Ua5s9bxShJK1IaYwPtF02J2gCXGmbPPhImSnJA0UK2i/+\nD73fhSIZsekIRTjwwEaKbnBdwlGgpa8MsCQS0PMpNyaI9p3mtTo9BJ9qeZ5+7/dFROThdz8UEZHP\nrv5cREQ++d//hdZbrojJ/QeKNEaTXu/cNFd8Djjj1NKRYyL6TrihPJzF9XB/mon29RGHMZN+KFbk\n5+y3n8391QhhldW42PnkjhjEN0bbpc+1nAU6HbHla5xnxh6HCtDQzhibEBlDmEkA8yj0iJT0o8jc\nmcTO58PG6ETqW40P01IxjSryVW8sHWPs2Xhm/JozAt+LYA90bcH3mTtAw2pzyzHmGgmxN+ZeYnme\nxF2Zjg7ntWFWejAMQ8bxRB+IoZOaq1LFfSdQJg8UqQfNGmCPTtw/TszVjrzT0wYwgibYbT6MksZY\nSYNNEG834UQgjuZCtfUQthToWWWcERgyGewnm+/GyJzC+Dz5NjTbLDTQcp63ZL6aky8L5vzK5nh0\nVOoN7U792JomI7/3v0RA7ZtRYlgnY4B+FX0vh1Xb4eLUo7EWGdyI1o/PIqphbPq2hoFt0aN9E8JK\nThJz0KTdcEdJ00YmEEwffbewszq2dRl9RkyPCIYj6xif8WlTwghjgQS1EgAAIABJREFU0Tddilo/\nX+AAJZWxf8mHUOwCnm3B9QvmgeYtXHVERFrWZ+MZDBJ0L3Lml92F5uvgyZz745JXqCbLJ1+pa9Pr\nqy9FRCSCDTZ/D8T4nubTaEf/fxu2gZwxV8MKm0pcnK5xC8IxcrOH/hCughs+Hx+RE3aUdXDl63zV\n1zqP3LzSeeuL18a+gAm4jRYE694d6u8IlxYP9lhxoX1p2ev8df1Cn7esFBE31zpz2fIPtRw7D821\nRevvp6efiojI8/+TeRS2R21sQdbh6b7W0/ZCy/WH/8rHIiJyUqmrU3mq5Xj2+TOxqLJBvnqpzz2t\n9O+HaFY8eF+ZR4dznbdHGDTSKtPpvL07hl03vFOYU+uewvumr9YgvhKhM1ensABgay4ZR91LrcM9\n3OX23lc9jGbStqwaxi9DYYSZfA3LdED7pEL3bg4DstnADqCPeEyuCcySiHzep3yOfDzUrONZI+Ut\n7GMYNOMAOxf2mM25K2P196ZFCHOTNUK20Odqj3HMwXZpHqKJcqzP85K83OPwdYbWzEGs+iAl82CG\nQ9ctCxUm4/aCNdsxY2Cpz7kiX69a/Vy+q+3RwWw099W9fXIKenoXrPPT0Bx6325NYtpAFWuJOezB\no5n27QVroBValWtOjyToHAYr3mUbW9vSv1jf36BBc7iAsbQDO/BEx1ya7NyWpW9EwjCQcI+54QQG\nHXVVo5HY877ZeqwNNuhy8gzrSeuggNU5g+kdMFeNaK7uRpo/Ovrk2Ogzzba0D+3y+7JTzcKSub/x\ntDxZb27Hmp/KFVpbu6wtYO+aY5fHHH7I2Lg513cxc/7ae6R9cOI0Q8fYmsFaGwfWYqdoRTI0ijn6\naqyVkIiUibVHz3vFaFqWc1sR/vpwTBkXLly4cOHChQsXLly4cOHChYt3EO+UKWPnp+3M1pgaQ0R3\n8WL0Jsx9qLcztZ5pE/D/pvOBM0Bk5/w6dE1qdqjYhRZ23JtO7xeF5pzAuT1YDCPnoytYCxHoT5ei\nRt+bswIIEOyLET2SDA2LBkQngoUQQRcZDSFiZ21szZ1Ar9dVxdfqydCxGeyV3rQjYkOgQA0jzhdy\nDnTmTTKZAUxnOjsgi7bbiLZIR1lLUCw7M+rdqrfDnAGtSNCFiGHatDXPwM77hDuFD1PCm34J0rtD\nxCCqzVy/P9ZaWR3n+0J2Z6PCNGPQNIlBajm7an0oYJc24Jxkwa6oX+oubEDfGNA0MM2CEIeewHbq\n6bMCy2FszT2E33H6CUyXqDWEEfXzRHdph1s9C5Bm2rrh/qZlMIBSrUKcAWB11TB/JmMm0QdLQ6U6\nbd8KRDcydgTnLSFNSIPiuGm7jKmxuGhv9EmM+dPaOX+6hekkhSC+EZoWPcIAxg4b0VlKYGxl7GY3\nJdo1hrSaOM4dwpwAMhxlBlDcBo0oH92KBPZBg6XB0JlVgP5IbEfdXM7msKyAaANcc+QGpsXEeD/S\nHf/rF9qHVl/qTvoP/vrfEBGR4x3dgf+5KLrToPIe1KDSS73P1Sn6GNf6HEe/p2fod777TREReV3q\nOfSXuEV4sNAamIQRqJQx+fJt9DE4R93hENagdxExpr0VqFar5dp8AWom+lwff/RtvZ4WR17+r4p8\nnj3TcvzgO+pYsP9YmTLnkSKRUuvntgD3Ob4uaYYzAqiOmWNMa22XasFYxJEhhcXWgBaGsMei8u0w\nBXOcqWKdX3ra03LJHHSvJRfmIYgLyLwHQ6qEIZWCnnWcTzeRMWPAJCBJAboqHv1rAFkO5+Rx+uE4\n82SyHN6bzpj2sQnWpw8TpggM0cRFj7PvIffsYSxGsEnTKKUMsDhBsVKTXMGJbMTNJ0SrxOq45ux5\nFDA3bYyFynlqz9zUeGaQ04x8ZsyMgT4Yk2ctzxifKCBvtjA6KhiJOa5TlTenDtES62CyWH5nXuph\nz+W3LlN3i950Sri+MQxjmCbGLBo5n27MHC9E/43y9DCFRvqSj7ZY75sjpD5HRj1vaAiP6ye4hHS4\nLMUwnuz+poM13hIUm9tnCKWSkXxtxowBDJwexsuEbtO4VvRvYpBmsHsn1jgBLJVbxhZrKp/5r7W1\nF/PRjPqomTe6qr3VhetgTRpi2g7MGehhmFbUCPo+2jrONJgMibQlhLGr0AHyrW0y+hYiUgCx0uZo\n7IHkmnZY5t+dlSkiUoGU/uUnPxYRka1EtbX2cN/0H2uijEGnKzQTAltj7JP/kLKJt/VzuzvKzDDd\nj3O0UDYXqnFyDvMkQfjnvLGxgovnE+bcTK+38yHuTvTFnr7Ybuvv97bV5SikT+7ismT6fSvTuUDr\n4Rc/V4bP5Z8qwydDtyJkDVSF+v3thSLZGzS2JtD+w0jLNX9AX8dFKV3gxvQ+SDfTh8WaecKHabqm\nb7Wf6PXP0B1Zf6EMl+oAJg7tcfjN926vdfDkqcgx11lquS8vdR67/nNl6Dzc03I8GrUduyu0Kdq7\n55IJ9pMHYy/ZTvmpz2w6OsZ4jGGEhyVrkC30OBAUKjZa5kNYB+kjbaMTWD81GoS7sJoC1r2vv9S2\nSg54F4B1dA4DLodxs7lU56s91gYP95Rt9ALmRsVYC8gDFWw00x/pWW8H6K8l5PsphaFtjHuYghls\ns4q5s+VdKs51DJRXqit0wjzzODZXUR00XYajWq1jsWhwbCNHGJMy5D2mxiXqElbZ3mNltx0d6P18\nNB83S5wsd3XNNqC98vlLGKToQ7W8W+UwVK5wJMuC386C+NWw+X6CUTXiuHvaXXJdZXNdeDiw4Ty0\nP0PXCnfa7kbb3040dJyMYLkuAevsCXfcJtTrzk1TTJTpW67XMnqwsXLqEL2wENaq6c/NcD0zt8kE\nTderlzB/78H6uaducz2ul1fn+mz1fcYE80AC3cvckleNXv/6Rpl8sqV9P2SSD3jn2UFnac66q+Y0\nQ0ae3PBuklAnxuIaIr1ufqzXvXcPhtwN74iXzKn7rAfJk5fsE+zu6nPNTD8JlpZtqzS96bjiUprw\nrv1Lc/WvC8eUceHChQsXLly4cOHChQsXLly4eAfxTpkyMQrSHihQBUrlwSQZzBXFjnGbUnRr2i0g\nHC0MGVxRSpAWQCEJZrpDN6Bp4HFOMGM3NeC8vWnR1CCeAbu9KWifOcrYflgPUh2wAzaA9rWge6a3\nkrIr3HC2OMhAvSq9/oLbRwI6yfP2iTlugIgb3QDGkI8mhscuc0B99QXP5aMvEPpSwrgwl4wAlMhU\nyCN2slt0cWJjB4F8liCYHghu5BtCC6uI3b83kiUwZ2A8UFQJ33jV3ClGzra2IJDIYkiASjlEHJmb\nexRt3VHOhi9MoGiNp+XNQd1TEMwKhkeyAW1i5zqBUeIJ5ykpjyG9Nbu6AWj7wLnjFGZKy5lRH02W\nrQy2FfXbx19H6brO3EXsvKT+vQytjyoSUhkSbrAhCMUalllqzgQoiieglCOIh48WxQTrIIUyY3oY\nAvOpxwnD2CjGQjGU0RhIPnBkCXsgQ72/gbmTcP4yjthFBhUVGEY9u+/mttJnd09NfQNLSBTVWOIm\nEYIeDIh9BDv6uV1jSaGGbohsC8MtqWDOcc54QR9ZTnY+mbpkB3wnVfTrQaw75gff1jb6+F/XM+7N\nXHfkl8+1EjzabMn55ea5Igc+57affvAt/flYd+Lbb+CmcaVMGRvnI3S1AJQ+Q6tkhTq8gPKIaSYY\nBQjkwIC/BQjI2c9wGECD4bt/9C/pfb6tyMnpGrTpTFG1rbUiot/56I/0dkc4GVx8IhRQREQ2CBPN\nU9P+wW2JMRCCso2+tke+0Xpdgy6GBizU+hwFmjnD8HaolGnqeIyxGAR4hAXXNeZCpc/ZkPs82Aoh\n59vnMCNLCDIxucQQ4QD0q4Xp2aB14eE+4t9eFzahr+UIy0A89GwG0G0PLazUdMIYj9HAnANqFNuZ\n/wGdDthSk2nOZNoWNUy4hL4i5M3aGIOwOQMQ1N7yNqyqcG4sVBg0nKUX8sEMpLInD3Yw4poM1L3S\n64ZQPFrykQfjUtb0XfKpB9OlAw0fEhgmv6I/F8HY6WEjhTBcgvjujikiIj2I5IhmQi9ofyXW5+jL\nnEuf0OsojDjEGf7ONHY802sC0UTzwcNWJRrM2cJcMGC10bkCmJqtLU7E1jigkbBig+4Nij8O0a1L\nYGIMHKaZCH26CYS3Y+3iwwIuYWnkvTFTTZsGpLw3TSDyNMzZuKbcC+ZRGFDTGMtAGyY5Om3WZrCR\nzIEqRDdIYBf0obmYgdDSlBGM57WxcwZjOoO0UmYDrceINQ7XHUCLA/QlmubtNGWSY/3+vFANEoge\ncr1SZmD9l4ryHz/Wv3/8V74jIiJH3zNtQJh/sCWuzpUJ8+UL/d4H3VMRkVuXoPNSGTK2/MsWaIOl\nWm/79zU/33usjMUJhmcGO/kKPZFNpfPMqjZnNp2XLmF+BoEixjNYVnuPlWmTwHAR1oqnL/U5yyVj\nZTItB53/BK2X/dg0zNDhwNGzhxm6vdDv7e3pfUoWvv6BXucU1tY+eXUGEr+YK0uggPXw4gt1XVqi\nATGiSfZoV8sxZVo/IiLH+ZYsc3P0ZC2Gi8w517m5UQ2L5k+VpXK8rfNc0L5xqvldYaT/cs26OzGt\nJlhagemQsQ6H7dWVuC/hwJVsa9nX6EdeUCcRTJeRd5UINuewxXqN9dP5Sut8P4UdsMO6mfzvM+dW\nNzDkr2Hz5rqm2V7oWqaAIWIaYMI7VgY7qiWve8wvva3vTGczguHOf9+6dBoTkPcEn/XwAW2S8vMq\nQL8JTbUd09z6hurcXeGgVq+ZN2bmdmpsWL1vyOmIZ6/0eg9hXvpcLyK/YUooN5n+PWL+XeLsk8L4\nWaMnktOnJmN13DEq6mnKtI/1rJvvk7MwWZW9Qx2DSao/jfV7ttL2S8jnAQzIDtHNkRzQwcCKaIBs\n1HZtpzfzRl0Uks5TGZmL9jjtMN7AEmK8d2g0Vvf0GqHJ0nHKoui1bltP63oxMx08NAOZE6Pa2PDa\nxh7s2jnaiC35kWW3ZOj4eLybNdbF+FwGSzO41jaocDGNYDYXxhKFmVnUut6dYLRMrI9TMZFaLTev\nAZKhI1ewVtm2kzGwufwVbqWibVmYe7TJ9hTUuXXG3xCOKePChQsXLly4cOHChQsXLly4cPEO4p0y\nZUog0GTQ3cgO1CUFgdyUtqOkO2EBu8WmDWEIZ8uOXm2oYmYHyzmPDwo4gLxMhrSCcDbAgT6ol7B7\nzPF56SjHBENlANmZs6HWcF5bYPyEoGspLIkBV5gmM8gXVynT2Ug4w2YuS4ZqJV93SzEXg57d6rgG\nWTBtCZTUxVBED8REglsNkoYd1J7tR780xsbXXXlsM6/rTWsEdB7kzhNDQtG9Ed0FFHZRfVTPJ7ZR\nBz6XgtjeNXxQtpDK8kc7Z25nXNELgknS83sCMumV5oLBjj2OWh16HgPsiojD915nTlzoPYBqRzNj\nY6HjA0IwrWkjntsMZyrYF7PJdD1gzmQg4bTNZAwgHCQy+pDpbBRrKze7y4Y0sMncwdiZ6IM5SGsJ\noBHBemjY+o9rc9NgDBSc8QVhsesNrbFB0KSAadWBwPewPCAdSARym6MfcOvqQn0M1EcBkh+iZF6C\nOM8yENZRd9nTt0ClAvp0BZQYXWlfeP2FPvs33scdI1aELcr1HpdLLXyGJkthSv2wkDK6dE2f2obx\ndg4YUkx6nT/IVUvlVaJMlgkdn7JQ5O1qmzpBU8CDreV55lSDexHaNPsf6/WuI3WfWH2l17lY6v18\nHMVGxpJXc3127mdo4NhZ2hl9dYSBuAByXqMxUOBaF4PWHX1L6+u9H6iWzZqz/J98+SMREQlv6Gv3\nYZzcUyjgbFDkco2GTQAjKIFNV5PYct+cXxqeH9aZMXdiU/XX563N1cjXevKFc/aTOYfdLTz0saIA\ntJIc2Fguo948GI2C3ocvJpxkeiagcGjBmAMZKUm8BgYMLJW4N+0HxiBWOR1jgRQj/RDduiYkhrRy\nDno+mFsZbAAbeDHuRLgmJebAh45SyfVMKysyTSzmXg89iMnGzmgsTOYa8qYPc6aD/TOkph0Fy+GW\nwYEGC2hU28EEGUzri/mFMTbA0Ahw5wtBrXxYAMbgKGBGeqBxHeUdbR5AFy6HoTlAr/VHsz26W0Qz\n7atJpyiaD8o2BcaQAV1HsyYwO0EcZSZQNMu7xiSa4fQ1Un8e7N6WvjfCrpqFoIPQbGuYRinXK9Gi\nMZeryObtX3Kr81KRhrGdoBW0gbkSgRY2phGBpsBtuqbf1Dxvv0U7bExvBC0H2G/poOUtyN+ZGAqJ\nG0nei7DOghgtI+M7Bm23ubCD3RNjSxczmY64oiWgwMVavzeDJebTFyf0ikb60EBezJnLOuayCMZH\nU+rn5+Hb9ZEg0jp4+LH2lV30Py5ONH+fPFemYHGhrAP5KeOevj/bJX96tnYAacVR5fRUmRofzb8r\nIiLp+8qcfPL4iYiItLAiprXlAu2rPe4jdQUzG7eSeK7P+2QPx5lG+9D5c9yXlsp8eU0fLK70/otf\n6Pd2Hqruhrej33v8ULVWzvc1D3ewW4+2cVFi7p5FOt8uYf2dLVXfpMYVaflar+8dktu29bmefKjz\nzixWRmZ1SbleaTljWGkL9FO++1f/Zf2c6HXzTv+/Zw1Yn79hy42b4VZHZEOnb7e0HTb3YAwx5s0l\nqjU5xezu/aSHhZPO9Zr2DtEttPAT670W1D9AB6Nlzgx5xwnQ3Tk8RreiQk+uhKlO/ukCdH1g369w\nL4poEx/tl2vcgXzWg4Gx0XbQtlJCjFxfgfrD+A5KY74Z00fbuB1ZQ9Em2zv6e7HU61/VygKzUwoB\n+bliHosj0ynBzfScNji2tRlMGZxyxo32iWGX8s9hPRXmmIuTjzFjWAPdR6ulS1Ufb7XStVWJJkvF\nfNEZFZ93vFmsTCUPqn/JmK1hQHnoqbScHAhZ2901RtgYGWvDGhafH2sfvjnXtV/FO/Dxjq7NQl8Z\nM82Ffq+FMRnv6f/XUNNrxl6IM1w7Wb8yhsybLYA4zyQIW9mgF7Y7aJ87u+T92xymYBgPBSdPINKN\n6GbO0PQqT3kHo2/fdHraoIms7WAlRaZdo21ZPNc+zquGpA+UMd6hR2nOsBOaMwXarXsHqgljOjvV\nK5iQ5KfFQvvSCIG8WnEawGfORafIq2EAirkmaz7tPBwfYftnWzo286X+/asT7QtldcX1WBswJua4\n2Y3db38HdkwZFy5cuHDhwoULFy5cuHDhwoWLdxDvlCmTgxYZU2SEFdGzC+zB+IjQfmlBAMoQhJad\nOR9tiH4APWQHzYdRMjR6vRhUqQepHHC0mIHaTeitlBFnU0F7EpwIWqorBr0q2T1N0bgZ0A7oKOcI\nglOyW5tznxq9kBHNmB7Gj3CWb2YIMOcE7bEyzj+Ole7kmU+8ORSx+S4eTBwPlssYTtKwwzuB2grP\nOnKGXKjzlF1OYee5Qpcmy0zPhx8wHEZ2+iPKHICQNrjzjOhDDOz8+uu3O+Nf2w4vaHUn7Fbmdv7c\nXD/0fhVIXwbS2sxBhEEQItB5n3PTPjvrpvMhnEWFJHHrhlFT56aqP4AczBKre9ThUa+fjaZjBOqS\noY/UcvY+1bYMQBztLGi70c/PQMZ3cFupTb8otDO6plnAOf1Sfx9AA2egjO0N9ZEVXEfv66EBYHoW\nN7CwJs7UWjkz9EYaNCRSGFd2YD+iXUpQSjtyHCb0D9ONyvV7IedKQ3Ra7Bxna8rlOAiJf3eXrpG+\nZs4zZaWI2hyk7L3H6jIx4O5wCaKYxKDhHeg499zQ9+dGYcCZxMbXljkHgBLto/6+PtP7rnDnWKLi\nPhyRz2KQTBhwAfc9/I4iEhln4GUXd6ONolUDCGaMBkLLmApgBAagWcPG2A+g5PSdNarxi5a2R7ck\nLgxlQeMFvY7kifb+Z73u+F+/fCYiIuc/UpeRGI2ej3/whyIikj7U57p4qShWggOaqc/3dlYYnYoa\ndprJiIQ4BoSc124Yo7PU2BY4xFB/QYsulPd2WhACu6EFyZ3IAQFIfo/bgN9qvQzm6DODRUbOG4xl\nAOsgKUHquU1wi+igF8C5eY+xWYKu+YY+kgPqsJUZw6tj/PhoNJXk2djYnqA4AZ2yT7VONlp08RJj\nKpqGjNEU0IRCy6TDtYKj81LB8pECJxvyrWeONczFnm/sNJiFnIW/1e6CiRcxRwfMkTWoVBiAKOKe\nN8DgMS2yvjF2g10fdih5xpwXI+rFaBiVpxWQQjX0vTcMkrtEAyOxhsG4MBYVa4GQNckbrRX9XAZi\n3aKNNeR83toP7YcUFm3D2sDH4WYyNi26SWkKog2o5jN/5DCSfFC7AiZSaDpSorovlYcmBR0qMv0i\n+mQC26JGKyYujJnIkpCxJhs0gvj/W7cQO+8/M5cPfS5zy4LAJVEfSUmu90ZzmNG/1egxZLC5PPri\nAHvLxxGwZZhHsL18ymxIqrkzGRupwnXPntUzcZnS9HdgaPOoxoq9a3RX+gAXZ8qE2f5A3X2ePlVE\ndy9XRsrr54pyrzaaR5/DTHmw0Dx5cKxI68F7ytzYgwnzkx//TEREPv2Lz7S8pyDKW5qX78X6vQ7W\n6w0sgqszvV/HujIH9T+8j6vIjn5/Aavp4JuqdXPz5AMREVkXSpNYf/pSf8Ia3lzofLaFXtKjP/h9\nERHZmZRFULb69xBG+rJSFkKc6HMtfO2r/b72sWsQcX+p37vCWWhmzjC5fj+EqprhxHb6XNv5y7N/\nISIiu8d6/fceab2Zw5xprJ2cKKW1ONN6FBE5+/mp3If6Mt/RPtuyFjt4RPm6ZyIicnGq9TBHd+lo\nvPt8MyIGEqLHEzC192jBNOQ5D1ZYiPuPV+szVGd6z8U92KVH2kY1eWgFc61Dq8bb0z5hWi0FTloz\nmH81TO4IZvzIem+AUjJbqK6Ph/veFaSgI3Tkkh0ma7RhxmtYSIX26QqdoKnHHYr1foa2I8R0iViv\nbqF1uEi1Ymry9MuXyqYaL5R1trXAeY21mTmCHTBP3WeeaeY4ho3mmMhaaaXsXdnTNda9+zQE+dJn\nHV3RZyFiykQumVKuX5g7Ku+KdvpiMNc8Lgsj/K6RwRjf8H17l0x3cSwL9bnOvmJtN9dcEhzxhrJF\neWydP8dZlD5e9uYoSr2n+r2BHFhcXt6WpbncSLSfSD1oPilheCTbWte7obbtNZpVIe+zDXpnI6cZ\nmAIl5FRAy9q/hQVl72bxgeaPfZiCxYWW8eVr7QPTMfpzD8nfNlehpTjAIut4N7F3z4i819s6Ey2q\nrUT7VHWF9lepP5P73Af211WNho7JJ8EEms1ZC7C+TTtzUtS+teMpw+eG94vNBWMYt7kGNvPCU7bT\nbwrHlHHhwoULFy5cuHDhwoULFy5cuHgH8U6ZMnYOrgUp9DkH54NAhqBiFbt+GTtynWd6H+ze1rrT\nnYMMe+xCG/o0snM2gupFsAXKjt3eyByC9H5RA4MFAQ8PRNUEQ0Z2bWMcInx22GrOVyeGGtl5cFAz\nH92NiecMKWeAPkcLK8TjzLKdUzdzqJRz5A1IxxwNnB7WiweikOKE0ZgOTD3IlKBJglOBuSwJu512\nfm5C52DE4D6CdROARHa0SRZqHRoyahorhqCm/tcdtEwdqEab5a4Rs6O/ioxZwhlUkMeenxMMjHGm\nlVVgh5GFIAK00cB5at+OjnKfnq3ueYDrCO4dNW0dwuJqgfkWpuDvGSoFCl+aa4eGB2o+cH59pF56\nUC5TR89MM2GLPkMfHEDA53b2VqwdjF2l10sMME74nbOj6Ta7xnZWlvpMYYFUsLMmzt+nHLjsQC/L\nCWcj+mqHg0aIyn7LLrcYOywwJxlt55znHXGxuh1KJeVA02ANgn8NG0HuLikjITvWE6yd9MQYZ4oK\nPOJM6vP+M+6laEuT69+3KLuHVkwKGp5zxnSAubGEJZAeah+6b+4/C/Q8HurO/3uj1snxB09FROTl\n+IWWD0ZPRj6LOH9sbeb7ihx+daLXq3DQ8gJQJzMbgjETTPYfjGHYAQXMvm3YYcbEGBJt2wZdjBEX\nD2nQNHjAeWNQrDpUFGy91u8tctyl/kB3+uPv6fd+vNbPteeKLE64WM3mev8l929gNLa1ad1wJhmm\n34gWQG45hfL2mdZHjrbEGq2ZMHs7TGHkXHvWc3YY5L42g6Lb32FIMh+E6HM0ICQxiGlEO044XdR8\nfkRLLDUjMxCXkaSz4Iab1BiUb9AsDyZMzPiZDPWHbTmaMUBuz0JbmquSMSzEBNFoe/LgBA6T0GcS\nEL8GhuFoTBycDBLcmQL0ccYSHTa9uviMkREdoTl9pyN/jhn6INAdJvJKbbo8Tfy18jQwFlNz74H5\n05O/b+cR3JZaXI4yHyYPDCDPXPsMwrxjxIyZBL0mY17O5lbP6ACZpgJaLj06dTlja6hMo4vnYKK5\ndXgYvz53h6B8XQTjtILFhRZEXzGvcP8efTobQ2Px5jnLZJAMaNpcUUzTa0SrpqL+YtYQHRoTIa5Q\nhelooMNkyHrCfDuaDooJxXjGNmYw5dpPyj4RMVclBkRgfRGxqAk2ptebqxB1AXsqpy+XaKSkrD0G\n0/hjXdjTZwLqNsYlrQ2Z0wL0eFgnmhPkOL5dHzH20RzG9uVniuxerdBbKjU/md7P/FDnhWxQlLtY\noWn2C2VqfrVWhsthpPl1RpvnoN7X58rIefGTZyIi8nw0FB93EdDvGa5Hxoq4hjlz8QwmOY4+8X1t\nu60tLVdMH9zZV7bE8e+pls15p+VdvdB5qUPDsMfV0HTwelhjFX2zea3lHVRSRvYeKtS8jebDFmui\n616ZLs0XOvH2V7i2/FTR+/AYjTQYRd/63jeoD/Q0YNr8+U/+TERE/DVuqTBDS9ZM0f4bFtlNcCrn\nP9L2ejjXdcHuhzqfPXio9+kXWvB6z9ZWIN2bu883I+OorbSMGcyRjbmP+qZBiJ7Ghr5jK0dY8gV5\ndM4zpVDnAtafMzSfmkzr5KrC8Q+GYjPZuo62MW0yczuC9Rt0TTLJAAAgAElEQVQzBpItffY5bNgT\nnBS3fe0be/e075yUyiyRNacW0HQ0884GxiJTtsTM6R3aKZtKP+/t8N4Qap7Kd2hD2L6TEbPNgoe1\nWbHU66wKXO3Ifz5zdBvZ/8NShtHYNM/0uqyf9z5SltVwpey2FXoiAfPZCIvYQ2MrQQerDWydDvO9\n09xi7n13DZuezASpZD6veCfdhrN/2ilLubnCKfIIrblI+2y9Vj3D9ee6BqsPYD+jA+WxJouMlXym\n9XJevdE3yfpY2mAhJevOQxh5wrVewKDrYKeGC7RSqNs5a/wX1EnEu6Ks9P+vrlh/or+TGnueStiH\nSXd5BfPbWFGJ9m2v0r53NWieGBqjY2ofWl7pWCtMK3bXNGD087vk4+sT/X2+zbvekY5/c+/zcKtL\n0bjK6Isd+j8RGmWlmDurzn05jOrXMNAD8nS1ZmyTH4vkt2+7OKaMCxcuXLhw4cKFCxcuXLhw4cLF\nO4h3ypTxuH2K+vKAM06AbkUHguobklybwjaK0pwxNiTVQ+OhQTfF2Aqmh+1NINO2e8u5yQE0cQPz\nJsd5wm/ZVYQFAglEes4xhhVMFLRlhgLNBFCiDFXo0jbHB3Nngj3CDl8LWulzHnsDoybm3PkMvZAS\n1DSD1SCgdQ31YG5MA6hdaM4OlXeLmPqgUj4sooyD2YbWGxIbgN5O7AhX7LTa2f7+FnwApeesqp+z\nqwjyF6LfM+KU4NVv53QwoBXjtTAw0NGYcaZ0QAm8nHHmnjOa5kzTglgK5fACO/uvdR95pi+i9bGm\nscbY2FDsNBuCiS0VXVUqdoulh6Vh2gCgdjHoX0+9B6LXS2HK9CkuRhxFzbEe68yBItGd8mbkjCga\nAh5nZ6MGSBMNidznrOmtlAIq7DCEUhhTI30sgK2WUS+bxtAmdI0GdFFgKnWgnnloukdoGjA4es+Q\nG84wbygvY2ZEq0GmrzOvIA1IBDLbtXdnVPVoD1z96TP9/Rf6TO/94Ad6q0faZq8/RY9hDep8rj9X\nIHWDofQffiwiIvu+5otXN9ThqSKP4xco87+nZaxWsKc48z//VxVhKNlBP4dpEsDUI21Ia3XA2DsF\nGchk/NpP0ztakhfnaFB5sLIG8tQVyEF+AhNozvlvVOJrQ+kUKJABbSsfdsTekSKnlwNOaWeUA3eR\nIFZksd/HbalUZCJa6c9rWAPNl4oAR9ewJ9Dayj9CYwDG4SrWckYFiPcFWg2MlTn6TSFniMuVMnL8\nS33uXeGw712DPl3QB00yKOcfTW26JrQLzkJjquWa0UfXzCMB5+BbGwOwFzxjr6D70YFSepPpdDGf\nMAZHcm04j6UGrRnQGEhM+wqdswGWT0jeKtEyMV2cgfwUw9qpoZwZI2+ESZNwnd7yvWmN4MzVkWeb\nkrmIvGGOUilsB4Fx6eFIUNHHEsZxy1y1mU2Uy3SGqBM7h868MDHmCnTgPKDSuZhOEY0WGaKs9yln\n5riI7pCtHczG7o5RxebCAQqGhlcFEzID0uxBYOemb0Je7GnrAO2EFIS1hSrjp8bYhPkD+3UKrNzM\nX7DdjDnjFWi6ML/OmfvNKWNuljQiMg2eTKyFOrTEZoyhHqdJD87RaFpthsSj+xQzv4g5F/H8njnU\nwco1BmRt7EK05Tzs/7x0EmEN0ZkWHw59GXXjw7jwc/oGGk0JSKqxOz36htXdwDOktHkNI9kY1caQ\nCUGbzT2ngfWakIj94e2wyTXs2Jte897A/LCgzza4thmD5en7yvCY76qmwfpSWQZf3Ci6jSmJvDLt\nrdF0JWC17SmSm7BWGNCJmG5RdmXITAcwOW09i3PNiFZXhjNLay4naGeVN3rdkwvNr48+0vJmO1/X\nJjx5pgyY69f6OWHt4e3ofXb2tH3OV9rnlpf6fNFSdT0e3FPXpsUhjCDWbic7+iCffKrXv6DdvEva\n/USf6+BA2Ro+TKdqYYxFtBZ3WFvCiJzvwYo+UhaEiMjs/qFUaD9cwlwqn2s9vB8ra+Lbj3T+P97X\neq9PtTznn5/JncO0BHGPi5jD9/ZYb6PxVXR67QH2gfXEkXeFFBZrzhh4dqlz6z4fzA8e6vdu2ZZa\n9xUahx7vBi151qPTJMbUg0Fd0gkz2FH5QllNHQyeGKfJ1Nc68XC/SxfapyrWh0hX3bJKjbU0cfqh\nXXY8jzkSsrZYsJaBQZ0sYCuQ77a2tY1uLsiT6E6NaHZ1ZnvKqYOc+a0wNhgOmCc4f2WB/pSNPmcA\nIzLAUbGeW/2jgxLpWO56XKDQ/hK0Osv4Vygvd4yBdXPCiYQJ5pCdipAZL6timpmw3mAs7pqGJ0yj\nZa0sM3MqHmw9wVpkf2bzEWuv8zeaa123kdkQSYFb0hWs+J4y9CyA5iZySj7eiXU8NzfoT15oGZJj\ndO4m1W4ZFvQFmGdmxLvY0jGyWKCFCNu1RbvPx2kyQgen/pmOw8UB6+D7uq4sWAIkaFElH/DOccU7\nHTpLF5E+e7fG1Q+du6AznSXq+hy9N+psG0bQmLCuvmSdvaJ+Gt5RacuFp3mxMd1N+mRcGd/314dj\nyrhw4cKFCxcuXLhw4cKFCxcuXLyDeKdMGTsf2MIyiDlH14AIT6aXgbryiP6FT7Eb0Dqfs8O9oVAg\nvxHnt307XxnbwT39Ec1BOEEDB848t+xeBlBqBqslymPGBA27v4ZiJSDjPTttHk4JASwFU+rueV4P\n9IxNX+nMRQZveXPe8GLQUXYWKxChFE2D3M688XwNu/SeHcMM3yjTe6AsAcjc0IKA9Yba2jltjYxr\n9hOMktB0KtADYoc6g9XTg6pE7KbaznnEWcvUbBnuGB3nsycfTQLqpIE5Y+e2I093+mva2s6MJiCW\nvfd114mKHfFhDqvKzguHxojJeU4YISCDFVotMbu37VJ30gN2X4vGEGkQU1D0mnpNYQ0MfF5WqLhz\nDnzNGf8YxODylbIzckOWYfhk6BbVPF/Fc4WR7lIPdpYY5o7n6w5/ZW4o7LBLYiwzLVfADnqKDsgY\n4PIBqyvjzHKBVpBMyjJJGLvxBlYDZ3JDGFIBfTIC2d5QrsQYNCAneWbIkNw5zv+5asUMa32241HR\nnONJd6qX/5vurJ//9Cf6BWPSnWmZr86178xgXtwHNVlzNvTyc0X6xhPtw8VSnyEl79zgllS/UFeN\nsVHk4Gef/nMRETkFvYrZ+W/QFAlyRWsCds579siv0aUIjOQV6BiIQUuu0fcR0BJvrehWe63Xq0p0\njh7oc2zZOe1ey3l+rmNwUXA+/QAEdlvrY4mI1XUImoJ2gtcrQmqaO5tS81pMH2xg2NTn9hMtLfrG\ngrEywAJYN1rv9jgT9TuhBeQdaF8IUdHf/ELHxjbcx8N7b8eU8XDs8WGxhbAgBmOfwWBJPXOSAKUi\nZ25gpeQg/B2aQinzwATLYATpLsmJCe3e3rINyKGB1kdjDkddLQKiCenm1j1pmmCBzrXtZjBUBph1\nfQuzDwpfxdzYg5SGsHpitEZ63PTa2PQ8YIiYYyFn9Seu10emOYa2FQihkI/jhD5rOmimvcL3Muwl\njM0w1dTh9HVXIjNLynH5EJ63Af32zW2JSTmetO915M0xNUSYtQVMk7vGrMSNDqeZijYNb5lHnBdn\nPrlhnktS/d5gnRmGYU8fS2GaFjBNQuYbbwYDCQ20YKFjogHB9kEHqU6JYeK0tFPMJL9krIqIeKeD\nFCDb0SVMIuZvH6Q8DrReSubB3Jx2oA/Hpss3wobjPH1vunroLvVoY8RoYJT0pwBtmWZdSs46x/Qh\nfBxGWtYvg7GoKEvAuOvQ6FvjTJhW5noJYxo2T9GZS6fW4TVtAzArTav5wwQvGtqkpa/k4duxqXwc\nqHqYHjHuIOE9zfvFUvNXfaNt8JNP1U0pgWU8belz7h7DcFECjWxwtDl/pXm2/AyXpA/1c1uPlPHh\nU/7edIpgSE7oeAwLrYf7aMQ0tp6kj6WW92iH/ghNr5daTyfPVEdk/7Ei0ANIdvCYNdjGHMZ0bAQ4\n5Exo4UwLmDqhOXNp+f7kj/9Sn3tX83b0UJ8ngZWwRT43+bsJ1rPP2udypVowsY39h9p+O+8r26EV\nc3TU75sOSd29YWf3u4n4e7AnQM7Lz/W5//hnPxURkQdfwV454Lk7YyVey11jwmGmg8F4RT6NjEGO\nu0+OhqHpAKWsqwscw4w5uYEVa0yJ01LXedECtH8fJgf5PaOvtYyRnvE5M/dQGH5TTt5l7WLLrmaP\nOoOxvIY5GVXap42dLz5tz9xYsrbxcDGdRsvfaJRtM/clyrYdeS7TrDKTwMtr1S8Jrulz5NkerbN6\nrn2ljmFmo9MUGtOQeWkGe9nMPRvqx5gjVQeLg07XwgQNGVM9c3sMm2KkXgPmeN/cXPnda9/u/SZf\nwGQiX27B4g2W5FmchA89fY4SXcP5ynT4YNiwRtumnroC1vYhzEoYMf2KMc87Y568YfbsyJbk3ZZE\nMfmT3hBzkiV/rKysgjndtABnOFOlzJ17MLnHSvNWPGpZ7ps+EO/JLevPetR16wrGt52g2WH9fkRb\nQR6TQ7QUx1o/vwPp6QyXO+sjR4+0jzX0kYQJaME7WQurP67MYVC/t4/m1cpTfaXJ1iS15o0Q5sui\nNJ0kzQu3WopcdxcG5tLeCTdoc+0gEvsbwjFlXLhw4cKFCxcuXLhw4cKFCxcu3kG8U6bMFqhMAjqU\nteZYwFla2AUSm4OL7jCN7ICbrEmSo1QO2p+xKxyA0ApaLHN2S/0JVw8cDqYcRJPznw2IqbfN2WDQ\n/YGdQQ/tmUD4HLviPsi1qVCPnNOfUkU+AtDBmLPT5rgjAQgxu7V25GwwXQ52bQfO9EXs7oYBZ9s8\nvX5iCDzn63MEA8ppkowzilWktRbDFohBQdgIFp8d9ArGgtkwpDy7oAPhgYwuuEfNjnIGNSY1TQR2\nkCfqMMjfDpVKYVKkHYgo7h/I70jJrmhk6usgDjWOKSFn3EOYMy1aBPcyc7iCGcQubMhzDCCUTax9\nLi85lw5DR3L9/110KEZQ+DblQrAtEhMIj0CR0N6Z01e6GCYQnwtB0wHnZWeAycLPLVwyRs5Fb6OH\nUU4cTOdoa4xqf599/VzmCBQdcX6y5QxsiGbFtrkx0Q82kW5Db4N0ALJJjsZNwDZyA2tEQOuOrQ+D\n8Fc1+iWcq9xG60Bol9yYOWIaNndHHAJcfp48eCoiIk8PPtT/T7Wuzj3OSW/pznvAzrl3pN/7aFKk\n7cGxtvEYofFSwALic4fbioRGu4ogbpsTAMwWL9dnW8O4K9iRl1R37CvQ6mCOEr7RAsgfNr7TQduy\nRR9oQd/akC8CUHhDJEP68uJQGUJz0JQM9ARSklxt9Dke4NwzgwXV5uZBxvVf43oRKFIwGNMDNt0G\n5CSFpTaCfu3j9DJfaD1v/x6I5AEObrhNnZ280P8HbfNA24NvgKx4iqACIt0iLvO/pj+PQe/m778v\nbxMe59Rz4LhxNAYmKBdjJYUV14Dwm/tGjlbD2GsOymGrFNhiBb0xnPTveyBKY8PfQaAEtJPHlnBO\nzh1FtjmP3O7yx0pzfQsrZ8fDtQLNkBi3OZ++VWPDloAmDan2pRgdiTGGCQiCOWOuswPZg9FAmS9q\nkNYEpkRLHhtj5mwYLS1CRSH5I/JNOwbcp9Lvz3lo31hgmY4xQxhT8oFpH4w8h2naeDBAfJh6/QKW\nBDojUQh7wTM9uLeg3IlISh/dDWAl0AwDOQMy7q2TgrlE+bSbV4NIwmBKQcsCyBo1rI+YeaZh4iGV\nSIrrlqDJU4j2+cgYp+hplD4IKWMzGd6wxmbdTDLQv2EBA6qEgUg9Sq+5LDPWIP3gIa4rlru8AXTQ\nWL2GjDNPRfzeUTERmkYN2kRRdF+Gwhy79Nl2ye0VedaDrZugDeYx3gYca9rSNPKYGxsYbWjF3Lpk\n4vC1F8FyCjXvRjBrYjS0TG/h4lr7UmcunneMR7uaFxeP/6p+n7nPoxwf4jpUXMHkWep9zOlskYHu\np8pkibdw60RPYtrWOZflrMQMlnuRtnHAmK8n1rusjQrTIiPh16z1Ils7gZoLmjd+CeOE+wy7mhvW\naBOaU8sRDo4fPdbrTaH1eTTSYHDaevzRE9WO8easmc70fpeP0fNAD3AyBidaM/cewyqjb3WshxPW\nmg1riGnUPp8Z6843dgA6giDWsWcMKrmNb84/lMkkMRiL/oHmsvUF7lSGbPP8yZb21/1mS+4au1y7\nPWRORaswhbnRm/YKfduzYd8y17H2n1teYN368T1lK5j72c42mi6sAx/twsbyzIEW9j1MlIg5qUBL\n0ua81tc1TcycvkMekG9oHqSLSMC6WnZwkG1gWMdokcHgs+cddnkuxlxF34yZZ3ycaAJ02o72tNyb\nRMfMAmbkgOPZh6WucWYJOpyxXvf+Mfka9l3AArpJcSkidzQPtECxsbzQQhv2eB8iF5mL08CabsF7\nQovGjRE5G9+Y7TgQxW/Hc7DpNrnR71Ws2zOfNVKs/SFnHu2v9Gfdom8EMyZmDbm91vq4XsOAfaFr\n33Py/Bb1FnKKZC98o92YLycpq5WEsGivzTKQd57RGHa4i0ac+OjnOodv0FSZwXDpKEPxubKwIpxW\na5uTeV+NuZ+HzuaWOVr1sLQ+12cQmJLbsHTbNWwl8v1uZddh7cE7XAALtIn0PXnO2mdi/Vk9g9m3\n0L9PvOtsbcG2tVffLzQ/RDBlbmCxJbdWscoc38UlsGPdHl4i4mh6e9lvd+hyTBkXLly4cOHChQsX\nLly4cOHChYt3EN402XbYO7i558k0TeJ5b8eecOHi/w/hxoYLF78+3Nhw4eL/GW5cuHDx68ONDRcu\nfn24sfH/fvymrRfHlHHhwoULFy5cuHDhwoULFy5cuHgH4TZlXLhw4cKFCxcuXLhw4cKFCxcu3kG4\nTRkXLly4cOHChQsXLly4cOHChYt3EG5TxoULFy5cuHDhwoULFy5cuHDh4h2E25Rx4cKFCxcuXLhw\n4cKFCxcuXLh4B+E2ZVy4cOHChQsXLly4cOHChQsXLt5BuE0ZFy5cuHDhwoULFy5cuHDhwoWLdxBu\nU8aFCxcuXLhw4cKFCxcuXLhw4eIdRPgub/4P/84PRUTk3/03/66IiBwe7OkfwkF/9KmIiHjNKCIi\nXRKLiEgw6ceGvBYRke1Cf68n+3spIiJN6OnnvJmIiEyxXnd31L+v+kSv32YiIpL6er1yptWSebpn\n1Yz6M13f6PWCSG/Y6f/Hsf7c3JZvLSIifqX3E29Lvx9oeTrpRESkSrUcnqf3p1gyzxu9T6H3Geb6\n96zWBx1avU7A5cdt/bvfrrQcMc9bVCIiEs1Daddah9NCv+QXMX/TsiRLfeZ1pP+fJr1evAj086F+\nrky0zrZ8bYRxSVnoSW2o9xmp62HFs0R6nYd/8FRERP72f/xvyV3iP/p72jeOZrmIiJy9utLr0QdS\n6nJK9L5DrXVW03bzRMvh9Xr/YdDfx97n+fV5d3Lta5uN/j16QJ9otC7bTPvG1Onfr07P9Lkj/dzu\n4Zxyaf3EshERkdWZfi/c1c8V162IiOzx++pc+8psX/uI72l9Fq9PRUTkb//NvykiIon1nW7ic/r8\nNLV4hd5/DPV+jWg5J0/rI2H79eDhQ/3/XuttHLXeLq+vtfyd1tPka/v7lf5MuUAtev9w0u8FjK3Z\nI/05RlqPyUbLcb7WPrgX6/PdrC9ERGS+txARkX6kHq5fiohIxlgbPb3O//C//BP5XfF3/6d/pM88\naP+PFh6/axnjQcsWt/osnVVGRN+s9F6pflyKWP8/owydr78nFfmCcdfHDNhIr9dXWtf+XJ99mPj/\n3sqh14sjxn+ldZkxNhoGUUAf60gzHnUet/ofE3mqp68MsZYrK/VzRc7n6QPxxPXIj17f8lz6+zTq\n71On15nn5LOB3EA9hmHE9/XvE88/deQWxtiYkQwavW6Ypfxd+0JX833GbEceTkYtdxRruVpv4nst\n99Xrx75+/7/47/9rERH5h//Jfyl3if/qh/+5Xl/IWbFeb7H9SK/LGF4utS8WF9ruI/fb3zvQzx9q\nnw1acuJGy3d1xec7rZf5kV6vof1ldS4iIpuaeW3Udoyp12YMJfC0joKBttGqEY9xP1K1Pm2Q3d8V\nEZF8/1BERFLazKdNO/t8p/nT62mzkTy10A9YEYdR7+81WsbW0+tslkt91jPNv0nQUzd6nYE+5pOP\nPRJT0+kzPti7p+U71HE/0JcH0etsNprvri50DM/4/2LUcqeeXsdnTNrUOhv1fsOCfCXaRtmxtlFO\nH/9b//a/I3eJf+9v/Yda3oMdfY5B66deaH1Xr88otz73/oIxfazPNd/WNu+vtULbhBzTaTm3kn0R\nERlrfYBy0Py/YA4faffe0585fbXL9HpRqdcT1hoj9d2F8e0z/Lf/7J9Kf6rtvCleaTlYQ+UHWj+7\ns20REdk50uc4L/TvPWuc0dP63BJ9rjHXepiz1mlYAyXkpo6cFTBW/FHL489EGu1SMvral9avdQ64\nWWqbCnVQMxfNmLurWOtkHug4nc21bg/ua18qhbzV6rooGPTzm1KfPT/WNsxb8mKodRew3stSLXNz\no8/6H/ydf1/uEn//7/+nIiLy6qsXIiLyYFvHXvye1tWsSSifxvJS28ArtbzBvn5uJ9fPnb7UseUH\n+txdr+VKyAtHT5/o/1/p2DtlDREzR4+ePldn61j66k6u5ZJMG8BnLPXMwReV1tvY632iSX9PtvR7\nyUI/v3mp+TDY4flon/pa+17tU98JY3VX5/rY03brR+3D16/1On5C/qWPtK1ez8u0nQabB4aG67MG\nCTWnHO0+EBGRkue+On+t5a18/l/rL4/08/OH2l9ERH74D/4zWZ5oH48y/fvue/q84w3vBecner1E\n+08bMOY6Lcc//qf/TH5X/KO/9z+LiMi60med9fpMTa514jH3p559Q8dXOeo9Mvp2NbFujbWNwobf\nGUtxzpy8pi+T72esHQZelgbRZ+gnbSNbugys072W9ZytQSItR90xDzGus1D7Uj2xlhqYR3xuGPDO\n0TCGWYN4Ae8bg475ls/7zMHJoNcrQy1vUmvf6kPeP1rWMh715OvPMNKfCe9EDWnQY43kb3LuQxJi\njdOzfm1nej+v1+vM6Ht9sKEe9P8L6msRMN+NWp6WtUpmi0JP568f/hN9b/ld8d/9j/9YRESef/op\n/6Pzyfae9r2yYT2/0bF/7+hIRETqSOtvdaJ9f2JNFWzp/88zzQVeqteLGq3PG3Kl0C/3kui2LP/N\nP/ihvL5cSdLqPbce6FzViX6mvNC5z0t03Az06SnSn/tbeq8b3vm6Utt0xj3yHZ1zpo41xkSZmJv8\ntZYtfqLvKF6jZexPL/X3XeacRK/T1OTNUe+7WmkdBb62xc7Bfb0efX+51necfEvLz7JS2lr/Hh/q\n/kNMXdXXWs5y1Pvu7tLHGLO8AovPmPVYX18v6buDdpp98s/lyfnXnvs3hWPKuHDhwoULFy5cuHDh\nwoULFy5cvIN4p0yZmxuQwqXuXN9bfEdEREbYDSG7eT4oUNno7uXIbuDsSne8Vju6U7XPbmaXsVs4\n6W5hvwF9Z8M7jHVnfMbua5Drjtgw6A7/A1DE9UovOFvo9dJUEYsCRD7bZpfa088H7ALHgV7HA2Wa\nuPHEDpsh28ejolYV5c4jve5UHOvzdlovoSEgfK4PdGdQZlovHbu2fq3X3WG31c/YFZ0C8UBD6rWW\nJe0VdZpq3S4cYcYs2Bn3K3biZ/r/7aS7pg8aELgOtGmhu5UDjIwU9pAUukOd05YNiGtKGe8a5UtF\n0cYner+bjbbVPqj2mMAwAWVKFzwzyN0pqNwIwuCDvktPYwAl7x59LCIi9UrRnPZLvU456E70AIJQ\nTfqcLUjk6On1vVp3sLm6+KAqF9faJ/ZKbZPLUndzx0nb+OJcd58PaMMBRHgNsylYKBIuILY5LItX\nl/q9EJSvBfrIBkPUYSewi1u07PyD2E4TfYj6uD7XvzMExINtNoEgLDYwWmBM+cY86rXPPggXPLiO\nSX8bxHoCnWS3/OZL6uOR/j1hbJx+qrvhBQQtb/sN8vu7wucezaF+uaKvJzA+VtOGZ9JnDmBsBL6x\nvLSuVwHILSjMhrExJVpHNZ8LBv1+T2unMxC6WL8fRdrHu0bLE+agKoApQ6z3rULSb6x12oheN5y0\nb1tn6mD0dDBvxlKfb+Q6IyiQD4rjwVqoYfisEph/jfbpFmQjBo2fYlAj0LcRlsK00evXIJijoVDQ\nNQLQmT6FIQNzMQL5rMiLUa7XC0pQ9gMQFKq73WIs9vr/a+6fQB2sZ6CLg35um3lhukUZ7xYFbI9N\necNPrfc4VZRqHihSEkQgprDuhgKEWmAagY7JltbLw4Uit9G2lvPyC81Z1Ua/v9jX65680FxRMgZ9\nniMEcgmll2RH236+rWjQ1ZmWNShgV4Vahy3PEv5Y75luw6io6KOUtQ+pe9hYlQ8lBsQwIu/vzDQf\nGbtgAl2KRMvh9SB2haLIr5ba57JS+9ra2JyifczvNA8sCy3/2UxZBRAtZAQJNfR9An6aShh2MDMS\nKDHXlNMQ3SrXzyfkp4G5up/rfeRH+ven3/+uvE188L6idLNU22Fzowyexa6uGa4DxshrLefZ5Zci\nInL6l/rc+QzWKvPeQabfOznRecUYk7HlAsZylZCTWm2nEJZCnmo77R1pPRXa7Ld5PR18yvcGX+vW\njWw/1Hlj0WpCDydQzVH75tW5ooY9jJ1C07iEB8yr59pXG8pxdqLtXrFWm0hm2bbeZ/dAf9YrvVC1\n1p8n9YVEoOleYOwiLVMy12fKGB/f2FJEsZpg1IC4Bj196Cutw8pYAjyTx5yzlcD8WGtfOAFh3ax4\nFubYg13t09HimHIV8jbx4P2nIiLy4tPPRUTkOtbyfACrIaAuDjvtgx59/eWLZyIisgtDJj/Sz+0/\n1d/bG73Oxec6t688bezFQy3n/Kned6/TPl7BtNtLdGLLAIIAACAASURBVC797PPPRESkXsJy2Ce/\nkQMOdxU5nh/odaZK6/PiUu97ear1/WhP6ykFsz3ZaJ/ZjrSd9r6h5TkftH5Pn2tf2jD/zZkvP3yg\nY6mqYX09pN1Axm8u9fNL1pTH9PUDkPLTG827lz95rvV0zHy694GWozW21nsiIlIM+vmrn30hIiId\nbI9H39O/i4hsz3N5tdbr+eTKp9/R+9Wl/v680HZLYbn59MNefjvC/csxwDzPWZf2jGtfYHvCPi1a\nrZuY9XPkaV1UsHsh+0gEs8YYHgLrti/1Ax4s+szX/2+g0cdGgRQd13GibVAYa3ap9zXWlbFzjT3r\n8Q7lTxXl0j6Q1LZQ0+dLYKPVvNs0sChyWBbtAloCa4CIvhUzZiYYMHNYVBDWJWWN1sDsjmDWeA1r\nEn6WjeapiPVpyztgCgNnWmu5jdASse4dWS+H5NHe5mKbqDqtz9AYnZYqyFEBDNaW9XYfreVtYnag\nubD/if5+kOr1Pv7u+yIi8uLHn4iIyGWl5X/yRN9BVzCDbn7xlX7vif49n+t7WkJ7LmCoLjty4Ce8\nXzTapw++9+3bsux/9ESuTv5cUubkpx/8vlaBr+PqL840Ly1gUW4/0Lkt29d8erir70Avv9Ay3bxQ\nZkj0WD/36D1lJA8bzWsvz/W63qc6x8apPsP3n3xDRESufJ1DPj/XfPf0oc7l+S7szq/0WYxNKxsY\nc4mW/4NvfUvLX+j6v/7Zj0VEZGdf8+D5teavkW2QD775odbVpeazq3Ot+2RLx8C9j7Su2o2O0ZtC\ny1W8glm/0DG2f8RphkHr5ejBUxER6S/1uS9XNiZ/fTimjAsXLly4cOHChQsXLly4cOHCxTuId8qU\nSUFsS869FbAAstKQZ/19VnEGzWdHrNNdyhL9E48zxDLqTlXFOfOtwhBjzlOD+G7Y6draMi0IzkWz\ns/5/s/cmT3IsZ7bfF0Nm5JyVNY9AYcadeUk2m939XlubSW+nZ6ad/gCZTGv9ZdpoIZnJJOvHbpJN\n9iXviIsZBdQ8ZVbOmZGREVqcnwPNNpFdWGETvikUKjPCw4fPPfyc75wh7IMSOccZiPeI+wagglNO\ni0NOi8OQfMO+6lGuuWRqGDtDnai1YGlMajBoOM31q9R/goYDp+wBx8bzOmgk2hbZWCeJQYUcP3KQ\no4Q89iKn15PA5rAGmiOYMBWQV06qE5gktYqumcyE4kzJNS8G7mSctnRHzj2dSnqg8gn3yTjx7aGt\nEvRB/pp/+ZTw35dCHTYCOf6rnPA+/IVOQWslmCSBnmfoGCXA6Bd93b9ELuUUhCApqC/PngtdCkAY\nymgEjM40Rs7GOjWtkhddR7vh1i91qjrW5S0jH/v1GyGnm+s6Na7CFmg2QF5BW8qVJvVXOyYgJz7t\ne3NNn//sC6FCtZaeMwOl34EBBHnCqu+ElnQdaBYxGhFXJzqVHsCYef3DPs+jk/ov/v5zMzOLQPnO\nX+vUeQbaVwEZMEPbACR/Bmp5+kp5850jnZJX+LsHmonUzFu9qKSNVgVMmc3bQgC2bz4wM7OT0xO7\nbpmgORBNQNthNWWuTQOXv617kh5tE9CkKQyZYE6eM4yVGQyQMiiQ0yAZgxI77ZQUFMeHwebPaSvm\nr5N7mMPoGbocWtCaKdowBdCySao+qjCWfcJInKmentOXoF5jUJ4hfRSSv11kLMxB1acOLTfGCOyD\nBLaDEzCZw0zxS+iSEN+8Ee1b0VgvuOcl3gax4tDEEYBgtszfCqG4doGJVAIt478zF788x65jTs7U\nbmPWAwd3zSPHS7teWVoXo2Vn6TMzM4sZe8kILQWeu1YSuuSDfk0mQogGR0LBuicgw+igzFb03Dcf\naq76RSEoBWJNaVvIzM6tXd3PLQswgVLmxKgztiBSjF9cA31ya07KGCc+7B8IhTp7rnk37qqOBdP3\nx0WnF4EuB4hpFU2tGZoFQ9bW8UB1Dk40f33Q/N0baovNB5qXa7f1DPcYaz00Zi7GXeqnei61FK8T\nNFGGl2q7bKb15bSjMV6mS1c/vWdmZsvb+t48cdpSzAnQ/ghmRwHtgZi19GpfrIX2udCvyyP9LDjq\n3TXLEDZup6/nGfdV762W4vFiS3EqbKniCwN0Tm7AUl0FsWXML63o986l0PoL2AgRehjH6IQ0Jqy3\noJAOEO9ciCVyjq5HEebkQlX3uzxU/xd6y2+fIR4OzNZBtNFkYGtjU5ihA9P60e6yB7kCOSVuv4Sh\nVT1QO/bnus4qyO6Efjzcf8ZzaazXHOvllubapn/bOl3YpDD4mg3do7musfXiudaiAvslt9/Z3Nik\nLYT+nrz4lZmZvflWa/ZKEx2fdSGwY+bbIWNyBBLaWIUFlmrevtnT/RZW9Aw1r27vU5oLGpOLsKdG\nIL9nj9VGlV3VY+lT9igrGtMnh3tmZpbAMi0sqh22YamFRX2uXtDzff/DV2Zm1r3QmLz1hZjkHloN\nLebAck1tftnRc1fQwQjrikuvzxgjqcbQbXTlth4oDp4da61/3FZ7lSsas/c+0/2m56xbkeLV8saO\nmZmt3Vb/VNGYePT4O9X3lfq7G8FI31b73ml8amZmRfZSl+zDe3saQ2doeK1xvZ9/umtmZj6MzN4b\n1fPyJey1NY359Y81t/y+4mznCM0i2FqF8TuGy8rKqj3yxaQxWCPFmubU8rL6rb6oOT1Cc+fJY8WW\ncPweGDYaV6O25mnoJiBr7NjQGoTpN2WvHsaslRGaKOiPjWGSZOxz31FaYENFrFVouZQjp40C+xZ9\nJscQj9AeGzt9IMZSkXeRsAgDe6T4VwxhzBTUJkPGmAeTZOK7PRBsMfYaKe8TBVitKe9OE95RCqwX\nU9alCIZ7BZbSCDawz5jxoBg6LTOP95NqWX2ZsMco8J7Dcvh2rS+xp5qiNRawP56hJROUYeaQVZHV\neH7YXhn03pB9cea0gui2wnuydysuCwStsKSs+FquoLcEuzlLYEItir0yHzlWNu+OvGecH2lfEMxU\n743bmhuzKzINYIE4hk/0b7TIShXPupO+xbzURF/CVKaPerBjp+yzK9uwOMkI6bBWXvW0dz9voxM5\n0fVu31HcaKMhWEB7r038rMzQBiO+VqcN7qu/J2ikFpt6tzq/UJwMWUvLZLhUI5jbMAnHsIQStGbm\nfY2Rq33FE7bHVi9+qedFayqqOS1E9scwbkLOEaIhmTpkCwzRkl2pKY63O7rvuCtm3gDNtKgERfzP\nlJwpk5e85CUveclLXvKSl7zkJS95yUte8vIBygdlynggo9WZy3+E+ZI5Zgynlr7TFOCkjJOrkRP8\nRlE85hTZd0rgOCT4JU530UHxCs7BBmVwCDiVsU6+Ri30MgY40qB0HZDgGQxAmF1eZg0kGj2QCgrl\n/ZiTO9gFE1ctjlM9Tlk9GD6ey2skb75Wd/XgdBfUMOUU2Yt1QuncTIJM6FbsoQswd24Gsc04gR+A\n7pdBjUI+G5bREEEPx3cK3LgTJWgFzDh6TtF/cM4yKeh3gRPtOSfqZXLa5wYDx8Nh65plTpucOqZH\nV9d9+uuvzcysN1Y9qyAAIxy31jaF4hSdpU7DOXvplHSlpVPbQVV9dXz4xMzMYlhKjRWhc3/90d/o\nayVcPkAotqpqt8OB0KWtFZ3ert9XuzbRPRqjKRMDj29kQs88NAT8j1TP9jGnwXOHIun3r//pW9Ub\nVsJyFfYAp7GVdU6Tyd1d2QJxSXFDggG0tqDfbxc11nbuCpmewiJZb+g6A9yPlsdoG8D6OOY5S7BI\nUnJWN3CGSBib6zv6/Qz0q3vOXCAv3TmVddBqcDZS3gbPg0L78AhtiGuUMuhJBwZIoeD0fuh72mIE\nU6YcOKYKLIKpY5ahMYX2TIaehVcGtQAhcPocEc5UYwfHMN8MhwWXtzwmjzwdOQYKKA9jd+7cgBjr\nIfEhBsXKXP42beXHTssKZglx0ceRZeqcd5y8PK5QHvWsEv8mmdOCwU2Iz6ceaBxjMSNuZrDhsljt\nk4K2zWhPV7/QtYND+7hOgrZEmfjuru/B2hg5xiHMRR+kYoyYTeGt7hL6KfPr5/ibmU1Rw0/Ru2pt\nwiYASXeiYwG6V31PyMiwo7GLfJVFoeZ67xxdkb0XZmY2uRBC5KM9NMVdxnsupKSB41gZhLy+LiTZ\nY30pVELbeyL05+Cx4mWMs8AiTLsA5kNlQW1144HmW9QUc69eYi3E+SoAAQ1xAJzQ9r0uOjmPj2gc\nnhXW1LCrOPbykdr49EzX29oVu+HGPeW8x9vqi5tDtWX7bM/MzI720bwq6JkbOBus3VDc2QFpvILh\n071U37yGcdeqo/uBo0PFZwwGTosBvR60dKpbyvde3IElu6W+KFXeT8Ps4lhxbgEU3kNz4OSJ4tHO\nR2i1wI7KQFZ7++qvEJ2olLl/dUGsYS9SXYOBtLNrZmY3mbtz54YCeu80F85fCG0coSEwTNRvS1XV\n7xUuKFZ4NxdePntpxy8lUjCHGePPnGsSeyicjGoVXAMdwsscr5U1zgwtsBZaEYvMmayneG0wS300\nilL0r85hBa8vlOzL//yfzMysj9bLFU4ipRpuPTDhRscac8+efG9mZhXQ+SrzpUScCov63klHqPAM\nZkSzprouuLH2kRghmzc0Vp1OxuEr9eX0CsfGub1X6eJIubypes1T3W//teZ555X2KFXmXrWh+jrt\ngklPCO33/6R22F7XmNr54udmZraErtHCa62h8Uh7gfiNPt85FHPDYJSUPtfcrrS0Z1laVf22b+3q\nc9/ocy8eac80f/ajmZn9vPbXeo41tU99R3Ovfan677/RGj1Ap6P9SnP1h4K+f/sj7aEWt2D8xGIs\nXZyovi9gmLRm6qcJey4fZuLSXcUub00x5dGP/031eKr7bcOaW93QdSdXMBXbqtch7Z3Nf2ZmZhsf\n6XPLaDhMHqufX3cQYjKz48upFdHl8nqKz0ffaK5cLmhOrdzUerCFLtMlekptv2PXLXPHKIbxF8Ca\nnRO/iqD6hh5cGmuMhCWNkRksgXkN5gjMmhh3zDCCoj1Gk4s1vYDm1RDHmBL78hnOjDP6ssg+tsy7\ni4s/PsyUGGZ8BYrzuKIPFFgb62iWxezzC8TnEYyZFG2WEu8H7t0lYk2tIl7osaZHMF+GdbTKeF8p\njNwrqu4/SjSWXXjyYCTNcFkKyy7e0g68O7p3sFFN/VBFJ2jCWGCLaDaBNc0erAATKKPeY+Joib3K\nvOHY0mqHkjlK+PXK+BSNSTTVnF5K71Rj7eBQ911eKvCcOAQn+v965N71qP6p5kZaZy8IhSeASTPn\n+xlORk7f0MzMG/vmhYlN0P6almCMkHHSwKnRaZguV+lDiIaXsHarJY2FcxjhA5glw1O9nxLG7QqH\nqNCJLTb1ufY5jBl02ZrL2ic5dlYV7agxDLgyGo73f6m9RZv38yc/aF5P0Yb8+GNp0iBBZsk3Gmsl\nNMYSpwnG2HIOtJ2e2vr4QHHgzs/0Dudkh559LeZdNdZ9Vj9TPKq3dKPLN7CZ0TaLMjaSf6bkTJm8\n5CUveclLXvKSl7zkJS95yUte8pKXD1A+KFPG5emNOWU1c04/oIFQS7yWc0eCqQK6lCXkM1ZAwNFF\nScmTn1dguAx0lJegTxIOYXtwvym5ajGIdTZBq4BT4gb5iU6/YxCQF+5Ou+fkU3OK7fIz66CSM06P\nI/KyByDJxYifZVgk1CsIcFUBIZ5EaC9M9LkJDACP0+pgrlPVQqgTPx90b4pjhh+FFvtCC1LQ+Mmc\ne1VhKc2cHgbuPKHLx+NENVDbV5wegstbLnKCPEBFHWQtQPdmHDgmjU4Hs/T9hlxzVejP7ZtS5J6S\nh/jyqZgtU/p6OOW0lbYL9pU3ftFBRd6E7hRBMLcf6no1TklvfyHUqATLwaPP6k1Ogye675sXOhXd\nM6FGHTQfiiARl2e6b3hTp7ZW0fOXyxqDVcccgsHijlv5ugWcwK95Qst2vhQCPDzRKfPe3mN9ECeH\n7DHuI7ilLK0L5SkwlpPAqczrczdu6NQ5nQlZqK8J5Xt1Ji2JyaFOc21dCOrddelkODX7MkjuZRto\nBceCMXn8d3+hvMwAhs2NL8n7z/RzyvNm5HdmPgjQBW5VbZxxcPG4Vpk6BxoSgZ1w/gR2AWgUIJGl\nsI6Cme49wcnAsbuq5HkH1BXwxAohbgxOK4Xp7zSnKqBaPlovCXnKVRg5Q5fDDno2Bx2qwtQZosdU\nhPWUzp0eBqiby49G28UDgQhHaMeYY6fpgzPgpBBkY0Qe9xhULQMySKlngbgR4JwzcYwZ4lSB+obU\nJ0kcY4d8bpACgyniTYizocZKkQ7IiOs+eesT2qNArJiB3mRoS1SKTjsGPSLacxa9XyyJ23r+zt4f\nzcxs7w/6f591wC+Stw/rrlJSbBjNFDsdeyOCZeDywVPYEoNYSG6BhcID6RnCepuS5z19JcSlWheS\nU4CJNG2kNhs5lhWaJnP9HOIYVXGOXQe6R6NFLvpEcaV6A6aMY3ORxxzjutNowQBhbKwuiamX9kEc\nYfCdgIr3L4TyXLYVH17+VsyNo9dC5LZxSlm/Lz2H6kTXOz+Wc0HnNfoNuG+cP9Lfa7cU1xt1fa8I\n1Hf4hOtPFN/LoOirS+g5MfYy5ny8prF6hVNYQN73yDkhpkLjr1u8oq53Y0X1+hFNsYsDtZ93rnqV\nlqW3sezpOS6HipsXr/T5CffvomuSXOrv9XW0uK4U3xqwpa66qncXFkkBB5h6HdeNuzgy9tTPjWW1\nY3NDcfX0/OrtM2xWIktYX7IlEGt0QsqhkNW12+q3ZkXfn8BsKaDTcueOmFdFxhFbjbdookvE346l\ncRCMxYY4vtR13vwop4sng5HFUFHGoO+DK+LUDTEnKjt6lgW0ZnziVftKY3CpDmPiE61FLRDcg7bG\nZtJRfOlONVcai+q7QVf///SxGBXFup7txidCModX6pPO/nusNWY27OMqsqC+ubmt52iu6PoxGodh\nS20+HWvONtGFs1TPf3miMXKc6nrrn+MGwv7Rg/W2dUdzNoEh2CXO1nCPmx5zP1gS+y90ncDX2Pzs\nJ3KWHOAi138uBsmLmhhJG7e1V3l4X3uN5y/Vrocv9Lk6LA9vR2NwmmmMx6a55cMgjyLFRUjDdoAu\nXXKu578c7JmZ2dmp+vUBmmKbm3dpR42DU/5+RD2272msJjXNuQFsuhiNnFNYuc11tf/Hn+s5KiD2\nvQu1h5nZrHdui4ynpKZ2O3yj/neMxvFAWjs/+YXuV+Xz50fXHycznPfcXsSDVR+MnTYfTAb2qxHa\nghPaugBzfe4+B3OkxBods3/zeZcICzA+2OfVCk5P062tMGWKjvnBGj7UGIzQMstw0ApY22cFxSWn\nbTPH5XNCdkN54vaXzvWPOMyaOpzDyKvpOhlr4xDHswp7Def+WnJZBTAAvYquX2ZPlqL/B5nWfN6p\nfOKtR7sEMGvqU+1ZRtAfShCM5uwdmFJWZO9kzLkURzDn9FaDnVeh3VK0aAxNG8dSHmTv5750iU7L\nQlXXv31L2m0dYmaZCk5Z9/vstxMYtNGOYt2McXUV6jlaaNB5ZfbZiXPq1X0DXjhqzX/D7JmXLJmm\nb/XsArQSz2F4dNtq462tXdW5qb7twLK96tCn9Fm4orjVhJUzIf63iBPLrD1t3I1nvGsOLzVfd3b1\njrb0keLM4EzxvYPTmNcno2ZZY6pV01qahejWfS/WcQpbtEzmSTx0k5IxDctzxpgtwO5qNLX36B1q\nLTsbai+z+oXqM6ENw3X1kXOPGo0VZ+eM2WIDFilzZb7wl7kwOVMmL3nJS17ykpe85CUveclLXvKS\nl7zk5QOUD8qUmXqcZpJjWuD0coSidK8P0tzVidbM5SNG7mRLJ1QLKJAbSOvc00lc5Ov6cVHoTROt\nFq8E+8Oc4w4nWeiV+CCgyGCY19LJ23Ss0+QSLiMeedyjDAeFQCeMRdgjMTYkY5S+69BMqtx3CiLr\n9Fh89FsyWAYZFgwF7EniIQrpppP7SdmxXHBuKKnC1StO3825RnlWdeLvaMqM0bPwr9ClAQFzJ+EF\nkNQo0+8D0Pcez2Yj1SGouJNw/TeHl1ZHkXpa0f2Skp5tPnq/HP8UFffGuk6Si3M9a1jX704rx3Pu\nSnP9LKJXtO6ctkA7pjPG1rlOf988FwJMir+l6D7EoDWHI+lF9HHBuOJ7mVPLh74wJs/7FMX/9pG+\nb6DoNnNjtPAnv7e2dNLtBWrAO/eFGvmgSHc3pJ5u66rgxkN9PgS5SOiPC5fP/lpj4OxCSHaRvM2V\nmzq1HvU1Zt48+r3uvyDkdRqpPlegQdkJyMsd/b6+IzStVkd/Y67rJ7Tn5aXQ/6MXe7oOeel37gvd\nbDintCkoICyPma/T5d5c/XDwWiiYP7m+XkiAK8TYSZWAWoShE2pwYk6gDBOnFaP/D6dOq4RcWtAm\nY+wFzPPZzCn6A9PAajDGvtOYspnTeFEfxU6eATbaFEeyEkycJHAaM5rnU7SuyiAKcQzDBfZZAe2b\nIowc53wWgmrPiBcOtRrDlnAoVOCGJIiuD5qWwBSZw1rwQcMyHsA5aE3ow5SxXAFd84gRAXPDgeql\nxFkToHUDE2js0BzH3KF9C+TyFqvUBz2NgDgfE9fLyfthCh6xKBspTld8zZVRxnpAO1VwjnO6LTu3\nhKwvLsMgwk3P+LzTLgr9P0VaMlwLxkPnboVOCGy3zqHmUA8mzkJ5yW5s4rZ2a4M6aiwljryJ5tPV\nQP9/+kgozsUfhBYff0O+MojixDlswfZqLOi6tx7s6j8WNf/mOB40Mj3bzl21UX9HaFH1uVDpXlco\nVudAqNHzkeZtb6R637onpO/zX8rN7QBNmNMzoesnV+TQf6X42FhTG9z9WHnaW58q3u1/9Y3uf6zr\nJzAxYyDSFjpACcjoHEesy7bi0Bikc+FTsQWuW0qww0bYQi3XFTeL21p3KuSnd1gfpriLzIkRTjvC\nmRXe+UjPMzjS+tNHa+G7X/2Lnn9HLIASrLjmotq7faB15lWi/n35CpfDVNe5e0/tWAMpvXvv4dtn\n+Py//hfzYSIWJk7PBAZUm/qyPp5N2eQ4/ahTxd+S05LAudJwW7IeWkAwZVrOyg4tjFsPpE+yual2\nP3pybCks0/UN/d/LQzFDfvydmBoJTlLTRf198b6QyNa52j5qwRieKW6eEK/Lgf5e/0RjfoUxFqIH\nlw20BnW7YmxMYSPV0YvowWwr1d4vjswuYawcaM2NYa6sFdWmtab6JGqqrwoNdI9AwyesD+2eNF5C\nmNbDS7Xh8Fh94LQVNzc0RopVfe7WQG38I2ykhan6Zhn2b+dfFE+efiM9umZD8evOlpDk37/eMzOz\nJ98rDrn96d1P1O73P9b1v/+tGIUDtx7V1K4lkHDntOY19f2IPZbPWv/FzzRHx7FjpKueFZwqzy/Z\nW9xQ+22w9zkaaK/1mnGyfE//v0Q9Ulghy1ui5Fy+UHs9/5XcqrK/+4XabUfjo1RC/8jMtm9t2hD2\nWG+o/i8v6D4vnqke/bYQ9rOOvt9HPzGqXF98yDHGHTve+Dktobvm9g6+00fDAZC1eYLQZcZepcT1\npuwFCoHb4+jzQ/SSIvYAQ9YNp9c55p0pY20vwMyZo7/p4QyZsTnwnSPl20Uc3T3W/ojPseWysPKn\n2jIG097pbjiHSOdMWYPpkcHuYipaqaz/d1kE2RAdJvZ0jpFTpD2LjMGsCjOcMDXCqddp+rg1Oagq\nFk2HXM93LA2cEnHkDJxOHlvHIXpzFRwgkzHvmOx9jP24Vd/PEdIv8s7K74mTJ7zQgwxghawWNRad\n2+ky7oY+bNyLM9ZTXsQS2NQh7z8R6wGEGVuHoRqk79xwTwdnNveLtrakaw/RyTl+tmdmZktrqtz6\nJ1rTrqYwadpoe8GADGDF3/xIjLX+UGv8+RvtGc7dXIApXVhWfIthx798qflX31Afri0obk1xdzp/\noZ9zXCtv31e8GsDs2YdJN+qhH/pQe5lJorYZTsQAnKEBG1Vh+rF2T2DQzPpag0PeC4rLOOoyh0Zo\nzm6tKz4VYLo//b32Lndwzl2uigE4T8Uejshq+HMlZ8rkJS95yUte8pKXvOQlL3nJS17ykpe8fIDy\nQZkyBfzAE05Bx+T1YeBjSMLYlBzbiDzHKYikB9NkAqLNAbpVUN7uk8/o13QC15/qxKwJM8chmyO0\nbcogNhkaMzXQMlJ3zQud9gx5nVOnqaAbx0130qbPV/l7segQXj53hQtIAdsn0LOAkzt3AjjmlLjU\ndEiFEKEUFXobqr4AwHaF//uY+xdwbQm9uQWcvCdO78DpNKCxkuKUwoH5WxR+GuqeIcyFNHNtqjZ0\nqHrmg0KDhg/R/4mmfM454Xh/2aP935cZHvXHr3RqGXB0XV7Ws7rT2zmaAkcd2hIUPqUt5yCcK2gg\nuHzjcV+nnWdo0Az+FSYQbASADAtR5r//93+n32scaXNaGmeqT4u87QHo18EzoYEBaH/G6XAEe2MW\nC4GeoBd0DlMkDhP7n/6H/9H+n//z/zAzs2X0LOobODU8UL6zn6G+flP9srHCWPNAPtCyafA8E1xL\nBmgc+IzldfLjb9/XdbORvn/0Ru1y+UanvyH6TfFI/bjU0ClwCbQt9DQOFhYc40jI+teOQXOl9vWc\nrktAPnxVzzeGntaImBvXKCljulh2ecKq+xT1d8fMqBFHxozBEvMlcWCQs+EALRmjd+NPYcYxhkto\nWs1gtgUDpyHCfUElDGQvHhLIas4pTL+OQ7UBxAwrApPFsBUS2jjjBN6doAdo0DgGTkA+eAJy4YH2\npzimRMzRpAyKT1xKC3+ajw2h0CZ8rghKFoJGjZyWFihW6vK5M+cW5eY23yePfepQLYfaV2GWgF45\nsD3OnIObfp+lMJRC9/wwabj+HKbldUsdvZD6juoxijR2d8qaQ0s444ymVAhEPoVFdnkAynYlVpzH\nehGs6DrVIho6tGsZbZ10zJhmjNc+/omZmW1/dI9UDAAAIABJREFUzvXR2eqPrwxiiQVoVc3Ihx47\nPTH0aRyryLGpHPqb4p7kZ86FjXmEVkz3ROj+N+hxVKo4IIBcVhZADEP028gLr+AQlbUUJwgr1n+l\n+dzGxWnOGLr1iZh1Kx/rZ9aATdoRa6HX0fP0TrU+HARq06VbQuF2v1Ac2t9TfBz3urQHcRT0vVhT\nPdd+rnreDIVaHX6v5yz474dcFop6/t0t6YScMbeGj1Tvl4/FnMz20TNhLrpNy1uDxUXF6ZV1sQti\nXKBuN1XPKYzLgHUoon2/+Htpcg1x9jo+EQPqaqh26pwJlXzyo9pjvaf46m3fe/sM4/7IYuc+cqrP\nd9Fn2X/ylPrCauNz4ap+b5VUv3LDjS/9rKCp4MGmswu1xzm6d+dnsL5Y50LmzDhJLIEZ2MzUFs1t\nobTbLTEpMvR4erBeb6zp723TPV78qLY+BWl18XUVFtfGiX4OYCJHrG3nsKwi1pKAup4dqK7dN+fc\n9x1afJ3SRHfn9AjGy9fSq7tAjy4ra89Ur+h+a1sa0zdu6rkuThklxOXisuJPCVbykz3NhQEaVEe4\nRd37TO4hi7fkMlR5qTH+6rnGyM9WdN/bPxFb7fGvxcY6PVS7bd5X3Ll9V0yU44M9MzM7eKzvb60q\nlmQ11156nlPW8NlQY+gWz3PeUPttllWfBuvmaU97otbPdb8VWFfn5+pH5+zWPtB126t6vsa6xt5q\nQ3P69BhdwMcaJ8u3xOSZD9X+rYw9ZlXj6sU3YvYkP4qBtFTR9xbr79jZ5aBl5VtostF/nRQGUKD6\nhMxFt6epwgYPQPSvUyrsJWYw0ByBxJmBWvSnDoczp93kmB8FWO+45mFQ9jaeFauaU26f6ZxbffTd\nvNhpR5IN4LQLYZvNDS0X9EBGgdONQyMQlr7HOlLjVXEMq9Tti31e0nyogTOcdAKyARzL18+cYy0s\nZcc+Zg9QgWU8Io5WrmDY43zpDZ2TLHpyjjoKU2XMHC7j2JhhzZviNheipTPlnSn0nJYj7cbeJuQ5\nZ+xFHFMpLcJ6ZU/gGDIjxqLhdpXW3m9PUmX9jQeaW+1jxTzro5NaUf/fZc63OzgPXajfUvYJ0y4O\ndOzjr2I99x4sssUdsU0iskAKTfV/bzx8W5ez53u26Ndsc1caVDFx++RE8bJVU9s11jRfJrwnhwNc\nk64UD9w72v0bimvjseLJ0dM9MzM76OhZa6wtd2DodXowan5UPLh4pWddu6m/L5YV5897v9N92D8v\nb2n/NR3p86ML/QxhT23fVjxMS2RJvGEO0MdOuZHkEZvBxuo5jRycrLY+0/27ff391bdi9GzdEyNm\n5Ybi4oup3vlidNqaG2q3EpN/9h8Q7nKmTF7ykpe85CUveclLXvKSl7zkJS95ycsHKB+UKeOPQc3L\nOu2rckYUw4CJnP4Jp7URasceaslZHf0Tp3FAftyEU9oQlfs6efj9sk72BiTWzWcORcM9ZKLP1XHe\nGcac0kYwcUBQi3U0FGBfzJpCQENyTwucxs5Re573QJsCnX5n5HdOQd4LDl4jLxEA3uYl1Xc61Ul9\nmjmpcH1hwdANgO1QdYrsIOV9WDBRMbI04YQaIkgN65j+Ai5DoOwpJ94jNGPeOs3Uycn0ySMmCzLt\nqW4jT8hnFJC/GwiNGZF72gTdakTXz8s1ewsk2BUuIKMrIYQTXIc8d7LeSPmc6rF6T3mGTqH7xYXG\nSukp+YRDoTVlkN+Fe8oXfPB3aCzwfOVQJ+GDRH29jXvJhL7OfH5HD6QR6tQ2Jg/x7kOdKk9HOPo4\n9N9THxbQ2zg9V70STvBfPhF6Neuqj1+h/2H7QsfOngpFmrdUvyXQnDqMmhmI5qgL0+Vc7RKD3m/e\n1Mn7wjqo3rJQPKaSheSynp6rveMEpPpiQj1xU6nqZN/lmwcV8jF7IL1vhFbuv8SFhdNxHx0mh3gs\nbGpc3YTJdPkegMM4dtZV6pMxWiSFCWO1wjzhSNxD/8C5tL01BHNOBVBQyiBx0wqaJhP37EzQDCcF\n/u4Yc47B53G9GvMwJo987j7PGX2Gaxugh0W4FE1gHZWAyQJQnbnTunEsLpwGHNvBOQa4+hSIY8nc\nOaTx3IxJ53Dg2GSBubnlqDiaCyHtl4JQTKewpmivGq5J4zEOWzBlClBwZqljFqHG79LPAQ1D3KlS\n2BAzz+WNu7xrmIegghgqXLuMYCJ5ICT+OahTTRV41caRaFMxIGNujqlf0u/yfT3Xmz3N2fiRxnbg\nWC7onxSqaPUw8PwGmhmreo5mXTGnhF3J1cmxHT3D6SB0iCcuPNBA+2gF1GFZVmqa/wubq39SN2+i\n+exy1JurigvxhVCqEzSvxjBrZiPWMtbkXknxokhcKy0xb9EysIqYIIVN/R5fScvl7JVQ/gb6F+vo\ng6zexpJlIPT6is/3niquO8S0hD3EKo4wddzfisyVHx6LlXAFU2X+nfqgAmNy+44+P4Xp07T3GyQd\nAs/T73Xd4QjdCZDS6qZjQcDQLCjOr0fourGnKMO6inH/G6G55d/eNTOzn/7Dz83M7OxM///Nt4r3\n3m/RokDbbGNbOiF3YGaeHWvMPn4q567HT3AD/EGo3f/yv/7P9s//+/9lFeZi7BxucJJYW1U9M/St\nHGO2j+7L5QmOFTxXCcc1r4XbB24g1Yau9/HnWmdf/KD+ef2bfzYzsxnttVhp2RlryMHjPV0LfYy1\nRY3ByRh0HZ2LF2hGFXB8dCh8fQvXM7T1Qtbkb//wGzMza61rzN++L5bT8k3VMT7QfV6gpdLpqC0X\ncHbMhu+HbtcWWWtbGtuZoe8Dg7B+Q/U4fqG+PT2TflsUSGeptaD7FtGRW4SdFsEurbMnydCYefZH\nzamM/e36XWk1PPhcY/3NH8QmewbjZeeW/j/0NOdPBoq/q8Sxrduq9xike4T+nHM7aq2tUg+cImE/\ntxPtmY56ut/C1+rX+S7Okxd63v6l9n7Lb9Qum+jgrdT0PCc8p6FvNDyF4bSGrhLx8ARm4nEXdypf\n/1+B1TE509+37uEgF8oJrPdabLCDY8WKbhnRNzO7GLVtHY2HoK7xMT7ZMzOz0orG+oS98em+YnEJ\npk1h+G+cav6D4pxcUph3BjvfmBcxOnAF5mdx6NZcfazMu9AAMbAibkoRNNIRa3EAo2UewgyHCV3i\nnWYCo8MxLgNc+qbo7VXZCxnOko5m77OfnE24PoyXMuyDDP2ODOfGGZpYmdsDwVIu1Nm78I4yYU8R\n45wbhU7rBNat7/TmYOCMcRekPWYwhWIcNd9qzLCvzGDqzIl/Ppu7MW5PZd5jbKwx6CQeS4a2Jg3r\n2LkV1tMZDrgZunYpeyRHcHIak1nieBfXK7VVMVhip2uHnmHsdP3QHwlqitsLmdrt+JD180T7+wAm\n5sefSz/qrKw5+oaYV91RTNlY0/66zr6hOH+n3Xh2fmUlL7TYub+RQcJ21caBc0VmTPBVp42KDKkN\n0MJy+7N0prYLie/DI96DFxSfej39fuem4loJNs+3vybLYEl1bS4rbvdhpNd9vWvOeS/uwVi/OBHj\nrbqAYzBzI6NeFdz7IpjslRJMOrI6QpjwA/b3EWNudUlxbDziXQiNxiu0zLY//1Sfuy2m0QQGUT+m\noXynC/eX2bs5UyYveclLXvKSl7zkJS95yUte8pKXvOTlA5QPypTpxjq1nYAs9lPQLdxD0qlOeZ3T\nzKT4NuHezMzqOrCyceg82TnR5gTLJ//QOQWEV6B+VYfI6vQxdS4toFyxDxrmXI8cug9iE4JsG6ej\nvidkYIp6cwntlykoYzEQ+ug3dFIWcuocDvGgdxA+iARi+jav6nmd20ppwCkurJMZz5v0QI485xaD\nPgCn1WEaW1LTd4ecKlZp82SGrg9DIXCproEat4RmQYSwTo97VENQBXJVm3O1dZeT/XLZsY7UdjNO\n4J0jyXXLhM+3j4XmjNGY8WE7jckTzMgf/uiLz8zMbOemTisT0KvjF3IaCDgaT0ZCi4rk/Bc9nZI2\nEUtocxLtwBEfJtEfvhNqdXmuPq/DVupzsm+cxNeLGlst8qPDRf2sQf1ZI7/cIRy1HZDLrp6riH7G\nDgrmCSfmA9gaE5DN7r5QwO5YJ+ZRFc2dllCgAmr3J+RrVsklbYKEHj/T9X78Wshwv6/r1evMDVyz\nvvxCjgYhLK8E9M13ucbktPbb+v45ef0JyMLqPfXHvU+F4vkg/wEq+FMiUQ1XrYvfKT/8OsXNx1FL\n9yqMyQt+mycMqu05NAdUInQMPYfigPLALsgYyxVYZhNcO4rEkyxweh/OzQk9BX7OmOdzTtrn6FME\nQ4cc4KoEg8WNzTTlRN9BDczZEXnoEZozKQya2RRtE0C50gT9j0RjJHHMobcaLjir1ajnAM0cxG2S\nDC0b6p16zuWJn85NCJeNAKcGDCDejrkZjKKpA2NA44q0PwRJS0FQQtAhQ1uiTP8loFaOOTMDHZzC\nIrl2QfdppSaExmds712gcbD3xMzMjl4xF2FxtTb0+dUVsTd2PlKO8uKhxnh7qPh+uidWWL8khNiD\nCpSSTz+fCME5+lYx7MQUSyIcdOJp3zJYX5CMrBLi0LemOPzRlrRWFptCjVPcG2awqMJYfTGAceL0\nyxZA51OYEqtbipNzaErDrtAqlhqLVoSspVDnaDoLyEE/7+oZo2V0MQLFmyucpI5wbDg50v3XHgqh\n29wUSt2q6/faIqj414rPz3CEuXghBl4Aql5Br80SzY1iQWOkeyIUvXOoNi4xF4ogrhkaLtctBca+\njTUmJmhc/fwf/kHPcQkTEobm8SsxS5Zv6fmPz8Q2KFdhYO6o/qVjoXqjqdqnCAvk7rr6ISTen18q\nfj79x+/MzOwMnY3bxE+r4EhxB32LMVoN6Tt8rblVNc85raH1trwrZmQdZmWtRr4//XV5pH7d+1H3\nLcCoTGAazULHLkar4KVQzCnjrQh7d+muWCpFmFQLS3Vb6auPEhxRVmGC+DCf5wy6GEfC3qXasLqo\nun/5N780M7PJEP2IVHWeZo6hp2caE5+G7KtW72leFe6KzVP8Ht043H8KMOaKuCddt2Rs0FY29YwN\nhtgVbkGLa9qL1HD9+f2vfmVmZm/2mTMraqONO+qTEi55w2O0d5gTKayk+VSo99me6t+lzW+hI3Tn\nrxSP9tEP6o/VPnWYKZMTXEg/xZmSubRzR7Fk+47aZwhCPLnA8Y29W6Wh5yw3iYvoe/TaMLIvYRxe\nKb4lQ43JA/SQwg2N9WqkflrDcWw80n08tCrq6Bcub8Ng6cHWfaXrHm5oTlZDtc8gFVvs8rX2avWW\n6jmva283Yk/UznhRMLPHv/vWRp+r/hvLMKUQwtpoqh3GsKif/PEPqu8N/X9rrWrXLZmLx+wVYt/p\noanUWMsnjpniNKDYvzlWjoeeXIbr3JC1pMy7yXQAU4R9qPFuMCqgCcbaPQ+cxqKuF8GCmMKSLcDg\n9kL2KMhWZug0BbAdBgONUacHargSpbi5pbBti+zLke18y3h32jfmsgy4XzZzOnVkG+B0Fbp2gKky\nY2/h8f7hpDEnMGfK7BHm7OmKODvG7Ak90hJGuEOVYcO+Zfr4vHPBwrOgTPug94kWpItZjhFVdvqn\n/8bN6DrFd9po7N086CcNnB/3+vr7BA2vAuv36JnePy7ZZ9eM95gmeyfGTRumpzdhrxgRz9FLHNg7\n7cbA5tYMaxYMeO/lnXFxS/N1MFDcm7l9Gi+Lbi2OFjV/PadHeaSxUoa1mrEPb67op0+bBwn7PPSO\nAjdW6VufPYhzEoTgYkX2Hh5Oi6Oe2qTK2C8E6DGVnaYh8RDW2py5ssA+tsfaPG3rehswY9I+18f9\nae4Rt+jqHuziIgyjjRXt1V78VvpzLZg+K9uqj3Om/XMlZ8rkJS95yUte8pKXvOQlL3nJS17ykpe8\nfIDyQZkyZeN01nTqWUUbARKAFdFU8Dk1LY10EpaQ/9fjFNTIwys7XRTy66yrv1cEdNoMB6J4wOkv\nWhMl3+VfkpeIYve0z5EccskTThV9jmcnnGkVQGwyTn+dW0dCDls5UwVSpxhO+mbCCZ3HMavfB6lu\ngVRfcZqLFoMTvxjxveqAvE7qPcMdagbyEqDcPi6MLetwryafRSXcS4UKjNGjKJGL6bm8witYTHVO\n9FE1n4IuBC7/zsndoFRdGDhoFTQFGN/Jf1y3bNfV14sPheoMOJVskhM5BAluLuv6g3P9/s1vlGde\nvSHUZXVJ6EoEW8knj904GR+T9/fmWKjMOU4PHlOkviT0K0aiu7oKgj3WqewQhkjxQmPiMNap6yEn\n6mVYYBPYGhtoFniwqLJEY6u8DoKBLsfGLg4VnNB7qT5/xVxI16T4XWmhEYSbVLOlXNUMNLJwIYQ3\nmamer1B5n4J2zVLGg3OQ4fcl1PUrZbXTwKnP070Fco8XNvgerK+lZd3v+FzsgWJFz7/YZEx2gFCW\ncFIjr38ASjeEVXCdMicvu8AYTsnXrqYuPxmF/7fMFhgbzJsJY30+1ucGzqEMtGUag54AKkycvZqj\nFTA9Qxgwc8ReMhguJfp8Dttsjgp7AMOnWtbvmdOYQQtn6pxOyBM3xuyIeFhO0CwpqO1mgaMb6YfP\ngXwKPhdVHAtAP6awlapod01Agwwng4Q5G4FcDPm7T5JxFSbeEATEL4NyEY8d82UK0zEqMdZAtAu4\nNTnHhgym4ZTPFaFneDOnkQNzkud+T7kQS0H5+8THXdxbKjc0Vt+U1E4X+0KmU/RbTp/hCrAnRPjs\nWJ9fWdX31++DpG4rxhScuAz6XUigWZlYeNlWbOjDCChSn+LqXVsB7U2msCjR4PIHmu8Xx2qL3qn0\nEiJy+Js8Q7mltSYg135wgfbU90LUIrRAijuah03i31Wq+Tbt4Vwz1DOHzJ3aouLMIto0O010zmCD\nTm/D5gKtOn20Z2Zmh6ewh/5R8fTsptpoe3NX17kv5tz8U12/vE99nOUhzmAdEGGDObSEBliAfpvn\nE0ebONmgJxc03m+QeMSnEo5cY9yf9v4oBk+4rCBQjPVzONCYaF/ilPO12AG9+zgs+orfc5DyzoHQ\nxkFFfx8rTFtzUeyJnRtiPbTKQic9HMZePhcjZ5O8+7ufiznToh+GV+8Q2u2HH1kdxmdEvn8fl5Wv\nfisGYmNF9V9aVP22cffYuf/fm5lZBhw5cwwcB3XT370r9XMMYl1bVr/VQb4vzkAPWxWrrevZDo9g\nu8K6aRCnxuzHxj195/kPWpuWV9A8udTPOc4qMWytBjo+a2jIHPyovvruB7kOLe+LkbN056GZmd2A\n8VZf0XydgAi/+PH9dCBGffRACLcZiOzlmfq+8FRzcxkGXBM3o96F6rf/QvXeWlLnh6Dbk2NddzTV\nWGptCv3evqs+ujzQ3Nx7rPaZwZD+m/9OjpCjifpkPIZ5sq72Gl5KY+XNjxrDlZbW4taSxlizorFe\nn2vMTJpqlzFj5vULMXCWcB/a/VSx5vCl9hIZe52FNWm6tPd0v0vclqovYFt/Lk2d7Q1Ri0ZHig1n\nh0KUU9wQH/5CY3sRRs0bxs3ZnubAw7/9z2Zm1kjVj92J5uAC3y/BxFza1n2ikdrbzGzUG1jnXLEo\nwe1qDgNr+bbGUTyHrbuv+l2+1v0nUcOuXdivuTheRF9szjtAMmZNB61PY/VJcfSnbNAi7wQxDOwK\nbP4huh41vu8Y644pOEOrpQQFeQoDI3JMGlyZ6o6xwrsWcjpWQt+tiPbUHEE5tgo25iWtiuZi4MxV\nYbSkzpWOpdDp1zmNKrefnbDXqLIXG7G3CnmnmsHCndG3Icy/MHnn7qZ/sNeA4Vd1+nsTdDWdrhAs\njhpuTzHtFOBG5941pyPc9IiDA/ojgmmSjWFzwBAcOdrE/D0zAdBunDo2CCztygr6JZV/NTOzPgyh\nZbRnhh3FiNKCnmv7geZMSnv0ce5swgxahs53RVaIRxbGGJawmVmUhObfXrEhwqM+7KIGa14bVs7h\nY+0piru0YQFGDe9qL9uaN8esnQ8eaJ42FjQPu+toVL1SfBjABurGuu/ht4pvDfa/LRiJbRwEU9hN\nEWuPY0W9Yy+hBRPieklWQGcE04f4MOM6WV3zOrjS2DjG2ermjuLuZEl9en6mehVhok9gWlbY72Wc\nP9Qaaq8B2QnDifZcPn2R2l9mZuZMmbzkJS95yUte8pKXvOQlL3nJS17ykpcPUD4oUyZr6MSowGnl\nbKITrXLB5Q2ipI1bR98htO5UEj2UQoMTbxDb2RwHhKZOvGZ9GDJoQviAPnOS1uYon5dBsOOpTr4C\nHH3SGer/EfmhPac8rusGIAWJyxjFtaXMqW2f54lQc87QeIh9neQt0A2diBNANGUihAWcjkuZE8wy\n+i1B3WligGDDyBnGOEZ4aGokDRtz4lucqO4ldC8C0ylkwLONnCMWbWCYKdU5cZ6F+vs40wltWHKu\nTSAC+rjFTgJgrr6JYAEkKOhft0xBxWvQncYwRBaWYbwgTDFFCOTVsVCawZGQ3yXcmg5xkElhJ3CQ\nbktbQqMmV2r0jUUhhpWWTkk96l/EqafF6emNHeUtdy+EIrXOhHqNyQMvhk4VX/dZA2WajfX5kwu1\nW+e1Tn+naBcUybtukMddB7m9OsXNCh2RYVv32dzCSWJd1+89UX1/+A5NFvRD7m0LkS6tC2m9NWfO\nAY2kTs0eRLoMAt+LdZLfO9Kp9qNv98zMrLakevX7QqkCxvwKp86nPOf2Dd3Xpei+OdHnT55LTyPu\nqx3CGer4izpVzqZuJP3HJZrhLgQKEjTRS0LPJqITho5BBsQZgx6VQY8SN33RiJmBzFbdYKbNHHgc\nwBRxjisJfR/B3HE6SmNnLwRzJwBF8nAyGJJbWwb9CsiBTdDUCoCb0gIaN5zUG3Ehw3XNacr46Elk\nKPU7rakkgdXFXHQuURNgrgg0akQ8qTrQZwTlo4QrlVOTd0hBQX03Hur6KaiSQwaCsp7XscR8fk5A\nm8rocwyI6zXcnUZQYVJQ+rKL1zAWS8n70e5mJxrDr0GkJ6f6ufb5rpmZraLftHJLqJOfoeM0EprU\ne66Y8vIVuiewzWrHQo7qTdVrew0NC/SbjLzxhPjuNCcWYHT2p8SkglkX1NYvupx89MywURoNda+r\nV/o5Rl/Ce6G414TRVijzefoqnSi+eWOh0tm3uJ19dFfXr2re+k6LYKp40N4T2vMGl6Q7H+vZltbQ\nrAKlCpmDKwv6//A+6D/MyykuRJMzXe/5Ibo6LxUHlnelj7F5X4yZZfo2qyoeZsyNFHS7fam+6LTV\nBwkIYXj8je7HerV+H/bXNUtGoIqZm86t7vGjH8zMrL6s9ev+Z3JFKpTpcxiZnfNdMzMbwrb6Gh2T\nhDV5htZaGTbcAW55jTW1/82P1R8eGmRlaG/Bua7nE0v6e0ItU3Tltm68YwOsbWzZ5TFIKiyNjQ39\n3UMLIoRR2Qfdu+yxh4IlXIE16HSjnHtjAougAPLssacZ4w4462rO9FPF/8qkaOeg2p2XaDDFzq1I\nY3R5V2tEq67Nxv37YgsdsOacPBID5fau2niKXtC0rDrVSuTs34LpMdbnJrAO9n6vtfAFbX/r1q7q\nxj4s9N7pKlynjK5gF4Oaf/IT6QJNQK8n2LW12/p9EXfO0xP14cFLxY/mspglKyX1TW1NaHZnqLW+\nC5K88KVYwg9+qrkxTb/S/dkT9Npq65ePxQBZRrOmBRXpCM2WsxdoWC1orFXZL79qs+fDLeT+zz7R\n7z2Q6GON/TZr+O4uekYVzbmTPWm67P6VGDSbRX3/+CvV7/n3Yrg4V78bn2ru1NlrvdrDheuxnqu1\no/5oLKvdiozZ7hVMcJwdnRZFyHuDV1d9LvuKMTs7as9V2s/M7KOf37M2jKzzx6p3CtLvLTtXL5hG\nt9Xex/t7etzj67t0zdhPh6a6z2cuK0Alg5UZwhiJK+zLWeucZpVjhca4AM0ruCCxVkIItDlMl1F9\n/CfPMIlU53LmWL8wspk7zm3Jc/t1WMQJWmUZa1aIS59j5fvEnQnz/60GjnP/g8Uwhu1advA/8YXk\nCPNGsH1hkZZSpx2juVVCczGY4cjm9PmglGTs680xdgYaG0PWnZAYE6LJMw3Zs0DkiWD8j2ERF3iP\n8YhvM/qtwt4j6aPhVlO/VWGGu/az0vux7qZct7GB1hdMVqdx47P3dOPEud9BmLGALIoq2pVOc/P5\nI63zPu/QIYz3gFiQdfX/feaQmVm0VLAHW+vWh0rdZV5WqnyHd4MLtFduh5of68uK2/2I/Q46b+19\nrc29Hb0bLWxovm/Sp5dPYArD9vRxGT5hTV9dUjyp8U50cAjzjri2sqO1ssieZ6GM8yxsfr/PGGV/\nNWQfG7E/rcEuK9Q1Rpxj44D93QnvBZ//VAy/c9bE/oHieshepMz+POY9P4HdhgGvTWCKO8fahLj7\n50rOlMlLXvKSl7zkJS95yUte8pKXvOQlL3n5AOWDMmUKINIZKJuVdVoZF1Djz3RCVl3QaV5MXuKQ\nE6eAE+6i6eR/MCQvz52mclobwnZowe4YlnEVKTjtCHRTiuRJlvVz2tP9503yO9FPiXERSKpCHzMP\nhLjvGDwg4SDNC6BMY+fQgy5LpUEeJSyJAHSzAotlDjpaA6hOQSbGIPYxuhwV8tXf5gtybDtwCLqf\nWsKJch2VdJejGPZ16jnhtLHCCfOIE/MxSO0sQXPGnbzCOgoRiSnQF+ZA9MypoDPE+Hyp/37ngJ2+\nYzsJnTo93DMzswU0YvZgmtzfFoJbwHFg/YFOca9gsvTP0OcBpY9Jjg0P1R6dK6FY1tUDnLSFovhV\n8tCrnKI+1/3HF0Jqex21X4CTS20DpBj9Cifwsbqk64w4JV2/o3Y4QwticKg8zCF5lEEHbZs9oVvP\nXgr9WVzXcxfRkImaypvvgGwv3hA61NxEc8EhHMyBYV/t4E7cx2jHlKfkSfboX8bLNHYMKhTIGdur\n9PdJW/ctgODWQYynnFrvPNDp+NkrtVuC/pYPAAAgAElEQVQB/aZ19DgetZV/b6CLk6sj2u0vnyb/\n25KCZhdxR0tg1qVV59IDE6TESTVoVOrrHpPUuSqhA1EEnYEFkFZpCxh1Xo087hHoEBpTRRwRgljf\n97luAlspwWWoyO9jTuwD5rlXob7ExRBHhADNmemIXNXo36EzaLIU0Jgao7xfpd6ZY5wwp52jQIV4\nNp87VAuGIvUynB6cFlcJPaUU9ClBxyPkOQtl6gtLYYy2lo+bUsRcSIouoPE5tMGqaAIN0TGpovWT\nxCC2PlpdFcGDXun9lq+oDrqPRsXxsXSdyjASm7tCmCOYQ2MYTYuo8FfrQnxidE36Pc3RIe5Lw2PF\noqM9/f/WAv1VwPngDFiz4OYuyL7TaRpMrAey6UHlC0AMH3wmVOjGA7F57nwqNkH/XNe8eCl06bgr\nZkYLrZUCGlppwLMXtWaN+0Kx90Cr1j/X5zfQ2dms6vPHK6DZX8lt59G3Yi2UivpZxsUnBYUqwPgo\nBUL/qw39fQ1Xkd4V6w9o9yXI3sUffm1mZqdP1GazVM+9tCxGYoRm1faqfp+zlvYZK6Oh1tAhTNAZ\nzi5r78G4MzNr4Jq0fVPMnY264vNJ77WZmU2v1FdLMHiuKoqzh6d6jrUVPX+8qfhXhb7mdK6GaK2M\n+qrf5YXWmf3Has8u60odJuKNm+r3yxNckvbkCJNVNFcbNbEW7j7c5An+qw0uTu0QlsUJbEC/pP6s\n1YgRsNSOXghRDb8mpqGBEa2pH5aLi/yufownqn/3DKedjtZlp8NVZL0vgDKaZxajb3NrC52entom\nQXQpw2Wnclt9u/pQa/ftEzEqnh+r7Vna7ZTc/t4ZLNktPfvSrhgRhUhMtGkXTRSQzwlx/xQEOCFe\nN1lDr11gDF4e69lPTlWfOx+LYddGX+60LUZQuKTre7B2I/apL2CQjBvq63s/+amZmRVhSV1+qzae\nfCUGyYOPxUBZ4vMzdCFGsLs8UPvWivpiBU0VZwizvwcDFOZ3u6P2aV9orCRoJy7dUrsvonW4uK76\nP4fder6t/glr7GFwoVte1B5q90v9/ZPwJ2Zm1nuj6z//WoybUktzYu2O7nN3qp97zIHeK5xm2MMU\ncVxzBM05/TiDCTsZaPzEuB2OcQg6Plc7bn7q9mJmje17NnolRlE31n1SnGjK7DmKPHd2S3G/f6rn\nmjjXmWuUtw6NvtrId6xWGOgFmGVJgHMi9P0pfVPEmdGHmRaxvwvRYxqz17Gq/r+Uoo3ylsyj+w1g\nCTsmShA750gY0nOnl8mehznm9lTI1VkKQ2YOs6LwdnvL+wF7rDlzozJ1jBkY2LwPTGGiRDB7ChVe\nktiLzNj/zmi3mMFbgloTY/HoGCYe7eYIMzGshcDYE+GUk/msf04/lL1Exuc99PIcC8/ISshgFIVs\nthKyKXxcpOZub4cj2Rzn2+uWPo5l42PYcUOcwujegP6L2Xf30CltLmtOHr3Se0PnjFhzZ4PnUmEr\naKNY31vCVfWkI2bt/sn+27pM+4FF9Zb5aEtdRqrLPHaud6pUdIIL2kdaI6eMvYQ1vYouUHlD8T70\nnf4o79U4PdYX1FZrsHTHME8KXK+6rD4foLF1RBwP0L2swVJ17KDRpd71+G8r1N07LfvIC7VxCZeo\nVXRKi4i8tmpqmxkM6Zg1zsehrDylXULFGx/9VMO9L4Pd5ObwGBHKEgy+9BJ9o9FfjiM5UyYveclL\nXvKSl7zkJS95yUte8pKXvOTlA5QPypQZzvB85wTOn6k6xQhVZ44Le+RHZgYroQA6x8n4rKiTqwIn\nYiUSN7Mhp5gVXbc7QZMBxHuygBYF+eh+Cd0SHAZKNZ2sDckJ80CR5jBZSjBU3Mme5+n0dRrohN4v\n4LaCa5LTyXAnhzMORSsLIOUz8hV7IAFFcmY59xyBoDsSgU89Rmjr1GNQUDQlZiFsmLlvPjBTH7AW\nQoyVzLnt6F4peXhFToQjx2aijVNQ7won0T1Q8ymnmW9zH3HSqni0MSrqw+j9zgFDPh7h9T58oeuf\nvd4zM7PDxzrxrc/oE1Ch258ItcoCIY3zoeo/46T+zQudMIeMvbGPpgKo1mpd96mTx35nQ3nvj74T\nUnnznlC9/VfqxPV70qZJGRPeFLYSTJqjN+RZdsR4WYCBU+TUNloV4llHo+cNJ+jDrq5z84b+vgOa\n2D8XGrf3RzR0yMMsLqj+G6ixO4eIr/7lOzMzm6Lh0rqFOxNzLoI55KG5c+UccQqaA4O+/r/gyF4g\nBdubut+MHOcJ6OPZk1M+/8TMzI4PhHbWQRyKuFkt4ALSaKqdHZPpvP8u1/U/KjEuR84pJCYfGgDM\nKjTCCLQmgpkxh4liaKuMCzgcuPxtFPpHsMqcnoM/d2wizbuS0/nB0WBacor+qk8GmgMRzwZVWFVj\nPesArZiZOYYM2leM/X4qlKMW4ehATq5RT4iBVoRpEoD6jIknGczDkBxaAzUx54TAgX9p5pwEnGsV\nHwNtd3nUBhOmCJshSF29QOVIdC+hMROQo+xclcIxTEP6KQD5nPvEYdDAhPZxY27G2PS4X+y/3/JV\nQuOlHOO6dbFnZmavnmluFI80lzKYMHMSt2/cFiK0tCEmzZ0vpCHhofuSgJRcPBfqdIZTToa7ympD\n3+tNhTS3YUnEbc0th8x6gWel+E/dKXomBOw1GjK3aZvSluZLa03ozsKaUOWVEyFlwyvNP5vBaoI1\nNfOEGJZO1RbnoF77v5cWyxt00Zbc9T5S3PnsZ5+amdnBc6HMb14L1S6ypiUgpBu+0PnFO+hOoE/k\ntEzqqdrExx3i4EQo++UzXXdEjn/m9JpgwMzVVNYp6vesovXgxmdy1jGQ3Ih2O7tSvFmqXZ9xZ2bW\nIe4+/hfpkDjNsAwXqBgdJQ+NgkvQvRGMk5T+Wb+p9aC6oTjnYkV9W2P/7rL6qX2gOL5wqPYcMOaL\nIOslnM8e3BeqN+mpv4poOnTP1F6/+8dv9QD/m9kf/u9/sgimznpJ/VAArXuzp3Vi575YDA/vq14V\n1o0hegEBzjuPnqt+KzXYf2hAfPblX6s+HnpSVyDYuIlcHuo+C9VlW9xQW6ziUtY8UlsdvlQfvfyj\nxt6LJ2Kurd/SfKmyZ9m9tatnxtUiwslvD92e46f6XnUXPSDceGogn9t3YXYsUg/0Ik6PVMczdI6u\nW5yeWoo2zN7XapvwS/XJyk3WRF9juHOp+rRasI36GsPnuAp56Pms39Jc2N3R3EsfKs7sH4il9uP3\nWktXGhrTNz/W369gOzfQY4s76qML09gdgXQvt3Rdp183Qy/OYx3M2MMdP9dzVX/6V2Zmtral/nj9\nWv3Vb2sM3rijMblzX2PsAuZhwH729g3tvTqBxmLnlSZxG2bN0pb6Zfue4mswgfGN7gjEeUsdG2Kq\ndur09f2b6NUVEu3lBjBk5gX1Rwek+wpGkJlZrezZCs6UZ6nidHyO6wuuWfc+V6yLWC9ilGDcOnSt\nUsIFCY2TGoyPKYv6BKZIKXRWrGiFOHaow8sJX879aIpQRcR+OkOzBbKnseRahBNkBSbHlLiVRTDc\n0d2c4bLkFZzGjC4wZUwl1CdgjERo3Mxh8ngp9Sk45gjaLTBRnGZMxnOU2LPMYrRbprjk8fe05Jgx\nuNPhSjrjepgdWZG9SuY0Z2J9Pub34kQXHDuVy2jAc2juz2mwQgnWA+vGDK2vkIyC8lx/H5ZZd8es\nT+w90sS9A+IMOXKqQdcrHvctrig2LKD3dIrj2fq6WIANnNiiK11/55b+/3xP+4LukRiXtz5XjN38\nSHNjSGz0WE98NEKnz9WeC8V3WmTN5QVLUrMAd6BpX++TFfR7WuuKLzZXnHCunkW0Uzo4EA7Yx64T\nb2c4PL743ddmZnZ4pvhxb1fz33ACPn6k+GIwoJu413kwib2Z0w9Smy+1yJBB46s/d3pE6J6twiob\n6u9O2+reJ2IkLixpLBy8UBtNlzX2FjbVSHO0Xa94Fxmj8Vhi71Kr6/n6J4ozg76eg7Bv27xLrq0o\n3jyDWZkG75h7/38lZ8rkJS95yUte8pKXvOQlL3nJS17ykpe8fIDyQZkyJU7tEudqBFIacKpX5RDZ\nA2Hucno5L+gUd4E8+WlXJ2LTCnmXaCtknA7PUV8OYMx4nKgVXE4qSLXnUMoy9ZnhvgKS23WaLylH\naAOXD6nv+U5iHOQ+wOc95ewrWRRSkF6p3mnD5epxis4pcIFT8XCqE785bi5NdDwmqOL7CyC15ItO\nYMgkBZ0gVkbv/r/AyXQRrZN5vUpVcXMgd7IJ48GbouZdQ0fCodnOjQHGSwDqUwvJpYf+46Pb45xe\nkoE6uzF7h1pcq4AspGgFrC7pOiVy3O/BhAlaILQztW2lJSTVJnre877qsbmqNi3CnvBhbmwxtiog\nlRNOgXu4fEwQy7nCw36/oJPsBPZFo77IddHh6Ks9h6Aw7hS1f6Sx0y4LgayfqT0roIlryzrpPged\nOTkh/xkdjFdoQJTr6HHA8hr10DcClRtOddq99UAn5re+FHNmCbePIgynC5CcEloyswAkAM2ZrV2d\nKl9eCtULA8ciwKkAKKfTEXoVVnXyvnEX57BTcl0TtB+wOHL5neESed8bOvkfmZCJ6kTtfp1SZL74\n5hT33b2cY4tD2vR5L1LdKoGDvnB5Y4xPGeMFvpcyNjxclnzmSATKNfCcy5HqHoI2BaBQjuGR4rDg\nD8njroC+cLIeo7SfFWHmwdx5y6hB66Xi9JsykmedSxAJ4R5jMuA5U/KSAxCGIsy+lDzyDKaHD/pU\nwJrAgWdxpH+UYJjEBOQYRNLliwegSnHJuT3BOARNS0G/ps5ZwUEKZecwhMYXWi4JjJ1ZQgxCy6tc\ncPnm7+d0MIYeeO+h5tgok17KCOe1DAZjNNWYPoSNd/Q9DBpcZJo7+t7kkFjmYh7oZ4g+V4KmhY+W\nzvbnuKgs4RzB+uFHDg5NbAwaHDNGjg/IGb8SEnYA8jXGCaG6CKq0rPhRX1XcCzeEildAvaxPVd0a\nsq2fK1d65vPnYg10+nrm4/0T6oheDuyFeg0m3g4OVbA5ndxCfVPPXmbOdPogsaMe31cfpg3F61sL\nihdbu2rT2YXG0NG+WEWzGfEJzZKQNTtzewUcrOZoGIQw7ZplXXdu7zdGQtiya7tCt5qwy9ogup1D\ntcsfYVexpbDFqhgxEZoFJz8I9UtOdf8zGJI762rHiyXFy61NsQzufSbmyv7jPTMze3MiVK/RUZz8\n+Bf6e7ureJrAeKxuqV7zZ+/W1dU7W9ZE/2jFjYO62n0Ke7hVU3t991LrUOjy8WFMNqrMMdjJcUf/\n3z53LoG4/uF0V8GVqoIewVtlhfqCtdkjeC+0lg3owy+/+Bu1zZbuPRzrc1fn+v3pa611+3tiiJTK\nWvM93+la6C5nRX1+Gd24Ulljq97CQQVHycPvpWky20R/p0r8rDubueuVWl3XbyyqjfdBSitvxDBp\nrOi5GrCP+h312TLsqSDbVTt8+8jMzMa4dx6/1Niqrmj9WMa15CoWYtyFVXXQ0+fDRdhSHT33xqrG\n/Jj23f9GY3CZvtl5oLEX4l7XHiq2pC/4/Jnm6AkaMHc+UiwqralPI9qz31M94ytd98EDMXa+/v1v\nzczsxz+ITewRp9dW9P24iSZk17lLKeZsP9AcKKI5VEN3cGNb3xuMtMfb/1qMqu4b9mTbQu4rjPFZ\nl/3+K8VrP0KjbPAuBhSKkRVrmqO1msZBOte4fPZYcy7EQW4ZTYvQeSaNr68XUoR5Ph+hS/n21QDW\n6hynV951nI5dMsKp1bkwlZ3GCO8ejP104hgg6rthwprK9yYw1Cvo8RRLrDFDfX+K4GWpgu4kenKQ\nay3CeTKBJTwb6wEiGIoZeyvnToTRo/kw1n32ZCls4Tl7LR/tlRRtSse0CZ2uGu8jY/ZUEcxIfwIL\nF+aNy67IYlyFSI8IRzB1WOvde898orFbQLPNtWcKuzicsE6xvy3zXInTC2SPOCbueQl7Ktphyh6o\nXHi/WDK8cptS7osOSYf3jhKMfbvUHP/+pWLh7h3NuTufah1+/QJXxnOxMVo4l3Wf6nnP3yh2OH28\nUqT3teOLp+/qcnlpkzS2lDHVbbPf+UTs/LvLavOv/l+xSF+dKH6sLGvt8xuqaw03tM37ml8RG+/X\nXRgmMKQ3PyWLAQ2Wy0M9c4j75mIIS4q1P4bZvdzQ3zP2ocdoyoSwpZab+txqTfH29FRzYMRcC2F8\nL+Jw+2qsuD2KNUY2bkvj6uCl4sLFa971eFdcXiY+kEXxrx3Fvd4ZDoSOxUbGzeWF4tzRqeJqyHP8\nuZIzZfKSl7zkJS95yUte8pKXvOQlL3nJS14+QPmgTBmEua1adJossDDIS07JRR03+UIXdxNchWK0\nF8IiqBGnv0lDJ3EhSGsEY6Tn8v1gpgScvi7UYchMdWLXdxoVaCmUgLLL6Kv4nO76OEqMOYmPaM0K\neYddEHus4a3c0fN1G6gwo1KdlHTy1yAvO17ACSfSF6uJ2qMHkt107BZYBzXQuRH5lyEUoxAUseIH\nFqNLEzndB4fKk3NaHYDOcwLsReRIolfjhCu8RKeBEbmZXdfmoMizKrpAc8cCgB3g63sZdbxuiXH9\n6R7pVLZREZpyY02ns2lLKEsXRDhGAfz1b4VkDuiDIxT3vS/+VvUhlbK+ADrDWAmcEwzPO3ojVOj8\nqb4fkd/cuxD61Z3pZHr2a/0ckm+YglYNyL9eaOnUtsupbnKuenWd2v0b5cd3L0BGUMd/8Lefm5nZ\nhFPrLloRFxeaPF9+JjeWkyshCuNz1bd/Sf72C53SNpugY5zano2Fih0/0ymwh6p7PVK/+sjZX16i\ntA4wU1vT6fBKVeiUj86Jt+j0RvRAtQXVyzbIP0VfaQb7w+mRTBiPy+TbD4e60UEgRsC1CuPfnIaL\n0xfynWMA6uiwBDLYPVnm0B7mNUy4CCeoUUVj763mCShJwPUzTvg9tJsy8r3noEAJujxOI8tJ2JQ9\nzc8J2jRjTs5LuD8lTuMFh4EhyEIZUCWjjQzmjYHORDggzGAxFWagSmijBKHG5oh8d8+5Wbjc4KL+\nHsS0Twr6DuqUMkdSUKUiaN8El6YocwgG/YE2S8JcCF1+OKjTDCS1iKNDAsIyh4VX9BxjBzSR8O20\nEBx6dt0ya+u++21pWtTrQosymEyNRcWU5YdCuH2YRq++FcJ+iH7TxalQqWlPz7VzR0hSfU0/nfXB\n+Z7usz8UQlJJ0YwIxV4row2RgJ4Ww8AqsGzqdf2tjpvP6x/UpsdHmtezH4SYjcuq+8r2rpmZ3bgr\ndKqcOX0F2FEsQonTamIIra4ofq5t6tnjufQdrtC7meF+F0QOKYWJ6IktUEOQ6Mme2ua73wn9L3vS\nSHFaYlPW3BC2VQ2NMDfnFlmDJ7DEEiDbAZo37WPFxTbsiTk5/XPYsCtLiq/TmeLNqKMxcvOLL+x9\nSu0tbQ3NB7RxPmKdOwRdC57B3iD+lTf0/9mZ4ujEEzI5Y06vwNxsbquePeLq6SutI2s3Ff/Wd1gn\nYMj88EeNvfhSYycraTxs7mqM3tgU2rhxY/XtM9y+8xM7ROPmv/34z2ZmtlhSPadoKTjkPIzQtwN5\nLo7plzX1750dzdnN+xofL79Xvzq28qPHqtfGLfXzZ38jHZIJsfKqd2avYMhkOPO5/dIIB746egqt\niZ6tjkNIitubD1JqsHz9VJ+bw1Sc05ZD4nThDozqodpyZVfzEnkeOz9Dp6jnrv9+Dl0z1ptSRW3k\nz9TX57iv7YIIx8S5/hl6GOuaO8u39by3+urDR3/QWvz6UO20NVB8KC1oDG6tqm+zEc/Lvnn/pfqg\nCiuj8VOh5yX2KGdowOy91pofNvWcu7eFlreK+hnf0+cvOqpHBPsg83WjMbpzlYba8wotnCdPdP2/\n+k/q84d3xeb63a815pxWy5z6R2g6DlmfphPNjQv2UpcHuq5jFy8X1c8f35PT3BjWs9PPOMK4cQfW\nQAWdPqcHkvVAqh9pLpiZjfojK8J0bcIm8AKNw3P2TMN9jafyWP3kcO0J6+d1inNZClgjExavOfud\nIvsh54LknLMytKcgCZjHmk6Ye6sPN3V9BKM9Yy5MuV8t0LPPeVcJYLqMHaWlTN+y7y/Cxi+yX+5j\ndRXwbpJNYeTARKkGuErxCpm5NR1CTsT+LmYPFsFgnKAvUuJ7ExjrE+odOc1BWP8uqyFxOpnELeew\n6/T0MhhJRfeeA+Nlhl6JB5NoSjqCjzvcfOyYLvo8/HobOQdO3nOMtd6v6jlKtKfBCg7RVgui62sh\nmpnNmbsBbOWUdW9hlT1ZBTdDtGa6vxGbZHRDz7WAq96PE43Zo+/E9vri739hZmaDXc3x01ew8LbI\nKNiCJbL3jv2VlCNrlCIbDdCUGWo+Zie6d/Gh5mGDNax/pHeHxRVdq8FeZXShVkx6iodd5sIl+my3\nbkhLJpmhEXWuONZc0qCvsC/zYW1m3XNqqHotLGhMd8gOOIXRchsmYJn1Y9zWdU8G+rkC07K+RhYI\nenWXaNwE6Ovc/+mumZkVmLNPXmhP47MxX/u7X/J5tCiHaN+yRm+iF1d+CLNzlT709/QY2V/et+ZM\nmbzkJS95yUte8pKXvOQlL3nJS17ykpcPUD4oU8YxQUa+Y5SAQKMcPq3pJKvCyXYCehgPdWKWkDMa\noo3gmC0JPuDFhnNN0QncQkUn4f0BvuM1tGjIz84KOkErTnWK7MU68UtRry+guzJACbxAnn7CiVmC\njkcJt6gFTsSmPogzOi5FkN8S+YxTdARGINol9E+shv86+Y9eWfeNgbh98iTTDMSHPPBg6JhH+K0H\nnkXca8SJ9LzicjtVt2hC3i+o1AxkrYCFTRG3iYzvzfm9UgPRnIIs4poxJ2836PIsBXJNy+4s+nol\nKqnvTgZCPo/Rdzh9gUo8kO+4r9POekPox+WFOuezv/u57nsDnRAYQGePhLg+ulL+M2Qry2BrFWE7\nuNzO8ooQ6Fuf6JS3VBP60x0K5RnBgOnvqz23PxL6srMrd5D1XZ3CDi46XJc+4oS8l+k6Kws6yb7s\nk4cOAuwvu3YWcpv+5p+4jsbO5ZWeZ3VV9avuoBvS1feOj0GY0c+o7KidfvkPQrkqMJy6IBvH6Gl0\n3+j098VYJ+3eV0KIm2s12k3fi11OM4hJeUN/v3lXOa8tNC9S5kgcgtSCCD99Ig2JBCeKFEbAdUo6\nxDVomWd22iCg8gXYOR5ofYojjNOuStCNcC5qM/KTyxM3f92Y0BjE6MWmoEUQWWxOXAg4YU885q2p\nPj72DTFomGPMzDzFmwzGSwGwxWlEVROYN5DWQpwa0jn6RWjLBLhDGcyXhDzxzDna8HnHAnNz3CW8\nZ0DJMdowEGDM4+zeg9ESZC5vGp0qz+W/c8YPkhtyf9+5JFG/EHSsiEPZHLX8sERO7hRsMnKMSFAx\n0C0Iilay90OlChPYZF1d5/mpxrRNGC+wNDqHuJ8QTxdxIho4XSu0Igr39bMFC6KAZkKjLrbJJg5t\n/Y7u+/RHaSL84dmvzMwsqDlXPhifftFqdYeo6p7OCWAEm6sAY6OPzo83Qi/jBzEY2q/RRZj/qdZA\npcpaye/zGWwmXHpqEQwJHLKK6A9FBhILktjrq81adVyFdtVHq1NpwsTkdSdnQrfit4gnDDk0Djqn\nxImK4tygq+sswZhbwUkmiFS/Pk4qCY6LALfmozmTbagtl8iZ91qOEfR+7ksX3Kd//hszM5tXNRZv\nEcdvwky8+VBshhnPNXOof4CzjKc+D0A6Dw9gV70RA/Byb8/MzAqLTqdDY2kXZs/NnwqVDIhNJ6fk\ntc/V/tOpnnM7hNmYvXuGweDYAKRtZ13XrcIiWNjUmCzhXHHP11g15+zGFPZgZQxaaMi0tH7t/EQX\nroFYL5c13s5GWv+6J2J8BkzS9YU71md/FaMzcfZUOfzplZ6pvoaz4Cf83NJasbT8X/Ssidr0Cq2p\nzp7aukycP8ZN7s3+npmZ7R2rrdfXxK5dva9nLte0tg4T1dEfEO/T92Tcsd8swfAuEdf9FLQ8ZD/r\nE+97mqPtuup7O5JmweJNjaFlEOcL2K6H+2qfm7gXLaJh5dU1R8fnao/uj2KqYA76lo1Rh6XQ2NL3\nhhdCet98r73HINEe4OOPvtT9F4UwH2S6XgwlczSE0TJU/Uo+7CfYtMcvtadob+lnEb0/q7n2QGOL\nOLqA+9MZ16ssgiR7mvtVEPdRTzHhyR+/MjOzh38rBs4uOoK/P9Xz//gdDppF/f82DpXrOFS+/Fcx\nZE5xLDMzKxQ8m+NY5LEv39rQ96owJecDja82zMYYZqzVrz9OElg1WSBdoBiGWgVduhHsrChhXw0D\npuj0JWHROiaGN1FdPd41PMZYkf2jYw4658YBWowlxzagL53zZDzSoEmLTkvQaUby7jNm7+JcnNz3\nYPePYB8b2l4F3uES2AzjAusNe6OA94USzpRjGEB1mPnD/4+993qSI1mz/DxERmpRWgJV0EB3X9V3\nZu6ope3QjM+kkTQ+02jG/5G2XNvl7ug7d+b2bQUNFFAorVJnZGYIPpzfV709tnOn8IR5CH8poCoz\nwt3D/XMPP+c7B1atn8EYYc+WZaqHT1pFg71GzB5ozvtGDWZQRrzM2GPkrNk+TE+PPVzV9PhMr6+C\n0ya6gBF7kjmue7aXc8ZW8/T7mPZ5oWnY3JxN5ZxzXmRZGuqfmD3BQhV3vgvFsj4xNCIdo2zjYEPx\nPYDPlcPwnF9nMOg5dCeKz7XEmFLGph5c16U0i13iZS6DNWXM5T42RLsNxZ/t+7vOOeee/le5KVWp\ny+M/kWtZDUb1yxd7uu5YnbR2T+9Qtx5rzTl4oz1/jM7ZnUea51MYkYev9H1zPTWtvhBXtGCOiybv\nu8MBuqALqvfwRPXuX6DT1IJl1tMzTpiLqwswo2da+zN0OquwRZPf6pl2cMotsTeaoRNa4/dDGDln\nvLPevw0TkYyWmH1srfT7uTAFU6ORiikAACAASURBVKYoRSlKUYpSlKIUpShFKUpRilKUohTlE5RP\nypSZjlDL55TQtBAmJh4AC8IjX6+FvkiCOrTHqegkNkhXJ3l1mCMxeZF5qhOsKMF5JiTPkPy9gFPF\nGaezVXKTHafd3VD3aQBJ1A1Rdzq9rqPBkNTMpUVfTyuwRTiV9gNO1kAO8lS/L0WWn6n7TwCKaz3T\netD/sxgG0YR80qauP+RUuDTWzzHQfWBQd9R02USnj/OWLlbnlDAegVJn+rs5P9XIA+yByCbo+JRh\n+cw5YS1n6PbAjPE5QeZjLigJVRmiA9E2x5Ublhb6Oj99LBegb4xxwwlzuY+yNvnPy1s69ZxWOUGv\n6FT1JBWqsv8OpHWkzyfoBI04ba2jpZIuaKzc/VPlD661hd61O6jPWz81d/W9DT305U0hvKsdoULH\nB0Kfjt8rr9t0R/IARwpO4Jc91bOOi9XZBCbPX4nJc3lG/zX0uQtcUTo7Gru320K7ItyPAnJrvY6+\nd/ex2vHyGfn9NY2l9dvk74dqb+VS6NCwous276jdP72l/u+ikfPquRgzA1w74hCNmEDj5mxfp849\nHGiyAGTHmYq+xkvI84xBFSuh2jfLbq5in4MmBTNzvzF0hDxi5pXpJ5VBACbMEw9GTAmtgBg0B0D0\nmk3mwxCJQSUCGC5z+joHvQn5fgSKE8fGSqPCoGEe7AOq5eYztFlqzFs0sOa4zJXQWBijQePByKs0\nQeuNUQKNYM5Yq8DwS4kHM/LKE1Ak01Gaz0w7BiYLjmPX6B3xOcvMzcmaQzwj8AWwzEogBgEaNFMs\nekrUM+Y6vrHvLD+dvG1jVcxg9OTGSkjUH7HF6RuWyhZaCo8UI75YUP3efyvExsEKbIOQBHXdJ11U\nPaawHeZowFy80/eGx8zdjpDWyhoxlvYvbuu+j0Ev958LCT+5hAlq2mil2HUxhyjBDvBa+s6tJ0Kh\nQuJTCNLYA+0/+SD0v99lfsOMLNG3Oc8+ZQ2ytWd6RY56rvxvB3KZp6xV6HcksMDm6ANFvgQdSs93\nnXPO3f2p4s/nj6Xv0L2ruNOyOeaEZufOWJ3EJ1A1c7aa9FmDQd8asFxrIM0O1lcf5uSr52IITUbo\nypHPvbGMNk/1v6GQ3KAsbOvZL5cVF69G6p8XMBP7F4rj9VWYgnWhfzXmzO7nQgHr2zjvfNBzvGDM\nT3nAywuq5xw22Ss0YGxM3LkvZs6DP5M2wBQdj/cv1O9vX+l5vz/S817xdT/3f/2frncRu5/8+a+c\nc84NceqZDMU8TAK0JNA9mYO8Jlew9lhPj/u4YL0VE6aDo1HMuvfwltq5eEssg/iN2nf0lr1WBz2v\nztQFVY2hDnuJtSVda4be0JtXavtgqr7e2BHbc7GzxefU13e3YR200SmCdRmwVmclrUn1GK0/EM+v\n//PXzjnnSuiq1Vhzdnb17E7Pf0CLb1LqzNdebIw+zf+0q/r30SRZ/0z1D1a1xvdeiuV0vKAxtHRP\na+vqquZOv69n++qp4orpgNw1rRgYOZcwIT20Y0ZDPbOjZ4pPO3f0bO7cFxPHg41xeKjrRhM9h+Mj\nsbaMlZHgOroCwuujAXPR1TNtsRcIW2r3q9/JheXoTMyWz9fEzFlEd+7yRGOzday4WG3pOVanmhMZ\nDM3pBZoSOEOu/lJj/uv/7zfOOedO0Xx4+IXGxQ7sheO/17g5O9Hc2Hyk+37+E80df6Tr7r8ktjnn\nrk4uXLCsuX16BLP9kWLOPfrt8FzPKbvUdcvsWe195SYlg+05Q9urlGsMzMkGCKGQ+OyDTNfN5CYi\n1kZD841y4s2Mfav5GUD4mI1xFWUN9tCzi3G2DZuquzkLuro2HRH3n6eMKbbnFVvjy8QL1toMJkcD\nNkNS0vWmxPUybP+EOJ6XuH6IlhX18nGPGnJDtodugm+bx3uEafLMWQdMf830/Ko1/s8Y99CyKqE/\nlMFKyDPYv+yJ5iVjJ+u+JdgaeQTzMNJzq45Vz5z+jrkeUj2uzj+QLXVZ7ePYu2XicQJDtqnbuHfG\nTArQOWRvOoXKeHGs+oU4EUW8Q0ZLNAgG/9mRYk3EviEgBmdkqZT/m8yFkh+5IPjBact24JOe1qyU\n/WATl7eQTJPjA83nO7wLdnDueomrXMx76y8+/6Vzzrk5LMp3r5lfxIFbD8QM7NTU9sGY93TY8z7P\nsM+8TmHYNTeZE8yREUy88UBrXgsmy9qq1sgyTGd3gSPVhuLTBzTBLnhHWrqneNaGIdRexFnQw5Fw\njFMs79Qn7/T9Fu523lTxJBuoPtM5WQrsqf6lUjBlilKUohSlKEUpSlGKUpSiFKUoRSlKUT5B+aRM\nmXKAewmngjF5ja5BvjwARgbaxWHm9algCprug+7VfJ1ETVDOLk/QmuFk3wOtCtANmec66Spz4pdz\nEj7yOckKOGkbczrqG3JL7rDlh6KrkozIt+bU0+F00bdTVdgnk2s3AdydQC2TKpo6tCvDxWQy/7FG\nTLWlv0/IfyxPdHI5RQuiBRI+AVHwxj0XwM5pmPo6LCBzpoo7aksDdk4KUlkjTzqzZ0Qf+KFpoggl\nqnU54uUUdDRQHUm1dCVU5gMYOTctp+c6hT0+ENNlxgn5H3wpF6WU09GtS50IL5A7PxkIxTk4EpJ6\n9lyo0JyT+eW2ULcOjgL1z4QOrW7qpDyAuVFdxC3jUqeg/beqx7ir+x1caMwtke+dg2a5mgbvb74W\n2lMDjWosCxVb437tFaGGVxOhbEOQhAruRg6doyzCcWZD17/XkCvTyj1dp8RzGn3Qdb75Tu0/PdAY\nvvMTnfp2mkKsA3Jzv/87oWcXVzpZf/AT1a+OXlN9nX5aVL82cZEKYQF4jPUINhsyLa4/Un/tgfrF\nZ+iFcGqdpeh7XGruNsn5zRdB+Js31x5K0bWZl4Qe5ORD+8STCgyNGWjVlBzVnN8HvglUwGLCKSAh\n77iOXkSK5ss8Ic84RRumannGOMLAwJuRd12tEV8MveIs3Fyd4lD3jYCLMpBMv6F6GNNnRvzwTOF/\nbI5XptlAzi258jVQFUMqfJg5poFTBp0zDZ2Q+IEBwjW6NyVWJLH6o9Ig7s3RykmM2aL+8RizCdpc\nEHBcnoMo40hT5r4uMVcsHA9AvUa+5mLoWb30fW9mrD7zxbhZGcBCaFfp75A5C2vDDUBuiSmbuADM\n+bkKo3I6ZK7ua26dT9ARWVG9OrGQmBeXihVNNIS2vvjMOefc7v8g1tqdkTlAoDlWDZ1XwY3iAkYK\na1MJPZ3sirEL4nf7Lm48uPcMZ9IiMXeL1LccfD3DamYInP6eDdBnQ6+oRZ92QTpD00Jg2Rgdq43v\n9oQmnR0IrT7AIbC0whgsE2eYx4027DWjfcLwCdA88DxcPkLck0yrIGFtBa1uWnwnPq/WcJF4Y+51\nYiZWm7rP7e2Pc18yQs7CBvnzS7vOOeeOcNq5mAq1f41excKuxvJaW2N1lmk9qNJh9x+jH7Kh+FsD\n2Y2cPt+HkTTAVS8emFshjE4cdEx/7+FPxCJY2tLvQ5BdY+k559wwnbkX6HGc7ykOH53q+TRKut8I\ndl/GHmYJNyxjpyytaQznO0Ivp+cayxVCzz/93T/o8zy/C7QUgipOb7AE2ysdV0GP5ld/jH5ZU3Gk\ni3tG5qkvS8zvfdb6gDVlBssrYq+RomkSsSd5/EAMivsP7jjnnCN8uin6FOfPxPbpsR+bg/JXIq1t\ny4sf5wg5QNvGsQbeeaBnfPhc9Ty50P3WnfryHsyfv32jPcjhO+1Jlh9rjV94orGxhibBuwMxXt7i\n/Lhwe9c551wygw3g9AzruAclp+rrNx9gvsA6e/ITxZsOTKVxoLV7fQetq4Hm2uhYP5fRhLmLS1Z3\nCJMR9t626cKhJ/ThreZEf6jnaHur9btq1z/9B/XD2pHmZgUXwivcSnpXzNmenkeI/tMv/kx7m859\n9d8+bK31W0K0NzfFAPoQKAb1z3X/q9fGtLpNv+n7r/fQDnPO9YY9t70Eiy3VHm5/X+1cu43mWk39\neop2jZFLqnnb3bT4sPVLaKu4Mmg/86001kXHOEDWYOnHY9Z89HuqMCSGNdvLMPbm6El65n4E84M1\ntgQjJ4JRGcPi51XGZYyRvMkegjXYw3Fwzl4gS2GOoHuWsofIja2LTp05UpZwvgpL7KWc6WXiKkV8\njWro3RmZH326GAfIiN9P+H+I21QZ5sjImYMkg5O1eYKeaIben7lEzdmYhuzJQhgwGXs/PzBdUrI1\nYCTVed9xZlLE5z10iSZYoQVosdXSmzO8nXOuDqskOFE9D2FmZrhpLW/gNEd/+yXFxgl7qLWOns/V\nbbHDmmSR9Mxlaoq2EYyYGe9pKeOp1vpBc62fzl08uHTl0Jx50WBB47SMO3HM++visuJfHzZm/z1r\nxAa6brnuWW3BYkU/bTJSHaa8Mnqwua7Qyrr1UO8gG2u6/1PetVoNxadOQ+vJIs6Naw+0xs9xbX6/\nr+tcXYqh0mhpvjdvi7kyjvWuc/Je2QgB2oUV9l69E+3rKuua74toneXHqufxG133DC3CRXQ/u0fq\n617AXgiX5dNT3JDZn9se718qBVOmKEUpSlGKUpSiFKUoRSlKUYpSlKIU5ROUT8qUmUc6oYp7OpHK\nYW2EnJpWWzrtG6D/YelvSY+fhvRy/FqaobDNYeUQpkkT9scIdkfVNAsGOi01xxmMY1wLK54ZJ/ep\nuTvBYAk5/U3LhlSrG+s4+4z6IL8gCiU+V8K9JOmBCC+Sp2ksE9BAP9NJ4KyqdpfR1ilx6mtuMDVO\nr4eJ6rMACpmTxxoiVjHP69fovA8KHXGNICIvG72dkTEfOAXMYcyk5hCDpkAT5euJ6W1UdJKb0fkB\nGjPm4V43vZ3pDyezNyl1dCzOBkISZz2hOifHQpvGM93v7L1OPxe21JeXnJYubenU9fEfCp1e7SxR\nb9WvButpiKvHKoyQqw9CGF+Qw9//oOsbjWB1EycHUJ4YbZWcMb30RCjcrXtCbTr8PuRkemdLrkSZ\nU/8skxuac4rqzXQ6+8UfCfke9IRYxn2dpJ/3dJr79D/pdHowEoK7ATq0ug3jpcaJf6R2raxrbI1g\nylxNONUFEAhgUtWr+pwHlPGbv5YbSYl8/ID2rI51kj9Bm2B5DV2XUKfarV9Ki+YUNK3dVr9dXgkN\nXKhwik2/TBmfx/tCT29SKujZeDBjxmi6BKBB05A6kT8d8fmUvnco/DuYH1VYXUipuCH6RJZ3jPyP\nC9CWMmSydj3fdB+vBprDHJjY96Z8D+QwAHkN0eOZgmJkGSgUTJdSDksNNXdjGE5xbgiAiLNMN5oT\nnnzYZRXiZFwjV5e4kqFRlVq+NGhUDAOnDMpUMaYgrlZlUD6HFkHE2JmBuiU4GJQIr/Pc2Bc4G8xw\nlKjq/ymolzkuGHrooXY/BY2PuE4K0/KmJevCcrgQQjskV9qHsfL+UL9vTGFcDXXfBiyCCtoRFcb+\nbEf9MRrh3hRoLgToPi2kQoynp1qwhiDf7U1pWSCB5ronsCX2z1wI02B61efauEW0uOeYeAOq3vpW\n8yesK67dQuNjtKq61OmrqjMmBWOBtWQs8MqV++qDMUipEf4cqFmMlktjRfP60aqcW8ov1Uf9c9x3\nDtBdyOSS94E88wa6RqavZE5lLlY9yzDlohLaNzNzDlR92gtC77fXdvX5LY2RzV+IDcCUdceHmoPd\nSxDBtY9jZr76Tqj8+VuxDtYfKU5HrEMLy+rfM1yUPryUPtCFU3z10Zmr4da3taMxUEenKMOJoo92\n1wx3v9Ox1rWZzalD1lXmbGdFz7fxc/V71CAv3phHo+F1GzaaVdduqF+jLxTHd+c//N0550K0ywZd\n9c8ArbDXH8TA2Wau76IvMl0AjQTCru/pc3XYE0+a+pnDyBqgv1XNnZvEaHscqK112FgLq+qjDvP7\n9ESf674Sgvn8/Nfqk1jXeg7KPQeFX2hpnt3dFVOlua1n4KEtNoER2cG96BEuG/3hFfWBffuRLm4Z\n2oZxpOvsPpZrSPdCe5QrmBtTGHBeC0cx4tz7Qz37zrc4Jj7QWr1ySwwQW9vL6Gk0quy1bL1if3kb\n3aJkWYHk2SuNyeO3imNVUPguDMHBFQhyV3uSGXGu1xcSXWtqrM5gNSSwlM8vFbduDTX2feKgd83y\ngklJPF/DVamBhowHw9RvmOONnmMJFsYS7Xu/pz3BFWyxFVxUXv5Wnz97rzF366Ged2dZ7b/CRe/9\nnmJOgP7f8orq21xSvzjnnD/LHaQ+FxnJItRzmMdyVit3FIvKVdwQYeIai+4mxXwQq7R9DOsrZ40j\nrLqoomcXz81FSW2GNO8y2LTm1DpjUU9xufNgeHhz07DRs8hgrWa882Sw7Z05OhKXTWvF9l0pNm6+\nh55aAGOTvYHtERL0K33ewWw9maGLZ+5v4Yw9EJ1n7kD27hbB/EnRuPEyY/Xq/3X2GqMy2jK2B/Bs\n7wMzB60r3/ZMMClHMHvq5joL+3mOtkoEu2uWKfb4tM/0CTOo/jl7pXDEnoTMgwj2GqRrN3Eft96E\ntmcYKXYco1O3taz3B484PWUfYCzj+MBYLDBIYWq+/EZOaz+ra45u39WYPmXPc4JW2G6NmPPws+u6\nZP2+O3jTcyv3NG9arHXBTPGoB4snxxGx3FbdZh8U745hDt9ZVd1vP1KcOTvUvP7+rTS/lhuanxGM\nax9hH5/37gQ275g42IMdvIZL3BTq9fOzF9RDzzRjv1qvoy2LE2OW6DpN0wvK9PmnQ73b3V/S+rAM\n6+irv/0t7dScfPDv/sw551zcVPuPTxUXx4d6J1wlzjx8pPod4P6XwpqyLBNjKVdrhftSUYpSlKIU\npShFKUpRilKUohSlKEUpyr+58kmZMjk6GEkHhXJDtsmHrPVAaDlJm4wNzidXraQTOvN4D+o6ofdh\nb4RdTjvrOh2sTclpQxnd3JvqsAYMye7BomiRaD+FNVKyPHfYEsMEJgx58CNynr3qj91VMhhA/dxO\nWXXaOQMlrJKjZ+1PQbXMk37C2Vk8Vrs93KNmUx4f2hM9TrndCLYFUu6NVurSRNdMyfX3QUlGnDRX\n5j92OgnJx56ZZQz6PC30eyZ18oDJXSxx8p1mIH4j9UUZAQtzyBr7HzfkvIgc2Yr6qqW0Ynd6pGc/\n/iCGyjknyO26Tj23/lhK34uwnRZvq90JJ/A1TrxnNU7kQbdePRMak01Aas+4D88mHumZLq3rpHpl\nXRV6+ET3e/tMqMss0Pc83J06j5XvftlTfY/eC5F9s6/7LZVALidC38aj1P0f//v/4v72//0b55xz\nIU4TlzBOkhTEwdNzDDjJr9zVGK8vrtBuneJODCUbcOKO5k8HhLq+qfufnoFWoZXjw1o466tdVZAG\nL9Ap8RucKDIczpbQ6JkClfzxr+Qc0cKFqwFKejpU/2/scpoNYysH0cn3LYn3Xy8+Y3uGk0vJXIbo\n+yrPeA7aEqemewCaW1OfTNDpqIL2zOswXvTDJSVzkIKRNzNtGdAUGDg5qHporkXUy2UaQxlxLzTl\nffLCJ+hIROQrT3H3CCojrge7gfuXiFvXahIVcn8naGbhYODQFRlyXR8tqxrMwoT2p2jGlCwtugpq\nRb74DBTP3JgynBfymeWh0w91y6/WZUYwfEqpaftoTjdhzGSgh5E5bjVwhhkRp+nXMvFtQAyxeHnT\nElVBG4/RQOD77Seam0sgLd0uTm0HIN6wBSE2uWhR7c7GID2M9clU3xviaNRZVj2Hkdrfe0VsebXn\nnHOutmCxFXZBnDsHcli2HHscBLc2NY+TNaFP/Ze6V+9K8SI9VDy5OBYa5SWazz657j4oTQUGzVJL\nqPgJziejC83nCmPCMSZiWFMeTJnNTeWub+8qzj7+qfQfEtZIyGhucKL6XO4r3l3g/lcnbmUwPHz0\n4uawD8boKuXo+oyJwxn56pOeGIzVD4rn5SXFOZ+x2V7Xs+y0Fa/yRRglNyyPH6t9OfU8fS/dCse6\n+eU99duf/8X/pHbiBDHAIWJAB1xcqZ7f/I3c88zJy6Gp1rR1F+2wiLgXGhuurb8PGfPdY6F9L/5J\nGmWHxraAgVpf+CFe5hXnXFP/r5ZwZcnF1JngSJHw+9VFtHfQHFuAeWWx0rH+VmEy3lrVdYa4DF48\nF7J7znrRvxBrYURsDH3fjXG5qEV6Jm1029Y2xHiI0MvpjnWNcIk1H8ZfrUK8a8LyRRPwvKt7ffPb\nv9N191T3Ul11q8OAOYcd8Iw9TUQcH8I4aSyvuY8pJ7CbumgWPLyPXhN9032jeX5xor+v4/q29lhI\n6tFvxPK9+qD+uPUAfbk2CDS6I5OKnmHMmGAr4zz0iproKZW2tOZ6rAuHOHUNLtnDoaHQWhczqVqF\nedJV/wyviE8Xe84555a39bke62owMSYgzogwFKvE4Qw2hcd6VGZsmRPmFWyszYb6p46DZW9m6zau\nfZF+X+bz1S0Q6FvoCh6isUMsXL6nel6cqh+vTjXObp2L+TMpaW4l0x9YYnmp7KYNYgoOnt1Tjbt3\nB4pZ9+8ppjXWdP3sK43xHsj5TUoVhsUElmoAkyOF5eWGMI5hnofsq2NccnyYJSnvBjNY/aWS6l5D\nt22G3p1DvyPhXamC+FMY8U7AHmSCBswE7ZQItlKWorUyYW11xjKGwcJaXh2jU4nDTMb+PmMPUOJ+\nM7oq9s151uxYTZ/TnBrVHyP6oRSbA6Q+7sOiM82sjPhZhgnjz0xzDBbZFPop/V2dWjtwsCzDDMfx\nJ4dRFLAP9k2DBj2VlH23x+/ZIrkQh6KIsR/D9oqcUUxvVqqrWldG7MncO8UMtytm/OqS5vjFmdYZ\nD8ZUSCyswFZZ5l32u7/XfuAU7bfWBtkoh3pue1+LSXN7Q+vmysoPelql5Y67nBy5zb7i0MZDrQmn\nr/ROt/9Ka/DDX2oeb97RPDz+ds8551zvSvPzcl/z/gF6alXeTV58r3uv31ebVm+xlzlUvGyh3Rez\nV3jxTHGsgcbj7Z+qPiFj+OKv9PcK7w4+8XzhDtquj1W/f/gr1evwnX5u3Fa8LKGRM+vpOs0Hmu9h\nQ33ZPdccqqBrNyWrwpEp0z2BgdjGifeW2u2dKR6dHyvuGgN+FhLAx7//3aZgyhSlKEUpSlGKUpSi\nFKUoRSlKUYpSlKJ8gvJJmTJeKtTG2BZRhpOAIbiwAKacCptTg+uDAIDalzkV7o1RTUa5PDLHikQn\nc5Psx/mOqan6wzjJyLOs4xyQ2AkcSMUk0KmmF+q0tYJ704h8zDqn3CWqmQSq/5zT2DlMnYDcYG9C\nnqSPVozlM3I6HqJVc51+T769PyfXlSO1HAS9Zur8FfJYR+gTxANXIqc1a+rEtMsJd4UT+gHXDs3x\niRN3c6yqkZ8dg7pXcC4Zj9VG0wqIQFOCFm2nDiVOCRvknN+05CXdx0D00hzmBvoPjhPiLZghT36p\n/O4RJ+EHz5Tzv/9KGiVDUPkt8qcnnML2uN4IBGEblOfeL3S9JqhX/1ynn3N0QSo1fb65KLQtyXFn\nOtHnsjrtrqlf+qdionSP1T+X74W6hW3V92SCNg7Xc8yFcZX8+KbQts9wVuiRnx0Pdb3ygjrqEs2J\nwQudDke4bYwH6B6BUl2ieO57xvIyxFZz6y7aOOsP/tw551xrmZN60MtZT8/9CneqcqAxPpzovoGv\n60w5XW7R/xUcit6d6JT69Lff6PctNGdQdL9JiUFB5o75PwGdgSEzhsFhuhqzOShHAw0aY5wx3+M5\nbQTtyWCcmCZUMIIpA9qdklCcOPKdYbjZdcswZzw0Z6IqTJA5aBMaMhijuJS+qoCU5jPQDOZAiAtb\nRjsC074yJh6ok8/YmQZoUBG3klz/T6vmREBeNKyK3BiLxIaIZ51naC/AnirBbhhCIWnYcjIybR3Q\nrzpxDg2sRqD2j1NzxaP9uD35TvWc0c4G8TCHaVMjNs3+FRX7f178Dsyevub2BHQ/Tfb0AdgBfgVN\nHsTLwhDkd00uKkt3NEaPjjTG+zj/zM3RZqrvTVkvIuZoGdTPNYVEbaPXES7BZvBq12zM4ZXizetv\npIcw7CpOrHdU993/URofCWtBf6DPz8+1Vp0dE8/6MdcDlYbB4BYY3OQ9V3Fj8rFaGcMii8j1n4Jo\nHr5WHncVFllrBtMNgHAJtkCtpvjU3NDn7hF3jogTHotaaqwnkNHJgPWFfriaw+wAlZrgJpFMFSej\ndfXHxrr6euzq9BdaNLAublpaaL/cuSek8vxc6NzhO8Xt/a+0jrTXhba10VJpbOr+awjffc5e4M0L\nMW0imJw93K7uPpF+SH0JRwbqHTDHTmEeTY70XJ/+VuuY6R8tbSouxzCl3rz5cN2G3/3l9y4Mfuec\n+0GjotPRc7y6glUMKy/AQWhjQ6hla1Pt2b2765xz7uC12j0703O7hDkawYh9vaf4/XBXnw9wWrqP\nJkLqAjeGnXN1DKv1VPPGHBmf/JFcmR52NBZaueJ57GkeJTD/LtA42dkWAnrVQ4cDx6shCOuAzxm1\n5L45/nm4auLosoaWU5x/HOPOyA4ecyuG6dZBA/G4pj599zsxYjyQ0sZttG+eaW4a02Ycsw9mDpkm\nV078C4jrw7Hi4odDMUHGMPCe4Jq0uKM9Q9DWnAhgOb/ew4UEvbzNHSHCPozRDNR/cIZe3VtYsWxk\nq8saG9MIFgeuTMY0H9KPr2AI/eSB2Ga3YfW9QmOhO9J1Hz6QC8oEOsUBeoBVGFPDDG2aifZoS3f0\n8+1fi8lyDMPo/hditExwSXrxXHNtPEGTxxdjKpj98Hyng5lbqqi/dh6rfi+++1bXx1FtOdIY7iwq\nti0/0HXG45vrhSQmykV8DXBOLLNmT2AIVnEVyiqaTz5MkRi2kcPB0JWJw6yxycz0N9F3Y6wkoWmv\nmLMkzI9Q10nReYvMnc/ckIwhj1ZNzJoXoO2VsKeZ804SIHrjwSq2dynLfoiMWgNDxmfzkhHXy6bV\nwt4qcKbDxxqNwKexnPwpvEZW3wAAIABJREFULqT0i7nAhmhbGksrgPFjzJ0xWQ1l9vkxcbbOWp2g\nuZMQn6u8i1Yz1WtSMx1R3a+GvtCE+2UB7zfoFM1aH6dzVyHbIoKNa7Eo4/1l0tXcuMKtMIIplPJO\nPGFvmdlzbGsOxWOtC49XpIk22cU18YPmUGbPw+xSnXONds1dnVy4/UTz9fZf6N3HK6lPX/1HOe6t\nbSrONGD5pOxry+gaBSYbCqOuxN7ikvjiYCavb2mN2H8tBk2MPmcbxkz/5MfvRp0q71Cw/afE+wr7\nqwpjNq+SLdBhrNdhqsDiDO7qvms7isdHMJi9UPP+1tpdrqO5dMC6lcPk9FIydQJzTNMz+nz7c9WX\nPcpVT+vXfET2SFc/h8u/3zW0YMoUpShFKUpRilKUohSlKEUpSlGKUpSifILySZkyVU5nM04z55FO\nkhLyzQNOM+u4WyDN4iCmuGaqEzMP6ksbJDmFCeMnsAxwPCjD9sjRN6nwvXGZ3FlTPCcvcTbjZAzN\nhxrK5iMoKg1OaZsoeI9BgNOZTupCFMwdGje5+b8j/15tmrI2DkjmlEG+ZE6eY4Amjt/XSWHU0n0q\n6KOEKHAHTvdLnCEsINBp06W4JuSgHB1OtKdNQ69N74Hfk1MacdLeR0eiAureM7aPQZw8q9I1Wmx6\nGPqZ0Ed+1VTgb1ZC0LO1ulAet6DTz8UloReXMD4GoDH/+GspZ8cwUXpDnWIu7pJ3zcm2D5vI9IhG\nOOCMxvr5AgeAMRBwEqvP730pjZScnNX4re7z7oNQsRBl7faOXJMyc5L4W2kB7L/SSXUZRLm6AlLa\n0PHy+lyn0DsPpZp+Hy2aXqyT73pDp9OToU6RhyOQ7SsYP8fmAKZT2qtLoWqpOXiBQNSbQoHu3hfz\nplITepaSs9xC0fzWrV1dP4CdgU6L19X9LlFIX8CpYGwsLpD1V19JU+F8oLk9R9unBiIdkXN9NNdc\nWxkzruo315SJeDYeLmdzXJEqMDPyCJTH1zzCfM3l6ANFjMlsBGqB5sAcNk+IroMHkyOBcZOBauSM\nqalnDgKwxmAdTNEy8UGFhkPYCbCf/NjQJXSdcGGL0XLJ0YqpwlyZOxg0xvyjH1LLAyev23RErmWc\nEpADkI8pOhZzQ+njGR/T9SsmpjP9sUZNDAOwzPJRJ65NQJtS3IkAk1wZtpxftrx2/T7H8ss0dHLq\nleC4UGGOxqCAFWycTEsr/Uh9qgimYqnOHJlozA2ox4qvfmisa04EPk5tjC+f+ByBUu3cFyI8Q6uh\ngVNCUkEPIIAhg5PDuE97WfcCcpSNteaNU5cw/yb0QQknk7N92DgjobpXPZxrOprH5YpQnvpjY/Po\n7wl9/e6tUOQYVyEXoa3V0fe2V/UzSNWGk64YEDljOplo/h6PFGcPnuM+NJXegmkUtFdVn5W7uv/m\nDo4tzIGdJm3m2YWsS+VUY7d3Tjzv4p5XUtyv/0zoemdJc3DOmu5V7Tqw4HCTq6BhleFMeNPy6rkc\nGWamwTXU8+igg3F0puu9/qB21xtC8dto1zy4J5StB+2hAjtrqSXGzQjdCnMU6r9THL88E1oXOPVz\nqa114N5DIZ3rsEMu+lrPyuw9PrzbU/sbP8TL9cVVNyPWRSCiscnPrePWAVN0Bfc70/A5OTDtHq0f\nffZAkyNzU1R9t9bWuQ5Mm880Z85OtB5YTHT50K0sKdavbGtsvP5Kg/L0QOybxnfq88XbrOmMtXqI\nnk1V8WECo63HvO2xBlZYo8fHut7+B82VjdvqwzDQGOpU2UfC7p3H7KvKLfcxZT4B1a6aU436bmVV\nz7h/T311+r30na7eqt6d7V3nnHM56HRm+h5d9PqWYDew7yuhZ5HxrPsDWHSspYPfwBaDTbzEmt2C\ncRKh+WX6GVOerftC9Wi39b0G8bAOW7pPPLo4wf0JjQWfvUYNJ7CFFc3J8wuxso7Y69zd1hwoE1NK\n57hSvdWYqj9WTFsGcX//Qt+7HOh5+s/QzPkFe6SFZeqBSx9sP0Ou76JdEaLn0VzjucNgNR0O58Sq\nmqQ4iz3R9zwcgvZ+p3Z8/0bPbeHSdDxgpy2tupuW0kz3mCJCkvDSYmu7MUxG1yxc3IFgGWQw2Uxr\nJmKtN22YGfM1xLVp0tQXQxgipr82J85OYTFAcHRzGO9z2E/llD0UzpXmGJniUlSJ1Ydz9D6N2ZIz\nNo0+luM8OWcNrNLe2ZDsBtYBNzF2LaVi+mzcn/24M8YO+05LGzDGzwxWr8++3XQ0XZn7mOYMTJkc\n3TjT8QtgB8/Zz5Mk4XLYuxHMHn/IuxrrTBixH05tv0r/+tcKfzcqM5wrY/bBZTS81taM3UE/w7II\n2ZvV0OO7utDcCdlDLRHXj03fhblXqcNYv9TcPnghxmsI49I555bW1l0w9twZ39k9Ud9sws79vqW2\njXCyitAZNf2g9WWNweWm5uvht9pzHFxcUTfVwW+pLxtOda7hyHsKy7e6rLaurOrzA3SOjt9q7xGt\noPU6gZF8jkbZz9EG5N1hACt1ztgYDHBXRdNw6Y7Wm5fP/9E551z9Qt+79yu9eyXn+v73r7/T7++I\nWbe1rvXk4HuN4csL9r3st9vrOKq9x2GRqVtf1O9bptn4L5SCKVOUohSlKEUpSlGKUpSiFKUoRSlK\nUYryCconZcpkMc4OaDHkNRgm5DFO5/q/R/5gtUHOKTm8LteJVQ7FZeLrFLDOKfMoAmXDGcYQYQ6T\nXWj5jT3dZ1wiFxWmSUrObc7pcY6Kf4ffz3FJmoDmlUBwS03u53NiNhQyUAFhnqKREJBvWiZ3LSCX\neMQptD+GCQNC78GQmQ3IuyyTjwmC27dTdzQecqtfWHUJKuTtummQ6DNV9DFSmC9l8q5rDTRooCcN\njV0Ao8Z0KKot8vhgOMSWU0q+8TjWs2sA2U5mQlluWupzPYtlUCgf1fGxsRXQKGiUhXr0+jplLW/q\n71ubu/qJl/yrl0IkT8fKEwxAIpodcukfCd05vdLp5xz0P5rDmCHvMYQJUl7V6erlc9VjDlpza0Un\n0CMQ52okBHt5UyfZddTPp7gQBaBVPfIon4PavHwlFHFrR6h8qaYx9e23X+u6oEBXfd0nxf2jRN70\nxiNpI9x/KPQqC8lJpl9DkJywonqMgArynurx5p1O4t9zvxJQzjyF1YYGgs8cTBD/SdDcmYNUeKB/\nvW+E7nU6+n6tDUNoQ6fW26uq7xWOCjcpWag+qMMyMFApBrXJJij9l0GrYICYqw8EOufjapbCBpui\nAVKzs2u0oRLPHG1M/4L78Cw8kDiILq7KnBkloCnoOY1AWXxcjjK0WErkqpaIQyNciIyp4cq4YZjb\nmjH8QPw8WAspc7BmKBNIscPdwwOJzi2/G1Qrc/Y5mD+c7AegVhUYOXFiSAntz0GnYAIakSVAryil\nf0sgyxYvY9h1Fdo9juhHcoVT4u8MhMahRVOd3twNwzl3vdrdeaIxFjGXPBrog8LFMKz8Jijhoep9\n8r1YKi/QxNi8K92UCnM5J26HrGfjofr/7FRI0dWV2CVz3E7GQ9MmgzFaztzKfaE9y+hCfPZE6Mzb\nFq5le2LknX8jDaYoEuI1h61Ur6sud+8r3q3d1fUew+C4Ig7OL3TvHg42XeJ8VNK8zECVZjW0C9Bl\nWl0T22GQwy7tqY8azK3TA7VxfKZ49O65+mwJRs/yCk4zOMaE0KnSmtq7sKy1uI3NXo853GRup0P1\n7dtDtE5w0hp7+llh7Cfokqzfvjm67ZxzgW/sN421ekljcQMG0M5DxeG3b9TvpgP1el/MmdewV5Ox\n/rC2rbjvgYhO0CR7dYy+E9o4q+hXXF6yho/F9jjHXSNAB6WBzkd7Xe0Kl9TOn5V/cNH4/H/+U9cA\nGU/L5paiMXbVV1wvDdVPh+iv+LAm2kONzVe/xjUKBH5rQ6yIFu5T6zCgvvsnPe+vfytdgINvtV5F\n7HGyRnotlrLaVl+06nr2p6DW//iPQiJXXovJUUJnZ4k50GlrLZsRL0f72qc9+04Ip1dF9wwW5h20\nCkLcdV5//bfqGF/xfOO2WFx9HLNW7/3+HP9/Xiow/hwM54M9IcK7d75wzjl364n6qoTWwgC9t965\n4kBrUXuM0YX6Lhlp7GYLqr/F51Jkbh+aY9v3tc+Me4o7L1+KFXzO2As87ZGmZfVbGYb2gDlaRqvs\nAi2eMvdbW9QzP+nCDhgqJgwnsMWIz8fv9ftdWMq3P9NYuHij/ojNMaes55Sho7e0wp7lhebs8qWe\nf3VTf1/e0dg9fYEL4Ej1GcIuWeqg9Qiz/OoCdvJTXW9M3C3BSMzKGrM12G3tLVjWzrm9V6eu0tQe\n8M7PhIiv39fcOzkTq3gGS+ToVGPZNNhubUzdTcsEBl+VuBl7sIxgWY7RfGngJDbhHQBJFBeyeKas\nlWUYHQls/ChlbLAHKBuTGbbTCO2T0txY9OzPjCGOBkxIFkKKdliCBpXXQFMs5h3I9jIx7xQwUcqR\nOZpxfSh5EYz8KRorlaqeyWROfCOOxewLI2Mjx/oZmw4f2jQ5mpQ+WRUe60KDfevAGYMFvSOyIWp1\n+gm265RYFNJPLoHFS//NA8tW0J9zNF8S2LQOJk4IkzVAeHDE3Ar+FRbEPy+m7VUp6fmWmWse7OIU\nzRvfqR6VVc2d3oHeMbOn2ic/+ZVizu37Wuf3/yOacrz3VdcUE9tob5ryTXj5wx5qa/OWa3mR+/XX\nmgfdgeb/As6B9h5aYpDS1df7w8oacZS1an9/zznnXAyzu3NH8anMvEzZc2TM3zEMyFYNduhDsS/j\nbzVf38OsvBNq7VmHnZq1eYdDz+0C9tgVepmrHc25ZKi9zfmx1sBsWX28tKrrDC9wNsORbNiGUf13\nuk4Ks8/jXWcKE34h0ve76K2VGHNG2vLrrBfvtW71aj+s1f+9UjBlilKUohSlKEUpSlGKUpSiFKUo\nRSlKUT5B+aRMmXCqk/GmpxMun1zdiFPIYQslcBBmH2Vwn5x8HzTeHHNquGaMdSB27Umfo3zuowTu\ncD+ZwWCJGuidkDdprksJedEVNBWmpsXAdauo6icg7/UGLA5ynEuczDXNTcmciUCa85n+PuaUPCRP\n3jmdpFXrIKqcayZ99UMD15h5ZlA0zUIbIw10vwqq1fnV3GWWyAbLKPXIyXQgnhx7TjlhrqNCPqsO\n+Z7aFuFklcDKGaN/U4dxMiMn1CcntF5Db4PTQy/8OHT7ilzKg8M955xzL18LlVpDWXtzV2hH847q\ntTgSenN1rlPLKajP13u/ds45t/dSaFzYUn1uP9h1zjm3uq3v1dDAqXOynMMs2f9WWgDP/kkuGBPQ\nnJ//e51Q13f0+Sbsij7ONO1FoXLrOB+QAuuuuuQrz3WdpbJOwDsP0adYxGXpj39FT3A6iw5Imzzy\nBz8XOvf+VP3SrmpMj8ivRzLHTS/QTQHlq6/pdLcf63NbizB40AJ6j5PZ9Er9OMO9JW9xSg6yutxQ\n+7d3dXrtNVHrZy7ludHSQLhfCdVLj3X6POqSzw6DaAXk97R389Dkg6DO0GSZ4g5kZjeWrz3H+SAn\nn7hk8zzWvLR4MQFdinAKA2B1E0NPCJsROesxLkol0JR5buiPPm+OBRVT1Af9CkwyH0RwEv1YC8ev\n/DhPeexMgR9tmcjQFeKjD4MQlM2b6XtDAkQZSGMOShSByCZcN8/ICzctGtOhAkWydk9AqTxYARka\nWxUoiNlM/T8D1TM3KNPwMV2nxOoZmVMC2l0T8tl5Po7rTelPex5J2eLlzcos1py7eKcxHeCM1gJZ\nduQqN2HBOcZLe0sISRUHjGfPFQNefaWYUnmqsT7FKaPcwPEHgtIYBmQZCtcE5LWGg4Uxs1bXFlxr\nSfcyzyC/qflw77buEcHOGhxpfo5TXN5wS4pPhHL97lDza/GZ0Pi1z8SYWVtWnMybauPFK83/4bHi\npMekqbb1ufUWLkMLIJumdQMkmNdgPeGq9vZ7odfDAzERe7AETrrSaTh8J4eTxlOYFKDbyzABFx4p\njrRya6eu9/JIzBtvBpoeo+sGu7aMbsj4Sv2RolEVb266jymNqvLh7/7RH6h+I43dV+8VXytjdJWY\nU50d9FJwv9q4p3Xg7TN9/vCcdeMpThGMgZVdsQ2maHvd+9M/Uj/s6/Pffavntvfbr/R7nC6yOs5g\nfZiIISyG2eV1G47fHbrBKSjnkvrl5EjPIQKxrhDbvvlOz6XZRBPngZ77KuyvCmjk9q1t2q1yTv5/\nxRzciEkLHbEZZsSucJY4xzybZRqzM9aouxu65jmOTaMjPbOjN3tqW1VtOmat37itMbK0qbnwIBOi\negoTbbGmtp6hV7FQ1fcefPZL55xzK7swSAAu994Lgc3jHxxIblI6DT3zfeLD3tfqwxzm86Ofak1e\nhw02v9TvN+njy67q9/SD9iK9GGdCxl55S2N6so/D1VMxNjZhzd3/udDw8URzvfcB/QhP13/4GXo/\ngdboDoyYU0NqcZpc88RcqsEsWgxUj1GofsxAeE/ZM7052nPOObfxSHp5EayyOe58AQj1178Vq/az\nh9LfW0Mf6X2guZyybgWp6lvH3al6pNE1GOnnGS5LK6tq72efy23pEMbNBdoXwx6aXLBum0PVu8u+\nefe29ojOObfQbLg95vLCtu7bRufqiz/U+Orh3HbGOLzASTL9CLe/ADZnMDarLmOjmuYI7IA67zy8\ns6Swo6qwEXIYbiMcJT1ovTVYvikMySTBhQntwBkuPaadOE/MrYkNKHF+hk5bnsIS4PtjmPAkBTiP\nPVZ+rePG2s/eIIEWXGI9SIhzke1txsb2ZZ1CqzKkXnEDjZea4nuAK9UMrZUqTKEUdm2ILtOQvU/I\nO5eNLZ93uhmMTxcZA4b3FE/3yWBxBLzvNGpWPxg+6JaO6SefDXXOe8ycd8qQ/bmXf5xmpjE6/ZS9\nzxqMIrSFJkeK48YmXl8iVrK+zntav1vel/p9mT2T6SRONbCCFEcxWCpnF5rTs+H767pMLgYuXFl0\ngcn3ZGRJsB/MWeMnPVhbq/q5fVvxolHm3YM+OoapUoVt2VrQO00JV7w5TEXbjw/Q//TZn3ZWFcfa\ni5rf799r72BM9JXHikOL7CcntPUYR9saYz9ljJzxrlMn/v1kQ3uiIa54xwOxX1+f7jnnnGvCTlro\nKC7nFa1tw1MY3OgpVTfUpyP01xZK+vxqW/H/JFa73sPKWvAK96WiFKUoRSlKUYpSlKIUpShFKUpR\nilKUf3PlkzJlXA1kFhX82UxnRDHIaZV8Rp+8whJuRtmcvHfLt4TMMWiSx1nB5SLV94b4pTciVPbx\nvA8DfW6CHUgKPOlNdPJVKQtZSDhsrZZ1/xzINm/opK9jVJVEp64NGD8zTk+RenB5FUcEtCGmY32+\nZIg6rBNzMEpjcu9AWl2H02jyQScZaCPK26kdwg/okAy1+nLsgiGK1eS6ZijXl9ug1uTRJuSGTmAh\nzThJLtdAz6dCpVKuU+qRN10lZzZSH83R6ZnkfSoFS2hG3vQNywxE1oN9MDvR6evrI9V7gEJ+zt99\nkICDHrmrM/1/cVWnub/4U+Vje+hW3F7WaekJLKwKubJJDwXwpk6Y/S+FqgSGJFzqNLYV6TR3fK7T\n1zH6GpMerhXv9Pu9CurnQ42py776sYZWTWVV/dUsCzltLGuMnL7e53swVmAHXPT0/QeZ9DFCTto3\nVoQMn1TUjvBSaNLLl9KouYRBtLGI0wVMouN1tS+D4XN8otPdn/yh0K77fwJjBzZEB32nwUj9317T\nc/XIgc0aRmsgB5ixGZALnQjkdDH57oNjnYKfXAj9m/SFBNykYKrjMhgyJXQUSrgaDXlmHrZLERoe\nc7RmLHXfnBIC4kfozIkM1AoGWpXk+Ti3/GhDddBbwqEgTg1NghkDdSab/thlLUCXZ0y9ZsSrcm7a\nWrg1VczlTc+6DOg1mcJuQ8NgBvOuBHPG8sSz2PKXTeMFrS7Qpzm5sj7P7Nq3hlxiZ3neICmlwCgr\nsBfMVQk9Kp/nkZb0vWkJDZ/JlH4DMUXzpgQykUXkb1PvGUyn0JhEaNnkFndvWMYwg/IRGi+v9DPA\n+cHaGRjqhp5Ue02IR62tGGKuerM2Li4gNz4OFBkoZnlRc/DximLMArnLk5pZYOjzxzj5pGddd/I7\n6Wu8RG+m3tSz6lCHCKSvsoH2ilN8msDCCsaKj2McWs7PNI8mv1ZbvJ+IiWKsg7v3Nb9jW+RAnfIh\n8Yl57KHbZDpoU55dSJxN23rmOz9RPJreEzod0rdHz8UAOYfxGGNJMBupD4/fqg9mfaFZRzA65if6\nP4Ctyxot+lJjdf2J0LIKbAvH2Hr7TPGkXf043CkD+eweK/7NExzRrhTnYtgeh+9VrzLx/O2Z4ujA\nqIms4aubQgc31/X/Hu0OYLrEaDQcvtP1JjBzFogVb/cVv8+v0Cy7ti7DNZH89LT9w1xIrsbO4RpV\n2tQeYmVN111u6flnMEXbW0L1ggpOPATDSkMslgGMo+/2NC6THlpDZ1r/HKywL7/U+rC2g24AWnPB\nxLkK7McEjTvroZi+Wurqmt0VjdnKNzgfoj9x+faU7+t7QbTrnHPuzs81hrdMM2ysui/tsKbO9fsL\n5ucVfRufqE8PDo9p67UHzI1KZUHPZhUmzOlbzZXTPaHPS1t65l1YoaYX0r4txoeHBkLj6z3nnHP9\nicZQGKs99279TPWOpB918EJr4hzdvkf/Xs9saUlx5WJfc3xwKAZIb1lzpPW56rdzV8/8+Fx/f/tP\nmosZem/bIMUb67vOOefOc7XDXKKmsKUmaOL0z8RgWV3Rs771SHuqMNNYudzX3HnxWu1bvwXLC+ea\n/gl7hk091yp6IoHtGTI999cv0DUC/X94X3P97h8qxlTP1L7v/h42GfpPV2d63oevxGj8OXsY55xb\nerDkXn2l2HB2qL9HbT2vzrpiSMoe7nTCc6upv9utH7Rp/rVSRg9tTDypsq82cnvVmY4ZzrMNxixa\njwPGbFg1B1VzKoSViUNkMEZfEvZ/RnzJ2Z/7MDeq7IlmueYlpkouSI2VyzsQDluOuFJmzGW4F01D\nY9rxTmL7THSEYljBLN0uHMFmNY0cWLNVtGFisgtC9DZD6Mg+rFSPPVUO69bhupTAhKmxN0tsU8Je\nwUz3ypHpe+BoSVZDhkNuHaY6EjxumJONMbd6w3iKjRmKFg9zYwQry7YQs/AjX6lxHZyx12xVFU97\n7zXn37OOLX++q/bgEDlDdzWE1TZDm2ZuWpfsURJibK2q/y/cEWstfooT6NS4j84llbkLK2W31MHh\nlfFfg9m7vqV3kzHsoQZs/WX06o6fqc6VruJZc1vzyZszZtA9G/XUx+9ev6TuuCzzjjgwbVYYNA0y\nPnyFbTfh3ayK1k2OTur7v1fcijhXWN25x31hSL7W70u898/QP11AJ68PK+nyezEokxX1w+MvFd8y\nxsI330vLq13V9zcfKFtg75niiaew7JqLam98iOsTjl2J2UP/C6VgyhSlKEUpSlGKUpSiFKUoRSlK\nUYpSlKJ8gvJJmTI52gHTJogyp7qBed1zKun1QXJDEi9hRUzraD+Q0+r6OoEvtXTCNeYELgFhvULx\nvI4n/ZzTzoTT3xZIcVrGPSkwdw6d4o4HnDrCBhhyWlyHEWO5cGkVSAeNBo/8RDeiu+uc6kacvmJt\n1MCBxx+Rh8kpdt4AlYQ5ZIrsHqIF3rUGAswhEOEpOh5eqeQSUPEAhC2qqy7DmaH1nORzklzG8SBJ\n6ItE6EtK3nCZHEzX1qlnOIQhAyqeggaXrpMjdUoYdIzOc8OCxk1sGi33xQSxgTtGib83EIrz8HOd\n2i48ELrRMASVHFcfB63338st4uJY3zsCqV1f0anqyYFOe3e+FHp1e13MEreido4OdGz76r2u8+6F\n0KeUMdSu6zR0jENDDnr+4LEQ5Nuf6/R1njE2Xyif8ehE11ksqZ0DENIYpLpWg+GzsUP/oOcBAvHy\nhU6f80Cn2ffviJJSXtCJ+vY59WFuVC9BSMmXzFYZ05s6PV67p/aHmfrtcgSDCI2D7ivd590x+fEv\nxQy6HGvcWFJyZ1mo1r2HQtcs/3R2G4RmrH4fHJpGxs2dDjJO1k0LyjOGHWizH+Bm5sFMY4xHMFoM\nzSI92iUwzPIIuCXRCb6Xw6wD6w1gqBlKE5RAJ4hfAdBuCoqUwogpl3W9ONbnzOnMgQwHAejM5Mco\njAeqYgwafw5KBZtsAqIYwaBLyHuu47QyYdKEJdXXejiHoWM2VFnCHGXM1hLLLyfumnR/cG1bpe8x\nBsvcyFApH4ZRiXgWklc+A+XyyOOORlwusHim3wcVYgzaMhMYjeG1h8DNykoHJswDIaP3iIXnx8qr\n3sdpzKiRHojLAJ2SEGbLEs5GP93S3Ehjc77gOUJa2H8pllsPJPzijWJNmfz29U3N4ZWm5vreYex6\n5FVnzpBHfWdypbq27gj9WV0n3uIO4ZmlYEOMtzm6RIvvhN4cvxJK/i1ON5dvxHQIlvT95Z1d55xz\nHfQVDmDY7f2d5nUfTQGTQapfs6lgfTUUR3YfCCZqrinuVkqa1xsPdf2Nu7AIzhVHDtH1iE+pD8jr\n1rr6Jnys7xkb7exY37t8rXa8g1m0TDzceqT7swy5ifdx683Fkdp7eiEWRTNROxfu6hk9+pm0Znbu\n41oEa8tD6Kh3LLSwSh56GefIlWW1+9Yammegaiffaox89R/+i+63rLmzfkvrTeVC/VoDuc6r6DYx\neytNxdHYBIycc6tLq+41rkqmIzUmvk+YZNHIWHO6vukFJLDxljdUfweL5XjfWBUaX8fG6q2pfy8u\n1I7kXOOkuar+akZtN3Ia/x4ofkocPb+AGYMWyJ2HWqvaS2rTADeLo6d6xl6kPui+0hpTC3GmIh7M\nBhpDSVdtftFTH5x/p77O0SJc29EeYQutkrn3kS5uZfVZWGNvUVE7FtZV7zmo9cEHrd0++83xYzQO\nU7QU2J9d4CZ1XGUACpl9AAAgAElEQVTtR+fu/rZ0hnxfyOzBC83Jow9q/71bigUBzJJvfiM3KkOg\nW2gylFelGfPoobR13j6FlcreolJXe9ZbemaLGxqrY5jrrQauoex/P7zdc845N7mCTWfaNQ8UD5cb\nimEjH30QxujOrq77fk8aPOfv1Z61hzhENjQOjl7g+PhWY+oFmj0ZrI0nf4Bmz6pQ/+62xuqY9WMG\nS+WSmNK90DhwzrlKuep89jJvv9FcH6yrfV8u/KHqC2vkAo0wD30mD+bVTcoI96LAV5xOcYfzoMok\naEFF6HakoOemO2Zs3ggNmulMf59Rdw8mu9eASUKcC317B4A5AbOx6rN2MtSzEhpTQe1H1zdNlNrY\nHCP1+bysetdj7u+bvhzvJrBKM3ScPPYgKe9enjNWLC5TsBWQx3QJbGJHPJnQL0Fg+3atvfOm7lOe\n4Mybo5mSEwS4jDErPdxAJ2hdXou1GMkX7asEGz2fvUsKXyEzjRZiR5l2GaO0YQwdcxGcm2PazYq5\nZpVhDrkNrQ993PsC1p+lJRiOaAVV0c/K2NuW2MuU2FOmUz3f81NdZ+dn6s8SDppd9ueBbz3lnB/6\nLh/mbnjtCqn5s/JE7wJbm4qXv/l7se6XNjQvKi31/QgWaauqNvz0tuLN82/+wTnn3MWB4sL2HfV5\nfK64tQDLtr6tNgWsQflQbTmHvZUYwxw9zPUVXefkAPc4dHYefa53jIDBbvHmCte5lRBHRtyeMjJP\nKg3Ngf33iq/TI83RR1+KuThBh6jXUzuXF3SfVRg1B1/TLlhMZXtvsEwYdKaa1cJ9qShFKUpRilKU\nohSlKEUpSlGKUpSiFOXfXPmkTJmRrxOjObnAuQ7SXQmnnxj3kAa5pmNQwdqE00K0Hfo4CZVAoKfo\necxAj5plXd9ObccwURqwRUzZOrvidHZB18l6IMQgvT6nkeOysRNgyKA8PkAbx3LhfE7D7YC9AtKN\nkY1rhjgfVXVaORxwOg4S7lm+Zow2A5oOU0PqOQ/OS5bnqHbOm0Iumr5OQ5OJc3Pq6DhZn3PybPo4\npRasJHQ4xvRtkugUsF3CdYK+jFGHD/uG5On/M1g8KQrbVXI5hzGsofTjUKkw1X37I52ylkGjN3fJ\nz/4CnQv6pokr0AR3iBHaJDNy94dd0I+G2tXZ0qlpEKi+q7eEKkUN3IvGemZHl0KFZodCb978bs85\n59wCbimP/uLf6f4gzVXQsauRTuobPGPIWdcMGiQS3NIf/8I559xnIK6Nuk6Dbz1QHrUhJBEsrf6Z\nnu2Lb+R0cJngNnVMrj/PN+6DjHp12qfr1qh3fgd3kj4sC3JwL7tCfM++F3oX19D9YI4NUf3PQRYq\nIDRdtHqanG6fXqk+vUudPg94Hj5K5Mt0QGtFc7h2H22bExCNG5Q6rksJyF7AGJ/A/jLFfGfzCvXz\ntIJjAS5w85ruWQclmtMXCa5KZiTlMwfKMXMCF7Yy8WZM/rFvDBcYHzXcjNKJ7ler6H4J8aDMM/Jx\nwZjW0bxhjk4tX9uYeVU0WnzLF9ffc9CcENc4yzfOM2O0oGsxBX0H0fTRJYlgwBiq5sHE8WFvlCGy\nZCP0J2DYpLjkJbDFAjQEEurlGXMRik4eGEpDLKoM+TuaLTgueIYaAoPl9HOS3nyMOOfcFc9rhfhZ\nQ1dpu6Ux2Hkk7YHsgjFKznEOs+jgnea+bxpCOLD10dRpMK4a6MAsLePS8lJIf3yBe0FfHdDbU4y5\n93PlJP/8zx+6OBMKbLpi08w0vkBr6eMBz8b0xUoVtKxw6Ou09LP6WG0qt9TW9SFrAojo2Vuh5sev\nhE7XltHxAXWuwEKrVtESQXcpRp+pCpLXGwg9evnVt8455xZwmll9IAZLBb2dFihXAjvqM7RyXnyl\nOJaC8Ca+4m21tMNPPYvte7g/VdWu02/FcHz6tdC4DD26INQzauE2cdOyDZNnDbbAqK/rXVyKOfP+\nH75xzjnXR1stj3SfxbrG0NYXqtcER5hjNH3O0WK5xfqYg4ivbysOH3u6fhsmTWtV/fLLDTEq2ws4\nqY1BRJljU8bS6emb6zaM0zN3iIPE/nt0U0wvCjfEzJzS6noOJfL+F26L/XHvtlgrCzWNm7WW4vgy\n60bYNg0a5jps4/2vxfj89vXfqDKZ56plNDlWWAs7umYdx5X+pcbicVXzq15VPF3FFaje/Llzzrm3\n78T2GrzF6etArkRbsJC++50YInNYtbt39Pvbv9QaWsNJrFrVszr7oLHvV8zr7GYlgcVZAvCMSsas\n1J5iAQ0SD/eiLs/o6q0YectPqNdj7WGePxXb9rvnmjvbgebSo8+1J2jvCCU/eCFmx8XvtDZv/ani\npOn4vH2u9oTsPUYg3otoWzXW1Z9V2GCOffDpiZ5ZDzfQBz/B5aqjOTsc61lvLMDKQ7vsGXuDnD3d\nHdaH9R3tKeqsgy20WCb3Fc/3L9GsIH5W0QEJ2AtM6xqz4x3cqt4rNr15o/blZdXj/iP1393PNecu\n9vW5K/T95muwFlo/rBOL65vu3q72Sq8P9tQ+GD/vYe4wpd3WNk5n6jaXejdnQdSJ30OIFGXWVg+G\nWwl9jQlul2mGTiZrThmW/WyoNSuCITc3axyogOY8WUILMYedm8ECjjI9m5gx4QHbh7CIU9YuP4Ex\nx95iDIO7BGvVT9FkqcPShYGXx+yN0EIJEJZLaWeKK2tkWQEhjHzcXseZ6V/qGZWhmXqs9TPqW2as\n+qzFoen8oT2TU1/bj/ol/Rx55vQFs6Zsila8lMHeq/gwhcz1Cl05j3o6NHXmPNAQLZwYppEPQ8YP\nTUPzhgWGz5TnlJPt4M/QfGGdGLJuR9S7uan6XcAcvWB9KaElZNpzMzaXCTqmZdiGCXvEtY0f5sbK\n4ro7ebbn8gGZKR3do8l8ny9ofpoGagzbxuLd8FT/78OO3d7k2eDkNYi0FnZWxWZdgk16ecT+Cb2c\ndMj90BqcoIO5EGrtuXNPzJ3RBY6ue1r7Atq8hkbMlPgVsa9vwaKqN21frzGfzGH127uwMezRccpw\nGjbNWMf7QZWtxeGJ1q3xWPu5DV/xuMm70Bl6nxX0QNNrl+X/fimYMkUpSlGKUpSiFKUoRSlKUYpS\nlKIUpSifoHxaTRk7zeX0tAM0OyV/sRzhHgIal6FLEqMNkaA10I5BljnlrMB68FEoT0KdjEUwWTwQ\n5pHlzILcDmqcUY10EuYDjYfkgCVDTinRRBijFu3qsDXI40/HuLSYxgX5kl4sxKDTgP3BiZlHXnoN\nZCVAy8Gbknt87cpi7dEJYCVXe8x1BmLO9Wl6ZnoxacnNOPG2k/pGqGv3zN0IV4cq+jymm+GTD553\n1efzln6aTkTqj7mn+njCyfgiz6LLSXcbVtFk9vtPCf95iVZ06lluqi3VjPxlNAuCAYyUqU47n/+l\nFPsvzsWsKS0JHVtbVt9Xt3Xa+/ktndZ6IVo35Ccnpjj+me43GeOWtC80ZcxJ9vKuPr+8rtPebfKl\nK+SIhiCPzaZOskcDtf/gpdClHu5JrRUho5vbQpeu3qnee/Pnzv1v/6v7y//8n1Q/0/wx9gcn+0EN\n16Wm2pncFwq1uqT2nr4FZbrUafLL73AtgSk0gwEzBYkwxlAZef4JeZhztBHaNfXfPsiPQ1ephQbR\n2mPluVc/V3u2psxp2CjppfpjeAVrYK7+NQBoA4ez8UfIhcSM7TLaTQPmaZm85RzGiwdakKIeb5pP\nPqiIabrEIGKh5SHbPK3TN+RRz0FtIjRXEhxpyqArOQyRGvFtylwoMefG13ZpKpWaoT24BA1hO4Hu\nBBHMGVyChtZJUFeClLFHfBzj+FAH+vOMOUO+cQTDZUY+ewk0bAqKXsctyfH7FK2evKF+TWEjlNEN\ncqDxOTHBnLZMvMYHVR+z6mSghHUQZ0NvgrKp3YBmkZs7Jf7VoNpEs49j3U0u9b3+TIh7ugNjkrzq\nlVsa2wPuF6JZ0RsJuU0uhdh8mAmRf22skwGoIk4/62g4bPxUCO6dPxPi7WKeK85Iz34rrYvvvxYC\n3GmfuBqK/ZUFUG2uGY7V1uMPe8455w5egeqih5SBkDWIO9ESY6Kp64UwFysVxYVbG2IrLLYUX8/2\ncGRZ0d+XceWpkpMf4YaUkLNuSGTKHDl5LrT93VOh1BeTQ76netSWQZ1T4uEUzQXW4gD20/mJxuYl\n7hN5XWyIOpo1W7ti0q09QSsLtpn/lcbG/ErPqLKsMR3VPs6hK0anqcQa63fU3qrT/dfaiteVTM+n\nRL+0cWYYoXFweaJ61Gr63vvvxbA57wkt3Gxr/fjZvxMLZOcPQDhBRgenWh9ikNfTvuZOE4R9AN32\n5I1YDwe4Qznn3KQ7dQvoFPktjZ/mIvp46Le0cKppM8a7E6F8b99q/fmH0//qnHPuwY76OQbtW1lX\nvevE8yGOPC1cmLa+EMsiaimOH58fuApWKMf76pvagVhfM/ZRbq42v/8Na/ym1pLlTa1pG2saq+a2\nVgaxzWBVZVCRHz3G+Qt3jo2HWpM/HGlMVtAqyC7Vd+9gnnTWb+6q45xzGaxVc4sj/LuE9aMEa/gW\ne4LRU43hFwdCVCvMiTUcysbE29ffiFE3fqq5nd9WnF1HY6f7hRh1L/jchyvN0Z269kJz9qsjWK/v\n+FyYaa9T53MzNG2u2QQnuJHsG8tNY2VzCyetU/VTmKvf73yufnaw197CVjv8Tmy3UVdjqI3jSyXU\n2BizH5/D4PEj093T/Wu2F4GNu9zU3zurqvfhV+rHw6/FLAqH+t7uZ+qXWw/EKOoNNb6iM9bn7Afs\nuZrX3fY91X8B3aRz5tpkqHFz1rN9u8ZVJ4LdV/lBf+NfK5mxVXEGy2GkBexBYvTlbI2sMJY8+mjK\nmmsaKTPegUwLxfYIsUmkMIbG7LPtOrbDiNBmDGEsxrxzVFmD57BzHaxfY1wEzFEPd1JHfIT47ipN\nHBM91nyceqKBxlBQgsFpDB32PJ65JKGvZhwkCC+uAis4NjdAWMYhuiITHChL9C/NcX4NhjyaM1Xe\nJRPicgX3KWMOJdgumcZiCW0Yj3fTIXuwCkyfhJ/GJI3MWtfBSC/dXHfIOeeuyOoI2FM2mQMT3JNq\ngcbyEay0e38kJu3mrth/h8//Une/0j56cVPxOTIHTGKjH8PmrvPOiG5gqf6DG+5ocu7eHb5zPmvn\n/c/QlurqGj2cEJvsEYIMtyS+b2zWKhSSMnp1rTXFkeEFem0ftDcwttEVmS8Rjn7bO+jipfYOQkYJ\nmS6NVf191sX98pQ+ZH+YV9g7mTsqc/EQDTOI2e5xU1oxGe8LPuzfdkdjZHyi73+A0dxYh1GN7k9j\nQe30YdO2l7SXam6pT/uxaUii38p7RNpk8PwLpWDKFKUoRSlKUYpSlKIUpShFKUpRilKUonyC8kmZ\nMhHHolPU70dQPWqcKM1BJCxXrNLE5aQP4jxGpZ8c3GjOiXxLJ1xz8vxalp+PXoe5PEWcFvbrOuVd\nBBXsomUTuh+fxqac1pqCeprrpK6GW0sMyyJr0EBsSibkHEeh6jmbgfhwojgjBxrShhtzbmzaDOYW\nRSqti3voolQsT5z7kIeYgJSn5MZ5Fc+VOc+c90DaOPFtw3jJQFmu0XtT0kZDIFsAMeVEPk2NWUPu\n51ynfwtYo8x99Vkjx0seR6t89nGoVEhfbK4J+esPTI9hzznn3PdfCWWOQPXH9MHCou6zfkenqjkI\nRb+revzjyV+rnqfqlxAV9ZyT/stYv9+5K+bH4Rud7vqcQK+Qh36Ft/2kq2c4xtHAxyEsCNT+HfLH\nbz1ROx7XdOL99Guh7u+eCW3afyOl8PaGUJ8v//zPdJ1I9yuZU8+VxoCjXdV1kFDYA/WqUKAaKNPO\nSKfCJ2/EEujjWtU1xzKQmyFODrUJc4A88iDWKfEV7lvTkeX2ohkE42X8W12v2QahB1l+/Jna47Z0\nwj9ysFLovy5OGQc8j/mV8u9vUpiWLiZn09wVQlCYIfM8APm6zgwHjRrDaCn5sAAi8qYtrxhUxqOP\nMlAeA3pnMz0LE+rPr12d1MYGmllMS+fD3PNhk2XoTMzGoFKmkYW7HICwm9pcxSmgVAKlgo1UMvSH\nZ1jF6WCGc0uJ/O0AVpvdtwRaFNRA9QgBqVHvYP7N0Q3yyHv3cHQbEt+qOLjMiDsONkQZJ7CEfozm\nZuED0syYDaiHsa8A7VxOe8voXc1hLUy8j2NBJCV15NEljKa+kN2FCq4pya5zzrkR+lMr67QbHaqw\n+mMXrgRWWYCFxAw0cf+1EPEh7gE+mgZ1D/0ktMyasAtG5+gvnR65lGGfJ0KtMzRA2kug3Ay6lrlc\noO00GgotynH2G5+qj2fHYmZMeXZ11q7RQ9DlL4QaLzeFpifMiSqMm7D042eS8qyMdVYi1762oD5c\nWkfj5FjshA+vxTLKj0GNYJTUQehWcOnZuq161NtiCXx4qXgbwLI4P1NcHXVhLNJnpSUNkoz16OJA\nf0/fKY7sPlT8vmk5P1S9c9yJulOh/g1fYy5u67qLaOGUWZS7oHYRGmGXl+qnB18IJexd6qdHjv/b\nUyGfg/+HdRGLtZS9SnKKrlOs51oiztZB51wN/RLi/uP1res27H72xN37UuNjdKb7HfXQ2/he8f+c\n9b7WRmcKDbkKbh4z6GznuAzauvBqTyyFGo49l2NdfzRVfdsLGq+f/0rOG3eG91z3WPMh/kZrXd1D\nhw4rrwnzMiRuVonH457ixtqXYsoE6AX10VH47nfqwzbo72c/EzNt/0BtHeYaI1eH6uMqLKN1HBQf\n3RUL6Pj0zH1UQRhuNCBeNjQH+nsa691VIaa7jzWn5gTUw+9U31c4Le5Gmgs7DzQ2Lg809kYXWktf\n4xry4AvV8+49rZ0ZDMIa2maX1H+bMZCxzu2xR7pizq4+EOPj3rnuN0Z/pP1IyPIeTJTjt+gQoWt3\nfoEjY6R+nEANevy5WFEB++x3pm93rLU8a+i51mBXtZjzxtCZnuo+Z6eKAfc3NFdbVeZSG7Yae9Xx\ngZ77IBWifnqqYDnEqecXv9Lzb7bR4Pn+18455779R/W3+7+d+3DyzC1Vdb+Vu7vOOecW0I/qw/5q\n4m719LnmyhVI++4dGEI3KKhQOB9mSmKaIzgzOtuTOLXVHFTNdShDOzBkD1LGmRWyv8tbMGxgMAfo\ndpibUOCh6QLzJEAXJGMs2F5nwlJdrdo+Hk0vtBAzmCMJa75lH4QwQ6asA3W0riZouMzQvAnYy0QJ\n+0YcIWvEzQDaQoab1BwGdgKDKPVtr2VsZephlJoJ7yWw7Ubcz6XmQsTeDbYwZGIX0a4ZmpfGKBny\nPlMewrREr3OK22zInqNcYa8FMyYbNPj7R2pmsgczt7o6cR2ymjs9V39032vMt99pzG/f1pwt4/I6\nI9MhRYclQSsngqXmw7buz9GCJLuk01m6rkvmau7iw7ErobnVbusdoseYyGFmhzA/BmeKsxO0VzNs\n8KYDrdWHe1zX9CdxjHq/p/h276ea7zlM7SHvTjl6QQFasgHzr4NLk6ngzNnfd/u6XnNRfdcq61kN\nulo7/RrMZ7TK4jP23bCT/BQGM3p9IeuE6fxc4ES5i3PsyBwUibuDrukPqV5xDxdA1tgy9alw/0r0\n+7WpCqZMUYpSlKIUpShFKUpRilKUohSlKEUpyicon5QpUypbfiEnSuRsZk6nv6QvOq8PCghCMeaU\nM8918hZ5OiHLYIyYJky5iYI5jBXH6bEfw96AMRMYAs0ptevoPhGsiXjIqSNIbtYGce6pviNcNypN\nSy7m1BdE3EMLZwCM1rZzdJDVFFemFAzfJz/TEKOM03Wq4Zp8bg4SXuY0tzzS9b1AaKGDsdPKfTdF\n96Fa5RQS5C2x3H70cVo4zfQ5vew39Pky7KEKp4oQZlw85mQepG/cUt0rsIf8THW5wlFlBSTxpqXC\nSXxrQUjxwZHQi4uhTiPH6DyUt4TG3L2/65xzDrmLa8T27DkoFAIXRgIIjekzVPtWcDq4u6oxtX1f\nKIppByy0hYKVakIKuu+FHp18UL7kCQ4rDsaRH6EN8FyfMxcsA0x6INyrdfX/nftCn7Yfqz23d3U6\nG4+4HmyQAXOnDqI5gZlzBLpWrusU1+vreXY2dLIebOh5Pb4v1CeBVVLmhL+Hy9SY0+rSHESeMTlj\nrjjuZ/maZzjWeCON5YMTnaKXD6QNMTx4p/t5Jt2u+l/NdQoNGcJVOkLnotrNHTES6jInLgTkb8dj\nGBxov0zQRDGmSoweRwRDxPKLQ+bTBGZGjXzraxQnxy0oNecRUClQsTkgTt3X3+fM1wrzfQw6U+E+\nmTNtG+YWbAVjr5Gqe42il+g7czorgyrN6VtDGsxGIoThk0TmRsXnYOIlxIn5BOcHNAeyVM8gR18o\nj9HKgtmXwXooRegD4YRQwoVjjsaPaQeYJlfgc3+QF2N/mJtdCPtiiuaPC0FW+X0d/RGXfBwq1UY7\nJmZ96eK2N3caq4eMYcAnV06E5Czf0lysVDQ2BzGoFejeDB0tNxdCnKDPdGVObyPNgRGOQhegmXXy\n8Xf+5CGfc+4SRkNyrraOJzBN0ANqtHSvziOYM7hNLIWa37WKxnx9TYHW0KE5yFjvEJT5neLRh+/E\n0FuqqU77Z6pjF5irzNgNeYbVFdV5Bc2boEp+OToQrR2hSEa4HHVBeIFkU3SROhuqX+22Pl8v6Tq1\nZf1+fVt9P4WBeXKsOHH8RnHk+Ej1LjF4TddpWgExPCY+Tz8uxz9JtbanY/QuJqBwNd1ntI+b0hvV\nZ2FZz2HjsdaFelPx+tYToYy30cBpr6h/zg/U78EbnIJgHpYHxl7TGO3w/Dbaut7qosZehobPDI2h\nzXtiYH44P7luw2X33IWR6jvHtWUjUH0mK3r+86MfuxkuLsjlavMh7ncsUNMzrU/f49jz2/8i9oEP\n265kDKyyoN0Wjjm3EkPyS2710efqgx0xR2qGFDJ/x5eMzUR93b3QGOwdag6cobPmdWCcrTMGj/S5\nl0+1J5jNTYNQddrcEPp8uA9zrafrT+7tOuecWwbxjEsfp3Nn2+YAx7Nl9p8HM93n+e+kH/SkoXbf\nRfPEB7V/9p1YcK1t2MWLejaNZcWZywGag+j7nFeZkyONmZVF5h5MyRewbXdgvCwv6BkeG0PpVNcJ\n7ioeVVb1rLpPNZeyNd0/Ii5lxmAfaC7MTtVvaRs3qQ+ae60F7Y3u3tV9F8tyCjsHuX7zQtevvdDz\niX4qps/Sku53BLv44o0YOjPQ/az//7P3Hk+WJOm1n4e8WqTWVZmlW850jwIJQRjNuOKCNBrtccsN\nV/z/uIAZjUa8ATAApjGtu3RlZVZqcbUIzcX5eRX7Gd4ga1Wb8E1aZt4b4eE6vnO+c6w+hq6/dUdj\nOVjQ2OqmWuMGhZ7LOlHOxqrv2gZ6e7+SZs/rM62/xhjz9F9fm/ayzoLBU7EE1rd0vc0dnf2WPtOc\nGuK8efoK16/pzRlV1Zn6sEDDJGIPy2AneejgTa0WCmcFHzZ/lXP6GA0VFz0ly4rPLMtshFYIToUp\nn/dgLQSwVxN07kI0Hac4PfroW05noPkwdGawQH32dAd2q4sTTYYGSxV9vIL6ezl7PSyGKu5RkdW9\nY++3TPs8tg0AI2hmXZl4L7HOXOhtZpx9AvvOZDXX0KDx+L+hHYMKZznYGpkVL+Tdzuf8m/DCULjo\njrTQ9rHaMbgPVtjYohksX86GNb6fu++3lvTO0Xdif+730FycqN2qsMva6K9cvdH63V7W2F2AldeF\nVebVYfFFlraNXos9++GI5tAP81OrCGPMvMiMU60ZBx0gkgdMjktwVOMd0NVePTzWnuAiCvj5r7Te\nuR3YO1dqvAef4LJ0rD3q3776gzHGmDXc0epr+v6L7/X/zn3N19UFrd8Z3BgPpvG5zU6Yaz7WWrCU\nYAVljOFpCIusBZvKUurpw2T+cweuGJ22jPN5F/emwNV9Z7k9w2gsbNzTnhnBnjpAG/DZj6r//Qc4\n26IhFnM/x/vz7zYlU6YsZSlLWcpSlrKUpSxlKUtZylKWspTlA5QPypSZwRpoWCg4tR73irTVM3JJ\n64pguZGihoWr3xtEAWfkDzaNIm4ZUdlsqMhUQA7ckGh1l+jmcKQIXG1EFLZmc50tEqxIXwMEoZiQ\nh4nbkYs2gI1GxjhTeBblJ0odgngnRBoHsZ7TiVBchw0ybRJJc0DsyUONie4WMXniLuwQ9EqwizdF\nDdeoHEXtiT6XV1pv9Q4q5KjmMD8SA1unbRkj+qpnoU5Qex/mS1aDNQTLyOendbKqx4oqpujtBG0i\n4ESsJ7P304G4GggN+eoPylc+fK384HWQw0//VmhIs4770arGzqBHnjlq5M/Rr6iij5HhyrG8qSju\n2GqqvNH3AqKl/WM9R7ui6HAEpWOOXsQGqNuE+OajHeW/Bzjf+PTtKS4ZV2eKdHdvq16ffCZnlmYD\npJupEDD2j44VFd7/Vk4tNertonmQg7K1yU8fXIGseIoiu4b8ylT3XVlXP67dIl90pL836orqxoHG\nLimopmadvGBQJSAb43NFg1PYGst7oE4wmqbhl/r8ufJEexca29MRbh1ras87q2LsOLAGxmewyoZi\nCNykuLC+XBgxHmyuHH0NzIaMT659CgQQwAaLYZbUU8vM0FitVtAMIEKeGOsKx8cyUCAPNlFitWv0\ndwe0OIahF7vo7MDcm1rhfvJ8AbOMX/+5dpWL41YB2hGTVFsY6ywAKgJIk2Y2r5ocYJ7Hh+mSoUUV\nsg4VHveDOePWcHsDjXdwHGvU9DwRrm6ZdVKYgUyCRgUwGu0cmiT6fAizJq2CYDDGAtDDGFZWjANc\nDvrWREXfatYXaIw18vfDFMJFrU1rH2vNaKOX0YflhqGFGbCgTtDgaRdC1OuwO0K7bU6ZGzBlskBj\n366VmyMhvoMzdE6aev6FJa3bFVgeTdgnaW1q2l2hyek99ILIXa+NNe8ANE0ltLns7JmwtSIYjS4o\neoKjYZhpvosFlXYAACAASURBVFVXQUDffG2MMeb6idaVBDe72Yw9z7MOhSBvE63DE5h5Q1DuLbRp\nttfF6AhAhtdW1mkbfX8wURscwswZoJtxeCptrwZoU62jdaSLW55l5ARb6oMK+e4urLEK+iB1V+tW\n/1rrxpUj/Y7KezDujDFmbWHXGGNMG8ZNc0Hr0+Yd9UuwoD48/1rPcfBazMTXP2nMjHjOCLe9p96+\nMcaY6YWed2ND7bSIo1DY1HO2cStaAQEdTDXme4zFgLPLEFfBGWvawddy2Jmz9hljzOhsZGaREFC2\nLRPgYvjpr6X1YtCUsKyI/Rdap5881bjgCGRq6/rel7/V926xXyYgzVM0ZcaM8VfPNJ5O6ef28oZZ\ne7RrjDGmsaBnGxl9tso84jhlmh21STzQWP5x/yt9fi722AIspDu/Up/sfSlmhtPRWOij+zYhub+D\nNsAOe61F3acwly9PxeTwqlal4GalCiMzRN9i6Tdqo/aRziQ//Os3xhhjXjwRg+Xzv8Sp8YE6Y/FM\n9ZpdaI++Qp+ns6kx0DjDsaypekUslC+eakzXH2gOLN9TX4xGmrPXQ11nAxe5xabqNRirbyO7XgEQ\nX0e4i8JEusTB8uGqWGp+BTQdZmGuj5mDx7qeqWjdXFoWYrx3X0yolQaMykD1OTnbV/twFnh0X+tv\nHfbHQV/tML7S/acznUmcttphzxPzZ6Gm718MdH0XlpllA15c6rw7jDTXtpfEeLnbfadjuPv5lilG\nGtz7R9LnODvSXIv76EB9Kebi7Ycaj4cHqv9wcHNmZg6TbAqjpTqBHYouWcSZo4KrWQzbtNrS56aR\nPlcH9fdGOLfApEvRGjOF9oc5AmxNtJ+mkUXlOYOwPDgV6yBlzxiw/KvUwzpXOpz3LDMFZowHAyWE\nMR3BJkrIcnBhs3po5mQwMAOYNgXrlItTrXUNNPnPnTKb1hmSMWr15nL2vRS2rHUVStDq8mAAhb5l\n23L2iak3rNws01hJ2HdSqPNNfp/aw0bdnq103RlnqAJ2doV3zoj3G+uke9NS5TmaW2JpIZtiDvc1\nB9ZwXmvc1xx7+kex8DqwSjYeaN+ur2p/zKd6X7B6iGnN1gfme2jtrbS2XMXvztnLnjG3PtozR7Da\nezDWPLIbvIo978AYp40LWGEDdHmqkX7/8Xutf59UPjfGGLO4pQsV/wgrCQuvZlfPYDjf2gyUaIkM\nkCa6RGQTDKborBVqm71PdAaZw+oczXV/f4z7cIyQ0OznTo8h5+oxbLDzidpuydd6sflr1Xs2wRHy\nh31jjDHP9sWc+1jLnVnf1Ho5WlC7DFlX4k/VJ606undWZ8l9x07690rJlClLWcpSlrKUpSxlKUtZ\nylKWspSlLGX5AOWDMmVqjiJQc9A0H+X/wkKoCnyZBrld8Ux/qKHc7ZPTXwMFHFYU3vTIp6uBTA5Q\nUV4gUjYG4a0voN1g8zZhhZg5KCNoo0teuxtyX5tHSYQwr6DUDVOlQo6ahYAG6LIERK/9QJ+PYAC1\n5ooU9okmt2NFKMdEkasof9sIWxLAdiE6XCXffYZWhGno75XCupsY04IBYRktiSO0qm41PtCW8Ylk\nOz4OVjAwsjG6EUSGHSL/nTaRdCLmE0D65pSc9iFtis7H++ZcBoWedemW2mhp+Te63KaikKvIlL94\nLsRw8Fhtd/pC0d5bdxVFTdGrWP4UhBK6wxLoXHOsaOpP4z/q83VcNXAVWvAV5X35b0JGYxzC9j4R\najcDMbz/SPcr6LvFrpDe2orGaOtU16tQn9371h1Ev58T7T18LkbQ8x+Fug3OBFO1cGFp8twpcvKD\nuVCmxU3dr7OoenVBkvuHILl9XefZv6q9DnF8WCLSvryl6PP6ipgzNtIeW+2GscZgjGZBq63nquG2\nVVsSKujTb0FT11u9pXqGsNisU9n1kdA258I6I8EqeQ/EwUVFPcOQyoByO+gEOXWQNXSTEpT6A/QZ\nAl+DNoXBEsNSqsFYS8hXDkGzzBz2gA/CCqxsq5zD5EioV906K5CPnYMi1fh7gptGiO5ThFtTAqoR\n4GZkmTkeVJmgQMsGVCSC9eaBJvnWcQG2lgcDxq5zY+uogHNDpdA6N03JNyeyX+FnZl2RbH2tuxsM\nm9yuk+Qrj9G8cmHQpLR3QSJ9Fc2ZMet5AzQngfKTz9HCgTHkw9RJBzCHqoi/3LDEXM+jviu7QqeW\n0cEYwirpfS1E+vRQyOzJc6FWi4swXHCb8hesO56+X2uACm7peau+kOomLgZvYOT00OeoVXS9zEMf\nxsSmWgU1muIoSD71kLGX9vT3y2vGEltlPtSz9TLVueLq2mPcGPIrzfu1rW3z//9i/tbNR31+544c\nTJbQ7ZgzdvrfaT09OhKqPbnWunH0NY4oV0KZ1lfUpvUdrQsB6+YS6LlBS+EM1N+b6XtDdJGuL9U2\nFzhY9dBsqTbIG2/AFmNO2t+7m2jS1PV84VjP11iyyPDNykefw7xc1v2stsrlido9v+bMsaznWHG1\n3o9GWl+vX6t9Vm9rXa+DLCc1XW91Q/vN8obWxTFMpMG1+ucERk0Pt6k3L4S6JZeMB9gLAZDq2bHa\nP7R6dsaYV998Y8IuCCtoZIbOXnFbjNI5a5NFsNNI42dzTfvHHAbWbKz+GZ9xBmkyPgvdd21ZY/vB\nQ+0Xne/4fqTvXZxdmcf//J/VFrAEGm2NuYD5u7imOtW3cBbb1l700e/EhDnfFyp89BpG24XGxvLn\n+v/ejnTYwodyNMzHWodq66rLfZh7F+glTftqy8ffSdul014w71OuL3X9i5fqs8W27tNeUhvUmzoj\nXKPFMhnovrWmmEJ7e3rec5iIUayxUw/YY6FMbn96l++pL5/TXpY957lWm4yzGWPHapHVV9Vnw6ca\nMzFnjAXOCL98y1TSHB2w5kxhSewt63OPPhXj5HxffTq3jE0c0EZv/mSMMSYJtE7uPtAasvFIjBN7\nvnZw0DEtjb01zj6tTO3mo/X24hv1y+C1UPzjzX1jjDHtHdh4bY29bzm7dFbZR2HAXjwRS2seqN0X\nPhLLwBhjHnx8z7gR7JBQWjbffavPv0Z/cOFKz+ujcxJAX67AsLpJsexdy5gOOLtP55oDVTRC5rwr\n1GDMzKcWVWe95JyNvJuJ+b0WW6YbjoBkCxS8o4Scx3P2zCBSn845v3ucGz3OOik6l3X2m7QB84O9\nPIGtanjncdDZsNqCLnu66+m61RgWL3p1c9xfq7xPmNCKUtJOaKaN4cNafqN1cfJdqx2DGxPtY12q\nEpczkdXc4t3Q4Dxp2yfnDJPgXujCJg5mMPk59zcaMHtwlZr7MH/IFKhO2VcSWGQkFpjw5mPEGGNm\nOPU0WDtS9uHJqVh/Axiwv/r0b1SPE619p+y3O4HO25axdI1GTOhbVovNPkHvj2wPl7PQ8PQdL2MW\numaps2yefau9+c0LOe19/uu/Vlt01adXc+aJdeBjz5tfqW63H/6VMcaY43X9nuCgWEToz8Gut8yb\nCppets+sN5HPOlZbg5U10rvRyeG+McaYu78Ve7UKe+zpmdqkdRu9uobaZvyGTBYo8zt3tI54ZE/M\nnlimHhkoEOuWeZcZMIauJnqeYqR6XfIOuMLZJGCvnzKXi4i5XFF9moHVe/rz7zYlU6YsZSlLWcpS\nlrKUpSxlKUtZylKWspTlA5QPypSJCkWY0iraDKByQY7acajIVR0k16vY6CYq+7Av3KGil/UJyC+I\nzJRcMJsbOyAPuoN70mQIEt0megyaNKoRZSavsEKO8tvoNSlhIarOJrauTiDHRE97viKJNbQkMqK4\nLg41BY4TKayUlgtLAAeNGtHtDCQ/B/XKA/LMM/0ewW6p1ciZJnruEwWeFbGJiZymoPOtSNcco3vT\nYCj4PJJPrDpPUKTmmlXayEY5xzF5hOSm12JFB2cdWD0E2Ctj/b39nvnbbZgYm7uKWjqwj+Izdc7R\ntdCz8xNFOxfq+tzuJ0KvW9vqgwKthKVlodfjgdrw8KWin5MMBX/0h37zQFHYl4dCUVz0QpaJaK98\nIRTJAVmodYUY1tBA2H+maPPgQGjPzGr0wMa4IO95/A/q48m57u+Sq3t6pQi6zV398m/+G/2fObCx\nizI5mjsvUUIfwIixDhBbTdXnfHDG9WF1wfLISZ49RPX9bF9R51dVoVUGtoYbW+cxzYXbD3fVDgvq\nn2tQutd/kLL69EzjJiUqnKCbUl8C3asKNRzjPtVEn6nCnMlsEvQNCgL6BvMjM4FZ5uBQVcAgcwJr\nuYVSP/M0ATmLQZVqOAPMkd53mswNclT5unHoGwuSTHEvasCYmwKfxORvu7DRapbggdZMBuI5g2oT\nwKxzYDkUCWhWQAQepDJlrFSxewroowSmYTGzmlQo7kP0gTRnKug+eU00YtCKqVtNHtA0jBCMk1uH\nGxhIsBWqoEg5H5yF1gmAPPEE5wLs4OagiFOQ04bLOgd7LYPJVAUxzskrD2xKv2VLZO+JSpGL/Ppb\nIdlBV/XZXhZ7YWsJ568v5CJw8lprQ/9AqNXVAEcEGEXZCShaIFbDxgJOCeSx10MciZb1dxftsdev\nheh4Y60tRUfPWc8bJgbRyqaaj9blpu7jBkRb5eBJlrVUwf0h6YNUgpLXYKSN6aNeofWh3dKzLjdB\n3UFM+0M9y6yH0xXrTdFSHbd2hPJnrtCm3kzr7sVT5Y9fvNL33a913w7rzwbsgI37uu9qXetZRP75\nZK518gwmTgKqNYxh5qH3kILIjuiL/ECOB8MH+tzWlu6XMgYL5/1y/K2L3IjnOjnROnz5VPdpof3S\nvCedi0ePtE+cguK9/lqaKpYtlqLxY6qafJcgoAbdpN6l2uvouZhIo3ONjRpjafeerl//TKyQBqw/\n6/TWeqZ6DS7fOcPU6x0zJK/++gXMzEAaYM+eiSHZxZkyMGKJrN8Xw8kUrL9z2CkwO19+ozz6KaxA\nq9tVXcFt6i7M1R21S1jXnGqdHpnjP1nmIOeiEaj9le5xea6+3jjVnrDxKQyYR9Jb29hU2w6u1Ebz\nvsbmKsyTHJarNdl0cSA5P9EzO7gZ5WhcbeOmVnf/whhjzNnZuXmfYlmh/aHqf8KeWWnpDGBsH030\n3Mc/ClkOm3rOB5+JIZI81vyPrQNiXZ/fWNVzhTib+exjG4tq0wL9uzls2xTm9SXstTOc04pEfTmd\n6PcL5kqQqc9SnHjubOk6iwtqF+twubWjOblxW/2xtKoxNoP58uo57LwjtceLr3BzQhOisqQzxjRV\nf5+jRTNnrVlZ5wyDRsXCor63DevqT4diiR0/0zr8m/9WjJdkgf0BbchGqLG38xA9Lqvn9J0YPP0f\n2PiMMUcHY7NUV70L32p8oYN1mzMc5/w5a6lvrA5h3dy0pOikObA/RzABm1XYqOi4NRirEfp2VVi+\nOa5KU8cyOWD/2lc29gXfhwVgGRFor4T2VYUzRMB9qmjQQF4wM/Q1AuuKxH6SudaxFncgjzNV02qy\nqG0C9rqgsCxkGoBlb4ZIZZM+nuPymXEWsw6VMefoOr+n7Dt1NG4Mn5/BNvB5Jws86zKkn1VPY36M\n5thbm1jarcHencIYqaBz51jdvUz7yAQNGp+shDrvZvkI5iHsNIezTGhJ0+H7ZQLMyMZoetqXnYrW\n/VoLJyHe+RL28Yx+8tAIrXf1vA6Lnz/R88Uw0uv0f2o1fhzOC4zlxnLrbV2Gl7GZR4mh6U2/r74r\nYK+H9P2IM3u9ob3cgxk87MNiQjeykZJZgstmsgL7ivudo+1UX1ffLHAOK5q6H6+eZqmt+X085F2M\nc/fC2ga/c1+o8jFM80aHd1TecRod7XVbe1pHJmPtbcdHz2kL3ae7qD7IPD1nFd1UXt9NpaW5OZlo\nPayGjOll9VltQEZPg3rx7mkZ91n1z3NhSqZMWcpSlrKUpSxlKUtZylKWspSlLGUpywcoH5QpU0Uj\npgULI5ooQlUBzWsVYszEAQrfRF2rTUX3vAmRqJZ1RwH1K3TdENpHNFaIq0H0dM798jYK3WOrYI6a\nO3nw1S4RdRB1H7ePCXmiEdcJ0fPwcIBIC0XSWjBgpm+DvYrgEfQ2LpE0qzHhgYBXAYAHMF86KJUP\nu/q9jmvTiGi7ZeikRFFD5PUn+KOHjjEVkMeca81BWnN0Lnyri0GYLn8bOYedQ1080BkHJ4MUNNhG\nLwe51UxBoyaHDdUgrzB+PzeMC9DtGnl/Bz8oz9Fq4fibGjOffCZ0uwEy64DG2LFz+q2YI9//vZgc\nyVB9lntqy5UtRU+z631jjDEvz4Ro/vTPYowsdPS5Ci4gW3eUdxyBLBw8Fvr+7J+F7jxFobsJrWLn\nrvKr6+tqj85I4eihgVGSqJ1r1H/5c0l7f/E7aejU2xqTT74T0nn9TPfxaAcX3aXbj1QvAAxjUNtf\nwtnh3hr/r2lMD3vqR+t2FBHlHV6qfeKBLtRGQ6bK9XxQwD89lltHPOV6J2q3GDV7Q45uyhzrgXjv\nfaoo+8NfCIVbWNW4KMa67vT7H8xNi9U98oiIV4lEZxYlJ883BVQJYGAUPIsLquUV1v1Mn8v4nIdj\nV9wArSfWn8HgCGGyvWW+kNvuhloHMrRf3FCfS4x1kyPvmr/7lpkyhzFTWEaI6tngOjl5xikMIKuR\nUxjL3EEnwpLSyLmteaAo2D6laKtEuLzVgLkselZ3Vf8UjYHMMnNAdhMcuazuSB0dpcgySSZQgt4y\nf4DnrDsHKNOE9axmkQjaI+O6Cc/jwrhpWCeIisVcblbcKgxC6tE/QCMBB7JFI+TlNmtBEwcg7/Nf\nGGOMCZnreQBzCcT/h++1Jl3h5nR+DWsB5tLWLzT3KzAyV1lLEhhSPfLZp7XYVGgL67YTW4RvT3V5\nuC3dDL+p+ZNbhIyx/uoFTA3cOtyO/t5xQNys2QXojnMJUouexNWIule0L6zckmZKq40rRY+22sWh\nZE3r1GhH68rLV0Kz+pdq2+uJPm9egLj6+l64oDG3AMOwmMG4aImxETAXPdDwBFe/HFbo2RGuRz+o\nzXuwn06eibFjndVuf2Y1u25Wnv5J607DsnC7Yi0srWnd7+M+N3mi++ap5lYLpt/JCX9PYD7ijre6\noPqf4ySUFOhagKDfgnk4WNXnkhn9D1y4uCWULx+DzDJ3f/tXYpOMZu+YhZ//z/+DSVgLU9jAg576\nY4SGwfWYfWem9j3eF8siawkpnoFMb6Ihcwxz0Yf161ldrhY6Hi/0fY92X9rVGe32vbvmzm2NkSTT\nvL86F6uz/0Z1mrHHDHEUrJ2LGTGbaX61YTSs3tL8PIVBnbKe9Qcauwl7Uu2YhR49izDQXLEMvAsc\n/pyGrp9W3+8YHK5pTKxsCdkd47KX0Oc7Xa0fUUtt+/xQDJKWdWva1s/zPnpKuJxEsMJydDP2X2ks\n33koF5A6LiVV9tQWOkX39jSnvvnqn1UfDpz1VfXVHA2xUzR1Fmbqh5PTfT1HTWeMFu5y2aHa549f\ny/3q7p7OVttob1Uc3X8N7bSqo3oOLlT/4VT3WYZd0Bvo73POCM++FmPneh29JMsOzKVF08KJsQor\n7XKs613iIGkt6KwG2/hMY29yrLXj1pdai8Yw5fvXGk/GGBPWpiZD6KR/rLnqQx1dbGqOe9bGcE39\ntHyutcmdvWPc/EclhPGRoD9n0HdLLIOB+T+NdM0AHYqx1TiBURKiA5cV+lyNZ04s3wDmoGXtpnbf\nYM+v1GHQsM7E7KkZZ4XCvguF1hGWswTZAF6Fcz/ZDHOey0HHzg9ZJ9mbfRwsM1w/A9bHqU/bUU9D\nfaz7myXYZDBm8rFlEum+M9i/Td5fEs4ASNGYkPP+jDNSwZysVK1mlq6XV2GGwKBJOauEVusGFpgh\nW+KteyG6d5bda7if1T2xY9Ip3jFPblIcXKcY4mZ1k/cR9tPzF5pbP3z1r8YYY3qX+vziluaiHbvT\nsfbtLLTZGT/XL4mHWjNjR2tCF4Z7kb5j9rz85jtTqzfM7j1pdFV5tyMhw8xw+Y3Oda3lX4pZd7ej\ndfkEzamXaG2dvxFTMayoTk3Wfx8tvfRcg6z1peq09VBs2sE16+FM71BITZmGq7102FZjOdYFD+2n\njL6K0M8LN9AHYu5ZzcdgAb3TuXUq0/e6aIu5jNneka5TwIyJGEsdy+jm3XFGGxYXWm+SPpk/MPbq\nXX2/0oZ9Fb3Tf/v3SsmUKUtZylKWspSlLGUpS1nKUpaylKUsZfkA5YMyZWZVqx+hKGqLPOWoiSsF\nLIksUcSuRTRzNCHqCiqTz4m4Wc94IOIajgTWH3ycK4JVpHrsNnooDp9LcPWo1Mmr5DYTUMYG7JLq\nXJG1OYmZFaul0ADJxuEognZSq4I0477U7KqeI9yTJsTGFkBJc+fn0egReYrNkaK6OfmG1T6+66Gu\nM415fqKjFfIUq3HFzCooWSeq+5RIutVtSIiIz8jjK2AFFSCmNcKlNid0hnq5T5tOQe6Max1dyCOE\nyeHMeDar4n7DkqHrMekrH3nYU5R0hnJ25UdFVZ/31cbRHB0LopcxOaE90Gufvg/JLze52qi5rMhz\nBGpdQVl7a12oV/WO/l8HoTh+JnTm1U9Cpq/GQnHufyL3jk9/+2tjjDGrXeVHd0FAx+TqNieWzQDi\n8Aj9EPLVnRnRWfIZp8dCWM9+0P0ScmG7uDANz4guu+qfLZDXOv3buxATxoAwtJepVx13kRZMmHuo\n18O0mZ3puWLqfdXTADm7FPr3+s0rnk9R8wd/+VtjjDEtGEUWUT1B82Z8omh6r6f69P5F0XR/iq7G\nltrp+vjm4ySYwzTokj8L0lWQZ+zQ55Z5klumhU2Apg8KlkM7ZquJZcbwMSwQpjgfWMZNgC6Gh8tQ\nMdPnAlD9LLdjH4YLkfvMmqVxh2nV5n0zdkEkK2jGYChjagkUGPLNE8+6HDGGLIqDoFPIujUGJTGs\nJ3Xm7MyFxcA6Vytg8Ly19gF1siARbnkhTL05bk0pDL2KhxZMA7YDWjxunfafglS7FvFEJ6XGumnd\n5nBdKqyTAP8nHfztmLlp6VaFDnXv7RpjjNkBTXu6LxeO/X/CNaWpMRls0h7oHCHpY1Kef+OWrrO+\nIuT8NfnvSYpz3QRdD5CbRaM5bdl8CQjT2ibIe6tljs+E6s4vYBZ6evYmTihWZ2IOwudU6GtQ872H\nYp6N2RM9XBZCq0EAe2CCC1Lznuo8TTQ2HrL3zKa6f7OLYyEUm/G10PNXT6TXcH6ICxHr3DYMmp27\nYhG8/EHrQwFSeYlORHOseT5fUD0rjlCwOo5WIWzTYYyGC3trAMpWvyP03pA/PjzXdTMQ28TO7ej9\n9pvtTT2HdY7pdmGADvjZ1/5zei53vDmo2Oef/lLPAavr+gStmMfaJ66rqp8DXBfCllpZU3/evqt9\nYwO9k8PX+v7X/88/GWOMefqd1n3rVOHiDLf+QEygzMKZ/4sx+49fmhgHogUYSWvbeq7V+0L9V15r\n/X72ncb8ADevBmN0cV1jcvMjufhtxHPug8sU2gWT56rnq7HW8wruIJEj1NMZZaZgXcw8zl+Iai3s\nioXVuNJ82//PYrH2LrRXWOZvgFtHraoxM+FcGILGJzAUDYwaj3UoREep6mnvjn3VPcXlo17HpYP5\ne9OSTTSWFzZ29X1YwW/QVWre0ly9s6X/Hx6pjbo19I483Doaqv/sFefcupDarKG5ePQU9hGaLNGQ\ndRl287qjs0lrW3Mn/AFmJkO/zZzswOypcWaKZyDNVY2NqI62Ckhyp6u5e95Tvb/9BzFwBhMxWb78\npcbEShM3vC4akOherK5oXdu4rTPAGvvbEW5JV690BohG+ns20vrobPVoF9XbssEmff28OtWa9AB9\nwf59Pf/BY425l1+JDb3yheaE56N36L1z6VtoL5nJSH/vsT/GaBK9ONDfu+fqh/aS+mllUev/fH5z\nfarC6khazRG0wPxMfVBw/vNZv607jgtzJQ1xMqQvwyqs/4T5b8/XrOt2q3aspgkuSI51VeXPac2y\n8mHSsL+YGe9Kxrq7kUUAo6WAKVeFze9xQEzZw3MYPtadyLL/q1afrk4FeJ4EN6QYbcsQjcoIzRun\novYaTdER5eiS4qRb1HARsi6fHKYc69gD7XbC2a9izxKw0BowVBI7J1hDHKsXCCOnjr6n1dVrsA8V\nsPIi9EoL2MZFAMXohmV5RXPt+pnmWkD/bO1pDkV9rQ2WXLG2rv1idVvraw9G5OBIa6iBzTzhXbON\n2I2HQ2+FceHbs2Dr3ZiuZY4Zn/SMx7tdnT65Qn9zzPw7G+rnKjqR62hgzXswpznPJTj7Xfb17rXX\nfcgzaH6NcYyMZnrmZl3r9PRS68D1pdaF3ftiWnYWVJ/+77V3nfykPWd9V9/bWFWbZTiEzVnnrXbV\n+Rsx486ei6lXZ53rrmh+x7BQD851ZkkcrV93vxBT2kHUMMcRMoYF9/hfxK6dUW93Xeuh14BpznnY\najJaR7H/WimZMmUpS1nKUpaylKUsZSlLWcpSlrKUpSwfoHxQpkwDvQ8vhTkC8tsE4Q7xbHfIlx/g\nhmTIhw9dEEkiUJ6NEqOXkU2IOgegZVb6YUDU1FWELCFiP0fVfka+oQ861CQXbIyGTaNKtBrF8XkV\nFxNHkbGY/FAnE3vBI4oboVUToNnQNPrdsjvmRImDpo3u6jkTkOMZUXRraeTbXNw6mhFoZxRj8kR9\n/Rx7E+OmirDGKM9Xx7CCZkJJ+qkatw76EcDCcXBhSgwoF5HlLpHkUYUcVBL/HJujSg6sdXgx1MUj\nJ/am5a2jy1xjZevBrp51QehQDoNkSA7qNTnzBayG5oI6/fbOA35XPbugOwdnip52cIXq4TICWcIU\nDfQsUND2cczKiNS3VhRNdcnH7naFhtmJdXgl1O/lT4qi9kGw67AwJuQAA4CaCo4906Bi/tf/9D+Z\n4VMhrJUdRWd3/+pLY4wxKw1Q/3W1wwV5nqsogBcwoVL6qTfRWPzua2nk1L5Xv7dxHmiCnESLjBOr\nxwQCn1MeSQAAIABJREFUsrGhyHzVASnFeWJ3V1HsvU8UBW8sqh1ckBArbJIv4vKxo2h2/0rtMLhW\nf715ua92iYSCtRctP+U/LnZ+51ZxH6aYF4GQwfJJApuvDarj6dkd4Ju6ZaiALlmHFH9uUSoYMlzP\nQ019VoPRAhMmA6GLiXlXQWFy61r0luFnmTQ8CMhDDkKR49wwY70JcVNK3zJ9GKsVq/MES4DqF/w9\nciztSf8oQO2m5M7WYeRNYYFVUtAq4DWHz2U8f2zd3mDs+DgRRKBiNdY7F5RtCroUTkBgWMYyi27R\nLgFONX6d9dim8KNdEABjVWA4jus2E/1mxToXddG1aoGgrE6FmGR9zfHZCOe4Z5pTV75QrDaopkV4\nC7TFtrY1B8wCa9sVeeJ9zZXEMnt2hOgsbmqNiHlAl7z8tBaa5W2hv/6C1s3Xz6XRcvqttJuOuJhF\n8iIWqp3bQofXHogJ0YRV5ICUJbAKIuvo56IdNeZzMGoOM6FT42vVvYN2TR0XvOXbYjeEoGbDM6FK\nP51IV2dlS6hZpcJPV/cfjIWOD3q6bv9a62HBnp3CPmhaTbMVnLDQOptc6HlroFq7D7Se736hdWc+\n13NP0ek4/UHIYdZ6P7e/vInOW6CxcHamMd2CvbCxrXYwM7kMvTgQ0+TgBzk4tDela9FY0L6Qo+sW\nkz8/BZi2zm9vnu0bY4w5OVR7LN3TmFwscIRZ032KKuxdkPfqXM81fImjzfT67TP0T07NfKb1fv9b\n9oUNoYt7n6r/dh9qzDZx4bg4Vrsdw0RdgFI1uNb+6lnXviauUKuq57CB1s8rja+Xr3SfxgmuTenI\n5Kyry4ta271VteHdPfSK1rSH7Xyh35NT1WFq4Wm0+Oqg2+G6xoZd6KqQhNy3DGv2alhV/SvcQIzm\nXdZQX2RoQ417Q/M+JcKZqjJHi4t5Pfijnrld6GcOvF+pqO/8tjp/kT3f3xDj5PpH7YGVDnpzMIL6\nDSHBF+eaG2PclXwkUhZhzbmcZZq5GmLGPlBr6H57mxpDl5wBxiOr76Efdr2utDW37n8qPYuFc43l\nIS50b/7EGF/QWFhZ3tV9m6r/yURzbniuerc5myw2NGbuPlB7LK5r7MV9Pc+TH0GQ0VgLcZRZR89q\ncCkGzPVLMZGidZ0hbqHT5+A+dfpGZ6Ux+kjXb3DVCt+xAaYmNAHWRB1YDvmy6tmA3fHqlZD0Alep\n5S5aOo0Fc9Mysdoj1gbJHvDGGsMOY9OguVgJYVli8VLJYdrAnk2ssxjajhZsT2BM1nELmsMuq/IO\nEqf2TIEOBpopTRgTbx0M0TsKYOXG1g2K9crBkSqLLXME96FC61AYWO0bGPfoCUWw5HzcRxP2UBf2\nm4/WZcIcd6ucrWDmBLgFTaHH5mjOBJwv5zBDUs4oc6ulwhnOg1lkuQmFZfJwdvL5v2/PjJzcx1zH\ngUWM+arxOSsVnMkCWB4FZyI/er9XaqsP1WP9fvmjWBcrmxrjFbR0Tl9pHZ5uaG48RBdlyP4/m6Nb\nYs+mrI2JZxmuYqt4vMvO5/q9BpvOGGNW7q6ZybNTk11qfWvfEnuzgxNgbCnKvLcXI3TJtrQOXfG+\nm/PK11nUGSCwY2PE+zXsJX8BTSrONBHv23VYYdOh6lipaR1a4LwWw3gvfN1oaVlnnx7ZDPt/0DvO\nBNbvZ7+TRk4NRuTLH8U63eBdZg190Kuf9o0xxhzDMpqhNePidHiFNla1rX1s4YH64sX/K72fiP1q\nsYuLk3USw811CBOn0XjH3Pv3SsmUKUtZylKWspSlLGUpS1nKUpaylKUsZfkA5YMyZYYwQVKink2Y\nHgkIqwNinEGRcdBScXFDyciFrZIf30cQpT3D2QbUq03++lvBFKLWEyBq3yZugmg0yPtM2+SRE6Zu\ntNBj4f4mEsLiou8RJYqkNZsdfsfvnBy7FiyJEayMAmeFKs467hz0kig2sXRT4OLkEjUPY7RmYEP4\nClAaJ0Czoq77uT2bN2pM1VUbTq3uDuweF3ZPI8T1AYX8BMcUG/m2ObLVAcglLANTqJYtnAdyUPHI\nqA2cCSiRJcgk74dub4KirZOfnFn2FBHpKirkBQiDG//KGGPMjPueTxT1NUQ/qw19f2lD0dc5fbu2\ntmuMMSbFGebWbaFL7QtFQ3tEeecT9VGAynlI1HN8ob//eCF9ivG5UKMWyEB7UdcL2zQELh5GzW0q\nMHQixuTgRFHi074i6Et80K1pTJ2CSvUO9Lmzse5/EOBcAEtioUN+NJovm0TWjx4LDbr8UUyekKiy\nB8Levi3k2YpQPIJR0yW/unKp61rV+xR07vE/SGvi4kT12aR/lu6Rh76o36tLeo7bc7VLvaLnXyDv\n/uT45uOknpNLH2uMR8SaU/SLqugLWUebfKJncpgT84q+H8BIcyoa4xlodA6DxLEMPFgKOWhYEOnZ\np6AnNk27waDPyT3N0WlycC8KrcaKNWgAnclBlyxTpoHFQAbqVlgNmyboDho3U1B5zJlMzpyoMVdc\n3JIyXIFszn2Exk3hwfDx9dx1tFySGQygmtWcUT1tin0RobmFBkABgyWB3da0iAEODBkoVoHmg3Vq\nGzNXGuSJW+bRDLZWHFv0Ctgwf+c4c5MyOVF/Pz3UmG8sClGtgjjf2hVi4q9obFZheRTkeTep7xXs\nvBAWWBqqf7ZAdM5S3AOBM2PWohaoVQAza44T2XiuOV4JWyaENRQ2heoUvurmV9V241jXzqxrAjoO\nz54LTd4HUQsYBAEaIT750FP2viZuah6MuOEZrB6WdReEdXageVzf0jNuLInJ8/DzXX0v1fyNDtHs\nwnUtbqA1syQW0smJNFj6B2iC5ezp7KUubdxD36F5rk1tCDJaoF12cSE0POdz6w/VZ1sP1fZ1T/vE\n/IHqG7o314EwxpgBfVLZB/Vn7Bs0dtwAh0jy7pdgmhyeqF5rge7b2dD6+PFv/soYY0yQa+8f93Ck\nOdW+VD3FoWIZdsC6GImLsCW2H2rdLNwR91d/1mGmTnHaGbL/GmPM3/ztX5oJwiKzU7EFzujf52j8\n9E/R8mG999G5u8TF6voKFy6az004Jyyof1eXtT/4Du28gj7LYYvrwTDKmqaAqVdp6m9HB2J/BbAG\n6ltq0/UVMSN6UEGWmN8ZKHYnEHrsrmuPWODMMs40Rhc7eoYerKulCowToNtaxYpCwQyEIfPqcN+8\nTxlx3prH6sPiHIYfTEGH9bCASZ3GlpGDKx2sgJplQQSWnaC+aN3dNcYYc8e6A6JVle9p73z2T5rr\nF3314cMNnZE62+ydsKeGMErWH6E901PffHX6j8YYY5q4641hIPWO1U4zrGB29zT2LhY4M/yd1pbB\nkX5uw3rNl/QzTVWvAWwLb3/fGGPMc/aBxW3df+ee+jnz1O++0Vnk9ZWuu3wKo2ZLz1V9ozXwHBb0\n6x/F2Ln/a11n6w6aOuhkzND3q7oaw0X4zvGzGmWmAkLfXIDV3NE4uYcOX/trneG+++lb1RM2RdB8\n51TzHxUf3ckEBkMNFg7SJmYOg9xhweXfxkPPbcrYDzONGWvy4yIukjhWd02/Fw7uTPb7zJkCRkp1\nAhsVPaIC9kKETmeI8+zY2HmLzltgtSJ1nYg9uIaLlDFontR4Z4tsPWHswHK1rLTKmPtbnTj0PC07\nN5uhtwRzKIdVUSe7YGa1YGAE5Qjt5bhDVXG+TDJdJ6zjuEuWQ27dn3CDbcC6SGAzuDCUmjADJ7Al\nqtZ5k3pZpqrLAulkdn99vzNJHa0Xp672OzvR2L11S2yypYcP+bvWxBRd0Wv6s+A5ApyEQ/RUDGc7\nFz0qw98bK1q3qytinYyYK8YYs7R1xwRp3Xz/zTfGGGNq7OkR2onnMM+a7HHVVdW9xvwKYUMFiO8t\n/UoMltlY69QPT8UCumLvu/uFnnHMWeXVidaBDi7G7U2dHRz0ly5P0Ehd1tnI4Vz5+pnYmf1rzami\nypmHsV3hPAl5zPSO9cwu581PcN2McHVepk9u7Wj9i2OxSF890d746LdywKyTfZI5MMQ9NBJ513Q7\nut70Sn3k2fN0/OffbUqmTFnKUpaylKUsZSlLWcpSlrKUpSxlKcsHKB+UKVMdgyhUYWWgN1IhEjfA\nQaDV0e8eoS6LeCdETys471jtBWPz/bjesIZaP24b3tscU0XeoiEaAzgUORVF9iI0I6ogCnN0WOog\n01GIuwkIxwwWg/Upjzv6exeENY8VOSumVgMC3RWDYjf5/7WB6j026L/Y6kY2HxMEnHzSxEpnkPLX\nIUIY12ExTEMzhiFTd1GIJkoYTFGqJmIcgFpPrTMVrhkN1NjnRIZDIufGR4cBzYLKFPZSAXMGRk2K\nI9XEvF8kecazLm2obZ1CbTizuhpzIv608WCMjg+IQD6BTURbXMBAWQQNvxiSc7+l5xgeCrkcrKMV\nA9K6g1bAiyNFY3vnihpfH5N/eVvI6N1N5S9ej7ZoBxwJ7ivqGl2rz2N0hMa5UPIFX/UZoSlTy5X3\n6JAD/OwH0PmG6re6JNSsB0usQjtNYEs1K4oyX1zgtMBzVyoa6zt7er5oU8hsA+S8u6Ex320oevwv\nPypf8vgl0eiR2nULXYzMV/9OrnBlerNvjDEmR//k+Qs93+BcP58wSBNyXlfQBzg5Bple11yYxDfP\n80+MdSHTMxTcwyEhOicP2I6VOZH5Gu5GddCQjHUl9dBFwi0krOp7MShSDbQ6Y+54/O6i2VJzNJZS\n0OqCeZ0yl6z2k0NfZzb/vLBODKA25CuPmf91nM9cHM4i0J+iwTLOWA9wLpiD2Np1sUhgutBeKaiO\nzYuuwdJKQo3RKfWx9wsTkF7ak+obB1RmBsoUom0Q1rkOaKHVsuFrb+9nnRogRpqp1eiqs97TjgGs\nrNxq/UQWrbtZqYPex9fqjyb6GO1l1hbGg8/al+BMUO3hOgASPmR9r+IM1wJ9G+EctrytcZjHQlIe\nfyWWyPE3cjFxccOao1PVAtnJjWNm5NI/+qXchVY3hGi5HwntboLIzVjrT/fF+jk73tezTdi72Pt8\n2GARyF86wAVkjT6BdNRa0/rloT1gc9MnE9VnNEQD6kpoVi9Ge2RbTJXKKn3PHHLQS2qu63rNNaFL\nvXtqyxlucbMp7FUQ0QlsNx/3jBpt1dzUOjG60PcOX6oeoz9qnYzRRNvc0robwl7yLaPzhiWaCBUb\n+1ofU+bix7+UfsXFtcZqu4kWwGtcpY5Uj4tnQgP7PdyyHmrMTOmvFpoQdz4TSrgM06d/oPXPo95X\nqdq7w74VT2DGzDX2+rCM3dCeId6Vi9HYDNGwcUPONF194m5X95vM1V6nuDx9/pdymNi9o3otLrE/\noOlj95uLGeuydV8a6/9frqp/d//7Xd23hf6VNzH1FK09xmYFtk6DXP3zS7X5x4/E5mzhblGt2vUQ\nBqJldAy0l1z0dL3jN0I+Hw91HcN1V5fE4mqt4mrkaKxllhnIumJZRzcttWX1/fQlOkEwfqas47Zt\nGzAw11Z0/4Mrod3DMYizp/UihBUxRgfIg51QwFbI0P3wcFr00TYZR2g4cJ/Otvrs6rX2+hf/Jg2W\nvQewrVhgXdhNs0xj6fC56jVgjmecS9cWhaovb2kNWt/TGnTymjNLW9oxYc3qiKh9FmqqRxvdixe/\nl95U1NP3tttCusc4BwVdtWdGPx7w9zps3dVV/f/1j5prrw7FcGzfUnu067io7MGEvUYbbl/9PEH/\nzhhjXjx9ZT5Gh8pv45r1TMybdfp18bbOPs2Xasc57lDBWcvctPhWkxCGuVuBGQPTpca5KWlzFol/\n7rhYoOHowTTx0H6c885hrFMjOpuTBu8UMefvyIqg6HMzdDsK2AVNKC0VtGICq7rCHjyxkn4wMt0A\nt1WuN4XBEzqWLguzJ7COaHoO5y1zxWrhsC5XYCnz+8w6ZYYagznXdXneBMeyCqJcEA+NX7dnLV1/\nylpTQ4sl5yyYsw66MONz68ZU4z0HbbMMLTGPbATfx2UK9pefcPZhPc9g/3mcvYzLfnbDkqCJk9uz\n1gwHTc6uTd55M/T7mrikejXORjCGujjaXY50nXrY4fP6eYyGY1LTGrm+oTPu8z8ev63LZHBt8qYx\nBUzxDnpsDky/6zM0rTzNg0ZLe9wADb7BhdouaLHXWM0YDooHT2CwwRheY11BItUMr7S3tB9q/dhc\n1X3evNYZJ+IdYfuO/t+C/X/wlfbeGmPv9gM0sVZwacPluIfeXHsJLVf2yNovdJ8qWQ9zmMxZCDvr\nEq1WGH9VO7ZxFGt39L2jA62HGduQ1SFNPc40Vr+o8+d17kqmTFnKUpaylKUsZSlLWcpSlrKUpSxl\nKcsHKB+UKeOEQgIKosQznH/SDJQIBHE0scwQRSXHRG8L8rnjJnoYKciwYzUNUHNuKBKWkZeeEH0s\nUCyvEukvqopCRtY4JkbzxVO01EVHZFpDe4Jo7YxWLGA/eOTgVYl2RwPyD0F420SnZ0RJMxDvOW4n\nbgsNGeuuBDoaoisSO4p+JuRTtmIbnSYy54NI066F4xnH9H/2jIFFJlO1bR0nq4IopksElmCgSdBP\nsFFUgDuDbIUJYM646OHYyHOKuvqsELqz0nyX33uTEl0Lpfj+j8rv7YGU1sgTjMj5r3b0+/mZorGL\nIHvbH0lBvAH68rqn57wcCOndAnUqiNgHG0JnJnjOP/vmB57HRsLVlxu4YrS+EOqzgGNAy1X7noEK\nTchbH43EOHn9E24WIKIODJ8MlfdqVah9A52LLbR0lu8Jwdzc0PUbK0JzfBhOU5COeF+o0LM3itrO\nyFEdTMRc2vtcaNeio+su7JF/aQGPma4zARGN3uh65yAthweMI6tlcK7+DdZgiawp+r28rCh1DeR8\niPPDy2eKtoeRBs5FVWP17i8/13NV9dwHaFDcpDg5+cewhDBnMw4MDUO+8QRNlgrrhAGdmRNhd3Lr\nukZ+cwjDbQrDBacBl1h2VmN+FuRfWw0S5kwGwy6Z6zoN8rDnIKPWxcmZgspU0YSao7OBtkuVMZcw\nR1NQoLqLNgLfL6zLlDV+YB2IYHJY6SwLbmXMfeucVkC5S9DIqaIzZD9vnQ5c0KMCtXmr6WOpMw7r\n4IypHoB2xRb9oh4J61oAi8M6VbhoUBSM6RCG06RG/4xAwyxcdcPSwimmD/tsPAW5IM99ihvI2Smo\nJqiXx1rowJTJRuSpw7gMYG3UnmnMLz8SgmR1qfY+0ppy/K3a9eJca4BPnj1TyeSeMTnPNOqDZC7B\n4sJdLjf6WUfjaesTNFU+wkXBzsshGmKXmsdzhnxyqXUpAZnzyWXf3RZjzsV9rZr8XDdpfiH45/FL\nsRwOnugZDr9Hn8dh77W5+rjtBVVy9MmvtuuodQ6zG8xSF1efrtany6tr7qv7zId6rgosts6q1r95\npvXp5Cuh3eevxA6YM/fvPlL73LQ4jsYI24sZXcCS6oNcguqHON7kCIx0C9V7jBbO0Qvpply/0s95\nDXQR7a3mLbV3xHP20CTzYa81cIZ01CwmYaxOOZNUYBq+RZRBvv+P//3/NL//u//LtHxYcewzp+iP\n3NmVDgcAvhlyZrjEKax5W6yDvS3V72qovw8Hei7Hrn2w6657+vvzg31jjDGdlvQ9TI5G0WBuHuPk\nNcSJsFbVnru5rT5McHAcTsQgySwyG7MnMraOYVvO3uhnBiNl84HqfFyosZaqGlunsMcSRPc81qvY\nrrtcN7MaVTcsawvWGUf3mcMAdFnvC/Td3JrWlXX0IS7RmTs4AvFdYL22TM8r7dXRQO1VT9R3x5F+\nDy45o8BW6D+BJbchpsvKLdxJfgHrgT18iObOGM2YVXSLqjA8cxwmo1PdZzzS81xcaF3bWfjMGGPM\nRw81dt5UpLlyhnNiowlLGm2J1VXYbRs4yNT0+TpshX5mXUnUPr/8TCyrsyUxU3owE5u4nXQ5S4wX\nVf/hQGP92feaW0tbGjf37+ust7mps80MNtqLf9TZ0RhjLg+em+QuDmkNjdXhpf5/daIz0+YjseIW\nNrSOv3mq/koGU3PTkuDIaJ0erQZMzIHZ6ixZ3ci40Fh02ZtiXHnyHIY6zAnPOnfhVOOwB9WH7FHW\niZL78XVTsVongPQJbNa0sKxcmDmsGx5akZkVyAPt9zjnQxwxyOQZD/ZAhmZkg58pZ4s8tnp5sNQ4\nM9mzTA09upwxadBCiXkfqVjHQ/Q1/QbvF5ylIs73NZ4rsjqCmWWOcEbjbJXinjq3jpCcv7MG71Kc\nWbIpLzroFQUwVDL6MYCRNK1pbDZr76dhFtJfVdjbUzQ+Z/SbZS1bxo+P5lyBZtFhX/tjcab3lRxH\nsSW0H6274QmueA6Hw09/IxfX7U+sL5UxJ1dvTHQ8MkWqd5ombkf23WSa6GedQeShpZpMdTbIM/1/\nfUvzdcAZ5uA12QczjYntTc27ChqxljU7Z9776CKt4TB7NtI8j2FtNuua3xXPssr0TJc4Gi5PNXaX\n0BibMbaLK90/hJl9SRu/vtaZxrpxLp6yJ8JCHsB4WX6k/4fY/c0ner7uotbTk3102NCKLQr1pYMT\nmU/8oojftfm/V0qmTFnKUpaylKUsZSlLWcpSlrKUpSxlKcsHKB+UKTNHi+UtbDMmikxObZqTS2tg\nuliGjI1SknPrksA5L8gPJNbUDXXdOVoIJlJkrmjg0pSAENTRcCmIBOa4nZA37pPPmcQWIeb75AQP\nQC+rFfL9R0QSYbY4ILTxXEjEZK7fO2g1zAg3e4lFEQnhkQtXqaJxMYeNAqKf+yiENxQljY0QqC6J\noWPaodXIjCFyPvSo04icRJDQjFxXH6X9ooceBn3hEdl3Y1wYiFA7jqKSM1DvEayiFqwBj0h5M7bR\nwveLA9q876tTcv0vdJ0R7IawhWbLlpDKja2PjTHGVBeFmq2tawyMQCDMs31jjDFH3whRtYwV81p/\nz+n7KQjC8FxtW0XT5v59XX/trqKmNVD+swOhRn0i3nXyv6uO+q53qf9vbSn62yDfceU2DgDkudsg\nqof+R7ihqHDB98/fkL/+7JDvoVfiq/2HRxrr55dC/VeX1D9bSxobi4tEe3FXqaCDcnisqHAcC52K\nrfMQjhWdrr4372uOtIjEv3iidlwPdf3dPSmut1BO9xu6TmNf7Rg8RJNIj2lyGEHboGEx/6nPb740\nFbgceawPuWWiMXarIK9VVOEzdDs8tFistlMGkopMjwlBo2cwOPi3qVgmXopzgHVtKux9YdTALqrD\nMIlwlQthk80LjU0PhlzwNg2c9Q1HhLfWCxb9wVkhSsh1heXVABazGjWF/TroUwi6ZCagVCC0jdSi\neaBmoFfzgHWIda8KipawLgcAhymfy6ywRWQdH/R8OWwo136AtSSkPxxcoaaRZSLZftPPCUtGjXrG\nCKGM3T+POPyXxeHzKYn4c1yU0kvdYIqbS0j9cnRZLPZl2XhT1Pbr9IfVb+ldC2mN/0Fz6eq1rn/n\nvhDmW38tJPfuXJoGUco4gmkUBJHpXYOyw3A5/O5rY4wxlzAwfMts3BQKvcq6tLQjRki4oPVmATe3\n5pJQryp9lm7r3jFIoTtj7DtW10blAgbH+FKuQtUmDieweza3yCdnXbdoVwH7YAySV0GDKhprL2ut\ngqavSeeiVlH9PTQD/ExjZmVR9Tk+VTtMYcykjtadO7tiIU13tD6OD7U+nu5rXUxSrTfR+w0R0+W+\nHz1S/Z7F+8YYY57/q/ph886u/v+F6t2C/br7l9IAStCLGx4KvT+HNZFcaWyMcGLLmINd2L5Lv1V7\nLlW1zjowalKQ2ximYXSusXmdqD1quOnl6e7bZ7jz8FOzCmtisaL2usa5JkN9pgoLxQtBZq903dM3\nGrvzvuq7/4NQyhAWyNq62r3Z1TjsoE23/1ysiqav/P7AFVM1mg/M3h3tmXlVY9HAbH76x39T3XA+\nefpUjArrthHAgJzRxjUYzvW2xspoqnm8naqv2qzLWUd9c/6dtEx6l0IwY+7jsT8sowFYqb8fe3fE\nuSqvse5ZTSzYAFZ/aa4haIJt7XFLp9oTc/QvRpeaIx6/W9ZxhXW/gbZCvq/2sLps3ora0Y10n5c/\naY7O2A+Wl9Tniyu/NMYYM4xwbjtVe3voyt36AnacdQ9hzj5+rLn69BudIaxZyJ3PxWi525X+0BiN\nhayvMf4Gt6XREB0+GIZbMKK66+q3eKL+GJyp/su/+wtjjDGrtzQXLi7FTh6jV9TCZXCdNc9r677T\n1xpzZ5ewL67196273A92XmX1nRZMWF0wBu3IJuyKdldj+/xCHbB7X//f3ED7ZoquVy0wNy2WBZRa\nNib6kjXYpAUs1pz568AKncEmqqMfmaORUocRl6PT5syZA1Y/E0dHy64PLWuVLACrj5fCfk0YE3Ur\nWFdVG8XW9Qldugpnp7l158RdybO/BzD6mLMFenMx9fHQwatwprBMjYKzlddhx7HaOyl9CXutOrdt\nzvXRVnmrG8rZKRpZtyjcoTzLJORQxb5SoFXmpj9nF9tzdwjNOU7Rbmla1i6aN1MYpmRZFLx7OuzL\nc9jMNy0xZ9HZiDNfgFstZ8s57zsxr8gtnM5CmD/TgXVP0pxuNlTv9Y85f6N/evTy/zbGGHN2rrn3\nCc3SXFt6WxfX9c3ocmaKiu7pcj7zJ2RP8BodtNEfpU7nr9A3WtB6tb2pPcK+T0eXapMaWQFruMtZ\nNv7x0yc8E0+Ce/FVqj3vao4OzrrOONa5q8159tYDna++/r326DHfczkHt2GavyFrw+voLOMOtb5N\nXojJs/EXqtftT9V23/1B69Achtyn6L9dojtXYwzUd/Tuk//JsuA0RhMYMlaD0pD5U6v+eWZmyZQp\nS1nKUpaylKUsZSlLWcpSlrKUpSxl+QDlw7ovEZVMm4r6hRYxJo/RJ8oZ13FssR7sRGGrILhJRSG7\nLjlcfXLAJg3U/q1VO/mI9RmR8w7K3KjnWwR6RoTNIe89DlDYzmyUW2hTzv09q28yBfkFyXUCIa/h\ng5Q6AAAgAElEQVSke5vCUwSwEqheIyKDNfIefdseqD5XyOufE3GLiRA2QDkrRLWnA93HrZD/z3Ur\noSKD41loaqDEdfLwDGrwUQ10H5S/mtImTT3jJFdbdmiLPhF/Q85oSKQ4hY3kpOqLMRF4t4XODmh+\nlL2fDkQbF6Tb2zgI8OweaPwcbZJ1lPqHyMZfvlaU8+QnwrtoGWTkXN6CUTNGZ2j4RsgmhCIT4pjw\n6adCk7yhPvfsJyGB+08OqCGIBGwp6yZURzW/vqbI9vKK+t7DqcY673Rb+n+a2wg9LIIFPdfWip7r\n5UxjZkYi5PETRXeri7AtQNvmgdpn+2MxVnbJ73xzKAT0h+/+aIwxJhqhsA5SPegLhUOU3rTXFU3e\n2RMCvL0nJPccPYwZCPvKo4d8Tv0UWl2muep7AFp5caLrN9u6bmdNn5vjvPEDCutMmbeMgZuU3BJJ\nrJgM8HjImE5jXJXQQvFABifoahhQEQdNF4d5PQP9aODaFsFsy2ugRNZpBlelSlN960HtcFDEt9oH\nKfnAOX3vMvYqaM0UrC8sL2YKs6aKs0yO/kdB7m5g0aqq7jsnL9tLgDBwRquDIM9Yn6wukgs0MUPk\nJed+zaquP4et5cEUKgqYi7DDcuaiZQA5IKcBrklT5mYdRmIA4yeGkRPDSrPObDW73tM/GW4hIWjh\nFB5Hm5xeD+ThpsVh7XtwG9X/B0KXHOZOpcHCGYEQsQ+docMymQqVandBjkisLxgP0anaZzITy2CA\ns83zEY49m7BAVneNMcYsrOACMGSdzjIzPBa8PsN9J8KdqFoHiZvhIHYqRsg+DLfnPwk1bq9ofq2x\nHm6s6h6QSo3LM2U885tnmn8DWEO1JpoBzKEUpylnQfWpO7iB7Gld2QBGj1dgZnS0zgXc17UCbWwb\nfXLfnRbaJMzBU9zspn09j4+2VgXmYRUW1QTEeAgj5dYD6UZkaFmtfSn9i+mRULCg8n7uS1MQ34Qx\n/fF/p9z7xadCz95cC2l8/FjoXjLCkaFjEUe1VweG404g/YpZINZCYjUQOMsMGVv7r7WvRKx/rRZn\nGjTK2ttq7+anWoediZ7TOvVcoIFmjDFeGJjBhfqrughiDNPFf6vvpH66D2oZD4UuTqb62XZVkY1l\noZ4LsD3WV9Ej2dD+2H+hdj6/BnUE+d3a0XMfXYUm2NJnG+gN3bulvfy1J92wBhpWs77W0e6e5ncL\nFNe6TeYwEJdgZZ4ONGbjkZ79+YF0Ex429Yy79/RsXXSN2qDMGXvtDNfLSf/mWiHGvNPLOO3BuFhX\nfUYroO5D7c3WXa2KpuH6QzHlAtaNiyO0cRqaC9dDTdKjp3qunY+0ty4zliIQ2M5YY7A605i/vNIc\nfvlP6rvemp73o7/VWlCgtXCFZo3v6PvZ11pLdj/TWrH9ubRUEhy/nv3hG2OMMWfH+vxCG/eVBcu6\n1ZiY4/YZgoTPrvX8L0WiNQHIcGcZ7YUn6qfhiea8n2ivj60+IQzwGNHG09fqz52Het6PHmgODHd0\n//65vn92quvOLZMRh6N09M7x0zeOSdnXYhziEvQV40xM9inj8Rh2cpbiOLnQMTctIcwQAxvXaoDM\nYMYUM81r60yT46YUoGESFxZ112USGOiQTt86IHqcPVJe5epzq7ECIwStGUOfOmQn1NnDM7ILXPZu\nw98jdPAq3N+zTBWr6wbjL4Bxl3BwjHBhDWAhJXPebRyYeYHVTNHfK7a+dH4dRsq0ZR0eOVPYduRM\nlnHezmGbOrDpcuZWjP5bCEMog3nkcFYKEs3JiJfDBNdYM+QswN8jruO7lk2n70euZbSg0dlgjGWW\na3qzUsmaP3tOy+J20FaMcFjrkG2x+lDvF85A7Ts6gjUWM/ZHut6de1p/M9ZMqwHE0cwkMRkT7ru5\nkU4T4yzlplvTPEv7WlfP0RNrw1Rrwkz3I937+kLnnRzG+bwG6wmNmF4Ph1pYvJvowY1xyzvFTS9k\njLZWVMmrp6rjEvp0D/a0Tr3a1/qYoNW6tqF1K+D7BXpLHcbklPf+GXNwm/Nbuqq2jOnTOnNoxBkr\nZ29eXEYnc09MmTd/909qsB36BPe7Bho7OdkhPuviYK51pHCscxkBgf9KKZkyZSlLWcpSlrKUpSxl\nKUtZylKWspSlLB+gfFCmjI/bUgjTxOYjTuaKgvpV6z5ElNYiBdZNZUxOPuidZU00yDe0yHEEUlIl\np9i1uhm4aPjkVfs4CyVGEbB5LKQjBiFvwi5JB4qAOR2cMIg2p0Q7bX5fNgWByXV/HxGGAq0Eq0lg\n3T2s4nalRrQcIL9OXmaB2v+EdvIRv3DJL3TJR0wRv/CnRJX9ivGw34iJMM98oR0+zk9d9G8sQlgn\nV3wOq2jQsmbyunerRYR2YNsG9B118og2NpnuMwUhdIM/HyX8L0uMunljDeQUpDQhcp/0FG09erxv\njDHm6Sv9vAJxbhJ5r93S92/dfmSMMWYVJG+pAnvqjhBBU1OkeTpWdHgE42NhQ9HSK9ygLq80NsY9\nkF8i5b2RUKL6GNbDuv7/278QsukvCnGNzlTvV6/lGnL0QsybgCj0OErN//Y//ifzzd//wRhjTBXm\nzoNPxYCJcFOaEs0GTDQrWzBcdhRVXl7Wc+ahIu97j2Bfxfp+yNyawVLoBmqnCewwf6LnHF3op0V6\nOyij12sV6q25+d0f5DLVXlY9xqCQe5+LmdReUf+NDjWXbAR/CJS/5sMcgmF1k+KiweQz7qfkjOeZ\nRYlRX7dK+ujktFDiH3l23pI/zBwIWFdyXJgCGDQuEzWCCWPZBw6aKVkDvY7caobo6nDUzNy6DcGy\nKiwrgfnuw9TwmFNTmDR1bN6sE0PmkEcOAlAFNU8S6+Cg64WsTwUsrQrrh9VuiXAscMi3NrAScpsP\nDqMltk5stFutji7RXH2c4jzgWBUW0MKoAsPI6lZZapPRWtDATSSmHxyc3izY6LAu+/Tf1OY6F+/n\nmjKH3ZW09bydBtY21pEBrbAsRAeppX5aDjVn69eq0BCnGg9anYcT0uKe1o7+tVgNzoFU/fOZ2vF8\nX2hW7zluHuy+AeMoyFIzBSnr4PCycleuZJ3bumYFt7nJlcb06bXYBrNXmp8XT9G1eSVU+zl7IGCO\nidhrGjAXrQNgjn7Z5rpQp86W1sM6SOkUltEx2iHTI6E/DuzWhD3POr3UUhiDoPzW/CPFBeinZ2Iy\nhiPW5z2h6J0663xX1wsX9NweczZ+jMvS19/p50utm2s7+tziuvqqil6I49xcB8IYY+YjMXX+8Hu1\n5wa6El4DrZ5FWFpoG7w+V32+w7mltqCx31zU+te+pXYMYYNVWVdHMFLrnFVs3v4UrZiDn7Sutzpo\nAwDk3r2t/PnrSPvQehcXp8H522fIJwPz7Q9fqT44tFk9jAjWRGdd+8Paic46U9h9w76us2QZmOus\nWqB7z5+L0VPpa53eXECXI9TvVy9hkuJE4aUzE1e1110803wIQK3ba3q2+22NkUtXe258pPll0Hpx\naSuXsXrF3lXDPWdxQ23cXtAzLcFcicaq82Cgusxdi56jscV6Npq/HzaZxui44YRlMrWh1TA5H6HF\ngtuIc6V1Z5WzxWwRd0721tURLKxY7LeDV5pjCYyejz4Tw2aZOfHkDWP+nnT0Qti4hz9IMyaaWns9\nTboUJkh3Q3NycqB6n/8kFmsjUz26v/u1McaY7W214+GS6mNGmtNPnqr/jC/tn5270phZXNUZ484d\nsWqvOBs9/vp7Y4wxzZYG79bnYovNYbRGMMLHrHnVjsbSxrKep49+0kUkpL34FnbuHf19B32nhVuw\nLJ7D5h5ZzTWNkyx5x84u/ImJHFxYKzgFwZDcWdZcj2DpnrzQ3G6hy5JmN19LMpgmDjpvKSz4ihWO\nM9aFCEY5bNiIs0OQWtU99ljGfjG1mzrME9hADntwzN5eSfh807YFY4JncSL93zJyqtZtiTNCaM/X\nnPsrMGAKy2yxzozuz+vpwhbIOHs5devupE/ZrvDt2QNXIStmNuPMVRvbdsPBBsZl3uA5YBil6Dk1\nYc1OfcuSRhcl0t9Tx+oNUj/rcMnz12jHWYF7Fe+EoT1YF/QPLN0KjrcxZ5gazzfx3zFPblLSGgyZ\nSO24tqxztU99T9F2Qz7LtHz0SWsao4vLuEfRPiFnG1uNMZo5tQYur5xdA5hFl4ejt3WJrxLTXrj9\nVuPwm+/FlOu6Wmd/8bGYe2P2nueHWudytK1i9EbTHu/JvBMsrur7OXuf1Wb1ONem1zgSoq9ZgVk9\nu9AeOGXuNHFVc8+0LvVwybx1h/P8utpmAvOm4NDj8s4yPNE+cIEYztodnRm6MNCvYSxfHIvil3IW\nWd7W5/df675XV3runS2tF6mtL+faJvuMy55ZR2dvAgOv6/55hnfJlClLWcpSlrKUpSxlKUtZylKW\nspSlLGX5AOWDMmUcIuTBBEQBf+92U5Gm8VwRKpvXGIGYFrgUVdE3qQ4Ugco6RN4Bvls4ShQgDslM\n4cwZEboWMODURjlzRfaaoEmVzEZzcVQAdXQQiXH6RJerRApBIX2iypGFluu4lRC1zQI95xTJ75Do\nsI+Wg3GFuMwaNkJvNRlAZolCR0THC5TEK2ho1MnDnxC1dpyeGXrkZBJ5rkTklhM5noEoZij4B4X+\n3myA9oOkebARnDG6PjhOxUTa4xnwNtHHCkrYbVTa48H7Dbk5TJDr50KZL8eqd4Drxzl5f04CckAf\nffFbaQF0cSdxicgXuIf0ToT6/Pi9UCkbmX7LEoA5NAAVv/OxUKkx1I5b98jtr+jv7a5QqMI6RZDP\neHFNvvdLoS7RV+R9T1TfNghIb6B2/ugTMUrinqK605nGyv4fyZ+/0O8OrLDFu9v8jko/zjKTE933\n+kyfXyd/MlxXvbuRIvJpqHbs4Hbkkn958b3ud4rmiw+qtUE+6MojIbSDHurvRINX64qK37qvqPpB\nKPeOpT19r4W2j1NXPVs9zZ3NmhDgGq5V039+D8ShBUOGXNBKTc+UAxcUOcy1AG0X0KkxiF2I/o8L\nguvC2LAoUuxqbIQMXaahqTLmUpgmFeZOzryPLQMPx7OcvO066FkMihShmWKdv0I0Shy0aDzWnxnM\nEMAgE+DaY/O8Z2jUGNdq5cBUYb1wrbuUa/OumcP2uWCVTdB+qcPtyXnOHIS5BixUgMC6rC0hTBhb\nTw+NqzBV+8/IK/dxxYssY4b1L7TtZt2f6J9KQvtAt/DJi39fZ53RqcbqxYnGdpGLrRHQbHNQpYL6\nbn8mBHhnb9cYY0xrQ2O7uyTE5vi1dEXSE83pVl1zapM5trGsOddjLh6+1BqWg8gYnDZcnNBaa11T\nZ374jIV5Xyhxq4puD/N45a7GXO2OmDTBL9VXg1PQINCk/ksxP7JC/w+BKv2m+uDBtp7FtMiNZzDk\naKvMcOOzLkO3P9e89t46f6m+fRiDR4+FMg1+FMPPgXW6sqj7j1i3DDpPPRwY8jMxNFZui1G4xLo9\nmqIzggNhggPDLIIx85PWl961nrP5LXOupfssbam+Ny0rC7p+xpw6x/Vp+L32mfbarjHGmHv3hbLd\n+bVYDJEdW2iTXScaVEcvhTaugOJB+jCrONIsf6Lrtda0nibogzx7ov0pGap9+pH2ofNLsayOn2nf\nGmypXo3FtbfP8PEXX5pVHDDmA32vzz45x6Fmfq36XY40dm890HPvfvzXxhhjFurqrzEuhy774Cuc\nMn76+783xhiz39H4WdnE1cki/JnGQ16rm7V7qkvAXneJo+GQddUBNR9S11foto3RimmBbFa7esYF\n7hWksHjr0IjI3f8JBogDun1xrOs6sABqqfqi0oEB2Vk071PChsbGxbX2Lo/z3Izz62iuufHqjeZg\ny7M6TThF3lNbW8fIRhXdh1c4Tb7RHN7/SWN8cVVMmgZzqJjrPnmGw+Q9IbYnT/R7gQZhggOQw36w\nAqsqjcW0GR9rHX+Dc+TKfY09y+wMYA8EODgGXbXz6aGe6/y5xmjB2Fi8r+vvcFbKcZEaoxd3cqC5\nOmH9s+Nhxlmn08bZa0NzfQArZCPR8+2jo9X/VgycWlP92FiGPQCre3EBN6mGvn9+IBabMcak88BU\nYSNnfc5Qm1rXl2/pLOUFYlqtbwoRt8wfz785y9vHUdWH6Z3iKpnBUDGwdArchVzW5wrnVA8dm/xt\nFoF+n8NEz3HHDHFRSjm/VyyzA328hHOhdWVKE+sWxHkYd1CXMRNyRnBhweYTzhiI2WSwApqc9yfG\n7skwWuq4PLGH2r11Cnug4VmtFn3eww0uKaymDYxIe13YtzFMkpx3xhp/N7gtpWPVN+SGc1gZLnt6\nBfbHzLpUqfomIR2hBhujyrndxenWvGURw2zi7wnMzWDEGoaeSeC+3/tNCOMot2xm2LkTNOWGloHZ\nph3QbXKgTsa4Kw1PtFY2GG8u9TFDjV3bb8trmiMeDKNk9E5Pq6jm5uNPbps+bKijx2LheltkR2yJ\n6Xb9Wn0Yo0PZbGldPnmmdfvZY93jd3+lM/0RbnEOTlIDdMsmaFUlcEPWlrQOz0dojNEGKy19f8a7\nkMcZ5vgUXTYyaxaWVI98pM/NmRtT2EztBdzvLmFEd3VeqzL/z9EAPDnWnrvNO05ARs/FE+25Tkfr\nytaSrpfB1K8xx+aw5HqcdTyEoVoeeoD/ARemZMqUpSxlKUtZylKWspSlLGUpS1nKUpayfIDyQZky\nMYwSqysRgMxOyI9zmoowhURHXZTLcyJ5Mbn4hmhjADoVgAzMQRsrPvoZbaK5aMmMiOpaaYIWUWzr\niuQSVQ1yfT/JrRsJCDxRVptjXDStQ4Y+3wFtGhD7svn5BqZPv656VLjPAC2Jun3uHtFkntsBIp+D\ngLdh5gzbuD0Zi1SjSTHje15gvBDGSwbTAhShgZNLBHpQA5mcG9qKiHZSV3QzHatvGqDdGbmVqatn\nbiZosiSKlFdAvUdN9CPIybxpsarz5xeKyo7OhBTmRB2H5Fw2OrpfbUkoR3MFhy3QdBe2QP9KUdA3\nRD0naMQUjp6n5Sqy3FgVArh5Xz/bTaFQ1r1qAeS6IBpaRSF8co0WDfo+zgRE8kBR4ZTPT8ldrXSE\nqvuovRcNtdNKqvs++vwXxhhjFntCiebkpzu4iqzBXDmHUXRxorFUo72PflT0+rKhKLKLrlHq2hzh\nt9Zgui7IQw9WWStWf01xSwlBuP8F15cUx4z6mqLOVm/FomlX5HFm10LjprAhVlcV/V6+LXTs4FCI\ntOvre9eWgXODEqP6HiISMOEeNVD/GahQE+V/qyBTwTnGQcMpgbFSg8Hgw8yIQUdmUPasi1BGZNz3\naTtQcK9JvvLc6jRpbPho1ljmjZmALvv2OUAWE9YttE18mHsxY95eJ0XrJk7Vhz5K/r4P2gaaYpmC\nLu5PBmZGSl/nOfoW5FlXC+Z2BUYg94E8YJLMMgL1vcwy+ED5bJa5A5rmos3VqFvnCV2oigZXjLaW\nixNcijNNbplA6G5EOC10caUL0Ze6aWng2mKGYp/Mw5+7SOWgiHPWstM/aq243Nfn9x4IAV66JQaN\nx/7y+rk0FoasJcu3do0xxmzuSP+pvaN++AitizRD+wtdl9BYN6/c9M817k8O9XNyKlT76JV++uxh\n1YrWt2V0EMKu2npzSWjvInodV+tiimQT1W021rONYSld98lpP9MzziZCy0ewtFqwtMyi1qm9u0KP\nWgswBRmLbFGmBULn1vSsQ/Kqva7a7OGuvhfD8hy+hFlyIRbRy8f/aIwx5qfvNPat887eXT3HyiO5\nLa3uaN1I0WczI9oLp5XpOY4pu++X499Ey+fBl7rfGxhAg8dq/yvcMI4P1F6P/kKMzNai2r2yKmSz\nzSJzARNlZVEo4NkRz9sDfX/8/7H3Hk2SJFmSpqipGkaOMQqckbCyYHc1dff2b1jaw572vDR/cBYM\nDe1MdRfKrMQZGdDdIxxDw2ZqiubA3/PsHNqq9jjFReXiEe5mqiKiIk9Ehfkxg76ZoyPsvG1YB5fH\nPAfm2t2P9PuFluL5NVpcb77/7qYNX/z33zlXEXtgeVHj4pN//HtdH1Sxh0jBmx/EXrhkXQlj9JI2\nNOc6+8yNQP1bxB5vGberIm6Kpt2z/TPpisx4Gts/HO+6fkfzKGto7PZ4NvErjbVvTsQmWlnWmrd1\nV/Nmfl6fP4WR8gb20NVnqrtpeTnWspkZ3JoC9QkyHW6moTFXhak3xAUjrv7U3e62xbQM59rqixTm\nINJ+Lk1MJ0hjf+lDjf2nX4plNNrbc84593creoYhc3gHlsLiksb26Quxzk6Pxdi448u16vJMe7j2\nnOq9ONWzSBxxNoF5MwIdZ2/kiaDj6jX177gDis5rQILeScw+uITDzNYddKZWcFbrGLtXY/nVteZG\nr6/nufWzXznnnFve0Z5pcKExNb7QOJjAlJlc4QBX055ugZgywWGnDBs6gB1YhWFVZL1lG+182AEO\nZ7Homu8TX/22rUjOjYexe/YFrGU0gQowQV/Awp67pzhvjkXZofrp9Ljhblv8Mvurge5dxaV0CoOl\nwD6qaPtEhvKIeVM3li9OrZM+ARZGs+cZewc2KkzvkHeKKu8AZdbwIUyJKrofE5gfAfoe9uwLHiwC\nGOOFpq474pl4mcZSjC5PtQijkz2ROU/aZihiL1VhjXPowTlco6IRgbLKHqkA+3+CA5c51fCOlkFX\n9niPKU7MWZMOtJfJ1BzBYASxTpjG5Jh3rQz9wZi93BQtmybs3CF7tSr72rhq71aa7BPeYRPeObP0\n7TQzB1eaG2XqsbyiWFErsAejPdEInT32rFeXmgulBowkdJ0aGISN0ZNKaZfprpZh5XWZW0+f/XBT\nl3Gv64Kg7lyoPfsM79eLOD8dfq+14vBA8Wh7R3Ghco/32R7OiWg5XXb0jGow5uJ1WFuwgs6OdJ35\npirdhoGcFI1VpXmfMNYOcXLtnOHKtKE9UJE1s8n+/NjW3ue4QrVZH5oaq5ep4lCI5mrJ13WGodaX\nJtkU92EyPttTHEYizN3fUDaDv4DGa1/1GbAe1erG2mJ/yRg3RlDVsjL+SsmZMnnJS17ykpe85CUv\neclLXvKSl7zkJS/voLxTpkyGbgdpjW5U1Wlky04dQZonnKoWYaIMWjpLKprCOXmDA3Pa6evkbVo3\n73dDlHViZqenpaFOADNO7hD0dohGu0Zk1BZdv4K3e28iBGBa0klgvcaprymOk7M85ZSzDPsiDnQi\n53HdCi4vI880bEBYYKMk5C4HnLKP+V6hIvRtFOl69Zh+6oPkz+h7Hto86SRyIchqC2/5m5NhTuZj\nENQCfR84ndAXwL3jTMhnuah7dznBbjbISZyiBVK1k27VeQCc4Q04zczebsj5sKAuznTqOR6qXq05\n1efBL4RUthaEDEe4JnX2hN682BcD486GEEZj3BiD59E/CdWZa4MCkVB9fK7rVEDDElD6WXSK5tCL\nOLsWYvrNn+R80D1XPRfQlait6bqb78v1aXYWdhi5+o5c1osnIMXPzPFA7fzLn3+vdlJ/r6mxt7Su\nU+U66KJHbm66LPRtEbeQODbHHV12/zlJvg4nGu7vM/bml3VCv7Et5HdrQajaK1xeBiD5F7ioFMhN\n7R2jF4Lr1EVP/edxQn/a03iZXVR9z9G+2D/k1PpIp/C1ZeV31qo29/7jYor/mJy5zNzKDCkzZouh\nPaYxVUN/Aq0X0/gIYaoUPOAZH0TVnBTQJvDIG49LhtzihkZ+s6E3RdNqIU400HWKcYWKyNt2JWOq\n6Pch+kg13xwH9CMkjjnTkEHPJwW1diXQK9zfMvK0K7Gp36MZ09AFE5gxFv9GMGfM3ahibLgiLijO\n3JhAWAPytkHLU+JyBvNnih5IFUQ6dsZ8VD8WyjAg0fIxNyJHvJui4VVHk8Hc+Irj248R55yrr6je\nzTXpgKQwq7KqAn6FOemB5L65EoJ7iltS/ERx9qKjObCMs9An/6gYsv+lxvD3n/3JOefc5Eqfb6D7\nVEb7olwCxevRP1VQx2zWzS/qb3MtxdNjXPAOyN92A/R9+kKpd0HRHX180FIdHn2kfO7ZDVzQzhUf\nLQc/wU2tC7o9xCHKg5VUq/MsyYfuHeo+z3Bd8nEsmVsQSh+z5pTIeZ/ZEcpU5Lpz67QLV7YJcXq6\nASqG89UQtLrOHOuCQr18rvhje4DWLIjir8QkLOGsNa3hgIVDTb0KdHjLcoY+RvON+qdsrkc/F82g\niUbXN78XM+XZH6Rvkfq6f/9K36vwrLuwJXo47lydq30t1uNj3AtTtISW1xS/mzAgy8SefVymhkOY\niRtafxbQNmjN/ojilyv1G7btOQzEWoW9h222YNd+9FvpBHz/RGjgwUuxOfa/Unsqq6rP4wfon7yP\nK9hjjf04VL1nYW52xxqnlzgLFU467vUJaD8aL7PoGBUXtEZW5rjWiebZCXpIl+e4c0xwa8LFZ1pG\n+w+my8yqxsLa4x1dD4bIlLjrmZNKUXGmw1zqmNbTwUv3NqXGHKrNayybXsV0hXp2YRuwl2rDfGnf\nU31Ov9ZYfvLFH9W+gsYoshFu+ZE+71c1Bgro8RXRMrA5fQ3bKehqz1GDcWNM0GdPv1Q7YVU9/kgs\npiFzNWAPWGbsVbiPw43JNBiPurBYE40ZjBzd0qz2Bj4MledPxBgsvNFY+uC+3Jy8jzQ2Jz2h++M5\nzeHxlfrpmr1WanoZQ9MMY52Z6vpBXffvjPgeendzj9Ufq8SWi1Oeb0/1X2zCkHTOlRYbN1ZA7TXc\nU9CuOX6lfsyYuxX2FSYDk8GEvE2JYVYUAti5FdNNYy1lDzJhD2AumP5EbR4S960vCiV71+EnTJYR\nY7Hh1CcB15mYM6CxWs05MjB2ACwh3nVGMCcrMGEcrCsPXU3f1zNMG+jjkU6QwC41K8EMRn4Tx5vI\nGDjsQxPPLAfRYEnQLeIdxoMhYpIupoHmwUy3vRdDwkHYdwU0a3zqG/NOl8DeDXBy6yemVZdSdEMA\nACAASURBVEMz+zD6Hcx19nQJ7Ley6YeSlVAhS2OEnp4P6yFhT1bMfmRl3aYMLxUbGziozcxqf39t\n8ZOYlWTs13mvGqOLYg6VD4kZ4URj9PkftT4ViJEF+qW9o1hZgCkUTX50sCy2Gs5VCm6Iu9ACn13d\n0bVffCZWjQfzsb1KIMhw/y2j6VLSNZ9ShwxG80f/rH1XwMOddNEXKvNMyIqosFatra3QF+qjozea\n72V0e5bXtK+asG+8PlbbK00906NLvVNVr9Wnj/9B8eirP8khdjRCB+6Sfd5LxbmlLRh7ZOjsPxWz\nrlHAZW9e9YvYqwzO1F+WWZNAqQnY/0a8R2Q+Onxc56+VnCmTl7zkJS95yUte8pKXvOQlL3nJS17y\n8g7KO2XKRJFO2vwBp6zomPQGqCVXUbYu6uRrBJrWAj2aoMNRIO+vSL6k30DfBHuOqKKT8han1+MS\nLiSchCFQ7kJOpeuwJTog7FW0JcIMxKIKGjZCkyHRyVcN5MFrglWAVEdNHecOUOouk4dZAzkyOK5v\nWhM+p7ZjXGWSn54uexPyCOtq/3DwUwbQCITZHIoacfHm5HmEj33xmjw/ck5bnN71CvjW0ybfqmQo\nNyfBNVCrGDTF2AIzU9UtpQtS6hxX9Yth5e3yt83pZI3TyzFw/vgSJ4UqOj8gdI6Tea+BS0lT6MzE\n4cCA+vvKXWkG3N0S2mN6HjG6HWXckDrnYsIcPxGaltCni2uqTxHV/JR8+Y8e/9Y559zqHZ3iprCg\nPEeOKCwEB3JRqqDtA0q/4ClfscLp6tYD1e+0T/0nak+lbnomOHr5uC690Sn2JVM7QFfowd/plLiy\nKCTUNHJK5BZ7oEUZIjwxp98JyEy1q/HQQr198wGo4LyQ8qlvbAnYDQnIASyzCeyM+Tnd9/BAqNQI\n7ZnoZ2r34qZO50/31e+3KiRke0O1udowvR/yrutoy8C0aJDvPTYUCETVXIsKIGnmLGMoj180BE99\nXkcLJYH54MNoGZM3njJWiyCRgDFuSlzxfMsP1+8jPu+DitVAw8bWTlARn5zbDHSqhnPCAA2rCdoJ\nvjnuwKiJyL0tV1WfEferMRajwLRauE+EJk1F7UrRQkmJnwl6VB5IiAdqlhVgFgEahWPTjIFJZMgy\nY6vI3CjBRDRGYAZjKIvQCIP9FaA5E9an7m1KPIUpswrDkFzpwNytYHXUtvX3xh3pl6ysas5FaBd1\nQFQPRkJilhbRIKjDgBmqf18c4hJyKOS4DEoYot+UoidQhBnZ3JxxK7jmNO9r3m/XtXatDixeM7+A\nU65fiEHR3xdac30q9Oe7TPdevxJDb/0BziZVWApFxZMU9LkF67Kt6ekKaKCYw9cFzJOzl8obD4dC\nt4MVtXljVXEgI95cdtHtQRvn+ZnQqOsdrS877yn+rm3pmSzPCYmNS7aW6fd9tKUu34hZN2Gs1dEo\nqDOGY+JoEYSxzLpTMqu0W5bjQ9XzEtaGMSjnYLCsrqj/KuhabKyqn6ZjPac79/WzE2k9mr/Qc+tc\naszMzquDU+Ju0mXNhjl0WdMYWVjHSYd2Dqcag88/0+fWYUpWYRaurK/ftGH18bZrl9V/z8cae89w\nvolw70sZqzvWLpwpZn8BC9i0GUI0gahvBHNqoaJ2P9nVenLV0dw4eCFUMQLCLRV8V5qBrRWrDdm5\n+uj+h+rbnUdCUKe4Cr3eZa3FGSRCoGdrU2PZK9PnsACm6P50jsUec4yhBBZnncDbwanEx01oDUfA\n3tXb6UBk5nQDqj5CHynwGYMgv0NYaF3asb2kvvU2FC8uzvQsJ2Mh0HtoIn7EnqHYUD3PXu/p+nd0\n3/eIDdcX+v7Jrv6+VNGY8JfU7iefCan20fDp7YhtWzJtMTZpUzR4wgjUHpe97Y8V/2ro5Q1gHF2c\n6nuLi7rO9l09v4s3GvMDtGp8dDJac+oXz8PJEoez/sEFv2d/O8Lxs4kDJCyIUqjf14sao9OpxvLp\nnzX2KrDk7vxczm130b86ZA5fnP1o0zffnnV1kO6VuzBlrmCyov0w19R4Xd9WTOvx9+v+7fckU3SL\nyonqnqBDNOWdJo1Nawa25hSmG44zddhgad32j8Y+tewC0HdYsiMcJjN0MuqwbmO0ZEw3b2TOXezr\nG6zl1cREbXTdlM8n6L8VKnomNXNShJldYC9SQgfUNCYHnumC0Le82zVY40McZo1FbOxXs5aMYR5m\nNbQu0Teawjaot2DpDnHI5Z2syp7M3gsyshEgGLrA2hmov8vGvGHME+5clXr6FbSBcCXNLNuBd7li\nyfZ6uEgV/7ZeyP9cUlgfi03tRU6v95xzzl3esMf0HJfm0cVqqD4XXcU8x/ha2VRMOemqXUcvPnfO\n/ahddIcYu9ZS7B3hrljxf2T21Etld3V96fa/gylzR2tDRDy9vNK7RRCgh1RBd5R97ey8MbjVll30\nP4sV1cmYjZMxzEnWoGpomiuwd2Dk7cHQazv2BmhAeSX9fxsHxD6MlQmM99UdxfXDJ2rHyDeGvO5f\nJDukQJxeXVDcHG7rZ1DTdTPewQqZxuiE/W9zgT5EOydE5ychU2aWjXqJMThmBx+ObN//t/etOVMm\nL3nJS17ykpe85CUveclLXvKSl7zk5R2Ud8qUqZJ7ljZBv9BEiGEN9Dh1rOO1PjZtGJCPjJO6rEBO\nGgd1A04XS2Od6pbINxzXOJXmNNmVcWUpmIw7yC/oYJ2PTSxvklPRMNR1E06xqz38yMlTzMo3Niz6\nwUkewuguRdV9DDPH65FfCWKRxUAEddWnDKJe4DR5CtJdRK8lbOIABCoYddFcqKBZEJSdb3ltZByH\nszA1RqbGrXsVq6DIsHwSWD1jVL79Htfuc21YRA1TV8cTPm7q76Gpo6NdUovfTgfCIz+vCCugM8Hj\nnlPRziuhJT0cd+oL6vM5dCmuOfqeT4TKWQ5qhF7GH34vt4+IvMXNHdN+Eap1955OT5d3xHwZXwux\n7YMG9UB7GIouHuk0+fP/ouv2BkKPPMZCDR2LiNPValtfbJWF2rQW1P8xz7yGI0F9VuhgDy2XV7tS\nCn+F1gApwW6Cy9HGQzk1XA90umyONpbTu7Cqk/UCyMK4rf7wQULPL/X7oxevqI/68d69x1wPvYya\n6h0wBz0jhQAYJKnG0aAPg+fFnnPOuf1DXXcOXZcm7lAraCOc790elfKYz1PQk+JQdRsxIctoqdRg\noI1NeoW2mkOA5QVXYDCksHxu2F4w66q4r8Wmom4OVTDVPNCvAmhYCKOkCiMkZF5WecYxjL5KzMk8\n+dhTUJ2sovbUoPSNyZOugF6PJqBWxIcMxzRzaUpBCHwgjRQmime2c+iIRMSTouUxT8iJpZ9cATSP\nZ+rfMIv06zGaOwbDTdCe8YvETfKxUxBlD2TBx7Yk4vMFmD9phqAH8TdNYdlFTOLx27EgJrA3Rn3N\nyWlgY17PoX+tMdpA6yKAtVBFVKBaNcczjfmzvsbJmyNYFTgztOeF6NZjHIGu0fGy/H40ZAo4voUw\nJc8P++5yX04086DfQUV1ac6gETCre6+gw1HFDSleFTr0+kB6FRffKz68mYoxE+HQde8DoexNEMQJ\nDMEhjJTeAP2fseJsEd2FjTuKJ1Vcno6fC93PeObpUM9yZgE204LGYBGmT2fvO74n9GqM7sYabhOt\nBc3/MpoHlyMcW0AMJ6Bk45fklyfEpTE5/8Y+cuYiojF4B22d25atHcXZQoHc/kO0r16SVw7KlsBE\nKW7rWV/hxjRLPJ93O84555bf07ozZh2KiSU+7LuLPaGB10NYWOd7zjnnnqMxZq5G9v0+7k2Xp/qe\n59TfDWLf//G//m/us//n9259QevVCCR6flH1rC3q/+doA337xy/0+02xA+5s3+V6sPTGeh6ne6xz\nM6r/sI5rCHul9kONv9lNjcsUtHMaBc4HZd/9XG04eqI1e9jVNe5t62cLttQcDmLzn2jsp0P9/fBC\nz6KIpsE17KIfPvtMfQG7qoHuW1wz3QrGKEjlpKG+X5lj7kzfDptMcPupzLBGp2KhXY5AZs0ls6tn\nerqvufjh+9J02XyMG9Jzrd3mtne0p2fSv1D9ajz7XWOnoVn2S3SAYuLT9680t+aICctrYri8KD6n\nPmxO+HyE+56DBXB1qudztqv6z2yp/2voM1VX1L7gUvH32Zl+Xnf0vQX2LEt8z1zooj4MTdyXznH4\nur+qsVZHj2qMRpersf/HQc3WAccYnoWVV/F0n8Mr1ff4SCw0i9sbW7jkzWru7T997qwcnz937VBz\nvI1bVwodfNJXu44jjbOA94ICLAmXvsU4gYCQodVXNb4rbPuUDVuCLloME8TDnSjBpZMw4RI09mx/\nVoKZDAHdebABhrAPprg1mWKIN0G7hrhV8NEmYY2v+BqTE9biMmzgAtopU+LrEDGXYhk9uIF+H7IX\nSCrstchqiND7LKGFMsRlzhubbh1ZBDzrjEdeQqOqDMN9yIayZCxh7uPxM0B3ypkcHazoIu8jNXT2\nIvYeJeoX004fZp+96jn2gDE05gAHzQQNIB9dPHNw9NA5qiVvx5SptDRGh8faQ3ReoY1Gfe9v7Djn\nnFva0ty+xPno8lRj9O6Nloz+PzjW+nh1jXbmSPVe15RzU9jQEbpRcWQak84FjYorTxNXa6mPRujX\n+YzJ9R3FlYND7TE8Hlac2r5afTDtcU32o7NLul48gkVFF7XJLKk2NCfmiP9Hr1n7X6stSz9XnNjw\ncFwMtRZNeQc9ea34eM2+Lr2yfbDWhyX0OPux6nfKfq3JOcHgmv05e5HeUPHoEJcncxEt8a4bwyzv\noHfnTdgXLmqvw1BxGe9W3ROyONAu9It/24E4Z8rkJS95yUte8pKXvOQlL3nJS17ykpe8vIPyTpky\nQQmUDhRoBHLa9HRClpH3FtSFWjWKOt2b4m6ScLrcwlFgjEZLYWA5XUJUothy3/Q935mqOrloI5go\nuDqV0bTJ0KIwGZSCp7/3CzpxI43RpVBgemP9oogGTGKABNY3diiZgIwXTDvB7mviEiD2Qxgz3kAn\nc3YaXoPt0M9MuwZEoorbUgPGADnDvaTkSqZ/UQaNRzomwLPdGBtjmDRjdC9CGDSNnp5BH1ZO1NFJ\nboCjzJA6Fcg3RDzeeejzVKagwtHbodunXVDtF6YvgQ5Gk5/rQj2W8YS/+7G0CmLQ9Pke7iSmB3Ks\nU9hnL9/wf52apnaCPxKqksB6ur+p02HXVL0X1x7qPvd1/6v7KHif6Nm/eioEdxQq57OIO8U00Olu\nj/zEKshCv6d6nYUH1BNkIond//mf/pPb/4tyQz/69W+cc87NPtSR9xWK4dNL2FWc3O9sielz5zdy\nJTl5JkR1DHshxV3k5ROha0evhOKl1NPB8rj/iVC9laZO6FvL6pA6mjKnB6r38RshyHu7Oj0vGRpJ\n7nQDdC/DVcBvclqMXpLX1nVOTw35xnXlRPW+TTEnmApjOwT5qoVoEsCy8sowSIzNg/J8AXilCBoU\nGdOFHHMPNk8MujXhhL9B7ugI/QXTeikaulQw9ybFpwLzO7M5gD6GCxRvCiC9lhvr1UBlYISE6BFV\nTbuFr5dqnNijZWIuRlOYHRVQqUkZFgSstSqoyXAEsxBNKy9FjwNWgIfOUooTwSQwFyTy4mP6jThn\nKvQ3TBy0dlKCQoXngnmTm0bkd5Pjm4KKZWAGBZhFMYwWA6PS8tstXyGsvxn6IQCxgADppjAqR7gP\nxMcgLuiHBDhFvPdLsU0++PDX+hwMqiQ15ERjPAF9q5hDA8h3wuczmEsFEJTDb565S+LR9YXicoYG\n1punOAaC1pysChXevq/5XtsS6ttMhCK7IWyC17rHAe46HizTdXQpljZ0nQtYqgc/CHW+YG4s4mCy\n/FgMiuW2GC3nRaH8J98IoTtriCnSmhPyt4im1zxaJ4W7Qq8nU83r0xewCnB1ysqgUaw7EUhwCovN\nN62DGC0zkNWaaQHAeqqiZRWyNnrExduW2abad//9T1WPX2qhfP1GzyVM9f8xLhdn3+4555z74ek3\n+tyfNbZmYQpdPRazcHaxSft0nx5LdxEG5P1NMU2eEXOMedmYV3/ON/X9F6GxyTQm58yJEsaic85t\nfPjIRUfos6BH0odt/AgHnk/+WRpec4/EvOmi+fPyq6d8Hv0VWL8x2gW1APR0oucV4pi5NdZzbqMZ\nVmHPVp1tuOaK/t1GE+rFru41ORGS+ac/yIWo1RbSWGmAPB7qe903GlsXQ9w10NtoLwpBnV1G3y1S\n343Yc9TpI584W4SRXW6pzzPTPEEz67blvKu+TGGcrG1JQ2F0pL5p1XEvutJce/1cc28ZjZjSmj5v\n7nrLZT37yl2cyxaF7K6jT3TV3VH7T8WeOttd/km755dh8bJfPjOntsjilupTIs6nrJOzbY2l7kg/\nd3EZqR0qBhhL6xd/r+fQWtRY3MKJa+8HjflnX+0555xbYC/WmoXBztSLWU96lzCeytoLFYwJigZZ\nwoIwZp9bJCa00D2KL7SninFyczCnUt4bhl3txcJIn5+yz254P2rKxJ3UnZzjsoL2xBqaRzPoaA37\nxLQr2CfoQpWT248TzzRSYBBPefcoB+bEYpokzCOYFjdrLWtnlXeBCPdSn76JcSw0PbeAd5xyZPeF\nqXbjJAX7yPZdzJWKZRHcfI+9DvvQlP192qftaKAUyVrIajBm+HqJ7IcE/c4pmiXFmjnjsqfASnLE\nO11Q1JyObG0kfo+I7zXf3Jl03wFjvc47j2ONDdHYqbFnGBG3KjeUIV7axhrLWRlmCutKGffYmNhR\ntHqOYDrxflOFCuWxJwux/iy83euNq+G22NVy6o6OtB6ubCm2NTZh3RJXn8LYLMC4XHqo9aUDayyE\nyb+0jGak470NdvUKmptF3vdq/66+o/Mr5+6952Yfa/68+DeYduzFZ1aJE8/1bA4P9A7VwjkqIwui\n3NLnNua1N9lY0N87OEWewT5twoqPYVs+/aPadgXDsLWo32/gNvca7cj+G7Xl2bd6hzmHwffw/o7a\nRjzvOT3juw+1dxmb09REe4ehaWR1tQZur2tPZNo3R0/0TjPlfGIWvb8YV+PrfcWj+VX0NmER779i\nLSWL4/ql2jtbV/8soS3210rOlMlLXvKSl7zkJS95yUte8pKXvOQlL3l5B+Xdui8BFxVhoAT8nJAn\nHeIA46OHEaOLYg5AhUyfj9C7mIJcl0Fy01QnZQkODQ1Or4czsCyudcLl1XVKPejotHPcEirlw8qo\n12DukD9ZR1rB49RxjLNMk1NrDl1dgJZFSk5a7KFhg4PGGPZGCVTKK4OgwKbgMNyF5AJXQOqn5HXW\nydV2nFCa0roroWY91IlcrRi6CP2bwhgIDhQjm4H5MilSZwQ3aFuWclLfVB8U+mpLWkLFnT7xYapU\nHJ8DJU5hSiQB6NHbGaa4ZomceVATx6mkz9ioga4dPhe6M/yvf9Hfyeub3xBzZgkkMX4PjZam+sb/\nhVyJTiOhN9Ge0Jy9lzolfWXq+Ecgkl/JGaI9r3alLd1oCe2HyTZ5zU6ns4sbGoOn5zpVnVvEgQFW\ngo+OiA9SkNgYIht4EYR6PCZHd1enrh7PeuWOEMoyCPPxtdpx/q3q3yWf++pAz/PyWIyU7Xv3+LtQ\ntSJH/D5jr3Og0+3txySjold0/o1Qy30YNj6IRP9I9TK3pgC2QGFJ7a+hW1LF+WFme8c559wsz2XU\nVb1TlMmD09tDDgHMkQluSh5OBCkoSAqTo4iiflTR3+vUPS2orlPQq9SRS45eRgXELS4xD0FNhr45\nTKmUmSsDtKEKoelP6O++M0qGuTThMACKFpLnXUArpgza5JHLnoKyTUGrylDvIrRpgsy0cWAEZvZ3\nGDPc34M1F4KGOeJnSL66MVYmmc1hrgeDp+pweUJrBQKJK0JhKRDffN+cJZg7sDGGkfq/XDQ7KYsl\nmuNRRdcvMhYm5qoF4jn1zI/q7fK3a3XFddOuaC/PUU+N0dalEJMQ7aEKGjqtpup7tCs2WxdW3PX+\nl2oHiHNtVrGpi65UFOn5Ls+jU9IkhtVAgodol9GfSx/ccYvvaV4ayh+zJo4v0E/YFwpz8HLPOefc\niLgwd6044BFvS1XFxfk7qsvhrubX1XOh7SlsrwfbYgKuopk1hSJ4tvtEbTzS5/2WxvbyhpC7lTnF\nhTd91SMEheo+VR+elwT91XaFsu3gRnfvlz93zjl3577WiTev0cA5EMpdmFNfb1GvOVC4ICDPnbg/\nwtUp7bP214kvbfX1+FhxKjDK4y3L8UD1ql2r3hXYYLOLum6zueOcc26hJiSzMq96ra2pXy4GODJc\n6Ll8/1+ld1JB/CGDDeejtYaxjQsYQ5fHYo8s4O5nz/Hhh7rf+iPc7ujvhD3B1cHxTRuqtYbb+Rht\nFxzKPFgIP3wpDZkpeh+1NfXPLAyoxf+F+6oZ7gpWyHSs+H5pGmUjWM206/xE4+uHb/Q8a7CMs1LD\nba6rz+bXNc/ufSBNlH5ba9EUtLtR1PzwQOGX0KeZZ15too1ShUZUbqpvakW0skDlM5xuRuyDSgTg\nMOZzsJH2cNrKym+HTSaRxvg1ba7DKMy4/tY8+jqwxg6eCTE9ONXYWma+T3vaExyzN3ID9pv+If0A\n0rsthLb3XGvu3oF+Lq1rLKxt6X4XzxSfIiRaqmjbBOiRmHbY1JicnvYi5hgWo832mutXcT29ONaz\nX6R/1+5qjBy8gNnZVztGfV13dKS5V6sQV++onssnb/i89hzX6GA0cFcp4YRzxRzswhbcRlcj2dT1\nUjQhSrgoDnsarNdd1XdxBPtirPq0VjW2nXPu8T//2h2AgJ+80VzbXNU4uwM7OEOnaoCu4vWBGEFJ\n/CPj5j8qZTMTQttkCsNlwhippuyjYVoYK8hj/20aMo69xxQmdx0djyi1TQVOhDCRPd6RajBGGqzp\nU5iGrsZabo4xsLUSnGyr6H4QnlwdCkwGxS+CKRKxNwoyEw9kD2Z7lQZsWVj+PuyDtGaaJjDreR9I\nBmQ5wEpOYS8XBmaHpBgwSHCD40XCMyYO70AjWLo3uknoSTneT4KxMX7QxoENNpnaXhHGDBUbGhMJ\nHcEC75gRmQE+LA8fzaBx+Hbusil7we5AMaVeI9bhZhijIfkNbqVj9JNWljTnW+zhLo91f9OI2/7Z\nr5xzznVeaM6dP9WcjGDgZDgVGzPeOeem16mrFTO3OY8mlSfduItL1eHufTH4PLRZwyutBaUZ9kuB\n1sg3+9o71BqKKzswb159ofnm+breB7/SXmCANsvX//a1qgSLa/u+1onelWkh6me7pWdw+ZJ3QBh8\ntZL2d/v72rMEsEtD3vtPrrSmxzzLNgz7QYf5vq32+MRzW8ttLVvdUHv6MPJeo+tZKit7osHYbbGW\nZ1DZz02fD43LwPvbxy45UyYveclLXvKSl7zkJS95yUte8pKXvOTlHZR3ypQxpDYu6ITbdDEKaBBU\nKvr70NPJWdBDG6Zs7hWclKNXUgQ1KgZ2amynqlWuo1PMco/cVRINKxE5YQ2dzI/Nc56k2B4sgZZv\n6vD6/oTT7CIoVB/3pio5zS7m9BJ3ljZnYDGnxxXy+x06GxNzGiL3LEETpoLeh1fX/yehrjfh8bVA\nDCITR8CrfjKj9mZ9z8101acTcjQzUKSYvLusqlPCirrABXbSXDZnJ9TOyVUNUQevR7pnN9L3C7CC\nwoJOGVOeaYbGS42czduWRp2+v6tTyixGnwM21do6+dRXODvs6mS4vycU5uJUv99F92flPqea6Ft0\nhj9lL5XQZhjEOt3tc1I/QNumFqr9R2egdUUUwBd0SvxwRzmepRr1HKPNAzI5aXK6i7p7gjvJLKe8\npIG7ELS90NP9Lq7Jw0erBRMnVyaXdp788pC8/d3nQoPsNHv+PZ2sl4ZC1Nc21A8Dcnjv3hFCf5Xp\n8/1Dne4++R0aA5xuM/VcJ9TfKx71v6fT9WX0MUYwYuZXdLq+Mi9kPWH89IcwtE5x8ajre4NQHVAz\nVsEtypCxmkXAuzBJQvJuC6AlHkisD3o1ZAwXybf2yX1PQRtu8qFh2kUw1AqmTQPaEjGvfXPXwSUp\n4HoJ7msJKFUAChOgFRORK+vDALF85hSmhjF2JqBlJVCiccG0cGDKwbAJbM7BeoqIWwnwlzFyzCyp\nSv66jx5HBKOmEOKAABoWGf3MzOtgBEW4O2XWz4nFT33OgxEzxY2qADoT4AiBAYMLzS0Kt4sAR58S\n9zHQq5bCpHlLTGF8KLTo+aFixOgvINPzaBLVtQ5UKxrTZdaHMevGEk5oV4HG2dlroVsvvwRJnqnT\nTrV/QG70a+b8rFOMiKrkNMOQXFoTUusHFTe/LSTLYx6X0T9bWJKOQ3tGP9c3NF/7oLop2h7FmuLI\nfIN4X9T/23dAytBlGLLWdAb6fwNdtkXiX9JXnHhzsKfrP/veOefc9Zni0tyKxuadjz7W92Eenu4r\nD/3sSGjSIFLcfH2qMbCGJs7mI8Xt6tovnHPO3b9Q/U876FkQ9wGWXVYCJZvRfYIlXa/DghVe6Xsz\nOLsU12F8FN+OTXX9Utf5DCZgxnrpQKC3Hqjf53HnixnDRdbwSqDfl9EP2eip/WEdth7PazxvzFRd\nN2Lsr6IFUGZsH+6LmTnXxlUF1K/H5C2gkfbq4NVNG45e7LqFX0lTLPP0/Bd4rue4dnz72b/qPrBP\nSjiK3YehVFxS/WdnTStG7luBaSjAzivBujjFvev8GetvX/3oCs51r4RcvgLZfN/0ypbFAPnNDG46\nsMF2cfZqHWoNnl/XfAxA9UOYfq6rNWkEY64YqK/HU7U5gFkXlrRWmSPLaKJ6HKKD1p5vubcpdVgN\nkxquoNznGrZoZVt9tr6tNbbkVP86z3xsgYw91Zi+m4DMxiPVZ/Y94h9aBRFsgyFMk05X7ViYI259\nomeXwNw+eg0zBQbplHXGdDK8MQ4tc3Io236oveDJG8W1KmN2MNYcq0w0t1roDBlDrr3AAwAAIABJ\nREFUtLmqMdtER+hVqD1DtY8TZEn90b8rjYmgs6cvXrIeUJ8MFvekJ0T7Er26Z2U9z/d/oXHSXvip\nhgPLpeu/1piL0JYI0ZK7xA3KOedmg6rzGONnbzTevvuj5s78jObwGhoUGWwOz8Qg7Ua3KCmMkhFr\nGyQlF+AMlhhbNTO9O1hd7BmmZqfp22JLtgBEjCLfKxSMgRJyfbIBCJw1HP583qkmaNSUpnqGGXE2\nQJfSx/2uCHs2A9Ufw9YPBuyNSjDkI41BDGldGS2wwhQtxbo5D5pmmO7j4TxbgaU85l2rSvuHODxS\nXZcNrV7Ul7g1tXctqEnVHvEVIlGD9wSkMl0Gg2iIzlJ9wl4Nh8sENvAQbZy6Of6iK2cyeSW0dCY9\n1in2u5jU3rpkRd6nQu27i7hjLdzTWD8/J0tjrHV1FSehKgz9vR80dl89UyxrrmgvsbakOdPbg0lV\n5P2Mfpmix/rvnefi4sQFUdElxZ86qVYrZI7gxtaoaB/TOVdfP/5U8378CLb+ieJIZV7f82CIVHAV\n5RHduBaFrIE99C4rME1KS2pLArNx/IY6h2rTeU/x5dFdxSUPF7jJS5wdS1rTpjC6GzZ2mDsB+9aZ\nGdWjyr5ymGlPNL3WGKkssQ7d0d7r/PU+f1dDGpwDhDD2HGxlY3ge8y4T4dIcFf92FkDOlMlLXvKS\nl7zkJS95yUte8pKXvOQlL3l5B+WdMmVMI8WZ/7dPXmECCwF3EB/9jYJpNZDnN+S0ttCBVWAe9uTL\njVH8LnESH1R1nwHHhUUQ9lHFXJN0UpYaCuRwb7EcXE7AUtC5ct+QafI/qzoRC4Ien8M5AgmE0QRX\nKHKgi5zkd3CSaJP+HnPgFlVBx2CX1NHSqaAu7cPaGMNOqWQgtDowdHVOoweudIOqJ9y7ZLoznHzb\ngXKMbsUQnQvH6WIZXGQEo6QGw2QEmyDl9C8mt3NKrmSZk/CIk/5R+fZog3POTbjf4twO9Udn4lR9\n8urJUz6Ip/19na5urOt0882Z8qzPjvX52oxOVw9OdRp6cXxE/XELwplhZlmnnJ/+TOhO0drJiXuc\nGZsBXRLqu9LWqe3ZQGNgaLm7oP/htX4e87NaUz36dcZWqPZ2uwPn/nfnvvtaqGGWghTDiDGnihpO\nDZVlPcAHOBMst3RaHViO8bz65av/73fOOecuL3E3Io+70Z6hfjaWddp8DBNqcAXDaU73X0YN/t4n\nHzrnnItAfs6v1L89cl/Pn0vjZw82l+/pOp0xc69PHicIzSyoXzG9vRaEh+tNkOHEUja9HpwBmJ9T\nYI4SzDePHPoYJl4Zp4EADRPHCfgA/YYqec4JCKfP2C7hSOKh0xEC7yS4y1WJG1NzgwK5DBhzRZh5\nHoEiGurvExg8dWC22oS5CuqVwB5IcV4omKYMKEgEY7AEUycGLrK5HKJxFdLVJfLJTfrG2ukqqkcw\nRXsGmlYFVpPZISG/4SpDxgzxyx+rXRX0UQqwuzzi93SqLzbMWQIG0YTc37pnrD3QKtCxInPrtiUy\nrR4ma5bQHwPdfzrU8+kiyvB6hAMNz2FuSWN/8YEQ/se/lSPa9gVuIiWcMyqwvHAu2n+iOdwHcZ2r\nKEYsbmisX8Aq6Vy8cFenmpcZzImIebIE0ywGsZxZQGtrVmhQq635foVuxSGaKyE6SObSEZ1qrRsN\nhB6folGzclfo8INHQoO2PlTcM3bX4I3mczzARe5Az7jyCJ21BcWjjRmxA5YfqM8O9oXWHz+XxszT\n76VpcvxK9Vu7r3i7siYGittV3Hz5teJiCWg4Nr04c4B5X/VbXyFf/VTteP0DzBK0WFrL+nnb8uih\n2j+3IcaSaRT4E9Xj6Ej1+tNzxdHiRGO81UTD4Y5Q+L/7jRhA87gnVWvkrzuNqRYMqBFwZD1AV4o5\nOgJ1O/1OjJ3975Snb3sXjz3P4n2ce6o/MgujceqSPiw5Yt76ptpTQqPt8JWQ1f6Z4m+Sqn1//Dc5\nIZkTZH2H/l7Xc62yxxqONVfCjuq9wPrz8T9JByAK9fy7nbGbsib4L5gHZ2KuBDDmZrfUZ5swNiqg\n9+c4Gfb6GnPdIRou7A87A7G/pjBgUuJERvydXTRHFa19K/c0V1ZmNI/THbF/LtF7u20ZwYxuLSoO\nLLEWH3yv9h2AWndxkCmjgVNfwlGlwx6moT6cbyoOdE7QKEO/qcZezMG2bdg+E62yYSJGSwzi3ISR\nEyzw/ZbmRqejz5nY4RStq+5U7VieNUYprDuYgamPSwjsggTX0YmvORun+vwcbLz5LekqzTyD+X2q\nmNGZ6Lm219kzTfU5r6A5a6yOLuwMv6L2ZDCeXn/39Cf9eG9LLIJVHN2udnWfEzTYLt4oBm48UH8n\n32E16pz7/A9fu42PxdxZIta9eaq5dfwU5tGyvufDKE1Yr93MW6w3qTnswR4doyNp7FFY7QWYMwEU\n6aTKvhC9TAe7qQGqn7KPzlh7J8zvIhqOwZTFvMFegWeE0ZWrhOZwBQsY1m0KO99lxgIG/WcMZ1P1\nYYSeh72jZezPmzBjspK9I/Eu19ezDMgaCB2Oslw/Lv7UcXY8Ie7YXIah4mCW32jFsAdyMXsvWNFT\n9ixVMgCQBXUus/5gLtmezPT8YAmXcOSxDIBpzVyvuJAxoOjPOrThESzkof92VJkazKCQPU+N9Trs\nkXUBk6YMQzJkv25MlxHaaRn9ub6j94HTa83Vs1PN/WKEC1Wiuetwfhz9O5mkOCo4rxK7QV9tKvF+\nGaKXk8L27/U1FiplMjE4RvAUnl11jnfBkeL8079IK4bXXzfTVrw7Ohfj5PJabfB4J11YUNwqx6rH\nGGoN5Cg3QH+uBVt16672DkMYkBNc5k7JLmgvaO+UwuAuMJ8z3g9qbT2zSaw+e8WaG6LntL6sMTs8\nV3tOXqm+VVjJzSX1+cmB3nUi4tnDVe2pHg0VZ775k/YmlzAR/1rJmTJ5yUte8pKXvOQlL3nJS17y\nkpe85CUv76C8U6bMFLTI47Sz5JGLBnOmjytHpcvpapnqciqYgGSW+T1fc30Q2xkYNlNOjX3Lp4SR\nUxvrhGwM4l0mV81rcJIGIjE1HQ9DKvo66YvRTZnUQdjRmrEcuoh6eJzqeiANAffrNDmtHqDonZim\nBO4vfL5KHukQ5LnJyeWkAAqH41GIi0FtgrsLqFY7LLppURfxE53uxZxYV+0EFmTLWDk13IAKQ4OV\n0UXgBD8mx31ErmcVB4ESiKzl1VnOZwqzpN15O6ZM57Xu++1Ep5CDM6EiSUN9dP1GiO8MCvqNOR2n\n/vLv/0H/7wpJNHefEqyCk0Nd594jnXLOPLpHu80tSvdfJG95fK12dlBDz9BY8UE6Opz27l8I1Smg\nWr8K4ro6o2c1u7ajerzZ5Xoac5cvdAoLIOzKa6rH5kN9v47Lx0pT7QlndN94oHp99a9/1ud4joUV\noYLlIWjbgdp/jaPAjKfT6ImGmDs7FJL93bfq51UcM1Y/0GnveyC+Jyca84WJOTnoFHsZhlCKE9La\np/r/8FL3uzRm0pFyY2faGofrd4Sira7oBL97on4dDG6PSqVFy9+GUQezoYKGSQb6HCbGyNP/UzSr\nCmjBhDDLisz/JDHnANpKuExBvwomruL8n/w0cGeK+0UB5kjZbNvIkfVBx8YwXozpZohBA/ZRAkPH\n4WiQ0A5/appcoCnMtQDeVkxFLI84A+3xYcpU6RfS0N0kwNEARCGAlTYFbirAVPHNcQHGTErOrgfj\nZ2rOC3RPCdQ95qdnrlX8vQp7YAoC7eFKV89MAwdmkTlITC3v/PZuGM4512yv8FNxPwDpMLX8yzPN\n4eE5TkW4f3i4RvXOpEEwglHjf/y+6okzkBnLVUxbB12TVVy/ErRsAmLjwo7m4MpDMQUOv6q74ckV\nfaExU18T+t2oan5cXWoevXgpRxC/wbVaupe5MZkTTGJIHAHN9IES8JgpSOjJS8WtCjSitftCo++/\np/mZ4NoQoss02le8iEHHXk+lp9E2dgLMu3Vy44tAxKdXsKCO9f3vQfHPd9SuDLS+hJ5PEQ2xOFVc\nGOMut/fn75xzzqXEp4B89/73akc3FkPSDz5yb1NCXDp81pc2um9TXJ1+hl7F/XPFtwz4bwTSas4M\nZ+diPIWsh9klOlDxT/c2NfYutv5OcDvqXmo92N0VuuaXNcYaRfYMzJHlVbE11rY3b9qwvbPqqgto\nOBxq7H3/hRhK0aX6d+Gx5sImGmtVkNN91qUrtGowZXHf/auYQc2q1oGZWf1Eisi92tOcKOKIlJaI\npcHEbbGGzcNMSLqaV3s4NR0lYsTMNLRmBVV9t4zWS6nANRPceB5qTHqR5s0Q7abwSnU+v8LlA3bB\nBQydcLzjnHNuvKE+WNtUHxwf99xbFbRSkOVwFVhIK/f0c/+Z9hYXX0gTpd7UM56dRasKNDwh/l50\n9MyHoN8tNMwmMKnLrDNTWAgx2oVvPieewPibQ0di5ecwjiowH6eaS2e7qs94/FN3vDqunxE6dpWy\n6lli7Pdh762t6vd+Bfav6ZmU2BdTf9NuO+1ojNe/FSL+yS/Fbhsta87MfavnfMb+9/pSc3Z7WXux\n6J4G38EzIe2dU10nfCCmS2MDltis2j39XO3tnWM/dV+fu/OBdK+cc27Y77rLF+rXO/d1Hw+KZ60O\nq8Q3bTP199K6OasN3G1LkXePDGG1uAo7F/cfZN5cXEXvDd3Iwo3WjPbfVZgoGdSMiTFIYJs69p8e\n2iAZWij+ALw9gLWLHo7PXsFnD+PjfMWrhotg7Ses7UWY9eYIGeNk2SjChkUv06xiUzQKS2w6fFi2\n47GJw8AQKiiema5dgb6vTBjrqel18jWYOCXWrRBWVGyurJnmRFD/qSZPmf3xiCyJgPr7Abp0BLiQ\nvZfjnYkp5QIzzGRvl8DsaRRgNROrKpE5Wt5+jDj3o/7TlBsG7O0uYbhsPEBDblNz5/BqT/fDsaiP\nLpTDKW1hSetUBnv8iiC1wXtMhs7q6Z72MmX/x312uV5y4zRwVZ5RilZhE50bR7wwpnGhzH6Vsd7L\ntH9a3tCa5MF8Pn2q+Xj3nvY7wYzizfgKfbuza+qutt7fUVy/ONW60Ie9X4Exfj5UvFxc0B6jAOM6\nHvL+y6OMzvW5RF13s5cKKmpPTCZMo6a903SqvhwOtX4sLWve39nUPu8KDarj12LgrLG3KZQ1ljLe\nI3qwkSO0cspzikNZ4VvnnHPh6G/r3OVMmbzkJS95yUte8pKXvOQlL3nJS17ykpd3UN4pU6ZI3nwj\n0alpAUXsQWynxmhEOJ1sRWg/FMcwZEzZPOJznDL7vk78Ox2dyFVmUJ42xJlT6r4HQoIveYlD1xQk\nuWAngz3yrqExFDh1TJypSoO4k28ZU//ySCeOfX5vjjLdBCcbWCdTkPmIdjZHnIKChk3Js2yNVZ8+\nOdcpeZrpDWIsxGCMwnmaogfgjZwPa2Ba4/QTcRTzUi/SNm/EKWJJbS5z7BiS32sOT7UI+k6m00of\nhkTPHK848fZqekht9DRGNcOTb1dKQAod8gOHffLQ2+rLX/+TdB18nE/ePBET49UP+llgrNjx44h8\nwkWcAubXdao7i9K3DzrUPVN/vO7rFPd8TyjO6yMhiXVzzkHnqFFVO/sD/d8jH7GHZkr/UqfFM+tC\nq3oHoHmZndjreguL5C8ecIJPv7VG+ly/rLFz/Uyntg7tgUucB9JZtePyK9VzYVbPs7UOavRA7lBb\n7+lUukQK8uyKUKf73q/18zFo1dDgQNAw2A7Djtrz9EvlY48e7zjnnJuvoMsEBDK3hgZOVXPPNBB8\nkJUyrJEMxtbQU/umb4E41IliE8Z0CUX9jHjh4SDgwRZIDekDvTcnqwIONpFp0eCiBNnANUCRpoam\n4BgQwIqaRsA+tKVCDn+fPPEmufoBWlljmCeV2NAdNG+AhzIYJYUJWi5oSpU4kY8An0qMkTC4SaDW\nD1CrEGZhBjtuZEhpGcYILLiCERF55NOSMW9UUkP/0LDycZ7B4MGV0LwZw2gJQFBDSwY2lypYHJYv\nXkCzYEyO8o3AFTpMFRKfYxgzRbR+gtLbLV/mDjUhv7w0Iq6bThL6TONFzaFNnkNMfO+guv/iOxwP\nPvvSOedcGpHnjT5Ixni4A8q1tKW5t3gppOblDftB7V/ZeaTPf/rAORDP6yMhZQmsr9V1ofAbJcE+\nVy9Vx6NDnFKaQsjWdj5V20BmMwZvALOtg4tcPwTt7yp+dA/EdNn98gV9pPuuzQsNquFQEJKrftnX\nfftHGpuTIUwXxlSzoT67975Q6tVHYmQUr7Qmn5q+EJotTUPltoVKNT5FEwCkuZzqvqcXrOUIrzFF\nnEeufxOUrnOo+BhOjc12u3K1p2dsziyDjtC/Ffph4Z76ubWgsVIOjAGj/rg4U//+8IVYINUmwWWi\nuTtijjfM4YK42K4JRSw0TN9K/V1HD6U5r7i69QiHHWLd8bXuO7y0uePc9z985y5YF3w0E+Y20WxA\nu8wP9JxCmK4VEOaHn4hhmryP7h1IcQfmT7GhfcDMsphCVzgOffm5mJpf/N//r3POuayCO+LmvCvc\n1bV7xLH+a62l+7uaRwER5gAWUbOhMZKxpu88UN+8fKU6zSxojZhb0bytwbp88FgMkRFjwYfR9hxU\n2Ef7ajQS26rS0ucX10rubcqAuDaaaA3fRs9j+32tmVVf9dl7rvjgG/PZXOda6EJtaCyFY/XhGeyo\nSqR2V2CNDYjDVfadJdYlpA7d1ZGe9dAcvAb6+0pLP68rmkv9K3R++mKpJbY/nOj7AfokCzO457HH\n6eCKdXKhfr+Pq8jyusZmC+e1AhWqoWd33VN7znf3nHPO9T4Uq820IgLYfcVQfx/gmuLv6L6LO5rL\nR8SaswP9/dvP/+Scc64JO/feHV1n8lg/v/7PYka92lc9PvxEex7nnHvv0zvu4KXG8sWR5nbIuByj\nt/IMB8+tR2vUE6bo6djdtkSMNUPPU7P/gV3k3+ipwYaqmR6mnnENBsUQdn6RfXqZd5WId4ciDJEw\nxYkRJkyBNX+MFqHp3WVoyfiM2STB5Yg9iEMXLRsZmwo2BLp5dfZIU3Q7qz6MTDYBgWnnFE0/jr4L\nTYNR16ux7xw4njkuRw5NFw8G4hgdO9/2CoxZ39mz4F0LJk0/YmwhjDeFSZTB9k1gHhlbzHY3DZhD\nCfp2WWpMcFhU6IOa3tKQ+9aKpm2j+hRLb8dzSFkHGkvMeWyjLodan2c9rTulWd4Fn8FIxClsSLvr\n7IXiir6f9VXPKjqBjbuao31efk93FYOLjcWbuqzc2XBeVHARDJIQdtUEPdKI/awzdhPukRNYvde8\nsyxuqM/aMMO/u9L8rbDGP/41L9q8Ww6u9b37be2TpjCZn/1JbNg1HBdrNTEp52dYg9vo5A0Vl4rE\n++nQ9r0wuInXAXPBWGNNHKyyWN/vn+v717D1736o+DKFlXU4xk1uQ+vR5jIubq/Ezj0+UZ/WS6Yr\nxHs6qS7mMlcu/m2Gd86UyUte8pKXvOQlL3nJS17ykpe85CUveXkH5Z0yZcYg1jEuJQGntAlIqDFA\nEMB2PsiBmYQUxjotHMCmiEFWWwF57zrQd6WYU0VOOWsmokBe4QCGzQREtzwij5IbZ8aEMZYA7Avk\nR1ww1snaENeNZqj7TDkJLJIf6fd0Blaqo5EzBd3iVDvgFDyFCcOvXdpQPYbk3qaRIdFoQAzNscaQ\nbP29jmbFoBK7akZuPo4lEbmGU1Ccaqz/F8i9THABmpTR40C7oIIzTFQUClG0k2PYSgE6OQ1yZKex\n6Xmor+tvOeLm5nQqurwj1MIzlyfaukI+d4GxMiCvvHOmnxeXQoUacyhlz6Mhs0M+MvmFz//bV3xe\nqFANXaCUfO6Zhk5NN9eEfr/3vhDdLtonrZaebQdktsDpquVw9sifrILKT++Szw3qFABJLoIedQ+E\n5nzwC7l4nKKlcHqOK9IroTl3l0HI3xcK9eEHHzjnnHsBU6iJ8niJsdAjP/zN17ggoWGR9X7qntQ/\nFcp11Vc/zvMc7j5SnmVjR6hgjP5IFVbZ8XPV84dn36u/5nX63Y/U/rt3VM/mjn6foLd0iRZGtQmi\nMjJ2xX9ckonB5aAgDdAX04qKDRX5KUPGQ9H/xm2IeWoaMyXiRBG0ahCbpgmMFbSk3ID5yvUynFAK\nY124gYvD2FB72AsZzJsh2jMuxLkAloJnLk5ls2wg3xv3qCn1Svhp8z7AoaBQMw0ZtFyISwlje0qA\nKTB3E/LUS6YJMzAXu5/Wu0H9zLEgRZfEs7RsKDwlzxxlyOMmThdhLlk7jZlUhnloWjaToX1O7c5A\n0cwUKno78yU3wQVqfCbWXWesOL8aakyub2nu+RnaFpn6y6uqHjZX15b1fIdX5JXznHyQ8DGxtQvj\ncQ20bvVjMWJGxP3zXSHkg57mzMrKI7f8QHW4HGj+ne2JAXf2SijM8ntyjFnZEoocgr6MaFvvSnGh\nivZHbUHztoFbU2lGbJ25CF002GMHDTFkjmEvXH4lxshVXfGzWjEdNxiCsDEnMFnMqSTItBZenmkw\n1JswTaqKvz5jeX5N6JdXx4lqXvUzlmoM4lmuweQEKV6pCJ0fR8yxQO1ozDHXllTPuTWtsa22Pn/b\nUl3V3H54XyyKMNIzy9AFOrlUu6N9MRGTyJBptXf9odaXNiicOa3VSqpne12/94kFI7QIPJinIUyj\nD9/XfcOPuB9/v0Sjq0TcLA1YN1bXbtpw9/4Dl4HgDkOhlLPkxW+U1O/Pv5QmUS+ECUqM2OqhkQNa\nOkAPqwpa2u1o7vhoqCU9tf/elphQhXtor13oc8+/furOcOGpMwYqi3rmczOaZ44xMQ4tDrKWd9ER\nQg+ugfvOkz+KKVGAUWeOL6vrjDGYNm2YNrNrGgOLaCB8+73WvJMnmiuj87fTgagyZw53dZ39kphv\nSw81J2fuao2sjTT3zr/X3L0EnV5Ei2p1TWN4mqrverCbIturEe9S4kgdnaOZVV1/ZUlr6JO69i4d\n01hsoBcS6HPraMVUa+bYJp2l3lhz+4oYM7egmLH8SOj81XPtBa7HGjNnu7ClYOEt8hx99IuKMDUf\n7ezofgTqo6M955xzw12e4x3Vu72p5zU6x4lxgqYXWjRFhscmjKgRTKEec+fy88/0uejnzjnn7tzT\nnDla0xxMB+jf2brtnNt89MAt4PSWTtW+BPbBEVpihy8VCxfX2Fc7Y8zenuVdgpGWneL8yNpqbIGh\nOcKi5ZTBkJigF1QmDqR8L6myd2E/GqB3M8FBscwaHMKgKfOMKjDlMpjJjnjjl2ytqlAv4jhrc2Z7\nGWPS4ISYwoJN+fyUOOTzLuLQZqmiRRP1zbkLxglaWnGi71VhM4TMYTcdcX3VyzQqjb1r7kO8krkM\npmIhtncr09zh58DY0DBJMtMHZfNAnDS2VGw6nrQvgJ08ysz5ESYNe7cR/eo30DVxb8e6K8DEqUId\nOrvUnqBxioUumQshzj8TmPcLD/X+soNm0MkLfS/lPWNa1/Vmd4i5sFa8ULHkbKDPLy7/qEW2vNRw\nF6/2XEjblnAubMIwjqes+Yzt2PZvaFbNrtB2dNlsP15i/3cRwvKPjLFsGk6wvmDV19nYZV0cpmAL\nzyxoTX/wqeb7xZn2KMYqLtbJFKGebVzsWjD33FBxsA471WNN3t3VWnV2pPVg6a4YMDsfiZU8PdX3\nkh77YFhb5x3F/WsYhGtzejdcYG9jDpp+nzHO2Et9qOV/peRMmbzkJS95yUte8pKXvOQlL3nJS17y\nkpd3UN4pU8Y0CiJTvh7gUQ/i2Ad6LZTsRI5T0oZO/WK0XjzyBWvoWVguWQktgi4nVFXy7iacqiac\nelYCdCxAyoe+TtJafRgs5F8O0KCpUq8R3y8HxoTB+aKqkzJjcxTRfPDbOjmrdjlFxzUG4N7VObxN\nQbyrUzQNGjBkOL31OIGLOVNrIIedwviJQRH7LdW3VGi4FJ2JFqrddlJf4EB2OCGHnVzExFwo+jrN\nLJJTmoC2VMxRhGdTxSkgAd3qN1FhH+q6hpBmw9szIJxzbgSLYBbnlCmMlPRcKMjBU6E950f6uTCv\nE+RPfi40ajQU4tla0qnomz2hIQWcrgYDnSwfnQshHofq2xHIZIq6emtTeYS1itCvCOR4cKHvJ4y5\nmaI+F86jNcNJ+AIK3/4MTBryr1PYCrtPxNC5jIUWpeiSJB3VZ2sdl5FV1atNXvry1o5zzrlnv1dO\n//536ocD9C+C57ru9Uj9VQEZiND8SWA7nL7W5yY4KBTIJbbc2t6p/j680Al7vaHnGqH2X/NhIM3q\n93e39RyWHwrZPzwQKjUg5/nkC+V9bz3Uc12E1VGv6Xl9c6p80lsVolixhJ4P2inFodoyBv0pod7u\nwVyImL9GnItBm2qwfhLaHoIqeSHoFuhQRByJcEsqke9cioTejGAC+pyMp7g8pCjjAxDcMPkAv240\ntEoo8sfojCS4QAXm4GAMG1zXzOmhDFo0BTGITQsLNxJj4Pm0N7nRwtFYGKbkKdetXYxFroN81M3c\n94nfFs/LMEUikN2CszGFNgxxbUIeex32m2WJJ/RPKYDxg9iXB2KTwEJz/0Fu7v9cCoiQRaa5g3PY\n5ZfKCb7+bk/1wvWpUlc7NnEgqq5qjK9/IvbaKOT5HPVoj2JBD/aCuX+ddYSozzrFgIUHYjVMQyEt\nJ7ua8+eH1+78WChyWFQfNHEWuejpHiPm+TVo7wT2U9rX3wcdxbcApLWNVtYUl7kafV2aZczVhSLd\neSSGXbOp+12h++Hb5KqqTQEMnOqKvr+AY040h2MXY/z8REyS6RXOWxG6RQXc7Aoam4Nj3ef0O7QK\nJkK9pqxlNRtbRZs7rFvM0TlYCUswNcyg0fmK96n3dsjluK9nen6q9e7sXPUpgUC/OdH/C1iLtYqG\nRKu/H6wp3n36z791zjk3HGtMDE70fIbsMUbMqQscuczx5upKWjQ1qm1ODUWHYJfDAAAgAElEQVRi\nwIs9fT5B56O5pPaHwY9zYXNryTncul6BNh68VNye8YW4dnD5KLCH2H2u9e/8qcZiBZbGCNerjXuK\n5w7th7X197iv2uXTDzHujs27asDG1dAVq+jXwEr94FON3cJj9VWK/sz0WnW8gO06wIGkvSAEcmVN\na+ubV7rHOcyGCvPaQ58sTvXsvvlBemf1FhoEMCcvQJvvbCr+jIzid8vSmsMNivl/dM6zgAVVX1Q9\nH6x+6Jxzrnehsf3qjdbm0hIsNrQJlmf1vSewiUtofBVhEPq4BA5P0JmL1E+rH2rM+ydowBzq2fYs\nrrKwda/pF7Rrtn+l+LWAE9rnf9SYK9Y1Z7a3xfhJe/reBI3G6yP165P/LpbV0j20t9j7HIEob6zD\n3l1TLDvAqe3kUIj0R3fV7tUFxY4D5haEc3fwg2JHsQjbmHXg0c8Uo667aueTI+1xzo/E4Fn+cMc5\n96MD5+sjMYAO0c1yzrmz80s3A4sgCVT/1NccXdtEPxHmbLOg/hgmGi+l5PbOobb2Fisw2mCnOvaV\nRd5JPNihE7SkTBMmm+KEBTPG413BZ23yPHv3gaGOTpuPQ+uErAIfxkhCPLUAaczmamBxF1Yu7xbW\n9zEOOqlPtgB7CzemHqwPQWTXh2ln7kVlGI+sUxNYRxnshxpMF9+YQ6nmcgJjyCP+T6hXFcbLgL1K\nhes46ltkLCW2vzVmDXGujraaidr00R/xGBM1dE3dBF0Q3rlSrldBU9OE9BL62UOQr5n9qO11q0Jm\nwtwMYxHdpwo6ox4MqYux5g4SlG6lqbnVSfT73a6Y6c9eaU786u9+qettKdZ2r2AH7jPJYPu1l03/\nRON+f3/PrX2i2L5U07PqMd98GHvLVc2LAf8P0dEs1TWvhzjUxmjOJMTjDFblEFekCn324YdiuK2v\nKR6coW8Xoyt0RpZAvWtsfa0HZ695lgu8r8/BUDGHYPax4wFzjnOF1qYYfg7W2gRG3TTRHHp8R/XI\ncO568Vr7w4VZ/d7i5ItdrS8x7wGz9GUCe+p0V/1Wgm2Wkj3SMEuvv1Jypkxe8pKXvOQlL3nJS17y\nkpe85CUvecnLOyjvlClTmerEKUK/JLGTcUQeqmhBTMhvThI0XyacGtdBfmPLc7fTVjzrEXluWw4b\nqvzRVMeNMzO6fi/UCZcH+6NYBnXEnz3tgryjwD1C06E40edi0K8S7IEU6osPGjXhdHra57S3Sr43\nzJ9CA1isy6lyGdX8Mm4sfd3Pq9qJvT4ecMo+vHHasNNvTv48cq67gSvA5hkBx8cV9ZGDGdIOdJo4\nos0VkDkzThmim+FG1geoqJPsmTp93wfVKNPWPtf1YA9kKYjbLUs6Im/72V+cc86d4v5RAW0flHXd\n3r4+d/VGyGu/J2Q4I5c1eKN6P/1Gp54erKpf/YPchu7eV551G4aHOcl4sB+a80Lndvek1XL4Ozkr\n/HAghLGEpkAbzYbJlBPp2HKDyS9E/b4Y2BjRc7m+Jr8ZZk4BZOPffvd/OeecW55Vnne5pr8fn8B8\nKfCMea7lJQ36zZaYQiuLOl12sDwyWBUhWjApyE1GnnaxiEPPRP087JJX3tOcTI815vf2X/F5XX4A\nS2wGJpFDX2kWpfRKW6fYnXOd7EeEnosnaGZ0hIouzer59dD7uE0x3aIIJlyBOOBw6/EqxljT30Mc\nAwzdGXk/ReVj5oq5NVVhD42Yb15i+ca6TYwGVhZbn5rOBO5GE07K6fsCuhm+uTyBchUsD9qmGiyk\nesIYGpHvfWNUQAUYoxnoezaBUWLucOhFWA5vXKM/GGMpThAl+iNMzHmAdlq+eGK5wqBc5AxnaEDE\nxO8Q1CmLcIHLjN1AHCRnuFHT5wcjdENwZvNxpEhNC2eCbhWMpxkQllL4dkyZWZ5rVvqpvkl4ojE+\nRjPHT9W+Xlf1CTv6OTer9pRn9P2Guem19cBmp2LC9L9SjOgdC7U6wqGmvY5eFXOhjA7IBgymcNhz\nqTEwyGVP0VOook/WOVNdSzg3bb8vFk9AnvfBt5o/ewdiop2cwcDriwFh7h9le7Y1rcGWd11ZQPtr\nW2jSxpJQqQRWUgHtJw8kMargPnSheRx1QOf5/2SAvlNFPzfuCoUr+Liy4cRyEOrzIXOuwNyN0G+L\nQxBN5vL0GjbW17pu97XQ+BSnwghG5+rOj1ortyk+LLTJFNYr+j9TAt3ckuJ7AYS26msMRKB5f/mD\ndC72X6u/I+JoD2ZnGb2qRgs2K3nuO/dh29Z0H0MLd0HjZor6fGNO7QmXxZDJEvXDsz9/cdOGv/y3\nf3UNHx2QLvn2OII9B2GutTSG7z1U/nx0V/3eon71HX0/QadkCbep71+pPm+ONa76MJ2615rLM2uK\n9x/+TC5gs//yj+76ROyeL/8kZtjLrzQ2XROnLpwQ3Rhtqias3VjI5BWaAQvvq+3v/+bvdE+0Uq4u\n2O+Emp/1uq47t64+auGGkaFXcW9JdSzhROK/PHRvU2ZrGgPVltDtCQyfF1/oevWW1rj2surfYk91\niE7Ua/SI6m1zPoElagzDCi6AMGZqgfpjEuLOdE0c7cCExg0vqIkxUgfdn8BqGp+p/64rus4O/VSC\nTZVMTF9O8erxx4opXdjFtUT9Xkf/ZO+pmDKpIb6hxszzpzBcavr9vfti5Gzd13MYs96MO+ioVPS9\n7V9yvyMxVobs8cYwmqKW5tr6hlB/Y39ksPauLzXXLp6p/WGKllwKo370oxbM0z8+d+sP9Vy2tnTf\nFGpMf6TY2mbvUmrpOv4RbAvc+G5TirCeEli7sa/9YAlH2SK6aVFVz7g6hpECsyRgfxYRd6eg/C4z\nHB03JrROIvYghREsAVx9MmPyGSMFOuoQF6IaaynJAS5GWzLCsaYIg6VEH414xzCGimdZDD1doIAr\nXNU3PTnYX7CYA1gDPu8XU9i9pt+XmaMs9Svy/yoOvR4amDXqkZhUDuumsSGSksZYlXdFczBLBqZd\npnqaxk8B7Z0Cc8fej3yuW4blG0zV3wmsigjmTh1GU9x+uz1Jxl7QY66muDeZY9v+52KMH+7tOeec\nW96Sk1jmo7vC+mj7+h5stCyGUU+s6zOXrs8Ur5voHm6iTeecc+cX5y4bD9zyvL7jsac/RuPp4kJr\nnMf7qUmjnD7RvHv4MzFerhlMp28UT8yQKm3yD3TKYh8tmjuKL9FYfb77Wsy9+U3F2aV1xckbx8Fn\n0nw6ONJ8fbChd6OwZG6exEfW7O5A74Zb6IFuzCkev36qd8GIQRSSqXMGQ3BzFhYZ2SIFNKbmZtFJ\n+oPmdMB+cmNWTKHSHM6R1n8nitsFmKJx/Ud20v9fyZkyeclLXvKSl7zkJS95yUte8pKXvOQlL++g\nvFOmTABC7XMCxmGjG6CyX8P5JyXnNyVPcwSzpgJKd8NqQIk64iQ9IqfMB3r2OUWu42bUi+1MivzF\nEqwKTsZIB3VpUydd2YjcaPL9ak6njROHdgMIRIXT7RJq/74hvYEQocIENX1uH0/RaiB/cIzyeBm0\n1BCdMSdymTf+Sb/VIBX0xriygMLVQEDCrOWmZVTUcbXxyLVvIjAxxFXDL8BKgn0TgsKXURf3ONEf\npTBkyD0PQfVLXZ0S+lUqZY4sKfl2aM3cugAQ9GGaXE+EprRAmVpoIty7K6aL53Q6eXCpU9TzFzo5\nfvSB8td//i+/0WX7sJjwth/BzJgZ6VlHE/XPEDX0/Rf6/f4roTJ339Op8Ke//RddzyP/mtPeo+dC\nyyucDmd99IxAl0ag77ObOn394LEYO3NLesYhLKulbZ3uZuTCluvq7/ktkAk+t3lPKFKxrfvMxjrG\nLpM7O0zVLy2n/jKphXHF8qt5fuRNe5aby9h7sK3T6M6MTssfLyi/+znoVDHSqfERyGx6BPpEPqef\nCtU7Pbzm+rp/DbQ0grWQ1tAPifT525Qq2icT0A5z64mx+sqMeUFcCEB5Jvy9wlgeobFSJ287JTd0\njAZJhqNAAUbFhPiVga4nqeluwECBcWIstcpN3jZoiGcOBqWf1K/oo+MEq8HdxEmuB+pjcacKajYs\nmhsT+dY4M0TGekNPqBiheh8BdeDq5AVoxFC/Eq4VY3RAkDZwEXFuDEsgxqmhQT+PMnKIGXsNNL9S\n4mCVfh+OYcLUYe2RMF3IeB4BzgSGUBJSYhsr5FfftvSJ+z6xrt4SErNzX2M7qAlB7aBBcPC5XE1O\nj8XC2D8Q0t+u6Hvz2zvOuR+RnHFfMScjhmZl7P8GsODQhOiScD+zqDm8+FD3r7YXb9CjyZ7m0QWa\nV6UirIIV9dlMW3UtoZ2SMCbW7wr5mqDQ0znWvPRxSPDLMODo8jgzPTXNt2IPpgmsqWFdKFMRNpCH\nDk8XJiRyZm4wZp6DQGYhuk2Jrv/qB3LjO7iwraMT8iFONAOh1hPmTAQ7i+XHFREyukBLZfhacfmK\nvp3CmqqS152NVM/S+O0sumpr+v7jXyknf3ChjppZMMcJtdt0qa6vxfAp9bW+vIaR1DLNiLHmSIjr\nXmNL7a6xXrx+IxZJjP5VtaLn+vgjjQljY1VxIVn9WDoiCUzRkDH34uv9mzZkWeBCWHONObEUqjCP\n2BK5Mgh6DbbBGgTWEcjw5qra83xf9ds70HgcXGpubG1I02Ds6/uzVT3/Eiy956CQ861Vt3Vf15rA\nCHPo1n39X/7gnHNubk4I49q25tUnfy+GxWVV8enFvtDi7/6gvl2Y0e+bTRwRN9VXF7iqnV9rra5j\nj1mBBRbBHB5f6TrXAwWUbuf2a41zzsXEyfay5l6G7tuAOF3AASWEHVymTzO0sK5fqg/TDY3hKi5U\nccuYlmpfZmyLvk1W9JhguQ1g456DfpvLYArTz2O9QKbDZbByExiLE1hvPi4qY7QhOrBjq8ypU9jU\n8zPsOWCS1Braq8w/FGPozpHG+MmZYka1/JT7wAREW+tVXXE0waVvYVXP8b2/156q91pj7ltYAhnO\nOCOea21Zg/XuulheL6hvj7hag2kULqr9C80fHdiacw0XGLuE9TJlPenusg/30KjZZG8Dk6tYuz1T\nZsp8mxLPXGyaS6ZJAvOiwF6izjsHG+ZsQtyirlVziPRNVwhmXQrrCFaAufEVJjhGsXaWcIApwrTO\n2HNAoHZFWPjRgLWfsVKGgRGZ6xNrdOSMIc/nmjDxOzTX1j7icMiGs2g6mkVjL9NfrDeJ1Y+1vgB7\nNiL7wS+jhcaeK4WlVSCeTqFvVBPdf1RD7wSGf8gz98mugPjiCux3PZ5HMfmpFllKhUZsgqpDfa4G\nYzWBRVaAtXbbkrLXyWAGtVdU7xL1uNpTrKrDun74oWJdH9bZBRqhMw3F0ATnpAucIQue+msM02lw\nwTszTsfT6Y8an4U4cdNmy43RP0ua6AUVTQ+JNeiO5pNf1rz45ne4ld1T3evEW2PvmG6mH8Gaajdp\nO3EXtlU80di/eq34OXtfcSEi7u29+NY559x8Tb//EJ28uSXFzz6aWQlM9tpQz2R4xfvAOoMN/cr+\nteLR5sd6l6ngMJwc6x0nWcKtjnYGvG9HHs6RaByWYL05ziuijuLR5Zmuc7TPHoH98CJMpL9WcqZM\nXvKSl7zkJS95yUte8pKXvOQlL3nJyzso75QpY44BGblg0wYONuRJDwdopIAWDcyDntPNKQjxiJP+\ngOsYQuCGnOJycj5G8yEDwagVzE2Ek8AC+eMwYVLyDacT/b1V02ltzU5hQUQLqM83E50QJuShe+RR\nFgs6vW2ZGj6MnoapP1N/f6p2JlB0MrQXjF1S6Rvyjq4LWjZlTrUz+qfRN7aL/l+dGboJp5TlilCa\njJzFLqhMi5Nwy/ONOEkPhpzw+/reBBX5FnmDXU682yPcHOo6Kp/CCvLQzUgxTBm95ZBrgaLd+wRE\ndQfngUWdkqawjEJOykuRELyZRT3j3bLyE+fa5JEvq17pvNpz9EwI4P6umC2nh5yE13SaW/bQD8KV\nZPsO/bWg0+IijjNZU/2ydnfHOefc8gI5/4bqowNS9o0NpWddRleojpZDhnZPtUou/32hQROQk501\nIeEZ7I2T50KTjr7ec845d9mFiRKZFo5Oe0dXaL7MG8ql+o0StX84hkXGCX0MW6vVUn3uPlK7Avpj\ntqm/Tx6oP5bmULPv6Pl3OZEfoxVzxYn+r3/7D8455wqzQkUtVdqDbTFPPuY3v1d9b1PGILAVUJF+\nqrrFhu7gZBOh9VRAY6BOnDFB/gqaKZ5pjeDQVUWDKiyhA1QyLRgcCDjaDpgbGWiFSb5ksAdCY/7B\nIgjMSQFUmzByE9cCHM3CACcHNG9CcycCVZui61Qy1KOs+2fM+RQHhSLomqEyKUwYSyifGoOG2OAY\n25hIuTEMmDKfz2AYNdHqiomz5RAkkpgwgHHUAJaagIIVyYOfwrApm7tTRfcPmDTjsepRx5XKH4BA\np2/Huqtz/faWxl5kLlfQPRqgR/6ckBd/R6wEczJzaOT0e0JABt/jaPBKMcVQvBr6L9UNIToPV+Sc\nVmoqBhlifYJryPWx1ovAK7v6iuZl85Gu0Rwpng2vhL48fykUufdGrIAJKNNsU99b3VFcfPCJND3S\n92BVgmiGPu5LE9NoUdMy/n+BxsnZD3u6T09tLF2yVsMGm+BM0nys+j3c+ET/9+vUS311TXztHaoP\nL8h5/2FP87v4XH3QboCizcPgbOkZtFuK/5U2Y9hT/DtGq6AwUryYkAd+/47aP8E1yJzYbls8EO3+\nvhg5KayzE1hn1f/B3pvHWpZd533rDPfc+d43jzVXT2x2N8lmkxI1UaRFxZLFaJYMCgiCyICSaJYC\nGaFIWYwmWpQYOTINIXIIyUACMGlFAOPIkc0QlERz7m42u9hTdc3Dm4c7D2fKH99vvxJtsvsVYLgQ\n+Kx/qu59556zx7X3Wd+3vwXjMCUDm2M1lE6q3mvbsG6dVgMoe+eG2sGL0Y5Ar+LcCTE8b1xV9ozN\nW2I97G2rXg88Kg2erRtoe22RSQZmqg/77ZG3veWoDm/93v/cGhV83sSxL3TdCKS9v6F1dPm82A37\nB1oXNp/9ipmZPXcoDbdbz2u81RZYB1kf5hf0u3P3a45MKccElPDSi9KNufLSSxaY+mJ1WdoBtfuF\n9nozemYGA+KwrzptoMHk0ry5DGJLsEDH27p+m6w+PjpoOayBq09rTSzD+rzAmPdYD5ym39w5jZXU\nPz4DwuyO/6qy38xX5E+aZHlabujfDNZuCYZzZUVj+ZXPSI+uM1JbZQ39vgLLqMP6sb+nuchSaZNI\nfmJhDaQaBk68z96nil4J/tjtB2MQaJ9+YDmwKtoQ1VDlG3a1d3D+rTGj8s6yHEzRuAnZx3a3Vb/k\nnBpk6RGNVbsi5HzrivpxBIuvNOeySKnevZ76cTjWc6rctwSSvn6f/ObBLhlmbkiz5uyM6jNzjmwr\nl5zmjsoxjmnXISyzxTtsgFYzsNFA5SFRpN2/KvZaiY3ArlySffVF6eatwV5urx+fmhkn8gMlmAp5\n7vaVzD+yAiVD9IQ89v7QQUdoYlV5R0CGw8owsdmeWgyVMHA6cjyvwjsCcnU29Xk3Geg6yE5W4ZTA\ngDFSr+M3+P1ghE4mWYVKHvU6YuW6/SwMG/Y8Tj/TD5zeH/7atUvotBBhy8IO9jjNUI00tibsGSrm\n9mTovqFbFKOzV2EuDsu8w6WqYInfO/m5Eu8JmWNFw6xJqd+YTVgNX9FjE1caMYdg/gxg4TkdrJA9\nWwWdvOOaB1uM6tuYLIv5oub4IeziCO23EPZwLdV1Hto/AezBMcyamy/Kb7/+7doHnDDdb+fKVTMz\nWzytdXt2/k5GsXq7ZdnLV+3KNa3V9z+uNT1YVx23nuPdK9FvWyu8iwR6d+rASPFdllAafcyYa8zr\n77Ow/W/ta/6PO2QaC9CyYX+J27Y2OpmTL3OqwdcEPbXyNjMzS0fsw17U2mnoJ7XQwyujCdm/xft4\nG6YM+7kAxsvMuhzts58kc2RVbX1mXetEY037uaSLBqHL2keWzanPPnosP5s6GjE6eW7tj6JXHyMF\nU6awwgorrLDCCiussMIKK6ywwgor7B7YPWXK1Dx3ThEtBhDQgacwcDyDlkKPM1uEzsqcu3d6Gi4g\nNZo6xEP3q8F4MbIr+eSYr4AapVWHaBOFRSMm4PwhYskWEeFK0VYY8cBwhPYLrJK0zvl/mDcHIAt1\ndDKCDojoLPXugAqiFt1pqV4tzkvmnHucoA6dNHW/saEvQBaZMVH4AIXtoWMgBSDdvZqloaKMMRoE\nFc5oWkAu+Rbn72BCRLAIpqDqM0QBA3R9ACZtJlK0sF926ucwQw6pa4NIeQU9HdCR49oGqMrp04qG\n3rgg9GI3UkS4j3ZMTuR7TNsvkOGk1xXKsnFDyGfzOdCyJUV7V1Af/7aTQpq3Ofd8H+fU98giEkw4\n335VCOD2i180M7PBkOgrOiPraLs0acfWSc56JpzZJWIfThRN3d0XgnrzGpnA0BhYer1U1udA2bbQ\nlnjxC8qyMdxQubbI7lGOyHZUggVAppj6qqK8YZXsVB2UwOfRePjqDuVCQwII5f7HdL47hqUwijVe\nOrHukx7oOcMD9cO0ofaMGS+n7tPnSUntu74v9K02p99ljG3PaQaBhu2QSaPfO/45f6fV0mNe1lxW\nIacpNXX+Q/NoOGaMUtac78cwUKqgT2HoUAT8E2PbI1uQESn3YAV40MFGQ/wWKH1E7LsM+jLh+gCU\nfQrbzEfRv8r988aU76lP4FhnPJ9zzqH/tRnVgrH60Ccjmk/GlQw/l+WgXy4jGDoZTmvAsbtKoFap\nO7cOAyTFN0RkX0pAHsMa6vIVPTfDj4WwvFKH7sMS80b4R/ppyHlzl0UqJONOA92qjHP6Bho4zb/2\n3Pdr2YQMYz0y9LRhLr38zFWVG3997kGdMV47L5ba/EkQIZhFlzbkg7o3NKZX10HyT2iue6w7fVBQ\njlbb0Nx5djQnYAhsXxfyc/2lsc2gr7D+gJ65dkroc95UGz3E2nfjkuZdaUdl6PTEGghB5zs7mtc5\nYyetOJ0JMtuQEiFF3yyoaF0ouaxF92v++nNqixbrxOEttdlel4w4dbKroU2V+BorDdD3xiMglfeL\n+XJyT2N0NFXdsz5r1VRzbBu068pEfjaCkbN8v5gZayflF0+Q2ebwQH+/uiOmyZWvyD96zOnZM+rD\n49o2/n5/R+VLYJbMzapf5mC+TGDLeaZ6prTrtRfIcmXyY0FTCPVkQ32cwX5LYAWfOS0tndNolPkg\noYcwDrvP6d/bt9TP8Q56RRX8e0Xr1umH14/qcLB/aF3mWgWtoNGh+v82uiv9XY2X3Rv4b/o3jzXX\n1pak27G2JrbCTFv9uLur8gwmMG7H+KKRyzqizw++QQygy889bxdh35SaGjPVOY2xBL8yhz+4cVF9\nuHVNY6CBjl1rSX1/ggxQC2fUFy9/WvPQv6GxUkJfbu6sxka4D9Mav2ag6AaTbwVNlItkMjyuhfiB\nKmyuNNN87qMhsMUep9rU39fvV31PVVWPG4vobaBbF7JPm5vX9ZMt9c1oqD1CnUwpASyBZqQ1tF2S\n32mTsfD2TfVlZ0t9HC2T3YmxksIa6LPOzaEntPKg/NZzX1T5b70iH/LN75QWUDirMXb9pvZQ1aqe\nv72l5z37rFhVD53XGD7/qOZoPFD5c6jtHnvI4a76YfOG6jno6L7PP6sxtHBCzzt3Vv/OL2pufeGT\n/9bMzBqz6C49JiT83FuE6OeQay+9pD1UkJFR9OBOJsdqFNnoADZFX+VqoPd0qqF2bs2pXC++IJb1\ny/uqx/qJk3ZcK8HGcizZ0sSxUtGXQ/8nqH8tW75EFqMGWiVOTqjEWl+CgTcdsFaSjS5mrYyONFhg\nnzptGGNvApNjADugnrhTAvqcDKAPNSgvbegIhxVYtJM+z2NM5jAHc9K1QkixDOZ9BU0zj1dOj1MM\nHuyomN9HvJMl6BBZ/WszWbJlO6InB+jEDVgXa6lj36JTAhMmgIoSO0kfpyvoyT/WnB4pmmkZ5WhS\nzgls33xIxl+yW5XYK8X0X3/kCng8c6zrhPKl2l5bqU3GR/SmogbsYVhwm7DUnNzeLKzDQ/Rbun35\nhLSr9e+gqzE8cnsxsrX2tu7MjVE3t5Lv2+EGGZwinU6oxKqzyzo6dSc1YO865lzJaclMVdbBgDUF\nrdacsVKBidxiTO+zpkR8zgJOesACmuH9eQ5/WkHrplFT3x4wSUYb8uOtWY3Bkw9qXm/sqO4bl8SA\nue+t8lP3Paw91mikvy8t650vqqsvD1gjl07BnB6jXQWjcGZefjxBF+hwC8YPY+XkCT0n8LROvfxF\nrW8H3Vdn3BVMmcIKK6ywwgorrLDCCiussMIKK6ywe2D3lCkzJRo6RXekQjR0XCPkDYKSei4bkiJM\nLsrpcd57CCrWgnHjgqwjtBYM7Yca5++H5vKEEwXtEr0F4S2jdTAip31CZoEayI7f4xwoSLpTVM9B\n7DMiilVQtFGq+ngoizcGirDFHpkwUNmv9DlXiZaCOx9Z4++jAK2CntprcJQORchHg6jxBK2cWiZU\nb5QllnEWfAa18j7oepWo3pjMTSXaqMLfa5wBTUGXjLOhXpVINCyCxpgIflVtFoLSZ1NFM+MJit71\nO0r4xzHXhZc2haYMoZrsgtS2iPgOpzArXCauE0L6TpzkzDtIZnLI+eSLil4urgvp9SvqqxpjrEdu\n+Wu3FXGuV/X3UyfJcrSqeroMOeMDoUxOg+ErX9S56soNoS0LVfVFH12P4YGQ0xRkstImmoy2y2RD\naM9hF0QZ9oBT06+eV1T3sQaK5/NoG4CIBIyZJohyRnaUpz/7BTMzmy9xnv+MENYFNALa66pns6oo\n8lZP9br8lDIpdEb6PO2rv2Pm4sHtq/p3H92Rkuq7tIJy+Zz+nelqzN/eV3/1ttS+AeyVShsNnPT4\neiET/EPsMr/UGKtkH8s5JxyhVWIJKE/isgWRrYix7KNJY2g6DWCmNBN2aoAAACAASURBVEKnpwFy\n4BhpI5fVQmMv4Hk5iOQINKwG4uAyMUyYIyUyJaQwP4Yll60DLRU0DxxDxqeckdPYylzmLNgKgdp4\nmqEnQf1KaOt4MFwC/Oe47Bg2aPGAWORVmDFkfsmnLiUCmjJHmlqwMdCQCRqo9kODKuOnRiHolkOr\nIrJcBfhL/OuQx0QwZIagO479kHr/Dop3TBtvCOnYvqIxvMQZ4dqs5tDeK0J+n/vSZ83MrL0iX7XC\nmeK1Vc2V8zNCQCYrmjMh58snZeYemmbhVP2wiR5LyNzMZlXvpVPyJStnzpiZ2cYr12zjlvzFQUdt\ne+MFlXX+pObP+gP6zetgMrg2v3VT83OwTZazq2J8uEwEEY0ecoZ9swZjEIbDuIoeTktjsI6OW30g\nxk1CBoIUxLO/qftvb1/V9xc0pnz8QmuGzFlkMCixFnpl/DPZ4Wrzun5lRYyRcFX+yntBGVp2duRP\nd1U9q+awXu9H72IBtkIk1Pz2S0K3Dl7R76NZ6Zgc10JQvTPof1y/CHtgQ/58HyZhwpxzWQrLE3Q9\n0Dcpk1WveqD+GIAgnz6psdSln648I32RAD0Lpw9lHdYJD9YFSLBHFqwZ/HdC1o9n/lpsBftFs+f/\n6v81m4CYoysXwgJYXxL7YIz+STJgD4IGxBimU7+vdmiAHnbJgNPvyIdsXbqqYu6JMRrVdf8V6jcL\na2x2bd02b2gMjTlrHzLmsik6DfWcsum3MZlookOV5XBb85al3c49oD6dWxBj49zrpZtQX9QYLqEx\nlpNaJkHvIkA/YzJE84/smIsdleu4tjckOwcMnIUZrZXdodbsly9IY6HRVL3bp0ltBcuhTKbHw64q\ndLaucgev09zuUO8UBmOpBbMRgHVMBkrDz64/ImZKF7GbG2STmj9iCKHJ0EcLi0xaiw9rTi+ek5+r\nf1Vr8XCkub3XVV+XEbWZZS846pOBa079cABt+rnnpOWzOi8/OQa1b7AfXblfzJtKA003toKHN+WH\nL734lJmZ7V7TmFx7YIV2VDkrNZVjfKDn3dxTO5RLaqfcZbpMeZ+oomEDy9fMbHN/yzLYgVt7ao/c\nMfbpl8Ypjd2HWD8vPK+sL4eD23ZcSyhDFdbAtKx7T90ennePGKZg2dyeAvYpzG8Pxkw4RUQGnTsP\nvYuQeVlGo8UbwNyA+ZGzX5zQRv6QjLCwfIcwZMqsExMy01RZYnP2CFPYpTFMjRDNqix2bFrWGbZt\nbo/hdKGMvcuIPUEFZsmU948q/jN1ewu3l3PyG1BcEhjWGYy8jL4rN8TS8NGYDNEo9NHaiWGkhLBx\nfd7xPJd+iv1mCfbFiD1GyN7Jp90zWBRlRH48tM0S9jilowIfz6ZOVxSG5HZH6523o+9P4BMasIP7\nB04zRnPV6Uu1ZsiqStaoCtpueRm9LRg/My3NqbPMxUl8Z5897OzaeJzaKvuiiL7rwR5twlhxmaA2\ne/IDzWWV4SRl2b6qeTI9ZO+CXtzMitacGLZYe05l294hY2vEnoB3pI7LoHuo5xwk8tvnIu27hqT6\nuvmK1vwu2jI109/n57Qn6I9Vnhee+oz+vrZMW2jvcJ13Nx8Wb4V3Kl4rbJYsfzlr6T57Mpvq+ikM\n9K1XxIRZPK11LDqLbg96pG7MdoavfgqgYMoUVlhhhRVWWGGFFVZYYYUVVlhhhd0Du7dMGXLdt8kP\nnnPO2uvrc4QOx4QIXQISkBFlrk0530dmhA7MmhraKgm6Hk1Qws6RQrgiVeUerBEOKtZRox8TVfQ5\nD1mCZdFH28VHEyIjujptkZUFxe8BmSycwk3GmeEQxHkYKuIXgHblQ0UCK6jKG1kImiDGA85zNzib\nO6wTBQbVykoqV5eMOT4IVOi0NGpDy0cuck6ZDCV9VNcRN7ckUxS0C5pkdccIQTeDzAClEowYzm52\nyeHuk/GlyflC41xhhb6px3eHSpk7a5rrfo+/WZHjEQyN+VlFPW+jzB8RzXTo1TRXNDVAVyNZ0n2m\nJf0bwRyawFpyZ1x9GD+v46x/va3n+Iwlh64A/ll9XmhOEwS7AjOmDLNocZ1MAaBlt2+6c+ycx4R5\ndHhL0d5blxX9vfKCzuPP1xW9bXBO/L6zZ8zMLCYyHpCxy50V7r4iBfWLF65SL868bqnA5SNWhZ4/\nGoIMkNliDzbG7ktCnHe3hPp5oFzufH7AXNmfOERc5aguo5PEOJrjLPLzZGPK0CvpDRUN92JFk1ue\nxqWPls5xrERWNRdiLk0cFQMdJDdf0T6xGm6P7D0B83hMxDsE1QpKfGYeDUq0Naye3D3Hd+gRjBk0\nYWKyTjRgmQ2ZpyXfaabod6k7Bw5a5jMmMzS0JiGIJToRgF42At0q4eccAhiYU68nMxjnw3P8QuJr\nrEcuWRN+0Ssp8h9lIKturMOyi9DqMcoz4dx6hJ5UAsvLYM3lKWf60Yypcs587Dn/DKqDBk/sOcZM\nxm3Q8qJ7S/i/1Pk9x3w6plVAwUIyT7QWNacbnA1eRO/o5otCuje/KjZd57JQqdGD0slok7nAh3F1\niH7LAMZkCb2uDEaVQxlri/I5867hWQ9aLZDq5Rlr357nmejN3BT6PoDht4Ouw0kYe6deJ82PdV9M\nk/R+mI7oFw3RG6vRpkOYgBkZEWoghmM0CQ6vym/cIFvQHmyx00iztFf13AfRddjZ1XUBY8PHz+x0\n1Sa3r+B/M312GcmmaLX4X9H110+pnnPA5zOr+rdcUZvtb8gfXn9BlJmrl6+amdnKSfnDuYdVwDOP\niTXQhuVVWXCs2OOZDzLdgIWxjNbN7Lr6voLvcJnPDmGpdsmatLQo/99a1e995vT4uvxoa0Xtf/qc\nkMob+0IuJ4yh2xfVzzUYRm964+P6PSyFHojtAHaCt685lnt39JXOP/aIVcrUGx8Wg2SvtIX6+SXH\nYtNk2NsX6+Dacy+YmdlzX/yS6mvPmplZCnpZXtZcacG4WTirObR1S7/f6qof01t63hvf9oTVGurL\niIxYeV1jp4bfG0BkWGONGMRkuNoUKnzhWZUpBXlNBqqDF7vtq9qks6sbJTAcavjFHKZE12mCHepz\nWFZ5So27y+KWHZCBBf25s9+hOfgAukrxbc2hDlmR+syl2dMqd5sxMkbLIMOPTFg7g7LKvXRabZzA\n3gpgCm5c0XPbJe0Nlt8kTZVHntC/o57K54gyrTLrCvd/4Rn5t9ocOlLoVQVoz0x3NKauP6/rHn9C\nbOOcuZS9qOtmljWGl8nAePOrQor30bbZ2tNYXpgRQl5Gw6bc0thbWNb3pVjfv/CC7o8Mlvns813m\nSQ+NofoMPgzGzvZNlcch7wHrcHOB+98hytjhft9qDopmnZ8caFxcviRE/cQZ1u2WylMh+xWSlMey\nnL1HWoIZOCarD1SSxO0ZfKfFBKuLPcIkdn0GU4UhGqBdmOC/jX1jDvvW6VuksO1dNqSUsVOCqVhm\n3xejIZOwTmQDxzZGY4XS1V3WUNjAR7qcI9qIfWfKu02JTIQjMisG7BmaAXqhU6fnCVsXbZxSoDkR\ns1+vogljaMW4FT8lO6nTqBnjh8do9YT45wqMpXSCL4DREtCgI/waMqaWwaar4ENiWHwhn70RexuY\niwlZ54LA1d/uyiLWywbvSY7B04cd4uO7DlOXMVPt1h3KR54MxMpoteiPGoylRa2LXXRfXnpBc7NR\n0biMELqb9u5oyhzuHVh9oWILD2sNTRO9J199XnuONVisJZ61+SXdc/289kPTsa6/dVms0slUY+6h\nN0oXr4s2rE/Wzhhmts/Yc3sHl6044PsymbWW2H97ZONL0NrqbcIMXBerM4AZ2OfkzPwqGl5kYdo7\nQF/0tJg0FTQWPV7mhvvsTVwWO3cgBb8fkzF39bza3mVsPIC1vLQqBmF/D5Yvpy4i2Fdp9upsqoIp\nU1hhhRVWWGGFFVZYYYUVVlhhhRV2D+xYcb3f/d3ftaeeesqSJLGf+qmfskcffdR+5Vd+xdI0tcXF\nRfvQhz5kURTZxz/+cfvTP/1T833ffuzHfsx+9Ed/9FXvmxEd7XM+r0tUMHTZhI6AUP19wnlDx84Y\ncYa/FhJl5nzlMHLIuSJrAyJ+VaKygafIWQbC68FkGaD9koMozPA55bM5qYkByuggym2ixH2YPVWQ\njRi0skQ2FxdGHYLsc4zQmi2xKDqcL62AUI+JZpZ7ij73HGLdQKnbSaL3dN8q2ZhSoHQE2s0vmeWg\n4Z3E6R6g3QGLIEFFvN4FLUdToE8GgGqsz+MZdDNSsi+QxaMMap7DWur2FU1soxqeODgsPj4Dwsys\n3oLRYULiDrd134PbQp9Gy4p6knLeDogobydCLrc3FKVMOau/0lQEeYB+xSZnMQ83heoYaNoYdL8C\nGyv1dPa/4hAGrjMybzltnRZZn5otjbFhT1HX7YuKHo8401op61+nU0GSDDv/sJBop2ofMmYuXiZ7\nEfU+5BzlYKLnl0FYIlTpD/r71FPPn0UTpz6v+keL6v+T60LBOgPdf5tz1v3b+n0Mmv+6b3+bmZnN\nwAgqMTkTNCYcy6S7L7SpSTt3D3UeddBR/3W3OY/+qKLM99feYWZm1abKc9hXfx5uHD8jRgnNp3Di\nNAo073x3bhlWUAzyFvm6fgK7p8L8TjjPPXWZBWAf+Ywdd/44cnA/DmHoshqBYsUZ2jScyZ2GoEtT\np/mkeTtBQyYC3SplDuVCYypxGi4wYcjgMCmBdhxljSMbSEnXpWRzG8KICUagYaDlZcqVoRvlMvRM\nQSpytGcckyPCr/plp9+E1g0sgCORmDr1H6oeNbLVTdCsGZHBzGW18hLKD6pYTh0DEHSL8gacN8/w\nJc2eq8/dZV8yNAYmMCk3nxcCP78iBLuJXsvZJ95qZmYnHxJitIcmxt41jc3t69JOGI7cAkXGOqcT\nABrpzrPnMC6zq6pndxk9J89pa6g95h9cszOgPaN1Ms7sCoW/eVNlvf2C/NR2VcyL7AbocUV9U0db\nwNBs8UE4p+j3VI5018hEhW7R/Dxjqib0aI2sQE5jJGMsBKBWZfzdiVmVNyULTw3W6OJUvw+o2whw\nKHTMvLHzi2IjDdDBGIVq6yqMywpr49JYfvKwj1YZZ++3XpS/6e3JX1RbYm4EMDpn47vLhjGHfsX6\nadVrGW2yPvpUQ7IfhbBXz7WVnWqSSNdkRFY9v0t2kxXO+rNUdw9BdAPVszkrNH/1hNA1nyxPfbRe\nhvjzfKJ6rFCu6azGfrau61ZH/aM6+GHd/DbaEY7Nxxy+2RdyWkOLrYKenwei/8g7xMxZ2BTTNHNj\nG98X4+NCtIBOzLIHaqv/4pFjzKg/dja3LXBZ2uq6Vx9NlukBGjBNGH05GmAgiuvoHsyddmOMTDYw\nrA+o0941MjHG+Gd0Mbroz2WM2UP0zEqg0nsHKmNt8e507mKXXXNLrK2Nba1xJ9Y0VlZPaW3b7AtJ\nvnVdY3zlPrVpa03Ui+tPSQdod09zzoMV3EGrIXbZ6fAfCxWV82Civc2FC9Kf6qIvsrwqn7F+Xgyb\nfXTb1sksGa+oHS89L/bT9nXdpz2v7+cXVP6Nvtpz94b2LJfWNYarDc2NcV/tfOO22MnnF1SvB98q\nvzmEQdT/inxHr692f+WK9lBhTr9/+1vUoPRXmT1FdQZ2CGyQqy/L75YYg6v3qz5V9jRzc9oTucw3\nzct6fkR2w4F3hw1QSTzL0DZr1drU37GaYcDCFtkbsmeFuR9Hx19vPPTWPJ51xGRJ0ExxaThheWWg\n8gl6dCX26wnvRBV0MGP2j05Hx2MPM+Fdhu34kbaIy0oKUcWMPUYW8C4FsyVGY6aKX5iyb6zBRksz\nx3JgLsOGNd4fRhPuB/vNH8DuRXPLZVPKTf5xjG6f76Hjyb7dg+lSdYyivsvShB8PYdvRDhHMEY+9\nFWQKRxC0qXuJZE9o3G+MdloZBmLOepOiWzJBA6cMMzIbudMT+HdYeEbW0imZJv3a3bHuJmM0Ossu\nexX6gG35iDraXznaju2a5urkPIwk9qyHm7yXse7MLWhutMkwl/FelqRoD43QC2z8LRpZkls+qNsi\na26CZsoO+nZL57Wm+03aiv1OaVEMminsqW2y2c3M6RntJbIWp/I3Wy9e1X3QminDKM94b0/pxJgM\nrH20o1bvw0+h5bezwbsC5Vxuii07TdRWN66I6XdiVXuCKjpnwy7v15xQeehB+d8hmlKXnpKGVMh+\ntwLTMCCbZjnT7zrbGsP7e/L/7Vn0ewL2IMz5qOr0m8zMzJrDV/cjrxmU+dznPmcXL160j33sY3Zw\ncGA/+IM/aG9729vsPe95j33P93yPffjDH7Ynn3zSfuAHfsA+8pGP2JNPPmmlUsl+5Ed+xN71rnfZ\nzMzMaz2isMIKK6ywwgorrLDCCiussMIKK+w/OXvNoMxb3vIWe+yxx8zMrNVq2Wg0ss9//vP2gQ98\nwMzM3vGOd9hHP/pRO3v2rD366KPWRGn48ccft6efftre+c53fsN7t2IYI5wf9DljNoW5UvdA/WJF\nBSPYCb7TdkFjZtwmqhpxH873lYkG+k67hbP+IZG5gaeoZ4XooUPzcqLMPTQnsjrskiFMFjQBEqK8\n3tSdheUcKc1aohw9kIzyiGg2Z1lTlx2AiFrutCHQZ6kRBc8iNCBgyuSH5Hsvo+2A/saUqGl9ALrp\n5GKyukWg7T7spCEpTjzCd7Og78MGaO8AlXHQ5T7sghIoSch13S5nZWv6/YhzeV6dzE9Eop06eggq\nflwboUkyIhvEzb6ikgHI5dZtnscZ+REn8qrkuJ/QBzMgAJ1DXZ9wdnV/D32LqTvvDvJMlpJDT1FR\ndzb3AISjxPlxz2WAAd2fbiiqe4Pn5R4q/BP9LiXqiryH3XpRjBcPqs/6/WKuhDMaszMuK9Iaekdk\nd9o71HNGhyCkHtHiZaFdC4uKtC+CZAPCWRAzp2BVdTlfX0EjqB6qvgnIQgu2ST2EnQDq1Wes+ajh\nV5Aq3+P85NbLQgf3YXm1WqrP6nnVZ3VJyHdIe+ZD2F892Gt3cTZ3xBhO5jQfctDcDAZIFSaKgTqX\npqAuoAcZjI3YaU4RqU8ZOwG/i2EZJJS5BjvJYBvEdTLXwAQZo4GS5yoXiRjMB71PYdj5VDZOYco4\n8ZX4a7MuOQ2uSgi7jXpUQeNGMAxzmCy1ivosjZiDKP2PQN1z+tAxSCLacYj+iA+65qOp5cOm43FH\nTMPEoXAwdwIyEDiCYAl/GoICTSiHz4180DokciyGARNyfjsuq91rTluA9q05DZtjWkq2kwHaQg4Z\n6V7VHGy7jApkUyqhv5LWqE+NM817aMTUWEcm9O9Rlio9r+Y7JgwZ3cikM9rWdX0jSxa+eLC9abfW\nrpqZ2QLaTWGLbGg1MSgWm2qrLqj//qefMTOzACZMGQYgpCfLOdsfg3CSCMxc0okczZgq58VbVRDC\nqhC6/X1Qe/zOGJ2gmDWzjH9LYa3WyaAQ4P+rZF1DbsfK6GfUyBzWaMIWa+t5HloKJTLNDEm5E62j\nzeV0mMYwN2GejFzGsT0xZzLQ8SRwym7Hs2tX5bfG+K0cOqtPO23fQvOFc+tV/GyI1kKGntywQ6ZG\ntNVKsKa2O9s8CfStpnottMgsw15nmmisdG+LtdDZVf0Wm8xFsh35LfYi/TtabRc+8ynL0WLIQeIr\nJXwOczUmC0wO0l2DhbywIhZCz2UfAQEug+Q7DYIDGEvX0b7Jp07ARP26eUvaMrsvXbQx/qsJ6tyn\nT8vMF0PLz3d+ib6/sgSzjjEB4dFSGDLb19VGYYhfQNcoQJtwglZY2WV7isg2tN6iPGQ06d20u7Em\n97/MIN28LEZMhJ/3GxrLy5H+7fbUhxuXNbaGY/ZS9MEtMpnNoZEwhCW1dVVr/CIaBOGC/r4QaKzk\nY123gV7E4KbmcO+UWFdsvSxjHZmblS9ZWRKzxUnyjEYak0faDctqp+4ujJer7I1W1PdVMj1Ohvr7\n9a+KMbMqgpAloP7zZCLrzKqeffYa1QTWMzpMkcuoA6uhzD633xebbL8rjZ4M9sWN58VQCtmTVBzi\nXid7ywJ6Jk4jbvdOthPfAotZ7y89pzFaK2/TPrAS0GCbwJQJWW/LzrEfwzzW/nAA88SxtmCzhjDT\npryzpPiNOu8IR+8C6AsF7A1cn43J9NqATe/2f3nmMi3C7IOJUanxzpG5BYC5AdvBR9twSsasAMZK\nVnb6eRo7EWzdMdqNOc/x2b/6vHMN0IOL+k4rRnO4D3u2RhtDyLHAMXyoT68HmwqNFMeED/CbodOC\nrMBizlz2Ktob9rCH/3PahyVYZ6PMsaDRuGFBdGwtY8/Rn+jBERmHfBhLA3QFPcfmZe5ktbvbk9Rg\nEcPTt3ZDY7gJe+8AbZlrz2sOnHsjjFa0wLZiGO0dtfcs++s26+94pLE/R6ahGlpGCWzu0d9KBOTV\nK9Ysh9bDv06pe421Jop41xlRBk4DNBiz1oKdOgMbp/K1YzhCF/M2bP8F9rkn1sSI7Mbo6M3CykUj\ntbelOjbPqE12dtUmt27o+1Nz2hudOKW/X7nMO2GHjJPoeZ5Y1dp29fpV/R79zqU1sZF7+Nka2oJ1\n2PtOby8LeFdaIHsyfqriFibHaHdjg6x10cDNIbRzWq/O3vXyPM9f9Yq/ZR/72MfsS1/6kn3605+2\nz35WaUOvX79uv/Irv2I/8RM/Yc8995y9973vNTOzP/iDP7DV1VX78R//8W94v+1b27a0fnfU0cIK\nK6ywwgorrLDCCiussMIKK6yw/7/Yz/zkT9s//V8+8nX/dmw8+hOf+IQ9+eST9tGPftS++7u/++j7\nbxTTOU6s58P/5J/bB3/3vfbfvefnzMxsJjxjZmYVorBBrCjoEPSuimZElioSNiCbRolzk1mfqCln\nRYMIRCYhKj1QxM9rKeLV7xKVhDHTj1wUGxQPZk3XFE3l6KtNOXc4DXS/Msi302XJQUKaJbRviJxF\nTs0ZJKHvqDlEeWdB5XoV1SeC8eK57FMTISPlTOXxcj2n76Al1PMbROMHtFeznJt1YFSAYvdBYgNU\n0F0GgAjdHQ8Ert8hM4s7BucyKDQUWW4dKmqYwEzJczIacNYycdkqEtWhdUJRzX/wa3/fjmO//Tu/\nbWZmC4tifPghukHoBZVBEBK0XyKU9z2HXju2A0jyFJZViUh+CIqfcJ0fO9YEkXoy3nhk4EnQzpmk\nrt04u99EswF0ymVzcnpEdSLgWeqippxFJcKeoumyu6MocNnMfu3XPmC/95EPm5lZDRTHh0XlVPvj\nXM8fj47oCioHY96nHgnMngyNieRABT3oKDo93gEtW9PcmSHSnpMVYNADedmVJsHECSKB6DSYc/Mt\nl/kALQXfZS7Tcycg7qM9jd0DPi8t6RxmBfTLh5Xwiz/9M/Za9r7f/w09Y8ahNbQx89VlHItghkzI\nhODOlucwYepONyFy2iZowtAGae7QGLVt6LIBufPVLmtEjUEAgOAzebyJu59+X4U1NkDDhaFtScBc\nTBxTBLTJibZz9nZK+Zx2Tc2dj4YdELvyMWYzEOUKWjjTkHJyXjoCuR5Tj4CxbyAdLi1GSPs55k/F\n5WiAXeaRGcFA7SaM0ciRFnz3H/RGaPcqc3fI/SrQPfwh9a2pgaJuZh/6hQ/aez/4a2Zm9jv//W/Y\ncey3f0vXI5JvYxgqcQeWA6r6U1gRAefoo7baa5YsMgFMmoAMQnbkG0FKEpcRDbV+EJ8DWBw+vrBc\n4/f0c2//8IjZkMC+ihb0zFmyJqSgtwcxaFYfJgT+jaFvLD02gQ1WJhNCVkMniDo4yZXywGUgo41h\nT01Bj7whjIwaWddcdhDHqoI1lJAqKxu5PiajFkjpkLW2VRVyF63Kr9WdDhz7Bh+NgDFoW4WmymCZ\nGs/N0CnKYHYksALSrtgHPilofusP/9COY//tz/485YfR4wYtexGqYSPmSpmxGcBEGaG145hKPv7e\nkfOC0J2fh5XHmAmPQHjQtAbaO6BrMbpKjRIIJ6zcRtn1o+77e//Th+ynf/7nrQxNLZ5ovARk9Zgy\nR0P8sWPQHpEJcVoJ/eChAeSR7TCFCcXW6CirSrWifUCAxsNh6jJUVo80uDyyrE1hlVqqOlToXA8/\n7PQwBs4hwogLQ8cigAGYu5Q0btCrLm1ooaMRv8efVqlreZasRlMYeuwnP/ih442Rj/5vf2pmZjsX\ntWbH7DW8RTRRymTz2FM9u+zbIrIDzTTJsIYWTYVsQjUyVG71tMaWm2qfFvWawkZyGRMHaC7ksLqm\n6HA02qtcr79XYA+H6OdVncQhYy9iLzOGQVKuuoyMrCe5+jY05h4+xGXb6+6jd0e2ojYsMucHh7A0\nYli0I7q/0mL/zd5o/1D1aDPJgiqMxj0Y4Z5jf5AJB7ZJheytM23HcOT5DNIxTNRf/K/+G/vH//jD\nNppoz1GCweX27bW29tXVCN8EU+DmdTF7BrCIP/zBD9lr2T/6eb1wObZtxBowJgtQ4Fj/jrkCLTWE\n4ZGi8XKUhQgH0sf/uXlaRltlDBOvyZo/hnqSspZW6esxY8FjrQ1g3ExcVlUyRWawUUslMlSxhyg5\nyiPvSGnmskrB8kUDcYxGTIifTqHtuz2XzymE0M1xWL4pczVFB6/sxo7b+/js59lTOB0+m6p93d5j\nACMkwm+mTgPSMUgDpzuouRfh36bm3ivUH/2pxlLAe4+xzvr4R5fhlylhBgPl/R957X2rmdnv/9N/\nZmZm2zALx+jdtWBO+uxFB2gsBmhsNtGKGbFZ65CZzmKy0qLDFUFjvkEmILb/1lp3uieqx2984AP2\nS7/8c+ZPfSuhseSxVnT57QKMNy/SPO/t884AQw33aj3YtQl7jgbvfEiH2S00YnIYaPOz69yXfSr+\nb9BjraQv5xvyQy4b5+4WrFXGdgttm3380ZR3toUlMQdL6BIdbqvcY9bsFdieU1hTnQ355YSxtcq7\nybDq9qOsrax1Y/feMHbvBfgjsj45Fu0NmHmlet3M+8ZsmWNxZy0Y8gAAIABJREFUrf7mb/7G/uiP\n/sj++I//2JrNptVqNRtzdGhra8uWlpZsaWnJdnd3j36zvb1tS0sFC6awwgorrLDCCiussMIKK6yw\nwgor7OvZax5f6vV69p73vMf+5E/+xObnFYl6//vfb0888YR9//d/v/3mb/6mPfjgg/bud7/b3v3u\nd9uf/dmfWRAE9kM/9EP25JNPHmnMfN2He57leX5HWbuwwgo7smJuFFbY17dibhRW2L9vxbworLCv\nb8XcKKywr2/F3PiPb98o9PKax5f+4i/+wg4ODuwXfuEXjr774Ac/aO973/vsYx/7mK2trdkP/MAP\nWKlUsl/+5V+2n/zJnzTP8+ynf/qnXzUgU1hhhRVWWGGFFVZYYYUVVlhhhRX2n7LdldDvf/CHF0yZ\nwgr7hlbMjcIK+/pWzI3CCvv3rZgXhRX29a2YG4UV9vWtmBv/8e0bhV7uLn9XYYUVVlhhhRVWWGGF\nFVZYYYUVVlhh/0GsCMoUVlhhhRVWWGGFFVZYYYUVVlhhhd0DK4IyhRVWWGGFFVZYYYUVVlhhhRVW\nWGH3wIqgTGGFFVZYYYUVVlhhhRVWWGGFFVbYPbAiKFNYYYUVVlhhhRVWWGGFFVZYYYUVdg+sCMoU\nVlhhhRVWWGGFFVZYYYUVVlhhhd0DK4IyhRVWWGGFFVZYYYUVVlhhhRVWWGH3wMJ7+fB/9KvvMzOz\nX/6Zf2BmZv2dvpmZ5c0FMzNrtUpmZtaut83MLCsnZmY27Oq6g92Bvj88NDOz8uqs/q3Om5nZTLtq\nZma9w23d12/owbqNVeYiMzPzS3pOJde/O9v7ZmbWPdDvkkHPzMzCWlnPS5RfPE+U131Cevf5lspZ\nbuu6meacritlZma2d1P38exA5drX56Ss2FjqqXz1ZGRmZoP+RL+vB2ZmFqV6zjio6bOv+vupfjfN\nxrr/VPUKPbVTap6lDdVtIVgyM7Pasu5RqanMgwO14cF4U8/YGtMmejb/WKlFbvWehs6ooTLW/Jbq\nPNM0M7M4js3MrEMd6zV9H5YrZmb2e//kQ3Yc+/ve3zMzs7Kpjmu/cFbPaauvx1WVJzSVNxipz8fN\nqb6nLcq+2tifDs3MrJ+rMafTGvfX9VlZ9WqUdd20M2NmZoNAbdloq7NHh9y/pHp5KX3BlMoZI5VI\nz++F+nueqR/ysa5rhir3NNDnSUn3TUuqx6/++gd1XV3fDxOVuz7UfSc1dcwk0P1DxkYjZm5M9bx+\nXeWeGeo53bJ+V6JfJwNNiiDUWI18/evHKscgVjnDqu4TDvXDoKLvJ0mTeut+1Sb/8XVdv6/2mIlV\njyn9lREWjtrq33yi67o87zd//X+w17Jf/Nl/bmZmozepTU7mmr8rnc+bmdknN3/YzMzOX/+imZld\nfkx1++b5h83MbHj4jH6fqzALz27o+x9+zMzMnv5zleVbT542M7PyY7fNzOx2d9nMzBbp843n1faL\necfMzD7b19xaWb1oZmZnFy6YmVmr+mYzM7vS7uozff78TT3vDZ/fMzOz8OyKmZld29Xf40WVvzuj\nz999/tvNzOzmRPWcfu4RMzMbPKy+f6h908zMPvXUg2Zm9vrlHTMzu/Sy/FPf+4oacOENZma2/srL\nZmYWrej+W9nrVJ63yh9vfl5jqVH/kpmZBXXVc6GsMfHiWdX/gT9X++9+k55zEH2fmZklF26YmZnf\nUzs/+ja1x2efftzMzPafUHlmb6kfD+7T8+rX5Vve7Kkdr26smZnZf/FHv2FmZv/iv36/Hcf+5d/7\nJTMzW9zRfX03B8byYSPmTliV7woP+b6m8pYMn1HSdftV+YhxS+UtJbrfTq3C7zSWo0C/32uqX8qe\n2qs2xXfpa/OC3BqHule1q3u1u1oLmlOVaYifmOKnvFz3iCv6t8bvR5HK5vP9zrzKPC6xpkzrZmY2\nP2LtCeX/ZzrqsyptMh2rzs1M3x/WVJ5pDf+D/8hYS/cCfs9iNfE1lnishQO1TXOs72cnqlfS0Zxs\nmH4/KamNuiU1znhOfTYqqx5GH037+l4jxCwZ4p/wq91U7fBffvwP7Tj2z/7F/2pmZr1DzfHe5q6Z\nmXm5njuzIn/Y2dbcDVpqgJnaopmZDUZqn1pF9d/Y0VxIDlW/5WX5jOFY5fNDtX9tpk0JdN3+bfWH\nN9JeoXpyXe2wL99Qqmv9C+flN8dXrh/V4Zd+/hdsblHPCWbUPtObKu90on/bp+TLvEB/T6Yqz7Cr\ndq211Z/9/S71UnlWlzX38kB/j9l7HfZZbzz1X2jqh7SWWLu+wD1VvoNd3XNEGzR9tZXf0n5ptq4y\nZbnG+DjR50lPfTLZ1rNKZ1SWrD/8mrLMrJ3R3xu6bzjUmDvc196mM9FaPhmx1lVV5j/4/d+z49iv\nv09rUr3FGpdpDBxONcibmfYMw0T3z33V12MfV4k1Wqe5ylvzNbayVHPCY820ofrCGprDg4H+LZXV\nHlGqz8NUczlt6/flHH/EGmvsiWLK54X6d1LSdZWSxmwp1nPHvkf51P5Bwv3wV0lT7e2N2MtU1c4x\n9Qj7NEtV940Gal+/wR6NvdiI9qmN8GVVxtxI5atGqn82Yr/t6f5pU7/Pxvo3VPXM8KMxfrmS0W4J\n+34z+53fer/FsT5HCT6Ofpziv4MJ6y3jbpY5Oqrp+l/7h79lr2Xv+9mf0z081pIZvZO02K/1DtQ2\nk6GeNbOM/+hoTS0HKmNpUW2ye01+KMOvLizo+og6Hm6pztWWxnpW1b/921tmZjYOaGvWi/qS5mRW\nYkzF+vvutjov8BgrFT2/NaPyZL7GWrejdyPvQH3amJM/qvKONMAfxFP2yQ3enTJ1VjaUX5yw/lTm\nVd6KtpF2cEvvDSXmRHte7y1JTb+fbN8yM7PhQGO1EjEWfZV3zPoXZapXXGJfX6EfVA3rM7Z6XflV\nn8+1FT0v4n7DTfmOlH11eUm+p1rVczeuXzEzs+XT8rvv+4evvW81M/sff/XXVc+Bxkm9Qnl9lSNl\nfcx5xyx7qr+XqV0S/Hfm6Xchb/RJqjFdGWm8DJnTNV1mU08XxqF3VJb/+b3vtcgSG3v4Td418lx9\nH0714yFjxvMpW6q+tYC+YM8wKWsMRRPeJdgHjSLW8BH+jr1Eeeg+s8/i5SBjzxPl2deUi38s410p\njFVn50cD12gB/oPrE156QvYYyYRyBozNTPXyuW+esM/j91VP5WLoWZW4QVbGX+E3ctopGalcLDN2\n6F66voEVTJnCCiussMIKK6ywwgorrLDCCiussHtg95Qps3+oqOOUCFXjASHDi1VFXdNMoamDnlCg\nww1FrAgO27kT58zMLD6vqOV0rOjz7kuKou4QOk9ADhbmdb+UyH62I0Sjtqy/5x7lyRX9PXtS9+/B\nSGkHgnp6QyE2nY4KMsv1CQjp1o6i3XuXhHLFAdFyyjN/5iEzM2s2FBZenl/V/UB61kDTBhPV92BH\n33eJLIa0SwBborEkhCmD7VEDid0cqHtnkqr1iZC3iaRv7ioSXQm2KPMBdb5f171BoeRyTRF1yxTt\nKzcVrezTd6UWjBvgiotXL5uZ2XBLkf2gpLhfc5WI80D/Hte+1b5VdTfdd3qoPvboM4Bb64EwtgiH\nOkQgH6hvxhGoNah3nihsWQbq9YgOG9HYvKdo59BTO80Sie/EIAcgpF0Q5XZdfZkR7c1hlPQZa2Gu\nsTPtHHK92qvr6T4pqI3fVyS/GWrMtBsq72QIokB4OAUBJ4hrDZBzx55KiainkWNP6ff7U9W7Gavh\nEqK5Qah+9MdEj1PaaUblKFd1/0oMykjk3RtpriY11cs3kPux0EAfllgpGFFfUDHKUQFRnTjmFf1U\nhb12HJsX8cRu/7Xu8WL9KdWxJwbGo/+Zxk73vPzIYqYx9exzum7xjPp0vfkWMzML36gy7P3fYpY8\n8HbVLeh/Rr9Lv8fMzLb7mhNPTHTdqUeEpvS3db+/M/dJMzPb7YjRsv/ym3Sf6dNmZjY9q77ufkVj\nbKGs5375rfJnZ17R9xtvf87MzJbSt+l6T23z1f6nVI5/84SZmbVOqRzlGTFZ/uovVM53rYiRkpw6\naWZm10tC2b7nGd3nyYtfNjOzW1X12bcviVlz9QwoVa65/Jm+rhvfD0rk3WdmZieX5CcfHv61mZm9\n/L1isz2wK79WDtQuezBz6q/XGP6/LnybmZn5D2kOzD2t6yeMxXfH6q8vrslHXX1R5ct91onhGbsb\nW9qWv3/sptp5VNPcGOWwvEByEtBMAFfzEj03hsG458ZopP4bsg4kzMEpqKTBpOzNglpNdV8f1K6M\nz0pgHSxOI/NBw5dBpaogXvNDlSEC0eyW1IZMJxuCYlc91jJQ5EEOmhXr75Mp7ANYBHVQ9FkYcf4E\nRDHVvzWfed/Rv8s9UPk5mCAwUjqZ1pUQUHpQYr3w1eYl/E17BLMEdsECfsAb4o8zjXkfRHUXRLNr\nun53DXQbVN/5+zQG1WZuzIxVnsuNV0el/l0rZbr/3mUhwf2bGoON+x4wM7NJX/XY3NCYPOFrrMfz\nMBJfuWpmZttjracdmCeLs/KTNRDx/ED3DVirfdD+ref1+50ben5UU7+/4RE1xK0tfT/a1XXVqdbn\n7dubR3XwS5HNruh3QapyXdx9ReV07V7XHPPGKl8Ka2UK47MRwxAdieWRUu/2g8wVto5ffla+pQn6\nObsGI2sK+6WfWmMV7C9QHfYuyZ/lIIerJ8XUW1hWG00OVaYXr+s62wfNHlC2qupwvqU63r6l7zvb\navO18+qrhLG+CQPw9i4MylPyH40Z2LOTxO7GKnVdP2HOlUCK6+yBEtZuq+q6xlRtOYLJMWbNDUFU\nB6DeJcZqzp4mqrD2p5rTQUMOKYd9MISFW4ExE4IMx+x9RiMY0zCRPI99akgfwqSO+9zfg90bqNwh\nmG0/pC9BnEsD9bFjELb7oPHsSSawLELmosGknDrkPYXxkmhsdWHIVGJ99kHvPQ9/X4G9kar88QgW\nVgTjBVaGoz+ksA7G3LeVQt0xs8GoYRUcu1fCZ8W6XxCqvCnjqwxinueOOdO041p3AjOateX8G86o\nbux3blwSuzWgjPOntKaWD9i3wZBoVbVvvDYSy7SW6vullfOqD35uelNzxW+oDZaaauO9y9q7OHA+\nWtNavXSStZZ1Zuurl1THqdZ6H8rK0qrGbmVBc3OwqcE55lRDc0nvKvP3ndLveqr3tet6B3P+bf2M\nrosa6tObFzZpH83RlfvlR0tTjb39a2IvexX18cx9Ygq6ufrlayrvSg2GzqrqOzxQ+8y0VO4+DNOV\nWc35+ZauH3b1jjaBARjjpyPYZacWHjUzs15Xe6rrXV0X8Y536ozuN4BJ6JiTCzAQj2vNvta7pk+7\nsuco51X+1djzI/XThLGdMKebsEx83luyFKYoe1PHZK3lMJF81S+PYNUld5gyjd7Y8jyxEr495LTD\nGIaY28OXe6zZ+Dcvpew8g1c+a/CinsKoCTlSUocF78FAGzL/quGUOur3XkAZWeuDUM8bpXx2jMCB\n/H6pXqZtaAv8n8++OnTLEFWGRGsRpwPSRGPaT2nroeqVs27NVtUO2Vh/r8AezjlFMfUcUwj/TN/M\nUv8MhnhcevV34IIpU1hhhRVWWGGFFVZYYYUVVlhhhRV2D+yeMmXm0YA5c+aMmd1hgFzfULR2b0No\n0pDI03xT0cNaBcRlqOsmh4qgLS0oqlxa130DWA1lzi0GC0I2q1NFtjb2FX3ODkAD3ZlZzg1WvkXI\nshGtXWrrufWp7vPwvJ43DjkLe0PnEjeu6L7jMuWPQaWaiqwtnUEP5VDR1ZkVPWefc5Y3icpWiAyu\n3i/k5w20lxkhvlzliUA4Xrr0opmZrcyfMDOzkynsi9klq3C2NSJ6GH/h02ZmNp3oHqdOqE7tNdV1\nwLm5JFakuEFEesz5wP19RZrHN/X3Wl1teHhFEfIIRs7MmsoyR6Q9JUp6XFtoqm12e9L5aHIeu++D\nrII8NELQIbQG8rHq4ftEuKd8zkFdIv0uAq0eE+WMCKN2HMpT0ViYEMH3EhBoDhRWQXR7MEiswRgd\nqjyNrvrAncOscLBwlKicpZruU+JM6JS+hdhiw9SdoyS63NIfxjBa6m2iwCP140HGmVemtgeC6dNv\njlqU0G65L0QkAqWKQIMGc/ocHqCnwVgbhWr/rMW5UQhGrSkoXaY5EROtHnE+vsXzfLQWOkTZhzGa\nPEOeTxR7FB8/Xry1I9T60bfp2RefFtOje1JteXpPY+c+T+jQM5/RmH1rorFx+21ilHReEGpxqfc5\nMzM7+8bv1gNeVht/aih0Z/WL/8rMzH7ke7/TzMxenMgPfeG6nueQgG/O3mhmZjOeyhc/rjb8ypZ+\ndw6W2e4ZjYn7m5q/n+9rbsWcwa9PhBLt/6We/4PU039J/ubmstr0VkuMoLNf/nEzMxsFQhD+ZVno\n+n2fVBsfwlp7NnmHmZm98zHVO78FQllBq+GvP25mZv/qO0RFetOKUPlLaCHMfgZ06u++YGZm154T\nY2/xIV2fhirPFz6HDsb3fYeZmdXGGqPvBHkdR//azMw+k4hBuC7XYeNzaof8FZ3vHjImTn6r2uV8\n+e58CQCt7QtEsw6DrdT62vvEbo6jw5RXVI7DsnxIDLLTo3+cjkYXYZOY3+039fc0U78P0QLyY10/\nNoRWPM2FPPUtmkUfAxblasuVGU2rDm0Oqps0mTCcQZ/StpUZPbMHWjWGsZYHuu+w5ITVQJ9Zw6LM\no04q695E/mwe1NjcuXD81WQWf9bCT7a4P88Jxyr3ECZhBXbSXo91BnQ9hKFRQXOrhl/uoiGTunPm\nMByHVVAn2A5Zqj7qxrputK96HLaOz7gzM/PQxOmgQ1c7pXXx9FkhucODLcoHA+acxvzhUO15+xY+\nYl3I8eJJ9UOOjobndEaoV+eq5uT4Omgb5+IbC2qfhSWtm/VlPad8Syzd/dua2y0YOmceOHFUh4fe\ncNb8SJPo2tPSlRr05fMWTlCuJZDyA/muG69cMzOztKPrbtd0/35XvqHFeutVNCDHaNDFifqtekI+\namZef08d62JmwcqwhLKe7lVl/zbL4G4sqa929nXPzrb2TfGOrk8RSjj5Ovl1txa20anYQY/C31Ob\nVtc1waewDfaf176qiobA6oPyJ+Nt3X9rr2N3Y9kYJgn6Fr2x61PN3SbMmQT02kNTJqYeLYewItTn\nNdE+6cCErqCbEcCiHcKom6CFhe6Sh77IeKj2KCPoNoANVUfjIEfTJUdj0UccocUe4rCGBoNxf3Sf\nMvafDVh57u9jdDrKMIIGsH09IPIg0f0iyjstoW/lkGraq85+vs+eZcTcDhp6bn+IXmGifg3a+tyA\n/WeOoQ4S7Zn6MwpZQHifGDkampl5jdh8mEUe7RVk6pcMXb4c/bt+HXY5jKYAxtBxbMzY89DEKsP+\nCdCt68N48EdqmxDdIP9AbXD7hvbR2Yq+z2CyddA8MadRg794gXeHaqzvy3PyHwn6m31YVUsLass2\nWlR99vF7Y/bJbGNnTsifNOfFCAnZH2/dEOussqg5vH5Sc+kABt/hUP5xxDpUi9S28/Mw7mF5dTkV\nUC/LDy3MaM7efEn3391Wu7RUHct4N/Nox4bTFmMMjWHX7e+pHdZOiPG/xpgsR1p/9jkR0OugG8ie\noj9yWj7oNS2rH3oHjGXYZ6dPqh7lFnp5t/k7fm99SUzI4xrLqeUwzytOk3IM0z9An473j7zB3DG1\n/2Tk6LywWyi/ldz7Cu8pEe+CrO9Ox2lci4/K4k1D88uphU6nzi2d7j0yxc+i4zn19YzUYNrxO98x\nQ9DVDNCJHNVd3XSfI92iWPN2nOKf2Bdy8MNic9ow+nsdxt+Y7xMYb1M4Jj5+I4+Y36lj6LHvYq/k\nMxcnTj9zqPvTNFYuoaMZOu0c3S8J8cswfzz8bQCLbeKpPBEnXQZoENZgMqbog34jK5gyhRVWWGGF\nFVZYYYUVVlhhhRVWWGH3wO4pUyYlwuSR9aIJ8+S+iiJNNc6nh2WYL5y9DUDdbrwsZLlZQ7X/pKK6\n5x9R9DUvEa0eg1xM3flK9CwuC+Ht9PT9cIMoJOiTU2/eflGIb7ig6HFOFo7IHZ6jHu543oPfpCwo\nNV9npVNYBDsxOiucI7zwsqK15brCwSHoY87ZWXcusovyd4MYmlOP7nSk+D3eE/vh2o3nVa7HdF3E\nmdx6cmCbB4oE9xJ0Km4LQTt5n5gojRm1+cYGWjGJrt8mkux11NYHfdVlmexHhn7CpK0+OfkGsQNO\nPSjkbIDmSpVzdNGuynxcq6OAnRlR2n0YJjA8Rr7LBKByldFASHhuYrpujBJ4nQh7DCMmJ0NKDqrV\nd5kNjvQkQKZBh1qxQ4eIXHM8MCGsXOYMf8756UlFfRiOyeBFFo/OHKgSGjNNtAMsBzmd6HOCzlHA\nAfwMBCZFFT/g3GMv1L8Nzginke4/RbMhILuGC367s8R1smcN0ZwYNkEwQLkch8Cf1/dJh7OuRL9j\n2r9f0fUh2T2qmWPgkNmAv8eH3BA9AcfysjaaOLRfSr2PY51dyripe9wCgc18jfELQ51n/qGO5uUb\nvkt+5IVd9c39t4VKffURze+e02x6Whoo59oae189o3n6Osr48epfmpnZfRc1lu6rCE0frytrUXZJ\nGiw7r9f8rV35ITMz23hA56FnPqU5tBN/1czMZudVkdnVt5uZWfWvxGZrbejz/W//hJmZfXpTjJPB\nuW82M7PzZJy5elvXtVaEFr3lrMbErU+oPle/X3Myxb9ee0Goe3CoPj2xetXMzKILQoPqJ/+OmZmN\nPvVXKu8JMVkOc7XbWx/Qc1/YFkp2c07t/dYX1G6fr7yker9ZGdQe2BID6eDz0tgZf7P6+PlP6Xx8\ne1F+/OaKmIZ7z/1dMzN7fFnX7ZQ/ZWZm0+feamZmL3OG+bjmMkEYZ4gD9Jr2QGhjdKLsSGMA1hqa\nCH3Yg/687nOEXs3DrkDPaeLGdKLyDaqaE5VJjb/rOQOeX0PPZZyNLG1qDKdDQZalMWukyyQC+8tg\nDI5BbyNg6F4bBkkV5gkszQMYhFXQ8wGZWEr4Vx920JA6ZZHW4gqIZw+0KWbsxzDedmZBwcr4JzK5\nZCV93i1pEfc4M5+A9K5Q7gmaWy3Wzu7k6EC6np/gP0BISbZkPmkktgBMA7LkRaRWnLT1vMP5uxsj\ng23NwdGB/PXKA9JgaMIIev5ZjfH6ovYYTTRidp+RBkKNfjj1kL6vRtqTfPnLXzAzs/GBxkKTrCr7\nZBGZX5NvOfWYMsJdu6S509mnv8ka6KFpMAMbdmFBSHVpaeaoDlG1Zddf0Zzs3rrKt/rd8oPSgRqi\nFXPrBWnNjDZ0/cJ5MlcuilGzuav2aNdh5bY17vYuau/kMlSsndL1TnuuD1tweH3DAlg1BkOsxjzv\n7mgMdrdeoohk7gJZXH+d9BkaDZVpfkVtfuNZZWG7dlH+y4MNYGW0WVwWI5DUCkzqFM2sdkttNrih\nPnbZPI9rIxb9qKt/M9iuIWyimKwhLoNhgiZMqUrGlKFbo1nz0Esqk1Vo1AXdZm8SNtGRQE+qDsMl\nI2NiH/0JH1Zq6Fh0MEpS5mY4gGULq9hjD9RibOSwzKbMIc9NHdrTZUVKI5fdyWUvJYtVpj1jBfA9\nRSMignUc4X8z0jN1yUAZcT/jujI6USMy22QZexwYPyXqk5DpLEPzoXroNCRxJpGua4DY64+B5UNY\nIo0+7QWryxFh2DtFMGY67I3r01dHuP+2pbFjOMPCp4xD2AV1WFsTgwmIFlgFZnY60ticwh44+ZDW\n5N1b6F6wD+weiPkxgJE9U4Ex4TsWAPviGt+zNvUOyJC4oT4Lu2STW9a+bfEM2aA4tXCI1tY2mcvW\n57WXKHM64eDCs2ZmFodq87OPai8UwmLwGKPDA/0e4o8tn4JpSflvb4mpN4tGTHtWz+mhq7l8Snu5\nk2fkl6+hpdXfkR+tz8m3LM0yx8mqNCSb3Y0t+TufUxQneE+poJmYkMF2DHuqP2Dd492sBdNwTHbE\n3StaD6qwysLmnUxfxzGfsZ6xB8iYSwmZhquwRiKYmTGZ5IawUdycqTIXc7RmMhgxASzeFNpJig82\nfGPQv6O5llQ9K+WB5TDw8iEs+wgGmbmsZ7zjlF2WX+YL2i8emntD/FrO2p/hZmt1NKpSt98iw2uF\n+eV0QZ14LGyhCZqsIUxDH/9VI0tdBtvXZehqoMHax49EsFTLnGJI0fZz+8IAP152+qLmsi+hY0d9\nEurpk1kyQUczwI86LbHY7d1gDsawksoTl2nx61vBlCmssMIKK6ywwgorrLDCCiussMIKuwd2T5ky\no76isM8/80V90XJnYTkDytnXUw8LbXIZYVaWFTU+c987zcws5GxYd0fR3r0u5xlhNXjurCiRsSlo\nW72qqObyutCjxptddiYh2C2ipZvbZFsylXfrkqK544tij9RQ+M44U7f6ekWJm2RFmi27c4acr2zq\n81vf/i1mZjbTdGeQFWFrEZGbP0X2pwtCmD//eWV/6fdBTjivf+b1Kv99515vZmbrp3We0mWXGV48\nsMGukLC5FV37wKNitNRXVRa/pGjeChHY+opYBflIz7jxitD9fF+R59NnhFpVT4ppszKn6N+tr141\nM7Obz4sRs7erPjn5iNpkcnfJl8wnSlqHWtFBxIRj5TaDsvYhCETO2dOoTNYfp53COWLHZvIGjDE0\nFfxMBWuDbsegQyPQ8mqmqHFS4zw3KFDGmc7WDNmUjAwCnH9MyQCRRGSz4txzEOv7KhkWDmn3iq+x\nN1MHFUPLJQdZGaIJ1PbI7gESUekL4eiD6s+geRPOogSOpk3MOfYG57onXf1bq4O0j4iCg+o123re\nARo9SMmYP1J5HYMnhImUlFXeEGQlI6qc9/RDl7ki8HW/YcA5/L5DN8k6U72jCv9a9u2AyZ8ig8v3\nLeiLdEvMjr9eEZqxuSGUZPONQocWLmsO7M+JkXLmKdBw2TpdAAAgAElEQVSobZV5fVV+4980VfaF\nvuZK7SVpPD36OfmF9ROaG6WBUJwvTIT8Pr+s+XhxJObMD75JY+PNY/mPlZgztSuMGfzL+C90v0sg\nssHrhfLsflpz94mzKt8Xr8i/vPCgnnfyJaE+k0jluLAnxsmbv0vMkmU0D05eF/L8VwHZqB4X6n4j\nl49IFuXX3p5ojG038LMwXyqHOje+f0J/v+orm9X5XGO34sZOKmR6c04+Y8fXc5OKzo37B0L3H8Q3\nXLxPjKHv/bJ8zqceV/t89hN63vw7xJz5luGXzOyH7Zv27i6zThV2RdSDLccQmwKReiZEZ9BUu0/x\nCTH9PwZ1zFqau73cseFYNxqc0wYlzUDfSjBkSmhEZLDyUjLUDDirbO3UDL9EYhEbgSo3QEwr6J1F\nFTIekClle5a1LdX8C2poCdBEXXQw+o6NifvLYK7UOecclWHxdHTdPCjy7iznotHC6rbUNi5TyQSG\nzLTC72HChGQ0GIKmVaG/bpPJoQoaPQFdSpoqfzLVHK2hTebQfgvQAamhWYN/n86SOZH1JYTReaSd\nc0zrOW0r9IOWWlrndm5qrg9uiN26+lbNmQn6b7evg/Cu6frKKa3B044Q6T5sV6cVVIGJMndKc7h5\nWp/b8+ihPKW56jLOTBK1y8Ks5tBBT3P18pZ8W3pJc9l++MfsxrWrZmQp6YK0VtgjleblG0J0+rY3\nVf4J6GjzhHzV7CJsuhvyRcEymW3w+9u3Vd8Z5kqdzEl9tBq862gSXb1k8yfkt+ZOoN9wTXXbIUNj\nyFr9EPud2VWYw00YHKxRl54TE/jaNaHip8+qrdYfVlvbFZBJ5ltIZjC338vInjYFXU7IRFL2745N\nVXMoOpkJmwP8eOCYHaDdA6cpw5xDw2qC36jjDwxWaoZGihexZuaaA1NQfaMPPafxwtpaaaFlACMn\ngj0bwLQuD9FsoY+r7C8jfMrIZW1CQ8EJ2rnMax4Z4UpV/Cc0h4g913QKyxf/6THmQtD+AVlHDN9S\nJrNbo87+fEoWJE/jgqFpTbKdOIJKhkaE2/uFaPRkINYBrK3mBNYe7dzF75uZhZOplUDqR7BXjL1K\ngr4dJGCrwIaudmAINO7ob7yWRbCgAvy3X6YN+jAS8aMRbKiENWASwwpgjBl+c/mM5mXJlx+5fvmq\n6sA7ztJDYpXNrMmPbN3SHIkZi7XE+XkYhWRpCshENebdqN6AIcnnF6/rlMDMuvxGqyV/VSO7Z9DT\n8zt7sB+q8ncLS5qTKRlir12AaT9Gk6uqtj6HVteoK7+xd1X1O/sG7Z1idDo2N+WH1s+foJ7o212Q\nTwgZU+fQkolh6m1flZ8MaecxGjoVxvbMok4z+DCMbl1QfV/5ojJYdmFMRugS+Q2tC419jfVOrPYr\nM4YtRCfumDaEXTHHe4bPehjDIHUaYz7MU5fNimXWRpzSyBzzlP25x7umD8PG2O9nFeYw75pedIeX\n4VtmQXwns6GPDqmfuX0W2ZjcuxWMQA925IB3lBKnK0owUyDrHGXby3knStGRGzM3Qli6KQycsWN9\noW+XJ+w5EucQ8AdOTydxdYPtVFfbNpwmDeVOYDQauj2R5xgxMKhdxivHznWMH+pV5XsI15aW0NyB\nuT1wyffQtsp893etS4P81d9tCqZMYYUVVlhhhRVWWGGFFVZYYYUVVtg9sHvKlHH6GMszQlkOyPCQ\nwTyZELHq3hJ6tX1LUcxbM2JheMCJnssUcZsobEOR+1kYNyP0M/IBZ/6Jvg5H+rx6RlHmyqKitzN1\nIbtddFJabZ1PnDsjVsjiuqLfHueyA8eiAOUvE9HvHqpc172rZmbmo23Tb3LmjOj1zm0ih5zfPyD6\nvHVT5djaUmaEWo0zfgugU20hUGcfEnI/GAr1uvCckOit5/XcarVszaYiy2vnFGl24EudaKiH4n++\nTMQXnR2kWez1Tzyu/7hsR6A5hzBhdrdA1fc4Y1lS262vqy/WOONpvZHdjQ1qILFkJQorYk3lIMRJ\nlzapuvPkKGFzDjBuoFFC1DIYEmUNUFsnCtrrg9a0GYMVzv6Cfk1gYUQl/a55IKTBnSfv8Ps2Zzc9\nNBj6KIXXicqmR+eXyT4Cs6bhItecv+yknPnsQgOpkL2oCZPFZWIA7h/XdR8Pps8Q1N46GlPNmhCQ\n0UjP6cGMqZT1u94AlloTlBE0auSU0p18Upvodt+d+5xQD1nAHI6o76jF+UnQuyH6SnUyUpRBCiah\n2jNG66J5F8MkjXTxt75NffPcrhgX2xPV6c2HQl3s7Rr0l/93oTaTR5UlKP+c0JU3fKfK0jupuh18\n+pvMzGwhuWpmZp26yvb8d/25mZkt/aWyM/3bt0jj5ds2pSvRekpo0uR++YkfQRdj819LO+WFN6kx\ncw7fe28WClYGoeg8I/ToXZxP7sWq18skg1tCt+d7lzQm/+wWaM4D6IbM6HN7/vP6NyVDwv+hdvpC\nU9mVQk/+tH1d9X35xXeZmdn8rFCr//O0NGuaIzFu7tvQ2BjPyjeM6pqLJ/8f/b0mCRrrhfJXZ06C\n4n1S5U+7QsC3fkT3+dKBUKw3flrt+jgMRHvdm8zMbPi07vNtj8jf169dMDOz/YvfafZzZn8Vqn7H\ntSmaZL6DzkHXAlgahy6jD2eVM1gWHceUyVymDFgp6AUMZ0H0R5o0o5rGWW3CrIBd5zIkBAPOInO+\n3yH66TQwEn04fMviWTScUnc+mXkCs27X3aOuZ/YidCRQj2rgR+KWy2wAYkY2tpQMCPvoj3n4tzkY\nituJxuAUJM5DDyPEr+5zBr6KnkVMNroR94lAoxOQv57TnRihowN6VeOceAx7LKvpdx38dUr2iBRt\nMiSwLIeFELPmTkD1ai3qNzo+487MbID2VvuE5sjsmsb4PtlA1u6HSYK+lHXIjsI62T6j9iqhCXTl\ngth5xtzO8G+zJa3H0Vmx25owTfZctpSe6t1wYxFGYTRDFpFnYKLuaA5Vm39LGyA2i9lD2aF+l88K\nIa/FMKxol2SiuRzga1Zc9iTO4/d2Vd65WVhk82Rqa6ocJXzbziuq5yRSv05B4Pezic3RN6VAdR4M\nNY8jWK5nHxSjscXeJGF+jLc1VnZvyR/dePmqmd3Rsamvi1mTwXgOK2T+SmFhkckrYv/mtA1SGNpT\nmCV59S6xyZruW0IfI/dh3tFnFac9BYEk68BggYHS8/S7QV19VmKvMmItrKMHlYLml5nDIQwUp1cS\noMVQAk2v4N+mM06vRM+ZVDWXfDQV7/g3tB7Qn6jCahi3v5bhUqUvPcbwGL2p8QitIMd2xReMxyoX\n0jbmpL/8AM0HtBinR4xCWGGs17XUMRWdpoQ+N3KYOA2196ivuVrx9aABe4wIdu+0wzrIuDAzK+eB\nddAJ9NGkqVTU/h0K2gjRc6k4KiVIfP8O4+a1LGiSNY19Vr+vNTsHNV8mk2oPXaUqDJryPH4aGP7g\ntuZ3GwaM30bD5SkxRGaWVdeVdb0D8EplnctirLRgbK+cld8K0VQc7ajN3btR2bEi0Nu4tanfH25r\nTV5d1VwL6/rddl/vWrM52YhYV3gFslJTcy6DQT18Rmt5EGquPgy7v4P2Yndb91s9qXquwoi5+ZL0\n6broBtpUfTby0HokO1xIZp86mdfcfrPTlQ85tSCmz7lz2utdvqnyjHpoaNbJGoo/K+2pIo01fV+G\nUeqji5KTYTGElRE51mx8d6y7wEm8DNBnQXck4JRIBovDbQgy9FocW87pIMVuDrMQ+bD/PLSFnGpW\nAEN1Cgs7z+4we6Z+bFG1bB66QeOQdwTGYtansNWv1a1JKZOhbVjiFAGkXOs7vc2AfRNsogjGSDjE\nT8N4y/GTE8aG7/Q7fd65XNZMKG0J74JOoysfw7yBUZP6+AP2e1X8iHMvTlvGd9JTUHoS3g1LTkPW\n6dVR3wl7IcdCdRlzQ/aXicsi5TJVopfnvbqkTMGUKaywwgorrLDCCiussMIKK6ywwgq7F3ZPmTKN\neZ2/PvuEzvWd5fAZCQZsypkyg3WwuCHoYfsa6FBbkaz92wojLq4IdRpxHn2IWny3r89nH37QzMz8\nFHRuVhoROdmQBgNF0L70RUWhKxnMGtSbH+iLDdJcUdS1jI5K6vKpj8lYBDth4wUxVsolIeftRUU9\nD7fRjuG+/Ymeu9/R7yccmp3nfP3iiqLGpx8Wgl6ZUbvV0d3Yd4rm6HZ4RK1PP6jo+dKZlrWXzqiQ\nUB4ufEk6Nddv0ZYVztfmoLmcOe2BUt28KbTB///Ye7M3Oa7r2nPHlHNmzVWoQgFVBEAAJDhTJEXN\n1xosy7L92ffefur3+3d1v8ptt9uWrOu2ZEmUKFMU5wEkAQKFuebKOTMiMyL6Yf0OIHbb+gpP6Ic4\nLwVUZcZw4px9Tuy19lpomASgM86tIqEWMoMp8cxXXtLvYfcMhuq7PH2A6B2nOaXrBdM9x6tkRfEF\n6uBChImQ9Vu6jlbXOZ2oT8pkOyM4Hd5Ez2QKYhw4NfIh2VnqGmPYVRUQjgnZ1qPIOadQE1rXGDoc\nUq9NP4W4iAzGMEhijQEPrYCGEyAHvRmDzjciXJdmcGsa6PhNmC5tGCge2dcqEEXoHBRKZGs9IQde\nLlQrq2sOUVpqow7iFTg1OA2DDjXNcw55z6mbhwHjMzaZWpbFuj5Xn39UB7XCRSAv67yNLnXzsA/i\nwMFpfa5X/+9Vjo84HHSk9zD3Txqr5zakPeJ99f/QNQ2Fat/+jVyEvrEgh5NG87dmZvZvPINtELhX\nPlU8mp9RHGhsa4K/Vf2SmZmdSoTmvPWU6p9P4qDwqx3QlbM6YB/Np1+e0j0vLuv6Onti4Hxw/jdm\nZvbyVY21HVCar31PDJCdshDkz9FieSrTnL2Oy9Lhihg7KahOtKS+mwuklfPe78UQutXRdS5/U336\nxO8Ul669IObO9B3N4XhTY+ROIubLn97Ss/4Ndej+y5ozlV8ornxW/omZmS08r9hQH+o+p58qzo4S\nfX4yI3StN1Wd9vmfSePm07FcVCrfCek/kO/LOCJsyNHhvY6YM8ug/1fmX7P/Yf/DTt127L3jtfIA\nJCV1Yx1dKJDQqIw2zIx+ttF+Gboxqtuxu+g2uZgxdCIE1BY3YLPEGWgV+gER+lEZTg1RGUc551RT\nL1kJp5EIfbIQV6TxCrppxNky6JUX6tkcILxQRjsmwnlkyBI/qWgeRilszQqoO2hOBhPFsbUOuHeb\nxVWC3w9m+D1uQNOSxn4SurVaP2IcdKIRjJVeiXukT+n7sArDR18zH2eZMutIfw5nFdCxFLbDGIZP\nheNPqPfOAhdHofo5vZ5jttll7Qk8dEK6bc2dI9b0CIfIBLeQe3tCeEeOhRCB8F4XEnt4V1oI9XUh\nxxurYt7EIMgHbdxNRmLFBtSrR8TjEf+vhOr/EdfRhnFUM/oBjRozs+WlE2bz+vycEx8g/houf71d\nzT0n2NE05xQEY9Ohh7BIurd13tY6unlzmvM3bkrLJtsSsr72ZcWGOszRG8k1ixAw2u2qLw/76quF\nitgCk9J9T0AzMwtBc2+hF3F7G/cy0OnWKY351ozWLrdm794C/UYDMAWVd/usLqj57Q/0TKpzuAfN\nOLj6eG0Ew6NaxwVkqOuO74PaIMU4pVgZhgf32cJZcdR2Wijq61bImp+ia4dARBiDIKNRNSK+RC0c\n1GAEdZkzLYT7JsSfEuwo5xSZwyyJ6GcfpLcP+t6EFeyh34S8lDVwXquhNTYKdcM1dKWmINT5DE5x\naECWOY+NYevCtqjjDBmjteDiaY84Ws7cXlPraJDD4uL/fkM3NJiCaOPKmtyPgTpt14k8mFkwM7UW\nbLhh0KBf2DzCToh5Hil0PMeGtsnxX5ca5Sb3pGPeekeMj8aqxu7csmiv+wdyMTvY0d5gcZ19rmM+\nNHAkqxPXWMsP2xrLc2tinFQX1TdbH2vNPNxRXCrBOFxY1eLlscfoD9B+gq0/gMHs0zct9qtPXNJe\nYvGk4uJnV/S+MO6pz3Jc2ZbPqNpgf1taNgms0WRPz363ozl89iyaVpHG0ufvfWBmZilOYmdfEJMl\nQAPy8BAmEfpPU9aLkHekAK2xEvoiQcw6QdybHCm+5lMxH2dPqX/9G2JLX7ssxuHzX9MeY2lZ8ftg\nV78/OYOL1KrOW64R93fU/1mf94RF2GhuATxmcyNqSEzx2Xd76J7kOB9VYh1/xHvPfT0T7teHheLx\n/pBMnU6SjlNuEFOIlSHXmYcPYl+Y5pYFPUvdOIcxMkHkyTlUuT1DKXP7KNZgdG8yKCPTBu9c0H9D\n9l2eo845tg/aVGP3bok2VejYwcSRsKx4lMJM9Hkn8QMcsmAHl9Ddibn3CkzNSuBYQ7DDcIaELGYV\n7KEmxLNgAMOHuO60YCowcEqu73hmEe9OHqziHKaNx94kxdmrRPz+z1rBlCla0YpWtKIVrWhFK1rR\nila0ohWtaEV7BO2RMmW6KGHf+ECuHvsDoUWrK0KVqg4lKyu7PCVDNv+4sp4L80JUZ5eUFU5hDcSg\n8ztbQk52yPo2yIyl82iyVPg/mbbGkrLNrs7uzp7qKVuouR+i73Hl2u/MzKyEk80UNsaYevGZGWWD\n67PUCFMju49rwBQ2yvqLynKfXhdyf4iieuJUoMkKr59Ttnb7thCmsKSs82ef4fxwV1nfCRoHJ06r\n/848qyx3Nhnb1qdChyzWNe5eFpoUOERtQZn9CQjguceVyf+8BNrbU18c8XMCKlIBhWqAYlUaeiaN\nOWpfh3rGt26Cdrii02O2QXaHf6HEj4tRPiLjWwZRpfay0gO9Rrsl6qNqjqbMyIPxg6aJq1eeUlMb\nw4AJqV+sguzGOCnUYHOV0WIZTZzGA5o2oEdhgAYCKFronAuAq/xM32unjBlnBtUB4XYZb1CeCkri\nLtvapH7TL+n/OdffCzVHnEtLGZRyAPpmsDdi0KyI7G8NNpq7LkMNvkvWuMzzNrLhJPCtRR17l/4t\ngXRHzK1xjF4GyuwTimijLtnwFiyv+0rtjKcj6GfHaB+NpO3y1y8rDhzU/snMzLZi/X7zE1gB34UZ\nsSumyOu/1/xYeVJo1QkS3+88LrRp8aL65PdvSmvlmcepqW/gpPKJ+nr7hnSU7CXVbWe/1Hni72vs\nB57m0tbr+tzCy6rDfuKnmtcfntX5jz5XX739tI5T/1ue4TdwzRjoejvTfzEzM/+G+vQrd4Xy1G9s\nmZnZG5mO951vqT/eGnzHzMw2tsSA2aopFrSvbJqZ2d7XFfeew6nrzWtiuX3wuOLx6S09+7f+Xf34\nwy/ruG82paVT+YUYPB/u63MvzgsB/7wnV71GXeePK4od96jJfTpW/IuOhMJ9622hd59dkubEHK5U\nbxwqjp9f+gszMwvrQutOzj4cwh2CPgUgLwO0GipljcE9kI8pTnRZBNqGrlUKWyFC+8BroBc1cesA\nDJlIcxHzkfvMxQGMGEycLAXhrcA2aZpvXbSiApghPkv0AfXLLfquR6zPqHOuo6vUdwwHpzPB2oTR\ngQ1z0HqucYC+RGWs33sw1Ua4O/kw4zpNxSmHHuUN4h3OhmlXfTcuUWdNjXzaQBML54QQVlECg9A5\n4niJ08Yi3sIQqRLHEvR4YrRrSrBLPfREnDZOpe9c+Jx2mPr2uK3Jmt1LdN7bt2GCbmsujNEfGl3X\nzwMYP45tUK1obo9xR0pws7vwqmLALGj+B+9rzfaJj40nxFqLHAqIPsdSQ3udwLSeDg5AqkGAg2Ud\nb5M9gplZda5hGet4t+q0F8RuOHhN7MDDAXogs2LhzW6K4eI5bYWh9gc1nHfyEI0KpweyCOPnY8WS\nJFT/1NHzy6bErjSyUUnzq9xmDCA2Mvs0WjI4A/oxmgOZ7mmE61KIBt/yulDshTWh8jMzmm/DVNcW\nwSJr93W+5UXtG5cvgs4f6LiDHZg0I/29Wn64OOLcgzzcgXowJZ0u3BiLR58x7pwRU/7u2EhZTccZ\n4OBYrqrvJo695Nb0WZgtbFmypsZMNGTvwZ6qVMWhksnu1uwQRs+YfaxzOExhqozQ4yihcTZyrwXE\nuQDnRcO1KE81RnIYQAMELxpoR7i5HBF7RikMFm7AZ6+WeY7NhtsL19NgD+AILrNoS9DtloTODYV9\n+wgEH8bLlJhVntHzdbHBzKwfR9aYwDxCN7CHG18DN5kxMdH4WSaWTsM/jnD/YavwzCpT3evn16Tf\nNkLI4sVvas/fhyOYBLqmTlvzaNLTz9aGWKfO8WrvutbeKhqQ6+c0Fwx9y+27MENgetdPE4eJlzlr\nWx/2Zu+e5o6PeOQYFpLBDl18XPHBQ2ums0fc6OlzpZKON/OYGCg3b2lvtf2J1uwM/bX502LybV56\n2szMdg60hxq0YXfh7hegVRnDwpjAVC/D7vJhM6U8m5h+y9BWzDx0+dDmGjPnYvoj4O9TnBV7B1RV\nMFbnTyp+710Xk3DE+tOEUbR1Wb/fQUuzjL7n4qq+Fx3foEv3AWNlFme02AmxMG5CGEPjGnpYsO/G\nCKAE6CGlMFs92CLuvaBSxkUWzZuc95AMHZf6H7jh5sHURn7ZcmJ8hbVtAoPNxSUnHzSCOVOFmTfm\n2iPeW3P2V1VcJkfMN0PPLGMflvFuV4KJl6GDFDuXZBjG9xk7uLQ5TVkLcSOGVTzlvTxiD2WMJacR\nU+cdzGPPNIHJkxG3ndtchisUpNn7YydGw8aVyLhnNGFvVotxXYIxM2F9y+HAeNM//m5TMGWKVrSi\nFa1oRSta0YpWtKIVrWhFK1rRHkF7tO5LoOztVNlXD7elOzepz35fiO+Y7HIICojZki2u4USAo0+T\nbOjMY5tmZlY7qUzahqcsZgAyeeMy6E6bWmWyhXMb0jQ4+SW5spyjrr+/rex0j2xyUFdmLSFTn6Hi\nXkIr4MK6zh9XYcqQsBt+pM/F1D+G1J329oExyU5Hs0Ii7l0XmpbhtHHzU9VvXyZ7nKJfMr8qhCUC\nRbz3vphHvR1lwdPu0AZHuPy0hEbMryvDvnZaGe7avLKTW+8Lpb5zRzWVQVl9eP6JV83MLOeeXM1i\nA6bFGGSvBJNifFfIXIpifR12kPkPV3PZ7eJihPtS4ONCgZ5ONtI9Q/ywfoV6ZRgs/cghsurDGtnc\nAc4G7plFqLnXyJa2A/VdLdP9l8j6DkGHLKp/4XhGttjjeGPQrwrItEfBeXeq38+ASLQYewnZ2aTs\n1NXJFoPG+4nGRB0mzrSs/p2AOpVAoyowbCrU03uRzockjZUcY8f09zLuJj2nfzHL+bjfBijW2GXP\nQcXG7jkuoJ2T4XB25JzO6CecKho4io1m0S5IQDlBgJp8LqDOPnkIR4zgWd3jPydCgZ+7qXtbGCl+\n/H5V8/ex98Xg8Np69i+sCXW+PiPtle5HYnJk1AeXbonJ8bVI3/98BT2g60JXHsdpbLgmpsfqu9KC\nOZgI3bo40dya/FzP7q3kXTMzq7Z13k6g671Lbnyjqb581qnGo37/K1+o9O9wBmvOa+56uDRNmYO9\nkhDhpfqPzczszfdUR94tETfQP9rR4ey8556p/j73mRh2c59obO1vCskuVXW9554S2vfJFTF5WifF\nKPKXdX+vfk3P/GOWlR6IeOOfpSWz/JSQyzOHqiN/7aoYSC+v6HtbzwqFWrwprZjlsyCh7yguf2CK\nSbOfm9l/Ndu9Cmp3zNYHYR2AcHst3f8R7JAyIWrs9Fj4RY85E/FcxjN8HsBkUnfaDyD7QxyIysyl\nqXMlcLXPILPUVA+IIekwsRpiT4nv0Budo1riWqmVd8jdaIxmDJouvvu8A4lgMnpj0CuK0Ye508UB\nDcL1oQEjpwRKNMIpwWkjBGhSOdedaYoDDH0wHru6czRsRuhKwFxMqOv2Wbsi4uMQRA/g00LqsCcw\nUELQOo++cjX0SU9zP4LB6MNQzEHdnLPCcVsUwvQYCqkuddFwcY4+CVo5MBeXQc+ilmLGzKz+3kdL\nocIzn10UU+bgupDsvS3tQdbOKlas4CS0zZrfY0+zfI66d9aT3S3N1RqOXi10+WzmgcNM6E3tCk5l\nR1c0l3uwf1fOi8n62ILO18WFZW0TLZ1c+4TbV7f090RzvwaLw42LIUyAOloFHuNoyp7I4/d+kFuN\ntdjnO6uPKX6dOaN4dRldh1ZFa25jVr/vsC+MQu4N55gA9H3CWnPlQ7FpD7t6ZrV57feMz9VWdG9L\nsIYGWLlMcAkJyg+nc5fAVKk5B0LH9EHzKkGEwGPvU21ore8x1quh0+2BecHeIOnjuOWcymAOlXvs\nqWDsYbhmTGmrsBcbdGFHMLcnMGC6zLkSa+wULYYcZrfb0kyqMFi6TEIXF2eJU21cSNi0zDiGIOzc\noIl+XB92Lm4oLcc8gW3cg8nidFM83EsnmcZqONY6EaCrNAWB9p0OVtfpYTmrH13XdAxboMacQdsn\nTP4AmZ6ajSs8BzpyCOCesNc0XFLzGqwRtMgC58Z0jBYwDw77MFHogzGs/Umic59EC+raZc37ex2N\n5RraT2trWC4yRjsHYrtmsDqdNksK66Dmay1usVcpwZTuH+khzy+JbTa3pM/vXtaeJ1rU8TbWdb4T\n67jf9Yl/vHsYupeOUZJ56rxaCY0VGNz7Xd3Heqi5twxTBjKSDbcVd5ZPaI/SZ67fuyEGzflntcdY\n4f73b4rdFiMAkrr96MAxuJ2mGM90R8crwaZYqiqGeDVHX4UZDjOnjg7KhDieMDbYIlkV/atrN7Sn\nHCX63gmqOnLYdn74gJV1nOYFsHHZb+dOr4V99hTWSIV+TWDIeLg+peb2/6MvXFeZvVceBV/4fMB6\nHJXQnRo+uJbqNLDJJLLUw2EVpkmZa8hhdeZGtQC6QVP61MdBscwaPeKenP5bdcq+yrFz0OmcGiym\nBJYra3Y4HHKPTjcITUBYtMa7zpi4GuGOGXMdbi/ks4+LYRHFxJ9g5LRfuI46exlcMz3GgMsP5LCN\nfBiHSQ0XTeKay0u4AB27rQdhxScO33dl+k9aweaT/x0AACAASURBVJQpWtGKVrSiFa1oRSta0YpW\ntKIVrWhFewTtkTJl5ldUr/jMi2Jh1EEydo6UMe/cUEbq9m3q96gxq6F/YtSYba4L9fFHytbOwAJx\nLIboItlCNGX2Bso2x9Tyx2Rb793R76uwQXYzkIARWdemssPnHn/GzMxaJ5VZS6fO6UaZulaqLPeV\nW8qqJtSYrT6n62pGgqrnTir7ug2zpT1VZv5MSdnh+iUh1fNc98qCvneD+vYhaN46dedxGZR1V9nn\nvZ7qOuuLJ23+vFTNT67rs3POPeFz3fPNa8qEjyZKC3ZhKxmK17vU41VOC8UKQGd6XJsHqDAGqbxx\nQ6h3ewelfjRE5lsPV+Nfa5KtHaKtAELsgXqXaugIOQQVZCBH46VhsCNAWaa4BDlE1msIWQgz/X5I\n/WOZFLnzpI/QHUpwJpgh3ZuDxoxwTig1XRYUtAzm0BC0fJa67zZq62ENlL2NuwWIr6v3jjq6/jyk\nRhYGTYrZPUldG7l6Rmpuu6BxVdT3/YpL16IUjmp7PKv7rOOiNE3rnN+5OIFU99GgAD3jMgxg3apo\nJ3gtXZAPUu3BcjPQuYC6/2qDWl/gvj6oWAv2QuIU2o/Rmhsw5g6+bGZmi2iNzF0SStP6XGP78Kri\nSH0BJf5AiNzsLurx65o3/pH+/uPHtnSPr+uanvmp0J/57wnF6d4VCrZ1QvP++q0/MTOzP/tzOS38\ntK3P/ZeTmmMvr8B+mFdcePO73zIzs7/u6jrfOf93Ot9tV8uuMfnE6z83M7PTaBT8uvcVnf/M22Zm\n1hGxz76Bltb1XY2Z+Rv63MpXcRP6N9V7n35B7k0nzr1jZma9179mZmZXnxATZnZB1/Pqa7rvH0+E\n6i88L7TrlUTPbPeXuu/XKtK0WT9U/27Vf637fVLxPfu2+qn5kVD6N6v63tK3cLdr4TgUiTVwZU2x\no/oLdKi+rePU7gjhPtVU3Pv8B/q9/ciO1TzclUJiXOp0jBiLPVgPGdoIWY3aYth4KfXzEY4L/bq+\nVzON1Zix7oPgOIQ2htWQGuw6H7c/YkIOfOiHoU2HTqsLTRfm0ZRz+VPnwAKK1HL2baUvXLvBrswn\n+lm9b/OgzyegT9USehb8fYgmTBm2T4V41R+B3Ln6bFClKky3KedvwSpKYWVNnFYVIlRV547RID7g\nWJCNQfhg3AxAtcpooMWwEVLHOgURDHFxi1wcpJ68Rpyb5A/nvgQ51iYOqQRJTYcaiymIaoiuXQV0\nvoxDYn2uxX3o7+GsLqx3R0hvAnPm1Dk5vK2d05zow4zZuS6keLasObxwWnsBp1u3f6g50MDdam1d\nc3Km+YAp0+9PrX1DcyRGc+jM09KMmT8hZk2ZOH7nxltmZnbvsmJka117nH5XHd1cgn3HHsuDBZLs\niEFzdKT7O3FBmjhVGDKHH4r9kqRtG6KbtlzV+L/V0/i/8nsx7bZxgGzhNmeOmRY5fSW0R0I3N9CD\nAF3v3VZ8KuPGeeqC+iSAZZWisdIA8a2b4v69e7rGUnPJHqZNGRsT9Nd8mHdjtAOrrNU5oggjWKn+\ncMD3GlyHvldHFyJjzeuMcG+q6JmWJ85aEhYaex8PjYZxAlsJxkhS097Ad7ofFef8iC4frGUktsyR\nyTBHsRL6UV6s88dtPa9SS/0XsE/tw1bDTMk8dOu8BuvXAMcw1i23ZynDes5wjbJAz3EMU2eW64gM\n1gP7cR+2XAV9qZx4G+O01nSsQK4nx0XPMdbNzGpeeF+PxNAh8VLdX5U4nbPX7MNednJ85YeIJQks\ngyFOsBNYURfPKE6EM8TrO87lTWNjigPMCdzaPFhJY9bc+pLWvAlaLO0DdHpgKwSsE/uHuJ36igNl\nWLgLoeLJjNu3s3FPcYRZOL2p6yau7X4inbd2V4yaBu8sS2e0VmdsQG9/pr2FzyCahXmewVSpNbS3\ncpo6MWzhUYgTVptnexIdE5yxKjCms9QxrDWmGtiWBrwfOJmOkDV6RMwp8R4QzDM2WWdSWBcrM/o5\n5dnf+wQtGZgn+QH9wz7Z6Rw5VkYd9h+kOMv84+9bzcwS2GYRjkGOPRc7OhwsE5Zjqw40poewBi12\nWjIwOGHqTGCLhFxniOvihPeC3DkXlR6wBNMwszAcWxijS+k0n9ib92HDN+rEERhxbh7yimSpfXFP\nkU71LEdoZDkXMx/GyJS4nnjMiYFzS4KFz+cmORObPg7ZO4Q+ncPnvfsuSU57hj0Bpx8TN0P2ChnM\nGc8VrPBOmTLWpuijOVaaR/xPR/peHebOiEocx7Kqcj+Q2MynHwfoBf1nrWDKFK1oRSta0YpWtKIV\nrWhFK1rRila0oj2C9kiZMhMQgfY9oT8x9cpOnf3C00Jgz7+AFgAq7A1YAVc/EbK7eEJZ5aSvTNkM\n9esjanQ7d5VN3ovFHLl5TajVxZd0/LKrdYulHfH+u3JXilG7f/I5IS+L1IUPyBj2d5Vh71OX7erq\nP7+jeu4AlHNpQ9f12Bkprh+BKCe3hCB3DnT/IVnhXltaFaVF3dfWPo4Lh2R/QVbWzksL48S8PvfR\ndSFG6xeE1q0mQuHmZmetPdU52kdC+3dhwnSovayEymQ/+apYQDPQkrp7utbLn3xsZmb5Z0L9D1E3\nD8lyYihw3xN+CELXKiuzv3RSfddY+gO572O0AATh0ClnUyg4GqLCjtJ/EyR1HJHFxZnAuQy1QFkA\nGM3DhcnZkkQwbBh6lnSU1fSpI57ADMqp5U3IQCeBPhfEKP0fgaKR+U4cwt3VVBtTP9ky9WsGSu40\nbpIm+kho1ESwCOLcZfpxI0l0oTVQxClwV0o21ge9H+CO4uGilLlMe0Zam9pTdxyP+v8U9C8cq8Ny\n6vMrXG9AJj7twShCq6Lsk+3mfmpks1OQDVcD69hnYQ2NIhwUBjjhePnxHTHOfqb5cT7UvHtrSWN4\n4d3/y8zMthKhv0uopu88I1T4jQVd25f/XfPy42saK0+d0Lze+70+N/yGGDC71//VzMwu3pPmyV5b\nffT0z3XN05dfMzOzf/75183MrHlSjJlfPSdU/FIihszjf6/zfAeI8aPn5FJ04t++ZGZmd74hBsvj\nX3lKf78nx4KTN/7NzMzKs+rj2RqaWJdhxjWEhq+T6e+gfVJ6Qxoza3+lZ/nOa7r+mes63+yMNF/u\nzuvzzxBXdwaKI4O6GHo/DNQfv8IZ4vEX9SyfDmHX5bq/V2/p8zd/p/59tav++3hdnzs9FMNnu41r\nE5oxT3lbut+2rus3nlDG538htP79Z4XGn/qtPpfclTbNcVs61NzwqM8PYQuEPVgZ1FlnJT3/KZoI\n4QR9J7QTMmJCA9RtABvFCUT5zK2prxjTwGFoAIqYEGvKDqmhNjke5VYC9U2gopXQqRhRS95Cs2Xa\nROuqTy05jLYy6PNkQj10FeV/atcraG5lwL/DXPcU9vl72WlIaUwnuDSUcWyJYQIGMQEfJmAAIhmj\nxxCBhuUNF2/0/yZ93DfdZ5U+DKDyeKDXMzgpOE2cKZooFYfGT2HYoIU1RYvLMWQGOKzU4odz1onA\nqSagb2lX613aQZsLZHV+hF7IvFgWC6tiAUyxahj7sCWgEm7dEQNmc1M6VTNruu4cXZL2vtbnwQEu\nT7A6GvTvKHWMTdYVnB+qEc8RVoSZ2e5H122/q/jq9hynNhQbpmV9//Dq51yvYsghennO6fHEGcXM\nO79HUwZttqNrur6ty9oPzNb1/FY3FIOMcXFt56qZmZX8GastCV2PnNUHLMy9Q+3DNi5qH7O0qP2K\nsc+L0BiYwupaXNQ11Rs63ngfxgZzo4Ie0MKK5kYPzZIkc/o2OBk20DeCkVgZ7dvDtHoXbRoEn+5r\npuA8mIM0O70IDHYsQTulii7emHgUsacYsz55IMENRAra9EcLqNfDnWoyRA+PbvWTL6L2EToXbo4N\nGrqQbAzDh1hRyZ1bk77Xpn/m6K8JJ2gS5rqwIBo4nSUwWmLWHefAaOyTQ7RrqriexOzlYvSzSsTf\niD1aztwp49gYof3gYktOvwQlmDuwg3vobYVorzm9vLzygL0Qp75NbMB9uzmm8/eImVmFvRDrmmPz\nWXh8lnfe1bzqHhLnIj2zuVXFiykMw8+ZJ8HUjQVYVbieBsS7HA2aCjqU01hxaQe3o0svaZ7vzvJ3\n09q5tqq1M4GlFY9h1DhXH2dpxb7ar6jPSlN0friu+Vmt6SFud3Nz2u/20NkYbWsO1R2Db0Nx5O4h\nrP5DMW1mYOodoTnYZM1c2dA7zDyxonN9y8zMbt26Tn/ABCH+OlelIS8eTkPF0b2cy127pOuMYDhm\nsDWQM7G8rOcxpH+2b+k+KrA7PL7vsU99HE2ug0NcXRnTNRgrU+/hmJme71hjPBcYP67KI4V9N4V1\nO619MYa6968prI2AuZrh0prDYA1Zvx2PP/Kc49mDFEAQ12waxffpqAHVApkPd4O1e9p3bCY0tTjX\ncPrFdALkJis7tjyPKIT9EzMGS7w7RJw3g+Ho3I+mrPVTnHcrMJydA/CENTvA1jJiv5XWYbVyXJ++\nLqOT6ZyqQvYmExjOUxyusrI+P+XvIZq3ceTiu65jPIZVxbtRiI5PBu02ZKz2iWdWuC8VrWhFK1rR\nila0ohWtaEUrWtGKVrSi/f+vPVKmTJXaYJ9MdPsIloMpU97dpy4aFG50qOxvANq+vats8QiXjl5f\n6FDel5K5R3Zwf0/Hmceh4BT10avzQlZGZOpWa0K0a3MgMYfKnq4vKzs6IGG+d1XZ2722mDVHe8qu\nrswoC3zY1vk2zwsVGw11X9c+UFb8zm1pyOzdAu0DSjm5KkbOjetCqmtk9LqJPrfUULbasT2O7ikb\nvw1qun1TDJuZrwh5cvWcO9dv286Ojrl//SZ9IQZLtURteaZ7OPqFHGKa6CkMqLfb31Omu8Uzm5nT\nz0pTGe7qojLKCy30Fcj0LiwL3ZqNhCTe6eoaj9sGoCd1U41skoLsVoXMuXrG7lR/b0Wg+2gNNMlK\n9mKymLh6OM2ZCIRgGJDxpt46hbExBamukzX2qT1tI6ldb+v7GS5HYzQZatR4hmR9bQaHsdgp+DsU\nRv9r6bItIaM/on6yQ5Z13iGwzsFhFoSc6y2N1O9jXFGaaLskhzB9YODkThMBh68SjCOjzj2r43gB\nejUo47I1wmEBd460SeYdp4QmqGQv0XXXQHpGrv4z09xNJ1wHzB2Puu2IjiiDDGTB8VXs39nWs7yw\nr2Msr2m+vg2a8GeXxATZC5RpPwXKffOTH5qZ2WdP6FyvvAOqcFKMuk+fgDV0BRe37W+bmdntVIyY\nK+ekG/Hnn4rB8XZLcWPlmX80M7ODGd37N378kZmZ7TwrzZufL+ueXz2rsdV9HweCVc3Jr7/51zrv\nGTFB/uS0vv/pk5tmZvYCqNkBY/yTj3Xdc2hLfXhRddEzGxqrjx8IDbq3Je2ubx/oGXS+JbQ7e03H\nTTzVj+/uSn/qtQ3F2XMi6ti//uO39P0lMVx+sqlnP3dH8Sxsa+zs8oULv9F1/cOz+nnp8X82M7PB\nj/S9JFRdenWq483N4fAWiVXwvS+LSejG1Ms/15j+hT1r/4uZzbW27GGaQwHjA50/THDUwUapDcrW\nxfkohiViEU461AyPnVbFVM838hjTIMT3HRvQfphMneODfoSRc1jj8CAsWTSxABeJxKE/aEE1QExj\nUKspKEy5DgoFemROryF0Tgc6aRXXhbFjqgHil2EKxsSVMnoNHvpudTS8YuKkc3bx6LMM3YgBTJUc\ntGkCQSWD2RO5WnbOW+d8AXo+DmHMiXcZa55PfAgDBcgurIiZCkxIwkQJ1L1PJ5eooR+GwPvHbJMR\nOh+sD7dA+Z1z0ONPam40TgqBroAcx2jn7G5rfYvZc7R7ins1dDjmLj1nZmZ7Ha35+zec+wn3A8PI\nStwY56+xXkzRpJljXZ1ZU8y5+tFn9+9h5851O3sG1tzT0rHLgS33tzS3Jh2OH6P7wbjZ6cBapq6/\n09O6Wruj+8lqmpMDtMEuPS0238KakPG4r/upMqYrmys2t6K+ikY8W7cWw7Zc2wCFZ229+9mWrpm9\nydTXtbegsebo+2yDwrca2oMEaAgAelujos+P0b+5c6RrT66LoePYvVn5+K46ZmajmhNPYP860prY\nw11jJnWMC9w772sVuOvD7ieDDQfTzo1hH4bekEDiMebd2l8JcTnyNCdy9ioGg7yBTkWCbsQAN7ko\n0ecDRA7GzD0IO1aGyTTLnEnQkQqZ2x231xg7J0rYAlOnlQXbN0VHpao9Rm3s3PjUEU02sIGLFYzN\nHHZx/74YheZgGfGbMiyPPrpzESzd3Dm6wfatwlTyQdrTDHspMyvVzHz60clptGETVIIvso0Dp6PF\nnjeN/7hryh+2wUB9EPIsz17SHqG0qGffvqMxM7qleLFwQvNnDGPiiL+fucg+FZZURrzu47SadPS5\nCXMqQpMshmFeeVY6TaNraPht67pyUPu4r7Gzuqk9U5Qt0AdayzGBcpKA1t/TXLo61XmXTq9xv7CU\nnJbjhp59tqs5t3NHDH1vQXudDBZVB7bV6Zc0h2dqWpvfeV2s5wl/P/+sYkSFd7XOPcWZCQy/hVP6\n+5g9ntX0+zTR/XV4f6nNKRaVcF6r1x27lfvb0ecIHZax/joWRmtF73idffZKR7yjwmBv9vUOd9zm\n2FqlErqlXEeOnmnML4LcMWmYywHsEcd2K6EnxftQ1bHOyrDrHIsEfdOYuVgJHqyPU79veVa3FDZR\nBkNxyt6+hv5cDIu9ynyZoJ3iO8tHt0dgf5SxZk2ZdzF6P4FzjITJ4tyMndaMczCbuHcW9jgJ1RAl\nmDsBLs5D9jwRTOYK33cVNhX2TilxcuoYK3Xuh0E+5Z0n7BEPcFvOR87pi/iPvVIEMya973QJk4d9\noXPIjWA2+q0/7kBcMGWKVrSiFa1oRSta0YpWtKIVrWhFK1rRHkF7pEyZDlnUq1vKTiY7yj4OyBXl\nsTJzjTUhvUvL+jkPM2T+nJDn+XlguaGUzS9/IGR5igry2owyVa2S0KXGkj7/+Wdi1BzcEPIwe17H\nX60LfVp7UtnrdIj6876yvdlY6NHKqrLfZ88JPVs7pSzz5zeUTXa1wtevSkPhcFuZsxNNZXOby8qw\nzS0I1TpFtvx8RfWhvZ5Ty485n67P1WaP95VdTdAVqK8qyzyzpH74+AMxBPx2bgs4N1341qbOeVJ9\nEYFaXL+sGvMOzyCGkbK4JHbR+ilpwrQ29PsyCECFmvejQ2X/vLFTpFa2tXNTfdFFQ+VopD48bmvM\nKeu5v03mlzrf4VDPbAZHh2yslH4brZdZxlAXd6RWQ2Nm3FP2tgJq1e6D8rRwepngODCmpreq+xrj\nOjKZCGkog85MqPGd4BjRHOg4foAmA/2bopWQk90tB45JAsLcdkgz9fTUTVfIQg9gTcXOXWTKmB05\nbRhU4nF6cMLp5RnqtnFXGs1y//w9noCykfWOO7qfJg45Qw8kGGevEVo3LZg8HmrvferQg6EQEo8M\nfG2sz+Ut6jepC836ZNXr1PnjRDFx2hSZjnOc9tJYDiKjv9H437qi+X8WOsCvJkKL6x/JDenK7G/0\nxSf181SkMdqP/tTMzG75mv/f3Nc1/+5Q7LGPvrNpZmYbnHfxiv4/eFrnDX6mTPjZc7qHpQO5H5W+\nJ82Yxy+LGXLLU/z4x9fVt3/9FZh5XfVxb1fn+7ir4898V3Hq43tySTqnaW35JcWdUktxIVuXdkz1\n10Kj6uiMXF4WAyX+QPdza0ZMoHMN9ccvf6DrOzcQ6p3dVjy+9ITG7rkf6XuHL+JW9zZzoKS4s7v4\nHTMzq3wutH6xpPOXQWdeOBAT5uMFxZz5FY21vZPAQh/oWd9bUz9+e0lj+lpT/29fVuyqnQDpBqWa\nf/Ph9KnyUGO/Rp38ttPnaIH4gIqVEWWITug5OjV9g/2V4p5UgQ2YgJA0QK2GzMUMhKmMBkQAQhMP\nel/4fUptdKlZtZz5fN9ZhXlfR/chCNB4SjWvRmhHuZ7IcuY7zA0PJkQGYhYSxyLckXzHzKA23TLH\nWAOlolY/whXOqF1PQcuGgeJ6GKLR5ZxYuPccjZyc9YCl6j6KXY3Rfwh0PD8BZYIZEznnHR/3JtgD\nI9zeJoGzNkAHog8KDjMnmvxxVOr/3XLYCjGsjrSt72egZa0TQoan1O7vsm46V7v+tubOfltsjMVF\nIacnntQcn3Cc0V2t3a15GJotzZnbsAaWF3Ecm9XPu9fFsk0PWWfQjYs7Os7Ojav372EyLtniWZ03\nR3fjEKehvXtiysR9pwGE0848GkDocMxzndEr0p+aQ8dlv625d/Yp7VVWn1A0HKIPOIS9W4ElEdRL\ndvNjxa+krfk7Qe+muSHGcnNG8/zOJ9ob9NHjiGENRM4Ra15jf/e22Dx33pNmV4M+GoBE3vpUcejZ\nV16kD9gv/U7HjyoaaxunhJpP0Rg5bvPQYSjDtBvAomowuIcgwBE6aQHOY2UYmgPiZgkEdQgTJWRu\nJKzJlTprKWPCSVdNUIbIcRs1XATHuf5fgabmwaZrMJeHCFZk6GDkaB6GMFTGILt1nHCQ5TOWeKs4\nEhfObhk6dmPYxyE6gsP6LPer4913I5nAYGGPFo/QkCCm1aGuDImHFfrF6QY6LZqcOV2qcfzEWd/g\nloKe1BgqVMSeyMwsmbYtwfUucK5NMGViYlHInilEw2YKS9ArH5+9OyZu1GD01U/gQMO8u/vZNa6B\nsXhJTJXbn2oe76HblkwcixLdG7StnEtda0Zrag9GXXmddwD2xymofb2msbbHHMyHmmOr5/X9s6c0\nnycwZ27fUhzLceOMnFMXLqpTGOLVszpfbRUtnIGu02cf7VwAO/TtWdbamTnFu6MDVRs0cAzr7mhu\nd++qf1Y2FcfmiLv9ge7n6mdiGJXZqz0GY+fwpvY2EWyu2UX9ffdIx11AH2SElk4Ky6KMvojPeleC\nbeFYVt3RAf2gjiid1Oc6n6M/d6TPefHxx4iOD3sQpn6CjlbK+0SJvUjOepn4zoWKvQxMGg8Wl4/2\nY8qcSGLHbEXzEQY65BXLy45ha+ZNQrNgfD9eJrxEeIz/Mdp6vud0MzkmlN+EAOXBrs2d/A2M4DLa\nKwEOUyHv90afesQbQz/Ovb+7ZzNwGi3u3nzn6sbnnM4cDMse879eRoeOW01GuDYFjlXLmOb/zn0q\nrjgXVMfggVqJ9tTEjRlYZyPcmjI0c1KYhWXWlymMxczRlP+TVjBlila0ohWtaEUrWtGKVrSiFa1o\nRSta0R5Be6RMmRoaDBfOqE4vObNpZg8ycyGODHW0YOpzqN475Wsy7f0DEIIyjjWgaSfIxnbQAOiC\nLub7rhZVfz99QUjLLOr+d0Cl7t2Q/spej6wzbkwxSOvT62tcpzJx7TYoFo4MsxVdb232q2ZmNj5U\nFvrEaVgqsCXKJPL3DnD4GaAgvqTU4d0dnX/r8pb6qacLmVlUv0QL+jnL8VKQghS2x9zqnIWufq+p\nPh/iXJChID2zqms9eVHsIwA26+6rb/sdMrIdV/dLX4KW3PlYqFVvXyyAdkffG1PfvLShvoqyB5nZ\n47SE7KxnelY1NAa8ZZgbHM6jbnDWb3Fe/T4kE52C2pTIdg599W0wo76dOPckUKnmHBnlrvq2A9Om\n5oFQo+tRmgr1q49Aq8ie1hya1SarzPlIGltGza7X0Peylitw57pGzpGFsT4DcgyyOXYuSi0hDK0R\nauog0kOQkwoK6QPq2yvUHg9BMEJU7ceZsrnZPJl7mDs1kIQB2WAPtCoa6rpHUG5KoG02QdMioA6z\nhtYMaN3MUPft49qR4ZiWwkjyQx3X7x1fxf7tr4tpdslAZ0EdroYaO395Tef88Z9oXn/p94o3w0+E\nGucj1V2vzgod+uBDzd+/S9XnP3hCY+JlTwycjyOhw/1T+v+v3hFj5fmWGB1XfTFavvQkBdn/ojll\nQ6FUJ/8CRPAnQon2PpU21v7Xheac2pJb0cmv6nO/fV1MlxOvCum98WV9/uJNEISBtKte/7cfmJnZ\n8kUh08tPCK1v/FiIdGSaAzdgyd34re7rxOzLZmb2JG4kf7ukuTzXFhNw+as67/Kv9Wz+tfJfzMxs\no6LrOH9P/fA/cWx5ChemSi707Z17+v23L2oOfzz5pfqjxee/Lw2afkfxtvuxntfWN/ScNpbRi5r8\n1szMaitCHO58Xfdt/7sdq7XQSZrAIJpBc+huX+Ok2tQc6IE019oay+kCjmtoVjitmJTYWYFt4mJp\nCXeSIXOqRDCNYHfU0VMauvUIDZs89qyCu0I51rwaM4880N4ETQEfBoxDp2M0VMpOqwltGicGUBo4\n9zOQNNbWPlouJWrWHYjjw3SZovcWUOftw+wbhM5RAS0aWF4x87jqdClcXHAMGlCrMpoEGa5yITXw\nfZDlINZYHYNqN2EjcZlWxj4j4VmWesSlpj6X8f/Jw5GprAQLAlMjC3GpmI4VB33W6giduJ1rYqAE\naKYNeOaW6cQbFzSH+pnG8N333zAzs70b+v/SGc3N0ImKgTpi9GB7fSG0t+5obnjQFZZPiLnqkN5x\n7wHbY359xmZOiAUS465077rYgAd3FHOqdY3R+cd03hrORe76F2cU44KKbvj2x4qdB7BzN57SfWWx\nrvfaO2LbZawP8zyv3cMj29/SOeusYStfUrw8eVLxMu7CHripuDF/QnFi83Ex+bo7ijNlGGYBKPL8\naTGCN9fUF1c+lGvdASh+0ABNhmnRZszMoFHizcGC6h/fVcfMLMfBLEFLpdLVXmdqzkmMtSzGgQs2\nm8ec8WBxBRH6bMztnEmSsl8dcL9V1lAfdN+DUTJhbIYjfa6OflvitFE851yG7gjsM69CbIC9kIOI\nl9CAGIHKB8y9Uqb7GOGyUopgzzLmkLuyCVo1Ldh9Tudq0oJ1gONawnlqqdN60XU47cgqrDMfNkDq\nnNfQoAnRpBjBGi6zZ4omLoYRm8ra6+bdRDL3UQAAIABJREFUB3OjPGlaGT1AjIOsh0NdyJ4ohUGU\ncD114vsoO/6eJMRtsuE0VEDNh1e1Ju/uaj5ubmjs9tnz376p+V4qOUcqF39gCDLf67y5nYBJMl/S\nvfqwhW6ja5neUBx68pxYsJ1EcWT3UOd/6kuvmJmZx7vV7XelD9fta0z5sJgW2TPUeLS7W2hUuvhX\nRRvFuWn62uu074lZ5/bVUxaYWRj4MTpP/W1dz95Ac2Buhbm9qTgUwZK4eU3XP7inPcnCqvYIzU3t\nNdpvai8yIE6uP7ZpZmYfUj0Ro0936inpbq6c0JzIYMR4rPEpMSJAGyvZ0XXOohOa1RS7umPtIZMG\nc8F3O/zjtQT9qRkWthHfjyas+w3cF1lHfaonKrggZgOur+bYc2hg8v6ResQe3KGctkwCayMcP3AC\niitTCzOzCrcwSVz8gPGBtl7OWB6jt1mBseI0tAImVjShT9CUymGeOPbqFP2bxOndOKYJvN+SOedG\ndN2cHh4ub7m7Ls4f4P7k8c6Uw0T2eJcawXRz2ldj54bkRACJWy5+lOlD5+wY48pUgekXosszpT8i\n4qMHY9oxdkJ0gDwYkmnwwA3uP2oFU6ZoRSta0YpWtKIVrWhFK1rRila0ohXtEbRHypQJUFn3UMyu\nUfdeCZT1dXXiKTolw21lb69RjzmBNWEVZawauI8EsEFWzijbeqKu43f3epwH+KwFHWSs3w+ocYNM\nYCHZxCawVe2cssaNlpg1j50UynX5mrKwVWp8hzjxhCsbnAY1aJgvR9tCHiIf1X7qPPcOhJRv31B2\nOQeRDagzbCwpW51SZD0d6LiHt5U9jtDpCKi/H1HjV/Eu2fY9ZeiDqu5peQFWQQOmxD31QbaoWs28\nrazeAeh+imZMZV7ZxwwUOa6DXrT1LBcfV+b63Nqm+gydiKWmrr0/hm50zBahwF8FRcphQUx90CiX\n1UVNvUs9nxvYLmsJscVyalo9sqA+KFXDRwOGPGVEZvqI7GdzQLa3qfM0AzReyLaWuJ5RW/3ZqYLO\n1EDTqT+vwFhqB+r/CsePQOdzVxvsrgNIpARSEKFs3k01dusd0DgQ3PIExJUM/yTUmPRzp2GjP89T\nq9rNdX6ncZOMUUjn/DFaMUjI2AxOFe0qSuKggBkMninjq1nGHYq5Ozet0i8gEmhQOEQ9gOVivv7u\nGADHaZc459s96Tss3tP8fwmGw6+fENL64odf0rkjzZdTi0KT9q9Ie+BvT75uZmZn5oWGrH+IXsSH\nQkOyV583M7ML14R273ykMf3Kn6ke/PB90JiexkCyJfek0UtCgd64J8bcl2IxUb5vOv+w/Vf6/Bua\n/7+4QN1yVeIx0YaYM9+8o4fwRqQ5Ge8Kgb7hoa3wA425zq+EAt2sCM05Gf7EzMz+WZI5du4jMW92\nLvzczMxWp183M7Mf7eg4VhZCfbr0T2Zm9lpduhLPv6y41N/UdfX/btPMzP7lZY2lH7yrfvOeVn/E\nf6F+i34sBLwG+2IRx66bH+k+Pj2rz50a6bo/6qofmj3FrOyWkPVsV9o16SX16wVf13PcljIX8y41\nwcEXnb5CENG6Y5GAKLsYkgbURE/RdUlgszEXnFtAztxpoClhaBcY7gODKTGM89UaOm42KFmMs0yA\na1J9irMIaLJDDAdcWwkWQCvQ2BiAvBmoU9XnHmE0+jnOLaBBJZgv5Vjzb8wamGVozlCvncFEHKJ5\nVQFNntAHY1wxprCF4qmLI/p7gJtTOibeEAedRlbI/fqcx3d6GLCM4i7MzopD7XS8CkhfH7Stoduz\nDDZBUDp+HDEzm/D5FLQO4wdroIU1QUtnOkEfZOQ0fIjvq4oJyxW0ty7o/ztvKwYMcV3aeEzI7sIp\nzYXJFGdJ0MgE7a7pPdgFsHBD+rEU6nmNcK0rOW0xM6vMVc1LcR05IFbgZOmhmXD6Gelb+aB8XVyX\nZpfRMWmo3yscd3rEnOnjash1tFkY2juKRSvnxFqsNrUODW/dsgoCBiuXtB/aXNe5MxDV6+8q7nTu\n6hiLK5tmZra0IsZi0qHvmEZ1mBED7tExoGOQ15JD5dHHmeCOYcyV5kktli36cM/r2MO0lGffwI0k\nweUyHzIWxjhaoS3l2Kaduj43czTm7+jyofUyxAExol8CWA8lGCg5jmR9kN0mjGjnfOaUChzrrIQO\n1QhtmrmI++xqfZyiJxHTnxNf99Py3b4YBgm6eXXm2rCBQxnajgnofVjWmPDQ3etVNQaqxAhu04Yw\nNitNp4sEwsx+NeA5dmAuljq4N7EnK5e4HhxoPHdgWMF+l70MWg5R6cHcSMtmcf5F5H0GJ6MMNxaP\n/uvibBezB53Ex9encvvUFvu3BFek6/u33CfMzGzprOLAYVfzM2CsrixrrqRNWFF30ZLhGnPia6Wp\ne5jg4Lp99zb3zjNBt3P6rD7f5Nl2WdOauKamsJraHTH46jhO1TbEuGvgdurD6P78UzFqDg/EWGme\n0lxdRHsyQrsxRmepUnI6R/p+uanPD0K9y93EFa45o/tdP6vj5PNUO1yTVszhls6Xo1u3+Zj2Kn2s\ncXe39bmVc2IQVefZi6h7zWKNiQt/QtyFKd6/phjjlZm7MO0ry7CtEvUbr6g2hgURsKdx++DgIVxD\nzR7okSRd5k7ZrVewMCCTRYzRsEK/OuYmr7JV2CJs023C+leBZTJ0jneQQ0rMyen9qGGWZQ3L/cSG\nMNEi3jGMtdXQFzJYRWVci3p0loeeXeocV3kLq3K8mDV9yp6/5NzlPJxu2S6VeZkZo3PnmI4p83LE\nS0ydvp5Eus4MJuQUMZusrDnR58AB1QoJ7xgZe4+J2yNxnc7lyb0reczlCOZc7shQfA/ylVXQt0vL\nru95tuj0OdpunP9xR8iCKVO0ohWtaEUrWtGKVrSiFa1oRSta0Yr2CNojZcoc7FBnvbtlZmZDMm6V\ngTJSeyiV557YFYjDW5/azvNnpQXRRq1/eKTP96ix7e4r+7q8JmZLgp7JyRUxava3dN7BnjL7d7aF\nzJYrypgtLyuLfeY5ITuVReq0YWPEidKvYzL9acJx7ug4dz+8YmZmJZCIPpk2D0R1hrrrnqfHMDuv\n61xBaXwyJWtKXeH6ipDo1mk0ZEDCP3lf7k7JPqwLkI3SCWWD1zfO2NquWEMOPejsk+0E4TuiHrdM\nPfYUlfcqmgYV6sFTMrbxHNdc1+9bF/S5x848q7/3VXueg4BOeJaDPy48/f9pGZYEeATZBPcgI6Nc\nAxmdgkzWQZRT0CsfjZM0o4ZygJJ4Rcdtokvk6vwyUC2nvdB02VLOF4xgnNQZjF3qv1Hurszqvku4\nOo1wF3L9OEX7IegrazxWwt/myPQnTeeCAYrm1OJBrAdQg7wFss2xnnUP5CXieY7I2jZgyJTR04gr\n+l4PhfSwjt4FCPmAzHsFJGDSJpvNc8jJOkcgucEQVxgQ7BoS5+MjZf6naMd0J5rrYQ2UDvbXFLZc\niFuABTjVtNSPx2nv/Epoy7mpriWubuoaDoXAPv4/v6++ePXvzcys73/DzMzuXRHq8mEmjZNvvqvf\nX15U3Og/L5Sp6X3LzMySmS3dy3sv6fh/Rh30z3Sew+8J/TkBs6a2oHrrT+tCj7/yMzFxXtsT8+Rr\na3r4d1N93nsZFL6nn9+9pzjz0/ek15D/UNorL6ERcGOiOd0BsdhEB8ib/bWZme1PxTDZlcSN/dVn\nYqLcmJcb0qXtv9H13Vbf/+XTinNbN6XNcPUN9Yc3UJw7812hULNdxafhX2osbWW6nwPvQzMzu67H\nYbM3hXY9kX/PzMz+7t+lSxGeFMPl+3OgW9Tdd8aKmz+4ruv+5H9KQ+bmD9XfF3+j87VnhfwmvsOF\njteGKU4/OA+NQB0raDUMcd4Z4RxWQi9lTHyugGFkoWO+UPsMYhKABAXUGmcGAh065FpfqxPXU5zk\nPLS/spJ33+ai0nPME82fhC8HIGUt1pAR6FQ+RVPG1zU6R5mMuDF17mYJOhj8vRo47RWHBlODjn5D\n3bF8UuYlLIQIFH/IPdfQi6gNcJTyBpwH2w7c5zC+sb7TbtF/rUv8qVEDP8YJqwRzMOW+a+ho9Mf6\ne6OKLobT03BoO+5IJdgFx23OreLojvSl0r7mWn9V61wZJ8aSOXcOWA+MjY11rcmtk4pz3U91nIOP\nhSwvXBC7dvG8GKU3rwrZbh+ibcZCN0DfYgKz6fzTWvshMloNFH8HdsmROX0OM6uUrH0T9u0Hmoxd\nN9aJ9/Mzih3TTHF2fKjrX2gohk1wOTnqEbdhxLYOQWwDp4GDSxeMriEstzrI7WTctROrQv03TuNm\nOdUzvfbhx2ZmduuW3JJmz+kel9GayVhLJqD7Nz4Qc3GCNkAJ55UODlhHN9XXpQXdg4fjTJ44Fx61\nCCZcAlIb9/6g747RSiMYHiC8KeyuzDG/6bscrRK3by0lepYd+q7C3JrgtNbqasz22RcaayvhwbxI\nc6vMs54QA6poJwwYK/fdqtB+yYhH0X39Nlw7cRmpNTTG610YP1X1bwb630Pbocreqsbc78LaDWBV\nVHCM7MP6rcDkGcLeaxFjIGuZh1uWYyJapuc1gGUbjHEuwlGmj5tKhX18D7Q/RR+p0geJRrvCwyUl\n+AMZw0nqO0Mg82Did8b6XqNKfMdBp4HzpQcDKi0dnylTRRvLw8kmzNXHyZFjZfEsm/qZ39bat1DW\n2Fg+pzXu7mdaKyOe7QzMkR77aWdnFzfQUryr+eexf10kHgUwHD02tN0JrKtdXVeOrFJ/H5Y/zoiL\niGvlAe9UbY15D82VAQzwaqr79MuOfep0QXkWxIcSOkUzK8SRgdNA1B5o9aSYL/O4KXUOiU8TXafb\nN5Y5bmlB17mzLQZS+0hjfY19bwYrKo9Y72qKez5uctZVnDwiBkwZ85WhrqtRRuOMPcDH7ytWTWHW\nd2GiO4uhGiyv4zbHpghg8XrE03H+RZauY5IGcGEiWBcJe5oRexWv6qoomAswYev33VR1Pzl7l4b3\nQG+pNkksziPzYHd5zG8Pt6XMuZPVcF508wS2T4pDow+LZ1RjbWb+O91J57A4hs1fg7GSuzFFXCvD\nlBnDVAnRxam7eZnCRIEp6TRaK8THNNOgzpzrHO9IE+JTg71Pjkas8Y42YO/DVsUinkns3JsiNGyc\ndJWrGhii54cj1njk9ovkNZgD5cjZTP3HrWDKFK1oRSta0YpWtKIVrWhFK1rRila0oj2C9kiZMj6q\n7xXUkG/dUrbTAyGpzZOlzaltK+lz53FVOvnkppmZja6Buo+UvaxQ9+3DvDlwDkI7yjoHJDfv7AtF\nquNgE3L8hUW0GJ7Q8X2y2h10Wa6+966ZmQ2odSvjFLG0JoRm7qS+l3vK8oYgMkHitHPEYGnWlfFb\nb7iMpM4z53RbYH90b+u6G2d1/AznpP0DoWQTMpNNXAtKIPCj28o+37p80zptUBScAfo39V2n+TEK\nlW28cEZOLCsvqxa+UUHB2tXok8HtZerbFijRYKRM9sFNsQ+uXNez7FJDW2vqmcxUdA/HbV3qtwOH\nUnO9JVfLiTNBmUI/D8X+IHaOAeg/0MeAMzYLNJB4QgL7OCKUYJRMQcMz7pfSe6uDfARke8swctxY\nSHBhmk5B0Xyd5wgiSCvTPyo4ig2o1XfK5GNqhcsgK34Hpg3n9crq7+5A/ZmCToUg5C7bPE92NiXD\n79fIFnMfVRDulOxuXtN91EG8pxxnModmBVJAKWM5QsMnCvW9CVymJNQYj1Ead6yAMWial7t6UpAJ\n3LVy0C5vQF1o4/iIw8ZLcgM6kwl5/agjlOWxK0KPPqEvd157xszMKjjKtD1pzJxHR2mEW9PTMDiy\n3+j7v76gv58o4SD2nObXmff1rEaMgeHP9GxfeUp///RN/f5MKAbJLyON/a/Mam7dhgWwf8AY+pWe\n7VefVpxJ3tX//1v2pP7+8b+YmVm9JsZL94KYKP8tEvPl5/MayxgK2M0bQqZffkPP8HenNedfWJVG\nTeeekOUXNsXoe31F2jKvDPT7zQt6Vq//VnP6Hz6BbXdO9/k0uiX/9S094xsgKOsd9Xew/mP1yxn9\n/vQT3zUzs/5E/fnG22IetmfEOHrlro77k3n93PxTUXzO/0huUmdeEAp4sy407d6bD1Ce4zSHNmXU\ntbeIvwdlV3etz8Ut9XsyQEumRYxkDPtTXEhAuHPELgbEGh/9pKwFQg1SNGadC2HmxFXYJcytaDqx\n0kTzZ4j2UhkmjA9DZdjXNZVw96nBYEthDeUltGDQXYhxCqjFoESgVRM0YxI3D3FEMSe3ljt0DFc3\nxwQkznbQowicIwwIYZ8+aYzQgiHulmGwpOhl5BVQJZwWS/RdCsrlc59J2aH0aGBBfGnigDOINdhD\ndB9KoHY+9ntp2eFdx2sVnGeSgdbu8qyOtwZ7w4Opee8TseD6XG+rqjlcqmovUUJz5/3r0j9K0NxZ\nWtVxUphCd1kvc5zALjytud1coJ9hclYX1D8LINe7NxQjdq7o51xz5f49nFjdsLs3hOhGC+rni0+L\nbTY6QFwB9lYbzZprV7UXWthc4yg8P5weR/w8AsWcxHpuVZifjmk57aODck5st4tPvWwtdGpGoM/j\nHRiGOEGFcFhOntO5Pebp/m3FoeFUcS3dV1xoboh5eB6Nmo8/1rk9xtTcPKxe5kz7tp7lCHZBuQLb\nAB2PBKeZ4zafZ+7NsGayxiX0gY+2ShTrGU9BemvoN9QY8yO0BkLizrgM6zRkb4LWYggDdApDO4Xh\nUmZuTXHYMtb6HAe2Zg9dIagzkafrdah6A5cmgx2cl2CAw1CplvS8BuzTkxmcwUCoZ2AXdGFpTCfq\nx3IZ9i3P24OZ1Ck5OgbuUNyvz3VEsI8TnNwy5nKHfixFzu0E7R2uozpEI2LCHqIKi4S94LD5gCoT\nl5L7Lq1hH2c59kYD+rVZgQUBgu/hKuPcWY7TGjX14T5upNEdjflyoL5JYSJPHVNhjjEyFVs+8rWP\n3LsmlmxtTt9bWZNGytF7W2ZmtnVdLLELT0kXr0z86cGEaa4p3hisAOcA26gpXqRN9dFgG302loEI\nS9ga7P2M+L27q7g3weGmwvfnqrD32Ufe/UTHy2IYemhYTrgOP1b/ZOiVjGF0VGHkd7vqt33YzBPW\nl8aC0wtS24HpU53V9zYviYnYXHQ6I7hCMVbm0EHKmPO3L4v9643ZG8A0zyMdrzkLe5n3jt6B3qnc\nOrhxDudIGJnj8kO6L7Fvtz6uSbBUJiPiK+ytBLZa3OddErKFW3/LrKsp6+SkQeUAgicxulQBbC8P\nTcms9MAJaFjKrBpk5vGSMGXtLdHbceCYLswD9CUh4VrKu8sY58eAOOkcrGLHeIEFm9+vAiAus4+q\nwIqNJk7zijWHseOhN+n0dJq8y43v6/mwT7vPItZvM/omgmWV3Wc6woYaq69KPMM0pLoCdhYGssar\nj6XcvzfEOZJ3xTLvxmWcIYfcf0487Qd/nJlZMGWKVrSiFa1oRSta0YpWtKIVrWhFK1rRHkF7pEyZ\nBEZLBIti7YSyt+EJZVXXTsM8mdXPkIzZYKDs8p0ryto6Ze6Nl6VnsrZEvSCshxynirt7+v2Z00Jx\n0i1qUbmelU1l0pbRdAkm+t7BAXXZuD3VF3V9Phmy+VkhNqdOC7l2dZw9HBXqIdA1mbLeACeLO2KR\n5IGyt598JG2Ku7otu/CUEKExNI3HUl3vezf0gaMdkCT0W1Yv6rjrE13f7SMh0l5UtYRa9czVO5MN\nrODw5FPoWyOLuHtrS8cu0ZfUzofzOrZTrvZhVHz2ke7laFvONqWWfj+3LnS9Qn13+SEzydWQ8xvo\nGjX9ZTK9A9yDUgELlqDT0HCluw1lObMY1xGnacIz8EA/Qt85paDNQAFhCho16OKOhCPAgOsq48BQ\nhoE0JGs74fvVI2prZ0F+sYEKO/o539Lv+yClea5nmZIvnc6CIqU6b5eMeDkRMjGqKesacb48RC8D\n9pThTFSFBeZnLq2tfhpSGDmLYvjU1XmT+S/NgGTU0IxBF2nKfQwb6Bg5tA8Fc6d9Mc71ICpoPown\nIETUo7aodfVxN+mitZP1Yccdo22/I9ejFU/z8MSh0KXw60JN1rZBYTZ1z799a8vMzC68KKaMQ513\nPZ3zlbEYGTvf1jU1h9I6WPjoNR3XFD92FvT5l1v6/qfXpRvxfy5tmpnZ/KxQrIuXl83M7BvP6Rlt\nxz8zM7PNu2KmLH9HY/vt3ynONd4WGnb5rxSH1n+ruPHWtnQonloWwvzUwRHn0/n/9D0xURyi4ZDi\njRfFIIouy71oj7Hw0Yi5cqS4++xzPzUzs+F1ja1fnRWDZuYbikPPvKFJ9ulYY3Olqvv7rS7XFgJp\nfC2Xf2RmZt4JPfP+Z7hO/VxuTre+IvTt3pFihj/S915Hp+gkKFH9jn5u/KWOf+Of9D3bSs3+V7OT\n6HMct01ht2WgU2OsDWJql+v8TGD/ddBfiiLi9ojYVYKdMXSQCQhwCzYiiK3fc5gH7Do0GUYATTXQ\nuzFaNnnesDKotDeCcTaDjkLX1epTp82i1YNhUqk4BxPWPFDyHG2DMfBODaeWMed2ujlRF30G6p4T\nnGFGzPfA172FsMIMTZUajIkctkME8puwZmUgnB7uFak5Bhx6GqbrrzomEE4KDVdbz1ieUJ/t407k\ne7Ah0AwIQceHaNqUZ9ASSx7Ofcm5Ko3QHmshgrO4pDniocXVOxQSXGW9ac3DlEETbDAADcNpsQKb\nwLE4+oyxYCikd8L6uPK45nzCOtT7tfShqiWx3uog5n0YLxk6dsEfaBmUxqGNj2BIzel880uKQZ/e\n0Prc2RHiOwWdDNGKm4Lglxmzh7v63N6ejldnPao7BiZ6Jc7VY8h9RzjvTGZju7ql/VnY45ngnDIF\nlQ7YB67OqY/H9H17hz3FdY45pzHwxFn1kQ8iG+8pDi7hFHP2gph0IayiCmN+dVV/n58XU7GLfkbJ\nHq7FMCcabfW9014JKhrLQ+aEoXeUxLjpwZ6dcF2O/WrEkQy2QZrpuJ5DbEGgQ1hxDeLRGF2lCp0/\nwn0ohG3adcy+xOk/AfWi65Gxn/b5maCpEMMcnLLfrcCAjGBfuD1ShmGih65IP3S6T/p/B2egCBZx\nAyR6TH/laOSEvvY8ky6OjDBVfZguU/rTGyqWubAaoYsR1xyLGNZvD5Yb+ilur2VmNhtHlnEdCXPJ\nxy3LZz3oEo/LThfFaUiWG3bc1pnQB3c1TxdavHtcfMrMzPbb2mP0d9T3S2jJ3Pb0+3uXpb92eFd7\ng6VZ7UFWHlcc2Luneby/h3ZYXcdZOKN5PrmK1gvvPj77/h3ckk4s6nNV5tDWluKZh9vd3KLeZeo1\ndDZw2HJUxTp9vbyuz4VL2hv0tzV2t26KqVfyeaaL7IsPiFdzMGUqMHIy58il44zZX+7eU/x57ILu\nu7mid6ur/y528BHObvMt7eX2GVtHxJAFWAtu2QlhNyS4ER0dqH/nuJ7NS2fNzCxFswX5Ipswh2KY\n62NYZefWdL7JFho9hw+nc5eNnXurjjfinTKCCTuEsVrDBW/Ae0oE2854H4qJxxnaoDkadD72gTkM\nnHzE+9P90OM9uBgvsGTqWwntGFeZEvDTaa64d5gaa/YY3cgczaeIDc4UKouHrl0J1m1GHPE5nqF3\nNGYb5Q15F3IaVCluTmi5eFyf02ypIBKVc50DdHbcdTstlzFaZlnqNHDq3CaVNqx9bi0co8M25T7L\nTmsHTZoyc3xcdxpWsJl4pk3HjIZxNBmi71n+41UABVOmaEUrWtGKVrSiFa1oRSta0YpWtKIV7RG0\nR8qUqZH5KjeUtV28pKyqD6p+9SMhLMsLynxXQeniERntsTJf/pK+VwHz6IMSdgfKWq7WN83MLETv\nonuo759oULu2IgQ6JIO3Rb34jS3qJ6k/fPpL0ls5+5LcRmyKXgmK13euCMHePxDjZbejLOwCXvfz\noHt5Q9dx1CfLO0vW9YIQ+N5Y1zc3qyx0ZyjE6GBbWXR/omxzxHEW5nQfC3Vlkaccd0Q9+mOrq7by\ntP5WQgPEq5M1pA5uSv2dU4a+/G9iBaQNZc4/va1rWFhSFjKeSrU876Axg4p5VNHnN6gpj+pCpZaX\nlIXcOXw4HYh0BPIKMptT/zzAcz6j1rKFQr6rPe02nIK2nlFAfV9KNrNf13HruY7jwwTyyaSnQNHx\nRP0UUfs6pS5xjrHVbVJveKhnO0td9Hieum+yuh0y0nW0BMZzeobxWHDTNCY7XKcuEcQ2RPm8g+2G\n09CJayCUJMwHoHTzoEp9EPAQt6ijTJ8v4WQwpN88kN7hVOergDR0YNgYyLAFLqOuzzvEG7kWC3zd\nTw1mUUqWOXf9xvkzUKmap+vt8DxCNBd8rBKa/vHrt7/3PMyG98Ro+/C8kNRuJheh9aZQlnfuoOtw\nEWeCfxEK8+YPdY1L/6DPxU9p3v6eeujVWc2F93EoufBtoVaDwXu6t33N+w9PiqmzPhDqtPGGxtbu\nqyCPwVfMzGyPeuzJn75lZma32+rzH57Ts/7gHX1//V8VN94KxQD8fm3LzMx2cJ3rnBWa9sIVzbE3\nnvuNmZm1/lHxrP+c4sXBW99UR80JXbt6SsyXjVhx9doGLIWbGrvrm7qPF64pLn/WIW7OCp1qMKbe\nfoO59Lz64YC6+M9/omf74qyuv/9NPcuDxzVmrnR0faNndf3eJ7qvrx/qeoNXdb7Fa4opnZ6Os/A3\n0sUIfqm5dviGYtJxWwXthykIqDfFpQ6th13cUTzYgxlaMD7Idg32CKHCxiDCKbE0ABHPiaVBg3r0\nnNrlno5TqoIwJU6vRXM1SEfmg3BVAs2XFMbftKHPtmCyjdFLKzNfhughOeQzh0nnOXTeacDgnuac\nCOKhvlerco3Uyk9wS6q7vnKGMD20CnDX6ZedqwZjmj6roWkV4OBgxEWnBRY5ABMUK2zhrID2TQwD\nMptqTOW6HSuBwjlPpQpaMl6ida3SblbHAAAgAElEQVRc43sOsETf47gtYj101gvVRbHXKqfE0kp7\nuvAjENHGgpigj62KtcVyaV1sBscwfgw2QeYcLdC8mfDcghTUDjQ+hdHY3xPSHuDk5T+Fe1ZdHTJJ\nNKfz9AGzcBINrIzuxgAXxT4Iav+e5vw2rK2FU7ruMxelZbOIs9mAcTbqwmgEdVxcAxlfZB2LQbpP\nif1SBRmfqes6D65/asNdMXpPnZG7W21Z8aoyC5MEFDhEc6C3rfi7e0vxuYyz3+op7SkaMBRHoMAN\nxvz8ip7RQaJ77L0jLa+grPhRZ5/YG2lSpX3Flyx7ON2hJkySPu5P1RzdBvYeLfTQEhjLYR2acheW\nKO5KI1z08iZMavZtaQB7rKLPZew1pvRtCjJtaBYGuCF5qdOP0/mbaDW4OJczKfroHQ257pDXgBJ7\ngIgx6qNzl6G9MkH3ze8ypuk3x4oeO52KGgyYCXs9X2NkPGWsNGHMdNHWwj3QmurXHmM1gnVbBYl2\n7AmfvUGZPVUV1kOfGBSgIxKgCTad/UPseWRjtBrZRluLP6cEuQDWcsQc9FOnFXF81t1kRwcPcc9J\nYdy11sUEGcHWTA7EZq+d1ljK0LK6vaN5fwImyvy5TTMz69D3PdgDluISBzsgYi3rj3ScA5g0yzCe\npz39v43e2Qyul10Ye+EEjRLc5vrsgW5cFmu2wxq98riup15j/zpW38SMoQlsrFkYhsvrmpsD4uYC\nWpVnn9Dfd2DwGXp/OQ47zt1uyJg8uabzfVbTfR7t4wi0iL7TDgylLfV/66L624Mx1B7q9+UE3Sb2\no8mYKokz2gP67Pt3PhWzaMx7QQXWVGlR/VMPtUcaxpQ39B/ulTpg7xDBopg6tRyEpkpDV1ng1iXW\nQ/rb7uuYZH/4X8sdi4O9i8GQqaDXlTD3nb6SmVkpz6zkj2zI78qIsQyc7dDUPRufQ7LfGcHCZQka\nVzW2yiO39sMwge0f564veedJnL6c05dk8eb7k5pjyulzEe90JdydJm6e8m7imC1GPBzX9f8SLksT\nHB4z9jAZrKgJbmw5jB7HqvLYsxis3AAdnj6M8WiMoy7vhhnvnin6P4RRFy4t8R7o+PxHrWDKFK1o\nRSta0YpWtKIVrWhFK1rRila0oj2C9kiZMgNci1zdYgcHn7UViRT4B8rK7t3T53anyirHsAGeeeXL\nOhCZ9GZTGbRb70lj4eBQiMvMnLLQ6aGyzx3q9nOUqFs4C8WBclQn13X+ZgMtG1JXy2eV1R0eKds6\nTHR9c2gMDIeqbfaov/SpZ+zeFVJytSsNhnBAfR9Z195pIUhnnxOCXcX558YNIcGH14UofwpTxrmH\nnH9ZyPvcCV3niTVliz+9KobR4irXbxXrorpersMI6YDkgQo38FofDr/IPlp5TKyDbdClUqSs6J1t\nMuso8NdAe04/oXtZWhca1jtSH+xsUzc91jM5bnPOXCOUvBsVPUtXMxmAnFJSaZWmrquUoj+ROeVs\nCqAnaC24ekn6skzW1gNN71BP7cGEacHkGIAAVKnznkE7YTSPxgp12+EQp4BE560HQiQGZerJ3Rig\n7rwW6PdtEJDODPWTA1B6EPEJDgEBCHZUdQg0yAHofTNyblUak5Uq9e45tbu4rzRAHJwWjO/p//Nk\niWPYAyOywi5iTEBU6mSFeziUZR1QJsC8FCe1Kmr2VZTTwwh1+Zqy4lX6dVRXPw66x6/0H91ZpS80\nRr9Voq+a3zczs8uv/8TMzJ5ZftXMzH67r3n0xAt6hqf+Qcy37lnd0+t99c2fn9H8af+9jrf6Vf3+\nWvcfzMysMtSzvXxHWi4/fErI7PSXYpq8+z3d0+Mfaf5eTqTZctT9GzMzm32FevMjpdB/dofa/nme\n5VDPrHGo+uzr39f1bbyBU0L/eTMzC14Smnbhp9KfmDkrBPj/fue0PvaS4sKbdzU3n6Duu/qBtHdK\nV6U1M7ek6/31y0LFnr2tZ/Q12F1bnynevDinMdR7Ss/UlzmSRSu/MDOz4csgD7fELNzYEdOo/e9y\nkYrOi10weVJz+fQ13febz+u5fAvngF+MpBVkTcWs7uvqp2e/9Ldm9t9tr/Ft/d3+NztOc9oVfshc\nRTNmgFNYDbX9fZDhyjJ6TyBFiSswL+HagY5KRm2zU/VPQExSkJ4pbI+Kc1YwWGOwG3K+14pz66EJ\nU0NPImPeTdDDieowYjyn7aRL8mLnJAIjsMG8ytBNYOKmJT3TGppRbnHLiG9VAmkKY2VEXMrQAzEc\nVGLqvYMuqBIaUiXQp4HTsIHZaDD/MKaybKQxWeXeBzBL/BRWQQvXphHoVBfXDdCmClpVKed17lCO\nJeqcHgIQ5OO2KXohYYZTIq4hjrFz412x7/poIyxcRKNsWTd240Mhqx76cSGuIhFOMs4fIoGKkxN3\nnSZLr6850GkL6W5Tj9+EpeC0YXa7+lzM+rtwYfX+PUQLi5YHQp7HOE/OQng885RYdrs4STabWqdL\nOGLcfF+xqocDmzfRehrBCllYglVMPX7nGmw3XLAS4vnldzXnt28f2Mk1XfPKY/o5BnmswYhu76vP\n3nlLzMHOvhgyc2vae2ycUrwY4tYxPnQoMGvokp5R+0i/H3y8RU/oPGdfEMMmBtXfuyGNrb5z33lI\nhy4Pt44MG8+cvUDm3H5gp4VolIxhJ5caMFcY4tWyrmc4cQw+xxbV58Y99CYc0kvc6uPU0oIFNkKL\nq8LczmBBOVeQ/4e99+qT7LquPPe14SPSZ2VVZXmDAouwBI0IUhS7SdHId2tmvsB8rnntaUmtkdRi\n00mkQBAkSIIA4Vgom+UyK31m+Ijr5mH9T5WgabETTzUP97zkLzMjrjn3nH3O3WvttdIG2jdjPaMm\nTptjtK+cPlUf99LYuTih1TDhvB4OPIFzYamAPDOWI/Y4fgB7gjkI0cTaINUF/ZRVNfYr7n77zu2I\nmOS7vZj/sX5osT6PiC1V9kAh/ZiAmEcBjjhOxMvMDsPIImIC8n+Wgoyz/beYmDnlugyXvuEniCU5\nGnyBp2tqoSnowWBuL2m/9OEbeieYFMTLJaoGYCAuL2ttP9g54Nr0jPxDnPuIKzVuxm/BqIOx0sfp\nrNrEdQgG3XRH87p1Qd9bWNQ7z/aG9iQtzp/DSRwdKB60j2kunjivd5WtdRzUfF3XDA87g8kZrcA2\nQHvy/h1VERTs0TqLur/7xJ3tPY3VWZgoIdqDVd7ZIsa0P4KdgKZMwP0OiC39gT4/i2NYc079Ohrr\n7220Ms9fEut5a1PxsA07rQtDvX+Ivt0SewbeVRst4j7OaFMYSEvzup+jtoAYNUHbsQKTNWGOhzXH\ngCEGOEchFyv+jfth4kgi6C3VYKo7V6aJez9J3fvHk2uJwsRGWWC5s4NjXtfp64TYno45J0yVgDiS\n4/RUhxk3qige5My/nLX+sevbkDjEniWANe/e6YbEGY/9V4O45ipT0vzjOnUhVBTHcAlwY4rQUxrg\nPBm6qgnmc4YbUoV3lZTv+ey9pgQGp9eXkDcIyBvkzlHWjz72OcKKxTCDXPSYOKr1v9NKpkzZyla2\nspWtbGUrW9nKVrayla1sZSvbU2hPlSlTo96y/0jI7+6mso1eV5mlzgkh1SeuiPWw31PW9/CmssYe\nLIWMGtD7t8WkGXSp36b2bSFSVvMgEnp0d01ZWYcMNNeEFs21lIE/cUH11a0VZZ2n6JWMcVJ4eFPZ\nbZ/M2HbsssXKfp984Yy+v6g66yEMneoHyv4ODnW/E/RMWmTk9zf094hM4mRPmcb6vBg6V2DETPCu\nP3VOSNIYVsbhhq5v0tXv5y8oqx02Fu3WO78wM7PuO7qWzYky5Y2hjjUAkfPQ+XGuHNv3N7hm/f3U\nSd3j8bqyocWSznH8LBn040LS7v9WLJ9ba0L5R4c670xbfXLUNpPp2TwClQ52efag2EUFl5LU2UuR\nLSXdWAt0nx76PzX63PVRirZJgfOO7+vzsxF14RMQWhglTvslQql7fx/3Ik/PyrkZeS2+D6OnjsZD\nA4TXaSpM0ZCZwtipDtSvCQhLlzHuUwPamlBPj2K58fysijuKk4Ihe512UDDvo6HT+XjmPBuj1wST\nxs2lPMEFCTcUV//5GN3nd+eKEpBNnqFmNSnIXhcOZaKOlPF1CBGmBXth5NxWqPPu1I4emuKHOtdv\nh0JcT9/RWMx+KzT5RPMPzMzs5ufletT7vp5pV2HATqYaq52+Tv6dbRC2gRDV69SkD36h+fbF579l\nZmZvHP7WzMzO99THPzTpNn1xRTf3xZbGyMbL+v7x72psfWXph2Zmlj9UnHrLkyPDKmSuu3eE6rz6\nJxoDm9cV1+6Hr+o6YIHdv6zrPPHOP5uZ2YU/UR/voOvxJfShmncVn56dpT56W/+/9g3dz/m7r6m/\nEjFpXoQVMXhT1333T9WfoxkxcCo4Fjxch9FovzYzs1cuiZmzt60xNXPhH8zM7Kc3pFsx/IooNS9H\nutHuFvoYO/9oZmZe9mdmZvZmVdf7tYmYTX//pvrxzBX1W39f32vP/8g+SZuAgnk83wp0roI55aGz\nlPG5MXpKDvGN0QEofBB5UEHHcstdDMV4p8HnMubWCNZEOMQ1pAnigk7LuBVaiAvFGJil7uZporVj\nHDm3M5hlIGV1z1HT3M3CPEH530C9s/7H3R3GDj2irnqKi8eo7uINjD0YMo41VAXh63FPgGdWc8gw\nx+2DkFbHztEBra2a4pWLr4Zzg7EG56DgKSyDwukBUb9dgCCOuOEGjio5jjYxzj7uOo/aAvfMYat2\nYevObWjM90FUazCLTq06PTp9785t7Q1apzUXZk7o//tbGtNV4vnB7pqZPUG0G0u6z2qgsbh/oPPM\ndGCTPau5OvF1vw8f6roK6tvPLZ9+fA/JNLGDfVi7U6F+BS4nrVPaS9y+pnXZ6+EYtqz1afOnioUj\nHCIWVjTHKyDD9WMwdR4qeN64LeT7/Gk5Hh2iMXeAm8vZs6u2fApHE/QR1m/8Sn25rnjYy/Tshjyz\nU0vqu5WzZ8zMbGeguLz+G50z/7T+3plVvPW7uNrhGBniJLl0Qtfa6ahPExDSG2+xz2StXpj5ZOh2\nF3paNXOOjTpOB12k6UTxadjS52o8g9jpV1RwV5o4BzE90zpMmgEs2gDEesr9RCPGCoyYAiZeBevD\nvpMqcO5K7I1a7FnSCg5t7BmcvoSz5oyIMYb+W1LV9bYc/I5L05B45nTm2mgtDHEYc6wPH/2ljPMm\njs2GNoTn9LBA+RuMuRx9qDGxsEZsSHv6ew+NiQI2QwSTs2Kw75yu3QT3Fae/YWa1cGSJ71xZcEcJ\ndf999jZT7j+Dtdsa496II95R2gzz7bCPe9ma1sTFc7AFYDKP0HLp4xB54XNioFRB+53b5uCBjhPB\nMFk8La2UrsKKDfYVDyIY61FTa2yrretYnNW9bp+AKQPxcQrDJYfDN7usPmiw73P6nGMYLAuXFM9q\nDfa/D/VOtVyFzYYWjME6OHlGfy9w7Or30V/C9W2hw74TDbPhvs7XmYXZzf78oKd+mlvQdXowrZ3W\nY8iYMxzIcjR1Bsz5mYb65famdAcTdKrauELtKtza4UB7nNEj3g8Yg82GtGaqqbRjqrHi5QS22GCT\n94+l382C+P80Pp6PcJGF/Rfy3pAlbv1FSwYGa15zmo36/ggKqee85KjSSNBf8nlfqcEec0wamzzh\nZXjjqpnvm+N0ON2aoWO2sFevs6ZOxzDSWCsT9kM5jJdqBTZO7HTiuGWqF0KcvhwhbQKzMKhrnjVg\nW02coF3sXCr1BYhxVne3wBYozXknYS1P2EM5YTz36uTzzhJ5js2r+wlhJY2oYvCZKwHxKsBtc+zG\nHNUNU5wx4xTmIO88U8ZqTPwLst/9bvNUkzITXtAas3rxXsVGccgL851fIJ7U0s+UF9MD6PfBhmj2\nyQjKF8H77EUFghYCQjtYaPf21IkLWCLWDnmDpfzpAZThnX/SS4qj7g15062yKCWUily8oonqXmAj\nnt4B5RGP/dRY+87/3nN8TkmfjO9VWXQ3PtKm4x6UYPSMrFOoX1af+zT3AZWuq43XzrY2VhkU9jil\nHIsNbzEe2GBf115bUDCZ3WHAYjPZYfIWJKB8Fj4bO4EtxIpPa4M1s6g+bCI8+2BNwe76bxSk127q\n98g08U6QoIo6KDYesfkIXHpQ2mo1XccYhdkRA78SapEK2ZAEiOAdws97fH8E0dwFGp5ZxIR0MWrQ\nJ5nBohFhMzkXKGA4qnElRlSaJEKHKXXgLKnZsOSIZOW8pEyxFB8xsWPs45KWK/OC1l6H8kx5UC9D\nWRdqoeeyMFDwGo93ZiQ5WLTqbMB8qNcDslYD7qPqLPi47DpCo86e1OO5xUPdb4sANHCW6mMXABHb\nYuM4gsrnxzqeT/lVjfOPpvp7c6TnFEJpHsdHt07vf1r3dPJfdM+v8czm/B/rWNtKynz6v+n/d1/R\n2MgLjdXd43qhsIbK/k75uqaZ03rR6cxoI/JC8i9mZvYhZT3ffqSypw+8N83M7DPvqzznJ8c0L0+8\nrzH/8Jp+fvn3VI5zjcRk73Xd870rGhuduuJJcUxj8toPlBS6/4ei2Lbe+pmZmU2u/JGZmf3RWInO\nGy+rjPP6bzQ2cp3eKpqq9oiN29JdJV3GQ5UJvMpqttZT/9U+rTHy4x8r3rz4JV3n5rtYz56jNI7E\n4fNTvcDdf0GfG7Eqvt3ThjD7QGPm0td1/Rvbin9vXXzDzMz+cEvx7CEio8lESa6XfqmN6T9cVX9/\n+gBR7eNfNzOz4E2Vo/V2JIB81DYlMdFtOrFbFlEW5yFCkxl0/Rqb9kmEQF1EScwYcVxK90a8VEYD\nNjOIkA9JUNQpc4iZw7zDWcTc8FyCs6g8pmd7UPWHAx2raOkzFSdGiRBrheREOHXJUD2jEaJ5EzY2\nLQAEdHwfW1ZXsIkcQ7GNSco22UH1fQQNoU3XaxqrKUlsL8LyGSXeAPp44n9cZDTwXFkRNGrKg2oR\nfefseEnyVHhxKx57mfKix5JqCAFHTtgY8em0yQuVK9saP9l0HqUNoL2HvAz12ItU25SVPaMX+MkN\nrfG1OQEle3va1W9t6+Vp5iLJGkRFt1D78wCKxgkv9pQYn3pBJTZ+Rdfd3VW/zAFyVIhp2zcUQwZ3\nVE4w94wSnvPnTz6+h8ONddvv63pOrCim1FAgLnoKDnmi/r2zriTS7EjJl51cLyWLmeb48nklSOYW\n9P8JL5EbHyjBmxxoHM5+jtJuTArCTOvS0uXLVrCZ721pH7e3RkKJMTE/T2nUjNbwuQsqsert6Ry3\n39F+qAB8mmvp2g4osTrYUdxuIEJ8dlXXPMFCuk95UYVNv7NpL5hL4fwns01/DIxQ8jVhbsXEAWM/\nVx25+KDP44JuoaPBI34ddh3gwdinxNlDwDJDCHmKwK8Dlka8TDx2/WUuV3lB8yuIO1Mv1e4h8EtC\nsRiyb27ruDMASU5ENnRzFSFej3J7nyRy/Pj9T2OzinisB7DiYURRo19y5rbb47g9XZDruSeJs2d3\n+2Jd35QXfKMcosr1Ww/R3Mcl0swxAMRex8W+J8Kak3HdzImSYxke8hLVqDlRbBInHD9tYcqQHt2k\noiA50GW7VkXsOSG5kBOnXRl8yj4oZuzUVzSfe9c09rd2FVcade27rzyntdwCzakHDzXfFygXOrmq\nvcseSZCN25org5ETh9YcuvVb7YGGGGqce/45+kDXd5t9fMG7TAvAouBdqMfxW9uAjayddcql2h3F\nt00Spt6ASYClNu+3lmBDbgjEG+90zip7uM0L9Qt6lrPzSlIPtgVYuXL6WoaZiisfY0023mdc0tsJ\nsifEqSr79wOA7c376henE1+d4/jHFOcq7G9rE9Zw1tNB8cnWGyOpHgHkeBlznfUxx9DDkFNwL/Zh\n4d7XeG8goemxTmcZpYO8f2SsO6lL3mDBHbp6YDOb5lOLA88CEkE5L64xccAbOdMPBHpJTo9J8ASs\n0UZSZExdZBFojLjyICfa7HLCBe+rQfRx0WIXR2NnzpK4MkRKyHiFy9xlUR4ZsEkoSP5MAawi9nlj\nowQwcMkbXefYBVInOEypYByTjHXC6ey1HBA2Jo/h9nMpUiChK3fEzCBzov613/1uU5Yvla1sZStb\n2cpWtrKVrWxlK1vZyla2sj2F9lSZMiEZMZ/cUAE1u6hT0gAKtxILpdmaYOM2I1pqilDbyhlluvb2\ndLxmB2vW3wpJvnf3Bzof2cOzl4WoNOf0cwRVcDwWMpMfx24UQbImKJ6PXduIDHttAYE5yqG6UPK2\n1siC10SvDWd0P2cvCNUag5oVHHeArWcGq8Ejg9cASTgcCN36+Y8lzDlFELm/o/6ArGIuj+/Q0PaW\nssij0diaFWWQ2ytCpc5+Sij//hDxYISlYsqSolkYNU1ob1DNHm0qY79+RyylcQ+BwDUheLUZfW/u\nnPr2Ava7baxF97HOPmobkwZtGFRfJ6aJGF0LxCEhy5qRSc6xmOvArspg0IwRicr6Ol4AIp2AKlVA\niLMZR+XVDw+UfIz4XMrUaSBq51PCkjp2U6Z+GDjCEZnpSkZWOHDwFieYkhWOoXeGTuAz5v6h8gU6\nbrOiMTAgox4Wrn4ANKqv480M1D/70ErrZINDxKwKLPPinkOjEPgE4TbsK5sHOj7AjvVBGqogQT5z\ntu9Bm4ctEBfOrg4LQkpAJlByAsqcDkBOZmowA6ZHRy+jjlCa7RNCjz61qmPcuPdVMzO7Chtq5qys\noc8/FLPl1i727Z/XNe39ixgzOxXFgZ8GKis6PxIKtbMpFOnYaSGz68uKL9fnNc9PfUd9cOGmGB/P\nTjTmF76u6/lRVwhusykErnFSaNizCxLo/eCGrmc11tzZh/b92S2h5RsLYs58+Evd73VfVtTby2Lo\nfPaiPr9xUdfl/wBU5dNYeL8roeGz39Tc/wVlnl8/LabLzyPdV78jZtHBtR+bmdnlV76k8+Wa488H\nEvD9my+pDOHSWP30q1/rmZ0eqh8vnFBczPrvmZnZ1nU960vDF3T+s4pn6U3d30JX6NfwsuJ+47gE\niD+c1/ef+0BMoXf6IKsvHB25NDPzKZcNsSrM5kB4EBMsYGvVWY8G85THwpTxY+YwZWGjoe6nCaI0\nhJVXxX7aEtYxLCMj5qYHe8KnHMFTyLXxoG++OeQNajDxZArTLgJuL2CwOO7vpAGduUtpV+BqqKD6\nO/FLkMoR5ZZ57OYbPGqm3cj/uH13TmnJGLvekHndTInLoGsFpQMF9uCWUaYELTvlOO1AN93HUjkm\nDviwPcdOfNV39uUgp9xWSvlW7lRKEQcNYCLW+05c74nI51HaaISwOXuT2YDvJ4iNgnYlfX3u3i3N\nmaimz62cOWNmZjMrGsujimJPA4vcQVdIdQgz8vQJIdphVf364H3N8a31NTMze3ZFcyU41P2vf6iy\noAp7ipULnOfQiTOaPfzovtVgPp6+ovU3G2rdvXWdOTliHd7T84+aup9TCI12loUIN7CZNhhUDzAR\n2FzXdcxjBNBEbNduOBFG2B9+8Njee9Bz9uyU0FVhOF7WNVbaYgEkB9qTPISN4yj7nRNcE/Fzd0Po\nf7Whv198WfF5sKc+vn1NLIJnECSPl2G9OoFHShjywdFF5c3MJqzZ+QhbWdbWQ/YIDcfIcaRg2G/W\ngaHBHIxgvGSUMRbsIULfWU6zJ4DhFzGnusSjyHeljSCwrnSDzyeU/HVgkBRO1JsNY50wVUVEfASz\nz831OFM/55QijoiLeQzbw+1XYYF4/N+t3DUnaO5Ya4h4B5QbecTRCmYCVoV951h6j00aNMcrsLYD\nZ02LGHhwABvAlUfQD01sjl3ZqJmZNx2ZtSkJx2rcbTWCVPdbOMZThWBDOZWX5nbUNtil7KWtazl7\nWnuTmUXtv2/fEn3Vo+Rt4aLeDVLidey6BCHbHDaPl2jMO+bz8hmtnT/7ofYQAczxCy8oblQP9azu\nfKC1e4jxxhkEyqeMxZy1ba6tOeJKcKf3iDcx7KumnnGPd535RcpqCZMV3hPOndLex5U9PbwpVm2B\nXfrinK7bMTuikGfMWurXHEuL8qbUxTfNsc5xxaWYfbRjtHhGx7kxNHBlSMx1xnIXBk2GSHbc0nWl\nfe1fx10kJzrai9UrlIG1tFcaHGgsP3CliLAjavGTOHyUNnIisQgrO1Fsv3Blt4jMhm59g6EOs78O\nA72g3MyH5VVv6vn02KNUnBA07yEZ38+d/bSZJbWapYVnEdoKBcLb7h3FrzrzD/dOSFkS7xQRLKGx\nu3TW9IIypwlW1U3KgpzT9JQqhhg2zzBxex2YJxzXc+ykjPdm4pWzwq44JozbM/huL8JeAYaLG8MV\nmIJj1vicMlBn+hI4oV/YSo6wl1HWOYYR5MxhfKyuwz6VLOzr3Bc9j3gzKZkyZStb2cpWtrKVrWxl\nK1vZyla2spWtbP+/a0+VKdPG+rrZUUpp6z3VNwOo2Bi7x7kXhMJ4aB+cXhai4ofUhJIFvYO14gL2\nZ40mCPNt6jHJSlcXlRGvLyjreZJM/iW0aDLQNZ/MnWP0FKQxU+oAq2Rd93aEpGeOBYHgr5GVPLyv\n8795n2wxibK0cIJH3IezVCRTeO6Krr+O6NXBuhCkCtnwooNo7mNxRYSLQFCaZOWr+xNbWlXGd29b\nmeDlE6Qp0QJZWRHaVCNT/mhDaNN2qp/9B8pAb95Tpn7vcM3MzBbquoal42fMzOz8qn7OrCJYuKHv\nbT9S5rmPcOJRW+Xf6FcmTofHIchk1ivUE/rUi498l4ZVH0zoI6s4TQYnCIbIHtlXHyR6WpAdddle\n4OzAEVvIcKeIYeUwVfI+4lhccdHW/Tcyl7nnOmZgigwQUASdSUDIGwh0NshCO6vtGOaPQzgijpsE\nQjIcUyfEQnyMPV3lsXAxIngwoioIPvfR6GlUEUpGXMdHu8EJatbRIfEQvcvJUo8TIa9hgh0m2fAx\nSHoTIblpCwFOJ2iMLXFnokkvd+wAACAASURBVL8fYhEbgVodpTUOdO1vtHQNJz/Ss7v6qvrqWCbG\nzOsjMTv+YBYx6tMfmZnZ7KHi0Myz+v/lY9I62YvENFu6J1TrR18U+vPqfTFufnRX1/ypt0FfviYU\nevXv9Ez7fyhGyvov/lZ90pB2yoXbut57NX1+6bcS8F09830zM3vzVzAGz2sObexIyHczl/Dt8jH1\nUTKnvl1a0PVlD3S+MwKM7RevSKfiOXQufn4BoeCm6qX/8OErZmb2/QcS2q08j77F86ojv/Njjd2D\nTEzD+j9Jy+b6539uZmaNH4J6VbDo3pdFde1ZXc+1nuK5tyYmzQvn9DzWH4r5sr+JbsV/1Nh6Zaix\n8Mu3FWMurkp7ZlAXM6dd0/OdW1QMebkrvYz/y47WaqBIIdoELqZ41DSn1ET36upXjzgaGKwv9E0G\n1Hc30FM6RPvA2ZWGiT6fwG4pqFEOiF29yImBg+j0qMOv+hYhQnkIXlJB38jZKg4Ia1U0n1LuIkTT\nJW05FB/xOcRAA2wcc9DfOvfcp766gk5aCJsnhhVaEBcnDsEkfIUw9zKsnx0KlWPjPqUvMuJmDBOx\nhYhAj7jlYa1dQdg3Qji8cKKooHbVuu7HhU9nX+uQwYTr8bGuTmAK5Y5ac8Q22tN9z2Ete/ycEOwJ\nWmKuP+pYk1fm1O8d4uxehb0AzJgcJqIlel5OyHJuRd97cF1jef3XYnXsrjPGz63w84yZmR08ktDw\n8GCfv4v9toTWy+Huw8f3UElSy5cUPyewHvKuxtVwi3p6NB9Wzom91z6OED3Cxc2qkGingXH9fbH/\nNhAyPn5W6/6Fq2IAHKzr+jbv6/8RTCjf98zpIQ63dW9DZ8e7oH1cyBo7Rgz5xprYQrW21pJnX1T8\nqLI2ZYyFKNI1L10GuezruOs33zczs2DirE5BaqG9DmHNVkA6HVJ71OYQ4wpz1Ue3qQYDZTBl7USY\nNkCrxRDczXPFl3Tq1P5hC8ROPwmmSuK0CPTnlPhTnzjNA4TEQcWrY86HDt2Eud8PYArBwo1hBPaq\nWNjC6HNbJh+Bzj72wQary1FrGiDYMULCQwwzqs5+lzE/xufdIcch7D6P+5tMEexsEXuwAK83QOrZ\nT8/EiG7DEo7pkOkYhg7GFwnnd3ucKay+evBE7DsMCqsigl7AeusiVBoErj8UZCbutnkfGEZHx7DH\nU41FHwX0xqreSQascd3rmHqgCdjG+tpHDHsfnaRuV9fkBLtDLJkP0bqKYHCEMAQ3tzWHzo0Rd+7S\nd7BiA9aqmeOKD/sfKf5soxUYIX6/gy5m5jvaPQxO9rfxkvr29DnN/3ff1po+aup6V1/QJiRLdNyD\nTcWtOPy4kUjGs2Jo2sScqD7MjqmuuyCeBDyrxTmNvXvr6s8P3hdzf2cTBhLi/GGVOYOORwu9phov\nEAPHioLhMjzUddab+v6Fq4qz+9zHxO1TiceVCcLEK3p+7eOKx0dtPjEp4v0kdrIsrMNVmPI5/3fv\nNRXGaEo/pbDKHrNKYAr5NTdXYPWh1eistafJkzEdJr7lUc9S5nfI++2UOFfwLELSBoXTv/GdgC7z\nGIZcAbvLYJHGUGj6MOXqbu/CpmIEG6jOfikL3XxEIxW2bBrSV+gPJY5dTDyP2QsEnC9/bEbNu8rA\nvSfzrsM7R8EeyPHhcu7T/d8JjgYwX0KEhwP0fabYtjuTF/d3J+afU6lTjX83M7NkypStbGUrW9nK\nVrayla1sZStb2cpWtrI9hfZUmTIeiGFvSwhKH5Vivwrb4IGyzbduKau8Q/Z4gBXrwjGhNVMyZWsf\nCQG+FQlpqVMHWUExfPGEapddZm26IfaG1fS5CS4BFdKVPrXGKdnWguziwZ6yyEPshHsol194Xsdf\nWDxjZmbjXd3X7etrZma2uyv0DJc665NFr0RCbnsgBedOkHWd18+TMIP6l/X9KvowEcjrmCreak1Z\nYB9GD2WEdvv9920eh6tH6N8kuExMe+qDAeyfDKbJ5g2xCEbJhO+JNdDBIaE1i9PBFTFsFpwaOvV4\nezeVcd46wNa77hSun9QwHqVN6NvIdJ3xGD0JNGVGOApkTRBaULcK7kcjUBfH+EgYYx59HjuGCcer\nur5L9L06fx+0qIMfONcm6ivJ/FcCZx9HvfOA/gTdSaibbndwCYHSMqAG9hBr7HqPOmpnMwJyUQGl\ncXWMzhnGQy+lavSv02eawW3LEaJQTp/yd4fCVWsgmlV0jQ5xIKCmt4W6u1fR/4cg8jXnMkXNdDTQ\n/SR1fo/0+SZIyKDqLPpA22A9PLbYrjlUjaxz4+jj5PWBGCi1LTE4jn1B1/zTR4ofn3tJY/mr9MV3\nH+iZn1+TVkp/AQeBVKj4a49wX+i/o+NN9PerWIb+44Gsnr+diLlyf7BmZmbbQ7kgnf+M4tAvf/BX\nZmY2f1Fo9DMbGrtvT6VB882aLKKDzyqOvP/fpMVS+6ZQ6i9UpTexDkqy3JemSvhPYoisrwrFOfMD\nXDVOCC3feQiyUIjxMrqkvl/YFIPH/7mYKDfPoUngf9vMzL7CkPvb11V/Xsk1p18dgKItaA7+hDH4\nfF/MnPdfVgw4DWNwckzxceO2zrv8ef39EWjb7jnFyeMPNCdnvid0vft7aLqMhXa9/UDXdekh9vBX\nxVCKDxWLXvvg7+0TNdaVAseFOuhSFyc2ZxsZTR0KxVwBAe8PnIMO+knUEteoB09ALbsjEHpnu1d3\nrDHNiQbItNNdGeMwF9jUhhN9tuGcA0LNq4Ii/4xjQop8zNBLcIcLscqcJlifwqhpwcAbuS9yr60U\n1BxGSeihl4O2SoCte+CYLGhCjai3buIWNCVO1bEFjxDU6GK3mzsnQNDxx6g6lqVZ7vrQ3RhxO3b2\ntjAOE6xIcfkojPtljXbuHs06FqL5Ez2Jo7Raa4br0/mXjuOCMtKYnKA1kMFqiDl+iDtHb0vrXjqB\nGYTu3P6hfj82ZN0hvG1d1xx1EjqXLl/hvFqvi4ru4+4aDJQ5GCq4LqWwicfYRpuZdZYXbHJLn1//\nQCy5C5/T904cU+zZN8Xf2TOKCblDrtd0/f1ZfW+6w7rWFTK8cErr/rmLckjKcUK6+Ws5pWWgrOde\n0vW1Qs/clQHaWwuG79mzYvJVcbd7tCa03bin5c+8rM83NXZufqC+qt93OhegvZn6+NF1xXmnF3H+\nGR2/fUpxe4AOkA9b1jmnRJ8QmxwHMEPQwUhx4UgOQUJhq0UtEGPcgPqg/U3ckPpoqtRBUlNcQOrM\n0YFz7IHVVjh3EVxBiwYaBtyHWzGdFXQDO+EAZ58hVt0zM3wfxs0ETcMocmowfL9FbIGlUQe1H8FC\n6KMXRTi0dFD52H37uJsGVdhake6/3ndaMW5v5qx2YaLjPBkQs3pVJ7qF+wlsgAGuTx2ce3L0M2a4\nvjEaNt4QATwzi9PIhrnu30ezrebj3EmsNDQwcpDxHE2eGWcNfoTm7i1u4yrp9o+sLb1DGHyg6jX2\ndzmsq/W7GuN9NGGWzisetGHHppQT1LCqP4cu02iApgo6RbsPYUKiw3PuKnMCB8h7E+1VErQhxzAP\nD3A666AFWVnQ9W1iY39FxB8LcJ+r8mx83kmm+4qTQaxn1J7BtQiNypR3shHaVAcwP86x5mIuaHFV\n1+mh/7TzQHuLONZ9tzv6ucbf67Dglp49Y2ZmMx1d6OE1XKZgwoxYJ9xce/hIz3ZvV/3UuaQ9WH1O\nscVpZ+6jQ3TQV/ys8JxPXdG6VK19MtZdxa3z7A0C7jPiXTPF2WcyYew5C3BYXs5hzs31wnesD/Y0\nsPB8NB7HMPzdXHtsCWdmYTi2ZGLmOU0qJ1OJhoxF7p1G53CsJp94NCUQOHdK55BYTJ01ts7ljdBH\nYq1P0YBqjPX3AezYWub04pwOKJfMWHZ24lHhdPaYY+xF8jrvx7xj4AZuDft4vHTs5CqL8pB3qxrv\nLD7vfGmTPYbTGWWs+bDPQtbQqWNAcl154hxyeabV373elEyZspWtbGUrW9nKVrayla1sZStb2cpW\ntqfQnipTZrQjxPajt4VIr1MvffmskODlU0J1lmdxlFiU1oPtKqt4/9qamZk93AbFWcbtiCx0dUVZ\n1lZd2c7JnrK8a1tCblMS4yHsjlk0WO5uKAvqzYDyb1GLC0q4ST3h/DFl8GeOCT3qHeg4gwn1oOip\nIOxtwSzaFY4VQRa2QT160hOmFFDPPqZmdkTGLQMpGQ50H9UW7BCXmQM1LBL93H2o491fW7c6yGl7\nWT876NQMesrAr3+omvFtMvkH+0IGj88JKTx/WbWji1f0++KC0K2QDP/Bvvps457Q+mRdnTvo6jgP\nYajUG7g5HLEFIMUHMEEa1Eb2QKkabRxOgOE6rg6yA6pEHeQI1lDD1ejCBBmTtXU1nAZq0wjI0o71\nDJtTh1BTN0htb4SCtw+S3EIFfdDSM6r0QMGrHK+nLC9l5VanTnyKO1GMroVzMwnJMveoz+7gknQA\nIh6jHF4zhzir37ORxlaBU0KCk9cMdfkJdd4DkIKmr36aoofURNMhhYXlMvgeqODU1VuP0U6A6ZKD\nxqU4TgzRfQpIu9fRVsip987IGg9xXakwpifdo2tBnP9Az2j+ZdD6m+fNzOwsY+V1HGn+9+fESPlG\nS2N3kzrid9AY6e5cNzOzK8efNzOz3fwbZma2syLXop0PdW1fPq166dugM8c+K0bJmWvShLkBgrCK\nDkVyW4yW/mWd54Xbb5mZ2RtnXjQzs5PXxF67/Z913OPv/lDn86TRUrn3tpmZvYbDlf8HQvbO9hXH\nvvcXOAQcSLNq4dcgzF8Vcpx8qDl4BqeG793S5//Ta9Jsyb4lxsuDDcW1V8+IibJ4RWPtV3+NU9k5\nIdUvdtXPp//oNTMzu/uBUPPrqWLAH59WTDm/rPPdel/Ptr2MnlWhsXkdQOW9GcXp2k3FuT9+5YyZ\nmb2E29LfnNcY/PaSxub+TzS3PzP/NTMz+6/2X+woLYH1F6GeP8QhZoB+0wBkprcImgdbrt/Veesg\nPf1MY7iKU9kUWM+xGmqwRbwmjBuc4EJXmw0i7pw3cmwIskFseROl/h51zw3iTY/vgGJlTsAfZNPH\nYcTHdSdCryZBp2zi4J0JixEaUnnsnAFA+Hx0cdrOqUbndw4oBXEibmgdAWS3wpyTCY4nPNsKNe9O\nBMYLnTsPGl6Jc1ykz52e21DHS0HffKgkhXOiAeHzYSFF3GfQce5zetbp4446WkuIv1vsAfxQWi8H\nh/p9867ind9x8Vf979C7YKzrGUW6/iVPc2f1mOas19AYeLShdbJ5TM/j5AXFiDl0VihPt417On8N\nBHrxuFh3Ebp4000h0g5hNzMbDIY2TnX+Yl97rBrPOTmr799+IIR6sKM5WVuCjZvixngflJEwPIFt\n0TkuxHtnrP7Y+/W7+p291dIZxcKTMGomo551Qc1HsHNdrX3zBMw9bnaf+JOmTisLbQGA0T20+bod\nPfszV6U1k6GjsbemeLh0VmyjUxe1ZxmzP9q5z1oOaziEsRL4n8wxJYA9OmZohQ33Hx3Hw8myD/u4\njdtas6rzTxLmMnuLoXNWYY3MWdursI4yWLUFehYZGjkVHM0C5nKM880ARLaYagzU6jimpbrfHuyu\nHE2H2NG00E50exqPeOfnsIlhBo75ex2md4oDXMjcdvvVBDeTmmOxMYYPiY9BTc95CuJcZw8R9bU+\nRGhBpMTZsK5x0xvqfkM21pOp/t8iNh2wTye82rD65Pn2vdACnOrigc4ziDWnJ6keZA2XlAjWxjh1\nOn+fxKULvSL2exjHWBc2TwoboDWBYQxjO2C/1qRvDJR/5YL23Y/uwkC/obX48rziwDyMlffWtAew\nX0ljZXOT+Y9uUn1R7yAFe6PpARpW8zCmqS6Y7uj6ZnBrbcGIu/POj83M7LCr883O6Xhp3Tnt4EB7\nqDnfhrWwclmMle0d9f3mW+jKHer6jl9U3FhA2zJBk6zBmj/a0NzeuA9r+JSO68HcT9bu0V/q95kZ\nnm1fe76DfeIz61DMWCvYt3eH6tcq+/RTZ8Q88nlv2d3VO513oDgYwIqdOUF/uqqK4pO9UucIjMbM\nxeEUthmuWxPHoOF9x5ugw4TrUsCLzaiB9hxObAl6U3mD9w/eHZ376hhdkzx7wuxJ04oFWcUytJWc\ng59P3HKMvRBGCyR4q6ABMyWOUlxgGZUwMWtiAWOt3mA+op8UOCYc19iEfTR2zBt00RowdaawavMq\n8Wnqrl8/C96pPMZCDHu/wCHLYCOHsWPQuT0Q8TRxLCV05Coai0+eMXsU4kNBf6VoiTnNqxzNQd9d\nD66Dw8f+dP/zVjJlyla2spWtbGUrW9nKVrayla1sZStb2Z5Ce6pMGedi4c+j5L2grOeJc0K6O8eU\nXXVZzW284buJEJOlhlCf2qrYF5dWnzUzs6KNcwW1ag9vKxt77UMh0vu7yp525pQFPjzU8R5R34j4\nvC0Uygb3EmVRm2TqVi+pXnrlihg9J48pW7pxTar/92/qOO1Tym6vzCoT2FhU1tehko9A3bpjZYFb\nZF+r6H/cvam/jw5QNqeuMCTz2FxWJnF/G30QQMkeDJsheiyXVs+aT8a7sqa++M0vf6PPorLeQ/ul\ns6js4Bx13+1ZUOI5HfzuHdWq7+2oD+dhUGxuKcO/v65rHh7q3G0QvQpZz/kFUJkjtkbVKWrrOiKc\nBTzStJQXP645TWP9nKDNkvu67wDU6BDdndCjD0PQq57TbEHjhFrfSY26ZYfcYiUxBRGImk7jhjrJ\nKar31HlnLTLcXfXPtAqshnZKLXVK/zpft6rj5tRx9qkZrYCijdzYdnoXhyCkaDP4IBORQwKMbHMH\nyJPj9KkXb1NomR3oujxckwxdjKCh6+iC5s/QD32uN5zqe865IUKrwneOF9RphjCIRvvqzxwtnPrE\nKaQ7uFG/z0ZPal3/V23zvNyBri/q2Me3cBi4qr54YVuo7dqPhaAmL6FF8qGYKa+u0NcvaYzde0v3\n9kKoeb9T072cvPELMzPb+JQYLL0FoTsXfqMx8Z1nhHZ7u0JpTn35Dn0gRkrnNTFKlp7TM7+7qzHx\n0Q0xShqn0Hm4KabLMmPx9hfFEHwW/aKH3xdqc+NFxZ2/3JWew3hd9339slykPiIh3+p90czM3vnw\nJ2Zmdi7Q+R7+b4qfF7+neLVxRehQ477GwOG85nIYCZEenddcenRN1/n+G+qX5UzX8eopxe0t/v+w\nKo2fTqjzL1YVe777geJw2BXT5S//8O/MzOyvE8XT/3us5/IXS4qH/+G2fo5P6zm3v6DzXHtWmjxH\nbRFzZIoLSg1W10FNsaqCFkHu3GBgzcVNHGtgG1Sp1y5GIKdVp98EO4NlNWUsF2gXZIaLILoqBfG8\n7hEriuljnYs8cPOC+exQeNg2Yxgj9alzSNClZLB/HNOiFsWcm2sFhU9BDAO+33Quch66ZMHHf4eA\naClIXBUtrAFoUoY+RZY7PQj9zELnHoXmFSiYgfjV0MXwhs7lDm2bEDepHs8GrZsc1DxIoo/3JYu2\nD840hAXXgml51JbD/Ks30bk4Lvbtbl9joI4dYK2jtX2Q6Hq9ffV7e157hnxO/eE7vYpjMCWZk82W\nPnfsnI4/Zj396PaamZnN4AyREVjjYzBbt7Rev/8Th4yC1s3+q5vo1M17UOM6QTVDXKMYcz7rIRIJ\nVmEATRm7FRiU0wOc3fZAL0/CAlkTEn64o/569lnFvuVVId0TFuZHD/o2RZMqY22LQVq9HLdJ1sDp\nLs+WNcm540xHOsfUg+kCc2SpqX3fA9hAMSyk089Kiythzbr3lvYsKSzXNmvR9kP0gcInejxHaQFM\n5xy9hiZ6QVP2FlMcT2LQ6EnX3ZfGdAUHnqyBM4xDVEHle/vOJQ5NAnSVWiCwKa4nPg47GJxZDqPD\nJs6ZjWeWw8JlPakgzhBEThtGx+nAdOnye4orShCgweCmUtftNWC48OcJcdXnfma4ny5fbCcMNuaE\n07uIH6P37B1aTkeDWAjrq0OcrGUwULmOpK7nl8Do8WDnHtaYs90nbIC8nVitz3PBvSWAPUgoMw9X\nqQFM+lYDRqN/9D2JR1zz0YNz7CYPWL/TgTmHk2q2oTGcLOjcE85VAV3fXdM8HBw84F5xF0JLJO44\nJiJ9vqU+WVjQO1R9hs/hujmAKdMFxT8xg+4SWmI7bt577OOPoWEVaw07ZH2poq9Z9BUHmyuKA04z\nK430brV4XN+vE5c/el8s2JzqguVL2qNNYz2LtXf0fuIdODdT5tCOrme0ou+dhLnX72pPsH1HDCKn\n0ZJCSR/BlkuJa37GcWFZTFJdVwW9qUXYdDn9lMG8PEBHqcK6XOGlK40d6/UTvlLDOhsPeYeD0TqB\nZRbAIguZkx4aPUXe4/5wpxo6Vod+r7GuO9fUHNZKAuO1wrqZxU/GdByPLI0rhmmkZbx71GDEJRUY\neOxzfNg7gesjXCcztPuqrOlOwytz72qO6cK+KGbv7xgkARp/sXOYdA5UsXv/JV46p11H9ItcH+q6\n+rDyY+KP08wa4QRZpU8nuDvlDf1e5ed44nTrYOsSB0LiWABTcTjRnHLaNh4OYbFzXoSxN6KCxXOb\nqX+nlUyZspWtbGUrW9nKVrayla1sZStb2cpWtqfQnipTpnNCWdwrL7xiZmYzM8qIPdpVpmlvIKR6\nekeZua0taSSs36UO8Rkhux4o4Oa+kOn6QEjwIarsj+4I8W3W0N1YUpZ6bl6ZrP0KdYEJGfeRuiWr\n6+exqtCsuTMf11MpxsqkbWyilE7NWaWjbO/inJAcH8Sjh+7JwQ5I8kfSsNgdKHO3iJtUOiKj19N9\nhvi9t9CBOUSxe5SRNTWhbDlIQqWFtkGdGr5zp233rvpme13ndqrbMcyK4xeVyT51AR2feaHoTsHe\nUO9u7Knue7ilv3906wHHVY38+WdUx33+sq554bzYCRHoSYJj1VHbCBSrSaZ8MKvjtMnmdpugamM9\na5dtnaUmMy9gdoAKVchyNkFipxn1w879A8eD6hR0JceNJAYhhcHioUEzAA33D9GkiZWRb6NlMAIN\nSik8L2D+eCCcI5CUCiyIQR/mSYfz4I4SU28ZgqAcDoB1KD12NanTEQgN6dmE51uEyuZ6ImfYbOhQ\nfLRkZqkf5fy9Cq5O1M+7evE0QrMGWKkNsn0Iahb3yF43nDuJzj+mFnemozGL5IwlExAHtDGKmi6w\n1wT+O0IrTmn+Xv2O4sTKVdVV/+i7f6Jrm9H8ryy8aWZmJw4VN/pf0dha/I7mdT3TmPjMvMb0WyZG\nR/tAf2+sKE7du/8jfW5LmjOj5zSPo38UUy87+T0zM1s+JnenvTV9/xnG0nsgDV9YFzPkH/6D9Jy+\nhVPND64q7nxqQw/3WkPxZTXXz5W/FBJcwfFqK1Gc2XtJz3yjLwT4c6EYN2+vqt56ta7zLu7IgWGC\no0r/vMba+3dgJXxZcWgWdPxKQ3P70W0907cvqT8v/UYI9MKKrvf1NV1H/w/0c7L/n8zM7NO3hXr9\noqd4XumrP159UffzN/43zczsuV1cmBbFSPr+W7hGReqn7D1p8Jxe1Rw6Vhx9jJiZDYjrc8y5adMJ\noqifhzHsMJwPqlombITjzyB0CDn6UaCYqYsd6Lp4ODDExIYI5k3ig/zAAMhBViYBDhxeZFN3Dlef\nDeIVhzAeQPRqzPcExkuEo9Q4Reem7VyQiPOg0TGMiDHXNCLuhMQl594QEbcyEEYfh6gwdQwe0Cxc\nnyKYNQmoUoITi/E9Y20yHE08mEAZgaCC/k4AezYDbYqqMIEcyk7fjRGEq0XoZaC34bnzoAk2HB4d\n3TYz80HZqmi9NBogrWgkOBirsch14CSzBFs3Oa+x2r0tNtvth2JzVUDfZ65c+djnM9C6GzBQPTTQ\nZp55QfcVsdAx1/cc45L7Xb6kdXoWlygzs9nZuh1U3HoIe4GxNnVxuiWEucYYztATqaAxULDH2J+i\n34GexokV7Q+Sk5p7iwPt4dqrYg2O7mvP8misvZqXxWYRjDMcT/IKjLK6m3+wr2DpJntCgccwUAxd\nBEhS1mV/5LPG9NETah3Tvmx5USj3xj1dw701xdcLz4rxV0e3aWcHVqqDho/YMhgcFfTcHusJob/k\nnE1GOHBB0LMxWgSGq5CTOnFaViGssjb6H0PGojnNAs43BvFtc7gJ+nAV58TC+TFhstgh1m3mEnOz\ngpaMD4puGY6LSC0kjJmR75BvGD51xwpA72NCDGDKJ8zhpPJ4kdf14ETkj9RPVdgMftNptWg9dnp4\nrgU4Q3bRrnCbmBZ7sGioz/uMK4ONkRg6KcETTZnGILA0d65dsC866t8xlKM646FAMGuMK2rRPLqT\nm49OpTfUQ8qYRwVaWjMw0R/c1V7j9oM1MzP71AmxYs+c0xp954bix/5D7Wky4v3xJc27ChJhTtds\n0tP+2mO9OHlS8WhuXvFmMGE/vCMmjNP7cLKUVdbGHG3CMBQFrxFq3p85qT1DlfvYHGtNd4zAk+fQ\nmMGh7N6H2nvMn9F1VNpoJHZZd2CBHTum8xS4MO2iQ9VAo+XyWe3ZxuzX0wPdZ7iiOb+yoHh2/77e\ncx7geHvlRf2/fkr9nTyA/cv6VY9hYHL/IW5H+7vsVXDUaZjGXgRbbeKh7YLrVAXHnsg7uhaimVlR\n6P5r/BziTsqybFUY732eb9MxfGALxjDWg4i9C/c1wGXJYI+FPGDHRPUJSo7hb2Y2HkTmeROLXZxi\nKc1ha/o4KE7qMEEYIwm6cSHzL0MrZso7WB1dJN/pXRboTlLJkvIeXYXF5Ln45+JkDWYK5xnHjmGj\nVoM1m/Ds3NrYQLsPwrMN0Jqqoo2T8Cxr6CE5basEHc+IuFfwDjOlgqXAcdLFyzrst2nqPk+egYoY\nHxcnJ6WTFU+Ye/+zVjJlyla2spWtbGUrW9nKVrayla1sZStb2Z5Ce6pMGZdIH4yVFZ3uwZS5IQR1\n76F+7veUdT1xmmzt1XWpcwAAIABJREFURdUPnr4gVkaWK5P24VtCRCYjPOkTVOl9ZcyeeeUzZmb2\nqXkhKT71f86GHTkS29rS98f7ysiNyejX2/rg/ZtC0IddZf42N3Sdjx1wcJLZuaWsrQfy+hjhobZ5\neV7Z49UlnIQWlfF/eFt1kUurQtUWTimL3KQ2+NEDoWpV6tLDZ3W8WlVoVWdOmbgR99eKMruzrz6c\nvahMvAcKPKGoMjlUZnjtllDxQRdXBmpQO20yzoA3uxA15tHJabRUS7r6rJA7l2btjsTMqcP26YMY\nHLUNcOfIMaV3NbYZzJ1gBGod6Dr3Qx1/jyxoq0LecUQWFxn8Q9CSdsVlU0mnkv0c4UISUFPrjXS+\nqWMjdXWcsOYcB5SdTdFsyciuppy3DTuiNxDy2iZbO4bpEqER0QYZ6FGj2+B6DkMUvX3cPxyISC1p\nD7bUHPoYY1D68YBMPOh9UUEToMaYop7aS3CC4Lp8VOGrIOguUvRCjdEqKOCArG8Ag2cE+6AJEm8O\nLKP2tusAb2qhK6jsD9CyqR7oRA2y3kdpj1KhSi+fU/1ysS4UKV36WzMzW/z8t8zM7Pl/0MkfHeBi\n8UDssH+u45LzzJqZmX36dd1DPqfP3Tz5KTMz898Tg2Oh8xdmZvYvuebhf/yR5t30zzX2TtyTe9P2\nrJDaZzu6vmlf/+8e/4KZmY3nXjczs877f2BmZj/O5PJ0gmL2XzXV95+r6fhvPKIu+vt6Bp9dVd/F\nNd33MwNl8B/01Ye/wUnhmTm0cTpCk2ZxPvjp+5ozn/2s4u5V9JA+QDconFUcqj+juLv6pvrj3ati\nBKXn1M99Uzzd/7z6o7anfvz6UNowtwqNzWZb8erkRdWhtzd+bWZmX/xQjKPX7+o+l1dh3a0K/b8B\nu+PVq7r/1w7lRnX7n3TfR20FCG8MeyIAqYlApCFp2YAaaBcjqs65BgGOKiyuCVoZdRDWAg2LYeBY\nX7BL0M5welNOK2ISoJ/i3AOaLfM4poGApTgE9McaEy0Yap4LAGgShA0Yf6BQzo0nJt4VuHz0QXUi\nkL/QaWChx1ElToU4mmTUTUc4p2ToNIz6sJRwffAHjhEzoc9gA41gDdQUX2qgVYXT23EuE9R1VyPQ\nd1D6KvGvcIwZ9EaaxG1IBNZnXXBuTk2OnznmzBFbB8R29FCD4e41uZgcbui4C2ekfbCyLES4t63+\nqFR1v0vLur/7b8thLaPu/dRVrYtzxzRXJoc4SN7+0MzMdu6LWXP8gtbnJhpu2bb6d494mKAFU8XR\npnNcrLm8+WQrN9k+tEMQ5ybaZx7rcXWApsUsmi/3NId8nIt6gZ5TBKssHTGuaoo5tRp7DhhVhze0\nHu3tiSFTZY/TRIvHq8WWPtL+LiDmT0EOefQWxG6ewKiABZXheuGnrjYf5i+6bgls0CX0e/K2nsnW\nI93LzQ/FYJw7pms+dVH7rYNDpwmgOBM9sU86UqvB1Ehh006dbtwIzRieVTVSX05HsMFgxEVt9Bym\n2oS1QVAnsMwM7Z0EZJrtq4XorDVA1XNYcxNYrzmMktoILRbm/KRKnGEfmjltLZgvTdgWA+JiTj8H\n9G+noWfaw7EyRt8pMFgBGUxDXFqcTlVCXA25nxFrewdnuEENp0dYJQnM7z6CWO65N7tanwpiSAtN\nn4SY4cMm8NinO12PCmy/pPGvGC7+2PIGrOkhHY8zaYp709Dpd9Wc+4vOM/COvieppM6hhj4iDnaa\nusf7jsnN/nC8u8M3caRxrCi0ptiW2cWr2osMmcfuXcMxY3LQ/uYs2ijzYoj0cbZ98Ej7cce8RLrK\nhuhQpmgedtDLS9GGytjfTlgTU9hOOzt6V8pC3UcDl7n+muJCf1vnPdwUM6c6o+PWYG5Mm3rGqXME\nYyyMYbFVFzW2ZlYVP+/c0Z7K2H8maHxNiIu2j7snL3MxjrTNse7jEO2cCnSwXZj+nbrGYozjW04s\n8tn/Vk7r/8Vt2F2wnjm9hXXcjlLn6HO0lrv3BPa/DVgifecIhI2hh06L04R04mQBQi0ZTHODbWKs\nRyHrZ8R+vu90qZgrUfSEJejFY4uD0DJciHLiWwYzJcVhsYmT6xDXpAoMv9DXvJrCpHHzZgpryhvh\nMsxeJUZXM2S+5TDhnFRfCCtoPEbnE0ZixWlcwbKPmzp/MXAWu4wpWFghbkqGnt2UvZVzrsxZT1Le\n3wv2b5GrMsCCMGKyOE2bCWuwY9QV6I96VG14uDz5vDz1YfBlye9m3JVMmbKVrWxlK1vZyla2spWt\nbGUrW9nKVran0J4qU6YHe+OD14QWuRrh2FdW8soLqiM02AOzZDl3qMMeoTzd21I2eezYECAIzYYy\nbJOpfna30FOZ6v/1ORTRJ2SZQQdrOFy0Lwip5VdreTrO4U1ltaNYGbm6c02qOgRUx42odYtxlzpR\nQ8tmRj87C2jOxA6BgJUyL1Sq0RSyPeor69zDEWf1tJhCwbyytfepX99bU/3pdlvX1cYNYDtI7f62\nalKXqjpnGAixO3tGSFtxXshW5X2h48496be/kqOUn6CGTj1zOKPvP/8ZIXtLJ5QBvwPyt0cGemNf\n6EaVGv/5eSg6R2wHoBlON6joKwsbzqNknYD6NDnP2HkBgJCmQulyNBeauDH1B/p8r0LmG/SoBWw9\nHoBY5KjVV4WOZdQ5BqDcwdChWSDMgbKjEerp8T4oCwg3gIBNZ3B4GWpM5xVdj9MfavLs9ts6b+WQ\nMTrQYAx852LC9VQ4DkjDkH5qkhUu0KBJcSrIcbLIUfGPp5pzQzL1La5n37G76Bc/cdoSXL8rJId9\nMtvWWO51yRqHzh0KbYOADP2Y59lxLATQK5g8o39V6/q/as/jjvNuU8yNkzDZXvzGV8zM7CfUzL92\nTAyWymd07PaeUPBvrWkMP/ix3JFWX9IY/ujDb5uZ2WJHDLzm5M/0/ZtyMcq2db53faHEX/+Bfh97\nQnPe+7LixbsDGCQfaA5u96R1M+NcKl4RYjuDS9KH22tmZvZ77+vvHyW6bvtAxzu//IGZmV3b1fdf\nellj+sPs93VdU6FTz8ypb8dtIcbx639uZmZ5X/Fy8PtCLIaJ+ny1Iq2cYSzW24anfvvvJsZe7aty\nU/qTNc19b0FjbvNn/8PMzBoXFQNefqD4uIu+0L1M/fr734QtMZRexuYzQrR3f6G5Mk8hdfSs+jEi\nZlwOXjMzs+9nYjZduq458YVvCvn+L39lR2p55tBFjXXnspS1NPdDpxmAE1HUA8Vqg8KxPk2pJ89A\nUkM0wfwCpLzQ9Y37+n8PJL0CKpbDXoudrgpaNNlkaAWsAaMOu4nrw9gxZ0AkE+idIXGxB6PB1eQb\nGi8xSFqAa4SPu0UBspjhWhSgZRKgFTACbQpxPklxYAAEf+yKl4LuD3F6gbBoKVomKZoKXk/XOUZT\noAarKAW9iokTCWOm2tb3+whjNED5aykOD2jMOMaNB/Mnj/VseplzL/nd9dv/tlVAFNd70k44fKh4\n2ca95MQzZ3Sddd3PqND/B1v6/8FAY3+MPlTUFEtj9pjWbB+3pvtdMVS2H+nnyjlYszigDR/isoIO\n3sKyjnP/Duxb56KEhlkwfYKvra+vG+QJO39ec69Z033t8dxT2HDbD3WfDZyMZjpoJ5zXHDz+jBiy\nPuMsbug+e/f0vXv3FBsDtHcuPa9YWmHvNdwb2fau9l0DnK2qkfY3Ic5Y+UR9NTkAhYed5TkHKsZ0\n8VibRIMsgJmSpoq/6+yDMAF6PN8uXRJjz6j5H+y5/SJzJNi3T9Lyqs47Zh8Z4STm3DgynFnSiWNg\ncP2+Y/joWTVg2U6nIMsdnLRgRLt9atXp0jnA17F1c2d5iOtQDx0TUPUJroEVmEcR230fu5JJpH7P\nYb35MWOWNT6AMZikTvOKjTDaEAWOQsM6enEg19Omc6HDnWlA/GMPMGDsNrihbgtE2+lm1HV905Hi\naBDA3kCXKYU1bbijBOyZhuzVfPQ1QvQ+gvQJMj2YeI/jbpU933CMq1fFuVFpj9rAqc4/cCzjo2vK\nPEbXYRflaJOkOLAMN9RnDdbQmWXt9T1YCFFT19hln9qe1XxcXtI+/fZNrenr6GU2eGcofFzWOlqL\nJ6zht69pDzJlzTt3VVUDXldzc3MdBjZz58Qy+pZonIwPGKPoYiaF5sxgjzFKfPHRH4nQdarMwhxp\nELd55gPYTSHvcI+dcRhDHuudY7k51mlvS4ybJd6hMhhD9x7o3acO82b5gt5rkGuyEe55YUvfO8R1\n9hFud/UF9V/7pK77+jvq3/MviuU8t6j+zyeOGQ7bAyZqyhhPKp9MwywNXAxhDMNc9ZxeHmzB2pD9\nf+DYF8yRCOakKwgonLMQMRSWywjHuWofWm6d5zF9orcUZVUbFp613FoMgySgEwOuMWFM+wVxgP9P\n3ZoE8zBEoy/j3SOBcdeAPNZjvoVYdXnol9ZhohhssRjmocc7QR/2WQ0Wl0/fO72cIUyUBs6uE3Tn\nmri7Jfyd13mb8s7joQNaOAb1eML/2a/BAk7QoMk5T1h1VRv0GwyfEBcpwyWvIE4n9d89RkqmTNnK\nVrayla1sZStb2cpWtrKVrWxlK9tTaE9XUwbl66svonNSUwZpZ1PZWw+l8aIpJHjnkbKz9+8JRdrf\nAk0CqajMqab49EtCh46TffZxGirIhH30/rtmZtZ9T9nhIUyUubrO4y0pS3nqtNCrFojBbgbDpqYU\nm8teX7h6jjtS5qwZKfvtOSVzENjtXa4TpHSQ6n7SRyC1VWUME65nCGIx2NHnRh66GwHK6zs6zt66\nsscZGbkJrk33t3Wcw2Fic/PKOPep783uCrWvUZ/XnNU9N47p2ps4WKVoFvS2dcwhGdjZljLKo21q\n79FAufuB9HVykM1GrAx0QFZy4h+9LtfMLEeDwLc9fqd+mSxlta7rnzidEL5XAf0aUX9dpR67C/Ib\ngQQ3YUkVXFdBrea4qev2YB00xkLHEo+MO5n/fgECPdZ1tExZ2RHodzDHGABRaMOKyg6oM69Sj547\n9XZljwcg3LND/X3U1HVG1EGOK6BFIxCOOq4q1JA2Yc4Mpvp/AcpfoG/RpsY5zyjgZKzOoByeolVT\nq+j7o6HuqwqybiAXDbR1JmShre90jGAFwERKBhq7Y5w0UiCZtKv7CdCIGEw0UCqOnXCEVn9PY7Xd\n+XszM/vBBV37qaGYJvPfU3wZz0qLpPErzdfKczrnuyeFsgS/EJr0zi0xVj71svrs0Zs6zuKn9fnV\nllyVhmilLM7CkLijePTLY58zM7Nnqppj+xOh3xsXYCm883dmZvb9r/0fZmYW5zBxXpdmzR+9ovn9\n3mX15bD7Mx0fJ53jO0Ldb/ua0wEMwOYtsdqCi0K5Jg9V731r7utmZvbNL8p96vX/qj5fuKN+WvSE\n1v/L7+t7V2/pvkbvfN7MzPb+QvHyGzcVT783+LGZmV3eVbztjHS91ar6eViByfei+m/hlo77z713\nzMxs5nWheC9+WYymwVDP/HOv6jlu9PW58DZ6Jes6b9w+o/t/BUeEn4vVd9TWTPT8mAJWAaEvxjju\noGFQB4CewEqZEgN9kPsIB6EcfZMBsaCCJkEOglOnjj1H5yRhuc0rjuUAssz6VMkjC9FTGMa69+lj\ndFvXNOUaChC1Inaojc4Vo3tQgcUz6XMuUKlq7jRrYK7gGOPDJi0cIw7WaQXiTV6HkYG2VQEqHxB3\nfDQSQhhvIV90LhcR8Xfc5Z6Bg+oweroBrCOYLeMeGjqg7YMWzMUR8dd3QnDoSBCXI9gXIXhT+AQI\nPFILfJiRm2g5wNI49YL2Aktn0FrAhXALTYcDNFW272jOV2MhssuLGvtD1u4UJ5f0EXojh/r7yVXW\n3VmNwY9+puOcvKDzFdSvT0DjZk+d0e1XtU7tXFt7fA/jg54dQ4Ph+BUhxlNcogb3dd7BAUgv6GMF\nLZ0ZXF2WT2jOOXeRRzi13f2tYsGD24p1rSqfvyxEefW8zreHe0n39oc2ID412DetPCvmXbWCoxR6\nFeMpejZtWJLoXjQY02HDrRU8c5xYxj20umBenzsvrcHWSe5tucK94+qJQ5Q3FFo+CI/bJ2k5zLg2\nzmIeWgfTIYguNKUaLm05TLwJew2/x9jlviIYGc5RJSMGOMfDCXuJCIeXCqw0L9Jx20ymQ5goTpSh\nNsKJB2YR5GerdtTfla7TFUGfA72KGJbuAFZDK9L5JjBsKjBPehynxfdG0OiyDFZwx/UHjmHoEzbQ\nqugS1JowXJx73XSM1gNMn16OnuDYsQDRlEAKqI6DW0QMCGD/TnFRGntPsOdWu2pO5qULy6zS1IGG\njKcMtkEOQz/jOqNPoBeSge4jvWS1BkyZ1GmyaH5EMGhmlhQn3BjvbYjhncHuaqMrmcCU2MXt1KHx\nS7yrnH6R6gLnqgT7qAfrKEN3rjbPs9xS3Klv6d7rzlEs1t97vENMYDEcDHXdzlnr4nPSl/N494lw\ntJr0YVUMed/AdbXDft25qbpnOZoS/+mf9pziZ62FwywsjdGerrPXFmNoluvq7TG4WdwX51Xl4KE5\n2evpPk7i0hTW1G/dbb07Lc8qfs23FE8/4h3s0Zr2RuGM/t5cEaMwRasrhX3r12FjQEQ5aqvDvOcw\n1kCzp+A55+gseTgbOYm0CIYQWxHLqARIcdfLYa04odScfnVsuQzdE/9f0TKmvmdVL7MhbNkajL/M\naX1RfRDTpykMFKMqIHd6Q6lz1oLd22T+oD/ZR2/OZww4uRynrzPw2G9N9Q/HmorpK7ZP5juXppxn\nwPVF7KuGxE9MRy0l3uZozSTM80aPCyD/4Dk2l3PTdIxO2MgJ72bm3mWJJwV7jpTzVmEyZjAiY5iZ\nmfdxd7l/20qmTNnKVrayla1sZStb2cpWtrKVrWxlK9tTaE+VKRMiO1/gHNAn+3iwr+zk7Q+FhAYg\nKRmK29UVZY3jWbKewGGnz+GMsCTkI6N+euKyiNTmdpaVhV08LqTZyWJUMiHZa3eFnH/0MyHPjSr1\neR1luGaoy7cUtfkAnRKQAi8TAjMhM5jjZLDxvjQsegf6/3AXZx/qKr1ZHWeCm1QB68ApZ4ewB+5R\nuJ/g0uI0bS5/5iUzM1ta1XG2d5WdLg4Tq3Ovs6hyf/iuHFg++kiodG9DmeEVmDKt00LBrz6neuwc\npkUCo8LvK3t467dC9+9/pHuamdO1nLkstDxEdyeE2XLYJ6N9xBahLzRCM8DIbvqgKGmm626EKHfT\nlwOQ1zaOK2OHYoHqYGxjqWMnoefjgWS20DTwUxAOENkKWdLHiegm2VuUww9zHA3QgsDgwDz+P6Ue\ncwoyEGVCMEZYLExhxjQSXDdAwXwglxD0pnKA61ME4wf21RjU3amq13MhMFkiRCFJnAaEzhtVXL23\njrt/oAueAUn3fMds0X2MuZ4I5DYEwUbKxg5A8dowfpyzQYgKfpXnF1K32mVs10EXY+byyI7OqHpj\n57+bmdkr0zNmZvbtk2LCeD9d07Wmmsff5Sa+1BIqUn1daO9f14T+fO1P/9TMzKY7QqneXdM1LDeE\n7F6/hcPWvDRn+qBM/fO/NDOzl7a+bGZmx3f07PpDoVZjgcz2aldMkOCUUJ5bH/5A17kh9GXzFc3f\nN96UbkT9ZR0/eU3MvxO//1MzM7v5hsbsVz+HS9NAf3/pT3WdBwdCf2be1Hleeqh4kL+oC6m1Ff/8\nTY3Jv/3Kq2Zm9udvaC5vtUBGQF2+9Dc4s50+Y2Zmlc+of377hs7zyp99RfdNDKl9UZ/HfMreXBPq\n//yOnCNOLIj5s76u53FnVfF+FONi1RDKtfEFxeGzf6U433xOx91/Izf7P83uX/xkrik5LJACdlgK\nk6UBVLODTkvUhuXWh10GG6QCE7EH+65WpQa5ADUD2YlhnUxcnT1aGnXTXMuIpYOujldHo2bQjsyI\nq02PumpqynNYBRXqoYdtdG9wsZjAMKnguALRxfwQ14zAoeq6hgnz2oiX0/jjbhY+zgiGpoljYY6I\nd200tbqg0DHrig9SOkj1uTq6FYbzTkhdth+i50BcCVjr7DE6BdOHeN3q4vaDlouHs0OCk2HVoVSg\nbBXiyPgT7nAyYDhv7PQ6eEbHNJf6W+i77St+DnZha8CYPDiEtTavdau6ojnfAcWbNmADR46dALsV\ndtWIBcOH/REVYp5sbWrOLXW0jl8+pxiXDnXehw/uPL6HuN60E+eFnI9APe+9JU04h+D3gGarONGc\nOaa90+wZmEKwIdZuaJ8QM1cSrrsGgn/6MzpPZ1kx7Po1sd8mG5rz67uH1qRGf35Z7J1jp/XZkeGy\ntI5zU8Ea71hfaIZMYVNlvsZQ4vZVaI/4s1rj2lXi3lkY0mzTtu5qbxIOdb7BSL+nIKCr6HoctWWM\nsT683DpovweDp8da12HfODwEieV8DfYACXN7BDvUwwkzhCkUsx/2ET8YIm44rmoMtph7PZ5JlTHr\n1vIpccg7xMkMVkXIOogEjg1wh4rbTrsHLRf2LiOeB+HOutxvnfsMcIgJEMyroHc3Ac13DnH5UDGj\nKNQPLfYCBXOuggtid6Tn1IT1kIHAe+iQFOiy1GAvx2jGZTDhByNYGC2texW3CTOzXj60RsXFZdiG\n9FuVPaULSj6saZ/9di84+p5kwlitwgwew8IM2R9OYchkMI6jGa1lXRwaH1xHIyXU51ZwQ4py9m89\nHMzYNzk9zfac/v/gV5pTEfP8zFmtqUMcBD10eQbsFycVPZvRgcZW2IEJfk1xxd/RcbqwJGZn9S50\n4ozm9IMPxTJ+cE/zfvmkrjdnHRju63ttGDb9FC0xHtVoX2t7PAtDG4fDdZgqwbb2LjOzin85Wig+\n7Ir2iq5nuK7zxOj1OWfdEevSuAb7gmefsy71oJG5+Dt3XO8/EWOgDivi3EnFu3feEWPwYEvXPXNc\ncyAJP5nb35h3xsBRYHgXnaKLZDgHhU7PqXALpn7UYBDldeaak4zhPcHpnox4YSkcY4sYFvyr17Fq\nmtnQQmvADOvX9Axq7Olj5/jEu5XHfKgwfyAim6GLNIYp4jFfUxgsFeJaQTxkC2MhzEM3JibOgXEK\nWwhiDlI2lsLaDxlTAfvVCazQuOYYMbCMRnWun+txDpbo7eR0XmZuf8cehO8PeQYBYy5wWyiqFsa8\n08W8q/Z5Z2yg+xnB0JlOf/c7cMmUKVvZyla2spWtbGUrW9nKVrayla1sZXsK7akyZQ7WhfLc/KlQ\nnMOusrudjjLg51zddFvZ03pb2dAlaoVT6qltROaNmrPxnlCl+5vKsvZvC73qDahtXlRK79RpIeY+\niuZG/WWA3/rx00JQGpx/cog+RqTrHuO4cHtDWeLtLSEwOfWiA1/f86hV9XCSaKGUXkfHJWoL6QlA\nRKYobWc8nkqkzNowU+a/SrY0bVEnCAtjZ0d1ps7iJ6MGbtDv2s4D/e8uDgbboEY+jIgWme/OvJC9\n/p7udb+jDHUyVV+km/r9IEND5rfSrVhcPWNmZpc+rcx5imL+sItj1AnVnmeFPn/UlqCJ0oR5sb9E\n9vSxO4/+nlB3XON+Upxckp7LJOv6i4DMMawph/BGru4QVDzD6WpMNreGtsABecw2NbuufnpAejPC\nXWQwg05FV8hHDlJacxSbDowR0MAJx6uRXXXX0aiSjgV182F/WVtzpIkmRDDQ9fodnadP1rZeR+eC\nLHCdrLPfBnUaUMeZ4r4CatULddwcB4kKjKIA1CzJuX6yzx79MgaBGcK2CAqxMqZk9H2SxH6dsY0e\nVNjXnOrOEpJA147SXki/ZmZmG5fFPJn/lVhav3xOfbSEOvzZG9/QOa+IQfbmVY2VZldjY+2nmr/7\n89JF+lZf8eM7wzUzM7vyOTFfGmNqRm9qTr1Rl1tR/pLQrbmPFGc2dtSXF07oe/9wQmOhk0mP6XBL\nc6U4QOPmrhgvxz6nvu48AO1/RlowLZCHyaIYhNtvoSf0qp7ho5+pcz+7+YqZmT38vFDr8etyi+rl\n3zIzs+dRwX+E883ha7re/3HmC+q/Z/T750zMmf+Hsd06p7g6nChefXMkFO37ve+YmVl6KBRpZRtW\nwETP4fIfC21/7zugZMd0/K37Os5+LDbAZEWxIQ+EeH/tdWnU7P+ekPXePblO7Xxez2kR1Oqobepc\nT3rq14NFkFHuLwTZzZzzUFv/8NBAmAIdNynEHuOE5qPj5LddvbaLDTpuhq6WcyQqBmiPMccLnM9q\nydiCGtotsCXHKbX/sHM8Z4/BsRLgmhAkrx875wGQMbRknB7F1Nc8i3EMiNGoykEuM3TMJsTFnPN5\nMHd86q/TQt+vpjBhcL0bwzCsEY8DUOYxehAe95MVxBPqr72Kxm4Ciu7EGDLqwJ1Dgs91JiClQQOH\nG5iQKRovPnuBuPoEJT9Kg1hkuen6lo+LdXFsRj/v/kauHCOYMkEKggxCeeF5NBZquHkc17q3s6u5\nmuwr9hziSOSYn9UFxcm8rz3Q/kT3t0L/hLAtZk+wB8B58YP3pJN1ADNFx8wtWtHx4h4aMruKVY1V\nxapjsAi2uI7aMs8JZPvB+782M7Pd+/reyknNxfqixsvuHX1ve4PxBIt484Zik9/V8zzzwilrVGGu\nTIkf6FT4bVha7EUmTjgJdm0MEjt0bkasCfFAYyzr6f9LM5o/WwjXTRKYJAP1/fYN3UOAVsosenFR\nB8ZI5+haIWZmWZM1vIe7GnOkAwPOx1nQc2tkFYfEGmMaJDgZo5mDbo9zmHHM6gx9owns5AruSPVA\nz7ZgTQ9BfCtoqaRoxIzRTMlxLItgwETsQw9gGtVqeoYjGC+OxVaAPMcg3Lmv8ztGTspeomg7dhl7\nBqeb19f15OjUQXCyETEoggU3ga1nA8eW43nAch7B2qo81rTQcX2O24VxX8dNKYPNXE+5X/rFzKxj\nVesO2Deju+ecJFP3uQgdvQr9HOJwMzw6U8ZphBSOOEG8KkZuX8RYYQ2utIi3jOn9R5oTAQzwqAqb\nC2ZdEfLMYTKeLNmFAAAgAElEQVROYJ01PO0temOtlUVPfXr609pjJI80b2+/r3hxuAlLjXIB5yjo\npbAdMsWrCs/q0mXpNc0s6Tw7Ozre+rqcz453xIbd7VEtwH4wRDuxD/uh2YT5M4PW2Ig4sqjznDqn\nPcFv3pTens+72UX0O+9viuV8sKvzLK3o7/v72pMcEjuYkhazr45gwow9zYki4N2sj8NQS/d97pxi\n1ju/0J5udkvXN7+AMySOlUmX53OCfXF4dC1EM7PI2SZlbuGB5QFrcOx9fD0rYKq7OTZNcDrCEa3C\nc5s0WM9h1hosjYyYgbGS+Y0n7oR51TcLUhsQHyIYahmOUxWochP2Hi5cT+ruXYL9UmP6sWvxQ3Rz\n2GhlVScKw36LPUyBLidDxHiFtBS2UMGeInesenfdMFnGztXSd3o5aOLAqElheQWwhivo9eQ4VE3Q\nQY1hzkz66K7V0dvjXSwLnE4SzpaeY0Iy1iewkWEjOX3AGvc3DaFw/jutZMqUrWxlK1vZyla2spWt\nbGUrW9nKVrayPYX2VJkyBejd8fOqE1wx1TWfQLsgbilVtj9ELR819f0DsoLU4x0erpuZ2ZQ6wltv\nS8xgMMA5pyNUqLPk6tGVIdu8paxq77rQr86MkNvtLSE6X/yqNB7uo9Y/OhBS8PBAWebI1bZRgzZz\nTNljr6bj1MnIe5EQj/kzQnyXL6lecWVpkX7QdY26Om/C7yGIQdFW1jNyBZKxy0BSU4z70gbX+etf\nCHFPqR9tzB4zypFtaUn3fnZGmejjV5WxjkOhApM93eM7vxa6/ZMf/srMzKoBKA+6PrPo+ixTq3rm\nsjLVJKZt+FCMmhwUZ/MO2gYGsnrENqH+bgqymuWgF1Mdx6OvDE2Ew8TVB6vvBqSEY+c6wvWMA6Fl\nVRgx+2RTK4zJggLGJqyoAxDnFi5EQ1AcD22WDCsAHwRkpk+dYaxnXx+jXl8DXTrE+SVWPzrXlSlZ\n6QaODCEZ8RHsqCo1ohmZfx8NhgHofgEiU0E7ID6kjrGm7Oywhv5FX38PcVZogeaPdTs2Ya5FFed8\noP/7zoWl4Hy4efkwaNqwOYKu+mPa1H02Ap0/BUkY504jR88pm9F9d6gHT3CsOUp753mhs0sfiCGy\nFYvhcmlPqMY8OhDfjYUqD3L9fuWRUJ+tE8SBl4TyfGpbY+KXTY21hZHci/y//5GZmc3OiPnyT/q4\nXaKG9eF7QpnGX9Z5H32H8zN/s2UxV/Zhi33hUMd/8xn1zcy+5u/VGxoj1x6eMTOz477u78adF8zM\n7OvfEIq9dl99dmxfF3JLYcXO5f+s+7wjVHyzorn4GVhyi6YxbdtCmZ6bFaPl/2Xvvbokya4rzWPK\ntXvoFJEqUpTILF2oAooACaBIUIEEutmc6VnzNGue5ofNzJqHnm6yGwRANAESIEEUCkChtEoZqSIj\nM7RrdzM3m4f9nSwWVxOIfMp5sPsSKyLcTVy799xrZ++z97Sp+6sXL+l+YL3Nf19zOz+j6/9WV9fx\n3QU9y5P7QqL30cZ5eU/3c/dVaf1c/uhrZmZ26vy6zh/ofJ9e0mD7g33NgYJ+GWZyv3qrpzHwTEPn\nXWOu3AFIXe/9ZhX7f91ykAqvv07QMssZy9VI1xMwJmPG9Iw56BZyM2JKCKusjibEENZDMgerhbEc\nOyyF9kMCm68HotNBkGk2im3sddoN5pfX/lNznqC3EI5gWdZg9HV1LzVQpEkV96Gezh00QY+Aq7u4\n5UVoaX3mOKWx2hi6tov+HuIgUEPLZUTcyGF3NpjXjkz2QPaClL8TpwOcCGdAyBMXlUErpoA5mJjG\n0EMzC8JBC32RPsdvouOTNvSBgOMlMHtG6aOxIDLYBRN0h4Yw/O5cE2K7cV2s2KUnxNIKtjXH2xPt\nNRZPrJmZWYTzzv1PhLTub2qOtBaYpGhKVGFALtcUC+7siKV35IzW55OndZ4HseZGBop3f1Nr/sZH\n+vsSrGIzs6XzJ6wJTWvqzEf0ShaBIafL2qPYnmJBDOtggtbC7lX2IoyLY+dwWwQenYLwDrvotSTa\nux1d0XXPOor7p9cuWpHqHJ/+AieThn4/9bLYNyH7pgZ9W4BCj9xhC/ZTDLs1R1QgDP8VitwXat/d\nEcptkfqmj5PNyiX9vX1Uz+DgXTG0t9L79iitMYUNC+UlhrUwog/dtWQfRl3TkV/0OzLGVoO4M8Gy\nJQhd+wBnFZhERd/ZvzpOhmZL3nfNBNi1TX0/7ePkhStcPna2AmMapLhygLYKc63Fnibi8z1EZyLY\nFnzMQjS0CuZ+xJ5wilZNCAshcZYa95nBKkt4XiGsuRBXQXdsS2HtFl32SuypAtiCQ/Ty6szxCkz5\ncV3rQxTBSnPth/ZnFmxBOLUODPtRiPtpBosaBk+YEXuGMIPY+zkr8TAtCjRGkxwnVtcwRP8ihXnd\nqVIFgO7lBGaKVRQ3pxGsMfQ6+rB022huhQXOYl1d+wrMvHMX18zMbHNdYzvDJbO9yJi7gYYKTMeg\nyRoMo8I1/mwPJktdz6RxXnMoR3tw/SO9O1VxmVs6Jab97t2bXKfGyMqKrmvE/rW9zPrGOnTrU63x\nL7a09wioTpgdKL4UMCLd/ah1AANwS3N+9Yye0dVU/dfheNFZ9UNrQc8hglUXsI6EsKT6dfVDi44u\ncKuNptILHLl12RwMVfbdhcdD4mqYO4P/cG3K3HU9FLbdlrltF9pEASzBoPi84487sBWwRPIG14F2\nnDsBVVxXhTnqMYipxrEzi9OKhVNn4eKCBONjCoPP1+QELacUVqfPjnzo16rfBzBM3PUsRMdsxv7K\niB8B8SJ0rT7eqzMYN1Ho2jEc2Nm9MGKa7L9SnqETWAI+l3C8yF0wZ1TGuD5orr7OYETHDeIn2q0h\n74i8elnGs5hQTVCBrZbXYOzANEp5p/NNVtBwtvP/uJVMmbKVrWxlK1vZyla2spWtbGUrW9nKVrbH\n0B4rU+bIUWWsT18Q0puOlOGeUn++tyWXk1t3xUzZvKGsaUgd5eK8srIVsrpnn5ZLyauvKtvqIuxV\n6h8TEIDtqbKsW9d03D7OBW0UxzNYIesbQlg27gmprgbKsq7AfkDc3pbmYeLgWLR8Cq0IkBEjm1mF\n2bJH9nfwQFndHIbPTeq0o4A60xbXc4u6zkVlicc7QtTnV/T77W1l/J96cs3MzFotXWdEVvfIwnEL\nqYuLuZYBCNloiovGRH1fUC948Wn1bXZRmfG9+7qGdF4Z5zk0B06D6N39eF19dkuZ8/4dXeOUDHdj\nCdeOmkt0H65FDX3fDmDKTNQ3AXWKYzLInrlewElljAJ4hNJ+E3eP/SbK/7AGJtSZt4cobKPAHw/V\nH3swc8IaGgDUH7bQ/QkbIL65a62QDkZJPKaOexetF3dUyFw/CE2VFo4LIxCUya5+75OVbU10/8M5\nssCgdS3QrJTaUQAXy1A8nxTqv5BMfr2KCr2jTAxiDM5sXOg5zzV03z3G8MgYgwcaWxCrbOQXGFMr\nnDvTCFcAR/naZPCxQ3G3rLzuLiOgoIHmkrUPH5r+/FdyNZudlCbKh11pRE3O/XczM7sPEJq/IubI\ncOc1MzO7m2vezMWaZ9feEOsrPKnjTeakOVUnTH7a+aKZmR2Z09h4DRmHxZni1I0zmisX0Y3IFnWc\n1VeFCB9d/4KZmf30suLJL07rXkNq5Z+7pc+lXxSqfrK2ZmZmH5/Vz+iGxv4P39HDOrml451tv2Vm\nZkt7r5iZ2a+fF0pUCXU933pJ/fKrhhh0bzzQM1td1txtf+2HOg5aKN2PNdbmY8WXcBGW01WhRz89\nJYR5+RLI6JaYL8+N1CHf/Y8ac19+78s6/nWNhZcuKJ7+3WUxms4E6p+rkN0WL+n5fPLhd83M7NRI\nv//dp0KxnrukfmgV+v3J/PDIpZlZHfTR3URS0KQZLLW85XML5NXr93G3q87Q9gIJDtE7KXDoqYxA\noEHP0sTdBkCScS0YgaA0Oc8EZCXttazFWtBl8aq4XgRaWDEMvkFN5+zjUhbPoUOBZkEBMpZ10FZB\nZ2yCO4Q7CLTQuRh6rTlaMWNHrdDmcn0cX8tsSDxx3QcYNAHxIsadrTKi9t31NEC7KjB7mrCVRiCm\nVXQhhjAx6mhlzbjuBP2eyJ0YJvQpa3Poa2fhlg7AZYdsCXhfFSR1gpZBMdO6d+KSxvoKGjMbU43h\nzR2cGNGImDV1/Xdviv2REl9XT7Fe7MACINyFS6CQV9RPdfTzMurUt++JDZyiLdOv6HMnVrROX3jh\nyYf3EAWF3d9UXF1gj1CFbVCtqr8K0L8icDYYjmPoHY0QxYicgTmv77V39f/FKs43rLdVdPiWzgkx\n37+qftjvPbDuDbF/du/o5+LZ8xxD97hXuAYTukQwUCa4R3ZhTeaF4u4q7Nwme4khWgNDXIGquMBV\ncWSJYK51jq+Zmdn8khavq++IDVxDe+TQzTWo+Jmaz000UtiTdGClpmgPZLhy5Gie5LBZc9hJKWy2\nOqzffKbPNyPX9wCJHei4TfQ/kgz2cKb+qjR0PUPYqDP2KBCUrF7n2cMuy2AQxjD+Jny/AgstQGgp\nHmsO7KN70YTFPHRtrKa+32IPkxFT+u7CArujQuwIGjjo4DQTB+7UqXHQJcaFjIsChpAbMw5AyNux\na+zoBvOMeO1Ob2jzmJkNi4YV7P1yWCgJGhjJGFdT+rtB/A4nPkce8vZ+a8ti1wRBKxDNFtdFcrbk\nBGZgH7fO/r7uIYMB4y6YaeBsTZiTHm8Dfb4Gq7SHNksTpmXW01zYuKd9+fMXxf7fPs3+1OPTDKYI\na+JWT5otQ9D/o8t6t5lraE7du6M9Tz7VmDtzXnsMwozd/UhMmbTimmQwG4nHzl/cgD01I/6PK84e\nZcxgk1rlmVXHrNHE0xH6cLUV7fmOroiNt4vm18nz6Iee1V7uwVW963VhCUfsO2Nc6gp3/2OMQ9Kw\nCmv8bp+9He8hNaorUjR3suLR9iSx9wvns8Id0mD1cqPuHoU54kMHtRlzNMNVKWevkbBnDaGY5szB\nEPZLhbkxq3x2vek0tiycWcxYC2Hd15zxwTQKiV8z3hUD9gxhE4bb0DVYiGesJRAdbYYmVcSaXkCp\nqaAdE3LPY55J4izYEe+OXu0Ac6VGPBnDBEzQCRpiB1XhPDHVBgFx0ZxhiYbOhLU2QrMqfkjtYY8C\nU6/S4N3JNcNgAxf0cQHzOXpokcU7FK5Puevm/RutZMqUrWxlK1vZyla2spWtbGUrW9nKVrayPYb2\nWJkyOyNlKz/8tZDXe3uCtHNYCxPQ/tXjQmjbR4VOuaNCkSkztbsPK+N95ZjaSyChqPQvZDpPjYz7\n3ILqG1vUR7puSQvtl+ppNGFAIp596XfNzKxZwUEHRk0BwtMgK33ripDiK2+8o+uktm1CrVuTrPnW\nnrLXMayNZqJM/8GBkOQEJtD4gZD8TTRjlo/qe/d7ygI/mer69naV1c5OCDUbZe70oOu9dfuXD903\nArKW+zBfxmRDG3NCQZY6upbVi0LRY+qBO6eFjC2vinW08amQu/d+qZrLu+tCDCPQrxAWFJXr1loU\nJDgefVbfe5i2GOkZ7hsIIjoSwyPK7HdA+vqgIwNcfAyUI/A6wxb16SCE/Ybup+116lNlR+sgBpMW\nNbWwKYoxLkVGf8S4U+ECFaDYH1AD2oe5MiUzXcVhoU5h9sTIsqLVEIAGFrimBKA7IdSXCAGjyOvA\n0Sk5wBGgkum8NRgmxQH6JiiYR7AR+jB8OjiC7VHvWYMp1XCnMfqlDvSRtjU+hojOxF3S5nOMYeCr\nXUQIvLtnE7Qk+rr+NqyQPihaG+Q/iEG1YkcGDl+b+9/OfcvMzKY1uQD9u2u6p1/+978wM7Oto98x\nM7PzGxqzd2fqo7OL0p762X/lXi6JobGKHkeSSEdi9JHixytf0nE3qoobV94T8vuVls6zNFg3M7Nf\n3NY9v4BG1O339Gyf2BFq/RSaKe/e1rx97hoaWd/W3MoGGuM/OaU5+vsfCP35KbpAX6pLZ2Lnye+b\nmdknON6cKMSwObMpJtBHub73nXnN6Vf+i/q0tfin+v6LYtjYX79gZmb1Z0HptoV0BKsaY89eECrW\nuyf9qZOpxsK9X2osvPukULGXTooB88qv5Nq08/xFMzOrbIqJ81fN183M7PVTP9P9FDpOY+E9MzNL\n6a/fvf4lMzN74xn1w+8kuq83uuqvl35+xOx/M/uH9cPrDpmZzQLcNhLQOeJ+A4R3CurUxIGhB/qP\n5IP1QT8D1h13fKvhmmKgnl7/XidOu+5KAELUiHTewdTZdLizJAPLKHAOzd2GcBfKYG5QjxwRxwOY\ncDkgcgU0vQKa1Wfij0B7G7i3jalvdh2MyLvSdSRA/gh3Vox0LzX+33dWABoBHdD+fhMGIXoXo7bm\nd0I8TECppqDOwVQX7nyWKKevuiClsCGchTCs41bU9+sApSLQFayxPXSB2o+oYbbNHqQHcnv6uBDi\nlbNav/au6XgPulrr99l7TGAHGDoekLIsBbmswYAyUMfjMEpsQazahDiZIyrQqqrfUtywxhtah8Z1\nPe+1Fek8tU8JIR7Neg/v4eDqjnWe0pyfzek8E1DHblf3NxijB0J9fgQza8zvhaOKjCN3A8lB/apo\nIBzgMPfgimJr44zu31lidnfXdnB4yRkbp55GwwonlAEunDOQSUdmA9w5or7WpsVjuufjT4kVtLWj\nPtm9rmcxgul3gjVs6Zz6drKth7F7R/cewWINYGIE/UfEJmHQNRONzS5jOJm5SxuIKPYhYzSsauhS\nRLi0dQc4IbZY+3xvw/7WmXQG4muwnZuuScBYj1nPDhzVTzVG68y5EcjsZB5mH+h8jnaP69KFERoq\nOG0egFB3RpwPlm3CXmiG/0nTmUBoZs1y1+2DzUt87KEL6GSCAuZMreusANjBMftjmCzZEH07GDE5\n1xtF7hrFnoc502LrMMYSLfDNiJll6dhC4nuM3l5Q0RdSGJOJu0fl6JoAbKf9R4glroNEAB3EuAvB\nJIlhiBSwg6YFjBdYTXMnpdEUoEWY7/H5mcb8DM2a4x3N/05FY+PgFhorT2uPcPSSxtbGZTFEBi+i\nf0lfpmhUVV3DJNH5hruM6aoz4HS8WVd/375zk+vW/+fm2UO5C94AvY4KDMCJYkAFvZBZHTepG1rT\nww77XZ5hhiZXRvwZma+tMEOIp6O++iNFb3MOt7z9D3S/BfvJzlHFwY/fEUvZWM9Ovfysfh2jD4Jb\na434Vm+qf2sw80es6W3+X22rH+tVGKLx4dlUZmYFmpbIIj1kHqbsGapQVKvsB6ahs0LYZ0/RaHtI\ntGGjj1hMnd+nzojkPScmxoaTz0RlwmBmcZZZBOMkRrN12NDBG6lruWge5y505O84Pc2XkWsWcg9j\njmPoyfmcyOjzCmmIIRyRAA0WZ/WnyPlMExbVoeuIcly0u0LXbcrQCHTHRpwUA9a0PnE7QhurBisr\nhvlTpW8LGDIZLKUEHZ6CPVYG6z+InBn0eX2hfOZVAeiDzrR/H6S/eYyUTJmyla1sZStb2cpWtrKV\nrWxlK1vZyla2x9AeK1OmEyt7uXJUCHE0R4p7S5mtrYGyvkeOqYZ47hj10YtkxFG6vnNz3czMNq4L\nrdnaIEtISv7udPtz512hrvHceSEuXz2FWj8of0aGf2tTSHUbXZKCTOFkoEzX7q6Q8uF9ne/qFdVn\nzoEMNGrKBt/ZEpLTXhESsnwMhs4tIcPZErW7ZIWfe+6Srh9dj+0dfa4Nu+PKdTk6HDmhLO54qOxt\nBURkq6frqfSURY7izAKU7QFzLGnjXEINfIxK99Y9oUmbN9Z1bSRH59eEFGbbQqse7OicdWrOl4+K\npTN3TNccuIo4319AnX1z/fPP4re1QY+6X88U43LRBF3JyOK20G4pUFefDpStrc903c5MmW+hyUDS\nNSDrG4cgfDP9jI2aUTL0Y9xCZmTo+2Sa5yhH33d3ErRsKtSLO0MlHXG9AAQhmgpjsqkZTJEaWgyT\nicZeHS2G8QDrgw7uKiDZ9dC1AYQu5Wi4jKjXnncNHtyV9rxmlvr7JIMJFLnTBdleHBo6gxb9A1I7\nIive0ud6OA/tu9YEGj2DHp8D+U2pGx2AeNdm6rgw8Fre8HP90ASpOUz7evZTMzP7xYE0X3rPal4G\nzX8yM7PTv1QddeV5uRCdOxCKcqv1P5uZ2fMLchgbtqVh0l2WS9NeJoZezcSse/vHYtasviIW2cWn\npOHyY1CdPzohJsn6331gZmZT+nzY19y4/1Vd51YiZsrFDX3+VFfn//73VJc9hdn3lZb6fP33QZY/\nQJfpiuLeZhXmx1NCm/rL+vyNWOc9dVXaMg+eE4Pl5p+gPfWL/1f98pOv676aH5qZ2Yc1zf2LC3om\nf3NOz6r9HZ7Na3JnCkI948ay4vFCTXP7H1eFQq1WdB/Xf67+yr+kfn3lbfV/Z1tjNTupfntuWf1z\n/Ye67kEkZs5zqxo7b9zRXD470HHsCV3fN0+IcfP/2OFaPnYtFxiVOAgN2mgigEznIDPpAiwVEFlH\nPgL0Tiog2IO+jlsDWXHNh1lL358w9lsM6QEMR9fEcCZlZGYJqEvKGhWABkVoVbm7W4i+Q0Id9wGu\nHGmi+JaDqBWB+rhJvfOEuBSgUZO4g0sbrZEu2l0d1ouBrrFe1c8chDd2jRfi5AykMB+DwuMs1YAN\nkYLkGnHUQM9GoO2B2z9FbgNFXThsImcK1qfEb9xAklxxsYb2TTEENae/ismjaZj1YFpW6loHFp4Q\nU8bd767dlaPPImzbxqJ+2ljXV6OGfwj7KsrQ6aDOPESTYfGk1knX4rn7oWJG757Ybc3nxDKLYDL1\nGJtzxMvFVX2/u6+5dPtjzTX7382SRmDzsIt3HqANgctHwdw9hz7T/TsukAJrJHIWAixgmEsVRHEG\naAY5GjiesodpCtlv1dUf2XHd1+6tiQ3QUUtAyZsrMEyGOua9G4ob7vwYraqPqrhm9pkfi4nGfAVn\nxcu/1j3vHiiuLODq4X1bZcw+YB/JEmYXzinutlvqo2z4GcvoMK0Pk7lAj4LT2CzVs5hL2IPAeg1x\n2qqAVudoMMTuhNgFaWWMt2EfdGGfBrBfO7DjBrCZYlDvsKG50oB5M2GsprBkqzhVVmA977M210J0\nTtCVcM2Uytj7A2cfd32aaW1uw+brFf76gB7UgZ7bpAHz09nCHKBdUb+Mq+w50ZgoYKoM0JuK0Y7I\niFlt9LKGsNda6K0MYygsuevloccFQ8aPm/tmz8xqcWFIklkFhDzzGMVcG8AGDDKf02ou63KYVmM/\nFC7j2jnVve/sivU5HTGm13CqqnT4HnHTNFjv9zR2t/f0bpNwjXNzmmdHLundaMyzGXyM9uPTuqc5\nXI9uf6i9wBCH1uyYridBD6MKYzkz/azUYRHRF/UFmHJ03v4OzJDQddXYxxK+E9adjGfQx8Vp+bjW\n+pVl/f6AZ5eyT6w0XbNMz7KAvRpHrjcFs9Occa/rqofuzIUzWldzcfMeYx8dkOGu9laLy8ThY3qH\nunWZvdK24uWRVcWG1nE9v1u31a/9XRjlpxXv1ng37Q8Ut5PJ4fetZmYh7nuRM+TRR8lxUpvC3pgR\nnwuYMQn6JlOYVhGst4DYMGbfEMI2zNAKShL0lGBOus6pmVkU5ZbHTYP4ZtWqzxv2Fu4oRsAbcW0N\n9H7GOIk5w2aKXmmC9ksMi2oUs8Hi8yHP2nhHdedCj585OmgQZyxibKXsHUbo5cUu3DZjbwLraOI6\nl2hFxegkBTlxhi1JzNwbTtwljioF14rBedYfcRB7YMT5Cn27KuzdlOOmsJ19bFRxYPu3WsmUKVvZ\nyla2spWtbGUrW9nKVrayla1sZXsM7bEyZeo43dQbuowjc0IwFp8T8vpEqox9jL/4Jsrk4Y4yYF3P\nrDfFtLn4uuoeW3x+UnW0XpmvHWp6b7yrrOh7B9JUiBxF8swcLISt0X3+TuacrPJSAzRoTjmtCyDk\nS6fkhrIwr+sJUVy/sCPkvkClfq6mLO27u0LIHTHYIRv+8VVlsRfmhADNL6g/xtSXRqClOyAHm1vK\nfhvslgXqRM+8pnrJzkrdbl9VBniCZ/t0nkws6EvFnUH4ez7G196zfThWXXugWtJ6ruzfuWfF6tlc\n1z3OrSjD7Nk+z1Y2MmVFB51Hczqo8Yy3QSAjU6a9oPbWHRkOcBOa23P3D+oHZ44M46hC3WMCbD3D\nPSivKxM/IoMcuEjDgLpHdEaqmWePdV09mCsB9ckhCPcITZYE3YwQxfAAV5Q+rCavay/IZFfRfKg5\nQt7Teadka+tdlMrn3BWFTDmaQQXuUE2YJwewGOZxZijopxxV/2SG9gBMGw8IUa7r22tozC2Euo+i\nqjk0HeDe0qRmmOQv0heWoLfkLlMBmX6m+kNHm/0uLAOQ2YA68rh1+HzxGzf1DF9ZEMPiOpn9cye/\nZmZmi3+u+f6TTMjr7zl7inrmZk/zttvXGE6q0pB6xn5gZmbpstzhZs+IWbdxR2N8ayjmSBXmyw9a\nYuZ00m+amdnxthDgJ2EdTb8rjYP759Fk6bocvVCxP1/V94tn9fkf5GLUnf+JGDbnl9Xnt1b0bHYy\nxbsVULXJe5obXz8hTavR6yDRfy8mTHhUz/rma7qfZz9R/Fk+hXNLT+h8cETnX6nq/n4vVD++NSd0\n6NMfaaycfV6oU/Zznef478n17sYDoYGrK4pfjbGYM1f2NfaPnNF1H6vquVwXwdAu/IU+v/+mxuzB\n3+s5/l7nq2Zm9vbej8zM7KVvC53arOt8h21zzL0pWmOESRs6i2FOYzICyWkMmEOQCqfoLzVhNyA5\nYxE1xyEaDF3U+wNiRJ1YMk1dpyPheLBRYPAESWRd6pRrVdwRqD+OQc9noOBhVd8Z4JjSzBVXxwla\nBiCq1gNVBjFrgAalQ9Cupq6tDeo/blKjDswTNtU3gx5rNeuBu6VlaF/VqCOvZ7pu5DSswEEmduZL\nxV0kOPLWyUAAACAASURBVD7xIGARHPa87lythoPDGJ2LPnoaNdgGEdpUOah8DnrmThEN1+U4ZItZ\nDxroXbSPCkktDtA3YT1onoM5BJNnc0fuJp9eVmxJnAUAgyaC5VpZ1Bwccr1b9xSDtre19ve4nzPz\n6AzBbKyj0ZKx9sfsIYa3xZqd/Au9i7VnnrQc9sL9y5pczgpYXdEcjjq6/hSXwR4slXobRzgfZ/Ow\nQmCHZDCrDtgLBVxXu6KYdICLzK1b6/r85r5N3BEETabIWaO4Rg52Ne+jtub9QkvPegZDeSHRvd64\nK+3BBxtiHh9gq1dHA6R1Vize1qIzVdAeBFVfwDGrsTTHNWuQbNquPUoLu7rnTkd95izQUa7rrqKp\nEqB10oFiccD9PGT1sieqtEGimct9joe0jIW+fuBMFhzAVgp0HtdYTHBwjDNdV4b2V5VANxvpmVU6\nxCtouwmOWz32v1mHMY7WjutYtYgZU/ZkFjtrjz1FS3NtCmJcwe6pAiLtWpGub/HQbYU42kbPJHR2\nMsi2O1tW2bMVBx6jdP8dmEgTNiGV3J1odP6kAT3ZzIIgtIy9IUZINoVVVydo1ab0L/omCTqEWXx4\nnbsAVlAjEpu0zzy77hoq6HYcPSvWLSQAO0D3KJjQV86ACHVPvh8OYZTM864xwCXu8o7iQfUDXFLn\n0PVAQ9DQw3AGOoQLm6GLubOFricsqGoLRh/MkxZuqAVMuRk6mxnvUEkdrTEO3GTf3kXjpOO6PR1d\nN8QXa8EYqaXMAfTaYpwOqzimVTPWVnf0qsBeIE7G7LdX5qhGgPl4gAtVAmN/BaZLo+YxCU1EdD1P\nntEe78ic9lQ3bktfMGStXz0pBmWOPtH2B4ohlTqbhUO2Yup6R3reKXPD3VAT2Bgzl3jzd16qNjLY\nvhNkn2KYQjXf50MoqvnnvEKA2DHiPcDMbJI3rBYPLENzyoYwRNAFCli7R/6+zLvHwDzuoIcDpaVh\nVB/gZlyYxzXYo66HQ3yroc1VcE0zNMIq6B3lsPTHfN4dserOynL9M6oifG+UJM6Y0Ziqkxco2FsF\noT6XDZjf6AXN0IIJqSaJiOfRQx1R9o18LYatnKPj47pRzhoewUpy9+h/q5VMmbKVrWxlK1vZyla2\nspWtbGUrW9nKVrbH0B6v+9K2GB7vvfO+mZl1e8pqzpPNDFGb99ou1z/Z3wEhgcYRkcFeOb+m759U\nFra7oezl4D7OPehgVFHDX24rC2pke6cjnX8Ptf75qlCjUajvNXBnSqm7PtgU4nGnqutdROumwfFH\nOA1lPWXq+jeVrR2uiLVwQNry2PNitJxDi6aNOvTV925yXmqn93S+qK3s+xdeVjb4xT8QEl2foO+B\nxswQbYNsMrHuvv62gH5Om2udXyKbCarUQSPmI2osT8wrY9zdxq3pQGjGtWv6/69/LLbRjNTuUkt9\nFnMPIzQCkCCwEM2Ew7YWyN0ubKV4mxrUp8mMj/Ggp/7aKuqDHNXyAORxhlZLLdZ9DNBKqVHzb2TK\n53GA6MLiqtU/7/S1D7oU11HFB1kNcSeK0ZcYt0hdw0wK6J8CRf8mddc5mghj6rmHnC8ka1v4HKC2\nthtpDHVmIKWgYjWUxgNS5hMQhjpZ6jHoW1DTfQe71JXDXAoCIRFj3KfqhR9X5ylwMWkGut60yRgn\nm1ylTt1F9YdkkROYQBnMqiG1wwWIdrvqqBcuIzC03BXgMO3M7AkzM9uruIK/5v3em+qralMo9Jea\nv29mZh8/JTegxn3YXuugGxO0pfb/yszMDpblqhRfUrzZ2dDNPfhYLk/jVC5KtS/ra9P3dPxX7W/N\nzOynkRgdT+wJHXs/J6P/MkjidzVHtpflhvTJPm5xP5NWytdgSVW+JiZPb17HuTwRU29UqI55uqE5\ncG1O8XQJNOWDtzR3XloQ8+dmV1o5RSDmzY9OftvMzL5xX/1xb17XUbwJcojDzdbr62ZmdnaX/n1S\nzJrrJxWXwnfULxt/q+t9+U/lvvTxHcWpGxtC6/9oTXHyrVjMotNrut+Dmhg6+32tA+ERoYf30fa6\nAeuq/juKc1ff/wez//X/sJutN+xR2gzmSoU43ge5yEBce7H+v9PS2Nt3ugP9WZ8yJ0Fixrg3IZVh\nPWw6OhEoVFf/D3HMeaihgN5ABa2NDHaYhYXFIej7kPnbBL0eO/qCRhOaVl7Tn8Ugn7heJLB6Rkyj\nFs5PM0fiGjpelbh3APNlzt0aXMuFeu28g3MK95jRJzN0QXK0tmJQpBGszhpxMM4UN6KJ1tgpdeJt\n169wBggOWVV+d22rhwXlxKcEt7khcLcjrhGMoGToehmPtsWprmputQnfIXuDMdo5i6u6vt07mmu7\nWzBUYHPML+i5tdEBqXVe1L9xnUvGYoeMnEHUg0EEW6FJgft8A20gnts0d60eUMOqr0ugdcFnKH7r\n2KrdWxebZKerz595XiyShaeEEN/7QHPtwWXdRx2XpnYT1gGsshZ6Gz0YmtsbYhPmDxRj50GMl47p\n5/oNIcrDdbHlVi48ZZUFdOZi3Wt3W898664+U1/Rfu3Ck9LOqrY0lucZe/sw0PoDnP9gdMyticV0\nZE7Hnzui+N3EkWyIC1FzSX+voUWzjlPkbe6lWXeewuFa3ef/Ac/QHcpy5siAMdnCpWSssT8He6CA\njRYxd0PXhwOJLga+d4G1i15I7hoODZ71UJ/vM0ZiF39BZ6M9zx5l5Dpz7D1g8c5g/RYwdfz7kI8t\nZE9SzZ0ep+dQhZFSdcZgjb0A7NoGLL/IScW4rhQt10thjY9hQRAHZyM0dzqwF2AUGSyvIQ5hNqf+\nr8KWG6BpMWPP0eL5DF0rrPeZGMywb9Z2cZiO711gg8wRs9CizHgOHgOt8Rmr4Le1xWWcBVf07Ld5\nZ9m7o73IkQti159AF3LQ171uwn7f2kMHCY2wWt21DtHgu6sxvFnRz8UnNa+Xjih+7e+J8dGs6t7O\nvag1t4Gr09an0sby9eDcBcWHGKbmwhFdd5P4u/6JPh9AlSxgeVaIFwd7uEfhsLZ0Vu9Wkx39fYF9\nf9SGOX1fa2OKq1sdTZtJBjPd1zWeFcQ+S5nTe3d1fzmM0aIC47ztY03H7aLHOWIsPXFBMaZx7DjH\n033s4D4a4VJY4JTTWtLxu+yzIxhLR4lpRaCx9xGxaQIz8rCt6m53sDbc5WkKUypiXa3BRku53xmu\ntDOcG11zM4bBGKKPmuMgnDMn3PEsxIEy9bltZlaZ2iSMrQETJmc/5Ey9HL0bfzZBlXnL/Exx6rIZ\n+yvYOLWpxtQI5ttDwVG09cIK78lcS8y9VnH6K5iP45rvAYh/TOMMxo5r0vj0rqPbNGX/GMLOz9nr\nTKieqLBfC2AEhrCxCk5QsE8cPRSV0vkT3rcnNdcP1e8h9N+UtZzbs7wOY2b6mxl3JVOmbGUrW9nK\nVrayla1sZStb2cpWtrKV7TG0x6sp01Tmau3J583MjCSk1cgCAmzaNibuQVcZr50ttAycfUFR1+V3\n39Pnfk0NP+jWaWqNG4HQrDCm4HxOGbYOKFe2oJ+rp6gdQ80/INO3O1U2Nd1SFvvyLbFFJttCfG5u\nqTZ6/UN9PoExs3tP2drFOWW7T3bkIlIF5QvIrI2hGcyTFh7DsqDEzdpoyzRPCJVypHYexOE+qNjd\nG7qe3X3VYC+0mzaiVn9xCSoD6MuYbOH2XWXob0+FnF39SMdofFkshBzNk2MXhWJXlmEX4Sk/38ap\nhDroW9eVwe9TixqSjYw7uAgdss3hnlE8ZMKAtE5A9HI9swpI7tSdTFL93QWym9TCB2Rr3SFrBGoz\nBYGOyTg3SXjvo9xdj/gD9csRjgVVsspTdCGm8zir7KKZ4Or0aACEZLInMFaSUP1T7FBnCfJQIXM+\nDpShn8IsqVJXjoSEVRtk2kPqHkEqwpRMOtoCRn1ntYtbC7B9jZrWEb8nOJol1LvnoFuDrp5Dk/r9\nlJrWCmjSGCQnQXsoztw1C+QBlkhdP2zCc+yOhTgsOGJAjW9WOTziEH4bp4KPpaVy/iMxQ06c0L1c\nW/1DMzO7/Gsxz74Yg2LFQql+AIJ4pPiufm6j97Cha+rEQpXXVv/IzMyGf/Bn+v+u4s0fzuk4f3tC\n87P6mlCw7Ptiqrx5SfOwc1zz/sn/JCaMfUt9eeeevv8RzLvXvwWz7u/0vTv70nSJ/1HxZQP3tq+v\ni/X1poBm+8ZM6M+PGatfPxDD5jZaWjtf0bP/0p5QszvXpBmzc1qMn08rOv77J8R+i/d0fffrmvMv\n3ZVDzJVXFCP+4wMxXH7+Ak4Od/Vwb/wNzL1vaExeuCftmuqzcrtK36af5xRbHqB/dOxXT5mZWfjH\nem6T+4xhHM1qs382M7PLp3Q9w//8dd24/V92mOYOOpO25lQPNCyoOVqFExsBtxLr/0McfczRKXSq\nQhwq+gBAkMZsyt/rsNUItTZDByAs9DyGY1BDkOX0YGoMf0u5pkHqcQ9mHYhgDebJzB1g3PaCeG6h\nazmBYsHapAssoTZ+iu5ZEx2MMUicOxzMOG5EHA4mzHtq+MegUymOLBk6DFWXDiNO9NGmCQ6IT2hI\npW1n+LHW1nARAZ1uwQDMYRoGoe7bNQuqMPiMNX2Kc0LUgElkj8aCqFUUj/oVjYXNtzXHp2h2jZkT\nD3ApjGBznVzV3GvC8Jv41gq9j2FXe4Y772vOnj4nFl3jGA5At7WXKGA0ViqfR3oHrPWNpmJKdYzu\nBc+h0foM8YwqsQ32YPsi4nXihGLPeKrr2NjUcStody0eUQyqoCfQiXSezoL+voib1AHOFXNHtQc5\n/7L0qYZo9+zCfnHbxZOnlmw4U1zcuSzXuynaKsfOK05WcFXyNfXqZVgAofq4mvjeAmcS7nkF3Y4j\nZ3WNIxDdq++JrVPgElKHMRGwYbz9gRiGwVSDtHrmpD1KC2N34YBFBoutDeOtcHYwex6A3oduJCMc\nrao80xx3jmrTNytoG7IXYdtrbRgfM9i0rifhJ4hjZ9vqvFnv83unJnuBfdjDfrox++cW150lup8x\nDJ5shi4gsaQA0Z62cH6cuHsKsQJdqYy1P+G+C/YuU5g2ESzeEYz3SssFTmAtsDcomENtGEZ2gMPO\nfI/rgZUGa7nb+bzTW1j5Fw4z7dSGaE3UDmBwNfa4TrQiqu7Oh+YXz2GG0+Rhmu9jQnR0DnZghXU0\n1k8c0zvJmHebW+y3Z+j0VGewENDdWFrSHBqxH+yzVqU9vQsdbzyt456Ubt0nH/7czMw2N3Wcp17V\nmj/oat4/gOl+dFV7iZB95I1rmnurFTFK6otiuxpxMOhpzl06p7V/AFvAdnXcRkNr+ukjig9v3RBr\ndgI7IoMNvHFPentzbV8P9OweoBMVwp7KIxy3VrXJcZbqhKqGGXG2gsZMAmNwYV5j/9YVHS9hjW0s\nKVYkjL19qhe8mmGMxmbMutZDJ8RgaTXYa+XMkYyxEbB+ptnh2VT6Aqw5t8XlfSRhvz4OYZa7+NrU\nXWHdMQ1tmTHvFexNEt5vcl6iZ4W7LXFa17cLP2ORVbLEJtHMpm6Zm+kzMXuFAKZISPxKB1wrL1kR\nTLcU5kgNrb6Utdz1htwCOEFncowA3Ix4lvMuUueaM+KXM/My10V15yh/jw6cPcza2ES3kzBZpRpk\nhA5RhHvmQ308ZwXjANuANTWruw4eDGgqZ0L6OuZddIZ21hRGaM47UQbLt0ksGP8W9m7JlClb2cpW\ntrKVrWxlK1vZyla2spWtbGV7DO2xMmUK0JcsFXqTknXd6MGUAfTLQe2ay8o8nXl2zczMVpaV9Wy2\n0ZA50HFG/GxQW7xIrfH9ruoi799WNnjrHXzXKX6tLyobffS43EFOn0NrAiTDr2/phOoyXzsnxDag\nfu/eHSFBly/LiSHlPk6c1+fOUs+9uKQseW9XGfqQLO/4jhCcLpm85rL65+wRITmd47qe5pIQpnd+\nJkT73gTXElyeWk3Vla6eVda8VVmy0Z6OvdPVvd6+Kp2Hoq/fZzNl/06v6Tvnn9PP48dBs2+KZTDt\n6qHU2l5TSeb9gWplr19XBjwb4MaBOvwRnBXS/PBog5lZb0l9eKynex8sK1Of4wpkZLiHoBgZWc0W\nmXZnX03JwlbQLumDGjXJGFdRLe8jJtDgPhOytJ4tdieVHBQn/1fq9UWmZ2rUfcdkc4e4MnVGMFZy\nfW5KXXQlJNPNWJp2NOYauJSkMFSqA9xFuM5iwvFm7uQD2jNDK4aM/gSkPIBRk9SFhI7Jis+hbzTg\n+8MEZJr6+IjsMcYHVp3qvsYPa4JxYRqoXyoL6D9Rh9qAOeP12Y0+9ak1nbdHXXpjAGoaHB7h/hjk\n87VjXzIzs4Vz0jq5Emjsnv9ErkzXnlNfvnFTfdP++nNmZvZHT4jJ8eZP0XK6p/n53KrGwLsLYn6c\nOKoxPntLfXNhUyjMT58W2v2N25oLm2+K8XHyiOLQhYHi1DWcsZbmNbfe7OkZnH5bceloQ/fx5t/9\nsZmZpSYmy+t31ce3l9QnR28pfrXnhbp/KVR82O8LnXrtEnNtWU4Mt+eFdn35gcb+P/9Kc/M04f/G\n83KZOh9pbn10E+T2T6WRcww3pcbvyO3o4rvqx/fm9b1X7up8/6X7upmZvfgXvzQzszOh+ner9ydm\nZvbf3pZWT2NNCMZPP9VzGv2u+rUG++GZUGPom401MzMLLko7JmmKjfD9exqjc38JpvCf7FCtgIWR\n74P0gLS6zlUIujliDoageyHIaQYCFDs7DLeOAiZPDoIdQ0fJqQtPqSUO6W/MPawNe2TYS/i9sHTo\nziAwxRCsKaagv86YAe2uodk0Jr64S4cDfO2BkMBpxRmSXqsPowQdBgPtqTqzhXuru+YL53EnlLSC\nvRInajZxmSM+hqBi2RQGHVpX0xY18LCHvCY/AbEbg/YnnCdHpyMmzkxg3MVoq4zHXrdNPXiNOINz\nwzh3BPJwrQlLdZvv37itdXLtWSHRaYct0xYx4JWXzcysxjNvsA4MYdBsfMpeY6g5VNmDZXFGzJU4\n1fOcbOu+LlxYMzOzektz8OZV7SUW0BY795T2JvV5zTmva98DlTQzy7pjy3BZCcauQ6LvD7iv0V3F\nrhZ7hKVFza3BVOvSrKn7qy3oeSFvZXd2ddxTK7j2sb7d+bX0qg42FZNaDcWcaqtpY9hVew/QAjyh\n/UltVXFx44rm/wg3pq0DxcP5RcWzEy9qv2O5tKx29vT/uRM6R7Ou+Du4Lx2d29fElDl+SQzs+Y4+\nd/s97U167IU687qHVmXRHqVN0fkIYJYkU9dYYM0kHszQ53Dy2rgFexfGXZHBCISyEqInwtJqFVBw\nZ19Fri0Dg2UKpjpjLs7Qnasydyqc+AC2WY+9TowuXuRzjUU9m2MusicZwjRvP9Tn0+8HibPxNNYb\nU/Qv0Lsz9LCK1udZxBW0tDwODnCk7BB/B86gSfh+zTXA9Pkhc6UGm6vogbjjxFnBcWYE87La5/M4\nxJmZ5f3Qqvx/MK/7acC29pgbcPwpscZnVmP2m7Ug/mXrOLN7pmNt3kNzhfhRPwLzI9M5H9zT2F04\nobFcWdI1j/dZB4j7sWuDoXUVautvU9zc2sc11icf4UCFrlnEPrLX055kAlr/9KrmWEYciYmj88Tp\n7V3eqXg2R46jRbm2ZmZmg3Uxbm7f1ZxaeUJ7nzqs4Tp9PUOjqjvUHN+9ojm8/LTOP2Q/uHdH8fbs\nM2LqrI51nnm0cQp0A2ex65XovroP0BproKUCe2qWosGmbrK4g+ZkX/e3tS+dvrSL9s0aWjPuMLaL\nfpW75yFeFjJ3AjRppjDw6+Gjuf3lrJcBLMEpsdIF6HyqTZ3dQTyf4HqXcH/VyDV5iD0BzmMT/X8C\nK2XAfUUwMaPcmfRmeTy2eBrZtIbeG1UAIzRdK/RpBos0JP4NcGr08oI6e4mCd4+q63rinjSC2ffQ\nvSjUtQa8rzsLdwaTMGWsxziRhRZ+7qdbTCW8ywxxfK3hEDbOYewwfRvc75DrmrijF0ybCBbSBMaN\nETcztHMazoZCq2bmjpXsAer0RwFr150yjTESNX/zu03JlClb2cpWtrKVrWxlK1vZyla2spWtbGV7\nDO2xMmWQXLGD28qyzlM3uYT+RnMF1wrQtOppZZc7IA4H2yAsAyEwzQTF7GUh0P0DZWVv3VQW9ebH\n0kRow0Jor4BkkIWNyLreRJti/SosgBaoIerNwXNo1FC3t3NPdZ2TA2X8KtTorj4hJGjlPPXaZM33\nDpTebjVxPEDRfPmUmDSnyV5feMb1V0A6DnSe0SZsDNgPOSyFYU+/Ly7qutfQXhhMpg/dG9qRrm15\nRWhJxu9phHvECaHuMcja+i1lkreuKZO/P5DOBWCyFbgxLR5F2wXl/9Y8yN5zOt7i3JqZmY1Bbg/b\nDvap9zWYKDA2ajBk8iruUan6qkE2ddgCtR6i3I1+RF4VkhePcBFZ1HFjMuJJ4Ug0yHMH7QXQ7DqZ\n+gwXkIhsaYwbRvcg5P7J0vJM5kLORzZ55GAT9dmTDtnUia6zmuv4oxFZYpCSiEx/AQJcgAzsUw89\nj4ZPas60od6yrox4PAi5TpwGQK8yPpdTzx7BkAnQnKjnumBKjx8yderQ2Q5wcpijZrqPq0uH7PDM\nXWMeynOoPxyQqIAYTJpo6ExA9g/RXtq8ZGZmzT4IbKL5dvuB0JgLL4jhcekt9G5eVB//089UJ/33\nL6+ZmdnvJ0KFiuO6yR+dFvPl9FjozT/0hKLU7mguHP2mUKHBvu79Sk+MvPP/k+LRla5QpPX+N83M\n7F74Hd3r10EgxkLPh8StD7qvmJnZk3+uZ37hu9JruPas5u6Vd141M7OX/0To+71/+IaZmU3/4Mdm\nZjb+meq8T7yNev6zIMBvai6+96SO8+ppnffgrvpt1tScPvm2+u10RwyXKz//tZmZ3eyDUt1U/31a\nVXz68qpQ+3RT/XX+LzSWzu5qDP7TzzW3vsSc/cpYcfnaUT2nLx7TGL37kRgz7W+p7v2/wiB6+cGH\n6ifm1soZxfvfob57+4Z+P2xLQZMy9EGqkE+yh+Q9/X0OtshtWAIGOllxVw80JQL+3kIPqevmAPyM\nKqCaBMsKyGuELsqME6dN4vgktmFDf2vCKAtBxgrQpBS3NkdM3XUiGzmCR1yMNI9moMQJ8yuhHjsv\ncMdDc6QB4jcEbW42dL4+umtNnFmiOo4FfL4wXU8xwsmFexqArgVt0DPinWuhpKBis4aj/miBwagr\nQKVG1MS3cVgJXfsGvZ4A1sGU4yRozMx4Jkn/0TRlXJMmxw0lJ+7VwK/6jJEm+iHLJ4Vs9w70+S5x\nsDPDzW6oGJJ0NfZWzxOjYHzu3FUsacGK7ZzR3qKPc8SDG2K/xuxRWqfFbNnZUb9u446UTD+7zzAo\nLMicyQiL975iWwYjMlnS9Swt6vonsJU3rq6bmdk+DpTHzioW7d1kr3Ud7Ysva69SxaVrd1N7mgB9\nrtWnhHQHnY7VcVrJYUaEII85a+fmJ5rns5r6ZG1NrKSV89o71NCU2Z8o7g3v6doOGrrW2VDP6PZV\n9WWKxkDnuPo6G2jtG+zgxtfR2Gwsgn4Tnw7bpuhO1NCOmrC2JWjczEa+luu8s47GZMxYHqZ61hVn\nguA4M4UNG4AMJzBQpq6x6GwxWKxR4Ki4zj9kj1RhUd2POY/HBMZmDSTZtRkqrPlpD1YUa3oTpk4K\ntFzt6v7YrloF96fJHPHUNW/Q8JnB7qs2dd5Rn7nEniCHATTkeDFOYjHOMNOB6wOCMMM+Sdr0NxpB\nUVff68JSq6NhE8PSCIrPXnOa9YYNcU+tFugQ9rTXqLl4oz+nibtLwcpr2KHbfk/7VnfVMR/7hQ4y\ngjES43baQpNxuqdr7xzTu848a+WILb+7zK2uaL/d31WcznnmBQIa0RBmNfu7FFfLqKbfTxwV+6yN\ne9rVd8Wq3XmgE6Wh5nHYRdcJPY0ltF1G7oRLfJoV7jgDeyz7vHPOdAuuSqbrraKPefy89jjr7+v8\n27DYnNlTwUXw9rbefVYgaC7M6TpmOHztM7ePNXU/R07p/m9rC2h12A1N3vFS1tnRDgsTWo7HnhYb\nb7CrOXswvEc/or2ILtwUdlna0n3n7Amm9UdjZvr+OseFL+L3MXPfNeS8miLHFTaDGZUwGfusiwls\njxwGaYabU8g6UOf9Jh1qXFaqn13vZFi1mplVnV3DdKjCADT2TXnqlSN0PmMucX0bHnVauBsRTGFY\nuk0YOAFOtEWVNRydpBlxzR18m7CHBuzXajiGVZ31iaNUPqUPY13/lOupUp3gLk8T2MRN2LYj9IwS\n9kRVvjfD4dJ/1ljbnFw0xYGs4RpbsHqN6055ySumMIZg6hTuSvdvtJIpU7ayla1sZStb2cpWtrKV\nrWxlK1vZyvYY2mNlyjhq3lwUwnzqRSEk+6ioZyNl9Sp4rW9cV9by9lj6JhtXlV2dgSrGoHczamoH\nYx1nZVV1lvFxoUJH1oTwnmtRg7qj7+3CuKmhITDtTzi//n9vV2jR8J+EFuV92BNzuLSc03FffV0a\nFDFOODsf6XrfuyOkZw/tCc/Lr9wTItSlBna6L9RpRrbY6sq87cNW6aNpEFaVzV09KcR+aVVZ9TrZ\n8S7Z5U+uXbVsTxnwxVfVF6fOClWf/5Iyzr2BPhuRLfzoXelsDGCktEEMV44pE92eF7owtygEr1YT\nuj2/7O48aAd4LesDMVQOJr8lTfiv2oz6wsJ0/b0+7Kmz1CWiJVNp6lkXZIAbmdKqsxqZ4p4y6TMc\nGWKQhJjM8WAeuHyCl32DZw86MyajPEUXJOuSrSVTnhY6zwJaKAP6MUbZ3x1k+qiqR/RDpYW2DBI5\nDapfB+6WFOE2BeIN0GAxzyNr4n410vf6bRASt1nBYSL3+kh0nKqgRZMD/Z5QvBqiUJ65ZoRr0NQc\nOeH/mdd7w9BBW+AAF5Z4rL9PQWYsZi675kXL7a2EHOUjV4dHXd9rsg/R9n5X6PJuX+48HdDxFxpC\nnPzbOgAAIABJREFUa0c1/f2dCuynNY3Vrz2Q69BPbuoZRCP18daavl/ra24c60iT5umfSN/h7h9p\nbOx9T/Pt7FO6161v65onn+j4r22LyfIOOk7xIm49uVDmF1r6fjKHy89Mc/Dqz6TJkj7zVTMzuxzB\nFvuqWGvrXWnnrD6rMb10TYyXzry+94/NNTMz+8Z3xNRZ/IpQqY1Ac/XjDWnt/MFZuUD98xBE+oL0\nMd5aFqNweCDdi+yi4tYnU6Fz/74q+OngVxoTty8pLj/x8x+bmdn2vuJ5h5rdj5/FMWhDc+IrV/T7\nD2+A/P6Hr5uZ2R+nf21mZq/Hf2FmZtHz+lzvTcWa9QvUpS/rPr54Xc/9/7TDtSYq+47oeP38GAeI\nKch2AdMxBJFxXZJJFbbaEIeyWPczAwlqgXFk7gBHLXNGnXfAXGXq2RiHjXCIjlSzapSO24x5krVw\nfAKtiWHb5GgwZX3QJOLOGCeEMPy8JssMVLqCm1Mf9L2B28PA0SzWWnMXHtdmgRVQmTk6Bdo9ccYO\ncwYHlhg9jQZMxR511E2vBwc1d4eWKmyBA6DPxB1ZnEXgTjFo3bT5XAi7IOtz3x3WG4NhGD0aUyau\nUmee61lXiXvRUcWCGN24Gc6RAXE/rGpuDO/LmaybaS+x/0D9u3xCx1k6jetSoDm/z7Izzxq/gK7d\nNIPdMdQHVld1njrXs4sDZdCFWejwpJmlUWRHYRVPWTACkOAjHX1/fk4IdR7pPq5cEVtt82NcYnAH\nXJ7Tz3s4TM6dV+w6eUp7qRwWA8uhQVC1eTQlpqPM9nv6bgqTo0sfNZcV+xNcNRZw+lu9JIavO408\nuC+mYnoL101nX+II2R8oPi6fUNw5d0lxa2UFZh6MupgxehbnmAwWWO/+4Z3+zMwi1taYDWyYaCz2\ncYRpgE7nMH9SmDQt2AYzJnnmekfsBQpQ9gJWxXgE+2vqDDt3O4GdNtQYSdCHcNem0R5zCiTXGXkz\n1mbXWxqyb67AZghhcid1WLrseQqfg3ViBpoSB7CxGvv6fxfEusO+uyBGzLqwbec0Bvf7DBauq87n\nAnT+si4xBIb4kL0AhnO2h3ZEjX1+xt4tQZ/FYCrlDX0/HX6258wHI2sgMROxx5rWiescb4KWhbF/\nrxvrwyOEkn0YbK4/8dTTckLM0RLc30fXbU5jtLak+XoT1mgLtvvpJ/ROdBdtqxETbfG4mC57+9qb\n7N5QXFpc03GaSxrbIX0VocuzWNP/NzLpLj34VN+bdHVdFRy2GuhgbLkaC+tCHf2mGfvPFBZoGujZ\nVRhTKXpGKRqP/QO988x39EyOP6M4EsPgGGzp/3PsidqLMIQ+1Z5ntKOfa+e15p9a0/c/fEvOmPk9\n7c2Ondb7Sd5CM8Uvf5H9a1s/t27D/IOJP39CDMRTsOvub4uxk415F2QsTnf1HpPHaG7hUpqEzHkv\nIThkC9COSdEgc6eiGvF6BGO9ApskZM5FMF+nuOo20aRxZ5/EzfgmHgNgjTXYb7ssSvzZuhHWC4tm\n+UP2bTpDQyb1dwLY87Bam5CMRpwzQDMmqOGGxtiLubchbC53lRsHME1c7xKH2QjtmhHuZ5BujVc8\nJy5bDiOygjub6/pUWZOyCftx9ERr6HEm7BlyXAATxmrSgwnEcZzyXDTZz41xzUx8/6jPDYjjNfYs\nBfvMCnuPMW50Q5iLEcycf6uVTJmyla1sZStb2cpWtrKVrWxlK1vZyla2x9AeK1MmGinbuIdTzmU0\nHjZ2YYqAgNTRkHE9kgQEIkEjoEVN64iMVaetLPGTdSGsjeMgFgeggj1lvLobOv+RZ5R9PY9vub2I\ns8C2WAa71NjNPlBWeoaGS0qWc/GkrmNGjfQdlMVd72NrXUyZBmr1wbLYKgGZtYysdJV6wP2pIx66\n/yUU2+MFZalPLuh6+ql+N3zQz54SM6CyjDYPRWzNIy2j3M6OnVFm/sGG0KqtbepvQfyOHFc278SK\njh0eh4lBJj9aUt/cvap76t5XxvnqWGh68x2YJSQb62RJvfY1RJ/nsK1KtnJsZC1JMsb7ILS4RAwn\nGiMN0LXZomsBgC5VdH99anqrOA30yUsWaMzk1DXmpNhdF6IT4XpEP00XNDaSLl73bf19WKE/cd6a\nglBEMFUeetUvopYOmt5GrGVAxr0g2zupUOcIGrWPYnmHLHEvhWIDOleAcLv2QgwKVSOr28f2JMeB\nodEEqaD+OyyEBIRoK8w82xs7A0fXHZPlHoJyNgo0ajzjj/tSChTcntN5DtDraO7pfPECuhsIcoxr\nzOn4MzeR39bql4UuJSt6dqevi7EWf1nP4qc/+LKZmb3+LaFD9gNdY/GK5nMY4IbU+aKZmZ1Z0Lkv\nzH6qe6BmtPelPzUzs7c/+jszM/uLpjRXtiNpsTz1gVCWHx3V2OvNyzVoeVF9eeRvhe7cflrX+fFp\noemT939oZmbtRPP3uT3N3wXq0U8N0K+4IKbc3q90vmFb8fDHOMG8fE59+QII4M2OmEAL6AxtwHJ6\nelX3PWqIMXPsbRg8X/i++u3as2Zm1mn+k5mZPf/Oi+pH3Og+uKPjtSLFzcEdIc/bF3W9x5b1LN9a\nUzyffF/XffHfq1/feuvPzMxs8c81du4GivcfXRbD8JlT62Zm9s519Cz+UmNl/p9138GqrvvWaR3/\nsG0CElyAVCcj/d5CI2IP14AJbLNkCIKK80IGMl/DEWkSKgbEA5+rOBuEOD9E7i6g/wNAWQDinRFT\nctaJ2aiwoA4TZiA4F8MnG6AZFRDrI7S7DIeBEahwBPun7qZK1KAHU9d60fcazghxLQIYhM5aKNAK\nmXG+AkZhHyTPXSaKGNclUK4pogd1dDr6oPOtEfoRMHwKHF7CAnYSTLkAbZgMtKlT1+cOYAJFfacK\noouh3yyCXeDaBh3c7Pp1+umQrXtPY3trV8hto4nWGojvINf9BinsNWcbECe37oo1trX1gOtXPy6e\nXDMzszaOQd2+4uUQx6HRvvohhxkZoSEQVUEd53Ud6UT/v3dXscxdQ6Jm5eE9TEepVfn8EJ27eEvn\nmZzU+l+gw7K5odj54EOt5xHack8/qVi1dEbsk/FEmjOVQut/D1eY9av6/rQH82lBz3G4h45Kf2pD\n9nc1nLoiJkJSU18kR3TtB9hj5OgX7W1oH7VxXwyZXqZj1uuweM7zfTSa2j5PCz3D9fV13due4s/i\nce1hTj4j3YjL74sROIAlcNiWM6YzZyGg3xbM0G7hPiYz4iQMkhluJBEMmIA5VYNNXAxd5wkkF9ej\nCfpKCYh1WtXYbrOf3E9dr0P93J6D4ddTfwQVnDBh26YJrqNcd0G/Jm2YJVPXc4OFDFs5xodoBps4\nitBkgJWQ+N6r4Yx1WAD4nRRDXUfRwHkRTYn+0HX8dNwmrD1LcCxKNOaGuC3Vm67hgNYDrA3DzSpm\n7zYdsNdsd83bOAksYC8c4ggUwwoztDPGI/bpBZo1xLpZ5fAsiBRdtR6s+4snpWt3977+vof+0RoO\nridOa83v3VbfV1e01o1Zk+7cFNusStx/+gXpy21sK071iIsnK1obmzXtRXY3183MrAvDcY54tovG\nTAKboHNU5x931Qf76ORlMD/GzN1+DBusrrkXsT+tsZ8tWHgCGD0x53GtGUPPqAMTZpa63hHuqWgp\n3run95P+WHMzh1kZV3Tc5ildb6EtmA32YZ0Sb9Ntxd8B1Q5HnlTcGzAG715RvCtwmTq/pr1MdxeH\nsU2tU3Xi7/YIDUkYKzUcina6ik2Ge1T4aMRM68OiaLhNLAyYiEqDEH2lAJ0VQ/txOoMhW/Xf9RwL\nmDETKgQCrreBLuuE5xDy/SD8jLVRTSc2C+s2JY402MtDrLOCe+Mt2R+l1WETBcSVgmtN2cMPfV5y\nDSkaYU32RyPW9trImXG6pupQ9zBroP2EjlzCO0xGfApn+nuDNTOFxRS53RJxOiWu5BVnMhOHYfWn\n7HWyyeddNxNc16a56yV9/lnVY40NCNGfMayJz3HhrGF0jOZ/MxemZMqUrWxlK1vZyla2spWtbGUr\nW9nKVrayPYb2WJky3T1UkjeFLu15ZqpF3eQxaaUcQYm8Qa1aG02BagU5dLKEYzJUtSoe9BtC/Qtq\nRJcvCBFv9JVJu3v1upmZzVFLmlJrVtxX5qtArfkkSuXHTqheMfBMHpk4rxF+9423zMxstKEsuFey\nHuwqm3rxRSHOp8/JxaVFJs1V9A00DjKEbW4qC16vKSschLruEOSkOs/33U0Eps4B2eA9NGrq1rb9\nQGjB9V9KZ+LKLdWSLiy7NzxILNnAXZCwOi5M3W2h+itn1Ffbl3WcpWWxEo7hGNA6KXSmv6vz7T2g\n1rStDH3c8Dzr4Vqd9OMeTJkadccTMtwVMsdVkIDCmRqYPDn5qQYinOGS4dorIchxzPFnIMszqD6R\noz/UVUdNIYZ1srMV2E7dfY21hueR0VBogc4b19UFDWv0cVqgprMP8yRDPKFFFjakZtQW9Eznp7iA\nwJSxGhnzsfolGOKqVQXFAkVLHHlFCbwOOg/GZJ0ezBicExIYPhOQ2QyNngR0ybV5SCpbRP16itJ5\nE7uVabPNfev/Lerwu9S/10FIGiS1Z35Fg8NrytxfU98f7woN6dV0zZ/cV13wuRd1rHc+VF32iRdc\nT0eaL6239fcn/0B9dY95duWG4sXFm+qz04HmQL2hufG3f6Y68XM/V7zYbMhF5GSu+bp1+3UzM7uF\nO0TnjObayQ819+ptjZ1bt/9Q1/VNdChg8n38azFtoiNyQ/rTnwsde/tFoUBL6/r7iy9KW+v9d3Xe\n/AWh1y8/r069uqDzfuWWjv/r68520Fz4cht9CYFTdilVnfYPzyhO5c+IWfP6P6s/Rl/X/Targql+\n9T09w1NX0EHqv2ZmZuNCcfDPflfXmf9cY+HgyR/o//saUy+hS/UmyPfoF4rLTzzxNTMze/fvhZYd\n/arue/MfdX/L8z56D9dyRAHqXV1vdxEkdKzx0Zijbhx9pgKtnzDyMao5Muw6q0PHjUFgEpDfAdo0\nTVDNMWhWiiNF7i4f6L203OUjnFgxBrVN3F0OpCwElkqR/ieuTHGDsJm7b7hLhMZQxtoY49IQTVw3\nofbwnGZmkX+ftTJlbQpBSgsYfBH6Fo7e12qgUqDoCagYAOVD5HAICh310aIhPuauoYPDFmHEpnTR\nCMZegq5EQe28H3eG61SG7lsB8hrAOm3BXDxsyw+0cDR4lmcvrJmZWR23jyADYc31uS5xPSGOD3fc\nJkU3cPIFaUKcuiR2RjfTnNtnfezvqKM6K5oDSVvPeeu6xnoB0yVib3Ift6beXWkshAtaV089ffbh\nPSx2KnZ9Q3uOMbFkQPzv4AL46cdime3CBg6oo7/wBV3nwmnd9/anYsICPNtiR/e5/r5YLJOBYu+z\nz4otZ0dwQwRZj5fq1o7FtrkRaV4v1mFbwh6d9NzJS30XgpxOmC8G029hUfuwlRNi8czNKd4d3NE1\nfHBL8bc2p76crOuiuxv6/slXhYZPYY3dvwv7IHg0eLs5gtHD3mPE/G+ir9aLYdGO9SwDtgT5Adow\nDdZqtGFmsLycxVrt6zhVtF2maDukkdb2JmxeZ5wkjPl6ijsImg1VjjtkbzaGQVIkaLjgDpJwgSEs\niQJmT3UftlwH7a2c/S4MnwpiDzl6cdlQz7V/wBxEZ64eupMM8XACQwiG4gD2bbvFngG1xdmQ9YRY\n0oIVPR3gGuXaO8SiJuy8vA8zvgaCjVacmWJ2a/B5hmIAUyhDn7A2D/PpQOfrwt5rPsKepNrG7aYq\nRkiM22mwDoqO29kUZuP2fZhsY/3dUf/cnbNgSmehxvIowEX1mBg1eU/X+mBDe54ec6ZWdTaAxvge\n8WTM3qi5umZmZpWjmjM3Ptbe5N4nmt+t4+qrk8+KxVtrao3u39Pcyts67gpr5b0r2mPs7mkzMYQN\nUX+4wWMsoafmzmoR1Q31BAb3nD4/l+vvuw1nYaBvBLM7RgMnhL1WQRPxfldjYWVN/X8SRtKU/fAY\nRmPSQTvtNOw29DpjNIFC3skM5vl05NqS+vwAhlKIlePxZWmGHbbFE5iQLGhT9Kr6zKkkY5OBw9qE\ndbYGa2sEM9WJ5XVzd1bGD8dLYd4XvGP7eu0MXDOzIousqI2s4jpxrLk1n4/EPdd7rKK7OWWvkkZc\nC8zgjGcUxazh7G0y5umEZ+EczwE34VUNIZS2CY6MDbRYwsK1YqhCgO2VmevuwKBhrIS8I014Ty5y\n1+nzOOmWsrCUuaJwyn4NJuMMTUHfvsVo2YwRuQk8m8I7ToN94BR90Zzry4efsVr/R61kypStbGUr\nW9nKVrayla1sZStb2cpWtrI9hvZYmTJDal2TZaFQq+eV1UxJObVBq27eFjpUkK1cpi6zQDU+BWGw\nfTJgZAN39oSEdB8oE3byGSG/J+aELlVBBIZjIRsbZIk3B2gFkKU884Su88hxZaV39sVgGZGNLrjO\nvW0hNmvHcTPBIaKgDrLWUsYs26U+H9X+GhoEbjExgA3hTKCUOvPdDWXRx/d1/iZK2o0TykB26urH\nKx9J32Wwqe8N87GlOMA0jip72cI9YoFM9QO0SW68JbRpv6fvLp1UZvzePSFmHfRtSE7aUdTKh9Q+\n5gfqg6SqPnnyWVAtGDQHtx7N6WDMcRDItxTl68SV98mUU0ppSQ3tlr4X+FHXjDtFm64ucAXxzPuI\nZ0FZoSV40o+cCQJrqhoLnRuh9F8ja9psomuUeZ7z804M7mpUx8WkTweGTWp9D0C5yGwPcDiIQNN7\n+2KBRC2Nzfqca/OAKoK2x2g0VMnAzxod7hNkYqAxEw5AkHHqSj0rPdbcsDbINmjYCMSDpK8FZLsL\nCk1TssOtKjXTA523HYEK8jgGONNUmMszsvK5Oz2QBU8bh9eCWP5HoTrBNzXGFt4X8+OiiCz2q4Hu\n4YLp79EeCvwXdI4nPxUjbz+ThkzSE6L61U81J1aOq077e71/MDOzs9s68OoENtglodJFILTr40D1\n49/6pRzM8ppQpdtoIXR/R2PoNdyW3n1V17Ozobl39m313b3zQq++fEdz8I2vSQPhTEPMmLcLofB/\neV/Hj/+DnsXc30sT5qe/87aZmX3hn4Wq7+TfNjOz19tyKlg/KnT9J9vfMTOzNXQ6Zh2NiT/Z1c/Z\nUOf/G+rev31DY/vdTEyj+E90Xe++oX4agnwev/9NMzP7xerfmpnZU69J42b2n4VavXUGnZFYY+70\nR4rXG8d0nMG7aOpc0v394m2d/8JxMXneu6V4d9iWMJcmxIgEBKjARSl3xiWId93V+2Fn9NCPCqoE\nBddhYmxPYdQYyLQ7UmSw7OpGDCQ2BLATc+rgR5PC6rigBcSBoocOjjNSYGA46h0OQdoIRACvlrmD\nFMdxvQtnnExidzwApY7VN6l/3uHpVP+v4wY09Xgz01gOTXNgMNMzDEM0X7wE3pFa18/BZs41aGqg\nWiO2InWuJzOQ0bruM0fzy4mIY3QoJh3YTH3cTlwLjIcy6T/iFmdBcfb4RX1vbhmHsY81Z3box2PH\nNPfqsCUmnH8PZk9tnrX5rNgdBeyAB7eEUHdvaE72MsWApaNimkSuIfGRmKgtXFYWjgmpvnVNf5+g\nwXP6VX3vDO4hZmbT4cy6t7Renzwn5suRk9KI27mlvdTWXc2pSlMd+sTzYvEeOaHPFTA379zSXiLH\nJSVZ0XX0cX2aX1WsOvnK87ouNBbe/7XYdcdaZ+xoXX1aRTehXSPWs7jOGFv1ZZ27uqRjpp9orAUN\nxcEnnhbjrn289rlrWr+rPhnjsLgKw3o3wVnllPZjJ84qrm/dFNsp3Yfx11qyR2oBbAXiZYBGga/9\nnVDX3wtgT8EGa4Ik52ghhjlrKHM1ZuwUaKSEvr8FWG2Odd5+qvPWI1zgYK4M3Z0JRHvaYCyy5o8T\n+hnWXI6WQo5G4T66T5Hr8AEJ+1ydELfiAMQXFkNlrONHPF93VZ2ypwim7vii77fNrWFgEzNnH8pF\ncd0FDnJTdEaiXDFngmZNZYwmGGM1H6LNgxtqRuzMDd09M6sOqpahETMONbcL9PIi2IDZ0DV3cHqL\n3BHz8C1nbZg/wn5uX3v3g03Ne4+zMWOnmrCh5l2g2cEFFDZZ0uJZMSZGmzBdKr5m6et3PhXrN0AI\n5NiTmgvuerSOlmRzXu9C9WOaW82mnlGNvtzZVJyI25ozx9e09tZgN9zBpW1+WXF/6dSamZld/rn2\nPCP0flbXdJ4YtkNtQXOjgy5Hb1+MldG2ntGR03qfyNEP6vm6xX486+MmCEMy6mgPUEx9n4yWD7qk\nnYZYegnvVLc+0n3NqKpwRsksdb0lXUd/jFbPDtpfUDoT4np1zJjb1VwJWeuT1m9mQfzrVsDCCNCs\nyX0dhL0WsCcJmVR5Q9cx4f4rDXeAY6/Ge1Hu7zfsSSKvGCCYpOigVP6FO2EaRpYH04cOvK7rFqJz\nV+BCVndnLbS/KgjfPXR44px1mI6Zux05U8TjBOd1Zg6SWxYQ/1yPs8mYn01cOxYNrND3Qrybse+a\n8N7umlchTrs1nGSHzI06DGbXoq2zaalhITji3SYaPRQD1O8E9D46blWXmEGPz+NLhYodd6/LcP8b\n56WmTNnKVrayla1sZStb2cpWtrKVrWxlK9v/79pjZcqsLEmj5QsvvWxmZhXqDh9sK6s8v+jq6UKB\ntteVVXWv9fX35UCwQr33qFCqfX9T2dLFZR3/2CWyuTgHXV1XNnlyoIzb7atC+8YZWjGRsrVN/Mmv\nfSJk9uq7Qo1SfNUbK7q+o4tCWtoNnefYRSHBSUso3uBAqNVwT5m5D974pe5riCo8ycrC6wRj2CDQ\nCxLUm73esbYCQtPUdd59U1nrJBTSfr+v+19ZFPLUTCvWgSXUBHWq4pDS3eXc1/Wdg6G7+eiHo0yt\nJWXKj566YGZmPZg0fWrKP/5YqPwB6NOFi2IlpDU0C7j3/UIZ6MO2JgyWA1OGfQyCW3flbtwvFsim\nHqC8HaIPYSCsMWiSUa9YgHKl1BPH1CfXZtRfc18xaJEzi3ZwkpijhjRFK8UR5QztnibPrI/CN8CH\njci6RiDCM5DvHAaME21qQMKOogemBxWQER/M9PlOTwdOAv0cU3Mcko11BlEN16MeNbLtAdlvEO8a\nFKLUHReoQd2nLrJG/09ruv9q1wsr0dtAU2GPevUwBcnGKQEjCmvRDw9RQPoxP+D54NJU7bki029v\n1/9cDJDkg++ZmdkprvGn1zX/Lt3RmJt7VvHj4xty+bl/Xa5HG9/Qvf/hJ5q/7+4Kea2iJxEviUlS\ntPS5nZ9oTrR/IRem92Kh0S+8JsbOM3+FttOFL+men5R+w5m3+P0poTV//T2Qzom0qLa+KFT8Kdyc\nFtfUtx/c/pF+/45cpJp/LLTtqYY0Gr53U1ozxcvq09+b1/9X4hfMzGzyZXX603fEBHorUizorwg1\n++rN/8XMzLJAbks/fEHnb2yIkTPZVHye7CvejF7/hZmZbd8QAv67N4RKjZv63PQLQsvv/EQMmge7\nr+h72/p91pDL1col6s63NNduJIqnHdC07E+EaD89umRmZn+Z6/n+KNaY+mJXc/n/tsM15DSsgF2y\nD9LsbDtHklNQy24TdK4C4owLV+4BGwClAPWcgsQ0QZYHxKYAHacxTgc1YlKKY1mAm2Ac1C2oOAoN\nwgUrB7kwSyMYZCBcdeLjlHMk1GUDSlvA74OaPh+iFdPCRc4Kr5Xne7Azs6kzWNCkAd1yRNf11zLi\nWzSFXcphGzBkCpzDUoTSCtii6cw1wtDmcsAObRjv6xAmSs/ZAgTICfEzhoHouh0BWjt9UO8AdP+w\nrYJmQsYe5M4VkG1YDSfOiCnSrOk53PhUa24DLZ/2nDvD6Gcj0c8Bmg4z9KW8v+sVratzmfphf7DN\n/ei+z5w4znFwwriluRZ1dMNLxzUHZ//Cre7eg42H2hHHYdAkrGtbtxULj59SrDnytP7fAfEeo6e0\nvaPP3d+SRkSjrT1Wckxz5vhT+l4LZDhjHb1xTZ8/uK5Yu3hy2ayle4zRfdvf1j1m1NZ3R+qbpab2\nKzlIZu++jtFe1blmjJ3rHynuzRiTkz3FD3cKbC/qXjZr2uvMox2Sgrqv39T3DXZAAz2fw7Y+z7qD\n3t0+bkjRrM3vODDW0V7A6SSHMR2iq9FFkM0dEBvoPQ2JNxOHjgk0XfaDNXTdHHGewFRpVFj7Qd8T\n6BNdd4SEvWHM7UqLMQmreObOOuhXRUPXpYNJ4ig8rp5txvQo0todBx7HcMoZ676HIOlxqn4eoQtY\nR48kYC4k/F7DGTJD6yeAcTSBCdQG0e7CqJ9wv5EfN3OtMe+vtnkLWoX1cVUK6e8YrZ4p7q5hHfYB\n2hMD5nIzPrz2UIRrXG1R83MKs2wHl7V59pNTWEMhKH8tUZ8dTGFGgrK3l7Qmj7a0x7h3XT8vvai1\ndGekd5P9Db1rLF7QHmVhTXNnb4Sr3FXNqSUcWhPeiXbvrOt6UtyNcOJaWlbfLTI37+4r/mzt6/yn\nzsDwQ2Nw3HWHHdcu1Pejmc9N/T5Gw+radVUnNNh/Ll3SdVdhOg6Jw6fPi7GTwV7d5j6bMCV7u8Sf\ne9pbNefq3L/eAXOe9f6+3pUqrA/HTuAux56xgp7T7kjnreIIduklsXczdKAmsKdcF7COg1c++SwO\nH6bVeF/JWU+ageZSgGBdOtV1jVruogh7BFclt0bqEyMi2B8B764FcT+C6TN15zjXn0o+43/lwciS\nKDKj0iSjAqXw+MD7ddQinjrb3W/Z3SeHupcRmivhRL9Xq8760cerKW7I/x9779Vl13Fnef6Pud6l\nRSa8IwASIEEvkTKUVLWqVNWaVrl5mY8wD/Np5kPMWrNWl1GVqlvTokoSJVF0ogcBECaBBNK76+89\ndh72LwCpV5cq+YR+OPECZOa950TEifhHnNj7v3fg9gIuu4H4xbOeYLkb8m/FOSoSF+q8QyFbsxIS\nAAAgAElEQVSHZx7sshANrMS5IQXOxU59OXbaXLzselWYMLg1lX3n5oR+Hr+fsJFskG0wJX5n6Hoa\n7pxOC6xMP07HTk/vj2tTFUyZohSlKEUpSlGKUpSiFKUoRSlKUYpSlCdQnihTZndTiMnGwYqZmY2/\nJDeNk+rxrv4+c0Knp+WmTvfmFnW6OTgnhOTiJaFXlbL+PsLhwMo6BR72dMJXdQrVOMkENYc4CB2r\n4Bgz0wQ5ASlNV0Et53TydmReTJjwCOgRucAPPxVq9tEv5Joyu3xGn5vRydzpZbXj/LPK8xzskJuM\nhk2MinwdJMPnZDCCVRBygnkeJs7Skq73BafkU9p9YlY6LufO6d/5E3M2JT+3CwLWntVp3/IR1W0R\n5Kz0SBWdk3vQqU3U1FfWxCLYH+nZNHFAuPTsC/RpxnX1jG68p7pd/1xsgBQmxWFLDEqRkIHYJg96\nQE5nDfXxgxanozi6ZJxkexUU+smxrOJWUuqrr9whb8LpbEq74xonzyhzJ/v6eQb3iQSkmXRwi13O\naaKT9ByngEZf1+vyjGst1OYn5IHjFNAnt79+AMrOqfMQ1Mqn3yqMtYBc2KTDnMHZodOEgRIxZsj/\nHOAi1UhVry7uJ7M4JEwHzm1K1xvN6md3WpzCzAknQn4OQOsa1HsCCtdmDCdVje0K1/U5Bc9wk4qo\nZ2OivP8ex8MZDKFS8/BOB+1f6CHsP/U3Zmb2i6sfqw7/JDRn/7tq+5dvwi54Qc/gOx9/X23/R/Vd\n/ZiYJHkqrZQj15UfnXhyR3r+shgr75/5ueq+9qdmZvbSK79Rnf9Bbf/iP6uvVnuq13FoC8Nz+v3N\nTAyQv03PmJnZe88o/pxYlMZLH52nF7dU/+Gm4tHbs/r5fCZmTHJf3/v6q0Lzf/VzBuMbQqvX74IQ\n3NAzm/mGmDo9h/q/LXTpE4VPq42EKp35sfovXxQzZuOMUCnvuOby+lCaNb2y+qe6JqZQsqf+6V3R\n/bZOSVtntC5m4HgN1l1bjJc3tjXW30zksnR8TzoUOzhX1B8KHbP5d9SO26rowuvoVcwK9TtsSYij\nldS5hoBwpLD5iJGG/kkVl73pVOtAH6aN7xwlPH1vlMCmc24sA2JoDfoGNJARaGEOytUEhRujGVYy\nsxjHpqivMdtsC8UNyXU3HAgMnYiEOOUTd0fkngegznXysMtjlnp0LVLWiimsoyqaTn1y713d20Oh\nSUPWgRy9hbqDxxwzjniYR05zTPWtwJAJ0BiIYSlBWLQB7IEQFHrinLDQHUnRnHEMoBgEtVwGzfbU\nH4OMf2EMhhOcGuyrrTcl2HBOF2PtvvqpzjObf1Frahbo9ztvC5ldOq252wSB3nkIwwl0zdCOSJ27\nxoQxN6OfW+xpgrJYHufO6vsP7gvZ3d7RHN870Dp86ozmQhvGzHh771Ebuju75sWOQaXnsJfDBj6Q\nFkXznOb6APbt5qpYxwGsgRIMqgoaN2MYXKGv+s0uwwTd0X5i5XPNydXPdP0SGmvLM0ctjRmjrFn7\nBzAp6NMrz0krZunSGbV1RfEmoQ5zx5mPjLn1Vf392DmxABbm1Xcb+9qTVJjnAdojIewwN3cS9CuC\nusZK3nrMpDhM6YCOT9l71HIYdTWcWHA0KTHmAbMtKLs1GTSbJS5KYBfAKnUOMj56EkHgXIhAsNlP\nerBJq6DiDnHuQKs7eAS5wn5gDkVcfzrFIYtlI4ARM2XuJM4FBWg7Q1/OxyGx52IH+iADc+2i3sS9\nRskxctQ/WQcHHpzdGryGVNFwiGAKeVMYhiDPbC0sx1GsCrMyh5XsNCJzGEJVmEMh7GUzs8kkNSdp\nk41xHsNxMoB548He9XL1r9P6GVUeuzj9R6WzANMBZ5aHDzRmS7CzOke1po9gxuWOwT2Dqw8Oqmdx\n86md198/uo/722ibujrnGZ5lR/P3FEwZg2kxuq/PxzAa/fYiHaK4sXpDDJga9Zs9r3eM+ozm1oNt\n3XcV58hKCFugoz2CY3KOYJx7MBoD5sgYKmPA2uqj95Ggz9GAaeKP1ddb4zX7/RKQdRDAFD/YVzxs\nzqsdx04rnj34UvGydkIMwzZMEQzBbIS2JlPRwkDXLTFERk4zbZd43YA9Nqc9Tv9A9bv9nuJl2NZe\nh1dK2x0+sK9SEvqjxDufsd9Pc80Rj362MXOHGDpq6HP5FG24Ou8vzsuIvUaZuR/gkJTynpITS0vo\nuZiZNfy6DVLvESPMg/3vO+FMdEdtiHMib081dJCGrCUZ6kt1dHpyGG457PvEvbuQCBM6jZXcMeNY\nfJnwfowDLMI41WxME2GPOiNaz+0R0LLh/RmDXctg3pWdmx3vNh6DN8lwtCSOhcS1GtfL0bBK0coa\nNtSeJoyecUiDYrIJYLkN2WeW0MdrxI8dr/5npWDKFKUoRSlKUYpSlKIUpShFKUpRilKUojyB8kSZ\nMo6FMALNW9uUhsHTT8vZ4MF9ncreuiMNmCF5kTn5hbvrYsrcH+tEqkl+YHNGaE7e1Snw1k1dZ29b\nKI5T6F66LK2C+SVQtzkdqZXollYD1As16oUT+nkLbZvBXSHSji3h8qvjEUgCCubDazqlTq+cMTOz\naKovnH5R7XQ51ks4P0xgCnVwAfHIiRtw3ehAJ253PhczZ+ehTrHnTut0eG5e3+/1cF358K7NLOhE\n++aNG2ZmduSkkLYWTgD1BXIpu0K+ol2dRu7uk989EUofoqS/dEHfP3FR1512Vbe1npgPn3+ktj8g\nV7VJbm21cXhXHTOzPq5JNRT0+x75iQ30etBAqQ9A8sjpd4wMH7Rliqp8wKnt2N2A3M0ARDZrkJgI\n88OdJPfmQDRBmVLcjlxuaYtT2dghvgcaMymnxk2UzPMeSuTkfrY7OgWO0FbwArUzJ8fUabOEvvcH\n3/NGQkTGB+Stt9SuLnn6ndA5DKg5zarGrk/+dhu9i34d1feMk3fyRWtjnBNi3ScgL79P/7VBu6ag\nXXUQhj79GE70vWFTn4/6Gl8unTJFvymdCjEKQRntQNcZOnTzEGViquuz22JkLB8hrP2VGB2/+URj\nb/l/072av0L34IeaH0sD/fvh2xo73ytLKyb+jur4ZlvoS+L/pZmZebCSnp1RHPmUePDwnBgfV1Ll\nfw/X5NjSWBdj5Ois3JuuX1N9YtyM2mPN3+W3FLdWvynU6rO22GuTdX2+NFH7hrc0Jl548AszM/tg\n5geq16u6/t0dPcvwhJgs509JE2s9ECL93XfUPx9e1dx9efO/mJnZvyR/bWZm52ZXdP/XFGdfeFN6\nURef03Vv+OrvH8Ky+687QpHOvahnOPOO/n4Z/aLPvi5G0Yn/qrEWtdTfP/tA7kyDC780M7NTs0Ln\n7uFeciHUcwju/4n+XVL7l9DK+ek9MX8OW6ag/RFsEB+kftjUmO2S++zcPdJUPw8qzEHQtRKITgIy\nW3VIC7Gpylz3QJS7sP2qnj4fOFSxonHUBAEaBL7VnCcBqHn8yJEENzXQc6+usTd1TiysWRXYOz7w\n/AQUqwajJoO5MQD1bYHm5ASKWl2RcTwE5fcc+q1nN6mAWOJYmI1AvZwFASgTadY2Ab1P6aMKWjMh\nLKQYZNSjcwOYMzZwToqqJ0YO1nB9i27FeALrqKr4OQVF82AOxePDo9tmZvUIJHKfscqeI0S7IML9\ngmXHZriv+9nVJ6g7BxvaH7m8fO1JfJ5zMEATDGZgCY2gfqp+6eL+UY51g8tfEyO1PS+WSIK+3Wbv\nsXbOpLtjGdo1naswW0Afb8I66A9w6RsJkd7b0rp98XVdt4yzzv1V7Zk8nOaqMH7ylsbyvU+1dzlA\n62IOh8qTl6U915rv2Bb7k/EUnZs6TN/zQrcbGP5F6BNN2bedPC1GcbkqRuDNFe0PBwP9fXSA8xba\nBZUy+6UWLB8WeecIlpHT31nQOhAxZEP/q+kO9dDdMfSLmoxpx2Tp8uyCoEN9dP0KehUTWLlBQ3Hd\nTfIS7NhwCMMRN49mCRdNXIVi9svVJm4n7HXC0NFN1f5movv1HdKNG+jY6X3AOvDGaMw4Z0r0+BzS\nXKHfGmg39NkrVHGILNXQd2Ks9/t6Li3uO+prjKboWlXQeggnzpVJ9++hz+cR6xyG71gNE+c8NAOb\ntu8QbZB7NCbGIPEBLoDD6WNHnLAUWh6gV9dmjzV0bANYCgeMcf4eEO8r4YEdtrTK6oMt9I7270vH\naP40epM4ziZu73+WsQ576QHaTzf2pcMWM1hbM9QZkcJJRJ93NT8rON/Mt9GgGWkSDCewHHBBaqNp\nEw9gZG9pv24VjdmjuLAlsAX27+sdzI8Yqyf0rjXfgZ2E/s4s2jM57C0P5kepr3hdYw2cMIadVlWZ\nPdztL7RXKcFauPCc+mX5FHsh3gfiTfa7ofrpyNfQqRvgnrQDixZtS4+xWoFBksLEjNBUyWFDlFmH\nQtbNZpn+OqJ29bfFkPFglZ25qHh55wA2xx4LwSFLzt4ghxWYD2DTwhaLYRy5t6akDNOed0GPd8UU\nJnzGOHnkUst70xR6WJXxUXXuhMHjI4DMn1h1VLOpc03jvdeHRevjHDseOl07xk7g5g+MQSYu5BzL\nYdR5rG3hyOlxolOHvlDE2l3GfW0Es8Vgv9bR4ItgDyWwY2swT6bo75V5Nj7PeEC8qbEfS2D4lHBN\nDtiLOK0bty90bktTsiycW2cIo9qDMTRh/1Zjr5PB1JtUnHsU8WwIo7FTaMoUpShFKUpRilKUohSl\nKEUpSlGKUpSi/C9XnihTpj2jk6qnTilP2+WfL+A48BB3pE5ZJ1yLptPKhVP6+/JxFLFB4e7f1mn0\nl7vodSRCf9K+rju3IAT2zAUhwMfO6dR6ZlG/T1HJv3dPp9POA76X6RT0iCeEpYen/PFjQppLOOSc\nxJEgR/ekMasTwYdfSIthd0cI+OZ9oU8LyyDgTjnbd7nTOlHb3lf960AYm3t7XB9HIpyAfJTeZ8mt\nrjgf+JrO3G5f+8TKZVwayImchKrL7QecKIM8Jo51NKvTyRqOWCVOuI8f08l2q6E6P7wrJGD1gdq4\neUttO35eSNlTz9PXp8SsGR0ebDAzs3lOtu/DJMnoiwRngIbLQ0QVPSb/N3WnqaBoNZwCKvv6fWWW\nvGtcI/JUv4965MpWuU5JY6PDSX+/pmdUdvmJKP33YJh4OElkKG57nITHGafBjKkKuZ3OnakBujUE\n7Wo5BXDcUGpjnBRg3pRxk2qjDdOdqp7O3SghT7PuFMOH9AMaDF0Ooec4tMVIwnqcoFc5BXdOEvUR\nmjqo5I/RRghQHJ866QaUyfMGzjJD2hcKyRmXyJGlPlFHYznLYczUNdea8eGdDr4Fg+QnL4H2bmis\n719TpU4dlUZKtKX5vs1YevF9zadfB4o/T1c1Vu/hlPDFe9JJeGZeTJcvXxXz5eSu0Jef1KRB862e\n0JzJt9WZ5+7/1szM7i+RJ13TnLjb/3MzM6t4mnv/0vy5mZn95Zz6+jeXf2JmZq/8nLHZcQio2lNG\nH+k0zip//+zLZmb2jeP/zczMNkxjrvxQqNFf3tGY+Yd93KW+o37qnlXcOv6B4t31K3Kj+uGyGESR\n6Vnc/2+/NjOz2R++YWZme7qNjb8vl6atzb8zM7OrM/re/oLiz24mNOn8SP187O3/z8zM8mNq129X\nxRB8Zv5Hat9I9d3b1OdfCD8yM7Nbp9Xu07Ni/PSuqR17kwOz/8Ms+gGQzP9jhyqNnvpj1Bb7IQHS\nmeJAloOseNA8hk4nyqUAM0nGsDXMObNVQO9gocUlWGd8P8QxyQ/RMHNOPbDfxn0QnzC1kcubBj3y\nfTSjXF62Q4FBMJ1+hse1AvKXA/K3ndPKALg5ID4FbV1vALOtDIWtDEIZOjQcuY0hufhpU/GuhFOB\nQ5fqOJrk/GJKG2tDXDTQFMiY33mOmx7xqtEHnXf6IyCAEW5yOcy7rOScr9z9QPxwK4mJW60xGjiV\nR5zIw5UyzL49tbM1rw44eUnrWRtWwN4B2gQdjdHe1hb10/ePnhcL95EryVTx+mCPOYqO0cmn5V5S\nrWlObq1rD3PzppgnY1gUvtN4m9PnmlqGbRV9lfj+4FETBpupzR7VB5bOio0S78Hmco45oJELxxW7\njoJ8L6AhsYnzUc4eKoRFkPE8Uxx9JpNN7qp+P3dVrLkK9JcbH9ywDerYeEq6O0uXL9KH+u7BuvrC\nueCM0X4Z93SPrY9hJq+pj8s888YJxe1ZdDXmjsFUZojE7JPGsDlbjIW5E1oHbt3ETTN53HeHKU6L\nKvS1pvVjHHTcmE8YuwFjD+Q2a7EGOzeTGih94hy6GNO4G1WxE+lV0JRhzKTU12PRjZ0OXgUdE3jA\nWYZ2D83LSkxmiCNjdEs67H0GNVhbsIMrMHdKjllCvAzQPQmGtNsHwR7omVdBrAfUr1H+Q507D/2U\nBITdYLKUHI02dhqQavcAx80K9wuxeBvVad8QjTBiSQU28QhWcmsWHS4zC0eZZTXVswILcACrrgkD\nKoPhGaORUQucXsfh2bv7fe0thtuaP7OXNObOndHat3Nbe4kVGHkL82fMzKx9RG2eh4m4/qVY9j56\nQOef0TvPBBbD7Y8/pq1ijFRgWDuXTo99ag/9ygAHtFLLMW1gFrK/b7VhcTmtlAPVY+0uGpIt9x6g\nv+c1zdkdGPGefrQGbNfVTc2x0lRj7zzrmB+jmQYjugSjZm1N714e++AXXhbbeYhz4XBTrOURzPdw\noH/bMFzGC4oJI2JKBHuqDIM9cvQr3g/KTq+TMZVz3dkFsfPKS+gVPlQMu3Nd8fnkacWwgGAzHCk2\nVZfogEOWCHZF3f0CjbYcFm4p0tzzGXsVWB19WGc11vkp+3qWP2sS68YD4jY/Q7CxjHUpSB+vj5Ok\nZHkzsdLUxRvYOmhDJWPecWDNl2DTGu+MOe9iViPuOj01n/0VmlQN1liP99TEVZqHk3DdkOmWwwaL\ncFHL0NHx0RGdoo/jxjqvVDbFZcmx+FP2DgF9PKFvMxh9FVhGKfEogFntO62r8A9ZTU4bLCPrIIPO\nO8JJrRa7cwg93SZxLEeX7d8rBVOmKEUpSlGKUpSiFKUoRSlKUYpSlKIU5QmUJ8qU2RvphOnTmzod\n7a3odHn7vk6Xd/o6nTyJAvkJmC09Tnvnq+RhuwuW9HNtkZPwfU72z+rk7/gRnaIeR1l8nzzqgz39\nG4A2Dh7o9HDQcOikTsYanE4vLQpJLjnniUwneJWq7tsnD32/i57IURTXzwuRPnZJSMAcTkAP1/X5\na9eVTzlEVb/7UJ9LE04zyTM8ckT9cfQZsU9mYS/U60LR9ro6tV1eFKOo131oNU5w2wPlml68LITu\n2GUhaUMQ1JST4sVl5XA2OKHdRqV9MlCbPntbaHbSVd/VjonFtHxMfbG0rHvnddThyacL0Co5bMEs\nxEqgP1EPhy3YDtWy6uN5ouDk5DOXYf5ESG975FMbrKYpOaxtJGQCmB+jNuyjkU51Yw/tBvILSz1O\nsud0Kjoeqn88tGaCkn5u8b0uuZ6xR/7itEs9YNw416ee6t+swzSBBVWJQP8CXElKLh9RnzuYCmnB\nQMAm++RtgkL5INRlj5PzGY2DFjnIKYriQ5+xyqn0mNPeEuyxoAYSPeT0GY2JBNRpGqtdTfLOD0DJ\nSrAEUnKasw7q/xWQ8h7MoSan0bSv7D9Gt/6jsnVZOgtXqpovX66JqXH/pNCd12q657+eEGOlRh7t\nvdIZ3euXij/RrDRXrn9Xbkov9OXC9O6+6nRyVeh3uy+myNJRMeN+KjDHXuhqzHxQFvp84nMhvJvk\nba/BAMm/L4T4mY/FwKnF/NyV1so730PnyXB6eXNF9wXteXiguXY2EQLx8TII6Zti8Fz6jjRabt38\nrpmZ/d3sz/TzPWm7fLYv7ZmjtL/7llC7Z2pC5393WRouzTPS4nr/x78zM7NvvaJnPfixmDOfnX/X\nzMxGjLUzZd2/V1XsSO+LIRONNQbOz71iZmZP/6nu9851fe7iWM5sN/7im2r35+rv52Y0J3buiMH0\n2xMaM5dCxZaFO39vX6VM2hrDrRWQ6QX0qELNGZf7HCcgt3NoFOQgRLD0AhwtYtCpCBabR75+uekQ\nbWIDmg0OoRk6AAlNNR+nmtzLrUp+tIc725h8aB+9Ci9DhwEUHnKOhRFrVcuhuerDiDzwMmtKDOpT\nxvUCEMnoAuujPWMO0UycOwaaLSBrzplgVNO/0RCnBO5bh/3pXDd8cvZDh8rDKHFaW1OQwQpuHT0Y\nHR5rsAcqNYAJWcLtKQXprNWJU7S+h4NXKULz5ZBlivtTgv6Jxxo9D2NmH3bBzg0hptvbii2jnhDt\nMvU4v8RcQdtl/XO5FvY2NNdPXDxjZmZzV4V8P9gQArz6nnRT6otCak/iSNSkZYtoUTz8UhoQG6ua\no8Z6YWZWW2hafU57hFXcm6Ybis++Qz1xCFs4rr1MANtrZV/X9QfoidCe4zjD5ThQhtiZTMYwptDf\n6DQ0R3f3tQe5c+2azZ5VvLpyVXuOrKprbvxW8bCEY8vRi6zd6Bs93FlR3dAUOHJO+52EfVoHTZYK\nY/ZgT2vMwUPF0Y09tblFbn/NQ6OF/ZvdwbFs8tXouxU0UDzopn4HplvPOQ+iYQCbyANJTWCberBm\nnTZDHcZGjfgQDnDzqKN9AHssZs1vMbeSOig6aHkbZ50IZpBzEGuiQ5GhqTATqf/ZktmQOVt2ukcQ\nWNIJ7iawLxogvRl6VTFrte9cj+o4NIKMJ5li2ADdqQY6HU5XLwodgs1cQ7shZA81CHFZwqUuRe+q\nZFAXiTk5rLoqzKCA65ZgLw/ix5oySV6xEnO7j8NNNdE48mdB+NkzNrF1GSUaH45NcZgyYF9Wxunw\n9FHNx1ZHY/tT9s0Brni505iCzVR2Gl6J4gwESavPaL/u0Tfd3ynuVB3LqaW4s3FPe49qW/EihU3Q\nOaK4Mo9r29ptxY+QdeIEep4+bIQhTPo264qPI0+5KUZdQjzeXdF8n5nXO8jisu678xPFPeeIE2M5\nlsDkqRKnx7CzwqZbYx1jVJ/LB3o2e6xbrZbijA8bzoMZ3qyRnUB2w9au+nkRh7UcBk5lzHsDHTv2\nNbaqzMmqczHlfefLVb3/NI9IB/DYM3qewy0Y4Hv6Nzj5x511/sdSc05nkdOhQt+E7a8buh6sW8fa\nqKBnleHc5jEnSqyXExiNGdknjxiwXH86VHtzJ5RnZvWSb5ZElsBCdWNuyj3rzN9SxNoOs61CXPJw\nIUqJPzX2Tc6RK4Qd797BUuKeY//4zv2o4bIOyFbw3Hu47lthfk/HtNmxgEe4vsECmqKjlqGvGfP5\nAFZnDcZlxjMYw7isMBZT56KHzmhK/Z0eD2HdAt7NUvaHDd5xnVNkiBNvTEDOeFf890rBlClKUYpS\nlKIUpShFKUpRilKUohSlKEV5AuWJMmVycmanW04/QidMQVUnb0/PCpleuixEuoMTQ/fGipmZ3b4m\nxPUgdYwXnWifO6N8P/+EToXbx4SMxAM0YnBfWrupU+j9h0KHpuTxN5vkdXZ0v3FXp6P378pF4MG6\n8jezvu5bndPnj55TPaegiN0Hd2iPTu5ml3AnWdIp6z7OCU4jZrrPabbLuV3WmdlsC5eCshCnI8+K\n7dJq6oS/uy9GUZ+89fGuTibXukLl+vsVO7LM6Rx+93dvyLlpmKKKPsWTfll13+NkOD8CEokbwyKO\nMK1vUkdgFYfstchvHqBB8Ok7QsFvgvweqelzhy1Tclb7B5ysT0BwYUnl5CHWySPul3D34LS1iRsG\nwKpNQfXz1Cl+c2o7q98HDqFFPyLCbaSJMnhQ4YQaBLRW5dSYk/0URo4T/G9xEJ2Sn50O0K6BAcMh\nq3m00+dEfIzq+wiGSx1tiG6oMdmZ6Oca+Yq+Sxd3p7YJiEuIDgdIeh0G0aBO3iMn6XVQKg+g3FlT\nTJMhn9MYD3GH2uNjAfVt43TQzTW+WsyBEMTiYE7tnRm0aRfaEg4xSZ3ehq4b2+GZMou3pZWyNq97\n3hp/S33wEsrzN3XRU7fEPLmCm9Hes++Ymdnx85pPnz8PunTz22ZmtgvD5C/u6XsfnFVbO1fUSR//\nmzRnLr8iN6DtRaFC5z7SGFqcE5r0G9yV/JcVL77981fNzOzXz+p+3TUxa15/WX382nXFsTdPMWe+\npmf6MBJDpL0tB7WFbdTu72hOJS/rqXzZF2Nl5jn14adDtTdsKV5+b0ff++VLYvycmyiuDEZC7V8l\nvu425Or03oV/Vfs/Ffr13PfExHnwpjRlnj//T2ZmNvm5kO854uVl4u91+qt2IMbN+7fIW+/qfnvH\nhO41wk/MzOzCSxrzzV9KM+eDZ6TR8+L175mZWcUUr18/QFjjkCVMNfZiyCQj0MywxxjELsBlhScg\nNw1YY9PcOaepPQ1YLFkJ9kYZ1gcMGed24lhtTtsiazLH0ZaoO1TOCyxEo2qKjkQwAi0q4wQCYy92\nqDLuCmUQwqnTasIhq878z4iXyFZYjOaKj15ChDNCfaTrD2Gs5MRzh/bnoPJD5+bQd0xF59KE4wuI\ncBUk1QPxHMDAaYF+Z6x9VeJKFoNksgY+6ktQcB9krwKynKC/NgYpDHBGaIKcjuLHDJLDlHIFZiXu\nJgGaYGM6btoX82Tjpsbg7FnFjrNXxYKdPhRi2saxIiGgbm6LvVFHI6xT0dwYrmntXv1ILFl/TnH7\nyvNipqRYO965oVizuab790D763Wc5S7OPGrD0y+8YDtb+tzel7i7XBQ7eDplPYTZ6PRIhuuKTd0H\nQt5bMDarsCmqHdUr6anfd6h3juZRBbZYgntWd6AYtnSibede0DyuorW0dV/fzWLdM4LxN3sUJ0f2\nMbNj9VEV58AFdCwy54IBShzDaJjuiwm5vau+iQ80psZO24u1M8KdKXHOJv5jtPgwpdzVnOrjsNWG\nIdlFU8Zzug4aCjZusydBi8C4f3MKovqI6q3r9NogyDhzVUMcxwJdcNpwOkWwlnzH2AYqMJYAACAA\nSURBVAZ156E53aYeunweGgk5DL8Om6K8yVqLI06GI2R6gG5Iwp6mrvp4aL4k7DGMtbwGMj10cQ7m\nj4uTOc5lI8cOgZXts8dqcJ0ec7tKjItytbsVqL5jEPEaOlaWwWZGM6IG06cGSy7DmVIXGVh5BIOR\nWDFEAydmr9hIYBzB3g1xaTHv8OMkQpcOAorNsxaO0NjL2Y8FsI2cU0sdZk2EblBMHX1c90JchKpo\nsERu38ScWPI1h8a8Ey3Oau4s4+4UOu1CHKdu3VScqLIPrB3V56OR7j9iv53i/jby9PsqukfRrubc\nxqr2OOeX9CxD8P7ULYUwZIKJfpHA+p8yB9IRbFWcZb054i3sCDdGargtRc4BrYL+T1djoFRTvVLW\nr717K+qHp8Sya7e110jcPt25hcKO8tFqKcGo6a4eUE997pkrL+n7rFP3NhTXHcOpNvs4Dh+mPNKU\n4X4JMaDMulVyjmgIQcU+GQC8v9Rh2ZZho8UwiTzWHR8HtoR364SMgBAtSsfi1U0Sy9Oq5aF+F9M3\nPvN3xBipco1aztqKlkrEO1PcQBMLF7kGTooJrPmxS/yosVdxDD0cHHOcWUtOoyt0zrMw82LNxzL1\nyZ10F9d3skEl9DeT2M0tHBmrsGx5t4onOFjGbkzB5GNvEvPum7qXIxwM/cytI/QlGjWe067hnXBM\n//hTGEidgilTlKIUpShFKUpRilKUohSlKEUpSlGK8r9ceaJMmRT3igtXhSgHIYyYjk57++QRZn2d\nSN14KCR6bU0o1f4DMUGOPSUmyYnTZ8zMbOGkToUjdDpi0PsvPpGLR/42eY1VclZrQoo7nBJXccPY\nfKjTZgPNf0A+eAknggmnlQcHLr9TrJAJLIM8Qll9UWja9l2dqsapkO4EnZSQxH6XZ3n1RYlUnJoF\n8T6mk8GdHnokIAXrD8XEWb/HafW68jpr6HrkOCTVO0eshd5Njj1Pv9enrg5BBdl8oD6/t6bc9qjC\nySqMlONnpe8wt6Dr+fx9b1d1i8gv7m0Iceu0cdUBkQ2Dw+flmpnNgdweoCEzcCgSx6EZaHaKFgDm\nRoYo+yONkxHIbkxurSWcjBu6EiDACUhuBKOmDBPGQF5zXI/8PkgvqE9Q1ulnHZRqChI9pX+r/D4j\nLzPl985RJ+NUOuI+Ls++BrMlbpPfyFiekrc9mdXn0gN9Lst1/SYIQgQzquXx/DktrqLFMEaOvYky\nelzne8w9nzlqnkPf9P0GSKoTWHfIerWs+4SglxEsgnAXF6i25lST0+4MjYoeFJkm0umVyeHPi9eO\n6B7ZF4oDf5aJEfJj0OTxnJ710c+lgfIvc98xM7OX1oWIHbssZ5XrI937ubuKM2/v6HrXZ1T3b3+p\n+TbNxCC5tKDPfcpJ/NM/01hcnVHfrjwUc+UbwGU37or5V26Ru/6u/r10AdbZPype/GxRTJqrIIAr\nMytmZja6rc8/e15x8s1F9eVL9zXHlkH2tmOx4Or04TLMn7VnFH+yZ8UkjFpi7K1MxBjaMcWd89/6\nFzMz++BdoUuvo5XwMdILQ7R1an8txHvaV/y8cUcuSi/81T+qfb9WP9nv0Mq6BMK5DcL8isbwi3t6\nXp6611bGqm+pIjeqTksMmWPLes7vzSp+PjiPmM8hS0geuYGwZhGeB23N3RxEuTQCAXEOFrDUgjYs\nFfLOvQC3DmKaY5NMQPEazuWkoufqYlMAq8C5h0xxFUmsYrHTr2FeVYgDU/QonEtFCNMt517Jozxu\njb0BzJmUa09w7yiZy00HNWJ+1/swAEHeSuQ9O+ZNGbSs1kBPg76Z5LAQELdJ0YoJRvp9nDmHFdYR\n1osEhNQDdRq7uIcGmYu3HdhLGWwlD62DARBsFcTVg00QE08iUPZS9fAubmZmY+JcfU4srAwYLtrW\n2p+xVlexP1o+eUbtwq1w97bW4ocPNXfn2FPMNYWUZyksBFC+7h5suKO6ztI5zUkAclu5LYbMxq0V\nMzOrNHS9Okyek8f1+fKR2qM2TOLYNjZVjwgtoctHxXAdbar/NvtomMHeuEu8b3bUb7PLaFNc19+3\n9nT/BI2h9TVNVm+o9jTOSYuizt6og2VZ8+gpazLfrn0k7a54U3Fo2GO+oTEQs0eYbSruRrMai4OJ\n0Py1h+qrc08p/gxZ21IY0B20T/ojMRC9OvHvuOJlGbmHYKgxU5/q2SZlh60essBs80HXB7S1XlL9\nAic24NZOHFBymBYxfZ7BTk4i1k50RGZYWw+qU/7O2pvAVsXhrMaeIcB2KHGMGrYs7RJrq9vmo+vR\nynAym8HR5pEDDXubKXuLNv2Uu7hI7GDzNXGuKaz1KTHCg/HSgOWFqagNQfkrOP3EAXsXgOPM0GZE\nsyt3TBVsWPb76FDBBs7r6OHhLlXKNWYzEPA8wLlt8Hs6H3nVIDnYCKZVi2UgwvVlYnpeyUD37xAT\nh4PfY9z8ByVAU2+KJlXmGC84z5TQ8gtO6l6zNbX9wT2tqfuwyRgC1lnSGuub2ri7L2ZKic6rsy44\nh6/0wHWq2rB0XPFqa1MaMltbekZB5MYAGoeQpjx0RYYD2FmsM3Nn9K5WZf3ZvK0+bsDIXOjo7z6u\nrTn74BJjMw2dSxDOWdDK1vaoT0XtW2jzTuiccWCqr6L/OYKB3U5hHBK32zDObRZmH26zNg9j6IzY\nuXeviZW7s6n3lOXnFFM8dE591rUU9liVOReeEFvZ9hU/t1f0Ltp0Dmmdr/Z+Uyo5px72FrDdcthw\ncYzeChuCUsR6C1s3xvnIZ9KHMG0ITeYzhp3OSgq7w0c3L/Iej+loUrK4MTHPuQHD8M2JP/XUuRDx\n/gyr1GD5xGi9BOifeU2Yw2PHfmUMwH4qQbTxiL+TyR/uCQxGTo7r24Qx5vSWfLINxi4rAv3OyJlj\nMidy9hBTXPDizO0x0LGDKTd2mlGZG6Po7+E6FePKNsrJ1oAJmBDPq+jnDZlTNNd89lIR61x9+scZ\ndwVTpihFKUpRilKUohSlKEUpSlGKUpSiFOUJlCfKlKnhIb+LHUVvXQho5Os0d3pfzI8h+YgZp5iz\noFKL82i/nJbmwxD0p7urvMMYlOvYgk5Jz50VYnKwzWkrZ1IzdZ2uBg1dr08O3MEn0kCoHxESjZyI\nXX1VDJagxuf7ytseDDjBG4Ai4tQQopEzQsnbc3n65PYmnLpOSSBstnQaG3Oytn5P/fHlbRCmVbVv\nSu5fB1RvDoV0l4dZ8qnffs9u3RHilpJj+NzXhMY32pwox6AyMF1WP71tZmbbO0KpHBPDuSGtPdAJ\n8cnTqutwgCL/UCfnG9N16qRncxT1eYtIADxswRFlYnpmlS2xjiYHnJqS/xz55FnjelQdaowMyblN\nQWVaoDwDTn8bFWc/AsqNgni1RU4ruj+k1FoNBGDkxGIi0JiYE2xQM5/fG3nYkwnISV1jIByjmUAe\nc72pf6e4H5XJIQ7QVMhxxyg7BNoXgjHXVd73AAZK3uWEH42GYaC/N8hH90GVJpwSz3JSPsmduxSn\n4XUcE/jcBJeohFNlL3EuULAM3CnzUJ8fOAsHEBE3cLy+xmTUxt2J/m67vO4D/dz3D484zK6e0TW/\nL7T2v/zov5qZ2aVr39Xft9Un4fyv1KZjYrD0NjWPDeeU9pr6+uOJ2vDSn+l7N34l1lj7rzWWc5Tt\nw10cSh5ofvoX5KZ0siLmx/Wr0nF4H92L7/5c2jdeXe5FF+eE2vz23Mf6Pi5Pz50QQ2QVd6T1rhgn\n3zklLZd3d+VSNJ9pbs5saez89rRcp55+S6hP5W80h98/qe9d2ddY6DxU/S68ovZe+kRz819M6Pr5\nVaFUz53+72Zmtkg8GV8QKrXza815b0fx6N4zr5mZWfpnGoPXP5IeRmOAplVLjJtbd1Qf/7T+/mJL\n8f5ff6F+rb+meD85x9j5kfrv2Yua439f0t/Lt8V0mntPMeawJSc3OcR1owzSMQalcmy5TZCONmO8\nC2o1jtGVqrt8bJBhl6fvCZlpgxSPEmcdB7I00jqQ4qpCyLEJyFTdxua3dM2pc1UCpZ42dO0S6H4X\nFIf0aAtBNqdVctFhwjgdixqMwCDQWhehm9AYunxu7kOlsgn51q4JTRBfUB4PDYQqunAxLIVKAIOQ\neOmDosfUy6M9E+DpIEY7wWWCj2EDlNDdiUDjuGAF96kAdC0Yu3irZzYJtJ7VHWL8+znzhyhNnGjC\nFu2J1M6VTSHX5QD9uPNinswfFbI7RqNhPNYcCmB1NGZAUHFjOtiG3bGlsXzislhriyDZEazg2x9L\nn2l1E0Qc95AZ9EmWl8UmWXhKc3f9yy8fteHLa+9bdKA9RQmXu5j8/zZ0kSEOE47ZmqMhEaJlVm5p\nzzNAryTaUP8uncSNqS02sn8GHY+WYsOU9T9GT2ASTu0mzlNrdxVHG7B9ZtGf8HHwquMAOW6BFu/p\n5yHulAEuPbWXmY/k8K+v4CADE257H02aRdhE6ElMmQv764r3Rltjc2vZ4YpzXWt7Gos9p+sBqy2G\nBZG29G+VNbaEBkwPVmm7DksB7YQEFm0E6l0C/W/AzsphtHjM5QRWkk00l8tT9aeHw0oPvYoWboND\ntFGmbs2Gleqzlyih4zR2Tj04Iw7RWMwr7Fdpd2eq73nE0QyXKMdqG49hQ5jTluFzNcdwgu3WQcsG\nDR6nYzVFoyJ3e5cG7A22XhVYYK02exbGnqF34uFQEzQfI9N5PLUpe5kacXwC27rsNHFqum4NB84D\n3KascXimzMTtzUN03yKnY6E+HPFsTqS6h9NZun9TLNcy+hinXjyjNi5ofg1M83p9RU6JEZ/r8C5y\nJFQcGcLGHY7oA+w5R1/i8vRA9xuz/3RsoYy1yjECJzjJVB2DBcfJCXufu3f0HlCGOVPlHcRlAfj0\nQ3Nee4oKc2KIS+iYsTTqqm8rHRigCwH9AKMaDZ5eT3N7pqlsivkjim8pcz7viFHUZJ/e6yoeQ2S3\n+ZO63rUviFtkADhtxDLyQQmxZehrTC2i3VXOqDd7Bcf6inCNajkm/iFLiHbiCKchpMgsgwFVcYx2\n3gesgqMbr1FhE+Yq6+AIp6Gq04Cr8U4YuzkAq5w3/0rg3BrFii9nucW4Cfs8Q8eOj9CKKTnm3tQ5\nV+n7Ld7n80CfGxNnyk6/k/jgV3VzL8f1KHX6k9SQPqy56zeoO7o+Pky2gD1LjWwKjB0thUWbEu/r\nsI+ndG7AdWsw2HOeISQuGxOPnY7PEGtKD0Z0wOYsZX9Yc9qC7EkcZ3VKdoRjBBnZF/ucB/x7pWDK\nFKUoRSlKUYpSlKIUpShFKUpRilKUojyB8kSZMq2O0J4z5Ptt11B3T4S4TqsuR1XHly6X6/gV6ZrU\nquSgohvywQdvm5nZYFOI7Bb55Wl8Rt/DlencVZ14TfCmD8jVDXASSBb0+8+uSyPGIRQOvlxZFTPm\n6DL5hyl5/hFMnURIwM5AiPwMTgvNtk7wdg70/XqoE7PjLz1nZmZH5nT6u7Gt69z/VAhTmKg+R9vq\np9o3hFIFnATOnBJyPYXOUSGPtQIisL2+Z6NN3XN/Qyfkn76lE2QPxevGkpCxNif7zWM62V66IkSw\nigaLy9G/c1Mo9+aanskwEmq9u7lLndWXy6+L2TK3yMk1aMhhS8DJe3kXFAhF7Rr1SPucijacS5FO\n9Cc+ec7OlQMtghiV9IRc1XEA0ybWmGiT991NNDVmcBgYOa0C6pXhOlKZBX1yKvWMxbFzNhjj6NVA\nV8KNpYZD58hzjEB8OfEu4dDSd4riuK5k5EXWHOJd4xSbfrAZPc800fMsGW5T5JOH5Lk7jZ+JO0Um\nZ3gEQ8ZpzsRVGDRDnRa7vE6H3sXoljikPYaJFDoNCLR+xp7LA9fno1BjPHLoGMh/OMOpdfeRJcV/\nWN46q3nz+oquffaCGCgtDw2pF1XnL3z1WfIb9encrrRU1l4WE+X5u/9sZmbvLiouTX6m+fSCr7r9\n9p+FCl36C/1+9obi1TfmcEoxxZ1Pt0G9m4ofo3+T+8hv/1SMEA9U6LUF9dXFN9UXKy+KaTNPnnO9\nI1Sqv6Rn8ds9MXs6V3Ejgp31kGdRHqkf7vzvsMECzYW5fcWhDRT6f/UXQpNe7au+1/5ETJcffKbr\nHKTqt7sf6X6fzWhsnTylub16EWeHedXv4uhHZmbW2BRT6VaXWHNV9TlD3vmre6pP9+tq74f/pH76\n1tNixNyfqD0XP5T2z3tP/YmZmd28J4bRKw1p1rx3RWji3bFi2WFLSj8NiHkRcBMAs+XOqQj2wBAU\ncwzbK4O1V/Y0t0sgKIY6fxXHo8i5dBADSqwbLkd55NgbIMy1OtoKg8DyGOYJsI9T+K+QKD1yDBni\nTDhR5WNy7kPYQKlzwwFFzrswUcI+dSOehGjHwPKp8uesruu6+GDkpmewNzPyshOYLBNy3Nuwqpxz\nQwKCWEqcVo1zm6DvXRgEhH6EzrHeWAtUHZ0LFycyNGkGAY4psJnaOPf0+zhAVB8jgYcpOSwEj7V0\nAgu2+0DMljbMmPl56VBFPIcHdzWXDnZxlIRhco51qnxMc27tQ62bJVhxPloS06Gu08XZcQ+hjBLM\n1hNLWuMrMAiry7i5wOpdv3H/URsqlQU797Lm7mhH63wF9sZWVXNxgMvgaE8BOEdjYBApVnR2Vd8K\nuJ1T5qnUtAepgIxHq7qvN9UcufGx9gGJjx5J1ra9fTFkyqwNy5fF7pnr6N8RfZzAInVsylqkeJuj\n2zYFzQ5CtEVwvUw/Ubwcowly7kUxBQNoXvv7ur7hbjmA8ZYxFp2j12GLB8zcxTXEGMsZeklOX86h\n8MMyWgueY6+5Maz6VIBox47hgR5SPUYfA1aFW+tTtAs8WAOlsj43oR5hGYSYPcNwqM/V27rfqI/u\nG3uMScqaHhMD0KKx3GlAaGw4zYYpjJVBqv6vO/cqdD4yNCaaIMd9tHOm6CmV0K9znwtx3hmzHw7Y\nqwSBYwuoXsNcn2v0nSMRLDD23UmmdkVoyVTZO+XhYyZUPcwesRDdViyEkRPUNecqsAqcDkru9P7i\nw+tTVdgzONcepxuZo/3VgYndnNP+uDfVGM0nmkdHz2uv0DqpvwewLjfYdwd7qtsJGHP1I+q7bJb9\nIvFljAtaFaZdf1v3qTJWT5zXXimtwOaCzTCiT8aw/0MYF0tnVa8puj+Ole/GqNMJne7jhtRoUj8x\nTXZvKr7d2xO7rV7SM6s1cQlCf8PnIUGYtIixNJ5oDJ3E9c5Hk6aHc06bOTSlHR6sjJCxNiKeIn1m\nARo/HmyJEW6BW2P0RHn3bJzXHiXK1L/dWHE1g33R5vn6pa+mKeMMfzrMoSkMl5hY0ao51gZ7hIkb\ng2gIofNSqcLmgB2WwM7zIpyPHIEHhqs/4U0mfXwE4GUTi61ifgn2qtOwgqVTRtslKsN0SYnxrMER\n+8scppnP3mEMM7hJnyOPZ9OSxlQjcQ6O6HPieJg1J/zd7X309wmsWp+54lzYxrzDVXDWGvOOk/H9\nKv9mDX0vJa7ExLUqTMUS8diNwYx3NH/sdD95V3N7BQapzx7Hxfk6OlJj3sdLtKvmXPj+nVIwZYpS\nlKIUpShFKUpRilKUohSlKEUpSlGeQHmiTJmAk699tFdmQOemiRDW2nGdss4f1887ezp9DTlN7U6E\nkFRGsD1KOvk69vIzZmZ2Cl7D5m2hXLuhTolrfdTVyy7XFWR3wgnhgdCj9Yc61T13TIhwXNNp9O0P\nPjQzs7VEJ24jkAtn1OPP6efZo2IrnFwQ6jQJdbJf6+ok72BLqNQ+aNWX5DjvwWoZcVr71DmhckEb\nfZA59dMYZHayo/7zYTnsXlN791CXzwZ9G7tTTbzh4776PuEktg0Su7qu3PTBJzrJPnkCxkUIcsqJ\n7M5NIWQHqJsvLqPz01IdJyCaaVenoGupPj/e/WpOBwknuk4J3M7QpoSfQ/KhOT0NyImtlMhD5/S0\nX9bnPWyZSg1QbfKam3WHGqkdLg8w4uS/hBPABOeGtmPccPraAW1zStuWO2cW8uInOnX2GCRNXEny\nHu0gHz0t6+85P1fIQQ4dWjhLnjUITAoiGXZUjyZp1dNc/2miIn/AAX6S6XlGOCGUOdVtzuh6g7GQ\niyrXT0ADJzjPtLu4ncDC8nABqfRAFngOUeZYB+QKc2pcBs1LOHV3ua0xCH8cgww4G4BDlMpdIapJ\nUyjuS6/o9+Pb3zIzsx/f/rWZmf3tF0JxL3SEpB6U5Opz4Se/UJtfJqf/YzE4bj+jvvlGV9e90lSd\n1mLNkWxfY+ftU9JOWW6Jiff1Y7re7Y3XdZ8fSJvqDROT5I6vOZFd1zx959ua39/+UMyP/hk5m+xc\n17w+HitOxORf372terz7vMbKc/dUz+1XhZ4HE8WrVCZI1nkDdP03QsXOV6VZs/uvGsOXnpMWTflL\n8sTzPzUzs1f+RgyV6a3nzczsvbc0hjuR9Kkay9K7mAH1W23pWZ+7ovi79VONtc2uGIxrf6s4GD18\nwczMrp5cMTOzDx6KsTT+c9Xn7hkxj7wNjZmXEvXrzruaU9+LxCxszOp6hy0VdKdKQDXlKnnrfRza\nFokdID+9MpoIuI5UDX0nxnAUojsCijkhPz+C3VcHiXdxP4gVc0rEeWcTkMPKSLzU0qmziHHMNiYu\nbj0hbKIENCuDSVNGh2PA96s1rtkHxUE0IB05povGel5WnfJE1xs09LmqQ9dhmsTUI2ZNMRA6H82S\nkJz4CDe5kLzuSqY+HDpkkut7OBqUYSOFOChMyOWvoKeR5WgKEIdj2BCYtVmLNXwE88dZ7FRxeyo5\nZtAhyxgHtqlzVIQVO39Gc2oerZUEZ4fdFc3hlU8Vg6pVxYrjT2lOt5r6/BquKgO0W848I+R1Dk2E\nwYHqeX9HjJt0B/YFuhcZrIvcaXHlIOMwi3rsjczMFufaNo+GzdYDXe/eiv7NeH4VnDEq7LkS1p3u\nqvr/1GX169wx5vAuiDtMxv6G1vPbX2if0D6ldhzw/UoTJteyZ8kWKO6i+mZpWSzcmGe3+pGulSPa\nt0Q82UVbwOcZhgZzBLQ7gFXW51kvnBSb6Bzo/zouehNcOJefxiFqk70Oa3DnK2KTY8dWZe8xhYEZ\npTA0WNt6MCwaznWEMVxGa2HEGupXeBboCVXQVNmvcz3Yv4lzKAT27qKb5DOmcsZEWIZZ0kfHqYOj\nG/3mtLWmaJ010E3qwiByrk5DmDkVPpeyl0hY4xNYxnnq2LDqnzZ7qD6Ic+mRvlyNfiOm0S8TYlqZ\n9rrYFCaweRmzMxV9blom3nK/0pRY09BzDnHHi9HliAaPn+9oEliApk9MrEyMPSTMqgBdwDEsgryt\n/q0ODs+6y3zHdITVwz42QRuwNq+1usc7Rw9NGUNTMDhxjD7Qz19+pjV3cJ+9xnmN9U5b70af39Q8\nPOHBTOFdZe2+9OOcpl8FrZUIiuJMByY6bKi+x1zFOauEa6lzk9qDBRvC1HGMwvaMGDRZX7/vddV3\ni8TN9qLau/Eh9cnV7sXL6IHuqh4h9WzNHKEfYVRuO4dE2gHDJoOJM7ivPdKAd6cUZncyhTHKegqB\n6ZEuVIW1OGNMOdfDmHe0kDnXwu3UJl2uT/vRRenhgpQ7sZdDlikMoKyOTuFQ/RbDVotS54hGpoJj\nWTgWF0x0D3ZuGDi3KurrO81H9tMwWz3YdNHvkQTzat2qWW5jdCdD3ol8NFYmOKn6jjHGvgcpMKvW\nnXsZ2qgDmIHEo5yx7N7VfDJfIiOu8G4awL5yOkBDtKicc2wjd05V7E1g+9actheMlUqN/Rhx1WOs\nBLBLUxjKAdkUGXOixLvKhP1iSh9WnV6Qhy4o2RbJWO0ro1s6LaEjxbMz3kGd81WQ/3FmZsGUKUpR\nilKUohSlKEUpSlGKUpSiFKUoRXkC5YkyZXbXdLJ940OdAvd3dNrp8i+n5P4fnxeaswMikPR0IhZw\nYtbqCM2pL+l0eAJqVwcRKJGruvVQp9HxFm5HDdBHEOjGjE68FtpCYF95QxoGCw0hIV5TJ14Lt4UQ\nr68rrzDt6/S0gobAkWeE7J5c0mmvO600nG1OvyztiDq5agcb+v7etup3ZFntzQbKuT713LNmZnbt\no8/MzOwezki9nj5fR805jv5QLbtRF+Lv16pWJrf/9DNCmVvkuMebasPBnlCPu/fk6FINdJo32NOJ\n8fbuipmZzaFrE3TEiJmp6+/1GeW2VtFJ8ECFPBylEnJMI+/wCvZmZgPQpymI4DTVs3ZIcB8Xo2ZI\nLuweY8JHW6aF1sGIk+VA1ylNQLkrnNCDfE5QzA44DS1PVP9xHWSSRzmaQUNmHyVw0LzRI/cO8sI5\n9Q2mGnMpaMwYBCUPyD9EuyXJ1F7nPjQELfITTmur1AvUa4JmTZ1c0W4TnQvQupA8/hYaMxnOMBXy\ntlNDM6eL4nkmxkuMVg7p8NYnHz9voWnB/ceo4jdmdJ0UdK5BaMlgr43RyplyuhzAPghhe01hm9Vw\nUQmqnPQfopx6HS0VWFsb9+RcsjkWWv3Dr50xM7OHDTHrVk7o3/VdMWgqW+rjb74lbZnO16XZ8tIN\n9UH1pJDcn30k16PaGdW5+TditCx+dFV1Dm7yOTmblV9RG//mfbX97Vf1bL/2JqgyedTxAzF4PnsB\nRO4+iAS6IvupUKavLaudg57QoJlPxOSb+YbQqPU9uSwdnUhzpX9FDJdepnp+dE7PbnGq+5+f1/U/\nOqVnuI2Ww2vBm2Zm9pNQ/XH0BI4vPTFqbs+KgfTivuq5X8Etb06x4c51zb3L3xZS/eBT1WPhA7lM\n/eQFtbdW15x4pa96/fS2+uuVBcWWvXf0uS9/qNgy95oYR7/szNr/aWbJM3JVOWzxmXuOVJGiWZYy\ndwPmXMy600Qt341Np5OR4TCWg+wMYWqWQXJDco9D2C1t0DofWCpLQOFAtyIslPy4bD750DFxqYTW\nSITjQYl8bcfKnJKojaGUlZ2+jWMYkgM/QRPLZbxPQcFKaFklMFNaoFKjqsZIaF58VgAAIABJREFU\nCfcNq+rzzRjXO3Qiep7Tiaj+/scsJje/ThyqotOQ0yeDzKFFxBVz+hG0G4ZduacxOXSub+Tc12o1\n+gzGHwjjowqAmnlOm+aQpcK6NWS9qh9X3Lz6Na2bd27hgMhexFKh7AFx/8wLWvtP4/TYh/mzcVOx\noVnR2D5xQWvzFFhy9RPprkSrXBd08qnzZ13F9PkhribkxWdY0fj2GMWfhqF5uGhtb2iO1XCufApk\n+viy6ldFRylH18ODIVkuq90+7oy1DcUaG+q+e8z9CPetxWNip2Qjzdmoh4ZaVrPqVe1fSuwZOrCr\ndnHnibq6ttdFr2KeW/XQE8K959glzffMzVP2Vd4YRxKQyAmo9YO7ittL7MMCWAD3t7TGhehTjBtH\n7asUAFQbT9A9AyougbaXI/ZjbTReIhwHYdW6eua4ISG1Ygn7Nh+HlwD2bQlNqwidD0OvrQ0bbQDL\nIUeYKctAxUsEun36C02sCnHXZy81YKx0mJvx+A+R4SFxss6Ysz71Yq6mHRzceiDYzOUQx6Ea+h6O\n3ZcSyxJQ/qrTIdHVLYfp4lVApHF0G0ROBwOXkzJzj8fg3JqGsIyptlWjx685vl+2jD1gFTaLRVwA\nFskEF5kQJlUNJLwfHB7Dzow4De4dwYrKN9SmCO2rGppSTpvPxbfZJkxkNEH2e3tcmGd1QUy7HGbK\ncCTGXs20VnZgrN+B9e/ehc6cE0t1e19s352HmiPzR8VeKw9hdKMDMk7U5zNVGCc9jYEmbP0zuMc1\neUfa2Nb1EvQzji7remvXN/n7iuo5q89X0cA585TiRzRg3UC3aBsXu7UVfS9nfQthIAZtfX91KK2d\n2n3ifUXPNo9hs8F48dy/xNcG61wFh61N3KQmfY3V+Vnc9XCv65QVS1pLvNd8yHqEJo9z0D1scatT\n5pim7I9rvI9M0Yrz6rBKcNOqOkdMGPk5eihlNgIZjmsTWGw5DkdV2CM+s23kPV4fIy+36iS3ctO5\nSsL2Z+zUeDbjkmPtsPcgjjmduRrvNDGssNDFL+JZBNunBS0pQIM1YJ4FvNvFzhUzxxUNPdHcabyw\nL8vZM01os+ESxZbGPFhF8Yj4SB+E9JkPu8lnrqYwgFLqUR7iSofmVDhG+4qxlMN2mhJnEp5BnfOA\nEV3sHHWj6h+PIwVTpihFKUpRilKUohSlKEUpSlGKUpSiFOUJlCfKlIlB/48u6ZR24az+bTbF4ujv\nCUEZjnWyH3BS11oCdSfPMYEp8vChUJqH13XaWQJRaZG/6YE+Hr+q012XC7tzj/uAoHQ4HZ0F1Xqw\nodPWGifvexOd2D39qsQrdlE0r5hOBHsok1//VMjuDgygMYroZ5/XKfdCXdevHxFq1iiJGXPsqE6h\nB+u4MN0WI+ZgoNPwjPzAxRnlnU7RknG6I/MdneYu4EJz5ETHynjHH2zrVHK4zwky+X3N07r3RXQS\nck5JE5DS0ilclGZU54UTqnMFtDf2QENAg0qgNB5MDw5b7eGqntFhyxQUbGzqw2QPRy3T6ewMCPEB\nyGsZJsk++YINZ60SutxYGBzkMxtMnBQmR9DS36sxjl919VOCJswM3+uhol8to0NUJa+QeozH5BI3\n9fcIpkqFvO0A9lbKaXKU6/cV0K8Ih56Q02inAF6NdN29MpoP5CsOUKHvDNEMArnIB6jkew7d0nWC\nuurjFNRdCmqJU+LBAXniJc2JKnBUnVPwQaD7Nwe6TxdEp0aubtwEdfNwRAD1KlGPBEShMULJvK92\nZHXQxeTwjKraW2JovLagtv5qXq49QSCGyL/9o36fnNazuLigZ/X6mpg0//C0mGe/av3UzMz+k6/4\n83AbdBjl/udeUSfNmFDzz+9pfldPq+9fuMUYe16Mtvc/FYPGjmuentwWWn7tL4VSD1IxTJJ9ff8Y\nJ/dLD/7KzMx++jTaU0d+rPvtiGE3JU6W60J4o4NPzMxsdiJEuseYn2moX9Y/EjPoyjdVn6feWjEz\ns/dAZ0o7oPG7mjO//XPd59w9HGF81Xv/ssbs90Es357o8xc/VTyt/ZmYMN6SxvDv7qv/TlZBymPV\nu/5rp4OhsTH8K8WpHzh08Z/0+zs4ln33x78xM7MMRNZ/RfX4/CbI7WFL1eVhk0+ObkoLJD4lBzrA\nSSwl4NdB5EtONAFnN68P68NH8wDNgQGoWtnN8QzNBxwWwq7GutcG5RoRK4PcSiCmGeiS4z/koEXZ\nABQI7ZbaFOYfTLkYfbYYh5cc1DwkB75aR+9GQ8KyukOlyI+miY1ccS+EEdMe4FCCy13G9ZH1sKbL\nyZ/gRoHOwyAFXaqrzeEGP3ec5RWaVV30e2jwCIZiFd2OmbFzjYO6N/pDd7cS/eFYB27BGTl7i0OW\n1KGDoPtO2yDClXB3R0yZyT4OE2jhzJ/X2D59gTUZBuH6Pa1b27v6t1qCgTSnGJPC6hhtiaGao2N0\n4sxLZma2dFrskfUHYqkNBzwX2L1bXe11+o7RZGaVmm8DkOoABmkFxLuFY1oZVsTO3oqZmXW3NFdz\nNAkyNMdCnk+Ea14ZzZ4EBlCIFkIb58jKeT3AOx+ovoPpnp1/BpEvcu7Xd7Vf8g6AMtGl2N7GRamq\nuo52YNvAijp6ir6lnXs31fYAhLbZVJ+UcYZKnIBERWMt2lNdd+8JtY87ehan578im2ro9C/0LEZN\n9h6sgU7DJWRPMURrqopTyyNZCNbEBFZydeKcYohTTrcCllgeac3OadcA9m+l7Jg6mmNR5Nqtf+qs\nuSmMmCGOh2UYIS20IpzL0rip/moEjIEhzJYRzBL2QDUYLqOR2jFTQ0uHvUIDh8UUF8BJhCYQrnVI\nbVmZPc0UZk0GO6DqEGj22z7IcwXGjecc5JjiJTRvKr72dAkMpn72mHWb2chq7IU9WF4JbLEY7Qmf\ncZq4DX/AHvjwMnfms+/1iNtOAnFzRfMswCXoOAyRGK2S/jZjCGZhxNow3YP5iN7FDO82D4eaS8dm\ntD+fX9S/uztkA8D4a5/UO8eRpxSnEvTqej03h2BRNdjPM2ZbPFOPPVCfd7E62Qkz6ENNmKubNxTH\njl9U3KrBaOluak9kNVxel7V3GfE+MoAB6DQcfdhU8UBM/hwXqJmW+m0eNq3TWUphLqaeBvfZq2rv\naAPnNQaJc0LMM+eKqnfDMXuBBw+03z16XvG5fQQ2rmNeOvYUWpx19g4TmCgVtHgOWyawaFu0I4ZB\nb84wjPebGgypHOcjtxUpwyYJcflzTP0k/sM5mjLXx9TXZ58RhI8HdSnNbFRNrUIfOcawe2folx3b\nyLG60K/hHWLK3r+UON0a9N8cNZk9fZ13nDEOYLw6WQZ7PonQiIJxMiIOVUvsy1ibw3TCddgDOIfa\nAVkMoXNHZs8DxXGI21KZrIgx2n8eLKU6fR3AhIxh6DSdmx7vQAmauB6M6hgmUIX9cYyGTk7mT5o7\n12eCwb9TCqZMUYpSlKIUpShFKUpRilKUohSlKEUpyhMoT5Qps3xUJ9gnn9Vp8YDcMN/lx5Pre3FG\nSGxMzmiZ0+e9rtCnfqTTzbVrsD7Q1ZjA1iiDN45R/J72dHq8CGpUOYVafVefv/k75VteKwuBDnd1\nsrb0nNT7valD83W9Jlo01YbyOedJUe3BEqiib7LX0qltDkvlGi5JszPKwwzQfUk3dEq7sq/fT/d0\nUnf+7BkzMzv+muoRgrDEVfLvczQScCCa4CCxvzuyyZr0He6v6mS8t6W6lxf0nVOXLula5DN7ZDuG\nMDmaoPg9UK7A79M2PaO8odPACvnIfU5uPZgpISfuTk3+sKXTFAK3PXAn0jptDEBip6DStQNyKVuC\nX8q4IJU9tfOAHNIKzg45eYwlTjcDd9oaupN0jYVaoJP9iYe7UKIx28rd6TC6IzhxOZV052rUH+jv\nAZo4Y9TeOzi49BjrLXc86hxi2mi1YAOVgpyMxjjgcGrsg5rlqf7eber7XqD6NdGUqXPqPC2Ra8sp\nd8Dpb4ajQw+0qcHYmsD+CjwUxLugTk5Th5P2WVgAA08IRuhpjpUPhKzEoJU1xqoTMh8nDp3Sdaqw\n2cb9w8NSKXX74HlpoXx7Xxomv+trrC9/W2jIwc+FPmczihufn9Uz+Mat11T3juapcw6YzErnod8R\nQrtS+5GZme3+/G/NzOzrxzSP730g9Os6ueoXzyoO7Hf084cPhB6dPKG2XfqNnuFHkVCmPzmlsXXr\nCzFv3npZaHzt0x+amdnV+D+Zmdmnzwg1mv/vGiznjn5gZmajRSG/4/Q/m5nZs6fELLkzFEI9vSTU\n6ARsqq3X1K7Ou3KfundSczpjrLzxI/XDgzdUr2YflGhN933znj5/fizW2wquJ9vviz13ZkEMoJeD\n75iZ2T/U9P0/uw3D8AeKNZv/pOu8tyJNsSUP7ZwLGtMnHqrfPjivdpxeUQyLkrfM7P+yGV/aXocu\nIKBlnMrStEa7QUxi/dxCf2WwyxzDoaYEM8hcnndD/dEkv7syAtEmVrYY087SoYKbRzZEz8nJksC2\nMC+zHro1HZh5CbG8OSJ/uYW2DN8NXI59RdecQJjIcb/JcVtoxnoGE9a4ALemfAuUvqbfj2Dm2RCU\nDAZMAHLZQXuqX9f3jzt3OygqAQy9CiysaoDWzJ76pg96NbMDau+0bHD/GcJsacDcCapoXsHEtF2u\nW3YaOaBOB6BbOMZ0ib9e8NWYMvs75O6jE1cvCSkdwtod3Nf15i+rXXMwRuugfSmuVHdvCBkOu7AZ\n2Gp56G0A9lmF+L0PSyJo6N/2JVzyYPw8YC6UQPWclstgU7Hs+HL7URuOLpywDK2BOuubY31VK45l\nof4bblKfKQi1Y5CGjvmk+tRHzuoGBipMR8cCcTqAg55iYn9bsWp58aK1FvUMu/cVFzbuaN7H6NOM\nYDuVE60VszGMxJNi+h2ZU/xtzrCPGmrf9HBDTEhnBjLT0l6hvyfGTQmNsfp52AeM5coAXbaGHlo6\n+7jvDlMSdJ1S5p6P5oDTWOiCnHrYh5QDGCwJbNgaYwG9p4x95AQth5DB0XaaBSDAM8HBH/zss+aO\n0agqNdAizPke1xmEaLOwN6m5+vjOmdKxqdCAGDmtCPYKHWIO7CpzLqWPNBhgg4DK5wShKQJWNdyN\nXLuHMFWCPkh0U+3CLNXasJqdVk4zw62QOD2NnX4VSDwaO6UQJ6Nc/VAJ9LOfP3bEiTKzGEZOG12t\nMUyrSgVXVuiCLeZer69xN4MWxWFKgmPVxHNaH7B+2Ce22K+FaGBFu1AOmVfOVdMxJxowWRKcZgz2\n2AFrcxMNmgx9sofr2kP4Vdjz52H8wQjZWNP87KEVVeJZt5bZF3P/iDVxhHvRSV/7u3kYMIMhDJlE\n8WlA3N/dcu9YYuDH0Iw6OMg2ceCKmfuzxzQH67gc9WF89pHS6fc1hton1Y7SjNo7vK893tRplLmx\nxRjZ2oSpPr5BP2jPVYIh6tXVPyXi3WRPWQmLC3rH6syp/Z/D/PPQHVpc1HWmrF+OgZq4PcIhi8e+\nO+N9wsN5LYXt5ptzq4WZioaam+Mp8diHcRPA2ElgrSARZiVeqn1YdWWYj372mCWY2tRK47J5sHEq\nToOP+FKFOZMxhgPHGGYv4MF6zyqszROcrdDeQ27U0jIOgAnMFda03J1G8P6cDR3bB53SCc5hMO2G\nzM8ymlCxD8MQ5qKTci25bADOAypuj8P7cgOmXMZYHNQcs0edV6+pniN0h5qwyQaOcc3aHtDuac47\nIO0ow5rNIFGF+R9/tymYMkUpSlGKUpSiFKUoRSlKUYpSlKIUpShPoDxRpkz/QCdeN94XUrq9uWJm\nZjkK3xkIYnNRaNTsEacszsmV0+dADfrS82fMzKxWIocYJ5g+OaFjlMg3cBjqDcjpJ2du8ZROP9t7\nQmLKc7pe5aROtk4+fc7MzG59IneTD9/T6etgW59fuKC/zy/qZL05o1Pf2VmdDp9tqf4T2AjNL8TI\nSUcg7us6pV19IOS7OYv71FEh0XucKE7v6nu7a0KEPHRQfE4KvVjf663qFDyysSXo8czOzPxB3VzK\n/cp7QulzdHpmn9Y9j+PSlHKy7YEif/Ku0HY/0r9jh5RySphChWi6E39OJVuzWCscsiQDjYEBGjIl\nmDdjTj2bJGgHqNunQ9UjbOPakejfkBPpCWhL3anie6jfD9QupFasD8pdg0kSlHDK4fTT5R9OyGUd\ngYbPovxt9HcChFpFA8HBekMOS1stmDAH3Bh0KUxAs2LVL2iq3lksBGJSczoYMJFApH3QOMegmfLc\nUpDmFgrhA999DvSsqjkywJHC94VSllO0H5hDIxg/SRdWFmyQEJeY3DGNYBRF9LNzlXHo4Aj3gcDT\n5zzTfafkg1Ybh2dUXU+FmF4wuaWNZzgx54T9wVSox/xxodcPA82fmduaj9ML0kw58xtcc7xvmJnZ\n7gnNw3xZ3z/YE5p0paz7fbAq5HeuI4bKgxOab61FzfcLnuZz6UBuTJUP9Plflj80M7OjaKz8/HUx\nAc989qe6/juaU+k3hQJ9/mvlZ7ef1/d3v4cmFvHvLbQRmjcEK937hebY6Quq5/iW4tX13t+ZmVm2\nr7HyjCluXbwtRuC/1tEdmbliZmaDWV3vxC09mzMbcm7Ye1Xt3CB/PH9W7bi8rXokS+q/zz/S3Ji9\n9Y7u/03NgZNv6TnUXlgxM7Nnd4Sm7b6sePZZrP67m4gp6H0Ji+87ikXDdblCfeuIPvd/2+HKgPjZ\nQfslXyYXGMS55lCnPSbhDOw28tmd89AkV0yZhRU4Jj+7jN2HB5rlnMrKuFrVnU4SLIagpvsc7Ojz\nlXLV2mWNsaQPEtaCwTeAIYibRJppjbEyiB/IWgjS5m2AjAEX+WiDzEVOe0T36YJq5+RZd3BUiUGh\n66BKHluFhPzs46BofVCok07DhJz7PuC0Q7M9kL1OQ/M9m6pPG8BJkz31UQUmnXNuMTRsaqD4JRyu\ngm2Xxw3KjWZKCGLaGOu6m53Do9tmZnFfCHJGPy4c0Zhe3VE/1ZbV/oWLih1tNFi27rB2j/T99VUh\n1Zee19itgjCPN/W8KiDlOUyTBkzGCY5rWRe9EmJYjXUqKcEmxsmr0WR9q3cet6Fh9uDDFTMzG+LO\nV2Js7+9o/SihPZAZUCq6JQmiPkEKKukYnjBncxDZJMOFZUFzv9bQ/W+PdV/HXlhcWrT9u5rXa+uK\nN4tH9Aw376mNVTRdKoyN8qz+fYp9zxxMtR7xrrvDvMNRavmc6tA5K0bNvc/fVx/hrDJ7VOj6Dhph\n+yFsH5hzlf8AufwfSwmXEMM5cNLUXBim6DvAnMlxYJwwlppoGDpmhsEgqabMCeekBdJrOWsm2igj\n1k43x2plHMhq6pe+iXHSIB5V0WeKYLM5dmpGPRuwbcdoYlV55j3YqhlzKoNpDnHFpmVYDXRblb1S\nbE63TmO4hiNal6W83gGp7jOGcfQJQLqdA6ab0zXYbuMchB5WQhv3qqSksT9GX2/IXqk0QssGdljz\nkdObWZB1rOR0BGEcpVPdZ1pCp2/I80CyrNzS70dpZoctc0uzXIP9Eqz1DlpaIfN3Z12/78OeLx3X\nviskzlqgtTep8Sx4CFP2VVWYeT7OZs7Fbg9mXSOE2THPXidifwxzvc5cqzL/q8T/EHZAAwbOkL4K\n0Yu790As1YMHins+zBkkp8xHC7I0qz5z2liG5uQUVsLGqq7z1IJ07CBX2HTf6S2hM0KcPbaEax06\nRys3tUfrHNH9z52STmDGfjc/UHt3WW/mTmmv0ZzTdbp9sYGPwK5qws5zTrzjscZKb5130hOqT6ru\nthQtN5IwzA++2nrjtC5Tl0nA2M4Cp1PlNGRgJMIELfNe4hhYue8YMuyr0Szy0J2KmFsltMJip9H2\n+0JJXsn8emIx74B5jT0F8zBlTa4w31OyDzxHbYGdE4xYo3nHiFjjAj6f4poUhY7JpnhRglESwcjz\ncTtzjERzrwSsnQHM7wxWmkdcKzlNLdyTUkdjZfsVwIjz6ZsR9S7DvKmay8KACTRx+qE4YaJlU+bc\nIXrkdOl0pGA30R5eXS1GH6pUceyn/3kpmDJFKUpRilKUohSlKEUpSlGKUpSiFKUoT6A8UaZMc9Yh\nGVIMb8BG6E+UczzsO6SS08hMyOnBKhfAEeHS1142M7NWk/zsHZ06r+NocOqIEJRTT4MAk3/ugUSM\nkKMPcp2eXvnu1/Uz9RnAoqjVdD+fU8kqCEuE6n9lTL79qhCheAYrCHJ326EQm5DTzBGK2G1clEr7\nnByiG7DQUX0Wz+mU+/N35RJTwhmnNku/jPT5uWVd3yeR8PzrQpqyKDePE9nyLKriKF+nIK39HVTQ\nB/r90qxOjutLatsmDlQz5NCT1mcJmiO7I504V2KeIXo/zUXVPezo9PTIHMyLQ5Y5/wT/U1/vfy7U\nrX5OJ+PTc+pbfwga3UZTgBxKD8ZKmdPSBn3Xn0WLANX3rIMWi9M4wall4BwKOM21XM8u7pMHybFm\nHXRpyKlqvexygWHCgBw6BkuMO1OXc9FKA9SMPMoBTJkyOcc9cv490K0c1N6hXRl51000KCLQOpez\n6rVxxxqDtNfVXykssTpMnhR21j7sLb8JQg8jqYoy+tix1CLyztG0aIMKTkAmfJwYyrQ/Bp1s8m8I\nMj7lNL6UCHHtJ4dHL69+W/PizoGYJsmiAsTzNWnLTP9RCOnaayBrm2JaHJl+amZmo18LXem9Kubb\nzHsa3O37iiv3Qj3Dpfs4ypiYLksvfl8V6Mt16Oue4sbodzBhcsEp/wzy+cZzus5LE43pW/d0vTfe\n1mVab4itlvTP6HvvAjv9iX7/9QfSvnnzrq4/+pbmwOV39KyOvqB6/1tPjJprIH0vXVW9bv3i/9Xn\nLvylmZn5X4oxNFyUbsYzvhg6yY7+Pf5bxZMPF8T0yXfQncABJx+pvxsfCU26fVeaPsc9adhcOSvE\nMruq9v88EBq2YYrjMe25fUCs+BgWwikxaUp1uVD5b+j6J25rrNy6CsJ6/Ku5pmRTnL6cI1Cq9szh\nFjBCdyXFvaWMjoZDwOtAzRNYDRWSoBdjNCFcfn/mnIw03jI0Z3zyvVsgQMmmPteoo9OUeGbozUxw\n06l2QV9KuvZggmZWoD4ZpaxJdRgXEB8S1qgsVfyYBc2agMDWtvX7Kk4AFV3OIAFZv4d2S9PpsnFd\nUOd0pPo597ekgXPKvq4718CRCg0xh9KnuzAMZzz+DjMHxmECrF5iDYxgs45BwasgpJ6n65cmbi2n\n/iCWocs7d9DtIUt1Riyzpy7gKrSgNTS5p0k6iybCEvom965J5+iLzxQ7ZqFanryiOXXkjGJLlz3H\nCEe4GI0w5940ZC8R4Owwod2dGdX/9EXp333+0UdmZra3JUZOCFss2+w+asPmZzdt/bZiokM7z1+S\nbl9jCWYiLJMwUodV7A8ZUjHrrY8+UgXtNo/15f9n781iLUvP87xvjXs++4xVp+bqeR5INsemRHGQ\nREEDbdlREMO5MJI4QBIggWMkNizHlmABQWQEhi8CI06QAElu7BiSLDEyRVnipCappkip5+7q7ppP\nnTrznte8cvE+f7WaFslTN6lcrO+m6uy99lr/+P3/+t/3e7+4qz1LCMNy+4p87ugt+Z4TZy+amdn6\nwxfs0rfxa45JAUqdvSKdhrapTBf5zQoaXttXhcK/Opc/ag/Ye5BhMGaJiLvsq8h6Ob6m/VfLaRPA\nJjjclQZWAJK5sgLLKL87PxK01GaTBJ00NBcSdJBaaMogaWJtx0JlLRxmTq8NRifZpiL0I0qYfHSR\nRW2yCpHqzLGCx7BuHeOjzZ4u79NH+KEQ5DuEZWX8Pqddclh4Y8ZghLahD7Ts8XuPNbuedyg/PgSn\nMwPlD9GWqfi8RssmG7EewLSJYBrm6HlkqZ43pN/c3qRgDzQYo/kC08mjXZ3Ui5+5AQFLGBZY2X4P\ne478xGLmnMtEE9MPHhoZc9Nc6oHER3P1c9Ke2HGtO9BvdvfYe7yjaIDB/fIH8Ux1vX5NYzIciKGx\nQubZmuyWXacfhJ6FB5MywO/lMOACDz0P3ujcfA5gHczIqumyg3rULYMpeQiT/YJjxKBlaLCoyjnZ\nNdGo2jvSfr88VJucf1CMwC5Z+W7tXTEzs4JB3D8hP3r0hvzl7lhzNGB9Gqyg6wl1//C69gSjqfb7\nPfaVS2Sqne6pfW7f1HMuPqYMjyWT/sZLZH9D46aFTsgK2oaLTb2XzLfEaIxa8ucbm8pEefsKmeBg\nnw1gI6+f1/rgdJ16lDdtsy56d8eUCWCAFpXTn4MFgoZbyuD2YDCRBMpKl3XKac700auaMKZdVlx8\nndM3IZGQhexB5vae5prvF5ZOA+v3eAeh7wpYte2WY6aQKYqxUNPnvsvG1GE/lLuoCfxKy71DwMrk\nfu5dcsY7U41eaASDJUOrsWbv4hMlEbGf8tA9TfFrXg6rDJZoxTtGAJM5hSXUQeuw4r4p77ItNhMe\nTJs5mpVdWMYpxyYRGb06LvMwbCSXwTGCXZqbyw5Fu/0I2aGGKdNYY4011lhjjTXWWGONNdZYY401\ndg/s3mrKHKKJUunUNUHV/uwDQlQdW2G9q1PklHi9fFunqLdv6pTT49TZxbRuvyu0JoIdUaL/cTBB\n94SY3OGyTl2XyEC0uwXaRDzlDnHh04lOs4sZMbigmU98UKeqm4OLui8xpy99R0jv/Apx88R7z9HK\n6YUuQ4/ud+qsTsdPPiwEvQULYroQGmYgt3VPvz/zmDQlej2VP0mIV93QafT+aJfyqB6T2zdtQTaJ\n4AidnTVyqnfReKEsq8RSHiXqk9Eup54HoEMONT4jlOnkhsrSmZE5Ab0fH/GVDoHNO0d6vody/3Ft\n/bRQsPvGQt9fuamMM7P/mQwLJzU22ug0bPc1NnpkYZoQE79CFqQRJ8Q9YLY90KsaZk90CjYAyHJc\nuLho0Lcj0HZQoRbxyFmssTX39f2oq/br9lS+FoybI5hI3SkxoC21W4dwOcGEAAAgAElEQVRMMNtj\n3Wd5uGT2K2bjf0ZfgkjP2qrPAAR0TJajrsgStkf/xKBoCRkGLIbxwul2N1R963qJ+qkcvsv6Qnal\nagFSCvo049Q620Wb50jlS2h/G3CCD3ITwmZzmjsB8d9GvH+SCEmqQQzqNaGjSw8JLT2OvXJNZf3o\nSfRwLunvV440fyFW2Dunpfn08a40VF67pvl7cktl/eqr8j8f/ryQ3Yu7aqs3a2nVHHWEsjwF6v0i\n2TtWbmkOfavSvP9cR0yQ8mHFUX/yKxo71VMgcB1lgXoeNONN4nwPyNJ26zpn5aBtfzlVG05eBJ16\nVG2U/M4ndRlaMOUfyi+1H2VOfFvPXz/BXP6reu6uqe0vLIQuXUfHJ9vS9a88J5Sp29UYefpAqPvS\nJ/TcPyQb3c99RPX97tf/PTMz2/6oGvq174oN8MBMjByv/RUzM6tvfMvMzNZG0uixz8ivPtkWu8Aj\ns9roqz+m52bSojnT/riZmb2wqTmbfO8ds3/f7MXv6H7HtfZA7bM8hmGI7skYnxDzfB+kowQBWso0\nPlpoSGyABHsO8iAjmWPBFWQYasHWy0BKHK0uTGHHoS3hgQh5SWUe+jYt5o+B/lbM9/PEKU+If+5z\nzwL/EaNbk4KkttEU8JmfLtNACWrTQ6NmRgx7sKV/T3kaIy6W3XdIq0PF+LsDGp3yeYvMJfVEz3XM\nly5rYwXDZTXTmE7JPLO0Qj1g7oR76pwEhHAVzQOkyyyEXBShsZBVLq5czwlATNequ8v21x7o+Sn+\n+8a+NAtmI/29uinGyQzNn+vb6M+h53b2oYu67mkh4n6q/huNxdpdXyOTC8jq5duaAwYS3QfJtRH+\nVbczb6C1PU9fNDOz2zflYy50nuTy9/C1LPet67LysZdZO4vOHgydQ7LizW6T5WQiv3zmwn2UA12Q\nDTX0aIKIwlT1XIYdfOudK2Zmdg2du4D+HT4k9vN4a2qLXPNm+ST7G7SUpgu0/M5q7C7BaC59leUa\n+7h8rLZ/8hNC4+c99oGh2AdFqesXYz17Rl18WFIBmi1tH00S2iREq6b23tMcOY5Vpvt20IwK0dlp\nwSxpRU4HD72jwGkMqM0y5gwEECtrtUfCPjVua044f9hKNfYXZCLLivff1wdVz/FjAazoBc/voPM2\nR7AjH5J1xOkATlWuLqys2SE6en35gDDTfWaM5Zh2DWEIVegI2gJmTQdWMdnoem39m7AH8VyiIXxL\n5hg9sJwnaOv0CjKGoSsyIbNOH62YmUtExB5oQgacPizhElZJPHoPmk6iwjL07lr4RCfxU0wZH33Y\nuqlD0llXveMzqiLmcQRT4RZj80H2g3Nf8+/guvb4EVTEEzBB/ErzbR6RdeiU9hgLMrEezEhLRKas\nLpm7fNaWqIsfhjWfw9jxeZfoUr5uovtXnv4t0C7MYSUhMXgnasByjYll9m+3TfeNe/LnS/dpv/7O\nG2K3jcYq52Bd179NxrU2Y3iI1kxERsOQMX9E2iW3Hlx88qKZmfXRzjm4IX+zscL7wXkxCRe16rF3\nqN8z1e3++/WeUjF2BmSvunQTv35GfvzMmu53803pDHaX0MH7oPxvApM934fhBIutZJ1xOlfHNTcH\nIqcx5nRZ2C/XZL9rwzKBv2S9QJ+nZMutiSYJyCpVUZ6ScVDhI+JQ7TmL0atKu3fKUs9qa/XqO/sV\nH2ZcwDxxemIBzJnIbWvcfog1Ny1cCkgYIi2nxQRTHW2oFmxQpqu1UnSA2D/l7CmqhSsjGn2ufFw/\n7cEeYw2tHUOSrE8GG7d272zo8ngJGYZhMnu8C2ZES4Qu+10bxp/zX45txh7MYALVLioC1n9BQSJY\nbrh5G9kP9yMNU6axxhprrLHGGmusscYaa6yxxhpr7B7YvWXKHOhE7fprQpFmI526VnOdRGWcIr7N\nSVNc6QxpgTr7fEvXp6/q9yHQZ8rJ+n0PCdV681UhKumuTlEzTvSrJxX3PeT09HBHp6NZSoYbVJUj\n4gZboJjdProaIAE3r+vUe/UkWTnW0Zw5EAOmahPTfEXIz3VOiSviOPdgabQDnboWnJWV1Gd9Xafk\nHnGUu9d0fH1rLibA1q7KO1yF5bJHLF6qU+AsL23ttDIUGCf0i3eFAOYgX21zcbaykJjJGs2SgCTr\ntYtD9onRPKXMLnMylAxinWS3ODn3iEU/3JdOUBzdXfalzbmuf8akizEDjRpXasv6FsgfMfA9GC6l\nEW9sLk5YY6UA5UI6wdpkQHDn2967ZBnhkxn/RvwiId644jkVz+nxnIjvc+ME3NTOIdf3zKnno+Bt\nTsGcuETKUd5CU+Iacdd3ykGWIurhU66cekS0T2WggEa/mMuQgM4FY8wjA88CV9Am6NRlWym5753Y\nVVvlfpzUU+4295tPXHk58ae+XWJXnVL7nHJ1Ke+Cmu+8K+To9os7dlwb+kJYDxmbl8iG5n+IbEC/\nJ1Tj4ZeEAg9Pa77Fudqi//OaN/eDUN56Vfe58NovmplZC52dTxO//RvP67onvyG0+k9DMWueeFDP\nuxxrzI7e/JqZme0/orb7/Ku/YGZmv/WGmCTBX1IfXfii5uTuZ9S3vdXHzMzs/PUvmZnZb66rfo90\n9f0vADXeLP5Q9bwoJs83XtfnH7umuXZwWn/vD1Xvx7+iMfXHnubsETHyN5Z03ac/ofK/+S/U51tP\nfk7teUZ9/EChcv/SKTFuXiRjwQVPTJo+cc2HH/qrZmaWLYvJcnVPfXx0TT7oWw9JF+Ppnvzzzd8S\nA+fUCpnMPqv79CMhlm9vqXwX31Q77QES+h2xEY5r0YQ5MEZLgnj2NZD1bAC7Dx2UHloXAUwipz3R\nA+nxQpddAMQFHZSSmOgalktCfH9dkLGGSZ4D4wU7IfcLzchuF/CMOahKJ1VfVZX6qIMGiw8zobOE\nf56jg0bweZ/sRdPKZdVBK4Y1aIEfWUHXIp5ovoZoXM138WsgpQnsnxZrcUxc+II1O+yA5c1d1ieu\nA/0KYOKV+INxn+x0B/r9DKSwner7JIAtwJrWKoSKLVwmK7LzdWE7FG00v25rbB5uaswc17JU7XX7\nJpnXdjU2sz2tpUVP9zvckYbKHN26eFVzPmZvMLqirCKHV+R7xqzdyxsq/7u7V8zMbPvPtIaHsEcG\nZHuauv7fV7/vkDkyQotsQfaSHM20rHhP7+Lg9pZl6JaQHMSmsHwPx/KvB9fQgNmDAUoWlu6G2m37\nisq3u4WOH5mLru5IO6cdid12HaQ/hCE6vHBR39Mf2zevWHmksbqXqi2PrutfQ+9sAbvp+nX5l+m+\nvj+YqA96AWucy0xyoD4qyTJUkM3nYE9l8UDBM8owK8TmHM/QLmEvE0baq2Th8bPqmJn95t/7B2Zm\n9uL3fe5kG3L74eaQUPdUtwl3ahTuPneXE+q937k9hFuxj1u77y+XM1e+HyGFcOzrjvv7729PVx+3\nV3P8puOqePzdf/R37df//q/+O/3z/c/9QfV4+pjPMTMbofF0BOu9z36nRO/CYDAGjk2JZmFroLG+\ng+bK7bfFCPFDzbeQbfzRVfkXz/nPNfQj8e+p2wcytseZynNq/aKZmS2dFZPtnTe0j+6A/vfR95lV\nML9pjB7RBS10d2a862Rva+7tbGvunTqv+/qwvjJ0Qf0lMYAKNKw8etGDEVqwtrryJmiWRTC7+7Cv\n5jCDblzXnC55l0tdpy3QY4Ll5EcwSDZZN8iGdbBzxczMQvbvU7JSeax/5YE2GcPT0iGNAzX81tvS\nIczQLznxAe1B8ivac+Wp47Ic08jgUzixGLLtpaVj+ZE5GCY5RBcrFuifOJ0XJm+24HeBy3iEzhQs\nuil7Hp+MbnH1npep447VVWmRI5jA9KiZCTXUmLx2DDL3DqK1rWTNocnNC50+GQxiT31fU4mqgGEY\nuqxGMFAYwzFrv8Ekz9yMz1Q3lxi2DTusIkNZRCbaeuEYMLTpHUeCpkyMVk3mdNOYizDiAvYyCXOj\nog9cpssYTUGCE+wOKRf9o8yJiqFZyJbLutUP98gNU6axxhprrLHGGmusscYaa6yxxhpr7B7YPWXK\nPPRRMVWe+5y0EQ7GOs1dXdGp8HRfqFSNhsuEWLB1YsdC2B+Fhzo02TMyMsGsnwRBP9R9vHOoNHOf\nFRgocaAjt7VlxSVGPVSaOVrrD9EA4GQwjZ3eCPHYIDc1eizdzuN6HiwUd1I3GYOswggqOLHzOTnz\n0Q3IShfHr9Pv9RWVc7ikeMfeuhDk0Y5O4jZB/qeVnn/+orq1CtFGqCo7NdS9ghV9tnNbv0lHThkb\nrQC0CQpQ3QB8oqBNS8cWIt43ISuPH+v7iuw8ETndjZjaE/ef4zpOO/+5Hcs6f1PleUKJXewETJGE\nXPEuA1cwQkuA9BsjF4bIZWXs9B70/TrxyUbWoYwA5YLY2my4xt/E+o9gkLTQN+KUdAml8WkmhDMn\nTr7q7lJ94uXJYpFOYCChadPu6fMYbZdsrn7pgpj89U/8sj7nxHtGppelXBXMl4mjTl2WFk6h3ZiK\nYAfMNOYmaA+0A13nkyEhJOa55r4lnKkKbQK61ayCXQKra0ig5JTxk5K1yULiL8kMVrQ1Bwug28jT\nnCtRco9GQkVf2hVb7cWj39J9HHXrh9jDa/rtNy/F3EtZk5LfFwr9jc5PmZnZOtmPbvym5k89EBr1\n3S9p3qfPaN4+uiEmydWf1H3XM/mjLy+ka9T5DTHgxh/SnFra+Hm1xRd/z8zMbp/6CTMzu/CwEN+1\nl4WWv15LD6n/CelAPHJVlTvXJxvI69K8qQ/kB69ufkbXB/r9Ax+R1kuUaA4tPq3nnkGDZrn3u2Zm\ntldKs+X0mjIdfO8JzZkXb6q8H3tTfw/6ut/HMqFB30Iv6XkU/4d7/1rlLoQG9e973szMfvcratez\nJoZQu1L7rIS6z+H2vzIzsy998ykzMzsJmvTJTdXr+k3YZQMh40uwNIJC7Zr8ocbiuWdUr1eH+n51\noP576KLG2P723SHc28swXHy1+8Sx17pqzxGaX8bfAUwYv8vcAMNwTJoIxCSB+pIRm9zqa6w7xCYH\ngfFYba+BRccJWCxaCoU3tw76DVkHnYUCAQaYDi00ndIOa04LNg9IW8I8rMgE00VDIAGtqlnT2pQp\ngcXZBdFdDMi6FqOJAAHD6xIzT9a1Ln4gJSNMl2xKdaw6V/j5Gj2JaqH7eUv6OwQRrECTAuKwx2QL\nGcCISSrQJpedDX9dg9gmp8Rg8SOnY0Hc+FD1ONy4O9z+8LIQzwKGzzq6I5Nz8hkFfm1EdrkTp89R\nHj3/sKTvD1Rex9rdPI1G1pL6K2NvE7V1v1W0Edpk+WCZtcOZ2rfNere2ibYM8ftTMv107/AIzNZP\nrNgUkYoByPcY5N3Qw4q7+vz0CWUhMZg5PqyuoyOtF23ScZ06pc8T1rdiofKfXodtQvv30ZCb7sBA\nDSLrsG8pgGB9GGsbZ1UXjwx/KWh+hS7RmaHKVg3QHpigfwGD+OQ57f+CHixNWESrA63dOWNpvKNB\nHJJhcdB2bF0HCd9dxpT/401xZDrsGcIc1inltjDlto69xdOYkz1PH2RouuQR7DFYWk73oXB7GE99\nX6MT5yeUF2bfnTlBhplqxnPwEbnbc3hcD7Lt9x3bF4Yf2g2Zy34Us6eCmVkdqZztZTKlwTR11JV4\nDsuPLKVzMkYWS2hMZOrnHv23QPPQJaypKj04JNuhY+ONB7BBQOghiVkrJfMb+hi9heoxbWuuhmTe\nyXyXO87s3e++aH6MphhsO+cTPdrdh9Vnqf6doI84Qrvmwx//cftR5i+pLGdiMUSGp/VvANofguIP\nT2u+18znPu8+ky2t+W0y+J16+qLqfk37yq1rYsq0T+h+y7qNzdEs7MBki1ZgPpKxxifDzYAuWScb\nW+mjJchYDjLnP3TjwRpsTvxNmzG8hB6cywyWwehrw4gv3D4TGkG/rb97+NGYMey0Dn2yQQ029PsA\nvZJgyH3QKVlSF1s91J6h39N9JgvHslW9YhikS32YPWitpTPV58R5+e+VTf3rpSr/yQe111tFY8u9\nKc8nLpsrfntd7wOHaL2lR3enKTPhvaSFr3DMci9yGjIa+zVaMXHgqDIwaxzjnX11wIY5YdxkaDg6\nH1HwnuZ8TJK9xxubxaW1q47N8V+GlkqErs2IaRQz73Leg1tkHQqHsKi4Z43WVMj7ecQa7ihwKaJa\nScJ90JVzaeeO0JRtZe/PGDbjXSnBP7kMtOWCdxGiOAq0oToh70DsZSJYXEeM+TZ7lCPHaGYvFdIX\nAdo1M941qx5txvMqmDF15tqe/SGZMV2mroTfFX7DlGmsscYaa6yxxhprrLHGGmusscYa+/+debVL\nMn4vHu55Vtf1nROwxhpr7D1r5kZjjf3F1syNxhr7d62ZF4019hdbMzcaa+wvtmZu/H9vP+jopWHK\nNNZYY4011lhjjTXWWGONNdZYY43dA2sOZRprrLHGGmusscYaa6yxxhprrLHG7oE1hzKNNdZYY401\n1lhjjTXWWGONNdZYY/fAmkOZxhprrLHGGmusscYaa6yxxhprrLF7YM2hTGONNdZYY4011lhjjTXW\nWGONNdbYPbDmUKaxxhprrLHGGmusscYaa6yxxhpr7B5YcyjTWGONNdZYY4011lhjjTXWWGONNXYP\nrDmUaayxxhprrLHGGmusscYaa6yxxhq7B9YcyjTWWGONNdZYY4011lhjjTXWWGON3QML7+XD//P/\n9JfMzOxv/NxPm5lZ78RZMzPL87GZmbViFS8rPTMzi7LKzMxSi/S9lWZmtgj1vd/S9aGX6PuZzpxy\njp78Sr8ve7WZmc0P9LuTj95nZmaxr/vtbN/UfRZtMzNLvJzn6Ua+r9+FdWpmZuO6a2ZmQaj7lrWu\nawV6blzp82mi+0QD/esvIspHfVqZnlcVZmZWpXr+INLnk4Luauv7noprdcD1Mz0w66k8cTqnvQrr\nVD2V0dNns6BNWfWbYagyzRaxmZl1Y90zyfV9p63fFSl1L3XdPFabtuuWfh/NVKZa9w9UdMtmIzMz\nO3PufjMz+7V/8o/tOPar/8Wvq660YVWqHvxpXqjnezworFSOXF1jRahydylfVaj8acwNfNUvWNDH\nnu6XcH2ro8/rXJ/Xvn7nRTR+qbb21Fw2o+8s1Pex+50rb59y6LYWMaa8Ur9LI5WnHWgM//rfpJ0i\ntXfMGC58Xe8n+ryo9XnmaSzFHcZ6udD9Ij13oeqbFRn1UsGCin7t6OtqrnKVHY25qtb1XqILqq7u\nH6W6f1Hp85j+qLlfHen7INd48DzVbxFyP+ZynOp3Ac/PGdP/zT/52/aj7L/6O/8dbaAxNs1V17W+\nypDn6gtvpkYvfPXZzNNYZdqbHzB/SuoQqg3CUm3QY/rNWpQ5YSzlGmN1rOsDBkPL+txPz60KtUVI\nGxSxxnI/1u/niT7fiIeqRzk1M7MFbYp7sFZbbRky1IqAuVnpeRtd2ngkP3pIeSr8kufTd4XayW9r\nsszxEXml5wbM/cLX76IIv5Wp/r5l3Jdy0EBt/FbVUrmCVJ1aZmroItJ1Af4zxf9ZpjG/FOv3vWW1\nb7xQfx0uDtQupvr87X/4D83M7B/z74+yq1vfNTOznzn3KTMz+w/+0X+pck2Y64y5pFb5Youphyq4\niNWeQ3xkFup3Yah6+LXaJ/dUX89Un1mh8vcr3bdONe6Cntp3Xqg//DyyymPedPCj+Jeer78LT23j\nsyZZrT5PKj2rw9itWItqxnbVwu8cqY7eQN/7+JGE57g50M9U1yzS5238Y4YfCNqszazJLMXWofyT\niDW71piqW/q9x1pucz237DM3Wds8fu87/zDpUG8+ZyzmPY3RVsWYzlXOEMdf4Ve8QPf/O//gl+04\n9r//jf/azMzefkDtdSp8wszM4ktq96i8bWZml1K1u1f/GzMz2//0J83MbMneMDOzZ75+ZGZmv/vo\nupmZPXZR7X0u2TUzsxfaP2NmZsmf/I6ZmQ1OfdTMzA4P1Z7PL+k+16IPmpnZ7Zd0n5UL3zEzs/4z\nHzAzs5vf+mM9b3HiTh3+/n/y1yzxzpiZWba0amZm959bMzOzty7rvv5Q7blJu66GHzYzs/kNjbNX\nPvqKmZmt22P6/NUdMzN7cGXPzMy2VtR/py6fMzOzcEP3P0m/vPSN18zMbNRv28aTKtuse83MzB74\n8nNmZvYHvso+eGbJzMw+u6e2OXj0583MbPtrmq/9p7Uv3O5rLOyNvmRmZo+O9ezkvPzl6fxdle2t\nmPtobFSLfV2/8bDatL1lZmYfvPITZmb2R4dq0//pv/+ndhz7b//Wr+o/+xrTwSpz8IA12WcP1Veb\ntFnsq47GVMkeyk80xiPWqTnrRG13FmkzM+u0NYbTffnTkr1J0Gf9YD1blG6PpOvc3qajr22yx5zG\nDw06rE/47Vai9cnvqRwHexoLsWnst5bVziF7k71DjfGYTcMK+87KNVShcs/aqmexpXJ5lLvdVzu1\nmKPjPd2vLDUe2id1386hvp+wPgx7zO1Q/85i2uvolpmZJR19HszUHmnu2tPsf/jP/hcrY9Yd1vN6\nonVlzDrV9TRu4mX2OgtdP1zTOP5bv/bX7EfZr/yT/8jMzHYr7UmiSm3YLzWPI9bimjXYZviTjuq4\nSFTnbpd9O3uMjLUy8GjTgPtQ5nyu3/XYs5R93knY19pUbd7mnSivefeI1fdzFdNaY/XlfDBRufDP\nda0xWes2FrF2ZuwFlinPJNB9Q8ZyHOj5M/YsHfYQKeXohXrOPGLtpPxVoc/Lij0X+/ysHKgerL1F\nxDpAOToTtVvZod1UPYvVzBZmek7i6YuUfW6n5D5TzZ2cl7iy1Fww5p5v7HtZ52L2NnVbD/iVX/57\ndhz7X/+3/8vMzG7vb6s+3HfBOjfblz+tC+ZijE/pqAMmI9578CFLbc1R90JyuC+fmhUaB1Gl+w96\nK6rv8tqdsvyPv/ZPzatL25/LTyxm+ndpRdf2l2k81tzdA70nBzP1bbisPgk7atuw4B1xIv+bzTW/\nV4Zak4pcZVxM9PvBad2/7uo+RzuHuv9cc6g3OKk6bKiu0x3dNz9UeTrr7McG8h8t2mB0qLYbHek+\nw021UZnJz6WHGmPxkn4XtjT2l927TxhSX5WnWIz4vcrhGe8bK6r3nOcGvGwNVlXf/evq47l7+fsB\n1jBlGmusscYaa6yxxhprrLHGGmusscbugd1TpsxD9z9qZmZVS6fDh1tCOsKOTj8PfFC2iU6WOn2d\nWiacmPugY0Gs08KUU8we3x/BaIlhN9QdmCh7OnXdvy30Z3Wgs6kxlJrJ5LqZmeWxruulOgW9OdXv\nz1wQsybocMJ/67LKDTLhFzrdTD2VL09BBU31WpqpXosENgJsk06q7xcgAD6fT2E5tHKdcmaHOs4e\nZzoFHrRBSBzLY6QTx9IHPV1Elra2KCNMj1ynmONAQ2AR6zQxSlTmKSfQbZgUhwyVuOKk2p0Ytxwb\nATQe5LUCPSlSXX/pXbV11L67Ibdcc/9Ez4umnNjHqluRqS17kdpkxkkwB8lW5vq+gEHS5SS8XqiP\nABisdte11IZdEOPiAFS/pfao6VPTIbLlbZWvmzAmuWHI2FvAooJEYcVtjeUYBk4agOLk6rMQpk0A\n4yec69TY9a1xfQUDp1NpDOYgE8uO0TIFiejolNuO+DmoVWicnDPHUlgkMYh3AZIdgITEVMCj3xcJ\nbAtOzeMQRKFQO7S5b7DQdfOU7xlHq4yPLNS4ywpQKcrhr76Hbv0oW5Q66T7IVLalU5tmZtYfqmzb\nt4TupqA8KU2SZUKtAhDKOAC1oq1zzqyTlsbUbE6ZHEughqEydGOdsQJSZwYzznQCn81hO8DsK2iL\nNAb1Ae3oRfr7cMQYmcBcOb9sZmYrkU76s7HqvQ8CunkCBIDyHR7oc8diSrl/4tC5ZXV2kDJZYMzU\nC/piWfVv46eOAvVpR8WzOFG9SpCEDohn6uOnSpU3D+hT/HcJy2wQ6EYJLK9yAdMRFh+uxpJESOYs\nA1kBjSqGIDfHtHYgpOV1mEBxAMIMBWlBOUJYblmh9gPgtiRT+yalPg+6IDawBls+7MDS1R/YEZ84\nz/WceIl2p38rkBnPAuswRssM5BPWZ4L/a/F31lXd47me5TFvvSFtOGbNa4NkgqiVPfXxIFVdFiCL\ng47uk0/c2gNjL9ffma+xzjQ3H+pfCAuoHqhcU/1jHZhyxhqUgjw6P7LAQXcccyZkjE80piZD1q46\n4f66rlw4FEpjJ2Luzn38XlcNMQdpDcMfjkp9v33lETFQLrZumJnZi2uq9+eviPnxpYtPqfyrL5iZ\n2fJEKFg6VHs8ynNffEr1++RU9/vOH8gHXf/Y02Zm9nD7W7pP+3NmZnbjAd1/8FWh/S8dfNbMzM48\nq/o/sMnvl7Rn8hdXzMxs8gF9P/7iqTt1OL30ebv2mMbyk1+Wj/hmfNXMzH7iE0+amdkf/98aPy89\nLLTx515/2czMhr8ohs3OLY2Hjc2vmZlZ3nrEzMyCVPV8Zqr7fH0o1PAsexHvsuoR40sGwaM2OdS8\ne+7KaTMze+2X1JfBb6rMq2+LPfu9FT3zUabN/FMaK5ffEmPmme89qzK21GZ7j4BOf11Ml+Q51enC\nuvpoBDvsYy/+mZmZfeOUfv/8u++YmdkLv/h11e3Nn7C7MR94P+moLdaXNWa9W+q7GSwHxwpb1MzR\nXX3e6mrdyWawuiotSL1SfQnZwdrLGkND5uA4Ul8lu6z9hWOC6z7Zof6NehqTwZK+H3b1+3mb/eEV\nIbb+mj4flPIF3Q32BDBEj6bq23ymuXl6XWMjxc+Fnu4z3tK6FvY0J/1Mz185r/7u9vXcvY72gPPr\nuv7Mk6q3Y6iPUqH6+b6+3zyh+0AqsWxX60C6eEDttaY5v87erzgB8xxWw3hb9wtG72HPxahtnXXd\nt8VeL+jp++l19d+IdWD1SNd5MGLDk8fHsDc+zh7imthh7YT5OayLMTcAACAASURBVFMZyzlrCWh7\newjjY+wYITjaCOYjDMmUPUYL9k8IK9ZbLPgdfcM7gQfzooYR7/YGWaTvMxx2CzZuNNeYC7r6vAsL\ntpqzn1yizfD7OQzvTqjfHXX0d3fGmgojPXPvHewLDbZuCAu1KmBjJXpOHWvsFS1YszBt6uz9jHG3\n7lUBc4D3AaPebfafrT5RDrn2NlP2KB0YODnvfo7BtOiwz4bt0IepPuFdtWbvM/Rg8vAeBZ/m2DaD\nyTK5oXfOxbrm0ID+nm4xhiPV68zjsEVgql+79j0zMzs3EIuryzp04xUxOre29N7XGqieq6d13cqm\n5t7C3ttnjxczq9q1HW1rnqZEVTz0uHx/CTt36zW9p9++pes6ayrzaU/3XDaNjVFLzJLJZccQUWdd\neFzsy713VLbZXN+vDrRWRrz77B6oTVKo2Gce1nt37un729f03k3wgd23KVbpdAGT7219v70r/3Xy\nfvndC2fOm5nZzTe1Ju7CpNmAwbfKmIsH6vO965rDt6/KP5xcFXNz+YTqPYVR1D+NvzjU80rqO1xR\ne1x9m5dG74f7kYYp01hjjTXWWGONNdZYY4011lhjjTV2D+yeMmVOPq5Tu+dAj3IQ1wUB6t3CBTgS\n/w6CXYLi+5x0Lzgd7sAegARiOUhEj9PQuke85lzP2XlHp5DxMqhgX/c5NxDSEnAqW4P03nxDp4+f\n+QUhNSsPKB7v0ncVG723p1PTKEOng1NinwDMRar79ImNPvWE0Kb9A53oTa/p5LDgtLhF3HcOe6KY\nw8ThJNFrEaDpTjth9IQwa8o2OilFZCmIYYugzgk/gUBiPjGjLeKXC3eah35CAcobLuvUL/JhmsxB\nX2AZ1LRtvIT2wET/zqJXzcxsuQ/Mfkybo+/QAp0qYJiEnCd2+07XAiYJrACPk/UKllLXdOqbRE7v\nh5jSEvGZHnHeMH58dEhaoDg1cYMJKLgPEhzRVzNObz1iNws0HUIXs4rORJuYYA/EsQUqXwGMGGwA\njz4NQTQMhk+OLlGbMT4LQefRK/GIRU1BLoKFToErB3ks+n++mcxAOKOYePBA15foM7WoZwljKkSP\nyStUzhAWQI6GUJt4dQ/keg5a6NHtbeak09EwkGVIZtbuwFZLgdyPYUs9oRbdoU7qNx4WKtVlvo22\nNFaP1tX2FUyatqeylIzhHP2Lsq86rTutJxcrvwdrIRMCMOvp+nAAY6PAj6ALtMI8HzI2b9wS+pN5\nKk+HWN11Yle7sAm6NuVv/f6Qvjuxeh+PUb12b4n+lMKsyc6DVN5WvfbQbPHX8aObG2Zm1geFWe3B\nlpiiMzUmflnNaVUPP4LWSsDcSEFol2Dm+ARsp8WcdkQLC0pNTPsMEqc3IsSgPHI6SHpezlwsCHg/\nnLo5wJzh+x7UFe/ke/HQx7HCq9/39wStgKgN2jhljDtUjvHgV6pXD1iuqFXviljoEK2ZViFm0MKx\nCmOYUvigqqXf5VCAYuL4A8Z8K5na1Ok94Edy/JWj2mVMlBxGTQVC55A8h1zmQ/zvlGd4MAzRHZv7\nKjMyQlaNYJVClasi3Wc2lT9oDWBPwXjziItOuhozd/DJDiyuSvev0QOq+47hwppV6j41/m8+5vn4\ny1btNK40lvIxv3MaZoHzO7pPyNis7+jK6e92eXdbnA+8KUbKKz/FuhL8iZmZbcPq+mzvi2ZmduOK\n7ru/Ki2Yp69pb7CyKYbNzISmvfWQ+uW+Z4W23fwy7IcPfsjMzDbQblh8V/V87ODTZmaWPSj2x1cY\nG+mTHzczszPzr5iZ2Zj27RyoX849+G1q8B9asva79uhNzZGDJX1/5ukfU718MXSKn5QvWRHYad/5\nK6r3M99inHxMPvTPfk//PpWJVfLNltDIJz+rfvjJlzROr3aF4P7ZRPVZC17X50+fsmfflvbAy8+9\npLZ7WXXsPKd7PHtd/rScv2hmZn/4bTFanorUpvMPg1ZfUJ3Gm7pP9ar82fSnhLAW2VfNzOyPZkJi\nizf1u4On5H+eevu39ffmZ9QmR2rL1WUxMP65Hc9KdC1WYVIPEfc7QoulBdq+fr/G5tFV2Ma5vu+6\nbRt6TS10M2wI4+NQ7ZGhL5Sg/1CyH41gbvorao85SPMRyOwmY7VyTEz2v6tnhOT6vvp677L2m100\nWqqTcvzBQNcNN+QfR/irEMZNG9Zajr7FiQ35x+3bTi9K/Ranut9J9qkhvxunWre8UOtwfJI90zU9\nb4YqjdO3m1fyQQdOV4Oxv+Qvva98PhpxvU19vrgtRH88ccxVs6qV2eFc/TB02mWb+vd0pt/twIQs\nYIsVaOOU6Rk7tsF8CR5T306uq+96juEBK7Rjjv3PfpI9Qz6fU1e13ZT9YwjDpApgjLAfTKAwRi3H\nHEQzEqa1V8KURPesYI8S+TwPZkmCDpoHOyHDD9cwLDtOPzN3mozsD3nXaCNi5vGu1mX/7sMmrdmH\nB2g7Zl09v+X0OUuNabdHKTOnYYPGCrp7vQgdv4qxDtvXbzFGaK+J05Rk31v0YbkyNtMWc49+qdG7\ny9FAbPGcAsJlq3ZMUqIkeNkMaV+nCXdcG1V6fjdWeTbW5Efnu+g/lXpeEcgnDE4wRwP6Z+y03mDY\n9FTPg5nmWG8AW+PkBTMzi9mD9NfkO/30vfJO53vmbSU2m8k/+C00nQYwmnmvnR05B6Y2unhaZe5y\nnQf7fcBGcg9W7OZgg++1W5gw1lob8gObF1TG0VtaK0fbRG8wJ5ZXYRhmTsOPdwnGRo2eUYzOT8I+\nLlzV70+c1f3Lvtpots8+lP3f6Qti9i3DJrr9thbHretqjxBdqJMPSctsMVYbF/uwSp9WO/QLtcPe\nROcLt98Vw7HM0a4pfvg7cMOUaayxxhprrLHGGmusscYaa6yxxhq7B3ZPmTIuq0hBrJrL0jEA1fPa\nOimbgrBGLmtIT9fNXFYmx0ZAATskHr8dOFSfTDMzTmthH9z3iE68arKETD3YBQmoHqruKUrhOzd1\ngvf69xSj/Ez/p8zMrLUmVCyeEhcIkm1kpmjBOpnuCkWLKsXoXbjvopmZ+cQgH8VCGAJOiatEJ2vu\nhK4G2W8RRDdZqB49TqPnoJEZmjo9aDDTorIeiGSJBkqVETe3QAOl61B8WEUgmR6njnP0cM5wst45\nKaRtf6Q4Ow8GRNQlwwwH6QkspxAWT4nmy7HNIcLEOXeI8Zw73QnGTid2GbpgmoCYFi3iv9FYicyJ\nzWhsddBoyUBhAk7+55y0t7i+hiFTgUhHZDpwZ8ZdGCYuprTFcyt0j2pYG37omDCOKUKsKwiGi7XN\niR32SjKMQeiJOA2umDvutNgHjZp7TtVfY7oivjOaa0zEXbK6cMLvwQaJYARVd4rlEA6XWYjyuAw+\nmTudJkNNJMTcnexXC5e1ixuCBCWcrreZIxn1C1rokSwcO+U9dOtH2RT2VzYAcX0d5gdjcDzVibWh\nw9FDp6ILatDukjUIVD1o6/uQbEbVTPPw8pFOvAtoAVkoZkQIg6KM1Bee0xip0Zaa6vvkQIimYz+E\nPbKEMCV8/NQBqvNbMzIi9IQw5JnuN0NLZpbouqVz8j/rgZCJQ++K7keqgZwsQadBBjd9tF74/e0D\nzeEIzZgS/5qCEPYZU25Mt4e67hyshcMbqvftIyEHwwtCFE8O0TPZVj12EvmYag7iwu8rtGaq0mUI\ng6U1gLW2pn4aOOZT4eh9dnfWD973Z+Wyk0xAx5iTucueBRqWM9fzO2OeuHL0kwLYcmWP8qIZlM7U\njlGPTBmw77qM16IlxKQHm6WqB7bUVh+79Bg5jJkWqHwJY9GjT0vQ95zsTF7mguxZ+0CZfJflDORz\nMaEvYWWRVM18mJE+KFPH6aTh30tYX3Xg1l59P2YN6qHVNScDmvOnJfo6Jf7NJ3tIzVzoxpQzgo2W\nwoZymb3QuInbqsekBo2D8jeJ0ahhTJSsnRbdne7QMBLa9UFYUrfmun+f7Ekv/IlYBGsmlsHmwZ+a\nmdl3yArYf/kXzczs7BfeNjOz5974fTMz+yaaBdPnxWh540ti43afRVsLytLtQHuLy7BH7jvzCVXj\nknzHmzlx+/cp29NsKJbHv3lT7frXzezN+dN231TaLu9GD5qZ2Yd+WwwZ7xc0B0ffECq49iFlMrr8\nL9Xe3zkpfZfqj5Sl6aM//QdmZvbHb2gdOX/uksr/e2KzDJ6Rr115W+3z/FDo4s4jYsdc7Q3syor2\nNYMv/5zu8VExix+o5Ide8N40MzP/ec2Hzg5te6j92Zl9dBsWYg8Nv/YxteWHpDVz7etqq1OPirV0\n8m35+69/Tn2Q/ZHq9uZn1Rbru3p+q/UFMzN7+XEE145pJezQjLHvsnN4LjsomgStLoy6VfXR6LUr\nZmbW7Wos9BlrM5jhA/TaBkO1y9YV7TerUoyUmL1QdEZjpXsO1vOrmjMVbOIIFsP0CG1FsgWuLqP/\ncUGIczWWts4uiK6NQLDH+ntvX+tdO9SYX4yFLCdojPVY+6OTKm+wq4xdB84xb+n3622tT6f66BWe\n0hicoaFjMAzbvI701shERPbCFbQgz11QOQ63NJ7WCn3fHqObckbttBKrHQ87Qrxz/K+ZWX/ZtwRf\ndoSWRGtVSP3wHD72UO13/TaZe8Yq19noTl6pH2kuO2aGmF+7j1bWiDV7Ax0i1rz2mDZDq6/NGryg\nT9sttX2OPh3yF3cYhgHvBLXbgbIvvMNgZP/WhgGZzWAwkx0q8zVWa1j4SaY559ZI32m/sLxkbZdh\nkncl9nNOzzKNXDZU9lTsy32Y1hX7u2iuck5gZfRdJkO0Bc2DrRrA+ERrx+PdruDfiP18BZtswX4S\noowFrDsFIQLVgAw6I9qNbKUT+sOD0VnA+rWBY847LUvHqOe+A7IkkjHzuJbCOmktwZrrqH+vpnpX\nHI/QPd3QHrBivfRhDbsssC3qNyOLYob+aYs9RkCEQ5+BEzhttyvX75Rlfv3AVs6fsEcu6t1uCvs+\nc5lR0d7L2ce1eSdbvqiy7b0pP1ei3/PAw1pj6ky/e+cSmltHWgMr3jHOPCQ2ZsncuPSu1hhbVVmX\nmdejGe9s7GFiXjJnI5Vza0t1OXWa/TJtten0dM5pXzq/qefMp0e0qcsyik4Se6qtd1TeEr974Wmt\njWful794+wX8Jpq0bfz6HCZ5uqvy7l2Xv6pd5rEz6JL+AGuYMo011lhjjTXWWGONNdZYY4011lhj\n98DuKVOmlYCyc7qXg9b7qD630VDpc9JlMEpmoHWxOfYFp68cQKWc3van5EknVtdAKiN0NHKQTUsd\nekdWlMLFDZIBglz13SUhG1uv6CQvRENi6T5OOTkRDDjFnKNE7nHd0ZFOn9+69Ee67/kuzwNJBb30\niFlOYDl0K90vRifEaToM0A+5c3wNGhmB1M5RZO8EuSVTnYQHtHEPTY8Z8XSDZZ0utlpCLZIdnczP\nAp1+Lm7q3z3Q9CeXhVpkxFjujKVk7RMrWs5VlqwP2uCU7inqcc0nRjXIGKroNHRcX6E3kc7ImNIj\nJp6+7mTueBL0392P+7fIWuQYMR5IbxjCUmjTt+53xAJ7IcwT6usR09uhPLXTP3I6GC6DAFlLYtAr\nm7+fEeKReSskljWASdMhI1nmsp0A/ri5YsT6uqwplumU1mm0VGSN8mBbFKA+NYj0FKaNRxYoH02Y\nGqSjQjOoSPicOVH5xBJXLmYYZg8o2gzWmc84c+2VwsiKXFoqWGoe/ZrZ8QdKlTqmm8o6pi5xBFMB\nHaO067JGqI59ynAnzhu2wfyakIC9kmwMU5gpnMh3YIL0hk7xX3UbwiSZw96aHJKRYFdoxxHofRTq\n94MM9IJMWAHsB89lQRqpHj30fo4Wum/NnFs6r/ucO0dML8jG7QlZntBJGi4z9+/oc6gcN65Ky2oy\nwc+es/dZTDa4WQvkErS/u5BvuIwO1WRXqLhj9PXRkskm8hlHN4QUjImTL1cRrUmdrojqd2ajw3UO\nkVG7LBGrnLsMZ7lifFvp3S1f1ej9LL0IPZYS7a857RzBTpndYfcxXkBCFszhoEQzBxRxzjrSo14Z\nulv5mH4lW8sCbYYKdKvEB0VFYXOyRyzx2y5ljI7I1MT8npHZyzHsfKguC2L7A9YcYy2Zg/5UaGm5\nRGPJBIRySGYrENUcFoDLRpHir0KyrVUTmJHoYiQgox5IZW/A3/hhwC3LyJBWw7h0s7zrHDLZlDro\nJE1Y+/pooiX41XhC5oNYY6oF4y+ZaYwswdxxGdeOay8/orn/8FfUD/OzYpy8NH3GzMzO/jj+8rLm\nXr5gjDyr9W/nHbEPnv2ixujvLytb0jNk0Vg5LdTv5gNiD/RvS+fk6xelqxefEovhIBSK99QbQv/2\nz6pcnzurOfbCSA328d8XG+Fbyyfu1OFifcNOeh8xM7NJos9feYYvD8Xs6Xp67uuvStvmx+ifWxva\n23yczGzf3hKK+dFUui0nD4Qy3vgp6brUrytO/+3TsN4uCUV8hiwnrxyNbPaqsuV87pOqy2+bftPd\nkx+Y3lCZPrslpsvlj6uNt8mqc21dyOrwSPP3MpkQP3sFht4ZtfGB03cYquyfmUq75jcuaOx84V9L\n56Z+VCyjvW+oDqNwbHdjXdivHlmFWjBlfLf3gBk4T9A+WVO5lpc1ZudjdC5gFceO5buhtl2M5b8T\nWAyem+Po/bVX8Husd3PW+orMOknk9DyYY6m+X5T6fIM9zU6P9eCIvRJ/d9DImR2yt9qD8RmscH/N\nqSFaEB5r+PIZjZV8IZS/3he76/YtMjie1XOXmdttfEwyhiGK3z/T0x40OyIzTTejXLr+Zqx1ZTLS\nnrVLZpoaDZ6jFfasTH3HgjYzyyOzBWzt8ZauC0z3WXsY3RY0dbodtX+CjqFjZxzH2p2Ae6stY7L2\nJJvsW52eBW3u9vpDtLMStL+67CXKHO0sXmVqNGAqt2+FwZEvYP+yfhh7kjJ3FML3758X7OM6ZIyd\n8Y5RwjzsoeES3GF3wt5H/y4LtTa2YDF4A5id3D9Gp20Bi99HJ86xiiODIQnzMWc/GsA86cM8qZ0G\nIxo0Hkx+p8/WhSU8Rp8pZC3uwo5OyXwZOv09xkZ7+H6GTQbbLXZaZT6MIbLS5rxrOgpn5bQiczQr\n3f77mOZ05xY7quf4lMbe0RbaamRPHC5p7hWsNyl7kCUyuVWZxtPkqth1JdESjlR8AhHKlY2TXK96\nXdu69l5hwtDW7j9rq0uaTy99V3pqKe9yS57mSQCLN4LpYugaHfK+2YNZnaJvl7EXyWn00VRlPUl2\nts1lrYUJES/zPc3Lk6e0IT2PFmJExIzLblq3mPcw91ownDt9zYEL6/JHKfpz3p766ObVt8zMbI/I\nkz6NtIofvg3D79Ye2Z3InnRyTWtpMVYfbO/puqVN9dk+/mfrZWlZTQ/VxmOyw7bIBhivqj4/yBqm\nTGONNdZYY4011lhjjTXWWGONNdbYPbB7ypSpYD8knMzbHL0PTgFrEMRwrBOtRdelDNI/JVoOrZmu\ny1ClH2zqNNBf1oUzWB4dspzMiDl1mSD6aC2kIJcxJ30BMXNO3+PMOdAz4jy3x4p9rq6iPbEO6hg4\nNM/pmOj+6ys6USuJEzy6JHQtX9X9hsTfp+hweKCkkBssRhm8XnB624IJhNJ6TNxlRlxqzCm5Z10r\nQ1Bb0Ik2WiHTfV17Zu0JMzO771khdltvCFVK39J1HZCvd19UFqWLZxRTfvq0TjvHt4SC1WgJpD2d\nQPs7+vfUaZ16DkECj2sByK0LyMsL+i4CPQL9uZOk5A5jBn0g3yGzsKTIYR9wEm6wjXKoJ3eyUYHS\nGSfTHtmXKq4rOM+sYIhUnAIHPghAAiuDU+Vq4TL8wLhxWZ1AoB2DxmCoRDBbEpgqUeaYN7qsh6ZD\n7qAT0Pp8CtMHVkSBFlDI/VPitKMFVBs+78K2ytFbip2WDTobHshGiO5KBbvL5xQcYMdC2Ckh6F0L\n5GU6p77EwMYg8AE6HS5jWklMdHh8UMqiNmgLJ9H1phC8lOw2caYT7g51WIC+F7nL/AQS+IaYMXsw\nWo7aaqsajacAlPrEmlCZGRonYaq2SJmfHtkuZjBbnCZK2Od7eFpzKjmACTJLhSBsTYBxhjTKMsyS\nzoQ/5Uc2XL3J1nH5msp/faQTfG+g53a7apcTsBrm5RUzM6tg6HROEq/sGIWMNaK6LYDtsMqY91oq\nT4gWgWN3LRzCOVM9Dq4LadwHpeqfEksgoD1WaN8+c2sFJDSfyj/OXKaxjJJU6qeIbFF5fHeZDoJh\n531/t12/wcIIHWnLiK9nLncZV55jpeUwKUF2Fsz1Hv676KBJRLFDp58EytZijqUjl8VE10eeZ33m\nsU3JNgfzpQAdqmALBc4/5YxpnuGjfwawaEMmVgajpIvUis/QmsOkSdFmaeEH2vhRYz53YA+5TChR\nx40lWJyJ82cwcWYq33wJpBd9nW4f/0gGxZzMVBlx6Cl013IKExGEj2RvFsKAafvOj9MXKfVGe2eS\ngrDe5Q7nmeuqxzc7ygS0Bsvs0Wtojj0rzZdXHtN6eRXGzsOvqX2SPc2l/c8LgfRGL6veZzS2vzVW\n5kb/PrFDHskeMjOzPnN7a1uss7r9Kd3HhJBOS82l3d/W3Pjs5zQmv/Tz0kn52W9/804deufNoutk\nhnv8N8zM7McT3e+l26rP+s+qH54ZCzW8/JLa61T6WTMz+/opsVOKbyhD5M1Kf3u1yrs30f0fvSlm\nUP2AyvO9B7X3OpuoPE9e/aS9/hH5o/H3VL6fDKQNkyPOtf6k9hzf3pAGzNl3hXCefOJh1eFPVfb4\ng8qudMCaff1r2kv0n9We5InTaqvssvYiL8CIPAG7q15TG79+RfP2nc+rDT7y5ZbdjY1hiw7R4ej4\n8mutrthRM/xGAPuzs6pydJc1GHeZwyXs3TWYNJGvOXqUa19prJ1F22UwREOQpXuWkeXI0c1gnIes\nCzUMmxCdN4PRk6FHZ+yFahg2S06nY1VjtYzVXgsYkCV7nwotw52bqu+ZvvphrU3Ww4dVDpdt8Dbo\n/QbaMh00ZKxAPwRf0IGpGJ/U8yZkX+msw0A8q3V85bbaZzzWXKi7YmL1h2QxZJ0qA3zeOs7OzJbW\n+7aY3eR7Ni25yhmPNH76oeb0VqZ+20DXJLPjb0q8vssEQ+ZAmC0Bdc/Q1OpQxmCmZyWs1YaOzRj/\n3OuiDgN71WB2eKw1wcjtr1y2TvZvTqOGdxAfpsmCjIkDxspsCuuL1GApWipJSJ87ZjbRDd2h0xoj\nS5+7P2yFEL/sMllWpfYMca29wRHs2wqxxIB9aRtGfeKyfsIUj1zWT7QR55Svx35yTnuyKloE86hm\nP511KTf1LGI0WSZEZzjNSpg5JDCzBQz00kUrwOyJ2T+HMORdxttsehcbVzNLYWlMYbo8wjvbxQta\nR7a3Vb6Nh+RrlskkNDvQ9W32bAf72gM6ZuwjTz9M/fVxB50qn/eO114SC+T2jVt3yhK3chsOV220\nrXm/fVVszZUl2uZB9iIuYxOagLeu6brNofzA8nntT0c3VKZbl+TXp3sjyqK2aq3AemJfVLt3OfaD\n7WXm0EBl379xRVXM0cmBJRbB3AuG8g/tPgzxDbXZ0W2Vbwd/MYXBze3twpOP6z9t1torWq9CjkfO\nnRUTs31C958fwK5acK4QwhCcq90O0bAsYOg8/Lj2CjP2wf7ih2tTNUyZxhprrLHGGmusscYaa6yx\nxhprrLF7YPeUKeN1dErsER/db3OqmXIqTHweAKS1yVyTgYoV7oSNJPIT0LXlZZ14Dc8TAxdcMTOz\n3QOd1IVT4iPJlz5NQEQ9p/itf+YcM3ZASE9c2ORzEIcJecdDnQKX5JyvUXEueu7UF3TwlE74Ntdg\nT8SctqY60ZvC0OmX7vQXDYs25XR/U74KLYQ+WhJzEO4u+h3ejFNhC4yQ+zvfzTlpn74l1OHb1xU/\nuHb2ou55UQjchFjRg0ynjAcv6d/L7wr96FxUFolWh9PCROyfco7+AlmAWrnK6OU/PEf791uFPkMH\nbZSpiy2lbzLfZUDgOajHF2jmFGQjqdFx6MBOqCvHkCGrCHHRLbI7Od0ilxEgoa9asKSKwCG2TrNA\n12cgvQExp05jpWRsxU7Xw/2Mk3x3Otoic4K7wJEBisrFS8KWmjr9IsdoISMCJ/kL2t+j3AWIdwHK\n5RgsOXC+zwDxK82hlHbqgFgUxG3WxPP3mHsLWAQ9Uh0VxL1XPC+BidMnq8oUvaMQ9onLvhLBWigY\n6158/Dj/iPjtFlpLbTc2Ase8c1ke1HYhLIMNEID5DTRSYKA5ZNKIrY021KerlRDRk4zFg5FQla2U\nLBWBEIKwwwk+sehHxB13l4jPhu1VkJFqcqg5le3IP42Jze1u6HkRGjm+80fUt4dA040toR0HhzA5\n1sVeC2Du9MhYE9PGRzRtDeIcwkarHIqETlBIPHMFIuITj30CwsmtBX6OPo2W1dcjsmEkoHvL6JiU\nIMKrwFCbsMQ6oIijq2r/BKQhnzErQEgTN+bwCa270B0yM2t93+U5z49A47IJWbNgleRkLEqIjfZg\nj8Ro4JSwMnyQ7xlzaYDWTJaSiQ7kZuG7jGPMAdonAlVM0tRIKmflENSbTFVJqU4b+sTOJ2hGgQgm\nZAzzQVJ7ZO+YZvq7AyLnWKk95nlBWZ3/WZAxrD1Qn09hjS2D+BawhCwH9YFtVjMmC5huRajnVyOX\nURFm5lTlrdCJCNAsKGrn13X7xLFhfbQTyBZYx6BiIKOOGRPgz8IITYE2ej9/Tk/iOPblUutXuq77\nPHLz46rnqmgeW5UyUzxeie3xpegxMzOLTuJPd/X7a29Iq6X1mFDCxZ/Qnqd0n48xFy+9LFZH9Om/\nZGZm/bNCF4N3lbVptqL7b76qf9MTYqa885XfNDOzx+5/zszMfnNF+im/ZGY3i8jibfmEtZH0W+pY\n2ZQemgvN/J2RMh49cUP9s9r/eTMze3NTvuzCVHuoUxsawGio/wAAIABJREFUP2+8LbTva/d/l5ZC\nZ+BT583MrPOS7rsY67nDs/Jdf7bUsQcOpMvzp578ycEnxMb5wBaaMa+rLI+NNApvwWyYLJQlaZN9\n3N5vq65FV1olL39AWSw//W3tXV6BUbH5Ke1FPkA2uEv3ac5cWf5xMzPb2BHj5taXVObu+rt2N+bB\nlJmSvWe+iT7bHb+OHweFb6PxMvUcg0b3cfIUbvLVajLLL2vs+U47zOn+rQgxTsky6E1g3Li9HWv9\nPJH/zGr8LSyEEBZdnaP30SGryVjlLfDrbXTznDNa6mssDE4OKa/uv/u6xkp1Df0rGJ8RxM77N7UO\n7SRC5Y8mGutFS593axiXHZf5ErYDLOFFD3/ZU7stM/czl9FxFyYM2o0A3ebz+whEP16lYc3Mb4WW\nwLD3YdtVMPKTSD721hafoyVXLms8BcnxMewC9k/A/nJKVEAnE7ru+VrTZj3VIe7CWuIZHTLCZLn6\nYOGyXsImCHjnYZtlFWtziEaJoS1Tt2HPu0xXjIkuTTgZsy+FodIiX1MLpjMEZ4uXWMP5fFI7/Tu1\ncY3GTDtlz9XRc2dkcGyR5bVCb66F5knOXqpwLAL2Sk4m01hfKqIbEuaQ6/MM3dEO7TyGDRzCUsgm\nZGdC48aInohhoLv3iKqjMbyA+d6G0V7wfjFwURxL+v30zjup2m8+Z51acvmujmcxmR1TfAqSaNaG\nvTy9Kn9/9C7anBOiK4jyiHsa9NvvOtay2GsPf0jsjzkZ2FzGywzm0xHsFr//Xiag5UeetKVuzw54\nRpc2Xz/DO5uLIqDNcqIVIvaXK+eHlE198e6ficGY0menyH7E0LY+GlvRCvPvBkyTUv7tdKC1JcYP\nHfHe7uPXs0RtnrOP3VjlXQ39pV0Y57MbapOEsbt3qPIsrZEx8YTKvfDUVruHWrM79PXgNGvbCCb7\nu1pLjw51/xP8bthVfRIXBcG74gp+MEJb8ZAsUz/IGqZMY4011lhjjTXWWGONNdZYY4011tg9sHvK\nlAk5RR2AWFcgixmshYFDFGAZZFNOm4l9nZdOa0Cnq5MtsT62gRwunFVe8ROPfNDMzKI3FOd8o9TJ\n2WDOKac7RXWnozFaB+Sgn5O7PolUvhq1hQAENKMeDqH3Ck4n0S1pk5Wp9nWS1vfRpol0ctd1bAzq\nMwPxjwt0QYgb9RJOp0uXykLtMIFVEXKKnoLk1uiwVLVvMSiVZ6ArnOh2NnRK+cYloVkv/EuhF898\nQcjbibM6JSxHige+dlqox8EtZS7Y+S6snDYoNohlm4wGs8sq06XvCA07fPz92YZ+pMEycvmS3Jgp\nYGx0OZnPUAIvgcMde6rvTtgXOmmuEI0pQjRm0OOJXLx09P62rTxO8CmFy6DSQn9owUl/zemsVS5L\niD73nQgM8eN1TiwxWUhKpyOE9kNFO7psJRV9XfKccuIYN047giwpLmOMi0EGZXNju8tYrwPYIdzX\nB1FwWbMiJ87D2K+Ii0+JVR6AuJeM9TbBxjPisztT1Tckft0ll8pBo7qgVCVaNKmRaYf49xrV/Mo/\nfmzuBOV7x2zzTSfpxVhjuQBBTGF99YZ6xo0DPeOQmNMRGWEGPekitNfo05nawMWsz+ecmO8ry4TL\n8LK+qbG0Sran8QGo/ZFQmJI484Q4ZN+10Yx45HUxbSK0VeJQfxsaBbOKz8kKtLNQbPztmfyZ11e5\nzz0k/SbHflplLMzIhnF0TYjlgtjeCv/RH8jvOdZBCuJR06ftZbLREU9d3ZC/dUjFMBaiuED7oLOA\n9gHiOeiqvmvMheyIrExbYgo5NfuCjAJnzsuPu8wMC3RCElC/2dz5huNZUb2fNVG7LEmwRjp3xMqo\nH0ImbbJYVRVq/yDfucssBFoWw85bMJZj2HJOrCaAaVOBfAfE9RdkFKp6HcunxLozpvw+rCUYeBV6\nPQPm/xjNgBB/1CEDX4GeUeVYVmjJdLpOb8JpdREnjn90rKkS/zQMXaw8bAAAQ5dpMO2j3YU/yRMy\nmoGW52SR88oe9UE/B20AnywaC9+xYmHywFRM0MzyYIN2Z8yZFpkJ70gsqDwxmbIyhNjy4O70Qtaf\nF5J9cV99tjVSfdpvaS+xsy2GzGLnL5uZ2fAxrWudQnHnz1b/St8HQjiXv66GuPTRnzYzszKUhss3\nI/mOz72qTEDv+GK+XLSfNDOzf/uU+u3surRnDl4Vm6H/qPYyey+LATPYEhr5fPXeunpi67T1T+v5\n351qTvYLoZQvLIl98tQN+Zb8otr3rbnm8hps3/BFoXvlGTF7ti+KlfJoKPTysSWN7S++o/L9zD79\nuaG5fBsf+8lq2yYzZW4609EzXmWs3MxU56ce1hh8++RfMTOz3h8rA9Qu7MvvmZDJJ73Pm5lZq/6W\nmZkFK9K9u+4JLV7/MBmfvq29zFMnnlcbvqqxc6klP9l+UDo5TzxyxczM4i9+ipb7P+04Vrsse+go\nTdmjhPhBDy2bHgy7YIAuE3uVmeey9jF4YQPEMEUS9jIxFJgCpmfJmhjgj27twGxkjd68T+yLBYJR\nR+/K3ztWWX1ZvztJps2w4xgk6JrksGTRYpvBMlhBPy5dZZ2Dzbq/K4ZReQTTEO2VCRqP5+6HvfuA\n1qPd19UvKQzzMNbcqNh7HMLaaCF81XOs2lzXtdiHG7qIOf51Du3Dh4KUTTT3p7u6zyBmHTWzOs+t\nX2l9GdVaf04s44/xZcmuxskUH7pW48PuPz7L22mBzbMlysbaH+N/Yes65vUscJqEjnHNfgi/2GPM\nTNl/Bub0fWD/erQpjMKR08dk35y762fsJ/Hzce00EVmL0KVMadsoQvsFpkUJYzIm81eNliKvYHc0\nXAwmDcuXlcyNgrHlJbzLwaBx9LGS+8W8W6VdN9d0WZ+xOJ/r/qFTvoMyNGix/2ZO5bwP9Hj+guu7\n7KUyGD1+KbZEC42zOdo+HfZGFWNuNmKuw0i6s72H+Z5Xd5ftr3NGY3GTjMFx7Npd/bh2Qt9P0brp\nMld6K/J5ISyVrVfVLsurun6JOe5Ptdd76x1FNkSww0YT+eLzZy7cKcvFB07bLJvZ1iH6oIyhpRW1\nzf6ufrM31X75wqaiKU6f1trYYqy+8a7WjClr8INPi2XZRpPpkDYdLsn/zPCDty/xXk6ky/qm3jnd\nmAgi5yfECuouq88fOatyLPUVyXI41RpejrRmugiTkj3PqU0xDgMicYYDzVHHQkvY77o9zVoHnVLe\nEfe2HbsNjckVrbGOgdeBxTSmnm00crbw44f7bMZ+gDVMmcYaa6yxxhprrLHGGmusscYaa6yxe2D3\nlCnjkz2oBu2rQb86xNclnHJG7vSQ0+OSbEgViG6AknbAKfSbr4nFsURmoE/8zE/o7xOKBw9voHnA\n7yriKctMz3cxwInvdEqIyZ3qxGtBFqcC5e8IvRSAEVsAsHswenJOPSv0QnwUzjuJ0yvRiWJRdHke\nTBxk9nP0QWJO7hYwdixTfSPaIW5xPfoDvgs49UdmaIPME532d9qU4QmhGCEn9lsHQv7Sb6gMDz2p\nU9AaVP3kutD4GUUY7+l0s0KDwCv5IlebnXtMjbG9JRRnecnpox/PHKCbovVSuixKaBu4bEGOWOHi\ntFugUlVAJhTYSQV6EVWq+uTu/micxKBGHloFLU6mZ5yi3pEz59Szk7qMBnQ+YE6FfknEiXxBpgMI\nIlY6tJ3MNT7MnBr0Pw2dVoOuD6Gc1EzZReaUyjlFBo13+h412jvu4L6GpZCRTarn4rMpp1UuixKa\nFOgiLQgq7tAeM8Z0O53zPFBATsFTEIWY9vHQ/QhgDqWgeB6sh4AObsHQyfAJKeyw41iHjFCH0Ism\n1CWqHSKJdhOoj8POR0cqW4IuTtwF1ToBqg8MgoSVJWT/2TkQwjYnK9zmOfmV1SXdP93X/Du8qtjR\nA9CdJU7UfTRMwkRtWLs4ZOoRE7wbdECFppqLwxPEjZMxIR05jRX9/sQDZIsAUWgjMbN7KITj4LbK\nnbTJBtXTv06baoEeyEZrhb/paxDKVeLKD69yH1B13yerHKysmjHjkM7uitq1j0ZN60g+45030D4g\ny9J0Sf56bUNoz/qG7jvdIcsdMcVeX58vvZdU41gWODgPc6ieF6tdc/o7dCheD18FakhyE6sRPIkd\na49Mby3uN8dVBCWZEtAI6sOAHE9AS8nGUsICCSaedUBvDD+VVlBOEphwaD31wFOiLgwTyuyQxRTm\nXAvtj4K1NAXVH9DnXadzAQPOoUOO/TOBnbnU19jIR33aDE0tp7/mtGRg/tVkbPFAmTw0A3rMUY8x\nOu2AeI5oNPQjfG7cQuMmYBKWy6zZCzKWkbXIPPoQ1lOPvjEyMh7Xur8nJso2mjdXYFeMA6GD3T/V\nenjzCdgEOxrDz3XFTMl/Rplg3nhNaN3+fWKWfGL7X6j8uVgjuwsxVyZrQhVX19QOf0z2jvxljZGl\nm+hyMIf7r19R+TpiHQSznzMzs1Ob37tTh8tXSvM2dP/tx9WuexOx6u4bfljlOiMU8qPf/LqZmb3z\nhRfMzKwz/5iZmQ1aQku/tv4RMzPreco6tXZN4+KNjY+amVm60Nj/0+fU7p/d0iR54Uj1HlxdtzOP\nSB+nuKS2feAt7TEmT8j/XD38jJmZnV0SA+bS0+q75xn7F2EY774Ng+aC9HqejZUh68gT2+ga+6KC\ntr321jfMzOzxx/TcT0Zqg98vpRnw3HUhtd/8pK47JlHG2jBllk6hubIkv7S9LaZfzSbEhyGTBBr7\nZRu9JrS+skR/Z+aY0WRAc7pSPvodE7QET6pthwshvSsg0XuwH7on5BfX0EKoYT0c3dQ6VI7Zh+5q\nLi2zL12UrMkwKlvobSBfZ2zHrQ/zMV9xTE/9PcbvuSxF1T5zA6bp6nnVa5/NzH6huVFkYpeRTNDW\nz6peh9elaeENNEb7yzAJ8Qk9dPGSwOkEst5PYAuSHXH1pNaRbOc9fbpqsTA/dAxRfO0AHRVYHN1V\n/Tvdg22Rq7w1Oi3HsV6KBlate0WFY9nA2OipT6o1MRpcRsHCZdVjzQ3YMLp3nn7lUHbn7/UXREZr\n8a4wbLFv5XnBHUfNGgoLFGlJ67E213PGErp4C7IldclEVZF9qUW56oroBti7MWvhiP1fyJ6gdHp+\nc8Zg/H69pSP0jixyG1bWOfb9OXo/LnNuhX6Ty5aasui6VnZruGNspy5CoHD7aliuNVmvMlhV7Pdr\nmJoe++opmeJc/WLGek3GzJr2TiZ3tylpk3Fsjv7hO6/J73YKl8VK7bAFm7hO9PkznxBz0Wn+hI6l\nsaL6jG+LJffWVfSc9snURnbE02e1Tp168M/pLZW1XXn5VdvfJuvSqYv6nKiC8SHRB20Y4Q/r3dHY\nS7z1pliT22/omfGQ7Hf4pZs7YutMt2GybGqe7l7VGns4hqHj3rdhf04rzY02WdEWh1fMzOzkA5o7\nc1jF33tBa2BvXb87OCDr3y31rTfQmF1b1TwueScq525vhFYh0QdOr9NlQS5hoeW8TyzjZ/o9MmO6\nTJipSxWJvhF6mj5+tfJ++LtNw5RprLHGGmusscYaa6yxxhprrLHGGrsHdk+ZMhUxWnN0O0LTCVaX\nzBMVrIGqdMrROmFqkTWjRRxiK+ME75RO2LZuCb36xm/9lpmZrQ51otVbhQmzrn+zXfQ9OH0N0S4o\nalC+nHh6kNzCqbYTB98PUSj3HPuE0+IjXZ8u6TkDTlEXqcuY47RwOKFfCPHw0I5w8Zoug1GAInk4\ngAnD8XYd027Eq/og5i2Q+DSAgRMs3Ym9r3v6jKLcOdHfuKgT0/wIZPVIJ+CH19SWHU4LNy8IKXSn\nkF7ByT33i0L1wQJGiwfqn85Ahby7i/H3c6fzoDp30P2pQEecmngPdfQkcBmnYJK0aEuykvjQmOo2\nbctJfxQ6jRNQrgq2FKemPbQZcidjAesidRm0oEk5uR+f56dkR6lphxB2lVPT99GviAFIsrlrH1B8\nkOIURLkGAe/zvArWVQX/o4umwwIkw+/DgiBm2LFFKrKSBE66BYZMy6n9MyerAdld0M/oMNcWjMko\nQO+JMRh6tBNZBCqYMglzpoIF1u465AZEwmWGCEG2i+O7pryk7Eu0cQ9WFJ9HqZgfOXo7ho6Qv6ay\nDWGMlAGoBayEGNZCBXqzDyOuKIXohasac4N1+Zd6l6wU13XyvyDzV0Scb8Gka7s2IftbDySgJj7c\nnZS7ePJWW58PwIEixsyU2PluW3262gd1K3W/GdoxW2TXmMAEjC/q+nZElihO/hOYfF3YTHmpuZ0d\nCNm4Uen5c7Rp9lk+2kO1Z4p/7IJO+XqMdcne1N4W2vPuNbXPPhnT1i/Kp6yeBnnguaNb0t24ek0I\nd9bXmOuv6P5T//3Mlx9lcfZ+1kSOTxvQXhPi72NYHHXiMgmBuuG3C2KJK1grvk/WFbIw9Z22gWP1\nORbZEI0xfFAwc+wyULEwszog+5i61tqOpUOMfZ3p+1nEWsEY86lLANIZQpFzeketWL8LMrIgLUDl\nQWbnMNScflsXTa6YNSlDY6rbh9VKJqkZZXcpYIZ87qEVEDEI5qQMDBmzczSoljMYcvi/BEZjBRup\nw5z1Wo5RSDvAyOvVmruF0+uBbZaA9PamNOQxLV0RG+PW458wM7OPva45fftZ9fEDhXQ0XulpTjz8\nVTFfJuhtJN8GGf6snrv2ZSGUsxO/qL/XhBZe+4Da/6uh2AKt7ylr0XOHYpW0n1Ic/ksvilXy4U/9\nrJmZZWQztBfFlLn26S+ZmdnOH6o9/mMz6z51n7199v8xM7NntqSfsvKq5myrC/L9ExrbL/28Pl/5\npuZe8iFYDOg9tRjz6W2xTW48/2WVc+ffmpnZuRNfMDOzrZc0t3ZNmjtPLKtfVy9+1/7khNg5w6ua\nz28z75/8ip514SNq0299S233gamyLE1DtMEuaG/y9sUrZv8ve+/xJEl2Xnt+LkNHpK7MLF3VXVUt\n0BKioQFCA3wkHtWYcTFmQzNu+AfQ+D/QjDvO7MaMZmP2bIZ4j88AYkASIKEaugG0VtWlRWalDukR\n4R7uszi/m82CQVStajF+N1mVGeF+/YrvXr/nfOeY2flF/ax9Q2OrHSrODf9d+jr9RY3Rxkg6Psuv\n6hm/8z7FnbgpBkb7QPd5xvua3U8Zw+6ssvfw3Z5myNjHATJgf5vBsO6sah0as99Lunq+gv2jQ6Q7\nR/T/yYH6aLCvz88P9LzORXR3g3iNY854B70LYsjSMXQncIO6cSB2xkFP7V6DzWwNrRspcS7HCShH\nv6TwVU/PIb5O3w9mTRGgRWY4oBG8GjzPLHC6UcQi9gKjLfa9MAZPoSHxdqp1or+hfluJnlD90Lip\nLeKGBCt7hg7dHnvWtRVcB9Gm2NzVnDMzSwdmWUS/OD2rA94jcMbszIvVna+pPW9f0lzwinvfu3Zh\ngFT3HGParVUwm2c4Cg7UZj77IQ+mXIX9WIIuXOS0FaGGjNi4NQbE2Uh1GzC33BiY8Q7Q5P45LC2P\nPU6Vfd3Ac5peTg+TeD1Wm/Rxz2tjj3fgmOAwSmIIIhPmQIO9WM67SLWjsTzuMYbYP/Z9x/RmzjK3\nZo7BCWPbaaoVMDHnJo6VyjsV+8+ctTeosM6xPlUD3i1hLs16uELBiIyZQ33eCyo81wSGZ9M5hOEI\n2eU9JGbuztCyqcb3zvDWddW+OzXdr0+c7vH/8xfkbhs5W8ZFNM5c9kV+t75Jg/eM7R3N9QqsvcfP\naQ7tTTT367TH3MqJw7p4g9T2b3XNY9976ozm45ixsnNT8yho6R7raFJtbOmam28oDscdXDdxa8sG\nij8Ba3O9o9/7sF9rS/r9haYYkD2Y4Sn7pbivnztoxqbss/roZEYw2He3tIaunZHzlNPV6/XURsdO\nS3Mm9py+J7pzbp9PW6WO1Q/bN8EKbILmYbJP2xqMcuJkjb3JhHfHGO1D3727TZ1eJrS231BKpkxZ\nylKWspSlLGUpS1nKUpaylKUsZSnLAygPlCkz5kzIaT506iC4HZ3A5blO5jJyRaucxAemU9TMIZfQ\nDOYXdGp54qSu+9abQk5efvMXZmb2iU9Kjb+1qFPq7gAklJyy1DkUwZpIYUlUnKYNLAWb6XsTcsRc\nK6acCs+iu7UY5k5Ih6UWgRAnOg2dNXVqW+3pFHiGC0cPLQyHPPgVGC8DGEQV595xtztTxul2hkaN\nN3Wn5WY5CtSTIRog6OkksI9mDdV9PRSqfxDqNDDiewaKMoMKUod9VHAyX5m600AQzpauGwxUhyra\nI0Fyf44pBsLq+shvcJpJvl/NIbXkrgZopmRVEF2HSjsnKncOyZgztBFGoPwuJ9e5VE29u3U7ctBv\nDvatBpMnDTh9JQG7QN8ogukCeHbolOAzxiowRDwuGOKskI2d3hKuRYzBEXnP+QhEmJz+gpzhYubY\nX2jugHBnIOmhqx9EFYPd5dFuM9D/GBYXxg2Wotqew9o4TGalno4hVDjEB42deEx+qHNhQe2/YG5N\nucG0Sf8OOLVGz+leypRnS11uPAhaY+bGKIr66Cb1uadj4vkwGXJQEwPUGpDH7XFyHlc1/44e47rE\noSX0mfa21dd7XdwszkrbAIKHIS1jCdcLGUsD2FH+4TzmwRL1wZE2rm1oWQ2vCjHobgiByNCkSUGR\n/D1dZxPNm1mOBsIFxdW1juLReKi/9xmrrabiSd2xzdD52IRpE6JPMnVxcY3nW5ynwRgETmsFrZRs\nQz/vbCj+jWFbrR1XPZaOKx5XJrrP/nUxZUYj/Wx20KyBtTWDTdGc3J9eSBeGkit15koSOF0jmIhd\nNIZw7omINSmoVszYL3B0iKog5ojO9EBWKqCbKTEs6Lt1QeNl2HY5xsSqoWcRKFCAA1fBWhPDPCuI\nA26tcKzJZotrjl2dYEHBeJmN0FFDJ2eWoKOWORaW6ohMkU0gcxawVJvoA81gk+aJQ43RJqPtBmhz\nebh11LGl8BlrI5L+w4HGXLeF3g6aBU0YeglraIF2gGMwTiK1sYdr1HAE+wy9CscebYAEpuG960CY\nmcVVaaWEG/+o759Uvc63Nbf/fVfo4adnGqvTz2id7P8biOtnxaK7EEsL5ues5WF21czMXt/R2v+0\nDIXs9WeeNDOzzjU5Ca2cVr99Yyb2yMrHpbdSmBgxP3dzayytl5WLmjsf+PgLh89w9PTL1nj+E2Zm\nNmGP9NJJNMNWpb/yhW/8k5mZXW5IF+CLvQ+qnpHq+doZsdf6r6i+c77YC1d/oPpmnhhFZ5/Q309v\n6foXM7FPXvLFpDlXf8QufEvxcOc5OX2ER3SPSizksndVbfTMe/Vs34Xl+elL6vtdtLlmT6tvj27o\n2Tcu/Id+vqW+f+phtf3WpnRxrn1cbfjsdxRnnsXh8Ie/BPVeUd1f+fEnaLn/ZvdSYubx2G380H8w\nnGkWVjRm9tGMCWCfddDCGqAflGyCim/p9yHaC62axux+RWNs7AsBHsOUqYK0jlK0EuroXcA6s03Y\np2ilNTvSj+gsS+uhC9NxgsvoXK52Q4bO5onvOSyKhOfsw9ysHohtlaBvEvfQYHN06abmaFro9+2+\n2me5I0bOLdaTqal9eq/gCvWIPr8Okr6Jy+EGc6Pa1lgPuvq714QZjnbDcKD79w/Yu/EzcIwgM/Nr\nbauxrkXspXwEEre31ADtuvphjr3tpHm3Rt29lBCUHVkxm+JQVZnisAjjYoSAUHCHfR6Oq47x0UCz\nZAor1Id1Wsfpz635KQzs9lifm7Ev9tjPFuhNjmAwVtDnKNiXhaD7AYyU2VRzJEKjK6jBKoL1VEHM\nJoqcE66eM26zjyM+z9gb5ThMBqwzY94rIt4XnHvgBEcut58foRMVs15k7N0OeHdqTDQWqj7vPE6T\nh71b4fPek7EWo5VWrTAm0KzpU9+I94QJ70cV3I1msKtDGPAxulKQIQ41zxxj/F6L03BzuiY99iQR\n/ejNqT3mnBMZGjddmEIbL2lOD3CFuhlpbjnX2NVV6R3Or4pddvtniuPjUAzQo2fWDusyiXNLRxML\nKxoby0fVtlOecbovxlyK9qtXce94xDnepdbOP2xmZp017TersHzWyPTod9Unb7+peT2/pvi8coz3\n5JnqePslaUuFDd712P8tznTdGNZXyBg9dkFr1vxR/by9Ic2xlab2p2fOP6Lfc9+tvtrqFEw7F/+q\nuOq5MVqg97mzp9/P1dUurWXGag5NjH2zx9j16u7dkXcstkyF00/6DaVkypSlLGUpS1nKUpaylKUs\nZSlLWcpSlrI8gPJAmTIeKN3uLbQRFnQKe+YJnewPrujE6ebrr5iZ2YgTrWakE6oAXY6s71B1nS4u\nn8SJIT1lZmbJRXLRPqbrt0Gcu5w6Om2bQ6sftGKa5GvmsAYG5FNa6k53YVWQi1bhJP1WT9dbNJ0s\nrr9fyM5oCaTkJZ3KjtBjmbSct72O0mqo7Uc1nHjI4S1AYuopaKXvFMRRaM/RmAERSgNdP0zah/oH\nNU5mx6h+x4XTYIF9hCD9UiBUo5fqpH4GC6iOa88sxcUowZWnpbZrc8Leg0XUBv1PYG6sxnej1b+r\nFCDCceTYSiAA9P3IaQ/g3lNMyXd2lgHoY1TMuTXBfuBEOoSh4jRaRrAKjOtFtEfBSXrM/dOpQ245\nwaftnTaNc2Yp0FRIYeLEoOdT3E4maLI4N6j6THPBB5VPnXo+Y8vlqydV3cfjRLzuzKHQ0EnQYqhP\nHJPF5ejCrnIOYbhyOdQsLnABYCzmtEsAmyAHeS/IaQ5N/w9BqnOggwnOYDGIwwhnCYAei8jHNxTW\nc5B7Y3xEsFLupfjkPfugQS3cdNZRW99ATd4yTvZNJ+2Nmj7XaqJd5YFUMuYC2DszNEbq/H6yr+vs\nHiiuXIKhM0UrIFxxOkQwWCYgd+gaeZz4R9ARZrAi4gl53czfHH2dMS4R0S319cZAua19xmhQUzys\n4xyQwTjMQmdF1qE9hIpPcX3q7nId2nGd599Bp2SvxNXKAAAgAElEQVT/QO0GecnqOLB5HbEA6iCj\nrSkaMi2YN3vMKfQ+2g0QR6enBLKwNi+ENuqpBuNdacfcQUsgPSIk/cxR5T330ULYByUa1O7P6cCr\n3q0JMCTcR1MQUGJWgFPRDJeBdOzy93EkwhUvZIwXfWIg+k4euirxALR0oP6vMqYhQJmTCajBfMyD\nmsWwtRLYoQUuD2mTa6BPUcPxpA8iO+wxf0ACA3TRBg7xY34GMFscK6hAR2mCo0mTODXGiayKM+LI\n6WQ4lzfHtGPtnMD+qsEOyBgrvQxtF4c2p2ivED/aILMTV58x6Ldp3RnjkpEOyEdH3y0hTtfQwgkj\ntK26zJ0K38+dH8e9lTtPyo3o2bd0/R/VxfxYfknt8dxRsRZ+WhfV5ROexvDFTGN1/xt87ilpwbzn\n93X/Y7FYu94/6vne+OxHzcwse4l1EneR/yjEZHns9R+YmdnJD8oV6YdDtdMzON6MP4P+Rk/1SJ9/\nSg/wv5kN36nY9V3NqWszac98hDE8d179efE9Qg0fekcuHt6zQg1/+or678yqOri3rzm38UHNyS9t\nSevmnY3Pql6+WMgnFlX/9hn9fO8/f9HMzE4/dcO2e2I49FY0v8//Quju2ULP8O+Pan93dvqQmZk9\n8m3c6o5pXv3krBgxK6/oGZ/fEivoE2fF6j39ZSGhBYyMz70u3Ztvevr78w+rzZMX1OaPvVd9M4z1\ns1hR391r8ZymCgzM8S6agdvqyyOPsP/0NBaGm9LSiU4ojq1Dnbx9VNcZs/aF+zj2zGnvtXRcY7pG\nTChqMBZBasM9NBHGaNPUdf0xczy8oXp1cOBae0jtdPFF1SeF4ZLBbKmm6NzBRpsPVP8pe5QYVkMF\nxkuzo+vsb8Fm8NT3jYnmRLer/0fU16+oP9ZXFBuq8+iTXBEjfuOS6r+C696pY2hEdnExhCG6Mn/K\nzMxarJdDkO2VOd23uaD6XtxHd6vyrs7HzC8sIyZO0b7Z2tZzFNu8V6zCMIeN0h/D+LR715Rx7pxu\nP5rBDq3BJs3YNzW7DpWHuUgcjPq8K7DvdfvUKWOl1lRf8SpwqEE2ZJ9bsE9zLqjplHeMNkxoWFAF\nLkW5Y+xUcfmD+R60WaRSNMlwiQpgGQ3Q3fRhNs9g54/ZX2eFxpIfO900Fl3eQ6rsT7m8VRJ9r1e9\new2thhpLXl1za9qD2dLElYl1JOhTX/ZODRx1DIb91JyFonOjxdmHd6kK73hjWK9j3iPqzL3xIRMG\n5gzrWsWx56r3lwkwRiOsOMDJkm5bP6X7r6/A/kOXZeOO5kL9QPXa2lJMXSWGrZwVM6bAdbaxqu8f\n4Lx584bm2tKc5uLE3mUbD24PrFdN7MSyvhOwv+xeEnMlQa9u/hhMmQYOiLniqA+b68gxjd0A9tOV\nF8VYrHZgJKO16rRZ5lYUH2q8y126oXm+e1ODu31U+/Ul7Db3YeH6uMstLqseR2DmpMy1UVfM7E5D\n+9UMqvrGPvvNRGPSvfb3D8Qe2k8UT9eOqS2NuDid6e+t87reOgwfzI9tDPutBtutGak+CzD/bkHF\niaPfPkZKpkxZylKWspSlLGUpS1nKUpaylKUsZSnLAygPlClTdZ7x5I7efP7HZmb20GmdmA9xikn5\nWfHRfgAUnHEaGuLxXoBIz1AeX17Vyd1P3xBK1TvQqeIMt5KEz/vkvFWdPAkndlMUsEPy6kNg/hpO\nE2PHIiAvcYxDRDDSidrbV5UTF5xWjtujT5Df19EpZQGaBaniUAkd4N2G3K8CpOtjoTQlUdU53Yz7\naFS0OdF3DkDkVfrxwAKYHXmNo9ghKA3odhPnFY+T0xEn9BWYDC4LLuUfzhWpSo7oAFXzCTmdkUNQ\nQXZz8o8n9rDdT0lxjPHR10kR3KjDCDH6boKKu2PWRJxWGijJcERyL33pR04jwWmk8D1+H8IWcCjS\nDIQ2cIhxDaQCN6GA41KXU0orW4BCeNWxLJyjAawJxxzxyWUdew5BgFlDDuuYfqiBhCegdTkOPsUQ\nBx0QlCpI8iF630cPBI2HGFX7HNaB0wZK6Okq57UxDBl3ypyhXF6HAVVwH0xdLA6dA5juk8DWaPB8\nI6hHhdNjimGbwTqrBuTment2ryVjTBeZrtGsw0La0z27G4ovfZ5hjpP8qXN6Au2pDIQI7Oaww8ib\nznFxchojw31U2EHoqi2cS6AfZREIAjo8VSY4Jj3WdOrxddhYsBQ80JoMuCRFE8Dj5H/YE3Lgxmx7\nVZouc+T+VmnL2g6jjzFcwFAJcVAYbcMcvK3nyNeEfHb7+lyAS1HC3GnAmsBEziawoepVxbGluuq5\ns4W+Bnnwrao0JCLP5a+j1QL6FONmke+IfbB9Rd93TkDrNSHsHfSS0g1Qxlz95HuOrnFvpTK8G6Go\nkI8/ZUGJYAv6BNCRQ89geWUh7l6M+bQGqwx0MIR1GIIO5g0mN2y0FB0rL3KugcQsGDyzamEYPtmM\n/Gx/AtuRNSLD+SBFh6iI9fcqmiwpccFAkYKxxkZAfM7Rx/GJq2mVNRAm48Dl1hPXnEtSDHto2oVh\n6bRtcofkoseDw4IHU6cJW9O5xkWO+eccDpw7Euh8wZibEWdz9gg1t+azZoeMkfGE/G1courMgVEK\n+n9oL3dv5XMHYum+MJW2TKX2vJmZnTv7MTMze+lFzYWPv0ftcz2U+9ITF3Sft6eaW/mbQtM6l8VO\neAfm6Z6nv6/uftfMzK4cVU7/G2NptXw6FyPluw+JXfvLLfXrH3bFePmfT58yM7PFb2jsTb+o9n21\n8X2e4H+1+asnbP9x1fOPTr1kZmYHX9f3tmf6XOOikNfXltVPPdbz3ZOKjc/MKe9+OVT9HvkPtffr\nX2SPc00d8rnvaa+2l6mer+/9xMzMjp9Wv02/ftS80+qzZzXNbWtN3+ntaT/23ldgeDxy1czMfvFZ\n3HlAkR/9F8WZ6ufQMiGuX11Sm9+5Q1y+oTb7/HHde6GjefuBjVfNzOz5T2kOHP2p6v7CCbXRJ49r\n7P4fdm+lwJ3IYMJkoPuzRH2Rmvq+Eqi+V6+rzz1YYCO0UOpoAiIPZ7e21R61sZ43As1eXNZzbhfa\nT+awaYMVzcmDa7p+BT2n9kx90YMZOocO0sK67ruypN/vvKP6VRpCdPu3HZtXc6ce6jniitbiLs45\nOfvc1XXta4sE7Ufi/xhXlijR57eu4pAJCzaDITm3qn6+cftt/X5bAyRlPWnjxteBCbSBC1TU07oV\nsQ522NNk8/q8jwZFOtY+3HrsBc0szAJbWdK6MnkSptFFfX7Enqw2LwR8Mlb7NGG3eIe7ut9d4rHT\nGGT/zP504NZifn+o/cf3ApgyHkznGvHVaSpGHs6xfKPi2LCsNTkMkhQNFUP2wui7EO2Tge80DNHs\nIr56vIO4sVT02d9WNLb7Mbp1bjPAvjaDiVnDOdE5G3q4AEYheyhYB5F78+R9ojqCgU8WQ8C7XgBz\nxWnNTGGkBx320+hz+LyvzBhjjkQ7gsVaYw0O3JKMDonfYl3CiavnnHlo1gD3q4LnKHjXnNE/BevT\ntAVjaHB/PIfhEKfJIawy2LTzRzRnk0y/P4DN20Zz0jmKddENXHkIFjR7swFzz3YU569d1brSWFR9\nF88o5kbeu3NjEgzsyMppmz+hfduVi1fNzGz7iuZbfETP3qlr/my/pbhz7R2xcFYX1UeL7Idvbige\nbF4XM/LUWdXR6ZP22Y+dgQ3sdCgH7I8LdHsW2B+1V/T+HKNps9XT/J7Rdz4M7IMdxdHeNdV75SO6\nb4HWX74pBo2hi3ow0jpzsL1P9XCXeljsowOY26Mtff/8B/T8VcZK97Lq0SXDZW+s66ysnuD3ilvD\nbd03TN9t819XSqZMWcpSlrKUpSxlKUtZylKWspSlLGUpywMoD5QpU5DXN4fa+auvitHy9i+EbMxx\nYtf0VM0DkMUIN6IpqPsU9kOdXN0ZSEKb09UYd6bigGPZI6BqnJqSKmcj8hhbhb4XjlG3j8k75PPp\njPxL51iD01A+AEmt6HmGuZCNjRd+ZGZmfq6TMh8Fcee+MgGx7XFSWIA2HrINYA/EILlTFNRj7huB\nXGSc6FecGDTPNfVzG3kOcYSZACLqwxBJcLkw6tTE6Slx7kac4E+xz6iihzNDnbzdIg8R9sAQNhEi\n705M3bzo/hxT6rhH+Jy8m0ceMW1Y47kqnNh7TgQG6kZuaKXApgg9p6Wgj6Wc3HscoacwXTKYG3Vy\nTn36IETLweWV5x7MEpdDDENo5Fyc4gb1xWmL5NnQ14n/GMS6VsMRaOzcnEAggMh9kOUMVD90WjR9\nvtfQcwagPVTfarlzYnCaObhRwZrwyCGOcUWapk6FH40Gzm1DEGmHbIz5HM1vFVxP0gnaFbBWfE6d\nJ+hm+EPdN6LdCsZ+zv0KWCJFeO/nxXVgpj6OM72hTqqDLmwtEK/5Y2KWBI7FBVssntfP/b6+d0Cu\nfg6LrAbK38+dBgzOCAua5z7xq1JBB2RAn+H2k9RgaaHXMUTfoe7gKV+NOI8LknXQyQDt2KUpmmvo\nb+T6HFPNQpgoIUygnZEQghSGTko+ekZOa0KnTVdgwICURg3anjmzYGJZLIHsjneFmI6dC9Uirk6w\ntA7oWw/3p8EcedAwb65uiuHSIPd/CMK8nzpnIK53WsjGypratT7UfXsz5f6HQ/Lbx/fHlKmi8ePK\nrIBJhHNaGmiO1HFLiRmDNXRQBs4RLFF7N2AXJC0cLUDRpvTr2JHBRsSOhhOoYi7gIJESeyv+wCaw\ndKou3sIQHMLCqgegPYHGZhUtqBGiAg0YNmPvV3SLCO8TGC9R3empsbawhrZxS0vHrDWMxWCgZ2oT\nH0fk+IeM3YQ4ah1932nHOIcEH6Q4h0XkkOGwqesnfVygWPOmEd/HXSqOYdDg4pehbxHDWExcMj76\nb/WJ0Kmx/XZU6lfLT2EHeKw7z15Vu/yo8zUzM3s/fXzw6qfNzGzuOd3nm3WxGuqP3zAzs+WxtGh2\nhl83M7PRjpwfP/Q+ofA7r+vnxtNistQ3aKcT7zEzs8b3xR74wsonzMzspSd1309c1N6o+Kx+fyUX\nKvjszcXDZ2hd2LDJdV3vnauKeaNnTum6U+1BtiPNwfehifCtQKyHx74v/ZbvzM6ZmVm+rOvfeFxM\nnhzNscV1ad1874Ri5vqP9fnPpqrHlX1cGT/6ink/e0K/K8SEaLYUV5JAz/CTQHX6YEtx66NXYPy+\nLgS2vSQ20uYL6pP153Sv+vRFMzOrLqpvXlhVnwQ7/6+ZmZ27KL2c/QXp56zv/4uZmX3zQ9LD+fRU\ndf/6d+btfsoUPQzn+tE4ojFZ2VRb9vdwPjkldtTyCVymbuEymmusLKyC4u9rbjlGTbCMuwh6T/UV\n9f0RtGImrG+dJfWhwXY1mEUpc8rb1Vy/9o7i7jLMIRcHU9Pvh3PsRwe6/uVr2tvVl9x+Uu3evanP\nj7oa8yfPaa5ENfY4icZ+BX0Sn+eMYAFMcGOqnHZzWmN05aTa/1amOH9wU+0QtxRLFte1DlzowG6+\noTm5hTZEjeeJPdWrf+A0f9Bfaju6iNnw1r5lR/X51RWxEbZ62qfvXdR4KxrqL7d+D2ErTuu/3TXl\nP5ekAYs+1xoY4ARZgb3k2JMDGMoFz1rdZk2bV5v50Kjq6OANWfNn7MtyGIoV9l0Ge7OaOJc69jow\nPnwY1x5Mx9jpnzknwhqMD9i7ffbVdbIVIpg4odP2QveySpwOK7iO4lo6IU7PcAUcwfiod3Avco6T\nPZd9QFxnjY9hQDqXwBmMyhTXvSbvM/nMuUPhlgRDxmn3FDiTOf2PwmUCsGxM3DrThI2rbrMKOoX+\nGMZ+nX3ulLnH+1Ld3Lvc/WnK9GEz52gPnXnqlJmZHXtYrJCr71w1M7Mbr+pnY1H127uj+q+vai9y\n+pzi/PU3xKDpb2ksN2p6hz7YUGx1LJATaxqPyeTdI4CbV7fs9LHTtrCsvv75d36pz+C2NvewWKQN\n2ihv6edDTyrOtmv63sYt3eutX7xjZmbRgtpu+bzWmJ3LihNt9rvtRX1vFmrsZegCObZ++6TYmkus\nGz1YYVu3dZ39XM967D2qXzjU9dYeU9xfXTylesB2cnqaxjvsuC+mS8EYuvCUrnP8lPahrz3/czMz\nm4ygMaPhmMNiu3FNcXFnX/vTFd4zzp5VfMxhcx303buk05D99aVkypSlLGUpS1nKUpaylKUsZSlL\nWcpSlrI8gPJAmTIpp5BzZ4QarfWE9o1THVP2dy+amVkQOR0PWBawJWJ0MhJQtIRT1qCqU9Ypmg5z\nS0Isbu4pNyx2fuKwGJw2S2godKNxY7FTEtd/W1OccVw+JnnvkwRnCfImPdSpH0qkn5LhYHRwQyd7\nATolmMPYjNPeBkh7mui6KUiuXzi3J53QNSKQ2CH5qOgERBwD+3UYRKCXwTi2qEZeLJokzklmSj6f\nT+7mFEh1AvIawGjIJ2qjaqTTxRH/H3f189xpnS4unlKf3LiuvhvibR8kOr2cJveONpiZZTA78oR6\nk8taH4OowhLyYabkFecipVNYPyWXljE0yVxSKbnxME4CEOAAhGAM1WQGwwPzIhvTJ7Ezd8K5Zwyb\nwqHiVgOBdi5MHM+mM522xjBfqrCjUic4gtNCBsIdoZGQYHKfojFTxw0rq4N6ZeqvKjmiiaFn4vIX\nUb83EIMER58AUZsAV6mcHOcJTBjnOjWLdf8Quf+gwecYBwwnq8DMKXBDmbl2gh2QgczPOLHPQKQr\nEbpQ5IUGBVDFPZQ0djpCuJUxFmZu7K4KiQtr5A0jY9HuaB7OtXCqaYGW9HHsWlfcGNHWTg+jSJ2G\nFPnLExwJYMDUmow1UBoIeDa36Ox+9KOPw84cTjU16jEHMnd9F8cB4pLP51YaQgy6Q1CmqT5/hRP/\n7g0hFVNYDI2GTu475NBmMIH2+7p+fRWWREuIZBPGTRNnMQOh7cI4muGos4EGzbUDIQTDgeZ6SM5x\niPPZDohCtKR6ezAJd0bq4xy2XeeUkMuji6pvdKCxtgPq091lboAEO0e4ey0FLDdXvIGuU8WpwNBZ\nmuCyEYIiTnyNmyr5+AnjIMWdqc66EIAYz2D++GMCPDpSAcysAnTQQHjDHOeKft0KhUkbAsoEdf2t\nhsPYzElp4TxSIU6nvmNjMUb7MPeqIHjEp9A5rpCb33KaWaDkXhvtLxc3nHwGa6BjlU5hk3rEwyrM\nwXGmMdCgfjOWbIaM+dBNU5y7UphArY7um+OelDbRWSJeTdEymDA2W+hOFLCz4kzP0Qehjtja1KN3\nnVfupdQHyn9vxVqruw9/0MzMHkr1vGkkzZT8I9KECXfJi0/UXgepWCE/2hRb45P7cgzKHtPfL+9L\nN28Dxuhzr/6JmZn1WH9v5HIz+tCH1a8v7os9XHuLDrijdri2J0T0SPAHZmb2k3Uxbv4XM7v26rKN\nPqf2efMHQjFz09/PI1j3AdDG/wlq90RH93n1C+q3h5/XXN07r/udnHzHzMyiF9XeC48IRXykdsrM\nzC42hOxeRxvi7c5VMzPbfGvBHntGfbP7LTFlep/SPLoTi0H8scfEcHnptq795EBx7Pb4OTMz+8Ex\nuXec7yrObN9hftXERvqQCdG9Wtf1X/zBH5qZWf8ZIZhLlf9uZmbpC+rD2ktiIU1NdfzU5/Ws//Df\n7J5KxTkdToRSx4Dm8w3NwV20yfqFNAWqHX1gA5eheAjTuqnJ7hNPJjdgqASKi0VPbXlzCzbsHI49\naIgtxugqbYrNtL+l7y/UxapowbC5CqJ87EAsLMeytbrq26xrfcwbmivda7refCY3rJXjqv9bN7Sn\nG8BATYnHR48qXhv6UDubWn9qqa7fgUnq4m8A4XAIa2KhrfVi0FJMGqEbNdyGOY7+nIf+SdbW74do\n2Jw8qn2239GF925e0vNAMV2ae9eBbRSZ7V3T3+d8MXkMpmnQdixhtdsEhqfTKUQy7J7KoeRKBRaA\ng+d7sIZw6Wyydxn11OeDZZh+zhLRV9sP0EppsMcYEwcntE3InmRC3b2G2rJgLXNLZcw/xujUpehs\neHWngQOjxDFoYBtNRjhKOso7+8E2TO6cd6Ih+/Vo4thKLACsQ46FO4T1b46hz98j+j5hOYvRzElY\nL6puL8bzzGCmhNy/ShaDx5zqwAiCCGNT9lLuBrl7fq6Xs98N0GIMiJcF2msD3jFbVVjBMGVyN6ft\n/hwhZwN0RXHW7czjIMS6tsncrqOv1GbdC6aqz5FHxCLxeIfcuoOmGayPzpLm9uKK2r2/TfYHuquz\nwjkXmyV7e5aun7RgSl+O0LNDoKcOkzmGMdbi2ulQf8/QLbp26arqOFQcP3dea2CF99Prt1THCWOn\njR5PhqtSxmajNa+40ECD9U5fcfX2W2qT2zti1tVwF43Yb9Vgz0bMjWGC1hXxtDPHPhg2/4B57rP5\naiyqTYe8g+13YcoRAHyn14Q2YMr+2J9oDJx5WmvhhD3ZnTelB1e484O221f/+lIyZcpSlrKUpSxl\nKUtZylKWspSlLGUpS1keQHmgTJkZp6oTfLtXj5HPjoL0CK0Cg/XQjFCvT3TiVLR0ctUa3s2amHj6\nfkxu68JRnbSlEyEtxSaaAOQVGohwxqmqBypXgWmTwogpnCYB6H4v5NQUGkXGydh0Tyd4C8fIKV4T\neuaTI7w10Emfn+h0vAa7IoUNEnMKPRtzYk9+fLNNLvLDQqm2bpELB0LSnep6xzPlER6/oBy+vZu3\nbW8gdGCyrVPIhVVdw8fWYrSl70aOQQObqFqQ0wlQ554hRbdn4+WXzcxs/bTYTo8+/XuqGw5UowPl\ni6dopviV+0MuA06uq+Sq+r5z6+EDOF+FaDCMQJTNaeHgDhXgoBPkLqGQU09OO4cpaAwn+FXU1VMc\nEhCXt4LczxxXjwKZdqdJM8n1+YrnXE70PT/me5yk+/z9kDiEO1FMznGC5gPGWxYCnYeMucy5NE3d\nc4IoO2cXkG7HRvN5Xoc8ZKBsztkr8EBWQFCK2d1uVAWn2phCWc3T950mhe/Q/5y5ADRRgWlUjJy8\nP+4DID1BHeQFBGRKvwXpbz9N/s+lQj5vH0bDCNTAb9MXmauDrt2cU5xZpW3rLszs4CBGG3sOXmIs\nQDKzgsHgM7bGTu+HvmiBRPqx4kyzrjZv1tBS6OHGkeLaUdHJvZvHW1eFqO6iHVDwvYWWtBSyRPFl\neBWGziIsCJCCfElztFPV906fUT2me0LpNnd1fz9UO6w4dXtQ8wxNhGiqn1s4BCQ7YhomjiEC8yZB\nP2pWUbzzOvp/l7joQQ2qH1GufgprqgqaE8VCh46C1rUmDnFVrv/1O0JeR1V12ByaNsV9OuuMpndD\nnTnIaIV88SnXj3G5KhJQMpiKoybMIxwmCuZYQozwYCZWQM9C2tdjbmegbRNiRdgDbUMErNIJDvOe\n+7jg+Z6br2hSzZzmkp4hZX5GxLWUvoq4dxq7NU7PlKE/0YqdRR9aJlX9PRkSP8jvTqcaM5kHqt9m\nTnCfDvM0jdC0oR5TkLis4rSxWJOdnhI2fjP0e0YwC3OQWX9wtxbNDB21AF0eD+2dPmPPVatCHB/D\nzupP7j2OmJndWRErK/A/qet9V9opax9X+/z0I2IPnEvEgrjZUb55/pZQvSO/0Jx46kOnzMzsX76u\nPYd3VWj+f31Ma/OtUD/fqf+bmZnF85/Sc6KX8W30lh66qud5Cdetc59T/Ta/pTF7+uNq1+a3njp8\nht6nXjTvq4+ZmdnTH9ZcP7ql/Hb7mVgTxbzW+zPEvjcuflT1GGrOPXYStsol9euRrlgWPm4g351p\nD7P2fY3LFsys1hf1nNVIegJ3XkjNC1SH7L/qGpXXNN9nFzXubxxVXNkfqU2KC2L3XD4mBswXycl/\naaBnWjytNrrwL9Lr+XH4Id37YT1bUtWe4yNXpb9ze/cLuv5xMT3OXVdc3DijsRbX3J7g3opjTlcn\nzKkhLINFsRrSbfV5/47a6uhxxb18SW3a72k/N8vRLkmEAFcL4scS+hyh+nhjU0whjLtsvqV2qqzA\nJCl0vzi+m6V7yJyGuWewAkawZvO66hdHxFf2dE57zJZY2xdZ09FEQBrR9nf0jyPzYjgungchztUP\nvU3VK4KJGEd63sE27L+22quxwF4M1p2HDkkBg3C6AXsEt6x66PRPtN5U2Qs1cI3aYS+U9PWcqzDX\nzcyOrEd2+Yqes7eNQxxMmbpz7CTmOIc4t+drzH67FsR/Lh7XiD20FwscndC8qvFzyhoWz7OvRY8s\nZZBFhyx8jZkETa4pzoUVNiUF+7cZTpIJqH2MTlycaiyMMpgg7KNrrKVOX23C/mwGc7w6Qu+tzf6Y\n7w9gNcxYuzznLMhex7nvuedxbnihwQxhTxAT/yuuz2Fh1In3CfvrKn3u1Zh8UGV81q8xjKAAHVDn\nQOveW3JYsU7jEkKNNWA9DGZOB8m5ser3aRsGEho9FbfvZ31JmPuec+is3N+eJId5swQL+sgyLn1d\nzc3edf1ceVTsjYj3r8qC7nPi2CkzM7t0RSzBgz3tGeeW9X7XQA9wfkVzbwrrw4fqP+93DuuyeGTe\nMsusD4M5wU2ouaq2ac2J8baAy1lvV5+7s4MbGu8uW7gVzbNfWjyl99YM2nzaw+UTDchhzBhkLeJV\n0Rbm0aCCkf7Gi2jUkCnz+PvlkJjvam4MDLYZe5Nhj3XlZcVdl7VwQDzK94mDN3FxUxNbow17q6fn\n7+/qp4fOnWP0NOb1Pad566H5uHJcF+oO9L2Nm6pXdV7P25hTX/ymUjJlylKWspSlLGUpS1nKUpay\nlKUsZSlLWR5AeaBMmQDl56ZzsmnrdG8W6UTLpWFG5M+502CHRPowSwpOj330LuojnbAlnKquLOik\nLgc1rJIP6PLuAodcoiWRkd+Yg7IhlG4Jx68N8js9HCYyTuiLlHy9kcuv10lZIiDBTr9PjJn4os7C\nNt4ADUXdfszpd4ZTT4EzwijR/weXdRq6flgvJ8AAACAASURBVE5OCI9cEGLyZvSK7vMTIRe3+0La\njz0pVK/98LrtvYpn/FRI2IklTtLR9phuCIGbgFQ2OZFNyLerwLQYOlcNUO0cd6IXv6788AouTOEB\nJ9YcVftopsT3kZdrZpY20YrZdnmCnERzkg8AYLMpp5ewJRLPaczARkgd4qC2hlxlAfo8EbmmM4d+\no6nimDnhgFNe+iqACZKDDPsV2E2os4cztd8Aefc64goJbKsBeYgBKGBUUTsmoHYhSEcLh5kZLkU+\n9cxhZUxyZ7PkXKfId6Tesa/PD8g1riPu4PH7KeyICP2PaugcbUC8nSYOCHtYu5t5VEGrp0DHZRxw\nygz7zUtgscEQ8tAPCZ37E+4CHsIrIcws50B2LwVAzbyqQ2Ngrjj9H+cotayT/hM4wuQH6pMbb4nt\ndd21XQ1HrMIlhsNaAt0PXS4pY/nInPqqhjNLzUf/A7ZRC0ZejxP93o7m8e5E1z2eKyd/a4Q2AGjP\npClYZ2FNJ+8tNG+STVhhfTFmDAbd4orm3lqdOAoy2tvW5/YuCWrt0peNFeUED4egYbdUP+c+FaZq\njz5IqwcTMGWOO22XCi5UTj+kUXXUI7VXY428+h3NDY926qDK30I3qQENa/+S4tetPSEcB6BhnQXV\nN64JaQ+r945cmplViOuu+D3iP3nv1b7qOUBLrDZD24Fc4xj9JB+W2QTUzPedjhX9k5ObzPDJQdRT\nYmqeE/dbeq5ohLNQVhhApxUwGOuMkT45884NLUODqQKjwupoy4DAVkHBc5h7Db7n4luKFg1hwSoG\nW5Tc/RjEdESfN1r6/CB1qDT6OlgYprDHAt/FTceIG1E94jWaLy6f3GOOOY+kKdM+Y29QRGiSsX5U\n0CoYESfquDH10d5xmmAzNzb794dcvvd7mouTM9KOuSoDB3v5oup55hUhi/OPas5Nl4kVJ1Svizgx\nvPoOek2J5sojT0kr5qWq0LvxonRNznQ0x2uvq31vwBJbvCVW3N7Tb5mZ2WNLHzMzsyyX5o1HHv1B\nX85DF2Cqmv2pVb85Z597VojrP77BWMYF6nsnPmdmZs9EYs62LyvufjZ43szM9tHFu3lZc+yXX1TP\nfO4F3ffbF3Bfeklz8cJHFZte/5rmys2emEVPX9Nz76wtWD8TY+Xsj8TW+eHOv5uZ2fr79d2jPOvD\n75fz061Nxa9q6xm15RvSu3niiD7/L/8dxvJzqtvHLqvuk9fUBj/+jPY4k1h1XIWZfCU9pfuhAzTd\nEsK790/3N0Y8NjEH+5q3U/Y6q0fElhreUR/3utqPtWDQ1IiTeztikKTMMc/tZWDUFTjMNI/q+ea7\nuDPtcp8h8dnFY9bUGM2DCjpzgzG6bKzNhdMYY306c1yspnBNY/DgZdU7w+EthKWA3IV1Qn1/b0Ex\nop9obsZbuA/OaY6eOH/KzMw2cB/twYyZW8H5cuxYcWi1wNQcTF078Hv2Eh776N4e7GIg9X6udti8\nofbsVLXRjkzPk1e1fjTm33VgCxZSi2/CzjvQ8wboE9bnNF4S2CAerGEftq+F9+7kFvCVEe8cqXPI\nQnOv5pgpTkOvrz4PaOMg0PwOnFtQ4dZcGC70aVTT5yewm6o4RDruVzJVG9YnasPI7cedixF7hBn7\n2shtu5gSfXTuap5jUsIKY58dsY+rm2OUoMdGHCki2ix3725OLEb3rbD/dAwcH5eqyaFum2N46mtt\n9t1TmDmHmpJoo3iF+r5gTa9kTjuTdyw0bBq8z+SwZJuB7jPFZTBnruQz956EWxPt3IN5GsTqpxxW\nbeLfXyxxTKGcPU2/q+tefe1NfQC2dNiD6VKFBTLQ5y5fVRzfeFNsuvmjip0PPa65neyr4bZvaV0a\nw1ByrPHdfOuwLklvZpUVz+5c0u/manr2Y8cUn1cWFV992PBvv635Pd9RG9TZn1VCzTuP/VbKWj4a\n02exY/Pqe5UebFo0YzO0IA+Icz4ufLvvaL4ee1L1WV5SnHsTDan0EmOVd7yUd7Ljx4hPuJYe411p\n45r2w2F09ztdxBwde45OxZx077DEQ0ekH/gwi2DQHHTVZ0YWwRhn3jpuUx326b+plEyZspSlLGUp\nS1nKUpaylKUsZSlLWcpSlgdQHihThgN7G8EamDWELvmctgacMk/I2apx6jkAcWxxhD8Z6aRr6hx0\nuH4OCyI41ITg1BQk00NFPlzV6ewUxW0bk3OGU46Hxku90OeHE90/IjfX6YNkmeozmuqkbPt1/Xzr\nmpDxZkennWPy3kfk/M7In3cK4lNyghuOJcEp7RuXhJr98js6abvwfp0Yepy2+uTWvvlzMWdI37ez\np49bDcbIaIOTUVThKx6nlyCfFZgSOQhmgHhBAuOjjebB0ClnnxI6tH1dbXbrJ1Kabq5wok/OpEcu\n6SSRS9O9lhD03J1U++T1Fa7NQBI8p9niFPNhdMTYhYTQnUa4GPmMlfwQlcHRK4V9hWOK01CZOscv\nxqoXglin1M+7W7k/cS5PHKcm1K+AeRJWOXmnHUd8P0ZDYuJOYznV9XLU9jmRd9o/Ud3lYzsXJJAE\njnNzTsQDdFdy4Pt8gnZOlf4Zc7qMRkPG4AlxECoqMFo4Jc85cZ+gnzIONJmraFV4sEqCyCEieh4P\nrYwxuiJxAYMmcOwW+mN2N6vht5URLCKrawwG5Mumnk6m622hJ0dQkQ+7eobNK1fNzGyHZ/dQZQ8a\n5JiD/LUNRgnoyxT9hK5LXAbOqqCzk+4LQdiDxUBKqqUwT3a4//JxzYUaVg0B8Sxr6mT/6ENCPZZr\n6HnskyO7qftH5PyHHT3nLHEMPcWdfFfxaxtdpow4dnxVcahxFHQd14wuSODIpdajsZIyZ6owZGqh\nfi50VO8B+eA19EO8hv5+3DFlyCt/ayrGThWEpNtX/Yb7aLQwJnf2hMAOiYOdJcWYGddNYaxk6f0x\nZcJR+67/Fy3H5tL/B+gitdEOmPD8PjEvRfvLA+GdgeTGbm7DcqizPvXQR/JwLaigB1OH3jcgXofM\nmcDLLTX0gHzHMEMTCkeBfKLPNgPYkzBhWhO0BIiPPgyNegPngBkue010I3ArCoa4xzHvm+S2Z/RZ\nFauUASxOt6g4BmTEGh0dqB5TBJrSABYQOhkTENcx9NcOrnhdNGkmII+GBkMMIjzFYbDeYo5mzvFM\n1x/4IKR9Xafqg+jStlHz/jTMvvVRtevvT7S2PnlDY/HZm1pTL35R9d/pCr0bPq/nn39Ea3Pt6IfN\nzOx0D92PT4ot8YttmEtdOQb9l205Av0SfZH+eT3P6nXV/+yzYoek5Ntn//Ginu+Cvl/pyf3Jv6p2\n+vGWPvfnZrb/mZZd/9fvqP7Lp/T9ZblIvSf9VzMzG8EKO/pl/b7/S7XjO3toNyxJM+fcQHP2BxUh\nt+dy6cK0PqX2eOvNp3W9hvRamj/Wc//8SdX/oDax7BVpxCwRL+KPKb4+8YqQyh/W1adHXhSz9zX0\niY6c+J7a4PNiJUW/FHvpD6q65ztTjfEklabMjTmhxR8e6PfPv60+Og2TOg5VpxCU/u3pl8zM7PGj\nBIB7LBFxwTmPOffL2FfcbjfF6OldZy2EpeCHaCJynTr70VEdtgMCdNvX1eYe6PncSWkDrsfaRw4K\njakwwXkRxxrHmh3ikheyRo/YawzvgAi3cLBEnykE0fYqTpfEzV32XLBrm8eIv4nWoeENGOwscMkY\ndsJ51isQdNu9RjvAJo5pgRH9MtL9lxbVz120tjL0L6praFmgPzdsolc41vX2+fwyZJQ27LnrMGAm\nk3fp2fG4btXT3OcV7YWTidqrOtS6OA/rr0/MmbGOD5J7jyUpzEDHRJ+xr6wTzwcH7MM8x0QhfuPi\nVsWZMcvUF9NDVhV6mk3nSopeDmi/xbxbJIrrPtosjsARopGSOdehodvDEKfZSx06CKKT5ldwGiOr\nAGKlZXAc+7CraqydI9z+DjXQeN+YHK5rzBn201O0ZJyTpNeCPeuyIFiDnd7RhLXX6RX5I/bFtENy\nKP8JoxPWkxMuyTKYnbgdjibO4ZY9Y5UxPYCByd4xx5UqhIHEq6lV6IaCd7F7LRPYG010TMYua2Ib\nN1X2gq1TmntzhhYRjMmtDcWEEAb+kRPa01U9ff7aW2Jobu0p1lbRZfVi7YXGN945rMvYH1u7E9vG\nTe0fKwu6xmk0TCcZ7Jx3xDzcuqzvrj4nl7zFRTVmbVFtvoSTVJMwkPdZ+1v6XJ0+n8KqL3BDqq+J\nUVlxYXlZ9Tn11KNmZnZ2TfVxbNpuV21Vq4mxktY1v5ts7JyjVcYeZrindaGJTmkXhy2XNZFQn6rP\nfo+sgHDi3hVxZbqp63c30EWCye70Rj3YZCFxNh2QffCf4tGvKyVTpixlKUtZylKWspSlLGUpS1nK\nUpaylOUBlAerKeNOY8nfq4I8OAZJkYCWByCaPvl/INszWAYhehw5p6peFccg9EdmQ53MhS3QKvIJ\nJ1N9Lxrj/vGoUJ5kW6eKe+QG52PVj0Nri8mTH8OM8UHnJtABjoBET8klu/yKTjNf/JnyrRdRnY9D\n9EhqQss8WBCkaVof1HGpJuRl5aROiw9QtX/1u8qJXjyGKv05/TwZnNJ1YLnc7O9ZZ0fnb7sbaoMC\njZWiymlmQ9fqg2A2QaGDpjuxJ08ZTYETa3rGI4u4UKwrr6+KvkKS48zCibWBujTa9ycqkzr1dY76\nhyAJIXmDIaeh00x9HNVU7ypJsU6jIQE5qDjNE5xvppzsV2EK5TBDfMecCdAPyVDqnrqcU9gK0L3G\n/L4Zu+ui4cKYyDl1BTAxHy2ZPEaDBoZMQfvGBluLfpiQbx1xku6R28tl360XqFcMs2ZKvnYGwpxO\nnXo9X0SbIeXE3of5EzbQ4oExlWMTFYHqJzBwkK6xCEaUj8BLSvtljMFDBOGQHgfLoUk/8X/n1FPM\n3Tt62YQRk6E34aPE36btV+qOGacT9UsXNVZnoPy1FSGRR4+2eRbauqqfLZpsG/eiA/SUHqrjigQr\nYLSreXnlVf1M0LhpgazuM/TWzl/Qz1VNjniAThOK+xHozpB4GN0WordPDnzPqb+3df+py8dG08o5\nbR0Q32IYMGvnhFgvkhs7g6FyeV9IRIROyWkYOgdo7HgD1auLo08LhGHZsa4SIZd726rXMZhJE1gA\nOzdV7619IcAV2BptkNRdGDMZ+eEeCE1QU3+4sWS48vm46lVBSu+1TH/FiCcAk+iDGuZDxibomT8k\nVlXRnqlrTA5h3eVDxnqDPHpQz6JQu7bRuZrgzuS3GOtjECGmxBB0L/ebh+j0kL95PHvAvKih1VLA\nEvBmrGmOcdYkzjjXDJf4XOAoBfLZgZHmnKGmIHW9zLmGOBQd7TDyvp3WjdOkGqIP0SDOZ7A7iwmI\nJ5pT0QgGBhoCBprtGIABiGllAvUR95Ea+k69vmNKoonA1qWF40MPtsUQNL4ycroVXO8ey9lX3jAz\ns0tP6Tn3Y7EvmgNpuuxnYm9Um9KHO95+wczMfvqQ/t4cilHinLfm3sShbVU/H+2oY//Hvlganzsr\nZumlV3WdaF7tcvUNtcfyZzVHfnRO/ZyeEvL5dKY9wep1IaOXWu+ywJ7L37SDL8mN6Xig69/qPa7P\n39Ln7zwn54rJy3oeixUb0kfUzmu3tB9IcEo6fUz1uhNIf2ua/7GZmQV16cAksNdaoKmLm581M7OD\n49+xdVhUjYf0Wf+N95mZ2XCFeadHt9Fz6AT9UOhwdKC+/wCOKLe/JJ2c/tdxT7rGvquvMXTjWdV5\n/kdiOS09rb7Lr2pM9Bva3/30QLpBDz/7P83M7BfVFbufErDWTVkLt7ZVj0YfJ5ees1yEncveosZa\nvlJXH6Q4yIRoHyJ5ZsNUcXLwJk5lT2ivdeyoxs5GqnjahwlZz4QMt9q4leC656NVVUc/ZG+k63b6\nxKP3YEUDe2Hs4qlj7+7DloOxGFY1psfo6HFZm+Ec1L+tdaTGursY6oF6TY3dGdB3zp5gdKD4ubut\n782jcRadVD02NrWuVOl/H1fBFsyiekPXOxg7tgd7Hp6jibvLLHk3BgzHgdUbtA+svD7ab0uwxn32\nko417sMyN9u0ey0BrPsQZkYR4lhDOG7R1NPbbPaHzF/ehQYpexPPMVfYT7JPTBlbyeE+VN+bjdmH\nhvQpekOD3DGTWdzQJITAYgljM4QlkLM/rLA2DrhuK9SYq8KOTdhne6yRYzb8Qao1PmKNHU8de4A1\nnv1ghvNVhX1nhKZOAZsg493O7RudploNFqrTRslZp8asM8iC2JQNdwArLYycFuSA++r/LdqjaDjG\nPSzYNuxrHLgS1vrGUL8f87JWwApO7f7Wm6pjOLl1in5IpuhG4Qy8sghbmPVu+yXdt8I6fuHZU/rc\nUcW40a4+N0Tzs+3BpHlY1wk6as/uJTe2zYo0tpWVhcM2nbGGOy3VKy9fNTOzrZtiyDRqzDO0snyY\n4osNdIFmGlwv/0zv01P2mYMDNPjQjrl5XfNq7QgMF8bsrWvSXWtVFfeffEjue0VbY+XGy2LgDXdh\nM53VnihiP73ZVbx7qKW10L0jTdlbbG+qPvvEoSUyZsKzZB/Anor4Xryq63fm9HP3jtrDa6itT56S\nAN0CjPJZlz0L+71JrM85Z9/fVEqmTFnKUpaylKUsZSlLWcpSlrKUpSxlKcsDKA+UKeOQhAAkYQQa\nPyO3awVvdS/Xidewq5OmPvn1lUKniR5nS1Vgew5drUCHZIJLR4Ri+QzEdBc16MlFISrv+aBOuvqg\ndd3bOqlvwlqYkE9ZA0qNKpy0g2wXnBr76JksLCk3zv+A0Kb6WKfMOXmQfU6Ja1Wd0GU4ZoQ5CPgd\nnShGp3S/9/7+R83MbA73jyswZobXYfwM9TxNNBtOnlP7LV44azsb+mwooM3u3NHpZfOYmC5Of8cn\n59VcLujAnWyjLcAJ7PzH1VbdsU5cFwZqq/2u2rrptEbQBIjIbZ0aMur3WGLP3Z//15wVln6MxyCu\n5HWPGRvBzLl7wOjgxNm5GEUVGDKFTpAnI07OycnlcNQi2FopFShqQMI4f3kVTj9xLxpnao8M/SGn\nZ5SBVIS+Y105xBeGCowUd98aSERGbq7TrUhhf4WOPEAe5gxtmcoIRwYYRBVcjCroFfVxjmjBtshi\nEAjyIOvuoH/s3K2cGwCaD+StB5zQByDqeQizh687ptKY53JoVQV9jaLB/RP+DgJeQ3NiEt37efGU\nee/m34Qc9bmq5pd/R0yTG9swWGADHDl5yszM5kFP0i3lmm471AYW0W20p0bkuIdtndzvLGq+Dohf\n+7ghJfNC9Op1IQjZAo449EW1CeMPtGX/pjQCbu5rjk3R52n0dX1kHixxxI11IYr5PDm8PE8ROu0Y\nkM1loekFuiCTVDm3ffpw47Zyg8c8n3dc7VGAjhm5t72p6j+3rt+vzqPL1BUyPQVV90DTgkJxZzAC\nyeY5a2uKS2Gmn/02bncgly3YEhmqYJ0OWgaB7u8YKH1nnRbdu+6QmdmE9cIVD4S1xZQeJmqfMewU\nl6ftULcMRLXBGB6CroVOl2uq54hR6x8cstfIP6c/Y5w1okMpJCErfmdiBUtygT5Pn/ne7sH8aIAy\noT/hV3Bjg70ZMnZnKP9XYI4UIKDBmDhCnPe4jw8C22GNS4jTkyHsM8+hzjhxoanlkeuf0Ab1iHhA\nnBk6Bgy57Am6Qc5Frk4cSYmPA+KoRbpPADuqXuV60J0C5qYzV6qGTtdN7RfjLlV4QMH3WBbf83tm\nZraGI8/kj3W/vdd+bmZm7xkKdfsP9FC2j0nPZPy1G2Zm9tnPq4/fYS7Zvn7/8RtoGxzRdX+/ofr9\n6FXYCl/U3B1UhN7deF6I5x9d0tj4g2svmZnZ6J0/MjOz62gb+M+qvT5jNw+fIf/XT9ntz0p/5We/\nYM6eVwx80oQ2Vn6hev7ztvrlzOeEOp7d1dy9cfB9MzP70KI0bP6tKf2r917EKWxL129+QXO/0hT7\nZG6ifcHcmup17WvnbfNRHLxWnjUzs3Nb2itcuaj48P5nhJTOvam//wJNlOpj2jd9LVEc+vwVsX5+\njkbA+3piHGawPJ96VY4j/ZHcmDZ++Aeq44d/aWZmx3+gfdbaexX3Xn/lv6jBivuLIwVCEgFuGi3i\n2YT4NwcTujDFk+GemNI9NA0G7A3m0UKcB6EdPqL94uhtNBv21D5Ll5mb58WwWTD9fjPRGEyYo3NN\nXWd0Gz2KI5qjK0vq0zs7avc4Pq2fU8euUFy1CixbNHC2N9DIor07Hd1/0NYYHcHSq+vyNsMpbmtf\n7nnVhlD5mPbaQftl9YyuMzvQ94e7aqc52NdRk3rlznkGjRr26wHMnSH6dhW2lDn2f44JXxATUvSc\nzMyKJLdGB/ahr8+HkfpvhP5VJ9R9Wov6XKPF3B3fO3vXofL9/iJtAHuUe0xhbKdOOzAnzsHQ6Ec4\nSBFfA7SzfL5fyRwjxGl9sS9rwZBgDY1h+c9gikQw3wPYDyPQ+2jq1gmY6GQxjJ37HvF3jGNtjNhi\nHYbMkD1Q0+0xYL261wlDoyV0+0c0XTzYqAWs25D9egZ7KyTAh7ClZugGRrh69nn8SoRrIGRXj3Vz\nwF6o4Z6X95gG65NrX8ea9me4kqJBU0W3pMcY8HkXHLMfr+DYM2OfHob3576UsO9uc98qrqu0ng3Z\nfExhrxRoRmZTsZBrThsnEMukv6PJcOMtMT771zWHY1i6nTU5lPkw8vPgXWZPUMssH89sbkljr3tb\ncWHjdV1r+7J0wyoL+vv6w2JXzs1pnztGU6/C/J3saM3ZuoWWIPvGhZOqa4FjVxOWUwWGdcGgCRhD\nR5cUL9rHFAe6+2qLOze0ZtXRq6vyLAcz3beCs2ETPaDdy/r95jU0qdB+rbARax3HDaql/f0k0drm\njGBj3gWHmxrLO1evql68Q9YXNLZvXdOa71zkJsT7gnebIvjtY6RkypSlLGUpS1nKUpaylKUsZSlL\nWcpSlrI8gPJAmTIpeYKkRdrMOUrswYDBOWDtYSEod15TPrNDNDMcI6qJO1nnFJWTqAnsgAZ691NQ\nRYgqNo9eyEsvy0lg/U2hQgvzOjHzOKkbkfdXATF2Lix+Sv1pxTpMnC6nvVVcOuZWhYzn6IhknHbX\nOeIvcvI0QVJCTn0PBrrvtTd1wnesoVP3tfNC0U6hmH57pJPMYV/P0x/rhO/SdT3v0uknrBMItZhb\n1jX2YQ+MOVHOUXeveaDATlWcE9xxpj658opQkPPvfb/a8LSuu9fQaWmzT/4gGjQVXJtSHAACu8+T\nZNqy4lToM7V9zSlbo0lQoF0QkNMecaKfm0PBYJ6AKnkR1wMpjlH290HDAVlsxOdCh57jzDUBUahN\nnXYLiDK5swFIyDh3DgwwQ2CUFLSzz0l4DcbIhPpMQue6hL4S/WAwgJxURISGzyTRKXIRg2Rnuv8E\nvaMpMvMhKNIUpDXHmafu3FUO9Zs4SR87tN+d3/KcTsyGUqDNY7jBpGjF5DxXhfZPeY4K95/A0GqQ\nf3rYPtm9nxfHIHwHOMOkxIEaiGI30c8+jI3WipDCSiTGSb8r1OHOLaHNE/KHK/MLXI82a+oEvQlT\nIkVzpQvilxFPVo5z0m7kiY9dDi2sBBg3N4dCEHZ3NF9zxlplEeSOMRLN4ZQDw2YGS8DFzQDmXIbT\nQ+HckDx9IPHRg4Id1ZtozI65X2NZ7RDO6/9b1G9MHG6uaGysoz813QDNvylEd5Qovo4WxcwZdPX3\nHkyULrog9bnGXe2C/Il5sD5SxmAOahXArmiRP765gVsTDJXx8Lfn5v5qaSV3L3cT8v0raIOlsM0c\nqjaO0A4Die8QSyY4v8W0q3Na4782wFUkwlVrAiLbRidgRMwa0z9jF0vyqSWg13HhmCh3O6jEM7XR\nFF2GOi5mE+JPhjtDZeaYNOTUE99H9AVh1VohCOmQtZf71FirAnLsZ8zjagNNGeLSEJeQwunsALzl\nzF+fHHvfCaXFTqMLZLTC52AiOkQY4xPr8ZwBiLBfh+3UR4+prrEagGiOcdbpowsRzu5vvfF/qPv/\n8rzmxAf+b435fzuhOdn+vurx3i9dNTOz1/71B2Zm9uHHhUCGoWLLsaHmxp3TiinTb2nMN+bU53s9\nsSeSj2psPX5Vn99nD/Hc03q+b6Ri5qws40B5Ui5M41eeMTOzg1iMlp/+SK5If2xm/tNjs+dx6zrH\n3mhXzhV7i7rvDfYuj57W897+J33/yU+jF7Aqlsn4pOr1+E/EhHnzg2rflVhCMJV//rSZmb3wSbWX\nFdJpubAlxsx84Vm6rXtcnlffrY/Fzr3+QcbaPszEvhgz5/9YrJzvXdHYWa8KWf3aGX3uKTT0rv+7\nnr3zmJ7154timjx5UnX5yA9ZQ18UE/EH5xRvLRPD5kCXtc8/LF2d//Pv7Z6Kh1aXMcYcsy5HRyNE\nUyVagMlInJ2xn5uyhmYgvuObGvudJY218BH9fufnqvdoTz/TPZDcOT3fZEd9k/XVLo2q1qsZjJII\nS5gQHb/xLTS/Vp1WCnoZ6N+1O6rv4Cio/Kauf+Oy1pv1ihDrnM3hEMebVl2IdH8OttqB9ufzq6pP\ng83KNmzqRqT79DronfD8DbRbpk54hdgy6hDLnK4We6OcuO110CupoGXha28bsF5Z+G7cD4LAJrBW\nQpi0vW2YnhXVd8p1a+xVc1gb/fTe9yTjFJYlem+OAR3P0JMknmZoc9XneBdA98fpynkwXXLWhRQH\nxQIGoXO3y2GUj9kz5FOnSaixWod1msJUTHn184aOiY7+pmONsa502Lf2iOt1j71IDR1Pp9UCQzNH\n3y9mze6HjrrCZsVzTA+Y4TAym2i/zLivRerLGfvXiDWzkbGXwkEsTGDc4F41gi08o13Dka43Qpsm\ngLHt3Ks8tNc8mJo5+/aMdTFDR85z2kBjR1fGgZH3kCl/d2zhey11HDPTNuMkdu8B7jaMC15a0x57\nM21ZrbLI3oP3l0FXz7lNlkd1Ttddu+SSqQAAIABJREFUPq94vL6EYx2uUunm1mFdkiSxg25iYUNj\n4vYWbKnbxB/G1tnTp8zMbH5dAbSHQ99wW9c6uMP7667mVQFTePGo9odzy3p/tQwNxQX1dc4+u9uD\nwdLS9ZdWtLZuX1d9buAYNYVpuLiKvtoJrVFVtKScRuH2FeLYVX3PsW87HTJZmFMnlrR2D2EDd++o\nfhXmWMJYT8Z63pHT6eS8YYArq9PCbR3Rc52Bkb+JVm1md787/WopmTJlKUtZylKWspSlLGUpS1nK\nUpaylKUsD6A8UKZM5IRCauR4oikzuiw052KgPOqV9yh3beG8HAR2XhJjxjwcCUDGQ/Q5ElTTPXfC\nBTtgxom9T65X9YiQhzrK17MtndBNQabbGKwXQx1LjkI0XhzyMXKIA3orNdxJyMufBLi5jIWg5ORF\n5jjoFChtV2Y6Te6j6k+6oqXoblx/Vc/7zptixGx+VO2wtCLE6dDdw7mlANC/82N9z8t9q5P3t7K6\nzndQR98kNxXFbC92zBQYEugj1Pf0/bz1lq79c/XNMZ4t4wR7jCR/Bb2HkdOnAE2aFb9igfI7ijv1\nTMiZdSiJc96yVNerO02ZCp/HjQSyklViB1XAPkDd3bkqpc4dCajXg2URo6oeoiEzRZU+z/X/BLZX\nlRN395wp6HcVZCIDgZjCOKnBqMnMISDkvoJYj0GsnXp/QP1jTlkzxlgBAl5xbAOHlJD76hDsWlX9\nNEHjxeP6joFU4MqURqBOPHcUOt0nkB2Q58Jp7IB4RyAVOc854WeNDsjJ64xgC0xAvlu4Srk8+xja\nWRHeu/bQEGeZtKk2D0DX79D2owkMkormc1qlb2DAHaBhMOZ7+Rqo74qQNG+m/1fJM3aaV6260LD5\no3q2BnpCtab6MNnVs+4Gbv5rju1F0BQCjd0e1jUrMGSOHMH9aBcE4gB3NlwnFmHMtQmfE5wMdkZC\nKHOGYgfF/rWm2navp/YYooUQNl3+Mpo8IMA5yOLiqhCNIx3Vr0Me+9u3xJbLYCBGJxQblhugMOR7\nh7CjarAh8gTWAmyHKXpUHnGxgc1VBiKR76hfrhdqh/23YRcQk3L//jCFfv1u1gTyU4dsuspY/Z2R\nY1xFa6F66NbH3GCuZqBlbUcS66vhIXBaSD7+lDkzaTiHBl2/PtX9Itht46JpLcLUyOWY08kBDlgT\n0GCDUWbMp5g6pt2EuuHQdcjuBAlFb6nFdQHerO10jDKQOOJpZaDvezgJTh3TkLWqXgPJYycxRMOl\nSlxuglj2QZ9D9CUKGIcRiGfXaWmFWLqwBhrMmQzEuegTn3FeceJaxYC4RDxrgYbllftjyvxk7qe6\n/Ulpxbx8U25KX3pW8Wp4Wmzag58oJmx86uP6PbHh0f8Bq+AEzKGB2AXNL6At1lc7vAjr7uO52CFX\n57QuX0XDqzETyvixSEycFzsf1nWY84/s/D+qx7c/b2ZmR/K3D5/h9iXfDh7Rnuks6ONrNTFbHplp\nrj76ln6+vfQZMzM7N/dNMzP78Vu099y/mZlZpa3Y6hVixKx++ztmZnZ8Tto7xYLG5Vkft60fi+Uy\nOPaa/v/pJ+z42xoTD12Wnk0wENvnYF/I6qUtxa2935OmyO4/aW/x4fepb7vX1LZPnta1//m7QkbP\nrwkN7t1Rm569rb/3B0I8Byd+pme8LVZRt684+hHmxmt7XzUzs6/+4ILdTylYe0cFrh1oKeRY2Yx7\n6O6gzbKEy9EUpuSBh+bKjubYPhqGq/4pMzNrL4G+r+m5r1zWvnRhT228uq4YEBOXe46ZmEhjIcb5\nqzq9m1XnEa9DHCoDmC7JTHF1fVVjem9O9+/P1L7eHpoPzkWqorEbESuGMC+9iT7v4p+3THux9g9u\nqf2TvtaJasz+GIZnAlshq8KYCRwzUe05RztF7HMNEoZj3Q22afeuvlet6D559V1G5eb+ls3jPDN/\nVkh8fqD26OYaywu4Kmboco2d9gXtdy+lDdv9DmzJYBctGZgPY9hUHRgh0UDPNoG57Fa2KSxLnzqN\n0XrswAhJYSSGrIkx+/YYJ9oZDAx/5PR2nCsdzBMXj9k3T1gQcuP7VCREoyuD+RKyf3PGV5Ua7xHs\nuWawyJq4UPkI4iVkB3jofCIRYzlM98x3bF/YwPRB6hifFZy40LqMYQ3P0MDJU3RJWBezuvqs5hgp\nLC/O7TN3L1suW2Om56802PvRE02YSIPMvT+4d0tYaqyXg/j+XqmbsNOCirsu9cItNuXdNEdjsTtm\nb4U76vI5vQt20HGJ2DsNGEch/X3kGPqCrP/9Pc3F/n/SSar4nkWWHbL8IxjmXeLFmcfFtll7WNfa\nQcv0+iWYKxNcNA9416AvH3mP9rPr61qTtneu6nvXFXdOT8RwmbbX+L7qXlvgPZ396JVrWou7B4oz\nJ86IQTNPfXLi+86u1pUMJvXNoeoDqcnOPC5WaIL+UTJkb1RD85F3oc2x4mrA3Js6bVn0g9bXVO+g\nw56jrb6c0YdzK6pX3TSW7vDc21d1399USqZMWcpSlrKUpSxlKUtZylKWspSlLGUpywMoD5QpUzhX\nEZAGj3xDf1FI8Fs/FCvj/DmhQPOrQlIaaA4cwFQJOQLzGpyw4TAx4cQq4ISrWREaVVTQmOhxAr4s\nJOAqDkUnFznVTnGsmOr0tF0jR5XTxwKv+6yHixKnk4XPSWOhU0jnYV+huafokPgcQ6f4nIeZc55Q\n/VcWdL/gPMhwX/U+wNc97+vErT1Hnim6Asfbek57P84Tfmw20enh4gq6EM5ShPy5KYim5/J1cblI\nJ3qmGI2Q43M6HdwcXtX3cJVYqcNSIA83hIESofNh5MROZvd3DuiTmxqA+mSRy5mF/QQtIIsPsQUz\ne1d5PxqpXpNDxgx/50S74tBvzidTWE8z1OWdRksCKl8FRc85Ga+SbzwEtakN1YcxCIejPaWc0nro\nZoz5uwciEJPTOw2d5groFkiBc5GacV9Dpd1DNynheSvoq4zJRY4YEzkgT8TfJ/TvDGaUR85vAdPH\nd7olMGCcJo45VX1cVQI+bzwP0g4WcmJfwFYLQIg4hDYfZKSoaXw1xvyBnNrB3UY5v7WEE43zCsyF\nDDX3hLFTbcBka+pzKaiKy/N2bkcV5l11RfMHgM/GKW1jzGsYcUsgCq0IhC4ll31XF97bultbJQfN\nqMLoy2CGrK2JkbIWN2kLvj8m73eoed9YFRK8WhXcMxgIaejf5MQfhf2jq2LIHCFOVcjTHh0op7Wb\nK14FTfVNhjZVmsIAJAYsLcL8oQ93ruj5tvdxxukIba/SHk7fqYWWQoyrhYGkOu7Tfh9UzdTJI3Jy\nZ309l5c5tEdsgQB0LpsjH39B7VetkHh9j6U6iu/6v4/uVQDLzP11SgxJnDWGc3nCJapyKDhF/6CR\nMybcIgt1mM/fIjRN0Lmqg+CExLKZm1uWHQqUtWogf4WePWmqrj66QM2E+dN2rnm4wMHiTCe4YuD+\n1uRZpqyRfdDkToh7UqCfTv+ixlo1xPGqynx17NAKCF4/030rmcZUHUcWYw3MWOsikNUIaDRlzUoP\nNCpasBc84kiK5kCL+DVwLlSg5z00DNqs9QmIdMPZ0oEITvL70x36yJk/NDOzrU3tOa5+RL+fdtUe\nT7/8bTMzy/vai5z++Xf03G1prNWeE1r3H6+IpfqJSI6Jr+1rjFx6SWPiIxc0tl95U86PE3L/Pw+7\n7vWT6q+NW0InB2jHPEo//+LLf2ZmZg9v/aOZmV3YOnr4DP3um7b0U9a5j6p935fr729voGHxjNga\nW2f0+9o31R+3nxbLpP2Kvtf4tlgkRwMxdl5rCfWsLOv/22+KabPwS/Xb3Dy6T2tq/63bB/bSVHHr\noZ5ckK6eVtzKC+1Fnn1d8/mVqvY10cKXzczs+V+KtfTFx1Xn2++ojk91FDcaF+TKtP7t3zczs+99\nStowj0cag72umMRP+GIY3zqtzvS/L2T39z6vvw9h9/5f/7vdW0GPx5E5E9ipywuwDXAqvNFTPVe3\nFbdWVjWHZ4+fMTOz6S2YPtvEmVTP81CFuXRcY2xpU/F9G+2uyp6ud6ott6mFR/X3/U1VaADbdgk9\nDcdCaLWI+4Ge1ye+3npb9eic0lhoraie23WN5TEIdKen+xRoqyydQAPHd/taYkaC4wu6UBBNrdFm\nHdnVH46swjSEuRk5p0g0Ypo1AulQ9azBxPSdDmAfFjKBN2STl/d1naVzuvEYxN/MrL+7YwsdjfGF\no/rewTzaYdusQ2w+/KbaqxGjVRHch0tXovlXI34G7AP7I94pYG4MYUC32X8FMBMdGzeDkTyDidcO\nHXMEbRT01WbsY1M0F4sZ2i98r1tHk4vwWMflrg8jI0bXsoIOUYwmzbBW4TlY3BzTAje/itOiIT7P\nGjjTsk4kuHMGVd7NEtZKvu87ZjSuTNkQZgv1TZvo4qF7VEfrbBq7fT/rFS5KLZhEY6dtw9I6gllS\nObTmhXEyQXepijOuD9uNvWMIe2uCLmAThk82oZ9gkA5g+0be3XuM31WaTY3pd24pRoWBYmDC+Fk7\nKbrZclt7rY2p2HBrq2Jgnj8Bqxqmz/ab+nuRaNy1iO8B7y9bOED2txClgfFqZpanDbOwaX4dxlrN\n6V7C5GtpXzw8UB/s3dIaN+ipL44uqs33mc9Oe7F+TN/z0GK9cRuWzh20Yy5ojeuhZTjqqq0752DO\nMPRS9uFj5n3nA3q2TlXz/NrrYtJsvHVJ92+rbxtkiSyePqV6wGjZv6y2mMcAsQ1jfUycc05aGVpX\nyR2Nkeu4Ky2TqbIGw7BgDrz2uvYOA1ixzSZjeY9zhfBdHZ9fV37noUySJPY3f/M3tru7a5PJxP7q\nr/7KLly4YH/9139ts9nMlpeX7W//9m8tjmP76le/av/wD/9gvu/bn/3Zn9mf/umf/q7Ll6UsZSlL\nWcpSlrKUpSxlKUtZylKWsvz/svzOQ5lvf/vb9vjjj9tf/uVf2q1bt+wv/uIv7JlnnrE///M/ty98\n4Qv2d3/3d/aVr3zFvvzlL9vf//3f21e+8hWLosj+5E/+xD7zmc/YHOjmrysjl7c+01HVONJJWnMZ\nRPItqT6/8sarZmZ2YVcnbEPyxX1YGDGIdd53p344u5AvCZBtkyV9fmUJpOKOmDHLK+ilDHVyl9xA\nNX9BJ2S3b+mE7OmnHtL3qrruTqLPp5wGFzPy68l9rcIuGU9dfh+nwaCMMXmdE7QVqiDqMZo2YzRl\nVk5xvD0TAj7muTIQiQA0MeC0OYVtcBTEeuJXDx2pxjhXBeRGuny5kJPmnNPIuAbSSJt666rTyQ8L\n9eqhReM83L1UfRORI5vgWFJBw6TKs1aL+1Mn9wZqmxl5ve/WGwSUE/SJU6tHp6daI0+ZzwVoIQxg\ncLiTdcdickwYpwlTR/fCA7HNaI8pbKYaTBGnUh9zgu+Tb+5NXD43iIBDgmH25OQlxv8fe28eY9l1\n3/n97vL29+rVXl3V+8Jubs2dkkxKsihRsrzL9gws2BkgHo/HiA04SAxYExsw4kwwkyBx7MQZx8Ag\nNhAEyXiSjO14bEuyKIuSRYoUxbWbZLO72dXd1bWvb3/33SV/fD+naGpsshpIQARzzz/V1fXeveee\n5XfOPd/v7/utcJTfRdsGtgeSNe9cD+JNnzHljdB0SZwTjPrNqdoXuV+GTtOopjHs445UrzoWhvo1\nArGpoBvS57p+yTGGQOQdogEC76ER1EcXqRaiTwJCHeMCFTDXnWZRsK8xxHggZ9fHfcSfpgEOUArk\nKfuwh/wi2k/0URzqJLsAI2K2qmeeAAVKKjqh30DjZR4XHodK3dpGFZ4c0+Mgq72OELyNJTFQ+hHa\nL0XnzgRzjlx8msh6zqYH54AaGjMt1NlvoWG1idZCNq05teDGJgyTnbdxUNtDxb4sRKJkoD1t/X2V\n66y2hVC7PPPiBC5RxK+w6Bg/sJdwP9q+qe+vr+h5e6BTzSncKZgDfln1bDjtrV10ikp6viFq9hF5\n4Rl6URNV2gc2RYxqfxe0bKKp3P8j40JmB2g1FG+PdGdJ2XvX7zHcnZGv/hwFGgd1NAocf2WEls++\nA1rLMadgdsI2KaBn0uf3oKN2qaD3EhScJhGaPhVc91weeKlqHcKa0xhwxLSS53RtVOeUfO0OufM1\n4lKftiwSBxh61o/Vh+WB/qNK/nRcRFcIXaIWbTsGAzCGKRfDXiozR1KcB7zQ9R3xi7WpVNX1HK/O\ngx3kHMoCUKUhTB8DsfRhq/lcP9jTWE9A+ds8v3P76OMqV+zqfrGvueOXcIG7zUGyfOVPzMzs1Krq\ntWJCJGfZE/gf1d5h69mvmpnZakWaMkdjIZxLb8rJ8U7/fjMzW3xc6N3E08qnv3v4FTMz27glfZX0\nuMb02otqqVc/K/Tv6AvfMjOza4me574H9bmvvaI8+rlV3efy94ktYVOX9p+hd+wRm9l71szMvv3C\nfWZmVr8bBw2cis7/mfph94r2QPfZo2ZmNv/s62ZmtrApxHX2xxUzvpRp7j5BPH/6hupz5Em5Le19\nRb+felh7pJVN7Svuu3HesjNCFouPXNO9YQOc/Dajo6hrT298v5mZRedeNDOz79zQs263Nf8Xy2Ip\nVT4kPZtrz2usjB39CzMz+54/EuL6yj2Kex+9S2Nq6azGwtXnnzIzs0PFz5iZWdmkKVPYWLHbKek4\nenXMlTiCHdZA3w6tLn9TY3UbBslh1v4mbiOtAHcPXJtGu2LKdFtqu6njaqdbZdgBxM+Rr/Usreh+\nPu4m4+hSrCHQ1ELvb7hFfXwxbwpoNJSmte+t3BBTJtiGMTiv9i52xaYKEImJb6E3CEOxynM0GmqP\nZZD1sIcTDrofY9NaZ8qH9Xxbi7puuokrX5H9P+tzA6arjztT5Bwg0eyKiV0hMbAH66ELu7k2BisE\nlkoypH/MbLjXMZ+FuEp0GsMlKmJvvLyqdX6uhYse626A7uJBSq+OFshIfTmcQKdygDNMgzi+yX6w\njeOiY+vCUA+IX4ljBKKxlXVhB8P8Donf1nDvCsRv9sVFGI0J2oDRyDFL2P/CbnAOOInHZgVNwASW\nVlRjPwez2YNl7MGgidw6AJMlYN/uoa82rKiNPfogo/6OQR3W3P5W9y2ltXddf4RrZ5H6BayLMfvt\nDKZlyOecRmK5xRrOcjCC2e/24T5sN491JWNdGzCmfObMEC2ZEWySMlqXIetkUDy4FqKZmQ8befgc\nWRc1tdexw2JhjM1pLi6hv7J2Sfp6U4cZLz21362riq3LzK36tBg099wh17316zgh8R44cVrrzPb2\n4n5dPEutMZZYzDtDe5t5gy5o6l7l2bNv7sE+4n178pRif52xUfDUd9NjeobVW1oHVhe1z527A3cl\nXJm6F6Q1Vqzq+05bMWJf1cUx6tCC4onL+ti+rmdeeVsMmbEpPdvUEc21AecE03w+bZMdgJ5OG3r/\npQtaQ50jVXek5+vSDuVA16sTj0tzxPuq/n9lUXuAzVuLZmbWbOAgNgbbylxGENSfv6O8747lB37g\nB+znfu7ndNOVFZubm7PnnnvOPvWpT5mZ2RNPPGHPPvusvfLKK3b+/HlrNBpWLpftoYceshdffPH9\nLp+XvOQlL3nJS17ykpe85CUveclLXvLy72U5sKbM5z//eVtdXbXf+73fs5/5mZ+xYlGnQ1NTU7ax\nsWGbm5s2OTm5//nJyUnb2Nh4z2sGTg+DHFyXsnkItkV0L+jUpv6+kuo0MCvrBK40DlsDRDx0+ffk\n91VTnZTvbej0cu2C8renntTJ3D0PKw/8alNnU61LQo0gD9gAh4jeMqeMj+t0cvKQTsq2tlWPcEcn\naQGuKGETVgaaNgksA8diKOFyEsIyqHASv9rXaejxeZ1unjmuem7rAM62YQqFaBAUyX8MIseS4JQa\n9scAVDOMYhsVneOMfg46aAWA6tbPCUVpgcYYLh6jTHUaD4XszU0JOUxC+gIHhe7Q5Sujto6mQYL7\nBSmaFme3d5IcV1yOLOiU+/8BuaAMGie1EnMC3u/oP4ruwJ/c1wxkwIcVkME4MU7cvQRkgFNRSE0W\n9HW/Cu2VRjh2wcQpuucDgeAAfh/NdxIzI3KLwwBU3anPO0SBsZyC4nt+8q76BCAehmaPwawZwbLy\n0VQIQVYilzsLkl6AwZKQFz8MdMpdJRc2AKHx3f36IBQgIO4UO3TMHY/T8tAxaEDCHdMH9ltGz6Wc\nso+6fA5kyAM5L/C8VXKiD1T2+xTUxrlOuHxjlx8MuuIcbUbkCbd3eAYYEr1dp88DirKqk3gf95wh\nTiND3JE2B0J/GmVBCTHIZZ+2Lk6gzVJSfIyd7hGIYzrCxQJEYACbqdBAHwQm4E5LCF68o58r27rv\nsKn7zs3iFsf1lzYVt/ba6gyvIaZdVkeRHzcoN8arFbV5zNgeg6W1gctIVFa7TJGnnNZd36ndJmGi\nONbY5pKQix7xab3D3MD94vDJs2ZmNg0dpNVWe64Qd+emVd9x3I6a5N0vgWQm0W0ID5lZufzu2OMc\nzYbEY+fk04emVnJMKsfIZOwGTRzkyPvuE+eRm7K6p+v1mzhBgKgXQICzluZKD02zEYybZpRYG2Sy\nin5RArIVwoQL0JZpw2Zq4HSVoFPkoZcUmmP3ULeRvrdX5FljWAYj4j2uR1WH06CjU8TtKKyorTux\nfjYyPVvDH76rPjUYh86FKezq+s4BMUXnooremu/02Xi+IvYYsZt7OBiOM3Z6jLmwDxvMdH0AVUtS\n3P9KTqOBhPEDlvNF6Ttd/bTWw/LiM2ZmduUB6ZGsrGm9u/+w+ucSCHLY19q/Uv8B1XtPzj+XnhN6\n+MRZPe9bp5TS/fFVMXKeCYWIHj0pxov/qubGHnnq55pC766PHjAzszse0x6m+DWhjdv2oJmZxX8D\n8Xy0dMu+eq/2EJ+5Jiejwqr2Ok/XxKBZOXuI5xVaub2oGHTuQ2KbPPcV1evIohg59d6PmJnZLUQa\nDh+7pXboydno+U+pf1++9W9Vn/Oau1dGRXtwRtoDm0+rTq273uIz6rQ/WqcN0KGYuqBnD8tqa++0\nPn9qDabwU4oT8dHvMzOzXdyCai05TJ0sqa1vRGLadHxp08w8+YSe5Tv/xszMvormzCcu7drtlFqo\nPt9InROZ8VNzsBcqLg9gDyfLQoi7gdraO8Xcm1T9+m+LndRjzQxYAwdoFBZYw/vsVYYdjfFhpuvz\nZwsT7ZObOLS1d3A4cy57sIy3cUGawo2uckx/3+mLTVVuOyQXli0shwF6Gts9fX98kedHK63oNBK5\nbrqjz7dhzc031X/tMbVPZ0NjKBnTejIB662/pOfow9yZL5wwM7PINC6agdp/bIpxAnvXw3GzNg6S\nzfvBzva2uRJkVeutsU+GqDUxpX12f0P/H7HP7nRg4aGTUj9ctoOWEo5RvtMwZD/WDdWWAW0Ws/dI\n2Md5PRjf/M4SY2GoNgkLWusTnAxHjjCOw1SlVeLzxFvis9sLOXZnyh6h54R/2I+FsCJix5CB9e/h\n5lRnH52GmrtRwbn3OO1D/e702zKXtcC6AiHaApgwTuQmY29RaKODxO+B6XoV9s1O1WcYwZpinfR9\ntHd49/GdPh5LfgEXqC4b8QaMv17BOWqhGckYSiKntYkuCtfJeICozR6RNT3m827vduCCsGEr0bpa\nxUl3/h6xQSYOiS2yeXPRzMwmD6kfzt6vOB23YHHvKsYEsMbvuEsZDc6t6/LrisFnYbNUD6MP03+H\nPVyo+NbtDMxwOpyc19o5wjksafOzJcZbj/fykNf+stv/Bpo/MayjATpKm5e0ZlVg+B06onl//W29\nSy6+puvW0Mk55DSflvQCvIcb58Rh/R05H3v7Db2j9jKNzXN36O97bfVtm/k/pC18tKpqzEEndnjz\niuJRSny584za+Cht1YHOVUHTcAGm4dqG1qnX39R7wuSc/n/ujPYSO6uqXwFNwWDKWUv+7cXLsuzA\nnpFvvPGG/cqv/IptbGzYt74leu3169ftC1/4gv30T/+0vfbaa/arv/qrZmb2W7/1W7awsGA/+ZM/\n+Xdeb2dv2yaak3/n3/OSl7zkJS95yUte8pKXvOQlL3nJS17+/1x+8Rd+wf7F7/7tyvLvy5S5cOGC\nTU1N2fz8vN11112WJInVajUbDAZWLpdtbW3NZmdnbXZ21jY3N/e/t76+bg888MB7XvvfPvuv7B98\n9hfsv/mdX1JlBi4/Xad3FZxZUqcZg9tRh9O9iaL+vwPLIEZ9veqYIhwjR7g7XXn2opmZHX1E6M4P\n/8x/oLq+JTX+N958TvWAuRLBFrj4lBCYx77vs2ZmduZuIbzr5LC98rrQrI88LiTIuT4tLervSVkn\njkWQjAJy0i4vPwARv4QTw+Ejylv/2I8qx3rp2mUzM3v7VaWDLRwFcUD/Y7SHujy5vEU0KszTEeCg\n4FvUgaVDm3a3QAsQMfjIDwtFiseE+K2+pme+8B2hOLMLJ8zM7MOfflxt09Pp41vXdMoZkT9dAH12\nGgLm6+T3+a8IcZw6ppPa3/39/8UOUv75f/Tfm5lZDfQ+4gzRqcoXnKsIOZ4eKvRldC5iXH9SNGFC\nVNl9WEsjdB6GMDVKUDw8kI0AZCEGARgGsKNAnOOu7h+Q31wGScxQ7u4msCWoV9E5xiQwSHBgyWC6\nDGF7hIPEful/+3n7zX/4P5uZWbWr5+hWcRkBeXYo2SBzTBscfkA0uvx/nefsw2CCoGJRqL8XQJsy\nPh9ELscVt6shavbk6PYdswUGjQ/zJsDpyGnvpLRnitZEJXI5urBJgDJ8GFw+DKB4TNf55f/xP7X3\nKz//hV82M7MRGilzszopL/AsXRxgNjgBL4EEVNp6hlvXNf/Dhvq2eZfG6HHiztuXpa/QAlWZQIV+\nh7hizPcKua4JaI/BMCk2QamYgx2YGdUmblAwUmrEiRnymXc3NK9b6IFMjwsZTHbFgFkh17Va08H2\n/AndP95VHF5Z132GQLmHZxWzAyigAAAgAElEQVQ3qlUhqWVoXDX0QhKHKJLXvLdJHGvpei3m3KkH\nhOr3ttSug0ztsDDJ9cn93bqguNWChbYzoXoGMHJmGiCaoGUr60IcMC2yk2eF9szDYOmsKta8cX3T\n/vBf/Hf2n/zX/5WZmf32P/nP7CDl1oqQkCMLQqh/47/852ZmVoTd12GOldGOSYpqJ0glVi6oPzJi\nWgbNbQjjM4PR0yDPfAiul6BvFQPtuHUuxkUkzMjPH/pWQ8uptW8sxRoBCzQbitGQ4kgVhrpm5Dlt\nFXQqqMsQ9pXXIC47BhtIpsvJjxpoRLVxIICBUkFPJ2ZNLMFC7ePal8JgLI/rmfs4l9RpNM/QdhkH\nuWROJBF6O6zlI3SO/K7uP6JNy06CrOIc03DoQvPGaRE0YR6Oumofr+gYmppTv/pPDzZGfvsf/Ydm\nZvatxz9uZmY/9rTW5Dd/SPef+NojZmb24qTmZPGkmCRPXFbMGdyln8OnlR9/45TmyrVlPeedbaF+\n6yWh82ceFIL5/NPnzczsYz8u/bzx/veYmVk/1vO8cEP9MXafWGKHl/Rz6qLW42/7+vtv/U8/b5//\nnX9pH1rWnuQ7D6l/Pvd/C8V77k65JfWJSQ++JlenFmy+OdbXa2OKNbe6Qi/TQIycs+NyONppK319\n+ZQclT5dVuy59U2hpXsPq906Hd/aL2ne1c+LbXNyS/sir4RmymUxqqfm1benYRoPDmlMPA+T7tQf\nizEzF8o9Z+0IbICzaqNCQcyXzTW1cYjTVCFGM+UhadFc7Epb5uybH9Hnzmuy/co//hk7SPknv/Sf\nm5lZhItQPVGcWrhHe6ekpjlw7VmNAW8AEwQHlcm7WOsqGhNX3tBz+TBUjh/XGPJPqx3evqAx0bqs\nPq6V9JzHTom1PMgUn5euqp2bE0JoizHM0LJjO6g99tjL1ObR7JpW3FvcULxuAn1vvIHrEvvNuSn9\n/5uL+lyxxbrziPq8f01j8tot/TwxrnpMHFc9iiDfKyv6/sbrQs6Tvhiedz6gOdAdan27hJbkVFn7\n4cakPheU1L7tPc1BfwRLMBUTaeJO3WdiQbHm5W9pD/s//ME/tZ//id+wE0Wt75P3EDNn9Llr7OM7\na2qvcVhsIVo99SP6/H/8X8ih7b3Kb6//PTMz2x1qfgxx5Sz11GYemku9PfaZfdW93tW9OgP9vYAe\nUWr6fZ/oCDPRORO6dyOr4ATLmh+764WaI0UYzSVcdxJYxiF7oqgGq4p1olfEZRSGYzym+4S4d2bO\nzCjQOuQZlEWYJ32+X4e10KvizkR8DzrsPZyDF6zmFN1Op5WTOv0f3AfZrhrVsHJLa3PMeuWhIUky\ngQ1gmcXQWZ1TV4D2TAHWWwZDqAvDtObYabhghVDynU4IMkgWmWJXQj/8s9/4Z3aQ8ru/89+amdkz\n3xCzssb710OP36vngK376jf0PjY/rr3n0Qc0J669rHfay69qD1udUj0e+Yzi8/qyWBrXX5C22X1P\nar1w72fPPvU1MzP7X//kX9k/+oc/b3edO2uTM2JRrqOxeuUlvXfefbd00ga8t771Ivpp57XGHT2v\n9+LdTTQI2f9BPrLLbykuz57UHHj0k9JjW3lJdd9cWTQzszvu01oT4H72xhtqGyPj5djDWoO9nuL6\nM8/TdjBwHnnyE7ouLkzXcUv6+CeeVP1hdLcvq37bWFfduKL9ZWVaa9/9j6oeBTSzrj6j+zRPav94\n6pjWoef/Wu3T2tTz3fu42ml8Rs/52jde4e+aA8dPTtmh5t+ttfu+mjIvvPCC/f7v/76ZmW1ublqv\n17PHHnvMvvSlL5mZ2Ze//GX72Mc+Zvfff7+99tpr1mq1rNvt2osvvmiPPPLI+10+L3nJS17ykpe8\n5CUveclLXvKSl7zk5d/L8r5Mmc9//vP2a7/2a/ZTP/VTNhgM7Nd//dft3nvvtS984Qv2h3/4h7aw\nsGCf+9znrFAo2C//8i/bz/7sz5rnefaLv/iL1mi8dz73EJZBEUXrAbn4ViX/HVSuBsLcL6Hg3UPB\nm8/NkSc3vIm6+1An8D6K2AVy3erk+N94USfiF88r17jZ1OlkpSJEIMBFpYTLU2Vc972McHEQU0/Q\nzO1FnbD1PnSnPj8jhKCG73raUX3bMafInP4GnNpmbdBKtCKWOzoB7D4BegnzZwef9DvuEfJy4ohO\n4m5c1Encugkx6ZJrVyZ/1RsOrE4OaAZ6Ukx0r6XLQrS+9Q39/Z7zcmtw+Xc1l7f3gk5FDx8SKnT4\nQblJnJ7RyfWVltgEXgzzgRNnr4wCPlooafhuB5T3K2WYLuHADVVOzp1WC/cJGUM+aFAP9DsoOEaH\n2jCFQeKhKeP1cRVCL8TpRzjXktKQhEP0SArO2QekIauAIIMc90OHEOM6Ra7rEGbLaATsjtq9OaYJ\nY7UCi2JIDm/mtGPQWCjBQBnQLoazjUsNDvh7L0DHghP+yHP35X4FB3GASFDfboi6fYCqPFoVI0O9\nH0bQPlPJIeJVNHoiHAtAanyQmhGq+hmISIZuhwciUXQWaeT6RoODu6ZMVmDpGH0BirQXC1nca2sM\n9mCkxHXN9z6IYTouRoTTqjL0dfZ26QsYDYWO6uYdJS7tCR22CuwgwoLTAxrR1t6oyO8gu2hC9WBB\nFNDxIRXf6minDGPN9ypuajM19cUa2gXNIfnoU2jhrOp5N3CF6uFYcOKc4uM0ObRV2Ftb1xTntncV\nn6JU34uYEz3YTDF9OX1ScWeyLPgpjsnlhR2RNoT+Z5z1j2A/eXN6/ruOCnncGjndKd1/bVfPOYC9\ntjCr6481mWNbMG9WxKSJYdiExYO7YZiZhd+12o182GAOToNF6KNrEsA+KJRAmhEu6cGkKeIu4LRm\nSqB1XVxDUnKwSy21d40KRClzCVZIoeEc0wJrDWBRAQH2YzQIkFgqufnMmhBHTjdC36tUiA8gi841\nrgbS2YdBk1achhbzPWK+ldB3K+EAiGSAh3aNB9unjsuHY0FFji2GplTHQ3OGsZy10K/AKdBnjrTQ\nF2rg1hc5dzqHAHP9EnFjRDVDPufCadbh78TVAhoKqX9wFzczs8t3ayx88uZfm5nZUw/qOc5eULu8\n/RGxHypf1Xr38MpPmJnZ1rz06CbRHFiCWRigh/Lpk9qTrHvai1RfELoYXVU7JCWx1GoXpV3z58tC\nQOfOak+TbH9Cf38dZ7gMV42efn/I29t/huODr9t3+kLxfuwl7Wlufp/mbvDa18zMbLb5g6rHpPYB\npZZQzud3hRKOvl+oYHJFrkwf3RWL+ItH9VyPXUW35Kb64U8n9Bwff1gxsfNVxdh7ssj+ekzI4Rm0\nCbbuAlm9rrF64/uFPCY+z9Cl7/5KY3fmfrX1tQ8JHX6hrFz/J74tpPPGmOLCva8IDY7vU53XI8Wz\nmx/VfZtv6zrzC9LXeW1X7CHLTtjtlBTtmxiWVwlaQcwcqNdgiU6hF7GsPizDZI6HsFr79P0e+0w0\nx3Z2YXxv6ufhI0KuU/aJ8bqutzdQ/Dh8RmN2Az2K3g09VxbqexH6TxXCZYiuRgx7InJ6Gg3Vb+Wa\n2jNAI2Y8UP9UqzBG6rquTxxzc3evrP5LA8XV7baeL9jQjSsF/T4HYzPZVUzYflv9FLCHqhzWHJnd\nhVWSrVNvXOpwYxr09FxTjkGDdlqdGOXBip5167qZBV3fEtjGPWJizb0GpbpOF5fFGuy8orm90IEl\nOK3OvmrVMaLZA0Qdp2UIcxgnl34H/aGR2qYC02PgEzfRrkJKxkK0xQaw7+voBRn72zYfTBuMLRgs\nEXE3cQxG9ij9iDbyYfPz99Rp2sBm9dCOHMGkHsKULKCzVkYnrV/Q3yu+Y5qjAdmD2cn3Gjh2ZcT5\nCnMoQH+jB4PHuYx23FhlrJVbaJLhtjdkX+zBQI+7vB/wKlruwfCBCRrj2FlgzHQKbv2AEcN+OoIS\nM0KvqdSCkQlDNRjDtQlG1EHLVg8HRpg2R09ojzQ9LUbMOnoqu8t6t1s4eorn0vfbS6pHgz3HoZN6\nLytVYJxuM65gyzXRjruJLkwT910zs3NnjlpxpmnVaTRf6JNl5k+/pffS/p76+NC8xuqRe/S+G7XU\n55uLYuyt426cobtz9316P57je1uLiseXLr2hZ0fXtNZQnV5/Q/F8aXHRzMzuOKN3T48qX35N792N\nRPWbP6frT4wx9xi7s7PonY7rczU0IC93NDe3cBWtkrEyMcN5wRgBE7auY3hXy5xXoL/U2VK7lGjj\nyUn2wWjq7PbULkXYwF51nwb9t5b3jTLlctl+8zd/89/5/z/4gz/4d/7vs5/9rH32s599v0vmJS95\nyUte8pKXvOQlL3nJS17ykpe8/HtfDn70+/9BKZNTm+JWkqK70QByHqBDMazr9LTEyXvU1edughI+\nflanlcN7UIu/BsK6qxOsrM8J/0mhOK2XxQ65/LJyTU+cEqpU8B3LQp8v4FE/MQdroa37bWzruo0y\np83k+W+jhH3HAk44Df29hcvLGCyMHieQHMJapaoTu1JZ99m5KQR6l3zALir867eEDN26rpzj2bNC\nnI7ciXbPy8rBvZXqFNg5IEW1ohmMjxj9iPqC6tbcEhqxdUNI3vN4zB8e19+rR8h9valTz+88oxz0\nAfoac2Pqu4V55TdvrwmlGYJSOLegKloqTqH/oGXAiX0IFWQQqa8bOJqMSjA+QB6GFZgfIM4BOaFO\ng8AD9R4O0EhxY7Cnz/voFPmo4CfkyhbRRhkO0SsqoBUD68E9VcD3CjBVBiAXZXJ5B7AEKtgzxQlj\nH0ZMCtLtxqKZc1fBdQTkOQZhSMkJTkGSwxKnsY41AqWoP+D61Mep0gcFNCJCcodBKGLGXOSjwwLj\naASLJERTZoSqfRGULqKdyjgZue4OYV8MKxH1hXEDahiBWu27M2XvrVD+N0uBm+yBXrS2dTK93BLC\nNgSBrB4mTzumjybJqT+GFgvfT0Cl2rADDI2U2rzQ39m6Tvo3Is3Pdlf3Cyo4zjh9HudcgDMC5hXW\nPIRKvXM8GKkzGuOg+jsaO9Ut1b+Nts3ijnJk2y3mAkL/hw9p7oUggFMwOrwS7CcYOemK4JXRmpCB\n7W1dP4F54oOiQCy0EXokxar+o1ITcrC8JJSl0xZ6M+ribgXrKQthk9VU7zncO4Y4uvXWUOefwKGh\nqP4pHdeYqsGwbONu1QFp3oQW4fLGg/n3Rhy+u1Sd1halBOIdlNFbQssnoL+jJqwv0LYe+eRFENSB\nY+ExVZ06f4heigc7LOnpOh00wGqsLyXu6/rH65X2dWlC5n+hK1SnxDXb6K2ViQOOHeYcWoz4XoGB\nN9pH+tAuYD4mzioKNtUA9lMGNFoB6fWY333mZ+QYe7B/vKKerVHgPqyZxSKOhLC6Rg10diKNjVqJ\nesN8bBEHiiWHnHId2GxxD6cw01yDuGiFjLXfw70ChNOh/307sI+BmZkdisUK2LqmmPDxBzXnvv66\nUrGf3NT69tJHWRe/ohgw0RbC+e3wX5uZ2Uz4w2ZmdvVP/8LMzCrfr5hR2tRYznCxWzymvPX7bqi+\nX39L9/vEYzhd1IXaf3Mk5sxKT0jpnWjRXDytuf/6N9UP/8DMjr/wkJ3/pNDKzrQYLldeE1h2elw6\nKteqQidPDADRWAfOPaHP33paSG3tqBgz1UmxT35sV9oXG1Nq16NX9f3GUPuDxb60D44X9Hu0cMJG\nu2Lf3jj9p2ZmtjxQ29Y9ocCPvyhk8ZV7tZ8pgYrf9YiuUZ5XfHju65oLD98v96TvnJVuwievnjAz\ns788oX3dfUcUN2ZXhbxuv6m4fmdBcWXiohDYxXuk2/MQbf6/28FKlMLUYE0Lx5k76H940IunF7Sv\nHGxI02B3qPg7XVI9BgrDNtjTHBs/jXseLLDdm5pjY0d1/ROntO9bTTUmOh09Z0J7zp7Q8y73xc7q\n9tS+Na4XDvT36gm1d1JFoxE03WPvVKmLLdXGXaUPXa67qp8BGobbMN0nYEcsHNLYGO7qer1dzY31\nFV23yR6wNNJ60sABqF1Dx6NN7IMtMX1WDE/b0JxpEWiTda07PWhz9Y7azUNXsL2sn+MVYlWo5zFT\nvEnYwwzbrCvX2QMCiY/5sPyKrNPsmYL04CzvAe604zBFerCiiq7v0bsMM9iSJTS3ttXGHiz3mH2q\nX2YfCZM4wAUvhOmRlnBTGsFegvyZsC70YLCP9fQHp82YwQ6ts58dwtgewOr10TpMYKxA7rQGe4yM\nfS5NZDSdxR3n5AiDHYZ50Tlgcj/HQAlhXGNqZA3qm7GPrAQw5qlXxv136/p+faD6hayHwQg2K+9g\n1tffneNWmb2O01SLW2QVsN8tDt26ArOJ/izDJPdxAcyGrMO4wRYKB9+3mpmNwbSZP6JYcfS01pHB\nnu6zfF3rzdQxxeOJwzjQwXDtoTc49HT/2aNaD1LYGdvoEgZOg4jqpbhFlRam9+syf+q0rd1ctFcu\nLepvE5pXPtkVyzcUj9OCxsg95+TIG9DHb72lNefGFcWfEmzduQUY1qxVDXQz33xJ2Rcp8WluRmtv\ne6C9w86S4mYBXc8jx07o87xvd9BFrdT17FOTsDdhzQ4y59Km64529PvVa9Kw2b2p+lbQE5qgjesT\nut5WGwYN74xF9od7S4o/m1f19z7srKzgxgz7O97xII1ZjLbg6Lv2od9dbu8NOS95yUte8pKXvOQl\nL3nJS17ykpe85CUv/6+UD5QpE3FKGZAXXUb3ootOSIL7UR2f8wFo36iqk7S3X5U2zNS8cto+8imh\nWbu7+vvamk60iuTPH8IdpPIIOh84G6ysgHY5Bwp3ug2LYWZep5eFMf29Dyo4Il895POLF3RCmHFq\nWwmEZIRoRiSh08+ANYFQQMxp8TRuLCs3lWu3vCzmi1d00LW+98JXpOgemE45T39YuXSFwyfMzGwc\n54Wdvo7oysOKFUBAQ8RSttb0t7OPP2xmZrNH9N29W0Kbtrd1Clgv6kT62HG18fKaUJo3vig3pb17\ndAp5xz1CNU48JFRsG8eapWWdRvqgwhF5xQctPhoKht5ECVS5Q36xj+tG5pxkyNHslsj1HDp3EhgZ\nILN1ziMT0BoOY63I9WL+PyN/cMTJ9AiWhQ/knKGRkPT0e1Shj0Hh3fVG5hgw6GfAnCnDkPHJQ08i\nl4MM1AE65MNG6PvcF2SzBGMli5gz5DkWURjvc1pbIlc2gzGUIpsfwWrwQCcDjtJjtHBcHrXH2C07\nNkQGAkJ9Ig8NG9xR9l2nnJp/FzaA064ACS877Qr0m6q+5tyocvBxgryP7aA11U5BjyaEkIVoyLic\nzxoMjUmYLRFuRWsbigeVwxrzM0d18j5VlYZBQpdMJDBpbsA4oe7lY0IWRvRBBuo/GKoNG+TmztfV\nF5s93W8XJwBr6bphX23X2dHPLvnPXhXED72MhPiRkpc+TVxZ3lIfFs25j2iu91PnJIC2SXOC66o+\nIbn+MahYyddzjEDPttvMCZT7+4w5D00uI34XQfNGifpje1P3H2xr7HdSxcVKRfFrbF7tPEEcHQdt\nugUjqLPHfdH+qRadpQKw1wFLb9R/1+8+HZp6tC953RH95j4eBs6VCcciWCwJsGAIG9ChZD75/R2Y\nNUERp56R6t8DJazxvP7QoXEta6Ihk8AKKpcZU2hkVWFVOS2qGG0oD/S5Xdaz1EFrxkBE09hpEoC4\ndpkjMPPKA/qmoDZwLh8ROhIBzlOjLgguca0eAJEST5Ka2tTrUL8GKBJrV5XnGsBwrDBXi+jHDdBn\nqhAvW6xXZTrDq+MWB8I4Ip67PHOv9273pjF0Lw5aVtGG+Tgs0z9/Xaja90xqD/D8cbEsdpeFEi6d\nUn0O98RcGbuo51yPpUlz+IiYKdVVtdOFJrpvJmbqpzL11/qDYsB87zU0fmZ1/W+iTXNHonpN3y22\nbLIhNkJnTevuI61X959h8NHnrfGS2vOpu+Xg+MOXxAoOm9rrvE0e/sZ5sSYqqVDLxbZiQvRx7SHK\nXblQec+pH7/yMdbPBenrHWkpBh5+WO0zV9b+4PKW9gGHrl202jTMuFfVSUcOMZbn1YdP00Y/NBKz\n4/lVjY3nr5zQvSV3Y9GHNAav/oniy/TDXzMzs2c+LUep7DUhsVff1rMmD2kMfG9L19ny1Zcv3imG\nzA/+sdrsuc8kdjslQ3+inKr+bRiPflX181Y1ditjGrvjMxpLm8uKe8ORGC+Zr/gf4i7ljzQ2yjAL\n92AU+jivhcc1N8cO6f5XXoVJfRymDI4e8Qkh07fews2uxR6ooXZvsr8O0Bi7iKZCvc86hebBzkDf\n799SPaeOo7EAuB7vaq+4u8zz1rQXnD57Qs97Xd8frKmewaY6crWNRkxZ7d4gbm5uq/999O0W7kBT\nhudOWrrOgPXAY3+edNVuoaf+b+MG6EdoVqJFaWaWZR1LceNqjutBthJ9f7CKNhpMgL6p/dvcrzn5\njv7G+5UA5t4u+71aVWtF5tyDqFJhgP4NjOesovnH0LAKrIIR6H8Bd8tRhzFTZw1Eq8Yc0xAWk9O1\ngLRq3QoaM6wnhUh/aLP/axZgNBPPS+wZYpiNQU/fa6OlaDBE6iwDMVkJtSq6ejDYPfbTkMms0Gef\nCXOmxHoQ4rrUHsDYZLvYZ60cQ6Mwol2L6N4NR46FAHOF/b4PexUSlY1C1hEY68iKWAk9ETemBqx7\nqXs+tmgh+9y201qDOVOADZ0Obk8zs1TXnNrr633p4mus530939KS4v6p03JjqvLO/DaOwbs4QDbQ\n32tWVd82zJgRbI8C7wspzKiEDILpvzGk/SiwleW29XBPuvsEWjGzilu3FtXGp0+K0Th3p/6+dE1r\n2c3LYrbUYcxNN2Gm8748zhrf5h1id1FjuYw+UnWGfSRjecD+qcm+PUXTpYCT1+QE2oOH9f+Hxpn/\n6Cy1YPoNh5rf8ba+t3FL7KNaTfednFE9p6cUl4NJ9JfIGqnjuHvkiP7+0st6/240VN/zp9Q3rUTx\nouz2ZLCzynNo1vLuWorf+9glZ8rkJS95yUte8pKXvOQlL3nJS17ykpe8fADlA2XKVFvks5ecAw0o\nIChVOUFtHVS+yGltw9fJVQWXjKUL3zEzswuz5OSiDD7OKfJoqN85HLQxp6oM+l/AMWL/tLXISXxB\nnyt2OV10CXmwDQL0O2YPC5nIYuWodm+CINdAopuqf7fn9Dh4vkgomXESWOfE7tBJnTQmfRTCUakf\nXzhhZmZ75Bl+56k/MzOzzZ5OU2dmyLsH8RirO22Ljg1GJIPixrF7Q2jFxBx5fnM69cwSHdG3yUns\nd9QWR+/VKWH5iE4f41UhYm+++jZNons/+v1S/z5yl5ABr6y2ePErggbqs7enA+Fz6hmZUCCPvF+M\ndKyA1sEg5KgevYkQjZgRTBOGjgWg+APP5aDC2CB3d+DcPminAMQhqriTdJgmnPqmOAEYGiiubyNc\nOEqe07zRjz6sBqflAEBhHp8bcPJfIwfX2YsMHWKNhk3MiXwfRknoWBEwYiLQ+hLtBTBhVZg5HvmR\nZTQgCtR3yAl9xlypcN0RoSLmDz4aPwnsgdQDKYAhU3P5kzzXKHRzR/WtOPusoXOwEGKSgYg7lfyD\nlNZQfd0F4fI4oa/MaP5NkmdcHacPyVdukyO/sqyT/iE6RVMnNCcGnHRv72qsFzb193XYBu2OTuCz\nSY3NPsy+gDER1pkroFFNWAlOEX9wTXNnSDybm1e9HdPEn0z4u37Gs2qriarqNwV6NIv+R3dNSMXq\nCk5oZWkIDOqqXwHkwZsnRxZEMthnYcCAoasmseuoVRm8Q7Vnfwzmy0hzfAdHhRjkMyQfOoRdtgUT\nsldjTI8JORg7rJ9TIBHOSym9JWQmwgWvhXZXQKyq4iBRLL93bu53F6f540pKHC/4Wkc83D8i3JhC\n1qMBMcwxkhLmTJNQFu3rVpF/z5xpOB0s2HXDEjnO6ABk5Dxn9H/BYuugj5R6uCo4l7kBziDoJLim\nLFTQHMDBJXMMOTRoXD505Gw76Mu4+G6m3QAGTtEF1gZ6Eswd37lzgAAnaIa1cACrs4Z7icba0GDO\nxc4ZDUYieeZlFxBhncXEoxprZMTaXwApHuK2UUzV6J2+0+By7CT9f4ZWTg0m4qh9ezn+/rfV7n/l\naw6d7wv933hSWivbK0/oPm9rjGZTWquvP6q5HLyNLgrs12N1rbNjc9ojnLksVC1uiFny2lti3hw/\nq/a9sKf/b37rz83MbHwgFuyFaTFizkeag61rT5mZ2cNz+vnlQ9JX+cdmdjn8fut96ItmZnbnq0L1\n3kjkOLQ7Jv2U+4pyeXru218yM7MPfa+YOe1XNRea1/TzdFPs339T0Fw9d131W5/Wc/Zn9FwLL6MZ\ndBKnu3n1z4uL0/apUN9df1S6Cd9eVt1uPvU5MzOrBNKt+fMBe5BT0q07dOozarPrctloZ2qDi6fV\nZjX0k8Yz7f8eaZ83MzPvLjEhrhU0Bi+g1bc0qbHxPTBW3kTH4+Nf157ld+xgpcQ604ExVyzDQoPZ\nN0LjYAamZrshBoiHvoffhj0xK5bS5rbqs4d+XaMh5kuVuJnhxjQ8xF4iZJ9b0ro1usX+ckxzuD6m\nOTjW0N+3t9EsQycuQbOlSNxtOrcr4tb0glxOegv6XHdH9Ztm3RmbxWETrZgBaPzONT1v5bhiQ6Ui\npssQmoJjmo/Q62gQmyrzWkdWbije7y7pev6c1q+sgmYMGLJjXnX31M8DXF9mStKEcAzO4bpixtz8\nOy59leNj1uL/J2FqTsKYXK1qnB0K1X7NeRhLl7T+b0UHZ2aOOrgRBXq22GnsxY5pzL4VgssABnGj\nC/sHbZYS7NRBpnv3zLlb8o7CPi3BbacCi2uf2R04ZiGsBZgzPeJjGDtGNOtAkb4aqR7dotq2BAu2\nxFqY9dFWHDH2ictJFS1H1rFKwa0LsL3YD8bsPayoOboHy9dwFSo32KsksMNg7PTQNPPRUIEQaamp\nT5toK3ZYj5wr6xCHw4DYKZEAACAASURBVALOiY7BU6yjt8f1K/wcQKEJ2DN1sW8K+mjUOMY6e4QC\n+9i+s6s6YMmgMKVY5ra6epc7gVOR7zIVTqn/Yhgwuzf0vG6/P90UyzmKnDYm6yYsvApake69o35Y\nY35vqbtfl1571/rr65bSdkNY9Amsf8KlzZzSvOntqQ6rb/IOiN7bSeLHJlkLu5uap0d5T/Z4P/WI\nnzHM8hFaXSFOrx6udtk+2x8GdsHp3Glexmv6/quJdNJGe/p/5/w1BnPHdtnjjDtmjNalDJ3LAqx+\npwHZIh55MJszhDg7uCTPHFe8qUyp7bs3Fbe2VhTvK2XFnWn0iFZwvBouv3cWQM6UyUte8pKXvOQl\nL3nJS17ykpe85CUvefkAygfKlDGcbxztITAQQ8+pob/7BMvaMEsCnQ42jugEqr0qxHrlFSEsE3i8\ne1w3c2wD0Pox2A6Rr+v2nZNFqtPQKnmLAce2A0/1KoLCcYC4r7cxc0Z/99GY8cmD73AMXgL1bzg0\nkdPKHs4VFdw9BtA5jpwSQtAnV7lW0+dPnxQSsT2r6/W2dGK3u6iTynJPJ5HlaT2XD4IdhQULyLUM\ncfeIuzBdnv6W2jBSW0+AbhQGKEmXdcqZ4kgyVS9SB3Itu/r7y38t14UYjZAnf0y56H5D13NH2iXy\nmQ9aAnJMDbZSwEl95I7IcfMI0DLJnFsTJ+JDj7xCTv4DGBqhc+lIYQ1wGupyUQ3kNYWlkKJxUAPd\nHuK84IGyF1wOrTvthYUVc8rrtBA8mCUZDB13Kpq6fEPuk3Q0Fmqhc0sC5SIZOeC0OCAnN4GBEsGk\nycidzWAKZdAf+i6XeEAuLowfH5Tf42Qd0M5ikPmAnGefdo1B1jNygZ17QAYiMmLspyAgiOsb0kI2\ngInktHxS8jerLifaR7L8AKXgUCLQlwqJsq4t58bQXgF12liSzlHb6RHBQiriqpTGGjNrOzr57m3p\n9wqIndMbimGmxR6MEk9jwznS1AogcWXnbKU2WdpQvFqFsdNo6vuRqU+quPtAqLAQksJMTUjlOG5J\nDfLOt9cXzcxsZ13X79MXYxM4BMC6mChrLlYmGVMgu9ugZT0YgpMwReYaqk+8o+ve2hBDb+SYRgU0\nclDwrweqV5d88HV0STyQ2zqaOzEaOmOZxnITtkX7mjQDljbFLtgDwSjOqF880DpkV6zn0LYDlih9\nNwYxgoEZwgrMcLkqM8cHODzUQKodgpSynrQG+l6DmJfusztA2yLnFIHTm9NKKxG7XH68OXZMwYpV\n2EoZueGwt8bc2G4TdxpoaqE11aIvajBTwsCNBRhzrFl9INigoroPM9iVxE9MK6yPk2Ch4XSCtPYO\nyf/2WBurkeZYHGvM+InL6Wf9AElN0eYqFFl7iT8DNMbKMHJ66EuEOB06J7PUCTohIJWO0Q7OpQ2E\nN4El2+Hz5cbtuS89eFhMkG8WtQZfPCftlLORWBsf29Pvqw+KldEM9XzVp1WfTdhd10CS77qp9m5d\nedrMzF5/Qm5LJ3piwmSwxY5v/rGZmQ1aYqD0uprrp2bFLum9JQS12RQKF+04TQn19/TGO6yxo5Wb\ntrl5wszMHn5QLJC/bMn56O7zj5uZ2dLreo5z59XvX/1j1bP4Q5rLtW+C/JY1Fw99VP2+siu071Mj\nsQqSw2KvtC8ptrx8l1gsZ2Ex3Hn4o9a/qM8ONnXNB6pi7cyf/6qZmd1cVZt/5wY6dw9I86WCTk7l\nuMbaG8TdT+xKm+T6jJg1l7+pfV+3/TU98zWxhoYdkMmj2jcd/2tdr/wZPeu9T6iN/o+uvm//0g5U\nHBoe4lhYmWcPANNwHT2+BvpKE7CkNm9KB2J5S3Hu7IL6vtZUm2+jHzEq4TgGm7fkWBOEjQ3aNoOx\nF3XQIepqLtfn0DwbsK7BsrBMF+qvas6lMXojde2XNwjYjjE4jlbYMkxUYy80hnbLAq6h2132GuzJ\nBpswaZzjCwyhnR5aMuyne8wRyLzWC/RcXdxMdlr6OYHNYGEGF8BJNg0bqs/aOgj4ITS6cDntbiuG\nDOuqr5nZ+Oy4LS+pHr1V9ZPTrhkrazz5k6p3ytY1ItYNcW06SHH7sWGX+IkLXSHVGliOYXo4dyL2\nVyOe3drqyxS2QFDj3cExt2F+FNHuciJg7uvGXiUtOuYM2oEMIn/PufjBwGE9SFPnDqU9g88eoA9r\nuOZYuWiy1HDGHZhbJ9CnY02PEGNJ0ITMeCfzmDslGCsp+1uvxp6l6/ZE+lwfZpBj9TrtnAIaMP4Y\newH2FHXe8Uas2QnrlI0cs10/gg5jFi0dp5lYQVcp6sHATGmfhtOB43k8np/n8sN3s3Hfr0CotAEu\ng+N1rTtHDp3Q/XrS+orIKinOO6Y/rNsx2CANp9+CVhzvJ5i3mp/B9mCv4fay1wYr+3W5dfOGjR9d\nsL0tbOHQNJw/RJ2OKE7M4Ma5uaV9bKuteVuf0NipTGl+T8Aszsha6LGfrcBmqqB71+flIKUNnbNs\nQF91YXtFvF8HvMMiF2TBANdUQzvS6cndqfomPbXtjRUxyWdg7IyfVvZHiWyQ8UMacy3eNa0ntmyP\n/e/qIu8BMHamcT1N0RS8ta5268JEvO8B6bWOHRIjcgVtrdgJRv0dJWfK5CUveclLXvKSl7zkJS95\nyUte8pKXvHwA5QNlynQ5LU04EcsCdCk4Gas7ZJGTLq+Exz2nkydP321mZv2jOqnrjXRqOCSvstgj\nrxIdjBBkfBiQ1wjqX3c5/mGbeqh+EVoAo1AoYYU8/ApaAoMOThacAkMSsCGnxmXQTh8WxhDWgFcH\nASHP3yEMzqGiHuLAgWtUD30RDx2RUlEngo3DIPWcko9Q7e+PHMMIzYhsZHEftJZc/Jlp5coP2qrD\n2k2hNFlDJ8IV9CsS94ygLBBBrDkDAyQTyrWxKseDV59WjvrchBopRIk6JTez37u9nEunXeC0DyLn\nBsSpqYeDQMBzDHEyGTlHA4fghk51nLbnlHXACX1sMFBgNQwyGC8MBqc7NMJ1yUPLIQOVyXBf8kEO\nnJ9DgEOOU/KukovqtGVGICQljrSHsAgC2A4DGrycuZxdLkzuq+9yiKmfhytLRrv1YRL5oFUlUKq0\n4pASNGEYM0yJ/bkWBSDBQ/IpYbhU9tX9YRHQTgE5yyPfuU0xh0FORrAGPD5XdOwScqWNuZlW3YO+\nfynBgqqCdgxcbj/P6N8SK6y7p5P99YGeZWpGCMDCMaG9PmyiCo4yTkdosKCceqtrLBWJA0XaLkRj\npuvQGRgnE7APBqnqs7ko5HaHuFadl3ZA1gTJ29N91lq6XmtLn4/jBvVRfOqDkHZuCfFb2cBxbEzt\n0JgXs6RUB7koCNmYRqCkgjvcIm4Wgem5mofUN4dh/sRbut+tm0IYtvfUbrVZfb5egonHnNpokUO8\nrvaOQlgNoPnxEJQJdoQPMygZaAysUp8RKFWpRsxBZykt6fq+0xty4jcHLMXs3ayJDHZbC+ZlHUAY\nkppVYIkl0Lt6uFCl/F4lpqbUv0tsymo4H8G8iSLGhdMkQ3MowwWrlDmGTdf69HUJND4qOjEs9IXQ\nviqQI565nH3maQobNBk51g9j2THWnAtS6FzteLYxrbEh7J0KeE1nAMJIjn8VxqTP/DaYLSMYjRno\ne4U1OiHexTAYs4LWl0KfuQNzx61hJdgQEGmsXEYnqueYhSCEfD9K0b5hrY1h5FRBCoPbGyK2/rbm\n3LmB5uKFebkijWalW/JUUevdk00xYtJUn//GGTFg0kQMlMqNR83M7EpT9d27+Yqe/1m1w+JjP6zP\nbQkJXZsXyuY1tNc48TSaOAXNvUd/VK5Lr1wUi6TwfYtmZnZzSXN9Lv4aT/DzlmU1W74gVtvw7DfN\nzCz8QT3HzqtC/yYWhRJuT6hen/mwPr93jT1UT8+/sSbmzsyli2Zmdulxjb+/2nzMzMw+aoqpY+fk\nxvg9UyfUHtf13LU3PTvyqHRpTi2qb1+CXboEReLkAgzjLY2F8htqwxXHso3lILX5kjQM/urTmrcf\nfgmGzEh6OHd+RG35zNfE/s1O6D4P43r3zMOaCw88pbF/ZVzfP3zmqN1O8YBoswKMRa7fZe4N13He\naePih5ZZBcbzzpbq0dnRHGn4uk6/pudtwXBx7LXKFOg32oTesr43OyOGjXPHC3DNi1PF+5lJxelb\nMGt2RhpLg57uF6LTFxD/vIFiQOsWrwWwaCcyjYndLmMCdnSno7EaspYXcBkcwn5w7lOVo+rX9Wva\nY9bqQukdaztAa6Z0k/jMnjHBNWoX5mi5zXpxjH11TYh3s8nc4esl/nGD+h7aE2JuZlafmrHqjNhm\nGyD9NV/tMA6LuVzUfSps6AMcNZPBbWiYwegLIfymHdxAYVAPie8ujpbQnklggsSOQcy7RZjCngqc\n85c+P0Qux4W5CI0RJ9FiQ9ZSz7H+2bcbrKlM/1/iC71Ua36Bvw9x7auzH2w7LZYxXKT6un4x1Vhg\nmbIU7Zi0DfMZPSNk9azH2tdHT6QMKxVJFEsc45x1zWNvV+BdrhCpPh32Eg00bOIugwCXqWEAy2rk\ntMtgtcL+KrFehGimtZ0roDNqhAnpoykTwqypVGE79NWvg4bTlrk9ZmaSsFfa0Q0rp5gTmWNn6D6j\nk2rnk7FiRARTqYA+an0Sp7IiTCT2ogVYvUERBlMVtyvYcz7ZFmZmuxs7ds9HHrRrsOavX1s0M7P7\n7n9An4V1fwtXtbaHzhvvWk5n02nsTUypTps30Dq8JD0zx1RJYEI7tlQNDa0Ejb2Bm4+EI5flUMRR\nMUU3qT1Un84fwvkRd9MaWR1uCzMzrvfmo0f0M0G7tsU76cYbet49GC9Fxk5rRZN4c00ZKfWGmJdV\n2r7Y1/MemdA60u2iRQMNamJezxNe5kGG761NlTNl8pKXvOQlL3nJS17ykpe85CUveclLXj6A8oEy\nZZzWShlYzDm0BKbTwU7itCKc3ge6GRwjOyXtsXEoKi2dlGWcBg9A790pa7moM6jBEMcKxGHaaMrU\nyYcccn2n6F0gf7HXgR3AiWFQh51BCloR9xXPB9GldQc4YZRhcaQZef+cwEegniVy0XrkSRY5LeXg\n0qrkC3aN/H5Ojet8vzYCMXcuMCAt4SA2P3FaLnqWieM65RumumadE95STZUucEI+JEcyK5BXiwK9\nz6lmFWeXO+8Qgri0JORwbXNR14UR4qGz4DsKyQHLCCXuEirlvsuz7sJUgTGTwioqDkCKQZBTdHq8\n0DFeSLqFVVQE5XHAcQByXHBq955DmHFOKNA+aCf4qMH33CkuqHcaqd36sU7AHUMmS10urGP+gGDQ\nL4EPGjRirMAm66J/UXK6FQ5956TfQhhEoExZ4jQZGLNVVOfJdS6jRdHjNNnNmSLIRRaBnKO5M6ry\nvL5D6Gk3NCzSkkPeEaMBAcoGsAHQkhhwSFzcz3XFLQq3Fq8Pi80N+gMUl1+7PVBbprCOxieEIvd5\n1iRUnRYO6wR/nJPzBvm2Ba6zsavrdGiDFFGXgLzwbhvUx1d8iHGRSOmTJhoxU7AcbqKU320LmUsn\ndN/quJgyEZpSyA9ZbUFjYKImBk8HPahhpLbcASHYC1GLn+PzuK1FgRDUjMCUogeysgc6t6N6bGyr\nXv6k6jHfEWNnLxMSsrrsEFZcqY5rjs8vCOnc2YONAMK6R/zqgIDapOoRgLJVyWdP0Z4pot0TYkHm\n8p0HRRDzQ6pXE82WAB2jnbK+V7zN1cuxBF2poGkQk8dusEpqzN0OyHOdWBCgc1QBbfNh1XVAqitu\nXeg5TQjiPjFi6NiG0DdGdXSZGLejYs0aMNtaxIsabEoXH8qwJiM0o/wWzn2MBTfvnYjMKMAJizzt\nEmMpgfE3gtniUvWdvoMPO8mH4RiyRkeZc4AB5XKuTsSRlE4ZwuYqk3/t3KE6uCUVcb4qEngdQ6+/\nB6KHFkDHaXL5PC/6RyMcDfw298F5JoWNFTrHstvUHVp7QnP3w19X7Hjr3AUzM1u1u8zM7BNNzZ3S\nRbXfxS76VbUvm5nZiftU3yuXxcJ445r6tjn9k2Zm9uij6o/ultpjPNAc3LiJY88JxQb/R3jel57X\ndd7+UTMzm12TdlvpykfMzKwxxece2dp/htPfPGonQzFbvt6VTsbgqubi6sqzZmY2+vvSqlm9KaeM\na8+oXxbOaADcDaK69eBXVL+lH9FzXMQl6zHFiD+/pn6auyoGz/EpaeOELwpdHf3wwKJl3Wt9XfFj\nBle854/r5z2Jcu4bi/+nmZkduqRrBY/qmV6G0fbEpOLzW1/6upmZfevM3zMzs7OfWjQzs4vfFnun\nWxVS+cCs9G2+/IKcs+65T8/0hw9IU+yx16QLlHbKdjulCMNv4PYaCFQERccKxeHE1/NlLHZ9vhfC\nWki2YaZggDLcRVeiKmZHWtccaxAv99Bm2GgLeS75io81HGx6axq7AZN4dgoGUIG1mBvtgGSHe7Cg\ncSFqgjCvrIg1NVWe4O+6bhVHl5C5v9LU93cjNNK6b1MvPefUSfW3W0d7Maj8tuLr/BGtN46ROMKJ\nLQzQE8FBMoKU0OP38g32RuixlKl3mQ23YwoVA81hf/iO42cxnLDKmNb/7luaezsw6Msg44FzlHRu\nr7g6OZbfQUoD5sdWmbEBe7ffxZF1mzUHpknM2u6j8VWE2TBwbHr26TU0WiKYIWU0rDxYwSU4MyPc\ng+gKGw7du5bauDDGHqcFYxv2VAl9jELF7TNZC6voDzmnHJgmI1xXI+oX4H5ag6mYwfhOS25tRNcT\nZs6QrAAPJ7U6a2wL1kWJtbULgxzDx/29QAk9krbbT+L0VUpV7xLMzhjNtZQ9CFtBi6hnlTk0hBU2\nwIGn7PRFA8eA0ef39pn1ZDfQf63s9ngO7bYGd3lC8f/QrFgkK7Ck19HwmgzQ43PvtFRnvMx6yZ6s\nw56u02WfX3HvJzBiER3KQvVzL3on9g1saNVKwwL6sosTb2GG98k+78FbYj62IzRNGWsT9PEk7+PO\nwXVnU/vPjGyHM2d0veNH5DC1vCHmmnN7Somrbj6nMftz3p8HODUGODmWxlWvI+jxXF1XHGrBeDl2\nRHEoPOdYUhos60t6jo01mHbMjayp+07OS7ustar6l3HCmsYtrrWuvilXiZNVjY2VNV1/+aq01BrH\nVK8I19Cw8N703Zwpk5e85CUveclLXvKSl7zkJS95yUte8vIBlA+UKeOTh+hxKpuhmbLvtoQKfLWh\nE3UOVW04VK5oBz2LMdB6q4K+wazJnO84R08xp85VYMHIyGUGTcs4vS3CnOlHHDM7SwpOUwP0OwI0\nbDKnt0Hym9M/Camwe5weCtoebIuB55TI+R02RrmMmj0K7U5h3eXG1WHaZKjfhyOdkrbs3fmnGe5N\nWblkEC5sCDqdBDBguGeRnMgRjk3uBLgEc8HlCxoIpoECF0A8x/FsD0AtSrCSop7+XuXUtFh+73y6\n7y41p7Hinq3rcu1BcBkDHo4wCfndZU62B6BSIzQHigHuIZwYp5yMG4yboUNWnVYDehkZeYBlVPBT\npMRTkOuQo/cMJCDCJSoAOe71cHkC6RiBdBRhYaRowRRAwPsgxD5Iilfh+WKH/II8wLwJYC45t6jQ\nqf3j+uQ7xIV26wGhBDCkAgZIhGhNkXzPKGTyOCcHcoX75F0XGGvueWqu+RhXKf8x4Pt+0WlNwOKA\nzRVzvRC3mbh0cIS7h+5RClOkPoWOD+iAlfX7kFx2j7A3GCr+tK7DHugJGWj3YerhBucvMN9gxhnz\nvYh7W6MEsw0tkQbMkMEmehctXa9X1gn75GEheElf962h05NUNCfHqzjkBKpfvC30qE0cKuO+dnRe\ncbG7CQpHAnvIiX99gvxhl6++LAS0x1m8h4q+j4PXAIbf5pLQty46Hk51f/aE6j3Ypt22hDiPDKRg\nGtTG5S87hzTHbmCOBoyVThmXuCpQsWMMxnqOaU8ILt1pu1ugPF0Q1eT2BEP2cKJwZUicTweMj4bq\n0cBxoQLq2Ka+Tfq3C7pYxoFhjLk5REOmR+xMiaXOMc1Hi6JADPYCx5pjvGZdG4Da1tEkSGrOuQm4\neM+1KVoEhNN9twz0eIqOaQZjzQPkhfRpEV9MYNDUYF9luG100DUqEtcSmJJ+7LRh3LyGxQrTzbne\nZSXywunzAi5Iwy751egR+fsSACC9MHsGxCWfdnAoferiDvFlr87vvmPD6rrdttNls9sq59GRu/RJ\n1pGnNLbPPyDW2Assf/cdFxNk4Rlpslw5p3aqXFM9pk/I5ahxTI47Z0pC49a+LubL1oPEmMJnzczs\n3kt/YWZmX72pOfnklObsN47/gJmZjV9FJ+vwvWZmNoG20Bp7lpOld1D89fJXbK2lfjkxrXr3pxVb\nzlw8ofu8qv//sVRz/f/6CbFZdlLQw54Q12M70p4rDVXf8IzuN/tHy2Zmdu5utfefnRIzZ++V+8zM\nbBBJA+fxF09YJxAjJWFMPXtayOgdA8WPp59SXT5x5HvNzGzzzCW16TUxZk6gG/G0L12fO8fV52N3\n4NR1XXWcgalSv+sptRX7pCcm1IeV09L5qf2lWEyvfkhIZnR10m6nOFau088YoR2Q7KiNPBh5CfHC\nOQ5mxAtDR64MIjsiDu2i2bWTLZqZWXWbvQOSYzVYws4ZptRibrCniRLNwULLsYT19/E5sa+2W+gg\nwZwpsB41J5krMLrTHnunhnMN1Nzf2pbmV+OIGDpTc6pfOAWD9G3Vr8VztHFgLE7z3GMwIXc0VoNQ\n/RLB7O65+D+p52jCqltZ01ibLYj5k6DP57GuFGHvdvoas23WSw/3uy00HszMRt1tG6ALkhF8gkKP\n78OivkUswb1xjL3jqHZw9yUrsqbtohEDil5fU527iME4t6QQh6k+WoEVx7ZChKVPHHRah4ZGS5bq\n2X0oyKMyz84a7NwvC3x/6HR82rQ17AbHZDGyAbpozZRT1bOElteA/XEVZovBLo7cvph9aR+NwBrM\nlC5r+tBzTjr6umN++/x/B9e+BlouHU9joTZEe6zN2KEeUc0xhGCY886YwPbwYM6E7DchsZpH36aB\nY1jCKGePV8ZtalitvOv3HgyaMffewLrXoR8svr1UgDa6UkkMW2scFteS1o2T84ptCwu43LXFzhjB\nynYiPQ3m7lVc+hyzfsh1izBmyjBJR+5d82+44abD2BJ/ZBNz2ifvbarNfdbEwVBjYmVXcW4PLUND\nW7GIVkuMQ1e8P1bRetwRsyZz72KzsG9v6Ho331J8mYNJmcHKjXFlGhU0NqJVsTQTGOpHp6WX1tnR\nPN+8objul2FanxZTpbirfevSa1p3WitrPDl6eeM4WME+Sopqs5k7xTYd88ToLKK/GbMfd45mk+jP\n3byq9WwF1tLcHYpb1bq+n7Te0fH520rOlMlLXvKSl7zkJS95yUte8pKXvOQlL3n5AMoHypTBCGaf\nnVFGdTkCNWtxijrGyVvzjBBbj9Pm9WWhT0PYDAAAlrl8RvLvRuTP1edAvlFx93BhaXOamqHhEoxQ\nk8axpsCpcJH8SENjYMR9fXLcSuS8uTz5Nmdepa5OFOtFx97QKbA7HS3AlGmUdBLYhRnjlWGHNHWC\nV0VLposGhr9H/uaUvjfLid1ei9xmctiyaGgpdB3n9JQMQNYqoOkRDBcQzCH5u4YWTEBeX4BGSQiD\nwudkfVgGBa/rtDR0mjQVnYp2YdiMDW7vHDB1LCZU6J0eQ8yJf5I4PQ7amrxEL+IUk/y9ALX7xHUh\nDJ8S1/ecBgGOChVz4ifqO+e+lHKfhO87bYYiaufOGKbkoABQc6df5Ld5HjQjkor6Yd8FCRTNRwOm\niI7SCCcHH1QOcxXL3BgEVUqdYjkH913MrjJU/xsgMWXy1CHYvOMMg/5SNnSINO5OoEoxqvleBBut\nCuoGKpXAFhvS/uV9OyfXj7Sra7cAfRBU9wGOLBgcXMXeOdD4ESf7JdyD6PNCwnxJHFMN9GYX5oPT\nraCPowlci2Bd+dNQNUD9s6rL78YdAzu2egdNp02d+N/Y0Yl+n+9548oX7uJEFcBO8IkDEzxPH5eo\n4ZtittxEdyjCRekO0PJwS8hAp6cT/37qFPapl3PPIKd/m74f4tBQJm70cYcrZ2KmTB7XHG73dP0E\nttX6pp6ne13P1+mq/sVp3DQYS1HVscwYAwXYD8TNYUKsIKbstPV82/R+WhfCcaSizxdwYuit6r4e\n+dtJ5d3Ml/cr4/ZupDOoOt0RdJScoxhTwSP+u1i3BzJdg4kZs+AMQQdrfZyFHEskdPn/up5zcsvQ\nX/GHsAmJAUE0ZkXmzQDdHB/mTIwmQALiWqFuIze/yurLYUa8IH7HHdzpyMUvx87lzcH8zAXu4y5X\nJ24OYOiE3D9zyOIe8aHI2rvvVkE+OkIQsRMRc5oJDeI1Wl4xCGW8r4NGXAeRLLl6dOlrmDAhTMwK\nAXcIUkvzWeBc/wrvIIEHKc99R7SEiXvE/LjrPgWm/uuaG59exYlsXo4/b9wvdOzRNzQHvrUhpol3\n39NmZrawpP/vH9Nz3VoQw2Ywof499YZ0T56ZfsTMzGZjMVZen2bOoOFw6WNiiXzPv1Z+/Csf1pjp\nr+g6C8c+tP8MLzzwkN0xUKyYXVR9r6HP9HxFLJRR++NmZvaNTKjeRy5Id2X2tLRzipGud6Gh72dL\nIOXPag72Pqf+PX5ZCO7HMqGJz8BKuP/DcsZc2ymZwQxufvaLZmZ2d1/7uFtfVM7+HbU3zMzs4rye\nudwVwnjoIZhoV+WmZHfJ4ar4lPrm5YJ+Bm/qmRqnFBcf29aYWMqeVHscUtt9344YOo3H5Cj1cdas\nN8JFu53idNISxy5gze2jM9GDpVtlLfdgSFebaNHg2GIjzZVZxkZJYdeG7Bc3rsMYAZktHlFcTy45\njRmNgWoN3SjQ+84WjomTGgMYYdpawd1ffddMhdiWjipeJbifDodaf4401U8lHGmW3lD7xZGY6vP3\nCwGuFPX3jR1pj3RdgAAAIABJREFUOURdtCB8zQ3nAFdgr9WCzQAZwko7rFdNtIVwLyzAOHIEli7M\nnRRnN89T/cuBkPCAGNDo6Xp7aPaU/XeYUCWvZo1p7Q/2Ntnvo9VYI85nrMftm3s8H+zq0sFjSQaz\nI4QKM2DflKCb44PGDzdVlxrOTqUunVWDncN+vcQiMmBfmbJ/LMN0dGtkgitTgo1RWHAUdRiKxP/R\nGAx5HGgiHGQc0yWFlg+x0ZpYEnbJMhjCHvXYhxfRIMvifSqK6tGBqQ3jcsQGvMgeaICr6Bj7SAgt\nNnTbUV/P02O/WIGtNIItVaDevltnnMsg+9OQbIRg9G5NyxossrZjNdPnYZf3IrZ8lZ5j5JD9gLZa\nnznh3FVLI5hA9dvLBPBYT0tOt5S9o9fnnfAUmj2Rrn/l1UUzM5ueZS949pyZma3vKI5fuaW94Mmz\niq0LJ1T/bZzGnMtq32lRpm7hNrOSb6NiaKNU94o6iuW3uGaFvum0YDIf07yaP6y1sd5QXUPYRSFs\nzSJZFaHLCmDfVk1meFa15dq6GHGlWfV5YY53MZg1TstqDze5Q+zTx3ANvfKq1oEBWoD33aPr76Lb\nc+0lOQ+WGBMpTPIyY7iGJk2JsVNt6r7TM2rriJelC9+SO+AQPaMPz4lBnjV4z2DOd4g/Cdq4EzAG\nN3bcW87fXnKmTF7ykpe85CUveclLXvKSl7zkJS95ycsHUD5Qpkx/xMlZHUVpTncHnAoP13Ui9vJV\nndA/cfTHzczs9CHlKIcDoVJ7azoxb3MKOEKJ3OdEbBeNhMk5oWBzjwrdWb+0aGZmCQiKB3vAIQY1\nXD9cHqXPCf8IZk0COyQBbSylKIXDBnCsE39M3++3YBmM6fmKTuwGRD/rc0K3n3/PCT7sjelDUqte\nG+kEf+kt5bMfPqf2aEwLax+8pXzE3UifG3mhlQLHgACtJRexiHtFD6SyCeunEKjuMSfnkdfgWmiB\ngBqn5Co2+iCdnBZGvtrOebWHME+yxnufEn53SWAdFUG1Yod2w/woOwaG0+VAB2OEW1OZXM8Y/SCP\nnM9Bn7xGKBo+XvcpubpeCWYNeeBF2FYJOkIjh1SMQFcCXadCrr+RkxtkoOYwYULYTwX0P/q4G3Vo\n18BzDg2c0HucxDfQ5cBJqMxJ+tCHWUN+dd0lKYNOOuSgASLdcQwn5zjmmDEcmEdcLwCtGlGPUuxY\nDiAWrh/IF3WsAox6LHRsCfq9CsPIQ5si5pQZopVV0TUpgMT4IfmqByhOo8mjrg5d9jOHQKJs74Na\nd4T0bY9T1zE0RfowPmq0Ae5FDoXqoG80BYo1XqNvbyh+XNsSqhxBT9oFMfUXhAAWYLAUiEsTRVUg\nhBVVIC98GVRjCEQYT6LXBDtgbw+IcV1jaLWt5xmfEBPHuUx1YRt1UPJfXRESYQ0hHMVpzelDdcWN\nadyDymhRDXDr2IudEwPsKtCu2aOqV62u6/Uy1WciUV92YENA1rDQzS0Qlw0QT5/85rgmBLkYCnHp\np8SgZTQNYAYZ7lbmNL8OWLrZu9lXSRttB5CSkBgYo0M1gEFVr8MocnZ6jFGnLTZkzg5AciKQ7iKu\nJRVi6QCdlzBx6wO52ehTlWo96zinKlg7DiH0AkfxUxsnxI0+emUB6FYWOFYXbY2GVZ069NAyKIPY\n9kBwqyCqAYy+LjoVTl+ixBrkRGAC32kRqAJtJrLLUa/CiAQksrDMmGRtD4AiffRC4gjtGqrv7DRi\nWKRujoxAijF8sMp+nEUnqoMuUw2dn+HtjZHzc5oLW4n0Rwpf/ZKZmb1+Qn2bPiSmSoW08OWVvzYz\ns2YqxPLvP6459TRIcGNBKGJ4QWv1Y2tCMBc31W73Hdfc+bbTY/LkjjTzkmLA9FnRJ65+U39/7ZGr\nZmb2A6B3l/9M/boczuw/ww9WK/b0m0Jcw0hskvZzmquP3auKF14We6Trie3w3OYnzczs+cHXzMzs\nnpa0DIYNff++ZX3/T8+LrVJjj3SjI+2Y3VVQxkcUA21GzJ/q6AXrvSp9nRfv+ISZmZ27oL68fMe3\n9d3jutbdX5Sz1JuPisXTgHFxbUJj89Psj/70GHPiq9rHzePgd3xSrKNLBcXxIy8LOR3/sRN6xhc1\nGI8uMUbq0l9InrzfbqekrC8FUx8maC04naQCukjbS+qDLutEAINjHEZ0Dweb7AZ7g6MuPjE3SorX\nO6yhYzAhHdLs2AfOmaw1UDzJcEnprqkeVZzK6rgRtpc1N/bQRptn79DBLsVnnXOshDKsrRBNr/YN\nxZrSssbgkcMaQy0c37JxnF889ny4jDbQ1+vTTr1dPe+e2zTgipJOaE5sosWWwOipzGoMJjhkblzR\n/nY4puseDjRmo6o+H0VoVjJuzMyi4dAGW/q7nzhGJ6xnGKWtDo6fJc2pIntG5653kBI5c6UiLPdV\n9tl11oTrbn+s+JSi79NGB6nmNAZh03owEIusxWxX952/QvbbFfTWHHvTaYj1ek5LkrjdVj38Eqx9\nt1/kug3eE1KYFB2YNlX0hbqMvWqm73fb/I7eUoRO3IitSgU2WYsxEbMPbMA4b7OfrBQ1tkasHwUY\nl4HLTvguN1S2+dZ2n8c91hjDMQz7pOD26fpCO9X995mWJY2VhLU5QHPT7YNLiWOwouHDHigm28JD\nf7DWuj32bohLVODBEmFvU5rgOWAjX7r8up6/rz3Q1Dm55g1471i+qu/7vM/MTeM8VtM779Kq/r60\nreySyTGNy6G9I7pWyDLzR31jq2AjxnCTj4x4j52ZUd2OnTthZmYVXCXfuirGY3iZtadBdgaspM5A\n83WAe2kJts7A7XHavGt29PfTZ3T9EDfOPnuRVZjVZ46j1VLWGtld19rpMegbdbXBCJZRZ1v79Olz\nYvBhSmrrt8TwS3dwJkNbpsl1R+heXr4gJ8aNZTHGx2Cax74bk7Cd6LpKyWnksudxLnv23rpDOVMm\nL3nJS17ykpe85CUveclLXvKSl7zk5QMoHyhTpg7q5RBKh8oHOAmM13USv3hFaMy3vqyTsE/+4EfN\nzOzonUJKRrFyvEZbnLzh6lThlPbyDZ1s1cs6hTz9oL5vd+jk7dpFMXISEOKY09uA3DIPjQDjRN6x\nJ3zngANiO6D+RRCDgNPrAfotMe4AYyDIfdBBD7QygLXQRzOmtaoT/U5VJ4fHPqo875kNITzfvK7T\nzyOrQsqPnheTZqctdel2V//vx7555PcZ+b9V0P+sjtYLLj4jXIIikFGqYn5BJ9YlTp6LnOy3HNKJ\nHoQfg2IX6QN0E1La1iGvBy3O4aZLvnSZk+Bk4LRJcKVwmgcwc0qeQ3z1/Qp6IgPGWiGEmQLzI+V8\nskDecDJCw8EpiTttFVyKquRBGo4/SUc/+1WYKpFOUWuZ2q1YdCf45FvjnoIUjA197ofehkf/GDmn\nQ+gGlarG4hA1+IJjtniwq3CDijs4NKD5kJIDm4EyOcezXo92RLuhSA6zy+N2bls+DkYB7doHCnLM\nowzEp4I7k9O0SNyxb+zYBUAxQ6f3gqYPzBoftK5zOyL2uA0F4+RNw2wbh3Exw7ytdHRSvwYjzwfl\nsKqQOR+nmoRnLNVQfYf9VIWN0IThUdsBRcK1aYgLVK8ptL0Kyu/X9DtSUhYzRjy0aaZgJ6yto6wP\nYlg4KuRvuoLaTNHpgZCnPgY7oaHP1XEZGcEy6IHyxKjUNyaFHPRAucowQbp09l5Lz9nfVVy5eUtx\nJpgSYjh+B/WZF0IxRZ71Fho461tq36mqEM2my9vexpWkKeQhYExVcc4phmL4VKfVHrtD/dwjn7uE\nHkkKEzBgDmTh7bHu4ujdmgBVmJF7IN8hmmFp5Pqbsd0mntPvLvSU0RBr4vTQQ6vHD/8f9t7r3Y7r\nuvKdlXYOJwccJJJgEimSyskKtizZLbcc+uvrl/uP9b/Q93N3275Wy6HVkizZipSYRIIAQWQc4OSd\nQ9Wuug/jN4Gmvrb64An3odbLwTnYu8KqteZaNceYY8DqgI3Wdj0VNHYWof4+nKIngG7LYNC0Kow/\n1+Cq4BQSMZZmoOZj1ooqTLXqDJ0K15oKdC39wJ3ECDRz5i86SEs4Co7RWasGHt9w0QB1ytEFKnow\n4gQmWTBgDUdUBgMYK5iDOfpuU9adkDgxorh/ybcgjrIPQYSruPstXHuAOM7anHGcIVBsyI07U7OH\nlkEzebwtzjwQ8+VFNH3+6lXpkqy8I4Syh6NC+IwYK8/8RsyZF76pfvinQoyR3NRB176rfvvyOerM\nX9PcO3+g798VcGm3ON9fNLXG3z0Rk+Wt61pHW0fSaFndk1ZN74bQPtvWGj/99eDhPfz84Ht2dl/a\nNZ259FNmlzSXd+/p+O9lOv9Xvv627ucdMXjWN3W93U+J8fL+g78wM7PjXGjiVlfXf/dvdK6Nl9S/\nL13SeDv7jnRdVipi6/5y7St294ye0cf/Wvu43tM6x5kz+uyLP9Q+p/dt1fznE7lnXEtxYnlTfZ59\nUd/7xq765PKyntWVkcbKs3flZHXEPLtT+TszM5v/QnFrZwL6/5KOd+UDjaXP9Zv2WA1nxQCXI5+D\nXdhLk4nYUdOJ9p3ju67zpvhVYR+agfj20LvYXIbttA5qf4s5dIJL3A7rRaF+OYR90N3S32M0rW7e\nFCJcO4KdsSS0/MxFnX94orF89D5aZWjbtLmOal3rxGzMXupEc2trW2Npt6Ln07+nMXIDRvZiiHAV\nzJyDfe2rN7paX2uwRKah/n5viJ4erNmldfXbEmyEfRzlllowMrvsORa6npMlBZt5T/1T4N7UQh9v\npYm+YfuRk2OtZhb7r+xR4g3df4ZmxASXljUY6yl7sYR16TRtDhqew8AY4zTVhhU0RS8tZV8cjjUG\nK3Oc+IjXKTpkTVieVWdJsa8a+WIE87oCE2VGfHQXuy4OVT0CdB39zDxBp8iZ07D5Bx304tw1FAZ2\nwT65cNdNrrNTQ/8HpmSFdSGswX7g7x3C1DyGceJr7UzXP/Z+g8GR1fUzQKsmdt1O9hYTWK5d2LdT\nnmnAZiunesGNGqNEz6M201wN2poLjbFr+MCsRx9wCmu6s3CdJFhiC7R7WI8MLcXw8YgyFjlRhfcB\nJ8TWcM+6fU97K2eFxeu6nnZDMSCkmmIdh9D5BMbiOqxcdwiCvuEssWhHc6NVe/Q+tkgiC2ttOx5p\nXnfOKB6tr2n+HaDh2mdvMIYRHq7DeGNtRObTLjb1vTY3uU+crMAYD2Fy12EgBwt13jLvzctbigcj\nNGf3roi1eXJbfZJu4FR1ojh7DBP7wobifQWG4v3bioeDA8Wd+bPab7bRBBvwLrN0SX+vLaONwztg\n1tN9D4Y6b4VqkuUO77q899d5d2zQpzOcriL2Lv5OnTkF6d9oJVOmbGUrW9nKVrayla1sZStb2cpW\ntrKV7Qm0J8qUGYKO2xTVd5xkAjJcyYaysxvrZLzeE3r0A1w7Pvk11SpbTIY+UyYrQDcjJ+PeJtv5\n4Zu/NjOzC09Lg2X748peryb6/oNcadw6qfQx7AEXFE9MGTvXV0lIaz50aQL5nozR/TCv16TekkT7\ndEBWlhrVqqHcHSszF5GdriXKAN75UJnLwS3Vc7vDRkK2+dc/V212fUWZxTlZ8Lq5v3tuwcJRWlBm\nd0bBaWoM+uPaKE0vWnVNGe4VMoGloPUJTlFFC3ce6nEb1HnzhC1GfyEhw3vqFqCgTy3pHEZIA4aM\nK4/UIzL3aAiMyU4GOUwRmCoBWcrc9PkZSEGcu0MAyAPCFw1Hiv1GQHVmIL3OUMlhVdRgUaUcL/MM\nONDGHCeekAy/q+gvpq4dAWsMnaLKQ00EdClw1InRTcozz3Qzd6hRbYIUjDP0UmBn+X2FIDBIubgJ\ni+VcX82cdabzuVtVQfa36tYJZLmLqa4vcOYO7i4hqvxWdcRbT6wGUu/3WwxAvVCvX/hAO0VLK44K\nUDe9QDdjSfdYHeueh/uaT7v39TPDpaloC9VOcCdypf5KTfHhDOyFGS4OG5nm0MGxGCUPdsVMO0Fb\nZQVmyRiWVTLV+efoEtXQSshioTaHB8rE30V9vqhIg6a7Q83qEHgJtKy+pL+v1YT2LAXuvACLoHA2\nAXGkI1QkOEN/UTt/TM3+eAprivh3rw/6jnNaAzqXa25hlGD9a3KH6h2CPjWoU6/BSptyHNgXSY4r\nyJJiwwrObxH6JvfuC2mZw75bX9Z1V1f0fFZS9euwp+dcTB+HTmVWCz4aeyZtnTdgjNepaZ4QE4qa\nntsEhk3gAimwvGJYgCdoxbSpWw8YL454DJhbFa9rz1zvytlkOFgEY6PrLIJRt8BxJGYMhbB1BjNd\nS4bLUIzOWQQTxuNVQPxuwZSboA2wmKsPx5CNCtcAoJa+QI+hAZLZx3GmGYIgolEVgSxWXZfCmW+A\nSGFfzy5nLYwRrwpgXBbcj9fyV4kzKWvXwh0P+/r+nLWZsGEhKFfkGjZoL9RauDSNHw+6LGKhbG++\nLzbAax8XOvebfa29n/s8/fkTTaY0/59mZja9p/76/BEMJ+DCK89prNw9+qKZmT11W9d3I9FzeDGQ\nFs3HAh3n6rUbZma2V0cn6stf13l62nM8w3rxfZxjnn1HeiifemQwY5tvr9vOt9Sfb/wLmgImFt7q\nlo6/nOt72c/1uZfPae/0m2MxY27dFvv4s5N/NjOz9y+IXdy7IvZJpytWbj/R9U+vC41c/YT658Y1\n/fzY+F3bvK84uvdpsXUuXf2UmZn966d+ZGZm5y5cNDOzn/7z58zMLHpW+6GP/0J98swL0ru5l+tZ\nvJv/iY7T1ef+8in9/a9m/4+ZmX3jA11T9qKYHWmsMdcCvf+HRCyeP/x9sYaOv/cje5wWuDYKG7qj\nnuZWp6Mxun5R+7D33xIbKSyYo6EcqtyRMILxMq0Q30GUs8IZhOjKMfcy1s7EXUx8DwNrudbSZI57\n+rvH5eBY/18hrrVh1RUb6JOMhZ7vEfc9cM2ONMbu4Hy2uYWW2I7G1JV7euaTaxrjmxeE0odogxW7\nuAN+qLi+cuaimZlt41TTB8EupuzDz+pnxvq739e6uL6mfothqrRwZVlGI+fevq57fo99NDGvoJ+y\n5iOmTNSIbMDz6DT1nPi4VVpo1BTaH5z0dR8N3AXz6PTuS7W6noUzX/KWnsXsLtqMEWOCzy8CZyTC\niMhB62G6uOZLxn4vJt52fB/s+pw43TQTf7b0hTMgG5zxIYMZfUv0OEcu2cieKcLdia2BTYg/Da58\nwp4gmWrMVRcaw9OafndnyZD94DzwZ+T7QthKaOUEsTM40WdzjcI69wfz3Mas5bCXR+iSxLCfZ1VY\nqy6Qwl6o6dvKgueRaUylTRyCWJNtgrsgeynX0GmxsI0S9nLsPUfsz/vh47kv5Zkz4tm/V3RfOR2e\n9fQzaeu4LZzCBrBSNje0V5wkWo9mVxTH7/5GrENjb1tj01ZnTxX0eR8p/MXGLJpEtpjOrdbBfRRW\n+4Bnd+OB4ve0p74rqD6oMYFmaFq5vk4By6kD82RpW/Mt4SHs7eKeDNO82sGBa4UxB0t2cKQ4criH\nm1PirsfqqyHxpFPXfnjzkvokY+0/QZM2XNH9NFf1uRE6SwEMvnM7YspMpvr73cvSKAtwsUtgOrae\nV5+22jDYYQ5lsbPO2Dd3Yb/xe8yep1opmTJlK1vZyla2spWtbGUrW9nKVrayla1s/79rT5Qp00BT\nxtWZ22R5cxTEQ5DF8x9XBquCPshJrtqwO7fe0oGo5U+A/T3rayDfazgq7H8oJPqNf/mBmZlFyTf1\nk1rWEJRxPFDmLZnjCJOgkg9ygZSCZVN3sgEZRfW+DoMloK4+cT0TMvS1in9PaeAKGb+MjF+EanW9\nB8thpEzfLXzYWyhzrzyl7Oj+VWX2P3hd7gWrZ5XZy2JnT4QWkImvIhITwqzI0d2o0VcLMsdjkMoA\nhDMHvUm4xylMjQQV9Hige5iTBUypr6tQQ5tRk1obPqp9P02bjXW+CE2CvKLrmKD349oJoaMYNVDs\nVOd7iKzimhRSCzsGNW/PlU2dobuRodWyAO2uk7dcUCdYh/uz4FkuHPElgz2r6XhNRFEW6AWF9GeO\nOnxlDvMENfwqTKQZLKvI6Qg4F2Rk8GOu32txHQVMvNaXxHdB1jaHdeBq9CHIRoiq+4zvtWCyjHFh\nSUAwArRzJvRvXIE5FToLhL+jeTF3DaKm+iNEI2dG/XudObGg3+MGNdA8xwhaWq3+yDHh/9Qi4sgU\nlHyppgz1OhczHQolvn5DiNoYtCfHVacZgmq1ccGAfrWCPtGMmvXsUGP3KgFgtqe/T2roWeDyNEX3\naCnh+OjxzNBs6eNcMuQWvaY/bCrOxTD05vRdlbGSUpN7BvenVsZcwgnGjQfcRWJGvfdgAfoGijVn\nzo6HuBkRT/pNxY05tbxIndjWppCTFWfM3Fb8vXVfDL6i6wwhavhxTeofwmIA2ajAauhyHbNjPZfx\n+3oue7DvNi7q+W2gHRMTs4YHinODDLYGKNppWxRmH/k9ZExG6C8FxIowgwWWoHOEu1Kli7vK3Bk1\nrDfEwjGOR9XcdamcQaP7nlBwvmCdm6PKX0fvaxbVrWAeBTiUpNTWJ7Cu/NnFLa0VOYzEEa5MkTuJ\ngOLXuEcIcBbj3Fdjfo4mMNNYMzPqo9vEiX4F5iOaVlEMq2zqbk88BFhSndHJR647asJqgl02moLe\noxU2gFFo7spH7XsBZajoqe8biY6fJ4yFh6X8OIVR699J3SkRVlPt9C5uZmZv7mns/9GJ5sKH7+k6\nNidC9f4edK+TiLWVfgUHiB+LOfLuQm5Nz+MmspJrjb5ZF8Nk1JcGzcVYrJDLNR3vzlPqh85Qxz15\nScdb/EyMnTDSzyY6HxfXFCsOv/CPZmb2/tjZAP+XJTtn7Mot7XWWX1O/3e5pTG6985KONxCSevuT\n6p+L9z9vZmbFK9KY6f6DmDQf4lbyqX20iIpvmZnZBxt6zlWQ3F/dErNm8KFi67e+ofv7ZfqWbfXV\nh5ee1kO7/Sshrl/6UKykt7YUB36vLwbGcV2umlef17W9f1X3eDER2+ib30Yb4FBuHz+8IibNJ2bS\nmAm/ofP8ZixG9LO39PuvzssB67nXXzQzsxvRfzUzs4P2i/Y4LUI/rrpwmxL093Cgaa2gcQZrbE48\nXlTUZ4NAz7ATCtF1180eWmDbZ/S9bkdx1RHi9EBzL+i6kyHx90DHbT+vz7dX9MzvP1A/tQba/47q\nzj7Qz3oVZ6Bl3JbQiBixJxjDygjdNWRFc7q+xVht6j4P0fQpYO60YB0crWguj2GoLp3V+baf1nWm\nRxqDI9jLC6icA6zVFiDZs4Gua78OEs+eKkVPKoc2txjBCoE9WFty/T7WOTPbvbpn1kMjDA22Nuv5\ntKl1Lm5pfc3SA25cfw8mp2dBEI4sKLxv9fuItbGOpokRh4ND9qGh/t7AGSqDYT5BC2ZBFUANln0W\nwISA2Rgj4jdJ3I2Iff5Y9zAfgcOz52m11HfjzJmKjOlE834+IZ422H9zPynrTgJjfIrORo47aDzF\nUZC1P0BzZca+vIbG4EMRlQxnMXQ3F7CC2dLZZOjvYK6to787Uzzn+gu0LSPWLdduDNCEHBXq31au\nMQHR3RL6LWHTM21qDs2Zq8GEPY1r08DkKdBRimGe11xT8pStVdMe8T6ObBV/r4Cps3egzV02YF2t\niI3mb+5DWLrLvC5MZ/r8/bvqjxdf1BjvvCzNsKCNk9CHepcc4O6la4/N0sIq7MH3rit+ZIzZcAAT\ncEtaruc2tZZNYQlF7IsaLR1zSpzZ3FacW9pi/3tHa961d7RmJDCnty+I2biyhibXoT63e12Mw70H\nGuM7F2GSP6U18OQtrQNNWLcbK7qugn3cbh+mDHuoVRgshAm7PdKe6Liv+15u6XP3HihureGu99zH\nnqU/NCiv/EZMGt8fbsCoSXFt3TqDTihVCwe4SUeL3z1GSqZM2cpWtrKVrWxlK1vZyla2spWtbGUr\n2xNoT5QpE+F5H+BLPmi6Y4KyjlPqIWuxMus7zymHtAxCvZgpe1gj8TQFbYtR0k7IWi6hUbPznFCt\n42Mhs1d+rXrpreeUAauRbc3RqInJQo5gGTRwWRqiTJ7gFON17NFYGbEMdKkCuyEEcU1QRp/Ajkim\n+v4MlDMHnXRHmxgthQuXVFM7hlkzGeh72ztC1TZAzj2LPDtWhrK1jtPFLH1Yx5yCzuYpdW6k9EM0\nDCY5aHhLx4hQL6+S3ZugnB27ijvsJUcq44X+3zPQKUySGH2foupaNadrKQyNRuq6C7quCUO3Qsbf\nmSQRKvZFC8V8Mv0zsqhW1fU2J3pWqWugwIoIAteE4SfPMud3fwY5NapFTedFUsYCamgLakQLPpdx\nvQVsgdBriEEEAn5WGHM5dZoLantzVyxnLE5hyMScz2tDc5CImN9dkSb0UmLG3sgdv9zlCSZUg/rx\nOQyWuO4MK1hk7tAA82gecp2Mjwr6HAvYDSPXjEFLIjPuA9bC1N0HcJmKYNJEi9M7HRT0mZdLd0g1\n9490zIM99Iba3CuubpUufeB1xVAvxjhQrcGUG6NV07+vjHtGjewMZl51W2OuyzPKxjBCgC86oElH\nR4o7FUdZumhhrernRk018i3YEgOYc9MGKBgP8XCuuLd/X0hetid0p9XQjWewjiqgQ0djnb8KsyNd\n1s9j2HIJWgvbGyCZ1B0XS7C2qGsf34ShiIr9GCbQZlfIxGZTY+jGdSHfC5DMZEfxK6feuwbb6uS+\n7u/EdP1b53Sc1W3F+xYsvQcf6nyHd6RhM+tQu5udvsbfzCx+aLuhlkbEZRiF44cOPnp+4yHrCCy/\nxNkkjIs5z9HQWeos3BEOdshc42KCO0kEKjljDvlcG8MCsSR9iIhWmScG8uhMO58/BbXyEWhQkXsc\ng905QPPK41tD17og/sxANqsgcxHfL0D8RmgYNIZAg120bGBchKzRAfFh7joZMHQqsAR6U/oYkZsa\n2gAxfTD1jaTzAAAgAElEQVRkje6Clo+axAE0cyqM0TnOCtFEx2nB2DHTfTXmmkMTHMqyisZWK3+8\n9ebLW/r8z14V62L+S7kcjf9Ic6p7WS5ETw9eMTOzt1pifVz7c2yU3tac2NkRmnfwK/XHU18SK2T9\nu7rvn4Q/MDOzxacumpnZmbnclQ7rGusX3lF/Pj/VXLgG2/Y7X/ykmZlVb+g+z/b0nF648YjtsXPj\njlWe097gTlMsk/Carre3iqPay0IZz3akx3Lzje/qd8bPza/puF97X+PsWgf27v67Zmb2zECx8N2X\ndP3hqvZWXz8nfa2/N4351/6qacG3hNZWx2LPTL+9q98LoboX39K9J5KasZO3v2xmZl/pyGnqflvP\ncveqmMB/c/zvdZwH/2JmZpf+WGNmZfxpMzO7cSjNmOob3zczsys4cU2u6QQnEyGc394SU/r/TR/T\nMgVXtnDKHGDBWVSZi+i4tVljgzOKp8toBl65ofsOVoTE1rtChgdoGSwdaiyHc8WFyQx30Puw1rRM\n2BkYjQcH6s/mlubE+S19ID9w9qrWi3hJWjsBLk0TnHzOboqhdO+2EOdpqjjYqSpuz0ca21kdzTA0\n0QoYghXiXXzE+rONliMaEbs3YUIe4Kb0NCyzpsZK5Z76raYhY0lbx+ld0HWF7EHdMRSCj81vs+dB\nJy+GZTFjzrfWcCdcf6ThMJge2YTxsLbMfhtnnTYslbVl/ez1naWdcv+nd+mawBBpuJPqiu4hxnF1\nAuMtQtctr2lstBeujcV+vc81Eo+7OA4OeFdpolM3x21pzHk7uDKNeEdpdnUelgEb4vaJuZ8tXNOE\n38OFM+WJ5zCbjf19mPv7BGPctW7cpYn97dAZLzN/VugboT8y4dnVWI/a7OMLtFpC2BdN4nqPsVDk\nsMdYFyM0MeMJLqHsf8Mq/YDLaOD7WPalNd7pcvb1Q95X3PW0DWN+AOO0ynUFrGtOyAxgWYymp9dC\nNDOrb2qs5e/pfu7AItncdFsmX8f1exP2WRWHswIW2rSifm3DBhmiE5WtKLZuLenz194Rg3L/gxtm\nZtYNH/EyastrFgahtYkHJ2g1LcEKnV3Qzd7Z1Rr4xhUxXQr2u0PXL0KL8FmYaivrWhPTscbS9euK\nM2lP8/7cJ7SmnXtaLKDRALbPVTEBZwfa/1aJCysXdX0J+78j3JgKHM0WuKuO6Ism15Wju1ewH3eW\nUsYz37+mtTF5Xmt3DANmxJiuryiO9/fRuNlV/5zfVBwONhWYYqopZnOcNPcV2EZUYYS1382FKZky\nZStb2cpWtrKVrWxlK1vZyla2spWtbE+gPVGmTAGDJazqZwOkOi3IuON+UQfJzCa4ZJyjri5FtRn2\nREjNZxa7/oayg0MYKRsvP2NmZjWQhRDks3/4UdemWgHigYJ5QuZ9gV5IuEBfBcTEa9dyWBb5HL0O\nsttVUMCUDFqMm0dOtrMe4JiBtkQMyhdWYHVsKENnZM8rMG5SstmNFVgFsBZm1NZmKJO3g4plLRgO\n6DlMplwz5xjjorH5vFCWyUzfTUH3Q2pI/R4LakZTtF7CDDV0al2n7s4UoNMxJ4ObPd6Qa5I5h/Bi\nARomtcQz+ajSk+kPQb8DNFMykL+A2smG19yiLF5BE8GlEWZV0HLYV3msMVLNXS0eZhBUoAgEIZw5\nE4hMOjWyQah+nsI8CUGMp2MgCZCTAv2PGvcz5jqdOZJNYVc1YNYMyQqjvRDSv2GVDD7MpxoaMQGI\n8zRwjQYQCV2FZSN1QAECntIBCzQqAKGsCtMmquGmMvXjoPUTg1CAQBQ1xp3PacQt3LmsBto2G4Ko\ngOz3/xdV+P9Ty9AxWuBQMz5RZv3BEGV+tKJaF4V6v7ihMd47UQZ74q5qsLGCGWyotq6hAdqUw5BZ\nnBfqHdA3bRxiptQ9Jwtn+MEi2FV8ub2nzH9YA+pDvX27rc8v4UZUA8m0fSGk8ZLQlFqlwXE1Zgbo\nNh3iNHPAs4vRrHFUbtxGh2gddhOMvLVQx9sg0++uc/EMPZORruMByMUQht64AdOjov7ooklz0BNq\n0+Nn3tX/N2DqtLpoGCQ6/wnozgwPte6yfh/v6XwTanrvounj7nQJGmCdrvPATtfS2Ufdmlp93ccJ\njKcaqFrSQ3uhqX5rUIc/LUCwcSpqU6e/iHDt8Dr8IRpBuGs1a4xpHO0S4vuiD0JLbJtlmQXEu3mi\n70ZVr7XX3yuuOzbFRYm1Y8r8LlgbatDGRiN0a4jDAWtEALMtQ2dimn7UBSNEQ8sRxcQ1Yiq4pxHH\nZrjcJSNEEyD92IA+ddYWbiPuAjhCc6WJM8GUOFVHJymktp/Seov9etIO16O5Vpkw5gP1l7NPgzpu\ngtnvrt/+7fb6wX83M7M/uPyymZnNZ2IX/P3rmouvDnQ/P3jm52ZmtnNPKN/i12JnRN/SmPnhd+Uc\nVPsDsXDP/6Ou7wdn9f1zu4ohO7EcId+N5QQ0B92rTH5iZma7HWkB7H1BTJgv/1Lsj9aa0Mar7wk1\n/JeX9Pt/NLNfPbNmz78r5kotESvk8yvqh5N13cfawVUzM7v3fV1f/4+FqO68qXFw6T1d74/u6TrO\n/rH688EHeg63n9J4e/q65uLNm3rePxvo7x+/ojm8ufwJu/aWGBFV3Ha2z2sMN2/LWWr4afXBL78L\nI3rN9YX0+8EXiFMjEMwfCal8xr6tj31X7pODP2GOHL1mZmZdUPnWn4nxcScVsyb9R43dy78U4vvM\n0unXGjOzOWusu2xU3DkRxuVwH302077twhndRwxTrn2oeJFDS0hCXedoX302P8O+j/iW3tUe7O6J\n/v/sGVw/VjRHeg/UX4cHaD6s4yoYa72Zo3EQsDbXGzrfcaD7H+IylEaKKatNXO9gDwS4l7pOXkDA\nGrGHyVI0V5jDEfGy0tH1b53T8WdVmJ377FUyd0rTz71j3Jh6us4mbO4CDa5gE2YrdI8CR0m2pDZi\nb5LD4lqKxAarJY+0YCbF0FJiyWgg1sD0tsbw0sg1zPScurA/TiYab0l6ek2ZiHk8wCm2ACWvt/Us\niyP13TDR2t7sK37OcV2qs093Da2Wu6DiQNXGYXViH913t2AxzWGu12HPOhtoyBrUgmk9gWFSgYGZ\n4OpU0EcJej6jJZ4xzJ5mFy1Hd1NCly1OfI+BqxNjqkD3Lwr0/QXOY3UYL/5W4IzIHI3KNId1yp6n\nibZNOGMvUHMGqL6fFc7gd+cytzPEJRBm6AxGS8pY8nXXpc1G6ILmaGhGuBfmVDE0GQsxLlPjNmv5\n/PE0MydorPVONMaKIRcAU2YwYx/A+t+taryEsDsGofprua7zn3tZ69UA9vQaTp337oq9fO09ackY\n70XLT7cfXktzo2lhM7ExumlHd/WevPWc3pu3u4q/d9+Wxst4T2O5dU5Mmgvnta+uuaZqW9c6Jf4M\nTrT2HOHaVsCq3XgKthBaNjfeVNy6c/OGmZk1qFbYeFb7x/UdMarnVBFkA11HSlyasw+r8J49iVyA\niKoFmOEzHHAD3hlz3knWNhQ36kuKj4OJxmCIPucxmlTrxPWNp9Uv/QP18QjBu5g4n7wEo3xD19E7\n+Shj+7dbyZQpW9nKVrayla1sZStb2cpWtrKVrWxlewLtiTJl8qG7FCnzlJK9y8lK2pxsKTViIdnP\nHD2KrIAZQ2Zsii5Igu5GDkpWgx3g9YmrHWW2DEQ6hS4QpCDtVa8rVGYrBuUHSLUKLILelHpKMoOG\nL3sdhN5dQ3K87Z3lUbT0uQZaFVN3PuJCHM+tkDVugaCnsfphDvOmArpZcD2B14VGztLA1SPJLKfW\nMgdRTamFTEE/BrhpvLokx4JFU0jbg5lqyKcnoMP02RSENKKPc3QiJiC3JMqtAtLrNadh8kjt+zRt\ngmZBo08GnbrBFB2HWoAuEeh/Qf1fhiNOk8z4HM2UBSn1HE2UPHKuCKwmamEzVOgz1OYd4Z15DavX\n+oLyjGFLRNT+D2FVtdDE8dteLGDU8Ey9NvahpgMOBq79MsMZoM5ljsjUV8jyhvR/gAPZDNZYtaX/\np5zS6iALdTQrRjBY3LTKtWAyansr3EfAaFy4xg1DvSgYQD5XZzpvE6R9HNNPM79vWGDm9d84I+BM\nEcEmGIHUJMXp9UKqOI9kIIsR7gk7DWXWwwswHhIhjBnuasfHd7knxmhHCGGN+uwBtfiDzDWsYAnB\nxEmqOBqYxyXmAHEqQ5+p2tLnOnX9TGuKBy00aJbrsMlOYC3sCik4vIvmwI7G5NKW4uGgJ6ThCH2N\n2ZqQighULCFTP4RZF4LYurNBp63Pr4M+tah9TY50vpMjoSz3HgiZPSSu5CAlTRhDHVh2yy2dZ/ce\n+h/mTga63qSDGxYOA60ZLAe0vZwFMmcuDNw9CnZHZY3+aYDOJTAXk9PrDpk90nx42GAqBjhdzBfO\nLtNzaxH358T3auh157+lkzRjHWq4PpJi0qKC2wBxuBKpX2sgzD0c0izBhS+sPkSVGiCOAxxeUtea\nmus7HkWd3dl1nRtQZXfXK9Azm8EKqlRgqjlriBJ4d06wNgw3NAtC2EIL9G9qaM4UaMYsxkxwENEq\nGjjFQ3ECHWde5R6Jr000BQKQ3hymTVAjng6Ix86YGWgu19EfCuifCDbbfApizGkn3Fen+rtRqd9u\nyb50SaZTsXEn3f9mZmZ/8NKXzMys/6b0ToL7jMVDnfDzn1VMeI85+NQf4lJ0IB2UW59R/37xLaFr\nNhdT5b//tfrtS00xZz519qdm9khPozcSSvmZm9JXuf28Ytjbh+qPSyDVvesvPbyHV89t2rtP67zN\nf/iMmZk1XtWc77yh/uh3EHD5PaGUl777n3X9n5Huy5mfwyJbkSvTaznI9Oe+Y2ZmSwJRrXdDLJXq\nNxUrFj3m+p+JafTW31VtsUG8WJLbzo3jL5iZ2aTyt2Zm1rqgPl06r2c4Xsh96XJPSOPNdzRWP/Oi\n3HnyuvRvvvPtr5mZ2dr31KfFTY3dT+OUMhiqD9+6Czr8QBe9/41vmJnZJ0caJDd+6voNp2shekhz\nbInSOUhqX3NzMgTVn8DSzRT3WeKsdUZj6+S2xnIFhqKzip2/WmWPsAQTNMsVL+s13e8C9kEOa6xe\nEHfQ+qqwNp/cZZ8I03H5PC57I60LJ/e0zs3Z/7I1sAL26hx2cw7jJMNJZ6Wu+xgEek4Be6D5IeyH\nFX1+CyR5dywEfp/1Je5r7qw+p+c6QQvxAK2xSk3fC6vEJpiioymMRFh0Wxc1dxL2Rg/ov1X0UIr0\n0V5i7cy6FaZ+nAzprz3YIRBUN9CDGtc1p7MPxfBJisJO25o8uzruoa4XueAaU/Th3A0nm8BYgGU/\nhp1bwIYfw6YqcJSM2d/GxOGsrzE/TXwfB0OZPcho5i6ffA7WQIjj16LFesCzncOyb6KXVJ2wH2Xt\ntQHMRfTQ2g0905R1JsDN1N03U3eCHaHX2UDT0fU16drZzNmj7F2auLpONUbzoeJL5I4/MIcWXRiT\n7GkmA/bvMLFjXkjmMLpr9O+cDaprsi24zgjWdcHYq8Ayi6BlTdiz5H3WvY6On81c6+x0bdjTfa3g\nBLq+rrkZo0u1XhOLq4k+UgNHytmIdRC2dRcm06zQ591h7eo7Ynvs39Sess6+uoYDWqX9KPatdVoW\n5rk9OIDJS7yazTVvZz04HDDnktQdsnStXtHRpQJmGc3ECc59Rx9Ks2XKHqG1jm4dGlaHY93T0b72\nt90zmtcraKu2eG/OqGwZwdrqwxg/2+L8vAvd3aUihiqA7lOwdpfQdr2vvnetlzMrMGtgAQfIKOX0\nZf8+rDFcodo77ENbut/rPxMr1fWRmqt6NgGDO19GY3DwuzXMSqZM2cpWtrKVrWxlK1vZyla2spWt\nbGUr2xNoT5QpE7RBGjKQWNC9CoXkU7KYFRDllHrlPAV1gy0wJ3tcpzR4AXI9BfWrgsAuqI83Ml8F\ndXjBDKcdXDciXEIW7iyTwGipCHnZIuPV7gohODk65vpAPGCHpFWyrWgqFO6MgfJ6DkyZgW5GEYwg\napUNtkG2QP+F+sac48Zc/xjGTkzd5AxXqvaSrrcSVezgBIVqV2MHsfQazqs/VV33GZxSPvZJ1bCn\ndWUp52Qnixoe70gILGJlytNcqEJr/lENhAnozZR6va3p49VvGyhNCDHDEVqAB0uduQFDYwH6XOTU\n3IJMBLCqkibsLBCCDPXxArZVATOkynmjJqwDGCnRBESBZxaDVhXcZ2KuNwTjBsRiQd0ij9QApSxO\nHDmBUYO2TEA2uU6t7hx2WMFxXMsnQdtnVnFdIs4LY6jJ/09gY4UgEAFaDI5ou95RzhiqwxooQJum\nsAYqsNZitCUyWCUJiMR0hO4J6d4gdDcraoNz/w89jxkslbq7q8AaWNROX789o7662VRmer0L+gQi\nt39bfTGsCC04YCzPGYrxNjoOzlGb4YAAG6xCX447IJawpgKcX1LGTs4YC0LvO1gOrvTPnCuW1ecr\nzImYuufFLSEEtwaaS0cwTXY4/v17ch/qU+t7jP5RFXX8pEINL38PsQQL0OKqdjWJzqFinz5Q/Lp3\nU4yhdKS4ceTsCe6j0hGqEvF9Y6xGVc39Xk/xr58RFGA7dM8q/pzB5WIZjZr9O9QMH4Oud1WLPGOM\nrWyrpre9pe8dnOh7Y9h8OXohMVo0p23VrPOR3wcwhGJqljPYbTmuG0UTp7cUtA60sQkD0jUU4oga\nZUeUmfMdxvg4AzXkewWuTXGMPgx6UMV4bjm6OU5xi9CQcibdooqrUKJnMYBtOqriDOXs0Kr+voTu\n0Rg0KkFHaBLpOK7T1miAvIKIBu7+gYNUGGoujZm/ddAhZ+RkExh79EGFZ1RDU2EOel3AmHPG4pj4\n2WKOTHNfC0EmcfRyNoA7PaTEqajPmmru9qZn2nbWwfDxxsjmZzUGvnNfGjFLl8XiSN/T9Tx7+3tm\nZvaXn9P9/WfT3KvtS1vmIrpNlxe4X0xV43/yPWmzTF7R3L7x5U+Ymdl/nGrs/5eeGKnVO0IHv/qy\n5vobxNfPXb9kZmaD7+t8v/d5oY5Hnxaqf+HXvYf38A+1xGrvaf3Oz4oxszPUdfzqBd3fJ98Xqtf8\nierzf7Wsz4cfCt1MvqIY89kDjf1/+uHbZmZWqfyFPvd19f9TPfXHx9gHVK5rztffFNvlha+27X80\nxJD5XFV9FKIpssva3JrrGo9lhmlbz7D/2RRLqP2S+v7e/TfNzGzp6+qz5velEdP/pNg8y6lYOzcw\nwrq9Ic2aP3idxfZP/oOZmd269fdmZrbGXuKteNkep7VAiu2AxRz9ptk+8QNHynhFfTIdK65OiX/O\nyMhgq0WsB1OYdSn73+Qsaz6OlXNYzSnM8io6dQ1cjopVnDGruLrByKuwWZod+ZzSz5WGru/K4Ib+\nn/tpw8jMoYbXerrgwz6o/q76cwG7bozGTgrLI2A/HuDGtLIuJswac3Y/09zYm2jMnomE7i9qGnNj\nGOWbuCPmsKyrrLt233Va9PxWzqOXgtbDfKL17OQ2z6Em1reZ2draujVgFx7eFDN0DjNzim5f3ERH\nCwbuuGDvW9my07Yx+6nA30Fc82Tm2oLEXXQ0YjT60kxreABNwV1FE3eYYt85Z982gz1fa8PUQNLE\ntQmn7Bs7oPUD3x+jgxllzqJi39vRGFzA1HC6QAj6j4SJjdF0rLKdm4z4/6qzqtgjwDCZOgO66+sK\nmy8cxtzJMOS+ixo3EsEQgq06Y79c4XwL9PKa/l6ANmQIsy9gLzeDMdrgc/4exDLzUAc0hvHJsvRw\nHxoyl+ZY/dZYn8ewZ3P2ilbnAk7Z0hPWMZhFOayQxQhWLzHEmOs379zQ77zvvPqM4vcYhk8Ko6gH\ny3CIzkmBxlF3R3Oxjpte439hylQ2tm12NLH+gdaeSqSx2OU9srWk7zw7ecrMzN5+Syyc+RHuby1p\nNmYw0456WutmIz3bB2gVVnDiXaZiZcpQazIGIZnZuWd0rc6Q7h1oLc+p2pjwHv/8czrv9qbWzgPu\nfUwc6K7oPs48q/VkxH77w3e0xtd57z+7peMYDL5xTwtJA6bi8JjqB3SY2ivSe1sM0PU7Vl871XBp\nWWv1wtnPM+I6e5V/qz3RpEzKRK2yqc1cfJTFqobtWkHg8mSLVaAqU5rilOWRK34hjhWzgYtifW7q\nNm7QnTokS6ZsxiuFXj7qlBP0KeFw+tXo/nUzM7v0+/9O131OD3k2V0LDBtDb2bwvYviViSaY29FN\nKaWZEWhcjNWtVr1UxLC18+RRneRR5GVWUAMNUS6PJH2suZ9raVCsnl+3+EPd0949iS2lbPbqDYSi\n2pr8d38tWrVRNrQEHXDExiVcaNKPsRdzEeMCYbKxJzkYeBG0zGCB6GrxeOKcCc8uI8iGlHwteIYZ\nNmtx04MspSbYJ3rfFYi3BVhGNwOEu3hxwr3Shj7WoMcnHCfA+m/Bi2rCcea8vASprm/KS5AnP5x+\nWqF8aNJkkSNIxmMXKHaLPyi3CJjNPHHIYtjAkm/KdUWUWYVzT6bocyklGHMXHiZQFsy1KqLSAWNn\nQvlRjY3WCKHmJv1fJRBl/gJJ8idlkQygFNcQw5owDnxDlSCOXXFRXl6IK77RcsogL2fZ4vTJu8iT\nm5QV7T3Ayu6WXlz6gVtberYBevcWZYRY+A0o0ai2tTCf4BfZ3VRc2Ay1iLSgCIdY6w33NWaO3FqZ\nPk8r7s2tvj1iUz59QHkMVtcHx9AoESzjPdOiM7rOES/qBTVwo23NxYTyrBjB3GriL7r6fkzirbYG\nFbZFKSCb5g8P9bLUY4MSt3WfVOdYyH0uIQRcsHl1q+e8igAlNo4DaK/VrYtmZtYhobA41t/f/0DC\niiMsVn3DE7HYZyT8/Pk0GJtNaKoDEq0JFrJjkiWnbfPaRxfDGgnQlKReTOJy1nCqtT7XJt4OiAlo\ncBv7TUNL19pN3efc2FBTeoTGuKUQUwNKgBbErnkdEcgktwab+YK+r7CpThaU97CpdNv2nD6KEOLt\nEI+nrm9LqVjU0LObM08LkjC1FoGPpEqfMVLr67xVkjgzxEGTGYKUrHEN4m1WdcFyBIYz5jOU/wpx\nbZ5qzNexo2wg1jkmydwcE2cDLLhJkNWaJJ9Z7JshiVIE7BsIg1ewu532SVLb6W1szcwav9JG8Itf\ngj5/X7af60Pd/z+9ouu5d0Xn+fgWSe2eNmTVHyv58crXf2BmZt+/po1e8JfaM8R3tWG8tNBG8b9i\nAf4fd3V/f32gNdsWL+h7hdbj7lQb31tfVjLlpz9n4zjTnA2yR8mn7X/+n5ZdgsZ+Uf9/+F2BLa99\nTPe3m6kc6oM/VAxZufMzMzM7OKuN5p1dyrduaJx89QWdb/A8oqdvvaHvhyp3PvPPlMWtqJ/+dVfX\n8/yPf2bRM18zM7Oj56FxHygBFW0pSdN9VwmfeKbPvXJR5UZ3Mj27TcqE7s/Uxzd/pD56ZahE0viG\nNt/NIyVh8q/o+Dv3laR5b0+09vqvFa9ufKik72XTs1n6CwLuf7JTtRkvD/PYbeQZe4Qjqpkeio3G\nvFiGxJkByeSMTUfcZy1krAaUQQYEoKJB3ENANxzywklJerzgRYu573uPeYfkCQvC6ERxtL6mC62u\naQx6xiCjHLWPsGUz1BjIu6yDxJhpW2Ng1kKU+4Hv6UgQIxdQOVLM2T2mXOGsrqtDYmEEiFFzUf+O\nfr9daH047Cv5Vqccos0b9wkJ3cUIkIR1YGWTl6N9Pd/DIyVT2rceiZmOx0vWWNb3xliQn/AS1pyT\n9AcECTAIGPHWGC1ODxRFlPek7JMi9tFB7iYcjCHGSnOocwSAfmndy/HZHxIPxxll+JQZhQ/LiNgH\nU87YADAJKeUrAEpCNzGg/D8PAQxc7JSStZx93JDkUcJ1tcgRsKWxGnG7z14odN0C87lB0hwjkWhE\nUoQkbojUhKsIeHnNIFVcquQ97ovr8HejAACbzZJbiAckEiPeuQY+R9iHRl327VMSexh+5NTxT3PM\nGrxUZohpC5kCL5sy9tchBIEqYIMDc6dt7bOU0rCnSkj+TJCDWOW+5w5iHGv9rDXVz0essxVMIVL2\nWgP2riFlyDuvKalfi3W8CUYoy1uPEtLVaWo3Dx7YHLH8Gi8dOXv2lHeGBYBPDaOc6R7lk9KKt80l\n7ZMHh1qz7tyQMHCPa1xuKcmzToJomfKnE+JcOlbfH+1q/15bUrzvI1b8YKTjbG0qPrz0qkp0eRWy\nD3e1zxySuMuwtD85UtzqkOA67Gk9iCn3zJijBWN/Dmi6IInbWKLPzui9v76s+LnACCMAUPJ3yVWS\n9zXA1SmmMDVPeP4brSxfKlvZyla2spWtbGUrW9nKVrayla1sZXsC7claYlNaEcGBK4Bo51DCwhyL\nVKyyDcpewM85GTBPs7YRH/XPVynpWJDVbJD1nbkYLKyNCdnsJUowqktkLaF7zhJlHw+uiK71Zigx\nvktfEkoUQzudtRH4JY0ckfOqgf5PKCdoAp0GZLHdCtvtPy13MVey2nNl3HLKtRIYMnNnGEJBz0BK\nDt4X/exqJDpX92Mv28XXQOACIVx7hyqVmJLZ3r6gzHX/vrJ+vbeVbZxdUjaygTDrhMx0C4RyDtIZ\ncq0BYnBVaJoF4pZ1KLRVF4Y9ZQtAYkPo9wvElAsYFq3E84rOhnKBWkpPXDPaBWehzhklBpHT3rG1\njGFJeXbUdSJDF5UGzYfoYjnWetXQEWG+4OwsrGvzJog1if7YNeNgcTjCMKu4bTpMJKzLJzVHHNzi\nz8vDQJydGcR5FzwXL6UAfLM5NpMzEJgGNvJ1vheA7iWg9wXWe9kIhJ3uCyk5bJL1XZBVD6DDGshE\n3ec2X5zCPgtByzIvF6PfQ5gC2fz0TJm4oc+egCJFoO0FomitJve8JPTFS+ASmB8T6NIJmfIFAq4x\n6A6uwZaAVuxj7VeDynoALXFGqt5F7pwh0TvWHJi7rTu07OGJs8mgpsBG6II2n90QijEknhWRkMv1\nDfzZFB8AACAASURBVKHeC5g1x2TgXf11HStCL2dch60wOxZyePOGfu4S3xJKRLKLOn4DW8aMybOA\nCuJ09mmNUj2owSkCxsFFEMWOfu8/0HXvc/8jSlkC7i8PNZe31jWGlw3LbFh1g1u6v/sweiYxYnZt\nkO/g8UohFyC53hLi6Qj2RUDMqoMcx36//N6esO5g85wwVo05O6Hkb4G9aMtFxUFMurBdJsT7GiyJ\nCCp0GJvNsLgPTigvhd01Bql0S/paTMke5UI95nsfND7MiZddENS5EDZn9i0YsyFMPrfSNtBnazp7\nU88w4f9D4m4GHXxS6F6r9MEIWrXb0GbEtxTGTt0FzinPnNJnESwla8CAoZQgpDRiirhqo6b+GIIA\nVrB2nc+gKcTq4yqlwrPi8ejkBfa+3Xd1vf0DMVb+9mWd79/fUSnEry6odGZ//ytmZvbaqyrjWSRC\n84LfKPY8exsb4ELMlOxFhIJv6/4+tan//0lHpTkrK6+YmdnboVDGi/+g/nz7gtDHeVvr8/PPMYcr\nOs9rHzyaCw86n7fKlR+bmdnWr79qZma//GOsaFOxevORhIH//IN/MDOzk6fUr9d7KrP6Qk1z7yef\nVb/e/6mEgevEjA+Tr+n4XxD6GP6zUM3hWD8ffOuLZmZ2JnjdvnX9HTMz+/7PYC+BbH7S1IfzI/Xx\n8ECMmZ/9nfYqz31WtuPdy5THnNU1byGuf/k1bIfHYjN9Y0P/f/W72v98eE7PpvVZlal8PBZ76Oya\n+uw+Ip0ff/+/2OO0OWM/AB0PApg2iJTmqPJnlCm1z4KgEvf71JgkjPGsrTEXwYqLU9D6Q+3JNgrt\nwR7ADhseai73J1qH3OY+jFTKUKCAe3FJ6HgfJkgBxS+oeM2GrnsNJqgFOt7hPVh4VS/l1jpUOZt/\n5HtJxvqyrTHiZUvNGnuHJoyevubgwYmzYWElsI8fwvpow9hsbVMuMNYeNJpoPYtS9UPCXjJ1MfEe\ncZn1uoPA5oiy0UX2SOy73gussuSMefYolA4dUwp6gX10BotwfVXPIQtPLxo+pox0wj4oh5Wfj7gX\nGI51L5tnTz+K9SyWJ77xVJ8OiacJbNEA62sv4/eSijHvHGNKZWsYRRQwaFxouAJDJoHdmcMCinlH\ncmmFKuzfOSYKOXuDkDr8+ZB3uBzB2wrsKaoAermXT1FGxD6zBlM6Tbzsnv14gSg2JXoV9gjGupPD\nVJ+yV6tVXJoCVgcb/ZR1qdXC2AJGUjpDdiCAhcxesMV1jREOriBgH/v6C4m3WYN15dtw1rcR/R1P\nH4/nkLL/PtxXvD/sa8wvdRhzsJ8DNz1gnZ/yveJQcbp7RutDvMN6f0UloQXmDt11vQue3NJ5Dg4U\nt7cvPffwWkaDmU3uHdgsUJ8t72istpcUN+9f17XdeVtxOtSfbTmlvD3Tz5TS6D5spIz90BkE3409\nSX2FEmxkSe5dE6PmYKA4VAnEZHxqW4yabF9rX3yge18/p/8fU1lzcFMMu2ik+FgZimV1d4/3ctM6\nEGyJ6XL+WTEtJ7uUMSLxkbdgacHgmXsVQVP745j8wRXKn0ZjvsdcW15XnKqsiBE0gk014r4mrl3x\nb7SSKVO2spWtbGUrW9nKVrayla1sZStb2cr2BNoTZcpELqTrIq2wFiqg64uR/x2R0SY6FY5+Dcnu\ngjgOqUdMXEwVS+06Gf9sogyaC/GMyXKO9xHooQ69s6q68KfP6vu30PFYfSCByuv33zIzs+At7Ifr\nHe4D0UO0ZNokxAZkNxtN10eB+UJ9aZVseBWWQQZLwZGYfOGsCO7PxQ+p+w9gHbSpt0wQmnvvX4V6\nBZWK/dH//Yf6v3PK3s2p1zNEQRsXlEmNqEMeIexYQzxtSEa/SYZ/jL5NA5bQlMy3ozE5jJUZ19IH\n5VnOHw+5DEE856DZDZfPQfskQ1Ayxau56ogvaFAIayKlBjUjU56CSDedugJTpYYuEbdjY9gAAXa6\nzQKmjltZo/MxRWtlRj13E6ZHDGNn4to3oDNp5GwnNGMeajCQcYdWMQcRiFxfifMsGOQtzj8DdQvo\n9zij/hOUKESZOXehXWcNIEKTOfKMDgmEGktd+wZEI2GM5l44Sb+EIARDtIgeCrZB4oAw5A68FuSO\n1rlyHPdL/1eWTo9KpbCTaiBZ2RnNx5ojXmjGTdHJqTFGpjDoKjyrDASvoHbf2U+GAO0D4sRkT5n1\nTleI3AQ0Y8Fx2yBse8z7RQcWVRVEAeE0l1AJtvVsVhIJqK0i7FiDZXZ0Tx9cX3UWGkKFU6Ekc2fS\ndZThb6MNsIH+R9rT9+8/0HXvI0wWoZ2TYVm9DPq1uqZM/0nqtsV6iD3mRDxzS1IeLkwZ1x9arjsa\np/uoM1ZngZCG6jIIKo9+mmLrOxOSsH+AZTbHr1NTHDTU33nVRQ4fjymTLz46pvqBs06cveWCvegn\neT135rQ2mI2wOUYeOkBYU2wxI2C0AupSG/2pEfXiURux7IFrQMCcqqYW9oj9IJ9NdNMm6I5ViXND\n4m8LNKqLpeaCtWM2xF4chlsTFLlKH+Qgi1HbtaJgC4FWh1iXDom7HeZln3jvQsA11uYZ54mZi/OJ\n196jiUAfTtHWCqsaW66zFrJuDNEm61bcglV/n2LROid+V9EjSlCedGF3q8HgIT4n+ePV+F/4nLRV\niu9r7vx9LrbFp24JefzuTEyXP35d62Xxlzr+370r9O3T2NG/O9LcbPyh+u/Cv8hq+3++ruu/1NU6\nuH1NaN4c3ZH2oTOSZE197dNSv/1cqtjw4RG6T02xdO8ti/l6fU/H+Usz+8TSsY3vKsZ0L+rvD36u\n/jv/vJ7PxrNi+/5w/9tmZvaF7/+jmZn96TcFf37npsbs54ilaxekbZPDGKr8+IaZme3+Qs/9AYLt\nZ1+QmO4nfqV+3Ek/b3+HEPm316X98hvi1UqoPvn5msb/7/cVH/7xi7q2j60zBq8J1T3b1TMeLunZ\nHDR+Y2Zm9fXfMzOz938lJnMzlR13dvWfdK0wWG58RveWcbxpJM2Znx6JeXfaFoLCLzBmcD2KIeKp\ndZgkU2dqo+cWzXU/FRiDJ+wlnNm9sqS+PCJe7/a13yxYRzZ21D9dEOYejOiY47pGQtJj7SWOTb3f\nbrDPPdHYON/GuruiuNrc0O8H2CafYG3dWYYJNPZ1Ttfbv49g8OpH2R/p3PdqaOQ8BTsu0p4zvafn\nV3NNRGLA4qzub2ehMXvnspDvApZfvrhoZmYt9g5dBNp393S87kDPpQG7IWHhTwcstGY2C2cWYgft\nGmK1QP1RxRZ6sM/5XAB4grHI/KNMy9/VOojiD2C0hD2spwl41UOtsT3GQIwuTpt97RTB2AydigIN\nr9z1ymBA15hLA55ZUtV5K2gvTmDpN1kvQsZmhrZIPnYBXBjgMBkTRFldB62NQcfcdYCcNMUi7tUO\nOX0/RQ8p4v7Qj7cEFtWY9SgZs78NPmo3nvOMBzCGOlQ1hGhnufnLFG2UGCHjgv2nDdBgY4tQ4x2p\n4gxzxHw6kV83DJkJc9qF6WExN9GiGaF1mNfdBMJZrvpcWn9kv36aFrH/bRfau3VgJBU834ND9hwz\nsUROYEXXYZclaMOFzrjC3nnG+05jXbGtg2V27wOxjmfooCySR/2+qAY2H8xtiX3z+a7YNylCvcdX\npPVVXdKasHPpWTMzu3Vdfx9QfXGMLfrg4IBrw5DmGIZ6oWurcu0HdzXPb1xVvOvgErLWweCHypk9\ntAUDtLzWV2HCuU08+9VpS9e/dweGc0fn71wS46a2rWe3Tnx6+6aus3JXx33uecTqNxXX0juKW802\nenUnzLnrvEPzzC+8oLxBg7l/56rE7vvsBY6O2fd1/C3of99KpkzZyla2spWtbGUrW9nKVrayla1s\nZSvbE2hPlClDQt0WY2XEwhbuJCDBdVcqb4Fgw4ypVKlJA+leOINkiMVozW2a3VlGf09AOKZkXxuI\nReTUPx7tofb8gbpl+dNCci5+Qi4BTVTbD38pRMbt6cJcyEvcwTrV0U1YD220GYZDZdBq6JokHeop\nsZEucGvJp8p2et1l0XSnHbLumavzU0cZum2o2tLTyo5OjnSdP//O39uZp1ULv/m8UJHVM8oGnuyp\nTjChLq+6oj7ukKHP3R4YPYVJi+wlGgdFi0yuO82geG3YyVapnwtRYU+Lx3PDmGInVkuoLYU9VUXn\nYUEGvwKCO8GtKEbRPw7cioYaWXR7AhBU92Op4RaUkkHPQGFitBlC0K4UlCsnG+vMFAPZrY9h1uAW\nsiCTX4GFUCAc1HB3IpgmC1geC2pnp26vDDMlaqIrAvLQgBkzBnmIcadKHMxp+vlAJhgcVZ5rijV4\nCkJd8Pc5/eYo1pjrCFFg53FYBrugBcMmhPkTMzbT1PsdJpCzuKjZHSU43jB2iwpaGJFr0Pxu27j/\ntSUwWYbo1nSpAZ0eY42HHpGB+Hm59mpL6IHr10ywrClCV8BnDFCQPIOpZ1h82pbmQkLNvOsXcXpb\nJU51iQt9UJgpOklzd6RZaGw2mm5Xr3g1vKl4NL0uhPPwWPO6ua7zHuDkMgaJaLY1t1sFiAEWptff\n1xwf8yxaT2nuLy0LmWzCGuvCY4qo5z5+oO/jEmnVRMjBDCvTeUAdOXOsU8HlqYb7BvGpt6/+PY52\n6S/mEo4RcxiKzpiswYCJY51vtav7nmHP+QC3qnD4eCyIRuWj9sjVKfX5Da+jh0EEklowpuvulFEH\n+SUuu27WrCpktTvwsaz/dweikHGZECPDwC24PeaAHI0iy0CB5qwRAWubI2oz/t911QbMnwrzdQry\naKDAzS5aViP19ZB4UXW0fzbgmkHxQYUjtFwC1qYcNlMdnR1fg3IGu+tEVGHozagbL0CVGoyxIZpY\nEfEyZ25GzPcW8dXdp2KQUbcND3B7S0CgJ3XiaR3XKlxMIuZSmp8e3TYze3sqfZP8jO7nbCa06/BV\n3ce3JmKu3OqjAfBDXd/XJqqzvzoQk+ViIuQzOcQlYyyE8turOI+9pDG9/9di3DwFO7e5JNRx/4GY\nKd/axGmtI/bIrZ60Wq5e13M++2XV1R+e23h4Dz/duWnVNz+r467fMDOzT13VcW5sS3dk9339/dVn\nxJC5ggtJ+47mXN5Vvfzty9pLRasaH637GuvLX6Cf39RzeBP9uqciMWT2hjBuGrdtfUt9crApbZmn\nJ+rT/Tuy6zjovGdmZneqsrb+1PKrZmb29vs6R+9AfZIMdC3Ln2YMZLIV/6O/0fGunNc99l/U/79S\nVR8v/ULzfO8lnT/c1th4+XU9i7ee6drjtIT5P8VeOEthDySuw4a1K3EkcJclGH75GvtP9lBzdIiy\nTa0rm8SL9w/Y2whotfp5na+5hr7EHf1+RJzv9vT9nI11guXshW0d54D430e/YnegudaDJXHughhN\nlSXYBPe1/oz3OO95NCPQrIldo4a1fog2Y4EAx2xV99dh39ohJly/jztKHdbfB7qeALenetPdBfX3\nE5g/TfqjjYV4fVOx6f4tIfRRrjFXh5Habul4YaH+MZNW4AImUg+3wCGaFtVM46DL3sg1IVN0WIrK\nzE7bxqnr56AlgxbWFLv2iYuSBLw7VDW/pjAV667pAtWjWEBdRs+oFjgTEYcvWDwV9oUT9OTqPsaI\nt5WK7t2duyqg/zn79v5MazskWhsQn8cwvAvXHET/KHfrb3TnCpiN8dgZ02i8wJZliFiVfeWoCxOH\nd6bZxPftMDIDrU+8hlgKE6bOe0Atp0oBVvPMmeL0ixXs6Qp38mX9TNW/Pajc7iI15TWjA0N/wfox\nc8a5a0iioemM8Clsklbz8TQz+7CZ6xswRJuK4wcDXG4HirdVxIN2zmmOt89qjiyv6PPDoQbW3TfF\nNnHX0/UVfS6G9XUHlveCPUg4esQiS3f7djjYteqq5lELnZr+7Rv67m3Fg51PS4dmGVvtm/t6FnuF\n5vXW83rXPLujNaGCPs57WEwXD9/f0dscaq1b39DvZ5/V8RsbOv8Cu/KUvUOAG182dy0rnb+PnlDB\nvn9wpLjQXtI6sNFB4+VQ8/54VwyZ/gl7kUzXd/7jeuY7a+rr2Vh/nzixD9bwAJe6Brp4W+u63hAW\n2J0bcmuesKfZWdV1ZEuPbMj/d61kypStbGUrW9nKVrayla1sZStb2cpWtrI9gfZEmTKLljJIE7Kc\nQahscexofAOUz3NHkbKoY5DmBsrc2+eEuMwPlfm6O1I20D3jA1gIddgKNeD+MXoj1lZmMD1R5uv2\nZdU+75JR++w3/9jMzC48pQxedgCzBg2EKsjIjOuMYOwsQFZTENgqei0Z2eACJ6M6/z9Hv6OKJk1O\nbV8FZx0E3K1K1tvrJTO0F2ZoYZzdEtrVeEk1fz/511/btd8IqTv3gpC17W1clZZ174MToRKT+wdc\nM3o2BbWX1B+7fkcD9GPIs6uSAs9BRBdzzz5S50tGveoZ7FO2nFrShGfumezM9I8Keg3eF47yZ6TW\nw7ojsqBYIMQxSMYsUgZ5kTH20DSYUydYoCPhcuthHXTetWpcu4bjz0PYXGjCVMwdXGDEgEAnD4kg\nIAJoJQToH3l/Rc5EAj1LTddbg1GSjLnemOOj0l8nrZuDtBcwXdyJrDJxfSPvJxhNsB4yssEh7AIn\nvhQtamjnGttzssAhrIeau09REx27thAuMSOej/H7grHrDCCv5T09JmXWbioTv9QQ0jVw5I6MvFtd\nNWHUhC2N5WW0UKbHQipnI5gTXdhgMB2aIAeboEUD1NyPFvp8e1loRAfnggB3kA13kCKTnh6pT3qg\nNuHSR52oDk/0/yepMvPHN4SSZNxX0QQZoE4845mGaMLkjIGDqTOAOF5Xn1vbUqZ+dV2IwSoIbuBO\nAyPGTKDzZ9Tazjyzv0w9O+rzYVV/TxFXQazeagP6aVdIxd1bQm8GDV1/FRaE4Uhm/J5X9P/baAt0\n0T2aoo5/cAzKA8PJ8tOzqczM8t8q9w5hsz1kx6W+DoFQx9T789wnxOMEZmUaw+qAlbJAeyyivr+a\n6rllpueYgILaDDYK61cCoj6tzB+iz5UTWJAdZ8ow30I0nGDQ1dFxmLFmdMc49oFCT2H4OWIZZT4n\nYBvAQCnQpklxkhmDBMboI8VTPx5xnviftbgekMdxxr0OYI3ikFjASVzAFhq71k0MklrRHJ7krDeg\nYq7VFXN/U1zxChzTgiEaaG3WCRhGjbkQ1n72u+u3f7s9aMkBYh2nmNXXdLyn72rMvYF7xSX0N5bP\nS2vmJzf0LD/7qrRl3n9HKNnHL+v6V85dNjOzd1pigeSwxlZ+XzSIxeWLOs6J2K0vf0t7msptzdX7\n6Y/MzOylTemoTC7rfFf7uDutHj28h09kLbv8Ber7D3S8Bzicde6on9e/oed8ZazzZjhVrJ7T2P3k\nT/5c5xnImejDXN/PiJ2DrlDEr7XlBDdOxRT6611d95f+nZ7LN3/at58tieXzy5pYSAWaeLWf65rT\njvRyLn1F7Jy/OSDebsKA3BDz4U/XxIh5775chdbfELPj5uc0r/Z/BtvnT9UPD/6Hr7n/zszMVr73\nrzrfuu75R19FR6PzNXruP9lpmrM+bcbc6sDwZi8xn+iZJGPdZycVchzBQj27DWsJLYVg4G4fGmPp\nsp5F5Uj9s3+AfsRNnae65E6R7NHmQqhHuPHVa9r/TRfMYaiOG+t69p1l9dMEd7xUQ8Vi7FS2cIPa\nb7MOsW4tsxVyXbqc2NDCnShAs+1+X987vAmroIWuRaDjroPuh/v6XH92RD/pOsM6DFQQ7uCu7ruG\nTpZpStjOxkUzMxtMxYBa3Be7oAfTNWF9Ouk/0s2o9qvWQMNouasDpQ9gK8AS7KwwxtFGmz5QTCum\nj8HM5F2jQl/NYJy0cEtzxkfA3sDj/bShn4uM+Olaf87WnLHfbOnvEc6rdZwfe23XHsOlCI2tCGZl\nNtR5m231yYjjsaWwlrsJ+dLMxjp27UTO51pjCcyZOqzZGVpiKUzFNhKSY/b9rkUWj/T70hC9I96d\nwoY7GMJqZb1KWSMrBtOn7nsV+gW2U4X9eRG7xorGzJx9cZpobrXYT7O8WAyDP+aVeArrImM/G8E8\nSdn/1ryfJqzXTm8I3UL3dK3mGpdtxQBMCa3oa8xnob+iqz+2uop9q6vaIy24/7vvwj4c6/4uvCrm\n5ZlnxYyccT/TVP8fML7S4BGTdD6Z2MbZ87bxrNaw4572W/cvS7vq4nOK35fO6pgL5tUha1Cd+DXF\noWv9Bc3zquvOwXhpMtZu3tY76QdX9b597rzWlKKheHL1DTFoltHLM+bCvMCpNaaPYPPGvD8f4cbW\nQvtmg/fhAG2ZgOqBO9d0XkzxbOc5vRuvoFc0YIyPDzSGDo/0DNZxZ8p5iZuF/vB1oN2x4tBeX8df\nPn9R13Nezyw4/N26qiVTpmxlK1vZyla2spWtbGUrW9nKVrayle0JtCfKlAlwegkboIFkZ2OXHaFu\ncI6ydEi2sBgqe3mXOrqLn/yUmZltXlIGL/3Fm2ZmNsSL3ZW+R45oor9h1KE3Qfs71L4NQDZv/eId\nrkPf++Qf6jwrZ1BfvqksbhV2RK4kpOVkiQMQU8NFKcBtI4qF4iW4tczJgrdgd2QwanJPEKKdELZw\n3CDVOCELn6FJMMdJKJiCQm4qc7mxvWv7d39tZmY/+ytqKEG/X/msatS3Ll40M7O91183M7Obt465\nVnR9TH1TrZFxVZLSIkdA3V4HhkQBy8CdUkLqcse4Op22FTBdxmMYOWTmq6SUp67Ds8A9KUXLAPXy\nDKeABOZP5heOBk0ImlV1VymYJSFMkSpMnWkV1XfQsaDuzlcgGZ7fpObU0D4YotbeAl2bOyKQgRBz\nXYFrODiDh5raLNXPCA0Wv48chlDW5O8L6rxdkyHQddSquv8xiHE+d5YDtAYQgAwV/qIOeo+ieZ37\nG+Mk04TlkYGkmyMMsX4fMafzhSMT1DI7gwgEPAOByRcfZTyNcnfEcYbS/7l1qEdO0TBJ6MMIHaQu\nzIt2Rb+vTNEqAIkc3lHGfogeUbWDRkAFPQxHSUBjJjBrso4QzwaMnM4yVLYTjbHBgL4/EuKwe6gA\nUSzp/EvbL+l6YQCmsCCmQ9ChVfqmhdsR7Ic5Q6y5qZrdLNT5VlGzj4iPB4UQgsqKfp+BoPYPNLfn\n9Hk90/cnaL3EMAkzQJ8R9fABeiQFLKc2tztnjk6G+v61nhiEJzBchjW0tFb1s7UpdD2fwrJg7Keg\neHNYcScc7+iBjjelzt7V/IvG4zFlZulH9UUmQ+rCceOLmHMxdfvZRP2SwnazRLGrgpVEhCbMAuZM\nxhwJ0ZaZ8PkG9duDyB0zdN8JWg7zCveTJlZgL+exvErt/wCXoTq1+17LPwBVbowVn4aha87gLgeD\nZYEWjMGYgaBi47prGOCiN8Z1D7cOl/Ka4p6X1p1Zo75rgiZNuaca68QcbYEq7IAxaFIb5mTG+jDC\nLcQmrAu51qwTjttCSyvnOF3Cdwa8NZ0wV5mbMXG/qLrr3OPhTsW+2KXXPqv++/xPud5LGmtjmJHZ\nK+qPvYHqyJ/e1PN6/WeaW52vXDQzs3/ua+x+taHfz18RK6T6oWLIlfPSfqnbX+s+1zRHt25qL3Pz\nTe1l3kcv5emaflae/bmOsyZUs2drD+9h9wcju1jofMVZIaZ7n0JT7t0fmpnZ4b76q0+MPP+00L/L\nf6fzT+ZiAP3p87q/18/r+JVCSO34e7r/19d+YGZmX7+v2LYU6XxxqM3L1fzHlu6qD7cCXUP1JppL\nf6J7e3GPWv/raMBcUbzuPy220ZdfEAun9rcaWy8XGgT3/lT7s8ZA+7J6LCZM732xfCo7+v6lDf19\npi2QzWGYfHqk49yoHdjjtCzxPQdsNWeCrKhPd2E69vf17Ef31acZcaJYEiJcqbL+9DRmApzXWiu6\nz+aqPpcxhiasI8N7MApxzFwM0UjZg1nJXqbeE8Nods+1HJgTq7rvvuudOHObtT1p6nmtMBZnxNvM\nnRXvoSkGw7CG9lptA2YTe6qTvj53tKvfF7iUdjju3hF6Vnu6//t3dF9PoasRzTUmA0M7LcAB8oA5\njU7JM89pTt0MtI6HOP8EgY5XJLikmNm9+/t2vq2gtr4pptXoWMc9nKmfWtxfY0n9t17VdcxZJ0/V\n0M47galRYz84wkWpyb4ooCyAbY8tYDpWUn/3QesLt7wqa3Gaupum1spBiz5hPldw6evTR0shbNpc\nY2Xs9qJopwSp/j4i/hosqwrxPpzrc1FLf68u+Bxr3nCqPqtVcbaCATJAHy5iHx3BcDSqF1LWhcUc\nxglrv+HcaGhdxuiIFLCpDBfX0PU0YXgazMwEvaRF86NOmu6+OuC9JBlpjAzZv1YZy24XVY91XxlM\nzCp7iAXvGW10hqZ13fcofaTRcpoWsteg26yKHuDNu6KvTWEwVph7Q963dhJdd47W3J0HPY6n61s/\nr1ibRTjPXZZu14x3zPPrOmF97ZGe1iCcWqOWWBV9tw9gqmQ4cT3zstbGWR1Wz67WsBrxIl3oWjrb\n+r0Ds/twqGe3wAUvb1JJQmXLMtewtYVWY0PX2D8RQycY40yF49QRDpK+1s+qsLiOFCf7x2IOxm3F\nkY0LWl/WIh1nzLtUwRyrwOLaOavPz9CxO+G9YBGhj8qYm6NZG/oUorpgQdwN9hRHVnC++hguVbvs\ni+8diCX7b7WSKVO2spWtbGUrW9nKVrayla1sZStb2cr2BNoTZcrkKFrXpiCkVbQXqB1dgPbXvTbW\nlK3cI5t864oyaSu/UBbw81/7AzMza2/qcw+OEacBWs5JbVWrqDRTIxpRc4t4si1vKMPV6CrTN9tT\nhuutn8tZYPtp0K4a6vXU9wdo5MRoOiwaQi4WaEvMYc54PeOCLPQCpfI591ugE9JYKJM3AyWc4i2/\ntvxxMzM7+4JQs5PbyrztH4oZVKXuco5C+8a5lg0GOsfldwQXLaiFnJMFfeXbqrveRofmCNeJ/dLN\n3QAAIABJREFU/TfVx+d/T/WEIzLNw6ocEaIerKAqji8gsw1qOicwItKq+rI5e7whVydrW4tRWSc7\nmbo7D+roIflFZ9YEDwV3yPQDkk8iXUedrKdrEIwyjZUGWjBzkOmx18xOyMSTmXYkOqNWdZLSD7Ax\nstDdhfS1AWyp5tzl50GfYBC5+1OQwAbg/EEC82gKQwamUpWsceguUjBL5uhWBIyxgP4uUKF35s9o\n6sg2uiCBy9tPuH7Qf8Zg4jW0Ic8j+6iuRpzpOM0AlXu0heYwhZxR5U5HM+q9Y2qQnRlgIB4LWBmn\nadEM9GiiDPXJQJnu/pIy45u4+KygMRUNNV9GBxqzBxN3c9DYiCk0XuBgcETfzQfK7B/xvYhr7Wzg\nLLAL2+eOjn9vrPlawGCZU9u62eRn3fWSdO/378GUwVmstiN0GrKTVZsw8iJ0P1Idf9l0vOW6kL3x\nAGQUPaQYxC8g3g6JVxPquU/o+9i1TUAKptS/t6BLLKbqz0ZDx1lGe2DB56uRsyZ0nUcruE8lQiDW\nnlJcXQclPGDOzHHBKNDiGfao+Qd9qqKFsLSk65ngRFDNH08vJHaUjVbFKaGgbvyh8xGaMjHPJ2AO\nRPRHTuxxl6V0/tHYkMLgCah9nrnDGbpUBdppKaFwBrPLGqkFuNR5XKjiqtHhmCPQpwT9igoMlci1\nCWCVxtGIe3GGDOeCGRPD+MtBmwyXh05EXTi6THOe7Zy50HILAnR2XF6jgV6ES9bU0TNCXsjC0OvK\niQ+slQluIQ20EPpICUTEmylxL+P3WuKMQuYILLkC5t8CZDiHfVpJTx9HzMzOrOg8vcu6kF++JsTy\nzxLNqfYD2Kr/Tevh658T26MZaYwnDZzcvqP/f+UTOv8H99Hwgf26VcVhovJjMzPbe0Hr778faU7/\n+A3pME2euWFmZuc+8WXdF6yI+P3fNzOz/UCf/8ytR+5Ls/OpFTd0HZ2J2CSzH+s+uugxHd0WS2Cz\no/EyfE/jZztSLLn+J9oMXYm155lellZMPNY4eflF9cNvnlFsOJyI9fHeD94wM7OVd14zM7P+8w3r\ngEi+MHzLzMzuNfV/zb8VU3D7BSGud00MmVe++gN9bv/3dA8n6Nzt6NyT3o6ZmV19V3H2wm+kWbO3\n9LKOt6PPb35Px+0Xr5iZWdHRNY+XNeauviX3ppdW37THamxCWsDbUQYDEj2LYEvnGe3q732Q4vZU\n97cM4+Ogof1bvaMxN3D3UPYaqzsaLFPWm/2e+rh9gH4Hbh7rz4p5aIn2ahPWoQq0smwA2wJXvA4C\nIsd1jYkD2Br30BOsDbiPudaNJZwckSGxIUztDgj5HlpfOzWNmfa2GDyDTNc9RwwxZ+9YwIKoLTPH\nD2E7HOm6J8e6703WiUVTx2uswFo70bq1f1lz8uwr2o+3V8UuC2EqrbB/ny4euZ0cDa9bdENjfzvX\nz7NPsfFH92V6BAOghpYbTKgkOj2GHRQaq+5iNzmGudhTH4zZ0+dD9WW7yzsJa0IIqz5gjYxwil3A\nHq2gtzZp6t6qMK9nxP8+7xpd4vmYeD9vOXOZC81wyoJxWeO63c0ph5UwfKjyh4MlYyEi/rqeWsA7\n1QRmRxumy4T9YJW11uU8F+xJIlxOI/arYxg5NRg+I/YczuDMfZ8MmzUu0IQcwPjB2SeGGZK7U+/D\nd0H2Hh0Y4TAuJ1RFNNkXR2gtplQrZDXYsonvwdC6wXGsHj7e+42/R/BqZ/11/b6HjknCXFk5s+rf\n0PWwKfxt57dWRZ/rNnm/QD+ld+uA+8JpE53E3Zu3H17LcNi3etyya1c0/ido9j33stiPG0/rOycw\nvu8+0HdTNKQqq7xboQnTX8D6uSKm2mBGH+GQ2Hi5w70pfq3iNHhyojg3PcHRcVVjr7OteLQNo3oC\nWylLNdYnMOWbPPtzzyse1NFS7OPCdv3mDTMzK3LiUwXXOZjxY94F73Iday39/+q24vcDmH0FYzvp\n6j4MB8PBif6+hO5asqLrOXj9XX0s/93VIiVTpmxlK1vZyla2spWtbGUrW9nKVrayle0JtCfKlGm0\nQc/I/oVj6g3JsjYoL5zFMGhgD1TOKCPV3NP33vmx6qtXt1BFhiVQBbaLql4Dq2yq14DlaDUU1MZO\nASzbZMpWloUa5V00Hvr63sldEIVVz6qC1o3ReoElYSiSu85HDb2ACdoFOQyhuIYXfeiK3qi+e30j\ndZv7b4qxsxEp0/biK582M7POkmrmivfEgjlCLb8O4r+184JtoQHSO1T2b++9G2Zm9sav/kV/H+kc\nL3xJTJkuKPF7u/p8iDvRmbP0xVi/zwr1bU5fN9AeWJAxrrvb0QQdBYdWT9nmnpEn4502HYV2RBQ1\nekZy4Zlrvp+DtmdzZdQbc13P3DPzrh2D6r0TRgK0XLxGNUf5u6C+sOAMUYq7ELWbFWpoqxMYKFi+\nhF7/CPOlNuW8oPMzHGwS6iODGawIkAOXhHB9oVkD54TCUXh0hKgZDhkzC5Dl/4+992qz5DqvNL+I\nExHHn5PelK+CJSxJAARhmgQpEmqppW612vyAuZyfM1fzE6afZ2ZIdUsiJVI0IpogARIehK/Kclnp\nM4+PE3Yu1rurmnpGZNVV3cS+ySczz4nYsc23d+y1vrV8xhrEIvPQbEB83yLy5ENyb0sawjFoPMZ4\nABOnhPlThwmTRajih2pfN6drrp9AXlJclpBRsUZHn5+AkEe0bzy5exX7g1gn1yegSqNA16y10GAB\nhbh6KASgHKF5AlPEujrpDnvM94m+F4C619DXic2hFkIMPND5yb6uc3SEaxEMmRzXpAaOJUvndXJ/\nGteK+AQE9AshDjsnasOsq/u3A3LrO2r7pZ5O7McHypkdn+Dwta7Pz7d13+s70lKwXM9VYyjnMDJy\ntAWytp6jhluFd+K0VGBXkSM7A2FtkntbXwAVI599aUjcioVEjD0Q356uX3R1vdEAVGuoeDcY4RpH\nfMwCIS0Lq7peL3CMIn3faRSc4EwwTe8hx99uk0VulxiNB4PR0sA5yOmtTErn2qV6jWCltAoQ27nu\n3w5wKCOWTNGocdpnTpImglUXwy7rw+ILmrSDNaw+wiGAquV1nD9YCyIYfjEIptVgW+FGMUd3rZYx\ndnFN8poaa57h4jR3Y3tOnTVIGiH53rmeucFaFEU4tjDfA+Z1ThyxmnPVUx+l6EcY6FhAHEmIlxFx\nIAApHbH4ejiatUCtSuLyHIRzDsurzfcm6NG5xbsNczBDi6cR3uN684bus3BKa+pTbbkmzdrfMTOz\nM1Oth96rasdThdbcFg5Cy13FmPwhnHPe01z8/HmxQ+o4VaxFsIATsRXOv63Y8fFMbJKV58QO+GgL\n9G4kXZW1Qz33rx+StsvS34px84uLYo3872b2yNNPW7Kndhm8+F197vvql+1NsRoe3tLzvjHQ/VdG\nmquXXwVR/0DttpxpP7D9nMblC+/quX90RvV46R2hlz9ZFhvl5Wd0/bL792ZmthV+077zmdg6wQXc\nK1lDLjeEJF6b6VkXFl83M7OrRxqz34n+zszMfrmhNngM9pNfSiPm6bnYSJ9+XfH8W2+oD975/Gdm\nZvbbXK6Z+UT7w3Kg+PkXXbXVZ7nmypUUpsRdFg+G9PxAY/P4BG2uU2qjU0tqk31cOsZz9fkqem23\nbmhOJ4f6XifU86c48KTb2lstPqTrtM/r8xNPc2kXV5T4Y82FS1/S5/yO1otJT1oIHdgUQ1hlBXom\nvZr6uo9OxqCvv4/35RYyOxAivNFhn8pc30OHpIdr3EIgxtKImHUAsu6B9bbp5wa/NxOcJNFCbNZh\nysBgHRkaXk5TDJ0s61L/PoxzmEfHsPHa17XuOFryCE2vbk+fWznj9E/M2kszG8CuyD/Xc608rv7v\ntDRHLqPBU9tCYwaXxsDFursoLc8xMvSdtttLsKZEQ8d61edHtG3o9p0wNZo9WO9odbn9mgcLIcQx\nMGZ1cwzxFozohD7PEIAL0TwsWT9y2F7l0DF1eBcLYK3ChPEYSzWyDXycqjz2nw3HkGYtbGQ4YaL5\n0qTtypx2QROtyfoSuuUClmobjcQRGpVN2FtRS303Zt1rsoYX7D8nE+Jq5l4IcB0MIp4Htgb7dcdM\nLdmX1/i8B5O98NHIqenvjVRjYUb2hucMuVjb57M/7KzzL0vKXIhhm2VDzakO75AeTJ31U9KIKckS\n8XjfasKIitFJ7MC6276KA9ChWCrHE/2+cVrrRn1DDR7v792uy+bp05YcHNnNE+1Hu6vaf/XPKh7E\nvKNc28INc1txrQXbsrmqONTFZTNFq2p0VWtMD8b48gWYMaSmHF3RmvnhTWVn+IHitO9cL6HPbj4u\n/bSkDfMbvaYWDMV0yL5rRfc/fUltaTCqP31fTJVrn2lNrhPfzj6qdcNHSzLZIYsCOlgfBv0JLmyX\n39MabZwfbFzQGhm6zBbiS4GjVsKYGMW47TX/MMO7YspUpSpVqUpVqlKVqlSlKlWpSlWqUpWq3Idy\nX5kyQebYDjrtizjtdYjmBFeKVuFyd3FmQQPhAqrKl3FL2r4itejVdaE5tUgnaWNOn7ucknrkE45h\nvrRQew5BA1OUxEt0O9pznRiONvW9HhXMYdQ49yTPQ+fDKaqP+WAPdfshrAcQD2vpZG6CArjLlw/I\nl8xgxDQd2Mep9G9fUx76rKfnfPpJoXDdZdXzaEcnjxNYJPV2ae26Tni7NZ2QlnOYCKDuR1d0ingF\nXYj2CifCc/KiQWc6i+jptNSmJ8fu2dWHPohryCMWqJqnDRgjv2+A8kdLAIpSwpLynVSMY+LgIFDD\nXShH52HKiX8bvRCPXFuPvnJ6Pk4sPSe3Nyb31Uctv0n+dwYym97WfMH1iDxCj7zGYup0ivR7k9PY\nEmmDnHZP6iiAI42Tgxr55LZm3N/PQTp8h7qDrs9BvFvoeTD2MvQravR9BqMnajiKDP2FjpLTK0mc\nuwod5IMsZDjUlHUc0GDq1NGWSdGaSGD+tFu6Tgu2xYRz3zBzThXkl+MOUDqkhBzrEIRnGtw94hCB\nZsQwDjwQyhpOBcc1xYfWguq04AtRDJZBEgtQIvR+Upy2TgWaAyOoDjWPXNAVneQXME9OYrRbljkB\nB7FswERJYC+1nDvPseoxR939ZI6zQFd9EvVQxIcl0AXRXEzQwLmp+Z3QV2MStCdoHRS4zHkLsJkc\nasRYLvheyZjNccpqoBa/WnO5+OiKEMaG5Gv3QO0MxsqNLSEmMa4oh4w95Clsqan2ikFA94j3ALCW\n9TVHlhAt2ABpiYa632xfSMveTRDiOnpHs3vTlMlrv8+aaPLcURHwnFQIhlOHdWWO5leN+xbMFcfE\nHLI+tVnP+jCAClhvBXnwCciLt8AcxCUvhknlD33zQEbrIJlx7kSpYKzRx+0+TBHWlDk6Nc1AfeCR\n4z/p4JiFuEubta7mBCLoXM+HgUOcg+hmOXnafkC9oPDkrs3Qc2o1GSQjdTpSAJbCFm3gntEAOZ0x\nJ+I+yClOZW20pmYEJgBhK0PHooWhA+Lapw2zmnPKAgFGS2fqRMjusswwgAhgNzRxk3v9/f/bzMwe\nC4U0fv+X6vuvPSMmSvS3ci1865T+nnzlCzMza32DOPua9D7q+0Isr4kcYZsPqd+SZ8S4+fR1ja3v\n9qW38uGBYsnZjzXnfn1e7klrb6p+ew+KhfLqzuLtZ/jdtS27GIK8vvnnZmaWfhkE/F2xRm5+Dceg\n94gF/wEXlG1pwnwDhPrnE+0tHg30fPPrau/HYFj9vC2088tvqaOWU9Xrvze+amZmDz7yE/ubNbS6\ncjk6XSyk5XLxjO55/gPV9d2hnCDjk//XzMw+eI790A+/YWZmO5fE5LieCDVuLosZ+M26mC9Xv/5P\napv3XtHPJy/r+k019s/WtZf5/meq89Jj2vPsfXbO7qU0iJ8xOkg+ug05bIKA/zdhQ7Vx68y72iuc\nbGlsjNFObKOl1ULoI2WPMt/F/W9B9d88r7Y/uKyxNNxTe1y9AgsDtH591SHRsA0+FAI93FW91vtq\nvy6Mz8VHNXeO3xGSO5uqP9Ku7hvA5o1HuBIFQqrdPrUO87wBy3Y8Yc0vcSmBdT2BxbyI1dBipDF7\nHOg5PPY63r5iRQCbrrOhOdRfVsz5/Kb6PUIPZYZe3fiaGFO9AP0NWNrd/h1NmdMPPWyDy/rceEdz\nMZ5rDrZPixFQP1Z9YpivAW4zXvvuX5dK1orOgHiXEEcjtWHA2hM3YKsSV2vEwRFsrG6mgOSVWlMy\nGCw1HA1rsIu8IZqFMHSmaMM4S9suWjCp0xxrsK9jjc3ZQzldjPEcrRX3TgZjJmT/ZzjB5reXEeIe\n60V9pvt7nsbABAZlw7kMsXfyYXjHOE9m7CNDNGB6UInKruJLMUZ/iHehSUf1CXFF6rBMTH3XzqqX\nz96jwfpn9MeMvV/EPjmAOTSGLe1YXx3252mJ61PKfpZ9cBw47RpHnbm74pyFU7QVU95Ro7PEKPQD\nF1c0Tq5fE3MzggHT7etzAe5cxt4rPdYcWYCCtPqCYm4bnaSDE8XMuLjjcnr29Bn7fJpbOGbt2qRt\ncapli26TK4o/Lfan7SXFiTO4apaw5SfXNY8GQ8WTTd7XTz+KViLx4PhE83F3W/P+6Rc15otUTMgk\nVt+fRlvw5i19bgSzfKmreLRyRj9baA56ZEMMD1WP/W2969a4b7+vzy9vav6X6DgNjt3Y5fswpOcD\n7bvHaH899lUxZNbPav043NM+dfdAz3tpAaY6+7sIppA3+cPOshVTpipVqUpVqlKVqlSlKlWpSlWq\nUpWqVOU+lPvKlHEJkhEna04XJCc/MQRB7qLBkOPiMcuExnQCndCdAiULOW2O9/S9bAnEfMYpq9MB\nAV2LSDVNU5DynPx6/lHndDrHxcTRGqaggz3yJGPqVyROiVy/d0GoY05xfbQGMK6xkO/30G4ocC2p\nAw82UaufwWpYIIfti7FO8N/4vpChTecSQm5djv5AvKPT4ubSsj34/NfNzOzwslyT4pr+1978ku49\n0+leDecmZB5uK/bffF+I3CxHG2YC6whUp0bnOUVq5/5jOLcEnGAH6b2dJGdoIrTRokGixQqQ2Byt\nmdgj1xLtghI3oAREwKdvstLlkjrXJtBsWEtNTuBzNAoSmBsRbkARlik8ps1ixh7Eozq5sgXtMZuh\nFg+6HjkNG3JAYxgziPRb2AbJpv1Dh/TCFEL+wkgttRbnqsmIdm/CoAGNaoGUTMg99nGXqtWdJgVz\njdxaHwRhynO1yOssYM6kaFpY4ZB72FhOUgKkvSwceqZ2qMHwycYIdrT1vTENVwdymWW0X3H3WhB+\nC0ab06lYQCvKB2UAVVoC3emgiVIc6OR7TmcOU52QL3CCnkPl8FBbd45V68znk7FDkVTXbstpuKCM\nz7O4E/mltu7b3RVCdwCYleMStdgXwhfjtBAx5ifk0E+d7kas371ICHS/KcTRwx3ibB/tmVBz/Cgm\n15986wzWkkV6jn5Xf1+HpVCQA5sdk78dq8+COugcqNrBiZCBE8Zw0hUC4ru4vs710FkqcP1otIVI\nzvogqrDdOg09j3ek+m5fFxp0iEYPAKzVYLI0F+7RyS35fdX7MGaso1kW0Z5JqnarM3YT2F11j5zh\nKXOFWOmljk2GTgD58DmoWn4bAdd9e7D/zEd7xw31Xmlz37ls6BoNmHYGu3LKPdyThwjgeDBV8jno\nNHnNrY7L9eeeM5h1rIUZOme5ozCyBmVoBzRB6krYPhOYiF1YAXMQydSZ4TV0/wIWVt9zbnRo0jRA\ndmlDZ9/UZo76xMcIR6sZcaBH/EigNkbMzRQ9uIK57/H9Dkyb8Qy7o7sswbE01s4lz5uZ2TtnhNa1\n0e04mei6Z371MzMz++A1teNzz8kN6Wiu/z/8PbTWHhayOXpA9f7aRC5K6VPSS1l/R/X92+sgo2c1\np8a/0Trd+apYDuu/+xP9PnnOzMweeEBz4Pxl/b9c/uj2Mzz30VetOAfT54rck8JDORm1HtRzvLup\n9rz0uu7bH4m1N/K0p0oKoX9nbghlzNdwxmk9bWZmv7ugvUfvqsbBwn/QvW+mYkqdneM08ZvnrPTe\nMjOzl2GiffQF7hzP/K2Zmb13UW6S+XtvmplZtKF48XT8n1VX+76Zma0minMPFoqT0XW0997Xs5xu\n44jyb9EfOsY5zPT5hdflIOW9rD56fkfP+Cu3Jt1lCVlHvCH6O9CCS+6zs6e2n6Khso62VhdGTdTS\n/nK976x2ft+BMD3CvW6muPdgJITZj3SdMxc1l6ZtLSD7uBE1cDlabSj+u71Eo6P2nh7iFnpMfGM9\nWoGxkj0Ie+MLxd0UR7cpyHM5wTmRfXU803XyVHF1doiuBazaAtrCFMZlvgfLr6t2qtU01lZhlew7\npyL0QurOgZF+RS7KApig0WldZxnNxxGalCex9rLNMY6dgztaMEVS2OIlPe/ogOc8AHHfVLutLgqp\n3xmo/ZvsgbLk7tm7znUygXkesXefod2YQn9vOaZGoPg37aKpBeOwZP83dcwV1qoZTOM67KQGWjJz\nGNptNL5iR7QkLjbZZ45y1aPJO1PAHmbMO0cbllEOE9vDrdXHFXCKZmLTrUvE6VrdsZJgvLR5Hpgn\nJXpqY5wMLdDYaaAHAjnZ4ilzEoZ3OIU9XNfeqQlTMoFp7cE8mnVhWU3QvMQ1Kg8dE52x2UOrZqyx\nE7LexY7x3+VdjP0yZCyrRTjhdtADhVlUw/3K4nvTMAvY09XQUHOs74tnFacjdE4CGC2DLY3JcFP3\nX1mjfuwp5uwNx7nGz+ayxnSdWLN3U2P+5ieK693OHe3Gk9mBjQ72zF/Q/HDs/gAG+ZB3rCH7yeYq\n76W4C0GetYR3hKvbYip6Pc3D9U0xaVK0TvdiMWS2d6S/1kBvrrOMliJs+etXx3xObbB7Tfv2DDbr\nzW3VN0SossCl7fpnWnuPt3Wf4aGu0yDDZO1hrX0rxOfYuateU/wYoVXpT9Gw7er6Tz4ibbTNi9K4\nmRSKg4c3xTAKcObqndFz+HPHfUH/qelelv7/S8WUqUpVqlKVqlSlKlWpSlWqUpWqVKUqVbkP5b4y\nZUbkOc45WfPIJ8w49Z2hB9ImJ/Tcs0+YmdnwypaZme18rJ+khNmE/MMYLZgWeZWzHqjekBy4BmdR\nOFBknLo2CnKDQcITrlfDDaqR4nTR0WnkECefFqe1gTtJHHHKTF5owznpcMrqly7PndPeEO0GxyIJ\nHBoKitnWCd/6Y8oF9tpC/y5/8LmZmZXkXy5t6MRvcqwTys+PdAp9Mr9mK6eF+PXP63SvecAJbao8\nu2mgk2ifk33jhH6NfLlJDFJ5VYhafYNnR38iRQPFCUU0QcVijk9nUCnm7vj1bgsofDxF0wTGRssJ\nXZDbWWvhqgQ67fKNPVCXlBPzwlmhgLiWIAVRxhh0Wg5t9CPmqm+DXN0UVlPEfZ3qes5JeRm5XF+Q\nA9qjhB5VggbNGXvGdRPYCz7tkzBGpriL1GDoNGCyNNr6fxqTP4lKezBFJKcNupWCSENVqtOvJbZW\nudPQob/GaO10yCWeG/mWkMUcQjEGoWlCXSqcywlMJJ92nYCM+AnsiQ5aN7nLyaU+aA555Bpbefeo\nVAorwKE8PvfMl0A7yBPuMGbGn2+Zmdnenk7cB22hCqcf1on7Jnm3xwOhCXPcl4IejD20ROqgNvG0\nzTNpDIToXySwmxbRDjgagGJwYp8GNCp6RmNAJkwrLIU9tEZuKoYAVm8KWaiBGDbp+x4J24Nt1WsU\n6+S/wMkh5QKL5GG3HUiCs9hoqFzh8ZaQhUPcLwqYLYurmuttWGbzQNcdRriPoDaPwY91yKGtgQaG\nuJR4C7pfD42bIQjnCIbgCbnCoxPcLxaFOGQBKBcMmzy6g/LcTcn/BQQBicMiXJwmzJn6jDFPHnrI\nOpTB6HH52ylzoI2eU07sGDMVOjhf+KCiblzEMQwip6kGa6Tmp+a7NnOAG4hrDtOkDWJWjGGX9mD/\nODaUQ8xydUIJm6cZgCiiizCC6RjFOBbCgDHifytljQu71B1WD04rkw46TaX+nyXOPUnfc009Y+4l\n5Mp3cdiyuvp+DOJbY83PaTwftmmT+DcEpfbQLItgBoZ16o2+2xztrTks1C5r8N2WxeeFnr2+/66Z\nmX3zNT3JR6kYNGdeFTr/u5fFMM3e0fN+Vv6NmZmdu/aqmZntfls5+yeJ9iztNc3JH38sJsylsRgv\nr23rPqfWcII4+5KetxRTxntfsemfL2lcdA5wkoh+amZmL5rmxg9OqR/+NzM7XPupDZalIbC4e8HM\nzOrfFHOl+VP1W7Enakt5Xvf/za8eMTOzJ59TPT//HH2p4BdmZrZ8Rvd9f6yY+LVP2TMda+z+047u\n8+D+D8zMLGnL+aj5wv+0h/5ezkxffEt9/8gzasvJ24q3Uax9yyO+9haNB/7azMz+4Rbz7OUXzMxs\nq1Bc+sbrqtMweMXMzC6/KqbN8+jKbf1G+5/jY42BJ2GyPTTTmPtiLEZOPBC76cKrBNb/6/+wuynO\nAcftCdY2xazowOYaHmhMdCLF7c5UTJchrIJyAls3Ehqe4hq4uKifs1Bz/BBXkt0Ra+iG+roJ07N1\nWnM3GGusHB3q99YS6+EXINwsM4t9GDe4qKSwnPxN/X2zqzG09BhsY1jCN65qzNTqqsfiWcWYAWv1\n/FA3GN5ULJqkMJNwWZnvq/2PxpoTCzuw4BbUH4fH6lfD2cZpnk1p6FXa5+hQiPQIJ89zm9rLdtYU\n6zon2svubaMnwt5xUr8T+IOibx1YEGVD421vqPqtoufi89xNmK6ObZwkd/+65JwODUfVhH1OuAjb\nEo2vOQyRyNO882BZ1tAYyXIYj03HONTYao/ZZ6FbNEdjLBtqXSjQ+kud1AhjLw7ZK8BETNEcmxG/\nS9aXOfp80YB3GcQcYxwnHeN67vRG2Be3oLPGbDs9NE5CNhtj1voO9fB4V3Ns42QCmwoAQwp1AAAg\nAElEQVQBkzl7KseATHjfCNnLNVu60W2nRObWpK3f67C9PNgeNfQ9Yz5f8t4y5D7OubfntG7maoda\nC6YojJ2yTf0HaMo47TZ0Ae+6sP9O2AuEPbXvMf0//lzsixqObmUDna2+5krunNWcixPD7vym1o2V\nC4pBe1e1F/zkPe3xmot6ztbymTt1KVu2cGbBpsc4DNJmCczvkLjRpG1zqL/OVXJ1RfP+xq7WiFuf\nbJmZWR8tmP55ra35VHUewthzjq6J7+i26BxFbt6qrodXxAod4I7mt2FMM9bWl9VGc969tq5oHcgi\nfeDiab3LtmibU325M81iPd+Vj8UiOkAbZh3XqTNnFWemOHQtwgxiC2XXthR/v/hMrlXrl7QebMKQ\nv/GJrjseinmz3FqxP1QqpkxVqlKVqlSlKlWpSlWqUpWqVKUqVanKfSj3lSnThjXQxPUod+wHWAKz\nHZ18/25PJ+lr58X2WDqjk/2jqU7eR9fRsYjIkyTfcYoSeM2JuOBBX6CDsnTukpmZJSegguM9rkOO\nbh1FcRDQHGQ3hOHSrLlcU11+XtN9WzxfzOfrICoZrII6GjZT8hxbnAJ7uDYFCQ4UbbRwRk7/Q99b\nXRbC9Clo4OGJTkHXn5JjQ6tzQd9r6sTyxscf3z7VfOFlacssXdJp3d5nukcJMtpoOdccndCvRcpJ\nnHGim5EfXIPV1PD0PafFkgE/Jx6tgGNN7pxNonuzXyqdqjlMGycy7uGukZK3XICGNWCGzGAlhVNy\nW0Gec3JyQ5S13Zhw2jEFJ/QttGBmjM0JJ9IRuhh57rRzdJnAPX/IqS/t6fN94yQcUoHlIMOOwVKi\nhYNpkbVg2LixkfsgJdQjRVncIcXlhDmAvpAba1Hico5BJAqnTE4/MYZqIDod0MRJ6eaUcwTj1Nwh\nIqBXc3Jgm4XTfeL50Lpow5gxWGApTjYhp+8znBu6sM4Kx7qo3X1oGtGWaQMtKOZtCJMkYKweoaq+\nd6D54lgALXLSM3JaD4+EJty6pjkQc4LfwtViil5OiF5SCHLpo8cxg0FRK5jH5FtPx87RS/Xuruok\nfj6G2TLXXPF7mt+1CW2BFtXJRPc9Zgw6R4eTocZaek0IwjauTgbrKXpIJ/aXcJHogk5loGe7VxRn\nRzl5y4zlpUuKjyuL6ptl2AsZ7hzHA9V3BBq23lS9ltEU6DPXru/iLgUjslNHe4YxVOJSFOIMVlDv\n5YeFbKxuCHk42hOCMyGWeXZvWhB52fq934cwhmqsOz3YJ25OTOqw/pyGBP05gfnjE9eR3DEP57Ea\naKHngyI6naoxMbOhcTiCFROhw1RkmRVoaOVt1g6YgXN0zHKPsYozXwstFacZM2UxqvU0diPq7BN3\nh6xldcfeyWfcG60sENMJfdg03ScFNWuxuhXEfafW4LQNIFRaiYtcE1EDHwTY6UJM0TwoWE88z6HX\nMPYS4gZxrwHTxzEap7BF3XoTBY4ZqK8VuE9lo3tzX7r5YzFGzhL/b3wbF45fyjno14ncl7wj7T1e\nglX1WqE5+8riL83MbKelWLF6Vc+99JHaq9/V3BmSB7/4lLRrig/Vrhv7msMf+mJ/fG3692ZmFi8K\n9XsDrYkzn6hfPkHDZuPgjqODv/uIzb+ienmv6XP7739oZmbvffWvzMxsTPyPfy43xRcv6HMfvqnY\nMXlZ4+aJjp6j+Hv149cELtrHpjkcPY++Xral57kq16VBXy5P01NH5v3118zM7PrrjN0lOU1FB2Ib\n9V6Rs9Nnn6qtb87FhGm8rWd66ZK+/6ab/xtiEzWH0tHZnD3Nk6tPbhyLQXz+tL53qyHk82hbc+or\nu3qI15pq22999KjdSykHbi1G76IHm6vQnLvF+hE0FbcmU1w79tj3DWAhwPBuw16rozVTW9QgXt7X\n84723D5SY3IZND6AdRrDWihh3wZcJ8AtL8Uhs9yA7UyMmI+o93BL9dgQ0t3G/S9cQUtsV/Eqdvto\n9mJ13JcmaG8FCfHwUPVqoI1W9NH5uHnI97SuNNDRCFbRnjlxrGWYqaw3YZt4jwhbMlK9Dm4KaXea\nk81Sc6ru8zli5W0XVDMLi7rlaE/4bAqLQ419D2ZVx1NsmbbRx8JdrwzvnnUXgtZHMfMM+Ns5x5Y4\nPEbE4ZOZGAsd9n0xjIgaKP4E16UmmijpAppVLm6zF2k22Us4W89C3/NgODdh7U/cvix3jraMSfYa\ngXMFQuPGMtbOyNktaawH6AF5hdqsCH7/eiOnl4T2V9DAsRDWlTdiDKArWuLOl9YcM4i9HeyxrHDO\nurreLNHnu4y1uM+ajSZiSjvm6Ii6/ag/1H19p+HIOuLh1mQ1tWPWdc5xTotSc7MFa3bG3rE1JrvD\ntc9dltaC3q82T6ndF9a0V9v9rZyET26pnx84o5jVuahsib0rYl9Mb26ZmVk515j3Q82BDq5L47Fi\nwLXfwbhBH/XCRTE1G/U7eku1cWyd1qalse49RoPP7XM8MknmaJw6vcsmDOoYvbWdTxSHO2316eaD\n2sf10OFxa/vBDcXlOU5dvdNaa2qMgWzE+UCo+w1zXNfYx114WHOmiRvqAm6j6aHqtb8J+4yp0Lmg\nz52BHVSye9nbxTXpSHE6QJ9vnf3vworqc/kNWEbEvRAtme1Pd6i/9vMPnmG/eqL6X9/Re3i9xVp5\nWozHf61UTJmqVKUqValKVapSlapUpSpVqUpVqlKV+1DuK1NmHpD3WHOOCpxsg3T7XZ3+7v5WKNHH\nPSEqT70qBGQdpNk7QQsB1G/OyX0D9kE840QcFsBgqt8vfv2CmZnlyzqBm70nBD2ENTF3zj91Tt5x\n9MlBeD10L1JOznxOjY1c1EYMQ6aLYxFIfMypdxu1/GEP5F2Hv7dPyb1cp51B6LRvQDVDXF1Aovd/\np+e/EgqdyiawXC7q+179S7Z3WajLp2+/b2Zmy0/qtLBFm5fo1sQZuZlorziGjKdDQWs5Ew8gz6Tu\nnLJAnbug3YFj1JC76Nw20ntDLjl4t7pT1kanIUYDAUKGpdgSRZz8huhkuLxiz3dMEbRmZtQHwoyP\ndkwJuj3mpD9EpT4yl5tKTnALNhUoVcaF5uTM+iC3Hir0dX7POKl2Gjy1qdonQwuiBcKb0selh9CI\n0+ipgYKhc+HU4AsYLEYucws2hMd9EhDnZkv94hCGkjHa4HS4gF3SoB1qsLfGMFzqjd9Htp2TWdaC\nlTbVfZ3eRuGYPA4Jhw2RTmkf3GRi2jPgFNwv7iC/f6wkTlenj77PEi5rYxgPUyF0IxhxExyqvFWh\nzq1TynVdg+1ziJaJ0xCJFoQg5gG5/KljG2ks1Tu6zhIK90NO/p37hnPVMFhM9b6ecbGjvjzBZa5w\nbCzmVqeHjkSKo9YI1lms63fRkLJI39sHyYtOgZagor+4vsJ19PHRntDw+Y6QhJtDXTdETb+BFkC7\nrviRTlS//SuKIYOpfu4lmnwd3DgcChUx5tJriqfJTD8Pyclf38ARAZbE8LqQFa+veq6TP92jwvM9\nxabBjhCJaeicgu5t+arhjOZKyfc9dJPM0E5og0SnjKMpaB1zsJHj9APSOiPvv0nMLHDBS5x0Ge5/\nIf0dz3EpgRE0J7+91qiZz/zJnRMh8bmOJotDfTPm+2zk1k71QUQ8SAasVTgYDEEy2z2+l7AmoXUQ\noMWSB6pbg3UgIV5nzNsEllBKfnnDabgwd+YgowZrdIg2Qci8du5rHRh2U5DJAmR3DipXwi7rgJCm\nU7VdghZNZjARQZZ937lk4J4BSp7X7s3tL1iAETj5H6rPp0L5nvozIZU/gdHXWRGqNmk/ZGZm3hXp\npsRtjfW9v9HPl/6jYsn4N2L3vplo7o2feVHP9Sux1F74kjRi/nEZPaOP9FxP/xe5Jv3w5+rfM+dA\n85/Uc+29KzenuLF3+xkma5ndPNT99xtyX3pxU2ySg5vf0+cP/6vq0f9HMzN7Z+8VMzN79GV9bucX\nGi83TQybt78l56LGrxUrHxr+zMzMwjfEzj3LnmnrL8VyOfs9xs2J2QJ6DPnXmQe/vmBmZktPKgf/\nPV/PuIgb0DM4tpRP4BT5uy0zM4v+Gne0RE6QN//2y2Zm9uQninNvfUNaNU88IXeMD9cVp4K/U5s9\nflYspuhRtFncfu3WHbT4boobmzHIccC+MIycm6jGcIEmYelrfVjeQBOFvUYM87GNw9l0qPgT9Nhf\nLmrdGY2EikduTYXllJ7gbMhcihbYN/qwyTwxzDPcSrOx4uristsLERvQgrFjtWOzrfu22Pu0U9xR\n3J6lre/tgxD7aEp0V9Suuyfqt+ND/T1kvczRvZizLud9Pa9jPg5nQpS9Qkhzd03rj7l15ax+793Q\nnEkP9XzJTAi4z8fndcW2I9gDLbsTA2Lfs0VcCiN0VyaOnYKb1qzQHA/buMCwThTTu9+7pgWVgcXT\nxZVnPtM8ziGelEP0L0O1cRyp7c132mKMEa6b1LXWFDBJvI5zJ6UtGuxNYNCE7CVy3DfzRGu+z15k\nzhgu0GCst9iPEsZnrDM14nYD5qHPWjZEYyxivzoL9S5lDT1gxELmNAc9HAcbaNEUrPHeWH/PYN0O\nMz1xn99z3jP83O2L0cVD6+yYOdWkXWuLzBU0YayPFhvajAVCJEOYL90eLFdedJITxZpWS+06GaJl\nA9uhYKy0O04rE+bnPexbzcy66ABCdLerv5P2160rYvv12HueuqB33Ql72E9+p5jg4ei2eEZxeXFT\nn+9tEiuHuK+iDxjgWLm2oVgwPRnerstkeGyzsrAZ31k5K1ZOE0bv3jXt02IYfAsPXdC11rRfHO6r\n74+GarN+22luae2L9TU7uKW4Ucxhe6EVeOm86j4kM2Q2QTuGbIlRTN8s4Pi3qTYZHym+bd/CLbnF\n2HJkMBjyjbNoasGQ+fA9rSMNl+UAw6bOS+4q1w+ZG/G+1vwdGD89XJYCdDQfuaQ9QmNR98nYN3dw\ne2r4+n/tj2SLVEyZqlSlKlWpSlWqUpWqVKUqValKVapSlftQ7itTJud0tD7S2VDa1Yl9fa5qbXCa\nF5/XaeBwJDTok1/rhCs6Q546OW4ByK1z1fCcXzinrDtT/f/GG1fMzCx58Zu6PgjEBAXuOiyLCK2D\nHEXvDHeO2lR/98l183FZcV7y9UUhIymaDwmshgSmS516FoG+X8fpJkNfpE1+6IS8yJD8++6yTiQz\nXEp6IOV7I53geR/pRK/dF+LhqRq2sbZuASfig0JtWNsGvfdUh5xTzfrM6WigXg7KMceBagrKAABr\nnkONmzrFHMNYqYP+hoFOtqcNPfNi/d7UyUNO2qcT5xjDOSLIQw6jpU7e7xwnLI9BMOEUtIvae146\nbQa0aHDsidAsCP3fzw1t4PrkiDUZLkuBc/pCjT7gRN5DDymizxKn8o5qvg+iXPfJr4ch4sG+igP1\nYWus+07RUAhB51rUfwY7IkYzIgMdC8nVdRoOGQwZp51j5CT7aMT4tEtq5HEzZ6i+Fc45B9OUOf3g\nl07rR3/PQdVmsNOcZoUHKy0ryaEGUUhBtgPaPcCByFqMl9bdI9wl6FDk3NRip2+juo+cwxWuPVZT\nnznXjCXU3evEiRYsghZMkzlECjemPPSL4rra/jRVjac6sY9v6P+Jy7VfJE8at6XFjuLa0UzQwcm+\n0Cvr6nOLDdVnDSSv5ev/V0aaY6GPSwVx4oQ+DerqpN6K7ruKjlD/QN87Qktnz+Xy9mHireOgBjuq\nA5LQR8PgeCzkYwhSkJITu9LSyf8icfoUY21yXQjHF18I7Tlokw+/IHbehNzjwTH58jP9DBpqn2ZL\n/YTBgZ1cUz600+jy6mIvFPcIKcxhKLrSQkPHOaTNOmpH52iQM8cDkGxzMY08dMeKi7qsD+gHeHNY\nLdzPy9CKgKkTtJxTEm4GzJ2JH1ngEqBBCFNcNgLwE0B583CaaTRopFxoUIjGTIJeW0CfZsTJFGTQ\ng31VEI9SHBUwpbMM7Zk2z9CAUVOA8ni4JKU8Q4q+RQ93CkdiKmB/hqyRCRoHMx4zYCFJ6PMGDmUz\n5qLR9kFjyuf5c8zaCyNzHrMO4NziGQhwfm9uf7ul1tbGedboY829I9aF7ERsjC9dE0tjbRfdj03V\nd/9BzZHHmZPXappjHz6LZswv5Xq08bP/ZmZmO0+IafOrllDCV3bkmvTa19Qer/+NWLDf6ai/f7Tw\nnpmZbf4jeiFr0rrZ+6hz+xm287q9uqLf/3kZBksDnZORGDrfgn37GzTYvvyC/l8fam4twXj9/EnV\n/7mfCzVNnv5nMzP79O0/MzOz/nOKDQ98outcqom18Iv/orq8evSAhd//2MzMzv0bxY2ZpGTs5KrY\nRX85UBsXvj43mqit/umm+vIiWoL22ltmZvbI42hj/bkY1Lf2Fd8efPO7Zmb2YSLG8IuwBX62JvbP\noCW9oCMRMuyV1dfMzGz+xp22u5sSoxPn7WvsTXBqXIXhE4HCHx9rLPeW2C8ST+foQeUuvsLgDnPV\no3Os6y2jNXMTrbF0Wc/p1sb8CN0otLB669rwLazr/ltowfg+GhCs1cEqOlOwHPIYrQR0lI5v4dAF\nay5Ep8JgbjZg4cbEO3ed84/C7nhUqL0RUwbXYYGgtzfFIqaOZsS5C6rPdVht0xM9Vz6A8c4etL3g\nNIlg5c1hjbDn6aER1yRIeOyLw476XZWbWTYnloJwB8TaKaQBL9TcWujCtoPJkwd3z5TxWnr20b7q\n3siddp/GRG2u+T53zGMcHAPnyIe7Zh6gx9bgJ8zsBqzYGCebBJe9iI1aAu0+OWGsNt0+HQaN2zez\nJiGDZlPeORp8PmiQDcC2vTjmXQzdzg5Ml8S9o9D2ww4sWRiTRpzu4HBVNGDsmOo7droljNHODB0m\n6uWjV9QI0cCE3Zq3NLb6vCeMYNE6NsIMR9wOzCOPegRoPmYJe6kecxTttvSU4tpsADN9RZ+fOwYS\n68oUJlIDRqvv3dumpMN+u0Cf5bNPFNMSGDAPff0Mv8OQ+UhzdYhDUrOh53riy3L5W1hTf6cnGkfb\nN7QXc86QxZx1k31Du9u7XZfdWyO7tbtjwbrm+7lHtBaM0KS6ekt9Ujb1nbO4E6UTTZyDgerUwpk2\nYQ32cZSaj/X7iP31BAZKjXfPBdg+4xlaWTDDS9r6eFd9uf6w7hvguDg5Yf/IMy70FAcPb6ktBzjS\n5uzHr23rObZ3cEtahBm+7JjujmKD3mjqnGV5J6NeKxe1Dj35jHTm2ufQxIFd/Nmn2reebItBFMd8\nz+3x/pVSMWWqUpWqVKUqValKVapSlapUpSpVqUpV7kO5r0yZOoijBxoHKG8ZbAyPRLs6CEB2ohOm\n6zeFFq3HICYrqDuj5n4UO7ck0Ho0GHqwQsZozOwe6wRt0QluF05fg3x68jYDGCxNd8AFgpq4PMk5\nWgUznSAuXlR9JmPcSaZCpvuwE2a+06wBGR6j6+JYAg4VnYDgxjp5e/AlnciNDwX1LJzSaftT6zpN\nXXxMyP/JdeXcHu6JFZNnhW2eE6qdH3Myj8vNBAeBxgS9Gw/XBp7dr6Fijq1OwAm59TmhR1vAncQ2\ngEDn6AIVnDIiH2Qtuzd18hxNgSa5l85eI2/SN1OYL+Sqlg4phb3gzdGIgeHSxEknxdUkQ5W+BkKR\nkkNbormS4OgVuvxwTsYz8qibOMB45HV7aLrEuEOVuB95sLlycoRrIMgZY8g58sS5U/oHdU9c/jNM\nGrRnLGOMgGRE6F+UaC74sKm8FKTEMVpwTrhtSDZBMwdthwn56u0IKpQrfKHEnaped+wAfc6HrdIA\neZmW3AC2Rkn+/sz0+RoK7CF52jlzIyP/u7wH6SGXaz8IHUuJZ8NZYOIQvVJxpL+itjpFXnUDB5Ph\nJzo5v3ZLKEltrUPdhf7WYWrMGYstkL0VhI9u4jpxghuakRO/DLKwAFSZj9GA2df1xrhHnV5+wMzM\nmrjG7Y6EPKRXNY/3UdKvLZPXPCb/PIBRh3bDEFRpkbEywlFnvAMzByZOuKbv93vq+xgWQ6uNowGo\n0Bjkt7EqBOX0KeItbKkA96j9A7RfhuhoLKoe508JQXDOAgPQsjl6Q6dPc71lxfM+czAcgqygZ9LB\nDSN2mgvze9OCCB1bjDInP70d6b7pVPXqt9FdAiWbwSZzDkAuC9vzdb0uMRTQ8g6rpIUGDciw03WK\nZszVBq5MDdArb2RZ4eKlntVvozfE38PYMdRingEIk/jrtMGcW0aCxkpB3zo3EIPZAthsmGOYDwLr\nmJWubi5q11ikS8Zosw6yCLt1yPJQnxNncXFKmNBtvjfmOhGuGx71qKEd1kocqwn3vBpss5Faf87Y\n69A3EU4tJezVCZozHZhCd1u+PlC7Xz8rnZOjbcWMzm90n4VbyqvvvyIWWOjYUutbZmaW3ZK74e45\nzYkb194xM7PHt1SPnTNyVTr7ru639AuxOCaFGCgL3/mJ/r6nvPToBWm2BAsai68Q1/NH/8LMzLpX\n1C6PtD68/Qx+vbAffl/1/NOG7tsPNPf/ARZb+pe4FTZfMDOz1Q/EGrn1IU4az6v/Vt7U8xx+U+15\n61Dfn+PMcbr2qeq5oXYYfE9uTpf43Ssm9v439AwLbTFdiroQ0cu59O2G8TO6JvEq6apuf/lV+vKW\ndHGaMAV3mGe9ubQF99/Vs/3iUbk6/fk5jY2PfNXx0sdbqsuCrvv5A0Iun/mFnKL2H37T7qU00IXL\n2GR00EhJVtGFW1RfHe/qPjl7K4NRePGi+nbnFg42R2i1OCcUX3OiuwATE3eREH2mDi56V+ZifA9h\nT5xegXkN27bErTNgD1afsp6N9HuPPctwWf1RoI8xHmi9mX+szzcXFff7XNexYgNcCGcpbFtfbKpl\ntCFu7sjFxVK0Htg7xRPNjdWOnivruTnM87OOOffEgj1ByN4pwqKyif5Kxl6tv4wuCMylAbS/tf8l\n7tfTmtVg+iSwKDwftyX0Vhrcb4pOoNtflOUfRrj/1xKhI+d1cFDdFat9nsDKgnkX4hiVsN9KWWsX\nDOeYVdbmwLHsWUtwiM17aKzAyr89JrEpjWGEhOwXkyb7Q3Q6PNaLknWhz/4u7sJodu6irI1JR23a\nQdNxzB7IrQNZF6b2Cc49uLg6vZ+c/W5Q1/9jDx032FxtbjhFN6Tt3FFHmjtJl2wFmDThkoszrOWw\nGJIebKkJ6wbtXbbUHh7vXI36Ps+rudZtsOdy2owwb5xGD681Nnfurin1r6l+Nfbhd11YF3N0BWcD\nPe8DD4sduHlK8TQZ6z7HB5rzbRjnFx7R/zOYsUN0W+LJln4OtA7MJvrH0rr2YmGDvdTkjgbOwWRk\nXpbZI1/SNXvnFKfyE8WxwTW1lRvbYU/z1znNHn2q99IT+mD1Io5R6LuNIt6HD/UswxM9Q2eJd08Y\n2m2nYwmT7cZA921EqvNFNA+Pj3G7w93o4a+xjhCPnDZk1Haum4xp4lu/1PUaMOK8lp7n3AWyH5qa\nq6MDvb+P0VJchKl96rzcmYYwHa/+Tn0zGqFztCvdn9PoAgWn9J6ejv7wvrViylSlKlWpSlWqUpWq\nVKUqValKVapSlarch3JfmTIZLIACVkArgQXgkG6Q6aUN5ZDVzwopySdCIo72dCr7+DM6OUsDnejt\nfSCmSAf3FAt0IhYGOqmroR3QAUnPQCiaON84PZGW6RT7ZKLT4SaEmBqIZworoMSj/mR3y8zMuueU\nO71I7m6Y64Rsd4rLCErhLkd1DsJvOAs1UI/POMW8vKUTt6d2dGIYwNIYbJMveElJ2hcuyXv+2kyI\n1IB8+KI+tdwxKXB2SkFjAthEvpOq5uTayHVMPLVdEyV7x2ioo7UyIT+6QW7oqORkHM2QklPSOlSN\n6b0RZcy7LU6gNpriflRDsXsOehTwuYZT0ieH1yMXN3CuTeQV+qA8HsriKdoKIdoqJehOYTB+YLLU\nHBsDTRuPKTT3nI6E2rEDCp/Avipg4mTUO2PsmTuJB03zI9Bzxi5dfdtxwaFFDhGJkPF3mjJ1kPSS\n3NYQRL1GLukMxzDDIabVchoMul9r4thcMHvQBHJ51zXYXDHsjjsSQZqrjskTkRMbMJd8kJiU3NvU\nIT8NkCBOyRvkmbpT7bspKTmcTTRJWiBlyw3Nw5Oh2mwM+rRIn08GGqsH+8r9HO/g3AITpr6gk/NV\n1NOHdFk7h72EVopzRRoNdaJeb+Kgwv3z2GlK6fvxiU7qZ+Tcrp8VA259TWjaYAR6c6Q55y0KGW2S\nM5+1cN1Y0HM0QfRicnEXHANogbGHhswe7DcDga3hgDCE1XAaBl8DdtgId4t4oDgz4QGKAz3vUQxr\nYqi4OxqJITQGNToDirMBotJAVyhFA6LkOZbPiOGXnqieNz4l7xx0aMCYzoiXC8Ss8h7GiJmZR7u4\n0gG5HSawvRwLDyQ2hzFZEitidJoCWHBtxt2MOVISG2vk46cwPTOczZqG3gvaZhHrQALTyitq1kLv\nwIW9GASyMXGuc/p7BBLqow3gwcIqYt1jjr6ZxwT1PDRliAsJgbjd0Ziga6yA5RNH+l6UO40bnAzJ\n4/ZBsYy1O5gzNuiS1HcMRJwPYDCmiYtrLh6x9jr3NxiFxRAEEV23OeiSQ1yDGc8DW2oGM8ijXbpw\ne9LgjrvE3ZT+n0qjZfdQ9WhN1J4Xv6Kf0YPaa7z5G+XwjwON2d6B2mPhgpg1T7+lfPbovDRirh9p\nDj88kyZN/Fdas9+eiAWy9lOx5K5vqyOG25rrCzAhj/toAe3qORdyOVH+zNPcOf3wF7ef4VunLtuP\ntoRy/rIh16RLv9Tnvv2ffmVmZp8Wqn/8utglu9N/Z2Zmoz+VO9SDxZY+96dC/w5/LFSweUbPH5WK\npWfX1M//UAgVffFP1d5n39b/tzb2bfYGOf7PK+599Uf67Ne/IX2bxq9+aGZmnSWNte99KHbOZFVt\n9tsv1NfDvtqudUoMl9N/JxbSpT/jOh/LXekH0L6e+61YSQsvSFPkl78Vw7ox0FjmM44AACAASURB\nVJj52bNiJ728+/taU3+spKyVXq4xPZ7CYFGYtCbM7wi9h+EtNADX0LtY07rgXVNb7SVql4uZ2mm2\nR/yFjRwuoW1WogcYsd9FS6YOSziA8VfA5ZuCwnvsacZNNFhgwR3dUtxuQi1dWRFjpoRFvLurOF0/\n0f2DRXRJWAfnbNQLmNw+jPEM9nIDp8juRf1MY42JmP30HPZCuq/+2sF9qj9gLsOILEHir2/r+YdD\nfW+FdcyHdTF1rF9iS49+SPt3dKWm+dQiNGL6PcXxXVgmJQh70EBEDhJBxnOGK3f0N/5Y8dhP+1Ar\nQnSFooGeMfXQfkk1aNq47tmynnmCvlCvDdspUF9kjv3fgFWAg9cMPbkSBs3UCeScUT3m6PfUwOED\n9m/ebSYIa90qbeDYVTBbhuwTLdb9GhmaY03FpwwmZsEa3cIY0odl5KE1k/VV7ylrdwP7VA8ttBy3\n10bpxhLaN1DL3dibLePQxv6y8Ny+Xt9z7lJhS+2G+anlaDmmbbErMvRMm7iAZrnmUAvGZrSp+8To\npITOpXUG00iXtTGaPo17dF+K2QOO99xc1HUXH9CeKYd+e3CIngsuuJ1NjcVzD+ndcudTsTiSUOOp\nCfPn4JB9dqDxsXle60DG3uryRzdu12VweNPai21rrInxlsOGPNzWvA1Ywy3kXYl9S8qeZYi+XKup\n+X/hova1Ge8+V97Ve/nRnvaVIc5h3WXFQwy8LIvVR/u4gh5f17NvntOzbq7ruu++rzWwiZvqafbP\nH34gzVlj/p9/TKyjpVPq2+GR2qq9LgbL8gXdv8487zAWikL3v74lNmgLhv3ag1q/jL3U7mdym7v1\n6ZaZmZ3a0L538QmtvStLnFfsw3g/0PP8a6ViylSlKlWpSlWqUpWqVKUqValKVapSlarch3JfmTJN\nGCcORZ859gKq9CUncU7LYXlDJ2XjfZ1gffbG62ZmNn9BSInTjPAbQqnG6FZ0HHsDj3mPfEiv7tgR\nIOaoR6+eEmKw3iP/rrtlZmb7eMQDoFqBE00BGjhN9HMHr/nVb6pe/ceFHPenqv/ouup37QrMlwaO\nRzhNZLA5yiXyFt/T8ejhF2LaZPiw7+7oxO34b//BzMwiXF0ay6CPbZwwjnfNQFhT0PAQB6kMXYdO\nD1ZQpmvUQUhnnFQ7948SNkI6Vd2aTjPE19/bNE7MiXLKiXUJkuo+d7fFg2Hj8ooj6Eplgb7GTKek\nCXmOBYyL0LmSwIDJanqepsstxe0owTmgBqMmAwEI0B/i4zavkYMP82cO0lCitRJxwh0mDqGFpQA7\noYY6fNOpoEeOaaPitF4ix6Dh8x7XKROHAHCCP3W0LfSInBYL+eUeTJuSU2ynwQNoZjXHIgMdmmc4\nJ6Cf1HI1i0FaQDTyALTMnAONSzrmur5zSUGLgnEUc+MOelGFU9vH6ca1o1fT32NO6e+m1GEvJbC1\nOqDt6Ugn/ON9cvu553xB82lwAHPjBKeVvk7OZ6BQ504B9wxBS/aEroTrOilfpQ2PrksR/+SYNr6o\nvqgT33LGwHyCJs3czRm1xVIflGuiZ96/rHne7Kutz11U3Dg40vMcYtbUgXXVJBe/xhjt49o0RD9q\niMbNFIZP6Csu8Ks10dgK0IFYhBK05ZBcaBSrqOMvdmCCROTOgoz6K4ohKz2125lNtWdyS+29f0Oa\nPbdA7eqLem6v1PPGONkcjfUcLZCUvAXbDtrYFHe8oLw3Z53kX8SeoWu3Bmwzhvycdag2JucZhGgE\nKyzEXWkM08ihgY5pM4bm4rXRYOB+qcs/rws5iRybjnUq8D2boZ/jw2hsce8EN6KG59DuBeqIGwbM\nEJ+1rQZqFc10z5L5XweBreNCMYPtmaMNEIJ0ZjixpDDyYvQpusRTnziVgxhGrCMz4kaLeJ/3aGNz\nmligzjijBaW7H04vDqEEhZqh1xPAiJxRnwUYQiWaNBEMvxiXp5jv579PjvqjJYehc+bnmuPNP9HY\n3S6Ell3+J/YYf7Wl+u7ruVZfk+PP5QeERH7prD734RmN+ec/F3r2q/Pf0OcLMVRmv9bceuJxWBRv\n63vxqtC7jQelFZPeUjt+9tVv6fM3/snMzObrus7O4A6KPyi+ad89pz3I22PFvnePNXc7gRDYTydi\n1jzhiUXy5iN/Y2Zml34nN6j3n9D9J29p7r18Tsyaj5f+3szMTp592MzM3jjQ/x/Y1+T4zUDMoRfa\nilmfjee2+az0asIfyW3pt+c1379+WXX4UV/I7Fc6arsHrgnp/EWm/dO/+XNpk8RbartkonscB3KA\nyv6n4tv2GbGD/vxTtfnfsYamr2mfGD0kFtBfrl0wM7Pxz181M7Pi2d/YvZSQNTxjrA0YA21cgWpd\nnHRaqtcEelv7gLF7CRdQ5mBUEgdNY7kB6m4FjBEYeCf7Wn9OoYHWQZPxcIc9AuFwyl6gSeyYhRob\na7iChh3myqFzeINJw747wMEnmmrsNxZU3zSinjAEowbPzXpQwKqY3NS+dIT2zLmHtY/uojfi1rF6\non7vLKm9ro5/fy+5gHNYY13Xv/UBmjGwlNuntN70iG23toXElzifLaBR1qrfmRthM7CcmFPrq50W\npzDkYer0En3PRw/Lq6En4k3tbgvbLgthoNiEMYE248xpHHbY8zvm8UTxIIfxV8BwmMDU6HfUhiMY\nJT5MixrxP8Mltd5jfwkrrOiqL4uYfWLfMa1xvyzRKINBH9U1xkpc/tow41IsEQs0Dn3fjTXdb84e\nxmBJDXFnCpiLDVyXMvabHvUu2/q7Y18MyaKo4zo3Dfh/h3UNjcLSMX5436hleo6EMRHimJnD6HRM\neg/meQT7K+D3Aa5V7Tbr30yxJoClnOO0GLFeZbCz6juODX1vTm7Dba3nc9a9FZzmNpe1hxqi15fu\nwRxCE8hgqh4d6B1yi1h67pLWLee6ODxG32VDcf/8Ra1D164qBm9f/+x2XfqLbet3Fy2AKZ0OYRKj\nD5TAxm/DzK45t+KW2sa5CFukPls9pXfJFAfZIW5HPi+jK2fRKCQTpo3b3GSO3in7rGYL1tiyPv/5\nnvbbO1u63lpX99/6VPE93dY+8swlxZ16U301Zd+ZMrcW+lrjYlygt6+IFbqAy/EkV9tfu6K4cvZh\nrU8XT2mN3N2SrtzRNY2R7pqeY/NxrUOpKd4Ob26p3tfElPGyP/wOXDFlqlKVqlSlKlWpSlWqUpWq\nVKUqValKVe5Dua9MGS/BU73FaTIMkQY5o4fOmSXTaeADX1KucauhE+1i+lMzM5vu60Rrxkm8c7rh\nMNdyUMcMtyNv5hBrnajNyHOvnaDxQqv0vqTTRR9dkNmh0LIZyEKdU9uwqc8dH+oE7uplndhNYDOs\nXVJu87P/RqegzVUhBIMD1Wdw2xBD90/Jca3BEmnhrjSAyVMr1W5rIOg3P9PJ4Vs/Enr2wOPKT/fI\n068XXeNA2RElzEMjYLar07v6V4WkXVyWsvQtPN4L4GOPvMCIOiUtkFWQ3QL0JE3dCTwe8jgQrF/Q\nMy+eumD3UuYo5Pc48XZuTiVtULudK6o+zUCUi9KxBzgp95woDAgvz+/DWEnQewhhG8TkR9dg2Dha\nQa1wzgYgxE1yh28zejiJd9o5aCv4GaINKP9n7gQfFK3FGE1A4QwWlweDJEUtvw4zKUGzp4Dx0wD9\nKWHcJL5Tn0czYg7jCaZPCMLtdDJyD+0dTpXTVO2Q52gpOPct8i79kjzuOuwLDsk9GEOO2TOBdRDC\nnHHchhRV/dAZTuA6cJua5MR07qJ0YToEuAadxoVt50B95R1qDKYbQszmBWgGSv5hS4yOuK6T/R6a\nBPOB2uBkT/HFaUu1I+Xt3tBlbXuXsbehE/tTS0Irum3QGueo09X18w31RcgY61OfXeZcMlNjbpwX\nWpKOYDVc04l9TF70Gv+PpzDt9vS90Rp9BwPoYESe9gY5tDABuyRah/Rh9zajRw92MFHcTUHt25uK\nDbNY9zvZhr0AmtVoC0lYXdFzzo/1/Rs3YeqMQfeWmUsgkCdDte8U5Ljc1PcjXEzajs1BXIzQ/Elr\n94Yp9P6lpRf6TwX96qG2H81wgWFwzpzDmguexJYCx4M2Y9yx1aboV3XQwhmGxAD0oJhSt92aasyl\n0istxQWtzhoTMLanIJkR+mgxDgWzAB0lAk7i9JDQZ/NStXGLuOY0XHzq5judITRnwhw9BRiPc+JI\nHy2qie+Yh/rZA2l1Gl85bTkjfnUSXW+EhlQb7YEUXYsCLZg5DL0wU5uOWLv8KfGGPPUm35vD/Jzh\n9tcjLhbE49y5042d88Ldlb2x1upT/1mMkDdfFxvjsfPKvd98XmjdF3s/NzOzl4fSYvnc09r87R00\nV1Y0l9sz5ZUvN35mZmYNX3Pp+XeJSY9/W9/vyo7p+Dta0/usTx/8WPWq/3v9PPnt98zM7OBFsTy+\n9gMxdN7f/PbtZ3hz+8c2flxj9vHfCL1bfkB7g9/8QO13dukVMzN7aP7fzczs008UE+I1sRyuvKt6\nv3xWcfuTz6X7UvtM3//6N9Xev8CVZbT1IzMzO/OsYsD1qWLVdx+JbGeiPrm6LF2a73wJBsen/4+Z\nmT3xkvZz4yNYA2PNf29P6G/ya82PxVfEaAkLxRNvXYyafZxE1krtw374rJgOT39PfbUaKO51z+h7\nV38gTYL834H2v3Ni91RghMxw7ejWhJR6DbXhFGQ5Zp+5BjNljPaLHbrFUkhq1IZxx+5shh5JjzWy\nheZhOgBJPtbfe5HG9m6g5xoeC/1e3lQ9vEV0/G4Sr6dClvsrGmPlup7/+F0Q7D3VZ6XD+ojb3Rxr\nyBINsb1SY7081t+bm2iG4eJ3+XPtKVP6PcLFsNHX9a3QXGJbbQXsizbtOdvDUbLuGDjo6MGGCJnr\nIf1w7DRnbqgd2mianYy1Tk+Hd9YJ32uZZ+qfCNvVo1u8T4xxHgXpT9h7OQ2e6B5I3t6QuEofel3F\nxRFrbs6a7zsXJrY/Q+dAU6JR2EajJWSzgetPF3blcBWNlxHMY8KdN8YNCZJQbQwzZYU4GanNBjAR\n27jYxTl6P7hptiLFA2cwW0PjzJvBFqVedZxsvJbqyzJgNcfw7ODiOlaftrGyLR0ztOnWI5jY6LzV\ncuY6jMcIZlGMw64twgBiez1DO7OHJqTHc5ZcYOZcPvuwWDONkdox62SPfXYXhniGVg4PlKC/RzUt\nKzTWbAMduqt379BlZpbjEBbScefOkt3A89z4yDlvas64veDc11gtappTpx8X4/H0uubizmdbaoee\nnvvBS/p/XKhdd658bGZmzfzO3FjunLPV82vWxtVsMJdWyjF6NkFJJ+DoN0ebcY5zVBYT93hnnE1g\nvbJnGPOeHbC2r8FsXFzQmjGfaezf/ETv2fG2+r6zoDb2Q923hZbXlx7U+3RrXWN1gs7c2jntU+cw\nfsa7iovTBBc5jj2OjvVck8saQ10yaRZhuc7eU5zrL+m+6yuq57UbWpc+/Vz17C7r/+cfv2BmZs1I\na/z4mpiNO1e1FwjQ2VzHlepfKxVTpipVqUpVqlKVqlSlKlWpSlWqUpWqVOU+lPvKlEk9h46Ro0ue\n+Bx3pJzc2b0PxDz5ZP19M7tz+ldfFFJ8vC9E1ulrdFKdTp+gsl439EE4DV48pZOsnWOdkNU4nZ7A\norj1ju7jHCJWzpCHjyL4uMfprtPLwKlmjc+V5HF//pFOyC6/p7y9weibut4Kz4cmQ+2IHD4Q64Jc\n5QB3kJUHVN+UHD4OgW3tvE7+Ik61C/L1j0c6oVuc6P+lNzcDgfScW85Mn43Jof/8TZ3IvvxvlS/n\nr+k07+N95bRnMD6S0rnxkNsKwtnh9NLIZfRBMVLyEDGospXi7rVCzMxq0Jamzm0ogpHCqWrqNAM4\nXmxhLpTCAKmhpB0x0hO0EdzA90C1S5g9mWsglztbOFcg+gymSCvBeQaGSd5Cw6Bw7ke6TPO2loLG\nZk5+ZRg5vQwQbNgUOe1Xd78bWjZoNGQJLDBOgUtydcsQ1I8xEpJX7VyYssg5yWTcT/Wr0a4N5/pE\nPrtHd9ZCkBNO8uugRh5ITytB26HpEBJyjEH9mm2YN+hCufau0z80izXJ185nIDGO2XQXZYRWS4oz\n11Yh5thwTN3qqkOvLgRgaM4BRn+P0bfIYYPVcZ4ZwspK2vrZrAt1jlF1n/tCWMslmDqwBbpQKto4\ndyW3FJ/GGWgRDI3QnD6RxtARDJnWgvoiBWE4QMtmwBgNUNafE2dmO4f8DnOlp3o6vZAajJNyXX02\nc3o9Rzwfg2EHFC6bKC7OOk7LBZbTGHTtCOThWAhj1tf9ott6UzBCjsnhJX8+OL9AeyouObCrO1d7\nNHHNGuOok6B3BCnDfOcYx5xyriF3W+LyX7AmALW8Dqy71DlJMNfQeOiUQq/mMGfmwZR6o/ME03OM\n+xVkDZvjbOHy9jPYLTYGfSsd+8yx6wJrsgYWkWPdOO0UGIkJECRosedQexgpbdzLsgaMQeJD5DkX\nJ5gNjp1q+p7L5Z86N4q200LQD0ic5uOIAinVxmgP5CxKrS5t5thbOJnksLVy5yhDXrpjcDZpgzE6\nP23W8AlOZgXMPocoBzAy57ddl1SPJq57E7TTum3sKu6yHCwrT3z/v2nMv/Kf9PsnP1ZFty9qDr0E\nq2A++4GZme0+IaT45H0hlfbnyt3/8of6/JtPau23Mdoxu2Iz/BTdt+VI7fKVfcWuD8/ruU41xC5Z\n8uQ0sX1Lbk7vHmmP8uqqYtpL873bz1A83jfvbe0ZVm6qHjuPqP2fXFD/nRzIeejvTmu9f7ajOTkc\nw6JDc6b5oRyOHlx8Vt87RuPiPbX/i1/X3P/JshyR+l8IXVx8QfWZ//wB+/ib6sNltLYmA43RNxlb\nnR/LiWrva6rrc3WxhvqZ4t5PYv3/W98TslrriR00e5F4CXP6+vYzZmaW/732he+cV3x+GN2yh97R\ns+5vaGwlmdhDB4/9CS33f9rdlCao+ApsrCLTGJvH6IbAaOm1xEjpnYWFu6y4u3VDbROjUbjgCwme\n4WrigcbnM7VbAzelkL1IQZyPNjQGgx1d7/AE96ITIboX6mJMNy4IZd/f1zrRRXvw9AaaD2inJUdi\nzGwfcd+a/t5ZU726q5oDV67hnodwSiPEPQU9u0VckQ529XwJGhHtFO0IYkDC+torNPYWO7rOEM0H\n6xJbcKb0iGklWmRNtMWiub73yAXWceb+8S2tU6MTjSMzs9FRYp0+Oim+rhN4GidD7JYmxJga+wGn\nGdZgHbibgmmplbi31WDNdzI9+4S1pECXLEbb0F9Q3MxgBYRt9VlBG6QwOELfsZVwuWuyH0R/47bx\nLIyWYpH9KsxKc/s03JPKhHjp9ttNx9af8TxoKLKPC7rq+xYb71oo1kEx5F2OpirRljH2pcVp7Vn8\nEzXypKMx3Kyxz0T/M8Axq8AJ0TmZjVkfQ9hbOWsxWxRr8E41c2Mug5FU19zw3RoOw9x32juwaKe4\nlVqBrlAfFtUCmodobNZi9Jl6MHm0TNgkurdX6laXOdzXHG521nkuxYqTfb1DOrmWxbNaD5b7rBsL\nsAt5dx0OdJ2bBxo3Wax2i1Y1IMczxxbW85965MHbddl4fNOi7pL5c9376hX1VcY738WnL5iZWZ8+\nW2KeDWLGHvu4/hnVzbmAznhHaMC+7fZg92zAaKGvLuNYuH9Z87VYQkdpSXVvMOa6mzDunLvdEc+M\nxuoDp/Tu2ltQXPjsV1pTe+t6rsef0Tox/VgaMnu8nD74tFiubv92ONS+3TGguyuq72AHxyocIc8/\no7+3++q7weUtMzNLB7rfmHetZtMx8aBZ/SulYspUpSpVqUpVqlKVqlSlKlWpSlWqUpWq3IdyX5ky\nIahWClJdwJzJQMl6HZ2QDZd12nmM+vzsRKfDnTM6yT/ydCpYv4auxhLuJy7/3uXNFzpZOwVyPB/p\nVDUi73Olp+PWQVunn598LmeDkz0UydGk6M11OjkFuS1Qzi5R5r74lE4zWzs6zXYK2KOt98zMzBsI\n3aot63oBDJ8GjKES1smkA/La1ec6ILF5oM+NYausrXGqS37ohPz/gY96ftSy0GkMcBJewHBJ0GK5\n/LkQsf5b5O+t69laDjV2ggowUQylbA+V9JI2jshZdK4dc9TFtz8lv+4mp4x3WZxLR20OWp/BFgDV\nL0H56210f8hTDtznQKmnUDJ81Ocd+pGXqj9AsrXI8bQJiAFoSswJfojGQ8zz+Y6xwol+CeLb4sR8\nmrjrkyOLpkuKe4lfOAcvTpM5lXZaMXmOfgaMGjdHwhhkBeQjg3XhoTeSkAAdcv1gqnqXHZAFcmUN\nrZsEp4YgVzvnMJwSmD/IfViJLkZMDnAxVz3rsBAgjVnq3AQSp5Gj0+ES14AUq4gcbYsApk7dOVs4\ntOwuSgFKf0Lb+0PQH+Z1Y1ltOCxA+dGrmcMaCBkj1sWNyTTfao4tBNqScsA9CfW9OvEkOo/rU6xn\njnEvym9JV2GPnFKP+BLiVhEynw9hJ41hYTndkPFUSMUYBDVc0Um84YCV4Q40xc0nh33g2FA5Oj41\nWBE1cvwDnBziWAjhaIoTBI5sM8cy2Fjhdnq+QQEjySGGq2rH/gIuJ8TDOQneMfnKXsvBWCDJOPyU\nIBQJDKMIDbG6Y22A5njENYeOTRLQRru3UkcTwZXC6SPBzGmCAg5of68OC47nqvtoiaVOr0XtlYz1\ne6cLm47lpo7bUubmOJOjjRbZCK2DsK65WPOnFqMNU4/RaiHORTBO4hg0nNz8GIeqFMYMad2WZ25p\nRwNrgGMW8atBnPaJrwljsQUaHZv6OIQx4xHfnJ7DDM2DZqq2KmAZ+VDs5uA9DSrks5YnaFwVzp0k\nUVxNOurbWgarFZStA0OQoW2pOZ0HtWmtB+oOWhfHzg2P9a101NC7K2khdP34T5SvPtkTU/TGd8UU\neemy2uMfD7W2fvWZvzYzs0szacyM/lpsg8X/pjnz66/gMDMT+6OzpL3B1Y+E9n359V/q80+KrZFd\n/omZmQ16L5iZ2cpc1/3gQM/1FyCo198Sq8QPtKf4la/r/lczq7+/YBug/4ffQnPhnxWLZv9ec/qJ\nv1G7Pbah5/lhR3otybtiyiw8/jUzM9s9q3ZtHItZM2Pdf2r0kpmZvT7Uc/7FQEye7Hmhld5Mz/O9\ns/9k33xbYy75Cmv//1Au/p+8LJT23R39nn2oMfXGhjRavrussfneKfXl6vsaY59/Wc86fV1z4cYT\n6quXP5AGwrXgOTMzu/L4m2Zm1kfT6pdrYvO89InG9rgUc2PS/bXdS4lg6GUrql880tjdg7GdxDhD\nEpcT1soMxDiZal8YsF6UTfVRShyesTdpgSAnIMYRzJHjWOvCBRig9R5x+Zbue/1DzfXeI8yhdc29\nnR19bgc3kKXFC2ZmtnJOe75bW2JHZbgI+m2uG6idBriUJqn22wnr5nis/tpnLZ/ijhTD7rt8U4i0\nc1bLiR1He/r83sjpBWrMRlAjE2LY5ED9PBmqnXo49tzcEQIedHH+XNZcb3T0eYv1+ezozl5ivr1v\n+w3NvQUYM36L2NNC0ycXMz9wehvseXsbm3a3JcMVr17TfB0S/9poyzTQBJyNVEev0P8hpFvMWhSz\nv+uusR8Exh/D0i8W0ThhT5MWGltZqT6dwD6FnGSTEqeYc1xvrDYb07e9ln62cYYcdt3v6rs5Pwe4\nEzVx+RvBAg3ZqzRgkucLMC7ZVzstQaeb2YA5n/E+ksMwChJ0jZY0pya4GhVozeQd9tk1/T3j/WN8\nwjqUOg01+h5HzRJtMw+WVpssA+uwzjh2FGu7m7NeDeY9Gj+TJcbsLk5kaAVlf4QF8S9LDHNqhqXm\nVdyQWjibHR+ovfo9xazVFbTVGtoz7N9Sf+/eRP8PttwBsai5rBg0nur3+QitONbLwe4dFtnVK19Y\nI7ph+bHGzC00veoN3bvR0s8Re5DDt2AIwkQ84V1xg3eyK1/oWUa4gE742YWFtYtL2/5l7Y+PDzVG\nfJjLm2t6xhYOtAGOU+ObWsu20ZAq56rP4KoYM9cDfe6UcwSDAZccwuwZcN6AU24dVnKLuHAdhl1y\noj7xm3pfn84V905ONIeci5RX1xza/lTttX9NcSnmfWSGRm6jw33cy+a/UiqmTFWqUpWqVKUqValK\nVapSlapUpSpVqcp9KPeVKeOv6oTp4iPK8ZqhDeHhahF6OnU8/fTD+jsaCRFJnykn2wFoWoGuxpyT\nqFpOfj4n7yEK5MFDQmhcXqcHctxA0fzhx1WfGLYDxB1roM8RhlwX1N8GsEkinUqmnDqfeZz6lKpP\nBAI8H8FeIPEz5WQv84XMtlB9d/ePYBv4Df4+02nvBrocrh3Cie5TOEchcpDDoDAP9NtDRTwil/KB\nx9QWW+/odK+xqPzegGt2HpYLQ4b+QeTEBUBEU04ja2iCeAW6D6AMGw9eUFs8q9PND37rct/vDp2a\nwz6KclTUacMJKEwLtfUpiMJtxBQXEseCqsEISUHrvdjpR2iM5c5hBbQ75qS/Dlo0cwf+nvq2gX7J\njOcM18jzRiNhQI5qnT5OfNB4Tu5T2E4BuaAeCPkYpkidXNmk4xAGfa/p2r2h+judiwiHAg+hjiBw\n7AX+Dqo1c9oLhUMCYBC19bnp7fxtWAy+yyVWv2ac4zq9pwgtnbnhDkBussFAGrV1ih2BsKfOcYHT\nawORcZpFKSnIYd1pXvzx0ujrJPvcotChcEFwSxPUY952TDl+cGt38n/bgaqtunQy3TtjjExhgjRh\nbCQBbhK4/5QwcOYwIJoICvlt0B5Tzqm/hO5HX/UsYCvEU31+OXZubsw16AQ1kMDxDGQ0gk0E2nSq\nBXNv4py8QMF8EFsYMhMc01ozGCgl6JND7dBAKX2njQJ6hU1GCeurWNEcyBvk9nO0P+e5a8TR1U36\nfISeEmyoAuZNA6eGIETLBqZggaNOjH1eE/aXzxyYgQouFveGSs1AWJ/EkT2oIQAAIABJREFUXaTu\nHM0cMsvY7cMuyabUG/eTCSy2BjotdTSJnGvUfMhc66Nths7LFBSwQTye4K5Swj4sQI78rLAC97QR\njEaMWSxHAMcDHZ9Rx9B3dhv6f0RnjJ30jHOHQ9enjgNCgWONRzxz1605razYIYAOLdczBU5Dqg7z\nhfiagGJ5MArb6JvN0Ulzf6+DcM7RvIr6sKaYkylx6mSM3gTMjGxEG9EePtdxjjAJGlT9UH07xmXK\n8+7BMsXM9q9/w8zMHu/rRtMjoXEDYsPJNbXDxZbcjy6j7bLgPW9mZme+EFq29yws2mO1U7gqRPil\nd8Q4+eGpp8zM7KEVPe+vxmqfV+paf8Orb5mZ2QqaDjb6SzMzO9pQnP3iBdXnxs9Agicu1pi1dz+0\nR54QK2R0KObNAo6PxS+UN//af5beyVM/1f2fekLPe/FRjdkvUrEFbv4P/b74ZT3f7nXV660Xhby2\n9y7oc7jtnVxRf53GCe6l2pcs/BPl9kf/oLq/dklMlsd/obbNu7rWVx9FZ60plk4HbZIn9n9mZmbe\n0rfMzOyzgcZOI1FbLyfSENh+THUeJGLkvJjr729//GVd/0QIaHhJ68U/l/r91R++ZPdSHBu2YEws\nslSNYTdYyNgmns5DRzNFf68L0/ASuh3M0TnMwQ7stQksXKQYrLHBXgMW6xRnmt4CbAdn/NKBrTxk\nrjKW18/iOnqs647m2pM1I9WnBuOz2Ud/EM2WeaE9Ww9GUBtXpzrsOsOxJ5lozC/CTPUc5osrYisB\n8b7oRMLYi7J+1iLNrQjntoQ9VADbYx2XkwDdlHmKtg2s45i9TA0EvEXMih+6w5ZLlo9uizLWYS62\niDG1DdgQxOMAauz/x96bxUh2nml634mIE/uS+1aVWZm1k1Uki8VFFDeJlKhd3dPqdnu8whcNeHxh\nzOLd0214DAOGfTEY2zDGmDGMAbwA7m6NurWLEilSlMRFxbU2FotZlbVkVuUe+3riHF+8z18Ex+rp\nLMBwXfh8N5ERGXHOv37/f773/d9vUFU5q80d26uNdFjzM9KSmnLZQalrgjW+w8NFugBjg72Fj67Q\ngDGUQhOyFzhtQJjQrBc9GM75O1lCtd+dwC/2GCN5tL3y+OcWty3DgB6wQcuQ7a6YdbqfqvuANT6C\nFZHgWWWE/WsS8ZM+a2waRqPHc0MWR59Dm2yAfma6AZuuDhOyDBO9o/s6naACDJE2dNQMGc1SAXuU\n0D3S0l7M1ST75BR7qC77dw/GeTrH2syzXQ6mepDX/1Pm9sOwdmnHrivPOJnAbt/dnqSKPpTbLydh\nP/fYv0/OkQEYlvWdrK0us/Cu2Bwlt58fg+EKk8dDbKfPGI7YB0zvI0Nm8Mk+O2MFi5pDG5Z1rYlA\nfjtRcqnBYLeThakfiekSkJFrkpMrPvsq5w97+IeZBTHNCuio1WuO9aQ2y8GELrLf8ysuoy37bp7h\nWrB9ckmYbmjORJHWqhwZblvsIabJaBWSgavbUZt5RU7IeOwZqlqHnH5deUbrRzHPmNkm0xks3twY\nTMGWyuXYv4WC2oFEXjaS1f0GPANZ+C/P0BUzZWKLLbbYYosttthiiy222GKLLbbY7oF5URTtHZL+\nf/vmnmdRFN1VppXYYvv/i8VzI7bYfrvFcyO22P6fFs+L2GL77RbPjdhi++0Wz43/7+2vCr3ETJnY\nYosttthiiy222GKLLbbYYosttntgcVAmtthiiy222GKLLbbYYosttthii+0eWByUiS222GKLLbbY\nYosttthiiy222GK7BxYHZWKLLbbYYosttthiiy222GKLLbbY7oHFQZnYYosttthiiy222GKLLbbY\nYosttntgcVAmtthiiy222GKLLbbYYosttthii+0eWByUiS222GKLLbbYYosttthiiy222GK7BxYH\nZWKLLbbYYosttthiiy222GKLLbbY7oHFQZnYYosttthiiy222GKLLbbYYosttntgqXt583/77/0f\nZmb2v//H/5qZme1sZc3MbPPY0MzMTr73pJmZtb9WMDOz8MVfmZnZx/MzZmZ2fOW4mZn96ND3zMzs\nc1OHzMyscfaSmZktP3XAzMy+aIfNzOzHF3T9Fwpn9bvdXTMzG0k9a2Zmt/t1MzN7Jpg0M7Ns+i0z\nMzt3aMHMzHZ/GZmZ2fNZ3f+l8m/0/pljZmb2i5sDMzN77kzazMxeHbtlZmaP+vNmZubNd83M7Ofp\nK2ZmVq4t6X6lN8zM7KNrT+vzB9Q+Cy++o+s8qnKNramcg90zZmZ26ISnenaf033Kuv9PVr9vZmat\n+z5jZmbf/N4++8GB98zMbN+Eytq6pTbNRWqDI49cU9sNVferGw0zM3u2pu8NyyNmZnZ9VNc523nM\nzMweWNH7K2N6nyipbP5Ky8zMDufVJ1tXL+r631Kf/KM//C9tL/a3/+S/5q8pMzPLl1TnKFC5gnZb\n9cgkzcysE+b0PuiZmVk3pz6LUhm9hoGZmRW6GmP9tKaAH4X6v5rQEp7+P8jqfsmB3kddX5+n+mZm\nNvTy3E/fGyTUxxnT963A9zu6f5DV/9NDlTdJ7ZqerpdOaOxElOc/+wf/RPXwVY98W2N4UNT7cKD6\nJqhvlhnd96hHv/ep915a5cgN9WpJtUeYVHw20Vb5WgXdx2urHPm8/t/lfZrfeUHC3cjMzHoqvvl6\na72s+ikzVMN2QrWH57WoOeUZ6Dp9VcdKafXrn/y9P7K/zv6Lv//HZmaWyuvmCQoxyOoawVD3LA1V\nt91ArR52O/pdQfdOZ8tqkqbq1u2pErXGhq5TU1tGnl7TU7NmZlacUKHLvuo64Hd9T5+nIl1v2GdM\ntHTfWrBjZma9HmOn78qr63thgnLTV9Maa5XKPt03T1vSx11PYyKX0n26jC5vW/WuNuRHal3NeUvq\nuuWk+nro5kpd5evQXsWK2iWR1v0KlVHdh8HbT6ne1tH3g4y+l6Y8UaD3PpMr6el913dzS58Pkip3\njkHQS6gcfpv6VXTD9rra9+/87X/PzMz+0X//j20v9t/88Z+omCnmUkL1bnYZrCXdP9sq6nsFlSsz\n0HgKezWVK83cDfV5PqL6edXHo3+HCfWXP2C8qdoWDOinfFPfG6qfs8OsDXO6ZytUmcpeST9q6X27\niB/CHxVo21pGE99jHqUyunY+0OfdhL43DPGfvsZkHscQGH3G7wNP5ehGzI2c6tQPVHYvoTbKJDRm\nUwP8J2PK8J8t/EPYV1vnPZWra3pfDOUHhvwuYkx5oa7XT+I/h7pePqvrRYFzdLqen9k2M7P57pZe\nsx+rXQYaq9/8r16xvdg/+cf/0MzMcvtmuL7aJ51ROcNAfdrz9HkuofYY0l+Jntq12lf5C6ax3Emo\nnIWsxkzKNVNff3RDVTzHdVpJ/T5H+7XxbUXWhVZS98+2GReZ6E4d/tl3/plle2rftqncbl3xcNfR\ngPImdd8owjflqG9C7Rt5+K4O681Q9fdo/ijd+9T3Bw3meJ7rhoF1I/VhjjHXZ0wNwARzPV0j4NrD\nlL6XYk1NpOVX+oHGXD6vOkVNlSmIVNcUa3WPNbi7o7HQNc0hr6/PR2bGzMwsQ9+u3Vg3M7O/83f/\nE9uL/fF/8HfNzKy6K3/aZr3JO38W4kdG+bwg/9gO1Oa7NeZegbUvo+912cuMFLXXag50/eoGcyzQ\ndUPWq3JZ7ZEdUfu21tUe7ab2nR5zKc265Pny45WKfjfsyp81G2rPXF59uNHSfSPGkA11/yR7BD9i\nM4H/67H2p+jXlKffpUuqZ6elMVvOai4WJ1XvdlX3abAPH+JTssZYZoEp7ZvW7Zqa4xtVldvNjXxe\nv7PChMrZ0f/Xd7Rup1L838z+wz/6W5Yb0fdyY6pvvasxGwTsfW5VdZ2hyh1mNYeLvur13/1P/9D2\nbFv/p+5x9gMzM2vWVLfbNfVRs662b2zp3oO2+rKf1udBFz/AvqrdVtvlcyrL2Ij+kc3qd4me/l+r\nrug+7C2KCdagksZWLqPrevU+96EN2P9agL/PqY06KdbwBN/raM4mTddLDdWXRt+XJlTPZE5zOmip\nDaPObb12GTvj6huWNau5PUBNYy4/pvqkO/r99lBjypraO3VL3Ic9XraperV9lTPFI242Jx9QOaKx\nNM8Y6DVUj1Zd5fcy7DlS7N3G1W4Tvr4/sqA5FLBQVc9dNTOzjy6oXr+8eN7MzP7zb1+wvdgf/dP/\n1MzMTv7yfjMz2zj5CzMzC9/7kpmZ3f6CrveNxqqZmX2npvZ6OKtynz+j57kvTtw0M7NboXxeuqm9\n6ccvqLyfax00M7Plt1kAntJLp+HdKcs/+PN/as23KnbfiJ4Frww3zcxsbFRjZGWzYmZm3RH1zRP4\nj4vZJ8zM7MZZlfFLTbXd4JtaQz/05V8TV/UM9/CE2mb5XfX1gfs01n/1G42Jia+umZnZ0m2V3TvP\nmC2q7hvTqnuuq2fJ13bl3wqLel7+/FU9u1r3cTMze/X0R2Zm9qimoA3GtH/+9SnN8wd+rDF67pFF\nMzNbPKd4wpFjGssfD/Ta+VBxgBNz67SHxtxyUnP3+MMq95Vd1Tv/gb735DP6/Uurz6vc+/Crf4XF\nTJnYYosttthiiy222GKLLbbYYosttntg95Qpkz18w8zMwo3fNTOz1Wd+bmZmD998wczMXn9Yke7D\nnVfMzMz7mtCmE0kxT959WFHKb+zuNzOzF0eum5lZ7jVF/8qZR83M7M++q8jc7y8pivhDn6gozJPU\n5xRJi3ondd1Lut/0ozBmLv3azMwWTiuGdS5UxKswp/L750RtSbTEEvnJPkUWP3tULJF3ruu+D9fm\nzMxsAqS5dlGIzdsgDZ3HFRHM7yiC+IOJR8zM7PhFRSRvHFOEsl99UO21oXrNlRV1r47rekd+pUjd\nJhHO6u/5FrQUxdx9RVHCqazYQukv6ZrNl06ZmVl7QtfYHrxtZmbfeUAR1+SO0IzZs4qWnjz6S/0u\noq6zr5mZ2dZlRR1vnlL0dO6i2rbxO2LSfHydkPgeLahqiPZB9nr9cTMzC0EMMyC8AHnm9XT9XZAF\nb1v/Dx2K1VXkvV8EIa5+mkniUJoQZGEAE8UDmc7CdghAEMwhoyAXKZhFyRTXVRDVEtanfPp/FMA0\nYQomQKi7Bd3f91TO3a4KltrR99ZcvWDs+LA2UiAM7S7IBIyghKcx5fdgP2TVbrtJmDk9EIEUCDbI\ndE6glDngpDFQOTIgMa2hCtIp6P4lkIweSGmU47qbaoAaCHcWhlIEbaCb0nXazAGDNZH2oRXswRIZ\nUBj6ru87hgaso7ZQlVtVRcZbbc2nNAja1Igi+BmYIM1ACMH6htCPFCyF5IyuN14R2jI+r/mdGqgN\nbm+orr5jKYGG1fowPIbqg6imxh3Cjlo4LsZcHkZdZkRtlIRN0Ob+5VHNvVZD/19dFaJR31FE3iLq\nzxRLpGFk0DcdWHHpsvpwYZ/8ZnpE/ijN74MWKFhCSEW6qLHXIIY/HKr9/IbaK4AtMQRdSkd6bx0Q\ncVCdFGyADpMtTKuvHeqe6+r33Uj9VK+pvSxLP4H8tgd8fpfLV1AEgQ8dO4T+KMFSAFpOgtTnHQsM\nFkgYae5me9zX15xJgCIWaPhGRr/zHJpYgAnVUX3LsFpaSdUrTMFGaXYsOQRFgV0QtHXNXpmxDHup\nkBLy10+qrYsJ3Svhq6zNvsbKMFRfZZgLXfxQYqi+7sI+8Itqi0FKZfUhsgEwWgijIwFy65eFRvVC\n+RvnNyJ3/ZZrS9U141hYMEgymR5tQhvD2BjQ9t5Ar1n8ZIj/6PdBvQMVME9blxO6bjGpuTub097B\ny9zdenN5eUX13tLvB0n6jDk9ZD2IGMs+rIXuUGPBS6q+wxrsgEn1Q7CtuXcTxkoBVlUCVkWLdrG8\n2rkIm4/lxTzv0/UIPPV7NmJ9Yr2yb5pd++CyJfGfzYHaaXBL9Wlsae+z06H8tF+ODvdgsZWmtPcx\n1psKbJNuS750lznQH8qX9XdB4lmPfMZhMlU0n7IkHYMuT1VB95PJ0U/VIQsDcOhrTIYwMoy2ciuD\n12TfhD+p9uQ3MsD9tYHmyuHD9+n/axoba7eFaKZ7sJC28Fd7tOkF+c1MVnMgW5RfaAz0vrqyonLt\nqHzTB4VS55oq/9YNIFvmTDsoUQ/9/sBRrQczea1LXZDhfqj63FinD5a1Ps0cU3n2H9Dc2FzWWIxY\nB3ccw9N0/dn92tP1YUG1W8yhOe0b+5e1Z+sX1O6OQZPDN3lF9iYwSsqe7ltj7c7BUkhG+l69ozGy\ntqNyT1XEcJ+d0F5uYlbl3+1oDG4sa13zemqffTA5O2OaS/k+rNsaewnqd/CQ1quwoLGbuq523VrT\nc4GZWavatq3Wiu4/ZD8+pz1SO1B5+tvMrZzaZbuqciV6n7DR/lrb/h/NzOx/mPo3zMzs7zO92Q6a\nw8rdrG7+Cz9320tj/rd4X+Zjj+uxJBlbC8vw/dt8z82VEdwDS405oiHLhkHcNrZnbithWcew5n4B\nDD9IUXdWYIg1Frr7MscdWyuEvOB4GW5fmfgXmNUU33qu3NQPQuWd67v2ckxzV073QZUL+VzfHAOb\nz7Ou4buferlz/wLlZwqZIyL6XB+Cje0En/5d1e7O/G2N/Y9TWh8q72oPOJ/4mZmZjUJp6V/SXvOz\nnxUj5ux5+cwHDmmu/KynZ92vHXvRzMwu7upZNv+qRtqrPT2bPpPX/a6++KGZma2OjFOS37f66s8t\nOPmU3d7eoXKq9I03VeknTst/9qp6vToUu+dGKDbPuK9nvOVvqHEmTWvOKoy/z4/oGdTnRMfmE3rm\nHKblHz5zn55nfxXpGfX4O0fNzGwwo2fNF0eOmJnZlwZ63u7m3zczs8Sm3mcrYrKkxjRo6h+q84O0\nZsNYTnGG20d1kuQL13WSJPmM/N2BMyrvX7bkD44O5H9vbulky/5Q/7+4Lf/5aEonXCZzqnexqH34\nvrYmw9nTv2dmZh+86E4FaN25r3rA/mUWM2Viiy222GKLLbbYYosttthiiy222O6B3VOmTOaaInGv\nP61o32JT4cmrFTFg1nuKKD2xq8jVO129Dj9WxGweVOzatJCIg5f+wszMpgvSkKm/qgjb4pwichtz\nirN+2Qd9rOj+W8uKTT1SFfPlrVFF+k6nFvU9In3fP6/P5w9yFvbd3zEzs9cOouGypAja2HnFp1ev\nChH4wuQPzczs7Xd0LvGZ5xW5q39NEbhRXxHB+p+JkZM8rGjmkUlFLN++pXY4/IZ+d2lK3fbEIYV/\nf/WKvjd9VeXKZ3XO8MiGEJn+R5fsFKHc5Tmiew+oDd/aEDPmocdWzMxs/TUhq4dLioIO3n9JbVgU\n8+WDo0IRJjaFqlxbUpTy9lvqw9ZTirx+/bz65uVF1eXhi/qd94CLGu7Nshw2HTQc5QRkL/Hp0H6n\nT0g80vcikMYEtIU0CG4f1CVq6XuhO78MhDDgrG3asQK6+l42rd8FRV2339X/i1n9ftCFmQK6EgE1\nFEBWwxTlB7mM0BsJIlCYFOXtOc0YYQEZ7jsAO/C4j5cCtULfwoMJM0CrJRlQ3hRnh9EZSYH+JyKN\noaTntAJUvBCNhAHfG0QOUnFaF+rHRJofONIC58E9tBYGMHzSQBiZNugW0EkIi6NMuwxwRZAJLCw5\nLOWvt86GItg7PY25IQhbCtS/T5tn6fNcWZH06YOKyE8saC7sXJMW1caKkDUfmGX6caEOhw5qfkcp\noRQDnzP4FxXhb1zX79oDzccBcBIgjeWArfoVwU1H5uWn9jMXnR5S6MY6TZ8BzHAo9CBU2yRqIJNd\nGBnTmpOjU/KjpYqQRUObIYAhMjmvz4u+6lOH7bZ9S4y+iDlSyXOmN6e+HnIe3mBdQJqybJ25Ajre\n51z3zrr8aWpC5SlkVL4hrIjuupCFLqyCvK/r1NHaMVgKMyX592wkBDTsCVmZHKF+e7ROQ+2boZwD\n6u18yRDmTsKNG+bkEG2BAmO50UaXCgZAh/PxA09wYLHAnES7ps1cTKLXYS0QXvDCjKf+7kUpC5Ka\n9+UGejfo2mTRO0iBNfb7buKh8QLdqIO+RZaz8e2M+rAIKh5w5t/5kWRG128DxaZy6HGgE5Rudvgd\nDBDaYNhS20f8PoO/S9MWDV/X8dL4Q5gefcrrGHOpInpGjOUkDJ400GQ3AhvuqLwDD+YPkGU6KYRx\nItDaOA0TMAPSWfTc7NubpUfRCKPcBkNoG82HKCEstIM+U31HfZ5iTgxhMqVhGfi+1r8gq3oW3NxB\nXyRLv6RhAvHWOmDBTs/CRwzGQ3PG68AeKOh++fYnKH7aPOvCbByBrdCYkH8ujAr9G6xqbo6jw9GF\nDVFC26fPOrq9LWR2vas5l2A8ROgx5dAJWTigvVl6v5xVnnWykPCtEco/FdoqUydkDKCD1qLPEi3G\nMqxUg7WTg2kYUdfAwfgV9VWxp7FT8uVfsmmVpYE21yGYKh/7aoNUpD5L+Pr/TvXutsHpgmPnqpzj\nc6rzSE9tu7misTGEMZhBqywzrTYb3dQ6lcs7JovatHlTbXwrIz2k4ihMOk9tPHdc1x9Sjw9h/CQq\nGhuzh7XvS3ra0zX7mhtBb8XMzDaqun4IDaN7C9YdOn1TB7TPTDG3uo5Zuqv1szSleo6dECI9c0PX\nb/XUfwfzaKoV0bdLouOxKX9e3VJ5raP2b8LSnZlSf5UmRvme5jJbLystqV8XoC9UofEurwjh7qA/\n0mMvMzWp6+yf1e+qV9RuZmZTpxdt4+xlMzNbg2k6sqA5cPx+zdXVku7T7KL5FWkOJP3A9mzvam//\nEtSOMtvV6Uekk5mZ0drbhbU6Oqs2sD7UxHHWaHTx+h3HjFRfJ3tq+xR6P4mGXtuwx476+n5in9qi\ngh9roNOW6KJfl1ad/A7stDK/67NejGrsRrRFOavrdKr6fgbuSggLNckcHmYdpVtzobeJbhSUw2io\n+uUi/HkO/45mTgedpSKaWbU8fqfJKQiW0lxSewInu1fMowuE3x/SHkVYel5N5RmsqX/qtFuS4k6k\nNYb7RY2Bfqix5sOm28KnDHZgW8OOzU2K4TJ1YlEX+m//Z9uL5W+JdV2YedPMzKpbsLU6aNiUtLd8\nJS/WdeOM5u6+rHREz+5qHGX6Ks/wjOp7vftdMzOrFKWrMnhIbMF19hz169pzPnBq405ZHqs/a2c6\na1ZYXTEzs8MPPWxmZhf363n81WW1yWfXP2tmZnNfVp0vG314U37i+rLeF06ic/ei2tDpbC4f1gmV\nQwvSiN18V2V46ZDKdPKSrnv9uDp5ZUVj5aED6pveL9AJ8sW8OfaC/NTNUM+og221Zf4PxR5KNDRG\nfnmCPUdDnT2iR2G7ip89mNT+9wumeMGao3ctaXAN0eWZf0rff+tVPReMP642n1n5uq43rrGVuibW\n0uQ3xXy83tfplERN+qpmf9N+m8VMmdhiiy222GKLLbbYYosttthiiy22e2D3lCmzc1iRqYNXVszM\nrPOQIlTjnKcLrigSdr2iSHXlXZ0JW5pRiOvd+xbNzOwzgSJu311UdQ78jDNbB18xM7MrNxQZu7Gr\nyNtXUWVeflCIRfNNsT3WvvyumZmVQVy+0xbTJj36NTMz+/26WCPDEUXepkBM+m9+1czMBs+/bmZm\nt+57yMzMttb0/fcKnIN/Umfv7KJYKG8fFnJyiIOOqadeVbneUWTwqVEhyYUndfZ1cEPIwOORmDWd\ni4rcjY8J9RqC/Ecf6P2ZxGkzM3v2Ec/e7yja+cgbK2ZmdnNGbfH8O4q0fvQFZZJ69nGhCu2bnI5c\nVdzuXQUF7eg5RXB3ZhVRn6oL/fCfVRs/CSPi1/O67mxdGazO3BR6U18l+rhH84lM9/ug7WjGGFkf\n2rARMjBU3NHSIYhwAlX5LlmHslxvCNoWESLPg9B2Ou7wLNooRNxbaLBAuLEkaH8P5DfJ4ftBByQT\nhksaVkPIGfxu0n3usl2gxQCDJCBzi9+F0RM5FoK+7oUFygtqSFYV97mfAJEGxQ9SnI8ma0iLzBRJ\n0MehY+DAvEkkQajTaB6AQmZBXocFWAao+mfyLnMQeiowllwmnRBtnChD9hW0H0LOx3dchiDavQTT\nxpJ7d00dsg/5IKwLc0Ly8mWNOWR8LEUGqLl96CSNOjRFbXx1A+bJuNCK+06I6TYBUlcF4W3fVh/V\nr8k/XbqoCHiZs/Tz8/I/pUXNpQJaKwPg+xJtnJjUfYboaiy/revcuiokb7QslKo8Ln+Tdm0C0y9F\nZoLcopCF+07Lr0XokbQ5c++Bjg1q6AahVr8RLpuZ2fay/OD2lurj9ED6MEnG0bKpHFC7Vddd1gwh\nHEPQ/DQH1X1QqwGZEjKMgeI82jbn5PdroPURv8+Oqr+CDfz4YSEM+w/Iz9Vc5i9YbVGGybhH8xlr\nJNGwfkhWFgNpbSYpL2yNFMwZNIOa6Gr4ZEjqkyEoIhtJAm2JVv/TGdtCMmlEkdaBehofyJx17BOv\nn7iD+tc59J7HfzlGXA903iezUx/0qU8WprAA8of/cvOpBvziO4YGZTU0aaymPhowxstD2FUwVjJo\nXvUcgkp2oMgxd9CEChxTZQC6FDqtKLSzQFpDMlJ1aaMeiGuBTDE9/FYI0umTiSVIaqxU0N8okrnH\nZRzruwxksJES+btjZgZdIG389AjZPcq0/wC/nupqrPaPq15Fl60O1liIjlCKzAxVMoYFlDPJHB06\nhiZZrRzyfeuW2AId9KP6jKksTMZ8GX8OnaBTd8wps/ffO2ujLvNPXnO2sqDynjguNsUh9PaKOTLz\nkBGo78kXdDZZB9rSMnDZDV1mtVLBZRqSj0pR/xrld+tBMmxZuoGWFG2YZs3p0wY+TItOEhQ/cJmu\nWMPI2haSlS1CUyqCbVnM694+Y8unTZO+vr+xKX9T4vtdGIkpWLSF7N3tSbY29f2Na2JaHEA7MDdJ\n9pA5lefmMiwqtMpyBd33wAGtT9269lg+zI75Bflxx5pdvyb/2rolMZZPAAAgAElEQVSlDJepkvz7\n4f3yi92DK2ZmtnkNFtd9rKFHtO4Ut9ECQ6tlDIWRMky+2+hDuQxuRZggIdqEdd7fvqn99/Z57Ucf\nIBtfizl4+7LKUajod0UYljaDD4INN17QuvjRuXNmZrYLIj91hGxIMJySSZfZDNYeGmybVd1vB42a\nXbQvBjBFb5wRAl1bVbvOLsHagv1hZjY3e9Q6rF/BBtmcWMcnpzVX8mjm7NwQ89Ul/EmN7p2ZuTbQ\nvPrXeX/631UWyeK49ujDitPMUp0TLTI+jqNfN3RZ5/T7MMlYgvmchzHTMZWpn9EzQnYB5nVVdR6m\nYFDkmUPse3OeGBoum1KbJqqQ5S5krbOeYyHpfa2LjhD7ywYZwbLoMzl2cpuMiYamYXmf6tcj02EW\nJmUTZmcaf9tnz1No4tdgX2VhbGenNYdchrMuGSoDdPdqUGaSaLGNwPzbhYGagG2VPKJnTR9/NgUx\nO4DB6fTmxjw9a/UOq15jkct6qvqFMJLS7Lt7zU+yGe3FHjggf3upo2fCZx5Ue1wYX1G50Y58PqGx\nev6wnjW7H4optfSCy3wpzZiXN8U2meCUxQLjYjMhvdZ+8EUzM9t4nSxODWmH2r9p1hvWLRdMW/KU\n9GauZPRs5/1C/vOJqc9xDX3+clN9+/tk4Do/0PNr4aTWlsy3XzYzs5FnNWbXuyrLMU/P78NzauOJ\nwypLq6rn20pD/iZqPmNmZkeXYGG+r/1xLqfv//xptcXzDT3bnrulNnq9JjbazA815hqf0f69uP4j\ntQVj/+CidFDPnlYfH3QaWMvKgHVhRs/9X3hZWZ3SA51keeM1+eHb7HHub+n/vymIITNR0ucPwA7L\nkgXuxrzG8I11+bu/ymKmTGyxxRZbbLHFFltsscUWW2yxxRbbPbB7ypR5+pUZsz8ysw1Few9cU7Tv\nlZ7OZv2rviLf3/3om2Zm9rUlMU/enVdk6/ibiqp2FkFcfqko6k8eFBJw/5YiZq0DQp5fOK+sReea\nitTVs4pyPjSpiN7Nn+o6lZyyHn3ri6hDn/nnZmb26hFF3J78mMNox3S/UaKx6yVFa8M/1edfelDR\nyitn9f+VvCJs30fF/tEt1edCVUhwkJPGxNJBRQZrVxSxnLyiqOjlSSlx3/4NuewfVWR/AAp5GQRo\naUnt89CC6tfe/lPr/kZRzss6Dmj17IqZmZ3krHoyJ3bP+V8rcruB/sP2fWrDR3+gc3q55zhXfJNz\nzJeFFt3mjOzFdUU/x5fpm7zK8MjnFUH+mQmlsP/V9mR9p3oOEyUJM6QDYyaTIDLO+e0+uhkDzqun\nyORgIL/pNNoIaKYEIegcmVAyKZeGySELeptpg5SCHHug5B6ZADJoy/RcZhci+G3YVHnQHC+r+6db\nME9cZp6B07ZxmixcH5ZBlow4FjjmDGd3qdeQs8E5j3KjAB6h8dAlS0gSGf0AZDpPthOndp9FWyIE\nYY5AAnopEGeYOwUQ+BbaPfkM9e6RFQXEIoTd4NgATQegJBXhd8hwCIrYdHodd/IG/PVWnBPSODYh\nxHL/YUXkg7ruvdXgjCuZWDqgLN667r1NBq5iRd+fnBOaPHpo0czMVs8qgn97Vej19rquN+hqLBcn\n1Ub3PSo62diCEMEhKPfuhhghWzcVSd8qy99Nkc1h87bmXPUjadokOY89ioZAEV2Qxpb8S5vz3Rsb\nQjBG0JdY29Z1kh66FWR8qa1pLLRAuXpoC3S76qvChOb6oSPyj9ki6D1juHBHm0f32UJXI4JNNTqO\ntgNItbuujav8h0/LtzRX1V5r6/IZiaL6/OhxtZtHKoi5GdW3dL8YjAGpHTp11a+bRmyg53Iv7M2y\ndzIAwRKDZRBlVf5sCW2Hnto5ArFNMFbDoUvx5qBTjdFEH+QVxpVHeyUitVeWOdyCNRf10ePwhX4O\nmftB0SzdU1kS6NsMO+4Mvj7voYfhhRoDfZhqEdnpKqTrGcBs6OA3c2hNedRpAFsraoM8wrDJOS0p\nEFTrki2ObEkc9bcMZa519Dsfv5AqwOTJoeEVqC+DhNoobFYon8pfGMKyKsGgc1npumShw68GIKWZ\nIesHCGIEQzLJVqaEBk9+SF+0745NlWbMd/owDNF6SeRVzjIsjExRPidAN2ikDP1qnHUFpLjqskfl\n9D4Ns6i7obG8CzK9uyk0rZRV+4xM6/pH0JvqN8lKh39PweLa3tZc3m5+wggqjs5ap6M5GnR0n4g5\ndJX1eGpC7LsO5WzVNK76A/rT9QuZ1/w8mhf0a6IDAg3LLNmSr1l9R3P7+prQ1O5OzUL0hLJoxASg\n7G5t9po1PoctgB7Z2Lg0PsZn3BhlD8Bak2Oe9unjHdxCLqcx0g4c0435Dass4Zhu+M1hz61+ezNk\n56zF+nKLjF2zx9VXKafZgv7atRX5/wMj2t+lJ9R2127C0AlU3kmb5zrqm1xBY2CjRDvV5e97Q7KC\nwkhprYnhffWc6jO2sKj/F1SOGZgiLbRoik4Lq6M+q5PaJvG62mVkSevo3IzW0d6iynnrQ+2jN7ZA\n6Q9r3ejCTLlFPW/ii2Zu6//Hnta6UkTPqHBFY+QW7AWXCKeAUEiOOXDtOhqJN8Vk2b9P63IuyfoA\nw9Jp7LSYA2urem4I27r/URj4ZmbjE6OWekjZUm6taX/tWGw1sneN5IVkN7Y1J9tk8ZraN217NtIi\nOd5EjjXWMQu9Jvpx6Ao5Nm+StcGxQNOe2sJDQ6yV1hzou33crj4fgVnZhHE3LKgtUjCgB2RrK7n9\nnWOLtsgSx9xspXQ9l7SuyT7YbzgtL5WnzRqcYo512LMMYL5kCk3uqxv1YDNHA5fh0mluoWHIWjpg\nT5RyjG6yexoshsGufEQLNq6PBhqyTTZElzRDxscajJws68kQZkzIRrTiMkKyDx7A2Cny3vV9EU2e\nCCalYwZGprnQgdlULN3dI/XFN3S64sFHdQrko19qrK+WNFceTYt99p3P6BnxhTa6iFWd4vjJmp4J\ns6/RTuPao548qz3oz3LSp3rmtPpj5IxYapU/OGFmZhtXPinLcpSzK52a7WTExDtB6sUKfXPjsMbs\ndkX3+Mzrer79C7KijRxSmR/+tv5/5iRr8ZlvmZnZ5kENqktHxSypwDY6nBMj/Tjs1htp+bnlw6+o\nrgelh1NGE7I7K63Uwcvyl7cOq6/mpxfNzOzYlOIIb6EZ9aXX9Wz6UlrPsvvCFTMz876oet3fF2P8\n9o7+n23qGbfYkUZt+6j84C8jff6VK2rTN5+Wf7iKhuwIfZV+W/75pzP6fGxefuZxRBj9oy6H2G+3\nmCkTW2yxxRZbbLHFFltsscUWW2yxxXYP7J4yZTYmFb0dPsmZUc78P7WsiPW7txRROpEFPXtf0b9M\nRYhEpaYI158Gon98jewk6zPSmFnbIpNAVmd435hVFLI4UCTwwAeKcv7qBUVXT18SIlBP6uza6p+p\nPBsP6xxoY1kR+YCzzyWOmK4fJ3NEXZG2hxcV63rxuM4Jzu8nw9GK8qqvo/be2RBCXHxfCtvHjgmN\n+inn0u/v6f8cmbMTH+ts8W9mddbt6UBMm80JRdXrLwpJ2J+HcXRAkcXj0w/ZY4+p7G9MKur4rTfU\nJj8/rnPCnyWCf7Mrls2jp4VSXB1RHy3nvqyybqgMD48KgTs/+oKZmWXfVlse6KmwHz6lc4VRnvN5\nP1NE9+BQfWf2v9heLAnK5ZJhhOg3ZHKK2vZQkU+T4SSV1pjxQauHnBGNQHhbpPdJgCJlBvqHR0YW\nL3JZN7g/Z/ijImfoOUPrGRlVQL8baKkUyTSRSGkshU39vpki21FLEesGWjV5GDdlF9mHARSmdL0A\nJk4K5kgLpDLkfSLSWMwydxzSkgSFT5DpwEAqsh6IOxo5bcrhwZxxiHgfDZwoKcTFBwkY9kGCydCQ\npT+MdvBhFQxAWHowX9x90w6tBIrxYdQMYRIlDLYF2Wb2YgX0eBybqnZTY2IDpf3bH4qB0myorYoT\nnHMeVVkLkRABp5PTuCiUd+WcItx0uU2RyeD+iUUzM0PiwCbnhBDkQS43dtXmDZDD5TfEtEmS5eLg\ng/rh2rrOzq5d0WuqrPLff1JzdHpec3R9Rcr71z6WJpXLKOCBpk2AwmXRSGmDPFdvkClmR8hDGHIe\nfEaR/MVR+YupA5S/qNfarhCQNAzAEDZAHe2vBuWeWFJ7PPiomIUe39++ofuVYYX5SfX9elUIQ6mo\nci48qnbcd1D1bGyqfCmydqSA83bW1I5eE8Qd1Cpxl6vXEFZCG6YL5AcbgEJ26eg8viIFTa7D+fIi\nc8uxWNogwknQzARoJ5I/1o/QVwFN9EF2jbneY46b608rWpt5kXKoCqylPrpDKdidnTbMF+aLMRb6\nDEoPJkuYZf4iGtDm3i5bR4i+hE+WuBYEtSQMtwxFbvVhN8CCcshkGo2XQYReCGh1s4zWFvogGeam\nOb8D66iNfx0CfSbTZOlDc8ZlLLOe5nKEZkw3pXqUYfwYjETP1LdOn6Qb3AW6bWZeXvXGfRlyHOah\nr1T30EQItN4NGYO3QRNTaI35IL4WUgHa5VZHfm3IXBya1mUfDYfCqFC9FNozUyOwAGDxpRijjkE6\nUdRe4ljlk3Pqf+Pf+op1yZLU66HNAJNllwwZtza15wjJMmL0a0h/JgIYNuhY9Xz5IL+v+qdYJztk\nbSoEaI0Vdb8HT4gVkkj51kejIwPbp7qhPUcTLRm2aTZG1iCvgj7DQH7so/NoDMAELuSZC2MguY4Z\nmJPf8tZZ0wdoV5GZql8H3WeeZgpCPv3u3jP9mZnl+F1hRNfdWNd6MXVcY21yQnuo3bzuv/6x0OmJ\nCZVr/2H9fwKtxIvnhLhWbwgB7va0R6gcl1/MlLReNdvaJ6/V1Dcp2Eypktrh/HuCvQsXhVSXZuSf\nS/Tx9OI419P3Dzyg/WVU13Wvw/hptGBBPyuGycKSvtfquSx88sfpguox/1nt9bJX1LA33r3GdVSP\n3V2NvZDMNhGMygFzoXld1+uS1fDQ/VqXWmSl2r2mdpydXdT9lsSgKlfUnlX2arsfqv7raKfdvK1x\nVhrXc4KZ2cbGddu9JR9Tu6HxMnRMLl970yLrdAE22e51/b6580mmmr/OimiMOPc1TPEsQsbGPky3\nYh9dH/xKi31onj2NVRmbsPALDf2/DdvJK7JPbGn+5rKfZnIHNTIOZnTfKv4804AtBhMug3ZMSPki\nxwi8k/TUsUXlh1NtrXlJNBXzZCh0kioeWYkKRX3ea6IZQ1a2EtosiZbu22V/OtpBfxPmNB9bF+3H\nIRpoqcBpROr/vSH74Ix8RoP1aNggmxJZPh3JdsjmoU12qIJpQUt4uk6SfXyezUCfdSUgG5bLSppK\nqB1SMNnbhbtj73bHNYeW51Sw8Zrmbi6hOWWb3zEzs5GPF/WW9TT6ivzrqR9pzuSelK8YvaTnr95D\nMFT7ev34qthjNz4vdkn+wg9UL9a7v2Vm+8fftfszX7brZ6S1cvuU9pVT+7VWvP+e2mJsQfvEHnpr\nL5RUlrfOSoPp17CpcmSbqxa1Hx6vKxvRY5uav8XzWrMutMgUm1BdTralc1M/ofVg5Kz8a/Zj7Yv7\nGd2v/HvKapx6nayiD+r+r7+IpsyTKsfOGxorT47IL62gSTa6obGxtiqmzti8/NDLI6r3qStiLzXa\n8l/H2nqOePG0fj/c0LNvK6c2/izZny98Vdf5elKarleu64TMD9e1fz80p3r9gf12i5kyscUWW2yx\nxRZbbLHFFltsscUWW2z3wO4pU+ZSYYY/FH28UpZ2zFjz22ZmVq0ogjUk4n11lnPpO4ryjj8lpOEP\nX1VU9c9/XxG1R7pf0HXnxRjp+nw+ochV7y1pxMwDlRa2xAK5zPn0JytidySGUn9+v/h9MzObBA06\ne+xL+v3rYuTkt2EhnFR5roaK1JW7YuaMFYR+jQyFeFyvKtK4XFBE7cv7Pm9mZn85oyjowlVdt/15\nRdhujejcYebNr5iZWe6UIneZhBCP+qtqxysZlXueqPxXPCEc9deum2WFIhwgwrw1q2v0V1Wn3KTO\nzS1khNb8qKVo5Gc/UjSxXlFUMlfSWcSdouoy+Zmf6vU1te3t/fr/0+/p878cV92/9oIita+jj2H/\nm+3JAjQQupzJ94lYm8vIQFYOz0GWTjsh5Hw66H3aHRuHcpNEjyIBw8QlQ0qSFagJcygJguGjD9JK\nq80z7uxuHoaKCZ1pJjj3zpnZnP9pjYYErIE0iPAABonvspM4JgnMlQ5MHw9mUBZkwuN+Hc4uJ0AQ\nkhlFcStkwullQNoHZNcAVYrIWFEEeW667CqJxKfaD8DFQrQM0qSuCQboY7gsT7DUCjBo0iAVA7Kx\nJHto3AAkeCAnPbI5DWmfEEbODNll9mI9tE4SG6icw1DobAkBbMCYmQU5nL5PTLlhR/daX1EEfWdD\naHB2lqxoc0Ix0uOwDxg7PTINjJKBpAFzo7Wu+2/dENqxu6bI/eS80J/Fx4Q8jk2Kebd6UXPiZkNI\nwvxp+buZg0IzdtEHaaKXNHdQCENuQn2eqaHzsU+IQxpWRZ0sUn5FY7U8gSYDiMbMjFCV/kD3XTmn\n+lc7QnQdgjhS4Fw86F1Axq8Ec3KkIiQxQWazzrbQ/y5jzeleNEE6w7Z+t3RC7Tq2Tz6nDpusTX26\n3K9zRQhl77b60S8K+WgxpgLYJHu1dgLWFlSWXkPtk0uTccHNacZip0UWpqzaoQuKlm4zR9AG6zE3\nyqCexmuGuRygZeOhlZFMMAm6LjuV3rZ6TcvjXzpufiU5646GTBZGSVChT5nnIVk5EjA0evjJHBml\nGmU0uJhfKQ/mHsyLFppRfqDChAX8Am2UQG8nmaCwDV2HJEw2TMLAITtRsQ5TDo2ZNgyMPMmeirRZ\nL+HKD1MD5k825zSqyNKE6lUqhf/F/7fx+27M7dInxZJYAb3k3jOmmJn1yQ5SzpMpi2xTbh3Yvomu\nB5lnervoMo04hhLr5VCIrWOJDTp6PzYDK21KPmBxhswzU1rDx0f0/TfeFFr48o/FhrWqfFgthEEF\nEl9Cf2nxuGOgmu1sNCzD1o6vW8B6naioHt2G/uExpx3DJzlkPcwytmE0lfq6XjPnmJFkl2poXLb5\nPJVSeYroDOSmxi2CXRmNgTBOqm0PocPjQfvJlKd4z5iBSXHtvBiLdTQ/dmpqy1JF10mDWufRy8mz\n5qby8pezZFlKkeEvnXX6TPp8a+WS3Y2lycIzwnV2mXMdxvzsjNp24Zj8+fKHYl7fvnaL/6uv52FE\ndlnbr76len50XetGfkvfHyND1uSS1q0S7Cjz1Z6nJoSqr17WPjeABbdT1e+3r5H5q40+0YLKW5lQ\n++XGyFJFlqWdFe0VL4+oHodhfBcjfe8SzM0oo3odPqX1qlJS36+TTXSdLEfXYZ7eV4DZBANlbajf\n3/hgxczMQvYgBx7QHnL/g2LMnH9ZmWOuvgNT9LiuO0I2wBlYJflQTHqPjKH1G3puuHD2E6bM9XfO\n2zCnfUAV3cHMUHu13arWvVJC9RjZr/Fz+7rapQEDZy9WZT/nVijPkbHISmkwhHuh6pKBbZmEKdlz\n85K1qplSXyVgnqRh7kXoIg1yMI5h9iWTmiPdosZIiCMooOGXQKcog8ZMlQyR6ZoKOuB0QsAcSUOZ\n6bJn8kfcmIJZl3IahPpdmuvWO/jPSK8R2i4MJauS2irZI4sR7Asn8+QyqpUbel4ZeOq7VAEmJGzT\nJMy9QRtGj+f8uMrVaJHVj3ZLZWAKeWRAJEtghUxhPcbikKyjPZjuCZj1ZZ47WuzRcrCJg3DvDG8z\ns+lT6AveEPttZ0ljOGkas++3v2FmZk/cfsXMzN79onxGb0W+cPFr3zMzs/YZ+Ybl++STJs7Kl+w3\n7TmvkL3vD65qHDVn5Zta6x/fKUujVbQPW6/biXHNu49WNN7XW9KYKkYq28Pval71p9UGPz2otiu6\nvciS/NcWLNXf+1BrWeY5Pc+eI4PkzDd16uL6u/TJ8YfNzOytaxocMxlOqDBnFh9Qn1/6SG1zsiLt\n2cGanvObbd2v/Tntv0e/L39Xn9T3awuaz2uvaqwtr0mX58ZptLve1PpzitMJH35RGlrPvKP5Hz7y\nnJmZTZuebc/vKkv0yaxOgaw8Jr+x35d/e+nHi3rflf+rfF3xgJWzxD3+CouZMrHFFltsscUWW2yx\nxRZbbLHFFlts98DuKVPmK2SUeO+azlh961lFHd9L/CtmZnboQzFmykVFM88c1Bmu+belzTJ1TpG0\nH31J5+ge/jZo4om3zMysl1U08bFtsopkdFau8oCu33xPKFTu8IqZmZ1+RxG5N3aUqeiR67pO8rii\nmWsTivQdPCvWyOgJMXIuNl8xM7PGPqm6JxYVcT8AUvD2AaF2ltX7U5NCyG/tqPy/nlY5v0QWlpXP\nKeK2/YrK8/WUNGRu5YQUTCSEbP/ZD8TYeTrDOcy0IpibD6q+P67rLODxqb6NHlCE/Miq6ra+oAj0\n/IKifv3vKQKceFZlnfB+bGZm0zPqo3NQTTa21Vbpmlg4k3ld70XT78YritBe9543M7PouNom6j1h\nZmZT1U8is3uxIWrwhrZMEhR94CL4nAdvIwJQgEmSJCtTGqQv8hWNHZj6cgjSCqnozvnmbgoGjYuM\ng453SpyxJeNDCPptHdB13hZh3kSwNQLYV0a2irRTyW9yFj+t6wcOqQR9M9T1k+56nCVNZWAvkNHF\nqeT3UYVP+GRvQW0/RRaSJohvgYi+oUUz6GY+Vc8U7XpHIyIPMg/SkYg0DoYuowXlJPhtbcoRoeaf\nBpEf5mDKtPS7LgyAJArs+S4sFLLLGOfl92Iuo0zLoeqM0daO0KKpA4r8HzgtlKE0prF6402xwrZv\nKxI+Mik0+b4HlfUnURAiWdtU5P/aRSGEAd9vgtCNj2v+lQtCDJu+xlZpSZH7pcMgnFO67zYMniFo\n2gMgpnMnhBSE6PPcek9I4lZL9ZgAYfQRSNoYaL4XqxrTM4zxsAUdijmRyQgJ8ECFbl1X5H5jWQhx\nvU4mglmVd/FhoSijaOQAKNrQ6RsV1Hdj9+t7EQyXVZCVDGOkSWaXodNJgvXVga5VW0Pnokk2p7ba\nI/DRXNnQ54UpIRjpMfXH7gdoKtyhv+3NCqBFPWC6JKy6KAAxzpKNCY2BDMh7nwwMIYygBBl60hnO\n4bf1/UECfZWCvpdibgz6ZBqCJlKH3ZGCVdJAFyuTzFgPhlqBrHjtAL+HplWHM/Dptj730mROQQ8p\nBVOt6xwSjIcsmjQR7qVJVosESKDXQ6MKf9hzOk1F7gdTwmnV1GHmeWQn8siGNHTUOshASN1Yn8P8\nCRgeEeh/j8w5WZDZNNnkIpc0KUu2nx4MPT42tGQKsNfSKccg0ZgNE2K0JGt3l32pU1d7bqA/VW1p\nrvZ30ECAseRnNZdLM2g6gNR6o2Tx26YfpzT3MhmYqDPa6+RG9HmLGvWbaucGc6OYJqPDCfmiEks8\nZAxLM3ZSZImqNj5BaG9evXBnnTT6NQIJHpIlJYDi5LJfDUy/dwykBtn/CvQLy5kVQLp3nebOtvY6\nbdrNaaCdr6O3lMjcyWCVAe3Pj6uPvJNi7KVy+jwbijncY23MkpGrUJBfnrtfTL9t/OE4Z/mrNfV1\neuh00lTnEiytVEZ+I8Ua55NRsFVVX9Zs72uNmdmQrEENt2aRDW9tWfvQ0ZL6Zva4kOX1dY2hlY+0\nHxvCvFtalL/N+br/9BLZlKrMFTJhbW/odeoQzDv8Ra8OY2hWCPDpz4o5stWW35xcVt9c6mrPdXtL\n60UNHY+HHlJWvBJMy/El7UdbO1oXVi6rvFnmWH5c68/BIzBuTH0dwDQZnVO7jmxrvWt3tU/1GBsQ\nJ20sLye076juV13V/6+vqR8n5lX+mTnNGY/1aOWCmKg3L2s97sNWODArJH90Wr7DL5NdCiZNVP9k\nnVg69eAd3/Hua6zjO5p7G9f0vjyqOXpgH+1B1qVbu+u2V7uT9RO744XQNsm00UHCX5PE0nz3zYHb\n/2mslFiEB01dtwvLLGOOoaZ906DvdPJghAcaW50BfteDHYqWV0C2Oh8/mSULaRDACiJ7UxJGSpn1\nYdhGWwa2ltcf4fdoWKGR5ec1RpPsfzMZXa9V5XO0a3yu24x03wjqeqrBejaiPY4/1P977GXCKt9j\nTzIosx6wxjbR+hol62ujrM9zsGJDGj4DsyZEf6rHfjkBc8f5zzJrejup+4TsgyOYmkHv7ngOV3fF\nxkhfUXttd29QHl3n6AGtE92B5nLqPf3/0Jzm4NVr2svVE9qbPnpW5XvvBbHNpl7U9z8Pm/D731A7\n5NY1t0//5nfvlCX53kN28OCvbNmTH3riiJ5/R19X3b53SGU9N6Hn3tYllfGLld+YmdnyhvaxJ0ua\n/3+Bft3Nrph373+sMjy6q+df72Hde25cZd49owy/M4/rdwvXVMbfoO332k2NzWeSi2Zm9mpf/uJJ\nGJbXdjUmntivvrq8pLoe2VoxM7ORbT2/P3BEfnobhqG3rveH57QeVRb0DHu0IL967Qn5l1vNX5uZ\n2f1Z+ZWlQ6xHH+tky/5ZjbXzG+qbL7Eke6dU/8plnXQZLJBB8q+wmCkTW2yxxRZbbLHFFltsscUW\nW2yxxXYP7N5mX5pXxP4xkOxfXVbUtcUZsWUF3uzx/WLILL2mLCbvoQ2xFgnptvbvmZnZ9T/QmS07\nr+jwgRFF/Kf26fPorCJlr74hjRiOB9rz31czdPKKBE7NkiHhtM7jWUlRyKemyLv+oFCyC68rSvtQ\nQgj32qZ+36uo4PPosbz1lpCAJ6YUMasdlKbCIbRgGk8pIrkyprO73bcUqcxNKGK4sqQzeY0Ixs/r\nQs/m5nQmbnJRkcFZEJblHZXjq4tCHF4ZfdiqkepwgGB/6aj+uPKKynDpPpDSXUU9l1YVHew/R+T4\nZdWhOCW05Fhe39sdV4R89oTQoDoI65NjQvl/1AYZvKxI/nDc9BgAACAASURBVEig8357Ns6b58ji\n48HgyIKmR6RSyEccpu0qmtqBJeCScwz7aM+gnp6KHENE1/VzqKwTqU+gaRIEilvmIqdZw1nUhCL+\nuTwMECLkEXDQ0J2h5Qh+hCp76CLpoIeJHlmk0KFI5vR7r805aSLmDZDRPhlfhjBeQs7rexl3phXK\nijvNnKJ+TsYCXY/Q0/XSaMgUeG0lNA5CIv8e+hkp6t0B0kin0ckA2c3CPugVQeAjxpPT2Riqn1Jk\nRfHzDnKh3cm4kQhcu9BwezCf8879EBSELA7TJw+amdnCI4pop8necf4cDJmrOtNaqGgMP/ik5pdX\n1phdeZszr+cUsS9WyA7xmFhiHtogKdPvSc5jzXOgHTBowrTKdfNjzZGdD3XGdbOqOThGlqXkhhgg\nzW2hSJuXVszMDEKNtcgodvuCIvkZsmrMH1a5ErAjgoSjT5G9iEw9vbaut0P2kyyZWeafFsPv6GG1\nUwhra0hGh1Zbc7dNaoX0kEw+G6pPhwxfw4S+34FtFuxqrt1ek+9JJDQWxtLynwNzY9jnPVmIavpd\nc1PtkaxorBTR5kox1pqpu8t00HGphEBeAjJARCndN9fVWBygw9SB8ZNiLmfxRS2YTIWMvu+DtEdk\nkylEThcAvaSs2q2PLlUetlyQcPodzMmoZ1moKiHzPoG/yri+Rcsj6bLiwNxL4u9C0iflfZcpEJ0e\nNKpyDRBWl2UDpkYWxHIAc6bkyogfcgyVHn4jN9T9uszjbB/kFBS8Rl/mG7pu0Zx/RPsARkUJBLKH\nf22EatOSYxmh15HMsSbjL8Kk1shOT3OlA8PGg+1UqakcQ/Sm9mok8bCmj2YXCPI4WjBTB8T4PPmQ\nWHG9NGMQ9kaXzImGnxsh01ufdtiuas400XOqbap/cj2934T6GKBNM3aI9i6ovmWXTRAhoi7ZSgb9\n63fqkOhmLME60SS7Rn7otIAYu2R36sMK61S1V7gJu7C3DZsNhN4vuOx7sA5go0yRSa0wK1bBzBTI\net6x83yLyKyXypBZr4n+T1vob7Sue2bQMWrB0imip9FGO2pxVMyToMca3BNzYkBWti7aUF4HBl4N\nrSofLcIIBgoshSFtuAvbaM9GJpvRadU9vIEe0obus76htpuEmTN1UIyPYKA2HvdZO5nrE3Pq6zQa\nZcMObDGYhpc/FrL80ftat5KwAPrM1cl9asfREXT+2B97++Rn95E9bvWi1p16Te2zUYZVMaX969EH\n9FqG0bTV0e/qVb2u14Qop/BNJRgprQZZr1jjp5ZU323Wu3ZXr46QVJ5Q+cZ7QvM7Se3Tt5a1Tuxu\naY84O63y7z+hdbnVFVO8TbkGN9Xel8gkliTD2ZCMYLPTWlebsMzMzJJ+1nrs+8fLPEe0xDaoXodp\nnlI9x56QDxmZFfLfcnSxPVgOBrCTkknj4wfObzEfcwP2W6P4aR5KcqxxQdL5ZfaZec2dEmtxk31e\n0pz2l8ZeB2ZkDo2wbgIGjmPOsLYZrM8ha2PDZeHEr2VarHGh5uguzBCf9afTpoYJjakyzJ1OymnZ\nkJ3JMax7js0EE512INmf5ZiTAZkkU+yXh0000yhnl/rnx/C3dZjdWZXDC0YpJxo57J9zzKl66MQN\n0TZj/UzQbknGUBbGZILng04IQ5wMaSHrkrtcpnd3680zKxrD/VnVpzymZ91ySRf8HnukyV+IfbH9\nPOy+tub6KXTrmgmx3W6h67R4Tv298YLYJOf+ubRpnnxL93vvQe1xPzjxiZ7WvufetI3o67Y1of3r\njR+hc1TSGLv/bY2BfsWxW/X5K9sq6xMNXftHU+qjF8gsuPasyryEllPyZzpdsd162czMDqyrjR+8\nxTPGvLRlb4+oL05XNT9fQy/upxnV6Qur6svlx1WuL/76Xd1/II0XO4x2GOWoDuT/1iflV5Ij6rvn\n5nWfn3+gcj7qk+74B6xbp/R5gBbX6y+pnkGBEzvsw6fkpq30oE7gXH1Qe4ZLW6pXZV3P/5+5Kj9n\n/779VouZMrHFFltsscUWW2yxxRZbbLHFFlts98DuKVPmQ09IaHRKZ08TPxISmjlNZppJMVuqHyqr\n0LWs2BtjFTFfuocVkZut/19mZlb8tiJxF04pMtV6U0yXs59T5OvYis7WznzuWTMzW03qLNjgl4oI\nLj+p+4/eAHUaVfSxPVRUsb2iCP7Kr8VoeeAgOiAtIQVbNZ09rdQUQby9oGjmo8fFdCn/SkhEJ1Ck\n7OxzinJ+AUrQzXVlWZq4T0yYFTRiFj8AuV7U/d+vL5qZ2XhGSMCF9xTJ3/WkD3P0CKjleUUkHyqc\nsfS1p83M7HxXGVasI8ZL7bRQjENZsQKi91HGJ8tS5idCZw4+o/jd/k2VeXdK914lc82Wp/Nyz04K\n8dtafUe/G6itr6DGPntKaNdeLYcmQgs59n4aVLuPOAIvQeCQCELuRMC7RHOtASoEMtsCeXbq8wlQ\nkBxsBJKU2ABkthcS+ecsrvWBVIneeimN2QDV9j4MnmKAdgqoeCdQdDad1fs2yEempde2uzFo1ACN\nBqedk+CMbAr9lAH1zKBn0XdMGND+XAa0Hr0OnzPEKZTSA4ceevp9EfZAp4AiOu0yMLVDBpbAgIwW\nCZeNBXKGk5TokwagCCOoS/mN7E3mMvSggp+iH0K0Jtre3jMddNBNqHDGvD2reTs2q/kcosFy/V0x\nyG5c1BwYndG8f+AhMUVCMoXtvKcxf31F369Myq8cf/qzel9WpH1nXfPeMrr/xlWyV+xqTkVZxtYK\nLLLbQnbrm0JMB5HT9dCcuX5GSOD6hq5DQgU79rj82PQ8/mgD1AhtgiSZX7ZXhSD4oNgeGWsa27p+\noya/FjHGDz0pfzR1TExFQ99j/baQiVZN9+m7udfS9TurqvcQlC07qvYpjatdmqD+3TXVIw+Dafaw\nWHkjS0J9kuhTLF8UWtOCKVRv6fdlpxdSVP2GTTJH5DU20sHdMWWiDuggYzvi/H0SBk+buZkJyeYF\nk2hIe6bI3pQoqDxhS7/zi2SioD0CxnqGOeVTj2FfiE0SXZgB3/eZPP1e1gYZtFyGLmOT7t2ENVAi\nW5Lrw8gxAdFVcv7AMVmGYLU+WdrCDAw+/IeRVcnwpyG6O33KnIJp1wsZU/iVIX1XQMejk4cJA6Um\nhx8LiujtwJbwyMbRx4+VyAqSQishl0DDC79lAf4VBNkfqO2aBRh+MPciGBx5EONeUXMsIRBtzzay\nX+1w9IjWYK8o5NH3QErJutR2Y2kHv42uSJ+se8Z5+mBH5WjsgoRvCckNYPe5DVgXJNZpeSXQeNm+\nrDk3KGovkGzTD6xzKTQq2vaJhkVUNGuBMAd1fW+jr4YI0J7pVMlKQkaZAeyTPMwXb0LlmaiRVapE\nvRgHMwfULvtm5DOLsDS6IN0OmE/7Sau7jH74kVxWdaqCsIaMsTYUhgJrUpfsksWc6rC+Jb/UqKOj\ns808Ygx20fvp7XJmH5S/01Ef9NNkwqItZtAOGe7eXcaULFk4C7CgdnblD9dqeg2va59ZGBfzMMMY\n7fC7nssOCC2rBNvBY07uXhGiOnl40czMjt0n/7+5LX/q1p8WWimbN4VsN3blPysTYnPlMk4XD30i\nst11NtSON1mn/CtaF0YQDPH36/rHTHNv/Zr2nTfPiB09wHWUt1T/zA3159JBMVM99mwRbLNsUvff\nglm5s6Gxl4TGvMA6fetjlf/qB2TbYq4MoCH0YHymcXpJxl4YaE5eXQWBhh3Y31K/l2EMmQmFnitp\n3ffQjkvP6f9Xz2tfcGtV5Ri7qvK6TJM+2pZ7MhggTs0m7DC/Q43dETL8VSMyecEwSXTJ2oZeUq/L\n2ITxFtTQyyHTYkSWpVQbFkICP8vGuE02IEhN1sL/D1xGNPZGuQx6cDC3G2iZhbDMorzqngvQZoRx\nmSqiBQaTpUuGrSSs0oRLo8QcD9Hby8OW65N5LA/rq8OcrWRgGqHtGCXV9032iSNkKay32Fcylnyy\nWvXpswxjL8l+0mmuVRBXa6OJ45O1qZfAHwaUE+3GNAyaIdT3BNkEc2RQ7DDmw7uTubOXWtLezF/T\nKZCRsjL65Pt6/hqwp9z8HJpdA+3VPPSsimmxMZKLGrOrb+nZdG1a9frCr9VfLz2vufH6qPZgS4Hm\nTmJu4k5ZXuk1rfTWd+zYabFA5wZ6Flxu6re131WZtnbEEHl8qBMfFool+S7s1iUYkTfPa/+c70q7\nKrP4EzMzy35F+6DeL1W2ek1ZlJZhSvZ8zbvH0Zh6f3HFzMwWUsrwWziJRt8yY+ND+a+f4md/Z5/a\nakA21fZJPXMW39c8/3FPJ0y+zJ7hBxf0u+mM9qFJX88DZ8bl74K+tFsX/kJjZHFBn1+9Jr889S31\nxfk/l99/qKY27syp3F9+QmPwwo9UrguHvmr/MouZMrHFFltsscUWW2yxxRZbbLHFFlts98DuKVMm\ntSLmy82fKGK29hWxL75ANDX9XUXObjyvaGT5XUW+Tt1QlPKjLIjDhCJhU1lF7ApVIm5fE/MkC3LS\nG/tDMzNbQn/kgaIigc1xRf5SP1AUdP1+RQ+nAiHbS0Rd0ycVtZya0fe2UFuuvqSI4eozOiNH0hB7\ngewdv0FzYnpK2jFvtxSlTN5QxLAxioI2aGdvWojL5C1F1T8k09Hho4qG5id/rvKeUUTv+BNipXR/\npfdbbyk6nkP3pZTx7ac5of+/83na4oqifOfO6zvjzyji+pt59cnQV13bK0ITelcVjXzrghSpn/8b\nsJWW9P99OZX5xe8qEv35bypaOPZrtfXugvrsxwOhH3u1fhLNAbImGVoETlshQHMgxVlPz0XM0YyJ\nULGPPH3eRHXdI8tJLw8zBgTjTpqJDkwRiB0+yHRAJH6IbkR/SKYWVO0jUD7j3HOvrMg/SSzuaLs4\n5MQj8t4DCUmDcBtn/cOiQ8z1carvdChQewdJN/Qr0tS/y+uAbEhJ4q/tFjoojnEDAj9w2g5pp4mj\nsRl1XAYfUL4OCIEHMk9Wln6ObCNDGEFo7vQ4+wsQZImsUK0ECHmIYModqR0YN465sxfzA43pnQ2V\ndaumedtsKuI+1pJf6aD7ML0gP7F0TJH/HMyamzDpdhuqy9KMGGiVk0InSrB4Lr8nVOPqOb1m85zr\n7WqsF6jsPlCICrpLHiyG/JQYdRP7hW6NTKM7saV6TO+SyayoV3+/kIs0yGpnBFYWKNTWec3Vm+8L\nmXBDOKBPB4wln3PtB06q3vNHVa8BqNXaJnoSaLoAull/ByYgji1JJoDpA4t6XSRLBUivhxZN+ph8\nxQRaELMHVW9DX+PGTTS4aqpXv69BPndK/nR2XtefXSDrEiw9pwnhNGr2agUyGA1dKgzGZIcxnCzA\nhmuCqpE5zOlPdWDdFVoqZ5AGicdvey1YJ0n5ohyZxHqcC3dD2otc5jS1eyvjMq4F5vm6djIFE6Kr\nMZelM5pO2qqlsZIlm4VjrjgimoduRcS9fLSvnOZMLqvXHtpPg6GuH8LuCmE3RaHuH4Hye4U6ZUez\nBT8Twcho0yclVxA0Cny0snqwHpIwaYY9Xa89ROuriDYAfqHvuWxuXC6vdaDA7xxTKCg6xwo63tFY\nuWJ3Z35aCHWf9aUM42+np9fVs2IlbG8KxYtC+ZpOAySbsTQgO1+WdWJsVHM8wZjJUo807I0cukZp\nNIQiEOsQ7ZcGGc6G11fMzKy2o+/VWC5yjBf7j8ze/cX7lh7T70kEZhlf7e2bfM5YQfcdnZVvzMD+\n2n9EvmbfrF5D1rEkF6qSSS0Nq64Oy8+x65bfV4tX1x1rwbM+mloF2KMl9BrKZKYKy7SFj99BJ8fv\ncg90zjrXtAfx0bnpolcWoN+RLpDpijU9N8oY6mlvM8jAsqprbI7l5beukiVor5ZMMqfwB0ePqA2v\nfESmGPypz9rcYg9S29F61GpqH5eG2bG7X37S2DtcXYO5Qra+8pL8X6+rsTkzLz8aubW+qT1VD6Zf\nF9ZWA70SH1ZqjsyOTheqsSYGzMfMfZYxK42LQZR4WPvO/KL2cgvbeq01HLNP7emjQZMdV/9ur8HK\n6mus12FqVsbJpseeqMceY+ERrUMPoEmxekXfa1LuLOyzzlD1yxZVjtkDGqNbPY2b2ZrKtVlV+65z\n387wE0bltfMfWuuoxkOBub50TAyfwbrue/2SEPNzF9BTQvOsUrqLPQlMYvhlloBB5jPfI/ZBlR5M\nur67Nvu4Nn2JDl7WaSmO4F9Yo4swOZy2idMZ8tF3y7DvC9FbclqJGRg5Q9YbN7YCGOFZGOlt/H4b\nBzwcopM3qu/loE2FZD3yWKd82E1+2mlZkTVUt7FmCiZ1EzZqGq0cWF1V5nYeRk8fH+AySvapb4r9\naZ+sgD3GjKElE6KJNkTTseP2rzmVqwBjpltUfTIRLC8Y8kPWzQR7qNSurtNKqv+yKTLJddFis70z\nvM3MvvgF7TkTWbXHW6/APB3qme7pvJ5Rhy/z/OOp/S+kpaO0Qia11fCLZmb23FfkU25uyafV9uv7\nqTfkQx4f6NRJOAPTqMue7N8xmxt8yUaPpSyX0/PlmceVnSh/Q/vF/Dn59lML8nfpa2KWXeU5NUVW\ntiNDnUDZZA+RnhcDvDqieRdE8tNv+6r7iaf13PzwG4+Ymdmts+qjlx9Vm8//Qv5oNau+OHpLbf9m\n+vNmZlZ8UH6s/I5OhlRX0byq0kebapPbBxUPeGhV8x0pWfudwqKZmf3kqurTuaB/PLUoHZ6tlPzJ\nfYvKSPzxltolndT7UTKk3f8Vjf1yQ/va8Xc+Y2ZmP9xSnx45rjXyYuUvdGP7ffttFjNlYosttthi\niy222GKLLbbYYostttjugd1TpszR22fM7G/a4GsqxumGon83UDFemND5uCMbipAFNSEKZ4uKfJ1G\nXf9Xl4V45EYU6ZrukJGnpvN6B8toK4wrAr5eBmVr6Mzve7AHEt/Q746+JCT4leuKDM4b0eDDer0Q\nwIp4S3nLn+woWjp3Q9cbu8oZ2ieUgSh/S2fhVkHHElcUeXt6Ae2Jt9Dd4ODn8Y+Ewn3w8ZfNzOzQ\nnJCTl86oPC88Li2InzWlVTN2Sddf/pwQ88UrUqvv5RSFf3nymB3ZlfL07V3p10xc0PtHE4peNrK6\nx/xraltvRNHAa1mdvwuWFJH/XKgo4y+vqw0ee1+R5ZWKopCnP6uo4JkN1fW5rqKDfc6Pjx9U5Hev\nliUjSo2zn7mc7tsHsfOAuwdE/F1mAOujVQAKlOLcdgvGR4HMNC37tCZL1HWMGNWj383xexglBP4z\nnJ/soCcSpXqUl2wlKP5nGkS+yV6RSTp0z2nggLKjITEEVUtxJthpCAzzn2bmhKjIFyIQAZehB82H\nfF+IQRf1+1yGiDkIQrIPcsL9PBADD82YXBbmDOfSO2gqZDMu+xTtmuXsMO3UIptViLZOHu2cIZko\nXKaaFlljCiDSCbQ0IlDQbGXv8eKET5aEcdCjJTEtcrTB7avSlAq6KsPkMbHB/ILqtrWisd+q6vdl\nl1kqowh9sqW2Wq9rvm6s6vvjEyrzDEyWOplaupH8R3ZKiN6A2HeiKLQ8D7qfAQFs1NEqGZBlaETM\nkgjKS/O25nFtXX5h/TrMuhpoV0tofUj2jokZoSIZkON8Vq9TB/RagYETMCc2bpIVrgViCpuiVpeO\nxQ4oeAb0bfoh+Zf5U0JGIpDS3TfluNcv63rlaZUjMap2qt9UPbpk6tnpfjpr09z9QmAOot0TNdVQ\njRswaZpoNpALKAzvjikTce7dw0cE6EOlQM1yLfn/gYOMO0yqIpoCjKcIlhdgmhXbzAEYL8FA9fHQ\nPUmQTSUFGOqYOj2PDHKwYfJ+0rotED8QsUEOBksXBI+sRtkSWjNgsWmXuQpksANyGDFPB+jv5PBX\nQ8dgaatQA3RuEmi4BGTfyKb0uYd2VK8PMogW1hBENE3d0/iLdp01G7/msrylyQ6X5fM27LOEQ2hh\n9rTQoMlQrgxMyChAuyUJG8FTW7vsHoMErCcPXaKs5txebeOW1r/mDhnKQE5LFbKbICuxlF/U/Qtu\nDuh+HshxOq9+iWBy3mFq9l0WFNUrCSMzTLlsStwnTyYZ+necjDv+fUItD6P90ifzmcHeMDN7/GtP\nWgb/7sO0GaQ1njz8dYbsLqOz8nG9Jrodnsu0BhPIZeOraX2t78J0RSttoyGf2avpdwsn1B73f0Z7\noWFQtC4aH2kyU4UedcbXN7dU11pX17rWVdsP6+rrodM7Y60OnWxPRm2QmYRBMonGCVqAqUnVLYu+\nRz+nvvRhPlfGYYz8omp3Y1XqHOEvfTJP5Vfxl7AcPCb8PNpl3mPS9QtC5hqs24A9wLAn/zYCg2Nn\nW+/7vgZdtaf1J7ul/w86MBvxIwtziyoX9exVdZ/8nO4/ntJrhsyN3iYLEdox3QRajuvqy1nW6Cm0\nc1pLYo6O0F/bDbRq5oS2F6alWZPs4A/v115x+aJY2jmy6KUz6h+XPau1CzOV7E+T+4V8d3blE3Zp\n79ZNjb2QPVR+TNcZoZypw/jtK2qPKuu5n3I5kMxur16zbdadowtaZ0s5rd/lg1p/ymjUTGZUr2GB\nOXQX+lQDGC5uVgZkLxo09UkOnbQAnRzLuKxyKnsbNZoSWl0h7NI7/hRmSqdLm7LPyyDmFLLf65FJ\n0Q80xtPsF+uwlXyYzBUoyo0M6wiUlhL+tBmoLzz8lKHl0oRNmue6aXQ62gXYVh5zJQ0Ljo1xkYw4\njmHjsqyGjMEEa/HQaR4yB7JOewamTZJFuILeWxtGS8Czlof+VBbf0SzzLAdjfheNrFFYXREMoZC5\n2a7DjoVpU0PrJj10GRrdXFb5+qW9Zw01M/vRD3X/pRmN7duHpKP6HBTIN1oaJzOHxL5oZ8iIub2i\n+7c0N6OH9Tz38/Mqx3G0LotpsU9OFzQHK8+SlekD9c9HixfulGWz0LXL2037DJooJ8k6vLKj/e7/\nzd6bfcdxpFmen4dHeOyBHSBAEAD3VaRIUdSWqaVUuao6q6qz+3Sf+cvmnHmZx+me2nKyKlcpU8pM\n7aQkihQ3cAEJYl9jX91jHu7PqMo+VdXgE1/cXnAARLibmZt9Zv7da/dO7Nc+OvdI+7+PZvWO+Pa2\n1ubFE2KOZLpimGT7YsIUfa0Jowm9f/+hyvtpWvvRa5/ppMrpQ/r94NUPzMxsjv2uf0huTO+dUjy8\n9neKM9M/1bN+/oHeKbeOqp6fT8G+uqH1oTc5pz74SPcNkj8zM7OzdcWbr8dZb15XXx1gDb+8pX3s\noy2xY2+ti9F3blTxvttUn+ff0/U/KiselU6+r/b/WP1y5tdiJ61/JZfo3qvouv47JWbKxCUucYlL\nXOISl7jEJS5xiUtc4hKXuDyD8kyZMuNjYozs/p3Orq57yoydGFcmafuSso4+GfXw+8qMFX4hBOUG\nKNvUtM6w9UaVBbz3ubKAA5xfv3xDme+jg2gj3BGjZPGesr+H/0aoTvdnYnsUX9f33qnqTNhHnys7\nusy5zNExIcKnbpO1Pan6X66pPn/xl8r0d8rKqG3t0/cXfyMdlx++/b6ZmdXvq51fn5ND0WyTLGhB\nmcXxk8pudhpC/vNdMWLS/6gzekfzqve7fX3ub38lJtGv35ZP+g9Lavfsu7N2/wJe8PfUV7W+UI+x\nH6qtH1aUHW1NgNruKls5+ibMkU9UR29U2cjCgjK5i6+qT+fWpbB9v6YM9dm8soh/3NIzfWNIKMTC\n33+rhL+X0gPlSHE+2jjfG4GUJlGJT9qfuxE55kkXpKDHeessCHQH9wuHQAc5XIWyoC2c8U+RUX+i\nnQAi0YfZ4YG+J3sgGehHhD2nRq/+S1OvLqrxntOMSKgeXTQQEpx/9ooaM23U8jOgWVGXM/6oyjut\nhX4aZBR0PwSly3EGNwLJyICkdNF8cYhBkmPXDnGxGkwYtG46MGp6Pqr7DZCYFH9HYybJefUEyEKH\n8+0BZ589kKACz6uHar1jLWR9HCOa36Jb/7vig+KHObG+CqPo5+yoT0bGOVs/ijMLGiZXfqGzrE30\nLCJcd9KMgRToczIt1Gh4VGN3eECZ+dEpmC0nxD6Lbgt18Hf1/bER1adSFsLZwKkljUXNzTuaS2Fb\ncbAFDD+CvkNySEhd1MC1ApS6iZ5FaZ8Qg7ELmnvDBWlVjeHSVO/rWSdA2Wvbane5AdvgoeKD06dI\nMPQ7bqzTD+mC+mXfKSGLs0eFGDRX1Y5rXylu1lfkmuF5OBmAqj24LkZfBW2v7LDqWRpS/43vV2zY\nf1ztcU4MD3AeaFPfNghsCr2Unr/3MWJm1qAdQVXX63FePJvQWG4xpzuMh1wCLQPICEncvVpZkFkY\nRR2oL+lAcyHiXHunBbsDNomHY5vTjeqjteGBrCf7Ccvg+pAiPjSd+xDzNsm1Erhg5HAec+JXHeJl\nBk2DnoNd0I7qONcL4kW/p7Hmg6yGMFpKLgwwJ5zjSZ+fFdhGWdgNzYC+qDh3INUzD9IaBoy5uuZS\nP0f9ITu1U1ALMc4JirCMENNqwWYNGMsDgdbKlHNlijSXSmiWZQP9THa57h5LLtD6dfiY5l55l7Uc\nF5QEjMr8AAy/osZ6uqufKVw5UiDALeD1JnM/3FK9d5c157dhRkUN1ddjnSujn5FPqX3j04pdU0f1\nPAZHhSomfNho3rf42mhxxCKn4dVyDmpoCpljZ+n3ag/nHrQdWrAStkDAm4yzBHMuzbjqwGgKYI/l\nfPVzFi2bIVh6nt+3jmOzlmAJwQ5aRWNll7Y30Y8rcu9ddI8m92kflYLRNgQKnwH1TiXQu4EVW2ug\ne4OuTR5nq2aZscLvFaxSHNtrr6WyssH11Gf7z6qtS4yFxgPpOdz/Qvu75ID6Jl1S3wzj+hQkVY9k\nTu18uAArDTmmhYfS7Ztu6j5DJ8TwzMFq+OY+un7bClCFC9rDjYwLPV/GeSesoK2wX+vR4ReFGI9X\ntH9M4uj2eF57th1crlqbuJj62uNlh2nnAowgxnAGD3MKLQAAIABJREFUZ67ODt+DLTec0Vx/GGrs\nPnqEq9EgrApoJOVdxflqg9iTQhtoECZRTWN1ZAB9K1y6Nni+zkUxP6M9rY9t4XhPc62yrvXSzKwT\n5ay6iJYO69xR2nVov9alVkWskiZuiekEjNPi3jHsfhsXTH5PwfBOoA3lNFBaXNOHOZdB8yVAfLAD\nK7SVwnUUxgphwwbZd+3ASCmEaMPw9zQ6dzWctTJoY6WJixHzuQHTO6pq7KQC5xKHXhDxvAtT2zI4\nCXZ03zQuTmX6PtWhD3HUifK67gCLaaWNKymssJTTy+tyfdbStNM2g15cg2k5AJPcyyq+NtChyqOJ\n2GMhabB3c7puRepVw60qwSkKZ6bqmD6E+Sfxt4+OnO/032Cq9wvsk310kqqOfba38jcpjYv1S4px\nQVbrzgP0UF7IaU4+3tJ9Xx3mpME+vfPdHlO9zqT17heEmoP+y+qPL5f1rjr0mbQ/l7v6fO3IZTMz\nK9VKT+pSqrxv+x+WbKivtfofZnSvt2FeJ3a1z/ztKe2Ds2jobZ/X+2Y1pc9fwzVtjbV6oqE+r9/S\n+3S6/y9mZva95JtmZnbDV90OlX9uZmZ//C+axxt91e30JxpjF97XyZRO9oTuuyk3p1VckO13avOL\nV/Xwmll9r5VC2yahOPb1EZj0d9XO4zX1/VBS7wM/I96+sCvGdmEIh0FPTJ/Lp3SCxz2L1kONuYuv\nq74fDujzL/5a7wOXa4rbhdQnZmZ2Blbwv1dipkxc4hKXuMQlLnGJS1ziEpe4xCUucYnLMyjPlCmz\ndk4ZsaOXlP3M7ij710u+bGZmtQ90jm7nDWX4zyzJ7SSHk8GnnhDbxweFks1dVQZq5ge67rFNHIMe\nKxOfPSimSntUWdSLnDNs7ijb+eC8kOD0DSEOpXVYGUeUbTxReM3MzK5fkTr1zCWcJG6qGysdZT0X\nyJANv6WMfOVXyk6fKynD98VVZQZfnVJGcRpk/VqgM3iXONNazSs7PphHB+aR2v144G3VB2ZRbVxn\n+95toUMwr7/f3FV/XDxTtsOfC37JDup83pVXhLJ8DrPiUkkZ82tD6tPKuPquI/Db3oiEjtw6JbTj\nwZ+UXYxKQhOmi2qrkU1MrKguUyeFft+tAYHqmPHeC6yCNM4NPRxk8k13Zpbb9p0LE0wZGBxZX3nH\nrqdMc8I5aaHX0YENEKJR0yYzn+i6M74OckSrIIm6O2icx/nsfuBYXTBgOKOaQOum2UT1ngx8D4Q5\n6oO0cm65VSNP2mxQTxBj0Pc27iZ91PwTMHKSoEyQFKxL+9rOfQmtGaRwLAEy0uKMb8fRJFD57ycJ\nDaCaeZDsLv3bTYEy4uqRBd3sMad66GhkeyAdIN6NjioYcTY33WxTb5B22t9CbH4vZZeM/damzrwm\nbuBEgDbMzD5lqvcfVoa881iDuscYGR/Ss+k63QsU+h2CmhxSBjwzoDm0NA+DI9DvEzeFNvc21FcD\n08qUG1oG27vOJUOIweqmMvbWYM7Anpo7qjjng6r1cfdoMHeCkub/3NycmZlNzSnONdBo2VlzrkFq\nT0T7nVNDl35qVlWP5BM0yukrEc9AYoug/0PHVa99p8VoSXH924+FBIcdId4zZxWnxmZVr/yAEJaw\nofpt7ehzDjXsNFSfjcf6+/UrC2ZmluiKCdgC6czT7lyAFg6ODJnW02EKhTrMxjzsiYZ+7yfQ94B9\nlu3pZ8/93c1BpkSyrv7y0V3qo5HhOY0IUE6n5xKgo9RHz8VDJ6oLe6FYUn90o575uMIZ868PghiC\nvDqtlyyaTebiEQyIJIyVhnOkYX6nYOdUzWmNgGDyMwOjrY4rj/VxYQIp7KIRk0RTyumBdEFMs7g/\nJdG3iGDmNNBESdXVN51I9xnATQ4ykSW9P2cIRgR2QHfr4rTY7jqGEOw44pgPczLDM8k57Z3Q9c/e\nSmnEsSZoH/Fv7YHm6s6W+uGGjzYOc6wH4puE8ZcBDQN4tSaIdwINhIl9aCSkNbaTQ+rHEcaCN4z+\nCeteknVk/bHmxMK8zqk3GB+2qRv9t//83+3Xv/yZJdjTIH1gPefCBYMxx9yp9tDdQIvBy2uO5UfR\nmsipXrkcLl+4BvZ9ZwPGguIrpqxtqJ01tHkSYWgRrM02LDA/dIwzfXXstOLy+PAwl0TnraDfh4e1\nGGw90l6jwrzxcbDpwe7p1fR7kjWvDCtgF32GbBdWpmOJwe4Jy+h67LFkYXluUw+DPTB7Wvu7XEbx\n0utqrC/elTZBlzHaGdb+cu6C4mWxoPYNDaPvt6FnXWhpD9bGzS7POpFDj6Rb0X64vqU4de+24ubm\nCto6EJMer2rPtryh+gwO6T4jgxpbTdb+PozTLVwALbWg+xXnzMwsU1Q9Q9iuEWNqGw2aKBBKfwDN\nhWRJ/XtoVojy7Xmtu0trun5pTM9jE+aNPyj2wnMvqf6FotqbX9N6+Yj6+xmNwZ2PhPYPT2vfPnxs\nP+0apH5qZ6L3LRNq+mDBKmjD5AoKPg3c9rYGYONB4ZlfV7+N5jV+Ro9M2l5LM6truhWq3kfbhLoH\naKB065pHBViYXZxnoxr7PwJgjzjWdRosDL06a82Aj34G8zFA76hZVBsLvGN00UfL4trj8f8e9cjC\ntNwN9CwKUEgarFmZnMZm33eaLhpDZZg0RdbCBrocWdz9mrCT2+wt0kW0zzoaO/2u6lGEndruMgZz\n7GVwscvgBtds675ZYkgXXboQDaxWhfWDfnfaiHWY2aUSDmU1WBWOaU69+7j/uT1hvwTboo6endOm\n4XSE5fX3Av2z1/LgJ3pfevD3OPq8qr9n7qKltqE5uXpJe9j1f9G73ZcZ7a2+gxvtJ3+hsTrCe0zp\nkeba4fuaEwvHtcc619Dnf/me3gPD0a+e1OX4l2n74KdnbSL60szMsj8jHp0X8694UmOi9Znq9L3T\naMLcJJ6EmocNHH0nS98zM7N7Nz81M7PE63q2Y3WdLPE+wkH2e3rPX1vV+/XFL8Uo2d4Ro+9mXm2u\n1KURe/jHaAve1bvqNmzOaFLvz7l19UHzOfXp3I3H3Ef1O/tzjYGHP9B6cvdT1bexqnq9dU5xNLeo\n+n7g6/vHT2mNf+W3vzEzs/x3tVZGVxWHBz7U72/sl+5b9aT0WC9cecfMzIKiWE/J/d/2+b9VYqZM\nXOISl7jEJS5xiUtc4hKXuMQlLnGJyzMoz5QpsxEpA3UypUzV54M/MTOzxK6ymKmyMtObd4SY3OX8\nsn1H2dX8bWXul64pa/luBVX3UJm3839QSrz/PTFkRgVo27GP5Go0b2KqDDxSdrXwn8Qe8Vti7Dzo\nC8nILQn5za5IXfr7IDGfPdJ1m9+Vp/x/vanM4Psg4rO4nDRfVqbvAQ5HlZKylosdtHFAkn/y6Q/N\nzOyffqis54V/Ukat+5r6abAkxOHAorKdj8aVDR3+WvcL/1rtqrV0vwOcv4w+SNryebXlcF19PRGq\nDs8FyjZ+8Ftd8+CU6jJ+WJnZ6TG19ee76OU8UN2qoCep3ylLOj+oLOC+QbGcSmdQN/9Mz+DgC8r/\nnXhf6Pr/aXsrHih+j4PWHZC6JAr8EW1sg6R6uCqlnWYMh+uT7gxvHpSHjHiSM7FhX6hO4Dm3CjQA\nfHQhQOfNqbvDcMngjtJF66ZNRr/A+feaO2PqO/ck/ZoHgQzRkmmhZp9AhyMd4o6SUD2rDRwHQGK7\nICINtGZSTv+Dw8YJGEYpkJcq7AbMOMxDdT6FG0gKcRovCzuspe+1c0ISnGlIirO5vbTum0FTp4dm\nRBcHoQR6TsYZ42bkmEQg25zz7KLKD+hpTZAOhyrupbQ4259o6CIj4xqTWRgwI5M6b5vY4Xw1miVn\nzou2NTats/UGouYVHFqP5gdo+NpDZehrW4oThSKaL7Sp2ddYry4Jzbn/UMhhGY0BwHILOfc8Rv2K\nR8VA2XdKWlJeWfV4+IXm9+KikNaRY2pHaVIZ//U1zeH5b8TMS6cdwwbdhyVYSCkQzS3N3WhVKHYP\nVlg9q/okcYpxLIdkC50jtF8cWyM7pPsYGi/HzqgfRw8f+bPrhhX1F+ZVNjomZKUGe6pXFlKxvaT+\nSYBsD4F4zpZ0vT5zxQ3CnS2NvaazYdljqfYdugcjCPS/AdqXQWejmVa78k3QMLQfIINYjv5tMUcC\nUMKQOeGOxeeSGg/JtmJHHfZYBlZfinPoVoOtV4gsyXwP27BucOgKAqdpBVMN9kGaeBOiDdPHxQLT\nM+vnnKuO5lkex6oWLnMptLMsEgpU4qx/Aw2REvGrhQZV6Dm2A8436Kz1k2hjOQeqRpr6oqOD608y\niQZO1zGB0MpBV6ebg0kHwlmDiecDQOa4fgdGTg4qSt53FERcJxLUk9vttbSqema30Z1owqLoMoeG\nQdMTJdWzmEXfZEz9WUxpza+j0+HhkhV0YCzCnhiY1lqey9AP1DN0LiNootVcbNnhfPyoWAVDIxoX\nITpIOWcLZWavXnz9idtWilgTBs69BVZJDz0stCoSbcfq0/Nf3tBeZem+5miKcdOmX1PQXFpZnIYY\nTxC5rJdF+6eQNg8WaS6rvinwDNOsQQNF1aVr6vscTlvhLq5MoeLI1a8WzMxsExZO2HCuc3rmeXRs\nHDMiNUIbGdNNNKUi7usZOnP9p9sGt5kbm/eEzF5FN2OQdWfypPaLaZ55rqjrX6f+G2Xt14aqMGCG\ncMdDo8A/oGd1G22TKmh4njWzgLbK3BndZxNNlK376pcNTxvdQ9NiIB2a1Xpx544Q8PVF3APH9b2x\nA7gOwSAchH7Qr+l5RIHbU8GeCtTOZgFNCbRvQpiBxlg5VhAjfPIiyDgOQw9gnbG1shas4OaO1oGl\nm+q34Skxj8prXB89u5k59dPCV9rnPrwjtkGvig7KYTGRxme0LuVHv3VgazbNym5Oo7G2tah18WhC\ne+H9M3Pqp2WNux2esweTZy8lATuywe8Z9l/tUPM/gunt4XbWhGGc9VTXLkybRurPmRtp5+cEy7fN\nPi/fZp7DxEmwn0uwpjWyGqM5GNV9xnAXtqhXcK6giluDxN8qa1fA2oZMiKWqrHUBemg4MDqeiDfI\nvpm4PoBeVAWdIYPJl3GMIf5cRwOr59xH0cSpw04rONdAGDedrtahYhbGTV3tTxNzPOJjosqeDqZi\n25xWI/+HQd/B7SoFQ6bJ93KR6u8TQxwzP0vA6/H//tPJ3FkXJuvLL/3RzMzmYTIO9fRueeMtjcni\n1xqL1YzG9kX0kFo/1HtX8KnYHaW03pk7VbFOtl9Qe0+i8Rn+TjHzpVf0zrr06fCTutydm7bR7XW7\nvaCH8d2/1XjPvK9G/XxcceKo6f34YU7zIntUpyFm72oe/eJN9t2fS6Pl5WG9e370nvru0VG9A/YC\nMWHqn71lZmbeluLTr57XvP3bhN57H1TEPHmI8GXxgd7zW0UxcJLTmiv3B7VvfBPHxEXTu272orRh\nrn2mEy+Hz3Bq5JrWo25HY+y1QP+v/lFjv3NAY2r3seJY8oiu9/CEvr9/VfHp4QFd//Cc3JYv8x5w\n+gu1qzXzmZmZXUlr7R75J44B/NT+zRIzZeISl7jEJS5xiUtc4hKXuMQlLnGJS1yeQXmmTJlHt5RR\nqw2BWN5SpmlqQ7mixbd1Vuv075WpuvWmkOeG/5dmZhZt/NbMzI68pOxx9ooycof+AHPksDJ7zTVl\nuLZrysx9/LfSnvjeh8ri3n9J951flEd8al4ZsKFJVPs3lKGb+JGyl78IlNE7+r4Q6n2eGCp/X1Xm\n/twBMn8d3ee5fcpadu/LHz01wMFBkIb/UtD58C+bUnW+sKKsa2G/+qeJsvnwuLKqlQPKUHZQbq9M\nqN4bv+OyNTGOSufVrjVvyE5++q6ZmfX+UlnP1p90Pq+3T1nCN88vmJnZ0rDQhhO7Ysx8VFJfvplT\n3/7z59/RPQaFdtTeEToztoi3PWymW1eFblx7Tm14UBNaM/Sy+sz+L9tTaTv0BdTMCsqMR7AdIhgy\neXQg3BnQHroPPVDsLJiFRx4yAVqWASVrkIGP0FRJgErlI7Km6EWEvnPQ0f87QAMJkFHfc9otIIo4\nu/ggIt0m2jgglAFaLwkQgw60gj7MnRZaLCmyxB0QcpppOZg7jZ5jpuiH08gxEBoPN6UMgGrfSeOA\nbKZBspswYQwGUgZEuudx9pb+8dC4CVHv78M2yDoXkAQMJBCewH0PRDiFBk1Eu1p5fS/ZQgsisXeI\ne3hU86NwVO5ks0fEOOnkuce6+n5tWyhB4PQpEK5ZLWvMJ9DxKEa4aLTcWXv6FhTp+AkxOEbO6Ofu\nOu5qlzXmcwNi0MwdE+p1cED1Ms4h9+mE0UnOgSfQkdhVH9y/J2bMxrrqy7Fqm5jUdWuo29+7qjOr\nPg4Dp17THE3iGvVoTYhpuK05XNnWdfOcXx/af8DMzI7hsNABLUtF+n2rjKbBOk4KEY43OGk5Rk4I\nsl3e0Vgto4HQWRSTJwP6tIPOh6Oc7G4IGY1gsR19SfH5ENo01lQ/VUCU17eEFoUdmC6cX99rSfRx\nxkG3xc2hwLmvUM88zl8NT/UKOC+egF3QwLXFfd7VIglLzc2ZJnM9ETidEc5QO7SOCnRAJfuWtQxx\nqNPSZ7MDIJsgcS2QwKCovu4Z8wR2ko9GUx+GjfnEnb5jHOL2gX5EB+2ZsKA6+jw7HxeiBmMvVSde\nETj6aNR4fc78w7LqwDBMwADJ+U4/R78nm2X6QGO2i+YMYdDazm2PeNpBB8hpTjXR4hrxHBWI64To\niWQcGw4NsdzTUWVS6CgNHxH6V4RVNTAJI4a5nS/BCIJpubaj9TBX0/3Sfa3tfZxpBkCIq7gFNtCq\ngbxlHfRW6qD4Hgh0FV24lKf1OIcmgplQviEYPOG3gKdlZsetBDMq2dXnOiC7gSN80n0dXL2y9Jc/\nrN8PnVRsCNv6vdkg3uNwFDJHEnnHpITd3Ietl3CuhZHVYSQ7h5ZeFRYrjLyNRe3zat+gAQNTOsE8\nbzJPypsaOxOjqtvorBDVbEltTNC4AdiddV/XyTDWUtSp5RzD0FNqRE+HTQ4N6fpTh7XOWF3fv/WJ\nmM2JE+qzmfNiqowdUzyb2MD97p72TNVl/VwhnBRncDWZwFnxqvq8jmvd9atiTo5saoyOT2gszhyZ\nMzOz7WUhyOuwmXMTGhT7eJY7nvrP+1r/D9t65kNj+lwKfar+HbWvisOMj36Vz5xvMWZGcTPMDah9\nHoylTRii4bo+P/K86jd9Rj8TY/peY1PIsWPxrj3SHF56jIPaMCwtWNIHcP+bOoZ2BfoetXn1+/Zj\n3bcGiyCDJltxWP1kZuZHgRXQ1CkV2Js1GvSb9u8DMGsPzmhPu7WmevR212yvJSS+Ej6tzirhsdbm\n0eXpwPjusQ8q19j7MyaTbv/LPPPKuNjlNJdyTlPM7bvqTtuPjWmQp42aWw00ElOwVQ0GSwv9uyIa\njLtseVLo62SJV5Gv69VwLQpYyzNt1StkX9yGgdlF1MrHZSjFfVJZ4phjnMAU6sMM7CQd05C5CyO0\nRT08XEUzxMk2TPU+wm9Jx5RMsp6hgVXAxWkXXStroq9HdQqe6tlk3x9hQxjtwHSEWdP0NJcLMNXd\n3Kg95Sv10Z+rXT+L/srMzN587R/NzGzjFT3vyprYG/WT2lvufq53ydfHVe/8DemLXkorlvzzOb2b\n/mVS7LRPdsSgmV08b2Zm7+v1zV6e13PczX3rTNaenLO5RsaSHd37/v/EVenHGmOv/po150eKax//\ni+LGm8cUl7anVadsJJem9n7VafEaTMKTWiNPRC+YmdnCRTHcTjwU42X+PC5FOE9+9CuxhKaPS8N1\nsqE4k59T3L3xUGPh5RvaN67Nam59dUT7xHPrev9fNY1Nw/XNm9D7/bGmXEEbwRk+pz6+PKHrTR7T\ne/mbjOHUPk7OvK84NZ5QvVYa6pfaiPrpSFefq7zB6YammH2zH6m/9l/6j/etMVMmLnGJS1ziEpe4\nxCUucYlLXOISl7jE5RmUZ8qUOV1CHb0thkj9pM6QTc/r95mszsdFR6/q85vKdH2zIb/ykxkxVzIg\n2Q/mlCWM2tJ2ufpYfuiNw8qiLvm63/kvhcz4gZCWkT8p83XykDJezx2S+vPVlrK09y6izP2J0MNL\nbWW8CsfFiFn9WAjEa+WPzczszqvKXg5cE6NlaUb1+84RMVrWceIZe6DM4v+sKn35zvfeNzOzX6wr\nc5epkiWuCVF+u6t6zo+gkv++EJRLB1WfI4P6+0qoM3vrwyAxjbZ96EmJ+ie/Uh7uelL/axWFCoyC\n4lQ+F6rwszO651ioLN/Dx7rXO2f081ecVZ3ynVaJns31Y2LkhJ4y+eMwazrNBTMzmy6DLu2xJEFi\n22i05MjE11FL90BRul0Q5hTntGE9OATCQ3/CuTN1QCDc2X+fVLljekQpl6/k/DvaJ3VcKxpZl+0E\nfe8pS+r3nQ4FCAf9YEkQRJBX66FLATIQ4KiQoF0hSEeq6ZByXJxAFhyhJaDeeTRyPBDaGqhg26nb\ng1K2QJ7TqNFnsyDLaLqkOLfdiVRfHy2bZAZEwp3pxaEoysBA6mqOhT3d14NV4DuNDIg7EQyhDv0Q\nOtEHXFWcKIGH+8leShpdB58xUsU9ol0F9dkS0tUsg7zCvNjaFZMjvaE6FId0nXqojH4bxM1H16jv\nNGZo0xZnaB+t67xufkLowxkYNMlBXa+Gi1AO4QgPFKiKTlEStsLKmu67vamMfRq2wfRhxY2JaWkI\nrONGMXJCiOE0mjiZQc3VrQV9vwUKVKtqrudxy5h7TvF1/wkhE2XQ8GBH/ZMAzRoGoc4eQCdpHPTc\nuVXcUoz45o4YgfkpxuKg4mwaLZadFfXz1raQRqcD1QXNmj2umDBxUAiG6+edTfVvZQO7jBrnwHEA\nShSebvnKgJwn0EbwGo6phOYEbJM+WjPZBiii023C8SLnOT0k6mF/PmZ9sI5uHr0k5maPA/lJzvOn\niOcp2A+Jdt26HXR7YK5UuXYSND4FO6gPiyuVRsOJ+BuBOEZQIRKgXhl3Rr6peRwMuDiiMZvCwcay\nemaOMdNnvic4819zyCe6Oz30cDy0DHyYewFn9vt12GHEyy7XDyv6vdQlrjiiXwUtBligWVhFDXTX\n/CxuH8yZLKy3ekJ96fOskjnGxs7TuS+lBtWfGbS9SuPaExh6GOWqxnCIds3uttqxcF+s1OaikMdN\nxmyY1PXyuIr0XP+iGTMwCEsYymUfbYgmTMQhYohz+CowNvtp3WdwALfAjeKTNmzfu2Vt1rEk42kX\nHakuGg9rZdarulgJ7Qg0c5/QxdNnNRcnD+rB+7D8ei3dJ4HIj8964XliafQYZ15P7e82fbMGa2Da\n6bnBZu2zxuGyNDGpew+BipdgD3XZA6SQBhnfr32bhzOY14attKX53cOtLpMiXsDu6bklm/iVck5k\nnadzX2rAQivNikkxNCLthfBj3ff+NTESO8zJudOK25P71JdrC4qb2zB/kug1FXCZKo0qjs8cVHxO\nJBVf+xXFw9WmxnoCVkN9V9dZZV0IEo5Fp3ZWanrGk2Pqt7VBrYdW1TrRqcyZmVmG/W8Ol6Xdmvav\n23x/ZkzrzcSE5ujmQ/oR58jxfehZTOhBVe6KqfnoltjRoy8J5S8MaAxlKqr/+Hn9fvAQDBhfgbZH\nu1aWVE9HBmvBEBo+pP5v72gPu7Wuejb42eVz6QPfsuWmjo3b6kOts2n2XGncr1ZvSSujiSZkflzP\na4w9SYe5tJdSYI0gylqKPUQaxnJtEAfBtu7htXGkgk3ZTTlmtOqWZt+HFI0F7Ac7sAo6uFr6aEaF\nNDlHvG+mcM7i8ynnKsrc8WFF9XCkKqAR5aFJ6BgtjvlSSDidNVilxOUC+kA9tARbxLk0DpHJrOZK\nlfgx2Nek7LGPrrO3ChzTBSfafkvXD9FSzLFvb3Yc88i5guJUCXt4p6a/D6Ex06X/0x7rbAYGeKjn\nU8FVMMuGtRDq+n3GQANX0wz1qeb0ebf+5spPx8xsHRJr5OxBjfGb5f+s6wdiqYzU1H+vbyge755c\nMDOz7W8U/8NTmjsPz2jOnXtPe8GdYc25V86r/373SMco5h4o1jVnFJN2iNtmZgeHv7LfXhmxsYv6\n2/Hzesbnb+p99pu//oWZmeX/Qffaf1Tz6A93xQTf+ZHafuITnvkB7RcfTGtM7Nuv9/vN34i9E76p\nePR1S/M4cX/OzMwOHNR+uvIjMVnufaz/j74oZs3Cmp7FD25rLG59X33X/1jx8ZWX9Gz++WuN5XMv\naz/6g9Oqbx92WDnUWFn4neLYsR/rWV9sifmzc1X71pUHau/NaV3vyFFYxrOqx8EFfe/KgOJ6/mMx\nzC891Od/mVP9XkB3buDOt2v1v1Vipkxc4hKXuMQlLnGJS1ziEpe4xCUucYnLMyjPlClTPqSM1bXf\nK1P1XV/ZQH9ETI/ovs6UbbR0xqtxRhmnC79RLunaiBCF1L8oM1UryPnnX1rKxPnnpUVTQqm7NyUN\nhlpFSMFEQy5N2ZTO801fVWbu8Zg0X24dJMO/AMJ7Ei2YtDJptaaYOTv5Bf19kvPYdSlpf31WmcK5\nVc5Xww4Yvq3s6jfL+v+r+zmP2FZ7g4QyiK/P/Fr1qcvn/N2yMnt5UMj9WbFffjmq9nz/kdqzMSnE\npJMR0tI/e8be7grJK4e65yBCFb2qzuE+zL1oZmaV7wodOfCu+nxmSpnVjx6rr6sdsYEiT9nR1tIH\nZmb22oJYS+v71VefXhWL6L+1pTz98ZruM/0qGfr/2/ZWnAsQTIweiGUe5LAJ/JUCGUZqxpBgsCxp\nxxZDvUtGO4Bxk8jAXuALva7ThNGz6ifQNgBwTYFq9dBWiLh/5BAFZlSvBkIM2yLF57u4j3RAJtM5\ndEtALCIYKD4IdTfLWX7al3NWNpzt7QR8DgQjQA/FaQr0Dc0XkIQ6qv0dHwVwEIqsO7sMQ8fHPamF\nY0wPloU57Z08/Y7ri6Hu3wV97IE05HgeKZANwwm1AAAgAElEQVTgOs/Pa6pdXt7pteg6Pdgu1t07\n4rC9IkRt+77GmIdifmGfMtxDuCTVm4ozuwuaL35ObZo+iGsbbWzS5rClebSKK0QPF4w2ji8+z+TA\nFG5BF8VAyY5rrty7TjzBdSPHGfYM7K5aR5l4Q48j5PxyNql6HziiegUTQpcqZX2+WVNfDud1326o\nvlt9KER1bV4I5dai+iOAbXHsBcWDkRnFmfq6nuHaDX1+fVnxo4ueScvXGNp/SOjLsQHVY6Osv7dh\nexVHNPamZhRb+qks9RDisbMshCIDSpceE4oVRfrc0EE9H6aWrS5QfxhNbq62C6CHFdyhak/HgnAM\nlggWV+hgTPDMHOfTI6cLFeKOFTLXcTjrMpd7CK54PVxcON9fx2nNQ0+pztj2QBU7zME0DIBEmzmX\nTlqv6LRe0LRCU6qLu0Ubt5ti5NwyaAFUEx/tgaiqZ9vIO8QR7ZAcyGwX2g8IbUgfJB3rBz2GNsw/\nHzaVB4PQAzHMUb8OGlwZWFatBHGMM/0eSGQLlljaMW3QV4pgiNQD53bBddDw8pwzGlpZCfSMEjAk\n/Yxw9NATyt2nvUmYh3stGzje5JaE6s0TCwL0lDroljQquM11iIttIZL7D2mOTZW0hg+PEn8D9XuB\ndSvIOY0cNAl6um96TGNi9aGu12vo76tr6pcRdEI6XZhNoeJ4pfEt26O2tGtd3LBqa+q/rZ4+X+jw\nnGBr5Y+ovuMl1c8xd3b6un/1HrpQPJ8e2kRPNB9Arvs83ySswL5za2n6loW5sbyKkwp6Ez00s8b3\niSExytq5f0hxrT+oz4XoJmW4Zg80u86z6m1pDFeaqmtYQTsgzdrI3OkStxMB7F7mSrL2dJYpnS2h\n1PP3Fadefk37sJnntWfqXFccXXuk/erk4TkzMwtKYpKkC/r/JsyeANZEoqpnGYyqnYcvikG477CY\nICsL2uduopEWoZPhHHjqDxTvt2BZTTBExke0nhTHhBjP4hJ1F52+hTtqx1kYOhPTQqbXdzUHyqu4\nJR0Rk2l0RO1ZQRvn0W19Lgcbd/Q59UO7IsbK0i0xh7Z21N4kDjtLlQW1b0DP20frLF9QP9WJ811Y\nzltowu1D02tyQO3KnJPGxWBZ/XL/K+1hFxkXw41vNRwKg6PWuar6+LBZMiWtPyHrf97nurBBSvuk\nL7W5vGh7Lj00pfiVpcMasPr7u+hVllRHhqr12RemcO5Kseeo552GC65nMDzS2zAP0csIcUtKZNwa\nBzOkjlYLbLVsS9+r46xVKGiOVT2eEZovYUt/Twyiy1HRXErAiEzipJaJ1A4LxAJwc3C4wJrbxLkK\nRo7HfrSJdqIPE92HJeck0dI19OsKOERWYSuzry7lnGaaPp9Ax61K/XI8gTp7FRvQ9QI0KDtVp72j\n5+U87ELWpV5R9cp2eV4wjxz5L1njPQr2bS+xd4a3mdm1hGLB6Qfaww6sqr/++Ln6+3lfLJVGEX3B\nx2KzbWQ0x1fmNWfPbGrv1/mRvnfnQ+3Fkg906uKlw5fNzGzptuJ9Y0axYmL1W/bXg2DSXj6+azcf\na982D3M8YwtmZjb5c9XlNxfV+P49xYXvz4phdrMq1s+p7+iZ/o+E3sN/8hvti9+H1fOXP1bc+eVj\nfX/oJb07vvCB/r5yUvNxHcfBOszIwudao+beUB9fR/Pp0bq+/1ogjZf538Ekf1H1CTKa77U/KH4t\nHtX7+7lHanv9oOLFn9ifTV/W3Ht0TDo8c+hbXlhW3M9v6/MfjGp/Prkmhs6JIdXv8yHYxetq30uv\n6fdvvtQ7cTH5bTz6t0rMlIlLXOISl7jEJS5xiUtc4hKXuMQlLnF5BuWZMmWmQmXY06+i8XJfzJNU\nVoyX3SNiqqx/qcz5ub+fMzOzjR9KY+b8bSEj9/6z/u79w9+ZmdkA7IEzFWXg3+8qo/+Deyhdv6J8\n6NFfyjXp4U+Ubb3b1PfmlGiz/ZwpHdrW528uiW0SndB1T9R0/wNZIck3rgsZie7/0MzMyoOqzwaZ\ns+UjyhQWm8rgPf9flVH8vIL+xz1lFg+BzHcPKJN3uyPmzXMgJKlZZZ1bOOYc4txh54IycZP35UHf\nv6ZMZ6X0yD7F/ej8MWX3Zm8pQ3uLM55/8YXucZmM/MkfKDv5VUVtOkdG/bMJPZtTt943M7OVeen3\nrBd1vUWygW+P63rXv9b3XoRZc+1LZSn3WtqcTQ1wfDEcG5q4P2RhnjTQ3wg4TNsiY52FgeJcmJKc\ngffbyow3+H6Cs6weWgKprlO1BylFM6HDGEmCvvRBCkLOKaZwosHoxZKcxa13QBYAqCMy6wGuTj3O\nyBoMlYh29NogwjjqhAU0GED3MmhIJEB5opLq3YAhk0XPotlEHwUWRD9f5/vQE9Kc6QVpydP+FM4z\n1nQIKP3MmPNwTTK0JRwC687+Nrl/qoD2BToCmYL6s4s2RueJK5M6KAGbYC/FCzQvhsqwiY5r7I5O\naazv7OrZ1B9Iyd7DuWD24pyZmY2MCVXYWFQ8evxIY7QDiyCB41V2WPN1GsRxckrfy+4TepFBv2jt\njuKNt61nc/iIkLzUtFCN5rxQih66EwO4Y2Sdw0JW90nBhvJhizV20BJo63vLDfVV5zOdte1lVN86\njgiJhJ7Z3EmhJeOnhbyGPLt79zRnd5aEAKbSIKxznMUfUn0HB1Hq39L9Nu8s6D494t+w4vPoAfXn\nzi2x5bbXVc98wPnsGV13ek6MyNyUxsRQTt+vbAiJ2EYHxLHXHO3tiS4UmlzdJ0yXvZUIh7AmLJMA\n1lzX6WO009yH+2dA5N15cZhRLeZqDt2oCLSvihZCCSe0Hk4QPZDdXKBBnuS8fiUNyy4CDewnrV/F\nxQJWkZ9CiwCtgGzbMfBA+dHDqcIIycHq6fIs8y3HKFEfNFO6fpQmHjLxAlxAqj5uQdbkemgZoIng\nVfX3ZBDQdjSvak6LCsSUevWLILroOzkGh++cp0DNc7gIpWAzNGABWBs3J1hmXkQARQOrNUA/wNAp\nw4JqghRXnvif7K2k0XlK4PJXZAx4iDkkEm5MchZ/WP1YGBVqd/y8xvbwkOZ0s6nnEmGzlMClpN5z\nLk16MJsL+rtnum9+RP1y6DtC62ob2pSkCurn6pJYCOW+vjeQdUxGs/R41sItXX/opD5/MK0YNT0p\nFkBqVKwMvw2jCYewWlWo3/LH2pNtby6YmdnODvorPJcAjYbBSc2pXIDOXhFNCJDsmvVtt8NEbWls\nzBxW/OwOqw8Lw6DQZfX1vYr2PxnumWSb2gJdD2CFNgB50030k/hc2nMMGRgxBlvLsctY69KwN3u9\np9OBKKKdYvNaJ+a/0D718OsvmZnZ2LT2VI++wdUPdsQo8XTfrPaPnVtivliV/du6+v5xHcfHDm5J\n6MqFodODcqwmjbmxCY2ZFnNsDX2jDdhyA7Akpgb1/bmTYrLUmmgqsBdcW9N1p3GVyi1qXbl3Wyg8\n5D07dEzMndmzYlzu0I837ghhfx4G+zDaNBswdVJOdwrdkca25vZOVnHfx/lsbEbP58Bz2rOub6gf\nH81rTFZuwog9AZOSPdxgSfcJ0SlZe6B2bU+qPmZmhULWkkXNiXZCc2aQfm1Gmkvz1/RcDxzQetXC\nEa3+r+bY/6506aya+x1XPMOVKUKHJwFTudeEyQ0LvvDEWRAGOA6BKdaqPlSNKKu+yeHg2Mu5QK8f\nLdj5fhb2WIJ4CGPG0ABswWyxnOZxC2ZkMq/6tmGolNifdtGkCZJ6lpWKnnU2pxbncCaso12VYw+w\ny/eTuAj6aI212H+nB2GE4jpX8fT9AOZkMtDna0nNsTyMTa9OXIXZnm+yTnka02EfjSuc2BxxpsS7\nonNug7T8hAkP0dMSKfXXAOzevtNAZE/QiJwo2tNtSvznNHY/xklovKVTIj/sKEb+4ntq13d+pd9v\n/0D/v/iV3jk35nh/uKF+260qprzGvvrelubU6ojGyVGexx/YP7y1fOFJXRY+HbLsdsu+e0p/u/qx\ndG0231AnDF/4sZmZHf/HX+n3jN79PtzVGpU+pU6twXjxT4gh0x/Vu2D+ruryCfvckuk+q8tiuLx3\nRGtnEk3IH0/rOlfn9fmJN7QuFN5XfW/8QPPz9G/13rzC/D93XH35Fe+gE02dcPn0pOJlsKy+WF9G\ni+uMxuI7j7Qeff6S9rV/8SfF+V8M6oY/WtSYuv683JXCq6rPqbN65jdriv/n8tqcvHsAfbz7qleh\nIY3bTXRc/70SM2XiEpe4xCUucYlLXOISl7jEJS5xiUtcnkF5pkyZR+8Omf0fZqMfKCO1/JLOfl1v\nCWmeQCW91lOm++O3lEMaXVa2t1NDLX5Hjj9+Wroo0Rll3qsbyri9tKjMVqenv1/YFHL9/oAy6UPv\nKev6TlcZsn984yszM7t4WfW4c0mZwCO7uu+xnur7y2FpRhzbFYr1ekn3739HyLP/kX4/t67s7PsV\nZTlXD8v/fPQflUk8+tcgt6NC+PtTQiiuLykLfdJTfQ8f4czywodmZnbtxJtmZnZwU/Va+lr1GE2p\nXx6g0D57aN4+3nndzMwGfieUIXta2cTBglCeD2dAe5eE8H3wS+hCrwitmDwp9k12TSjKyeC7ZmZ2\n8zVlKZsNZXxnUbAfbekc7u/eUWZ2eZWs5p2nQ6UCGC1Rz2mbKGPdBxmOcGBIgG4b7khpl9HvwoxB\nbCbp6/shZ/pzNVAbGC8pp/qeA8FAwyDlzuqCermTmC2YND66Hgk0VTwYKRHXiWC6pBzqjxZBLw1y\nDMsiB8OnDaMnATLpXKP6Fe7ntBZa+n+ERkOy6b6nfvNADgZg5lRA3Xq4RbVwjMma+jHIqT+6Rn2B\nDhJoEKXr+r2RR/MCNob7vNPLCKAxuHPZXZg9zpGnA6IQcF4zimA0tUBKgv/43OW/LhmHxs9qrE6B\nxIZtHK9amufJWY3tgTmdLZ08qJ/bIHEQHGxmhjOsk2pznrOjAQ4khb7iRRP19iaOJqsrsBC2pXXg\nD+JU4qlNPdCntabmYG5KyMERtK86NdgKO4pDXk2Z/DLPykCDNnEPKT9a0N9hWmR5RqUhfX58Tgr7\nB0FGW31c21YUn7KM6cx+3Cz2CyUbO6LvVRwDr6tnvL0o1tz6IyEEBlsiPa3vddEMqKLncXBOMWB0\nRsjA8AHmGI5tziFobUexplWFXQGbI9PGeQcWWDcSAlHp4B7iUME9li7ofioF+gfrIYEuUuqJvpPu\nVwcYzYSqZxVWQxJdjvYArDK0ZHqI4vTRYWmnNbZ9+q+LVk3DsUgQhOk7NlrNtygLIsnNw6Ta7KW0\nhrRhXDTR2cmh7WEw/OogdiVcIyIcomqwFVIZtAe6uGM4BkdfYzWLE41jrvm42BWpa4hWTIO2lNCg\nCnC9a+Aakkd7pAWdoQbS6VwtGoy9LNowZfQoksSrImO+imZKhjjc5Fk5LSoftlgDJuRQAdeQptCp\npvcfOx38ryWAcXngmNgMPZyxAo/78v8c681AQbGgBibe3tTz2ljX3iGqsN7AEFyHHbeDI1pjl/av\nKiacvXBO18Ndat+UxnoHpqi3pVhV6Wjs5rrONaXwpA2poUGbHFb/5vLoN3mKNX3YCls76rduQ9dr\n7uj+21tiaywuaa80MqT+L8DwScMycAynLOtUdQ1dv1Wee32bfvEtRVwaGxdSefikENLdju6V2AEb\nHBDDzt/BqQudojbMmDROYyEoMI/6CYMhaANrwy5rM9Y81t6WhoilQd+bOGglkk8XR1JFXW8YtP7R\nYz3L4JYY3FENpzM0sR4uiGmSOqdnNHNK8TjJmHh8V+vI1ByofqB2rz1CK6asMZBAZ2R0H7ob6Ey0\n86rP/lnF4fXHuk4fDbKNO/r/zn3tp/cf0Po2NCl9idUF/T3cdSw2jZFTR8WE2UyrfltbWjdu/Unr\n2+EL2t+ePqnrXWPM3P5S+9wiTJkWrkU7C1qHy6toAcFGCNAbaeKcs7aq9tU2NYZKU9rPjra1fs8/\nFJNluqZ9+Mzzp/W5Qd3v4PPSmKigTba0BSPJzGqN0AYntO73ol3qqViR7em5tSLNUd+0n9hlT5ep\n7F0vpM/YdTy9Ngz0AeLwblv3HPBYG9h3NWA0N7JqS474WexonnZgOKbR2OrjqmRoPiHfZBgJWhEN\nv04DBtuAPlDhun3ibxK3uyLMyG7gXIpg9MFG6rP/blfZr7KPC2GsWA0mCd/Lw9jchYFYhLkeog8X\nob0D6d9CmJgRa/4gbNQGTKMWDBzH3G6zL/aSuEJlYJW5OZh1+1Dqx/4/B4ssChQXPcfwhgHvzFO7\nAQxymOs+7qYNlt0SjKcwcnsaKEp7LA/+P7Xzb8/pHfPyac2RK89rzOZviH2RPP/PZmaW6mjOOcbQ\nZ6N6vqkDekd86QutPx+2NF6Gano/q1V0gqH/nGLGgZ+hIXTxD9TkpzbduW4Tie/avyzIZemF/N+Y\nmdnnS6rLX/1edZ0JxZDp1tCl+aH+v/8LaWutnpLO6KuP9I64vqH5O9RXnR50tJ/+SVZryt9fUlwc\n+VxxoDSr/Wj3Pa0PuxPSgp2/ouunWpq35umdtNLTe3QGp8fPUmIRDRh5g2+kp3N8TZ/f19Lf20Wt\nN7kFvS/807Dm/ZFhxc/keRwfM2La/P6exsLpPkxw1pVfbv6lrtPQWBy9r++PvKH+GfxM1z1/VmPy\n7uh/rHMXM2XiEpe4xCUucYlLXOISl7jEJS5xiUtcnkF5pkyZF7LKZI/+Fa4eH+jM2isgIEt1/MSf\nU6at1xYLY2pHWc27JsS2vKts4suTas6fZpT5mkIpu5LT95KLOrPmNXFA+L4Q4XpZv/slIQ22pszb\nzsuch/wape8zynD9Ivmp7vdHfX/5qDJvYaSM3GYNzYmTQohXr4mNMndeWeJHD5Xh74/quuXLsBXI\n7I/+F7WjsIP7R16ZweaSkI+b40L/TqWViStwvv3a80J+mn9SRrL4gq7/xcLrdmxKmfkvx9SGzQdz\nZmaWeElt3j8m1k9pvzo/39G1Oz21pTGvn28tf25mZh9khSK80QadeVf3mp8D5YrU5lfv6dmtHREL\n6tP7crraa+mllTf0QVD7KdAV0OqWO3MKCt7POj0KzsrDRIlAO5xGTIJUdxIENAdTw7EaumjAeGjY\nGNoJEWeFE6B3Cc7OJyI0ErhP1p2DT+i6eVye+s5VCCSiSwa+gROAk+vPwCDpo0sRgtJnAX7bIAHO\nJSUH4t0FTTM0XHr87tDAYhGNmy6oPyh/5NOeun730WjowSpogmr10bDJddy5fcc+oF9APkKYTW20\nKpJoZDxhB4T0D64xgXMT6GAZAYq5l5LIgnR5tA03pmZNqEATVMWf1LzLpoSOrC0KIaygleIDtKYH\ndT0bVWdHOBA00AfaDZUpX7+l+bqxsqA+6KBhAMzi3Jo8ENtKqPtkcecZPf4C9dOc2VpWfWtNIYR9\nmBdubHXRqGnsirHiF9SOE5ztH8PlwzFQfFgNHZ7x9j3QNlTtOyC+g4zVBK5PW0tCCKqb0thZu604\nu8E5bx+GyaEzYvhMzigOtrY544+DQwGEM53RnNpeQ5+kret1lnW9JiyJVBJmDuysTdD7ZFnxr9F3\nKByssMzez/irwLJDc6DA+f62067x3A/+7/qFdaiPnocHkhxwXr/Fc047iKOv8ZLCsccxlFKgjRBy\nLGw7qziQby9pfVwxKjhBGUiocxlKJF2cAFGFcef3G9Qd5pzTkko3qRuYLZ9PoUUSENcg1ljPnY13\nklrUvQ/TLko6XRz6JND1qiC1BRh/TbQPOlnnbod2FF2UJG42wIWyKT4PnaED88UL0VqBgZOEGRnx\nDBKwkdyZ/mZf69EWzJ2M/5S4E5+HNGAlGDtdUPXAUz9Wk86pDXZcTXNmZ00xZWebZ2qac41VtB/y\n+n6W65y4qJjUbYltcGhOTNTrt6UL8tUfpLPnzr8n0V8ZBOEdxuktBWvPzKzd8SyLlk2bMdhoisWw\nFjq3Qn3Wg9UFmcsGx7QXe2FAaOXBY+hQwW4L3ZSrC5GtsS4//lIIb2sF1hsuMWPZwPxx7U/2jyke\n7FRU19014uiK4tnWsr4boTcUdDQo00Vck0qqQ446W1aI5DBsrRSodi/hNLVoo2NtsvRGTfUh8kPW\nDffOyjQz82G65fdprM3m0EWCjdseUpwYHNOzWfxSbh113DOHZ4TkVnbZYzArivu13ngBbNG6HkoF\ndsDKmuLxEq5VHcZqagyNhqL6NwFDOlvU2BrGPejhTWmqJRmDz31HyHN1XWN7ZUeMn8qX2t+OTGoM\nHHpZYyCYVz8+uiomd21XY/3UedhdL6NPsqmx+hA3wIDn1ttRh2/BYO+wTgbok0ztFzvNC/V8ltF4\nmz6oufHcef38+rMa/18wM7M67L+Rkvp7aErtbu1qzD+EuWNmduvyFfNgixWG1M/FKTG4JtE8axD8\nUhmNsxJMr+3tDdtr6eD46ngTuQaDkTU9ndOzrbGPizourrPWwwo1WJo92DwB+7JGBlYTjJJdGCg5\nmGupHFonrF0B7kIt9hLZDk5mMA5DmN6ec9+E2bjTQ0MKLTOfdaAwpDHTYruWLcHgrLJGFoiLLTas\naViujp2bci6Dum6RNTmZcO6g+lw54bRtcEhsas7XUrgldbU+Nri+n3CaLvQr7OJaifeBXRifSfZ2\nTk8OXc8i/VcfRi8Ol6y0Y5TCEPdwhDMcIAvMqT7r1F7L4VfVgcGO5sQLm3qeKyN6p22e1lz/4iHv\nlJ+ovV8cZK/0lVgkL1Q1lh/m9I44DqO0D+Nzsq0Ye2VX7T7UWzAzsxucxjAzC4++YLX0XZuaR/+n\noPg8U5ZW1Gpe97jDHv/lw4onuTUx2K7M6P33L2C3Li3pnW/kBdX9Wkbahinet+/jlnqpLJZPDqfD\nwWOa97++jZPXiJ7tiQXW4ARuTxUx5Hq+4tH8fr1bvl1T/VbR/zTuW59T/baO6RldRpcnz32/m1Q8\n67b0bjuf/MTMzN4pa3+dIH7tDmkMHJ4UI693WfHSTut9/4tJ1Tf8g9qVLejZ/uZj9VP3u4pL/16J\nmTJxiUtc4hKXuMQlLnGJS1ziEpe4xCUuz6A8U6ZMu6gM1ecPFszM7NDLynDd2lZ28gwsgRP3lP37\n7Y4yVvNvKVOWfaBs5fSYspvfbOrvf7GgzP3Dr3XdfTPKhu5cEGIxuKkzpV//TBmuQ2hHfFNRJvBS\njfOfb79mZmbvH/gn/f2ykO3kuhg3ty9x7vKakKB6pOxmOKPs4/UB3e9wXtfp/38fmZnZc/8J95NQ\nGfyZr98xM7NqSUjRwBVl/rLjQqIftJQ5/KyqjP7wAaFuvw/Ujv5poWqDH6Fm/6oyjDNZIRXptZRt\njQqdPpsTonUVxewLILGhZHSsPavs3vInyrSOzynbWXhMpjyjvq2/JJZA9ROhCw+BmQfyykxvH1eW\n8sId6fk0f60+6r6ouu+1BAzRNiIHaVw6mrABXGY9CdregY3QQ1MlCbOFY9oWkeDOgIL0yfomYKzU\n2s5FySEXMGtc/tKB208YOBp7EQ4rhjsR4Ln5OOG0UZ8PQZrzzqGl5zQY0H6AceJxhr/fYowVYLSE\nTqUfJguuLCmQ5RBV/XSL8/f8v2G6Xz4nhDUAQQ1BbB2bI+SMcQhjpouzTL6hdvRBiDsgE1mg0xpa\nFIFDEEDeA87YJtu6ryMKpclOd0BwfFhtVdgSGXdGeQ+lidL+zgoZ6G2U+ENcmQZg2oGKrDQ1BxLA\nwwmYM23YA11NW0vcwDUDxDE5hrsDuhFL2wu0ER2Qg2p0AGI3GAl1buN8kEMXIz2uOTc4rsx6FYaJ\nQ0a7oPTlTSGXjn1UbWrupHBjOnJeCObEac3ZqOOcufSzUVU9I8Cj8gZaN6BQHvpAW00hgNVlxZmB\nCfWXh6ZL7qDQlgvoBpWmNeaLU1PUS/d7sKh4s/xQHRjdhOXGufIMzgdRW2O0cETxbGZS/bRwT9+v\nbAsdCtEhGjqp2PHcgOJdtaZ2DKZgNu6xcOzc+n30NUD527C90iDmdRD6Puf9U0DuIR3ZL3Cu3mOu\ncT2DDdaC7pZmjucKsN1gjyUTei7Nov6egn3mRX3rw8wYQEOkDhKXhTjWCB0zD/c15m2UVJ19UN6G\nL7Q6qGnChb5jzHCWHDQ6W3AuSrhpgNgGjoVUVfwo4wTmMS8j2lQBUc0HjlFitBVElPt2+xrzQQib\nM0t9qmh0OVMQ3NwcQzDZUx8T3sxzWgpoA9RcvWCDVT31x1hK61ez93RbnB6aDe1toXhbPsxJ2h2s\nK8Z4tLeDI1iAK1TXETLRFEt13ZjQ54ZyrIN0r1/ERaQEQoutVAJdlEOHNMdmZjXXM3m1t9oX+hZu\nox32r3RR+q2qld1ytAYzEXZeIqcx3qijvePhglJk3UupPpkc7lUt7Ul6HoxPGE8uRvmmvw9PqF75\nQ9qjvTiCg1w/be2e5tHqqpDXxqo0CEKQzLEDaF/tm9N3Soo/1RZrIH3n41bW3WHewcJ0DmD1BI5h\nsM2yGfQpcK6BnGV+qvtn34u6T4lNJnCcgqU0th9k+K7iVnZE9zv9ipwq1xe19wph5nXW1Q8J9KCQ\n23jisJODpRvBRksXtZ+bSAhx3oAxXV0Rstua1DoymEVHqIRrX0qTauiw4vfiLcXX1ce6f3BZGjhF\nXAEHcBirrSp2dBZ0n+Sg7nvosLRwmhvq15X5BbXD01idmlU8947j3ofm1k5bg2UExo7PerzwjZD2\nLv8vOU0zNF9al9X+CjpH+2a197zwiub2/F0h+Ou0p3xfY/Uk4+LQYSHerfBbR5yeF1p1TayBsKV1\nvTarMVxCS612Q8+rWtH1JnHb6tnetYeyMFwCd98n7pOwqSrqsxzuRW32jT6sq0SZfSDucn6F/R8s\nzMgcU5G4ghZZjf2hx5qcwrGsBsPSj9jrDOjvPeZKosNcy2iN9rKKL9ma5m4SJrPHPrtcRq+P+J5F\nC8fDzaiIjlAlo+v6OJxFGeI9bk45p12hDhYAACAASURBVFHT1X07SY29Qlr1azVU3x5sZ6fhCHnJ\nIli5Rr2asGETaPKkiT0h8dFHC63KfVKMjQLsuyZzKIWTZ5I43wrZJ9PONg5vQ0nGKJ/rN53a5N5K\n87M5MzNbaWqv9/mg1odUWrHkhabmXgkNsjstOZC9tSH2R/c1sUW8W3pPKx3T3+cqasdnyxoH589K\nW+bhrup9cPVt9UP25pO6bN0ObWRn0dLPiUH3aEp9dyKvd8Vl3gmOM++HChoT6/e0Hzu6re/9/rTY\nO38VKV7chg029ABWTkXaLpkf6P12bVVjYfen+nnxt7rPaTXFhjfQ6+lrjOT+Bv0fE3Nue0xj5JXj\n6rMMce5wAl2mO1qz+zOKc+O/V58c53t53J/Loda+1RW0rx5Ih7V+gbiZ5dmmFCdP0ZyD6AyVv9H7\nfOWs3Jc7Cbktvf5I8ffaG9qnH62rHf9eiZkycYlLXOISl7jEJS5xiUtc4hKXuMQlLs+gPFOmTH0f\nGa97yiR9M8A5xTllB+/sKGNePKDM2vCuMtkTHyrLOYMexQP/d2Zmtj2iLGNYVlbx0UUccWpiqth9\nfS71krKmF+eU8bp7VRmsTUSdz7yKMviyUmE/3iDr+BJOCl2haO2aVJlPvaFu/OZDMVbOgGg/96mQ\n9VsvKOP41qrU7r/sKJPYKb5iZmZLR9CS2a/6/MoTI+dMV/U/OS7kIZHS9Q+U1S+fXlf28+h3lVkc\nwyf+wU015MpDXW9icsoujNFXZF7P71Mb6n9QX6z0/5OZmR37XN89kdb5u99G9N2pn5uZ2eABPat3\nfilU49OXlAGfuKos5UhC6Mroe983M7P1nK4zfV7ZyWF0eP5f21tph6D//O6BVvhZZcb7qMi3M5wL\nxzkF4MBqOBw45DfJ2dgy2jRZzrSGgCA5MuldrB0CmC4OAu3l9L0EiEOm7wQiQN35fJczpnm0Hzy0\nEmqgOI0s7hmoyvdgayD5YnWQiQKZ+3oN7RjO4mY4+9tpg+Tyu4F8dkA2ezkhMknOElc5Y5x2GgEw\nizowb1IRDhA4wmTqaMRQnxYaOxkYNE20HFIgPP26xkOHc51eDuSdc+5JDvL3+Hy2rf/3s2hAwICK\nnuJobhInmsFBztRz1n8aHY0cGf0tzqA/3FLmfBimyuQsTBpQ7YwjSSWVae+CMnnOQQV9h0E+OHlY\n6PD0Oc1vc44zXXSKOE/ujanvWxGOJZtCeZa2NHc2VzizHsJygBXQA4k8Oqu5N3oQ1Bw3qR5OLBuP\ncTx5TJyCuZGD/eQb6A+si52qPr/1UPFneL+QzrFhPdv1Mo4rgRCEANSuA22juqQxsonSf7qiehze\np/4o7QNdgk3RSjo9JhhIwxm6S6hb6psF/aSCc+d05nfqrJiJWc7Pl+9J/6rRQghjj6UOqyHB+fsA\n+pwH6tVE48XLOpYWDBra22JupznX3wTT6BNsHGMrglGU9NWujkMRES1q9/gd5oxzo+qkmubhHtcu\nNKmjrsX0sTRxrwdbqkOcinCtSHAmvsCZeScx5XPvyLFyAtwpHMOPOOj0HfoV/V6H+ZZF4yAFu8Bq\nqkct6cY0a3lOYyeJdkAH7a6I+Z6kTws9fb8NM5DmWdKE0CYBQEPiMWQxC1IgoYTdLq4X3Uhj2bER\n1tMaq7XoP0al/tfSx1UoKNCe0LGY0NLxcexq4EKEZk8TTLyPK9PgJHpQNmdmZqPE08MzYgtcv6w9\nzVe/008PllyL/pyc1efyw1rrh2ZxvzO1p/FAMWMZHaqN7W/Pqc//8bZ1WUgGifvBIA5wIesWbn3F\nlJ5r3SG8CZzdGJNOkycCcXeaDSF7kxBkPKDfM1ldbwd3p2Iua9tt9Geq2hu4JTMzAHuHtTmYEJKZ\nzsNOBe0NcSDsOb0xx16FTVUnTjkVsr7TlHFOMgnHlqWNyHWk0i4+Pp37UkS8jhgbQzNiUjy6LwbG\n4lXYxdpW2swRxbE0uhaVVT2rhTtCZDOennnG1xjyWK8mn2M9wQVvpwXyyxr/+IGus4gr0vC41r2p\naXQA6ed8qLFXHER/qap1Zus2rIAXYT7CkIy2YcdtiTnZm9fnZia0D83RjsUVtf/BLTG7U0ixjXhz\nZmY2d1bajCUYLFGgdkweVj037wuhXoXhev2yfs+iNVmtiAHTZizVWooSB9GYOXtKLl73U+rvZXSY\nlnb0vSk+d/yI1iMzs9HBMUsnnPuW2llvaO4NjGj8PWyqHgt3xZiZO67nl0vvXefOC3VNpLks5cPe\nxXUp7SvOdT32WxWt+d4gewUcJTv8PTGgZ5+suOvDtMmiV0dcTsN46aGbY2Xc61C3SbLvrLfYF2Z0\n/TzxwPM0OXZZo0vE6xrtyef1M8ea3W3ggtd29YZJx56nRF9X8KHKM9Y9XEar7AcLsNo81jsnCAXx\n0bK4wKXrTq8P9hwupD2ntdZlHcywn9yFacS7YgTbIY/2Y524VSU09KHTZWEq+j2nBaR+SqPTF8Bo\nDXEYc7pV+ZY+t9fSHRDbbWla8fmVYTFX3m/p3bCKO17mqFhi52b+3szMPulpjB6/JV2TnKm9V1Y0\nFxqfa+wf3SeWR/73eh8796J+/3jzN2Zmdin30pO6vLI5aguvn7YRXydO8gmN+0Nbele89Ue1Of26\nvjNS07yPqnNmZjaD5uv4oPbV2xflkjb6he45OfDX+vuoGIQf+mKSnOf0xThuc4vH9B6/XtC74hrv\nBLXhBTMze+tjxZXDpvf5WVzZyk3N3/nrus7sguLZ7ZPSNy2V5ZJ0/aTGwo9gU12PFLePLzAWC4oL\nq+f0LuwFiu/jRcXV47f13r1d0NqcPa+4Wh8WM2j4Q8Wf8VC/7x5R/DuckUZN0NY+/t8rMVMmLnGJ\nS1ziEpe4xCUucYlLXOISl7jE5RmUZ8qU6XaVETv4I7EpDu6IIXJlUWhOBWQ0G+pMWzOpTNz0Xyut\neQeXkELzO2Zm9vqItAy+7Cpz9vYdGDMvyzf92pc6Y/rlB8pq/nQMBe41XefS95W1/PVd/T64JKjj\nhZdB0j/m3ODzykq+vMk5xGsSZDmxpfY8OqAM2t1JZTNDVKgrbyojt9xSe3pjyo6ezut7g0llYVOr\nf2dmZutX3tD3j6q+1TXl0Ao9adN895KYOvc5S/0Q95fzMyAivQ/NzCzIXbGdPyk7N/Wyso/vPRAK\n8FpLaEzjjM4XL5KRDu+rbq8PqG2L36guiXmhHP9QUkb4pc/UttUR9c3kDWVB3/3+H83M7M0r+vvN\nQMjf3bMgs/+P7ankk5wnJH/YZEyEDbK2eT2DFCwALy80pd4k35gDcQBBSJGZD0DPus69JO0y88rk\nZ0Hb+r6+HwWcjUUMgOSttRxRJuAPsCBSoOZN0Pkoh/YLiEK/rWfkDFhChxCjT5EAXa87NycQkWYH\nDQVcowytgBxaEU3Oo7fTnHtvodkCshKBOrbQBsg6FxS0GSLEcJI0ECKLeehrZGEL9EFc+7imQAiy\n0Lmp+A56CP71D+ugGeM0exK4EHRghSTo98AJoeyhpCNYRCPoOyDxkcZNyINt1YPZcmBOyNmhS8rQ\ne5zTboEIdDLOaUYXSjbQIGigyN/T9Yogk2PnlLmHdPTElaK8omcegaI4F56wKiRwC8Zdp4GuELpD\n+yaV8S+NCpkMSug8jKDJghZOc1M/y3Vl9Gtb+pnkwHVrVfXooV0QlNQfm4tqT4X2JnlWRVgOy5tC\nZ1ZvCilNeAtmZvYQpNCDZeZXNSfaGd1vpKg4Nj7JM+ccd+2JtoqYOCnYXm2YSfW6kIUkKNm+ccXv\n/c8rVvVgVWyuqN8qtxV72tWnY8pk0SFpoTfSg3/n4/SVxOmng9MY0hHWbNNezvEnOMffCx1rDfaZ\ncxhy30NnpABC3MXFqx8wFxsOrXO6IFlLMt+DGmfyQRYhfliqgVMVOkY+TlWOFeVj7VRh3idBUPsI\n6vhN574Em6AIskjc8tGU6RZBaJmXLdhLTisrgp1WwAWkD8OnzzNpZvT5IINTFvGsTP0KaGU5INIx\nhHyftQtNAbdDaTYcAxLmBnG8j+tQ3tNcrJXUX4N1jWHn1LXXknFMQ5hDPi5YvnPuIp7XCgR+tLuC\nLCwOWGFJGC1+XvXz+pojGw1dr8VYyDh3wbTmeAvWxxZOaXeva50ezGsAtNEaKqHNlRzWHmb/6L4n\nbZiZ3mc95upWRayI9iasvSI6WmhWLGfQ/imi2TasfgxhpeRGtR9wDmVeVzGigzZNDt2nFs4cN69J\n58PD+W5lbcd84O4ua2meOFyADZBKCp33BjS/c5HTjUDHAtpkE0abc8gKeEYZxlTDc2s2a2KHSZNj\nLeoSr3CdS9VYU3Fq3GtZ3VLfbNwTqp2FxTB3Qfp5hRvaE20Sn6uB+iSxovuNBOrjPg6GIezZjWU9\nqx3i+NCQxsTIEe0nZ9DQqo/ofiP71Z5Hj3W/a5/Lqas4of8fOKT9bmpYvx+9JFT9wW0h2Nu30U1a\n1LNav679c24UfQ8cvJZvCOnOwJ4I2FsUGTMbfP/uN7D8hhQ79h0TWr/VUHtGCtpH53H4OnpBohFD\naAe5vdHGkuoVwMYY2qfn1doV4vz4nn4feoX3h1PaW/ZwSFuf1zhqHIN/V/iW4bK1vmFNWIVF/u53\ncYGC/ZbowExa0ftD13N7pb3rhUQpmCv87tf1e5Gxnug5Fzn1VReWUYjeRMr7c4aMsX/tlnC5Y88A\nMc+K6AftortUok0V1tQU+7wgzf61SXxtaN5GA+xtnEtUj7/za+D+DHPa6fH1BmGgoN3ow6Bs5nX9\nRN1pnandfca64Zg5CG2uy344CIijbDz9ATSwdmB1weBLsm+sNt1GXN8vsWi3cHNy7nAhMSOH06XH\nniXHBtxnTxPiStpn3e2htdVqDtJuNMIC59aEdg+svOgp3f5eLituf9qCDXhU9Xh7Rfokv10Xy+Od\nJc3d7o9eNDOzF+f1vV8znmrX1R/jF1W/e+c1Xu6UxVo51fqlPndHY3zlp4opty9/9qQuN9/62i4l\nt20Dx938F5pXa/s0D8e//w9mZnbpUzGXN97QNQ6k9Y74R963f1TWGPvtluZ7h/31YFbz80JeJ0Uu\n1r5nZmaPbuv/PU9MygNow549oD5vT2jepyO15c6srj9eVFseN8UcX/9Q79ezP5ozM7Mrl8VMyXSk\nn1MfkZbZSE4/N9Nv6b7vqf1br2isXPlA78TFaa3BMxc0plc29T4/cl9x+C7up4Q56+U0dsbeEJN7\n8V3tY4u+rndnQ+0Y3tKz/u/2b5eYKROXuMQlLnGJS1ziEpe4xCUucYlLXOLyDMozZcrMj4kxMjSv\njNP6NueWS0pdZRb+xszMwh8IQcjtU5bw52t/MDOzS1/OmZnZGKj6u6NCAIoPUH2f0ZndufvKuG1z\nPntjQVnE37+gDN3zd3Q2bm1B2cazj3Se75u0MoTXK8rcvyQA2x78+kdmZnbjHSEl0zeVqetFOqeX\nXVYW0/+OzvGF7/0PMzO7s6LM4Q89nSNfOav6dHswbJJT1EffH0Abo5hDIyLSGdorHf18cUtslGXO\n3I6XQEm/VjtGej8wM7P3Jj+yA0WhNUebytq9nMUFaEgOVO3r0o5pnFDW8yQOM+WaMtfTh4TG/PqG\nUI7hpDK3dlBZy62zQmWC3Y91/Xuqiz8lRe5yWp13iXPW/9P2VnpoljQ5Q5rIO30PUK+Gc1JBjR6k\nswhqFjpNGM7G1qFsZEAYkpwr74J6hwnOqnJWFlDfPBS32yC/eZDfEGeZAOZOKq12t5LK4Kc7IBAd\nZ7eh35PenyPYXee24rQjULV36FGDz3mg8X3uY6D4TVyoElzXI2PfAOXJo2/i7tenXyNYAz4IgY8r\nVbfF2VvcrtxZ3cid+U2BvIBwJzIwdah3G22LELWIHMykiPq2s2hYgBD0YZE4d6xuZu/uS7vbypAv\nrepeGfooQg8jqqPRMqM4MD3LGXP6ZndJSN/CkhC28kNl7N0Yc8ybsOWcr9T2A0UhBgHnnOe/5Iz8\nupDFwYxQroFBUHDQ59Ya+hehkIOZOSEAE9NCWv1Bfa/ZEsqegJ7Q4ux9c1vtLPP3wI0VEOUkzjxt\n3E3aBf2ewjJla0VIwfiMEJHD5zQp8wXVswNbbGpI/2+DJgGUWgOngJ1tjZ2hhK7b7ag9C99wVr8i\npk26KPRvqCBGTK0HI2gc94uy+r+6K2RiLMPft3XfRl3x17b0f8e2suDpWBA90P60cxIDQQ9SoGGc\nL48YPxz7txC3liyMmi5zrID2RRM9jmSg60RoChVxZIhg+3nm/o/LSoCDGihn0Amtw3zrBiCNnF2P\nPA3COohnHjZXAxZSyFgvOQZNQmtXACOly707uEyUHHmgpc+1mZd91hrnlNUFyUwwVxK4rUW4O1Vx\nRDDQ5UJacybZgpkBg6+T1JpUJF70YPYUYKOVnTYAIjgpp+OEO5MxhpMgkmXwpEQIcwbXpEak9mwH\nitdh2/mf7K0ggWAhzMYEDKEeLI0+mjyBwaBENcKDMdNjbFZg1WXRMujR/sqa5oAPK/boczp3Pj6n\nvYHT5klUcFxD/8hjHJTLWpcDtMJG0ur/DKxbM7NLP/2BGeteB1Zf5PoJpLq2zZj3FFNS6I502mjx\nMCc9mEsp5kS1o+de29L1V3Fnat5XTInW0Q8paO8SFEdskPjZRqehU0FPw4X4Cs+WNaLGWE/hYOPj\nFBP1YC7iYtdnXnqwuxx5qcraFD1xGNSYcAy5CH0NP4eDzM6WPU3JjsMGuKob3vpQiOzYpPZxGzt6\nRpmM/l9eUNzq4aSWfA6NBPo8jy5FANMzWlcf37vyiOvp93Gc0vIlPes07KhpGDfX74txXm3QHsZs\naRWWBU6HRRxskqeE5O7DvYnlzjKT6O7Nak/XwflnAgaOc8WbHmfO0i9p2CDLNY1xg/XboR9qjP3G\nOs6N42rH3JTW5SCtMbP/IAxJ54ZHvN58KC2H+7fUL+kh9cehg1q/vIzWr75pDPrs7dL+t+vE0GjR\nNte1X6ixPk5iCDr4nMbn7Nk5/X9F9avU0RCyvceSDMxDeB9W9nStgR5rOfvADky1fAXdNRZZHx25\nVgIXJDRfIlgIEW5tPk6LXezphnol7qfrDP7/7L3HlyXHmeX5uT9/WoUWmSFTIiVkJkBoggSom1Uk\nu7rPzGLmnF7OPzO7Wc0f0FWsKrKqyCIBAoQGkYkEEkitQ2v9tPRZ3J8lDuYUuwKr3Lht4kTEe+5m\n5mafmX/32r2wNduwyUI+H0s7xiGMEjc2YdnmfK3lnRp7HuceCnOyB5ZbUNHvJTRijPXDMThraMO0\nfdhKCRjXaFQ5fbUOe5N0CVYcbqjJJBpnWbWnyX64QT8lnabaLhtnNHmSW7BdizCxW2iYobXV7bDO\nEc/LrJtun+q5MdtUjHA6fGFD1/Mc0wlWbQN30TDz7dabMmPuxa/k8Luw95KZma1ziuRXHc0FL6m5\n9y9/1Bw5amJjvPiE6vcH3G5fHNU75e9nNdfy9/WOWjuufho+oLm+RL2nnh5+WJeli6u2fTRhicPS\nksl29S5YvoLrZ1rM8v/53d+bmVnmM70nh+zL4km5CH/6ud5LJ36muviPn9f1/6h3SMw17UFHpzOG\ncDkbfEbvlItlxaXyY2hu1eQwVX1e+9HRDbX9Rkd9ce6exvgWTLbhQNpSY6+IwnLzHeUTgh7lE5K3\n9J5dSIqFNP7KlJmZfbGp9/jsOV2n/47YRXd3cIG+ojH5m4T2+T9Oana/t6k+rGzrewNjelbP4ND7\naUP3ObFIPU9hHfZXSsSUiUpUohKVqEQlKlGJSlSiEpWoRCUqUXkE5ZEyZby8ENAb2zi77Oos2chJ\n6Z9MrCp7mPyjMlT3DwuBfnFcmfEb3/mzmZndzYjl8cJflLHq4axr6aYyZesvKhN3t1/NPQ0LZOSC\nspGrTVSU15RdTJyQZsuPxsgSZ5W52/lSiMXm+IyZmWWXleG/fIRz4UNi0Eyu/EnXWQcxeU6Zsdie\n2CLvzClLe2xQSHKW7PM9VPTvo9r83JD65w/D+nwmg0d9SxnLm1m1d3hRGU1/UdfZqIqdErwiTYnn\nL/bbOxWxjDYvSPH63ICynCtP6R5PvilV7z9O/MrMzKY7ulf7uhC8haxQiORTOuPeuC7l6+Sonl3f\nsu51f1DK3HcP6dmMZJU1ffFD9eWfAmnT7LfEGzgTQNCotQXnpMmQO3cmdza03nUuR/peHFS742lM\n+DBdfJCBOoh0Cl2SCuhMHMS6w7nqhtM8AYFowChJIooQZvWzDGrlwaqwNAhqV/X2OGXcAPFNmvtJ\nhj0NkgJKH4A0e+4sbujcotBmwamhCZMlwM2khcBJnjO2lQSMnQpoWwbmC0iJj/ODO+fuOyTe3Qf0\nMsF5/Q5oo3PiSYG0J8jzchkDYLE2TCWP+qewk2mjLdMIcHlBAyPWdRjTf16CFgyImvo4O6mMegJ0\npjAotCGf03ytcP554YIy8SsbOku/vQozBg2W5JDG/mA/rIM+zq4TJ5x+xOyc5u0SSF5fQd/rPSyk\nMdzVw1y9pvmegsU1dVpaNAfO6Wx9h/PRmzNite1u6D4dOjNbFDJgoGLupHwH/Z8q7ketbUERO9tC\nMEbQl6iZvp/Lq969U4pHPUOKg1tLnHdHvyLI4mY1oDHpdIt25hUH+3v1/X7O/jr9pfoOmi+biqsG\nwhuHMVPaBb1Dk2b3Fv3JXPeHYcVBGys7W7xtNGHQ7GmBmO+3hF3njAbaCDusxRjPgb4143reMZD4\nDo4/VdgcbqwbzmfZEKcz0E2H4NcY20nYHw3QTqaWOcmLFvouzVZoaVzkmjgzOZezOsy3PC5IrQpo\ndwpdNNrY7Lj4o89Vofp5TuOFs/YdtFECztw3cPDyQHS7HRgaTtoFhksLDZoUmlIeGgMtGIYhbKN4\nSs+6jWOKD1pdAiTKcJ894lTR0z/2QLtiMERaxO00bLQqfVzMO2ae6r1HnHYuGEni7qajd+2zVHCB\ny+Hi5+E25xiLnQSudTBRnDtRFUZMHG2xELeragsE1Zkb4YqSdusIWl07aP2EVLeX9hXQP2mVEZ1I\nOQYiOio1dKU2vm7nwsKy5XzGNkwkt9VL4RSWQ5si2XLrnD7VcKwx0MvVBdhpTNENNHzyHfqhqJ95\nT/uDwfNiD/YfVKzsP1ywwFg7YKOWtjSffVDrPZ5tHEZjhTFT24WdFMA6gnX5kLHAWGmzBtdhKQV1\nUPIcc6Om73lp1qivJ57ua/vXCjEzG8po39U5IUS5iZ5dq6F69qL3lhtXfOwLFHfbgerh4nhzjTWU\nMTqSF/MleVpzYzWh/W55V53/4IE+3zcitHtyUHF7/PCU6uMpnt74UutauQIjJat6lOe013Oub4Up\nrU8Ga7YEm3b1Emwu1rHhA6wPTY21vrz6f/iU7mu0Z+6qWNdbaO6kB3S//hGNhRqI+sp1rZPFQf19\n5Jh+pmEabuzpc1vrqsdon9o7NMZ6koRRBeNqq6vPZ9gjNdsauzP3xIg5eeJr96WDTzxpKcbs7C0h\n9zM3hKxXYIcMD6lf+kfV/s/fVz92ca7cT9mqaiw7TDweMh+dSyVLSNJXnNyj7h5rTBJnqC7szAqM\nmnjBaXHBqGE/W2M9qKfdWHaafui2NYXe59zQx/WzyMa6XXbxXG3twDRsoBlYhFFZcdo25tizaLDk\n0eVhfxemnRakrpcN2a1UXXth7MC6SuFq1KT9hvbhHoxqD1ejrHOZIpZ4ddhzuMiFuC01s7gosX4E\n6AV5rHMV9uF1pxUJQ9CDcBP0wC5GA8wnDjdxl4qjWVli7+URj8Pmt+M5VIo6XXH7pOaYsY4FO2KD\nvXVI74KVCbX3mb/8s5mZZWqaEzdiYsWdW1H7f31Kc/Ml2Ghf/Vjx+Og7Gk/FCfZsuDfdSp56WJfv\nH3jZLmTL9uo1ab7cb9FGnGePf6W4sn5LzJfx7+qaDxpiyJyZ1Ty6sK1nPP5btWn3Cc3TV/wZXdcT\nI3wSRsvEWfZHs4oXT1f1Drm5qGd7eUInWfbui1kTHv1bMzM70dQ+cOeM3n9LjSl97jPVry+ukzPx\nuMbAjQPaF7/er3gVdNQ3V2vq61ifnsVT7NMuj6h9uXt6V26lxCp98XnNDb+mdoy9qX39vYTW6DX2\n/f+G7uqPJxVXfpNWvd5I6n3jr5WIKROVqEQlKlGJSlSiEpWoRCUqUYlKVKLyCMojZcoEDWXt5svK\n9r12SGe+BkCMV0B7dk7NmJnZzJIYK0d3lDF7YkmMmp3XlPVbGlR28EvO4e3llKFqrSjD/7OP5Ebk\n/VCZv+09ENlBZfaW/lFskiN9sB/uixVSywgJL20pM9fbFrJdrKNFg45K/L4yb2MttWujqIx942Mh\nKvkfKaO2NooGzd8r27lQUD22G+qHgZ8Iceh/W597lbO2y5+qP9aGdUYtcV6ZyGNp3fdjzpuu4aS0\n8kD9k37xoL3xx39TXc4r+7eb17XG39M1tsfFLni9pnN07/pi4xRf1r3jd8R8ee6B2t53Uiyk+xtC\n+9cXlG08+poyyzezUra+CytobEyoxXdv6b7/r+2vNNNon+yBgOIu1Ewo8x8nQ93MwCApO/0Hznx6\nQIBkP0M0FjzYA4m2pkANFCtdxonH15hJAC0kOX/cAsnutDlrD6Ja63BfkOIwcG5JMD44I+s5hgxM\nkSZ5UeeAYy6zjyaL07qJJdAmAIkN0LBxZ3JjIBetFir2IMXWUPsLnJHdCVHP5xy+z32cU0zgzi7D\nMErE6VfcXEJQfcT9rQ0CVKcefpqfICZNNC/ynCGudzPcV/1Sdigoav81kIueb3F+u45AUP+YEMzR\ns2KKebB6fJgx3bLaUNnUPNtcnTEzs8au6tI7qTpMj2ve5cZ1vf4ezYE6bboPQudzmj4zrLlz/Iy0\nngrUI4uWzJVPpDmQyKmth84IuTtwRvM22dYYu3NDZ2Uf3BEi0a6r7w6e5nOcod+5pT5a3FZ8aqFN\n0mWMZjjr2tejvh4cFsI4cFzxG75oCQAAIABJREFUoHNavyd6hVBuPhBCcfeGFP/zg2pPdY1YUVf8\nM7RTnPvJNJoDiYNCCLqMSac7lEGTpuPGNi5DGRDsHbR1ErixTDwp1GbylGLPOk405VvoVqBJ0MG9\nKIXb035LFoaRBbpu56FWDnocKdAx2HiVluqZCdTvnRooIstmk88lOzj2oCPl5k4WZ6IG+ioODWx0\nQRVB9Nvov2TanlW4NkChdWEmdMswJpwLEozAkPjXbRIPmP+xLOyEOnEMZmAXx4ImSGsbXaIMTJUW\noioeZ+1jnnM50nUzxLeKB3szp4rGaWM9KPB554zFmISZk0Wry5kiZXFxamRB9X3VowG7qJhwbm96\nRgncirqwqpz2Tg6XpGQcdyTGaDv1tfPKfkoc5DOJplWZOOlcUvxt9c86bABjjraJ4xnGUIXn59aX\n3XWh+UEcNB+mTZt+d85rwzjlJHs0p/JZjY0WbiAB/VhDY+dr06f4wzbszq/adkxjs4t2je8zBtEz\nasBeQc7IalX9v0lMSzBOBoroZmkLY2dggfjULwOSnU5yoayev9fS86xtbluprraneDYVYn6RmJ+G\nrdVEZCaFFkknr7Ff3UbjiXnf4NnE0O1IMNaSMNwaLd1v4ar2HJ0Si5Vj2vSojsNFMSE6zW+nTbVF\nX22Buk+fFnM7B8PwAS5Gm/O6fwLtlUJB8cqDpRAiVjZzU4hxIqlnOPi49lbjh6StdXdG962uw1Je\nEoPGvwoD+4QYNr0H1J6+W9pnZmDoHCHeX1hR/JxZ0f5xuKx+G4YpmaJ+mwva5zaaqv/qCvchBuz2\n6z7T57X3G5vU99oN6RU2d6VjsTYjZLlvZMrMzEYO6ufCVSHWK1uK695djeUemDCeY7cRs+aa+vxB\n2A35tO7faGlOens41xArGjCB5q5of97c0Tj67//172zpzk3rHde6dQx9rM8/0v5951NcoJ7QmM5N\nah2PO+ehYP+vS2mYY463EhBn245h3YSRyH7WOfh1nZZJW99voZWYRFOxBassxhrWYD+YRJ8oRK8t\ngftnvRfdJJwFY6wbXo59KyyzePybrpghbNA0mi4dvt/qRcOqrnerGmM210GbkHjXxE20BUMnxbqx\nRz1znn5WYR5W6amuY6PCgMyXnQso6wqs1TrM7bThXkWcbvfAoEGjxxyjpYf4WUFjkSHW5l0Toqe1\nqX+MdcvPw5KGFQ2ZzJLUv7uDNg7akun013F4P2VO1bfJVdXryydgARf0LpoZUixr3YQt8rJYG8s3\n1b9PLar/Pshqbhf+qPewTx7Dje/WjJmZbdYVK69xeuRAmRMBG9JrtV+ZbWwkLXn4HfvAV7DPpGBm\nwzB/P6H96UtHxDB7v664N/KOTpbcMtWt54iu/XlZjete1ud7TNed/bnGxHHnbvqxrrPIPO68iGZf\nDu2su7Bxb4ppMj+n9/jHq4oXtYT2+yf7pHV4bxdtl2PaR+YOyH056Mid7p2O6nEOvc/tBcXrLozv\nL+4of3CypD6f93FBfV5x7qObjimu+zz+mOr/xdxFMzObuC9207PH1Ldzl7S/fuNlfX6z8r+OIxFT\nJipRiUpUohKVqEQlKlGJSlSiEpWoROURlEfKlHk+pmzt9w/9zMzMLt9W9s/LC1mOnxJyWlhT5qpI\nNvKtLErjh2fMzGwQZerghLKa/W8rY3ZsQBn2WOl5MzO7dRCEF4Tz8yH9f3ROn6/8DW4ji8pSf7Sj\nDF12VYrYZ0Z/a2Zmc7vKRm73yj3qBGr5I0fQFojpevMHhbg/uaT6lTaVGayB5BRk0265VanmF4bF\nQmm+q+t+8bwygon7+KmPS7Pmy8m3zMzs3G19ziuoPlMnhXSXe5UV3UaXY3tpyTaeEytnsySUwXqV\nvRwaFmtgZlaoxxPjqvvTLWVFY7fkIDVffNHMzAY40/mbUFoxk3eVBfz+a9/X3+9Ks2ayocx2h2xo\nlaOLG11lH/dbUjA56iCeThciU1WmvpqBaVJWFjKHNkrblAVNolWSBO6oo/Je48xuJgNi4bQVfI3J\nLBBimXOVSc7OWoiDA24kTRBjwHRrgjRkQWobZEVTjN0mSK+B8mWhnJRBHEN0LtKcU/eS+n8NFxRD\nJb4D1Ozxu4+biQ9zJWRqV0Hvc/zM4yrS4LRzF0aPQxDaadTmcQ9pZGD4+M7NSr+HGRBV3FE80P8O\nqH+XORZHA8Ih32nU95GisDjMmwbn/b0mWgXocuyn9Bc1X4cGFCcKXHNlFgeTplDb8gZK/Ksa4zV0\neEZOi0Ey/qQy7gVzehdq08oCTjM1XEB4FL29um++qLG+jeJ/HeZEfU5IoxEfxodVv4NPKoOfgqEx\nc1dMv/WbQkK7jPGp82fMzGxsTMje1oaQx42SkE7niNADqu3liYt9as/YSRh6uCqFOD6swQxq7uKk\nUhKyMTQ+ZWZmSQQmdjYUV9zYHT4uRKCnoDmQyIkR2NnQ3LtzTZpglQ31bwx0rAkbIo2uSBXU0LGl\nho7qvgPHhHxUYVPUcaDpTzNHTyiOFqhP/4DTy9hfCVHhKe3BlivgIAabq8TUTOLSksa9pQ7ymkXL\nYA/U0oP1Fc+qH0Oee4AQSwkniVjKsVzcXAGm4/se7LCGFzdzaCzofTILSo1jikORMzBgynWNvSx9\nbWgWtNrOdQkk1D2LPcW/DlBh1kcPI4uOkum67Rht4zoAsFYFhQqKigMdmBceIgm5uj5YAbWOJZym\nlvomgZtIyNwKQSC79H2dM/wFtLA6zGULNYcrsJtSxOceWGZxxlQLXYgi8Sjd2b82lZnZLmNjDyZO\nfVtzbge2RQ6XpzL1LSbQC6nQrph+b2zqewEs2D6YJYl+sR+y9F+xX88vjYZZvab61uqwuWh+AMuk\n3iKONtEE4+8dc2wQs1jSrAVTNHC6RmgqVGDqxFPE98o39ak8nIqK/bDRCjBgWurnQi/1gbVQYZ0q\nwUawDf1cKwkljIVVa+IM5jqtk1MdNipCd5PoYLRYk1u4NMVAMhOwZT23Xa07fTIcshgLjRC2FOyj\nEyd05j+Zoa7MrURLfVtyDjEL31J3aE3xbe6qGCE++9GjR7V/C4q6z+oljcXSivpiGOblwJTies8B\n9XX+ptqzMKu9UTKvsXLorPZsfehM+CyaIbEh1lHcaZZwuhrAtY+1vo5TTLOs9g5Mj/N5fa+Ozl2H\n/jv0tPaAziinvAlDcVP3XetoTJdn9YzbOHOdPan2HDwpVlWbsTd/TfvRtnOjGtXYHxrXmF+d1/57\nbVvjYuSwfo4e0nqXKqgdC9fEHL32CYyrIfXPQFb79Uxa98ulxQLonlZ/zS/r+rv8NDO79tFlO3Va\n7Tl4Qvd56g1pUq7dFsOoy9zMO5Yezj217p7tt8Sd9he/O2ZHyP4s7sPGzKGhB5s0Axu30kL3La4x\nvtMk7jnNLfSTqmhRBUXWBRdHTX3UQJwww9Rpx3EJ3YF9hptpM4eWWVVjMoVbXIO2x6i3dZ0bIHPa\nMa3ZLzoXT4+IkkEDp44mY7qq7zm30VxA+2AtZROKMx2Yn200zBxTpVzWdZMBG0j22SF7krCmdhTY\nx3qsuWn0gOLJb7rhdXddv2M95twCWa/iMAdbVVyXst/U0mnBQDHnaLYLG3efZXtL73DdZ/UedWoZ\nvaeK2B23r2vPeCD3nJmZrW3J+Sjf0N5uraH7nTyg2HK9V3ulN8b13P/S4fkO6/uLcY3xx57Ty+fn\nl688rMvl1FX76Vc/tFmYhwPoom2dkmbL4l/E3vGOqU+ObPyLmZmdflZ/b2xKk+W9dT3T58tyU3rr\ne4ob4TX1/faXrHUnNTZ2zpf5u+Z3mBPj5M4aa9W0Fp3XcIS8jOvc9iXFyws19UXniNp2Hsb7n/pg\nIL6tl8/zxxUnR1bENPzggBgyZycV/2629Z6fOqu+h2xmO59q7DTmpFHz8xWNrYsVjYH8kPr4eFPr\nz+EBMcubpmd367TWgaGL6reJJ9HG+islYspEJSpRiUpUohKVqEQlKlGJSlSiEpWoPILySJkyX229\nZf/N/ofVkmJdNFCVz5SVEZtIKhO2dlysjZUYKNOHZCfHfmpmZvX3hFx4zyqjdzShzN0XS8r0O/2N\nvqPKHm5sgrJtSQPiyBfKpO/1KLP/l0tCuH/yulSgH6z9vZmZfZJV9vQZX1noN3E+GOTs2xgsgNVT\nqv/Pdx0KKWR75YDO3D7/sTKCF4bfVT2OK+v91CV9fvU5ITCbl4Xcn4L9cem8sqSvwNbY+US/tzgj\nvRQqgzh2VpnBxpK0ZV49OWJhqGtOfgrUtSr05tYpoTvtp2bMzKy7pjzd+/eUDUz+SE4wdkVZyO31\nKTMzG5oTGj/4KxgTm1LU/+XV18zMLPiRspD31tVXy9tkX5e/Hbpdr6CVALrskMoabIIE2iMhDJ4O\n58brjvHB2U+HUGQy+nwDnZF2zCEAqlcGrR2OfZvnXIlAn1J1pz6vZx6jOX5VGW6fM7EOAc4GnCUG\noUxzVrUB8pHAjcNwfcrgAlUFOo7hjgGQah5nQZOmMVABIba27hukQQxAsDMAnSHn3x2lJwBta6BJ\n0QC5sCrXA50MYBFYAPOHs8ZJziY3QR7SsAmMc+oBZ2v9jq7fgulTB62M4fIBUGJt9DpCzhhbY//5\n4m5cZz2b6NqsrOii1XVl6Es7+llFS6YO7D9xWhn2A0eV0c5yznunrPlfXsdxBl2gKmhQxbUJbZna\nbZgWuAql15QZX+VM7e6W4svkuBDF9q76ZmntPtdR/fKHNX9PTAsB7B1R/ZAFMr+rz01Pa+7lJlXv\n/hHNsYA+C9LoaYD2bC0qDu501McGY2i3LGZOyDMczAlJ2MGBoIOe0si0EMjj56bUL3v6e21H7WyG\n6pdChnPeI0Jkgx7mWOjOpzNZQtUrSSgaHUB7hrG+sSAEvUqMqnDefagPbR+cLXZbX7MD9lPKoF5J\ndFmCPVA/JGWSD52/XD9qLIbor3TKeu55PlfO4ShUdSgmOiQwQC3l3GPQgeL7SWexk6Sjqzg3JGLm\n4TiVcS5maGB1HGMB5CvFNeMw/+g68xGjcV2TDzXW2hk0YLj1nmO8oUkQJx60Ok7TSvf3QMO9hHNL\nI64Sl0O0Tpw2lodbRwwWUBM2Vxb2kFci3oGgNisP/Un0f+eC55DZpLuPvpeBOkLzH7p3JD2NiVzc\naXZpbjaT2I3sszx09xhkrzE6pd+JV4lhzdE8n0/2iy3WqmhueqwLdfYceefKB1usd0D12ymhVQPD\nJcEYWC9LU2DlgdC27RJId8wht7hOwfLzSyDKwdcOQrc/+cziGTQeYLIk0FoIWLBiSRgx6JrUYAWk\nirAsHHMSJ5xaqDm5tsx4qbOeYCXWYpx1YJbG2AsFXtwC2tiAKWcl6soa0YXF5dNnXkN9uYnrXL0C\nYwMdngDnqmxefd1BT6KE7gW3toNHtJ+cgmmYAIWvoY2VAgoNv50MhGV6FYeKjK2tG2I6bsO6PXRY\ncbv2uNaNtQfaO60vK/4eegLGTn7KzMyOv6R2zd7SdTZ21f6DW4rzvQVd1zm9bKN/l0wq7rdhCRRy\nepZ5NLqW72ndWRzR/Semxdz2j4nxuIVG1/KsPhe3C2Zm1ndAjJuhp4Xiry6qPrEVXXcbV6PFO0Ki\nmy2tAxOHtO+cfgq3I9iuaTYhRRguR54Sgp45oPV4DQ2elXVdJ0//puL6fKxP+9shWAFd52SE29R2\nXfUfCIRAD57SupjuJ7a4zZOZnXzuCWuhd3TnczE70z1ij6fG0A8J1H4PN8FkBv0/mLD7KaVi5hu/\nJ4vMiwZrYh2Gn5uXLLpujYplVMetptqeiDl2mNYun7U9hNloaByWYFMl0XrxQxevYVexbzPcNyus\nH3Hc8DzmYhfXv2RK9fCIOznm/R46dgX24TX2zxag8cKrZav+/2OKw8hsbaMlhjtgkX0m4cNaMPGK\nNd0XSUmLw3BxmpBN2G4e2jD5vOpXrur6+Q5rL/0WwmZowzBPM6fqxIYu/ZlFz6iGJleDfkkR+T3W\nvw4uTUmea8iY3G9Jr2gOtU5rzN6fQwuoT2zqw0n1w427ckTy5hVLv3da75JfosUzYR9wf9Xnozk9\nv6GMYsiVCb3/fW9NjJr1C5prBza/ZgkGL23Zg9UvrQ8XufUBvRtO3NbP5NPSJb31BXo1MOPm83rP\nzNSeNjOzU0Xd46uY3nv7+9THtzc1r1/9nubr3BU0BJ9RfD7YmTEzs3fvqm8HWrpebkBtbw7ixPjp\nlJmZdXEee4F9q3+LNTqvPi3C5M4cUl88yGhex1qq91pMa21yQ6dActfID5zSM358TnGhdVZ6qhN3\nxby8cVpxfYU5uNiUE/FUTKdKPijp9zNt9fHAvLQbx3FhehONtf9h/3GJmDJRiUpUohKVqEQlKlGJ\nSlSiEpWoRCUqj6A8UqZMoaxs4MymsquHl5U5Sz4rpLWQU0Zt444y/WdBATf7hNye3hbS/Oe4MmJj\n93QmdvacsqFHLugMWGla2dmBCWUdL5E9Hbug+3yeFyLbvCjtmaMTYsx88rYyfY2fKNt4dF6Zs7e2\nlNl/fl4ZtsYryoTdA54cqk+ZmVktkKf8lUFlAgu4CFSXhBB4LRDipDJwDxLK3G/9WRnC6SO6/81R\nZSZjn/0XMzPrGZsxM7PtHwhqXl9WBvE7qEWv76k/p8eVBf3zvRmbHBWKEPhSoM6n1Pbba8roD62o\n77ayyio+9/z7Zmb2GcyQ5+aUCX9wSChJdUEoxvUlZUVTF3Tv2R8KVRlM63tfTaour7yrDHDqhW/n\nhuHOhAag6xUQwGyZDDnIrIFS78DYCNpoI6DzkODvYd4xarg+GXoP9kMVT3vn6tQCgYzDfGly1tcH\nWYyD5rU5tOujbROil/FQWwGEuwWiEaN+FZDwFC5LTdTu/TbaMKGyv5gmWcf9DkIdxyGmkeCsrjla\nhcZ6F+0ZCDzmofGSdsg1TjFdGEMhjJk4Z3wf5v0RUvHiIKgA2Twea4K8+iGIDnoAzaRrP/lf3Ko6\nKdyd+L/v6TmGPA+nZr+fkkSRf28TtN/pLYCKVFc03xogqQdPKs6Mo5GSxBVnZUVju75Nq+mTBiyC\nHZgbe6DGfXXFocS05oyf1Oe3cUhoLQjtTjvdnj59rtHi2a+h1xE6xxVQ8EBzsr2Bg8m2Mvi7sCh6\nQPbijM0mZ/4hMVkdFMoaysxvrIhJ2HFjmzGXAVGtbum68/fEitsOdN+j05rbg9NCnEursBj2dP55\ndVkIdhcm0Mq27pfpBeUqK0b0T4jJNDCGW1IFZzHGZnkPh4Q99fvOphg81TV0KeKKPbtFXa/6QO0p\nLTmHn/2VOLpIBnvDIfQP9ZoanLN3zguwMtrG92AgJTzN7RwxoZ0CFYVRlYLJ2GbO+2g3NHAmi+Pw\n4IO058pOfyBpdRybrMk8RAvLR9vFMQJrxAukV6yJZpO/S3zIqY/bMAWbnMd2TEKfeBHi+tFuufmo\nnw5Bda5M7TqMi4za4qHT4dze0sSFaoUz/nSpO/vfYP630Q/JV3DHQ7MqhX6QYxUlcOlogRw3cWWq\nlxm7MGI85pyHDVESHY1MDsQx9u30QgLcUaZH0YpB18LNtS7MkgQN7DinLsdArO3wOV3PuaO0CJjb\nM6r3ekX1DNF1quHq10RL4cQT2gM0WzAg0TCooH2Wq+P4xX0yzlnMzI5//zuWqcJUctcF4U5BCymx\nfrQZwz5MzQbMGOeisran/kvGNUaraDPUYPYYGhXdbdxjWEfrON/FgtBq/C1eZ2zwTFLo1yBvZj2w\ngTow1Fpt2JM4qPRmtc+rV9FCcXWH/jXcM2VmZv29MCxgVGze1zMpd3Aa6bpnivNN+O10h7J5xd+h\n49pTzc9rf/rgmpgu+YTuf/gUjJma+mh+VvvR+RtaF0aO6r75EcXFgzzCtevSPNhg79XXozixXdM6\nUFlUv9SLrHNuDj6ufpuYEFNlt/G5mZl5sGfXiM/1qr4/eUTrX8ITij67or3bHhowk2m1IwUaPzyi\n/WphROteZ0ntnl9XPW+t4T5yWPvdGGyu6obm7Fxe64bTCpqYUrsbm2rX/au4QvVrXPQd1b74CAMk\nOKL7zN/FZeWWPt+F0dJ7lnGzous/uCFNtLFh7c/NzMYnBm11U7HrOs8hsa3PT41pT+yhz+J0tJIg\n7uswaPdTYg3nZqbi7apPu8SNFOz2ZlNtIupb11EZ2/p/PoPDVAntGJgmnbI+V+jR3NhDQytAI8Zw\nbQp9focpWWe/GoMJ1+MTl2Hy1TzV00fD0UM7pgnbNZFGCxH6bh22WwL2WtJpD9J5uzBeYrghxeNq\nb5b1owsTs9mA+dN1bnqqh1u3HNM831L8rTTQcSPQ9tB/LZZqpytYJj4FAYxL2u/Wqwb70GSsRjtZ\nNzswPrPoCJVUj25zm35R/f0qrntJNGpq3452V3ta7OkX2hpbF3b085knNDYbt9W+7/5CzkalVY2r\n9S3pm967r+8XT8rx5/hBxbg6+oF339Q78s9e+7GZmV3yNHf6s6yjwdc6SS8+mLK+cr81atJw2usX\n4+PNFc3nn2f0vnltU4y7F2jz5R31Tb1Pz6Snou+fgYl+4UNOOwyg83kB1tEBvVfP/l6Mlc+f1bx/\ng/m/dUmnL7o70lK9NEef+Iqj9ox0cerbmuf+tMbwExf17BcLiqMvXdL8/XBDJ2n6prVfPTcoLamb\nF/VOPAlL9Nq0+uTWHcXDBHut+zG9h9+7oGc/CTtq7xy6eQMaW6ePiImzi8ZZvSLW7c4oc9tXHPxr\nJWLKRCUqUYlKVKISlahEJSpRiUpUohKVqDyC8kiZMlvDynqOF5VJWtpSBmlzRRmy55vKOpbvKoP9\ngCxnkP2jmZm9d1NnXidhdfReVFZx/Vll8hem5Gv+nRF9fvZ3yoIefkP3u/S8sslP3FOGzz+tDNlX\nl3XmNXhWSMDLf1I9c68qm7q8qsxh48dizEzeUmbwH0rSgDnR8+9qx4Qy9+c5C/dgW+0q/Vz1G1sQ\nAl25oHrfz6n9Z7+jTFsyVNazcRs3lhO/1nUuqj53p9SPbywIubnYVvv6O1KPzt5UJnG0/rHN14TS\nv1pVn1w/o4zp+HVd6/SQ7vXFstCU+IecZ36Rs+8nlYv2YWYcfs0xQ8jIH1dmO5YRwneLzLv/lv5e\nnFaGvHYJaG+fxTFdnKp7M4G+A+fTm2Tis3kYJ7tk4NH/8LIgrjBHWnUy+oylGnL1cTLpGZwdyjFl\nOfO0zzFo0mir1NqgfqDtbdC2EAQ6BRsry5lbgE1LOPYFyEI64ZT9hfakauqndoIzsyDLORCELkwU\nAxntcKbWQJTTaEk4hNzvOGQdtfu4xrBDxtsgp14HV4AEblCwQ3LcLkyDpHA2mSPF1oZV4BAgQ/un\ny5nmJCyDWsvpAej+sYZzZYHekQKJ4DkkW/t3X/JxJKnBpDO0UFJcou9pnb/tTwuZGzuOejv6Obdv\nihm3ckvzr90UAlBMas6EMFgSg5oDpzP6fm5ihDrrvvdwb1gvKXMfo0+mQDGO4C5UxvmgUVVflLfF\nOKlUxOhpM7b7RvpoDhoyNG91Do2Yz8ROC8HZBkeFZKTyim9tmB5JzkUn0H6pgE6FO5wdXhPzJ9Oj\n34+R6R8cV7950Kw25tSuDbR5OhXFkL1txc+gIMZPwtGnAlCxtOpTod1VtGgMlf89tLeyaXQycIdy\nzjvDw+r3QkZj5DZsMe8h321/pRPwvV2cMHBO85zGDOhgCtZADX2jBC5MxtyLcb6+5BB/WA8ecy3o\nOIcKx8zROIrj+hIyMFu7+ulklCyomF/jbDp6NL6Pg8oeOgfo2ABwWhssNg6S2Gw4JiLsnDLsKNw+\nnKRAHFcNjzqGMObCpmPu6f/VFAxH4lMYurP8uk7OR4MLx5UMCFwHVhqSApalXjEcdmptNTrdwMmF\nTvCJyy2Yh/EyGlQ4X7UIcE20tDzOlQ/CMOnDFS7XUr9sxb7dFqebUQdt1jSmG6uMZbQC2i3VM+me\nC8zDFMyQTov1KYuWTQMdJ6cBQdxPdBwjUP2eBWENsb7pQ4fDT+NUUVK/YWb40E0v1c7yua+ZMhMH\nxm0P3aU4LloZWIN+2TmA6bnW0DeqlxmjrE9tH8e1PrQYHDukDaOGuZly4xBEPsV4auIu6AdN83zc\n02C2BDBnao7lBCsL8qZlYZoEWfQaErp3z5jiYRmHJ+MZN9FA6MA8S+FGV1/T51ZjQp+7y8zLluIn\nU8BaTrBinyVMqF49BTFHcieFxC7cFFPm+l2h0ycHxQQfGhXjcOeO/n7rphDb5QdqZwYmTIpnVaNd\nSfTzsrCtDh3X9Wr9isN37ujn/Kw0FPqHYCiO6X79m1o30hnt2ZqwUGv0V9DPdfPSjNh5W8yaKnHZ\nY++ysKr+S6ANNH4It6cnpckYzIvZePWyvj9zSwh1Oo/rH+taegnWXRa2bk3tnzyl/fAOLLMlGJLp\nfn1/j/jaT3/nB3DduoNT0ZKQ7/URMWIGxvU8wrval9+4IU1KM7O5hRWbnNQ6vIazXa3KmE6hA4X+\nXhw9pnhezyczu3/2bhgy7/jdg4HXTjlGt9oQZ24EKdxAuUUbpku3ArM6i5YLATyWQJcIemyirmfv\nwbSuo7UFudTau3yO+BY61umeY5qzPqBL10RDqwZDMFVlDif0jNrEpWyNdSfjnBbV4goOjgFMvwaM\nnmBPY7GElozTU4uxJ2nXVZ+uczYk7nrotHUSrEcwiQKnaYO2i7+j61aIk3n6sdJx7FUccuk3j7kc\ng2nqxRlTsCY6uGFlIfU1u85JUWM4wTpRCfSBbGL/Y8TM7MV19I0+1ph8voPeaUN7yb8f1p71J1/o\neV8cV3+NbuodtJmTFs3KrT+YmdlTd/T5347Ibengd2H8f6J3wgnTHPoL2j9TOMGZmWWC+3a5nbJj\nEMKOVTSPNthzLAe610v92ve9XVafPr8t5kyO/d2NG5q3G32fmJlZ6jEx0w/Bcq1+rngwdEYMvS9h\nprxW0zOdkbmw7bX1rIv6eTmjAAAgAElEQVT9en9/uaHrvvs30i3t/7WYeQeeV99d2tI+8+Yz6tMj\nc+hWviCGzehnus8Ubs4NX1o43zmvEzKLrBc/uKz41f2B9sEr1zSmFs/B3IE93Adba5Yxt7yueDz0\nT5wyOMUeKKH4OLH8qpmZbd4U28r+T/sPS8SUiUpUohKVqEQlKlGJSlSiEpWoRCUqUXkE5ZEyZU6H\n0jAoLCgT19+jzNaSyS/8T/XPzMzsx2cEabx9VSrMR55RLmnmphCCxsAPzMwsdUIZuO4FZfJGcXj4\nJPMrMzMbOfmpmZld+FJn2A6fFaMlW37FzMzm5vW98zFlE1Ml3f/dos7G9f9O933yNWXuP1oWg+d+\nUojBOeqfeyDXpolZZeguDSlTeLSiTNroi6rnny4rk3joWWUEh66+bGZm6c9mzMzMf+Enqp+IO3Yt\n9XdmZhY7q8zcywNCyr9E5yX7D8rQNUvKYC4dUfuPbmWt/7jufbtHaIL/Hp7pg8rI/iHQZ88fVnbw\n2k2ds3vqTZ1l3Po7ff/wv+peC1mhJc2MzvedboslNMnZ0cEdZQPr0/r8Jyf0jE51lbG1/9v2VWIu\nc41bURomRpMMdhyNlg6oRrqITkcJ5BB9hzroE2CU1Rj6XQe2o25fNQdVaMyVkmjSoMPRhHFj6G74\naB0kKli4OHcltBR83EzSLkuMU0IWjZxqE0eWlLKqQZZz8mjDBDhLuPY6JLaZQuMFTYOQc9VdENYQ\nVkTTadikyZhzrr/DmdhO6FxTQMBRn4+R+Tc0Ceqcq+zCDmjSrgRUGse8CWLuFDVONGgTpEEQggQM\nmb0K9+dMMUdx42hXWHH/zjohDzEVOKcuEFjQ215cHOIFMv5LKPSvihmzdEMZ+xyK/v2npK+UQdsl\nAYuoi3aID8IKScAWV8Q02d3W9YqcY+4/r+tMHNUZ/xBW1/aSGHZ7m0L4QlCk8eP6XByF/wIOWLug\nM+UHM2ZmtrapTH6GZzc6LqSiMKG53URvqV1hDuIS59pjHSHFq8ua+wb6NHpSgWbiMSGnZdC2jRl9\nrryu9tXW0cHgHPvYhJDO4ZNCIHqygqkCdD+aKaE3pTXF3b2K2p1CcyUDs6YCc2cNfZEh3DpGuK5z\nHnIyIfH4/tlUZmaxOuiaz3n1lOaMx1xpcX4+hkNNgBaE7znWAhoOoHuer7FahTYWTzg0Dqe4Gp8L\nHdMGDZ8arBPQyY5z1qm2zHMaMDD6urjFJahzC6Q0xZn4JNPNc2f6nbZUTWM5Ceuq6jm3Oscqg0WF\nVkAMRkwNKkYXADVDfTz0IUJYUz6uEHuImuRhHdXK6D/AkspUYQrSdsNJpgNTow1DroDmQgcU3UdE\nK8jq+1361Ceu1GBqJJHQcm4fAZoFfkZoe7ytsbnf0imp/3ZBhJPmxgQMTNhnnqdnzvJgNZhGLpB1\n6uqn+ENXKWISWgpt9Ie6W/reGghubUefW0TfqYWbXQfNBR8nGM/EHul15lK4iPzXn/13u/jRBYvl\n9ftADFcV2Fl11hvPjVmWu4Sv59clPhc7eX7nubmdoofDGs5pOdYXP6/naHU0b7i/121Z4Bz3YDSW\nGaMFtLta9E2Ltb1N37khEw8Vb8qbsFhxTUqwFraIX2XW2FVcjgKYiHHYtc2C2tbji+EYZy2e2Zu1\nb1Oaazjj1BX3DxyS9klwS+1Ye6B9WeWQmCqHJxWX068Jka1sKv5aSvUpwcxcvykmTcCeYnFO8XYb\npkyGZ3PoaaHg2UHtweZuzZiZ2V0Q3uwt7bnWqhpTCRaqTK7AbdW/JZxX+gd03Uyf7jswKhTeuVvV\nFrUvnt3RvrW8qznw2DmtV0eOa38cOpejjp7D1h3tf2fQqGnhKNZhj1AfVLuPPy5tmwO9Qrpv4IrU\n2dIcdI5wSTDkyXGtB60T+v7ta5orD67rfSDpa/0axkGtuf61ZlCz1bVUCg032re6oedYXEK7relY\nf+rfAVy1KsM9tt8SRwfJ3TlgPxlWnNsQcT6te4YGqyiNXlBFzzyHO2fFczpMxA3ieIO4a2jNJD2N\nacxFrQwTLhd32jC4HqEdlSD+GuzOJvHKmqp/jrhbN5iDcH+yMDCdeFiN/WgKFynH+koVNPbKztUP\n5koupjhf6jrmOC59jPWAeOX2lWnmcsfp6LGfz8Om6zRYV1jPkmjebDvNGZgzrSQaNXy/keD6fL4b\nKialGvpCNa/n0yW2BOxX66bnlISVF7Lnan1LKzd/UfVLPavnsX6dPd8Vxd/YM6rvOxfF0nh2UO9n\nn9W1t/zRuObm7aOas1++r73V6ILGSXFd48rLaS4sTuk97udUc/n2wMO6zHz6nOUOXbH0DzWvPysr\nHh1b02fmF3B/a2sef+dzxb3+84pvi186xiJaXvPf1+dPaS2eRD/ywgH16eOsLekt9eWHH+rvLzyp\n+XsFRuTE4e+ZmVkh0Dztv6J4XRkUQ+bPH4gR15rQ53+B29G7q4oH7ZLeqwcmtc///ICYhEeb2hv0\nviUX46Wi1oWZuvbT3juK0z9u6RkPrGhMzL6mMd74dz2z3UOwhTtixH8HZ7OLI4ozlQ91v7mDuv/p\n7/2v960RUyYqUYlKVKISlahEJSpRiUpUohKVqETlEZRHypRpXxoy+z/MPpsW0+SpMWUNk28qo5Q+\np8xbDNX2Nw4oY3chLcThxIbzGdfnPzZl8J4f1v8XCsoa9m3IX31rQ5mxoqdzdOV1adFUR2DgfAaC\n/ryyrV/1iGFzZkHZy69kfmSX4vr8y5eUqXv/MV3n4JfK5F2Y/KWZmT1xRBm9Nr7pMx+A8sWEPE8d\nEeJxs6GM2tOHlS0uLuu67TfRuvF1du7Zl8XMWWpz5nZFGcX0oNq1PfY7MzMbIqu7vaTrXjzUtMau\n0IyRurJ0hyfU59cnlV1Mf6rM6t4z6qvn0Gb5PDtjZmaPrwk1sNelSJ2+pwzsaELXvZtH6+BtXX/p\n3JSZmR1HdyL9jrKKnxxTRne/pQGi2iLT3+HsaZwzuXV0QRIwTCrOHQlE0rl4GCrxHBe2AC0TCDLm\nwQRJZ1CP59x7Ay2WFkyUNMhxEi2ZstNIcYfrjfPhcefIgmYDZ/TTsAtCdD4cGh/HQaiB1koTh5hO\nHJcOpmqyDZPEMXfINvu4afgV0ENHJ0BzIVUBs+HMcawLkgMk7js3JrRyUnF9vtpwzB1U99EUcloU\ndRAfh2CH9HMHxlQKVCwGCuqDcCdwXdktMcfRCfFhH3ggSvspTZDXBFogrU0Q01XFhw4Mmly/0JR8\nzxj3VJsnjmtMDo/o79kBzb9aQ6jJ3ormYYy+mAdZq69qfu/taAxkOfN+6JyQv74JIaXxhtq0eE1x\nrLmBi9IBod35MZBU9I3agWM1qa/bq0JA9zbVnuF+zcXpY0JLBo9q/u/hHjTzkc7Qr8BsyWSVqY+P\nwJKawSEGJ5fjTwrxODiherfLavfqLaEqmw/Uzm5Sz7BvUP2YPaL79g8rBmRhb5RXNdeboGWJOIjv\nqp5Dqo0jF5owZdD73S31ayKt55I6IE2bLjomu7hfdXneXvvbaUE025xXB81qtR3bDv0kzv13OG9d\nB12Lw1Ircy49F3Pn2vX/MMQpCf0SpwnRhTnT8HS9DChfug77o4BGmtOBSiYsyTOpoTHi3JRiMFOC\n0OliMA8JaGW0m7qwcgJcm5r8PYn7XNUx6YgHXhxNqxZIaxVWD5ol9bpjeMCcwH3HMS0yuFR0WjD1\n0sSzqjqvhQNBWNDfs2gWOA2qSg1dkKL+3mDex+hTn3gbpGGKgBD7ca1bWahCMXQh2vRPFk2vQg1W\nwj5Lu6E5VvpS9d4u48LB2OkU0IBJ6flk0XFLFBLUR3uUMOtYHOqHZNy50OH8BQPUG1S/jXZxXjug\n68disMMYm4Wcrt+oweoCAY7xnJqNr9kAkwcnrFrVHKyh1+LicQmtte6G5ngZxk4b58ga64fvtIZY\nR+Ie608GPRAc69ppXb9S0fWaaEEk3DgqpCyNAFIH3R+/5sYm+msFXaOYG6BPxEgoBkKJN1kDrTNj\nZmbrqzAoPFhaTl+DPUKiANvL6aHBgPPjjtHG2AKF97L7X2vMzNplHMXQP+rvUZvL00Kxa120VW6L\nMdNF/2h9WftTy6l+w7BRTx1SnLtOHz+4KG2aLq5ONdhy6zCI6uhsHBzQ9+IFaT/MX4ehA7vKafXc\n+Yr9dJ/WjXy/2j8wpv+XNvWzVdJ1E1NC1avodaRyivc9xPetPTFmZq+qPZVT+n6yyPOEwVRC222w\nD7Qe9zmfOb86P2NmZkPjsLmKan9+UOMgGFC7W3NoOS6LETNwWPU7+CSM1mGtb7V1jYuHjmU4daYG\ntM6amW3OzdlcUb8PTqnf5ma07mxss1dFeyy7A/vC6ds5l719lHSvruEUFD2YLHHibAfprxgafR3f\nufro71lYR02Yec4ZsMy+rYf9b7sXhjP7qnBHa00hByOPubaT0zPJbrN+wBJ1rn3JtMZk3NwaCfOD\nBsS6MOScoyUaX46pbab/t2GAWxb2Gg2Ns68rs88ssC/OZN0iyxjEpa7ZRVOMORoyx+OOAc56EBK/\n4jGcKgtofMEuDln3djtoe/G7E2UL9xhjTgIMpmcORk8PelM7PRrDCdjDPnqDCZxuHQO+1kIvb5/l\nZln1P1iFJVfS2Ew9J23OQ2t6pyvG9M66uPQnMzM7eUR6oeH4BbVvVXOmmNIcn3xWc34HnZRUSe0+\n06uYc39B78izsV9Tk1/a5PQXFp98zn679baZmb0EA/ESa9jzZ8TA++wLMVd6ntUzuUHX3ntZ83Ok\nLKbJU7dcHTTmOmiCTSflBBW7qP+v5DX2x/9WzJraLZ2+qD33qpmZLS9pTb5wSfvaxNNaHyaG9Uxq\n5xR3jl/Rs/nTkk7ExE+rzYmcmDQn3lPfrp5XfP3gmq6TH5LO6iSs0uVlxYNXTvHsD7B+9CjuLbb1\n7nz+kOr9iukUSOsZMW42YGIeTuk9ovSUrjt6W3mC35X0nvG/239cIqZMVKISlahEJSpRiUpUohKV\nqEQlKlGJyiMoj5QpkxnBWeaCMnD1TaFD8yPKCp+9rkx45yWdp7v+qXzFG08KCUgu6OcXr0iVvi+v\nM11bHyhjVnlFP5/O6Tp/WFHWcXhE9zs+owxg6btCer+4cd3MzIYOKvU3/o9CqB88o8x84apYJLlp\nMVTWzyojd+KKkOad82KylLbEpLm/qGxnc1T1eCanTN/S3TfMzOzmqhgwP+hVtrS5q8fxyVPSoEm+\n4M7cCXH/0xfKoR1qimHzyfeU0ez9k9r9xKR0XYIhZaUvHdH9fnJx2DKgOr9dF4pz+Fl9p/VA2c3i\nKkrbFZ2/i70glLwRUx2/WlYb15ZBM/r+1czMMls8oxn14ZlX/lm/l5SxvkffndwCcXywf7TBzCwF\nEui10YpxmiVoIlicDDqMjQ7uFSnYQm10PLwMTg6g8m0giRguQZ22xlILl5F4DZV6XJXSGc6Yclg3\nSSY/jetJu+a0A1StTgPEAQcFv+VcUVTvBmdXfYfSNRy65+B3kBXQeR/0pgpikOOcvjv7C3HHupwX\nR27EEpzVDckCd512AV9PwHBJBGgmgHI1QJticZx7QPcrntPAAdFFmyZAqyYEGW/n9TkfxLzB2eYM\nOiAJ1P3TaGfUQVS6aFZ42f2zILo1NX6jynnsbY3dGiypyekpMzMbGVSGugNraXMLzYGcxn4HNtDO\nouLD/AMhZ2vzQjEM1lQbvR8PN56xaaEUBx4T06Q3J+RubYH6bCij3tjQ9bppoRUptEsS9PXGAzFB\nFuf0MwV6bbCg0gOaOwdPK/4U+jS3dtEoWF8kk78ozZo8yOjR00IItmaE6mzVxHbrG1G9Jx8TwlsF\nlVv8Sv23fFeIhY/eRPEg2jGDU2ZmlgE5rKENsVHT2Gotw05IwA5gzLToP/5smxW1s7ys+iRAcR47\nonUgO6r77OyBjm0CyaD71A2coMY+C/pSaeZWirlYdsyZGGwDnOpSOGVUHYur41A3nCeyMGucngqO\nE8kGyApaOZ1QiH8FPZAMc7Ra130gBlm7UbUkrj0hrK9uEYQUxC4LEyWGplWlSXzLooMAkthpc51A\n96yhiZJAf8mHbVRzzD9YBw2YD7E9tAPQNKjDREnAJKxWOONP38Vhd2UYK/UsWljEyYeuIsRxD7ZA\niiEedEGncZVzGjTOZaTs5hxMkwTn01347C8KEeyBxdSb1O8bnW/n9pfKa05MTav9Xlds0xqMpBBd\nki5MxSwsiD3GeADC3Shv8X0YhQGsAxBix1jM0W+NtGJQxkD3WCYzMFPi6I+0QXrrJdYdnMFixa+1\nDPxU4ut109n+wUpL9wkdzI5rTxHCXvF89xyJ47hClWF9VTdxvAGp34UNF/dAjGGFxXtwYIOB1ZPv\nsRa6YwUcomJVdHpwOGntoSmDE8o6bjorG0I4t8oa6wmcXkLcmQpFdVIVdsAubNYEjIncEC5BrKFJ\nxmRtCx22HGvRt3D6MzOr8UybezCfYbumDynuB4vqk3bdCT7BjoJxt7Wk9aWF/kb/YSGqx46L+TIU\nqA999Cq66Dndua796NUPxLzeO6b7nzgppudjL2mPVpnVs1q9q3Wg1HYsOhg+6Lmlkuo/x5BxzjMZ\ntFZ6+hS3/LPax1a2hVjfv67rrs7eokfUvqHTsLtw4En2q30HDgo57kG/4+Z17bMzTaebojmXQoco\n8YTum2VyX18Xor4+q/Xifkq/+8TldqDxcOi01vcmbI1dXP4OHEAgy8z8rbaVtzS+jjyh9XrqjPpj\n/pqYPx7uT/dglSRgUBbQBtpP6ZRgavB7fRdGMHGrjQaJsYY5N7xdiBYpX/Gr46kvEjBPkmi5eGhI\nOT29XhiC1aJj1MEsxEkrj0ZUHUZKLnAagugzVXBGhLEYq7LG7rHGJhkj6BIFe2jQOAYlenBpx5at\n63sFt87Ajkq3iKdJGOMNNG+YG17HsUfR30NbJoU2YTNwbklqVy2n62VZx7r0X8uDjcwaXUdPz0nw\npJLUk+s5h8l0Eq3ILGt2HS0c9OHCuGPY6/6lAE0Yw0XQ2ePts5xmvb50Se9RL+GytdKDPhRxeJhY\nuDIlhkumpf756J7efUdOio185gLv0B/ivpeEZdinGPEFmkSrK3o3/NX0iw/rcvfotg1v/c76Yj/l\nL/9gZmbPHRJzJDuna490Z8zMLLcIE25S19rbUN2ewFWynFfffbHDXqWgh/Nd9qG//S/aD3/nvhgv\ntzwxA1duq01eR3EuUVR8PDeu+doZVRu++Bdp3/SdYL+MI+LgSbkyL0xLmyq9qbm2BaPGnSaYeEbP\nauKa4tmcr/g99Svtfy//RvWevSnmTzKj+JKuyw3q/YR+//Ex3ffjATQW2e+dTGhuLM8orrx5RO/I\nT2Udu+w/LhFTJipRiUpUohKVqEQlKlGJSlSiEpWoROURlEfKlJm9o0z7EV9ZvPvLZPteVybs6g1p\nGfTdVTUrT35sZmav/0mZ7s9ycjk68IEyeU10Qk53lOm6WVQG7davhQT/7O+U8b/8j2R1D+n+7VAZ\nuZ4n9f/Jhv7+XjBjZmbdotgk5y7qLFwmpyzmlatCpuPPKLPXBHU63RCSXT3xkZmZHZ7VWbnLLypz\nVv7wHTMze6xHmcd/7+i84I/sAzMzK3iXzcwsfFcZy6m6ssFnEvrepWmdiXsMFkbiVWVpr/xRiEHr\nVSEx/WgwWLZuF+f0v+BxZQmvNMQ+Wj0ids3jvpC9/pgysu/cUzbvuadAf3yhBGe6YgEt3xG6cTAm\n9HwWp5g/z0mHJz0jFtEroFFvtZUdTT3+9fne/ZSgoczxVkv1T5GxbqAdk0yjxYKWS9IhkyCLCZBZ\nw42khYCDT2Y8BYIccsa05bRkfI3BDAhyHXZFElSoifZDqq7rttFySII+NUDjY7g7eWm1I87Z22ZV\nYxrJF6t2db8ckjGdGsgoqvBttHQ8kMwujJ0ApLUDsoD4viXaDlnW5zrcKGjoZ7z9zXa0cYQJyNzH\n6D9X/2YKdA0ExECk21XO5HJeP00/eQ31g9OK6TqNAig8rSrPK6Hve4SiJs+hWt9/aOpWNLZ21pWR\nDkGxj72gsf3YKc3HEk4t9y8LaVu6p3ns3UDrAHQkiVR/0BAaPDAsFLv3sMZuAvZVGuQ106+50IWN\ndPULOZct3xLDxmkX5IY1j4u9+nwVxHRmTX0b57x2AoQ1HBCCMNwvBl72gOZgDnTqwWVl+GdvEcc4\nN+3G6NARadz0Dgtp2Lyp88dd2GJ9R/V3l7dfugoas+xcMjQYD54Rc+/QISEG6/cVf7+8ouuVSuqH\nAdw70riCxJ3jQwXHB8fSQn9iFUbSMIydqafk/hQDAd/YU3tiaCQ0Y6BaDmSs80D3WTIxNwb1vSpo\nUywNaw7nnU5Cz6HOXPWIQQGxxjFtSsy5LGO+Gzo9KNCplmO16TplWHgV2GhJkJ0u5/UThaS1cXYK\noc/kYO3UQCC7zL9W152X1udCzqa3H2p+wBwkXsYSMFhASH00SJIwO9qhw3T1fw9XC4OZGLj5jD5S\nAcZOCaeSOPoVIe4c3ZZDmXWZBs476UBtblQdpRCmHSi9+fwdBl0NBk0Xm6M0183AFGy2YdmCpPp5\n2lnVGMulv916k3DxuldzPp9WTCjGVO96AwaSD9tiF9cQEOuE07YBgd5Y1tq8hwNai5jS6TitFp59\nXKhhLwyiWA7Hr160a9DkCl08hy0WQ1sh7n+NvjWqy7bHnPRB+ROw+vL5bzrIxPuJaSniNw50DolP\nsf74B2BsOo2a44odiR71T7qGQx1z10cro9VqWcWxXHFBCvm9D6ZdeVBt2ZkTY25nRX0U4sTS26P4\nN3BcceUAWgLZnH6vNtCTqGtMN/bQOGFt3/a0T/Nh5ISwW7uwuIy1dr8lZXrGlQ0cabbQN+pj7jGf\n/T71wehhMWCGD6gddy5rfbh3T/vbuUuK3wPDiusl1mRb0X54YEpxf+L0lJmZlb/Qs16+r/gfEFcP\nPqN9ZBIGUgpdEY84vrmmeq+jkXblohDuGLpRO7Df7t3QOjDBs4/Dvuj1tBfMDeEaOItO0Y72jkeS\nWmdTWcWsRsOx6dgTFNA/gnFYQXfozq2rZmY2NKaxmUQDLQGLuY1uSWZIz31wEDeTeX1v4abqay0x\nhXKTYpDmYEb2TKj/zcyyvTmr4urkNTX+jp0S4p5DJ2lxQ+tfCtZ1FxZxp75/DLsTr37jd8/UJ25t\n8LvOPc+5m7k4zT6T8Ntsa2x7aJ14MI5DmDNWYc3B/chizimSMV7V/GzpkVsaPaVqRXMwwVjeyTrG\nuYtn6osOa2MZJlzHOQnCkAt4hjG0Yuhyy+05Joq+HxK/nbZgGuZ6jPhean1Tq6oWV/sy6L5V0Lrx\n0bgqhpxyqH+TMRrHITHFPnkbra5CTWPIsdwqxMduHma4qm1+THOwUYKVG8Opy+nROSo8jMcEpqth\nnb2P/+1Yd394RnvEF+/J5fY9dFPzH4uN0b8pIdMwphMIg2lYKXf0zjx9WnOxtqN318ZrqlDhfViE\nkn+xy6YYU/1M76I/LP5Bv3/pnOf+L7tzbcp6YnVr9oux0lrSGjjT0fzpvatTE4MvwRadgfXf/Rsz\nM3u8rpMkSzHFq+Sc2D+x72ifePSG+vByoGcyVdW8u9Cr+XzuN/r/wqjeHafPaCxsr+tddW78nJmZ\neX/ELe151XPzK8WNzzzVt1jWs//Rjk6UtGJaT/o7cjtuPq72nLmk9eODM4ofPTD1Zv6ZffQv9OxH\n/0ntfO57ijfLK3JF7lmRk/D6rnR+vMvq89GS4sfStNiotbru/1p2yszM1rr6+ddKxJSJSlSiEpWo\nRCUqUYlKVKISlahEJSpReQTlkTJlipxvTPxMGf+FG8oaVtFiyM8oqzdfFPPlfEdIav0xZbZKaCM8\nuSHUxt9RRu59jsQ9s/yqmZklfzljZma//yc83H+qZs9/Jl2VxetCJMppZbcf3FXGa/xHyqQFSpBZ\n97TqG0wLkTh8RRmw7n2pLt9s/czMzGqnlcH78mNlXc+8qNxX8LEQm8lXdfaue1WZNrujTN8fOLMa\npJXpTzeUdX3wI+m3NGe/q3rmdN3qv4gxs9xRNnx3RIjN1l3cVqbV3j9nH7eJSdXhiR1lL+98+Jb6\n6Hl9ZvyW2royhur4UdW1OK+6rB2Sfs3CNbEPTjSlN3Hl5JtmZvbcoOr+6bvKnO9OKTN+nfPKwwPq\n8+N7Qu//H9tfaTjXBzLlcdTFnQtJueOcFWAXNGBugAwHaMe0nbsQCKXHWdeQTHzM1IdxdB9Svu5b\nIjPug8L5aKh4DlFNgCSDtsVwL7I21+dcdAftFq+i/sGYwOrOiQbUMES7xbkWBSCdsYqu5xg8NRCV\nFhn7FEgn4JS107pepgvbAAeKGho8iarGiqEJ4QHNBLAHOkZ7W5yBTqHxwPPowkyK0b8hehrVNoh6\nCtesGGeU0SxwaFOT7yWchgwuWx2nAZT8+hz4f1ZqjI0gp7pNPinm2tQpMTy6oLsrV8V4W7mpsZtA\n46BvXGO8v0dn31stjdlKWdcb4f+pIWXincOLcd02rhh7K0IMq6Djcc4r94xNmZnZxLSuv8l58nmY\ngZ2C+qInz7yfynBfIX/JrH6v4HqxdFntmJ3R2fwOKNRh3JP6RlTP3LTm5N6Sxt4eblKjMIfGpxQ3\nu2X1Q62k+idB0w8dEVIwcEyfqzC3Sm21b2BY1x87A8PICWGgWTD7QPUNYbQ0EvpekzPHORxsnJtG\nZlgo0cIXnPG9o+eUy8IwGhRSGnesiMDpNO2v1IkBGCdYwpmuwHxpsBr6MGp8HIpief2jDvpfgxWY\nqKK/gc5KgEZCF2eKZMcxc3T9Qkf3LzEuGqByQUz9EtTT1mFe5331ZZuz690W8581M939pqZAE+0n\nv8RYRMcjCfOhCtIXwpRL4BoUp27tNEgj2mMVFy9h/+RziqeVEnEihlMiOiDNJuwyNGXaaAak0UQI\ncYzx3DNDY8DD5QeYhdIAACAASURBVMJw2GrXCazMiTYIZAL2WwAzqAEDr4+P54vEKdfneY2Vbunb\naZjV0HrZm5F+xl5SbLo6DL40DMetmsZ0F4Zje13PqYND2Tb6SkUfbQfWh+FBoWcdEOviMEyZDIwT\nxtg6+h1bc0L1Z3dwbnNaDzA6zc9/o/1mZvP31qzYz/gx5gz32ymBdKPl0FkFFWTMt9FaCGHWxGC1\npHHtSsH68mDpel3n5oKD2gKiDsTE0GtZi3jQdGwhSFHLOBTGfBDXir4zdUoM4vEx/QxhavjoWDhd\nsy5rskccL7TU1p1ejZG2jz7SGnWFjdVk7qTc0Au/yWr4z0oIAyfJXqGbIXCgP9FiLdu6B+PHF2O6\nb0BMmcKwfibvClG9fkXo92BNmgOdXX1vD0bHkzAxpyamdP2SKr58Q2NzY1Usq6m6EOCeARBaWAmO\nedmFtVCEyZhCb2m9TdwPVO86TJot2Gj9j6m+vQc1R8diWmcWal/q54Li1+I97d/7RtA6g+HY0w/D\npU/tGB4Sg3urrfaXV3GISSsw9w/D/sV1qgvLN4NGV/Kg6t8Xai+7gNbM/F2xAfpgztrjYnYW0THR\nReNW31S/rq8Kce9jDvYfVjt3dxSr1tb1/94crl4D+48lceKQW2ISDLY6TI1etEi22jA/2McGVeYh\na7BzD/XQrmrhqtdAWyrPfeo4mTktmyRzqo5LXR7tlR3mTs7NfxhxPtdrWp76M2cd4xuGZId4nXDu\nTLg6BVW3L6R+sLOMMZXD/afOWrq3gzZlEp23NowZT98vOHcndKTiuHq2uE6nwP87alcmBmuN/e0e\n+9NcxzknokPFOmZunWMvEXdabWiudKu6bgzNrjraNsm4+qcJ0zvbxGWqzh60+O00zH7e/pGZmX30\nmvRO27/+hZmZrR+S1svKsE5NJJf1rtq3Agv6SfppWTqrrUWdYPg3T/XuKWgu9f5Oe8SFSX3uuQW1\n/2av3mF7Hvt6TB9dLtjKq1l7cl37tuSzer/eWlKbJnu0r169p5MlZ+6wz1tSHW89L/bO65e0lv1G\nkit2juvdmf5bMzN7EU3XmXfQZH3sVTMz+/AHGlMT/67Pz/ybXuQLP9B+d3FOde/HpXl4VfvpfKD3\n/tVhxb/TfYp/i8Ma+xfn9J48Nab/J/8Io/6cmDpPXFdcGijrvbnzy9dU/y/0jPt/qWfzYEbv97uf\ni8Xk/1SfC2/pc2eJY5/0Kr6c5kRLfVz78b2W+mXF04kfs//N/qMSMWWiEpWoRCUqUYlKVKISlahE\nJSpRiUpUHkF5pEyZmWeVmb4eKqv3akOZuLcWpPkw9UP5el/4jTJmQzmdLVuYVSat/LQ0ZT7pUTZw\nL6vM1y9CZUXfzSmz3/d7nbd74Txo3QdCYO+9poxb31VlyvdgTfztcWVlP7ymTNdoQ9nZT2rKyA/u\nKPOVPCytGq8mtkl6S4jIjXm1Z/D7yt7mfyPUq3RWmbXJ3+t6N4+r+9/4BVneluqRfUsZwKXT0pAp\n/Vk6Leef1Nm1cE5IxIKp/w6fV4bx3qYYRE/NKcu62FB9Txy+YeE1pS1vcdbypdfVhj/kdY2gV1nP\nG7eVzcvPKuv5L5PKTubLytQWdpS1/PhVacmcfl80ot8VhJL8rE/PsHFaGdjdt5VJvpEW+vPhF7CD\n9ll89DFaqNZ30d1IZ9SOLM+MRL+1SVR7Tq0dU4qEucw655RBDKoO6eM+hbKynmVUzz20DdqcFU2i\n5WBp5xoEMoE7koeORtZ3SIR+rzokGC2WZNsxRWCmcP12Vr+3quq/AP3+al4Z/GwHFyUy+H4S16Y2\nCDZoWLKJEw5IKiYslsmAsKJREcMlw7qwPkBYPJD5Nue6XbO7oI9dWAE+Ah8cibY22jMBWjsNZ7tS\n8d0FdP0C2g+cBe7yXIx+D51zxT5KEuetLEji2BGcxbjG/UszZmb24O5V7oX6+nGhBcdPK250YPUs\nLAohGK2ROQcduvS20AiDkdPfIz2G2rae6faa4oBz+OodVwb+7NOKP8aZ+r3PhCxkRzXPT50Vo8dz\nDioNzpujXr+Hm9HOfZ3/XV5TPPFx5Th+QnFo4jmc0GB4rG+pjx1S7Rd0v95eoSlBSWNnaVPXy6OJ\nM9ijOZApCOFsbKh/t7d0fy9krPWCPvXre2Fbz3J1VddbWxZjMD8EwjothNVSqPZjVNA7oVgzd12M\nyNmvdHY5NaDrT5/R/zfnFffXdvVzp/3tEG7HVos5KZqE0zECUSYGNEDRApD8BiyNENQyzTl+H1ZB\ng3PrGXMMKjR0YMSETl+lq9/zsFSaCVUk1tYcbaUrDzWXfMegY0g4HRuPOlXRpUnAxEgRz2oZ1TUH\n481gELa6umeYpS4l93kmNroUPvEoG4MpUeH7gXOQATXGbc5p0bSzOAiiueLBLOkEaNcQL9t8P4TJ\n49ddfEQ3AlZYUIWBg1VXivhmThPLsZ5w3eBXy4CQtmvqhz1nz7TPUluEIcOzrvDs8yDUhouSh6ZC\ncQQmz4RYHYleHNnQchgZRecNN7qRHv3eRktiC923kEG5l8ehK9bD92m2r/U7G2isdGAmNtHeqrbW\nHrYhyCRtb17/32kKlfRg6tRh2MQY6yliW7JP+4EYIkCJAjEI9kIrJkZNA928Dkh3AGvOybMESerF\nnIq3zFpN9NxS+hkQH+OwaTrMk0yA61kP8yONfhoMwRZIZBmGzALaUClcl5xDVgz0PQlDL4EOTysL\nA6OKIxljsZ3a/1pjZtZEh2NrQ2Nja0f1eewQTJCz2hvlNzWmF9Auq1b1+aljWncmn9ZeKUTDqict\nBkhrT3H3TgmNrwczZmY2cFDr0cBxxfFqTfvGO19pT3b3M+1riyMawwM4bBkaOrV1PcPBIxpLQwdh\niG6qv69dwMEHZxvfsWu3cFOBpVvMaP1oHVM8L29rPbt5Ufv2fEH1jsOODXDR20X/aOqQGJZrrCfV\nZdi8C2qnz7rQ16fvhcSa5Q09/+IdXX/88EH6RetDaWeBfiE2EBPyB75mAyR707ZyU6yzBVygvAys\nAVh89ZbTy9PzWodVEuY2bP8F7Sl+K8H8TTbdfor5AzODrb9lcK4qwWplG2hJ9knGfiyxw/4VZp5b\nChMwDMsw9bJdxYtaRX3cw7rS4dnU8mihVGA8c796D3GaOZqgM5swmeuB6peEiRhzrktN3P/YV3ow\naOoBbk3UsxeNRbfXMZjYSa7TQN8oA5s2YL3LwqRpOvc73gOqMLqzjmkNIbBLvI6hCdaE6ekkzJzo\nWYx43GU96xbQ6EI3zkdTJ7bL/tpnjBDLPHRSPEdV32dp9P/FzMzO/lmOvAVfY/Mi/TaQ1970bvJd\nMzN77CXN3c/e0rupTeKg1ismzOPv/ruZmd1LyoFo9Jjm+J1xue62dhVb7uNM/OO3vnawPDyVtbn6\nh+axBs98LD2bkbSYKOmzmnfbv9NY/uMR4ssJXXPsthg0nz6rZ/P6gjr5+lXtfxPPKE7963Xe9xXu\nrAab88QDXf92UW1OJXSaY2Tph6rfvPpq4BntE9dnpDGzdlJx9DsxrblfFfWOeex3Yqz88rj65qOK\n5vtMF326UIyZhXHtmw/BDpu6or59sl99tH1P9S803zUzs/FX1O7rv5sxM7O7r4qRl1jT+8VJ4mvs\nfa1bA2enzMzsZqj4+BJSr3+tREyZqEQlKlGJSlSiEpWoRCUqUYlKVKISlUdQHilTZuELZbb755QF\nfW9QKaRDh4U4TN7UzwNHlL188ykhAVVU+RMdzi8XlZ184xNpzjS/p+vaFWWqunmxODa5fnZOmbLy\nn5Xd7DuozP1PjykT99l7ypI+W5GWwluv6yzauZS+f/UPSvF1M/rc7jMgMjFl0N4oCrWqv60M3duP\nKxtZXBbTJzulrPFuWgj5hXVlJnu/UiYt9zJK6+8prfz4d8UYatxXRr/V5Xz9a2r/5cqUmZm9viOG\nzP2n1d4zBbKp1R7rvKa6Pva2spTt2nkzM3vljvRqNsgyPg7qsFZSNvKpJaEh61vq++1dPrei87vL\nMX3+hwtCbbaPCTXZuqBnNzatthQ/VcZ28IRQHrP/afspsSTuIJug932qf8ll2NE+cW4RHkyOABX3\nOLrqHmhYuwLDAwQgDjLtzvhXQALjsC9CdDIC2BUtS3zz+8ygWAskAeZMCCMlhqtRDHZBGqaSq33D\nU738Fur0MG6SMINqOPf4IOIdXJViCUErIer1IdcJyAJ3yLf6IOB1HAQQtbcYzjJxz+lpqF87DRAd\n75sIRAY005KuH/R7ApZAs4ZWRcg58NCp//P8oOqEIM7ZmhCHasK5vICIg/DHHcNmHyUzJDQom9fY\nrOMsU5oVOtSq6B6HJqfMzGzghJDM/iGh0U0cbxbv4/6xIaRxvYyrG6h0wTTvRw7q+063qL60Qtth\nBcBE6cSEwiyCaMZ3lYkv7amNk48p7mSHdd0NGC3hnq6zsczDKqH/wzPpmdacG+8VI6h4XAgqRg12\n4zPNzS2YKqletGp6eBawtJZn0eba45x1HFScOdEFVSo3cORqo5uBFkFzTfHw7kUhEIarRquF5swB\n6UedfkL17OD0snb1KzMzm53V524tqP/aa2pAb17fO/K8EIxcj+Lq+j3FVR+Ua3hUMWa/JQPyXoZO\n5+Z0ogWsxnUzgZt7oGDQVQJ0m5pd2CSwOzy6rxpDdwlUMObr8wH6VV4NDCSlnzXYL2mQ99ZezEIc\nAELce8ogm76vZ5Osqo9yMNqauMM1mC7O+cVpunSYVw4rbsNUKzFv49QxARu0gk1HkrP/Ddoc1DS3\nck4bhjFURxPK6JMQ15Gk0/3BzcnKsKsIfI7R0/XQ/ejq+pW6i5OgWYHaW4LxEvPUkuGHmgdQiRib\nDc7+9+DusdzcvzaVmVmXsX3kqNCvOkyhPIyYEnohcRhFvTAVK8S3BC4r1g9GnuI50N+b8+pf50S0\nOKu5swnrorGomJMf1Vxp4+AwMaafSSBerw0Sz89WbuxhG04+d8b2cNoZQYsiTtxNglR72Px1m/Sr\naS7uus+z7tTRhmixfjVrYrxu7eq5dNC42VzjwiDaXcZdNp21gXE0TLBm6bAGBmi7dNHZiOPM1dxG\nq2BB98qir9YCNXc6FxlYVl2nX+TiD8/MAhg0rF0x9Do84kCHONf4dmQqy2f0jBO9evabd0Fuszi9\n4CZ36IDi9Mio4nzDuRAR3ytbip9j0xpruT7VNzWqeL4Js2XlvvZx93HmOnBUzMjsiOLk0LLGzMa2\n9oNLq2JHHUNrbGxE9fDY42zOqb7/H3vv8WXXcWZ7fvdcb/OmN0BaJDxIgiQgGtFLRUolUSVVqeq9\nQa/V3ZPXPeq/pv+CHvTqVa+qVKqSKIkSvRMJgKCBt5mJ9PZ6f+95g/0LoNRLT5UYYXJikkjkvedE\nxIn4Is63d+wdZX3KZcSS6kak5VXY1hwv7DitGbR4aqp39qDa0Tet656CAbW3LG2bDrpMSzfFEFpZ\nxmXvFNpsQ6r3FNo3O02Y5LDe+nA0y+B8Nn1ILLTNda1X6ZzW+0xK4+rY07AJLqqem7du0w6Nn9Tg\nAzZA/sCQbS5pXWyyvqUY452k2nFofsbMzOZPat+/vrBgZma10ENomLX07BxTxqvBQGNfE2qoj0Is\nOp0WjlVuTcL20u2n2o55iB5dCMZMBNWaBIzlNvPRh43ZhZ3rF3C9jKrNTjetz1fcquAclmEP0yaO\npWAP4zlkfTgnNohnjqHZJA53HROchvuOUY42WJq+7rU1R1vMUZptafZuHWyNCiyuGfSFKtw3ST92\n0U0KowHZ5vNNGOt9sFO7MGA8GEpNXD+TXedQpvvXYd+FyzDMHUMfHbxiz7mcwiSCKROBgeg/JM3B\nj0ujsz74npmZvXtc75z+Xc3x5I72pI1n1E+xf1UsGX1eseNQU/okV0zvabPEumn2YMvTGh8j76n/\nv3xTnxs+p+tupEr365JJVKy66dk3vIPkJ/Q+fOJLfefdHe0rR2CIZ5c1/2PzijsT8+qDC+fVx78b\n1tj6zmta44rU6fQPtO+u3JLGzCdVudG9Udf11mcVz84mpKl4b0zxb+S6/j9/TfFy8YTuM/wF++0d\nvcseeFaWU5G/0Ry8/U9ac0vXcRhkND+/pz5cw39087ji0o01xaOTl9UPh5LSgM10df9VmIjHXlM8\nXiaP8OqM1uBtTtI00PdLcwqgLSKRXRxVnuK/2p8vAVMmKEEJSlCCEpSgBCUoQQlKUIISlKAE5RGU\nR8qU8Z5WTqj/Iueon1GmqrZJdhhNmKshabWc+oUyYmsHpINSzotZ8oaMgWzntDJl1zZBUio6p3fg\nsDQKtpeVeV/b0n0eR9n64pIyV2M3laWcaAipuPasNCR6XWXiL5gyeT9Py23p/BFlU08XdbZt7ZSY\nMClU8C8V5YueAYF+sazM39cH1Y5KRlnYJ0COxzg3Xk+oXmvfU/9c/PenzMxs3H/fzMyqKWUu05vK\n3K3H9P2nJnXdsX4xZmoLyjoPNfosPq22/e41oRmvFtCnOAH6fwuWQVaoxr3iG6p7T30aeuUl3bOj\nLGmrqHsvryiLWUso85pI6CzjTkNpwcU59VEyqmf2TVUoxn5LmAx6OI0+Bhn4GBlvp2kQQgfCR6/C\nof2xpjLE7iy9h1NKrInGAmdDQyDG7nx5lIx+o6IsqpdQVjTe0e9+ytknoarvDqk6dNxZTCQ4k4tG\nSw1qjd9xzBY0ZHxcSxzzBQQkzDnsptOIwd3JgxmTajsxBc4IA1j6MFpinOePdTXHnG6R51xdOCvr\n3FB6IC5VtHYyHkg4KKc7C22gWm2Q9wTIesW5giScCxUfR3QgVYXJw9hPcG67xXV6IPEW3n++uNXS\nuI/jUFVa0LncBgyQVEJ9HEORPsbZ8dKa+mCnoDmxyfeq28qgN0DxB2Y1nycPyx0jHdNc2VjR9/Z2\nhMjFcWc4dFaMtli/PpeuwE5wLKWkvre6ru/duyeEsodzQv8QKLjTC+G8dY9zy4k057UTsAvuqZM3\nysrg16hXbFQZ+9lpIbeOxdVt675NnLsMZ5VIkzHR0v0LsKyaZSENVZCFLiyOTgEdIlgT48SY4TEh\nm8O4hkQHFU/Xbi6YmdnSoph8Hu5F0wOKDR4I5cgwTjR5PdelFd23XBEi0z/IGE4rtuy7NHBdQS+k\nzhSNgWd2O7pvBbTNi4I6wmRJdGGhOAMHzl57sANCoHU+mhc1z7E96Kf78KE+n8DNqgmamI60rFpC\nnwfdIuc4EinD3kmpDm1c4QyXHKebUXOMNKSiMrCCOo65RpxkCJlT5bnv9hblDD0IYxJtGcP1ycOd\noxh2jELmP7oYyE5YFxemCmyjGHHRp69DxNcEcTHiNFIS1NfhRVXdL9FFsyuj+yALYv19GrNJ4lZf\njPgD0yNWf7gtTnpKY3bqpNC4WktzpQ0rw2+jf0H3OyccF3hrTdh5OAKt4fTiolmJON4twDxhrKTS\neq6Nfp2vT2dUj8qqzr0v7em67rl0cL9K4AyTjvbfb0O7bJYjHsdgmra7rBsTDlnWWI+BNJcqmmtp\nH92MPRBrGDJhGDSNjMb8wbi+H6beh05TL1/7iRDPKxluWrWiutYbYrpF4s4hUc8qjX5CFZ2yKLHf\nsbswmLEGrJ40c6LHGlnGUaoBuzWGrkSY/WM05NijaNo01Jch2GZeZP+sTDOz6JDian9YNdxcI97C\nhBmd1TqxHYdFVEBnDdbXJgzBjQUxSaowBPsOKU7OHJE73sQcblJL6uudFe3Nxo5oHzp7UHEzin7P\n1jXFyY09XJkWtUdLoyc1d0To+xoMSs9XvWLY0Y3liGfodbQdU3CD9e2A6lFegYkaRg8J976hU4r7\ncZgzdZihK3e151u7orE8e1b3GXkMpufcjPphVWOv2tT9QmVN8mxen99bhVUCS/oe7UvAopg9LhZB\nr6X+Xb2uPW4aN0Izs8GJvHms39stmLGwEWLM5euXhOxnh/U8EsTQbGb/e5JeHK0Vfk/iqlcpo5uU\n6P3J59MM8lZUfV/3Na+6uGcmEHupwuKE0GHdhGMao1lIfI07La+m29/q7wU0GD3YZc5lKAq7qQWb\nzPLMMdyPwlCs23F93rmRtjpO24a5xNzrwcyLOMYky4jHemW4Ana7OG911N4yzrJZmHt96K11itoX\nRvN6RhX2kT7vBXHa1XDrIXOxlNT3nYtcPa12pOssgKw7FWJEAuZOCCfeCq5WObe9T8Hmg4kUp37h\nPvVTpfVwPIfoZemGXjs7o/v8G8zRZ+XwU/ror8zM7HumuXXpKfVT3wfPmZnZhwe0Zx0raMw2unoX\n3Tuk/pr9veZ8MyyWy3H0TAszGturi5P361JtJG2n87o9kZeGzHpc770xE2OmMaP30MV5jckn7+Aa\negVW/ZjiVmxAJ1TGphQHRy7A+mz8i5mZXX9C++NG/h/NzGxoRXW4Na33+ZOXYSLXxOgLoX/zUU0P\nYe5V3bdY0vxfYI0qvqDTH8/1K87Uf8npjgMzZmbWfUrvpm/c1Ht6fUt9cGBW7899/6jrDL8J0wb9\np52/wuV0S+/vdz77yMzMtia0RrdH1N7EcbGedn77vpmZHfsr7ZtvfP5TfX5SeYfn63+ZmhkwZYIS\nlKAEJShBCUpQghKUoAQlKEEJSlAeQXmkTJmXPj9o9r+bvce561xIZ832vlaGa+nnnKc7p8zaHOcV\nx6eVeXvnS2XEfvFXyl6+9gdlCReOCAn4zjPKli5uKEN1qI1zBYjN1yvKdh4HfSq/KqbK+FdCPiav\nKyu78pQQ6Gdv6/sraRg1HygTf2lSmf1tzvkNfyiE4+Tz0k/5A8YIXx3W/VZrYpc8fpcs8KQygglQ\nzsKKWContkUBar2p7O3amjKVmR3d50pHaN6zw8qWtnbRGelXhi61IUZNq2V2zhNr5+SMMtpbOWU1\nJzPKNsZxU7j+rVg2z3WVqX3nh6+YmdkPCvr++zAl5t5FC8XXs7laUVbxsAmFWG7+jZmZnXlbqt8X\nuso2jr+gbOh+SwVbjV4NzRVzZzdRr+enc/2JtV29OLsKWhWvq2/qCFI4pKIOkyTugdqBXlsH9BuH\nlgRuHg3cKHzOraeBpMNoGNRAQutNx9RBI4YxHq2BkCT+9GxtDOSzef+8PB2A6whi+fcP94bQvqny\nB+c+EnftboJsJnShdFXtyKRBFWEQtUDQ7yM6nFVugla2aKfvO+0I2gM7ou25OYWmQkpXinBQv5bE\ngQZdlxbq+gBC1uG8ugOOes7kBMRlP6UHStOoc84YR5EerhzVhtDq2hXN09plMedioFP1DgyUGKj3\niObv0UGhvgeOaYxHQaWvfKT5u3j3K+qqSg/N6Iz8IHoQNV9tKDfU56WmMuq71zXfe7CckiOgH5Ni\n5ETR+ymvK76s7uDOBu0oCWK8RMK9zdjpG1F7kzNCUg/OqB25jNpx5Ybm4MZVXTcKG8qhWM4xwQPF\n6jl9oh3VO5TVB/s50586obg62i+kY/Cg0JxGEgR7D5e8G5rz974WQtHGceLAnJCYsScUi3zYDe2q\n+mtjVe1ubev3vmEhnjFgwr7Uw2EKHuyOJpMoEtJ1vJhD0mFsgkZ2Ybu5MVpvo+UFyyuEy0eXceG0\ngHwYPBkQkY4h9gNDyyNmeJznD/VA51pm4aT7PxgOVdzNnKsc8SUMuo3Z2n2kMsySnnDaTmgHRGCu\nVNsw+aJOuwaNAxdXcFzxYSN0y+rjDmytCMzEJCwDY+xhWGKxOPEX/RzCpbWKzo2JeNzF2cq5YjTQ\n4HKOWBGndQLjzzGBYOakw7jANZ2WAPog2JCEU/qZif4pIv2flQj1WwWFr1e0eDdh9EWgb/gt/aNr\njm0Beww2Rqam+keHYKyglZWLgawOqWNYfmz0wADXU38Owwa7dUUsum4R5kqWdQl2QhNqkl98oJ2z\ntrJkEZDzCGO6DSsulGa9a4qt1mpn+X+N0RbPMQVSX4PBmUFjIjfI3Ilone/D7aWFc1s4y9hGEyPS\nidj2HbRF1rWvqsK08KOg2ujbOGSy7QnlZem0Lmwqh3bHYSH0HJuM+TMwxJhmTepU3XxnThEuKrta\nDyJR2MHVh9MdijmmGxovXhPGxbqYLC3YAW6fmkkrTuxu6nujc/r/vhmxDspLinPLl9BOSGofPD6j\n/d36AY3BdRgnSwva36aP6VmOH9S+NY8GS35b/3/vovaFN5v63onHFWfTfcTZFE5e7OnaaPsMTcAs\ngVm5u63rpHAUs1EmQaFMfdTu2GCMn9r3DsLQvHdP/XPl+mW+pv5P5tR/WfQ/PNwG6zt6bsu7uu/u\nPe137y5o/OzwvNKM8YFRId6HTkrrrX9sRt+rCAFP/8etRHjYDp/Q3+/c1fjrEjM7xP0o60RpccHM\nzLZhg/SNTNp+Sx3HPefrFYYN1hdVnzWiMEKICz4buBiMmLbBACSOtn31WTSkMRNjTJWd+yhailmn\nocizK8XdRktzJBtlL9LVGAs7XbP7ujowbah4D/1Kt5/ti+IKRZ/6If0jCfO7w2bCc+ZKXChHvO4Q\n8LrOtQiWbgcdE78HC4v9Zca5e7Jvr9GjHmM1zrrScI5rzE0ffbcYa2+vjLtTFk1Kt9/PsmeC+WPs\nq+tcJ5vn/SOu/vL2YNJncG3lDbpWV79kYG3vt6weFLvixQXtCTea7OcviGXyZU///8EZjf1iUXPr\nZ0/CvO9qzF87rb3UsYticXxZ13vcNVxdX8nq3XEVBtM6bOGnRy9Sk/9q9wof2Y+mz9hbg6pTqqUT\nIX+IiCESj6ixP/ha8ee9Q8+amdmzMOCK0Fefhxn97pLeGS/B6O4u/q2ZmSV/976ZmTXQpBrcUd/f\nRcfndkfx8Lt5tKcSWoszr+n6F7YUD376qdhCd6e0vhxMaCxtXdc+NPED7feP7igOzV/V6Y1KS4yZ\neFdt/wC3u5f+QddZ/UzPfsDU7o+W9fdXx/VO/NyY3m0Lj6sdzXflAr3ZZa/wvDRoPn1b8bzyKqdT\nKnoXLl5XboIVnwAAIABJREFUnuJ/VgKmTFCCEpSgBCUoQQlKUIISlKAEJShBCcojKI+UKRPOK6OV\n6gnBjS8qc/6dATQMVpV1PBtXRu0LX1nK4+h5jCrxb8u/B5GYV2ZtcExMmx5I+JivjNnmbcFAqz/X\n9ybuKdtYXFc28t4V2BPPCxlvJpQRfAmk4XJV2dKlghgoj70AEsx5wh/6Ov93rk8Z/tPXpV7/5nfU\nzd/ufK16L+ic3+hJ/V765sdmZvZvO8rqxo8r+7yoxJ1NDv/azMzuLCkzGTupbGnhXdX7k1Nq9+v9\nau/X15QtbVWFoIw27tqTrwrF//bXOKPMC73+aF0Z47Pzyj6evv2+Pve8soQ/vqHM+r8OK1P97Pvy\nhH/vtPoyg2L9CzeV37uzIwRubAJF/hN6lqdryk4OfMuZ9X2WUIszqc65IKnMvQ8S0e4CNXYc4oCm\nAFlda4GCc/bUuYG0QT4Rc7d6Vc8wik6Ezxn8OOh9D22VsFO5BwpoOMcVzpJmY8rwlwBoO2g0pDhj\n30Y1vlFzjhN8zndaNiC+ILw9FP992hkNU+84Wg6cozf6I4TuCGCdeaD5VdxLvCb6KiDkfg2EI+EY\nQ7ikoDET4vx/iLlUA8kJg8CEaxof7bT3J/1Tc6ILINl+zLkM0G7AtljHqePr7+Eef3DQ+z5KhO/6\njA3j/PHansZiAxeLGHUI09Z8vxDBiQFlwjOjMEBA7GI43vi4Vty9qjmzvqR4gNyPjZ1QvDh8GOX8\nkK6z8rXi2vZtnectlFWv8WGQxBmhIVk0ZLJoIFRLGsObIKJhWA5D/freMA5ksWwf7cYxxQO5BVmu\nbwpdW7kmJHN1cZEO07MfySluOgeweFjXa8MgKZUVv2I4yUzMKO7NoP3SzThHCHXEZklxtnpFcWnh\nmhCCeD/aPmNCGmeOCLnIMkdXr+g57a6rfwYG1A6nQxTlnHgEFkGNubJR0P32W6pujqCTkmrr+mXc\nlbJOX6qCbgv6U1bR5/vQLig7JZY01yPG9HAGShIbnO5HHGc7q4OSgsK5uRWr63m3wz2L9nSvShwW\nQAakDh2FBIyYLvGkBvMlAxOvUcPFg+nXzXZoa+hP2u50bZIw2OowcwwmigOXy5zXzoJMOq2XUF19\nFQGhLcGg8Rl7HfrArxKfU445iHtQDe0otK86xL0ucTkKraGTgXmBY4/n4ir163G2v50FX2KuWlI/\nW4X9xxGzBxoruyWcGnFJieCs04J14dhaCeJ/FzQ9DhOw2XYMHdhRMfoBFlqSOeX0PhoFXDAYK9vE\nxV5IsYGp7brLomiV1SvopyQetDOU7FgUHSuj3iHneIQ7SxVHsEzLscLoX/qtzbrRxglnuSSWQ+Oe\n2tvfp1hRrWku92Ja5/17sF8izo0pZGXi8VBC8TY3h5bXJno1MMYcE7A/L22QhJO3OKi4F3EszI7G\neA/diXQfjizoERWqakN9S/Gu02Ts4iwTjcJmGtd1Gtcq9jClx0PI4ox1vE/XW7qleNfsaI+THUEz\nZRANs7L2pct3NLamj8tdbvwJIcvhi+qPzXtiZvejGTN8VPdZWlV7Fr4RAtsgnoyiHTaUG6Nd2leH\nb+jzG8uK41dhs+Yyavcw+8gIsaO4pecSRsMlCWtiZxdHtqTaNTGEQ+cOaz+aaveuacOaeFzrX34U\nd6hxIcjtPf1/jz3L5m2tS+vEltSgxv7MKe09c0M43VTQL5lUP3noIdXrev5rSwv6/Kj+v1ZTfZ3D\nUHHjgWZQr1GzSF7jJUWsTcIwGhyEfXhSe9yt5YU/6b9acd32W7ps7Ij8VmXeG9oyoT09iyKOiGnW\nnlJVbe1jv1n1YcawxnuwjHromxkOkDH0mLowRhpofMVw74u00RqjK8KwgmIwHkNo1zTZR3dT6pse\n7nJ9uPKViVdJWLbVpHOZ4v6spTEY1k3YTE1PY6UDIyiN3VLL6UjB2OmwTiXQayoRxhwTJ+nsrJxu\nEYxKn/UoxR6hEoJlW2G/ivaODyssGlO9azU0uaDlVdHMShA/wz6fQyusyztWFhesAv2Xjurd0GIP\n3Iz2U0ph5mBV7Rj77iUzM/vmLmzilnRSnv5Ee8Gv9tBD+YnGQeed75uZ2VnYdoku73HHfq96FvX8\nvqpp7oxH9M76zAswhy6X79el+eQB67xjNj8thlnrrtg3jSNiwgwMLZiZ2W5I+92UiXFeYL88d1KM\nke47GoMTT4rpN3tADlHnZ6VPuvzhj8zM7M17apPPPnbsVfXdnc/0DEdSYsicW/ihmZk9f1P77vp3\n1NavXtEYXEL/5+rF86onc2Z9XZ/ruy7N2B4MnmcqGnu/3lGcyRQ0lt4uyAErPKV9/KG2mEJPltUP\n791V+0J9iuPdT2A8PiVGUPyi1pFKWe2fnRSTJ+e9b2ZmH6GtUzPF8//L/nwJmDJBCUpQghKUoAQl\nKEEJSlCCEpSgBCUoj6A8UqbMJ4NX7X8zs2ifsnmTqzrjFZsU+tLtU6brwiRZ3hn9rL8vLYfBV1T9\ntZ8oW/nbT5QdfKI1bmYPEJTSNz8wM7Pxo6D+/6KMt/e8VKWdA1HhW2W66reV2WtElcV8nO89xudW\nv3rfzMw6qDdPDqg+n26rHa/0lPU9hwe9962u4yekPv34our17hDnOaf188iOGC61lDRl1seUsTuG\nGn7iFZ1J2/1YGbiRcSH83aKyp19eFHXou4fExNnJKut6dbTfOr/StcYjOlc3N6XMdXROaEbnC333\n9hPKAnaSyuptotp+NK5nUgS1Hryin491lS1d+rmexcy2fi5E5VwVufS0mZnlbqmPevnvmsr/bfsp\nIc6kxpqqj8/ZUudE4ztDE5gZbc6sRkAy2zBOYpypbYN83kdU0YtI+8rS1mGE+DUYIw7FC+lzcc74\ndqK4FnX1/23Q8zCZ+CSoXx1NhB4IagwmSM9Qkwfda1O/DohBCP2kGMyfuKERE+YML+yGJohDJK56\nOOeJGEhIDw+LlucYNmi6OEZMW/dtOo0a9EAiIBE+DKAQ7cnG0DboUm/XjTB/6jB5HNMoiY6Gzxlh\nL41mBJo9UVyy3IH/chwkJfaXFcr/pKB/US2hybSkZ9lDKGd+Xudus4c1hgfTQhbjfeg7gLasl4Q+\nmDun3NYcqdSFPtTRNjlwRPM5e1AZ79ED+tlFyX/9G83HxZtiyGSwunnqlOZYlLPpqbDuX+nouvUt\n9e3OjpC5Jk4vE3O63+HTytS3cAjocg6aY99Wq6jde0WQy+Wb+kNFfTp9VPftn1DcGjgwRfeBwrVh\nlUX0e2lL9YhncUMaUrzxqrAyNoRkrNwVElrcEpJR2tPvyZw+Pz8rllwnAeOEc9zFNcX3NqyAqUN6\nLh0ETrZu6P6VghDaCnM0io1Va+XhWBBpEHIviv6TY59wnt4DQfHdOXvcqBz6WIVNl8aRwemHuPP9\nXfSbaoBP2bSuU3fiGHGnnYH2UReaXowYZZ6ViWMRmApOq8oFOkxwzJi/KeJPCGQPoouFYdiEe6yZ\nuMclaXMrAzPPzT/WGCRd7rt7eHE0R1rEG+KcD00s0UCTKg0LjXjZamapJhoAxAMkVayKC0kogoZW\nz2kHgKgSL4244lgUPq5GIYes1gvUg7/HiKsV/X47TZzeZ2midZBI4HYHYwm5N+sl0SpwCC0ME0d5\nbIf/NG4lmmi6eI4SqfYtw1qwJsg5rK1ISkim01CLufHAOsDyYwmeaxS2Wdt/cN96pWmthlgb24ua\nYxE0IUrE4V5P/RRuOvaZHngYRlOU9oR8jfH5Ge2pchNi3zbLmotNtAlcDOmhPWN8rxtr2mBO+6ap\nKTE4cuxbmrs4WaEF0HHaL23HSmLNzWkMFfdYG2l7C1Q9hn5NBcZaxwmWobfWl9T1owMwA4fUpwdG\nZvT5hlP+2F+pltSnvab6oB93vi7MxuK6xuTaouK/9YQYD6YUR7d2FCc374jJcuBlIbkTx/W5e3cU\nt6tF3Sc9pEkzM6lnUMARZ++e4m/plpjZvZe0GB/MK87PzQvhzQ1qLG/sqX6Vmuo3yVxKJIUsD52a\nMTOzRlFjMEkcTjgNH/YGHswgS6OLxN8L2zBKCqr34ISe9/wJ7Uer993zFOfv3ROj8s55rZeRHbTI\nVtSe/JC+NzyhdcpjHc326753ry/o/mjQ9B/Q2KzxfDw35isPGC6NypoVilpPVnbEAMhuazwODQs5\n759Qfzd9rZOFPY3tZqVq+y055wbK78kYazwubjEYxV4ZliRsgzjMuxY6SRn2FIUa7C72W2105aLM\nkVQSJrbTjsKZLAoz2ofR4aNJlW7DDsMZtgorOF0lzhRgLLq5B0MmjfZLA0cqr8V+swHDLoE7KZpl\nfc4FqcTnYZOGYOtGYC/7tCcBC60MXyDu9sM5XT8KtX2P9SAB0yWMhmEdd9QorNY0TM8Q/bKH9lcf\nGlh19rMVxla64DQc1f81tLU83AlTdWIT+28XH6MwnaqdB6ys/ZRWv+L0H5f0HlYtKSbuzej+p3b0\nDnf3rGLedETvfu/VxEprJX5rZmaxDY3hr5+X4/DLt1Xv3iGN/VHTdT6/rr3kxHnNwaPofJmZha+Z\n1QeXbTLDvicnRtxWXnU5v6D4+dqC5lfppO6x109frerdcfw5PYPi59oHVn/i3jm0/z04IG2WiyuK\nOwvDYv7lPte74evHNP8/+FB9XHhFcesf1zQvpy/rPTif1L7+h9NicO88O2NmZkubeq/PDepZfYex\nfueu9vGtqPbHP39a76afFDUGD/liHVUuye1543E9252wxkSuT8+4e1v3Ge/Xs164p3h557t6hr3l\nk2Zmdm4PV7eC2E4HxvWufHj3QZ//uRIwZYISlKAEJShBCUpQghKUoAQlKEEJSlAeQXmkTJkzN5UJ\nG6wqw9T/d8r8v/+vyjANnlU2r/ZrIQvZl5WR+vy5V83MbPxTnX3rwaZ4cUAZrWslIeLDk8p0LR9U\nZm56BweFmBDnrZwy60/f1Nnfz44qc3/8c7E6WqBueykhGLdTqtcbbSlZ747oDNvEnrKUsY+EBGyf\n/XszM6tWpUExhqL48Ys6K31pThnGzrYyfd3YL83MLFRUlrh0W/d/SdWyO/eENO+9p7NrpzJi8uQG\n1M7WeWUiaz9Gs2BN/XjncyErr03FbHFCdZ15Osa1lPXc4Cx+c1q6NTWZPVhjXej/R4cumJnZGc6a\nLp/UOeDnN1C6PqWs4MC/qA5/eEoZ6bmbykb6Z2Er9SsrebGutu23dHwHDejZdlCx70Rh0IAghhBR\n6YSU5a211cccK7ZOCA2UkNOo0fcTbfoOkRPn3mScue8lUGcHdenCfIniIGMeZ3BRTe9UdB+nkZLk\nfk2QjARTLpJ2GiswfjgDbDVcSDzQGs5TJ3GU6MKgaYGE9MIOoQV1b+rvTtMgcV8LAgQYVoI7ixvB\n7sgxeUJd7h/CVcNDuwZENARzKoIOhg/a30nA6IHJ1KVfI/R7A60Gv+qQHD2fLmyCDvVIw+hpw8TZ\nT6lvaN7tLqMhw/9PH1Gmf/ysMvStPX1ucUtjeLgnRLHb0rxZu6QMdhm3oxRK/eFh9X06BXoM4yKB\nnsX2N0I2N3aFnLbLasPM1IyZmfXPCinOZjWndu4ozly6pjlZB9kLd0G70X9IGJl5GHs1dHbqaKns\n4fbTasCKAN2qoocxlFX8HDit7/flhUz0OEPfxsWiR49164yViNPHQK8DvYzappAPf1dxcfW6+nuH\n/++CHk0dUb+OnVAAy3Dfm58KSbl5TkhHq6DPjz8tpDk3ru8tfYvGzJ76tdbgHHdSYy2Kpk4y/3DL\nVy+EYwL6TGHGZgjU0jzH2lJ7e3HmQBk0D0aMB8oXcyw9UEIfNolj0lRxi3FOYi3mSg93j3SSeE89\nmq2UZXHqanfRHCiiWZXSNSI4HETT6NIkda0aiGka1kAbJzKnw1EjLtUyoN3o9fi4BHkwLho4Rvm4\nXIQ5y+/ckAy2U7qh+VmHwZNBm6aC00IK/Z5ulrhbYe4Ql1IgrlVc7cIx2EgdxYWI5zSqGNswFRO0\nP0c8i2QcEgqFCMZJA0bgRs35yu2vdGHo+biaNNH0iqDhE2fdcK53MWzyGmWQZIZQO+nc6XDVq2uu\nNkGQowCqXeJsDweacBdWLFoRXdxMmmh8VTuKAdvbMJdgJ5TsAUK7eXnB4iH1Y8yxwPq0R5lmvc8P\nKybGYEO0cGXyt1XP9VXFyJpji/kwOTcV4+6uak/WLurvZdhzCZgy9YRiajKZsUyf/i/erzjaSLl5\nCEsKVkGDukZCim+tHf19ZUP3qNaJky3XZ+ga4eQVcs5+sIZCbdgIOB36kAPCObShmoqTtfrDodvF\nNa0j3ZruP3hCehLTR7RP3LwtBsbdq/qZwDFnaFb7P6fXsXpLTJp2R32a7KmfurADDHepXBqm0THF\n0yHWVmNMLl2SNuH2127zpmeRZ394ZF73b36u+6xcVbuXboupkzuhPdz8CTFF2mt6dlWcfCqw4cbR\nWpganFG7GLP9fdpL7q0K0V7f0zo60tT+ulDU3Ny4hw0psWZqXmPQY62/c0ks7k0YQAPHtF629vQc\nV+nXA2ibDaHTsuizbsMcLcDU6Vag+5UfuGt1k3kbQSdlZ0btXP1a602EuTp9VAyj0YNoFzk3wJWo\n7bsQH7ru9wLxijEeAn0P42jY6jhNGOIt4QzpFkuim+FX9Sy7xH/HEu6id9nJOBYXDA9c82ows5Md\nHLeIozW0Ab2Y+qrMfjcFBboFezSL+50fZ/2p6XM+6003VOJ+sNvY59ZgLEZgUBtaMYbbXtS5MKHv\n04Oxkgnreh3cnaJVnNkyqk+O9aSUc9pkWnc8xmqMffUeDJccjHK31ndcnO3CAkbTpZ3B/Yl4m4TJ\n1EJrshVl3193WjiKBeUqDkNRx43aX5mPSXdwsamxPFXUmPt2WayN6TOw4N7R2P/tWbHKfsqe7Q9j\n0iWMv6S5fgZmTSqm+p6b19yI/UJz/Dn/CzMzu3FKc7WZeeF+XabiY3bBrtrwtNpw/Doszbyu8bMN\nxZfLWcXn/oY0VI8vvqs61F80M7PfRT43M7NnfqqTIqGa4txATHHiGOyde1XFtTMNxaO3X9T79S8/\n05h5Y+SvzczsA9MJErbztnBLorDPjvyzmZl9iDPW5q/0vRenFB8+u6d95fUBsYnOZhU/3zmJJsyS\n+nBiVfvR7sHvqU9e0v+fWdH787tLam/+8QUzM8s9qf/v/Y4TLhMvmZnZ4YvKT9imxuYHr6o9T/9B\n17vxImNvwylN/fkSMGWCEpSgBCUoQQlKUIISlKAEJShBCUpQHkF5pEyZG0VlB1uekOPytzqDevpx\nZTnH7wrd+X1NGfPJLSGnCV/ZwPSryrzn28psX09yHlqJN/tqSZmrpw5LvXnnhrKqM+4c4BVlEz8+\nLKShRhZ44kfKRpdWhQx8GVP2cvxjZUW/+Btl5F7oKct4HpX7yD8og3blmjJiT14RUv3NK9JXaRzV\nGdUzv1R9F38odkr6ktrZHlVWePOs1N8trPst9en6r48qsxi6IIbN22ll+t94UkyaITQ1frWi+j7+\nA5wbbl22A0W15bc7yqy+kVVGemdDOj7PpJTl/JUp65h9ThnZ2bju2VdQhjjX0Pm40Bky88uq41sv\nCrH7O1/nA7cG1Mc30++oT68qC5k9+pfP0/3/C4lr20avIdbVM/Qcik8G3wMx6HBm1+OMZ9dpJoD4\nxmDAdO67kaiP0qBCbdxNojA72mAdYZDLHkyWdsRlxNGMiXHuuIOaO0htI8Q5edxOWvUK30cDBvCl\nzRliz92H08hRmDAVUPskzBcDLWyhNRNBQKXecu5IqM2HG/SHvlbl/HcU8Yk25/N9EO9UG52TmNMs\n0PeaMafVg+uLI7IAoGc4s9zF9qXH9UNRGDmwAsIgEI7CxOUsgn5LHcS2L3QfY/pPS7unTLaHftDs\nk3K1ODSjeNJuqW+XrotZRxdbBUbD+qLiSG1Z6HB0WJnskaND3EDzcmdDY7xRVoBZ/voubVacieMS\nMnlYcyxJ28Nd3X/lqpDAO1+pHm0eyuC04kYmo/vlc3oGsRQ6RHnFh+KuJsP1DzRn48MZPq852ozB\nhsro833TimMDUf29jkPBzhXFu8Xbqn9mUJ/Po3nQqejZb1bVrxk0YPK4ohg6J0xN84D9Z08KaR2f\nVL/3GBx3LgiJ3LinuF2vaqxOnBT0MXJgRv0B06dV1HqQRrPg0GnF/7ER9WuTMZsa67eHKV5Pg60L\n+6KL41AMt6tWDtZZETclp4uUYcDAKihXVa9EFIaRk6lycho1WB5hXKTQDUmFOb+O61K5rX7IwMZo\nWsVaMMbiLj7AQKvixtEGWQ0jb1BLa6xk+HsN5kkKZkOzq3tm0e0oofnS9VWHCGf+PRh4hqOWYwFV\nYdbF0ETx6zAmnLsS7nsV4lEK3R0PpNhgkNT6qDdsrAhMknhbf+8wVrr0udMtasIATKRwtOqC4HbU\nrjztTDKpk7QjQby74T9wl9hPcXG0F1X/+BGHrOK611J/O+ZMC3e9DO0pA3FHqXecsd6mv2NOG4i4\n7bQfMrA7ajA+m8zVOhowjQ2nM6X7IjlkY4OaG7nBB/jakadftNEpzeUo62OH9T7s4xYFApzI4rjT\nU7vaw7r+6JOaazm0vmpldEk2tX4fTSrGxrIaV3WYXVG0J7rMFUuGrAvbplJAn20XrSvmh3MydGZn\nLUSyWiGYCjBDMsyJnmN3osPW6mkPUtjAtXOLPu7o2ddhjnjopIXRzspNMZb2nFDT/opzBqvAYi0V\nxezIjmp/14PtVltxOnCqRyql+08c1/4tgaZWlLm1s4UeB2tjpay/x3ynlQM7FRe/9IT6/uBj2k9e\nfE/rS/GC2MijMErmjyseHxybMTOzTbTA9rYVl1f3hGDHcEpL9KG/t6n7NPbQOsvCyloTUzuS0hgf\nnJijHXq+C7gOlmbEdsjiAHdzTevsCiy9wSHdd3xW69/OoupTZw4l6ecoTFX/MoybJaH8WbS4Uqyv\nOaRuBoa1rhQ3dL/lnQcufVsrt+zIQWnVHDom9sCSr73u9Yv6WdpUOw09qjBM0QGnpbOPUiPuuFnZ\nxvGpC2snblq7egWYLuzvQrB9HMO5AdMlBlvTaQI6NpXHfjfMPq8DQzyDg2IDBo7PGOoRz0NoksWg\n4kQ91lK373KaV8RdD2ZMuaY9hUc9fOZiir1XBQ3DNq6eHvviRBh3IpgrRQK004cLRTQXE7hF1d2+\nGBvTSMS5DRLHYE5m27DLcFdyzpJRtGoSaGb1eLdLVdgn4yIaYl2KhJx7IEzJBOsYa3ccJpBbnxJu\nred9qYYLaaL1cDyHxX8+a2Zmd9/E+fdDsTvO9P/CzMyaHcXxd0Z4P/hGMeG9lJ7Dq2mN5T9cFftk\nIST22ZRIarbZVWz86+9pb/rZNuyV8zDYYw9Ygl9vl+1MM2wrX75iZmYf5LVPPNhT/OgOaN8ZuqM2\nV2CSLVzTPCoPiRny/dPax36qaWqJvBgq3SuaV+/GtF9+cgR20k3FqdLb+t6LoQUzM+slcVtaVFsj\nMxoDZ5IwbRqKO89/qZMrt1/VM/h2W++cQ6vaZx+/pffjUE7P/pWbaE+doE+Jo1+9r7g2s4Oj4a7q\nNfkdMdoPV/Wsru8pzva9qf3w5m3FlxrGwp/Mas4ePq9B/GFLz+xwVGvme+yN/g/78yVgygQlKEEJ\nSlCCEpSgBCUoQQlKUIISlKA8gvJImTKHH1Oma6smxsnEus52rb6gLOw3t8S6eP5nysx9cmvGzMz8\nslJSR3LSKfF7ypANvCV0Z/e4MlN/fUSI6x9XhAzUOfv6JB7u1xd1Nq26ozNx82gOXFkU4ruQFSLe\nWVJm7sTrykpev6l6XV8HMc+LhfL8eWXMZjJoIpAcnr2oDPtqT9nWL/9OGbzHfyOE4/yQMo7ZV5Ut\nPVRRpq5YFZL9vRFlcYsVnSvse0nZ5ac/VBb4iyeVXX/uWzFzjhSVFf72itpdXara0JNq++s4XC2P\nqO4zg8oW3kEz5vUxZQVDt5VN/HBG6MHHdWVDn76nDOvGptq6Q2b69Q3pQdSHUOIfU3bzsd8p71d4\nmSxnG9R5n6UBGpLwUT0HXe5wht5LChnwYaKEcL5Kw5oyzqv39DFn5mEx3H/CIMVVjzOulTS/O8aM\n7lvPNbiuqwfIrTtD2kR3pAtjhvrGcUdpGaiLRwbe6VlwNtVgksTQE2mFQKlw8wiD9gHUWhedirCP\nS0gV5AEdkgSuIR7MFauBOHj6fANNF8f0iXPOu4cWRNxp6CQ5l8+n667faFc3iiZRE7cnnIHCMH0q\nMJzizvUKjZ1KxyHqaNWAihrn++ux/aOXMWCVaF7zbHRYqEAEltHyLc3H8rbm8YExzeMMmiu1qhgc\nXl6MkieeFNrQHVLmfh2NqdXbuk4HTZAMZ+oHQfpmTioj74XVJ3evieG296WQwzYMlFhez+7kIblu\njM1r7jRhpPRqekbbNxXnFpd1Jrde0JxtN/SMx/uEzOYH9Cw31zl/DFpVb+oZLTeFUFT39P3qsn7m\n4qrn6IzicBstmrs3FGdyw5rDI5PSSkjD6Kg01+k/tWN+Xu0YPiUkoLmhOFcoco4d1GtwDsR2WLFl\nEDeoDnNpZxHGURaXrDE9v6Ejel5Rjo9vo5nV3XVcnf2VJue2U1TI51x+BTZBGu2vaMKd62fuNhxz\nBgeyqGOz0TDGeLeHwwRWPW20ZjIpUClibLTBXMNZh+Py1msnLQqbpue0SWo403D2P06c64As5npC\nZEMV3JBAOpspdVYcd4om7KAccbHIWlfPOneh8J98v8F8zUbQRIEVlMYdqVXFzQkmYBWdkOp9pFb3\nb6J148HQsZZzAwFBhYnitFc857iDS1SIyOOj2RXGFanjNLGcSxSuQR59bCDDYU9jeL8l1oJJAqPF\nsascA8SY+74PMwdguYk2TMiH3dFxrlG4ANb0vWJVY7zmGJxOz4l1KgFLYndTf4/EcDthqB+YFgvg\n+EHdAjqDAAAgAElEQVRtLmbPCIXs/YdweeDI2H1noioOQc6hrbEmlsrSip5P+R5sP8Z6H+yFuWNC\nCSMHhaDXnIYPulp9sOv8OAg3+i4pmEa+59aBnu2gQdXYkibB0oL2DsWK4loTHbQw1jJ5NEbq/J4g\njsdwHkyxthQYU1EcW7I4pfThFJUecs8EfTfczxroDCVhQ90I3bSHKVH3jMp6lo2ixmZu3OkpaR/a\nw/Fla5W5cEJ9OHFAfw+11B8tUPrErvphdUP71oUv9P/L6HBAvLQKc/5w6DEzM8sPC7GdmBY0vbOs\ndaPAdVowtPsmNDb7v1Y/rq9qUC2n9ByGMporrVHF3yrOLAlYyaMH9P/Ll3Td7SWtN4k0WmWw97bR\ndCnACp49JDbXoSe0393cFYOlgGNaNgU722nT3ND++u4trUdHj2rdmHte63JhTf1e3EAvA+TZuUQN\nHYUtjKbXFZipZmYbl+5amDE6f0j7/OQpzaFUQut0o8X6u846g/ZZ/9iY7bfEEtqoOTUbr+2Y0zCc\nE3q2MbQJ46zVdXRyWuxLc7yi1WGJ+XH6jPncxC6vEVHnJ9lXhWBAhHDqIqxaizgaRcsvFIFpgtNj\npKt6Oz+yttv5sZ74deIbGi1eBBc29o959rdOW6XacHETTUGo4RGYdc0sGjt14j9xN8ra2eyDQQJD\nPcV+tso65DXZM4WdNpruV0KLJgVLoQ3l2+16q/24pMIIcsTvDqxqZ6JUg8WXQ3utEdUVWugkJaB6\np4lB3YfkOdSe13W/t6043HwVR6D/rjn2t/2aE/PPaowePyd9lERMLky3Gzpt8Z15jfl+9l6lS6+Y\nmdnUcxpf/7qt5/cyunhfsC6en3rANt4Zumpvh07bcx0Y4T3t81bQ8hpbYC8f1WmJ752Xy9Enr2o/\nN31b87IDA3m1qXfHH3+qefvbEWm5/F3qNbUdhvvaoPab4x6nIPLa7129q3zA3w7o5EipINbPBeLQ\n1I7u/4sx7bufu6E43jqo36cn2HeX9flyTfv3c3fERhruUx5gbPxl1edladdsLEnPZ6mq+hZmVJ/t\nzxQPUintWyOm+sT6Vf87C3pG1T1972BHeYHDTyq+eX/UmJsr/OX1JmDKBCUoQQlKUIISlKAEJShB\nCUpQghKUoDyC8kiZMuduJez/NLMfzSojHm4pI179zYI+8Iayhue/EHujr6hMXPP7yprO78lPfHP3\nB2ZmVnpB2caxnDJ7N77Q52ZGlJGLJ5Xh+sVnyoS9lPs3MzObPf0zMzO7XVaO6ukOGcJNUKoxIRFL\nGf3+02llzv55WPU+9ZWyk59GyWpyzrM4o0z+dyeUjawsKh878Y3qk3tDiM6Jc/pc5vf63u0jysDN\nhvX/ta+V1XynLdcob1D9MVRXvUuxfzEzs98O6O+9F5QNPfau6reWP2qtPjlc+ffklf7loBSjXxyS\nQ9TCF8oaTnwfx6ovld0sHVdG9s0vhfp/FSYrakJltp9Tm46sKau5V1MW9Zu4VL7XOLvpr0uvY3X8\nb0zl/7X9FI4tWwHNlQRMmHZTQzdKRr6Hq0cXVfsW6uMRzrp6Vdw/0nW+p/+vwTjp4TrShbCRrHBd\nmClRUPYGKvYxD4ShgnZKnLOxaNQYbhscQbUumjUt/t4LOQRC9U2BGjn0PMLfQ6DvkSTOL2i1hNHx\naHCGNeyjVg8k0gNpCeMQFO0DkS47hpHqF27jiEF+NtlBYybtmD5Oc0b91wKB6KGxEAIhdfooTism\n6lysYAw1YrQHRNhpKFScGxYuMskaEFBk/+e3wwNCKIcG0B7BxaeAG1LhlsZqq4ROxSHda2dXY7JR\nEOoy/5QYI8l+zfc715VpXwBNHhrVPJyaV6Y9PSrkLAcq5hwUbt1RJrx0Q0iiJ0KOTR3RnOqDgZIf\n0x+a6DWUlrapD25SW/o97uHuMSfEM/SU7jM4IMT13uKCmZlt3lQmPz2h62a6+nwFV6r1LdUnCtti\n4qi+P3hYn9v8SmNsbFLfP3ZGCEUcBtGNP+os7fpdxaUWY7dcFcrm2FIeOhuhnmOBacwP80ybOZx2\n7mkuVct6TjvriovhEFoRMHlK90DWd9S+jbtCmAurD6kXAqpYgVUQR5smjLNZreUQdMasQ+Mcq4GY\n4ePqUmds+yDumTKsFM6vh++zyGC1McYbaBSkYImEofF1/IbVcK/pciYeYMuaaAG0YGJEoUb4PdW9\nnAFlKoNad9WnoRABFH0i4yx+GuaMc9cBuLUGtJ0YZ+07IJY9xnaDOBhBUagHYyUGo9A54zhYP4x+\nW6gNw4U1tIs7iLWAJNFgicZV7zDMGR9WU6xWpv36PdVWe8MxzZWQY8YQNhxAvGYP54YRgsEYNV2o\nxwW7oO5tXEKixOUWOh8RkFIfZDUO46jO+pIZhYnS096hjYtVqqv+D6Er0oGRM3VMz2eoX3MzDCO1\nv197hs1tzYUyrIG9/0CVWbx6yTZxRGutq9+rMB9ruDcl8rin8FyHMjBOcT9ZWhJbYf0erLs6yHbE\n2cKgKYRGUAOtMN+598GgqbdKFiPeMCQtnNM+aTCvn85g0akbxJ1QWRlNFuKI0/JqpLSf8nCyGR1R\nPE7mhYiOo6XlZDHSTkcjqRu10bGot2CTuQrss3Rg8vjsQZo4y6T2NEajA+hCdXDH/FyI8d0LYimP\njeoZjh7UelNt4vYHXj90VPG+t4dDDtoydRwPnb5RA+2aHHFtbHpG1ys5NhssrAZ7khRsBFjMebRb\nmgTExBSxJaKxUARd92GgDCZB1Y+qfTvbWk/KPJe+A9q/x6/CqLm8oPvvaCzWi2gHQQPchnEeHdR6\nO3BQ6/faiq5bWtK6tQYTdArNnrET+vx1NBT3ytqv3/pGjNfRk2Jsjj0uZk4z8eD5dvysLV9iP0Ac\nP3xM69zxZ55Xu9Z0Pf+a6r/bRByjvv/1psp8dLMyBtMixL40Cmu2gJtlmgCcaenZNXDoapeIi2jE\ntGAGNlmTemi0pAswH2EcRxzzG6ZjlP1ijX1kM4QWGbpIXeJvBYpIHgZkE+ZID+Z4Iqt4ayU9kzoa\nZOkS8TKCy59bUGCdhp0bkzkXT/VDCq3HMOxfL4/rHS5KSfTbGJLWZR3pY+30m/QrTJ0IHZRvqv51\n7tvmAj7uVpES7Dz25YWk7huOwvBjTnazWertGKwaA/m2+quA42QbrbMOmm/7LXMfSzelMIoW5q7e\n7Z6KKlg2xvXeViVm1SrS5kwNv21mZsttGIvvic2ceFV71seTH5qZWTar///bW9JLeWte+itHtrWX\n89LP3a/LbPc12+z0bGx4wczMPmqq7S/s6j3cOyJGSD86dx+nFXdLb2kf3Dmmvvt1Vvuz3D3tI3sn\nFPd++pXmbdNUt/dmpNFSTmrenY3ocyOsWQOH9IwXBnS9KdP9wisaQ3tzOr3xk36thcUlzfeja3qm\nk7gnf1NQXBjJKi6EPTEDMzsaG3+8LM3X50+ovdWDGjv5w2K+7P1CzKHcvJ69e/fauaTr3bmjdr30\nlP7/CLqkn3T07KJXFcdeQoPnwydmzMzsf7E/XwKmTFCCEpSgBCUoQQlKUIISlKAEJShBCcojKI+U\nKTM2fcHMzAqbQga+Gl8wM7NwSmyM6hecV+Rc9vERZQW7v1CG7Z9++N/NzOzstjJv+ZvKuLV8ZfQK\nShLa/BxnZX2d0/vZXSHQn5/mupffNzOzyVGdLTv/tHzWR/JybXrqG50Ru3JRGcKLK8pm//hNZRmv\nTwsJODIo5k79Q1D/x3R27o/fKnM3vynEPd4QQrRYUZb1KI4Zn74mBLrylTJ0pbaymr0hZfYOxZWR\nHP5C7fyq+5aZmb3kCXHxB5WZK76n6xSeUKbysYhvHwxIkfrwtLzfXyZ7eONzqXGfQk/h1vtCL7Lt\nBTMzG9wVEvfWsDLBbx7/nZmZVd/TebnUJbESbof1TPrb6uPUPZ1JH39J15tq/kRt3xUKst/SdQgs\nKuxemjOoIHFNXDq8DM4K7qyqY6qA1PLDPDRc2uh+JJr6XC2uTHqiDeMl5RANUL6k7tOBweKB8EZB\nt3pk7uthdDRg3tTJe6ZQ1281QLTDypqG0CYIoddRb4E0ptBuCTvGC9cDlY+jzp9Av6ITQd2/5dBA\nzihn1b4kGgM93FLiwIhdGDMptCCqIAWhBmeenUYAWjdx09jvRlV/h+xGcAMIwdDpcHa4B/ssijtK\n2ANJQPMmUkErA00Mp5Xjzlrvp8T6VRc/rWuvr2t+l7f1s1YV8jUCg2bmpNDq6rbQkGMndTZ/EgbM\n0tKCmZkt3xCTZnZaY7l/Hq2CQc3fDujFKqhKzaEvu2pT5pjm3xxn/rMH9f3dXWXeN9BWaIH6+1v6\nPYLuR7hfmfvBmOJXIgsahbPWZkXt293Rz2RGz24crRYPVtLKuuJh1LEMYPyEBtSONoh0OKRnOz6j\nwJnsU32vXRCqsnlHqE6DWDEQgekDOlUpgCQ21Y4V3C/CaNz4EX0vc0vMpvio4nlnV/evEhvaztlm\nEZ0T2uHBnHF6H8nMwyHcURCMHihcHYe1JOfjw7izNHFLiaEZE63BYmDsdkAbEzCcajiu9XCqcE4X\ncc6b15mbGc+5DdIe0MkO7BK/27ZEjPnHmlfhmXswMxIgjU3HjIC54KPxlHQIIvGtCpMt6Wl+V6iz\nM0dybhEN0GQXX6vokmX6QOhwZoniMtSq4UCFZkkbBl0kpt+raA+kk84FD7cOpn8YRmCDuJiAiRGB\nkecO/3sglBWYQymohymYPG1YTQbzp9lEAwa2VtExcfZZtnCaiYKINqvoSWRxJsuxLrDetGE4+mgb\nRONV6qHPG5pfsQ6aYwMp/s6Y6+e6HVgPILqOORMjpnVgcZUKmusbxT3ur35zGg9mZq1uz+ZmxVqI\nHIChiNZXG3e7gTQdnNLPIZwpWhW15/I3ct64tyiGbH2HMZ9XfdKsQ96Q5vAQrJUQelAxRBpSoZgl\n1WTr4oQSH9B3RkYV33qg+R7uTL5zWUJEqlnRMy7XhdL3wdzYqSjuZvr19/a6+mD3rpgbzZri7DZz\nowG7wE+j48Ea2UbTZr8lylrYaWlsbN4Qknt9W88k3a+4ODai/djh70hza31Je6PLfH7+CRg3rPnF\nPdajM0KAvSOwsWDKlHZU78UbQpQ30Agb8sR4TMAY7cJabeKA1Wqo38qbxAiYSpDsrNBQvbNDivdD\nUf1hCze+rTWYJTWtg31j2p9PTOq+boaNTOj7Z19Qe3c2YUffVj37D2rdmZmXlstNNCCWNxX3Z5/W\nvnfgmj63V9VY37m3oPavaSz2D6lfB4e1B+2E1X8LN1XPKI5gqX4xPKcOIO5oZo+/fMjuXhZyvfSt\n1kUPR58jT6pe2UHcVo+IuWPn0c1qPXBx+s9KGMdGd+cK85ptpbWZz31JnMmIp/fjCyyvXtLFF35v\nax5m+nS9GuzMRtRp/OnzhEtrolWTcO6YaAbm2KdCmDEPhrRjYu7BsE7DFKyj99GFeemhOhPbg9mJ\n22k7gcscDBa/45gj7OdgmMfQHOugxeixH2ziqmdoXLUNTRjW2CxaXY7CXvXQmHSiWZ5jjhMX3fsC\nmj5F9KTSOX2OVy/LwuivNRT3u/3sl8v62RfWXCi2NZfqMCM9nMQ6vAeE6g+nczf293rH8+yfzMzs\nt4to1vTrXW+rone57U/Vni+G1W/H+vS+9fS65sQGulg3zul5vXXgWTMzG7j67/r+wb9Tuy7ovS/s\nqV+HL79LTf5X8+s5O/tcw66wX/Gvav7ltzRGP/uB9MzOfvaBmZm1H1efPh/TvrmNa+jcbzXfj2TU\nZ7X4j83M7OOs3gVfmp0xM7N4U9c5nX/VzMyufCwm+cwk8fSmrjsHw3vraadBpv3tmU+0Ty2fEAto\njb3MXkPx41pY8er1J8Wg+fU7ethP5XSiZOFxXJc3YZ+yx8oXNJY/vqSxMPxjnQJJfKjv787qNMjY\nZa2px/z3zczsq1W9hx8e0tgo3dU798CEGDVeQYzJiY2/rHMXMGWCEpSgBCUoQQlKUIISlKAEJShB\nCUpQHkF5pEyZ0yUhApWkMmhnTnBGC9V6f1fZ5qlXlMHewI3k7veVLfz+WzrrVjilTNpgUjomv24J\nIRnvV6btw3eVuZp7TRn2z8eFlCPYbZljYpyE1qUxk4/rex80lA3ejisLefKGvr90RhmxP/677pca\nEtIerUjbJnFGCtm7F5XBizyt+10u6UzsMdDG8R39fisuJLp9QRm9Uc5NxtBoaF5XRq6eUgavd1RI\nyfzyG2ZmduMbZSyPjuv/vzysjOYL36ofasMH7acf6dzdx0c/0zWjYgXFpqUxEzmjzOnAip7J3U1l\nI7MJ9fkLWeX8v2ypzls/UZ88/Y6yiysgopfxfO/D3SGzKNSoO/hLMzN763M9y/2WOghiBRTbS2T+\n9AOo0UdraK50leVNg751QZJDzoUEBMHDbaSG2n2i59TbQd+5nkO/Ww3QfgDJBGd8exmYMiFluCOw\nHipo3ySpXwhXj04C5gsIJ4CEtR3zJqufbZgwPui8cyUJOYAcpCIMe6Da1B9i6HE0ffQw0Aww2Ach\nkJK6B0RCPcJx1TfDdX3q47QPnCaPhTmbCyMpCerfBok13JSiLf09hChQm/+PgZa2qW8YBMcDgcGY\nxtpNp4f/n5fmru61eU9jvF3QuVqPzHk8r4z91BllzrOMoZ0KGia4TWzvwOqhbdOTmu/DuAZVcSe6\neU5owxqsgwioVRp9nH5cJIbRmCriPvLtHanFt3HSGhxE86WuOVZf1nyNcA67WlHfr7gxe9/5RUhz\nBkeUQlX1mnxcyN7UpH6uF3S9Ayc058bnxNgZypOpT+pnCa2WRs8tB7rhlatyrVi+ovY6o7HHntIZ\n/PEZ9Wcnqfp6pusVy0KT0nfElEnlNEbKoFyZnBBMp+Vz65riXwgXo2GYSE2eQzat2DOIVk4FZo+X\neUinA5iJUWDHLK4mFeKqi7dJ9E7qjoWGDkqny1zg/iFiTJY50oIh0wJ570RgR6A74recMw3IPehi\nxMm9ZOMWaaE9BfMk2xVa0+tqDIfRk2jyrBogc2k0t7q4GnWYSHGn74N2SZJp5RylQtgH9UDVO+ih\nZWAitqq6XyoBg6bKmAfP6XGWP4WDVYt4FUdjqwI7IU18cI5VbRDdFJpcRRgzHky/jGMUZjRXwwTu\nCOtMvaf+GC4ydnG4GkQboJdEQ6y6f20qM7NcDIeuYfQ10MiKpXTdyi4PCw2EJJo3Lp7Vaoqr2Qjr\nBsylInoU2/fEJEqx+YgU6TeQ4t2Q2hMGvQ/BeAp7GotOJyXbdVoTaKxFH8TLfDRlHozHzKDq08Vl\nL5vIc380ZmhHhbHearn2qv2nn/mu2sk65+OGGENPxVh/2j2nLQZTs6T25/ti1nNjsKQ2N2Gq7O4p\nTnR7rJE4bnkgtUmnR5RijcpoPrWITwmqUN8g/hdBuekTp/sTMUczYAzVYXei02OwDPZb2uwJYsSl\npHNanEQ7EAec3aKYGMePiY0ci+j/L78n5LWyKOaMj8PKynUhwY45mU8r3g3OKK6OTip+764rrm6t\nLZiZWQjGZJq42odeUH5K61duTEhwbUes5y5OYLvO4bGmn5swSNJoq6XQlavgRnRrTaj98UG1Ozeu\n+9U2FFtK1CvSp/sfSGp92N7Qc6mgX+JYwHHcEgdCah87CKsT92Ow08aGZ8zM7NqXYtZvXtN+f/iE\nmDVRtHHafK++BuMKZksv9QCZjucO2MQkmjZ7YsTfvaH1pxvT2J9DiyY/qH5aHtD/t9bStt/izD+d\npkwahkyl7dZKmMowtKPmNKb0OSfN5ZylMKW0PA5khapjasBMQefDkb5aXC8OQ9ltXNmOWiTk5ilM\nE/adUZglMacBBvMw03ZuUopfSTS3SmjIdHBlw0zJejBV6jBQerDf4lH2rbCxeubYcerjDnEqCRs2\nxJ6iV9/lenk+p9iR4IbxChqTuAAWWJvjMOwTaMm0czC5Yb/23DrKvrwHrS8Nc7PlxhR7nAhObq6f\nc1nH8GG/7z1cLHn3gi70nfU3zczsu9X3zMzszhmNi+tZxZAzT+hzB8ZUv92U5nzruubu9eOKPa+v\nK2aEGYB3NnXaw9v7jZmZPXubGPqU+mWne+p+XTYin9nOrYoNL6nPhwelWfqHuuLCy6saM9s17Ye/\nd07PYvmg7vXHlJ7Z2TPab16v6r0+F9U75mtZrSk3eeZnYCN98rbaMvaYmG+/mtK8/dGc2lZcVRzw\nv+SdEzfid+Z0gqXv479SWyKax69Edd8vcBL7Fxjo//CY3tPfKonBkv8VjpRPqw8aOfXRuS/1PvDi\nYV72fLGZbkTVxwshsYuOwBrt72k/PLrHXBpUPz3p65lNn1D/XT+nMdKPW9T/rARMmaAEJShBCUpQ\nghKUoAQlKEEJSlCCEpRHUB4pU+ZXrUH7ezNLDyrrWXxXCEL1JTFOxjg/2VgV8rs7pgzU2OfK1q70\n6eepqjJpvS0xXCbDytj3LUhLYmKIrGJZn4vd0Zm1Z5eUIfu3vxaz5G+7ymh1bygT2JqTwvVrK6rP\np0dUn+inZPZ+JmZP3wXdJzcuJyPvE2UE35vW/X70OyEFuyf0c7kiTOD6IWX65r9A2bsgJKJvThm4\njyv6/Isx/T7/lDJ1f6xJq8bfVObt1bYyfL0DyjQeJ0sc7uCustux7oDO+XYXhQ50hhbMzGxmCsSz\niO7Fl2LMPHdAdbpwQWcbv4CikVvT7xNHVZfbzyprOPKeUJneOOcJX1C2MfKVzv1d/Uh989rfqO//\nn//P9lVCOJOYc0DhzGmowVl5srMhNEz8BohlVz/jIJg+mgYeCKUPghAPgVj67vw1UwLkMVrT/cM4\nsbQSyjS32+5cuXN9Aj1rOaRZ9arhxmGeswUBLXe2UmgLhEDT44guALRa1GXe67p/L6r6dHF2QcLF\nEs42CuQyBcLb7cD8aYNIeK49IJs4N0TQ7qnhjJDgHH6TOeggnESNfqffmmjh+JyvTzX0OYeQh0Cs\n4/dtqFRhSAcWgU3QBDn3cESwMJDwfgrIooeWy/CkMuTJcTSYhkE005qPN84LkVy5rTOlPecgAmtn\neFjI5dCUmCwrNzUv168Kqetyhn14Zob7ae50YF/5TdVji7P87RWhPIDUNvm4EMTuop7B+pLilUOM\n+2Ap+EmNjTRK/6khzSkf95FQRchnpqd4NXtA8cjpdiD9Yv1ox0QiGiPbu6A+UdzsNvXBMvpMS1fF\nuGuFFAtiUDkmnxTSMHBISEgI4YhaCdZTBWYe589zQ7ANBtXvhXtCfdZuS5um09L1O8ytudkZMzOb\nOSMENAyrq0G946B7xfM6m9tB72O/xTlDxEARm8yhFCy4FnO1AaLdqoK2Acn7OPM0cFDLJh2siYtS\nW39P4/jDX61ZV/9EQCEjzPm2mm8dHIxSrYjVcclJMYZKSJPEYcjUHbMFJps789/qOF0MxyzRM6Vp\n1uc0qbhXF60CDwaKD1OO6WhltKPSTadVBTuJeBGOOKaOnnUCza0Qc6kFApnAhamKa1wkSV85ZknI\nUQV1nwToUgtGjY92TgqGRoO1LeHslWJoMThEGdZChbETgzG475LT9Uf7NNc6aNw0iO8hnBmraK+0\n0E2q4vRWZq7EYBYiuWV9ecWSrNOQof+dG18IzYUILoKGRkKXsRVJKaZFYVA2YDk47Z8d2G5mZhc+\nOm8p2Gb5ARgz44pRni8Ngl6HuMz1WozxOOOvhVbPIG6GiSyaNF39LJTQmOigTVFx6ywuL1U0HNbq\n1kLnIQJ7tAkbNVRG/w1GcolrtRj7To8sHHXMQeYvjLtK260RjDXikXMm64Jih2CLhpyDFGNv4KCe\ncbnycI4pSYQ4Dk4Qj5npqTwsYfTilhakqVKqwFIb0wIwPKF1KZ7X50aIjz20ZNxeZndJ36+g+ZJ+\nWd/L495U7Gh/WCNul5YX1L49PYPBcfVznLU1fkBj0Hd7ubqu66PptXhVSHMtBuqf0rNOsaAs424U\nY4wmB9W/exU9t72v9fdDT2iv2e/6I6/1qlTU+lDAZW/7tsZi7qjWr3BLWjW5tMbuwLTaOXBArO3Z\nKgwf3JamZmGa7rFn2VVAXVoWkyazg3NcFPckM2s0izZxTPvidg+m5nntw1e+UvsjqOSMzGrO+C00\nauI7tt9ShbHoeBPNDu6YaEtF08RxGMwx4nCT/Vw3RJxDeysE06TAxqnHPjabRcvPzQXYmj3eGZxE\nlwc7KtkHawjKXQS3tVpNv+fSsNfiGps14nAOBnWS+OvDiEvCJKmyrtRhQ3kxzZE09fRwr2vh7mew\nJeoZfS4Cs9pp0NRZQ7NsB6usnR00ulLs/xsuRmT0wSraXtmoPtdkLjZjsOjQG0mbfg8RI5J1GC9o\nrcTo9xb9EC8Tp3lvaLGvrbOPDqNx47cfTlNmuqs5sHRc726HlnW9iRnNBe+m3k3X44oRpbt6Jy0U\nOcFQ0ljOTOi5fd4SK+VgTM97/Cj9tgSTMqdxeHVdGjPl5L/dr0tj6IzlW+vWPKn5039Z++PqS2KO\nte/qu3fR4rs4rLH8zKDeKV85p765dUzP8BlOjvw6pdMZ1w+pLlMFjaWvP9R7fXRCa9dERWNqJaT7\nXfyNmNqNUTFRwrA5V6uKFy+Oqc+Lz+hZPtXS9z4t6roTnJh57ZDe6xtFab4+twlL9LT6OJFXn76X\nV3z93tP6/4Vvte+vXlB8G5xVPUcuSwOnfED5iu6y8g7bCcWLnbv6f5vXfnz7V3AAjyj++4m/rGEW\nMGWCEpSgBCUoQQlKUIISlKAEJShBCUpQHkF5pEyZ6XmxJ76ovWBmZs88LiQ6+haq+kMfmZnZ7DM/\nMjOzld8KObgdFSsj3lE2sILjwfaYMlkLu8oqDmaUlX36mrKJb8/BdPmOMnY7GWX4UusvmpnZJ+Oc\no67o/w/eVOauklZmMFeVh/zyKak3v/ipMvbfvKwM+8i/C0H+7A0hBh3QqM/KYuTsJuSHHp4ELbBh\nUPAAACAASURBVMPF6ZtxtS8+J8ZLdldnev9hR+39TUnnBL/3hbRvnolIeXslKdZJdFcuUKH3lIGc\nLevs3fnHVc/w3B9salGfObQLGhNWHa9v6lxwc1tZwbk39Z1b28qsDgMyDB4Tu+A3y0LLz9TFkDm2\npz59e0p9973bOie9N6uM8RePCU16Pib3pcx51W2/JcZZUKvAJEHv4YELiP4chlXgw9CIkIlvkXf0\nObPvd9WuFJnwJshmFaZMGhS9BmAZQkij03VIov4ejeKegQZE1TFwyOj3gEhDjiECg8R3Z2YBNrp8\nr+vO+IIAd139Yf74uLJEaU+nWqUeqN87SQE0AkJpXS+agOHTxdUDRD0EIhGrg0iDnnkgHg4hiSHj\n36V/PPrHcGtJwGxpoFHQTeg6WdBR52zR5eyzc0UJc84/jJOFjzZNiP5xCNF+ShPHrMSY2jj7jLSm\nMpxb3t5Gz+GuEICNO0IAPJ7JyEEhcZkRHBLimhO7G0L0lq5rfg+AbM4/pTmQxc3JQ6tgY1MssaJj\nTTkEdlKI3syA4lZyXPP59rLiXSKkZz3ylBCA6Xkhjb0YDAvHpupTvTz6tLiGU0ycc9UjmmvrtxdU\n/yuKD9WW2p/K6/6hHM44aODsrlPvDf2MZ3X9qSnFir5pIRJjg4qjXZDcpRuKGd1dtHlgJ1QQLqnS\nrvJ1xcnammJDI6L69A8JmZg9qXZPnRJDphfW/Sqrel49tGO2YCXs7Yhp060Bo+2zpJzlEPpRIRda\nEiX+X/fNlGFe8T1APkuA6kWJSU3GajMKmwz2XCaOrlOryu+4PTnWGQ4UuYzqUarCJvFaFkILpIrY\nVBZxgZ7BTGjj2uYxfxAbaDtBBo842YAhgfZVFauVGGwfJJwsVoe9ALLm2AwhT4iiH1Eb2sz7LFon\nxSZIo9OWYSyFUiCosJiaxM8wcTAGE6YXo3cT9DWMyFYDdzinfVBWfVoZ4ioqDR7uQbvYNCVdAKzz\nDHtCIMOph9vi+CDZ210hj4ZbR9tH2wdWQgfNhA76JE0Q0zSOZIOsh/1DaMzkhf6XGpoLPAZrw3gx\nkNhqVWNxC/ZZaWuN9mrP0MeeogODKgvDaXr+8ftteOLll20wr3qv4mjkufHDfdPE+R7skhiItxd2\nWmYas+u4UXVXN+kgDZxIDOZmGJcoGKI1HMdSrAuVesc2t9WXzYKu1UYfJ45OTddpORGfBmIwPHDr\n8ZJ6xnERLiwFWl9jbHSJb23i+e6eUOTKnhobgdnYzce4vi40OAV1cWXdHqZk0CQrJdQnO7g97W6o\nfRNZMTyi6D35TLb2KoySTbepmjEzsxxr4Pgh/Z5Nqv0399Suy5cVN9smFDyR0MOfyGv98WElrK9c\npTlqT5t4vH1X++mZJ4ToJpIai+m8kOTWYbXHw+0o3UH3A3e4sUP63uK69tc30RobHBeK38MpsVpS\nfcu4pWT6tY8dPqD7RXETTOD4VStojG+zftSbQrTXtlR/5+B18KDWib5D+n4IZoxjx41Oqt86rMMr\nd7XHjPjOwuiBDmFvp2zhlO47fkQs7hixa2UBl6h+zcUkmmMZNHoKjf3rhfSxX3S8iQZrQK7hXPFw\nkoVVGkvoHjGfueIxxtvq0wTXq6b1/Rzsp16HTkJTJo5OUp19pOc0XdAM67FvtATxFzZsFPaX0xeK\nwkBPw07yYOT02I+GOzBHcrj2cd0OjI4MWmT3943oB/nsiZwroIU6VEftKMf1zFIwgmoJtT9CO7uO\nMe/02ni01fs6nPrdY91JojHms/91QqLFFgwYWHPlNq6iPoyXtOJwC0fNFO1wmpR+HDZfG+ZTB1cm\nN2j3WQ7Gxa74kPVss6C94tnfqJ5jeb2n9U5pT9tkr7d1V3PmHdwRe6xPE9OaEyvXf2pmZnfq+v6r\nFbE2SqdVz5tZ6Z6+fmXkfl0Gtj+yJzp7ltiVvk3tpN75ar+Gafem3kfjl/TMZzKKA7eWtB9uT2mf\nfGpB+9B3cFv6YURtfGtFz2hrXp/zr4rZ0jitsTX4nhhrL4XFsKm8KA3G9YT65vAV9UEkqvmdvC5G\nd3FTY+bchJ7RbEtr4URZbsdbt3T/L1iT5mMzZmZWLuhZnRzTGDj+B8XZP2bUp6/2q696uEq1l8XY\nKTbEuEnNaw7vHcGVuaO497N3pCHrtxTP3n4MLcshxdvMstpl9t/sz5WAKROUoAQlKEEJSlCCEpSg\nBCUoQQlKUILyCMojZcqsjUqF+Lvbykwt7ClrNzWp7O3CgpDa5V/KTeX57wohvXhOmaizP5S2wOXf\nC8ENcz595HVlB72irvO1r0zY4bwy+7d2lFH78n1ps7z6XWU9P4gqo1U4I8Sgek6Zsspj+n7mV2L0\nPP/Yh/r+M2S//1nteI/MYvlrZeSONJSNHVpHx2VMKs6Jc9JWyLV+bmZmyT793rupDN/wc0K4K6PK\nRr+y/IqZmf3qlBD+zpdCEhIZZeYmD6n+n11VPyRBBzv9yiCOXxi1PxbF0plLzJiZ2RlES+qn5Lk+\n2FBfeV+qDRcLQkd+2C90pl5+yczMYkq42hCaIlebQkPmyGD/+5yyqP/lV7re6brQlUpW5wpvH3+A\n6O2ndJ0WAQwL97OKO08CtfUmCEQ4AhpHJj8GIhgN4VoCahYC/u7iFmI49Tj3oDRaCM4xpQMa3iZT\n3qxprCU5u+vOzvpV9Xkb9fNez7mb4LpERrzS0piPgjz6zSr1B8WnvojBWwstF99pFiRBHjj/3AOh\njMf1BY/rt/k9AiLg3FKMekVxHOg4bR20YaIgDE4vo+1cnMLq35qvdmQ7aD6A0Id6jlnDWWK0dHrU\n048IienBBOh01F+JMN8DwamF9o84NFC+zw8JpQ6h07C4KTRhAw2pnQXN6zi6FoePK1M/dlTzpkOf\ndqswGgqa/8OjYqjMPitEINOvzHsdt49NGDhl3JmiURBBxlCjqXrc0ccs29N1SyX15dgR3f/wKbl0\nNEEoy/eUWU/HnKuP7tcBAa6A4kRwTojjCrQGQ2Z9VchGNK7rZWc1FvKwsnY3FXf2NvQzDGI4N4cL\n3FOql+c0HMqa0+Vd5hyIdNSdv8aFKApzqbqB7gX9UkXk5tAJxdnZw0IevAG0VmCSrCyC9OIW4oP8\nOrejUJ3z7mGn2rK/EsaZrIGjkR/SfZN19UeHWNIGfvNxuAgxB2sN0DichNpgGqmQwzZwdANRdWhj\nqQpbIqs5XmPMG0hvyDkRtXpWxeUhGeXMOky2OPGjQ3zLOfeKpHPDQWsLhl0MR5kS+mWZqJC/UAuX\nJuZ7NU384zy3O8vvJXDfQIsrjrZVM6W+yzX0vbJzW6qBwNJmQ3umQ7xKwfgJI3LTCJVol+rTgRXW\ngcHTxn2jAavJ6YQgcWJ+FKYOY7YdEushxJn5JvEn5i64zxLtoZHA+pKpwciEMZga0NgYHtReIsRc\nD8P6GIUZ4xHvNnCG21kRard+V2P53qLmTspRlsZgpiaFNB88zHn3x2G2EkNWFxVECutqZ29UMW9g\n7AEbYOrUuG0tE5sWtWfahqWWcDpNnp5DnPUgknXug4qB1YpilM8Y/x/svWmMZtd95ve/776/te/V\nVb2vJLu572pRFEXttCTHjhx/MuIA9ghG4CAaO3YmA89MYBixDRmGJzACA5PVkUaRZVsiKS4t7mST\nbDbZ+1Jd1bXvVe++33x4fqc5QiyxCAxABHPPl+rquu+9557lf877f57zPCHidaZbn0ugmdYVFSpa\nRlMoxXq47khsSd9G9ksvYSClPmp6OAPCuPNgiqRw52g71zz0zRrA386BMM7887twCvQmzcwsDHuo\n3MTloska6ZhtaKQkiH8N1sSzzdfs45QEzIlIWetC717VszoDk88xPXCGiVXqP/P5MnpQhYvaa61e\nVZyOpHXfgV1oLfQKid11ELYZuh6Ll7S/7f6U9qPjaBfGO9qc9aAtGEJfbn3ZMUXFHjt8XIzurZr6\n7ug+vUcTzZ46a/rqksZMPKcxsqup6zstXT94RIyg+po+d/am9ukX3tE+dXNZLK84mmCDY5ozw3s1\nZu/1xd4OEVs8nruOe9P8ij7fuKq5kcOpaHNV61ADFnAHJuquo1qvEjByVi+jJVF1Hkhmq6trtsa6\nO3m7vkck0Flpe1qnmj6abjAhI7A4qq2dMzMh0N3SFcsXdM8icStLHHYUZyRVrOGrLjG0XUI4yFQ4\nFZBIw+woq02zprYotXEHhckS4zq3RnVghnQ6uj7JGCxy/zxxvGxu3wvzMUw8Ler/WxlcUInHoW3a\nFu2VKK55dRzQGmjPxAz2GwE87Fz5cH8q5PX/XTC2O1tOQ02fc8yhcAkmOXM/ggZWBje6ep79Oo5e\nIXQ5LeU0KfX3HHGqBfO9hp5cCK2f2DZ9znvUictx3LOqbRwWaYcsDFHP/3Cs7aQ0enTfh1uamy+y\nN3oBt76Dea0Dc29pbD5R0pwr3qs5WL6kOXewdtLMzMZ7ntN9YDid3KX7PLeu+vbWNIeefFntEMp9\n6IbrzXdZ6MDtNj2u79WVuhh99+7Wd8ELLylOraW1P/zMsu5RTXKC5aquO/+A4sb+N9UWjTsVz/Zd\n07wrzWis3JkRA+4nLyuuvDWquNDXEoN8dUVtU+4V4yZ+TO+8eg3NKRjGk/dorgxf1th8KaS4OWec\nAulXXHgwI3bQy8+rDQ6XNEbOj4qBE3sUd8/nNfZWx9TWi6Y1NzavtdSfUJtOXTmpdirpRM+v3K7f\nX40oPveN6HOj72oObbghuPQZ+0UlYMoEJShBCUpQghKUoAQlKEEJSlCCEpSgfALlE2XKNP/+p2bf\n/LpdGlamLdEnFsXyBzpztfElabHs3xZi+hPYD3d/VdnBn/y92BtP1GEJPKzM2KXmQ/o85+53Tyhj\nl3+drO99+vxdZ5ST2u4Ti+O+U2T+H1PW9cFpkJuafM3fGf2qmZldvaT69O7R9d05PefYXlDNi3qP\nKZKQsZwyh9UXlJW+tyzE/VxOz5+c1udnbhPr5KcVZRzXKzo791hZZ+cOzgvRnnToVkwsl7Wa2st7\nQPVJl4TCdV+WqvSxVo/NxnVO8EjfT/QsT6ykec7Z3XxaWcaepNr8V+9VtnT+spSmMyM6r5ydnzYz\ns5VJ1XGkW20x+7Syl48OSQ+jOslZ2PB7Zmb29oZ0I6qJD10idlTcGU6nx8DZzjhOOR46Dki8WBOk\nz7n3eDBfqmicRFFjrzTQNuE8eywKQooWTATmTSzlUG20DkCrWrCRamjKhFC9j4OoWlsVioKYemE0\nXsiwO5S8DsoewRUphH5IO447CfVzDJMIbLB6h7OkIAWhFAgn7icJ7tsC3WmHYZ7UOc+fcFoQ+u8W\nLgCNENo1ZbQe3Ps4NX/aIQIa2UY/pB6GrQGi0wKhDnHfeNK5VOn6FroCHu4fcd+dTeZMcfhjnN/u\nEnNlFE2oCoyYqbfEUKsDQzlS1N57Nf+6R3Qmv1DXuxQ2FIc2rgohKM5pvg0e09nzVJfm70VcGhbO\naU402iCze5RpH0CFfYMzrZsgodl9MChMyEAT1KeCA0AV3aTiOqrv65pD0ytCArbWcHGi7bIgollf\nfbKyoDhT3lL9w7AUduFuEYk49gIoD2hZDJT/wF1CDocOcv54Tqjae2+LLdfeEDKZ6MfhB0QiDWpu\nnFsvLqq+xYKu95mL+46rHgePKcZ4CY2R1VWNtdIW+iVFxZQKLIUUTJJWR2MzDGst8jHGiJlZmTEa\nQl/FkmqHusfca8M2gZ0XTqo+kaqub6HT1OL8ehY2Vwn6XBjmTjoOS813znDocrTUbgm0bIowjMI4\n35QTZpAIbrlmxGBuOF2KNAyaSln3TKRwkiK+xGCcYDRjSeJfCUKGh6tP2r0zrJ5QBmYMOj1NELU0\nujedAkw33snoA48z7pW66hWtwm5Ay8ZgGoadng/OVq1IlhfVGI81hIo1iRNN2ixdA0lmrEaJQ50a\nbkshMUg6YVyAHJuiqfZo+x/PoWtjQ+tTdVHvUdrQXIz6aCXsE9tjHIS7b1LtFIOBUi0J0axrqtr8\nstgQ69dhfeGs1jUAowbmUD6D002v7j+CW5OnUGGdjtC+wV1CUp2URAqNntmlD9fVm5evmM+6NHlI\nMW7X7ZNmZpYGuw/hKriNlkIyzTpRw40JdxaP9l9Ba6LWob1xcJsuKLbVqIeHi18WDaDc7kGLZdH5\nmdD+rFZHy6Wqe7Rxo6ijS9NAb2wTJl4TIZwQY8uL/CxDLgIjJb6BKx1jrAKLKETg78CcroFul9b1\n7tXtn2WyfFTZRmvM29J+sveg4nAE3Z+b1xT3q449hmPj0Lj6+Lay9qeNmsZKOqa9U9vtLRgj5UX1\naSKv33t6hJp3WINXYeYUtnVdBGebJPodAxM4YKJT1fLVTkWYSKV5tLSItyNox3S1+BzMRx8W3ios\nvTSbrXhC/ZkY1dyfhAlZXUJbZlv3X9lepd6qX5Tu7zhWMHs654646w6N8fOnpOF4410hz6mknhfr\nRZdlC0YpDJtsN5prOBWV19VPqSx6ImaWisfs5oKYTOMTk7puQ++/MoNmBuMtfpuYnD3dao8qsWAn\nJco+zinj+aZ55LT2WgniJs6DeeKd11bfVWJC8SPMwyhaTxXiRdrta+OO7ckamYc5yXelCg5nPoxo\nc86sVCwVVl85F7iwWyc83IpwM3I6UGE0tTAnNb8Fm9SxT2H1JspoucCETKCR1YAtGsJWcAvmjGPB\nOTJSJIfjZIn1jqU+Acu5ih6RH8aNtI3GIu1RRc8tncF9qeO0GfX5Tg03LN3WutIalDUcuToZro84\nxjgMJZhEYRjkjpXttHKq6GHttMTQR3r3svr14D1vmZnZ9T3aoyav6XtY5C4xJp+9rPXk8/36Xja1\nJdbKUkXs6N625s4Xx140M7NT02q/e9A5LJU0xv1D7HH8c7fqctvhvN3cf9oOPK02vXa/fi5xYmNw\n4VNmZhb3VYd6Tm0WXuP3R/QOgy8onufYmxR/LMZIyNcaMgeb98SXNb+Pvy/G3Hu9aLGeF4OmtK2x\nNf6EFtNLp7WOfHWffp87ojnz4iv6+cSk4vAdk4q//Z70Uc/+FFZpQ/mCPXeJ2TJySm1Xn9KYXuxT\n/fY+qng6R1dGNlg/+hVPRo8oXveeFxNvdl2ff/ZZrS/bKc2BY77ifD4khs13z+r6k59m//lzSsCU\nCUpQghKUoAQlKEEJSlCCEpSgBCUoQfkEyifKlKk9rkxcPi2EY3xayPSbDyuL+sSLykytdyszNrbJ\nWU+yyb2H5Ae+cFlIduS6zqIN7dN9CyDWofeVuXvvPmXMDj6n+zfuVPbzhqfsYmJLma7Bn+iM2Y/v\n+nszMzsxLsrL7QWxTC6tP2FmZpNX9fzGuLKPi5c51+3p7Oyhd5WBj9ymZn6cc5LPf0UIxz3/XpnB\n+mG0YZaVCay/p/d+LCyEYe4x5XNn0QfZ54kh0+bceHtRqNpndwlZeufApJmZ1Y6pXjOZqH3lp3J2\nqhwRetQ8KwRt43llB7+QESvnubSeMf0qbIJhZTUPjSp7OInSdTUitHsOtk/lSZ1l3POO0JbKkJ6T\nvay6nwgp03t24OPpQLTRUvBBdDug3TWQhwyaB5U0DJCQ2jqE+nzYQYqcJY1yZrWFlovLayMvYfEI\nmgpUswYC7KNqHwb59XAbMlydQm3+H3eQNurxcVCyOronEc65l3Ef8RowYBym4qP50AGBaKmGaeda\nhBp9ZwumCqr+dZCZOFo0DsF2rkqxsuoZhkHjgby3OIvLbax+y52Fs7ywTCIpEG8saxrcvw4imwCd\nrHFWOOk7LR2QH97P6W9kQaPqpvflmLdFYiD0Sc4C76BEonrW1obetVYVEuaDLk0e0nzs42xs94QQ\nR58M98qyzvNur2i+FKamVYdxIQH9w5NmZra2Droyr/ma71PGfHyv5lKWOLbKdcVp4HKcTMa4n9Ol\nCIHu+A39f6Wp+LO6BGuhrN8353BZg1kysF+oeTqv59VW0c7Z1vwPwVY6elxzuPeIGCrxOg5f0KNK\nING5IdW/Z0xztAVzaGYWTQAc1gaOiMmXQRepAgnBBy2qdfTeIVCxwT7F2cm9YvBl9woBCTX1/1OX\n1e5ltAxaVcXpcBPXJvSNPDRe8sztIkh5uPPxzm+HiugvgTLG6rDqYKW5OWecI3eOQx3QvEwV9NH0\nuWIbxyKq4YGulWtOdwO2QILn4sXRRBMjXsd5p4EOlNe2WFbxKgRLqJ4hjkE8qcJkyMIeasDYiMGA\n6XRgiCRdW2pNScKMqKadHhHuGjinNEswZ2DAJEHJ67C5YiCGdcdUIUCG6zDkMnqHEu/kwXoIoedR\ngV2UiOk6DzegEHoTSHJZDNemODoj7ZR+hzBkhqtGEx2KXp4TwdGqVoANm1UflVofD3fqHtKcHsah\npjuGIxgOjFXIBc2K1vY1dDeMM/xOU6dVZT2ADTBwQHuM4V1C3buzWh/jtMcWTJMbsNLeelW6dRU0\naXLjqs/oAZ3PHx3QnqcN8htxULKZtaoNa/gwbnIaH5GcnpvF3ao9gCYP64sjhPqwfjuenudl9bkJ\nXLpKPq5fMEnbphjXQTuiXQOxJ7bF4lFbWtQ1V8+qzxOwXCPMuyraLhHmVSjOYuDQaESd3CtmILYU\n6ZPElsZIEZZXtaa+aZxX3GwylrtaMCbQbTI0V+reln2csg7jplhVRcaTxIUoTBfiX7mg69YuTase\nTcXZJnuEzS00wno0Rx2rKRJVvWYqiusrN7Uu1Su6PtOjMZDLq722F/W+07g6tec0SMfqaMxkNRZa\nuCrZtsZaBV2nq29o313CpbCrR/vm7t3oVmDttjYrrZjONn18UO9/8Lg0FbNZMUsWujUntqZUr6Wq\nfl+5qv6oFjQeomi4VTe1z528TevVOBpr9QOq59Kc2i8K+yqZdswijZOVy7rvxpDWly72XBW+3XRl\nERsys3i211pbur6Fi2EKd5UkroSVitplGR2mdC+uib0fOtV8VAnDEM7zey2D/hH7wrSprfNohm01\n1BYxGNdZGG0+LCeD+WFNmIQwbMJOvIa5E3YUyab6xoe9muK7gwfzZjOpmqXY78bQhqk5EcNNWLFZ\n5/LEY9AiaxI3msS7pHMPbajtSim1ZTKi5zkmdR3Hm3A3a21Vz/FgfDfYVzfdPj2GVmGF+J4m3rMf\nb6ZwTarBFEUPMBJRn1e2dJ1zBc25tZ39fTundigV0dCKKEbUYOsli2hZMpYSbdoJtleTOeXYffGy\ns0HcWXmnobE48YTaceam+/6gdhrRny20KWei4bvQYZpWO1ypwc6e1x6rcFLfLd94U2yR+oT6a+6Q\nWBqxTX2Pa6x+wczMxo9dvlWXxvYNG1sbsul71Gedt7Q/HPyi4s/Tb6tvDo1rH/jivL7/nmSsh/pV\n99tSYtRs7jtlZmZ9S9p39w1q3rfKqsN1T/HpbEMnVz7Xqz6YwiUv+6DiZ9ey+vJ4QfO709Tpi8Zb\n0oS9F6bl6znppt6zPmlmZj+M6/v7V5K6bnFMYzN3TWvnm99Q30/W1YaP/z26SCe0Lz27W41/iLl7\nfrfaeO4D4jAOxgcf0wma/stiOSUz2jevPo871aH7zczsC0OK27WXFG/tN+yfLAFTJihBCUpQghKU\noAQlKEEJSlCCEpSgBOUTKJ8oU+Yrz2yZ/YbZ2h5lztKTynjVcP65hLtR+UVlxDMdUMGIkO8NEPHH\nTuosWecZXTc1IHRn4FVlFy89LGT88y8pq/r9fY+YmdkDTWUT5/5O9Xn8y0p/1v9BiM7Xrj1oZmab\nEZ3re49zeYmDZH0ret6Vg0IUjv5EWcqVo9KAuT4ljYZeFLY398jf3FvQe2x/XlnPzHPSYYlkUWY/\nLMTjxaYQ7vw1vUd/Xmfgpm+qHu8d0fNOrosp82ZeP1OoQe++JrenS9Wo3aygLP+m7tl7XOf5EkvK\nEp6bEzry+HGcD+79od7tks7lvXRJGdecfcnMzE50g+q/LL2dhx8VEph8QNnIV88oyxi+W23jva/r\nbr/sIM+dlVBNQzTFOT3nhJJGY8YDuUvDYGnC8HCOM3UQgw7njutxzrgCPVfRlnEK+02QBo+zsRFQ\nvTjIRRNmTB2kOI2eiNNuabmzuTBDWmi4xDhr32njpABCEMrAzOmkqa/GlDuz2uGMa6tDFpefbZhB\nHSg+8ZBzZ3LMIpBMpyUDkyUMw8iqqOSjuRDroFOUJk+LKn0GrZoqDJcSrIAsbIxamvYAvexEnIaD\n05rhdz7fhhxQTXG+HEaNcR69E+FQc/sXn7v8D0sYjRC62DoNIV/HH1FmOs3Z8Tgo0daCEMgyZ+mr\nnLtubMNm6tXnD96h+ZkFbZ56X/NtFWRvaELzOzM6wvN1H+dssGuP4lj6kDLsw92qT6msOdIzIMQv\nPaJ5G43q3dvbimvzc3pOIq7nj98l1H7/EcW7FmN+Ctelw2jHJIbzPF9zsgoKVkczpbihTqiUNQe6\nOUje9vT/V04LKVi4Ju2cMZCRfXcp/rQK6vN59DcadGEMJ4XRCbVfvE9xt2tA71eh3a8vCmFYxhnG\nc6gYrk4VmCkjE3qfdC/n62G3tdbQE2l/vPPbcdC6JiyxCFouTeZaknZoobPRJCYYCHibeB9F98Qz\n0MCMWw90n2iC8/ewxqplN5Z5Thq2G6ikjxuT78etDfJWhUUQ4x0d4yISh1WEm0cUlliNs/sR3B+S\nBjLqJK7c/Zh/liKeodMTAon10JAK+RqjTfd83Iw69FWTuJmKgURWcHOLwrjh7H8c7ZcSSGvNOekw\nv2MhtAZwbfNgBjnXKY/A4hN/kbWwkHNKS6KNArI4RNwp8P4W27mLm5kZshvWM8qYy+qn55y4orDX\nYOp0YBz5uO0lYHY2o+7xaqd8FiYJjMZKS+1bC2tONFln1jYVk3K8XwjXEB+NsoWLmpt12HGGFoJF\nHZRt1vEz5keFOm6y11h4X4hoax1tAZhKOdhg7TSOcTgg5TJow8CoyTgNNJ7Rk9Kepo3rOCih/AAA\nIABJREFUVQr2SRM9E7+o+xSLG5ZMqO/WVvVuy9uqW2MLJ7+S6tIGJY8xL9M8gyFnMTSc5llDXTyL\nt3BQSeg+Pjp5u/rR2GOMd43qflX0cTroqjlnnJ0Wj3rU1sWYrJS1DiQzuk93D9vqsNp0ZlYs5F1J\n0HqYkltomWyuMfcYM6Mj2pONH1e8j2a1h5q5qv1quCIEe89hMVMyPVpHnHPk9QuKJzMXFL9LvezB\nTO8/cJ/67PbdWh+itPvatPpl+roQ36NJMcZzsKyiMNSLrHPXz8ESY88zfkRMn6Fh/YyzpzA0trZv\n6P4JdE0GD2sduyGg3K6cl8tKhjE9eJfif3ZA9a6hc5fqYp++jrtfWe2YSOr9M/Rzzw2tt1UYMWZm\noXjbajBBV2fFHsgNCoEf3KOfK7N6r8JZacYlB9TPqVjWdlrarGHOr6lOfE7yDlU0qqJxxYEsujpO\nw6SGRlUDNmg8TDxgzLfZx95iohTdPlJt3gnp/inckxwDxbkS3XLLLDq3Ipg6uP4YOnUNGOchxyRH\nFy2chiHJGteEMZ1so/ESh03FPr0Ok86D7Rpnv5yIi+1bhSGZQrumXlEfx2DydHIw4WFUFmAc5dh7\n+LB/a6yHFncsVv2eZP3zW7pvNa7/z+DO5OGU2cEFtUE9m7DxIvRLk3gf33KuTc6t0DlQfrzvN8kj\nYl8Vn57W8yNowgwoZjQOaw4U+a539e/4XtHWd8L792qP1RgRi23rTc2xvv5fMjOzQlYnJNI/1FhP\nfUPj4nqe75RnWD9+2eyV8F47fuaKJRo6BTFhcgMtrIu12dOveV3ZFFPlU57ia4aTJA+dVRu/9Fm+\ng6zq3ut3w2oNa7842JJrXLWguj4yKgZNZZu6HVM8G6FtT5e179wd1kmYzYSYL7YBc/1Bzf+71lQf\nL6U2HVvSvL+SlrbqPGvhvrtOmplZ6Ib6ankFd8886xBr+e0XFJ9eHNbf79tQPZ9ZF6PPx30uc1Fx\na2Cf4nbygpgxUb4LzXAK5WZr2szMnsx+GI/+qbIjpkytVrPHH3/cvv/979vi4qL9+q//un3zm9+0\n3/md37EGFPMf/vCH9vWvf91++Zd/2b773e/u5LZBCUpQghKUoAQlKEEJSlCCEpSgBCUo/8mWHTFl\n/uqv/sryeWVYv/Od79g3v/lN+/znP29/+qd/at/73vfsqaeesr/8y7+0733vexaNRu0b3/iGffaz\nn7UuMto/rzy/Z92+aWaTbylzdGFYWi2PzSvzVEhMm5nZckjMmH1ZZa5eWBRa5Q8oY/Wj1+U+1Mu5\nytuSynAvDymzne8XIvv0qDLnu2elTP3ugO5T5ZzehYs6O3fn54QsXF4Tm+T9K2TqONTcdS+uTft1\ndu6R54Ra3cBVaWRN2jPNQ2RBfXzVu6WYPTP4gpmZLZ1RtntynzJ0P9r7mpmZHXxR9VkNqc3HM2LO\ndB/VWbgrU2LiTJDpmzWdzdvfp/PorxdPqn2aqldx/A27p/5FMzMrD4hFcxVnqerCpJmZbeKI8PTL\nSrJ9AfZR36Qy4P/Z6j2qU0Pn5N5uikV0zzG1wTUQ2kMwIwY4I18vKIu6ulsZ3Yi6xsz+V9tJicN4\nqcB4cWfnw5y9beIE0GjC9IARUq2hEg9jxUOlPVyD2YJmQQwGRwcXoLCnMdMEdXKaCU0QT48MfwfV\n+votRBr0HQZOGYjanbUNxWCBFXFpimqs1nBcMM6qxpJ6Dw/6QQiXlBq6FBFYGA5W82DqVMJoweCs\n4LUc08dlf3HecRozFf3dj4HQgFhHQMbdGeISbi63nB1AREswWnyQ1lgHJgxnjiueY8CAFdWcWr1+\nTeJYU8cGIAMi7Bw4qg4C2UFpo3fj12DUDeBQBXOhMa+MfK2kn6VNzRukBqyxIRSiuqW/52Gi5Mc0\nJ66/J9bXjStCCNq4ujWSytTPv605MY3rU7pXbTu2TwyTCI25BjOnUVIbJtPKrPsN1XtjQX3UqNCX\n6HGMHlVcOXhQc6nC/S6dFeNkZVrxLQ8jZX9IiN8aaPrS+WkzM1u4oYx/FJZSV5fiXHaPzvBHakna\nR4hGCPQoM6JY0WzgxLKueFSfgXlU0/WthtqvgGNYIqX/n0nClphTfQroU3T3MnbyYhq1c2rP8VHV\na+8BvW8DTZ6Z93QWt01/hmIIfOywlGI4i3kse1gdJXHC6DDkwmGchOLOEcyx6dxY1pxqZRlfoJrm\ntDKAOryKntcBKQ6D2BeILVlYeUwt6/ghixJHIRdY3Wl48LtX18VlCCBpdJOyaD15Vae5gqNXm7FO\nX7ZAXONMxDouSUnaxGltFaF65GG2NGHc+bRFOwzriop4zlkFKlwMV7YW8TOJNoARNzo13NiI1z7v\nGQVRLqUckolzDBCp0+Zq4j5nrA99aHottDWnoiH9fb30oZ7ETsoWrLPyK2ILFDdwEkP3yCHGXSNa\nm+Ndel7e66GeINvEliadu17QOfMqulcbRe09CuiEeCDOaTRcbr9P6+voIe1Z/Io+N3sBFu6cGDNb\n6DJVQx86CF1+6w2LJHBNcVIUMHOGhmDfsh4mBmEVdKNNgW6Vt6H62ab6cwsaYhMNsrWEWHyxFuOj\nxLpYrHC9W0/r1qRvO5t6RgstkFZMY66vZ9LMzLK7iEtZxa8I+kEejLWwh9YUej3ZJCg/a08IrZZM\nlvvA8FhaEtOhjjBEOowWVws9Cn/na42ZWQvnluVVtdHETa0fI8dU78o+MWe8KfXNKvGyxRqY71ef\nRhJiZLTQgSujIXb63WndDwZmvlfXd4+q3pffFsrde0O/7z6g9SGKlmAKJ8fF2Xnuy1wpqx3mbiie\nHzoqVP4IjJyltOp78R2N+cXrrIdH9Zxde7UPjqPrcfGa9ulzH4iF5bf0nD3HxNAegDHTISAWVzR2\nK9uwMZqKWSPjuu7SGSHy778h1P/ow0LsM7DMVlbVjsbYbhfpvyYOO7DoHBt3rB9GTUf1NzPbNbTb\n/IfU39k86wF2UAm3LhQ0XssRvX8dvRMXi3dSWjCq3cjKo8tW7UZzj/2eh15PhzHstE5ajMkkzlsd\nX2M/U3OMa7V1g7XWaRt2cBpLOHaQp7bxWLNqMf3ewe3ImWv6HfSNQo7hrMbsTtHWuLCFEhqjDb6b\nxKhHNUI92YM1y04HjnWD90qm1KZl2KPpNA5c7Bu3iO9Z3PTC7O0q7Ffr6EDFGDs1NNRa7ONjrJ9R\nZyuaUp/RpRZxenQlp1fFuph2azWMoqrew+e9KynnIorzl6cxlSL+hdz61/p4rLuh1+T8mwtrrg/X\nNXd/GtLvhYOqV89ZnCOrYsuVvqB+WChpTsyknzQzszuS2oNeWFe7jVyU3tP5X0J78opiiRtfd8Z+\nRE1+2xJDXXZ1dcwKj+u72v3P6XtyJal3fXhQfXq6R983L7S1H951Smtb/2P6Ltj6kdpgwHTKom9Q\ndZ0c0L46tEvxc/VVfW/3xx83M7PEBTFKvjiun+sN1eNIS/FuPSPm+Zm2GDP1B6Wt2s1Ymsjz3fOK\nGIKLe9THD1fkPLzR0JfPyincLvv0fbunhXtplzQVN5hj84Na4z7VK4bM8xcUj1q3/dTMzB7qFWPn\n7JDm5lBc+9PX0bKd4NTJbZuKz+19coMNzep7wc8rH8mUuX79ul27ds1OnjxpZmZvvvmmfeYznzEz\ns09/+tP2+uuv29mzZ+22226zbDZriUTC7rzzTnv33Xc/6tZBCUpQghKUoAQlKEEJSlCCEpSgBCUo\n/8mWj2TK/PEf/7H94R/+of3gBz8wM7NqtWoxzmn39vba6uqqra2tWU9Pz63P9PT02Orq6kc+vHPP\nV8zMbHVJGbYQFizTJ5Upy5rYHdf36kxYd0xZwNumlAXcxD1lDCXy/B6hQFtnlKnyH1TO6cSLQlyj\nESG1L95PZv+akIJvpIQwvzGnzN+5p4Vo759QNrE3q/u/d1Rn7A7l5DRUu6lM3jN7hFR/ZVxZyRpo\n4spBIQkX6/pcaluZwVAdhGdEGcSeGb3HaOpzZmZ2KYlWTkdn1vr2CTW7tKSsaqGjbPP4qhhEU3ll\n9hYu6/rPJaSBc/GEULBHIw/YO6eFPhyYlJ7OYc5FX/uCFKqbEbXZYzMwHd5XJjyRVnbxJ5ytvx0V\n9OpltcHbq0JZRjdwyvq62uLIsO63/YqymkceFmpzw3aONpiZVWvoTeAiEsZVoxFTdrLdce5HIMQR\nGDVOJwPtEz9E5rsF8ooGgZfQ9W3Q7jhngQGYLYZTih8VkhDDwaGFhouHFkq9SYYcVMWcSjyART2h\n53VSZLyd6ADq+REubLop6VyUcHSJo6fkm0OYQShxkAmjlxGHOdNJkRmvKoucdEgMzhYt2iuEe0cY\n9fomLIFwhgbgvH4oiaZFVf0fgfnjt0C6QRxiLceg+VkXJ5/7+UXO4kJLCIPMIuthHnBXuv2hm8hH\nlVYJN4x1xYe1m3pWDbAkDgIWBj0pM3bSOIUUyjhM4XqRTanO2yB6nZLqNHRIjJL+vUJgh/JCycsF\ndBcmhChkOXe9WFZ9PnhdcSANkyXf4fw26EoBhDEMSuScCka7xLTrndA8r4IEL10WOlJbAK3mjH+0\nKKTg0hk9r4GbU42zt/khPX9or+JkhrHU4Qjq6iIMGBxr9hwQMrBvvzSvVkqKg6sXZng/Pb/Dc8Og\ndU4DJ+m0UppOI0bxaV9OiHLvLsWnMK4XJZhMXbhaOdbGwltiIm1ek/hANY2zRWLnbhhmZhligQer\nrAbLLuTDikProA2Lw0fPKcZcrrUdGw+nBzSKIsztBgyYJhpHXpq5RmzxYY2E6jHeA/2Wiv4/naha\ntUodcGEymG5embgHuycawvHKnbmHYeYTz1IghjGQ07DTmiJuhWASRpwmAPGg3dTvYdycas6lzWnB\noDVlHedmR5yL6l2ddoEPq8qH3RANufvDVIQ9laA+xns49NxjLoRh6KRg3LVSIMK4QrVZxyoGExKE\nt9RyGjg47uywxMGp8iNav/r6tcaXnevJuu5fC2tuLZ7TereSF4IZSyom9Gb03HjGuZeAIOf1/4OD\nuBOu6fdUv/ZPceJlLM97oDvi8/xwVHOmL6Gf/qjWxb7Qh05kwxNDVlyHocS2rJc5v++Q9ihh9Iwi\nbccEwgmuqVg2Ow+LaxF2G2zCCnE+jgZFrpv3TKBJA7I9EFP9EpmENdFb6AmLkZDLO5YRuhfUpQKD\nprCNbgYsgBqOXuGIPtfnnMaYhxnGCEPc2jGNoXXi2sy04trympgizokx3UcbND+e7lDPkOJO3yV9\nfmVOe5veCb1fslv3T8DoiProwfGYVA52Eq5AbeozCdNl/pz6Yv6q6hunLUdhfizj6rYwq7+H41qP\nUn16QBfMkzJOadFlxf/NJu6CuDnN447XO6jnjh06TAXZy2CvN7ug57SIGZMTQsoPhzQ33ljUfnX2\njBDt8qb6e/Kw1q2hXehecL8bN3RdZV3vefAOntsW8j11QXF++rzm1MCw1tUE7dCF+9/7BTFF17bR\nNntX91/sk35Ggr1bclhzzcxsc2PZMoMaRw10XGLwWbKDOK85p8iUNHvmruh+a2tzttMSLakNIe+Y\nl2EfVcW9KOK0BtEqSasOzr0ngitbaFt95xjN4SiMRrZHHVyG2jW1pSMmJ50eGlphDRg3ziU0i0ZV\nnfgfQaOmCKsqDDupyD45xb61WEbnCSY0hMxbGo/VEE5WWKRVi+z3M7p/AxdVH+a3W+88LAy70Brb\nSsM6haHowYqLw3ApwUjPsC+NN/G5YnmqwMhsV2F6h2AClp3jFusUe50q+/EY+9oYG9JIhPYntlTd\n9wZcU6scBvERTYsypnZacqw3S+z7l1mujibFzkhfnjYzs8Jl6ZR0viwG5/vP6NREBR2kO+r67np2\nHbYa/bGS0NxpvKfnZOpiq/VUFc9vHvwwBTA+84od7X/APkhofk5/DVfkZ9W2Z7Y0j272aGxkP6M1\n5eqE4sMl4uhdvWKqNI+KGRMN62RI4TlOB9Q0r1YGxBgZndJ3xFfu1/yLcwrhwKoa4920+uDuN7Xv\nfK+peLO3S/U4elRr2JlpLXb9B1kzV/RdN1oXs2XEJs3MLLJXbTDAWOlijozwPby8zfeA+7QHWJnR\new/nNSYeKymeNzjBMsvphNy8GEOF27Q+LF3U+/X0KAqcKypOl/cqXv284vm+7/+8P/7gBz+whYUF\n+63f+i37i7/4CxsdHbU/+ZM/sddfV3JgZmbGvv3tb9uv/dqv2QcffGC///u/b2Zmf/Znf2YjIyP2\nK7/yK7/w4XPbWzaW/8VHnIISlKAEJShBCUpQghKUoAQlKEEJSlD+/1p+/3/6Pfs3v/s//pN/+4VM\nmVOnTtns7KydOnXKlpaWLBaLWSqVslqtZolEwpaXl21gYMAGBgZsbW3t1udWVlbs+PHjH1mx//of\nf9e++83/xf7sr/83MzO7VFCG7hgZ+AuXle3Ll3VWq/9eZeQmX1d28K1H9PdVmRpZ36SQ4K0+ZdAn\nQ8q87X1NZ3zPPanfw5eUWbt8l7KOfa+ALNyljNb9dWUIFyuc845M6zlbus/WklCy9KDqc0dBGjA/\nvkf5reGOmCqhH+vvyREhARu+ssAP3qYU3VumM8VHp4RGvdEQinV4QlnPt0/p/N/IF4Uwj9wQayV3\nQerVb0f0+fIT6sbu0zqztr8j/Zfmpq6f3H+3bb+vZ7/Tp6zh/poyrfWW2npmSJnZ3DDZzjkxa346\nqrZpvqUM8IGvKQv4flF1fCqh88OFWbXJ9gRnIF/GGeGAspkbMWU/e1vKMP/q7/yx7aT8N//tvzIz\nswpnNb3OpJmZhbOcya3i/gO1pRPF/QjNgbBxJhZNAx/1+k6Ds7UxZUnjLhPuK9PvHFSioHUejA4D\nkYyhzVIugXDw946v7K5nen4JzYQk9QyDFFdQiY+ic+HfIqagYh+P23f+9a/aP/vn/7vuSyY/AsvD\n7zjGDAwcd7QYVxTklayDY0zY6WY0QZDRcmlxfjIMktNowMwxp9UDko2uh+ECk+S6Mkh8Cn2AZtSd\n7XW2L7rOafZY06nV0y8gDmHHjAHhiSipbH/6e79qH1W+9Vv/lZmZldY0hqNdekauT3Eim4fd01Em\nnSa3uK++r3BOuDcKO2xc8622pb+vnJemTApkNd2Hq0MZtgH6GbfOZzvUY1aZ9Oa27tMzqgR0B02Z\negFWmq94tLKO5syC3iMzoPvu5ehou6gxtXFdsXZhVchBNqc23nun4lAE14+Fy4qnIc6X775Tc95L\nqf433tIc35gSM7HM2O4fVPzbc1DxKEn7LW3qPYo3xQ6IxzTIMrhV5ZO6Lg56HmZs+OiYNIGyHQNm\n86Liepm5mUrz+ZTaubOkdlq4KeSlsKl2GhrJ2H//b/6t/fVf/6WZmf3mb/4z20n5o//uj8zMrAGL\nLAl7A1KJeWhVlHEUCjNH28CBkSr/75x9YD/4aDjUoui/wAJzek+GS1MCZyFDQ6jpTFpgc/heyJq4\norkxFII5cuvMPIwED9ZUHQTVYNtkETOpoEnl+7oPZjpWBJl1LheVqOpmJTQLcPHxYUKUOpyld0wc\nXCgiIHyYytktkzUcZjp1NEhoAc9pT7WcqwVuPjjv5DjT36ZRPLSsGjDrwghARblvEd2QNPGyF12j\n/oTmUD4m1GqrqRjw9W9/33ZS/sW/+LaZmY3s0V4iksJhC8TRKQZ4MAKvXdcauzSj522j49bZcGMD\nzZtdqsdIj+6bxXktjsZB3zBzcllremVN62mLGNMBqo3GNWa7copRPbAIfLQivvG5p+z7z/+9VdGl\nyoJ4h2n/1S3dt4LzUQcGaWUFdJHrZucVu/oSqm+LOTA+oRhZh6nUcVpAKdaVFuMTtohX96yZQLvJ\nVNcQa0M2B+pfdE4txJd12DmO3drG4QvHFQ+Hrxj6P1GnG4G2SCIKu5b5GiIuxahjFJaRV9GYn7qm\nfdp3vvPntpPy7/7vf2dmZm8/Lw2/Bgy8Ox8Uo7m7G6b0opiEN85pr9SCsbn/Ae3PKgsas9OLioPH\nTghBXr4Ko2VTfTB5RHvpLuLwq6eE9LZWVO8eGOIHbpcmQleO+D+Lpg3rRpGxVYPtNXFQjJc4jJ3Y\ngOqdiCi+VXEc++AVaUuUtzRXb7tb2jLdQ/pZaKge27OKz0vLaJex5O8+JC0IH1ZHfQEXw6bG3L0P\nC9EuF9Rvl97RHrUIS6t7txDrXbfLDaoLnb73L2v/3lrX3jKUVQyprAlZ99iLDO4VYv8//N6/tH/9\nL//AygXNuY2Krts1iS5UTHP02pyYOpNorZVX1V43b4qB+j//zd/YR5W5n3zHzMz+iyd+x8zMPvev\nBFiHnNYM+8RaFdZn82c1/3zWyCpxLxzWWG26uUPYD8H2rG/jUpdl7QVr99Eu7BhONU3WVvSUojC/\nw2xear5jf+pnCiZ6jfgectJgiJ55Ne1pyqwTlv3ZfWaE/b7BVElxqqHqq69i6LaV0Iz0YbfFmMtN\n1gF3e8gR1mQfWcvCONrEjZC9XQ0Wazru3KX03m4/nmvQnoz1aBnmD2yIkmOMsgdIwqYuxnV9m5gU\ncgzNFN8jttRe//yP1N8fVX7vP9eeJPF5bXhbbbXD1Yju9/DLGtsv7VKM6G1Lx+SRC2KXPPcNPS9W\n05yf+JFYXbOfUSwoTOnvX0TP6u27dV1vVHvMD/5RY/3/+Jv/0/7kr/9LS50ZtZc7ivHp+1Snw6e1\njxyA8bFZURtcxYV074OavxeeV+PfndepmmUYMZcntdalWJOLF/Xzs6a6NB7S/WY3oa60tbaNb+gd\nsydo8w80jxMPiDn9d++qPk9c/aqZmTWfUNzx39C7WUfx8+Uunebwjuu5jz6rn280tOaG7tHcSKKZ\nk3hdbdab1XfjM/cqzmT+vdbCI/cp3l0p6wTMZFv74eFpxdkbI2qH2XHFw+Zl7ePzxxX/Hi7k7Xji\n57vL/sKkzJ//+YeLlGPKnDlzxp555hn76le/as8++6w98sgjdscdd9gf/MEfWKFQsHA4bO++++4t\n1kxQghKUoAQlKEEJSlCCEpSgBCUoQQlKUP6/ZUfuS/9h+da3vmXf/va37W//9m9tZGTEnnrqKYtG\no/a7v/u79hu/8RvmeZ799m//tmWz2Y+816ffbZp90yx6Whmtux+ZNDOztSW5Fz12v85kzaeUbU1V\npWL8E5S/H72mLOLTd8slaWVambYvTUorpjOlDNXNLyuzlp76rJmZ+XuUAcy/o+fVc7rfwdf0+SmU\nv8d8Zeiv7FPm6w6Q881jQqqXcWU6l1QWch/nQUtJIQG7h1Tft9eVMeuPCAFZm1cWPLcu1Or8qrQb\ncl+U5kzPhhg5T0WUuX/nOb3H+iNiyKycESPmjl5lfW+eVwYxfUBq1yPrep/V3VK1/lHoWauioH13\nQlnLqW6hNJ280PIyWgCH0bvZXnzIzMz29MutqX+C83nv6u+F2ZNmZvbsY8oO5lDqd+5FWw8KHZm4\n+rTaalJoTupZZSd3WsIgie58ue+cbzi72TGYFyC3HgyOTlSZSOQ5rANbIAaqXUUvIg3UWwIC8Dhf\n3AIT9TxlY72W05/A/QOEuQ3FpgXi4cO+aKFuHwapcO4aTs8iBMLtNBmaBkLucxa5gd4EWjLOJcXj\n3GajzfNwWfLQfKhy3zaaDHGn+cDPcETP6eC+EU81eR5nlpto3PD/Ds2PoNHgc6a55o7O4n5iTlMG\npMVp9tTRS4mDKISS+r3tTk1GQIySsBccMg/6uJPSkxUDpm9SrK7daL4kQ8pMV2ExVZaFvBmsnFpS\nKE83bAKPMbU2LURx7byQxtllZdZDl2jrjpDPFOyhFg4ANc49dzs8Hf2I8UOTZmYW7dLvy9fFTNlc\nUDyoortRB33JTWjsjo0pfuSSul+jpjF0s6az9j4sioERvffQoFhsbRxsvBIuH5ytj+Q09x1ye/OG\nUJUkVJHRg4o7I7gfOb2RhRtCBkoOrc/AkMkopkT6YVtU9P/rTY2xONo6hv6Rg9vKZSEZayUhLTmc\nDMJxtefqZT2vuC7kY31R8bZvj67rPyjGjx/a+RgxM/PDDt1DW4ix6oU5b8/9QjBeQvQjYKQ1HSoW\nxdGsrd/bqZ/VW/GZs7EMcxAthQqxKQLrxIORk6no/UqtmOU4e9+GyVZDE6oHzZeqL1QnAurulPpD\nHdgBZf4fAYs4+ho10++JDkgoVLpMHVSZsV+Pq86RotNbwB0NaLZacRpTmseJKpoExIUOTIsyjeah\nhZJIai42YRd5IJFJmByGI1eEtd5DA8unDxLA7pW63qcb14sYiGI0QbugUZOFmVhyLnA7LE6LZbah\nPUk0onYamtBavYleUAZEuh9GzZ47tFcJV1Xf9RXtASyh93F9vratdbKxoT6vxGAMVRVrttFPCfGe\nIVwMXbyuwEzxce2LlRTTWtX1W++wsrFqXcTjAnpTBfSxGjjAubEYdXGWsdiq6/2GuxQ7Dt0vxHUN\nxk4XyPHWFusuiHTTU/uEG+hwrerv617Dwtvqi2JRf0swz5ZhKBo6G9EobFNYAR6sLi8M2s07J8ro\ncjiHq5raJhNHBwc9iVBCfdfP/i7ZqzEYT+r5G1s4CtIHOy019CacnlwN9tbsnNaNbJ/2Pj29isfr\nObXl8pLWkTB7EUhUlqyiVwRTr7ildqoWiNu4RoV5r+4B9dHSBnstWE2rMBQzR4RQ945pHaytaY5s\nTem6IuyFGyvSVgzfwJEtp7F74G4xJHM5PX/igOofY92s4+h1832tIwN7J83M7NADisv5Ga1rLTTF\nHBs3nVG9GwPoEl7QHNjG6Ssbh9Ea13s08zioLWudGFzV2G1NiNkykNY61RnV3jJGzLm8JmZrAfZ+\ndxzk3MzS6T4Ls0daeV/9sTLHJmeEveairl/t1tzKOZZx7UPdpo8qobr6EKUTqxFvO6yBOXQzmi20\noWIw45woCi5umQZ7E7QDG6Y23WZPkIFp7OEO2i4zZ7K6Txu3zlhdfekA+ir/iLCT5PG1AAAgAElE\nQVQe+OilZRpoBYac9iL7bvatVRiUHmM2C/PFue/FWQ9aDbVdLcM+Fg2bhtPjgFXcDCseRutqKZ+9\nQjSk9kjCxm3C7DTWww6MQefoFnVOmuxH4zDVt6O0B3u1ZEHt30ywThJjwl3qD9/TnjDFPr5apO/R\nhTL2s92OvcfeoMPaX046FaGdlejJaTMzi6zhFDaiMfnEj7Sne/mY9kK3ezqRsNLmFEZCGjP7yhrr\n0QXFgut3q/0PvqOKzY/qe97po2KZHV1We50d0nMSe/bfqsvbN/P2xHrT4g/rM/WXda/JlOLYxpTm\nX+9DfJcbZB/2ga479Kjm/SprV6ZX83OcLwsbr+q+nzupz736qta8+or6tm9NbTd8VHGp6ev7b2pK\n3487x+QUdeo0zl959eHUsOJuPydjEvv0+wynBh7KiVn4+mu4wcWYlb+k+x7+B+L3kr6reiPaBy/1\naE8R9dU3dx7T9deTart7L6IDd1Ttcq2oudhzQvFqBp0j517XXNf7+CNi3vy8suOkzLe+9a1b//6b\nf4K+9+STT9qTTz6509sFJShBCUpQghKUoAQlKEEJSlCCEpSg/CddPjZT5j9mOV1Rhmr5TmXii88r\n0zR6Qhos8y8qA9V/UhmuU54y5J9JCSk+O6afPdNCBpaKyuhNp5Rx65pXJr88rQx47YQydd3zyuRN\n4JBQIZvcdbfq8d51XVfZQtm6TxnA7DVlvrzXlTXtPqSs7WJ72szM/JVJPW9SluEX6spyPpJVlrNx\nQAwg+0D32dPSc1oDyko36y5rqyxzu6X7Hd6v7Oxbb7lzjMqKvnVA5wyHTsl+PNeF9sN+vd8bW19S\nvWJH7I5daouFK5/WM0/onnvPKIt59UvK5t04p2zgvQmxi64NKsO6dVHZxwOP6Lzfob3KLEdmVadd\nZOqf36XM7VNzyuheOqbrSxfVN8Uv6By2/V+2o1KFHWCg/9EM7iScJ0+BjvgpkAg0XlphZbqbaK8k\nnJkPrIQ0SHMJFMrq+unHQHINNXan5g6jJtbCBQTk1kcno4FrhseUioJohj3U9VPqE+cyBIh0yy2l\n7Zwkbrk58TkYOl5af+84BxgQiQ5uLGGQ0VDIMXZwxGmDSqGl47X1Oce0yYIgONKBR7sVOzBbQs5t\nBEcdtC0ajtlS1As5Jk84DNLPfcO4YEVaIPkdp4Gh967n1F9pzq+3fdffjgPw0SXapWtTfKYACl+l\nkWvzQl02NvXTA41e3FTGu7kKiwrNjxLocrYtFGtyTEw0p50Sgw3WScOMQOk+ApIYDtFXEbRjOI88\ntyzkbmVphnfUc9MZ3W98VGfYJycVd2IDuAuBrlXQTUrh9jNxRIjmyIk9tIT+f5YzwNMLILe4TvkX\nQeunptVunH2dnBTDbvigEBAfnY75D/T59Zu6fgu3qjYoYAeeBuYqFmZONNBcaYO6JXtwTRkU89CD\nbZZH7ykyCKuN8/RNzvpXV9U/6TG1zyQ6Ze0t1W+7ibXZDkscBmQsDhrHmPNxwvDQoki4OQOLJIxD\nWSXuxqqQk1YKtJN+b6NV0ymj/9LSeIsydzI812C1pJjjKVgead+zkOneAJS37tks4waB0n8sB1II\nml7LwYBxGiwghq2S4kUOt4s6bINWTWtrjDP1ibTapg8NgVZSPxvOJaQSpa5od8FUSaPTUWnCzsIW\nxDlweYyZ7YpzGAORJT7WQV5bzq2tjatG27neac6EcLVLuPjSUZvlYNzlcM1IOAZJgrX+FqVvZ6UN\n8pvMgQ7WhZq353C1yqj+2yusGzBHQsOagyH2FJE4DCLWLcdEpXmtgNOYDwK+TWyyNMg113UiaJzB\nMkmzTlQ30KECyQ25BcXMSjcv2TK/ttGmiMOMcUzNMgtRCa2BGOy1kk+/lZhbLIBr6HvkYbe0QfJT\nHjp9jO0mmkatGtpurZZBmrQ25OkWa1Oioms66FnUHSvVoe6QnEqg8sgkWauqvi/W0TFkvhULGsM1\nLgwxFqfQ3EqmcASDaT3Yq74qbRbt45Q2zLfefsXpHvYQK/Ni9l1Em2vvIbGMYjx3A62c2RkhqSFY\noflusa26J/RzeR4mJQyRBvo9MeLkwX3aH3dHhdReuay92tQH0jypoi/Sd0TxfJSxXN+rvVhrWn2e\nwsmr3tb7t3DeihCfirAKCgUNpoN3ihm+hXbb8ilpKYTQgUuwPqbYi3RSMF6Y250YrA60tiKsM3EY\nOXncuA4c07rWt6X3n33rPdpBzw1nhLTH4prjtYraZwCXp+J+tfOND/SzXP1wnUj2dtkoTmdOD6tR\n1+fHxvX5be4XIpam9uv6XO+Q7bQ4/SI3ssJOdAvtj6Jzyew4LRXFgRD725Cntiol1IYJD32KMvGl\n4li6xEn2TQ32f1nPscxgvqDp12YyxtFxKjomS80JnDlGN/ts9oN+C4ZMG20YmNcV9pOWVH2bMCk7\nuEc5NmuiRJxnv9txOm7hPPXS55MZNLBg8FTYX4ZgKDbQkEmVcTgkZoTQNIyzh9hGT8i59jnnw6jv\nNG9Unwr6b02+Z4RM10Xybj1TD5bZv0dgspd9mEtoJuag5HuNj8e6Wy2I8dKVUCyL1rTHOfewWBvJ\nZbVn96z6e/cj2kOFr6MluTGt65d0iuLAcTkan+vSqYvP7da68vKrui7V1nfG5Yru80T3h2648elD\n1viiZ8l1XTt+D0w8dOauTOkEysrpfzAzsy/tgp11eVLvsK4+Oedp/i40dIKldRGdpD7d5/SCGHyP\nZF4zM7PrcdW9fER9uQttlr+b0ffxXSZtmWRB311zxzUXjhAfGv3ap84zZ/bjWJvjVIE/JObLk2g7\nPr+l+h78rhg5bz6k6x7vh935ksbSDV/76Ppp5Rd6Jn+s94d5P/+4xsbiG8QFXPkWz2hNfGxAeYOZ\nVf2+cLu+p/8/q/r8z7NB2vk3n6AEJShBCUpQghKUoAQlKEEJSlCCEpSg/EcrnyhTpmdTWd8bVWXr\nDhycNjOz6W5l6DKeMt2hGbE4HiH7d/FxqSnv2xDadwnXpPG3lWM6ex0Uv/Y5MzO7c0huTEkYNpWi\nsq0XSaDfsapsabgjHZVHjur34szzZmYW59zi90eVWdsVEnI+Y8rkfSoppOJtvOAfHVAmb7uqDN2V\nLWXIClll3I7sUYb/xaoy/uFJIRi3v6Drr1bxO9+jDOG9B4Sg39ejjNyrHaGpjaau637qUTMzqz+r\ns3NdMbmwPI6eQD45Z0/vOmlmZsdHps3MrDqr7GLkTmU3HyfD+6MDQlte4vxz44qGyH1pZSXtBWW2\nX/2Msp3+VWUZD31F13/tsq5/u199cPBF1TXygLKOydDHRC7RJGihFh8H6WuABLQ4N+6jBeNHQQZa\noPU4wDRxdmiFbqXozcwsAarTAO73OWOa4Kx9tYMiN4dHq2HnToJGC9otHY9z5qjHV4FEU1n9ve4Y\nL2gnJGE7dNyZ36ayzi00FjzOYTc4S+uBkERRj3cq/WFU7aMgxJ2Gc0VRvf0EzB4O4Idg+qTiaqcW\nKGQbzQLn+hIGgYhxjtoxhxo+Ggm4ByCrYT6OCGFYEI0Gz2s65ICzvKCXYVT6Yw2Qnoxj0oBkZFDt\n30FZXdR8K5U1RnuuCQ2I4ZhSQ6vEykINVrY0/yK8ezqrNkzk9Q79fZrfI8M4sHQr051jrNRpy3IZ\n9Isz6h1Q7ChjtlHFQcZUL6+ovw+MCXEY3wtC2q+5FM+p77ZBdQrTin+bVZgpILr5nN5rDaR49TUQ\nSJDN2Zua29G4fvd6NBbyGWXy73jsXr0PZ4XDXZqjlbLquz4tJs/MOdybImpfo4+7emAMdQ/QXo41\nIETRY+600WxJRUFqGVMruJ2sLaHxMy1WHeCdRdBoaIP6HRsR8tKd1HOvXBAbr72AuMEOS5Sx7Jgp\nHlowaWJBlRiYQIMgz5yPgLpVw06/SXOnFnHOYmqXGIi2nwYNLOHUltbPLP3aZLxlyi3uo5/JWsVK\nfDYBAlkFTfZCsAlwSQszHyOgxV5I8a4Wxo2hhXZJBgdB3CVqORhwoONtxny0qr5J4uZmaHm1am3e\nAaTS58w8Z+sTOJoVUzgYEMeaLRg5IKZx4lQY/SLf6YeApMZgiMRx+SnAMkpEYebQRhlwpDLIbSqm\nvkqCPPfH9d7ZmuZEo0mA2mHpGdL1wz0aszkQ2oVptfNmAUc2dDBaMIY+eEVjshVR+2Q9nMRwmUv0\nOjcqzd1UWv2Z4b0srXYvVWCuFNSeGw3FDoBjK23q/9swDxv0T1d38tY7TM9s2SC6IxE0gRLu/oyb\nHtq9FzaDPySWgM842ygvUX+1cw9OSal+xcIK60AIlkoIaleMceuc6OrJliXQ2WmwNkTQQWsmYdXg\nguTDSIujXXXLgQxkMovORcjQg8P9JwLLNRphTKKf10Y3rkXcitTVV0V06FJUsoI+zk5LGcR1CYet\ngQnFz8yI2mbpqsbKYN+k6r1L8X1/WevKKG29soQWDM5hw2X1bRztm2pdY2r6ouJjs6qx3n1kwszM\n+rt0/xZxfm5KcXWO9W39TcXX29CI2X1QDJu+ffpchz6bf1/udlfPaT1ZnNB9Whtqz8qcnlsV8cf6\n+/T8G0PaT28W9ffOjWldD2Opha5Si/g6fof2v10ZtVM1o89trrK+EB9jPRpzg2mxz8p70Z7BkWys\noH2/Yw8ub6idJg5pf7znDjHTfdjLq3Pam5qZrS8v39K7HBhWO6+vwUyHydObUH/OFfR+iRJOQamd\nsyBiHeIdv3dg72JeZx0Y3knEUBronLUjeqdER3V0jMl6SZ+PRjXm2uigJXHyq6TRS4JBHi7o/kU0\nZLJR3a9MXE4lWBdgtNVYEyttzZ1ETX1T91WvBNp/XsOxR2HOhNAIZI7H0QIr8+bZAvWNOFapYkC3\n0+NrwNZKqX4smZZEqyqehnFNvKsictgIOYY8602T/TouS6Fbbk5o43iOAaP7e1uqR4711ENTsgHj\nKNxxTBu0bnBya6Ef6sNeTuIsWYd9nY07f76dlfoNOZsduedrZma2vSb2WWdJDm2dtvRDz5bEeqto\na2d7smjFSRbQdo/JsexGW3O8uar6vtnU+tx9j9aRZ3x9l+y5prl5c+BDhmXXSMre+OmUndjPmjOh\nOPW8L4em4Xnda1+/3vmKr++rfZOq8xlc4k6c1fw+CptnalgnXeZuE3Nk/LTmaxHtq/UNjYE7tjUP\nF2b1rkc+yxqYk0bX0Oa0mZnlryouLLFv3HuftGJXY3qn12Y1Vu44rDF3mlMB909pTRsbUpyYOa55\n/niX3rO2offY16sTOXs+0Nh94QsamyvLWm/WcWGrwEL7wh4xgk4NPGVmZhOevn+8v6w4OpaCwdjQ\n5/MtXf/zSsCUCUpQghKUoAQlKEEJSlCCEpSgBCUoQfkEyifKlGl/VVnFp6aUAT+FRsz4nDJsvSeU\nkXv5qrKeu6akb3KtpQxZ9ZwyVaU9ykBV75JTUM+zZKHzyvZee8ghG0r1H75d2i4DF5UB+8ndyg7f\ndZ5zl7NoFuyWJ/zs5e+amdnt/SfNzGwzrPTkV6vKuJ1rySVl7JHXzczsNI4Qe07qeZXnVY89nOF9\n3Z2tDcvnPPm6MnqDu/T+7WV97t6CMnkXrwmx7t8tpk7fy6CEu5/Q9SakYf04as/9qt+leWX++s4c\ntXs9oTKFLWUzJx/nLPu7+vnSFKjxAWUbH/iSzu+FXtO7PF3QOefOV9VGX3hBdX5lRNnM5gWh6yvj\nQiluq8KouU33e3hbz/3H3DP2cYoHMyTcVga8GgZpBVGoFnElQkMhkhBC2YKt4PBDEv3WqCmDH4ni\nwgTTJQdCWwIZaJqypOEUTJWWxmoaJwgPXY0ajJgQGgJxx1gJo7XAkc0UDJXKLbclUHcYJZE0SAiu\nIW20b5yeRbii5znnGOP/DdekEr/GYYV4INJhUMcM2gAdx/Chvh7nRa2u9/VxreqALPhtd53eO8l7\n1UEyOpzJjeM408Q1xkefI4RuhoFgRNBgaOAcFOYcu0+7xwDqE6Gdo5fdONbkepThHuzRTQq0caRE\n2+U1z4cndV0SdDkDMpZELd7z0ILZ0OfX0AIooU9RqWm+YThihobV9qz+fxVnlUxeaLtToU9k0PVo\naFAsXxFisLWuMdw1qnptbYJCO0SwBRoN26COVsvGlJ6T7NL/j0/onHB+t9CSVFKIRQbnm2Q356Br\nsM1KaO6s4nJU033raLYMHhPCkUto7vaO4bYE+h8GOayjZ9FcxpUoiVYEgzIGKldmrtZwH2mFFTvG\nJoS8HuhSPK0654ms5kLXoJhFNRDqcoGzxMmPt3yNhoTUpGH+pJ2jGc4UDmn3nb5SWu3VBuWESHTL\nxSnCmA877aIsukuw4lo9sO64YYVx1eMc5Lp4UBvU02pWiqnPEzj5NTgX3WG+19Fo6sDaIsxZtql3\nqqMdk8a1o4wwh+drDgwxliJduCWhp1DOwlIowuzLasx0xTT267ARkmGN9U7aOVGpT1Il4kaSMYkL\nSCOOTkVU715qEYg5ox+GAeniXK2kz+XjmpNN5lwW7SzHSur1hX5nYDN1eP80mlU53ITWcKHaafHQ\naCjhehQG8U2n0BjI4dg2KnZrBxeOTFLrjiMGRolnHmOjxOAJgd63wnrfZkGfj6O70U08tQGxKnIw\nJVu4gmRSaCCwTsRYB6NoqpmZTRycsPK65paPBk4bZkwanawQ61gU5mesl/WhqfdIDmjuj/eLDbww\npftU0M/KocvSysAYguHoVx3TUnUpT6/blkO1eZfuMeIDbkNG20Yc+6YCKyzk9C7UFxHidDyL8yHs\n1MworFB0OaK93J93zaCnFsbpplVfp644ICYdn2FnhW2c+ZvE50HVqxdHl5kCcwYGSTTi9OBgmxEX\nWlu4/V3XHml5SffbPT6p971XfbM0pX3c1WvaH+7J63mDIlra3iOKj4N7hDAXcKubuyyE9up5rTMH\nToiZXXN7HvRKho4KiTZYbQ3Gqg/7oIYbnddx/ajOzaTUEDPT2m8ODgtx7h7XOlRij7U4p3pvTQs5\njozjwDmofipsKEas4w7l9PcO7D3A/XCvKus5dRgy4SHcqhYVG848L73CvlE1TBpmVSn+IYts6uz7\nVpxX/zQjjr0LSzCtfbwHG6KFC1M7I6ZTOvHhfT6q+DAt3KxM1TRGa7j8ZBowV5gTSdySas5VEw2t\nLogXPnGIbZrFcSjbRn8pT59tZ9kHwwZzjJ0i60GkizWYdSBBnIuisRhN4EC1rT1LKKW2rcCcjLD2\nNWCONGDsZJ0OEU2UQHusEWbOwijM8pwC7OIQFMBkBW0zvhvV0k6ICk0uxmAUfSDnvtQmRnisg12m\nemxBAIlH1NceDo9W0/uEutRO22zQ0zH1T4V2j7FuJZPsJTvsDQp6Xhdz3ekCxmO4aDU+1GjZSamM\naG919TXtTfZ1ay6GhvRdr76i/rs6+ZyZmR3q0hzfeE+nMyyrubY6Pm1mZp9Co+gqroDDvu7bO6t2\nuH5ELLrPlHFQaj58qy5d3S/Y+HbV1vNa21Jn9JkM7M3R+9TI1y6oLW8fUhsVPH1PHk2qDvUH9P18\n6hXtZ0Pz2q/dtRcHw369W7QjR98H+sUGegHHrcfv1N+vvqMTMSMnFM8+KOq75UBBca14t5gpo299\nz8zM/JjyACceU59dnZs0M7MnKnqPc1nti0/40qh6qaKxe/qK1rLcTQ2a6S/g8nlV8evwixqDrzx2\nyszMHtIPe/tzGqtnTn9e7WVyMr4wpf1sBS2v6EXmNBqOj9540H5RCZgyQQlKUIISlKAEJShBCUpQ\nghKUoAQlKJ9A+USZMsWiMmWrm8rAHWsrE/Y6qvHNYWXIhm4o87Z4VD97okIW4o8pE1fhzPBdZ6Wl\nsvSkWBtHWrrPSz+8aGZmh44py1vJCAVamdS5vXxSGfqe3hfMzGxtQYrYmV0vmZnZiRWdyb3aUn2O\nhpQBK6DAPTWpM7l7Ssq+PppRlvLcD/T37KN6bvVdZY1PPqSs6lpTmjVXokIYrhyQpfjiOZ3hqx5V\nzmzrPVDJPjkjxdBC8LdPmZlZFy5Rs/uPmJnZfGHazMxCS58yM7MzjYt29z49Y3Rcytk/rqqtRg8K\nTR8uiI2zcFp98fQHOhe3/3YNkbvKyjIWTusdCkmhL/fNKHP8Zr/64tBVvdvUfmVRj+3XdT+WcLW1\njgIz7bAkUUsHGDYvDkrWFGQQBc3utJxWDToOIIMt3CTCaLRE206TRVlR5xxTwaHGEUfCoHc1kIk2\nKu4RmDDmtB0azu1IyEc14ZyAdFkU14s6LidRdDZcPRroUlhVHyiBSKRNfZ7zcIhIkfGHeeKIJCEY\nPtkESCfq8TXcUkIJ1S+KxkE1pefleU6lgio+KH4c9wx3GLkCm8EHbUyQx+2489Wc9a2HyO/WYtQH\nlxDev4Eyug/yf8sNhgjUhAFUqqse6eLHcF/Kcc8csFIX56JL6NKAoKbQywiBuPqgIHV0hsorytQ3\nm6BBoCiNVf2/Y0iEGQtbtEWVs+4NGDKGPs7wuOZlulttNXd12szMFheE6ie60NLqUzwpF/T/W7NC\nNwprMDnQpKk6Bx7cmiyiNhveK1S9e68y9NtoAXigUW1YScubnIfeFloyTX22V3CCaYKuwZIY6Fac\nzOdxm2po7BVwgmmjV2El3X8dR5/2MkzDhnPOUXs4tKm5JrRq+Mik3v8eMSAbjN0tHNTcAfwG7bW0\nonapoevRLO1cd8jMLBdWTNsX0lxqgQA1ce/KgPbVcN1oZNRvOTQvIJVYyHfIN+0LCy1BzHFOamHY\nZkXm7AgsvzoxYAQ2RRvXqnY9aYMN2EDoHnhQYTqg1O0o85X5ksjh0lZzZ+xxuwDhrIXRE/LR0UEE\naov5G2MM99L2bafJFVHbZnAiC8OAq/n6mUmpb5toCXShCeCmbQa2qKO+OQOUNE4rsQ7aVGlcpNA2\nqPM+yYrmVDVD/ELHyXeaATnd3yHE7W7VP0dgTJn6OL718TRlnA5UaQ12BX0VAopNpfT8LLHGJ64n\nXby7pbECjQ6mTngdjR5YBuGKxnQVlkanrv7wQcxT6BcZjCGPuJxHi8ZHWyGC1k8n8uFcKK62bWVB\nTKKVNfSsYEeMjGu9j8D4GU5pr7JVce+rcRKJqT4zOL5VK2pfp4EWMtVnCxZLGPEL31d9unoYX33D\nNgZz4dpF7Wu2Z1XX9VUxKIZGYcjhCDXao+vjCdWpwbvWGYt1GG2dWpq2u8F1sMBmid+4wJnTm0Pb\nKcxa22EeN3BB2mnJ54WshvKqV3WNfeohaSzs2a/32TbWhcuq9w0YL7kx1at7QO+ZuThtZmZlXPHK\ng3qv/BiuHTd0/05J8XX5utpx9Rqs37yYHAZ7YWSfPrfriPaDl9/T3u7qaX2uQl/mxzQGjt0lRLr/\nOHMYYY+162KmbMDo2Z6GxXdQMWhgUuvO4nWYMMtiXGZ3i+k9dFhzenUd5s6srivDXG3RLz30fx50\nf+ENsQDeKWi/n8ChrcT6GLuudkp3qR8OHtD6sbqk97x0WhqOu2+XZsWuPZPmSnc+bx1YHOVlxYgI\nLLcw+lMeTkJl5szCqtaNnkzGdlrKvuJTgd+rMCoixK9OnbGcJX6UdH0bF6EC86rHsU7Zo9Rz6os4\ncTcKI9nnfukIWjYwnF28TsOmN9zvWrjf+TBXQi29W4n1J5TS7x32d1lYVGGY5kXiXwiWUSuqenYz\nB1sF+gz/qQQM7RJs3wT6SZaBAcpa6Mdde7A2s8ZmYRm3O9qb1HAFdFsQn7jsl2Eosj50nPtpE0af\naczEuH/eQ2uL/vLZo8QrmgtN72d1/EoJjZkKroYx1hsPll84+iFjcSflocsaW40TYsjMX9SYW54W\nO2zf5zVnRq/ovSNDk2ZmtvSA5syTF8Uq6VzUnL+4X58vsSc9fE2//2S3HIEf+UD9cHof+3ic7L5m\nZtndYVt9/6CtzKpvxw7rHsfrmteXY2qDAt8FfhoX4yPVq/3kbduwK9OKC++EnjUzs9ZuXT9r+l6+\ntkldlmD1dOlzeybVN3O+GGq9e7XfC8NAvx+y02I36wTfgcKf+rKZmU0/p3cdu6yx0L+ikzMfjCo+\nHP+Uvs8/E1Jbj31P734wpfe78Dm9T/e8XKG2iWM3c6rn7eflbJV+4i0zM/vyW2Ly2Yb6MJQS0+5M\nVM9Nzyi/UR1WRXfxnfpV9PB+zf7pEjBlghKUoAQlKEEJSlCCEpSgBCUoQQlKUD6B8okyZU5ce8bM\nftXsfiG8y5eU/bxrWdnKVy/hIBHjnB3J3kOrynBdOahM1MoaSMkuZdoHbnAOukfMl+OPg3Cv6azc\n+Z8q2/nkw8r8t04LqX5rnxCDybqyrTMvyqWkeUQZeLsh5CB9Uhm10wtCAHY9q3qf6JIL0qURoVQH\nTK5P/7ig++3LCAHomRHz5uIVIRXpL+t9Es/KbemLv6QM/ysvCtm4+17lzp4rqQHuuF/vWV5VJm/g\nJlneM1Ly9nfhl96j9957NGtjdWU9vbf1zDs6YrBEeoQOvAFCNnpc99pqqo2uDauuD0XlfDXWJVTp\npzFlNXve1n32r0sR+8xXlJn+9BVcGs4/bmZmT973tJmZxXFF+lvbWYmS0d+O6d2j28o6OqTOMTRC\nMD1qIKopztRGQYAbVfKPnIENNdRnkahDtWF0dJRJbm1x1h/HiDpodifG8zg66tU5f9xAXZ6zsBVQ\n+EjYaQuo/m3qVY6jP4GCtw+zJY5mQMWheS2xuOKcHQ7hStL2QTjQemmto0GBm0eojeYEavJ1tCBi\nIJp1HHJCMGaiuEJ1UNNv0L6GqnwcJKPV4swyLIwqiL1z6ElSn/oGGgpO1b6BqxRaBqUO57g51xmF\nsrTVcYeooSztoCydZ/7TR8j9WNJ0r1rSMU5gGcFc6MAyckySuGM/4WBQxWEgAuofbQg9qnO+OYz+\nRYMxmsBpaySr+dfu0n0W5hRn5m/oTH2Oevb0CCFw7KrGojL2G4tCFCJ1+v/el1UAACAASURBVCSt\nudbVjQ4EYEwErYZCWczBjbc0NpYW1B7OBwCQzuo8J1LS2GtHiQkwUhKg7hHQuOKs6vs2aEwDdlms\nCmIIulSFDZHC3aTG/WJoPjhGUpfr2zHFnAxA9vWLiqsLaApYizP/ANht9CpaIDQetLlYt0PCd1b2\nooq/u6P4HMZFoILek9NfCqeJLcQOH1ZJqAp6F0MDBjJDjfHmXGHcqprJ6LoKzJs2OgNh5mLYrb4M\n9US3GdIi1oppLNCkFkrpYc71gWltibSeUQIR9cP6QxbdIF7NPGeQhXxGvszYx53JijBS0LaKMf/D\nEV3nxbgfxL6Ox+cYK0ir2GAzSRuh7UK8a2Vd/IDJ4uNSxxyLo63gN0CSE3pe29McCIEY1xv87gYH\nfZCGXHULZ4I5ec37eJoyNy9pLLYbzjWE9m44mzmt6WEYiB5IbLuu57Rw9HEudHHYHxVcVkJt4iJM\nmJjr8Lr6sYzWVwTNrgTOQx3WqypMp1AKzTQXlxkQv/al37Tzr71qw2PShBjMai9UB/UPwWRcXcKp\np6Vx5qH11eE+0QoQNO/j45xmrI+QDy0BeyXuCbktGHMY7YZYPGPVFSGfS8TBbE59vLGu+JPCEqW4\niptcXAgpchcWYQz6OHEZa1fd6Qm1Vad0CLYSrk4GuwyjL/PK6Fige1HCPS/V/niaMm0cBHtgapRh\n/s1clTVKmLmaqaqRagmtoTk0SeZhMe3Zr72YJWFcz06bmVkct7zuvPo6nieOGi6AST13C8e0yIbW\n3rV1PWejqD7NxIWuJ9AVSsAIKWxofZm+iDYXOlLRMGM6rucmiLdVYsPsNTHCCxGN2YG8xtjAmJDx\nTRhDK++rHYYOS+8iBvujK6d9axeBf3VrgftrTnQP6//TI1o//RoM1Y76uw9Wydqs3m8V5uTBO8Qg\nz8BmWO6oHlWYNT29H7LlUmNDFo8RS7b0flsLQvrnR7SXHYKlOAwroVDWfQr1D51qPqq8f0oajJj9\nWJi+d0yzLfaRKea1Y0hH3VrK/nALN814Eu2YEm5D5lzpYOGj32O4NDVw18sxBupsGjwWFD+MuxNz\nJbKJbhDx2rnzhdFOacL5Kfl6jzR9Uqnp/h772Ab7cA+GejqkMdeAGR1mfWqjpRgPqd4VtGQydfZU\nMPT8PFov6K6l0UjDxMnixPdIVddvcoqgp66x4Ef53sB+uYH7VAktrQixow3rOIf+HkPf6mx1KjXH\nMNf1W7Sn75j37F+jtY/nLvteAp2TQdXn/DvSV+kk9F3UmxX7oh3XnNizqO9hC2/T75/SCGuyn+5f\n0XfC6/drnaq8gzvXsvqzsq3v2vuP/qOZmQ1cvfNWXa69FLe7Hk3bAFqI5R+oLS70KX4P3a6f8bvU\nh/ddlDbrm29qHzv6ZWmqPlfW9+aDCdVtCHfUq9f0Pf5e2DzvxbRPzfXrecWU6njfuj5f6WOMtPU9\nfi4ld+FCS3Eze+OUmZld7Jcuz2dvV99uZbXPm+vSmOjZhd7pu3Ke6t3S8y48pjjSDyN8DQ2ZWdip\nj5elXTNyTCduFi6LIfP/svcmsZZ065nWFxE7Yvd7n71Pf042JzP/P/Nvb9+YciO7sCWQQJSMBBI1\noIYMqkRZYGSVVGUhKBCNQIAENWDChBEllUThgYvBLZeF7Vv27f4+25PN6bvddxE7gsH7rPx9C/ve\nzAmJxPomJ8/JaFb7rRXf9673XQ50kuZ7ZR3/CN8WL09x9/fMzOz9z9V3i39V68LejxR3eLa/p9+/\nzRr5l5hHynjz5s2bN2/evHnz5s2bN2/evL0Be6NImT/o/pL9TTPbfyFm6Yt3dSb3OuzPX/09ZVa+\n+HVFC2/+WFrs+a4iWl/vCEny6AYZ8X3Y1EEdJBuK5K8Pdfbrj3qKws46et4/vg83woF0wz/8utAe\nzx/rTOpxS2HSPykU4fvGpZrr9Av9/Ze+UPm+/+uKEg8fKEL/7kMhYn60Jjbo75QVaUvuEcn7A/3/\nL62q3P9koIzCoUtj/r54Xy6/9V0zMyv/UNmu9ff/UPX/3xTp+3BX9f+HZ2q3f42U+PEIhvVNXZc3\nVu3ZBRH6SGic6/A2/EGq6F7y1/5NMzMbHOn/f+VYkfTF76uOG98UZ8wfP1dU8QOinNf2xDx98lzn\nBxcD0ls7yj5MfsDZ1L7a8Iu2FADM/nt7FSsaTtFEv9cKRV052vpS5WMJGUyLiPeSbHoJvqEZ54ij\nqcsGOZkMzsTP3RlWIvEgTgKyRyUyopUqalBky5aOE4GMdUjKeIIiD7QUXyJPSLa4DEQEcmSO4kzE\nmdzQcUOkoKAaem+KIkKNcoacwZ0nyiqVycSU4aJIy3DywH9UlKeUU+WokE2cVsiQ0D4NMgIZGZpS\nCAoABE5eJdPD+f4FSJ4KZ5+XqFUVcFGsOAUH/j8ApZKWryiI5rRDW7jz8a9iq2/v6R1k4GacX65w\nfnpKX1QZNDmKJcuFsj4ZWf04g1co/Gkug9zx7JBRLcM5M6+qrKWl2ra1JX9TA41V0OcDUESb68p0\nJviV1XVlEkacH59UNeeaXFeDf6K7o7aZhSinLPXekHKPe5zjHmtwtdeUkSyR5V/ynARIRonz1Auy\nVNV10BVV+YsIFMRgqezVtKc+iuFdGoNWKIEoXLp2mHKuG4WHtqk+UYuxXmtTLpAp9M/5GUoH9F+I\nIk8KyiBxkBRQXlXOs+/dFWfCq9pprIxu3lFWP3boNlAOCRnUArTY2PFH5eqvWgcOITgZSvCPpE2n\nJIHPAF0Qg8zKmyrvfAQfAFwztQjOIrKZ+4vCCjKfD9wErbOWzZ16G5xZoJocZC+uw5OQqM1rIE9w\nXzaHz6bMGLem6jIB/WNt0D+oN4TICA0cIgJYT5lD/AO4u1pwG8xpsymKLE7ZJgpRX2KuOf6dz0Ft\nncHZksPNNadv0xl+Fd6JBLREtnRZf1BTZF4/BgXRCFX/CqpAD3OtrWagXX+ONbvwxaGgE7F+NMpw\nddH+FfzjkJ8R3FkdkDAjUGxWV73XUR9J4ZhJ8NNDuHhKgeMSc4gaZXpjECqBiTekCvoswD/Olg7l\n9mWGtrO1YdsosSVktotI4yVzvElVxtFA95Vo1yUZ6mrXocVYD0PHBaf3r4JESkM9t7GKmiBIqhLK\nR/PxzI7Hms9r8MysbaouLaRlWnBWGeiA6RA1t4pTEgQVBM/FYopiClnqMf65jp8rkxVfzsjKo8QV\nGHOJrH51h8E9d5jCV7N6Q37z9nvKcp9fgQYdav+3uqsxVGvo+VuF/M2wC+dWWfVda8gfvveB9onj\ndE/XrylTGzN2KiX9vmQORqDZbjG3U2BwW6gELiaqXwJXVnNFe7cA3qP2ntYpO0ctr6W+SuBDSuiX\nAG6sVeZECvYy6aBq1VF/lbsq381Tnod60kodnsGvwIkIJ1uAP1+/0DiIQYN1q4yLb6P0hgscwnVW\nXei+WaiM/SWI+gRewRubWg9WNuBhYh1OypBRmNm1rVsWsdepwUU37MlHdda1t62CTLq9Kx7G4y/E\nBTQYTexV7Y9A81fe1ZqTgS6KQQU1u8xH0Ka1PtyIrLED1uBW+tOfaHkFXjam+xJ1ojJ9PkaZrEBF\nbsrfi+Sn+ZUCEJdzxxXj5uIM9Chw44x9Wsz7qm5/7RCYZTa0ICnjiVNJZb1YaO8TZRrz1VBjpNeG\nW4w9QMReYrSi8rUT+nCo5zq1pRkcLu0UhCjI+AC+wHafNbkBNxZqhaUZ/FEp3D41t56xbuJ/pzyv\nCsq1DofNHH89gbuxNoUDiPasLDSX49LrqS/dmYnn5AdDoUPiXxP666snKv/Dt3Rq4mu/J3Td9z9U\n/dbeEsrt4890X+2OvgHf31F5bhxp/funh6rHW1sg939VHfnif5fPuc/e798ys5v1ts1+0LEfvq9v\nwvyWvtUSUDu3HqhPvvdtteE//EWhcar/WM+4eCJul8vmPzIzs+tPNe+H/7LWolugfz851P3Nvn5/\n0RTSZHOg7+/hqVBmvw9HVDaQEnDwC3rPv17A3Qjv5sZ1XXf0QO8p/0TzPf81Id+iTP7uuKry9zaF\n6FlHibgX6P5fvi/umf5bmuf/x4fah1//x6g8/7oQed2H8uNz4gnN65oz3z3V9f9oX2Pu37im9vk/\nN3R9O1BfDacOP/cXm0fKePPmzZs3b968efPmzZs3b968vQELiqIo3tjLg8CKonjJEeDNm7cvzc8N\nb97+YvNzw5u3/6f5eeHN219sfm548/YXm58b/+/bXxZ68UgZb968efPmzZs3b968efPmzZu3N2A+\nKOPNmzdv3rx58+bNmzdv3rx58/YGzAdlvHnz5s2bN2/evHnz5s2bN2/e3oD5oIw3b968efPmzZs3\nb968efPmzdsbMB+U8ebNmzdv3rx58+bNmzdv3rx5ewPmgzLevHnz5s2bN2/evHnz5s2bN29vwHxQ\nxps3b968efPmzZs3b968efPm7Q2YD8p48+bNmzdv3rx58+bNmzdv3ry9ASu9yZf/zm/9TTMz+93f\n/s/NzOz6+zfNzOyq3zczs+XxhZmZpfXYzMzW1/X/4+XEzMx6+2dmZra6tWJmZtUwNzOz05MjMzOr\nl+tmZlZZXTMzs3KQmZlZFOnv/cVQzzk70f8nG2ZmtrZTMzOzRaz3Ti8v9XtvzP1qtsa2rq9XAjMz\nO7tSufILXbdxZ0flHVypXuf6mU0jlaujmNhqXeU766m+gV5r6+ubet5sqnJYU+VcqtwXV/pZ2MLM\nzJJI9c8nS72n0dFzNrcsn6mOB0/1rEpNddy9rp/jVM84faq2ixt6V6e9amZm1UTXzSeq41X/1MzM\n0uVM/18kapPN62ZmNhnrulmmn5urek6ypef8jb/2m/YqdnKkcvdSPafVUtvmA7XdqKI6d1QtG9YL\nlWfZ1v/PVK9yQ9fHM/0cV9V2LQ0Jmya6ftnXg5Jy1czMFku9r1nwe1nPC0t00oIHZGrzoqZ2WOYa\nI7OiZ2Zm0UL1DusaK8lM5Z6kZTMzq4S6Lkh0/4THHz9/xnt7PE9jvZSrHMsy9TX1Q2Qa29mQsV7W\ng6Jc5RvGasdwoefE+rPNmgO9f6x2qFZ03bxQeUtTyp3MKKfeM8/mqndJ7VNdqFwTU7nSTO1Qr9BM\nhcoTUI54qPovq+qXkh5n47nm3O3bX7efZ3/778l/BHWVKc9V9zhSm0+netcy5N2B2r5InfujsQOV\nOS9rfiZz1XUR6roi1N8bIW1PXSwd6UfRMDOzKNB9aVTmPrVdOVAdo0xjKsCPLFUcKy11XUGsfE5b\nV1N1Up7o74upylmJVb9soeel1G9ZVf2TqeZwHqtRK4tUL0r03tT5Df6cUp5ZGT9i6rRoonLlNT23\nVOj9Qab704y+K9HJMfVIdZ0F1M81Nz6jWOi+lPuSTH8PS6pvTHvP6ZdFpgfFeq399n/2X5qZ2X/1\nd/4jexX7n/7B/2pmZhcH8nHZlcZ80dJcWG+pvaymsRwt3dhWOw/x61HMmObyy0P5kkmu9WgyYI7E\nql/BJFuvbZuZWbmp59VrGi+WqgNOzge2GGgNyFK1de36lpmZrVV07aQn/3S2ONS9Y/rA1FbhyzGl\n+zdaWqOmkdpwlTmxZK1s4G/CSM8/ujo3M7PFWOUYh6pbaaH/X13X/Xne1f0a4lZpqA+HvRN+yl+l\nse6LGfOzmcrR3dTaVK2orcsmv2M1tcXRhZ4zGzOXQz1/fVNrZYkxXEzVHqWwTnOw7lCOi6H65L/+\nH/8bexX73d/6XTMz643kfyK3PszVl9VC7TZyQztRu5dMDRGl/8IcMV0/S/Atua5f5mr3IJzzXCZH\nigOkfhP3a8RcrGgsLQIWvLnaL8ymL+vw7//137H5gjmEr0sbem95qvItQirAuDHmcFwhTzdnnSv4\nf1O/5Nw3q9L+o4h2wJfkuj8xvWe8NAtr7MOmKW2iexaF+mpRk9+qpqrjYil/GjB2NtY05qzBGldR\nGYqUPp9rHs8OVIbFlLHNolNe03VJQ2XOenrOBfuqUqG+++/+wX9ir2K/EcgP/dXr/EHVsDp+dM5Q\nZijaUq+3HD8f06RN/CJLsOWaMjbEjZbc/av8v7bF1uG+KTeWuryXsWpqDmtpaFifrnb+d8GyFc0o\nNz+XzOWQ5/Txbx2eN+f3iN9dSnfEc5kKFsll2Ix2aFKPgPIwJF0xje2zBdw35roO9bukXE3+31WT\nLcfL5TvnOROeb8ydkHKbmf23e4Hhnl+2P67FbMRzGW5fva2fv/wrt/SPf/ff08/bP3+9+Q//499W\nHfbkf7OA/dKJ/EpQwh/QZvUV+cOsrsasse9Kp2qlszFjuiW/0eH66bEGxexKzy26uj+I9d64yxzo\naXD2+/LvCevGhEER1VSQ1hbfGMy96Qv57ctM/rTW0WCrttW5C/xdOdDzwynfCQOVO0tVvoJBtyjw\nI4Xuq7TVLrUVva+M/xmdq77982MzM2uuqb4JC05SVb3G7JmSVPdlfdYN1snyisrZXtF9g0u9f1Rm\nfW1rENXYr8dLlXMy0mS84Ft0he+B/Drfmvjvaa56LtnPbzRaZmb2t/6Vv2GvYv/B3/rblEPt0Nm+\nZmZmbIFsSv8fn+l7a7Wq9o1313XfVPWaqDhWYk8372vwj861/kUdlb/e1biozvWC89mX68bv/NZv\nW1bKrNpWWwcRfvpCbVDCoWxu6BlW8K5cZRiyZ5geaSw6v1tt6Tt4PmMffs7+iz1HnvMN06FvG/x9\nor7Khrqvs66xOWP/2+e7enNNzx8Wev/8gPWA+d2pqM8qmxoLMWtrMGEOMnZ7LLYhjri60aWafDMu\n5Djyc42ddleOeWZq4/6RnlOv6rlRXfUYT+S4Nq/Rt40/55D+AvNIGW/evHnz5s2bN2/evHnz5s2b\ntzdgbxQpc/ZckafLQ0Vvd8gKLoj+Pn74uZmZhSVFHxvfEnJktFAk6/Hnf6YHLe+ZmVm5qyzapz95\nbGZmnR1F0DZHivae9RSx2ukoclbbUrRxdKxI14tMkbaTx4oibt9WKqRIFTG8/9FHZmYWNUE33H9h\nZmZbt/bMzGxypXL1ThStDVwIvq2I4mCoqOTlowd6f03In8Z3FFE7Hygq3H+hcpyuqV1Snru1qkhb\nug5qI1QEcTJR/RZHCvX3Z4rYFdMvzMwsu/uhdTd5x5HeHSZq09WOsgCLgZ714tOHZmaWEF1M1YS2\ntq5nTkuKTua5oorDQ0VFjwm4fpW2nR6pDvtHQnpcgPr5VvKhvY79xk2lKz4CKfP/J8vz3LZv3HzT\nxXgjdv3nX/LSirLG8qULjZO1rpRBARSahwFoooWLlIPqcQCPPAMRASKjQXZkUtLYr5LWOssKnkt2\nuSAbRg6vnCjbMs8ckgaUANmdmCxZtHQIHX6UyBKRlQ9BqixLDlHikBu6PyOdksZE9MlCpQuVM6+r\n/ikZ6lFVmYJyqhfOKqp/kdBeZE3m44R2SXguKceJrhtV9Huy4PkVEDsgiCIyzwsQPgGojAWp3ChU\nhsFly6qJ/n++VD0mZN3rqdonBeURg6SZ0o4TMjSvatOB/OP5A/ntOFS7rq8oc3FxqX6KL1S/s0v5\nujrtmdRBHK0K8TLoq37Hj+S386rWrVqD9hhovalfA1XS0s/xSO08PlX2a3ImX3lxNrLOtvpo97Z8\nfb0mf/rw2RNde65ndvCn69vy64sSbT9Tm/VZM3KQF2efy69X97RWng9Vt8kAJMVEZVpMyBKtauxf\n39k1M7MSmczNpsb60aXWpmlfY+D0OesA/j5uqc+2rylbtjTVY2tD19fraovBud63f3zfzMzmMz33\n/FTl29jQfasgLR8+VTv0QBdVQX40XVYLlOhFpnrVW6+3bkxpv/mMjORYvqVEOn4a630hCMAKiJhl\nQBYw131VUGW1BuXvqLxLMrphSe2wmFMPEJ7FHN9UYk2fkBEmYzsa6f66OVQa2UxrvKxDPq9Ykzme\ngnrLgBuUAuYyKK001JxK8GXFFT6F54XUu8p1y1jlLvdA3jQ1bmag8qoh9Zrq+lq1sNmVxtKcNoqq\nuiabsQ+bgR4CrbvSUpuX11WGBKhFugTJ16ctM2VE8zPQSH2ywY2ENlNVJ2SFi1xjyvnTykBtWF1v\n2evYN++qbW9e15gMgaKEDfmXNmiq2RD/Hqq8zi9aE/8/APMBInt8TX3TGOu6OevOAqRLDcTMNAKC\nAur2JfSj0Jip7qkdAlC8yzlj1y00QGHCMn56rvu6oIuzUA2XdkBtMMcm9H0GBKVCTnc5YL3oOOQR\nqA+Q6UGu9/dmmusrbsy6fSrNH4zIIJfVr+lU/X8HFMOATUFQUTt3XYY+Vf1jY9yA3p1Sz7z+5WfO\n3e2WTfCVDaBBS9axWZfy9/X859/TPY++J59zp/q/2KvaEej6K8ZaFMqvjQ9AjgCvykFR5vivjU19\nk1TK3AdK9fSR7n+00Bi+/tZdXUdW/5hvqMFD1tSbWpM2Y60jRQYyBaTbKNF7ey9Uzt5Uz+0OVI6t\nvRtmZjYECXL6MWtmdV/lajPHQMY1+SbZXNEHQ1jo+f0jlWt5oecXbLYuQICUQVyH2/q51tIYnIGA\nOX6ib5gq5UrWdH8O7Ky9pjFSSpwvUbvuH6u8Yf9A5aq9a2ZmVxdCaZyd6f+bN/XcZlVreqcJ4vNC\na/Llfa2bD5sqV2uonys7mowjTg6UCtCxDmb1inY+4JRGX/dFnEjodjSHyqAIbax+fsD3Vv2c0yQT\nTgKsae7cuqVJ0gBR+XSiPYb11V7XEtDGbV1/Y/VL1EZ1u2HPv3hhBf5q5/pbZmb22adPzcys0te7\nE9auiLUkjtUm64Ge9aOJrg8/l1957xtq24DTBFfsNVJOOUyOVLepusa23nnbzMwuGDv9vv6jUn1f\n1y10X+/4uZmZrW2orSqsVQAObcScOJ2qr7svNEaWTfmfra72NiFtUJpp3n/++b6ZmW1f0+/re5pr\n0US/n75QfKHSBYUVaAy9OFU8YtkFmQP69fz5I/2d7407796zn2UeKePNmzdv3rx58+bNmzdv3rx5\n8/YG7I0iZXK4DxZEk8tNRaxWOFdePuQ8ZKToXmubiPyFopRb14SM6bwttEcX7ocDDt02I0XOmuuK\n1B0TkTsl2vzWzT0zM7vx3W+ZmVn9kaKi9x/o59pQ0eKdd5SVDNvfMTOzXk9R6EcfKyK4UdF19RW9\n/+Kpopj9saLBt95RpK27rnLeJwNyeqryuAzRrdsf6O8lReZnZDOHROhmXUVlux3Vf3Plju4P9f+D\nO4rWjp4oyvvwvrKW6Wxs1R29+3r/HV3bhx+hrsxnu06mtfGZmZmV4d0p6opunp0q6ljdUR+8/bWv\nmpnZRwuhmdIjcRxUN5StaJXgjXhEhu+YM+hLh2Z4Nft3/s7fNTOzSUnR1YIzlHGg8hdkXapV/RwS\nZ6xy6H9OtqaWa2wFsdqU498WBapP7rL78G+kcMgEhcofTlSvPFa9GmTz8ylZwAYZyQweEVAMTbgd\nRimcK2R1FqAQElAP8VDXjzirX8913d//T/8LMzMbk72qTJQZmDVAORBWbY7h8ajyd6LGwZBMLgH8\nEuf5A9plyn/ERLGnNbgEyH5ViZqX4McYgv5olUFfLHVdzAH1Je/NyOhah6wcCevKgnFAtmoC70gI\nyiLmbK31dN/f/ft/z36eLalTEcJf4c5jO84CstclEBvlMTfWQKaQda7Bc1Pj8PvEcZ+QqZuOySZX\nYvdi/Z3sU42stMvN47Ys43x2Dr+Ro2kAyGMpKLNSRXWu0+YZnDRzslGuHMmSvnPlGOlnTv0SkC8B\n54vDQL9nLjNJvSPGbgFSJS3gC6mp4Bkoi5fZcfgviqXjBaIByFwwFKyATyiqkEV3575zx7cE30Xi\n+CvKP3WfO+trCZlexmaJ8+YleDosf72slKW6r9LSurF9U350711lhA6eyZ8/+jNlQpacNe5uyneO\nOEN99kSZlzpZtcqKytnY0jqzuw28sK33rdaUkTl6pnWj91jrS+9S9/WXymZ1uhXbvrNnZmbxqrIv\nOYiMBuevr91VVmhhatuDC927gt9Im0KbZg39/0pXZXl3R228WRfycPRIqM9wKZRoa1cZtqSlzOrq\npuqytqa2uuD89vJSfTnn/PXwWOvCWao2qdTUd3fvfEVt8bayXuc9rVEZPwu4bK44bz06J7PJXqBz\nTWvuzl213faK6rUJL9PsRPfFVY2NwaXee/BY9WrFcI3dUNbqVa0Lamrzmupvc42x2XNN2imOrAIx\nRqWi6yMub5ZBt+GTRnATDC9AFuGnS1Xd77glJqAqQjKjXXj02isOzaV+mbHe5SONxewcH5clX9Yh\nuWMl0ChLCKuSXfV/bQ2EC3M4L8OhBiHHZA4aYqysaL/PHswRfoBWKWqg/uCyGcFlFIDWW9/VeK1V\nmxbApxPDfxYsQePAgTW4lJ/N5hpjc9Bbc9aADH6J89npTz1nkct/NSFt6VQ0Vhsl+OEqeu4cRN4c\n/5OO1QbxiuqwUu/Y61jy17UmfVrH/4BUqTZVjgV+uJarzYJMY2RIdr8z0/WTGnsZh6wEIVmwnpRA\nGxUN+NfgdVom8GU4ThpQSlPGRpLpvQv8qiOzaRW6b9BhT4D7bg9Vj/sRKDay7CV4i+YO4YPbXdZU\nnuyC9ZT3RvDslUqsH0B8xvDaNdiP7y/0/xFjL5/C5QCvEVslS3IQruwlRrRDLVZ5DkFAjchIl+FU\nXMIXUu3puWP65TfN7Ivf/F0bghpJ2Z+3yfynjA/H2Tj/vf/ZzMymP9K4e/Ann5qZmTzaz7ZaoDKt\nt9S2jU35oeKmvgXqoHk+2wf5dwYvWU1t0gSR2Lqxwe/afz46ELKitcU+G4TIbllr1LMToQeesi4M\nGtrs7KwLgbMCP1M30Zg5K4QkefxAc68HL9Ms0LrQ3dF9174lhPuLB7p+Av+lgS4YXajc9Q80l+7c\nkr+6wWmFKeijnM3P8IHW2qsLTj08VXm3P9D1uzfg54PUa6WqPjw7G4Z4ZgAAIABJREFU4zQCSJEL\n9qM726zVb2stX7Bn6cFpucFaHXACYH4l9EXBKYN+S+vPyofq3bt3hGY4GmisHVwKsTN5qudNx5qb\nrTbPXVH5yrnj6no1W2P9OB3puY53sITPXL2mb7w5qK8W1201tB7uH+jkw+lTONy2tW9Yv6H7wo9V\n7sG5+vVF7k53yFd23/uSs/H2ztuWPutZfU1jbhPU7j6ciIfn6qM5fqACYvnrf0XvKjf5Lj/Wt+D9\nQ74/A/X97oca+024acaXfI/Dx7MGb9DG2+469eHn99VHV1P1eRN+vdEcZGFd5dzcJX6wpj6+eKGx\ne/xo38zMJiN4NQ9A5vCNeL2r0wjbu/r5+BPNyefP4Katqq3mC72/11Nbvs3+eueOxsxz5l7AmLz9\nob61UxDYS07szH9O2MUjZbx58+bNmzdv3rx58+bNmzdv3t6AvVGkTEDGeJkpAjV3CdLQsfPr9xpn\nPqMxWfg+vCbIFL08h0jKOSXCvqwr5rS1pohZ6Vf0+4PvCd1x9MmPzczs/V/7RTMzq97eMzOz8ytF\nBE/7+3rvqSJwN8meXd9W9s5mitQtThVx34CVun5dkbVTophpqv/fu6Yo7q09nW8cH/6RmZk9f66I\n3IcfKrrc/s43zczs8rkib/3lD/Q8OHEmcObcfFeRv8il5Jtk2W7BoL6vdhsN+zZ5Cs8NSY/aqtoo\njeA3GCqKVylc9kONv8F1Ty4U2X7yfRAzqBUhCmHDBQzUVzynibrPpiK3AdHQXsBB71e0QaQIuENm\njJ1aBH1fBj3Q75OtIZu+RLqgvoRhu0rWHmhJELX4HdUjhyrIOcsZ6+/lga6bgEwpg1oYolJUcmN2\nzLnxUH1dYQwuKG+JtNSM9FadcHMKP0neRL2K7E/Omdwp6IZmVdHlJXHUGDb7EqiQgCyRoQCE+IYt\niXI3chQtIviI4D/JKEeBYlBjqnLM4TiYTyh/SdfFzLE+qhv1RHNgBmoizFRex6uxJKOQEt1OYxBO\ncDFUHL8K6iuRy65V4T54BUsp25LsUwLiYmGu7/k7CmEzIvch/58snJIV55Wn+r3mFEpQGZqDQEmc\nggoZy4iIfURbhWTpy7jXhPPbBVnoBeisAIeXkBXJuD9wXC+ofNBUjprGHNisRKQ/qcIKD6fOjDm9\nJMMZoVZXJcM4cQ/g3LrLzkxClNkmZCxBPbn/TzmbH4J2MsqXO/UNl+ElO+VQbHWHJgM5w1FiG4X6\n+8sxGKkdSxVQH5QzB4mzQKYjYA6W7UvlgFex6RmIwhNl+0ZLZftegGBZovpydCgf1b0hP3o1k3++\nJKNfYi5uXxeaozyXrxscKgu1vMYcJiN/dUrm6KGyVgk+oLKpn1sdnZXe2VmxxqoQKw8eCbE4PiQj\nRzY3WNHac/pMWaj5APWle8owJpzdP34kf7z2Df5OpnVyATIFRYPr63tmZrb7da09+QVo0xP5+8PP\n9J6DgeqQn5C9zxw6Sj9vvqvMXeeGMoyr6/AsgdRbHGrwvni2b2Zm/fmP9JxLeHfuqF7vfEU/6/D2\nFMzZk8/VdifwAjVq8hdrnMFPQF2tXld9C+acVZy0yqvZlQkhkrGmlyeqh1MhipCgmYD2shb+HKTm\nPIIHDg6Yo9Psp+oZZCBoenDI8JgavEkLfMf0FBQAcLwKSoqtBdwtVfhWOqpfu/VlhrZxrWyjMWgH\nVEigJLCC9jsDaZqBcAndXOP9xUy+Yq0tH1Cvw/eHKpNTPJqM8O/s2dpwD8VrmiOV1oUdk93OznEU\nV6AnUfcYw+FlrH0l+jQbkv0N9M6qW3PZByYVjen1NRAn8HEkkcZCnsO9whpZlOG7gOsq5X2T/PX2\nJLlTvGLsh6wLc5AlMW0ZDtVnESjkzkz1n4OczByCEARLQZbdIQhLZfz6ED8Jl9cSacZFQ39PYjhY\nDHQvY8Nxw9Tg+clw1Cnld8qTAUqUGUo8GWincaKx1WDvMs3x3wuQmCCC4hZcZqhaLZeq94SxWx06\n+SW4gFgnlqgcZmUmAeOgEqj8Q8dXUtF9FcZLEjh1QtojZF0bguai35cGT0fg9JrMpqMri9xcW+U7\no6/3AsawAvmr0tf+bT3nk//BzMw+O7VXtmoConniFm2VqYEyYbUDEvACxb5L7c8HT+CdBAly87Z+\nlkHOrIEeKDHGl/iTiL/HZ8xX1HcuXzyjLdQ3R7nKdaui+Rzd0ljYMK1B66Bw+1O4vR7r5409za3b\n31X2v8Le4/hIfBmP72u9OH2u8kZwlnRY42vwzjXZE9Q+1LdQF4R4gCJPuFD9XxygaIniYfu2Q4Di\nn1DePXshH3ECUtv1ZR/VvRA03hRe0PVNtXsAX4hDXPbO5ffPv9C3VWtP7bv9dXhHnjI4XPlQ7J32\nVO48QBWwo3Z6VZuDFC/68hGPDvXN2J1pPc5YZwJUCyPQvg45/9bN9/SgVP2wuNT1tXtq961b+v9y\nU3ueMei7wydwE137knPtatS30WxuO1VUhcao1jk+uYr6LBxxEuRKz3hwX3xwd7+qtX/7fX3fzuAi\nfPpMbdXdFqKmCiLm+FL7rrisuTF0apuPVJetLf197y0hUQbw1p05DtUJdUGh1uB2dOpN1+9pD7F1\nTX8/62tMDI45gfKYbz8UuVa+q3p/+C3NhZNTFHpRuspnao+T53IEj58IUdO4rZMyzbbee3qo73ZD\nMa22A+flocZOrfTlWv0XmUfKePPmzZs3b968efPmzZs3b968vQF7o0iZBodHK5xnDqZEwMjYuszx\npMXvNUWeLo0oJ8zh/RNFK7sgVVauKzLVJ6L1IFYG853vwOq8R0b0kSJ8zx7p/s6OInibN3Sm7eEf\nK5s3m32s8pl4VK5dVxSz+5Yig4//VP9fy4UKeefrik4+/QLumU8URV6Qgfjur/6Kyvn2npmZXf1A\nWdGDlhA8t1f0/jIqAs1AmdjLK0U7LVdU9upE0dXTQ/19jYhgnah5FnFGOw/s0Sf7ZmbWgIeiCeon\ngoenQJFmybniWaQoYYhG+60PVKf0JyprTrSvxrnsEETH1ZHa/N5XVLfVMuf7Znpe7TU5ZSqcKc2W\n8F+AYjDO/gcoWkUoAjhekYCI/6Cu97dmZAbhMigNyWCiwLJEaaeagMIim5TDkZCT9VkuydY0yXzC\nwxFz5jObKro74jy5E+CKOC+ekF1bcv465Iz+dKh6BRXOj89he+fYejZGKaiOogAqIQsynQX0IvkC\nVMRCLx5wv0NZhAXnpVuwrtfVfsEkp96gOoBA5QmZdbJjTvAhqeE6lvQHiKRoqr+P4IWqgrYwVEaM\n9quAWJpxHjxsOIUN1S+evLprKqE0QlNYxDsdR0mDdPQS+FC5RN+iKhFU4KQBaZLUyFKTuUzIcOZw\nxqRL0FaglWZk4urweoT0zYRsdI2z8gsykY5LJpvCfbPU2C3TuAHKJ0tUesogKwqnxtQALTWg70CN\nFfBIlGC3XyaOWwfOFniQynN4QUAAGZwGAXM/yxxixY0Jxi4xfI7eW74EqYK6hpsjQ1fPKbwZEe3v\nkEIgbhoglHLQZFPqF6IGMi+p3GU4Dha8v+I4IpLXQ0G47F+9y5zDh81BMgJGsc1d1aeyrszIbKz3\nbcPLUgPxWGHAjZ5o/RiQubE+4wJU4vhE9UkirQ/X78pPd+HdqGaqRy/N7MVTZVkS1H+q1/RzRHbn\n44/F8D+6VJnf/q788h2yU49/ojXE8TQsplojw1AZwh7nwmuZ6ta4pkxgdqXK34eH7ABetRpKMVvX\nVeYKXC+AyqycqO86m3AHoAYxh2vm6Sdam87Ill9O9PcumeSVb8s/34aDJqPPe7RZSGbw6nxOOVXv\n5m3d//wjtf3wXGttE/RSe1fPjYLXW2+WA1QGr0CHwffWhcOh3dV76xW1y3Ckfjn5RP12MVb9SpH6\nLYSbrAbpTBUFtApzrAwqZA5hR7ukvckVHA1FquyepRqDw4X6M29qTqzAQ5XDYWZmVqpOLOX8egnu\niCrKbSM4IOZj+fUZvsng9ArwndsbIJY6DGL47CL8eIv1JN7VXsShHJwyx+VC7fDJnz21grP4kym+\nvwoalUzqAr62dTgMulsdnqVn9+j7tAd/EJwfgcsy43dj1ECCJjxoZIVzEBYLxmoAIm8OAi+EK+pV\nrUkfTRyXGPvXrFBbV0CR9WoqZxLg1yLdV2EdKaGyNAQ9EdRAfow0N9MSqALW8OkUJbCK5oD19DNg\nPQtYy0vwEzViPac3Vme1UNyK4QqbtEAdU44AzrSAdSMqXHuDTsjULylrfbsDv0cKIslY71Cpq5H9\nL9P+kzYZ4hFjBcXPtKq5mjRRlClUr85U7wua7O1YH+YDFvqG2qMD8qkPwrLtOMmgk8qnX/qApFyy\nIYiiNda/S9DK8xiELL5psaNyr15Xu3yOgs2rWA5a9RzOpyv4I9tbGiP33oOHo8Y3R1lIkAlKic+P\n5TcX+IcJfd47w/+BvgxBEzVKcNDAr3HrrrL3D1EGDDq6zymfDRhrdZArrR01Vgf11NOf6LovHv/E\nzMxOQPOuv682LsFRswZH2SWqd+ML9eHJA61Dpxn7dvxTd401kG+VJojHjbna/PCF0AfpUO0wAZVx\nUtNzupR/sSPfULAv3qwL5XCJitT8EbCmdT1/AYtkBUWxbZChAcppV/ugZp8KkbkPV+bGB6hcva12\nacZaXxoHGosff8Je6QJusL3X+6ReQ12wuapxUKAw+eJTfVNenapeq9v6WaP++z9UO33rN9QO6ygI\n3X+kcXENrq/NW+qnGB83nconnR5rPI7+3PI46U/t9OLArg3Vp+0d+ZEVynijyb5poHd+/pna6vAj\n/UzZz733FXGjdnfUxg//RN/Rk131yWymNezysfzhtbsaE/0r9fWjR3D2fVN7glt3tLe56KrtswFr\nIGvzF59or3JOHKDZ0NiKG6jr8T3c3tIeZW1V///Pe9pL9Q7VZlcDlXcKp+J4rLV3NlR9d9/bMzOz\nmxfqo2dPNUae/UBzJGZfetWDA6cY/VQ55nxb2exn+xGPlPHmzZs3b968efPmzZs3b968eXsD9kaR\nMk6xZsHZ0gLW9hWivs1NUgTnnHcmm7RClv8Uzfv9Hwq9EX8XhYq3FalLiYQdfKxIXbmtjMDWNSL+\nV4oEnj8jKropLpe1Pb3/2WNo4PuKdh89FeKlDNpkva3o5T5KOr0TRaX33tJz9j7U/ZfnnBu9UITv\n5FNFwRugBR6TaSk90tm7tetC9NS7ynTsva+o93yu6Gd1Q9HP1rrK8Zxzn1UyDu2uIp23vkrm5Xhs\n9x85lI3abretd4cTRz6i6N6de4rgP4JB+wFnHFfrZCBXVafVNmpEKKA8DhWRnjrFgFDRz9aO+qR/\nSeR/8Hrs5E45px6pfHUAHi7oGDTIoM70/hoR4SBwWXVUKlxWjKxSrYxqBXwWC5R3poXaPAZR4xAs\nIUoqeQoChHPdY56TjFFxonzlQP/IOXtbpq/7ZA3bS5RwuD7PUX+C66ZEFm7KmdKiwVlkgycEBYGk\nqufknLsfzchM1BWlrYJiyMiIBGRuoyGZE87lF/B9jCOnXkU2iyjvBHjEfKL3BTMULIDoBJzZNVRD\nWiPQDHW1zxKum7yq8s/gU2mQ6V2CPgmR8EmbPO8VbEmmK4J8JYXzJUYpawYnVRm+hDG8CDFon4gI\n/xzVpQI0T92RWpElConMT1FWCEI9v5w7Hh8yoCiVJNTV3LlvvC1HTa3BWfoMNECaOo4Byofi1Zz6\nZVVQUFPGBpmLRopqB2PAcQsAVrIxfEzZpMz/k3mkvsZ55YL3lchKZTl9zZl+G2ksFPweLPV7BGdD\nDEImh8OmQHWjFKC6ArdBiKpVAKlYVmIsk2Gec7i/MkPlAz6iAhWmjOxgkL0675CZ2RrKBK1ESJeV\nO1oHchCMwxOU1uD8iVGpKtX1/kqsudI7V1bt9LmyTeeo3W3cFh/MyalQE9MTZe0upvCgkMWcdlE1\n+AhWfjLZl5fHdjbVGrCOv62uyv8dkc2JQHXd+WDPzMyuofQ0cuptJypLpas6jHO10fGRVIl6T+Bv\ng4NqkGrtSNgKXMBx0CRDe+td1Wn7HSFyJqCf5scOZaXfX3yqtfGcTOcFa+Yk1fs6q3AqbKD8VVM9\ndm+LoyAHsXH5RGvowGU6nXJPW+9759sqR3dPa9yyrrW/xZq4C0r2gKzZMHw93qENsnGLGN8QK3vW\naoDGWNHzrs7Uzlf4URKTVgPhWIRai6sN1XODfmyydxmj0DA81o0hmdzZHEUvkKutiuZCgNJQfYds\nJaiQFxfKKo4/PnpZh8OHD6yWqD3KLd2/JHPfrQgB4zjAlgtUPcjgRyBjlhPV6+BIzx88kU+L5urP\nRqK9T9jQfQUIzRl7OLvSHB8XhdWq2lPc3AaBViZ7uw4nSey4pVhrUYy5ONe8GQ5AwOBH1xvKXFa3\n1BaTGTwP++IiuBozdhx3FyjWwKl8ghSMWQvDTstex4Yr6uNVECdD1tYM5McEzqmusW9dgmwBJTwI\n8DtN7Qcrud4/BRk+Rz2pXHbwV/jaWuzzxqp/BB/eRUPt1JmC7AMJNMI/th00M1HfOQ6HRc/5dxTP\nUEMdorhVwW8nKF+mGRw/VdWjN6bd6uzNUOxcsB4sQNoUjlsGFO0U5OUCmo6WUxccsbdZ8D2QaI6l\nMag31JLGtFfdifeNyUhnjqCJdXpGu/05pEw/yawzhlMGLsZKB3XGvtrDKXAGqCAuNtnbwe/1KtbK\n4bFcgNaayn+XUsZsqD52aqT1ssqwvQ7n35Dsfpu+WqcvAl3nFBQ7ieNNUp1b8HCEmdrsVos160x9\nP76vPjx7rjZ7gjJXHQ6YWzX5+8Yddc5uLn97kqv8z/9UpwtWa1on9u46BVz5gwh/12IvNBmBhutp\n7B6faY5cgIq49678uOO3Wy+pHPUboORW1D5lVAgrTY3RJujSMWqq1VWtg7fhAQmqKOywb+19JATo\nOeiwdVSoNjdU3/Wu2insaM71xhp7T+7ru6WUfUo7qV+3eN/GbX2rLeCFKr0mzmEIentzg+8r+Eob\nqJAOUa3aQH0wYA/7cCJfl7IeR/BQpaCrBxO+M/hG7s3la8bn8HvhG5vhl3Pj2t6m9adftxJox4I1\nZ9TTs9IlY+qOvkdHV2qjyz5Iu4HqMmfvX4WftNZRnyYbet7jP9RateDbpXNbJ07aOfOW+z/7XGt7\nz32rwJ+2fVPXf/197eful7W3mXNaY8haZKB110EJf4k8Vz1q+KHxUNe5rcJ2V9//L2L1/YuH+gbO\n8GN1ULjf2PsrZmY2Y9168QwFSfxXzZz6KMrGrFNz+9nITI+U8ebNmzdv3rx58+bNmzdv3rx5ewP2\nRpEyMRrwlYToMNHT+JYiYB2QKEcwXWdTxZDaKDNsfEXXH3ym6O0nP/wTMzN7/4PvmJnZvXelwb6/\nVPaumCpKuH5dkbbsfbEs/8k//Z6ZmTXIeO7uKmq62wEJc8a5TDI38fuw06eKysagLU5gk35xoqjy\nypaim3fuKtt2+EzR5adHKs+NnQ1+KnMy5Nz92aUibjtNRWHLnEEeL/S+nRbnvTnrV0NSaXysqHRr\nQ9etrigL2d5d2mCqKN2EM64OMfIcBuklvBT3vqkscn1b0cXHnyha+eQTRQtDsgfra6rbxk1FtGuo\nLPWOVcfREKWSOhHtkaKDJ0NFtl/VghgOlBGQElQmsivUjGBXr6IWFaAOFDWcSpIiwbUKWRi4ciYL\nuGfIgC5R+aihQjSbw2KfcO6Z91dRF3LKONU5579RFTLUpZKJrh9xXrxE+YpEY2sIKsBQAmoNycw2\nyOKAYEoXjmcEHpQ6GZaADMlA7504xZ865+lRqpiiQtVoEMVmHFjFqUI5VSbqx3nHMdmiOVwBpQnt\nQBiXbrUF57KrZHYHKPfMyORWUAvJc93fBp0xApmUXZGtQknC1aNY0J6vYDUQMksQF1HhVBlUx5Sy\n5EvUGOAgSEGcOI6T8hx0T6qx4jhSstRxqoBUSRzyBX6gELQW/EsBKCnEOGyewylShyMFlNEchZiI\nTGGOOpKNyNABramUHZqIsc9cjRiLGVn3gqxH4ThY6Msg5mwtCKKc9ppwhj6D+MidiZ3DieMsIpNd\ngqNnljuFMEcuQ1YMP1jPHcqJbDmZ2DpjOSs5PiQQSLHeu4jVPzW4IlLGSkKmIQOVFcF1U4peE3UH\nf9OAzMvsIe2Gr0gG8G3dQDWF892D56iPlOTfx5cq7+iJ1qXeRD6tlckHLlAcu4T/6iY8J2trN83M\n7AgU4v5zPa/V1vVJpW47q8pCVRgrNbLEtV/QWrQC/073jtbA4SXzdF/ogP5M77x9W+/aunXLzMye\ngWDZastfjxxKqaeyx2RUu9u6z/HubK9prRmh8nR+jBLVY2XeSvAFZaC52teVedx8D78M4q9cIYPb\nRJUOFYv6isoz3NeaV+ixL5WxtjaVSc0YAycPVM8eY20Od04GR1gfjoDncJu1G6+Xd5pnmqvTHnMg\n0nqWwcVycQAiZKryxUOy9g2UE0EKGijfFVATCVxgjjdk8gKePJTTMngyHDVMewWkDepH1gHlkZB5\nP9c6kD5C4Q3FGxV+3WZL1qVQ5W2C9AxX1I4rO3CG4RtqIB1Huep7DnfF8EI/c3zrcgaf3QRfC69J\nDKIpJQsYwKlzvX3L1m6ivhaD6izgpyEnOA7Ulgmo1/NT1bHH/AjgV0oi7ZcK1rIcf7cERVXJXIYS\nZAXIvtkCdTz8+QJ/WYsa/Hx1rhAzs7JT3WSP0AA52au5PQGKkPCltfGzly2H5oUHCDTVAtSEU/Wb\nszfL4AHqX6EG5DhxHLi5gJ+or32tQz+VUbwZzuHSASkZsidxymkG8tKhsKaUN2trDsxGqJ6ipJhc\nwucBd0wHhcYrrluEKMX0nVoSqodVUMIoPja7KOKwfvQDOGS4v2iqnCmqUznr4bJMxj3R73NUWEo1\n+d1oSkY/1txKJnCzhV9+5nSXgV2y3rSGjhNO709Q93PI1aTmOOVA0kxfHSlTYs1r7Xa5V/7cIdxq\n9OUCXrNz9rOVFqjMRGVaztVHKxWtC8EHoE1BIRSsvWeoDcWsOTNQBzUQcAv2EIvn+lkpg9gBVTZh\n/k9Tvg9SvWdlDyWvY04XPIEjrKT3FShPNlfUlp11rUtrm7o+7Ot9xz21w9Ep+zr4fgLW+PWa7r9o\n4ndMY7rR0vNiVPRCh+K4EBo1czKjjMlgVe1euwnvJ4ctTvr6//OPpa502tLzpu+p/Vugc+Ndfdd0\ncxWwMQER+TlI0geo2F6iIrqpdTnecHuW10Pvzlm39kfydd99V99fq7dR6P1IfCkOhTyboe4KyqM3\nkO+4usAHTPX/C5Qmy/Tf7W2Nnwcg8oefqR0OHn/2sizjQd/qUc3iNgjqhVO/BH2EKlm7A68aPHKD\nK30bXsBXs8fzipradG2PvuAbsbmln4On2gedPtJJlevv6Lv83V/6hpmZncFVc3YiJMvlF9qrhOxF\n9t7Tdff+pW+bmdnokcbEw4f6OQCpXGN/3YUvaVZWudz+fsZcevDJJ2Zmdu0t1eC9b4lD9kf/7Ptm\nZrb/fZ24Wb2jet/5mvYmLdYTQ53TnV4oQCnV2UdmzNUYJbK/zDxSxps3b968efPmzZs3b968efPm\n7Q3YG0XKRGjLT8aK8j19oqjgcObOLyvq6CJLhwc6t34P1aN7d3VWuUY1nn4iFuQnX+j8X2VHEbkK\nmcjBiaLBl7tEEYly7qCmtMyvuF4RsI3birgfnqh8Fc69R2SWC8dTQmSsVibDOuRMLRwP20Q/K2s6\nj/jkx2LWzjnjvHJX2cjD7ytqefKxotDb2ypXAcqi4d5LLG0+hvGc0NoC5vP4M0W/I1QIqvfWXpYt\nRd0nqqAUUKEPzhVdPH6uSPAGzNkffluoo+drimYefKaM5qP7+r3d0P9XE0Uhg1BlKED3rCWKPMc1\nlT346ST8zzWSLRbUOCd4pShnlSxGCVWgIWfZq2StlleKQDvejgnnh0ucg84A3pR6nJ82jbkpTN1W\nol0c+oHsnuuLKRlgdya/vnTKMTB3t8jeDRx3DOeviz7l1pjOIpdl03+XgVeUItUrAQ0Qww0xm6Ok\nU0GRggYN4E0p4HAYkw0qwa2TEg2eOd6SFooNoBlGPf1sgOxJIElIqz+N1ljMYBKf6T1BrPfPiQaX\nyRTTTJaTdao4pRwy600yzEVV7+mhFlKD48bcWelXsGlCXadwBJRQUAHlAx2PDavuOgoHMKXCGdYF\nbR4t3TznvG5AZg5EX4nIe0q2ogR6IUbdyMhYFnDSJKhPzFMUt3KUv4w+qzulFXglOF9t8BDNkfEp\nVUGKgFgp4PeZJbo/hrenzphxSmNV+maWo8oEb1CSwgEA2qnWULlSkCxN0AkTECovFV5ARQXwIjnF\ntgpouJT2KpPVasIFNsHfh0vqw5ieJPod6oeXnAhV2mEC51YEemoRwefEuehXtRacNgcv5F/zTJma\nCQiouKH2uLmQ/y+RcR5cCb4Rw/FwfiC0SJ/MbNhS+bY4azwjE/52SdmuLmjCgwfKhp2TfSuX5HPu\nfEXn9jsr21Zpa80aXamM9ZrWjBPQmk/vCxWaMTZ6V6h7PFcG83IIvw3KUfuoZxzCg/P2+8r+lC5V\npxl9unlDa+HS8f7AhTUdwl3yWGtz/5nWh/OBfr7z3odmZpa4ucP9bRA+M8fjhLpPgzVrht/rf6yz\n/pegYfv0TW8KwmND5R7gv08/V4ZvD66DVRRYDri/Xdf7qnC0FKDeXtVmIAkzFNFyEEDFAMQLc7ey\nrTGy9ZbmXBKojzP8csjaHkXwVeVwORzBrXbAe1Ktj9vX9bMJn9O0idMqa4xdorSYjnV//1zvLZN9\na63ceFmHlWrLMrgoqusgIltqT5cdXCzVzlWyeU55ZnyCshA8Hc2aU2lUf1ZAVzgumTKIoBiVxLjk\n1ksQM9WlBagOTeEwsTLqG8f6vddXH8+GDj3AGjHWO0KQwVGB6m+dAAAgAElEQVTmOA6UDb7ooeaB\n2pzjcWsbaDPQXp3NDeqg11/OtM+bXIA2KA/tdSxAISxmTGegzlb43dhzRCwwI9BfHcbwfIF/LLOm\nz1SwDD67qKTnJJcgE1fkNyuOTyTXA6NE1wO4tHCqvswYMxHqTcuZ2iVm7S9iVJty0FSM2SX/3wH9\nO4DzcRagSLmC8uQANVCq22qoPhF+fRSxxwRxmYGQKdhL9eGrqk6dOhWZazhwBlPHHwgHjaaOrcK/\n4ta1JXuyORn9KHdKoKAHl64fvtx0pqXEunDG9UDINOExmYJgrTdUrhJcQUP296+j0eUUq1bZQ6zd\nE4IQ+jBbXZXfWmaM5bHaOGEtSTkVcAIXY+mR5tDquvbxV6AFZsdaFxrb+vuo0Fy6ONecuH5LKM3N\nVc2hak1+/kaDvcJ9tdnZE+3/n0+EqAxX1EfvwTG5flNzaLOp5w3xD+Oh2urkh1ofXtT1/uYd3b+z\npvcZ5d4EjXQJuiDP4eTCv8xQ1jk61xhenDKW8U/Nmt6fz3VfdQ0FRJAkjiulsitfsdHW71uoix7C\n23TaU7se/EDrySH7/hQlzY3baq87WyBXPtAcXH2ofjs81LfaWeD2zarnhvPbr2iA6mz6XHuRT/8v\noTFajPHeSD5up6N6BxcofIL02VrV31sgieYgGz//RN+YA1CCu6gm3uK7rP/8Cdc9fVmW+z/+xNa2\nr9mCPX0Cv04DxawRpyAmcLasr6nPnvKda+wjQ6ReU77BTo61Njceqk43UEGajfWch38mpM0C/qEb\n7woBc/Mr+s4ffqyxXGO/+ej+vt7DtH7ra9rTxHf21Caonk5xvGyTrdRi/w1v2g5crTtT3TeH/2kI\nH9rbt7X3uvcVKXB99s90EufwsdpsBW6xa7c1Rlobqt+LzzmVgsJVnbleXlU7FnOvvuTNmzdv3rx5\n8+bNmzdv3rx58/b/OXujSJmgTbSPiFvG+etHXyhqe+0eKkxkCJ79SGfM6rDCb+6SQSEZ1rym8/BV\n2J7nV4rmPgXdsbOmaGFKZqVO9Lbd0s/+FdkxznlmoElCmLUXZETqbZVntFB0OyBzGxAFfvJQZ9OS\ntp77YVuRtqRQPcMQpu8yZ5rhpqgTQcvLijbnRBwrdRRzCpeVIoNPhsNlnOtkel2GejLSc3qnuS1G\nOpeXcwb/4Y9/qDLFddpAbVlcKrrXh3+hy/nBO/eUEY1BpnzykSK6Tp1pRLZrwVnyaqpoY5+s0BLG\n/ioIjle1BLRBTjY+JArqUAsRWZUKYdMQDhlbgVOGM6cBWaoqKkPuPHhKmimcO14JEDB1lb+GokAI\nWmBOBqRGlqYHKmESwN9BxrCGOtMUjpiCDGsL1MOYM/rBAAQP2TWbc54axMycsZWh/FNC7cSpLy1i\nNzaIvnI+vIry0HQJOqSvsddsgIwp9LM6ce2j+6egPppkoKfu/HxCZras+ozJgAec2w/IblaXypwM\nnfoU46DG3J5PQZ0wZ1ugESpNx/gO0zqcP69ijjaiRxY4QfWhDEpokdDGnLF388adx44qcJvAv1PQ\nd6mj/XEqSksQLU5liGz/GORKyPnoygzOADgGnCpTwNhdok5RpW8LUA8RY8L1QQF3S/by+agnkfWp\no2BjcLAUqBpNRqCVqLehXBBW4J9AfcnxA5UWjFVY5A0ER87yEGe0C5wD4cy1I/8/cXxK6sMSaKs5\nDRi4hgTYEoA+mKP2FE9RO+I8tlOPMrhZItT5UpAqFcZ6Zfo6uUuzvErmGETSHCWHCv3bqMoH9sng\nBLwnpP3OB/jGnrKTK7eV+biBglB3WxxgY86bL680Xp78c2Xjnj4VysUp3a29IzRiGd6WRTq37EB+\ndI5EV4CyyZgM2EpTGbn1dWV5TnpCwjRRHbrRFIdMp6m1c1ljLjSV9dlsqswncFjFFdT0mkJ6PPgh\nGVPW4AKER0afdpj/aygY5m39/bivtbDHOfAA/iOXEwqZk0GIGlAdv4K6xDrZpGuocezCMVDNWYea\net4evByrN+HUOYHvh7lV64CSQKklDF6PL6TdUfvENZAmXWX1IrjKhgF7DBChcwf9rCqjmePfFyiw\nzY+Eqjo8pB1BLbQcWozMeJ44JKOe2ztS5nQ8UrsOeqDv8BUr8HRUyPIvltWXdViUEyvD/TZj3ExR\ngJz1QaeZ9gNGv8b4nGCgem9c0/jZWNe4SVkfKiG8LvB2TXLNhbMjfAacRinjqlGd2BJlkAAVoiEc\nTZMZZ+37rN1wf9RQbmw0QAay9sZV/AbKNNMyHE4TVIEcrxprZ2QaawcX+3o+ioJB6vwGKND266kv\nVdmXZSxiQ9bUAo6SFoqDhp9ultSmKf7cqQFOUeKps26V4RsqUOmYoWjZiEALgBiZkcFegvSJ2K/O\nuCAuVJ+kCRIIziv+bDmImCVrcblwkFH5w8sFSHIy0+Vcc31M+5XLjtcCHj/WpRD+v2qqF6V1UMPM\nxQ57zeISRcaW4wmhveCYbIJwHbBVjBnrE/z9nD1cHbRtFqq8iCnacA4K2CFd61+iF0rzuk3JiLe6\nTjURrkjWwZB+XUzgW0JVyy23r2LhUln6gzP2R6eab6Oy3n0ykV+5AbqyfEu/h7HGRou6jwZwSKE8\nE8HT0Tgjq8/8Diual60bmhPjfa01U1DzDxI4UFjLxze09sx68N2xhxiz9i3LasNz0A/rgdoqXQVJ\nsran9zKX1usq1xlIl/1PVd+Mb5kFKp4FyJXqjsZ2zn734kxjdASvUrejNbG8o+uHl5oD2aHqM0f5\n7KKvsXGFP62uOdQUaoRTjZGdda1va9/QGl36WH19dij/lfdQHoPD5zjfNxVcg2p3T35w9UP9rGzo\nOyd8oesG97VeWl3t/6q2CX/L2RV7ExBIeUntPTxVeUZ9kEF8C6609C379EDtEYMG27kr5eHeD//Y\nzMyOPhaC6caO2mFtR6iO3tc0t5/+2ecvy3J20rPUltZkrUtMa11S1b2nrPGDS5DZKHYF7OGXfPvM\nUbxq7cKhNRay5P4fSiXpg1/U6Yq3vqFvSgSk7Ow5il7vMQb5Nltnf7S+qr3No4/+VM/7sZ7Lp5jt\nfleImZ0d7Q1eoJacXahN++essQvWPseZg99zYncjeDrHc9V395r2FKVf1Vg4ea54wtWBfkZw1GzD\niXN2pjnx+DONic1d+OU2OB0Q/Ox9q0fKePPmzZs3b968efPmzZs3b968vQF7o0iZSqboZvsO2T0k\nXc5fKLJVRRlgc0NR4DmRKxKttkQt5fBU0cJyQ1nEe3s6yz+5qedA6WBnnFc/ItJ1q6sMwIQMx3gE\nH8pIobeEw2hzI0NQoBJF5sax4BegLiqhopnn8GMkI13wMCKDvq3o5+4m5wAdGgH+jhx0R8FZ5Dko\njKJH1o1MRNqHK+cmz4H/5fKZIoDJmsq/Q3Z0OBpYZU11LRMxPtsXwuUkUxk31hUVXavp3f2hsi5z\n+BzaVUU/Vzkb+07JZeYUsR7NlBGc5mQCjtQGW3sqYxuVjeVrxgEjWOLHqHVUzWVQyRDEqFakikZO\n6qpPPAe5AWdK3FNbO16MnCxQTvo+rWuQVEFJjEZOZUn1yMnqlEE9XPGc8lz35059YuTOuIICyFxf\nojaE0o87357XOD8+QfEHtEAVNFiDc9Z54J4PcgduoIQzo2nmMhH6fUq2qAmnwXCp68ugvSqM+dQp\n79QdZwHnuuG8cUThMSzxU1SUiiqZghr8TxOyVjUUjtyccUgl1Jsy0ArJkjPDZNmMzGuEakhsr650\nEIIaIqluKfn5APUlI2sfkS0y5nGMWseMCH9ONr9CXzr0T0D2ZlG454H+gjgnWZJF4vfM8Rc5vh+U\nrALInxwybuYQJClKJg6B47LWcNREZN8N7pwyfEpTOK2g+7E5GcXS2KED9JxxAjcXY2QB/1G56hTB\n4EZgzEQ5GWnGTBUoYoo6xhK+jiUKLBUQMHN4JOK5np+UXeZE/1/hjP6cdsozh7iBG4AD1lnieJXI\n6PKAwBw6TO1aCl+PUyakPVpk4Nt3lKnZQhVgwZiePFCG4wl8J2eM1XmmLOCNbfF/XP9Q60wTRYMX\nP9I589lE7f38UGiHOZmXqKH3X7+t7Ojqhvx2HRTa8wfP7fQznXUfzdXGQVlt0OUs/Tpnw6/m8C4w\nltvXlAFcJZN2BtdAnjoVOb1zcEbbk403svizQ/pqoLW04sYGyJpwofVg432tE9e2lXErcfb94U9U\n7sYqvD8V+Ijwf9srqM6NOXeeaZ5foip067Y4Ypq7WsMXoAxGx2r7FZQejGz/4LnWuhlZp4Ls3MlI\n5exR3npJ73lVW8xBeM401rfgkbMm/E5wHBz29DOfgE5znFrUr0B9ZQkKLAUlsIqvSCJVpNRSv5TI\n7L44VTtOXWYU5GM5hGOsgoIFKEDj70X+pepHHgfWm2qvlDpkolvPUIGKZxpHFads5m6G32mMgs4B\nHGgRfFGTmuPc0eWRU/9DASgA/VtBke6ollnNZefh+ChAsDRAVNQ3lYlc3wTh0QKpMP2pItmCOs9O\nWSsuQdI01IZzOFRikCPDufZ/ywu9f4paZiV3KnzaEwXBxF7HxqBny/BPrEwcIRxrLQiYGmDPHtn8\nOlwxtZrGxHxGuzQ1BzM4Faq5fi91yJqn+j2ugi6bOZUit26hkhSBysjYxy40dmZltesMHo4mqKwQ\nBFO6cGpSKu/Kkr0S6+EUpHjTIZZiVYzlwpZk1gdT1j32hAFKkG2UKnsgmFbg+skmao8yqOxxpOsT\np1AUovyDytbU8Tn12PM1QfX2UfgMUYVqOFQZ3DPxl5npUWiWsP7NC6fGxV6GesTMibADfxIdGY/7\n9qqWwnForOkGR9XoMXv5UyEUBiPNw6SlMrS3tb/eWFWfXz3TvnkCEq28AmLw1p7agv1h1lBdd+FP\n6nwNdCnogN6V1gPciqVPxfOxCtdj3JZfX/SELhifg/T5vvrkvO5UMnX9CX691tL71tfkn6/z7ZKz\nxlqhPnkBar+ZuNMCqkcdbqoE/5SCxC/f5tvvtta1eV/1X+6BbujpeQ8PUdqB52M80DdPMNZYOSv0\nzRfcwJ/fla9ZvaefbU5b1BhjT07kf49f6Hn9h6jOMnemTZR3QBoZ6/CPr7RuDkevx09VXZEvqWzo\nud0NtcfKttq1dP+RmZk9+pE4YK6BIKrdBOXVV/0cemXrfaE1OmW+peGEe/JQ/rn0jv6+u7dnZmat\nlS8Rllu3r9nJ8Qs757REAkpoXPAdnaP8yt4+RlXUcUEhimYz5km5o/s/+ED7rM+udLriix/olMbO\n11TWnabKcLhg38s35wKE8pL99/VbQsBYIGTyc07OHA80ttcvNVYqfKsVcJQNUPzd/5FQxQYC2iFx\nanCVFXBmVSvqky9+rDnQ7oJOvqW5WA6F5v3oB3+m+h5o33dt9xfMzOyd7+hkzI9+X4ieJ081dm6C\nuMkc4eZfYh4p482bN2/evHnz5s2bN2/evHnz9gbsjSJlzmDPL4hkXRYuywKKAdTBJZnTFhmRVXfG\ni8R1Rkpl8HDfzMx+cq7I1M7dPTMzu35XUeAxZ0OP93Xd6i1FHa1F9ueJynNxpPKsX1f0cnVF703h\nTsh7uj5sKap5DfTI4Ykidm91FVEbwnT97GNF0mrP9JwI/ozbnA1u13RdOiJSR5Q9Wer5pQRuhaEi\ne0N4ArZLilBucobuFAWl0WOypB/qfe2NNYvI2re7isgngaKJD+7/WPcQyc6uGtRNZahHKsPJJ8r6\nhqgWvXVbbTqd6b5jzqIXXyi7PDjUmdY9NN1XOSee/xzm6X/RZkTOa/B+OJ6M2VDxxBDkRT5TNLdO\ntLWI3Dl1RUF71KdJ1icfowxTIbIdql1SFBEqxCtzuFHm8FuUyC7FQ11fdplaFGNmnAUtuXPeIHZC\nyp9PQTswdgP6wUAxLMvwlpT1/CHZ/TpohipKFj2Du4fsXMmhEuZ6f4MIfujUUEDkzIe044raNUDh\nLKM9goTsI9m2WaCsWYCi0ILz8FHqUBR63xj0REZmuNoAmQN6I0cRaUm2szZROUagPpIpCKBmTP1e\n3XIQZWUQMjkZvRQulhim/5BzyMsQvh5UhJYukeYQIY6eh7HiOA0Mfp4wc2gg1WWKcleMO01BNxRz\nh0bQ36uMLSOTCq2PFaANUvr6pVpSzHvgG8pAcS1B/JRAGc1o0xhkn1P0KiFn5FBZBZw4S5j60wzV\njBmcLiFcKmRSK2QwZ2QsnPpQyPnzOGIusYrUJyB9OPPvOGtcZnXs+I1QrwrglElAHg2ZMxXG2Bz/\nFnGdU8UqQH/lr4GmMvsy85LH8s/9I42yEcjIRldj/ehEKIyzubKJBWpStz5UxucG3GXDgdaJT+Bh\nuTwRd8zbX1Mm5eZ7Uq5IQFxtdISwMVj6m6Agpii0laOubdxTW73bdRlW9UUpV5lPjnRG/OE/kX+d\ns1au9YX+vI9qx3iAOhprquur1a78dFRTWWZXqsOTVBm3/pXG8gdfVbZn612tLZVYfrAG/84Y5amz\nE/VRGdhovKnnhh31zc0yaM5d/X18hV/hrPzultbgFRAgw3M9f4r6xvFD9cUUBEqJjGaPtTpoAZ0B\ntTC7lH9ca6neM3sNIggzu6J8Rgb5EgWJcAaX2RnZPDKQcereD0ojVTuN2Zw0QNpUV9WO27u6fgE/\nXH1F9bqCSygAVbCxqqxfZHBJlNUu3VX4O0C89M9Urv7wy+xbkJt1WB+WoI8NfruX/FSg6SLaM0T1\nKTN8RB80Xx8OB5Bb8yt4WBL1X7pQfZpbGvMtuCgcL1RzPLUZCDODgyQpq42qcAmu3gI9CqJvtNSY\nnIJaWhyDMKFPq3U4+ch4DuHtSByCpKs22tpCPaSisXdxAHo2do4XBcT80F7HSqCBZyADM7gEOzmK\nMk6VD36dYEX1sRTkSkEmGg6uFFW5OXwiRfTTKFLH6eUWqsht2wu1o0OfNgrXvurrHoqKIXMjgaMm\nzDVH5vC9LUBrRfCXRCX2DvDNRfA4zRLd5zjXyjXaAV6jGtwuJdbbAiWzgvXIQINNc+YyHG8pKfYA\nvqWQdSZjjC5z/X8MZ9DMlQcFohZ7JidaeAlCNgThGGV/Tn1pMjGno1RirkWgNqJC7TYF2ZrDMbOg\n/eavoRxaoW67bwtR0WL+daN9MzN7fiI/fnGgsbAOWtftKQI4UlZD/X5B3/fhK9vowuPRVx3OUJ+L\n4FZs7YC8QIWoNdLvGaixJt8mE1ARY7imOnWVt9uCRw1VqDZz9eJc/mAyZo0vq29asfz4GPXTDVAH\nU5CKOxoaNmA/fvGJfMLOO/r/Jmpx47IuvPxU7z241M+dVc3hRkeohda7+v0anJdXIEpG1K8AUT9K\nVb/DcyFfltdA4FRB7IDCsK7KcSOWH2tMVY/jU62rxyjiHrdUnllfY78NyrmGv21Hr4feXfBdkc9A\niW1ond+8jvrTh980M7MHH33fzMyewq3z3o4UirbeFVr36FgInwik+7U72qOkR2rnp4+kSByY1pm1\nbX1Dd9ubL8ty99vftur9jk1RCCyFjveN0wX49gBUagwXa2tDfXf+WGie/rn8acI3THVDbXvvl1WX\n/SdCH/Xva8wGcCFWVlSWAxSAQ5CEI05DrMEfeuOa9ibDE43BB/DmzO6pb+ore2Zmtn1TbRivqo83\n+S6vw8s0hlt2+EJtknThroFr6tMfiQNnACdNEyWxKkq6Zb7pBgfqkwmnATZRUrz1FZ0Aev4TUFwo\nZUb2s8eIR8p48+bNmzdv3rx58+bNmzdv3ry9AXujSJkEBZ1sBFvzCucLOX9+eqUo5Ri29JSIXbeL\n4sCKInXVQtHP0oqyfEfPFZnq9RUJe++vvm9mZu9/8+tmZvbRn/zAzMyGL5ThDCuw6KOKcv5U/Chb\n1xTpaq8ognY60HOnmZA4q6gzNTcVgTs9hUtmW/X5CqzRXZiyU86hH95XZG9yKURLECjSuAR1EdYV\nxQ3GinIOUMAIncxUqohgNOQMb0kRyd09ZePmZIQ+/VSRvuTRim01dU3rlxVlbL2ttlu/JLPH+dpT\nzii24UqJb+2ZmVl2ojJc7CsKurmuPmpVFVV82737meo4uiSLdYUSSUvPW9l6vTP+ZSLvI1QpYs6j\nLzgFH5ONcWMpJcvvVJsGZEWqZLfmE7JYcL4UUzKfVV03I4pZoBLlRJGypdqvgG8kjxU9HTl010Dv\nr4V6zij/aX6SmcuoQogUcd49JctVcPbWoTuyKxQOIseBo+tGKN7UgVmElGsC+qNE5H7SAs2AYs6M\njGirTRaLdpmCAlkCp2jlKD/Um9xPuzkun5dZJM5714jrgnhxSjwZczJHSSGNXL1RhIB1PgKpU0ZF\nCtCJ1euvrtK1nBP5rnKmHvRA7BSpQPlMJpzzhmOmijpDUlafZ1OyFpzHDRxaypFYkVmb1UCUkPls\nLMnK0JZ1IvAFZCsctbcpCc9ylbHhOGscJwzPyYjAB6Cs4phMIoibEM6WsAHKiaxaRlY8SklLwdFS\nIYU4hxOn5lSdSBI5pFGGD4hTtWdaJhtONmcBoqYEOmu+BBW1cHxDTs6JMTUiQ4tfcyiAOWz3tcIp\n9KAKBbdWCudDDhlYlX6YMBdizgAvs9dDQSyu5LuOUVyYTuXT7twSa/+YbNXwUL6myVxZ21P28Oa7\nQi/0H+i+Lz5R9smY891dMsZtZVSmKCmMznR9DvKoNCTT24Cf6kjv6x8/tfaOsiwHrCUr+O1pqrXq\n7FS+f9nRROnUdYY+p+3rFb0z6Qp5kkwcfwQZ1KZQnTGqRI9PyAJtauxsg4zZ3lImbU4fTEBkXJEt\n730qROThqfzUCMTkjXvimrmxpuesreo5z7/YNzOzhx/t81ytbZs9rUN2XWNjcqE2Onqktb8/0HNn\nT/SeBmoll0OtU52uxmBnV2twEzWoJsoQFzNIFF7RHOo0hP8kbKs8AzKOI/g+CnzORknXxzWNncaG\nyre9ofZskQGfwgeScB5/PlA28ot9OA/O4E3Cn8/gHWmAFpkvNBdPUIxziKOox3pa/nOVmKSWoWSU\nM/cWoNGc70hZl0ohnGvwcqWg1Jbwn5Qqql8DpE4Ej1QJkZESf89B910OVb7qFNRKI7JoqTHahqdo\nxj4rCtQ3Jw/gMSvUxnmEAplTCYL/LL7UWKmh6JKBvFld05xZb+nntAu67Bz1zUsh2NrID0WofuYz\nMpzp6yHuliCayygrGrxCxh4ibqlPeo5zBo6EHnO0jJ8vkAvqsLb2HZKIbHuOSlxUZQ0faGy8VAME\nrVAH3BWBnpiy7205ri+QQTOeW2IdnJfkp0JU5apN3oMaUwCCOx/AKdFUuw3Zo9RAJcfw5Q3ggGk2\n5CsC6jNlHVxxyCAUMkP2Gilo2zxCnasOogeeuRxVphwU12oo33cBunkaOs5HuH1QtCzjvxd/Tuyk\nHZsNaigewYlRxA5xChIJxGYE+tl6/P01Uth9OE1GB8r6v7WuOm7y7TLsaaymw30zM5v3QEpPHbpW\n86eOKt4mdW2vgaBmH1Wvgwpmc3FwispaVe8fL9THZRRs2xtwBybwY4A+630kpImt6HmdPSFr4itd\nt10HwXOOQhi/R9v6tongMmtdwdfD/vL8QH6uC6dlBd6R4ZG+pc4uUEV6VxwqO+taPw4KtcvBY43N\nSxTWOhP5kmain9fhoVpt6hvPqSg55PqDU7fWqo+XIE32I9RoQfRtJrquCRKnjsrS2069qaeCu3Wu\n6Li9C6pGVdbhGuvZK9oVpzIur/TcziPdv1hVu979Ksgd9lwffyY0ilsfN0C8RPC/fPQT7Uluvqdv\nz727as+rPxDC6fFH6o/JANT41pe+r1Sa2O337tl0W/f2xqy9z3XSI7hSmx0/0Pdrq6yy7dzcU5n2\ndf2LR+qryZU4XE421bY37wgpc+Om+uoHL76n51+pbd95BxTuueb3yb72aVX4jIYVoGrXNVa27mov\nc+QUDp+yp3hLCOUb7+pb177QXDphT3XnBn3W1r7u/Ez12kK5bGNLY/JiIH90+hwu2xEIQ4eAhFe1\n3kCVCZSx44m7hkJkD7RZegHX1uRnf9t4pIw3b968efPmzZs3b968efPmzdsbsDeKlHHn+c7+b/be\nbDly7MzW3AAcgDt85jwEg4w5IzKVUkmqOt1tx6z7WD9BP29b982xqlINklKpnGImgzPppM8TxnOx\nvh2pKjOpGFdxg31DI+kObOwZ/1r/Wmi9bK0owvXgodSVDWro46kiUBcDGCIBObR1UJ3n+p4VaVhf\nx2ccdG9yob+vPVBk66tfK4J2Y5HMsT63Tf5l1VckbTpT1Hl2KZQyJdo8OQapAX3qouDdhfXQ+1ZR\nTOeZYl5rXUWdm1uKjqdjVPUnKJqvKZK4i6NFB7QtJjp6BZqZoCI/hp3hgLgsZqCdDUVXdx7Bnpgp\n0nfaPzUvTxRNbL7DuemeIsK7v5brhYuuwh9GRMwBode2FJWckA+3uFIdbg8VlWw9I+LeVVQw9BSp\njdEBmvYUhQxrqutKE1GauxYcBtrkzlqtkQA3jAC0PLEIJEDDnBz/iPziOcIXURMHmREaBMAfVfRF\nXLROQjRWkgpsgCb50jBpxlNy+3EMyJv6OaMeFfKRCx+aBOryblPtNxjDDphbVybyLwvVy0EDx7In\nArQJItgTc9gcddw1DK5ZNv86R18lwGXFI5d3gqNOFSS2Dhi0aOPOgQvUAsZLAJvEg53gwaDxxrA3\nRiiYg/oDlpkxKFSEu1Ncob7omGSghhB/TGpUL6t3Yt2o7lKmIJEJyFwFxodTJ/KOLkeDdQMjETOH\n+RHCMsoY9FXYOwtyaK0rQ8L3mzZn3sDAQXOkzjMuEFPx6AtMd8wcNGkRW20aXIRg9FTQnMmt2wTC\nQxmomwnVplXQnRkONpj/GM/8BSRofl7cF7CVcnL7HVC2AF2IAp2kAv2hGUhmhA5VRi5/Zik9sLYc\ntK8c3Cwi6mf1kWIYQUumgM3zdgqLpOo5rGtUChPQg4TRBtcAACAASURBVO3mM0ZSGCZRCvOpAROp\n/mlMmZsC7RhYI03c69a+0BrmDvX8H46ErN97KBRq+8mB6oHG2fml9FxCtAh2f6W87p01Xa+BzsnL\nf5HLQI853rCst56e//gHMXdGqdbm/vDWNDogoSMYFAshZyNcIWasR0+/FmtnfVNsTsv2DGLtlbfn\nTGyr2UQbdzvKNb+E8ei91nq/u6tnbeDO56HZtTxVW1/3hFr1B6rX9Fbrf2VV9Tl4rD1wE7e9ykzr\nRB9NgD56Fff5v98USpXhVDXuaexevFfbXl+R572u668cgBiv6bqLa+YmrLXdHfXBcIELBm4UNe9v\nOx385zJBkyaD8ZEc45ADmldjLTEgqynaCzlOMnFF7Z+ead/r5Va/RH0+Ttn7b2GhQXFZKbTPulXt\n/QH5/CnWQ8vlDfdhX4i1t9u5sfIXrLFuKzLZNu0D6l9H82cMkpzesE+gA2U1xroCfM0ctsR4iJPP\nAAYpTKT6tp5/aWAwwdYLYKlYRtA8bxq/QI9mCoMRZ6flQM84ZIx6iHlZXZ4cPbmGr0rVYYhM0CCo\nVXQaSIZqy/NYc2R6SdvONPaWaI/M6qrrx70FLS7308i7puiCxs91lvLRYBmge9Tpssel2gwnuOR1\nWb9y1vUZbnQxe3LdukfhJDnxcZikj13cSCucOezZyIfdFI+hmdbQ54BpHaLt0MQ50aVv25Haf4Db\nnqGPpzXqi9ZNjltIhTNYiD6cZZMNUnTnjNrbncIui9Q+KyN9f8j+UUPPZIhDm7fEgRJWcp6p3sGS\nMVVTB43sGO7r7/VQY9PqGhXor1jqUDhnn2T/NsaYuZuZWh+NIzR7EvqjA+PR4cwzhE1oOjhtXpo7\nlyU6Q4Vndct4Rl912V5DOy/Rula1bH/OoX5kWbO4mvHOkMEoDtbVtmt1rf/zd/r8HAZLjg7HDeh+\nlXl6hh7cfc6RLc6V15z/J1caQ2+OD40xxqyuaD2q7Wi/GcMmzaa43H2r/SBZ13r+EJ1Ob0m2w0Qu\nU+ED1Xd9HQ0T9P1OzzRnL7sas5v7+txX23LmaTfFDDl8j/YN+lTDK9z39rSf3d/V97yIdXAES5gp\nMWbfWrZxd+L9YN4T4/MIBqJlxa7jRuvi9Jiqm8y6p3fHech7Auv5Ep2rVv0ThIeMMc222ne+1Jh9\nf/K9McaYGQzL/Qfq39qa6hWFqu8QG60xWSSNVfRe0HZccM5+8Ujfi8c4IH2nM8m0p/4ebP08NwaH\nQ5M3Z6bLOrPWVV8tvtQ68AHGyRVnkb2nYso82NO7X/Y/fmuMMWZ0rrPFDSypq5fqq7WW3osffamx\nZJ23bs50/klwS7r3S8baRM92BrPZPcUZcktttrats9E2jJTzM7XN2+9xIkOHqMsY7p2rHkc4NzbX\nWE9ONLFvfDJXWAc8sgyePOE6e2h1oXFWWB2gttbXIczM8UiaOS/2xeSpsn/dXsh9anL9t9m7JVOm\nLGUpS1nKUpaylKUsZSlLWcpSlrKU5TOUz8qUKVBdv70VWnf2Iw4suBL5aDm0YGs4of7vkBdtke5K\nrt+nY6FJ8QQXj1DR15szRVnjoSL5X/zvUq5Ob/X52+Pv9H+Q67V9RbYWQ33v2rILUhDOG6KkmSJe\nbSJ+IZH6Ibl4p/+s6OzTZ/p++9di9HioOM8m+n5BaGxlTc/XWiM/Xh8zQ7QZzifKw4zIgXbRD6iQ\nd/7hLQrsDxShO/iNoqP1t6H5pyNF6Y4/KNp4P1J0bxvdm3GqtnES5QGmhepQONwLbYOcyOzbYyGa\na/dx5wDRM131VQF75zxWW1i3jDBQPuFdiwejJYeJ0USvYzYil9YFfXZAe9DVaDnWwQt9EFCnBe4k\nPl72hudLcJeoAtcsyU/OQ4XaHUeo13yhz9dhD1RAHiyy6NCZS5hCbRwSfBy0FqBLFSLwfsM63cDO\nIEpdoDnTBM2bwLgpQu6P2vsYtkKTqHIWgqqhWzFv6foprI06eeVL2GEGPRWDc8SE9vQ8ywSCTVKo\nPjOchzLqT9q2SZfUxwK2zoDnUL0i2A8ObJQF7AqrF7IEKfKN6jUKPwFxoA0jELqEuuUgrxWrxE8b\nFGia+CBvOW5IVVhTDjoa4RTGjTXCQZPFscgbfVLDbWme4shSRR8H9s8MRlyOTo6VuvHQNSId2Pgw\n8VJ0jxwYPBF9mloXKeuOhI7D0mq4wIhxHFCTCmMCpLOac38qkC1q3N8yYECqYeRZjRWGpMlhNoZo\nwTggvwmIYsxccGjnjLEV0scuiOgSLQabwx/BSsu4ztLY68Img9EzZUxWcP9I409jQaw0UN//e91v\nc1Nr1RX6Te9+Eko1GGjNerAUEpROVP+zH+VUd3GhNWH3qdglm/e13uZonr39QejgaV8I0CpMyr0v\ndL2Tb18aY4w5nggFXF9XPZ4+um/2H4glGh0LVfI7Wnd2Dg6MMcaEFbVNC3RodCPkcM69pxP9/xwN\nlPtP0fpCO6uHlskCQ5guuethHQ2Bodr2z38W4zHBxWliKYjINhz8Us+0u6V6tR/pPsml6vHqB7Vl\nn+cwuP5F9/W9qNDYu2Wer26ApN7T3jsYqE9qOC620Y5xq+hPoOkyQs/Dou+XtEMyAm0HUb5rSWAa\nzebsG5nWUd9RvQrmYqMrZLSGjoh1mhhalh3uHMsxTFHrogTLreWp3WkG02joelanybDPJNapJtRz\ncDtTrAi9q6/CTKFdjDGm9tyYDGQ8YQ26vUAv5BbnMlgJdeZAHbcUdxUtC84Yfo39C9eSgLVg6aD/\nsuRsZVkKGQ+EjldeHZlior4KYbe667BCjQ44Xdb8wBM6PYIlNcb5qg4juo7ew0oNt4509z884xQH\nqx7srJanNq3Azq1U9YzeRP+fwcRreI75lGLdhQKcTCawlBpNPeftvOC5YBWxjiVV3KXQMGnA3vU4\n58YwPOe+ZafqPhE6bjPGRmzPEKz7Cdorac75mX3B4FI0M3YfZI+N2MthTbVxfUpAiN0qTB32seoN\nLI4Vfb4Py9dpq99CmO5L9AXTmq7fzfT/RWTdA9UfWcxZk/YqFrQ/TM7GWGPKOvcsWHsa1m2vZtlj\nuKA00ZzAbarCPpLVtA+t/kX3RiYxXpt+gtnkwLZbTux+xdqD3pULIyqZ9cxdSwibyzgaswl6PR1X\n8y0ZiE3QpO+GsJyOz7VHfXGPPaWOhteJ3pHG38POxWF2tKk6NnHVm6BfMf4BN57tdZ5RbdVAByjm\nGXuMpSZuekxbM8Xlacn6yZA1uw9Vr+mRxuztle4zCrTOxwuodpwlmmzRy0TXq6GjFOBg457o+69e\nil2QPETTbE+MlO5TvS+k+aExxpjrDzjMwvwcoK0yG2g9Wn+ofSzDOWyKTlF6qXcxf6z29xvq+yrv\nVgPea84P1c4zzj72rJTw3hHzu8O+46HXN7HCgc8/7ZU6WNf+dgC79hZHx+u3YutGMGmePz8wxhiz\nhjbR2Xu0NK0OoLGsPY3hBbosQ842W9znbaTvz670rhif2rOqMYenl2Z8c2JW98TO+cUvlEXxYF/n\nlukJ+j6p1r3r+Q3X4vyNPlEnUsaHZV57FfXZ+2M9U2NVY/zBE32u19N1hmeq0+5znasOnmgsTK50\njrqGVeXVdN3gF+j94Pi4QDPm9R+lgZP+Um2zf6B9woURbjg/b6OD2r/VmHj3VmeWy3NcT2Eudnb1\n/zZjazRGRw8H2i8OVN/epf5+8p3G0EZT7fHiV3rvT3mnK5p/OwugZMqUpSxlKUtZylKWspSlLGUp\nS1nKUpayfIbyWZkydaK3VYLKc3KyrDrxFXnvNetetFD0r1FX9HnTKKIXov4+QPfk+L0iVfuryk3r\nkId+httR572Qyiaq0Ql5lSl55K0u7iOwBhrHKGo7RK1vFfnLlopOO39HxH5dUe8Gei3Za0Vxz4jw\nPXz2kOdTBO78vZgv7gJ9DXQBTEORw7Al5Gi1oejzMVoIMfosTmp1UvT7bKCI4ve/FyslIH+yvbVi\n1nC7mVKXK7zmK7/G+aqmZ9i9r2jg6Ru15fBKz7z5dI3fURnH4OXyQvf0L8g75rqdXeUyNgP9Plyo\nT0YDvnjHUpB3vMhV/4Ic/UqXtlrAEnDQEEDjpMB9KGnpOQLypRfkEdfJIS0y3JJgX/kwU9IAVgH5\n3YYxUscZZuiQtwxLopLqujHsqQhXotEIlCckDzsB0QSRrVTR88DRICa/uw2LYQnzplKQh8j3c5xs\nGrA25lZXJLUMEz13DXaH4WcyxjkI1DADifVxaanSztNI7ewkICvoYUQV3JnQNRouuB650DkIQxOU\nbRapnpi2mGGLdjCghrgK1PvW1Uq/WwTgLqW60L1vK+jz8AyGseIzBj0QxxjGh7MEHaYtkQwxDi5A\nLohcjYg/BBITk2tawaFkjnaAj/NVDOpSRX8oYB2Zz2G6kPdbxSWKJvvo1FXgejHNYBFZ7Rk0rAoi\n/R66RRmIawPmzwK3Juu21ICFNKdehWNdM3ChynCI4XMFricuY9JlzrjoEwEEG9/qFsEYcsj9T/lc\nzH0q6GnEOLW4zDEfNC0Bfc9g8kQe9Z3jCAPCW4f9tgQNKty76w4ZY0ydcZDMNMaOcQK6XoLUp0KC\ndh6wruOy9xptmLMT5SzXQO43NtgXyPc/fUN/4oq3t6b1+95joX6zES5SoFib+/r/AY5HTb9tPrzU\nnnHVFxPRvFUbNPa1ntZxDokPdY3ltfr0+J0cEeY4iN3EQp3WybGPa6zfr3BxKnBWQEMlaeEkVtdY\nmjMoHebM7jPVsdsRKrV3X+gRRi+md6z7jkDmUnRE9kDb1kFGX33Q871Fp21JG2/uqi02HqBNhi5G\nAcvs1cmh7t/EfelG92vDKrhBb67VVL3Oj4WcRtW7ryPGGFPd1vW3dtnDB/o5gg3gjK1WmZ4v3ND/\nfWz66rFlFoKy+3quyTWIOPVOmNONtr7XXtV1HBYZP9AY7d3Qnj0Yo8wFJ4JBgzbYcPaz4MXJ23OT\nTNAAguUbTiwbENaKUT8GXdUH+Q0TX+hMcnGi9uyua79vbOrnCIrNdC7keQC6aYkBPizlOewIp/BM\nfRW3i6b6tAbjpeKwB1q2aQBDYQNnmaraMOlyVoF9maboX0SWmafK++hWPNvVeXEZs16i5xYPWU9g\nPdVhWNb8T8MmQ+tuV+Hcx5yppGgNoBviZujqcYYI2B8q1syP/aePhlgHpsiY67QDu56ozyqcWRz2\n4AiGybKJiynrcQP2WYHWzpQ50Ig1djgimQCXT7dAmwfGUJd6TnFLytlvDPtRF22Y2yXaaSDXFdae\nhRU5wy1wAcvYr6CRk+i+lQUMS/ahDHelIe3RRPtsGul+VfYNJ7UMKhikuOj52E0VMOdHaBe1YNEZ\nY8xkHpgC7TYP3ZUq7K4AzbE5Ol4VzvsGlodr5RDvoC1jlToyGHt1WPwbOLNUVnUxB0et/EbP1DvS\nOn7a0rPu7GmseiOh7Ve4K52/5Bx/rHNoa4UxgsNjCps/y7UOZFWokWsas5s7uPokOFs9x4lrwVz8\nSc6t7ome5KqhdXt9T99bbYiFH8OWHcEu7fc1BnYso7Ghen3ASce6SW3tiL1QwOx8eyp2w4fvcbhF\n12cPxswOrntNxqSLhsrRS73LJbi89mGxvsBBp77/3/Q5VywIZ6zn8aMDY4wx3Ud6/gF78g+HYux4\nrB0NmJsuup5jWHjInJqiz/kad7zKOoe5O5YYN6gcFuHjF9LSKYa6gYfz2Yx+Cbpo0LzRu3G60GSu\n8b4TwnruDdFLTXSddh233U6d/3OOcH4OATx/+Mi8d6dmcCQG7+2G+qiGNmNiXYRi3fMCPboApvn+\nP0jXLefdwmozbW7p7PIGrb4c3cwqzxLCxjw70vXaH1TX/WdfG2OMecD56tUf1Tc371Q/CNnmwQud\nMbbQfpn+G/pLOJnl1qUNZlxCm8dPtDf/5jdy3zzZ0cR2x/9R76iHHuveFxqLYZ13Us6n1Y7OHA/X\nYVaP1OaHP4ltPKO9ujAXHXQz/1opmTJlKUtZylKWspSlLGUpS1nKUpaylKUsn6F8VqbMyo6imQ4R\ns2hDUdw2OWcREbQZuaTnv1ckC1DeVAshIm1cMsItISXjIzFFMtgJu+SOzV1F0F5/r6jtl5Hus7Gt\nSNrJuaLBt4lyR4NC9encU4Rrb0uRwO/+WborWZ8caRBeB6RhDdRrhMOCDZsnoGudFUXKqu/0+bOj\nQ76nyKSp6e8rddWvUkGrgiixD8JipS2q9xSp++Ir+cC/easI3bQvBGFjo2NaeLu/+0nRyEqiiPvK\nlf5eeaBG3XqkaN94rIj18bEi0fd9tfEUdKZK/mARK2r45kjRxHoNDYBd1b3h6fd1Is+rrZ9z3+9S\nHOKGAffJmqDv5OA6RJjzMWhRHV0KiCV1XJHcClooCWr2CfnZoPlVxkoB86ZKrqg/x1seL/r5CNSE\n5/LQiknmE+6jz1kXpiqOOzHR0gAnhqXVioEZU7P54IAzc9CoEK2ZEfnjTZDPJc4NVscoRkclBEVa\not7u4u6RW3YGz1ub6udAQ9wsA+4POlXJbJ43Yy21ek66n3V58skjT8jdrTBGMSYyUaHfR+R5h2gV\nhLDFEvQB5rhPBQu1bwoj6S4lJiIfwc6JrWDCEiYJedPpkrrR1wnMEpe2RVD/Y066IY/Y1DRfE65b\nuGpbCHoGMpCJDZFzhDdiEMoM+6HQt9oqaAyArkSItsxxj8tjmCeF1RtC5wjmjePo8zluRzX+jvSJ\naYCY5jBp4kBjqIKjQ2ysuxGoN2hZwRh3QV8CmHsJ+dMJOf5V9JJydIRy0LKY9S1jgW6gFbGwukQJ\nqvYLNAHQbwqNBn3q6nuTDAQcAQsf9CcBGUlgsXm4nty1+A6IDHnj57gEbH4pJOfgvwtVq7Xb1F/3\nWRnoedcea7+pwUzsbGhNvDm85g5UECS76uvzZ6+FEF30hJpeHAoNffSVmJ6DQ+0337z/o5mSp11r\naF6t1NQmbdhB7q3u0b8khx/dnoI+2NzXuvRgjdz8dWnU9HF3uCQfvAlKHN6DQThVHW7Iy55O9Uxr\nMEa2nquu6Yz5jAPB0aGe7fZUbZmg8xN11NaJL7RpOdX9L0Cfauxx67An1jpaiJILjdUp7hExbXY9\nFLPG39Vz1VtCME/OcaU60lx6+pXu6zIpk+mnjZH5NYzFhfaJDHe7AL2mKqyxhW/d47Tu3fZgjMKu\nc2ES5nZOWA2yFa17GzWtVfkqrDVYfTM2gCXMzDYaLwva063oe5kLM+lC7XJx9TN83z+8NTVYZEGu\nM5F17Ak7YsKuPMAFy1e/T9GUOL7U7y5rwhBdl+WtmFuDKQxKxCcSdP1ahXW605xtoDsSu7OPz3KG\nDkbwSkgny9PH9XeJ204bpoQT6VnDY42NhYMOAsyFjL00ttpeMP3qnDGqc1i9VptlhT2Us0kCs6Oo\nzsynlHmuOVFzhBwvrLYhunYN1jfD2SPhQWvGur9xpvBwRoQd6sLUqMOGHbL+hTA2skztEIRs2jFn\nDlhQhV0X7Rmhax0d9bkY7RSXTb+Clk2KblMVR5wx1y2M5qbrw5r20JGDyWjmsI0ZW14Be9eyc6lH\ngisp252pc55NYOGtTlWPcVffb9+o3smqxmRjovpNcRZyYUpZ57EWjJ8U5k2bs9ZsBVev4c9nzmat\naopMz7dAo2yWqx8c9imXs4zdb3zYbPmpuXOxTowj1r3RKa5BvHNE6GY+XB7oC+hFXg50rl1c6/MJ\nbnWdX+pzGwNpunTeiDVwCyOiOVEb17GzbLRxTV1ovZ+OVY8+WjHHsLe20DPbhRGSj7Tu7Z5r3Ti7\nhu3/GtYXy+mDruqx/UIMnsUf9P/bU32+ta39Yv+e2Avz9+qbozd6zupT3X/zoT7nMHdenWltuD7X\nXN9kH5v2OSNwJqtxVmluqh5OrL+f4uTzJ/RAvz5Qn26hS3oxZq9mDkYt7f2GNWjlirncU+fP0c56\nsKHnvE994x5nKlhXZzdaNztrn2blNhioX+qwhm8tu4z6tGGUL5Ya8x0yGjZwu/VhSjbIOgl2NF6c\nH9WODVje1Y6ut4mr1ARn3unsZyZpdcU33cHOR1fgGudke37LeBdY514T3sEyzq013klczru1Fjpo\n7J1+RX3joHHYbmn+HWxrT3rT13p6eaI+2t/RM3d31Her1zC1cWMa0+YhrNEGrCr7rhXjHhottS62\nLEvoRP9//T9/b4wxZveZ+nYVzZgIhuYtOp092FMn73RuzGBeWq2r3juN6Z1fSf/oxT/oHGnjBKc/\n/EHtRhbKGmvAXyslU6YsZSlLWcpSlrKUpSxlKUtZylKWspTlM5TPypRxEpxe+Hn1Tjn7HjlgT3+t\nvMXRSJGzyyNF0ibk6r55o2jqi7pQpMwiEOS09UDR5kTCNjpiopz86V90vUNF7qINRRcra2hBoMo/\n475+D4Xr+0Qpdw9UL0eRusIoUlfzFQFzVxRBDNG68DwcD9DvqHaIHKKcnl0oCuw1FDmsJiR4p/y9\nhe4GrlDVpSKNH3AbaIOU7D4Ry2VAdH4yIKztdczDR0J1T2hjA6NhMBar6Oz3Qm93H4kNdA9U+O13\nysU8vFDEeHylCOvGrxRx3dzSM1y80vdzmBnprdpykgtBdcjn9p8pcn7X0geF6sBcWeTq4zn5xOEU\ndyEcEELYD37T5hGr7UagOfWG2j5TExmf/ycNmDG07XiE3gU6FJURCCH1qAXoZMwVfa1nqJ1z/zBW\nH7pz+gAngDjQ/b2UfG2YKwV51QXfd2C6TGD+BDHom8v1YHOkMHJcGDVJbh0fcLixDjrYdvguCC3s\nA4cE82pDDVLJhSp56KBk/KxYzRpQpcoEtynQuZCc1xHMmCpUmawy4HswldBPKgRumeVA1/E6ur9j\nNMeasFHuUiogp3GG61LFOk6pTj4sqRA0OrMJ3y4uPnzfB6Vw0G5ZgDJYd6YCDad6A70NkNkpLC4H\nfaEC0ZUKTizVyLKl0ClCGyWoWOsqi9ShdwRTJAHtB4A0DshkzJgK0MJZsK5EsKvmsCqqls3Ezxnt\nUUHUYI7GQNhQPQO0csagMwWsqJwxU3VntB9ofUS7j2H+JVZLAE0Cfq+AiOYgrACcxrXMF4tIMvZr\noc3Thu2F5sTEupnocibLPw1TmHG9Jdo6na7Wru0NoWUuTKqbV9pnRh7aPWg01F0h5DGaEnFP/Ta+\nALlBkywESL4801p7g0OFj/p/a3ubBtDv/anW1nsP7plFRffYQ08s3NLFVnHt+OlPQl+u0LdZQMMc\njLQurz4XW7K1o2easA7PEX+ZMUYewR5dfaY9sY4r0NlboUFHV1rXmuhaWObb6JXW8x8Pdf/JSHtw\nY1efb6Ads7undf7w3aHaAiewzacbPCsuTCB/K3Whah9e6nq978XQHMDgSBlTKw+1B16faSyOL9Bc\naUONZCx7nub8wupC3LGkoPsTGEl1GJV5VWPAW4V9B3u390Zj5QynrQjEM65YVgN5+FOtq82O2AdL\nUMcZZxQTq97LmOdBvyPCAaK1pf27C6PIbas9FrnmoNXnM8aYg6+fmm4HzQDWEp9J149xthnqvtdo\nJSQwGM1U4y9q6SwToBFnYO8VtEcLVluO0Ebk2f6HxQdy36wYs7TnspHmySDF8Qs9twwWZhU20Zh7\n1UDFk6r21hSbOmepseOg4xMucB+CRdSfwAgp1ParaxpzQRtWLOe87FRjbcmZ4q4loM0LmCYezzfz\nNYaDqsbsDYhtLcKhin0ox1lrgW5awzJZYBsl7NmWOVNhHY5xjDG39MUqbChcPabMYQeNMKsx48NA\nylj3Yvb0KvtGinaY46of/Dr3BwlOLMOFc+ycfav70R1J65db1dhGysU4nDlcHDRrXdjV6OP5S43R\nBUIo2Yz2XOVsAmvZRfOrUmWcMCYHdv+wGjsc+eaQbH3O3ynMF2OMmVcXpmrnVgHrYop2W02fm3na\nFxzaazrVmHaD2Ny1rAQwt2Ei9D9o3bxiD3j4ROfsKn22RSMvP3B2f6/5+f1YbbH/AIYb+hVNvr+R\nD7ijZfmoji1P87LowdZEz8ODUXlzLubbiPXAhXVaq+h7ja/FCLl/w3p7q/Xt+AexAtJ9td1XvxQT\nc39PjJWf0Mk8TrR+33uid6/nv1R9j17KmfDtiX4+e6rvbz/T90foTE14Dg99oj605OlYa0iVuVHF\nzWn/qa6/cqV18JvvxIIYdHS9Du6wF0O9MxUdzjCBxm6bsbO9qfrc4gB2+F7tFMASa2RaH4Oh+mlY\nsU6XrLOdv60X8p9LE3fFCuPi8pSzxAf1f5Kq/dMEtt0GzkC0z7v30uKJfoGjm6vrfZirfY6OtE9/\nUccxDpcu51BryOz27GNdXv3hX01RVE1lAzYoB89WV2Pi2d/rbGF1Kl++EivqwxsxQY6+1TtgAfNu\nbUPzdXytsTW/Ul98oE4dXNDu/510dCa4l374kzI9Drd0FtnDjbhOhskUln3/Utd7/0pjbnPN7r26\nThOHxMaW2vC+q3jC6rbYpS//pHfbP38nzcD9gd6f7/+93Jl3DzR2lzh0RQ2Yhw215Tn6eEcvVc+C\nM8HDR79Vfe5rrHz/Z42xqwvcoB6x1/6VUjJlylKWspSlLGUpS1nKUpaylKUsZSlLWT5D+axMmQWR\n59qWImv9D4rGvv79PxljjHFhF+ySl/jguaLEl39UvlyWCglZhnqMoKIo4b0vhKS8/ydF3C7JPXuA\nBoDTUgQwHilquvlQ1916oIhasKLfT24Ugbt5rZ8ZjJwmKJGzp0jYxXuxTbpbikJuN3WdyT7R7zls\nCEeRuyXIegNnnXAVPQ2QoCVIyZz/jw/1nBmISeOJnu/yTyCxR/p8e0XtWGsqAvnyj4ry7m8emWAb\nfQZQkWYTND1UpPfwB7VVzVNk/cXfHxhjjKmgvH1zLtZQa7VKHVWn3gURV9gFHZgTgF7m8I0iuRNy\n89cGatu7lpq9EC5ABc4pYYdoY8UyS0D7QbvjrbZ9zAAAIABJREFUFD0LEMKGRaFAt4oWufxDcv0X\nKHODcFRhP2U42SShZaQQqc6FqjiuIuZTkIoOY3ac/cd893AOkonmS8jnQ/Q7ljVYFBYNg1GSW1cL\nHBBmS43x+hJNAZwPPDRqXAMCi6NCDlrVHOjvyxb5+4zhJtY3Ra6ocw6yOsEJKMI9agmKFtGOqaf7\nu+iCeCAJARWegPA2x5ozXkROMLnMCSicRbaLEXpJ+qspbL/foRS0QQFCGPAMVVhJ1t3IhYlmXYgi\n1p+CsZWA3ALQGZ8xm/OMNVwaCttmLpoAGSgVGiSxCzMu0TO4iD+l5NbWq/T1R82XKteHBeaTwwti\nbDVyClhb1n3CstIcyxihD3xQFOvk5cTWsQV9Jurpwnxx0GZIYZL4aPNkuIAYrudznbTKHIJZ0+T3\n2IdpiAbOFIaP1Yrx7O+M7cC1ucasc2xHUYFzBP0wAUG1BJoMVpn5RPel4UxzdXHLWrYrZHutrXrY\nHOLT77RmNdfRXqD+mQOSjNNb0mDtQTNj674QnSXq+xfHmoMNULn7L4TmRW0hsVX0sawWWVT1zeUV\nej78bQGqfhULbemhE7ZEQ6qyqr5ZI2feYw68/N03+j97ir+idSOEyeB0tae69HkfZwKDjtvXX8DK\n7OBEUoVxuKpnf1qXs2FcUx73xiYaKugQ1dBWGSYwLJnvTx8Jgb2BAXPzXs9zU8V5kfUuWFE91mdq\nh41nQtNaK2L4XPW0X60+Vv0ePhe6tbapvfH25B+NMcZkIwbNHYtnWWF19O1y7YcuGhAOLhcG7ZzZ\nQHt/A3S9CUMlgyXXx9WuXVhNM9UnxxWjgF019zgLoBti94cClt54qnaaQfGcHevsYqY6c1gtN2OM\nmV6OzPRWLJBZYZ1zcCiawG5bqN9n/n/cj6y2j5+h52dtlQqNh020CVwc7DIYPiFz2O5bE2hwvu+a\nDutW40uNmUfssQZdGoNT1+ISlmpfbTOD6VHAzKviapTjjrmEtdnmetGW6jZhrPlWy2uDdcvXGDs6\n1NhZ3Oj3arhuPqWMm2iZsG76MN4WzNF0qbEQRvo9mKl+C5y1PE+/ey4aLgurw8ZZhHXUMjkzWF9N\nNLpmsKTqOHyNmcMRml0F52DLxAsZc7d2//BwW4KRHYAEz2rUt8+cZ+yMI5116mjf5GjAjGpouc1x\nrIT167GPOVy3hvtSZaz6Wd2M9hIWLWeNPNQYTm7ZNyONg3EVJvwQhmgLJ8hY95uiX9TpMo4mjFEc\nJGfFzyyyZGwMU8247OOLpu6TWAonWkNBavWSNI6GvrlzaaE5mDBm46nqfIRzzBxNr2dbj40xxnTv\n6d0ktXsQ2jLXvFu8xQV1eE9Mipw9fxPWpduxAk0wHGGlemiOPW5onVgZHhpjjHn3Cpc+T9e9DTnL\n7NCndj14KgZLa6k50tlEjw1xmRiWltvW2NhhbA+p/9s3YiV88bXW5bUd7TuvXospc7ii/3+5Lwcc\nq0syPNM6d7ujsfdgVe3Tm+r6N6caO2+n+n6M8+Pu5oExxpjVTTGLmhwaPE6WddjFPVyrJhuqZ72F\nK9VT1bNT6N3Oe692aEcawzZr4/i1vt+rqH9WNnSWWD9Qe921NNoa2/VQP8OG5l7qwLQa6n5v3ojV\nsZto/yxwMBpwxrh+qDm3vaXnOG9a/TzVb88yUztqjzbjrbX3+GNd+kPH9K8Pzc6uGCNzWESDS73r\n1dFughBoNh/rHvOF6jRDb2x0KZbP1qb27M0NWLNNsafOv1Xf52i9PP8Kh601fe4GF6Rgyh7yTG2/\nGRwYY4xpwgb69urfjTHGvP5Gmi+Dju5bbersEVV5P3+tMdKKNEY3Hkv7xce175t/F9PnEpel9roY\nPw+/lvtTwjk6rOnnxqrOBB56fx++05x4/5Pex300cp88Uxtf9TRnh7g+jbO/rZdZMmXKUpaylKUs\nZSlLWcpSlrKUpSxlKUtZPkP5rEwZi46vkO/XRMn79lrMlqufDo0xxvixPrfH/13y646Jto6OxGRZ\nB017+FTRvxHXCazzwLqiqdugfxcn6J2gdu/wfwf2wjqRtcuGInrv/vRnY4wxa2i7PEZ/5d0tDhSv\nFSlrVRVKzFHhb5CDRiqrWVvR/fs1IauHh8pNmzZU3+YInY0tVOt7ikBeo0q9saYIoElB22AnVMhT\nr4KIZxX9/8ZMzHqiZ0uta0RHddwFER2ePeAaio4a8rZXarqXs4dDAHG8lIhxQgR+49GBPg/CWcFd\nYgFbwCf/uOJ/AtxgjPEzPdO4bhFPGCrA8HGg67WAP8aolIe4B1nmR4pmihODmhRE+umTrAKLgfzu\nEfnqTZDLHL2LKfnPMc4+bZx/pjBwZlO1UwQzJBnDYMGxJoXxMpqTNw/CGDA4IPh81JqppLqe1S2p\nNWFTuNaFSvfxUUiPaffaAmbRGDV42BvuFDYJrlWxC0oFWueFOP7wHCntEqXkwVt2A5pEBcrrixEa\nA3VdvwNCndIOi6mix25LUXdnRI4uLJclmg1L2Cvu7O4siIA86QXCN5iTmRo5njmaKpYyU0F3Jweh\nTREBCYv/KHZimSmI0Js57Ckvtuiy1o0MbQCbqx5YPRyYOTPYCiG6GFbLBbDZRIl1uyDXHWZMji5S\nzPpUwEZzQZMcW08rweJa1ynaLrQubaDlds5U9TOFaVNFf8ir0D6wzwLqs2BuZbgL5eTJB3XrxEXu\nPvXLlzB/mBtLNGEKfndw1gEANhMaos56mTiWpYYmDYivsXpRth2yu+sOGWPMSgvNl98IAVnHrc/p\nwt4bi30wpz5tnHXcDo4GE+qV6/kuD4XMBKzvVRaTOfncc9aqgy+kD1PH4cLtq716V9bJhnz05cKc\ns4csJlq7lzAV8pme+RpbuV/9Vrnvay+Uv1x3cLuhr7qnqoOfqs3OzoXWnJ9qrE06etbkVuvF5AyH\nKFilq0+kSbMygenRQKcjYYyDHgeR2jAFXZ7jSpGjhbW4Zj3G+esS/ZzsFJ0Q1jefsXZxqXpO0TCI\nWTd3auqj2Nh8bH1v75lQPcvuGpzqe8sx+knBz+4Sdymr6yCr7NEhiGOO21FygzvUgHaqa39soNnm\n4XCTMin3cLn76HhmSRG01/AKja8lLFr2EYOeUW0VpHYdrZul1s8cBk6aaY7E6c+MoHQSf3TQSUCI\nc/adJqjf+p76t72mMemAlE9hGUQwL6ew0jLmRAtNteEt6/sQlytYEMua/m9d+CrzmQn5m2+Zi4H6\n3mOd7N/ilpHo/9YRpOmjbwabJ0151on6oIVmQbSmusxhkgxhFQSwQtdY/3snh8YYY2Y4ei1i9a3f\n+jQdiIrdD9AUC2jjyIcBA9MlXWpuxJnulzc4A6FzVCw0xiLLkETYwoN5ErFfJTCm+7DGDOtijjia\n9RZy2zizjWF1se/crOBqlKBvBBusBvKbov9ToAuXtFlz0PBqwjQZZWrfpn1OluXEt0xTnbGqoWq0\n9PW9Yqx6jjj7WYb4FOah4TyfLDQuog4MnSUOXy5sBtaIGO21vKY50cZ1aQTztAkDiSOWaVmKpjEm\n8FKTcEAIWN+zkcZBjTkKScHkrN/T0GrWmTuXzNN3VlobXEvFGcB8/EksdqsPef+h1vPohd5dfrFU\nX17iJjSDtWodtibnatNv+mIL+DtizFjW/Sqs/AB9zW10M2sV1WejRtvCnMlrGhvzXG14cQEjb413\nKMc6LcK+ReeyQOfHnl93nuodLCz0/ZM3Ymr0vhdbwcMdqjZXm1++5p3GEzsihPEynnHGutLzZ1+9\nMMYYs27EgGl32btnev+owtD0VtXXXfaDxQAXPZzPWjCHBiOYjLA2Tsgu2L2n9Xxj1TJL1I4ea8RG\nXXv5zrra4fpM7249dOeKCQv8HcscFkq+p37a/0JswhCnoNmJPcPpuve+gGn6Xu118t13er4rPecq\n7b/2TGN3fIVLox28ha67FulnuL//sS6PH+6bH4cjE8AEXDBPXn3zr8YYY1bua4x9vfL3utee1q8Y\nBnj/RzFhlrCvQvTGnFXGxpaYMCeXGhMTq+9DGKJzX322OuT9fAS7Hh273W3GMBqxz2F6X7zVGJ3B\ndB9dw0hJxYDpOhojzS+1R2+xbt9Dx8hhX3r1vdhIF+j5NFq637CveuaXsJPecO7DCfLJF5q7w39W\nPc7fqm+2NtBdbepzg2v1dfhfbDclU6YsZSlLWcpSlrKUpSxlKUtZylKWspTlM5TPypSJQQFvUV1+\nfO8rY4wxGxuK5v7x//udMcaY+aly/Nfu/Q9jjDFOFYQW5PL9nxXtXIJOffmFoqphQ5GxmyNFtlY2\nhVis4AxxcqbfR2NF1nZWyV1FP6RKblhnW1HZyxNF7AfHitAVB4qcPXis6OTRkXKVX79S3qhHznFn\nT88TnqFjcqDfWweKpN1vkGcOCvrqW31/daT7NqjvvZpFpHH6GYM6NoRMTEGiO6uKJncjRX2TQWHC\nHUVat8hZTGYgsRN9Nsmturme/eKcSPkMRPC+Isd7T9Wmf/yfqmv3VtHM1rr+38Vdwm3DYNlXlNCn\nr6r/VZjwPxUbuTc8c2FZABW0UtAeSUEWPNhCmYH9wOdcPOtjtE5y4pFeA30gcuMXiXXgIa8ZhCLH\nkaCYkq+IBswQtgGpvKYBPDOYg/ID0uT8HoTW6QdXI1CxEeyIltV8WVodDRBltIACEJAcnQ3fWBcO\n3KdojwRdj5CfC8aYgxFBhc8XFt2ifbKZxsm4icYEIg8xzBWrWZHgyuINeXCYTJlleVRxFIKpVMfZ\nYGQ1E5qgTzGaNei31EFPg9haJP3XxQEJrcBkAYQ2GRhipar/Z1arBN2DtGbbQJ9nqJiUeRtX0XJB\n+8AlB/Wja0hmXY9AqdE1WqB14i/U+U4Vt48ctJx88Jz6ODhTuYyxj9o2oCMB38vo2wx3pxC7iRq5\n8XMGW8BPq9vjWvcpUDZvDpIKqm+R2BRtlIp1eSLvPcytm5Lu07ROCKy3Lho31nkmrVpIkTFq9Y4K\n3K7Ihy5AxJ2Qfglx4VjAHsi0ttSqIK9sVzmaQH76aZhC7GusdmHfzXGHGn2v/ePyBnQpOzTGGHOv\nojz3/cdap0enWm/P3+j/V2iS3WtpjVtYvaW5nuvBb5W7/GBX6OcA3ZbepdDBOcj9AibQcD402Q0s\nINClRzAQA5gmu6DEu+vaQ5bsndc4HETA10vcHK5xXTo6EwNle19tsLEthkQ2U1ue4MK2vg57tUUf\n3Oi6vWtc1xjT1/SpPxPqdT1C8wSWQgo7IMbVZ/Wx7rfHOlF9qH3k8IM+d3ylPe8c5HadvPBqE72f\nc7X1xOoVjdVXzbH2uPPvlddtGY+jG+35mzg33LUM2M+8MRpldes4hnseTEo/1z7aeoD+RkftdNWj\nnj2hYh77SaWqdS9Gi8xMrMaZ2rGNC1U1QS8KN49sZPtH913CsqjCpnU9tWvF+4t9NeiY1Y6ee2VD\n7VOFfRajv+dW2d881XcIa7ACc3KOhc51zzIxVb8UNssI5pZJ0WrgDBLFVqdL189rFTNhLb/8IEbz\n4lb3zFh/Uxh8jarq3OjiToYzTbywmlww6mCWzdHHmU1wS0OnyGXdKRY6i5xBPpqh9ZShE7SB00z0\niWeSFuvHiPWoyNSnHk6M8yrsT1ivUQ0uCy5ES1iuBe5QLMumGmudvoVx57PXz3GkMbCNPVw580y/\nj0J75kGrsM6+YzQnAxxs5hM9b+qrvkmq9p3CrnUMyPVU9V/QLi3ou3U0y4ZssA0fphC6e1lF7W1S\nXb+AvedajTbOUkv242am749heHZYzifYJ4XWBbBi2bmcqWBBTzlrTTtz6s3+yJhcWtlBxosxxjgN\n7yOVNrZMnTbuWLCNc6slk2pu+z56H/2+uWtJ6OMGumSbLY0BvwVzAdO1q7f6PUd3rg2qvrUNQ31d\n7wBtzovroPejDZ3Lf/wRB8CB1tEN3HVuzsW4XHJmaB2wnlvXIvQwW+j7rLXUFoOermsJeyM0SVJH\nfTVkXQ93dJ/BPZzNOOdFOJx1IrRVIjTGlswVDlnb0GQn72BXjPT3Dto0K021fcFZ6GyuOeBMOPvA\nJM1Zb64K/d6Yofu2zloCM3Da1xjuhjjkwkK+4r1hzP51gdvVbV2/O6u63j1X66zVh8txAHI+uidx\n1vLv7tBljDET3K+uDtUv24/FAtnGPbGHs1zM/lyBbbd6j+d7r3b98c+Huh7OZjXmXoHW26yv688C\n9hEY9veKn+u7+vye2RhemIR5tPaV+u7wO43hCeef00j32oOtu9HUmBwEGnNun/UANtY6be78Qtox\ncV19cvJS7KnT12KNde6JBRQ1NAfiS/39+A86n5nneoYHz3Uee/KFzler67xD9MWoucAZa3BIxg2M\nmojz3e0Mxh3aMLVA9avC1r+8Yb19J22ZnXsai7WlxvyPb+TW1IFpuPL13xljjPG7GrvXOE727qFH\nx/I/uFU9+idko/yVUjJlylKWspSlLGUpS1nKUpaylKUsZSlLWT5D+bxMmakiWVlPUcxsi5zSTUXo\n6qBc6UARpgVRxfubYo4kvxWz5uW/KRfs5lB58ZN9RRtbTUU13/xBeYndV/re7m8Vids8U+S7/0HR\n4PGNPr8xVFQ0WlXkbOWemDDLVJG7/pHqfXaCB/xvfmWMMearX6o+jYaiyq9+r8+Pr0E2Joq8peQQ\nh2uKwH3xFdef63PHR0RPQdserYjNcv8fdP0J+ewvfxA6GCws8oxWBEyfmJzk3PRNluleeaRoXwNE\ndNJXVHEIErezpXstUNL+8799a4wx5kvQ/609EDOjzw9uFfVLuI4h72/VOdDnQbnnPPPy01L8jdNS\nFLTZR+m7i4YJjJWUHPg00hhqg34kC1Az9B7GQ7VRtQbSiPPAEnS+CqqWtUD6SAIek28Y4ThQBdV3\nQGlCtBbCAnX2ip6zblGXJRdqWscvmD6owA9xW6rGIOQzPWeBHlBOXmYACyrR5Y2XwEgx5IYCUiUg\nvFVQrRloUwRisHRxDsKBYQEzatpWPUKQ0CYIxJy8fsNzRzzXBIQhRNfEmcKMaYNuwp4IcB4zzIkI\n9sasBlsDdkkLZpWT63mGzt31QjKcQgrP5vbDisqsO47NeUcvAmQupI4Z6HAcoTFDLn6FNvBheMwj\n1X2Sqk0C8sY92EpLUJwMpLJa0BfkvNvc1TnInbuwOfK6Ts0ab8G8ccjpz2A/5LgA1RwYObHGUmaZ\nPLAXvIVFTnENAhUvYJikaCDEoPUe/7ep98hBmHBe4blxq0KXKEHTICKmP2e9yWlnB2bPwuoeoQEx\nB/2vkNftg1gytD+6GFkFAKvBZd3qqrA/ksC6SN3docsYY+q57tunPjfvlI89XGg93cPh4eFDaYV1\nn2ifKEDZLi9ghZwqZ3j9Ptpiv9H6ffbqnOfUOAlhkU1b+v75a6GCo2sxZXqgkmu4D/phYMwqrNGv\ntYdtPjxQ5XvkbZMLP0Pr5cPLQ2OMMbfk3jeaWghSmB3Dpeq8jebA41+KtdOHEfLutSDb65H2qtq6\nEM6wKSR15mgdHf0gFGrJAjRifY1w3roZ6JnXd4ScNn19P2ad2T7QXt5piFGZoXsxmahNFriOrKNV\nsP9YufWdXe0nLVwCMTUy1dcaA8d/0v7UH2q9fPBEfdiswx796Od2t5KiWzRiDnlz9V06AclGY2Dj\nifbTG7Rbet/oLODgEJOhW1XJ6A9P7ecxZ1zGYtDGmYx9YtpA2wwW8ZI5PRui1YPuVZXna/rWGeLn\n59x91DEVHGpmIKfTDHYvTFGTq/+uzzUGFycg7kwp14EJiSaZD51jbnWq0BirgCBHFRgz+zwv7InC\nOCaBQeacsE6ywGQgquvoYLR31ab1uu7psl6MemiFDfT5GSTKnHV8StvVrTseuglWn2KIq0aEu4/B\nGcfjTJSwl9219K2+Wws0GrZrwZ5ewbHQs1qCsBGq6E749n5oqSyr6osK+0iVfSh3YH7ADKmn+pxl\nWjrouQ1x5YwCmIT2bNJSXxToMC1ByZFtMxPYaGGi69bQB1mgVVNBa2yODV7gwzTCLXDE/SuwmSOj\n62SWZsFKXtD/C8OZxuBQ1oRhZN2S0DqrwC5bpqpH1Wh/HzR0Hu6wQTTZ75Op5qRdZw0s4yDGXcr8\nXNxZzTRasH05E6VjGKBonA1gw80K1XM+1dzJP+FtaYZrnoc2VHVLX15tHqgeuP4smJeDIz3b1aXY\n9r0r1l9c2hLOJBt1rTM7q1qnO+j9WIfH4kqdO+2rba3bXsF8nIzUeN5M93M5O+S4y+1uaH1+tKn1\nd+LAMoCh/v5I71gj1rlrshRYJk2yVH1XdrXeN1tifHTuqR5VnLgitLomnPM66+hHMbaqMCovbrV/\nuIdieoawHM6PtW/dVjib3Bej6Bq9uRbMnwYueuE6LNi36LiN9fPhqtaAfVi/N2iZXZ+igZPq+c9g\nWYR8Pka7ckh2Q521xrEMoTuW3FM7GNysLtCUC5jjh2dqX6aaae9oXNRwz93aIRvkQt979Y86m2zC\ntMo7nHneyo0REu9HDUrk74z5f4yZzwvTba+ZAXtPc12MlK9+pTH13Uudl3oXGgPrI9iYvDNWV9QG\nxYnOHMfHqtPld9r7Vta1Hj17qvfY9FJj5cc/6Qxwb6jK7P1C5686WRnf/k6ZMkffMPZgCu4eaKxC\nxjVRS+/3e2TazE61tw1j9VFe6P5z1qNOoL+30FXbNDobBe9V79tDMQeDNfXp9t+JyTMgDpHiTByx\n3jSaOK4hQnlFfGF7X2eYJuvxeKh6/bVSMmXKUpaylKUsZSlLWcpSlrKUpSxlKUtZPkP5rEyZBAeW\nOVHKlEh/jGNNjNZL5hBVvUGf4rGilbsb+t6xr+iyDyqW4ayz81hR2qtLRfKupoqutnuKfG3u6v9n\nV4rA3QzF+thBIT3Y1H26XV3v9kaRsMqqInqH74R4mooifS9+o+jy3pp+Fr8FEQKVvLhQFPOji1NH\nn2v8n4o4xiDkfgyqhYPNBAX2zopV37ctqAhm4ClCWcfd5ZbwZ2tdSIEfuObV78SqmaP70F3/jTHG\nmEVBHjHodRMmzeaBkNU0la5CVFcEe4a7RqeCurlRHac4XZ311Cb3yEXvbBEJhvhQOJ+GSvlQa1Ic\nG/Kh7mt1QhL0RGoz60hAKLgB8ujhmEObxeg3eLRVSF51UlcfF6iUR+SHZ0TiHfLfFzayH+KKxFit\nVcm7dizdABbAUvefVGArkMvanqs9p0SlM8vwCRh7OAllWD04jIlFpMh/hNaLs1S/jRY25I1aPO5R\naWZZVOqHpKJ6Lgc4jlXVrs0FiusBz4kei5/Y+6vfxy3rzsHv1qoATRqrf1JZotYfkRe+QIeFOd6Y\nwAIBGXHImTbol5j63VkQnqfvztHZwSDKeDjEzGEvVchhB4A1C1hEoXVlwk0owc0pD/QMGa4TFnlb\nollQgXU0hxFj+D0EbbfPmlO/ZGoxO93PZ4ykoN8pzI8KmgIFLmoetK00xr0EakkI5OksrV4SqDuI\naI5mSgAjJwdNh7RmHJxVqtRn6llnHdohsk5mGgsxObQFLC3XA52b6blj6ukx1q0bVQKTJsz0/A6a\nBLGP9o1jXZxUbxPxOb5fYX+YUfEqczxNP20tWVjRIPK0vSl51ZvaH7ZeaD9Y4A6wGMJYPNfPy5+E\noFTWcREBGbp89doYY8wbVPmt+15vLKTkg3VIoN1WHgmZ+fqhnINWd4SkpA3HhFSxvorewxUsmyvN\n04sz7SFz1tvRgnWnpjZff6g9xeZrR7ASqiv6+fYQrZdL7a3bHY3xJ/v/t54JXTUfLZLBN7rfFU4J\nUUtjoLuLDhLaId01tAlq2j/a97RXOh6IqS8Ua3ipBzx6q/1oAatg9+9U79U2rIil+ubsCt03NAkG\njNXBBz2fwRnx3p7y1b/4WmjWT9+pjwcMqbuWCvtaDR2JLm4b3Rca4ylo3tWp9FEGS6t1xr7haSzV\nOLPkkerd7rABbahdWrDelmho1ZgD8xt09hDEiIE2N3Y0plZBGx00YgwsBjf42X0p9pbm5KXaNwax\nz9EOW6IDkjAHLLvODHSdCs48VcZw1OS6tEeGhlHDstVwW3RZ2s5PpZHhtvS97ppjfNbhxjZMGNhP\nFfZeU4cNAGPxvKe2nZGD7w801lptjaWdJ2rDGBZpHY2YBDjZxXklQRvA6cGI4VHCJmMShuIi/jQd\niA7OhY6rwdVn3Z6BoNY6oP2g9tMpzpB13adroPpwFknZw50lLlOwjgJc67wIzZeKZSnp6wucdTC0\nMUkOoxA2Qnaj+owanFFS1cvjbNHCyWsY4TSGk1aGQ+eSMeZXcQscqx+6K7CTGVMGrTWDzlCy0P1r\nHud5tGTabT2P3XenA9aKBkxVzkofHdNgZ8XoCXZh0MSwaWPWntC6BqaWWcp+E+m6k/nPZwkvyMxs\nAvuD8WYC9FvQJfHZLxOf5yusbt7S3LVMZ2r7yRX6NJHGaATDoYMOR51z5GVTfTE5R2yGM0l2g75Q\noTHTn+i6HszB/EB9ubfgPArDIryBperq70vYvqatvjy5PNT1YWhXA9yamFMpjL05WohW162+pT6z\nbqPraOZk9OkNrLX5S9igHdW3f6r7+tCR6gHOPGO1+aiBFsqB7rOBO9zyDL2hLbEf1nlPuQ9T8FtY\nDfGlvt+71bvgLSyv0Z7e9e7d17rcuK/7Tt9r/1zCHl75pZipqxOtLc1t/Vx+0Bj44Vrr6TOyG1La\nY/JezznpcB7e0T5558L6vmSuTpe4XbV1RijmmgMurndW79RqFgVo2nQisTy8C9VnFWegCOb6Oayw\ndo39Hd2kAdpsxhiT3Fya2bJvxuy905mevWEZjG9xOLzW+ejoe63TrZr2ihpOvTtf6doHnKveXIrp\ncvWDdONetP+bMcaYp/+H3kHjb/T/PtkWj2CRrhyIMTNmLzz/Rn07+FH3j2foviHa0lqFMWn3Wg76\n/kRj/D3nswiH4f6F+rjRscxnnVH8e5oYC4iQAAAgAElEQVTvZ2//xRhjzKu3ysS5RePQQ2txHZ2o\nal1t+uUTadzcHqDfhkNxNmTdX9XnE/9vryMlU6YsZSlLWcpSlrKUpSxlKUtZylKWspTlM5TPypTJ\nQHTnY0WUFtZr/aGipC3QtrNXij6evCfvHUVxb0/R1zbaM+MzRZOP0Yh5tKao7vZ9oXD/8v/+/7r+\nPTFP7ncV2aujTk9Kq5n2VZ9aD9SISPnjJ0I22+TRv7/Fo76vn6c/EZUGgd5+qvtWZoqUjR0hM2dH\nem53qe+9iKVi7YPIJ6hTpynsBaKkN+RTtvl/y+YN6nGNAdFITxR179bVLtuPD8xP12LnTMkhn5/r\nGcMdRbq7K4p2XuEsYtkCO+TonxOBjWFO7H2tqGBMbuZ5VWjx6AJnqAvVYTkjjxkGzrYVjLhjmdIG\nFfKvg4ploOAwAPrlRKBduC8tyMNuz2A72P8DwrhoBliHnbk1G4qI6HMdy3Bxh/ocAXozA8VxYcbE\nsCOchLxK8hiXNd2/IDragNVgUZnI44KgUg5MnDGOFDHP0cAhIcgs8wekBIS2iquGl4DyGMsKIcIO\nk8dBh6QBa2DBEhDj7IBguplz/yRQfW2WeGSdD9DkqaX6Qox1ggvq6IECmoLcVRhLFdDMMYiMAdGo\nkH9e4WuO+zPy+18V66pUMC9ckLAE14Y6154zj2LyryGwmJS6fJQWYH5X0LspgFh9UO0lDjgpCF1K\nn1rIMgedruAWEROxDxvWxUn1mVnhIlyW6uj5VGHA5eTUTwO1ddNVfVIP5JTrILRvHFf3TRaMQTQX\nliHILM5aLp1cxylrhoOYZylGxrpEqd4JDeWN0VDw0ZfAiceqy9fQiMmtuxT59I5rXaV0nYCxEcCO\nykBSHeZcaoFrxoIHSpgv0GOyjB3n0wSqMtaCIQ45N+ilrGw/5Llg/SWqwJqjNWvjuVAnB3RvBa2x\n7pqQletD7Sd7z1Sv3X2xK6w2whSkx0fzq7nNc2BLMu+hk1UEZsFnlmgCTNHduLwWynPT088uY2r3\nvsZC65HW6d0D7Z2DK6E/gSdE1uA0s4LeUVA90N9raF8xr5eMweRGOfwxzJZwA3QIpLW2orZcoEe0\n2UFLDFeNaEVtNoSZ4/nWOUW3Xd5q09pcRbdnpv3l5aHWqRYuHNW2rpsxyOevpcu2ZOHffqI+aMLw\n6FPf6ZB123xaCXGeiGFhOQiY3KJpMJuhARGrns2a2sMthAq6uI0YkMgcZLM/13UaJ8qvv0SrIQVx\njjirNJsgxSs6++SZrlc0mdvMSRfqqYf22GhqmZLGDK8+mDEskWDJ2ka/Z7G+58S6X4e1M2nj8oKe\ni+2nKftNHdaedaJMcOaJPHRNLrTPD5cad2mPNWIUmkmhvg5i9pKKZVKgeYL+0QRnGDfBHWimPm+B\n9i7mOh+GVkuLdWCOntqip2eO34HWwzSpwTTZ3OjSFqpr3Ifh4t5dv8yYv2AUMlfaS7SjQtUvgTlZ\noNvQaFqGiIoTw1ZiHQ8rPC/rWR23vGELlgTLd4IrXYhOUMjzOezONRjTrqf2XHbR8uGMkrMvmhaM\nIrR1/BksYcuI8XG9G1l3KrXPTVf1mULVqU4526DL51Zwhqypwj77oM/ZL0YHK4O52kDPZD7Xc80j\n9pOPDpE4jHH/BKblhP2gClshyO1Grt/zqupfWA25+s90uYoXm6SNm98Ipg0I+BDnnBrswQYiMpYF\nxmvKnUpSwZmqpme6wtmqAhtq/oH5y16/hWPqo1/rXSDHhW/+hLMKbNrxgDGGRl+F9XgD5sz0EnZU\npH1iivbXzdGhMcaYx0/EKAw8MQqHuO/1YSxewvxrzjU2Frc6xyc19cXkkveCdY2NzQfSUzNkDxzg\nqHh6qHebIbqYQ+oRWxegRPUco8kS4H7U5dxs1/+1fbVLwT5TDdQZU9hdXZf1xrrjsc72OEOMxspi\ngLRlDjbFnFnAwj3sq53WvlO9mlvaR/f2tC9lgRgrQ9rB7+tCdRiQlYb2pw891WPS+7Qdp7GGK99E\n46MKu/nRAzFfeh/0vvbhrbI5BocahA8fq54b25pb79+IyeN5OGHy7reGBs6HN9p3ZpxFNmHs726s\nfKyLH1bMsjc2S5ytspld+zW22rgLDafq+1N0d1LOe1Z3rLkqVlOtrvV+6wudh979s9aZH9GB+/X/\n9d/1/47G2o+HYt6cHh7qvjhAPnmitghZ5179u+IAKev3g/+G8y/7ioOmZPAbZXlcn6iPJ9fohaL5\nN0eb1fbt/Ye6Tpsz1NcjjcXDP4uhczZF++ax5s60r7H+LsNt+RYm9D7Oll21fb+vsbHsaU5Esfr8\nr5WSKVOWspSlLGUpS1nKUpaylKUsZSlLWcryGcpnZcqELXKDYQfc3iqa+vBrRXO3NxVx6p0Lbbs4\nVyTNR1fjyf4vjDHG3H+hqOF3p/+qzx3rc0+eKKLVWlXsaaUpJKGak9MVkovWgnECKlbBYaF/pQha\nBTSx01BUcv/eC2OMMTP0TSJYCtc9RTOXN4p27u8qyjv2YEVEOBXgdGOR9MySAmDk1CqgZiD9Do4X\nt+8VDQ0f6bo7oIhvT3Tf/plQxA/kVzbRTak762btodriAgbLy+8V9fvV6t+rrk8U3fzpd4rqhSBt\n8y3VeTxQhLagTptrYsrceEKJ140i0M2u+vDkh0NjjDFxqu+7xqIin5a/Ddhuig6aLOhKxFNQjVht\nNgbZ9Mn3zhaKluZVfW45wrkmJ8feouyFfjZ89bk/VptNyZduOEIilqAzC9womk3QF9DzlDzqORoq\nPlOLLjDeCHSsRh45uiEeqJDb0VjK0FmKWjBkIGHkIKTzseoRISzkRjBvcFyYe9Qr1djy0WKYgdh4\nsDmWH0kRev4KzkEuyK5TT/k3DkMuKv98sZ0LWZjC4LG6KxEomhOhKbHQOKqD4sU4NZgAVy3qvQCV\nykFEGtndWRALGAeWlbOwrjywcuYZ+heWDYULkgPaXICURTHaKbgwuNb+B+epeW7dM6wbHPMVVyY3\nA83HhagC48YZWzaVXXd0nZC2KiwzxuZxM+YCdH581qUCHYo5jJkKiGvGGHbRtPECcuZznBcK9H0Y\n8y6MGUN9fHLvYzQQctrRoFGTTNAqAMnMQft88rs9EOM0wPViYQWk9HPBdSL6qeBz1uWjal2i6BcP\nbYC8gPkHghnWYAqBrOa4hdy15InYDrczUCU0bbKB9pdXp6BJH7SmzQ7UHjv75Cqvqx1rvhCQcQ/d\nAPrv0VPlpU/pl5jxVYcNN+6CzOL+dITz0RyEfxDfmmpmUWH0f8BNklz3qpKX3CH3vr2hdX1tR4yR\ndGI1pJgLoPSrq/rZaauOPn326k/kc59pfZ9PcXhhDAxz7Rdf/kZ77fZzoUg+rmweYy9kHbweakFz\n3uHOBwLaHOBOUdd12zv6/O6m9u4PZ0Ld5hPtPzuPtLcdPND+8e6V2BY3U/XV+houT5GucwKSOHvz\ne2OMMUvcgZqPoVHcscwZm1VYY3OYfwmofwo7o732gOfWWPSsM5B1fqFdDBpuSYBrFW4ei77axTQ0\n9vswUaM27KwWDpTrev4r9O6mh+qPUazPW0c2q0NljDH944Gp1HE9wQVrVrA/MpcykPwIBmkKE3Ux\ng+3GftfeQltmA2aob++juXIz0t+vQNqdoebIaltzZDi8Mt5MY2WG3lgdx6ildbnBH6eAdRlUVfc2\nWigu+jyQuczFmebNDAeZnPUwgxEZIgXi+hojfkN9lML6iWn7m2P9zNFYuWuJcAOdsJ5W+XvD17Pf\nctbxcHz8+UwAY4R6VCowV2DnGjRu7Dl0FWedjL3WZU/MmzgrYjuyOuNz6OixjBsPvYxGS33hsu8U\n1ikHXb4wU3+MQdmrM9YeGCpD9qkV9IdSmEVz3EzcxI4lnNhY/6ewbFP2mYKzhVdTfefoM/mg9k3c\nECcVjYcKCH0KqyKB6VpD3y5j/8jQPpuO0G9JeU5YYXHV8nyNGScNU8cB0qDLN+P8HtKOAZpnc84o\nlkDbxbzLXJj/sgSsA/1z7SV5pnm8c8A7QEd9OfhJ7yrWZWeOjVETTce6A9MbRp0dcxNYY9mpPl/h\nXaCCxuE6moDxWOtp71BzxpvAAIfBbiz7l/VyzH3q6PKsrahN6rybjLvScLmBqX1zKdZCiGbNgy3N\n3W1f7NNoXfffdvTc1Qj9TFp1GbOuwU69PdK69u6Q9Qoty8oGmpebeveq4Ra1sa12mid2LVD9d9Ca\nfIdL1NFbve902S9aMOQvPqgdbsZkMbA25E/FAGpy/7WvD4wxxjR4Z/Rgbjb39C6W9tVPK2iy3bU0\nGrw33BebZIbeVJ/9Zv/XascY7Z93L6Vv0ozUjyvoouYL9YPVIXRgME4mZH347OcwevJ11buL1o4x\nxqxtbJvLlXNTmXCWZ77aPWn7uVhczR2ct95pDxiMODct1Kb30Y+8xmFrC+bI+Ep7ycl3YpZ8XOd2\ncAR+pTa8ubQOWBpj3d0DXfeR+n5wqu+dnuscN7zQdQMyZ5a8/4awgB79WmP4tgf7lb39iHoMXyqL\n5P1bMlee6TrdhxpbR+jHObcwGtGKzHhvSN/q7+eXmmPrM7Xps+fKlKminRaQfeKYv73flEyZspSl\nLGUpS1nKUpaylKUsZSlLWcpSls9QPitTZm1VKE6jpSjv/EIRt8NXRP2I3O89J//xGvTtXFHlqx8U\nCdv7Uuhf45G+n5Kjv0T12OsSHd1QzliK000Aa8DDPzwGEUiJ0M+O33MfRWF39xU58yJFvFZwqIhQ\nwD7+R0XKHFxREpDYClHr0FMOW0SS6uRS1+1dKlq8toY4A2yQ2oqiyg6I9Jvv/qj7E6Vubei51kEv\nFyC0zlL6LkOit8Plmdm8L9Qo7qst3x2qjd/8WQjj1jpaLQ1yyvk5BzG7OlYUsYJafP8BufY35Fri\nWrG5qejgzSUq4tYMqUXdIutAc7dSoEVShaGSwHypNRVtHMG0sDodS1gKTZsIDDOnwCAgQ/NgBqvB\nAS3xrFMC6vg+bABLqKnAoqhW0bfAEcYFVZlF+mBrqRsNUU0vmrhD2fsvUcf3yYGFIeIjpDEHSS5i\nNAlwbsjQUfJR/HZBBTNYIbmjnzXyPR00CKZ8r4n+h4MeyAhktQ0rw+bJQ2ow6RzEtI2DGC5RAY5g\nhpzaCP2kOXO1AmqWwO6qoPZuGVKZ7X6cIAocLDzyRRc4KNWyu6OXHkn3/gTXixp9jiNBTI59YR2p\nYrVJQM6/deZapuTWL6zzFW2LfkcAiyHFwcQyXRJYBSkuDxEIoYO+jweqUUEvxIdtNMMNqY7WQp4A\nYYJyFIzVDLpVxhj1LCIcMoasixNoV0wuvhOr3hnPH0EVWkAkso5XIb+7C6uDQV+h52RAWRYuCCMo\nWsSYidHeMYXum1DfimXAgMTO+WmW1g0ExBek3LNMHs+6MoE4M3YXUcTzW5etT9OUmWHFs/VE6+W9\nh9o3oo6Q5NUeWkSwCn0Q9P6x0KWbd0IJ31VxMJiL4TKzbDYc0gwMqoI1pu1ZJqja6QO6JOMJbk7s\nP/XIMQV52BDbTABba+IKpn34SPnV9VXdo9sRQ+bshNzzP2pdvyZX/tF9IX6rq2Iy9mEDXfx0wrPp\ncxVy+Ld/qT1yyfp1EKot1je0f0yONcYuL2G2gCZv1PV/D+bEIXv1FCGGJc4qPm594bbq/2Gq/eei\np7bYeyZkcPOekMPTUyGXh9+KBVpF96f6WHtvSNs9uKf8cfc+jjhn2pec6NPsl5wEVgfrzwZ9HT3Q\nXmxd7WL2hxs0EnKQzNDXc3mwQUysMRAw5hcRDKeWzhK1FnNM3WgSHBvOb4XOTY7VPmbI/secjQqd\nfSopbJLKz6wxJ2ybKiyzLAB5X8I6q+L0A/stxvkngNFjOLvUQQODVT7Pvnd8oTNRH82h7Nbqcggd\nbK9oLgVo6kRBxyS5kMq1KuxJmMcO7NYQhNUyKfwZLE3WVR+WUXNPzxzCPJuMda8rNARdqDTumtq2\nQ1/MxhpDb4aHqvNESKyDBkGXOt+1ZBF9YZ2tcA/q4O7nwtAoYMgsYD7nzIHUMlLQxyisC9QUzRjY\nTGkfBmOLMw9jM8NxzcelZLZitbnQKcHh0ofFNUvR7cAhcQELr4G+RCXXdZucJSaMHRd9kUZT/WfZ\nrAGucgHaZBwRrVyf6eKwM4d17CDWWBuqPZyIdmOOZCPVs2jD+nI0ZxcTje0G2joT9tOIM1J8Yw9n\nmqttI4qUC9stdtSv0V+YnWTxwsRoYASpxlPu6XsBLmA554aU5wtxtpz3zZ2L22YsXuGc6Gi+TPc0\ndh7AhKmxR5+cad0esPcP0IAxQ9VpMYVtFbL+8e7iMhYXdf29zZhvOmh8XcPSZb6PPmh9cWEZBTX6\nFD23mdUyI6tgpQMTBMZIaDa5v9qwd6j16eiM7/1SbfbVqhiQyTXnV647x7krhkVbX1Nf7m8qOyLq\naF+qvlefXL1TuwwH6uPjUPW/j7vQymON3RR3p/d9tXMd5uijpurz6hs5IF7h2rcWaL/aqGmMzGCU\nhmhATjifB4Huaxkp2VD16g3RySpwLmvwroa22V3L7VCDanGj9nFhwb3+nbI+9h9rv//6f9M+/vIP\nas8+48Jt6ifkW7MPW9et47p0zfVhYCW4XS0uYdK0px/rcrNcGFP45ga3yZf/rvfs2pbeTw8eqE/X\n0cHpklHSG6oNXv+LmCvjme7RYr5b3aIo1OeyhVhL06k+t7ujM0Z7S+vy5bX68Ls/qc+a6Lkd7OOa\nTDzg8lpnmQ8XOsNYvdEh72TbEBBvOV9OYeZ1ycB58hUspIWet8ecu93X2aITsqfOOZ8b1qlCc2mj\niVPXlurlk/lSoOGVcv6FrGo89qfUOsz+lVIyZcpSlrKUpSxlKUtZylKWspSlLGUpS1k+Q/msTJkE\nP/SVLsr/OwopJSAAl+eKhO0eKOq5eqBo4Y/XQgUHh4q47b9QBG6tpijuu0J58icnirCt+EIqNtcV\nXV0Spc2t5koVxBbV/JUctGhb9y06ioDloELff6fo7S9eiBUSEaFbki/erimCVoA+FWjYBERht++r\nPu8uUEq/UdR1ZUtR30YLhAfHhFV8111Qwhi9l+q2UM1HT9Vu2QxU8Q3RdMC6/iAz20TE979SXmBI\npNsDdRrEipwPrxWJ3llXW97j53lT0cAlEXe/iksQ7iAVEpU3vtLnG7B8hodCmafoJnQ2FXG+a6lb\n9B30vIJjwZj884j8bJ+oZgJ4MoOik6PK7s9BFHGkKWAbGBg3cYxTD+jXjJzTBNZEXEebZqHrNKuq\nR0zfNojkD0E+W4yl+USfc5voa1gGCuhOnShtmmlMVMnHdFpEU2F9LKyqOujhZI4WjAujhBzXtIO7\nygBXDzLeR8BFNaK0bSLpBawNL7MsEY3RJg4KzkjtarUlchwbPMR+YlBBH0cdDBlMOCO/k9zlwiGv\nEqcJUwiBnqWKtrdAJjJU/jOcGu5SrDxOgMvQDNebwCJxFgQOcKewTJHAut7AZAEtymEthR/zuPVs\nRcGdYCWloNbuQs9aB5Vesn5V0UhZoi2SgWJVqVdjbllOaMYEIIOWUcL33AoaNKmda+gC4XaU1HAm\ngPmT8jxZOKV+MGBgYUQMrSkq9R753HPr6JJbVwt0NGiwANR/YZksIBIeYyyDGZg6H22T9D3YT4V1\nQEPHyBJdIjuWQGKXMJJc0L+c/PMK+kgZ2gIm+bTtqw6zcbOhdb0C+nfyrdB/6+QWhhqD04kQouux\n9qEYxLZBfQuswipoxczRTriPDscIJ4qTt7pOfyyUrYVeyMGu1uKtJ1rHR/nATKaaL2tNrZ/VNi48\nOGB1Es2bMc5c/VPc774Xk6Szpmda339ujDHm4b72zAQ6z+ga16Ou1uFN3C1WVnH4QhPg9kaIpXVU\nCUCbjn78Z7WlUT32mmrTZk31nVrmG+vPwTM0CXA8SZmMYVPr3atv5GxQQ6skwNnKOkAcvtJzra/q\n83tP1GbtHTFprLZCagFKmIoJTjhe/ml2f05Vfdhd1ULmt9C32NDeDghmlkdaD1PreuSwLrIvOqzz\nCc40eQaCjT5VeACMN8Olb4xTGvnySaz2rVmXujqaBUbt6aDRVWVcJPHPbnUr7rYJN9nfA7VbjX0h\nNno+u69O+VpOv0SsBa5v2YIa+6c9nQvGaA+5t2i0Rdrv66GeP2ENYukwVaduKjRawfqQMHata5DH\neloN9az1Ld07QGPLZx277amtZj3Np9nUOhOqDjFngiYsgtlS8y3D1SliPc8yzbci1Dz9RGmqj2yF\nlame9daeJwOYJbgkTWHOBFO7d6ovQli8gUGjAI2BOn93We/GNZiRY1yS0Gxx56pwxlljPlR7tlwY\negH7ypJ1Ci2uJTpxLVhQzsIyKdE3ynFigbEZcMYZo01jcvWPZWXYM0eOi12Vc3ACFTNt4VqI3kiG\n3sW8r3ZZxbHxBsanA8vOgwlTaf4v9t6sy43kzvI03+DYgUDsGxncmUlmSspMVZW6Zrp7+tvMp5w5\nfaqmS1UqKZWZTO7BYOwLAvvqDnefh/szsrLOSAo+cR7cXhAIAO62m/n/XrsXBhEMH5e9nN1TJaHy\nlTAEJ9aRyGgOqrKn6S9Z1R9jkmLJzNn3OzCFFuxBxqy7th19xqypqNzpaGZumtZ89cn5MmviCPbP\nO82/caDPPdbCgD5j9dVKVctQht0Uq5DttpgeSUto/8YWjmIwnsOGddCCWbnKWtRBywrmRLmhMocw\nYkLGZuGN1sI2zJbDyR91ffbHLlTqu49hUO6IbTC6FrNveqz89Quar4Y9nGeu1McmPF/McEkasKbe\n+kJt++DunjHGmCVPTJYyffkdLIYp7nW9JY0ln3Ul22OPhFZWhgteBZ2l+99Jj8SwByuzx5jxLObS\nR8Oq6uWcee6iK/bHMnuiBa6pva76VgQ7orKnPrK0+2knAdKu5rIqule7v31qjDGm/Sc9wx48R/vz\nH39njPnoDDZBw8wdqV47Z2Ka3v8CNklTz7pFxmg31VgcnGmsvrtSO/UG1rr3/zSnr56ZjeVdU/id\n7tWd6Tn79LX6RJU9fqmuPhXAurwL4zju4JJ8qjZ3U05LjFSnrW3Nu+v31WcOz3AvPsWhkTZb3bDu\nTewbu2qbq46+9+3v9Nx9ih7d2RvV1WmqtizDQP/hXPo7FdaFIUzxnSvtHW7d1XVK7G/7iEfZ+XmB\n2KsDFbA/Q2P2DVpbJdVDbVnljGBCe0vse9krFAsqf4n4xviDzev/d8qZMnnKU57ylKc85SlPecpT\nnvKUpzzlKU+fIX1Wpswl6FAIQr0Juue3lK3hlSJ05yeK5v3uH/X5oLNnjDHm8EcxVk4PFUFz19FW\neKOIVfe9ImXzNu4XMWeUicitcEYttc4KnPuOraNMrGhxo6Lvre6gQA7ysGL9yEERC0Tg3UjRyAlO\nFAEaMNUlzkHi3DC5QMV+oehrCVR0+Ta6LCiGxzB5dncVQTw+VLR4/JOi39/87u+NMcZkwIW+JRnU\nYR9cXpupjZg6+o0HarN2hzyB4M2IqJ/gLFI9UxmaRGhPrhQFHb3T56HV14Ad4MS6+cOvFPE9BEU/\nfilv+uHoxHxKctAgyDhXbtDf8DnTP8bL3utbJg1lnvP9uvLj9ol+UpchCGPAuUcPJtEMVkIFqC8G\njSnhvJOhr9FLVC8+EWgLyNbRUnGpzwSUsDBE58NVW5sJDCBX7TCBhVFHs2DIeeoCUdzpCPSQseLD\nypriVhSC0EacWxyCFtasmwiq+xF9ogBiOqB+PcuyAAQLOHed1dFkiDkvCUvA6jVlFc6HTzQ20gr0\nh4rGgG9dqSqwxYg++2ZGvlWvU5rLXeAqULy5pkwBXYU+KI6HfoLDmfDA5hlW0wftARgllsCR4AIX\nWncgmCg+ZU9o0wzEzkWoKKnAdIFlZPUZFrZTwGypGtAVGB5z9JUqVLo9a2rZS2FRdRTw/RhtGxdt\nghA3JAfUewbDr2QNrsZqk4VnI/O6TobCvxvjxJDhEsVYdT2cxnBas25NYzuxUKwF9VXjHLxrxXlg\nb03RJSnArMlAKlIrvYKmQ4BLlo+WgsvZ3RnuIpb5U2CshTjbzINPwxRK3G8KO236UuVq7wuxWVsT\ng8ZZ030OcQFooOO0+kSfr22KFTIfqT6L1ItlK1SajLVjnDHmur7VRth4tGeMMWads9lOBM0jGpnt\nVa01zabm+u5I42h8hL5OU23z+pXO8vf3xQaN6cS3vpSbXrmltrxmflvAdMiou6AAGwp0eTyC1cM5\n8j5n7yP6nK3qkyvVybff/aMxxpj6Do4z+9aBQIhdDzbrJBaSG4xh+mwILXLP9f1SS/neWNaad29L\nLk+vfhJDJhurT7UeCBUrLmuNfPtMa/sI7Zr2kdZEHzYZUgZm+y7o/w2TZ8cmv6/Ucdrpqdxd0LL5\nhe7TqO/pdRuGaB003bLTLMsO/SSnhQ4ILleXnIe3Gl9VxmRYEYPJIr8Obi5FNBlauHDNYIpOj/sf\nyjAv+CYewNBhzpnCyittoTOCFlDBR1sGB7EEZujFVHuuDmNjemEdOXDtWFb/LBZZ/2aM0ZHuu3Bg\nOyRz4zJPTdgbhJQxW1KZV1ZhOOCokva0Rh6DVs/H6C2MVOd9mByBEfLaqNL3QWJd9NQG7AkS1vRm\nBKILU6d9BTv00wwhzdxYNz3lpzJRuXo41DgtHFxA133c72JXfafCPNYfwmKCEeLCHohgShdwoSst\ndbgv+iGuvh/27Pqi6zhVNFVgPw+meu8MNeYyR/kaw5TxYKvOyuxlYAZ6IOJTPl9CK2vuK/8jGI1l\nNGgcdOOGaAPFzPOFDLbWTNcdxYgrkI8ufc1qqiVIKgYjq9Wm60YlWNYwasasN5WByj/AcdNnjxiz\nH5iU0AHsfNSV8t3YlAc4/2SWNabPYpiic9grlRinS5hApzcnynzYry7N0deJdY05++p4Va8ReXBg\nnV5xOmBnQwzHO/c0L7onqsNn1x7BYKAAACAASURBVOzbpmqTo5+0DvjrWkv8W9rPZ+yzCjDlGtt6\nHcPunMKUT2AzFVmza3dhKZyrbjsj9q/sN3s9te3Rz3o2u/8b7fN3n8CeGKCdNcPJkb3T7v095W9V\n17/CTa7DvBrFaqPDnsq/0tAau3tLDJdxV+UeTdBO+7PWqQv2ww00MwMcf4aw6Ro8y9VgDDmBdZdC\ni+0HsTuOmIebT1TOOvonzVX1hUYFR9yCNF4mx2IGveA0RjbRmEyKH1lZN0kL5pIF2kI1nNLiLc2z\nJ3/WM+4IvcNVTkdMYQ/u7ojZGn+lMdxjzxVca+5s8qy782DPGGOMDxus3dWYWrn9cX2MRqF5cfLM\nbO5pLVuKcUyFZX+Cc+/0jditG5takzfIa6+ja8dt3Jc4XeA2YM7g4Np8rLov+dDqcdKNYECP32sP\n4cRoKq5ofmgfaU/SnWlcrj9SPtuH2ivM0Fxchvq4ZbVjK7Cp5vQ5tFzDFdVRYt1bPeZFnGu9La1h\nG18r7lA60prYhF1V4fuzoV7bDdycztU2r58dGGOMefq1+sx6U/ntJH99wcmZMnnKU57ylKc85SlP\necpTnvKUpzzlKU+fIX1WpkzI+fmL55xf54zuzrdCC5eKisA9+1mo2PWmoqpFznj2cHQZXyhaufpA\nUeVHXyp6OxnaSJ3uN3un+8ysGjtIdgSTpcT5yriryN7LF3r1LEuDqO1aWQyZUlWvUYQaPQj8iLO8\nb55xXp7z3yu4P5klRQoXnOOcnnL29VRR2wbn5818zxhjTG1L9ylwzvRsX/kaEpHscdaucUuROH8F\nv3f804vp3FR3iELy2zPOaI6uvzXGGPPw78XeaT3Qvc7/r39SHV4qYl2pEvGHffBsX5HqlVtqqyxW\n5PXP/yqHqN0Hut7Olzq/l3DOeBmE7aZphre7j7ZKjDZMxVhlbBgpLkgEzjflqXUAgJlinVyszsdc\nEXGfckVWW4U4ZZTgsIJTzyIALQoU7XUdtdGC84YQVsx8Ypk46jNFdCUWsC/qOHtNcTPyY76Pw0zW\nwC0ptQ40OG2VcDOBiEJs1zho6YzR9sGkxYSgifbzBC0aB1enoXX4KghpmKKv4i/0/wQVeZ+ocYlB\nM7P6SOiTuJz39mHCzDi3v4jRAygrHx4uHzGaQBEaRuU65UQPJrMSDR8G6d9OY7ROSiCAY8CKAswT\nF9i7AnI358y+4Ry24yiPqYc2imM1mUDJYZY4lDWzrkXUYWo1VVLO8pcohJWGAZ1wYUOFuGSYGWf7\nOc8MKcEsiMAbtAp8HLMcdHpS0O2YM/EFvhcznU8T5a9Y/mXM3VuoD7loyZRAmabWSczF9QmXjzIO\nDQv+78OM8bHQiuj0U8bigsP9wULvK/TSGKTTG4H2w4IaurC7KHeR+skyy2iyzhAwnfD3KIMuuTNb\nwTdLHuhh99KiWrp/sya0aPOx5rKjnhCR6bXm1c0HvzbGGOOUNPYvz1T/tnonsMpiWIiJdWrDJWWE\n1szeQ13/1uM9fb+r8rRPhf5dHJ2a9039b3NT89k1GjDpECabDzOtRxlqaqON+5pnOxea3w/+pDpf\nFNCRKKqMVVzy5jjSDGGrXo5x/TiG1bOi35Uo82pVa3GKLVS1ofnx3Q/6/slLIZwtGDp3nwrpdViD\nvYpLPrS+vMG1YxnmS7+vvvnTP2vdOcS9r3VL37faKSfvdJ8jtBmKsNfuPlX+JtZZBh2MIPzrTgf/\nOdWW0BCDvBT3hM69ey8ktQyinAxV/pD2Slu6X99Hj8JlHsQ9y+V70zMhrN0L2BQ4O5QzrYt13D4s\nGyNlHsVQzczGavejFJbHmHnfLgjGGNczJoah6cG0ugIZjXuwuqaq75B1IQssy5dz9OhqzRjLrUB7\nlgCtCivA1AcRD5nDKktCej1f109HnnFY++tLulajpTU3QzfNZw3tdYV4Xh/qt52+ytjERSjK1BdW\nqurLXqy8NHCgcSvKywJmB8YqxqdyZoyNHmwDA7vXX3zaNjjswTihzv1QYySDCcRWxQQQNJAsMTHI\n8Ix5q1BVPjO0WKYl3AOZd2c4T3o9lXMG0wZysJmhxRh0lJ8+a6yBYeOgQ+TCQCyjkZIG6ouzjl4L\nc5Bk5nm753CtS2CNfOHu57r6fozeh8eerA47ebKE/oZRn3Nwo6t42o/O0CcJEQD00NTJcN2al9BL\nQoelkOl6Xfpc07peWachWARmaPcMyk9KfXkwiYwxJk0Dk1TR2Bmj10V9Fpi//YVlDaO36OjVczrm\npmmSqo1XbqENVlEfe3YlFsBVpGs9uC2NrCWYGC/3pY/xHs2P2m1lrrGmPNRXYT31VVfdAe46sA3e\nX6K7ZJ1o0MVcvaX5MWNf2uvrmanzUn0nqDL/tHSfe4/0LLWGu2mUqi2GsMuuupqf370VkyNEC/DB\nY7HRCm29P23AbrP6TjhYlXHaaq2J2dOH/TCfqc+cw6ar1ZX/lXXNt/Er5ddqzZzAworfsQ7cRwOx\nq2ep/r7um6ITFzV03UcP5dZXuoWOJ32/gbtsYU19vrUQS2LKnrFi2cMdPct5qeox5bREZB0Yb5hi\n+upiiJbYJRo8MBeHzPfvfz5QPnEbHF6jR9pThU4m+n2FOejiUp8fMgbv3BMDtbmJrgl7qvLGyoe8\nPHp8yxzsj83xgepuMUDvZlff2cG16PWfeY7uqW69O3rWq6BT5GT6fsDeo3MFA7Cjugqx+wzRHV3m\nubjEGnKI9l6xoja7u6E+cIUL5uBca2itpgn+0f/4r6qzmfqojy5aiiVV+a76/ne+GCsX6MDVS6r7\n0xdq++lEe4qXR3J9+nr5N8YYY9aXeGa1rqKchrg4FtOmsqF62burOj6xmrY/az1zfXs/TqXU/rqI\nWc6UyVOe8pSnPOUpT3nKU57ylKc85SlPefoM6fMyZWC8TEGij88VHb4LalRqol6PVkJnoQhec1mo\n4ArR5ylR1bhHtBEHm+KyImlb9xQpuyTifgkKV3DR17CIBGdTGy2dlVu/r+sd/qx8vXj2b7p/qOuU\n0O2o7uFrvqvfTc+Vz+u+ImljIvkOZ8nW7imiWERxuw2Lw7JXKnVFDDtXRHk5p11a0X3u/++K8vYP\nlK/9V9Jr+bL0ncq7oXxcv/mzrh93zO2iFK/X9zgTGSmqeLUvZsvatqKSrQ1F8e7dFivIWwNFxrlk\niqL96+9/NMYYM/cVIb79SGcb+2diM10eK1o4GuBgRfTSa31ELW6UiLZO7Zl7UP5RovwnFvXH2coH\nYUw8e55Zl4n5fG5ZD1P1vQRtmEmg916g9xmMDydE3wJNHqtP4qHC7lv9C7RnqpxnHsCWcqA/VCy6\nBYKbFNS3Y84ah+hWLNA9mvA7jwh9xv0BTk1i3ZtwLAhruIMM1bcGRNQXMHI8q9sB5JoQj01gbTiO\nZfSANA+5HnoASBKYFEcwf26dG9Rf5iD4PtcNUssaEBpVCXBSQCsnhkYyBmULHeYCWCvl4n+Afv9G\ncstE4kHcwkCZHcHMMNZVh/Eeopg/pS0W6Db4aMhMmRVdvpehN1TgHPecCLvn4Mg1pq05ix+CDDo+\nrhKWKYOOz7gIiwi21sQ6i3GG3jqEja2GjHVooG4cS/RB0ya2R2IL6jtlymFAu1Pr4kT9RPTtwF4I\nvaRgAbusoP9H6EUEIN1WQyf2rdaLZfTofQ0W1Bg9pjEh/9oIlhauJQmaDpUUjQT6XGZNlWA2hWgI\neCDdBcauiZRPyx64aXJgLyTZL9eVazRmXqBjcj08UHlxO2nQricvQBdhG85BDz3YZibW97dhNlZA\n9JeXtf6sNDQXJvTLA/Rb2pe67vW4bepQNOIN/WbeRv+niA4CiNg0xa3ii4fGGGPuwBJ99k+ad1Pq\nandD7MnrC81r++dimlRBZn2YKqansizf1ff3vhKqs4RjWQWXpemPyvsU94nB+JzrwNj5RvlZXdZ6\nMMORobqiNd0dU6cbQuG2lrVW7R+LOTMOdJ37T4Se3d4T+rT/XC4YJ8/R0hkJ1drlfreefE2+VI5L\nEGTf+TTBkARmjYOuyfUZOkzYykWwwqpl9C4G6N99r3pvu6qPALR97tixDVsB9N0t6nqrW0IZmyto\nIaABNL+2AhboR1mdJvQwZrDefOZTt1L/UIbA+MaDARqU1M4RbNpCgkbRDIam1aWCZOFyzN+uIyU0\nCYLgPzFKPRiQaPDUWrhKoQtTLKg883lmxjAjhjjxxey/FifqG1Pmk+EA1x+YCRuh9ixF3CxnrGWF\nFszjhvLUT7XnePVG153i+JJYFx+0BTycApMJ2k+u+nq29GkTyQSHmwbzYY++UkQfyWORHjIt2Hk/\nhJkyRa9iOWLNZY0PS2hdWVc+2AepB6sJBuXQztc4lNXYR1qnw3ET5ih7kKmlIsJ0yWDzBlbjy8Nh\nDaZnAceaMSy6wFV5e5bBSN9bwIQslnRdS9SJJtblinkfNl8JQktlWeUaWTYszM8K62CCDcocJqYD\nsl6c4m5IfmJX/SecqT5DNlkRjJzFXP1m4n1kyy2Zkeks1L8qrsbErI+GBEzZjIVlnikf1R4Odxih\nmXPzN1MEE80vaR5v7urazTPNS+575fF0oHltFbe3UqTxmqLvM3hL34LRsfNE8/zyWGvLFLbCGE0a\nq56TXmsM9J+JmTM612uBtalegcHDvDR9Lz2M95fqtONr5XNrz7qpqvC3VvZ0nRf63rOf9Rww21Vd\nX0DlXl7W53UY65cHKu/5G615UR39Op65LNPcYU8yL+u19gVupnuqx7vLzEsw9kpv9ezThx1WWVY+\nl12tH7Oq1q1Jpnpi6TeLhfJTgb1329Xvz2ECXb/S6YzamvpCGcZobBnfbBJ9NHoytGoK7ie6/eFy\nZ7WFFrC3myu6zyr10ztB8wYm0xp6pq9//wdjjDEj2j/c0Xq6gmvuUVf5evOzGE3L9/V55xhX3Png\nQ14C3zdffvNbc/RafeXnVzCfeTbaeqT5+BStrwX7qVJNbWyfcxcx+0rLzh8qb0vU4cmJmC4ZOmWb\nsLlqrDWTGcxvNGXfo9G49gVsXTa8By+0X9v7lU7G1F3NAz+90PV7MH5CKJOjbeICnDgpF1WX2095\nbv9XHMGOtbd4X1U9LNivxh39vrmrun3Z1n2q5Hf9v2vPtH1nzxhjTBcmTeeNxnJ4m2e2Oidm/kLK\nmTJ5ylOe8pSnPOUpT3nKU57ylKc85SlPnyF9VqZMANOlvquIVQi6kkwVUareVwRupa3I0qQLUlLV\nmbYxzgZlD+2HkaJ+b18qqljwUGW+FtoWoBK/ylm2GMTEg4WxwL2owrn4zWRP+bmj6xfQE7l8J4bK\n+31Fwh7tKGq7cUfoYOG+tAM6Z4r0fQ8iGnZxuoDFEYL4BDXOf3IOsHvIOc8tRcMvcLopJrrvb/7+\nvxhjjNkHVX31x382xhhz+l4Rvr2vFFHcgcFzetg3p5zB//I3Ous/Hqpsb/qKIL/58cAYY8y2r0i8\nj1PJ/EJldGHMbO8qGrj/XOgU0ipmaUWff/Gd/vHuUG20/+9ykCqtqi23M7XFTVPBUkM+6P9wXhh0\nvQSrIOMsfGaZM+htDHAVCuMFl4FNQRssQOG9gL44xU0CRDDGTaOBU8IcVH3Gwe4qzgHWiWDaUH5K\nIKtZhaivdaJBRyjDsWEREk0eo+TNee9iUQhJf4D7E0yZsv09qN8MVlU6V37KsDKa5H+OFsOsBpJp\nz7wmaMag21FGV6SLhoxLvHaMlkXKGPMm6JlYLRmcCSz7wEPHJUHfZc4MEzogQbDSQrQpjKd8zdFF\nKYAezr2bIw7eBIQMxG3ha5yX0fFxYBUsQmUmwaHFQV/Dum8scCopQa2x55BdlPWt/lAB1tccR5Vq\nwerp4MJWsPZn9FWYLmlV472EA06GTVJxQZm5TgG0KU50v7AEswWtmEVVv5vDQClYjRoYODbUnqLZ\nkoG+RGiyRIyNaAEyiBbWrGwdzric1bIBoXUjmDqudVrT9XwHVyocAQpoJyz4f4pGggFVspoCLvkp\n4uZhGUoF2stYdh3stGQG4g0LJMisq9TNUoY+1bAnRD3hzPTlTO9XE41tD52jzTuaq1p3xMy8vBIq\nV2jpvnVXGZ5wFtpjLA8YmxlsjS7n/zN0XnpzWAawH7bvCim6t/HEVGFf1ndAU4bK44R5Zg3dmyDR\nNTc2hF4lYzSimqrzLRDN5a/EJBn8y78bY4zx0dhqcJY8uhaadDnRmnlvW/o5FfQnrq91n7MjIW3D\na60jLZwJ7jwVQ8Wyu3abWh+u0Lh681prlvNWa3GMs0rnWvkInup3Cc4zdx5ofUpBUl+9Q4PhvX6f\nMm+vbGutLTe17vS7qqd3L7Xu9DvK5+oeTKAbpgFtNjlBXwO0vRHs6X6M4Siy+k04OZS1PiyhETP3\n0chiTgiGzEGe5qYqjJsJbIXxifId4No0h+VQa2kNr6yBBKNHMj5Dx6QM+4J53hhjknhsFriVOGgd\nuNYFEAR5aZ0xWVc5ltGxyyy7A1ZhB+bO9FSvjZrmTMtC8GFOuquwRiLVew/HzGxSNRUYdeMJzGQY\ncwvL+nLsWgpjBSZyDT2OUlW/Xy/DMoKVmtmJqq/rlSxLNoBtgDZWOIehkyrPS7Rh6qpuq6Wp+ZQU\nw+RwC7CUGjhrDdGuwVXPMH/WYDMlFas5g0MViC3TsVnAfrVs4PkApiSugguj+akAm8LqaszRWIlh\nrbqwoAvsow0MxgHMwJA9ig+LIUmtNpneDzog2+h+zMYaqwUYlAU6yThCUw0nzwD9qKxk1wH2HFPu\nD+LswmowscZ4AMof45wTNC3Txu7FYHrShxOYLO7C7gXZC1G+GetOCS2dMLHrsTGJUzRLE80VQ5ij\nHkytLNNcMqnp+1XWxYzre5/QTQYDtUG3Q12sqW6rRZwMYVpbDa9oAGsLl6OEfej5c8178yv24VWN\n+5VNvdY4BWBZvhs8UyVtMROPnmmffgHTooh+U/2B1rQv/kFlvvpZ9J+j97rP8FC/+1MbHZCm1qi7\n93W/1obqvnWmMdVB2+rqABbEmpgcqzii3dvABeoNzmCXzBNz1nKGTAe27jpjfnANk2eifWaFNbZQ\nsftD3Io6yu+bF2LubK5r7lh9rHIOcUtqn2oMHV+o3jPYY8Umc0aEFhvaPIsq11nRfVxY0YVI62aB\nZ9AFjMGSf3OGtzHGZOyrDVqODn23yjqRwvK77muPco85ZQ19OktK6fVZt9AKGhR1nfW6+smPMH+W\nVnS9NXS9jt9/dMM971yYqr9iNnfVZlGmsl536RMT1U2lDgMNzbyM+bTIxnMIA+XOUz1LRujejHHx\nDGoad+eHKtMQVmizpb717W//TnnbV94WuBOvwzjutvX+DWPDOtIWv36i9zzLDQbK92QfLcKu8nVr\nR3XnNZSfTXSaTuqqk14X50IcKUdXel9paR5buyXdpPX36lOv9l/r/Sv1lY1VMW8K7LFODxQHCHro\n893968zMnCmTpzzlKU95ylOe8pSnPOUpT3nKU57y9BnSZ2XKjImsBzHINufxnh8o2rnrKeJ066HQ\ns8tTRc7GZ1adWZGn1taeMcaYbZCVBQrjB99/b4wx5vxKEbU7q1LStucu1+uKsE3QBJhzBmyGU0Gv\np/cpbILHv5UacwDSfXig6Gzne86o7gglLBEJXPlCqOPGBYjGgc7z988VrV1e5XznPyjyeH2l+6Yd\nfW/1K+m6tN/q/eVLRTsvlxTlXb0Hk+ZE59L7qE+71OfWY6Gk0+lbc/ij6rTRUFRz/Z7yal14Dn7Q\n58FbnGQ449h+ozqvwuppobC9s62o4dU7RWafB4r0f/FEavIPyoroDi8URUxjq49hz8rfLEU15cOf\noKliFMGuwpjJONfsoXthqIMBEed6Ufkd4hrkTdB0KSsq6uC84I4VzY1D0BFQlGkKmwAmTFxDIwWW\nwASHnhrIpwdrwYMpYlkagwDdI1gTHlo8LmghJk2m5BC5Bw0KiOZmMFDmoOtFUKsS58CH1rmmyLlO\nmEUpZ12tKnsEu8MUULtHL2Puqp4CdEjmAe4l5CeEHZHhvOByTnQSqx8UimjFUJ8TEIASuhsxrAIP\n9GxuNXs4QxygC2XQsLBo100SwKopwyaKONua+dbVAS2TIdcsWcYMDJMA5BOUY7GwiKDGY4RjV8IZ\n+JT5IqDuxmijGJDLBGbJDCQhgMEyxynMB70uFlQ3VkulYI++c/3Uhswz0PGq1S7Ri4dmzQINnfiD\nqxyIZWBdNOb/8TLGQdei5OOWEVpGC4gkDJoAJ5uEPu6hr7TANSqr6j4RqP5ihjsUOhVlQKAp5U0p\nqFsFtZ/T19C8SRlzc9htJeagmWM1EJTPGMaT53zaXOLyu9lC83rA/L8DMuQ1dP+NJbuuaH4d9kH0\nF5q3m2hCtH4t5KYEMmRdYuaUa9FRfocvpOYfT/T77U2hmEsNITYRyGzJVM3FtebTwyMxRN7vC1Fc\nwzVhYwPtK4rexV1n2gZpA5UfGdrshdCozpXuXdtSHlee6PVYBBpTAC2qVDW/QS4w79+gd3Mqpsz6\nA+U5BS2r0MYTxtDVSPe5QjfEsj7X9oRErt/R7+/dZky5aoPrvsbai7da4zLOuvdZk310P+59pzV4\nbVv3r9XUBtfPdEZ+BDJtncvc9NMcuqIRrnIz1c9yoHUyQz/EuviVaLM5zMvCCGZgAoLN/O+X2WKV\nmGMmdh2w7hlqPx/W2BQnx1JLCG9pU2OhUlWDX3RVrgXtW27CKkE/zxhjWo+rZgIzZ3AEy2+uOYoh\nbObWMa6HrshE7TwegcijBxCzfraaqu8y7A4McsyCOXA2EiOqDSM3gW3hFCMzgkVZKeHKAZMxKS5T\nNTg1wbqtseaFuEg6dZV1eAyyah1HhujBwZINYfdub2nfFMBmTbBDctkjVJmPr3vsSRy7I7xZquGk\nNejr9zU0zfoVtE1GzMeUywR27WNtgw0aotniV9BRg300xuElxO2jw461CUNmXsfVjT6J9IwZzaxr\noOp7saTX+UBzwwp6P1lb+RvAJHHYi6Sg/gWYggl7QxfdPBcnsYGr3zcSdPBg804N7QVjycDWHRZw\nB2V9Ggz0+0pN5UPGz8z61gURd5Yq+neBdbbBzYn2rKBZcz3TGHJj5c+vwgjl8SYofJwDslFiRgXV\no2WoWkdOO6fOWPchLxs/Qt/EMzdOkINMhh6OZZuuogWy7Ou1xvh1YMglaGK1z1VnHUfjadxVn4+O\n9SxweqS6qaNbNmS/tr4lBuGte1rTnn4D2/aF2n6fZ4k0hMH+VOyCxgMYlzCaxyfK7yUs1wGMmWiF\n/faqWBA7W2q88Vs9C40PNEZ7ONkM0OFbbVLuPVgK22LePOBZ6pxnHvda5W/AdOnvq9wHJ2IbxDCr\nv/ya/fW6KnrL1zx9ONR9X7zHHfa+ru/i9nmNjklxHccwHMxq7DuDOU5jzBEhzwnlNXROcRGcHai9\nZpcqb8Z8n/ofWVk3ST7M9gq6hg5aky7am3tfqb5mP6gcx6/Yu5SU76UV1dP6Az0rH/4J9hfaN5Vl\nnOoK0hedRjigsTeOko96S9fXfXN91jWVOkxonn0iWKxnJ1pjN9AdffdabTXr6Zol9HySjvK4gY5c\nUoZNxTOMU9JEMIxwDMORMEL7qbd/zue6fpVnGxfm4yptUOMZ8MVP6ht23imHqpPaLY2FOS7FHZ7n\nrbZV8DutP8UCekE8qzXRLdp5qufqdy/kotynb0dj1cfjX2svsryuOo5h1ry7ODDGGLNSUxsO6Fsd\nxnQbt7y/lHKmTJ7ylKc85SlPecpTnvKUpzzlKU95ytNnSJ+VKTPHa93h7Gi4pcjS6Hs5LJxyfu/r\n//FbY4wxMefkXv5JUdAAPZDKh9iSXneJFp+cKrJXaCs0djEVw8QHUTg64nznQFHaBWhfXNP/R3jc\nX57DnBkoIpgsCRFJX4qB8+pS+S0dCS1a21Pk7N6Tb/R6RxHDf+EMWvdEKGgLtfj1DX3e7+AcgWf9\nFmetGyBLB2hKvHqp+/1qTYjQZlnfe/lO/3+RKQp6n+j3kyd3zZ9wSDk8FPPl1kNFlu+Tt+Fb0Ptl\n1eFSc88YY0wEuvTij1KJ/+7v5PC0gmvGGWf4L94cGGOMuXtLv3MKoChF5b00Q0dj/mlnLtMeEWTa\npATTZEpUMuX8dVLDRWKoKGwNlH9g9SdsBJwo6wBYpGi1VayeEVFQK2kSFkCBOOMa2nPOeN1X6uqT\nkzFoDfeZwzgpwwRxUe53Z9adQv8fezYyD2oE8hxzHjyb4tQDkhoWYReAJmW4GBV4zWDCzDl7aoZo\n8XCu3yI2lpGScZbVgwXgz0FucEab4dYR43gAAcrMOFfuWtV4dDWiECcjWCPuROVAqsYk0DUyoNYF\n/cI6GU3GukEFdO4myZni0oNWgYs7TwZqsYDFk6BR4oMiUPUmtMgeGgUpOkYztFgqtOHUasOg71Ek\ngu8U6du01cwF+S3St2agK5zndi1TJ9XnzsI6xMDYQzejQB+NGDMBdToDLco4x7zArcjzGAucu/bR\nn1igvbJAk8HDnW4GiyCjL5Uy6yoFomGdVqAiWS2YBchjYY72jbEOBLqPD1NkwvxcRnshYS6JqPgI\nllfA/QzsqBDExEF7ILb3gUkZWMYR7XzTdAKKNpoLfWutah7feLqncsIuW0IXxYCk/vxcLMLLQ83/\n9S31+eZQSMshbMHXuHk5M+qtok7fnQhFXA1hMD7VmeQLUMGLPwnp6fTGH9D123c0vz75RoyJ1YaQ\nTx90+tUPmo/PQU7dBNcK5qsMFupGS+O6b3D9CFZ/cZ0xLKj7D8R03Kzp9WquMi0GWvvKq1rT7mxq\nbc1gtr3bl+vQBNeKma/X6UKfN5Y1zvceibVZRCvmmnPbzhgnHBBJA2NmETKPrQq12v2VkNk93CWs\nacT5mf7ogrb1B1rzt26rbZP6p21x1jlzb2AzBbFQNx/2V4FD/H30PpKu0LM5iG+Jc/gzqI8J7Rmy\nzhS39LtVtAp2YVcNQfOmgUp2SAAAIABJREFU6HQkE5Xr6qV+f5RqnU1hWZQStWNpVXumQmn4oQxZ\nOfrAPgjRHPvAZsP9ygX9j8nv2KNcTIXFodoxYW6dVtBRApFOQt2g3dX6MDxV/8pgnzQbQhk9t/SB\nDeA2VFaPNcyFPekkUGTQU4thO11ZR66e9iwOTMUJWiQlHKy8xLJmNb4mODO22BsUAv0ugqXZhWFz\njVun94kubt1r9clynfm8CxOmorpwYHhUyGdGGycCSk3IWp8x34/m6qt11pmKqzGcgtw6rN1zWFrW\n+dAt4tQ10HxfrcKSc9QXQta7Yon9LAzLBKevBLemil2D2SMW2euMYZYuYIrXfL5fxPkHBkyM/kWL\n9WEMI9CHxbFAGy1iU1Urq32HsLFaMFVCdJrSBnubnupx1gAZx52wm1rHGJj2aPXEPRzFrIMdLlK2\n3xhjTFwpmFDNZMYuOiW4fcXM/3FEedCom8NwSjs3Z1RVJ8pzB6bwnVDz9zyFSdJjvkTzY30DNhJl\nX9uCoRZpnBtYYO2pdXTF3Ym9xRwNlN61ni0a6ypDVmHe/gKGI1uNszONqXdLemZ5CNNi475+NwjQ\nxeBZ5WgEo3Ffa9lSTfmr8hzwBQSR9oXmgfdtaa4MLvYpp+avHgxLt4n70x3NJ110oeZrqutCRX3m\n4SN9f42x/Oa51rvhOzRy9tCsYX0IX+p3z8+0Zq+yt6muax31rzRmG5u6/9q2npHiLn1opvLa7fPJ\nAc+oBT3r7TzUOlZZgaV2AbN0rIodwQq+aXIZG92+6ufkverrEfpQu3s63dHuqK9evNDnEPXN8rbK\nkf6geh+ONYbXcG9s3dVe48uunhV7U1gq6LIMrvsfM3PVNYkfmeMjTRT3vvlW14A5cvKzGCOTFdWl\nk8LyRw9t3lGlTTq69ukpLKIQvTvmjZ3tPWOMMZ3nWquH6C8lbVhAnHTxsO88nev/m7DF7sAC+/X/\n9jtjjDHjnirDaTIPwv756nfSpmkfqi++eyanqjbz/y5aNHVcNluwhC8u9f0O5XB5ljw5156o+EL0\n4prdk8EEWtqEKfleYySrqn52vlAbZOguBX9j25ozZfKUpzzlKU95ylOe8pSnPOUpT3nKU54+Q/qs\nTJkk4BzfkmJD94kKGs7wH58o4pRMFYWsorOxuFaka0jo/xwP9kZDyOUClK7sKPrprXLmv4krSEGv\nRY+IO04RsYOOyiHnIS+VjwIokgOrYH0JlOornSk7w73j+kchnqfv9P3VDUVZW1uKLN76Qu8775Tf\nNwTwn5ZQJD/n/DxHzjIQ4jLnULeminae/lEaBdeHioYGayp34VzR415fOi7//geV46tf/8bc2uLs\n/UgI5RzEbAwylqCD0z/S51jHm2/+Xu4a3//f/2SMMeago6jorT3p/FQfKHKbddGLKIPYwojwBzio\nhPo8sIIYN0wh6L9FkG2fsawIH/Ql4MxoVLX6GhwQJtoalPX//kRR1FKKUwJtHtbUJ2ZVoVsNhygw\nrIkquhxzmDZZ06Izuk1WKpEPizaV+b3KWyUfMQyRxEWVP4axQkQ/hXEyB+3KEtVfYgVGSrA1OJc9\nLsNgcW1xF+QXBg/nQwHxTArTx4nRL4LtkXiKhkc4ENVAx0K0B2awLUZjNApgQC04A2s1b/xQ/ac4\n5JxmOOW+jD2DgjtaOrFlqXCdKteZfQLi4ODqQ5MZD42ABchb7FuXJFBjnGoSmBczmChugKtDCBoN\nYhm7Vi8I1wzLDLFuSdNfaqJ4QK8Zrg9T+qiLoEOCnk6CTlHGGf0C+gw+iJ0/Vp1MKyDIM9hUBVTs\nYbrMKT9AsPHRaEHuxwQwaayyf2o1Dqi/FOcc46I9Qx+DvGTmILUWyQ4p3xzXqxLaB3Nch1zGSJm+\nNmEMF3GKqUTkA6ehCATY0C5M22ZB37Bjw4rp2BkkSj7BDsMYE1kns4rac2VTKNlaReyQMe5+83c4\nErH+XJ4JPXOLINmhEJ9qHTGjIvoq6HNcd4QATXBzqlQ1VtZ27xtjjAnLQlRGrBfNNbXn7r2dD242\nq7hdnMMmfftKzJjxVAN5dKG1KytpXC1Rt+W6GAoh6HIC46RwChNys/iLPN3Fvcmrq05GzF8RbKrM\n1XitwzgZFIWORxcq4+Bca59hbbW6OgVYTndgIXXbQrlO/lXI7HCkMWo1vZxA5dr6tfJzf/2pMcYY\nv8XYdTSfdGBRjA5wVmB+PIdhU67iuANbofxpkjIm6qIfVNPauUW5IzvWffXpKmyxOc42BXTjBnwe\nou0TAWmWN2AOtqz+FE4VMyG/PfQ0XIRVsgqaL131xQh2n2XceJyDn10KvbvofBwLr/7tX4zBPWsZ\nxsrWlhBV5JnMAvaEPV8fAQ3f9n6JglojtItY7X5yKAeyLq5gi6nyW0EzrVTQXqXSXOf9xEzRa5vB\nDsgctLZgyEU4/HmwtgaWgQgbwElw0GriijYTi8mnDaau6mQJ/Q5/WW3WmRwYY4y5eo/DDS5oJbSv\nMl/XXd66OStT94URY9vYsqRg7IzQNGvBBHEW+r4Hu2AMU3uGTpA1klnAsJtM0HeLVR9ByTI90XGj\nnEX0jKYwTwJc+yAVGB8Gy2yCow+ufWamtlsKWtwYhJu13zIUw5D2wXXPR9tlNsTdqcJYYP0bw/j0\nWR982Le1RPkYotMxQ6ui7ihffdYzj72CR/kL6A/avdfQQTMn1euU15B1aLmGYw76eSl6g4XFR2ey\n2SI11aauVx2r/Qdo0ZgW7QSjqZsq300016JPeFqaw2YdwyQbP4RVBLNt/L3G7ZvevykPX4rpUV7X\nvL/MfnW8UBv5aGQFkepqaaS8V2vK+/QcLUVc197+q04TNDe17390W4yW+obmx/cnun4XnZB2A2bN\nqsZtdR36GGvzlGeiC/SczmEfrLZ0nSaONvdXNN80TrReHZ/pd9YN7vRS83/cwAGRvpfiLlef675D\n+mwJ/bmV26qXyUT1+u69NHEKsIotM6hQ1u9bPCckBb1PmVtmjKH2a+WvzRx0d5v5ylE5lpbUp6Zv\nVY/H6JEUOmL2tFhfy9uwwJi3w090hKwso0M31uvRj2Kj2Hr5+hsxc778QuthzLNqCDtsd117iUv2\nZtenGqvnmfJ7iz3J7XvqX40LrZMHowNjjDF7G7c/ZmalbMZt16RW5xEXtFZpzxhjzBtOsPTbYsd+\n8VBrdYjzbv9Iz5/Dtsb989/rObWMjumT7/Sc2kR7Zvs73XsxhlnImliGmX0+xeH3z2qzs0Ptl0p1\nfT9m37v2AEYeZNHTK62pWzCxV/e0Jp28Zh4aqU8e/iQ2VbapOr73jdw2p3/4X8YYY7qwwh7/Wp9P\nLqymjHVfxe35VCzdv/ut2mjrsfZ5b35SPY2nGjNrK5rX6n+DC5MzZfKUpzzlKU95ylOe8pSnPOUp\nT3nKU54+Q/qsTJnFVFG9zntFk3tfKqJUKBJJB9HsnOh71buKJt7BOej5vytyN4L9MUlA+UEklm8p\n+hmdK7JVb+h9c09Iy5yo6cYTWAUTHGvQkggaoGQ4CRyfKdq91VTErfZIkcKVhV5/BDEYHSkKfnKo\nSFsD54iNNUU1LxRYM6eXoHFnisBVayrfvhGyc4Tz0dffKqLo3lH+z35WlNiF5ZFxHn/zsdgrSaL8\nvv1/hGodvn5nKuuKmBdx0YmmKFvjprS1rmu//ndFag//pCjjt//9vxljjKnA1nFB7oJ7KutSUde9\nNIpOTgeWhWDPz+FUAKDa7Xw8+36TFFRR5LdoBhH0Gc4KdRDdAfohbmSdYxBn8RXBXsAgCWAlpJ5Q\nmRoaLEPQO4t2jTmD74J8eiXVkw+COOUsfsB56Gps9UvQ0gHuh2hjRhnnkslHbYjKfV31U4M1YQp6\nv5iiK0K5ZkUQ4z7sD7QCCnMYKjj2GNxDFjXOwoISRVBpEkuPoDqLuIFEBZg5oGsJEf94asV19FKt\nWSQD/RYQ1gJj2UU8J8FZIU1BeId8D+2bAa4kdZCPCWy0FGSkNLs5C8I6uEwtQ4W8QroxLirvE9wa\nQpTyM1hTXpF70YYx2ipzGDaBA3KLzUXF2LP2IKEwaxagSvECrRhcM4poq6Roobi4XST8H/DL+OhF\npOgHZajLl2a0BVosC86Rx5xN9UE2FtTlDJJYEUbMB0oMriAOLLPYOtTgXrIACQ3RkklT2FIZlBny\nHRtuAFIR4ZZkNVmss1aB77kgmpbKFOEKlVoEF40dA0tsUmJsWdAJ1DGMdL8URo/jfnQOuElqrWsM\n3t0V+2+Zc/RjWAqzS+Wn28N1ZKp83N6TQ8XuI60bGTpS9QB0Ee2zJEJnqqrP18pCTB4z9iowaqYj\nEGU0Z3Y2hS66oWuGaMH0YO3svxE6FPB+gfyGv63fPtjbM8YY08CtYamlc85H+2L3HO8fGGOMqW7o\n8zvbytNsojKOoUKUKfO7rtasqyPN5xlo/F0Q180N3W9WVt+uwdQpwAIr7qJZAyur6Qsd+/HfdJ4b\nWSSzivuF1S0KN5Sv7ZbW0hRnmYtnKv9JhXm8zZiij8UwHpfRsipuCzUrLOv/0wjY+4ZpEquPjvY1\nH74sauGyjmweWjG+D2OlrPJ5qZgoddaNKcy/yorW1fIqrkmx0LVD9FI6V2rX8kz1XII1W6Je/KLq\ns4XrXYa2RBWHngVbOOsqaIwx2XjVFNCVcpgDejPdd3RqhU1gTYA0F3HYyMoaI1WYPQFIvH8BgxHW\nnOdJW6gMu68CA6AO0t/AoeiqXTDdoerQRRNgAktqgZuaH+IEQhksA22lAetmRXVsz+JPmcc65zDv\nYBxPcQ8yuHT22tpXpga3HZgoSVllr/tqs1Lh03QgymXLgtJ4LqGhMqFtHA82F9pjwdTOUzhJsjdx\nYaE67EOzBSwv65wI02No3YZgvyY9EN868wh7hzIMFI/1o8f8WmR99GDepOwthrB9C7FdJ9QODjpw\nLutceQldvRgWV6b281hou+xNWimuRex93J7/i3wuf2AfM2/CoKygVTNDM8Zz7PqDAyTPAwHrlMNY\nWc6oZ2jAfZj0Hv0kYa82ZCwaY4w3mZgUNrXPur1EPmZz6gH3KRemo4fzZ/IJEHaMblCKht/1SHnd\n9vUMYBkpV6/RmDkRg2RwqTp8N2D/hq5kkzxmQ5V1Aoveuq4lzE8l2LQzWEudCo5ljtaFgHlrGdZw\nF8b18ZWeORK0sxK0vBxcfu7B3Cuean5oX+gZ5+VAzzCrsJju7DDfBZofnm5r3chwX71+r3I+O4d5\n09f7ckkMFYd9bBfty1FVY//2XT3z3flK68OQ/eEQDTHnWnOLYW+XBOg9wUqr4VK0tq52GO+LKTP9\nSeV+fq2xsbWKhs2WnqX6U7XD9J3qsb3QKYcue0G/wj4WAqRnPm1PUudZtbCzZ4wx5hxNmevnen1O\nOz74rfRJb3+lfPXaWt+LSyrXSllj8/KF/n9xpPn+p+fSP/nVr/T72qba93ZFz5TR7KOmzObtL40z\nemZ6ba0RDvPp5pba9Nt/FJPkBNfhxrraZHVTrw/QIWvznN050IPuBfpF5deqpOlM83q1oT7i1tR3\nTw/UF0q7GsAbrq5z6qku2rgWBzXlz5vp/fvZgfLD87rD/j2d6vdW/8dqCK49UtlnrEevD9Smf9+U\ndu36usbKyx/F9Km32M/bNseh9+FvxD4a9fVM/Hxf+f+O9SrDDfbqufYwKVo4lXX19b+UcqZMnvKU\npzzlKU95ylOe8pSnPOUpT3nK02dIn5UpU1ki8u8oIt55pSjf6hoMF3RErE/416ty/mnc0Rmv2rGi\nrVOYMqcHit4+/lbRzjLnCt8fKoLVxiFg9UrRwRJnkk1DUcbbu6BbNf2+tqSo5P6f9LX2M2m1dECh\nGjuK+D3gvN/9+/r+DyCvJ68VgduEZdIAAfoCnZaDPx0YY4zpp4r8hb4ihHEE4vBGvx9/qcjaFCRp\nua7v1dY4nwqDp0B5tu8J2Y2GnOP/+dC0cI6xZ0zbnJH0cCRpLAnh2vsSpG+i1zOcD+ZntBHn6Tan\nnN/1YQmAAjkxmiYrRJzRUbgscCaz+hG1uEmKE9gPDig9avZeD50fEL8MdMZJlI8A5DaM1NYQeEzZ\nKDLtgWAMM5WjhoPBHDZCgLND4qm8C1d9LBrr/65F+dAMGFm3INwz+Nh4oaKzbhHkEaQ4g6njcM59\nHCj6WgZ5rpU4925pHyDboxp6SdaAAMeEwUIoUxXnnyHODw3L3nKtO4jisAs0fiJQLkNUvIFbVT+y\nSLDKjWyIWeCg4xWtQ476dIIGjVtVfRVgdxj0Adyq6ncKbSOYolVTV/tEnN8uJur7Dpo1N0qcCw4S\nGCygMmlinZ7Q1UF/wroZJTAzgtiyjfTem+CMhd5FCMLnxDBecFvypqDxVrsF94kCY21CH5sDsTnU\nRQxby4eNhCmTWXCWP3JB/DgnvLCodwwzDicsf4LuB2y0DOaNB4MlY/60ckQBZ/rnCX3NuhvBTFlA\nLZqEmjddNHXCOc4Ic3tWH+0CqxuFlkxUtloQIBUwDn1YaAUIN+MC9UmfrJDBBe24QKcjsi5TMIOS\nEhpftE/BMnBumProjlxcar5swQ4ozGAP9mFUzXB/6QgR2ilrPRp1LOtL826vAGuvJ6Rk2FM+ex0h\nI60NUMNl9KpKKl8PrbIueizpOe/jazO8Vhs3akJb6quqw40vtLbUdjR/2XHYRDtlDIPk3e+1hr4+\n0ppZaurzOxtCaTJPdX7xs/J+fYRbRiR3iT4uD0s4LlQ2VabzEzFnIpgiFepk0td1pq7VgoL54uv3\nlxOdq746A127pbq7+/BXxhhjAgQ1fEfz5NmBkM/jV/+iVxDce7CVyji6TNC2SpmHygWxmC7bWutX\n0I0Lqp+2xSk1rS4dv2P9mYy1fiWgXyHztTux6476ZNLU5yUcxOZ9yoMWzhz0fTbQ9xuB8h2z3hRg\nNYzQrzO8BmgAbeDKMocBmaAxE598dDXcbtw2E8akGah92ujvzXG4KDA3ebB4q7B4s6L6cg82SheH\njLKjek8n6o9LBe0j6nfQKoLlmxrd78ULtZsZJsZlvqr52seEMDR8xr917vNaaBgsq48Ey1rkpjj8\n9QbochyrbFPWOA+WlGtZSiPQ/kjXacJeta5IAWufwUHwA6XyhmnKOhCAYi9gE1UzdNoGqosZ81WQ\nqm5jNFvm6AEh12RixmTEelUL9cEERkhxhGseDLwq874L4yUtKT9jNHdSNHOqVXSn5mguMN/P6Zs+\na75lPlZh6Q5LVuSGNXqg74VosTjW+RLRsRKMnCjWfTz2YhF7phZ7xCEuU2WISdbNtO7AnIEhMwlg\nfbEXKjEUIvY2pTLztB2iU/YUluky1e/rZdVzP/nIIvODisnsXpX1I0YDKEnY/6dz6sW6NDJHmZsn\nlz5SCXDlmaoO+hSm0NQaW0KDq270jBCiMTKCTZbAVFzfVd0VSmKKVBCHWqArF8DOsvut17AOogWM\nEdbMDB29KoyZPgy6+Fjz0ps+TmW3f8lmqNzV+9vr2tc736OfdMn8fi7mSX0djS3LxIOl1IBREhux\nFJYv0Znifl5R+ajAiLw8YywxSF5NNfYfb8vJZnMDvaQftC6133KaYkn/d9HgumZtLqyrL2w80BxU\n5z6dtua3d+90necXqoeEPZi/pvxvw+7o0pc6b8QCKTbQdUIPpR5/mrusA0tviWfP+q7q9+SZ5s9X\nb1Svgy77apc9LHvWwY7ad3lN5Vu7p+et0Ugsj86J5vv3tQOV457qPx6qHM+fvf2Ql6uLt2a+mJmE\n/WQ60l7g2mVtMOqzc9yBjw5VZwkahK6neWoX92HrMJv8AGPmUIyXKXqWbAuNb2lGMP7m1mFwSeMz\ng7Ftp6U1dJEcHCSvvv+RfHEiZVfMnQ52d4Mf9YwboW+6cl9r15w18OyHPxtjjBnyzLJ+S30+nrNm\nDtUnIvbxsyNd9+Ku+s7yturn+Z91ncNlrembO+qLb9+pbVMY0s4s15TJU57ylKc85SlPecpTnvKU\npzzlKU95+v9d+qxMGYeoZjxWlPTgUChflUhTq66oZvtMkbbLU0WP13YV5VxFM+b4lVC+g+eKVNVw\n0qk1FHW8/w+PjTHGTNu4abQVPZ0MFelKcCcZcR569S7R3LuKqNnI37OZ7h9wfjNGq+LgnVDJekMR\nurt/J5eks++l3H30g15rmyrX9gNFexe3YE/AoFkqKb87u/o8BpVrd8jvtZhAGTowJlD0tpcoGjrr\nKqK3C1K+vCGtgqOX703S5zwe59qsDke3q9+aK13bayrqd3sDpwDOrs48/Z4j92Z+QeQd1MWeaT84\nU4TX6+l6pZKQxzt3FMVs1D+NKZOOuGFNdeGja2FdlyY2Ig/DogBCOgWF82EB+MbqaKA1A1uiWMR1\nZIh7VEnXmaNpYM9b+zPOZzcpb4yDAtctlNQ3bJQzArEoTGAUwSiZg3ZFqMSXYS1kFvWHYjMYKP9z\nXKTqoIFjUKq4THmnaACkap9hDdEJdEYmAWgiTkCOZfjgWOBaFgcR+J49NznEGYhz5ZZR43Nuuxig\nITOB1VUn/2j8LGBJpNAjEvROyrA5XDx0IlWbqddwL5lb9I52ukkCNRrBtEDixBRwvCqCLA5hqLj0\njQ/6QpyHXsD2mfF/B/eMGUiqg/tOIYNFhdNUZQbzhiqYwBawbCwHBpuDLpKLm1ACemYRwQVoe7kE\n04e6CEBSHdhYc1/lCRfKH8UzAUwVgECTwHgponWSoL8RUk8ZrLDU9g36jIcDzwIhoRj9jgX2Tllk\nz1NT31PdsJj9UgshIiNF+ugYq5eQcocgwymaNYtAY6QA+2sOEowEzgckuURfTD8RUvAswgwTJuko\nv+8vKS8swEms+bbOefopDKt95vE++knNNc33Vc7b19CzCmFbVAM0GBhLF6dCnmbXzNc9MWUmnu63\nde+h2buPiwPOMPNUny3QsIoP0Z+grk9AHA/foQXzVuzKkPny/m2dk47m6jtvfhTbcwTL9BoXnXJL\ndb98S9/bfCK9ndUVoUbD9zAorHvDsTRieqcqw4Nfif05OkA3pKd8jIYqa2tT687dO1rTvVh9aHBC\nXyiQn5day61m1+0nQv5u7yofdvoedNQml2e6/uXiQNdh7C7Q1qrY+fCGqQgDxsPNo17Xmf3CSPl2\nOU8+wx2jd6z5PYIBGaG5EgwZS6CIBTpxUGZPcRddKR/XEDv9M78GaLJlOM8kWOp4ZbX/qKP7Tq5U\nD6n5yBobupkxRnNKONf6GYJYNx+qnVZAIX3rVoirxzGsY+vmEvWVn4JdRwo40a2pn1QbOMotqf91\n9tUfRlfqB/VkxyyW0Ob7wAhh3mR81Tnzn4YwO3Am7CV6P+sKkb14rTXOdzQ21lsaZ0voRTCdmShd\noyaYf5m3rFaW8WCXsrXI2NvcNFl3IYv0xrDCIlyZjEdbz3AoxEnRwKR0GuwZcJdyhzBgWLim9K3M\nOmNaLRh0MsawaEPGdIQ7aSVUX5nhYpR0VD9JQ/8vjfX/EvvHoVG5wzK6cuiXlECYh2Paugp7YqQ+\nVUULZ+To966ndnQqaMYMYaJUNfaiPvqFlZj7TqgHFXAIah+iFRbMfqnZY+f9Ovft1GFLxyp3k/V1\nQb3MO7i0wvQsRBaJNyarTI3DOrDwYITOcTLCjXXYhH3GAlOGXWI+QQ4xS1lLHNXZOsztEmtpBHMF\nEpkphOqrLebHVdhUY1//LzSsY6LaqgcbF9KpGRbR/yjpGSbGHW/SY++CbpvVVtx+omeiFs5avYHG\n75t97d/bXdXxwZLm/ekWDrAFXb9YYX5Fa3HaVZ0///0z5XNFdVupqPz36xqTzkzlb2zoOSOkbp2a\nrleua8zsbOnZxQtH5EeVH8FsD5c15jd/wxifwda41BhskK+jY+XfsLca7+m+27dVz1vojBSY93/E\n4eea0xS3vtD3mt/perf7yv8RDXd1AotiqHzNV61T5M1Sh+cyc6H83/076ZR83dLeor6vek/GGpOj\nkcpbQ1NzMtW6udTX3HHvkeptzt7izUut9ydoldUpb3UFjbjVj5267nnGXa6Z40PLPoI1u4eDFs8I\n4xFrX1drdYCIYZO1GqlTU4TdWVplnq7p/dKG+sZPfxDLynTVVy2zOBoqTxswVtZ2tBcZ8Rxc5ARM\nfVPj9uhn2FojTpIs44a5rLo7OhJr6N2pWEHhpuoiRX8phZE4HqvO/DXtVR4+ZU/TUz2Ur5TPA8ZM\nhuZgc1Vt5XmKA2QprK01xRE21zXWukfqWw6MwL+UcqZMnvKUpzzlKU95ylOe8pSnPOUpT3nK02dI\nn5Ups9xQ9LSJ3oQB2V3AEPGX9H5zU9G9CHelhMj8zpNf6z3nKvf/Va5EnXPpoJSqilBtbSvStljT\n/daIMo/eiYFz+FbRxMuZULfoZ1AqNB0Ka7rfIxDlaZ8zxCiUt8/ECjl+LabOb/6Lzr+v3NL93/zb\n98YYYy5Guv6Uc/sWMd+4p6jl9Ymu44O8bKwpGjyZKUp6/lLnRENXCEQ1IQqO3srla133fA1tHs5m\nr20/NoMLznj3FVrf/Y10eU5weHn+8++NMcZ4HSFczd+pDMs1RQ2jVeXxYKQo6nWmqOXmkqKZIayf\ni0tFG68uVNbViqKW5pHYP61P1IFwcftx7HltHA7GsJWqEa4RMFEMKBumP8YBnarglGIV9FP6TDxW\nG9ebXL9f5b4wVizIVVXEPwUBdUOcdIiYA4yYhLP8Hi5CToHzzNRzhkZNheiydWCYwm4yY/0+rOA8\nwHnrGZH8AgwVk8DWwGFgAgMlSFSeIuehF74+90H7bf35nNtO0JyJcOHwQKgrFVyfiCKHIBFj/j/t\naWz6lrQ1tOyT4i/ylVDhHq8x5Y+ruIxQbw6oVxEkujC/OaNqaF03fKtXo7fTUHlFAsYETHduYBkx\nnBXHPWcBq8cDtg5j6rpkkTNYTWip2DO2iWOZLNaRasj9SDh8ZQgKhdbJBaTOauIkIKUJ89Mss4iq\nPT8uhDGE5ZYZmB8gkgD0AAAgAElEQVTUbURftkwY12omgCAucNpJYT8Z3C3KUHxiqwFDX1s40BI4\nKxyiUWM1egq4VU2ZfxwQXtdV/aZoRYxgFNXQKZqAiBr3l45goa//T2AulRhUM5DQMghDklm22aed\n306ol+3HuAbs7hljjLnTV71dHms96FuHM86LP7iPIxDn8wdd5pSy5rZrnBzeXQkJGcJum9eFKkaM\n2cmVypc6IOoruv7mDvocqwXTvtbaZa41X3cHutYMNk9YRrMKdtYoUN2uloUK3ftaDglb9/V+Hbbp\nD38Uc+UCJLCEw8gyrk17t4SwrdzVWlfDzeEaVCytqE3ufiMk7+5C170ERarCHjuMhVp15lqzNu7q\ne/d+/YUxxpjM5cz8e5VviitfAJvhChbS3S9Ud7fu6H4z9JvOBvrd5Vzr1BTNgIzpov5I69EULZZ4\n8FFP4iYpAg2s+Lp+jOONB5NvDlstBoUv7up9jXUtCFVvDnpI1oUvQVuiPocaGOCIYzVjAv3fwblt\n2oYVwfzc5Rz/HE2DGZpwhaIm4FJ660MZ6n5gnDpMSdgaLvNrxrn29gz3rTlsFNgRs54+X7LXbWif\n4KewJNC8qK/C0nNxd4Ehdd1Vf2z6uGBVK8a4sGqKzDtrQk4rFZydCkKLL2HEjHAOGeCukaHjZkyT\na2q8zGDcHR1rv+OAUKbY7xRgLCY+mlZ0hYy1O43RZ6p/mqaMP1BbxaHyE+JAOKTtrGteCPNnMGZN\nK9vNBxos6Im4aCvGQ/1/wdoYwDSsDdCCgUXVpCA9WGHFEboicxgiI5zQYLhYxkiKPt2Edcz0VP4E\n3bgprOCWY9cl9jqO+rSPptmUPUUNXbtxgzUdTR+6nhkzRhMPNxLcB2swpgyMp1ld1/OwlkvJt5fo\n986MMQHT1GfdrUZq5yE0tSREpwl3vAVj0q6bxsgZMKJ9quiOmCpsB9ovXKCxA7PUMHY/dMMbpJT9\nV4hOhh1/EfOpiwaYv1BZDk+0hswZX9lCZR+e6NWvaBynDfWNItqM0ZHGXwxbNX5g9dm4b5k1FzZq\nCQey0bLqaLWsZ4yEx4NHdjGGsXKEs0wM87Bf1H3mjIFS0e73dP3qACdDNCfne1qHHJiSUxh0lRVd\n38ElL0AXKeEZaxMXvUVlmfJrnYlhwsfo+G20dP3UuojWcPqiTzfe6/P9a80Rb/4ktmv8UO2z9VD5\nWv9CrIYhzwu9K5X7VSyWiIum1v0drS/bX2pdWq6qPM9xGqqZT3Nym6BzN0P/s9VWe6zCBLp9T+vy\ny9+j/cN6NEWnLnurefuyqPXgyTe/UT5wGHJwAu6dqY8f7utZ9/Gv5ca0dLv6IS+jSWyKxXUT+Lga\ns1/cXNI4bVr9yW/Vx97+QcyQTqq830Isqt7Q996/4MLMA60HylNrW/cso9WaoPkVLqkvPftJGjF9\n3FEDTheUGM8uukwzxBhHqfrMuK86eneudWQLFujWQ51cKZUURyiuqu76PG/P2NeeXWhvNGWf2Wdf\nXWDsOT4Mcbt9heG+tK29yu5dMYXaJ9rDbe/p+b9OX8+m6suufUD5CylnyuQpT3nKU57ylKc85SlP\necpTnvKUpzx9hvRZmTIpriYpLIZogFvQGzFCmpw1Hl0qWjnhTOwY1fadPSEme19+a4wxJj5XNHWI\nn3l7Rb8b9HQWzJ4Xr3Be8dY3iqCNiLB3ThUdvTohyvtMqN+tp0KLLKvimvN6208UIXNBAq5e64xd\nu63fb20qSnuGY4YHKnXwVmHp4hLaODM1wwSU6gIXqZVbisTt4Gt+9U7/n6DE3YPVsGP1X3qKaO4/\nx3njW7lC3X66Z45d1d27l2LtODASlvfuUkZFuPef6bcnz3Wvrf+i6N/mE9VVZwR7oI8ezpba7t7f\ny02j0VbEP/ge1fmO4n6dviK6y2Oh1DdNk6napkIAeoKSfwP2QN9TRLwKOuPGKlcNB5eRBdMBKE0F\n6guaMVmVPgViYdDlqACuZJzVTUBQY87WpzBdnALn5V21LSZLxgO9iWnbGCeCKufAZ6AuRQ6mhzBf\nJqjUuzgI2XPacUTU1jrlADZZhk0NOkgCCyHGBcqSIkykPhLgYJBEIO1oT1RgXRjOjRt0TUr0sawO\nEmKsk5Be546+N8vQusFhJrE3tto0IPOLVPVcHuIKhQNRgfslMIeK8c01Zapz1WHsaTzFuGtYd6CM\nM+URdVSirCWDQ0oBNXfcJ4qgNQn6CXOQtjIoBRI2JrPuQBnsKBgwiw9ILXViUSucWjhebuZWqwVE\nF4LJB3ZXGoI6za36vO1cuI0U1Qd9q1UDYydGG8dHh2Jo+wBtVsBZIIFVFtmxQzkSzvAbGDl+BaZH\nhF4GDjwRzKSsoL5Wpm9McdOz9biwjl9kowRLzY61aI7mj2X2oDeUlXG6walr4ajvzmBSumgp3DRV\n1oRyVZfEmITQYhKrHYAzULWyZ4wxZtki+7DkxiM+x3WlhE7Ioe1PoH3+Gqy6Gesb919aQQ9rh+uH\nGpN1tDHKNc806TszxlvIeJ2DrjjMD+s1oT4L2nJp3Tr3qa4uToX6vN0/MMYY0z0SeuPCdLv7tZiQ\npU3N35shSCEuQ2c/a74+PtHaedEVEri5pby31rS2lRtC9C7e7fNea/I3v9Wa1bqj9SWba95tP5d2\nQQqrqmznDaguzWUhksvos2VT9ZFrmDXXMDIGM72vr6tNHj7Vmr50W2v19//8R2OMMdEAKs4N06Sr\ncnfHavthrL2Ix/sKaKC3obV2taG2C3DgidCd8+08iSvH6FB7i/ZYe5JZhwmc3oEJh8kYcx4oYcw6\n5S10v8Si/I7qp+Lo/oX6R92MmZuZYEznRtOigA7KMIal29N9J6l1CNJ91lpCjpc3df1iDe22CxyP\n0INpv1H/uprC+mIu8aZqv5i5s5yUjFcnzxvMHw2N7/al9hidU9XJCIeoGC2tZkl9K2ViDArSHKgy\nn/QYngFsok6kfZ/3wXWOeQLNFA/HkowtjIcmV6X0afOIbdMiF+rjoJiyFvs1lT1gzYWgZ5AgNFXK\nafXWIhiSJdhm5QzWVAwruKo+WZmqrydDFpAP8yEsA/Y+hYrqoWfn9VT5iMtolvWYl6w7YFDivrBj\nYSrauceHdhywXx+DJGdNkGvWrwXrbFrXWG9YHSyQ8iHrUcDmhy2P8WGkFBCYc4ZowxTVlxIYmwX0\nmcKx3sdWxwlEvIXGQ1ZBa6eDHl/ho5OjP3INU6iZJ+gmsVepo9X24cK+XocD5adgO84NUsHuj2AY\nV9AZM2Sl4Wn+NpeaxybnWkP7OLyW0USZnKrto4o+r+ME1WK8ngysG6k62VVV4zJE16hRVZtMLjQP\nvn6ndaCJnqfVipmfst+iL4SwqlbXYCXhMLPEvjotoMNxrX3vaqB5oI+O0CWurT6uoSHzz8VE5emf\nKT/zlnXeQisNtpWzwOXUw3EysHRavSRsWjqbmvdX0ahxYc9mRfr0U82bt1+wx0DX7YzTB/5A99mC\n9dZ4oPxXzvX/7ohTCu0DY4wxJ7Az5hkuUHvMm5naK218Gs8hGVnmo8bM6Y965gz25La4vqV1ebTA\nRZbnr+2GmJEZJxbO3urZ87qh+Xvjqdbdr5+qf7z6SVo/x6/Uv3zWmcWHzaExk9nUPPnmtukOcO5q\n09+Heh0yn65salxeoY01aKtuB5ySaNR17wD3pRhmtdNEOxHXPLZxpobT4/27YtO2T1Tnndfqy6vo\n+rglG67Q91t1jal736CTxomVAbpCP/5Pve7ikuSzX1tF3yiFRVpF1216pbpYaahPj0docYWahydo\nLZ701bfLb1WeFZjoFa7z87sfdP1EDpIMRePg6uZamtdfSDlTJk95ylOe8pSnPOUpT3nKU57ylKc8\n5ekzpM/KlMlwR2luKnJ0eKCoXxnHiXJDmjEh+hzFkRCAY6KJGeesv91VdNCrK9o5bStiVgN9ar9V\npP6cc3t7jqKqPlHiB7dxZ9pSVPFiSd87faHo4vmLA2OMMWOcENxIoS8nVYRsHTeoN3uKVhZBsIdT\n5W9rQ4ya5pain26m647R4SgWdb3WmiJtr56LzXL4gyJxq//Hnu5DNPjnY0UQB68VZV/5TpHEx78W\nM+aP//S/lJ9XQiW/+a9fmeCREMxn50JCzy+ETt17zFl/VN87MGUmOJR0OS8YENEdU6Y2iGIZdfXm\nV4ocuyXrHiKUq2NUd4MOEfDSJxzM1ZX0O1Co+pguy7nkSmxZDUIKxh/CjChkj3Bfcjg7Cdsp8fR5\nCURjOoYVAGoygKFS9UChOIft40a1QOvGReum5oJww3xxOIPvkK8SLktOEWSDzz1QpinnrQucDXbR\nknEi3JKgV0xAqdK5otAhWg/eVK9T1zr8oGYPg2eES1aRc9RTnHMskcjqo0QwqtLEaiLovg1YHQPu\n49DHKwP9f97EEYdz7QXOsQehRUIsk0f/n8Ci8EB+/YTzmvSvpPDxrOvfSinsKZe8O0BwToIWC64U\nFc77xi56OzillNAKmYI+pQluEwW1ZRm9nTloj8W4XVyZPM7227Yp8f8YzSc3sM5Xuq/ViQgruLmh\nUzFGSyazLlL0qRJuGlNcj9I50CvMngCXKDfg+9THDCaLAxuhgsaLgxuTNX9ycHiYoolThjET+Pp+\nDCOlAEKcwcRxcTFxLJuKs70uY80yZqx+kxeiY0Rfq4EcpGiJOZYxhAZDDLfGhakzAzl2QM8i9+a6\nQ8YY0/R1n3ig319cCfEYwky0Z5ODmu6z9wgXJU9zZwb74ORI8+4IVkQf/ZRV9AAeP9A8H66gTwX7\nK/H1+xVX687hmRCcmP7hRk2TYacxPNf8PHaEPq0+1G9ub+/p/+hGDEC9rbPLwU9aG7tHB8pzSW26\ndk8soZ076OnUhcBd4c7TPoGJMlffGO7jpjMFpWeeXG4wz3XUJqOOfn91pHXlzq+0llbXdN/LP2tN\nPGmrrie4RQUL5l0sZhzGWIwm1gInwTK6c9cXuIDMNN9aFtXuV0LlhugCvf+fWjuvznWgvbX+ESW/\nSfKZEyDtmkKGgw6sA6vdlR2rLbv7Ygi5aOJY0bJigKaLdVqLdR2WHRMaGC4+bD0Q6gTNN48x0igL\nlazi1jcv2LkFVh71WC181DJYW62adFtoYsEOEdh0pZH+P0e/ZKmvdXr4gT3IHHWuMXFmWRXomngw\nd1yQ1pT1ZqWkdli6BysYlkMxW5gp4+b8Wn35+rX61myhPNTRDysF2sctBdb1RvuduIVLntVTYB7d\nwpGwgGvH9rL6+MISGmCx+szPU/YgI/Qu4onq1Kt8mu7QoIgDoaPXVipE9noB8gqFp19UnfoV1V3g\no+cB+7Y0UFvW0C7rMbYqQ7TKMjuf6noTnHP8GppkA92/xvfSBms2zEJIvcYCzCmuIabFnoE2Tzto\n0rSUr3TEnoT5vgxbLYYG7I+ZzzqwhNGEqdO5szGsLNxWMg+XKcbOAgS9yl4ng4ETwBiKcXKsMhYS\nGDKTRNeroKOVFtibwSDt1WEjT2AQwZCq/EeCi182LvdLWL/KMImiotox6OCah7vUB4bp3Nw4FcC7\nvQVubZZRxn5qeQtmYFWMxVs1sRPqMMyKsAsuCnqmOTzFVe9CfTeFZdqkTpyqCnmKq56HI8ydNdhV\n1zCkcW0rt1a4D33NVVlHzM/HaE/N67Dx2b8tmhprm7swZ9DnSC5Uh02YmzHM8gtOL5w0tT5UdtFh\nKut3vVjXrYY2H/p9dGad19RXfNbFeRvnL9iqg7LqrUffdhb6XXNH68YtV4ySWkX5W41hPx/jWgjT\np7MC62FFz2rb3+zpOn3NKZsX2gMcnWqdPPtBz0nDO/r+GJbXwxAG1A1TtaXrrnDaYRSpPk5hNpXR\nl3KtvR9jqIVLbuOu2nkAc6i9UD2vway8/bVOOpSX1J+u+vreFmyXC5yWjDFm1p6ZaD4z5abqrv1O\nz6mXXU5++NqDBDz7RKzVUxh43XPtFdoXqtsFjGeHvHnooZmY/SrjqnMGC2hPryWjMr+fau8QvdV9\nUp75XJxcR4nKVrds4Ud7qruS1q5lmC7Xr1Ungyluczy3b34lVu0mzpIHx7Biz1XHNZj2F6HWq/UN\n1dndh4pLODjy9mGfVlY11jbQHSqVcczt6veRq3J57l+fSHKmTJ7ylKc85SlPecpTnvKUpzzlKU95\nytNnSJ+VKUOg21Q5l100sC+SBu/1heXb0jMZEgW92ldkqgcCMxwqSllbVSTqdB9kASebQQAywnnE\nDuf3IlxbahVF8pZqioQ1v1Gk0CdSNjWKsM0492mR4/0/KJK49ZWinbeXhfTUiJZGnBc/PVOkrgWj\npkpUdIYTQwg7wyF63miqHPO5yplMlF8/aPKqch28VbQ28vX57S/ElNnYURS8jYtB/yw2XlF5bNzX\ndxMist1jobXXqL2PcYQJLSrP2fPikurm9m211bNLIZFHLxTNbMLiqRf1+c5jItkDRROLiXXn+ese\n7f85cYT/A1NlgmZJOFHXdYi4hzPdL4DH4PLDUQWHGiLNA9gQDc7EDom6OpzvXqBxksJS8HBTsii6\nA1xS5Jx1OoRlANq2QFsgQ/MmhflRp+8NQUQD+myGk9aCPliAGTRFt8PDsSZFTd4BpWoUla/JCNV5\nFMmraNFYDYoRfThANd/n+4b290Ba/arKUYUdspjBeCLaHcFe8CtoQMw4R0/UOeA8d5l6SkCOY6LC\nHi5Otn0WONsUaZfIauhwbtWeyb5JCvkNBlMmMmqLKdoyzphz1TjXVDLrEqS6mPggtTgkeLCIItwd\nDKi0j+x6iuZBCVcRk9IXaYMIZxzLuko4Q1tE/ygLLSsLdxADOg6abnCoMkTik8BqznDGFYbIHKTX\nurg5HF4dTv5f9t5rS47sTNbcLsJDy9QSCY0CSrJJdrOn56x5lXnMWWtuTvcMW5GsKpaGSCQSqVVo\n4Xou7NsAOes0O3GFG983iURGuG/f2n+z3wy2FIyZMnnQC8a+ZV/lZVAuxkg1QCuAvsi4r7eA6RJb\nVJ9Iv3W1AslNyENnSJkcRMSy3Byj56kylxOrMgMC7jL285p1KaKdEthyVqcjARlOPgxTuL4QYnGy\nj9sGDJdKm7HfBsHB9aREOwygTfTJ5x4vhMS02be21sQOWbOaNWihzUBJowH3S3X9N6lYI29/kU5L\nBmXJc+dmwZi5udB3Nu8JnergQtFHo6n/QqjO+Ew/3wxUt7O56rr6SEyYu59o3d9aFaKGZIwZHmlv\nGCdC5PrP5U4xmaguo5GesbypMfLoV0IcV9b1c/+Pqnt/X8yc6yFIIdoxc5DTA9ichrHUYm+zukAd\nGDJWJKsCu6jXgSkSbPN3tBVcIbXrD3CnuKu2//H//RfVF+bkEvVsdT9sjISB9rEmWgx+jnMMY8K3\njExcolL0P3IEQ1z0PSa4G7U4w0RVHCZglgY42nig9T2cz/KarjuFsVIn334JJqLH+juDxVaxa1n6\nnu3htiYmRysmwWkuhzXiop/XguESw66rXaMZg+PRAgeaCW6Mfqr9vwvbrVRRP7RatPMm+2FD4yrx\nNdCGlwtzegmDkTFqQKs3OTM0QZsd1tV4oGvMcIJJ0ZkowQazrkozVwhnBiOwHHK2aOtZAr4/Huq+\nI3TMoonWkwbrktW+um2pWq2aCeyHtua7z3oRjzRWSzgdVhn7c5gf1nkrrIAkw2otw15KsTSsJqwb\nDuwjl89bFyOYlpMR2jusTxXGajqD9YS7aQP3phiNlBhWbxXkewoDvBLglgcbt+/C4mXM1GAIjdGn\nauGKYrXJSuiOeI51LmNscbZq3ag+IZoUNcZ+mFknSzTiemrn2kD7YhXXugQNhyEMIWeBfop150M0\nxk/Rlqn9Rf9mAzOFXeKVYYAiLtZH7y/qaQ1rsX4HXdU7NbcvsV0PINu8/KPWfLsHznCWdX3ds4tT\naqmlZytz1t9hbNWX1GY5LC2r0bJ1l/PiMWyt/W+5Li5oFT1rp6M2GeOkmEP9q9c19joPxBrId3Ev\neq11++2l9oXzn/Rzvs05zZ7n66pvg3U7gJ61mmjdHhxpfxnc6D1jrap9aGmH9xHOxSXYWD5OZJVN\nzmYLKIt0YYD+0Ku+9r0eblTnPL9lXczKrMMwQ3vr7CsXqtfJJdkU3He2r/XqB5hCE/Q/O+i9bd7X\ndRzOyacHuv/b53r/cTuwxx4q4+C2JXNw+8Ph6B5M2NGlzioY/piM9s44i7z4RZppnabWzvay1ufF\njcbu+aG+H7S0Ts+sTiHvxD6s6bT6F1pkoytzfHlpZrAkZ2P0f9B0XUZHrmKdVGHi9dARu/dMzJUx\n7MqjQ1ycrnFKZB+o34NJja5pr6ExHiypLr0dXW+6wC15b4Pvqz5vcE1u8l78+AuxzVLeJSrseXd+\nI8by80CuzPPnausjWL0bD6VHtPNYbXiMJk2jpjF494HOFqcnGvtvvtMcTnm3zCL9HJ1ovXr8ubJF\nFgvVZ7JAm3asfWqKU7BJ/nbYpWDKFKUoRSlKUYpSlKIUpShFKUpRilKUonyE8lGZMoZcMKs9kIMo\nTGaK8vVvQF7Jz87n+pwFRMoJOhoojzebijY//VIRrhBkOp5aRxpyVs8V5Tw9UJRzCBpFcNc0N8lR\n/kSRv9lIkcJqW5HC2VgRuuM/KRKY46yz3BU6WW+idn+uyNv8SpG9sxdEMy9BRKzDDLm0c6LAc/IG\nS6i/z60JyJru//gfFIm7OlW93vyg56gvr3I9tC9wibo6emWaq4rgLqG6Xq7DxgH9nuBs5aN7YCqg\n3NQxrSmaeffJr40xxvRPFLm9OFdE/eZa0UBD5L7XATVeUYR8cq42mJ8q2nnbYlEw6wQTTDUWquQF\nD+dC+iwTJAdVGqHY34RpguyGcXB4CdERKVcU7p2DBrW4noV9YtgTNbQG5nzem8K2Qg8iAeWvwjAK\nDIhhE70RWAP5UNez+c5hBAtqrH4JKpaBAmvD5u6jS+GCKIcgoTF6S/4Udw6YKhGaMKUq2jOMMesQ\nkVmE17MOA+Rj0+9lywpBH8X1dP2AvPEZKNQUlM2Qt19jPC1Azypcb4p+QIpjkQMDJ6F/vDIMLtgi\nU1C125QIpkVIH3owLDzLVgJ9diz7y1FEPidHv0Kuf15Ca4YFJkPzZJ7aHHz1QS2wjBmYECXNGZfl\ntGJ1c6xNk9VO4VcX9DyBsRKh+VIlRD4HibAMFPtFFxbArGQdyawojNowZszWrQVYbK+n56p4GjN5\nA10MGH8lm8dNPWzOv0/fp1AaPfQ/Ah8XIavtEtq/W/cKmC/oYAT0Jc1sxpl+r+AA5lvXkhy2WW6Z\nN6x/VjvG1RgphawF3och3EFTY/jJA63DXltISQeUv9Ii/x79pzqaFs+/FSMxfKM1zFtRvdeeiCVQ\nJ1/75lRr4fEF+kzXqu/gAgZoW2tTfyj4NGfcdGBOlVfbZr0q1Ob+Uz3b8orqnLMODl7jWoG+2QXX\najRwFgARXOupzS7ZI45fak9tsk5dHMFSglE3u1ZueRX2z/rvHupnR3vO1rZQoPmEPOqBninhvr1l\n1qce9UW7q7GmNrzzUG1e3hSqD8HD5OBCZeZYo6H6vdjXnvYW/bQ3IJiPvhQbNWA9OkSfJK3ouXd3\ntHefDWFRTG7v4mbMe8Zlztz0AtU3RW8pxwmtg15VXNb9XM4A1p2vanWhYOO2YDkgQ2RqLW6YWhs9\n9ecUJ7CAdp1GQvXSvu5n3aGWGjiSVdQOSev63TNcDPbNOZoEAc+RMkcd3JhcXFJ6C/VPDpK+jPtS\nGUR4ytidY2MYwcawJLV5DkJ9ov5ZDGEDJqqPWwlMDS2CzgPpzpQ5pzkOeyR78eAK5gmuSD7noAwG\noI8WS4az4AKG4vUrjfEQ/bQMhDKv2AXHsjQ1Buu4I4WwlOLkw9yXqkNddwrbdkj9G+jNhV3Yo+g3\nDGGLVtCHaFnWKYyTRYpuj692CWBjDWMNkgraZEOQVuvQlnP+zXtqt6DPmIMhmsEQcQYadCM0a4Ky\n6hmomUwE66sUsDdb0lUH/SDWfdPneXu6jxN71BNWMfuVg/6cibX+TTkjlXG4tKzeiP05hw7goFeX\nlLgO+89NDa0JjhrWjdBh7HmcTacwREs3ONexX886719znKYxEWerHLaZN1T9Kzhx+rBbbnANW6Ld\nF7c/kpgGzAlnZM8QauwmGlEp7yRvrrRnXKBVEuPIt9zEkWpdjJK1be0L8wnsKJgnzgZMiUe4B4X6\n/NVQ7x7XA62PDZy7HPR5Ipy6DmHjNhgry8u6/2ZH633+vZ5j/7XYBtGB5tqrKcxFq6FV0Try9Bn6\nnuxpS2i5nAz1vdecE+uJxkaG/siMs0jbarvQTr1dPY9hrE9xtk1YR50SbGFYXR7aWTOrI1oRy6Gx\nLtbE6jP2oVA/mzD3j3GD8n5hD/9R73aDFfr+rtqph1bP06Ycf4IrvXPFnPki9722121KDovicqGx\n3OxprUxhb6dl9Vu7o3aoBThBHmuQns/F3qjCpK000HmJ9fy9Ha4z0Hh7/UJMql5H5+y1lff13X30\nwGyurJiAtjxHAyyJ1NeZPffChDO8E90MtUe93td79dqmzkWP/05t9D16kX1YmKt1ja0m79PDgZ7d\nvs+vrWrMnB3hhOVq3Vj/9Z6e5fdyNwrRmM04r0U4iP2IE1UZjdnHn+p9OUTD69WxHIKvrnXfu/f0\nnn/3Cxh6uCCXcDRsR2r7s291RqqtweDbUH3fvND16ug3Ld3RnDQnsNNSdOes23Tduoz+r0vBlClK\nUYpSlKIUpShFKUpRilKUohSlKEX5COWjMmUc3FLKuJFUPBsKVzS121akKwPhHcKgqZDXPCHndj5U\ndNMhf7JOft16RxG7xUKxp8sDRRUj2ANz8ueH5+SKLchFa4HujxQxS2f6/OonYn80oV1EU/395A3u\nHTgm1DcVPa1vq/7eL4q0zYhOB0QCaxX9TGF1ONbxgcjg0pqQlatLRZmtjsn2njR2lmpiv5QzOU4E\n5CbnVaF7U1/9A28AACAASURBVE8o48nha9M4VttVaaM7X36he27rmkvo5lyT3xuTr/czKPFKXxHi\nT/5O31t6qGe7PkXF/M9Sh1+MQanufmWMMWbnLqrloOjv9ChuWbwcpf0hKBLsoQy2QJWfmae+C8mV\n9UcwU/Q1k1rkEw0Zr6t6hDBnymN9fkg+oQ/qU49wCQFdaZK3PK6ikTBT1Hhi2RA4zUzaRKiHjO0K\nuf3kdztoANRAXEt1YCvU9zPLckBrxofJFJKn3iChs/TOnUnfH8VosqA75FvXpynthqp/C/aEdQ0J\nGTtz+sfLQffGFt3SeFjA+LHMmEqiaHMMqjmDFVEpW5QNPYHQOh0RB4bVQrDdJCDEKaha/QPGiQXy\nrDPI1KHNiLwHuHu4sIow5DIefRXjQOOB2FVi6yahz6XWvcMyV9B7WIAs1kBHZugwGMaUASW3shku\n8zeB4RHZ+uXW3UJj3eV7BnQ7wg2qipNOhWU7gSHk4FZixx6gvEnRiHHRMIhBlt3UzhlQsxKaJiCN\nFfQv5hZBhslitXsy2FgZWgyhp/vU0AQwoGTuzLpkoPmDy5RlBCUgujnMlzk6I3WbPw3bK7OuVonq\nldU0FkP0pW5bShXdv4yWQ4KmzoA5Xr54Z7Gj+nha22w+fOcB+ix3tQ/4aPa8/nehiPv7YtJsrog9\nUduw+fNac7tbYlJ6P6BxZvtzRfXa2d4xLqyl7AYdhpHa5Oi5NLzG50JzhlWN0Tb51vc3hFDW97T2\n92FUZLgoOaw/K0to0wwP9AwWNYaFufNQz7h7XxoDGevXcF970M1AbTSZ6fobj/VMrS2tE2sp+wIs\nTZ91eTQGfbpgr4PGVUeHaD5Xm08D9B2+v+A+es47T7XX7a5rQd9/IdTqBOZlOEIs5xN9/rSv31uV\nD3P7q3QZ4zCGSn3rT4eOFGO5vMznWF8NfenjfNMfo2MyhakyQQsNS8jlTbXXvK/fx2jmNGC9hTHs\nYdwGZ5EQ1QFuf3MOC67HmQY2gTHGnDwfGjOHGQmjqIpOk2Unu9QrW1O/rKyhaYG2Wn+EQ9IA9twU\n7TYYSQanOBdWRNhHJyph3yhpzPtRxaQ4Q437grcjnGhCzn/DG509GNKmC6u3t64+GA11TatVkC9g\nmsB8rAfo/oTsnax3+YS9Hh2fitukCWBUcF5z0g+gQBhjZiVQfmyNyraPYY/GsGg9o/ul6ITMOddm\nODu2R1ZXhA3JsmY5h5rAupxwVjBWj09jacA66We6TgK7KYLq0Vno79d2Axqr3VuwGsKWPg+xyNS4\nXljHCQenxhpjM8AVpc+cbFfYP2G8uKyvEdovVZgo1m3FKWlOlJlLOTp0KWS2iP2oaR3OxrBNWrre\nIrcsXs7R1pWKM5QLmzCFQVo3Gm/zzNLSjInnJdPiOQeM5QVnIH/OWgSDynOtTiLuLuntzyQrde0B\neROHK85vqytaL9t3dO3evs7oE7RFxlf6+fZA7zTlGczpz1XHMjqah4d65+jONXbvoQmzDMvfnKIn\nV0Y/qQZLa6T1fXitPp1+p86/ghU02d4zxhhz39fnlnCo7V9aVhJnB5y7TtBJymD0OaHefWoNtXm2\nqetcv9XYhnBoOi20bZjLDc5c/VdiW7ys63q1OVo0S3qu8EzrXniM9suIudHEuaypMX0AM6f/mnWz\npjkRcP+Es0y9BzMIXaGsiQse53kX/bpz3KiCsuo1q+odM+eQGOKE5qV2v7hdcV2r0aj6nL3hXRQm\nbPcerqQwX5c2xOqYUi/nrT5fgx1+w2SeMqfuPMYRblXngsFMzKHv9qVJ036j5zD/pzGTMDcTMzfl\nOmOTc+zbQ/X96rbqtPy56rJMNoSDzt3RoRgqIQ5fd/9Bzr4bm2rjK6svh67pCu9C50ewdedkN7Rx\nsHLE6nl9oM//00Pc+TjzvPgTmqtkE1S7uk+ddeXwx+/1+/+Bc+V9/bSOkqdkmJy/OeR+6osazLv4\nRmPCsrfSJc7rbfXx+raYn6c/6dz39judA3/1O9V/jbNYNlM7xVe6bxz97XNrwZQpSlGKUpSiFKUo\nRSlKUYpSlKIUpShF+QjlozJlQvLO6z1yx8bkVU8V4W6vKyI2sGi8r4jVg0eKwL36Rujh6JI8QyLc\nL1Gu/uIf/8EYY8zWY0XYWm0hAC1yxaZHip5+8wcxTSbkhUdEsi6OFQG7hKnygBy20m+UK7e6p+jt\n0QtFu90roXeOpwjanEijBevGc/29M1POWbVChB9kfDZXVNcjT3JrS1HRty/kcPH6Av2WSPW4sylE\nqdHaM8YY08QhqZ2rPc63FKmbTYfmeqwItwuC6m4pwnqvKzbR5o6uNcL5YHSgz80matOTt0I+u49B\nSaz2wT/qGS9/1LMdHyjqWIoVCW/fVxttrqmOS210b25ZwhyErowTAXFEH8/3BASiUidvHNeLOTmZ\n3oBIdlvR0xxNFG8iBNGtg3qB+jdyfc8n8hx7ao8ajBsATxOAuqUgBuUy7IUFDBGcHtKWfiYj62SD\nlgvIagTaM4X50sSJpxSAJIDElnD6WaC3EVkyBkjlhMh/C0bSlOtOyCUuN9DICVWfag0mDSBhgD5K\nDYmDEehQ4Ee0A39f4GwEypSQS1uBneLMrKMPrBRyfK3eShrod8v+qKHAnsEOs1oOaXb73Fwf1s/Q\nughVNa8gB5l6GccUtFwAaI0pW2svkDvLVFmA0JXJfSe3vZZa9BmUAjRjCmOibpl+9FlgEUrYADFI\nJ01lMlwyMpg4OZ0aw2qwmiolXC8sA2ZuHbWsEwyaBbmxOhZ/zVKKYZzUye0dW2QTl4oKqFAEUyhC\nG6EewIThutPcjgHLeoPlhebMlHpZpzODM5pHvvgCbYgKzEB3Tk4/666pgHSiNVOFETmDLTAFUW7A\nbPHGH5a/PQHBefFK+0OMu50LMpvixtFtaL9o19F5SjUe1h5LZyUnx/r7n5RLvJip/TZ3td5ufiI0\ndLlBzvQliwaOZVHdzgm1z9a2PtdtbpgfvtNecvyLUBef+T0EEa119MwbW2IH7O6qThFj6/RrNApi\nIY7LS1qnP3ukPO7xSNdrb+L8l+o6Dx5qPtd9PYPDHnh2IWQwvkE7y7r4MEdKll2G49gMXaOgyp4O\n8+XsZ+0fcaTni+06Ntf6u7aufSHBJcLquPW+Ul88eao9P+M+ZfRDlpgrbkPP4QSw4mAJlD4MuDQL\n1p/pSPWtT3GIWVa9KkvaNxboKbkwFC3iuQABLs00lpxYn3NKtEcZZBkE21vW9+trqmjTE8p2cwki\njUtfeaB9tFFRe2QZLGG0Gdyb92yAir9qurAW0iaOGeg79TZxhfFh6mDHdQrKOUtwGBvgsoQDXaMk\ntM9FE8xHF2QxswwsndUWRuMnQk+rNB2bGOsUB2ewc1yGrFuRQSOl1NOzL23oWSKrywaDxGVMJiXL\nMGG9gQndQGfHTzXWLRsz5hwWpJbpx17M+mqvc9sSwiRsovE1Zl1zA53fqkZjceGj9cIYckt2AWcv\nr6pvqzA5Z1W0tGDIGNho9SpsXNi5Keu4N4SdxYaSwLZo4hoUoi1WQ0PNhXFoWVaLCNYTZ4uJFSFL\nNQbaaEgs/A7VhnnE8u5a3Trm+IA+74XqzwgmU1jlDDVF14h+WLDuB+xDvbLqM2BfdNGWKQ9wn8JV\nK0xV/1Ja/8vqm6aDdg7urRntkFmdRGOMX0nNDA2ZHs08wKko52yT+uq/Fq5dU9iB5gOGScq5qFrR\n/AtzMVsuJqp7xnnPWdO8esxeOWlp/fZZT5J1NKAYo7t3pYMWsJf8fKh3lBwnq220Z4IqzBLYqd6K\n/t51WA/Y21/NtM76GKONcKbtr6v+DZywSuifrdzXftOImd+XencacK7sj9QHjW2t5+uP9H5xOtcY\nSC80R8au2uPeqtb1Rktt/Bq2xOFQ7RS1cL17oHqv18S8ifZgWvLuFMJCS13NuatccydFh2p8BdPz\nRD+DVZjbHb1j1RqwG+7guPiS8yxjMECTcTjT892c630nD2EikdXgOR/GupvA7qvBlt17JsZTgutU\npaqx78RkILBvPkTvdPO+xmqMvpP/vfrj1XOdTS6OtC53PtX73X0cheI/KgMiCe1h2Jjh6bVJrnOz\nwfo7//VvjTHGlF/oPTuJ0Slz1QdPPtE1r8gIefWj3lPnfdX16OcDfR5GYp+XpytclJ2K/j+owPiD\nTZ9BmUxmeqYJ2lT9mcZOwLtWXtOYbMZq884dPevrc82B0591hmr9x9fGGGM2HqvNPv9CbTC6GFNP\ntcUYltMq781mE128qsbynS291yONZVrWoREHq+O3OttYjdjVDpk+7PUdzkp+/Le1EAumTFGKUpSi\nFKUoRSlKUYpSlKIUpShFKcpHKB+VKTO8UYQrCoRIVj393id/bwxKPzlR5Cy6BL35kvzyB0TWyIFt\nLoME/7uisD/+UZGy5o6imDWL7q2h7L2uiFazp9iUkypyVgbNv/NUkbXFvyta/OIXRR8b9xX9Xarp\nvuWOIvONGASD1F8/0++tlp5v/2dFtWcgBJs9RTmzTNHvcILWAKrXE6LOu08U2Ruk+v34TyC0p/q9\nhptBN1GEr1TWcz55LO2ZcTk0g4MDY4wxr78RSjx+KWTsGrX3zj1Folc2FQlf2lNdLn/S986O9PvB\nj4oqbnfUpg/vKdJdcxT9++b3imae7Su6Osv0e4U+bnbIYbxl8a0WTGIdUmAdjEEiYIxM0ZJxYHB0\nQH2iivrOtxZWVoAEFMsZ6fnzBswSGDNNIuJpGYQYeQ0nU0TbQUl8biPpkfogBLGuVajfFEeXmtrP\ntwgxEK51Hitbo54JDBwYK2UQ8lnZahqgvwGzJaAB6jjnuEbP04DdkNdgzpAfHpCfHs7QRWKsV3j+\nGW4BDlYHC1geOWhnBkJSh72WWr2SMiwV66QGC6yE20sIWuWSD95Bq2CEDkqd/rJODamlAt2izN+J\nqGjch7gVOTjLGLRK6BKTNNS3ASHvKX1YW6BJ4KDCDqJXgZlhKS5zdITquDctQAxnoEk5LKUAhksp\nttor5D2DEAfExB2YE1YDp4z2VOjr+nECMoA7XQyCmae4aVjEkvsurCYNTmJ1A4oP+uawQLlW0Mex\nzBTYVFjjhHGd33GvghVmGUgAsybnfnWfOQNTx3HQbarhpsJ1MtyUIqsNAJsKUM64IKWho7nswuqq\nhDAK0QwIYCjdtjRbaMrsoiXDc7s4gxnun+I+dTU4MMYYM0JD4epPOA6hm7VAU+FL0K0ujJdqQyhl\nH8eDSV/70cmR1v/BTGhob0efL+X6/s30xixwGQqYP1XrsAWqv/1ALJyHj/Wd4akqvThX21/gPJDQ\ntpVNteGIeT15DoI4Zu9cwjnGE7qEVIj57j/kcGCGMEdcMSoiENrpSOvfzbXWm9NjtBGuYL6gn2O1\nRRYwBBtdte16S23UbGgvrVSERu2fyqkgRnxgpat6zQZ6nv4hWgjWFY+/rz3QXrq8jL4Ie+l4/h4J\nvFWZaF2b9TXWml31UQOmyQjtlqtLNNSumBs400yYm50QpoqPvpCnfWCKHsnpD2KqZrC1OhtoQeCG\nEXS4Tk/95KGZsLh5t4jp+gYGTuM9vrZiNoyBLRiDIHtdkFarU2J0/wkaMIOJXUP192UPl5KW7huD\n8uWR5krI89XRJErQ0ypZ50eu12pXTGkV/YW6WAHdY8YgzI0S+mteB1bYRGeGk+dCo2P0hlqrQmg3\n0bkI0fSLzmGAsPd6NT37ypZlZ+pzPs8WsnDlXDf0PwzdbuSg76z3Xfa+fIEWIUzlOu5J85LmdC3i\nrAHlYpBacTPWfRg/GSi5D1s1wnW07Or71oExRVsryNENcjXHEub2HPZBCR0Sp4eTY6g5Ynx93+5X\nS+iFRJnmbMYcDEN9rgVFJi2hOYZuUgKDps1zXGe6Xw+Nm2CMyx6stpHdr2B/OOgF5jDF3RwtF8b0\ntAWjyLqowh6owkabwKBMYrVDi7PekDNXFdaxMcZU57HJlminhcY2RpPv5piBZTFGwyaAoTT8gO1m\ngA5lHe2pDszf0xON6X6sPcBlfmX35Q7k+Va3Qs++GMFcQ/foakdtZd8tGriiXT4/UFvA/g8idDdx\nFxp00NtAp+nJV9KGzL7TOnZ4rH3D47zs9PSwE5jMU95FyifoYuAqWu6or8YX1mlWY9dp6B1mt6W5\nvwwTPx9p3Xh1ov1kFOu+GekElbrmdg8WaY6rn9VYGYR6PssyNZz3q2h1+TW1WzfQdTwcFRPYGA5M\ny6CksTKCFdxq6j4Z74hldPNurmG2c0Zcv7On+7+BkX+hdTQsiaURsa/dtnisWfFE1xviFljizJbh\n4DjCtXV+Ko2dEHb3zanafWdP/dq7S3bFS42z/R+1jzfRSbn/VO+Sia9x+fwP37+ry8341By8/KOZ\nXeo9st3TM4Ur6uNXr7THNxmzG8tijlSaeobNOzCJt/UMg0v1VTrTPAxYd6toCI54F6vTlwvWG489\nxCceUJnZdyzG4kJtEjPHXuDs+xgN2s2tPWOMMReHB8YYY45/fqG2o00foqe6t8WZB6bfyz/pnTVG\ni+zySm16iANhA9e6Xk/7kN/SnHr0qdr85lpnmLNzfX5wo75Zu6ezkGnjMmf+9kJSMGWKUpSiFKUo\nRSlKUYpSlKIUpShFKUpRPkL5qEyZyUzR1PBUEfKYSPiCPLfBW0WcquRLXr1SBO71v/3RGGNMjVyv\n5Z6iny0YM5/9Tloyb3/4QT//TRGwBojM6lNFAgNC5CmONPklStvHikZuPREa+ewf/s4YY8yf/+e/\nGWOM6e8ryt16pshgZ0nR2JsrRcYucapYe6Co6b1ffan7kFt3+FJ5f5gOmG2Qa78rhMKyPo6OD4wx\nxnx1R7l99+8qmv7D0T8bY4wZT4WydTcU0ZuCUraQbXHaum4+z02tiZ4O7KD+AJbNS2kPGHQzKssw\nZ8hdj5eJyA6/U9v8qKhkCBLX6Spq2NrU5z/5QtHQb/9Vn88v1MZllKgXJd33tsWlbcYwNkogpomV\ncXd1v4YFlKG0WO2ZBMaHAxoWw1pYzMn9byiKm8EcKTn66YGqz8mtL+OkEMGcqaCtMIdN0GiqMx0Q\nkcBR9HduLSWI/s7Ry8hBv0o4cJVBvxy87B2cC0pE6DP7XBX6tGydKPT9MVO5DcsjwykB6QPjM9YB\nJ01aR7V+qHaKYagkNfLyIQ9Uy7penul6E5zQPJDfOLFoH1oQ6LDE5O03yV22rlcLXKEm6HhUYN7Y\nPNI6ui2587fzLv+yWEenvA6TYwZaCyNjDJPGRcfGgfmSwT7wSnZs4DzF2PF4hjkRe4sQ5iEONKAc\nAVo1EE1MRCQ8yDRGF57Gkm+RxjoIMY5TYaK/B6DQCW2ZRKA25L47MAerIK0x9SotyL3l95z6N8o2\nh1/fD2CAVGAnWWQigVU1Qx/CIWfXtQ5bzD03ho1Vt+rxqndixyzojU2Z9WAalUHrXD4fgXg4sECc\nxGqsoKEDs8ZxGXswhzzcTZoRY6x8ezaVMcb0b3CQgPHUxLWq+VhsP6aa6ZWFoJycSh/r/EAIUQPX\nvOaO1rw2+ftt2Bo3E3RTXqs9Xr/W96YH2k8mrtbnjT3tKzsP9nS/FTEIjl+dmRoMl51nn+na94T+\nzCYglaAzo0uYfadqi/Mr7UmjmZ5x/ROxL1c29f2rI1BwnAmivj6XoDv0OtOehfmE6aPTVgMR9XBI\nDFroDXU1/62T19Ku2qSDxkrEoLsmz7ofao/30ad4+Ez180HNL9/oezd9MTk3QLFWVrSvDE/Utgbn\nntEVeklzMWuOLzRm9nDIuunj9sSZ4LYl7woVfIjbhwPLNYQFdnWmdh4eoT83UIO1GbOlWMhwCSSy\nvqm92Z4RrHNZcK3vnR+D9h/resOBzipWQ8JfWOca7Z9VGJERDosZDMN09n69nNdcU19YfSn6HRbY\n0SvV37pvGVf1as91vZU1IdrBttqtwnofslZadp6fsGbgNhXiwpIM0T5awtlop2SygcbWFSiwf6Nn\n9nC5DM9gSaLJh8yF8cnxX8aNaXUFfbQ2TlPWRamjNmkv1HfWeTBp6OcNOnozxkSK3pvvwCbtWlej\n25U0QxML1qyBzWohzgrOWcOO6ulzBFigbzHH3a3M/lBiPffaMG48tKyuYZcyKef0/TuWWM7e6aET\nyJkGcrHpDHANhDntDfX7rKPBELCPBTXVgy3aRNynRn/VS7r/GDc/D0ZnFfS9OuK67Bc91n3LLKmx\nrqfs6fVwyu+aKxlza1RV/9Vn6NFxVHQC9FagujbZvyPOKi6MUns2qXK26jIHR/33bicz0zQJ7JIu\nFpcubnyLGIdPtOZ8tOhi9kfLqLlNmQ+13l1lsFlhjKz11aY/vtG6WL+LwyJaiC76GLM3Ok9eWCfI\nHZxcYaVW7mhd3Ap1vaML7TFBTW231NFLQBvXu6MXB8YYY4Yztc0ajELrVpqMOIvAqHMZtKW26r/2\nazEsarR9yjvZFn9PYNQMBjAJv5O+yAC318a61pcdNGaeLWmsOmPr4qZ2q3KWiBzcmjiTZJwzXx/p\nfSW8FCOnsad2WFrVftFjf0zIQqjCNitznq8k+vsQ/dEr9ux6YjW90HhZ1li8PtH9smPVq7b5gPbT\n504Pqd8FY/rOh7F3Hc6sN9foQf2i+81gOj3+TO+YvbrqPV3VJO0sN6mfzihXl6rfF79V/bIvpHv6\n4oUyG95eaZ9cmYlBFNuzXXPpXV12V/fMbDA0L/fV9ru/0/830E6JcZl7/VLvgDUcvXxfdWs1bcaK\n9uBKXXvN8Q+8M7LeThLL7NbvJR+XN9zXKryzBQ2NmfGNMl4u2GO27mkMrb7VmB+coJF1Z8D99Uzb\nq9IWO0k0144OlGFitcaefSWH4N0dje0pGlIj3OhS1tnDr8UmWrqvfSitqe3zY965WmIU5R09/wTd\noht0lsrsYynn2Pk6B/r/ohRMmaIUpShFKUpRilKUohSlKEUpSlGKUpSPUD4qU6ZDNDKDpeHjcBMf\nK1TVP1G+3vKycsDu/ko5bD99rajf+aFyxZJU0T8XlfvWE133EZGwqxNy0NDzqKA9MSVaWG/r+4Mr\n3e/N94ou+nNFtDa/EKr34JmYKoNEETuXPOuHn3+qesn63fz0VlHiMYjNk7vKKdt6pvucHINQl8hj\n7BO9xklj8EwRv5M3ippevxV62CU/stVU1D3EH/7mXFF5B9FoF80Lf0XR9TSZmWgOet9BGf9MEe1p\njXxdcidPf1JUcvWxnmn5iaKCj33p0/xklAOa405x9Ero1sane/r8U31v90jRwjmK2h4RdifTM9+2\nOBEK2OQ7T3Fo8ayiProgYSrEIEbDpPaODaE+cHA4sA41zTJoV662Cj3yzBkTKS4lDVybpkOQR1T1\nE/Qs2rgzjciTtK4kpgGzJdPzv3NVgl0xI185DrkP+eBzF+SB50tBJEu0G4CKqTrocqAT4sG0mVcY\nU+hy+LRXiC5JA7SqiktKjHZFOUIboAQyG4GQBlbjBsV0dE3GMIKaaNb45PyOq+iYkLvrwjaJYEu0\nbPo+ui85+Zy5dTbAscGp3h69jKymTA4qDmWlASodoSljka+c3+cgnhYBS9AKCPm7C6PEwW3DQ1uk\nbF09aFsXvaOEsW4Ca08BQwSGjg8CGFrkMoe5An1pAQuqlOLcAuplQFZDdId8Iu4259Y6Wnmwm1y0\nX6zgkpMydjPbXuSDh1aDBmSUemXUK8E9Kk2thoHVFQIpBWXLXfVZYhFckMsxmgl17mdg9MQBLC9Q\nP8e6YNEPC8ZyJYI1VYEZQ0e5tLsfvWcH3KYsrYCszrQ/GBxkuiBBEUyewwPtL6NTrb+b93Hv2xVC\n0z8XMvP6lVCqoI4rwVDfH57pe2cwBFZXhdw8+lSMydWumDHD9K+d7a5OjszZqdZTU4cRwRhycOQL\nYAmd/qB1+vha63h2I9SoB3K4tyvEzMuFYk2uYToeqs5TdCtajtCf6Eas0oumxnq5o7F851Ot+4uZ\n9qQGaH95RZ8LcMdrtNS212iuDKa6vgGFXz9Xvas4HxpP1796C+NkpO892tYev/FMbc1Wa05fgopd\naC+8gRG0s6u9tbOrPbHLIeIGVhLyRrcuIcjtdaizQHwGymU1r0as45GQ6JWufsYpjjw4i/lobZXQ\nMXFxtPFweKtsqd0cd4/7st6j0XIBC7YMEzRDSybFYajFfjJFn6rWfa/VtrLWNgadqkZf970GuY+m\nOLMZ9IwW6ODRLyHja3imMbmYwb7lLNGrc18YmQvYJ1lZ9288Q7sC7bOb+aE5vVTfzS9YZ2qaD03Y\nulbIKIbFlcHwK9fXeSKNlaNj9UnyUnoUY7SoOl1YSbTxoqK9ajbWMy+mavPMoS8WqqvvgtA2zQcV\nqzfhoOsWNliYWd+nsIEbA/TvWjA7fBiBrNsuDpWxZa+G6mOrfxe1dV3LZvD4fo2x5dWs253GRAxD\nx7Pg9wCdN5grA5wnDet7PYaZzbpcdmANN1XvGWOvhrOjizZEjf0qpV4pYy+yenns/TWYp2OYPrUR\nrDAY3AHOYTnnaM+o/hH7nsP+UJpbTTeYp7HdV7XP1NGUqcEOQ3rHZDkOkWgKGWOMYxamxNlmCvMn\nm8F2RtMoubH7H/dZwCiamluXBeeg4bXqtPNAldr6rd5Jkm9w7rrSunqZiE2whkub76kNN0N97gzX\nouMl7S2fbYndWd3SOhmi2VVtiuG3ek/raA4byFlBT+kara0f2C/QRbuGBVymD/u0cYvzWamtl4sc\nh8Iq58SM82onVz1mL9DasnOOfentubIIFmjOdNHG6W5p/axwncWVPt+60N/76NKtNtBjqmrdOkWv\nrY9GWnKmdjy3Tm6wuWY4VA7RM6khiOegPTPl97cb9FNV++HmHroh7LtHuNPNj7R/9lyYRuiJnlnd\nplMYPrcs6VT1WOuwUcHuOschMmU/CVhPU6O5vlXTvtddh9X7SiyQ8VT9vv6pWCKW9XZ8obNIxHvK\nyrLaoVitJgAAIABJREFUPfjqvd7S3S/vmIOjUzMes17jRvb4089oA429i0P9/c/f6cxQidH7hDX1\nxYbOOSsbem8+Ocap6gQW2IX2Fss47HNW+GVf7/P3XJ05tvdUx/MrMV0OfhFjpVP+tTHGmOVlnaNe\nf/2fxpj3GmPLHfXZ3c91Fipvauy8woXp4rmuV47V1g9/rftVm7glzTW2Gstq27KjeMDwSGPYSbV+\nLNZ1/Y01zY0l2Ksv0OiyTMzhSGM0GmuM1t4bJf4vS8GUKUpRilKUohSlKEUpSlGKUpSiFKUoRfkI\n5aMyZXLEEuptRdprDUXcrlHyPrtUTlrphaKDT8n9f/orRfh/+EaRs/MLReJckN0aUccc7/cavuvJ\nDTmiC6FQzYaihPfvEFVsKQp7cHpgjDHm7aEigTmoVAwCfEnU0YcFcO+OosT3n6h++7BN3v5J3287\nqu/2XUVX15qKwg5AkM6uFIF8vCStgdW9PWOMMaN9RWXjAdHpdUX0l/YUDT/8XvWcoc2TvAXJ2CFv\nM1Cksbe5Yi6PQZVRxp/DUlreUD6cAc2ejBS1rE/0cytD8R8dhc2+IsGvZor+vXj+repADuonv1Eu\nY6mBG9FIbRU0FH1soZVy2wKQZ2o4r3g42ri4CUUwXzwQBmu4MwY98XBYqaO+7icaSzNYDQG5sHOq\nVQNFcpkapNKbimW4EIEvUY9Jbq8PWwM0yuqSlGKcbHhux4Ag4FTQRq8jCWA14ZZRw51pAfMnxjXD\nLyva6qOBU/atDojVUcHpxzJobBQ7mnB/UC/coiLoFQFzrzG2+fH6XEJi9wLnBMA5k4FAxGjlJBYR\nJiFzjhZDAwZNnfYdMRcsg6nkqh1yKEABHeilt48X5+S8x+RjV6hTDPPFB+VOrF4NiJydvzVYRzPa\nzEqVpOT8p+hp+FXYV3NcPfjp8L2kbNlSIHA4KWQwUaZW3AWkLrV959mxymAHES2jAm/RkjLMvQnO\nC26FPGfGWsWz94OtRW59xLoVhrCQQInS5K81Y6LqjPbR9xPU7T0LVNoxjGNBhl5FBnIQ2PuDzJYC\nEFyQcJ96VJnLNK/JcIEq4/zgLbQuT9FaqMxhBlUYc5nN9f8w1xSr4RNXmQOghGffaL8Z4jJyAFOm\nvaTPb1eFSvk4JFzinLNgDdx6IoZjCGtsgBPN1mOtrfee4koAq2QCinjwStcZH2qfuxqfm04XzRja\n7PJb0S9D3JMyUORkqHm5ck/Xbj/QvdYeCr0JT/T3gxf/jzHGmLdvhcRub2mv214Rk2aT/O+zodpg\ngtvDFWyfn7+WjlpzWXt0c0/5145lNc3QFjlVW7y80H2CFIbMQ1svoWYT9IpWfVySakIET3Av8nFW\nuQFw7L+Se8TBG7VRuasxuAQqt/VQ9a9VtQZMaGMDIzCafJj7UjxX30yuLH1O9SzBEgsYm7UATRcc\nJGqw5yI2jCRH5+lGe/MpekZOpj0/Z45WF9rLM9h4VZ89voxWTZv7P6pxXxgz3KeHblZcmr17hmB9\nYDJYBD7ruB/QbjA0RxNcr2BEWYe4BKbMgHZw0Pnr93UWOalbtyX286rQyt0N1asC622Q63nDbGHK\nzLu1dY3VZc4eURcNlXcaXDiMgHZXYNqNOZMM36JdxfphtQH6J6DejsZIXEejawoTxtEYbK/p95Vt\nzedpDFMj+TB0O2YdKsHsGVtrRuZ/F/bS0K7n9EWOaEsbPboh61urAfJq10GYn+ECRmHN6tShdQIj\nxoQaMxnryZj9pHSDCxQugx4OmDnugm1cQgc5ey7uKdnEMj4RO0RnbopWSy3TmWGMHkeFMThGEKQ1\ntWcCmJ7o3VlGUcD+GOEOVcbNZAwrsIpUUGo11NjHF/Z+6O8F1GvOPjRDQ67OWXAAi7eBlo1vFytj\njBcnxneg5KNhgdSjmcDKrrowYq3Bj6/xmvo35ralAgt+PNTYPYLhFzzR2Ks90roVnMOMQZ+jxgFr\nFU2Y42v2hkO0uU61nkw3GDNTHCGv1EbXYzFVhjDB27idtjeW+X/r4KU2KQ318H6VvegCVpcnbasJ\nbKERzHG7TqSwvZZ3xczYRW/j0YpYEiH7Uw5bKmQOv6AdLv9V+83SjsZmF+Z04lE/GNrLuPX16Ztd\n3m18WGB9nGpTNMacBm5VsNZqsLRW0MAcz6kXOn51nNPMMQ48nt7ZHnwu9sTy5+qn8pL603HUXnWY\nnl3YHhfsTxPzfh2+TXFamhOdmsbB3id7xhhjPJiOi77aZ3yNLhaCUcen7J+ctW5wZfr5J70Tb3R1\nnQEZEWXeJ64H6K5wdq1032uutbp3zIpTM4tLtdHbF3qv7rb0Dvf0c/Vts6FnXUSq2+WZ+vjmUHu/\nzzvXs398zDPdp+6cj9A12t3V3nH1RmPv+Ln2mKU678tfqQ+ehfreL3/SWeDkSu8Yu5/gdnSlPjp9\nrTHlwYCrQhl8tKv3+jJ72U/fiflyAmPGb+I2xbl4wnqzeYc5A5Pm7I8aG2cHGstrvKOEZLB0YaZX\noF6uLO/pc5tan16/Zf2u/u1skYIpU5SiFKUoRSlKUYpSlKIUpShFKUpRivIRykdlysyuFVWce4pw\n17oKTXfJ0Zr9IMTSRoeP1hQh6y0pEvfFU+W6/fTK5uYL3StVFAV9tvIrY4wxSw1d9+xEkb/j16BV\nuX6vLymS1gLNe4zGzKWvaPHhpfL1mqjDeyDGr39Qnn4KKvjZV2K6lF1d5/uBIoD754pe+0uq7/ZX\n0l1Z/ElR3f2vdZ8KUd2Njp6/jjvH9YVyqDtjReB2HpMDR2725aWiqCfPD4wxxkQL5ead1BSh2125\nb9y2IvHzU0Wcm/xtfVdIXUzO5dEbRdYXN4qWXr9SNLRxT/faJYffXyby+ouiqCNyLi+WNaT6kdCn\nEpFoq/eTfSC67YOKOS65+kTSA7RafLRdJjAy2k1cQtDhyDPLUNHnFhFoEswZD/2OMgwal7xlB2eW\nMfdNayCPlukTgkLhxpTOrBK5njskz9sDdVlYxwJ0SlzHukrp7/47hxw9x2hsaQTMDfLUSyNcLUCT\nhjB+GkTs56jiOxPVf4a7SY088clQn6vhRtWxjkCgdBkuSw4sjNjTc/CryZo4QliLnYWlUcCeIOKf\nWhH6knVSsHnrau8AdM1BsT0s6f4xeeqLdyIz/31JsM2ZT9U3PgyVEjnpM/KqS7B7HBrPQ2cJ8593\nrkZjmC4lmB0uCv6pdX3gvl7ZusXZ+8GyIhIeMdaDSPM6RU8isHpAsLIc8pozNFOmLq4W1D+qqo2s\n042D3lCOTtKEwHsFNyODJkvUwIGM/PByyeocMUbQZpkyJqu4idg89KwGk4fc2wTXDJvvbg3QHMaO\nx/3fyQZZhhEI5hydoIA5GMYWzdfPFFaXA6sumOk+M1w3qrhcBWGd9kGL5pYlx8UjPQa9nOvn+Ahn\noIbq9fSZ1risrfawLlzf/CykZoCj0PbfK7d585HQwuGlUKhFU+jU6opyku36fQrDZoiWRgJy1F7R\nvvJ07yuzgTZKFcbMGHZnhubK9VDXGk1xSHii9XsyUauf/UF75ivcFoJYz3DvntCqLVyPKr7a4jVO\ngZOh9sIm+hq9Lf2jmqtuDRgbVzgi9k/UBmNcnDz0kKZjjZGdB2LU+FONiSH51ecv1OazBhoDrNPD\nCc93eKDromcRkavfQLfj3hfaY7tb2qM30R358x+1F5/8KGfDQajn6Vkm6C1Lk/Xdreq6tZqev4Mz\nYrVKvngdFh0o3hzxmhbr3MUlc58x7aLDNMYhKIchaNfddIEmGmtRc0NjvLTCvtGyLkhow4xxCSmp\nP4b9966G+19/byLy6z1cO6qsjZmjdvM5a5TQbZog3lPv6bpP1rUPuGhNZCDAg0NcYWBUNZmLp0Pd\nb/FGSO3MqD+r/pJZwgmlbrVVQPGvDlT3dIYuDVaBpTUYzh00QVj3ysz3cklssB7nxtwSH6xETR1t\nEPYQx4dNlOIMg0ZfAoqftG6/1xhjTGmuG85ww+ugy5bT91ENJxfYoOMZfdjEMQ1mZdtorjgwRBz2\nkxnUDQwKjWP7EmajW4ZtCjs3gzHToV2jHKe2qdWlUvtbXbicsViDwZSOrE6fbugxpjOr/xQxdmHh\nlliH/Tq6dDO0IWDiVHHnsy5Y5Vj1mbU19hPGzhgWV44u4MKHocOa0K1rrI8469l9bYF7nwdLzMnU\njmzDpsWZ04EJVbb2hcaYoNI1lkyXspPHE5hH6EJ5sOKmodptUIOF8QFyiGuM1VGksTa70u9XN5yD\ncGNqJ3qW4bXVgUOTaV1ttcveMz7Tuj+BBZTAKqtzMPNg2hi0Dy//rPX5sAaqv619Ym1X11+ra12c\n4YR2v6k+vbpAx/KCswbs1wB9kUpVbTOECXM8VFbAGLb+eg/nnRWtMxWOiZ01ZRHcJyti+kLr/8Vb\n7T9nsM9GofYty/x2rtUO22uqx/yu6r38TMyclb5+lj3YaX00HpnrGw+07/mcQ0OYSyNc4hrLuI2O\ndb9f0C158aPab/OR6ru8pfZL0aEynM22emKDDCcag9X5hwlUeWjKDBLV10Uv6tlTMVmvrnXf4+d6\nR0zQ/uS1wXSW9K64xTtsL7OOZjAch6yxvK8EnNMnSxoHvWn3XV2ycmKWOk0zbms+zi/V52+e8/77\nv6sPH33+zBhjzOWNxoqfHRhjjDk8Vx+8eUFdYfx98dvfGGOMebCLphQMtmXYVVO0qsJveW99o717\n/Yn+vv0ALT/OAtdvNXbuPdVZZm1bz/Djv+h8NkbHaKmn7z/+req7/UjvzQ7up69+r7Gbo2mT1JSt\n0IcRnY3VZvc/1ft6nayIlz9JM3Zi9Yl4/xiSFWL1lFY/ERMoD9Se44EYRrvmb59bC6ZMUYpSlKIU\npShFKUpRilKUohSlKEUpykcoH5UpE+Jm4hL9694D1doQUnl5qsiTA+Jx+q0iW4OeooO/+h+4Gs2F\nnp2/VrT2+EhR5buf67q1riJgbkcRuMtrRa/HqCIHvygSuDmVy9Odp4oIbrYVrez/hyJ5m7golYj4\nv/k9+e5fS9V5mSTU3lNF2JfvojHzjXQBDsuKmH31D3+v691XBG9086/GGGOGuHrc3xNK1yMf9OVP\nQv+irxVpbN1R9PQeeaJLj1WvckkRvtcHaofLl4r2dva2jQtaft1XmzfI83VgAVyhkF2K9fcRVIf5\ngaKBDZxI2iC5Kxtqm8ZTRZpP3+jZp2iDhDeKHE8J6eYwZzrO7V11jDEmJX94Rj5yPAHtoS0T9H48\nNASyKUwSgIMJOfIu+X85TJQyriZDyAUeufLBQBH7xMVNY6bnyn00ZVDinxHJ98jLLoPOJKBKKWhM\nTDQ1gF2Q4PDSop0j9FBycvgtWmXZAtUG6Bj51Tb/eTa27k+KHo8DUB5clYwPQwadjiRq8nUYMfTD\niLzseqq5kjbI8wedCkAvZ+iDNMYwrvj/OmhhbJ2NcCIKSK1Ncc1q8rmRlQOgfedoHJU96zZl0TMa\n8BalDJsqRfxklvAM1vGEsZLapkloa9hSFjlclKwrBswSXIUccmBjdB6qqdUiAMkFffByi0bjSAUj\nJcf9wWEsWWed8gxmCWPVB6mrhZY2pfo3QBRDENeAfOYcZsrC6h/5Fn3X1xPyqqsV9f0CXSEvZSzi\npONaZ7RAXwyhbTmwlqqMrYQ87Bj0Lkc7IWCOO8wBu6nMeVzfovSgQqSpmxr3d7h/bgWhJozRGv0E\nsymPdZ2RdX6xgk+3LNc3QlhGl/p5dS0ktrOF9stXYndsbChXeQaqFsBm+BQHjf6a1ts2n0uZc+Gp\n6l8po0Ewtm5dQtbvPKGjYdcFEXpYba3nnZ5rJoipnL5UfvblVM/abasNyk3V4R5OfZt3tNd8839L\n28tF3+LTJ0LwmptCa7o49sWh2vSnb8iP/knI5LpFUh/C9qzjxtHSfB4P1UcH//zvxph3chOmsYlr\nBIOue19716N7asvT13qOwz8oX7yPVtmDT4Q+ddHBSEG1S+htLC/hkMa6vYHO2sZd7Ts+zKCTIVoN\nsA+6OF2Vy/petfZhbn85+kpurnYqob01u9J9Bmj6eIc8Nu6FIYxFdwGDEzTQ5BojDmy3LvoWtTWY\nN+ifWJZbjFNbACOnH2lffv1n7b8znGHaHRhUM+vC935fjaepyXwYj1ewHFrobqB107OsiDWNp1Wr\nw+fZfVLPH0bqrxDEdYHmWR32sdUUMmcapxFrVN3X88VZyUCiMeMrNVpmnfpimCIw9BwXpkWqe00P\n0VGA5VpfqG+7e1bsQz8cnEmqnBFSBzYnTMIbmBzpBYjmUOfKnHU+6LzXVbhNSauqd4ru02io+wQw\nDxe4MzXQqyujMRUmOodW0bSKrNsfbFQPymbEOujAtiixccUWhIcp4g7sOsh67cOigGITcB4MQIJd\ny76LQeXDLv/Pvof+UoSTWgOWng+LNbJabFQjR8/EgZlkXaUgBZtRoLNakz0/pr8bsGlHnDmqVV13\nghZFa8HYh03WQGdpylrhww5boIGTwxzqoX3j3OhzI5ipuaXQGGOmZmZK6KPkVLRiteJg/mQD1a8C\ni7gx1/g8sVZwtyhlznUBbJ60CpMRtukKfT/EOfXwtc7qwZH65LOvtL4b2K4Lq53ImMiZU0FJY2p3\nE8aFvS5uTDfM3+kbra/Pr3T9flnrcndFzJblB9onvBW13Rr6dQ6Mar/P+8CZWAjTlj4/d8VuOvpF\n7xzjiuZWfV1/XziqR6emd5VHT7Q/tFran5ZDrecVzulz1pnBhdr6+aXq+QYmIY9napu6XnMD9hxj\noIxOUMK7488v9G7XXlGfrqxzFnJ1v5w+Xt7WdTZzsSteHWit2v9G3z/q4PzmqV9399SOq22dBZp7\nOkN06v+Ntc7/r8T0a4w+3TEsvi004oxly8HM7ORixNRwLLMOnCHn/eaOnm9pRWvl7LHm4Oufxe44\ngZm0ateIv9BujCYDs7y2ZsL7GnsJupnXaN69fak2un9HGR8+LMoK5+uNjhiMR+xZ1j3Ybk3LK7CN\n7Pl8pD5d29azXuIgFaFreXqg62zierkM2+kU58VookmwtaExfI4+0TzWM+/v64wTMq8fPRBTZnVF\nfXzc1Vi2OqEt9qXB0YExxpjf/0FtdPehmNDNbe3l9QONyRvc5HIG5eBcc2Gy0FxrlHTmGsAompxr\nTF0v9Dz/VSmYMkUpSlGKUpSiFKUoRSlKUYpSlKIUpSgfoXxUpowbgfKj3jxHvb20pejvnUuYKrgr\nnZH33jhVRGo4UNS1saWoZa+iyF0IFDtFV6MHspmCMKQgrX6yZ4wx5uUbRb4GbxWpu/tE0ciQfM9w\noMjXxStFDJ/+TlHgnaeK8C2mQl5/xLXjASjfky/ElIlGes7RqSJ5R/ti2FRxDGov6efVC+mynHT0\n+/aqrh/8b6rH+anu8+Y/xZwxdxXB++TvFZ3dfqb8yelcz3dxoPutXVyYpbqifMtVi4CCTlmNFRDC\nOiycjAjs5ILINe4Rg2si5cdozWzo85/8SqyfOfnhAWjxJZHqwcUh11NU89bFmjWRrxzUQKlwNKih\nh5ERKY5C0OmZIuBlB6YLKE0ZhkiCvkWO1o0z1e9RBU0U9C4S7u8TyccwwJRAu2NQlFEAI4i/N0F7\ncnJw87HaJcUFY9EECe7DVgCR8BIYOGN0OHCQSEDdctw36tbpBgcxH8SyAhMoCTNbUd2XvMckwN3J\nPo9lIKW4P1lHilQR99S6V6W6rwNDpoOGwhRkvsKcy0FGIsZ2Eqn9m7BH3AquWVnIcwpJymzknu/H\ntyfKmBBEbU4ebTWCWVEGSrXOKLCpDHoaGa4+LoyUZOHxZ9YJ2GQ5y6SDBkgEMuvRFqEdJLhO5Og0\nlEDuMpzCHJy5YstMAUVDWsbE6GgkOH1VQAjnMH7oCjONGFO5vl8Dlbdo/HstBZ47hnHCZIpsWjSM\nmLqLS1OOlgMaOAvy1lPGSoR2Qs21LAC0bahXPmZM1Kmf/RxIiVvX5z3LnEnQ7GGOhjBiykyiOEbn\nyTrJWBQMNpWbfBhTJkMrwYMR1NvRurn3qZChVkf1ePuT1rjjV1rP6+RYr9/Tul8F6bU5x6MrdeDb\nQzE0nQnsBlgPzbo+33iiNXgN948INkoA4tO/cczBMTpqAyFmKfPXLFS3ATpsTlPr6s1AqEvWVB02\nNx7zd7Xx0SuhNKcL9hZcmcZXIGYPtDc+xG0ixR1p2tf1xtcaw8kIjamp9t7tL7T39O5q3fBZt2oV\noUNzmCwY6Jj795X/Xa2qfu29ZZ6TdfZYe1tvTfWudnW9yo7OAKtoLQxhiozRtsnHoOzM6bSq/++B\nzEalD9QwgyWwsQUSGWpMz9BVmoHcIqHwznktsvomnEGWGtoXW7hbVJbR7pqjMcPS5LNGRIyVZKS5\nfnSKi90JcxNtsTLopBmDmAOZu8n7o1ypdN+s4XIX3FO7uDxXq2ldlnQfU9b1BzP0ji5xL7FaBAt0\nuCxEbXT/jZ7mQuOhzmA5aOQOjKmYxSrsL8z4RGOmD0LaQrhorwdK3tMYii6oy43Q/dToZ2MBLQDn\nqCnrfLPKWQNsMX3nssM6V9f3q5x58prG5ponRHeMy8i4YgXQblfia12v1FF9rT5biiteipbLFDcO\nh/padrIX6ntD2FBeDWSVTW8MozKAXeFANclgbo7Yh7pVtWNlCnIMG7eTsq+xL0zRhomHuExBDPJK\n+t27of0a6A1GuJUCcZfRdpmzBjVgDsaWNcbc8Oto2cD8MTBBByDcdbTKHOpXM7rPgv2ly9kx5GzR\n5nkzo7lQRcsnpB3b6P+N0PHru6qf01Z75LhFddD2McaYppOZFKbpAm2HEhpuuWUKoQ3XYh+1jjqV\nD5EwYz3wYSIsxnqGhZrS7GxpDG491pjswkz56Ujr+uhKbbfcUR3KjP3BlRaes6G+F2xpHpZg5dZZ\nD+qXjFE0wbKR+qaPI+P5AmYGWlRNGIcbHZiVm2rjJU/r6HSuz5+zTu30dP/tzT3dL9Y+cwAbwIXR\nniZaT85hBHnoti2tql4l3IwSGJnNTb3DtO6wV/9Jz/XiTOvucKx1KrxQvS85W7RW9K7Usvp6y5ob\nZ79oP73AyffsGq2bVc7haJn1YT/v3tEe/SgQY/TtG+mcXN/gZrWuevbJapjCVKy1VJFF68N07gIY\n4qMF+oDMgek178KwmqeHsO3QzCyjq3p9oXpcn2vsHqKXWuqq/+99JkaqCxvs5x+kmXNxqvbM4uV3\ndXm9f2We778x9Yr6pt7WunzswnI9gcG4obav45J0BStslcyNzobGxsEv0pa5equ2rTQ56/NuMl/g\n6NjW91pdtf3RQBkxxy9hoLAnVjnHOjAROdaboK0x++R3tOGV6rn/n3/Q7290LgsfMCfRKquvWt1P\nXWeFTJiHzJXBFfpDaA6u/aM0altNff+EsT7FjRnZJVNfsjqtmgOrHf2+v6TnjWZ/28WtYMoUpShF\nKUpRilKUohSlKEUpSlGKUpSifITyUZkyFVCXRQIT5UQRrb1dISjxHbEqxuRtl79WxIzAnHFxzEky\nRTsBKoxrc/yJsHXXQKrRMLh5rcjW3U+V974cKsp68FwRuuEAdI1c2hk3zIaKfE1xFdlY3zPGGDN4\nqPodfK9o8dl3iuYu/SPslCdEn7tE5Meqx0WIC5TVIwFhOHih6KxVqX5yX+3RIYI5u7ykvYRAOd/I\neWLzs8/1XPekdu1OpGVz9MORMetqowWR1yrMiQy0I+jp2puoeDdA+EYDRVSP/6ic17ylNhncKCx4\neYULxxHRUFg/j79S1LGBy9PX/9f/1PUmt8/L1cOpLyqgHRnspwW58cO66tMG1amAGGKIZSJfYyCL\nbA4mDCHQaUMeuI26+lg4xCCvAVoBSdMiHoa/C8mokmddKeFBDyo2oj55Sn5yA10R2FcQWkxE32Mu\nYmZzXJY8NGLQEzE4AgHymylsgioaN1EFHRMYTzPckTz+v4GYyxwtgjCwjjeWVaF+Sa32DPnyGB4Y\nB6aOdSbKUJ+3ee+hZdLAjGkYPccUJs4s4PMwljJU5nNcrjI0h1zYLYGvuXabUqKSGS4Oc3tNmBh1\nO3ZAJpMZ2ie4LJRpgxwELZ3R5iCHkHeMR45+2df144n+XkH3J8Y1ombdhBhiETo9MW1TSu06BgMG\nhs4cRLEEKm7lGlyLLPognxFzF4ZLzFzIQSAyNBgMY8GSLcIQ9kE6/6vPxxWrBUOf459UYgxH6Cnl\n9rlpkJJlWdkcYc+yychHn+v6YUD9J/r/uKT7hDgZ1GDcpHPmGpYNuWc1WXAOAwluoEOU1T4MlYpw\nKOvd03q68lBIUKuuNW/0Rmvk+FRjcWVDLJStFSEcl2ifpQuhitlUc3SCI1J/IuTEAxFqBKpfSns2\n2KD6A1y4dBkTloXE3FxMzNWN9o6gp7a994XW0c1lMU0ucBi8ZO335rCzaJvrl0IEx2OhMa9PdJMW\nzMhSTz/X0aZpsT6/2v/RGGNMPKeNWS/LntaDk6n2zChU20xgyHXR09i/1F62mIiRc3Om+s1xNmnX\ndd0y7j7mUihUtLjk8/q5e+9LY8z7HP1lnAhDXEKO0VcLhxpzi5Huk6DPM3DUlts7e8YYY3p3PuyI\n45Zht1X0vSEIqnsMawy0fuM+rkZ15e5nTTRx0AVxalbnCp2NuZ7P77COXqjeV2ivDS6g3pRg8aHd\nsuwKZeu1hCCv39FZwoGZOcDtanD9njXWMS1TQiOmtYouQKhx8QrENUdzIkNnajTX3K3YfRKNBsfq\nYc31vLUldFFgSJVr+vvwXM9/CZPKner+oYlNracx8mlP5xO3Y9FgPcPkRGMmu2bttwiohz7Qlv6/\n3tQZ5TpRH5+fwBaj7Uqc73y0VUIQ1SpodgJTpgmLzOH86PsfxqZKelanDoYbjMWcda1V1v0z3N1S\n6uM0QXoHOF1N1MZTXJQGFfSGrFMi9nalXG3f4PxpTfZSzoczV+3SGsForFsXJj1vDmuhYTR2x5xU\nzWAkAAAgAElEQVT9ctcyNtWecY4en4MTWF1j8QYtMS9Ge4b9KUphyMC+MtalD+2vCe5LHgzHGfZF\nC9gSGZoSFVi/4xJ6HDXr0KixPfdUrzLMFbfNPs1ZjGXW1PIR16Ue6P0tcO8zRqzajP0q9dBNQoew\nDCvFXai+qXW1QlNtunh/nf+uWIfDRkVtOLmEBTTUHnNWETOwuyWWZnNX87o50DpbYSxU0elorWod\nWOB6d/jdgTHGmBxnq40VrQ899DeuAq3Hq0OY4tt6l7rLYeAaFtqEve7kufaVFxV9rz7W3Pv0rnQ2\nIxg4Q8a052hs7cGG3fhS7zrlY8Ys5+c56/PbX3T9/jfaZ6a7e7pOB3YZzPBeR2Nke0nPvQaj6HKk\nfdG3Gllj5hbnT/dUDrcz3J12aurTuy3tH0eHYq/OY62Dpbn2/AXn0dkx2jT3df27q/p7jOZNY4FT\nD2P++Epjx52/oX10nyosr9sW6zhZTdVONWjFES8IK+inltdZT9lnc5jle2t7xhhjBjs6e5z8LCZM\nRLvvPIHRuq7x8TDWGH71g9bcivN+f2wstc3hv/1i6tuqw8N/EstmwLozhAnsoQ9p183hGBYUDoEb\nD8WGffszZ5G++ur8RG3bhHJ2/EpMmgcPNcaauFUuwbLd/Ex1DtFuOYYtVSU7IAx1xoneqn4u78/W\nPbS+pM9dX7FenaFxlVkXOY3xg7cak5t7GjtPfitXzRc4Op5zVrk/0fN376lNtxLNvfMjBDQzHAnr\nuOfB/PaXdJ81zjThzd9eRwqmTFGKUpSiFKUoRSlKUYpSlKIUpShFKcpHKB+VKZO3iLyD2IY4A0Wb\nRGNJSK8TqR+j5ZCAsntEyKuhdTkBWo4VWTvdV2StuYYmBPmNb/cVbayBkG4RFR05il6PDxXV3fhK\nKtO9piJdi9dCHc9Ro+48Fnq59FjR1JtjRe6G54rqvv6zImY7D8j/5PMuDJwy95khq7+6ocja/s/k\nQX6raOb6qqLQpWVFn9ce4k51LITo4EDXyYy+f+9Tadnc+51Qx4NfnpvDEz3bNajStK46lTu4SqDT\n0wDJ620qSloi59CpqS2XNhS9XHmqeN7Rj7r34aEi1fGZnq3TRNl+TYiaQUOl6X6YDoQLum9NhZIK\nbkuwDqo4wUxx4Kk1yL0k77lC5HkBim/ZVWEb9Br0J7N5x5H6rI5LyTiAbWAZM56irSXYDWMfxDTS\n55MSufw40pRS68QDegYKOETHpIRmwRiXJreqz8U+jhE1WAyWNYFDRaWqqOwc1Mqb2PxrPX/JOg7N\nFFEft0B8Qd/KRu3nlVW/WYwzDuiRdYLIeP4MN6YmKvAR7iQzotiWtZAHNl9U7dCp4E5CzrSP29cU\nplIpR8MGdoGxTkjD2yMOEe5HLo1bgbXjgpyGM/SSQAlCGCAxekJhwzq0WAYK7AN0hVyQT8OY87h+\njNtRTl6zj35FTv73zEbKuXrJ6hNliuBHSfhX38/Ikc/QvqmCNM5w3lrYgDzsJxedh5jnaYIMZjjA\nzH3qmdixB5upCvPPOl/x+WmZ+iN44YfofVhHMFgPlo0V1ljH0J1I0IyxblYlxqKBYeNkdozCMIIt\nlsIyc1yb+0/9cFGJHZwFYAjNYJe5znutgNuUCEevBuy6bABDCW2J/hGuLPS/ddAI0aGyHh7n7FPj\nK/LccTdZfyyU8tFjrZF18uaty1YNB6SL11qLX30rR4QxHXszuDBlkMM7n4vFuXdH17IEQ5dN79Gv\nlfNe7Qpd6rM3ffdKLkxra7rX03uqQ7etPaS1+tcaTp7VhzgRgjvP0AIBxT55pb1yPBZK1NyUc8H9\nbaFFZ2+E0J1+K9SrXFGblZd0n1LAPEa3IxoA8/tC16owDh/9FuerLe2RGc97faG2ujjS3noCQ2hl\nhft4ltGDE1iovdpF/yhNP8xZZwq79vRc9w3P7T6i6/Q2hNxWl1lf26B1aK6dMpbMxLpi6OcI3Y8y\nFM4QtD6AJVBz1K6lORoSFZ1Jgh5MS1h9oz6IM86VCetqyXvvMBNsVEyb/Xfqq71MX/t+hB5JOrSs\nN42nTqZxkqBF0ORMUtJ/m8p95nqX743UPj/g5hGe447CGuwlOjfUm5kZI2LlhrheHtNGoLkTnAgr\nifquUbWiJ7idjTkfRvp+NNWzzGZWrEosgwTWTzCmz2DBWo0Qn/U2umaPrMG4ow1vW3yYN5ZZ6cca\nwyXOJhmaMrldzyO0DnCzq3loUlVAeDPmCnt7zn5mrJYO7iAT2KleCW0zdOCqnYzr6//bXD9Gy7CW\nqS8naIQhkfJOCyyElVti/Z/hftLyVa/YsqhgGU9xfum0YApdq15ldK0ynBprmXUnRE/JOvkY9IxY\nK2L6y+lpjjh9dDsqaIrZc/3CMmjQ4avBgIW9m/q63qSh/2+hReYF753JvDAxJWy7UgQCK1x+aCXn\nuJ7f1v2uM9XX6gXeqgR61vWO5nWvron04lJn+hB3oBgNkxQNQjs/5/Z3mIx3P4exgV7Sy6sDY8z7\nd5wU/bn6jhg1Aefi4Qz20BZjtKH/Xy3jglRVW5RB79/mYpRM2A8utzSmd9g3Vk60/l3ta91PRug2\nbWsOtnfFBliB3bQ45zx3BruNMWl4V4p0GzPBZdAZ63tNdH4Czl5bvIONcIGa2aOFZXXBYPEu9O41\nQIPMOkdu1PS8ExiV4aU9x1vdJbX74Wvtc/Wy9k+XG6VDGI5zrT3JDD0mrpswxirlD2PKGM5o44HW\nrpPjA90fNl3+hfp/CR27w4HYgf19XK4+Ubs8+FLva7VVrQk3x2qH45fqp71HGk9LazCpXuo54+C9\neOPO5pI576yak4n65hHjfWlH75tWAzaFEZfRRy7ZF36AAxbMwM6q+nKCy1qN8/ASOqQHb9Dsw9Gr\nsqY5UhvpGRot1c1Hl9P9WfUKeZe6xO2yVbXuc2qjEppTiT0Hj7Rv/PKDzih3U83JJ1/qrJEaXbd/\njLZXS2PawbEweq37zGF+37mjOVDramwf/6y+eInTZG3Ey6qnOEHzS7XLFu5T4/LfzhYpmDJFKUpR\nilKUohSlKEUpSlGKUpSiFKUoH6F8VKaMR8Q7SqxzjiLyMxDpNqj8sIa6PLlo/tyyJ9Ca4XOP7kod\n+cWx8i5P+zBNLhU1XdlQNHfpHvmF5FW3d8WIaeJudAMycBeEdu+hUKv/OBEbJHmuyNvqlqLczZ4i\nc8t7ipq+QeH6+EiRwCtYKjv3FQnc/vLvVH+Q3vGlIn1f/g+hnyERydPvlOv2hqj0nXtCTR88/ZT2\nU87bpK8I3mJI++Hy1NpSFPXhb56am2u1YfjPXxtjjKmV1fYl62ACi+DwF0WCm0Q9ew8VWT3ETeHw\nZ9Wl/Ux1uPdP0q/xvlZU9MevUY8nz3ALZHW5rrZ5RxW5ZamQV2xaILg4FCxAuQyoFEYHZhTZ5yKH\nFyeBEmMoAWG0bks+ke0RzA8X3RCL6rfyKdcl372M1gwR9Kykv7sBiv4LfT+uqb45CKYzt041oPBD\nXIjalsWlejf4/tAl6mzbyyKcDX2uYnP2QWRc0Pw0/2tdkgx9joA5FaG3MscNqbmw2jewQmDmzCPV\n3zWgi7BISrhI5VWcDmCtNUAgctgbI9pxgDBKk+dzQZ189EjKjL8Q7YUIPZe2c/t4cYm+8howRajD\nApaV74Ja4y4UoJ+TgVpnltWEtkwcWNRd13dxWFmAAFinsqplzDAmrVFYlIKIohETUR+LIjv83YEJ\nk4FWNBeqxxSNgswCitzfZ73wLNmM9XMBg2QKM6hcRtOFPrHaAxWQxzQCAsE1Kq1p7FtkcwGDJqjT\nHthDeXXWXcZygFZAztjPyaf2mBML1k+TWf0hXSeGdZCgpRDASLKq+gY9oyCxrlXoHVn9pQljJ/6w\ntcSjvSO0h/r72ifSK7XLzVzrdAXo9ORGSEfGmG9tCQWc3miN7LYZD7BSHt9V3n5AO8SXICw81ulr\n7QtvXuv75+e6/hKshqdfPTZdy2zpaM/Zf3lgjDHm8ifVbQQTo7aq7wSWxTmDbQOTYvfpnjHGmDba\nYB5ssQmodgqrKk/EVijBsvQYEyMYKjcTtZGBqXF/VyzMo2Pd5/pUiFtaU5+t/Z32Cx+mng+TboaG\nQeex9oFaV2O+DBOvEggdC4eqzw//qr12Amo3uhGKtbouNGznczF1ag21dcrYsRpmozOhVzP2gduW\nhDGbXao+K2vqh41VMT8qLRxfFiDJP0pr4Br2RTPWfhM4mksz1p5KbN3sNNaqZbXzBjoprV2dJTwQ\nbgc23GKo616NYZWgwzLD+atdtmtI490zuCYyQzRn5iPtx1c4G9UjNAqq6ofUtfudvl+DklpdgYGz\nDrMHFkr/J/X3oC+kOcbtsAOyHLTUXiXmrlvNzJyFzLIjh0MQTjQE7i2rDRroKE1utJ6MQNWDib5/\nPVFdA/amgDNKDd2jCk4mFXL4zTr6SLBzHaiKjg8r7C1uT42Z+ZASoZdmcrSvcDeKcBHqRLCfGhZB\n1nPH1lmRM8EChkrNOoSN6dsKjBkYhx5noKqxzEmYjzAQc5DZZg2NrxxdPHakapWzEntsGSZiiiZa\nk2V0UIKhCdNlwnN2cZ+bsw9EuAhmaCuWcJer4oKYs4dPa6wxaKG1LFMJ9q5lLTg4UpZj3SdjbfL4\nfAlNsTRXe1VmjNkeZwn2+RCGYxOG/QznyvwvnMmccsV4ZZg/Y11vlFqmLftUE00ZmPVV9svxB5C8\nh30272V0jLaEkq+cwWAbaf6McTFttzRml2ALHB6J6RDDLtq+i2bMpzpP7+6r7c5eaB0+RqtlGdKv\nw/npgj3mmjPC8Yrm/+4eWjawRle+0u/jU84aU5jamcbABBem9T2oc290vZOXeseanulzrU31hbsn\nZo87scw/rW8dGNclNNDmM81FHz2+hLNAv6P22UP/rVzTg1VgQdyZc6bjjFWm7/KSpS2r/UNYbQ2Y\n9MMIpstEz5Hi5vcCzRqXs6HPWaW2pn5hCJvOBWN6/prra18aoak5gDl/21JZ0pnCKTO2OVOewdR0\nv4PNjKNRCZbIz2jHTOe672e/+XtjjDH3G9q36rDl9n/UO+hLR893f0fjyO+onu3V9/UdjVKTLFIT\nxWr7/X21VRXN12qd8zNtPCRT4/xYe22LtnKswxY6NpOZ9q4oVV9322LFXpe0V7z6UXv9xgU6Pxxw\np2hFrtR1rqqs6v19+EZ7bonvr9+R828JcSnrVlpBU2b9EewuGJovaZMMZna5obE5wSHt8LV+zsge\nGUf6/YyskPlj9tKK2nr3Sz1PvdukPQ6MMcacPhczx4nQP2KvX1vSc/xXpWDKFKUoRSlKUYpSlKIU\npShFKUpRilKUonyE8lGZMlX8vjOQgCuUwHOQAuvg02oqArUYKnK22lMUc0oe5MUApfF7Un1+VFcE\n7Kd/+f/Ye7MYy7Y8veu/pzNPMUdkRs6ZN+98q6prMt023cbGwpYwTxgkePADL5jhxRiBAWEwwljw\nxAsILIHAAsmSBbgxg43dbtPVVXWra7hj3sybmRGZGRlzxJn3OXufvTcP329l9m26qyIlRCKx/y8n\n88TZe695rb2+b32fGC1PHmk3upI7bQjtVp8fC4UbnbDzjstJfKB0ZBOQmZp2HdsgMD6o5PBUO2nL\nHaGDd29otzngjPHenhg5A3Y9g0e67hK/y9BimLCT+ODzT5U+zi/mIEP7Xyp/nV6TctOue5tzqq0V\n5WPzknbudvY5y3ai+771K1fNByU6WAalAL7NYHSsvamyW3yqax491S7fYl27o3ff1q7nD78n94sn\nOES93xU76fp7YhuNYOnE55zbho3QvQSa0n6J6F0kvEB5cshgxM59BS2BBroWU+cYAxPEBzXJcZrx\nYTkEnHvOSNeEOghgIYSgPRGMlglndR36ldFGFminVDhfnYLut2ArDHA7Khqc00aNvg0zZ4aWgoeC\nN4YLVmT6uzOWmYBOVXPQd3ZtkYSw2kQ73Z66iFXZ/R06lCwD/XHnLGHONCFLpKBuDRTV0wHOBiDC\ngXMqovxmnMdOcEKogc45fZLFRM/tguqZp/obwmyqwHIrcPSZ0y4LEIIaCPE8uLjTQcYZ/HymthXC\ndKlF6NnMYZ7AiEkpk6DitAbQmMEhqgETZobWgQWgMTA1khduQ5yp5fz3grQHMFViQJsAVyGPcS4n\nfWHqmDwwUoBjItCaOVoMEema8RwHrCa4aEQ4PRgI5QJXpioIcYwbUjJHx4i2VslwJUFnaQxSWoFV\nMXPpQa8jcEjiCzYVfQZNmHzC36nTCn/3X7gp8RkrHQ2QlxlnlDPa1ILPCMzAh9mSgUQbZ4jT5KWO\nxkVibQM3jQ5t+QhHsxUYP+ecB6ePX7mmMauLBlgddsGX84/MzAyA3jbQF2niLLTzidgJhw/R74IR\nZGjRNDoq77fe17zRuqbxfHXzku090th9+KW0Yfr7tCnGm9UbII11XPJ6II6x8nRpWwzGK2tK++Md\njRfnz35Hn0OVbbOn8Wi9rTwVNIoqKFmYqCzeeFNI5RJuRmuXNAcef//7SldD93n/67+i564LlXq6\npzmvua7fX+4JHar6Gq9OB7iz4WoU1zXHjQ9BVulza7c0Vy7eVVtYXVFZpbTJ5BiWA+P1g0c4RQyE\nDAbdVxGCMKvPcE5wc/5U49cRDgzTY8a5mZ6ToOXVW6g+PNgRtary6aN74jNOroDe+UswNaEpVNE0\nWxjaL7Ctiq5+12rquuXLaLzBCM3pO57r1GbWXk3sYCxUcvhUa5kF5/TNzVd1lX8tRpttg3R0+X8P\n16ah2uMe7ljBgdrwyprO49dZE7W5LgUJrwdomEVtGx2ggeK+M6G+TeYoD+2pk1PGcdivHuPmnLJc\ngkXkr6Ip5dzn0OHxYc5Uuoyv6KVl6Jo55troQGWcZm5Of7U1SQd2kj9XG+lnOAUy909ipy3GvAGL\nNc71u26BNpmbA/swVyLcO3zmrSaYKSzlnL5bmen7ekPrvhyXKscMCXCAxATEBgFMPxzLRrDBKqxB\nEpgh9ZHy4zudOdizzukl4PoV1kpxR/VS4JzYT938gD4IjE8IlzZaMKej+diGQTpGayLInTOjvm/i\nzjehfut1telpRc+t4bIyYw3YYL4onG4ebkqTwUtNmdGisKZz5vSV7moNdhoaQOlE+RuH6jM+uoSv\n4tE1hGVUwXXNXxXa30PzZfZMZXDMXNeCCdLALaj6ROPh077q2JuojrcaauPbd7Vez3DZnKJ1EqJR\n2EIbao7r0uCpGO55hXcsj/HLsbXW9C7Rm2gcyw5wefpc7ADbUnq30bO8istRHb3PewdiL5hzB0W3\nrrmutthtqW11IjFDUthvwZHy3WdsOBprnI0P9dwdGDu9VbEZmiuq+4kTAgpVHnPWVsEUt0+cyCB0\nW472WnUGy7kOS2tFLI+VezBEcQmcsciKGFOCDeWnBhvj9rrKYZ/TCTu8L/n1V3OXXcFJqLnt3ulU\nTpdxenTuVB3cTxv/2B8xM7Pn98WUef4AhyOY+ze2Vb5LHZXXB7+q8p1Ole4Ra8DJvtNVfbkFUMsL\nK8KxLUacmvhYa5A2rJoaGnkea/sq+pB1Kv3oVPfcjHEKvKO87J0rLU9YF129oT6x/bbmkPP/Q++S\nT440Dq3CTn32A+WxuKPfbaLlkuDwNx6qzZz19Z49RatwjFNjADPw0i2lp95RmX72D5TO+5+KobOO\nzk4FDa2r19XX9nkHOdUrrd1/LA3AtXN90b6kvuWxrr2EW3QYac0yRy/JlXl8oja93oPJ+QdEyZQp\no4wyyiijjDLKKKOMMsooo4wyyngN8VqZMm3OW/bY3Rs+1Y7X08+FRK4va5uzc02/67JjF4IazWLt\nqn76E+1gLUAmbr6nM14b3xRqOHooVeS9I87k9vXZA4FxmhNVzppmIAgL5Ok7sASurug858Opdifv\n/0w7iTHnQ99EAXt7250TVD5PnWw7iO8R5y97oJ3ZTe2NOcX0yRIIdUM79ZXQqUjjFjJglx0F7XhP\nO4cFOgR1GEGP7+u8Z3c7tOVt3Dc2cetA+2XvgXZ433r36yq7b8oz/ie/qbztfKK//yPf/WXlDV2b\nnS90/eePdZb19nu6vss58b170rvZ6+izWledFSsgdheMEY4FVfQrnAtQwhnPeoouBnod/hz0J1dZ\ndz00XhLQeC6s+6QHBf5ZBYQUs4qMM6lFrjY4ok2E7L5Wpto5j93Zeep4jC5IA/0OSFNW4/o4185/\nyLnngDYR15yTDvkybbM2YYFkTdwtyG+I8rlHegIYMhkIa2WESj2wkFcHLSuchgyILUyiGHZHxddz\nZg7x5Dy2066pcL+Q8g5B9QYuXTCGEsBHP0azAhZFBDrmp+7cNvnOhEjksD9SRwW6QNA9LUcPIc+d\nTg0oMkhXE+0Zoy5mHm0CB67mHN0dGCaRQ/CqaBKgYZKANDZBEjPYUDZFLZ7xZIazQQBSmsBIyagr\nH02CSsrfcULJHGMFhobTWonqaLeQn4xz4xXqNPBBaWDGTEEcLXeaCgz3nJHPUYGfu2mA8quAUI5g\n8DRgyFjimCygYJRTht5RStubZc4dD5V+0LwgcxZiMAFJ/wI3jmbTsT5oo7TBOSwIv+kYTzBbGq+G\nKdQ5793HZmOBdsLGFSEl4z2NZelYCMy1O9f1HMfuAqEuYP44jZolULNKQwhI4O3zO/29y3nx5nug\nnYzF25ekITYBeVkcxpbCyMhAx299oLlkGf2yhDbdwxlq4hgRzAHLG/r9+Zn+/3RXc2M2V92uXsGx\nBTZT/1QI6qiPJsoKTn91XPga2+RdZf7sx0JQT57oudfe1pwYwC56+Jnmi70HIHHLyvvqdT23g75R\nf6A5c9wHra46Zh7sJfKXMD6ECboiR3ru2a7mthP02LJEZThj/KouKX9X2srPRSNA6yACmezD4lgc\noWEA66JjQrTX2urzfoQexlh1Pps7bQJci2j6caR6qWdocnmq7ydPhHSP+kJuk5hxstC42GYs8XDh\niOr6e6+r/y9gkJqZHTzdtRN05oopWhVVoZwB16f03eoS7isbjE3MJ/38iOfrvqswPL1loYEzN/ZM\nVS/HaBlV1p0lptNgS62+RX9jTmqPlfcxjOPpc9pComfmC+V5qQpTDS2RKSi078ZJxmuPudqYW56f\naV20OFXbmgy0rgxxOfJh4AQVtY2lrr1a4KZ2jjZNYeg4wJipelqvegGagTEsWnTeRui4WcoaA9av\n34IRPqZsE7EkAph1U3SI6tBoswGs50htqML8UJvqPn3HJvAoJzTX/BHjGZis0zGa1HWf3M1LON+M\nYB00lqivCW0eTcZWymTPmmyK1mPQ0nwx53cZWkAe69OE5y7N0U9KyReIdVZRX3FySd6ZynVRVbnM\nCrXtZoGTD/NiBV0nZ6gZ9V5qBnnF1JKUNRJMm7FjXMLmXWYMmLMYnKIB136Ft6WctfrJfY1LX8Ig\n33wTbZVLysv0WGUbp3pW+5L66XIhhuIya4+zCWUKuypg7qtc0Zp/nbaQwoD0cVC8dkeMmgJ20x5z\n2xefaBwPccd7R1JhtmBOMzTB8gMxDnfRsspxlVujjOrKhi2fs653rFzKNmTtkS3QFlyGmR6p7rIl\nFepyJhZEa6hxcI9x/vQJLkK8G1Y6sFlZ9FVx7exc1f0iHHeG6HpMRirf9XeYH1c1P24tq5z7z3Eb\nhSE/g5nzbE/z1w1EegqnERnxHtDVe9BNNBNTdFYaS87J82Ix6Suf4xONfbOruu9sDFuur3fXvq96\nXcON8Y3vSMtzdh1HOt5fUtaog6muh4hlS4wtE9jPU9guteIlw7K7VbfVy5ctpx9GzKVHu3rfXWY9\n5q9q7mtd1sC5fEtzwu6nWks8q+o0xfUPtL65vnVdafpS95ngVLh6UwyYGh18wXpx64rawucf6t1x\nek/7AR9897u6bllrkk9/rL9nsITWr+r7HPe4nYdazzVN48HyG6r7ZkNtKOKdtB2iLTVVGwsC7R9c\nvsnJF5x23bty54ryH6Yqnz20CZe29P3KTaXfR8/umPmoW2UcDH++Q1fJlCmjjDLKKKOMMsooo4wy\nyiijjDLKeA3xWpkyGbojjS3OwXH+/JMf63ziLuflvg2yuH5Tu8Jry+yKomXQWtLZsBSXDI8t8nfe\n1PbvPijWGaj9zWu6z3igHazZWLvYc7RsZol2/PZxvti6ox2ztXe0A5bVtFu680OhkKeoT8/fADnn\nrN0INDDAocZZBMWcibNQ6bh6Q+rR2QzHiIc6j58Wyk9YQQW/xa4mu87+GmeSH30VOb90Wzt2u8fa\nZT14tG/LLaG5d+68r3uws7v3I/3mZx9+aGZmb/3KN83M7Ma7yvPhDmjBSDvslbaeMWVn/+CBtmIv\no0nj49Yw+lK/2/lCu4/r7CKu3RCyetGoOFV1005v2uEsKA5VCwdyZGgTgO74MDZiNALqnGNOQIiH\niXY5W2gXLIacq0acpQ/SUMVFyKH8CUr9M8gREe4VRYR6OkySfAyqB4AQc10TtGgI+h+ARAYTkGJY\nFUHmHAp03y5uSZWq0jUbo2gOYpAvcIWKHYrPDv9Q92+GX2Vr+LlzolE5ZjifzdqgeDNcp9hh9+aq\n5wxNmwJtAr9A44LddY8D5CEOPR4K5Vmq3fEcBN6PVS8AOJZU0Zwp9FkfcRj4AhEFrjJ079mctFRc\nv3NOXPlXnlkNcH/zlYcx55rDDAYNjjM++hpTdHcC0JhpEwRxjPtZbc5zYNLEuGlwvrpKGS8K2Ea4\nZywqMEcoywB4I8vRUAFtSjjzHoLcRaQ7pS5jOkO9CuNlxnWwjjIYPhE79Y41Fjg2mtM7cm5MtEEf\nl6es4lAlle9wirNMBksNZDiirYXoXcSwqQrQ8zoOC/O57lcnXR5stgoaOjl9OJo7RBdtCNhlafxq\n01dgICJPNL6GMCFHuK80QFg7qxorV2pi/X1yT0jIc3S0zhmnt67rHHiV+wxxl0lpVx+8o4e6RoAA\nACAASURBVLG2fQenG9rj/n1d/8PflhPe0DkYZZlNfPWvb72rcThAG2Z6jjvcXPf4bCYk73RX4/f5\nvlDu7XdBl9EZuntdaFTntpDBZlPjcIp+w+IUZlqqOTAKVAaP7wmhPPyZUKr72VeZcRUcC5Y7Qsni\nTH1nfKJ0bt7SXLmEO9T+fd3vs5Pf1PUw5RxiV4EBlNEWIxh6yBtZAhv1rTc0Vya03RBnmcaa0r2x\nJLTMaXvVmhdn3JmZFYz381RttYveRLal/KwsK9/Vlp43Y5z00AybHOOGB/pPV7UJchpVGD9BQ+V9\n+lzl0j+hj82XuJ4xjPnvDEeaEJ24vKVyOz1XO5ijP2dmdvh8Yk20GwoQbx9m6MI5qeEElNOnD56K\nbTBZaM21QNshgBFUR8vC6Vs516UxOid93KhC3FYiNMImTd88WKWrNZVZ4KkNhS2lbfWa1gSzqvqJ\nY/TVYOqNh7Bbn+PG08F16QpzWARyCUOvQ94y+sBkCW0Q9NEKll9JvkqeXkUtxGzBsrmG3twicOMz\nWoe02TrjYcjcnsLMrjvHRND34QyHGHUhy1uOoYFmmTnnLNypGN8bzJl1wxFnpDoY4NbXxjkxZ1xa\noIHTQO/EW0Kba4TGDEzHGuvIdOG00HBNOkNLrMVzc1haDaeho2T46BvV0FQYIpjXeaGVpvQ0GCcH\nkWPfot8HU2eaw6Y4hwUGg7zSx4ETVm0BqzCp6zktNBxy3FqTwUuHGd9vmBeiG4LjaLjEerqPSJhz\n3mF6aVPfz9KLO7mtoXszzNSPPFhhJx/K+WW+qf6fOV27BMZhC50j9DIS5vQYgYovq5qLhlti0kSk\nPUB/6HBX7y4xzMYOjjAeLLHaEJYR4/SsrbI93RTl5TrvYpstfa4+Vts6eqpx6mQHV6Ca7tuEKZih\nKzI7ZHyqahw5wU10eKQ5buO23nnam3LP6+K+59F4lhm/w5b6Zg9mzgAGy5ABNT0Wo2aasBZg/Lvz\nlua75g1cAmFZnD/XOBk7hvYV9Ekbur62onkseCQG5jxX+p/s67nzGi50E81Da7fFWFnf0PXL2yq/\nDlo7F40jNIMWzN8RbNtl3nV3P9Fa4TRR+TkHzTlNusCJrEE+5uij7vXFXMxg8ne+q79fuax2drZ3\n3czMnu88eZGWk/1Te/v2G3b1hup+sKc2+LOfqgwnOO4dn6vNbS2pP2yua9zef6y2+exMz74c6x1y\nfXODPKnOD3AC7hwp7xlz/wq6QRu39Pl0X21r/yPdb3hdbfDam2LgOJfTs5MdMzOLcfC6+Y7eRXOY\neCHzSRM2VGPNfSqfFcar539f76qN6g/NzOzSLbWhaaL0TphLL22prfi4NQ0/Uh/a+xRW8kjjzxgt\n2eO+2mqGS1xjqu//oCiZMmWUUUYZZZRRRhlllFFGGWWUUUYZryFeK1Omv9COUjvUjnWAs0D3I85L\nzrRLuf9U5+YmR/ps1LSjv7ap3drlJaFY+8+0m9h8sGNmZnfe107XhJ3vKXDV9avaTf0CpHZvV7vW\nfttpN2gX9YuP5IaU4Nry9teEXk4vwQ7YxPMebZtxX7urq5vaSau3tEN4egJS7wEdPARBb3A+nc3V\nGucCHRoV4lR0NtaO3GSoXdP2FaGFV6pOnV47f80lrt/QDbc6nJscDm0wUh6XOV937c7beiZo0kMY\nM1/8VLt9bVD4JmdM/bZQkXVQ4faK7p3tqw7TfdXNjRvX9f0Huu7BT8VismMhBGsHKpOLhsduZwW2\nkI8SPyCSeWirTGdOsZ/z67AVpqBJuVNTB40KUVV37Il6E8YMbkwVWA/+DJ0LtGG8isrBC9V2UjQD\n6jjqDHFAaAF7VTi/nLKr68Gi6qQwQWCqxDBPqjgBWVPpagUq3wEZ7uagNaHKv0O5DCcgti2cK9Ap\n8QF/ElDEGudE0wkoE+rrHdgWkxgWBfnnmLVNYUt4MHXCOufDYeIAgtoMJD+pgnwHsBAmOP2AZs0Q\nWcjRS6qAYi5gLvmVi6NSKc9s5rhU0C+msI6iCY5b4Vd1baYwU6pOyAdl/QL9ospYnz5uQzX6mVfV\n72PcJeYwcRaFazvkPQPtnoCkNpT3pquDBbpGuBHVHe0LTZkcZ6wZbaNhyVfSHdE3ghpoFWUYpyDK\naBBU3H0Wem7sUHuQTcNFaka+3bHyeeIgX32PuZTllHMTBg5yQRZm9FGnMUAbDtCgqZrGvQT0pjDK\nB7eQHK2Fgv8XIW0E5NZgr3m57lN3ogEXjcQ5hnHuHmbO4RdCi7ImiC/MyuMjjbuLQPVy/X3NM28E\nQsnCFc1XbViAfc5eV8ec327gunKksbcTq1z69/W7GMZND+eFtfaKTTKnU6NnPbqncfP5YyF4Kayh\nKXoTG1tK6533hR6t1nSvSaq/n8w1Dp3fV93Emc5Z90Ldv9dVHYQ1oVPnOAT0T4VKFaBYl98Q26CH\ns0B7DX0HWAKLJzibzdS4Bkf6/wLcZzjV3FzBZSQM9PftJd0vT2D+OT0o9I2WFzgg3hL6deMN5fOL\nz5lX6Mu9VdYCIL1nX+LI4CgqF4wZ82FBX8maQgE3NhjvGszlUyGv1lY+ipTrQP9rMDJtS/WxjnbZ\n8IS1yBPVx+FA5d91Y0HEOX1083IQ6Oqm+mI7QuOMvjY+VD7H2Us2QHvpkrVTPddjPE1gMhXMR1Xm\nlRlst5jyX8B4DBZqH0EFJuWQsY211Oo6LjEwsK6j05WbnrO/r/uFp2cWz9WG+ly72VVbWlpWmlPc\nz3JYP8MzmBM4m4znsKIo4w3m7oJxKTP10wjmSZVxxEOXCPKBjXd1n4Hv6kjfB5NXY8o4zYXCd9pc\nMBTPVBYNxFWmmdLfgSE4gr1QoKFVYa5vOJckNHAaaJmFHm2QOhy0cHDs6/rE0O/AbYqlkHVhSHpD\n5tqm0pviVtWgTWUD3W+Oc2ILZlKxYLFTd22HtZXTNlx0yTdrLJhAHeYdD0bMgr5gsX6fMX9lc2cV\nyfxMF3VrhQImUAhrL6yzNvDQDgqaXK7n1DKnj0F+YND7tLvK73rLaVnywn5wirNnDVfDGezlkWNa\nsRSbdMj36cXXJNUV5fFyU+NkjTlgEaGfdKIyG8Leb7+td4MTpwU4crpD+n2bOnLjx2mMvgX6Hp2b\nYnfWzs64P8w61goefefaHb0T3UKT6v4T2J/3pRE5h9HzJi5LWw10OG7AskrRmoHh6IfMmegiffZM\n89USa5Z1GJPPmXvjB2gQDqQH8jTmdAGuU1+/KwbQmD7ZWUMz5y2Nh2McKWee5k6nj/doR/ne/Vxz\n+e2rOOGgCVngNDmnL52f6f7rMB4vXVU9Dc8YN6uOxQyL90jvenGs9J/NlM/xoe6/QEcp39b8dNHo\ndsSMmeA4N+3rXfJqW4yWZdK3/5E0PmddzdN0Ffv4kebz7aby27qhv6+2VG6ffaa/732h+muhHXnz\nlnT0JrOXWmQf/uaP7Nat23b5rv7Wu6v+sXmgtrnLsx59gdMWbMgrb183M7ONh6rDfRwRB0PNTU0o\nZ+/iGHY+V121ec8NeIfaoy0uP1Obe/dNOfo2E5XxFB3OBePU9bf1u9PfwLnxeEefN9EkW+G0A46I\nZ4fK6zkssY27KpNeR2W1/Za0ZKytMp9zUuXklFMEnKxpM+63NsTqeufdX9LveBeaD2AA4VRbY25O\nFqx/Jz/foatkypRRRhlllFFGGWWUUUYZZZRRRhllvIZ4rUyZ+DnnAkfaOVrt6XPE2a/6CjveTmMA\n5OHBZ9qpq4KEb36g3d/huXYZnz7UDt3WNbFB5mfawRodwMh5Wztv62vapTwaCB1cAt3aQrPmGSrR\ne891Buzqde2AIT1jW/im73xPf995qF3a1U3tcl67o520DHX4wY7yd4QDT3Skz/Yz5XP7hhg8N+7q\n7F0Ak+fzL7Wb/uk97VTO5oJE1q9rV/TSCuwNlNSTEzQKZkJegkrHzvdV1oa2yXJDu5qrb2n3cuzO\nQz/WruPxma7NYYqsXReTpnVFebp+WTvKj55rd/PoVEyZlWXtsi7hFnILvYjjXd1vHv185enfGynn\nlQP0IzIYL4tUO76RO0pPSx4DMPi0IXNoex/9kBaMjznaNDjBZJzXjnFrqno452SqA6flknO+O+B8\ncd4CZRurDtoNdkNhHwRTEFa0EvqwriLU612dpSAhNa6b4tCT4j7SxElh6DQB0NvIOLfe6IFeue9x\n5Ml80Ck0IapjXJIQiS+KCuWmNhaAjLdgRM2aztkC9I8zvFXn0MB9RuiEuPxEA+Wz2eYcfN05FEHP\noF04F6fM6argrBG/grNOgMbSjLoOYXn5MeykOq4OuABFQGcV0HqDcRKBXC5A2gKH0M0cIouOEdou\nLdToZzBBgmL6u29nae4QR/3eMf9SzsD7IHOVCu4YsINmMc4CVf5OHRXOcWwOxAvSuIA50uBsvmOu\nBKBT7rC/Ay7zBuniTH0CSu8lIKMGw6ZOncKyitG3qPPcBGQ0cPZXL3QrNN4uQHKrsB8MllvUTMiH\n0jECmW3Q5j2Q8RztGo8xyzOlY9EEIaZcLxonc43Tzzkf75yM0onGy9VUY9v5XAzJ/U9hHHVxrrmq\nsa27LgTp9FCMl+eM+ycjjZ3JIYzIXcf8UftYpp77nCm+/h259V2/gR5XllrwbESaVEZDdMkasLyK\nlspmCX2ca3c0Z6xtinEypw5nJ7pP7ZC5lLPvl6qam6ot5X1wprbz8AsxTwaHQgCbPGfz20rbG5eU\n1hnuciOcDOO5ym4fFuvpvsogXNFzr8AmasGOuI4OTwf9uBY0hk8ffEL6YEM10ZlD4ypg3NkDDTs7\nUZmHWOc0cKRZwbHwaaLz7f7o56NSvzdquFekl4VurcLs8xkHz9DyyWFp9Xdxz3CaawN0Ocj3EgzB\n/onWJjHIJMfOrbPAqRFWQgQymndwv+rBSHrBvIR9AZ7WWXdrhZdLuc0r16wFW282BwmNxPhx7LMg\nQWcFnawtH42chT5r/G7h9EUYvj1zlFE02Fog80OHYjonDJzIVpbsPME9CCQxR7/t6RPVYfpcbWh4\nAjMRpkmrUN3OYbZ00PVJmfNm6Os8PVLbzSmTHLcMDz2gBohnxP3SGfpvnhDStP5qTJmYcWOJNtHH\ncSvtUiYBzJUJ7FPfMTmcNpfGkxnjYeCcUKDuONdP34chCQNkBgPGh2WaFaorv1DbKs5g0XVgSbTV\nZxK0yWrMB3nVOSQyHs9gE8CmmHfRGEtgY7FmqrKGCha4TMGIzGr6f4KOU8VT2+pTT5Up+kPMBz3y\ni8meJYw1bdZEbv6JYYl0Z7AjYAfkFeZxqEET0r2Yq+1VnZBTU/kvQkSEzCyeVa0CM78GFSbPVI8t\nX7/vt2GBsDbJJ87p56WL0y+KBXN7E2b05Te0Hq4FGq9Hicrks09Zo6dqE9duaXxebOIAO1LaG6xZ\n+ri03Xusd6DhsuroGiyqynXNYd1t1UE8Vl5P7mv9PoA52Guq7V+J9Nwvz9Fuuae56RE6RF30N5d9\njdvHEQMX698NmB5bN1V2B6b0uXGmifPgdd4bnlbQUDnWHHxe6H412GYFTLt8oU+3rozRMclYg3gw\nB1fX0KCpaf45eCTGz/ETnH5GtIllWNTQgEdzpfO0qTbUqOj71UsaI7YuaayJ5zCcOqq/MWvC5Fzp\nG5zDSEU/MGlcvI2Yma0yTw6Hqr+Dp5q3VndUrjc+0LzunDDrazBWGa87OP/MY81DS4zzS7ybVvc0\nxh4fqHyWcJ3qwCh97/1vvEhLu1O3j3/6oQ1gS733rk5kXL2FAyPvQsacMITVs3+fdQ7jb8b6b/gI\nbZVnWk913rxuZmaRx4mOltrGjdtKy88+Evvpo9/6npmZXXFOweggFWd6ztqa5tZmx51CUB2fMo+c\nJXpehbnqGgyY0FSXfdY8/R39P7yi/r3cRZMK1tbmturgfFdtdXjkkW/lq3NNf7/9La2NVvrOZU73\nHXF6YxMNnMHujvLtKJp/QJRMmTLKKKOMMsooo4wyyiijjDLKKKOM1xCvlSkToSTtkIcU9w+HrlXR\nLVm/pPONBZ7q/R9rJ+3+x0LXruLZvvm2dsSmp+zGssvs9FSCwO2oa6fL7Yp2VkEYBiAePVArEOUq\niEY81nW9hnb43rih84+jE5wwHmvn8MEnUqu+ekPpuXtHu5HHNe1CnxxpF3fehznzTIhAPJCey2Xc\nCNZuSruggNVydE+6AnvHOo85RFV+AftgG3eotRXtPNqG8jd+fG5NPNmLR2IRnbFbeON97dxfuqRn\nxUsgZkfaeT17rt3RBVBZ5NgGdaWpsQHKxbnD+/MfmZlZgBvGpQ3tMDdxp+isoFNxwahPVQdzmB9V\nH9QIBknQVB37C9AltFciPOGToc4XVmscXEYB22sIPYpH7FqCNkWga9FAv1vUtasbwOCo+2oDMUhk\nHfQphf3kHG0KyssHpcvRqeiGquu8AK2CLRDRNofQLJqgW17AOekp55mdKREOPmni3KX09QSmj8+Z\n2B5tF4KMzWDOVHBWsAV6KA2VWxg6ByG+B62LAvXV1LkFKBvmg1Y1qZ9FGweaFuwUnu+BWgWgfBWG\nHh83pznMJs+5Og0uvl+cwBDJQVidY0E1dPo6auuu5c0SGB+g6x6oVooLhpfp9zkuDS90FbhDK3AO\nJGgEgCBkRhn6TqwFGhc75s79qMDVKKjDmqItc2TW/AjNGhxYHCpVwBwpQKvcU2hKNuY6p2NkgdI9\ng51VgbFRxTEmA32r4eyVUH6hQ3R5boTGTQAiGaM9UziXKc70L0hIwDnuGaiWj56Fj6ZO4rR/PDQO\nYCglLephjksT5eGFlBt6Su77xH81TZkQhtP6isakKdoOYU3jpL+MZkVXY+FkU/dvb2pcHXy2Y2Zm\nH34qNC6NNa+s3LhuZmZ3L8NWWUPHZaoxaArq2FtBXwAHtit1/d9jPnr0w117jpaLc0Nb4AjWg3l4\n7Wtif7ab6EtUhdaMjtWPnn6iuWX/GQ5+GZoEmfrf1nWltTPX9QEMtQYsnitvvUOe9Lz6pu6fwNzZ\n/YEQ2qecm14Mcb1bgNT1YJFtCmFdLONsdohz1zPlb4470RE2dmf3hfj1lzV3Xb+rtnJ2oDZbgVFz\n9Jny0+lpTXD5jtK5dUnPmzAX5qDgSfBquFMKA8SDKXoc7JiZ2eljoXghLIEENl00Yh5CUyFYoFXW\n1/9PFkKoR6wdmvTNmq+1zdI2qN866CHj+yxknkVzbHYMG3egeWqBy976Fa0VKq3flYnZnu0e4LrX\nUtuONlT+tYg+CnswBU1cHMD8gTXcxE2wsUH5d2B2MpYMYL8Nz4U492GHjXDUDEPN/71Kywz2je/6\ns3MKgeFocUTaVJcdWGAZDLwGzMc5qPkM9lg2oU5gI/ke7k7MYd4pDoTLsDphB7WoO8dYzF6NvGs9\n5HvmTKo5LIUUrQHnPBih35c71zjHzOR5bcbtU9ivTfSWFjBJWrDZigzmHW15TNuOcrUFp5uR4jRW\n5ed9nMkqaKaNmL8akdPBUDl10YFKl5jXckepBJWnrTnHyAKdp1EFNizsMh+trvycudyH3dVDW8FN\nh7B2I9+5+bGOPVM6ihCNGub1FDfEBeUXouGW0/fSTH0uZM2SUu5ObySMXiLTQZBZzPwfsNbI6tQP\nropd1uU+7k1+TfWTvDQ4+4UxgeWesW6s9mhz6NP0huiRrYuBcnQkhqLTr+vRPwv6QITz6sZ7mpsO\nc6XpkPmiv6/xM6rjDlfFMQtXIudEM+fdaIQrkofuxbUrGk8HQ73L7OxpHFhNlY/jLccs13UD3IzG\nAz3vym0xKtue2sDZfe6DRtfNN66bmdk7y+rbc3ShPttVui3HDY61k2O0B7hGnTL+DdB2mT7R725/\nXZ+rbZXnu29/XekaTvkUa8Lv497EaYoq70bzZeUnQ2NxFKotLKMx2T9lbXOKk+6m6mPzmsprdVts\njuae1gKblzUPXTTGE42F7TX0mXD0+eKhNIOGE8ecZQ3G6ZGop3JccoyeqcqlCnW9vaz81Wh/xzBY\nF7C3r1LP1++8+yItt99/34an57b/WO+h6+uao7ZuiI05h2WVcbqgTV1OZmieosfZZS0xxdX4cKrP\ndVir67CmasvK8+ZdnXRJce18imPvmPVzUVH/XV7SfUOcAD20pd7/tt7/B7QR5zb6jDJ0ffGNW3rX\nXb2iNdKXn/3UzMz2H+v/Hmzk9duso9f1nDrjEAQfG6Ir9Mlneh8Peae5vipdHw7Y2M49rROXbqqs\nl5pY8TIW/EFRMmXKKKOMMsooo4wyyiijjDLKKKOMMl5DvFamzAyHmNFAO1mbIA91tF5S3E7OjnQu\nziHf79z9jpmZPXu4Y2ZmT38iX/H6klC2rSvafR7ACpihBt3uaPewD4JZA7FuLGu3cWmZs6SH+jzh\nfOUQhs7RrpCZOWyR3jVtnd1+7319P9PZ5kdfatd7gSvM298So8Zvaw9ssq8dw60b0igwznV/9gPt\nvA1Pteu5fVW7mNt3tQO3irvSg/vayZxNQGLZ/T1+qp3L9TeFnq0OtYt99sVja7d0jzFlevL5j5V3\n6AM13Cu6VdhD7BJGxnncFojsEWwfzoQaLjs5yvqPHivvnRPt2D7/hN1GzjcvXdF9LhoTkIMqCGbB\n+WLHFOnHMF/QuXCK/N5Cu6qNOjoeoFI5KFoVO6UFqFDI9Q12+nPO+DsdkhzEOWs5xxjlZ+ipDhro\nfxS56mDGeeoQ5wLH1higQxKAIDhkoF0Aw4AmZrDIahVtu6akx08Es40dipayk875zAJ2Q8tARkDf\nipFuXMXRy5+jt1JwvhraRerOri7QfGGH3qFUEc5GeZv0Uq5TGD2VIar5bf1u7il9EfViMefX+T7n\nwQW6LIuU85qtl24ivyicxotDAFOQvQxdmjloUIUyr7lRD32MGHSh5hgzoAnOt6UKlOo0X5LFV8/2\nV3Bh8hNdMQf5rfP3MXXZIB05O/cz9JoSkDyH6PmgNjluQA7pjJzuDnVrHnVDm22CLORoARgudVWc\nbMJEZTsHVo8yx4LT8xpNlQ8Ap80i58bh+hhuI4zbTRiOU/5fVNBgcVv9MICm6D+5Nuf0THKcIWY4\ngHloy0Qwb2Y0rgqdooKmzATdlKZrfBeMOuf7a5sqr9tbGn+dy13snGWqGrOGOMg8gwX4dCBEJYt4\n/rquu3lT42zYEhJyciA08gp6IK1LuM009Luf/Y7G74ePNJZO0GU53D21FvfsMtZPQcevXFZaV5c0\njttUZT3ZO+O/aptjznnXObfcWhGSZ8wVMcr/+7t6djPR80LKxl/muTDpFo90v0dPdCb9/DlaLU0Q\nucu6rgszooET2Bp6aj3Gi8o3hIaFU9Xl88dCww4eaM50COPG28pfu6Y6eAIr6fhQaNMIXbk33hLq\n5ZvSe35A3z1Wnc05911p/Pzz2783POeUg+5JRN9ph5oXA9Cu0ZgxAHeOOjBaFZQwhd3Vbui6lcug\n8JRHmjE/wTYYt9TGZvtoQAxV3sWZ0/JSG4kZZ9t1oZjzmfJ7vDh/kYdnp/uWHqs8+k2YmUdosqGR\nABBv0xlMyMwxPDVmjHpqL9Fz3LTQH8lgyISMdTnzZ6VQO6pk6NvBdhkPR+bjArdcU3/o4BjWibUu\nOkWXodfRNcGq/h420ZE4V10en+Lccqi8+cwZTeqk2dL6b3UD5oXPGf+50t7fVxnPnawZ/2g6EbCL\nBgwMA9ltndMWcLQawjKqwBINcT8K6GMh49wpenntAN03t7bBZSid4HCJ3kWRM0e2lY/WmfqIYzul\nzqky1ADuJLcWaHQtMy4PnIMmTKUxzJSAKd2tu8NltZ1prPpw7ntVsNxJVfcd465UY71bgxEasOZb\noPGSM1+lbeUjz9xaDuZP17lsoXNXxxmyrvx0p6rnwVj377LGGuCI1hzr+RnOQnPqIzpD+M7Mokrl\nhVaj0zYbMA87x8c+rnl1nNHaaDj2WZtcJLK+8nwSa7zMZqrLzausFViEbF4X48IeKO87u6DrXTE/\nCoyqurh+3lwWa2G1ob7kxuPnuzjDbKvtt2lz/hUYNl29E1iqcTNFT+4UDZP1ttKxjCPa+c9U92kF\nx8iOynQt0HOTJyqLx2i4+Ms43mwrn+lIjenJjjQn84ra6JWt62Zm1rqm+WEZtunuFM0umPnVa5or\nt2G0hDBT9u59SjmJgTiHoTe+BfNzAwdf3EHXTzVvnp1q/qjASg0QNJrMxAgaJNAbIuWjEUA9r/Ge\ngU7U0af6fW8TluwlWB9X0TcJXra1i0S1hpOkaf5bfUP5OByiBfNE9VBDp6XyDZ2+qKNF00LgdHyk\n+bRW1/VI+djdd8R83byqsfHgyY4+dzVfrF8ZvEjL8sqyvf2N9+2zj+X0tPuF6i7l5enLL1TXq1fU\nRra2PzCzl+yuNRhxi7bep9c7Ksvp9/R+PhzjNgzjuY8DYY0TKytoqjqtqOd7ylOBNuqYzvDgRx+a\nmVn3stp0jXecrZtiKlfRgYvP9B59dk/3mVxXGX/rW9o/OEQH1WBuP99Vme/8TPluwRgPeTeuj7Wv\n0MAu2TtWG3j0WG1i+1eVnmaXd7SRyjb+gZ5/3NN93nxXffgPipIpU0YZZZRRRhlllFFGGWWUUUYZ\nZZTxGuK1MmVCEN/xoXaSPnmuXcwGyMfNu9o5G5xqJypGVf+Nb2tHbMYZr4//zj80s5eIxe13hcrF\nKJwbau3nh9o58zjD2l7RzpVDrjvsstZ7Qus61zgHzm5ugHBHDHITT7SztvU17UK+/TWl94f/m3af\nzw7EJjnqa7fWZ7e7XlX+IhCQhSkdm7fFItn/XDt406k0c3LOBq/c0g7bG39IZ+j6x8rPp8e/bWZm\n2UD/j7UpbFev6bl7T/asvopOg/5kR49U9rs7Qkw3A/Q4OL979lx5nuEy8fZV7VSHph34VRxfYnZw\no2vandx6U2XbP1CdHu2q7qroRuT5zz9P93ujAH1J0bMwUKUGmjDBTGU5mTjnG87Mw2Hj4wAAIABJ\nREFUwxpI0NFAWN8W6AYBEFpUhYmDQ8S4rfw3YUvkjsXg3ItIxyjWDnaTnfV0oef7bdTe0a4J52it\nwJYIcaeIYGdU2IUeLpTAFir0eaz7Dab6XQsHntS5PYGMh7SdOsh5Ugfp5LnBhC6OK9SCc6FOQT2l\nDzbQCZlTDnPYCQuqq4pOi+d0UWAaGee5I855J2jjGH0qr6g9pOyOF5zTDsau7TtbD8cUwvFojmjN\nBcKDZTRDV8iluY6LQ4p7kh9yNpw2XUNTpU5byUAaC/RtGrCEkhaMDay95gHoP4jr1Km7wHKqoHUS\n46TVzJyukK5Pa4IxHHLo0Yc82kzQBDHEZckLqTs0bCBfmZer7OmyliI4FNSdVgN9BEZLDqriw5aI\n0dRpwpZyojae59o8yAeaM5bqPlU0EBKYMxGMl5Q26thoIW3GBwlNms5Fg+fAJApBrLPIMY/IEG4e\nFJPNcEiLYLX56athCgsc0OYjpfsZ7h4rbeU3wtnt/lSMyPOHOAs90Xje3NDz77z3S2ZmtnZD9diD\nAfPF9zXWpXs4Mbwvlso8VR843GesTFRPmQ/7rK15YWM7tY070gxYvky/bujaEPZOvg/K/hTWE8yY\nnDz4MOYu3dF129tC8mzkYG61gdGJ2Ak5KHoKIfLZfY3bUVNzSTPQc8eHKhPr6L5rG6rL2pZQo4Bz\n392W7r/cFVo2wpWo7fSSQF4rLfWNG2/LmeDG18WamKDBlYF6t5ijh1T12orKbgt2a5LAan2mdIeh\n2k7idC7yVxCCMDMf7Rw/Vdvv9IR+bVxFYwwLtEuM2wkCR/EReh7UaaPj9E1gZILKn1PuKTp0hymu\nTMw30yHzB+y/IqO8CuV3tau1ydItXPrmO2ZmNnzwUl8pHletHqlemqw1RpMT8sUYSb03oT/kMGSW\n1nRdDko4Zl4zdDYidKPqTeZH+mSN+c1oLw2YQ9OV0PwZ/ZtxYYB2SH1F915dhjkRweqs6vsCPYuE\nAW/B53JV/aqxSr+FDdXcQA+IOijQchmix+Z8uBoMdwmaXov41VzcBk53iCmwhltRxhzeQytrTr4C\n5j4fJ6wRmgdV9JScrke9i2YWDJKhYwgynzTROJziujTClSqCrZShdzekzfhoz7RgIp6hm1dbqE2k\nEawpGCe+03aBqRMPHcNJ6RqhU5fDWAxhSGbMf0khZLgJey0DgQ4CtGNgFy8G6GWhgdMYa4xYMDbN\nE0fxccwatakKOihO6zFFx8mo50FN6a+baz+sMSKon2ZmXt/yutbZRY4eIWuubISDG8Spc8aOWaw+\n+yojSQtNqBPaXupY9mjB2Db9eVXvDrdONc6kX6pOCnVDqyzpnWTEGuIEbZQ2LnVVT3NHZrh/wsZP\n3HDg1mO4dy5fVRk3jlR2u7CzWjDiC9a5q2i5HD5DFwQtmeVL0jRbQwNruA8j+onGs8Y3pJ956Qz3\nwCeaQ09x2q13xTbwqPvlbY1nB7j/Pb4vNkYF1sLkmn5/86befZZvqdxOzpj36ITnQ6VzzmIhgml6\n6esaK7p93eecd7kJ7IsmzJbxHnqi51oTHD/TO9jNG5o/N1d0v9X7Kp9HOC7eh43R3lQ+br79akyZ\nCRW11FO7uIqLYqevBvD5h2KFHJ8qvZ1PxBCqfFvzZQ6b8PBc9bexp3QnzMd13JY276idLRbq209w\nKjo5eMn+Gg7nVltbtiYapo4VWUNns4DtPnisa05uKK3rPZjUkdrgMu7FHnqcFdwyc5wHU+ae41jM\n4/G+Pq9892vKI+yxfVyEawEuTd/UWuHpz3Si5MsP9d4bwchpNJXuN1lDXUfn6KO+XIsffqR13JU3\n9Z4esB5utVRGq7CK9x6qjI94V/Jg6Rp9sMX7wZjxdw4zP2ZujNDhvE2bGPF60EArbND/+Y6QJVOm\njDLKKKOMMsooo4wyyiijjDLKKOM1xGtlyjSXQNtwZhk+FdoVgBp11nRm7RnHpY+fiNVx66Z2zJz3\nfGWNM7woejs3lHyonbmVbSGZc8SPJ5zDbFa123iGi8jxI+16LqNsfemmdtR2HoD04qzTRDthxG7r\nfKAbFyA2DdSaC+d4M9QOWV0biXaTHbyUc5R7x0pPuy0U8HwZhW00DsZHoFOFdhR7b2n3tgJrpdPh\nDC7OB6c72ulbbur8YavRtuREabj8nnY3e1dVqNOn2jn2LqmMZujb7B3oWQ0csWZzXR942gXsoO49\nOlJZe0f6+51f1i7lsKu8DE4c4oqWyPTVzm9HgRM7gYkBOuMP+axzbpszr4WHujtoznyC+8gUJwRQ\n/5Dz0HWcXpw2TAeEdAya1qqgJdN2jhHOQkKVO0bTZamDXggIrReqXPowUaoBjJEJKJOHnhLKJT1Q\nwhE6JxkuGWx4W1wHnUtgN8DqmEU4J8AOgRRiDRyDZnO0Hmi7I/Q6WiDvVdgSQ1gYVc7JF/TBGm4b\nfgv2BKjctKDP4vDTQSsnz9FyQHsnxoWqAULk8ttAkyIbccYaTaIUBo/XujijyvWDGU4FPs/KYdZF\nDq329X0NZoYHKpQ6lBemRAOXiqzq2F2wdzgXnaPtkvB9DqrtWFF+A42B1Lk20fZpylVQpwIXngjN\nqrmHIxXOOzXYQ3Q5C1C3n8P+Spw+EqiWczNKqIui8dX0RzB/0iY6ELRFgE3zYYE5ptCC5+cRmjro\nIqW03WqCm5IHSwwtBS917DPqoeoYSbrOuTc1YGXFGbpGgIg56ctjHCgqzkUDjR3GooX3au5LM5Dp\nNuVt5PPRJ9J4GeS4CBwKGb2Mm90H39EZ5Brn9TsgKtlUyPCjT8WIfPpYaN866FQLR4nJY6FYi3ON\ntQn6UJ2u8nf1klDAxurXrEpbPO6Dtp+obEdjyn6ucbuPY8oUdqQ31hyUeGivfAkTcsI4zhxbo24S\nUK880HXHM+Xh/ExzcDtDv2chhHcw1nNu3RKadeU9sTDrjMdWVdnMYVsNn6o/P0b3bfYcnSP0fJZA\n4TqbQjAnp2gUOJboodLjwTZYxxVwHfZnQF8fPlB+Z8wTgUPT0cuo1BFluGCEjDuOmZgxfj3hfHuC\nXlM1RgcJHaYcll6CI0SC1VByrvyc2fgr+SxgojQLtRU/d/pJQhmX0Kapb+nvAShdBmo5OhNSe7qn\n9lGZvRwva3nXllhLJE2V32ZD6GN1xTmp0YdpgymIupegeVZoXpt5qp+K70TZ3Pyl8nbaaR7zSgHD\naQAzqxLPzGe8dK5083Ot4xwrCGPGF4yFPo6L8US/q+Pe1HR6NYx/MSjzfKx+uw/7aIFjyRSmRM05\nGqKLlzbESvBg7OW1V9OmyhmQ2+iuGRoxo9Dp3qkN1mG4TKhrD2TVR3du4cZNNHfiudJdsH5coFXW\ncjoV6BzVu2pLc+biSR2XJHR9UsplgoZX7Bwb0d/LK7ThicozRjvM91WOVSaEF8NrDMsOJtACt6IO\nDmJxpPGtAsNlxHxSoDtUhz3n4UKYsHZy85/laAc59i0M1rzC+hrtoLQLaytx7n6q1y4IfYbLX8ai\nqQ2jKJm81M0IrWOhc7PivgYbO2qob45gX3SnzEM4U1ZHF9eUWcahNWbuHEzRYkTL4wks0m5DZRj2\n6JfUadpXXRyN9fuu0wK8JV2MwjG6Yd8ez9T29/f1/7Wu2uD5iepmip7H9VhzV2/jupmZdTL1iQg9\nPu8cHQ1YDr1M1x0+RasLt6LNjtIxWtX80IedNGE93GVcb+GQNghVx2czzYG5Wzdv6V3mjVD6mQcP\npedx/Fzj/y5jgc97yNV1Pbe2ov+fH6O5iMPPrKdPW+gdq+pYuwwyq6uwIgrdp40rarUQy3XnJ3LO\nPX8sl8F9xrvLtzXvrG3onbCA6X0PFkWB+2AtebVX6iltKmEs3LyOQxBui+9Uv21mZk+eaR4vaBc5\nuqhXeBee7KudPN1RurtjrWE6OCdV6qr3Fu9l0ZeszWDxmZl5wcJ6q2vWQleuYA2wfV33ONjVs5+f\n633VsVIPT5SWnedyO7rdY86+hYPjVZX1KdouV2FtzZ8qDXtDdCcfao1x46qua7E/sA+zZKXGCZOv\nK89OPynB7W7/nurii0zrsK/9Ia1Vltd03eOPxZjpM08UrF+7Xd1n+bqYNss8v4Fb1H1YW36XdWxd\nv582VcZ18tNkwKygmXWE1s4t9AAdC3hcMmXKKKOMMsooo4wyyiijjDLKKKOMMv6/F6+VKbO0rd3U\nzRXtlnKU1RK84g9Aywr0QiqwGZ72hT55IAvVwqFk+t3BDir7OE64natOWztjj1BNPk10n6VQu9C7\noIR7z4WuXXOkCM4NnsJKKALtLsewC0aHKGS3YXN0tBu5QNX96NHH+h7kwZ2PdAhNpa2dN3+kncM6\n6tHOYSOO9fxHj7WHdhlkwdBVCXGVSmGFPNrVmbsm5yrzYWxHoN6VvnauNzb1jM9wppqmOr/XW9e9\n3G7pgjOxJ4/kqhTATGn3tKs4R/n/cE9pbHyqZ49T7SIWsAfOE848xogXXDC8CAQB1kNB2RpuQjOH\nNs2EJgWc+c/ZmW+gYTCG4ZKz813ALhixLdkFzR/HalNhB4bQlLp8gWTqvm2QhBGOPVPOiQewMRYF\nbh2kP5pwfrkLowddCwBsO6dOW7SJfAASS1topGrLruodQyiHWWIT5cfDBWo6xmEHzZwR6FPEOfUE\n1kA6cs4RsDfQuskZGooYLQunexI6TQGlqz6BhQL7wWuha0K9h7n6zCgDLQtANhB+CTnXn1I/Aajd\nfPoK6GVFA0cLdlRKv5w55gmIaR22VoiGCoCdBQUI2VxpTBlPajiOuDxEzsILltEcNwzLYBVVv+ro\n5VdgvMHEC+ZOhEB/r6HN4oHqRzBCJnNQ75raYgP3IueSVFAXTXb6Y5BPC0AgIS/kaMBgYmEep+Ir\nIIExbTlwzisgu5lDSGl7BW4XPl2vAQMmoy35C6fFg8sT5e60fQIQFc9RhSpOn0Pl2iSdeYKGBCwE\n19ibobP4gvFD+QUgwReNKc9LYaONR5wfPxDK1Omqz65f1tjW6ak9TExj5pMvNEY2TchJn3Pcp4cq\n/94a+d8Qw+bBnlC3PiiWQ4pzHJV8EPY2ei2VyKwA9Z7s67sRDLcI5kWEPocDmW2sZ/ZwDhxnrk0J\nWZsEXe4HoxG0xqNNxZ4T2GAu4Xx47ZrKYIF2WG+fMkfv6IvPhUY5d7Z47lgAKlNk1yzDDam1pMbT\nqeh35wP94MsfKZ0tmBfn6D01ljQOrYKO7Z5oLXD6Q5iLONvMB8z1jp02ReMAkZze8qvhTmewmYop\nbSCAdYGrXEr5575zK8LBzFviexwRSVeKq0cCm65TCIWLKjg4MAHUcRMsGEfDQvedU75Bwvn1vtqg\nc9wpcBnsNNde5KHe6tmEwa1K382qmo9HzxhjmHdaIL7OTco5V5ibVxfuvLzGujrMyIz8QAa0Ap2t\nlhtDmDeytGJ+DTc8BoQkZ21BWcZ9GCJNxsmxY+ug/YHji4ejX8gcnsAoHIEaz6fo8TQd85G5dKL1\n1czQEoT1E7k51LFxLxjd1PU1R09l3GXdWq05tiyuQn3nPqSf55RRx4ftBSOzRbmMYWmFPbRopi59\n+t0AVlzeVbnVcBkajdUWakuMATANG4l+lzARZH2YRqxXF6w7Q8al1GldoYnWp23WmS8m6BLNYfw1\nWZuxVLQmE0gNNt5kpDaVOuYMbS+GwjPvsTZhHrRQfTdLNXZVpyDrzBserOkK+nQxroLhVPeZ4yZV\nocDT/KWTYxL6ZlNYwjA/3Xo7hJEU8r6Rsl5wDNX4d0nT/KIYV1R2WwgYdSP1T+9M48voTP148Awd\nnKHquNLT/6M+zBLeUQa0uUFFjBvHb2gzXxzHGmdyHP1y3I1656rb6UhlupvoytMnrMNh+FU3dJ/a\nBPZ9FwbPlInmTOlIvxSjZIKjoOGEWB2oLM9DjdMLbF3DPmxd2tRsofQdT2BOd1Sol7pqFFu8CzZY\n6+yNNA+Ov9B7RZ+6SBjnO7zzHY/VpwexnjOHzbGAReHmz0obTUnYa9fQIan6ajurMIDiM5XPkad5\nzjtjnsVdsNXW2LSM9uPYnebYU71eNHzm752+Tjckf0/pWEYjbjrl/cwxzU/QzvmRrl/a1HyyhPvV\nwUDj/LMD/a43xgFoVWuSHOe4EZ316d7jF2n56Ic/tevr25ax9t473DEzsw7vhE6VK4NJfLorVlME\n2zaD2bfzidg6ISycgDxUGF9qaCEmqdrCCBbXE66Lz/UumVFnx4dqe9/7zR+obHCeKppfdX48jXTd\nPqzW+j3NG2swd0Y4UDVIJ69odgRz8/x3VBY33pRuUntLv496jNNHaAweas0yOtf/hzA1Dx7puSka\njk8f6v/7Jzhiwqrtdn++A3HJlCmjjDLKKKOMMsooo4wyyiijjDLKeA3xWpkyOW4YDgeILoNUn6D8\nD/siCbST5rP7PGOnykDV25wJK3C2yVNdl6IGnx7DTqhp52xpmV1hzrr6S9qRu5Jq13GycJoF3K9B\nMXEGeep28nAJORtrR6zLDnyrpc94geo/jJsaTJvBSNfXQKwTdg4rsCTqnK0egAjN0Cdx5/eHU3a5\nOQu71nYsBH2d9nWffXYAw7pZwm7e+ROVWYOz79s3pBAdsDM9GIHucCa9wZnVKUyPYoSDwFxl68Uq\nqyq7iecT7WoGoDqdJdCWM/3++FSMm4vGAremGWVVoU4WnJVvgfjOXjjS6LkVd74bNkETPQpHV5qA\nIgWhUJYUlkTA2d6USmuY/u4j2uJhdTP2VSctzlnPI6dTot3kCjvxQV2fQ1C1NuyKFOueFLX4Bg47\njrUQdTirj3ZE7uPyBLsiB03swJYag2Y5px8fvYwUZLPBef54gJsLAMgcFoiPps0Mx526011Bl8RP\nSDfXhTgexaBinq/f1UD/BvTtJn0koRyboFgTH2QHzZsowtsAJCfyLj401XHhWeCu5Dt3CPSAqq6u\n60qD05bx0ZSZsiO/jLuEG0csdug/O/5VkL2p0J0KukRV8hShdVKg4eLBKBk7VyYQ42Susuyib+TM\nhhIfpC4AuZzhoMVZf6OMPd+5ZaCwz/UBUF6B60XodIWguAQo9QcwUVoOSUbnh+xatQbKteBMP/ls\nMt4AthjAh6UgqjmsgDzT8/wm4xbuJosqyLLvXKfc+E/fZvyrMXbMaYM+42jNd+5MtPVXA7gtPlR+\nUtgixji9cVt9r8aY1+mhQwLbK0bfxc9wOFs4/SUVwPqWrquuQyVCl8tn7Kx30A6CFeFFsCBgj83d\nmJXPzM513jkkCV30E/Kmxt1irGc2QOyKVbWN1jLMtkQMubZrAw4FhrE3O3MsLJgx6FdUJrquu665\n0QMF90P0lSogo9y3iDkLjw5EQf9OaGvLjLfxTbXpdlWIZHud50c0Hvqs4XK3BHrdREOhuQar4sgx\n6vScnD7X7Sldcaz7BCDTGeh4O3o1Z52lNbRy6kpvz80/pu9zGCRVT22+CGHswIpo4Mo3p40kGeic\no5mFzulL9TWFDVaHXZfAmghM+S/IVwpzJloI8aziflR7oWvycrzcvNW1OnjbFHQzYMzp0zbXmbdZ\nYlhWwUWp6XRQYH6C0Leg36U4S9S5MFqC2QTJoeC6AjfGqlWsnjrNLO6VKW8dyiylrGaUhdf6qmtb\nleE4Z1w02n6Uqk2PDa2B8OpX0hjB1spZP9VY7k4C7ouDYRy8mjZVigtn6CiJ1GmbNco0VlmHMHvG\nNbcmgYkC+2gCC8tz6zrWBsuR2tCwr3yOVyi3sdLbRrdtDEPRAynOGO/dGqiKDl3CWqZeOHc95kua\nToGDZBaprbQdOzjETWkGw6bHWm/BvOhIz7A1KjVcj2hbGENahbk8ZaU/QxdvCYeiFGs1n/ltgN5K\nHZZvSLpnCOZlOExGIOx1dKMS3Kc8XKyc/l0ze8m6XaSFNSifU9YBy57yOXUmhLQPw/X0kyONlR+d\n2oUDQuELF7OoBguzBZsL5luyozILYf2so4/jb1OHMKr7MN7iQ6HulZryXIPRvZWJYTKC5dM8UxsK\ncahqVLTOHzCeFM7dknXy8RPcmRwDmjbldEPyVbQacc45RBurTlsqcF0bPNf8VWnCBmD8aMJ6Chas\n8xzTDlbDgHenNmyxpbqYOh59aoaGZPxM+VtrwDpdU76rfb3rTFgzxKxrqzDmLcOJ85C5mbFm2kHj\nCzbe8jKMpgiGfapKH4/EivCHaus+undLrDUj5oX5KU49F4xgTfm8zNoPkoXNmOeYXixiHrt2Sdow\nY9+dooClW1f72VrVGDhGU6beZF5Ck8dg3Gxv6F23qDjBKbO2zW0wHhmSKdZLdZJlDNu1Slvr3ML9\nmHeQ5qrK9PqG6vgMRtwQ5rOPu9HKNUedRneoDnP9GmsQLHIrjAtOt2x7RRpgEevDwVDj1CquytZQ\n2+mtoO3KnMbhAFvQr7uXNKc719SANhCGakOOsekzT42OcNaCveZYYe7kTot5aGld12eOCU/bq3FC\np9ZT3Z4/pzySn39apGTKlFFGGWWUUUYZZZRRRhlllFFGGWW8hvCKonhFvPH/wYd7nhVFYZ73ao48\nZZTx/4co+0YZZfz+UfaNMsr4v0fZL8oo4/ePsm+UUcbvH2Xf+H8//qCtl5IpU0YZZZRRRhlllFFG\nGWWUUUYZZZTxGqLclCmjjDLKKKOMMsooo4wyyiijjDLKeA1RbsqUUUYZZZRRRhlllFFGGWWUUUYZ\nZbyGKDdlyiijjDLKKKOMMsooo4wyyiijjDJeQ5SbMmWUUUYZZZRRRhlllFFGGWWUUUYZryHKTZky\nyiijjDLKKKOMMsooo4wyyiijjNcQ5aZMGWWUUUYZZZRRRhlllFFGGWWUUcZriHJTpowyyiijjDLK\nKKOMMsooo4wyyijjNUS5KVNGGWWUUUYZZZRRRhlllFFGGWWU8RoifJ0P/3P/5K+Ymdm/8sc/MDOz\n9q/+s/qspvrBompmZvOp9o48/dfq+cLMzJJobGZm6VR/aFZnZmY29TwzMyvCmpmZVee6bs51TV/3\nXwRdMzML89jMzMZ508zManP9fVaJzMws83WDVp7w+4p+v1DxpbWRmZn5lY6ZmXWGhf7eULqrkdIT\ne/qdzepKR6b0e55+P2wovd1C+ZmOA/0+LCiPM/03aum6SPmteEpHMiffpnRmXkN/D8eWhEpLUehe\nlbHyMKMsKrl+GwXkJaqRJ103XATce6LfLZqUjcpuMclVdk393g/bKhtvqPtn+j7y9bs//xf+fbtI\n/Ot/9d/V/bwZZaG6SFWV5gdV0qX05eQvyvSDRZ7psiAgf/qcq4gsbSg9IWUecr1lKpdA2bO4rfKq\nJjPSw35mrjKf+7quFui5RazvvYbqOo1V16Efki7dL2/pAWGs8rfWhAfq+r/wH/5rei51aYXy70cV\n8qF05HU9v8hIR5hQLvp/FpDOWG260lB6FnPdNwim+h317NdpO4nyk2cqxyjV38dN2hHPy2jjIeXm\n+my9pnL15iq3pBZRDvTpsb5f6PIXTT1gv/gv/Zt/1X5R/Ed/46+ZmdlgdKB71Ug7fw9bStPkVGVf\njJTXVkO/85f08NxXm8+nKpui4Puq0uy5gYS68HOlcToamJlZ1VO/zJv0y5HqYGr6vtXT8z3ayixW\n2ytok0HBeMb3Ucg4octtkbq60HPjWP+vRPq90aaCSoX063eJqe4qntKfLPR95un7BW0ojNX2GjX1\n3ZgxI/IYDwf6bHm08TUlLGQWmc+Ur0WoOs/mun+dNmHk02/rgnhEvkP1gYjxPWU8sxHlnan844XG\nkuxA5fQX/51/28zM/oN/72Jjye6vf9/MzP7Ojf/dzMzeevxLesypxjLv63tmZpYMn5uZWT9eMjOz\nD66ofuOp5qli/NtmZvbxs3fMzOwfffPIzMx+80v9bqmp+95dUnl8nCi9bzw71P3vruj+uyqXcF3t\npZfetOMj/SbPlRYvvWVmZtevqKy/9/AjMzP7I39IZfHELpuZ2WBfz34zvGNmZp/tqi+sfEN/HybK\n0+xzxuVvbpiZWTT8zMzM/Ic3zMxs/ean+hxdMzOzB/uaD8bvLZuZ2Xyqtv9uqOc/9vTcgSlPQUdt\nb+lztZ30tuq495Ha6FV7YGZmP4pUx/my0veNpXPdp6LnNR71zMzs6PmOPmuqi+jKTTMze+vsp2Zm\ndm+qMr5xS+XzeGXVzMyyMzWmN+M3zczsm/+46uoXxT/9n//LZmb2a57m2nZNc/rv/FBjxjdvK73P\nfltt+/53VK53lv+ImZn5/1Bt9lJD5VrkagvH5+pbq39a5fv0WPd/8mOtQSZ/SvW2eKDnbdxbU75y\nlcsPr/7MzMwuF30zM7u6p/L53t23zczsT1ZqL/LwZ/7F/9beLP6+mZn1hr9sZmatP6X29A+OLil9\nP/3czMxO3lZ7u7v0R83MbK/39/T/31B5e0eqd1u5rfzWlO7KdzQ2Hf7tfTMze+vqXTMz+/yqyunb\nU/Wxh99/x45/Vf1r/afPzMzsO2+pbez8luq69c8oD/0vd83MrLqj/vJ5pDy+NfymmZmFXV2/uqr7\n/fq60nD3Q113K7hnZmb3Jn/SzMweBf/AzMz+2PtK27Nl/f3yD1TG9fl3zMxs/9b/YGZmf/7f+ut2\nkfgv/vv/SulhPRmb2tri/NjMzM5P1J+9QOP/UlvP81fXzcyszdpham6yY1xnbq2n6itZXW3p/Fzj\nxOhUdRUW+l3C+N3M9f840P9rqT6nPmsWpoekUHpWu+qrnU3VccqahGHY5hO11UH/RN83Vd7Vru6X\nDZTes/mpkl/oeb1Q9+1ucV/WVFVTPuaR8uHPVW8h86lnTR7MfJSzJqvpc8F6fpFTXuQ79HV/nzXI\ngnV0ZBG3G1FeGvPMzP7aX//vbJopoxWmlzhXe+sU6kNBW+k5PFf+4hOVRzzT///KX/mP7RfFf/KX\ntSaZj5X2gDpJ3XqMKbHWUNlnU6W5oCy9OuOnr7YUeCp7f8xcHPFuwHraUt17OpZyAAAgAElEQVQ3\nZE2SV1VHAc9z66mEVZFX6L510hEHrHG4bSWhjZnSnzZZQyxIH20rmqks02qL9KuNBTPeQepuUief\nNfITcz/SNVlElIfSPQ9y8qv5ZpFrvvEa+p2vy18sGAPWtSHvAR7fL3ylI2FNUqUJhaxHx/Rht/io\nRPq9l+h+OQXiyrUIc/5OnwlVPqeJ+n6NNdZf+k//DbtI/Et/7l8wM7Phsfralduar9LKgnzqfm4t\nt1jwXhKorVZ4/0hYA9ZnSu/xSOW1tK75pcaYEWfuPYry4n3CzOwv/uV/1bJ52wYnSkseqyy2b+se\n8ViFl0x1j1ZP/WTB+HN2pGd2VzVue4xj40PNWb3bmktmM95h5qwjQ1Vmo6Y8TVjH9g81t169sqn0\nqJu+aGNT1utRk3e9mdLVP9H/V3q8B1DF05HS0bis9KWJ6vzkXN+vriifBW0vD1mfxcytNd6BKZej\nQ81921cuf+V7j7aUsF8QzxY8T+l744P37OdFyZQpo4wyyiijjDLKKKOMMsooo4wyyngN8VqZMpev\naWfq+X2hf9/5w/+8mZnlU+2cFSC4RV1onBdpd2/IDpRN2ZGrsfsMM6YxY4eOn8WwAqrsQWUgxUGi\nXcZxAQLALqTXZGc+BgFvsmvr63mJ27Ibq/iqkXbkZhPtAM567LBBeqjMYZ1w35Tt6TTjOW73lv8P\npuw4wtpIatqFnoEABCN9ztiJTGGrFCA21QBkY670DaIlaw2FGqQwX2LYP0FVqMZ8LkSuUuj/bHRb\nUVFaqjBhUtDzOju0fRgkHRCBdK6/z3w9r5kJJfIc4ySELXTByNhot6bb4RXKsgAVarA7mVJWvl/n\n+SrjCJRlGrErOwG9Z0e+UoFllLI/ybZqPoS6cUm7o4tcbaEGQjCBhtFMYLpU9bsZCMMiUvlWaJv+\nkp4zg/GTgVRkmdpO2FI557Aa6i2YP9sgJsmQdMC2WOj6vMFOug8LoabyGC5035qx485O+rwtJDPx\nVE5Wo37rMHcS2Bu+2vh8BrOH8lsYzw1gusDW8GCTzEGrrK18jBPKoUW6a+oUC4ccsTueg8AUDEmV\nlPRdII5SoRS7j4WELq1pZ31lTcjdzlx1Z6dCeb19lcHiqlDjalcI5uMjodvRRHkK60LYljpK49ER\n/Z66qYMYzE9gtoCwVc6Vh5OBEId2R33A6ox3p/p+NlSeq77KLmI8SmOlb2ldz5+BQB4k6jv5sXb2\n44mev9JocXshEXFAmxg7Fhsspi0YdlBbHKsqPRfTw6soX80ARJM+Pn6uclscK//ttW0zM+vWVUcH\nVX0fU74u/b2B/p6tKH9La0L/+6B9aci4HKvc8on+Pxs5aIO2NVV6a7nuGzGu5vz9ovFJ/FtmZnb8\n3yg9x2/+L2ZmNvgZKN+OyvP8RAjIt66KTfLJM5XDT3e/p3zc+paZmYU/+6/NzOw/G3/XzMz8sZD8\n4Uj5+xAo9o1N9cX/8sdid3QOVM63YKfNzlRO9U+umf81XTv4sfrjl7UfmZnZ5j21ldbi62Zm9r8e\n6/9Hnf/JzMwaUzEZ7rlx+rLYA+d/+28pDZO3zMzsCRDjGwONE+Nllf2z4IdmZtb7idKyX/sdpe0T\n/W7zTIyL/cFPVFbxN8zMLFoTev+k/6F+31Te3gPhW/xDlelRS33yb99SW7s8ExPnYCFmxuO/qba4\nfEVl1V7Vfe4dqO/0pg/NzGy7rjb2t35bjSDvUYY/Vpv01lSnvwVad3f1JYPkIvGn76mtTX9JY8IP\nfl3Mm8mvqW1+/6GYS8FNlc+3fqzy+vTXVH71P86cfU99Nd5UudjHKsfFA/VpsmnNLY0J2d/YMjOz\nn/yxH5iZ2cldsTiyXPX4zc80ZqR/VGNW8xu639ePVX8fN39EDv6s/RPF3Brtd5Xe76gc1+8/Unnc\n/tLMzD7PvqZ0fKryfURf/G7rV3VdRfmL/rj6WD39P83M7Jd+430zMzsbK93tX9Lzk6ba2Z/4WIyk\np7e0jph897r9U9H/aGZmv/6uvvu4uKp7/AmN2ytT9cuzTTHRvvVEef3OGxrPvv+pxrHqBzCK/67q\n9N3Ob6iMNnTfJ/aHzczsazP1oUffUBsogh0zM1v6XGWx874YD8MjzQu/fPuavUrsP9D9dp+pLQcw\nK33mxniidLZ7KtshrOEiE0ts4qvNesz9HkzE0FPfTWBKBoXa1si0Nmsuqw9d3oDdmqgcZnPN4WcD\nmJYg2tUIRuZMzwtA9b11tZ3JVOU6AikeJ/qszVWn4bo+V6p6zvN7YlvtPX2i/MCAWW6p/E+M+fHR\nY5XDQPcPYMValTmecXvpssol6PAJ+zrIlJ/hue4/mTNvM4/Vl9T2mrC5B7AebKE+F7j3BMd2Zr38\nZ/+5P2O/83f+5xfM0AXl3fL13NjT7+oVlU8fFm+FsazDmHKRyKbMKUdKw9Ct8Vk3scyzKayBgrV9\n6sFwXsCMGWk8Cii7msG6ciSrSHWbUjZZU9dXJmo7Oaj9COZ4mOl+PmyAOfeJXzBP6M8wrRcTpava\n1w8SGNEp71It8rMYKh8h72ATmDcB7yC2YP14rvTnrM9z1uchjJYF70AVn/Kb6f8zjknUpqS7zppg\nBqMFtlnGe8uEfHqk028p/ZOxmw9gYfHf6kT5Tquwo1n+G8zQtDrl/zzP8Rlg0viwRZLaS+bJRcJP\nmYcT3b/Ge8VyhfSxBs1Zs8V7sAsrjAGerlvZvq7fk57nH4oluFTXfOEKpoBRlcOgqniOT2621t6w\nK+9ds5MDzRU//VhsyvVVjddFV/d+sCcGy7U3dO857zxnT7X+eet9jeML2P4/fvp3zcysAUNvaW2D\ntCjt+4/Vv9fe1xx+qa/rfvuhxssq7PqC9/7CUz+s8K7TaYmpUuVd5+P9j5W+a1fMzGwSqqwGP9W8\ncmmD/MDyOn5+38zMojps3NyxkGDk0Na2bixRlMrvkwOtSTw6c7ikNhpwKmF9SWsFY93+8FONm2HL\nNa7fP0qmTBlllFFGGWWUUUYZZZRRRhlllFHGa4jXypT5xltCh0wbSJacaye+2tGu5agJYpuyC8xu\ncWWEZoE7TwnD5f9i7z2+LLuuM899zfMmvM/IjEiPTCCBJIxAglYlUZRYqmpJtbonPehZ1x/Ug571\nWrV60APVarVEiRRZNCIoEoZAwmQikQaZkSa8e97dd+/twfc7ieJAZGCEGtw9iRUR7917zD7nnrv3\nt7+vm9fnKmRKPKKhaQW+EOrPO3DPVCiijcgYT07q+gSvzS+SMejDQUMmxCPj4D/j4VBUusrfI2re\nSkVQGCBoRtQ9GtHZxGUkKnDTjGhHXb8DPjGf+sVyj9rWQBmNlGhwnpLcPBmDcTDg/1Pcrmljptoj\nBFwiO99NQYCUXZZe0cZCAWgLdcGu7jgB/tMjylihXteHByiBwyVH3W+/y+fg7fD7X8zlkkjf91K4\nSqjTjnPUyBY09h6ogG6VSHYIioHBDkDwJEqA2gjulBGR6ir8PAmReVdXPCora2ORrtOin64O8pga\n0hL1jSOyXqnLIIAASfCVsauzBq3l5WmnK+YFQeJDspKCEOrDGRODEig5XwsV6c7D+WI1smxjffCY\nec5T1xgWQN7kQOYANnDf78L1kKcGNT8PwioGucP8JnAQNeEHSfC9IpkZDyRWRCS+zzgXx6xJ6jPH\nzFPq6uPpd9g4OQqiQi3+VF5Z7ZU5RfC9SWpOD6n1JMNWz5FtXq5wb7JRh7T5UL50+pKuF1YVmT+C\niKhAhjIHKmtIhjAsq6/TcM40I2Vka9RBl+GnGDfgBmhobBdLyiBEZcb4kOuQKU3JtJbI3A3IxAYN\ntWd+Sv0pTmluPz1Q5qEHImiSuu45avC3hmqv2z9z1NLnAmWnpuHv2PKUyS7V4ZVgbueX9Pu4Tobg\nMag4skj5VNeprOg6aZ1sUh14QF/7V0h2MKZOe7Qrnx1uyzdnyno+VBdAGsW6bxLpc/7MF0NBLGmY\n7Q4Ip/p74l2psrf1Sw59pva6GuR0oMzOZVBpuzvK4Ny7Ln+6/rYQVj34UM7UNR+tsq7/6DPNy1lf\naJXiKX1//4Y41fqh7tPLmc19rA0qd/0tvqOxPEioW64+MTOz5iMyaAON8WpHYxasC1lxeOurus66\nPr/hKbt1bqh7PZ4Sh0zJ16AcDPWz+qmyTNd4tO5flS82U/nsdRAV42V9oAl3VMMlf/JrZmbmd4Ra\n666qXbMbIFlM7c7DbdDakg9NvaG11r5P5u6h0ErlI/lyYUFr9QaZ1bnz4mY52hTiIw86zFpqz0pH\nc3Bz+pZ9Edvkeutfkw+8UtUcbs8IFTE9+InuVwLJsq1s2ehNjc/6QEiSZkW/P4A/ZPKaxnexqTUV\np8omRpwxOmfEAfN99u2fnt5Q/8icDwOhJAqf6Hs7L4rXaOJ9rakh+779r2Y/LMZ2sS1ETC//NTMz\nuzEjXpbvDuWzwyXtTfVA43N6SfPy48k/MTOzb3wopM39VO0dv6nxDJ6HY+Gm1sp2UyiXb39T/bh7\nXu0f/erb+t6ffGh/H/zPZma2FP2tmZm1P5bvfXNSvn77nJ6Zow358q1U6+34HWUwL70g34h+Kl86\nXNBYln+tsZhc1dzYuv7+9IHWzjdvi3/o1qQQes+xzu7ltV4XN7Xub66u2RexQQpfB0iOXEn7WH1F\n97mwIOTN/IL61xhrH05ban9j2/GEgIwe6tzb4u+hD08Ez8ZqrOfAqbPygeUV9WsI+iCI9LlTjisl\n1Dj2izxDI3fm0zjHoBj2PxWiZfOIfbCuvWYJjoTCjK7T6GkNdnvHXEdzfeqyeJBOndc+nURauw8f\nK2Me9dSvMe3CQ60A6nYwhP9jC4R5rO85LguAPFbg+RcW9Qe/Co8g8zDaBUlT5MwJr0aOTHd1ho3f\nzObXrlizI59OeE/Iw5tSpF0JHHBX1uF5YpyTQmwntdEIZAkICh+0UJRqFPKgPscJhHHMTQkI9pi+\n5N334JDpcw4OIneuAuXPuTTwONOUOEf1QNfCHRPzbhWAkOlyv5yxBj2erSkIGZA3Y1C8BZ9zZB9E\nvOOPc4hzhxqr0o5U14vg36zBkxRzhhlwPuTfVgDJ6cNB0wNBYiXHoQNiFPRDWgTZwrtVCidmgfcC\n3/EL8Q7l0GwhfCEB70Ul3neGcLWUmrwfGefkyCF66D+cLEHMc7Do3n+cl5/MQoco4jWjBJcQx+1n\nPHxFkC5d3h8G3K88grMyduMGZ+Ye7TjHuzPVE8egvRdX1M8UPzQzG4zatn28ZT24F7uchwddfTYC\nbe+7OaNCJNfSmO7vaB0mEe9gcMYcHqtzq3Cehjmt5xEwreMjnU2uBUJZ9qkqaOK7BjrKK/LOhDP3\n8dF6leoP+DE3t9WOcwHtc9xdvIsVJ6l2GOjn8aaut3pGn3NFBBHVExSHWDnUs9NYi6Ndtet4EbRS\nhXMxa6M/q/Z7nLOP2xr7qiNP/DcsQ8pklllmmWWWWWaZZZZZZplllllmmX0J9qUiZSanFYlH5MgG\nCbWhIDwCuA2KoALSHqpHRMprLVjqHRKmq4hVe4qMLRE9F731UDdyhZSOsyZEAcepIKWgCcpk/7tV\nRdwmOkKVdPKoPfXJ8pfUjl4b1RPUS1pEl+tE7EcVta/UUXS8TSZjTMFpCPN36xiG9NDxb6CqUlPG\nPqQAtFLS97sxfCAD1Kam9H/I5833piyY0L1d5DhC+amcUHuKcorvFKccTIcIer7iiljhAHFj16CO\nmay5DTQ2pZHmsGWkOxyPRPnkXCEaAyK/IFF8F1GHRTwBvTAA7VDqwB1DwnUE98wzVnuQLAlIkAoc\nNV0UeSogcAzFlBxjO4bDJSSL3kfhimSWRfhqnEdBgGipx/UKsMKPqTeMiWwXxrqOi44GKAwMQDX0\n4YjIFZ3SDn+nXtN3WSjqx/2h5q9HXXXZyUzVaDdRbCNzUCAT4cGJkyuDhCFDO2IN5VDc6eH7JRBV\nOeorPbaSkRtnh2KjPwk1zQP4mTy4fQrUbwJEsjbR78n8yTMOhRr1zYuu/lYXO8LHXd1wkfTDeBHm\nfNb5bkMZvZS2zi0pkzs3pcznFtmuMtmfMln+uKexq7Gf1Fzd85wi6hMdZXgrcK/0ybiVWGMFOALO\nrksdpEdWpltQRtJb1v07ebhhUC4IyVhMjlB7Y27b1Bl7e7pPdU/tWljXvlEwRfLTCI4uUFflOj4F\nP1JrC56mkT4QU4e8vKCM6JjMw+FjZduP95SBnp9QfxdPqWZ3wBw6dFU30hopgNQZwwkw5PvjXXhF\nxmrv+VMan9y8Ms7HcCtE2+pvgzV6UgvLysAfTorbJTgWC/6dCY3HuK//r82L16PW0XwfXVS/Zm98\n28zMJuua96/9WlxovdfEKdPb3jAzsydTQk/kb8hPZsgWeheVeXoEb0mhLojoiL2z8MBs/Bzrrqe5\nyt/SzxZ8ZNPwGbWXhITofqxnyfuv6NoTT/T5UzMam2RLCIfyFflKcKDP1UL5/MM39fnyKX1+y1MW\nvn1dD49WU2sK0JS9d/mimZlNBcpGdXaEtFg+pfatPdbnP2sr2/6kLB/5BiiCJs+ypx/IN76BEsFh\nUwifSltjXe4qe2Y5tWenLuTM4tvy1fugB15/TVn+4Ybus4OP5ssa80JTHDwntfdXtDaXjuSTlYLW\n5FlQFbe2NF4N0FqvvyrVpSMQRKfzGo/Re/CE5NX+2zP6OVMRsuSTD4RSyC18x8zMLt+UD/zqBe0F\nKzekwnHm9Q0zM/uXRBPw3YFUjTZuikNo+YUfmJnZL3uVZ334qxdz9vdk/5beFw/Sa5PiALprmvcX\nSvKfn93RfHztsb7/nfNCONX35YevvCj0wo9OS0Uqpv1vFTSfl6ryp4OPdf2JPXHPtNlrXn1w3R51\nhb6qX/22mZl539d3nnriJzoGKbGwp3X/4rfkA482xd3U3NH/789pX/7eouZ+Y0popI22EDNf29Lv\nY1Ob31rQur6yx9kkFLpp/QHqGafFnXB9+MX2keVZnW1mvqqfUyvaNzxU/3yQ0i14/MpkaMMJjdnk\nhEMyay3XekJyJGv6XB1iiVFJ+2PnUEigeCCfvP1boaSaW/IJH3Tr7Cmt9ZmzakeFfXtA9z2eY46K\nK+U5dPa8uA9mlkCut/WF25+Kp6izw+IvatwvPKeM9ql1+WCBZ38XRbbTpzQep0GsjjmfD1rav3sd\nnm/NHuPEub2t9i5O6fkxfR3uMpDjPtw2YV7t2N/TnuBNaG87vcD9aKfBZ1ef0zyZmV2+dsGePpCv\ndw+1x5RW1O8iyNqJAGQNXBI7d8WtcXg4sJNagXNer4CiYQQiLnpG1mhmZsEQbkfQokOAMykIxKDk\nOPY0J0POUVzFUgjWKnDEONRpESRzh/N+ETUmH+4ZL9D9iw7hwvnOA+Hjjom5sVMf0s9u6NRH+QDI\nF6cC9KwKgP4X+xzE3XMLfh7PIVwCkDUguUsOOeTUPUErpE69ifNlwLua55Ry4brhh6WOtCfQ93Kg\nNiLAusZ9fDgkOYZbyP1GnLVixjVwgBKUb4e8F7nxyfN+0it8jjw5iY3dWuRcP0Tx04vZzzugiBn/\nfE1ntNLYKYxxXqDjxZ7GtwIqu5SDKwfOnhhkTILy5ahSf9aWOB1a93BouTK8Z6e0LnpO9RIio1LM\nvvRUz5KpU0IGTp1GodHxZTL1YV7n4fEQnqRV9ans6TrjQ96f8T0f1dJy0XHKgsbnnTNiXytW5Tvd\nkvaJCsSlJaoeAsZiCKLOD+CEQrG3wprKu8ll2wjcOyX8nXl4QFsd9pNpjdn8lK4X71AZU6MihjWQ\nhyvRR8F2Hp68Z+qi/4ZlSJnMMssss8wyyyyzzDLLLLPMMssssy/BvlSkzNQE7O4EsKrT8HY4YusU\njXpQFn5Ilq+jSFcXtuWcU00auyw+kS5Y7v2cInV+lzo8svNxjehhE94UUBlGneSQLJk/BHJChDCB\nm6ZFdHISXfXaFFHbDmgD+DN6RG+rbaLAcNrUiJb3a/q9jEhMiqJE3FS7w4oyCw0+Pw0T9zGZbsdu\nH9XhnEF5Jwcyp+qH1utQ5wcpSbEK8gROlCH1fgER7D6R87hM9gcUTwUllGGBul8K8IYEG4t1jc14\nqPuEIEQsUXSx4tI2JzXqq0vMfYu63z6KVp5DQaAE4HWJgINm8EB8FIhODqg3DvNkkVrU0JrLIMA7\nREQ8AFkTEcEOQofC0k9vSC0qyJCUKKyP+pJDZ8QxyCJqewMyAz6cAwNcYwhCJh4wfhQ0epH+ntBP\nh9jxh2RQEpR/UrUnRwh+UAfVQZS5xproOdZ17jfsO36PLv0AVeLqQ0EC5eEeGjt2fleTG5FpYb4M\n1n7HmVOhTjvlc304ZWJ+z8ETVQb5Ew5cSuMP24C2dibI8oy1XrqfKRPmg55yiI0e6mijorL9h6gL\n1Q7V5pmramsC11MXzpjxSN/bPlRGNt7TvlBsamyn+3yPfSQk23PEXM6gbjRCKaxCfXSvpvY1qDnt\nz+rvNdBg1icrRP1w4tBrvv7vVNzCTfWbpL2Vc/r8dElIkzZIoCKKVyncUx51yuMGyj/HcOTAhZWy\nz3XZT4pV+XoXBGK5revVZpQp8WHL3zzcUENGDvlHVgr+oOSYDa/DOIIgXCr+rmLDQajPbXaVMY4O\nlTHujr6Y0sFnHyrz0yIz3HwXDp1ASjP982Lnf3SoTL3N6PqnHsBlkFfG1CsLffH2G8rQr3+g+Z2d\nhrfrA5Cdk2L/d4nXyTn5SeUIlv+WEDvHy2SKZ1632Q3xXTwAxfXSd+TDByBccpNCoMweaawHF4QQ\nefkjZZcfzuta/S1lu+ZmhQaItoUyyH2muQlb6utsXkiTaBLFlhmhfPZvsI/9kdBK9U1lv8/d2jAz\ns49Lus/sBY3h9g2NwZbp8y+n6sfxQL97JSE2/FQP+z8qKcvefV+opIe+0EYr6+rPwYJ+3w6ECph9\nVxwnq2WpSnRayoofgCDZQEFnak/3O3MbFY8/Ofk+Ymb2x6tCenTuCKly97SQQcld+eLs6xrP8n3d\n7+92hYz5Hujdu3fEQxGVNT9Pnqj959Y1fn93Q85wdVrjNn7vl2ZmNvoL9afqy0eff/yPZma2Vfx3\nuv/1NTMz+9kn4kspXJcv/vZd+eDfjO4/68Mnyb4FzGfKXvcQVNnp7vtmZtb4VGiH7tf0vfQtjdtU\nW/OzV2PvvKnvX3tV/dk9Uj9fflPtnPum1uKvq+pP95/0HBosCgVzrTi2y6/qO3t74s15eVP70Tuk\nUsMDPUsuXRXy4dYd+cbhFGidnX82M7POGbgGHwtB49W1JvrXhN75hxtq0xt/Lv6cb/10w8zMDq5q\n/f70Q63zmfPyjVdntP/9uNGwL2JO5TLNa2w6cFQVD91ZSufGp4/kK50+GzI8cr7bD+HHS+CTm1rT\nHJTOaX/KkwWvw/nVr+k8uFTQ/jTiYNmN9PxqHGotHByCPmjo7/kVzWl5WntHCZRB+1DtzIFg3O/p\nZ3tf89A7Un8mF+W7k6vy0dOLa2o3z497t+WL2xu6fwDSpwCX2fQMqnuoQNU55y9cAe0FKqTP2aYy\nA5cbaIs2yj4eqJBoAA8f4z47K9/MTTAvjvutxnNoG84hM3v/zfdtmOh5M7+m8Zhb1t7ppxqPg03t\njWNUVncegRTyT46UCeAugYbMYtpeg28u5pyTgtgYunMXUqwB3CIhfJfGeXMMkvgZQqYAHxrnxArI\n5R5ohQQEdNDjnF4GEjJEKYb7Fhx/Buf51Cm/co4dgdDJoWxrjicvBnmf4Pvk+XNjEPRwDuZRFIvg\nySuA3El5V3N8QAncOCHnSsetU+hx/oWHyYP40yHhi4n+P6L/vKpZDq6xDgiiCu81EeNinL8dUqjk\nyHaogvBBeeVAeI/dO+XYIepBKMEb5ee/2PtNxNnOL6Ewl6KMCWo65ZyegsipoMYUgfxpswbyDfhR\nWUNTqCrmKvjZAEVe/K7bhhdq9fO2VPNLtvlw02bm9QwO4eVJqaI4jZpRn3fE376lZ9sleCAr8/p8\nCG9SdKR7zZ3iXRNF3nwI52NVfRs6okzeRZ1YWwA6qu8UucCHJYzxEGhLCcSLe+dI4WZ11RAFOGBs\nQn/vU/GS4iSlCY3pGI6pYkqlDPtyz61ZxqkIj6ct6P/N7X0+p/3EVfj0us3fGY98UftaAkftv2UZ\nUiazzDLLLLPMMssss8wyyyyzzDLL7EuwLxUp02grIk3plkWRMoiFPJHuNggZTxmCwYiMBjX6lTr8\nGdTLFUALdHIo/rRQqCGD3kYRp0xUs0f2vu6Ug4r6e0hRWAGOloQ60GadAsBEkbUKqkuxqV0R7M9D\norsTjra5oXYeE6mrNLku3DcJNPMR6il9In4TAVFO6gunyEz0qKcveo5PhMw6mXrj7x2i7lESWwjv\nRK6nNrZI3vhOPalKdJGoY5msQ5MsTwWlmW5JEVwPBEgeHgsf1FIBNvK4Q8QfRRoj6xOVTp5tMDNL\njRrIEKUqoqoeEd+hwaMBoXVaBgFDLa0/wLmo8855rnZTf68UXKQbdSOHuCEinoPsxLGhl1B5Sqhr\n7rl2pfr8kEyCV9H/ByP1t0Axa576xi5ZpBTUVR5VKi9ySmK0m1rdlMxJDhWpLtHcCpH0ApwyDL+l\nReaTjILjIYGc3cogo5wYVh7unwA+FiNL1YfpPAa9EBMVD1ytLxmVhExOArKokICUcZkJrh+DpKnh\nDzGokgiEjwdCYJycfGsqgPTw+7rWcUOZvu6OItU1UEI5MnAzk8qsHe+B/DjWvc4sKYNbmYcPicxY\np6NMm8daKZAVTkHwzVf1vUl4M3aowT1knyow1l3qeGMWX7GuyHob9YwnkLwUyCAf7wvF4JGlGlM/\n7fdAKbG/BKiwNUCl9Xu6/8Ki1H7iJaf6RrZnm+wMWZ5wRver8P2kpz1gbVGZzOK0fPm4DgoKrhhv\npJriKgikKTKkQzhn8nxumLgsFWojDVj9D5Q5mWxpvOsT6sfEhGqEfWRSbjgAACAASURBVDKdLiuU\nZ18MnqHHvhhS5vC1d83M7Mz/qXYvTei5cnesfl64o8x24yIcEB/CKTbeMDOz8RzPF4knWVoQquQp\nSmP1h1rjxTkQNmeEoniHjMwyyjdPyBhdJIOzBNeFf+hbMdJYnV8RkuFjU9bq8gOyOygSTCyBFNxX\nlnf0osZ+4CsL1ezq3iXGePdVcYVUmKPJGB4hT8iNCrXnhVRj/9wb8qHBntbMcU7fa8woa/4VnsnN\nTXGjtF8SkuUM/BNbSF1NPdHcvgWKql4Uv0h7kexZS2sp39Aam4EfKmzq9xZZuj7Pp/iC1ljwVGsj\n/z48RC9rnEpzuu6jotZIABrppOY9FdrswXXxkrR+I+TM8NT3zczspUNx4PzdseZ+sn7FzMyO5+Qr\na/s/0nViqRjtXBSXzIt3f2pmZouh0BCzA/Xjkz9Xe3/8tj73V9+Q7/2QtVCZUTbyJc4+W8M/NjOz\no2Pd7z9d1/fvPb38rA/1fMf+5B2huX516U0zMzv3WMiln4ffMjOzie/rupV31f73/kbXeeFN7Z0P\nQNA8vqN+f+2W9p4nL0id6tKEzm6/3BcyaOl9cQI9f/nfm5lZ4bLG5+DdO/azH8knr1GL/3RdY9h6\nRz43+ZK4lT55rDmfm9e62OxrTm+c1eeGJaG9bsC51b9wx8zMyoffMDOzOCdESCv8f83MbOaqECdT\n++L9qYECS8pwDnym+5Z2T9kXsSFcYp98rDH14LmYqmj9l0FuWAFulwIoVp69TRDb8QFZ6zGIxD2h\nk9obQmIOUeKqLStDvbCs50V1XtdbPaO1uDfgrMNzoNfW+LRARySoDw4bKLPBcTPo8hyBy3FhQddb\nOqNxW7vGOXNWvlrnDLh5qOvsfaL52t1WuxMUOUv0OyZ73wGxU5qRH8wVtCdU4LMYgrKIjjWu998X\nV1cLFcEgz5nAKQYdwYlGxnyior1oa6w9ar+PShQcFQN36Pnf/7N1m4e2dEFrZaGudgyaGuftzQ0z\nM3v6Kc81UNkjxjeY4ix7AnMIB4ObZITKjveMC5BzD+dMz0G+OasEAe8aoEH7nDnKzNUgcIgKhyyR\nT/Q9ns2cK0PQ+kFFfcwhczSC6yYHwj1CQWxAu0KeuQkKOyHvTEmZMwN8H33QwxFKN/mRnjchqFzH\njeMXHMKFKgY4Cd04OAQ5gHAbJ7w78XOIOlI4lA+OQJYkXfW7ByKkDH+HEyPtgwAPeY7EOsKZ+XAh\nwmNUckh6x5XIeTtAncrnvcLvcYbjnSvPOXzIwdt3cqYntCKqqqO2Q6ozbrzLRZxxoP60Kn7hof46\nBq08AgmTZy2V4WHqUfUxvai11r+htdIFvb0Un37WlqBk1ujvWrLPvryk9ZoHjZNC6Jniswd7UnZc\nvyrU6Nk1rasW+9fth9on5qfhNOT9u0DVwIj9IuXcGYNAdLSeXfjnyvhYig8VXDUCKLIh5/4UJLcP\nwqWb53zYgUMSXp4xayIaE08oyCkC9rd+iYoa9mmfd8Ic57aQs89idc3MzI5jjUMB3+nxjpMjbjAe\nMzd5zvfh70dTZUiZzDLLLLPMMssss8wyyyyzzDLLLLMvwb5UpEyyr8jWFqiNSbTgJ6rUsjlVpp5T\n6yDq6QJgkVOwUeTKo46xBpKkWebCyBAF1DO2XDRzoL8PnWIOdYJlanQd+3ri/W7syv0ag9BxXDYh\nUeiYSN4oAkFTI6pKJC5Ahz0gAliA16NxDF9JFdF6dNTbIHBSMt1lwsB9lHLSUFHVmIhj1FBkcxwq\nQjkOYjNqXCvwQUyAbBgeE/l27N+R7p3vaUwreTTdXX0eClM9UEMBWfARHDIG63tQhhuFsfWIvLuI\n/kkt5yLeLnFALWoFrhRXCzqAb6cMjXoAR4xTJrCR2lMocEFognooZ/kwehtKOa70lpJZ80HYPEMn\noMyV81z9oj6Xp94wjMgsUJc5gksnhnvGbzn+IhAy+PTQFVQ6ZApFyUUyBl34i8rMfadIHXbkaNzJ\nPIAECql7T6lLj8lUDBlYLmOJr3nro0RRoUbXK1MT7KMARBQ4oUa3ABpk6NSviEKnIUgmBjCkPvQZ\ngoeMT+y+1wMVAdt9+Zn61x+2LnXDcZW52dY1q2QOz6womztzRlnqNlmiAG6T2Zy4CIJTypgmrJE9\n+IIKRN4HjGWN34NFZTCLZLl6qBg1t5Vpi1ENKRH7jkErlZ3ywTz1wdRt+11QXn3Y7veUja709bn6\nKVAFcEbFTgGhAKcVG+PKaWrlV5QdcRwu7Q5r2ykpsN+27ihjXB2RjQNBUjzDvgN/kcvaHVDbS5mz\ndfA5p2TgoZLXG+j6ZVIfCfXqIei36b7GbQlusckJyMWWQfPNsJ+RMW0zLoUG/CfhyX3EzOy1G2r3\n//0NIWO2fGVUz+6o/+P5r6sfW2RsLyoT/E04Iu6l+vwItv5KS/Nytq1M8sZrQomcJqu2f0eogplV\nQWu8AN6OjtAlD89/1czMtn+jz1/4+q/t8LG4VPZZh8Wf6573XwHJdtv5jvpy+lhju7VJtnmGGvuh\nUAb3VjXml98RciVAAaC8I9+5cJGxrSo73f2N1kJyXVmuJsow3pS4Xzqp0Aq9vLhJuvPq4/WhrnM/\nls82AURePdBYFUCtJSZEzcYF9evVq/LVFj4TPpUP/Ov+TV03L1TF+2Uhfz5sCAFykQxn45Kesb1N\nrfELS/r73i5KYBeV/T+p1VaoIy9pDS9M/pX6+an68cupn5iZWfUaiMp76sfm+9fU7+nvmZnZNEqP\nz83pez/6tdBQ82c1jzdSIVK+CT/S5LeF0vphf83MzE6jJBnnpMbU/FDj8vSCkDvTH7NXfFcIqE8f\npM/60Lzz2MaLWsNnjoV0aW9qPP/yb3T/XU/zuN770MzM+n+v9n9WFULL+4F8dqX0QzMze5gXT8u1\nq2pv+wp76ru67+xpze9oWf9/siekUe3Ugv0FnFM3TFnZ5z6SL319Uev3Zlf79JXrusdP4Qz82or2\no/576su9odpcH6jPL66K7+f4kcbmYh0kzL8KqfLjltZCaU78Nl+/Ll9+dChUUvUMyMlPd+2LWONQ\nh4eEdjt1vRHP2GETNbmR4w7TfjZ1Wb6+XNZ+Nxro986hfMjxre2D2PaPQXAfaS0/PkKNs6+1NuS8\nOn1WPn5hTXPiVVH+OdJaPKa9Bw3NUX9f358+r/uvoro0d0b7mIHWPfhMPnqwK9TUDkjNvYZQaoaq\nyuVrWtNOUWhmSuOfwDuSotoyBbq4M9T43Pq1fK+xrfFvklmuFzX/s6dBMIEyGRzovoPI8Wtp3j1Q\n0ElN/rI2p3HwQSXHfN/M7MVXX7EWHJS3bgtF1+f5MuIMmENNcRDC/VXWmin6J1cOTTmXppx3yyBk\nuk5JNkcWHuRxMf5d1cphD1QrSOKCcb6OQC/B1TeAZ67I+b7DO0PendMqPBdyDoED1whIc15dzOBa\nLHJui+HpSwt8n/N7jfOahwJswjuV45pJ4AEdVFCIBR42dsh5zig+VQqJ475xaqGgYTuonRZBlDs1\nU46R5oOQD3y4VwI4uqh6iKh2SCu8A7IWA/c5VK9SzyGXUPgyR/oIOoqzyoBqheKz8y28Iay1geNE\nBMFzUkvgRcmBpq5WnumwmpnZZ/taw3WQUklRPl8HsbT5UGvJhyMn4WzoodhZ4ExXcGq5nLv32Rty\nhavP2rK6cs623r9nm3s691RntS948EiGMagsVEhLoOGnUCeeRTXtk8+0nx01dB5aX9M6duinGIRL\nADKmWqZixYkjgwLL8w43cu/nDE0JJHYfXqQZT2MwaGgMJs9xZmnhW7SvhMpTyvt2keoO99MHyROD\naG+z9mpwwhw05TNVOCCLOs7Z4Degytjnisjb+Xk6hE+0IIFN/N+PuMuQMplllllmmWWWWWaZZZZZ\nZplllllmX4J9qUiZ4aQibZPwYIxbqs3qlxSCKhDF9Yg41YimtuHPqDi6EoAtXh2eC2rfgsQhaBS5\ny5HJzZXhJBiRUSDiF5CpaFN4OAVLey8lkteMaB+RO2rc8tTmeo453PF7OE4aV15KpK1b1ucqKAjF\neUVj8y6iH+j+AzL6tSrqS22Ub9BbT6m1nYDbYgD6ISTSWC4RQexMmE+97QjUUTxJ1J+o35g66YBI\nvj/QPY26voC29fLU/cXuehqjUl5Z+QFRx7EbEyLlKVHStotEn9DGoJ7yQElSxrRXRYGG+3l8znO0\nF0SeXb1iD7UgjzhkhWy/D8QlwWdG8PaMQdg49voCSjhjSFhi1J0c4qNI9LPP3PeBeVXgiHDcK7nE\n1QKTSQncnGrufDIRBbJVHjWrkatJBrGC61qOVEfqGM/JRHjUWY7LrsbVLXU4Yag9dqQyqQ8nECiK\nqOwWpX6M+F7ec3wkXJ9MSVIkIxG4glD9zMNh4biEnpXcBprHoKt+OyW1MhmIKP95dusPWY665Nax\nIvNVIuSFWbIKC4r492oau71Ivg2pu5WWyeAlykjGcFGNyU6NqfdNUxQGnAJXRZ879tT3Aopax1vK\n3pRZQtVl7R8zU8pE9kqK5Bfn9fenQ2UKQ+Y4PdK6DalFXS5rPyxOEvFf0b7WbsH7Me1UmBgQMswt\nUFZNx+XSg19oBBJvG/WKsq43uUQ2aEJzs9PSxnqwz9pDDSkPoMVQJPOY1AiekiGfMxQXAAZZBJeB\nwZGT8vmJmsYlnNMHO1NwSjwVV0FnV0iW5AhUVQpiKYZD64S2OwZl8VuhHXJTmqB7q+JQsKHQCqMz\n8peVDY3Dv6Kmd3VC8zJMhXTJ5/W9B2eVcX2prUz/7Y/V75VXNb5LiQbsPTIw1dWX9fNAmejnX9b9\nhu88Z0szyuo/zKs+u3BFWav8UIiUlbPq+3tPheSYeU4+vfVY/EHFh5qzmbNSqBmlalt1AmWbhtAB\nz71618zM3n1XdeNh4TXdp64xP/WRkBODC/KVU7EQK+Pkt2ZmdmNPfe8U5ZO/rWtsauzT8WO194MF\nITSCSP05s6oM3XPwSjz4mcbq6HXxg+zVlL1/GSWrYAwnTOlrZmY2cU9Z+/w1auH3NMZ9T/1+632h\nAcqhnkvf9YVQOal9xvMq+ZW4VjbJyn/rDXGwDDtq79sVZeO/fiwffheVqLsb6vcr54U0OvitxuXb\nf67xP7yvZ/v5GfFQ7S3z7P6lfPPsC3oOL1SkutSIhFgpLOj7C4t/ZmZmaV9KQo/+QXvUpYuf86K0\nD1PrrguFYOx9a3eUEb1x8AMzM5u8p/Zvf1P/XyqJ6yf/t0KjbC8LTfKXK9oTf3igfpc6Go/Cx+rv\n6Hn5582e0BHX733HzMxap0CLdZbtBv7/bYAYfl1zeOOm5nriz/Usbu+pr6uT2k//W0Pr5HkQHiuL\nuleuIZ/c9+RD+Ut/b2Zmlaba8G7wFTMze6ki30tBax0/1PduPtW6/sSEOnpl+Yv5yPwp9ae6pLW0\ntKD9PAX1cAz/z9GnQnYcHmut7j+Sb82vi4MhP9LamTmj/TfgHDpf4Vk4cChl/b75VD61+5l8fvGU\n9uvF05qr8pz2w60nWsOH+9rf6iAUn7sqZFGY01ktNwnUEchj70C+tHdfe8PjB/K5FE7Gxck1MzM7\ns6y1PHEaNPW0JvZ4R2t7BFdWjtS2Bypk896GxmFP++yTDX2+NqfxW1/XnlJ3qlxVngOP1J8hZ6Qy\nvFYLz6k91Zr6MzWp9oyPtPY39/W90fBz7rEnj/dsf0d+NOhpfgLQ4JOrWpPLjOdcSX7SGck/uyCO\nTmKh44FzByjQ7CGo1ZHp2k7pZQxC2nuWRIeXAsSyQ9GmoAQiVFDdMWnY4nfO/jkUCyMOimHIOQ1V\noQHkLSG8bw7x7dRHY5QhHW8HFIDWHxfpjv7vVER7gYOwcC6Hz6cbOeVchzCB55MzkwcnYwBCKHHq\nR5xPYxRxnp1i4TIcOL4leO7y8AaNfEf+CM8ol4u5nlOszEUouaFiFfJuOEYZLeyCJuZ8DhjbUpDc\n7j0j5OxTAEEfgf49qfmow8Yo8o5Bf7jzdgQ6OT/QGsnzfrG7DfoC5crTTa2BkVPV5f3EqUlV4EvM\n4Ye5Ke2Jo/BzdcJBIW9ermR9UFrVCNQP59ImYxnAGzQE9V6e1T5YX4KvhgqQGpyrA1D7x5vaB2uL\naotTjm0nuk8PNFn0TFVYP1PeXYooVfW47+K8+thEne2zT/RcmahqLCLeeUN4PZOa2uODlPOL8oEW\nyLgzvKsNqQIpt2kfazVsg+7nvWAGNbwUJdkca6CPz5SpiOm39czv9NnHkt+PhcmQMplllllmmWWW\nWWaZZZZZZplllllmX4J9qUiZUxVlNgIlPKy2QKbVRcjg26iSxe8Pf5ep24jYxdNwM0A80iZSF7ro\na6jIWYF6xajg6gZhQwYdAN2GedRRthiemHB00ld0MaLGrQIEZjxF/SLKPKMRGRyISbxQ7RqW0VUP\nFMUGW2A5anFjn+gvPC1RF8bsAvwCcNaMJ5UVrBwrY9MkvB7Ciu2jhuKR0U/D4TPU0QjkgnV1zUEI\nKgjUTZcIfzgFMz112WGRv4OA6MNIn0PlqEckemLAGJFlGBJp7xINnUi+WHa7wNjFsKePao58Rdfv\nEwkuAhPoUl/skcVP4f+A4sZiBh1hAqvgbJDEG4FoGxWpuYWLxqlNFcz5FOgBItId1D4KIHMq8GnE\nRGurwDLGY64Lv4jLJvVxaobrGarLtX8Ab0cJVSZPLmQDMie5Kj5KRiUPw3c4hNOF+Culw2YdkC55\np1JFzWmJGllz3DRufNXfDqz05QrcPdTihmPY4lFRyoP4SVECG6VuAvR7vwAiCLWl3Ii1Se1wAZTF\nSczHpx2SogOKZ7UkFEACFO/JSL7Z3QMpQ110OqV1dgzyJCU7UYndmCgTEJC16QzgZ5olUzCpMXv6\nWOsyzxqZmNEaWj2nzNsI9nWnSPVkIGfsoL4U7YJWAz00Z4rE54EE9kFrBdRjt1iTwxFM+45D4Clq\nQBPsC/wsoArXpUa4sKA1VJ8XEqdExrG9Iz6IrUfqj9t/KyvKqg9q6ne1q+/nFql/r5HdwpfzjnW+\n5OqZ5TNprPFM4UOyBTIxNTIqXWWauyBJRrsgT0Aa1alFDifV3pPa3ddQSbm3ZmZmm5d1v9WR9tEY\n7phPjtT/tS0hmNaLyuD2y9Sxf0WZ4gekD/u+UAof31cmZLEK18QHuu7bL8kfl1u/MDOzo+k3zMzs\nhYEyxneL+rkQnbV9ssFXyJKnoB8/qInzZZJ990XEdppNtWnxqlBiIT5S3tc9T/U1ZqN1tXUVJYGP\nbmpu3pjY0IU+Vd8/PC9ERZAKIVFB1aL9RNetrgpBU9/QfTu3fmlmZpfPgh6INLe/hb+oBA/F5Xkh\ngPZ99f3Bv+q2r5Kp3GsIqbM8VD9GoGU3xhrb2W1teP6ckBz3trSGVxN97zz8TfvntTam7sO7NBZ6\n6aR2/rdCqBS/9c/6+VBzefu2+v8CvnuqKp84TNVeW5cvfi+U7zQaeq6em9YZ5Z+HmrA8qlqn7ogX\nxamlzH9DnDnTW5qX93IbZmYWfCTloHZf8/DVv5TvP6i+aGZmWy9pIP/i9plnfXjuudj2i0JO7b6t\nPeiDknhc1iJx1Ny8rHZfvSGETsD4tS//WuMQqZ0/fl/Zxz8GlfZzUBzJi8p6Tvxc169NCJn182W1\np/qO0Cfrpcjq1/VZf1pI6I//Sdc4c00+eu9NzW1u6ttqS/n/MzOza5++ZWZmd8Yaw+gFoabG94Xa\nmt0ScuR1uGXenhGi7qstoa7e3ZVvfOuPdP//ltd9lobaV1bgFtjafGRfxPLwBRnP+A68D0cHcBqC\n0Jy7JM6x2iHKlZwF9kD+dbfVL68mXz21rs/XTT42JFWcy+l+p+dRLzqlNT1FprYPz8Xt9zQ+e7c1\nZyMQ16Wr+l4RiGMDdb72A41LA3Wk4321P3LcEXCJXTmv8V6BG8Khao+2tUfc/0gKXxF71UxF9xul\nut7BhtZEB97BHOja6UX1c7Kq94BcXs+Vo8faRxt3ND7Vec3T6brQcblpfX4WFaoeKOfd++rPk89u\nqz8NPUcC73MumPbeQ0tAMZ+9ojU0v851QVk4haHekfrT6Kvd/cbJ1f7anNcSuPESeMgcp2BgDpki\nn/AcWUqgfbrIea2LEu0QFEGlDp8dSJSIc7Bx9s/DM9cFOe6Q2OkQZDgImCKcL4FDSnOuDXyQFj35\nQJFnWQSiwgdx7g+cep/mKOcQNkXexfDJXJfzMkicEmpAAxA7vuc4duBc5GxU4rzozqs+PjnkXFoF\nwd5jHEsgsce84xU5Ew3xYYcwj+DgGXMWqnJOjdx8oIQWszeUOaf7IGFohnkgdsbMk88eldbcW93J\nrAvSyJH7eKhDQZVjo76uOwcq7/Rl+eqtD4UCjB7yPuHUT3mJHaP45oGGO0bxc/dYe9XMMqqx7n3A\nzPIW20F8ZB7n3n7RqVzqmmVUJB08q8TvUUNtbJU4MzCXhWvi7jt3QciYG9zbvdePJ0CY1NzLqfbn\nMXxGq2va33Io0B41tA5nQdEWStoHK6CXPupJXXPtvFCg7rycczxFBg8S/UpQKCt4js8J3r6Wrtfx\n4VjkpbCXA9XEOXbQ5X2euEHL8ZmikJUvgtxjPMddx8P5+xWIM6RMZplllllmmWWWWWaZZZZZZpll\nltmXYF8qUiaGlZigpfV8Re98uAdKDUWaGlOomBAdHZOpLqL0E4E26JFZKKNpnwfJ0k4Ib/L9PlFO\nEhAWg/YoR6A+4OMoTcb8TpQ2p8hYneyfY3HuoFEfFhXRIzFsQZsatQn+AGcNFAVWoTZuBGqhXlG2\nrdMCNYHuejmnfoZEqQeRMh4t1JgQBrICqI5+DTUWAnLlSv8Ze3iBKF80Uki2Cov7EQoJU6a/j52w\nC5H1NvV0fs6FclHpIarZgyulWVBbi6H+H8K1EsN5kkRfjFMmR2Q7LipKWgL9M6AeMcxpTEewy5dB\nXLigrit1HQ4c6ztZdtjihxXaw1z2C04lSheo0N4YJJEPp82QzEIenxqANDEQQQnfz4Ha6lBvXmEu\nncpQH+fPwdwdeQ5NARKJcY27+vvIIUyI3tZAhcRw+ISoNo3IRuFCNoJFvkRt8aig370+KIwyWSlU\nkAyETNmD4wVlo1qHiDy8Sq4+0nH+FPh+gjJZz0N9AJRKjLLCmMxQ4sbN1e4SZS4U/rsQ/h+wIb5Q\nS9060thXUe9pg3BrbCtTm27RVrgBysCoOqALujtEukFHBeUmTcQHqPddmEDljSxL3Ff2OQ9fzsyi\n1nOzqrHYearMXeMAVAPIudwS3FMw5OfhbUgZC5+K6rikyP2wAg8HqKQxHC69HaVXamTfF8goNkCt\nRQk+QPurTu3IqQUdi9Nh5zNlKgst3W/+mlAL06vK1jzuqxY/xxxFSxr/FmiqPNk2Yz/sdh2fED6r\n/1ppVmth29f3kk0hUxqg3Uoj+U59Wtdbvyw0wOGeMruD9skzl2ZmV3bUzg/hGJvY0++/fbBhZmaz\nPHde8TUu3XVlhg9H4u8YoawW3RSy5dq0UAfHRWXed87CdeFr3MdtKRSF7+k63gWhJc7dUmb+1pwy\nPZfe07i+FczYlZr4agqHyio1LopXI9jUnDwtgsp8T+vn1df0ufu/VNvOzLG+9pWd8q7CSTJQn44O\ntAZe9dTGzUTIl92vKrt+hrnv9NSnwmNxq7yDb7xc1ferZ4X+mgnk47fhYlmLVfu+CooptyHf/GCC\nZ+YT+aDjuDmCF2Q4BdfBfWXVj7ua64NLQj2cf6z2NslOHVTh2rkgXpLFXXGi3IM3pJMKIZPf13ie\n1D55SWvq8Y+lWvSn8yjHkF3/F/aC4i356tFV/ezsCEW2PSU+jmBTz7+Jc1oD37+pefImhVjZj+T7\n9YLG8WddKQflAqElJk2IoJfPC2H09JLm8/b7at+pbY3bIpnuv5/SOP0vZvbLqat2kTWytK957/2Z\nPn/0C41j+D0p5lSX/quZmW3NSWVqsyHOmWs5zffkC1IIuzsnBM2f/krf/9uS/O07bwhZFHjimEk/\nE4JoofcPZma2Vv+6/Yh97tQ/aN8b97WfTE5orq+8rLm6/zZo0px+H7+huRv/6Fu61480FrvfE2ps\nb1c7Sb7J2eOO1u+dgRTMzv+p5urWf5WPPL+ssd04/49mZtZ6qL5V/kJ9tf9iJ7LWY2WEH9yVDycD\n7esuE7t2SXNaAPnR2weRDbLFKev4KNq0Td/f+0C++6hClnug+/Thx6vNaw7X19SfIRnkXkfX7xxp\nfIvz2k8uXNX+VOE5tvWpfGx7U0iddkM+GsxqHH3aW4JDcXVV91lYEvLlKZwxWx8L1bUP4qbOc2Rl\nWpnxPmqn2/e0z9Uq8vXVafkwgHebq8PlBs/gHsidpKn+nLmicVxeVz8GoBU82t0B1bB/6xMzM3v4\nSN8vggpZX9fetXgRMiMzu/zdb1kIZ4XH8zvk7NHY0Pg82NCaTvc0L33OuLWJk6v9eSBA4qrLxmvf\nHhg8HanjCNSv40Rj6XMu6oLaSUH/e3C4dECaFx2iBVRPDGImcohvh3zmGRzwLpQEmpsxCOzYcUqC\nLBmDpPR8ztFwLjoUgePhG/POkytynhyzr4P0HoIG8EuoPXHM7lAF4DveT3wuGDmlLv3sM34FCEZS\nVJgSzkZdHv0TcD92ByB+Enj/4FIswmfSd0o+jHOF95QuEPkiZ0j3LpiDj8+hzQZdnl+oQqWUHuRQ\n5OzDR1IcfDGcQ5F9tOjQ106dtsJ7WUPjvvGJ1lJ5hrNVj/euI+1xjWP57PSk1mrOcbvxfIhAZQdw\nhVbndSYp/XdQmWIa2ER12oLTvDSBhvKrzCWKkHHi+HPUtrt3tI/PMFcOVdVtaX+8+x5qpziP82nH\n/1PBx7aPNJZBKh+dWBcCcgrU1MY97VtTM04BUtct807idR2pIvxKJZ1Bwli+mTbheqFYxCn6Ruwn\nXVBshXKNdvE8Au1fBcOScgYps5biHPxPDJvzgYQX8xr/OKCSce5MtwAAIABJREFUxh9lnDKZZZZZ\nZplllllmmWWWWWaZZZZZZv/D2ZeKlNl9GttFMyNAZquwPMclRaKCpiJYuQa8FS6AB0dC0tH/Syjg\njEF1jHPKSMREa4Ohfrap1/SJ8paa1M6h5pEjq1+YIvPcUYQthMslVyM62afeEHqUhFq3koeWfBXV\nFlAiPhG3EhmP3oTuE4HgCV2mnXByRCiviPJRj88lRGULMKfXBg7tEDMuylgUexCO1BXxi3sTVoCt\n3GpEzktOtQJ+HGon2zERY2pYC2ThizDwe0NlD8ahsjbHRBvrRBkt0pzkifiPyXqH8FgMP6eXP5EN\nQvVx7P+uwoxXwRlAhBSIuvooVg2oI87xhSIImxFM2z5zmfJ7DKSmQNZkmOq+QzLTHnMYToAAIqLe\nB4WBEI9FRINHpCxilxHJKXLdh0MhRnmmRIQ9gUwmDFHkClzkXlahXaORq/2FTb8EWgFG8RIIHgAu\nljj1J1AWxloIcpqHQVXtqsKrNCK6WySDkQwdC74jeoKzB1KeWokoNAoOPpmQBNRbyaHgUO0q9HW/\nIlwyCfPqUSvsao+7IJpOYnmo8dMFUEUpaK8Z/d7YV8ZxgLpElbYvFFBnIut0NFSmbb6mbPCFOWUT\nBiQvor6LjMOpMqGM5HFf661a0+8zZAbjJa2RxoEi/FvUys96Tu1I9xk67isQNdMXlHWfr6p+2GNM\n6iDjDmP1o0stb+6QWv5A16sswqsxhUpTWxnOhH1vgI+NUZsaPIXD6lBZpBn2t8VFsuplZRr3ue/u\nA2Vbgin59sxYGYnDQNn5MHAKBCBgQIf5IHUaLe0hu+zrfveA71FPDot/DXWqpKTrDCb1s4c6VXN0\nYF/Ejk/Lx+7nlNl5qaH+X51RZt4/EgJojD+876tu+5SvzHvTLYGaUAlH65rXsK89Ibm/pnavb+jv\nW6AdUo3jHiiR92HrXz5WP95bRMlnsmWDW/DqFOQLi2SyRiRYc2OyTy8pK937lTJj63llyT881PeS\nV5VZ69xStumVBc3xal++1VmVzzyakkrP6AO1/e6CuE6undf3xptCEQTX5QODPThgRkIxzJ/W+l3d\n0lwdHwtJszet/ar+wj591VpotzUWCxeFdAkK1I3f1lh/dFrZ+ctT8u3FptZAMKlMYH1H7RuWNWez\nnq5//7x88Ru3NFePv6F25hFpOqk1ZuBaWdGcbj2V0svRX8pXLt7XvvnwFfGdfPMnf61+kQW7syuk\nSMHXeDlEYa+nz3twTGy8pvHt/UJ7zit/pd/f/AX9/q585V/uaa1dEzjEZgX2sDTVnvP2Z1ozX33t\n8+dq4BUt3xMC6hEqhV+9K16QT7/zCzMz+6sfvGNmZu9c+K76+anWUvRHUnf6eEZ7wJXfqP0frf0H\nMzO7sC7ektkVqUztPmVeyEA3XxU67MJvtebfnmlZdEt9uP0V8dys/kZ9+8Gu7vHcodZTvyPfWB/L\nN/ofaX/+TiTfuD0nVI73SHw/S2UhXfYGUlO7fKwxX1rdMDOzMZwBj3n23N8U4m3hFX1u4Yx+73xw\nzr6IdUcgF0Ed187KyZ4/u2ZmZhPTeg48uScEx/5Aa3ZtTkiRa9eE/Eh5VobuzMAZonMk3z1sahxO\ngZptg4a9/5GeI2mk/SOGw4HEtV0+c552CJG0ucmageNl4az2pSs8H3Iz/OQsGMUoR5YcTwXPnS35\nSKGmB+KVcyCeZuSUEaeVzfeEustNwN3yonwlx1lrZ0/7b1DWeKyvkNFeJTMNJ2KBM163q/5++iHq\nrDzHw5J+tjvamOdOw+N0TntAESSmZ58r4vjdnIVI8iQgfR58JuTj1m21K47IfMOdVoBDo1D+/Dp/\nyErcI+V8OkABpsC5yw80WQO483zODMYYOeR06lQu4a1wjIwD3hXyIF6cAmXHbQNAVjx8FfC/5eAY\ndBR/IejiMmeQaKgLDEEhDeH4q4C46aNOVIE3ru+y/gVQpPQnBPHRg3PGQFKGxnmdaoYxiEEny+mB\nfC9CJhPAcdh1c4JKEcdnSzmHe+78zO8JaOEAdavYIVLGjrvRVTXAkeXeSzijtCOHlHdcNyC9nyG6\n1f4wks8lnGcH6cm5EM3MIhA8Y5D6jm9l6az2yoW5DTMz6wz1/Enh1jz3ip4XN+8Ktba7o+fBzIqe\nV9aDky7W30fwmfhVzUuFM+CTe589a8tbv/y5lePQUlBEuRLKgOw/ZdSSJ+o6czj1s05D+8JiX8/4\nq1eFcn20qc8/+EhnhYvn9Wz3GDtjTotww/jwTXqgmyYmNaZDKkwGIHHc2ig4xA3cinEVJA4KYXXO\n00PWVm9H+/A4Ra0N5a6E89iojeLtLOdWOCT9MmuGfWa8AKoXLlivpOdWkbnrozQ2XYHPiHe5tKm1\nkKS/vwogQ8pklllmmWWWWWaZZZZZZplllllmmX0J9qUiZfI5IlAwTQc9RbTGRD07KNuMJ0CsGFn1\njuLFfXehoaKv1ZIiUQNThGxE9LNG3WNA7a9jzB4SLk7gfEkSeDvGjrGbmuWi7p8jqpmigDOkAZMg\ne4ZI+4wc6gK0hTV1nxYa8nUE38eOiRzlnqRJtNZFg53SD0zrju3fJ+MRoAaSEIWuNl29I+iPtq6b\nTwoW1OGjOdJnh/UytwK9QyjeR3VoIlaWakwUMSRC7voW9J3Kju7ZAeWUL+t7A7TcUyLSXqzoZDr+\nYnHAgqsxJTKfI/IfEqHvFl1GgjF1bPR83tX2jkE7hbh8n6LUKt93aIUC9d4OrRSRPSo4NSE4XgJQ\nTK6O0F0/4r6lkMh9j3ElqhpR21ti3AKn/OWAP/hWOnDs7qDA8NUK7PTdiIxKqMUD0Mk6qWNGp36R\n2tcC2bgBmZoS2l9BgOIZrO1JpUU7QSnA/l+ImD/UuRLqKMepGwDmo0YGgYh+Hr9wmZAc/hC1QLW4\nrByqHhFIrdzYYYT+sEWJ5rzmq40RfDlPnwj5cLSjLEOtrXuvzSqbUHVqQ7hMDo4qD+WqdAE+Bmpc\ni6Eyil3qlY8HyhCMh/p/fRZIDT52cKQMwQHIkkUAbDMXxLtRnFeGYLun6wSw0KfsM1EV9BqF557p\nPh0ywIDDLEF9qgRCJiHrshnrus0OyED2mVqeenfY5Ue7cMQc6/8L88pozKG2cQxy8AA1pn5XczzD\nvlpYgvMKxGLUITuHcltuRGa069BqcIKljgdK/ZlYRS0L32slqGQxQQl8T0dd/u5864TmP5BvnwLJ\nM1oS2qJ3QDbpec3Hk1gImK8/Etog19X/43Wt7fcndP/CXfV7nRrno57GcXdiifayB11T/z99W+Ph\nh8qULy4oE77YE1fGOMrZ4CVlXVpkbaJUPtXI65oGT9mqyae3p+ExSpWdas7o74VP5btv5HW9nRG8\nFmU9A2uT+v/5DzTWD85pP5gqS0Wnvg0PxVBZ6rVNZcUboAuuvSXlkjubvzUzs/Sa5maaTOXyYz07\nG9c0Ns1t6tIruv9H7ynTN3lBvtRb1udmt5XN+ggOgTdyyr6lx1oz9y6TeZ2ER+LBmu6zIv6Im6gC\nGfvKJ3tfzEeu3mZteOrn/oT6uZMHTbAJQvCS+rd19cdmZvaoIbWh8R2N27W/5kzxkcb1HRM3UKek\nrHz4a3HgfOOqxq0RSzniP76g+/z4F5xZXlH/nvyrxuMymdifPtVaLHlCWSXv63v2v5kFw5bt7ctf\nwmvy0Z+2/h8zM/vesf6+9ZzQHefbcBP9qcZ171P59ocV+WhuRSiW0lhr56OzIKAi9WO0oXFoF1Br\n9IVeudmTKtfc+j27vCb+mhrIMO9lfLgprpguKKjX9att72n/qZAO/0lBfDXrIIKndrQm3voTrdP8\nL9SnmT9Rm4MyCMl//Ln6+Gda16f/RWthGX63HzyWb6wfnvxZY2bmwS04DRJj7YKQKVAS2r07QvY0\n4CRZWRES5/wV+XgcoIxD1r7R0D7QONTnJ6Y1lkvndd0cKIt4U2PePgYZCufWAG6DYiAf2Ae5t/+x\nfKqDKtz0BfnKmee1ryegURuPtIccHGuOCyHnSLhedjdBNXQcZ432gjxnjd0tIVh2QYJGHbVn7Zr2\nz7ip6z7ZRU2P5/DKGVARZL7dObhzQCa6p8+1QAeXc2pv9Yyedwe7PM9PaRymUDksTHFW7fEc2tN9\nzczuvfe2jVo6H4zgqBmN1D6P3889p3FfXNf1On09Rw8dLPwEFjs1HZAWCWeUGLS8U7bxc/BGwsHn\nFFodqsjx2QScw8acez3Hz8E50amJhiPO/FzPnb8LgUOqoNTIGcdPHdcKqAHa7xS2KnneQXjH8vle\nmzVUQ0Gxh9LimPeIkHO3x1nGQVti0P7jvj4/Ak2bhxMyx/m4w31TkD1Fn2oBT2uuDOJ6DB9gDr7N\nGKWbFFTwM3UmuCAHoMrcy2NiZe5Px7m/wQWZhCBj8L0cKlche0AfPpQANEdaglTnhJamcL9wlnHj\nP2jAMTQB5w/vCQ3ebb0DrbESFQFD9x4EP18QOC5PfBYFTx++lIk5Pf+j3uc8SVtPN+38pVNmKCg6\nldAQREu/ydw6lFKTczDnnhFcYaMcSBq4qm4daH8fntO+E7Mmci1dKI+acci7T9DiXQQeVKfgGlC5\nkjqVJE/n+AEcryXeifpwF5bh9gur+t4hSGiL9HsfdJfV4dXkXFkvoArNXDrknHkOzc+7FeSw+Txn\nmJzji8LXWavJMf0FgZTa73/eZEiZzDLLLLPMMssss8wyyyyzzDLLLLMvwb5UpEzqCiUJD6YkexIi\nZX4C7wZR2RxwAsccnuQVeQqI3nbgOfHhvXC1Wx3PMYjX+YkaCJwv1Z77PhExUA2T1LB14McYIEhe\naFPTVldmo8d1Rvy9TPZpSP1hAmpikiBqBNokzBPVdNFcUBYjFJFyweTvjE9hqOhpN1R7YlIzHtlT\nox7TL6LL7sap27NirMENqbWsoYbTZgxrLnsT6WeLiHYxx1j1HUcLtYlEil3fJlDxaaAcVYHzJCqp\nTWWnHhSevC7XzCyJNOZFUE8doo8jTaVViVb2iQyPiUKGQ/lOj7rt1CPKC+9QCLJmRL/zoJG6IGKq\n1GCOq/hc7GpKQdLwc0zUt0T9dbXH56kvTMiGRUT+ix2UvJhzP0ZZDARLTBQ2JXNQoUi4Tfw0qRFl\nRWFgzPjnxqAV4JIZUsdY7pFRwLWdelUyAilF5mAM2iuERX8MIsYHSTWiDjTP50MumIJc6tL/YsBa\ngafJcq42mjURwhtC3aW1UQFAKSw3Zny/QIK7mNc1N2DeT7fgdIIjZaGkLPviJUXyS6AEWmQhDh4r\n05cUXC290AMNX5H1nY7WuU/2Kyb747eFSmi1YM4fE0Ena5Mcq+9LcFXVr6ypj1O6TjeFG2ak64Qg\nBw+pI98+Um1+iBRafUJzNqSWtlrRmp6aRHmBuukwUjtaPZS82GYHu0J8+FXWCjWzU3ntm7VlZR6m\nTulnkw1rGy6dPtw09UMynWR0PRQWRo+Uue7sax5yXcaJOa2RhcqhvFAlPeXVUSrLa546TaEAeqgx\nTSwqw+Lj84mrN3cdO6F1q+JZ2WLcWofKUI/ZQ1pVzfurA2qVZ/X5t6vyl8vbKFMMND4ee+ReDRWv\nJY3P/A79ChjPX4O0vK5M8pUnUrJpzEuN6XgbJM5KZP1jkG1jZdXHH+iaK9epKX9bY77XVRsnquJz\nWHqktkYDVHZOCaXV2EN55IJ4JbYPeA58oJ/NRbJDtzV3pVc1Bw8ifX5zrNr2K319rgjqauMV9aX/\nG8bijuZquaYs87CuNdXZRXEHXop0INTQt4rawG9OKSu1dlN/n5wT90m+JZ97e1Jr4LkX5TP7TaEu\nLvFM7g6EmHmJNfHre2rPGxf0/fNfAYZ7Qus+Uj/ir7xhZmaPd7WGaqZ+DC9orT/3M6Gs3juPYsS0\nsoKzi0KWPHzM87Wifft11P/i88pCfngkLp84EKfLMsjFXyRrZmZW+Lquk1bkW4U3tCb++S3dt3pd\nvCrfAM11+5ufc3BNls7Y1aHUj97a0Hi+/BVlLz/+odo//e+0dj7d05oMWAOrdXEI9T+CK+aM0BU9\n9rJXmlqLuT1xx0QoPhZe033+p3/eUCPg8vn1W3OW/DXKVHVd89U5VCzJsr+7I8Kc9X21ZY7zW60q\n3yg/1Ni2XpdPPnwiRMzMv+q6X3lR/DgDnnkPBkLpHH1VjVjdVR9O/Zl89p2Hus5ZeIk2r2su7P+y\nE9nMrNZ3t641mmf9D+EOCyGfOn1az5vqtHy9tSOfuH1PCJZRR3M6BBXn57SvTVTFtdLNScmrfwAq\nakZr+9wF3Xd+RnM64Ixl7hwKqinZke82axq/6QkQMiA+7tyXj20+EpIkBf1cBh3tFCdn4CosL141\nM7PilJ5Dx23tCfsPNa5lzjBzz8kXppeEeAoi7W9zsX6vX+TcTkb6sCXff4KqUwuEUXVNe9ECKnWT\noEjagfq1eEn9ObsulGDM86z5mOf2Y42b4zAzM9vb2TOf94IcaJXStPaM+XP6eXpW10sckr3BPIGY\nPIk5fqDYnT/hHIl4pwD48kztqM8zrci7x5hzdhX0QB+Etg/ieAzaNEHNshjDb4ECbcpZJeC81wFp\n4oFkdEhm36ELCqgpRXAtourkJxrzcZ0xG7h2qB89jnmVyCnVwC3IObH0DIECooZzrFdy/H4gzGn/\nAMTJM34jeEHHoIGLXJdiAesl2ufLIIvSnJ4LRZBBAGoscqpPVF/4TlUViHkKWtchvz1kSx16Ktd3\na4J3Ku5fZl7jmIGIvyDOYeDUVLX2jlHofMDZL8d7ygvPaw9bXRR66+M3peIXoXRWnQL1jDJSCCdk\n61ADUMmjvOnehXmuFINn9SY23Dqy0YVV80sow3Jm90HzuMqOKfjiFs5p/zm4ofXh0fcuiG4PVBNs\npnbU0D5zdmZN9ys5jhXGjPU7qKiNi7XS74xRQtXEEM6/lPfcHEi6AUhKv6DJqU9pfzBUlzx8uwcy\nbwnuyJVTGtPDu3ou1E/Dn8pYlvCZKGDsQPkPQfgUOdeGoOA8OG/bTXz+ic5Cy2e0rw9Kv//lJkPK\nZJZZZplllllmmWWWWWaZZZZZZpl9CfalImXa1MpGUDH0m2TjqfFKiAonZKY9JG7SpiL0YzIAcR+u\nFqMOLwSlQfY9BK3Qp97OB22QJ7o6JoJWNodgATkTKMPh0CE5OBEaNaLORFcrRF1HBXXEKfIEqatt\ng4+j4Pg6QP4MiW4W0VWnFq7QJSKHilPoo/wDeqKAtE4eSQ4PRaVeG7QFNcclR3FR8S0kG5GiTJPA\nqF1Cvz4h0t0hIu3UmFwf0oSIOzWwCUiKCSLJLVQmPPqQUJecp7a0MQEaKPpiccCgwFyitBWQVbeG\nU6TS70XH3E2GIiCibWjYD0N8qqLPxdRLOtWjHPw/VXynS41noUVNLuPVL8D5AieMnzjOFCL6jkSf\n+1aI0BeJ/MegIWIyFwFR2IQoc+yDiCmpv44ixwtA2BB9zgWuxpZoMoimfI9aZdBUPWpgHZpkiLJB\nDHqhNKL9+Jhjf8+PnCKY/j+GZ2lYZe2QqXc7iOvHmExHXEEFCvWmALWAcSD/ixpkQsh81KiN7pMN\nKzVODpXxqW3P43Me6CMv1lgtz2j9BSA79kIUulinLfaTUl73nlwiI9d1HCDOh6jt3+L6u8pq5Gnz\n1Izu10GFbYbB8ebI8swqUj5CNaPVUjsiFM56e6DKyKYVjnXfANWhUYKqFDX7uTpIHzJ5TWprp9iH\nQtQ1OkdCUXhk4WY8ZTiOpoW+qKAqkS/ByO+QPpHu41ToCiB20jI1vGQ0jo7Uvu423AZNMr5lZSLm\n53Xf+pIynkPmOmJ/L6O81UFxqFSDIyhUJry+ooxpQibcsfN/XoF9Mlt8SsZlSuN7aUIZ1f2R1EEu\nUmL8yXtrZmZ2uqZM9aVUGe8HTX3/tR39/WlR/vSUmuVVhzbcUpZrNFBG/8MFzc/KA/V7aoJx+FD9\nvTbWWm8np+1eQQiXwhHImEhomsLHmrONSfFKNEJlzk4/ULa7URGnStfTM2YiEqJkQAbubiLf++Yj\n+cQG++P5dSFxGrviAvnsnvq2ekltXytozKv0+bPb+l53XlmoM+wj932N0QcLQgGcO1T78smGmZnV\nUVZJEiF7HrXhQ3ukMdmY1n2WnkgNov+Gfg8iZa9vPpQvvAqnzWd3r+s+q2QEE31u/RWtEe+m7nd/\nG/jtCS34/jfMzGzyHvwaXxcKYy8RL8iZZXHWvD+vuS5+ICRRaSxunbMvyKfafe05lW2txff+vTh0\nzvyTEC61b+v3X/xiw8zMXpjiefVEvjlz63tmZpZ4GvfcC1rDpW/LP3I/+mMzM/vBf7htZmbf2pl8\n1odz//Ku3WgKgbNyRe18/AlnkD9X+ysFoQG+8hOhHPb+WGiVrYeajzMDreXPbogf5W9C9bP9/E/N\nzOzgou63/onQDz94rHFav6Bs6vpT7ZXNC9fsqx2N5dyHmosb5zTHTVBY6bTQVXff0rqZW9C+8MPX\n5ZvXvy6+nql7mtuD9V+YmdnVe+KaGf9avp7Lqw3Rsvh7ml14Ll7TdaodraGpVY3JxadaOyv78qH/\nYiezfBW+EFCvXqz9PA217y9cckqNcDOA9t18oH63d4QYmgFJs7qqMSzBwVCuo2R2X+ixXl37ztSC\n1lStzpkLboQSfCWOV6MId0G8rOtATWYDOBNu3UfFCATo0rrW5OKq2js94RDl9DdgrYJIb4LSmEbV\nZGlFvlQHFWaclRyfSKsL6ndGz4OcQ1mDeOnsyLdbRyAXn/HUaU3sPxVK7fCp2u3OSM+/KKRTCw6d\nPs/To0dCtGzta5wdmtfMrDRdtfUljfsCe5wP2iEPv0q/q3Hd3dd4HTzSnpvGJz+TVDlPHwFdzifu\nHAUPW5kzRKq5CwtwvvAu4pOVH8EfV+Tz7hyeA2nswVtG8t9i/t+Hd6MKVCQHIj7m72M4FGMmucKY\nO7U4j3NlirJN4BAgvEvlONs4rsUxKp5DOFZKnEOHIFUMBI9TOxrCQRM5xHgeVVPO6SGfd6Ku49Cd\nU0HWcA435qoH0se9f4Qg5wOQ2R78SGkPpDicZSHvULm82uMNNefD1HEnMrCcX4dUQYScRQaOnIY1\nMuh9jjw5iZWobshzNlo+qz2q1dJzJAXxMqrrrLH1RO37+CPty7Nr2oeXp1e5v8Zh6IonZrQnNEBf\nF+dBVqEC67iCzMx6xdSKadliXpxzzHmvyPttE+6pJ7pGhNOVzfHW8APfWTilviyd07OzAbdjfAFl\nKM6BHu/bEb6buIqSLvsqfKYRCr5Fx7EK3CwPN8yY9/lyDLoLbsOYMR5BAuvvyNcGU+rnzIL2pXu3\nNGjLHc1xuYhC8ZA5h0sSESaLt9W+AftYhLLYEurPCXydH+1vmJnZhRU4woYZp0xmmWWWWWaZZZZZ\nZplllllmmWWW2f9w9qUiZZ5p0yNSVMhBFALvyQD0QimGMTxFkYCIfEid+ogo6bgLw3bnd2vLnqkR\nkfUfopTjE4UekSEew8UQEOUOiJb2S/wOqqRKJqBLRK5PFLcMWgOQgrU8FHOo1e0TGayUHHO6Ivol\n0Ct5kDTmOC1gALfQKQjBhA4vS4HodLOt74dE05/xu4CCmBjH5sEZkhAhjTtwrgROFUO3KoPgiHtA\nNFyUkrrCGmilIXPXJVJcpW/DGlHL2LkWKkcd+CWIiJ/URtQbVsa67rBDxoA580GiDOGccQH0tE82\nnmini1qOe0R58QkPZa2IOsUQ1R8P5v6ErFN+4Gp1aQ+Zh4iaTIc0SomgF4jOpigcGMgirwaPEHwY\nI9BNRTLSQ+bYY7wQeTKPSHfi+JCIFrusU0Qtb46145JNaVXtDRwb/Vj9rJR+NwOQUD/pMd+Og2dM\nDXK+iioJ6kgj6t/HKOLkn2WjHKu/7hfiqyHR9FFP8+8yNyH8HT0yNEaGI1c5ecbBS2DeL5IlB+WV\nG1PN6inLMCpqfe124blwagpHtHlW6y7C51qmzJ3jinJZk7BGRL+n7PzZFS2e6aoyhq1Y2YzujPoe\nsD9tx0JMDI51f6+EwlaD9U1GMEzgoJmm9p7rp9Q1HzoOqpz+39sDjUSmsXRW7QpDlL3Kau9koP4t\nrygz4I2J6KOY1Y41jodki0oD/X0In0RypPtMwh3goSbndQ75vIZzbUmohsm67jOYoZ9wtgyGamdI\n3XeDrI4Pt1cAmqoGCiKhHn2M73tkCQMHizuhRSjEhDmhC4a/0fU366p13jmjzMfI+4qZmX1yRu1Z\nO9J9Ti1qvN+uCXXi7einHQkdsrWozP/ashSM7m+J72QdnpcNuH/qDV2nOFS264O6smQXpxp27amQ\nMfcqWidrVzf0+9v6+/wLmtvysVABxQVlX0hA2uklPUN7N4UOCM9pTr8zUB/3yQrVTW1OP6VG/6rm\n4voj/f7xY/FsVA7Fy9FBFSr/UJm5hTll8g7gjlpAuaV6g7E5rzFeLapvb97RPvV8VainPBwtEyDi\nbp5VP56YrlvbgFfunObo+rT4Jp6GQjVFs1rb7Q/IUr2iz91DNcoHxVBPHFz0ZPbkDii6Fc3R6V+9\nrp81jdcHz2kevvIYDpwloTWaHwnNce9T1aV3XtXnijUhS/y21sTEVfVz49EHZmZWuShfu5F828zM\nrlzW38+S0b73SD4y9/5/NDOz2+fER9Tzpd507WMhnH6OD/1nMxuunTFroh41q3Z97aaecz/6mfp3\nZkIokbe+qnl9fV9r7mZXvnq5IF6QN2fFHbM40nzdnEUi6U35X21KZ5hxlTNIW2v9J1/XdU/1f2nx\nP2luHp7RmK78Un2e+WOpI3Wa8rH6FaGDhhWhjv7Te7r2cEc+c7gsn371Z39qZmY7F+E7W1Fbbm+J\n8+RcX9/7SiKkRG9PGdtmRSihvmksBqHWqb3l0vn/h53Edg60P259IJRRfY5zVllj95iMbLynOeqC\nUk1bcK5c0j7x3FW1twCaooNCWsAZp3JKa3mxpCx4vqanqT7PAAAgAElEQVSH+qefoHzV0OemJ+Tz\nR3tagwfwMZVgc+g6BRzOLjHcC2W4zYK6rnO0q325f0SGeuDQtSDK4WbpHMMZAZ+JD2K9VoWfEITm\nkMz608807iPODhXUsZyoiVMn8UDpLizPMC5wukxq3NbnNb4zVSF6KrPaiw7hStu/KyTS7q6eRzkU\nIk+9Kl82M3v5tW9ZSc21GJRK55izBpn5g6HGrQiKOgCtkHQGdmLjpcYHOj3knF0BFeoUXqM8CrCg\nY1POzeEA1DtnmTHIa5/zVVxjX+PZ6IeOZ43f6VLsc37lXDnmbBObQ7Rz7nSqn8AAYs6Fo4gzFedl\nH5/KcQZIh3CtRLpv4mSMQC8XqAIYwWEzYMzLnFOH8JfkB/DSwfk4diSDseNeZE3l1Z4CyJeAduR4\nV0tznBXgnnRKN46jp6AjiOU554+LDtqu7w3gKfEHPBdBA7vxD3hlHoGML4JSa450titXQTye0Bz3\nUGNTvrfb0PMvBvEzBLVSTqj24H0qAcE0M6s1EYFqLjh0NuMzQlG0xHtdj73A8baOErf3mZWS0LxC\n9xlCzeMdz0D/NIHtF+A8nVrSvrpXQ1UNfs2IsW3BO1SFP6nrOeQKiOuertNDjXgBtOwYxS2nPuzB\n1zMzpWdclHOoWxCLvFv1QXEZ7x7jAqpIW3AawrvTGXNePdLv9Zr2K4+XrSJqSgPehRyP0OK0Pr90\nRsjGB1QTzDzW/lZA8SyGc6tMXKO9Cx/pFfiJgt//bpMhZTLLLLPMMssss8wyyyyzzDLLLLPMvgT7\nUpEy5YIyAYmCfZZWFO0LqS0rEv2ERsO8RBmKeKgvVMeKLgY9RU+7k7DHN6mTg1QlaSuyVnNZfhel\npfvFIYgVIvhtUAUp2u/WV0SuXVGkLO1SnwfqwzNqevnpUfM6AWeFD19HhehzbGRsYakOYEA/5v4l\nkD5VrtejPjPnuCXGRMNNEb5yyHVSIpVEp8t9p5wTWdSjlrVEFJQIdEp2I0/U0kMVo1BQ20fw2MQg\nR9qR/j8BiqnlE60EpRP01ccCkXgjO50QabfwiyFl4rbmNJoAcQGiwu9SG1tA6x5G6yHop5g6yGLk\noq38vQZvBZmFEemakExGzkDAVEL6Q2YC4FARvpKY2laHhPH7Tote4xzD75GQSXbtMdBVBPKt5vhK\nnAKZiyITDS5Q5+y5GuCBy3ConWOi0mW4fwbcv9x3SB3qQssgZvA1Q+XJYDQP4HcagKApcd+QLJnX\nRUWKWlyvCBImBc1B5iB69j0ubxrvdAyvC7T5A5A9qatNTl1GhNrd0edqIn/Iev8/e28eY1d6nvm9\n5+77rb2KrCqyuJO9kM1e2HtrtyV5ZGkU2cbYhoGJPJMJLMAYWCPBjoPYSDKDiRPDMeCx/xiMYSTI\nRB7ZsWXLstSSrJbUrabEZjebTXZzJ4u1sPZ7b9313HvOyR/P72NbnlF3tYOggZnz/VMs1r3nfMv7\nbe/7vM8D10muCxcK+djFGUXSUhP6u+/qRu5nu6ZIXrGj7026/F6UAHp98qW3mW+Mwa5xRYHDSbW5\nmdC6UE9pHdnqLdMnePzhkMo4dbcCHCorRByXNYZTgeo7MaKIwOhBFHKI7K2Q/1yYUNQ9XyY/eMVF\n9vS9mYSe47iqmqwfg5y+v0xkdtFXJLmzrHU1VADBSqhtBPAGeVuoQwWqf2VYkYJej2gZedrFYUU4\niwfENxKh4uH3UMGI1D+LRIXy5CQPT2idrjm0G9GyFpGWZEgUsEb+t4v6ee8MBTFV1HhPfR0OlydU\n37GOVFO8c0+ZmdnEjP5+YUus/FuT6p/si0KB5J/QeB9iDhZyUuq5uQpqblUokUdBg/0gxfdWhK4I\nHmBOt4R6SecV4b64krRHTHXxl/SZH+xVlPypQ+L8WD0n7piNo/r/IK0xv8N8K60KuZGdFFLDH1Pf\nX72qaPFj+9TnL7WwobraEgRCgrQrUvPxiRDuhpdhtCsjvHgSm1yWTexe0d9vd4XIsHu+Y2Zmmxf1\nnMqcbLTyqMb0HGioHHOrcEdqP7tL6vupKY3JzUD9sGuDyOq6+mhfgrk1qfrcgJdk1HvZzMyeHJUt\nfve6xuxXmnrejgvKCeOb4nK5lNBc/4msOFy2C4qK1eaFsni1JURKeL/6+eGrqt91xj69JVRHKSXU\n1HPrii7OjKr9Gyi33ZtVe28Q5d9eVNT/xEkitSvfNDOzh0zjNf/onJmZXTytzx/64Jt56pfnX7Kn\nNoUo+mZCyJoz4QkzMzvlCd1xbuSjZmZ2nMj9d0ATfuSo6rm6T2iMI9+SjV4EGXnqpvp56D6Ndycv\nm398XfW9vaZ2PcA+fWboU7b7I981M7P1da2jq2Mv6lmbml8jrMMXNmTLH9ovjpiFB//KzMz2flfP\n7PpaLy8+Je6Z2Tuo5vyNbOzCB9UX/rc1z/w9ICYX9fycXmfNl4RoLN0r20t9HFWd/9t2VAIQE+2k\nbHI0g8pQlb0f29tqq8+KICwLe7SuTu/T553CzI1XhQK7viTbysBBU6xqjs4e0c/BBghN9vDRXbJN\nf1Pr5PqKkEQBaIEWKNoUnIfpDGcKuM880E2dbRBJ63A6jquewyP6meHMWCjIdqOMbLy+imocZ8M2\nSJsGvITdgeO+gVcP3o0eZ6M06OfROdVj95zGJcP+Z+zjWZ6XZh9ogzAPUG+tb2m8V9bhHQQuPX1E\nSKT9B8TFY2aWG8lbd11r1kZbc3bzhjhtNlAXTHouYo/KaaD3VSs756dqsTd1OVe6A56fcIQUaksW\nBHba526BSqej+ks6ZEQRDhTUiDzOgYHjTuFcmoET0eOu0eGcXkZZ0inZpDnQeijK9jiWR/BjpFif\nU3BIBiC3k6Bb0yB42uaQFlmeq74LQVZ3UBbL0e4k51oAPZbhXMlUscidZzkDeCiAJTg3e6iNbvM9\nD07JAG6dQYc92XNqS7LNfsbtuXBiFkDmOIA2vEL5FhkFoCOSfe52WX1/G96iNKjjXhsePady5RSF\nd1gStDfkPJ7Oq98PHNCcP38W7hdkrlIOAg/vSYStD1BeC0ATJxiPDIbk7rIe9z0DQZMJ3kR/ZfJF\nawV5G62AUKMPty+qzyb3ghLyNB/6NZSyivpZBIUz4N4b1Mhw4S5YHtJenMypjwpwwQ4i9WE/ZF0u\n6PMbddSG5/W+Qk7zLwAhk0EB1gctVYXbMY3anc8la3NBe2vZrV8+8xokkOM1GmX9doq2SVSS857G\nYIV7/82vaD/b2FK9ihU4uJxCWqSxbMFpk+de7rIYEnDg/Kjytk6Z06dP2y//8i/boUNa2A4fPmy/\n+Iu/aJ/73OcsCAIbHx+33/qt37JMJmNf+tKX7I/+6I8skUjYT//0T9tP/dRPvd3j4xKXuMQlLnGJ\nS1ziEpe4xCUucYlLXP6LLDtCypw6dcp+93d/9+7vv/qrv2o/+7M/ax/5yEfst3/7t+2LX/yifeIT\nn7Df+73fsy9+8YuWTqftU5/6lH3oQx+yoaGhH/lcDxb3MtQP3QbKQDly0Yim9zryYDkm73wV7pWO\nPGdJIhZDHb5P1L3VAl2AOlG2B28GnvdCXp6uxEBezwYqI0PkpIXDek6THLMCiJeQPM1uTt/LoeoU\n1YmMZ/A2ByQwkhsXOeCN71AkRPRByDgFGh9UBeADy+H1xilrWbzHDoWRTqif6qBh0nBY9OHeKQw8\nS8FZ4pG33EOZxnns0yBgQvJn266K8O8EZfqGfO1mX20r9OVib6A8YD0QGhn1SQ5lgtSgTB3f2kv4\ndwvOSkvhSe7dpdlJun+oXdQ34ZA0RPHb5HjmQI4kW85rqc9HIF4yIECiNmOcA7WVIZIMp04KJEoH\nV39ABKTIVOqAOBmUYc3fljc4ilyuJyzzXfoLJaAE/ZwkcpGD06ffRkmLPM8U3Di+Y41POO9uhnbD\ngk9ubzFHriz9kSbPskP+ZEAUK1/C805Os4+yQ5ZoW8R7C+TL9+FVCp0CDipcAxAuuZ7jmIEbh19z\nIJC6XeYMNhr2QRwxzhmiZDspISzsLlriFRX1zRBd2gDh0nV9kyR6VJAtpGCLdx7vlosqrTOWG7Lh\n6ogQIFlUmm4ShUqC4KvQhhCEmw8HVZmxDYtaCwd4zj1y14OObK08psjvyG79rIV6/sIt5RkPQKqk\nRjSXFhZBVYAimAT1FMBS7zkbHVJkoARlV9IplBEhTV1HFY4o2kgFpYYMfFIg9/YOqf35KSE/Wil9\nb3OT+pdB48G5c62hyGMrUv8lWLbd+hQQ3WnDJTZoK9Lq+JGCVfVPG56K4WHU8FAei/rvDHX32qbQ\nDbun9Z5mqMh00lAuGtJ7F1ExSY8Q4T6tSOw6qjAPDjQeL0TYbFs8IhMDqYHcqgq9sYd96WhTyIBs\n5X16z7b6o3YRFZC9WgvS0aL15lSX4yviybBV5uWIokyFU0LCHNoQcqNXEjJl9bwia/eceMbMzLb6\nQuu0XyGK/4jGZrGtMT98lb1vj6LG6xn1bWNMfXPvt/X60qz66BZzqnoJRCRR9YWkoltDj+h79SXZ\n5oGq+uyVosbw8BUFdbKRntc8orbv3hZ8odSQqtD3OkIAHT6iemeXxW2zDH/ToKaodrOpubQf5asL\n/hP63m1Fv596WGPwfEfIkJ2W0SmhMy4u3cd/CJXxZfbNp7+u+t35r2Qre3+guVB/SeOQO/Je/XxN\n7e9sqf6JgT7Xf4T199tqzyffp3pe9mQTT97ROL00JgWh5aQUZxoPS8Fi+QVN3snmV8zM7OghFHwa\nlbtt2PWoZ9FljUM0LfTIycOgVL6renzQk319f12Il/esqD2NQOiLc+f0ng++XzZc/qbGP5HX2vD8\nPMo4a+K8+dgH9f7Tt/S53lnNjQenn7c2XFqHTsA9siXlrJURzafGuNbLfcOy7b9syYZTgw+qQSh/\nVZ7Rc658TSiwlY+pj2delm09sCBbuPQe9dkz14S4uFgCwfKi5vXNYY3BZEPr2hujK/ZOyuSwbGBo\nRH1fYG9cvCNbaWyrnpNjev/4EfEIjexV36fZhy6+IlTS7duy0RSIzVQF5UTURNZug2jkQJhs6v/v\nbGr97MDxkhtRPx46rHVuAJ9cY11zPRfJhn04Bz1QGeVR2WL1Ma0hjmCwAHrAr4FQhwPNRzGxOCVu\nl93j6g9AGtaHi2bhhtbJSlffn5ic03tGHOJE7S2x73bhCEvUQIPAo1HnLNLfVL8uXV35oXptwlNX\nBOU2XNLaMbFnnLdwwTCzO9fuWGNFKLA1EDetJmcgONTyQ6BWOGP5ROhLlZ2fXfMgZNoJh0inxeyx\nGeqUyjqkovqsC3It7xQZ4Z/MRY7TT/MvwecHqDZlieI36dNiyal1wqWIgkwyBV+G40LsOLVOEMtJ\neDmzIC7g9YF60Ti6WJc7S4FzWhsEinGO7nPeNmzGuKukQKwbSOsA1HICThTj/N7OOKQ6d7YiiHPU\nUBPUMw9yqAtXZHJA+zyHBOLcCy/KgHoHEfcekCo9+r2fQPkSRJAPl42jXimA/u1HTilTZ50NUNLp\nnR9baS/tdPcs3yFn9NwUCJ0WKLEw4MwDv9TAqa3C1+IuNh4ZDAl4V5vcaQF92PKy0G7FSvluVbY7\nvuVTvg1Y44twHfY6nMtAEeVT7DWcM52y2DZ9XmDMG6CZam3t2XsPaw8rB3qnD5+Q43Tq7dFeVaig\nMke9lupaVycOax3NwtFaB8Vf5PwcmeN8pE8bqse1O2rrfcdYp0J9Pmxqr0oyF334UJN9EIaMcX7v\nPn1/WkibV7CV7Q1UBVGt67NeJBuqR4Y7WAouQXP8me23VnH7e3HKnD592j7wgQ+Ymdn73vc++973\nvmfnzp2z+++/38rlsuVyOXvwwQft7Nmzf5/HxyUucYlLXOISl7jEJS5xiUtc4hKXuPxnX7woit7S\nt3f69Gn7zd/8TduzZ4/V63X7zGc+Y5/97Gfte99TVGN+ft4+97nP2c/93M/Z+fPn7dd+7dfMzOx3\nfud3bNeuXfYzP/MzP/LZrc0FKxJ9jktc4hKXuMQlLnGJS1ziEpe4xCUucfnPrfzhF37f/vHP/Lf/\nyb+9bfrS3NycfeYzn7GPfOQjdvv2bfuFX/iFu7K4ZmY/yqfzNr4eMzN75Yv/vT35T//Q/hEwySO/\n8S/NzKwIdKwLoZDfFlQ5i9RsDpKmHpC7NPJe3SpkV8iudWoQR+aRuQRqB8erZSAaS90lGYXUFalZ\nJ5ntwI9OejcVQWRWEFwpC+FjFjKsXgn4kgneFBkwUydHTNpDGzk8R9rV84HNp9W+RMKRrkL+RTsM\n+GkLeNQw6UtNyLQCPp+u0W4vbfkqMD/gf9WiwGF9Uhx6SC6nITlyUtQ5CL18JEYHpDsNFUixgmis\nhWRcroI0NvDLCNI0j7SUUkvP/xf/4/9sOymf/5ef13tIOfOLEPUi2WyR6wv9nsySykJ6TgZJZw+C\n2X4JOV0fQl/aF0BQnEd2vUkKQ6YPjJGUiTSS4H4v4O+k3yANjelaD7hhCqntZAixbtelM0EkBsw1\nA2yxwZhmCj373X/4+/aZP/ln+hwExAlkkV0KTDpJqh0QwpTpeX6OfsfmPGCdaUimmpC9JrvUg9SX\nFOlXbdKtkkn6j88nIMcKHRGcOYlsIL/YnpPgA2FoGWC7HiRfPql2XVKOiqQYGc9P+oIW/utP/0/2\nduVXv/w7ZmY2X1MKQHoA0dgWKVK0IUeqWwjMu7ek9JpCoPm2f+qImZnVmNcLl0Re2YfQ68BBpWoU\ndgnu/dptwaCLPL9UheyNubJxTbDJCrDHiTHBPpeQVI0WBNccrQgGf/QwqRAlrQtr1wX/rt/kPWOC\nZZcmlcqysiaiSltR382O6TnVA4Jt18say807gmv2IHsuZNX+zS09v4QsccWQS55Baruvfmguqp57\nJgTj7I2pfuukVa0u39TfZwUPLU6rHdfW9Pc+kOkM66yHTGiBdWtA2pPfEDw9IC0opH6dZY3nBP1e\n8M3+l3/xr+2//rV/YmZmf/iv/q3tpFz4t39sZmZ/kxWCc7Or8Z9+XXazeFJkqLmG4LotSFt3HVO7\nOzc0rlc2BfOPHtf6PpyTrR5mjrU2lDp0/rba9SDjZQ3VvxcKzntuS/aQByKdy4S2+aig8o8+r5SG\nAEjwS0+oTk+saZ4tjKtPahchzZvTvD5I6sHCJY3l5pRs5OAtpam0c+rj5JzqsFUWVHirpfShQl02\nnugr7aZzUClZh29IQrlomiPnhjQ37uuK0Lf2hn63CUGUL21AgucJejxyWN+bn5cNHk/q+Zmk0ndu\n9jUGay19b29a9e9DmNs7LFse2dTP1dI27Reh7UHEApL3iDR19yUFe9I/I5nln75XRMJvV37tH/2m\n6vGU1o5d8xqH9VFJQZeX1P83IQk9ulv9Pb5LZLKtG+rH811SFbM3zczsJ07Jtt44R+rzutbDiUeV\n2rbwikhJH7gXmP2zSsF5uaz+3U0KdXGv5uL1vZKRfvKW1obrrAH/3f/2W/aF//N/t1VP/VckteXM\niMZn42X1d3lMxMFB72kzM3t0U+0tb6rfrj+ttKSjFzRHrz2hdiTPKjXm5iSfr+iM0anKljv/QXY4\n+6jauTbVsPUrqvsjt0QmvXz8J1W3Omk/JdnW/n1KZVsJ1Yd91t9HLyrt79mHtIcfvinbXSZ14745\nzatbN543M7OHHtb696U/0/zegyDClZ84bGZmHySlNnNR60B5XHPoU7/yBdtJ+Te/9+/MzKwFoW6a\nFOj111Xf7bramyLdZfao0q0qFSSYSVda2IRAnD0/D2F8irTVDmeMfltzY7WBpGyfVIlQc6nEun/g\npOD9wzn1x8115vii0n0m6adh0oWiNKkppGRHyBq3WqrX8hXZ2sYdtavd4owQqH4zD8hm981pf2u5\nlBByybfrEO+TejPuiPcHEOQj6d1Lq//uXNG6ubKkdb/KuTqzW+3rIu7QYj9qQRBaTqo9w8PY/Iza\nWZnWGTcJ4eZ/809+0X7tn3/e1tbv0F71b5L+380aNXdA+1cXYuKIc0INqfFf/R8UeH6r8q9+/d+b\nmdlgWXtGy6UVDRAwQNLY3JkdMZJuHnL9PkThCG54pNW789Ug6Yh31ddp0oL8nGwsQbp9hNhHyqml\nQHybQhgjcmlHpMFHEPe2oWQokLGV5E7UJv0/54h12cvduTvqsncneA9j22py/vXUXpce5NJuOpC2\n5ji3OrGGZBJJbtLm25wh8pBIu8tcyFnCEGlJMje6TmgC6okoCTkt7U101M4+lBQecyBZhnLirpAH\n4jDILiehg8iSvt8lRbuX1c//9fff/txqZvbPf1FnmBvLSsV86L1a7zew8RJnwdn9WhsTtPv0syKb\nzZF6OHVAa1yGv/ecQAj3kKlpR/qtObIy0H41VNbv//Tn/5n944//A7vn0WNWmINYfFNtfP05pbru\ne1R7ew4xmBTz5+qC1uvdkPSPT+qc6kEy/Jd/8udmZnb8vdoDp+CnrZLm/2d/pHV3Yo/OjyceVx9E\nLY3F6W9qr5q7T9/3oe+YGlLa0IA5ceHbp9WHH9OelkSw4y/+L537Tj0pQYYMY5zZDaG4L5s4/5L2\nvL33aG/1sZ10oPftGtUYLK1qrC58X2nr++5XPaoF2Wp6XOtVHjnz86/oc3PT6pexw28NRHlbp8zk\n5KR99KNi6t+zZ4+NjY3Z+fPnrdvtWi6Xs5WVFZuYmLCJiQlbX1+/+73V1VV74IEH3vLZXfg6SOGy\nCpvQJhrrRbgbekkZep8LuAdBRYp8uaCAakoNNvmqOrNCzlsNroccThifTaMPm38Kx8EmE8AYhBwX\n+TDHhGaC5j0dxlMYx6Chz9Vy+n0IZ04TrgSP/M0CC96A50dMnEFRf/d68J+w4LZDtW+LPMsqC1cn\no/bmOvANFNCyR6nIL+q9vaxTWkpZoQ5XCKzokHlbHvWiLDw49a7+kIHvIdN3TgI2DxizHZVIu0ff\nhPRJ3/EjqG8RcLGCwUZfftOht5MSokaUHIJHglt+J8WD4cfIkfTpmLXT5LBuJzU2jl/E5/KfgqPF\nY5ENyd0MeU6OTabHGBfZfDwjb5ADg5diYyfnNGSD93BWBAM4ZOADSVKvKMEmhU12GYdEVp93ygSk\nmlqWevVJTvY88ssdez8208VG8ANaj9zcAgewnvs7qlPsVXd/b3s4YzgsDNxlAFvzWOgSjneFfjQf\n5xAs9+zJ1mGuZXEwBgE5zhlslrnQZvP2cMqUPA4LOyg5HIgll5eNM3J7RX1d6soW86g7ZFGMWmW6\nV3H4RawbfXLg3RiOMgfKCW06vTqOrzu6mA2NakOMRjU3Qg6t01P6/yJs8OmsbDNb0ToZ7tL6Np7T\n/7fIad3AKdDEOTQ8o02ixAWwBedKqsWlfpdsYnham2mzorHYRNml52y7qX7Zoo+LBR2S81x8S1X1\nYx1nTJqxzkzqc+suB7ildrfINWaqWwFlmBCW+T7rUqIh261v6rkjw9g87u5Eg0sGCjDthvrfONRP\nVbRZz7HZrWzpkhEl3ln2rTet8bl5Xc6WWl/vj0z9doC15aUljcvExJyZmV1uwIGwVxflQkNcEA9w\ngQ1XRcDy7VnVb9+I6nVsTOP08vP078gZMzProUA3ixMuIu99aT1n7zuP2s4zetZ1FE7GWnrmuSuy\nndmM9rpaUZfs6YYuGj+Yl60+OtCFrDKpOpwt6vL/2IretbUV0GYUDrjoNbO6IG+1UDV6VfPy8gHZ\n/nGfA9iQDhjnvs8F6h716eSw5ti9rEt5+EJ61L/rqd6vtnXAyu9Sn85s66C2v6TDZv4h2dIby+qr\n5it6//Csxj7YEufLo8elfnQV9cBjL6JkuEs2OnJeB6adll2PoKjzvDhdJj+q9t1scFHep/44sqTD\n7Hbqi2Zmll38MTMzu7Wtzx9+kH3j65q7l7gE3VmBx2pWf5//vvrr/g3Vc7n5DTMzm/gx9e/kN+Fy\ne0yH9Cpnge+f1fc7XNiH3nPqbhu+8XzKnrxH7e+ekZOqc3JO9V5X/957St//1ss4kfbrfacqmsyV\ns1pb/mKfLsoj8zrLndrQ5y/U9fO+J8RtVPC0RtwYP29mZosTmkOPLm7Y+gHZ/+Zl1XEoJT6c6k05\nCvuP6Vmv3pTtvSf8mJmZZThPXc3rUnBqBc6YYb0rUdPvP0hqHj7yiObpXyzr8Lzvx9Uf20XZ9ugb\nauMbF9UH4ROa94+cuZee25lTpu9pX/FX5Fzpo5o3tkvr1+z9cv5kC1zsOBN11zWGSxs61EcbcAWO\nybZ91OnKBfXXrqO6cFk0p+dy5lq6qe8Xiprbo3OaO/m05sDVl7TObG7JNqb2y1njuF8cp5rf5TyJ\n8/vWdX1+fUFrR6ej9XEAB04V53lmWJeZ4ZLaXWvB1XNVY++CnfmybKiIWmFjWePZR42vsy1ba7Iv\nrMzrvS0u6nmcR9urN/V5ON4SrNMHTqifx+bUropz+hc0Dn6oteMWlygzs7WlVfMIsE0f0vd37SXY\nMa61KcVZJ4HzaIVgbL/XsJ0WdxlOZByfJDxz3G1ckK1DACmHsyTJWcYYoz4qORHB0gznwETImYXP\nD+AqzHGebaFImSDY5mUcVwkcJcR3XbAzH7ogKypJcBAGjtuPc1zKcQ524RTE5hI+gXDOkRHn4BwH\n9ALcKX24BnsEG3IEb0OEFB3HYwQHjnXg9eOcmIJkMuJcmoBzpku90zi1ely0c3BkYsrmcf5Mlhwv\nJ/VIONUo9UPXOcFwvCIMaQXH7xmofX1UtoIuSpGld8aZ6XFWmhqVDc8MycF54wdaW3afkC1zPLbK\ntPaTsVkFihLwEuaDHz6/l+F4bHOnvnhOXG6z+wgC47xx7TUzq3e7lrSSFQhkpyqa7/Vtdx7E6cq9\ntc3dqN+Aj3MUW0GZKsxz/jbnIOIuiYMrmkBttAzvrFMrTqnPG6Hev9XW549wXk/AMeUCvqF7PhyI\n5gLhOLEjAsged5RO0vEwcRfDwVZinUoArkjAUUa6zBUAACAASURBVNNnLvkTmv/TnLPX92u9rG/C\n2VXh7gvXVYM5M4RKqquvU9D9UeVtnTJf+tKXbG1tzT796U/b2tqabWxs2Cc/+Un76le/ah//+Mft\na1/7mj399NN24sQJ+/Vf/3VrNBqWTCbt7Nmzd1OZflRx8ryskdbFiVB1lys6L5WR4eOYs3RPi2QH\nb3Cm40ZHg1XadgsGcnI4N3IQ9HRxsmQhU+riZR1m8d3qsZBBflrEuxs2kcBmYQodCiHhov0sEBWQ\nNxCJJSEYdoTDaUhcAyZGgYt2t+Lkllm4IUIu4TQKoirfV3N9jLfNQtjj0phoyXhwBlthEFodbqYq\nvgBHItphA/RYnNIgSVJO6Q70kIfnrAnJm0MVJcr6frnGBoohR5H6sIqzwceb2Ws4AtidlQjj6LHo\nREQOAshZmbeWQI4sGDhniHOCcJBAXtdoZyrnpAVZIEBRDNjUAsY4hye+h+Sg9ZhgaecUgZgMQraM\nD3oLpI3HImnIE/c44ODItwGH9QJj6BAkYQmCXzbdEILkAcieCnxfbTbtBExsA7wxmabqWSYi00Oy\nL8R75LHLOJXmXhIUGE62vEMmUf8em1HWIZT4fsTFOkukpsXmGOI0SzC3tvECZgOHHFK9w7JsNe82\nY5xciW0X2Xn7EmBzPfyFhkRnhfVhX57oP2SpXe7YGZyrNcjRQg4A26CmcnnQPKDJukhDb0LYNQai\nbbiqDTVHZLQTODlJNjEORnfqd1yF9b2SLuW9Ib2nAWHZOpHKQpYo0TCOL57n4TQpltSQENvbyGq9\n6UBg2fZA5PA+v8bBa4HDNhKfmxBftlmXWvRDhPyjgTjMJLWxRxwk0hCpVxNEJM1FzyDWrMsmW/Pa\nvNw6HYHGyvS4HAyrvyq7IA/dlo1lIUwbPsB6OaZ+bG+zRiV2biNmZmuzOvRPnSOyuqZ2r82IMPna\nmto3XVJEKNzW/49MCI2QC3RxXn9KZLwvXJdDYH9bctNHltSf89ErZmZ27zb72UlF5LcS2sxPcgFv\n3tS6X30EKfOFhl3B0bZyXn1wqqcDyxWknjuTOE9yoKvW1Iepx/W5E9jyaZCCD7+AYzCpyFgqx8Vs\nrxaQ56scUOq62J64qAve9kk5cdYamjsPJfU929RYXa3qeY+d0u+1izokpj31YfEhrQPfuyAbPAyp\n/cw9yGIu6nPZsr6XCtXHW+OaU+fW58zMzPM1Z045tGuT9eOQ2rnZgoC2qb58mSPNBOtmte28zjsr\nLW6+a9c1F8+eQTZzRe34SFXOp2C36v21LdVzJaMxruY+bmZm/mtK79721E97LmnMV3bhPLqtn3eG\ntKYce1w/X4Rod98tnNf7VP+Jr2t8z42rftn7tCbdhA0xv/kSLfi0HT9+yb7c1Npy4COyjxOvyZl1\nc0b9v/UXcobtPS472Q/a4qsgXYezQp2MviKk1F4uRbeG9b339uSEytyWk/DVsuzsoWGhQu77lvrr\nq35kx0CcLYJkvqfO/GnfNDOznzzLhfQZBf8u/pWcMJVJ1WluWD/PEABo75ezYnJRztEEEd0Je9zM\nzE5dUN1XkcQeXpRDyZHon5tWnR8vy/H48k/K1u3/sB2VLRyli4tyLmR8rRMRgZF8BQflfiLCOMkX\na/re8ryc2Wnk4UOIaocdcTAR4yLIj4iLVR3kYQ5J67FhDX5uoH699gay6teETpuZ0XMyQyAbeU+3\nqbHZXlL9G12kpZdumplZEpLWkf1Cjkwc0towVtLcjAou8CYbXjwvNN76NT0/yxpUKmnOXr+penlc\nwFOcqXx32QEd52SF9+0heEJQdmuLSxJoZEcwPDsrO8hkZHvtQO3YvK4L7dpNrTErm286ZdKFvo0d\nlZPq8H5F5Im5WG9L/fH6VdV38zZE+kSYKpCd76TkQCyvEqBN4Hh35Pu+E1jgOOwkrzNIGnN/tCKB\ng+0kSAckkJ2gRt8hRCIknjl3piDC9bhjBdwhkqyP+SIIeBDRPYKVHue4DH3dxzmT4Z6QIADeAmle\nxFvQJ9Dj0LAu2hdBXu1zHsyUCLL2HKKFOQOCPkg4olo9xuP+EIBCTUCDmuwU+RwIJAJGA879nkPS\ngLCJuNeUOIs5FMUgVL+0sE14gO8KnnjuAs+ADCA+zmd+OCshiROtHb6zoHOf+0MGQZJMVbbs0V8p\n3tviPpW8pbk7f0NzbsoF4nycdQSx05wNR0bUH3deE1qjPaX67zmo/WvQeZN0djg7bJ2gZ5OAD/oE\nVpzjsMX8LHE3cHLaqazqlErjXMG2+6xLXWwki6Oozp2h5NaZg2rD7es6AyS6svVCDicOYIZ6Cwcg\nd4UhhB56oMrKY2QhODJkJ5HtpLozbZ7HmWVD+0CO7IFRNxkhDE9y1xlsqH0JIwiKkEUZ21ioB/wO\niMSRP9/SeTM7rfVywFiuE4T8UeVtnTLvf//77bOf/ax94xvfsH6/b7/xG79hx44ds89//vP2hS98\nwXbv3m2f+MQnLJ1O26/8yq/Ypz/9afM8z37pl37JyuXy2z0+LnGJS1ziEpe4xCUucYlLXOISl7jE\n5b/I8rZOmVKpZH/wB3/wH/3/H/7hH/5H//fhD3/YPvzhD+/45Xn4OAArmD+QZ6oNT4mH17NK5NtD\npi10sHu8xV2icJmmmtPAa5qDB6MKsqYG/LKUUhQsQX5n1kUi0npvFe9xAhjjFrLCw6QB9IlYdwl5\nO89dn0h0md87QOt6pEWVG3htiTB0gFmlgDoOCvoZgcgZwPvS28L7nQGp4+TrQPY00botdolIk6rS\n5vl9M4vo5A7RhDIe6RYu6ajhkBTIwBL1DxPqqzrQtQzpQHm8kw1QAy2T96/UAQGRcmNLzqdzQRO1\n2WnJ4tFvIYnn4wnOMoYp6jUA3umBoHEcNkm8lgOX5pNxEQJS3/JIV3su59RJDjroLjm6aaTxkE0s\nEIlNEKEYkKeVBkXQgUOlRGSjh7fZJ8WjkEUOeaB2eKAiSkmQPthO1MvTDuCw1DuCtygXADNzkQbq\n1SfnNw1MIkOurQcnTfOuIre+F4KwGYA6sSapdmUiE+RRdYBkZ4FrhqR15VxOMJERj+hVAXvziMZ1\nkfUsEC3rdpH/dPBdIhFh8k1Y5duVRA2kDEgWjwhcFdhicYz1BIScH7jcfBAfjMEqnvc0uf+DGpFQ\nl98MX8cEz+sX9LnspH4uNEkZIL2yR172+pLmRrCItPaYIgMe37u9Io96tap1LSDVo7GizwfAPmuB\nIqVJ0hNtCr6NBPwiNda9IvVHJjILp4tP1C7dQkJ1yEmf6r0d1pOIORY1iZRsqF3lCUFrgw79RHSs\nQnpWCpTDOmOXJ798ZEgRxpEZRe8zbs1JKRLcJIKdYr0DMGlDRIKLu+Da4b1bwN09p1O5wxJ+Vzab\nvqUo0coB2cvIBpw8+x40M7NXL6h/9pxUhD26LtRDczfje0XjN3tQ/VadUWR261XN1dklOGdmlY5x\nz5rq/0ZKketl8s5TJ1Sfiq8UkUZ5xIbb+kyJaPiVmp4xVhbUvnUbvqNlOLr2KOp+6apSNh5qg9Ka\nhnftlPKkh+/o85trc2Zm5rfUt4+YEB7nVmQbFx4TSuihC4JJ97cVZZ4va8GYX9DvQ039/fQUnAXj\ninI9kBQK4rVLijLvCkEdAbRpvaI+Hx5RPVp5pdckmZtvLCutaf8epWAkl2Qbb0zIVpIrelCQFmLj\nSFtR/LW8ol7+flBWm7LVQ7vfOoX675bcV2T7Jx8S/0kPCdoLJxQte/6MOFWKl4XSmCRFr9UV2ik6\npej83KZs6iW4AG5eA05eU4rHC6Fs5MimUFb+n+t7J0w/U7vV30dzoMv2qd9WU7KD8lXZ0NiW5tr1\nqffcbUN5adiql5USNHlZ45Gv63kH3qN6n5kWr0uKlMn5RUVef+wVoTxaBXHwXHxYdnP+Za09jx3/\nh2Zmlma8/jyt99iz8E/dA1/VE6RblYcttaD14SfOyt5Xbmk93Pdx2dLqDa0Pt+pCmJ18/5zaVpBN\nnQUZ57dl08fPaJ5dHBLS5akt2fgPKkLpbAyUUjV7+G/MzGzvutBK60U9f2pcc2TkJSEuvNV3ht41\nX31vTY19n9TuNEierVW1vU3aZgY4aq0JT8QQY/+UbDk7qt9z7P3dVfXT5W9r3VlCzrfHOjy6S59P\nZWRbDTgd1i7pZyrNmYU5u3lDtru6IERQBOrYITgb2xqPAiiGXae0Ds4dmFP90qCkt4QsbcMxc+um\nbGVjUXMxM6F1bmSIM882/QIyMkFKy8ChMUgvyo9obufz6r/JvUIMlfn/CY6OBc5ENSLYGxta+5av\nqT6tDhxkm07eWXOjMvomGmDv7AGbOSC78bkX3CENefW6+q+2pnZlHGKWdK0MkfCdlCapC04KugiA\nosN5JwKxnEBH3OPc1YGPzuMM3ySN3nEPOi7CFNH/gDaGoFxDzmEhiGojlbrIGSJw58Cc40TR9/sg\npFOkn3cc9w1npB7oiRRnmiKIcpeO5c6fPtwzWYeK4tzfHjgUMec8NvkOaU8F+qnDOTtBfRxXjtFu\nl4rtuSwI0pGy23DvuHqS2tdHMtqdy33uCxHIIJ+7Zoa0UJcQ7YHkyTmkDudTh2AJHL0ASJduAJKJ\nbt9piUCfLG1ojVq7JhucmHSZAKBA4FHtci8JQF1McvZKcicE5GxRiXsMa6dDXw+tKlWvO0NqTvvN\ntW+Q9S0bZu/yY6bbyLNXSfniDG9DoLy463X5nJNX75BVkCJlrlyFrwjUfR2Ow1Jfe90Q8+vyls4C\nxpgU4ZwZhDqrDDj/DU2ozQ0aG/Yd6ytoIpdK58PpCoVD2fHT8bnOst6fGCMDpQiPE3cmP9S+tNXl\n7gaye5u9PgfC3W5wx5rQ51FHtxtwYz32xAdVzxBOMSTAf1T5e0lixyUucYlLXOISl7jEJS5xiUtc\n4hKXuMTl/1t5W6TM/5+lU4HkioDn1hV5vKf3KZe1CaqhQfQ8CY9HFtK9sEqeHxGULG7KMHDeP3mw\norw8VEMo3AQJ53qHo8FFkOFwGaRhBAeVUBzgmYONueKi/3iFnWdwqIgXHCKkPp5/HIYWOa8rXtU8\nefLNBhwJcMVEA0U4yqhytOFsyOTkgvNAZbTgsPFq8gg6pvKIiH+qCNmXn7JkVt7JASzsSaI6Ec7P\nIgpYKVBHRpSnDQlSheh2O5A30OvreelQfePycqNQUaQWyJMqaju1vuo2BMpop2UAO1IKz3aevu+m\nHWEvUX0qEEIoG9KeQYTHPkueIwihdPMua5Q+7zz1kPilyItO0pcGEqfPc0NIYeCSthLP6cLNkrkL\nOIFLhahULvd3Fb3Iq+66yIJ+76E0EEKKlSKnN+uI3UBtpPF0dyFOyzCgCRBDvUi2ETJ+CfIgc5DA\nBjlyZpsQu+WcXBJzy5xCAQghntNznDSO95mIhA/iJgs5V8Rz2vR7KSXbbhPByXZcZMh4D7wktnO+\nkDZE27151XFPURG7oVl5tDtVh/qC+NZFX5jPg6xTO1NftFD7MYgFh4lsFuYUWe3DVeMTLVpaE9Jl\nc17zc3gcJMuWGlW/o/qVQfhNwN+QGtH7VtYgpW4pkjpZgnOEqEiS9SsBciUzSmSCKIsH6Z8P7w/0\nD3eJyvwM65AL9G3q+XMVVIWK+n5jXetvb0Wog9Ga5sjopCKW+/cK9dACodJYE09FeQ9ElW69BS2V\nI6JRZP3uOeQNrHtlBj1hGq8Wtho5kkFIxHrMeWdLCRTYBr13tpYUJ8RVsHJIZKrHB+qHFlxer25r\n7TrEuroF79YeOG8SoCK+lZVt7l5SfbfhNamDsjtUUP1Wc0IbvJEUOmImVGTmxrb65UAbJKSniHe3\nsGL9+4Vk6BOVSgWgayr67qH9ir50Q43JQiRESNQR0qF+VFHuGXgcXrku9MDYg4rEVbbd3igUQn4g\n8tXUmqLoubKiz7dniX6vwDu0JJTBYZQZVncrmnzPddmANyY+j1dyz5mZ2ZE+JPe879yr6vvRpGx8\nX0t9Vbmp+t6q63mP7tcYn9Hr7BFUj5YnNDaFPURIV4VOatdlAyci2ex3ttUvy7NC2pwL3hnR7/L7\nNKYrfykulcZTmkOjL2jy3OmKpLY7I8TM4IYQQ+99SuPi1PkG5/TzMHt9sf+ymZmNPKbvrdeFgFqp\nCKmUfVXjsOekPv/s97SWPP24xvFPv69I5yeY8zcW1W9DTxN5/s73acHP2o1sx9J5cb68zlxrHHzV\nzMx+fER8Gh+4oec8B7H8g7dkH39d0d8rs0KZPDz+mJmZXZgWJ0HxpsbRL8hOxlDJegqlGxtVfb9d\nFOLpsfkLtj2jNf+PE+rbo1dUp4nntS50N7Wu9Ke0DlxF5eelBzQPR27IZmZTIgauyQRtDt7VS9Mo\ncF2XSkcJlbjlq6r7ELZfe17z9N5N1Iwe0Lp/IELF7j/YjkrAuW5iWs+bPiHS6SJ8cgMOBdt3ZKPz\n85oju0CH7joi9FK1oj7zm5BT11WvW5fV1y1InCtFOF0eVP+Mjen39UWNwdK85o7lNFdn92mMKhPa\nNxYva39yyjIDzr9OtSTPOr1rj2z5EMS5XdbBN86Ir2jzjt5XazMH2btHJvXeMuffJIhPK2n9HCmD\nkOSss43AxgT8GTmQPT24F9OjoIPz7Mugk+sQ4C8vQwyfkB05YQxDVTAHj8boPtnyGES+ZmazD560\nCBWlzQ397HQ1dweIMjh+wulHUSrjzNLt1GynpegIZuHFGHA+TcFPE7poPahah54v0BchSBvHsxtw\njk304c1wKqM9kMpp9kjqbkn1TZ/zXgukfJ69yQcBHrBn5TnTtBwXIHelqMCdiWyCAQjwJOfGjCPa\ndfcHEPIen+eYdxeBn+Ucn4BY10MxJMqhWJYC1eyyFTi3Y6qWQ4gkAVLFcg7xol8zEBa34H70QFsE\nHZRyOQs5gYokXDsJ+iMCOZ8GfdynPdk82Qeo16bgtsw7ckh34EccZqfFkVZbnfsDqLKhiuZiA0GP\nXe58nUORrO+QSSCg4HLMltXOKmfZMiINuSpqjKgcjmFvmehN9FdxesiClG+tTZ7F/HJI5yR9G3Do\nd3w6DVTkvANadxydT7qGDeRB8zThdEFEJrVHP8ueE5vR87Z9Pa+S195dhij3DmqlldE51Ze73sqq\n9pzqFKTI3Em8tNYXRw6dTKkeQyXV6/Y86LOW+mAE2/CLCP3UNJbJgfpho6Y+nGHujY1qXTjPvlb0\nIKuscifjbr0M4Xreqefl9JwfVWKkTFziEpe4xCUucYlLXOISl7jEJS5xicu7UN5VpMz+vXNmZgbF\nglVQ8nHSVumkPNlZvM0N1DgGcD6kyYUd4J3swCVTgIejH8qTlb0rB4emPPmKPhwKlgThQm84hvBE\nm2hlWu8tIaXbRsUpiZc7INd02wdBA49KGv6MPLlqjuna5Zsm8TI72boiMm5boFN8oonlktrXRu2k\nBAIm72SSm3p/p+RkhtWOFgzwlTCyVos6F1HfgRMmjzxXD0+756TnyiA+6ormtPE2lopbfB6PfgSi\nA6mnPtLXJXLOQ8/x4ODBdn2+0+JyJFEqMCc57XJTQcwM4FAJnUoTfZsqgJwhmOLym/00vBaw1Pd9\nPg/Td6rrfuf5juWeqL85Ocm82p8j99YiJ6sOMoS/d8iDzpCDm8EGB/yeALXl2OBzzl0KKsA3Jyfn\n1I/gX0IeOSJHOE3IICAPMsrBYUN7ooKLhIDa6rn2wRHjw5eCF5qAiIXY6AAvd5rIQLqJdDhzq0Ak\nxUCbhR0iGiBhgkj1wsFvvkNFOFWnHlw0Djqzg1IgJ3SmKcTG1D5FGSJUibaYl5t35LHOpl00BGUw\nVI88Io1hoN9HmWdTSDG3c7LljZ489htwFdgdIgCoC6WHFJ1w61hpUpHC0QnUMgp673JALj9qb1FS\nfTg+LI9+wOfGsiBvdmuM2kSBBkSXNohApFZQAoDnI8sYOW6pJPLHebhkorJT1oKzYA3VthWUxcpS\ntxihf9sjRCaW9HkXEc6R5728on7ZWhZqoUTO7WBM9a+hw+lf1+cmxhUJSStQbq0bSF231J4u0J7m\nCt8b0jjmfYf6YnHYYSns01yYqsk+Fk6r3jOTaleZaNXZaT13OiGk1XNXJI/8REJokuK67KNFpPja\nQ6rv8ZeFzvj+rFRXDl4kn35W7706rAj3MU+R+carc2ZmtnhYke57/UN2+rL4Me7PKOqUhCPmZQAf\nwZDeOf+Corv38+zlg+IaGVrU9y92iPxNKere8NWXiUP6/c6G+sDLijslN0vUal5tniD/+nVU9g6n\nNTYXxzX2e2+rzzYOCBHRPC80kO0SaqGMktZiUVH6A3eUK391t+ZQY1x9f+wMkcVR1X8BtMCpU3rv\n6rx+5t/Q3OnvE5rr0C3NyY1RRZ0C5ConPEXFD65qbt5rQhLttNQ9IYtsSnNkCOSjQ+M+QK5+KimF\nm020XAc39J61PUIK+RnQta+r/Yfer367c179Ul8R6mPiA1onl57QuO5/Q3//wAc1h26/LLnm9B4Q\no/Af9TgrnctpvG5X3mzn/MG6VVOygxD1vdSk5nIx1Dh0++qvE5H6dbmmdv2Do7K3czdl87Xb3zEz\ns12Pqz1/ndLvH3ld9Tkyqv75+qjmTHpY9jX0iuztK7W0nbygd089ctnMzEa3hWQ587T65MdCIcVu\n5f7YzMyeOc3Y3oGDZkRjevnGn5qZ2cdWhUzptjT23xqTJH0GVaBjD6rvOl/T915paf0KTmndeeBb\nep+BfPjm5ifouX9vOyleCMIHNEESbhmrIqmc4EwAR9bcA3p/CenXzqLOUOdOa4y2a0KA9EHGTMyq\n3g/cK7RWebfmqlMTXbuBmtVtIXHyhKanT8gGZo/CPwV32LS624rHtS4liNRGcNh47D8FkOcBym3b\nt/Uep05a3g3HS042n3P94KL9A9mUD3/F2JD249KE2pOB96Lcl81UUXPyOqpHs6U521zS+DX7zIGr\nQvWtoVqSRHFnzz1Csowinb3egsOsqDkxfUg/g8SbPIYb2w3rgLiJtkB/1LlH1GRvxXHZbqWsRTcF\n6rfW2zmHWYRkdA6kCscj68BNkgL5kkM2uMN50eBicfwbAQclt9NlQG8GCXf+RuEGZLpDovRBz6bh\nAkyC6Oi1HfchiGvQ+B3QnzkQ2+mUU4LVnOpwzo5APIcgwNPUM81e3Of9HfrcSWInQGmF2KpHNsGA\nNAlEoyzkHJjj7BbApZh0UBnH6cJ5NJ10iCM4VOi/LO1NGFwzoCfankOggsZy3DgO2dRE4aus92XA\ntA8aKO849VJ3h0RZKAJ97fpxpyUBL18IV0+uzHO4J+XgXfXTYOtB1Xnj8L3As9pEhrYPx2OXuZ0q\nqeHDRc3drTXNzdZt1pzBm2jjcm7UWtnIFi6fVh909MxRzmlJ+IFSedlExofXbrf+HpBtEMGfOQCB\nPVGGDwgESgoFMscT5MEN03FKiSD5suNaP3ZPCLl3bV3npvwYttAC4Q2/ZQU11DpS10Vs1AfJgiio\nZRLaX3JJnaGaIOaKY+qjFOtUF8BfME+9UfBNwO0agXTO1tmTyarIcc+PGMMsfEsNH4R4+q2xMDFS\nJi5xiUtc4hKXuMQlLnGJS1ziEpe4xOVdKO8qUqYyLk/TbgVSLEwRDcvJo5Spy+vXgnumXHA65PJs\nt4hsV4ny47gzD+9oCu+xgXip5RxfiP47jSssTVQ/Td4nhNWWJE+v3odfBO6YEszhPZ5bhPOhCeqh\nmHCM3uTuJlFdIhcvM+jwd72nAyO638VrCXohRQQ74P0hnDEB6I0+8IPsMF5wvOLBADZocnEblaSV\nfDzWjm+ihEIMbORJvpMgx7CBBzcHi7kRMfT7ICxgKw/hvyE18666UQoG6wgFnAL51n6SJNMdlgQh\nhn4AEzeIEK9PhCGCcRuNeS9yqAONFYEE84j49mAxz+PVpastRAHGqSn1UfZKgHrysakCnC0dx8VC\nbqwRUfAcJId2DpxTmJzUAJt0iJZ+AX4kPPwDPOOOeicFm36biEIfVv4cHv/QqU25YBXjmwJqk3T5\n1kQYQpdLS+QjIEoVOCUh1Jz6KEakQJkk4UPqd1zEA4QVkYECEYVtOCSKkZ7XLhJBdTxOjFsImi2V\nAcED1UWCuRG8A39xARttzCgytpFTn3aYD7VlRYcH8/KYe5OK3FVHNZ+2QLRFHakwlJZAM+1F8QWV\npLVQkdYaz0nCy1Npa76Poy6UGlc9ukRn0uTIehkUbJry0G8RiRxBbSmHqlJAdGlz4abawToXYSNb\njEEO1FYWlaiAKFgpqwU1mNJPr6cIZFABHTeudQ8hCKuvqB4dVN52TyrieuCQIgrboKYWN9V+P1JE\nF3oqu0HktrWOagW5s/m8+rcKyq5DdG50Ss+f3Et0B1TGOmtExNqzDwWv9DjRnxKIRDh6sv2do6nM\nzC6s6vvpCyBV7lH7XlrWe72MxvU9a4rQnvYUTTpGfvdaQhwFu+H0ubKkAS7x3HP3s5+taZxHDpMn\nT7/kixr3jbVnzMxsz0k9f/iSIr6XimftoX3q6+VbqDscV18/ldLP+qps5NFxjf2thp459R1Fq3Il\nwY7uLQrJcXNTUaYBec0L+1TXVl3PuRoINeBti/PkyJOy/ecDReGfsQ3arrkwCxpspKgx2H6VvWeP\nwvHhQO+5VFGbyyAVgyUhPkay+v9dV1S/zv2aMzMo2rx6W8/dK8CFte9RPZa/q3Xq/jeOm5lZAwRe\n9Yjm+uWMeDpm2uK/uMhcSTdv2jspub44fR6sa6yffU39Wv3It8zMrH9atlFdmjMzs+x7NA7pLb3v\n4Ijm1p+lnzQzsz2oUjXPC73wTAlOtFMaey+rtejrDfGhnMmLQ6f+ulAU4+taO+4tqx3LntQtEyMo\nRi5r7v/0e988yiW/fI/VPsb6nxCXzMSfqH/sJ7UWbBzS794GyKeH1J8vTWlOXbul7y89qM89/HV9\nr3xS/VI7IuTU1CUhunpa8uzqlvgAHzopEHdmwwAAIABJREFUJY2b7XGrf1dty5bIyU+r7mde1TqQ\nn/2imZnNvqK+rI8I0fHqFEiLlWfNzOzoj8+ZmdnztzVPJ9lrP9RTnfqvCUV1oaU+XLwHfrZxGdNj\nFzR2bVQ5rgu4Zg/nr9s7KUnQtUVU1NpE2zfXZautdVTpOKtkKrKhXkd9tjiv/aheU59mOYZ7FdnO\nEJwu6ckZvicbqN/Qun/nqhBHEejc8rjmUCKrMbz6qvohAYdauazBSSRBlSU527j3BnCtbel5qzXV\ns3GVdb2tOTm8T7Y6s0f169SdYqLm4NCQ6kug3FLwK6VRVW2tg/Ig4t5gTdqchxvnmsahNOqQPHDz\n1Okn7gfDU1q3Jyr66XgDy/CtlPZqY9sEyXr9ip778x//pF197hvmw8vnM45+V2tcAYTQ7gntm1n2\nm6U1cVZ0Nt5aNeVvl0TCHfxA9weg7+FA7KXcXQT0LKhLq3KupI4tLjUpeC/68GbmE27PAg3QBTED\nkjwNoqWd/GEFsILPuTkHd0vXnZc1xn2UaxLsxX3Oax53p4RTnIVTsAt6IOJeUHIIbo5vYeA4G+EF\n5fLV9UAN9DVWzaTjxAERyMHc8XomQ9AInvbWZE/1DThHe5yZwgy8SSBs0tzNunDcONBUkotQCJ9g\nHjXXEBsIWFs61CPreEYHbs5wni5ycL1Lqqnn7LQknLJn2qnZ6v1bNd1xQ8ctua1+HDqguTFeFX+K\n49JxSrwOAeUz16wKarmoeq8tYMPY5V2VMDO77/h+K4zvsYvPCRG83tA6Mj6GgiIcWJ15PXP+ttah\nkazrVBDgF8V/VwZhneDcmwmdejEKWn3VscfdoziCzQ3goURNeCPQ/EzTB3mHCgIFul1nXeEcXYWr\nJozgt0Q9LoSHqLyLu1RPNrgKUnEmAaKvw10u0hj04dAacDfOcO5OZ8l8cTyi/L9vLoNGgzMO0qia\n1Pre2HrrbJEYKROXuMQlLnGJS1ziEpe4xCUucYlLXOLyLpR3FSmzdL1hQ0fNlkmXG0V1xCfqlAeF\nUCZnqztEniZ5cyk8bW1Y2osleQFrDTxqRDCcwk6uKY9cCg6EflKeOJ/n5cjXzLVA7LgcNHLAfFSP\nBvCvpEu4KT2HmiCnGD1z3m5+ndzVYdAWMGcD3rA8rPQB6lJDSXnqtuF78RmmqCzPXcDfPfIfu6AS\n8rBKd+kXBxQaaifNQPd4db1jK6OfJZAZ/bLq0IKl3NG+d2CLz4HWSdHWHqztGfqYLrTugGhFuE0b\nHJs8Oak7T8ulDfBn5BXdcnmLGbTsM0QODPRQkghpx7G1E5kIIxeBUDu6RIvMIYT4QsYD1UT72i6P\nOHTqREQWiM4EsLMHRP8i3nOXroh+dIpfBRA4fVSO8uRt9rL6/wzt6KCC5RcckoQICJCkJBGOAREM\nDz6iDP3V77lIKdX3HXcQXl8QUik+nyLq1sn/8AC17yKC9J4kEZ8sdjEAMRMF6q8ItvwWEfJUi/4t\nusiLfuacbBWREfe9NAo9Sd+N69uXberSImKXaMu2PccVVZSHOr9bv1fIgc3A3J/cwkbhBuiRi1ol\nutMFibd0RR71EN6L8ab6ZriqyFplRoiKetXlJyuas4ntBzekuNKuo8aEekiWSGppSPO6gWJKax0u\nq90oeJFYvr4iGy1OqM9HxuThTyRQtAFZsg1nTL2mehadWhx5y9s9VaBODr8HCqI6RvQKTpz1ltad\nJiimQok5xJgHgdAaKSIZ+8YULR+ZUzSnEYF8xBaSI2pnn3WsQ8SiwKQJWHgrY/p7C66IPhwQ/ZSe\n0yq+GeXZSanPiD/l5kH1V/oGedUdRexP7dfzNt+QEs7+HtwHs4psXy6pn5IgE7uh2jmxpkhsek72\nt+8Cee5wBM3N631D+xXRPnObfO/ETX1vWD+jK/usPbGgdx4hOssm8vqm6jh0SX0zf5w9ckVtSCc0\nRuvHVdcVp4S1IOTHUELcLzMlzYVUn6j55PNmZrZrQW1ZRZFs12khMG6kpRYUzWrsyynZzKWqkB99\nEBHda+q76UWhHFqn9P0ReOBue0JsjBHR7ZVBupjQBY2uOEyS9wvBs3EWdbmB+vzYUdlcvqM+TgaS\nZ+rcEZqi15Ja1ArcDN4jat/ULtVnp2XyWdlsZxYFCiKv7eeFAtgy1fPRj2pOXbv6ZTMzu9h8wszM\n9m9oLnsHZRMtkEH7z86ZmdlXr0sl6cgR2cLymvr7o/AvLbwOkmavEEGFx1Wf2qoQKVueov9b8JR0\n1rSWfP2m1qpPmVl071V79HmhRZ7bEgJqelr9+N3/R6iJ0Y+qvTdf/pqZmb1vFuTUK6rnUxn159Y5\nqTydQ4GyMwaf1LOq51ZJ/ANzA6G9xsZlp2fzqu/TL37bbumR1s6qjX86pbqcKsjWz5mUuy7V1Fej\nQ0KGPPmS5sCXt9Wn4w0hYp4EodKd0ZhcSsrmywWtv7uOiWNm+kVxsqSP6H3r9Z9Q3Z6RjexaUt+1\nlv7K3kkplGTTCdb90WGN5cIV8SptLMn211nHLSGkTo9o/3hR3ztyUrxCIzOy4QAkNuBRu3NLY7D8\nuuaYz544YK+entN79913v5mZbW8oQl3bVHv7rLu1m6pPnzNZEvRtAcWskCPfRkdrSBZ+jh5nnwiu\nmPAWCJd58STlyvr+7B6NS6r0w1xf3XafftH43N6U7Y5mNDfL4ygxwsUwcVQR+RHWhjZn06EhIWJG\nJ4hUlzhLOOVKzmJZkC/dDdnmnSuvm5lZffFN1aQwSlmCfkzApzLMeFTZN4emhQRKZhkPEPHtt+GC\n+NvFB3HhgdjoZrgzMCbp/A+fR32Q3r7jluFcmXNqS3ATOl5K33NIEcYSFNEg0P934RDLoyLE1m6J\nMtwr2/qPTA7+DFD6IXwfQU7fDzgXJ+AdcsjrCORN5Pg1QZCHkcY07KoeAyd0GznEO+du+ENaIKxT\nnJuDnEP762c+w3s4R/e4E6ZBlHRB5iTgK0nA/VXg94A9PIOSY9q0Tnbg7TS4YFKgOQK4ulI813MU\nksxNh6Qpwi0WgbJu0m8eqOmdlhYcnFMTqu8DJ4VcrbXJ2rihNfC1i9pPsqN6fg4USsqpX3HbTILO\naHuay5O+zh6l/XP6/BWh4BIDEEKJN3n5wq5ng0RkCyg3bsMxOLOf8yNqSAXjXPu81pnHP/ZefR8u\nwNsgvPMenCtjjuMVNJHjFuROE8C14rIcRqqq23iWTJhIe0+L+ejD9WhbzLEApS7QXx2H7oIftLOl\neo0O4U8Ygn8Nvs2A86Sx3iXgZh342nubfe1He7Iiv23BYxSRfVAEMdMK1S8ZuLLGZvVzvq7zccSZ\nLJt7U/HqP1VipExc4hKXuMQlLnGJS1ziEpe4xCUucYnLu1DeVaTMnaWG3WNmUC5YJYUyAR7pLpHv\niKh/qqe/b4P6yKIU1EOFaIAqSZ5IRrcOSzy64YaHyydCnC7gbYXzYKsgj5zXlZcxTwKiownx4HDp\nwpcS8DPZQ73D5SUS2fVQynEM2AM8iQ61EBSIqAbwdqCr3ifq6ZXJn0w6lRZFOaOmPP9hCv4Tctic\n+ku1ou/ViED4QcvSDbUlqoDQAJFAGp7liWpEoH8CPN5ZPPIJEDJBQF4e/BU10D0REdFsVZ/fwhNr\nsLgPEZ3pJN6ZJ9k3cmrJC0yCjPFoc99QFQFx4YOkyRHZ8xijFKiIPgpW2YTjeAHFkHFs9EmepzEp\nwNKeyPww0scrkAMLH5CXcBwG2J57PhGRFInWd5VwuijcOIQJCgcJvMF5pxblIhBERDJ4l9tELFJI\nhgXktvaYI6m+nh8MQBrhDS6BfInwWrdgxTe8vVDXWEB+ZECkOAnLfpLfW/AjlcgX75I7nEOVyzGq\nRzzXiWeR9m7bePgLDq3ieJWIdhUyO/cXZ0hgbrmcUxAuA2xzAi4m241NkIs6QDnM5SMnYdQvWIa6\nwfGCQlQe2wnqquPEuCJ+1Wn9rBPNaYIsWUOlyeXYB00ibxuaW7Mz8ryP79P3Nysg+Br63sgeRVBH\nQfok+fsUqkzTqPmkiRxsExVzWc2NvupRIkLdSpMXTk5rG9W6KZebD4eVTep9W+SZb8LBkMI2a6v6\nfqUEp0FeEQXvgPplhHznHv18Z2GL7ylS6oFSS5PXvd5TJJepYbsPqF98okItIjNrHaEq+jW1sOC/\nqaqxowIv1WFf39+8lxfeFoLpUig0SX9OCjPeHa3Hjd1CLdTP6f2PHZf6y1JCUacaCKKwLuWeFwc3\n1f4bev7xXRrH1Xm140Bd/dm6qUkx7EuxKHz0lo2/IJu9MQEScA7b3FCfFR7XGFaWsI0l8dNcL6sP\nW5f1zhPrGoM3BEKwO6Gixs2G5kLtiKLvD2aEcDg3orGpPk+U6JRsf/86E/eK+vriKa3rs121/bWz\niirPFRWlnxg5a2Zm378hjplSTrZVOyyESDD2mOq/DJQQArcaymH7R75rZmYXJoXQeeJ12cjGrGz8\n8pr4gLZLqBJtqB69EX3u4WXV84Vl1TPZ4HCxw1Jmz82DWDxW0phfrGnshtJCc7xxSe3o7RUa48Fr\n6qevnhQyJ3eHKP3E02Zmdn5TY/7kjL4XNtRP+1F26M8oWn/7GdmioWCT6agfls/r/72PKZJ67DXG\n6YrqeTu3cLcNxwaP2Y2D8K2sfcDMzF67JZ6AzCHQbd/8kpmZ7XlcCKlvTArNMTOp516aly1P5sUb\n8Ph7VO83bn3PzMza00J5BHv+2szMzpxhv1/6upmZzX5I/XC6/z6bWBJSYmtBfVLyNL9fvEdjGLCe\nfKCsefnCqsbgzFNCJT18WWifyxnxBfkdvevcBe1lS6fETzSHKkjl9lNmZtY4qroHr8qWlz8pm/9Q\nKL6eb157v+q6+taRy79b2qAb1t9Qu5bTQqttLAjZ4qL6WdZtD7jbCCp80/dpToxVtO53+XsqS3Qf\nXrZWTTazDXq5kNXchdrACsNaAzzW/9a6bH94v/6/6NBsNdnSxiaoAOCzaRQO675sp7fN+p8Fzcpe\nnhpRPfce1n5Tu6M5VwcJdOWSUGuNV1mjPPj6OM9HTZ43ovqPwLm2PdA+t7mufWr3DHInIN/TnG2y\nY9QXNLdDbObhwqnd0tq1tHbTzMw6cCkWCnrefU9rDpqZPfJjP2a9LmdBrgVVzk5doOtJkEhO7bXG\nGSkBF8ZOSiYPuh5umSxn8x59n2fvaw2cqhFneH5Pe45Dheg6Y1XCRswBjUFadAYaCyf+k4eXzdkq\nwBELfBAvILB7oINznD9DuGgCeDDdezucuwcgY3KcB53yV5jR5/suK4Gxb8Pj4Vc4d7c4R6KUG4UO\n0YJyJShlS4GWglMlAYIGgL+leA/0RJbgPDzgbjjgPGpkEXicW/tO5cjdHUH8eI77poeaXuhQGSC3\nOafn4WDpwM2Tg3vHIfFzlXfGKZMGAbW+rDl65arWlH5fc8XrcIfbECrFD7V27pqAZxDe1eaW0BgB\nc8RbV72b7Osp7jNJDvjdAmvO36rucmfdHsocsfyI1o8GHItt+nqYvg2SWk8Tof4/KGmsUqDCNm+o\nLdO7dQZIc9fpY7QBiG0PXiB3t/Lyeu/Wpu63UVrvCeEhKqHiVGSZ6pO10OzqfUnO52kQKWFK389w\nbva77idIvm34kDaxYfwORdrvMl4aW/QZd8Fh7kgD7mTb3IX763CMoXKaHtXZyCnmOuTkxLG3Ru/G\nSJm4xCUucYlLXOISl7jEJS5xiUtc4hKXd6G8q0iZRFYeLhxu5oMcSZNLmgnheiiTF7mJdxUXd5qE\nv4i8uDZsy8W2PGoFgyMgIY9ZCQWLVBdWaJNHy2/C1lyQCy6XkIe9TU5a1AGBg5ROGj6PZsZxyhAZ\nwAMY1UB3DMM7ArlLEZqMFPmiA3hKcjnq76Nz3tOwNMnDzNOu1jAKSiABcgm4KdKKinbx/PtN0Afk\n6HUzoUV5p3sP23cBXp40uaUgYELy+3wQLiEIhmyQpY16iVOkKtO2kO8P8PTnyUVNFfHk4/HO5d9h\ndJuoDZQr1kXypYs3tAwMwc85dnmNNYCZu2z1EVrxiQJ9g8d7gI0FROPTsJL3HeEPSI+s4wEixzUB\nmsKlyKZRKQp4fgZ/p1OJaqOGRAqqZYggONRVqkseJP3ZzOh9IfwaIbmvfSIfGWyzC9Ik7Tu0h2M0\nJ++RCrpIgFPsClNE95N6f5G8zAFImgERBQ8298CpVMEynyPH1meOJZIuMkQOL0ihNv2ZI++7D128\n081pEeEomRsPuG0GO+cLCYnKuIe2V0Ah4UHvjpOD3lZYoI9ymEe0YxvbHN/S54aGZGPhsKIV9axs\nI1WBFwgER4Ec2+4wNg6qawubTKQ0dkVssEeObA7lhQKRw0FZNriASlQfroPqsJ4fgRrqEl0rokCw\nBXdUpw7iBzSUa+fmpvqhiG0YKLVer8b7FZ0vTsAXUdaYNVBs6Cyq/3JZFMcAHXQXQOAQwRyaU7tq\na/p91VeExW/m+ak1ZRx1qend8HMUWXPOKYc5V0Vtqar1d50wTsB669GOCPSXU57YaXn6FSnJ/GXx\n35iZ2e1FRa7L/kkzMztEXv0rVQwpOWdmZqkzioTP3af6+S+rfsGDiqgUkspRLl5k3zggRIC3pv/3\nq+qvzYQiR4eH1N6gJ5RFe59+b22t2K1DQkJ0bisaPenrHUuzRMzaGrPDy8oxz4yoDeMnNL8OwAvR\n2hDPxCAhdMGJBfX97YTG5L602nx7VAiXfE68EGP3E01fcCpKRIv3CiHx8Jr2mn5De+c9RAqvhOrb\nCVBWcyWhFxZb6ouTTUF22leE2AgeEVdJ/pwUHo4e1/Mud4XIKKyqXlfvVXv3L8Db8yBzYlk2f2OA\n4ldfufMX3qP3P7Qufo/8SbV7p6X6mLhvckmhKKI18RAdGIgzZn2vUBbXJoRcOZpQOy9+QLY/sf0h\nMzNbKWvsP/Scvp9+SoiXM9+T7e69T+NcfUacP62mxvu+Z9X+Z0vqn+gDmtPvP6o1JrsmlMGFkmym\n9z6tIc+EN++24dJ4zfpn4NeoC7my8XEhok59W1G6zjHZ+Ks3haao9rX2NDuKrHYOss8XFJm9cu0r\nZmb2OMpvi30hlg5fQJFjr+b0lawQQLdvqd/f0w4t8V7Nq3vaIrJZfVbv8uB3SBX0nWuPqu1PbGvd\nugpPwtBBIckq32E989Rn6wPZVoG9KP8eocbWv6I6PTKrOfD6J9U396cUuXzupmzmHs46F9+r59u/\nsx2VBIiS/hZKNhmtU2mUHUeHZKNDx9Qnk0NqZyKCY2tNffzyK5qbHjwiqWGncKg53FtX/SaPaMxm\nD8tmSihCeqAYbqM6tb6qdXffsTkzMxuragyaIE8yY6yfnvoxs6U1pd1Wf42zH8zdJ26XBOuw19Ya\nMArXWB9eue0lzdFBhfP6puo7oH7lsvphdEbtGppVfxTLWkfrL2rOdzr62fW1ny29IQTNCpHnkDOU\nI0nMZ9iHJ2WbCe4LpbwQSLtmZPtlVARzgzf3ieXrb1jklIVAMXsdeFZAxgI2tgj+xQEKQxbunOeu\nD/KlR98NCqD7M6BxuHoV2nDFcH7q87k+yPQIlaME6kFORbSf4nxUhGPRtYlzZcTemAH104JrpAR6\n2JLaB3L0ZZf35zgTedvcreDPLMIp0wN0nOT83wYp7Wg5PM7VySTPybo7HefZrFOyVT37pCEkUrJF\no10Jx3uU4YUdhyhCRRWlH0tr7qVQjRqAEHfKYgOI+DKcIRIgWjrIm5bglAx8xgWuxzR3yCR3tBT/\nH7AmpTj/9/Pu3KrxjrLvjOcuCcdisqn3t0GmzhyE1w9+lX5F+02qBeIHPpQsXI3roJBnWYPScFd2\nUU7zsKMB41GGf2ViYvhuXRL10DY2tizflb0nQE0lMPtOU31duy70aFjRszIgWUJgS77jeoJTL+Ke\n7pAo2T6cT5tubMimmAL9A7er1fW+sUm1qVvj7oZsccidKRqABAeGX2ZfcfSYqW0QOjmQfwV9fv9+\nnRn6y+q7Aagvjrs24A6TKGE7vh7YXEZdalocZpN7tc7UNuGFYi/fc1B/7yBzujEvpOZoWXv3jyox\nUiYucYlLXOISl7jEJS5xiUtc4hKXuMTlXSjvKlLGefqbzjXk1IjwMvcD9Mfr8gpGBTxrIXwXeHWd\nGlE2L896qytP2KBEjmsbbho84dvkEZbhmsig2uSQNwOUYaoNeeaaVKwHGiNEl9yDw6aMYk8TdacM\n3suwDjt00fFrgMoAAWMeKgJ1oo9JeQYjPJBZEDeDkuqZh0E8Sbt7GXL7Wk3qp/dW8f628QaXo7y1\nQd9sD8uTWwBWUwB11MdTHcEFkw6c6pDqUsupzfkGUSm8oz4e4gRs5WEXdY8y+XsNRX18WN99PNI7\nLj65ny7aQU5kgpxQP+UQKOQpglYYkMPqPP4FB/Vo4bVFtShPnnAKBIjxM1/C9mpq1wDUURI+IA8v\nbZjXmHZA8EREELwE3D2gqPLkU/oOoUJObnHguHF4PVw+KRAuPmNZBCXhkePa9GTjbhzbeNw9VIwM\nxEoWHqW2qZ5Zh1iBMyHhgwrJyDveg90/Iae15ckh7oBw8bIgkxz7vjMT3uvhtXbdmaH9Du0Q0dKA\niEqhrXq3Xc4x6i+pxs6XplRGdapAEdKBFT1soY40oj/UHJpnXRHFCI6nLB77NEi3zKQibjnybv0B\nrOqjmm8FlLmWQRW11olabzv+JdW9VAEJU1InFZaYMy7K5anP11Fj2lpUBCKLrWXKen8tQ+5/V3nD\njpUpQc47y6RlyM9uwpkynJAtDY1rTjbSikiODeb0edaZARHahVtqR7Sk77u86ySIoJzLlcXzP4XN\n+3393mio/q1F9efkkNpPMMuyJceNg7LDqiLWeaJ7lQSIGPLx76xpnPIgEnOgxKKifs/78FjssMwn\nxZvhvSHUwsS20BejBaE3vg+SJ9sWh8z4glRGSpHauVlTP5wlf/4gucjXd2kdLy3Bw7IgPo5zIJoO\ndoUqODmuyMytLmomqH/M9JUvfqtz2A4PqU0rR4juLDMvuuqLxiF955X7VKc+FCTHttTX53qKzpyc\nEr9FdVm2f6UvhMVxxvZ19obMuMbAG1Z0un5Vnzvg1BlYf7pz+v/Cy0JWLEwLrVDcVrQ6QpUnD0/E\nRMietqCfmceFKDm3Klu7d0GIlO8/JKTPk9+XLR88KX6K9gk9t7OiPnzhgNAMT57V339wSHPh3rIQ\nJeWLmmOXbyvq9ZovVNJwVSiCnZYfbIkr5WhWKIzqtMYyU1U0bOK8+u35jtaImxtq30N5LZivNIjm\nnxCy6NkpqSDlb6OcOK2fj71OJPpxuFnOyrbmM6r/2Li4Wh5pq91fJjr30XX4n3ahWvVdtfN7RaFE\nft7MHjv/in0V7qHjL4IGO625d+EZ2cV7T8sWoxWtVaMPC8m0tKj3XF6VPQ3DybO+LL6lC49orTrx\nouwmdXRO9R+VCtPD31Y9xg/LDl794HfsWFttTOX/0szMOjmhiXov6dkrB8R78+CGlMD8YdV110DG\nXXtOnCZDFXE5fe9J9dU9pnmz8LxQWonN58zMbOLJHzczsxuRbG78K1oga1PqsycG6rPX94nnaKwm\nRM1OS25Yc2EOBaxxVDaSqN+F8KkVUNQahOxx28zhmotEg0oGhbzNvtTpaP+amtAY7JvUWFXSTq0I\ndcEuyE/4RypjcKaBIrhyRuvb4rzG3PccfwjnR84GHhwsuQIqUOw3VXfe5Wx37Zr6zweJOcp+OLP3\nIM9nTYG/IsM+2QVt4Lc1XndeRaVqVVw2MzNCAh24R2iuq1c1bqnr7HdFj/qCTgApmUXlqZhX/wQe\naAUI7BYvqd2dFc0p+7TZ668t2sisxm8Kzpo2XBjri1orNlfVzpTv4NZE0Ic5YOyg9FBOzXAW8Hoa\noxCuFINDpcvfCeKbt805C8QMVw3zUAtqce4qgGzucq4P4G/z/B9WC03AhYIQpSVD7gac2/sg20sg\n473Q8Xlynuc5xaxsNeigvspdowA/R4cxytGXIaSIhW2HoObcDIKmy7m3AHdhi7tUAZvsDPRcx4Xi\nEB4hqOO7KqaoHYVlbI6sAsfjFIJW7oF0cYjwDKpMHY6ZAeNSTHXpPhRvmStt1J5yKZdZwPOxkXRa\n9XunF+q2o76BJ6oIirrNeBRQrw2w6RDOzzRrQci5v7sBEmkWrktUogyk+q5R7afNQzofvHFeZ5vW\n0b+F/spFls4kzQPBXM1q3R2Z0Xq5d0y/X93S2j7WhvsPxa/iQHUaGVedc2QV9LCxkJ/VguZfHo7C\n2xd1fqpyXgxb+l7NQFxzj3d3mzZI9xJjMnCZM6yLqZTLKtDnmtj0pR8IkZkBcd0FXWZkMfThlKxz\nzi3Af3T/A+I+m9qjdeaF57S3HwGav++Q1q3JEZ0FXnxB68h+uF0Pglzsb+m52fJbZ4vESJm4xCUu\ncYlLXOISl7jEJS5xiUtc4hKXd6G8q0iZNBFe6DysBW9GHg97FrRAK6cPlHr6/0ER9zHqG1mYx7sD\nIqjkywV48CzEDQmvSDYPh8s2zwnlRnYoBlLfrAHfivNW54joerzHL8Ejgrs1WwFp0wFN8P+y915P\ndmXpld93zPUmb3qLRMIDZYCqLl/NNiy6oabJmeFIExOhCIX+BP1HitCTQqOhyG4OjabJNmW6urxB\nFVBwCZeJ9O76e5we1m+jpiZEduIJL2e/JBJ57znbn32+tb61Wop6OvOnwaE+N8Qpo06UN8lUn3Gu\ne0Cw24ogy7hQlXBpOgxctFQfy1Bgb2Tk6BaIHsMOGaSRVensxEXsPX0nczmNRJY7Psr1Dq1vgnIc\nwCiBGZI5GXTQ8jRwEWihKKO+UKRKVdHPMBVCWEyfzOmg5OhTLq8RrREfzZUsdbo+oCROTR10O8BN\nyXFR+qDwMYnDZfK5Y+ZazJiGHfVPgl5RFcaIh0p9j1zblChtDeRgMEJPKKZfPJf/7VTzyRmmQXGR\nfG/QLofyeKjfe6BVCItbkWhuSOJNh7LLAAAgAElEQVSjzxytwoCJiy5HFqSdOVWualyGPfRF0CWq\nOa2cEIaOY7Y4XSNQMofUVAjpZ10YUkSZE/ohHjBejI/TAQnIQw+cPkkBps6Aue0YOYgHeU/gdNB1\njlTbsIZ29HOZ3NOxSdqGc0H3kdbfeAlNFSL79SI5regC7dDnR7gp+TDndrpC/Fyecx0V90IZd4lF\n/YzYSNr7bABHQgSaoEMeCvshTLuFCa331pgQiLCuudHDRSlk3ZdwxWhvwazbh6mRCLkcQztmbkHX\nm1w5aWZmj0BoY8YyJe+8uy3EOlxnjXZ138U59Dsa7FugXt4sDMEZISe7rJ0+WgvIkFjD1J9T42hi\nTaNF0NMGtwNDKawxh2EypqBqxtzOKjB6QCwNBGRQIdf/mCUDLdzHvWp0Tu0qHMKewxVrdFeuLR7w\n4t0X1c9zQ82n1z2xNbb3xAo4N4P73iUh/RubYpP8INO4HMzK4eb2ddo7rZ+jutCq4UdiIUxNVezL\n2Y/MzKxehD10D9ZWLHRp/i4OKzyzjhZxWSOfu9MQivUOyNmpA7Wpn2o/6jakj3OwpOu/vipdm1X6\nfKat+6c/EHo99NQXwW2xFD48edfMzHodza3SS7pfBfTs/VDONy9f03U2ZzTW9xCOq03hrLMm/ZDa\nQ2mu/Gpa9Vt6F9bWZc2l1ry+Pw9yO3qZtfO16r/X1HX3l7Um9hrSwyjhGnT4tubwccvJHSGJ66fF\nbnr0K6FjJ99Snvh9XKP+dEb1G27qc58sySkoaci560xd7IudR0L9Z++pP7c9Xe9oSayO5v/5r83M\nbOz30d6a0vUaq9K02d0Qal84EFpXOvFLMzOLK1ory8+B7s9cetyGf7z8rF0ItUd9mWhu/X5RzKTd\nu/rMtZL68cGM+sm/pzn61peckd7SeEymmuv/+Jb+PqZqWxS9amZmH2ViO5S+0H3SBMbVM+r3zq8y\n+2gkDZkXcNfZLIhldf60WE79zzWGf4X8z/80I8beN7fVp+ep+99JBsn+9B9XzMzsNzNaGy9fApmd\n0v//au1nZmbWCP7MzMzuFNSGiStiP60PxQrqvP3nZmb2w+TInqSMhe5ZxbM8dexZ9iP0Hvpozmyi\n0xPv6D5FdPJOnNOYttmXdzrOdUh9OH9WY5rCKvjNu0Jou7gfTaCpUp7QvlRHy2YPJ5eNO2pvgute\npcyZqKufQ2iuBZjYk0v6/jguoFt3xIa6fUPX6aEZMz+vNTL1vUu0H0Qc98O0wP480t5095F0mLbv\nae9JcfxJYaQ3WrBz0W5JhvpZW9KEaMAwnITJWG2hNQnregdtmxtf4baFTl2VA/L0vJ5/ZmYvvP6y\nTSyrnRFacrv31M4DtCV6GWcS9v8a7xNWfAJmJhoewyJahZx7E859kXv1gpkxHGg9BpynfPdOBAu4\nBnupjKZTBzdScxqDjiAN299p2oSOZYC2TWoa+3JZfRyg2eJexWq8OzgXqARHRi/W56qco2OY68N6\nyH1hBPEc6o5gwlScViPvG5yDM6dbhwtn0ZyL53fdoNw5sJDBiOf8GtO/BTRmYv7uD3kvcW6t/D2B\nGdNFe8Yv8JIFA70I3biPfVUGK6PE+TlF4yaCOVqCod8vQnHivceD5XbcEnAO7sNccmyzAhkKERqe\nVZg7PgwYj/eNELZGiO6SR3/2OTMFu9SLd9H6vHSpuu/9rZmZDea+1VybW1y0zZ09u7+qdXDy8oqZ\nme0+1Ppa/1r7cAKDugKz/MGvxEAewhxvzeisEqIbFOKo1aaPXV0SWEs7ezqPjy2i6cR7ehGtxTGy\nD7YyxzpTfdv4jDZgQXlOAwc31oVz2seefU7Prs0dPUv7sK/qenxYWY8nq7Gf723wHs3cKTa1Xwwj\ndDIfab/on9Y+eHJBfdqGUX+wh67fttr51ZH6p3Mo5t/4jLS1/rmSM2Xykpe85CUveclLXvKSl7zk\nJS95yUtenkJ5qkyZ0QiHHvLqAiJYI9gRZaK6dXL4R+h4BEQtE0+fy0ASEnQwfE8ROYcI+GgztIny\nBiO0ZECUA6TDvQpR3gF6H2jehITmUh9dFpg2dfRKOmPkhVLv2F23B/uhqkjeCHenFvocWeLUpHFJ\ncuwU6uNUqgMQ6kHmIGhUpA/QgSkKmYnLLoevzHUVDY96FYvIgWzWlPeWeooytvFuL6PnUHDuRj7O\nVM6ticjwsKg2F9B66aMeXwadKJRQDceRIDhQW/0aOZChowEdr8QR6E6gtqQuIt51jBh9LoIFEaHQ\nH5Hr6TO5fJg8ERHzKvZMQ9Tp/TIaLTBRHrss9ci7Jh/bA3Euor1CYNsGvtO60e9DA6kgtzYlwh2B\nPFTII+8HYBQgDSXmaIbWStgml9Z3Sub6fLkDgwZnnmqRnFqYQ86RIGaN+E6HCdSsPAAJASnI6Ben\nRZPCfiiVndI5LBPCuG4+GKrxoUvPBGlpAxjESKB7rOECOiB1Bq5b1TzLyIMvPdb2OX68uOQcotBm\nKeGS1JxWJDtGk2RIX9SaYniUcXwqBlovQygeHbqiF7PvHMFQqapRLbQDhjgJtMal21DHTSlEP6kb\nq23dXUXoq2hC1ceVu5+CwDkTt0pj9jv12B8KET1ENygg37oDYw4zOKuyHy5NK6LvwWCJmvrAo67W\n4v2OUPXhQ+YIrLNqW5+r40LnEIupWV0vLrt9TghsAXRtQL51AiI80RISPj2mtd7AucUmcEKIhMDs\nqluthaZNxei3Cdgfkdb6WBPNmr7Ls0dTBhZWv/1k7kutLdgdk0Lid0B8nNbQuZYQ2RtNIbq1Xbm1\nrK9pHObZiwZD9c9e9GszM1t8Vxo02UmtlVXGecWldX+tflg6ISbNYEtOPlUQqbXnQHqiq1a86VhK\nrPfnxCpYfA9E9AWxCz5PNafqt0FkTW2b2SBve099s/Ca0Bl/R9+/fVf6GyeLYqh8DZspHYlZ8eFF\njdX3d9QHN+5L02Shjk7QSKjQ/J6uu4Xbw64vzZXgS7Xp40vTtB1tmy0xR/bOCXV787LQo92q5ure\nB3ou9QPBVpOJ1lTaFeNm5bbavVpQfnuL+oc7+r0IsrhwU2PSelNjcfaMw4CPV2pn39N1NsWmuDjU\nnhL8F9XD5sUI+cu+9E4m/0Jr5NUv9Hu1KwZJck+T/M43Qherf67+mfilrtO+LBbIpAmx/OAD6Rz1\n/1QaNPGBXJOWLmvtxjtC1/4STbM3JtSfJ3CG+/rmncdtWPjFup1JNGdX3tLe8be/Fnr3/EvaYx6+\nqz1vAYeMRks/rz0Hwgwj8tNZMXlO/Frsk9rzqsdHt9Sv1dPo+OGyuAMSPbwndsqrw0X7KNacuYd2\n0kqiufHOmHRojhbEODt1V/V/cF0soQaMthsN9dUffYbOw0n9/L1DjcWnn/LFJTE3XmZjXA21j1Tf\n0pzfOFJfzv5WdJ/Ka39sZmY/H9dctv/DjlVGMPX2uurjiL5oH6ovYudMyFmlDOttyDMzwOWtzLOx\nPCfI9sJZsbyqNWm0RCN9b/2h2FbtR+q/uXmtlcqM1m4fDZsHzLURa3+E08zKFa2RmRMrZmZW59wZ\nwarw3SGG55FjZ92+IeZJb5t+RLOmgNvS2k2t1b0NMf6cRWOG6tn4NEzPXVjBnN8nT2sOzs3o+dya\n0VrvHOo+RVgSjVNCuKfH1V4fTZkaz/f1VRD8XZivM2LELKPhUEGTpxp8+5ozdWLa1m9o79m5L5bX\n/rpjkOIS9pzW1hzuKvv7eu4l7eMzM6uxYwNwTqxz1ug7TT+effw94x3D590jKjq3Jc5DPJuHHDBr\nBtsflnyMZp/BbPZ5B8kY2wBmSAdnyFLXuTxxZmIfb/POUma/z9xZqMw534MpP4LdRJZCkXePEcx0\nd44e4UZUYE2OYGA7rZ0y59Gucy0asn/Akk1hP2SwscqcfYaO6eIIR22Y6pxNnK5R5rtzJEwj3gc6\nMMIdOyLi3auCVo2h/+m8lMo4BA0K6IXitpo5t9b0u+fp45Yscw7C7j2Fd0AIP1kf/RNclIa4cM3g\nMOTBMOrA1CnCDvdwMOrQgkZX47TU1Fr6lHfI7Xvtx3UZxZmlWWTpQPc6/4z2bYhj9uuresa99ZMf\nmJnZ5LjW28e/+CczM9uAsXaa9TeCbeTD7E7QdmpOiiFouK5FB7wrsr5j2EMNzuURDJy9vta5HepZ\nFsCcCeraByN0TrcP9LlgUnOhNK+fR1f1vTjVWIYw1hsTeob3efdhe7c2+kSn0Irpk40xhPXmO+0a\n5mCRd8Vqlff/ou4zZB+uwG4toO/zz5WcKZOXvOQlL3nJS17ykpe85CUveclLXvLyFMpTZcpUK6gm\n83vvQEjD9JQQyriqyFZ7IDTNb+rvZRgwCVHAfk2/V9FsCYiC7pOPVxk5RFo/+yCjBXRUDpog4H1F\ni30QlsAxX1DmjoC0m11Fyghq2xhR6oPQsUq+mwd5RC6aEb086pPH5ylSWIG1EIGcZLBQMtgRXdxk\nCj19r0n7ejBkQtycBkS562hQxOQ2x55nFSLcQ9DxwCfaRyS6QBSwj4ZKOQHlQLm6AGtg0CWiTy5r\npUXfEqnugnK3iORGsH46fL7h/Tdq38coTkQ8Iueyiqp9D+/4DE2YQhdWE8wUI3KdOrV3nLsCUPfQ\nedCjLdMnYByDRDhl/xEIgs9cS8i1dc4FFaxl4oFjMen+NdT1+0TeA1yTQlyYMl9zwffcGDoHLdWr\nApsgAOl4zBDyNY6DwI2jPue5+jHOvmOFoRuSMh6OyeIR/kYCxwogMylzuFrUmmozXCGsqxA1+ACW\nQZXrDsmVdkiO4SxjaMo4zZyAfPzI0TyI7Eewx1IQA+8J4sXI71hpXvvEuNOaWtI1txncI9Zzt6Qv\ndMl1dTnxlZuMGToVUxUYLTgaDJRKahXye2st3We6qj7ZBe0ZbgpB7ezp59ierl8fV4S8uSi0uTcB\ng4/16tCbwzXW7672hxb7R8r+E7G/FDv6fKshJMA/q+v7MPL2h6BjDj0j1zbb1j5aASltosnTXBSC\nObOg6xxMqb82NoWI7twXYrgwr78Pm7DK2LeKJ9VfBnq3WVQ7XI7wkQfTBm2c3qGu3x8K2djfVL0i\n3JXKIBzDgb53uAkrq83Pwrf50McpwfM4zvwXIc4LzwphGSH6NYn71fMiNdiNLdW/CaPzN+d039k9\n5mxNeiytgq539KXWSOmM+jGra/yb6zCw7gh5OgLxqTZxO/E+NzOz7fGL5ntiPBym2n+6O983M7Pd\n5U/NzGwpEip9Zhv9B+r2dSBngf6h7r3yihgq0adifBRfEEOjASK7xr7T6Qotninoc5cfypFm/wW1\n8Vwips51WFPLm2rL13XtIzsgn/6u2AZvvIrOQyiUefuM7tfDeaz0QGO5NitXo+aX6vtZkN+7Y3yu\npjWbDMQ82X9V3+u+q7/XGuqXUU+o9/gLK2rnkebMF7ti+ISLT3bEyba1Lx7WmJvn1Y+Fae0tWxvq\n359Mi5Xg78hJaPO+5uzVNzV+c3fFSgt/T0IovUfqz8snhS5G/xXNm0gMmS6Mlsvvij3y3iuwxTo6\nC00Vdf8E55v2ru6/NqtxPL/8vcdtOHP2ZXu4LsbQuatihTUnfmJmZmf/CseamhxwgtNiZbRL/9XM\nzJ49IdbGVw/Ezjif/b7aN1Q9NmCDBFfQ/SuK9fL9gsbHwwVx83P0tL7ftefWdc/Pz2kf2hphGRaK\nIfEXnhDWu+OaKxMmJsv7N9Q3029IS6XyrvabB6/SJ/fZ719XnRM11XoFjVE1Ut+0eTYvXNN+UYFt\ntR9qbr/cvWtmZv/Jjlc8x+heU323N1X/BMZ2uYWLG8zqOqj7/CIiBmjP7LN/x7t69q8mqsfCkpDZ\nGEevCm4d3/uB9pvaDG5DkebCjY/EShpuar8qjWsNLMytmJnZ6WXtOyPYE0OezcVA9T3Yk4bN/jY/\n7+nnoK92Lr8u5sjKEloIkdq9j75Jys/Dbe2DYyfU/mlco/Yy9jsQ8DMXhZRXxprcT3va6l3tIb2B\n7n8SHZOCSIC2ty2k/ZsPtWftgcx7aJZduiQtrxbnAIjmtrV+11z59N0PbXdD94k5g4zPaXyaJW38\nddZAGaTenfkOusdnefd4tQoDpwnIuZnzT8w52zqwVquaq120CoucT507avxY+w+WPWeBCs6yI95t\nypxlYt59nK5PWtLfq7ChPJg3jjUw6HDua+IOiktpiXNrxDnO6br5Ccx1mNQxjGl7rOmoM0CJs0cE\nS8wz7pfhVOvckLAhGqbuHYrnALpHEXOR477VhugIoiGT8A5YoT2xO4Zyrq/yXuDxPhLAHC9wbg5h\nM6SsiYTJk/X1uSJZEw3GLao4dyy0gAraF9P0+A5dZmY+7avyTpvSwGpD/dqHbdIno8FHs8dzgqIB\n53bH8IEJlXGuDmD4OOmb2qKe45Po9z0abT2ui1coWjVLrcz7btpFEwbtvgL7xxH6NVXeYWI35jxq\nC5zdi2hYOZ2bduK0p9gncT8+Yj8dwgQsoOFi6BUF6OfYPux6GuMdqR4N7lPhnSsswbw50lhNoElV\nnOK9fU3tORhpXyqXtcEUmQO9jv6/WcXhknfgBCaMHzodIuIJmdZMqaLfGxPaP/oHMIV4JxqiZ1r7\nHQbEOVMmL3nJS17ykpe85CUveclLXvKSl7zk5SmUp8qUGZsUmtYkAD+DoraHVkN7JKSgTB5dERaA\n8xePiYiNEVUdotTdRr+iFghxCFJ9zo+crgZ+56g2h0TkE1yeyrAnDtDrIMBlCS4pWV31KWQgubBI\natQz8ogeg3wb96seEGFrgKiTs2YokSf8PSRnduT83UuKagaxorEdkOcENLWUqp8IcFoBL/v0iOhp\nNbJsoLr2R6i5k0vZKOkah/R5FYerIFb0crxPbqqLJONhn3SIqMeqa99FU2NFyLtotmQpecBEMQuJ\n6nHc4ke6T538v47T4UHjpAIy4EyWQnJOQ6e23kL1HneiCjmsQ9gVPnOpgmZMEqChQgQ/QTOnzSQo\n45RVSpwLFZF06juCQdJ3n0OnaNAnQl8EwSCsHKCK75TKU3L5U6LHMUh4kZzkAUu2lKIVQwLkELYU\n5lkWEm+NQe8KRKsN5x13/0Li3J5cu0ECAIVqrCUPZCPifgW0DTLqXXTaNPSD806qsSY9mFdRn7nb\nADnBiacEQyjCpaVYca5Zv7sMHJMMFKFX1jW+eQgDZU8Ul9a8EFRn7OSDvozWtT/0nYNBW6hVQsC+\nTJ27OMwU53BZAyG4V8YlblX7R9TW58Zwb5ha1D7kVRG9cto1QzFhtndVT5eLX2UsSmPkofuK5Iew\npTq4rBXLqmAJVCWF7XZrQ6j1zrag4zFybj2csUh1tSU0W8oLIITz6EHVYOyAxB7t6Xp+DIsLvaUe\nrK3OEJ2jRJ9z+ecD1mAZpCDFEa2/jtvJHqgOObhzdTFHjlrMDdbWkLWUdbX/tdBzqvmOY3m8sh6J\nhbCUCSm9+76ut+gJuX04LQT/aEv1eDMVm+HrkpyHLiZyxgl3pWWxVPtY7byveVUnx/rclpBcj/z4\nb15XO/d1OSteEvtio8/eVNP3TzxcteqRUJ0Kumf3FzV3zy7rM5UdPQvuTeraX2xqMC+1xJR49MP3\nzcxsd11jOFfHDa8jtLvXv6vrDEACz4OIPtDauU9dJj8Q6twsij1U9DWXNm8xB1LpXyxNa2xbV1Tf\neEtju2s4DtwXU2TuNPuXJ2ZFR9Ww2XE9N0bntGaWH4mxMwilv7P9QGyjm0W5F81kWgune7rAI5DE\nz7/W2L6xLL2eEzhcZVXg8mOWUusPzczsvco/mJlZuKHvXzktxs7Buub4OzvSL7m8SG7/jJgr8Zrm\n0Ni41txbdfXn+w9gNXTUr7f/WN/vbqnd5/9RzJX9P9H1r9zWGls/rbX5xln9/eMJHIv+Vmvp4aTQ\nxa/e0X3/4/9itn3hM2uuCQGNpnTG+tGcxuUfbv3CzMxeLEsrZu++WBbRstbs33+quTk1rb/f30Wr\n5g80Ttuwisc/XzEzs/KvtJa+fF3tWyhp/m78qfplf2vGfm/jP+vf0//GzMyWPLGxKvtaFx/fEstr\nciBmzAfPa440TYjl6l39/zJMu3EQ3M0JMcwmboo58+GcGHzFt7V/NIOfmpnZ2dP6/ERHDJnKQOv+\nJpoGpTvSLjlu2d1VPXaP1FcJjMOzaDCMndSYFdCpKIzBKkL3aG9Na6mXaIwCUPwu+kXffKo1X8IJ\nJuJcOdHQc2Tzof4e9VT/HRiGCxcuUQ/NsQpnugHshLUvdN9Ha2KmeJzxOh2NXQnWdADSe+Kc1tzF\n5fNch2c5zi4TJT0nS2e0jy2hidOc0nNp0NY+uI4riQ+bdmtN/XZ0FSbmQ+0Vk+z/5ZJ+bu1o7m2v\nwdTEBdHQ7Jo8o3ouTWrfnTmh8b//tVhqa9+onUcDDkX/m9n23ds2Pa3PTa2IqTWztKJ2uUMLDKd7\nd+6amdlDXGeseXz3pRAK8wBtlAoMiojzVQAzOII1WuRcXoXBPhipz0a+7lnxHPMZd89Efd+DhF/C\nnjNtoEEYcT2cbHtok0Qcq4o19HH4jwI6IgHvSBkahQNcMUM0EuMCfcCcL+KA1S87lr/+nITO5ZV3\nng7aOujCVTKnUYkjD+5THtkBPo47jjn+WB8TR8sYDUePzyG1aEPezSLOvwXOzwNeEFIYL7WYsxSD\nXoVR5BfoUP4+xAZr5BzWnEsp/ZnxPjFw96se3zXUzKxCvTpY/D7WjqQfM87bSZn+i1SfFDdCH0ZT\nQv0GvFPGuF/VyUbx0A5DWtQSdJvSvW/doryjtvXSwIaBcwGG/QMbqTrH2KNh9dlvpeu2fUP7WGNB\ne/8IlleJzxVxaeqiXQjpy6o1zfUGLKcOTLTJCTcX1cYCTmQx7KAyGotD9HSqNbWNobUBekd7h6yB\nivpw6eyKmZmFTRj0X+nCz77Cfs27x8aq9pnKssY6YF/26ePZU9o3eqnW4sbncqdzGjctNMRS5lYB\nKn/LacfW/uVza86UyUte8pKXvOQlL3nJS17ykpe85CUveXkK5akyZZwHO6QLO6wpwtY6JCrcdFou\n5GyRDxgTtS2j7bB/oIhZq+4chPB4b5OXz/2qaEn4iXOc0PWaiSKCCRGuLqr/1Ta5bjjlFEooWpNj\nVvcVUUvISQuJYg5hS4wTEOsPFHEbjAFRd2GZQEdIxrleqIjhEfmZAfofJRIjPZCWhJy+cacTU4Q9\ngvPOMFJEc0g0ue6n1sWdqBkTKneRexgsJZgORVTFU5gZh04qBbaAT5QS8o8NseMJC+jXkMxZh2WU\n1NQnDmXJkifTgfDQohk6VXfqPxqSH83fq/RB7DgaqfrAAaUuxzVLXIQdFKrkXJpgYZEfWCTKWUQ7\nJgn1/0O0VzL6wTl4xaBMDvFwUdsuiEAd9kMGAwaCkpEqaj0cZSodZmug/qxWnVMXDgg4a3VBwWrO\nugzNFqezlKGlUxvq/qRDWs25TeFEZOTIDmBChUAvDlFxn8uIEof0W+a5HGH1Qxo5xpLuW0rc1sL4\nofHjE4X3uG4JV66hGzcYPwHR8eOUQokxwr3hgPxaf0uIZrko5K2Js1O7q4tvbqFhcKg+HS+BOrRA\nACe0T1Sr+lwTNKo5p8h6cXqM+wnR7RHSHw+EFJ46IeQgGNf+sDVSTvzdWOj//r6+l97R+q7NCgk9\nsaz69hFUGqsKOXb71UQIKwGmSgSKth7BVNklTxgtk6kV+ras+rZZk1UYfaUWubSgbJuJ0Pu9juZy\nvSZkoDSJfkhL9XmMroEGJjgu+Kyx0LkmFZhrMGyCFEbRoebe4oKQ7pkVXTeKdf8uaE801D5bbWsN\njoG8TLFGjlvW1vX5jYb6f3oM1499IbWzTemcNB4K/X+3oHG4fB4dlHdE6Sy9IcZM73O5Lu09o3H4\nfllre+LwHdV7IL2O9Krum11GA+GqmDbVFzTfTpL3npRn7c602p5mYhMsf6Yx88ekk/AhehRT6O5c\nqX5lZmZXPxPD5NWLQo9372l9PiiDzKIPVPxG11mG6fd1XUyLh3sa2+qS6tTuCP2ZPoPu0nXNuUZF\nbXp0EYYHLnt3PtbYvszveydfMzOzH7zE2vgCxiH6TM1Z1tam2vEQfY2ZeZ59Q6Hu3jLaA49wMKto\nLUXPam60B0Lx4+voSKjaNtsUi2n+JY3RccsBLIYfo8f08IRYFL+EHTF9VU4+BRO74+1lsTWWM/WH\nF4phUppQu37bUf0bz8hN6eq+2BrjD3j2B2pXz7QWF0Z/oHrsqCEXcEL7z5GYTm8d6H7vPCMHjB//\nvdgEb9ffeNyGHa9umziEzXr6+XZJ/f2jN7V3tf9Sc74yybzYgy1yAk2yktbABXC7Ww/0vbe+Vv88\nWL6rehfRh8l+rPrDbum8o7V85Yc/s+EM7M6PhKzewwWoEYiBcOqH/8rMzN77+K/MzOzyfTlQfX6B\nfeqamA+3f6Q5ND0n16TWO2I81GCUNOrSoilHv2dmZsOfaOy7P9Mc92c0hqsT2tcqe7rPUumX9iRl\niG5FAlth6UWtuUUYF0cd2MdttMU2OEvt6pzZW1ffjmDfnkfX5zTOVl10mqyv+m7c0X5+lIgZk+BW\nUqtoTV66onaOz2kNZA2ddVYfiKmye18UvUe4vRn6fOUxPW+aLX1v6YL2w8aSGDKTjhXNGeredela\nbdzSdaJY7Zw6oe9N46aU3NPcuvmN5kqhrOfmqYtiHGawH+LoIf0mhtHSJdxegPNXH9zV9WCuryyo\nntO4VU0uao5ZAjMdPUPn5JiN6Xu1sW/PnCdfumTn0HQrFJ3TD3MeBlUbRungUP0fc8Zs1qt23BLQ\nhgFaLGVceoawWYucd4roUAw5CCbo3hUboO3oXg7Qv6nDcHaOL1kbBgfnXyRoLOE86zlXTRxjypyv\nYrRQPM5lJZjJzjyoGGoOpY/P+06jkWc8zPOYc2uJc2YAQ2bAmcSjXWHRMbt1xnAsYz9110NLBhpz\nintVPOD5xVnHhyGeoJ9ZdJmx2LYAACAASURBVP+Pm2dMvRyrt0BGgMFQSmDGD2E3F8kE6KK5UoFR\nHtBez51f0c6p836ToR/o1kaJd74YLcrjlg5uTjEM+pTxGaWay07L0us6zRjYb2hNljgj0Szb2dJe\nkTntnHnWCONddFqgY2jO7H7LlOlUffMHAytM6G+jHdZ5VXV69rSetQvntE43ttCywglraQkNKN67\nyzU9MwZopo5g6ddhM02zX50/r/3mFi6XVd693LvcEJ3L8Qk9+9tkL1R5ByqiPZPwDjPK3PlSv++j\nLXN6VufMsEVmzKHYtVaVu5/BCGrD6Fngvjvb6KUx92bQ1jq7KIberbae1UdHqn/hpNixMUyakWPm\nl2GMx/+yi1vOlMlLXvKSl7zkJS95yUte8pKXvOQlL3l5CuWpMmWcn3gXiYGsSiTM6XGQz1hEOyDr\nKuRUapJ3h35JWNfnO20gR6K+1YairQmooId2yxBGC8FGi4imJkTOCwbiPKbfS0fkvaPmH3AdAyEu\nj3TfXgFfdKKag4LQqWKB6CmMoA5Ib62GFsWBIvlpU4iwD+MlIQ+wg6sUQWHznSr0UPWKR2hggJB4\naDiMweIYxSMLEiLJXDMDVQ9ipO1haEREhAdEDY2czwF1LhMJ9qhMQiQ/xKUoxEXjiMh1tSM0JiGi\nbu7nMUtY0X1C8g3bIAB+BVV5mCg9EFiXtz0kKhljkVX2XWSc+4MWEZi2Pm5EPkrfPkyQDuh3BepL\ngLZNN3MsKscAQo0dhlDfdR85nUmg64c9cjlBRou4I/lDxs5ZCcFo6aPdEqCXkjlCCTnD7RL1RX+o\nynghJWPDMho+sKsylvwIRKGK7knQQV/FacYQdfYfIzjGTxhVzP0+TJ2CyyN17lSM84h5MCKfso7o\njUc9hm3Nuwq5wgPcwfreE+Rvp87NB2X/ttZRo697LIKstaYUmd/tCKlskHM6uSxUfgFmzIi69JxO\nTktrZG9Ng1rBHSLpaS5uR/q9cEQvNfT/6azG+E5PaHibtVHqETHfxwkFlGgORkzmqR73d8XICFZV\n3xKaNKUWCvxV3KQ2WaOM1cSW+ngcbYC5KSGZa9u6TjQEJatr32kz1/twCodot5RgIvpN8tTZhx+7\nIR0JSQkiN5e01kkPt+RA+2yP/TYEJWwlGofWKdbAuPav+5nuv7mr+pfrsPaOVL8SDKFyGQZOFZbY\nMcvrE2rP/5UK4Wh9CZvkeTGbatsaj3WQnBMPta/v4sjTqguZ32AenLgkh5r0PXKU39LzbObRj3Vd\nHwcbx177rdbGtXG163QEEoV7U6HUsSt4EV4rgvIXYKxcF0q1WNYY+i3N8bun1dnPdeSu9NGatE+S\nF6TbMAZDYgxQqBWIQfLJS/r/Fx+hHzSNns+++uLMCxqzw02N9amGWF8zMCGe2dL6vD8QGv5SKvTs\n45auG6x/Sl/CqlpWXyT31fe9lq772aLm+LmtH+r+vbfNzOzOnLRT6rdA9vq4EQViiiS/EureOq36\nd8+JMbJ7R2Nzq652/MR7MtzpoAIqFmmsT6ELtGKg/ifU/+/wPDo/0n3ObWuNf3hGDKcU5lK8oLn0\nAIT5370tPZDbPxE6WFtF462s9g+L6o+vi+rP6m81R5If6f7rb4vNFR2JZeL9e83RU7/6hBb8r/aD\nUtP+5mXcrzY0jiu/EKq590eaRxM/0dr/AMS5/0gsluVYfx/eFOr3OToB+5c139Yy5td5tevlj8T6\nKi2oX97+WPOr15YOzKe/eM6Kr6iO35/XfpR+qrkxG7xuZmZ/f096OYUKrMnZX6qOxf9gZmY/+Lfq\n28/fFYvo/lXN9XXcdqYzfX/vnvaHcFHr8dQjzekLvlyWftqQ5sqPNrVPfbPxT2Zm1qyesycpsy19\nv/WC1sDMothTOwOh1Heva82mPe13IefFDjoiVdyRTsxrjE5e1v1D2ANxX/tfoSXEde4c4mYVzfWK\nM7BEa9DnPzZvao5soXGwBVPGQ99krglbF+2d5QmYMfO4UtXQPIN1ewBT5OCOrru7qrUfsp+NrQgx\nnmhyhhxqnO/e13g52sbCs2KHWV39dXj3rto3pTPl6dP6+zYMytVPNF4Z9zn3rFhi4zO6T4AoxdGB\n+ik50gvE3qHmbMZZ9exJXbfx3zBcLp66Yl6o8dhp6zk3uKO5m+BUs93X/1tf9Z8/rT2s1Ji24xbP\nc0xmXEmd66k7B8KQcUJ2/n8noRfQdidxYjAxssg5x6qufVhHfVhCFR/9OxxikXKxYs05PfLMhCkP\nedWSWJ8f+rgcwXiucAaKcHfKcPuJ0RIsoLeR+DCoYRc4HdABWQY93oEqvNN5bfVDgev3qV+d63Td\noz1yrkOwb2FHRGhfGiysBCcgJCgfuyw5FyakLa3W03hA0LE+LqZ13mf6MFQKgWPa4FrKgb6Hzl2A\n9gsEFzskKyEt/g5rnf+uePRTb4C2D+yQimNQwRKbWtaZqejccEfqoMXzWoOvvqm9sQnD6s5NPUc8\nsil2cS5rzWiNz57UXN58eONxXUpHvg3D0Jq8G3gw5VJ0JwcV3n329fujVWk9HR7q2XBwW/doLmu/\n6uA2nBqMNNzqbr6jZ1XnVZyyeMcbbMPywYGxO6X9xue83Ki5TBj0NmHgGJkvAbSlWpmxZE0YfTih\n7da6AwSI0I6q4oDVgR1bwNlr1HZjgYMwuj8TuJR6LM71De13Heo5saC5OaR6ARkxJbQTw+hffgfO\nmTJ5yUte8pKXvOQlL3nJS17ykpe85CUvT6E8VaZMjUiV0yIOyEdvdBQRP8wcmwPkGeZLc4DWDHoY\nDaKVR4DrPm5MSULEyuU39h3zhrApkgQl1NmPiJxHoaLGhtd77NyTiKhB5LFuJoShAAulDMIwqKO1\nQL0C8ih9osIB14s7un6Ig4Qdqr4IfD92AKqYIpHDAowadE86ICDNMWcPpcjgUYecWoLJcbdhEEWs\nT5830OtpExEPyJEcukg6TIjwqEFXoIODhkwvQQkbNNtptRTaMCzKRLRpWoUIu+fCh8ctvto0AKWv\nFtX5IxgkKZ7xCHNbitOAcwgoodSfEf0d4HjitFIqRH8Tz6mbwz7gOmUUtdMIVyLcnwowUErkL45c\nHiTsjNCxDJwdEnomcZk5QD52QH85hkwHZKWWOeVyHBJQBq/DEPJBTkLm1hBEAckXy5irXlffrzv1\neHOMGdTlCw7BIe8fa54UZXMbaO2VmTeGmv3IMXdGMJccM4dcZJf7G/AHl/PbL/F52hdy3R4UoBLU\npSw8PgsicapR0IMa27rHmQkhgvWiIuk7OBqUy2wUaLfMLwvB7TZh66Bd0kf4x2mrFKr8Tr7xTBUG\nxI7GoE8fBvCK4rZjwolJkxVgU6F9VW3A0MC5oIpjyyGfT9a0HxZrak8TZBQZKOvBavJhTWUPYKRM\nqz3NU0J0D9ElGj0kv5vIfwgDJmyA5oEUDHB8KKBd0GafLaKWP2K7ifbZM9DamQAQHW6hq+Q0fRie\nlkB3K84IpSmzbw1how1YEykOBt116tlg3y663H/y3Z31xDHLHtoF6Z5oI6OR+unwmlgHaazFs3lO\n/TbWQVtotU47hCyPVdXP+x/o/9Ozav+td9SPq6+I+XIB54v935Lj/LL66+K2dGCCW3ImuoMmUWm+\nalMPNCcXK3IO+VxVtMKRtDuW5oTSfIje0PiO5vjnd9Vn36vCoDjQM3SnpzEYXBBMtNlUn51/AIp1\n6vtmZlZ/TyjzxPeEinvX5Uh1PRNCN1oQO6GD3tmDLTFZxpfUpl4MinVCfTB+c0V9gtPWqXn10dK0\nrj8qi+nyxpHub01NklsdtX821f56aluI35ex6jF5EceWc0Lp6t/A+FlVvvjaC/r+c74YK9ORfj9u\n+WZF9XxpW/3891Oae6eLYqjcXNbceXn1j8zM7FpN4zJ5QQyg2Y+umpnZ4eR/NTOz5cGfmZnZwg2Y\nRH+m9l/6jfrpTklz//B1tRNw0YJx6XLsb4oNcvK6+vfrZ9Sfl2GB/PqezgZ/cuJb14/46+v2P7C/\nfm5yk3p0/mdmZjYHi2F6gcWaaC16ker/4tR7Zmb202nNl/BQ/TE+1Pf2Lqner/fEThmeF6Nrrqf+\nWsUlbDSvtfpnH05ZKVad/+/3VUfn0vObnvru9e+Rw7+l/eXna2rTXl/IaW9OTJStVzSml9+WBsvE\nhzqv3fiRrvNvdvS5L65o7dR/qf3yk1e0z/5BRajyb6/pPod/sWJmZm1YBfa/27FKCuMjONRaOtiS\nVtTq1+qTgLPJ6Ze0hiZg1qToZQxwbhkf13UOcEI7uK6582hd+38JtlcVNmx5DO2Eqv6/7Gl/Xr8t\nRsyDL8SQGfEsHZ/Q9edPqL8nzmuNlGBZFNFngnxsnbYYI7evay/YeKh+dPohIRpeJ5fVj7NnNWdG\nnLXWrmtNpn1N4sZp3W9iRnO/s6HxdFqKY3VdZ8BzbO+u7pc6rbHLmqNTMCk7nGm6D2GewhroPtI8\nGHbVH8MYt1UY8M0iTB4zW737mfXW9XmH8Hs80AY8l8Nd7UUBe2Whon2/P9q345bEaZnAHC4wVs7F\nNOOtp8ffS7TF51k44jyawaTwi3wPysewpDoWXZtx8EJixAoFmCMj3mE4zwUMdiX97nmzznFryNml\n2tH9+pw7YxguTbQVMRO1Pkx1HwZ9mTNOxDubkxasRmghQlEJaX/Ms70BiyyGgQ5pzIKC2unFaveg\ngNMk+1sApSbwHKNb33dupT6MdOdy2ud8HOKkW8VBd2Dao1LYGAlOwEWoN85R16O9kXOjcu817gUk\nOT7D28ysAPvCd+8hMPi/eEfP20KoPWyqop8xLkxDzrwP7mjtX/tEe+NYVZ8LYcUdrd7V9ZdXzMxs\nC+Zr4De47/jjukT9nh3sPjAfHc14gM4l626MMZmY1Xp884fS7lr7WqzcOw/1bGsyV6da6uz6vO4d\nbeqcs77LWYa5fOEZMeEOcTbc2dX+U0OjMOHMUSITpMc7Ub3H+THRXB+iyRrxTlV3mrQuq4Hlmzqt\n1SnOkcyR5oz6ZMS634Nps+D6FK2vGIHOyUs6k4yf0jMvu6p+cO+aBXSLyrC2Bm3e2X6HQ1fOlMlL\nXvKSl7zkJS95yUte8pKXvOQlL3l5CuWpMmWGIKMACxYeobyNcnkRhMApdTsNhwMQ6TIR9k6q34sJ\nuXBEXUehImjjaCjYmCJmfegbMVHJQ5TDjXzFAtHkaqBIeorveY/oaB3l6hL17IbkA/bIIyVa3CPm\nVQZ59otCTGtDos8N9DkOyOt2yDvsj3rE/Qm6Z7BUmg75Rv1/6CnKW0Jhu4GL1b6LehdHFhcU8W0U\nnQaKrlmAaVHqK0oYkfM66inK2KiAQqBz0SPSPAaTpM09K7g29UHTqx2ctUIi9PR1gajkcQuBaBtV\nFbVMyBdMcdjxiND30ZIp1YiQO9V6tFoqsKOKdeaYY9AQCXcspsRJzricTvK7fXIzy7CcRl2YJy4X\nmH71yDVNue7QsaVwvyrDIMmY0ynIicF6clLdmXM+QHMmJJd4AKJRxHHA6F+f8YAQY4FDJEJYYTgK\nRDh6hUN0O6jHgNvHAY4+zu0JxCbpOdV3kIg2LLfQMXTU7jIQimMEOe2eAbopNfIpe+g8heQal9Br\nykgCLj4Bo8rHWQCimrUmhYwVzwpRHLS+UxVLQIcaK5obD2CqJEOto0PGPHuo9ZqS5zva01hN46wS\nooSfVp2jFWwq9o8ERkp0H/YPCGIJJos3gf7OkSLxm5tCGkLGdHwOd49pReTLdZx1MhDkbSEPwSPd\ndxJ3pblFIZS1cV3/5u173/n8iTn9PZ1Q/Q9gRw3QgCmFGvsuczl0lDucHzAXsfEKmlmTjG1L6P3h\nNg4J6DldXBFSWoKRlFXVDw/RtWr3dMFCxFzugIgeaO8Zb6i+4wtC9bubyl3ue+T+H7Os/ZP202VY\nJZ/P6z7nUrE2PuwKgb3M/ntjQf08uqN6zjTVj+0Z9cfGghbja4dCUu8/q/ptfCU2xeGE9tSTnibg\n/ZF0RiJjj5iTfsqkJ/X/2duRDV8SShS9L+eCaqp7Zy3mGmzRHx6qLqNxoc3vw1pKXlSf1Nf0vVZD\nYxLc0NxegrXURt+jSh53+RW14U5J2izbsdg+Kc4FryyKObGDnd2l6e9qXSUXdOF2qrl6KBDdTs7r\n92Rbfb+5rDm4WRCr4OSdFd3vivp8K1O7J/h8eUH/P8H97Z4QxJcyoVOfgSB+clqL+9WK1vSdVDod\ndXvXnqT8CGbjZ2tiK1Rvae5Ow5ScvYBGwgnpkcwMtPestrWvPv+HPPuLOG/dBo0fqkOKd8R8uelp\nrqVvaG7feiCWxNSk1vw0+/7kssZ98yvdf+VAbIZZ2LJTuB7+3W/Vz//BzFIvtb9ti8ljoIalljRr\noi9U/+0zuv+ffyktmd0zqv+1isZ19h39fjAvxk6x/bKZmb32i38wM7N787DIxjUuv1zUda6c11y+\n9kvVczeetKPgrpmZnQ7l8HSyofU/cVNz8xGMiOm69IKih1qPS+iK/ebXWk8r6F0MZ7RGpl4SM+TE\nF39uZmYfzEi3aAbNmeXX/52ZmWV99f3aF3qWXZ5538zMrr6juX/ymSdDtyOYFqurYsiMYs3pDPbq\n8iW1cwZW2whmygi0vlLXmLQ7WmO9Pa3VEefS6XlcS3AV3drQfte7q/uWYS0ksIc9NL480PzlWd13\n4bx+Nhgjp0HW5tCyvSZ21jaOLTsg2SN0TgKo3lMFmDmL+jl+HmbpI933m/tCiI82H/E91eskjPMC\nLFnHPhg7rfGoltTvG7g1bayLabOwpDVxEheobqa1sH1N+hcbt1XfGIZO1OOcjL6fY5UEvA9s73/L\ncFlb3TSDmTTE4cc5QrYyzpa4KlpZ+3xQRMNiePzXpRLvCiPQ8vgxE1h/H+KaVEDjMYWxnPGsLXKO\nSpxbJS5KKczjhL5NsKkMEaUpcZ7soZVSc25FZA9EXah4TTQfod06p9YS5+WswtknRUMFZsuIc6pz\nEc04ODq3pAJnhqyCfmcHTUEY52WPc2rZMYhwbTXVCwK+ZQXq0UPHE63EGtoxbadtyLtXCrO6zhwY\n+ejVob2SoGtSwcGy5yxxcMx0725MXfO4ztBDK5F3M8f4HuDulOIsmTnNIN45j1ucA9s8Z5uLL0qL\n69oHej4+2HjA37UnjB67p6rdi2dEPz7/olh5FdIspuZ05njv59qXJ3CfimCBFdAsOvvyM4/rcuLZ\ns9Z9b9cS2P8FsgJS0znm/o729LUDrfNmqjpX5tS3h9e0H9ZjnSWOeCYG4+qTYFadu7sKM7qj/aYx\nrn1qflLX++CO9qVTPVhTZF30YNFPGM9gWEN9mJgtsh88UmfiLnPWuTK5hsaw0dCkTdE6LKOblPhi\nnyWwfEM0ciLiDzc+EdO5Uf0ug30N3aOUtVjGiayNRk2dF5Tu45fG//+SM2Xykpe85CUveclLXvKS\nl7zkJS95yUtenkJ5qkyZMurmBNAtwzXpKMTNY5+ocEsRrXpVkasC9h4eEfSjki5QMkWZD4kSB7AB\neji/FEcugk5eIOrNjSYxtAMnMqPr9gYN6hXz36i+gxgHMFlior0ByHgfJKPiGD4od3sAzkOi0/FA\n/9+qkZdJu7oBbk8gHxlR9BosgnbiUEoi/V0XHUfNmsTSmsv7DMxS8u1cqqvXQSeHOnWHimaWY+pC\nJL0Nk6bhdG2ctsiRixIW6BMYDzAiOoxhQn5eTH5eNHyyOGCMBkkKk6UAUpDCxEj4f2MsR2gbhGX1\nTblABH9P13ms/ZJpzpTLRHGHzvXHqZtzH0NlHvScVFQr0W8jVOBTkJCYDxSJllYYwyRG94MoL1Px\nsZuVQz5qqNenvnP80ucKuDpl5pgvMFdAZIpVcoeJ8Ic4P8SpY8jAYCFaG4A6RrC6YuoRIrTk1Odj\nHBQMhMArkF8O6ysDASn6jiFDTnHkcm7J+UWfKXLEIObBgPtUUHgvECdOvjVM+J2lC+spgAEToJFS\nIqd+7QjGQ6g6x7R9C42ZAn/PYhyhhiBv6+RJE4FfmFTEvDKtyH7E3Mpw5/H2tf5qoT6XwOhzFl8J\nDjJFEIgKKNjanlDrwb7mztK0EMKZeXXCHmjKDhoLew+FsA73HRNQc2J6BgcvDLf2E/Khya8unxYy\nXZtQHnGM3EaE89ZBimYWDggV2jdirTmNK9+nH3GXClmDhzDz/BnNwUai+wSg/wnaXmswcrrMRQ99\nlOhI7Tl6pPrMt5kbMFPKOBs8gGHj8vGPW3o1IbFrICelac3Razu6/yvsNdsZz5eWtBjOzMKMGlN/\ndr8Ukvv8DNoDZ4UQrX8sJPv1k9JJ2f9ayO6dM2JAVdt6flV31fH3b5IrPad+vdr5yi79SnXpfU91\nG/tUY7I2LTTGucFN3hG7oLRwW9eMhKR9PhQqXq1prkzvwJBZFIvg8z6shAPVaSMQCn8C5l37vpgc\nxjNo5iVNpt41zfm4JmeUo3G1bZdn3jROgBjoWMvoE5iNp6A8TnXEpHgI++zmOX3h4p7W2uaEru/h\n2nd7oLU4FogV8XBD15tYFJo9s3nXzMyGu0LnvA25DPVgeD58Xuyk45YHH2huvt7TGnv3B5oL4wOh\ng1c35eBz7gOxMX4jQozVdrXmr17TXO3herWypv797REQ7LTYIAd9Xee1v2b/Z62PNXAQuilUsrKA\n5kNFSGiPNfr+CVy3YDK+Od1/3Ia/ttNWG+m+FzkbTJ5Uv1ZnNb9+/guQ7jldd2pHn7v0iVgQPVPe\nf/2y0MtRTfMlKf2+mZlN4DJ1EzZe+L7qvVa5q2Y21K4vXl+zP3gkZsTHz4tdtAGjbv7P9ZkHIJX+\nz3WNK2+Qw39dbd0oSnNg8or61O9rHb93S3P90iVYZPe0Lgs7Qo//ZlaI5ptLYj3twrzuv6f6dNGI\naj3TsCcpB4/18bS2FtGqmjqpOTs5JfbaCL2Paze1Vvb3NCZFENcIXQ+HypfQDqvi+DKEHTtkfw6c\nCynOkiXOgVFD/bKwgv4QjlkBbh8cR+3WR9or9lfFsjvALSmF8VkBea7h7jePq9TJBbUnm4GZjZPL\n6jfaU9pt/V5vaI+oNHVD58B4+0O5rRzAyktpn89Z6OAITS323zHWdoTG2e17uEl9rXoXOPOkAZo4\nvB9M1MQWWzqheVGvqr4eZ1Ezs1d+73Xb2lM9Ko4x25qgXugHoqMUcWYboiNytHd8ZubId+x+tAth\ncvt1zl9Q1VOoIQHrmCOIDRLHAMEdiL9Hfd5VnOsprIBKEd2dLux46PVdzhr1zOnFuZctzrvuhujk\nFWpoOHbQNoQtFXnuLMNkSt05HpYrDJkO7H2v7xxy2d+YCyGaLc5hdgj1u0Q2Qy9zDCLOIrCQU5x3\n/REMbZzI+NWKnFkKMH6ctkwMy6PDubzhoy9a0f8XeG45t8/qY71O3q3QIxmgO5UivlPkXc1HJ6rH\ne9Go9GSsO+ccurGu/XVnR3tVzMvb7prOhisn9HyPOWsd3NLc/OXXvzIzs4zsi8ICeqK0Y39H3x+G\n2hMOe9qzPLSCwv+Gl7H58J5tbO9bBvtoADuq0VAfFDAd3tvQmM69pD6pj3hmccY/ROenGME0qaAR\nQybKBJ87OmRuN7QPTS1qPy6/r/vtbWm9TY3jFDbinIhbk4dm42io/WfnCD26Jvs8WRNFHAbLvBOO\neAnxmbP1iuozOSN9vqWxFTMzW+9oTCZb+v8B7K47v2EfOOQ81+S5RFZCXGIOco4MYeZ0yZaY6bMG\n/5mSM2Xykpe85CUveclLXvKSl7zkJS95yUtenkJ5qkyZiBwu0g+tDAugakKr2mi3lLEk6JKHGRLZ\nqoM0lNuKVHljaKvAgiAwZx7OQQPQ+GHJecmTQ3aoiGDq8hPRmHDsghQEOEKno0Ju8JA8xTIskx6s\nkqrLVW0I8WmjhF528H9L9xkjGn6YKlrrkJIgwvEIZk6b6G8GMlx5bDpC1N0xajJFHCuwGfwY5fE0\nsIJzzXnMRMC5ChYRTbYMfR6HLRQjpohzrmqCIgC/OLeIMSLX5rRl6PwG7IABDJZK+cmm3KBL22Hu\nROSklsnTG4IyFauwjMhNLTMH+odEVUH9Yx/WAMDlAJS+UtH3ignaOjBDQnJ2R+S4BrAFMpg/IyL/\naY9IdQGtFL6fDfS5YUCkHfekRt/lO1IfhJXaOAjVibpibmUd2BBVN6nRCPJAdwYpiAXR7YgosMte\nLCTkxmKFE8PSyGCsVNDEMUc+QFMoLThnLxhAKKYbblspedsp9R4UdYEi/eyTe+uRX+mB2Ljc4VJb\nyIpz6fJw1/J7x0ccaqHLu1YddvuKZDu9jP3QsbzQNQJVyjKn7cTYoiMRr+HiBAJwookbz5RQ4xhN\np12cTHp3Falf4HP1RTcnGAP6qATzbtLXdTJ0i9YLMHMGDv0CdWH/O9wXQjg80NilIAgV5sTSuBCC\n8dNCQ/rkth6wJFPQqwJ6IH3Qt11yZjswg1q4gTgNhDbaOsk93bc8q/uERPwj9ICsoxul7GPOzSNc\nUX8cwTob7et+PTaNGm5KO5FYCfZA9ZtiTc/MiNVRnRUi6vLknSOYQ3iPWy6CAA+eFfJxqyzE/ey2\nxnH1WSHC+yIVWKOhfn+IO19wJLck//tCdq/eV78+90gaEm88q/64qzRu6yzo93pNyO3crvrjfkHj\n9+CMngetfZwk5s7b3q76pt7ANelNfebSJ0KhHx4INd4ro+kRaS69ckJ9v/+p6rJT071OnBYzY/gp\nLjoncAqYFmp++Fvpd9x7Ee0tHMhOzQvdmofx9vEp3efCmubAZqbrv/qZtFB6ZSF53bbq7aMfkrx2\nV23d1DP0TkHXHc2qD15c09zZn1Mu/fNHut+XLod/S9dd93W/c4ta01/cFXNl+bz+v4Hzy8Pn1X9h\n80dmZuatHt8xxczse5uaWz+bkrPE6b7Whv++mD83TfU5zZw86ev6jX2N01Rd7Q1mtCfsHolFsft9\nuWJd+ivNwbPPaLxWjBF5cgAAIABJREFUL2qN7zxS+19qa24V29or/uHkx2Zm9vInr5qZ2d1Y/V14\n70/1e13XeeMP1x+3YXZ7zl49K1eOtUD3vZVpPNLOipmZzZ9X/aYSMWP+31j9NzbzCzMze/M1jcvf\n3VY/nnlWrIi54OdmZjY9+Pdq10guU2NntXZP39bPfxrpfq//dMySH4hF1PtK63+0JBbQlY805241\ncMm8rLHM6qrzh+UXzMxs6blv+F3XnCqqjzq/1ve+2hRrp1UWsyP6E6HHFz8X8rrZRz9hRWtnu4bO\n0vfkHJV13rMnKXXoq6ULYjSuXBFDpcD5bGuX8+ue9CDadzRXQ57JQ+e+0XdsCJ7Z6HR02H9DKOTn\nz6+Ymdk0DJBC1bFmtS/FME4Czh4BLLSHDzQHDu5orW9vgvDCGlg+KWZR65Tm6NyEvt/DoTLgnJrB\nKNm5ozm2+ZX0Lg5his+eUr1ml7RfF3BN2ezo/l2eNwPORIbDZ4CuRWMczTS0ECN0Sm7viel0eEP7\n8OwZ7c/TkzjCwUCvzWp+1Ys4ykyitwey3h1xuDWz4d6hRTuqd3VK86MCXXy/o+f/wb7mV6+D888A\n7Z4nYGYiKfiYAZM5hjk6a1EG699pqAROD5OxhMlgXdg7OEFGnPdGnF1KMF1StKDqvJMkvHPU0HAc\noilYhvEyoO8KMFEyxsyDzp/i0jmowI7l71HBnQPpC87PxZA5y7tbUoO1C7vVPbsD9DkzNE5cffsw\niwrJdzUo/SGHiTr9h06Jy1oYDl07VO8RooppGyZ4jbnm6k+qQEj9U8cOc2xmdIU89oyA/vPQ2av2\nOP/X1b8dp7XDebjoBPeOWSKnYcnBu4A2ThFxmxSmk8873fKM1loC6/vW38KIfEXPpea89rYMJn1x\nindj9p4+74Ee5/rWWP1xXbyy2fxs0zqsT5/35AwGmnsPH+HoGHc1F0poqiC3acND9ZU/DyPFnOux\n1ifGipak32VZVaa1/xem1ZZ9+rI6rmdtAJOuEqpN9QXNhYc4TB1t6P23Vdffw47TN6IeI9rKHEth\n8gzbus9hrLNFP0L71a0V3EddxsoRa3NIfGAEm6pMXKLMGk75XoC+UdjVddc29Dz450rOlMlLXvKS\nl7zkJS95yUte8pKXvOQlL3l5CuWpMmW66G4cQFzpbAuNykBka77zpCfPEN0OAGY7yJy2C1FN2AhF\nEIgOLIXqkAgdeZA1opweeYpGnucwUKTN7zjVdf05QIckQ409RJ06Jn+zD7JdA+EdjJyjkSJoLdgF\nffIqkxFhdEKLDZCIhGhphPtKMkBlH2Vvzymvcx8L3HWIJtOe0LnFBI5dMbI4ct7z6PXQlgPaYKHa\nToqk+a4txO0iH2QWp5QAfZ8u6uxxQVHOITo+dZSvvSoaL5CEQvsWtThOKcIeikEsS0Qjh2jfhETi\n+0TIa6AaPshE6DS3H7OY0Lzx3H+rPj36LCG/vQprIYLpUQjV7kFABBpHrVoPVlXN0bLIwSWiHxeZ\nG6BrvQ5zAQ2eMhouTti/QMS+AyKShNyffh321e6YKHYJtkRA+yIQjlrJIR4qoxH5nfTbAMZNjc93\n0awJydN042Wo1QcojXugWCMcCTwmTJs1UiVfMirBjqC/K8x1D8ZOAAIf1GnXCM0jkBF/cPytaeAU\n8OmzTICXpdBv6nXtJ+mW9pcj9pkx2E8Ggy7EMayJPtHZM0LSqmjJ7DW1n3Tos81dIY+TY9pfZnC0\n8cZhRDxUTmoBJkSZXNoAvYWuYxvBxHDpyFW3H4xwHNsiLxstllpXc2ZxWfUbx61iB1bX7kifH5Kr\n34FZ04UV1Q81FwY9mIYtHB8mxaI4GAkR9TaEiKQdUJUJ+omc3n00wVgiFoHyOOev/o4QgTYuIkVy\nbAuwquJxISzBgfbjBtpAjWkQ3HkhJAegcEddWFiw9TrlJ9tL2qGQdP9DuR69cUVI92+fE0ugyZoe\nm9d4t8pCoSqZWArNb9Cy+Ur/n2Qa98oBOc2skS4ISQnXknXYJSP7jZmZXZjUfe4Dhp6fRiOoV7HC\n86yHt/WZK3MwZl7VPS6wzz26pUmewBrIrqrPv3xBc+73vrhrZmZfNYSsnUqE2mdbogHN7WjuPLys\n7z9b0P9XqrpvL5bWyIefyo3pJbRDvGmN4f2K7jM8T647ed0LZ7RPP4w0h4K3V8zMbKyqPs4WpefR\n+kxjf/019eHcTc2BA3Qp/AO1c/6SPteriS2xzlpIT4hFsbMnNH5hSc+vnYdiU5wvqX+iH9sTla9p\n92Du783M7OwH0jN5BwbfChvq0Vm1o3FbrkS1fytGy957V8zM7NpnmuM/bGhffuWv9Sy/9WO5Ik1n\ncpjYJL89EgHG/mZK7ai/pXFZeJs55MFS+x56JAc/NTOzaiiWw1fvq5/sP5g9u1K0r65JD+niBY3L\n+Hu67vCc6nl7R2v67ZfvmpnZxM/EHnvuOa2J/g2xK16ugVLuaa0Fy/+jmZlVdsRGOfmx5tdYKnTy\n43+tefRaJnTVru1Y8TO1dXzhNTMz+x77wUffV9tObWnOP7gu7ZHegfbR0xf1exGXosNHGvNTNzVH\nL6B1cvSSvn/hI93zn36tuvz5kr7nf0zO/+brZmZWm9f+d+oTUdo+fV3XOW6pTqh+BfafDizX+5+I\nQbKNO1PUU597WO6cOq+xWjwlRokfw2rAPdNSp3OnNdaPOM9NwmaG7dB3Z7YCjBA0C6KBrrN6S8+3\nOzfFDCrw7B2b1xypz4oddwYXpABduWFfz48K+nJddJD216SJc/9zXc9wPVp+XkyjmSWN41imn8OB\n+sWvo/MBQzHkbGToh4xgL3totpV5bqSwoXfXVd/SC+rvpZNoV7BP78JsmZmAwcpa6sAo3V3T3nX/\nhvYO+5//o733/rvWquvz1dkVMzPb4jn+8BO1r4tLYQ+WRKmpcZmsfcsq+F3Fr/KMQw/OQNMdM7mI\n3mTmOUYx5yv0azJHiHZMmiHahDBmfBjb5ZJ7+Oo6Xa5X4e8x7IaMc3SEq5Nza4oYkwrvECPGrgZ7\nYQCrqhSozwsRLADOLM79c4BbZo2zSzh0zrr6Xon/93BPgijz2HUq5PwM2dYy2GBBAmObs8YQTRhI\nE5YM9PfBSGstQ8evRDpBBiPcOI9GoTv4owfo8zm0uqLsu3qdTlOy1Mepp6Y1MuDc7sN+8FhDWZ0B\nO2apcA5enloxM7PFU9p/3ZwMAqeXCJPHWYyiUdTfFeswGkjcrIhbYhf9vpbTH+W9qwgrz2mDdre+\n1SK7+/W2Vf2RhWXaCsO56FzviuxLCe5EFd7HcbSdn9Y+erCpv08s65nVhlFTILNlDGZk080J9s8Q\nN9A67yLdbbFqwxXtAwlzt9jkfIiL6QBhoSHakH4Rd1GcszL3Xo2zovv/lPDH/gHasJxLZ6c5d+4T\nAOCY6dOnY+O4MXN+C9iXx8owYpwDWkHtPIlrXdLW2ebGA52F/rmSM2Xykpe85CUveclLXvKSl7zk\nJS95yUtenkJ5qkyZFnmHUwKWrdZUJNwb4CQDE6QEi6FYV4TrkIB7K0WzJRSamPWIgKH4HY6R19hX\ndNYnn7DQxoN+jGgxUewKCHRSUeTMOyKfEhVnI2rp2AhVkIAjrHR8ImYF1PEDnHz6RRft1GUicor7\nRCJ98scD8i791LEsyFWLiFJXHKtFPzseuXxEEJ39eRKp/7qJoritoGAJjikV3B28A3I60WLpoG8T\nOL0dWAa1kYskE4EleNiCeVNCk8Yf4rxCHQsdGC4FIssdUIcyfXnM4nR1RiAOKXnIQYG8QCLb1Tas\nKQQtvJH6uOzxObRUhuiPVEdcr6gx6PvoVIBO+SCcGXOnD5UlqzhUCmcEN2bkG4cO4oBVUSUndIhD\nWEqycZmcUQ/HmYjc4zqOCyHq/MPHSAZzGaR8xHVCxi3CMawIs2YIwpGBHgUF1gaIhsH46ZNvWUhA\nBsZAEByiw31HuFOF5LLa0EE4TnuHeYOWzJC5ayAuzqWqxPxK0WVKeqwdkIweakbN1Ok+/e7iDLg8\n2uol9D3Jqz59vbur/6/jpDUxqT45YuxqaA2UiXgHs+SaE7t2xmEjxFpa7FdhgzzlGUXY9/tCLzr7\nQvKKoM2LqMt3QN469FUJ1KJCnm9K6n+KvseAtVUCEVhAq2p8TvU9gMW15xwWdtHQ2tdYpXu6ziT7\nUrlL+9EiSMnRrTmm0Tb6SDjILI8LDQ/ny/QDEAHsNbfWSpFzVMDVY00/o7721WZB7fZg6RXWNfcr\nUG0a4+qfqSUcYNifD9FY6EdCQjqsldITzBEzs7VHGudvQrErJndgO5ATfbareuwXfkW7xJIomzQn\n7uOyMremcTucFBI7PKH/X/0UhtGE2ucv6nMz19RPTXRWBuzbV9jXv36g6x98/0WbPBTToD0vFPrK\nOX23sKef79xT209Ogub6YmZcPSNWwYQDd5ZU950v1IcrDtUqqw9vNvTBOfK7J1ell/PJplCcNloC\nz1wU22l9U0jcAgjs4nWhYmOnNVmLO5obDx4IFVpa0vofP33dzMz6PKO2YGDYvL6XPWSfntQcHjvU\nYaA5o5+VLdW3uqE5/ehIc3d/3rkHSUeptwq7dk77R8c5Iqw+GQvi64bcmy5fV/9Hl6RrcWFZ7AIP\np7X6O+w1J8VE6XyoccgitePNl1Wf5q/FTPniD/T7CzWticHHaCmwhr3T+t5ftNXf/UP198Yr+tw3\n7/8nMzMb25Zr09wfa85duilWxFcPDh+34fPF/8deYO94YP/OzMxOvfGpmZn96saKmZm91pFOx/wd\n9e/hJbFYCiXNo/cn1L5nGtKQ6ez+2MzMPmK8m3+j+eUVxf5afF2uTP2/E+Pm4Mcah/Xwvr08o77c\nWtIc+FldzlXnrmk9HB1oLi/P/8DMzHa2VYftIzFKLlzhmteld3Mjeoa6CUnt/JPmyodjYjctw4C7\n9b5+ng5BSJ/Tfd55wD72fTEmJle/sCcpYRVkFrbA4T3tA7tbOocW0SQYW9E+Nj+r+s+d1f2SIXMn\ngy6Q8bxpgmKj61fi7BDDJFy9dtfMzNY2xVILnDsTmi3FmH0SPbgSzMyZKZh/z1CfMf0+gKmyvYb2\nzANdf39DjJuUM0LvCG0VXJXOP8s+eFZsrApMnR7OLkfoCA7RZhkhodCcUH1a46qHD+pfhF2boIno\noYXYrONAF+r5sb2h8T54pD0k4HoWah/t3MBRbld72Ghb/eHhrmRmdu7Ki7Y0rnHw63our98XTa0N\nw6aIY+i5U7hYNWGh9Y/suKXMs6TT5ZqObY9b0Yhz2uNnptO5gHGR8g6QwbrELMhKnKuTpnt30e9O\nQ6Q80Fzosd8HaCs6N54iZ400Ut9UYNP3OWNkqdMw4XO863Rw1SyiITmCWVND66TPvtfL9OyrwXYY\nOA0TmCgpblQjnoE1zntOOzIN+H7PuazCMId9EMC26OKgW3KuqAOY4ZzF0jbsCFycvCJnD9ZmGYZO\nhgZmAgsk6+r3EPZHxgtPj7VS5OxkvE/VOFf7aOLEvW+dvo5TkkDX293VPr76SPuxYwCFWGkmqdNm\n1JwfOPcrGO8Z2RdHEe5X7h2y7vSrmDfou1R59y669xUzy462rDIxaW2uWexzPuR9MqNpMe5L3g5z\nuwpje0rrZW1Lz7yY9+LUg6VJBolf1H7d5X25ggtqNdCcGEOj6uBDXacw0v39KnqYjvVf0P1OTGt9\nf7VzV/XkFdNDXzRz+229zvdw5oJ5vuf6fErP4iEsMp93moQ11XXvPKyZkcsqIAPGQ/eoz7m+CAkp\ncw5hk7jLPfqX9TJzpkxe8pKXvOQlL3nJS17ykpe85CUvecnLUyhPlSlTb6G+TiB7hL95DKuhQF5g\nQpQ0jXH3QN9kAGugYIp4e4EiYwXyCPm4RUS+AtgQozFFyLrxd11MskC/eyiCj2ApFEAyYlgUVc8p\ndZNjFupzB0SPG/ze76KIHuv6B+QWNw5RJEe3JeHzZSxpfOf2RC5fWKlRX1gEhCxDfsYwb5qE5PbR\nHWmByGdR0Qaoh/tooLhk1WGXPvAVpewXYU4Q5guI23VQeS/DVOkUFf2s0RcZuaMj4yfq7wyJZeQJ\nH9iTMWWiPhFqkkhjmC9Om8QxShL+P2OM4sTlH6KN41JgyREdxaBnRKQLIAEZWi/91LGzdN8SS6WH\nKrtzmvdRb08ZiwR9k8hFlQdubsG8CZxqPS5YhEVrIAoxeeKJ87/i/5MKqvYgIwHt7sEWqCYgJkSH\nByXHYELDhRxnj3Eccd2Cp8+73F5naBMz51MQDmepkzll8TH0TmLWGsiIT/sK1C8g5RmZFiuANIQV\n2AToiPRgRKWOSdV3Pfy7S4huzQBkcXYCZGvKhahRk0cpv8nnZ2qKtE/DoOs5PSAcpDZhQSWxUOjD\nHVTn2+qTGM2XsaJ0NfZG+vt+B5aAQ+RgAlYmtU/1yav2Dpnb47CbQPa6PV23AvPvREvXPwiFFNbr\nuuBhyzkrKNIf98TMCcnVreM+gdyDLU+IGZKCjiQRa2aWuYg+UAlYzu1j8zjvbPfVvujxfqV+OtjX\nHjIYaO20Drk++kmnZ5RLO7aoMfdwYjPnlOCUj8YZhzF9fw1tmz5zqbsHQ2cDFK3/ZI+vy3NCUq+z\n6A7uaVxfCYS8fMze1WtoXvz4S625D8tiJ5zalObAVhF9j1n1y90jjdNrvh5kd6bUrv2PhegmTSE/\nZ2CZJKzF3TEh/wd1Ic7nN3fML+vaPfqi+AvNhauh0O1qrLr5SyCEH8EUPP09MzOb7qpNHZgSP+zh\nFPWy0Kzzn2vfvu05xqF0Ot4p6P8XXhHLa/k6rLFdsRLqxXfMzOxRSaj/aE4shJTnx+2R+s73NAdr\nXfXFewv63OW2+vgByGR8KObJDxuq76ij+lxt6751NAQyWF7NkvLEOyd1v/kbut/+ke63EUj34uwC\nbK/b6o/ZRfX9ccuFFTGGPr+u61zoC9WPbordcberNVQJteZG9zWnn/2x9sd/+IVQ+kP2481T2otO\n3FQ/tGFpHR5qLs2Yxv5cKmbM5pmfmJnZvZ+LXtC5rJ8/OSfGz3/2tZYu/lSMnveh7/3otfHHbXjz\np6F9+Rdip7w8EEPm06uq51sl7SFfTem+3SM0EW7IwWj1klynTvSkA3PY05rZ/0rslZN/SL+8IIbQ\nrUWt+Ych7XlR7T344n0zMztz8c9s6zcw025p7KbPXVRbfdUhWsGtZ0F18ztaN5Pb0oS52tDYB6DR\nnSvqky+O1Gf+a6r7D3zp9fz6lubSmAlpfe+0+uxNnLL+6EB1/Oai6jg5fcqepHQ3VK/VO+qbzDlE\notcwf25FbX9R7KmY896Dq2KNHWxpTe7DvICgaDFaKWW0BAPnjIMzz+6WPp9wdmjU0A1B982xLMaW\nNWdPLet549e1dzTQpulyzh7gVjIYqF86sAvSkWNkq7/Hm06LBmbRpPYAHze91W309tD+GbQ1pzZp\nZylCM2xc5/ZbvtZIhNNa6PTnuuhFweaojX2XfTB0Wmk8l6ePVvT7fWkDHe1rTg5wEJpb1tpfOSd3\nLDOzixfP2uY3GrdbX4ghs7+jehdh5M+e1ryaW9H3urRzc79nxy2dAH21Muc4ztvunSLgLNKBmVJD\n+yOGkVzmHchw++nDqKjW6es2+pYwNvyK0/JjLvKuU8YJNnOMapwgR7D/izgg+gHvGkPnhqTzsd9F\nO7HGOZSxqvFs7+GmmuImGpjqnaXunKr6lGAPGM6VRe43JBshCWAxuPM8Qh4Z7zSP2QO4hEJwt5Dz\nb8Yz1TG6gyLMGffeApOki1Zi1oV94bRgYBIVSpy/oV+H9EONzIEeroBIUVqCps6Q+8T+E/IcBvq+\nz/g4R6JJXJPikdPEhPGTwpzlpbnF2tzgOXhuRs/PYsYZclztiThrNdhTnGZOkD628rWjXsfKSzNW\nRg8IOR8rT+o8OL6va3zm3JFh5hUGWucT8zC9P8RNmHPeiDka0bZqCxYQupFbmzpzNGZV13nclm5H\nTv8Tx12nJXVf+9XWA51JatMw63Zpu+eyDDTYVRxv06baPDWmvp1Y1rO8DxOxNas+LaJNG0+RbVAh\nC8I5Y/GeXobpGJN90IhxTQ51vRh21jrMw1Kg51sw9y9rU+VMmbzkJS95yUte8pKXvOQlL3nJS17y\nkpenUJ4qU2bz8MgumdmGAtxWrSrSZQEo/Ag3C/IwAYDNHyhamBH9S2AFVGBPtNEN8WpEAZH6zoi0\ne0UX0UKRuq+IWCcmKkwk0EJFzkYDWArkhXaainQVqVd3H90PHIwc0yapKbJ2APtinHw/p9/CD6uU\ncNRxeZQVRdqKKbltKKg3CF0OCZ565P4VYHVEKHQXidJ3Ilga3tA8QsRFIr0HOAOMw1ayntMyQbOk\nTcR6jLzegmN2oIoO2n5IzmqNiO8Ykf+oRQQaBf8AFyLnzHLc4sGsGRKVHJljtpDnTP61T97jiHzB\nUgDbiT52LlBFtFg6ZRfxdq5JoPUgFkaOabcH+wo2hecYOynMGLQSfHI1fdgHKWmD5ZCoMLStHnNj\nyH08zy1B+hsUiBRW82F9DR2rgUh/QLTWMW4id1+ulvVoL4ylPqyGjFzSUg82g5OxZ1wCh7qRp55k\nTu1d/x/7IBjotXjMtULfMWaIimeo0xMdL1RB3+h3UnethG6Uz9oqEG1Oi8ffmmLoPQXyiwewphLW\nddRzukJoxKwrsj9FhHwLHaR2pt+r5GNH5HMXIhK666xT3EMG9/X36XNaS/EAlXWuF7t8Z2yVVmER\ntPcV6U9glzVrQjtGbaHvO3uwFujDGto3bWeyVvqug1cvcO2jnrCVHGuqzL5anwaZYC5WS/r8sKTP\nDRPYY0y+DojFJkyhB7hdZOgPjQ5xYtvQ7yEbU7Wqek+B5sycFIqfUL/dSEh32a3d/4+993qvJLmu\nPXdmHm/hTcGWt23Ynt1sUqRoJUq6d0a68z5/3czcb66kodQUKV2aJtneVVd3dXmHAlDwON7kycx5\nWL+okvTJoJ76PmS84ANwTmaYHZGRsdZeq077QKsa9E9vQwjmCOTYa+r/RRiD+cLTOR3s9oW4n9yW\nhsSVhuq52dF9qlmxSTLvqL29M2hD7Ks+t9DgCVfUD8ttEKLpW2Zmdp31fu7Gi2rHiNznHfV3502e\nW4EQ3IX31L/F8XtmZtZcesMW7otVkC1L1+bd7LfNzGwsq3usxHJRujMm1OWbz0qHox3qIdoc6Jr9\nTTE7HiyIMdK7InR6c1ZshRcaYgd4Q92nE+tz2dtC9/caauNZ2vr+Q3Q0TmgMz/V0/+0NrQelvBxO\nmiuq7/ABTMttjdXaGK58Lc2Js7qdfYnuUqcs9H0ZttfEnFhSXZgvwTUxa7rran/uuGJrc1JjOT8m\nJsqDB7AIEqHg9775dMzM9TnYdt4vzczsrctic4xqYqqc+K7m5uZlMVGeOaYY+R93NfavHdOYf7mn\nep3uv2FmZte2f2VmZoUfqj25A/298rz6L/ORYvD22vtmZtZa0jiUmpo7W6fVjjMZsTuiAsybM7rf\njeKTNsTfPmWn72k8dia+Z2Zmzbx0i945r/Z931ccZK/JWSxaVL+OnxSL4L0raKzd1biMD7RGbV5X\nfHpTmntf/ZPa8dOi0M4PL0gTaacvdt/J3/7C7q/+0MzMTp3SmDazQipnwl+oDl9qbD/IitHyp28r\nhj7NSPdmsa62eBtigPz4Va1nbz+AFdrUfFs7/xszM8vPiu3UHsfF57bG7K0VMVW+c07zvPHx983M\nzLdf2dOUNkzGqAVqjS7f5CnVa3FZmisRe4SvbigWt+6oj323BQLJ7bJOZ9CFM9zZpsp6njxCb6LK\nejp/RnN3cUmxkYxwC0WjMDOBE2Nb1xvAlmh39P+tWxqr3TvqjwSXkAHaXbUZrYvjxzSGPi5EtQnd\nr8BztIG7aW9NzKYttGS6rJfzs/r+sWc02atoOrQbam9zT+vnY9oxe5SY5/ABzJRcT8+Z3KL699KC\n+jeLttkmbiaFruo1fUoMl+OX9DP6ZzIf1z+5Yps3xQLrsJ6XYRPMrijWT6wqHjvoeK1fV/uG2aOv\nJR57cR8mQoZ91aDIMx2XJc9pn+A+lOWloD+AiuGhkQhTo4ULUtE07z3nsuT2T+DsDLlFxNgAprzH\nPtZw4UzQ3xyhURLEsIozTvdCcwfyrxVzqv+IfXaB/WvfuZfC6u+j/eK0bkYRuiQwYDLsd32cwfI4\nUQ4eu72iuQiTusyeLIY5ExMroWOowCyP0Los4d6UY3+foA9Sdk697PfbvA+U6T/3ftSh3hGZAwPc\nsdzc9fl7FzfaCDZb0Ql7HrGM0B312FMVcX3dYa+VhSUS8y4Ywg4uTOCoNqY18fCB1mU7prVtz+n8\n4RLlwaTqwRKfhJnU957EdLvVtfl+bIbLWELbzEMjCnpSnz5M2oqNfE/PxthpN+EI1sVKKxnoeln0\nJAPHruIdsvNIz9AujBOv5hy7iOmi+mR2QffxYNj95m2xN6eXdf3Zku4/QgcIeSLroq8T39V6kz2h\nsRxf0Oc//52YlrWqxmJ8GrdMZyvaUd8XWJ8H6BLFZMqMPBjrCC55Mf0HIz7PZIzais0xnhP/XkmZ\nMmlJS1rSkpa0pCUtaUlLWtKSlrSkJS1fQ/lamTKjoU6QXNplJetUi4XGtUCCCyDOAxS+s7AP+jjh\nlGAfhKD7haZzgOEUkBzVPC5InQE5b5yURyWdzCWoLLfIhSs4zRnU9hs9p8uh00sfwQyvpN+HOMoM\nAtXT7+moLkF12iq6XmbM5ZRxkshpaI5T8I6v9ucbOonsoneS9Z0TEcraoU7y8yDqQ5DmfAFWS4L+\nRzNvngBUGw1ALKv6zgGof4IHe1AE4SygRXLISfE4p4MoUPtdTjPr9Clwh0fOa6WtNrVgCfgwNob2\nJIfxSKWo+2XJaU1ynOyjeeLcffIEUYxzl0fO7GPVdxg8PZT9/cTpBREjAzQMHIpF/qA79TWQi4hT\n20yEsw/5kv2AfM03AAAgAElEQVSiYjALig+pwYac/nKgb0WQEJ8T65B8R3dinoCu90GVYthcI2Ig\nDxcmRLW/gPNBv4KDAyjTCD2iTgc3LGLEQCY8Tm8fq9A7IwiIMV2HunHyn+OUmNtZ4FyliJuhI9Rk\n6Rfywz0QiCGnzYlzEOO6MY48Ie1yp8ul0dGXphCFfi9WrDR2NW+mZh3ribrgJpHxOTnHzW1+jJz1\nnnO0Yp4xv3ugOq6RATpHKxM6aV+aRQ+ioPv6LbVtyBh4xFYEWtPDHSmHpoA3JXTDZ74Wi+Rhexqz\nXg5XJRDVvZDvwezr7gtVsTYODBO4a+BOMSImdnGBWr+/QzuEXJdxZEvQoCpNwfQjX3oPB4ksiEnE\nfTJrum8eBGB5CTejKZg/5M13mDP7ie63BvLrtXS/iWlQOZCY9m6bn6p3nViYR0snBztvPAMUcsRy\n9pQ+//sdMWZejqjPPVC6rtgoHdDEOxXptxhOGWFF9V7qa9zzMJoegeZ9Y17r8e5ptCbyYlM0umKV\nLOyrX4J7YkS9X1A/Tu4JUe5MXbdhS318YQm9jA0xI672FHvzKyB8PVx7NnTv/RmeQX2h8uvPyE2n\nSugee6hnzyruO52LPGP21Sff2Gf9OK8+WT+hOXDlfWnOvFySPkfvllhODRy2cieFLp8fF3rfjvW5\nmwXF0NmKWEFrVTnttJd0/VtXhNLHS/p72aSREu8ohq4XxZqY21R/tF9Bn+emUPLPdXvL7Os+3XX1\ncR026fwpaeF47e/Y05TiuzB/fGm7DN6U+9Kb91SvDbRSvveNVTMzG10Vs6V6/E/MzKyBzsXFA8XM\noxf/zszMpr8UW+DYtubenVfU3yc91ff3Q93n/MuaCxuf6TqvPVRMhvOKyYsNxe5V3KtKMFrsmxuP\n23C/smH3Q93/J1tim9xcFSPmxF8rD//nFTGsps4ophcDoYgfbkhT5jhuXp131N/P54Umfjau2F+Z\n1Bo0NxAzJuMr0L6zpTXm7ZfV/1sTkd3DqXBqD3blZ4qRG3nVoT6t+TD9W83/D2aZF69rHbt9oN9f\nuyRNk7//QuvCMy8qdo//Viygn9V+YmZmpz/QurT0rBg5x9D3KV7W59ef1Xw79bJ+n2+8Qc/933aU\nkoOpOHNJ2jgn0PspVDV2zXWtX1euKKY7uzAzF7R+zZ8Vg6NQR7sLxuAAHbwErZhoyLP/staVQ/QA\na1X9v+kMDrNuH63nyiHaZHtrmhOPHmrOBjDLHQA+4mGegylTHlc/V2AZl9HOqq6oXSWo6lv3Ycnd\nZq3YwWXQ1/hVqhqnKloUOTTaGi32hrgH1tCCMFgjTa7TaeIUBzu7/qLWlpnJGvVVfQYdng+Lqv/K\nGVz8pvT/nS3V785N7J/+8i/t/pc3LI++y8UzWmNnz2idTzKqb29L9bj5xWUzMzvoivmzuHx07aEc\nOpVtxAUDR/NnDEPnWoqGSuy0G8uaVyW0okawc31cOg3mRwwTp89YFdnPehG6ROyJBrFjz+OCiUZJ\nueo2uhqDDM+wAfvKMvu/NvvsIsyXHm6kBZxmfPa3Gd6BRjBVEt4fCkPnXMm+mP4YsL12sR6TnJCP\nXToE+22n2UJ/5CswcVrO6ZZYgbHu9reJcydC83CIm5SHE49j3Lj3lRjd0gz70Bzj0mf/6hOj+RGM\ndlggZV4Y+ryrxrmnc4Q09jD1Wa11U0uKxQ7ORh3Y1BmYUp2s/j5R0PNxfFWfv70ptlgfl9oazJ4e\n2qBeH6dfNCSrZT1H8uwtzcxGlrFS0ayN5lQONlDRMU1g3wS8p4485yIKQwQ9nxzrkQf7KyDTxOMd\np5jXM8SHbbX2mdbHPhkw7et6tvlj7EPR5RzAEprBpTPva90fPkTn6Jz6IgfragijpwLjZp/YnQm0\n/j9/QWzUR1dhDqKtlRlpnc7ClMm4AwqyAdqOxEYse5wz5Mu4sXaZa6Q1DHgHHeGaHPwnWQApUyYt\naUlLWtKSlrSkJS1pSUta0pKWtKTlayhfK1MmaeoU1ploNNF+qMKMKdd0UtbWAZpl6uTKIq5QB1no\nksaXc7odJZ2sFXF0yDi/chxwCiig91DaDkBix2AtHKJ0HpMb1uW61TGQc5f3iSJ2ccDJYRkGDae2\nfTQpiuRdhibkJsaKJudzf06pe2g7JPjDd9H/yHR02unUsD1OcQucZGZg+PQ4zU3I70wKaBp45cc6\nNAUYF42BTi9rRRT6Xe4o2jPucwFaKW1YCB55dBE6ECFjEGSoIxyRHifxHIbaMFZbq+hWHLX45Lx2\nYRuMOMmOuF+AUnYXllTACfag6RKVQRIAZbrUvzgCccY1KAdjpk9OqWunB1MmR86oU97uw4rIoXeR\nJ1/bg9HTa9N/ziHLKZlHIB7oCIUu39IxgDgnrYCMF0Dp4yGsD7RfCkN33Rz9pHHIgC7le4wDausF\nTm89tH+SPGryKJpnIte/tBsWyQj2VaEN66vCqTFoVg7UzoNqQ0qyk46xmJP7LtozCe0ruJgnt7dM\nTrAHajfsHT1OSoxJAtMiR6zVXM5qWahC/o4cQryc5mGBzzVGmgsuR73FyfpwX/M5AKWqkQ/eB4Vu\n09etBkwYYsa5H4WgPl00UrIDtblKKn0PJDRb1xiOocXSwOEgHmd94wS/ewDiAAshR857fw9lfvSB\nxmAGZmpj1Ed92QLBHWygBdPT7+VjQgbyE7r/9gDGD0hqtK3fO11dZxyYKwaFmpsQQpE/LlbEKK/v\nNbpCPJxmQQu0JtmFhQVyWgPZtKrq39jB2Y215diUkOX5eTRpqHcreZIPfZRyvS1til5N7egyJ/MJ\njJYdrZeFgrQfpuin9Uca54tzYnWsk6+eWbhjZmbPzYpNEl4Vi2LjhBCY6K5YFPXuqr63rOvXTykA\nLhxo3B4+q/aOdeYtRlslv62+uH5Gfb14XfPko75i8dlHQosGsHWGE7rmmVPfNDOzuTXV5dqsvl+e\nESvhnR2h3NOhXHmCAyFmD5/HweYe68jORTMzO3xR2ihXWX8KNzWmK0UxRxYiza3tvnLap7PqywSH\nrqZuZ6Njckd6taUYezAm1Lt7oNgYx9Ut/23lyI8SIX/3J+V89dK7Yld8/orm5iW0VTIZ9f3wtsaq\njg5c9/5v9HPlNXua0v+J2r9zT+j6d6uKveZJ0MLrOGu9JRR++wcvm5nZK+9oHLZfE8o+/7naFzFX\nH9TEeCnMSAvm6oF0TLwr0kNZfF2xMPaZENNvvc5a9JbmcK6i2Pn9XfVftKK5trj4BzMzu+Yde9yG\ndfuWHd/Sff+xqfuePKWBWP6+mDDFlto3gZvT32ZU3//aBsn+AnbFGfXvR+UfqT7jer5+8qnicKKo\nOVD5ltbUnyf6uTQQA2f/l2v2kx+IwXIVgbfTz0jzJY/e3HRZjJLxZ/+rmZltBWJ7FT7SWHjHxPr6\noKcY/15Hbfv1jtbFuaJYOWf2/t7MzDbQFNn7WOt7eUVMnLM3dd87RTFArr+l+iyOnBLb0YrPXmjY\n01i7WDlkb9O7pzlycKj7FsbVJzXciyZK6vMElkG/gPMN6+neA43V2prmVHtdekOzC6u6Hizd1p7G\nYshe7lET1ipsu50tfS8JFFuzx3TfybLW+xmcWgo8r3o8kz23f55CmyFUf9+8pnFZu3NP/w8VM2de\nEGOoxDO83XVahmrXvS/1eef0lXdMdzR5ItgSg12Y8ejozV7QGjMxrTkdoS+47nS32MeXarCpC+rn\nA55PW2tqf+OBkHAzs9zsmBXY29QW9NzyYJs0dhXLdz/X3I4rqufKAvpOpaEdtQQ5NFccyxaNliJa\nfwPnIppl74BLpjnNE9wufUdhxhmRrcdjBnOWfWeGDWYHWyC/xV4oy56l+y+1HeMhewT0OGMcs0ro\nVHowtAuwg310i0p1tAZxuIkT59gFo4d9caHnNGlgtDgXUpjSXsj90UKMAufex/1g/GRoN688lqCF\nU0TXKOk591Cnjaj29GAIZYowRGAA+dR3WHEX1I+Q9uQ83vHYuyW8T7g50oUJn0OLZYCjbpH2eOHR\nY8TMLMM+fOOe5nwL1rMPOwNS12MHtqTD+wV7pIB3P98xoNjP99A36T7Q9ao4bOboz26bPenwSeZC\nPOpYJ4ksV8B5ldhr8M7iYqMMK8iHFeTeS7MwzIsBf3BpB+ynE7RXMrCZ6kXN64lTWj9W5/Tz3Y//\nUW3DvTjj9H543/XqaDHiVLmzJRbtxFDMt35B9arDqhrBTms1td50N8VWPYTNNbukdeP6NbFK7QQ6\nme7dro4mIu8HRqYN5qYW8+4UMVcyZf7RQp+pqlgtJqzzaNv+eyVlyqQlLWlJS1rSkpa0pCUtaUlL\nWtKSlrR8DeVrZcpUKqirc3BUh84xHOc0GXQux8l5rq8TsGZGJ17NnlCkyhiOMCice7AkRjVyy0D5\na57QpiFq+UVcW7o4y7gc3cKQU1tO3IYoYoeczAe4KGXJW4xgV4SoPsewC3y0Y4aekJO4LWShWFU9\nnHdIh+tl0KSJYWcMMzq99mGB5DnWrfRwmck6vRCQjgK6Lpym5rs4V/iRZTkBPuSk1+ezSVOnfjEa\nJiVfdYuGQmOinNCpIk5OXk+nhm3TSavhZFWG5dNu62fRuQbhfFWC0dFxVIojlmGBHNlAJ8N9dEGQ\n57ABp6glTtBHaMEUnar5wClkc/LPyTgpl1YB0Y0T2AecU8YeTjSPNWHQqsmA5sCOGqAbki05toT6\nuVLhvuSzl9AhCn3FYt53TB/0RWBr+S4XFsZKH9X1CmPfJXd/4JAU2huFsC5AJDp59VfSob0whTJo\nu3Sdxg3IaMRt82jTxF3mErnPCXmRAQ5nMVo0HnOySMxGLCkxrlAec7JCTrGRl+rcqwLyLrucxrsT\n/0r+n9mJ/CfFwzViiPtDjRzPCMZdSN/lxtU31YxOxodjaKSA5jgGW8CJvDVgfz1Ch2lJKHZ5TNfZ\n3Vnne2iuAA5FxFDONZk88N6m1oGpik70j08JCfSmnXYM+eIDIa9t2Gv7m0L8Cj00X8ihb7uFk/k/\nkdF6OD0uBOHaPTE+wpbmKlPIgpb6emlezjLTy5rT++QAW6j7eUABGVAlh4CMo0dViDRW41NCPA5i\nWBsgrvtdmENZrSkBc6B8TJ+fgyVWR5unB6rlDYQwl0H/pmcVgy3Qo8OW0J9hR9c9asmWdZ38fY3P\nRChWyh3c9mYvKIaTXwmx2Tyjfpk9p/7Igrjkh0KMFzYQ6toBmZ3GvWPtd2Zmdg2yV+sljdNiQ2yG\n3F2Ne/aEEJ56IAaOd+tDCyE83L2he59FFOYerj4rzJvdisZ0Z0WsgNkRzl8fKM/6YUHfn7gnTZCb\nc6rTbFk3OF7S5696qvPzXyiWPxgToyY4Ke2Rkw2h+3eZn0sTYtYkjzT2vy5Ke2QONKjXEwp1rC9d\nneuvKaYuxvr/pznd92If3YpYqPeVC9JcmfxY7XoBPZ+dZaHWnRWeW3d0nbAuBkzvvhg/XZwPv3xO\nsf/KZee+JwbQUcuF32ht2E0UK+ujf1B/XNP94lmN1bUXxCAqX8fB5UXN2dkELSDYD+8vicXxxj3F\nyOUvhIiOdxRzSwW193c/FzNp/QeKsYu/hBHaV/0nPxfbpLuqOd1d0biMT6qetQ+f4GvFf4ht4RJO\nOzVp1Sxf0d7jHx/o+tWTWosm5xWD+UPpqvz6kTRiRstip5yLxB54cUlz0r+sOPj9Ca2RdRDbT3cV\nnwuPtG6PHdd1xs99xx7wP/uUfdYPVZfeQ9V5A7bAXvP/MjOzb3Z/YGZmV5fVN+P3QWSnNe8+Wnvd\nzMxOPcJRxhRzpbzGfnpCLKtTc1o/3j//R7oeC+CL2xrTz59Vn9pm3Z6meLjd5dwzs0Z70EIYso5P\nw2aa4ecUTJXBvj631VK94wbuSAOtM7vr2nMFMCuzuH0GBbTF0IlwjizdPcXS1gPFYOJoBVnF5ulL\nWgPGZ6WJUpvU9dY39PkOLORKXe0os3c7uKZ6bm6JbbXHc6hc17p34SUYgbCq965pzGMYjAUYkk6T\nsTItFlwHV6gWDPSE59fkip5HJ0+KBVhe1lqTRWfv7hdi2z16oLWqB/vBaeUUSor1EU6cyUDxs3xa\n1zUze/HVFy2HJqMfaZxaLV3/9qdas3yYN8+efsbMzPpDtHq2njBu/rPiB2rTELaA52KFDRkkW/Pz\nPMvbqoMPazYxxVjYYVOBc43bT/UzjsnNMw2XywiGh9MK7Od46DuHV/Z/jsFsMftXWPtdNi0F3I8C\nrtuFJVSDBZVhv9dj/xvCUCmz37Q67F2n8Zh1ooOw+2Fv+Vk0HtFMcdvf0LmPOskT2h+jbTPk3dB3\nmjKwcDvsIUrs5fqkUXg48vZh8eZCxzAhVvKwtYaObc1+FGZNxO95mCge745e4Jj7XC/zdK/Uzn3L\n511ud1tzf7ijn2M51a/PO2Iu5j2F95cEtkoOBzEfFlqJ95phH+2iMvqCMKuGORzb/hkjvT6zbLl+\nZF1YlKW65mGF99oh1lNDWFoBDDMIIJawN4mJ/QDNGecIFpNhcu9DrRO5adzc0D4cklnSZX/a5T3a\n6R310GCcK2jPUl7RHmHjoRjQTtcooc0DGCvO+DVmv3pAVgFSkjY2rT1R70M9X/K86/byTnwLZgxO\nao8FQnlpKqIhO0JrzDpoxKKXOYqcZiXaMv5/rDuUMmXSkpa0pCUtaUlLWtKSlrSkJS1pSUtavoby\ntTJlsgFaDwLPLMQFqQjboI0WQo8cYj8UolHktLOLqnuPPL4QRLqQh6nSQmMFRLnTB+Xn5L4IQhoU\nYHuQWzxI0F6gHllO/vpcLw/i4oNMx22kwznU9vhewcToSTilDTOwUHqcHj/2a8cNqgLaCNKQBV3s\nV2BTHII01dTOcU4EOxU0b1qcEMLS6B1yYlnsmtdXH1Qr6ssYt6Qkp7p3hpzghzAZODHPc6QPocMG\n5BOWItWtQ98n5N9547B9DmEpoBMRwqAJSk95DkheYYdDygK5tzH1G3CS33Oq6YFjWOh+fY+TbRAL\nP+OOmFXvFjMgwbnAgzVVjGCMwLCJ0euJONnP+eqvHGOQgAiMAtyMmFo5clK7aMEEGTRvcK8qgoj0\nQSaKoGwhJ/8lxnSENk0RlMfro06fc9eFuQMboUQy6oj2hDidZXEe8uFp9RzzqKI4cIrhGRhOAWhU\nl1PiLArrEf8fEU8uFxrgwnzIJiGBMxrAEKK+edyfvJA5CMLDYbxF0dH1QgYwWvKwe/KsE9aD1YQ2\nVYaTeYMBt0vObNIm9hnbCE2mxwy+vFCKCXLQu6BVmV3N7xEaVJWi1pG1R0Lc4o6QuuKBxm4avZCT\np4UA9kQQsS1U5zuHqsfBHgiqQ2c8jVUFt4oiWjHhjlDswSEIKkzA7ibMmy3dv9RFOwZ3iQkQkJkT\nWn87zIHGvj4f7cEQDIVI5kbqzwXGurqoWIti9efOSOvh4brqnck7TQLVdwAS2ye3uIRWVjCldrWL\n+n6r4xBPWFgH+ok8k/VAHnZgJvUKT6cF8XBT9392XshKK6N+mGsLAe28s6p2LqGXMS3k+MAXO+Fg\nUgHxqCfWRG5Xeh61CbE5KgP1Z+7cJTMzW0LTLNq9YmZm84e63voZIUVNWHyPRrr/sjdpx64J1c6g\nJ/RJWYyMk1+pE8YTaZj8flVjv1gSA+bGuhguWyXF6NK86jxe1c/cumJiDFbWByONreWFDpVZ5zPj\nb6tPyNEffKGYiUPVMQvSefU5xfhzD15S27fFTvhgU320fFKMkWgHFhTrTea20PbWGY1Bbk2spAu4\nSlxeAfGDsfdQXWWXAKHqVTFjQmKudF7tnjHV24+kQfPVghgm5yads87RyswyeiHoFzW6f6n6vSHk\n8n5bMb5Z01zOfqT+7VXFhmiO9Ps/rSrWzm9ocv36jjY531nW75+/qH4JYTgWv1Qsfft3Gv/ffEca\nOhMtsRGO9981M7Nnd8Qs+rAiHZaJvJx/5iu3H7fh9GzPWhmN83eu635v4fzwYxirfz8v5sse+lUX\n7mou7c5rHI/VFB/tR2Lw3B1Jj+X4nuJxD6Zt51nF49ym1ve1CbX/5uhPzcysPjqwb4S4cww/MjOz\nawf/m5mZ/aBBjv9t9cXdCc3HISzdG5f188wJ1eUQN7aD1zVG39pGFwFNre7KqpmZ+b9TGwbTOEO+\nBQPipJ61czB2enOK1WubT/ruKKU8p/V3LNGYFnBOOQ67trmv607U1K7iosbCOe1s7mq92LirOZXr\nKpYPcHicmtP1Tj8n/aHKmBgmTZgaO3f1/W5Dc+lgh+cQbiG1WZgpOLv4UDg760LA16/rOvdvirW1\ncgrm3kAxfdhUfW49vKm/H2qdmllWbC4/J+ZJCcbkvfcUq2uso2eWtf5NL2stCniQDnI4eh5orRme\nUOyW82ifwbbro03T3BMjcoDeySOYUX1YzY6ZOmzBHAJjdizcqXmtx4snNTd1jwnrogkRsodx2g91\n2Gez42iszaq+9z+5Z2ZmByD4Ryl99tdlNFQGQ+aAo8zA4vVxQy2w/gLi2whXpBHof7ntdOrYN7l9\nGC5MI7Rkyu6diPsXeXeKEo2pBwvK4x1j2HI6eNAGYEEM0LsLPJy5nCag01qB0ZxnPx54vAM9dttE\n+woWstvNZWD5Z4tOE0bt7zvxFERzYvQ5C9w/bkHHYP0y2GpF9tUJ7SowpM4xMwfDZ8DnS+iRDtiH\nI5dkOTRlElyYYhxsB23eHxxTvOB0O9l/R2pnCKMlSg7taUqWfl+e0RxcXV01M7PPtnm/QNfI6RmV\nZ8iSwBXr3l3tA2YKMzSEuGAfn81pT5jEaJON62cT1vYGbDkzszMnj1ut6Nnmba0nmRlda4T+UcB7\na7WsTuvACCnAiooJXh/GXcQ75cyK2pYra13b2tb61WD9e/UZ7afGcAfN1NSWZF3PkqHLZqBPNia1\n7k3iEnqVOeXI+CPe7WoMbq/COyTrmOHElfDOEjI3S7iE9iP9LKGj5FxX8zAU8xk0rOjjhFiKeWeL\nmfMxGmqG/lCBPdCI84B/r6RMmbSkJS1pSUta0pKWtKQlLWlJS1rSkpavoXytTBkr4DbkBMo9TrI4\nFa4Ucf7htDhLHuJ+Ryd2Ew6W5+Apcdb0eU47fZ1QlclHbOR16ll1Ti9O3qSnU+QBLIdgTPePWuQ/\nOi96TrczMFgGsDFCVJ5d/YKR01OBneG0HKDS+OZOs1VC2hk7l6myc+aBQcPJ3bCCJg2/N9E5iQ6F\n4kXk1lYSnd6SfmijftYyoMoDkjVzIad26Ngk4+Tq+6pEjfy7ASrqQ+dsk2XMRvp+HVX3mJPoOqeT\nHfqqTjp5AnVi4KgQRy2cKlY42W+Se5ojh9M5dblUVh9djKip7yVVNFdgQXkZ1TPGOctzAuGMfcYh\nCSABQ5x9fERsRo4lBUKQI2970Nb1ExTKC+S+tgc66c7z/eGAU1pitov6egUUpsdpr9O26cH6esxM\n6qHoDUIScBrriCUlH+SEXNk++YtVkIMQrZcCDmEx9XVIduIQBhg0I1Tlc2WYMQHIBQyhXAv3LU7o\nn+QOcz3YaxXU/kPq58EUcumZQQH2AzGc7yvWj1I6zIdMQSftM7NC6MIZ8rVhxPRRpA8H6pu2r98r\n5F/3tkGDYGqM1YUcDkFUOznFTK8JI6WPzhHspKCLfpBbWKrk6JeZlzUxTvbHQXxRg9+5jT7Tvsa6\n7JBlYnH8uEMQ9HOX7+09EtpRKisG6xUhj45ZtzwnpLlguCMBLRbq6vQt8KsO6E4bBGPknBj2FSvV\nWZguTjcEZLIVad3pdZh96+qPmePSdqia6tXMsgA6uAyHhu0GKGIbJ7eB2s1lrYZrXdAlZifI28aV\nKRs+3ePrmRNCbN5eV/1vJ8olPrujuT71ivqhvKEK7NwRkrPAWnGrpXhYYrV5MCUdlGlJLlj7ohCc\n9gMhPK9vq98etsUm6WQ1bvFI6/MCKNsGWjWduGAff0v3fAlXonNr3zEzszsF1am5oPlzrqK2NO6q\nT2Zg42QD9Hvm9P3GGs4lJ9GNMDEtnpkUw2H4ha778DnV7dS7isXdFdXp+BTX96XjEXZ1/ZOfoUX1\npu679pVi/c3jQtE/yuv7b3Y+VNt6is0HK7perSZXn+y4mC9NX6yApQnpQty4rHq/YkLz932hZ/sd\nNMPG9f8GDjdrLblObYNavXBSjJlnv8JR4Yjl56HG7iyuR4VIrIt/nFeshJH+P/2N75mZmX9SMTus\nqf+Ch865QZ+/cU1o/9kXNW5/8xB2x4TmSA/268qO+udvlhRDz++LIVP/WNd7v4iW26VVMzNbCtXO\n+2VdZ3mr8bgNw1eu2yfbsH9xNfGekz6G/5WYPv7bf652vCGdjt//WON09h3F1XBd37v1R/o5EyhO\n3g/EbPqzvur50duKh8Zf3jMzs0FDcTdxX0wee3Dcvgw0hmf+SNcer4ol9fahi2W1YX1VjJXb+1on\n37zOs+mCXMxuvq0xf2lH9yqR+//2N4n5y2JHvfpTMRF/9Uvp/wxfUxvnOloHf/Om1v83hr82M7Od\n4nl7mpIDKe3iZNjC3Wf9vn5OFWF047YUsA/cvCtW2oPLqn/knA5hTJdLGuNJGEMe+8UeWgT5qsZ0\nBrZxs4/m1Rzfn2V9r+i50YQFsYPbSIA2wgGhsrio/phkznY6GuPr11U/Hit2/GWxpaZPS7+qd6gY\nvvI7zd3dtphMM/Ni0ixc1DgP0MTpwvrw0ZLZfah+2usqLkpVmJOB2hPDft6+r+uOWHNC3AAn5xUv\nixdVr2IZZx0Yq8M9NnWI/mQyT7DntSuXbeu+nnNhD1YyrK8qSPlwU2vKtaswPXvqsALPv6OUIozz\nDgz1LDqWoyy7frYIgZOpQAez6NyJYGLE7M/ZbpmHY2Q2dmwf9h5F2gyTsdRnvxU47UL+jytnp8Ez\nu8J+jS4qDfT/PuxWb4z1zdPYBM7diWdvVNHvGUQaHzvSwNDOR+7z7LHQXEkGaOH47KOdPlCg+414\n5xp10bkUpbIAACAASURBVG6hgpFj5uN0OYR95fSdAuekRj0c85tHuMVFmEkw6EPW0QH7ayMTwNCC\nLLDvTdjHJ/RLwstVzHtVnndIt58+aolww9rfEJvv3j10i5y2J+MTwjDy6L8IAdT+I8VqBd2oIf3Y\nWYd9vcf7y4L6KTMP25n3wAdfPGH2TC1Urd/2bH1Lz7jZk1of4gl0c3iHias48RLTA6cTSmjXS7yD\nwa4PiNmJutZvr6e6H9KGJu6ku2g8js+ojltXecdh/XDvQn4TFn9W62yGLIPI6VzGjFVN1/f3yShp\n6D6QySxBy+wAXbQR++MqekEJY9/lHTfJq37BJKw29oGBRzaIc09OtE7nqc8ATZnEcyqy//G+NWXK\npCUtaUlLWtKSlrSkJS1pSUta0pKWtHwN5WtlykSHOklqcVgHQcac7Mhj5WhUmVucgGU4FW5HQnQz\nvmOgoLBNjll2pAv3CzpRS8iVbaE7koOh4vIJI06XY7RsirAuWiAWpLCal5BbCpJbBgkZNnTdPKen\nMaeWViRPEoZOAFJfhE3hwZYYjsEuQZEbQo6FztYc7YkRiEqEGvVYDQQ7co44aqfTOwmCkoUhaFJJ\np3g9nEs81N9LPbUpUxTi2e7D8qmSLwfDwY/Vl1m0QQaB6uQPVfcuDJssh6eHOLeUY913GDylYwqJ\ngj1yKDNVciZBqUIgh2KBHFzQoBDUJE+IO/ehpMfpa1VjMxqCYDgVehhA/VD3LcNa6pLSmo1hopCL\n76gt5cQxSDhlhZUVPJawUT3LRbRcQpTFneMWiMEoDxOG/vWy3r/4foIiuI/mTT/r2AMgB3nyQMlV\n9kBsnCPEsOIcbtCSQd4+S/s8jpFdTDp0Kten3xnPDP0QFJzLAIgILl8jmFPuFLmLin0GJCIC4fDQ\ndRpalf/DyAoc9+k/LxM4WmGmY5VjQrnXBrCafPVNPGRscYwKcCLbOUCzCfSoNqM5UMUtokVsH8Ig\n6XRQ5qfvcjBuMgV9Lx/ppz9UrGdgRGRBWHdwkzjcp35l9dVMRchqzVdflFzskVfcxTGhtyv0faYu\nxLBWFbI6hqvGLmyo/DFgOBwXBlXmQoxmFlpZo6HT3KJfeqrn0rQQ5+lTQv07sB9u7QslH4IwlNuO\n0af7zgSqT5s1IwFVS2BtRR7IC+3K43A2bMFWQwvo2DFpAcRTOHuB+hVi8rijp3Nyu72m/OnRnpDc\nal5aCDUcDOIdIesbpvvfPEOO9J7aczrB7Q9mZwJrbeOY+mNuWxoGELTsnQuK/VdhHN3lizm0eG5t\nU7FAiPCwc9ZWPxBi9h5MsbPLYg80VnStpRbOV2Pq+7XzoNefv2dmZt84o5vfuysUebKonPMANOur\nu4qxUluuSSu46EzeFpunfVZMmn5ODJM765ojrZG0REL0MyYuaGwe7WrMJtG8enjnspmZvTAj5svn\naKLMgxgvTSt2C03V571JoWcLD/SsnruvPi59T+vnvav6uZMV2v/CtLRNbn0lsZnTE+hVMKdm+0Ia\nk31Qsp/8yJ6mvBnJoWb9kvqtfU2xW1vUXDj9mfrt5s4vzMzsxKpi8922mD/PLGhurcIguX1KDJiz\nA/Xncl+MntLln6mexzSuHz6n/n+lrPEvdL4yM7OJCY3nybLQ/U/yYqqcX9P4vuWJyTM79u3Hbfjg\n/Tctqam/ohfVf2dg373fVzvmS/+vmZn9bEyaOd9/V3NrryUdkeH5/93MzL77S7Xnwz9XvJ38rtgR\ntz8UU+jgovrpuQ31914oFsw3Rt81M7NPC2U7Hwhx/cVHYorMF9XG109r3Tj8UmM0OqNYCGJ9fv3U\nW+rLq4rxcFGUNG9azJe3YI68+Zau84tVrdc7Wa1XzzwjZLRQVd9fnnnRzMzmbmrPcv2s5tLyzafD\nJps7iuEb13Cu4u8D9hC5cdwwv7xmZmadJo4quzgiomu3NKv61s+jrcJ6Hm2pzzfXNLaHG2rHEFpv\nrqL6nkDjbHxO1wl83fegKQbK1oZ+Zp0DItoOy6fRbytrjekfaP26cUsIueuN2oTWsySnftq+rdi4\nc0PXdcjzyslV/VzQOtlqqx/W798zM7O9m5qTTj/JZ281AHmvTaj+x44r1psP1f6oqXr1HfmhorUn\nZi/o9dnjOP0/5xyJPp7bm20/eLKXuH37gXkt9jzTircMm7tOHx0R32nRodEzAWs3n7WjloR9XLfI\nu0YP1BztkQL6G20cZ0toeMXokDnNxxGMmAJoe7bGO06bdyP08UJf33dqFZHTMEQjJgmyfA6GOftQ\ng5kc8U4UopniO+ZJT2OSY9/o9t0R+7qA/V6CQ5VzNeoyRjH1CtmnOlfTCCZN4Bj7eY1ZPNKczjnX\nU/QxffYW8cixohyDRPV0JFyXLZGHme2yJdz7wAB3ooLTuHQupLCkujBkcn3+zztnhz2ky+7w2CNl\nItWjmdM6mysfXQvRzMyDPdGHGZVjPOuwvXc3nOsseqH0ZxzoebkH2+vFs2K7zU1qLfnsFs6gbn/N\nHmea9z22rLaz92RuBHHBcpWu+Z5zhHIOVrCFeAcYh9nm3EX7u8QE2QxBVnuMIuvViHeEASz8JlFa\ndPo3PKubda0TY5Oa54MSDDv2LiVcmDowXEowbirzup97p+lsad2onNa6EhPrHhkz5THFmNPcauNA\n7DtLWsecZxmpV2GLHbJfDZ1uD+/AvMcbzrfZrL7oOfoWGli+09EcpkyZtKQlLWlJS1rSkpa0pCUt\naUlLWtKSlv/lytfKlOlyGgoob8WQU1IYJYD8VizoZK2HAnYm4dSQU8wYJNtDa6CGSE0/47QKdJKV\nLYMQcNqbR4/D5XmOQG6zMGY6ptPIAqjlqObyC/V/b4D2SwVNmgK+7bg3FSJdL8zpJC7qqX1eRSdv\nMWrWPgh11df3umM6iSvBoshlhaw2OZGrN2E9uLxL/p6rMJw++Z+RkIyg2rQu36mAHrQ4wS/ACgpb\nqluWNmWrUCdQK084v+s7llIHJk0RFBwmSp3TzCYK3XVO4huc2JcThysdrWQ4ffXJNQ2HsIHQlsmE\n7kSc/GBESkoOGcDxZchYZ0Grh0PHRNF9fA9kAsTXyFPsw1ApcP0Y6ksM84MDfPM44R5xCjzihN7l\nkzvTJwMl8mHkGKyqHkhygZxRJG0sA+OkV9PfnTzHEMQhZi7E6J3kuW624DRsQPvzxBr5kh6oXsCc\n8QrwwLqwShjvbKJ+6dFvWRCfyCmMc2r8mBLk3ERgkTmNmYg5OWJSJ/SnM8sKQY4C2BCDMk5JRyg+\nmk4x+cv3GzpxP8Slx+XYDyMYIwMhnaOHmt/j9M1sXShyp8b1asyVBusAKE2BPsqWhCROopy/C3Om\nixvbcFMn9gXmUjINgwQ3JAAH8wOxA8qT+n/fdwggzgkZDfoQR4QYtC1LbA1gzN3/SvXslNTnZVyO\nOmXGquWU+Mn3xu0jYX3NsZ4Uib3anBDSYUafWzsQktq/pv4NWJ+qi0KmZxa1Tno0LFMABUR7q80Y\nD4nZrMMEiurnKg4xPnCXQ1A9HBfuDjVuHWIqm3EUwqOV/o7uM7cvNOnROI5neaFSX9TkcHN8Xf17\nifV5H5e9W6dxWbqjfr60rPG/F+pnF02Jiw/0ucVl9cPHrCXPfSaW4TX0Xp6dEJL+8Z7+Plnr2Hqk\nuPfQbppCs2mvJhS9kRF6HlzHSeb535uZ2eG4NGJaQ6HZjy7KzWfxE5wMHz1rZmbDl9WHB6ZYm74h\nRK15qDrvModWS4q9j/OKmedn0TsiNg7WFduHxxSbFx9qjNZe0hzava9YcWII/gysALRqHtyW/sdY\n+VUzM+sNxbi4+V21++y67uu35OK0M5TmyWBZcyeb0RjeOaX69zf0+yX0jw73Nfd3rorZcdTSXf6t\nmZmd/oXmQvPxGqA5/+GSYvOPDzQub11+Re1/Q0ylNmjdwpsa+/PvqT0/m9ez+C9itfOX8zw/R2LI\nvLmGkNIaa8gbYsJs8Oxvn9L4ffNjMZbefkaMlFeviUWyde5DWvB/2PyJX5l3KObMcx+yh4A5c+q4\nYu3A/6GZmeW/UH38b2p8GV67E6H7cVr1mdhW/375B7FdGs+gTbesOHn3n8Qy+2/j6q+/e1ZxunDl\nwD4Alb50VjFw+Q56CG31QXZWbfqTtmLpb8uKpe0t3XP2G2wQt6WD0/9U33+tqXv8w3mxh/7cF4Nm\n52+EnO7W0ZObFkMm+p3cn2bm9fnpv0d/4YWqPU0ZdOmrNug9jMYSjM0R6HTdOSWifVCf19yojsGk\nrLDnQhMlAaEdFdSH48fUXyNYAV20rkJNYbvdEeMoyWnu9hoguujFZXEdWTqnsZlF4yYz0uf2DjRH\nNm+Kshd2cC1a0no2xp5jBHvWxzHnxHnVq5SVFs/EstaSHqyPrVuKqQdXxGbLQDKYmVMs1xYUs7W6\nni+lJSiuaGtlEzGb6ktods1q/XWIc0B/DKhvl+fi3m2x/JwTZIXnftueuCadXj5uFZhF9VmNi8fn\nO7g2JTAw62MwhNbFDNrbeGRHLQPckfLss3rEQhkmjMG8cBohAxgXMc8Kx5TOGhovMJY9OCG5Ivty\n9OxC9INC1u2cObcgXb8NQT0HO6nvnCfZD5Z9NCTZ/zoNFscybrLP9nNorcAmDYdoybCHKOHSlEE/\nKEb70HdM9/6/jPUQ/b3AHJMG/T+YOY5l66GRWIFBPUJPaggLYsQ73WNjG/b3Ixgw7mUyZj8f8h4T\noG3TR7umzNyN0JgcVdgTjdw+ln4cYz87Yg8DnSuyozO8zcwy7MVyOGNGsEIKbrwZnwp6JkWEWwI+\nz3BbAec1n7jY2yBjANZxjBZOgEuswZzxeweP65L4Q/MSz/Iw6Hrsz5ImLKaKyyDhXYI9fZJDe7Wr\nPhgnAyVwDl4wqd0+NtzWs2jqpOZhD33QHHOjjIVWkf1rkuf9nne0BnsPmmTnLqAtxTvMo6/YewSO\nYsc7GQ5elRoZN3W1o9PSuprhvb1NTCe8p3sFdFfRRR3VyQYg9iow7eIssc2c7w+dIzA6SWjWeL5T\nk/23S8qUSUta0pKWtKQlLWlJS1rSkpa0pCUtafkaytfKlMmgPI1MiWWcVU8fvYmec3zRn/NdXIVG\n+nsucLoa+r1WJ98SFsMQh5yAHLQIJDvieNE57mQ7sBBgusTohYS+Tug7kDuqbU6tUWUOcmhZtPT9\nPBoKUV65qqO8O2HTydnI00lcvwHbA0QocE41ZX2/xP/bMHfKuJSUxnE9oX15nxO/LFoTj1kiOplr\noT0TtLo2XlXbD9DPcbo4SVdtTBDyaRnuS+hQHBRwdnFuPB21IZdHzRuF7YjTzkM0T9yJebfFyX9e\n1237T3cO2CG/17h/gOp5lr70ApgcQ7RS0GAxDycX+jbLaasx1hngmwyQQEy/uLFwObkeSadOYdzl\nBSb0vQ+yMGorFvLoGYWMZQC1pUO9y7ACRiAjZfIYfVC2gTvdJWbCGDoFDBWvxH05bc0idz/AQcAp\nkDvWg2PieGgKFEa63oDxczm3GU744xJuTqj4cznLwF4Y0E8lUKuuB0LBybtzCciRxx7DOvNgqfiJ\n0wEhrxx2XIm0befqVWgi3HGEMkyYX6AombwWlBE59gkaK0kHRtw93HbaWk8WQf4qy9KTCBKd5G/D\ntOntOCct9ekEYEhhSmOWKTrFezEoDtEcmPdUj5mp43xBY9TGrWjImA5BOBvoSEQo7RemcCgoa472\nYJqUmMv765obwy3dr8gYTc2vqr01jX3jgHUPhDezxffI+R2bUg5vP69BiHwhpy3Psb5gycWqZ3ZG\n69siCPDYLBpXaNYcDDQ3NzbRcHmkuV9HP2QwBhIBqypu6rrdR4qJGnPFrdcd9IsaaAj4sO96T+nk\ndiwSq+Jn0xq35++onmuXhKAfFMRG6UwSg4mQ5cZ1Ib+5GqjVtphB9zbFsPnOS2K8hF2Q6kT9eP9Q\n/39lXfV9kKhfmyt6bn36PozMWbVzbsy3vZE+uzIFqzIQitzoys3mxMG39PeTziFEY3Mc55WN62IX\nzFWk5dI7KebMYBPEdEtaMPkF9fXnx4Syv74itGhjk+dAV/c/PS6U/cs9acWceA6dtcvKYT9XFVq/\ndpqYwsGrnZUbROGU/v5oQ7EdNsUWmMjo/osjjckaOkeZGxqD7YbQ8kZFMTY1Uj3WR4qBU+j1vLel\n60xsaU5/gt5IMRAaf3JJ2jZHLctrb5qZ2d+dEgvjVbtnZmYHq2JR/fgT9fODttyMvvstjfnHH14y\nM7PpjNyo3oWt8F1P/ZYp4LT1utgFwaHa+YOyYmcPs6KxqtgB/Q+0VuzlxSJ5+K7GJwGRHf5B4/we\n17/UOfm4Df70s3a2JeZOYRpEviQm1W/j/6kPHbxmZmav7Kte/oxieuIPYv15f6wKXXlP9Zl4SfH2\nxitiNl35/G9VX7QVdtlj3Y4Vr7me0Mobr/2V/ZefyT3pb1sa+9VIsfXseRy13lXftv+gWHmFNuVe\neMPMzMKfqe0vFqTnM/uM5s+dNcXiT+9ofdx8GSeqS7BUJ9WHn8e63sSC/l/EoevuebVptjdtT1Mq\ni6r3BdbN2QkcznDVjHm2BjD8fKcb0dXzwWfbXQQNHx3iINnUOt5taL300Fcbq6u/llY1B3Kg932Y\nIgnr+s51ae70QWRXFhQjU2jXRLBm1w/E/DjA6WUX5Hn6pGJg6azYafkseyecanIIzzVw/eugzfJo\nV9/voHW2fllzwLE0Fs5oLq5eUoxm2AtsHyCqtSmGy/aOnheNdf29uqrn5oyHXqBzTY1wfQlB8GEf\nl9DC2DrUdXbuau8VZZ6ws/uVkS0SFxF05BHPnyyabQPeK9a+0nW27ko7KOsoP0coCXuPAe8wBca8\nV3b7UJgZMU4uMDdCnKc8GMqZiP0hTrN9mJNx4hjtvBzBOPHJCsjgeGNu3wpjZYiTTZ7/O+fbEIfD\nIItuhnun4HsV0P8B7kwRzjtJ7LQmYXw75nhZsVOC/YBcj2XZU5jvnHL0ewjLwMvBOkCzJm/ODQn9\nUeZUnrkToc/h4XqU0N4EPQ+vjbMtbId8iNYjLIYQNm8FcZohzkE5+r9LfXNOo4e9pJeHtcUexiMG\n86OnY9259ya/g97UIWySHCxe2BwuG2TnvubYLLepjMMmRsumSL18YtxvwlBCP8U5Dj1eq7JP5kYn\nzJj1AxuYs6qirTBEMrBDE5gyfVg8RRjXoxLOUGipesy7LO/bjX3NswHsp0IOpiBZHAHPqj7/r8EC\n8gmqCFflXESWAGMyjjPisKm2baGXmqA1ZTB46uP0CSyqLO8JhYLW89281sM87quDAQ5djlHehinU\nhWneQXOHfTTJCdbB8bDCXiV2ekgwgDIjrMH+nZIyZdKSlrSkJS1pSUta0pKWtKQlLWlJS1q+hvK1\nMmWyJXf6qt8HIIxRQJ6bp5M0HwZIXNMJWM6dgIVoPaAt0yfHLOJU1ymOl9ypapmTdk62YvQ5mpwE\nlnEG6nNCFiQohXPCFfVgLaABkwXtC2lHAZX6uKX6D0DHnBPOBPmhB+PkZfbQzyCXtR6q/Q1f7Upg\nU/SQ1xiibeNy3Gptfa9NvmWCGMQhrItSA+2FysAaXLs6UFvanLT6sHuckvWQPOQDtAWKsJl6MB9c\nxCCXYwF5xBF5ubUMlAfYTO5kdthVH49nn05TJhk4lJ6TYPKtezBe8rHLzdXnMl1QeHJ4fTRzsmic\ndBnCLGjNEFZWFmZKkMA2cq5PIBo5lMNHnvq2AoofDnXBLOylhFzYDCfqESftHqe8bXJ5C6FjR6n+\nndDl9oLycV6a8XAs8J1rk4McyPd2bCxyZZ3gdy9CcTxwSuGwwhLHEGJOwezxyG3NgiCMiKkRTjKe\nc62CnTCAtRGD0AxB9QLmRBt0sMoc9Jy7Fyr4feOUnfgID3X9Iv1LCB+p+KAaRt5vj7507kjRLjno\n25qXJdhJ9QUhncm8Tso3Rvr/+r6QuxKsIr+nGCnsCcEslIWMFgv6udbWCfvDR2IlTB3qe9OnhMBm\np1S/B21dP9yG8Ya8uw9SWgcNKtF3Pm5KOdaRblf3OTgkJ3VTMTtRUjuWF8SCGFXRfSJGgp7Q+MF9\nrSsV8rHHi1N0IIw9YDMfZLZA7uwhWlc5TwtRYYE5UxbSsO7QPfKTtzbFNErukxcNIplFk6A6qbmw\ntQdygsNPFhbA/JyQbw90MAbVycP2GnY0rtWBE2o6WqlWhai8sfYr3f9NsRuaV1Xfc8ydTFFo1PAy\n+esX9PcX62J/jPqK+atNNB221F8PXtT1TsB8OnNdD5jm6j0zM6vMqN9Wb0sPpOucOIqKo2z9kR2/\noj49rKjPvvxcqLGfKAbWx4RKF3H0erEjFHf7qvp2jGfAgxNoztwUSr23otj8ZqI6bUbq4zlTjLYL\n6tNjj8Qm2F1SXcfWxdSYCkGdf6c+iCZAj1ug8A2xibw5MUGmIR/c34S12dT1vg1Ds5lTX13JiZFy\n9qzqeeVAsfbtilD1Lx7p952Tuv/KZTFU3j2tOXqyIzZA1dSn3keK5S9xgNh+useNdcpyVTp1Q+38\n6EeaQ9/7TPX4eUZaLWPPqL23fys0/49gmO78sZhMi7lfmplZ8Z3Xzczs+2PStvF5tg8XFIObia5X\nLorNYW0xVDZGWpOyP1b7Xt+VDsoXBTFQBjf1nM1Mio219PETfO3C//jC3v+JXJ4GrZ+bmdmzH+Co\n9kPFXOnRO2Zm1lrVdQ73lJe/d1H1ePWzH+h+b+p+e7HYZJt76tepV35sZmaX3xbr4iKfm65rDVo5\nUL02H/6N3f0zMS8mca/rnhID4eFnWscWXvup2rqhvv+n39PnsXSRKitiOw0v6e9338ZV87ty4vr5\n36uvVz+QA9b118S8Gd5e1XUv6f4PYVReGofB+I7m98fPPx02WWK9RF7DRtBDo0DtG7GnMpDU5r0v\nzczswS3F7Aj2Ads+mx0Dsa1pHTiMtY7272iul1al8VIaY73GydLpiwzQtaidV8yeqrBOo1nT2dP1\n7m3o/ju3NVYt9AXz1Gec51k1iwNnE7dPtLuuP9R69/Ca2G2VutachRndt3kAE2hC7VlZ1ZxeOqlY\nGHK9Tz4Vk6bM87rE53e29f12C/2MmvrzVlNzovnQuamyB2lozaqga1hEW25/Bya7Y+WOPXHESToj\nW9vWc3T/uvq3caj7eTDui7AK9vd1/zHYyeXJWTtqyZpzq9Q6HbHuFWDvR+gIWYLOHfuxLPI3IxjV\nEfs4H2fCrGMms28a9WB+j5zeDlovxKBzKPQLuk6ui74HTJs8bINBFVdN9pddHGJ9NGhC9kDO9ShA\nfcrtI52zTp7PJWX2Xlmuy0ZyhPaMB2trVIRZD7uiCzO9DCM9wlk3cZqG7AUeW9Pm2M+SThE7h16n\nWejmKHuboXOEpP4V9r3OJctDB2VE/7r3hgimvnPYMTQtDZ0Tp9MXJ0dnU5mZxegChjgR9biOzzjM\nXoBlzZ728/f0HGmNaY9SnVe9u+yx9tHvmmQ/3uT9IeG9w90nQM8rCZ/Ud+R1LI4ytgzzJMC9tMd7\naAH2zggmS5F3ryEsL593jDAikwUWUJ/94YBbeTAVneZTj3etHA5jeYTN+qHT72Q+G+8SHn0Fm8tR\nSxL2MHkYy/u8E/l8P4ub09ojrV/Fee11JlbUnvtbjuYFIwjWcnegWPN4Nx7xEtzn3S5PzPr0ZYn+\nMhzUuuzDi7ixZgup+1Ja0pKWtKQlLWlJS1rSkpa0pCUtaUnL/3Lla2XKNA9BckGzSrFOwns9ndQH\naMyEhzqpip1eSFknbQmnsi7nNRy5PEWYKLgPNQKdVmfIgSv0UPwu6Wd5QG4bzJIOYu+jNqennIAF\nBf0coGCdQT8jy6lt1CcvHj2PMnnlCVoSeyiBO9eRnDt95vS7mdX/i1nVp0d7ig1cZKqcsnOyGMII\nKuP4c4i+SAbthy5q1ElctwpaMD1yD8fRQGmVOJ10+c/ANwXyogtoxjQ5gS2DRgwbnETjDhSjaB2E\n6ADhXJLDGapAbmQPtOSoxUPnx0BreqArhZI6PxhyAsxpZkBfGifNMSyrfonTVvKTky5oF3nKMXmE\nBiNkhCZOGRRmEKIfYsQA+cvFPNo8pv93QUh8Tm1zMHISlL+jDCfr5MA6AlIpAPmAEeRx8u90R3KB\no4GhN5JX+7uo71cYvxaOZlUYL0NOZZ1LVOCSex1i4fJGqY/nru+7XGHU8EEHY9de8tbjrnNfUpyU\niEXE7G1IfqpT4c/4xBVuU0no8jvpF1yl2l0m1xGKX4Eh80h1qddw6iKHtbujvp8mJidAvKZOCvXt\nEvOjjpAz29J8c44Ik8RSribUevmsdBcO0UlqrAlRKO+pDcfmhPzl53QS30Svp+tpPXLzM9tWG4+B\ntI7Pg5jOCCVvTYFaEYsFYnC4rvvl+urb+SVpNRRnUN73VS+Xc5v4avf4ivp+PMB5B7RuNKbrHrbV\n/n5f66VLkh2CfHT4vT+UxsN2R+3JEoshObSu3wMYhbO4G00SI/0+c6UnxDwA2VicFiJeOq3xGaGN\ntU8MNR+pP3xcOh7rJh2x3IFl5xzUerDqFhPVo31NuhsPcNU6F+F2AsrY6YFcr2hcDyKxAn4HAl/K\nfKz+2BJbZBdGUaaj9vZgXyQLQmrnQK3uzaEb0z6wu4tiiIyFQnMm0JTqwa5ccjn4Rf0/1yMXHRei\nrbzqNHEbrQJPDJnxDcXIvRk5okzf1JhuzYqxUn1fMTb9DV0vHlfM7sKsNBgiLdgLS6BD3m3Va5Jc\n9rWm+uIEumqVB2L63HpVMXX3QH2xqWra8x9oLHdZJ0+/ps9/eFlof/Wixvil22Lk3HpZn78IQ6ex\nKKbNOqyEZ5grr564Z2Zmx88efR0xM/uwKTelrfOaQxf/UbHbP6P+PLet+pycU+z/9Q/VP3s3V1Xf\nrNybvvxEsTQzrf4ufPjHZmY2u/iPZmZ27Xl9/o/fwjntrOZ+9ZXvm5lZ+NfSBwkPFQ9TX0pP5VFR\ncwBaUgAAIABJREFUvy+eUH8tTCqG1rrv04L/ZuW/2rHvvPU3Zmb2u7Nij+y/KnZC9iN0SDyxGO60\n1c8nXhCbY+Zz2CjH9fmJL8SgKZVVz9M3xU45eF3j9CPctIIrak93Tkju72eFtsaf/di8hlhB80s/\nUp/+HiZCJAeuj/ZwIJkWy+hP8orlj+6JtfOGp1j6+KHmV7mumD34rRgxZ0aab/GS6vKjUGO2uyw2\nU+1jzeef+YqZT+piiiw3td6sHHs6dLuDe9z2V+qzJoy/EQirDwNuyLPTP0ArAb29HM/AiWNah+t1\nMWCcXlxyXbEVY9k4XdeG1Md99OrbYqm1elpH2ALZ2LiuuxMolrroc4Sb6NrBZgjYz06ghVMo6zmY\nn9IcvXVLY//wtsYhi57FaMi6DsljbkmxGOFwGd7RelnAVSmHIN29G5qjW/c1Hk4LsbakRaDbZJ0F\nKV85L6ex0+dWVY8HYnoePkBXib3N9Lj6uVzSejyE3VAG4a8v6jk9d1xrn5nZyQsXbe+R+rd5oLUx\nG7u9nPotAfEfZ83N4xoV5J5iT8I6lO+inWe85ORwdOmoj/olrbO5x65EaIKgozGAOZ3lVS1XQM8j\ncawenLmcdg0MyhEMlYS9xQjNyMS5dbLniXi2FWFo9B3L+LHbDxoyODj2+s7FB61Cxt65oI6c7g5C\nnE5DcAj9wcc9NeLlqUA7Q2Lf7ZdbZBeUa+xP2Si7z0N2fqxPFDkGOsxsx3LweDZHsb5QYZ/fQzOz\ny+eyOD/GkdMdIX2DfXLGXD1p90j90Ed/KID18dgy+IjFY7/vmLAD9tNFTzE8OYXW15LWrr0bmpuP\ntsRQXLqoPYXX5j2sqHU5mNFeNVoTuy1kDxh3XWaB2lnAadTMrL3bsVw/tvqc7lmcUpvuvqtn2Ilz\nmk9hCAMa5knixhAn10yWjBHYOgN0fYo4q2arvD+TBRFA7y920Adl7lRwPgyZExk0pDLOAquMTo5j\nRfGe3zKdHwyamudjZa0P0yfEmNy8I5bR8oquN1vT8yIYaT0IHcOG/Wqe9cFlBXiw18ImMTpTof28\nq+KEGzHXxtgr7Rywrgycx+G/XVKmTFrSkpa0pCUtaUlLWtKSlrSkJS1pScvXUL5WpkwR9gPGOdZ2\nKWIRSDd5iAEnTSGof548zPYYiHEDqIDTWgTLrZTDb92xCTKwNQqcviLNkOOE/ZCTPQ8WSMXXydgI\ntkbgTrPL6HG4/EwUywNyx4aoTTv1/AiEewJNiQ6shJ5TtR7D2SjU9TqcImfJexyACLtT7DKnvKR9\nWg9EJkBPIOpzkogmTtkLzHdspFBoAGQhK3Ei2+PUMgIVCaqwDxLVOfD1vSYpldVKm9/RcDmAtVTV\nhXtZfa+M0nQftD2MQeGPWPIjd26o67ZBfwbkG+ZxVXJGLPHI5eLyd1D8nO8UxWFPwGyJPBSxW+6E\nG4SBE3jHAIlgJRiaOCWXP2mwtNCU8WGqOBbWyJ2w53S9qjmNHe6Pa1GUOCQAFyZAGZ9T4RjV/gDt\nngH1ycTOtQnEBW2dECQjaXMSzilvjtPbxCmKc0rt8j1DYj4owhiiVwLngoVu0iiBvQWTKOICQ+ZC\nxjkhmVhfwx4aPDBpBmjZlLMOVeT/9ON4ePTzYudm4Y3jJMa8GjZhEYA+jE0JGZw5IeS0DeNsJ6e6\nbt8TEhdskb9M/rRH/nVmGYYFc+DQ5SejIVLBlWjyjE7km+j9DFqc+DfJ593R9yaAeybRgsnNUm8Q\nz1EiZkYT1feoz/zHfcLKqk8OjZtNNKoedNf5nMZqEgQwAzMmg97SNrm5OVCpPmwlZ9xwFyeAdlea\nKwH/z6IuH8Gc8X36C+eB0gzMnFlYUegTdclvjnNq/8wEOfr089Si1us++eMP27C0mkJ/ik7viFzd\nAgjzUYtDnX63qH6Y+0Bryd6ripttASj2HAhLbyCENH9Pf7/qq30n5uUwtLCrcSusiOFZ/FziM+9N\n6f/BPRhBK7rPC3eEbH8xrv4cWxJbwbHkkr1JO+zrZifyYs98+aIQseK2xuqTcaHki1eIdRMKtPhI\nqHUSCdXqJurzjVc1L/fvKHa+zTyPKqA9B7/R9Z+X69CHsBTCm4rhl4eqzwbP0NqYELvitHLdrzbU\nlvhl3Do+Vx9f3hDqdAwtqf4HsLZe0nPj1Zb69v0JjeWLPNPf21e7zz2vPlm7qRjchoHYeU8xUlzS\n3Iivqp45T9o3w7oQwkcweEanxKo4aineFSPk/DnFwNSYxvbLm2rH3AtyhfrNbzW3ftAX26H7YzFZ\nmqHGZT4R0+aLPblgjQfScFkrqb5VGE5rr8pR5+RluSXtfaV2HZ9lD5QTM6lXUz1W5zT+hiZQ/1D9\ncjt40oaDe5MWvKbxvLANqw0dj+kfCRVsf6S590fPaZx+9g/SvvneSd3/2idivGQLmnvrW2hePCdt\nmVPvanw2fiJWQ/Bztaf7jPpl/NeKk5kTNy32cM7CgWv/J9LH8d9mbxDqGptzqmstL32gb38Fm/Sn\nmnfhllDhs9NiXOw9ozocD8Uq+n/eUmxc29VcOPGMNFS2KmJqPHNfsb28r3n5y79QPab++8/saUrU\nUB9t7bL/w+1jbE59mkUngseQTVzQHJ2bENJcWkBDCpS8E2l92PxUzmFNGJuTVX2uBzVl55rWgsMt\nMX3iIk5tJ8X4SQb63B5MxmiT9RYthglYzjX07WoXtf6M1UDR0c+IN2Cwm3MPxbkGZk2FvUwGx5n9\nHfWvcxM9fVIxbgXmKq5z+TOKPUtgDjb03Dloq/9WT6h/xk+qHw8bWis217TGTJzR2nB8WcyorHMk\nwiXK72oBH7QVJ0UYq6NDGLBmdv/KA9vbU30ip+WIK+DC+bNUW99ze+bRoeqx29yyo5YBzlgBe4Ay\nLIIBGjABrPh8Br04nm1l9q8ttFMq6FUO0TIZuWftEB2jLHprbj+LlkvCfsryaLQ4h1e3o2N/2WWf\n7OXQb8M1ye2HnRto/rEGIaxd9h6ec3ci1ke8e0RkFcTctxBrroTsq3MB9azB/o30/zwXyrKPHOB4\nOYqdBS+ajeiV5GlnwntG6NhgJZg/aKeUYNa30eHMZmAewSjqdnC6xLW1W9S4lNGO6ToXU1gTCbpy\nzu2oz54kKeEgfMQSw1RnG2wemQXOHXUAW7fV1fMyqYnV1rqrmM7y3rC743SYVO/amOozWWcO0q4R\n+/AIhlV2vPakLq3IQuvaMdaFGJZ+/0Brfos+c67FHZynfBy9ihn2r8410/XpOM8G3lvHeWdy768e\nbqajKdhKXDfvoTHrWGLoBfUMpjl6RyP6LB7yDooGq8tcyeV0v+q4+u7hDTHvhj2cEJmLGbQYs7x7\njHgH9ur6vYI7Z2Zc68cgQhMShk7HnaagjzTOfjuE6T0wxUah+M8e1v9GSZkyaUlLWtKSlrSkJS1p\nSUta0pKWtKQlLV9D+VqZMhkUr0kxtXwDtXhSs6pOVRkdi3qbE6myUKyiDzo3JkQ1P9D/ewnaAT2Q\n5TF0QSKXPwiS4dA38uYDx1BBUbtbJNftUCdc3ZzQqQIna120YrLudBjKTxmXp4RT2M5AqFlS+JfO\nPg0Qi2JDJ3kZ08mbcWpdRlG9D0uhAlIeVJ3bFHmTIBxFToVbXKfsFMrDtoWgvAGIp18HFUcbJZ9D\nN4IT56Tp8vlAv/MwOTjRb8JKSjK6Xta5AMEOikEAHGvJhxUQV2njEQsi7Ba0QRLIgRyhKj9yDiwg\nBA51dwfrJVArxwxy7kRZmCxZGCs+7KdBjxN76AJBV0hFEbZWD82cQaB+ysOyGPVAj3IOUdB9o3yR\n6+l+SYfc3iwq72i8eOSkjlzasovJhFNlx34i19ep5FsCY2bAfTlhT2DMFGKnJM7fYUd0URI3TrU9\n/l/Aaaw/Iu8TNMnla1dB9RKQgRDEwzxyj3EZyKDZE8Fs8kE2IuZc2XexDXIx4Cdrgct1PkppgxBm\ncW3oummEDlIWXaSZJaHag7rG4kFDJ/gN3CnGi+rr4knF/ERVyNzIyWrM6Ht7kU7mG31dPz+pz5dh\nM7Ur+v/WntCMRw+E2FaJEb9BH6Adk1sQIhByMr9jQuS2H6heOYcO9dVnw6HWk9qEvp+pM6brYmgk\noEXZafSgiKX+PvoP+1rPSlUxTUazGusQTa+Y/jKnjeWB2oCYenlQPpCJkHUzYS1x6FgIWugxV0uO\niQOjsDuGLhFrwg6oT9gVOtRpqb5DXEISmDtjgeZsOXi6/O3hJ2pnBTRuoqT+Wv9UCO2JZ9Svw6qQ\nlK3GqtpJbvXYupDeWzeEVOdZM6ie+cRNri/k+tzzQlSSnRfNzGxtVWyJSqC4sjU9T9qgeqO7t+01\ndGo+r+NOhuOWv4nW11DuQ9tToLxbsJ0WNcZzsLY+Hwj1tXf0/0vnhCLvhOqDW4+EPq9Oqu2ffiGU\nPjwnmOmllup+OSPmyeldtfnmvGL8OZDDiWXF+tSmGCGZSPf5uK/Yvfr8C2ZmNulJH2R1Tyj4w4pi\np55RDLh16sJ1tWO7rNi2rGL0DhoqzzfVvjbr7L0hTgoz5Gt7YuqUY/Vb4eA/zt/+18X/E43xg320\natY1N8dX5Da03RHb48IxzemPO6r34Xtiplyc+L3auyLmSXH3b83MLIfzmNfVHDu/r3Z+9PBDMzPr\n/kDo/LkN/b75oRyJvuIZ/81T0mV5MRG7o7mt662d1+d/UnziDHOz8bLNrGi8Gui1vLiq/t6OV83M\nLGE9/sMHL5mZ2XOrQkOHTX2v+heaq/P3vmtmZvGO2ChnZjX+exXFxcxltee3fyaHnNcMPZPj6vf7\nd27Y1PfVN9/wpAmz/Z7YPr2ymGU/fChtll/x7F0taQx/O6m2tn8La8AUW/9z9U/1OfYiNy6rb85P\nwkgGjb8SqE8urmms/JNi5DQnFHPfvqYY/2LxhD1NyaBZcPKUtEoK82IFTVbYO6FZlYmc6weuQLta\ndx/dV2w1YTk121rvw22epSDOhUUxOOYXmDOxvjc+0P1rE+qnxWeE+HYPYMjc0pycf02Id4LOxz6M\ny6ms+qk+gXMaz/jdLfVTf1dzt4BexvLzWktqbr1m/W3sajz8Pa3f86cUE2PoCYWe1tNuVXOqyN6z\nAyXxAER8al6su+WLYtgMYIs0DxVz45O67sIS7EDY0eFQ7RmhTzdEQ63VR3PyK+lpbN5lQ/B/mt17\n+JXNT2v9XbyktXSmKAQ8N4GGJM+9vaauc4jmmd9AAPAIZcT8igeKCQ82ZATbAMMaa7Ov82FwG+yf\nCrprvZFjzbN/QmsvhhoeO8YGY5xpwzhGr6ziGDA9x2JwOnO6XYDOZr+LfgbM5z77tgDXT3MMcLRZ\nAtxKzb2jPDZnhVGHW1+XZ3/I+4FfYx/ccxo3+l4OHbsR2jOQyCyGuV0duM+rHm3cYUc40VZh3w7Y\nx7oKPdYbGal/SyX2LLCnPZwoK0WntcU+nCyDIYzTAvcNYebENVdBnCdhQw9z/zEL4l8XH4Zoh7WP\nV8rH76oHW5rTMaznYzXVf6vibAV5B+U5sXVDz0MfBmoWB88ETSPnYhvBXJrIP9lDDTJtq2RKFsEm\nCmjrAVkKS/RJAXZPEsLoxkF2hA7miHeE2Fefx12tV0Pmq4fbXB5tqxbv8cZ9Q3RKQ/a9RfaFAQwZ\n544WdrgP2rQVMkWyOHs17up+M2+U+b+u5/aV/bZ7R8L9dBJGTo4YYb0a8A7ooVfa39H61SfLZG5W\ne5Uasd5xDl5lskLQQY13Oa8Y/MfrSMqUSUta0pKWtKQlLWlJS1rSkpa0pCUtafkaytfKlBm0Od0V\naGfdvtCtuidkoJNxJ2UgxCDQMfmTycCxB/A755S4Tj6d0+VweiA5nHWiik7cBuih+DjX5PqctNV0\n+hk1Ye6AjDxOGUOdOceZVuJUpdHAaZGwWUJN3tE2Wl19voYbS6EmRAKDIKuB+IdOCbyIlg354x2Q\njqLTWRm6pDyd2AXk9Na7us4Bp+vVsayF5BIOijgCwIip9jjppg/zTiSek/0OjIx+TohYJkGfAqZH\nCYZDh5zZYVjj75zIchIckhOfbz3JYTxK8f6Vi1ICGhL5TrtEn4sNZy1GKaZ9bXR6MiVO+GH4OJ0Q\nl/s6Qu8iQDPG55S0y31K5N7m0ICx0DFIyJsEfU/4HpI3FuFYkIMxA1BtEQrcGZTII8+5IgnViflg\nNufci2CDkJfp1OuHTmWfU+oYNCcp8fnEqdPjAJGD5UA/BT1ymvO6b0QMlzKqt9PmiXCQid33QMoH\n9GMVVDADm2LgnNL4PeHk3yO2k5xzlQJxITd6OPiXKvxHKaWcO2GnT9BAcZpRSzNoyMBw68Mu6pqY\nLH4Bl5zIKeGrTS3WgUpJbYeIZh4oUZ71IimR9wxjbXtbbj4bt8XEmGD9qtWFrPpL+vxsGZe1MU72\nQyGp7S0qvqET+WgSJxr6qLGnnyuovg9hYTVbus5URQjrREk/17eFgA7Wtd6UoCNV0H7pgUa1t0HH\niJXJCc31Fi5UdRT8Q/LL+9vq53xFvxdqWqeGIyGku7DrxkPy6dE0CHAhabNeD7dVr35W41HO6b5R\nD+bKQ/VLhdibGIKqBVCYjlhORNLJaB1qLbraUHvPF/Tc2TwUsvxVV2yV05O4t/Rw4Hnu16qHAH/b\nzggRbn4ilsFJ07jdmVE8fjXU+BUfaBxmJ4XIPugLma/Fqk8bRmdpYcqCZaH3S3uKxYe7uCNNiIng\nbYJ05oXO9HFLuvaunGx8UN9XYE9thELXc33FWi2nOk74crq50saxrKS+9uvq44+7GpNjZ8RqqAdi\nwtRvS7Mm3Faf7R2Ctr8sHZDNabEb4q1Xdb/PQbPyGuv905oTx0CVMsc1N+4car6XthUjq0O18xBm\n36OeNGPqK2IdNT1puMyX1K59dKI+vaf1/nhZ7IP55hM9iaOUzj+JeTL5uhg6J8ZUv92+2ByZ07At\nbqi/5jvqh9yE2nNyTq5LW5V/MDOzNyZwVnxXa8pvz2q8FkOcvAroXnyGrtEF9X/j4m/MzKyypf79\nLKM5sP9Ac+ncNxWTN/671rwbXPevzGx++KE9/J3cshIcLO/Cyponz93qqteFE4qrT66KNTBbkB7L\n8XfE6vrqtPp57FON293mG2ZmtoROy3vfUJz86Beai7fm5TJVPKs18ET9FSv/k+ZD7/h/MTOzzQWx\nsp7rSufmQayY6V3X2P9/A9Xh0kti7RT7+rlWVt//NEAHL9TfvY4cs/4wpeveZB2eI+Yqx8XAeP+m\n9HNeHdccqZW0rn7jeZhrRyzlOnpFFcXcxP/f3psFWXbV557/feY558zKzBqy5kGlqTQhNFiAwJbg\ncoELbjuscDgcJnArFO0XbMvYEe5+sQ0mPPFiAovbjrA7jANu08C1sQxGBglUGqpUqpKqVJU1V2ZW\nznnm+ex++H4rZSkMTkU0TkVrfS8ZmXnO3mvea6//9/++AvtTtBFiOD12eB6tzWsdOAcbzbnZTaBx\nFkGroDeJRgHah4PjWl8cS8G5m2zZrvVjfI8YJuU5fe/iq2KW5Ie1vg9MDHI/dEXQOcqPaSw02Z9e\nOnPKzMwWT13S/dCqmTgk563BIX0+i3bEKuzYHPoVQ2ixGIz0Sxd1nQsnNWcDWLEh7IZoQs/ToSmN\n/fF9Wm8b7NWK19W/a2jNOBe/clHP6dYKz6tLmnsB+/loQnO22dH3A9pxfDtaNmZ2y+332OhW3JRg\nUdSh1jZx0bqyrOsunFV7dtnr9fdvXMMsjgNsDbfTLOtsAKOjzrtNHN0Ow8mmCXMlAWM5VY9TF30u\nhsZMBV0Otw91Wi4xGNwYDVoDlmsE16GU02jhmR5B0CPA5a8BgyLNu0iXsdCJav1K8vwIYElUcSOK\n9xxLQn3T5fcsDJMqDJIEzJ5ojvcAx2py72Iw2mPsdSrsD0P2zw5x2BhOT7BOdkMaWnPLMUgc64Ly\nJmAqteOwh0OnIQn7ln1rkpfHKgWK4O4XY21pRJzjEAXK4UKVfGs8hxb7e6O9m3G1SxydP8dEqgca\no6mcxm6Td8n+YX2+04KZeFZrTSELw3NQawtLh0UizKm2+jsZH1kvSzyRtdXmivXl9MxxzOwClUzR\npw3eydK8g1RqsIX6eO/FRWnBOUJltd9yWoRxxrChdZjl3avOO0cclhjLqEGqsty6M5l+D92+n59h\nXuvRrm1aH1cquHv29NzIciHk3OzyHE6Uw6rvcAK9no7qmyTrYmRQbTk2rPV24bCeO0uXYYDn6aOm\n6lddE0NvANO3WE/1XK7reVe/ovXlx8EzZTw8PDw8PDw8PDw8PDw8PDw2AZvKlEmgKeMcXprkrgUo\njHfRK7GGUyxHEwaNlR6MkAynmp0BnWytkd8XwDTpwyXFKZPHYYd0OeVNEEloEMG1kMh5nuPFkk72\nshl9v1yD3YADTTKpiASpqJaBLVFs6Eivz7lAJTiRJ2oZL1Nf8ggbHeeOQh7mKuUlYp/g7wFONzFO\na5PkRZZgixRi7u9E/lciliKJtR5VWbstXbOGxHyaE+UWWiCdjuoWz3Mi3dRpX6+FixAaAL0Uqu8o\nTqeIDBgn2RVYCAnabP3/G0SUaHsPD/hEE+YLubINdCxiFfIA6cMU0ZUm2i6JKswdcm9DDmvbtJXh\nkBUn77BB2/UYa84pq4vOULfrclVRqUdhO4bORISIRQwV/Tr5004HqeVIXh1Ok2Gk9NzYg8HTpL2i\n5EG2mQPrTjycZveol3G/CFG7BqfIRtQwEdP1e2WVrwXbIO30QNBF6jAou/R3CpeqgDzzKmytPDnI\nnZ6jBjFnusxJCpJhnLTQ0CmTOxwQ6YniJhDwvaZtPH+7Sl/0EpzUM996MUUG+/OKLrRQyl/r6ag8\n3tXJdiKKc1RSZayWlMfbWdHnkkTIoi1YTETv26HTvdHPVVyCutd1360dfa9/75SZmfUNqE2LFUUO\nVnEZWl3S58vzika30YFIV1WP8Umd5GfzrFPj6P8MKzJQIUQbI6oVZl1eNIwUIrOJmuq564Ai0UkY\nONeW5SjTvqp6j4yo3BHq1UXlvrasKEuIwUCLnF5DQyafwpWJMZpj7HaJlLbR8moXic4l0QRwrLQy\nGltbGTvkSRM0s/ERtWOy59zrWDg3iCZuf2slsU/Wbpd2zNlpRbxDNAUGs+rHypIi8J0tytMef0bs\nj+i49FH6rokpVLlZ7RghAnIrrkorc4p0X83LWWdPXr/fUFY/P5uS9oxzxphYiNiJrKJFu1/RWCzA\nJIku3aqyJdUYs7sumZnZyKsak2fuFZPlnueZv4fUxpNp3ePFOdUhPKxnT+5dRDx5ljSuiBW064fS\n+egEiri9tqrrdtC8OtTR82N1r9roSKByfv81jeltk4ou50bV1uf7pVnTf166EOlXxGBpinBhL/R0\nvdsG0H24VeVoP6f7LezTmBoKFY1//qQYObGKtGr6ovo9mxaj58gkz6OzWmfO3YM2zQZR6ChaNvSK\n2uHlO1Wu8ML3zczs3XXNkQshzg159d2hQ2JhnGtoLF0M0a04yRh6v8baf/uWrt94j/4+dFJjKf8B\njY3Fi/q9f1j9vXVI7Iqu8XmYrMfbYiFsfx+RX3TrzMzO7Qst8dRTZma2c+VnzMyst0fjaumaWF1b\nroqd8vWPq50GYfSUc+rXi8+J8XLzHRrjyw9qHD1bFmvickcMmcNJtcN379X97vz+d1W+m8XEujx+\n2u4f09g78/LdqsN2rT/R66pbYh8TvKR7vecGrbvnTmrdOziotoie17WXumLclLapDfY01SiHo5fM\nzGz+Bo2VayfEkFme0by+6T4tXEuzus+JQPpAB5+9zd4KqkT36xX9PH9ebVd1mma44MVYN+M843Iw\nY7beorFVGNWe6spZrQelVXSi0GTpwsg+c15zIoBpkjw4ZWZm5Tl0m46L6VLFBWpwUO07c0Fzo4Ue\nR1+OuVBVOVdgorSdA8wIjllTKueOrWrH6qr676Urogguzuj7A5NaS8a2KoKcgyW9tgDrjnV9BJe9\nzBYYMzCIRnE96qxqTbhwXhHm8pLm2FoJXS32YLVVXbeDJk4JTZuBMd13cAi2dpnncxrttR2vM1xy\nA2lbPC/m6PUZ3W8VhkwbfY1YBW0zt2cb1PreS+Zto0igx5Fto7eW0hjMwhRx+6AmTOcY+zljT1Fl\n/xPw/zj7X7a/lklQZvfykGW/65jJ6Fb00GK0OI4yEOUCGCNdWA1x3rUCHGbdMzxk7ETYX/YauGXC\nrI9UcYaElR+FZRzneRG4vQF7hRZaKG7/azH29Wi+NJxeHLocaRjkXecmRf0c44XiWQwtwzbvIVEY\nOkEaTR72hhV07hyRO+SdKgP7qwcbJIBRnoJJE4cR34Zl7Zx4nUNXD2fcXOatvVL32K93aG+X9VAl\nGyQOu3u451jLmrMx9gEtJ5JJO68saC7lt8GA6andO7RjdQnmUUw/cxOvu+EWuh1r1OOGdIrV0XaK\nbEH7jnciW+a9tJ+2xOFrCGfWXqA2mzmvfWUwjkNsV3XL4srWQ2ulGcFVGT2gXgfNxq7G5jbayM2J\nFO/zMfToWmVdN9Ov+yRZx1ZntCdwTlOF7fr71C6tr0tzWj/6YHDH0MxKseGMMEdn5/S86KKBE+ed\nq1PiPZwX/zjnCxWYd7mIrjc8hfbXnJ65AW7OPw6eKePh4eHh4eHh4eHh4eHh4eGxCdhUpszkdp0k\nbVMwzfIF3EtaOknKcPoacEpaLXO6m9OpYR5zoRoneiERE+vTSVueSEYXie8ep7J1dDYiZZTM83wu\nohPBLkybJqeMrpHqgWOVwLYI9PlGy/mrq/xZTmUL+Kp3UJ3uBTpp76UUVXTK3i7iXsBxo82pZsqd\nVqPA3qxTngzXRbclPqjrRchpW4u/UcsmnaxbJCCqT1tGOeLtpTjBJt/OsZVy6E6UOInvx+mkRC6s\nU0cPOOUcQCOkUkUfgZPqDMyJCKrnlQZh9g2ix/djTrOFXNoWbZ6kvDWUuuMN3afughqourfQ+2zN\nAAAgAElEQVQcYQQGTz2LfgYsC8dOitZhBRTeyIhxB9khOasB+YtJ8rId46OD3kaMaFmzx6luHDcq\nuiHH6WqDSHVIu3Zgdzltlo5zN4qqXs7hK4DZUnPSLS0iIZygpznRj8PuqsMEaqOgHidaFYu9kc0Q\n0A4J1OmbjMUO6u9xrp/AkaAFk8nl2jrV+DQRHoMV5ly+ujjtJBq6f8KxMbh/zLEn1kMp/zFSjMFI\nXSfftTVdo0B0qJjWSXqMsd9pqgxtNGHaMOFyA7AH0E7JEumLc/I/t0DuOurvA8zDMgyZ9nUU7VNa\nF0Z3KTLZG9XnzlxRZK45rwhndkKfizMXE1ndt8DClnFRpxGN+ZC5Sja5rZLr26IPs2gbpIjqlFa1\nLoTLGjPDOUUMC+Rzr9RwSLisSMBW3JjyozrZd/o/DVhRVRg3vUV9b3QUFgQRikhKn19eQwvnLHOF\nyGZ8WD8TsKua19UPcdPYGhtWRDJVgFm44tY11We4TzWvsyLXiK5tFI0juu7ZmCKlN7+mKH+8o4j9\nPMypZAttoKwi8XM/VL3Gf0b1uXJazjozMdVz73WN8asH0SowjYflCUWss2mxRKYD3XckrXJsv4Zb\n1gHd96W1lN2Ae1HrAek5THWlcVIs6dpzRIEgMNocujt96OM8Tc74wVfVpkGf8qmHt+rvM8dhhxHJ\nTB3SAlIJNVaXtmmejpX0e3pJdUsdUFtUS1Oqy3VF5CaG1CbjSY2JSlPshE5MzJFbXtOceLWnaPti\nW9H37vc1ZnelxAyZveEW1cPEyGib+qR0VVH2VF5zZntbidqXU+iNwDpInlFbnmZy9G1R/e6Z1vU3\nitSE7t/sipWxpa76LZ5WeefuVvscXPyRmZn9zxs0pmeeEtti1x7V876XxZSZiWsML/Q0VzoPqz1f\nfO4pMzPbO6UxXO6KvXVmSWPrwVekOfPkoPpt4L5LZmb2MxcUAV3sF3sie1jfOzA3tF6HieSo7d+v\nteTaVfTzRtGvG5W+xkUC7A+uamwvpdV+u/r1/+8d+UczM3tqQe39rudU7zuzWiOTe9DEYW24c079\ncP7dWoPeNy0Nnn9s9Vt6XJ+dH9VYvTcUQ+VJ1tkPDGss7YKllHpVbb71NjEzvrf8ATMz288eJbLv\nW7rX5U+YmVn7gO7VyqLx9M/qq7tuEmvrtUtaZ8+kxa7qVr6utmt8VD/vesXeCmod9ckCrk4tXHrq\nRKtTsA46RO0Hd0gzZXK7xkR3WfU79pI0BlZw95ya0v9HRvlcG5bWmObAENouZZ5HF06JCdNoiVmy\n95B0gYZ2aI24fk7MvUpFfbuyqJ89mEND/VqHsmntp/t38FyjHB3uc+6CnlsrMzBTtmkt6itoXYsS\nAX/teY3JCPvjnbdKX2n7TsQVYGOX0AesXVF5ZmcumZnZ0qzWzUi/5sj2Xfo5PikmTogey+ULuk8S\nNkE0q/IXK2rX5RVdJ9nW588vv649dvyHT1tpCVEJ9i5b82qvFG5WtgcX1ZiYPPGoxpNr542gBmOi\no+lvcfZDbTbOIXuWBAyLkL2KyxJI9HCSZV+Z4Fnc6sIIp29SaA06B8qYc8ZB1w1pFYvCfI9Slxb7\n4iR6mJ0YWjTsOQL2fXXHIuYdqg2NIoILU8h+MIoGYtu5sdIOvRq6cbAD0uzrQphBCfa5Le6X7Gq9\nquPUGMEJx2BPOEa+M39y1pg950ZEudy+1XDsibA/7eJyFeKelIhr7AT0S7XCewaM+WRN9QspZ5R3\nuNC5zb5eENXfpUtsFHX0ntguJ6pqOcfAcQjzaDbWYZzD2Eym1Y9pXLKqaAXFsISM8w6biKJZw3od\nunfU4PUbNYKcra1etfSc9oFO62XygPYiBfTmZs5LT6x/QOtSF4vcHiz8NiytBTRQB3E5ivJOGSdN\noebKCJMlTzZHC22q8BpjONQ8jDVwHeb9Nh2FmQj9q1hDN22r+vTkUd0/LOvZF0MjcXy79javPi1N\nv84uPZv7XJYE7+Nt5mKsrLZf4R2tD/e+Im6uxrtpG4ezJuy0JdN9ly6SOXNN6/HIwOvspH8Pninj\n4eHh4eHh4eHh4eHh4eHhsQnYVKbMar1qO8xsBRbDcEcn9M0Ep4I1Isgoh4cwXeK4XBDEslSUv69L\nwuiCFU7mIiiLG/l5+SQne5w2l2DO5No6Qe8mcL5BnyTDCV29qus0yfvrcnqb4wS/5NxbzCl0ow3D\naayR951uKELRLqCngQ96EV2SIOn8zWFLEDHJO90XTtUdQ6DWKXAdco7dMTU6IpGgYO0yEa6Yrh3J\n6pSx405mCb12iZw1OalOc3Ld4OQ+G+AkxVFuFG2QEifmGfL/2qtoljjdDRywci6pdaNgbLQpX9hz\n7krqG6cZkya3ssFpa9xpvKCgHcPBoBG6E3tyZzk5dwyXBlowGU7Ga01U2lGPjznPeSIfVdgXERgu\nWfIOOy7qHrj2RE8IzZiWOxqPkAdJsnBIfXoVlWPd7SjX4f6wQkpoCTCDk+h1lGE0rZsXwZ5KIlle\nhyETRmgfx3DBWiiaUj+3YfBkOMXukYPagp3VytL/aOEEOAA5d6sup+UBkZgWTJ8okY4YJ/UtFznC\npaqL60pf8KZQwU9AL0Ee7nUYMkQ3Rgd0kt2f0kn7Wg6ngBoOYTnVaW0eNXSYaym0RRplRTCbNV03\nVYKZlmcdQdNlHnejFGNsclgRhOSwoipXUIHvrCpi3C6qLwvoUSS2KsrtojvxQY2JACeqVkvlqDJm\n15yDWFJjJtdzUTb9vRRH42BG0ZQoWgfDe4hswGhZnFW5umsaC/07FSnMovU1s4j+B9oDfSXVN0Ye\n8q6dipQ2GMtz19AEmFX9MqHqP4AGTpt1moCDtapEBVkiMrhRzRVV7ibMpNG8+q83gNPCqv6+Vlck\nYqNI1cQCGO1eMjOzq8M4NWxDa+cVteOVtOq9Z5vW7dUDiuAfu6b2So6oPfP7NC6uwDLZc0KR31gJ\n9spB1u0VjZvjufeYmdkW1vPSXrR+rqh9bkwfs/OwmXbOyxlgeZR5Qy5/Z1Fjt4te0uGt6oNWS2WN\nb1PfvzCmPso8rbFZDfT92CSaYPPKt06toI+Gg8uefnXG8+gnREOFeq8tKVqdGWVsNcQymogrb7y7\nRWPn9KwYMo20ovZOL6Q6q3IP3aq2bZzSmLtSmDIzs1tf0Nw4xnrdS+s+hVFF5YYWlY9d3Kto/bB+\nWN+z0mop7dD1hvh77pDGzGLb8co2hsJeuRGdRMfizpOK8ufaOOU8rz6vHRIz5D1QTuJDYnVMH9ce\n5tX71c5zsxo70Yra6QSRzbtSuu53OmrXB6f1/zN1tWMYqF6j97A2nBOT6IWUmDiHzqudti7rOl8b\nECvkfzWzLecCuwwjca2n/us7q7m/RkQ1BUsiGNJceukp1a9yE2P/vLSE0hWNq4X7mMM8Z288rnof\nL2tOXWBvdvisxtvLO96ldjm1bGcC1fleIoj/sqa2M7T9Lu0U6yle1Ng529P/o8/JRWPfHVpXXrso\nnZt7lp42M7MP84z/fzIw0C48qOse+YGZmeWSYh1l75am0/A/aL3pS6uuz/drPj/37df1eDaCJgS9\nRknrYnZAc3b/bpU3E3WsU6LgOUVwZ6+qnmfRReqyfg306f/5jPqox15ptam+66E7d+Wq1pe1S2qP\nGs6XkzdrbmzZq/un4miK7cI9pKEx2Aqdpo7m2tqC1tnyop5/edjFxZKepwMj+t4AGm1jt2hsbtk3\npQ9SrqunxFypzomhYv1i0gyN6/+rZbVvZfaSmZlNX1K7t9a0jo6iYXbHe6V/FB/SnC3EYUWj67E8\no+tMHMSRDnZEdUXlb66pvccntCbGBzXuoo3XnxP9mT5L0i+F3arf3v0a684BswQTKsbeuL4GI4p+\n2QgyTd1jlTEaQXOvh25NiMNhkmh8teNcPnH7oSxZHKIaKfa1EDGi6Av10NlI8o8At6YujpBhA0cb\nHK/aMCUSafa9XC/BvtVpo4RoNsZg6kRC9OJgpkecOxTvAa22s8RBk4X9XwhVJ9lx2QcwuZPOrRVG\nutM6dHsB9s31qtaxqDGnUmgy1ilHGncpGD4d9EbivPu4Pu2gM5TCxamJ3l7PMVyck2YKprtj/mSd\nsyZ7GpjzHadtQzZEkn2tVRxzZmOIsHfq0N7tKPtn3v267v0F/bwsPx1jKIorVI+sEiODIMb4cs7C\n1TYvx+69DY3N3vjr+iaJfMfCoGdWZ7/JFnxkVEy/FA5fZ3A0LIVaryJ0WoZ3mVKBd53iGxk0WVzR\n2ryXx8gA6bEfRX7JQqdnWSIDZYS2wPk2iTYg5C+LZ6gDWo/OYbbJu+gC+7EozPE8+/MG+9yMc0em\niaIRx8Rx2Rm0mWm9rNadAzC6mIyZgnNjZr2KoDsU0icNtMgGt/zkPYlnynh4eHh4eHh4eHh4eHh4\neHhsAjaVKVOeQ60Y44UeJ2Dr0X1ch1Y4Xe0zTjcrMFn4e50TqzYnb7E1nZzlcf+o4JKUISe5QZ5i\nnNpncSWJoy5dx8WohzZDhpO7IE3+ZFP3jxJ5r6Bmn4+gPk8kNEWua4dc1yDQ/2u4PrWIhDt3EQ6Z\nrcsJW7Cua8JpNWoSDVT6s8ZJXwyWBWrUXdqFAzyr9NrW4/SwYPpsE32eJirqqVX0Kvo4dSQqEEcN\nvczJdC/DOR4HwhkOyBuc0FfRQAkH8bhfJS86VJmLGxewV12cWxMn/FEYORykWypQuUoBbClU6UPy\niWtEIOI4bKVwbqnCuInB+OjAUAkI47dhlvQ4WU90neYLLkHkUSYZRO0qeeS0Z4coUp1c3KAKQ4dz\n0A79keiofcqZzBvqlUzT/j1O9iuO6YTLEoyXHoynMmMh1XARElhauEGFjNk0DJkO+ZNNXJgwB7AG\nTmdpom1d3KkIdFiEuZar6Q/lLMwbIqhJ2r/VYo4wxrMweKqI6gTkQFseHRcXKUCTqN7b+HlxAHMk\nn0EHA+pFfrd+b9Cni0Ty5nF3GCc0OLZF0d6Ei17BcDk3qwhZkiP0iYwia90BRa9TOaIvMN/SaLyE\ngyj9E4UqolMUDfW5kRTq7EPO1YFoE1GWMqrwHZg/eSKxyRESxPPoCs3p/8s4D/TDsEsxlhqM8YFR\nRQbSA8qdL5P33WSM9G9XZHGACOMK/19uwnKaV/2HYR4NwORZRZfp6nVp0pRnFGUvFHXf3Tv1+cK4\ncnYvkGDf5HNhEfbcuCLXyUHy408qohxlTmX2qdxR8t7LDUWMk86xYoPIx9SOmYLYBZ2yyn3ji+rv\n6cNip4xfh/V3VO1xer/qedOKyuHy/p+FfXi4+ZyZmb1WluvSnYd0n7lVzYG1tMp9S+KHZmY2m1dk\nPGVqj5GSxvpKYbcdaIrBcpln4FBJnx3KwGyoS9vl+nbleS/gOjQ8r7q0YNQcmRXT4sS91PWc+uQw\nrK6rt7CeXdOYPrBFUawXUrpOEyetba+qbLtSGpNniSxOTOp7F3CJqsQUpd+fUt+cPKFyHu9XdD2R\n1HUnLikKd2lY2jJjJd3nlT0ai3ctqw8WdykaPkMeNkQcG8dpbHVCbVcmQty6AoPwdv08jqPLfU0x\nTDaKzGmxEDK3f8zMzPqvSdsmeJfWjNV59fFSTfVZiB4zM7OVguyk9moo2zXYVB8McME4rescv3HK\nzMymd6jc91+TvsrRaY2xnUNE6bL63vhr6IlENcaeu1H9ee2uh83MbNvXXZ7+lfU6pPqG7diPpHnz\ns/Zela8mtkDjQ4oaBlf1+/H/W3P7w+jw/cu4NIF2LIt5M1tR3v3eS5rDL09Jc+ebD6j902WNp/fN\nay373j6tZT/35N+bmVn1gx+xySU5Pj21qmuHI9oXjc1qjFhd14zhFBhMqg+HaziFnda6sJpXXZcT\n6oPwzHfMzOxGWKKT92rs/ct3tO5cHFGbLvSmdL9J9dVTk2rDPZdVx5vQRfqibQyZYc3FXbdKo2Yb\njME2Y7FBhBiysc0uihly8aLYUFEip4N79L3hCa0rw2Pq8wruf41ZNFKWYbYsa8wVYIhsP6B2mNyt\nn+2ePn/mFfVJCa2wkVGtR8P7Ve/Rtr6/SkS3hOtVgwh2Bibn7LzGZgWWbKGp5159FcYNelbFq2iX\nwQJzLNfGvP5/9ZyYNJUVjbEo5cyNqZ/60OcLYIBHmmrH1WVd9wrsO6fb1w87sAIzffWarjuMZlnY\np3pUrohl1+17PTK9bdceS96pNdLtx9eWNXfOXlQ/la/qp9vvx9AZyfdvnL3rXIGcHl0HPcg47psB\nzjJ1ovkxtE8aaH1FKtpDJHPO3ZJnEm3QQuQwgvNNC8ZGJF2hbmih0KaxNBvLHu8SvCtFuF4j4TT8\ncB1i3xzAcmjE0NNrwO5vuHcpXScK2yFAI6WLdmOQw3mxjhYhmoVN9D+jcd5HouzvYfs6NlrSaeQ4\ndkTPrXfch3e2IOo0VNhLsd+PNtapQLpO27kpwSSB+d5BFyRTQ3cUVkYPpnw0Tj1o9wDNyKrTyKG9\nO6m3xpTpVOnfDtenn5NoQkbI2ugxV2sRmE88n6shbFy0bLZux12Xd9cW+/UYrqm8PlmPbJKcvb6H\nCqMx6yx1LLaDdwfYSUnYWO2Efq/BgqrOaJ4U9qNn1q+LZ8v0GWzTkJSWq2gpTu7WM60Fyz7NMz2y\nReu9e//t8c4VI/Uj4L260VLdc0kGCe9QvbieUQWul2JIJ3j/bsCgTw7o+6MDapMi2pGteX0vu0Nt\nuM7o4V0yGuh7WTJtEmiimWN5kXWBcZilcHPq4DzWaKOl0/3J7zaeKePh4eHh4eHh4eHh4eHh4eGx\nCdhUpkwqqTMhZ+0eQ88j26+TrTbuSAa7ooxLCoeHFievb10XA3/wGEyYYp1TVRg21QzK4TBfEuQZ\ntmGuOJemTJrcNPI7V1LoZaDuHOvqPpm4TtqbHXJfOS2NxpyOBxFpqDBBFA2FmlPqhu3gHJGobqJD\nxL2tiESQVQSg6NyUcDLqkAfa7aA3kCUP1Z3e1jmpCwMLYHC0OVGulfR7HF2cVoG2Kura5RwnstQh\nQ05qrYq+BtooxZzaIpmBnVDnpHoN5xQXXIDJEpADuVFE6MMWjJAomjQJNFyqjsFBnTm0tDqOLQlO\n7BNxF7rQWElWuU6RE2TapdWHu5SRD5hwjBVygokkhIi2RPlelD7pcmLNAbylaccKbI4EEYEQpkiz\nq3aNod0T6cCYQd8kQu6nK36VSEAkonbvuhN+xmSPnNdEmusSiXHaOwGnz6Q6W4cIR5PIiRuzHVTb\nWzCFXG5uFDcsAhWWc/1KTmuXKJfTmOmgvROi5RODvdFGQT0BBafG+TApwpZwCaMbgHMWyw0wn1gP\nSjWNwXqg+T+/ID2GzCyso72K0IVD6Og4JwJOzvsT6CgNqlATY2IDVAaJ0OE6Eef6CXRzMjW1fb2F\nw9cK0ZkSmlEDuDokYb4RTQvJ/42uUg5yagfHOaFPayFcDMUeKBFOas/Q92P6f4WoVHSl9ob6hURy\nV+Iqd5o5nEA3qAFbaaEipkpkXuUdHxGTaOs+RTjqcX1vbumSmZnVLirSuCWp9bBvv2gNkbx+X2yL\nZbF0UeWuzapfBogS5cZQu2+pHLkuDges45mkIsh1ol0ttH4iMFA2imcYwzHyw/uKaudz+1WeeA/d\nEsNd4A4i1qbIfisrLYiLx1TO225Qe5x8SfWYepfKdZyoYzmq3yemYQgdUL2WT+h6tVDuTOEhRZRH\nLkatOKE6b0mLVZCD6fY8Ia5D+xUNqtVUl4WTjJU7yOdeUDSqndLvw6fRW5gUG2G5pTa8IaN7P78k\ntkBkp5g34eQlMzO796jyyDu4dVweUdn3nVUbPLeoz+2CAZg8wDq1oj6v7hCDJ0L0eu9rGosXG/r8\nykHWp2sa2/195KvfrHK1n1cfjNU1506GYtDkSHSfOgIjsKqxmYlqDJ65IgbOjWMqR2J84+uImdm5\nmrRyskRCvxNRlL4fP5HZiFgNe9HZ2F2Tds5d28XaeHZAWiq7/4fa+akh/f29RbRcFtWOkZrm2D9n\nxV6I3i4dlXvXpGnTyUibJp+Ve1R0GhYBz+f3T4j9EPmY9FVuO/u63sW3jjVtMPuzqseo9FS+t1X1\nGv6m2mfXmNyVpu//oJmZ1Wty+Rr+gVgt7ZjqMR7X3KuNqD1uOCbGzvADjMunVZ/VG1SfCbSCWnd9\n3MzMRpa/Zs3KQ2Zmtk/Ty0o8A3NnYMIsijHzUlJjojumvl/taQzFt2hs9mWeMTOzyxdwIjuktksn\nNLYzC2J23JnSHBm4KIZG5mExJCsmt6UbjmvsHEwiQLR23t4KhgLWgzzOWuf1XLk8J0ZLbVksLUP/\nIkCzK+QZt+MG9cXAHpW/EOdZD4thAdZbdUVjqG9Y99s+qTnZN4UDG3uueVyRZqcvmZlZcVk/kYaw\nZJ5o/Bx7wGWtN+1V/dx5WGNv2zat22uXdL3pOV0guahylztaW2qByheBFbFlr8o3NCkGS2FEDJjS\nvNbPFs+3oIHLSr/GVI56VdGIPE/5WzBxaqt6rsbZ127drvaqLOn+ly9rbcvm1H5jO8WuK82KkXTl\ntK43cWjKHDqRwGKwd9eWxF67elH93+C5vf2QBmprQeVopNXPyfjGmTIhmh8N3CfjMcdI0Z4gzX6s\n2ya6jvZKgWd6C0Z2s8HegH1fADs3CrMiRHskGiPdAJZBhyh/HsZEGaZ5BM2VWOgYKPpakmh+i2du\nHU2WIGAPwdiN5njmom8XYa/RZk53YFLmGHMB7xeh01mqONcllRdZOTM0XnK0cZdne4CuaD0K64Lr\nJ2F4QFqwOkz9DC5VbZjZEedeGrh9O5o76BVF0EhMo4tShsmTbjhmCgxztA6RwLEYjPsI7wOrCJq6\nd9GNIkeqwQLvKVnctGoJytdDj6TMfhp2c2FCa2BjRnNyuQSrJKO9ZRNmTRJHIPeu3HLtSLs59ouZ\nWSZasFKrbW0cnNZYhybGpszMbMdOPWtf2aOfxSJMPNN8jvC9akRlHx6VXtoUWlfT7Me7OPP2svSJ\nG4Sm9+s0bKAOc6PL+3A9BbsK9lI54hhwuIGyD+86TS30ecoZMkiui0nZQldt/616dvcXdN+j02KX\n5nHYcu8BTiez6Zxu0edL8I4TsM8PcRmt41IaRZcvu66PpL1IOvWTx4hnynh4eHh4eHh4eHh4eHh4\neHhsAjaVKdPkJJqUWatw8j0wisME+iaFIvl6nJhHAp0uNtAcaGZwCuJUM8AtJc0pbxTzoygncs06\nvuFE97MtIuxpnbBVOX3uryvCXCOqH0mjHo2bUxmV9gintnFYEk7hvFbU75AorMxpeYVTTKQhrBZ1\n7AaoMgFOSEQi4pwep2AKtcnv5MDP2jG11wD1XuGkL8+pcl+0aZ0mTA+0RKJ5NEBgnjTLqJUnyfvF\nMaHNySwSKpZxuavO6oo8uyh5e0WYH/GCrlunrZvk5eUyLnd1YwjJhe3m1EalUH2QDXWfNGMhhN1U\npXyxLPVpwBIg/7hd1vXoais7xgttHiVfsseJdSzicnrrXI++IvezRt/nYOr04vpcIurU7tXumRTi\nO44ZQ71iMIc6JCG3ourbFPVow1jp5tElcSfxlDsPu8uc6j7fa5bJy+R7WdT6q+STO2XxGjpLCVgI\ntaQLBRAZYY5kiJw0mpQfVoORk1yHjeYiOh1yYiG/WQzmUReWGCm/1onF3nCdCHOnEb4FRlVT92qT\nT129rro0XF0GVOYCVLTkiHJgh/t0kl+EQbe8usDlOGkngpfpU/ShPqayzpR14l9t62d0TCftraTG\nZgdngqjpvp0BJjo5ulvIae0OqHxr17UABtdhbBT1vUEigENo5ayhJ9SuqU9zeS1sqSn9HBxVpLPR\nUzvUM6pnDPe3FZx0itcVwQydQxZmb3XmdG1JJ/oEEGxwWPcv4kSwMKfI8CIMkAmYgqPb1J6xca0/\nS010ldBXSpTdHFDfjo/ijoWmzBKaEi26rY9IcLIf1ynYZAR/rNl6a6y7vhmNk4tXCc8Nqd0PopWw\neh1noVHV//iK6nPHrKJRJ8nfT8UVsV6tKiJ74y5FVheOqR6DW//VzMwOEyW9cjN53Qg39QZU7l3o\nr0RPi3ETG0jZ0JD66tkZMVhcSCuHm8ZrzMdURUyKDPMtfFVj5jARwemS/p7bKb2JTF5jOzqp32s1\n9eFwTNHtpZTGxA09/f/MkJgPq6OKmt+KZtVr2zShazhOlasq+8C86vLcfnXOkZNq09e2Kwo93q/v\nXV/Abe6U6jfW03Uu4ZSy74w+X+zeaWZm3UMaE8MDiuZfOqlyF4+pD7cf1PeuEPG8DZbXuesq163v\nudfeCrbuJtpePWlmZgs79WydmRYzZfutYl+s/UBMknNt7Vl2zD9gZmYj58RsSY2K8bN8WNH95pLG\nTHBR5T4F+6A3pjH20IDqUd2q9puOa2+R+u59Zmb28ns1lu6LaA050XzSzMymnle7Xjn8X9brkPxg\nwm6a0Ri8/JLGzfvHNXdWbhMLpXNaWjs7s2j8tKVDsqdPUc8X7zqqerG3mDkhZ6Ph4W+amdlAqPsN\nPaT6Z5bFZskdF3OnkfknXX8ob0+fEbsqc1B1L0xrTF2Oa95kb1TdD+O0EuxSJDZyRfNw+gXp2kTu\n15h/YErr7LfQ+LjtSTEe5vdoDJeiGkOxez9kZmbbW86hRqyno1Oaf4UF9cErrIsbxRoumsUltd3K\nGi5GJWks9MF2rVdg5bIB3LZP5d+xD20ddDJWlp2rktajy69KDyoJK6EFMydk/7l2Ru2Xy6mvOqwR\nMVyFtt2kCHA8qTk4yPNp5TTOWOfEKksmnFaj05VAg7GOW1+/xuzEnVrXYoGu4xjpEfZGqUHH3NZ1\nile11qzQHj3Wrj23qN6xAY3lDM+lLgKFIRHpNSLqlTmtu0NoTfBnW72iduqLa9zsvxEm1aDYAy0i\n0ttu1+/b0fwxMytXF+2ll8Qei65pTgTs1Yb3qDwx2r0O+yCa1hoVi238eRPAsE7xzB49f9UAABzO\nSURBVO7BtIuGzrkF5jQ/o1GVuQaTJYk7UaTjXJXU972G09dAQwWNmrLTPkxrTKUJ67dhRmdgXPSS\n6GbSV8kU+9wY+0eY107DJuf0Lt1eiudAFM3FMq+QTvMkjl5Qk+v0TOtHHAa3Y5Y3U47pozmUjmoP\nEZC1EIEC3+DzAWM02nXakWQ3tJxeJ5qF7DONfbA5U6gcGi15XEdJt+iitdgIYMTDIIrh6BM0NNZb\n7B07zOkI+9ZIHwwX9nphHJ2TDSJow2iKOh0X/s47aBzGzqpBe8Phc++49nrRPs29+QvSy9q6X+t6\nk/FTb2ut6rh2ZF+fZXzkMv+GlxE0bGK038ZHxeQrzYs9WcMNucw6E5CZUV5xbDDed8nkCND5aa2K\nSXPqmNbdKPpALdiuUd4FO6zPBfq44zI/YOEbGiwxc+7CvOvxLsiri1Ud25/fszCjC+g5NZmLjkGT\nGpxSPdkHd9mv9hrqywz3a8A2i6MN2eD+Hc4BErjnJXEX7Dm3Vhg/EbIeYjBqutWfrIXomTIeHh4e\nHh4eHh4eHh4eHh4em4BNZcpkt8F24PdzT/53MzPb9R7lIw+aTsIrnB8W0GRpVpxDjM6U4pwq9lB7\nLpFP2cfJf4MofiPU9RIx/b3ASVaTXNckzJJ0S59bJYKcrnKKnHR6G+Q/kgNdw2C9ijZMllPZEtdp\nweaIlnXyF3HHzwlOiUv6uzuNDao6Aeyi8ZDmtLaOrolTgY4k9PdoBG0ZtBLiCYUUnLp8uZqxXJRT\nOiJtCepahfnRQ4MgRpQ9STS70YBZwelgvV//j3fR0UHXJh/o++bchvgZael+WRxnej0+t0H0cH0y\nokCZlFNHR1OAk3ODbWQwYrr0vWubZo3IQIIT/Lr+n0+R7+30fWqcnDPWkkQwujgKuPv0mDoxpLab\n5IQmUQpvcCrbRWW/U0Wzh7HXbsEYiet7HReFx7WojqZKPM3pMqLuCZxxupwiO6JMxAkS4ZiDUY31\nWk7VnUgDbLE2ekkRnCsqKX0/G9F9W7RfBIqU4zd1cTKroVGURPMnRm5qA7ZDDB2lXuBoDbhZEdnp\ncareqHEKjRq8S9oNX5dI+A/RhnVUukgO+hruY33kAycUaWugy5FAeyZSUN0qVVzd0IRx0Z4cecdN\ntKJqVUXouo016ug0qGDEoOzvBP9Dol795GlHYQC2CirXSkURzyJuRF2iP5N8Lp1XdN766ZMGjgaw\nI6LkpkZHcKAhemZouWSJJFZzatN2TfXKkL/ey6lPIvSJEd1KjOIu5ZyyhvTz+hVFQK+jDTOZVvuM\nT0jDoYk2TBGG4ty86tVu6D5xWFDDeUV48wen9H+YSmu4ONkqWj2TiiwbUbyii9QQBQtcWGmD2H1A\nmhMXf6CfscStZmb28hBRxN2KDKUv3K3/H5SGRamryHMjq3rdhGbMCzlpO/Rf4rlxRJ+/8poitFeI\nCE+dUU51lghRe6uiVxmnWbYTtsOV0xauqk9vqatNr5V1re6a2AKlGY2JO4lO2Q5d8ypsqRcaunZ8\nAVYW61V7WtGcEwfF7hl4VmNqckp9Pg/T79q/6ufdInDYq8fF+CiPq4yTe6TtUlzEiWoXzobdS2Zm\nlnpWUeWXmWMDFxRtP49m2dZrun9xKwvajMp3KwzOc7j7HDwtnZGLWfVRAEv05q2ag6lTYrQcvyxm\nTDWtz710Ve1S3fOi6n1UGiobxSDaNn2Vm83MbMwUVT92i+rZvySmzq4DtOulV8zM7NkR/WxPq712\nHtTn7p2RK9PLh8RS6L6mcn3gAd3nYoS9xrVTZma2hTz6fbhSffMWWBNljUF7UeyD23Kq1/d3a+2Z\n+qGYKfbIz1uydtReOysWypGDrMuDmoPzOc2xA3n69bvqj6sHNd7ORlXOh5/ReLrEWD2yS2O1fOEm\nMzObeUoLdO3nFAXtq2pOL96LK1ZCTJpS/KolD2tMLHR07cFJsaAy/br2haTqnlgVQ8b+p8bCSL/6\nOGEa4zewrs0TBb7vWc236x9gnV4VK+q2Aa1T5aNi0KTqGhvnEv/DzMxa9/1XMzO7VhRDpXwv2+A/\nsQ0hFVHfr61C3VhRPaZ2aJ7vPCS2mdP6Q07NEgjeNXmGrlzT+nhlWuVdvqrnwQDaLn19WocbK2KM\nXJ9V34U8p8YmiXbjrjS5BfYcz48e7Nv2CgybMixjHBOHD2qubRtSu89Nay7NXBSLbeuk6mMwSQIc\nOVuwbHtV1X/pssbs9YoYOMsXxRzqj+I2iA7W4AAMqCR7OBw5E24/y4LeTYuZMzal78/B3Jy5qDkW\nx/Hn4J2aA0FWnzv9ksZRcV7tmEd38FIZ7aBP/C82Oz1rLbTW0nmx6Qqw+EL2JAsX1Q6ZqNbvfrTe\nIuwRN4IYTOuqe6bSF24stGCOO43CdrfAPbVPXtcEIW7ehiETR9+yQZtBLrIMrqo9mBfOpSjKfr7j\n7tvE6arLM9llG6xrLsLw4Tpt2LMphD1DWAcNGDcxGOAxRBRbsB+4jMX4fgetmwp7lkQFrS/2vT30\nQBodNGWgUsd4t+t01wU39f+m0wnlz1w/i45TrQJDKaIxX2/o8yP97MFgL6Topw77znbgmPGqZwYt\nnJD9egI3o4ZjtMOQ6QWao01zIjkbQ4v71tH76/IOmUK7MdavNaDq3GTRU5q8X8+nEN2pxSXVb8cd\nOBA7N9wKz/tBMTYTMK/W0I4cib4+pjPWb/PLRRsraZ12epfposrSyukeeTcGYZQlcF7tllm3R/Qs\nGJnUul+fEztz6208i9fHhsqCKZMN4k7UchqwFbWxe2VMwHypOBZWTe/PcZyxQkS0ahVefgrs+7Ow\nuGCqx9FD6i7DjGeOJQbRYOXdZYl1IsG7c3QUJ8uSxlSTjJUA57SW08RNweJCPy+krZO4B3bz3n3J\nw8PDw8PDw8PDw8PDw8PD422HTWXK3HqnTtJuhYTwzGWdnn77//xrMzNz2spOkcExatxJEll265Vo\nv+n/Tlc6+qb7urNMl/3nMkVdplfuTdeLvul393lXPufv4M4cnSdI+U2fc9dx93f3c872sR/zu7se\nKi4uTZJszfWDx/Xru/Zy1wn+zbVc2V1ZXVnyb6rLm9vOXcsxJlzZXZlcWd6cdev6CFkfy+bsLSHu\nGB+cFEcKjlGBtkISR62WBpE7RY3Tal1OhnOcytZQUTdU1rtER+KOURLVfbLkP4ZraMNwwp8igTHR\n0O8V2A2IqFur5zRr+F5LLepcoUJO9CFZWMsNDlhQTuI72SWigVMA4vbWjNBj5Dn2irQH9UyRC5tE\nmKPJqXC861TYYco46RhU75Ndx/ZilrWJpBAxQWTfolnU6mEk1Tm9TuI2EEE/pFfAbaRGRAgmTixG\nf9VV7k7S/V3XrzEiM+2NO+u0lmAbzeOKhiZMLxQ7IBLnZH8RzRdutkKYqbiqo/oedUrSRk36IltS\nJLRa47pom1QjzmkLdgI5pdfQJ3LOXiVYQpFAkcUe7IAM1+uQy7olrgjhwIj6fhGGyeI0LktdRSDb\nrFDtpuq7loY1VoGFlHAOBzDwuH4W1lgEVfgkhg1J5wRGpLZb0X1WiFAX19Q+VSKuwxX12dCAZnUA\nE7A6IwZNnTEfmYc91lL5kx2tEsl+olGrKsDlWbEKykVdP0XubqyosbnUVXRopYkWArpEkczrzgEb\nwXxFEezOAUVc+04pUp3tqty5bSpfY7uYNEFX/ZEbUD1Gr+A+QuQ1F2qMTuP+NT4rNsMEzMm+bXLS\nuX5Zeig/fDcOdW2Ny8QrqteerspROjJqrWOKjMU7ii4l9qgMC03lig/k1SaXEvru/u3qg8IZRbfb\n1/X93q0aC8ebYmb0ErepTLCsCneqLo3XxDypLGisTvZfMjOzSEdR7W0ZtKb26u9ptKpScUXTOjNE\nmcfEvMihSTKyXayj8xXYqYs4Fd6ksbfSEoNmx7Cus7qqtjnwqpg4bVOb7UyoLy69JMbQ+RG0WUZg\n+vQxNgc0FnbAemrPwFi8T5/fKJ48KXZFe3bKzMx6U4pI3rWg672wGzbECbEunkmKBZAZU7svjEu/\nIjGNw8Nh9W3k+xozcw1p0dSius/F74ntUTj4bt3fRFE6BAt2K7pyW5fULvV+acwkiRj/7AX9vJ56\nXcug/+mftSvvk+bMvyTEuhh9ScyZ8br6+cKK9l7NAe0e7ij+0MzMUhN3qJzzGj/X5nH9WlI/PXNV\nc2fPYfXr+Iza4xvb1e/xssbn1AmxUA6P1ezszu+ZmdltP0TDK6v1ZQ+MuOlhzYfts3J2enErD8tB\n9X32oMbONy9prD20prIkxhV5vfCPutc942I4HL1NmghjkyprJKto8S6738zMOk9LF6fvVtV1O5oy\nf2cbw9Kc7j83q/sFSbVFD5eN5SuwhWr6XNK5e6IHUcb9qIiGjpU1lvv61Q5DaBTE2X3FYPdmbhCz\nJUlE2WK6bwNXkeev4C7I3qNBhDbgmdrCsW2QdbsPrcIr17R2XL6q+sRgAVR53iz9SOWsrcDodM4t\nbEVCnndZtBoG0QobHEQ7JqcPXltRZLq1xHUXVe82e6akc2lir+ecier8Pckepg83pWXcnVYYk/Nc\nN8FOvdHTmhErut2rmfVCm9ytNSEJEyllTo9QHxnJqv1DHNbCttaYynLDNooKGo29KKz3XJLfKRs6\nlinK2snA6Ki9UTulxzO7DZOlCAM7FcXdlPlcZSfeizt2MIwO9jROQzGRVps32Ye16+qjFmOlx/17\nsEHT7DfXUmqDlNMKhFFSiToGNqz/JIwPGDA154Ka45kP8z2RYp/IXsbpi3TrrGM8W8MEDGvnxsR+\ns4YrYATGaDSh8nVppxZusZGu5lp0UOWos1+Pr+n5WW6pXF20NUOYMFH3/pDFyRJdkyhzL4rmTkh/\nujmR6b4FireZJdBJtSJ7T95HOiFzHrctN/aX6bcqjNhCDge7PrHl4g20YzKuHjhswrwx9J2yZfc+\ntLJelnqkZfmRiFXZx24d0fivoKHVWnC6RbpXZlL3Cnmn6tV0raArBtrYXs2zyy9pbAe8+0QH3d4e\nJ9me+iINQ6WAhtbYmNaRkLZIMrbbMFcaZDV0Yfu3eAeLhfr/+BjajWjNhDhPkQRiqY6YhTk0c8Yn\nxf4d3K091xqajmuLYqeO8a7SIlsjsqTrhzjIdtn3ZbdoT9Dqao6myTbJjKEd2PvJuqqeKePh4eHh\n4eHh4eHh4eHh4eGxCdhUpkww9X9YGP7v9nsNxSia5y6Zmdn8gk49w0DRlyTR9xZOMU2cWeKckDXx\npnf5h7EWp7HO5WRVJ1nlPBotRMqTqzrVXOsj5wwNlmhVp76tDq5OnOBFUPh28iUuB7XU1klbf0Hf\n73CyH8JhqZIPHyRVnhTK5zHYDWVoJn2cxkZQ8O5wetrmtLbHiWGTdsjAOnGskJqjM3D/ND7rpWjM\nDCZEDmZJArX2lRI59HBhWuT5pslZXUNxvi/QPUpBic/jZR9RNCLN6WUHhxUn6t0o6NSzPKc6vfC8\ncuS/9UdiQ/1HyMDciJMbW0F/J9tEPyemcjbwjM9kcKzquDxDmCSozPeRi1rj1DXrVM5RcW/gTpQk\nD7Fb04l7FN2RDp3fTTCGilw+4dTe0bLJ6b7JkDHBib7LIU04jZcYp7/wtrIwSxAAt1zVuRGpPnzc\nQpdjCwWnRxQsSu5rm/ulyPd0DmFt5k6kBxOH37vcZ4Ax1OFGXRg8hS6q+hWdzKeg+sSIagURl7dJ\n1BDmTBi6nGhcssizTzkNGbR6ejCPQtgj6bfAlOlcV9kGukTmMkQC0d0pF2H9hEQNmI/ltiJ3iTbR\nDXLlQ8qeiLi+JspQVmdH0MEZxGGhW4YthHtai7HYa6KFRRQqrDG20qjB00cT5O46Y62VZUUWKhX9\nTDLXYvxMwuaqEWEcxBGrhgPa+lCM6/992BW1Uzg5lIgYECFs41bhyputoR0AmyxGNGkkqr7LFZwD\nBNGbWY3dRgCTh3oOkAwc53vpPiKXsNAqV8QeSNRgPWCTF81xffLiGxWtOckSLLI2mjmtN3MgfzLS\nVbE/HnzX+1SO+xQZXuzqOdN4UfebwcXrpow0Lda2y1FnOPWAmZlNhKrHPlhuUdZAG5UDgokgY1e3\ni92y7y6xJ3a8qsiswVRK3a2I/gsdtd+7R9I2iT5EuPV2MzMbwiWpc5xn0u1i+9ii3IEc8TD/wV8w\nM7MbzytqfKkgFkBhUYyM5XeLETM0qzrtySiKFSVafq0krZDB3Wrj6cQLarNj+n1LVs4p/TiW7Qrk\nqJO8S3178oyue8sONcrwnKJCB3KK7uf3y7UoBavs5WG0up79JTMzG9sjxshC6n/TdcitjxT0vdyN\nasvqhMo1WVAUbelltUciVN/O5DVWczs09w+MsUBvEJkhlXtkv75fuiS2RveY+uVdF8Qo+c6t6tMH\nr2sd+8Fpsa3uaKs9XjZF19a+q7+vHtFcen+f+vHYSemfBMOq59BFXWdyXOVfghlzJxpklw4qqjc9\nL62dcsvp0On6R1YOrdeh+d6uvf+f5Za0wjq7Y6vG9KmO+m3tTvVTf0+aMAvLGovJjMZVfpCoHqy+\nr92hNWtbVXn103s1nsbbYmn8lxNiF1xQt9jO+zXHn/7XijUvi6Ey+4GnVJfzYpTtWVHfnl0WG+nC\nEI5guOkUz6iOh0a1LlyPXjIzs1dxyRvo15hNfURj+MQ1za/Rp79tZmYTU1r3v/vqz5iZ2c/drvld\nYJvU4LlxYOBjtNz/ZRtBuYFrJxo3+TxsMPjGK3Ni5sw7W1GewYZbXDqGfh+PlSCr7/XltI5EcFyp\ntNRnbbQCcziMNXmmuj1RtRxyf/YS7B+jPA/jhqtVBhcQ1u8yDMgyehsJ9njpjMZamvpVOpQjjrsK\n7ZCD/lxIae6l2Ht10PUIofe2eM7VWcuWF2BswlCKEWFuOG0zXEqjOGwmYeIUtqs+HfYK5aLmWLmC\nw1BO/ZCH6TLYzx4w+fpeYsu2Meu6PV8bncMYWhNur0g7BWhKVEq4rCbeQgwbhkyvx7sMjAin6Zfu\nh3HC+ht22G+y/w4z6GU4t9OY0yzEkYuiOtemdFdlrkX1vWbg7ofGVkZ1jdXYZ3Ffi2guueB9Gl2N\ndsMxmdHhYx2K4HTpHBsLPcrLz14iS7nVdt0Mrkpl/V7ge13egTKM1TaaNG00FlMwYwymjPEuFoNt\n1uOdrJ2HycJeo0M506H2IlEYOk6nJIl2WrmfPQbMmGwaVhbtkHXvVI5hwn67B1M/hV5gG0aT2/+6\nbflGsf4+UFXDXCuq3BF0DRfXaE/230VYLJdPiTXc7Dp9E/28cEV7mm6AkxrvgO2ynhPO4bdSUXmX\n1sR+s180mz55yiqtwAzG8yrrZIT9bcZUtnqR/TLP8msMnuu4lV2YUdmqS/RdVfN9eQ7W6CLsL95B\nisy7l15GA4z5WSxpbCdmVZ4V6EgdxnYdba4+dH9qi2LcRPm/ISXVY5/fZX8bsg9eCxy1hn3/Ku7F\nJcbCIsw4tByvVvSs7JJHstbR/687F7eexlqDffgrz+vZmIB1FkDFu3JB69aPg2fKeHh4eHh4eHh4\neHh4eHh4eGwCgjAMf3KCk4eHh4eHh4eHh4eHh4eHh4fH/+fwTBkPDw8PDw8PDw8PDw8PDw+PTYA/\nlPHw8PDw8PDw8PDw8PDw8PDYBPhDGQ8PDw8PDw8PDw8PDw8PD49NgD+U8fDw8PDw8PDw8PDw8PDw\n8NgE+EMZDw8PDw8PDw8PDw8PDw8Pj02AP5Tx8PDw8PDw8PDw8PDw8PDw2ATENvPmf/AHf2AnTpyw\nIAjsM5/5jN10002bWRwPj/90nD171h599FH7lV/5FXvkkUdsbm7Ofuu3fsu63a6NjIzYH//xH1si\nkbBvfOMb9td//dcWiUTs53/+5+0Tn/jEZhfdw+Onis997nP24osvWqfTsU996lN24403+rnh8Y5G\nvV63xx9/3JaXl63ZbNqjjz5qBw4c8PPCwwM0Gg370Ic+ZI8++qjdfffdfm54vONx9OhR+43f+A3b\nu3evmZnt27fPfu3Xfs3PjbchgjAMw8248XPPPWdPPPGEffGLX7Tz58/bZz7zGfvKV76yGUXx8NgU\n1Go1+9SnPmVTU1O2f/9+e+SRR+x3fud37P7777eHHnrI/uRP/sS2bNliH/nIR+yjH/2offWrX7V4\nPG4f//jH7W/+5m+sv79/s6vg4fFTwbPPPmtPPPGEfelLX7LV1VX76Ec/anfffbefGx7vaPzDP/yD\nzczM2Cc/+UmbmZmxX/3VX7UjR474eeHhAf70T//Unn76afulX/ole/755/3c8HjH4+jRo/a3f/u3\n9hd/8Rfrf/PvGm9PbFr60o9+9CN78MEHzcxs9+7dViwWrVKpbFZxPDz+05FIJOxLX/qSjY6Orv/t\n6NGj9r73vc/MzN7znvfYj370Iztx4oTdeOONls/nLZVK2ZEjR+zYsWObVWwPj5867rjjDvvzP/9z\nMzMrFApWr9f93PB4x+Phhx+2T37yk2ZmNjc3Z2NjY35eeHiA8+fP2/T0tD3wwANm5vdTHh4/Dn5u\nvD2xaYcyS0tLNjAwsP774OCgLS4ublZxPDz+0xGLxSyVSr3hb/V63RKJhJmZDQ0N2eLioi0tLdng\n4OD6Z/xc8fj/O6LRqGUyGTMz++pXv2r333+/nxseHuAXfuEX7NOf/rR95jOf8fPCwwN89rOftccf\nf3z9dz83PDyE6elp+/Vf/3X7xV/8RXvmmWf83HibYlM1Zf4tNimLysPjbYsfNyf8XPF4p+A73/mO\nffWrX7Uvf/nL9oEPfGD9735ueLyT8Xd/93d2+vRp+83f/M03jHk/Lzzeqfj6179ut9xyi23btu3f\n/b+fGx7vVExNTdljjz1mDz30kF29etV++Zd/2brd7vr//dx4+2DTDmVGR0dtaWlp/feFhQUbGRnZ\nrOJ4eLwtkMlkrNFoWCqVsvn5eRsdHf1358ott9yyiaX08Pjp4wc/+IH95V/+pf3VX/2V5fN5Pzc8\n3vE4deqUDQ0N2fj4uB08eNC63a5ls1k/Lzze8Xjqqafs6tWr9tRTT9n169ctkUj4Z4aHh5mNjY3Z\nww8/bGZm27dvt+HhYTt58qSfG29DbFr60j333GP/9E//ZGZmr7zyio2Ojloul9us4nh4vC3w7ne/\ne31ePPnkk3bffffZzTffbCdPnrRSqWTVatWOHTtmt99++yaX1MPjp4dyuWyf+9zn7Itf/OK6yJyf\nGx7vdLzwwgv25S9/2cyUAl6r1fy88PAwsz/7sz+zr33ta/b3f//39olPfMIeffRRPzc8PMzsG9/4\nhj3xxBNmZra4uGjLy8v2sY99zM+NtyE2zX3JzOzzn/+8vfDCCxYEgf3+7/++HThwYLOK4uHxn45T\np07ZZz/7WZuZmbFYLGZjY2P2+c9/3h5//HFrNps2MTFhf/iHf2jxeNy+/e1v2xNPPGFBENgjjzxi\nH/7whze7+B4ePzV85StfsS984Qu2c+fO9b/90R/9kf3e7/2enxse71g0Gg373d/9XZubm7NGo2GP\nPfaYHT582H77t3/bzwsPD/CFL3zBJicn7d577/Vzw+Mdj0qlYp/+9KetVCpZu922xx57zA4ePOjn\nxtsQm3oo4+Hh4eHh4eHh4eHh4eHh4fFOxaalL3l4eHh4eHh4eHh4eHh4eHi8k+EPZTw8PDw8PDw8\nPDw8PDw8PDw2Af5QxsPDw8PDw8PDw8PDw8PDw2MT4A9lPDw8PDw8PDw8PDw8PDw8PDYB/lDGw8PD\nw8PDw8PDw8PDw8PDYxPgD2U8PDw8PDw8PDw8PDw8PDw8NgH+UMbDw8PDw8PDw8PDw8PDw8NjE+AP\nZTw8PDw8PDw8PDw8PDw8PDw2Af8vfnpf6K/5GVUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAARhCAYAAACLezhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvWeQZVly35fPe/9eeV9d7e30+Bns\nrBnsglwuDSgKiy+kXEgKiZTIABiUVgBBkMAKJEC3UEiiAiEyqAiKK4VAAsQuAa0Fdnd2bM+07+ru\n8r5e1fPe6sPvX7MKBhboYUxoKPLml6r33r3nnpOZJ8+5mf+T6RoOh0NzyCGHHHLIIYcccsghhxxy\nyCGHHHLo/1Nyf9QdcMghhxxyyCGHHHLIIYcccsghhxz6d5Ecp4xDDjnkkEMOOeSQQw455JBDDjnk\n0EdAjlPGIYcccsghhxxyyCGHHHLIIYcccugjIMcp45BDDjnkkEMOOeSQQw455JBDDjn0EZDjlHHI\nIYcccsghhxxyyCGHHHLIIYcc+gjIcco45JBDDjnkkEMOOeSQQw455JBDDn0E5P2wG/ziF79oN2/e\nNJfLZV/4whfs8uXLH/YjHHLIIYcccsghhxxyyCGHHHLIIYf+f08fqlPmzTfftI2NDfvyl79sKysr\n9oUvfMG+/OUvf5iPcMghhxxyyCGHHHLIIYcccsghhxz6t4I+1ONL3//+9+3VV181M7PFxUUrl8tW\nq9U+zEc45JBDDjnkkEMOOeSQQw455JBDDv1bQR8qUubo6MguXLjw/ud0Om35fN6i0ejve/0/+ck/\nZ3/0b/2i/ef/4OfNzMw9TJuZWTS+YGZmY+mcmZllS79lZmY7a1fMzOzy0ZiZmb219G0zM7s6nTUz\ns/873jEzs4v1bTMz2wq+aGZmsWafdh/Rj4dXv2FmZufrAzMzy62cNzOz1zt3zczMN/ZjZmb2XGfT\nzMw2xhNmZvYgdMfMzPwV2htfDpmZ2UjpBf72bpqZ2e6rMdp5o0z7S/wNuxjPP+/kzcxseMNjZmZ/\n/HLVzMzKmR81M7Pjb/+OmZkFf8xlZmaj36E/vpfDZmbWeHDDzMwejQzhz/q+mZnFQynG64mYmdna\nUsbMzGq1+5Zau2hmZrdenjIzsytbj8zMrF1qm5nZqXbJzMxe01g7U0UzMztaQxZ/JM2zH98M8Ozn\nd83M7KX8IX1YOWNmZvvP7DDm3zo2M7M3PvcjZmY22EGG9Yfoxz/8tf/WnoS++Iu/ZGZmnh7+w1gI\nnh/vIeORa/Qvaoz19vdvm5lZKIMMpq/wvPo6411bXTUzs7mJSa4bQXe6mgrl9T0zMyvV4MfZpzl+\nt398YGZmzS14fer8NTMzOyium5lZZQfnY2p2nn6m6U9hj+cebIhPi+juxKlTZmbW24KPj999SH+v\nXuW6cNQ+8+OftL/7134BRvj8ZmY2duksH93IvnjUoJ19+lfv1M3MbGppxszM4vPIe+M9dLNYQ+eX\nLl3icwE55dfhy3ScfgcXZuFLFT4c71TMzKzVL5iZ2cwV+hms9szMbHNtxczMBi3klJvX3J0dMTOz\n+68xt2qHLTMzO/0J5nK4j/6t390wM7NmnfH4Z9Dhn/tvvmB/GP3Vv/KLZmbWrnHvsN+ljR4y6XR4\nxqCG7vT8MntdeNr1MEZPn9/9bub3sMP867ngdTDgo50gdqbab5qZmbfJdd0uv3uH/PU0eI4rxvVe\nF2Nq6f7ukHnfbWAHfG54F/QleX6J68IBxuEOMQdLHXgeGtLPXoj+9ct87/cxDm+WfjXFY4+e0zWu\nzwVpr9lCJ5oDvg/IVd9rMY6mV+0OumqH72M5rm9X9HxMg7l6PK/ugb9uF3wyN8/xeelX2O3Rc3hg\nq8J4zYMNanZ5rjfKc1Np2aZh037qF/6K/YNf/jtmZvbXvvQr9iT0N37lZ83MrNyhvXQMPte72Od0\niPbbA+QWcNGvoxr9Go8z7laPcQxd8O9oC1vkzbK+RPR7rct9IT/jrTA1LRKDL+0SfDm1wJyudfat\n2+XaQYPfuoEgnzWGSpF5GJI9qFfR+XACXgYTmr8NycZHezbg4QE3Oljro/Odkp43RMdGU9M8N8hz\nvD7s6KDKWHwRdKtdh2cRN2OuaI4ls3E+H/K8sgd7ETux39lxeEj3rFzhud4Q/TjeWzMzs7E0drLS\npJ2Ei3HVu6xLfU1hTwM+dLzMhRMdrZbgWMoD/37+S7Kjfwj97N/+TxhnFnva66LUgwHrxNCwZ/vb\n9CuSgZ/DhiSU4G/Pq0l0RL9cPeSUSHF/u4cd7LmQW6uLLYj46W/PDT9DbnS00MVOuyvMCXeM6/wB\ndDCiufYXfvw/tr/1j75krQ7tB7207w9zfbcKn/uyHYMQv7c9tBus0u+uRzaDn23o0z9aP0Kj2Hd/\nA/mVyvTfF0c/OmHat8rQXG3u8Wveu2R3gl761Owc8QzTvJCd7XbRQX+PNoMnPHYjfF8C3reHyNxt\n9LlQRja+AO35+7TXl/0L9NGljvE57mWu/fJf/8v2JPRX/wl2xG6gixOT2I16jH75j6MaB3Ok3oJH\ngTvoQPkya6fbz37S1UPHStvcd2YMvgRu3Tczs51nnjEzs90bjP/cHGt1o4CMs12e+70ea/7LMca1\nlkYGiRDtxX3sNTzqx3sTi2Zmdm31Hu2PoeOjLfhWMvZy6THtZXaYtGtBbEcsja3IHDPH+wnkmM4/\na2Zmd4aML+xGfsMhNqQxxN6Nz2id3GPtr0/RzsLyaTMza2WQa3eCPV14e9TMzG412fN5orfMzCw3\nznhy69iMpvQhQnesNcvz/syf/9P2xV/4+7YwQMeLXtoJzb/FOAaMx3+XOTrww6/16+z5eu7nzczs\nl/7TP2d/GP2Nn9X+Vs9yRbCL9T36mkohk3oT3WgV0JXU6TkzMzs8YL9Y3UOnx8eRTTBEe40e87Ws\n/Xe7Ay8XriPTwhbtuV3cb0PuC2vPkozBq8PjLb4PYpfb2jsVmsy9+SX60zvG/pQP9S4zwhz2u9Hd\nSgVmB6d5h6tvyZ6FmaP5Ir/3e3qnmWBfWquwdsZHJ8zMbHvlMeOdYP/p6TOXK0w1Kx6xP8/NTWjc\nfF910b+pGd5DqrvsRzNR+GYN+nlvhzk1Nsr+2+tHpxs1xnvqFLrSPOQdbXeffiey3B/M8I7V0Ltj\nuUV/olnsdGjA91/4755svfn7P8X7TaKOfHwl5m6lxNyNZZh7DQ96oi2m+SJhPZ854y+iTy3tFcfD\nyLej94HmLnL3u2i3O6rNmvbvP/H3/kP7R3/p18yT8FrTzXdRL/PWBj61hS5FQtgpn/ZHnQP1Tbqu\n11ArlLATcS+8SWSkK3VthHy0N9R+1Wrc7/cytrae14vQn5hX++8W3zfFs7B0sBnl+5reIU7cDsMq\nv7e0D07I3vqj2O2q5mC7g257tJdyB9n7hIfo7LCDrnjj8LCJ+bWA9qlxN2tivoOydrTGWkr72Yjs\nfw++/M2/83P2+5FrOBwOf99f/jXoZ3/2Z+2VV155Hy3zkz/5k/bFL37R5ufnf9/rt4pbNq1NoEMO\nOeSQQw455JBDDjnkkEMOOeTQv230X/30f29f+pXfH5jwoSJlRkZG7Ojo6P3Ph4eHlsvlfuj1P/0v\n/rJ9+c/+U/v5nyDSWfWDKgh/Gq9fbg0ES6ANsmV9g0hA+TN4SZ+p49F++xYe7WEVr+/4H7tuZmZj\n38Ij9x15N1/Nf9fMzFaexjM2+QBP2Gu9j5uZ2fwFvKX77+K9/ZS8k7+RAzHzSuozZmb2+LVvm5lZ\nbPYlMzM7PckYD/J4zLZCRBhiy3g55z2vmZlZ50e57g0PkYFLecYT7isyfoP+xOQF/coL3zQzs5cf\nELn4fhnPWz+yZGZmTyvi/WYWD6A3RP+nvKA4to7x8KUODm3RrUjWPH0M54lGuAZ4UFe6RDXGe/LA\nPkdbjd9FBvnTeF4v30JG36bLNqHIaDf+jpmZnR15mmd+BR78pgtExPyncWlnvv22mZn9pV/7e/Yk\n9Nd+HhTEsIwHv9eGBw/f5nnXPsZYRxfxkH/9n3ydcRpe1Wd/4hNmZna8i0f5xje/amZms+MgZeZO\nc59/Ag//7e++Z2ZmpSO8nS+89IqZma1ug2TJrz0wM7OP/6lX1S5ez3e//TrjvHoOPrxAVOX+bdq7\n+7tvmJnZSHaOdj/N7802cnnrN77FfUqMHRidsb/81/8z+/df+ffMzMztRwcuP0P76RF06XiLiO72\nHTz71Tr9nlrE2TlznQjIwzvrZma2cZeoz6c//0fNzOxoj+tv/g7orClFyy5/4mUzMysP8O7e+9a7\nPK/G9Z/+HHOh7cPrfPNryKOzx3POfpxxTJ0FkfPGm0Sj9r5D1OuFH/u4mZmlpoiI3Pkuz9/aR+8W\nXyCS8be/9Ifryc//1F9h7PkTTz6y97nwwA9qfH9cQNdbQhcFPHja3UI4xIbofquJrnYUvfJF4H1t\nyP2jihL1EvKgSzcPqtibYJPr+1XmZyyFHUgKbTaMMwfrimJ56uh0RR78aE/R/2Nk2lKUfXwGmfcC\nQsB4Md9eIU2aRyfIIK73pBW5dePS97SIWu1ViCqFBzwvkyMy0CwL9dBmrgyDCnkIKRPgNus00Nn0\nDL/3B/yN5Oj3wLi+2hCfFQgZ9unfQBGQjFe2w89zS4q4tluMr1RgLWn1+Tx9Ed30j4Xtl371F+2/\n/o/+gpmZfekf/g/2JPSlf/pr9MOQ0/gSOrpzKKShAvH7h9j7iJdxbQjNlhPCpbSDXMbOgj7sNRWZ\nGWE9Cg3hZ77PXEkHsC0He0Q1x4RyeLDBepWL8JxiuWDhOP8X6qwRmThrRCjNPcOiIp0TzGt/BF0v\ntZHxoM7fehm74Gko2tzjOlebzy2PUJbT2PV2EZn6Q6xBtQa8F+jHejVk4w4zlmn1ud6kP6tHrJnZ\nNL/bAJlFk+h87YD+9APIPK1+7wthMT1JFLzmov9plxApRZAz09PYg0pByJlEWJ+ZO3VFlt0DZHSw\nBZog5Ef5fuF/JCL5h9EX/5fP0f0EyL78QLagTFQ9mcBu7y0j82SSObm/TWTWn6FfgXH40BKiplJj\nXOdOAlQB+N/rSh6mOapo4UGb+5KjzI1BD7vY6RB1CwbRsX6P8UcUKf+7f/5n7Cf/5p83n+Z2dgG+\neg6R006JyG5QSM5InHbW15GPv6UoaRB9mzzNuAtN1rnCOnyePYPd7hzQ761t2h29QLutIYpTf7xr\ngSDfhRJCprUZy1Bonk4LHudm0MVaHV0ryn7MjvJ9H1WxZkPIRqGKghF4PQzC05VV9iijCXgVT9NX\nb53PuxvoSHiAPQx5ed4/+JX/wp6E/stf+NtmZvZ8Ap7vvvUm7c+x12lt0A93gHEdhKQriqavrPD5\nLFPbGiXQAd0me7LxDAiQzg6oh924UAgN6Y50oXIJnes1GNdUHdndzzI3U4+5rplGhzJDdGoiBP/u\nPwCBM3WBPVlkB93dPxBfx9Chxx10/Kyi7vXz7O02dthjXD1kXMsZ+Dg2tQw/9rCvGy3knMyh6+EH\nrEtzHuZoM0E/hnH2CG0vnw+qIHjqGfa7jTD20neP/lwaoHNHOeRQ66Dj2dacmZnlFxQ53+W6f/w/\n/2P7uz/zF+1xE7kvCf13+5zssvi7vYp+JDUHAmew/1Zl7/XLPwOa7g+in/mpv8rYmidIQHiZvydk\niFAD/br2Fi14e/pldKi0Bo/3tQeYmYXX9R48HBfS5nCb9tfz62ZmNj/LfmvlITqVTWPPI16e40li\nL7zKKvHW2+jamUV0z230a2eAzp0VMntzGV1rbQgtq61BZgp7nj9E1566Dgps+U32y5ev0p+HGyC1\nDw/QvVOn2H+vLjO+U88g48eP2F9fOg2vB0K3dY6Y/Gvr6ETqIv0NCH1b7rA5uXCR95U7N1k/FyeZ\n+1Xt6W699rtmZnbxOex4o8Vc3NnZU395H9heo187N2RLJllvM4u8ew61rq7X4cvpC8xVE7r6l//O\nr9qT0P/0Z0GCh5eZu54Cc6Ok0x3ZOZ5b9PO8jhD8wXPoQ0N895W4vyv9mJkGidSpwr/aNvbdJYiq\nZ1wCDDD+/+Cbf9G+9KkvWSYXs30Xss96sKudIvdUNxlrepw1ZSgEY/0B+xxfmLUreok+H3foa1T7\nuZAbHTyUrvoSjDWSgXd+rQP9MvO5XtU+dBa7NB5DN4+FNjtaZS75R7E/qQR2bjeI7GIJxhisaV/7\niDnlFxI9FxNSvMR4D5rYi+xpdDoWRUdLBezDsXgYO8V9ySD9qa5id9I6ZbBdRPcGOaFTzyOr4wH8\n6AaFXvsh9KE6ZV566SX71V/9Vfv85z9vd+/etZGRkR96dMnM7PrKnzYzM3dy3czMiosIu1hlkIcz\ngiwP2BhMT/IC/ozv/zIzs0ji42ZmdmmSF8J3qjhJojd+28zMKhM/bmZmn33AC3MnhsGo3MBgRa/g\nvPlch4l365sYBv9THHnZvPd/0FEP9zUKOC5WrrJouB+xGK9Ms4H8RAehD9ZQyrc+yXNmHjFRXvtt\nXiqmPkd7AQ9K9e6QF/bZ+HNmZlbNYpjOHqFU7x2iBLkZDExyTDBdF4vfwtdY/PxJDNbeAPjo2Svw\noTE1tNt1nAivjDKGGwkW4uB3UNCJqxi3Yg8ZNLrwemkORZqL4Bh762Um1tQ6vAve5hndsc+amdm3\ngutmZvZnTrPgzuThZegeR66qS4JBPyEF9AJXkQMqPqWXizfh6aN3mACpOZ4zM4shefCajg3dhScT\ni3NmZpaMs6BvaBOaTrJopXLIJpTDsJT0Qt0QpC3ohz+lAxnjHRbRVJj73X0d73qIDkxe06Y6ycSO\nJ9kIdI954TtcQUdGp3XMJ8nGs9pF9z0NHTcYIp9BH6Nb2qXfIR1rqFfZ8Axd9G9KLzeVGrq1s8IU\nT3jZuLnd6FZ+Df5kZ+QY9MPXvYdsQKavMm7/BPeHJ5nHO+8g1229UI5cZHy5cfp5l59t9RH/pC8w\nrqkp+vXQhR7cXcHAP5fh+1iaOR48QF7uFvx8ItKRDH8Y2dTsBGrPGEJyEoykkHFTRwbqfWTXNIxy\nQC+K0QBj9cR1dEPwa3+TMa8WMfo5L/YpIIjuZFYvHx10cFCnPxsHtF8VfHuwywYjFke3u1HmuWuD\nnVIvCC/DGfrRE3S3XGI87TiLXEEvPik5cdwZxpdq0J9gHNnVGizc7TDjTiRZJFx1vo/GWYQSo/Q7\n3qad1kBHJHQERu/j1sqzAToWTLzUQ1e9RxXxkX55tfa0AzpaomNc1Tx/m10dAZEzKqxxT4ygU9UZ\n+FSrsCgGx/UimaBf4RD9flJytenQ8iZzo6e5u77FBnLERXs728j38ll0MzcumL5Hx7nK8DsuvXu0\ns25mZvceA42O+NHd3X02Faem2ezXiuiP6wwb1ZSP57WP4Vs8FrMRHfcr32ST6NHRirIcivs6KpWo\nIYNaCRnkK/T5ko5PhrI6MmDa0CzRbl0v0ZkIuhGbRNZ3V7/D93056PSCszDDvPR7aPfOLdYct45I\n+HWE6/pFjvDWTRsrQXezM2ximzqSsr2quSaHXzIpB6aOCNYEC4+FuO64xtz1bWOX3nsTZ0lSG7Bo\nAqVslpHtRFaOy7KOSkSEb39CCo2gE6Nz2K1ZOXZbNbXbkA42tF74dHSlyCRN6SVo7AwvFZVR+FjT\nsdmQNs0r64wnGIRPyTF0ra0tmffwZN2BL80oc2QkyRypFlgHKmvoWHAx8/4YJmNhqx/Dj8kg/a4I\n2p2U43Zujpcaf+JEjvwN99DJUIxxpyO029fLZalBOx0d1/U06V9KsP2RKOMY6LhUqxqw7Bg6kMjC\ns7KOAq8+ZC30jfCs2Qnu3doWXH3A9+fPsRcx6cKt7xEgCMgZPSEdG0blDNHmfjTJ96HMtPqsowda\nW1tynvoiAfsgdCbIGlrdQeZ7l2X3l3Eguv2s7Z1zyPbCbezESgx7NjmLTJbXmTvzEQUutc7cj7Gn\nCWZZmxNB5kgzLPufZQ7HOzxnal0vXn3aifuwBfNhxr9ZlWNuT8ekssyt7svoTvg19k6uKM7pYILA\nWsBHQCmXlSN0Rc6K+/SrPqfjuHXkuTgnB+w2NmN7DF0PHuFQHZaR9+bT8Ctxk3b2ejpeVfok4wzw\nvLERfr+n9Tzng3+Bp3mu9wbP6xbR5WyKcYdK2IS5fWxFfFERRDNr7YdsSetbWS+dWQVfvDpGFxpD\nf9I6wlhfQddPp548BadXR0DCYR170VrRvwBvEnLMe5o6Nt/AHnhT2nvs8KyxcWTq1jHMXTkLppO8\nyGbEc98EupORs7yjsSXT2O3ispwZY6ytPR25WAowty7KebK3A4/besmfHMMOury8CE+/gK7s5LFn\nQaUJMB9zYlJ7kNUx3n1GT9HPk2O0p88zrslF+hHIoevzszynIGdQQME+yyL77AK6vvTpp8zM3n+v\nrJbgx527SlugPUFbR07csgljc6x/ucTHzMxs4QWcXzv7yDb6kP1oWLYqq+OnETlSL8yiY3Uve5GA\nAkmBPPI78xzvnkdrjOdJKaSDKkGtm5EJpb7QnPdkkHtnHx09ijD3p4LMkbaHOWaJk6M86EO+zbhq\n2jP6dfR94qxsjU/7hsIPDsrERvvmzUUt1ceWnxzv9LsYYyXPM5JRrRU6MlwLoDPuBH0PzqLrgW3G\n5ArSl6GO+Zd0xNivNd+PaKx/wO/7h+xx2m32OJPyXtcjJ0eVeSe1HM+JzGofnpKsBzikwnoXTGg/\n/EjH0GMhxpOc5L6hxjWi/WxgQc56HY0uyynlD+hIsEAe2iJZy8f4ykN0djjG3GmnmJO1ST4XarTn\nDfL5h9GH6pR56qmn7MKFC/b5z3/eXC6X/dzP/f5nphxyyCGHHHLIIYcccsghhxxyyCGH/l2nD9Up\nY2b20z/900987ds46m3lGTxsL95X5HcG7+r9NaEtlEjtNUFwg128lhtpPGuv3MHTdTmNZ207gcfd\n//jXzcys0gOSvPc0Hq8lF97eu/u/aWZmkdsgUFb8PO+qEqjdNBAtF6bwgN0aw6X3dImISGYJ+Hox\nTv++FQM69/SPg0b5rBLPfWWHdpI/ioes9ht4nd86j1d4pMXv9Qzt9kt4jeNn8DoXcniDA8d4EDcU\nzZp7h3FMPk+Edm0XSF5YaJhmEURPaOi2Hymtm5lZZ6jjKUqU+5WP40nfX8UbWbtAH6/vfd/MzKq3\n6UukQ9Lk5EWQDrs1wSh9eF4XI6CVrn8D7+BvncfDfPHo98zMLP8x2vF9VZ7dJ6S6X0c92sh+LAGa\nafJZYJWrN4jctgYo0+zTePw3d4j6FIoF9XPOzMzOvYqn/d5XQf7sDPk9lVIyPkXtoltKeiqkyLii\nbVtCiJRLRDZmhbaausbv24+QYbFHu8lRvKrzS+hYWfDPso4t9RuKaAumHj2Npz6pyEJmSZHagpIe\nZvC2BhQYDRZ0hEYohsQp/skoSdWBYLCDGNGy0Wl051DHBs7ruRf/CHx549eBEO8egh44dwkduvAC\nc65wwBwpluHDjBEFG3tOCdaEBCo1kdvxgSIsT3P/0gGRhANBD4stoo25c0quF0bOrtCTp7qqFQXt\nLGM/kjHG6NJ8bbR1jEbRk36E+ZpQktL+kaLZOtLR03GfkqChiXGiNKlFxjpfQ7fbSoZZKXF9pahk\nnA3+JjJCvAhe7VVyNb8is4MSkbhohGhIZXiSEJNIhNePzFJT8uh78PTHlUTT3yRqY0JwNAro8FqV\n58/7kElkTEdNakKHKdlq/ggZ7bnhj1WIQFROIK6KKAwFPx1TYrT4POOaU5LTuiIQeZeS0ArW2aqA\n9qhqyqeCXB+9gM0IdIRKW2WuDpTkdvdYyQTFv4a/qfs1lyfm+H30g0W4i3nuzx/Qrwte0AxTgiQv\npoje+XPoTb9Ax3dXsb/9MHw5ktxaOrbk1tGTs1NEQU8L8n37AdG7uVn6u3VXiYR1HCo9zvfbSuLq\nK3gsdoAOZHS0IqbsyQHB38NzGnuYyFd0hjbX7hCpTKcZw4ESIr57lyO7T/lJuL7xHmtF4YgxPXNZ\n6EwhM+aT2KmijqOsN5TIMK5I7Tbz36OEkHeFDriuCOqKIoU7D/n+7DXso2coeLaO9o2N8ndNkOiE\n0f6dR6wv82PobkxImlCSOf3UU0R23W4+u3UEcbsE8s8YhjWV9NpT/mAp81olZHq8iRzagmA3y/C5\nu7usK5F1agk5ZGM6oqioXKwgxNG24OZK+NvRUUSv0FHhGdbjkSjRvXJ1R8OQHniZK17Z88Eh7fj2\nhKhREsYrc+ffH8PS0jV7XEb37CH2tbmvpOJ5IqyDiI5G+jTHu+hwyK/oqHS/FaYf/XXmzqQg3Rkl\n3O8O4HN2iv1DsMwc7gi51CoMbaBIYjevJJNCd2Xb6HRaOjcS0jEkHWErN7ELtsHnZkeJz1tCTsge\nxXqM4fjRupmZ1ZQ03j2N3fDd03HOAn33lHhepMIYIkoU+6Tkd7MO/F4IHmaUbLs3iU4mhbir+HTc\nPEM/i9Po4qSSZCdeZTztB9ifIx2XvxgCqVKY47p8nuctdTXuDcZ5I8Qc2UzpSMk5dHPxHeZI/nnm\n4AhTyrLJOTMz21Oy2KTQUZufEoJxwFp/+Tv025MVatrP+tF7Zk/3obvnHihZ66eQdX6VdqevMN6B\nEry3JtDpsUfMmcki8uq8iB2dvoVctl9QWoGbzCG3i7kR7es41ZKOZgpJ5UphuxbnSQ9wv4mNG8uw\nd5ktfIqB31Nk3czqY0/b8Sz9nOoxR2b79PeWjkzOVJRsW0dAw2VQFTcrj+2JSUlBh76TxN/wOhVg\nbJlJRc3bXFfRfI52lSQ+x9yYy7FvDsTgXUvJVYNCdLh0rDSa1jqRwV7MLzCG6RAyutFDl65eg2d7\nbsaW0PGnzJTsUI490ZzmZkjo1XKH5y08N2dmZr497ZNP9i5tpa1IMc6hjvpWhD7aLaIDF5bYZ24d\nojO5aXjvy3L90xfpX1/I+MM97UlKKnYwFJqpoMS4Pv0VaiImtN2Lz9F/rxKPn9jVghIdN26yz/XF\nGG9yjutmZrh/Zh57Vqpoj9aCDxUdqfHNY6t8KhIQHxP6uqWN+BNSYBxbkQowxwLau9aV0behpLLp\ni9gs/zH22x2HX8Moc2Isxp4s5X96AAAgAElEQVTOLWTW5rvo6kFTCNorzG2v1pujLfbpW9X8+33Z\ndOUtFepZQSjIvmHX5kdn9QwhqUfQhWj2BAnCGuiussZUDJ7lO+wVohNcPzuLrGdb5zVGIWw8yKSv\n409e7cMDEXQ3KB3ZPeSdo5PgvoyOcCdO0Y/tvXUzM6sKyR075PdNoe4bAeyXf2lRn+Ht3iH97CSl\ni0IZrZTgUVcJ20eeF/LmAn+3HqObJSWyj13gOd4OPO7NCbF/hrX7qKDE6TXmzA+jD7UktkMOOeSQ\nQw455JBDDjnkkEMOOeSQQ09GHzpS5oPQ5AWds17HW9mdxTP19g0lUJzFg799H49Wq4unaWqFz/c/\ngyfqrpLJbg7mzMzskyvrZmb2PeUMeG6eaJzniAjKyg4e9EgfT1zsY0QaXBFF3cJEAnprSn7VJufL\n2Pc5j5hP4kHshvCsB8r/0szMPpYGoTMQQuXOd4lkZ/4EyBXPr+PV3H7102Zm9qkj+rV2TGSkouql\nXpXQjnvwDH7ubbynrXEirI+m8DLfT5E7JvwI7/O0D/TBzQSeyPYtIghjZ2bsRltVrkp4etMRnplR\nErTzPryH6TyIl28pynHhZX5fuUX0ITj/cTMzu17nvPHuHyUh7G//M3LLPD+CF/DMmZNywXhu3V8l\nunHmpETdE5K/rcibkjC5FBWavoIXdEsR2bzO2l78JLoz+wKImvx7RFCLKtk3fpGo0+EL8OPgETrX\nFpoieYpIw/o67e4qOen8Wfgzvo9HO69kn16vztJf4r7DPM9rVJH9qHKqhEYZ97H4nxtHdyoenttS\nwuW+0BeuSZ6X1Hn53TK6WdMZZFPyxISSYK0Vkb3yPVrqErp7rGSyHUXz/HGVmlXCsILKy+XmicTk\nLqybmdlRgbl3pHKeowuMe+Y5onBrN/HE78gTv7DAXMpcgr/VDfGvTLRzOgy/p14kol5Skr1CUflC\nJlTCW+dAhy2FvJ+AmpJdTX2u+zTWlsr+qqxuR+eUD6vIbEyJw05yHQxVejkxgm4F7+HxP5asXUqW\n3XPRvktR5PlFefRj0i1FwT0BZFUXyukkL8iYcsUU3SoJGsGOFVWquSPUV1/lDcs7QsSYSn3OwauB\nSgX6XERNrr0i9NibQiuprKNriOyOayrll2ZcDTf9mRLvA2rn4gSyeryO/XG3FU1RToe7e+R06NeV\nCFElU4tCX0yF0L248piElaD8JF+Rq63z7EqqF9P57K6iWJ027WankcvOoRA1Q3SikYZvISF1npTm\n5+fMzMw/L9RYRpGU98ivdT+Pfe4KkXnnBnxSVWiLqtzmhAe9GVPZTq8LvbtxwNzvPSCXwZ2b2NKV\nh6w7aZUA3hFi50KE8dUaPHf/4bJt3QPJYkKAJMaIAnkUeYyorPpRF7t8/RK5XMJKbL67zveZedaM\nk4Tm0ahPPEC2JxHaqHJqrQltdqiI6s01+pEx7M/lKPP2zBXOzl9eAmHZCDIHEtNzZmY2qQhfYkg/\nZ4RCWnt33czMAsrvVFSepeIKOnblj/9xnnceOzSufDuP11kj96VbQY1z/xBk0EwCtFO/pTW7SrRr\n2FG+CUUSn5TcbelihbnbPtTeYIid9MnAuoUE7CgHg+2gA7vKLdNYZg6uK3/K+CxzLDWCzJN+Iq/j\n59AhE/qtvaH1M4L9n51kTleVoPkwT3S/sq0EjyozXRDazMyscXPPXI+IFvaySrjcUYlVoXobKmN6\nLERUUBHninLMtJrIx6P11z+Ozs/msHXeoErn6nj8hBChbdn1tfskEC1tVy18BO+qsh8FrXUJITWa\nynu0u6vcW1ojqzvKybVPVLunUth91SLt1ujTUZt9oVc5aM6OM0/7Hs2VPdpz5eF9+1glUFUW3j/y\nB5/x/1fp0ZaSk3aUk0zlZ31CXu6O0494knFWhbzIJXnOhMrQxx+j65th5vaFhPZMsgdFF+vJwgzf\nF5RgPdtVDjXlPMl0kd1GFx1rv6iE60Xm+sgUe5OdDdatmZOEmCH4cIBK2Nwun++9yP4xe4gOTrTZ\np/u03z1Srp4zi7T33V1yGi6cQwf3thhvNcVa7gmqrPBF5NBQ0tW+dGpZOXLCXqGznkVXx7qML6t8\nfBXNkRmXEELPs54MhuyDI0KoNqogZopDfp8LYu/NzC7kvLYcQ1/Go8jpVlq2Na9E0a51MzO7tAqf\nHnmVi6I9a09KLpUHbrc0r6vYhUENWbZLzJeskBpx7U082pOkKkp+r33vzMnYF5HJyCiyOMmJUtT+\nbtwDr7dXsI9+5TVqleFNvaMCHrreI5TZw/uMuaV8am2ttbG4csRssR7s7sO7XeVHe/os60FFiOjW\nKM/LjWHf3FF45/YLPavE5HcfgMSfiSCb2/exa8+ocIfJrOaysjdCUZTzQh4qb11KuVLCxnqhnKym\nitIWKQqhqJxX46NaH7T3ail/6X6ecbsHzOl+XcVT2nz2RthD9pULKK3iDd0p7cmizIlI7A9O4vqv\nUlv5rXabDNjlQ08eNOhXV3kO57PYiq6KS7S1L3d34WudrYx5/LQXeol+p/f1e47xH/XXaV/veYHZ\nwft9CV0PmycWtWYfHTpc42/Ep/yOKhxx1EAXPMe03Yszf9shZO0bwPP9OPN9bgkZH43Am537eufy\nqAR1D11JjtJnj0f2cQ5ZRaeYK0crysPWFHpshHa7QZXsljtjv6JCEz503h/iOV3t06oJlZvv04+b\nDfZr2XGdUAmgc0dBofinVBDktHKeuVVQY4z2k0Jpeeexs/0SPF2Lc79rnM/7prXUp5LgP4QcpIxD\nDjnkkEMOOeSQQw455JBDDjnk0EdAHylS5iVVSMiF8P4O1vCUdb2gMMZuEiXqEuyzBUUa3lBln9gu\n3spFZeh+LoknbreMp2v8mrysk18xM7N79/C8edtERs9+DK/v4yHoik9t4ynz9Cjfln+I9zOWhE23\nZ4n+L60QSUi/sk5/HuDVHpf3OaKSgBMX8AC+e59+LH0Kz2MySqT5URLP/Oo+UaULXSIOLuWUsQDV\nnSzKOL86iWdu+p/jGTz9FOPYLlG2uaDSi5dukWl9+wqMK67MWq0F0uXVl3jmHZWfPX+Tvj3K/HMz\nMyuliVg+fxvvYfASXsGJHH37jSC83B3wzFiRvD3ZDKWn3+yTQ2ZBkd6gm6h5M0bfmrUPVjFloFwG\ngR2hISo6mzuH13LsjKL0O/C8omjGhErmFXbxiu4eKM/H9Tl+P8XfvCIDNZVtnEjBj4jOZjZV4t0/\nq6j+HH/3Snia823aj6qKkl/lKJtFvLMuj8oSq2qGy4fO9SaJ0oz40J3NB0Qsi4cqObpE1Cs9T382\nlR1+UEd+rRYe+vicIhJripRvoaOjV7n/zEU87I/fJbLRdqkWYpPrDzbx5i58jKhcSuXbGop01pYZ\nfzoRUb/G1E+81t01olmH4lf6vKqIyFu+o3wc2yvo28wkc6qn3Dlb+9wfVCnsdFqee8+ToyCmxhUB\njXKvK6TM9UINuYQm8seJLqUP4YFP1S6qQoTcfwv0z9lroKxi49iLzCQ8tIzKvB4ho0fL6FztSMmx\nRpBFX+VqY3peIMf3x+vM12wVezc0oiERVbLJnqRb6sDLhee5rtdANg/2183MTFVsrapo2qMNkgbE\nPIzzRHfyE0RfRrwnVZWIMoWEZssXFdFUhPG1d0B6LM5g3wY97G16Fkaeuwo6IpVnzlWO6XBaZdRv\nqiRrt0YEojZgrp9RZTRVBbZDoQhaNeTQVJb9qioIlVRmvjONzemMEGGoKwJRyzNXev4PFuGuqIxV\nXfmUthWSqKnc76CCvCfThJ28pxh3MKoyxy74/c3vYwNH5pgDp1UeuLnB3I5cZ7wvXQSNuFPBdi3M\nw9fZhs6pC7W2eBo9OVgYt35f1TeUj2yoMuuRRWQY9iGzb/wz0Jn369jbvYJyhuhc9Pgp7EYiyHzu\nKwI4pmoSkReZp1OTtFu2OX5fxL69KjSSW+0dKpL65mvo/GGese+WGXNOlQyCflWtOIPunpsnX5rr\npKqSovQu2fXzI+wBiirjfusWUbg5RR5bQsgEVF1ExSqs8ljorVPY26iXcfn8KFkkwyRp+z/YFsef\nFdInxjj8KhcfrKus+ZrKgKrSWGNVFSZKigirfx5VaIgqV8t0VqVZlX9qr4adbt/T+X2/EKFF+DDo\nCRmpdSuoaiABo90pVbioKqK7dWvz/TFsPXxsfeV86WdU1lSVwNJZ9gQCxVlJ69v0aWxMMEK7a+8i\n57ZKsQaU76Wq8ezdAJmZP1R+pcvoTafDnDxS3pjR0YzNXQPJvH+fMQcULQ9kmVedPXiweR87nMgx\nxkQcWfTd6Mq8cnvtKh9eJS8khRAcmUV+DwRUEUuIjEFWuadC6Hw4pXbW4K33pIzGE5JvivvH9tmf\nPXLz+eKAPcC9jqoBqcS0xYSm7QmpPQk/ciXJdohdXVVFxcPzzKVr45TvfbQzZ2Zm03u0X3Bjx/pB\nxl1ywdfZLnY4t6pqQhXs5/Ic+8HFFP1ZKdBOZB8bcT7L735Vcon04G9qAp1JCKW1uShduIt9u39S\n0WvInG6uYO8HZ5CbL82ec1yg16JbObqE/uppbxbIoau5DdrzP7NuZmZby/D1cFwIyhxKGxM6NyL2\ntnqsBzFVLiodsY5NtVTSNstcNTMrBJuW6WKT7mfYh9cX0aNzQodXGshhWUifTpL1YUbl5J+E6kF0\nrydks0fVO2slIS5UorqyJURbUGV+VZmwKjSXV/uohyoP3qzze0p54nwhxnxYp2++59i7HCpn30gc\nHuxv0t7j17CvW9pPzl5iDeooR6RLZY6DA9qdmVKVtjGhswaq6hRgTk2rep9br5L+oar8TGIPWqpo\nk1QlmuyM7Jfx+ylVHb3ze7xH7Nzh3W7lLXS66+O5Z88xrtIu44qp3PC7m8pH52Z9m57i+uO6qgeq\n1HdIdrOr9FGJMXS112PdHPQx3OE+68ijVdB5uRj82xIiqapckBHloqwOtKcQ+rfd/WA5M8sePb9M\nO90w7bRUs7zSVU5LlaWvlJlMlXX+ulUSfPmQvWtGSPPASfU75amqS5+CceVa0zv1CSrczCx+cdqC\nnYHFy9wbCSLbMVXQqjWV42pVa79yrkRUuTV3kb1G2KOqyT7Wzl5PZdv1jlPVvm9U7zZ9n9aUI1WS\nVR7QRlQ5ElvMz+rmOmOcZm9QEiLdr/laHyp/5Vl4kJqfMzOzgSoG1g60R8rAg6CQmjMvo4uT2rP4\nlcPKu8Fc86S15ncY97vvgOqKe4Viegp7XlV58ZPqrI8HQsjXWdv3pHyR+h9cWdZByjjkkEMOOeSQ\nQw455JBDDjnkkEMOfQT0kSJltteJHo0H5EUexVtYVjisVMAz99mwMnrfAb2x8XEiwc0bOlf3Kh69\nxuvK6p8hclxXtKb9NpWDnk/hdX48glf1fhvv6bUAXuHg2OtmZtbq48WuVvG451rkkpk4hXf5Toco\n0pl9PP7Px4mkdzJfMzOzboNz/qun8MaOPsLrevSASM1EDLavKVL03AUiqAcPqQjUOIdnbidPxMdz\nGs/bhX08ifHznJntz4Ao6uTkAXxIZGRvgfOaAWWH9gynLODD8/ze13Ru7zPkocl+krOniQ7Rj9/1\ncO/ril63SrhUEwfw+HNGPp4bu3ju6xOc5/2ksr/vXOCMf/tbOl8XVXWffXh5B6fkE1NSuQ9KJ9GY\nEp7xiQC8HxGCZfuIqMeWkB2z5/B6Tk3Q/02dV+/v4611J5STJQuPm3l5wM/gJU2M6xz2faI5R4tE\n8RaUE+DoJNKxDo9zz86ZmVlIGcZrK8is2lGmcEUKHiTQ9YYqBU0t4PWNq1JQb5X+lbM8N+5Bh06d\nYhzLD4gk5I/Wzcxs9ApncBcm4MON2yB4dm9y/7mn4EMmge4fy+vsV/Tq6ABdTh0yF0YX0eWDZfpx\nVMbbG99RpHVKSCR52HtC7hy8x/Wz5/F+T48T2agcltQfIhzjXubA3Cw632opIlxGPq4akY745JMj\nqiq1k6oM6IZbuaQsg6f7uEt0yr9FVL9v6OozyscxkUPW5mIsLkVO33tI9CE1Cg/nlDtg6RkQEN4Z\nZGZVPPGrykMUUoUFT5B5fk1zYjSu8+IennfjLSKt7bay10fhzd5D5Qd6TCTilM5V+yvYs94ouvvs\nS0RYY8pRk99Gtu2yzvgeMe72GDpZVi6GQZFxplRp4Oxp7FvYw2ePl0jC4w3aK2tOdRWZyI0h+z1F\nSoJCgS1cQjcSHp738C3s02CK511M0f7aDO2HVX0pNKHKD3PwYSvK3EoJmTJ+judtdKS0AsgMBgr3\nPyH1FAGxDuvGtPKgTKsyWkH5tTxuxnOkiE1VtvAksjN7GduzNM/cFXDJ9kqqpqccQP4x+u8+Rg8O\nVR3G+sz9jQPs/fgFonnW7Fh4kXnorROFef0t7NpoVdUvnicqc/UZbL03QlRoXhWvmkPm+cou9mrl\nIfN7WvZvb6D8DZPwwi3k4uo+uj7sqJJYiz6eVQ6wOaHFjg5o/9IC8zuk/BhNoYGKql5U2UH3eqpW\nUVA+pXmd5S9pLrZVrcNdo7/pBnP24vOyH5uyA2Po0OwsiI6holT+nqp/rINCaKgaUU+R30bkg6Gp\n3C7ZXz9/J7QO+JRrZvM246oqd8qkqkQ1k/Ar7heq4xz8yuxr/Uwzjr032JsUhVD0d1TlSVWMvMpZ\n4FZ+o+VDULu5WVXvK8HHbIhxji6q/aLv/TGcuXDJ/LPIzSc53hEqxBXAHo9PCTGjkGlcuYcyQZ5f\n3CMq6I6q0toSUdByj/HXg8jPE1ZODC9ztxVF17tCegVTYxYQtC+a5Fq/eDExwXza8bI3qCtPz+gU\nv9eUjyOYw96doFurytUVTYsXc1xfPUQmD29jV7tCL3mC/J5Q9ZBwDF6mJ9HdyMgHy001voyufmMP\n+3vlNO29Pqm9gAvZ+haUe6HDOEObymU1gUzd06r+pCp4lSns0rN1+HGvR3/P5ennwL9uZmYrhj3s\njIFEKUfYD/u+gY2YFlrteoTfY0L6pe6gA2fjyNArO9tZVq6xATKuqNJXJIDNqLnQIV+Bv+5x5kZz\nn/E8msIuR6ZYD9ujoGzD0pXAJO20dllHux32Rosdxjdyg376zqEf5be1Ho7Axz3lWjy9D3/zGa2j\nW8zxyTDyfa+P7fyY0Bnrftavjk/21cymvH3bDMH/7RTr+cVtbNZOS9UFjX1E9/HJOoQebV6I2pNS\nSPnDosrVFBDaKzCBHYv7kFXdB2/aHs17lyozjjJnTgk1tisUakJA550a981NMDdisvuXz4P6jyew\nW9Mjc2ZmVm5gHyYn0dWS8txFQ4y5qrX14lXu391TTsBNZFVun+QHQUeGA2S9ep/fG8fo1u2Vb5mZ\nmVdohqgbO3Bi39x97Fp+C1me+6zQqVP089xzVF9yKc/I4TqyaBV4Tn3AfQsZ3un6bvh1VgjPQRRl\n8azR3wlVG9p4i33zY1VmCwnBnppFB+rHPGc4iU7Xlb9pWlWZdor83pdOP74P6jlfxU72tabXah+s\nkltc9rMvwErsaeay+xjdr+yzxzqoIK9BS9WjtM5lY8yVE/l7VZWxrKqmtTpzINCCT1NT8CnuRr8G\nw877fekft+3x9oEdbiPLQFC62of3+0fwpFjXe6j2fcEp7EU8S987yu/ZECK4W4WHBeUpGzklO3hl\nju83sCeHe3o3U16lQUCVZ5UjttZHR5MNmFVXRceW7vdpTKEZdNTl0u9toXGPtAYK1dTXO0Y0I6T9\nkPsrO7TXajJ308p5NlAltYzyCaWFwIwFsRM95U7sad+fzNJ+McVfvyobWlcJj34IOUgZhxxyyCGH\nHHLIIYcccsghhxxyyKGPgD5SpMytT3zPzP6svTXAI/cjKXkBW/J0TYPGqCqCuuEClTFa+raZmR3/\n2E+YmdnNb1Adyb1AhDK5g8dOwX/zPgvC5aUtvJrFHSIcH0txtvTWLbyqj67hQRuWf5R+ZPF6bi7i\n/bXfwkP44jmidbUw3tPX46BLnl4jgj5fIdL9Tp5+nwrPmZnZgqKA/j2qIs3W8ZztbNFeRgigRAMP\n3O57RGSvRmnfJq/zvB2QNy/epN38n8TbGlP1lskR3Om3Qnjonn2tY8cvwLu3Q0Rhrj2mje9eA7Hw\n1B08v88e0cfQy/TloEU0Y+bWupmZ7ReUOfoynupu7DtmZuYOEx0ZeZuoxHABL2dn/OtmZnbXBSph\nsvM9+yB0rIibT5Vuem2iWvk9vo/HGXtqgihMfUvnzQPymAsFNTkLb0pF5fGoqiqUoituVQ2p9bkv\nN4E3t3GTqNjhPTzPs6+gm6kE3tWKIgRuVQAayRAhffDw5OwnupWcI1oWjSiPx+E6911G9qPK/L28\niTe5cEx7JVUMi6t6U7aLt3rnkZA7l4koj8/jPY5uEHnYe0TkO3ua54aFHum4aT9wikjH3WWiVLl1\n+DajqP30nPJcLOscaR65D+U1jyeUL0XBo+VtEFcbD+jvlY8pgj+jcd0gYr+fYi6OXmDcMzN4nbeY\n6u9XyQqnhGp4AvKUVWEqz3xaOCe0gfJDpFUhq+1B9o/eA3G3laQvuRi8CeW4fvYCqLFiWNWTdvFs\nv/EOkc9GSdndI8ji7Jjy/1xBd7o6wv7OPaLi/T2ujwXxgXui/D0+5PtIgDk3c55+RBWtKe2iW/ka\nnvt9oa+GK9g5FZmyyTjjTc/B87Fx5Zq5IWRQjX7OzhG9WrlDFOyhUFUt2b14hsiHX5HVl2doJxRC\nRhsPbotPRAaCe1y/tYrsy5voyjNCcYT9cd0Hn0eElElN8dffZAANv3IJKP9FSFWiHr1/dhndS14V\nEiesCLP7g+Wn2t1bNzOzW28j/74HvWj6VGlH+TUCiqy4VMHncBt+RZTvpXlABKikCHtSEeKl69hr\nj/q1f1Nogxb9LxjPu3AG/mwqDUhmi+dWqg3bfEAU98wi88N1Es1Wzpi174ICqIeEUFljvkmFbGxx\nzszMUmH69vILoCpPKgQc3kZWtQ48Tyfh+fVFquiFC/D+N//Z75iZ2fGOIqoeRbvarHnVuuzWBH+7\nqhaR87KWD5bgVftA1X3c6HK/Q6Tz5h3WwPmnlHPGozVMuQKKQindfwt+3Mkz965cJpJ6VFnn/jQo\nNLHWcspxkB8qP4mi7E9Kwx46Wa9gP4tp7H60x/oSUa6YTIA9RHpK59u3hE7rs84cK1dZYV8VJhS1\nCwnl9sz8HP1TTp+1R9jhhKqxVHPwqbiC7rgVP+spn9U9PWcpC7+LvR9Uq6u2yjaivADdCve5Gqq0\ncwt5FvPIv1VDLs1DIWBGJvW9qngkkPvBMXKsHwsVoUh8YlpV+1TFq6OooUcR5Wrt2JbfEFpqh3mT\nDiGjwzhtdmQHBilVkxuDp74d7FdlB1k+dsGTslBfniA6PSXkYbWryjHKgTJ7hrUxNY3dqBzB+90H\nrHU1Re9Dgw+WB8LXYE1bUK6YZoM5eVp7k/Ak/V3vztHPfSEBe6oqsosOHeaQTT3I9xeFbPZ3WE+S\n29jJ5Dx7rL17oOTqSeXY2mdPFTOevyJ7famJvQouI+PZZVVwLLHXyxeQ8WiC9amVo925QwxScQEZ\nV2NCmgbWzcxsrIR9ux9Gl2LSjUtCiq65sQ0uVdwMSyWD27QTb8GPMR+ohfsH2MFLyr1wawN+hFVV\nz9NB171CjO9VQAXnS+zBWqpm4r6N3F+Ow6/igL3sdeVOe1xnLpu9YLV629Ie5HH2AXq5O2Rfnaqj\nbwcR9CuawP6vN9DTyzs/QBX8oSSV6rc1zyroyoEQHG7laTtB0zaFpDl3Cnt6T7kBQwlkFVMlqfOX\nQDp4jtHhiFeo/7ex69/7F+y3D4W021dF25BLlbCUg2ZalQ9TAfZMby6ztieUj++9e6zZ2SDP31bu\nKFPFxWNVc0oIBTcr5LPSX1oqp1xmQlU06+hMuIe92ldlrU3lmeqqat2m9q0zs9w/rUqQ2jbbw2M2\nirFpxrN/BF8O+/Rn5XX6Xd1FlsMaNmDzripJKidP3c844310xiWEiTuiPEkz7G3mz7B/HqhC2akF\nkEQegR6Oysgzo0qTezeRw5OSSznPQsETfWDuuLxCF7rp59Q0+3u/3k/2PMyZsKpPzU0pX6oQ+Y/u\nIc/xOeyzL6I9k1DOgU2et7H2g1xk1a2SefKt9/NWhrII81AIlwPpXEL7w/C8UKJa61bXWaN7qnbq\nUZ638QWhNo+EPFGeurrySB4K6RKK8twxIZETOmWR0P420WKdSM1g7zPuEzQszxkKRZScoP2TObev\n/EmbykeUWWQ9EODSKkXsbu8u/ejqhE5Te5mAdCU0pvw+0+hMTc9/uIo9c3WQzYGqvnpSzOWYZBYe\n6n1k4OSUccghhxxyyCGHHHLIIYcccsghhxz6N44+UqRM1vDCDo5+08zM3qjhmfuRy3i68m/jtdxW\nroO7abLRj9zB+7lwHQTL3DN4Yx/W8Ky1skT7/B6+T0WJBByoEs1Rh3P63yjg0VqaIRIxtUZ/dl/E\ny3j5PhGG/CpRyseTnzMzs3cWQZt439R5xyDtv7dN9Gzt8pfNzGzi4I+ZmVkpz3Vnp/DWti6SlyXQ\nx4P33AW8yFtfweNX+ROgSeZm8NTFBPnxe/FqvjxBPpjXLnN9ahMP4XBOWarXiT5+Zo1+LmcG9qjA\nb67CnJmZhQ7wyC7VhNw4QwRyYvWOmZm98Sa82vokCIfsKGOrLOGhXs+CToq28Wo+Ujb25hV4dVz4\nF2ZmdukufXlmB8/v0WdAE5n9r/Yk5G/iZaw0hDIYMFZ/AZ4NXMoU3qN9TwaPdUvnj9tDvLY+RTjT\nyvfRLuDldLfwgtZreEc7Jfo/pQjBUWrdzMwaR8iqmSciEB/DC7r2PaIy+1t4fUcV5dv0Efk8frSt\n79HtrCr0rD6S7iiS4k/hRc2opIBXrviDqpApEUU4ziKXvKofPfo+CKXnPk31q7NT/H7zDSIK7TWi\nTRHlzqkJpZEU2mC2igUQsicAACAASURBVNd5/QG6MrHA/VlFnY6iRAJiHUVINuFrIEaU8cwV5JnY\nVKRilQjFdpnxjSsPx67yvWw8RA9DSeSQHVPG9jm82qUHRExaLZUxeQIaxpBlXZnwd/eRaUQedJum\n7xefeU43MPayzpaacqesrSBjXxpZjc3ofO8cuvPgHaI4jQ5IiKZ0sRxm7Kbo0aVnn2EMOvMaOlAV\nEHnus6qAkkxjD2pV7jsSGimtvEWnJAuvzu76wui2V2dT+0JnbT+knf1ddGKgPEM95U5pGOM9fR7d\nnVnEXq18BxRCt6uokRvd21QOrFuH6N4Z3bexigzjo3N8/yNESvxd5ujNXyenVk9zcvY8OrshdMad\nW0QiMlnmiD/MfY0SOjZQsph5RVaSQhXcfxO5tB+jE55x+NJSFZInpakMfO+/xByYOK/cOCdZ/GUL\nXX3mysIC8veGlW9JOXiaPa7vdYVe2OXz/KxQZhPYykcRIkcR6UFZEfyFF4i2eRVp9yiSEnUHra5A\n20mU6oUFoslKnWKb72Gfk0OePX8dBMf6ezyrVGF+el3IfLcDkibX4LpGD3tT7KJzpS10pKso8FQM\nlFhCubhmcvxVINEmDB3c3cVe7HydOdGPoENNTdulSyBYfDtCVqTR4aWLRKV7QvKMTTP/a7tct/wY\ne9UJ8XnxEv2JNLEjYxmFYndVsWxWFQaVR6mjSgtl5U2KnlRze0LqdpRvSefFm0Wh1VZAIxQfnVK/\nQUs0VFFsZ51oWV85XLo6/95VzgNPF506EgLSq7wpXVXHKDWIRqZm4e9iFN3crLKOhBWRbi8pKig4\nXjKNblbKP8hlcLB6YIX7qhTT1fPDyMcV0rl7ndcv7zLeqmxZb6AcanX6k8ijZ/sbrGPHu9iAxUnk\n1lMEvLC3bmZmgYTyV6lSTas7tFySaz1++lJWhZKw0KmxtKLFWdaikRHaKG6rYqDyHJn2AP4Afa4o\nGr71Ps8ZQ1hrlSX521fsMb+HnS8WaK/VgAfRZMs+CN0aYjentIfwn2McrjrjK91jvOPPgkS0IDpc\nb6syoXIoVlcY79kxeNtS1b2HefZU8xPwcPsWeyi/8mBcvI3u3F/SfTnm9mIfHbwjHY0nkU1qV6it\nJnY/M+S6ehw7lVzhOW8L8ZmssM/cSKArcxGee8Pg92SHSPN7Q/rrUxWTpSh2ejeIHLZusk9NVejP\n3gKoiDNCU3fT6Ni9PPZ+VkiVre5JhJzPnT72vjyL/LzHyDNzEz6Onkf3yzvMldRZ+POaUBGTgR8g\nXIrTHSvd5PfQOP3qu5jju6dVoeYutinnhi8Fr+bW6JPnlOkL4WjekypMWisU7d9Trr3YhHJ6bWNP\nPSGuf7DM/m3YZI3beSj7ojV/f53vr2stySSwF/GsEIphrisUheBrIdOB9gRtIRvjl+HtqOxwahKe\nLLZ5hzp3DjRWpQCPIgPl+3BfMjOzmpDb6QXeC4ZCBfc9WtO0n+1G0JHxCSE+NO5kEHs2OY5O3b2p\nCj2hdfqvnC2BBHO50dW+vwTK6+EyC+bTEfZ2M0vsLYKnGJdfiL3BacaXk730q8KiR7ZhfIjNSQgp\nmBwIBaeTARWN635YCCZVpRuY3tFqQiJ9QGhmo6YKPduqKiUVE+jCIlHWg7CqFvZkA9st1vWqEEft\nXdajSAvk1KBMA70+cmwJ/eJua106Rm6u9g9wGb1m28LxlI2q8uKpy8zTniruBWWfAmPILB3Fft29\no9yDeez1vHJ/pZR/KK7qoh2hf+Iqi3qgClKH2iOk9I7TSwhZLGRhX3uWfhvZ17bhvU8w/Y4qV9WF\nBo1l0IGh8ud5PPBkRnlGRy/Qv4ByJ3ZLzMXjOjo+NsIeI6d3STtBzB8yZ0LatwX7jKMzUKXhPuNz\ndbjepT3TSBj7VtZcDgz+4Gp/DlLGIYcccsghhxxyyCGHHHLIIYcccugjoI8UKdN34R0dlJSJfFS1\n7d2/Z2Zm5zt4mP7PTbyTZ1WDfVTnuz1FPGDuoQ6v7qnyRJxIRqBAVZHGDTxaZz8NumPYwSsazfOc\naIKo3v0gkQO/Ig6/fZ7cA0tfAw0w9grRyLO/pfwkL+PVPSh81szMXC/hfbz+ffp98xoev7ljoon+\n3KtmZvaNdVUumMDDGG/iodtbxOv9dJXI9FqK/vbu0d7vXFKk/AZe9R/tgBj61qdoZ+Qb3Dc1DXri\n1/14R68+77Pu63jnnlI2+LsT/G3OExUPfgtZPHqaXDHTc3jax1Sb/kaXMXjfwdv3pwyePrpC5HYs\nTjSo9W28lfEX5szM7OvncBfmrq6bmdnsgw9wLtfMLIzMa114FisgO7cqzrR8eJpLfaLtiQxRprgf\nj/i7vwcqKlHEi5l7FhlHkuhKZ03nAYuKIKgCS+AcvA0rO/vRTWUeV/ULf1YIHeWjqD6GL2PKbp87\nxXOO3kRW3T0hVgL0K2RElXpCV0TCtNcJ0757UsiZGBGFx3vw/9IiKIypCaJa+7dov3qOiEJilGhc\nOktk5OiA70+ikf0G/WgliTznrhAZKHyb63ZWiITmgvA55qcfUeXY6e+u064qBFWX4Hf6Iu3sb4Gs\n2tng+aPPMrdT53he/dtENvaVp8OToP2pWbzurUP6F7Anj3Anktw7dxVeuX2qJtFHZvvvIeOSEAmZ\nFDKYiTDG0zq37Wl9xczMOns69+1XHp8F2ksrCuWLM6+CNUVsV5kjuxXGFB3FLo0u6CyscrxsbBBJ\naKp/gTF0MizkS1l5NPKyd8tdInajqkywdaDcKtK9eVVemV3CHiZ0rtwb0llb5drZOGL8O1+ln+dm\nVC1OsvUcYz+CCSIgz82Qh2T9MfZuakoVF5Rv6gSt0e+ie1eewW7X3Yomba9zX4y5k7kIH6NR+B3R\nmeKuzrN3iszhPVVGONxAB669jL30P0NEO6UoVk9RN79sw5NSeAQ5nDlLxDi7CN9cQpMdHzPeeoG5\nHNL5bhPCpaEqKZ4gch0LoXevv0HVvp0D5HbuPLaw6pb9j3D9jWXs8sNlqlJ1m/AzrMPN1575UfOr\nEljUA+/efEf2SyG0YlGICkUmr5/FztQO6HMsphxZUXi28j3uD6Sx9xGhjEbC/B1PMsbvvcNaF53m\n/tOXWUsWJ+jHbVU+PHeWtXKiqapEEf5+4iUQMO88RDcCqkJUKBOFqgoldus9Ipx37xEJ7im/z9lZ\n7EtAdtAte5UbQ+a+ig71qxqcW8Hr0pbyLA3Q9Z4Qhn637Hvvg1Xo8mcYT3aCNb8u9Fqxhu1wKeo2\nqPJ9STkFWkcF9V95RQKM46SaXUdzo6dKErsu+jehnAF9Vf/bGDAHKsqvtLsB/0YWifqNKOdEzHie\nK6AKEuGd98cQj8at1ke3ysq1cGZizszMIjnWDQsKraHqWLkR2um0GOfQxedFzZH6MXoXUoWKmSug\nN0onFcqEcPKoKlRQ92fHAza3iM4Uo+haq6EcVguy+VXs0o5y/m0oGnwoBEe5gm4nUqre44NnZaFM\ng25FLkNq/5g+1SrI6HhHdmWFvtd7yDAxgb2LfUCkzKkaMn3zCjy5sie0kKL+vRfhec+wm22PKsSo\nOsjeKmth5JSqmpQY/1nlkJkcYFePD4X2ukj/ju+xlrbVznN3sKuPTyl/XIdJ0Xzum2Zm1r+FDOoD\n7NFGlHaq2rOU/eicb0mIIkXdj0dUeS3G3CytYBNGziC3wjs853xACJOsKgx9n7m6NI4uWIj16L0C\naIu533nFzMxufpK5f/U36L8/LASkkEa5Sfixtctep5qjv88dC/VRRLeTEfi+uYyN6j6P/gzfQQ6e\nBfZSO+NCsprZxKOyRWeR2xtV9qbDRSGcmuiTOzVnZmYXvw0KerLOvrvcmbAnJY9ydvmFGnUJJTZx\nmn2lVyjRsFAJ3nFkdPqM8q5NYu+yqixlasdnjO2ghsxLRZ7jicDDmXlkMHJBun7A7zsPWJuU5s1u\n76BjMe2L/cacio0qX0gV2ew1hOjWvvfBDp+zyv21U4DnvtvI6GR3v3eEbp8bRTZbeexYfVbo1DKy\n83hYW6eyzJVHt1gfli4g+2yMfkjl7fxV0BsuIT+8CSF0aoyzXpCdVaXLpBA2C0L23b/Lu2H0kP4e\nFNjHBodaJ26gs3232tUeLSGk4e4t9u1jU8yJ9T3G2VXVpa59MKTMsEn73hD99Aa1rlYYT62uPewd\n5XtqKVfQLnu6nCofHR5qfWgKkSnEekT7+MgEc7p4UtVJe8lO9wfVCT1es9ogb21VWdo/BjFyrPyV\nR8orthABiX3UZZ76teaGEvAkOY7MiloTS0fIul5TbinlCfIrl9dUCp3rsGWxjQLPi7fpe2mLPlfz\n2Kfx86wDwQD3F5Uz8UgVskIx5ki1onxuPXQhnkUXfcphW9jETiW8QkmdVzVTVZYNpVnLH73LXCms\noRu+ceWVE+I7ndHeYIjOLJpQovp9XeP3HOjdru5UX3LIIYcccsghhxxyyCGHHHLIIYcc+jeOPlKk\nTOmrD83+jNnVc5wHzK3gifqO8nuUponCX34Rz9KWPE0zo3i+7tXIYdCpzZmZWfV5PFyXH8irO4cn\nbWRI9L7423jQ3J+R9/W7tPudCTx652NEdB5+W9n5VeO++Rze7ImvqyKBzkK3vwZCJvpZIhPJr/6Y\nmZl98xN42C7GidDcufxx7usod0IcD+S5NzhzG3XhHa7pvOn3Onhln6n8STMzy5/BK34qxfO3XiFa\n9vbv0L/zEfqzN+S6ext4W4cfU132za/b+Tqe59UGnu2n+3hSV89RdaM2q7PzQc7OR9z465Y8eGxH\nrsGb2+/iFdxXFvfgMe3dkCbNvaSs6m8qlCkU0vOXuc/r+kGViCehSPwkPwgyz8v7GenieR8bxcu5\noszW9SPlrXgZ3mb34cWBcrgUtxn3tCLBmXm8tiVl6H/4cJ3vp+HxuPJQHBq/V4tEHCan0M3oGF7T\nrSrtjuR1JneBiEdFnvUdncmfm4cf3gC6eNwSyinLfX55fwd55BFXfhPPAd7aehuvcXIBL+yqPOjb\nD/c0LtrPqKrKzhHtLPbxRvc78Gl3mf5c/wQR4ayqINVaeI/Dygp/6ELnprx44ken8DavbMGnwhpz\na/EK6IPIGSKxhRWiUaUpnj+1xH21A+RwtEqEIRjhbzQqVEqO64r1J88XUlFOkroiadlT8PYECeE+\nps1mA505KmMf7uxz5r99Gl0Zuok6tHbhgTst9FKDvkUMe+FTdZ6la6ADqoogeHaJRmwr94y3pBwk\nwZP8DeiuL4rnfDRNv6LKmN9YwG4EjH73V3nOtHLbBNLct36fs/Pv9ODx0hwyLwyIGCyOgFy5oNwM\nyaSqnRzBH2+MObGQZg4vV+HH45ugHBaE8jo+oP2sdHDheVB0HZ3BXXu8bmZm42HG+dTT9KPRgQ8+\nH+MdVcRgo0IExCM+9oUqWJyG/80yfF9+kwjl6reo0NNsorPFM0LvLTEn2+0PhrrL36f9R3vY5VPX\nmDv1Du1UFNmpF1Xp6E304cE91qWDKHyvV4gujbxKBPjcGaHFhMDKKi/ISJN2MjpHfy2r6KUiRrEA\nc/IozxzYe7xm770JsiX6FNcW9hURS6NrT18ix8z3hDT55ua/NDOzO++whjz/oqotqXLICSrB1+OZ\nj9Z5lseFzLOfZO31Cn3gKSnHiSKp2zpb//gmKJ/8MXYuLZTQek3Vn97GTuwdwdMRRZvqXmQ3J4TN\niCqizZ4GbfDeXaLxo5PwbM3QudsPyes2WOb3QyEYn1qCD94443K7tD6pYkvaz99ukv70+/z+pNSt\nq4pQibniGsCXhRnG4zv1vJmZFVn2zF9UxbVTRHBHhTTyqtqditTZvpCUJ/ZxegFEpUtVVxod+nt0\nzNxyCV3RaqND9RLrsU8oh1IRufQPsDX5zer7Y/DGonZKNvD4CDkllXunWcH+Fh7zvEb/pKIEOtzr\nw9d6C32JKJ/SUZX2W8pVNBTa7wTFUuvS3rz0olRQJc2jhjUmFPXVmnKwytpjQkjkD2mjpHwZqbh0\nZG7OzMw6LZg4dgqESVdLQ1i5vaavqDKWn77d9zJfo/rc9iLD8DmuL+1h9xpC2DTsB9HiJ6HCaXh4\n7bu061Olse4U/U8/gFe3JkBFNAPY4a89dzJ3hJTZY45/TPnZDrUubCinVcutvH6KEH8uompVPuVa\n2RUaIAh/Qyn2Jjs70lVVwmrF0KlBiblVVC6Yc03meOg1rl++KoTJIXb6xjRzNqVKb/Vb9PfKIf1r\nNuDnxQ3W0ceL3N+ZhT/7r2GrgtPsgdwlIXKajOPBadaFl+usO946ex/XNu1MK+K8ex45+dfgkytG\nv8f3q+Ib/cxqPWyx3FnrGs9N/b+qJj3IzFnYVHFMCNiQV+veOnuwtgcE/f0E6+j+FPwe7b9tT0pB\nP223lW+iIWhfRzk9Qnr1Olb+o8YA2Sv1onnG4HGvD48vnEbHkqp2VhcSJD3Lddu/i+x//X/7383M\nLBOBt1nZ1WGO/pw+zxoeScHjuNCma98jX+et17G3aw8Z89nzzOdmVVXedlhDx2Po9lgEZtf8jG9a\nKNzMLjqe1h6ql6S9OSE7TeiLY6F5AxH6Mfc0CLwLso95Vf5Z32IOZIQM2n/IWjx6WlWfssoVKdSE\np9XTdax3qbPwadhVvruzPK/Tg+8JoWgfv45uJFMIIr/CerZ4nnG189i1ketUsw2OYh+XzmKDKkcf\nDHXny6p6Upzx9oQmLBzQ76r2416hK3rSk6QQ/ItXeW5tT9VRleTMG1Zepv+HvfdqcjS50jQdWssA\nEFpmiNSZlZklWcWqouaw2W2jrPdmL9bWbP/T/oFd252d2Waze9gkm91VJIssmVmpQwdCAREAAlrL\nvXhesGbGpjlRV7UXn18kLBLA5+7HzznuOOf190yzzovih6mq0mOtjM57hVQ3xhgT95iYJ2TsI/oa\nidexV1Q5Ub10DuirPxIXn25f+J3Yb6ErDqs91qxYV2VGoXfPpPsuD9+bv8+aD8QHdz5gjFMR5hgy\nyKglFObyEnba8tNfpMteGxYn2bLQqUfnWsu+uMsm6LeQ4ZzX0h4VEiqt1kBnSsfsH/GSdDuPbTW6\nQomqEu5IHDcHR/iZ8BRr2HUJ8iM+n8Ep86rm8UMTQ73/LzQLKWM1q1nNalazmtWsZjWrWc1qVrOa\n1az2DbRvFCnzoyjdR1NE7fZ2iJC95Sab1MyO79WRzVu3kw3MOsjaTR/z/hfLRF3f/Zio4NFtZZF+\nx+ey80Sm5qJED/1porUfib1+4fcwiX+WIIIWEMhjKUH2aHhKxO+zv+Q5jqdEfYfrRMgWjojUffI9\nEDM/3WS8L98kixUswjnQVmbhRpGo7rEY0LtB5HDtL9LGGGM2h0QOd4rcf6x2iDov/Jqs6XUtm2NZ\nbNHnREHtP4ET4eDXRBZ/vMVEfnP/L8xbNSKo6U2ii/Xv6N7uNlmOiRDPWIpztzX5IdmVP04jq/ln\nRBFXZ4nkNu6TRYj9gixLYJpIezPF3O/36e/V14hcZ7pk6mriz7hs86lWvEvVOwbHQlEdoivT60Qn\np5eQ6dZDkBu2G/R3RZwnpROit6dnZHFSijTPzZFJsBfRpfQxGdrsKTo1qYoEvhki7GXdV18dEgUN\nq7LP+XNkXa3zveAC8kncEVfPJs+dFn9G0EaEvSN0h3cZuY6i6NJWRlkfJzoyG2C8Fd0RXpwVqkKf\nz1ZJ3U4PyBz4p9D1xlnaGGNMb8i4wwvo0umHZOTzO2SjknOsc7tNGrKn5NKgyrwKNWxg9Q7Zr8lN\n+k0fCCG0AeJoahZepNpLKqPtHvL+g6SQMFfEG3XAOub3yQTMiMvBIfRApH/5jEOtj71nc8y1IM6A\nWB/dGzPXp5TNTk2z5vlHZPkTdiLpHqF5jk70vMaBOlC2XYz7LzbxKy5xsvharNHVRdBoqQh+oa6K\nWi5lvTMvsKmtF6xVu8vfZg6kiT2KrvdV6uajJ3BK3RRvQ0ocMrPzfL7iIWNRyeIH9veZT2+E7JI3\n+dzEDeZtttH9jNAJjkkhilbIqFYHqiCgDHavja0+/zW8U5G4KondBBXlEmfPF5v4vSP5SaeD58zO\nCWnYxSZOxakzcCGPwlNsYXGOzMfGBvO7dQc5BpXNe/IEVEhG2aOYKt84v+b21XOxTsMBOt2/INMx\nrtK1eAtfYVtk/r6RqmVtMJ9IBP99+Awf4/KwvlFdI3fdIkMTcSpjX8CGQzV858QUNuYQWmxjjX0n\nI8SRze8278bhXbh6VXuPkrMBL35mQdUysl4hE8TTY3OJL0n+zNbGPzlTjDE8Lf6dPVW0GaHTLz9h\n7+0aZNPuMubCIX4hGsEu33oXVJAvqjnH8D+RAhnZuu6we4XQWRd66I+/Ys9+/Ig9sGZH5okU/qI6\nRGdmnPw9oYoOc9OqJqIKXI8/wxYmF5hfQxnLZo+1bGe1z9RZs04G2xqkvh6nTHMfuZ6WGZddqDp7\nGF2e9GFbuUN00T7E1wwK9Hfsov9IFN0+V9WOixxydQmloGEbu08VcibEwZJkneZWkF9G3GHFHLZ3\nvoNPSm9ztkgG2Ucapv6nOQQmPMbpFXK0JO6bBuueUZWnpLhxAh70JC9eF0dT1Tna5Ouy++hBT9xA\n0RTr6xLKxC/baXrFTxJB94cCwxxunRnPBGOt1Jh0TlU6PMpcNpRxjAqVE51g7K0GfbnteqaQFvka\ne8ZQvGPdArIeCnEyquIPq6qC0VbWeHoeLoSeEJEt6Xj34utlt2sVdHV/iTlfX8CesyqZ0muwByY2\n8MfPj1jT2AT7x+QQBGDlAbpV/g1+zytEj20ICqHmUTXAMDL+aElZ8G2y9L7XOR92qqxh9EAcWXeR\nT/mQ53h1zuzMSR5T+PPpR/L7ceS3dMF4d1dVEfH/wvZqN9H1N3bQgdI8OrRQZN47V/BBE2lVTenh\nP1MNdKj+CJttpkBhx+qsazOO7/lcnA5JPz5poYW+HC0uIa+nyDU2izwe6xzfCbP+wxzjOG/yt20B\nOde+FMJSPH/GGFNvjMzNAvKyqaLQbpQzb0LogWaN9evKR15Ng5ZIqxriZZoK7hmn8t4uVQGqDKr6\nW+e/LmszrtSSecIZ3vkCnT+Ns0YySzOfZO8pjPemAGNaFzdgUlyLPh/+pJjHtvLptDHGmH94+TPG\n4abf++vstXWdYe6H2Vvd06psNeawUvp+Wn7ZIfRvQntdSZw0Pq2NCYkPT9yORxX8qWdKttCjv9WQ\neEW1lwc62GZFqImWePuGTSEGDzmfZrXf1MX5NfAywJN9bOTmdXT4pIGNFx7z/40ajmlHFeDydc5W\ny/e45SAgkVlaQCceP8NWp4W+eCEEaWZXunjCepiB/Lr366Hu2k3Gf3Ks355CtA4Skq8L+URUPdbo\nd0dflYWdQ3ECCcHYE8/WGP3hi7Gf9sRhZkK8Jm7hKya0vxpjjGsuZlqFgmk5kKVPe9TUMueUDVUU\nc7pYk9Nz1jSe4pzZ7kr33NhrdwGZBOW/wzHWJC/OxrJ+k3nFi9aoI4tQhO91OujIeUYVW50YSVF/\nZypC/Rr9pu3xfqmGn6rm2CtdLp5v86C7x7voQEt7ZjQkZKKL5xx8AQqrPcd4/GFsK6yz1NTKkjHG\nmJH2oa6HNV9U5bJMlefmMoy/1mNNIg5sIuj881XcLKSM1axmNatZzWpWs5rVrGY1q1nNalaz2jfQ\nvlGkzKGHCNsne0RHG0Myus0c0ceFH/Bq9xHBnnn+Hu83ycJv/yvul4dfkoE8X/5bY4wxKSFfAu8S\n+XJ/SQQtPUNUMXBARuDeNSL4XlUriswTfTzlT9NQRO1em3E0fkUMqzxBtv/WkFBitkAEbKOnOuqr\naf5+SQR/08P4XtiIksd7qiBxm+jn8qdEqw//E1HL6k+I9H37D6AaHA+I6J++zTx6z8mA9DrKkM8x\nnxfKxL/9juqkq/LEVfuZOTwlsnzzmqKWL5D5fTsh+L6igL0W9+kmDdmsg3XWxH/KHD/zM6f1vwe1\n83JEFHLlMRne/WdkRlvTyP5qE76Iipc1uzYL58FlW7NPZNcfJFs0CvHcnFjE53Kswcw0a7LvZFw7\nT8huvPIe/S9dJdq5+QXv57NEWwMbZEBjC0RLT+tEUys1cZ0soaMBRa7PHpMluhgi+8Qsa3hygKzP\ndB8xurxkjDEmdZdM8vkLxnOscU/7kOepkCiVBrq3tCBd3iRFXnrB570p5m9zII+hUBozK+jMyQvW\nqymejViCaLPXjrwuLtC5mXUyIUVl3s+ETlu8xTh9Xsbl1Z1llwudOzjm+bN3xQ1xg9ejvwdpdf4E\nea0+YB0qK/RzuCl5RXmdv0U0ubsCWmT7ETaWPSYTEltAnzpfg8V+Siii7hxziqaEOvIos6fKIWnx\n+sxcF2JGWaWzbbIezS7fWxOKasLB+05xvriFSmgH6cfrxh9sb/H9rvgnmuKG6hzjD669S/rl5g1l\n6C6wz51d3b09xwZbp0TWX32LjMJ9ccVEvMoWVcWZE6P/RFIZihFr3Avx/rClbP9LskQmqColKr3w\nYJ0sSUWZwlCLeftVDcnl4Pnv/TXVj4oH2Pz2Z9iOR5Ulbr1BRtFuxtWQeN8d1j35PPN1iyPr1ioo\nq2nxU/3xc9BaHXHtlMX6Xzhh3Is3ee7aO/j5Z0cgfAbiQxl8zZzCjO6fz76C/wy4ydo9e0LGuabM\nbyGvyjY5+ul3mceEKgFtpsUDVeV1W/fjQzP4kmSQ5+4o61mYQc4rS+jVtjhqRmUhki7Qg9TqNePT\n3f0nz0AHBRCl2dqlYlOxhi6/3EMW4b/4jjHGmDlVJnQIqdGtiSdHVd8Gc8pMrjOHKfm1rlAK1Q79\n3ryJjGIhITRUHc5W4vvpA+Y8xB2ZYYS17Rr81KmqCIV3+d6FbG9lnr1sPq4KMm7xYAwZd/kC2T//\nDNmkbuAHk4LsFcTzNGzzvXyaNZqSLtuUCYwKndbqq1pT7/JV3IwxJqw7/caHzdsbQt4UGcdelyza\nwUP1vywuAFXSbUll2wAAIABJREFUcovf6rzBOJraZ0KqLjWmL9l/jO4PHfxHdIqzSMCp/SRNlq+r\n/a2m6oByBcYnn7f2JjYVq32FlHG7XKZ4pu/l8XldF/t9WTa/fJ9xj2Tz+U3QCa2c0Huy6aKqirRU\nZSroYb/ZP0wjHyGTIrPIa0JZU6+qaGVCk8YTlE9v89mUqsVdfUWVw4RcyGmODSHL0kIFjcQv5i0g\nm1pTvGoxxrLzuVBN4u+oyv9Gooyh00Vobb8qKB6r8lQJf+lw/flqGP9tawl5YlvFzz73sPaL4iDw\nJNKM47f4mbeXse/9At8rDNkDA4/ZW+113t+6j8xPR6ri55T/Tv2eflXp7Kb9b4wxxgwuNL8iMi9p\njecfo8NdoQseXdE518OZ4soRcn9aQi7rI6XEdSaZ22VvrsoGzrb5vlsVeIyN5ztUven2l9jmc3Fp\ndbR/2MV9M+VkvQ6XkZOth2+rRThrzWyJf0Vnl8oE6+iIce6+5UQnzzLId26I3LwF5D+MpI0xxvxi\nmeeVm+yHd1QhyPapnNX/ZMxKbmRqQ6EzoviaqQTn5/6EeJOa/D36e84JPXHrLDnYJy7TRoa+e3Zk\n5g+zNvEmsguE8MNDD+ey5CJzaw8599Sq+E0jv5ZxsSZBL5/LCwVga2DPDXFg+XxCGk/pt4OTvTUi\nxEpd/jgi2YVUCXF2Vv72GuOqjHhuR8+3DzkL1Z3K+jfR1cyp/Ly4In1ePneiakujFZ6bkz/bVNWp\njz9hP7u1wW+foqoHJpP032ywH9x+G8SKN4zNzAtJuXwbH3Jyiu3Y5Fh7XdYupvk7q6o6KH4l+zoo\nX3szIHnwvdNn6MJ+jjPMUIjxgpBNGzGec/1toUaWQDL6X+DbUlOc2QoV2ewl28jGuPoCY4firJNr\nlnU+bSGHkM60do/8eIZ5v/yDzp5VbCcSZj2dQpGVhQTa/RB5u7UfJnWTIJP/im/p4PmuCYz6pt7E\nL3RUNTiY0G0ID3vOhWReyCHreIIx+VSV0ulD54NCTAfE9ZLS2vqFCCzHtC8I2bi3iezHe8igN656\nyfMmbvGceov/N21ep/SbqS5kfFMVg89PsJmBEOgj+a1qvar5cA53qsLtQgI/4Rsgo1h8yRhjjFdc\nOJkitmMTR05VKC6XDd0oVIXKqvL/GaGmik7k4zAscmL058+tFlLGalazmtWsZjWrWc1qVrOa1axm\nNatZ7Rto3yhS5rhMxHx1X1VP3gRlcfoHIu/Vn5IJGVXeN8YY87GHSNjFOndq//LnRAFrsQ+MMcbU\nZ4gqx5aIxI0GRGsfT/L3/RJR5OS3VHP+V/R/9B3uE8aVvXIqQ2ueMo76EBSIPfQ7Y4wxEykyOvvK\nEpWLRAB/PCCS+Pl1oDZvhalsNNxh3KNTor0HMaKfPWXis85fMf8kmRVXiyjs7ntEEOs28Z/s0+9J\ngYobXhsZ+NYHzGNcV70aJWr7uw+IcM4HPzYxRepjae5Gtn9M9O/ZCTIfifF+WCf6WPzBvzHGGLPw\n/xC9PA4im7srVJxqH5AJCCkb4nuL+N7E77i3/XQaBvvmC0UHI6zVkxBzumyzt4g2BsbZ+CA6URK3\ny5k4TZZfI4I9I96GvPg16reImMcWiOIGt8V6r4xBrMI86oZMw+IScqjobudoRMTcoXuAdR+Il+qx\nOB2usqZxRfDL2TTjU1WMjTusafgO4+g8JXPZ1J3+njgL2g3xW8RYM98UmdZxRmTWJZb5IJmGTgt5\nR5VprvmI/o6EuOkrxe51MZ+6KsrYXGTAvctEo4tbZBnrWn/HDFHj0ALPjS8pc/uCu7SFDHKdWSZT\nERZSJ7tDVit+g+dOXgVFcVEmO3eoaiqJ69hg/OYS/SiTf9FmHQM19K9jvzwXREEXrssl5uKNogOR\nRbLy06vidjlH9scPsc+1979tjDGm7Scr8eQTeCvc40i+/Ef1CF2bSSzo/9GJmQWe779Adp0a/x+2\nid9Id19zz9P0r4j69BWe40oh2+QsMnlxQNYjr4h7dUj/lQ5rUj9A9/xJvjeh9MpQGYCNVbJKjWNl\nx1W1qC7+i5fPuR99W2in8zqfc6p625iX6aO/Z63WN1jjySVxyKi60Odp3vdWlVEQkuikSGZi0sE4\nhspQbD3Hh2SFNpjvs16hIf2OfNhCwiWunBrIk2efg5C8/iMq3tjs2K5PXC6Nr1GhyxhjMrvitnAz\njhvrjNPpwrYFRDLdjqqVCJURDaDjQxs2OjuPv78qm55S5YXYBDbncmDDV+9hA72auA7EfZSb4jm2\nLnKoVshULw68pio7yJ/gJ+/8kL2vYcfub2yoikKf75RVuWn7U/y4x6HKfkKyTcwx1qq4rA6y+JOj\nDv6rW8T+DrfZQ558xt4RDAq9Kg6v5Rlsam6N9yuqlOO0I8uN979vjDHmc6GAPMr3hMR5El9F55fX\nyKY/e8xaTCvD6FPxIP99Mn2pFJ+7KDO/b30bOYQN49rzglgJp7Ddww624xAazH7A+Bzhr6oSXaY5\nEJeJKmtmm8a2mmX8e7BJlj3qBxEYCLHm7VP8lndZ2b9TziLnWvPrV+CJy+ewkdIAudnHgMAetpcX\n38rhpirOiFPNO4tPmp7ibOCpq+KbqiN2z87/NIejz9PGI+6f8DJyXBVv0/4+6z8IibvgjP21LpRa\nKI7fn1lbMsYY068ItXKI/jiUCc8cq+KEzhz2urjVlMHtyTe5gg7jHTGHgNBZoza6N2ZyqauSYk0c\nA6FpFmFplbnau9h5TRnScaVAp7gATv+IP29IVmFxdC1cwT5LZfzG6SlzLB6L+0V+809p6ku2/iJn\nh15L6NOaqoG4GGezIv8gxPRWnn3i2qR4NbrYeMOmaiVr6EwwjF+tz7DW9TrzjOVZk/k0On26Tr+r\nL7GxzKw4IL7AFioJXrsu5DnTwf/eFDqiuPgPxhhj3B7kc5alv2RKOtzivJk39HeRVaW0G/itmy10\n9JFQuzeqqsTZZRzHB5x5psOqovKU5x42OcNUXmM9Vj9m/faDfD+YEAfXE1UPFN9c1sF8MqrW5Be3\n2ED7ek56UY8KJRzlTHVwLPnFZdTGGNPxm4J0P4d7NtNChxUN8skU0LuJu+j+UJU7bWfv6iH/p/kf\ntaYb7fYIUVKsqjqdOPaSU7xfazKX5/vo4tVl1qQrhM0rr4lfbZE9JSi+t4OH8nfiZ9vaB5VZGaoi\nzbb8SIE1e/dHcIKFplV51seaFyqM66KIn38kTsasOKycO9jK6hL+vyb+npnXGVd1xDi9WfoJy9/7\nhPCLzqE7d1VF9crCkjHGmJ6ftZl042fLp6xB3Iu8joSWLeyji+kctvOiwv4yHdO5V8iP27fYy+/c\nFWLUJ7SVB/+XKfK8SRfvCxhqbqtaacSNXLxH+DG/9nxfFrlufcpZpNznLOgMMM+mDZ8yHOosVv96\nnDJhcef0EvrNKv7B9A7re5Zl3OENVdHzMf5xpSK3k3nObLAvBYP4vpr2B09Yv2Ur4tHyo/uu/rgS\n3tmfxjJoVE3y+g3jF79YWmd+RxY7rwol1R0IQazfZL2S7CSELh8dsVZlPSc1L/s8wG81dGbxT3Mm\n6DT1u9yPjq+u4U+HQtO2VFkwKttI76GjXVUIdEXwIyGhPvuqCHhFv72SqSXmp8qGE+KqigjJUhLf\n5hiNarRf5ctpxnfK3+ljVe1MMY6RmzXrVFVVWdyU9qQ4tlY425yJtqckhJFdyPZ/qVlIGatZzWpW\ns5rVrGY1q1nNalazmtWsZrVvoH2jSBmnkwzozneIeAXdRO26PyLi5fsP/L9jichYeol7ce+cEhX8\n2XeJwo4+0j1DJTyiJTFh3yBSlygS1fzUTkbiR/9ARP70VVAdMQeoji86qlbiIiP93hQRu//3LlnI\n4YdLxhhjFv9I5OyNm0S8GteIaj47IyqbUK347adEcetVopv2d4nM3VRVleOXROQDIyJsiXkyGqkw\nmefj/5so7fE9otydXSJ0byrT/ksny3dFmYG1KfgFzpsgbxbf5/P+T2PmYfs95voOEfRbf0fWfHCH\nOScnkG32nu5vf8w95vAkcy5d+7ExxpjWL2DQf/I+keWoTRwAH/2QsX6XTMBf7RGB/scAa+FpMIcb\nbdBGl23lPtFN54iI/eQ82ZJcRminfdZq6roQK1fRieMLorwXR2ljjDHLNx4YY4xJpJBt5VR3dvtE\nM8sNIvvdMTfABGvWsik7H1A1kBaZxpKyOIsLRGNnryLr/BmZ0PwOmYaVNbJDc/Po7OaZqmGIy8Gr\nah4XZ3w+/Aq6vDI7q3Ex73gOXfZEGJdLDN8dXZd2XhBtbg/QSY+PaG1AiJligyh1d8h8YuKoqR0o\ns9nleQ7d33Sr4kxqlXkd7yDnwhavySDju77EvB6d8fzDL4km37lDtmtdTOUvv6T6yvkm+jd3j8zG\nmLOne8pzW3XWx+f48wzl/2Xrdomkt/SaKysTucdaxsVPce8V7P1ZFzs8OWEsE7PoakwIiI6yNwGP\nMpbSjYuCOAjG/BVeZTivMMfyPjJIyT5LqjjQ0t3WUohsRb6KDn35EFu6dRX0g3tV1Tf6ZJ+NnTVc\nWmd8e21srT0gln5wKERhmbVr5/GfA2XLNtZAuCxNs4bDEfKYWcdGEi1kf1JD9lfehu+pHxHy50As\n+ufY4CvXkN/xOVmYSAo/6FYlhtOCuAmUA1+aA70WVfY98Ix+Sqd8f3aedTm44P89V9CJlfsgIatH\nVAlpFbQPtJQdSjI+r9Acl22VAjaUrWD7Th/zK+V47lv3yP45ppH/8KaQMqoMtv0E/1wr8f3cOetd\n6oJqaSorenQK98D0BPrkU8Udn1AV99/CF4XFTfRCJZa8Uz5zto/9XRTR5c+2eNbJDjqd8POsSFwV\nZabFebUB785ZhbVPRknP5DPKYM4I+SZkyxhxmJQu2JSBnZ1kDwu50L1zcR54VBFh4FA2Stmykz2h\n01Q1o1nj85Mb+OloDH+zuw/S8vkn6NKOqoHcv41O1Tt8L6E9t6Mqcw+/AD0wcxU/o6vypl7Ej/Kv\nMXlxErjEcXPWwp/GNI/Ltmqb8fUb7B+9qtADyuY5+kJeTqETrQtl10/xe1NhIZnEO9ISCmRLFc8K\nquq0rP1g5jo2YBO3wP7HykbGkVsiJR0XJ0IkwbofP6Tfp1+o0tv52PaMubjImpkg6xoSd5hT/CAh\nVeWrK0NeERdQN84ZpNzUffuu+D884mRYYb7TymJGb7JvBnQ//uxIVUlOmOewxnhr9bLxqxLLhGQm\nyhFTVVWbZkccKNoT86rillzkGSVxhLTEoTc3yRgiIc4gozVk6Z2Q3xwy13oHP28LYOf9mip21Rmz\nWzx1du/XPAb38ftLX4pjYUpVRq4iO5uPNd97Dp/d6hK6mPqSz9ki+A/PCe8/CTHPqJB4t1I679aE\nNhsg63Qc/7VWwc83tAfbHgt56We+S4f438o6+07gE84uF0IQlWx8bv2ANY76dRbQGaEhFEdrk3Oz\n4z5IpKpDKIFznttwg/76bIRvmj5nnI4o8uk/Z58szaWNMcZcPWEdT3axyf40NpN3s7+53Ty/cJX+\ne56m5o9c7J8CbRldRVeLJ/TbS+EUFo/Qj54NvRDlgwm70E1j3jLZVNNE3ei8rS40i5BbHdmGy894\nzZD33Sl8nj34mblsG6ly4bhSTVy/PUpB+vaEkLl/CllciCusLsjgtpCEfel+1okM3r7GeTKkijZz\nM0vGGGNaD/jchA8bG4Vlc9tCH7nG3F3IyNXBn8WS8i9ryHZCFXOSq+hMbh9ddIj76nh7XxPEpkZB\ncWfZ0KXJMdeYAxt48vAjY4wxDYNuFVR5sKfqbVducn5evoMf3LjKmeHMy3xDE8wzNZCNTsqf6+/m\nLmeJTz7+I3/3GddwRD/z6/zGOhHKIdLjeU+0r8Yi2FDEx3iauv3g28D2bE502GHn9Uz7sF2V3QpC\n/bonkGNVVVAv25qqWhUey1O/P5qSU92LDkYFCj7RPhMVz8n4dkR0Dtuza39uHoobTMj4lLh9xnKf\nTLI/t0pfIXuuLF4xiYmwabXREaf46Xzag2xR/MFoyP9PJfQbQ/ZeLbPGlSPOpU5xfHU97GkXDVVT\nrrC20wF0fSD+u4FH9hajv778eN+uvT6H7AvnQqaIm7VRZ7zdNH/nhWZa3uA82XapAqIqnYWmeW50\nin72t+UfyowvILRXry0UrIPx+fU9pw8b6Vfprya+Tn9KZ54lZB5awN+m+8ijGRHX69mf57mzkDJW\ns5rVrGY1q1nNalazmtWsZjWrWc1q30D7RpEy9m8rO5chi7Y98y1jjDHRX4LiOPyeosni55j9I5nf\n4nUi4d86AuFSvf9TY4wxyeP/ZIwx5j/biWS9XSXz658g2/YjMWl3/60q1nxBVLnaI2Pxk5HYlR+B\n6vjFj3Rv+vdEtt5NESXeWuV+e/ERkbfPE9zHj7v4/oaD6GdWGVi7U1Hkh0Tat98i2zZNwtwMM0Tm\nfldiHO0B8+39gKxl9Ffi6/hrospbHxHlfvWMyP4nC/S3MSJaXOq+bowxZq2N/PZXXprvfgYPjX0H\nmf/+L4nmfev3fKZ/gUw7FWQTUWh2N0SWZKSs/ei7ZGTbx6BxHPtEtsPviK3dx1iPa6zVgxIR4MAt\ncbMUyXJdtrmGRDMvVBN+ahGV9Ytp//xZmn7TRDsnbpI1m4qxtmlVv0jdJtLtWUL2vX04CZp5IssO\nscvn84x/ykNUNKD7zJ453eVVBqKl8dTKRKRDyjjEJvWcM+RRE0dA0Ie8Z2fEnl4iC9Tb47mNQ6LH\nfVXo8SeU/XOIP0PXEEMqgFAZMu6u0BsBp+51hvm+N6T78qqE0z4jetzuYwNeZff6Hvq39XkteVgv\nnyLtnpSYyZfEfF4mun1+yrziSSL0CwleM/tpY4wxZ0tkZoJXpU8V3Q3OkDUMrvJ+VPJqqIpXb1zg\nwTfOgf+P22xM3B5hsh4eVZA6cdDX2QuyDgHJ8MoMdpbfVza9i4xmJsnY2XXHfczdsiKU1P4hc65W\nkPnx4Z6ei384PkB3vEJjucUD0VDGIBhhLTduYDNOrU1wgC60lbEdKVKffsnznCXmZ5sQP4d0bWER\n2y2WGceSFxv93c9Aoz3L4Ucnr9PfzhlZpQs//cxM85wXu9hC9wvpThy/Y1YY37ay8dXRmPcCxI7j\nRAjFO6y93ywZY4zJ5dHFrk2oqlnGmXqd9x3inQgr09J9yHhebOJHb9wnAzs/QmfaYsNvttG9cUWa\ngO/rbV+338V3PZjkewFVFfjHv4Fj4TCHD0l/js87eMTfr73PPtIUCi0ufqmTh+wrJWVglheQW0uI\nHI/uTBfSyP3lh6oqeJVsp3+Eju8dat+JpkxolrW+/hpIB19AHCvSyYEqpvQqyKIXQLaTi6zB0Y4Q\nghXGcHCATFNz+Iv4NHZWVLa9OmStFm9tqB/s9TDNXufQ51uqOPD8C2QzIx6iFWUaM7vMrdOjnwgJ\nSnOku/+viJdo1GLcS9dAC731Bv//6APQQi6hyYYqM/T295G9Q5UVKjlVmbiKLdiG4lxp4y8DLta2\nP8Xa2nyXr+JmjDF2txzQAN+g4nOmnmWejlqa//DzRuGctRujxwKqsuQRb1HAic203fh3V19cB0K5\n5lV5racqTzlVFlqZYZ+06yxxlOFMUKwIoSMeIru4DBLz/j/NYeaVDROP4t8PxWt1/BHzGan/NenL\nhLi/fOJrKojbLKL78pULfF1VfCTVCHrj96mihZd+O0Jk1cRpNqHqIQFb3JxuctAJONgzHRH8Y+mU\nuV9RRrOhKh2ZXXTYmyXrXOnzTFsDXW0oo9kWh9WZKp5MuLGZ6hH+rFxnD7t77z0Es4p9ugQq6ru0\nN8W/HqfMcF+cYjb21IF4nHzieQj7mFdsUQi6EypkNaPo4os8qOOGlzV/LYR8CgWeU9zCb8TC6FI+\nqWonJfanyQ466rRjW2aF7xeLQpJ08Rm2I57Tm8ZPeXzownpJlcQeMJ6THSEyE4x/ry3E5j32u8A5\nf7fvCyWcVfWifXTA7mN+j1zjqkvM36vh7XWZR2qK/t1fsk7bHs6poxl8TW4OH5S7gU0ticut7mAe\na2t8vzpSNbwB/ef8rHNQVflyqrrVO2GcpeFX1bV2VwrGJe6Jgaol9kP44+wh6+quMo6TMEjWa01s\nZ6txedSdX/bTEFpn5EZ3XeNKZKqK5DXic1vDXibFf5EMC6XUw14bx5zb9nfZU9MZVU60geI/Ezqh\nM8faFmUr7hiy3/4jNtETsqPjFQqpx77SrLH2W2lkePcme/BAOuqfF1dgCcc+9qpRP/8fFt/cVBi/\nG3uPNavLH3SyyLYl/5ov4UeePqN6Z1uV2fzifVue1W+fKOOzO5HT5Cw+oihk4JVXONuMVHGtUuQ5\nRfH+rU/j54YO/NuykDn1FuNyevi8XdyOxz2+N6uDaK3F+6++A4rWLw6z2VnmdxGg37dusZ99+tk/\nm6/Tui7OFG3drnD36Tc+w/xja8gzodsT21sgZYZCBJWKrFvhjN/QflUsKovnZMqtCm8jdH6kfbSn\n6oW1s6+q9vUqdZPbdZhGhjnFpsY8cOxFYz9cP+A1l0cHk0LdOCSbZRGlRXW+80wIlbODjpZa+LPZ\nSc53lZE4/E7E8aLqyM0exjMQsj0QQybTy2OZoXMeO/ZeKOGv+iIM6grJPWowV6O5Bm7hmDxRzk7T\ns+iIUxWDfVH6GVaRVWOk/cGPPMI6YxT3QO542viXkEcVgk+FQrXpDBFFXlNCPtq7f553yELKWM1q\nVrOa1axmNatZzWpWs5rVrGY1q30D7RtFynRHvzLG/M/m+ilRwI0tOFR+8W+Ijk49ISoaN0S4oj+l\nykXnl0QjqyMQMoUa0dbKfd5/f1d3VJ+Qcdk75znny0TA76T5/r9eALnyux2ydbUgEaxcn3uQqS0i\n7fVVorEftMgQV58ynp4Y0d8/UFZoSEb5+L7u/c8SeeunVAXKENG78hH3ziPiVzmxUf3JpcpH3RPG\n/Zep94wxxmTWiBJ/miEbOXdKNHfyHfp5kP+uMcaY/9iBIdx9Srax8Do8Hlfr3zY7G7pnu5I2xhiz\n8SVZmd+WyAB6HUQvV2pE/0px+nh98i+Y+z8SaQ+9T/Tv3gXVNh6/z9pVi4xtuU9UNTcDR02kRBbF\nHUFW9aa4XC7ZfE7JUJHrhvgqkgtEYfNC/mTPGH/0JvOZvkb0s/DPZGDPjomiLieJdp7FidTnhByJ\n6c6+s45JtPNkZUpFZHz9Ctmd2WusXfYLnrurijiry2Rbwoqgn2SQX/aEtZ9cRqd9YVVy6RLB7qeI\ni26V0a3ZDFHd6BTR3EiS79XOiNpOdYgOB3xkRKploSwcyCWo6kUjRYmja8o+ZhlnWdU/1m9iK4EZ\ncQnkyaDYB2R2xxF8owo7gST64xfXS/E5UXL3LaLDi6+w7oXfoD+7D8l+3fshnBEpcUzkf68KE3Wi\nzz438q1ViOSHEspijS4fLz6pkF2p7jGH5DprP6WstS3MHHe2ke3daSE07Izh+CBtjDHmWYZXf425\nOpQ5u7VEdmWY1x10RcqdNSLibt21TQktFBESpbGAbOJak4+/4B7zsIWu9ZTBOyigixmt8c0H+COn\n/MWwib9pHGF7h0foer4opEyDTPH0979njDFm7tUlvick3cayMh1Z5NNooTPxeTIVt534t4sL3m+e\nkNGYjCK/qTj9vLLE/A5VueEix7gqL8cZEOTRE5dD/UKVvbrooG2oe/MZ5H7rB9jS1as89+km8/BF\n0BG37o9fVRWV/rF0vq5qW/WvV8nt+Dk+Kv8Z4776OroZV9ZpOoi/j7yDD5mbw0bmF/h77yX+fWZh\nXvNhnaMJbGZdFckaukc/MzulV74fS/E5n7KlFVVEujJDv86g31SzaWOMMZ0q2Zq9F/jwoJBz2Tp2\nNcwiw38qgoa6Gsa+KmVksvJT+Nq8MewrFqfPwgVz99nQ5dMv2XNHqqBVc+EfDnYZR0pIwTvfVgUu\nP3tLeJLXW6vYxpeqaNYc0P9+ET/w9GNk4XWBePGO0J3x3fvjXfxhw4G9R8RlsrPFPGeWkN1xiSx9\na6R77lndwR9XABsyv5H8qhH/0LD39VAQURf+J5jE/06IY+e0y9rt/lFo24qy807Gf/0+Oj4nBGd2\nT3xVQrPF5XNa15B/9Qwb3H7IPhm2YevVitAVyjo6XLK1DLYTuY487r0DqvhE1Qedzq/QAOt314yx\nMY8xoiZ/gQ9yK2NaFxDRXmQ8uRL7q8vDa1HVSKri6imqaoxD2dKBuC78IelNBpv0CVl17Tpnrb7b\nZXyq0jM5ydgFODNdcWdFl5Ch7Yy1stnRhUVVEFtTRvN8G10tiUurUuHzHely0C7/1eK12xNir4dO\nlQt8Ly++G2eEcTkbX1WuukybFGfA7pegFGJ25nVeYY2PGtji3Qr7zskaMl7tY4vxKntx0IVNVwrM\ntz/NeJJCk3UNe7gvx/yr4jLbX+E53qK4WcTr4c0zP7PCWaUWZ7+ZFAfOwqnIfMQj0Qmp8tkd9pUX\nPvbHoKrCxcW1Evby/Is9dDtf5fuJa9hA5iW+YKKDbh0mGHdSXBJjBGhPSpe9wXxdQsBfGehzYc5A\nQ3FCnCjDnkwz7Cd2bOzNNHLIepH7ag2Oxhc/RR7RHOu7fqz9KfhVJcdS/6p5pYyvCl2w/5ST2OpN\n7VOVNr8LmkVsv9BjX3o9jOL+H+YyDRn5evipmvhpIn7mPlLVnKr4zcol3s9ucva/dgdUZyih896i\nkHrin3T7+ZxPnCtOocrOhWy7EJJ5Lo4918XbEVliDR1DxjU7t8Q4pDuRNmeGkKoglbTFDoTAuHUD\nBI1HZ6qC+EGqW/jnE/E+2SKaZ53nTKyyNj47unxLnINb+9ieK8DnjrfwMy7NY7suXrsh4wu9VMW1\nU+Y/s8CeO7eqylwxbMp+wZqfym+eqFrr9Q7P9anS2OQc53YBxM2ESjAu68xU/eOj/2r+Z/vilNHZ\n7LAGqmM+tuLwAAAgAElEQVRee3r5v+D2ulxDl7vi5esMdLapMY4ZJ/PqCxnvEzIxHOfzsWnW4ewJ\n620XEjKiM+nklM4aRenXiWzcyfgb9q+qEw4bTtPKV0zmBH8wa5M9qLpZ5ZjPls5VyVU61OnpfFpm\nLmWhotx2xmoz6OBZi3PuUEjnzjzfD8+ypj2hND12/EnXzlgv9P/9A+zQCIXqCOMHcw3W2K4qnhMe\n5jZSRbHTkzTf15q1tui/UBWy7gjdnQ4z38gp/ih3oXE6kV38Cn5tKJ7UgW5NrN3Eptx+dO7ZS/rr\nCi0XGoo3s49P8Js/ryMWUsZqVrOa1axmNatZzWpWs5rVrGY1q1ntG2jfKFJm9YRI08cOIlQTy7rf\n9iHRz+t30sYYY4a/JFMaShFZ/9StigDNXxpjjLmahgOm/QoR7mdXiXzd2ieLZvsBmeUf/Iao4n6H\n6OiHN8h6uYZE9NznRHnt628ZY4w5HjK+V9xkNrYT/P8P23C3bJ+TifC7qDx0PkfUd/b33JF+JjTA\n5glR4Q2xxu/cYzwbnxCNPfUTuQ/qvuRsiSh55hYRydGeatR/Lr6B7xGJ3AwRyb+7SzR3trpkjDHm\nzRiolv9wTj8XJ89McIUIb/5nROnuvkPUz1PgmbdniEI+mUK27xfIUn1wRqZz9V3mnnSwBpG7RBmf\nPf+1McaY308R9bzzO6KGu+Igyf2YCK//Kfw/zqviq7hkaypb43QJUaG7pz5V1QguijNF9xv7yqL7\nk+pHVScaW/x/O8lzJpYZX1+ZQptD9x8DZApaugvbTxPdbeqO/MwSEehakQh2UxV8mgX683t1F9ZB\nRmCQVWbVTbR5oGxRLKp72wHGsfubtDHGmPymsvG6T56YXjLGGFM6IStnxlWSEmTDBttCIyjCH+gQ\nNXYb5hkKkIUMJFQhZ491XlnmbvCkKsRsiSfErQxDaJX1rNTQwaaef0Vos1KFz+8fk9F+7Q53aq/c\nIPv09Dk6ebzDvBZu0Z8nrHvpipbHxTdSH9FP1IWN2JWdu0xzt7FTrxNZtzJk8LIkCUxkgoxgx0af\nrSoR/bkwSAafKtn4J3iNBfj/wzSIjWmPdEkJN4d0quNHJoUua7snZEhpH52MIXqzfgN/UMkwx0QL\ntxucoR/bAjp1UuL9WVX7Gayw1lN+nreURIZnbR68rEpjn33+jzynzrzsIfzZ/g62evFQ96YjzK9c\nHt+/ZnxBFzYbWBciRdUuCkeqAFDG1h8f6166uFCCU8glGEMwEx2ek5oVL8kF2bvZGcbTG/LcRzmQ\njVu6Pz6/jk7FRvRTUEWbs0P866iBTnnj+KbpkCrgyEYu2wo1+t95xjwScaEHdfH/4AjbqIvjx2mj\nv1KVzEy+wHxuqapVNcz/Gx+6+vAPoFZOt9kvesrkDww+MDqBjwlLzyIR/n8yiQ22zvNmUGbuhbJ4\nIlT5a+2GuEp0m3/jjSVjjDFbx3xuOUH23pkhg/iFUEGH4shyjimaxGvxxrX3jDHGtJWxDXgYk0dV\nLwI29qD0DvZ9Jo6a4xz97f4zXDU766CsNp/R7yvvUjlrWX7r/XtUBAz5eX7lkD0p0MM/ff5LeBv6\nLZTR/4C9udvDFiJaI3sXWc4siqenSua0eCxuBM2vp7v5oqQx5ZHQAZdsLaEAmjZVJVJWrCl0Rfuc\nNe+78TGjEPIbyF0dp3l/+xn+ccwx1vPgA4wKBOVVqcIdxjZmrmIDM0Z+3a3KjcraRbzYlH2E7+k2\nlbWTEaeFzDTGmNOdjAkIwdKQ7iUWsJma0Fn1nKrdXaCT5fKJxoe8JiaFhPELBXYLRNTitFB1WT5v\nd4ufKcD+2xKao5pjPKcXF2Yo5Ec4gWwryqQ26qoW18IPupQBDQbFdyY+C9NB1uUSr6U8r3HZzeQd\nxhaN4PBPDoQw1PnLKaTOSHvvcEj/AbeUxPXnq2H8t61dROd8qnCVr/O8xSa62bqNzbSUKXXlOJ9m\nykvGGGNqs/g5X4Z+E0LDHl8wzrUSyOenV7GVpSX8YMLDmh3GmN/GHnu9d6BMbhk/+dEin7sfUnWT\ntiqTzXBW2S2BqBzpPL2j73XtrEfZjTJfF1fWSFWqJqVjkQ42eXbOel5XP383h84tzLNvjsSZdkPr\ntxmE82ZpE3RBYpYz6ZZDlYnc6FrwFF1f7LCf1hbQtStCWZ/khGgUbd55BW6a7geqcrjIfppw83zj\nRk+MMWbhRcg0J7GFsCrLJVStsGBHjt0QPnLCTv/Zp5yFH9t2zGVbS1xdfu0hHSEAOzVxe8XFZyTE\nwoSqsWX3QLv3ZKcf/oYqqKur7Dlu7e3Gha7ML2A7di8ogSmhMfM5/j8mjpqCkN/TM8jiiycgMEN+\nndM9jM/lRLcP5PfTW5xHCzs6Z4rTLLFCf+6RUMct/n9ONn4ulFKrxBq0j5D542P6vb6On98Ukvxb\n7+AfPTo3J2PM07vCWrTEdRlThZubqkh5kZXOHjK+fJrntcQ7tHL/bWOMMRWhKYZCWjZbvP/sM37f\nzCepTrRXxp8GhJyvC1lz+lIVPVUF1RXhc9VD9teMOMxa0vXLtsSMUBTad0pCRds6rEfuYFwNEBs4\nVlWmm2/gh2eEYLdPC18hPQsk+Ds8xXrXG9i6V8iZuWv4rqnuV5xrE/Mpk93LmkSYZ/psQrCMD4pN\n/GfqCmvh9PHac4nfRojDim41OIr87eii824hF5vyC72ueJJOVJHrTAht7UEuVc0rv2DujTp2vaBb\nEK4Aa9hXJUZvFF0O6LVRFJrfzZwXp8VtExxX81MVto64pYRCu1AF2lYOnYktg5p1q+rU+Wesud0p\n1NIifi+vioZnGeZTEVppqNsRDdm0z2ZVX7Ka1axmNatZzWpWs5rVrGY1q1nNalb7/137RpEyn8+C\nvni1QQS9UfqNMcaY1QdkLKtfEo09sBGRqn1J5On1MJGmo/fTxhhjPiyRaZj5uyVjjDHLP1T1lbtE\nGdd9RF+f/ITIW+wJkfxvK7219SYRtHCTyNrjD3ne4vfIOIQrREG9n+q+ZpzPZyqE6p9NqJa8Klrs\nVsiY+CaJEL51m+j3p5+Q+XjTzX3/T/2KyKeojLR0LG6JuO5j+4l6HhgysN9+h+joPw24T/7DP5AZ\neOkn0+GcAp2wa/u2McaYNXFKVN98YRYviL+9IX6ITBiulx+8RXTv74ZE6h8oI7i7AhqoekEU8A9e\n7nNX/gPRz8iEXguqFvQake7FRbLQyZoqEnzImv06TMZ0aftD83VaR5m+QVeZSWXTbSGiuC7Np10h\n6lnIEtVd2gBVEEuJByONrJYV6Z6cZA1zA2TeV4Y1OCGuF92xb+j+enGOqGl0krWdUeZxX4iP/DHv\nr66DfvKr+lG9SBYpuaBqGwXGaVeFhNu3WNPpDcZxnCYqnFwX6kos9OlH2MKh7sY+MOK7mEe+DfFx\nlA+VlYwhr8AsUd61CDr17CFcOJldxpFYIEMQyaqqkioMFetE0iO6J5nOKWsmtFdcd5N3nsCJUFb1\nkembzCtzge6dqyJRYp1+JheVZSuTEVj2q0qIG1uoVsVNYHj+ZVpAVTuifnQ1GCMyfhFgzNEka1ru\n8JpR1Y7ApHgTdK/7uKAL1MtE9Fs2sj8FoXgKDWR6IX6F6w+Q6VqM5/RJ3pi+7kO/eEZGMKaMwkjZ\nmfKIuWdtPNc+h786FRLFpsopE3b+v6e16eh7h7rXPDGjyH8R3Xr2GVmt+ArjCUWRg1cVXJxGPBt9\n/JC3ju10dd+8mef95Brj7biQ54Tuj08LVdXsqNKDMo3Zp7pP3hNqoaCKPGXk7CNJY968DooiHuL5\nZ5s8Z3qE77mxyKvnGuu0VFZ1qgjZpP0z0AeVBLbRHny9rNTdu/iEtTfJOl5ZwJafPAX1EVMFtu2X\n+H2HQ5wOkkPlnH3ns6f489opejO1hC32u6rU8MMfMG4/tvD093CHeVOsU3mP8WfE/zJHot+42l2z\nLO6AhSs8MyYEQzmDff36t/jPgYM+jjaRST+Jrk8v02dOVeFuXGNv9bbw/5kSdl8R0uTFH9lb4nP0\nWynz/++/xfMXxJ8zNYH/cQ7xez47fnlJiLu4KnbZVFVojLDZecFrQGiqmlBl77/6HuOKqSpfD7+5\nfJVxXDiQZVjVSV4oSz9yMo7sGbY17ca/1YR+syvzrAIQxt25fBU3Y4zp9gWHG4gXSnfx++IMiK8x\nvvkp/LbLjf/N5VT5oYrO+IVUdOrvltAdwZ6qYTQYVzKO70pNMI9uB/9XLLKePSN+D/mQ3Cb9dMPo\n6sWFfFX7q3vqxbOsORFip9cQ/9w84x6p4ozNxfenb+DngyVVhampEphQdQ75rO6IcQ9VtSVzJtSE\nOHhsCXyJq4lPODlBx4/SWyY0jW6M9pXVVqXEgbLWnS4y/lPlPS3e1mNxcLV5w6M+/KrUN9a1UZ+5\nHqnSodOlyiriBRpp7BFVAxnJzr0hzdF7aL5OywbFWVDA7210ONucbuDopsTTkFO1p0Xbz40xxhTz\nGPqJF7/9lnTLp4ztLSGzN6/wnPpNdKh0ztplW9jCvAs/H5tLG2OMOS5goyEP76+Nq4jmxY83iTwH\nfaEpbCAVH3bZsGbC9Ldpoz9/le/VHMj125vo8GINf7WbRCdXX4BQEdjKzA3EGTPAR2yoWl9hjCAX\nCiS6jvwyVVVBrfKc6CNV2HTj6/K3VcWkztkyecH6DiM8v7vNOKrr2NZeCnTIslAFA5+4a1xfcQat\nVLJmu8m8q7c449ZjnE38lefMM8/fjRPOvN6O5DZ/eUSVvc8cO/qJZa+z1iX5V4F8TMnOXuzQ2aUg\nGU54xSM04ntlVU3q6/xaFzpryo3/6HhZm3YNna9WVe2tI1kesk+4xN3VV1VSk+D5YxTZfFIoAyc2\n5rvr1f8jk88+B+ni7Wsva6kSmHiBmvKfw67OuTP8PSlOrRtREDIJ7XNF+Yvdx/iEcTW6QpI9fyKC\njrS66HS/Jg6xeZ3xVNnSK3RF51zoZSERj5PoQk3cMqUo8lm8hi12xBvijQid/DFnq/ThuLoq6zNU\nFUF/jHnM3KOCp30B33L9Nc6Cjk3W7bJtqLNXeZuzUtPJ/OLz2HR7KB+QxUf1VPmzrSqE53nmlXnB\n2XGgs+N8VMjIc6G3a8xjvP4jcQa1q9U/jaU7qJvwXNiEdJ526vdnWQjuum4tXLuvuYo78fRUfJ4z\nQv7OYF9O+eeebiPU9Oqa1G+WCjLOHuB/PH78VyoyrrTF5/otxmGX1cQ2sHOPziCZImvsn0AHAtq7\nejV0MxBg7bxC/IUWsLVWDrv2XUXXVpY4f2a09g799lnc4GxSF3q3VMPf+IPoTs3g5we9ceUs7fEx\n/Hw9JL4hce/0qoz7X2oWUsZqVrOa1axmNatZzWpWs5rVrGY1q1ntG2jfKFLmWy2igw/XyN7fzhGx\n+vnnZAmXxVbv/2si2GdPiB4+EpO5MT82xhgzfAh6IOPV/28RmaqeERG7/z7f2zZ87lM7kb6fvmD6\nc1w7NJtDatFXVqnOFP+ASNeTeVXTEI9HbUD2MRQE2XPxDlHo3uG/NcYYs1oT+/QZmZSjEvOIJsfo\nDeY9PCGid2WNqGt9yP36B0ITfHpExHB0uGSMMeZl5Z+MMca8Kzb9jyeJIjcP4Rt5/5i7yL9YIGo6\nFScy10xfMQ7di/3sFZ7xyh4Ih0yXuUSm4LXx+8gAOn9NlDDyEzJluwNl0xf5O9Lkc/0g2ZAHPyPq\nOLwHasexTSS84CUSe+OUMT8Pjtfukk2Zz05Ztd2VjfYMyN5MKAp53lLkvEEmNqVo5HQKnTp7TCah\ncMx4Iit8fnoSRMZRnuyTX1UlRtNEV0/TRJoPz8ieu0LIxe1j7RIrREk7yhiYNuP0Tutu70vd55ap\nRVS9ZF+R7eY0ujm/itzqijrnj9D5kaLPs7rX+OwFUeVSjcyEf4kMRuAMnWpnkW9rh349Ht1bn0cO\nEdnG4RPQAVPzjH9hiijx2ZZ4RJTpTOn+dVCZkMYpNrSi8eTTZOG2dbf2xhz35xdU3emTD9GzihjQ\n4yHkXZRteAbMLyx+l16Ffu2KKl+m1cVTcXDEd5fX6NspKphykOyLp6g7o4eMJZBkbq0ac3b2Wfts\nmoxc9pwsRFA8Ca4BEfCmeD6+3GbOqVnGGtdd2ZmZJeZEos1Emsiq7ieiX63y/AuhrK7NY4PHNXR6\n+yMQb+EgmQJ3E/8xvgfsO2JtQ0K/vXftXeYRQLcHyi7lesi2VuVzSymeFy+whm0PmY/8MeN6KX6S\n110g+fLiIrg447k5rdWUeDJSQghN3aO/FVVmCQR5v9FnXi+38E/eDrp4ax3ETKiLjvezZPNKefGZ\nKGuY72OzwZ5sfgbbqbf53LCiMi6XbOc58V300f2zF9h0NotNbdwhY9vXXWavWPM9IV4fvI1cEuIU\n2lWmJuTHNj79AB9qj5CRWV/AB0wK0bS4TsY3s42cQ2MuCDvy2jt5bnp2dLRRQya9IX/PzrH2Dx5Q\n/WJO1XFOs+jM2QX+JODAL/eCzHVploxgWRXGZuRvwqqIcvN1UJcPNpaMMcZ8vKnqaB1s4mke3TjI\nkKmLh9Chqav4nb74dKI2dLzXkJ9Tts33GjazsUqG9Jn2KucMsulsoouuSfxq+ZS1vajQb7rBPM6z\n+OflBPMenKO79mkRN0XFkdbCBrNCVrq8X48vJBpBx1wh9mpfgr9rZfqp9HleSSgnt9AJDtma04NO\nLqtim18ZyT5LbCrn6EohO85kCwnUw1kMethcSfxHbnE1DFP4zYsL5BLyo1Pryu7ZfCt/msONjdum\npAz0qRCMUSFKU0L6dC4YRzBI5tfeYdzHZfb56+LuMdLx7ZeML7dHJrml59aVlZwQ6jccRw/s4sSZ\nd1w1V67giHuq/DR044+9Nr6TKwjxcM4e5hEXiy+pSoBt1vTaKn79bEdIw2zaGGNM/zn+Ma81cclf\nhJLolkf8Cm47uls8F49Sjr06uPD1cpOebcY330enT8XN8qq4pz67p6pFHjKupxfokBny/1FVvzvT\n2WVKfv9vVaGmExff2u/X9Xz5i0llyYVC7fSxjRk3/ihk8GcT58htOMl4vPq884znF5z4gAnpWKin\njLH4MA5OyAyvi/sqXVT1ph5yGtpBv/WEchtMqyKNbGFKnA0BoXrzh/iKNxqckZ4I+eNMqiJQ/JnG\nw3psxxj/3TPmdyfP/DNBnmMfIu+oMun1IutxT+t+IY6HcFa8GkviljHGlAZR86YLXT5WBc5+gHO3\no4h/TzvZn5eUUQ+4ODPvJS7Ph9hT1tzl1F4Z5bueNrKxT8iPic/MXtBeIITK/CT+Y+bfsVZO2elF\nlrPO0WP2sIoQ4o9/y2+QFVXbrJfpJ3gXezw6xbYcQh6eZfg74cGOd/cl0zcYz0DHWbeXtUjNMN75\nG/ib+TleL+TPOqrYZdfnI8v4G7tLvwt0tkqmOHNFVdXuWgQfMBXE3+zsgZhx9JlvRYjPfpPPnReE\nkpVf7AstO3ebtRslsR1HEVuoCp0xPp5vvuBs5RbCr5nh87Flfh/NRxjX5Ab+Pp7i77j4/5rPxEun\n2xYHOdahXmVd6uYrjpbLtGYF9IUjL661a6p4Ke6fSoxxOoRWDlf4XEKcROdCdThVpW9mnn3AbuPz\nmRPOqB1xAdmCCCL9grNXo/IVUqZ0VjKuqM+c7XCWaAvJ6BFyxTGu2KhqRfUKzzo/wl5cy6pEuKxz\nq84Gjbw4+fT5qShngo5uOyzdQ5cmdTZpa19od/QbQFXdxnuu64y5ZlripBF6NBxCRwXiNxdCpbVU\nNaou/zapqqVHZ5zvk5PYeXOOL/bH6DXxv43czHsoVFViCf84EWGe3hAfdAmZ7nMvGWOM2ZnAn13M\n6ne8Syjerwol/nebhZSxmtWsZjWrWc1qVrOa1axmNatZzWpW+wbaN4qU+e0/n5v/7X8xJmOIkAXX\niGDH60RVry4TmTqswz3z1ioVfA7TuvO2DaIlKtb76E+IgAU+J9r4VKiF4c/JYMa+r3TVkMjZr+4Q\nRV75LZG5wtswnS8eEXXd+WGafj8i+297lYh54BH9eJJAbCJ/QwSwHiBqndedX98azw+UeH0QJCrd\n/xXfv90nMhc6+ztjjDEfNYkYJg+JJN6Y4y7yBymin/6s6r7/UBlz8b343yWi+bcuMhPeQ6E9nMjp\nlcyF+ZIkk2mNiMPlnhJ9zP47IqbuP8Cz8Nt7HxhjjOl+6x1jjDHfGYhb5rdiiX+N7PfTQ6J/7i2q\n7ryM/i1zPyfC/2qUbEo/IVb5VSLKKy90AfmSzetlvHY7r21FPYcTqiok/pCoD9mcZ8iKJJaXjDHG\nxGdVWUdZt4KqBXlTZKESc6xFuEq2rdxF5yZUPSpcZbztE6KnzSEZytCc7rba+H5JbPutLhHpqSm+\nnxbnQ7VFhH9Sd0W39sg87z/l3vzS90APhF8hMp/fR4d6uvMZWEeHXE/R1eKBOFwesB4LM2R2nxWI\n4OeUCR1V+VxI7P6JW0R5D37HehS2iHrPvkUWfzkvTooCWaTIFLbUEHrhLENUOrFG5mBhhedtfcw8\ny6dp5rOCwk2qEsTJM6LSN66K70TVqMrK0I45eGod5tm30d9lWniKZyZVaSWkCHa2ylr7u+jA7Apr\nZ+spOxVAZwaikrlzBxSCP0LfuWNlacTt0tH93+sLrNHFEdkm+wU6+fyQbNNgEbRCXvwMk2FkmljF\n3ucDyOzpI9Z+amVcXYhM4FBV07pVVWApE6n3606sI8D4//DxJ8YYYyJTjK/WJlvVS6oyWUByeIpf\nnX8AEnDSh6xTE8zj+iviBfmSDMnMLP5lso3upbusYa3CeI5LzPsszTj9MWzzSJxatjqZjOX76Gar\nS7bsn/+Ar7mypKogDjLHDmVrRHti5pPIoySEj6miy3GhM7pisTc9/v+yzVmn37bkuXiH7NjirSWe\nq/dzh9jmqaqLPP4Dfv/KbeZjK6jijI15zs5h0299n33K28En7W6RlTvY13oqS5o9Q+H2C6yLL4Fc\nh36bmVElsMdPWYtGizF0Pej2xRnZo+okY3jjx/hfu94PC9mx+Xt0Y/gZ/vvRr3m9+xZ8Y+ce/Fy5\nyeuuU+mbsiqDicvq2/ewc6cf3TsQyqddQAefPGQPngmi2w3xg9x7BVuqSNaNlqoDNZBxVX7i8WOy\n5HPz9OMQymtd97ivqUqHX2iLZaHQ2toXhsordQ7Y+9ziYOhKd11fw48YY0y1ihydShWXVQXDVsGf\nG/mY9HP8sxkiD6fQUzYV5BoN8NPzs8yrVkZeXiGUomPEpaoXVYtC1woplVQ1Fbeq5i3cZX+22/k7\nLp4jV5DPj9F7xhhz1ioYp439vSfurtaIfgpCv5XOxc8x5s7R9+s9fEgup7NGAxvL76laU5J1nr17\nW+NlHoEI+uMNi9NCGV33YGRyp7LvhjhDlrCXqCqW5PeRYTmDzFbvs+bBFH49/ZBs75mqDZ1l8T/R\nMDo5v8CZI+znOaen2NcAVTMjO3OoaY6ZXXQlElbFsvmvl5tcCfOcph1/tuRGV59rLV/bRwZ7TZ05\nvovMyyP8zWQOtNP0rMbTxh/P9rV318VtMM883/hCKDMH59+7aWzrJIGy3a+ALvCtiP9NiJRZB2v5\nMKWzw8kSz00ix4gPXW6Iw8dex/esOZHX6TbzeivC5/MjzgzRgdDBk/io8gT7avBYfBYv0b0X9/je\nQp3Pf95SJU07n2+U8XveDP5yyQcifXAL3Zz+Eh08TIkPK8/3HG76mSqhFzEP+1dhGRTem17kVo4x\nX2f5K7TckmmZfUzSeMQp0Z59hecMkP9EDuSpQ2hFI17DmfRXVZz+Ry0ovg0j9E/P8GoTT51T/BlX\nkuy1TbdQl6oY+eUX/GbxincuK36zlUWdFYRiWl5D91sd1iwh5PPLbXRibkro0pus5WvX2C8Sqni4\noup2naiqegbQ2eNj1rq8xbm1uIlMd/bQ+eq3OOMUGtj2aph5DHUWKA+E2lVFnkYDm2tqnDGVpizW\n8Amx15j40C70xCLvh4U4b99A9m4h4fOqyJPZQsc6dbhu/F6d91VlaPoaPubBW8w3Iw6WYQG5HvcY\nZ7/IWru07+zu4+8Ku5xpJsSL5Z7mPGx3MI4rq9xycPv4e0pVoy7bbEKyx6bQ7cAU5+aCnfU42Udu\ntpB4Syc40120xXUjzrSOkD/+EK8t7bNN7e9JVWlqCfnYqtNvYPar32Ozd+ZMPVcxrd64Wif/HxMf\nkM/H+asoWdV0PnUl8cORIH0EhBRuCp7kCuFnrqyBkpoVn0+vg02MPKriJET68R/RfaNqSLbRmP+G\ntQtlxdEoPxWx8ZxYRLcpRpzbhwWhTePiFBOf0HC8p6sqYLOBjeRVDXRTqLGA9uhQUchE7YWzy8gh\nFtaeuq1qguLcOnby/P0YfqonpJFTsu87Nc5/oVlIGatZzWpWs5rVrGY1q1nNalazmtWsZrVvoH2j\nSJmfvktk7aeHROprNrJR2e8Q0frw50R7r+mOm28FNEG9SMQpukrkbX5IVvD0kVAc5pfGGGPevCP0\nwBPdHQ4TiQu0yNTYbMpkNIn49T4jKuks/8oYY8z6HhHz/ilR0GZB3DAzPCddJ2LYihNJfGeSKhuJ\nl/+a556SCa/dFgfBB8x7sk+Ud1NZtJ0U8/mpKkp0hSJ4OYQjxjelKOyttDHGmH94yPe/UyV6/HlE\n1ViyRHO/9VdEKl/+J77Xe+OeuRsn0v3kF0ROHzmJ6m385780xhiztsoYfvbwvjHGmGUXDP2PbyGb\nby+jKp/+kyoYPCCrMPcTZLz3N1TruO+mmscv30F2d0/J0B5+SCT99iKfN+Z/N5dpQyXDHV76LbeJ\nboY64raJ6B6fopqjMyFW8kS4g8tEnqdVeeFCHDHlLO+nhJTxBXTf+pwoq6fLWi9fIcK+9THR20ae\nyLpNHCs9B/33dJfU6RXyI0r01aFwcylDv3M3yHQsLKODZ/tCc2yypgtiv8+NWJ+c+gsJ1eDTPAo5\n1vA5AJsAACAASURBVLw2rpIkbhufuHtsykC0d4ku1+NkDCIL6Jx3Ads6PBU6TZUQJm+zPhe/R3fL\nuhce9xJtzh0xrpK4Z2JTfD46ybrkH6liWZL5zU2AwDk4JotVUnUoTwC5OytEld1N3fPXlVyn9/IZ\nB4cL3YwH0dXoLJH5oVtZJWWXS+IUGQRYo/qAz28eI8tMRsgNZXEmxTfU6mHnp0fY58ZtMpX2GcZ8\n5QrZldGBMsJnPC/7hMxt44Qsh1efX1rBv2WrYsb/+a+NMcZMBbHnVlt3eUPock7ZnZDu6q7cJeNa\nLKKra1P0fyF2/IH4JKbFv/E8yee6NcZ1WsEXPP+YNZ6uMp/ykaqjZFmTxAK6tXSV/s6rjCelO/82\nZcNHfrJ4yyus9fmOeCz6jPfmDeR4GGTeHWV4g0myQzXxHzXOeF4vrju4qmCRresur/hFfAHxEOkO\n8WVbsUnmZn8PlIPbjY6lbqmKVQ65v/Hu+8YYY6Y8zPPz38E5EIpge3ubZGgjI3xOUdX9Ig7mG0yp\nSkCHjMqER5nqJHo4uUwm/K6f/Sqh/ePRoy/N3A0ykA4vz0rMohMuD7rzq+f/0RhjzIkqde2LB6hg\np88Ht1mDgTKKa6+TGQ2JC2Z9lTHtPyYbNK/MW/q5OLfE6dTxCCkixMjkFH6jJERHYoo5L6h622yY\nDOIXz0CbtpTJO96HU6pWIfttc6IrsTjzurKIf06JM+E4I2ShOLNe/gFZN3U//HlCmcqR+DQCqnzV\nHmnc4l+aQzcq45I+l2yumioBldG5lhs/vqAqfrP3sLUzwesaykT6xD0wvrfePMPP+ZP4krbQYEPd\nl1//FusUjvLcY1Uk6o05yeJ8zjHSPqIKcH5xC4yU0W7U6L/Y+IobwFlomIb0oS4+qHHlivwp8i2o\nysnCLONLpFQ1pIOeZfdVkciJjThU5SQi/pJZcbKdq2Lk5jP5fWXwz4/JUvrtQ+OJsrZnZ8jGHUPn\n/H7G1ugx1zEyptFhThcv0JmdTVVHCwg9NFQVzTnsKrhAn01Vwgqp8kxAFaoCSV6zm+I/0nkq4FBF\nwcHX46Ya9PlepI7fiAWxmfoU+036nD1zWtX4mqfi1yhiE1d1fjw6Yfyzx+KxeB8/48twtnrnFF07\nEgJyNQ2Ce7uIjiwbnpfxC4HzGLmFk8hnvwS6yqeqgbkhfnMxgy0PnOwr3Xnk1a8yHmdBWXQXz/tt\nTcjwG6CjZlyc6SYMch1ovewtzi5Pr6Or18Rh81zrfCelaoh74k9SdabNd8Qd8RzdWv4Am+7NY/vL\nLxivXdw6pzbtG/JdrQ5np+UjVXWR7rtW8HGj9leVHDO3XppGhucfLotfKYevCeTe4zWOb4022Sdf\nGHzc3NXLIzN7Qqo5VGil38FfFIXg6+2DODk32FdViJjr68i4XmBtF26BkiocMPdJIQmPhuhQy8PZ\nZ+IOMokI0eg6FveguEqOLrBT84zz5kVO6K0ZyV4IwY2b7D+RoaqaXlFFmTBr49V5eUbn0f42/QyF\nAs1sIbOREBxzV/mN5nfJrwjlFg+ypltP8Ed7Nsb35XN+P1RWmHfFz3OGdb7/+hv8PvEvolt3Yuyh\nxaE4U4bo4rmqFZ7lhYDp/te8KCuvMs/7G5xxzo/QoUQY+Q5qyHf+NjbRsNF/SlXsGkNsauMGfvyk\njK+aTPD5yzavB3na5lmPrvjp0uIN3D9APtfeRGddHmy/LXl7dENgoKKBx2lV97IJLTeH/Kfu4EvG\nt0TSm/jrSP8rpEx76DKdxtDEhHSZETlLeBo7HwnlWdXekVIVJbf2pLKqHV0IOV45QCbNvG5wTHLu\naZSYYzWDbrY8Qv3Y0EEjTsKJIDqdmFDlxhrfH58/ix3djGmzL/jF++MaIZviJH5sbo25xxN8L61K\nXzE7sgnNo9sDofYDIeazco3veYQG3dd8VmqMM1/ndcyn6XDzvZoL/1OZRtc6UcZRyLKmMdu49tp/\nv1lIGatZzWpWs5rVrGY1q1nNalazmtWsZrVvoH2jSJn9T+eM+V+N6SfI4L5QZH+jSiYz6yMDEGlT\nnelnz4lkRexE+NcNf7u/96+MMcY0PgKp0niNKG5L9x+P5+BHif9n0B8N3QN/L8/n9t+j6ob3OZGu\niTDRUIcib5UG0Un37b8yxhgz/BuishtzcA047pKZ+OQJnA3v3BWz9YDMyYFhvN99jf//j54lY4wx\n7x7+De9/xt3mX5SohPHjiuq6H3LHthwjUvc0DFIooSjur3Wv3tMnoveK7rEWfs68jmLcs1wvn5on\nXaKRq9/998zl10Rgd9zIunqN7LWjCPLBsw+y4Z79+8YYY8KPiWRff5fI9UsKTxn/be45f//e94wx\nxmyqStLbebI9Fz6imyuvI9uj3gfm6zSvYa5hhQ+7bcbZOSeyHZhnvP41orbOM6EPFM3tLRI5n76B\nTMo55FARUqZcJVoadhExdrSQfalIRP/qCpH46gzPq2XIdLSDymgyLVPvKVOg792ZJ6K/tsraHjwk\nQ1FXFm1Z/Bj1cyLWR+JYSE3rvqLuqNaU0YhNkIWaEwv+2TPWL59h/aZeU2WvW0S3q78lWl1UhjpR\nYv7BWZ4zs4rObD/EJo73GPf1V7HB8jTjbur+aNBORrfiYDyH22STbgiBs7jCPdH9HHI632Y+G3dB\nGpVeMO6Cqrl4nWQUpl2qiFTBhuolospLgctzQZQryPDgED9SdRKx9yfI5nbFrVJRxZOuKnet3mNM\n126Sgaxr7BVF/MdZleQkEfm6sk11obCOVMFgeoq5JK8oo3aN/kZxZD0tTqjMOTZhdLf1e2/+xBhj\nTPYFkfuQHxSAc3JcAQbd94hbZVydaKw750dkax5m8SuzujdcLCOHiFdVOVR5ZXaOLNDiA9bq+UPW\n0D0kMzGc5Lm5p8zL5tL9a4138yX+pDpJBqM+wLa6fXQtluRz5YKyW8eyoTV05+U5fref5XtvvYuu\nLa7hIyqyrewp86oLrVArYdOZEyGiNA+ju8qXbbNX6MefQNfcNlU70f3yrcfYijvKaz0ghIsqyawu\nsx9c5HL6Plmq54+Rfz3P95JCwQXEexWfFRKng+0fKlvodDIf/+0FPbdkGmkyqk8fgQ5IHvP3SAgy\nuzhnptfQlZIb3fCp6k8she7EVTHFJn9Wr6DbW0/guXn8CVwu3/vxD40xxiwtktK9GmLPCqfIKj1+\njH+ZGKFD09d5rl3IxDsb2oPcjKvQU6WpW+j8SOgGj18VYHz4zZp4L66/QqbR48Um8820McaYFVUv\nqonzZIzUGziFcmtim84y4x4JqWhTlY5Gl33COfqKa+UyzWFHp3pu/KU3IG4uZbhPsoyvVmW8Tf1/\nYkMZybBQawnWOiwEZj4rboUy+48ZYGsej3jocviUYYv5JFxhjQfdfPRrfEe/wbyW1lmnRgUbTe8c\n/WkOp+WmCYeRQyDOPFbkh52qWJE/RB/iyrBHw8jXrvv0tQr9r0yiy4fjdQzhUzo6OtaL2LpH+jkh\n5M0YDRMJRkxYujGVUKUQ2VVaiN9xBb45oYpqBey/lmWsswvaY5Y4D1aV7bWJhOrhH0BudFoMwhMg\nE5mcZk3s3v+Pvff6kiw5zjw9tNYRmZGRWmfpru5qgUYDaIAEAXIG5OHszjm75+z7/lH7D+zsHO4u\nOcMlZwiADdENtChdlVWVWmeoDK3lPvy+QM/MGWKyn/rl2ktkZMS9193c3NzD7PPP8MNTyq43HPTF\n1tTiHa2YbyKFu9ju4IyxGMo/2I5pT/0Bfqa3y+fz4tsZCeX68oV4m9LovKPseGRbCI9N+tfcE7Ky\ni63/cwRbvjkjvrcOfr57wthOR5jrJzZ0H/DgO87EB7ceQp9xw97hJI4/Cx4wt/dviLckgQ3YAFKa\n2C3m3KhMf3wu9JorcF2wuCg90K/2M2xuW0t4fAPb9D3m/r0kNuuN0p7VS/R5vs4F0TNxpI3E+SP4\nrDuFHiIp2nf+Umi7G/jKTh99xoQ0rfRo58loyUzEU3OaoFOV0n6LHS4t4I/dRfY6zZqQTS3spj/G\nB9qe7Zrrim0kvg1xyDii9C05wG9OOBJdYdbs3jljGYiLx8Kgg9ll5ueh1vRBRSiEbfaTOaHP9rS2\n3BEfUyQhHo0UY3FrCDLELWT3oIvOu2Xm73mBMRp8yv+bQoKvzWFbRjxpflVP8oa4//p9/JARl5ZX\n/ndQkt+N0s9YBH/e0V5kXhUJqyX2ySkhuKOX4tmcQ/feEXqo9uhfT2jX6hFIvtsP+E00lB+KT2MT\n+68Zq0icdbJ9ie8piRdk/0v86aSAY8fBXJmfpX9d/Y5Iv8dvw/PHzJmB1q0Xr0DOl4X2yBfxZY0t\nkE7XlV5PlYH0uySm9SIuH2a20P+8UGrNlqrgXojfKYo+Q2HWk34fvdcq+Jx+Q5xu5/iMphO7bIpX\nq+ko/qEtJ188M/1c24z0u9JWZ37UJ+WCtJ/sNNBh9Ka4pMStkj1Fp806a0ulyetIqNdYUjx2J/S1\nnKVNXW3jolPsDd5aALlt04+r4iW239cmqNzne60sYxoVAiYyI37PLPO41xL6qMT1R3V0WjxjzkSE\n4JyN42ea4qYZtXXCRJUvG01so3Glanou5nTIwed9I1TSKnueQIz7+m+ynh0k0Gfpguc62n887GIh\nZSyxxBJLLLHEEkssscQSSyyxxBJLvgX5VpEyDp2t/dsumYvEiqqJXBA9nvk+kbYvKOxjYgkibLeq\nRAW/LBBlnOv/yhhjTN8JE3b6SzKX5RTojVDyE2OMMYtDImGrN4l+Pv4591+fAxXy2ziVKV68TRT6\n32xz3e99oCWGytAEu2QiPGWitOdZzgK/Pada889gc//lDGfN0ttEdX9TB9Hzrs6RjsUq/fYm2ShX\nlIxSc4WI3s0C0emUi4hk7veqOT9HtHRUodrHlJPv1XSA9fYCGZPOBcib5ystY34u5MWfkq2uLxP9\n+9BBVG9778gYY8ytts5g3iJK+rsdopzu94m41mtEsj1/whnHLz4h0vqeG+iMW6id3JbY5QPo9ud/\nBypgqf8jg/wf5jri8dC+kdBG9qHOyivbLqJw40/Q3rBLKbsG3+80db48QMTcM030Mn9CP8vnfC+4\nRrTVGydSfviSz9Nx4pazqlp01mEs88quTyvD7NBZz9ND8Y7obHB4cckYY4zzEVn0i2fcd+ljkC2Z\nO2SKt58R+W4eCYHTIerb7xBdddrohysjRM8Ozz2vEG0ONPl/albR2y1srPQFNt7O0k9fFFuZzaCv\n7EveX70+Qm2qDjWzhs3tPyQKbHfRrtQUGY29Xc6Fx47IIk2vkC2buYWezvfIHHQXxBewxpxu7JCB\nqCrj0O8TXbZHCZfbTlTZovY1R8L/SJJCtDU11iE3kexBG9tNzzO2Exb5/c+ZR7lD+jCTwZ+ElFF0\nqUKASSl77FXf3yZrMevnebUx8zCnLLhjqAo5Lcbs2cMvjTHG5G+QlTBj2rW/TUbhrqouvZGtOouq\nRKDslm/E2JQ9fH72gvY6BRT5QyWbE67LjGnv5aQyl7IuWVUjef2I9sz+Of7vaoCu/S4+v7UK0i/l\nQl/5Eu0eiPU+PiKLt7iiilxD+ukakmlwhzTWKfrZOEE/iwvoTVPXHDzBv54dYQMp8YxUdP8VZeFm\nMlwwDJA1c0X4/2Asfo6SyqtcU7pqrxEqLriMnjPibYmt0M/cqyNjjDFtVUg703n+hCq9Fa7IwDy4\nyVwJBWn/OMicn1lAfydPyK718rTT6WPOucUHlSuh97bO6TvHxtSV6fIYHFvYp+o64jeI+lS9R9Uf\nBspOu6cZE4eqethUneeoQNsPz8nsfXyfNTG5gs2Mdf9Xj8iUBuYYE9vZ6L9qoz2oajxq11eP/9YY\nY0w6iZ9Ia+06zqHDdhMbb/W5fmZFJU9KtPv3v/hUusJvRLy0v9ri8znPpN+sO2VlOItVxiTp5PtZ\nVe5Je5nD3iE+oFKhHX4ne4vrikPVKzILzGW/i3ZfvsCPHr9Gby4vtlMfYuOFPPo7z3FdbZ/vPRNH\nS1RoV7vKM7VK+IzzLraUf8WcdQYYT5+NV0eY9vR0n7pT656QRabLfV2Br1FjkdDIjDvoLZHiurS4\nyupXfG8Yxybb4vTKndCe2hl2FgirMo2NDHT+kP74nULK9Ll/W5UyIyusm9PiCBrs069uvmnOmujG\n6dL8zXLPwiHzwKMqeJ4w8/1Ua/MEaRZwMp9qbVXD0xwYGu6Ty/H9KSFwfMqAntbFoyF+hq44T0Z6\n9YtjcOjomG8ioT3ulzOsaTsO9oHRJLaZqPHcWg1uqoqqkFTFdTPXQEe1rCrs9JhTvQp+cvkNvBq5\nJV6/XOD+80Iv5MLMqWdd9pl/1WJvcdihSmhyyPteHBtZfS50xBbogfKiKm6VsOmm+KKmyuK/y2Bj\nKxM+j0NVD1mi368y2ECmxLjEO7Qrr6qGs7PYxIaqy10U0XflLu0KjXnvKGIX/hEoCkeMffTFkP56\nT3hO3yPbvdBmTxxjR++hh66eGxXqLP6cPUhaSMuX7wmdZoypzgzN7jR7kx9/yv2r4nBMBIVoCrPu\nHQgparfR/+389asvOXushT1l37t5ntHu8doZMi/nVtChqfP9qzbzsSTuvd/V0MnlBbYVFKygWOPz\nhRl+i4zO5HevGNPLN9ha9RAb6vtUUWfE2M/fYe+xHsWPLVzx2hEH18kOY3XwHD/+qosfqjXQpdPP\nXF0QQn1SaefWFujXtgPdHj9jrbdlaHd7KC4bbWKSi+h0RhyEP/pL9DAWl1e9IJ68NnN0LD6n40tQ\nvt2ntGP7Cbb2/neZEy1xeN17iz3NxViVxaa1DxW/nrELeT/GBoPaOx56eN5owH2KZfSbWQKJtLnK\n+rMsXtPZdZ2u6P/xyjr/rXTy8mk5nueaZZzaY/rZE4pwZ09InQLfOzsSN4+b9m2+LZSdnblebzB+\nzTL6trnEdSk+lrZ8Tsj5NSI97Iia+ozd+MU9VVMlw8vPsT2fUEctzavy6Ig2TaNbt2zdF+Y34v11\n/JlDKgnGadv5Hv56UmnLn2T/066wBvU0xtmnjOm+Kuom5riv02Ab+RPtm1vYdLer/ZpQUbka/mGU\n0xopXrV6BZ2Ew/y/cMn3HELb1if7spy4GdfEx3cPvxSK0F+bqrKlbmj9sNGuYg69tLLao4n7JtMX\np9mk0uW/IBZSxhJLLLHEEkssscQSSyyxxBJLLLHkW5BvFSmTqXI2NOQky/UdF+fcT8tEuo4Eegh9\nSGWflSsibEdiyP5Jloj2P7+iG6s1Il+RHxGhihaB2DxrwxlxfMV1r39PRYgfbhEV3f1/dW4/Tjsm\nUdvKBnwbC114U9y/JsMcWScyVksQMRzmiMDtTnhP3iUD8u4/E2l7+UMyGLFdosXzJJbNkxwhxNoM\n9z/9+4+MMcasi9+juULU+dd2op6VLtHvv1K1k0txI9R+p6zXAnr791UyT3fn0ddmdtM8XENXm4Y2\n/MMR0TqXh+he/w5Ill5CTNpndCZ+QR8zxyAi/Gmigwk72ZHP7xJ5vciAJgpewP+T/y1td90mkuxe\n5tz30g1lLf5Pcy0ZBmmPT+fSuyNlAHROsbFP+yJrqsIkfo/JufTyDp+n7tHulRWxq+uc4sEbdJRc\nIwo8tUz09vgNaIq9A15X3+dMbuwG/bl8DDfDVQd9Tqnax6VY3w+fksFdfQckzNSGMq7bQmesqxrS\nEhH25D7XVXVucjiJ6h5ja505MiDTQdpZnBdr/yljXtgmYz3/gKxSTEZWVGa3JrRESGgRV5rP51Q5\n6PUjMiLZN9hJ5gMyB6EFRc3PsOUJ637zgujv5RuyXS4n4zS9SOb76oJsVLmInuOb6L2a0+sx1/VU\nZSriQ48dH3O40/3j0eT/UgZi3E9FGZspZUMuO0TeTy+P6Ku4TcIJsgNnQoe5esynvlAApbZ4f1RZ\n5vIFfbnMk/XxvgPay+7DFvMXtHU6umSMMSbpxVYzUXQx7WMsvQnmWqGITpdTjP3U+6CFDoSgCQY1\n9xaI0N94h3b/9t+DOrPrHHTmPhnXQI3P1+Z4/siJLoOL2MrWDGP5GDdj+qqi5DW87j8CWRhWFi6m\nc+83N2n/SJVtKm0yEdkiWapXV2LwdyhLE1c1khFjXD7nc3uIfs+K3yKwpay/XagocXZ1HKoMUCCj\n29rBD07OLK+8Q+ZlJoHebELmXFcqe/ie4xy+LKKqKA+H+LDFDXEjKJNx4yf44+QBc3VhFnRboUy7\ng/I1+WPmhrtFVq/bZm7ua246yuhheYMs3tY9XmfczO1YhHGaXTEmMyWkwS10unZzyRhjTLnKvZ5+\nCq/P3g5+qVYW/wSmYfxxrnMvMxeW0qpWFBcf2Sr3i+h8dDfP/PNoLVmYV4WEMf4zHWcsbUp3pYUq\nqpygi/X7zJF6g+zWg3XZZBg/lDtG56mIzn0rq+bxMEdtfTKVHhv+++AI22pf8rxwgDnZGKgCYQI/\nuqa1elRDh8EONusQGrZTEQ/FwjdDQfQMc78oG3dP4y87I/odUHWTzKrQs3b6XVNWrTbhWHFjQ11l\n4advYru2NuNVb9K+5Ax6qIsrLaysoXuMj4rEeE1MEJ6n7AVcIfSZXmTOeaMT+Jwxixtvmat9vldU\n5vzgIf0pFMSfIYTPIKnz+VeMk8tMKs8tGWO+rjjmjRwZY4xx9pi7o6p8ZQMf2zlSRrtDv7IHfN/d\n9Zqx5vmUsspGyBd3GltNBPFzZqyKhgJERJJCDpfpQ+1QFRXXmHceN2Pu88rmpcuhqm8UT1Tpz8F9\n7H2eW5bN94VE9s6PzTeR1DQ26H/KdeVZ/FV0oIyvjzELptD5WQGOhMCAuVgJac0cotueKsOkxOWy\n0yW7fxZGH74eun29IX218C+LDtC1l8v411KBOV0P0a72vtBkM6w3HzkZa1uW+67W0Euwocyy+Kls\nD+Hu8ac/4fND1qe9ONfFn4lnI4kfNQWeM3iLdt5+iG86TjJnelvst4MD2l3dY64sjbGHz7ZYR2fa\njOd87cgYY0xxYYLukq2OeI6rw9yaKjNXj6ZZVyIF9B7v8XlR/E7JMXo1xpjX+Q3j9zIH3jwQ0lPE\nItEwGfSzEvdJN8UHc4L+1nrXR8qMRLIynvzC0j52fCR/XRMiYgbbdg7wUwsL4gKLqEpnZskYY8z0\nDvu1zCJ+JHTM2M8t4gcrHdro1do9M4uuhi76GA0wr/efsoafPmJ/+ugK9OySKiTGfPiTD37ysTHG\nmNKFuFw0B8cGW6iL48atfdu5qhc9sTHWwzL9LUz2eaoWZ6twvy/Elzk3g04PtiEwioeY2zbtcbxL\nQg0LTTezTH83uqxns1Pox6Y5EvJhM68es6fZHlNJ99UzUBXvPkB/F+JFufsuNlLTe58qdyWS9DOx\ngN7v/JC5/c4t9lLPXjN3/H76X62hZ39EvuyaMqlMF1flnpH01JWd5Ef4qmk/cyUpnkJPf1KhEkW5\n/FzXqqHfqxz+PChuGo9PJxzcEw44xtOTDv+hLYm1RRNxG2Mrilulh01W/OLXmdF81D3L4mppCAkc\nC2B7ffEVlXPMw7FNe/o28+loG9vz63esRzxD5ZpQ+V3WrktVbfKLB2le1YqbWkN7bca8NaIvwy5z\nLpZk/vp9fD++zBgnfNwna2f+D/QbY+cZthLRWNaFchuO8Ad2N9fHVOmssK9TGEGeH5ENdy/EW3RO\n+7ua/J0U+nSIe2Yk1Nm/JBZSxhJLLLHEEkssscQSSyyxxBJLLLHkW5BvFSnz1Xfy5n8zxmx5QVE4\n3ESqXqdUcedXVP6Z7xD1++K7RJx+2iYq+DhGdLMTI7L1Zu2fjTHGfKyzsr/O/IkxxpjpIZHyJScR\nsqcu7vfYRbarIo6Z6QbpxsUnQqI8IBpZ/oQInCtKpHD6JtnKw32iusP4kjHGmOgL3k/NEOv6/B7n\nABeeEK3NvEN0t/iUaHRniYzBME+m+36C/jze1NnoGsihcY9M0192iAA2bERr3/eA5Pn1n6OXGzr7\n+2KTKPzlNv8/9H1mftCCX6Z4+XP68h7Ruv1tIrXpxyA4dqcYA9cm0dDQbZAv7l2inV+uce97vyDi\nnLCTJdpYVbRzDIqgFydynBuRJbpbJSLvfk5frytOOzryRcgGOVXm4bB8ZIwxplQie7beIgoan0O3\nxXOuK1eJNCeq6NQZJsLtU6WY/GVB9yH6mp7SWdcpxvr8JeiI6VXum1mkn1eXZOXOS1w/5SUqW1TE\n+lJ8JekNItRpRfhzOgv6ehebfJAAUZRcFk/RgDEeeunvsED76yVlDG5zn0Rc59J3OHPcUGR8lFU1\njUnlmBDtKugMsuOKuRWLYlOhOP1wq6pG/kTcFZu0Jyr0SeVI1T/E3h6/wTiOj4gOH7wgc+NOcL+4\nMjz9Bu0fqppJZBO9ZvNEk09zfL64oqpfcdrdVDWr68jFa2yg8IQsUPf+A2OMMf6MQ/eSDuex7Y17\ntPHNQ523jagKh7IM1St0MB7LxsWq3rwSl4mbzN7ibfXxlP/bguhwOkBfr+aYA5W6OEWUlNg/5v71\nCn5mcRUukrZD2fUe1+Wf8r3MO+im4qOfxW2dJ09jA9kzbHRQnpyPVvZeGeGFNOiHOfH+TIew4ZbO\n1EbEBzIvzpNznYkd6iy9z0+WamWBjEFEbPdzqm4yEt9Hpy9+E494n3xcd/iSLFhyg4xCWKiquTmu\ndwyZ064I19kTyljksLXzHWzs7PeqqPAez7mqXB9NZYwxy/fRY1RVPXwa9ydfModaR+j3zQF+19Fn\nnB89AhU3+xVz9qKJ3YSUET/8gu+3lE1cfQs937ohriKDD2h0sZOLKzJPjTqZqKyLzNFp4cqUxZO2\n/Qi/++wxY5WSvwo5VQVpHhu7I5RV6Uy2nFAWq84z9o9B4I2VzXpeYZ6OVVGhJRTTnDKzdRv/z8mv\n+nVuel/Iix/YGBuvzlV73awfuR62dvhMHC8rS8YYY84LZNM/+5RM6u3brF2RObLxZZ2R31DVdrfJ\n5gAAIABJREFUC49hkniGjE1P59F7NSEjVXnwi1PGJNqkHQO7snte8R4tovOu7fp+xBhjOk7mnseB\nzbV1vrw2xJZdIfxiu8VYT6WVgdSexNlE77P32VP0VQluqKpOV3XuOxKSxqdKj3Mr3McIQdTXOfeq\nqu91dI7e5VEFDD2/I9c16HX/0IfC8YkZ2NiDhMTDVBYyqibumLAQQKM+32s0mWtuvypkdHm+rapq\nUMrgepdYH1PKsIZnaU/Ahd21KuL00dYyPJ/6A+dXLMm1V0LXeLJcG9Za61TlmdvzvCaCrDF7VRAn\npRG2HPKhM9eI61c3sCl/ChvKn+IPfaoWcucO+65yGVupHKoC2ACdeSdKvKbs1+jr+BYZ00ibsblK\n8H5NlROzNebU6D4Z5bmXQl05eb2qqsLMHPvfsqoYbYWE0tpbMsYYM9TeZt2wpyg60Uuyz3rneoY+\npkfY2EjVnJ5Kn4kWY7qziP5Xt0FRXK4xDlPi8lrQOlUTj92lR6iNu6xD87vo8+U8+85UB1tNi0PN\n3gAhbvPjk/pR5nzmJb4rakM/O0vsUS7ecF0qiz6dTvp/uU4/RzXmWm+oij9D8Rip6t556wf8/7l4\ntDJCRwhV8EAV52pnX/MtLY4OjTfGeJzJZ9wasB7khRDwC/k58CuzbZNdDa/vS/o+5pVd/JEuJ2uz\nf1F8OlX2Gg47Omhpvj3fwz+f7OJHY9/HZvPiFEt2aMtAiI52lz1EeI4xjei30NQSujtvMkarKXTr\ncrF+pLWePPmK3zxTHtr5299+Yowx5kr+/0rcjet3xP0V5Dq/fvNEgrTvwxC2lTOM0c2fwL1yvg1S\nJiqUcK/GfS5qrCexADbWFKKyV+X68wq2veGmPztZ1l679gqtEf7TKa6YtZvsoRLyMcMWyPZwWFVE\n7diUy4teSnv8Hjk/V4UcrfFBtbOTF5/KJnrIFcSFs4cNl1SJs7qM3nfFj3T/XXhNrytDP3Ov2cPW\n3E757UXW9/km+lm+J5ThhGOzzlwbCn02VIXOvvZWW/f4XRFXBdK+QMW5A+b8oEF/hi33H9rSKOeN\nPxU3pTHz1u3G5wd1ciQuPst0Bn9zXuCmDu3z4jFse+8I2z1+LE7Vefy/LTDh28HPRDLsX2cWtZfw\nrepz1o5bs6yJDpt+iwpR0z7DFqZVGTC8IJ1oPzat/WyrwHwdjtHNQL8pXJqbHsPcsYvrbPptbHZR\nCPJcDR1lhPpt5kDG1EqMVUgVHo0Q8w7peH2FfbJtmf1mxMm+r9HAtiLdqvljYiFlLLHEEkssscQS\nSyyxxBJLLLHEEku+BflWkTJbJbIwX84RwfL9iojX3BLRR99PiQY+e0LU8sc9uGHss5xbjB2QjWo1\nyHTeqhIRf34EKmRJGcjGQNmsFBEq++dEE29ViPh/9gFRW1sRdRwtEpV8+4VY42/wPM/OL40xxtRe\nvGOMMaYk9ufhd1UlKUa0u5wnmmxXtHpwRTv3xyBs1mzfM8YY02zx/x88BuFTmSH6Ov4KhFDxY7Kl\n33eR6Xm0QSbgjjITL/+JjETIQxQ90oe/xLiJMhP/M2aYzJt/SICQ+TdZVWSZIos7byeL/XeKQN9e\nIEuzdUYW4vTy33Dvt8mk/cXveHb7hjJwqpTQ/3dEdn/7F0I9hbl+XazoL6bQfajyU/NN5ErnfW1B\nxiYVVZUl6f7sGJ3F5ojGTk/O3qd4zV4IKbPA92aFFogrEn2hCH3riPb5I0Rfp4QCuHzFdWe7ZOkz\n80TgF1exjeIx7egPVGnmFtmxR7+kkth5lrFZUVWjpNABJ8r+X62QifAKRtELEoWNiiV9HCfqm93l\nPv4trk9t0f7cPjZWF+P4VY3X2SS2MCNekfobnYO8IFJuSynKnRZ6YZ7sVXaPfsbOxTmzQfR6FEP/\nZZ2dTQnR4leVpi9+h23mXjHnZteVQRdCx5PjulkhaC5TfK94LqRRhv4EVYlmoP5cR+YVUR/nFdn3\no0tXjAh7VNwD/RY2PLeODfQXFdpWojRwk6xScYJo2ENXXh99qWmMd8SX485z37BTEflXOqvqxmY6\nyjKFkspihVUh5wYPzF2Q0R0pi51QZtLYVblhTGR9eUy7PBvY3mGOCH5QqADHOf2sdojY+3R9JU82\nLjxAL6UjrkvYyKS2PMqMlsgMnGeUpeqIK+uC7M+kApBLPBfOPXzEUGeLI8re10R288595n4siG2c\nnKqiy4jnvjkEPZHqqtJbmjHP5fDDXgfXbdwATREVV021iN5d4s8Ier9ZpYOJr6qGyLKtLIGUHAsp\naVPlNhWoMEE/c2MzJV6tRebwss5MD1R5Zl3j4hYHRr7Icw7OxFU2xsb7Zdq7LE60mCqZLW2ogkMp\na2zc2sz8CB61ts7KD5WGaXUZo1ePQGE6DrCdy2PeP7iH7vsjbPXwBVlhl65LqLrRJKvTzaMLjxBu\npRw6duoc9Pc+gg/NK46ruTV00hL/RzCF/9lU5al+BURdWpXMUjfQ8UpCaAgvNj5SVYg3ylBGhK7K\nCUE3kC0VxSNSUdZ7Yx2bqGRpd3oNHV68xm/54rSn2+T7E26H64pX59f9QsclYkIwLpAB3X+Engpv\n0HtL2bJRgYErKtPrvWIujtv0s9qcIDIZz6CqY5118IPlMz73BNB/X3uRS/Hrzcn2glHm4okQScME\nvu+s9LW/fPbFU7P1Lv4/sykE0oX2PkK0ZGbQmzOID7kUotTjIHs4vGL8906xq1GF+8eV9bsqaXeh\nqi7RecYlPBKHgSr3ONw9M2xz75c79K15wVrQUwWx9khtr3OtY8SzQxHuPXShi8wGyMVNVUCZVDPK\nXjIGXj1nUBFvR18ZSiEgCwf8f9RSlb2weOjc38yP3Ipxv+M6tur0Mf/rHeZGO8K+NTlDe6Y0tueG\n6p7GS//nh+hjtoKuStO09yu7kEDSdVf8TTUfOk5q/ze20Q9bRhXSVAXpdZuxd3qEnhXKq91Djzuo\n0TSbrIPrPdYh91hkPj76FR1hay/HQqav8v6jJ0JIOtnbmZt8v6wKaM1F/HsoxLhkXaztsRT69z/V\nXnAk/r8c9wuN2Y9XxlQVLQUZ36kb7KX8v+b/5Sb++KZ4WfYWud/iY/b/M6rwc/Y+vsPm/9oHzKQr\nprWNPpbeFgrD8JyNFhnuVooMf30bfS962E/vxK/PYWbv8t1+S1UkB7y3NfBb/hB7inCA+Tu3jm4X\nEszzutZkn6rkNF6zFj8+w7/028yV5gq2MNLexr2l6kIFnpsT6rU9YoyzZZ4feCCOsS3W1kWhDppC\nz8Z6+OvyJb99zt6whj9u8pskIwTGoYt231xlDlwJAdNp0q6jgirn1NnLBKfFBxXiOZ5pcWMZdH/n\nBuvIq13Qp5n0kjHGmN5T8ANT4no5U2XLwzFj1axg66djbGDpFnPGKY7CWb+4HcXJkhLf4Nw8ttfV\n/nRZFX52/djQnJA8nTP9NptUDdX6N3dP3GIn7GECkW9W7c+nvZV7xHU2B/1MBNhLVIVYOn+N/Tj7\njOOO7CGqvZNRNbyGuN+cYe35dMqiV6V/cXGRTb0FksahPZwxxhRqDeMr5kxBiPD5NX4DhISEuThn\nX2MfCcF8rN+Zq+xn7ELbT3h5UqpQtXmTZ1VVDTXoYr55VcVt/1KVcFWBMJhQVbcYYzN2sSZ1VLXy\nbAekTEJr3wSw0lL1JnseHTRVwTVX0L5RSMJIgjXd7Sf+4IygO7vWvo5NPJ6aQ+cdcXVdocu40Ei2\ncFT/5/ulM8Zkal5+UGu3CekHRpfr7cOvK17998RCylhiiSWWWGKJJZZYYoklllhiiSWWfAvyrSJl\nEp/bjPnfjXnwmKxgIvGJMcaY3E2ipO6/JXo6GhHle3hJJH2pRNRwu67KDdCWmCtxApwvEYk6jxFz\neuc/EZl7fI/I16z9Y2OMMdkPiWQ9yBB9PKhz/XdniRp/8Yqob/geagoGQeqE+0RP2zE+v3dGdtD7\nPbJPe/VfGGOMKave+/0hkcP//FBZqLfJMLz9O9437xBlflMiMjjzDhG1hQD9/PQLor09cTL8fszr\nspcodvIebP1lF4ih/i7PPXXRn3u/XDSND4jMP1Ic7kaBCPn+Arp9t8xZ1jcxMq1HT0fqExnIoRAk\nLbGrL9fRaSpKJZHf3CaSPv0PRDmX/4T3nz0ganinTp/DEbJC15VBFV10/ehiZoXz4/FFMgLZ57Sv\ntE+2KHmHNNBUiihv/ZyxLZyR3YoLheWeIVrqi2oK5Ph8pMxEMMT/kwtEV8dX3P/kkGhuKiZkToZ2\nNC/Qx6zO3sbF1ZA/JNO4FFd1pw0i9UeviOq21S63ql7ZVBkns4a+Y+tC1rzROUohe7zr0sMq0eLS\nE8aveEY2KqpsXmqa60+PaLdRFrF8jF7DGaLgyaAqA42I0Jf2iEovKQo+L1b541Pa7Xdj0zNbIGn+\nkA08EQpiCbsY69x/Kc/n0SnaO/seWahXn4Ksyl0yTosxMiGO6PXP+feMECuKvNfFdzEWIsQfYCz3\nDnhGIytumKwQeuKASb9F5PtGGuREU9dPuYTcu8UcCnqZX8MaNu5U4NsVVwZOFWp+WQY91C1xnysx\n/GfW6KMvJn6Ovqp1jGjPSFWQLl6SDT9UpN6j/tnEPRObYQ6P/fQvFtT54haR+6gKz/iHzLnqMf0/\n7MkWFxjzsNAYM0nuNx3H9op1fIWjyfNjyjod76C/aIvr6xWyRxeqlmRKoB/S80J/iVcoLu6H+Y7O\nZduwRZc4DSoVbLKxix+LdfElJkI7WhrnupL0zsAEC3g9KbVYL15+QZatqooRHXEFLGVYSLxh7tvv\nTDgFsKe9XTJDW+KHOhBiyq9xn0qqal8LW19IMTc6HWWGV1S1RVm2p8+Ys7Ue+uhWOqZYY55++CP4\n0AZDxjbgYf7NqYJK3skz56bwc69t/H9SrW6Cbvrhn7NmBZNc79UZ9rIq0xTLqsqm7JbDxf8bDWy8\nvEcfu0L9PKswNttPQUvtijMglqQ9LRd9uVLlEruqLk3PiINqyP8jQtoNv48Nbd1irXcFeO5sRlwA\nhjFpFVlrN26R4f3Fr/4T9wljG9m4Mq4O9LVfV0Wd4B/PSv230lZFBucFY1/Ncd+RHf8u6gBTOWVy\npTPivhGaLt3h+bYrrr/qYFueAJ+/+4CMbU2ohqKq9XXEmdNX5ZiEOINm5EvSqvAwMsxVX0UVjJSt\nC00gVsYYXzBknCn0eKWqWGd5xlHgFDMW70ilxvPi8u9Ld9G7QxnbN7/Hnw+FQHWkaFc/zzjnHrFO\n9GqqpCGE1MSfR+xxM1J1pL74eRxhvrM0K46+hSWuOWaNO3xyhE7Eg9S1YVsDVZg53uHe3UvacKgq\nb9UpIZQdjEk8KUSHwa80q+whUrdUsUocho7A17q7jvg6tCvgEn9cDxtO+vCToVMyw8MYa389xJg3\np1nrXBHG7ETuKyWepPQFevJ5VdHqJYjvN3PiOlEFNl+Ufjc87O/cHvGSDOlngqXfPB8zpp0w35uf\nFS9GmX7P+fBLXaWav7qPTXd/DS+gLwZCJVGnvZ0Afj8d/MwYY4y3w1p+6eU+Z13aFYiDFj7y4iOc\nKlo0es7eaENVBZ88ZHw25hm/wgr9TJTZ/zuj2GBTnDqeBfbZbXHq1Ib4Wb94pXZXsauWwdYTBVXd\nqtMeY4xpfb5iElM8/+kbIUXXxLlzwF5ursye0iYE1cUR9tL7Qc1cV1zKug9UaMU2wH+cia8n0hWi\npc0a7/YzvxoJ9p8LKT4fzTBWmQfiJ+ryeT7LWA2FPjjJovtQCv+TL/G8t26AKiuf8z7WwThebmOL\nzY54Mqbwr6llIaNFNfL977OPC8+ig0dP2dMsCuX5cpv3XrvWi0foPjfg+37xNoV6jGHuCciWbhRH\nVFKFnZ3n6MEhlO/TR6yN7Rm+9/RLfvvZ7/CcThGb86n63HiEf31ziG+oCH1WHvK9WSHU7UJcJhyq\nKqfxGWsdcU+p+p345NJ3xAt3izmensE//uffUj0qEKFfSaFC/F9TtFxLnNqj1VXdtJLHF9nm8I0F\nVatyCqHj1vgm5vB1KxkQQdk6dlXN0f9AgBvb9PupJs5JTwR9hee5/77QKcYYc7a/a5Ib02ak/bNx\n46CaNWyreip+SPGU2SYVoyaVUntCwqmNgTE20i7St3wW2xj6J8hEVUnTb4NyTfNZiOXGiOf2eoyZ\nQ2gwj5ScuYsfsAv2W9rReiH0pn08qTI6QW8yhjNL4lfSWts5VvPFdXMovs+afpuNYug+rzk0Ix65\nqH4j+sR54xlgY20b7XkstJf7LSFnvEKcD/94RUgLKWOJJZZYYoklllhiiSWWWGKJJZZY8i3It4qU\n+cVPvmf+rTHmov9/GWOMmf2+0Bt/z+fd+0T5Np/ovHKdSPmzcyJXzg0idst+oso704Tkv1f9O2OM\nMcM8kam+S5mGhY+MMcbUVd0jpQzHTA50xX6WzMAnBaK27zo4wxo4+EdjjDGtMEzlD6fhhHmvwPnH\ncZwMxPSQCN7BWJn1IzLiJyE+v+vn/wsviBz+f2Mijx86iHrORnU2+CURwycPaefUPLGzcZ+Mx4zY\noV0/Jqq9M6RdkQaRvR+IPf51AdTLo7/eNZEddPeBncj5k2fw2IzFS7Gp/+cVYY38kMj0XBcUzvHf\ncL3dr6zJAtHC6hdkJ743R7bjiY/o4+8K9H1znzOokR/9a4My/sF8E+m76XtJFXF6a+gwepOMXVGR\n9svXRIgzqmIxu0UE+6JIBqKpqiaXWb6/tsSYl8JEN48LZAqmO4xNxEW0OJjg+qrOA9bOiUg7hSKY\nUrWqCzF1K+FsEstkfi9egBrIpWj/4gTpEydjkD0lerwSI5qabdG+YJf+rdwgqls+IXtzcsh1sVu0\nOyAkTWiH9rfEMVGLCwWxSTsWFonwn7UICxcOZbNbZBTiC9wncUz/6qro0zwTqiON3gO7RK0LOl/q\nF9P4/E31N48dVM7J9sUT6PG8qApJ5/RjaRP9VzNkgAri+7hUFZe4GNSvIwUhEZoj/IK3p7OlIjmf\nWyWb8HEQ/zAsMXbVNpH4vObN7lNl6JTBLFXJdmXS6KglNFBMfEOBgJj6B+js/HOdsVc2x2HjukKf\ndpVeH/Haws/ZrlS1Ik82aEGoI0dXGU5ldneudIa2hS2c59FVoMPcLZWxWY+qvpXatDvlUvZeKIW3\nf0jWyzYkk9BVlqjQ5n5XT5njQ53hHY653tXE30RXF3Q/2p+cpf8eD7ba9pDdqrR07ppEqWkKFTCV\nYGxHRsggVXFafYc5sTJF/3ZeY6NNTaZ+mfbWxHXTqNDfyVne68qkIk8gBE/K8gZ28WKPjHa5yHNP\nhWLrKWeRTqua1j6ogHZQ/CuH2Hr2nHHInzL3ctkjY4wx8b/4U+7/mrmZDKmSxQ3aEdIZ7GiM95G1\nqHn6ObqqnTEmv3upSicJxmJrhvnSaKCDUoyxmV2gL1c1oZaEMvDGsK2Xr7iPwyvjzvE9qdTE40IX\nyG+FhJ5yKtW7onPhdnHSjO6zZiXTQqU2mEuJOGM4Flqh+AzdXjmxldN9/Nf6Omi0gtJUpT5zsCPk\nzkkJ3U4qfO0IcdgSSuFknzkRnOY57bL43abxo2MhQpzOb1ZZx7SwyUoOfTc7zAX3QHwlTfSxJs6C\n6S1em1dCnpwd0e+c+EDE9eJY0RxxYVMVIR4dQp+5Msz5cEzj/I44Gg4u1A7u5/fzvdUbPDcxx3vn\nzteVYTLrKZMKk6Us57m+rfPtgRQZ0vqArV+phG02irQ/XGVuB9z00y2OidAC16WnWA8KASb3SPwv\n4RTtDo11X1UxiaZiJrXAGuqPotvGhPNFCLvCZN8j7pL+QBxZQg/5NE/aqoAyGCljq3S+Pzjxc6rC\nEWOPsrCGLRbOuU/bzr4u5AEZ0heFykD8F9eVvR7+1N9gDFdmWcOnlAE9WmVS9XvMmdmiuBDc8BKd\nKvM850NXj5Rp3cqyZxl2eP/kQ9bMoaqWuIRwbMyxNqft2FKhyNjPqJpTUHN7ZUpIDztjkRNCbzNF\nxncgH3F8F/2uPNb97nxijDHmTQ8bjK2DhtgSL9GJAcEzSOEnfb9lPzz6HnPtUx97Hl+EuTt/QH/v\n9rDVvrgobmv9zF/K9tdAYXdazJXdOcYrIo6YqKoVeh34sM1L+u2tsy71hcp4fBs9bUzja05VZcqY\nn5jiTa8pXXKfXpfr/I+4T7gt7q8ee5OQ+Ai7y+izd3H9an9DmxBzLiHlYuxnPFnaaBcXyFDV1Yqy\nifNz5qPxCRkR0vVCiy3fZN5nMvjnOVXCefyKfXYgwtpU2YW/slqjHc/Oj4wxxtzXftBbRedpJ2vP\n/gG6svl4f/gMJE1ECO5EEbRXaVK9bYrnXAmtVLcxZgMnfqPUpz9loU2jQi9cXdC/uSS/6eJCnngH\n2ktozY8I6BgRL2BiiT1CYIHnhsbMsfSSEJU83gRm8TVTYfr35bbWvRJj9+aMPVpNKF1/jAeNKlo/\nmkvGGGOyu8yxCcIpL86We6r6VNLececQ/qiyeOQyQlFcV+pl7l/X3sGr6lypOfrR8+Bv3QEhEcVF\n5EthP84xduF7rt8lTv2em4frxiY0x/NdbDlfoN2mpb1V/WvfF5mPmK0bN01Wv5FGTvpaFlqnraqe\ns4vYYPoGa0W5gX+rnHEvqcq0Va1oXBZvppffSgHZWCTKWE5pjzIdpO+L4gc14sA6y+MHRiN0EBXc\n0ytOsPMsz7eramkywn26qibas42kC/xbfcD1nYsjY4wxAwElo15VmUqr0mWcdqSDPKfeZc0LC+Ee\nn8XPVIWY980xx/ua63GHuBZVqbZTEJfaxR8/LWIhZSyxxBJLLLHEEkssscQSSyyxxBJLvgX5VpEy\nH24Ttbwqgjj5ap9I+T2xz3cPiTCdvaO64z4i2B5V8bj6kkzCidj85918/+H8D40xxrjFJXFvSDTz\n/XMyB18UQdLsVzi3/7xBJuC9vyS6mP4PRMr2f8ZzZtvErk4bHxtjjFkVUqVvA/Vx+URVoJ4QXX3/\nL8gE/JOiyRvlJWOMMSPxqniKIHD+9Trn4nunIHQ+dZMp/46qKLl+RIRv80vO8X8eBOnjSRHpSz0k\n6nx7hojm5zt/aYwx5tE79Ps7qkYwdTFj3G4irAd1Itn3fkoW5EvxTVw8R5fLvwTJ0In+zBhjzOCY\n88Ppv6aPsWeEFU+niAxvv0uEfvXRXxtjjLnzQzHm/yOZzeFHRDcvPuG6+YVvdsY/IJ6MiyN0cXFA\nZmHlBpHzmU2ioqe/IpqaPaT963dBBaR1fnDnks+bZ+iuqooqoVXG2lQYu7ZY2B1bPLfjQbeRGNHS\niJ/MwRtVNUlNo09/iO/X7YSJU3NC6hyQAWiIf8LcJPK9KETPzlNspV7TGdAxEezC8RHtU7R3fnFT\n3yfyXzsleh3R+ezA6hL9f0GGOScOmXCGaG58ifY0B7w/eIhN1ZTFX3wL25ubY+7tnIjP5DWZkFtR\n2h0UaiC/jb76Lb4XSJKhjsyih0qPyH84SETf3yLqvP8VektOk+GYXeM6ozO1I0WT+7avWeH/R+KL\nYFMD8QG5ppSt6RwZY4x59kJViMaM3fQMfQ2s41fWVPXDprH2ztLHywpzIn+JzV2K18LZxS80xcOw\nsUxG8GUNnbSaqu6zCR/Gbb/QVBX1fQqb7c0x5nuf0c62MseLN8kihWLY6JXOh2eUFRq84P5uZRIG\nLbIfYx+Zi9oxzyld0t7+fWXRq9y/JmRPeBGfsBBTJTUX/RqV0UdL56/bqjLU9otb5SXIvJc+5vbc\nu1Sjy9xXVmdyTnrAH4Ei7R91dd79Er1ePJfti58jMo+txx300/mHSjj49UQTf7oshM50jPfXlZ3n\nZDqO68yN0AZz0DeDjS6lhQRKKZupc/JzQqO9+FKIRNn02z8WknJG1b/ES/XiDH2uzZGVzKlSj0++\noSw0yKsS7ck4sNt30m+bkNBIC3dAxJTc2F7KoJsJUiSnSgSVfcZ+6iZ+rnSOTnvK0oQTzHenDdtf\n1Rn00AyohF6b+3Wa3GdS3e5LZQp3X8EpklFFwtEY9FZgFt3P38NWcy9ZB2LiJWoKHeBRtaW31uGC\nSfmZW2/fB4H58lyVqISMuwhjexP/FphUi1LFMdsK69bdd0AhzA2xhUEFG+upyklfNj3J9l1XEsq+\necO0M+Gj39kj7lsYqQqGEC79C9rV1vNr58yZSg0bN0KSOLy0o3AihKS4eja/y9wJJdFnR1Wayifo\n7+Cc7+VfHRljvra1Oem/IgRn+6z4hz6Urppm/IZ1oN0SglPo2cwSc2lxATs7Vj/SCfYB/S4okoMn\nPNem9yF3QP1X1bwjfEhMKJVIzC29YT9zqlQXWZw2UVVaMcpYtvJ81lBmNSm0ql/+9OZ9vucMYhOZ\nWdp68AZbbBbQ8dQCtl0pCZkipGRB3AUO7f+uckLGuLCJnji3ikVsP5RumW8iZ0KexOPyW1K9PcA+\nseuQH/eDvCwnmJtz4nFb2eCCV1OgvWb2WCecacbcdkK741lsvLx+xOc5oRbK7A/9y/ix0T5rqD0D\nV5ZXfE3zCfa1U+Klsh9jOzWXUFx3xElzwBwsZbCNYU58c3ruWYHPc8oA33uK36/ahNIVkif0Of9P\n/znjdSS02GqD9nzmUQY6xXPS58wJRxAb7WifvH+T8a8Psa3xPn60O4tek6oAmWkzV50e5tR+kPv+\nyXP0tHsDP71epp3mfzXGVmoaj4N+bB3z3O0t+XvxXRn+bfos26ZdxH67b/O968ighS24NO+qXWxt\n6OUZrgB+reVDd2khlZ02bLshREaxSF/zh9jSVRGkyvEBY39XiLkLITreF8dgaovX6c0lY4wx8x46\nk5zGFi/Ftfi9Ww9oh9Cx731HCEAhNQYlnjfx47WA+OXGzKk7y9jufFyIlz9D97Eg/vPlG357pVaZ\nM8cV9pdXqgbU7NDPnng4xuIxmb3Pb7GouB/f9uJ/nD7exxLoMy/0cr2APkp9nYp4wJj/5SGsAAAg\nAElEQVTNLE+4V9DH6Zn8dF08VNo7nah6U7qJzTqnGbf5RVV72ma/PK4JsRTB9zx4jz3A2YUqTApV\ncV1xe9BXaJk9YWge/YzFL2iXD3PNcN9WTajwS+ZIMc841kpCXgqtVxnRz64QkJ2h+LPc3DekCpDB\nqa+rRS0urRtnMGKMmzF3ynaDGa39qobm0L2rFdpycaBqo0J+J13cO+EW96pOO4yFUKwU+I1mVA2v\nKiS5Q/ugnPafDaHKPEH+P5INNq5UeVfcYjlVAy23VbEspMqIBfZZZ0XeL08qR+q3RfFIiHpVe6pk\nVcF2j/u7UuKkUkWujPjdjPxg9Qqbe/oVv8m8UdqXTvDb1D7DHBgnsPG8qgWmzB9fbyykjCWWWGKJ\nJZZYYoklllhiiSWWWGLJtyDfKlLmsEOUNbIMqmLz8H8xxhgT/QsiXrlHRJYiz4hEvbVA5OsXr/+t\nMcaY4M+IsKVfqPKEl8jUjSMiXc4BEa2eKldcLDzltQbqI1T+DQ35c9TgviDa2LtBBiO8r0oHr39s\njDFm613IbrZ/SQb15k91hiysiFpJZ091tvd7vyVT/asfE4l7fxq0w9/u/A39Uo34D6dBuMy2ycSe\nr/4/xhhjbr8hQlkPLhljjGl0idLeqhDlfVWh3bdOiUymnZzldQ+FDrmCI+L7uz8yL35Khmsw5ru/\nrsD/EDuGXyEf4drkgPe1858bY4xpi+di6W9gG59kUw7+A1HOP+0RmW1l0HldZ1U9PyMK+bJKtudG\nC136Z1Qq65qSCCnT4CLSW1HW+VKZxVWdsS0dKKOwh27iG0vGGGOmU0Q38x7a11ImszWrSgkZvhd9\ngT5KsoH0Ehw74x621RMXQHiKDLY3Seaivj+prML3Onn6HxHvRsYPQuT8lPsuFnlNbhJNPXhNVq9c\nR5/TisKeZsUFkCdyv6BMyt5Lsl/5w6zaT/8WF4nS9i+xza7QCdkTVX/awPYyS4x/YZ/XkyNsPapz\nnOk18WUog104JDtZWlIkP8Mc85wcGWOMKZ7wnOj3iAanYmTOL/Z0dldZytk5snkVVQHZV7WoOzdB\nybWniUafv5pU+7h+VsqnCPlAVPoLQgHEnUvGGGNGA8buSJwuzkue4U3Sl0Yd2zzWWPqEpEgskyW5\n/T5tn1YWPaWqHacXZPOTG6qMU6IPRxVSbfsPQcAtzKtahM6expTFT6gSWCjK/fZekfFz+VVtIkhE\n/eKMDKrLkE1a11jFVH0oKl6omRtCM3mxiWpQFbt8jGlhhO2FW4zlcFJ0RNCW+3exbZtHWZkjnUM+\nQC/r7+MLojPMyd1j5tSR0FlXqraRmF7i/sf4P2+SjOfaO6AjPliCa2XnMd/v1rCRQZbXYo1MygEm\nYm7aec7pAT6sP5wz5gNj6q5vhoKIz4u7oIfewn2yVIdvjowxxqQ0jvUxc656Ll6VkCrlVNFHX1UC\nGm18zgQVcHlFf3M6J/76OefyG6rcNncLO5qaZy5XuwxAUJVuLveOzcMvfmuMMebqFFtoKns0fwcb\natfx+Vu3dE55xNhNiYtkVJIuhaZcmKC+9tHdm5e0MRrFZjwDdOjT2fO6UKC3H4Dg2H1ONip1C/9R\n2+M+x6/wf+MaffviIRwG7//ZT4wxxgSEZhXIynTl/7MOvv/wMWvvb+TPvvs9bKMt1GtC57A332L9\n6E+pEkuJsTneVtWiOLbcVpWjrkdZN6GcBkbEIdeUchM/HBnhp+xCz9Wq+OVmmdeCU+vNGXO61GCu\nzt0mYzyzJZKDEL4oMIWtNYSsaTWYy6Ewc7Na5/8nT8XxklQVwDiIp2aQjK9L/amWtO62mZup8Ncc\nXJ7uyBRUWSyiKht+bfWayrTvq8rHmVBrUxFx2xjaW8rzf6efuW5v4+sGj7CPsni4UmHsrlUVGjGh\nKlVC/LjyXVPZp681VGscRbLyNc2TSpG+1zUfKuLhCdfRacwvbivD5xOk2pTWDLe9rPvxzEAfXQy0\nHysdoIvUDKgAn5Ox8fYZw7H9myFlwiXGIOrS/RfxJ//RML/XlpgbR7usoes27v8iTVbalqX9bVVY\nHK3hBx+9wb967tN+xzPm0LAqVFtCSJEoNmLvcd/cPGPScHN/r5uxtPd1vzrXr6nSz2VaSPQBeqm4\nWTe6tiNjjDFx8Qc1xZvxVlp7u2PQCyZOu8qL2P5sFdt0qxKN9wLbnOuzTg032YcGXtG+kbjKXidZ\n1yJsV40njs0Vp+l/YmfJGGPMmxRz/p1j1svYFIj6M4cqGKXQc9ihKi8+7CEyg91ddb6umpSozxh/\nnfX2aApf+aGXve8n89xn2ouPshWU6dd+wdbNmOuKUzyWdiFAnKNJpS+e6RRHTDCkNSSDDptdcXuJ\nQ8whbq7ZWXTpddEG50BzQnuA2g5rfUNzqXTIWOfCqlaUZd7XhGx7/QJU1Ywq02wf8r7X4/q5GH5s\nUj7K6eM5W8vsiy9yIDKH4hn5/JI9wFhV++Zv6beQj/77hKB7/wP9Jmvi10aqSLmbZQzKqhJ0dMyc\nOH+iCrXi9uqLB2/C51dXdb1MUnuexhHfE5quXJTfSqvijiq/ba6w3hhVEPKmVVnTztwZ7cnGm0Lh\nXWJD/RleL7SPPXqG3itd5oJnhrl0XRm48CUDP6+FSbW8T7Wn8uE0Z22sv62yqrY2aHelgK9cukX/\nk+Kc6wsh6uvR3/lNxnNUwP6GQkU3Cl9zkfVP2+b0/IU5LbHmh+LY2to8ukvG8VtNIa0rV7Ql/5p5\n7BWfjeuGqnvGmT9dVdX0OrGFgyLzKyid21TJ9+SVKv2q2lKuSt+ntNdJyu+LQtKER9x3epm+z/l4\nXnwa/3U5xO9lEtheesLZKFSZY5l+xWSbfSEd7UITuQPMWZ9TYRLxtw2rfN7TeuVRJa/UDM+dnHao\nqZrghWHueoSU8Qm19i+JhZSxxBJLLLHEEkssscQSSyyxxBJLLPkW5FtFykwN/9EY8z+bOzfJyhUf\nE/n6RGfMNu1E87beA13xN4bs2EaFSHz8IdHE0xMiaGkv0caDaRAxMwWydpfTRI3v/R1nUx3vcX3C\nTubE4yEi95mN1Oz3D//KGGNMKfDvjDHGPPQRjXRfEZ0N3oev5KjEc5pLRHl7OksW7ZGJ+eptYl4f\nPfy/eW6Q84e3xEMyLhOJfG7/j7RTrPl/0uD63hLn54eOXxhjjPErYx7KwIVTDCqbd5P2nWVh93/3\n5BNjjDG/HJOdfHbjV6bk55nJBDpIdojk3+yj09Nd3idXQOskQ2Qh/tFG9HLxNu9jOj/tUDzvC+e/\n0nXo/vSCiPaDF0vGGGMSDSLsJUMbt83XZ9+vI4Mm14fEqm7XOcTT5xrjdfiDZm+i++PHPKe4T4R8\nPoOO3fO0v69qFnll4+bWiSDHFlT5SzwXm2P05fUR9T1V5nr+LZAdi+tEb5+doi9biSjwyBDpj0zz\neSxDNHb/gOhw9gQ9L6pCz/y7S8YYYw63iapmFoXQqRJNze4x5iuq8jEX4H5VnYe23WKM3TqvPZ0g\nC18TH0r2pbJGCV5jOnM8p0z0yafKOu2AqAnMULErcpOI++kFKLWCMg8pVW/xT86LisOhVcaVhFRR\nJ5rj80udz1xaIdIfXeK+5T3s6iyGXhKKwpd0prhPUPlacn5ypVfmQ38MWse+jC0u6Hz1mpez+GNl\nrYYaY7ch8u2q0JdOhQzAm2fozHmfDOjOOdmbRhSbOS9jK4Fd/MLiIn1zh7BVb1+VVJaFVqhhg22d\nvQ0XyGIs3MOmaqqoUyjynMXkkjHGmFgQ3b74kmxWRGfyp4Lo+rjGHK640LXDKSSPqpREHWQSzoUy\nSIlzwB3Dv27/Z859n+1guwuL6M+EycYcCx0xsDHnZ5KM0dIaer35XbJOz5+Aeli+S0biTBUCdj9n\njjx5SMY0GuH/qWn00ozQv8Qq+loR8sl7zHjeWmBuhyI836PxGtWuj6YyxhiPMjmeGfFxKFN+pMoU\nE7ar0ql4QlQxbJinvWO/+E3C9LtxweelAL4j7uUOM6oQ4fSqul9YnDxXzKGOqmL5VXFiYRV9Dds9\n84OPQBGlp8nKvCmKK+sMf1Yo8My7qyBILs/wh4M6a5pPyApbgNeWMrULQgSOmsyJiNAH+QE28XqX\nbPDVi690f9aeizLP2xjhd+qqsrOVZi2bT/KcsTJz8YEQIR5sczrF/y/qBemIuTGXYkzXm6wbt9ZZ\nUz/bB5G592vQBodf4ScaLvq/EqUfoSQ2vqjKVTuaAz0P7Rn6eN5o+M3QVK6BOGF66KM3FBeEU5nq\nCL4gEceWTnQO3TjEZeDDVvp2+tXvqGJQmTk3aDMeHnG0DPvKBFdpZ18cOlEfth7TeX4btzc+nX8P\nKAtYq9GO+RvLf+hDanXdjA6Zi7MpbLMoRE1vwr1jRz/FPKiLQJDnpIQ8Sqxgw8nZGfULfec6XOfX\nehny0Y7DHHuxpqqQ1OXjnD2vyalKWdonHoMk/qthUwWRELpqKmPav2JNK5XQfbdFdjerin7Ta4xF\nf1/cfmX2TQMn19s072pCMZkuunXZ+H/1cIJ843UuYL6RZO6yVn71nL3Uu13mUEucUZltjbEQiTVV\nOrl/zNg+mWaftv7k18YYY0Ih+uHWmI9P6f9gmrn39raq7sUYq4sr+Jlm+kKfLTI33j9Dn9kpVTN5\nuGSMMSYWZD3JjVhnem+D4CtmWet9ad5vxz4wxhhj20bvb98SX8cbZdu1n2xojU5cYQN2VWozsu3v\nCJz2RNX23M/ZQ/l7fL96RfsWE/j/525Qcx7ZXqfKevBEiMZbZQZoZKP/Z1l+L6Tl25YDrItnfq73\nbHB9tYsNRobsqYwxJlwMmt48dvGW0NJl+aBND/uBVoHnetrY7aZQhLu//xpV8D8S24hrxkNNXPGp\nNVTxyic0ZrPL5wcv2YcdH9Gm5CpzJSokjHtKFb+E3Nv8kLGcVHla8aMLvzgIE7NCw0qXl0f0ZVZV\nPt/dYP1Yk593xlQdLkf7zrS2lXfELeXgt1FS1U8rBebi2pb4M7QWv1BVPHubdmYH+IPPCuI6ueL+\nwTGImZtvYduNAmNw/z57lQnTiStKv7xB1sOq9DepslStMudn4yBU2ifi21Olt7Gqzr3cYf/+4kt+\nq924yX7ULY6fvktVn4SGcIlra1Zoj8Yy+nckpedjbOXoiSqGObXuZPfNNxGnj+tcHp7flaP39Bn3\nKVWf6neEcDH8f2GKcfYEaE9avHtjoVHKz4+4rotee23tq9v8xvZFhLQtX/yhLaXslQmG7Mbep+89\nIVZaQtV4hSIqnXCPlCovrqwxv1xChc6Kg+Uyz/640xUHagQbS7rEMylEdrPJ/ZMJdB/XWHtVTW1B\n+z+3UE3dS6212jcm5/ErXe2BKudCeTqwhXmtgS5xmh28Yk0et8RZE2Esp7U/bItHyG6jf526OGx1\nAuf0mFMAmbjaqT1XShVvi0IGNS74fmia/hpxznhqgnv9C2IhZSyxxBJLLLHEEkssscQSSyyxxBJL\nvgX5VpEy4QsyrM8+JQo4ZQP9cE8R+A0P0eSGhwjb1peKKr5PxvVxkYz13VOinS88vF9+T+frH/2z\nMcaYaJv7V/+UjMpa7bvGGGP+dpkMwb/qwqPylhjBXX9GJK71mOd9HNEZsttki57+kujilZ3Ind9G\nxuRMlWi6Z0Spqz8DIXMS+QtjjDGR5zoH3yRKOXCSnZodEPWcUdbMGCJ9n6h6ydpLMhjhVaLUv85S\nPWr1B2Tm/+E3ZI5sWTLSp4vo1U4zTNj32uzvgDZ6oCjhb5S9n7KR9TkKoJPoHtmR6vtE4mMGbpmf\nq2LIcowo4rqNc4ePPiCSfvclEfg3aaKA50cgO9zB/2CMMeb1R6CS7G4xWF9Tmk0i4X4n0Ubfhqow\nvUFHx4dE7FPKLDjEr+PQOfHqmFf3WFmoeaK51YJ4I+qM9fQK/Tr6Cn2UVGlnURw6x8/4f/aA523e\nJLu9OIteygWyVVfS35zOQcfndQ5a58lzL4QWUKQ/uUKm4FScM+0m7QwpKjzhopm7IS4bVXUqXICg\nqV0JmSNEjzeNntyyzfJXqvaxS7Zscj5/dgPbK4hj4Fz9SlfIdMyJA6Y8f2SMMaZeop9xnQMdjLh/\nr8ScsYnDJuann/1FjC+/S8b77BA7Wb+Brb4qMFeqDfoRTqIHuzL8Lp29vo7MZMjq+hXhn1b2tj5g\nPp3u6ax6jvk0Egpp/S0hTmaYf3cXaZtfaJ+Hn5JVmZ/he55b3H/CCdNx0sbTLHOh2yCrH53Gli5U\n8avt0Bhucp+4zswfPWJMXHl0Hl/luZeqqBMSz8P8X36P959hO40+c2BKaDZ7E1tKqRpJ2IefG1cY\ni94IW2yL92FnyFi+v4Tf23ob1MOwoEouRfqViaiq0C0QRm5xqOy+oH37VVVsu0Xm8vUO/rviJMNy\nd0Xnm+/oPHMWP3p0Qtau5cFGzs/FdXOB75hdQn/7Lz5X+8Xds05mothhHDvtCSnO9WRUJaNbV2WL\nG1vY+Ecf0f6AUA7dAVnBlTX8bssh9IQqHyXFU3VYYPzqqmBXLqM/xwj9pd20z5dkfE5VESd3il3t\nXDA3c+II849ipqUKMpGo/IDOJ094ka7EiVVO8r2dL9BRLMRYJ1SF6eox/st/xrMXN/m/racKY0IL\npZ1aw8RrVBoz5vMx/Fu+jO1cVenT9idkte06h73H5SYpJOKrOs/19fm+J82YffUZa/G8zn+7xVXS\ndnP/bBY/MOEVialCmc1N5i/uEUeXuBXKu2Srzsroo97S2q0Mo3PI3HGYr/kkriOuGHr2bkwqfS3x\nnIDa7cGmlxZZH00QvWeFwKx1sdXL7SNjjDEDEaksboE+67nRS1eVf85kiz4vPmFW+omsMJfzV8yx\nI1VfSYzZa9i77CWq4mAIhr6uahgIOs2s1pXUinjpnjFn3WFsPKn1PyAekPSC+FlCjGv9M/TpdYrT\nraWsqaox3Vgnwx4JiGtHc3IsXq9l2Vtqet7sRvBrYbf2OapGFGijY7cylLMqkpNXJaea9mPeLvd0\nCCkXjAtx2BKnyxW2ExWKK6oqSwXxeizfWzLGGBMLYju/e4P/87aVTXdfHwFhjDGFHfZKf9LETzRr\n2NjNLcZ0J4/fSDbRXaLN2FwkWI8GDXQVeoQNHQJaMNPeXxljjOkPNMZXfN5sifcnQ38KN7C1V0LC\nxJUNP5ri/ltf4m+r4it5rLV8tMNczLfx940LVX65iQ0P80fGGGM2tJ4Wt1VFLiWeEqEJSkJk326A\nUHmzxXimm6oG1ROvk/gA7are9LqJbSfc+MvKKXuCOc2xUkmVP4240fy0t6HKjKHhx8YYY/zTPLc5\nwkfZ23w/MKO9TB799Rzc9zz0NRSqmaibjrgigrvYy7qqCl4a8W75ud45wK6ep1WFNXlgris9IeV8\nqnzlEFdXPIwfSwolYPOKv8KLrhZvMUcEAjKiFDPn4uB7dKx92ozWeq0tDfHKJVXVaX6KPmxusA/3\nCkE4qST4+oi59Lufs7/3pmmXQ5W0EtN8f2MV/s3cMWtUTAjOCZeZR9WG5t8XUvsmYxycxoZmVZHQ\nyE/XtE+9PMeGe3Wta6rk83qbNfXigFe/OHBmFuhPqcRcmHPRz6efsy/Pzx2hNyFKQjZxJMb12/Et\nfv9MRVQdbn5Dz8Hm6kZEJS7mgkOoV58QMEtrPD8k5PvMPOiN+pj+hZLct/KKdl9XRuJ0C7Sxk06c\nOTfht/MH6H9RnGOpKL4w4MZmK/KR3SxzJJfle2evQezExLsVDKsCnmzflWEdSNj9f2hLIh41wUTI\nZMT7Oe6qIqwdXeeOhNSTzhwebMvjok12B/ufmpBzg0t+E1xc4hdsZdag4kBoJyH7wlOMUWYevzU0\n9HmqwX28qgLVaKjKaE28okWhS8XDUxMfXO4IhE4iha117PK7Qthc7OtUgPbP5vCIz4VwLudYH6ri\nPFtcXOJz7UVSM7TPK7TSUFVfbS78TCyBPma86Kcek3/V3muoffS/JBZSxhJLLLHEEkssscQSSyyx\nxBJLLLHkW5BvFSnjThPNu6+qJl0HGcTfviQCvvMDkCxhZWanp4lgvfYRBd16SZS4OU03frxINPll\nURld/8+MMcYEXYpMNbZ1PRnd2O7Hxhhj/r72j8YYY9aV3fFd6SzbCmflwjYy1I8+I7raSxMd3RL7\n++Es2cotH+fiSw6ipR/9nkz0yTz9Wh4R/Xy0Rn/e/5Tvd2JEHl+OiCgubxKdDh6SXdzvEMUel4m4\n3cyQQTn4iv//sEaGZfdPuX/2K1VuWCOaGjk8NzfEUp5VlK99XwzZL5UFiHE2svElWfGQIvvLx0Qp\n9x4QGX4jDpXvrhORvvdz2jy4TZTyx8+4vvsjopfhItHDXbHB29JEX68rYy/fbzR5XnhGEeSysj6K\n3oZ8yvqMiQiHY/TX7+e6nI3I/EBs8/4xUctqnsxDRtmeoDLIe5dEnD9cwAZCISLO1W1VLJhTxSsh\nZhxPed5lEZs+eM2Y3v0xWan0HPfPfkWW52AXm3r7O6TJUhtkGJplxs6vzGmtTWagOyI67I/y3P45\n32vpjKjRGeWxyp0kxbYeFVt79ozrHTGyPXc/ot3Lczw3d4lN72ucPDNcn7q5ZIwx5ugN17lGxHEH\n4ijo1GhHW5wOXi96Wpjl+v0M/7/YOTLGGBOcQU+JaeyvZmd8+gPxtyiib7crVXQNcU8xZiGd1ewq\n25FyoIugkCtlVWap6ny1Q3wTLw+Zr1lVz3n3xkfGGGPyDSLlz1QRqlUi4p7WGdOthSVjjDGeRZ7b\nV8LV2eP9qo8x3HtFVr/Sw3amMvJbVdrzeg/d3voOc2f/FD6If/odlXg2H8Ah0HDofLXOxu7UGfPS\npSoWCBVwa4nMqH2K5/sy4mqJUD3jWFkvj4PPXXPMbRUKM5d1bOVCFVbGSjRGlSWae4tsi+c5esnM\nggAaKkPaEuqhGqa/W+uTs/60ozJhb9E5c7+yc/YRY39zlvb05+lPJY+/TL6HTSXFGZFMsG5cVy6E\nWjh9ir9uNFhPPDHu4xwIlaJxiS6SwbG10FM9T4alH+DzTJzxmk6gOPsc7X30czh64qoIMbum+wdB\nSyypgtnGGde7poUGiUyZzz5jzaucMy+Oasz/O3f57uKIMVy6S+bO5RH3SFpIhzhGePqcvpTFdxHw\n4i9//iUoy/kDbDAgjqn4IjrNBJiX4wZr5oIqlE0J3XXjpx8bY4zZEnrsq1dw0Kyt0q7zY2zC7SYL\ndu891sy4R/45pspTRXGxqMJhtgdazOFEtyu3mIOhAHPp4lRVJ7LMya54R3xJ2jUXE5JSNnRyxFiP\nIt8s7zRS5rB3xhzLqrLW6IL7tFRl6UzVrEpCXJqhqnh4hXASmq6q5W7Cc+IXuuPolP4GxNUVXcCG\nnF7mVl2pcp8ywnN38NdT4uQyJfRRLzNHK72v+ZXKh8emanhw//f4uNfP8UH+NLbY0ffLddbFhs7X\nh3yqYJNnbkSUTawVsIe6zuuf7dCfE7Xz6oJxWRXPlFeIyWHfaWxCA7WFtr0ao5uGUKzdOv4oIX6g\nfl0cMTqb71rFHywZ2h6bF9Jwm7Y0W+ggPlT1IT867JTl51VBsSo0Z2Wfvvrj2gsMPeabyIydPVAu\nhz9MuBiT1yeM5YqW5OMf4AcLb2j/Tdlsp4J/btwDKec/xj8u2+nXRRCdnmfpX9jFXH2srHq7KL4f\nIfRaJfxqvIpeY2HxyHXoZ63FXKiEaMfwXDwn2k/XX+FLIkaVcUb4L1ebfeYgR2U1T14cYDHu/08J\nxitVot8eIYN6y6xHm6+E6k2r0tj8Z8YYY7YumStXD1gfSkeqQpWkfXMOxj9VwN+eB9gnu47pb2Hw\nsTHGmLtV1uvH04zDjX2hg2dV6eg1mexYWmW/jDFJc2Lc4qsb94Ti26Q/iZpsd8xzWx70mu4eGWOM\n8dv/eNWU/1LG2r5MuKAmPGheF79VbJNqni7aEBRHlVe8S5U6Nj27TJtWN7CZ/Blt7fW53j3ktTfh\nHtvHZk5OQAs8/RyEnWOs+V5hvne66LK4w/fj4t+wlwV9FHooPcdvjCmH2ufi80SL758e4O8LVZ7v\ndtO/tJCAfZ/4+lz40c21O1IIfj0jZOeDMLY7nxKnVYjnDtoMVq3GXMruHnE/cdZEhYKIq4pdtsW+\nuiwuymdfaa5m8V9nr/EJpXn0O0E7ZC9pb8iGfrtd9Hp8ih5fPWWPaEvx2/H2LfZk9RF6/P4d9phX\nJ9+MoKondEdFe7jqHs/132evYw8y55xj9DjoMceaXfTidaBHTwvfF9Ae8cZdxmtqDd80lr4bOgEw\nwcf0YpPTGca0Gj3T7WaNT2vBVUX8n0JxzQQZm3tvaz8XxUbOD9BpvYTugmbCg8Q+L+bED7i1BrrP\nGYtBU98Xv81wxJp7JiRLT5WzkjV0W8wLlV/T9VFsrWcTsntuTvdjTqV0aqBY1u9/G/N34232KqEQ\n/Wg0xB2oyoY+g+66Q/ktcSBOCRU2cGKbHi9zIX+uSmRt13/Vz0CfNbr8WpW7PELvtr9GJ/33xELK\nWGKJJZZYYoklllhiiSWWWGKJJZZ8C/KtImV+t5E1/9YY43ETaXqeIoK0orNsV8egCG5vEAn75OdE\n9l0ZZcE+BFHi6lG96D8aqib9OE/mebFJ9HFQBKmydwVq4Xs2KjwUxVKfVbbx1SMif4Uh0d9kXNVJ\nOrRj8AOyWZkTPn99QuTMW4bFfsJQ/kEGZu//ZIhCvqeMfckjtv+v6E/5A+7T/DX9f+Cn39Uw73/U\n4+zyL+Zp351VZfG2uW5WPACFFBHCZpUo+904etrdIePwtP9X5gNxkwzvwQkwLP1PxhhjvkgTDb0v\nJEjvZ9xzf0C2xPYb+GmO60QNk04it8WZXxpjjJlyk/39+xBt/36dyPyvv0QHf7aOzu7XSB8VH6uy\nyzXFruo+wy7XO72qXDKpWd9SprLH8+t9UhOBDn1PTxPVdJ4RPW3XdC7RR+Q4WxjeD98AACAASURB\nVCFyvGAnS5PQmdujPTKZrS62NrvA806OyW5VVAkrPEVmObWBLTjaPO/1IZ+3LsVNs45+m1my54WX\nR8YYY2pLROrjOhvcUtmhQJj2uRS9LZ2DOAmvq3KOyBy6FdoXmyKafaoKPnNu+ru4Qb9aVXFRPCcK\nXV3C1sM3xMN0hs1dHNDewRJZrBlxQpwf0r+xl/GIuImC12xcd5XHNqNCNqXfIbO/fkP8IF+iz+IR\n0W93gLnx/7P3Xk+OJleWp0NrLSIQEqEjdWZllmSzWGSRLcnZbRtb2zWbNdt/bh/W1ranp3t62GxB\nslgUVcxSqTMjQyEkENBai334nWD1wxg76qn6Af6CRAbwfe7Xr1//cO/xc7w+sscOr7LpFnzX5r06\nUqZdpeo+ELrLXmO9vRSHyrKq7502ffS7seHmGmO/6aaPD38LMsU+ktqEF1/vigul3WYdHqri2TwQ\nd4uL9ezX2dFLjpE301T4clWqJ6kQ90vfxTZesbG/3mM9W1T1SqWpiodzXCckqEpYXAv9kXgzpHTj\ntDCe/YOMMcaYqoW1flkdWmjgQ00x8xelLnQypIo01JoZdbmfXeoox3n6NRCCJKCKtVUIo06f+zQL\n9GPtpnw7Q5w7zwpxc8DcF6pCQWyxxhal7BJZI0a8+OVD+hPEjuFFodN0Lr1alTLBDHart67uI8YY\nkxZfhwmwtpIRKiXP96iCuYXSamoNvvqcGFgSr1VVVbrhNcZrFf/LK/EqLW+kjTHGXH+T+XOIg6Hf\nxB75POi5toU1a9U5+t8+ROHszq3bptpj3TmlZtQsCU0g37P2WTdHz8Rv0KVvpQZICAmLmZDOol8o\nTrk32Oq/+2PQm2EpiJXPmeMdrU+vOETGF4zJmWRuepfxasxaqPuEbpWaU+6Ufj8+JL7YhFpoDohH\nJ0Jnfec95iCl/o0fgERcu4VvFcUfcboDWswjroQvn7GHb6bhJpuZoV9joa4aRXzRiEvG0sV+Luc3\nRMrIvvYhPjrKY7ex0B2TMtfLXaKsJviARfxPCXFpJdLsA/lnxNOQ0FjuGdZqTXE6soQdYlJUOy8z\nH/WXxNWJFHn64kcpHlCR9quK74+yRqxS4uEaZRMMYReBF0x4lusvC6XVGV2iUaQSI16VfAF/Gdfx\nq4nBjhHtJ3Xx69Wr+IdVSM2A1LaKF3yvK3W9od1lalJqCSfYc3IF9uCxqr12L311DulLRahNi6ry\niyvsjY1LBE2fe7qt2DQgVGZ4k6qwVbw9nSf08UR7vGfIHPnEgeAQv9rQ8s04ZfZs+J7r5uUeBgJk\nbUZcAx32wMIB/fHcwvc/Ogd58qMR8SarPfWdKM+Nu0tSUtsRr4Uqvlk7a6oeZq5Xhnzfv8B9+mPs\nsVIl7jxsgqoIOVgTZw3QCD0/zxAzYeYjOiaGRI8JGqcWfLwy+t+MMcZsXBATqlK2rC8zD049c4XH\n4tjycf+unc/5TrnOvlRRghP6++YpXBUXM1x3XuNclULZr1r4ZmxCLMklsE84T2zrX8N/Ip/ia8cr\n+E+4Jx67grho7PSrLPRcrfV1DHi8mDbfncCjYhTHXQOe4Q7n8a+1V/S/aCU++4T2rq//8Qr3v22O\nAT7W9YrLsMkeXBefWi+Oz7YmUo3LsgZ8Hqr2hTKIltFIz43aw9N6nguq6j9ocp+lefmaT/xNUnyp\nHnIdt5B7TsWRxXSasd6ETy0RwNdea69u17HFv/wKTkifEBkW/Za5eZO4vbgohVipSzUUh05eE0dC\nfhAsOzv4uFPx5NET9tacEIdtO75cFlKo7uI+22v4cmLIvrEwp2eoDezwxdFz9QPfrz3Fl1aWhb5o\ny0eE1rAGpGw7IMa4eqzZRp25zpwSK0rnrJ12ArssKD5XW1JvPaPfmWOQM+EAe3zunPtftQU8UpcV\nwkjAHzOxirtH/CMHT4mnYyFHI35xj4kLLOJnX2llsaPTznUvUYpHe6yhwgH+Fl8SMnL8tRJQZVw1\n/knUBI2Q3+K5GXeYC+86thrpmb25g626Zf2m0jPBUZG597p4PnPqd2okoXXqpM92qau5LtVC91j3\n+V1e/Sn+7vFqj9JzfHz+EpksZGTv8tlIe7F83S2VUaueQYzifzI0Ixvp+d3CuOy6n02/RUTnZxpC\n9fakXjqQIqPbylorNXgWMD39dknhY9WR9kqXkOBB/n9s/eOKkFOkzLRN27RN27RN27RN27RN27RN\n27RN27RN27fQvlWkTLxCZvujY1iK12xkLx/pbKd/7W+NMcb8q9jVf6zzjYdHZF9tRxljjDE73/+R\nMcaYrTy8KI0Un7P+mgz9V5EPjTHGOB7AvfKVsoP5PsN//5Ts4lqfDJrrz/newT+R9Z1TlnSh+7Ex\nxphS7YfGGGM8CbKNnxXJhK26qUg0X1OBHt0im/ylsrQ/2uS+jz6h/8kx2dm1+1zP/xHn8zOGCkZ7\nC7TJg9n/zxhjTHlI5d1eQI3FfV0660/pd+v6z40xxjxUpeiNzJ9x3bnfGd+CsnV9soy7Qk7UX3Ce\neNfKtVodMvLfG5Cx/niTvJ2njW3bJbKL74tJ+kWL7ONNnZWvv0HW9Mc+MU1/Qsa+cZcUcPNMmu1X\nbD3dp3t55tWm6oZNbOVOsqxOcQno6K4pSmFh8QbnBxcSGndJ5xGVVa2/JpNe2eDzM1L9yB+RCW+J\nZd6iisdoRP9dFaGdOmTGXTHsFbqJPXsFMuqvn5E1viO+n/k1fDkvZZ79p/j8yorQCBEhUVQxcOqs\ncS5HdWvhUtXCIW6AJvNqidOffo0M/+kFPpZaodIQULWs/ph5PP2cSuzqX6WNMcbE1kAwXeyQFT45\n5DUhBE9MrPAuj9AKylLb6kJviR0+fyhOmwWdN98mO9wUn4BjhH/VXnP9xhzVr2SSyoclwfe7Ok96\nlWYV+3mvQyZ7eZU5D4sN3dbFhoU61z4rUg06lYra6nWqL8kY69wiZMpiGiTesCNOgrZ4GsSFEBoL\npbBPvEjOYKtahqpGQRwJhQtxv4hHYl9ryDOD79qlONURh00qrDOrqq7nMvTzVGoVl+pETTfx6c5d\nkHyROZ3LDqtCoMqzS+eeA0KGBBb1ua00/SswN2dCS228jc+4LujX6S6+2nXjY60Sdizu4ZNZL3N/\n20cFISSEyNYtKsNWsenvPmH8ISdrOX9MpeX2Op87Em9JfRcf9W7Rj5qQKOMdvr8eAmnU7XwzZZ2Q\n1va2WPZXt1Tlc2PnqJRknHHej865vm1E3HavpY0xxswsYN9LBNNhhn71ZY+iQ1wYTvmL1FYudH7f\nKx6SO7eJ50s6M72xum0WhahzeaSOE8dGTgt9KJXYG06esz4SUi4IBokbWa2/uzo33apz72ePqeY7\nIsShnipyp2Xi00Sf23qLvrSEPghJZcmhSulHH4EyfaZKqjOpalUE272xSjXcqSrSRMpfthqvT/4F\nNFpUVazHr6S6VBHfU6uqfuOTd+4JSZNmL7x1VxXSR6AH4kLcFQ0+7kuJZ8jKnjjsi0Diim1Qwufd\n2lcaBXFmqZrfLmHniE+KEOLYynzBPDWqjDOeJJZUdP7dLWRm165KdgpfjM+ogh0Q8vGQ8RQK+MrS\nEvPQ1H7z+oxxJ6VUEVZlXCEKGzgsxhfGL0Kan4SQLj75i10ouBVxEcVX2R/zeakAuqQOmODvZkZc\nBzOMYyT1D7df8V8cEzUpcxTy+OHcXMAsblGNn93kWsficavsgjr1SKEwJG7Bcoe9wSrFr5dPiUtV\n8WQMvfRhJsmYQir2+lVtHgihHBKvjVeoqogXm3tVKe0LfdAafLPq9qZsmn3IWB1L+GbnGXE7s6Hn\nOpGXvIoqbknt6Ok9xvU97dX2E+Kmo3lTduB7p1HsM/TRvzcK2HhcY+5TPZ4zbUugunb8XG+iZ4mi\nUGyJMTx2FqGr1vexo7epWCB4XdtJPEoFifcVqSc1L1jTZkLsSVWYJ+886IfDPui1zTq+OAiDWog0\n2K9ie/w9N8+8D/34UkHcFfEF+nO9nTHGGHOuNdwZ8yw5chPvV85ZSyEva30U0DOEhxgSq7Bf9Fzi\nczql//5rX8eAd46eGrPM/L8WUslyg/manGLHR4ugCmwNoQFD+PryM4e5aut5uGegi036Nj2neulb\nzM3/N2tcM+WnryOpJEVvSlFKyPCLKrZ/9BXPGlY9g4wn+HxiSRyLR/jS/T/hN4/dIh68JWxz8Ap+\noJf7QsHq+XZWPBkHQoDcvvsDY4wx80LQbS7xfPjlQ+J/SQqRzy7wAZfUTSPrzNXRMTZ8Yw60vz/E\nmlm8wbjCKdZkuc5cOmusxeFAqKQec2qEctqVqlHfrWeHBt/7+Bcg9j/4IRwv57vE4c1F8T3NgiCa\nk5pdcjFtjDGmWtG+J76QBxtCkIqzcvsYOzpnhBwVWjaVZK37htilqf1nrPmduL4Zetcz0fesQgdL\n3cqW5pl1ryDEjhBIAf0uc4sfsVNhjZ3WWAuvxU/oD0iJbiQONCH/x+LeDEbxM0v/a56kYCBgnDG7\nmd0gvgTW6UvhhGtW9HzaLlyiocSLpj1gSb+7O1Kr9Oo5MKK9ziNUUKco3/Vgq0mdPvnH9Gn2lhQg\npXrkEwJnJEXdeJS5dHiwUfE1z8eVBnNx8SrDdZfF4aXfJhXtzVX1s3rOuFpCf606eA4diKuxIMVZ\nq7hlZnz4bF0+G4rR71GWONYTd1k8Rb+WIuqnjzU2tPB5T+WP+8gUKTNt0zZt0zZt0zZt0zZt0zZt\n0zZt0zZt0/YttG8VKbMqFMSdvyRLevEPZKz+lxiIjxc5MvT3nGTc/uUeSJLlopjMV8iAjaSGUeR4\noRnE4SZQkd7cKJK5Oz0nY+8kGWy+OyIL6R4KIXOfjH3tH6QNHyBDvvEdsreNEVW6wAqZsl8OyVqu\nRkHQLHjSxhhjvMqa2qRssKTz9H8T+HPGe5dKcN5LVtn1MRm253NCAGUZ92mXTN1RmO+9PaR/v3mD\njOFbbbLRX7xJJcr2ayr76x9QTXt9/j+MMcY8KH1gfj+hypCdpfryQQoFkjMpRkV1lt9e4azn77yM\neUlqQu4ZECCpDlnBpz+jUrswy9x8ZeX715bI+L7qc924hTOXQye2G/6IzLr5v82V2lDICqvY3K3y\nhVCY8lhrX2z0Q/KLiQT9Pj2lf0WdqQ14xcS/RNZ2wJSYsxZs7dUdbBueTRtjjEm6cB6Hheyw085S\nsXmwvdXN3E9UBS+1hWJ45w1jjDGL4peoPqGaVjzhvks3pEZyzN8rR0IpBPCZ4ASfm7lGVjk9T4Xi\nUOpHdZVE7QEqH+ZUZ4836Y99RKXgMItvhNJUf9JrVG7bOdbC4Qmfi55RMYgvCZ2hKlJ9nyx4Y4uq\nV8AlZYYS2Wi/2PLntvi8uVQ8U8bef4g9FtZUWVDF1TuiSjgRUus8wxnXShL/8jnxn7H76iiIthRS\ncudU4mwuqh+OeeJLehtExBsPmNO8KmI7rwkY2VPiwJyV753s4RP9AZWCYJwxHufwNWsYn7wvVFTF\niu9tiRNrzsecuTzEkSVxxPTLZMgPhXhx17mfJUT/TzNUx02Xsce8VJW8qoIPhO5qSh2psEc/7Ccg\nAHeOsGVtg361y3zutI3Prqp68rgA71MzJKSdDs/mWqpsnsqX/KyxhQgVgrgU3BIpkI1Jqc+d1lg7\nRgWAvX1izFEGuybijL/cZ86HNuxaFm9FTee+18SeP9lk3oJhocKEbMlKQcIeY41H3VdXwzDGmJeP\nmNeXx/j2g+9ir9Mya6HeZp4HFfaXxRT337rPfOYLfL78BDt1Pdjf6MxwJqsK9AJ+FpkVt0MMu737\nNuPI7GWMMcbEhWZYWFIFp3Jicnn+XasSJy+rQu4ZrvHdd943xhjT8vK5oBcf6kh1rfhzcYaJi+XN\nD+AEKyhu2LriY1Mcf/cee8d5kv+3C3B48Dm2ytZY1997h71lOS0EhhWfqFnEH3RG5TSp89/jHu/9\nUXzpnvq9f4SNUin2g76P64UXxRV2JESG1tb6NnEjW2e/ev4Suxw/BiUw9wEV4aibtdduY4fzJr4X\nkGrIVZtLKheXnFbtMXYb1PDRVpf/X9ygqpa0ExdbQqMlhd5w+vDNfJa13S4LzXeCDxU7xP1qlXFb\n3az9ktQE3UJCRrWWo2Wh66TKt3qb+4f82Dv/+uQPY5jbXDXRCPH86IwYUDpkPwhW2AebRWJZOCqO\nOKH3OsdSuJHa0kT8WOF59q/SuRCMNsWwBNwGyZhQF1LecIljzun2G3dMcyA+srHikS3KGBfTXMPt\nIQ5ZB1JnyourRHvKpY9HglK6ErKtJa6wyQhf9DiJWyGtP4fQpse7QgGJfmc0EP+QrWq+ScuKly12\nh/5kc4wrbedZ6VxxyyHul7Umazfl5cEzXmbc+yeKqw+Ecn0hRMcs4+hXxDvkxAc9Xh5aBhGhTvP4\nWMvNPrY85Nmj0BDKN8WchiZ8f9jHjvU2cz5R+NoV18HyCOW3vQvW+lyacQZf0w+XuFue+4lJ3/k5\nKIi78+JB2cKw6Yx4hWx87tEc419JEGMsikEhOz54KrRXf4iPHdoZf9THfuEfg66zDIllryTeN5fH\nfsuG+x3HVblu4DczYfpdOvoa4VIOxc36Oc9kKz9kfDkh5/sr2Me9w/yNLXzOamHcB3e/5m3695pT\nil4TG3M7EjJxFBbvUJz1koox1uQy96wV8KGI0PmjIWN48zbo+La4E31+Kb8U8YXUjPgqHvEbqbtP\nnPlKfGU3pCjYEKfLktQvMxdCHQlVXNVenL/g+8dSW0t5iCcDxdOkuLGGQgAWT4gLs1Fs1d1kz5wX\nqqwixOHZS543A0nxeNi4b2ydfcLWku/n+bxb+9/MMr7QEdeasfL37XXQZQkhrUN6hDrPiDfvBXPY\nu+AZpOfU8/uIuBmIMU9tKZVlhcob19mHfDVxuB0IzfUOqoA18X+++z3ep5axx+5j7nfVVpLKVk1c\nQ6NF1obvTCgSod227/EcHZ3hGalb4nMXUpQbDKUYKQW1yLLQ35s8cxgpzTktjDsk1Ecxd/6Hvpwd\nZ4yj4Te2EPf2WfjOuX5LxaSiFtUe5LqWNsYY451lDj1CdrdfaG+TsupwKJ42oamOH7N3BIXo7gXw\n+XyVsSSXpHoZw3fyx6zLizPG6BKvnV/Pp/Yxz0DeuPacC/6/IaXEXhPfkWCZCUoJsu3X73T99rJa\nhQJVXsJuxVbBOXxwUaqpFydCvAghlJBCZesCnyt1uM4krHgufj1jpPo35ZSZtmmbtmmbtmmbtmmb\ntmmbtmmbtmmbtmn7j9e+VaTM3+ab5v8wxlgPqfQWv/8XxhhjukOqYoc6w+YbkfX77n8jQ+bxkJF7\ntEiF5c8nZOIa75OZa1RIpf+9h2yge0jVb1SU6skkY4wxZsOvCsTbZG//JUv29c6qsoeOn3C9f1C2\ndZXKSzv+U2OMMctPQYNENskknkvrvr2ps7W/SRtjjBlGyQpvdMn4Pzojs+aZ4/6fvw9ypuLgvnO/\nYjzfj5KZ/NmILHXkC7LPoW0qMJMh9nnz2T/T3T8n2/7oIZnF4q3L84efmAdPyCb+3UMy8K23yGY6\nlzhj6o1wJtP9iCxobYks5qCn87TWfzTGGPPJPH1espDPC738e2OMMdVHZKrHY85m1t+nWnP3A7Kt\n+ZCQOCdXZ7A3xhhHDxucNaVMI2RKOAmK4CyDzat7zEFEVbmUDpqPytjorEqVzCnFm/h17HBaomqe\n26fS6LJQwbCPhUIY8XlXEN8bD8TYrWxoYoG5PvpUigpR5nD7JoiYR4fYef8l6IHYOpXPmbv0v63K\nQC0DysOMyOrWQuJkWSNLm90X90KJfsWE4tpvYY9rXsbtnmfOj14yrvI8WejFOa63tMT9O+eUFHKP\nGHfqT/heQuf7D46xZ0WVFJtb5+/FJTEe4QepBN8zSTLyJx/R/9xTqZOIU8IRlCqWj8/Zdf7/9T/S\nj3pe9pHizjfJFy8s43tenY0PRYkLOZ3DfvGZVH2e0dfFd6mu3JBClCVPpXR+TpwruvV4jK9607r+\nE65XqNDnnniOmk0y5J89xQc8DvEoLajytsCYl1f5f0+D924nNi1WsNmiqtG5V1Spkl7mOBpnLdrD\ndMyd4HNzAXGXhFhjHQfXS0nRpRMTR0OVKkwyTvxaceNrPp3XdloYR2hAv85es3bXr2PHkVSGTr/E\nFypz+Nq4z9rrDLC7J4bveKKqZOictMMnJQEhmeYGjMfE6M/rV6AqDs+p6q3MEx/dM6oCuVXJ7HH/\nS6Wb6ph4f9UWFMfOvB+7zgW11nXWeSmMXT9/8mu9Uh3bUxVxKIWIboG1sbZKvF1ZpHoVUvWxGSR+\nZ85Ye6e/4jq3r4PUPN4H7bHzBYiliM55V3xes76Nr50HuVdSnE4f/T0KgwtCU3bF2dUXcmM1SB/8\nQlg0OthuJG6XWhdbBaRi98Uj+arUhsolobOWQUF993vE8a92qCaHpJTVFX9aIMEcjXQ2Py8Oqq74\nkb78lH0luSgumPdRKJyc4otdob+8YT7vEMoq1yduZJ7zudJhxhhjzEmeNbe5Sf9m08TvXlkKB318\nOcxwja8j9EH8myFlJuLOiixix6WQuB/Opar3C3ywr2q8fVncP664xqHqX5mYMFFcNuJuOKsL2dhR\n1XEBn/RY6K9vAZ8KqxLdavH/RSEam1LFGszgg6evuc9rKTIaY0zloGSGKfGEqBLa0xq3SmmopSri\nwnVikjvGa6XAPDqEOLpEs/XE5dCoS4HiUtXEKtU9D/ebWcFPApecGc2ysZwz1so5cS4rpNgwxpzN\ntPHBmpB1Xe0txioePPEfLISJF8kF1oTLIUXFCnvHxTPiS2fA9bp94kqox9o4O5fq0oj1P76sGtu/\n2TNJ5V3GOn7IfZx3sPGzPs+plQHx+CKMr6YPWd+Oovjp4vRzqUt8fJoR/4WTz30h2r2+YsCdMs+v\n8+Lx6Ut96hezcImFsyBIMnHWTlk+1/UzZ36X7Drk/bxQX58FQF/ckLLj75fpz/rs3xljjGkUZG+h\nYs8GzMOtp/hmX+qkjWU9L7fZL14qjrb7fN4ulN7khFjQ2wQ9HV2Wb4kXZUWKNwU7cfK5nhG8Uezy\nJ2NQIKaDXQN1xvM6zv6UagzVH9ao/yHzHb12ibr9U9ONlU3Lhd9Yfi90xqpUCsVpke+ytjyVtDHG\nGKfWxPoB/vT/mH+/9Swas5RsJMRiqheMMW7Fh8pD9tCZOPds1YRMczKmXz8CuX4dFzYNcRimpIpX\nENdgQXPY7uIbnbMM9x/gQ3UpGHb0m8G6yvPpjAG1sHUT5F1klXXrEjqoI6RP20Y/51ziEIvh69cW\nhDq4xlxccgbOWonP9bF8dihU7QX3G74AuXdxJC6wCM8sAs4Y64CYMaxcKuRw3a1tfGg4oV8RKc82\n28xhMCT+kZoQm0LE5IW09wS5XtshLpgW/a+fX6pgEaPmN/F9rzi42jb93nHzvd99TsxxSqmzUmIN\ndGrfjMNspOv6hCjtCoVi9OzUGfHsEErArWYXb+Elj0lEfCuhJP31J7GnS/Bqm3432bQ2+jb5pXjv\nnIOvlefWN1bMwN814yp/K3lYNx0H92r3xRe5SICKiWvPGRLSRKjZsZ7LRlk9v0mZyia1u6Z+Q1gD\nzLHXSTxxx/DViY/79Mr4bOGI3yiDE+amrbidbYpvVApTSwuK63qmWL3F81inLp/QWD0LrB2Lnptj\nUeKBEU9c3sH3IzN8PqjnRYug4NUqvuIRh6xPp0MsTnHcHPHbaxBkDQQW6e/FMXYdWf74c+sUKTNt\n0zZt0zZt0zZt0zZt0zZt0zZt0zZt0/YttG8VKfPGphi3fX9qjDHmvRrVsGGKasv7fbKrzzOgMVo/\n+GtjjDF7ykStFslW1gKcpd3/mIz+KE7V6K0mWc5Xb5Ndrro+MsYY88NPqNr9TOf3tnJk0mwnZCUt\nA1AjLgdVwhffAaHypp1+rOSpZn4VJUPnOSWzH3eQ0cv+V/r944lYnP+MM7+n52Q7//IOWc29Jvc7\nqOm85r6UED5gHH/XUtbzF1QIBtfIZns/IfP4eI1z+h0/14/8d85Npqxc560vdAZ50jK9t7nmvQGZ\n9+QBvDVzyob2O/Q516Yi98ZnVDp/eR1lKGeBFHb8JtnK4wNcp3T3x8YYY/7Tr6QK4vmZMcaYW2Wy\niK907s7/M77X/3MR/VyxxcLiu9gn61o/Ins6f5Ns5+wW1ZlBhuuXzvi7LySN+xRZzOqXYuovYru1\nD0FLLIst/vxL5rp4QeWhL/4KW4MMfGyFOberOnehyvCNVSrKiyHm/kjKMdEFzpou3uZ7jz/lvHbh\ndcYYY8zcdZAyvQWuf1zAfrUTsshnbtBZXjf9jyzrvGaVas3sHBUDqxA9J7lL5SGue/yKNXD2GT7m\n/BOqV75lXpPH+HTunIp57Qz7zkSFIBJnQFbKMmu3WGOXZ5Ibrxhv+A3yunNiu1/ZoF9ZscCXd3WG\nOIK/1O4wn/EN/GDpAHtW2lJaOJU6SezqLPbFQ6pPuQwZaItHmfO7cMlMWlQHHu7AQ5F/DkJhXGf9\nN7p8vz7EJhZl/KtFfCERVNXdha1tHsayKtSTRUz8uQtsXRBvRqejKkuHddiJss6Pxajvdoh3oknm\n3R/Cl0YefPiFznMvjvDxo1Pehw7FB3GHapVLZ+KbI3ynpDO4DXFS7ala7oixZuziKHAL5XRrnqrZ\nwiz9PJOPBi38vTriOqUm9x8dM/7+kDkaSWUo4KTC4HeK10nVow0v9+1ou8mqqrf2DvEwtCRyA52X\ntwvBaBvy//Mz+GxRXBPLYXwm4f5mNYWBS4pwMex+dMR49rPsI+1lkI8dL/M9OxE3kfWSS4e4PVlh\nvvstXgs6jx4KUinxqvK+MA9fi0XIzYU1qnrujipBGs/6puY3c2FCPqGlWhls0Nb5bl07uJ7mVWpG\nFz2d9w4Tv8viQGkIgffqcyqSs7NUjdL3qDLX86z3SRdbFPewQfaEOVu5NkOKuAAAIABJREFUwTp2\nSxHrNEscePiYvebGGnGrU+E+AVXP7tynau/yqxotJM9AfEIH2VPZjopjWygxd4i5XFonftlUAQ4v\nYo93N7GdVSi02Rns0CyyllxFKp4RD3boqMo16OFTV23jrpB+Urnq9thLLQ75sCq2F1ns7u/y/nCf\n/WM2JM4WqaPMLLMnx1dVORb/nVuKcYtrqngfsNf3JB8YmyV2nIgzzKGYEw4LhVfHd492GP9I1zPG\nGKvNmIscaDdPGB+7ucg+FA6yn9TL7EfDjtB+4gS7PPe/fR/fnTjExyHeLLMg7oULKST1iKF7x+xX\nQamZVLOMp1NumeS8+MpCmiOpccj9Te0MXz4TujPilDqPeI9mkvigIygfLzFmn5ROSno/kE9bI+wx\nNit75rCL7awWPh+ew5fGqsZPJt+sun3/EXHguMmzlNllH9hIYMPfbxOfvRcgWZrH2HwY4P8PC+yV\nbyfxsSUhRUpr2Mxj8LnVIXtiosxaOnWpwtvDh96qMO4XA9b0QAqYsfiBxk/ctr8QqixJXHtmJa4v\niavnl29JhUjci8+caWOMMT+KsFbzup8ZSFlnjbV7Kfi1UWCffSauNUdAFfQh461XiTE9cW9tWpj4\n1yXGWe2yDzxdor+dCmvnez5xfQ3wm886qKwmnvO9T/2swS3tn/01YpOjwL5o2SSGHDc3zGVrjWPm\nIoc9+jHs5w1yX0uFZyavi+cAt9RaukJ09RN+c9Xm1Hq8tFF7KD408Ri1pfxa0/NlOccYz054P5uW\n+p3QBdEkNt39iDGFpNY21G+MsIu4E19iji5BpKkF9paYlb+flohT9ScZY4wxv/6C3xbnUgmdaG91\nSRXulrhMLvEUTXFHHj4hvlwccT1fIm2MMWZfyMr4PD4+mxLaKcwaSCZYO8Ok9q154rNb3FjDHvbx\n65lrNOR95oD7ffY77l8XWiEuddHTAvFnIcH+MRLC5613eKbqiPMrLqT8w9egp2dniU3BMfaZe1Nc\nklapxebwxZZf6I4o4wrMiAtRyNPua9aKdSgpuCu2UBw7BwK82lLMe03KZ6clxl2SUlBPiPpdxdvY\nRIhKIXS8zktVL/qVF4LykhvM4RYyUkhax/DrFEAqvWhqo7ppOZjtNfGSOS30YXAqlNEhYy9VLk8t\n0IexHx8vam7s2vs9QnqHw8SvuTXWRjzGPrDwBvH4vKDn2KJ4jmpcr1sXz5BsZNFzZE88Oj1xMNYm\nPGdZ/Xx/omeKS+DlsML32gfsWSMpI5bGzLUtz/Uc2vPcUu87EYrKKhRbpUBci8bpfy1zaQ/+v9kT\np5mXuFeX6l8vxH2HhT/uI1OkzLRN27RN27RN27RN27RN27RN27RN27RN27fQvlWkTOIxiJSlGTL2\nv9qDU2DrH8ic529xltYp3fRbUma4USRLWHiD7n/0mmrPex24VZzzoBTiFjLt8w+pEn5qIcN+fIPM\n21KSysCLPNlhd1wIGM9nxhhj/Pv/mY6WyKT7A1JDyZPpunWNatXTR/Tvwk3mvbVAFvKf5kAA2XfJ\n4D9wUvV6OmBcs5+S+f/LWTJsHy3xOa8BxZH+HdXL7hzZ8v+x8ZUxxhiXE3b87iKqTz/WGb2DBpWZ\np0GuX1xl/G+c+E2+w7U6KZ2JnGfsGx9TNci/C4/P9lfY0vYDZfncOlN6IA35ElWRjg3eBetPyTh3\nHzBmyyLZ02dlqkdvFD4yxhjzrzNkqP+0R+b9qq0TIPPr9FClKNeoHtmz2DoYo/9jIWJePmOuukP6\nsbJOda0S4v3BU6pb+W2us71Of1rKclpVMewoy1v18r7H1JuFTf6x8zG8EMkqvju7xXUu/pnKQ/kR\n/UvpXOPhPpnvXfGSeJfwuehdsqjNR2RRmzovfiQkSi3L/VMRKh7ZEhWNsY1scyhB5rtwQUZ87T6+\nP7tNP89/r2rQAZn8pVtUUvxStDE6L12tcf+EqozeCPZsllgrVoMf+El2m/we8505YQ04lqggLIhT\noKuzzY2GUCR9KiPBLP4VUOU+fDdNP59LEs3B59rdq1el2hNVmYUiKu0zlp7Uk6Jv4yNpJ1XrRJA+\n2mriVbLy/y4f8SXXxmaNXeZgNsGghw6hmo5ZS+7fYKuw2NnfeYcz+udzZM7dDsaQPce3ttepPCRq\nrK3KCFvUd6WadAFSxeFnjVZUyRxPxEsxIN4VZHMTYk1OJsSj+hH93lghXqSvgfxIR6iMeoRWenrC\n3Oz/Ao6r/j18yjlm/Ed5+tN9yRpIXQdJczPBHHtm5XN7xLPDL0Eg1UvMw4ZY+Xtf6txynHF6W7zu\nHIImK/8au9xM8/mZNe7j0JnbvJUYVXeGZEfm1xfGR0qtr89DX6XNz7MmlhLYv6nqZbMuJbkZfD5k\nA0WYcIv7Ruf7Xzyhkp9I0J9uifEdnxMLxkNiVVnqIu+/zVo0EokaXx6Y9/P9SYNxDlSVuzh/bXoF\nxniQI04E3wcNuXCb2H79Hr6aU7XKH+N9WBW/iRAcSXHAzL2tuZKqk9OCr8yE+d7KHWyeXCG+nAot\nGl/Ct05VJY8K+fK+zl0vLOHz+59gExVszeNPqJT27HyvcMwaiy6xFlbWuc/6Bvf1jehfvsRaW1yh\nXx4H92k0mKN8hXF9+av/bowxJn1DvigUkssj5TSp8RXPhRD0Yeurtp6dNeBqMA8VIW1WFrD/9jr9\nbpywNmwB7PLgFko0thjjLJWIt6kFxSCpjQwaVAUHAykQSRXQaXR+X0inyjl2K2SJCRGP1vocn3fY\nqBpu3KeqFwos/WEM83dumOe/Zz/vTvDphrgl+lLtGF9WdNus2dxr7FUpEVusqmy7hCbxSKEiKo4j\ndx47Gxf9GpSwlyvJGveJk87lHZu4+HEiszwD1NpStBISsSk1prkZ4nR4U6pEVfriSYiHTMi8htTn\nPPLF7Q2hv6S2E5rD5gGhioYWbF+tZuiHrlNosYfZnDXzTdpvllnv16VQ6asxjldnVOXnZ4nDPc1p\nLKhnKvlSIsse/DIqRZkt4ph9V2p34jowh2nuF2RtzwtZ3feJx2efNZC2cf+DGNftyTeL28yZfxv7\nebr0e/0hsaGoZ4eVLmjZsVTgIvvsE4MLqcfNCgVQIs73Gzy3X1/nOfNQ+1nCiW9X2/hEWj6cTdK/\n1CHz7xXfhf8+a9ud53l78jn2cwuZ2CqC1rKv0r93tI/W/ULnRvU8fC5OCCla5m6wT7ueixOtqYcW\nY4ztbNb4x1yvZJNiTpXvb1elKpNjv3WK02brBc/lxXe+Rtz8e80aEPqozlgjMeZ40sUXY0FV7aUg\naPcST51B1tFYUjGDMD4zd4fn7htyjTviHjvNCgkhFFVvQJxsyNfiMea6XmCPmVnQHisUwLvqZ9WC\nzTzaUl890VyLY6VwnOG+d4iD7rD4lKTk9eZbPGvYhOxeuZHmvmV8wCoV01nxQWWP+P5CAlv3jVRB\nz4UMHLO22h1iQNgpHj6pClqkjnpHvIDLbd13ATs9fMgzRl/Ps09+/gvsd51YcfaSGBIJYq/HX/C7\nYPsIO+aEwHRXmb9RnOuPxAsVD2K3a/e5n38R36lIWeiqrSVusb6e3ax2JqA94Pp9oaCdwiq1/Dz3\nB+16lnAT/4uKv/NL4tLx4D/WCrFnZYXflEFx0mQOeL44OPq6vzu7r4zTazFGfEd2oXOtXe4V0vOm\nUwq4TSn+2YXQdklZzK65CyzyOXuCsUxsjMHlZUylRobrnTGmqk45lE+Zm5kl4s/tB5wQaYl7LCq0\np6+Ib3Ra/IaySn3NNMVtU8K2By8YqyUnTi993/SYW4lNmeIFz8EecU55PNi0VmVtRK8Rh9eFwPfE\nGG9PCofFuhA6ST2na1/b1xotCBUX+Deo1v9ZmyJlpm3apm3apm3apm3apm3apm3apm3apm3avoX2\nrSJlfBufG2P+izn+HfwlGyPQBufvUR3aP3uPz43IVJs+ma38NRAoO8oaf3iP6tyr+2TGE3WygWfn\nZPpai2SqWhGhIszPjTHG3PucrK9jzOfuRMls/Y0DBMv8mOxpr0717tAGgidi48aZF2RfF67DUeFo\ngw6JCC3w61dU9bp1uHACbu4bcIqDJkGVMSt2/A9HVHLzfbLA6+9SEZn0sE/mOZWNrT0qDyfSdf8y\n/gHjrZPp+8t3pBDxSLrqRwXjekT+bUHnhccZqe5UqEYMlCk/1PneVzr7v/ySTOuylWzgb730faCq\nenCbrOSzGtXl//yYz/W/S4b8okIFMXWTLOfk6X8136RZR6Qxg7PYoq4qW/4QZIVD5/aiQsTED5Wx\nzlJJvqiJpX2brKZrn34cPSWTnvwQ1NHCBhnylqpvTakxlc51TvKEKs3iLHN77skYY4zJ6SzuzQ+o\n8ng3pEKUw+fmrlHNSi6J6+VzqTQd079rW1QHvRGyvUG3ECifct3jl/j2NXE8OHpkWa3KnKfmscvB\nDtdrnWL3aynmoz0Dd0BDakojnWsPimsgKnRIa8I8RybYL7KBvSqfgkpr1vDRmTQ+nvdjn/N9stWJ\nRSocHlVII2m+75FKx6HQIBcCxCxJsSygSo3bq8z+gCy7Raz2V2nRJcYSlG+nFqQkIk6Vy0JoS9wD\nky7ro3iKLew9fOTWA6ouK6usibb+3yHulU3xJVij+NygSub9+SPU4yp5Mun1NjecjVCVKuRZ568M\nVerIAmNeSF4qe1Hlzpbp19Z95jocpfLYq3M9r5Vq2s6EuZ9P4lupTSl0SeXitEy/9z79nTHGmLE4\nctZV7bn5PeKq18YaMA6dgQ3Q/80Anzs6xQf7B/hgpoG9Aif8fXWTuOiN4jNffAmCaFlqU2Wx58+k\niWc/+BE+2axS5SuLnf9851z2YBxnx8zT0EJcvrGIfcZx7O2UosJo9M3Uly7P348GUk6Ls1/4v8+8\n1k/w0ccPqRIGveKm6DDfL5+Bglu/hX8sLAqBFYFHZS1JbPjVQ9ZcT8oKOXEM9YUei0rRzRfk73a3\nVE2+c9/MzhIHZk6lpqT1caLK1qkUX548BFVqSUhhoEJV59Ur9ixPnGte8ia9eIovdHNp+iRfu+RC\nMW5x0fi4/qKPz51nuO+e4Xr9Ad+r5WV7ISrsDampqcL63gN42wwuavxhbBNdUv9f4nseVeGefwKy\n46377xhjjBlIxeNccTy9ToXz3vvszWtSKss8gTMn5JcqxYC10pgILRH4Zmf8Iw5iiTPB2u1qj22K\nX6LWEEeZ4lrAKh4rIXv8XXy2lGPt2HqXqkV87kQcWwLkmI4q2J0s1cah1vZxmX2i2BIScZE15LXh\ni9W8+LDE8bAt3iVjjKmdn5lqVyotY1Vci+KFEk/d6opix3WqkSO70BJ2+u+R0ljtsgq4JzSXfNVM\npHizlDbGGDO/yP42O8da8saJAefZ0z+oZlzo1WZnTirqi61OhdMi/jir+A8GE8XZVkn3vEQQ4utF\nKTE6GlLh6NCnljieImkZZIxNuyOeceoDNqF6W9xR0Uvmj6s1d4N4VOjxXNrfZs+bbbBX5qvEhc0J\nc7DvxjbNCrZJj+mfK8l4fa8v1ZDgbbv2Oc88F3HmeDPPXlt2SdVonWcL3wm+lHUQV2fP2GdsVj4X\nbuiZJoy91n2s0d1l7tueIx4NhUR0C2VRusXacy/yXJv/jGcbR5vrdmaFRh7rmUgAkkMr8xbpEpO+\n8mKHWSn/BGP0w1tjbR5MiC3hJpXnOXHoHFxnXhJSrVrUc+84hb0/9bE/Hk5Y86kt7F6O8DlXRihc\noc6iQnAaY0zUu2eyi8Sc/oR9JiZkqv0Ev/T38FN7l/3w9Tz2j7fC5qptKHUzu3jjWlLasrmFHAlg\n46gQIF6hwdb97Knzei6sCHVZqeC7lVP2khMpxnz+iPiXTmHjZ3us47AQMsfaW42d+/WLuq84wO7d\ngz/HK7RtKkSc8Yd573Uz533N7YUQi/EocaUn1FpZCM/+gP467UISWlmjVSFBMuIyqR5dIuu5zkqK\n/S4oZd2FGXGDNXkfubui+/C9/hFrIF/g9eULxt3ew+4neca9do19IxxlLcys8/vmegkf21jCTm1x\nd0WlsDvxM28BC882I/FXNVqM45J38PHPOJ3x4PvfN8YYU68qVl2xjZpSiqvwveZzKUzewf7xOcY/\njjPfcQ++a51hPJMR8fpMfpG8Qf/7srNpMR9BcbN1mlLVy3M/2+Tr2DcYT4yrZzMWoXWye+IY1PPf\nzBq+GRrgQ2MpE3rFFeNJi8dTCrb+KH93G2zY6XDPdoY9q1gXil/rznvJxxaQ0q1V97GJf65FvHFL\nqjGgNeMK874ntT6XkOUj7TNunXpwBri+X78VA+Icq5e197bxZX+Q73XF+5TYIsBtbTH+YplnkrKU\nJPvi/TMufGpmhmeHQz/XqbYZryUqFdXWpRrc/7xNkTLTNm3TNm3TNm3TNm3TNm3TNm3TNm3TNm3f\nQvtWkTJ/u+gx/7sxJr9NVe32PlW2r56RvfxJnLOmexmyfdbv8ur1po0xxiT+G5VLu87+3/uQDNjH\nj8ka/qmTjNSn62SDF46pkOz0Qdpk3iSzZ3/1W2OMMb9ZAjUx/uynxhhjen3OSd69TWas8E9kiSM3\nyaDv7IAaaYjd/9486BLbDpXSjSoVCGdUmcc5Modb+2Rlf3pBpv8nKipazuhf+4Dv9RNkNw/3/8wY\nY4zrDcb1lY+zvNcjoBYWi6ocJbGfpfRXfC72T8YYY2Y2fmCeDzh/+yBLJjVXwjaVv8Jmc7+mauHa\nJHv5gwy2+aWLasXNt8h2ul/y/v6bjOlJj6rxhz+DWyazQZZ0T2oSjibVm7fExN9fxMbG/L/mKm3c\n1XlsD5n0kJX7HonHIZ7HppM01Z/EKr5TlkpTTtX+GwucqYzqTG0pI3WiHHPmiVM5mHh03q9AtWR8\nwTiqJ2RFZ5ao6syuCTHzgrlo1kEvpReooj0ufWSMMeZU5yYXxaaffcr7i1dcLx3C/k4p+3hUaYz1\nmKfshao0MXzcalf1cEQFIqKzrEYIoNNd+n3rBr6zGqdqVCjo/GWb17ZoSoaq8IakImJV1SgcYh4d\nEe5TLuMXS9ewY2AzbYwxpv9LKf2c0M9oWP0b0y9flAqRJ8zaLZzyuf45FY2RUBlWIWOCfjpW711d\nfalZYI7qQjP1Ls+uxhiLTxXUxjHVjfgq1aCVBXx8/wk+cPqI749uMLcjC3OTLTFX+RK+GBRPxMwy\nNgimpHwgHo2914pXLq4XX6AqffZK1W/5bGKFsdqDvH/xCJ+uq2ql48OmUmCtfnhLCmB+1uDzPRB0\ndTeVw5ETmy4myegPg/z/0XPue/gVr1uq/gQivDbEF9SzEpecYqOvCT0XFYeKT+fNPWP+P6l+pD4A\nKdJt6Lx1BLvt2/j7i4+Ir6+FsDFuVYjdzMNIZ4ztqv4Vduhn5vOMMcaYsRQKFq9TkXE58BW3+5vx\nhTyTwtppmfkOzTDP6VXsdYn2uL7Be6s4YGYDrKW5NeK1S1Wqkx1iyO5jqpX+78AhMxIfQFL2/clf\n/ydjjDFOVfqrFdbM4QEx6otfwg1WsTVNLMZYW3L/UBufkxCBWVvk76EFqSltEI+WIlLWMlL9UVwZ\nC+W1us1YFxcY2+4L9oreiPUadl3y3Qht0NdZ/zjVp6Vt2YjumNxnIHKsPVWftLc59+jfUHxJ7YKU\nqqQWdOst9uKGm/6lNulXwiH1pZuMxyplhVAGn4mG0sYYYwou1sJRHV897+JzvSZxPmgRCkk0Ezbb\nN1Nf6kolytLh+pfIoNwJvlNQjPE56E9dqheVY+K/W4ox3cvx2/h7S9dpZ4UoTFzGfe57MeD7E/Gf\npNIxjYc1ElhmX/CJW22/+Jj7y4eK/vwfxlAb9M3aChXhzXu8lvalbJMF/dCQMoUR4rTXoX8zq+Ir\nWeC+XaEKKx36NxSXmUcI1Yr+nj8gRhZzrM3UOvtdqVEx2UesZ6+HMc1siv9mIFSQ9qbAiHsPxK/R\nEudX/4C/j33YIBzUWX4hEic24kdH6m3NqpA2A9abJcR9HeLdiHrxZZu0cXy2jPkmzWGkEmfSup9U\nO9rMae9tfKXyEC6EaoT+uG9yn/hjbHRcliqRD3vMe6W6t8D4tsXVcubBmQcJ7ustSNlsG1+LfIHP\nWxNCzXrojz+PvZziLykUQeykAjxHun8vHpJr4sa6RB13xD+1yzNXdJb9bCBOl/gMwWnXA5qjlODZ\n8cZLYkanjo++IYWuEyEgKxPmq6t94e0nfP93fvafM6nTpT8ROiHE2nkmdcOVON+Pn+ODqy7s3JUi\n5tIF9vEM6X9VCkXF5NfqWhXHvCmtss/aSlLaqXG/mNagZ5758XxBjEx4xJ9iuTp61yUlmLFQWkEL\nNi4pDlQVpwZCt5arxIULraN6hTEWGkLt9JizoWxx+pI1ZRWCL/UGaCaLEMcba5wCyBzw2yUpRErh\nEB97tQO6aPeQeJATR6P7Ns93lr7QC2lxiS2CeM88zxhjjInLRhfnrK28lHCbQha+/ARkpmVS1fX4\nfEkQwf6I1/YLfNhZkupoHx+LWPj7L/8B3rvte/xucIjmLRgkcFpazLGjzfuaZKc6RXz2aA90VUO8\ng5fqqt4k/alonOsP4EkaD7mezWD/gBDsExvxPCceuHkPvvPPv0RtNjEH6vakKK6tKzarnm0sA9ai\nY3CJolOME29V5oRnjDxuZJZmeaYceqXC2OCZpveKtd5q4E/VY/rTER+LXRw1iQTjj0px0hhj7ty5\nb4adnjk6wzfqOXyi02RO7UL6tsdS0QtxzaBQnDY39z47wKcq4mayB4gXnRxzXKvhE/6YkDR6VnFH\nuO6ylLDOc8SP/BljqTeE1l8mXkai+F7uJX+3X+5NQf1Wkjqy0yf1pxTxMKVTC4MW8WKs3z7rS/yu\njy3yTHJa5nd1UIpVA6GMjp7js/kCr+mbPGfPLoHKiog378ItftIqa84a5z6tzh/HwkyRMtM2bdM2\nbdM2bdM2bdM2bdM2bdM2bdM2bd9C+1aRMn/x2GrM/2lMZ49M1OcdICPpENm8j45BIfjscD1U3Zyj\njzZByIRukO2zHJFdPHxKBm2QIgP2j06qSW5VuJtS8rm+y7B3fkEFZrBKFnX2BVnU1SyZtI0A59wf\n/90HxhhjxhEyctsBMnTvbuoc/cO/N8YYU5GgzbMi/Uq+TcYs8JyK9m/LVAys16UqsEIG8Rc6A+06\n4Uzxez+R0s7nXPfGT35ojDHmNzrPuf4uWeHnZdAUMZ3btPmU5W1R8di0/8QYY0z/6VPj7nIW3zsh\nw379LaoSn33OmJJCwvTaVJFKZXgy3G/Sx0mNORm/R4XU/Yw5axkQOJO/YI68Ordsr/L/WxcfGmOM\neXTIfVNSDrhq61TI0g7EfZJM0c9CjSzs0TPmLJoicxxPkWHem6PCWj+kwjDa1hn6a1Rn2nmq3Mev\npFr0FgiaiBi1SytUCBri0Sicknlf1jn4mXUy2/s7VGuqr8jqpr8jZu5jKhPHx1w/9i6fX7uHD2Q+\nyxhjjGnqnP3YqnPxQew9vyxUREiqUwWyrl0L2VrPhH7GA8xD0qPs7C5Vq/QCvmFf5X4Ri9Abceax\nWVEFecz9z1Udi1vIKnvmsG9AbPl1qZpUq2Sr42vcL/RS6ikn9H8miQ+27WTVg0P6nw5j/9JzMawX\nyZovW8myX1TJuteHqtY5VJK/QrOJZ8HE8ZFLjihrB1/0LIjPIo4vdRxUp7ZuUk1qWLDFxSk2Lr2k\nKjGxURVJ6mxq6VIZ6zdSD/IJWTIrbpC7ZMpjRlXxBnN5+wFjP3Ti+14L/WpKaerWDZAmA429LsWr\ny3PbjTJz1Opxv8gCnyvpXHQ0SLzZkU0rDuY6pnPj0WU+v/sVNs7sUVVx8tZ0hJSJShFrboXq0NDD\n/29pzbh0n5PP8LFf/541HnLy+fNzqnzLUqRZlArTyh3i2sIGvtBUpdQhFzyyiL9qXapYPqpylrrW\nRIa/74l7a9PP2uiNqWRctS1vEqMWXCAMR24p7YhyoCoOmfgMvl0vMD9dO3YYij/E2WUNLqiKZl3j\nOstzzPPRPnY4OON1rO81FcsWXGwU6WVeMzqGvuyMGKeQY6sqyp4fE1cWVFXyC5XlOMWH8ofYJrsL\nInHU5161KnPkEBqg58A3BnV8uJgnbkbc7AOHUsJZ2WZMjo7UHrLsVYUhc+EXojCneNHIEhe+NwdK\n6No7oAO8qo7FXHz+4CVVpVcP2T9yDWyRiBLHbJJAOJbt+i0hduqsBb+P++SF+oroew/uUdnNvaIi\n7BhSjbLE8LFmX05+xdZyMu6R1rA3gc8Ou6osSqFlLg3ix/iYr11DTAh7mdO74hLrDZiPVo612wkz\nrrXr2D01T8woSZksZKH/K3dAuBQKjLv0TEgUO/PZaYifKqhz/JeKPcaYfqNm7FJcq50zr+cn+NGp\nOGLSQiaVpL5UbDCfC+vMf9TKWlxYYx9xq/JvFUeG/VL1Qwo7TXHmWCb0v6N9Mma1GnscW/iXpQi2\nzvNVR6oW/RZxxDOH7bbFA9ERJ9j+M93bTRzevMv6HTa5Z10qF+MGf7cIGelOslYGTSl0DcWD0eJ1\nqDFXvN9MxW29ik8+VJy94RCf0SboAOcJa2D/NtdfFNJx9ojxfTHEDvNz7DPDLL7Q7GGPpRDXv3z2\nmRth63GG+zib+Jwlgm9nb2LrUJ7Pr3r5f2uTuXoWwS65C+La2hnPeOUVfCPRJI7eEJogs8D9l2dZ\ns4MQsaWXppJcqxF7olK/q1XxkUcz3P+uk7X4XEjILVXrF4Ra+2Sb8ewKrtuYYJeVNv15dpv/3/od\nMe/WBpX3J3XusxQhtmXdQv9l8P1OhH6frzP/3gzjLf6Q3wvG/LUpxPKmbvh87xr+9fYz5vGx+EYs\nWZ77ow94Pznm+b2bF1zxCq0jpIVjKAUaIWUsVqFCdamem7mKCfkxXmNvmw2rut8QmseJ7RY3QHRM\npOAXOGFv7o/wsXIOG+btvL74AgS7ZcIzhieEbVfv4gPRGNcvZpg7nJIFAAAgAElEQVSzvUPiTE+q\nn4fibknMp40xxgyEjFvwYPvt2zptoHi8eodxX+TZqwPiVesPsbVHvEgxKTk+ExeMX7xGzgOQLdax\n9psAazfkFZpqh+sWxet5W+pLb34HJE0ixjOMe5/7+LWne+VbO+KLc+n7ry9A+HjiUt4S2qPXx55z\nN7HvoKOHFY3TL568az9AHXHxTXidhlJXvWqzyk+SUdZA28X9HXbe5xUDykfYz94TKlDoP9eIcTiN\n+JR84jCrMM+xlFB2olbrCbURdkjRrv01iuwsXzVRr934bNi8N8e1rq0Sz1LL/IbJZ7HNQL/B/AEp\niUmZqpgRN4vQt6MZfKTREaeeECtx/UbpV7lP8amQfz7x5uiZI+4lXsytsW/0pVjWvRDfW5345Tfi\nbYqIW8YlBUEh5aotxm454foOIZcLJ/y/T8ibptBXnQvxI7nF8VUQh1kfn05v8Owxv0H8Lh2yx+++\nxqfO49hnIr4+l059+HtT9aVpm7Zpm7Zpm7Zpm7Zpm7Zpm7Zpm7Zpm7b/cO1bRco8ypXM/2WMmSuQ\nScq8QxXtbKizx/dIJz/YBfGSr1Ex/vnHqhh8j+xkYoHz5HNZMmhrQzJb1ZdkTYdpMVOL2Xz9FmdK\nz56SrS1PyHiNlsWWXCKT98xDxnBkJTs72iLzfvaS/npG9G9exbh25381xhjz5h0qC90kWWBblux3\nZBOkT+EzPlftc547okpHaYHrvhqSLR6o6pT8Z85VLt9nPHc+QaFiOAPnTn2LTObKx6BS/slCZcC/\nCBKgOWM1KmYbV57qTOYh6Jv/PIDPoPiKrGJnFYRM/T7ZzQcfk6HNLXH2sHVBlvHURYb6h0dkoD+y\niuNlBaTIBx+BzPnZXbKqf7LCWEePvpnLjaXE0CeZaexipZ9dJGt7+BBbV0+pGEev4xPLs2SIv9jH\nN0qqisUSjDOns7JVceuUDqkI+29z/bmAWOP9ZEvbObKxjSOqMHNpfGE+Rcb8/IyKwrwha7o+j6+9\nkMpT7Zgs6kycv2fnyCbXe4yvLC4D7y52T96Vwst1ssOtrJjLC1ynrYqtI0H1yp3QOcpj9VPKDMZP\nNWugikFMLPT2ANerFPlcV4dVa+dUSOKqii2oQvJ8jwpDscxampG6U3yZ8dSf4usjC+Ox58gKZ33c\nZ22T6qbvU3x7XCR77VtkrdoNi6inc5zD+asrHUR15tMj5RBvmPiQbXLvcp057ioFffKEMcS9VD2u\nzYCwu791WRWhL6/Ef+OzEgc2tnRmvqTqdSFjjDEmt8uYjz1c1zrk+8907ntU4cbViuLFLLZ98mvW\nYlH3S3pY32M711+doT/DRfEqCXW0KkRJN0SFuatKqF28PWdnL2UH+r0uHqS4g3E6nFSdLvkg9j6G\n8+WwwFq++S5rvXiIjzrbXD/qwq63roN8yQvFcankst8T672qYl0x++cN1bedZ6yddgtfu6brFDKs\nvT1DnJ94xXp/E9/3yYebQkGEdc46Ecc+V20R8bX0Vdl2BZiXSZ1+Fi9YW6eveP3Vv35kjDHmbcWU\nk5yQL1L92F7Bnjn5wasc17e6pYw2Q6zJl/neyS4VX+ci19sQ2sIppOTy5qwZN1TlH7OXlceqTCZY\nZx1Vh+ZW2VNsUsEr7HEOfDkN4s+b5N4XWeboYI8xHasO09V687rwmacfU+VvFVmncak6pRzYeNxU\nfIozdx/8EDTTeUGcUoqvD6X4FTDY4o238aWwkD4Tu9QmusSZYlvnroVuiPpAMdilKpE5p+oUtxK3\nSj3iVf2CONFUvGlrLx4NiQVDIVQm1m+mrOORKkp8m/s7vbxeiJuhWBffhHgrwuLPGBvFMXEldMvY\nKVfjc7Y6153R2m+1sM+5uMrqdWLHwEKcDpeZl16J++aFdAkJGeO0C422hl3m17b+MIZkfNGMhX47\nlurJ0CZlt7d41lnS+fl8HzsmpWA0FnxuorWWu2BtZl/Qv5D2mfk3QLOEhJhxhVizswmpt4gP7/ws\na1p+9uhBi/hiKWidtJmzmLiknKrij3TWf2Djc36hfkbqU73E+rKMeD3X3u3xipdslr15IpTU8TPx\nAQlpMhkR94daYwHnN1Poaotz4O6O0FxnzEFxg/6sHjF3pa5QnwH+Xitjo60hr4c77PGLY54dPMtS\nKpzwmhQflDlm7eRdUp75kLns7Egpy4aPJ6XW9MTKGg4s0L8VrVGXncq0RaislR7/b78QSjrOnNk/\nxv6ld3lerUiRbNSln73yB8YYYz5Ns9b6fWLLtXOQ7pUO9r4rvqexVypbA/rv3gXtURFAaa3OP6we\nfOm9oBR1tqX02MC3Fx1c5/w5z7+jLal6DdLGGGOcdnGFCR1WSuJfWdfXteeoN2MqI3x/9YWeOSJC\nrla4/g+b2P1pkbWTtRHntzb+eIX737axFGIsffpQF6roTAqQK1bic2nAHEyc9LFeou/jKuuoITW2\nqpTG4ueslWKJ790WX2bxQvHIKmR1jbhhUbw/EdJuIsSNaOtM4odC/b8PD2VHzwS+B8Ths+cgP3wx\n1lZ2j739+e95xiicY3OXng1iQlLm+8z1nVv8Tqic4qMXE/FDeYhzLd1vZVnPuQPGF11g7t/5CyFo\ngqwll/bw/An9eC1+j3qFfSGyxH4VdWMHv5Qu529JCfOMOBYJp40xxgyHfD8Q4frJGJ/PaM/2SgHu\nuCCEuIf+FITMnEtK1UnPIv3U18iTq7R+TqpWUq8aBcSNI3R0P4E9F+eJaREhpBxChw9czOf8ulBk\nUr48C0rpzIpvjy34Y7siXtYB81nOlP/Ql6PfvjTet7eNxRrSd6SaJg69YV0Isy7OY2vi27kqvhi2\nsTckhKJPifcmEGLOKnq+9Ej51e9nHe4e8tyX03O1f477WaviDHMyl/F5KWMN8aWmn7HP6LfeoMpY\nA+JqHE/w/eePpTwo5LJtizVl6xPvWlIqDCjOtcXz1HZiq1FGnGB24lNeSpdLUgRuZXl/+gIfrLiw\nU/QBPr3kZ62384oJjT/OlzlFykzbtE3btE3btE3btE3btE3btE3btE3btH0L7VtFyjxwk6l6skw3\nko/JpM1Fda78WdoYY4xNFY+2WNznLUJtHJMBe7NKbikzBo3RFSfNO39Gpu6nPSoD7t9R3XnyLpmv\n729QzRqGydgdhsjiLlrInnbeImNY/nsyXnsWKgAv75Exv2XIJEbbZNJ/KtUlu7LAkd+T7fVHuV/g\nMf12iMTAXiKz+KGT8f4sSAWmNSBDN2Onsvrxd8k2x39Dfz9P/Q9jjDHOi7/k824+l7KRtX53E7ue\n/Z7rfPD2XVP9CsTG3ptkUrvFj4wxxkxWqaJ7rWT5Go9B2/gr2OLhDDa9YaHada/E5x4b7hH5Iedu\n5z/nbGVtBSTEZzfJnNt0Tnr/t7DDx1tfq0RcpU10LrBa5v6WAfeNL5OZLjxlzHnxToS3+f+Y/u76\nnDk7PyLjn9qkUhjbIBvbPcZGVbHPL82Lp0LZ3Jgy1QOdsS2psunbUFb4GhXrk4uMMcaY3D6+s3YD\nn7k4JzN/sis+kJugmoJxsslunbu0qbp2qZI0P09/5i4RPaJNyZ3z94si/Qmm+f/EMv0RSbup2qiS\neexkZc/0vaCqW8EEWefIIj6VKamfz1hTNg+fmw0IDeBmfId72DGcZnxzOrOafSyuoLqywFHWbFFr\ndG2e+UhcZ/6qZ1QU2hZevRHWdjHL9TudqyvrnOs7mV0y3mvbQiCIA8XmI3N+9w7opSd2Muz9EfHm\n0ef4TklnRRNrfL9wQPXJr/PNhSOuM6+qRSzF+p64mVufg4z+wlvEHa9Nqg4+1vXrPL6zlsYWvSPm\nsHbAHGS9zEGxTn8OHGTmB6rSfClESUq8H/vHfG7Gh63u3SS+lUtct1fnfk/7Ut46oLIRDfJ643vf\nNcYYY3dxHvv1Ib470ZlXp4N+H+bE8O/Ep+YT+PzOGXMbiuusr7hy2l3mfkHVKvsS8euGUWVbCg2L\nQdAf9k2pZYWJ231xgE1qiq8J7F3tgAa5aOHrY/PNUBClJmvsdIdYGJoXh40qpbYRdlu7zfy33EI2\nLdL/xCnVy70XzEcsxffPqjp7bOM6QTcxa6Bj6G88IPbNpLBTKY/dTsTrcvh7OAv6xwlzeE4FbjmJ\nbYpSKugIddTJ0qfZddbd2IHN8kXiqkV9sDfFOaCyy5vf/YB/WKk+9VQq3dhirCFV/CzicLEIYXIu\nLoSRlA2+2iPAxNr4xEQqawkrAermPPuBVShTt1f9vMBm84obwSDxpWNnL9z/Et9v3+A+d25RDU8n\niSdbUo3yRhmftS/ugjN81tpjTbiFPByI+8Rh6OdVm2Uo9agOzwTRGeLSwgLjtFQvz7ML3VvLGGOM\nye9J+c3N/UJ1oecyOie/KlSeYktV1T7LCN8JirOl1xJ3gpCfw/qlkhx2SN/n+7UO32uJ5yLzJag8\n85/+zJy/eGUsUnSzSiFt0FaFVPxaCml/UDds1vGfkcAAEkYy9rx4usLM19w68xBRZbzbVeyUolit\niL+Ec1KFOs6aQFh8SFJLq0jxsKsz+76IfOExtjocSRExLNRRi1ePBZtdxoViD18eVYg3gZTG3FSl\ns84CbEk9xBFkTv2ydV6VVY/i1FVb3PAs8rTNOvf9CGTHza+wZSfM3npHjxJHUmfqu4kDT63YyrpK\nXO4leWbq7WOH2wn2k49c7L0f7OBTQ5eUI9u/NsYYExWnVbHC8+bchPGGtkE+Llap+pej7FvZHD7q\nfYN+lw+FgrtBLNg+YG0vzOMzz3xSLzwg7n0WY207k+KxeEgcvpHQfYRQ+UBor/N5UG5WxYhGD3sP\n68zbG1Kp+2yVfqelrPa8h482LNjNYuf9qyr9nk3jJ96sFNqcjGtPiJyI0GwXMe6zKVVBY4xxti3m\npirVXSFlLUIj/qjEdUdF7NXSGro2Yn5GD0/MVZtbCl02IWBcQn8GhXh0zkgZK8tC8wpZU80rrmpv\niQu14I+yzle0fncf49ORLXzAeWbRdfA9r/q+sf4ethhKxUmIwoLiZuUJcz7wEedeag7XltLGGGNy\nXXw1mBfiIixVzTFzHHTyPZeL+5fF89TOs28dRYUeqBT0/3r2Espi7zFrJymV17H4k17vZbDfSBxp\nr+j/zVtSh1rBLl4/9qhLybYmROFeiWeFiZvvraUZT9jH751LtcGUm/2pOaR/4RT26ygkxJd4lmuI\n384uxPkTIce9h7xvNvEhq1DIV20WccpMhLS0WoWm6OE3Mz6h7ZZBFfca+MuukLEjcc4EVrBnSQjR\nyj6xxZ3WaREph/UumBe7UGll8bwYY8xkMjKWYc/0tD4LNeJzVM99uTxxeVClzwMRIzkbvLql3DdQ\nvC6Iq2os32r1uWdfyJNhHJtXm8Rzt/g0Qx7GnJd6Xq/N54JS72wI+d5q8/mAbFTVHpZwE+etUqjt\nSbXJKm6YSIpnHY9Tc18iPmTF+zav34brSfbackMITymnJcM8jwalIlo8FxJQSP30Jr+xrZs865S7\n4rKRrf3eqfrStE3btE3btE3btE3btE3btE3btE3btE3bf7j2rSJlPkmWzH8xxiyRmDLWe5fZY7J8\nvjOymbk3yVjFdK69/P6/GmOM8X8FZ4oZ6ozbOpm4loOM2a96oDz+8jNVvz7kupnXZPZLOSoqJ+tw\nM/hPqVL+tAlaxL1HhuzHf/1PxhhjqlW4AIL7ZCl/tUgWOqTq0vyELKRLjOYJxz8YY4w5GJHh672i\n8mG9pYqzm/v+zVhZ2y/+0RhjzO061/3nGpm2n7ykingQBWkz8IAMeGH7uTHGmA8PGcdHy5xRXhWb\ndeo2493pdM2huECWdhn7SAiU//qQbN/mIn1bfAtOmacvydfd91BN7y1g4/gi2c83A9j+dYHP55Wh\nXz8HPdCPYruNGFnNvQBzsVMgi3nVZnGQLR0rK5o/IjO8dA8bh6+TtTx4BSJmTn/3bDGe+ILQTqoS\nlQXUSQbox8UsNmofMne5Q7KZsetC+syIp0TKPqUacxfJ4ivxJJWKgLhajnZ0tnWRKlRqlTk5/xwl\nsdNjKhMWv84/LpKtbXVwotojsrpnL471/2TGk2nsO3OK/StHZHUdG1JVcnA9nzL5Np1bD0rNZdyC\n8+f1U/zgzp+w1ubXqHw2DnROU1X8i2PsErkvtvx1znUXH8Hm395j/LNpKj9xP/NUUUVmIyZUwAHv\nD18KYRRn3iwDrl/VeXdPgrXrLIrbyHL189uJWe7VrYvxX8zyuTb3aHwllnb5cEIooOWbZPC9C/Il\ncaSEEtjOUsD2PSkoFMQ1YpciV3xZHFM5xnhUQLXhWpUz850+3/dZqCScnWCzxGfYNC2lk7aq1t4F\nZe7rXNencrZ9O837qu67gi/sndGf1xn+f30B2/nF+7CQooJgM6ruS3nrk9/B++HNUKWKxIQuG4nr\nQeO9eYf7WjtUAgoF+u+z6z59VUSPtIbq+GKzyZo/0Bq5RD9NpFTTkfJOo87a6mltuu7Sz2JJZ3TF\nYi/aChNSRb2hc9AdVUCu2rpCEB3pbPH2EvZPRfCXwywxqzxmLUSlIpUvUlVMSJnM4ad/k5C4jCJC\ng3ikjGCIEV9+RDw/OGa+QkLKFHPYaW2V9++9C79XIG43K7eJP3NzafpaYD0O8thyv0Z8mXiEPpCa\nx+p1UFJ2cbccfcHc5saM2aFq+evX/P/eDvHghtBVl/Fn4KOiFlB8ap0wN+++D4fM/Dxx4PgcZIbP\nhY9aPMRn5yw2igtJYR0TF4JBoaDaVK92D1hr732H+3s/4HOtrhA6J1z/8+fwo52NOHd+Msa37i+z\nxo5y+NKK7DEUUq9ZxY4RKS5etQ1yxPl8B9+ynwk11gMtFQ3hK5UDnTO3iW9pRhVrqcbZpaKRXGa/\njfgpvZaEWCzJ12xC80X8xCD7Ev2dn2VN5s5Z46WK4uFY1UZVK4tn+IWxBP4whkqla1IB7pvQvn5a\nFGdNlusdFIQSbmmNSrVlon4mHPTDoqperCtUgV33rWnN14htthrzN3QQC2091kQsPGtiKeJsdB2f\n6O2wB44GzGVqnXV0pLg6aOADvjC2HmtPsVkYuzdBddz+Qnw9fo9sIgRNB58PzdGH2U1sGQjz/JbP\n4KPOLs9xQ/EqXbW9EOfApp4zX34Jl8pwRghrFcszPeK4JcQ+ULbyvLcwwEfrem71NZiL2W3mpndO\nHFyRitHLBAgV/wJ774ofO/XtxJnFJXGnFbFLWuiCsV8qKSHGN7jGHOW/wN5hF3v35FB8J26e6fpF\n4tt7nzLHR28xrnekvPj8FZyId3T9wwr9eHCNmPLZmPG8XWEcX4n/aK/EfF5LUHHPtaXGFWTejkv4\nWDTA90t5/CY2EDowJsW4ESiFoQ9FoeYiMa0s1EZjES6cuNQODxzMtzHGDIYx4xdP4eIj/FGP9eZx\n4wfGGGO2/H9rjDFmW6pYtQY+336PNWX+xvy7zSZ0fk/PZf2+0J/imLGKD8nl4dqzy+wR5yXmMugX\nv0UfHxmJt7KnNVNoCfX0Fait4xy+4hSvW0W/RdZW+O10lMdX3/8Oz+cO/UY4O8sYY4yJ+MTB1Rc6\nKcbrpcKMXRwnZok5dY/4+0QohVSSOW6Lz9NeT9OfuJTP3mKuigX29NgEW7rs2Of4RCil0SXvHHHn\nmrirTnrsB+cXxLnX+4xneRmf9IkPafE+n4/09FtPiL36Ht8/076YXiAmdG3iOOsxL2Mp6EwmjCNo\nYa20x7y/c+Ouxi8+Edm5UeQZxxL4Og5fpfljXN83K/WtMD43yPCMkr1gXnsTcRNJ1ap2qufmKL7d\nOMane176ebTL9+1e7Fwvao2I+21tizg/u5T8Q1/u/+Cecc24TeNL1r/Vwhy09LxWPOLZwxXhO6GY\n1IrEvZTLit+zxfvSK/GfSRWvImXFagufn5MybHRGyBI9n/qlePj/s/deTZIf2ZWnh9ZaZaSM1Fka\nqCoABTTQRLPJbvawh5zZMdramu3L2trafqh92re1Nc6SQ04LtkILaFkyK7WWobUW+/A72RiODTmJ\nJ8xD+EtVZkb8w/369ese9x4/58YQ322VibduG76dE0/b5T7fKX1zfJfzSk1z2OP5kRg+sSAUl93B\n+13iPaqd8pyKzhT2gc4wdn1/z+h8rvO9q8/+syD+oKZQXY4i/YhJ+XdkvUJKs6bKF7p9cJWn+O9w\nynyrSZnRmUhSn7FpvHkq6FWZA+DHkvdaeEIAWpWuV/jW9/i3hBN89Igg7hyyEAM6IB39ikn6fwXf\n9z5nchMuYKTumd/y+g0CyosGEtJz9yDWvVmQXGXhB8YYY+pHgn4Vee6PbtCvhq5D+D8H6vaBNqXL\nHJuOJ4TTPPQqMbGLfGh4SYG7wubdnfy5McaY6hLOY8nilF5JEN6ucz2qt6CD4Tp//833WLjRCP06\n/HtjjDEmO8Pr3rnYNes/xFFnX7LBn6ZwoI5NByNd2dr8CYvc8pAgUJzhAGXvMvbwjgheIz81xhjz\nq62HvP9VEeJ+wRhn19h4vzhmbN+1YvNukIX9f5nrNa/w9z5Bz3LHBIyJSWw7t8ShM7ulICyS0+kb\njD11i88vSsb48gKfWU3c0/v5+9NdQfaORPw1y/sjXgJPI8GBIH8uYtwKC28k2P/EDF+wNp6RfNn6\nlEPwm4+AHfaXlQQSeWpbV9h0i8mkJti8SlM6/DYZ5+En2HHiL/mcjOCUuVPm43ib/qzocwKS1iu2\n8ImpEP1KiJD4UNLdhTDPTd8i0ZdZY5xHSiRcbvL3BRH9JiT3e7bBpnq0z2aXmCGp49GXyOLBgTHG\nmMoCv5+9zbgPnrIpxEW+FdeXt4YILS2S8QxNMP5W+/ow0GaHdWgEhw6K2O8KevpHWdwGwfHwnLkJ\nLhBUqxXenxfhV8yvL1K3mRxnTpBfq76IOV0aM3Hmz98CEvv574gja7L5SYVDfzqOr66kBJO8FGGs\nvkheFvG58gnxLeJkDh1+4tWs5nRnD9+1L/C5rgSvzymx1a3RP5fuzYSuJLatjH/5IV8sfdqs9vL0\nwyNJ2UIJnxqJCLLeYjwe2c+iLz3L380wnvuMKxVgrpt9Pv88y6a6NI/PbnZ4fyTInG/qWtWKNrdj\nHRAjLp67pCsan3dkZxFeRhZELGmlnwGfsvnXbDPT+GJHiYylRQ6oCZGl1o85TBxcETQfsea3BfWe\njRBrzk953UwM/xrUJCNa5ecb3+EA6vLT/3PBbcNeYkbdziGnry9nwZCkxrPrpqPDfK3KGKMJbGQR\nad6E84rUEx/NiSgwrPiyIshsKMRn5V4e8JwAc5WcJM4V6syZP87BKKSrAvYktk4rUXfg5otWS7D0\ngaF/+yK1S2qv9dh0TXKduNHyiJB4At/t6GpgV1dMNl6SbIkoWTTSdSSXl38XJZdpt3CNyamrD34d\nAMNKjpSVqPSFtJ/pS4/rhDjWd34zuWMz0penDmvoQtePejl8pl5inIMG406scIhevcHPpWPmzSZ7\nzImc8Oo62NYLYs+FEhAxXWsot5mXpq6rVdr4TEdX/ay6BnFwyftze5KStbFGr/YxY4y5+8YD49IB\nMZ7BTpVnxIi65NyjCZERLnIeCKq4EJMc/MitgtgT9rMLXaFsyb71or4EingzIDlRV5w1vriKfx19\nsm72lQgsN9jTGiK1d4TwvbCIebtzmrsIvptayBhjjNn8ioKLbcAceP34THKSPa0x1GH9ki9Gdgfr\nySfi314bG7dqfK5Vh/SBrih4lLS+dpPU9svGgTHGGLeVOFHTF8ZpB3Hqoyn6lRIx5oKSGJ17ksKu\nYbNgFdtbP2A8V9LfSQ+v37jDnC9ts3/FqrzP22MOtvSFNGxlDSdfMic/fYv9bZYlaQ682L/7Bj5x\n+Rif/E6RtZzI8/ueF587dmaMMcacPtEVGpeueM8iyFEt8TmzujpYVkIzaeN96z76H9jEXn6Rdx+H\nlOhbZD+0buOTzXldW2jT776KI17F2/RL7PvkFkmwJSt2ObXIj2ycJYoBSex2ieuO2tfXXCPbflP2\nSyrdqTPIlvYXN/7TTDLeYI7YV3SzT3jPvea6rSOSapsKCp4W620g2WCLR3FJyfCgZH6XM+zRk/qi\nenWt/qJc0Pvo640V7T36oprwKr6LKL2q66VhN38/1bVUp4XP8ahY+Za+S/mC2PD0HGe5um7vczBX\nxU3W8NwE34nE0250g87Ydf2qoeu3kavrUJ8QP2bXiAelrM4oC8zlwn3iT6PC5w50JfDklLPTVSww\nJYkt3OZs0NG5sa2rI922kjkqDoQyXLGeZPhmZlZCGGcqGt7FzsdKkkdizM/xU8bdaPK8gw2oIXKn\n9O98Ut8H+vrO+u9I5J0XlQDtfk2ce53WtGDIgQRH2nXJ1+sqjXuRfb2ts63RNaTFtzjvRyWdnt/i\n9d06449p3wknia0u6WY4GvhHdJ5ftJuVP/alMeqY0bkxVQkPJESd0Lbpe6pI+tPz+NrCHP8+3+L1\ndhURZxP0cdTD1yy6mtaUFH0wjM970kxOUHLwF6fY7skuSdfJCfZWb0gS1SLLT6SxiW8C55ub5nVN\nnQUOs7pmqPPVUNLXFpEd91U0zNV53eotfMqoAN4cXl0BIy6eKAFo1fl2+Cpr29VUwSbMOH2G8ZwZ\nEZKf8/wjXauydrFLysba/pfa+PrSuI3buI3buI3buI3buI3buI3buI3buI3bt9C+VaTMuz+WnNia\nKsQeMtLHIl6MCJGSeI1KyahE1SwVpWJcCZCZujECUm3ZJ7N1vE+WcGqJLGB2VXD3z8j2hrNUmUJ+\nECuRBTJs2TpZ3XsesqB/P8nzAjbIWee2Rb70gKz1ka7MxA+44vOHNa4vPPqNMm8NMvSl1wRr/77k\nQ+vvGWOMufucz38y84/GGGN8k//eGGPMZ0OuPf3FUzKE/1ESrkNVzpM/IctZvANyxvdbnn/3ESiV\nxF9BCPe3vzgwxhiTb98y6Q5Vkr15kY/u85lWD1J4gzDZxEZzio8AACAASURBVMPvkZn/Kyfkny8+\no6+Zyx8yljfp056ADJEw2dF3/Hf0C2y+61DlTlVw34jf/8oqQsJrNruyrF5JwLWVES/skLnOvA3i\nJbYoGWQRhF2oKuea5vd2ZcKLx7o2owqnX9LLKVVwC7omUCuI4HGNyrNDMHO/CB5LBbLD4QWyrokJ\n7Jo/JotbE4LlPEFW1CP53CknPvvFZ5B7Vk/x5XhcEqe6DtQQEVprXxn6dfozM0V/piepElUP+Jze\nHX6fTDKOq0pHXwRkmSWRwL7ERw+/5O/xmEivVPKYuKerNp/x/C0R+6699Zr6h2+vb3AFplnnuZOq\nfOwJ1t8SMXN6jYpEOc8aPN0GaRNeBQ3nc5JtPtplnLEZqoVuz/WrlzU9O6drNCMLzhlwYFNfCh8K\nTauKUlFVXlWZCVVjTkU6l20fGGOMmZ2hGtUW6XMyyM8np9j85WOu7s1WuKJ23tQVgJLgkZL5tR0z\n5sw8Nj45wDc9Igqzp+inVUgdr/+KwIzXJ6clZa2rb60z+hmbxLf8Yaof/oFgl258NGTw2a8+BpVg\n62GHFSE5qg0qoomISOBqVPHal7pOFOD1Phc+e7jD3J48hfjww6fEv9lZQX6H2LWouGdRFa3SY+37\nda3sqmKRL/K8vYKuHYisdFHVISkwmpYQTmVduUhovsrlb1aVGgYkrzmigrH9nEro/qGIR0WmOzvF\nPKduU21bFIpuKsFa2RZsNjhPbKntYbeN51yxKYhUNSqy3thQhKYWPr9wAbz+8hnzOSmUg81jN4kw\nY3v/n1hf80uqJvvxqapIS6VcbC436Psf/vE39HkKX4lMYetmSdBfPzb0xvj7w7+iQrk4g60//B1X\nYYOa66Iqs1nB1k838e1VVUrfeZO9OCzf7YnYNxHl3/gsY/Iofu8JunzjAUjL8BST6xIi41By4RfP\nBct2UQEs6CrzwgqVwSlVkK/Qaq5jXXnTFThbU+iqMLauDVmD1212XVcNaL9w23lO+UxIkFN+Pt/Q\nGwiXxifJ1r5EBs6FsuqNiEU2kab28/jChCDgiw+xh0UQ7dND4m73jPcVhGKbXcX3Ri4+0CO0V3iF\n3/tCrj+OwZmwm5aQN88/xj9ONg+MMcYMRdhsF5In4KLftQI+7E7QT9cVia6X+QvPKy4rhnRF5urz\n8XP7itVaV0Nqui5RyDdNVuT4Xhd7mE19v9A5rCtfqwsVNJlhTB1JKFe0N9hUiXSI+Ds9hy9a/ZzL\nApKTjc/jIwNdJdtQFfmsSRx2WDgfWa/QCoGy+SYtdarzV4dz57mF/WF4mzlz5dn7Jl2gAy4k+T3h\nZd/oN+nvUpm10j/WNU4BOlqSQ55vch7d9zIX51PEhu6mfLzFGvRYsO8Ti6rjc+zZrj9gh80o4wy1\nsYOtRz8WClobcRFq9vDZnFVXskVE704xX+sj4tlruup97qJS3kkw125JzNZFsFm3E2ucYca3YGfR\nLG3yvvWra/y3OJPUy6AOIknWiEuiB0MfMar14H09B3sWJUs/POasWlsjZqY/5by+NC3/EbrPGGM6\nsZpJeYQor+C77hj/lkWuarHy7/Ya8+Pd4u9B10tz3TaUb3l0/aimOOhwSNZdaNR8nn93nrGnnFaF\n6vcRn4e63hJyEQd8RtcchR64QqbFdb3RrbOKp8ea8nmJrzMWbFWoYfPtPXyrE2KOmj18yC+E5Xn2\nwBhjzFpUiEvJGQc0d1tHnAFmdAYZ9fGp0yPOz/ceiLhYYgB+D3O2e8ye25CUtj1i0TjwndVVvgN2\nvNjFpfhi7+n8LvnlYYgzj8OOXSwGOx89J6ZES4qfXT4/NcN5sy/0XF9XVs5KnAVSKyDGZx5xXcup\nuO+Wjz0V8qmZ53mffAGZdlioKqsQ7gGh4q7bhses7bwQO3ZBe+zqZzzD/PRcQnEovkYmJVvdxn41\nXUvyB+nn6mJGr8Puh6fMnyMvBNAJ822pfH2G2t1/bpwDqzHaI1IRfHAkdLt7RXu84qyAb8bS55lW\nYTwS85yfhn1diT5hLuKzxP+0vuNYFJ/rkr5uXFydOZhTj65etXTFrCBxkKV54mpYSOSq0EnHZyKK\n3+IsMTNPfNZXRzMs6lrrjNa1pKuvbFwt6LqmUP0VH/0YduhXtcneG9Ethas9zmXVNS5JZud19dly\nl/PjdCRjjDGm29C47F/Ho/9WGyNlxm3cxm3cxm3cxm3cxm3cxm3cxm3cxm3cvoX2rSJlnv7kS/M3\n/8GYYJ7s6nCXzNb2v0Py76/PKB3sVSD1+7gNj8mbXbLHL3pkPxdiZC2tQzLtu2HJZNrJoCU3yH6+\n+iqfE2iLNPGnZK5unOle9SsHxhhjfrL+I2OMMd+NkF18/xXdZVNl+cPfk63+ge78/oMH1MOyMnhV\n3b9+9qdk2H74XPfw9+BfcYsX4OIS8peFh1R89n5DRvFHf8brWlOM4+6I/oW8v6U/NjJwf7XG7798\nSpZ9J0Am3/t3ZEvDb5BN/WrOmB9/hM1+beUzWg/JgEckwWkr0dfVCoiPnJ65/6dk/0oW5mT5Q7KK\n/tfgiDl+g/t/T88Z47ky7dYcGdybGTLXpUMks903vpn85EDpWGdccmglspUlSbslJSmXniH7uifZ\n4OIeczf/AATPtO6t7391wN93JNH6EJ8L3eb9pZ8zx5dbVCzTIgwOz2K/8zNxIFhFsCsejp6LisGq\nSFnf1x3Uwy3sOBWz6nlUAQOqttWUJe6ITMszxd/n4sydJ8DrtiUXGtAd/tk5ECtf7v3eGGNMYYfs\n7vQtZbe38IXTI6pmK2+zhuZu4aN7Ijw7XierPP2Q6qFb9/TnItjj8hB71eeEpLlNpeRoR8iYHSof\nr/8Zz4/M0f+dPTLxzgW4KaaUPd/bplrWFA9Kao7PaZ3Sz76kXq1XMItrtKl5VeUlvemVDzbEPWBx\niPxYVZ2W7p5uHIFsuCE0z9QqFbbsERVFzyW+dXGpCp9IkV97HVs93sDHk7q3XW7wc2+kykFTUqTi\nbrGnRXSpuDQj6frwDP0/P+Zz95/hw+sH+HBDUqeJKSoHHRGSjUSKN+Hn/TsfsNbqNt3Xfi1jjDFm\nYMUu7/9BUtCLQl2I6yQ0pWqa7kvXRMLsuKSicGeNKtKc+Ec8EZ73VogKxsQa9mjkmLtDVX0SQiv0\nmlTRnKqgTszRv7hPVZ00vlEWwmT/lLVXEY9VSGSBEc1jUOR2neo3k5882qA6eLjPfEyI92ike+g2\n3e9viDsoK0n0zRf4pm2BalVeVcNYgnGs3aS6Fxah5JcbVBHNFfmp5q/spGQzu0hMST5krbnEl1I2\npT8+q6yqjD9J9buvKs4Vf1AqxmeN5lXd7TMnLqGm0kLEFGzsdQMXtroUYqK2w/s6N/DFzces4+V7\n7JWNOmOdnuQ5AcnkXhEi9jtUBD9VhTczi+/kSsSzviq5aZHeV+vM5Re/hKTfJq6C+Cq+e0tSpydJ\nSZ+K2PxTSUvbhvTn2e+Zw6DmzCUUqV1y6nY7/zqNCM6HQnBcs7kkGe6dpP8RSXdHY1TrG04QiRWh\n8nJa25YN1mK5wN7eOAMNZ2nz+THZJzjDv74kz7VYhUzKY0e7yAAHSfGK9IlZ868yDxYRhFpVlQtb\nmO9nnwm6838ac/DlU2OJ8vzKJfMbn+DnmGLYUDLAjQJnoKK4zhpCy9VUIU6IBDueIUbYbfwbEWF7\nXBXrjS/Zn873DowxxnS1P3t9EXP7e8SP1AJ7R71InHMeiIxeHB+FNuuqeiiuPid964jj4Era+oqQ\nsSvETUcE4yWhY4d+1vFAaNNqVeTYhnNWWrLEFyIwb/e+GVKmJARHW2el2HfF57CPL9tf4Sw12BCX\nwSy2rQqx8TIk7qkX2LYdwuZREQhXrQfGGGMqIt2O6H0BzGPCVeLqQOSsm0P2kU5CnFiTIn8e8fzp\nvtC2WZ2lJoUweUtnFJHrfF/jeTEnToUe/bzX0LyI9HToFSKoxrzZhPQ5vglCyGyIMLgvuWehRiYP\nGV9/GcRSoE8V/3mP/fdmHOT3mYc1tnpKjGgphvmr/P7L24yzX+D8P9/ifbtbnEnT8oeGi/3wzUsR\n9Bpj5iZ3zQcBziQuH/3Jad+xtbFXYA+/W6lxlvk0Jj7F/L9e4f4vm1doqLrOp3YR4Pr87AEp8ak1\nxPdWFLdH8wDf2RjB22P1sd46Vny51rzam4g7QY+QfNpbJ4Xw2Ktjszsi6m3XWBuz73BuHA1ZC/Mz\nxNn1ZzrjTLHHd2z8/cYy/w6EBpu5LZ4+BzYLG/GFCNEXW2Zc1hBrPXSHNXtvhX4kZkTIq79vbjNH\nBYmsPG9Aht0VqbT/DmiwqQn2xUbN9c/sZ80Qd9P2jDHGmGgSH5kTl9bTLXzDI8JljwjYgxJ7iImT\np7yBPY+F1kiKg3FlgbPN6iM9d5LvXg0R15cqkpSW6MB595udSYJCTEbFlzUQUrYrJKORj14IsV4R\nv11X3I/2ErFy4MRPggHGd97gdSdfEXuKzQNjjDFeIXAiIsWduPXgj31ZfHDf1J4dGKuPZzhkq+rl\nPxdwyIrkfSLHXHZH9KUrwZphCZ8eWUVyLd/o9sWlJwR5dZc5b/R0A0RxObGo79uL2H7vS85TtT6v\nPynh43V91wtoz7dI5GA6iU2n5tmzcyes31IJW9ikHDFS9qNwiK36JcY50tq1O5mL1fv4fFdrNdzn\nc446snmQ1xWOJBkufrxQkH5OCYl3qDNdu/avo6nGSJlxG7dxG7dxG7dxG7dxG7dxG7dxG7dxG7dv\noX2rSJmpIFnY1AlM29uLVEgfGjLUf3ePDNob29w5vb9LJn9jlazrj4K/MMYYc7pFBuu5m/dbJLmV\nUkbcbgfNUcmR5fxDmLunf77C8/92Vmoan5LldDSQwG6PeL31lyBxym+QZf6uUBbHr5K9Nf+oO3H/\nwOd2VsjmvvkxKIz/tEKF+k+kqFArkhGcuAMip3GC6tJfKmnZf0FGzy6FjLm3eX+rS9b4x5+T9f7q\n/6O6eWEBHbHqwZ6jV/l7oELmb+FnTXNWwRZvRsm4/vyELN7sU7KWQeukxsjd/dLfgKCYy1Ll6kaw\n4edv8Bnv7vytMcYY/64k1ar08cbM3xhjjPnITfbx8QXPdczCv+H6jEztdZtHSgmNK36LIdWZc8kL\nz+bJvnqjYsxXJrh+RnVncFNy6tMZY4wx2+J6ySo7Glf1LizeDvc0NiuI9b5wTKUxliArHFQFttXT\nfXTJr9VViYjN8Zzl1/GN/SegMUb7+GgsRRXpptAZuQL9KO6RoW/XVU1/izUwdYfXPfkMOczDPTLj\nd2+RRQ4IgbJ7jO9P3Bd3zTS/31mnEjG3gh1mb+JTjTPJREsC8DLOOFOq1EdvUDEp5slGH0kePrTA\nfCbuYs+dl1Suz5usyZk7VL+2fnfAc/dB5KzdwLljUpE5PcEPA8tSlZGKVUOf5wpfH1FVMYzFTGDj\nqovMeEfV9b1j5mguQJVp+RbVofyhFLfKUgToXPmQZConed3pPr72/iesgZuq7PXkm6EUPjGrKlLQ\nQd9Hq1RrsllJorbo39MzqlKHf8Bn0isZY4wxGS+ff3eeuDOcwhc68jGfZIqzOeaqfc7P6YzWREfs\n8n3+7hqxNu++Qxw6vSSuDFxUvfrn/FzZxPfmpEJS3GMOLp5IP16yw64047mS/X18gu96xErvFVKp\nb8VHI5Kw3ZGs44WRTLGTtVSYkLy8kE0ZVdkcUcbRtkktS8jD4oBKw6KUYiy+bxZLgm7G7dP4Y+KV\nmpZk71cfss+c7LGW5obYY9Bg3nw2Kq7WHjHi8iX9Oy2zNpIPsPdSRspj8QzPfYbf1M6F+jD4wzDI\nz4+fUDk+Pro0EnUwusZsZhdVfbJQhS90pMZjlcyr3vDGv/kLfm+XJPSRJLFVhfLHiQtX0tdtxYs5\nqX6M3n7LGGPMygI+v/mUdV3sUoFdmsO33/9K+8Ik/cofEj+SQjWc5A+MMcZkc1IJ8uIT84tUGnde\nUk1qChFXkjKBP0E/9q+QNkUMcCmOgjkhEZ1W+m/zEWdaI/bUlFvVM73/QvHf+82AmabREIfBjhTJ\nwpIglbKOrSbVE+3lAyef29Y9+FpVKI+2uH90FrFWma9WS7LPNtXDJAW7+xl7eWINZGdSkqtNKeo0\njmt6v1SlilTbmlJ6bAn1ZowxPY/LTIujISFZ6VGScUWlkpS9wC88FirFq7eI3/0rHqcOMXRKa7Il\nWeB8mXmNqtJcl7yMwyYEj6RknV7Wgj9gNU5xEFyWiSuNQ2w6knLUzG3OL17F/Etx0EyJh83tvuL1\n4f3dK7nhgiqn4viyCZXQLQk50sB2sXDGGGPM0MbzjLgOjHh0rOFvpr7UXeZ9y884L/rOsNX2K/TL\nL+6DzooqsKfYovzmAQ8QD8TRGnNcnCKurUlRy23H5kHxws3FeZ39kD3cmuT3L8PsxRMzxI/fGuzY\nrxHv48ugryKfM94pcX29aDF3F2nW2MKA+biUHV6/YI4HdWJOO8D7l6RI5rDxb6pKfz1hccyc4gON\nNzgb1k9ZK7EcPnii/dlb4uezPv2cHHJ2dAtpGLDwfG+E+JiPij9JnDi3u7zu0PlL+hlnzcxpDbSL\nrNWZGP2viVfEGGNKhbiJ1fGz/deEoLJhj4cNITR72N9Umc8bUrSJz19ffakhJKCtL84TKUI2DGOr\nDIhTs1OcP53T9Hl+mfjbaGqNCEFh89OX6Rho3pSQ3xa58uE6KKUZnfva2yK7CmLz011subkO6uDp\nC+YuVyAeba2zRw36oI12Lg/ol+akVMGGmTrPT0T4/bT4105OeM5SkrXeECo0UGLPPCrwuV98zL5S\nWYIH6Exng7TU4prilxuW6ffGB5yfu0OdV+3YcTql7yvioyrFsOeBlCzzBaGKdS4/swjdcMya8AeY\ny7IkrZ1SbAsIUbi9hW+YvlTzLtin7r8hniPx5PWsjDOzxJmwcMl32eu2ukMy0BHiclcb1tDN+B2a\nxq7UEd1T2D0itatKktdPpzK8XtxFXX0vuuiyDw5rPM+v+G8Tr5Kxfs1F5nE4Td1nMZ6QeIucOofp\nfNyT2pBNKsgWcbr6pKx4cCWZXeL1Dt8V7w19GVSJD/UBc34u3rOwFBhtUlCslIQQ38dn2g1eHwoy\np4lVXtd/yXMbLdZGSuhNV1r8nyHmvCeEZU3fDb1CsvTEgVjL4ruJAN9BJrXOWx3ieyjAHDc7OrPk\neX1Q8TKqc2U3yudlpL5ndzE33Sbn9JiFyfTZtWj/hTZGyozbuI3buI3buI3buI3buI3buI3buI3b\nuH0L7VtFyoQekEXOPwSdEdomC1jrkDl7NIIvI+1Wde++OAcWyKyvXJAh+zz6PWOMMX/t+q0xxpjL\n3b82xhgzVSeT/tkGz3/5A7hf3vo0Y4wx5nyObPRslyzomzekVqK7cqNLMvNrP3zXGGPM9HOyvKc+\nFBP8far9kVnUl14/hvPGsUQW99d7/Pv9x6idhAdUCNYDqoi0UUVJrfA8t6pTv3BS8ZgQcsi3Lc6C\n21QZj18hE7mQhXvm8Jmqe39PfzdeIxuabJGpc4w2zJTudH6wTbUloqr7uTKyX81Qvf+OKqhmgA12\nBmSK77tQaQqe0ndXUczXr/P+eo8q1MTPsdHlj/j7zWlse/kEpSn/TSFMrtmaWXzELhb2tO7MnpxS\nCS4c82/gNaolmTmypdsvqB7Vj1VJFTfCZIoqdlYV2KLUmtI3sPnkrQzjymHLku4JxlNkaUNRKcMc\nMvfGhs80S2TgfT58d3GWKlDjEh/Lih/keFps79OMI+2mP80t+nlxQmb/5EQ8Ijf5vNgZFZWLp3zu\nzCzjuSXllvdOpDx2Qr9n17DDvuyw9zn/vvoOFYqJW1Q49j+WWsY6FYBIDB8NqbIeTtCfqqpnpQMq\nOQtToAz217n7fPYCDpu1N6gYnExQ7cxv89yB7mWvCEXw8W9U4Tgn6xyLSi2mgR08FUlRXKM5pVxS\n1z1bvxAngUndz82L00PqHjttMtpeZehNlUx3rsQaKB7xnBuvgxK7/Tbre+9z/t4rMudVKaXsnYMe\nsHnIhO/UmOtUjs/3zmDLu/dZg74A6/Mkh43Kl/SrIB6hi31sGlSlr1TERpkZbORSlXr7C+Z00YtN\nV9+A1ye7T9Xs5TbV97SPONBpYoeFNeJR/B185GoNLazhsykPa/84zNzVhXCplfjZYmeOHOLMGWTJ\n7btsUpMSQmZKyjCdW4oRUuY6y1EhKVf53HaP54dPeH9bakWpecbZ0t3kShNfvCxILanN867bJsUh\n446Lh6RHJaSjalhG1aq5IBX8qRiIJfcB9myJ0+bkjBgYV+WmJ26KzU9ZAy8P+fvSHaqapSZVLm+L\nmBP1877yCXZZe4BfLN6aN8Gg7sJ/BTqzIK4BjwObtrRjH2qdb6wLcSa6g1O9PuTkMzyqBIbFSdDo\n8JlnQ37elQ9v5qjw9Q19LR5SsTw6I347WlTHLs+Zs9s38ZWJJVBGiWnm+u1lbOaTstj6F5/xdyku\n+DxSCosKPZGnf0MpgCV0b3vaiR0a4tnwSFXkpjiz7GFe/+Wn7KEDqzhkdHYw4iuy2q8fR4wxpl/H\nzgPD+ws5+lPaxPfsI8ZfL/Lc9DIIoMiEFH+kKJSYpNo+LyWxnlSwNjeI/00LayYmFMii1t7qa5wF\nClJLvHjC8yon+HxXlVWHEYeQuIVuv3n7j2O4sXTbnOX4HKdNqJIsr7/YxUe7JSEjp6S0E2atdcT9\n0+iLV6QotcMz4nVf8Tm3y5rtjahmjlRwjTt5ztwC/TrbOTQ7W1JuiTj1zKs4zTp/+QljKpdYH86e\n4sU0r6vU8fWaeI5SUuDyT+ADI+2l3hFx3Rrned4+cdfjI849/rUUVw74nGz5Kk5dnyvEGGPifcZm\nD9CvgrjLIjqr7E0JjSpETv0m8buWB4UwH6f6XxHKqneKrxTjPO9PP6J/rQZz6qrz/scufKmvqn5L\nXApnVRDUD/LE+73XpaokYZXsInZzfsJ+sjQiXh0d/IkxxpjjAHN916vKtB9fqU8RGxbEk7TtYO2m\nLqV4NsvvB0lixEqRedvv8HmtLmcWt5197iDE2SEhmqdAlPEetUBft2fgEzmtcUY9s3Kmmq9KWcfJ\n81J11kZqkKH/U+yDwzBrMS1put26+DPuf40iiyQOjIBLxiE0RtTLWvz0BPTx96eJKV+IT2ruJTH1\nZf76X5fcQnQ0xTthHYkfSTxH+bbUObVuHNpD527gCzYfnz0QAu18lzhfLoJoKQoF9tZ9znNBcbXM\nvYote1JTnchIoUxKjKkgPlRpYtM57XFdKehEpLbkEkdkUZyI+yXxwgn5cyblGd87QqBIGXJQ5fnn\nFXE2pvE5uaxZEPrYKcW0QoV489Z32CvPhAR5VXvx1iVxbFJnni82meupCL6YlSrg0M8HzIb5PJ8U\nLC+7Ot8yhcZjw7f94mDxXnHLJNnzvUKfJVOsiVSC/nTtxOHRgPclHKx5r5CEc9/Bjk2oN6/fZPcr\nJJDbTX8C4kjrSoEuoX5Fdaat6cxiP2KRW4RqqQmB5YnQz6koflHLChFkhLDZYO2VdxQkfvi/mYPH\nz0yrXDShFnHR05cPD/CFkPhukkvModVLHLjYlJJfUtxYc5wJLGV+ny2w/iyKC3Yn62hKSMnUMmcH\nu5QY6zovOdRXm/YmV4I5n5jl9Q6hWrPiQ40mdWYQKqinPSyWkUrcFVeM5i5kox+lrvb2KySN0K25\n3QNjjDF7BWxXrPE5PaGPwwme25ZKU11ospYDOznFPdZ04nMBcaBZR2P1pXEbt3Ebt3Ebt3Ebt3Eb\nt3Ebt3Ebt3Ebt//h2reKlHlyaMz/YozZHpBJT73DvzGbsn8NMlptoRc++YMUaKS6FNyXwk+Matzv\n75MpL93ndT/+gKxh+qHuFeq+fuI7fM7RZ6Ar3npAhq2+T+atbicjd3+Gfrx/zPP381TMvzP1M2OM\nMcPLHxtjjHFXqDJ+avh816Y4JnQPNF8nq/ze98jAp98nk7e982fGGGMq4ff5uU1lfmad9Hnm3/K6\njyeo2vX2GNetNNnvfxyRCfyfJ8nA/a4KcsZ5Qjb5RPfGX7v5hvlPPd0F/xuqMJObZDknArp3bCcj\n/EWGvluyVHP+xE6mNufBhkt+Mv0HH9PXtSw2KggFtD0gK/o3h7xuY0fva0rxapFM/3Xb0EIWclDA\nVd1SgQip2ny6RRUpfZPsqkfs653num9+RmXTN0n2NrNIxbYsPo3TE5zCGaYSEFfFNzGf4XVi+K7P\n4xtxKdDsq4IwELrJHcBuW0cghR4+JLu7/DoZ9MKvyOif7lLx9NsZz6S4bHxrUoJ5j6p8cYt/neI3\nmb1NBeDzopQUDvDhuddBpgTndPdXykGTUvRJZigLne0zjliJ9yWnpJ6xgP2ym9jrbA97LUrtKi60\nw2WW8ebP9PzvUFVKixOmeIz9SnP4ZmaKbPqhFI7OLxh/YhZ7RJR1vxQKIXqL6pjXT78aI/HEXKPl\nmmTgz8RFsDICWWaLialfSjC5oThkpKbkOmXd3L5NpdGdpqrQ3AKp8uWHoBVSqoJ33Pj0yhrIu56Y\n8R1efj8RxTeiXf49L7NeP/z5r40xxuT3+PzkJHOdSbNey7oHvZLI8Dliiw9J8aBW0xo7Ym298Qh+\nnlKU5x2fs7ZdGqdzgbUxa4RmK6pS+ULM/eKR8HoZ78kxc3Ol5FLNMpdN2TUo5a2hQAjhW/hWbJo1\n1+xRYYgWecFJjjW78xU+F8rILjPUACIRKirxAD57qar+1ISUvTaIX6kJ7BRKEau+PKZa5bViF0/g\nm3FBnG4JNSakjjtGf4M5xmtVZefFJhXjlBu71MvMx8M3QGncXpM6yOvsH/VL7NS+up+doDKycpvq\n38BcqcgQryd9+P667q27pWrSadaMLcV6f/AGVezJFeJDVSpt59us0wlVBvviMcrWWMe5c9bnzCsg\nLg6lIHXwlDEVxUGzvMj6jMWl4iSFBFeesdwTB9TsvItcNgAAIABJREFUXfqTDGHrtg1fD3oYq9fH\nv+dVbJXfph/RJGPcL1IxbbxHCTFXw5a3VkCGdPvMwdEL4ovFiY+cuIjPLolbFPX8JluiifSlpmER\nd4GT53T9rGmPnjtS1fy6zS6+CpfUPK6qe40g9rY38T2BpMzEErHhSiWvUMIebpsUFqSS1Oxil64G\nEJSyRcEu/qsOFd3zIhVxS519zibQQ7nJWWL2Jr7XUhXwSNxn0+HOH8dw0TwzW/ugJqbmsXNYXERV\noVaGUiOxLzGeMylglrZYs84JfDgoO1aEzPL66Vc0xDh7A/aHYIT5NlqToShr+dBybBxCuaYyxOVZ\nXM805Ws9+Z4ZMKa+X5xXdeLEntTMRkK2uN3YojeS+lKTCmVXvEaNDf4+kupQKoKNs2WeZ/Nq71K8\n9MSuzxVijDGhvrimhHRzan84EgJyUtw3qTUhZfL8vmDHh9rn8DctCGm47OD1wTOcqiu+oYIgJaUU\n+0zvnLOUQ2pUjkvx/XSYi5L48ZIV1prNTXXd+jtiwYSL51if46tBD7GjFWK/820S1zuKT1eqKccJ\n5mm7yFyXdNZKiBsoYNOZqM3a8eWYj1wOu27fZlwRqRkeTTPubJG9fnUOvrxQlv6eRtkP3EP696JO\nvxNB/GPgZa2kXvLz1DGfOwgLxeGQr8aw+8wL+meMMZ1eyNxhGzDeGdbSsxG+n7nPGjn/4Er1inl+\nlqaiHz26Psp7IJSBQ/HSZudZ6Uls6BKthDUinrhTbNbMiXPGylyv3ua8VE8xhlnxZB59BO9l8ZLf\nH3wolNOROLVy+HwqiC3a4nrxDOhHMnrFt8nPNzLEe6+XuXnjBwpwQ2wRLnBu9iru1+wKTKr6d7UG\nnUGe26sKgaFA2Ryy1mZuZ4wxxiQmsP2pOARPhGL++BPG1XkVBNAVf978I3xj4BMHplQ+By9BKfvT\nrMWrKDgUqnVuie+KEZ0ZkuJ89IsLa0pfgc/P8R3rvtDQbcZlGbF2FlbggmwIFdsSD9P6l3w3HGht\n5cV/d93WNUIF7oqPRX5TPMUPDsRR5l6V0pmQThcHQg1v8r5WjH7Z/fSj3cMSHru+L+lsNZPCl7P6\nnJLla36TyYmM8U7fNn0pFrbOsXVulzGlUjyr6GWuh1JRaun8OhEhfqSF3q8VsaFDe74vI9U4Kfbl\nzziXdvbpi8K+cWtvjCfxpaabc9lFVjw5fcY+aErpSgiUfoGzzcmRlA8HnCnSUZ2hBvR7NpbBlkK0\nmBf049Ki72YOOjIMSSExQ39jHf51iMswJeWsK1WqSoW1F9V5txqgX4dDocrsUiYu/+uKkGOkzLiN\n27iN27iN27iN27iN27iN27iN27iN27fQvlWkzKBE1q97ScXxZECmyz5LRmnalTHGGHP+BRXSoI/s\n6sPnvzLGGNP5N1RzSk3ev/AenDEbKV7Xe0SWOfeCTN1redSOas+oFr32Dpm8XxbJtroSZMhWD6Ti\nEiELueiDT+UTB4iW0xkQLoe/RFGoIVUQ1ztkM5Pr/PzsARm1v/6EDJvrl9Ir1z380Ko4E06oIMUm\nQFmU42QzzxyqhDTJ5BXWsc+vm7xu1ERxo56kMhJPfZf+t8iaf6Skbd+6aCLi6HDuUeXfmaU6ErHQ\nl5lPqR7txsgyBqU44jp51xhjjPsvQbj84h/IBv7pm0K+fMHfUz/G9msN+vz3H/O6v3wbm39wKsZq\nG3N13Tbq4KLtHnNmVyY+JITJ7mdUFvP7oAWmVZ2eXcE3dnZBfkylhYCZxjdm58kcF7IY6egp5ZNo\nkrmavkUW9GlO3DOq5q/doWIQ9JOJz12SfU0uUdU5PmSuzg5BgCzfBA2RXqRikRN3y4mD1zmk0DIl\nDoJyinEWC/x7Jm6bhLKvgcf42NGl7ltbmbdF8Rg9+fALY4wx9Xxf46Qs+fic+9oHO6wlx3183X+b\n93Xa4g5Qpv/inKzx/Dz9On9C1akoDovatPg35qgkZE94X3UHe03Lx/0R7FyRgtHcCsieaILq4uE+\nn1NP8fl+t1RK2te/5+8V30QqS9wY1Fh/wx1lru/R1+Wb8BrZhmTeP1X1fiRem5uz9C3xNtUil4vK\ngBFPwk6ddfV8D19p2Hn+KMu6PBYvx9oqvvnWj1mPYakFlfbp14lUNmajrPvD57xvUtwpcfFEpGcy\nvG4Zn/vJP4Lc2TnCNzxR4klP97P39nlOWjZM3sc34m36P+zTD48QMn4pig10Pz0dxxcsUnFq1Ygz\nebHtX+aJhxEHr7/YwW6jFmvhlj7XJ+WYY6GuLEIXdFWt71l5vmWSfrfqUjIw4uWYwP5PvyAup9ao\nvHQb9MM9hx2dw29W4S6WxMLfZb6iQ+JsQeop925RLRyoOjifZE0fXLDG4zFiSM1LPw6EertCKyzF\npHxRpYKzf84a9wywV75CReWwJI6EbbjROq+JG2z7yEyPWLcdqSeU2jw74sW3R04qW9U2fb79QLCD\nCtUXn+7Ah6SUFTvNGGOMmRHiZsGFbesDXu8P4+OusrhsnhO3VsSzkS2oYjjLGmrv0589K76xsc9a\nmJkGkVE6Y/9YVnz+qx9+3xhjTF8+dCIOgEndC8+V8aHlOv2OzdPfoWx4Lt6Oi3Ns92KX/q1JBW7Y\nZC5HHvpvE82QTT7cbH8zpIzDxxp0SBGsH+I5qRBrxeti/6y8UHWshS+enoNMOZMiWcxGVbB6QJWs\nUJHCwyz9nH6VNW2kJrXX1h6/S5y0eKhgx9PsQ74Qvr58i/2z2aSCvOMQ0nVq4o9j8E+HTLpN3J2e\n5vMcFqEA68y/PS41lxVxWEj5wib1j+kJ5jsQVoy4QiaJi84/o0q11nLlkjVc0n643eC8kM/mjVMo\nppGq9BWp4XiFqommpILmEArIqbOKTRw0OSlpybeTqsSeq9JakUqOW6oaHSlwXanvhV3iIhHPTVw8\nbieKo31XzXyTdqFxxDzYqOoq/LO/N8VPkf1KHFbLOGVE4E+nVDimLvjcagh0qVG8dd+iX24BiBak\nZrc/wXimDhjnS63d+1vEq8YRc5NoM2fnC6zxyTBxat0hRLibOOXvsJZtfiGNbKypYwtrJjNkDXzp\n5PPDGcZR8PG88AU+4I1KcabMGu+V+fyeqveRXSEiL+DIKUq9ynR0bpa6UTMiFGAR1Oz+AIONhCA9\nrPJzd8S+dpYUX4v4UmZVSV8a8pymxlWY/BrhUu8umSeK47M7xJjvRbBHSTxLvlX85+iIfXM2Jx6l\nUNpctzmkCDkUB8lAanOVIr93aK93BZiTnvaUrtTWzqSmFA2yHs8vias3hCieq/LdJjxDfHBP6DuG\nUGlBcacUxHMU0vNfFg6MMcZYBOT7SGjN2/cY2xUP0r17oEKrUqgZenieVZxWI6vQAlKcuXETH37z\nPvFx+BLbrcR57pNPQUznD/CV3II4ToQkigZ43rS4DCcDnB/PtjhvNoUOi4rXKJQW98w9EPsLU/ju\ni31ef/ESxMu8nzW6IwR5q6FFqLnu2cW5pW/CXnG6VSu8fvdXfNdMCXneczI/d4VY7B+zNiop/h0O\nvkYsXqd5pPDo1nhsk/S3qQnyFpnPpHixfEHsEvQQI1sR1mo4pb9LTXHvmPEXdC6Ihfi3Uef1XSOU\nyfBrRHrfOzIm4DEl7W0NoWo9Qt/0pVjVL0v9c8T6yooXKCRByMMj5rJ7xjq063w+cwef7YujJr+H\nj+ca7JmFnOKXjzko26WAeyBFw5qQjn2eG9GNFsdA3DAXQpmdED97fXEfGvaRap+/54TqclypzgnN\n67Myx6El4vedR/iuVepz51LiHYmTa2CT0qDUAD3ivElO8v5aFLsVhIKri+fIrXj3L7UxUmbcxm3c\nxm3cxm3cxm3cxm3cxm3cxm3cxu1baN8qUubeTao8P6ySefpgjYzZ4Usy7Yk9sqoHM2S6l4JkD//u\nXbK4K+tkqI7TVOvu/jnZy5X/TFa2HyR7uLRG9vDyF2TQnljIXP3IQXVrrs69w06NalF84cAYY8zO\nMVngGQMKpHtJxs51TPUrHKBK+cM1seg/o4Jga5MBjH/2P/F5s2Qct1+Q7X44oqp4dkJGfrZBpu40\ncMWpQDY8M4C7Zl53ebPvkhUunvJ5k5cfGWOM+VmECoR3GiSP+S33HxfeFUt2bdd0nHzmvFSL7j6m\nOvW7/4AtMgYEx20/NjJGijZNbPRsnc92f0/3vsUOH/8xCJWXNn6+PeL1a2/ofrSq6G9ugtTY9X3P\nfJM2cKm6Jmb/qrTup8XfUXHhM/mvGMdUhrmZuIUNDpUhP9jGR65Y1xNSL7K7WQKHj/GZra+oHLwi\nfqJEhqxnVaojgwdUabzL/P5SSI+YE1unxZK+tYM9k5PYZ/ke9u7UxMOxJ2RJ8MAYY0z8DnM+cZtM\neeUDxtXeIys8VBY2obulBx+DdCoVqBYGJ8jyelRtyu/x+4TY/Cdu8PfigRTMXrL2Fleo5qWWpAL1\nuXhX9hlvZhGfnBXnzbNfcYf2aJPnL3yHcc0mM/S7hv2rJXw0kcYvDp6KU0Es8DNL/P30gIx+5xB7\nJYQOGdivH5p8LqECbpARdzqJH5WWlK+ei1Nlg8+YuQNCpXtKBnx3BCJjNKLKkb2Q0sAkfU9G8cG5\nNNUii4dM97yQLg671oQo/l/+gXXZbpHzbuvv3hRza90nDkxP48O1U/rbz1G1uDxhDtdfMAdvvc6a\nkYCOaZZYAxYvz/P56M/kMhWJo1Pe398lXgalRHM5Yi30daf1lo81NRL3zKnQCE6x6nsmGd+c+EH8\nqqL73fjE2n2QRd0adnaILyOexuc6z/icYYv+Fso8v2sh3odjxO+LbeJ8t4hdYjPE90aJtWU9ZXyJ\nGPOVr1L9a/UkqXDNlpGyzX0pzsSk+PPBP4GYajv5OTeSOoyqm0+eE/+3nvB7b5A16Ogxjv6ItelW\nRbZfxh6VZ4y35sSe868QU+yY0aSX6cdrUkT78A+fGK9QkhfiWTt/xvroiwsr6uXvz14QVzri1ajL\ntk+f8vrXH8JbcVYhjtjzVNwa8rFPP4PfbO17IC+m06zvm6+xl9ybIM59pjvzDo3R5+U5Xhc+E9Na\nuzFP/AorXu9LNePilP2k0MYXwkIXdK84vS6w1Zn2+gcRxhMNsXdHxXuRXOa5vinW+kwGW248Br3W\nkkJC10K/XC4WS78tuME1W8ePfTpBfMvaEE+Q4edmAR8dScGhrP3FVPAVi+SxXNofaqoqSpjNhILY\nyy2UVvOqf3pfucc82nv4ulOKRcUe8bMqbp3sOWu8Xef9o/8CWeiz2oxLXDBXPFSpEE43tyjUWZ2Y\nlFc8blfEAaHq30DqWaartTbg780L+tX08v6JBPvocKBqZhb7CIRhAlGrmRAyYeDgTJE9Yd342vSt\nk+ZZCa3LwhF7uU98Fz4pcVnijKk5EBfNkOdNT7GXTMWo1l8WeX/1SHwLUjixWMSVYuhrx0gVpPvN\nVNwKJ1Id0fHZN2LtTGxh45dCZj4y9OOZjbVz6wN8tj4rZOCI/aHfRrnGuiyOnE32BY9UkU4aIC5T\nIeLQaZzP6yfYw+3igOmpqj6Vk/JVA3v+WqhWx8c817uGD00Y4uu+lb+7/fz85pAz0vuL9M8yxK4L\nx/Tz2Z+yls982G9oFLcrxIDPxfc3U7WrX/KlGfYHX5I1O699x/RZ61UhnZaKB3yuhbiYu8S377pB\nmOa6+FPoQOfzqBBTCex6cEuKNhXmqRGmQm+MMV/0g6ZXIZb208Sg22XWcNTDeD4N8PzJBj5vd+Jv\nMXFDXqsNpOLWFWJGHCY2qd8FPOw1AyGUXUFsPTvN3pmvcla5Qg5XTonX51KzLO3rfcvY+t4D9mKH\n+DVuBKWOecGcRhI6r54xpswq59VnVvjuoj7GfPgle+FTIWbaLWw/iPI5k7f5HmDK2KR8KVW5L/HF\n0h6vf3nAXAX+HHTyhdQ7UyF8Lb9Jv0pdKfZo7iam6GdPqnH+KOM/FmLm5IK4534PBMueEHpDJ75k\nE2qq7RQ/6AX2evwJ5+WlOPFvGJeaqzgQe+LnzMzyd9fb7Itb+o4WFgJm44x+TN7R2SeOjz96G0XL\nvZdSr71ms4T53JGbNRBOCH0mRTePEERD/euXYptD6lohzXc0JaU5Pz5fLRDjBk6h0SL8/vyA/p9L\ncdNhv9rfjClvHZm2t2FO9sT/KIT31BLnPU+YubHYhVSeABXlPGMuHT2prkkN6eBAHC3iYHEndOtB\nc14fSSkqSPyKCI3q7+Nr57v0o1pjD4pOst6TOhuc5Vm3Te1l8RjfvdIz+LbdwtpLLhMvLy6ZGx3f\nzSAgVJn2p2afTeskz9qytTg3j6QmevwMn47qAaMpxttpSlX0Qrx+Oqjn5qQOmJByptb4qDNGyozb\nuI3buI3buI3buI3buI3buI3buI3buP0P175VpMwXv500/+v/boz7gTLRW1SbZnSX/0KM0StxMm5X\n1anVAhmzTVWnUkGqcltfgY7w28k1vdjk/belTJH/cyrY01KS+OKCTNi9OJWYz5bg41gfkJ1d6lI1\ntGyAQHl9lezp41UycstlsrXFJFnK8JeMo5KkImuLwyRePs8YY4z50atk7N97RmbvLwM8p95CaeNO\njCxmpkqmba8Pgid3F+6B5CX9LOTIZt95g8rM/TiVh/d3yDgu+8no/73Y+d07m2bwF2SYA134C7w/\n/TnP/CeqMCt9sqA//Q2Z7Fj9igOGufh+joppM00Fdv9X3BkvrpIxrl6QsQ3rTv6gQd92E/DuLM6B\nOhhtYbPrNr/QUeaUjLy5ul8+ydxOTlIRuDjERy5eikn/TXxhdpk5PHp8YIwxZs9JdjWtiuGU+D/q\nQhfkt8ggl3SXfz5KdevT3d8aY4zJFvn8dEbZ18e873KbrOzcBOiCgtQsdr6ggnBL6K7pWfr9/Bwf\nOFDmOrpCBjw5jZ3OZsiybh3Rn9BNfCc2oyrYZ9h3f4vx3Pcx13OzVMMGRao+vQr98LpYE259fvaU\nKmJZVceV17FTucRznq8zv9kTnpNOi4NnDrsd7mCHmQWy4lEhcq6QNnlVu+YScPy0h6DHyrobnREL\nfypGf/eqrGWfFGqM+/pKB5dSU+qfSfklzZxOL4EOc1+xr1dZF1MJfGbqz8QRIlsEHNjWEiIzn9dd\n2ScXqEOYtjhrGlSRwn2qTv0ONn7zDdZSuk6mftrK2ul7xP0ywDZPVXGrCrXmkmLM1DI2vPmAiuMv\nf0s8chrilF3cDBZxq0QSxDFHXEgeKSMM29gjaRhPwEvloS4lr5o4Umo13SfuMCeFIuN1tfC9/Sxr\nyjvC98p2Khy7L39jjDHGL+RP1EI87p4IGdOVypD4kiJO3aX14YM5O/ZdfosqlUcKDaUiFYeFRd7X\nbGIne5jnjiYYj1fzZFM16bqtcMBaeX4Aam5ljs8ZqBLiylGdcwl0EBaPy+Iyazeon6MJ7HyWo0I7\nVEXW4sEOq69QQVq+g/9tfEWVzik1j7ML5r3SF8rBQ9XrdPOFmXKwx9y9+kwhHFJJqU80WCe9Xd3R\n32NM0wuMZX4NhMtd7TX2BjZ1Opmr2fvYfCD0lF3Pz7Xlm1JpqoiHIiufWBBSLmPHN2dWiHPNHhXc\nkipzwwI+FZESVShJ3Ah08L1gmvXeEoLk/htUXjMxXtcXQvPkhLh5VsNXVxf5/KI4ZDxZcaCI/8Lh\nYTwJcea0yoyrM/hmRxxbDd/t5umfW5wH+U3sl6sIwTIQ6kFnEL84FsKq9K6+xv7T1VrfWpevKL59\n/sFv+bu4drziEgpO4dtucbykI+z5rUPelzuhX2fb2KdX5vdbilXm/zAmt3dimgV8q1ygUlybYn78\nFuxSkwJZ10hhbZL5agpFd3RIfD+0iK+kgh/FMuxPAbfQYVcVahdrIzbFGq+U+dyh22kaIZ0JcsQZ\nIx8eWrXX7XB+q+a1d0gNztJjISbW2IstJafejs936/ia24dPNXxC8wh9ZEtKRceNDY/zxKF2R+vO\njs1jqjZft1nSQvpdqFJ78Loxxph4i+e/KuXJ1gy+4j5k7VYfsc+0nxMfPkvx/tdt7E/WDX4+lOrc\nkRAwr21ht56dvXTFMPe5jvgy6jx/XnH1qUtIFj/Pmeywj8QXhCyMglq2SFHsgZW5as3z8+YZn3N7\nlznOpkCS9mLM10RRPmPnjOBJ4lNf9JnHm4/ZV21n2NW6zBkilGcteAvM59CNffpS1IlKza/2krW1\n3KVynVH8L2ifGI2wR2AVP/oqT0zyTTCuhXU+r3mHz9nY/br2XFiMGYuTftu34RD7RJw/DhsxpLpP\nPzsLxNLhJgihtWTMXLeNJK9kt+DDVnEyjXTesriwjU0CgmGhCWxaKws3GNPNW+whFQfrPBXmjFDU\nXta8EMJNgLv9LGeRRJxfXJwfGGOM6dZZIxvPGMsVStQWZk1N3+VMVLGjRBlPEYeyL/DZQ6EA8gHm\n+GyEjWaE3OuKYzEqTptpqUy5tZmm5pmLG0tCwTbF+6e15/Ni+/wez6mIP2jtVb5f9IQEDYrrq1TT\nHIvP78XnfD8JixPG68SO3ihztvoGdlybxbfPy9jJLz6+lxsgNctZ1kJaHI9X+0tsSSqpXeLs2R7n\n9k+/eI/XSeWvUdB8XLNVdeZxdfGLk56UgHr4fI9twJR3mM/0CWeMXht7NWushWqW1zuEtB22xCU0\nDfokKI43m2gSu5r3WPprn45MzZv6ZddMzxFP4qtCsAnluiMuxHhCKnPas/riBOyHiQOTac69A6GP\n+jpPeaVE2G+K52bE4AIePicyi829HRZFqYSPlarEhZGV1/cdQm/1+Xy/eI3icXza6xFXrXh0HBbi\ncmcLn4sIvZ+e4wxT72qPPmroc+inafL8kJ4/iAiZHhZ/k7hySlKr8oZ531BqTC7tOx6psw5K/Gs3\nXyte/bfaGCkzbuM2buM2buM2buM2buM2buM2buM2buP2LbRvFSnT+DFs8z8R18rIQsapf0JW9s4Z\nKIsXa1Sdkn2x9c+TwXpwStY0t/A3xhhjyvv/2RhjTCVDJcIuepSPX5D9tJ+QDe62VAW7+Q5/P/4H\nY4wxrz3i71vHZLqKt6kqBppkay+yukf/BZ+Tj8P14DNUPj9+l8zgdxy83/yGTNx3hW74WZ4Kbfsv\nyNq29sjsV1Nk+NZ1PzIdEV9AiXFGPLw+HiPz9s4J1cxPHlOZD74FIuc7x+JRqZAJfDdORWBwe9W4\nLsni/SKGLe7P/HtjjDG9BfJygy+xtXtJFc/om8YYY47WyX5W3iTTuvoZLuOeJBvpaoHa+cskaJ92\nkN//6isy8rOqNnz4lLlNzl3d7/2/zXVaWxljn9Q1ytUrNQ0y5PFJsqxZZWuPNsg0R26QIV5cIWPf\nPWLOO5dkRYsjsq2+EHO0eAMb13+DzS6fgexYvMdd0aBTigrHPH/qAba+4njJnZA5T6o/6SmqPdub\ncOyED5UNTmWMMcZEl8m4H28wl2fn9D9xgyxzYIKscb+KD7S3qYwEhEhxx+hP95JxlcRhE7xi8Z9J\na7z8PlvAjjdW6ZdDFfTjl1QIYjHQHfEU8+cTS/7RE+wQfguEVfge7z8TY/mGkDrLj5jnmJ81tLdL\nhWVuhuxwWmi0s30qLdFFqQfcBHlz8Z4qFQ0qBjbH9VEQKd13LmqM3Ro227s84OccNsmpmp+SWofP\nx3otXxAoVufx8X6Iv9+6DSos3mdunIon+Rw+tDrFXH3wW2xRyjEXuVOqPIV9UATeBSqWix7W5WoK\nWztGZPAbUq76p2184ZU3+VxflH4XpL7hVfXt+ByURK6JD7j2WZO3X2cO3FbssSefmlY1fDJKpaEb\nFTeO4XUTKX4OBRmPs8H425+oklmmUvHKfXzeIuRRqcjcO118/uYe495cJ84lJpmPYlfxtCeVqkN8\nY2JO959HPP/kBF8NRFmzLd3DPxB/UbhGnLTfpUJhq30zZZ1akc/deErlN/aI+a9bec6LMv1rNKky\nZSeFSukyT76w7l8LYORysfabbdb+x5/w3LzUmHJNKuh7j1lDqTXsFhD6L1TiuY4h428MambnCVVt\ns0AfvtwEZTOp9RNdZP2/+w5xaeDAJkFVzS/LdG5dyIxtKWbF+qz3knw5LaRhvYbPxpyMxX4XHodJ\nVUonivz9fFcqdfugsNZ3GLNdaB+LhXiW8uOTI62hGalWPH3JOIpCCH70gr3/zQDV6qCETbpSSkgo\nHveknheMsNfvKB5V94WKky+PVHXrtBhf7Qhfsoa/mULX0Md4mobF3lY10CquHI94h9JCiTV7qvqX\neV1Z3CyF7AHvl2rIlUKMXaix3iVzHgxg57lHVMb9fsaxu4GdKzqiWYSoGao6GBBHxOS9GfXc88cx\nzMzfMjYrCKPZOdZ+RKodtSrzNFKluiqFosQ0az/vp4Jc2BWqQWpf/gnGOZNhfygeiz8rB4q3VcZu\n/jj9j07TP28qaMJh4l7DTR9dbta1Y8CcnudVLbbwWaF5bFI/Y/05/PzsD3FWOTvl9flD/V3cXwMp\nNF4ccZ6cv8WYQur7ifiLCqoqD2riYgn963f8/+vmmsU2oXXZJMHPDV/GGGNMyoMNT3Py4Qw2L52A\nEnCIhyLdod8OB3FjECE+hEa83voFPlGQCqhVKK3NJHFoyXpgjDHG56L/l0IShXz4ZsTOXpuosP+c\n1/Bh/yNe79W+8pFL6ldZ4nR1lX+tKZ5/uofK51wW315wYF/7DO9b/wo7LKbpV/YWPmGPgIJLioql\n18Q+WzfFyehhz89I0cu2RczqfI/x1zellqW4bxMX0H5CikQdfn8jLxWtr4TyvYevl3ewQ3rpay4Y\nW96Y0JS4gG5S+bdvs9/YW9hrXqgP50fsY9ZZ5rNb+Vqp5r/XOnYhYrqsW4d4JOyKb1nxSNqvEBaH\nirP7QraJU6p5yHPa+qbmYFmZipRo9nY4Mwy74l4s6Xzl4DtLRVX7ZQdnDot4386fE1dPi9qbYv+c\nPyPqxCaBO+w7E0LKmRDx+7txvnvExBHjnxLEGH7cAAAgAElEQVSniVDBlQv+vSgxZ6dCSI9q7G85\nqRY5glKg1bnPP2DclSsuq0cgR8+kqvTwbc6hc0KOZqaY67pVykBSWLT6iG8jofJcDtAOhZrO3ULE\nz7zOd0UJ8xir9slTqfxlc8yHL8R4JnVWmhb3z80B++VEhH1uv/yvoyD+6xZ1Cn0tnr1ch7h6hRRK\nxli7jpD4EuU/Hvs/96e+TZxtQ8Zdt9GPkz0Qr3bxp9gM7+vX2Ucs/a/3x15jaBz9rvEq/voCOFu9\nwffRgXzS2mZ9nGxy/tvWeW/2Jt+lGuInsgp5Ftf6dg6YK7vWUUegeJfQsQV9NzARXpeM4Bt+H/0I\nz/OdzqrbGH27lCR1e2LvQKpM4vbz6nJFqyJ1vqE4bcriuspiq1IJ33QIkT4/yVx2fIqnQoKP2uw/\nyYzWhpDarSf4mHOeeDiK0+/oVMYYY0zN6DuaEcKy96/fAhgjZcZt3MZt3MZt3MZt3MZt3MZt3MZt\n3MZt3L6F9q0iZf6kBFLlnTfIzL0o8u+Rk6raeZbs779xkt08/5xMWiD8Z8YYY/am/p7XK9N2z00G\na2OdDNj33/yFMcaYXyyQabNXef4jqWq8d0QG/U90h+3LD4XUeZsM/MovqGYNV8lsHayQGbvVJLs6\nHyCD5lMlefgp2eOnZVSTfEkyY1Y3FWz/PNWvyAZVwssKWddCg6zvtIi7d8SHct9NRTx4Tra9Jd3z\n3/2AjKHnPaml9MnW7rxB/9cuQKkcxBhf4ug1s3/ye2OMMW/1xAmwQIZ9p8j95GfT3CV1OOnbXIhs\n4Y6HrOajL3jWT1Nk2hNi6o9Vvs8YLVR7vBdktl/9E/p4+jFZ1Ym72Nj+FXwU122ttvgobOQPbVKa\nOamSUU7qzn3mFlnKzz7gbuneOv1buc1cpRL056SNLxVyZOrdqqpNLoEAcS/znPweGfLZMuMOxJmr\nonhLvDM8f3EKxMenG6CeSlLWmZvj83I7Ygp/zOS6f6B7lwvM+bnY3E+l4jSjzP+EKg9uKSFcCoUR\nmiEbnV7gubtP6E+9yNqw1fHd0BKf40rg870d5rWn58TEg3T6hCrcwbHUmO5T3ZsIZ/j9Lv3LnWi+\nJ3hfbEY8I6pkdzJUTMJT4r7Yxwcbp+q3UCX5z/G74imfF5rkedEU/W9WGE/MS7b5Ws1HddaekkpP\nhDEHJ5RZj5MBP1bV3/SID35VVyJTVBE8CaoWG3/AhwqqJhjdobXojunxBn2PuHm9V3dGYzZ+vnkf\nfp6Xz3hd7RAf2okQJ+KqPs8ssMaS4jZ58vGHxhhj2lJO6VjEN+Gg328+ovKYlzpUWwn358+p6pwl\nsP1I940vNHejCj+7hWixC+oREQ/RphAilirVu+lX6c9IVZXD7QPs4aFfUXHZ2OPin1rE3ssB5qEg\nzpq7C1TrjJW1KxEq89T9Cf+pX1WopVjjAbnjaDLuxVe4/z3bZLznTdau18easHk0P9dsS2ugMtxz\njPvua9izqWre5T4Vl5bGXT5h3KWCFIK2qAi1irw+s4hPhycZ/8NF0CsSHzGdhhSARthrNi7ui6s7\nyGnGnblPNSwWSphDqelkxMWSFcooKQRCQ7wMJiRFG8XBp0KwuMSh4hXHx5/+AMRjQCiFP/yEO/CW\nCaG5LtijhmEp0bh4XV68N7fn2C9qHSmXZYg/pbIQg3f5e6MnLpYL5mT9MxCH3T2e3xC3wivv8v6R\ni9c367pLv3lgjDHmvIQv3n2XucoK6TOZZA+/91342rIvmauwlXFWZeugKqJZO58X/2Z0Icam+/Ne\nl7hrouwvfcXb0ga+3GQpm464csLi6OlbmI9dVaLr4sryOohnoUlikisuLpYAa8rl5eecOGAuhHQq\np+iPRZwS9SLPtyfoly2o2CfkizHGtMst06xSxcwP8L2BB0P0W1I8CvDc1DwV9Mmb7H+WE14XECdQ\nRFxiHoP9O7LrZZaYYxvwnBmpB0anGOeF/NTjcJjuQGgjxd2LglCfQ/Yo+wgbWCf4d235iqdOe0dc\niBap89jOdO5xKq4JLeVV5dQZ5Oe2RQpUZ9iydUTfvQH6alOptl37ZupL8zbi0OEq/bpwEE8eVqnU\nbmiPtG1gi2FDSpXOA/4um/7wBI7DlhCU51b6UfYQD2Y97LmtNuMeSsXzToo9tDFQLIgxV/cbzHX5\nHB+zN/EN/zLIFesSz++c4sP1SWLFXFWcEeKw6ZyxLy0XVSEeEu820/jc2wViz26XQNcR+Hkpi88n\nTkGY2wwo4XyEM2FJqKxwXfuvXyhnJ6pS03fob3NPqoFRKYSJb8Q7ENqiS9zd6NCfsJV53r5LfM4Y\nnj+dlELZFeGKMeaR47HZcwqhZCW2eBcZn/NzkExHYeZl/j52+fiMfeJRb89ctzmFSrK4OFvU7EL2\nTTHmimFs0zOM4TLGXIdD4lYRsrsnCMe5uEqSOuvE00IyppmDgVSSvG7FwRtCL4n/bO4V9qaOV+/X\nntV9hg+UpJZ2dgx6yKHvNEV97sIacftU35mS4tf5/YfsJ1ecgx0rvpqZxZY+KZ8trDBn1Ryf54ly\nHvYNec7WDqipRALfs7ekoirlslyZ8R09YY7XjeKiOL0m1b+TU6FtXYzz4og5G2o/nPYItaBxnYlb\ny++nH689EueMzkLePamvHhJzTo7ZZ0evM06PfC8i5EylIcjNNVvPh58EhVz3JInHvhmeE9BtjVJZ\nf9c+d3bO2bIu1T1PBL+JZog97Sr9y4q3sCIuspZhPs6OiImD/tdo46Od58Zhs5uZiL5jKe4UL9lr\nm5e81jPFv11MbzKTGWOMMVMp9pCKVJGye6yvuos4Yo1r75Ryl0ucYjGtx1MhjCv6LhO7UgCU0mPu\ngjG7gvzctwqdesTaqY7ol6XL78+0xlzitvFYiYtl8YK2zoVKU3gY6KzQ7+KjrRZrtl2lP+dSiI1E\nWdMFcUue6XwYa3K+a3Z5n1UoMruQ2PG8fKYjoqB/oY2RMuM2buM2buM2buM2buM2buM2buM2buM2\nbt9C+1aRModNMlalPNm+lUuykW9QDDONh6A3Tt4nU/XxDTL0b9d+YowxZj5Ahs36GdnFVkcqTU4y\nVm1lpqalQvJgDxTEs1fIJk48I8vrukG2c+Ep2ciAKt+/DmKe1xakHDEk++zVvcmf/x4uF+c8mbDB\nuyBzbn1Ktjcn9Q1nj8px+wWpxdBDcQq8IGu5Pkdm8hU3mcBdMac/+5kqObfJxN38JzKQd4Xq2E+C\nTklfwF3gmtb9zecHxhhjpqS/vjf9H413FkRLaB/1o3+cJkPftfP7i5oQD7rz//pjKp2BMGN/f8Ac\nzMaZE+97PLsd+qkxxpifZXhdYI1M83JbTPxlUAMfSRlhJQn/jzH/j7lOs1ixRUdZz6SNzHWpT9by\nihk8I+bu1ATZycILfKGrO/v+NFnSCbGSXzSY27zujoai5CdndZ9yXXfvD3RHNRrm/Q2pcjT3pGa1\nSNVtaonsZ7ZCdjiqLHBqGV/YE3KkssX703fob3ySqlhFiJNyEV9J6/MSqqxUT+l34wY+FPNj/wsH\nPlHM4oNOr5QEjqk0+KepYMSEQjgWr8bdO1QWwnd4TuWEtVjQvUjvJHZ0t/G9422x1es5mRTj3T4n\nQ5+V+tXibSF1gqowqBIxuUxFIJwUmkJcN+4EaykwyesbOfyo3rw+CqIpXoxeg/dcDIVMqWDLYE+q\nDarEGlUGPQ3mPC+ugdiaqjTixbg8xua3ApQCU0nmJOWUMoqHsR7X6fP6PtWf9CtUepcesMYGfeJa\nrSBUw2PuVV+Umbs7ayDdhuLzGaWwVUHKB7/7FJTTnWUQdCUhTh7cZd13paAT8jMXwTnWXFT97QcZ\n58U2a7qnqvooJbuI06YubodEjzUcfsj97dN15qilKvmRFHpy1ivuFCqhM0LKtIqsmc/aIP0aUnSJ\nCq1mjdBfp/o3I9THsEBl9UyVmbCPzxtKAabWoX9X96Iturt83VZpsKabBf796HfMQ6eLL54f8++N\nG1Iocgup+R/+yhhjTPmSCk/2JbEtJK6w7BnztLUDWq4nhJNp618b/+ZVxTzVWj+RgkN0HTt4PcZc\n5hhjTepGtT6+NRnGtltfMoetqDhJ3KzTapPYv7oIMrDToa+/+vVvjTHG3L7BnJbtVJnuLeHTk2v0\nqT2SApXuqP/hZ1RML72MLScllEe32HvKii82Idry61QQX7nHcwMT+OaEg/hztE0l1Cm5kVSK+Fft\n4yuz32ENzAvhMSlOLbuqWe0sdkkpTtRi2N7jwIdPN/HJQBh7TIhzoOP5ZrxDJsoacsWEnlvlec4k\nsSF7gO+2drD3mc4wvgcgexJB+p1XRdfV1z30lFSohC6bquMTzgDP6xf5uX7EfAQSUivRYcg+pD+n\n59gxKjWtaot5yZ5W/jiErY11UzzVPXe7uGMCQp+U6W+nz+994nCo7mP3mpQfr9RNbFLUKDuF+toV\n50FFfFJSiRqpcn20KXWWA3y8Zx+aaammdWrsuZUjVaHvCMGsgmhxKI6YGlXcpnh6rKqAep1SePTw\nnOA0vjY3j082u/TBfwKionnO83LiFDgWQiSRuOKU4Wev+WaIu/Jj5sIaIL770lKLSmCzvpS/onE+\nP11j73+6nGG8ds55/znJ+9+oEzdCEeZ8+pf0rzxJ3OvIQCk7+9nvDT723TBzMSOETv4ua6RSEr+b\nkOa9IvFlt8ze7lYFeiDUb3aZNTj9grj62V1+/4ecOBX8xPHwCz5XFBNm0kkFfP6p9qnQD/n9MuO1\nV1ib5wPxY4SwR8mHvc5ier+f8/p7VmLawzD2aR+wrxSO8TFPDGR9pcHfZ2fxi1+5+JwFxcKDAf4V\nHEl55uTr2rO/4DKDAHatnMODOCn1xEkL+2y/JvRDjnn+s2PGb9auH0v6Xp4xrOF7Xa2zpsFH/n/2\n3jNW1iw7z1uVc66T8z03p87T3dPdkxNnOKMhLdJ0gGjANgSCpAiQpg1TpCAKsEhawQIdYNmyLcg2\nSEhmmiFnOHl6QofpcPvevvneE+7JoepUzuHzj+etblLmDE8Dhu8Pf+tP4dSp2t/ea6+99q613v2u\nlrhNBCS2ko/PTYkrMOxw9pgbxyaO3mBMkQB+3TuJ3/WleJ1ZFjInyXNW7uK/i4IBFO6xprzilKmc\nwBZOCLEdEz9GeIo15u+BLGkWmOzKEXNTLeCPczr7eIUSSKaYw5fvqdJgDT965cb3zczsqTMgZ3ri\nz/QLAX/iSaG60vRrQpUxr95S9SDtsU9o7mND8dwJZHsgPsB4F/1d3+DvmWfx100fNpHys9b84qc6\nKRtwtPevbWOz6SuMf3OP+ZnKo38b0r9hR+gMcSpeuQcKrdtkXqpCBh1XPJv4qoKgSuFlfFtD+/HB\nHfzoUYH5iwZYu50G/akLBRZKCk3o0P+IuMmmtc9nxavVUiWjmafQT3Z+5p2+zJ5esH6lb15VRXPE\nR9QvCHESFVLGy7oNzggpXubvjqrnVYRkHMvhB3NR5jicYg52Vem208afjeu3gq8hPqJd8QIJYV1X\nddSmeMtOPsvv/VSSdg9S+KsZVVWaW+I31UCVI3stVaBsi2tR5656j7mcXcJGRlU4nTrjPdhkccbE\n19MRCqp1iA7rXfbEcFOo3DkhFfvoo6wKhiUH2+gIzZYX6vWHiYuUccUVV1xxxRVXXHHFFVdcccUV\nV1x5CPJQkTJ702R9XouTVXrhGnc3/+hPiHh9JEBkvXqWiNdikGyP/zQR9K86ZFafyRFZS+5xb3L5\nKlHi8B6s8Y98lrDq3UVQHe1vgWDZ/xj3HJ9s8f3N52j3zHfgPfEcwcPSfYn+PHZJrO23iAR+Ukzg\na68rcu+QHRzlXQZv0W4pCYog3iNKu6qqKffOEjFbukIEb81A8CzsE7n7wSLZx9Qakbf1JSJuF0rr\ntKdqKhsVInwnT4OcuTL544x/GyTPj+181P7wqW+bmVnoKaKXzVWidud3lT1+hjGubyu78nl0X7xN\nFuqRrO7XXuW+bfhvkHn9QJkKVPkm0c9XA8T5Nr4BoqY0Q5ZhLkFUcX3y+Pdyzcz8Hd1rripLfpJI\ncbygyjS6s7+kKOfsGeb07TeIYB/sEIlOzvJ5z4yYs+tiq98is7epO/Bjk0SWU3NE/k0VB/qK0KdU\n/aRa5Ht13U/MzmFTR0fwZTQV+Z4U8qZQJapc3EdP+RP0Y0ZIFmeVz5fX6e/4Rd6fXeD1egObbovb\nJXOBaHBmkfF2VLnGEQqkHmYeMoqQjwkZtb26Tn/qzPu4+lGrocfCJpH5hRMggCZn6H9VHDt7Yiqf\nUfWW/KKqUpWkJ7Hd5yYYb3mbaHhJVbQSqlZV2yO6XSrSni/DGkioOkzXe/yKGIEAbQ7iRPLHZ4ik\nd0Osl2GcZ4zpnnHdT18Dyg7tlNF9QNwr5174uJmZrf6A7Mm9VfzUiqoG+UdZjefJjnt1p/bBvu7S\nvoQOakWeP3sWHX3whQ+ZmVlWWf6NHdq/Ltb5zcN1MzN79tJHzMzsUfGBNHd4XlaVza7/EdwzyXH8\nQ08cMXdvoOv0Aa/371L96eJn8EtjT7CWu0VlMlSRJSp2+R0fWbE37oAg8Ut/KWWXLj3Nmu9cJutV\nrGBD7R6Zg7AQIrGxEQ8Fa6yj7NphGR8wCLGWb3yfDPFpZZA7A1U/OqJ/DaHknHHmZdhm3uo19GD1\nd9EBx5HqFvMzqkgRi4jvShwWgYxQDJqfq6qMdq0D50F5B32EvYxz0OC1XWd8R8omzubxEV1lP8Mh\n1mJId6unJtHP+AzZuqAqKyWSMZtVZYJsjLmJ7IDkmxK3yfJ51mVePBSXLrNnvfUqNpYXh1S7gM1n\n26zvk9O8esTtUtR631zBhuo93r98GWTG2efxZ5eXQQ29dg3/4x2yu/WFDrt38229sveMJ9DJnnQ8\nWmP3VrH1TWWv4gmeVxVi48Il9v7DFVX/EdLDF2Du76sa3t46flpX7O3SBKiAgbJV/SQ21w7hXwbd\n41dMMTOLeJirtqpVRMRl5gRUKSvIeNoB8T3F8Ftp2Y6JY8YjlFUujd5nL8rPqgpLrSx0nyqYBVQx\nraTKkIkgZ42B1taww2utq4ErVdytqFpdqfzOGAKptC3JDrzivTt3ET3tramaYlH7aZN+bq+h31aT\n8dXE+5FUhR5H8+AE0ee597FmIgnstC+ug+quMrrK9DpexyKq4hFzWG+eWc49Z8+wh40KKhY2xYHV\n5LthIWeqqmbXDtD3vSI24hX/UWAVXR2Kq6awy558XijQSJy9qOtXZagw62+vIV3H3hvx0NRJzpmJ\nVXEtlJgDf0KcLwH858s6E8yHmLtzm/jx3QucFwMNdF3ZASXWDuKv+8uLZmbW8KLLE6oSUlCFnMwE\n+ui9zXP3hs+ZmVlribOWvyjOFA9rtdFBP8sBbLPo4fnjRcadHWP/uTfAv5+9J/8rYOl8if3EK/6J\nlYv4orkH2MYrC0KTqTzh3lXxTKli2eTj9GvtWyA4M0Kc9Dbw79vKMF/ewi62JlXhUaiAy2H6/4YP\nn3ZZNr3ZFO+fKo8dJfg9cOIGPjEyvc4AKrRnZlbuZi3Zp5+n91Q5c1bVGifkMwpk4N8Wl2XqAv2Y\n3jo+Uiaoajo9w5bTIZ7RU0VBr84sUaGE2mX67h8wlphH3IMzrNtFcdRMzuAnbq2yXm9/HSRKUgjn\nlNBHCSEn0hP8ptgRv1xYKIe7b+Cv2/5FMzNrqWpfXlVVZyaY4+hzHzIzsyWhWnv3sOV5Vev0ROnn\nSZ2Lj3T+n0qzxip7rPGYEIKNArZ1a1scOpP6DaPqpW1VPyq0ef3eFdaSR36zvs8aWlwUclHcME9e\nwh8t6/x/9jx6y+zSv3yEce3tYMuxR9nXbMB4zvvRb1jcMzWhWZflN73iPnv2k8+bmVlK+rZF5nF+\nnuevqcrgcaWvCj++I+xjUGLcVa/Qcm3mpSluocwC8798Gb12CkIXRphXj1DQbd0ICGdYOwHt71Uh\ng+IB7KL5FzhwipWyDdpd65TRQSrHZ6aWhM5RX3qqvlTrsz6Gbc5hhU3Ox+EUtjI/jY56EfyWv0Lf\nmuKC6anymONDB4OheObajCkjDsOAOCHj+tz4mH6DCZTkONhc0KeKUh616zD2jqOKWH79Bkmgw7D2\n8BlVxeyIy3FLlbkcccFMzquq6STjbGsNt8U5E1G1u4QqcHULPKcY43PBNuOKRnnfF8Emf5i4SBlX\nXHHFFVdcccUVV1xxxRVXXHHFlYcgDxUp88Iu0dRLG1Qtan6MyNvyn5GZ3P4kkTZvg8h7ex30Q/9b\n3zUzs8gH/6aZmXV3idD1omTtKpNEwN72kp0b3FB2p/NpMzNLzBDpK32L6OGXXtD/14i03b8IumC8\nQ4Z5NfcFMzML7BKhm/Lw/WSFqGi4Rz8DqtZyJQ7S5kMFIo6rWdVBv0Nm/cIk0VzvNTI+qXFCfsUA\nkcSAos9P/IDvdT9I9PzukEjcVE58JW8TzS5NKTL4GtHej18k4/32IhHBr135nv1kk+z/63F0M70J\n4qXkY0xn4/RlV1HFN75JlqdXE/v7j7+fvn+Q6OCtbzH2P+4RoX1C93id64xlvMn3z5/h89UQmdBL\nBbJB/5MdT0JB5qg10N1Jlb3wJhlzWxnVgpA0yTl0k1zltaNKW3Xde/RkeJ3U3d2hI96KHlHQpqoz\nxcRa7xOHSlEIkLR4MyJ+si9HQh2cPMvzxlQ96ahFO/kIkfScqqnsrpPhKItpPDNPBD+8yFw2xZ1Q\nUBTWp4xHIq57ikVsNdVGD1khTOqqwtKPYislRaWzQ15DOfGLlLGpYpF5nT7Hc8dVBaAjJEy1zfMz\nutfea9KPfo/+9ZXhjk7yfkx6bhn240+hX1N73aoY0CdUhSTH94d+4sLVlvhflP0cDkU0cAxp7WMb\nB6voYNAh4h2dR2cVMeT34tKFMqazqiBwJ06m8KUb+IszT4EEWTrJuvaLoyqjO+oHR2QbPIp8n/04\nPB65I2UWdI/3/tuskQcvkQV77Qq2PxkRX8Rz+IN4nufUvg6Sb+2AjG+xxDpu1Zjzz3xQWazL4mAJ\nyAbEn7GwQL8nF9Hhfht0Q08cL3VxE3RVNcOne9EpZdWfOA3yb1cZ4K2K+CFky23xdhTqZKeiCXG6\nCBXhiS+iB2V0czn0Gz+F/kod5id1gnFviXcinyYTkRSr/94Evih9iX6NiftmYwt9JCL4uUhYqdxj\nSlKZm5wq3vjEbeNXZR+TDXcq9COkijqhAX+nh6pMk+H5zZHPmcGH5pax5YkJ/HRxF1RHZUMVeHQ3\n2Z9hDYQnef7A4XV/Y9e6Yv53hEJaURvl77F+Bn1sfaCqeOXvYwOb4nQ5FI9YPMW6bMgvbIlfo6Ls\nUtCjzNusskZlVeEQP8WuqqA1Nfc798hs+vqLZmYW013/6XnmduksNpj20077OpnF+AL/f3YC9Jc/\njE4HdTpy9T5zeiQunWQPXcS1Ry6exW/OLAo5JJTSmiplRYRCGvfzfF17t2qLtd4JHN+PmJm1quwH\ngRXGsf9gnfE2ab+9y7h2d8Xh5ae/myugD4YDIUZ0Hz23IORJiXnYXeO1Xka/5lEFoUUywVnt/UNl\n/+5cU9U8AWEccfBUfYx/TBlbj7KRZmYRp2tz86AFylWeczha0zs01G/wfr/Lcxq79GtC+9BSBr37\nlM1shtGLR5UqUmHm35OWb22q+lZH/C+prDo8tKVFzm/dGuejwm18/cZtzm37h/i7pvY8Ffmxjnht\nmiVeE9p7rc/6m17CHwdDmnRVaJl/ZNHMzPJneT0oMidjqoLkC6GrQLqrv98b79DBIf78/hT+7dEu\nOtj3YrPZCH41UWHva6jKX1/VlDw3xPuUZL8pJ1Dqxdd5/3aXDOtcgvZfXEZviQA2FrnBnJWjzHHq\nKmeK9ACdr0fZnxqq8tEQKiO2i02GVBGopExy4f4i7S6ruukt1owTRc8HXWz//hzjONPBb9+IMa/R\n0Dr92VYlMFX1i/h4/4Eq7lxURTPPHvuSsyBej0PmbStNv3aF3rr4OuO/tYy9zAmt/EYKPTYd9H3a\nD5K1u6+KdSFV1Ckx33EHxJGZWfh+2B5RRvxGWv3ICFX8fdAHjbz4+HLM490d3j8M/OgM91+SNnMW\nEIK72+QZoypJPq0Xn1d8c5v4v8M0c3TjLja2dYe/D7t8fjhgbwnWhNZUtaO4/NzAg65rqnR19pSq\n+ShrP3+KM8Lwu3BLnla1ntdf5LfVThldbq+sm5lZqajfJmeZ69GavFUG2VJsoeuGkC1TOWwll2X/\nOfkB9vpkgL/jeaElhCBKpDijFZq0M+ZhfBP6jRMVunRe3Cdvfw9OtaVLtDt4ld8xwRBzWhXHzc03\nOXu98h0qaZ5/HD6+/QfY+NyRKifmeU7IL74S3cLwC2m+tLSgdkB7JVQN9VDVjHI678+f4czX0/OP\nK7Fxnu8Jq6JknnFM6ly88Bj7+b6Q6DuqJDdUhaL9bVWpyqEfb4f94bZQh+N1oaCl56Yq2o1lVbrz\n4F1cxuFw3yKphOXP8MygkCLbQjq3WuJ7dLDtjg9/3ZOtlwI8+9QUNrdnQjreoC9x8ZPNXMbm4kIw\nBqc5g8S9qsqW19nkFL+xIqpI2V7TqzhaDoVwb6Sw0Y7Q/4e38LtRIS7rQmf5AqoeuiQks59+rws9\n1DgUj2ibvy3MGhsbo/2GuGY62/rtFhffmjbFeytCAzdZC54ZkIHhWfxZTbcFfOUfzWHmImVcccUV\nV1xxxRVXXHHFFVdcccUVVx6CPFSkzG6HSFa2TCTc0Z20saeodhEv8v76JtmiSYNjYetxIk/DLPci\n19pkWhN1oqhPXlK0U4zlD4qgNN46A4LlKX0++jSRveJ3yQDsPUdGofgakbjnHdr7gfgthjlVsPGI\nQ6D5MTMze7ZIRDGcp7+nxrhz/AfKtp0TwfXJAAiglYDYqn+cjPlalajupKoDbKhCTuJjP8n/S7z/\nXOsbZmZWC5Ad23icqPuhD+6byLfErHDuMr0AACAASURBVF4mo9K7QAb46WHB9utEWH0+sgOPeoga\nlubhp2jfJ4r39DjRwiuqhtG6TZvn/4DPHT3P+/XHiSBfHMALkd4j+vjopBApD5ijldeIUtoLyvyp\nqs9xZaBkuEc683vJrkTiiqR3icZ2i2JrFwfLuO6rl7fQpUdcCJEWUc/UPNHgju7+N4rirlFpm/CE\nWPCzqnLRIxvVMaKni0s8Z+Umc9Cs8P647uLuK5PbFMt8WpwuJaEsWm30Mj0kszCpLP66+IL6B0Sh\n/ZOMN9Hk+41VIuPtQ8Ydywpps8w8NYSq6ASJ1g7ECh8/KZRVh+hz8QC9+MTGP69qL7fvE6321JTJ\nUdpy+gJZyTVVFZEaLK6qMKUqtt+N8f2c7n1X26ypnrJ/CbHYBzOqrqJ7nl7ZfkP31jOh42e4c5PK\nEpfRtS/Ca0cooXIBP9CXzXv6jC2+zBzHH6cvG9fIPtwVb0+OQL7tqzpRdKjKWkJR1QvYlD+ITV2/\nwTpeLLHGzl7AX/mUIW6LY+ZqjfXZF9/RqSfJkFY72PBEmkxCJMUa212hP2VVBBt7lP62e4zvrbtk\nIgINsk1nE/i7yBw2VVW2+/592hkXp8IwiJ5W1rm3/dgzoNuay8oI3NSayaOnaJRxZ9PYUriHba6p\n2klHyB6PYaMWpL1SmH69dQc0x1JA6A1VGqsf8prPYpvre/h1vzLQs2eFDBqIRV/VtPq6J31cCcjW\nqz362zqkn8EHyggdiGsmjF7GZhfNzCwlLoa+CjH4HOyttX5PDdOfwh2t+Q3WrlfoglIFG1ey0IZH\n/F9gFMuN605zuWZJIfNySSEmvMx1Nsw6Gwo52FHWpa+8yqI4oCJCmIUTPGw6oIyttnqvOFLSQk0N\nxVM0OcX69AmtaQc8J+WID+Q8/Yj60NW+kBY3XyfDGhT6wDOLzQ1UCWxvlbXQqajyoDioBuJ3OnsK\nv5PU/fGjoO6be2Uzb4LcqQ+w/bm5RfqhqS/sCSEolNNQ/EOGGi3ifW9oqlFVD6tLzy30NeyxJlKa\nRL/8XlTVUZJCFQxFkOKf5vsJ8aiUxBnWPCJT6df7y2dYi2OzZLDLrS2NXz5GfCqjCm6ZCfTVzdL+\n5BRrcUuoEzOzSqFmJaElqtpH7q3zt19rfkL7kT/DvNeEmJmZo/1slP/3/Ky58iH9unfEmrm9D1pi\nqOouyQyfn8+SOR6bYL+4s7ZiRys76hnP6gktFJ7CxtOynfSATWVqnPXe0t37gzrfCwhVlB7X2Mc4\nxzUb9HEuxzodiiugqKpoh9dUjanBmSAshEh1T/w/782NWGiKNXNW1dzuL2FjF17kOeXHaHcEwAkF\n8c/3Q/jD0AP5GVUlWVBFx2JXKDFVstwKrpuZ2Qkh7fbFFxLysaf6XmIvLor3wrOufSIGv8WJAnPf\ndXi/fpl2Ft5Gj4dT+OPavBAuf4IPCaTxLfvT2PzstrgUk/Qz1WRN73SEyn0R37C4iL5v+9gH3yfu\ntSOdsQKbzEv/LDbz4EiIxRX8/uAx+rN4m/m8e47xzX2LNRZfQB+B1gghDnqhto4+njX2790GZ7bd\ntFC3acG7zGyntW73H7AGLswI1XaFcaYd1napyFk52GH/HRNaMfpE2I4rXSFWhh103vepkuqBqvc4\nPNubRPceIV4iIb43P41OonJkkY7OgxVVsZzDPzyaAME+uYxOHqyomtAG6/N+Df88+g1VF7JiX+fQ\nU4/gd3Jn8COTYZ5XrQiVUGGPa6myTlvn6HaP//eGzNX2HfpXDPL6dh+ESkqo4J0dnnf20qKZme2V\n0fFYlbWeVuWxhRnW1s2r2NJmFds18XI0POipK+6Vo7K4DsXTKVdhJ9OslQmd89PixWtFhIYQT9/k\nAFs/KGnvVsWtmwVQD0clxrnVor8ZIRavXsNWPeJN6jzL2i+V3rW140i9gS/w+sVD2FdFzzy+IJZp\n6/notZ0Tb4rAvc6IW8wRAjKmfegE73tnsa/gScY/FEq6ojNs66jwTl8Cn1iyVDJtjsN3t1UJ8XAM\nW52ekC5TfLciVGRf6PaaEGiW5//V+4zp7pA9fCZGX3LL4lcbYFMr+6DCbNBXX/Ub8gS6CReF8hW3\n1fb2On33CYF8Fv/jmdStByFRegX1I0Y76TD9HDyBDjziQLx5EwR4P8Dc+T/GnhyL6TeIbin0VXGx\nO+IIXMZmJ/WbcldIHr8PG22cQo+HfmytqvPlhE8HwR8iLlLGFVdcccUVV1xxxRVXXHHFFVdcceUh\nyENFyhyGyQKN+cXVsEUEqxn9spmZlXbINCcARdjL8a+amdnHdsWZsAlq45GWMtiBD5mZWaX7opmZ\nvXqGz330JgiZyOQi728Q+fvAVaKf4fcREY+/SiRup0tE7Puf5v3WTaLQn7hDZP7Fc0RnYz4yIC9l\nafcDO8rqRckWfm5AdLp7nYoWG36yUNUpInofWifSd79F2HP2Pv198UkyDRFVdfpkThUgwkSRd2aE\nynibSFwmAffNynkyzAtniPouv0Rm/jvRBUvsEQkf1ImMrz/3RV6/zV3IT2SZixefIEq4rGz1XJQ+\nHkwxhpm7RCEvLBMJf/0lqix1nmZM6fuqLPMEczVeJ4p5ZRykif/ee7tz6e8whpCHOTuois/Cp7v4\nOXRRKJClz63y/MxQ1R+y2JQoYaxWJVp52FT2JUFkOahKNG1F0CtCfiQWaG8iQZZtU7wW3jGixDNZ\njPNImcxggCxNTxV/HEWTTdn2VEhZHnGt1JR59IRZA9kkS3L3kKhrY0uVxeLKBHjp34Gy7Qkvn89N\n+PSqC/ktbKM8Ql+0xCEjzom+Mpw1cfRE54hiL9Sx0b0SaypwhOJmFvl/OY/eGiXmIy+ETzSvyjhC\nL0wFGM9kinHvbaCfthIJAyPz4U0SXY+M0//6BnofhHXn9RhS99CWf5oxjl/Cpn1zzMX4GHPnaYh7\npkwGIJQmEn7pE9z9zM+yvjqKfJ+4iO3OqFLU/StE9D3ixYiP8froZXQWFJP+1nUyiX6hfhLnsKHl\nnGzskPbXdX97bJY5WRBiJJah3XyS7yVm+d7uXfzOUNwsT53FP2bGlFkurJuZWaNT1LixmaknqTQw\nPTuqJMacTs2hl6vfE2O/j+zTgtBmkQFzV/Ki32Jba1EZ7lQCn3LhMdZQfCAOgJfIzjWTzOmJJ7n/\nHVVFs0BSbPUx+UtV4Lr4FLaVXcCnlHcZjxNkLZ9SZTSLCg0RfpdH4zhyVGWt1YriS5pk7Q786Gle\n/E31AnqIRVl7W3f53sjm07q/3RfaYcyUlVLlhn5U/jmodFYQn5EZVRlQdYJDoS8c8Zg4raFF46oi\npHvcAZ/WgfgYQkGyNj1xQvWEVoqnsZW+KiHUlckM9Ohju6N74OKa8p1g7PsbZJe94h4JCSE4luZV\nxX3MJ16dVlBoqYH8pngsQqNqaUd8ITDiHgmqEsyYxq5s2sp91sh4VHxDyvgNxVEwNoeOQ7o/HnX4\nXPgA3bZki0nZUk8IPeuKc0z3wfv23vhCkkZ7gQT7ZEx+KOyARuiJx6JaZG2MpiclnpO2smRhZcQH\nyuYl5T8TM6yt/jrz3C2pcsyQPbu0yT4Zm2AtpLv8f7dIJrTaFepKsK1eUEjU7vCdMUQaEYuUVCVL\nPCvjPfaJuLh5Zk7j2xod2htsc9ao3JHfzzCw8gH98sewuxlVXRloX+rJLrLKwMam2X/CHVXEqPes\nvottxcV7E5WphL3oxCf0Vt3P3CUjtJEL8+pVRcFwB1tqq3pHfQP/cbiLDQ/LQhvMKRPaYX31Vblk\neUroYFWBi6TQTS76bgWS44gT0PlzC1tNlljPjjK896tCfcVVDe8+tpzooqulLfr98uOMZzur6kiq\noHWgNXQqzzgPt9hfYtv8f0torOhFvrd3k/0scRZbe+wVUM17UfSbqcnmro3QDCBQggP86XCF/g8W\n8HOj6qIpoQ6acfxhXJyF107hz2cE9QsvgACvVpnH82X0eecCNuL5Lmsmp+pM23tCUy2BRhgP4yxK\n92gvt7OI/up83pkUWktVpNYroBTyZfa9bh872fWDqmjrrNsrYwet3rtogHx7YIchfNbay+h3cZrn\nXI+CjD85pSqpt1gLT3SZp0r9vh1XRpVfTGeCiLjCvPP4z7TWVzDG3AzE6RWZ5tlBnRdn5lnnpRJz\n2awKOXeETtpDdO0pCRqovfHEDHMb0/d9ad73Bdmjcn3GXlth7KGB9p0o/ZoY41znZLH1tAl1IPBA\nWojJ9hA/We+jq9CQ51RWWeTT4rQRsN2S4iKbjcpfCf3aFIp4/wE22BW6IBbEjzf0O8DTE9dZhz01\nPOKtS6qSYh6bCOtscu4UNhnPiGtNCJSjFjaREcojJcTg5Bh68+uMMx9Hr06INZKcZS0+naU9n3hU\nYimel02/t983LZlJXeMbpHjuYZR2rjew6WKMec6dUGUk6aWepn/ZhpCuYe3PZznb+eLYTWtW+hWn\nkeOh3zvDd/tbmO1bM1Q257p47CJCvS+J73Ie/9zaFNLNhx/LpTW5Y8z5rqooeXW+GUvSl4gfXVfz\n2ltKzOV6ENuJTqri11n6WInQfrTBc9sZoTw1Jp8qfXkeY+z+FO93H/B5/5JQQvviWxJyeTPD3IeE\nnN5dEOJGiL7QpRGPpmzziHP6IMWaCQnNu5XT2pM+OmO8es8wDmeJ9rf0Wyc6FCSz9qOr/blIGVdc\nccUVV1xxxRVXXHHFFVdcccWVhyAPFSnTGidD/UdeIvehGdAYL1x7zszM+gZi5K3HiEw9Fv6MmZm9\n3Sa6+3iEiF6/zJ2wdV35fCNI1PKnvwi3S/8x2qm1iBp/Zp3o4PZpIlbnNog2vqpKQx97lCpN9g1l\nj14gGtwrErXMFongNXRv9HlxUwxukiG+lVZkb/uymZmdqPL/E48TQTvVoJrTF6JkEPx+2r8b/HMz\nM3tWzOzbJ4mKvljj/+/3MM5TX2N8ux9Gb5UAn59+heop83/MuK59Hr39+OvXzT4I2/rKPvwFuzeJ\n0D+viGuhSWb2ZIH/vz3LGNe+SuT7mcyr9MXDXdfl24p4/xjooeYt+HXenPtDMzP76Bq6H83dJ7q8\nxk/R99+z44lPfA0Lp4l2BmKgGYK61xjRa1OZwYDScGFlibx1VT/yipm7jc2Ei6NKPURZI7oTH9Zd\n/uGh/m/KOOcwrrCyegeqFpLx8r6CqObRPe6UTymFoVBOHt0XV7Q32iOD0mkRTc0pypwSx0J0n+zX\nUDwoE1nmIXiBzIOVVBVD3BLdhjgOQqook6D//gOhHFYYd3YOWwyI26UjFEhJFSJSymBkeuiluaXs\nWpJMQULR5NY+9tEskKlIt/j8YZ/ndoT6CHrQf1gcN4Ey/x8af4eVYU0r493Q/HnrynwfQ1qqnNVo\nggQZ1tHdlDKl3QbrNODD1iMx1tXWBki5mZTu0qekk33WwsYWkzq1DBfASSPSHdRd0+ti+N8+VIWA\n86znSFz8OF1srqLsVlS8GfE0/UnU1C8//8+okpZTxL/tHtHO/ALtBheZg8Iac3KgKk2eJLqfWAIR\nU2zR/5Vr/D8gPghPRMgXocGmH2Ncy+8ja35wj+dW9nV/XXwZs6rUc0//D+2TWWg21+mvMiLjj5M9\nGvTEt7RCNsvPx2zgiE/IYbzzJ1hzq3301GjSbm6e+fGlyKgWHzCegfxlPIpeesP3RgYxFF9Uu8b4\nyur3QMilcID5eHCPDu+vyRfs09/KKDN8ikxPW6WMVnfpR0OVKppCi1Unma+GKrxVtvAlwwrzMEKt\nbPmUgSp1bHiGDGVb1SiiqqJxpPxJpcw6HniETPDTVjuMrvYP0FVaVdH80lFVPDgPVF3Jc4gfH1Vn\naogfIz/GuvRO0qeDdd7f21ZFLFWcialqUyKNPyjvocvbO6BHw0eM7TDPHGfmeX75EF3W1nWHP8Hf\nzZLWwBT9dsQL0mnyfndI9n6vJX+2Rr9OqdKZJ8XcVfr0OzFCyITe2xGnrVSwD7VYRaRm7a6y/lXx\nER2Iu0tJr9oa/rcjKGC4o3vlypKFJ3PqDvra67MmvYdCLh3IpsQzFWvRsCMkob+sqncdnS1GwKCK\nMqRH73IZ+JqOeYQMjYvzIBJjXxCo0PY3mc9An+d4hOj0HwiRo+pSlarQxEK5TeZY2+WEkEJB2u+3\nhfy5/UB6w48Puj0bCsXkCJWTF4ogPmSshQPxRBRUrSOuajmqMNi4j610Q4wxFhBqQMiY4JG4ZMQt\nE65prMruC9D4TrW2I+1RcZ/OCoERkdDxxCsehjOPMq6NO+jsmp92Y6qMNV1HVwVx4TTFfxfWPuNb\n5XyZm2RNRybo/9I6HGN7G8rsTvAaX8Bvn7ovm34Dm4mJY3DiAH6/+vmQ+oU/rszgtx518A2lEKiv\n7BUywN5J3s++wZq++hT6fHwbPfbjjKsnjrZbb2HLxYHODNcZz3iSs8WdSfSRrNPf8TyImEqW8ZXK\n7NNnbouvowcCtd6EC23Hj34/WMdGX++qkuRj9GO5iV+93uH9KXFJdg0fUe6x77XEZbHkY382M1vd\nft16QiOeDupc38PnROLo5WaF/jhCITpj7IPeveP7Er/2gI5MayBEmdeDTVf76Dg7YG4cVRfdXkFn\n3Y5QpCH5EXG8eIWU9OrA2dtDB0VxtgxUhSguFEFhH9tK+FinvhjtjfmYq3YXG/IOhXKQXyjHmUN/\nHf9QDmILVaFNO3n5DSHw/EL2JDPi7RiX7fTUflRV+fScqPazCB+3xRM6r0cZ13iPfSOeVwWxkCrX\nhDkDDMSdlpnm/1VV82vK72zvgabq7vO9iir4eBM81z/CI0Txny3xhBTa2N6gw/y1ozjMoM4G9ZKq\n7On7UZ/ObJpXZ/geKnSZmROk/XqEtWGT8m1Cp5VU8ciXVZU7oYZX9+inbxv7CUiR8aEq/Wjfr4iL\nSBSRVhIyScdus+FfQG30GjYo9azaFJeguPU8ssGidNgqCCXpxZ81xAnWlG0d7KGjkM63Y0LN1/T5\nSg2b6HVYrzlVak1OqdKtNqlACVtrqnJZOCb0ZZf1OlTlw+Eh7ewfqrKs+DbHDP8XitCP8mhPrwjV\nFRQSPSaUmrhjKip1OFTVJs8Or44q205EQQaVxc80OOC3Tq2JziMZVbWLCEnpUVXOlpCiQqr/MHGR\nMq644oorrrjiiiuuuOKKK6644oorD0EeKlKmvaf64eKpeOIGPCSxJBG52/MgY56+SgTqjUMid48r\nDfTtp4i4L4x/0szMel7u0s4fwDXzpc+TyW7eVbbOEfeElwjb4gR3Y1de4/lHIe7Gvvkmd0fP+4ha\n3rz+FTMzG4iX4+PLZNbvZMkwv70JCmX4PCiHwbY4Hj5F5O+N+6BMHruNum+d+Qn+jivTfpvI/vgL\noCBWXmJcZxUV3XmOyODdryyamVlfmYTiTSKQp5W9vC6kwJIqeKz+AL09Ut2yq2/y7DMnQLBMzzGW\nV1Xj3Vfk2c+uwr8zEKJi2cOYfLqr+uEC///65c+amdlP7MA9s/ro62Zm9tmXmbNvP8nn398HzfPq\nOhHbqan3Vn2ppezasK6opVjIwx3G3u/R/2FT9/oe6P6gasj7xdoe9uveYUH3lyO6q6qqTeF9op0+\ncdV0dN+wvE7mL1vi872qMh1t3q/5sa1giOhyt6pMsyl6XCHzEAvrfvSAOOgIIdMR4/iwj017ZJvl\nhrKH++tmZrbTUHUTVQPxqKpSSyiGUleZUrHkd8UxMOwy/or4jroNMitdfb+jTMZggM1XvcxPWBH6\nmu4sd66J60BImRG/iLNGVrOp7GdP9z+3kow33EWv7VG1GGV4+x5lYgu8XxOXTldRcRse3zWNqQKV\n12GOwn1lOZRlz4yBzlIRIsvpfveWkA4h3QnNRoT2UQS+v6bKCUb2yqNs1+hu7IIi7W1VPIi26Xu2\noeyxj37UKmLMH2VIY/ztVZa6coeIe8pR9iVFhjWorIZfaKtcDL8SmCOiP1TVur379M9/DpRbJoO/\nmPDRT5+qRAXDfC9SF0Lk1jr6U6WCfhC9lMQBkdb966CySUvKhEYmaL9VoX+7u2QeOnfxP/mY+E0y\njGuoO7T9qio37OK/EmonIb9ebdGf2Bl8UUxog/IR/fId8D1vOGW2ZNYT/8hxZTSOzFB8HOJZ8Wqt\nmx+9ZJVZjUVUoW0Zo03Wda98Qneo+1qDPdbmRJ5x79eKao/s1riqyjjyRS1lnkILjD/Wp71OqmL5\njJAZQuwFVaHF51emz0tbKVVX8nj4XE+Z13SYPkeUqQypkoIjbpYTQsh484wxE0cnKaMPjm+EPqLd\n3BLtJJKgqqo+QQLVD79seNCm3/kANuIdIRtNpCtloaSE5Js7yR6VEtLmoMJaTQT43ijTFw7x6tM4\nIwHmzjkjNJXmtDvQHCmja0lsP+Z5b3mnnqrcdXVv3Fdnbmse9OXT2g6Kn8QvtMVQiEuvMpXeUUZa\nftiTFqLJJ06YuPTnp/1hgtfseFLjVcY5qHGd4XlDreGheFUCQVWH+gtgj/i83/wx3mgHVHFOxHwe\nZXytxX7ay6iq4Zj2yzlV2pFNB4dkpj1CbNYHynL6lQEXIrQruwmFNc9DcTUMJy0qXo2OPtPTa1UV\n+mJCinljuovvCA0kgENUqCzzM1afyhqJHsOi4ovo1NBVIKkKJNqTPXV03wqzBwYz6D6W1lhy7+0Y\nnL/A5x0PiG7v1vfNzOwDPc6FlZ1HeO4j+NFsY93MzMZlEwFVOkt72LfSQlZWbzDOB3kG5n0CfVws\nk7mt3eDsFp7krFXJsFc3a8xVIwLSY1/VBZ/J075/jHPt7SP8akl+9zGHyj3Rc6OzgPbwHn59pcbZ\nbdKvCopn6Md5odycGfo9nQBF9fptxrm0xHzUN1VtKqPKOUJGfeIk+u96scl4Cb0FVZXv3gH9PBLP\n3rNJzsc3DoP6HL5iUWcVfxZkUbgsG34GvqrUFPtR7zXBBMxs4XOftrz2w/UZ7KGgfSS5zjlhQmsk\nOQ/ydFvckdOJ41eE7IrjJNjQHpNTtSJV7/HIbzSk60mhZHtC/EVN684/qvDI2KOjYnJD5nB8IqB2\npBsbfV7n0br4moTwG7ZYI32htxxxDobTQkKLJ204OqepapRPKDWvOEsc+f+wV9wyQjAeiU9khKAp\nC6EeEGRoIGRmXci/oPxYKKDKbELANPpN9ZuzTcSRXxWXTTcopGJV/RInWVyoqmEf/QTS8s+aD9O5\ndaBKlQ39lgxIf/UW/XXaPKcWwF+PEKd9oT96ZfxnN0v7NfH8BcvH50I0MxuqwlxCZwnPgP1zYbT/\nOuItqepMqfP/CB0Y0tkiVNaZTPYS1u+loAwmVxD3V0RVHFuqiDZ4F208v5Ywf9Bv0+ID64kDK17X\nb4AmNjOqgFtTtbLUkX4z6bfGQBVnBxUh/Pz6e9T3ETxK59NWQAhH7bGZbcbgiCenq/NZfCD0r3jy\ngqa50lwnuow5VMKvjOnmjLcpHj7xaMZinCESKtXVEl9asMTfUSF59NPHkoIV9fXbLWV8vqG/faqY\nlde53ikw3khZ53bZYLip1/KPruLmImVcccUVV1xxxRVXXHHFFVdcccUVVx6CeBzHeW/lCf7ffLjH\nY47jmMfz3u70uuLK/x/EXRuuuPJXi7s2XHHl/ynuunDFlb9a3LXhiit/tbhr4/97+WGhFxcp44or\nrrjiiiuuuOKKK6644oorrrjyEMQNyrjiiiuuuOKKK6644oorrrjiiiuuPARxgzKuuOKKK6644oor\nrrjiiiuuuOKKKw9B3KCMK6644oorrrjiiiuuuOKKK6644spDEDco44orrrjiiiuuuOKKK6644oor\nrrjyEMQNyrjiiiuuuOKKK6644oorrrjiiiuuPARxgzKuuOKKK6644oorrrjiiiuuuOKKKw9B3KCM\nK6644oorrrjiiiuuuOKKK6644spDEDco44orrrjiiiuuuOKKK6644oorrrjyEMT/MB/+L/63f2Fm\nZv/o7/22mZn1Ix4zMzv7xGkzM/MMImZmdtCvmJlZ5f6emZktPH7KzMxyc+NmZrb5vXtmZrZRL/L9\nmYyZmXWjE2Zm1ilu0k6Bdk49c4kO+AdmZnbjS1fMzGwsFTMzs8xp2o94QmZmVtrfNzOzYof2T5y/\nyP+dupmZ3Xlj1czMnPSQ/0/z/fgY6t14c8XMzA7L6v8LHzAzs0A7YGZma6++YWZmjb7PzMwuvP8J\n+t8/5LlvMb6DeovxffAp+puLmpnZ9S+/ZWZm1WHVzMwuPfI+MzNrBdtmZrbz0qbFZ9Dl7NOXzcys\n2WQsKz+4amZmgza6PzF/zszM+v2GmZnlT6fNzKzdytLW917j7yG6PP9hxhJKodK3X7nB2EPoLjPB\n9/au7/KBTtfMzH7hV37BjiO/8cv/OTqols3MLOJBZz1Pj3400InTRnfRODrp8qcNy4xj2GnSn4VF\nMzOrt+h/t8v3exXik4ks4w1F+mZmNuihw2YFWwlmabhW5fmRGM/z+Jh754jPt9qM04mGee5Uku/t\n8/+kj/Z7XtqpDWg/6fD5SB69/dzf+o9pz3FoJ4xe6w3aGYbQR3/QMTMzX4/PpZPMd7/C370E/R4M\neY7nqMarP8G4o8x/tVAwM7MGzdrE+Azt6DnDKjbmdOi3J4yNV/s8JyY9xGI5MzPr1rHhgT9IOzXG\nXaqWGM80azXupR9OnPYy88zDr//K37O/Tn7n136DNvs8ezhER/Egr5bg2VHZXglTsMCQvg19GG8w\ng858HnTbbzHGnoNupWIbRJnzeASdhDWm+oD2QyH8yFD+zHz0IxzCxmS6NugxF9W6bK3PA6J6Xlc2\nMvSjW2+TdpwMc5kf0I++Rzo92lV/GUc8hQ0lYvTTG0G3TpXPtwfYQO+I/jTrrImQPu9M0H6Ax1v7\ngO91YqypiAf/m0nRbjco/WltHRR5tS4NBLW2Ain6H2K6bNjS+LzqZ4fxO4aiKn30NHDwWeZFD//k\nd/+xmZn9yt/5z+w48g9/5x8xx5/QCAAAIABJREFU3iHP8/QZjz9Be5Ea89Oq8vy+F/9e7fB8f4z+\nJJNx+udlvAGjvbrWVLuAbft8smXtU6GI5k+5kNYRvqfW1ASYY2NZ1k3LsNlCeYe+aqueGVvkb62z\n4hHG3G3xzIB0Ggij416C76UG9HkYpQ/+Oh88qONXhz3WdVR+wBvGhqMR1kZAfqWp5w5q6KRTZW9s\nhRlTPCx/EtNcR3i/2ZFDLjPmlo/+1qrYUl9+ZDbK97xJnl/bZXwt+f/Y6MSSSmqgvAy8Wnte9X/A\nP7p+/v7NX//r/YiZ2W/917+DPob026ezR7cj/1fHBho9jSeAHuJerQ0f3+tr0YQb6MvHUrL+yMYD\nfM7p8zpo9/R//vYHaT/coZ2hnuNtaN8YMi6fh/+P1p6Z2W/+8q+bJWmn05UP0RoanamGfvQe8gf0\nPBlOB7tryKajffrlOLIn4/ueGPPia/Gc3oDP+x2eZw525vF5zKv1Zg5tD73MpcfDXteP6NmmMauv\nJt3VfPwdko7b8u9+6coJMIaAHGtgtA/0tefEhvo/3/P2tHdFdZaQH/77/+Dv23Hkv/tv/wczM9u/\nt21mZtUjbGTs/ALP8dLegzc5d8YnsOWJ6VmG1dYe6kOHPfmz1gF68Q4ZZzI+ybizfL+8y/+bTfqf\nz7NWNu49MDOzTJbxZifnzMysq/OmL8YeW+/gz0Lau2tV/NX8hbOM5wA/1G5xBshNneC5R/igsQxn\ngYONdcYZY77Gcnm9L3/vR9/hGd4PGv509x7fi2fH0Mckvm77Jvuwk6H/43m+167h71sN5jmTx4f1\nHPpfODwwM7OoH/2kMuijWEFPoQzzWy1o4zazX/2PfsFm5pZ4v4kvCvZ5PawwH7kc+6YnhLPZOcTH\nTZxg/L/+X/6q/XXyT371vzEzszf96D5/7hp9LvGs51c/amZmB/WvmplZ+dlnzcwsvMpvgdD4B83M\nrFNfpy8F5u5BjL59boLfLP07i2Zm9pWzN83MbOoBfd7NnDEzs/YU/3dufdPMzBbDjOH0HLofNrDh\naOtpMzMbnJa/+h7ttHOvmplZ+hq63Hkfc9O/ojPQFLYRWESn19/8npmZLUzzd/2A3y6Bp7HlE6nH\nzczs5W/wnIUn75iZ2b3hFv148AkzM5vIoafiy9hwP8rrg5OylYlnzMzs0Qbfuz/OfvLh6zznC48z\n5+dfZrwTj2FbY7fQ4yDNmrnmYDun33zMzMxevPgHZmb2bA//mq48Z2ZmR6fYX9blys6vTZmZ2Vcn\n+Nxzgy+YmdmVDr+9/vlv/rIdR/77X/stMzP7Z7/1a2Zm9g/+IWeUT/3qf2hmZn/33/1FMzNb+8a3\nzMzs53+Hz129xbx94Uv09+/+039qZmZf/Jf/J+O5+IiZmb3wuQ/z/5+lPz4v8/rzv/F3zMzs9//5\n//JOX/7l7/5jm16as9//7f/dzMy+8/LXzczsf371K2ZmNqH1/HOf/AkzM0u10d1nf+lvo4N/7yNm\nZva7f/u/MDOzr/3Bn5qZ2b/69h/y/XP4x58+/VkzM4tq8/6trxEHcHzsSb/9n6KTfFznyTH846f+\n1s+YmVlnqL2+wuv/+Gv/lZmZLc7zu/ynfuPnzMysPMAf3foOa+Xaaz8wM7MPPcra++4rf2JmZj/7\nS+j4xFP89v3FT/D9nc01MzP7vat/bmZmzQr+8Rc//rP0b2rezMz+2R//KzMze/m7zNGf/GvG/VMf\n/5CZmVV2sd2dVc7nnqx+LP8QcZEyrrjiiiuuuOKKK6644oorrrjiiisPQR4qUma7TOTplTe+Y2Zm\n8YGybFkQLsM4ka6rr4EEWX8DlMb5Q9AeS48+aWZmb32JSNbRPSLnwZ/6vJmZZbNE0l75CtHorQJR\nXRO6ITggevrNPyLKubi8bGZmp5X9qXmItu6/znPX1+jPT/0SamspYv/13/839DtNu8VHiaxPnyAz\n8uZ3iZKv3yNq/GkjwnZUBUFz95u3zMxskKC/S4uMf3ufCNuVL3/ZzMwa6u/YKaLllU0iiF//Gv33\nNJW1i08zziBh3T/7N1+0/BxRxw+EeW1XiNq9+r+i+05ISJKfZA426mRRAuvrZmbW3Obzt19808zM\n8o+dNzOz3gTIGH+LCPaXf4/o6twkaKflx4lebt0BTZRUZPm40vSOUApCnkTof1Tog6aP9jpFnh9V\ntigVIBp51MDGjpSRTU/wd0IZ2RaBcztqkNWKTgtpo0i5N0Y0uKts9ngP/ZSPyCb5PdhCMI3NdONk\nj7oO+gw7PDcVITtU9ihLqIxzMEh7oZLQYEJ7Tc4S4c8pY7y5xfeCMT7fKitznCHb6Hhozy/kj2Nk\n5z1hbDTYV3Q5rAy8soq9ARmGqTA2UwqpfSFmvBOMK6Ss5SBEtuponwxFbpLoua9B9k9gLoueRy+D\nijLMSqB6lRXU0jE/oBRrePl+wj/2l/R1HGkPW3oGcxcKRvUMHtp/wBj3Qui2fCibCaOTrDKbfX1+\nMNDcGO1GEujYH8dmsvKaPUX6Bw46CioT7NXc97pCUQlB0zxkjLW20AIdZddrQmY49CuQVBZaSJx4\nmjmJT/LqURb/oII/a+zTvj/G3GQWeE0qm37U5zW0w5xWe+ij3uB9p4aNxoWi6A7oV1XZOceYJF+M\nNTUWIhsVV6a718F2W919fU/98dGP/Bg2HEyin+qQ9rptZcSFohgKkdJQ5rJT4vndMK/BUSZ1Wu2l\nyUIeV1o9zasy7zH5ik6T8Rf2lEEXaqQtHxMT0soX5XlhoTr6ZT5XOKS/3Tr6jchnTJ4kmzaU3TT1\n+aN11m61qMx1ludOz8yY+dFZSwiZUE9Ilxn2jL4QMJu32DOq2zw7msXWUgvYSCCKn8wIKeOXP+sJ\nWVPcwgY6Q8Yei4A8iSb+8hi9ssl2U7ZwwNxWGkXpSAi/MH4gOikEi5ATnQPaP9zDRnpVvteI6Hsp\n+p0dQ1cBX1CfZ++rbaObXILxpCbon0fIkNaA8TeGI2gka8kvtFdP/vC40tX2FNe4BIKwTpV2wkKq\nDKSfkBBHZR//9wn+1fMIxSEIqU82LnXaoNlUu7x6PYwnFBGycTDym0J/1OlPyUMDkSavw5iQOQ3n\nnTEM+0Gr7MmnaC15ItjeUEiXSJt56gjh1JKvCHSYLxNi0+Rr/IJgeRvMf0fjrvvYF70jhE+D77WE\nMhh4ehYQCjcodJSTYGytIGMKd2Vr2pMEfjVPA+UP+ny+FGdMMZ/OAg7fH3aENuryubZ0khTax6dj\n7qAllFHy3/qekDbHFU+XfrSPGM+gxFkpE2fde3rSQZk1msnzfqXI51oddBaewzYyEdZO84D2Cjt8\nLn0ZPxsRaq5UkV/UXpub4nurZfxOPM+ZbCwHCuLWGmgAb10ouih6COsMsC+knn9c6K0W/y/uo6eZ\nSfRc3KC/U1HWqE/ot5z8oaPzcnmPfgT9rOnpCxE9H1vbKHNWTOY4a0TCfK5UZt9ICVUyfmrRzMzu\nrnPGKGvtRQPYUWwGvfR03u8K1T2UT/DIFaSinIGajfs2kkKxYsvndKbTPu2pMf7KNnpPTHP2yOaZ\nn8F1zu1Dne+PI7HEXTMz+7iHZ6wG6NSTW9jetxe+YWZmj3qeNzOzB98AkZKPcO5bbAiJeALkzJ+X\n3m9mZuEH/Ba5sQiCIzuOzvwV+vpg+RUzM/vEG+iuf3vdzMw2nwM5U02ii2/fZ64/Oyk00S36eaug\n89kk/RsTujZ7gbmvvMbe7Y+BzJko8xsnOM1aXbpGv4ZzQiFfALHRWMc2vmnsa84stjCzCerfKqAS\nXnsWPdS1lsOXQZ7E9/gNeGZa+9u30e92jn2xHQbl4DdsPd6if9PLWvvfZf962c8thCWWip26Tf/v\nZvhdEzolFOw6tx2ul2ivdWuD/p4DDfLlPqiI56f5+87Ko2ZmlkuxZo4rs3nWYlB/jyXxgYebPG/v\nB7qZUNGaN/r3hFAdV7+Kze/d4LdkXvtH5e7bZmb2+pcY/4eeon9tP2u7ecA+HPG/+3vscOOOHW5t\n2tMfZU4iunVw5auMNST/8cHHQTtNJFhfK2++TNsBzjULc6zPH/84qKfr3+H/60LKfebz6CzUou+v\n/+s/MjMzJ8ncPn6RNTA1ziSt3GNuym/y/fu7/J6+tMiNlw88D/IlnqN/Ky/zm3ZTyMJ5+cNHJvE7\n8zP4o1ndArh5hdsi2+ugjz7z6RfMzGxv54KZmb38f/2xmZkNA7T/Mz/575iZ2cERNv7K175oZmaF\nHfzYpM4qMf1W29zCprdfYU4amR/tR1ykjCuuuOKKK6644oorrrjiiiuuuOLKQ5CHipSpF4j+tQh4\nW9RHZOuoSNS0s050ufIWUcDGJp+v3iFyf1gj6nt0nyhsXZGrUXasWOTzuzeIGo8ysK1N/X0kjoId\nRdwnufPWKvK8dT2nVuT/cSMKurWpz+/zWt4HRRJvcwd34xqRdUf3xLv3iaBFlIEurhH5u3OT/gdG\nmaIDopZbd8lwtAuMp72tzPM4r60HtFfYJfq7t0JUdX6a51eL9Kc7oL1GYc/CQ7K1Wze5w9nUZ8qb\n9DU6TdSwKd6c1hbIliNl8m6+wecj4s2ZTwjBcZVsUGRL31NkPp5QBPsukfGK7ivnIkQPjytDcan4\nlT6rOjw/K/6fvLLvRfFVeAJEQeNJopGRR9GJ8zbjbrfIcoUUVU0ukhnY7/NaUVZvKITJ0hRRX79Q\nDb4o/e9sMAcCL5kjrpb5JcbtP+Bz9SYIHEuJYyGErbaGRFODyurNC1n09ltEUwfKPCaniUYPD3ie\nZ6jseoaI+YKQKkd1nrd+iO1Gc2SP2uIs6PbJcFy6JIRTj0xEo067PnFZpDu6jy8ekxE3QtlB/2NJ\n9BsUJ0KAblh6EvvZ2143M7NYWBnksO7HJ0F3BZXN6geEBkkoMyEeFfMrK5Y4vp3Uq0KChIT+KTKm\no4ZQQkLCNJVNTsySCTs7rz4lRplS/u8oyx0Jsd48PSEqhJwIyRZ6FXTczJGlCglh060H9X8hIsT/\n4++O0u7KQos/Jz8FMi6J6VguSXueNP7PV+fzDXG+HKjdgQebWjwtbpMxoZYES6oqmx0q872msu9+\nocgy4kiJTYk3yBHSKEF/w5rjaJTXrFBSjtqp1cVjVNI2MqCfiST6TUSxlZaXbNPWJpmIcEU8Fx3m\nui1eo66Xv1NB2glN8P2lRfxyYpy14MtIb7prfFxJyT5aQh/sbdGfg0304xOaJKf79skQWchImvEm\nxVF0qMxuSd8vV+jPxBT9W3gCTodQgHHtrrHfbN9fZ5ziJYnn0OfcBdZ+MjJlOzfwx7U95jg8w2fa\nHeaktMKeUa1im3OXeOb0EijPmHgUhh50WRHU4+gAP1y+RTsjPqH0BJnC6WWMLzAuFKi4sfb38F+d\nVdZrXetTgDfLzGO7+VP0I9jGhg5XZHPrIF4amuuE+CLG53mdPo2unaAyhGvsI54+416Sbful23CQ\nNVfa1DjaymQKBdUXwiNqQnoG3tsRJ1ikH3Vx0zQO6Y8vQfsd8WUEu9iGN8daz2httOLoPx9jfvp1\noRCEbqhqf+nX5WMitOPLsZ/5hDAy8cN5BK2pKqMZ8eITvELFDeVnveJFMTNreBrmER9VVpnYWJp5\ndsRVYx0hIisar4f56mi/DYyIpBp8vilum6ZQf94I9mlau1HpK6jx+MULEw75rTsjTq0hfa4LaZFs\niiOmOuLM0nmwh18Zrb9gHptKZoWE8Au1Jd4ab1ecMSKS84rLySM/XRWHis+LDTsV2vOOrvbrc8eV\nbk08OxEhEwP0IyhTa8i/xMZGezT8GttH6/Snx7kuO4Z/Cymj6luV329zrvSKhy04rj13a2R7OruI\njy0yKfRYmud5xWPXlz9Oau3Fp/CjafHDrZY4Z4a1HcXyzFl6H/0MpKB3QFPKlHt0dslfwGfsr3Km\n6WmfjC+wpuMp0BWHA8brdxiHT348mefvfoj5TMZ4P6aznF/8eYEdbC0gnqR8hu8diIuo5xdXmjGP\nKXF+zYxh8wf38L9mZhFvyKI6w7QcfIjX09DzhAoWz1IqLvRfFgU07V1umr9OPCugDWLjIDZuf0nc\neZ/l9UKZdRR8lSz6uQX6evuCEI9V0AljPVD/0Uf0W+VV5vB8l7PLmri2TgllVpjl9sCLGfgzAgZy\nJRDguQtv8ZykUAFf7YMI+bSX83n0Gc75j+yDPnityvu9HJ9P/hRzPnuN538thZ+t7vH/pSXOn93r\nsoGTzMmpDf4+d4p+ffErIOiPPoDNRCZADHm/zn5z+Dxz8uQ8tyD6Sfo536H95mn+Pyu+jtXX+P+X\nFvABT/exoa7Db6O3T2FLT26wtrJCiN9ZYU4Dj4Ek6d4BNVG5hU2v/ZhQaBX0Fm7hoz4rTsnNVfQ/\npd+YPaFFjiu5x0Ew/cx/8h+YmVk7D5rj1pv8Dnjh5/99MzMTwMVWdEYKxNh3n/mJv2FmZkfaL8ae\nYr5DWvNb4pU68xx2USrQv7uHnAcuf/jj7/TFN3vKDtZWLHiKuXpygbbWbvMbr3XIOph/H3w+A50L\nQzf4rbh9E12fXD6pz4FKev1VdOovYcMXP0Jf+uK3uf0aaLCEzpXZR5gLj9b3eBhETDslf9/Cr5S1\nF2eew5Z8On/XdD5LLjIOf541E4+zz1wXsm7p/aCwBkJc3nmADZ97hn5P9Nkvrl3hTBZJY6uXfozx\n5xQXuLMx+v3Nb8VLOlMVdXth+iMgi8YugxrbPhQa9YeIi5RxxRVXXHHFFVdcccUVV1xxxRVXXHkI\n8lCRMiFxC0zo7n0srPtth4QFHd1X9igK/NQluGSCi0RBh0aEa1FM36U5oozRcaK41R1lZqcU4Vsi\nI5xWZuO+KtOMneP7F5/mDlmlp4y2ImVzc2Qyc/PKjAgBs1Emwj+r+/5nngaFUNodVfahmcSsqpRk\neb5PGe7ekEja+SeIDLaau3osz23o/vjcRSJwTpzvDzr0f1sol8UpsqSPPAOD+1BVCsItMZzPzVn6\nBH1M647osEgkdeEUUc3UORAlfUXU20NlPVpE9TIpdHjhEzxjQczTRVWO6uru+cmz3HU8/QJjOlwl\nijrpFS+D896QMuEuWZmaowyweD86el4krTuwKd3vDvD/stHvKd25DZ3CxgajO/zSUWQMnSYUAR9o\nTh1lmaqqXuEVmsHTo11fCt1GhMjZFSorpKpL+Qn03Clii5kY7RUj4qwRj8jhNt+b/TB6yz1QRbEN\n9BYdI9o7s8Rr7UFR/SPb01CFn3FVOyq2yTR4kugll0NvD+6SrdpTdHdUGcHWVIlG1VYsQ796NTIE\nUVU5aYl/ZDAQB0EUvVTEmTOprGZT+vaFVPmiiD4GuscfUSbffyT0wbxQEgOycoUCa6Dj+dHR5L8o\nnpAygz3mrqmKVklV1QmnGevUaWX1VcWhPaQP9aayxLvotqI5DilZnAwwlkGfOa2oIktSXC3FAtkI\npySd1LDFEWFOSJWwQtPiKMkz5mxIfi8nHYgvqSaurcoDca8UyGg2yujQJwTKiTSIFI94mvr7QgY2\nmbvSHvroO7Tn6A5vMEk2KZ4Wv4T4fWy0NDWXafEjjahfdtbIijVUfeOwTdal0RAxU1RVlUYVyXQv\nfqh79VGfqqukVN1piozCrDF/sawyk3Genxinf40+/S/2GJdt0N5Gac/ei5Qr9PNQ3GIVZZPSefzr\n4gkhVsaFGBKqbiC9H0mfFd0d7vhZ248+h+/MjbH/VIb09+6V62ZmtnlbaMQ0Nr58EZ87eXbRzMx6\nLdbIratv2uFtMm7xZfaI2WVQNwHpqOegm5kl3p+9iE039P/9Ddb/3l38x+EOttj1Y7PxLH1enCL7\nlF9i7/PEGOvBGlmfLWW/fOLMCmnNzCQZY3gRGxyfVkZS2afNO2QyN9fQcWSIX5k6wXPiQtZkZzG2\nfg2b3dnitbci/xYVz5P8fnuXdteKOhOISyZo9COTFUrAlOVXNbjG4F2uleNIM4xt9cXFE1D2KyUf\nkxTyxitEoaMKFH0hUALiQakXR1XmmE+PEItxoe3SqlgTGhP/iCrCDcXx0/QKsSJETE7I0KD8aljV\nn0aotaHzbhY/PTtrsbg4bUYnvBHStIE9NLbQY13VkiIe2g/LR/WF9mgqi9gUV05OqJdAiMx0TGgR\nR0ieVhNbTomTZ+jUrdfjvUYb/1E7pK+NknQoTq6k9tK80KYZL33yym80h6O9jyEddIV0EErKtFcH\nWqoUJR4egYIsovZGlRW7LXTniY6qPx1PnICQjyZbmWAOy/InjqrOTczxvNiCzhJr6Dyi/kb92G4q\niq7DcrRt2e4IyZOI87yGzsseITa84geMj2y/N+La0cFTvIDtkJAtaZ7XDWvct3hesSH/rAeGkuJo\n6bImgzrvdsSH11fGOiKkX+cqWf2ejzNGUufxVkjzvIdPGUxq/5saql/qn8oaRlWNqaP9ttPg/wOt\nuYG41bxCSHaDqlKoDLnokqzjFaJIVf6sOqpuZ+aYYxZX1T2hzJorfK4vRGdYvBwDoQLTqsrY7B+f\nU2anK04VoXWeOMEzDjfh16g18MPRp+jDI0E4ViJHzNF3V3idzrxuZmY+D9n+zBMgK8prQls1mbNv\nZkBQPvoqczIZYi87egHbe/BlKsLEfJ8yM7OZc+xJtxdAMax7xfNxn/PnV2pwQ14+4IzyBZnUE3nW\n+YMT6OLCGOf/3J+yH5U/y2+oN1Ps1UNBqb/xESGtv/oZnp9Bx8mUSAXv8IBnxJMXqavyYxt+j801\nbk8MHc48GxP6HfI8/CKeV9hXHi3p1sSM+Khe/aSZmTVy2Og3xTXWL4OuWLrMvrJ4+8947vMgdoY6\no31m7UUzM9tO4KPWM1TyeZBmvLEiCPzO59nTL94aHab+DzuOrOwy3vxJ5vXuXX6z9ny04xX3ZVi/\nFbc2VS2xiK2OePUC1VEVV1XUFP9SOIBeDnZ4Tl9nVkeIy16r/U5fWqWu5aZn7FA3MRraa7yqljbt\nYS5rqkbc1u/LfBqbqYsjbFvchRFx5mX0fW1JtnpHV2OEYM+KYyooP1VSxdzA6LwrJFylxHof195Z\nEgehVfWbTfyisRBrx6O9cVP8dNEg7/d0Vmmo8pYTxB9MTjGnh/c4Qw3U3phukTiq6ndL/KghDzaa\nC6paXI/+d7UvlVXtLjLiJxXSJjr40RxmLlLGFVdcccUVV1xxxRVXXHHFFVdcceUhyENFynjioyyQ\nLqgrctVV9RFnoMyu7nTmHztrZmYBoSGqYot3JoWKiBLRiqnax6ruC/pDROAvnuOOXF3cLj5lchdO\nK2q6SMTv1bfI1ueEaBlTFaUJZQXvrCuaGyJSFh8nmjy3uGhmZv0BmYG6Mq0nHwXJUqrzvaHQBmO6\nRzp+nu/fuEEEMqcMSE7s7weqjhJK8Xd9qGxWl/5fvAhCZ2qR9jYbRFsDumceyIVs5iLRyJjYu9eF\nBMnO8P7SWfpobWV/VKElnkGnp9JEXE+eInPo0X250d3zuu7/pYT6SS+TCbi+QYQ6OaU+J350lPDf\nFm9QvBh5VUvS/fDwiI9BiJ2ymPPjIjuoKZLcmke3qTCR723p0ikyzqwyvmcuPmZmZrdWxZFTYY4q\nikyffQ7ba4kvJLolNEGe9lse9FBTptRRBYLyPlHT/iyZgOmT6LtT4/m3X+fOsUcZ4wvPksH+7qsw\niDcKyjCcIJIeURb+SJW5yrpTnLmsdOAutj5QvHXyCTKaFVUSO1RUeUb32Rt1vh93GMfUCfp3tEdm\n4siDHidP615mWpwTL6lalPhNkjOjCjvoIZZhLcV3ZE81ZX7PjBA+QmyJp+nM09zv7N5jniv949/z\nD4gTwN9RdQlll1MZbLC3IOSDIt3bbxDp3lC1i8Gh+HrGWV/5KXQZUwagfaDqOkIZjZAjtSpz5tUd\ndCdORHx+nnUYmCBDMJUXN4IgKR1lKfyYrB0cMCelA9btsIP/qWmN5kfVJCZZe0Ef7w+Ved57Cb9y\nKN6QelKRfz/jiYnvZ4TIyYvzJSZUQUs8TaMUdOUA29pcRS+1UaUe2UrAR2YgOM9aW768aGZmySw2\nFKkpsy202ojfIpSj32FVqRp0meuQb4Q6oBuFEs+9NeJPKahSjbgHxsVJ0N8f1Sw4nvQCquAzhh7n\nNE/jJ4XQcfj/0V3G/2BTqK0j5r0pHoCo9pcLp/CZKXE+bG2qmt5rZM+6TeZj4iRZyxNPs89khAgq\nbK6bmdnKd8mSNpptW3qWjNuJJ/hsW3fIt6+Dlqp3tF6FbNu6S1aqqLvytS2eWRX6Jiwk2pmz+I+J\nBVA9YS/vO0PW5fZdEB2F+7xGhMYMTLKGcuKw8okzJSn/UlrDNtb3GfPR2zw/MI4fWnocHcWFNIwr\nU3mwrWycbKywj18LaN07VYyhE5T/UGWw+ATtpPPYUnoopEldlcaENBk2sY2Q770hZcZ1x3+057cO\nWWMlISnLd4VEFA9Kqy5+O1XDG4rPyZsWClf8VXFVbkmFWSMeVcdqNMh4+zbwz/E4tjQ/QdbOq8+1\ne+K7KgnhUhYfk0N/nNa7R7lW78B84tkqHQmxM/ItytLlVfVqRhnfcIzPHbVGqBNVk5rHzs7Khw01\nDwGHtbi1L460bflgRz5JKJVBo2AtE9+MOLRCQdb9wlnWcSqOToLy206TuT84xKaL4qOr1cW1It4b\njwr0hYViCidoNyg+tJiqnnmEOKmq2lJT+0DYI2RK810+nuNIR/6+4eF1PIlueofo5KCDrUxdZK21\nI+IE09kqHKFDXnGYhfrap/z4D78yzkHZUld7ZV/QzZrQqaMzWDI9o44JbVajH72B+Ofiqh6oNRwQ\nJ0/PtB8VQCAFtb/kVOGse0+VtUZIlIbO4xMjDhYhtsXrNFCmOzEnfqUm729uc1aYmhQ/npf+dFpC\nBAlVFRQazDOgXyP+QM/IbsRh4U9hm03pb8RDF1Plt9aB1qoQ513fu9xjHhuYT8iblqpu9ZNClopH\ncBgVJ5z0VA/qzCfk6HFrgCnXAAAgAElEQVTk0qfw4wcv8VugeQLUZGGfZz7RA1FyQ5UFN4X+d16E\nc+VvnqNPtwvya/PM0ZPrnA//9LIqcX2Fvs3fp52JTwlNVOC5q6+wl330OThurgdAwKR/gC4/VGRM\nkUWe+9oN2vt0c9HMzDxeccEYNts6J96nDgiZy18QMuMzzP2LbzMHP73E+fFL2zo/762bmdmMI94n\nACz2Wg+EjveUEIY1/vH+IhVli0Le5R5hX/n6bZAz7xf4KbOKHr75PDY3/Q2eV/4ev4k+8CHOevPi\nqWtcx8a/9YbW1ufYf4Yt9Hxn9XtmZva+u/RrY+ZD6GuC92s7/H3u4GtmZrb9k/wuOL2ryj9VETAd\nU/YfMM+hNHoeNsXZNtDvJVXZOxRyJizU1rAptJna8QoRP6rS5+mL30+cj13T76jQiBOS/rZrtXf6\n0or4LZsKvMOtNxQwLOjDNtvizQwFcLz9BDqsB7GlsDjC/GN/+Wwxqizo0W+5uCrqBrWuhh5V0pU/\nyug2gVftelWbquxgewGd00LiMUtkeU5b58xhV9yPug2R7IyqIYlfTefO+qhqmzNCauu3rM6vafW3\n6Rvd8tDvadmkTyhRr2eELuX9iPygTxxn1aiQPA3dHjDdxPkh4iJlXHHFFVdcccUVV1xxxRVXXHHF\nFVcegjxUpExQfCCeUYR8VOVEmdTxGTIoB1WixIunyNav3CaDOrqjFlFlhkaMyNagRbSxtkukfOoy\n2f+xc3xu/wpoCE+AyNzyZe7AOooi9opEzKJLRNRSuhvs8RMZq+yTdcovkU2bUn31mGjsm0FVefHz\nvehpxrH+ElmxRdUxjwjZYmLZ9xyJc+ES30urP2sxxqvAo2UVkcuMEVGcexw0hF/38CM7jP+ooUjh\neMbGc4y9osofgwgR0rEzRPQz04zh9ioRbo+XZ0+cJyoa6BCV7IbJ6hS3yKjWdN84oooxi6d1v7DK\nWLoV9WkSXUbiuvh7TOmqikM0rHvFYZRQqBEqz0yJG0X3gz2qWlQPqmqFKjlMPCK+hzX+Xr/FHHbF\nefPUeTLTFxfIandU3eTKldfMzGxnjbk9eQpeo3CWuQwpAj1zDj1VxQeSE7fK9atkwTfXVIFrkUzv\n7DwR+x1luO9dI9P8+Oc+RntzZGzv7ZPxOB2k/ZwqOiQmsNnNUeY2ii1EZ7Gd8gaZ9f+bvff4suw6\nrzy/571/L7yP9MhMJAwBAiRBgqKnpBK11NW9Vg970qP+q3rUS9WSWq2SaIoO3ifSu/A+4nnvXw/2\n7wKqWktkYIQe3DOJzIj37j3mO9+59+x99j6razyyINX1mn4/u6D+2Hz4xMzMAtu6ztplKYVPret7\n29v6/BAk9rm/kHL61HXFz+m7mpvH6Kp4CyCqccVTYU3/f/SxYvhiWEyq1TXN5c8/B8lYBFFZV7u6\nzfNrykTYIR/AisrAsOtCHuo/EWJ30IZlVFfdHTeduZsa8zhnVUdj7WTv7YgpUayjI9TUvAozryNL\nivmZrOZxFmZMynECIz8doPHSLqIJwBn3Ee5QTRgYAxDciQ/nMNyR+px57R5qjPpoJ5SOFTt+P2jX\ntMbswhXVIwrLIcK5ZAd1H5bVH5V95ceTkupXPdWcrqI74e84Z+oVO2uXdY47u4Y7Rkrojpcz+P22\n5lYHLR0vCIQHzYgRmgj1Y1gQzW31S0cxVIaRcgIzKRRX+/MJ3Se3rFw1Pa3/z11Te89bpqhvOMo4\np5R3K4/V7nuwTo6f6bx93ANCGiMXroEkzwsB9+EQdu/T22ZmtvtEczUeV1xcelXOBuucF296hZg8\nfUuo6Sa6L9mM4vD6S69bZl59fXKi+fLgY52Z75wpZrIwXUY+YqaJbtBAKFIYaGxxRQzC7POqcyyH\nC1tPY1QnFs/uKe+UdoREIotkBTSnptBnC2cI5r5if4AGSnFHfVerak5lr+q+K7fU5pmY+qLV0Jju\nPFG+OXyMjhO6EdZXDI2TQvxyy+i/zYvJkZlGgwbUrIlWjqPvc9ZAGwWtmUhOeWfi+WosiFxa7e1U\ndJ1HD+WUWHyievqqitUe65I3pLyYySifZhaUg/LzOIiN0KCJqr9LVY3T6V3049B7SoTUrwlis09u\nOC1pnWkw12tH+jyEUQvPoM2QnP6iDT7vwDYPYC+A6uVhxM4uq30h3BNHRcVP9UjtC4aVS/LL6vcU\nMT7ghrUTPR8Ud9AoayoQBrB/Y6y/k6jqlbqUsbUE+Yi1IRXE1Yd8N6wpFnafsWahyVeuocHi0djm\nFtAjmtH30+TfsRf3OXTaauRT3wC2K05kzYraOOmSf4bM78D51xozswnOZJ6Y2piZUj7c3OXZCZfP\nhYj6vMXcDeDElSbGurswd66o3hH0jEIwwX3osLVgbHjQORrtqb512LnJBd3/kBhNMRcbMFySsKJ8\njnvnGc/Jfd2/UdTY5mZxFENzsdnRmjxpwUTy4wLqU+x0G8wt+iNToD/Q09sgxvsdjWdhVjmhjpNj\nGsao42g5wKmxA8I9QBsnznP1BPenLvJJzb7mxDTvCYEp5b76vp5FRqeaq6Pwl6xbz1zEenH6ExZZ\nBxZCAJZXmHxc9qmf+2hbFqLLdt5Sf1tM5/icnqd6fj2jrww0VsXM79X2Kc2N3j/Sd3+t/PDrx8oD\n899QY1feFfPj/a7y5ze3YFa8rM/nCt8zM7MaDn+VnNbKySfK7xswLCff1X0e8W7zN22dHvj86W/N\nzOxbfsXsB99f0efvyh1q6bL68rMP9Fx9oy3GymFIz81b/4ib1Pe0tvUrWkOHl+RUM8Mz1a+xmFz5\no/LLWkZaNxgz2uXv6Xl7qyFG0OpnipXWtGIsvvcrMzN7MK8Y/tamYmJqRe1Ozqsepx21/zeHGru/\nSGmt7dT1fBl9U78/2lV7p1f1vVu/1PPtu9/RuvLXb2v9/Se/xuky+bHwY9X/zoZiM8DpiNSA95Fz\nFiTTbADLZIIQKeaoFiSfepgz1mUu4jTWgE3mg3Xm54J9Tkn0+JyHV/1xg2czckzw3x1cCPfG1iiO\nrIOeWaSG/iYaT0M0To15GYY1Oaw6rFaYL2hmTajDZAzbtal7tmEyjnqwpiZoVcFEGcJq6sGYMxg6\ngaHjRAjTZqz/N/r6nIfnfkN3tIruZQD9tTr6OSG0t0IwcQbk6x7v/f6I7tfswobl/nFDi4v82B/i\nzDjAlQ4iHQdwLITbXwCWa4h+rfj/NMPbZcq4xS1ucYtb3OIWt7jFLW5xi1vc4ha3fA3la2XKhBto\nMQxxSQnALMlpx8sb0p5RJi5kwZPV35tN7ZSlYtr5SqWFHo7LQpKrVZwmPPp5YVYI75AzpBVcSgIL\naEisaPd0+7G+3xprJ212VmidNyikoX6oM79eXJ8W53C8OeAsMbuSURwrJhEhuRO20MageKE8Ks01\ntBc4l11P6fsZGDhnuMHUT9Xe2AXdJ8q5/tC8UNACrIN7H0oZvMNuaacnJCE3O2uJGRwAHgvhinZh\nI6VX1Bdh/b9x6NxDqENkRSyC4d4ubUVnAX0NX1hjEENDIB/XDvLWobRSUuyyFhaFwjSKX7pEnKeM\nONveBmXPTWtnu4qLUqyrek6hBzTGUaGJu5TniRDgpVlplly+pliI11S//e1tMzPbNSHTyRTuJC+s\nmJlZbSD05AhmTTan+o9hK23vCB0rRDjgzlnQuVVpKSw+DwvgSP2WagoVCswI9Xv+hs4Wf/I7nelt\n7QrlmcZdJZjEVeWE+xLj6+vqh0FAu9KVomJ66bJi9pM9jc/BDpowy0KTJmgAJefVX2voYpxti9HT\nHGjXOfuC5pTjGHN3W7Ff31F/XUXHqNPCGaKMe8um2lkFiV2+KsTi7u1HZma29bli9ObrYhy1a0Kj\ndg7UjxFQsWj4/HohvWkxGZA1sl3YQOPHOIj4hHqMQGZj6Dv4s+jv1FT3RxWhPENYUiE0YmZwhUjP\nCO1KZ9ATyoI+jNDCQm3+3kOhRHXyScXDmX3yQJB69BznE84zG1oLvSl+D4A7cZAHB1nEHenit0CO\nk5r/kRVcMdCN6IN0HABDHZ2pPvUT1bOzq/4JwsSJ0C8X19XO+TnFWGJGsT0Bcd5nDjePhCLVTpVn\n24eKXeSLzMPZ4gDMwTZztttWvwVBEKJQHkOw9V6/pJyTAgGexPTTh07TEP2O+gl0jXOWKs4Mw1N1\n7LANcnGmenfrIPKwBC5f1BzIzmr8Y9y/iVXO7j2hb419xVdhXf304jWhj96crv9sW597BhuuUdU4\nzDpaZM+rvy0Qtsd//L0+S74NEqMXv/td6oTbEg4zR+8p1prEbIH8FcU9wpr6/XER9LyhvuuVFJOl\nbVwq0HVYu6K1Z/mW3OACoOx14B/vrvJJEVZTBVbVfFpjlH1FyGmc+X+6gbYBrnE1mJiOBEoyppid\nv6JYm1pXn2dmlNfHoFzlYyGbu/e3zcyseoL7BPkvElVf+ubQ68D1aWSOG8b5yuN35EbSxH1u/0j1\nz6RhlF7Qs0I2pbU3TYx6kjSoBkv1SHPspKqxr5xp3e1W1N/DvvJbMgoqiCbAUVH9eohjRJtz78ij\n2AJ5P40eUhyWrhdmqJlZbHbaVsNo2eQVL0l0+aoV5YKHMBSHxP5MVjE/D9PVJrre4RPl0gMcdDpo\n4ARgCDn6Tomc7hPCLbCAU04kErQmSGQJZp6jV1aFydA50DUHjjtbTjGx+qJiMA/LcwoQus0aW3uq\nuu3RpnZNMZEMqE7BEcw8nLICNRgusGr9cT6Hq8h5SwANG39fYxlFx24Mk6QGcuvNqA86OKoF0ZLx\n03dlWFepntZsD3OhlVDeGHjRcWrpZ7Sueh+hZTMewwrL6v+jIHkdV0FPhEQMSysQ0u/bfeWAGPXu\noE8UZI6HM5rzRZ6X20N93wezdIjryBCGYwtkegWNRC/rYZtnkihabyFYbqMSuhcwa8JofQ3bMJni\nsOfQ7unTX9GI4qN0puu2PervQJr+4T1hTP+XT9CM6H6pBZMuxM0xZHOYQH70t3w4BQVDaFN00ZKD\nXTiYnP/Z9YO+YvFGXq4+Z4lfmJnZowTsn6Y0DHu7OFK9qb5Z9up5cNZhDvrEjGmeSMNl7wUxqdus\nD5+XlRcvzGlNubktJkqgpue1mWnFzO+eg52wq/z8VzAk/z4pd6e5+I/MzOy9sbRSfvqO8sy9S3qe\nO9zUmjb1ksamWdJ1d6+IEdTeEQM631Eevp3T83T4NxrDyFDPmTdu8Hzu+a9mZvZ79IL+c+NNMzO7\nWxcz0T9Ue5rXFCv3oz9Tf/yVYu47v9bvH64qX49+o/pcGSpneF7VdXqwNX4z0HP/G5LWse8dKlbv\nhPTcXfxIzJyti+/oe3HFzr0rYjpdWNWz4YMDMYrm/lUx+7cJ3fe9m/p5PfnV3m88I05JhNFpQi/L\n0QNtOrpTvFP2eDf1+tSPYZ6hRuirdKBZODnOcU/s8+4ZdngYuNeOHD1BM/NM+jawifnQ2Orwnhnk\nOx5Yp6OO8l+37zjsKYa9zEfroknDc5/jsjTqobdDPhlPHF0c3pdhRLZ4vx7DrPH7Yf2wZgajznzU\nvB41NBZ+r/pw4Ex3NFy65rjSQWEZ4bbWR6sLzbMxRBs/mjSGY+IExksjgmYMenUjtKowabI+a2aY\n/Nzj54RnEN+En/an3f5cpoxb3OIWt7jFLW5xi1vc4ha3uMUtbnHL11C+VqbMkJ2yUISduBhOM/Pa\nVS01Ob/N2bLxgXbI2pxBzphQmUBG1yk2hbhM41rkSwkt8k3r/+US57pb2mm/flnsiapX3z/e1e5x\nNIKq/qy+t7+h37equn8iL1QpkRCqd9CUl33wyFHIBj3zo968j/aDo0LNhmKtDdIAgjObUX297GIe\nH2i32AH7Yj61158QM2AGR6E6Z3o3t3W9Oc7kjVvaqZy7vGDeptCLclnoQDeLi0JBIdDg/HYNhG/l\nuhBBv0/XboNO94+1U+44T+X8gq+SKf1sdmGGoAuRW9HO+SCsvhx5tMN/3hKepKifOq0R0BgEcCSo\nNsSEGbHDPHMZxgoo9WefSe/hiX7Ylcuopd8SEpDFSaW9q5h6dia3qFhOnT6P7k8N5ok/ol3TlRWN\n/cYjIQ2tM7Rs2L2tngo9v3ZL/figp/rUcSR4tq/+v7AqlGz1umJqY0uMklRYiMb0nP6ej6m/b/8S\nhBP1+TlQu/KeYmVlTgyU2UX12wEuTespoYIBzpSWK6rH6iW147Svfjx8oI7yoIlzdVEIgqECv/uh\n0Mkou8CzqyuqT0671O0jMW4qMIuWLunvF27qOs/eFYIRRt9k8aYQ6PxIc9JxlDhFq+JcBUSsiRtS\nBUbGpE+s5ISgza6rz9MLitVhB4QO56s57DyCK+rrzIL6IJbU99uwE1oj5Zmje4r13ZLGpIpOxhjE\nb4x2Qppz4xGYMh4oMCF0krLzms9ePp9M4P4Q0vyOcq7Y/Po/HAjz4hZRLglR2HskdL92oL5voF3T\nbqi+k4DmUMIrlH/+dcXWHP3hd/IaehCehsZi++m2mZk1zzT2x8dqdxfNmTBOQJkVza18jrwLEllu\naRy8MfXzOm4rqRm1M+PQAGAQDuogHAPd5+yZ6j9sKCb6A41P5bBkX6V4J+rvQRGEhbmY8eu+4VfU\nLxdwTQlH9PsGTmlnj9X+I1DK8rFQxMSy8vL6RcVyB8GVjf8mFG/3qZgBvpTaeemWztmvou/RBxE6\n/PTBF3o7K2tioq2/IOQzPqW67Bwpr2x/rr4oH+nnIi5509fEmkpnFUvHe8rnfdhMNQQZmmiJBGEp\nrV7T2E2/qJ+O08jJA3Q+HsD6quBsArssTmyHn9P9J5yNf/ZIa+bZlhDbZkX3yzhOiqvKv8trME/S\nus4YHYzDQ415GebdMZpXbc59zy3q+wvojIxwk7Mqa67pfr2G409xvlIAHVy6IuT3wlB52BNwkElY\nrnXF/tkuulMlzfkSDmiGJk07qLnuxVEnjd7U0pTWlRgaYaNj2CTM1dSqfr8A43IGtlpwoJzUxTFn\nA4ewM1gn/9tfmT356IHNL+DIA9vuPoyXkxPFTyah+Jh/BZ2mpOZkGS2v4mfq772Sxi/i6Pyt6LqF\nBeWK+Dr0FdYDDCushnvW6b3HdlZSnmqcag1tESORmDLZ4iWNZWpWdUlMY/uBi5yhBbD9FM2nXc2/\nxp5iOpnS2C/Oq26+IS5qmFx4aVOIZxZHAytInuvaV3OEdNicAx5lel3yB8yONi5PY56BGjAjE4vk\nOZh2vb6j46O5NAxpjR2hlZDCZaRbVOy0R+ovf1D9MOiAIPt5jO/AMJmFLRfFjWiojujDzAzQ770e\nTmowVxqwkqdghvuyMJdg3LRa+nwiyAPsSJ8L4KaU9PCM0XEc1HDkDCtmWx2tR4OM6uWD+eKNKtYb\nZcV+HBfTCOyzCbpFI8Z1XNP65mfcIl716xhdqYSp/dWyYn3g/zIHZHLTX2hddHCi9MJYn8viLFqH\nXVDX55JjXb81OL+TW35ejJd33lVd3py8Z2ZmQ7+uFf0+KP2hxjISVuy/x3PW/rHm1S/+WX09fo3n\nq3nV4c4dxdiVmtbejW19b+7nauvDqjRfvv2hnv/mjzW/D6/9NzMze+L/WzMz+8H0tpmZxX6rvvrl\nQH3y4Y80V6s+5Z+rnXfNzGxq46/MzGxvVflhfldMkuSB+ir2mu73uKZ8sdbSJLkbwJESUlqzrzk/\n31aefZD/ZzMzG7WlO7QEi9cbUn6LMUdePlY+/i8+xcpfNsUgzbalNfOrlOrbCer6dlf9dwNGzUe4\nN6W6YjA1xt82M7OZrmJzaSxNmePfqF8yP1Xs7uKcmW+IiVOdUT59j9MMmQ+07u5O8852zjIaq12T\nCqzrIAx/dLKsh15LBEYNuke9DmyNMCwv2B8ehEd9fsVHtwWzhvsNHLJKGx3C0JcMy/EobB5v74sH\nzECT+YfGUzcAMw+dtBDz0YtGTJPtBK9ffRXrc2ID9r2jldUOweJB08rDWu08n/lgyoxCMOpg5vhh\nindggnuo1ySq6w/Q24nDlOt60TkymDxdh+mnNk98nFyB+dKHLTyCmUPaNi9upyG0HM2pJ3l6xKIX\noB+6uAf6/Y5Dserd40U+3P3TuqouU8YtbnGLW9ziFre4xS1ucYtb3OIWt7jlayhfL1OGHTNPiPN0\nkRX9DGsn6exjIYwh/L7b7LSHu9pZs7x2k9t9/T+JZPUCrh+lOL7kHu1cbW2DYrHTPwNLovxI7IhO\nV4jCbBr9Dc6SFne0izy7CBqY4Uwdri8HMHSSMVyewkICdptCMTtoKOS438YRTjUtIQCOv/vcNe0S\nD0BDR7v71EftSOQ4YwzyMAkI6d3e1eebJe3SjrlONKhd+kw+YkXOuDZ7oFSwdjqOlsx9ILURbKC0\n+rYDC6e4r53hHOfwptbVF90T9Vmwg06GT0iqj76ZnRLiWywK3Wi1v5obxkCAnnl6QmU8He02+jlr\n6VztoAoKBypy6w2dgfXDGjrYAfGFReCrqn5h+vLCVek6dB9pJ9rRq4jkQb2IoeNnOiu7+oZ21Gcb\nQrKH7No6Gg7PHkmz5oVL2pnPL4J4w+Lonam+RZ+QgAxuTEdFjfkI16V+X2MbuyhEYQ408HhXCEt4\nWuM4AsUJZtDEQcul4ZXuRyylfhii0l79RHMr97I+d3NWyE67pzn2DD2UjSPF7ByMp04ZXZHHmktJ\n0MhF9DfmVjT+ew/F+Klsq303rwlh8FUVZ3sbQmCjMGbyL4Ic47DQPkJt/hylgcaUDwQsEVXQTD+n\nusdzaILkcXcjNls4Avg56z+VVd/ZUFBBuaW+2H8kt7ZuXbFzintRq62xTPv1/QKsp8wMrmxoqjiH\nXCsgpFE0XGIFXIzQzjLOvje7isHKmdp11lefxs8UE49ANPvog/RrQmuafhT1g2jN4CIxtSB0KbGM\n/lJOecpL+qcZ1sbxZ/eJ7ncCQ6aFixvGa5ZFc2UpK5ZDHDcRL4hpBSSz1OAMLWO6elkxHAcLGHLd\nZwdqV/095dHavvp3DOvMB7siSX+tXNRcWbmi+5+3zKANUw4p5nonQjqic8rXU7A3Bl7Vd/O2+qP9\nRO05OFJ/e9H+yl1Sjrx4Rfk2gDba/Q91Tv0MRub0K4r9Szc1x/I5ted0S+3cf6j7lGsVm78gxG32\nsvJRBJbUk3ekxbR9V3XxjJVvL772vJmZXbiq+RcDxTm8rz49e6w808GtrgMTLYYWyPwVjeUUrnCT\nhtbSBx9o/h7f0/z14DYUSquPbr6iMZ9ZQ3ctqXre/1x57+Rz3OnC+v0lWETTz6+YmVmS+wc4f14+\n1Zp4so/uD6y3+pH6yGeay9deVx6d5r7jttb8E9yJOug6jcY4qXj1vfMW7wJBXgCxfqjrdovKFZOa\nM/c11hPYZI5uRyqt+3nXlBPWk4rZ5KzWrxROYt4hrDsYL23YG5l5MZVm0YvrddQf5S31z+6etCUG\n6HU0OA+fS85/0YaF1UsWQA+j+EzjF5ro/je/oXVxcUHX78M8Ld2VdsXGI+X17qn6cb6gXJa7pc9P\nran/PaCQp8fqlwZaObVN1bNecuKuY8EQsbKo+bJ0fcXMzArLmocOE3AAY7h5uq2631FfHxVVp0ZZ\nfRTDtXOJNS5PWxotrS2njzRHQsTs7Dwulwl02dDr8LJejLxfTZuqB3NnSB9HcCNJBJTvqy2t2d2q\n5kAiBqIbUb0PbmtMLK32B71otPT0fY9X65TDyxjzHJrEvaOBDsUQpBdymUFOslmcM1MwD7slxUq/\noTEKhxR7CVySJkXYZTh9TaZWzMwsC4tr0+e4pChWK+g1Rb9AgqkPTJxhz3FrAr3PanzPeO7NX8R9\n1Afaj+NMrav6XHaYTDz3VhuKpSDPfo47aySoZzcPzm6DluqTTqg/D9H6mnwpKWOBbNw65MgJ7ipt\nWHwrC5p7nQbrE3pb6ajm7ABtivOUiJY6u7mnPDr4Hs9lfeX3fvUtMzPbHfyFmZnl0FV6jCvma1fU\n1s/uKaY7D8U0/kXpl2ZmtvmmrpduiqmydPB7MzPb+EDaK/UxeeMlzY1LH8pFaW4sbZt3c78xM7Pp\nf3ndzMz+9fu6/3ceqW/3j8UseXlLTJKTdT0/pw3dPb/YwU8Kul9r9Ds+/1MzM5s51TPT8nf0vU8+\nFYOlsism9XMF9fW9tPond6YO+2NNY/G4rhj6ux/Brj1VTP969W0zM3seZ92jU91/69pPzMxs8Ehr\n9NpEz6tbK1pbtyLqp0lR+bPkWVF7VnX9S+iH/L9J5Zqf7r5qZmZ91vzJx3qPyZj6cT2r+rz7E83p\nhaJi8A6aPectffSMmJLWY44PYecOYzyjMLm/kDvhPSc2Vj81eaaKGzmBpODHLarP3PL30GWBDTJp\nfulMNvC1zTscWRAmTD+qOjgaKJGhft/B5Tc05D18oHzgw240GHB0btAKhBHXb+j7MS/sH1yZvNzP\n0a4ZjWHiwHgZ8lw7RjRyggtTaEhfcbLEE1Se7MJY8eAYPBriZofb8hjNLe/Y0cRRn/lbyht9Mm/M\nOdIS4Dowf3ohdH54l3ZOtnQdDUjypY91ogmzOwizcOj50+xdlynjFre4xS1ucYtb3OIWt7jFLW5x\ni1vc8jWUr5UpE+JcnM+jnbZUSjtT1T3t2j57KtbAxYtCZxo4EfSDoEjs1EcGuk56TajfMMT58o52\n5g/OtGvcPdbn54JoSRR1vW2cIeb82nkPxIXonG6rHv6BdrbioHte1KQbONEEcSNJvojDEGdgu0en\nXE+72gkQkY1tdD7YFa/59P0sx7PL+0JS6m3tmS3N6jx5PgWCz7nPHuhdpaSfCXZBC+zUdde0w19r\njqxVFGowRPvEU1Bft9GdqYy1I2x0XSKv3cEiDJRuVW1K3pAzyvyU2vS4oT4YFYXETiXViFxSSOEE\nxXrHAaaQcxQxzlc8uBw5bCeH+RKEYZG9BFNlS+16elduJLmE6jGFu1BoxGFWD+4h6EK0i2p3EkRz\nAiLrS3J+Gu2CmdLqrC8AACAASURBVJaQ14PP1N5pEEib0dZ1/VQ77jde1g77p3/QGdxqSv03runv\nMzPawXccFrZxNfrOkpg3Xh+q++iFbG2JsZLPCwlfui6EYScsJKKOrsfmZ0IEEnfVTj+sj5ypv3I5\nxeY8bIDdu0I60qBcZR9z46rm1kxXMb59X8h3Oqv6rS4K6SnB0tg61c9gRjF9Feec4Yni4eQjjUf6\nBxr3tefEFhihC1XC3WRyov4u3NLfs4ugm+coySkFbSKtNobQOBkF2PGHVVDbEgpSq+KAgJp60KPv\nPd7UvGpT9xb6SD3O9Y49GpPMjPr22iWNRXwVl56U+rJdpU+3FWvtkWIl4sE1xK+f3U3lt6Mqzjho\nr3TO9D1PHZX4BAwgxwUipjEOMSdmGJPgnPJEAncmW9R9pkFOu+hD7YPK9U5BotHEGTOHe0M0dZaU\n7y4tq32pRfVrIIYOU1P9VT3aNjOzw7voSWFvsYKuUXJa12nSroNTsbSah+QcdD+8IeWruUtCBbNZ\ntSMxpbkZmgVBHoP2xL6as069qBx2sq2Y9I2EdKSWxRJpwsQ8uQ9Daku6KN0T3Wd6TXNj7pZyyjR6\nGl3cs84eqV3+hObczec1F+aeU44aw6J79I7Qus1722ZmNmhxBjs7bZGMxrZ3pHyxuSmm2xnsocQK\nsfdNXTs5pTodwqr84FPlhSZ5LYMLT5oYWYCxEcmCVs+pbyt15amzB8pH+2hs5aZ1/UUcAdNoTXlz\nMD3QZTh5R316tK3rZKd13eVrxM7SipmZhaK4xe2A5O4ovxWZA2n0MTyAcHHycnpJfZ1Fd62Ng9be\ntvJeFwaiN4QLFDpFvuiXSOB5SpG1ubapMW30Qfd9ipH4gu6fBRUMB9G1GGvchhn1Syis+45wnPGO\ncGjEfaqILlOnTjtxuUtzvn3zIyHI+4e4HuFSl8lojqxcFJNqek7PPJ74l+fUMzMx6+wrptI8sxQK\n+jmIqX+fPlG8nDzTuJVwV5pNK1dc/IZsSlbQBPPHeU6ANXyAe9fprtpTq+A6AtKbC2u8rn1nzrLz\n+rfjYlmFxXS2r75tOizXHcVstQnDLqA+888r5ldX0BHiQWkII/mMOgwPVYccbk3ZKfXpGE3C0yPl\n0QEOUh7DDc/z1WKkOdCgBWHA+HIguaeK7QYsqEYfti3Pb6VDxfpZB2YGOkExkOJwTfVM9ZRfPTXH\nnQTXDxh9jSPla8d5bDKGQdLUs0BvCCMzwbNRT2NcO9D6F5hSP+bQcTo5gaEIS6FHjIzQsQjMwNmZ\n6LrtOtoICzAlgXY7uPrFVzV3IuTzMToYO12N05W0mIP9qsM40t/jbeUajGQs79XcKqODNYJZHsXV\nKh5UP1UbisUVWN7dAo5x93CNSnypGTQI9izhINvoeHRgnqYWNZcGZzA9YcTmC2Kh9Vrnf13aeaq+\nDbymvJC5o/k5PYOD6yno+xuKlV/+QWPzSltMlMcmxkn9qmLrpTW17f/5e9X9Z8yZj1paS8o/Un6/\ncFfXX7+hPF2ti5FzYFovnl8W02Pep5hKrW2bmdncr/X5rZw0Y4pX/y8zM1ut6Dn2aEnffyRzIvsB\nz6vTe2LuHHiUL36HNuDoFfLU+5qrL8Fa204qdm6f6n4d5kQoo3UiNyXNwblrjM1v9PtgRGP8+viH\nZma2WZOW482rOuVwB43H/Or7aqdp7J8+Uqxd+Ll+/2ik3BBtwuDEEe72KqcoPtPav/eyclFjTu0+\nOFE7ri6IFbv3REyj5G80frd/oPXyW2crZmb2f9r5igd3JOfZsse7rKPrEhsoNltB1TeGblUQ7aEO\n60wAHasRbGUP78rjgPrd74EdyKmUvqMHE/6SSRocesz8AeuTwyMj53lLeWbAKYmYz2GcMB+YsJ6e\n7tXFAdeLhmEY0rvP1Nd92hxgbRz6ea5FI6oH69831vNrCN2cEZqO0QDMSmJ4GFCbJ7i8RbBDmpDf\nx0HVdwJBZRJDnweCpJ8ENu7Sl7joDdCgMd6xAmjOhNGkGfFuNcAd1YdrG9I7NoQljEGx9WEpT8Jc\n9z8oLlPGLW5xi1vc4ha3uMUtbnGLW9ziFre45WsoXytTZoDrkq/J2TD0KmqcIQ6PtDOVybCrB4sh\nEGFXk+1E/yzuJRE0A7a3zczM0wNu2+fsK0yUSUW717VjruPR7mH68gtmZnZa0u+bJe2WpvNCFmK4\nODVxvNj5XLu8wWXtpE8tqh5/+IPQuyE7beEF1f8Ylfswqs0ZEOBmVbusoYjjgIA2TEe/z84JOfZz\nVq+MNo6vz2HiAyENkwK7rLBYplDZ3362Y/URKEPEOaOvujoaLYOadv1iIZgWA/roQChLeKS+T8NM\naU60q3m6ozGcnaEuON20G0JzajX1Vc+rHfRQDxT/vAXFbc8ABJVz4OWKELv0rBDAC5d1vryHq9DO\nHaHcSa8Qi0FfO+2pac6331JfbX8mRBLxcqu3tVNeeaqxS10TerJ8TWdKy09xXvFqbKI4Ye3d1pgs\nZnX/YFLfb9c1NkfPhGB4JvpealbXjTpaNKBemXW0WzBS8I9xQeGs/5D6J2ZwS4nq7w77wwea4+M8\nZP0QNsO6xv/CJfVTuKJ+7I9xYwIxTSy+ZmZm6ev6XBmG0MaRYtpfVyzPE/NZkOGdT/T33IuKo0hW\n7bA9jf8hf3/uTV1/5boQiDM0GkqbQs7bF1VfHyjdeYonLmSsXVYs71d0z0ZX1x7iHDaO4fwS5fMh\n9VWt6bj7wFDhDOtUUmObzAqVzlxAm6agmBqhBVN/qFh8/wOxiso7DsMODQOQx3BeserZB5EsaUxC\nqLsPYIHNLsHYiwk5zAVVj3iOHXkQBl8SNxFYV36QijpnXatl9entp3LUalXQMWoARaLAn1nAWeaC\nznXPzwoBzWfUvg5ne0tlff/wgc6b90C2fbQznhaK9Pyi6j0kbzdwBttuijEUBbhcvLhiZmZTed0v\nlgQh7qt+LdTqD2r6Xot8HfAnzH70M3v8mc6rn7ecwYAyP04yMICiuL0cwUrY39JPMppdf13rwvyr\nal+cuHm2gTPQI6GbTfSSLt3U3EzigPT0M/XX2WPlgHoZrZmw4in3mvJ7YWHOxrjMHe6Q47nX0mvK\nP4tos/RGasvbb8tNo35AXskKCXwVxloUvY0RZ8cdVmUFZ6wWugknaIGcnrHmoCexfkNn5COsC82m\nYuDoI31+E6ZftKq1e+6q2r56U3MmhG5GDfbn4yewpLY1Zzrox2X+h7GvgHp7QaUiOLns4rZXRwgp\nCxoWXyWG0Eob8L3gmGeAc5YsrKmlZT0s9Cdqh6EhUztQbvEcqX6VNq4oXlh25MtBUbFbBZ7r7qtf\nh47WDcSWKHO8D8uh0gahRaMgjobPjRf1MzmDwxCsubNdzYGDT6QJY7/4X+3T371lORzcclnlqrNt\n1eewpBxXQbfOO6f+e+5NId1LM5oTCVgoRVzwDj7Wz0pV95sUYZKi05W8qv5fXEerCJ2pTm9oOyd6\nFihVlI9GZcV4v60+8YJ0RmAgLvLdxQU0t9DSC03Q42mqj872NQfiXo1NbE195J/J0zdqY2lHsTqs\n6PMj1oGpuH76yLvnLZBIbQQz0gsz2TNxEFyNsTemdnpAZgGvzdPCVQRtqxHssHFSMd6HcVPyqZ09\n0PEEjpkTn2K/A3LrA5GOwXZtHapfHYcyT0f92djS9cIBHNMWFeuGS1Qb9pYXnSIP4xLDNa5pOLf1\n0dZCj9CXUL0GsKk7YL3+guo9UvdbB/dT87DeoRU5oUO9KfVDD9eXYF6f699W7mr0YBunxNrLoqd3\n9kA5qTnPM24e10I0hDo+Ot7MbOS1oR9NyDO1Ozjh2TZDvt5Wjpq0tS500XxM5L50qvlzJbmunJ+s\n6zkvzLN7axHNlLHa8u0NuQDVR8qbW8Rw/7Hcmr71UPMp/7m0VDbf+JGZmYU+hGGY0zx98ykOlBcU\new9YK5Mj2FK4pY0Q2Ln1Aayt19QXh0uqb2QPnaVjzbXjK1qbhu+LsZlnbQs9VN+UTt5Q+36MLtHp\nb83M7MYdxcbH3u+ZmdmrL+sZJJyTO+ibO1q3Hsys6L6GdkxaTOknfjF8eheUj44PVP9gXPW+8i3V\n6+HBH1WvjxS7DfTg3r3+fTMzm74A2/lz5ZDV57Qu9n6jmPldVjFwo69nn0Jcee5xln74UO8RqWWt\nA2c4Ws5fEVPohX3F2C+922Zm1s9JM+fcJeSwRNBtIjcEcCaysWLZh2ZZZ6IYdBx9fMxVHw9VoxFu\nS+gYDmHh+WGdDdBh8TpztN37oirDQNhC46aNYX0O0D7E0Mk86NV0fLpmlLqYF3e7lq7pDcEYxyVp\nHFHdB7y7OU59/hBOUzBLxnF0cji9MfCgIwoTZ8Q7px8NGB/v/yO0oYLkPy/PEP0+TDw0qsZsd0wm\nuD0FYSWzlvrJs33T78Nox3T5faCjdnZh+ni81GMCSxaHXS9uzqOu6j+C9huKq17dhuu+5Ba3uMUt\nbnGLW9ziFre4xS1ucYtb3PL/u/K1MmWi7OpVazg1JHVWv3aq3d5CQjv6Ic6xJ9gVPORsqy+jHfPw\ngnb8S/vaHd4CuQbEt35C/0iyE36GxszBmT63eFHX8ea1O1x5INaAF/X46QWh/uGhdt5KeNMPcUVZ\nxnmmW8TN5Eyo4PSUdqkDY7WzAcIQXhWS40vr8+m+dvyGZ/p7t8wOo187ah782sunoG8wiWaSDutE\n15+lPxwdgCMQ++OTM4uE1XfeANeMaYc9z3nBYhA0AdSp1dcYtEfo6cxo1y+R09nVnYdyAxl5HEcS\njZ2fMW3uqo8M9CjObmc3/NX2AYPs+HpA3bvUp3+gXcpnB0I1YjNCkOcuaCe8dFc7/8OKzgd7Qas2\ncQ1aWFNfDVApD80KTSqAKn18WzEQvKv7v3BDaLl/Wkhle0/tu3RTO/8HM9phL6HdMx5rlzmzrPtG\nB+rvI2InXlAslitqxynOE3NzIBtN9ddsWLFdR/+j1tS4XLyK5koMjYi8YuEU1tnltNCtMDpGo6Ku\n34pyXnJe9/emFfMnW9Ki8O+IJZAyzu8/rzO51lEM3vtHIRNdFNCvvyIkvTYQHDYZoD20pvsPA7rv\nzm2c1FJik0yjUTGPPkntsdC95innSf3/zjLhz5TeIW5l9FkblfUMug/+62I4zHJ2tAN6UGpSZ87z\nJmc0DyOLK/q+c3Y9qZ993IK2Hgj5Pd7VPK8eauz9HtU5NYee0ZpiMg3DrtGBOXOs6/TnNXciaMBk\nQSRH0/p+CrSk09OY9yqg8DgrNGE1tNGbqMIMLOGcEoPB4glBTRmh8wGSnFpRveIJxXQipjFuk3+f\nPlDMlY81h2pjYjekMcuh4bWypJgN53T9Lkhnc0f9g9i9XV3WOMTQmAkP0RdBy2YTx69mjXY2ND7t\njGIiGVM/5ed1/8ycrnPeEpmCKeVFZ2MFrZuaYn5QgjE5L+RjZUXslMJFzYFhReP16dvofWwKRQvB\nzlgm94SwSNh+ojlV3tf1g3HV+4U3pDuVyNIPIDvdTt/q6Dqkk6pDbEZtHmb0swYL7KAopC+N48v6\nD9G5SWtM+iBgR/c073ZP9D0ffZ69ojHvwHBpDPX5hTndZ+2K3CrCMP42byvfH8IUbHSZ57BDV76p\nvppaUl8Favr7MQ5WB/uKoWERlIq+mEnofn7aW68qxoIR9cn8yor+P6U81mMNzM2gLeZV/mr0FUNj\nRFrG6FAMel+NBZENKP/3yrr/o03lq9Iz9ffgRPksA+Lcop49ULQIOlUDdOu8Qc2JefSZotOMU1LP\nFF5YG1ZVfRvoK00vqJ3ZoOZoiXPxW/elIXGyLcZKExagL/Slbsb0zJylF0BYQe820dPyt1W/9ReF\nNM+saj1PZPT747Lm3uMPtX6WdpkbQa1jDgMm9Q3l7yTMzlCMdZoct/1Ec6S4W7UujLtUXG2JXcUV\nMy5U3A8bLAQDMIA7zhDXjO6B6rZX03xr4BI0RpMkAEO4NlFbT97SvOudKE/GcEpJz6uv/bjlhUFe\nJyGHE3e+MgF5TQAht9Et6o6UL8Mp8nwKJBmNgiHuUCHW4BD37U0UswEe54IwH5s4WMUvECthrCiD\nzt91ndWknhH2xsyRIpo5l5WXI6v8/QPVL3qoMV6ErXqcUGxgYPaF9sKIdTSADmC9AVI80Hg2/Zrj\nAfT9fCT6Mowk35hnTfSrPIcapy5z2NDFyJLDxriV+HBx6vrQa0ppjp/uql1TWcVsLABrO4AWWEnP\nAfOrGu9xQePdrsGQNLNYwMzQ9DFyWHwBbbC+o+uhekRYD7strbMRnC3PU2b+ARe2m7CnFjTWx309\nR158jI7kj18yM7PGYxh0f9CzxZyJUXzvpr53Y199dGsgUZeNC6rL0hIMOp5Nzv5Ndb3xPLEdE5Ox\nFVMbk79UfW6nxGy7gkvStaTm3PpIjJiP5lS/k3+TZsvwqpghk4bGsHVRbkvRzM91naDu+w8JuY2G\n3td6U31Ba/rgI+X3+z9W/tquKoanvqGx+HzwazMzW32md5f1hvpjvKf23/pftC6cbOh72X/SdbZ8\nYrg05xUT46ycD6efirHiJVc8/bH66RVV2+5c5R1TzbdhQWPuQY/k1Y1tMzN7dywm0I/e5p3xFbVz\n/oFireJRf/hhqDcKWgfPW4awS0IeR4cFlloIHRWYLT50WgJRfb6PrugYTcgADsQe3t8GvDPGO5p7\nfXRYgrw/tWF7+KJf5r5RuG+dVsT86NRMyI+BnubJmO84J1h66F9CLP/Cm8xxvXOu0+W9PYL7UBeR\nmR7uSGHeEZFqtW5Anws7z68DtclxgRr0nbVOf498QeVBGyaiCw3RRoyZw0aCaU5fT0a8E8OU9Hj0\nuQmnEwZtXTfK+3ubtd6H+5ufPDjmHSeK+2bHYBjhjhdFm6ffdJ4N7E8WlynjFre4xS1ucYtb3OIW\nt7jFLW5xi1vc8jWUr5Up08OjHWFpC7KbNw5pRyqfEUKQ92j3tNoXatNChXk1wtks2B4Hj4SkDFFv\nDrBTHsKtpACiuX3K2WacHabWhO4dlrW72wS1yoFS+heEUFRRY9871U5YmDPBC7Pasd/fESo57qk+\ns/Oq9x6OBUPUna/gcDPqAklwdq3KjmR3rN1YH9ozQ5DXcU+7xRN0YMYR1a+f0C5p4RI7+fTj2YHO\nmXvrXfPiPlRIq0/CDmMGPYsmjgcJP7uHKNJH2fWM5TQWGc71vv9IsEokrh38MC4P9ZJ2oKvH2qFO\nXOJMLbugXs4RnreMYJwMYdrEaXNvRfWulYXyHB6KVXV5WQhA5oFi5OFTIQUXrwv5DYJyDWDgNCEI\nnaB9c/G6EIE6sdnZ0s9aQe25jHPBHz4VUrl3oDGZ5vf1zW0zM5uwIz1m13cR3aOnINjxlMYqGNfY\nbj3RWM3lhGqlceOYmhULq9/Sdeunio16Rv08k9e4TqFzcrKJk05F/5+0FBt9Pw4+ftUjlla/RnEp\nmUVLYQLisrGl+62vCFFfuyyWQ/8FIRNbd4WgNFqqn6N3soVjWmJJMbjwsuZWGwejbRD+IefJ87Ps\nUiNI3hyiEzBBAOocJeCHFZTCUQbXJa9+bW30GjZxWfP2cc2YhjmxLtR3ek3oVrALOg3qW31fMXRa\nwaWCPvVy1nT1qtqYXYHRV9B1Om1HpV15o9dyFPFVzyRsrUKc88BldcLJhvLYI6DLGj/HoCE+0Cpv\nVGMfhQkYzavdiRuaA6m4/h/H9cSSigmfR3PW04Khsas59PgQxHSkdgaanG9eV8xcWxUrbCa+on7C\n1aJ8qHy6+45iorqrdvojsOiIsUYTlGZbDJoKDCcf2gjBsD5XmInRDqGKaZhHeTQHupxZnl380yr2\n/2OJo1OUi2jcT3Ej2YQNMSb25y+JzRDD1evkicZj+wO1r874p1aV969xvjyP49zxE9ydKsody7No\nEq1pLk1AYrfv6HOtrvop5MnbNHXroLNwcqB8O/Bo7QvFycs55dvpWa0lbfLyJ+/KlaJ4oD6ecK57\nHmeuhStCFKNRxcCzhqDCeFL3XVpVXT0JxcaTt+WGcbYrpkswoe9df/55MzObvaH7R9F1KjLHDp6K\nIbP/DNS+q5gIcp/cNI5pOOpEQKsSffVhymGppXXdYxDPvkf9UsPpxYcLUGWMA6IfRBDmzXjy1Zx1\nnj4QwlrieqU7WtOz6LQlltE5gcUahaGSAp0LFNSuYNzpF9DErj4/4Zx7Hd2P4qnGtX/MAjnUOHr9\nOCfiinhS1Xg6GmCTeeWayxfFVJy5WPiiDas/eN5GOKM1ipqbF2Zh+76gz2Vias9pV2y0O2+jw4VG\n0JBHw+wlxewCrlMz6OsN0BMpHSke+zggdSu67wSGZvZq3qKO+xqaVwZrs4YuXI21dsxzjeMc0i85\nGipVPoemgBcnEh7/OkX1WbtLPgnpe+sviYkThiXbG/J8WdLn62gc+HoOxnu+EgPN7oDEDjug5Lgt\njdAsS/q4L85ggYHjtIL7SFx5uwKzJAoLKRlXO+q4d85eE+My5OU6OK0Eaqxj6DaF0JmoweDuoZ2Q\nnIOZlIIVXVIsXYlq3YriIuIg28Eu7C+Y29G4ng08beWrswbPp3X6DSZUEse1FkyddkexX1hSu2JB\njUu5pFjLJRUXoSSaNwM907SaqmfwC00bEPaq6nV6pLydhm3cjcEmrqvfQpMVfQ8X1ubgS6ZM0HzW\nxi3Pj/teLqxc00UjolnXnMlFdf0aDqLJ/pf6G3+uzP1C+a+xpbXrKe50SwFpsvRXf2BmZn/8PU43\nJgbMtWu659HHYnxcg3V675bmb/Zdje3Zqsbgm3vKM/UY7wA+ngli6qPPvbgFLagPa8/EeCynV8zM\n7Fclff8buF+25vX7F3Bnuzuj77/G3PltV9owoajWia0Z/b/xodaV/ymkdrZhiw1gFP5zX886l8Zi\nZz25qvsd76ifJgvqh4NTaVuFROSzwIq0Zy7C3L9W0jPI42/qGWf+qe7zaF1jHKzpOoewjJ33ndAJ\nTJ+KXJPWZ2nvNfXLaVRr+/ETxfSrkC/eWIWlta71z/8HmE9hzcnhm2r3TyYar5Nnip3zlgmOPB1Y\naRGYL+Mhek2wMJxnzS5swDCOxZMOOQfCSyAGS68LA5P1coJjUqdHTvXDFmt/SdsINUY2CAdtDINk\nTP4Ywd0YoSHjsHqGbd3Ug0bTMKq/RycwUgaOFgzaUazF3p7yVSAIEw0W6AjGcJg1smXk5yCOhmgl\nNmH7BmHgOKyfAI61fpgzYa7b88LMc9ikTv70INyJE1UfV08P+qtBPu91mDjoyvlhMfnQAe2FFEP+\nwH8f8/EBMYYTmMPIgYD3HxaXKeMWt7jFLW5xi1vc4ha3uMUtbnGLW9zyNZSvlSnTBRUa5YT6RAra\nDfafiYWQnmXXuAbTpMyZXBCO9kQ7YO1n2tVtH+jv2bR2tlJxVPtBamqHnJ8fCF27ta7d1lBU3XDK\nec4UZ8cSGc6moelQ2RFy4eHQrR92gqPeX9rU+ckU2jXpiK77CMeLWVTh4zNCWB+/r3ORGVgRp6dC\nGLoVdhhRqY+gSl1GeyYy0c5eAnSuwRm3xCWxFo7QujjYVzun8gmLgQrEZ3GsSuP0xNnEKshaCHbS\nAAZJbEooRJCd2YND/WFY0U789AvaSTcvjJsT9cEQBe90XG0tog8RQan6vGUAujbivHF9WmObvyAE\nb7yt+hycaewW0IaZek5o9967OiN7ANtgkFE9V2CYBKfVHw/eF1Ml9GPF4uqK2lWJqC/b245rlb4/\nnRDC4GnQbyOQXo+u26/BesDdJAB7yVvh3HRU/bl8Q8jB4EjXP9wX0tBvagfeQH6nQMSL6C9tb6hd\n8cu6jqW0OzuGdZEvqB/ufKDYPSR2p9d0nR7nIbsworK0JzwFQ2VPyMDOUyHpubxiff6imE+nB9tq\nD+foF5aFoJ4eqX7vv6vYvplQ/VauKw4q91WPpKPQfqocEMYJg6Ow1mqdH3GoDoXoxXBbchh4tSN2\nzHG1iBQ01ovzOLWsqo8ctthgV3V5siPUpHWMlssJLhig3uE0mjGrsJkKQgg7YTRScFUat3E26ytG\nfZyRz6cUG1TXDrZwNjnUfcr7+kPb3+F+iqnpjGJl9kWhTjGYKn70KxyV+EmS+3UVE20YeP1jnFeq\nQrXre4rdgaNBk1J9l2dB07+pGEzP4b4BA3BvQ3O5Civq8ERzxAsbKxbmLC8aNj5QHw9ONRM0IzLX\nhBrmcSlKzms8AnEg8BBstqZi4ZB8NvG0zb5ttsP/z1viafX70alie+PzbV2P9SQJ2yC9iH7LseLh\n0R3pYwTT6t8XXhXKObsoFG2IY8K9+5qTpae6rh823gSmUOueWAgnsMXoBlu6LEQ/m0lbY1f5cxdt\np2Fafbewig5ORgid4yb36DM0RtDYSqR1z6VLGrvp5RW1Lax5OC5prB+9K8eo44quk1/R3CixVnUe\nqY+6Zxqz+UtC1acua40JZ1Sveklj8/Q9Xe8MpHBEXkkk0XNbVMxmYBcVZljrQQaLZdZ46neKO9Sz\nTSGgJfK8p47DQVBjEYOVMI0+jyfisNNA8c9vmGJmZhOf+mF1TvW7cEHrwBT5qovWwTEaW9O+EO0U\nKt9J6b7dpmLn8An5/lR5/fRQ+bHaUPsGMF+SQ80BP+i/zzQOEz/PMhcVQ9OzWvciaP8EYP+2ql/O\nhYNPNq1c3FY/wMzM4PY3DWPn/oHiq/hM8TZpaO6n0PrKXdB6MDuDbhPMmOqZckjxvsajVGW9b6u9\nE69yVSoDw7Xct2c8nzXRJPGSDz0wgRO4eQQyetYIdNW2eALXnb7GojADIyOHO09CYx9E1MDRR8tG\nYEi0lPeqMABru+pzP8824RSsWftqukNBXEEauF8iGWN98kBiqLHqg6wirWLNsf4+RqdpMlGsOa5t\nkRyMFp5XK+jy+UGWa010nLz6Xg9EOwAzqAVD3AtzsttRnk4nFcPRjPrt5FDXrcNemwQ1djmcHRsx\nxcLpSHlq/UnuGgAAIABJREFUvqBnqdYhjE705HpoJIYiaKmhZfjgA+kRRdF+SMf1/UiM51zmcv4W\njpML6O09VCx5TO30wkbLTFSvY9xQuxF9PzarHJdZUr8efUi7DtQPcZDu4uDL8Y14YtbH7qULY3Y8\nrf7zTHT9Ks/7+SWNoxe9qGbr/Ky7VkBaK39M6fnpdXTXQlfV159+oLz9xg/E/LizIS2SR8voB8Gc\nnrqm/AcR0tI/VB+OYY4f/0rvSu2f8U4x0XPwt7yvqC/QP5u5oet1noOxso2GIU4wn7TUl52e1on8\nlK5TvIBzGDpAL57q2amclRvU/K/QkJoVc/L+dc3hbdMz0mWvPhfO676P/01zMVTQmL2Ozt+Hv/2J\nmZndjKihd2GIfG9KY/Nvz940M7PCtlyptvfUDyvfE4v1xwHlxU96Wkun9sUYbaaU915+X9f5lwIa\niRnF5BsPf29mZt0lzY3n0bw8QstrZfx/6++faFxOrqp//nFHczQwUf9e/53uc//WV2PdjWHx+fto\nvMAuGQ7QTyGf+nA48juekGOeLVnvgrD2Wg6LJABDBhago9dlhhYNz7zDf5f6/B6zXr9rgag+Oxnx\nzuI8qMBA7454DsYd0/lzDNeh7sBxSYJhQt4b8P0xmisjGN9D3mM9vEP1YawFHHc3Tsb0YeIEHc0r\nTlFEea4edGHGjNFz8nFKAF25IJqP5lXMdsM8L5MHRvRdAKbLGO0uww0q6tONR7i1NXHO9fBcPIHB\nGSYEBri+xXh3bqKFO/H+6YcSlynjFre4xS1ucYtb3OIWt7jFLW5xi1vc8jWUr5Up47AppnAd8Ye0\nkzRApbjBebvmqZDYFOft4wVcSXaEBHhwR5mbRXmas27hlHbug+z4PSsJHfIltGubvbxiZmbHh9pt\nrqDXsYYbUweF8EHUOVOmH2xOWppzmsO6dtZHoE3xFe0Wdwb4uqN5M31Vu9lW0X1qQ/30NoQE9E85\nd+9T++NTatckqHaEPGpvNwECg6RCMgSiDaLy7J7QyjH9OLUyZ52x6jg1rR3delu7fkUYJM453vAC\nStk40QxxYhlynvkM5X6vT7uE+Rn1YaWhHf22sztKn+VoQ28gJLQX+Gpn/L04FHhbsJxO9P1CRrug\n65d1+PTJHZ2VLRX1uYs3tRN+iOZLlXPO46D62s9u8NXXhCI9ekvsiPYzXEI4Dx6LsOvLDvXePmwp\nNB8sABsrqfb2OPccpZ4xmD65pPr9SU9IwbP3tMM+/+0VMzNLzItpMvpYsVosclaU88yZS6rPjYLa\n+/Fb76u9VY1H0q9+7lT0vcSrmlMr14VgnHU0PmUcx2JedFc4X3mMHtL0REE1lVNsjzf0uf1nQiSe\nuyG3AE9W7dvd05xamBeL4+Z3pL5fGSm2e49B3G+on5pN1cOLpoyfc6Zf6KzMqh+O9tRP5ynxIG4d\nQZBDUOulDGytBHljSQhsu68x2b+veXK8r7EonxxzRV0vaeqDqYtqW2wFzRPc4Dqg5J6aYi5YhmXA\nddploT7ltu4Xier7B11icoROB6hIYqgxLMwI8Q2uKFadOeRL6PueoY/7KDYqZSGMBuJaHXDfrmIj\nACOnj7x9gjkQIu9euKH8kU/jdge7qdYWcrjzkRggO08ZU1gA3pz6+erzQvmisNSy2IgMUPYP0H4P\nqvY9P8g4mlwekM/GsdpRbihGzzZU/wYofBQ9pNwKLIv6+c/4m5kV0dfY2tqifqrXtYuaU4s3hbYB\nWlnjieozu6z+WSoIHfOid/JsS+jj0WeaG6fkmKm08vwC+d6XgTEE8zG0iB4MLiFxXAYPPnlie9Qt\nnFPsrn1LZ+ETuKmdPtZ8O/hUdev6lcevvawYLdxQG4Lcq36iPnz2kc7+n+4pNjvoLM1dEfPlwkUh\noBMkv9rkx8iS8lYQdLy5r/n77LZi9wjGnHOmPU0MTM+JBZXABSiUwiXClE8bTcXSyYdqx86BtFzG\nOBjkpxWDXVCnFGteYV5rcx721qiL3gR6FAPcl3qwMHytr0aVWYc9m15VDO/uKjfsPIQB1FO9RznY\nbtT3sKh21HHXa7ZhujjOaazNSVyn0rj4pRytGhiOQfTvQjBPfVn9TIFsljqqR2lLzyyH22pvZUNs\nlP/jP//v9uwPty27qH5PoVsV91PPDc2t1qHiIJoXor30kmI8ckH9miKX7p3o86e3FdvlPZzuapzf\nZ30O5tANQSeljf7GcalhQc7k59C1yaXVB9Gsky/Io2M0X8q6Zovnv+W8Ph+DVdVC+2TM85WfNbeJ\ntsxmRfPx6FRrSPAMjUGel3xoAEQdUZrhV2PKjJkjEdhaxv99sBkS6Fh06uqjcEDzfBhBi4w116c0\nb8f7GtO5pGIindbY7aJR4MMVyHcAQ7uleqfQ2HLy1RD3kDy6e60GTB6YipbRWI+3NfYVnu2aQ9wH\nF1QhjwdmJX/PXEKrBu2FGM/XxTL1gdmYCuJSyHNsOKRYCsF4maMfjnaVQzrPw7rLazy8Q1z7DtRP\nWfSmWjxLjr2aU+ZRvuzCRHf0sUa4wrR55vOE1B5fAu0IM+v6g9bx6//9HHM0psAYsq72YCFYRHMx\nQm7xOhSrc5Q7e2JqDJ9qvuTnxYh56BHTo/Wc6vYv/6r8sjzU3KhU1Ibma/r93kMxO5aOFWQftrQe\n+H6sPvrZDc2N4r+oj36S1/PeJ3Na9N/4kfLZeFNj9XveUapN3e9wQQn25av6/DsjPUdfL62YmVn2\nLc17S+m5b1ySxkswoTG99pLy/K0tzcGzE33+0CfNmXvTGsOLM2q3fS43o5/4/qB6p3CbW5Emy9th\nTaJrIzFV/uktYheWwt2/1LvQy1taL+xA/69N1G/zKxrLwLf187Nj9Y9nXYyXvznW8+lOWXPu4ara\nPfGIYdNfVf9s8/warWsNb39f613gfb0vPP+Xeg/4/KGYUBN0Py8M9O533hJj7jnPpOZDe4zU4vfi\nzNZEIy2h8epzOiKAg1EvyrsnWjotWBujkWJ6CDM+AbN0hNtiv/2ly2lnErHIZGSkXZvAUPHyPOwf\n8O6Gw2AfxofXw3N3C31ItGcMBkyQ/3cdjRgYLg57Z9hjjGMwTni3Gjl6NzynOdcd0jdeEl8b52B/\n09Hq4r0b1lfYr7b2HMcp3kEdXR66xrywa0cx3vnaus4gzPs2HdPD0dDRwB3i4jbmmcl57nX2CVpo\njcUZ29aQjYT/oLhMGbe4xS1ucYtb3OIWt7jFLW5xi1vc4pavoXytTJlsTjtWfraUWlXtCjZB+7tH\naEWA3CY4c/zovlCiuax2yFZXdM7+mLNew4HObzvq9jsgpPWedr6mLwsxyLKzf+cjne+M+1FN5oxz\n+ViIgveydnt7Cc7sgkIGQFw6oFcBzuymcXU6eKJd4/iidjkn00KtDnE4qJ9p9zd7UbveZc6Rzxa0\n+xtHVX+MN33ZdP9QRPUecBYuhhNRo6Vd3/0DKZrH5rVzl8ylrct5WE9KKENpX44jZ8diISW9OLiA\nyqdhAxxv4fwyEroxLGnXMZTDxSOrth3UhU60hurjAhon/jy7h4dcv/PVQi481q5lnd1bT0O7mfun\nut+NvNClAIrgu/s6C5tfUr0uvSR3ig3cgopnIL2fqP1Xbip25tbErDG0EMYHQj5L7Dw/912xATo4\nAdx56yPd9z5OYS/o7z5cqs62hNYN0NtIoeK+fkso+f0PcGgJa4wLL3HuOqx6V039fsQ56ipOBhde\nEvKR24eBhA5Rfk0o1LFpfDZvK6ancE/qnXIeE0eCUV/9MGB32N/W3Bnh+JCcEdLRizj6RJqTjWug\ncZdVj8O7aufHHwnpiL2o/snPoblT1n2zxGwHjYI+8dioamBPdjVuqy8KUYrHvnQT+XMljJNVOOCc\nGWW+sbNe82peHDzEYWRf87pxDKJmqts8Lj/Tl9T2PLEVyarPvOxhn+LU1d0+o+5Cw5pj/WzTphBn\n2bPoUyRhUwWzoP4mFkIUxqDfYQLOw4jBLcg/VF+1D5RnDvbQhsH5xHFaGYMmeRP6Xn5O/RJZ0FgU\nQOVTaDGEY5rjjRr6F6Di9U+Flh2fKhbCPY15dFZjt/b6q2ZmNgvSPUBDxhHw6Bwrj7VgcQXbIBAe\nxslhxpypH4/Iz/2iWCDdBggs7lLrs4q17BruVnPKx/OzC/ZVSqOpuTRT0HWmrgqpncVxogMiXbqt\n3FDaUb3Cs1p3DlmPDj/+QO2j32OgVssvy+HtwjWha0k/zhggKe1DGFExtQ+jMfv8bbHe9vae2RRr\nx8Xvi70TDakPdp8Jkas9FJMmhmPJy68J+YvnQExPtDbefSp209mGYjyEI0IKjbCrr+JegTueFwvE\n2qYQwcGhg6hqjE5wPxqQfyeQC3KrGos5GCxTMCb6sNfKaGAVH6qxjq5QdRvHrpbuF0Jn6cpzOFWh\nv9aHWZMJag6GcEgoVTQHGnWxlRplUDxSgJ+1PcCcOG85QYtl65HmwAbrQM4LqwldjPaBYnyTuVgz\nmCcwLKNRfT6Q1fqyiNuUN4Cjw5Q6MM3aHsJ+zsM5+wHiWj1ctD6Fjbv/TPcZVnVfD3Mum5v/og3X\nf/hdy0xrvQngILexpfza4xkrvySEu/AcWhczGq8iromPH6sfDs4Ub14Q/Km82p+7Qowv6b7RsXJA\nL6z7tXBLWfTELJ1XTAdZm4Z8doi2h7emeVSB8RJBqyWCltYAFu4JTIj+QG0vwajpYKHYRBurjQbV\ndAZGzoLqWEjqvgMQ3wnPFv3JV2NTOU/NwS6IakPfH8CI9qFLVG2qnvPrmhNNv8MK5Tkupc817qq+\nw8taJ1Lkb+OZZoAuUIfnRY9P309kcfFsKL94miDA88Qo2gl1dO/CE8eZR3m8d6QYbrc1VhfJh3WY\nIR3cQX0g4D5YwTHa14XRErqi33fRssHcyHKeIfdHt25GuWL7qdrb3dV4Zue17sZhXhZhY8/P8cyK\nc+gQ1nAU2bsvnGta+nyc3HBc5Dma/kyknfXJbOjv2giWXoDn6UlSed2D1s/A5yDfap+f6w6Gf8Y2\n5d+VKLEcq+qav0n8yszMwrzz3Hrvr8zMbG5GWlzbJ2J1zd8QY2Or+S21CZ1Nz9q7Zmb213H9/52/\nV37u/p3chDJovYT3mGNoOP4SelgrqDX7Ogy4s5j+PuC58B7upbNvqB7v7IkRUv0hOkLvSRvmYuB1\nMzPbPNbz6w+vaj3YiykPe54qZpotff4XY60vB1ti/IyX9Uzx9y3psv3PEfXHk5c0Bi8/lB7RAWxf\nb0X1v9H5tZmZlS6gKVnX9f5Y0zo5/drvzMzs2uf6/84hMTmn+iwf6vPlrNqz8Ej5sOX7GzMzi6RZ\nL4NaH3+KHtIDGJvTA821WFTP1cMT/f/vTG5Rjxb0+9Lyl7F2ntLhZIGH94AmLApfHxYfbIwReb4H\nG8TLej7AtWmELt6InBQKKmZHsENiI1yZYBR50WGJ2ZcxHYqaea1rowHv0TBXAjBD2jjzhtBo8aIN\n40FUpkm+8eD4OGFNG8ECisKQ7pG/6mEYLl59DskYGxvOUhEcbGH9+HAA84xgxuNw64jahNCgaeAe\n5/U62mWqbxQNHOuxriBOE2LNHtFnE9hLAxh+XoepCNs0hMtTYACTEcZNj3XEwwkVx4EwwFiN6Z+A\n709zYVymjFvc4ha3uMUtbnGLW9ziFre4xS1uccvXUL5WpozPIzSn39CuaJ+zZROPdrimCqpe1Sek\nYRzA2cCvne44+hMR0PfWkVC9CeflvehVjHA3mQa9j+MuslPEVelICPHi9RUzMxuCDPsT7ErGtXs6\n9CHO4Be6l8KfvQNjJR7AOQFthxMQ9fXnxNbw9kB0ngnNDKGWn2xrh60McjO1JmSnVkdXpM/BelAv\nP1oRTb/6ZY3znQ/R/RjAesmmxGYZBqLmw+FpyIHoh/va2c7jEJCbUR0yBSGeA3aKz1raOe9pI9um\n4uheTKEC79NuYPNAfRiv6d4D/h5i99BRvLfgVzu/PQypj/yOW5Jfu47VEyHAoyuKmfkl7eyfPBAj\nZvcjoe433xB6Xce9JBUEccTRq1cS8tDHiSCc4vz6gnb4Nz7Vjn/oWO1ZxY2jekEIaPmx+ic6JeRh\nCZeSwqKut3+oHfmdM6EuV6+8YGZmZ1X9v3Sqv2/u6b6RCIgjrkt+D+ekaW+sJyR5eUpje7IhJLOX\n1efyM0JMiqeKvSg76JOqYimwyHnOJCgccyoypd3fWk1za84vJDWNVszhbZ1xbu8LSV1aVIz6cYIY\nfSx2wckp7IK+xnnriRCVEDHqOPN4YY8F0U7YeUvjscf5+pnC+V26JlXVqYbqeot5N8CdogMDbTRB\nqwlHm9lvit20llWfFi6pbn2v/t7bU8zufwiata2x7oPEFYnFDIy2WFAMjOUrQvwKhRUzM0uwM14p\nnlAvIb++sfLLKAwSOaPvtdDBaDWFkte479khfYudRwI2QX5Rsehdwnkso/sNYBjiz2WNtu678VTX\nLR/p3Htr09HJoH+iyndL19EbmVNMeXHnGBvINW5R9T3FRuVM/w9ySHeAPlHA62gRKH8eYe1WcRxb\nkkIswmjcOGyyQl73DYbUr0EQljZIZ6X21TRlpjKgXQVBrT6QoCf3lQsrm8oZNbRsJiDaGdCrHrkr\niubD4vOaG2nYcYVZxU2Tdezgc517P7mruXvaQV+AHDqCMdVCg2Fpfs6e+6aQt3BEffb0MzFkNu7c\n47uwnp7T/O/iGPD4j2Lv7O6I2eEn1ldWlceW11XXRF59OcFN6BjNmeLhtpmZVZ/oZ/kURiT5JweL\nLHlLMbGI7po/pT5xtFYcpuLRltbISl2/dxxrUqBnPmL+wvIt/bwupmByTu0u7qteYxgph2cao2Mc\nxHqspRHYVLFshPqob8M4QfgHmlPnLW3ypH9Gc+AGjj6hgeq/y7NCH0e26DRr7YwYfs66GM2qvxIB\nULQGWmvoOnURIhlyv0lRc6rGHKmfaG4c4yjRaWu9mIOpEntO95tZ1/hmMrkv2rA0PW8722LLnj0W\nK3fQ0pxMX8aV62Ke3+s+D3+NPhLOYGPuO7Wkflh/Ud9LgdwDAlqnipNNGaeLMjoEIdjEwZ7V9hT/\nDrI5qWvsyjhYeepqsx/tGQ9rQmNLde6jE9Sv616+CIxlx80jiAMWekaX1q5SV1XSV9Z9Tncr/931\nvGgT9L+iRZfXkbkY6fpnLfJeSPVNoVFyiK7QvFdzMZxUn5ZhXASCuLOB/LZaiq2pWa1HgaTGuotb\n1XFTYxNFdyiZ0NjsbOp5ss990gXFXGCE29x9PSPMTKMvktL3SrCkJ2nVOwg7uv5Anx+hkzGG2dRu\nqr65acVOBU2fHmPuW9f9E7OqX72hZ41yV+tzIY7bIVpixQq/f558n9DPowPljuZQ/RAO6z5tfnpY\npycDxdMR13GeMSo12IFo9MQHapeZWW/Usi5svTbPlmHcZADKzUueb9b0OYfpNThp2nnLVlpMl/Xl\n36uOl6WlsjhW7MVXde3AcNvMzGqe75qZ2W3vv5qZ2dynMNVr6ovIf1Ke/OV/0Zi88lO1+cl7f2tm\nZjPMv+GUYu6NIrp5l2nbgjTFOvd0nSnyZ+0HYrwN97RuxP+gmGh9Q/kgMILl1NP97vs0ti9fJZ/t\na8w/fk4xnDAxfW49gbmOU+3sG2L6LIw0Nrn3NUcrWT0f3vxAffzbV2B7/fqbZmb283WN6emO/v5q\nVnPov/p+a2Zmf5FXLA82FVsbMOGbIbUjDJv3s0Xdr9rUO9Ir88yZlubE2pw+f/iW6vtOWHOv0/nU\nzMy+AYP+ndZPzcxsjD7Iexf03Dv/D7DXXtH1z1uCPuWeMe+qQ55ZI3H9dOacofM0Cen3flgbAd4h\nDc2xDlZwLK/mC8IeRPcl1sHR6AuCTOSLuvR7TfMHAjYgH/o7MDxwLUqgIzrgebbXVR28Y8VSnHeX\nVgtmCWx4f1yxMRnBMOGxbTiB+cJJmUkXnRuHTdrW3yceJmaAdxgYh32eB0NwSwawgXy4JnlMsTry\naez6aBuG0JgZopMX8LFmDdR3g6hTT/0+EIKV1lN7I2ifNXnPjiXUTx7WtwhrXxtmqIex8lBP359Z\nblymjFvc4ha3uMUtbnGLW9ziFre4xS1uccvXUL5WpswAufozVI7DZ0KCs2ntEqdRX++eaPe3viGk\nIOQFhVoSA6UJKtg43eXv2v2rVvV7H24jsytC97qwFs7K+vworB2vQk67xhuwDzJL+n84pZ05X59z\nfbAA0mxHVkFuexxoL+5zDhs9lfkgSuf3tPs84Iytn536aEH1DeNOsgwS8dGhdrcHW9px88LgKZ+q\nPmtJ7dCVcULocFY3n9Eubxa9l16/bZ6M7rGBnsZwUzvf2ZfVhx7Td5Kocx8eC50v8jkHlclMoX+R\n5dxeU9dr7mlHv5DhXDTaCJUmu6BldkUd7/dzlglOBRwntjwuHOUNxc7pgXamZ68KFamcCm3ZK6ve\nmU21w8856HhWiGL1TDvcPs50xpraRd0+E8L4wps6gzvc0Pe2dvR736yQ6umLul8d1sTRQ6FwszHt\n5i5wjr1BPZ5sq55+UKJ5GC0nE9UvwIFKL7uwoZT+nwYBPtmEnXBHSPRCAd2RqGK7tqmd/vy86tcY\n6f6hhNq7WxeDqA4TJbayonpkxRqrLSmWDt8WMrCAu0dsSv25vqT6bt0RmldkTt54XvEzWkNZvalY\nzC2pfg8eiUWx+1QISRKW2th0nRdflqr/hdfEWvGMNcf7OPycp/QYQ18fxgU78JOgxiIb0nyKrWks\nF9B2Cudgj9X0va0NjcXB7W0zM2violRFPT0b13yPXVbfXkJzJrSsPk6EHa0Wtb3GPK/jJNUZsrNP\nLKZmlefGUY1xHyZcCUe00qFixjkXvA5rKXdV9wtH9X0/0G0X5OAId7cG7akeKR91TxWjbQNZ5ozv\npRfFtIkvaaznCrq+H3ZD9UAxfPCB2BrFA8VGnbO+w4nGNozbh8HyGHvVD17U8Rt+1W8YUGwvzNGO\nRcXsHEyhgOn3Xdhr1ZLQ/nYRJCOkfm3CyjpvGXo13oclxV75U/VzAwQ0iHZDHMR4ltiPrel78Yzq\n54vq/xOPEPJaXT/v3Fa/Vx+rv6pHZdqjubGwJpZJHlfAMehbeV79l5mftuZQbd7+g864P7mjNSNa\n0Dy/cEPosYdY3LwjpLGO3s2lOTFOZm+J2RCb1RiWYaw8faw81q3qnpMRekVHnKMe6f6JZbV9acnR\nnlH+9yfUN92yvr/7idhWT5+IneZBS8RHXy0saV7PzGjOBTgG3sX9L7mufBAIqo8evKV8cbCtdnl0\nGzOYg/GcYmrhmvoyFlSs9ThbP8Dtboz2jfnOj26bmS3f0ByLpFX/nU3l2917uMjVNIdiy6p34Yp+\n5mO4FbK+tXE5qR0qLzdxmxt1FHM11uxhiRisMTfIYUM0eTIwBi/dEgKdWoKxEkSXpawY2/5czwr2\ns5/bO//4Wxu3NDcSs8pR698Roya0pHGonqg9x8RXCY2aJA6WszjOzSwo3iIRWB7oRTUfq95lWMkx\n0nUDdlkq7DBkgzZuK8aKMD48MNwGrO3DiIOYjvmO/p4F0fTnFItXLmlMPCnNv2Ac5BH9oDGaJjZE\nQ4y1rrIvFoDvCGYKyGwBhs3w/KRMMzOL+nDxmyi2RugKxWGUxBfVx/07mhueIsgxWg1B8iakMQvC\ntO6WeDa6RP7FRbBVVL+16OvEmsbEC9Wnj76Swwx3dOP+P/beq0uy677y/If3keEyI70pl4UyqCpY\nAgQpQKLYIkVNd4/cPOhBa82bPoC+hD6FZk3PzBr1qCVRpGhECiBBgnBEeZ+Vkd6Ey/A+Yh7276Kk\nXmpO4gnzcM9LrMyIuPeY//nfE2fvs3c7oPrtbyrfLRI7gTx6TY8012ZYFwfQz2uSt6ZgRQTbzC3s\nR3MzOAUdam5MKso9bY9iI31Bc+LkY83hKrkmR17NpRwWgObGMKJY8y6D9j9RHDTasLaSMOhhGk1Y\nozZb6pdeC2YMz9FuV/UIx2AuOVY2Jm2kwREsuy7aEk1d35tXXKWxNe0fwTLBfSUcOr2mzLc/EOMF\n8yT7g0O5D30vo384DPATYuLsAmv1AA5PefLWecX+G59p7L/vUX79qIW7JozrnYzWbcvM372uYn/l\nlq5/MyvtsUBJz5Vz3xGD/BdHf29mZp67Woct/O5bZmY28UozMfEDfe4AN71XemrHs/eVp/b9Yvic\nbX/PzMyCPjE9AzdgcB4pljIpxd4nFcVO8yuKufVN/QbbP6OYuPE339bnX1A9f7Ktfrl+Q/31EY6I\n6bu63s1vvavrpRjj38W9qKN16eCx1g5XOoqdH8NCa59ojhR70vqxqOo99wYMJtirSRiStZKYTtWX\n9PzsVfT/pWMxFs/hVvuLiupl9l/sNMXv/KZEzzQcwgGMXBmFtTJmbecZ6Lnggb07CvE3elZRvt/l\n7wm6VD50XsacWBjDyBmGnrsvef1eC/Q95kOLpcX8n8DS6bJdEEIX1M9vlaCfBIoTVDgCY2XCfMQ5\ndww713iWjGGo+bz6G+kWCwVhpqBhE0T7yce6sU/bAiP1uZd11CCq/BeAceklb31OieT5MmHOma/H\n32jXoEkTnTi6PTBwYJlanOcXDMk47lM9NGN8HVjD1HMM0yaOQ+aoDXMz/Jt17lymjFvc4ha3uMUt\nbnGLW9ziFre4xS1uccuXUL5UpkyrrJ20CGdPu5ytjZ/XbmYKl5Cbn6BncST0a/68dsgic9rt3PxA\n5+7bJc71LXKmNsyO2rxzzlw7YYV9zm/vC0GYXtXOfjSs73nxYV9c0s5+pSYkoBXS69h0355H9yv2\ncIIAsaj62UWFDdGYaIdtEy2HXJSzanFdZwCCO7MIGsXuZQWEOsz/w5y1jg6EDLTRWpjhXLqD6L8A\n8l2nv4aBiQWp8/EToeZ+dDBS80LSRuw2noxwGNkTCuLsqCbSvC7jLtTHKWsD9B20J8A57nRMr+Ue\nyCBD0yU6AAAgAElEQVSohjfxHLU4TRly3Q6S/tOMyfxIO9KHoDrJJSG5ObQORhug0BUhCx5QniV2\nyk/21M7qlOqfWRASsPEU9B2ngXPoDBVucc55T/ebP8fZ/Asa4533xETZeqKd9PWvCrFevySkuHxX\n79dggNRwSuge63onMbVv4aLqFy9pfFYjQs3aOAhUn2nsTwQGWXhK47F7IKS0Vdd1ez7F8oXr+v5i\nRFo4rYLGv3RXCML0gpCYVVhpBvJyBOLdvad+eumSziL3QTULN3W/p+waB51dbHb0w3PcF3erSgGG\n1kCx7QGFKsFuc1DLSELxeLB5+rO5/qBiKogLTiiqPDIFI2YK5koY5lqjqnm//VQo8dG+YnNcUh2D\nEX0+vSKGzSWcqAIzOa6rNjSwoOmjHVAra2ye3JeWyHBLMVca6HUaBHOKGB52NT9LJRxqNnG4Ia/M\nLavvVmbFrAhkVK8WbiPVPfXd0R6OB7gl1UEKPbhQZWcUC9mXNMazXCczpb72oYVQhr1w945QqqP7\noPxFzZExjjLxRRy2cuTXkOqZm1Z/eDiPHSafG04Cvo5ia5LU3yPc6ka4aDS2Nff2D3Ea2tX/h6Y5\n40no/msr6FWlHLWc0xUPNI3mruact6N+TE+pn6aZyzHGOQ8ibFHVo13VXDh8qrm8s4MuVU319nL2\nehhUvVZWdL2VM2JcZmEEHW8qzp4d6vsh0C5/wG8lWDaHaJbkL+kal69r/kZxGivvKx/5s6rb+pyY\nFPkXFPO1Hd3jw3cVi5WDgtoaU5sWM5r3XdD3ekz3S6KPk1sXep3OOKwlocT7HwqR3b4HYuig1Ivq\ns+UXhSjOXcZpC2exakGxdPBUjBpfgBhowTSsKC8d7KgvfTnlgwvrq2ZmloK1mksqz9cH+l5lT2NY\np78mXlA13KSirS+2xDmB2fLosdp38ESssDw6QnMvCYGdTzooIPpxz8QK2MPdqF3leQf7zdtXPfoe\nEHC0ZUZx9c/UjHLTzLTGe2qZNUtW7fXBpDze0fW3t5Qfjw8UL43yv2KNhc3OvibkNzUvhkwwqtjf\nuC1Xqf1Hh3wY7aGrYh45zx+HpeE4vm1uKNeUCojL9R19E/VDJ6V4mkOvJAhLYdTsW22EixtsIG9Q\n8zeyCDLp5AuYi9Fp/T+VVh/4QUabB+iwFfVsavH3OK4xwpzITiqaG5M2Ti1RxVIypzr6HdQYXRyf\n7/QMCDMzD+vKHk6UvbrWZ70U61fymp981eL50muiURWFaY24QLul6yRBmpO4hPhZ7/XqILq4nczk\nQWTJX+0K7kswuPtR/R2K4ZyDhtdJU/+fQ4vw8QgNGuyMJlX1Z/1Y/ZuaVex0QZxbbc316JzYHsEa\nTMydIu3T5+I4sB0nyc9VXa+XUOyG0HbcOxLzcuxTPYJoMQx9tKuv/kqh7RhAm8EPa26MK6HjioRp\nkoVwsgnjXkg36Tv9mA1PYKjzOoRZ3x9oXFPoUtWP0MxponEROz2lavNbyhPhx2iRnFdeWdzS6/Vd\n9W3jFcXIu16xqr49+UMzM7u78w9mZrbwHbWtHFYe9+L6E8cd7d7relZ/J/47Zma28Qu5YPZhfse/\nLjciu6PYit7QM3/4d981M7O1r4sZM1gmP8EwbP1K36u/I1ehRFj/72/pPtNpnF9n9P/iP0srMfn7\nWlcWg4rZd9KvmJnZj5+Jmf7Nm6tmZvZxWHnkCBZzuqCYqYbFMLp3UWOwPNRzYQM2wmt31G8BTiXc\nKyoGPbti+ly5oM9/NtEawndVMZX4mfrp7SA6JwGNz7cjr5mZ2d/s6rk0/Vj3TV5XOwrk4zOVgpmZ\nvXJfz+xP6syZmX/U99b0fLr8KywVT1kGPAcnQ8dpiKQ0Rg8Rh98wTFAP5I8OWjBBnIZGjk4K7kph\nGLDeMOOKtuQYhqWXvD9sPz+5EPD6recd24C8FPeh69aBEYPmqQeNFkPfZkJdhl59PgATZTJUnYJo\nbI16qrwXhoyhCdYfwlQLsQ5vo0ETdnTYYLj0VHfPWHmq54ctFGDdictTFz1Ui+IsC9NmhIbjGO0Z\nD33laDr222jD8OyKwPgZOto2vN+AORT0oevD9QbUt+N1tGp4BvZ4RnrVbxNi+X9UXKaMW9ziFre4\nxS1ucYtb3OIWt7jFLW5xy5dQvlz3JXb32lQjm9ZOWGZGu8E7m9pZO9nR7md+VruT8ZlVMzPrHmqH\nvnqkXU0P2hJh9EyCIORBVJA39nUe8ehQr0kHkT4ndJANdxtx5jeKcvfTD8QKCFXZKQS1alR13foW\nSuZj7aDNzwjVXOZc/lOQ1W5TSEP8qnaVW00h0KmkduCHQ+0wFp+geQBCfe6cdmtbLdSdo0IvY5yT\n9IR032RO9Uv6hZbulqV4Pje1ZAYzxAeqsjCjHfOpNJoiJaFLB+zAN0EgYwH1RWYFhxd2+4Z7nDPk\njLnHtMMcAwUKoQtUvK++HnMGcmjPXSJOVTgrWjsWylJBaT+D+0+3irbBnpC/mbDGfPmckOMaSGz5\nkZC+i6+o77Nn0Dx5IgTiIq5L4RPFYntf6N7Uoto9C9ryBI2B6Aj2QVbt8b4s9OjosVhddz/VrvE8\nTlpTs+qX5bP6/AgNh4dPhbAe3hQieW4BpkxHO93ltpCVzBw78z1d5+6ukIerV99RN/lXzcxs+EDt\n3YNpkppR//nX0KR4TYhC+cc/NzOz0n0hwp28mD+RxWX6Uf3w0f8hlftbOI29dE1njLtnFPtV3Dq8\n7GYjSG7NE8X00qqQjXYVxyEU3R3WQmULxDah9s1fRK/DFMOnKeGAbuqPJXnV/4cgZUcnuKxtgfbi\nOhFqg5iCCi+cF3oycxYNEdgEkYgSQ6+lfLFzX20utRWL9R0FR7+iuRFgnobjuv/0mvJZal5zLYiu\n0H5Rc24MArm0rtjIgEQGOMNe31P9D38utKd5KGR4AqLqbLxHE4rp6cu4AqXVh8kEKvSovo/Qf9g8\nVMyVYQVUq+qfVkftzMQ0JlfeEotsakF5cuyw3TzKDTEQbWtpHMq4pBRhloxays+Om8ekqDF3nINa\nY9ClIjAQGjpBtFtm5zUnZnAAijAXsitC5U9bOkUcDA5x56O/kmm9+mbRuEnq+r0eDMSHGuetLbWj\nglOOPx76N/XKTmvuTMFECsXQS4G98exXeg7c30b7bErtXXxR/RtNBa28o3vGswritauKyVACnYai\nYtdhVTm8w2FSMfLh939sZmZHZXQhpvSJ89fFnJjJKQ/YoWJ2B+ZfCt2G5Rti+IUjiv0m+fXwM9V9\nn/t6QZfOX31DbXhh1czMIpzL3oOReee+3Ov2ccVYTCom55bU1zV0gdrojMxeEGNj7YYYhjPTiq2T\nmmLl6SPltXYBJx3jPHdIMe4BVQ/59NoDLTttqR5r7kbzasf660KMM6w9hry/dVhQO9EsaFdgS5EA\nww7rdsZZg+CsOKtxjEzp+ZhAG8x5zo5wjPBxwL56pHYeoo12UipwP01mmm1zL6193oYb79z43Jno\noKa5dvBzzfEWGjYzKbVn9lU9D2dzylFl1hTlX+n5sn1fz7tGXUkjhb7L0hXNyfncKvVQ+w4b6p/j\nPdW3Uj60fg8tlAwOXCnFYGJGsZDyqK9CafX5EGbGM+5dJUY7B7DD0AiIwRINNPR3KKQYWp7WMzfn\nx3UHBtsJDlYd8tOwqj4Pe75YjASjMC5xjxvD5Bnj4uE4pMxllR9qTa3nJug6zS9Jh6IJ08ZxwJqL\nKjYGh7ifUM8QDzSvX/cNMqdLgwrNgzGCxo6jxZJJKiYifL8Gk3J2XXmVx6ZNhRSDJ/vqhx4aNtlz\niok+7oVD1lJJNCGmk+rf7YbWeM2q+iGZ0Zz1kQt6tKOC5kxkXv3SO6TfeW74DGbLQOOU5Dnpwyky\nXIdVcAgLAEeZAGvPdl/9mc7oeR7qqd39unKWmVmia7aBq2mE3wdTaEj0YJulkmp36anib1SFgvUF\nmDJnPVrX/WBeuX/6JizKov7f+ZrWiQcOu+rv3jQzs19ntR5N/Jba1v0n9cXxWPk7O6/513tV8zPZ\n+X0zMwt7f2hmZkcV5c1r3yqYmVn1WPc/j0vQMKZ1nu812Pi31NaCR0yROmZ1+d/HWXHvbTMzm/dp\nzfHDWfXR9ffUp9HHeo19Q9/rPlZ9/Ee63rs456aqus8v53XfXEixcn9VMbE21PWbs39qZmZL/1XP\nne43YWP43jUzs/e/iTvUXfXXzLHqObiKDlBA91u5D3MRFsV2UuvQ7LYaWEWbJ/mKYuqPOA3x8IL6\nb/tTMcNfndac+ZezWou9WtHa6mxPef/RNX3/Jz7V93czeu6dtgThRUCis4kX10OYMv4xDBqeH12/\nk7P0f4wubdJhnU+/9kass/leBDYyZGgb46roDf4rlqBvbOOuxwzNwQFsziG/BQI+fm82w9SJNf+A\n+cj8bVEHiG025gTHaKjvOZpe8SF6N9ShO1RjEtw32EdLCs1Y43tdfp9DsDMPTBjzaH5G/bBU0chq\nj3UdJA0NQp4NJmrPCKdBH89gLy5NHp4LYzRnvV32F0Iw9nC+Go0UAwFHY7FPvzB2XcbIzzM5MvrN\nXBiXKeMWt7jFLW5xi1vc4ha3uMUtbnGLW9zyJZQvlSkTHGoHPcqWl++idjM9bGk9KQid84S1d7Q8\nt2pmZi0vWi+PcU+qoLmS0BbY1LIQhxHN66Mrssu5xryX7WAQ9VW0FZ4+0m5tgjNwjgNMCXRpKSZN\nhgBbbQe72o31cdY3AOKTu6bd6EYPNxScc5IgvykYOCecN/fjjHQEQlEuSOvCDwyaRlF9sKV2BBGx\nHhnaFKhkB0DEJwYLAZTz7PQFO0HvYgzzZH4BZC2oNpZxNqniWODhrKGD8i+uCpU6OhRa1eEs+4Ad\n3QSsgDhn2LF8t+q20IacT33u9T1X+z5NCYVBxWK6fnELlDumHXbvkBCua3fy4Z767kxM6HM6KXRu\no6O+2zsWqnP1W2+bmdmHPxRjpMH5x+SsYuHhfcXC2nm15/IVIYqjLg4RMISqQdVn6YYQXj+hVTkS\nUjhwzsM/hp2RwZ3qvPrf4xOj5+YvpNXgOORE0FSoHWjcepw5nT+D49h9nHq2hYQmzgpBSYCob3f1\n+RNcPqq3tLM/86YQgCysEttnN3yAgwP6Ggtf1X2uf0P99ujjW2ZmtrOl2E1y7jK+qPsWd3ERgb3x\n4Kn6782XxMxZW9fc8SJJsL2p/hmj13FwIOQoFlG90jhsnKZM0P9po/LePsENAs2BFuwcf1T/z+TR\nbbime80nNXbZKbWpxnnbkwMhnI9wMTpE+2WIK9AYzatUXPM+DpNkJacxSC2DAAeE5A08+l7pSH2a\n9+KCMcOZXM7C736m89A7aI5MWhqbKXSgsucUo+kpNGpgxERT7NSb6lXHKaa4oznRAvE7IMY8Zf2d\nYI7kzynW59fQE8nBsAnoPrWWxrhX1hgHYAaWfw0af4JbFXoaYZT/Awu6fnYOdf4ejCGv8mbWg9vI\nIshJQmOfyKo9DhI6CYOowM46eKa5fNoSBvGZWcM1K8Z5cxzjIAZZFTeurXvK7wdogfX8jNtZMXRW\nzorRFFlQ/T24LPV2FGfPdhTTh+hx9HEhiZ8XG+XqSzjqMNcLDx9bkby6iO5CCDj7mGvsPIA9cKgx\nnMaxqtlT3SYRjdmrX1s1M7Psop5FHdCs4kP0cJ4q708v6fMOMyVGTG/jFFi4JYZFhbovwfaavay2\nz60oHzQbqs+jXxbUZpzLvDE9o954XflkEdeixjF6DWXl0cxZ9cmlK2KZjtNq95PHYsZswpCZHKuP\ncxnFyNSMvpfgmdyHXdZvaQ57eFaetpw9S35e1ZjuO06Nu8pnB3eUC8olzc0YDg75JVyRZhQbkaxi\nNhqHhQWryhPQa6iPNlgRFlYFnapiwczMWjUcvHCKCfg159LkmvQVtXvlkoLWP/M8X/p9I3v2VDF7\nXFC9xwCia6vK/6vXNAcGwJk7aI0VcY7c3NSaJRLX+F1/S4yh2VWNjx9njUZD64VdGLYVNDM6sD9i\nczGbvax75WeUX+IxtaHL4ExgLmw/UF1LW7rmyUgxFKXPpq8ob8+i1RcnvzRYp/kamt8dtADKjhYg\naHqfee2FTZUKK/ZDtOW0pYabVKetek/hNNb0a0wBkm2yTAx9IB2fCGuZxJLaf7CF1g6aUhH0eZpo\nm0W9MAZZ8AVxnfPibDVpwGCJKzam0C062lXMzp91nBw1pwd1xZIPxmIwprkbHMH8wcGtW9N1kqwV\nuweOax7IMfoUoZhizj/Q504OcVhkfZudVf8WyAXdgfojF0fbp696jVlrThpgxAMYMbgsecf/1l3Q\n01f7wmjheIOaO/2RcmA6red5HQ2IJq5UZmYeb9Bq6FHNTiseHcebg03Vf9rP84fc2+l06aewnbb8\nFNeccx+qzVOv616fjBQLL93Ueqj+Na2np1LS1+lk1mnr75qZWfZl3bO4p+utxX5gZmaZd79qZmZ3\nRlo37qW+pba8wDM3ojVBKKq+/+yRGM7RmhgsW1ExHH9vTs/Qwzl9LxNX/WYe6/sPE+S7X6gv51fU\nR/5L+v8RrFUv+kK3l8TmvTxQHv3G6Be63wX1+UJNffr9hMYk9BP1T/Gbb5uZWfq7YgqVv6MYnb2t\nmF+HLev9WP3TQO4tvC5NmHJD93+6qO+VX1F+fPunYq/2V9BnmsglKg2Tv/JzxdzP3lb7v1LSHHg6\nq2f3x69qzlz+vur76avq9xsT1We8rXy/8ED58r/lFXtm/5udprTRG/USL5GBYn2MY08bNobB1PfB\n/JyMYGvggORLMIfaPAfRoAn0iH2eHxbU+4Gh7jcYPZ8b7Z7XJjYyL7qRA5grEzQRHTYOUormRROx\n63U08chTMKC7DqPEYbzAAgr2YETCbBzBeAuiCdOcKG/EOOHS9zoPcV033MV1LoimIdySkcfRitF9\nWzz0wlHcoGDOtHC88uB45Ymo/j6YMH5cnIyTKzHq1wo77ks8Z6iWd6T+wbTK/KwzPegFRbto4ATV\nrpb3NzsQu0wZt7jFLW5xi1vc4ha3uMUtbnGLW9zili+hfKlMmTaqzZ6sdo3z7LjvbXJ2H5bA/LKQ\n26lLYj9UPvnAzMyKTe2MR9jxSuS1+5nJ6nUHx5f2AWhRUTte+XX0ORLsSXHW62Rfu8gJzlvXdnV/\nT6fP/VXfVlG7vs1doVmps6pfnB22uaR22u/f0q7voIljzxWhhdZhh86v+7ZgF9SrBbVvR2jT3CLu\nKJyT7AW1i+uBGTCM4P8O4pQcczb4UDtzXhCQULptXTQEljmzPwnq3tsPda/Gkdo6HOgeqQiq6Fek\nqTI1pbbfe0870l5Q/0iE3UTQkagPhyvQnjb6Gv5F3Tcc+s3K0/99GaHAn8SdYsB5vUpZbffg1LC+\nLqR3+JneL21ozFeuaSf9PGN0+1MhC/7XiYV5HG1w3VjELSm8pzG6/2lB7ayD1sF0Sc3o+3dvKxYX\nljXmsbj66fgIDQF0JTaG+v/OZ+qXEbum4TnttE/jXlHqqP9jC/qeP8v3H4o9Mc+u9coNoYVHDSEt\nxWca81fPCdHMnde4zK/q+rt3QSFxzchdVGw9+qWQ83xRc2EXV5fZFfXLEs4xE1gNJ9toWhQU0y++\nAXIxr/anI2rnrZ9Jh6ngE+Lg6G8srWmuH5Y0h6bndP1eA22jBsgB50dPU8oVodZtWDi9mvJCHJeM\nuSWh1tPrQrOTC+oTxyWnf6yd9AeP1KYieaOMS5MvqPk5l9Pn82cVI8GYxiwLw8U4oz4IwKZq6LrH\nMPAOG+r78q7q50/iPgQzp8dZ+qhf38+dUT0vLOp+ltOcjKHv45/AiHum+h1u6/rbDd2vXxaCHBir\nT4d9Ibq5GaFT09dhRywSa3khk4EmjBrYdbVnYimM1Rwro4HTr6jeA5CCTFL1uvgSTi7zaF/Nqf8d\n1f3Ksdo3OEEPBGzAy9ndkV/1PinhvlSDreEg4rDVOrhMnbbEQVY9U7hAcXa61ccB6JYC6HhXz59G\nCa2uKZyFronZModOUiSjOX5cENq4d1OvVZ5Lw67mzPSM+n3ujWtmZpZfFgsmCAJ091OhpLsPNizN\nMyx9QUyUekX5toCrW+tIMZrOK/amLmnsslPo1/Ds6rdhuD1Svtt/pnmdBKWaP7Oq1/N6jUzUlgfv\niRFX2SioD2BdLl1VLC5dVL2mHK2XDfSOKmjNMMbrFxUDqRXNbz/s090txaajVRII6joXcMVrgIYd\nfqj8sYuWSpBn/OIN1Xc2DVKJjlwDxk2nAio24Rlop0e3zcwaOCnsbCjmH90Su7ZaFhPIT8zMLymP\nLeNeF0rr/96wnoM+mJdD8tlJQ7HV29Y4HMJimzRwpBno+yegeRNsNjJrsAsY7zML6lePw6qAafP4\nrmLI3vpT+9WPPrQhCGg2re8vk7PieVxO6lrrHMEGqzJ+DdBHx/VrAVZXGDfFEuyQDkzIIuNTHej7\nCVgti1dgH144Zx6e3WHaVEI7qsEzuoZuTv9AsTRAq2pmVWM8jR7aVEJtOQbN3tzWvfvOfDuByUE+\nNXSFQmm1KZOf533H/QMmhhehhVOWcVOx5scxMZzS/N7dV318bdjDHvILzM3FS1qD+ECSiw7bakbP\nJUdToU6sWVyx68trbnZwr2r3dP8RGgrBiHJGH8GIHtpmDpM6z9pid09j3ujo/bl5sSE6uJ92cJEK\n+9Cl6OLqBCMzNGb9W0LrBgZPnhhtHym2h5dgi+HE2WTNEgyg5YJGTAx2wGBX9Q4hkJGC8e3vOEwV\njWeoqesN6d9QzkHI9f6INYovDHNxiGvUPiwBMxv4B9aFRRBcoR7koFJBLJH0jO6fg63YrhJX7aqd\ntlyyVbXlkmL8Y9Nvl2V0fr53RWN/6Yny6aCjPPBSRvnm+99HHyet3wyvRtQXny7r2fOBT0zGP1oU\n86373YJu/KfKNx9+n7VJU2MXWZa701QHBvibGvv9gNZzL/5cDJCb1+SWFJpojF9tyM3pJpqSl4+V\nVz+4qs/H+Q1U+kR9+UevKNZ3YdDduqB2v1hS3/0kqPq/wfsfv4BO1H2NZTWpsbh8H4e118V2uHWg\nWD68oLy8cEFj/MIPFFPtb2s9exXHrFJZz+rPXla9Fn8kBuAnV982M7PAsdZyqYCuv46+UdvPehW9\npsXbYiDtzKp+yfdhw70uV6p37mtOPErq/7/f1d//u52uOKyOkE9zoIU+VBRNmAmaOMFBh3qpPW3y\n+wQHIMdddhyBbcz1/T3lwAE6fWF+t3UC6KMOnp9ciJrXPJGxddEAC3AvH6z4saNJ2OA3HG5DGFqZ\ncwiihbZTHK2VVoj82tH87cfU145Gi0Nn7ZFPQ120tvh9HOQ3Xx8nXv8AJgp5tAcTxo+7EwdULAab\nqN+lDxCN9cIs9HRgSuIU1qYBvYHzvEKXZ4C+DwybHs+PiJfYgxkTgkI0GU6oPwwaR5MGJn/E+5vX\nJC5Txi1ucYtb3OIWt7jFLW5xi1vc4ha3uOVLKF8qUyaU0s5XnJ2nWk+7xTtbBTMzW5uD+cI59nFT\nO1pHO9plDXNmzLeg3eAYbAULsuu6qd3R/hC/8oy+P72uXdUtzhxvVYQwH6GVEJ7mXN6JdsZmOQPt\njwgJbzj6LOzkLcN2qLK72e0Laa9uoGED62QuK0TkAI0aD0jqAFeQ6qZ2k3sO2nQOpfWQdu767I6O\nOCObBADogg4mOFdeP1L/OHoqk27MEsvaec5l1JePH4rF05yoD5Lo9jRB6oLncOtZ0I76MfoNg66u\nHcF7PYzTCGYc1mWHuQX6laDvcjPqKzZBT126FZS4kxqLIef0hnXQsad67c0J1Th3Qcjsww9+ZWZm\nextCvfMvCZE4+ViddoAbSDqnPju4j45PRe2ZB0Xycs6xhFON16cYXXtdavhhzmfXcU2ZcOb/qKr2\nt9hUTsNY6eE2so3r0AvzYrbYHP2PLkevpDmRXdf3Ak+EaG5tFnS9y0Jcchmhf09xAenM6vu1pu7j\n74KgT7Rbu7cnZOT6danXL7U0IJM99Uu/oHZs3USDZlUxmJsFEYYU0sQVqrghpKSWxb1lVWjg2rqj\nqaOd+a27mou5hMZp2NL/93AgavoVq2u4vsQzCD6donjRjEnB1AhOg9IvK38kcQfqgQLvP9I9a61b\n/C3kMTRSH0UiQmGuXhIKlXlB+SI1DSQAZNAtKjbKe4qJg6ZQqDJIZ+9E87wPEhDN6PXsmsZujENL\nALZXLAaii6NXdKyd/OO25l79jl4f1HTdwRHOA020BnDZ8CzoeyvoIeX42+NV30aj6g8PyGyjovbv\nfKzYaR6KxVAHQfUFhY4FoopJx1Voah0nFlgD2fgc14d1Bfr37DYONTCQuiOQz5DG3HFxCrZAbHF/\nangUwz5U7SNLmpsLF4XazRP7py0Vzp2XqccYFfwhyKnRHw77b/5rQinzOKjF0Tgo4yr15Cdytys8\nUDzFQVRSl+n3FbR/UriRDDTX9jaUe3fu85wgF0QTaZsD1e4U1PZH92Fbch57+hW1/cIFxWZwBicT\ndGwKt4X0ldGEGXpxeLqovLh4Ts4viaiemeV97gPTorhdMDMzPyZNZ66JYbH2ghgTfvLb4T5aVwfK\no4OqxrrN+es6GjRFWAVtnA66fC+4oDzwwgUx7aJJ3fDxJ9IkeLKlscqhE7cEMzAzq2fo8IBn5o60\ndiqsDYKgekH0QiaD0zPuzMwO9nU9P+hcBHekBRyyZqc0Nx0dJg9uhq0q9dmGZYUL0ZDnYBWUrMEZ\n/xD5bRb9C59P9ZyCaeiwy2JZnHJIvFuwHU7uK+aOWTNMQLbNzPzpabt4STGYn1N/jduac1uMb2VD\ncdJDeyy5pLl7CWZkyHFacxw40AVp83xobKA5g55eakXxcQatNN+s2jdq962DS2aBeVfZVKxWcUOK\nw3wLTWvMzp5Tn0TQZOnXlZcf8Yyu4MI0DqruuYjamF2FfRrQmCVw0xgHVMc67NoBzA2mo9XsOUfs\nyWAAACAASURBVFp8moJBlUXiGqMIeXuIY9YArUR/C1cokFsvecBxWhmjdbPAM7MxgmWAO+DcNTQW\nmQMdkNuTotozP6u5P8L1pIrIgZdnqa9FjE5YBzbRJ3IcNafQg6toHAxXUd9Er+UTzenlJZ7JrGNL\naCQmrmhtkpvVa+FY41M/0vcyGdyoJupvf9wZH9bt+rdV0T7MzKq9U7jfBWG7NYvql/FYr9FZtCJj\n6siu6XkYg/2dRn+wfqyYb6BxZmY2GD9nM8eJE0cqZlDT/bqzqn8UdlqlrLVLsHd6DNv3PXSGXtQ6\nK1Zh4ZTRunLlM82/Ypj12OvfNDOzGtp8L8/BiJsVM+SHLc2nwZHypIcgGpHvOzD45n6As+OiYrGY\n0jr4SlwszU+7mt+DH+j/0av/yczMkm3l25Rf93voxAy/A3LoN/3ijrQVpz7SWmSqqPXrZS8s4Kea\n43W0WBKP1MeVReXVdb/ej+c1h/9DQdc/XlY/xG7BiL+g306dEhphx/rcea/W8S+29P8fw9K98p4+\n/yCrMcxe1vvzLdZSYT2Lz8TFcMn0fsvMzII3YBPPSPtm5+lbZmb2rbH6+8dramcaB7LX0CN6fKK8\n/LO8nmPnGeePjv8v+yIl4rjSwoQK9ZXTPOhc+RHnHDNnh7DJvGjOTFhLeYewkfuwXNA98aCx5uF3\nXZffT8jzmXfs+DeadYJj8wyjFkDTtefRtRwtGR95Moxr8QSW6tjLM5Z8GorBcGPeh2G2jP26qZ/1\nMyZ61vDrPmF0bnph8heuSx6uN0Q/1DdAI5ITLn1sRftjXNxgrAwiuCDB+At61EdD6t1BIybAdb0O\nFRyxWQ95fEC+msRh7nRhInZ5bvjQ3oJV7MWlakKfD2EpedHPHMCw+R8VlynjFre4xS1ucYtb3OIW\nt7jFLW5xi1vc8iWUL5Up429oR6uNunkLh5kAO2+zV3GaaejvwmOxBepj7YbO+Dg3ic6HL6Ed9vKR\n3t+ra1d2PS5ENTatXepEXLucnV3O2B6B4vW1E59OcYaMM2b1gK7bPtauan8kdDGxoF3gEI4S4/so\nmz/E+eZQO2KX39RuaiyvPbDSbe28e0BOGrAjvDg9pNNCFBJ5oU+7OG1MkFBosrsaP1H9kvPa2Usk\ntDtf3dN5VT8uLKGc1/JD9VGlrvcKTwpmZpZfEpsgFBDakQGpW1jGtYNzzLce6PPRLuhMGrVwdC4m\nVdhGD4V6REPahYzPqS0+UJlR9Ys5pozQ86g10bphrKMZXXcPfY69PcXGWzd01rW5oL47hEEyM6++\nWbyo/29vaAwWFoXONPJiORzfEmIcWdOuaS6LCwrnl29zBt/X131TK2pXeUs7/5e+KgTbxznn4p7G\nLntJ5+O3WxrjKmyps8To2pJ28j89Bhl/pPuMQdXyl1Tv2j0hGnW0Xy6vCalIhFDPD2p8suxq16Am\nLSwLYX98XxoT8ZH6L7us/gyHhb71MnrtH+FA84n6b/7NVTMzm4upP7zLGt9DkNqDA/XnSl5xFJ/W\nnAtzjrP+sZCSGoh+ZlaIjSeDlsKR4qJcV79FRkLQT1OyWY1tNOHoOahtjboQvd19je1OE/ck0PsB\neWZ5UW2bZb5NX9SYBj26bqOhMSrcVR33S2gZ7KkPmkMYJehCzOSUVuPEWn5ZbTVcOkLod3g79I1H\nMeHHXePRE92nwhh39hUrkx5MIFyi4rhqLJ/T2PrzmotZNEx66HN40ckIAIgWcJUaMWfLsBK6aLaM\ncZ0Ip5VXMln1TxgkO5vV/z8/uw9Ce3Ckfi48Ug4Y1BUTzQY5JRXiOhqniVdzqIYWRL+Gmj7MwKU1\n3XdqWbGUimpcJpxl9uPsc9pSqShvD2ElTC8pVrOwFiZh1c/RxumDSrULivHC8cdmZnaE618PZtWZ\nFc2hVTRngjn1S7Os58H+E6GZRzu6ThukJxHC6eyKkPLsdNZ6oO0tND6yMBdmr6jt81PqixooVuED\nIZvHzwr6f0mDPDsDIvsV5Z3wnPq8jybNZ78Sslh+rO9NYNLNvASi+KJiKsNYldBT2PyVtG2KPDsD\nVc5ng4YlcW4IJnC0woElx5iNzqj+QWLX49fnn3z2vpmZPdtQ7OdSGpPzL8klJJXXmJxsw+qCITNA\n4yQeBbUCZXOcFcfPCSSnKmt59Vf8op7pqwO0DWDzNo/1d/WmYru+pX4ZojPX6qh/mx7VN4wmQCyq\nmFhYh703Qz/4lQ+bh5qjXVDIIQjpCW6HRzA725usFTzKz+kl1XNp7dLnbXj1m699zvTZvad6Hj4V\n+22feuZw7ZqDAZUmRwXQMTk5Ufw16ed6Rfev4eyTgNk0nRUzJgujcsD4NzfRHivVrV6EvdnSNQIt\n3SO7qL7IwZrKwXKNdIPUtWBmZsd3dK0uWgXL64rtubN6dofQJrQ22gBQYNroS/QG+n7zxEEwiZUp\nkM+GfaHiC2qM4h6tI1usH30t/R3u8Nyow4huqZ3RIK6gaBtWcTm6Qh8+21d7axXWrStitYVplw+x\nhBbPNR8Mcj8uSQGsDb3cxz9SjNROlPdGEbQSUmi94PZZw8Upg96QI8PUHmqsx7qcRWHXHaEp5ifv\nZ8/rAzuOLgexEp/oeRQeoS0WUIwMa2gvoL/hhVmTPa921PO6z/AIxB4XRYdRGY3TvxMNHAQjC+Fi\nOqIZnhYajO3na86Br2S5C6zXQbTrZdV33CLfwzxKZrW+D2SVY3w8r09Tls6CtnvE/Nu5p9jee0fP\n2lDmD8zMLPxUefije3JVWjyvvtqFYf315LfNzCzTUltfOw8rqvrfzMzs557XzczM3xJL6eo5MT1K\njR+pHn69P45rHk8+1Lye8epZdSah+n14RmP34h25NB2lxQL92k9Uj4ewgC2ldene63p2Pm5KcyYZ\nUZ+WtrRuG/mktbgyFjPle2PFwh881uCM+qy751Wfzvd0/+SqYr0Ii2I6KI2b/rSuPzhS7Hywp/uO\n19TeYUj3ydakIdmvaqxWynquvIf2St3DKYn7PzQzs3fQmbvN6YTz05oLv7gI+7iCJtcdxVz/RcXK\nQ73YmX3Vo/qBrvNq+YutSQYT4gTyxBjWiKFL4sdxrOtVQEThUXhgh/SCmsuOnpIfZ58erq8Oq2Xs\n6C7BHO2jBxUYPj+64B+GLDRu2GDkcDU0CMEJ67Kx8kk3jMuSQ5DhXlGYi37c2YY9HsIhNS4AU73H\nuso35PpdzUMvTMA4f08c9+QgzGq0XgY4d40a+lw0QB+ik9OHjdpDqzXMKZCOoUHb0VhHYH+N0XD0\nePX/qE9jMHSOf6BRFuK54cdxsR3Sfbxjfc+6DtPw3zJyRn7YTHT1yPecnfTvFZcp4xa3uMUtbnGL\nW9ziFre4xS1ucYtb3PIllC+VKWO4B9XGQpuCMEGysDQch4n9u0L3m0cFMzPL+7XLOongQ45704Sd\nsaMDIRR2wk7cWRxukv/W7Wj3mXaP50Y450zpNZXQfZsBEOYTvW4foj2R0K53DGeDOBtfxQboIRoP\nY/a8crNCHY9OtGO4d6xt1vWodviCzTGf105jZknoVXBaO3Pl29qdnuprxy3MTmI7pffncDnpcx6x\nCAK+gMZDKDJj+02h4/sPtDPt7EbG0IeIcIa9z9nzGLt8mwXtwNc4i549o7q1ULbPoBb+CH0eb0h9\nN5cErekJpQmZ3m81Hc/505Ugu4y9Gn2aVBvzoNHeqtpYeKj6lc4I/Zm/oBjZ31e79ziru7KsevVQ\ng3ccEJZfQ3U+LDeiPdCbIto1L18XA2Y8hgGDs056Vij3gy0hC4eMUTKhdm7tiGly46wQ4+XXpU0w\n/EQ7+7v3YLz8tnb4LzaECn1yU4ydrWeq33RWKNDUi0IVH6Ap4Lug/hj1FFvHZRwTwmpnuagYf+P3\nft/MzGJezYGjLdUrlaSeFRg9KcV2v48DDrvjgzbj/FSo09oKWghhjUv5Y7W7/Ewo2tQ5jc9KWte7\nExFbYONYqGVmTvVbWRHCMMxol3nMOfZ2HfjrFMWD3kKtons3WmpbsY5DWE/zZJzT52YuKr8sLKmO\naZC5QU8TeWcfRgz5ofRMdYlEVDd/FFYZTlLns0J/AjA5EhkYKhHttFdxrKreRYvqWGPaBcksNdgb\n78LEY+c+i5vT2XOKGX9O1w+g6xGP41bEmVs/Z96r6IQ00GPq93BYq+h+bZBRL7Fmec39dEZ5avUS\nyG4MpBMWlmesWCmB2rUL6p9tmDa1imIkMiI3oEuxjNtVMKz7N3rqz05T9Z5eEdIwdX3VzMxmmdt+\nWHudIMhLUbHWaeu1WVI7T1sWYLSkQeb9uK9Ui8rbJVzvnjZhP8DQDMB6iHIIen5JrIQMz6lZGJOV\nsvrh7k91Pr1WE0vBC+tjbVWfn84Lrev4cNop4dTTGlgIPYhp0Od4TrHZBRW+91D56eih7tU6UB9E\n0VM4d1l1m31RZ+/jSfXx5hMhndWHmhu1HcVaDqbk8lUhnHMw9loBtf3hQ5gx9+T+1u2orjMzql9m\nSc9Mb1B9kM8oZiL0ybCGjg5MuDqOZmF02XZhblR5Ns6cEQviwmuqfySm2Dl8LES5cF8xZ6BhWZia\nUXSZ/DAFWyPn3DlOPKcs/QAOXNvq711cr0pF9VenpP8Hm4rJHjJ2uYDGKbui585sQP2acthxuBd5\nmbs1GEsnW+hOdWAYpfScGDdU72pH94s19DzOXxWrIgnDM5PV3B20J5+3YfveM9u/p+d2p6l+jeX0\nuStfF7Myv6pxTgB3NmBw7sIA2kV7bIg+noMGLnHfPBoyEe7fgv3VuK+4LBY1zuXevhFKlszoWbDy\nMvN7gbEbKVbqdcXy7lO54PTKumaQdeCVs2hIzSjfdlkPFtC7G5fVhhrPwhFaIgEEFGJjjYUnjMsH\nLpnB1BfDJhNocp2g5TdAYyqBm2cQXaU2rCqHxBUKwWA8Ut86qHZkCoT3MVo0Idz1/LrOyHE/AWr1\n0r4GbORoDg0u3I0yjs4UebpR1FxL4xDmj/A+bKweOoGJOK6EsJ1G3C8SVH3GfuXFAWuDHhSaZE71\nT+AoefJU45Bf0/gmcNSJhDXOvTZzaYTbFmwFH8h1fKJxGfhxfGzC2IGE0E2qveFj1TPAWjYcArGG\nIe4L0f7Wv2K4dCc2SzurTV1/yJqpF3SYRIq7GPfvo9cxjp0+To7q6NLMqO8S39H6Z/iu6vjm+P82\nM7Mfvq0x/u1beiZVnqpuoStqbI91U+eS1nu9kJgvO03VqV3XmFx7kTbd1ljP4Y5XfKA5d7kn/byl\nNnp2K7ruQfFlMzP7z3vq04+/hpvoLd2/5NHzZP6bGpvKgZ7hb/2L+mgbXc3qb+n5cOasnjNb7+nZ\nvf2G6hXeUb261/X9m2Gtf194oj6+xdT2T39F/XGgev/gWGP37a2fmplZ8Lf1nHqI82Houz9Tu5Y4\nJbH+j2ZmFr8n16RSQOv6qzeUZw9G+v2z8ZbqvX9b/R7l+ROvw/6d0nPmLfL9P5nyYv4hTpznVY+p\nPnn0hn6j/Xwf3cFTli6sjPhE9RnSn13mfgTHn8hEsTlGw8thW0TQjJsMuC9skqEHHRbHAQh2cBgW\n4qiHg2XsueZaYGzWD8XN21deCfXRguH37Zj139BhjCVh0HTJI9xzgquSn9/PPej+Xn57RHkgDIK4\nEuGuNgmy3jP1ieO65BtrPjuuR7Ee+qJxtGEMN02crLz8vvcPYOPirjdEp8fR+cR81YZojE1wd5qg\n7zNsOTZO5AGchQcerutoI+JW1YJiOAqpPh60ubx93beLuFio+9wN7t8rLlPGLW5xi1vc4ha3uMUt\nbnGLW9ziFre45UsoXypTZoDWwbiMunFGCEhkXYhis6UdruNdoS8+9pBWz2uLq4yafgQ0rDMBGcah\nJpHQztQsKv4tmvv4rtDCLjv2Ps6Y5upCMjLLICEb2vHaxHknwPeXlvE3X9Fu8t4+DJhN1fNsXMhO\nZEk7Z96ovtdDa6EDyyKcmKZdqn8gofvm1oQWltHrON7R7m4Q7Yw6O27n0uovL9oEW0/VrmEDBtEl\n7fi1g12rb2jnd4wjzATdhNy60Ispv3Z8S+geFPy65/Zt7YDHImrr9JTq2OnofUdR+wS3iRsvCOWY\nsMva29FOc70JoyP8m5Wn//sS5rx4hfONFc7eB2fUB5kLQr+32zgXbArZPI+DQwoNhuNnGsP1Ve12\nLuT0vb2bQtnOsIPvCahPl1cUazv7sAzisABA9x4/kvbLC9ekuh4AdZuCtZA5L22C2+9qJ//JfV13\n/S2xHuYvCoEo/EzIRO4Ouhkgw3PTQigDR7pvE82H2bRiw9MWchzm/axf41Lb1fgtwhT69G91Zvh+\nXMybtSva4W+xu+vhzGm5jGMX7kfekNpT82qcz/jUn8cn6q9aRLvFybziJ41GQvsYBg9aCnYZp4cl\nfb6O+1TTIyQ1UVC78riC9WEEZbKnd9Yp7wp1HvbQhmLnfDqMC85FjVka957QLGrp7MQXHmjeNvbV\n1sPH6nt/UH27sqg+yeCSEV0VSuxzVNw9MB3KiqHdz3S93brmewvUeIIKe4yd/xDuEWmYblMxxWRm\nXvkvuay+Cfb1+VYZTYExWiwHsL1gBHXQUGgzF7wgFPW2o9SveianFIupr6p/zubV9yHmRD8KwrGv\nsSsfiEnSwWWqgEZP90j18KHFkgXlT87qeo4ofx8tiQPU9FOcAZ55ReORBfmeTPT92on6q/FQr03+\nbnO9YFLjV/N9MVQqHlVMV0HUNx4JPSwfKW96/Mqvq3NoxFzVXA3DJujB3vJ7Odc/UP//4l2hfnXY\nFP5Zxf4Fx+HsLDpYIDUFNL+ODoSuORoTsXzSZpgHQXR19h4JoXv0EA2VE91znFYfpNcVi8uXNV/S\nU0IYxziXbHyktu0VpCniAfaavy5W1LnLeg1Oq24HsLo27oqRUyX/BedghV0TY3AurjGr93FWIT/5\nQJMqD1TvjSeaS3tV3X8K2kA4BeztU1+tXRBimVlX3oyAGG7+Qjo++w+knTOOK2am19RPqbxiqT9Q\n/fs4tARbuk/X/8WWOE/RtOlM0EaBKRnHkSsF63Yup3qH0LELjXX/ydiJSc2JPpoAPs7878NQLO3q\nPl5QufwZxUg8pn4dVpxYyvG+/j8GzW8OFEN3b+t5dwBD8X/9gz+zrdu/tpkM2kCvCymeT2puGWyJ\n8p7y8BbuWZUN2GJdtTeRUC6ddthuZ2CHzag+fc7zV/aU67Z2lffLMLCM22VTi7ZwUX2WXtS1svRQ\nC7ZRo6bYbh7qu56hxvjcBfp2Tt+oNVS3/Y+k41CC/eW4Z4xZ7xkMQse1M4ZeRHCg+e1Ha6tlsDPt\ni+WREIJFgRrOWjx34ugeReK4JOFANoFBksLFpORlroC4VoowxUNoKuDw5TB9PGgvhEcwOnEa66OB\nEJjiuRDV59dwmxqhh1Ru63X2vJ7hrZi+3xnqvp2+vu+4ABqaOSHWiD3THC/BxBlFHE0I3j/BKSas\ncW4/Viy053ETxMHMk1T+H6CzF6Sf/FDNGzC9Rz69+sLqp8EY95Sxru8tadw6HdbXIeWOcddpN9ph\naOgEQs/Zcv1xx6ZXFMvHP/1E9wGBdyQkgn60bTLKoSPE2KLRlJ22xK/hxubFufEnmqdJ3IwGd1k3\nfSTmS/GC5t/kNT2TVjeUZ//hx/r/pRld53DwrpmZnV/TWHvn0JGsooNZVd9dvoTu2xkxER9+oL5e\ngOHR2tNc/PXbOoUwva/rLG/+jpmZ1V75rpmZHXdV38OSfgekY/r+T39Ha6HAD/7ZzMze8GnNMrip\n9ebKNc3dn/9g1czM3kwpX/24SCwsSrumV9dzIXVNY+Dp6X7NJ5pTU0ea24OMGD33fo27Epo9F5YU\nIz/Pqj72vsb6lbf1fhF9oOKnWq8nWP9+HSfJx6v6PXQ1qzXePz5UvS/j1PuDi8pJUwN9zxPSc6jf\nUns231COWfs7xXzDr+uctkRh1Q1hbwwcDTSHJRdAU4a/za/2RmFGenj+tmBle2EV+9A59OAA5/ei\n94TDUAwnIE/f0U0x6/ta5muErRvTfPZwGsLD/BkxLwJov3jRhhl8TqXRPcf0rY9n36TDM5953UF/\njiWDBUa6X482esgrhraNj/t5cPVsoY8zxsXJB8vUi25diHV526c5EnaYc7gpBcm7vhFziPzsw815\nhBDdhPW5dVXfCOvNLu0NoXfa9igPxznp0nAYMtQrEIdRw5qg9ZslZVymjFvc4ha3uMUtbnGLW9zi\nFre4xS1uccuXUb5UpsyIs1Z9dpqiqMjPTmnnavexULqKV7uVq6A0gaReO02hTeGsULf9T7VL28Cd\naGYJF5W47nO4q+scPBG6kwTtz0S0037CTp4XJPRkR7vUrV3tdC2uabc6AnoVQjvmCEecJoi0Z1H1\nj4OojEAPD8vaFU5O49KyirPFllDF6JR2kWMeff7JQ7Vv0hTSkZ0XS6KPZkMKHZhiFY2HLX0+ApIR\n5Xx/9bBuxYfayU2uqa+mQNwyaH7sg8CWytoBjjW1cx7gnGBmFWQzILQ50tDnxh2FUAbXhpk19fnt\nn+vM6gCnrG4dBsbo9Ar2ZmYTdB/CUdCQktgMJ9so9n91VfdHf6KEU85sQAhw7qr67OEmzjBPOBu6\nKuS3y/nsSVvtLHXVh6GB2lk/EdLQ96pPl64IwfjsfaF1DVD3Iee3S+h5XF7Xzn2rxLnoHe3IFx+o\nHheuXTMzs+qBxqV6KNQ8t6T2hJvqz1ab3d4DxVp2FQYQZ1APK0KGAxmNT/WJxmWFc/hnrsvB7GhL\nc2kpr3ZnfGpfPIpjQVX9UoyrHTM5HApQa++glRNCX+QEXZLwvO6zvKLx2QKx7ZT0/ghXp8vXpWWw\n/0zjs1tTPxeYY2nYJm3mlBO7pykeFOjTnHGNwyaKJtAuCHBWFXbXkw80RpUD1XVUUyxNwuSfdfXx\n7EX1VRbnlH5c8+74KUyOXV2vfKyx7XCdGEw2x71o4WWhPImE+jwdVX3HY40h6cZCMeWFA/SOnr2n\nfFHDNcgz0PUbbRzQHNV7UPgx1JQY1+/C9Mk7OhBLyhdx8lcC5LU3EVq+sykUqFbQ2ByjB9KvKQat\nCSMmo+/lXxF6tDSNdlVeDen1FCvdqmJgGND3Z5Krql9a/eAhN+wxJ/c3yPcwIKOc8XUYhNN5XOnQ\naAl9QaZMGXeQ/YJQyypI9sIF5YqzL3B+fl7jflJUfe7/WnOzDZtsbI4ulsZvClepM+8I/Zte0fc9\nfX2uXtQcf3zrppmZFQr628vcWEOfI7s687nTwbMN5c8SeXuIVsrC+VUzM5vFHSiyoHt5MR0qF1Tn\n4mN9//C25pc/A/vgZbUxC4sAcMjufKJ89uzuU5qm+62/pnk7e1l5JIArxDauPsVdsRyiOB94QLdK\nBcZ+qJjNryo/zL8AcoxekQfWkw8djQZMi5t3C2ZmVi2oHQ6zZu4GzjvzQs1HODcOG8rjw5Lu3wNN\nm4y+GO60fE55O4nbR92r64Y6uCKhVdOtq321muZOr4aWl08xGomr/4YdtecQxlGzobmQmUaP6AoM\nSZiOx4daS4x6ale/ozn9pCFmZKfsoHG6jh922uLs+c/b8PI3v21TsEUadX1++1B5d/995apmDyYO\n5+mDMB6v5KXlEzsPc4k55z9g3GESHaO3dYwzXNSrz525rH5LnNU45WamzQ+TpHGiWH6yq3l3BMPP\njkE+OWqfndPYNoqab3cfat40S9Q5pnm3sKw8HcUhLM46b4KOUqiDZkhTdT8m33edZxeIrIOonrb0\nP3c4UZ4aAG/ncBRs+ZyYVB6PRjS2owiMxZAmXTym1/KG8m5sTs/SKebS0YZiKz8NS9nHOhcnynWe\nMwO0WGzEHESrodPg+YCr0AT9wDF5vOnoaKDn5gUJH4xwJ4k6LDTl6cExuhRoq8Sj+nwPt6sw/ezF\nfSVkeu3giuRU87AJ891xJmOdXqooVzUHGp+lpOaiN4KuRlrj2Wrp/eREz+UE8eC0x3HfCsbRz5jC\nncvMRoOYhUK6Xpc1VBCmugeXlwEMngiMVg+MU5+jMXGKcj+l+Xb1XxQbT/xyCbpcEeNkkEc/aKy2\n/Jr11zs1jd2nKfXdm1m9f+siGn57alPkjBgtlx6Iab2fUj7ZT2heVojR2nvo+VxCF411+2cxXedr\nP1NM/v0Lit1rML0jv/wtMzO7GdD7F5bVZ3c+UH1eekOMngu/96o+9wNpvsy+rTVBYVf5/Z2LxECA\nvLAsl6nc91Rf37LqNXhPuWHs0/NnOq211Y2w+q2yrHZeW1Ze+u5QeejOCrpTPxWj8vzLyhGfTv6r\nmZm9+mO5sT5b/rqZmflxmyoFxYLtDWFW/kj5+Q8vo7sH++xKQfU4mtUaJ/ih6u1JK1bDJfX3z97E\nfWksV6v/8n/aqUqfxZ/fj14KlJk+JxAG/O7wj9FF7Ovvrg+WMlpmCX5X9XBTCvLbtuWwx2Ehe3AO\n6sKymwTGn9dl6DfzRQbmg4Uz5DddhHVqZ8K6jLp0qHsQ16WuX38nJs5agPwLI6YHU9wPU8Y/xHWT\nOsVgvgxxmXPcMDE1Mi+f9wTokx6MG5xm/TDt6iQa74AHCgxER5dnENH/B7TDw7PdS74a+WHB0pfd\nyJh6KY8E0PEZ4R4Xn8DQcxyyYM22yZOdDswi9DcD4+f56N8rLlPGLW5xi1vc4ha3uMUtbnGLW9zi\nFre45UsoXypTJjLS7R0Hl8WE0J5SETX0inbUZ31oMGSF5oxAibyOmjyuH5Uj7bZGQUzCGSEuHs7E\nHh1oN9RQY0+va/dzelo77t0BKOOekIEi7AIf7IC5q7peF3ixCIJdg+2QA83MLAn9arb0fh22RA+k\ndnpGu9JZNGH2cf9wdgJbHaFPjRPtngcTak8SbZzikXYEQ+zoHT0RmthqClmZuaBd4ATy0tuPP/pc\nv2d5SQhWE5Tdy07s1h2hNfWydoZzc+x6nhOyubSmHerSY9AIti+9KXZTJ1yXsdvh7Hx8aGWGxQAA\nIABJREFUTt+foGHiiz0/w3ia0kXpfzqind7GlNCiI1DualF9HeW8dPW+nBvKuEUtv6oz9QsXtaO8\nv6u+TuFdX6mqz7JnhJbPz4GeNDUWpW3Ojv5QuhHX/+B31R+pVTMzG4J6ZdGh2PlMO+fhkfrnlReE\nPBbQJLiP+0kIZ51oGi2WjmI6togzzJ6QlgmIaQU3jlFNsTS7qus67lKL84qpE86SPvlU6P7SeSHc\nlYoQgpOHuGrEdL34LIwZtIJKaPKEnTm3BJtN3Wd9WBCHIMNGDKdXcQ040XWePRTLYwYV/8CyPrfC\n5/oPcXJgR38WtkWho/oN9rBiO0VJn1EdQ0H0GNCKaYJiH5eFKoxamlc1EK+ptHa8kxflSBDLo7WS\nVF3GI+WB/W1972RfY1LZU+x5uU9gVq/zi8pfjitPDiabjTnzis7FIc4MZhrz3j6oe1n32d3VmA78\nON0EOH8e0lzKz4OKgPj10L9I4EIVBT1JzieoH44CA92/1tAc39vWWO8fCC0ajdS+AewxP1o2iQXN\nrcVZ9c/MjJgd4bTmSoPPt3EVaREaoYzjboIWQlf13LypOXBcwgloT/eHIGjzU/p8KruqdpzT30Hc\ns6IwZ5byK/ZFSrOldk9gZa2taNznrqlffSAnD36lc/aF+0I1AVJs5jzOcnl9bxqWQiihGB/CaNzF\nGam8p/xdQUfJB2K9tCDm0sx19WNugThpDKzwRPOmv49eWgbGG1omiZQQRw9soS6OY0douOzeUQyN\nOor91AurZmb2wssvmplZPMWzDsbhg491v+LxFm1TnRZec9x90BQ4FjL55CP1SeNAMbwEo8SPw1Zr\nC6cy5lL2svLU9BJIqZ++GuGytqM5tnOo+pf2dugKjdHKi6r/MgzFVNbR4dD7JRgoPZ5bvrH6cpLA\nwea5ucSpShJtMD8aLE30oRo19etxFxYEZ//9fY15OqDPB+IwWXBVOsTVbswaZDqh5+TUuu7T6+hC\nnz3QXDgp6XuBJufro2rHFIhmmNg5O6/vj6bVH3Hfc1fDfq1jBXSxijBZxjhixBc1l+anhWgn8hqP\nMI48QUKx1YTh8wGMq2fq3wqadH5YEufJnfNoAvnQNBoFNa7N7UPbq6kun2uNDGCmjB32pVDmGNpd\n9Z7Gdr+ivknC4Jh/TSh0jvyaBJGtM0H7MIZbbcV+7UR/d+t6JtbryvcBtAQm6DN4Ygn7IiUCslsj\nj/sSuGbOoxXT/7c6e44T5TA85r5oNQQVE5W6Pn/piuaKwyw8uCt2VDCpvvU6z+QTjUV4oLVDf6Q5\nFwOS7qHRGI4rhuIpxUqftYThllKF4TOzqufLgDWIgyxn/GjbHOp6gRZOMazFYjDae1WYUCPYHw4S\nnYYFkAcBR6PiuMRaJwHDNav6PdxVrDn6Gcl5WHSPYNKjQTRmbWaQt73Uo3msXNjjPokE9YQ5ZWbW\nGR7apK34mYBJR9GO6BRhKaD540nCFIV11vGcnpn54o80b7cuKl9eAi3/3p6YJdffEtOkyjN76V0x\nGP1nNJbT08rv1Zusn56pr6IDMRcnG2KOBKpignyKrl40pLp++/0bZmb2K8//o+sN3jYzs4Nrut7v\n/piH9PobZmaW/eh9/f0t9c2jebHTBhXlG++stG/eeQ220vuKzX+Eed2ZUT2u/lLrzGFL68/a1/7I\nzMwOW2pP5ieqx72IHAovX9VY3fhYbOLmnPrpnkmPzV9RO9d3lf//cUPP0rMrYqXmz4nh+dGavjfz\nRO0p85vt79FsOXdN/V14AvP8nsb8K+9ojG/BOI0/VH5Lfkf9/fQzxeb1b2qc3vuKYmwwVn/M76hd\nb97UuHXzztrudGWCnpEH/RGD9WUDTm20cUIjVsNR2HltGEYwmTwhRztGMT/0odfEXPLBOu7DzvXD\nIvEOnv8e8058NumNLISG3miovnKYIxF0QidBxxVJdenxe9gHU8TQgOnzWyTgOEL1cTWCWTJ0GDBR\n8gMMPZ8H7RnczzBjslBEfw/QsunCWg3gEtdGWxVJLfM67XDqGVH9wzDfeiONcSzc5O8Q1UePh/W9\nowUz5NRACEZ9H/2eNuwmL9o1Xuof7uIahfaM83vBBr/5tIjLlHGLW9ziFre4xS1ucYtb3OIWt7jF\nLW75EsqXypTphbXzhFiz+dBC6deEqEzYofMH9RrkDLC3p523GOfuKjW0HQ6047V+XkwRm+jz5T12\n7g70uTl28FdQNO87Z8hOVJ9t0KVKRddbvio0aHZOu8a3Pvmlrs95bcTxLZEDccflww9K1kb9vgqi\n8uIF7cqOOZ/f3u7Rfs4472vXewTCs7bK+fuYEJO4R7uyTc5in+wJ5Zx3zt1PCw3rshl+XKxZeEF1\nSk2rjvUTHGKOcALZEWq+CLsmtyDUKj6Dijvn9473tfOf5IzlJMwZV3Zin+EWMqLNCzgf1AJiA3i7\nzxG905RxW22socA/lVN92iX1wRiHgqmcdmGPk0Jon+EUs/yyvn/+khDgnbYQSb+ziwpT6GRX7ffN\nq49TZ4RoXqG6H37/Q10Ppoknqje6RxrjHAwXz0Rjeec9qb2/+ArnoWPqz/kpxdzRvuoXDoDq4ewy\nTgrBnHtRMZyDxXX7fSEPj1c1bo5Ly9aO5kptoh388+h8PN0U4jzT1edm0Aiobgq1bB1o3BeWNY6X\n3tD97n2s/tqrFczMLOBFK+i6YiuBFk7vfbVvZ/cJ9RXaNn9JiPlhS/006qo/mvdhEIHK9RjXIg4W\nZ99SnMwPYVy19f/TlAHsrGJbrx2YH80uCCL6DoGkxjp/TvMvMYWLRkY77FEf6NSO6tpGw6VUwIUh\npJhOzWt+hXCLW0NrKgwi6RxlPTzSGFQK+l4DJM9hTDTa6G50cZ+bVgyvLakP4y+gyxBWvYY9GDLk\nhagft4oYCAFIQQy0ZQiDZe+JUK3ypuZKFzR+1AZNAdnwqTmWXVGei83rH7EI7ikh1aNWUR7d+EB5\n5/gQTR1EIaZAoL0ZfFa6un4VtsWA8+5xdK3W1lfVzmm1N4ReiHP2NhBSPzVG+l4JbYj9asG+SAni\n5DYzB0MGdkdghKMNLihdEPDZNRhP5ILMeeXhcU31OHmkepU/lItHsSEWXo/2ZtEIm6U/F5Z0vVhG\nc87P86t4qO8d3i9aGR2NSVN9mSUPd/qgtl2939mB1bmFE1ZRdfFn1Mb1S0JKF3CbCHoVsxuPhEbv\n/Vrzt4JukDMnVmHWjNAKu/2ukMhiWXlmytQH57/xmr63qs830JCqkt/jME0yC+q7TlPf3zsQklre\nVB83j5XPWjjgJGcUM6+8KSQyizugr64542iCVZ7hklTB2SHqOMYo33Ls3MLhL7bE2btVMDOz9kD9\ntLul5503ptj3o7ORCak/ozOKoQnMlmPWLidF5dmwDze5S2J55JcUCycnyk1Hm8o1vZLy4Qquc9M4\nxoWmdP0oTjiOs1CV/jze0Pg/eaoYsv/05/bw43ctgOtUdlWxnoORGeKcfqOnnFYpq70nsEj6VXRX\nmji6QUpIxoT6nbssBHtmSbkhCqLvaWk8d589NjOzIkzPo51jC/gUG8Ek2ijTypdzy2j+5fVsCsK+\nbcEe8tKGHGyx8dBhx+raTx6pDw9xZQrABp4kNDYT9HiGMCN9IK0x1jjBsBgyg8kX07k7Garv2jDu\n4mlc8jK6br2NGx/ze+iBOQKTxKLqhwYMGYzWLApbqevHRa+nPNLpOVqHaB+QhyMgv5095XlfR/+f\ntHmeBECGYbOOT0DZZ2EKDWFXzCtHNHgmG1or3hFaOKD2o4qu653ReMXGum6lq/zfKun6IXTqwnFQ\nfhhNXtha3R7rfuZU2HHV4/0qLLrglJ6nYdrZauj9JEh3AK24KH93cB0MhpV7OkHaz99mZuVB1/po\n0uSzuv8ADY1RD4QcW5jOAE1ImAHe/m/WgvjX5XtdXeN/eqh1548WlLd/ayimy8ivvnn1XzSvspfe\n1b3vwEwJyy0zNRTTOTxWXcbrsF1/pfxYe0dMxwu/UBu7F5UvfzwlZvcbH62amdkDdJM8j5XPthfE\nbGlva23wO/8RVv1d5aNvvKQYPvxb9c2TGmxXtHDOfl1B+/h9MdPfCIppvnfpbTMzm7ujZ+LEo+sX\nPkQ3KaM+/s9T6N6FpI0TJx8dpLXODm4R2yO1/2+GmvPzV8VizYU0p3L/rDz5tVcVK7eX9Xw52MY1\nb6DnyfJTsX17l8gJq7g6MVdnYlr/78yqv1Y3xFqb9yr/nrQKZmYWTsA0gVSWQ79vOKOY/fWy7nva\n4mHtNYZx7+041jw4CZMT4jz/W+ilhGHdBckJffgVXk4keJkbjr6Th99pXpyBPLBMhpHnVkCRkcda\n4Zj5GQu/o4kKQyzA+gvJF3PSWYJr9FlHNcjDURhnI/TdAiGHMaPr+fieh3nfjnIf5nO0qe83Wc86\nWlcDh/2Ki5zjvmc9mD24IwUHuCWpGRaFUd41xU4Yxk4HinYMbcaRhekz3KHNofSQz9GpCwX4beOH\nqQ/z0Acj3HEmdlzyvHTY2OtYbP37xWXKuMUtbnGLW9ziFre4xS1ucYtb3OIWt3wJ5UtlygTYgYt5\nYT+gnp50zpZxVqsNU2ZY186+4SwTQd+iuC/0bMLZsugZIZHNutA0Xw3mCjtnmStCj5Jp7YIeoOXQ\nQHNidKTreBIg4ReEJEw8QlKr7MKmg9rTmsuDkKN10JqArI8574dGTDiiz+U4q1vYK5iZWaUr1HM+\nrl3yEWfvGpyNe21V503jnL171lc9KmX10xj9kjmchhynjlFDKOSw3bH8Ne2Mdzl72AJdGnCm39MA\nlfqq2hpdVB8FB+rj3U0hh1XQhAR6Ed3GiD7UTvHgSDvaU3mhYY7jTLGs3c8g5+tOW/wgg7VjMTum\n6toZD3KgGBDDYjntWCdLem0eace/9FgxMBtHjwfQpM0Z/ABoSrGlPg2jbu/nPOTlBTFDnk2rXXtP\nhdaFcfo5muh7C7iZZBPqtwZIaBt0qrwvBDE5r/oP0Wjp4hayt6EY2UQbYtqnz82+oPHYPxa6s7cp\nZkr260LCY7Maz7uP9P+LERwWOGf/GM2FG9dVr3ZC/bn/PSGs9x4LkVm6JD2Uxbf0Wrgp5OAQXaeb\nIB+vXNd9zzb1uU9//Su1756QoPQZzZnppJDZJGy1RlVzO5VRjM8tKUa3fq6zxcf3xL5YuYwqfvn5\nOfD/r9KEVeDslEfDiskMLjghv/oynoUxkwCdCKJ50oPJBkrcKuq1dAhjDRZWLKpBS5/V9ZJh5aEG\nO/snz0DXCyCHFXSA0J1w3IJa5IFMVPkic07XS82qvlN5zqJyNn4HR5omMRIkr8Rh1KQCus+wo7n8\nZFNj0d8GSa7ilFZTv0Q5y59M6f7zK0LXPLC9SHs2HGuOjeuq/3ZBLLPKU8Voa6h6RD26Xn5BeTcN\nm62IdkG/qH5cmVfMJNG4yeNyFE8JaTjxgSiDsp/gZrffVLt9ZY2vL5o0+xOz6u4XQ7iz05r8XhAb\nX0xzp1lTv/W5fjykORSYZdzRJCjdVr22HgidbDzjeUS8JVfUX4s3pKuRyqsfvCApo5bydOmZ5tbW\nHoysCm5eo6FFJoqN2TO6xiz6ZMmkrtUCbQkear6M4zA4iMXsnGIpvaS6tHD/uffBHTMz23yoPJHE\n/ejaVzWfl1Zw6oNlVsD9aRBQ286vfEWvaNuE4wqSDTRw9p4on8QcUZKM8urGHeWXE/psCJrkjetz\nyXNq5wtoTeXX0SCrKW8c3tN1957p+6Vj5ds4MRfNKpayoN4h9DDG6NU1Hf2SU5Y+aLsvoe/PXIHh\nMqv6jHHpG+FEU93T2B2iZzcChZu/qHadXdb3x1GYpofKxwW0EcIgl1feECI8FVN7xuiWNHGV2kVD\n7ei2kO7jfeXlHk4QM7H5z9swf/WcTed0fy+ObGX0jk4+0/drMFnHPI99cc2FSFxriDwkt9mU4sqX\n1Xj5fOqHXl9zpnCbnLB7SD+oXg6qmF3K2tKyUOd0BiYxsdGpwWhEs+tJWXUJkicTMA9PWFOUH4sN\nVK4rBhK47k2nxUALkzcHRdoaUR3DrEGCQR7+I/KyR8/eSP/0rjpmZoa2ShBGxQStlyFaXoGGxspg\nroxgAA16ev4kQJCHJ2jRTGvujaKONo4+F0JvonOifon4db2psGLHWwORreo1AJOjPtD3minNhdyC\n8vvjA82hTF/3a8foZ7S6eoeaK30HXXcQ3xPWbj5crUz9OAqgV8FC1dfSeHoXYbCgH9jE2XOI60oK\nrbIIDNBKiecZuaPEmmnSwFWFxVIHZmQK/aZhCKe1KuPH9RNY0XkcDSF7vpboVnvWP6vPj3FBHe1q\nbdV2SAMeWHfowISrsBjyp9dDvDHQPNj8D4r9M59JEyWy/EMzMwve+Ybev/gTMzO76VPeiw4Vu5m0\nYvej87ib3db8fmek+XvrdzQXrnysef5PC5qw/3FTsbdhatOHr7+t77XfMzOzH/5c2mKN39OY/PaJ\nntl/+y9q2x9+QzFw99fKA2th5fm5e+rD1d/SfX66iz4SbCnfVd1v57bWcx2v3Jvupf9R97mi+6TW\n9FvmE+gL9R+9a2ZmYUeH7peaq89eUrtfnSj/D8kZyZy0Z+76+O0X1LP6YUnr6/8lrP7u3dT7H+S0\n/k/DTqtPcFDc0g3TT3Xd+1/5n83M7M1DtesOzJTJumLyYkUxvf1A45J+S8/+jcd6/6tXcFlFg+bU\nZaJ6+sc4V8K+G4fRCoPR4uF55uH56cylAb9fhuSwET/pA+iu9uBdxBy2ClPFCyuk3X2e+7q9gfl8\nYesxr8LM/yF16vixeHT0LxNorfAbbNx2GInqqy7ud2FOIww5GTKEGehlPdSJoU8KkyU41H36YbRY\ncKT0wGgMsSbptHT9CYw70p5BlLGBRzHta6vPWlTfj5iND0r7GF2nyVhrJQ/aXKMQDlUwh3xc2BvB\n6ZF+i3fVHzTP2jgWBx3NMtaxfb/akTDXfcktbnGLW9ziFre4xS1ucYtb3OIWt7jl/3flVEyZx48f\n21/8xV/Yn//5n9uf/dmf2cHBgf3lX/6ljUYjm56etr/6q7+yYDBo//AP/2B//dd/bV6v1/7kT/7E\n/viP//g3XtfDGbQuO2QGw8Q7pd3PzrZ2c/ucV45EtCsbzGrXc+uWdkd7R9q5iub1vTQ7eLv3tJfl\nXdDOWnBG9wvPChHusdu6XdB1Aqgxt2HULIGsZs7oXOjmr6XgPeYsbnpNLApfQjuJI3bEmmW9xmC8\njEHqI36cZXAm2H0gdC0U/3/Ze9MYydLrPPPEvkdkZERG7ltVZe1LV+/d7CabpBbKskSObYwxksaD\nsYABZjS2x8sItCRopJFtQLYAC9YYA5sY2QYxNgSItmnREtmkRFEke2Ozu7q7qrq23NfIjMjY921+\nvM+tJm1TnW39aGBwz5+oyoi491vOd+4X57zf+6oS0I87PCXKOifmdP/Uiu6/c1PVzmqDCpBfWfVU\n3Kl4qyr36rviCwiW1I6xiZxNLsHUX1bVqZDXNZJUN5JZtXHinJAZXRi1Wwd5xkjfS8ZB+ww4R1hG\ngYpqw3hcbV5cPGtmZscB3SfBmLbeR6P9PzV/mGo9DNlDzvN5DZ4OUBJRGLJXzursaIGKb3MN5ZNr\n8p2Qj2znQD5zGnWkfTh1esbZ+LfkeysLqu4vrSjTv7endlRADNV7qkysr2lus1lgBuOayxBV+WOU\nZnxk6Jef1dniaE5zXzxWf/z7uu862ehiXfdLofBSBL3RpJp46jlVWEusEV9Tr6lxVce272+YmdkR\n35+5pHmeu6j+tNY0b/tRXffcJ1SJiD+u8Ry7K98q3Ud9JKHKw+zMkpmZnc+D5Cno76lJ1JrITpfJ\nmreoCm69C//RVbV7uaN5OjrS+IXKym5PpdTOk1gMlYlgap5Xzp7CseIFgRHknK6jotBuqs2NI9q6\nqbEI9TmrCipgcU5jlTml/w98VD4LGuvy3oaZmRXW5AuQ1lsSVYhYnL5wRj7F37M5OFNAUjRBltx5\nTXFhZ1XtG/b1/3GQJZNLil9RzuTubVJFLwl5MUKdzUclNwMiJndBVa5xUBHBtHwiDt/IoK/+rBdQ\nsUBBbX+HtVfSa2RSj40UXDrLIBeDSSoLVBhHcK/EidfhMX3e21X7jqq6zy3Uigpwg/WbWrOdlq6X\nBNGSnAJlldP95nPvcQWcxLqc8+8dU3nfkD/UqOR2K/BMUU5KgYrYviX/qYM2GFEhnlxSOyavLfN/\n1r4PboRDjWdxW2untI2y0DZnn+F8SIAsml1YtPQSfD4okqQ4c1460Ni3NnXNSlVj5SBBvLQ5jELC\n4FD/3wPJkt+Qb19aQWXuqiq36ZzW2/otPVvWQLQE4eY6fUHPnhgIjibKJ7e++x0zMzt4IOTNEEWC\nJOo+LbhxSkWt77ElraHcHPxE40AF4YvojOQTO6CR8g/ke8V9jZ0HxEfmnL4/t3iOryu+NuFbavXU\nz1ZJa3w4+mAcZnNP6nmQhAeo2tacVbcUI6p7WoutA3y2o35Pooo0cXrJzMyyC/BAwXlW4jnUa6if\nlyf0uSSIJh+KErs74l7oHOhzVZTjyl3F5z6KD7llVbJnloQszKTHHvbhzIVzVqroe5U7jGcRji6G\nYwI+pfEFEDU5tWOM2OiHm6Cyq/sWb+n7NdCEDq9UCbSyH76u+csoiy3Iz8YnZ8zPeq+B7rnz5oau\ncYAKEc/yCPsgz4Su0YZ3rQBKNAiy8Oo1PZPTc4qHwYA61SM+lUKsX/iPnIppvaj7e0B2eEFQNAIf\nDL3bIi54QAMl48xhTdcpNxS3cmEQKNBM+OCLCKAm5ah6+By1j6Y+72vTvgBqSuz30gntb4/qGod2\nDV8f6L4DJxzGQKyg2DXgmdxZQ/EMVHPE1I4YiO8+e5VAV3NaByHZB001jGo8WXLWq+pzCXguWlSe\nJ3waD4e/ogAKOcffo3CxdeCAOzpCcSihGBFqaM30yvAadegfa80LX1W4oft3eOCGAqgNsu8e4Oyj\n5ntogFG5Z92Inu+ROOi1Dd3fQa15unBdaNitNdD4TbZOrr506i8JCVO8Lf5Jh8+i0tfrjomLpZrV\n+n0moHjanJBPf7uyZGZmp6tav1fP6v1/e1k+8CN/rPi9cdlRklRcundfSJT5tnxj9Ya4ZUbwCGWu\n6b4bYT1fvgvYc+YFPZvvH8sn50ca81fHdN9yRn2v/ZHu+/xz4hTbGclH7rY0ptOLqAVeFWJm9PtS\nm9rNSt2pf6jvT63+npmZJc/rOnfxpScr+v54XXOwkUaBbQz4w3fUr4UnOC3gFRLz+RWt8f3XN8zM\nLHpeMaSQ1G+i/Ltq33PH+vwbp7UGQov6DffC7/9bMzP79lW1t3Ggefixmu5zu63/f7SlPdZ3kd+7\nPimOm/JdFDiDen6c1IKg6QxOmTCxDGE66/pBn0C85PGxt4X3KdJ1eKDY23j1f4+Hn/Y+0G7wvFhX\na6fBfeLwppiZDf0+83aHFhiiQoQPOOpJ3gEcKTHayH66R/yKhNWG7hCkCydXBk4beHaNaKsXdSU/\n6zNCn1r8LvegUjdo8epxVI7g1GIf1uW35QhumQh8O/2H3C26v+/hb0faD4InCvq4z4kTv6Pu5EPl\nmLyAN6DPeZzfsKCTmiAuPfQnBunNoKcAEvJoPFvMSRN1ph9k74uUaTab9mu/9mv2zDPPPPzbP/kn\n/8R+6qd+yv71v/7Xtri4aL/7u79rzWbT/uk//af2L//lv7TPf/7z9q/+1b96SGbnmmuuueaaa665\n5pprrrnmmmuuueba99v7ImWCwaB97nOfs8997nMP//bqq6/ar/7qr5qZ2cc//nH77d/+bVteXrYr\nV65YAl6VRx991N544w37xCc+8YMv7kFNhEzYWJ0KQVSZtGMqpnXOeGUnlCXuUIU/OtD7s1SgxzkH\n7mkrE1VoKA2cIsOfWVA22DljdrCn7x9sKBt67aLeHwyUdc5mlbnvcU58Z1WVliRszItTquxsUjUq\nbikzNo2KSiRLJZqsarGmsTlYV3a51dR1Vy6r6pWvw8tCpWTqrKpYQ1iib60py5upKdPXoAA/c1FZ\n4R7a9Ieox2QjyjpPLYzbVFzZvj96WX3zFjm7CAfBGRRPopy3q6zrzGohr9cBCjHjF3XNUVLZwvqW\nk2VU2x300OSSKqv5mxqbAW3z23uZ2ZNYn7OdCZRx/Bkna6tqS/FY/Qnva+5yVB4nU7p/HTRDE9/y\no+iwuyPERjii8+gTlzTXXSqsN25+3czM1u/r7+FJzXWcqlECtEMPRE3YkamAn6KUF/Jj4YoqzReu\nCsFz9w/FRt99Q5+/+syjau8E6kYj9as1hIckBss6ldfCA8bvhjhezj/1vJmZjVNhH1AFnAM10t5S\nZfN4fUOfm9T85HJLul5RSKh7bwldlYa7IpGTv8xOU1EdKdtb2lai1d/Q2kmiRBQ81przpzXuoYzG\npXysaliDrPr2qu4zdkHjeva62rOxpfb5oXYvV9Suk1itQdbfp74W9+TDZb/aMOJsPoVH6wTJxFd6\nvK8qS2pK8WVlXr6UnsPX4/L1o2P1eWdTc1u5r9cWYxFMaSyy80vq45h8ZGwGdSS4nkZBOFRANbXe\n1nrdO+DsfUnVscSE5mDxlPg8JmZRQBjKh/dB0nT39BokzoQzIErmVD2fuKI4EopoAJrwR3Xh0rqN\ngk+poP4cgp4LUjHMsNZnLlP9nhUyJAowpI7yzD58Gb0dXbfX1bxsheG8KYuLpoW6kR8frzAxsYRq\nBDnWWnBM/UhOgxBi/GrwTPnH9f+TWqWuca3vaZyrfdYslaB0Tv1IgwpJoB5VgmcknYNLaBq0YFJ+\nEpzQODeP4WPJC+WRX9V4DEG/IcJiaRCdWZBGWWKvd2Lc+lRRjkAV3EXtrXwg3x6i+OcLam6iGc5Z\nz6itYzmUVlD4CsOddf6s5ix3UZXZIb738pdVwTwsKs7nTisezp0FIUP1qwVP0vrjgUNqAAAgAElE\nQVSG2lV6oLjumVA7zq4saWxAlXl4xo5NgzyBX8dDRbVSUNwuwnlzVNTcVPb1/zhl/9ySfHcatGp6\nRmM/omqdP0SNCmRkG76OMFwrYTs5D4SZmS+t/nTqilvr3xGKNr+u/vaIASnU9K7BiROa1bgFUsSe\nNXytxDn1rtozOSZf6YW0Bos7mt99FIWqBfnKALXDOOM/d0q+MgvnTgBFIh9cAcega83Mbt26Y60t\nEJVljbeDYjs1t2RmZhH4ozo8z0pw3GztwEd1LH9weLYM9EciAUwiq73MKZST0stqz8S0gzbWOFbX\n7lrhNnEFRFoCxMvsovY9qVP6rgdfrbXU9mP4g2bw6aklzf0wBdICFZ2tVc39MVxgEc7yR0Ci1AfE\nVbhRAg/XjuJacOTIeZzMAG2ZvynfGo9oTr378ske3IiRCb3falDp7TG3Hn0+EdEzv9XjwQSPXT/K\nGvGCMk5rfKITfAxUbbkFsnPMUfuQL/QcToMxNbQN6UMANad6TWsz4lU7gj72zUO4FFlDVZ7BaeJ/\n5rxiTLei+ekZPEOzDjIVZE5K41vjPp0q4zGp+4UTPPe2dZ16SuMyf1koinhPa+G4pL/Xu7R3Su2o\nmfrpg0+jCj/GmM/h8AEtSOXc03qPU6ZTHVnADxcGSnElYlUqhn8V9f9YWGstVmZeA+9d5/3sW29o\n7BoPFDd/7GN6duTDio/9bwrpV8xqPzg8Vlx+NaQ2zOW1178y9cNmZvbVhNq0UNNa6pxXm1ZBB11r\nMHebWr+vfkL3P/t7ut+XIj9qZmbPz2ivEPjShu4/r3ZkNrUHGV9VXO5/5uNmZla+pedN7+0fNzOz\njT+n7zV7QpZXL8knHnsFjpWs4n21Ja7B0wlxlu0SH70TL6t/2efUj5eEzLw3harp8mfMzKw+r+/P\nf1XPm9AN9fPlkNbUs13FgMzFHzMzs7HXpBJoQT3nvlzVnuHqOSGEIq+rf3FQZrFvaJy9M/p861NC\nKH6qofffOa1xenCk+J/Iy7ffigmll9tjjV6Vj9W+onhZ/7himv0zO5F1oGCLgs6usxeJgWxp+Tjl\n0dX9I0EUiUL87nJCF4gaLzHPD8+ho+rUrMOnGNV4hL3w3NXfa4vfG7ZuwKwPZ4pvBCIEBMkInjMO\ntFgfRacRv4dbQ4ePE06qoNrgcMHQRYuCNPFyPZ8XZAudcVSehn1UjejDiGfKgH3ukJM2fuLX0OGg\ngXMxwP6zxW++aMdBBMI7B1LGD2Ky7ajEeXT9QJ84gaKuHy6Y3hDEDggg7xAEDeMEkMfaIBEd7pwY\nczIY/el7Es9oNDoRy9lv/dZvWTqdtp/5mZ+xZ555xl5+WYtra2vLfv7nf95++qd/2t555x37hV/4\nBTMz+83f/E2bnp62v/yX//IPvGbh6OhhosU111xzzTXXXHPNNddcc80111xz7f9v9vd/5R/YL/7K\nL/wX3/szqy/9oJzOSXI9/+z//mf2i7/8S/Z3/+bPmZlZaoIqe0iVgTtvSnM+nVTGa+EJZV0r8KHc\nuHfDzMwevSJG8S6IllhXGa53b+o85WOf/BEzM2vDknywpaypgYoo+JRdfuzS42ZmtrOuav7ZR3Qe\nsVFXX777DZ0PTa+onddPiX/juySoIBC3cyvKvno5O9vc3NB1d1VtW6aqVKuoneMgeO5tqL2TPlWK\nJ57W/Tu7yhZ/8+vKnl+eV9VwSGV54cklMzM7ghPjzh+Jaf38R3ReMxWOmC+myuPX/6MQIAszqlpM\nZnWvhSUhFlaPVTWvHynbWNlTpr/l0bWf/qgy9yXOM5dQXdjaVqb7Ez/9E2Zm1oaL5s1vK+M9ATKj\nTzXoN/7hr9pJ7LN/7a+bmVkeBIjfg9LUhMa2DBeJH26Cqy98lL/LR7ZvqWqdgh+oDxfLgHRvfkeV\ngakLOot75qLa+dJ/+JqZmYVDVAInlFk/LOvzlx6Tz+18Q2z4kYhS3otPaG5eeukPzMwshMLPsx9/\n1szM7nwbjoeSfGHmgiqtXZA2Vfg8hua13/qHv2n/+AufNzOz7LgqkPuvqEJx847UUZ79pK57WFFV\naZdKyfWrcL3c1fwdHSqTf/GSuH58ZHkz8Im89op8JnZKSdIUjOYl0tt+2N5HLdAYSfW3WVCVst9S\nNvv0k1qjLc4alziX3hnInx58XWt24SmNU+60uHVqPfnLItwMVRQ0/tZP/c/2fvYLf/3nzcysrQKc\nDSKa42hMYxaLgKjAR0ZUCXoRZbxTQdBVM5zVJ/Pe2FGb9teE8Cg+UPWkRMY7TaV1fhlEx8KSXqnE\nDmFvbx8pLjVGauDxPV233tKctOGd8HnUjlRWc3DqiuYmTKVyc0PVqO1d+XSvABJwTEiLGVAO6VnN\nfSihdpS3xftxsCWfy+8r/nnqVDR8cHXNq/8TU4oN46AeA0Bigpx2rcBvUtlXXCofa3wKdY1nCKWZ\nVFhrzg9ngcdQaUrq1Z9GFS8NggheijhKMAGqgB34MY6ouEa7Lfsb/9P/Zv/43/y2mZn9rZ/6WTuJ\n/e9/57P6Popy4SRcN3N6TXt1v0iM++JQlTpno4kZnqieR304DY7hsjg6UmyoHcKNQ/UqE1e1chlF\npYTDhZFSxcRb1DzkD9Zs/Z7mqthRHMiE4PqK65mRQGUjEGfuGMt4Tj7gKAVsfAcU1b58ZGxW3w9F\n5FPlHc1ZCYTjNJwv6QuqBPrb6nNxVT5aXVV7Do4U98fgvJl/Quip6QX5Xqmt+48ONFdtOKMK67rP\nYQmEoqNuAWoiNA7qIKn+ZWdB6kzq/TDnxgtwl+3sbJiZWa8JDx1Vqig+54FHaRjS2vu1X/wVO4n9\nn//Pr5uZWa2kOPrgluJ1ZlYV0CXQWwtzWqNB+EoOjxR/8yAw6xXF3XZJ7UrA+TLgzH8RrhivyVcc\n9FxsWc+b8TFdf5r7JlHjGMH1clSUrx3AU1Quyx/++f/1Ofvv/8f/zkJBVPBAFs0uC6npCeg6tS2t\n3U3Qa+UDkLOgJZJercnZabU7ALorA9ohAnecJbVWR6AJ9vd1vd07cM0dF2wype/MLMvvE/Dp9GNa\n76WC2rJHPDlcA6ER1fuzoHvGQJ7U4HVbBZXaPtCYhJJab1lDAYWq8gBEtqMy5PAtjKjg+mu6zy//\no1+xk9jf++yvmZlZeUdrawnlLG8dpByogzh7lAJoqRniay6tOV1/W1X4BuirK8/rWd6kMvzSv5cy\nz6Wn9EzNgOC88TWh26ZPaa1OgHp69xXxf9T8Gr8XflJ7tTYcLa99QfvUKRDgFtM4nH5S7W+W4Ad5\nHe7Ejsbr0kWtbX9UPvHWm0Lpzl0QumN6Rfd/9T+IRySJumCY5+kx6L6PPfOUmZm9+ZrQIfl35buZ\n04q/55/WXuDBvmLOeFlr5QZciktwusVRupxc1Hi8++9eNTOzCujAR1/QdUZD3X/ru9pz/L1//o/s\nZ378p+35vyIUiBfUxeu/qz1xJqLr+dOK7yuPqH93v/knGi/2eH//H/8Dez/7X//O39QYLKJGtiEE\nyQp8YoWnFTdHBZQReYZemodra19j1b4qH/hiUN9belE+kgYJ+PZzmssnQtpv5tfkc2cvai384R2t\n+2hQcebJLu2J6bdFqaln0vik9tH1tubuXThSMnX1/cICfHdjavcQ0NARilnhScWBmZuauxT70f55\n7ZPHvoHyTERz/4UXxN3yia5+87wa1ueW6Of0q1oT2zsoQp5T7EivaM3cXtVcLTa/rOE6r98v2ZS+\nP/uyfPqrB/LpNnyigzPqx+MvaQ1lntT4dDbVrxtRccQ0vVpz15e+qu/fFH3HG9f1m/S8X/ffaZdo\nh/qT8nzRzMz+xv/yO3YS++Vf/T/MzMzL7+VRiBMB8LR04PgKoZLkh7+pA8rECz+Lw5cCUMagaDMP\nnGoen0NsBUoDJSAPe7rP/t1ftL//a79svd7IBpyqsIHuHWw78kogPXg75HDNgExp+lBdgxOmDdKm\nDz+pJwSaC8ReeICqMgjuIJyKnqF8u836HLZ0/SEqd7EgylEteHZCDlIQBAuIl7CDhDbaD9dUM6bX\nQI/PgzAcDUHqOMgZfiP5QNiMUKEa+NWuUNNBKzmqU3rteRxuKn3O4yAVgUq3IsGH8/Rfsv8q9aVo\nNGptjgjl83nL5XKWy+WsUCg8/Mzh4aHlIGR0zTXXXHPNNddcc80111xzzTXXXHPt++2/Cinz7LPP\n2le+8hX79Kc/bS+++KI9//zzdu3aNfulX/olq1ar5vP57I033nh4lOkHWYR0XhuISRYVEg+Zq5ZH\n2b3ZBWUh4ynlkNbuqQqV8Cojll5QdW1nm7Oo28rW+tO6XnwKlMMNVb0K95WdHp9S5v10VtnSAVWo\nMlnoYEAZ/Jv3lM319pQVTgxVvWz11fBSXu2ZP6OKQmZRmfydDbhm1nXdEdnMYEaVknSEs7lUKBw1\ngqVn4HfxKvP24Jb6EzeN1zRcF/shZYX9Q2VXdx7oXGUgrgzdzKTG5aBet/rqhpmZRXww3c+rCuCD\ngX7kVxZw77YqtZEwFUzOogcGcKtMqO+Dmq53TJV/eoqqOuf+3tnQdboNzkKS2R0GP1gesIuCzuhQ\nGf4RvBJ9KovjY6osrN9X5bAMGqkf1BgkF+E4CGquilQWLz4nno4OFdbNd4VAmZnQHEbxjX4DVMQ4\nXDR5xpxUZ4jKbIHrzp0REmUG9Ym111UZWC1prqcela9V78nHvWFVEaNR3adQ2jAzszZKMGu3hY7y\nzatCm+a43zwIJstzHTLjY0pK2zDpnCuHk4asdhdFg0adc5lx+Vw8IV+JGuMNWitLVnoTVEa/o3l8\nBG6K1W/p73vrWlOBtNZYdl4VmE5bf5+Co6IEh0L3mHE8r3np1v30X/dLhzT+J7EeVYbZRRRIQIg4\nVew+1eEuHCY++G2yAVWVuqyBzTWts8MH8oXSNipEnHWdAS118ZzmMAKqJwbnTAU02dE+SiuoOpUO\nNUaHqGhEavq/Z1zfS00tmZnZ1IzaMw1nSQWllnVU5jbKmvNkS2vtzKOqDqWpWMZ9+nv+nvpx92X5\n3n5ecTHG+eRMThXWmUdQxIHnouNVvOuB0qiVQeaAyuqW9fdSDRUixChSKPWsPKLYMJmVL1nU4XbQ\nmu9RafSUQFFQianDM2I1+cReWzGqdQAfFKp2sbTmMzujcR/1vudA9AnMQcCkpjTfvrjaGea89gGo\njg4cGB0Ua2ogZFpwGXiH6k+AGOSj/amcrp+B/CExBy9ITvE+kNDnIzT7gOdV7S3dbyP/wOJTWqfX\nr6kylwVhmCJuFkAHNIgnAeLa0T0h9nbe2jAzszrIh+Uz8tXsvOZ4c1PxsTXUdaIZtdUHqrO1rrYc\nwwfRW9MYNNsoTp1T5XIKPpD4snym2tV1j0HqFe4KMXK8q/Z5UUqYOq0xmltUJdMPWmjQUzyNoAgW\nQN2vidrU+rrQYXtHiidh+B0Ck1rbKVBPniHVKZP52x9si9OBKyAwofjz9PN6zcLT1AtoDZXZY2y8\nCWIFTpwB4+aDj2hm2uGBgm+jIZ/PZjXPiQk9LxLLipfJKT3LvR5UMsq63uGDDTMz214HGVNCESeo\ntZj4HlXD3ORZS57SuCQTmid/S59bx0+KIHk8JVAkSZBGE4rT2ZT6PYlCnAf/8zZ1nQIqV4V3NO8H\nZT3vWyX9PRNS/5cfPWc5kHxRxuAgL1TAzp6+u18F7Qp/zsIlkILEtRDo2tJ9+fz+IQISXflmfArF\nlllUefygelDJG/X0fKiiSNPm+z5UMhwBlJNaDC6FI9RFRiG1u7zLXPnks8sX5OO1W/RzT/0fXxaS\n2jMB50FB8W1AFdxfVRwcGlXyDFVyEIgtlMa6Ba1h3woVZCrclT3miv71UQ8Ke3S/+rHaOwMfkKfN\n/hSfigc1fsd5PQeHPqE8ojkNVBNVkmpNPpRJL6lfp+XrNTh+EnndJ+6oIYIgdcY/zHynUHNpHMIJ\n5FBZ4C8dYlzUq+dimTU2RUXcP66/N1Hva9LvCJw6HlQKzcz83a6NelTwOxpnmmUx1mST51PQ1M44\n83QI/9VJrM6zPAHf2IVj3eQPTmmMH39bcewgoXuFrolj5fUgfaYtV+6IZ2d6Wnv7+F/UdfJfVB8+\nsa3rbfAMyna1flv3hC7yILp27rElMzN7raf4/PSroEFD2lcPdjT2gXkhUjzL2nc2imrHuyDGq7qM\nDUeK7xd35Mudd9SPnX36/SOKZ3c6Qp5c+LT698qL2nd/5BWhre6e1ekE/7Y4XW7c0RofnwE5c1Eo\np1f8uq6/rPZc3tephbdDOgVR+6bm5uAp+WrvrBAup8svaDzOaDzu8vNjOyPumgmv/j62q71S4i9p\nPBZfVDzfPq3PddOK98H78A814Am8rj3UoimG3bghBNJJzRdCxZbNVATE/ACETIDfGYGQfLmBKmsE\ndMmwSwwDlRvnJECTeB3uopAEr8oI9IfxXBx9jxJQpx83v7dpfpDE/h6cWOzTvPzICIBQaaJaFwV5\nGOjr//2go6pEfKQvxu/fEPGoz769AzrTadswBBSHto2icNCgwjbid3HUaThSVSMQLj345nooVvlH\njuoSv0VRe3IQ9f2+o8akzzuopUEf/j5+01pQn/PBizpyAgf5ik5H8THAPtsfZGyDamkbpI6HEzs/\nyN53x3Lz5k379V//ddvd3TW/329f+cpX7Dd+4zfss5/9rP3O7/yOzczM2Gc+8xkLBAL2t//237af\n/dmfNY/HYz/3cz/3kPTXNddcc80111xzzTXXXHPNNddcc82177f3TcpcvnzZPv/5z/9nf/8X/+Jf\n/Gd/+9SnPmWf+tSnTnzzTp+zX3DGhDlfXi8r4+1FiSYDO3/7SBmsEhnxNIgUj19VssaBztR6espY\npc+pIuyoHJWohA9RA5m6pu9ZQZm0g11lxpNhVXzrXWW69utUBKjKJUBNVI+V1TW/qkK507qftZVF\nPV7T+cMOZ539lAAWp9Wfd24oa92oKuuc9Ksd6ayy0gcbG2oeFYnclP6enFYGs3CsftXzVM82leVd\nuqbsuodK9cGNovVRd4hRmUuiEDMo6O+b6/pun+r45BWNbblB1g/ETBTG6vX7aruD8IiMa8zKNc1N\n6ZYy72mq8OFxznQefzD1Jb+Pimhc3+/VNSdhqiCxtDL7Sc5ttzmHfFBR5jqxKB9Kp/W6/474gk4V\nlPGenVdmvYlahaesbGo2qQrzakWZ9MIePCGOyhKKDUtPiYtmb0v3c85DL8xrrh6MCTmy/bbmOHtR\nf++2mbuSKq1nHhcPiNer+Vm7q/nwFuWTDc7uVroa9xIKOaFjVVyczPmOV/3o9FDQQYEnfCQf6UeY\nzxjKFFX51mFP8xKDvyPIuc5zj4k3qdID8XO0YWZmPqpUpy+pGhhp6npNVJiOvPClgKwJc+4ze0YV\n5/17VEuZt7m4/KcAgiYRP7myznhK323A01DepfJYZF1QLhqiShHl7KcftaQRnCFHNY1NJKz1nT6t\nti6vqGKbynCmPanPFXc1d7fe1NjUNvT/TkX36YAE9MKdMJ4EvXVViltj0/LpHDwaBvJic9vhi5AP\ndFHKmUuDlnpMr9kZxZGjHY31Gzd0/rtU0DjkAoqDl8/qfpnz8IqE9fd2QdWtzbtUoHeECMyjEjIG\nJ0Mih/LYsr6Xi6K+xHhkUa1w1PQKxMsOceuoAjrrUO/X8K0OCJgIR2EHPuYlrOvFZ0D8XVpS+1Fd\n8VGJiAXhtTihTaDWFIBjKL8p/6geaU1VyyCZQCn4QUxGEor7ExHdP0ZFPjWutTWCw6xaUSW+X9Ha\n66H6VYc/JXykcWjB19U41vgUec6cunbZplBrS0ZBS21ofb97R0iE7QPidExxaCwn3xlQpfKlFbcf\nPae5iWUUbzZBSh7tKk7F4OeYX5EvhfGJZlN9CMJD0UfRIMAzOr2A0gzo09qhPpc/UHzLw7sUoRI3\nj2LXyhXFtRhV7WIThZ098W904e9JshbzIAGPURJsUf1aXFG8n1iEl4d2t2qc6+5pLDtU/xtUnk9q\n448IKTl9RgiTOopotTU9z/ZuCWmS39X/+6AwclOah/FnVSnNzDrn4dXuVknjbh6NdwpOHodXqDfq\n0V/dr8RzuQZyqVXQc9X8oABRYpsb154jkH0PWbj87GnzgxKsH8gX790T0qiflz954C5IXOD5CEfO\nWFr+Eu5o7TsqWXV4kwYgd8rGefqK5itOLFh6QhXuCZA2w97Ayqyzu5sobIFYHIuqD+cf13emZ3Xv\nWEI+VtxVXNu+ryr67qbGPJHQ+ptclE9lJhjTGOiqJqqee2r7MYi7Qpl4E+FZR9wK+D4YehegivlB\nAEa7iqOHfrVvBCdMIgN3FmpGx71jvqexi8KR4EGlYxDHd/d5RlP1jiDnEQQx4iH+9VsgSECVjXl1\nve0uvEFw5cR8VJjZS/lQdUpmtP9tw9EzaDm8H/Kd/Q77WL/uk2BfHGAfe1xR3DzrcPZkhBqo3oaH\nsKvYEFvQfQYoK9Y6DsJmnuvqubS9hQIcHF+BrIO+RkUKxbJWF6QmyHo/e5+QT+PrIFbjcfn2oP9e\nDEhEoxbpwO0GD9MoID9MgfCsHMANxn5ikNF1vMSCk9iPvoZiI8+MclD7wFxc+6Vd07O23UE1L6v4\nubKpz/3Hd7QfbF7Tujz4jhAlT42Lt+dLQanaHo+rTVcFTLHmmvp6/0ifT0fxlS+L23FlQXH8K08q\nnlxHyTG7h4oQSrIh/4aZmT1+rLm5XdL7x5vytbmc/n8YV7vHFzS3wfP6/3f/vfbPPzan+L9X1Xg8\nf07t//ddIWYWXtaeJXlB+/Dn/pLa98Wu0ME/vCd10X5WHI+Dd7UXW4d/JP1JPXtP/658ZvFtrcH6\ngsZhbU7PyzBqdY/lteY3rrxoZma9b/EbNMwagEvrjUuKSbmX1I5zy/Kxe+xZZsKKVfdC4mkKNnT/\n2hOg+P65ncj8cDT2vVprA2eNd/i9FNP/R8PvV1McNfjpHtE4JNjbNroPJUbNzKwZgD/Po/HogVoZ\ngUILwo9nZuYb1mwYDlmgq2t3vKgQ4UMO10odZEkoQNu7mvsuqmahtqNqhMoRSHUfKsv9GGp0HbXF\n4yAEQbQM4Xbpt+EE4zoJeHZqHpAzQI5jxL36wOGu4bp+IJAoHw7iGotAn30jpyR63Nd87HkeKmCp\nX454WxSVJahrrQ1ad9gGMROSb3j4ng00jnUv8bxP/xJ/+vPmv4pTxjXXXHPNNddcc80111xzzTXX\nXHPNtT+b/ZnVl/4s1klwNmxMma/hmDJtxUO4CPh7NKes5EZeyJM+yJdJqoBNznMXyGSfRkHHqQRU\nUczZPVIW+Op1cTFkwvrcu/s691jh/N3MKVXLjo7JpFeUYZt+RJ9vcuYs4VVFJ7kIgoZKzzHqTodV\nZeTPTChL6yjbdDogcO5v0E9ly5NZVSJ8pn7UqWrFvMr4jU/BfRPg0G1P/Trc1/WCI33u1JIqELVD\nZRKLm7s2O6nsYPaMKlhJuFBuVXSP6iEIELhksmOqerQ4R+tUl/dX1bdGUVWSDGdms6CcOnAKDJyM\n8tPKbAcGMF/3TqTA/tACjJW342jL67Vdds6eqmo/AMkTmoC3YqD3d+8rU576iHxhYVGV6AdrqkA+\n+aiQIA5HzNGR+hebhvsA/p40qhMbcBs8uCmejbNPK6MenRMbe5dKp03ofrmgShiHm8qge85qyeWS\nqnBu7bxpZmaRdzU+Sytqn+2qStOrKVOeusq5cSqs5Y7mq+dU4ZPyHdvReNXhnEhNLvG+sr/7+6pk\nLJxXJcaPmsuwowqwzy+/2FilsjOtfkUS9OcUlZ41+V4DdEASFMJ4TNdrwLju7apysbal+56Dc6cJ\n19D+fZ1bX/kh+UmkI3/0Nt876/p+VtnRHNdBOdU5C5oIKhM+gWpFBnW3sbj6UqbCaRWNVQI1phzq\nDpmU1sAA5ZfywYaZmb3+h6rcVlC2aYw0Bokw56mdsUBtZGFM9w+gdBbwyLcGAV13ryhfPFiX7zmc\nNGEqgJGMfDA1D99RWBn71ZdV/aocqvIYBqH35BUpN6Rn1R6jUnu4q7Et7qDGhILLkApGbkax4dGz\nUnhIjul6kS7qSRGN13BEJQUFttVdjUuFimujA8JnJB8dDoLf2wwbw8cSoKMSy/r/GJXNiQnUl0BA\nFv2gHg40Lt2eYlIftNtJbQDr/u49+eKDVVXw46D9cnNqT25W4+yDgyFAvA3DURZ1KjNFzf8BCm9b\nqOwF4fLKhVA0Ahw4ZK0ebqsfxWOtjTC8WOlQytrbihPb20LoHTyQb3g4c569pDlagNco5JOvlY4V\nL9Ko4vSo5rx7U0oqnabm7sw59W3mMa1D59x4sag5K+0pfu0f6r5B+JLmruh7U/PyxQF8R4d8rg/f\nx/S4+jx7GnU1fLbFs/BtfPahAhhrLgnSMr+mZ3mvIN8Kw8ly/jEhUCbhLhuwBzjaUHsrZarn1Jli\nKCI4PBontcmM4rwH/qedN7VWSsS7OnE3ghrR1ILieyYOr0VMc7yel0+0yup3HD6j2TRn/qme1ffk\ni2XQHPk8PHRV+CxM8xO/onFdmtDzLpLTvAfZgwSdCTez1mbbyjv4ZF7XD6GIkUJ84fR5tTsEohOQ\nrhX34VK4q/tXDzQPoZATz3Vfjx9kFms2Aj+Ir63+3S+AHnxwYO2m/jYO0vfqiqrnaeIsNEBWYl08\neE18Fvk9tSVOxXRxST41eR5FlqReOzwj66CqCsSFOnuUJhXUMGf7PTzLwiH5NgXbE9sQDgNPFoUU\nkDfHIN7GQfoMAnC41DW4fbhQvH75igdkRw+FlDHGdrWpOD1gbfoTWgPHA91nDKT3cAQPiOH7URTM\nqIrXicehWfmeLwLaGI6IKKp3u1saZ2OekvAhjUXkQ03WoueU3k+wFyw6SHGoVtKoBD5o4gusxXmQ\n5CNQsQ3o8M6fUbv8aSrwq+p3FF6tTAwEFJxlLcYPeg1rojQXRVmnl1f/G1rSv9oAACAASURBVMeK\nCbEl/Gv4HodDPBs1LxwYjQNQgyi8DVJwD7E2i8QYD8/hlOc93qb3szd/XIpQey0hQib/GNWjuOLY\n4x4po75+RmPs+QPWjakto6fZA8CLdP0p9elre580M7OnV0B0UO1Pf03xYf689iZ3C2r7czkhTb5z\n+cfMzCy5Ii6X5NfkU5tnNTcP4I75WO8/mpnZyrNLZmZ2MNRzot1XHFkqgIyPas11viO10zVQsU+e\nBf30uMbq5buKn09/TL5SLGj/+MKk9n29GfnIMVxp7x6iFgR6d5w90yMVfe/bde27Y+M/ZGZmhS/K\nd1PXhYAvgvKwt9m3PyKky15V45AdiYvmckrj80cj7Tv/PCiHw33tPc68tGFmZmMXhDh6+943zcxs\nyq8Y9Pbzuu61La2N9U09j+t7ms+TWgs0cmwkH+11QV2AnPTW+d30kEcFNKBfPurzwt/iIGlAsbRR\nIgrx/OvDCeeNgdoAiD4cvIciC4YC1vOZDYGChNiwDRw1UvaBYRDE3p72Gk0PiD2QbABOrMk6sy6c\nLzzrBwOu74EVBhXQFussOtAFuiDMvfSpAZeLDw7AKL7fgcMmARKvDkdVjD7XQcvG8Y2GwxXjdZCB\n+nynpv4MYyCAGNMI92lwuiACksczglsGNVcf8dnDmm04ylht9S8U5r79Pz2OuEgZ11xzzTXXXHPN\nNddcc80111xzzbUPwT5UpIy/TyUgospBG/b3Vp2MOdUoI2O1v6EsZHik76Wo4t2n8ulFJ31xSVWg\n6hFVv9t6vx9UhSR1RVnNyo6yseWSsq2n4Y4YRGN8T/cLJqnkpnXd47Yy7D0UJWIxVfn8ZD3vouQT\nQeUlfUHn03th1JRQf8qjMvLIlM5TdoaoA4huw47LoCSyqo4lJ9W/YhnG9GNlIBugKtJLcB3EValZ\np98hf9tmzuoekSRqEDBsH91TX3xUZdIw6IdmlWke7lJB5cx/HX4IH+edc1RVoim1bWNNiIvkouY0\nOaNqVm1TneqGPhinTNuPdnyE1wrVp4oyxp55spGgGTp5jeE855vrfVXD79xWhn12SuiFNdACvpiW\nQOKSfKIBj08TdNRwTK9zTwlZsnN2ycze4x8620PJZ15jv9XQOFWCoKvgdtjmfHyBc9NTS/B7BDQv\nd26qwpEYk88HQXMMqZDfe0WVx1OfFIohBEdLjarQ1KR8t/W2xmkHjpwwKJFcVtXJ3TWx+BfhbpkH\naZRcUH/G4qrUHLepmK7BYUF2OwICKJGUj9VAUq0+kK9Fk/LZeE7zM7Gg/t9DNSTl1fydzWktlamM\n+5uqlOTIWpePqMKdwJpkxsMJZbKzIFMm8UkPXC4cdbX9HbW5U1ebRmG1dWpGVZAonDJbd9T36q58\nt7BH1ZgzthM5VfDOwRETS8jX41Q20w5Cxas56hRV2Vzf15obFtXnXlV99caUuV/JLKmhUyhg5eRb\nFc7W7+zAXVLXHKbmFF+mcvBKwCK/vSqfr+zCG4RqUgjwwOSi5mDhrKp3qSnUMXYUnzZQamkc6nsB\nD9xcDVUSWvB2hOAq8KCykZuWj/jhe5oJaPzDIcUEJ776UR7wNVGcQBFoD3RI+VA+n6/LR3zwIU0t\nqBrXSjoaOyezfVSpjreEeshk5OtnL2ptj4PuaPU1T71N+fJxXWsjAo/TWlHjX1kD1QB3xSQKOmee\nUlVvPKf+HsATsHVLnyvAiZbgubIE2sLvD9rBjp4dZVRssg7aijP32UV4D9qak703hYSpwKNxCEKk\nW9H/kyjxrTx9xczMYnO6VwUUwvFbQuod7sHHQBk7Nq31ffkRjU0qp3i6k9fcHL6xoTE9FDohR7ya\nOKe5GeO+794QunXzhnyJR6Kl4Y2Yvqo1E2lrre5TgZ24zpysqL0IPdjqJpXPTZA8cJ0Yay4e4Gw+\ne4P2B3vc2DHoqQp8Emtr8sGUT+ORWtEam4hpPEJUB6tFxZTWhtoVDWgtTKBSNUZM6sDbUV6XD+TL\n8snePuiLhAbo3BnF5ZkVjUNyjKoi1bkq3F/772o8SlXFqv/hv/0r9s6ffM0Ap9n0rPxn8rKQmbOT\nascANcQ8CMbt+9rrFLfgihuCkhvXfSNJ0BZDFIOItUGUKMNxUAYoy3UgXpk+M2cTrKtxeJLaHarL\n2/v0YcPMzCotxcloWL5zCU4vR8kwlVW8rVblDAcbQtQcbMlnCiXieV3fj4LciGc1B+NJzVXXqZTC\nUeAdnZy/zMysHQHx4lEcGzQUx3rs18aXhA7zdnjgHCqexnuMVUvtajZRCXLK1vS7wHMiDOdNL4J6\nHe32xHXfY/jayvRjRCV3BLLkEGRhbkGfDy3BfQVfUzugOfOCbiofKiYsraj9SVBVeRQTq4+CcAL1\ndQiqb+io4IEk6bH3cVSvElG4aWrqlz8Btw97jRHIyy5ImP6B1oh/Sc+VcdDKzfu6XxR+wkAFREwG\nzh24K8p1Z+8AT0r/PShUZCJtFN5tp6b+LiwvaRyi7CFB4Hir6kfQmK/oeypO72eBP4Yvbllxb/hD\nmpPHO0JcrAZ0z/pLii/Tj2pfN/aG7rk01PsvrSveh4rag7RDmtOD61q3f35T98lPwz1S0XVmrn7L\nzMyqt/U8eeRAcSS4JeRHeVmcKt6jj5mZ2XxJCJIvPSlkz3/zsr7fvCyfuXPs5z5aY5/eFWJnLyLk\nzfkivwPWvmFmZkce7adzHa29+9uak3Pw+5Um1I9UUHO395Li6syP6P0LGcWPd77y+2ZmtrwknszT\nn9S4xF9T+1c+ozV0sKu1k/f9qJmZdS/i46f4jbn2h2ZmFtuVD78OH1Gc0wZfeFZxeGXtz5mZ2dWf\n1NrqfekrGi9ix1RQa/nOtzSfewrTlsppbV8xqTWZ/b92EnMEehwqmDD8JjV4VrwhrYUY6Dfo9ywA\nV0ygqf7Vwii1oaIbgofFwxoI8rurTczpjrRWhvHveUD6+xYahq3OqYYgCDOHKybgdeKl1vVDcGZU\n77dBkfodHiN+kwX9INk88Ns0HaQI6Es4siIDTmuAPPHC4TJCnclHnO6HHV4cuGjg0+sQf5yr93tw\n4jB2/T5oo6j63hqC/OaHgTN2gxZoIxDUA1SgAERaH26YrkeviYDGqcmY9hwOrxZqy3CW9Xl2euHg\n+kHmImVcc80111xzzTXXXHPNNddcc8011z4E+1CRMqkYCgGoVTikxF0qsLNwGvRQjGhuq7o0v6Cs\npLfAGbVDZV1PLanq5qF6tZ9XdrkEKmBxVpWHDBWIV7ZVZYxN6PNjp2dpj7KsDdjlp2bgcogpO5pv\nKps7TsawRrYxv63sdS2vrHAaLpwxWN3zVBm3tpS9TqAak+P9B2uqfh3E+T6s9GPTsMyjiLFzRAZx\npHELjDjTN6l25p3z/seqBCSmpixzSpWy4obufVDSdw7Kql7MnVF199QZVbUaI91jb10Z5OS82hiO\nOcgUZQWjIDECParlnA2dhLsmQpZ0t65K4qD/UF3+RJYi49sIqKriZayLcBR4qG5MwYexlxfixNtR\nZfMsXAhbe8pwNxp6LcP7s11UhTAFf1F5YcnMzNIpOePb39HZ4KMDVZozjMPmoTLs5YJ8Ic056Ae3\nNId9/h6j4nn6WThktlU1r91VtfDKIzqzW97WXHXhdEjmVGGIJ9SvHcfHUfSZmFEF+a17ms8+57VT\np3W/wj31r3JXvjxBtTDJOc5dVFLSKA+Mc55zHBb30TKqHnBW3H5DHBedqvwi+RFQHDOqGPep1gV6\nyl7ffaC1d+k5VTimQa9t3tManr2m9kTh2SgdyG9ml+Gs6FM6OIFNpjUnKarJVdjgS1X59sGBMvC1\nssZiMABRd0bfy1LZHFKG2HsDNMAeyidk8uNTWv/zKL9MrOj7vpDGogqarLSqOHC7skU7QB9UdZ0u\nFVZvQGsw6NH3fZwfLqXJ8IO06e+hylFUBr6JAll2Xu2IokJU2lQ/jw/lE608nDmQzS9y3ju7LMWw\n8AyoJDgFHnxVVb2jElUsKsCBjNBbARCKs6gxOTxDKZRgYpPylWFM4xukktGFZqlaUbubu/rDoKr7\n7jUc1SKU2xogECkgT5+BU2dWvj2NgsT4OEjKE1oIBbcJ+DSWL8jHxyKKwxX4kbZugowqbuh7aT0v\nfFQ8miAsu6h6nLmsNXwGX/cnWQOvSmFj+74QS32UHZapRE8t6P5JuC0a1ZJ1w/r3zJJ8bQb1ogio\nos2bilf372s9RhjT5Gkh5WaIY5EV5i5FVbsu37j/ZVVACzvwUYC8iITVtkVQU6euykcCQfX5zttC\nZNx764aZmY042372gvqyfEpIHqOy991vqZ2HcFOFZuUrp6/r8+PERf9I6760qrUzFlI7wlRQ99c1\nFxvw9lRQEcykQezllvQ9OLNGnMlvcb474P9ghCHbB1qrQ1BhY6flY0tZPReHKPx4QSSNdrXGvD6t\n2bEJxcPYmMMNoPHL8xw9AgHV3NXnuwH1PwE/3vxFVLOyuo6f6t4Gak/FO4otFdB2BmrN4XQxM5s9\nt2TjxO+JZY3TiOrc1j3N48ZdrfUySFgfqJLlU4oRU6e0RmJhFHpa8EXx/F6OwMNBVbTVgdsCvqUh\nsSIaqlm1oPVy546QLZugsvxdEGgp+cT180IcTo9pLLxT2pe1QYE9uKm4tsn6a8MJ4szVxLTWae60\nxm58QtetwhXYqsBX1IAji0qtZ3ByVR0zMz8wpFgY7oA+HIB+ze31Kc1h91D9qx9pTczNo9bWUXvD\ncCOE2fhWQYr3ie/pZY2lF1U4P4XkqE/x6rggX/C05SMxFHECKPC0jrRH6UeFWkiMK04X4EfqgggJ\ngs6qrbNHS6l/kXHNcfum4nIf3qpwTGsiPgKxzfN1FKU/PVSTEDfto7bXgrwnADJ1aFTSR/BaNNWP\nYZXPNXTdyaTG8y6KmlGUKAdDxQof3BUxEDk1ED99KtuDIEgeM/Mv5KzNc7gBD1UOBbsCv0OGIN4D\nxLIa8xH1hu2k1us/Z2ZmH3GQLXX54tdWtf4uHenZ8LHL8tnSLfXtzY8p3rf98OFE/8DMzB555QUz\nMzu8Lh87d1tt2thVn+f+vPpQ/bZUis7taizfXtBzYX6kOczNqT2Xd7RGSm2tqbd74rix4dfNzOwo\nqPbeuKv3hxf022P2dc3Fmwt6pu1f0tiOpdTec109A1+F0yX2JLxO9xXPZz267mFEHDDH35FPrizx\nzPyW1lI1LsRKJyUff/GCkDyX+qChF+Qb3x38BTMz+8iMfOAbR0LqTIOmOsrL16tHGp/nInBphRVP\np/uKJfmg9qPlM0LQf6Gg/j52TsijC4zf14fikPyhgMZ5OCfk0Rpr4+YHA+9aABSKhxjWDcI/4tX8\nOgpvfdArBk/i0FAoMj7X1vh2QzyP4H+JeEH8B0HMgKLu8+rrfg+/STtinlHnIdKlC/IkBL+Ng3xp\nRdhb+DT3ngYqc8RDa8n3AjwjA361veeoEjk/AeF86dGXkZfTD32eaSBPOnB49frqg6NK1+E3R7gL\nJwwcNFCIPeSrG3ScvpPuYEsQhUitzj4ujCpUgP2nv8YHQc43+C0bQ3m3HwQd2tf/Q304aMlj+KP6\n3giVPHM4baLv8b/9l8xFyrjmmmuuueaaa6655pprrrnmmmuufQj2oSJlel1lI2uw50fhJpigtDsR\nVBY1f0/VtnZNGalMRucjCz5lYf1hZdRmZ/T3Iucva/eUyU9Gdd3Z06rEVEEP1HaUkXvkSVXtomT0\n1g6UPfVQhZpdEhqkQUWhsqH3Jzl33eIsnfeGrutFlWTquY+oo5yJ20MNyU/mbObCkpmZdWDK9oBw\nCQX0GgZpE4Yj5uaastMBKg/eCFnOGX0/Dc9IZ0/Z+NRQ/cmePmU+ztXe31OGOIO6TWCgay+eUR9j\nKKLcuyFFKoN7JgQvRwdEzAx8P7klff72K0KoNMnwXuYc+AGVx+OmxiAWPnm1wcysRVozECJTnNCY\n+3dV1TnY1PVzoBec4+H3b22YmdnCBc3tBGfrczn5Sr4g39hFuSsaUn/K+0LSLC5KwSbYUEW6uqr7\nzIBEuRfQ9Xc3hTi5+KgqEgtnVOE+OqTaXtL1Fl7Q2d1IVNe597q4HGYL+jxHVq1EdjaY0bhnrgnB\ndPff/bGZmW29I/TF5celIBZHMeawqPtMcP66tafxOQZ9FZvTfXJLWiPegj5/fKBxGMbgGNpQ9ncS\nBZnZs6qYH3N4tvIQRSYfrjS0BntUpJcuqL0bJVV+7lPhvv6I2nsc0vd9EX0+BcfPPhWNQUa+PO/w\no5zA2lQLjm6r0tWDm6DnVXzxgHSYnVK1ex5ejhGKXQVUjzbvas5GTc7GTmr9LeLjWdQckmTMCzsa\n29ID+UihpnaU9uF6ScnX5+O6jm9effZ1teaMM6yjKEifcdR9xjQGBdBRxUPFmz5oM6N6XW9oDkoP\n55I4SoUgdVZzNgf6Kzylakq9pnFa/4ba3SijvkEV5sJZ+fLEpKpHD9UqBlRfYPRPgBqo+eQz+SPF\nlvodjWfrjuJgA36gwVCf6ye0luPwbiQyVF6Yn2vT8uH4AmopY2p33+NUlDUufTgcTmreiGLHVABF\nA1Amh3d1Ln7/tnzwoKXxSaL8kE7r/sOm2jnKgSoY0zxOXhBSxoi/b7wihaHSgw0zM4ugMnP6stB2\nkxmQnpR0Nm+AotjYNW9CPhMDBeWH72EDbpZdOJjiPrXp7CcUpzLj+n8JH9jZ1TPz4G3F8R4cMzFQ\noqcuKd6nwmrbKIoCzAT/98g3117VdYr3tDbmODufvSpkzOxZtbOUh4MF5ZwGyl6zIAEvPKbnQWBe\nc3q8rjV6/54+X0E5MR2Tb9fy+tz+gXzK41W/5lHumZxZMjOz0FBzUaoRh+C4cqp6Ie8HU/ubWVCc\nTNPPephz4SgpdIrw1G3ptbuPShL8GccDUAV3df8q7S6zJwhS7YtnNV+LU1qjU6DwhvCBlEEEte/L\nN7ZBEg6oGmYz8s2Jx1Xhnpt8r+J58YUr1uCc/L6DrFrXWq/Q3gQqVpee0/cnV9SOcErj3t5Ve4/2\n1R8EaR6iBw5roA/WUNTp6LqNvvo7aGttN/xlC4F88KF+d+GUfCZ5RvwVCRB3rZI+V2D/Vvqq7r2z\no3v1UfEIzCpOzV2UDyfmUOmZhP8GHrYKPBbFVZA1xI2Rw4Hl0+f76Q+m0BVFha3Pvi+/rfibCWtO\nw2l42XbhMnRQV1HNWY1174enp1eA66oKghB02vyY1mqlDBdDApVShwunozH2Ul0fofrhx+VLA+1f\neyHdPwb3WguVpx4IEC98UC14hvxcwA+3Qxc0m7et8fIR53pN+XJzSEWY/w+A9MTG1f4q1fshKlGh\nLpwQcX2u3Vdc9lJCb4GebR5TmfbpeeBs7tqomfhrtIOYFoLbojiASwZkeho1LDOz2XjUdtbh7OmB\nsInpvoebWisR1GR67BtGjgIez4GT2PXJPzYzs/u3nzEzs/HWV/VGUqilm9MguPuKk3G4ES++ptc7\nGXGZpBtwh12lOh8X0rHv/ZSZmXU/rvX3XfYww6uouo0J4TH9JfZVOSFA/iSt9d4L6/Ozz2lsPvkl\n0FZHev1KRvvCH7+t65SqQtC89ONak5+8pefOAKWaYl3xo3oE6uGjavf131cc2X5Mc/wipxf6Ze2R\nQj/M74E/0hwcDPVcCX8MJPkf6vX8i582M7PVntbK7lPskUbi6Hn7T9SO7ECx5cyT8Iaa4ujKAL6l\nJ8RFs/ptff7BdVAUAZQgyxoP/6uKFcvnFI/7Bfmgzy+EzBcTnJb4PZCjP6xuPPuOfPZ37GQ25LnR\nBfFvbX0/ONR4dNkn9+Cn8gdZS0PQZQzfkNMSflDizmmRjqOYBEqtxV5t0HA4Z977Pebx+6w3MOv3\n4HQhfnSDahMgVuuBDDFURENwzQxQkfOBtu/3dA8v3Kvm5fepwxEDp5WfZ8WIZ4t5Qt/3/QEoz1CU\n/XxX67A9kI95QKwE+kAJOcHiZb/o4XdwFwXBvqPQBZpzFIY7B8SO1xGkIp4avKF+9r994m2Y36ZD\n7mfsFXyg/Adw4nSd0wdh+t380583LlLGNddcc80111xzzTXXXHPNNddcc+1DsA8VKUNRy3wtZexH\nE7DTcz7cyazlqbpH58hqZkFLUCXzhclIkalafZMKBTmnqTNwu4wrM7b6QOepQynUPJZVzTtcF9rD\ns0MFlkxedlKZuS3ODba21N7qkrKwnT2l1kZdVUz8M6oIzVMhLR2q2hgANeKn0jI2q8rw0ZGyv00U\nNXIoNThcMluH6v/xrrLUpydV2YgMVHnpUHHuoUpQgcV6Yl7Z3Wzc7MGqMuXVozx9UwZ46bTG5tzU\nkpmZrTfVxnUUSsKgkGbG1KciFbsxql1tNOnLtC1BxdUf19iWQJJ0D5V1TGT+dObp/9R68FIMu1R7\nOKufXFC7S7S3s40a1KTO0vd9av/+O5xpHdOczS8KvbS4CHKjrUz8Mgo33wbRE+2A2DijKtzBO/KZ\n5QlVBM5PqmJbgrdn7Q1VHhYuCmUQnVUl5Nsvvqx+vKyK8OJzqgTMdYRAKVbgxiH7PKzBQ4Kyz/ik\nECPzF5X530PpJVXWPI5NyRcOj1SpfGxOZ147D9Tv/LYy+oeogrS43/y05q82rjUVGejvd19VRb62\nr3HxhzTvGaA8MQ88R16UE5jn1X24fxq6z5UndNb2zRdVyaihihUj49+oq78TZ3S2uXOgfuX3tAYS\n3u856/o+drSpylcEOvgwZCRjs1TVs7rnsKcxXTtStWb7JbV1UNcYZeDHOXdZcx5dUtXEG4Hb4FC+\nvXag7zePqF6D9AtwFv3KU/LBVEY+lUAVohNAZQIVpXRCY2gB+fTAtJjKZa2lIYicDD6QO6fz2sOg\nfPR4T59rwfaeflLIlvlxxZV0Vtctwk5fXNX58OJ9+ZhTcZycVryZgoshAHKnSDV8UNH4xnyKNwNK\nCWtU0xtFKUgcFOSDLZRhAmn1f3lJvhsaV3tSCcVFH/E3MtI4RHKw9MMx4FTO83fV3vIQJbBmyOzT\nZscHivMntV5L41uB/6KCglpzXWulATfD8qzmf/EJrVVfWO0pFqnugdqbANEzqCq23H0AjwoKa9PT\nmrel54QeSwdB0W1rPDdfV0yuwHcVS2bt/CO6dwDExA7cT8VVfcbnlw8tX9Fc+zmefPN1oSjXdxRn\nfFTKssztyiPyiQRzMoRXo7QBhwoEDIWBfLla19zWUFhJoG40eU5Iu1hCc7V+Q304ekPxsQ0qYvaM\n4tvSk3rto2Sw/k197t2b8hk/yltJ+NXG/M7ZeLVvLEnVCSWvdE79aVG1qh9ofFoN+WoAFJSj+OAL\nfTAOszh8FZZVXO2Agqgdajw2b6q/LZRZBk35epKtlJfn6tCHcguVybnTcOlk5BNTIJuG+IQHpYv8\nO4otB3vyoQbVtsyM2rV0Ss+XSBrOCaqXteP3VDTWb6xaYUvtLhwrRsSzimVPfERo4eyinmOBsMbp\nGOTpxg3FiHqZ6idoQy9cMaNjfe6oCNJ2CGoNlF88pf6EUXKbG1uy2ajmLsheoh/X3LXz8r3b8KLt\nPYALBAR1Cm6S7LjWWfqC4lMc7phIXNcLmRZBvShfzaOEtb8JX47+bF7irCcA0g9ky6D3wfYkfvZd\nbar9fZS6AhfVzpFP+8xjOGVGCSq5GdSJQPKkUAu9V9ca6NJ+A+kYJu4XQIulIGnxFOVbUdSA+qwV\nD5xkjm+mUZgJUIke9vQ6gPvMQdZ4c6hAgVhs9uDMMn0uTCU6FIQDkmd5D262+FDjWD2STwyMNRhS\ne8NwQBTpn4fn87Cm++EWFgwyP/Ua19f949PiAWmPWFNwNxiImjAIxnQb1HBXz/WDA56LY5DbmJk3\nGLQ2CNQECEwD+ensjepxjUeU53dlB26Zwcn5qb6bf0x9fEFj1w6j2vZVrbuLIPtqT2vMXn0FJOHz\nWgu9L6gNpx9T31Z3hOb86OijZmZWhD9vNaj9ZfS2kNizP6w4eLqluFh+XPHa9x24qj4ixE5sVZ/f\nfE1zepgSAuQZfvucu6Dnxb87tWFmZpntnzAzM/8tvb9xWfdtv4rq56za58/pmekFAXQ7cl1/b+o6\nV5t6PvWvaC3fuSUEX6yjdgx+lOdSXmupUPm2mZklljRX8yXt1f6QuLW8B8rro9rXV74u5Er0ruYu\nm/sRMzN7ENDcjh/JN8N+9ePZnOLyba/e3y7L91dAh+w1NeeenNb6CwuKPXtfVmxaHNe4Hhtr4FD9\nO7FFQcEpzFvb7ygS8TuqxXMFlEUf5GcINJjxHAwjKdYCQeOBU63vAzXG3tPLWomwZ/R/DwfOyNMy\n3zBsXpAvHgfQwW+hIbxlQdC7jprSECTKCKSJh3uOoFUb+jR2UdSWe6zbAacmfLS521CbenHFhwiq\nR96uxxkcvYLoi3j09xpxLcr9W2E4rlCqisEd4205XIWovIF+7RIfQ6g6OfJNA94fgtCLsDfqMOYd\n0Lh+kECIh1oEJHi7DucV1/OjAuWJ/+lpFxcp45prrrnmmmuuueaaa6655pprrrn2IdiHipQZwFcy\njCullllUFnKrBJuyVxlz59z2qRWHH0QZqHu34UKgWt84VLazXSArmtbnpuaV9fVSVazt6XqTDks+\nShJ7D5SFbcLGPzutzLsvhDrHXSFeOigWBTyqPvXJ6BvFqjMgc1Kw4b/zGjrmnCWegathPKRM4Z19\nVXzjQaXUEjFlYZsjfb+C2kCQM2zecc5Op9XuTkXfO0L9KQzfSwp+k8P7eStXNZZjVLlHYaURZ08r\nQz+KaMwP/wTUTklpv/OocAyTVDDhcRhNakx2dzfMzKx2rMx87pSq4p0amdtNVeqCVKl86ZMjIMzM\nQpwTrMH/0AENkZlUNjIU1Rzub6uCOZeTj+RACaX8qvrvryuD3YKTIYvq0OY6SjV+jVWAymDxQJWM\nhUWQMquq1q/t6zoh+jOd01jfelsZeiMbeukndOb22hYIFNBQMfiID5ZZPAAAIABJREFU+rChR+FP\nyqU517yucawl1a5mWN9feEI+7PuWqlTViq4TQqGnSyU3UNH/pxbkm5622tODCT1/oApqCfTD6Tkh\nhrIz4rtocN58/7Z8vblJ9YhqV6MlP6p3UQ0hS346qXGurKsdZx9RdWswJxRa9V2N53Fb/jM+qypm\nYBHVkYzuX65xTnRw8tCUndQ6igdVFUoklWuutNS2rTua83xLSIZRHR8CdZV+QdwG0/BJ+DhTe0Q1\nq4T6RBUFleERHAmwtaemVL2fPw0KgSp7oKI1cACfUwx1oabB2r6u/9caikcHIGSCPsWfaErxMBtW\nu97Zp4JJ4SCBMlkOxarxhKpP7bbWzK03hJ7Y2NJcDwqglai6r1xd0v+zWkNl4nHzHa2l44baGaVS\nWqaiPGyonUX4M3qw9KfPygeuLgvRMx7X2hmiVhKCC6tWII4N1J5SUeO6fls+Va1q3MtUTAdwPoxH\nFTdPXdJ4ZBcUa05qqZjaF6ICUq8rXkajGufJi3CTXVFMjMKZswtvVb/MWeIx+VurqvZu39V1igXO\noV9QO6cvqmrYa+t+r78Jd80tcX4ZZ4tnzuh+F6+eN09C6++Iz6y/qdcOYzf/qOZ4kFE83l5TvDii\ngrh0QfecPyufDPEMG1CNP7ipdb11S99r91F6ycJtxTOpU+DZy/sRxq7elA+W7mvut0DaJFEgu/Jx\nrcGxWRAtIG7ufVM+tXNHcS2e0NguX5ba0/Q1VSx9cGoVQXRWgqAGgupHEnRZtaZ2OIpY/giIE+Jq\nDzU5f/ODqS8NQLYMH6h/e+9KJaS5q7l2eDhSoN+SpxS3QmPEc5A5gXHdfywu3xowr6Oqni9HKL80\nHggxVF3TGigZKk4RrZ0zV4RsCS0ppvT6Gs/DDY3PwbrGv3Qk3/trf/Wv2u1X1yw1ofufuaRKdWZJ\n8xcYEdvY6xyy9spH8H14df94DCSPFyTNENQC5/SXzii+T51S+xIZ+U03pudOeKhx6tYGVtrStfON\nDfXhvmJ/k1g/BBk9DaorO642j004KkxqcwsevB4o0eNt+XCJymtrS3M0RIlwAHdAinU8QtHLqOT2\ngZkN/CdX+jMzi/HszxfhFGDfNwZnVRekcosNYY/42RrT2MXhNuhReR6CkvJR3Q6heBiiqu2oE3kj\nPDc6eobGKMFmQaZsH/Ls7MpH4vC1+YZwr6C4ORqAzOyASp1QvAomNXdtUFJNkIGZca29WFL3L97Q\n8yrIniCc0APp8LBBf/T/YAqUs481e4jaVU/z3e+DjGHvGaHiXAPF14WrYRhgjbOWmiAeHcWvaFnj\n5oEzLVhSPwqH2rMln9LzyMysGzFrEpPiKJxZR+06BgkfnVAsCxFL2jxwo6GT17CfvKx7/N7XFI/b\nHxHPWCct33x3UgiT5leF6vnUUMiSjTc1Vh/5jO61dv8nzczsSkgchC/FtHZiKANe/4ravPNDWseh\nbe3XfevfMTOzXE9rZf3HUGz8gtZU+QndZyyu9jx+Te8/CPxFMzO7/y35yoXndd8roInvFRSvNrb1\n+bmIkNXJxCfMzGwIP1Kqqu9fOy9k5ME9vd75mMYjuas5GgNxt/kTim8Tb0pl6VxnyczMXv3RT5qZ\nmXdNyJzZpJ4X4xuKj/0Vxb1Lb2nNvfyExvHoQP2sjKv9l4/0jH1pXHsGD6cd6l/VOC774dgCuTh4\nGsRpRPH1zkC+FQF9d/AXdP/8vnxjUNDnrjyFT/0bO5GNUD/qeeEX9IBCQf02yO+1lsN3wt7RA0eM\nF7TIMAL3J9DJFjAXL6gSb5dYA7/TAD4YL6czzMyGA7+NIkMbEU99xPoB6FwHtTNyDrKgvuRDcdUB\n3Xh4Jgd5bTXgd0PpceggcIgf/YD66KgX9UGcDGIoRKEUFYTrqsaYxHm0x+Aq7DlIFOKCxeDrAUU7\nQOnKx8mSLvF2RDsRw7NQh+cF8KUoccoitId4aqCZwi3mDJSupwnykLg/dHh8iDNekDw/yFykjGuu\nueaaa6655pprrrnmmmuuuebah2AfKlImMKZMVZqKcDij7Gb36C0zM2uWhEJwKhupJTgPHDWQMnwi\nVHlal3Qdf4+zahdg+Z/V97bfVZVwQGU6BTqgAOfLTk1Z3pmIqkpj8Ho0i7pPpaCKKGTK1vEpu+vt\nU/XPoaKCClSB8/KVot4fi+mL41OwzMO23yfr3KaCHUmp3xtklylWWjCi94Mgi5IZZZtLXOewJETA\n09eFTuihy35nb9fm4ADwhql65DRGUygi7KOWkc+roulPKoObuqwqSu+Y7GOHc8aHqr4/2NYZeD9K\nBiHUPBoVZQ9LVBmmUJvwwEVyUhtwPnsYgdl6oMFYXVOG/OpT4ms4Tsl3qhVVKLoF3Xf5CbXfA+ph\n9Q2dYZ2GQ+ccKj8x1KVmI0Id3L/zXTMze+wnxD6/8Ih4Qkr3VH3pmcbz8o88YWZmM129/+4NZdin\nbyuTHgGNcSGicfeA4uhsy6cKVF4d1SK7q3aUV+GEuatxnprTPE2e1fh2qqA80vLRjZbmrwCaY0RW\nudvTfE2ydo7h/Vi/p3m+/7Yq11AXWDJKdpyK9MyKxidPJdaXgdfJo/s/uK3xvDIun6scyher22pH\nbkYVcK+pH2tbqlxswsXj4cD/I8+o4jqF+orvmAadwEJk8rt9XfPObXgx2mpLACRHkmpu7lHNTXpG\n1V5vCNWkHfVxHzRTN68296lqOypJGeLKzILGJg5XVYRKZqeg+zdrim91FBQaXKfUVbsqKGQ1Q8qc\np0CjRTNwQcHjUOLs/ngY1TUqhpmMKsv+qO5ThiNlc1/ttrz6E0nqOstPim8oe079KFEByN/VXBXy\noCdAzHgZ1zoVZ18FDoWkMv6nJlS1mrwAxwNn9EtNzd3qquLlgDU5oijTqzv8Jer/sK7rDkZasznQ\ndMsgTXKLoCTG4flIod6U+mBKbgHGYX9bfnIA+iGXkq9PTWmN9Lu6bv4Y9MLWHu1G5aSm9u1QSa53\nUGKYUTzO5oRqa+6qSnnzNjwdIKWWFuQ/UwvqXyYlPyoe5B+qHdWZQz/8F2cvKo5NPQvPTRuVi4rG\nOglfRWZFlcAeB6rzNxWv8reFmtrdU98dvoflc1oLCTi6WiBfOmH58jQcKKlL+pwNnfPSer2ehesl\npepy0OC42tswM7MHbwvp06CSOHlK/bj8qJCEyQXNbW1HY7V5S2NdhX9tHEWdzNUU/eKsPL40AAnT\nHmlu4k3NicM31xt+ML4QZy9RojJchlvLx3n49AIoqHHF4Tjgiy58G2GnzMU59v0d1AeLx9/Xr1rN\nUbZQ+6ep0F5e1PxFshpvL+obu6tC7Byuo0wEKsLb07hMfY/60srVqzYxzd5kTP1vHaM0BlJyACIp\nxmYmg0JbkPP8XtZoHd6R8ZRiz3hSMTPNWuqzxyjDP1XalP8eVdW/xoMdq3RAgKDQNxFRm08vaZ2E\nlrP0WYM5auq1XIaz6l2twyJIwT6l1H4J9U6P4ogP9Z5kXGsmyxyFnUlyRDdQTerCWxapOXIbJ7NW\nQP2ow4XoBU00NgJpiUqeg/YcwhHjjWoMOyAhfWGNdTgEkpA13NlHhYkqdostk5/rNLv6e2YqQ4f0\ngXIBPhK4Znxz7LmgSKzuosDGfRFBesjXN52Ub5fzIM6Zw/SynjPDonxlv6F5iU5pzXtBujR7ii0h\nKtZJ9qtDOBtqxyANg5qnsO/70cIdo5LM3sVZS72eg9ZjLwiHW/kYvqOUnpfRCGivhK57uCMUSmzi\nvT3nsFe3Wk/+s7io+aqyJyp3dd2FpPYy3RZIfvwtzPP/JPZaQs/GT17Sviz0psb21mOKew/WNPjX\nn1syM7MX/1hj/pMH2kf2+oq7Czmt1y+eEgJ8dk++UbsL/9yfE2fKmZ7iwnhCffrqpzRWYzX9xglv\naF3WntJ+dengi2ZmtlEWF0t1IOROqP1lXS8kX5z+gn7LdD4FcrMqX/Ddki88yOg59emg4vbqmuLb\n1WntNd6695qZmT2SEVrpnQbqUPBz5JaEYIm/rn1zal++kRspJqS/rP6fS6h9R+cU165NaK6LR/LF\nb6dQC31NqOelnHymcUP9e+dRjfdz+FhnRc/qB1e0786tCsn01gGIk7fks+eval4mPPod0K2r3U+9\npH4fXNQayffE9XNEe05qHVAeHtBwLB0bxtTOZp29ZU8xtBNBmcgHmgNlIr/n+3lSQmzoB44aU1Df\nC4Ly6Lb1/jDxHqnMIDAyb8tnUTgUW6xbzwBEYYxnLfHC19Nc9RwEGci2OAGn63BYgVRsd/R+ENWz\nXp/1y7OyCzIt2EfliFMSIRAuiC9bpAX3IIM1ou895/vsIzsNeN+iIFxA6PW6DqJQ7R+C2PF51U4v\nnGc+sD9dR8WV51IgDHcOYziAI2YwcAJWl/7BxYOqaWTE8+19tiQuUsY111xzzTXXXHPNNddcc801\n11xz7UOwDxUp0+NsVyyiKl2AM1ddKiB1aJCTY8qkTy2okrm6sWFmZg3O+vsdLggqE14ANvNjquK1\nQsrQbWypatiM6fPeiDJ+5ZvKeiY5y5blevFJZdi3UWDooHAzMafMfCyh9nk48xqbUQUouqwsd+Vt\nVYpbnAGemlNlKB5QlvaIc/NNspmnUJ9q1NSv9g5nXMfQjefcYCyg8RoFlEUt7Aj10IHN2uNXBaO5\nrXEalRo2uah7HyJ5FY8q492Iasz2v6ZMeJOqysJ5qvU5VcZeua1MsnFer9al0reOcs3/x957rcmV\nXdl6M7z36X0ikfAolDespiebtqVjvvMAutXr6EqPcD6pReqwm02yu9n0LIdCVaHg00T6jIyIDO+d\nLsa/q7r1iVTiCjd73QQyELH3MnPNvWKNscZIq89SuHSMu2qbd4xrD0wW5xz3RcvEUT/nzGUWJf2T\nHe3MV0Ayc+jwJJETz8N+Km6pT+dBaNv31afP9uW0FQ9xzjCu9i6gVl//uVDtg3tiK116XQjDOK4+\n/uRPchXa6Aq5zuL0M1Nkd7aoGO4WOePKru86zKRpmDqfnr1vZmYDzoCuviKNl9qfxBYbPRU66OxG\nJ8eODpHqtTb9pt4HHavDxlhdVXueglBvPVGMzL4hxKFmKIl3OE/N+fIICuiFM903O6W/Tw/Vjuii\nxnftq3JXahSFRrVQbE9HcZS4r9ifQTV/6YaQngM/7l8KeWvDuBrCOui3QA0nf/3c5b8vFRhp/lO1\nJciO+aVZoc1B3NBy8znarLYfPAPF31Ub+nXN725AsZRIqS2z14RepTlzH8YpJuRXHbu4NhweiWky\n3NXf5xVQIZT+UwPOxk9ph/7KV5XP0jh/xeJoEqB35AV9nvWyQ4+GQIczrMUybKqnQskaOw67AkYe\nOkWLi6q3n9jd/VSI6tGRNHYaXqFKTh6eB4H1R9GqgSUwAkWP5XjlLHGhq357+pHmXKeknOBJqL2p\nieP+wWHiiNq3HNF1c9eUOxLL9HtW9e0F0eOANVU7Jy8WOmZfNzvZU0xftJSe5HUdWFxJHGxW39E5\n/ERA7T48VFwcPFUMT84cDQhdp+7nzDWaEFdhp2TIsWPi4XxPMb2QUnsyX9F9ptAyqOOS8mRLelSt\n6tCS6IpNvaw8NDenOibW9CwLeFWX/X1c7crKf+OoYuf0E41pBXZnkTPwXRCyy5uq4/zrQlCTsDa7\naHY1QfkXkhrbhSXltZBXjT+B9dlpKaZboEWlfd3vrKQYHHToI7RmLr8jN5LFa8o/fohw27/5g9rz\nUO0Z83zJravdM6trZmYWBF06wJWofoo7HLpHvqRixZMGxaKfMFC8cDkpK+9PxuqX1CXNiUuLygEh\nWGrBuu5fPUbjqwWbFqZgGdejLtoKQZinEdYWS+uKgSyOb9NRxX4AVuwh7KxjWFYFrhNDR+7qK4qP\n3IL6M5j6cil3+fUNG5dh+hSAXif6fiLD37BtDb2nRhPaRMFhrdFxa6pXNKPnZ2uE5tpT9Fz2lDvb\n5+jxMe69cIL2pWxjWWuI1Tm1PQbLZjLMUDV9t7SP7tih2lzDCaVZ1zyLRhx2kfJJEr2kBE6CCeZz\ngjVCirY1a7p+d195qofDog8EtOZ7PmxygpaU4yoSR2MmhttRv6h6Ojy+GBouY3N08dAscTQNlomN\nKeWf8XbezMzqOEP6COLJEE0HkNl+yHFFAdEd6r6ONk2c50wL/YkRWjtp6hkZKZZbBfVzBmbR0Wd6\nngy4zvSMnqO1ttYAgzY6d2gnmmnt0GvQH6xVgqyLh7DbjPp5cPHrRWHshIldHOMGXsWqJ6yc1qQf\nIrCm6zDrW3WtJWYSWsv2WfsFWFwMnRwQ+nItURoPrJ9SvwVhizdPVf9gUZ/PvkEu4fcIJIUv3AAv\nUvof6ZrvO+5kX9G67l0YalfTiun/gV7k5az6+MNDrSvnYB562sp3369LW2WLvFSEXfbD6L+Zmdm9\nf9QzKHpJ171zrvk6uq85sNITE7mfljZLFa2qwG9wG/Xi2Hr7HTMzO8trXZq8mjczs8rv9f677d+Z\nmdkvFnWfr5W/aWZmv65qbF/9huobL0o/bQLT70FQz+qV2Df0+ljvP42rPmnHreqW8srPL/2rmZld\nP1RMfvJI+W4ME/MOpxVOlpUrfvRY/X33G6pvhHz28e+Ul1/5SIzt8UT59gnMv9aJYjZ7BxZUTa+3\np9T/d8/0+vpAz6knCxpH7z3c8qpap0dqPzUzs/CV52Pd+dB8CSC04oP1PEL7y8casz3SuHt53o3R\npRrhCObp4GRmzvfVQQNcCMc4bQbRnxrCJguMv2TKhPp+a0X6BvnmC2ZjH90aHiHmg/kS4JpdWDmY\nltmQZ3gAlzmHkRiGQdKD1Om4IXl76JUGYMbwm3SEo1Qbi9+Iw3Tkd/sYjRsj/8V6fD7E5+nD4RCG\nDnlo5FNe8UR4NuPw2+c3pqfNb1T6ZoIjpMFq9aAR6GP96uWZN4aFBUHGAh6YODBFB4y1x/PXdVVd\npoxb3OIWt7jFLW5xi1vc4ha3uMUtbnHLCygvlCkTZcd+jG94gfN4o6p2zGpx/Z3kHLcHdebSXaGB\nzvm75eyamZn5UTvOpdFmmWJHHbSwXdBOf5xz0YbKe62Fjzp6FnF2Scc9lKzP8mZm1u/DVrgqdCrM\noVdvDER9Qbu6tTbaFKdCaJIg1GFYBF7OD7bbQhWjsAxmFvS52om+32WXNDetXV471s5ePKx2NUBk\nug3dJxJFxd7HeU9YEpGIxzKzQhPqZc5fp7Rb2NnTdw8OhY5MJ1W3qXU0VDo4ouSFHs9Mb3BPoU6R\nADoYCzjOgHo0u9p9DE2jE6GutPrznvH3qY29onYZu1kcZy6pr8+6OsfsoEjzGzhfXRKDJX8sLYUp\nr5CIa9e14/4MtLzZwB3podr3rb/BjeiW+uvgiWLNFjQmGxtrZmZ2/ImYNsVnnCENqX7Ly4rVOI4x\nxbIaPsAdafcz1ef2u0KqPViCFcpicWXmxSiJLykGGz0hKbkTxUYCdHCIE0UX/Y0AqNj+ft7MzC7d\n1rno9JwQlKdb2tG/ie5RBHaG71RIZ9yjeqaSnN/M4FDhU4xO44z2/l1pwqSWhU6GZ9VOv1/3980o\n9nowX/JbUucPXNaZ29UlxXK5IZRr3NJ4FrY0R3O4ZuXiqNhfoITY2A5nCbJZmBwjxWSxr1g9uKtz\nyxXQ6BS6OEnm06Wb6rPczCIf0Es7whl9NEVaBdX1DDZU+1hzpwmDZQLC2M2IIbGYUSyurIFQrunC\nkxAuQGU14BjmX72qMQmhXdBqoEPU1VxsgHi2a5zdB2GY2VDfzaOTFMqiiWW6/tmhYqzVUt8n5jRX\nrqwp5jJJ5jDttRpuHzip+EEKj7eVMyo15dMujJ7pHM5fyxq7WApdC4/6o4ETWDiBpkAaDTDYIQ2P\n2nFADDdw/qo0ca3q49KHfsbYoa5csIT9+v7aLVgGyxrvIforj+/K+WF/V/1knKWOJ1TP1Vl9Prqu\nuZkEzfShbdMe4HR2wJnrpObY9LLmoA+7gINPlVMOtpS7Yinl0CsbVyyYQF+hBSMlAfqCvkY9r+8e\nP1M+SsCOHB8qxtuwDnox9fH0Jc23jZuweeYVG4Gw6nKYR0OlBFMSR5mWDwZdH323utrUPIehUlds\neGFDZXAimMWVLw3TJckc8IM2FWGT7W+pHWfoOE3jJrV+W8/WhQXl6x4Mw737MB9Lit0wzofJRY1N\ndho2Ao+Xgaam9QLPx8yMxTT3N25r7oxDWksMcTQ7fCDEt3+kmDyDRdvt6DnlDagCPtzoLr2kPJ9a\n1d8+Yj2Aq5QHXbzTZ3o93Mmr/n01IBRUP750Rzlk7pr+9sPma9Y0t/rHX2oZ7N59aKOG2j0caM3Q\ndZw0hqpvuauYJwXaNJpwHnSqptdxPgqrnxslzYkzHC+7OMV56JfRlHLPxhXFV24J9lsmbn7WIx2Q\nwnpJr7WCGGLn5NGTPT3rvDiERIiJdELXTsZVJ0dHLYULpd9xZwLiHdVVtzwsngF91CTxe9FEiOJq\nNx4+X4yMcNcIDlkfOpoKsLU6h6yxmCOZrNabHU1RG8TVToPR6WXOR1kztH0gyueqVyhA+8q6wFLO\nmRs4pKHhNUQDrIYmSwS2m5F3Hfcqb1RjGqc9BVzlpqd1nxoOa1H0K1KX9Xr/T4qdSVDtS63BuoWF\n16N9EdD4AI42XZg4gZTqFYPp1C/rehEYnSN0Dz0VjV96RuNW3EajB2ZQEherKuMJUcmquKyE0NsI\nw0gf1778mdMtNC2MrmEwpM+VjnBPDWluBTyOO5X6P0mO7XbrdtFyvSUtlWhS8+n9EzFCymdiNte/\nprYlHuiakZcUU3WcHWswChs/09yYzf5RbUF/w9dRDNz7meo4CJZps9yR7PHfqW0v/YOZmR33pOnS\n25M2Shetl/CangvBjrQBf3FP7NDXJtLEub/5sZmZzf2tvvfwJ4rNBAzKhzuw2jKsKXAO+4dtxbwf\nNtbrbyvfP0G34/NpMe/vBL9vZma7ET1nTua0Lv/Wgfrj5BP10yuvKnZ+94Fi4Lc3xcSJnym/tn3S\ngHzzimL4Mc+Zt2bF5Okgs3eS0vp7cVf5uPUV1Wu38wMzM3vnOi5Td3HeSmrc7r7G6YqGnm8n68pR\nmzHF7N0i/Xqet+cpwZEj7MS6uQ2LEOcfG0IJ4nnhG6OH9QVpy3lfcTFmvdDh95AfekvYS45CA8xP\nTuiNvtRunJjHxp6h+QJotrKeSeAa3IUxE+Mh2x05rkjkMdZnHY9icgJTzQNDzot2lp/rjWHx9Hhm\njmH7DGDQhOmDYZA1EXqi/gmM8wmMGUidY1ycHO2YdpDPdfkc2jQDR9QFJswId6cIc2tADA97DuuJ\n+6I94wniXGVox4Rxjxo4Ln58judRyOswimDcDKHe/YXiMmXc4ha3uMUtbnGLW9ziFre4xS1ucYtb\nXkB5oUyZMQfFO7ikeHraGavDJFlx1Jw5i1zeF/JxMhJCsLYoVkImJ8SyzHnoQVh/dzjrdbonNK4C\n8nBlk51ydrAcR4fgvHbWAxnthh46Ku9VbbMmLmvXdzOnHfVjNA68nL2bTPT+6Y7QtNFQ3/P5hB5F\nQVzHINd7e7pvbEVI0Disz5VAoL1ZfT7k1w5cGzXoWFb3y38udNMb1HUWM9o9b3uEmjVxeFheXbMI\nSGK3ol3HeXQgdnc5Q9/HpWdTqumLc/r8s/t5MzM772gsNpa0C9nfxwHBUdJPc04aF6Nt3DTiYe1I\nDyLawW5WL+6qY2YWArUoT2AlnKi+8zelz1Ayje3prnbGH8PoyVzRTn5/Cs0ckNZRFw0C1OVnrgvJ\n2AUlf3ak661tqi/30C86fKbX2Q1iblFjlYEh8vQTabzMvyxEc8hu6aUpXT+NrsQO9e/h+DDD+erW\nqdq3sa7xWbq0pnrkFIt5nMHiCVAbzk1XSoqV668Kxf/oXAhEFQR245YYT9XPhHCOQxr32AgXFZgq\nvT3+/5IYMAMfDhgVxfDVr4npUugI9fLwfr2gOPAvaH93Huexypmj26I4qO0JaV1YE4Iy4uBlzoOe\nAKwyQDabvY3bywWKF2ZKm3PaoyPtYBcHGpMB54en4hqzNcYuMKUxSiBCFerr+9WW2tbMqw3FCZpS\nZc66M6+qEwepU19lOWM6vQLavCBWWXhaY19Dh+nwgZxUjo5xmilzrtuvekzBLuvjJhKDheDHuWt6\nVnMqmMCRC5ZUCKZcv6++reJq1K9zZh49jPQMiDPfn5D/jvM4l7VhJSiErIe2w4Sp2/PCSEzBxlhQ\n+720v9xSLtnbBkXzMtYZMWdybdwwcJ86q+v6pYpu6CsqpgLoUmQ2NEdmruBatKF6L6wLTbxoSc7g\n3mTKKWdPxJzKF4QOttEAym6A0C8JRdycF9skCvOnAxJfOlacFJ7qudQ7UXt65BhHi6BU1//7eJ6V\nSxqXdVgr8zfFVGr3Brb3mRC/SUN1iczABhirjifH6hsvZ+Y7sJQCU1zr2pqZfcmaCkZwxKKPD+/r\n2VQmlitlzfvqifo+nNYYZmFZeTibngnBeIQJGMbtIhwg9kAMg+jstNFm2Uf7q4QWzFle+TWZVl5e\ne0V5evO6kNkkjmPFvPLFwwdCao8ryluLS8TQul6dOe04m7Udpwg0syKd5xOVWV+HgTOrufLxA/X7\n4T31W62gOZJAWyXOWiF9jecBDMLogvopgO5So6j+P9/SdSp1Pa/aMFe7PeWS+WXlgM05PYcz6xrH\nPuj/6YH6pbwjZNt5Hna4j/0v/6sdbG2ZNwaDtYWGAOyGluPciFbOyrTqO8/z22A0lap6rhx+oHg8\nxS3PDxswOqN+Wt9Ez4U1UQBUs885+vzRmY1g1ZyhV2QljVW1CZsW9HYRLb7csq4dJK9FJxrrIFpU\nAZgttSaaMx+pT8/IH1WcH/swHXK4X3jQEgh6VFeP33HNez5s0gPDpcczLB7HeQzRgxquQEPm6Mod\nze9iQ31aA6X2wwQKw3Y1dOUwMTJvRvkv1FG9CyfKI9Priq1bY8ewAAAgAElEQVSdbbXb0YPyookw\nHqq9IfrLQXS7I+WrFCzpIRot5y1dd34FZDsKiyqnfseMzsYg4E00GsK4aBmsqzAAdId16gTGTx+3\nk5mockoQF6rKmRimK69oTRAE5a970cOI6fr1ptrZwQlsZkqxOx7tUS/YfuhMJRnXxXkYODjmmJn1\nShWLovUQ4Pna5Dkex1EzhDuMQ6DyjTROw1jLLlo+eUMaLL1F5a3vPtHYfHrnn83MbPOZGNnFBdVh\nbUsuQMdLqsv9qtYu33pNWiu/HmkN0kyo7T8mfz9b0lxZWlNMe3t65v7Wrz57Z6R6dD7XM32Q0pis\nLSg2HuFEe7yosf7WY1yUUqrH6tZ/MjOzclZzd/i2xuBrfxJTPPwdxVKpqD46/bO+98qyYv+TS3rG\nPvi5xib8P2mMq081JyY3tBaavaPnQ/CxFhmPTM+DREZMlvdKyrP+b+OGtKv6H1zS/Q6qykOxP+iZ\nnXxT16+e6jnVOf4X9dPbuF89EqOoXVX9Xw3+k5mZhaL63lxU/fzE8w0zM/PdU/3nm2L3Ta8pRo9T\n+h1Sf/PXZmb2cleMmwsXNC3bDsWTtZKvQ05AZMzjQY9qopzp8cE6DsGsIcRHQ/0jAGvDeSz4xvxG\nRfclDBuxM4h9UZXOeGyJpscm/OaK4fY59mg+hXDM6sN8DOA22mHR3kCjxUce8zlMZjQLHRe1L3iJ\nsHvCfH/ix90SbagBDBYfmjUxiCsttGT6rOMcNtBk5Ojm8D4aNp0g62LylA9nyQHuo8E+DEvWzQM0\nIL0wg0IDvXb9ipVWX2uuCfk+0CI/RHF1cph4uE31+zBtYCf3Jw6j5v+7uEwZt7jFLW5xi1vc4ha3\nuMUtbnGLW9zilhdQXihTZsg59fOidpSmstrRGrW0s5R7SSj/2Ke/izvarVyKaydqg3OXRc7F1eva\nRY2xQVdGp+MMpkyYzcfYKnoaaMZEna0p0L4ue3nthhCe8AQdDs7PR+Y5jbur3VZfDb/1hu5T3tcu\n9SJK6UFcXyzooGa6fhcEfgVnh2gIBwy0a2bD+nxzrB04x+2jcq4dt9Kx3vdHtMuduS7EodphV7qh\n9kx99ZpVQE8GVVhD7LiWGnk1HZeMeRC0AbuGnRO1JeLVtVKc093uqW+m0e/oo0xddJSr6zgBTGkH\nv1mHkfHFOb2LlUlUbU6Czh+DelT31XezN8VKuPW2ULbPPhWyV+D+r7yiM7wjj74/Ap3fQ5vg7Zlv\nmZnZ4ixaJw+EZk1tqt6ZJV3/eEeoTKtIjIEoh7saq84YxkgF7QfOO0dx3cgmdL1hRt8PcQ59ggNZ\n+ZHuu5cSgupL6PvJBc7mV8UkScyDNu3r9eE9MYPe+ObbZma2ckMMk8KZxjmdU2xmDAS4rnEK0h/J\nRSEMj2AapTsa/xyuLB/+UQyiKMjK1NqamZnFEVzpb+EO8kzt98R0vdXrQn7Ot4VeHn+mOIol2LoH\njZrhXHr/XP1bOsU15hiXpgsU/7R2qpOco20KXLbFgOZDhD4LgOCVRjinHCiW9gtqewMnqN6Ys+tI\n1HhjavuQHXt/Vm2Yxn0tnRK6klrVfbJBGDdt1efwnnR1DltCg4Yj9VU6pNjavKUKp4P6/ggGXxtE\ndRhDp4LENgJN6cIKyB9rrFsdnB5wAGvB8Bvj3jELE683T56tqh7tCiwDyEotmDUc9bUUKFoWd45k\nVvUdsfNfauq+9S1YUWOhgukptWd1DZepgT5fPne0eWBpjIV4x8Oq18xbQrsisA1mFnBlQuOgTY5x\n2AYXLUeHul/nRP1SQ5QslsVx4Q2NY/KS8nsKFtwEtsXxZ8r3e0V9/4xz6xMfyDEOaAEeKNE5zbls\nRv3u53z43BoOQzG93y0ql+7e27HWWPkhCRvIH1cdhmM0RiAZBdGxyc2iwbIoJDE2q1gt7CrWnu4K\n2WvXeCZMVKeo41QCmj+f07xP3tb8ncZ5cIJuThz2zwSdiFpV1x/ACigUYJPBhqiU9NoZq6+y6Ei8\n9KoQ4ssbmpuhuOpzCpto676YMSfP9Oweo41zY12ss9xrelYmQ7Cy9nB+IfZHPTR2fI6GCvnmguX4\nQPV98hiE97E0CKJj9e8SeibxFSG5M/M4taQUu2HQxCNi4+yp8uMxzkJDnu2BrObAzJz64eoN9X96\nWnPLC3p3zPPo8FjXqfL8GYPazc+smZnZKrpYZmYbNzethTaFD9bDBNbD1QU957yw94KwiY9PNDcK\nT6TtcFTK6z5cc54csHBFTNDUDP2AVk21p1xSyqvdo4q+2eyc2IS2dE35M8qYbqCzM5sTWyqxQV7C\nxWI01LXb6ApVa4q5XgHmzWP1xWSgZ0YPRNMfRSOFuWC42cV8avMQBNXjJLjRlw4kFyn+CGupCQkT\nnTdjzdRCPKZP/riCg+UB+afeUcxOo6WSQtumTb3GHvVTEqetCaJplbxYDJs31F9ZtGjqMDvbXRhB\naDdMcGRr1xynRZiWaCL0mLsj1osh3P8GsOIwhLFajbVcBOYO7Lg+jNQoc9jPc6+N9lif6KnjhhK9\nqXGokxtqJzh2wfQJsQb1OPWBIV5ugkCjSZSYFxu3C4VnwFqvc6q5ktvU3PT1YTQ1vtQxHJ61bYCL\nYIC4qNZZa+H+FPGqH85xUJvE1B9Rz5esgv+/8vKStEj2qloHPQ7nzczsyq6ehQ/mFSPv9uWqFH78\nW9Xvh2rzj3e0jvvJolx/bnW+obbu6ll5v6tYeBk3vZ+jU5b6it5/N6l88sCr2Pr2dbk6ffwQV84/\nab6uevTM2/6m2ngw/qqZmd0eSIvm1xvkkc81V79bVp755Y/XzMzsZleMvWJF91vP6DmxoiGzo0eK\n1bJH+Xz1F2qnb0Njljj7WzMz+wjb19676o/vfaSx9GU05usV9ed9mCGjyxr7zKHaPbihMZ/9vWLr\n4FT1fNOndWf1O4o139+rfq98VevN8DzOO/+nPr/1sdqZvqzrBId6Lt2BvvbhJdZSJZgoj9SuK0Mx\nmt6f0nPjogWjMfOg6RhCD2oCe2vI77YJ6/UIOil9TpN0YH8Y/x/n+TcZwQZBi6aHls+kA4sP3cDw\nv0t9YzMbxrxfOBr2HO0WuBvDhOoYRPtlwrUDaGw57qADc3SOYJLDKAxSJy9OgwMYNK0mbkaQWkNB\n5ZUJa5MJ616MYS00cZgsuB/TBQPmaZ/1dbCv+Robod9GPnEocAPWqQYL1Q/DxnleTWDOeWDuRdB0\nHKIhO8BdaoLOz5D8axFc8ch7jqzdmN8nYx+T4y8UlynjFre4xS1ucYtb3OIWt7jFLW5xi1vc8gLK\nC2XKeNpA0ZyDMxwDkintTCVmtKt8tJs3M7M+rkZTr2n3NcCZtOozsQVSKSG5fZyBSqeOpot22lJZ\n7ehnorpuCYS82tX952CDdNsgDex8BWGsxGe161zSxpgV8jjIUI9+WfcbVmEjXNPuawC0atRlBx6W\nRrCNOn9KaGezxhm+nnbYJrNCp1o9IQctRy26o13fQVvvb97SLvFUWIjNk4c6qxtdw7EnmrbTU7QE\ncLYKj9k5BtWYv6I+iU/pGttH2hnuFdQ3M7PqOx87uSGYKwkcW+o1XTfYAcnLaMc5xHlmxxXEY8+n\nKcMxQ4vkdL0o2jK9mtCx0ufavVz5gZgir1/XGdq7fxAy0MmBwqPYH5leMzOz/E+1U35U0FnbqxtC\nXz7c+1czM5uc6LrznOnfKevzvbIQSz/nIGdXteu7dqzYsARaL2jEHKDlMLekhhRwYZrBoWZ9Sfet\n40TRPtfnh+zWnuFSdHIm1Obqu0J3Zm8IIXn6iXbmGyfonQBtzkxrXBo47XjRDGqV1Q8NUKbsou6/\nMMP/43Rz4ytS6y/CAtuGKTS1igPNonahN+4I+X72uRCDInN1/W0hMJdwU3m6pTPSHVyZThi/sZfx\ne1nXCXOO3Nv86wrl/7740SRoc2DWz1cbHfXJCQhluQKTAwQvh5ZAMKGxmL8tJf9ZYnrAheotjdkg\noliOgwhmHJQcTZleU/nsKK/8UwVt9nZ1ndlpnLnSygMAjtYoKD8cPxATYwTq7IHZ03OQ2aHe73QV\nG16gBX/MUYOn4WixZGHuxEG1M+g6jc6V3xpHQoGKOMf0YHtllsXgWUB7x7ek+mbIh42u8vAZOiTd\nst6Pr4llcXlReThBOzsdkPIC2jZTioFgQvVaySifR2hHKO6o1+v75UP1f76S1/3rTbMfmB3tKFYv\nWqIxENKrat+NaXLeou7bBhmqnQiRPz1Uf1S21E/lM5Af1PYXF9Te9CVYH2gaTYBGcgk0GUbq79qW\nnjf9ou6zty8WxnFerwNfyi6/JpbQ3HUYZH09U0726DNiL4mGx8yyEEoPzMd7vxfT4fipYgmJEJu+\nqnwxg7tQ6wy0BjQ8MK3rLIO8ev2KiRqxf7yjPjnZUWyfN4TIRtCeymVx/OKM/MKixjaJi1IKzZt0\nSs+XsyPdf/9zMWMau8rDVY/aOYVe3PoNMWNyaFENeH4UHmtM2mdos5SUA0YZHCNA1wahL06wX6j0\n2mhuoTN18131yxL9ZlHlgABrlWJRc6F/oHo3DtDQgQ3gQbsru6L6L8JEnc+g9xHXnGzDsDl8IOS3\n8HnezMxqOOMkLuk6l76hPJnFIc7bUA7o7p590YbuadkmXlyephXb8Vn15wQntTNyTfEQl6+aYn2A\nbsf8mhg1V24pHlKrmitD2HnNU+XSR7jmDRjPXlP97+V8vycetklMdbw0q3memVffplkjOG4bDVg2\nPZjSDTRjGoxJpcw9esoPkZDybwIG3xIso/gCLpRBxeYAxmHpVN+f1MAiA44rRteep/TRFHDEEZKw\nwNogv220DXPrisnwNBBwApT6iHWpR/2RCuv79SPWKhHVK4DLXPcYzbQWfYrrZxhmeb+OZgxrrUiU\nZT3aED4YPCHYcX5io9bS/cYgxZOEo7+k2JxUaGBB95+H8VfqKBfU0dAKXsOZZgYEvKTrVnFxCuDO\nEplVDJ07Okg8F7swwR3djBisrjFzosV6PoCLaQj3Ph/ufa0WGkUwPq+idTaG8VLf+lJTpt0yi+XU\n/iEuM52h5vBMTu0bwgAYgMg7v1MmMxdn3ZU/E+PD90xMl7Pv/1fVraP146u/1/w6/orWRem/Y933\nO8V2gPn+d+d6HlRgt+6MNO/XX9PnfnKgPvtRShpU3g81h7rLWteFS3JtqkKJCOVgL/kVe+/hNnQd\nJuTjRV13j/Xk99Fn+uyq/v/374vB8uZ76uvudU4t8OyeflVjVPhEa66KX+1afV2M9T30f9L3VI9/\n2NTrj8Z6znx+8lMzMyvdVN4pe3W9lX9E6+rRK6r/pV+amdnlrDRivvGZ2tl0mDRPVe8QQkfLs6r/\n0zfQI93VWP/kD3oezbxGuxpaT/9z810zM5vU5PKU+Lb+DhzDRtvUHF6CUTou6/qbZ4rV/90uVjo8\nTyKsPYYehyGjmIugh9Xi98DYcSDyohkGOWOMU1F3ghteR9/3dtFJYm3cI+Y9fdV3+O8OLkzCbRsP\nfdZCI9U70jU8aLCExor/dlh5zEcdPQnYPLgjO8wag0Xph93TwC0p0UH3jbaFosoDE953XJx6OBWG\nqXsAfZ0hTJ4Bt4nj4jTpwZThd7IHDb9hFLYX6azPWinOb7gu9fU4zBc0czxBR8+HUw0slhz3Jycb\njHEX9bI283dZT/M5w9lw4uS5IXTnv1Bcpoxb3OIWt7jFLW5xi1vc4ha3uMUtbnHLCygvlCnTiWmn\nHRFj6/W0R5TLaQc8x5nb7d9qJ9uDO1JiWrvMxUfa1WyxQx4DXWvuaaeqArK7AdI7GQkBcLRlSk3t\n5g7PcbSYRQuA83bpgXbaGgHtPibxP28dghqWtcscRkXfQpz7C8DMGWnHv1LRTlo4yvl7nGs8cSE7\n4dUU7VF9GpzLXwbx6B9p1zoz1lZfv677ZjPcZwkUC2T/uKLvLy4JQap7elZCs6TRQqk6p906P+yh\nKVw1hqZrVvJqYwVHlevzakvbEaBfUt09aAwUtqTG/trLQgTHbW3BFgpC5LycFw5FoQdcsEzY9ewN\n1PY0bR1wTnD/oRDWTz+8Z2Zm37zxdTMz25sVo6PeUF95QQCnXxeqM31LO+W7IMBTMGV8XvVHqaId\n/mxKSEUGPaAeBxuPahqrKGdB0ytrug+7v5Ep3JZ21C+heRzCYJI8AjVfeVXsjNxV7dgPThTrqQX1\nbwR0v/pM47d1XzGfmRVisri4Sv8ohg+LQi6/+o7qPamAprFL3DlWjBb3VI8I+kxZxv/eXZ0R7t0X\ner98W+169LEu4Md5aO+Bvj97Wf+fySowTrd1/yZo2dRtXfegL2Q7fIk5eKJ6fHBXSFF8TYj6Aq4n\nteLFtYeaJ6AIAc70cwa+gwuQ1wsaMSeU+uqm6hwFRU6iVTLizOcZzjEdUPBAVNdNcxbWm9TYjtjR\nL4LAdnCxGBwr5gLMlW4alXfOqBf2xGSrnateTZh3cRguyVXcIUK6TyTOmfeJYjeCi1EgqLnZ7JJA\nmVox9J18U8pLIZDKUV4VqnTFaurjIBNNqX7rMzoXnVxGzwQmzlFRLKntLbQSmkLl0xnl1ex1zZ0Z\n2BZ9WFB77+XVzlPdr8155iBOL5kNHH6AHEY4QRQLGr/SsRiQZ+g0JeP6fviSYmV2868jDv/vMjsl\nZosvrI7qDJQLH3+qWK8faPxaIDb+icPY0X2Wb2lOzeMCNT0N0k8/NY4U+7W+8nCroX5okmPO0TZr\nDzVu0RSuMxvS6Vh556blQL8P9/SMeHhX+bPexnVuTgya3LIYJO2+2rBzV4je+bZiKzWv/LH+FTEr\ncmk9C4pPdL0CLKkoeWptTvlnxLPw6VP1/cGpmBt90OhkULF35aq0EuavKR/H/Jq3FZwRu2VYr/Ow\nh2ArbH3wAfVV3h6i55GF8XP5VV03h5ZXYKzvl7YVQyd5xeJZF703HB5iONWkk2qHgwwOfc+HO6Vg\nX0RXdJ1gRf17fpo3M7PqKUxPHA5Hfeccu2Ilzn+vLOJwllI7xvSvD5eNArpIjYLcRyqMx8B51vP5\nS6/L3WOOnNP3aI4cbsMsekJM+b7UzbBoxKYv6/k2Hdd1SrTjFNZgi7VL1Kd6x2DCJtZU39yixjWE\ny8fRAzFtHTe9Km59GEtYHB2TKXJCCB2vbHreklO4Ucxzph6iSQkNkFqJfF1RH3Rbmj/nMIGHHiXI\nFE5ky1NrZmaWTOrZl0rgfsT6a+TXDU63YH/C0CtXccxSk80LI9u8z6c7NEQfL+hXbCUiavP4CLc7\nmM7xJaH9/QFaZDB8/G3cfiZ+vg+7oCrtsdGM3o8ldd3TIxiBfZiOILJeY31X1dgEvYqpEPS4EDE2\n6DhMGcfNU5crsW52OsQDcpxCr6qFHpyxZkzPLFNv1evkBF2/V3AZnMKdxKP+H5EzhrjWBVjoN8u0\nb6yYC5/jUnKu+y+swzw90/vjFto1MMH9OHtFksq/5+gLjtFHSqRxrINBtHWmuDIzC/r9FoyqfV4P\nGmN94iyrNaMXhtLZh4qfNLkkEpq3i5bzZ1r3Ra6JyfGVX3xoZmb/jKvRzByaIDxbvMHXzcysPqe8\n+0lK9/YVdc/Np2JAfnpb6+sHn2n9+PottfEf78Jwm9f1RnmtvxZXxSA/OWL9b7BFr6vv/8uexvZ/\nzCqWBiZNxptRfc5XVx4J/lFM7q8ENMa57+v51PmzNBkPQ2KY1+ty6QyhTeifVjsWPlf9R9/Vc6k9\nh/bJjPr6Z6ylbpS/b2ZmS/AFRiHV68FbmuvX/iz3qulbisXHSbVze0f9cvKafges7X7XzMw+mkLz\npqbrz2QUWz/LiLnjaLhM55RPK0XFziynLF6JwszZ+YWZmU019Py9X9Tz98bbrIdxUd18jM7UBYt3\n6DA6YbCgz+LzOw5Djp6T49ijuTogl3jRRfGgp+X1wk7ht6IHFl8P8RpHRiU4Jg68XzqKBQZ+GwdD\n5uG3VgjW6gi2Uhf9msCEPOTvUxfqysGXIHUJouHSbKqPA7CWuoy1n2emofs2jOl10NKzJArzpg0T\nxQ/j2NCc8eO62g/BUOH3+QBtQk+D390t1c/hAU4i/BhiTRJB17MDg37saNB00Zzld0UbV6kwbqX9\nAKy26H9c43igwAdg+nWg6ET8ihHHjekvFZcp4xa3uMUtbnGLW9ziFre4xS1ucYtb3PICygtlygS6\n2mEKcbZ3gMpxYh30v6Wdp2N2wF+fElI5qGl3dAe2QTKsnbwgZ3Ed95BwSLuiiXntanpQSS6daoer\nAwKRSOhzYVC9BOfQt0G9Ymwvjr36Xv6J7t/BTWM9jitJUkjEeMxZNs5xts/0+Rie8AE842fXdK7T\nx+cKRaGS0Z4+5w1qx62CJoMfZGccAg1MCJGYxp1k509C3cZNkBh83munFTvADSg95Kz5JEPb1cfZ\nJe2cPzsRElkH7U4FQO9TuG6wu5mKace7lBeCOURLILwi9KL7uZCCRkmfv7qGMn8XWsAFy6St79X7\n6sOFjvokMav7z9xQrORxJmhv4myQU30aoN6FXZ3lnVvW53Or0jwpHwgBmOG88ty8dviHsB1yL2v3\n9tKGNFYm6G+E8oqdYgttHjRviugUhVdUvyG7vdF1/f90XTv8tXzezMxKJyDVM0IkPt9VfzYbuBO9\no/tmzjUejX3t4AdQWU+CZE7N6bqnn4pJU9xXf4XQTZmdUbtDM4qJ4qn+f++JWALXvyOG0eoNoUX7\n50IO/En1k5fzleGJYq/I+ffpS2rn5QW9X98XK+B+XojFVzJvmJlZZ+ToAmiOXL8qhlCnLJSqUtD/\nRzm33fZcXAuiNUEroMrZzxQOAFmxdGLXlDfSXLvSw+HpUGP1GNe0yj5IAOd0ozm1aRUHLS8OK+2C\nxqDA2fhhQ31R4wz+pK8d8RToRgcGW4yddC+uRLNXNPY3p9QnERBFBxPp4sIRGXKmd6T6n6PPVD/g\nTP5AiIZ/QXMtOlKs1bZwN0L7qroDiymmflrAEWzjupga8bRirrCv7508EQLbQicqADK5dn3NzMxy\ns0KnaqjZP/z4fTMza+AQUYchOM3Z/+yyPp8llwy6qm/hMRoFJSGagQGIRUDfm4LNkZzXeAbRLvDg\nlnfRcl7lnPuR2nNWRD+EAQ8tatwuXdb1w9wvkUATwQPSwXjsbQnVPD5QzjwnZ6T9uALAZBzDEIot\na9wv58S0mUWDx8vcH55V7M+/0fw92VHfhwO61rUbQlIvX9N8bB2rjz/+o+owKgoJ3bwtttOlN6Uz\nZj6hNffuCzE8gF06nVOfLt9a070hWmx9LLe1Cm1JLAgZXcU1aR6nmQkMvhpn6PcOlO/7uBeNeCaf\nHcJ0rKHntA+jBCbI9bf0bM4u47jl1xw8eaK5uf9UzJ8C101Mqz8yM4rd2VnlvZjBVnV0lzhwPmg/\np14IeFq9xBx4ptzghTUVD2gOeMLol+CkMKwqpoyz/gYS2axqDg9rYgTWB7A2cJbworcSh8m08N01\ntSuh2D8/1f9vP9H3j081VwK4caXQirlyZfmLNlx562Ub4N5xwHPPeU43YR9YVv0T8qk9qWVHw0Dj\nXT1HS+hAz4HzA55z6JrMZoTgZzYUu8mU4imEq1NqpOs3+y3r9FXX/F3l3da++qrdg4noaHYEFKtD\nEMncuvpiGo2q2XXNP58XZiMIaA2mYhUnlINiXteD1RSibvGAxswXIc+ztvFMni+POOh1NgObC42C\nYxzIxnG1PTal97te9aUTQ300qfxoyfjRPqjDkHbq1cd9yuswXcjb0R5siKE+Xy2qPalV9VOnD6Ox\nqvwbZH0Zgani8et6k4FjW6KXaB8dDr/yVLkNc6lNcoCJFJxm7h8e8b4uEMCN0Iv2Wh1XpBDaiCHc\nqDpoIs7CahuDxBvOmpGA1mCTGtoRVX0vNqfYbA7Un9m+xvO4rVwx4LkbHGi8q02NR7v+pdtJOpe1\nIch3+Vz3C8CUiiz5aab6ZYCr1SCJRppdnL17813F1P17uuYfA4r9N31iWnx2U2NzIyF2VAnXHwd9\nv9JRHY7WpLn1UZ5n+0DPgfRE1/OcrJmZ2WZJ17k11DP2vZf1LM4f/khtqrLODCof9D9TXv1t95tm\nZvZOTTGz/Ybqd3iufHJ0WfPcl9RzZq8ld6b7n4r5c+3VX5mZWbGuOX52pNj45kjrym95dN9yFv2e\nuhgzr8LQ26hq7fGHhOp97BXjc30kDZe9lO47fKh++PD1H5uZ2bd/r9zReeU9MzO7c1vPu/XPvmNm\nZoNVxQ7py36cFONwpyUm0PCOnpOTrmJk5oHYXoV5/X1pTc/fX+1oXDIPxQY++6H+freqWPjw7xXz\nyddYs8wp1i9aHKZOu6nnlg+Wmx/9lB7sD6/jSASLxBNy9EpgwuNYN2Ft4ufEQw/HIF8gwHVgn/UU\n+/3wl7lvEhiY9YI2juIA1UZrhXWaj/k/hK0T6Oh1ONGYx3HXHOOMOOF3e4B18Jh1UcgD22fotBXm\nCytfL/o4Y36rxjqqYy/kMOL5ve/V9R3CjWfsMFxU7zEnYgYwLcNoxnrbnHpA48bH+tnZDfGgvRia\nqB7tpv6ekDe9aMWE6NO+YxsFg3HECZuBI9gH027spFGnwn+huEwZt7jFLW5xi1vc4ha3uMUtbnGL\nW9zilhdQXqz7kuEQ0+Y8eFx/LyW1U144h/FS1854OKQdptOiUMKTgt5P/40YJ84uYmOiHau5edgJ\nKGQfdrUz1oYFUmCnfGlJaN0yO+INvOHbRe3SRnNCDnpdtGDOUf9H0iC2ru9bCqVsdt7qaFp0OG/t\ny8xwHSEQ8WtqZ+dAu5m1Z2pXegYWS5uz1rhTzUeFJkYz2n0etISmlY+0Y3gE22CE086YncdIv2wG\nmp+8I3R2Zlb/d1bCIQTHqernQn3DAxwA0KWIB4SInYEezKKo/ehU6PvcVcYA2CV/nlcbprTL6Kh+\n+58PlLJJnO1FEMf6jvouk9SFZq+yo9/Uznn+mTQTjO+YwzwAACAASURBVHN+m69pbHb+STvfhYrQ\nnYUMYwqDo1EU62GG9n5OP6Q+UfsCKIwvLK6ZmdlxW7uvxSf63OySYm1qU2M0Lqu+eVB5Bx1cXNeY\nV5raZS0/RlvmR0LAM3N6/fyekNH8U91/I8155oz6I4WDwv2PhXzfWJEWQ+qSkNPzPfSOUMX3gyBf\nfl39tfq6GDEf/Fqq9YHPFOuzbwpRiATUL2HOW8YGQrWiIfVDvShE4fiurn/5TSEJV64LcXj/ofq7\n/ar6YWlO99v9WIiOTdTP2Wmhjdkl/T1Ce2hwKiTnImUK5C4Ceh1AF32Y1I56/Ux1ffJYSGoHjZJg\nXDEZjSqWNq5p/k8tKDamYvq75QP1PlDsFPeENhUOtHPuc1TlMw5bTIheMqx5mk6qbZE5h9EHoujD\nBWKCW1NZc7RbZIcelGNkqm8D5LPfwG0DPYsseTPTVd8dD9X3ewdC+8cT1XMuq/+fgwEyvaYxbZjm\n9NZ9vbbQCvDQ7gWYRrm02tNFkyUPq+v4ANcU0LJkRJ979bbGPDWnnBMOqf6Dvup/hoONwTbLBpVj\nWn7lu3gAppGqbV3U9ccD+qF9ceTSzKyJc4yhvTC7rPvNLek1sQqSHtN4TUD420U9L84KmiOnu3ou\nVUrMMZDh2RT6Kkvq31xS9R/gDjaVQk8pBpI7Vk44ek9svZ3Hn5vvHOemK6rTtTfFKIvj1rO/rfx3\neE+IY2igWF95V4y01Pqa6lYQo+LpA9W52FDsrm5qnm68JWTRB/tz6yP9/xA218o7yptzG3odwYba\nxZXvPA/rCH2zMGfcEzHF1BS6DpWR2jjxaU4sflV9c3VViGwA5t4Jmll5mDznx8qr8Yny6rXb6Pks\nomU2hUNaiXPqLeXJ3jkaLx5YF97nW+JkQPUDS2pHKqfnQpy1RQEnmDLaXUVHmwdWQxhNLEdnxAeb\nywdzJB3G6Q0dq0CK/EqebdbUX0/vi/VaeKL7jWE8LbE2mFl8iXqu6f9xsTMzO3qyb/snql+jkDcz\nM08Xx4lFnNRwtlyZU47zJ5XHm7D9TtDNaxb0dwptmtmb6v/ZOGyGLCgoDj9ttGYOSuSsYsk6uGa2\n0TmIp5X3grgveUDR0zCNM4xxYk51DKBh0sG18qSsNh091bzsoEHVR88oGyd/v6K5kwoqRupouPhb\n6DQQs6PI8+URL8+uMKSo0UDzv3OETk9Q8zvmRYePMe0UNcZJUzv9XGfIOq3VUz2DKbTRmrhscp/s\nCgwZmDdDHCHjsNLmA+jYnep+3ao+F0VvaRJzoFrFJHJ9NsA5xgPrNgLT1O/V52ttxdYsLLJJSrHc\ngQXdwfJxkASpxjWl3Ycpg7ZCDF2/+lBzamMF3aIMbLq26h2qgGSDRKfCGrdAH80IJHZ8zveKqsd0\nRLHcHepzlV00yKa+ZC+kY3E7QRNtAoMmElJ9cx59v4nj2ZC1rJfw6FjVLlr++X1Vcvp7eqaGdhST\nn4cV85OC1nePiJGv4uz6lGfO77rqi3BHTJepgJ55mX9VTDQium4NVun023o++HfEkFk80Dpy9pHG\n6tdfZy3S1v0bJ4rB/ku/MzOzezvKJ7lHYp4E3v6KmZl5Dv/ezMxWI3pujFfQ+Gqq7z861BjevJw3\nM7NY+2dqb1+f6zV0n/Z3xXy5+r7G6q5fz59QUYyb2WPN8ciaNHjO68o/vRl9/juzqvfZPVFf7q9o\nfXjnsTRsTt9Q3plN6Xr/VtX78YieN/VNxvIBOnZ5fW7qpTX1Y01rlPOYYj30Z431YgQdwCV9b/JP\nfzYzs+YP1e6XAhqn46W/UbtWVQ/73+xCpfmFY5FifBjU+HvH6o8oa0uHydqPoRVDrhjA+vKMlCQw\nUrPuELaJLmPhFg6eOLSF+CHW6f87pkw/Zr5R14Kc9PDC2hnhRjZpwSjDmbHpSHHhTtTyw8ZpokXD\nvA36YLQ09P8e1ts+3OpGMNVCaNY00O/0esnTMG+Cjnscpyc65KcwE7Q91H1CrDUCOB+2fTAEW7gm\nwXixkLP+hinNOrnNSRbvAO0rZww4yTNxGDp07nis/BZEH6gT1N/+ATHN88GD1mMfnZ+/VFymjFvc\n4ha3uMUtbnGLW9ziFre4xS1uccsLKC+UKRP1sWvH+cL0FDtZIMmFP2s305NmZ6mtnaiTPaFqIVD7\nZVyGjjlbPOTsbeKKdDQ8cZSpi9pZ66DGP2CHLXkd/Q/OQ5+8J4eIM84sX8aJodsBuQYFTCV0/bmr\n2mXNv6/d7yg7fCGvdolTcSHgY86kRtC6CYdwl3oqdocHf/O5FIjxwEGptHM4j0tTgJ3KPs4ULRDr\nDuhULssOXVK75716zwIhoSWptK4dzupak7qQvlpJO8JHR0K1lmZBj1Mo+aPI7wOVKFc5b4ytz9KS\n7lWA+dGuatdz7YoQUef8n7MredESAq2fTminug66XkYvYwakLwEbYcx5x9Kh2rP5knb4p3DeaW3h\nqvQdMUvWFsXw2TsS6rSyoM/NZ3XdalmIRHuXXc4Dxc7aDV23sKNYfAAL48pXpQGTSiim0riF7N/P\nm5nZ6h0xQ1ZeUkzd+7919raxr535S6+rv7Zxx/DBmiidaEeeI6Y2taQzuCF0Ts6ONR7pAY5fQ/X/\n6qzG5eOPpSnhFwBrC7d1lvcKuhqPdlT/wBznOEF6I+yWL8+hCwLKf2lJu+HHZbEydnf0uY2bQrQD\nDzSH8p/qhjeuqb/H1TUzMxsSq5WJdpWzQ10/mESpvX9x7SG/ow5f1NiU2DGvPtbfbdTPMyjvz7+p\neRtNgcwyD30etdlTV4xu7zhzQn3bPBDC5p3SPM5taN4v4vqWgRUW9qmPhiAMw77qN4RldlTA9aGO\n+wg6G5Oh+qRN3vGBGIyiakc6oXpmYQDOTqPDEVO9axWuW9HYrF1bUzsXFAMJEMNkAsTxWH1voOHp\nnq6fWVAMRnEX8qHvUwVhLD9UvasVofHTOHhF35RTwfyqcoeD3nT7ane5oBiun6mdgwZnkmHdOfk8\ni6tKEoeK8LTmYgREeBzV57NBzdWLlvkVXXe0whnjHggQbhzVE5gxbc2F2r7QuOK52unjTHIUhP/y\nW0Ijs1n9HZ9WjvIN1Y8DD3okPv3dONY47qN/dXYk5P/8RKhgJDZjK9951czMrhBbdZwAnv5ebBqH\n+RJP6J633tU8DoO4bn+is/enx6q7N64Yv/NVuWRMXxfC16npWfbgj/r8oKy/V65r7GdgKxw+1lgf\nbuPChFVYkrZeXda8nlrWGAXRlRjxOT+MFz9uPEub6F4Uld8e/0rI5/5OXteHTbUGQ2ftNkyhoONc\noD48QMeneYpWTR29C9yWYgnFZMT/nCwIzui3z5V3T6lX7Qw2K1pdk6Fid2GauX9F7crEcS6DRdsa\nKQ97W/p8M6jrOufxTw809tWyYqW/r7nhPCWXcUFy3LbSc+QWHB6aO3renp1CH/hPZo/uPrMJrJHp\nedUrh+PcLLHrncJtBXbb4aH6s4h7XguHoaUlzbHFS3puGQ5IvpLmculzfb4Ou66CPpfBBonEI5Za\n1LNqE4eXEeuzGO5xfhwZE1Pq+y6aAM2SYq/yRPPx/EwMxTp6G3FsNHM4Tc0vSu8inlA+DLf1bCuc\nKf800JQKwoQO+HT/Nu5CFy2Jaa27ynXWkyPFXq0BO+KK+mwMs7DxDGQZh8R4Rv0QR++t29D9fTXW\nhTBPCuc46OCoc1rTWqje1Nge7WsOXbumvBbJqD/KT5SnV0bqd+9Y/epPoN2D2IJ/xFi2iL2enjcB\n9CiGznMCzbZqXfUJso6NohVmjgsKTnA8/iyENkWbGBvNo3GDK4ujO+VPajxGHr1f5Tk5lwOpnoYV\nZzAtYd74mavjGkzyDeKrDJvtXDG9dmXNnNLJRqzEHJ6mfyJZnC49xAPMqxFIuTftMJkuvnb93o/R\nZEIXs3zKGoT1TWaodeL+2S/NzOz3X1ce8X6iz/9gIMay58rPzczsdFdj/Bnua0E0YvpfU52uHErT\n689h1n/rrD3qPzUzs9UHmhu/f0NtvOP9g5mZXQ9KS7B+XXOt6VPsfprHARb3p507uOv9/F/MzOzr\nbyof9cfK34/3lZ+jHtzm0G961tXYtP5N9dsuKp+/tcg6vat1cPirYs5sT+t6hz/Vb6nMXb3/j0kY\n/DE9B5u3/ovu39Jvp+XPNGY/Yw03n1O/toqaOzPvK2csnImx8/Bd1jot1Xfpvp5vqz9Ea+VNtf+9\n4PfU3g80d8d/o/rc/5XcppLfEaOoUkEJEIedixYnF4XC6JPAiBlOdL8g+ile1mZj9FESfG7C98c4\nzg1hrYwn+rwHIZM2bDukaWyE3snQ++U62+P1WDgYNIghNgprvvkchjH2ngPqFEBDxkc+6MDOCfCb\nwWHIdHu6V5A6TGCidB2WT3vCdXT9ICdEJjDuAn4nPzjVQNMG5k4fTTB/HNdMNPy4rEX5/24Mba6R\n00eqH6bPFmk5DB6YP2HdJ0xeGKJ3F8HV2YNW14iTOc5YRLATHZGv+miHeXFdchyy/lJxmTJucYtb\n3OIWt7jFLW5xi1vc4ha3uMUtL6C8UKaMc97b54eFEdAu7ymOLEfHQkjm57X72MJTPdASIpG+ot3Y\nTFYo3DGIdjquHbdcTjvntaIQkrazawsymUW7ZhGks3wotCd/LKQh4tcuY3pd19/Z0v3nplSfLqje\npKfXxqFQo4Ffu8rTKHHvlXEV4fx+mDPE509wR3ms+4XRpAnNakuxg8/6TIJz6Antpj88FPvgGJZD\nx4M7SBSNjKTqu7Cq7z35+LFFMtp/y6yozV70KCqcPR87qt1x7bjmcK5J5vT5blu7kJ0aquco8s/C\nZMmyQ/3gVMhrmDPzCzA1Dk84dxd9PuSyi27EJK5dzEhQr6Wm+qZZxbUHZNeLlsrwRO8f7AgVub4h\nVPv+n1S/el4I4/yq2reD28gQh4BBXGM0nVE/jJLql88+kebBFDoZ0y8LqT77WDv4J8+EUC/c0o76\nwtqa/n83r9d7QrqX/0479ilYBZ8/0k79d2jHFP2e4Zx9GuewR7iojBP63uxlXb8MGjVmF7p8qphr\nXUE7YE2vBw+EOKSJg8vXhcgUcJWq0n8R1N8ni4rhLjoc9TONf24D9OpEcfTs+AH9Ic2a5Vd1Rvn4\nQ70/NVIczMO06eaEYNSP1C8l2ANZ9Jui62IwXaRUq7CKOOfs2BfNz6Bbs6E6xbOKyTFjPGorJh2H\nsHZTCF2vhFMUbK8QzLcpNFKWVoWwxbLsiENfqpuuV0Nvol/FaYWzrL42zJ2Grhcc4+KGe0cUnaDc\ntGIgtaw5Obsg5xsPbLEZtEqqOIt1Huu+5y3FSJC5GL+mvo4kNVbBpubS1sfKc40iuhG4w1lM908k\nVN+9Auj7GA0D1O0jYV1/7R3VawFnr0AQ96aS+rFylld/HNEfaOEY+lW+ebUvFdRcSs0pJnKZOe6D\nu8pQ3xs2NAe7R22zr5tVi3o+XLS0BkK/moxv/wzHHNxf+iA9FTQgxsBKmTnlgI2NDeqp+jX6ykGe\nnupVLunzXkQPHNelNhpkdeKhWlC+H+PqtLImdsratcsWndN7p1tCLp88FhLYQwdpA42s1etowuCY\nsvOR8krjXHWfuSoW1bXb12iLYuzogRDL/Wca+zDI29wttc0PCvbph7rv6WOxExKwHK69KobgHHll\nAFvTCyJceqC8s3+s6yfnNddW0EzZRavrZFcMu+Ndzd25ZcXq1ZekBZDb0BxogpptwxCqlPLqQ/o2\nxHnzRFIxlM0pB/gcF6S+42V2sfL4mZiLk6b6u3Cs2I0S89kF1evSuvorl1X7+pzRb+Cgc4rmVvdU\n9Www9ys8P8e4bXRY02RM+TE3pevOk2PSi+iBRPW8rRyqv0pHQpKLrFVqpS+fq8FY2Favak7Ocp1A\nwHHjUP22P1NePnuocWrVYJ+oeXYFR7aZTV3Hy9pl/7HGoVDW3OvB8PTiiJTAASg6o+ftzFzckjg9\nen1qcz+kutYd902v8tf2E+WNbkH56ACW1aistueSqtwK2k/zKxpzv5Zv1qihVfVMumUHR7qeD9Zl\nOIL7T1AxkvChzxZ6PqE7H8y3cUvrt+HoPzJm/Lj2Zbrqk32YgcGC7jN1Vf/vGWlMRgXyCPyoIa4j\nNdarS7Mag3CYvL3Lug/mYnDpbTMzG+DI5euTJ9E68FZUvzh6JuE07e2BLPeVGzowF70wMv240o1h\nQ3dxdRrg2pReVj2jMJ+GD1S/KA5eWa/ud3oOin+s66ViOIUplK3V1vvhqJ5vtQIaYzMa52nc6gqs\nEWIwaCDY29infJucW+Nv9XdtpPr4V3CiMzN/sG7NkuZi6HXNuakzrbG6Rc3NCYyYEHHhJceMehdn\nVI18PzAzswdbvzYzs/96Bw1D9Cw9ATE54nWtk4Yt3t8UU/LDsO5VPNSzJvuKYubNxn83M7OThNra\neqi++Xhb8/XNyW/MzOxRS9osvTN9b/8bmkvv/ELfC85918zMftll3balPHP7ul7fOBCT5ldoM6YO\nxQgJpxUL7+eVJzto3tzx/B9mZnY2oxj8V/LJq1E9b84L/00ds/lPuu8zxcB//jauqftah67wG8Yb\n0PqvjWPY6pbaEfkeMdLnN1xHr39fU775fkrP6o8uae5nkNoqRHTqosEa7e1HMHtmlSuGy5rLj3EM\nWn+i+iYL+l5nGlc6TjGs/q1i87MDxc5GUJ87zKIvetECi63FKYkAz8kRDj0Tn/q/64OlgVNxi9wR\ngVcxga3R9+hzMZjyA77v6AoOYSOP0W+JDCJfVCXq79vQO7YOTI8opkQjNPaG/B52XJlCsFB7MPsi\nbCcM0I7qc0+HacIBDxviOBXnpMoAl+Ahr94+fUCeHnJCJeDR9zoj8pcfxgy/XQcdtGPQPAzC1p3g\nxOiNOhpYuMxxPw+CPRPcm/3o9I3Jx2OjI/rqqyZaNZOJ40LFfWP6u8c6OxjmvjzfxjhdjZp/3VnW\nZcq4xS1ucYtb3OIWt7jFLW5xi1vc4ha3vIDyQpkyQdSIx7iMBJL6+2xX5wpHVe0ZTV3DVYXzcb6J\ndt5WZ7UrOgygotzg/0PaVQ3hanJSEfLSK2uH3HElis5o19Wb1H3O7gmdDLdgxFwRKuhl93Yw1g5a\nGHV948xc81AshwrshM0r2uXNgYRu5VGVht2BCYCdbmmXOg1CHUlp17sF4pJCK6I1rXY1Obu391Do\nZaiDOv2c0LCaX+1buiS0bZzUdY9OizY9qz700zclEMH2CY5Pad074hOqNbWmNjRDqmwZVHrguCzU\nhSrM4/Yz4ABfF32K7Kz6KDyjneXJkRgmWL9fuIzQAxlzVjIURV+orDEqbGtHfP517bSnr2tMK5yx\nP/5UzJJXv/dtMzPL4YhzsK//jyXUH5MSuj/r6gfHaSfUVbuW3tQZ4BXQlPsHQgzf+trrZmZ2jibA\n6YkQj/NToVuZebU/yTnGTz/9yMzMzvYU8xvXhIwc/LOQiTNYFr4umgMPxLxZ38QpJib0KX8qpHnl\nphCSQA5Hiybn3ffRrXgIM+YycyKk/jx7pOsuv6yd/euvKobOzxRrpX21r3yiGJu9JmS8Qqz3sJ7I\nvqz3e7/V559+KoT97XfVXwbrYOuRYjaV1eeTacVVCs2EwxPFlw/mzNV5IUgXKUmYaaE5YiOi/BCd\nVp+c1zq0RcjZaVOvXs7KdkvsrLNzPuGcrQedotk5zZ0k2lVDds7zu0Lkyqca+8EhjiOcHQ1wvd5I\nfTjIakynYHt50kJrNpkj4bTGNhvT/TpB3C6YcxPy2MePdb/KthDFXltzIIbrSBL3n0hN7drPa+5V\nP9HYtdjpT6XVvtyK8lwSTRxPhHPvHHD2oEMVIs9mcdjxAVUWcUEpHmrOnJyTK9DEyqDv4bRr9ppQ\nsuC62p+hP3y46+WfaW42qmpnD72Tdgennxndv9V4PkyhDTOm01Ce7HXoB55DE5iaKzg95BbU7plr\nIPIh9cvhA9pJvo/BkvDF9P8jmJ71EiwJmEMj3ERyqxqfmRu6/vSczrX7hwF79nnezMzKp3oGekCp\nbr6qeT5F3zXRRdj6g/J4f6wYv/rWa2ZmlpjS2JfIV0ePNd+P0JoJYB24iDZWMKpY3b+r+5ZgK6ze\nkWbM1TfXzMwsklAfFcifHeZr+YnGpnKuZ24spzkZj+nzrY7qUfiU63c1Butv6Fl19TXqgR7I0Z+U\nL3YfKp/UYFll13TdpWtCRuM5xVQQ1u1koH4YMOcdd4uLlijP7MQVscAyr/AsR2cjHtb9ewON9TFO\nkFVYZb19xX4RVH0AYhlkLqdB/6OLyiXzl/ScCKY0HoGI+msM+/Z0T/1WRbPMYREMOoqpeBCE+/Uv\nEdo3vv+GRdChOy9q7hT2FSf1h3ou1Bwdk5Seh1do58qNNV03rrm1j8PY4WfKIZVDzXUj1qevaG6s\nZDSOiXXNnQ4oY//kwJ51dc8hTLEBGiSjpvq629G8rNb0PoCspWE+XLmleZJZxq0Hbafjgvogjx5E\nZVfsVx/3TifEMogu6XtBRAlGrK+CMEF6nefTuRsMlTd8OJJ1AVIx57C5tGKlwTO8B4OuQz5MptHz\nAcVu9GDSOM8N1lzmRV8NLRjvudp9jlPkAF2IaJg1TxV3UdaJE/T72h762+/oXuh6IbQRHc2dft/R\n6tH1xriiDGGyBKq6brcPw29JsTxBY6F8qOukcS+MT6n/Rx/dVX1nlBvm0TXqo+04ucbajudhGbZx\nCHfCWAo3KRaPLcelJa2OH2TV3xPya8ev/h6j6eZoP5iZnTe75o+oH5IZfb4V0t97JbEllmPKxx6e\n15Mx/ZK+eJz0H6OJMifNlp9/pvXaDyPK3/WSmBXV6+qjZ+/p/9+EfVV9U2P0P59rjP7lUHX4fKg6\nf3tNse5NrpmZ2e94pgdg8SfOf2JmZlvf1xjltpUHtnH2OnlX8/lHT/Us+83r6sMPHisPZ4ZiBcdh\n8b66p7F6/E3cWjuK4esHOMmu8fmuJu856+Y/YJ2YmMMtKar6vv5D5Y3yr9XunR8qRoowub92W329\ntPdN3e9vFetHO4qh1a7m9C9f1/UyeTGPKptqz7s/1fu/WtJYbtSUJzs15YqnPuX3txeUzw4PNE6T\nxG/MzOzudeXddzYU052H5O0nqte/PdMa8vYP/mRmZpFfa3xq67COL1j8cRgs6Nv54UkEYGe1SS5+\ntNK8HfRZmMv9scbVy98hn9YLbdZmXtglEVy6+ui2eH2aS93wl5oyvc7YxiGf+fh9PIrA6HCcnmDI\nefld+gULlTzoEFi8sOojMAVbEeUfL3nD4zhEwex2diHCzNsmGoOJJtoz2MR50AAbQ4KNN0fUE+dD\n099jGDLdWPQ/9IGPvvXhLtVl/RjA4bfL7/Oon3xEez3c0M/vAkfXc8L1HO3IAc6VfpjmIxg83rH6\nwY9mljf217ddXKaMW9ziFre4xS1ucYtb3OIWt7jFLW5xywsoL5Qp42v/R9VmDztfPVw6guxo+6bY\nkWeHP5lStWfS2pEf1TmLzG5gBseD1lNU2A/Rpolrd/aZT7uZC/Pa8WscaGfvpC5EZ35GrIGVZX0e\nAMEmaBKM2VmrFrVzVm7o/i3TB6O3tBve6Wrnrbav3dgkDkUeEIJuXbucl78hFLSeR9eEHcFAStfx\nFbXrXivptV5SPTeWtTttK9rJm6oIgZhBk+Ycx55Gt2SLce0YTzjL/nhfiGUPtkAijp7Eiq6RBi0+\nONKO/Gn+7D/0gR97idmEkMN2TX3t4czi9Irq7jddf3DujKl22i9awqBmDXbe09O67/yy+ujpkXa+\n2zuKjVu3xZhZBln+w7/80czMlva1oz+7ISSghc5POKYYqzdU/wnOLou4JD1AAyZ9pPtt3BQi+Mc/\n/N7MzPa47tqm0Hsvu8aFkdCs0Ili4sZtMWK2t8WO2vpAyOWd70lbZobz8fVT3X8a16t2DUQazYFI\nTv13sCMEuV7RuAAe2ZUZtS+d0udHHiGiMVgR/nnV8zPHAWhbSGkyp45euKV6jOOK0UdowqRx35jk\ntPu880Bz6q1NIaxrl9XvO+8L+dhPqZ7ra3LkSQ6EgFQr6uf8dl798k0hFF3Oe54wV5azivGLFD8u\nD2Pc2c7LMNi2cRQYab6HcNkYwxKIJrVln10kDXL2NYEjV3QWRyj0hXonuGKgl1FCK6V7rjwQSKgN\n2ajmzmBK11vGsSQcFLqUhpESAX2fwP4aGJojFTRJiIXqmVCZTl3tOkfXJ4zmyVRKqNHcZRxSQE1O\nS5obniO1f2pB7ILri4rhLLo+E9gJvgmaKyCfwYzaU0FFftRWP+0dq1+7INWNM8VSA3ZCbkFMkBx5\nOwF7LRnTawB0pnOiubIPS+oUt6sSGkHemv4/hNvJ4oJYBQsbiuFVkPOLlkRciLsXzYD4gsbf71P8\nZDMa7xjsFB9ON6cl9f/u55oLBdzuHNZEmP4cn6v++VP1x2SgOTW1obm4sgTbZVPX9eK4UDtXP57c\nP7HymeZHKqTvXILBFkxrrPZAVJ98pPwRigq2uXFDrha+kGJr+wPlrd1nYpyMQYdWX1VsX76kPDEG\n/S1sq02egGLwJi5wC3dU5xHI2/Y9aQScPtJrk5gMcKZ99pLy/tor0rQJw1orPNFcCcb099oVxeI6\nbKEJjjuPfivNr8ID1Ts8o7566etqX3hdcygMOtUuK5Yq6CIFznE8oL5+H7DcBUtuUbEVnNKc6ME0\nOYdZUtnTGJdP0XjJ5/U5XKG8Hr0fXNJcmZtSP06vwxyFYRiPosmFhkGvq1jf3dO4tcmD5SPNyVFA\n/x/Narxyl9bMzGxlBiYPTFczs9GoY1sfazyPdlXfdkfXi4P6zV/X+Cyvaw3hW1IOqsAWePCBcsd5\nHs2ZIS6Ia5rTi3Mav/lLuI0M9VoiN5yg0dYqPbMOrKEJOghhnBydPDX0K2bnXkIrZkrXzi2yXhqp\nL0unqsvuttpyUsybmVkMPZuZa8p/c4usm2B6mtvvLgAAIABJREFUjEuwhc6Un3y43A1ruHeMn48p\n0+sq1rwwMMboZ4RYQ02CsJ3K6IT0FIuxIMizQtj6fjTB0DbrMMbeiGI7vaCx6g0dlxK0ZGCWT+NK\n57iC+mHseGDQRDowbGCCNHHMnMyBurPG6JvmULuq19gibnIDnk8tGKTEtOFqkkRf4wwmYLOOBs41\nsRAcl7wqjplODHlwIxwM1J6MF3YcmjYdnMp8aNtMfKpPeyj9j0hYseWP6HkQgrheGKke66zzo4gN\ndZ9ovM3MrN612aTiZAT7LuDRfc5PlXMWX9L3YwF9f9RTPX2+hF20/AF25UpD7knldzQGlZjcfNr/\nXUziXF4ulcsVrQOPbmqdtOxVHnxvDbbOlvr+HXQ8/v5jYmwszZqb39Qz6L0/tfhb93n2y9+YmVl8\nXevPx99WG77+QPP+oUd/f6OsMcq/pmfdg3/Suu2rIzFYfvI13ffOPyvfvBvSGP/botbBvn9QPrl0\nW8Hx49fUx/9XRfWciWgud56qj4t3dd8+DPKFDzT3948Vu5O0mDVP0B/pfaQxupbTmPzjK78wM7NX\nnqhdew0xjsIe9d/PworNt+1TMzMLjDQe1e+pnUO0zd4fqJ25c+WCxXtvmplZs6+5Mr4JS/hbmmsf\nwDD/pv8dMzP76F9/Z2Zmr16RbtESjmIXLe2eclIU9l9/rPoF0PwMoc05QodvGEAnit+6IVxSOzBl\nI11YYqwDxhPFg+OoNMHtdIDuSrT35dGFSSRi44HZxM8zCVsi5+8Y61QfjMNWX2MTRoulDUsn2MJ1\nzaNr+/n8kHXfyCHIwPKc9B2XIlzhSDCjLxKa2jhGV8c/xD0p5Gg6evie7tfB5imAdkzAnB/weunC\nXPeis+dhvyBi3CegCvb6sJLCaNa0OWGDLmqX7ZMYS4wBz3CPozkzdpiJDhsJ7ZrWX3/euEwZt7jF\nLW5xi1vc4ha3uMUtbnGLW9zilhdQXihTpgj7wc/uYttRf+e8dpqzonNLQliL6J/4EyhGh7SnVD4F\nTTKQ3oF2vCa7QueSqB57Z/QaO+QVJesuyIe1tBM4dVO7vGHOWz+5K2ed3oSdPA4PV9p5MzPzHGnn\nLMZ58bk0aOXnQr1GMIIsBjLSUrcnTTt6M5x7PNoSKyVr2l324Kv+FLeUmYDqHWAnMLO+pnqiedNt\nC7kdOGeun2g3eDyeWAAtgOqeGDL9E6Htcwva+c7Oqs8GBTzaQVvqW0LcRjhYzYEKDxPaXRzH9b1K\nj/N3nI1PLAotf3Is9KKMvkYQ1P2iZTzhnGBVu6blqMYkPaud8dWk/v/sUGjGdkb1ff26kNWp5byZ\nmeUf6vUKZ+9boNjzuIN0ArAQ0MWY3xTCmakJZdnZ1g75O1/XfUOwtOonet/nV72GuEQtZ4S43t8T\nEnIrJcR57Y5QwE8+VH/uP1HspYKKvdNnGrNXXxKSbSnF0nFb9ZiC3RCu4GLU1DZtE1SuHdPnfFnF\n6NkBzkFs2i68rPEr/lZI96ipnfPDc6FPMdghNxaF0LcfKfZ6Df1/akGIw5Bz/MWy3r+F/lJjX6jd\nwedoxLyheIqgBdFCl+Mcp439nX3qJXQzZOqHbuPi4kOFotrQ76su4yqaAaDpU4tC1OavaqxjWUeH\nAvcJXINC9HWNnXEPTLZT9BzOnml+ttB4ieIUNXtDfboc0t9BtJzGsLC8qND3IorhFshtt6bXs6r6\neNTQHGqj6zP0KjZ8Lc5p+1XPKZwAZuaFTqVwl4oCCJw0OG+OxkByWfklGscZBbeQ87zue9IRmtQ4\nd5h6nHMeKp/66jwm/Iq1AGdmByONVXpWueXKW0KtMin1c4AzvbW6rlN4rNxztqP79nGoqTroUFLt\nuryAHslrGrfppTUzM0s4R5nR6eiCol20DJkjdea4J67nSyorFM87AgkFma6SPx8/FUOxQ/8sbGoO\nb2wKHfOcEScVIfmOO9fMdbRpcO9rd9V/FVxl8rvKwWfPhMp5Ji1bxGllHtS/zbnqrc+EEu/siSmz\ngF7Ga9/4GzMz86d17Wd/vmdmZgX0NbLXlIc20UiZuoqeRUXzb/sD5YEaTJO1q2gKrKmNo4pidvsT\nXJu2xNDzwUCZvYTTzIby5SyxFgQVevKhNLQKeeW7TEL3Ty3ickdsHKN9VTpUPVZuCcldfUtIZhiN\nkzLsLEeDynHqaQOqhVgzZLzqc1/w+WLE09az9f9h7z2jZU2z+r5dVW/lXKdOjjfnznHyTE8AhhnS\nIBALsSQhC5CEB7DBgBEYhMwgIczCIC95sUBYTghjTBjGDBO6m+npdKfTdN9878mp6pzKOfrD7/92\nSzIzc3otL98v7/5y7q16w/PsZz/7eWrv//Pfvjp+tCcEaGNDGdsS/ejJx8TkM6ZVJW/yjPYOqryY\nCGJbLaHIqnsuqoA5Vzpg3dkSSnaoSl7hOVXqOcY6mpsU2kwI1sCkspJt2rG2evXNPtx44SXb31cl\nnhF6y2g9PrFC5jcxQ3uHNexr/SUy2NtbzNFRQ9lD+cpL51k3s9PYRSwslLB4RPauw5FRW0c/XSGz\n0nNxS5zCVqdzrB118cNNCJGWlp8wVTXqDEEdlW5jw7vbtKm5Ke7BDGvf+fsfNjOzpRMg5iLiRSqv\nCnl2hXlV2cRGhkNVz4lhIynxB0USb6/6UlBV8nryo7WWqoEmaVdCGdbSIbYdU0WwnRrXh6PoPCTO\nmb6QcpEO7YoP0cuMkDDdMrqu7aEXE7pgepmxqDS07lW1LvWZk24lF7eqaaUIv96xc+gxNMH7/A7t\nq2sdWjot1K9suqZqcW2XG0H76XAYf9lRhTZ/jc8z2qNp+TKfeEmCYxc5o2qkcXHbuPv/Jv1IRFVB\nTZnwgLo9EnJnUNJfbSWjU8yxyo6qKq2gt4TWu+1b7FXMzGK9hMXVr7aQMi66uSbOSTXfJhrobavA\n+M7Y0VHeiVcY2+QKuvzml/H1n3kftnz+EVCX4wUQF0/20OHkIfvEco02vl8I5UCQ6w9m8eNT97AO\n1PfxUzNxIRNVHS62+qyZmd3/QWz+lfiamZktX0Pnm204+y6qetrGo/iV2S+wyM7Osa99YQZ/8b4v\nMIetQ/WkvTrcZe98gvffNPxP/hgIoMt/hD+IqgpgbBWbXnoXOnzmNM95dJv33Vnh8/DnGfOXtAYH\nzzDWvq+KPy9NvwN7HzMzs1tnv2hmZrWT6K27Ia6Vd+NLLn8W/Q2+lc8vthmXTdPvFFUgG3WeMzOz\nhHhInQA29bL8aH4Z//fhFmv8F9LYsKjNLLcg7hmh2I4qY/0E9w9d1KB4BPu0c6B11ImK30k+IqaK\noG1B5B39Vmy4VXT7QieKB7Ur/qqhqi2OxbXW878VAhj2GuaL+M030EmNsVA3uqQ10oQTd0rc5ajS\nviYeFG9NkHke016+LZ636Ai/2XWLpAoZOHbRQKrg6AgB3ldVOCdEX1pd6SrG5x1BbiJqR6vNexNC\nk3XEhdPWb8+wkD/DKPc52sf79Lt+II6xYJvPE9oHt8X3ExYZrMvJGBiJo1a/x13Om6H0E9Fv6E5I\nv5Xr2Pog+fX3JB5SxhNPPPHEE0888cQTTzzxxBNPPPHkLshdRcqMVE1pKC6IsM6B+5KKmOkcYjCh\nigf1gu4jsrWvjHNNFSDc89LNLhmKoiJ75x4gejtSBKs1InIeaOpcoyr8zM0SsYvovN3mJpma9RLR\n4DllPodCewzWxCqdov2zU0RlK8oYbK3RjqYyzFGhO/zKRqXPrJiZWb9L5KzXVERRdd/L11TVRNww\n0Umi1sdUGSkgDoSmMiT+IBG5gx3u65aI6gYGQQso4rq/oaxKjGelLxHqDeR0tn+fLHLxBuigps4L\nu8z2+RP0oaOz472gqlWUdB5a2YmU3nfjDjq0pqKiuaOfyzUzG6uWvXtWv75D+iWh7Mh0jCxZ/Cxj\nt36DPldmQS9cmIfr5NpzZJoDNdWQV7bK0fnAGVUnKqzT3kSaqObyaSL9r32ZzEOhRcZj8SJjXbhF\nBrm1L44BVQg4f4b3+2PY6uY1MoiTszprfExR2j76nRP/xs06GZHVNWW5xD0QVRbRRSYtzDEOvgj6\nbGzy/KHOcU4sMg4be6C1Nl7j74UPPWZmZrllZXKbxGXrDe4rPk+GJPYOMinzi9hFvcIcmDwhNJj4\nPEqvwuKfP0cVqhVVXCiuqprVGuOeWGCOBMTT1Bnyvo117l/Ue2bF6RD+Bucu/0PxiXhoJoyOfIvo\nJJEXh0tMSAhVnqqKV6nbVqZQ2fpGmT4WSiDsDtexJethK7OqKnHqIhVpAsrIpX06c+/yHxXEp7BN\nlqWhvprOzg7FQVBrqR06Ozto4Afiqu7m79IPZxl/cmYKnS+tYAP+AdcVdsjaXL8Kz0ipiu4j4kQJ\niDPL8ZHxC6j/pYHOxIpTxa1+l+q5FRNUveQYYz4KurTzPC8zpapX4qMIKtNx2EB/RfFaHOyCgmjv\n8/xwgvclZpS9V2Z2IsucSkyoikYMf17ZZ865fBUDX8fMvtvKmqtHlaaL1tN786rck82KuyDC+PSF\nEiisMTeTyoCcup+5syBUl6OM9bYyyek8/cifW+F71GOHN9fMzOzaLf627nC9X1wGc9PcN3nuUZvO\n8G8dT7bymjhGxDVz5jxr2en7scGhznXfeQk/tLvBOyYvuEgTECwJZZduXcMP7rzBGLU3yfbkp5mX\nAVXYamxhK9eugbypKqM6KU6rSSH5Jo4zJ8JR7muK4+r2a4xNUbxOEXGBzV0ioxkWmqx2B3/jZtEu\nPQb6YW4BxFChTPZ+7VXW7B1VH/Ip+xZTexZUYUcuwNyiS4PO28s7VarM+V5J1ZW2seFRW3sVVbZJ\nzvPeWfGXxDT2IfmCuipv7ayDiGmUmXONQ/nFFu3viicvN40eF04zvsk4czCRJivXF2fPoeu7CrRz\nZxW/P6rtv9mH2mbdJvLoO3OO9X1mWpUoHP5WVCVwew3fcbiFPUSFJs49SjsWTzLOCWVUD1Vt5Y58\n454QpE5XqDPtURZOuRWT0hYcqwrHgIznrBASwwb3NCqqprMHkqO4hh9uigMlrqo8KxdBTU2r4qOj\nClPFMm0ofomxcqsyjVUtKCt+s7xQniHtJXxRdOEoM3pUSQrBUWzT7m6DsV64n3Y164xxe8DcSmYZ\n2/4GaAJHmdKGuG0q4jqLiENlmMSGUv6M+oPNV7bwTxlV2MnMsh+tb+JfB0KLJVQ9LxbFJvvKGFda\nytiqqoo/pix8nv7XxszVaoQ5mpwTCnpPSBNlpoNCh8Wa4nDbpn0TfhxexvhbLNOu7Fh7FyEcmy2u\nX7kE6qOhaoh1VUlxYuirIyR9zOWqUOY+LFjcqM//XW6bsnj2gurXpPz266tvobODgZQlxEviVLCT\nSkW/O4RcGod5X0R8i6JRtO5U2I4qFy/gZzf+L+ZRKS1EdZV5N7HM3qFcZ6w/fJk+N8LicnpYv026\nVOUcD+nz5VfwAxMX1szM7F2HIMJ7N+CgmVni/y+UPmBmZue+gP/JZdB1ZpF9bPgMz/m/+3z/6MG3\n0N44CBdni/Vjfkaor2WUkFx6t5mZpV7DNqOfYY7eeA8201NV0Px9zIHDCHuIQIHfE6Pb7KfvP4tN\nfHGf6koPH8KNE7jA+3ZD+K3Q87Tz3g57g6fqzKEzI/Y6h7N8vvx5+vHC/ej1iS8x90If5/rBbTh7\nvroFcvP9IWxkVUjCQRebCPrke+L4vfcc8FutmIPDZjxDe32bzJloHtsbXEZftcmn7O1IYOyeTGBu\nxDUHGuJh8fuYawHxUpnDdQP51KHQ05GRKoYKneEXt+dYc94nXpiRqndpmTKfvbXPDoYdG4wcc4Q0\ncfy8s6cwQXgs7kaheXwRvm+NhfwbJNVm5k1XVcsiPlVGDKlCmFA8LSH09BizOP/vuPGACGtkT1We\nwuKO7GsNDuhESEDvD+q30cg9tSFkX1T71ob2uVEfn7tVVh39ZuuMxAckVNJI7XKrRXUD2ExENtMV\n11lLOoxrjRwpnuDytY6Edh4lNEbtr78n8ZAynnjiiSeeeOKJJ5544oknnnjiiSd3Qe4qUkZFlCyX\nEW9IUkgVnVUNi+th2CYS1Ta3XjqRp8odIvuWENuysjwqaGApZR2njpNFu/Y00eu4MhGZvM7biTPh\nIKwKBEVVWeoRnU6I2To5QdS3p7OoAx1qPTFDVi+t9xzeIVrs1HQ+XhWNoorkqWiHJXUuvKBMQU3n\nyRst2lfT/bkRkcFF8ZhEjvG8Wpn3BxLKANeIKB7cIbsa6qiiTiJpY2V1AjpnnD5Nn6dPE+FtHuj8\ndUOVX6rquyrPxINEoGeO0cdXdXZ8oU3WwyaFUhB6qauMYG2X507O6yx69+2d8Y8H0FlppOpNDhHw\nYYmMQzVJdHPpGBnLrZfIlrTurJmZ2eIiEe83JsjC3bxK9ia0RHsHDeKSxxbQw3aTrPzmOlmUey8S\nCU8KhbUmLpVTj7/DzMyaynL5FBVuvIb+fI9iI5OTZLV29xmTcYpMRlRM4dsl+nPuIsiUE+dob1+f\nVwuMQybGnCioapJPNnrsHJmCUoh+7N5iTtz7Ts4qH4o74o3LRPxPbCrjoQpEwSTjNZUky1d4AT0t\nLpNVjKi6y/oa9y+0yXRMiYdjb1NzUSiQYJTrEzqfeecacyGa4L6E0A8rs+j1QPpuFMhQhJSVmp5W\niYojSGJCiDqhpsJ+cY4I+fKakBp1VTVyuVDmpLOOUEilihAmYfqUP8vzFo4xJjOqhmGqIlK9je3f\n2SDLXCiQqR2I42bkE5JEmbu+Mg1OljkVEg9IVJXR0iEhepQZTAt1lkhx3yDN9ZUt3lvaAsVwsKO5\noQo9l04rk5yXX+zpLK8yHLGOOHiElBm5Z/7F6ZJSJtdRJqNXFtdDgzHuOLxvoKpTe6pAc7tO/3s6\nV+1r896JGfq1sATXyqL8ZCIi/y50Rv0Q2916CZvYuO1yGfD/ZBrbyh7D3yaCOtN8RMkJxZXNqbJO\nk/E+ED+Ju87UVSFsrAzz/DHOk0+cYjx3b+HTtq9hV72mEDUuak2IgJ4Qm7tCG/rEVXT8JNnTGVUg\nyrpVBMc9OxAScFNcSweqfpNbZAymNW+K8q9rL3+Zd5aw2eXHQaydmFsxM7NKAR2+qnl4cAf/1VQ+\n5vQpEH0nTohrS2fsN4VwHB+y9iwdY+yWH4ZLID1JX6pKI+9eQyd7N9BJSZW1psUHdOZBEDvhCHOv\nIA6U0ja6DqkKSFC6evEq7dwSQigSZs7lV9w1XRxUqoBjQqOVa6p00McHDH1vL+9UF8phGNFcELIz\nFkfvKREb5fKqnqQz/a11/PW21p1SaV/fC5np2u6SbFB8VCmNZzzLHOiomlStgs3vvcZzyk3x5jXQ\nR6/OXPTFhU7IvlWJ7PQ3PWipSVBgcaF0y6ouWHkFve4JWdkd0/7Z+xj/GXGDRVWZp1tkPL4izplK\ngXEWSMzm5xjX/Gky527Fta5f5/kPyrZX5N3Jkbi0lIHcL/Hu9jaf1/2qKqf938Ictpk/Jh1FeXa5\nrApPLzA3Cgf49WCE5+UmWGtm7+X6hDhgqlVlaItCLgrh0o+61TGOJq0ANlw/YEwyCcYyHWUsru+z\nVmYyvD+YFsJCKKVhFL/X3mQMWz36n5nmep/WI3euFFfpZ0vVo5YeYa8SFVLo1nVx14jOwslpnZpU\nlZE99VNVmnpCqLuV0IJRrq+2WS+HY2w5LYTpMKyKOBX0F84y1kNl3xslnp+dxLZTYelhU+MiZFRD\nGexuGuOJLDGXdg5UEUfZ/qiQON2gDEWkFrGuMuEDoQDq4npQRjyodTnYpb19QVf7JgiRmYUTEQvE\nxAlZEfrNRarqer+bGhcfVUJocJd/7yjyYh/E3/J5kMDH5tFVLAXC8Y0BOnpv6E/MzOy5C+wLW08z\nv049Kb99UbryMRceeIznlV5hjjz7LlWe3WTNXxKv0vxXxV85ZF53clRJmlFV1INN+vbxGfYen9n+\nMzMzy9W+iXaEQV4u3GI9OXa/9t230O3l0qfNzGxnGUTOCenmgQLP/fMBNvrxMn6+NQ26/9myKsJq\nDHKJz5mZ2c19EDgPBdl/nhIqufUR8bl9lv76grT3+nHGevnT2hslQep85xZ6/cPlvzIzs/Bn8B2P\nZ/BfF8UzWGqwBm+uwyVzv6rK/cUIZP3IoR3PnNOcfI7+tGaZi2cOseXKTWz0WuML+lzcO0eUiNC5\nHSFcxtqTRVw0ihCzfhdF1pfvCIu3pKv7hY4bm+aMfvtF4i4XjdZJ/f4LiedwNHBhKmbdsd8C5thY\nvDRj/ebpi3NJP8dtIP830H425pNtCLkWEqKkqX3dWPxiXb+L1hEnrBBvHa3tfhdRLkSN31weUrdK\ns/h09PlAlaQ6A/HlhHie4wjRLXRZX2EOF1nT0f0JueWBqjdF3DVLqNiYqveN9bkjjhz/yB0Unut7\nk5+HuRrQCZ3+UCSIqkA8boiLS2jeryUeUsYTTzzxxBNPPPHEE0888cQTTzzx5C7IXUXKNJM6yzlB\nRMkRC/5Ah7kiLjpBWSefIngVZW8SWVVRShDNnFUmeWtExH9xmuxRvUekaluVAuYXQJrEJlRhSFHF\n2rYidRkxmuucfFIhwrw4bnaqZBF1DN4yx0AVpEf045YqXzgJro/kyOymUqrEoGxev0bk73CP6HhP\nGW2fMsDBGhHIXFbn8U/ozLLpjLHOTs8HiM7WFZHrrPK8mTOgL2rDgjW73DOzTKZxoOy4y+Oz9iqR\ncf+OMnE6Z3fsAhHuljhlejrruH9I1mVigT7FlREsKpM2iJHlDyvbnEmh61Hr7Z3fbigCHNE5P39X\nf3UOvK5Ib/QitnJalVHW1znDO6Ws+nFVsbgpFNFoh7Fq5lUxIaWKVuK7OCyQ7WrU6efZe9Dli1/i\nTG5jT8iQGcYw0sFG+m0yATeukPWbPYb+ClUyyAFFb2NLovh/lrOwtW2yfwtTRPb3ukSBk3FsZUIV\nd/Y3aNdhiXGKtcmoZLP0886dr5iZWVHZ++MnOIe/owoxG0IjJOM6r17HZu45zVzZ46iuNaq8N+lW\nWxqSoTmsqlLQgKjxSBWHwj6hFpR0PKFz/60XyTw3xMVT3RV/iTh9cppT0+rf+hvYYXt09IoYPZ2T\njWwKYVHDdn2KuFtEaKhZbNKvqjtVcRmMStx/7AxZpEm3mscU86rVZR7uXMW2d15f4/4SY90V6ikd\nJASe03NSIbI2zhTzN6rIek+ZzEhKiD254Tcj+m102xcSr9rDH9WviIeiIm6tPtedPUZ2J3pSlQoC\n9Lcmjpe+qkgddHSGVtn9pLi6QgvKLAboz1YRX1G/I8RRiftdXidH/WgOlJoVx0xIKKjpObKBs0s8\nPyK+jfhAGdk9IVS20efadfxlVyi9ptju47NCwS2SRZw/JdSCuHImzhwdTWVmFlYOYk1ouXWhNZwe\nesklaKc5Gh9VCmv6Nf7PgoiqqhrMUBmg1ByoiYiQmY5Y/geq8nF6DnvKCGmZnOD5jRLjeesKc2ur\nsG31TcY2oioRcVW/SKxgU5WWKlYJkTiZ4tkXH+TZTog23HhDyMBV+poQfDS7hJ+47/SKmZlNzZN5\ndOELhRuMQUf+YvoMz529hzHIxrC5tU3m6f7L4vGoYaMRnXE/Lq6y9BR+oCGuma+oulyrxH3RCfVP\nXFgHezoPPkCHly5Q4WriHvxQUHuEehVbPSgwJr0t3q9lzcJBdOwE3h6a6vgpuBdSS/glTT3r+nR+\nfhf933wNR7l7G32N94WQdP3ZEra5sCJUl1ALvqD4osSPUToQZ84O9++oclBAmdjhUJUtlHSLpcVj\ndU7cLar4mBAqzswsPTln3aHm1i2eX93E71cO6MdkUtVQpsgwx2ZpZ7/OHL9zHfvZ3wFhFfcxF49f\nAkmzOCUOoiRzcjRg/JrrQvaoslyz2bK45lO7pwpUqkrkVszyKyO5fIqsfnqReROfETK4xvebV8SP\ntir+nAh+Z14IvNwZbC6ZwH8MVUlyZ2eNtghlOlJm1a3C47O3dHcU6YhjbKC1PL8EiqHXx080xIVz\n4gIoopL2RDnxA8Xi4s2o066gEIk+t7JiUhUVxX9nqoDWH3HdVJr9azM4VnuUcVYGeyYnG/OLs0YZ\n5EAKffkC4oZR5jmcZMzHyiC329hgNI1+knlVURGSJifOtpbmbEcZ6+QM/euoMmd7xHsjMfEZjbgu\nNykEqcbhoIwvCGs9DE5ob9FkTpjQ0oGsuB60Jxz0eb6/h95T4gYbCPkyaroZfhFMmVlwfmiBAN9X\n/NhDIqk9bA7fVauxt0pkxIUjJGO79Raq4BvJOzew1fY2fdrWnn2jKTRtSDaUwH+fmsEvPvOdHzYz\ns7V1/PVjm4zFy8dAgIeeZ94tjFWN9C9YO9OXsIlMm7FdoyifHX8FZMcjHdao9l+Kt/KeNTMzu7bF\nXPzQffrtsotfv3eTSopfXACNW0jiZx6KCplxTP4sC4fK0m3G8voBKLV772PsruRADG238NPNB5gT\nx7fp9z2qhLv1XubI7Sp/SxNCiG8JoXgP/+/tsLeYFAfWnQcZ24fS+LfaC7T3I5VvNzOzyx8CIfPU\nS9jMYyHG9uV3qCrhmLG93aFf7/wyzxnn32tmZhH398w0+36LgyTay7Me+nP4yZXcE2Zmlp3n//Z7\ndiTpd2Tb4ikZqoSmXKKN9du0JXSYy/8XUPXYjpAwfv0uG5l4U2RfXVXufBNdIj+t15qvF3mzLYHR\n0Ib9toUieqZQlGP99uqqWlGwxzwODJgfPReZ4oYTguJ+Grh8OUL19GjD0HErq+r3rhByIVVRausx\ngTp+oBuVH9Sf9sjlXhQnmao+mbhohnEh+kzf97SvdpFw+o0yEO+OVG9j7YGC0qlPvJYut0xA+3z3\np0nAhOjR3qD/ZpU53uuIu8s63BDRiwfjr8+X6SFlPPHEE0888cQTTzzxxBNPPPHEE0/ugtxVpExI\nZ2YzUdVor4utWZwPxT5R3pmOm2lRdFAbJxpIAAAgAElEQVTIl5kEGYqpHBGq/lhnXQNEo2OqdrR7\nh+hvv6kKEgmyQxWdVa2p4kKjRdR4ZonoaUgVIkYDccEEVD1lj0jcRIj35iaI+pZLOk/fJEu0coqs\n0pQq+9S3eH9bVZZ8Fa7rd8hAZOPEyNKTvHdjnfZMJYgWR+bIUNx+ngo9bbFkx5VhWX1qDT1OEhVP\nqx8Hd3qWUNQvd4wsxX4DHZY2OGNeLIAyCCuDl1rgmckZIvPNodq+qnPhNVUQaZFpLfv5flDkOR1V\nEgjO8px8gjZt9bjvqBJ1D1UqKtpVbfthQlmMApmEsjgQJpbJlu0JFVUW98yMMsMljfG+MpPlPbIs\nsQbtTPt5zyBDRvLmTSLt991L6iElbpf1HbLli3PKHC5x354yG1uvk2GcX1Q1FZIxVqow9ssLPH8Y\n4b7dbWznxEU4G4pV2teo6ty5zm9feJxM7sZl2tUVr9DSo2Qobr4Ou/zea0LenMc2p3TOe++A8ZlQ\nBts/5D1RZVyTc2Qdb2+S6XnXSZ3nP66qW9JPoUE/HSF6WlU6OG6Agph9AL10btPfWoD+njrP87du\nkumotGlPVGd6k8r61cdHd03Bkct2Lh6IjBB4Oqc7SKm6hHuWXsiPoTKlx1foY3iKNlYL9GH9L4Q6\n2mNsmsr05pP4mdlL6CQ/j46zQlqEdK57UFdFmp7QZ8p691WdaH9LlXPE9xAR10u5pAxEV5lAcSUE\n6tKJyLgiUdmOqkeNODZunYZ4Kfpk58ZCLwSFRppR1aGxuGEO3yAbtFViDrXlh5NC6OWnyaJPZfHD\nYePzviqXRSd4fjSFXlpCNI7KvP+WKn81bmFrvX383ShDO/NZ9DZ9Hn+eW8B28spUBpQBHg5p77aq\n0W2oItBRpXZIhn1rF58XFALylM7zJ5TBHdaVae2q4owyvoEM/Vo+ATJpQpn8mDK5I1XI6dbw444y\nQ35VHamqItnVZ0DGNISS6CmzNJWesplTPDuSEXfJinStanAD8R7lE9heUHwPh3uqenT7aTMzC/t4\n5vlF0AfZRV2vSmVhpYeqm/Rt7zb+5NYVbCC1zFhOzqnSVJD7XhWyb+02YxpU9mz+DDZ18jjIlmBG\n2XzXP68y5klxb808SCY2NyHEoFAGfs37VJ51Jypei70Nstqrr/DePVVICyptlYqhn7g4VlJCdnZC\nR89um5lFhcQ8UMWb3VeZ+/s7+Kl6C/0E9N58ivVv5r1khKfnsGVflPa05WtKa9j+QZWMd2MLvRfV\nb5e/Iisektg9+KR8Rnx1eZ2njwsdIT6mVhmfUbiGPuwjZrde/JLtC3HV6OKz4nHsaHqedeKkqveN\nxcd1uI0tHhZU0Uz7g9kTID2XtT64trpZQC/VVeZgVSjjqCqXhYI814nGrDBiLep3uTbYwvbmF+Xz\nz7JmJ1ShKxTm+4NNbH3jCjo7VJWcefnbyTP4iek5IZ5VJXP/iqq/qXraSPvFWEj7ubSQEUL5BPpv\ncY4cRXriAHQS2K6TxT9VSloTxY0YFRq0sKf9nVCwY1VMqzeFhhLPQyCtalAhcQpWsHklxy2ZU/VQ\nIT/a4iAMhfE7TVX5CGk/WKmIXFHoiVSY9va6ykALPRcQUshRhrwuzp1QEn3FI8xlF7nSV+WaVkXV\nRHCDllAltKrQxT2VVQkrxd1RNZdZVcPqyM+WdtDbRF7viapalPy1f452OeJgEzWEDYT4rB3Qj0he\nPCRCyAwEc4vJxs3MIk7ADgfiDBNXYzCuv1na1RXKq58TWjHm6j1oR5XbfdaUnYfgNjm1DyfJ1BK2\nPBwyDx2t6c/cQhfveZm14fIEv1Eun37ezMwuvsjYdVU5KvY4bT3+NPP46rL43/pUTyo+zf3lEYjx\nJ4SuCq/gF5LiP2o/i25eOYmRzfWwuSuP4ldCCfYGy1/kOV9MfIJ+dJm7jwlR2HmQ9k9+Tgh6VU36\nwjkQJpMt5urZwz83M7N0kDl/+zzIl+kddF2Nsb8tbvP8/RfFt/StQhPPcd2J5+jPuTZjGaizbsYe\nARnuP9Q+ssqcmhWSc0d6mBOycs7YS1ycoDrTH79PPEKb7N/fOVKl2yT9eebWM2ZmFvQ/ynteQz9J\nXbcdw2cdVfyqyBMYipNT/CatgVsJjOtiU6wniT7t9/uZoznxtpiqEQ6192qoAlAkydxwkqq2KlRw\nT9yeLZf2xMwCmbQlBs6bXKpjnyrbOjqN4KJU5b9M+6LUGBsYiTtxLN6fkLtvFRVTWHw+Okxgvih+\nPix0Zl+InHRKiBPNu6EQxT63KpR+J4elnGDUrR4nZE9c+9So0GPioB2LH7NcUGUu7ddq4pwaq0pT\nUL81+/LfIY1N2GjXMCydqurxIM3fzJCxGIqDxxEv20D+d6xqfMHu10fvekgZTzzxxBNPPPHEE088\n8cQTTzzxxJO7IHcVKeOMiSRVCkSOGkGijo0KobTmIRGy6QWdIVWG1Bfk89k5lzWeSLtfZ2/DNSL6\n7W2iwrsvgmoIiOW5PUW3K4pyVlbJrPiEYEkpwmY6g9bROeyKKl4MlSkJuiUIKkRdt58jA+uiOiZm\nCEO2NpTxuQYip61zfZbg/vIt+pVSpZ6QzqANVCkn8SjR5J3b3L96lX4t3Avaoarz/+UyUfj5UzCm\n9/1EEjvF25a+RGay1lBVnNdoK3lQs66y9XFV5ZmKEu1sH4rPQudsa6p8YGJRbypL/yb/RYH/x5UF\nnw7N6X6dZVTW+KjSrRJ1DCoz2I2oQk1avBKKdjbEcRLR/6MpIu1bRZ0bVjWhhXvo15b4KzqKAh/4\n6Gdpl89n5sm6+KvYRmOSdixcJBP8yhtkjJ2ryiYFyPKfukiGoqQsXzdAu93qSRubZCJPnzyvdtHO\n9R30Govz/NAKkW0Th8PeBmO+co5+5B7kvlefYswvRWCTXzlJRmZf1YzmFQWeO81Z3rXLsMTXVImo\nqSoeHWUWztyL7dx8HVb6LfF/JFQRaPoUmRm/cV/xhpjHe24FA2wxqsxuSpUabhbJcEf6ZH6dJaLO\n1Tu0s6z2LCuDWysePeNQ36Et/r4i6zobOjZVJojoEGkIXYYjRL6zQrod7GIjxa/oHHhJVUCETpqY\nZJ5dmgNJM7kglJHOnlY79H1/m7Hdlf8aVLH5sc7clw/kL/zoKKDDqmFl4ELixhllsOFMyo2044/6\nUzrzqrP8YzdJojk9VNWfgLiwjp8iWzcxx/3OvJj4W8p0XlOGWOQOU6oEk3uIDMlMFhsbChnUbXJd\nd5P2D1QJplBW1bgyCL6OqpzUB/JfUv84wpyaf4Qs2YR4N+Jz6DOmcWrtiv9oDZsvqCLPUNU/MtGA\n2feYtepvDylTrfCcKXEFLZwUimSBrGF1T6iuHteFhPZz+ZwWYkJUCQlV3cZ271SELpBrCw/Rb3mb\n9h6K96RTw56iytBPLfK86XtAj2WScWvt0qe+e0bcp7RwFeRGXzwTRc3L0jrvblTwT0sn8egnhDoK\nyNb31mnDWoM1L6Xz0E3xIhU033KnaMvFx7nfraZ2RQi8wk3W0mQc2zj/AMi+yRV06lNabG+VzGpR\nHGUtIUYmTzL/c+f4O1C2f38fnQWFjDy8A2dL4YrWGfkHR7wRc8rQRuK0N5XmPpm2deXXhq2jZ7fN\nzF6/gQ3bkKzWpnjdJmMgYObPgYiZjeKHE3FVZhGP0H5BiJgD9LS/im/pjYRa62NLoRT+cWGB9SIr\njrHkDHpMCOVnXc0JITwP9lX1oyW9bTCe1aJs8JM/bltXtywxhZ6WHmDvkMkr65lWhTrN3d0txqm+\ny7g5Q/mYjFtpAju5LSRVoY5vHDFFLCAfmFbVpax4oAI9VSiqHlrbYWyyWfq2eJY1yq1mGQzKfwpR\nsr9Jm/aFLJ42xvreU9h2TJxfVqfNrz534z+6byR/HFEFrWwqr/cJcScetbbWrKg4sY4qjhDbU9Nu\n+Q7Gti3kXcph7a40ZIzqX1qos0pN1UZl65kMOou7flIIyKH2v2FVxUs32AeHG26FFWw8GcPf98UZ\nFhLyJijESFNcKOlpbGzc1x6pLc4VVShLpQR5EVVYW4iY8LxQdV3eMxDarW/of1aVyEwZ5GEHfbhI\n82FfWfuAuCUSrEeDojLpAz6PqXpdWBwVBaH/QtP0KzGl/az8a1PVWN3fA2khxEtjfNlA6LDEf8Ar\n5etELaDKZkmfEELitghnsLOaKB/SQkr2xUEXdsfzCJJwXjIzs/ftsMb1Z1bMzOyrr9CH7DqImO0Z\nuEvCu+jiFcflsWOvv9Bnv+os6TfEdS0yz7N21JbRTfdF9muXpuA8CbwL3T00YJ/5mTr++4kn2V8+\nuwxS59g9qsKTY4x2s+L6e5733ZeGK+VPQyBEvqtItb+//haqe774LIi5xjr9fNcngOu+/BzPPVjH\nZjMPs/+89YqQLSd5//GXsZVq/BUzM+t9Ezr3tx4zM7PQJ/AJtZc47fDBIbZx9XHauW+s4ReuYQOv\nPs1c/6BK3CzHVaX0PiF9trUvvc1vuPwFnveXX6S9J1bw2505EDfriS+ZmVn6KfRoqvR15hQ29Vz3\ng2ZmFg3gg5YcbO6okosKvabfTW5FtJwqolVUyScuBOdAvEzbq+hjWBZqZBYfsTiHvcxpjtX0uyEm\n9F0gwPv6NexrVig4M7PZWMwGg7EFYzxj/4C1qyMeyIYq4I462Ma8OLwi+i3W1+/gqE5FtP1cH2xh\ns4Mittqso/uuUEGNkvZFQvFOJMRTpsq//g5jmZ7mb0zPD+nkSMJBZ29c5jeZFYVw7tP+mLhj4hPs\n89La1wfa6GwY5P45/V5v+7U3qtJPR5WqwmmuC43EBavfCYkh+mppTfUJKZNXtaZD+Zu4uAXbOmXw\ntcRDynjiiSeeeOKJJ5544oknnnjiiSee3AW5q0iZsc6Y9RVRc89eTShz3EoLuaLIeUWR+1iSaHJE\nkac7LxEFjTSJcIVUqqCt+uHNOlHV848R2XMU6S/sqbKAEUHLT6lCxSQZgz2daR0FiLT1xe9hYZ4f\nVY35Ro3IV6nrZtaVmdHfGy8TfW31lY1UxYyUqpX4dYb2ZI72lYZENzviG0nliVTuroGmiDtE9t2z\nucVVcTUIGTO/vGJmZmVlhi0StVSQa3vKqAVqPKuTJOMXUVtik0T9givopHlTyBghXA7dEu15vh+L\nCd9pkWUIJ4mY55eIYtaFGupti1V8+PYiyQOdQ+7JNqynTKEQIDYSL4iyQKFpMnaLyna8douM62aT\nyPCps2Ro50s8JxZmCiRUjWirBh+R6ZxiQFwO5Qq2cPqDII7aQtjUhcoqVNDTmWOgEzoT2HBJGZCc\nOGoiSaLJvTyKPPswCJfLnycD0akyZtkZzqjmL5AJKCgjOtzFNh69lzO6m68qI3tIu+fvp0rU/ude\n4PtdbPziA+9AT3UyFLEQ4z3skBa78lWef+o+Ms+L58lsVHb4/GCPdmW6qhg0T/tGYfQ6KCqjUSSS\nX1NyauEJ9LX1JJmjRpVo8sIMdhafJuNzcIP7M4+oQlJRWcgjSMIYi4DmS0dnUcMxMpMJnfmPxJSF\nEfqo1GPsug10kI4zr07MghJIzGFbMT+20RRqYGuLPm8KAdeqkC1ydLY/o8i9mxEc6v/pk3zviIMq\nrDP7KVVbCqgqh79CrLyt6kkDcQiEAqpglmbOtZXND5vL7q6qFkLgBUXh3+ypKtUbqty1zhi56LYZ\nVQ9aWWBuDKNCV+wLhfFlKgqUxQHQl81ElI3yu9wy4hvK6Gz+/Ay2Ni0umliYsR0FsaGxeE9uXSfD\n0b4DmmNXvEtpoUVS4pxJL3N/dhn/Pydul6NKfBZETnpW57eVQXn1S6+ZmVlth7mV0vcTGVWlaqPv\n0i76K15h/EvisJieV+YmKU4DVS4bqYpUXj518V7an5qhP8M5fGZA1Vw2r922prLDmTR9HMaVlS4w\nb8oak8MKGcboBH16/D7mY0qIlZL6cvt15t1A1ydmmN8x8SkJqGKnLtLGqYdWaJMqo1y7CidAeYP7\nZ1Uh5+Q9nP2PB7Dh3XV0snsLf3Mo3qCA/GRqljkUULGHwi2uL98EsdnSWfe4slRdH7rJ5Bmj4xdB\n8E3MMDZtzfWWUA+lMvoZiUcjFFTlsOHRs9tmZosrzE0nTz8Xdc48oTW332AuNeSvdq7i97e2mIsu\nb0rArbQjP7c8sUL7xZsRnhLSx8fcb2ivUpSf3xQydbDH3qgnfqJuBz88aMoXCKSweO7im3148Fu+\n2aYWaW9biCir077idfS9uakKRgfK7iXFmzelipbKpPuFfAz1eV5a1QQT9/PimNAn3TFzxFcSV8FN\nISznU7Y8j61E1KZRE/+zu47f3N1n/1aVzTpB/NdCjrFYWmSPMkrgv7deJ6u+K+Ryx/VjefEKiTcn\nk2K+DVTJrKnMZm8oTi4hKoeBr18N4z+VQY49jK+F7kpaP+I+ETSEGdvGJjaS6mKzoQhzrt8QkqSh\nnGgPnff84uETp87hDnPCrwqW6Qz6KBVdVBP+JaRseygurpShUA/ie8to0oX8eT1PexfUYWNV8YsJ\nMdJQlZCGEOER7Y3GCaFqhUiPB4TATCzoOVxXExdaUOjlVkdVSxzePxa3z75QzP6hqhTq/aMYNjuW\nX6wLURMzocxUoaYrjqG2OLymXU6HFv3vxWhvf/hWda3auGV9rZcdcVuIgsLyJv99wP19bVWDyl1H\nnaNXDp0QYnHvRfZhmSlstXYDhMkHvhOOwtf+UtXQPoK/2dsFkTY3h1/JfkFcgUJu57+J/9uX0NEN\n7RUeP/5RMzP7avuLZmb28A5t3bnDfEy/X9XwlkECvjfKPH752ufMzCw2x/snnmSt730EXfZuo5zZ\nGOi215aZO1MvSXmbjGk+y+dJh/3vapbnpGvYwMkhY7Ev/qe96+xXOw+xXgSFOrv0adb0ex4DSfRC\nhf+HMoy5k2Ed2HqFvcK7LjInrs9SBerxPLZX2Naae5Y5VXuRwXzi3cz15/9I3JMlxqn7fu5bfupv\n0a4Me5IXBuxPo+dApCfmmRvPP4ctflx0RU9qP378Lxi/o0r7gD3o638OIufxd7+H9kwyvq/81Z/Q\nD6FR3IpxWaGqkyn2qkXtG15/+Ukzewvpv/o6iJqBfi598N0gpb76FNxz2XcJdWj/0J59+g9t97kt\ne+S+D5mZmV8nR5ZPMPZ1rSVfeob9UlbIt6Z+F7/61/AZRRbQWVMcKpcextYHddb85husYY//wHeZ\nmVkqiA29+gptGqo6X7Sh6mwFVXq8KuTJIffXw7TvPRcfMTOzrS8xZlPHaW9jJL8szsi150GTVbRe\nxBzmzupX8EOPvQvd+2aEut3h/q2r2OJI+8FZ8YReucFe7BMf/14zM1v/sjgoxXO0qJMvr+i68+8F\n/VUT6vVriYeU8cQTTzzxxBNPPPHEE0888cQTTzy5C3JXkTIdVZgpiLnf1yez4MuRGUmGdI5aFWYO\nAzqzJr6QopAsN9fIuCyHxYEQJsJVrxI9rKmOeUfs7c2b4pBYJ3q9dIlocLErRE6Jdt25JqZ00b0f\n6gxzQ2iNfpvwo+8W7WiqilN0hkhd7RbR7sKVq2Zmlpoi+hzMEgsrNJRNVOaiJfbqA2ViA31Fl8Un\nsHedz1OTZCgKykauCc0QyxKZK7fo377a7w/FbKdJlrepZzd1njg1TyR5IF6N0Dl0VN7imdeur5mZ\n2fTSCvcdktVKK9M31AFcJ0p0MDyp885h+tpStZ+qOGjSOkt/VAkoQ9kSf0ZOXCsTUSK8t94g0n5r\ni2jkfBLdzp4nY5xt0y8X0VJtCT0xg61UG0RzJ/JE0heFpCnWVAlshmzbliL7qWn0MH2JTEPyBtHb\nA2XNg8exiemcsjpxnZdvij8kSPR3S89fUrWO3DmdZ9a5TH8Ym544Jtb1RTIkX3mGs8EXxG2TPcb9\nt4VUefQC7Zq4SGT9yh3GPVMlgh/PMd6RtJBOMfR1x+Wc2OD/x86TSZjRueydJja4dpV2TZ4Vp8Ix\nMu9OlLlWVBWpPXFPzImjYmKOyP1gTDtDMT4/PU+WraVM7oCvzRm+jXjxPLpLi3sglmBMQsrI+VUx\nZOQnazTsYosum3osjQ6dRcbaUVU4X1HnlluqvLKnilgtdBEUMmVlGVSRM42uci6DfljZ47SQMGKb\nj4onpD1U9Q0ff5sCtg1H8oOq8DLSHAj4saWOEDTDkCrzCF3g6/C+Zks8UPJjXbcahrLxs2KFT0+Q\nhRqnec+BUExloRicOmPa6/KeuShzJrpEVsgJie9JnAY9h+cGRU0wVOWbpjgYelsH+r+y9tuMQ3vM\ne0OqJHTqLHPbRdiEpWcnoepVQj8EW1//bO5/KlEhmcoH4mPZx28PSrw/kySjklalmbFhNzurtLck\n3qe4slTnH4IPJJPBpwxVbaR3KNRGSPaYdFERQj75uO5wQ7wrm/iWcqFkc1kyfDEh7ar74n7aEgfW\nCNtamMRPZS4xFkEfOrl6jQzl3ir+0EVLLTyIjaZyDE5zU9whcf4mJ/AztV38QOEONn5wyJjlc/jd\n2Qu8r9dCJ2tXQSLuqEJZTKjW9Cnm1OIkOs1k9d6+eJ409v48/mjata2+5oj4HYIuv1uaz0tCEtZ3\n6Z+7jvVUXTChtXo4VrWiwNvLO6Xm8QHjNM/buUn/i6U1MzMrr6Gfwb6qXejxmayQJuINyU2ytYqp\nHy4aoh0UOmOP9fVQ6fqDkrhpytimTw8OBhhXv/jwZhLYx+gEc2JykXEJxN7izYhmzPY3WfdqJfYs\ng0Ohg8X/NKFxSp5hfFJTqs6RYt2suFUPxWET1Pj7su55e9q7r3Wn28c+B9qrxVQ9LD41/+Z+bEdr\njIu6bGpv4Kgq3eIM2frUEmvCdBzbcKsabV5jvtRUbS85iw7OZlUhLKUqIGFxF4jvrrXP367WXKdJ\nG+vSmX8UtbcjmQjXl1riMhN61F1bfdqD7Iq3Iplxq3eyDjgNISL9QoaIPiih7PjA3ZarCp4vxQVh\nVYfzK5c61j407Of/Ga0//aA4GIXYG08xh2TSNg7xnkBHSEtVCjNVKXLaqjZUXDMzs4WEKgWlsPny\nGr7Bpc+YzAuh7tP+uu1WtdIc9zNeaXHnjFU1RSBoi2sPEhaHRHTM/QUfehi5XFxzQuyM+NvWni7q\ncF9QerAA/UgExLU4fmudCAaCNtA649M6GQixF0moH801VdQRwujQ5dIIvlXF6RtJ8inWiudi32xm\nZsdv8+z3fdPnzczsyp8z77bPYbsLgrytqFpl+CuM3cZxccpEWft3xaNWjnL9u8U9Elp50szMTnwW\nm3oprd82QgvFPgeCenQffbv9Va7fmlqh759lzh1bRLdPN+j79ga28cg9+Pm+0AuxeapCPTWBX59u\nM3d9Y/znYw3el20InfsM1yfOqjrfeVXuanN91MGfv/og65ovg22e3wNpdGOV666cwJ99NMPf7uU1\n+t1FD76T3LdRZD3aaKOPhA+/th/AluOPoUcdMrAzcf3WWmCsh0n8ZzYAMqfxJfR/4mPow1mAQ+aP\n91kPnzhkvOsfZ99sv29HklM69bEv/sEf+hjokV4avz95hX7kTjCH26qK2hOy9Lu/89vMzOyvL4MU\n+jefhjPy7/7UL5uZWb/0MTMze+rf/u9mZvbRRfZ8a76/MDOzn/jlH3mzLb/w05+03//Rf2Xf9wS8\nRH/1O/8WXbQZw5X3gOq/o2qiHzyhPUWZtt+XwSaXVM3yf/zFf2FmZo9+iDEIhdjXPXcI8uV7nng3\nL1Z15d/8wr83M7NEnnm2JARb4TZ+9b6/9x20/YD3ffZ3f9fMzH7w0vt5rmw2qd9sf/IiKLAH8/De\nffkF+I7+zg9/v5mZPfCt6Prffdd/bWZmY1V+zKidwyz74DNCkX73p/6pmZnFVWXuJ37wJ83M7MPT\n6KVQQvePnsAmlu/B1pajrFsXHgYl99I2v8u/lnhIGU888cQTTzzxxBNPPPHEE0888cSTuyB3FSkz\nnyDb/vC7QZb0HKK0Lgt7u6mqRNNk3ZaniIRF58iqRcaE2rsPUWP+2DJR5a4yK/E8982eIwq8OEsE\nayNJZvLDy3w/KQ6WBVWgic/TjohY8GNiXe6JXyShyGC5R0YhPaPKNOu0a3JG2b2oUCR5MgO5GaLK\nIUeVNXTGN6nKCEsn+T6e5H2nHiJKm58Q+7RY4Ffmzkk/vH9+hfuCOvubFAdDRhwH0+mcjRxl5CaV\nVVIGLj5FNK8svobjZ9FRbZ8seSIjHa2g2/wmkd1jekffIVuTGKGb3fO8Z3Kes47xW2u07Szxv07t\n6FV1zMycKbJDyT7ZjZTO/C+eQQdpsY5Xm2Q9km61I2WEH34EHV7ZACnii/Cc4+d5zrqQNjFFSZP3\nwrqeVlZ8ShV3rr2ks6J7ZIkmLpEZmM8z9pErnNV3q5UcO4des8oUt5R96rUYIxsQ6c7p3OHFC5yL\nbKjaVT+gigUJoswnT4KAaVTJ/sSUNVu5n2og/psgaAYBslWPfxvnQmMvv2xmZjNB+ltU9io6QTuW\nHyCqnbxDBqW+s2ZmZiFx7UwtE/kPymb7PaHWdN576SQ2n7+oDHECfZXbZDL8WebCvffRzvUKeoro\neacfYu6XxFkREQN7w/dW5vcbSbjDtVVxNo2FSqpqfnbFtt5S5sw3Zj5F47QhpMxbaI/ruqq+U6+K\n80pVnWIhcbfEmQPxKXQdEbP9qEDmtyy/NB6Ik2SXsQ7oTO6aeBrcKhc24vu+xi4oToKU8dyeKu6U\nhMTwjZhLTlPoIsNWfHWdWx+hQ7eCSyjJe6dzblU5/GupSya3vsp9I3G5dITMmZReJpS5CInLZqgM\nY0tn9/tCLwzEBTG8xfv7Qem9LmSLMsqDjnicMB2bC4rHakYZYB9+rtzAH48a9N8nzi5/Gn3tCz1y\nVKkpu1QS/8mgTn8S09hsbFGpX3H71GvqX5v3JoR6mNP1wUn0U9d6MxLHgYkDyM3EHooXxKdxavnE\nzTMSsqkppE5+wqLis2mqullbCDWF74AAACAASURBVMO+OK5iQVUQmGQ+++vMm9t6x34Rv51VNn/u\noiqFpXju5h1VPpB/C6Xp82EH3Vf20Y0JWZHW2htP85yuqj6tb4B6aNfQ6aSQcBmhzsaquqZiEbZX\n4bndgnggVBQpIETLsM37xn6yUP0W/a126U9byI9mjfvjqowYjGnPEOOB/jB/nQH98Rk6PqpsX8U/\n9XrcV9ym3QKhWUC8Eplj+ICkeKEGMVWGCKt/Qge0hEwZaH3q1YXeqDEHBn7m8FgVIFyeJkfZfxWM\nM0eIn0jE5XFi3XOrGrZL7Tf7sPryDfOpslCro8oyUa03QhVGY4xXSibvE/qrUkLPh/tC5fmxr3SP\n9ja2hAJUBTiX/2qU7Kv/QpuJ367RK9n+JvOjfyh+nxT35MQDl4uoMpRQmcMx795Q5ZCGOFgGQdo4\nrz2BJcQvJL65SFeVqFSls14T94qqFHUFSRmoYlRGe6C+/OpRpSu/cHh1zczMxvK36RDcOf4uxlLQ\nHOsfoOvkFLqpbKG77avsQyOqKDbf4fux1q3yGhnWoOZyNky/V3d5bkL+NqyqRLEo35dcbq7ijq7T\neqdKWqM+/mZrHX21XKTNPPfHK4z15hXek4vhqJta+3dVUcynSpcTmgv9NrZeEidEeV88eOK2Gd8L\nCuJQHIw7G6AjYhqPSVU/6WvuNFVBsrXD9SczoCx64i+qlJg7B0Kku9w3+Vlx+pSwo+om7TAzqzcq\nFpEPWd+jH8Ec7w+La+hAc34qLcSk7LHZPzqnjA3wkynNb2constddLgWQGehFZAgi0LF7w7kd8Q1\n+GASW7mdwj+GnoG3YnQg9FOS/dlfFkEDzH2I59W/BD9Gf4b9bTlBX19/nt9cVz7G8z5aByU0FIq1\nWkD39+ZY40pzIDN2tSe6pgpp2VVsRVQ0lsnBXfYnnwchc29WYyfkePM4+9fr+/TvoWf5vJIGPRAq\nwj3YHH2aB97kujtx5lTPz5ieOKA/l9OsY+0DxuT0O7Veyh9OnKFhjUn6e9iCa8cvzpx5Ie2vnnnU\nzMwWPgN3WuwBVYu9wb50oMq/jwnd/Kd7zMlHbn63mZnNfgC9xDYYj8yVo+9bzcy2dBLh/7zDuP3a\nP/1ZMzM7+RxIFjF62tN//N+amdmv//L/amZmn9Xn+5pzz7zCuvUHFfhP3vMUyJnbT8Lz8i+fhbPm\nrz77v/A+3f/hMvxc75n7dvvTv/4D+4XPPW3F1/G7v7UHOsqt0Ps7n/htMzPbMPzWP/+Jf6xnoaO/\npaqhT3zfD5iZ2W/swfEy/CNs6tFHsdWfXaVN330BG3/VGLOfcvv6Z7zn3/w4n/zuLWzlR2PM43/w\n8yBWfv8nQKZ85Yf5+4ru/z5V16yeZ849c5kx+qVn4ZS5vo+uXtde6tKTIG7cOlS/9d/9ipmZ/R8/\nTzv+iClswT/7n8zM7KUPEm948PKTZmb21csgcG6qGtw/Pout/sGn/rWZmf2hCqZ94sk/NTOzuSfe\naV9PPKSMJ5544oknnnjiiSeeeOKJJ5544sldkLuKlNkXauKwrExyVFWYuuJuUD3wyiZR0HGL6yNb\nymxUiEx1FV0uFVQNRRnJkjKtgzKR+usBmMfbe+IwUNWQQJHrhj3ub97h/bUmUchRmExHv8/7Kqo+\nkhDaob6j8+LjlvpDrKtxqCyW2OcjFSJzhSrvcxJc31LmZfcaz22K9XooLpzuIVHuQZDh2lUFnkGH\nDFJbvAFRXV/aJkNSU7+H0Yb1t9HhSEiOobK04xJZgWGfa9e3iIyXtoh0h3Wub3OTd/naRNQPYsom\ni0vFEV9HR+U82lXOzRUPaWtevAo2PHpVHTOzmJAig4HO3BeUzc8whrmseEN0vroqPof9a0RDJ/Jk\nn2J9bKm9Q4Q96qKYdsV7oRrzwT5j2hNzeKvO/TNCP22tq//XiSInY2SQHTezvV5Xe9wO8PyEzie3\nfNh4URHuus7XB8UzMVQWqF8Un8gu1zUC2GRGGeWqOICmxCMUGvP34BpR7EFZ41JXljDBe/zKynea\n2JzLJ5JStqypjGhTWcp2WWFenXuPqCTBSNWm9q6QObAJN5uGbQeqPH90iD5CSR6QayqTvk+7ag3G\nM6ZMdGOH9rUqb50D/0ZSj/HOkJraFVLGVFUjrIxiSLwWvr4qhen+cJ827DVU5UjZ8Ekh3Ezs8LEo\nzx0oc2nihBINhEU1P98cfPF8jHWWv9wUR4A4B8JR5u1AGc6cLhwpo+v4VPlEsfOk5k5T1YuCfp7X\nDqJrv58MwbxQA5GoOAyS4qDp6v112t0pKJPs8lYksPWc2hUWWmowVPa/JI6CIYMVIAFrPXE/BMXV\nMNT9cfF9ZHJCWcl2kqrY4+rRLw6Elvz7QFWeAiHeF+rSj2jOkd7oZywh1NkRJRxShj5OFjCUExpB\nlQ0cVfcbKWvp9On3jPihfGnsJyEuok5R1VGEcBqqYtE4oIz0ED0PEoxn0IceZsLKLI+FDtFzfSm/\njVWJxLWh9KLQUWOhuRzNd2Vlusp+J4WkSIpjJJJhPgajms9CqPjr2Homgz9LqO/jkHgoUvpciI9h\nXlUfVIWoXWFsUknmxJSqaURUGaevtcjEv9aRzcltWVJo05hQYK2x0E9D2iVaojdRZoERfi8iJIcz\niw2lVdHMJ52PxDPS0l7ARSWZ2n1UCWidiTk8Z26Wc/NRv1BzLjJS14sOygaaqy3xhKT6mttC3/b9\nPDegKnw5IWuCET7vuOi3qPyyeJPCPd4UkP802eRY+mqMZYNNd8Exy0xMmSOk4VSf5wc1niNN2qDQ\ng/2W9gEj1rWOUGlZIXUiIVUnUQW7dID3Drp675L6pazjSHwdjvhW6u26TYawxcBpcYmkhJQTIm5s\nvLMtpF5TPDvhkZCD82Sv40J8jNU2R35vqH1ZS/4nLv8ZEYeJo3k/qHJfQ34pGKHvEd/bQ1NVZdNO\njLniF4eNo6p3PqFIU5pbQS2eQ+l2HKJfE5PM1aj2MOMq+hkHeF5W1aeGQkWNVRUvIviULyL+JXFu\nhbT+OFqGEuIdCcrfDrVuWE9jK4ROQrYXEI/RIMr34bQqs8jmIuLISkxxn9ycBRytS0JjRfS5i9yJ\npDVuLkJS78kJhR1NiVtHVaosiX7SKXHsCHnUGzGXYmGtI/IBAfGahIWm7ruoalUDHGXZo5mZOcOh\n+VRuKau57I+5nGz0w+W/C6k6S3jIcwaBjh1VynrH4QPYpvM6/sF/iko07zgNx8rlMQiS1U3pJgxq\n9Nw6Wf0/fYR5uXKN6kr7DmtH+FH2edtX2GefrHyLmZk1d7Htk0LGjI/Rp7nLvP/GoirqXKbPf7nB\nfv+j72Dt/2yFMR9tg7hIirNmT2v+I110cnlZa7MfpE1xlTk70wVR3r+Xap83/hg0xGNrtDO7LP7Q\nKfH9DEFN3AwUdB828B3bjOENh/3l6IT8eh9/XPgi+/v3v0uVuArYzFoLpM47uvRnV7/BZu+nH1+t\nwEuyFKTST+cp9PTye9HTEy/LVz0I0mS/zfh8dqDfcPPwl0zMMT4vXUMf2VfQW3SW3wVHldkH4Xj5\n0dEnzczs+//e3zUzs+1/yLj3V9DHO7/9Z8zM7PP/7tfNzGzlN/5nMzP7J7/7e2Zm9vgbIOLzv/Yp\nMzP7jh//B2Zm9toyJx+iM/iCH/nPQZ+86/nfMTOz914E7TIem933jo/ZE6c/bT/8L0CKvPsaXKi5\ne9DBB78ZdNDVdcbspd+FAyb0WyBNfvXFPzIzs6Xj7zMzs09+Hzb5I/8lfTv7ABwyn/oBeGwevsBp\nh0//ATxL+Ufw84986z8yM7NXX/gDMzPbevQHed6v/6qZmZ04DSrsk9/1d/i/kIqfUNW6j/7M3zcz\ns/l7QUENTGjiBz9iZmbf/6Pcd+ZbmIs/MA2K/wM/9HEzM/veH/tpMzP78h+DjIn+CNwxH/zP4KKJ\nTeJPvk2Vdj/xnX+b/nwvNn/mofeamdm//+/RY+A3/zczM3vvt8PV05iWn/sa4iFlPPHEE0888cQT\nTzzxxBNPPPHEE0/ugvjG4/HbSxP8f/lyn8/G47H5lEH0xBNP3hJvbnjiyd8s3tzwxJP/t3jzwhNP\n/mbx5oYnnvzN4s2N///la4VePKSMJ5544oknnnjiiSeeeOKJJ5544sldEC8o44knnnjiiSeeeOKJ\nJ5544oknnnhyF8QLynjiiSeeeOKJJ5544oknnnjiiSee3AXxgjKeeOKJJ5544oknnnjiiSeeeOKJ\nJ3dBvKCMJ5544oknnnjiiSeeeOKJJ5544sldEC8o44knnnjiiSeeeOKJJ5544oknnnhyF8QLynji\niSeeeOKJJ5544oknnnjiiSee3AXxgjKeeOKJJ5544oknnnjiiSeeeOKJJ3dBnLv58v/iJ3/KzMx+\n6Hv/iZmZzZ6dNzOz3kHVzMw63baZmS2cWDYzs1q9Z2ZmrVLZzMzC6ZyZmQ1b/D+WzfM3FTYzs8Lq\nhpmZjWMJMzPLRKNmZra2tmZmZkknzXsvHjMzs3a9ZWZmpb11MzNLx7kv6HDfQZN2zU/xnnaXfuxs\nb5mZ2dzinJmZxRNxMzNbvXPHzMymklxf841pb4MbZ+ezZma2fmuXdieHZmaWX1wyM7Nug/Y0pQ9f\nmvZOqz+FFp/3KxXun5qhvY2OmZk1anwenZ4x3zBAH+5s6llBMzObWKBtfh/fWxudl/eaZmZ2WC6Z\nmdmxEwtmZhbI0OZBc4//ByK0tT2U7rg+qecPZWLhNG2enEKXn/zkT9hR5Bd/4RfoQwDddbpqZypE\nXwe0t9Ph+YM418XGNfo54n0+47rakO/TgSTXY1IWSqLrhvF9uE28stOnH+HYwMzMHI3hoB3jL80w\nX3NkZmZ9hTkTur4x5P5kn/t66kffuD7s+Pg/6rZRigeMGtz/8//sl8zMLNBDj/44DR52+twf5/P2\nkPZYVzYW4m9qXOe+bkxfc39HanSGtGOUTPG8fkPP57lBta825oaoQ7t8xvMCA2xtJL06CfTYMuwk\nOlC/xth8qN/T9byvHaLjST96anT5Pjrm+T/1z/4r+0byr37vN2mLMe+rO9hmo1zVu9BVfI53BjRv\n64d8P3bQQTSeoQ8OfQ+0pdsAnRj3sPFBnz6GjTaHgrIF2Vi3zfXBDLYX8eEP2oND2tNEV5FJbLY9\nlg0U+D6g94dD2GgwxXN6LfoxbNGBUp/2R33Mwfwk7+kONSdbRTMz88f4f9TPGNYOmBtDzflIgPeH\nc/iXgPTVKHLdIIZNxjMTZmbmG9O/8gF6Dro2nsd/hwLYUGF3n//36Wdifho9yq/XSvgnU3+zU1nd\nT3uKFfz6oINNRII8xwK072d++mfMzOxXPvUrdhT55z/3i2ZmVmljs8EA4z6Vwwc6IfRX7eDDavvY\nZj5Pv8cpvq+XGadeiX4mZ/g+HUGfOzv0qzFkfHLTrFOxJPfXdnbMzKxJ92z23Arf+xzb3N/mwyLv\nzk5P0tYUOvb1eEepwbN78vX+FGM8lUeHvjA20zzgJTta82ZSU2ZmltEa1ujJJh2eG9baNaph44Uq\n9ycmZ2mj/EZ1t2BmZl0/tjA1z5o1KGEzpSLPnZ1ibY3I/+/v3ua+FjaVn2POdbrMrV4L25ie5n2N\nMWNxcBs/lp2l/cG85voGuvQZNuOkmOPWZWxzOWzrx37sJ+0o8hu/9a/NzKyiMep10LMTRP9OQPqN\n0+9RHz2Hcvw/lUavG1ew/WqF52QnsIGQ1i1nzNxOplFos4It7W6zPueS7CVmTtDfgxJ7hMq21voo\n70nPo9dOs/tmH370k//IUhmePzHJnOtpXSu+xp7En+G+WEg+LEy70rLxVh272jrgvdkUviGSQb+O\ng71Vt/EBfa27U2n2IJXiAf0qFy0zxRjnZk+amVm5pTG9QV/D2q8FIrQpIpuyIO9IRnhntUeb+rWy\n+obNjZrobmeHvgW1P8rPo6Nhn+cMtRgF27T1YA0bTSTp+y986pfsKPJzP/lzZmYWn6ZfvQFzNay5\n2epprR9j444m+ijC+wdN1otIRGtvCBsNaU/SjzAXhl3G2seUMj/dMF+UMUrog6b2RJ0O/n7cxz/6\ntK74IrTDF5Ifj/H+fhCbcVrY8Eh7ik4IPacG+nkg/cTC2EpnwPsqZXyE68/7Hdo9DvPeiMM4ZJOM\nbz/Ke/3yv8261hdj/Pwh2ViU+8bae0SbvKcrfXZGmns9fEK3EdD1PD+TpB+9hOwn8Fbu+dd+8Zds\n0OO5ZfmMQI/xa1TV7lFP/eA5Az/jMjnL83/2Z3/WvpH89m//S/oe5t685v/qKr8t8rLRRB4/t7p2\nxczMwlnm66T8eKVC2+qaZ/kl9uEx7e+6NekwhC3Fklqr/Oi4voFNhPO8P6m1rlHh+4PtNe7z0/fU\npRUzMxvu0/d6hd9QuekTZmZ22GTOtLb4O33+opmZjeQnq/t7/1F/fTn8WOmAuVnbYizPPkg/Bg1s\nrHZIP0LTjNnOBs+ZnGNPkQ5jQ8XNW2Zm5pefCYy5/3CP9Whhkeea8Z7KIe2MSt9Tc/S/WMP26zv0\nLznJ8ya1VhfWtYes0q/YBHM9rj1M5zZzc5TQXPExRyoO7fzb3/U9dhT51f+G3zd+rSPhLnoPBBl3\n/4hxHWsu+lq8z0mxL/DLtiP6/TXQ/cMhc2oc0FyK6ndHm897EdrpG78VAvgf/v6PWSiatGBS/rLD\nuyvSpZ9HWFh7dX+Xd4+HTf3VWqZHhvRbJtzW7+gBz+kM9RsgztwIhGjzSHv/SIYH1KuO2sFYhfVb\nLKs9Sren334B7R2StDcyZu6M9Xt+VEVnAXftjWPr9S7+I+zweTim3yAd/dar8jwnwNj05XeCQ+6L\nRWl/w3i/z2jnUH7S9V994/n9oPZqA/1W+xriIWU88cQTTzzxxBNPPPHEE0888cQTT+6C3FWkjBWI\nLLXdiFVLWa4AEbCSImvhmDKRQSJqQUULB4poHa4KSeInAjU1QcR9TyG7SJTIXzzA941DImChrKKo\noUtc5+d916+SyTnM0q77HiAavJhzMxzKqN4mmrp3dY32KXs0fZFo6lSCqGw0Rnt6LaK5zSYRwZAi\njsExkbZwn2js9DTR4e06WdPtW9fNzGxhmf6k7icafKjs2oEi/MunlXVUJnljnSzX8eMxc3iFbd8m\nMhxQZDyTJQqYmgKN5ASI6u03uHdQJSIcT95DX4xo6Po+YdPovLL5Y3SnxJvFhDo4POT+cROdWnrF\n3pYog2tGn9wsUlhZ/7gPm2lllP1GJRaUzn1dPuh3GLNkENsKROj/QBnQQJt+J4KMeVvZJ3+U9/lj\nss0+/487vK+tqG/Hob/JOHrwtXl+zFGUN05ketzH9vwDvu8KhRFXO8ZD2jdMEF0OBBXRVpat1yCO\nGjP6Z36enwry3KagOhGhMfpCg4XCytopoj708f64+7lDP3p+9DAecJ0z4vugQ7tiYfTo86PXUhP7\nicUYn1aL94VjQvbEZOtNnteIKSvXp91R6bke529CaJdRH/0eRZIj5mVJmbNigcxkSAHp3DGy9UHp\nqlLEJgNj+pqUvwjE6ZtMy4I1oX969KGmDGQ4RCR+Ii0ES1dZF5l4UKiFxBzP7Qix1thGJ5Oz2FIo\nw4t6m7R3GKc9oZT8gJBxnSZZJDcj21VGYVaZx/w8/qBP821cxi+NI2RTwrKJVo2sWUyR+2ROyCFl\np+oCrhxWyHJHlLmem8P/DnzKvgkNF06RVZpX9mgoH1O4A0ognUZP6QmygWM/7S5uYjuhBPrIn+L7\nsJ/ra4VV+iP0WDRL+8JuplS2HdJcPKo4SWzedrlvu4CeWiuM66Qy66M63+9skMkfNejv1Nl7zcws\nHuH9u9ugPkrycccvggToGg1vlvGhI9nNzJmzZmbW07LbKWvcB0L3nZi2pFCf66ugL8MRxmpwyDU5\nZedzQhVt1Liufou1zD/E/+SPk9nML4G0KOySYTwU+nKUZAyKm4y1I1TCymP4c1+cMWkV6HtUyJHk\ng/fT9gF9unPlZXQyR6YxOoURlm6voYPBNTMzO5Y7z3uFHqseottJ2WgsQT8PS6xPoa7WbCEB3etb\nQkssz9G/+DQ2unsNXSfL8svKXo2FKDmqpKbRa/0Q26js8rxshrnmy+EHg2HaF/TLPyaZq8kp5kTv\n1ZtmZnagjOtUinaGo8yVhFBVyRnm4OYa19XWmevZh7kuOY9eNzcZ33pJe5ZjvC8mO/CvV97sQ7vS\nt2yc50aUaR7uM/dLQjckfdobTdEORyhiJ8v4BQZCRVS21V+h6QJ87ySE6JSbjggpk9Wc399jvMrb\nbQtlGePji3zXXeOm7TX8xPEl/HMoyxoWyGlPoZxhdJb/1zfR/WERm5xbZj7VhRbYkx9dPIPNO37a\nGkwJ6SjEw0EBW67JT47i8/Z2JDBmfg+VyfUJPdqblA57QpO2Wcv8ykr3q9hkS8iMTp055Kag/UKF\njfJCOSWFjtPYtPReky/oRNFjJEd/sxM8/3Bf8N+eUKvabwYGrI9lrZOJCO/pKtsfkX6yqNnaDe5r\nVGhXJc74pLL4oNii9l4tIVpKrIPFA/52W8zJw236Edd6OTHHe8JZ9DeqMs7NFu0NFNBfdJr7uhPM\nvbFQA8GK9m7KtPuFPG/VmRur2uNEqpqjYe2VzKxvEQtMcP9Mj/fWhIp2Wlrnq/S3WVUGP6bfJ4ll\nO6r0hdZdK+AH6vLbO7fWzMzMt4R/bQrpvXaF61Ir2PKoy5zp7NKnRhl/PRlHh29cBVlTugUCZeke\n/Ovxh3hPZYv5fv05/PPKxVNmZha9Bz/U0G+K9eevmplZNiXUUFy/kQ6Ym4dr+JW5D2BjvlXatyHk\n5dwC/ql+yDpSeYnnBi+BkHFteLRPPxuvv2pmZrfrXN8t0s5ujLl6PPYA72ny3vobjEGzx9/Xvvyk\nmZmdvp/rpk8vmplZWcjMnPZAzZusI7dfZ/3JCs3qe9970Nvrq/r+eTMzW1xCP4knHjEzs2GZdm09\n/VX6KQRRTpvK29e+on7Rzr0cthZbvmBvR2It7Xv1e8Dc/bnQH06Q8baG9qw9fElWqLe+9oKhA/rf\n7zEXagGhWbTH8sknhYL4jmQYO/BV3tpnp3thm3JCNm5z7472gXGf9v5JnpUeC0mj7VdAa24rRNtS\nGf0G6HFdRMiSgWypprUyr99EFaFyHSHohoGA2izkyYj2zOk3XagiFJSQhAGhxOJCBSX7QnLrRE1M\npyhS+r4lhE1CfrEzp9+yOiXi38XWQi0hEsN83lM7R5PqZ1gInAOdLnBY+4MzQshrLCtC2HT0m6ud\n+vr7Vg8p44knnnjiiSeeeOKJJ5544oknnnhyF+SuImWi4nhYXjxuZmbxtFABPqKsSy53SpFsTa9G\nhCmr83StCtHB3T2+T0wIXZAio5nMEkkr7ZBNjJ8iinnxMZAx4bBQBsrq7x2Ip0QoipHOCEejZHgO\nFI0ttIgiJ8SxcOYSKJKMMrq+CNHU8g4InmKAiN30iqLHJ5Qh52sr3yRz4z9N/zs6b9+uEGFr7/C+\nps6B+8QPMijwgMom51Tt4jnaFdE5d52RCw0CNrnEu48/SFaqXyE6mNDZzOksfSkWuWf5GJnI9BwZ\nu3aHCPmN62TAGm36dGGFsZi/SBZhrsLfsZtViZPdqVXRXUjnx48qw6DOS48U3dTReZ+ist0oUcpw\nTeeS48qK6L6BEDYtZQYdZV5TynCGFZHuOoqCdoV0EY9G0D1LL0SHEyK6Wu5jK10f/59K075xB9s5\nEKorqvZ0XJ4SnVFtSQ1BXmeOH331NAf8QlE5Ooc4EE9JYII50xeXRGQovhKdDY2PlIUTkicqHouG\nzo8HxDnjiE8kmqG9DWUV++KysKQi8dKfo2hzU9wyGaHSwmk3ikz7IkK8jEPu+Uud0/x/2HuPJ7uO\nLM3Tn9ZahtYIBABCUDOZqtRMWdXMYqzNZj02i/kT27qre6orK5PJpARBAAEgEOKFjqe1VrP4fpcs\nK5vMCq7Yi+ubZxHvvntdHD/u95zPvy9G9oqEboeM/hi+FI9P9xtVOfMauL2d1EvKyDV7isg7QA0t\n31UmdUJW/+ylsh/ttrJY+SXZqi9Kxg0uk15JdSjWNO/GRNSdwM2yi+IyaAXVx1X8gp+MoX8DnqYu\n87ioMQ+nidgTaT9j3leq+kzFhHjJwDUzbOq5ZyB/rCx5kvom4OCazHS/SkH3aVDvQEb1GZCNapOR\nXdrV3A4EZJvVmvqjDorO4ZSNZR7JN7g5e399aCFYVK/lBwv8rf4+fMX3HtVzIyN/O/LINssHB6oH\nGc/VNTLkI9lAqaas1vVb1TfK+ez0Jj6lhY00lR0cO9QPty2AtUx5KsRirabP4DJ8LFtaN5qgCVxv\naM9U9QjEyKyWyD5l8KkbyiKuf6T25o/Vb4VLeJdA2e1sK6tXmer3+1eyswFZ1ZJ3YDo3GjsnqK4K\nyJBuR1mr+Lb87cryuhoDr8Tl6IUxxpj6DXWP6J7eDdUlmtdYLaU5y8958PMTZVxdIbih3LrvuKK+\nKYICnS3r97vwWQSX1ebeQG2+s641fFyXbRz1lEk0oIAcAfmFlRDcMy0LLaB1xQXq6fIUG4S8xpPc\n1fdh0GOgJpb27hhjjHH3dB9HW9dbtjzpkRmE3+O2xTGXbbapz7DLuXWQgOGhxm7E+XGLfyoIiszv\nANUA/9QY/pIh2Tt/Vz5qBpLU4YWjxeL2Yq4YeKqmjjH3B7WAn02R5bc4hgbz8Q9t6DU6Zrau57hY\n3zxGv5ty/t/vgfPBKdvuG90/BVJyDCdbH86hhlPtCpD1G8503/ZU/ZAAQelfkV24Xsnvj5wj46QO\nLvjYvCA/oOQyfb6fwV3gaKktkTTIX6fVt7ruh4xtSvc5PdOiMhjAbTLSvKoDHcxF1ZfBhGynuK++\n7s/Ud9nZT0PctfAHEahv2lMhK8KgAXxwX81ByOSCsnnHqsZsDcRfkzV9BHdX36W+NiUQL6zFTpfG\nJgi6tAuSvH9l7X30u8mmwY/KuwAAIABJREFU9qlJEJpDUKwz9mpDSBCnoBAu4cSiOSbEGGbc2guG\n4BcKuWSjtY6ub4Pw8TlBAC7Lp0QW1K4ce6UxnGIXIEUHcAGVi2pfdE3jEc3JZkY3IKGc6s9pQfaQ\nqLJHyOi6JfhK/EGts8M95uRQv6sXZPvNhvb9F035cWOMuTh7ZULsiZL45WhWftm9ofrk5xqvEdDX\n6Vj1CoUy5ralKXdtyke8e4BM8Id1D7dLdU/R5w9W1o0xxsTZAzRAPvjho/SCEgjBD5Rg/9kASe3F\nD1yeCnHTAY16c6T9eiQGb0YG+DD+5+FjIUQM/jkx0qRsMgfLT4UUOQIpmA6z5sFf6QBJ3b9UfY+e\na41ne2qCvMv5giCzF7WO+CE1vDmVTWze19hmOG3QA+E47VooJd1vZV1o1IWQbDQAz8gSHGrBNvtN\n0MZ7IGrmAY11DN6jOn416YLrK6L6FOGKmYC+uj4u6Pcu3h8Sao+Tddfr410OPqhIFqd2y+IGETpq\ngKhnk+KHQ27ggh8U37YACmUaUXunoEF68KY4R6DJqEeS8a6BiAm4LHS3nj/s1H+oi2fSNNOez9yA\n4K3znTere3giGqMZCPNZCd4wkOd9OJeyINN6+LfpufYS/YH8f2hRgzkGQdwG1eVPg9KiLVP2lRtL\n66ogfrpblL/scQrCsQByh3BGow76twvfHWjaqR+OyIrmdXsm/xJuqL4Vh+7ngmMmk4z/28caP30b\ngn+z2VW9u23t77MbzG322d22Ork546UHfrsO/G1/rthIGbvYxS52sYtd7GIXu9jFLnaxi13sYpef\nofysSJk+SgvHL3Q2/8Vnyq7tvKPsWHpTEetuU5G26pEy4tFHnMeGKfud90CIgOrwexRrGk4UoTre\n1zlHb1wRtbUNZdnmlhpJU/Voc6Ysn1cUOLauT+dMUd6DbxQ1bnaUjfvlP/yD6vtYz2+3FVlsnSpj\nfXGqdkViiqzFnyhz70S95OJaWcFegDNzTrJaDljtOcu3uKvzotvv6zkeMrYdlDFGAysbCAs02blq\nQd87Bk+NASGSJ9I8IDszR7ng6e9+p/+jfHD/PUWYo0NFgM9eF7he0c2oX9HFKIolFo9H/VioHZdH\nbV7cVB/2OONoUAS4bXFzXnuGAsGQLAcAC9OFl8hDpsAP6mkcIqvUUnRzivpEfKJ6zTnr2prCRVNX\nvboDstv0lwfEyiynvm2V9BzXXNHY8FQVcc1kWw1QAC6yew6yev4GPBJkpSZj1KHIiM44q2qhtFxd\nOGc41+2AP8TDlB3Da+Ei8u+Okf0js+sl2jsNqh+CNX1fByEUgal8NtIcmoDscU9mVFDt9sP6Pobg\nw4kyQgvWd+8UdSa4f5zwMiVgGB869Onuw3nj0vcTuHgiHmX3glMrC6jPufP2rqkFV0oY5ZONO0KC\njMhinH8uJF0bBZOlBWWjNrfXdR1nVhuotV0e6tMHSsiLKlH+idAAQQth8lpZIQcqPclNza0wWZpu\nWZnCOYpbIY9+V3ityHoXRYXlO3AubGqejx2y+WenXxljjKmBtFneUpbmzuPHqjcqEuXnnA+/UpYs\nToTfOVNfOjjL/2BVfjUBl8ybN/JPl8f6XTCm3+3eVf95vBrrp99+refVVI+t3wgZmIQz6+Qr3ccH\n9O/BO0Kc+FBHOX4uNMagrqzX0qoykzkUYoptVDRuNGdyZCJiC0LIeLC5YklZxzJIIBcZ49uWxRU9\nNwU6sP5Yc3B1U/3qBiVQBfHjAYizTjYxC1pkjl3dj8sXWUpG5dcvjTHGHO4XjDHG9OELuPdI19XJ\n8JwdyEfWm7JbQ/YzUOiaelW2tHxPtrS6qzHrXsEDkZatcETc9M6VCS231PcW6nNm8EdVssZVraE+\nMpEe/FaIjOnWRxqzZdA/z/a/NMYYs7Clvrp3T/UYcy767TM9d1DRmNygkFNHjS0PkmXvQ7UjktE8\n//5LcQr0UU2apFCXQrFgE9vZfrhujDHGPUehDJ6NYEp93S5ojI7/JNTU6U3BGGNMHB+wsqS55k78\ntMzlgLlqzVkHa7MHhbY+vBN+suwzsmIhn/YeLji6QpyLz+fhfAmhiBaEGygJx4xXNncNGnYyZGBR\nwhk25S89ZHoTKKy5PKBG2NO0rn70l2PPwBivnp+Dj+9kJB9Ypf4LZP88rIsuFCmc2IPHq/XcA3/A\nHM61UQBbZZ3zoqqXiGmuxkE3N0BCtUs9MyJjWL5knk/Vxo0lEAppeGpQ/POxFnktNCvIi1oVbhSe\nMWaN6oFIds1RgQOJ42U/5LVUOVFRazc07yZXWg/GG4vmp5QfVPdioIOaWuN6qPJ18ddmpj5vovoR\naqse6RQKYiF9Ji0E9ExrsVlUf02Qduy6UAADxdWv0LcxjU0VNb3OlfYk+QV4KkCgbHnV7tFM/T/u\n67PV1X3KZZ6H/77qam4F29qsuJ2o06XgXOvo91X4rMZV9WM3A98Vczq6Jv8fGwnRWW3outYNmeyK\n+jG6pHYsPdC6XG7Jbzbglyoe67N7pPrVLth7eNS+CCjwxBLI+z1UucaqRwUFUWOMSaWj5rKi519d\nY+OncKD5QeOt6DO/KfuMwZnmCvyIRvuPSiKvMfVO13WPNAgH5l8P5Nrrr4RwHE5QrSvKr1bP5K8z\nG8yRoPzfQRfEJKiCtaTeCZrsr6Pw4+TvCoUaAjVsQFb4xrKNIYqux+fyn9ElXd8boM461lxMrsn/\nz+mrQhzbRpnSD5eMi/tvf/S+npuULVd62uOMUPgyqFF52b9GNmUbHdbAZ38Qx0sXZMiE94qdd1mf\n9tTeTl9jdvRH7S3cqFUlOa0wA3HSBcVmcWWeobrkSejv/GPtZQZh+mWi58WSsp2dX7ynei6BzmL/\nPlhAKXIFBWAUyMJh/f+2ZYzSpb8B7woIdvfEUmuVnfjgxHFl1V8NTknUUPczrDeBLdluHG6zKtxl\nBd73QjMLmQqi0/vjHuomGTF9j8OM4HQKpkHZbmn+e4JqfAtOwcYAFUr6cucu75aguipvtM8ZonoX\nRQEsCMfXUVv+B5ocs7SoPvdaaqf42R5cj403QlJXhtbcUJ8k17Qvm6AqV6ONEfx9NwyXWFl9dYM/\nWEDZ0A2nZKAJmg2urLFbY9m90pwYebVGXhnQo6hw+hfkH5zw99VQJT0FiW3x3g055eAL2EgZu9jF\nLnaxi13sYhe72MUudrGLXexil//pys+KlIm5OacYUwStTvbcUgLI5hSBSpKRSMTJqnMO2xNSJC3g\nFAKly/nDi4Iyt/klMr6/VShuYUsR9MJLRfBKnDl99xMxboejiir2O4q2RlEwmHHeML+mqLWvAqs0\nSjJTI7RJk0xyalGR+09+9am+t+qZ0P1aqAesEMlbf0eZ2BDn0asnqt+go0hiiEzCnKhnB4WO2Ioi\nmOE86jGcQ/QRa7vzRPUdD42Jhzk7zueE88H1M0X1DveVHYnkdM8xylZDxsSXVQT2vb11Y4wxzoDF\n/0ME+g/fG2OMOXqmbPHSh+r7tZCyH+4S/BvDnxYH9HHkce5A7WFGxg4ugWkfXoasoqzzsPpwghLA\nGH4ed4roL3w/U9SEOL5saiA5PJxvj8DoPQeh4q7ACM5zhzBrR8ngDkDUdB3K6sTolyAIGm8KfqMz\n9cN8QKYxpkj5HGSO10U0Gu6ZEazzoTQKBqCsyFeYkV/fO5twAZDJDsB1MJ9xjnKsjMaYLL/bobnk\nQnkhUNTnABWtmMVpAJt9s4HqCPCBEBleZw2OBFAZrpb6f76gHwYGuu+Qs7FjMgJhEthOuGt6JKGG\nPdV3guLRbYqTLHL+jrLzFo/C6ZdSFqgfSXkmvaMsw+oTZf3dHmz3mbL3xy+V2WToTW5P2aP0u7qe\nZJA53gdh8gwuqwXU4XZlg30yl9coLTjJ+DZHsoEeB66XtjXvlx6q3jO3+ubFP3+n669knKv3hNB5\nBzRDh846/lrXXZypHomUMhuL2/Jzli27g7LBSFxz+833mqNvnmvORsm47rwnP+rz6rrjF38yxhjT\nrqje736srNJKRnP76XM9v3KuDET+oeqZyOjzFZmNs5dC4qyTGV/dVUalC8dED6WWFugEH5kTL5wF\nEzISQzI0DtT0PPCb3LaM+ig5gNbykF3qcH5+1FQ/jsny766KLyW7pPG9PBAiqYyiztwjGz3Fd5bP\nC8YYY0JIQNx/9wO1B0WaqxfqhyLrUw47fPddZf9apa7JJfXsxfdkG27OQV+jktTkHvWGbOyioEyh\nx0ImfqSxWf1AvGkj+NS6N1pjk3B6da/gwOJsvKOr+XvWUOa0iupeKiqbGgdQQfpGz7s+UBuyq7pv\nf6yxm4HwyCZZR/A/r/5Vv3v77be6Di6t9RVlkZbgR0pvaL0YohJx8Eddf12Tja2hbHaxr76vkqnd\n3dLvVnbUl+O51oVWDTTSLYsfdaqAV35uhsKNw4vqHyjcCSitECg7N2t8FSRpt67xGXg4Vz9Cja6t\nv50gGd1TMqIo4ri8Fp8dnFvUaw46dgJEyjlnkkzhNIBLTA+dmin3tZCHgxHKbvjjEWp+Dg/IVfhV\nfBH9rgMyqw35QBakZGACotFpIWzgMgvKxsdw8Qx6WqH8vpnxgKIcw48U9GsMM2tkFssawwr7nShr\nUyzH2s2aOAY57GFs3KCFAtQhtqDrRqBfHSCcPcxTn6WGAZfKAL/s+ono3Sh7iBDZ+cU72n/Ve7pv\nHw6FNhwp7YJs8AqbPJ5oPUqiyDVmfxsH2ePy4t/c7OdAhAfgm4vvam4lQCB5U+q/i5L818kr+Yhw\nQM9NLuj6SIbMckL+ObOu9izRT/3OnE/52dEVHIpF1vgb+ZIeKCkfZAtFOGZOUfiKOlWPIBxqoQgI\nINAQU9CzN/BHFU9lH7G76rfFdfnFe8zlZdDd3ar2xRev5W87I/mEq+90H88rtSOW1DqT3NJzNkDG\nGmPM7l8/MdmOxqV1qDl6fKzxuLwS8vW6oO8jX8s+F/e0Li492TC3Le0ayAQfiOsYYwnyOMY8a3rg\nWIELxcs+yo8anhcVzpEX/zGEm2VV70YxUGexOSgyeNjKqBt1QDJPSxqjxlhjNEbd8vIEvstNtc1S\ngIwvqD6ZmNZ8N+8u16cFY4wxpY7m9wS/xbbUpDIga4Lsb9mHtvqa23OH2uNmMzULwbcBn58rojFb\nWMA3gKA+Lsg28th+40y2efFMY599rPpOcuw38YflA6GzAin9vUR7PCBSqlP107TJ/hpVvWJP93eF\nedcDtbH/jdYjB5yVqyvauw3gFawH9bzbljGIIF79zEJQ71kTFHw81voBUvMMHpPLt1p/50b/z3G6\nJHkXrh+uv34NTxV7wPg97SumKJ2NWj/6vsDqqpk7HGYOMsWCCtfgUuzyTtK6BPGGra59LJTkcEX7\n34PvtU+qN1FS5H3dlQXFm8TPwEeUWhdC3MU7Q/UA9A+cMZcD2UilgZLhA/mT+Hv6XQ+l2Bp8lJdw\nS/k5QeIeojxYVF+Elng3gsfo8gzkug/VN4dsesp6VC3JP4xRyIqgIBnMq39yoJpbcbVz/6Xa70ij\ncvqe4gFTB+sYnIV/rthIGbvYxS52sYtd7GIXu9jFLnaxi13sYpefofysSBl/RJG1hfuK7q27FZH2\nkEFocAa/TXQwnFKkP5JTZqJ5psj9yUtFzttFRcgyjxW5yzxR9i3oURR4zrn1Tl8Rs84NUV4Yqf1k\nhY448394ovu++3e/NcYY8/hXylSXrtFvjyhT0jxXRPD8UBGyUFLtCXNeskrGvHKmjHDjSO3po5Dz\nPpwGxYaiwadVtSsHu3wPRaC3X4jbYfW+6rH7js5vlsp6/tkL/W7rwboxxpiNTXFPlOsXZti1uE7I\nkIJUGLsVTVy/r6jj1kP1VQDOlSbneC3G/h6/c4wVJfR71IfuqKKIG/Av7O6JkyaYUttaN/S5uT0C\nghoaY4wZkqGMhhW9rNVVL8cMdQpY6EnimBEcC4hwmOWQxnhsJRgJELeGGksvZ0LdCbJtIHwyA/2u\nOVSUdnip61zwdvgsRRayYk4Yx92cHwzF1WH1S021NgpiVo5/DMdDhIxIH6WEYv+K1stGfKDHHJwH\nd9R1nymIla4bBQgDEiasenT7nHfn6KibzKgnxLnsnp5/1dP4ulGp8nOGud6S7Tl7ZOWicMEAoSk7\nOPfJdQnI/YOodIxBEPU5Tz4g05uEr8TtUD+6UZdpgGbwOG+fvcyuKGvkDuneha+VKTx9KqRGJi8b\n3AMRZ/zqs5M/6vzy/ltlyMLwLyzdkf/YfKzsw3ymNl9/o4j5yXfyC5mExmTn0/doi25/eiH/0R3J\nfyWWlJlMxxSZj8MbtEC9Z8AGXv4TCJmSzkvf2ZQ/XHnyxBhjTLuiTMCzr8T3UePMbn5T2ZrdXwgd\nMZbpGQccLbOZ5vjFd0IE7cPrEV9UxuHhrz/W31mN6dsD9V/pRnNt4b7qGQKN9uylkDbHb9UPS5yl\nXYBH5PxS/u0ELplcRhXas+rnlu2dffu5nnMm2/DFVZ/wkrKH6Zz8Z7ej+/ky8vsrI1RBIj8tw92D\ng6tJphygjKl1QZNcaw61yDp6yKgUn5IxOVN2aoyviINISrNeJbbU/viC7C1DhroN6tBBDmT5oXzt\no1/gI8lCls6+NJfw5XT+VTbRqsvvVE5Ut2CQtsdUt827QvMsgepKcR56Qtb+6lzzetqDZ+yCrNO1\nPl1xVCVAUsxamoebtMEL/9DFMWvXiZUFR6XvfZQOY/IXha80R84vhFJ7+xYOqbH6NJ9eN8YYE15W\nn4UDsp1pUM+vwcN0uC8brKGAFY/LBnNhra0N/LFzHYTMpubYPEOm8w+qx8j5l7NS/770UGrzwMXg\nwkgGljpGgkx2Fy4uzod7QaWN4ae7KYE0Qk1puoJ6HkhOn0f9Z2U6nQH1XwaYGKIiBuouE0Sxy2n0\n/XSm8e2hYDH/N+fUw/6IcYLMGaJk4QipfrFF+dugW3Y0m+v/cVB0Ib/+f93UnJjQ7uECCylObt5E\n2Y36T8jMtiqyE+cAdapo0sxAe/2gtAVKx5+Vv23BVzdrq+8CICwSfquv1ObmtfYQEUsxEMSx5c/j\nE/kNt0dt9IOAmfjg+IJXwhPSXAim5OcT0Z+m4tabkPVvwd0CD0+C9WOSQyErAG8GPE1JuGymoMpc\nqJQ4qf+MDG3zUnuXIfwhgwvNBb9bY7QAx0Mgr/rntrVOxNeEkmtfac5cn2p9KL/R/rDG5zkClT7Q\nvB7WpUBO+9kluGNmD7R/XH5HNtLvwyUBSqKNSsu0jHIXtu8w7JHIYAPeNVFQGBb6zx1V/duH2vee\ns4+/PAO9kUbVbkfXxeCKCbJfbpTVX5WaxqOPYlwXHpLhV/IlpbT64f/6T/+Pef3FWxNcVzvjq1pf\nfo3yUbWj668K6u+rF+r/s32tyy73v0Gj/QfFaSHe4EM6fw4fxpFseAckYwbOqdYMVZypbHHlXbVx\nwr53NmduwI/ULKmtr38vtOvSsmwvAb9G+VKIR/8UpAdcVFO3/Hnaq771aek3M7ijyhfYXED1P/pc\n7xz37gu15F9SvSwOwIgXddE26ksvha6No5S1/UC2WXijd6N+S/4o5teeJovS5Bxkdv1SfbwDIt9a\npNvY1gx0bWRB3+/8o/YksYTu0wvrPmH2mZNl+D7g2ArhrxpwNRY+F4/pEjbmu685VL2Wf/XC6dXt\noRBXkF9Mwy/nY2/lQq2pzmmN25YpqlETXkwGoDBuGnpuuS/bbfJeY7z6f2ZFdpNg7xfNyG5GcBbt\nw3dYsXhY72i9iqLSt3+ods8dP6qcdpNuM22WzCXvxb2R9jsOTmgkU+rb/hKKX3PZUnJDfXxalu9/\n/Vq2l06qjsu/0D46tqg6NousKV2t4QNQpuMqiLuK6hxhfxcPaJ4m9oSAW3uMqiqKYiffaD9aZG8z\na2qdid2Xv3DHVL/Uqmx8Ec5EL+isOgiaJKdIgmHtKVplkIEp+au1DT03BQfNHOTfxMOYPQVJPdAc\n2r6nvdk8q34qv5Ff8fT/siKkjZSxi13sYhe72MUudrGLXexiF7vYxS52+RnKz4qUuUKB4ev/JlWj\ntXuKwj74SOf+DlGW2P+vymgvPlY2LPe//r0xxphGW1HDK9RSQmRkk0FFBc/eKFtXPFPk7PED/X5v\nVxGsddQ94igIXU6UAZjDFRNBSWLSU4agDCt0+Rx9cs7Q9ojiGs4CB9zUa1/1PyLrd+exMuomTtby\njSJ7Vzd6bsgokri9sW6MMcafUcTu6lu1owoL9Oo69VxX1LxzoOho5apgjDEmu6z2d9qqX+Hbr82E\nc9xPQAuEorrmeqJoZXoD9vKc+vB4X31agPk+FrWy0qgfjWHIRsUhn1Q08sqlqGPhXFHWMGfr59ZZ\nVe9PiwNaUVQ/ptpsch6xihwTahwrZKuKFWVy+xUyk0sKMfuJ6DuiRLRP1Teza7J38AnFDZkAsled\nssayeaXPnosznKh8+KaK7Dc5hz32oj4SRdEBVajBNRwBTStDrX7ORRQF9kzUr1dH6rch/EQhotNR\n0A/VLufzx4rkT5yqj7uL4phP9cr4UWqAabzJ+chcmPFD4aYBKmN8oecl7ur/TjgqJhXN0SbqVOm0\n7j/kPo59RfIDIKkc92EaBy02vFC0uXmhcfPDxB7McJZ6YPEkcQYZ9ZlA8vZ8IXPOLTfeoERT0mf+\nHRAyH3/Ms1W373//R2OMMfvfPjXGGJMFAbL+K6G81nfkH2Yo15w8U5br8DuUCUB6rH6obE8cTpbv\nvtR545ui+iSbV7ZoGRUKL4z6Q4NiVUlz5fVr+b8SqLTFXbhv3heiYsLZ2pe/F7JkShZ+71Nl21Y+\nEOJiglJZg2zc+Nwae9l4/UgZDGvu3/tYnFcZ2OGPX+j7a/yuN4CySkhz+/pS2bnKkWzmLmpTSx8r\ni+bFBk+O1Z4VMiV3P/mFMeZH4bX9z0DI3CgzmkJVanlNqIsUHC59JRxM67LB32RYgmQ42rfPXBpj\nTKuhejfeqh0ezot74W7IPlAG5WFa7U2AHLo8VD29lnrKHfnl5XdQ8RvLdm9AKrZr8gGNL6Ss0Wyr\n/gOHrguQFTx7K986RrXl4uWZmaO8NYrIsfpRm9vElmM+1H5W9X8P6KImii9v/19lTis1Mnz4pQj+\nszjR/7341Z11jV2jozpeHMl/RuLwV6CEE8PG4+9rbsS3NEZRv/rq5pRM8LkQKt2R6pm9I9vfebKu\n+qJO0QVNNSRL1TtXdvsMPrUbuM7CoGnz9HV11Kee6ms3Z/Fr1K/1Vn1futbvc6hV3LbMQQrO4UGZ\ngdQcwXEVMaj34V8nrAdO0LZzh2wyHob7IaE13WdACcC5MhqQ3ee5nrFs2wmnQITnh0DajPBx5Z5s\nONTT+I+5Q8D7I1LGGwj+wLPiAWFj+TKLa2aGr3B69TyLA2LKejIo6XofGeZwROPtgIPI75BPisCt\n4Bzqd03UnMIoTnqdczMfsmb7dE8vqhaxMApZ8Ds0QWu2hhqzRXiM2nP1VYu1MxQALVC1kDOs1fDr\nOHyq23AiG7bW6HHTUizUp9eD6tAPzD23K4MGqpcotXRBLQRAYJi2xsaLkiFda7zskRo1a8+geiZA\nvy3Dp7TxRAiVOTx819dag6vsO98eao8QelYwxhhzBodhbkf9ubihfe5CThnqpoUyqOr3xZaeO+7J\nwVav5Penr1TRA3hQkj61J7etsYyu4fd4Xn9bz1lmj1EHZddFDasLomaKf/NPGQ/2p3ddum8NVbw8\nKLnjF/Kbl6dCdF6Utf/N5fTcLPxTyQXtIXJZ+W1A02bMuNxcql437GGMMebq8NhMn8v2I/hO673B\nUn95AAJ9Z71LO9hjpWbmtmUGl6APJZg+XFIT9s2TqWz5uii/MfSwP0QdyOnUfDv4RoiHKXPh3gOQ\nJShzZTPy42lQuzOf2hIcYIPwXsRRxIqn1OZBB9WfKMo1qDIF+H0UhHcMBZ45imFTIPY+VDMr+EUP\nPHq1gsbQ48Ufwn83Qk20e8EeYon9LQqMZfjiDr7VOjIy6o9IXDYdjOIrmKtu/G/XgFJAXShuqYG2\ndb9BRXPdE5DfPZppffHP4CkF3ZZPwxfqA3mD/5768OPwq2y6tV6GIqDV2Iv478kG3QvaE922OCyF\nOfhAuyBuShYfS1bjvLACkjILKs7LCYSpfGoJ9UHTVP80C5zmSLLOv6u96qSv8RrPZU8PHu39UJdM\nMmxeH1+a0UD+IcwasvBI8y21pPlfO5YfGbC2WO+9FfjYMmvs+979xBhjTATVpZtL+a2Lb4QoaVk8\nl27VaVLSmBZrGrvUsvbjyXtwOTXZK/Be/vqPus/+t0KypVCcWnxn3RhjzMrjB8YYY8pF1WsI/5ED\nheE3h9rn9uE0G6fVF6Ur9X2bdyOvP0y71Odzt/r45kC/L4HM68HPNI/CVQYa+OpGe5FiRf2WiWpP\n9OeKjZSxi13sYhe72MUudrGLXexiF7vYxS52+RnKz4qUccMAPSGT65spajunWj6yLk70x6ecj+y0\nObcHo/TGDko/7ypKGSCTcgWHS8qv+7egMykfwwmRU/TRgVZ7kHOJu0+4T0jR2Snn5fsWJ8yNIu+F\nluqxSATx7vtCocTJRJ+j7lS/UnTY9ytFa/N5MvGcuXWRFZs6db/BNUoPPkWTg2Qt1zY4S2uxTP+X\nPxhjjOmCLsgtc85wSc93oAIwHbrMGBWfIPwHPhAus4mihv0rneM70q3N9akynh1UeSIJPXtpTdHL\nDvwMNbI407naMC+rzmdlPTuZ1Rhv/lZRyIifw/K3LEEUCSZzzl52OWMJx8nSiiL4YwcZzAtFJTsg\nTZY3QWTE9Ps66KH2lT5bThlFMK3opQObMHNFqNslzmOjMrS0oftFsYlaVVHdLuiC5O66McaYRBre\no1PZQI0MsAvuhBRIEbdbkfrRtepbOVF/u4jsx6KK3Ls4C9ypg/ApaY64UgwkGYPEAhnTvjIBVjZx\nXIcT4ZEyH32QLhd5SggnAAAgAElEQVQDjc+goeeGQorEO+Eauj6XfSDaZPwooHkHyhAcFGV7E+bs\nnagyDh64al5fce68L/uagx6Zb6DaQna0Sj1HMLIHUNi5TWnCfdIhwu8A5bT8WMgLZ0CV//pf/4fa\n/JW4Tu7c1fePfq3M5Aw+oWs4pYrPlaUqX8h/JBPqs6VH6qNFskcn32uMz7/X9RmUyrb2lKm0lM9K\nJbLjnJm/KOp3fTIMdx4p83j/fWUYZhPZ5tELZQxH8DTkUaNY2tH1s6HmdvlIfq10xryvkCHtas4F\nl9eNMcbsvSdbD63Jpi5PQUmgaDADHZbZ1ljm4EeqkOVavq/nbnAOu3aj9nzxlc6fz0EA3flQCB6L\n0+bZZ/JXdWx4+X1lJO/sCAXRRRHCqn//VJ9XqGctZOVn5yjCjSZ/+Wzuvy+phGzftaP+mKGAE0rJ\nprPwX0VznG8H5dfA102YAz1Y+HtlEDwD1efNK9WzcqrMszOp+6+uq78XUAlr91GiK8i3pOGcuPdk\nx9yQZU6DFMujvGXxabxF9Sj4VnUKbahS15xXvinoujhIhc07nJ8GNRAawmlwT1mkNBwE+58p29Qo\n677RuPoqQJ1vbkrUS/dxshaX4TWqMFZ+lHFSoIzWNjUHgnBmXYO8PH0lW/WNyQvBHRCdyo8tfyx0\n1eK2bMOL/375T5rDXjKsT37zkTHGGGhHzCvOdQdAX8Qt5ZdblqmRv/PAgWPgoYui9DUJg8aAy8Xv\nhburidoT3FquhPy6C44aJ5nf3lz9GgQiE4YjrYeSzngknxAl++8C4dqeatw8fTLpcIPFqXcjFvuh\nDfV+2cT7qGYZjWeduTUzFqma5s4UpI/XAzKxq3Z3pqqgz6W5MeO6HmqHfnix+nUQSqATjRP0AXwx\nYbfPBKde2mjxk6lP4hl44jJqxQ0ZRw9opUhEYzxskB03ZMvhGuihzubuWOgcVWEOV8AcJbBBGZ43\nlF4G8Lg5mihFwfl02+JnTJyseRNQQr1L+QsHYzoFPTWbqR0xJ4qVq4zhhWypXCwYY4ypVDQ34kta\nVzIxzc38rsYmvKo+zV1qTOqsvY2W/OnBZ8r4llERjMDrEYMDIRnUHLxLRrkbhIepp9+XTzT25xXN\nzWZHtth4jnrVW/0dyXHfBe1NwotwNsS1XsRHZM75rN7IZ52fgVK4kE/xgXzJp8mI7+hvH8pC1WM9\n7+JA7SnhO+qHmguJhPxtDqSrC1Ra0KvfL+dUn/WFH1WTPvnf/9Y0Tll/4bKpnGoPd06GPBGm/3dY\nZ9/R7xOz2+9J/DGLU0ZjtgniJP9ENh8Cqdhvg+RekD+usnamQcbM99Q3PZTLvEmNoXeuNSq1+Ld6\nIO9SLfxS/DE8mgDKb840xp0ztfHmWPv2wJqui8PTE1/hnWek+q/9Wu80AWy8M9Rc8a4JPRFAhc2B\nn7wbsrgUVb9BTnPgzsdqX29Jv5uyP+531a4o73hZkKAp+tFFn7vh0Hr2L78zxhizB8fNzCffUgdp\ns7DIL+mnucVlltdYttnvx+BCNEEQ+CguTt4c8Lc6bgoq2okaksWd1mEP0u2ikuSSTeW9P21P4vGD\nIqT+Ftwrs6g5nv5Y618bNbt2W/1QbAk9dnKwT3uoX1r9PwLVtbID+hge1he/E5eMb6h+83t/RKRX\nrpvm6vrUREDx5zc1fzJb8kOtssaqcKq9vGeCgu8V/JIN2VQCrqtATG07/051fL4vvqGZQXV5U/u5\nPCdWyhPZ6JOk3o/v/AJO1DPLv31ljPnxfbgHMvsOPKbvfKh9s9OF0hj1PDmQn3DzTjcDgfjmteq1\nuLRujDFmAKr4CD6eFP5tdQcVY/aB3x8IYV8/1zvh5pbW6kWQ9lFQpVE4Bcsgy6PsL/MZiDf/TLGR\nMnaxi13sYhe72MUudrGLXexiF7vYxS4/Q/lZkTLJrCLSH/1vvzHGGBPOKzJVJitn3Ioo/d1/+gdj\njDFTzrcP+sp4zCfopL/PGVz4Ks7IPERA0qS2lLEtnykD8Papzt0PdsXZECWKWkX16M2fdKZ1c0sR\nvPSGoru+iKKRm08UyevVVY/0gqKaQwLpN1YGlN+/F9UXubgiji66PR1V+0MwcF8f6HfPvhQnw4MP\n1a7VR8o2uiEWKZHJH5Y4+0cWMrmm9vhmigjGlhThe/KrmTktCEFiqRPNvBZHiPrcwPLuzysKuetV\nGy+dyvoOURyYdkFwwDg9GsMtguzOzmM9M3rB70A+OIhY9y1gxy3L1Kc+mrWVBSqVdB8X2bQEZ2l9\nlirTSLbjMIpiunzqQ3eIrM0rRUM78FT4FpQ1ynDeO5RSfU+fKepbu6rQPkU9/aAUXGQaL+Gn6ExU\nn7sJZZ/GHT3vlKx/g3Pty2T/XBaaifuULmSbE9RXIpvKYISS6s/hEIRPmcyrUxmVyVT1WkcNJeJW\nO4acTW3AZj/16DmJeIbnKhPaP5ENzXIyjAgcNu1j9V+Ls8KbZLGCcEKcH8pGmyiGLb6nqHcspyjx\nxami0WUUbXqcP83H1K5sRHP11YXa0eY8uh80ytyr6PNtyriiuqZgoI+DTHCCCjva13yuoEax+FDz\naQuOpzZqO8f/JE6YMn4gOFdblu9o3ib9ssUEmcxCVRm8V3DCJGChf/ShECABEBflQ0Xsb17r+irc\nJi5QCPceyUYzqD3NUK56+fm/GmOMuX6h6xf3dP/8I0XkfaCdSm913+KlstXDCplNMsZ+6rW6rDGM\nYPPzS9lS8WXBGGNMi9/nN2RzC3tCBM1nIPoYw6iT576Sv9p/pX4zEc2d+/+LOHyCC/Kbp8/kC0xf\n9dn74NfGGGPWt1Wv5qX65/JEPqo34rz4leagN4ryzvq6McaYel82F50BXbllSaHq5AB9N2wAV+hq\nDhxdC+lT/s+ykxI+IkzGeTGvehTh9uq1VI/xDUpoVdU/j0rIOmpUa1sar3JD9+t+poxRfQZnD3Ph\n8qZqTl4oA9ZDTclTAUXwXAoDZ/vyE2sPdc8lztqPUsrEekCq3PtEfiq3qLE8/U5j0IZfrQ7atHMo\nG6jU1eYH7yoDufc3ypBWCmpr8zvZWKsGIg/lkxbZZSccAvl3VC/nRLZww1n32nea55f7qsdgqjFe\n3Vw3xhiTRoXEB9eVg0zw2ZWeO36q35+DwFzfkb9xxWSL9SM9p1SQLQ2d8A/FfhpfyBwURAOUhaMj\nG5mm4URDHWmKOtO4A/dMH04W1AVjZGq7IDJDluwfaNjJ1MpUar1IwY9RLap9MzKfc87rQzlhfA61\nNwgspAf6woctGWOMy+k0MZA08znr81h/Z6PqV3dEnwkQMiO4eiwuoFhE9Xd5UOghA+y1lIoc6h/f\nEaiVGe1KoKzDeuv3e40TrpeaxeUUQuFwS/5hFoCfZ4JSmMdSWtG9qyAguwZUageVNi/qPtieP6q6\n9uFqMWSzhw6tRWGD+h2Z1j6o3uHEYva5XZmzhqfgIqn1NaeqoIhCzLEufBF+OKuGq/o7t6o5EthQ\nu+NltecK9MK0QlYcP+joqZ+8ixqzBTLDC2ymOmT1OyA+ri80Z66P5UtOv4G3gn7P0E/BRRA0d+Ba\n/JV8xXYPBZqB7nN1KBueXGhuVeELPOcz6dE6mc7LZtIo7tx9pHaVNzW3z8gYX6DaN3qtdfk6LrtY\nzWtO57a1b37nfa2HSw+1blWu5ANqT4UKbKBSdXkCChceloBHPsadUL+nMqDl/s//w9wUyyazov58\nAndbswL/FmpeA1DjHvy7s6f6T91q321KtaR7juA4bFsI4zh8aX2Qzw3te8Jw/p2hjNjZVl9sofB3\ndaX5/fafhRSc4x823xNXyA1KtM2W+nhjA1UeUPxT1CxjcMAMQurLQFY2MBvJds9RsBp1Nb83FvX7\nk2vdv3yqMc/uosaEuqYLv+gPozbaFqrg9E+y6eSi5p4DBR7XAL7Oifp8IysbjHwMuha4QOWsoH7j\n3crVgpvQj4IWEO5uAn/tB8kCx0wDBEpkAT4rC4cAd+ayDxU91PQsTshZUX4sAGlZAAR96VDjWePd\nL+CFR64NQubfoLJuU1z4Uav/fLzvBOD4bJ/Lxr/8Ujx8efhZLAXieFT+O72i8U6zH/CgYLSY0Z6l\njBLZ2deaGzFUFZvmR16+08MT0+n2TTqnMfdkUY8E4X31HYqIcOxldmWbK3BMhUHQJUCcV16D7n2u\nee6E92wP9cn1dzXPxyjSVk9R7ENluQbv51d/FMLag0Lkxl1xzrr6qpcfjqoeaKrX/yJkTIM54Ynq\nfivsg9ucosjlQdLdhxtwLttYuaex333M+zTo0v1DoYndID3XQaPdeVc228UP1VEiqz3X3xevVQ/H\nAoq29b/sR2ykjF3sYhe72MUudrGLXexiF7vYxS52scvPUH5WpIwzRNbfo+hq75xo3iud6Vp8R5Gq\n2KYiYa0jRZULnN0fkInIJojIw4lw9C86Nxcl+/YgocxtaK5I1d33FNmKb+l3M1SVOme6fwflhj7R\nar8vzP8V8SrBEp8gCh1Owi3xlaLch1/r872/VhR7/a5QJ23QCRdP9f0c5E02BvP2VO2ZwjUT4gyw\na6T/l29Uv2Ba2dPMBko4JAMDbkUKn/9JGRJIqk04ETSziCLkbSK8FfTsy6fq6xiR9eVlRRP9Sf34\nVIFh0z7Vsyf3yYiRpTk501gsGSEwQu/qjH8iSKYUVI+VwVzM6f63LdbZ+1pP9fGhKjJdVvTTG9Jz\nPWqWcZI98XJuPBGUDfSrIEeqlpIWWX0yF2ZFfVkHpVU9VLvmfY3N9n3OC4Y1ZjULKYIKVCSjekSS\nRG1ret6MLJO/Q3bqV9gUqKfamfr/vK6MtCujyH9mj7P5ZDIvG/p+Bnt6z5D9Q9rBvaj6R+CCKZbU\nzlFX/Z5EhcTj0/06LZR6QLqscr7c6VG/FW/U/pBDUeLogsZt2tHcKF/peydnV7O7sp8OPFCjGzLz\nE9lNCnWs5C4Z5JkyN4MSalmgHuKoZHkDt1c6mMfxA8zHXpDsyYWy+M0LkDQp1CNWNV8Hdc3nQkFj\nMOkoE3ln+z59oTEboFIxCNH3RRll5UiZg1BANvIuyDYvCJjTp8oQnD9XPVo1GWkmp7FYeqKMZCgP\nz09XfuX1t6rPBbwb8W19v/FI6Ad/Un7s5kg2cYY/qZHdSiXUh5m7un+cM/pBt+bs+Eb1uPxeY3TK\nHF7bUOZi931lwXwB2Xrhe7Vz3CD7hMOpHYq/w6Bg8N4nOr/sA9H44nPUh5rqv91t1SezrvacwFFw\n/Fr3maNME+C8d95S+9jU3PNwVvj6T6pHr//Tlq8jEEFlEIkeOMQSebgqQppzlkvIrypTu/mA8+uo\nEQzroOcGsruLvu7rdSnzsnxv3RhjTBBfsf9KyMyL11KWQPjGpLeVUY6QBixPp2bnfZ29X9/TZ6eu\njOMV3EuZu6rTXcbIEVRfdUD79Jqy9Uuy2rVj9dXxsepQOpV/3BiBrHDJ5vtV9e3istrUgC+t/Fb+\nOxnQnEk/kI30b8gE+9QXGx/INhdBn54dy5aH3Hc+1WeOzo3vMrbvyyaSYfV98VA28eJL1TcQ0ByM\nrMDbFpItTObqxGe/E7ppcHNGezRGK0nNsXDk9ipuxhjjd8LJNSV7PlQ/BeDkMS6N1Wwu/zsgK3Zd\nBykED517Uf10fAn/nQuVkr7F3SIf4s7IDy7cgZ+JDOcMdJqZqp1jkDA91D4GNT23BcdAYP6jvwyF\nksYTkL/tlDT+bRSCPA72GKg2zZmrc8bpvCX/HnLp996k2jUdoeZE1tDrVj0azWv6TdfHGygaJfR9\nIBgxTsaqieJLYqA6jVESDIJSjfhlGz76eNjQ72Y9OPZATgfwP07Qtx6UqVzMN/9Iny0Qg62i1sLw\nJnsCxiboUhbf7fiJ2+CxpeiotW5zSX4vNlNfXB3ovn24Sxo92bS3LNsqgYZaviM/GIN/JwR/zzFz\nrnYimy75UJ26Ut83cqz1Ia0DYfinkg/hOtuVj+iM9PxBRXOxUtNcLVbUH1dvZUPmROtIjHVpbUcZ\n4DRZ+fgHek5rXeMUR22pc6j+bVbV7lPURk/P1f7SCso2d+UTtj+SWmDirnxJB/6rG/zy0UutA+es\na9EDZeB3H2tvtZRGneq368YYY4Zd2VER5TmLb6/VVQbd1YMvEa4eY4w5fPbaFFzyw0Ey8g74scwQ\nFAl7xN6x6vcKlZV7ZNRvU3wg+ExRY+4CddCDP24y1PybeFjzWBP8Idl4xFIXgqvKcCrAUmMLokrk\ni+n+vpDmW7BGWxrqkyKqbtbLQPaebGMVbpQhHIfnb+FBQyHRxxybgB5wgYCJOlGTQ61p6gAxybtN\nKqGxjbJv7XSFrOnCk7no1pgWW7LNaxCc83XU4BLwDcHh5eBdZyEpG+iiBtdHBeriXHNlHtV1LpRy\nY6hHdYOy2X4X1Sv8bv9Cc+EE5Z4NuCDz92WjI9oTg6ysz/tP6Ug2Gud0RDKL8mRAtucGwXTbMoer\nq+3VeAVQv2sWNOcLTc2lDCjhD/9W9euAQLf20Usov0H1aJqHsrMC3DNd5kICrpq7v9FeNZb58X0s\nsRI1If+2Wf1UCPKYX7b2/L9JrbTMvjG5p3n48O9+aYwxxjOEl4d94iVIQS/8ZHEQkatrmgNx0F8z\n+vjgmep48Up+cnlNNlfqq+0u+Erf/1Q8c+6cxuQKtaMeCMEaqKibV3qn2N6D6+U99d2UYyIT+OZ8\nS+qTPDxH10V4lmYawyb8cLXn2mO8ei1b3nwImnhP70yta/nzL34vZHsipT51ZOHG5RRJdgWkuvMv\n24iNlLGLXexiF7vYxS52sYtd7GIXu9jFLnb5GcrPipTpoiby+rlQBwY0gxU9zkX0d6uoSHwTZupw\nRlFUZ1uRuJmL885eRaTCqzCDEw3uTRQh82X1/SbKBpZkg8M625/Sfd/7tSKAqx9xbpJs4ptvlZF+\nsy/W5l1UXjZ2lXkJe5V5TaHm4ees7XSgiODNS2Wk9z9XFjB9R1HlSlaRNS/ojQfvK7OQXlOmYkT9\nonA2LK0rk2Fp2jfOFOEL+xQlr5EtrdcUSXy09iuzyXndmF9tPHqmqOYVmdjEtvow2OceZOASKMxY\nLOcekBRXF4pQn79SpNtF5Dq7qyxFnTpVbxS1dML9kiJLftsyIq08IOvVJlO34lUf5+FQOGvDs0Mk\n3EeWxkHWbd5SJNpVkg0lfXDSLCsCH22r/kdvlSmsXSuzsLymsV0AidKaqL9Kx2Q0p7puCxUoj1EU\ntnIilEOZs6axZUXy0/B6DDtk1Y5QR5qqvyNp2W4+DrJlpP6clTTWnYnua4IoMqT5zJIxv5StX6AQ\nNiaLGMUmIwHZVOmLL9QfJFYSFnqkqP4uw0bvIwJv8SYdXyrr1GiioPNA/Zdb0HN69PNVWbbuH+t+\n2bviTMihqnQGj0ijqfEKTNQ/M7gYgoHbkw+lQCfNUPaqHaLAdawM17imOjjCGotmnywQymOLWRQI\n7qsP+nVlFq+PNUe6AdncBizxgybZZ/zK3W3NV5dX1735Rv6sdFzQ8+FSyT5RlurBA2U7PHH1WQ3F\nm7N98YaUyDTm1zVnH/xSqAm3W9mxwoFs4OZLZXkGDvXZziPVbx1ECuIXZlxXxL90g8pGEX6iS83N\npbuytYdPlPGdcfb18L/KTxXhAQmBBhszxnE4wXb/Su2ZTuQn91FZapDJ3oXDJ78mP3dzoPtdPJM/\nHY41bul1IU02V+UjImndjwSvuXquOX5ZV2bip3JBBP2am66Y+j0Jmi8OJ5c7AuoOPidLWcfAo3H9\nSuM6gsNoMtecvD5XBSNx3Sc0U3taqOIVydwkWEeWWVeSnAu30CxeR9TkUFjpe+RXajVljxKrnF++\nC6cVdS/ANVMn8zcDwdAtyJ+MQHeFZpq/jz5VtneVNWbcJiP3THWtXOp3p/Dr1N5orcs/0fVJuEIK\nM1TpyPg6K/JjZxca+6uq5l5ghloISLhgXn40s6gxtrQqTq40527IlrlBzy7eV/Z/Bf6h829138tz\n1csHmjS/qazVFL4jL2f1oRO5dXE6VU/3HIUep/rDxVyPwy3TBWRQJCvvgwdkiupUABTFCC6xbp+9\nBrKH3jZcLFO4z0AEzUHq+AMa32FV4+d2yhbDqJz4QMJ4QEya3o/5tUg2aYL4xGrzhvqDvoUzLMhz\nnHDLDHC3fXg1vGSs5y49zxFSv3jxcVDWmBE8UwGQsw6QPGag9ofSETNtwpvQla0Nx1oD50jDBOb6\nfgYPkGOoe7RRV4sF4X8gWzwey5/52e9Y2fyEU23pBHW/JmoaoY5sZFyHDy+jvy/P9Lxw96cR3U3h\nWTtkzBYcstkAWejFHKpOftl6F7VPaz9WOFHG9QLukjycDAubqtfKqvxCMSKbthCZp6eyFfc1qFr8\nZiCtfgixPqSXZBuxJGvuruZO1Ku5v8leo4E63w1cXuXX8iH7BSncRFGySeVUj/ym2rOxsm6MMca/\non7ukxEvV7SuVC609p+fyvbLtc+MMcaE4Ti881DrWvqR1o3FO8qc9w/gITnCtxwWjDHGPD3R/ZLw\nLsV3tF6lUWBbROFtGFH7XOy3hyCznAMmqzHm7gd7psP/56CvvXAwTnya4x5QX2N8iH8um3e7b/+6\n5J7IRmNJjclCVmM89qAwFldfjrr62wni8UlKfdT1yqZHcGglQArmltX2kF/fV25kC0seVI8+0vel\nClyBY/mlKrw5NyDWu/grL8iOflH1WAQlldpFVQgurIWg9hZd6h30y1aHzO1aUDbvd+rTA8eiASHu\ndeiz01Q9cjFscld+JQ0fSQ3FySkojYSlsBjVZ3oKl9gQBA88cXHU57pDzc1wUPVMLas+TrgQ2x3N\nvUiIUwoRzR2XV/03ZN0ZzeWDruqynRTcLfkVrb939rRXmIbg0GyDbE+DqLxl6Q/wnw24cpbUr1MQ\nUWvwQGV5v6iXtA588c/av4/h3VpZl+87hQPzbF97lbucNllaR8WJ9WLOO2X5EL6/vzGm+KZg/C6X\nabCfKZRlWy++1vxLcWLl7jvaj45Hqsv+51IjOnmtvUgur/m8dgdkCIjzHvvBOhwzs7JsdP+PWssT\nnB6Io8bnMrKRrFNjHlpUnx89B1lzqbqHI7p+WEQh9x3ZxPbfqe1T6nnyXAi50qXGNJqWf2u3tE60\nLdVP0Gy+QxCe1HMppfavw0VV5l3rxe/Eqejiff/J+x/oOQ4Qd6COg6wX7eaPPD7/f8VGytjFLnax\ni13sYhe72MUudrGLXexiF7v8DOVnRcpM3IoCptC292ygIkRUMpBQpK1WVeQuEKa6Ll1XGyoS5fRZ\n6kOKVI1BkDg5B5mBx6QJK/03Xyii5ycit3tHmWVfVpGwzo0iY/0emQlVz6SXFbGzziBH0YRv9hSZ\nz5Gt84JacAbJsFYUcbTUoR7ANeODZyPIZ2BJ0c4JSjlzEjhHRPicE9VndUcRwKN9cU+UyKTk/l4q\nVitrIIGGytCkcn4TCOoZXc7JuUPq412y9n7Ovb35SlrwZTgH3tlV5DwTUUTYSyYxkVE08t77yq5b\njPaGrEmrQ3QQNY3MCmiE5E/jlHGQcRgQMfe5FZ1Mw6jvAJkyvRC6oEM2I+hRZDwwlI0Vq9YZWP0+\ninqFLwcyqK76luAtCiDskr+rjO4EJv/ua9RIyNa7QBUE4f1ow2Ze7ivzMHKDuLmnfvbCFn96oKxh\ntap6R43qkV0ii7ikqGqrrnEYH+t+AVADZkPXr0YVlQ7DaXBcgw8JnosIaK7knuZGowaT+o0yCj63\n6h2HwbxxzNnWseqdX9K4zbC94Zna74SrIb4mjgdD5uTma31fb+v3nkXZXQoW/zFcCYPXyqoNa4xn\nWpmN9Ej1nJRvr5riwCYLBc0T67ywE3WiCJlBz4L+XmKeu90Wu7zG4gAOmDo8CZFF9e1dVCCcI2Ul\n9p8rQh8B1ZNali0dvwH99EaIjkhMY5LZ4iw8GUEr63zyQtf1zjRm1QuNcTQom01vrxtjjGniD5oo\n3czIuIao3xaIuiBoqOs6ig/wBk1Gal/7RmObhCsm967ODq9vyl90fPJjr/9ZTP/X32ksE5wTTyRl\nS1Myi9kP5BPGM9Xv6X8RSmLI2fwnvxFLfgTFr8vnut/Bd8qsGNAEy3d0n/wjoSK88GicWxwwJ/CT\nwCGTSK9QL/X7bYs3p3pkDTwdjOcYng0nCjLTHpwWTT2v8EKInvJ3+nSCyEqsgEx6rM94Uv7fT6a+\n8LnGq3qt+sceyw6ccMh895nWoeqJ5kI85TGFpxqr+lh1mcHHsQafUN3imPmDbLCMOlI8h61nNZ+X\nQCROUI8oTnW9n6yVcyA/UIC36HxfdY3lNdZen+bh/UefGmOMWYT/aIKfrFfll1MLum41Lb81Qn0o\nsa6/F61s1LX8Tela/q7egPehA2rrRn1WvtFcIFFsukXV66uC5srxK2U6Q8y9Xfre6YzSDl131dYc\nyIL0vG2ZukEksvg24YEKZNSPbhQTHQP8VxUlL9T/oinZ5KQtv1aqgYAEYeREibHj0v2CbVSMZrI1\nP+fdJxanw1TjbVA79DjUzh4KYu6i/Kwr/KO/TGWTJgoq+KwAUgf+vaTRfWZzPS+O+kq9ouuOmaMp\nEE3BDHNhpOuiWT1/1GL9QsnCx/2HIIpcCc1tp3NiuqB05nDjueDrmQ706YJTz8AD121rX5dHzWgA\nImbqJtN6jCrOqp4RiGuNcYR0/2BffnA+hasQZakwCBKHmmheVkHPothy2zILy2/MKur7K7hbAih1\nBaMo0sRRPIR7wAkyw1XW+jQig9qAN8J5qnqv3tGau7kHunZNfmsEl1WJjO6ko3oMa7rP9URzrHys\nfvPnNJeCcDD4c7p/NMVaC0Iw80T1a65ojtdO5ROqqPq9rQmReXyg+yRW5FtW4BKLrMg28qCJk6B8\nM3nV8+ZSPBxN6r3fZY+VI/Oc1nPDW9ob7mVVr2tUClsgZ8rFC+6nuZdMovAF6iIEt443LDsIpOFD\nyvzI4RDPRf6EnrYAACAASURBVE0kKhsdwJM0hx/KjRJaBGXSOe8VjiH267497K5fhstlCK/Q9+rD\ni7LqvonCYRPEXIv9VhYFK29AY1V1a14Hisrud+sa2yAO8vKN9iwxULz5qPZjN/RxDD8eZk0aWQpT\noIV9KdmqJ4o/Yr2owcN3+ez3qlcMhM4d9fWIdahVUnucoCPc8GSWR3AtwpcUxabnIFmc+LnpTH/P\nsJlET/+/hqeoBE+o+23BGGOMIyYbi27o/SM21xxx4meP3wjVEU+xrgz1/zuP9Z4yAZXm8+h3m3+v\n5w7xERZKIbag9gyK+r2DdXgW0ji9eaV69Y61VxryDvfQ8xvzU8oMxEqAl8wsHJnnHd2/NFA/19mb\ndNi/j1HJe++vpZLoBTHvfitfcu9T8aa++0vVx5p7hd9p7zUs6jksm2rLfGIi/ryZN+UXJ2U968kH\n2set3YdrkPfbl9/JNkoXWpO372h/s/trcb844YI5/Vq2f3KttTmeRMl2AIfjjpA3a+9p/q2w7706\nlg1XTvSe+/pPsom3+3rfXUaBcYG5VAuo3qu78icuI790+M0/G2OMuT7R81MoZC1ta+z78N1Z/Kij\nLqjVkD7dvGt5xvJX3Z7WrTIcuBHece/+rfbTPo/Wkzf/KttwgGpz3Kjfwryb/rliI2XsYhe72MUu\ndrGLXexiF7vYxS52sYtdfobysyJlApzbcxGtzaJi1OUMWOeVIuzBJNwsZNWffq7z7p4I5/dmQp6Q\nADXlkiLqrroiW0sbKM2cK3p68kxn2DKb68YYY/Ye6TMIL0pjqCzQm6+UaVjlPGdyQ58ZskUHL8S5\n0BmSNQzBEXOmiF7mjqLGIc7Vh2L6zN1VVLuFIkL1XBG6Doo9/jxn6/yK9LXJoI84f94FmZOOcf4d\nlEaczLwHlZXKtSJ8jXbftFBmOf9OfeoPq++2HypK2W+oDU/3xbQ9DOu3Pb6fokp08Fa/XwONkydK\nGeAM+oys8wikjcep50Q4y26dRb9tGTdBioQ5A+tVG6Mrel63AZdBh3N6sNYzFMYNN4kD9vkRCi6Z\nJdmGkzPyDThgug1FxsOoFUXJUjn7itpeHyk62u2qXtv3ZHtJVCqOQT00q7LB3CrZqC1F9i31p+qF\n6j3rq1/cSXg0FlQvD6T7LdSLGkON/WigKOxOEuWetGxgRCa6fozSz1T127qv8YstKDp9+Z3OY/ZH\num5hW1FwB+iJRln94IYfJBZSVLfT51w2GeBcFOUatzIn41PmWJnrOork59/BNlG4qZLRuCzLhr1E\nyxfXVT8LHVYHaXWbUinpmXOQd9G8siGOPkz2I1SJsqC93MoqnJ7q3O35G/kFE1Vf7nygM6FL2/I7\n1bb68vhfNN9bTvmHO1vKvhTbquvRC/mVeFA2s3Vf2ZbQqhUZVx9ffaUxuD7U2HbhaMnCR7EI4s6/\nii2QdGvDITCCod85JytV0u+HZAIMiefIBooofdSY1kB1RTQ5Rqi9HVyo3pevNMd7NdlojnPTd+8o\n+zakH+b4DkN/X/1JmYwpDP8PPxGzfzijsb94VTDGGPP9n3T2No6y1uJ76r/1bZ13tvg13n6n+9X2\nNYfSWdUjvyS/OXHIV/3UnEKIM71T0HZDOCbaY9li9UJ20gYFMneCCuGscjijfnzwvjIi0QdaD2Yj\nMtWc13/9LRwSx8o0Z1BuW72r3/XO5EOK+/AugTpzBTPGCcdSbK75tfdbzc9ESn1w8o1s0EWWf/uu\nsldLZIciixpbt19tO/qj+rxwqDpVovJP5/xdLaJ0Qibz4acaE1fLQi2oTddvCsYYYw5fCi1k4HOL\n3tdz+07N9wmcNnEXHAITzfcSamyHb5RVi0dk2wn4KTIgbnxwA8xmqEs09BxATWbnF0KtbezQXrLj\nlyi/1Muqpx/OgQjo09uWwIDsGNnzIIpblgqez6f7+r20r685k+yp3i6QmxPQIY4BGWpMdsLkDA80\nV7xGtthjJzaGQmEA94IDf2ipUE1Ags5nZO2d+pyMXD+0IRpNmg4cL5UX6ne3V8+d5vW8qaXuBArF\n55Td9fqa42nGz1LnCtGuLnNngi+ao6TkRK2p58AueqA4xg7jcpLtz8BT44TjBfUyjxv1IdzKZMr8\nbMEJgpBNyEI2utTns6H60G30LOdEbRkFZHOdBpwyICYHI9VtHGbs2EdFHLdHZRpjjJv5mgVt3CAj\nPB7In0+7+v/UT4NiavfClsYuAmKzAWqicw4S5ET+ooe6Zxq02+KOEIQB+D7y9+CDKoE2AE01ONfY\n1eCJ6pCZrp+pH+qoQl256K8ACJcVkOZZ+dc9/NVgY90YY8xZl98XCqr3iRCpX3f0fP8bFNIiqm8e\n7hdvXjYW2dJ9vH7N/fMKyNC3sp3rkHzRAqpYqbvyqyt3tS541zXXy+zxOida7zsXIEAv1F+X8AC6\n3PKNY5AwJobz+Mf/2zz9z3/6od0zuIxcIEqnqLMm1mWPS5vaR+TY485Ht+cL8cJbFO7q2dOW+qIB\nf88YxEYILhlngH1gSn3o96tOmRvW7DWt9Z2grnPCo7nq0ZoSBpUVDbMPh5fTv6b1YDjUGIXwi24c\nSx9FmhTvWMZY/E/q6/5Efw9cuj4d1V6m3tLcef6FbGHtQxRmFjR2PlQ7OyByaoxdBlTc1aVs9tWf\nhPTZnWnuxuHnjIZUH9cCfoSNoR/+JAt1F3CoHiHqP9iCDw4fwuNNDQW2izOhLEpe+ZIY/KO9ssYl\nifpsFK6yYB7UckLtildU744BlcbcT4IQmrt/Gj9V1KXxdYLgL72RD7moomzJ3IzC3ehPaRx3A3D/\nrGqveAqHTI/99UJa436IqtbBPwm1MQU5tP1Ie7RQ6EeU4OrSXRPyeYwfv7W8K3Su26GxbbHnKMEx\neHGj+Zxd0Xzf/FSoHWtNOvyWZ38jRLAPlNPqnvbFTpf8YB8lYH9E8/KcEyCvQZIPGBsHnE/r72nu\nPPhUKN5hXWPR6unTja0c/0GnPva/lY0uo+CVWtWna6rnFr7RfnwMAn33U51qWHssv1MEvVsvgXCE\nCS+xCEIvBpKmqed+8eZ/GGOMmdZkfGsoahoQfJ6mnvvnio2UsYtd7GIXu9jFLnaxi13sYhe72MUu\ndvkZys+KlJmDogjDoh6NK3JWQwHnDA36O1lF2EJkqWKc9crswKcRVpTy8PNvjDHGXBwpa7b7SP9v\nE5niaKjZ+qXQDctE5ueeGPWAORxm7uMvFH3sdxUZewLzeWeoqG8TVEDSp3oXe8p4nL0ATbKhiJ47\noUjaW1j3ndeKPA6J9B+eFvR3V9HxZR/66u+qflvv6rl1osNBGN2dY11XfQrnwbmiwRHOiSfyyl61\nz5vGSUbrGuWT5Kr6LgDPgpfs0sKWshPhBUUBFxNq2z5n+pswV7tSqlP1irOuYWVUH9xTlmWBiP/F\nlX5XPlEbRw4997YFgRwzRF0iv6a2ef3qw3JZ2aVRi4ydpbCyoO8bGY1p6RDkBciPBEzas7rGtkE2\nfOTW35uP1P4wKhiVZ2pn40z95I3LBtN7+hxHUCK4hs0clabc3vvGGGOmQUV5b14o2myu9P1KVP0f\nYMw42mvaI7J98IC0qnD0pDRXUvCJzIaKpL/dl82Vz3Tfpbyi1xvboDRQHDivqH59FIWS7ygDMPIq\nCtzqKXvnWZDtTMhCjrugsni+8amfBnAKuF2cWy+iFjJSv0TDirZHmevXJ8pU9MnerezIxkM+2UuJ\nOT8ZWLos/3EZwBmzjHrPdABzPs/yEaH2gmYqXipjeF2Qn4kuwa/0RNmDIUoxr2B5Lx/pen9I933/\nocY0GJD7PPxOfiJGRvbRh0IvhLDRqxNldk/fCvlR5Vx3KKnnbIHsSayBrLFQXKAPCqca2xo2PCrK\n1h1eZYmSSWwCZa/Etj5dDl1feKZMoo8xqoAkvDmUnwzDd7EImivzIZlZ/GqxAVKvpc9sTve/PpC/\ne8157/XdddUDXpOjI2U83oJMDAb1nAd/c1/XoepRRmHi6EshR2r4lFUUd1ZBRZBQMe2XstHmf8Bi\n/+9LG2WC0wO13xtCrY/sn9tCOfhQg+mr/3MPtqmP2u1Pac61QRS1LvVZOwCpBMfOB3+ns9Vre8qU\neB3KEn451BzMcqZ55wPZUyzsNSfPNNa9oWxrQtrk+9/rLPjRNzqf7QUVmcIGHaAJBmPNhet9rTUH\n2E4Ovoat++r7MYpfCdaS/AP5/WBYGcfX3wgxeXGIP0ANKhvX92u/kY3MQB9cvJWNTV16fg+1ixnZ\noptLbJCKrm1r7BfvKuvfK6kPbxqyhTnIzfSObCnGHqA31RhZ3DE38LX1UOdLWjxOrGvuwE/LO03d\nmlPTjtaNWUj9MwDR0gaxOISTx+KXG/lBYcAF0wfelmUd9UXJsqOWYeaoHSbUHgcKLyHWW8dcthlI\noyyB/7c4HIJOtc/gk9y+HyGooSWfmfbVbkuJMYP6ooXW8824fky7empvcAElMtQJ3WO1owf3wKSi\nOeSiHalVzYlkir2UV3saF6pN/qHH3IB4GTq0mDtBq9a62jOk4Kvz5MlgAnluoZoTcOv/iWX1UbkB\njwS8OENUm8Y+/S7hQyWONnrggLL4mRx99UksZCll/cg5cqsCmmiGjfvJuPZBeJe7WlfmTd0/VqXd\nY9U7uih/nYTHb7ggG++wb31dEnJk8LxgjDHm7I3mRiaPSmdez03iv1wBuFx2NEhJF+1vKJvemqqf\n+5ey7Q5cNt2h1u5iUWN6cy2/eHSA6snCNp8a4/yHso3eB5q7w0vd5/wUfj149Io3Gpe8T+vYAipO\n7k9Uz1xb13fOdf05yMGrU/XbaUn9EIvpd/lttScDn5OlAjVO6P4GnpI+41uFk2wOgqhvSaUZY0Zu\nj/HMQV031J7OUHOwV9fzr/fh2QppToRBvG4/fmhuWzwuEG0x9nfbWvveyatN6WW1odGVv4xNZYPN\nufzK6dfyb2OUEj/5q79SXf2y6Q7I6C34Nw4O5eeLR8+4Tt/nY/L35Uv1eRTkXoA9Q+mNxty3KtvM\nr2r/HuE94Ber2hPUQBBOWW/8qHVu/voTY4wxK/AfeXyyTc8A1bYxKKvX2iPFH7zL89X3mxaqNgXv\n5xFIIng4+j1U70CQh9h7VF4LYfP2jfYYK/d1X48blT/WaB+8VOGR7uNtyu/Gl9SPUeZAua31Zhl1\n11pJ9Sh+rz1ke0f9kgPhNAARmLsHP8mO+svDe8VtS9chX2Ihlwa8pGbh2Vv6pfyqF1/x+qnecYuW\nyumxlNLO97VXjSYYB5DuPfa6MZQyt59ovLIpteMVezdjjHn7/TMTzwZNJCN7jwU1lqVr9cF8CE9R\nGvT/8roxxpiNh9oLRHjm889lgw3W/ERC/uLRJ7outKF9zyHv172G2tJpyE+1q7Jd14wTKDvqiySq\nnOktUPWcbDn4TG1v3qh+g0WNcaulv1eyWvvW/ko24mJNG1ici07ZwsZjzZXtD4X4sZDf169kY064\nFNfWNcYT+H3KxAGKBe3N/GP29R/LfyaYQ1dwQja6NlLGLnaxi13sYhe72MUudrGLXexiF7vY5X+6\n8rMiZWZuECc9lBiuFHmfwOzt4ezxQlKRJh8Zj8UtRS2jSTLKnMdrwOqfJqOwsKezYSH4NdweXbcH\nT0oInovCVzpzNkE5J+1ShHCNs6xxIvMpEC9XKMNk4VXZeqBo6cm+oqsezu0HUJ4Y9TnryjlLnwv4\nR1bR6uWOopj+TWVWVneVaXcEFTM7Pieay5m59UVFDjs9RYFPOePX7Cgq/VH6l/o9sAtfr2lCdxRx\n3fhB0QAVBpQOAP+YGRnAyzMUAVA0iOV0/a/+8R90Tw6An/33/67rUGeIgPyoBzSW46baOgqpz6aj\nvxwl/PelA3+GY4LqE1n4Btm37pnGtjVVhi6OEkBwTbbTJUvS6CkKmyaSHDWKBjePNfZFznFnYHUP\nbsu2xn31eaHI+WU4EvKgprwLGotuXc85OpHtOnKKGudQBGufqd21E0VLfR4UXHb1PFdiwP11nXOq\niHm9iFoJ597f30UhYEe2WP1CY9+4UHYpCQt7cE/3bUc4h/9W0e7Wqeq3+aG4GRJxuYDKM92nbWQP\n2379PoANukaq73imvwdD9fsaUKYRc7UOj0sYVEQ8LRvvwqlwAc9GkOxkKq+5MyVT0IRTw+e7/dnc\nFBwuqYA+jwtq67isMcuvc0a+qr8v34IQgcdi+b7mhgFl8PprZSPGZN7S2/r9+rLmqcsrG7r6XMiO\nixNF5O891vnuAWf2X377pTHGmNa1+twLT9O9h3DGkIX3ws3iR5ml1uHs7pnGpIbyliHLk4zLtlLr\nqncYTqlIQn1WvZYt7n+mM7VD+KTSKCQMJrp/blV+cvmJ/E0wojEcXchGv/le2ShrrFfJtrfONUZX\n3woBk1qUv7xL+3tkVIovle3z+JRheHhf/jid1ZhfwalSuNTznG3d98E99c/CE/W7lYm+/loZkXbx\nkv9DtnPL0q1ZPCWyg6ABjbCk/l9YVb12/1p/u7h9ryq7aFbl158efKH7lOTjQiCKPBO1MwznxNyn\nzHUVZbj6lep9/L3aEVu2Mj7yMdW6wwxBWrjosyr+ZIQC4S4qSLGc6tqooGjymbJO8xl1hYslzBrw\nzmMhUhLw8rw81O9qqHk4DuUfi681puec515c1likH+p50RX43QaoXcBRdfyKc+NetT23h1IWSJGd\njPrUAZ/R1gPZ7BQViedvNGfP3+o+kSzZes68Txzqj9pT1e/0sGCMMSaY1n0++JVsO8rfFkquWf1p\nNtIDjYpIlYnDjRJxaf0JwN0yhEsgktY64McHmb58Rh9eoj62G3Cj/IPi2NgtfzoBUTgayP/3B7JN\nE9GcGrjkE4Jz1k36PeBTptOQaZ04flQim4+8ZjqfcRuUHSOWciWqTpbiGOuNh31BAo4DL5dPUKLx\nz8i81uGMwT4XtlCunOi6SkPtjyQ13rNZ1xj2ZZFpiGeCugSBPIcXbXVBfXjzRvNlCBGPK6J5FvXK\ndmIe+Cpa6rPAUPMozHy21OBGcBs48BMu5tYQvgkv6j0u1NBuW8Jk8Q1IlQScCqGu/OrgteZ5H86Y\ns4baYy70uzgqnhZ6LZfVWGc/kn/M1ZRRvoGH6ZJsdvGVbL93pOd6Peq3DIhMP3s6zwpqfHBghQLq\n9/CG/FGwD3+IA6RfXz5h2tEeqH6s/rp5K+7GyinoM7gUoyAGUyBgkvDh9UAXlI91n4tT7SXb8HmE\nd3R9YlvPWyDTnv9A4zVEEbJ8rfWgBN/V26+FAjmdyjfEQdSHg5p7cRTPDCooS3nZcDzKPnr+I2fQ\nr/7h16Z/Jd/XHKid0wq8TiOUL8mwF5uqdwoeFMf09q9LM9QnT09AMCyjQrSoOjvhuetiMzE4oxYD\nus4Z4LSA0Zp4+Zo9DVxWN/AlRUHjd0HZz5tqW96pMcl6UbZdBBk3AAEXlu14CrKxoEN9dnEqW52O\nte7kd2WTE95hyiCp41NdH4YvqX6mufriVAhLC7GSycHHCW9o2K92e1v6+/9j7z16ZEvyLD9zrbUI\nDw/loZ9WmZWqxBSHnOIAg1kTsyFBgDuCAAF+Kn4CksNpdnV1dVVmVma+fDoiXmgdrrUWXJzfzewe\ndFfHW73NtY0jwt3vtWv2N+H/c+yc6JxiIQJjs+ZiTEcVwzt/8w/GGGNaDbXHJtJZA2izbdwA2/yO\nGbuYv326XmxO7R0L6X7raGklcSIzbvStwmrHIO3irMPUoZ8cuDPNYKSaHs65XcWQD/3PISyt25bx\njNMPaLFF8ozZTR/X0/1/+BvtOc7OtM6vLojVMaiqvZbW9Zt2+zfaM009eq7ZDm6zljMx+/fXL7TH\nrbHfNsaY2FzMrD5aMfFMQd8dqY3L/AYJwKKdoj85RCeox3xaR6Px8Iz9jVNtnL5DTMO+PzsWE+3q\nVOP87rZixIEj19SLbuW6tB2DaLiUmZ8GZ1qrbnB9uj74pxpci9vqy9qJxsrcHU7aJFSP0om+N2Ft\nTfgt9z7FdJX9+j77tMPXqufj38nJakYsvD3Qb8cKjld+NNMWn2mvFYbdu/9KDJpGEXYy7nf/UrGZ\nMnaxi13sYhe72MUudrGLXexiF7vYxS4foXxUpozp4N8N4lG8VKbt+ODYGGNMECXsFuf+RqBwBvX8\nJue7Ux1l1pY4D9lf0PUSAWULryvKuF9ybt0PQyWA882gA0uhpgx55kuxCO7g7tQhU2e5IwViyqyt\n4E3v9pDtREl9DaR3jJ95o6iMYo5zlOmCUMdWEbTxjZ7bO9BzrDxWdrSMq8o1n3OHVI8OCtslzuZ6\nyc4mEmqvCOfph5yd7qR8JoMqusOturZu9N36GeeJ0Y04KsLk4Ox/DUZMmsxyfEXZwAnn4pYW1Vae\nebRGnCBvuEwkcJDJwUAJZNRmty1BkLwx2VmO0BtPHXcJFMGDIz1XMirmiquvrGnlUGh8pKr6LD5U\nfVyoyhffqo08ONnk8mo7D+jLGUhC+1zZ3XBQFVjaVls7YXwcf4e2Deebt/Pq4xBq+GfoJA1AjXJP\nYWvFYZhMFCNTzrYazvjXQVKSG6p//KE+f1PmPPcN5x1BxZZAbJ0+fc51oizy9Tu1QyDCmWbYZAat\nnt1dfS4EEuFa59w+SuwD0KYOmgLOsL7viQmhHpeaXE8sjQnsjRDITv1EY6d3of5MzClbHMyrP2oo\nrHdxefIm9P3blGBWfXBWU+wenghRTODw4iEGmxcaN0lcFTJWLJbU9juvyaBP1HYPfyuUKBxHy+CS\n8fhGKMMZ53VzlmI/Lktnr/T/KrodG9tCNea39H63rEz7ObHg43yyc6Qx5IABN7zRvDSFCZjj+pZD\nQZbzy72OYmX/GyGKb3aU4Q87db0HT3V/P2hYtauxn9kEQQgotk7QK9n5Ue3nZJ7d+uxzY4wx6bzG\n8NGPcgAKMo9u/1KIhg+XleecwfVZ6N+C5p4gaNnhSzkCldGOSaHpMofrRzQsRLzf0PPvvtfYszRh\nPCDbnsiHYQqJjO4zmmpsRkBWLdu+Wlnn6wM4ydQ6iukZbJJ6EW0G9JlSsDI2n8J88uCuta+xdPwO\npyLmqhGOOwEQmtyCxuoEZ5+rV7vmlHnC41PMLWwptnL3NM7iGWK5qpgpoQcRTOD2AfPMi/aXG42t\nG7Sp3u/+0RhjzNH3QnkCMfVhxg/iWtazJRbQGNjS/51D9cXlW40xB5oolivR8qKFeGpNzW0IpTY4\nLF7g+te4UGzMGmrTalPXO4LtmZrDyeFTjb1kRvXrFTVmLAedfEHntQt3FDPJTfVtFQ2Gq/caW0HP\nh21xJrgaOWAy9mG2tIjtcFVMlslM81kEJqmjo/m4hSvJYIjmDAwXH1oRUwOiyph2cp69xnXHLcXK\nOK/rezs4g+EyYnALHLlBcNl7OAc/M4Kq51UTiGnsLSwqRi0G4ginuPCS/j8CHex10H4rq/2icdyV\nYCg5JjwX9lBdUNBQGO22mupfO0e7IqJ4Hc08ZuTSsxo0OpzEzhDU1mWh5+htlP6ocRMC3Q6jjedD\nd23CXmBQ1Jo7nVmot8V8wKlljLMNa3u7D9rNmmcxlyfm9vplxhhTZTy7m7r/GH21+UW1lY/1pZ3V\nmKzsax7ptjQvtI4Vm9OKxugARNWT13PGmKcsfY/wgtqyh/PL9bnmoQ4OXX3W3HZJfwdhOXRLmken\nrE+BICxanHtaaKc5YHP5QMKXtnHiKjMvtXXd6yscbDrq62RQ34+F0CVkL+RgTnHW9PmbQ8XE+bVi\nLAaDMrGi5/QmYeBEYA6xV5xfWaKeuOFdawxdnsOOaKPh+FwsEmdE9QlNVW+LCT/PnGj+nTGt/sR4\nYJovNxSX1aCuFxmqXycN3T+xDmM/qHbJLN5eL2RKTAWdaByiR+GDQdMoo0P2SvPwEA3AGc6L2adi\nSzkZn6OZ+iSMu958R21mMdYX1tB0Qn9jNtH/WzDNLVvLYEHfa9ZgD+FImburth/vqm+aTc2bvYZi\ndtqF3QZj2rOk99s40ljaUxnM7mZxrXHRvJ67N2Y/ye+KZkV7rVpNa25mXs/tCUd4X+vgBEZMPAOr\nFEZ1CM3Klc/1nHH02upOvd9Fy6aEw+01TD4/zJQamlfjgea7dFrt38E1rz3WdVPL2rtURuq32ED9\n4K5rTF8eqv5D9lRLn2mvddviD6hde9Zv0IbW6QukKTtv9RwtXGaX7+r6K9uaG2pXGhPLuYKul1F7\n7/9erLL9Q+3VEnExhganuk8Hlks8+XNMe+e9ZhL1m1pb4/v8tZjS1zBaMktoTLGmZjc17qMONFgv\n9L0I43+Vz2fYGzj4jVbd0fwVQh/Jwe/pQ5gnbpiI3bJi5Bs0WgNOBdf6in47XZ2rbRLoyK2j3TcJ\naOx5YAj2GXvll9p7lPme16vYqqC3FFhUPabsx93s854+1f72zjNp0ZbeqM+7MKXvfaX7ptDHjDjV\nPucw8powJoOwxqLs+/6lYjNl7GIXu9jFLnaxi13sYhe72MUudrGLXT5C+ahMGV+Yc89kQcecf1wP\nW2r7qMt7lFFz9ZXBGmI+f/5ema8x6FRiQVnk1rGQ6rdVZXHHnDEOgdpd7wnh6Fzqe4E0LIsloXPB\nICruOMm8+Ysyhv6kPrfxQCrsTurTvgTR5qx0CqXrMkjGznfKVsZQPI+CHBs+PxkoazvE+aF+zmsD\nHYEnyprPF3TdzlgZOn9P35+/XzDGGDO3okxfH22ZvddiCJX2T8zyL3StZTLxE1w0eqixZ6OqW/BT\nZQXTIatP1BbvflQW8/RI14yD0vthUBy9vOFVfTK/BbLLWdEOmepJlzPztywNzvaHHUKdDAn+PowU\nL+f7OkbPHg7iTNVQZtkJKuWNo0oe0fM30Om4vFJbxrf0/hxaLF0yycPnipXGSPfJrRWMMcZk5/V8\n1Wu0GY6VDQ2gop9bQTOhqox790jXCXMeOoD2i5mq7ydFjYVRRPXqozpvnf2NkGU1fv2/faRUuqur\n66TnQA3wAgAAIABJREFUNXacuEdNOUdfxM2k1FY/5reVMZ+bV6b96GuxI0xD9feuKtaiK2gIlNVf\nZZg0s6naIbuAu0oatAlXrwEshk3iy9KSabQUPw6yyKF1dJFAks8rQmhccX0hlIOyc4vSwImgNqQP\nkmqr7S+U2fYOFXsd0Cb3UHUoMj6uQakjxNrnX8kNJ5DSsxz9ICbb+x3c02jjwh3dZ+OpzpC2rnX9\nckVIwN0NzRPJZ0JOizvHxhhj9nB3cLt0w8K9AvXG6esC958Z6vNR9UX+sRC/cECxeoPz2OU7zXfX\nB0I0UgWYPs+kNh9mLJ+/FXoysnQrevrc8a6QiL0dvUYSGkOrXzEXrAlFO/hB37/Y0X3uPRZCEEFT\nZe87vd8HBYyHFJNddKpuBDCYLsjrxhqq/Xk93zVMmLMbtfcA/Yz6ruqbQHvBh4aCC8ea2xZfCrel\nvl6rMJICID3FS92n/o20FEqXoFCfqN1zC0J+5tHnCILg57Jar+o8t9MhtCsyA+G/n+b/aJv51e5b\nT5iLWM+GE5/xwUjwwHwJIHfRr2ue2tmBhVWFkQDT7sEvHuuDMf19OtMzdGswP2AGOooab6mo+mbz\nt780xhiTXdV8/uPfqQ/anPm/AUk0JSGITbQFtgqquwtEtAebNbmEPhoOiaevFBPHl6r3XEJ96MJN\nYlTU5xbXNZ/e+Y2eIwJjps73im80ZiqwTrOwroo4POzua35ptGEkIsMU2vwwt79ZB/TOch+CITRp\n4EIUh8HiV8xEcTwbEeNVtGTCQT2fj/VvGlK/RGCQDiwAG9TRCxtgwh5lBJujDVtriktSIqV5NcLY\ncvj16jI/O5F1y+fG5cKpYlXoXfE7sdPaZTQbYAv42QJOWcc9bvVnH82bIOxkF3uVKazCFiyQaBYE\nvKn4uIAB1Orpc+FuzZie+jiAzoGJaC3qg5xaHJ80rNLxDP2KssbnAgwXp0dt5GE/2B/odTrRdcbs\nh3pDruhkX4UTloXUzgL62+NXvfzjrvmQ4vLArEET8eaFmImzCzS52L+G0KuYu6Pn6pVwM6lr3WlW\nYVddaIyFOnqtFjUWEzjIRFnbM2iyLKwU9D1YA+2y9jpNWHM1nDLrsOVKNV03RV/lMhpbUTStIsyj\ngxGuJ0n1eWpVn092FBOtnq4/a+lzbtwBfV70RXyK+WRBr1nIXXXYEIMzPfdpVWP0/C8Vvq9+ITpM\nNKX7+8PsyRZUzwCMlU+fKqZ7Dq27/Zb64RR6QfFc16+8QpPmW63b//v/9r+a5//nH8wybJGbmMYA\nZBTTQXttcK24G7e0HoxcOEZW181tSxqHrCAxbWDeBdCn6VUYEw9Uh/AIB1k0XdJTzadOHBPd6JMF\nYjAlYbaXyopdJ7qcM4NOkkd9dPRWde8yfh/P5BI0ZH/Yh5E5Het76Yzms9UV65QALFKn7uNAPyQS\n0zw/w5WJahk3zjOdNqcL2qpHual1ZxpVzPdneq2fsAZHNeZTcebLgdojv87au6X5bMDebejVdZND\nWHKsN1k3+kAjjY179x9Rb/3dQ7ulWVQ7X+IgOfGq3kucNoguKYbH5zAJLzWGRkwV/TaMk5JizOXW\nmMp1P0yfqjdRfYZdDZYo9UugR9qEmZRYUr3S97Xn9Pd0n3Jf69/ZKb9TvtcY3XkpPcMk7K78isZQ\nB9ZiAN1Dh+dn1z6fL2F87rCpltUmFTRe5+/qt8K9L8WYnsKsa1puba/1+/YEzbw167ffFi5wPTVa\n7Uj74sqhYjIOs6RR1f1urvT9x19pXA/HrHl+3FEfyzmqY51A4fd9Yk3P2O9q/3Wxoz5JcBqgdap5\nprh3bIwxxh2E5YXGWPoOfbelUx9BnAwvcIANpRWLVye67os//a0xxhinm5iDiVjjVMPFhV59fsXc\n8pp+c/lYu0ew5f6lYjNl7GIXu9jFLnaxi13sYhe72MUudrGLXT5C+ahMmS65ca+Pc+kPlama9ZUF\nbXIOcoj7Rb1vObJwBtnSuxgpm+shm1wqChWy1PZXvhAauPC5EPCz16hEHyiDvhEX4psuKGPm5nx2\nFGQ1N696OkC1wmll8IvvldmrVJS13vxU5+hzuJTs/lnuJz7q3UM7Z++F0MMUSuyLa2gu+JQV7aAk\nvo+zxQrIyOpDZRbbZ3o/ECTbjsPFiHOfzQtlOC3/98aka3xu0F0y75coZJ9eK3u5+ckTY4wxmSXV\nyXISGTfUF2PchSxP980HOtvoxClmHwZNl7Old1G+n4yVbby8FHqTdCvDftsSDKgPLKeu4UjP0QEN\nc3M21IGz1gS3jCF6QxOPMspJWFRTpxDmvSKaCmE86tc5D4h6e/0E1L6OxgMMj8U7aKjAMqgcq/0G\n6P/EskIa4n7FcvVM96vgeZ+J6/vuAGdnUU+vl9XOwaI+N18A1UpzHtOv/9d3FXMhXJFi99AGaCl7\nXUNnKDG1zt3jltFTvy8tKMbHHbXbJecpnX2NwQyuU9GZnnf/6FifGygrvjSv55tfU/27OCScojUz\nl+RcZgZEuKX2KwMNB+/r/l5cQOpXios2yENuXv3tjP2cwf/XSq2EVgy6G2m0Tgxkmz00VqYXqkMH\nVL+Hi09+UwjYyqdCVcIgdXtfy0ng4DvV0b+k+WXlkTL5mQ2Nu4Z11h7EIMoZ2exdZcYvcbJ5A2Mu\nEFH97nyJZg3srpMjxaSlSeMHKc3AyopEdd39Y9r8a1zjcAjIP9FzPHwghkuI+WT3ueYhy6Vt6aHu\n63ELZRqCugV8qu8y7ZhZVl/X3x0bY4y5hpGzvKmxlEfl/ph58P0helSck3ZHNYcEI+hBJYXWLLp0\nfQdzzP7Oc2OMMVeo2EdznJf3qj7zG4qJhXnNTU1Li8H/YVoQV6caq5cHeg3gDJaJ456yrZhz+mAo\nLWju2P5MY3AIo/FoT0iPQX/rCJ2uHsj0AO2YOOf/E/N67tFQ74/Kev/0pa5TYe6oHF2aEIzF1UdC\nNBeJzTP6oIe2lROnrnxBbWk5hRz/l98bY4w5PxGytwnLJ8Q5726YeQj3uFweHZwjXbcI4y2YFsoV\njGreqJ7BynqveWCC1okLnkPdq/EbSqnvysyvh6+kZeVEe2buqZDhfBSNgGULNVIseGCgHPwgXZHL\nH7RGN2vqk/kNkNM7Yi110Ptx1jR/LmQ0Jn3LiBuEQFJvWWYhSzsBLYSg5gwXCGynpvZzh7WmJ5gr\nICOY2rXayQk7LYDDmgsGysDBvAbjMQjq6PfBDgZZn3nRtGnh6NOGYTiv+7m9mhsSMJWqMD6NMabW\nHphoRvVcQKfpqqR+OH0FI6enfpvCaJlxXt8T0fX8E/0dhNkDycQ4DdoMfD+S0fozW9bzeHb0vnsC\na6U5Ng72cS7WUAcMF0cEpz0cUeZw9Ungclfc05oyQJfMA6s0CAvJjQuT16dndU51XS5vQmliAEbi\nBEaGd6A2HPctlm3AfEjxxHAVgbHYdGns1dDVcVfU1n3m0xW/xl4Edmm0oJgoojVQutGY67cUy4My\nCxc6RTUcrUJOWL9zul4CR68wWjwpxnhsQWN7uK9YPD7WGl870/zaOtGaHHyv9okX0CJkPuxXFANX\nU82THpiJQdq/M0Vf7kz1G/p0/TB7sQBuVNGA+nFlU/vbAbod3gGOmGg9uquKyaFlbYMeSOVc7VnZ\nUft4YQVGU7quB024RBp2x2dy/1t9pHo1mDPqrP/GGOMct827V7p+KIXjZlZjJLOofonf1xgcsj7V\nOoqzkPP27N3Kmdr4ELfNFI5QWRjU12h8hWGc+7b1/wwsf2s81nFlm4PRUOd0gB92UgxW001dY8Xl\nU4wt4Bw7xgWziXvohDEzrir2XEO1VfVKY7MJmymJU040rrYO+PTs9bLq0UDjpN7Ua7eqMTSq63mT\nMPQWtwrGGGMcsBp8PRiICf0WS0ZxZ1rS5+o403rQBnPAGLnhd4gzrBhIuvTcRZiRMTQKp2O1ZwW2\nbX0fV0+0Yh7c0/rR6apvoz0YPLBCDDp4RfbT3qHum11VPVNzio0QzJzwAtqKScW+i7F422Jd38N+\nfgGtNC/6o+VzsZc9tMuwpDlr76Wer4zjWSaKJpBf8/L6I42FB78SWzyVUry8+3ucIx3qh8bl+T+q\nS98kw07T4DdWbg7G9WfaT05Gip2Xz8WuH8EsDs2rzZ9+8pXuldf3xlXtz65L6Jeib+mKqa/WtgvG\nGGPcaIo5fYrV5Udiy57/gM7cgtomCyP5/XM0E3E0e/RrMWhc6M0NHWrT+bzmhavXx7o+7ODlZfR1\nYP0v3NXnJhGNuZPniuFj9lyxgp4vSx4iOacxce+xfuO654jR//z3xhhjosTQ2K/nuajiLn2Nltjs\nr6ddbKaMXexiF7vYxS52sYtd7GIXu9jFLnaxy0coH5UpM0XF/XhX2d/zfaF1PVTRU6uclx6AiJJh\nWtpSpitMxirkJJNGFtMXQVulr+ysIwhbIKzMVSisbHLMDSrFYdZuUZm8UV/Z4DBnwOaWhEYOQJ7n\n8Ttv+ZVVvthXdjuBDkA6QT3iyghu/ga3p7AyjT2cGOIxzh8m9FyThrK5g6n+joAI1GinPbLkE86X\n51Htr5J1H8EACOC4sI5WRSQRM8swQaxj3U2QxRHOVSEX7ALOhtcmysAmg7pHdhV02205qugerRaa\nBvSBpR0TjVjK18qw+0B/3IMPQ7cDMFe6faEYEE7M1I26PLo+Hp+yrX63kIX2VB+M3sXFB0Xuk/cw\nWzj7P0+MpWnrbleZ5vMjsQdap3qe+UcFY4wxkQXOh9fQkiGbOu0oy1rYlk5G06nr3ICmx0DrQnFl\nXb113ERw1hqAWAYTqoc3rIx+cKaYuz5EI2dVSHOGGGtVFCs1BDvGoDkBstUTFMKdCKaEojj2NNS/\nM5y8vAn1fy4Ku+MKxzLQtXBS7TB3X2PPwIK4eI+2zRRXj2VcqXyKo8oAVydYbV6v2qmBnkexrvYL\ncc7dat/B9Gc3kX+tzIFwpTgP3YaRcPlnuQi1yVQ7YCdF3arbwrrQhMJj9ZkbAY83f/tnY4wx716K\n0eZDp+POIzFM/FmLAaP5amdX94mhIbCOAn+rpvF4sqtnjAU1L23+VuhFhsz9/luxAS5fCRVxc857\nYx61+1XFQuVSbVn5TkisJ6jP3f2N6hVf1hidgAp9/Xtl7s+PxchYWxL7YmlDn6uUFcOXOF+l53Fa\nw1VoVNP9SqeKLbrQZAKaSw5AYE/2VJ9QVrF4/54QhCl6FG50liK4PF3C9LncQQ0fDZ48LIiFB2KZ\nWfPcmHPkUxiVfXRELGeG25agH02GdViD1gM5mSvcej+7pfaMwGSEbGdOdhQPvTpzzlgx3EJnxdLl\nSMJ8zD8SAzPIBZrowRR3NSeUupqDfUzK/ojLhPJ6xgnIaJfz072BXl3MH/fvKmbjAaFH+28Vg0Nc\n8ba2hP4++41i3DqL3zyCzYNZ2j5OUTXYTj5Qry9/91tjjDHupPrO2dSzBWByRFOK5TqiUfmw5tc5\nXP4mxnJm0bON0JqKMp+/Y94o3RwbY4zJMP8OX+h6bdY0QtmsPVNM3ftSY8cx0Bvf4yo35Rz4nKU9\n0NT8UWl8mIaZ5ZzQiShWu+h+OHAKmsQUK2O0sGagawG0HA7faixZmHqMmO95EZFBTyXA+jSd6ftD\nv5530NFclZzCbGrxORg2Ya/mOm+MrRvuK9Xyz8/ZvLw0zaDaPVZQe8aZ10te7Yn8MJImrP8DXEUc\nsE4msQGfQxcKNt4E9sGkj9bBBp9Dt8tMYNbwXOPZ2EzQTArSFgMsFH1DxcyoDduqo7/9TgsrxDFm\nprWm74RtBMPFZdVphh4bLkjDodZuFyi4x63eCMIWHuCk0ijhqLJy+7XGGGMCU103EFT9wsS8H926\nCvoOQ9zlXrMGxjoaW/OP9fm1TzWGs52CMcaY3oEYlWdowgzRgxo2NG80ma+SJ5p3izCGkjCmPUta\n/5ZwG/Th4JO9pz3DDfvUypHm85up2AhFHF5cHhyC3BpD3j4xa9TeQ9xFAzj7dL2KhcEVLAzmwdk7\n3FL8mpvSy3rN42SzvqT6tda1D+80cB/Ebc+MNf+Hg7iNFvXauNZYv8EFr4uu3pFT+ln+Je1V04ta\n3/I53Tfz778wVvn8f/jdT4zPq+NjY4wxF7iflq/Rt9qQXtbSE62/n6xpPWh70G36P8y/Wiz3JRe/\nWQKwLD1GdZygH1R24vi6orZJ4LQVxIFmOEZnDsbyzg9i287jtjM/r71GU5cx1TJ7CDQJXexpcjFi\nJap69d16RvdQa9hVUbF69kYMR69b1w0taR1p0uZldEQ8TsXU2qraqNXU/1++whmM+XDCvHV5oRha\n3tK8NsYZrcpvrhvGdBLnsT6uUSN++3Rg3uUSWh9H7J8PXoq1UWiIGZT8FPZXTH0fRpPRBeNw4MVF\nj99cS7/8TP9Hy6XtVAzMWmoPE9F1BjjyfA8bwsOanf9ErOkOzKPW5PZsKl0Ithtz1Aj3pfNzzQGn\nN1rXU2iAdQbq6NI5TpSw41JP9L4vYmmUodnW0Hz+X/6/3xtjjLnYU/9m72mf7sXhzhhj0osrpnY1\nNddvtC9zOzXOmzjyVXBRO+Okx+YvtCbnV9E6rapt36A9aAaqSx8NwR7zcWQBNjy6ZG32f5aTYPGF\n7v/mR2m5ruIQVr3UvrHGniHF6YdZSM94BYu4hf6da6zPv3yn6wRjWjsbht9YXn2u1dd9L75HG+e9\n2j7MvHrnmfo44MKR7JATKQ2NpdM3XxtjjLlGczL0ueYL3wjmdU3r0TSp+6b+kePVP1dspoxd7GIX\nu9jFLnaxi13sYhe72MUudrHLRygflSnjRWvFi8d871TwXRH3oCef/ltjjDEt1PHbOOIkyBKP8LIv\nnoLGR/T+nQdChPtdIbounGdef6eMmXW21oEKsx/2R/1KWcrala4XXwBhuDw2xhgT5Rx3LaKM27Cl\n+ntwC6h0lHUejYVCJRIWy0GZRndC9Un7QKlQp7/aVQbyoqT7WAydwhNlq72che61lB21mDwO3GKu\nD4XMNPtqt9ySEGd3XPf31VymhItD2qXM7/YvpCGzgttE/Vr3/nFP2b51WAH5DWW8l9ZQyib79+IP\nUvc+PtPnnz5V1jTBmf5DNAq8nI11WboSwQ87vz2ZofDvAkXjTHu7ozYb9JTRDsNemHl0vxTIgHum\nPjmrKJNfqqmtAotq0/mC2sqBK1J5XzE0JlvqTihbnH0gxBAwyZx8q+xu9UKxtbyBQxYOAXvXaKX0\ncMraUnbUgV5F9QrnCbR6ImTKs/Nq5yhOBufXZMRxBpj7dJH2UDuewp6qcl5xZUuOOyGHvu9oq56+\ngL7fBHXy83cfrYf5sGJ60lNMd39Uu81QCo89UzxEs+rf+rnacXSgMRPyoaFgIRk4OYTbajdvVnHU\nPdZ1u3tCdLxhZfrXnoIg1dXe/cntEW5fVp1S4XztEawBF85iqTWxcMJjxm1b1/aDKA5nQkrffi8d\ni0MYMEHOUz/5UuMwxtnRs2v12cWhYj8K4+7BI52TtvRydn5Q3/TQvFp/qusksCq4PBGD5fK5YmXK\nGfYldCAyuK0NW8q0776SVtbUoT589htdz5NFowAE9OKdrtcCGV1eEoq09VRndWdjNE3eqg9jnC/O\npxXDobD68AQ3J0s7IAyLYDiv5/OBOFto2dKy6jFCR+oKTYhEQrF601DfX++BvMBiWL2v+xa+FCIx\nwQ2puaPYdeLUULup0m56rn7b0hi7XfGC9NYbmnhHNRD3gMbi4Q4OYEON0URKc6XlnHFzpfsGUdX3\nwlQswGiah+1hcFabwQRooytQxI1viF7IxrIQ4QIaPuFk2lztCt25OlYsN+iDU9hKHubRJm3XLqtt\nPLC/Vte09iW2qQt99v57ocG7rxTjS2jRJG9gFzjUFovooU1wsrl+i9vTpfoisqS+Ci5pLSy+Ux83\ncFEyIZy3mIeHM9Yu+q4C+t8fad5YXkCDC5bpzmvdr3ytMRhJKaYi6Lqd3KiPTr4BNTvX6+Y91asP\nslw6R5Og/2FsqkAcxueB2qXFeXhPWH0dS2t9GKBhlofRGEVPo1X+B2OMMWEX6D+sEO8IfaWR2qXj\nQMuhCrLc0RifTUAXcTHxg7hPjNrPg65dAl2RGDodQ/fBzw/RcRgX3+81sKGCDOLzsuWbopGDPsgE\nBmvIKHZDY9hbMDK9V6CkMDpTaFNYDkFttOVqRcZ8mPU3M28gspix5fSEQM2UtulSh0GPM/c4pYwH\nsJJGOLT4dCEfOnMt1taFEawdGNKlsea1GvNNnH2mB2biGMTTg06bxfy4belUB9RPa1wAHZ4M7pqO\noGJ6FlIMXF2pj0vs00poWyULYqSsbqKTtMH+EJe52rna+gyHF8cE5xqY1F6cbSo4+cxu9LyTc80R\nPjTB5mHNLtzROhDKw1zBmfECtltowt4A1rTDqVhwONgTeXCCdGn9CqJbNIXlcNEipl9o7A3pz9pL\nofO1U43di0Xtq6NoCKWZ00Y19VMdlkITHRNrblhd0541/0Cf6+B4Vre0eZpq37P30pw4x+0wji7J\n//Tb/2Qur9pmfl1jJpZQ+3czmmv2TtQvz/9O9bW0Ky5/C2t8QevybUoMPbEoOhj+IaxPxlPmofrC\nyX66c615780bsQxiIbW9pfUYgvmWyavO/hy6P2jFBKK6zlpI8/oM5qCT8T7ra3z+8P+KWRLKqH5z\nd8WYSW8rBl0wWDxzqndrqLZ28NvL2cA1yat1aQlNnDFMwihM7EhEz2u5FLnQgJy61BeesmJmwh6t\n62AfnEJ3iXa5gM0UzKOtOMH5CyfNXFj70SF7ohn6nr0hrLoxv3tymr/dsBQu3ylWqmiqRNfVrvFl\n1W9guciNdZ+MT9/zYObX6KndPbhR1WED+l0fxswMDDWGOpeqZ9vNPn2isTw/J7bu2hfa6xmYPH20\nyBaXNHaS6PxVTvRc777Vej+aaQw5OurHp7+AHf4UhhOuq8Zo/3H07p0ZwnAJbaptp32LGaK2eARb\ndesTXevVWzHVrmGEhyOK1exd9dm0By23Y2kf6t5hfnfv7uLohzbkcQ3NVFj1C+sFPVtd/28RMzHm\no/NvcVn7XtqEuZT2ME2cwaIxfW71gcZcYl3zjulpTDTRO6qi57TO3igPkzHK/PTN78WgP0eLtr2m\n67nd6sOlT7T32oJ9NWyqvkNYb0H09py+n9lJ/1yxmTJ2sYtd7GIXu9jFLnaxi13sYhe72MUuH6F8\nVKbMOCEUbGVNmfNpTpmtOVA0y/3j5k/KgJ1yzm4DNHDK+euDr5X97dwo0333K7moGDzvL97rrJi7\njR7KA2W8/eiSYLhgWh5l9KYgpSOyofk7BWOMMWGPrjdAKXtxVVnMZEpZ2J5X2WDPWFnMUl3X+eEP\nyiQurqt+D/77XxljjBka1b+Gknm/xdnrqL4fg6WR5tx6BWrNWU3Z6sGVstAtEJtpD9QTANnvhwng\nvzLjK33mGD0DQ8Z4blkZ1t57zgc3rWdQaJSbIINkoCd9vX9dUVbR8lwPoLOTxiHm5pVQhupImdhE\nTveZrCNqc8vi4hy5D+RxMEJNHbTJBV0oRGY/mYV1BVJwfa426e5wbhr0OsIZTateM7QDahXqzXn1\nzDMhCNkFvV4co/8BsyiaVPbz7h10OIbqo+Z7nX92xPT+Is4zdVha3br6w0VMJeaU3Q0vqP0uflD2\nt3ms5177UuhOMqJ2PrwU06QIwuLFEWIxp3o0cLQYNDnbDGISgpEzAEmNkJYNZPR+vaH+LuEI4wap\n3lhBSwYdj/KR+r3D2eXostrbcmpwtFGzRwPD0dP7xRvqPYVlsYH6vlfPdzbQGB83bq89VDtRm0/R\nEvDGFAMF2FsG1fjSKc4GuOMEQG9KV+qr1qViJMg57LUn6vPkCn2Hw037lcaQg8z/EqyyUEr3efN3\nmo+qF2rD7D094yLaAw2cyF59K4RuMlK91+/DXgNJmMAyuPmT2mzA2Hv4iRgv/piQjJ0/6X43OIEF\nYB5u/FLMk+1HyvgjU2Je/r0Yg+2WYiweL+h9UKrKmWLznBgettXHybu63/wqukRDEO++5snzF0Jp\nrutiGnpwKIh6hMbVQGSdTvXXylO12/anqqcXVsfJCzGdLi50vYhL9Wo10UcCdUwk/zri8F+X5o0Q\nz2t0VHxxWHVhzR2LIMgj9DWqMCfbLf0dmRNiEsTxJpBTzMazGuN1HN/aLxQflTP16xg3wW4FhH2i\n1/iyvueO67pXpaa5PFVMnB2ojo6Y2tjnVZsXNjS+oyzd5Ws905Bz230MZwymCifvYWO9UVsuLArd\n+ezXWoOMH30P2tw6/32A89jOe9XHoO/zLKtnrp9ofjnF0cuNu9tcT2hXRUPDlJogcRzRd+T0POm8\nYiIA0lq9FFrVQbsguVgwxhjz+JdC49xRPe/B92KfBR3qm9UvNRYWtjVmzo80P1fP1H5p9hC3LYMO\nfYvminHouaYezUdOkFEn68iM+d6DZtkIVu9wrHk03GTQsZaPcZrwo7PkhbURZD6Owq51ojlj0B3y\nwGh0opti1cvHfD5lnTbGmP5wZIawd9uwOgKWE1pcY2kKeugdg1TD1CmileanX+bR4XJM1Z5u2Ayh\nRT3XFJe/MZpiY4t5M9b1xz2HcaDBMoVm6sbRaQoq7Haozd0zGMAw9bxeHASbMNtANn2c9Z+BKQ5A\nYse0vc/HmJnA6CPG3ewVfCCtE9YqL3prty1jNywo1rjaWwV3MQZDmv2hD3bV3QeKzUZJ60m59I7v\nHRtjjNk7J+YzGhOL2xpjC5sgtY+F3HZwcmyx/xvx6rxmLYaxcnyswe+6VJ+WktozLN1BvyKl6zcW\n9fdyXX1VqrHXg4GYjMNgcigGfLCSqw3FwnSgvVwop3Xh4TMx/3pP1T69ktbL6iFaaGjhXJzoOtew\nqS9hy2ZhHg6bGhMlnC+vWPccsLBzzMNeEO8V2nfNIQ2vwQzHMjSDymijGWPMtFs0F03FW4o4ymzz\nGoahAAAgAElEQVTq90AE7bZyRZ8/QePn+I3W36Hn9nohLvQxfAO1RWusZ2hZayNM5ghaU66aYj6P\nI2IYbUHPkL5Bh3J+S8+6sIQG4rXm2yjsIwfahTcw27K4+bX7GhsdtLp8Hpy2aurjtkfX8eF+GWJM\nTPqKoeSK7ptiz3F1rhhroklTZq8TxRVwnvk75FeMxSIDrqc+cbAZ2XqiPusO0EIMqT0uTtT2dfSG\ntgroeTQ1L/rDev6Nh2xgYal5cQsc7Gm92/mj3IbijKWNT5h72LMcXWjsLTKXOJmjrmEEtQ+1Z5zj\nd8ACjHxPW/fJp9Vf8RTCcz49723LsKXnnSGelsb1MJzRq2sLtlpI171+c2yMMaZR1d4tkcXlljnk\n6NUR19M68XBVv5XHsAIHQbVz9UZ7lJtm86e6lM+uzaTpMYWC9mNJHJs6M9ocV9ONTY3zShsW7Z6u\nZZ2SeACrx+HUOL34XrHbg/nWLanvD041rs6+0Ws0qTaNw2BffSTXJw9jqbevZ/TjaOhH1+eqqf/H\n0ABcfabvNauaZ3wuzSur1LvKPu30naWbqTZzTHSf3KauU8cZ99XfSjOm1lLM3LmvNr//RPvX0yvN\nUz2jz0/amofP93T9DgxHTNyMv/7X5xGbKWMXu9jFLnaxi13sYhe72MUudrGLXezyEcpHZcoERpzb\n5hx1Ct2JGRoHpQuhZ3UYJ8EQTgCg8wPO1U9Q1R87UF0GYS69ECLx5luha3dAvpdgJdw0leG6uFA2\nOICuSD2qTJwL95C1TaFxbdgRf/7Pyr5u4G40DxpXRTW/VBQ6OAXtSmXQI/HpulOaPeTErWlTyMVS\nUBnGOGfYWrBTXoE0DFvKSt8cC50cJJWl3XgE6hhQhpEj16ZVVfZ6NnCYpkNtWNlTHQd+ZRHn0BDY\n+ELsovymkNRoRhcpXehZLuswUzgTv31XWUf3L5SFdHDGvjxQtnAwU1+O0a8IoCUTmn6YDoQH96Yx\n55wb16DOZMxNAVV5NFs8Tr12YPK094QU18Z6XndafZDcVp9MY6rvKW5UtbLQHQdo+AIsCQ/oUQmN\nhTE6IYXPhVy759A8+PoN9VTb39sQCjN06b7lllgKU9olWRDCkV+DfQC6dHyIrskCqM6C+riH3tLl\nc/VHf6Ss7Ba6HqFlxX79QN+v9HC2mVMWe7YoZMR1DvqE6daM9q1XGFMTxcsmDKGYW/13fKx6l2mn\nMecj42M0ZcaKg4mfc/VDIR1FziQ3rjSmw0HdbyGnrPNgpvZtXuvVN759nIzRUgomhCYEEujuxNBG\ngZFy8lrzwcqmxpl/EZ2bS9VxSAyn7wsNyRR0JraDO8jpt0KfGicaE0ufgJ4s6XN7OMEUYScktjRG\n1n+ljPq0rvFbeieUKTZTG2fviiGziJq95Xnx5oXmmZt9ZdznVxmbfrX122/FwLu4Eiq0taL3FwuK\nFX9KY+fiHO0t9EnOub8rjV7UXfWVJ46T16n6aAoLbu6+YnTzCcwj+upmV9c5QetmCOWwsKL7L8zj\nBuUH/UeHyA0LIT0P89ChmDp8p3PQ54eqZxAWQTgB+wowyhqbwXDKfEj5Sf9iTbE37ek6SfQvsptC\niCznixd/UftncDRb2wZ1Cqq+tUv155ixXsIh7aJ8rOvl0SGZV/tmcopHj1djIYR2WLej+OqWK6aH\ne93WY80bBVBgdxJtLofqcvxczJZOT+O/bGmozMP0iGk+c4xw8lvQvRfvKFZHfsXe7g9q62NYUT4c\nT2Jx1e3JXVw4QD7TMCiudjWmFvxauxZ/pXpa7NFTtHGGr/Wsrju63ubniqF0QmtXHdS8OdFat/xM\nsbP5idajEIzOg6+FpjWOWFtZ48d+IZslGDalU3RJ0ORKh9DWuWVpjYRqudHX8KV1/zAx/xMDBDZs\nq67Ph0DzLFZtAt24kcvH9fgeEjdJ9E06XV23B2PFD7LtCuFQQTyMIsyL1KPP2GxU1B6BwM/MwtHM\nmBE6KhaTpzvCMQh2WdSj+/th+c6YdTzsyWJh3Tcyr7g528cBB+2YWEP92e+wDrD3Wsgq1pP0r88z\n/gkFd+PQ5IqozYYunhEnviFsH69b/4+m9b0ZjDsXrJ1MHk0+nFScMG/qoL6Ogdp8lEB/AQ2bGY6I\nzabm8SFr2BCHyduWGPOSWcRVM8Dep6h54ayt6weaiu12QGtvdEvod2HhS2OMMfFFHBwPtD+9Rnuq\nVoFFO4dGIC5C2azWtWgM3YlFPY9zWX1SHaDX9lZjoYGmS/USzUEY2ZFVtf8SLkX+lPpsHberklef\nq3VggYXUL5bWz2ii+x09P9bf7Nc9izDRC2IlJHKKsTyaOemE2iFMzDZw7xtMVU/LnSWHg2MOxtDN\nBXNElb3RldbX1oG0X2Jx3E7RWUp6tV5FcFldiOr+xhhTyG0aZ1ex3BzACq5qHfOy707OM6fdLxhj\njHH5dP1g/PYYdvNE81nnUHuOZEHzYwR2TtupPvDCpmrBmo8NtCZmVtUGI9gGfdpgPAej+e//Yowx\npojmytIdzZde2J+ViubfJGunCwfA9c+1xi1sa6/Qwc60xL6zCzN9dKZ6n5yKebh4R+tROL5CW8CA\nRkPGw3bNU9X1+k31Zf0dDpYw2YPb2i/X3mj9On6ltk/gcuTaVIyHcKpZfKTn98AgsXTohmihlC80\ndgIl7f1SMMXdYbVz7qn0T5KsxZ4QTr1LMLTTaNK40ClCszI91Rzi8Ks9KuyJJkNcS3ngGxgppa76\nL/0Lxf5tiyOgeTw8p36asYdqM6/2djWmm9XvVb/6P3VLzXrU/se7GuOdG63rq6vae5qw2u/gjfZo\nbvSv4mjVBLo/n1zwNbrG2aiayxbjoq1rx/K6VwS3z4uSxv/Za40/y6StsKDP3/Ab4or9aRHNp/lt\ntfl1Wde/hEmcWdUe4/49jdN+BKdBt9aegx/0m+kYd6P4mtYeJ0zLeEh/h1Zhn8F0P8b9Lj5HvdCp\ne4971A1aMkvLMBTvKcZDSdWz8gft/9wTXe/J46+MMcYsr2m+rOAM9vZ7xXIiaf3GVR8esQdy+3Eh\nxa1z6PjrzEybKWMXu9jFLnaxi13sYhe72MUudrGLXezyEcpHZcr0OKO1/700ERp5ZbS8SWWWfLgM\n3X+mrK4JKovcbQhJKINQPvhcjjMLG8pwe0Fix0Nl5OKcUc6A3E5BpY7/iGbCSFnJT/79f2uMMWbg\nVwbvFPQwwvlNS4ti0oB1MVRGzaAi7QiACAVAaJzKFm/cETo4j6uKD2egd2hPnO2L+fLst0JQwnN6\nzmPcW27eKwu6va6M4mRZz9nDOSmzCGuFs87nOPL4DEjF0qIJAjN3q3q2UVmv9Y6YH+nEMnUj84tW\nyU1VaEk+VtDnr3G94DoFMtD7nM9rgFim0WxZzOj9Nno39fOf1b5vU/ygYZ0uStnX1D8klGjpnhCI\naEzZ0nZFmeKrA6Ew3SuQz2WhJqm8YilCJr1aU586LtFQ8eNuMdP7EdyjKiVlxmunsBuyoP0FxUCn\njHL4hdrBchtKgIYXOcfYrCnmEzlQvw3FVh+0/gq2QH+mdlpYLhhjjImFdZ/Tt3q/fAPbYkvPlXis\nsdOeKPN+faR2mroYSyCXA9KwDZeew02G3gvi3jzTmPE7cddYEDIy6YNGgipNUGL3R1HdtwDpjNrF\n0VT6vAFi0tmh33qqT+6Znied1v3Lr/S8HTQoArAKblN8oEmJqJ7RiataBTS/tn9sjDEmO69M/Nqn\nGi/ToNrqHEcux0gxlY7CTugoZk9/UGa9eiiWWQYtkcV7yrBXQZnOycDH7yr2n/w30sOwYKQf38r5\npnou5tvygsbcwjYoDgr++y+EDFy+gy2VFZqRW2XcG8XSbKDx/8ldzRtz3LdSVuy/+kZo2uBCfeBh\nPlpZ132zn+g5k3mhTFfHit3TmuajYE6xm72v55x59RzvvxNqsw9SGlkS2vTF51Kd9+c1dmoHaMy8\nVH2KAz13gXkwuyXmycWpEJdrWHwu3KvS6QL10FhxdxQr/QoaXB10i25ZEiDDdcbIuIzGC2Pi6r3m\n44sdxXjxUvV+/CudUW6jp3TzGq2BU9glTrWfH1ZCNqN2e/ybz/U8MC6rh5obbw5hjVXVPn4Q+0Gj\nbQxOgR5iuI1u2hA21Ckua92axokfV5+5dY3Tlc9hW84ppt69kB7bsIK2Vlltt8eznb8Q6hwJaexY\nZ/wzOAwi4WVKZc2Pr4s6X12BFZSd0/fSi+iq4XZ0XUILhTG5BWvMD5utCOPluqF6eD3qEzNQH9/g\ngFZsKIbLO4odF449WbQVFmFmNHHJGLJGx5zq1L7/w3Cn4ETfb8Ac8fkUI/0RaDysXhd6dCPcAVvY\nG62iS1HDccdRx+ErqTE8QnPHnYGi6NN1Wq/Ur3XWryTI9hhkfcxeKBjAAQ0m4RStmWg699MzzCaD\nn+LG27JYIrpfGBTRhXbDDL2XG5xnXE506axm6+GwYzQmHTBuHEb1GnZxQ0SLbgQK2HVZ7ioxM3bB\nbA7oM2F0cCz2kIv909Snunmn6PAM0dHBQaRN34Td6D8McLTh86MO7Fnc1PI4U6VzikEXrkWNEkyd\nnurj9ZsPKk2WpnkYgL5UwRhjTGJBbVQ+03o09Ok+pUvFevNrtXFoRWtfHAR6+ZHGRhE0/pS+6P2g\nMX/l03OF/Fpk4yuK+VRKYym5qPkmvKzr+kGkGyXVp3Su+bxzrOvfnGmer74/NsYYE4WlEM6zV0Bv\nxO3Assut++a3YC3M9H7zvp7v6q3YA5VLvR6cyaUkArsvByshhAPO/Jb2YHOLuLvgulKva885gU2d\njev5lu7DrmioPtUezHG+VwRx78KS20cXycXE7oZ98L/8z/+j+eGPfzaRKM5isNVmMICK+7pOuwOb\nGWZMEhfEldXbsyD6U81/dRz3Vv2K1W5LfVmpaT5NfqI26V4pRq7QGariLOVxwVzBfWm9UDDGGHON\nnpHbDfMtoWfMMA9AeDP+iPpqPNbnHUm934INsfsWfTVcihbvEDvHqm+ojWbVT46yaEzFLHc4HHVY\n8zwwoEs4Fb58q71Ctqc1/xEueu2G2qGNG19+VX0RQIOxDUsrwO+HKdPlAiw6d0jXiUb0ucEQxzG0\nE31oy1ix7IMheM2606/hsAiTaIT2T2KBeXRN18uxt3H0VM+TU40lx1TXaxQZ42XtGfz8HrhtmYUt\ntqBirVWBYWT0XLMp83VGc9j9O2JdO2EmVpuKo31+N4TQZ5p7rP7onKp+QfRXlu8qhiNR1f/tX979\nVJejRsW06w3jd6APybwTjOvvWR+Nw9dqg4tzMVfm1/TMDtwtm7zf66jNHtwXiysNE6WLW7IPfaJl\nNFxKZ8wD6G66aIPdN+jIOVWPwqr6KLUKuwrmTheNrW9eHaseVc1Hy3cs/SXmM9ylHj7QfnVlS/tb\nB+vKEfvvfX4/5HHFC3h1/zf70qhtoePjnKreW9s6UdMj7zALagzN3SUvAXvWjC0u/D9fbKaMXexi\nF7vYxS52sYtd7GIXu9jFLnaxy0coH5UpMwTN6nEu25VWVnRjU5m1PtlcH2fZrPxSDx/zHkrem5x7\nHvH3GA2IBGdlZ2Rvk/PKHlZBCi6OhdAG5vQ5H44GQ6eykJZv+rAmVDCzpIza+iOhiX1U/UtHQk6b\nFSER85ybrHdADW+UGRwEQfkGQmwHODT0cHEpVZUhjC6A8GT06ujjbPFImcZoVayIExAQJ2djD14e\nG2N+Zso8/e9+aYwxxh/ymgluSpuPdKa0VsOpxS1ENER2tOKEmYKZg4Nze+l5tWGtr4xtFfej3KKy\nlBZ7KOBSNnBhQ9nPdFZZyr23qlN3RrbylmXsJCN9jWMCLg+puYIxxpg8DB8nCN4ZSuCNI/WFP6vY\nSMyJRRAIkDHHuSrcwKGBDLOnpxgZoTHTPwOFcwhFiY9Rpy+oHSawsg4589kaqj1WUmIB+EGL2l8r\n1tqgQEubihHfhjLh5R3V+4x2TczBcoJFMegoFmuwtyY41WRB3RzogVRgCF33FXPxVdDIpJ6j01D2\nOMwZWg9ja0iG3tItymwqLrxk2KvE6uhGSMMMZDqE+9RkSfUM4y5ycSUkolFUfdq4DoQ2FLuby8o+\n9xpCSS8PLrm/6uNasWxk/vXi8auOYfQuBpy7vblSHS0Xj8KGxq/bqxh4/60y4jc4kq3iMJBh3B3v\n6/9HZMTn0X7a/kLONX6X5q/KodD8NG5v9z5Vxtw1UBv/8CedOT3DtSnBmfXlJwXVG/eek1fSzXi1\nq9cQDL/1L4SOxGJ6vuaZYnstp9ifEeP7sKgOXov94A6rTxceg0zGQATQpRjjBnRU1P2uDoV8TEGU\nNz/XmPHBZjr5s2Jv760Q3DXmue0vYJKgw7Hz/8DOsJxj3Bpb24/VLstrmhuqF7rfzvc6e9xFH2ll\nS8+V2NarA5bA6ErIxfUVWi6tD8MUri80X57uHRtjjMk4hbRM/ap31XKSQP8oAKLqxDXgek/9uP9K\nsZrlbPM2KvyTJg52oIdttAtujoSsXL5gHehpLkmz3rkDQoTr1aJpwQKaolPR21cfVVoady4OcG8/\n0Vn5TF5oUxmtLS8uSSfv9IzFH7XWReY0D68WxNrsl/V59zaOf8RQAGeTUkXz7M73Ync1QQTjcbVJ\nMopGDRoADhgbxZdC3ip76qtMRs9WvVb9D7/TWBnDyMiBlo88sBh21Ec1kFtPQjGf3dAaHUebIBBU\nTFb5XPVQ85obtpJBEy0Q+LAYCcXQWLmErQADJBZEGwdNtWEfKLqJ2wfOCh7mIMO8V7rWawo6Riqu\n+a4Hy211FaYp052FfM7D7nDzOA4chUYQirywGHqs/amFn7VzPF638aODNIFJFfTpQn0YPitoKbhG\nrK+sd2EvyDLfaw7V7zHcWIIZ3Sfmhs0CAj+bKu4csOmcAxiooZmZ4qrkx91ihPNUYMj2E1Zm7Rzt\nkI7mt65TdZpN0BBgn9ihLR1e1amDW2aHtWs6ViMF0aJhSJhRQ+9bLM/5BZy5WMNuWyYV1bs4JuZa\n2o/60WHyoAuUYD+ZCKJbAUPHYtw5Kmor95Lqsf0rte3CXc17LVijh7DEJlfq8/I7zSfX6Hpkj2AP\nzOOuhNZgIqf1KPtAe5HBnK4bqKi+rTOxdlsW82RX95vgWjWJKsYHfdYvl+b7+Kbuk83qelt3NQeU\nljQ2y2ea10cw2c9hoCSK6gjvnF5jzDlDWHLtkfqnta/99O6Z1rPlmPasc1x/DvZEB+Z7MqN4acBm\nGKB7NL3R2Kg2GDTGGNPtmiJueuOa+i9pOR3BWvAyl5Wu1C7Vlq4fm93+51Imp7U2ig6mm3msf8M8\n7VEdemhKuVP63PKm+ioII6XeU8yEifn+RH0WXtAauoG7kRd3uP2q+rBX1X1asF2HMPn8Tt1nONXn\nvQuK0ZgLXbkkvz3uq77B9YIxxphABGYLv3lmVfXhj3/7B2OMMck8fYHOXhwtsEX0hRbvaS/RQiMr\nDIMy9WtORwR1/xHOjG10SZrHYh8ncTUKodHYONU646Jvo0v8RsTNqnGBg+SPGivL1ikKGIvhZcXQ\nuKH2b8NmTqINVvxR+/UDNGzWtrTGJ9F38uFa6+honk17FaNOHIRuW8YwC3tONOFwfY3P4Wb7EO0u\nH3sR9kgX7zVGRvwe2nikdl/+TOzsdEzXPXyu311TJ781bzTGXv+AS+Hl5U91icZcJhvJmgDzWIRn\nnMEInMCEa0TUxvc+Ud/e5aSK26vx8+pC90jF0b15oN/L/pHm6Xcw9kZDzfeDpupwtafrR9hnL8J0\nXNtWrOYLmn/y7AtraFuVrmFkn+k15tZ8e//XvzbGGBPAqau8L12dQAzNWNbQV9/IabKBA6+jjjsm\neknpOf1WmbEfDJbQJIPlml/RmHVH1W61fbTAwvr+EqdJjuuqr9eiH/8LxWbK2MUudrGLXexiF7vY\nxS52sYtd7GIXu3yE8lGZMmHOvSfIIjf7yrC54MQMUEc+2jnW5xPKttZuYNa4lSWtkeE6O9HncovK\nUmcLnEesKdM35PoYIJitL5TdzOfQzYAN4AFaWftUqGIqp0xbu6EM2A0OMv6KsqSNkJrxAleTaEr1\n3NhS9jcIYn4AUusOKut9/1dCjucXdf16UYhCH5X50qmyvXsvpHUQinK+EOTWckcp4dJkyIbnHuj5\np03l3L79/muTndP/tjjP22yjsA9rqMw5vmBM2cAUmdrxrtr27Uuh6WnO/2VAK8ZdZT+7nOtOgd44\nO/p/G9aCL6S6hwO3Z0AYY0yLPum2dR0HrKflgjLDQaMM+tvv1LalffoA9CteoA8yioGzG30ujDaA\nY0HnuSN9ZZYHZbXDFJsM50yx4HQoWxsMCUVJkTUdcA66gyNPIoPq+7Ziqn3NOfGi+jSZVv1Tc2Jl\nDJuwpN6oHwyZ8PiK2GLJlOp9+lbshwpOQ0lYGbkkSAhaCjdXen7jUTsH0WFq9BUjya76J+TR9yZd\nXf9you85QEADadBJMu61E2WhG5zb7EYUe6vLar/5lD5XQWuow9ldiykzjQkd3b6nLHeI9ru4QLuI\nM76pkKXloCz5bYrl7NWnz87QMumeqK2yeWXYA3Pquws0Zo44v51JCf1YfSgUplJTHxydCC2ZW1GM\nbX3xhTHGGBfo+4tvdHb+DI2Y7QdoO3k1Pt88xzHmtVCJBZy27n0hNCMIG+roUPfZeytUKMo58U/+\nndCZOO49pSuN2XpJz9evoStxrPrWO3o/jdPWyheqT8aPQv+e0KXzPVTpQ4pp91T1SKV1n6VtvQYY\nQ0d/Uf12OLecz2oOWPxM9etPhQA8/7OYR350UTbuis3hxNWqx5i7BAl9t6P6dIuKpaWHGtNbvxTz\nxtXS5/d/1JhtXGosYSxjRiGNnduWHuyQLrodg4xi3RnT63pSc+Pm5xp7CYfGjhMW4f5zPd/SEufg\nPxNClEJP5fyV2CHnOCF0n4s9dwWDMs7YL9zRvJ9/gjsVaF2r3TaZL7QWrD+hDViLDum7Ck6BM1Dl\nKujzya5ibAY7rAOTzRHWOLtzR2udD/T8ECbLTRVGnU9jJNJEp2cEkyPFeepnOBy4Vdf91zD7TvRs\n0XPYaUe6rpcz/QmcyYZNNF+MkMfVNaFsc+tC2a++0/fKuFgkQMs27msNzm8opns4Lx7/UQhoCaSv\nxXqThHkTh1XW7vwjlPwWZcC5+fEArRhiJQ4K6EhYuiV6aUOYcfcVi7mMnruZ1JxRqzEmltQPnrHm\nmiQaaWOHYs5jxRpaEX20zNxh3c+FVo/Dq88NQflCQ5g8qZ81uLKZvBn5YK6w93CGtf5GieWhl13Q\nSO0dYQ/jhy1gsQkDnOO/gjk7hOlZd+n7qTFuHhm1s8W8dDupj2dsZl3Nhx7QfCeMgyln9P1o8TVh\nCfmNrhENoe+Ark7Xi8YBmjQRnLeiXG8IE8Zi5njQLwrjwjdmu1tnLTQgpj7Ph80jYeozREOhAwJc\nK2lMTBBu88/0vmumYAmjoTPAbe11WQyU8LliP4aexepGwRhjzNJjxcriQ82zPfaHF6daW6u81nF7\n6r/TWPSi4TMOa/5eWsAVZFHXX1zTfOVb156wA2PdV1Untxmjja7Wz35RfxfRPTn9M3vHwLExxpjU\nsuYxFy4nGdgW1Ynq0QdhP4Qx7mM+TFY1VhdxWVrfRF8po37ZPdCeZH9X6+L1IW58sMKCWfqXdSuJ\n49qU3wnx+4rJGS6oxhhz5z/9B1ND42eA29e0rM9luG9sTsj+LKb5Op6HpeK8fZxYrpb+MRoq6Ejk\nYR8MprCqrGE7w5l1Ed00YmppXs9SYu063NHauQBD0oTVZjNiOxhjTwDVvX2gNj891F4ks6C+X7qn\n+Xc7jtbXVDFw1VZfjXDiSqMDdHyh/efgjeZbawz4YFU5gvr8sIqTIE5afrRLph7a1oV+1JKe3z3R\n30eXYnTMdvTcHlyg3OhmjmAK5jN67sqF6lljP+q2GCw4sVnrTyaPDlNcsT9b1JgIBzg14cJViT2L\n00+9YG4OmODrbrWne2o5dipmHBP1SxydT6f5MIEqN8yn0UDt5vapPVIbeh6L1Xz2WnuvNnvAzgz3\n1hSOYSvsJYaaI/7h/zo2xhhzCht85SFslZjaMcXpi+X1xz/VZe3pJ+bs+K2ZsPa1iUFT1DNe4gA2\ngPHn5rdVswcL/1SxefleLNNsXH3VPNN42+c0wNWumNSr9/jthS6dDzbYyifahzfRkJq09NuozRp7\neamYfs+++hrdvMim6rP8lea1XFZteP5n3ffkVDGToF43Xe1JfFHNI4++lB7fqI0OnIcYzyp2Z+hj\nNtCMabPeZNJqyzqs0n5J92nBhr0+1t9NdPm8ob/OprKZMnaxi13sYhe72MUudrGLXexiF7vYxS4f\noXxUpoxnRE6IM/1O1PWv3qPivqvsbBdWx7/5j58aY4xJ4YY05px9JKYsZXuojF40YzkN4YryjTLt\ng5nuV/hUZ8Dy28rUOcmuHh0JEe7Ajrj3DK93mC19rp/NK5sazXJ2NyXk2O9QFjZINtJyRpiC5E9A\nfh1TZeBiPj1HDfXmGbolTs7wjR3KojqHapcR58FjZOZcU6GMk64yiN6Q0vN30Y054Hx/7e2VWU4r\nk+q2HKKiysjPyERXT5R19LqUZSx89cQYY0yvoezg8XuhOncyuOakVIfd75Th9od0PReI3N4bZU29\nMDAiS6iMc8b1tmXQ1v37brXB/Lyylm4cY65xQ+rsqO8MyOXchuoZ43OvOYfdQC8ihW7FCoyT8rmy\nmJ0qGXDQI09KbeqnjVtJPU+rxI269FFEGe25oGImOFI7FNGA8feVfc1tCV0Pofxf2lX7NXFmiYeF\nTCysgghUVY/zhjL6AaP+SyWVBZ751H8DzptP0d+YQ9vH5dDzlHGH8qypfyfoWJTfa4xYGjpBdEwi\nOb3fx+Gie4OOkwvGEhn6yJpi1VCP4p6yxVWQjFFI7y+uKosdwVmsypnnxoXa0+lX/WcJjRHw9X8A\nACAASURBVA0vcXqb4gBtGnJms4Wbkgd2zsIvNN5DI42/o0Mhi5GAUKylx+ozr1GM7l5ovgjhbrHx\nRGj2MKg+PHuNRkhR88/ypmIpjUvD6b4y+8X3QqcCoDtbvwAVhzFxcai+txgWQ1xGtp+JReWfUwxf\nHOt5dr9XjI9barvMgtpybk7zTz4iVoLlmuQGQf72D9LxuDkQ42Qhr75YhT1hoVL9CbpFF3rOPc4j\nF4uaf1e3xVq480TtNWKsfIuGjW+g6zz6tVTtR7ibnPCc7SqudX40IbjvnX8rNHANZo2Z6P4HXwvl\nuQCBWYiqHVMJ9WswDF3hliWdLBhjjLn7yELpNLYsR5kSjnRhUCj3nNqvey1k5pqYnuK4U+Jscf1K\nY9waI4COJgdDq7Cpfs8W1E/BJcXLiLnj1RvFU/v4ymRAifq44nQ5J32MXlizAcOC89QOXCi6aNFk\ncGlbuqu28nrQlMLJ4OX/rbqeH0krZog2VTgLm2mo8TfB0aDOuW9PTdeputQ29bLaJAJqPcSNZ4CT\niQ+XjFFXbdqY6v6pRa3VC3cVq7UzxXKJ680XLEYnLhZ+xfglaFONPth/o+dgSTTLBY3xAC57ncoF\n9zcfVKYz3JEcag+/Vzfo4urhblusD70GcQEEMDVTENq5uObxGGt/aKiYmUFQaaId0GpqXk/g1pda\ns7RzYM7AHmmA0nuZz6d99hZDzbst0D1jjBk6xyY20vtuWH0uENcp7IkprjAlKDCRpOLFF9HnJ24Q\n65DYD66p2n1QoX1YnwIg7+NLHMXQ9nHNq77hyLzxoR/E0mUmtK2l2eRh71DfQzcJ56loQt9z4Epn\nYDQMfOqLaEzjy8UaPUUPwoHej2ugz7sTlt6E3u8wVmY4s0wqEfMhpY8u3WpE64NvUTFXayuGW8Qe\n5C3jZv86YLvtZN4LwlDsDHBneq35o3gqNkICjZg0KHw8pbZevM98gjPMgPmpylgdXioWnOxZ6rCd\nL9BtO3ejT5FTu8dduk8cR7AoDopx9nrDTa0TC7CiO8e6TwnkuVvVPBhGA8i1xny+LBS+/QAdkAOt\ni2esj9V91ave1lje2hRT0g1D6uGm6nMY1n363Ld6qO83WX8jef1/lNKYCeM4eQbbwfOPHNjG/ZZZ\nQoPyBlZXp6e974uX2ot4Pfo7uwWzNSyWQTx1+59LNVg+lee6VmZTMeLZXuMTioHSn7RHDy/zG4K1\n7QJ2wTiiGOmz7/Ki9xaH8XZ0zNqDVuPjz+XE6IN1NIXRMY8bqiui+15YTodhtaW7Duv+CN075iH3\nIvtt5nUktUwO97sebCI/7kuNLr9lGIseHG16ZY2JA9gS4S3F7t0V7YczQcV20wuLKqwYCMLuKjXV\nxz2YmjHuX3hUUIXciuEmbNoojKO5mNjNx2fHqv+O9iqeof6uH6h/XCnVZ85yalvRmEsxVuLzGgsD\nGDUBP8z0lxp7Yyb2pXv63XTb0kEXLxRQO0cXWLfRK3l/oD3QOQzU1QdizW3mNC8PK+o3r1Nz6s1b\nrReDA80lmS3F7rOv1M4T9rxXTe09+l3r3IgxRy9fmKP9Y7O4olj0ogtZeqFYHld1bVdK+5dUVH1T\nfqe+PX+rfQxGs2a2iHMgbNXuTH2Te6q1+slX6psev7XOr7W/rTNvH7+V1uD1PgzAJ4rdNg6/LVj4\nm58pL7D6VPvTEAzGd78Xu+jkW13Xl/ynjreYYpo8mjEdHG9fP9f+P+DT5xdGuJq+1/3OzrSPjhQU\nI3ncSV19te05bKok98su6fuGeX9sudr9C8VmytjFLnaxi13sYhe72MUudrGLXexiF7t8hPJRmTIu\nAJTNO+hrBJQlXsqhxD1VRqlRUvYymlPmqY3KfvFI73tmyvq5OK8YDKBcjmNEB1TKH1QmK5YCXQRx\nvtxT5q1T0nViIBNNMoNXfxKqGIMZk8M9ZGC5a1wrkxggkx5Gd+QYFsTZS2WHXQG9Pwcq9vyHr40x\nxrz/XtnyPOiTG/2SuZjuk/g36AysFYwxxpyWdb0+2eurE/19XVamL5RWPSMgB49/95XJ5PVMB290\n/m4G+LTOueLJUNnJCor/p++UmW2ijM2RR9MHQX0Dw6J4pme3NF4Sed37Bbo7jboy8Y680J2Q88PU\nyT0j9IMcyn5GcspY+2n7/Utl/G86ylhvrgmVydxXm50fqn7NfbQTUMJOZgp6Hs6T10/0fgdkcmlF\n348sqc9qx4qRAWiRz8X55QnuVU5dN5JWbDVudN8b0HNvBI2EBWW4Z9fKtB9/B6MEDYfEumIgksQB\noKv+aOM84fXp/8EU7hwD3W+ME4R3oP87GBOdU1ymOBuc5xz9qMo5/gqaDG3a967qOcuAxNZwW8Lx\nbOpCbT6l9nE6dL9iEW2hS8WiO6h87zLny/3ZCPflzDGsjGkHHQEvTBm0imYfQIJotvWMPdxvGiCl\nhTsFY4wxQdg679+I7XVdVl/mcQzwcS77FM2n4cxyAVLdIzH19ekr9WkbVHiBc8phkN7LA/XB1ZFi\nfi6v+68+VAZ/HNe4v3mH29GRxn2fsbe4IgbKyl29di6VmT/6UWgOx43N9q+Fxliq8B0XOiKHavvS\nj5rXOifEfk/13V7TGN34UsjCDFekk3dSpa+/x/GAc8lBWBjbnLWdRx+kh9PP878IyYiGNUbWP8ft\nDabhPu/XYNrMPVN7pJfneG7FfDwB2t5TLOw8R6/krdoplxIKN78gxKFJLHab0BNuWabElBt9k24L\nBwqH5tEiWge7f1Z7xfhef8BY6eh+ySx6W5zzd6FV5EQzYzTknHqQsTiHkw3n7xsgvfXXWh8uXu9S\nP4+pAK/X/kF6NG20qIIBzpDjarfyRH2Sjooxd/IXzdfOvr4fY/64vta8sftca1j9SjEVmlPfPnoq\nbYEMLKhuUajXC9D6mz0hsY119U0e1GfxrhC7jYeKiQZuTS2ePYTjQXqloPqgDWY5BTbRqHr7QmNu\nBo2iUFDbVq50v3d/ENrl4/mjKY25NOyIuU3Vp/BIY+bypML3cZeKfpizzhhGow8WhX9efeh1W8wZ\n1XM00ZwxHoJrzdCuGev/wTiuK2i0TSytg7Gl44QeCbDilO/l2HuEgvp+GY0uy3rS0kUJxGG+jDVv\nurzxn55hYnrGgejNENclH8HviaJr0lYsVi60fgbQsQo79bkZDCq3T0jqgHVyTAxD5DJ+nCobsJz7\n2EMF2Ot4XFMzGauNnH7F5MSlayRiumcTh5PKLqxSNAbjET4fgFUEgy7qV9+445p3x2O93y3p1cUe\nwx+x+oZ9Gcy4DnoXQbRdnLm/7obxX5cWOkwV+jyEM03Aq7E4JuTC6GwYXIZiRrFg0Gnr4PjSwaWo\nWMHxa1/z/dlz/X3+F7VLijU/tIkuUU7XC21pzGzNFAPTVZhDLj1fv6OYG8409ursV6s3uu8J89He\nBI0V2BjpRa1XmTis4w2NveQD3X/hqeaiFmh9FUZn5Ur9WefxF5a07qQ+wT3lk4LeZ508P9Ucd3WG\nJlpO7elBk3EdNtZwTXuG+jlaOnWttyW0bs6P9HfcyZiN6TlmAQSRjDF7f/qLmXjVbmmc0HwBvWZh\nKRy9pT1e/Y3+fqm5+M4vPjG3LugaJdAzCvpVp7hLfVU8PDbGGFN5iVZLTwP8/hewRVdhaEAFHERA\n46ewM+ua30asWR3czwa4NV3gUDjr6vMb6BL5cVW77up7HnR/BugSBRgjbsbIlDUyGdU8G0mqb2bW\nWMLVdcq8lsV1aYx+0jCh53fgrDZGl9NTU6y2F+lT9u9OmPvuNIxENK5CMDSv6urrmwu9+nGRq1xr\nLd3Z0zq3mFPMZXDcvEHbMTrWdcI4eWVgNHpgcBqcezFiNDPWrYtzxcS0pvcjTID7b8RkyQ/Q/9vm\ni7csgYSe09/XWPPBaDzZ1V71BP29xD3FzeJ91bO2r/4qnmssFyLon8LMHMHiSPCb0vg01+7+qD3Z\nuxff6vmTP7v2dccOs3Z/26zwG6l4pLVnMFSMpFb122r5njT3fJxeuL7SGu5ibbqHa2duXbHcYT+Z\nbDF/wKDpeDVfWy6ol/saC1GYh8VzjecczlJrz7RXqR2qL51JPevmgp79uqT58j3s4ualYnJ+Q8yc\ntVXNV+OMrj/sqF7drmLz3RvNu2McLnPLmn8y/Kbtn+u+Gw+198rzm9cHm+r9obRfW6e6//zv9PwD\n1r8ebKZp569zYWymjF3sYhe72MUudrGLXexiF7vYxS52sctHKB+VKVOto6K8qzNfyTll2Hx3ldnK\ngZqNXcrEn5IJ717gaIM7is8pZGAWUtYxlxd6N7fAuXTOb7oCylR5IsqSDutCZANRZXOzWbLTnC98\n/VzZysMflH19+DshwfMBZYN3flS28f1zZcg2P1PGLruM+xFn6EIx3TcOcj6ZgZjj2jI1yjhml5SZ\nm5BRK9Ur1E/Z4rff6D43TWVH732qM3mzrr7f6VpZWpw3ONvm9IZMuyb04u2f9UzLG0IWHShMh2KC\nd66v0PN5I/TWiavPPDoYE4/+rlyQ2UY3IoZ+QiIhfHk+KaS1ElefLIJy+yIfhkrN6DtvSt9zh3W/\n0QAl7HNlkj1T9V10UbETHiqL2v5WCPK0Tj3u6f2IUR/Wj6yMs54n7NV9wg8Ve6OZ2v5spM9VHEIi\n0j7FVgK0rtZT+9Xecz4cxDAWJOOP69UMRLO0o/ad3ahfDMrj0WVlX7uI4zRxdZqBgIdSqrcf9kcA\nBLc50P2dPVCnil7dbsX2w7yyxD4OBV/hMtU9ERIQjapf4xldx0M/lzqqXxtdgMg87iY9kFFQssGQ\nM6qcwwxydnlssdtKis1RhnOpsAqmxLoHpDyHs5jTcXtNmUlJ42w6VptkN9VGuWXFXAMtqDb6CYsp\nnLmWlAGf1NW2I6/qtJ7T+PVNVPfz72G87VF3t67XQ3vECRpkuaqtP3rEfYQ41GA/FM/U582yEIJg\nTDGUTDA/BHWdq2v13QX3jeM4tv0QRiHzXBXtnDNU6C9AgzIxWFF3dP21tP6OhjU2mzBzrr8WC+ES\nRwUHxgHpuwW13xON6SjnnVu4Wp18g54HqMzKhmI7ABvAmqdOeY71p2rPzU+EHPRg9F1faf4dwmwa\nMn9Vd4RKLeIwsQEy4wKVb58r1iYgGrct3aKuf/BO7WW52a3dl/bB6iPNDRcnQlBKaB9EcJzZWFR7\nBtJaX/K4+yH5ZQ6utB4Y5t0pqNcp5/f/f/beo0uuZMvSM9daq/DQOhCQKZGZT5Xo6ip2r0WOei3+\nTc7YaxWLr/rJzJcCGgggtPRw93CtNQf7uwkWWfUYGIGDa5NABK4wceyY3XO27d0ig+x0oXYC78rc\nJ+JsuL+zbkKcXb8BuXczkz82+JF4Cn/I+eRBQ3WtFeXnRnVUIwaqVLWj7NEQJZVgTraUvqu5EVpW\nW0ZcP+hoDJOoryUToKW+EDrLGVXdK2S1GyeyuctDjeWooTmW3VIGLgkH2KtXsp3iobJhXrfqnyaj\nt3tX9fAltAYW4E9aTKqPFlGPsPiYrvaFMvOhNOa0OFPaZPdAdrqdwMtuWSwVjCnKPhHWx8mIDGpQ\nc9fiZhsN8Vdhi8NLmd56U/Wo3IBcIjvvRC1pChrWFOB2g6vB75PvGvRBHxQ1V5wujWssi5IkGW4X\nCkPO6Xt/Wa91jA/EZmik/h8ApFkI6fc2CkHlsuqZAJnjAT3gBMY8YP33glSNxTRuHqfW3zrjPRu3\nqJ+e7wfNMp0Z4wnB0+bVOyYoaHlc2HCdjCVqkvEMHHrwUrgnzCf40iYt7W8SqBWNB/q9DY+dP6I+\n7oXVl1FQCJ5NjVGatXBQlD9wohBz2+L1wcEF4u7mBUiWHCp4oGndqAG6WpobLfYKMUN2OirbX9xk\n37miTHB/i3XjUuvMDRyLN/R1E/XAzqX603EqvxKIo8ADpDLc1Rh48dNTEI0Ly5pLa3lQUQ/U740q\nCPRrlNDIDB9XNWcdRbVj/lTvDTD3FoP6OR/THK6yB2mcoLpy+p36A/+5CLIwvrpqjDEmAp9KFWRo\nF8WwAOqjkbRsyptnDmXh1SvrdwvhXsEuOmXZiQsOuZD3PTo7Hlw0Tj98Rx5dF0rLTpaXUIF6oHFo\nXbI3m6o9Mfj+blPmyMo7QEt6QO3U3arjIM5e5QtxwLhCoIMYK8P++gTlqcyy1qYp+zN/Rdend7Sm\nroHMc8JF4p6i0Aias13W8woDi99JNrIOP9EVqFg3/meM0lnVQmjjjy5BxrtZOz3L7JPhDiugIhpa\n0/qyMKc+vYyyLjzQWheb09wdhFWfqFe22gTNVbvScw7hQsytsx75tD7Uprqu3weB6ZPNLMNzEl/T\nWKXm1B8Ov2zPiy9x4LfNtv4/gL9sd9Rux0xz2AHiOzrQ+LVAdwy6FrITvqEH6zz3w9RlvSCXxiBw\nijeaA5aaYB5uzC0QrS7s4/BEexgPe8YACM49fMM53EALqDCWUeGqn2tuL8bVj5/+49/9XJdHX983\nN8cV8xpupR5cV2H4zR79SmPnhBP16Z9lm41rjUEGrtcsYx9yqi/fHOibs7gvRE3dqeui8HvevFad\n8hv69pmDdymX1LxbQ8k2kNQYnYIuM5yAOXyjvcDRpdqegctlCaS8caDaBGJ7UFM9/BHZeq8kP9CE\nry4FQj63q77vXKieVxX5g4hfi+nhVPtz97lspFvUHFnY0FzNhHT/flXvuzzS+pT///AjNlLGLnax\ni13sYhe72MUudrGLXexiF7vY5SOUj8spg/rS1YEiVB7okFt1RejHTUW4iseK+s4v6PflHUXUwnAN\nDImUdz2KNoZo1eWZImMv/qRIfQA98jtEzhNzKA74FY3tcG7RAfdMmvPk/Q1lqBdQzfAT9Z5f1Ptd\nTjFb5/Jk+zzKzESjijAuPP7637S7W1X0chGliTvbikCGOEvXu1RG3gPXwaAM9w3Rz4GX55N58XqE\n/HHTrlxOv5ePFOlsXV+YsU8R1nuPlBVO7CqSXydaOSXq+OhXOhsZcukZ1YbGJoiK0SLni8/h1yiS\nrT+FJ2OCopUX/ozFGWgnPwpUlffne29TZlNFMdMutTnoUD1qnE3tcGY2ytnSxIb6pHpCn1VA8pDx\njWc0Jj1Y1G84zzyDnyJBhjgfUzS3M1Sfd6tkbxIoJwT0vhnn41st1a9eRkECREuEfg5FsSUUwU5L\nsvE2mYGNHdlWmPe2q3pO/1g/vWQ2vZyB9ZIh9TrIrNQ4a3yFmlJfmZj855orETiFGihYNN7AexFQ\nu5ycm3SFOQtcIrvJedKAX+0ZXes9HZRpXCguBI3GKUWUugeqoYdqlN+j53kSOpc6KAud0ehp7iVz\nar+JMAeGt48Xt1Etml9SX0fIpnsjysIc/VkR6m5NqAGztGqMMSbqhW8hquvnXaCdyB6foJzQa6DW\n5FGf+9N6Twz+n/gmajrM6+GV/M7bH8Xf1LIUuhi7xayeU8fmuvSVI6i+9rV0fWKTTCTqcsOB+urd\nC9lkc6D7hyiUrezA93FPczgTkz9oXKFYA4fJBGRd/VD19JG1m78HvwhcAYGgxrT4HZmIn5TR6KOk\nM5/fpf9ks0eoa7RAZ6yDuNn5h6+MMcYMsIUnT9UvDmw3llT7h2SWwxH9Pb8lW5lF1I7THzSOVZAy\nVgb9tqVn4BZzyLYCIJlCIFaaoAJC8HvMFsnQgEYbDUEgGtnH+Ynq3bw4McYYc3whe9nYUPZs4578\n+tme7nePdX0IXxVmnXGjElKv98zZubJP7Sa8Ofi5EUiQ8pH6JkwWu1dlbN/JH69sakw2NzWPjP78\nszJfdlmZxNQC/v9GmdDrfdlGr0cbWZtn2ORFXX3vuNDf25eav2esSf2ubHEOFaQZHDDHcJi9+a1Q\nRF6n5tjaN6DEUAO6Btk3RmGldiW/NyFzefFO2abRG72n3gUtwfpVvVD7Kq903XisbN58/sOQMpYS\n0ACuhj7PH8OTlPCSCQVVNwJZGUTVAkEX8/KN+sviuXKvay6ZELYwgU8FpQkLgZSPy+aOvxXarFNR\ne1NwCXm8miNjUCZeMrdDOGKMkSKTxUvndlvru66fkGkNTvScCevgkD2NExsdoRAxRMHHFUSRzK3+\ndEc1dxwdPcc6Jm+pNfXxadNOxzjh0whSdwPqZjCS3+6CAPHgr8fw2URR5bQ4UTpT2WqIIY3G4B+C\n/6IO14sTFKsbZE1norF0GWWHLb6f1ikqPrX3fXebkmaP4PfBJdNX4/uAgANejemQsa+x52kUNGcm\nllpdWraUYj3Jk5FOzq0aY4zJfQJqdkscYK2W1qHanvzxDf50eC5/2wUhgmCjGVk8Rj39YQx3SiCo\n/gyT8Y1l4UZL6ufyHfnzBVAInWs9/wxFl7PXrKfwTR24NPeScfnrPJyJo4hsvV3QOHe+lQ84Ys/k\nT3CfB3/r1HVjbK4EZVg4pHqGN3X9HL7Lt6JxTGW1j54HBdLpqZ/aN7LhMpxFxhgzc0zMBD9fvdHf\nr9/JbrxT7WEtHo40iPsUKoijxO3Ru1f4swEKUdOK+n55g7qjPLawon12Aw6tal11qha1ry4cyIEP\nQbKnArLhNqimy6qu2/EL8RLu6rn5BNyAoP59wGDLV2pjC+TLYUb1GtZATFtIHJA0I1Sd3D3ZVvmd\n/L0X5a9HW+LXON3X3w/hR/sUNSYzRVkXv5gHVTt1aAzGjFEsDrIyIpu9+UlKPvXXem4uwreOusss\nbIJmgHNnCJeOC0T6BZxlN3uac2EUhVxD0GtBtQ/QnumCtpuAArEQ486yfp/GNYcWIDu0lCONU/3i\nSKl+/Q/kzHTBK9WFq8sBt2OGvWwAFSyfT/U5eCd08xgVvof3hJTyoTRqnsnnbMGjssC366QlXzGb\naY84v84eJGIx5xlz9Pt35uTlS+PnO3ZzV/d64UWqNdRHJ881NtcgVCzFqDSoqR5r8/lbqX4eHGpP\nswgKePORkM/unuo6mFfbN9i7mKT6sATHY7Wn9aP+TP76mFMGngFoVvYQcdaeVfZdCWxw/zuhbmes\nkWmUH6MgZU7eilOx15ct+gIay2JB+7zTp6p/9Vq/O+Y19qGB+jyxqven43DRNjQ3T0DGn5W1R3OD\nvg1H3/f5v1dspIxd7GIXu9jFLnaxi13sYhe72MUudrHLRygfFSnjCCgquP2p0BtLi8q+VEEvXB8p\n89g8UNQzQiQ/sqKIWzyNsgRneGOcmR3BweDgLK917t7H+9yc625fk9F+rqzUCG6DL/7L3xtj3rMs\n+2ASb1hKNCgmhIjE3cso+li6Ukbh5Z+VCYkvK8KfTCuDcIm+efFAz9ncWjXGGJNYUqTtFPUWx1RR\n0MSWMvBOInheVD88Ts4uo4JyDGfB1ChC17dQCagz5TbWjRP1BNPT36KcRbxBJegGFaPovFA9vjTZ\nrHNF8KNJtaVJdsbAqG1Flp1Ent0jWNIPQUKQQc0PiU4mPuzM5RiulbGfM/xE3ssVvX9sFFXNLCrS\nPnGglsS5QW9O9YlEVP9JgPPnZD7bbVjhQRJFF9TH1jHkfplIdk19uh7SWAfJmFY5+3p6pDFP51Tf\n7LquS8LHMRrKRgs3ur6DLQVB3sTnFOH3kgVs/1A15n81ZlCVrflCshEfqiNJziq3Zpor++ey9U5T\ntpLa0BzJ7cqGBlPZxhWos85Q4xrzK7obj6r946HqNYwrihyEi6BxjVpSnbO8XlAcE0XyQ2E4ZUCJ\nFQ9RRgNVEP9a9Yh41R+NS0Wv3agUzC0pw+PqaJwntOs2JY8qWjSvPuqRhXn1RBHwwhNFrLNLQnFt\nbaxQZ93XHqB+cSQkyOVbztSS+UytqI/mV+R/ghl+JuAtIpv16sWJMcaYCiiG1LLGauWu3huNyL/V\nmWs3qFUkV2Qr+SWNWdPihmJ+X8HX8eaCTB59OLes64Mrqkd2XfXywT/y/Lki/IWnymh4w0ozrc5p\nbKcogc1tcBZ4U2PZhYPhxRNlZS5/0nuDzJn0fWUmNz+lvmTbxz2NdQRbDW2rXe2SbOPZ/1DmpIXy\n2OP/IkSPAUVXPNacdQZRNEvIxmrMlX6LrBqIR0uB5rZlBCphyvv6KIC95Yxys6E5SpLQZMi8nF9q\nHarWZSfpDfVTHERWr6F6ba8pa7X6KWoANdnT60OhUNJkwBdQ4wKYaU6+w07fnJhgVjaShvl/BmFN\n/0Z964UHIkCWOYD6xb3HsuWt+6xZ8J6VRqirXWsM4ksgBWt63jXnvK9RQkmBiBtHNC8bJbW5huJJ\nbF3v8YH8S8yx1viUVVv/Qn4sQsazdCqb2dmGx+IrZbHiGdncyQ/Kul09k625QQ95nSAufFq3Ls41\nZ8JwGeR31JdxFGeqJc6Jw6HlTuvvs8B7VaLbFC8ObzrS+xoV2UgIBOBAjzfuodYhx0jrSQjVuKFf\n49FFviMWs7haNG4DkChOOBt88GDFQZ4sr8k3Pfnv/2yMMabShIsBNMiE5wOcMv4I9WLdNcaYeCxm\nvKg7ueA48KCGFARdVuyjjsg6Gmf988M5NOqi+gJ32NhFRpjJMe3Ae1dibwWSc571sw+/RzgYNDNs\n1MFYuP26tvBW+yVr3xRKyebT8FBMXerDcQskzYQ1CjWL1LL6zO1UG5/QB7Ex3DMGBZm6ntOFtyHF\nPuoKHh23heC5ZekP1HfxBOqYKGx14W0qjVgTET7J6DLTaIAqQtGyiVJZ9QquhTJo2D24weD/iYFu\nS8DPNAcPSW2kdacBSq7GHqVtZBxxEH6OMKqkoB1mU/XXkH1t6wi+ibj2n+kTzT33osYrG5ZNRn6J\net8DreUFUCCXx/Jz7UutMyct+f2ltVVd/436ue7Q7xNQcCU4K6ogidxu1ceB4JgXfqdaQ+26Idtf\n3Je9RLLyIXPYbHCqn2EQqc45zVFXBNSGMSabCZpqFbSZQzben8jHNW9Q1DnW88MBcWEswDGRWN82\nty0+F98aIH89xpo/1j5W/3/5Wn3mybMGr8hoRnAKmpjGIIWtGbf+nrijuvjfwmkFHVoCGQAAIABJ\nREFUivN8T33q9ul9URAoXnj08iDZnR3NiYALtCYIvurxiZ4Pl0kQxHcHlcw473WlVK8xSJH4mn7/\nNCTezQT1vmZPVYeTMJhWn9c43XD6vb69cot6z9qnWh9GIY3Zxi/kcL15+PbwN5Om7re4ILsjPX/9\nsb4lm3DpzFDSjPU1d85/EHLTs6F1ap49UL2s9neb8vsRD2qqc6pHE7TDmxPtxebS8qNu0BbvXqo/\nl0Ar37bMWqgvVUf/5nnW3nTskc87fqs9SmlPe0Yz1t+77Ldb79TPDRSFF7ZR6wrIps9RDO2y7x/U\nZA8v/lV7j//2D/+LOfzLK5NfXzPLX2tf5sR/vvoJZDPzsT1SXTP3ZCN37wv54mUMj78/0XWsMZt3\ntSf54u80Ns6Q/NyP/6x9VQ31tEtUgxvPdH+thTIr6nk355yoGcq/JUE/Ld7V3sPtVr2cYdnK2Yn2\nNO2ivvFcSb13MtV7zve0LzvZ53t9R352/b7myJC+qkXUV7lP5NfnWKND8K9NYuqnwgs4Hve1l4ku\nai5v/D9Oj0RYS/+jYiNl7GIXu9jFLnaxi13sYhe72MUudrGLXT5C+ahImS7nlh2cz+7D1mxQgggS\noYosKvqYgDX95lTRzNKBItp7f/zRGGOMN6/o7OcpRUUjZLYfJ/6zMcaYMKgLb1oRrtKVIvA9MihD\no99bnOucwN3S4Vxlj/P3hSZIlhioBdRN3rx7w/N0XXZJmWkX5x5HZIxuOI/vc+j5x2dqTxMlm81P\nFOVcXFRkro5eu5NMdb+q93Z9ihrPbyuaG54qcvh2TxH+BhmGr//nTdMn6vjmufoqdqRzt26yKC0y\ncl1QA+4mKhtnikRb52+XHyrjmf9M2d6tzxWVHHsUkXaOOcseVZuDM/gbQObEiLzftkyJgCfI4E6J\nBPdaansO24nlZCvjln5vw0ETRsGhl1TfVzmvHAvC2u7mjCm8JEFXkJ8auwIHm/1T1T+EEkCXrNfV\nG2WpZqhyBIjeeuC2aU1B5JAV7B6ANDJ6/8KCUFTxDUVvR1XUVGDqdrrIemX1/hwZ4FFY15W+V7R5\ncq7xtNJzaw9lQ0Ei6edHnFGG9yI/L9tykfqt0Z+hARwyZP/aVaEHihW1dwRKazkHhwLj4uCsbhVu\nm2FV9fei7pLOi6+kQVS8WFNWcSGmrJsbXpIWc5HEzK2K04uKBDed0XfFfc2zFFwpn/5GZ/PdnIE/\nfwaSBKWD0r4QIaGsxm5193NjjDFLW3AUgMKajvSe0z9qnl280tn6sUf+ZfOx5sj2ijKLI5B8Z2ey\ngat9ZTWCSdnY9i+lbGNG6sPaE9nIoK553+nItnKcP7/HmVzXFC6Dsp4/6clWX/1FGYKzE7UnGtd9\nn3/zpTHGmGFfWZ2hU3PaUvSq1fT3ypkyCGVURUKgFlY/1VjNP1CWyY1oSRmltgJ+bQ4W/iiZgeoF\nXD4N+fWHv1bGJA6XwsnLH4wxxnRbav/dLzQX/KDi2icnqi+qUU64CizfcNuydFfjkScjU0QlxMFZ\n4wxzZg4VPMueGn1dlwaJtf1QiBgPNn/YhGuHzMrFsfqvhGpKFCWy3U+U0fGDsLrBbkqXIKYyMfPg\nb2WjPniHDv6gLJU7ovm2/QWoKxAd+0+ENPHUlH2pFbX21Juy7Zffak2KoyzoRl3p9LX8wN4LUDxw\nHMTuy1asc9olVISSICFX78tWR1PZ3NVTMqZ+zdsAHGCn73Rf84Qz/TH1+WAsG9h7pnq/+aPa54rq\nvnv3tdZnFmVr/SLIxqH85dy65mIooD48+Untq6IAMYMfyQMfyXCo/rhtcbLWT1Bd8pC9j8bkE8Lw\nnbRRj3ONVG8PvzvwW4EASKI8iEG4BsZOzVk/mXIL68UWwSAYY6CSMY6J2u91gEglj+aC98ig9tTv\nv+dFabcbP3OY+f1T2qPrAEkYZxmOGFRIxsg/9UHJAcYzwzFcbrQziB1F86jqce7eZOBaW9JeqPRE\ntj0YtU0oIxvxYLPeifrq7EJ+yoVa0NIaCinQI5SK6p1aR/M+krK4ZVSnoYXamWrNmeIfxoyFlyz+\nAO6B7hhUF6gnD9xSIxB4ty31jp4bJlsfSJLdBv3lL8tfOKegmujDhUfw0AXlZww8FrWWMrn9Y1SE\nLuEyuESdDj6liKVEtqg5mr2r9+Y+k1+P0g910M1j9mx1/O6UTHerA/oWhS0TgSulpP4+h0Ot+07+\nLWLxJcFxls3Jb29/Jn+2jTpK+Vjr1v5roWBfv3lpjDHm6kZ7jMVVkEWPdP1dt1ARDvYojbLq1YGn\nKNjS79U6GXr6tdUCacM6eeJR/QM+2XwyoHb5F7X/X4ATwxhjEqE5MzevdWCMguUYPpL2NVw2DY1H\nFZ6UIuuqk73ZbUoGFKUnqDHr9lSnVFIT6/KN/OLLZ/Jf2bpswYUSrM+nPl9iXk3dGsOXb+Wvl+DD\nTILkaLXljztNC+UDup81/hquw8xDoSCCbVD1VY31oKnnn/2odaOLstjq38nf95zqq6X7cBSCYj2B\nU6wL7HNpTaii9on2VK9AKcdQ3PKCborirjwoG2ZS8GKiYufPgMCJ6T1deOy8PdUjBJLzmr1YxCWb\nScN92YYzy8C9M27Ixm5O1N4E/B6OOVSyxhrbq9eqbwYewPgD1dsJivac/3dvyXYX4nBVZtmnL95e\nocsYYyYTuBsZr1BC6+6M75pr1K4OTzSXRl2tc0sPUJHlm/I5ttk3KImiFngDKu3ytRBJ7pDsaZjS\nHByP3vMkzd1dMZt/d/dn3p2f/qx9Wb2mebYLV8vYybcICLQQXFiFE9X16lxr+wg/ubulNlXONY/O\nXmptOHktvzYP4jEJ2srhAlW/qLak2J9W+T7OwnmzuMY3Tlo2c/Vce5qhgV+Ise/hP0xAbQ+P4XlD\nFTBzR3uqTz5Vn7r9qvfJodpd41tlFkYZrK21twLvZg0O3EJJ7be4Ale+0LfdGJRq5Vh+pTP56xxm\nNlLGLnaxi13sYhe72MUudrGLXexiF7vY5SOUj4qUSQcVIYsS6S6iSb+zpcjVvW8Udb0CrVFDCWhM\nBsIbUkQqyflG35yybD6a5SGrtUjms9VTxKx0oOhuhEjf43/6T8YYY3pdImxhzghfKarqgS15ZVGZ\nnNdE5M6P9f++nCL09+5Ihak/1Xv8SUUIB5wvT6KYc+cLZbr7RG8rZ8oYWdFwP9HiHtHvPrT+HQXa\nzPFLoV2ivPfL/yoOnPGAaPm3+tmDFCNoHCaU1LXhmSLNDr/qtkPWIpxSX0Mibmp1VD84n+1CCatV\nV5sXYdz2kC5/8gdFYuN59ek2528LKA4Midw6PbdnsDfGGJ+XsZxxpn6AYgPKNeF5jY0nruilI0Yf\ngrqqkHFw9FA+iMGZEERdhExiz8X5RVASM87Auh3qSx8oiNlEEfbrgmyghfpUbl2R/gxqSxGydVec\nT24VZLvlOlkqeIRSZKbNRPWvnqme3Z6u9wfVz7ktEDhxsoyw85/XFHXuwhi+s6Yoc5zznc0LS0lI\nGZaUXxmc/KZssXSp6G/rTNfNuTiL6lX9ql34is5lw9bcWOKcu3U8svZOzxkdqx9dqIvMg+5I0m+X\nV3AQlMi4fhbhOXpft6H2jEBe3aZ04AWqc1a8B/fH1mOhuRZ2yMgBxHv6r1Jju3r3TG0DcbKxJZtd\n+VrXe0HCDVpqewk1s5KF1DvT76ll2eD9T5Sx9Oc0ZscvUC061pha2Zwscye/rUzjbKhOfPmt6lM6\n1HPTyxrD9Irm1Opdtccz1lzaA+kzuZZN+eGFaNwocj8PZ9Wnu6pXxydbPyEbFkrI5ibYahM/dHEh\n2/K79LyFNdne3DwZXs4U7/2kOXD4Tra1DK/G9gMhk8Zkq96grmepfCyt6znXRye6Hy6e+TzKQBn1\ny8VLZVxLx7KZ2CoqHCipDT5MfMm0rzSO52R0XCjTxBfk1y1uIo9L9nAKn1MUboe5R8oSWtxCF6+F\nkKlda30KkOK4rut3Q4Imvabrx2QfL5iz1X350lhc/7/ycN0EMvLDx8/k4189VWZu84789Ijs/vmJ\n3n16pGf1W8razJyrejXIhjuPZNN3fvHYGGOMw6cxb11ozuyAHlr+SuiuxXllMov8v4u29I3mQqtM\nNtw6436mtTTgUfbs2ic/VLvh7DtqS4hnmAL8PYULjUEMlOnmF6qnN67n9FE/ugLB6XWrPU3m4tUb\nZdn2ftKcCWf1nuWHag+icKbF9bctI/iRDPxyTtYVS/0K4KdxGM2l5kB/d6O44PVq3QxG1I5eEbQG\new8HCJkua7yLB85ArNzADRZFDSkAf5XTD9LGIjvzaW45OG/v9bznV2q16iaFrY2Seq4XBFMfzjEX\nikFBMvGBmK7zoCrigXdvOlDGeDzR/SEy/y5QbFdlrW8LCa07C8vy9+dGmd1OpW38CbLkYfkxZ1uD\n02minLgsm3eG4TqBU69+IT8+mel3P2sX4k3GPSITim0kQKyELRQSvDc+1swptuTrk00Gheq0yJ1u\nWYJN3VeEQ+uiJBtcop3OicakM5afHHcsBIr8YBJ+IRfImvSc/Fo0ov3r+D5raU1jeI0/P2HNf7mn\n9ccPN9nCkvopA99TGm6xGQilYFH16IP07rc1pqMb+rem+llKLImMxrCFKmmtpPuu9pQBvzzS2KaO\n8efzq7oPdZUv43pv+a3WvYszzdWX38mX+I/ghVrUnA0syLclk1oX59m3T2aqjxf4WQN+pvhU/da9\nQUWwrf+ftlXPG+auGxTKZeD9Z84ff/cHE0DNz5PWeGXS8PWF9J2wGBMSdBHkZJR+9H4AouryUPOi\nAU9alPnuTWhv4Q7LNrfXxbcRZD8262jMx124E1H2c3g0N6Id2W4LpSk/2fsu9/mxqcyCxnAEh03p\nndb2XE+21OIbKc7eY35TYzlpC0njhvcj3Ic7agKS5lRjmsW/lF5pjQ4taQ73c3q/c87aC8A3sgCS\nHQUwJ2i19c8fc7/GAto300Jp0ovqaQm0bJNvot1P9NyVz7RunfBdUirCq1SRTfSxjfgy32i/0ree\nP4sj96l/fF79XN7UeMzGal8T1IiJyRa3H6t/8qvai0VTcDveqB8DqFLdtgxQNwx58c+g3Qr7misN\nFHgXE7JN5yP128YiPCp+1W+eekwC8rFpULku1p3BWHMj5dBzFj6RjV/vX/5cl/hKzjSrDbP/VDwz\nTdBUn32h/ePcpmz38LnQrXsn2kd633IKoSn/NuAbJ/eI+ZNTndrn2tc64Etah39n4xf6bk6D6Lb2\n2U6+e0s1rRcxvhGCUdma4duwwvf4Mdww+azGYGIpWsGrs7YqP7Pyucb46gf5hz4osmZZttJ+p3Yc\nvxE3zHDMKYrMqjHGmJkfhF2Vb52Z/NmnD9VPTuZqj9MUp3DjNuDOSnjfc1z9e8VGytjFLnaxi13s\nYhe72MUudrGLXexiF7t8hPJRkTITzgaXOK9Xu1AUdh6EyV5P2Ton2agIHAUeGLUrZIxjW6AJVhVB\nq5YU6eqiFJPf0tmus7fKQr3+vc7KbX+hyN+j3yhaG+TA9csflaVskVnY/VzIncCinp/hrOvMq/dH\nA6iNcNa3xxnU7pWi0uU+Cg1EM+NriiY76rBIoygRX1W02hA1fft7ZSZqZAA2NxR5DIA2ub5R/1wR\ngQw59JxcUBmjTEYxt+nMaWpl0EbUPZjifJub83sgTM6sKKVb924+VtvdY3g4LpQV/+FIWaKth4o+\nOsnEjeG9mZHJK4IQGZKVSmc+jFMmrNcaR19jU7qAa4UMqH9b2ZnEnN4/upItzdrKpk+vZFPBBNw0\nqHUEOcs6vVK/eHyc9Y+rb/se1b8e0s84KKbCSJmPWklj651T5H+e843huCrcJFJfLysS3ThRf005\n15hPqN8CnLG9QQ3lrKjM+Jjoa+wx59S3ZRvXdT2v+laZ8klB7Y5sqL2LW3r/GF6ma7JqnaGixos7\nitL6w3pe/1pRcYs3yetWJN3BnBseafxGftnF/KKUHyI5ZaSrnI1ucHbVHVSmIoSyRSShjEkbZvTR\npZ7njmicojlQbEXmTFN/DyZvHy9utPXOfEzzM3RHfRZfVh1GKE+d/l4ZvvOn6rs06kU7nypyHp9X\nH45Q8Sgd0tdw1JSulf0aOWSLWw/kPyw/Mp4o2/P62z8YY4w5eqP7V++RgVvUdZ0OygCc/917rmxT\n/Vx9ub2rLEwSfg0fWew+nAB78IhcHch25+fl//wx+Z/lJSFbMlm1r0Wm+cf/XQghh1djsb4uv9fr\nwQ9ybnGjGGOMMWv3V/W8Fdn22MDp9QpFn4LQDmsgPda/UcZjyLnv/b8IPdcsy9es/aPQEM225s7T\nH5SJ8IMq2NnV/4+qsqWbc/V3cF4+YxHugn6V7P2HiaaYZknZwpuCxjMBB4Ezpzn0CpWpqxcajybK\nOotL6odwWb7jOQipCgihCBw1C/OaW5OQltVYWv3iBpXw8kf1R7kCEon6+0Fslg8vflbuujnDdrbV\n5p3H4rHpV5RJe/tHZedbcEHNgfZZus8Z/CFKhCA43Cj4nZO5rcDPkFuR/x/CW/T9D7KRmz3ZlssF\n3w6Iiz0Uw8rUL5rTe8Oc5Xd2tOaufikVjiwZ1AZqfRd7QvYsoiy4SiY1AofV2yfKdlUYowLvi/ng\nY4urXm3WMSdKPtufaA5ns5ozz8/l1ybtDyCnMsbM4CXxoVzoh5PM6QDdEJY/86Ic0+vh9xryNcOc\n1pksmeCG3+I/gbsM9JkHjgQXGVg3e6ErlN9SqG+M5vT/Y3g33CgsTskaDru0zyJiMcYE/D4TDKBE\nQf2nI5A2oHhncMw4Q3pP18H1tHvoQ8UKRNAQHxJLy1ZH7L2GcGH0IMEJ7sg3plBrPG0PzdShPvEN\n5Bf6oHEGcMUEQLS4gFNZe4l2V89OgJDosEbHXWpLz6XnOEHNjkGR+aJak11wynjY5c5QoBy51LZo\nQn07cSbMhxR3VA/0k9m1kCcl+mgKJ4prqnXEVVU9XfDZHc80F9wTlM+iKOjAzZBDKSeUkv/I7Mq2\nlx4p+90uqe9PX8pfV96xflzL5lLL8DJtqH6JXf0eAIGUZYxnFdWnCzfOhAx3IihbWp6XP3bCX9R2\nwqWGj2oX5U/ffK/3J+dku5k1zem1T+Wz4qijVIua23tk5/eeKYMc2NNPd1i+ZGNevsEfla0l4Wjw\nR9SfGQfI+DvwtQQ1zsMRnEIFOGjgSOsU3qPl/Pmk6QzlQ3tvQb5+zxwJiiMuh10k4PszX8GrFL69\ncmgQf2aGKGoZ/R7xoWbkUt+Fk7LFZEZ+e4BKkwnK9vv7WpvTKJNlNrW2++DHdPh1f4C+GbF4O0e6\nLwQ6bSevvonn5b8G7G1eP9deYrUl5MTKA43V9ZHWh71XGrMeSJlxQzaQ4nSCpRYVB+0UwOZv4Cb0\nLWpuZUAd31zJxmJwlPlX9PMcVFWRNdrrBqX7ufZMYRD5DThVquyv4yiEJSYobsGPFBnq9595PVGJ\ndSfVrw2Q3G7magm+qbyl5ANnmgcewXPe64KPsDSWTR3AadZqcwIgor3nbYsT5zTx4ke76j8PinL3\nP0PxK02/3si2+1PN2V5N7x1ea067AGG0S/rWbfBtfYSq1hhertE+yNaDvZ/rcvr0lfFEfT/D37/5\n1Vd6NcqwFVBSR0+1NiejqmMGBHNgQddNUZrdvGupa+p5FjLYjXpeCwXDGfCow++1p3nzR+2TImk9\nf31dY5KYQ9UO27/c037tFGS3l1MdM1TV2pbC4ZxsKX1HfrB2Kb/57Km+812cmkhM9fx2VX0cxAY3\nt+WPsp+pfSE4ys6ghomxLzdDeO4OtMdp893ho38WluTPw573HFf/XrGRMnaxi13sYhe72MUudrGL\nXexiF7vYxS4foXxUpMyYc++BqaKVfjKyFc7+v3upKO7OfUXKNlaUpe+0FbFzoTjg8CgKPekrClsk\nk5nmvHoyqghWm+xVjvOWBvb5QVtRynqL85ZVzmtaqi4o77z+41+MMcb0yfym5hUdjqX0/kZD91+g\niNNuqD6ToCJ2K0TPQ3FFlzslFCr6isJOYfwOD1G+QSXFHYWhPKv2DL/UOcpkX8+NZ9QuK1IY4Exx\npw8jd7Vurt8oAt0lG5KarqouRLSbU72zcqnszdyWQq5rZGl6Pb3raE8ZyCmZ1VhSdQp8AWs4YznR\nY004osyAE24Wj/PD0tvTgNpW7+q+G84/j0BNxRc1RuMQWaspyJQWZzKbqkgsDoqCzEIfzpYqGUO3\nR9FVd1iR556PKCtR4xsyDz0yz2MyGUvLqCehHDHkfaPXyjQM3+k5ExAkafgw4o9gLu/ofQdvT/Se\na9nQBgoBW6tbPFfR2OIPilIPrslcrmDToDws1av2ud5/U1DU1u9Qu5fJbLtQhGhd6jmWukqIjLjr\nXONbubL6QZmFzCNlPjpu2VHpHMbzCZkZVAd6Y9XHZXH2cH69P9Lv45Ci4IOk3lPvCRXRJ5sXRaXg\nNiXHO5MgKuoj1a3CO8vwT1y+UCZviTP8O7+SCpClkHBxpv+/hltldKZ5PnKqT+ZWOWsOv48bRFoV\n1MHxiz8ZY4w5v1RG4O4vpKSzvKDsyZsTZeJqoKeSA1TTjJ6f+U9CmiwtKaJfLYK0ewvq6ki/n8PT\ntAwybxnuHBdndbucq74iYl86VXuSMO8//LUyIE2yQMcvle2poH6Rvgsib1n1a4CWaBaUkR6O5K8C\nHhB5OfmbaVVz4viVEEnVS43p2mPZcnSefn6u8fBz1v/B58qo+PKay3vfyaa6cGLll0C0zGSjZdB3\no+qHqaZk8dc+OBNCUxTiQCp6gnAslOUrYoAP5rc07j6LM4Zz/kOUDx6SSTHwVxUq6u90TvWdkVn3\ngpJYW5D9JFESGoHa69ZHhmll0nHU5vy694rM5uWJ+saggja/rbrFNmRjU9aYyan6vvhONnz0g7JK\nTVQa/Kg5uaKa3+0K6J83us/Huem5O6u6rin/e3Gq58Uzso2tr5UNHwxQfaqoLbEVjZnDrzZfvBIq\nqnyoubFwhwwgyjAv3/xZ9d1DzQOUQ5o1b2FXfjCG+l2PrF2XTOcMIZmTt/Be7MnGsvkPy1yOvLLR\npousOyi8UAL1D/xkDy6XEYjCrlE7EmHZlHesdpfL8nfphPxjIK1+H/fVv7k1OBYwrjMUX8Jwx3jx\n5xPWTa8bDrWBrrf2LsnYe3/pC4bMBE4wF+u2hXydljWHp6BKsknV04kvcM5A0MAp42rBpwGXmw/u\nHi9cB/2h3u9ApWrshE8PhOTssGi8Dv3fgOxuzVK3nOrvE3gvAl74dcaaj42q1vAQyOB4ijazbfWj\nZFV1ss/qyAhaqOlE2BMMLZ4KeJfcIHTMWGPg8n0Y79AsCBIurPsjKC4OiyD44Kwx7IUcgINdWbVr\nYQBaAnTUZCR/1rjS3KodaK6H/UIpuECbpSIgLpc0Jg9/JWWc4qlsvHRF5vhQfv+8qDmQg/8tnNH9\nqaBsxUn/OwMay0pVfv30rdaZEap6iWW4bzKa02srWp8GcCyOL1B5Ksh31A90Xz+tOZqDc2ZlU+tU\nHGW1Fvvf6wP5tGZbPujtgcYjk1U9myitTUDCHE1Uz3FAcyOJil84KpvLoGCTYE50ViCYMsZsf37X\nGKPrR/A4DQ/U792y3lsErds8Zh2ayKa3dm6PqHIbjbUP25jC+dSraK9QL6IyWdGe4wZ0qI/5GGKt\nNvgBfxgUANyKez+d6D0g5Vwo/C2hJHMGwmVQ1Z7ED3I5mZHthuE7WgmClBuh0lTUmHR8cJSBKsvx\nLeTeQC0TdKiDfWF3oD4+faaxd+EHV7fl5ytnqu/RC+2B8jv6u6XIFU/I70ZmIKdRH3J4ZevxR9oj\n+OFsSeLXC5eo803Ur6kG7bmAvwRkX6OvOVY60ZwIByxkueoxAOHZbV/SLtXHC9dMFH6SMd8ddb4x\np23N4cyG5lhs4cPUl0Yt+J74YAoFWBd2NOct3tCXqCddoNSYAwU9GcExd6R1I95iz8F60i+pXaGm\nxiOxhV/uyNYt1UJjjAllMyY3lzOBkPo+xPz57p9/Z4wxpnZs7R1kE0ufiDswg0rw4UvZ3KjCtwEK\nXCVOjFy/BSHMSZDMIvOwpz4tlFSnLPxDG1/oOzc2z367p77afyb/dg3iJRKVn1/8RH7Jo9tNGu4W\nD/xnNZR097/T/dOJvhu+/M2vdX9eff6qLLTw2InfhfMszDp08AK1UeoxYH1zR1AOg+NsFwR9eEW2\nenYuVFK//9fRuzZSxi52sYtd7GIXu9jFLnaxi13sYhe72OUjlI+KlBkRPXYSkbuzrUh6o6Wo53WJ\nKC3IluBEMaQKZ0RjS8o4bM7p/6slRbwDAUVPAWuYp98rOpvgnPTf/rd/MsYY04HdufBM/19qKxKY\nX1Nmd/OuIm8koE3hUNHtkUvRyOiC3h+PErU9+N4YY8wR5+Zjec5TpuepF+fTUfJxwFtyfajMav9Q\nkb+Hv/yFMcaYrUeKRHpBczQ4q3f+QhkJB+fGF1f0/FJV/dZFOckTVXsbk4bpOUFqcC55dVN95kdZ\n5OitzvOdvxVPQjSkCHK7StagoWd6o4ouzq0qCjnl3Pe714oeTqqqU/aOIrmZRV3fnyia2Bmq725b\nZqg+9FBacHaUaQ2kYtRTkXvXjZ5/CSN2+1IZwpBbfe2fI3NIdrxxpr6Pcr5xuqC+GmNjUzKf065+\nH7fV/kGJ9nE2N7sNP1CKc9pvFY0tFRQtbrX0u9uviH96TTa1EFT09Qh+iTJRZjc2kv5ql/vUX3s/\nwbWAjWcTGr8lmMZHcNl0ayCKyvCDuFWv+WW9f8Q57crhiTHGmCZKOsmEIv3esfrpvK6obmCoDIp7\nWdHqVEI2f3Em5vWLluq/saF29V1yKa4h2SeO2joGqlcfNFoG9IiHc5f9rv5uErrOF2bu3aLMOPNe\nrisz1yE70GzpZ40I/AL8QzufCMHizykbcvpbzf93KNkEfJrw+U3OssIXlCW+1VKCAAAgAElEQVTr\nUi7IFk5fPaVNGmOPR2P15X/V/F1Kq40vXmgsrsjebzzUmfv1+6rPTVN9Ne2pHQffqj4nqDYFImTT\n+7Ll3XWhI9Z/KfTACMTJyZ8szhRl35w4wBBz9f5doRpqDvXx09//n8YYY7rXqv/iN3ru7qO71AdF\nmIpswIBE7NZBGPYs5Iz83LQi/1i9VlYq+0DIlPVPUKUzur5NpnppQ/8fzGgu//gX2Vz1rZA7q0vK\n+s2tqp86F6DPeqp/2PvXz+b+v0pc2bFERz6lDDLoqqV+s7KbuXuy9eyu/Gospd/rJ/K7TZCcbjL0\n7arac11inM81J9wNMtGsRH2ypNENrS/xiOZa4VS23x3UTIZ3GUuZr3BijDHmZh+1IrLVmcfKkifn\n5C8a8JNNyhqrTtNSlgFNxEq/CKpnY0dZqMiS+v7kjTJtLj/Z/DuqYx5+iud/Eg9bHfWLxftaH/wJ\n1fP6R/Vhm7F/XVafdLGRSxS4svDF+d0awyevlcm9fKrMYzipMdp9pLEP78LjlpKfq8AnVEWZpoHK\n0wgFtdFM/j+GSFE682FqGFOUGkwbngrWfsdMDwyhcteoqZ9aLV0QRFHI55Q/HZKAbILWSwfxv/DQ\nBeF6ccCv0oRXpXLJ3IVXIwIyByEz0wUt4A/SQNQUR9P3CkIut9uMQWkM3Br4EFwyfVC5PtaL7Jr6\n9/CZbHcE/0vYyM+7A3ruDMSWB7WSWQvEqoV8BLXWYRwcZAvH047pgwgZjOGRGGjexlE785O1DsAN\n0urCOVPTWDvTGkOnw+Jb4HlDeIVASpsIaCKjMfJZ6hsgcSaggBwgIwFxGSco2dsWF8+ZWsot7F+T\noBoKUdnCpK6+CI27/L/GyhNFHQSEns+juTx1oqwD4qZZ0npxdiR/c/hOa+7RgZ4bjWt9yW7o/T78\nZIz3VCrKVB//WeixoEN7iGYWlaqM/G9oQfVYy2q9q4RVj3ZV7z+80H1Hr0A0wduRgksxkIBvCfRV\n51r76MKBfMJRRLaVX0NdaU7r6QJ7ofi21qchiNMzUIHTPjxzFndkABQCCMVySXvBNxfyLc6h6jMH\nIj6Pml8o+R69MKw1TGMg3+GBM8wTR62rrftC7CEvy3pun++RuP+huW0ZsO9ygeKNMX/GfDvkUVYM\nw83SC4HQRm0o5NYc6WQ0H11OOJ5ADa2tyNabZdlyf0L2HVXV+DwoTPaP0QTqPOxnB069f/4+HFkp\n9YHFLWYhqq9LWvO8Pb13GgBhDa9QB7/ldaFoBqdjN6qfk3nU61gjJwcgTMKy3Tro5jZ+LJ0GIQp6\nawTXYasF5wqnA9rHek7xtWx0CSWfND6lBzoi4tBc9YKqS9IuN/wk3rRsf8O1aowxZoZvcTgs9B5c\nlmlOV7TV7yuLliqs3hvOwqsSQhrulsXP+LjZKCdQLnOCpHz3k+b8K75R/fBuZT6XbY/gGx011J/z\nO2pfdF71bbs1F1MoD2Xo93fnoJXnwj/XZeuT+2YadJriidD45R+FFKsc6ve5Ba1JK19qPxfxqe77\nf9F+7eylviH9vHspor6PgvLyrmv+h1FDXl1UnUrwc9ZKel+I65IgcMZ12dLB96rz/pn23amobGX3\nV/Infp/m2nUD9UvUk/euNH9DQ9ZwULgLIMwTCfX1M+r/6i86DRIBOZPtwlG1p74+gYfHy2mDRXhV\nLRXPeBwlWf7/HYiaSgsVVoetvmQXu9jFLnaxi13sYhe72MUudrGLXezy/7vyUZEy/XNFoovnyg7l\n4UIJE+ne+VQZbQcSPK++U7bu7XNFyr78n35jjDFm5lOkakBk30NaqXeJuslbFB9Qstj6WjwprYYy\n1DcVRWEnRhExd19R3UaBrBTvT8Fz8RrG7f2XZNbJZjnInCx9oSzf9l29bzhR1LaMDvrYqUje6Iro\nb1PRTC8ohCgKPUMXKjDFMu1CpQA+AQ/nuttkVi4vFNWeX1T0O7SsbGercGbSnMX0e9WWWQiulooy\npNVr9UViQW0MphTNK54KOXOFMowHlE+Os7LVmqKR9XNFO6cu1XE3r6yCG2RN/0b3T0bvM3q3Ke4+\n6g+c+XR6QMBwFtVBZLpGhriLgleHrFqaTGCY69ogTQYOznAmlIGYEZ6cTvQcR1dRWndT7+1ckB0n\nk5ze0fudoLQGJT3v7ELXD6/IlHQU2c6vKHqayisbNeEYe/F3soVmRVNx5xdkj5J67uW+bKb0CrUT\nlyLbqw/gZIAvqVXRe/sd2WTrRrYbySq6HYb3Y3xqRaX1XEuVKsNZ5hmcE+NL+DXg8civrxpjjBmN\nlb1qcg7cE4NbCOWwwQnKBmQc4lO1q9pQ1mwMt8EMFEnXOt/f1fiEUF2aMGduUxoN1SkL6stJVnrY\nsTKUyp7kl4Qs8aPYsv/PYl/fe6P5HJ9Tne4+UuYyvMYZctBfT373R/2KCpMfpNziow2eK1sKw87+\n8k/yUwdvlWm8942Qb5tfyQaOUcI5fX1ijDHG0wOBMlTfzYHsWUCha1hEAQBETg8OgOOa6nPFGd7Q\nz6iIVT1nQ3OgXteYvv4XoRMmjM29X39ujDFm/R5n/Rt67uVL+QYPZ4ibHRQAzlXf+LxsNblgZduV\nzQmDvtjehH2fTOfVc9AYDYsTQP+9/6MyD6UD+Kx21D9z9+VDhm0QOGXY++EisxRtblsKoMMq+LI+\nGew8c82VJrsPu3+vqUlaudC6c/YcVSjLX4NGmJGx98VkL7/8p781xhgTQk3l1R9QaHCoHSmH7HXv\nuepx+FLtXtxaNvlH8ivjtvpoNuBs/YrqtnZPPt0Zkw1cvtW9BbhYKqjgOOCESYEmys5pjBLwUYQ2\ntUY0QCNcg5As1lSn0Ex94sC/+8h6ffILZcl2HgtNdfRctnfyo2x8TMY3E9Eci82rD7JJ+dO5NfkJ\nV4Q5OlL9Er9mjs7JBoMooFTHqID8WSjU/afyO1O4FO5wrn3hruZ2CT4NK4M7+TBgpvHM5K8nBsQe\nyL8pNuxMyWgdVyBiOB/u9KpdDtbHUUq25QCVNsEnuUHcWApDBrRUsKzn+ePqj3QONK1TDWihDhKE\n+803QpENSM7gpvdzGxwzr5nBGeGbWqpMqkcDbpi7Wa0fs7Ds6//43/7FGGNMHAXHxGOUjTzqjxH9\nMiZr2MMXOTxk8t0oHrmntAMUzMRvAiifDODm6A80pha9XNeo7oP2v1WzDMPP4A/r94lbewkXSjAT\n+HS8A/Vl0iWb9YXI6nvhd+vxXJAoBrWlMXx6bv+H+ZFOTfXvoGySGIJMDoE2BR3qdMl/NBmjSQkF\nm4LmnAsenkAM7gNsPpVB2WbjS2OMMSvbuq9Z0VxrsNcZg7bysZ5Fs3r/JijoVhPVlLfyV/USqnkt\nEN+nmtvjKf0bVz+kyVDntoWsnBvoOfUrEDAoKA4aoB/OUNrBb4YToENAidRApFywP+2iGuq71jjM\nrYIkxyfsfqpxv0EZs3HDHGLf689r3dmBq6ZIu0ZwtdU78tPtI5DzJT3fGGOqtaaJghovgL4eFdS/\nYUjEYivylW64ILwZjVMwHzW3LQHQ7TM4AwcQXUzhbrL28GegcZZT2nME5zVvW2xIcyhS1YtCK/TO\n5d9XQHqswy95CL+GMyK/H/Pp/3twIvrhphpEVY8iY+/wq36ja2tfd0pfyIbK8ODFURJchk/vlHUm\nkpfNbsT0zdON6rpZgPeinDaNyK9vp1y8V/dFIrKRFlKKDt7r4VupUDjRdVFd70VZLche5Bpk5HDM\nHgc+vw5ImdwS6p8XsqXTsvo96lI7U219F7nDmhOVF/q7J6PnBdfg0yvBmThiXxzRfVVOELw+VD9t\nGPY8tywzfIALddImSJzLIrwnfAOusd9fvSd0h6WsdsIpEIuXzvqQGbRRmoPrsX6ofX/Fo71WD26i\nuWT+57r4vD1zclQyjddn/K75mP9M+7C7oPcdXdnw6x+EKKm+07yOg8a5+5A6wgd3BUdVvwWfEdxe\nr19pLS8XVScn/mN3V2s6hwbMqxfa41xd6Pr1LX2/7/6j5ow3pDVx73vx1nVONYbDChyr8I6uwI8a\nQCG4BvfNwXc65XF5oHZn8S/3PtdexwuSslLVN0xwJpvObat/FuFx8mC7x6+Ebjp7pz1RgLhBOr9q\njDEm5PvrWBgbKWMXu9jFLnaxi13sYhe72MUudrGLXezyEcpHRco4Q4o4ZTiv16opCmnRS6TzykT7\nyObUDmFbj3NGFL6QQUsRr1CEzDbZqgDRYS/qRB4y6WM4CVoDRf630B93kek+2Vek6+CP4lz47LEy\nyYEUz+ec4qSk6Gu3qIh6APblB49WjTHGBOE9KRJF9TmJyLsVzW5GFN1cgKF85QtFCF1Rvaf4WylS\n/PRUaiZf/c2v9PxvhCAaT8n8zBQpHHT1nsIFZ4T9yhg0ii3j92mou2NlB2b0gTeuOmbICmyuKUud\nXNKYvHqtvqheKiKce6A6TjgLmSSC/eDXqlOX7HINdI+TM6kTp8YisPj+DONtypRIrwdExSSkvolj\nM04vmYWyoqjVK9nQPBnaEGiGCWfp65wtTUc1BgWyVAP4hAZNng9XwmVT73VxZj70tTIXCXh8om1F\nuo9R5BqgjNMdwSWDAlhoTWMcAoF080LZ8+oJmWmoD9ZX4AlxqL7Xb8gMw82w9omeE8tS7zHKByeK\n8g5AFsWC+v/ortrvJVt3ibLQzGgckosa91l8Qv/oPVdkM2dZRdJznMuucO6zeKNJurQrBSM/iJvG\nc/09mkLFww33Q1F2YWVIcsSDLQUbhDeMq6lx8blB0NyiuEGWJVIak8sjRdZrV/ILiZx1tlzz+/hQ\nyLyzdzDZZ5T92fzssTHGmAxKAMdvFUE/P1GfWWfZtx8pcxDfguvkmvPNp7CyowJShWdi5xfyHzuf\nKat1QDbmNYz6Ua+laqGIuzeq94fwJ5fvZCNnRWXDFubUnkhTYzeBPySJkkJih7O7y2Qca5pDJz+I\nW2BKVvtXj5WJDS8o4n+JKtK7c6EmgiG4H5qaY+W36ocQ56d3f6Ox791YKnLyb6v3lSmxOHtePVEm\npE5GZYK/8vuV1ZqADNp9LNue+1T94IfT5vC5/Fq5rH7wkyGeuCzWsFsWMuzBCOopZPXm1/VeD+Rh\npWvZx5t3suUhPE2BuPpt54Gyfh7a4QQdEkX5KJHXenN8KJ9QJsOSxMfmH6h/ujXNCa+LjMu9BRMi\nE3h0qDG4uFbf+Tqots1rXvfxxy+fKBtTP1Pf5JdVt8WHsrVcXn7SUstrNlA8gT+pgL8yM9nQ598o\nO7TwmWy2c6o5cj5QXf3M32PU4vZ/VLbM5ddYP/gbrQNzu+rbfk1jdE4GtgQvjysmfzQCzeBk3hdq\net+ArHeTDG6roYxyKKn2b/yN2re8IcRODf6N8qH84BCEybRNBvG2ZQRqAlWhiSXrBOIzAHIpGgTN\nanEQwFPhRA0qa/lffI7DwGcCumrsitBueERAbYRAOPkd6s826k6G5/aSWocsPpOIC36S4ft2BoIe\n4+Nce29mnesHPdK30GC6PgK6K+ACwUgW0QKhTahXOKPrPfjtIlDPaBhltDB+fIRqE8qWbX/PzEAu\nO5h/ftBBAzhIMvjVDu92uNSXPneAv8tW4k1dN7Gy/m1LKVF96A3DHxcEcTgGZQat0gT+nmQY5B/Z\neR99dNvih/+iP1R9Lo+0D2y7ZKszFCOdoBAc8OmNQS1Mm5q7bZRXBiiSjYNqfwr/H0NNKLEB/wic\nWAyVuYBroXNyYowxpsheKxuTD0jPqZ0L9/ScFPvRw6LqOzjX/Zfn8k+u1+r3QkQ+xw36de0Be8Nt\nrXu7D7VudGvyJa2m6t8EfVspq1+nGJEbJcY5+FDqffnVmyP5hJML7YUyoMn8KGXGk+wx4fXogwKI\n99iHb+p5D9eV2W705G+LZ6BKTkC+N9+vE9H22ERXVvVvUB7u+/CXsGedwX+3mtN+IrSkdT4cuz2i\nqlvS3uOQvcgcXFTrX8ivtgeyndNT+TXjVJ93UC9jSTdffSG0kvMGFT6y+eOW+mIOlaNrUEymp+ua\nqMYd7wkN/PBzKS7GHOpTj0/v8QTUFzH4LUcL8HWCVO6M4KTxagynPtTYhqr3dKw+3D9V/W9A42YX\nNUatffYMPo1BBOWuBsj6t6jCumNwwNxDRQ6fUaN/cp/KJqZGNhtfkk3uurXeBEGaVFjfuiBjeqAv\nLHKwbM7H/aChRii9neu+4wPtseYcum7zS+1FklOtk+VXmiPxIJyUIc2tEXx7AWsjf8viAPHYxjd6\nuprDHr5tY3dkg3H4SetDzbUffqs5c3MDmtmHgmRGcz7klL1Vztj319QfyWX17/qu7ND9f1s3rg6v\nTPWiappNjeHCrtawLDx2fb6RXnyrvcPlK4354qr6aOmBvl3GDpDlf3lijDHm1RPZYAp0ZhZF3mBP\nNjyPv/JtqA2RhGysega6B26sDGj9+S9kQ76JxujdfxeS+fClvpOjYe153Cm+g+/rmzWO/3z5nfbB\npbfa53lROguyxq88kJ/zg1gsvFJf18vqyxzKmKlNtWeEAln5jfZs776VSrMJq68ffqr3l/kG7Rf/\numqojZSxi13sYhe72MUudrGLXexiF7vYxS52+QjloyJlUkucJ0eJpYWyw/Wezo8PXZyjCyoSN/+p\nzqx5A2RIepwJvVYErDkhq3ahiLkf9ZSVu3pODWTLm6eKlF1dKBv34CudTUskFRl71+U8dlD18ycV\n/czMKSo6Her/O2Rixqhr1K/hVYmiiAGPxtN/UaY3CdP15l1lSntwXpgoKgFEbacTopfW+VDQIeGs\nMkwjDi27myCF+oreXp8o0u93qf2xOf1/ajlq2ijGvPofOncXX1BdfvGbv1efJvWOak91iqKeECZa\nuDBVH6SWFD1tEBF3VBQ9DS4IbdArKLL95scTtXlDfbZCtsHj/MBD/h1FoF2cA/YsYjNkWB3HIEXO\nYCHPqu9dW6vGGGOcftnI1Zn6ZNWlCHIAtFXjWJFnF+fZ4zCKuzq6b3rMc13qn6UUKADY6+stvb//\nWmPdbGoMhkFNrc0H+plbV71aU43DVUEZ7g5n/e+uKZqaTGuMT6zs14UyLUk4gaLMAcNZ5dor2fSQ\nqPIop/vnH6p9Q84vXj5TBN409b5FmM+nzBkzVpS4Ad/HoK7xX1pE+Qz2/9cnZDGn+j22rOfcNK3z\n+7LdtFNR82pF76sWZC8BMjuhDOoeKPY0SqDPfMoYODyaE7cp6ZyeVUR17PmebDyF0svGXc47N1X3\nzoH6LB7V2Cx+ojZEOTt+tg8/R6PFc2S7iyiJDVHsunyq9xyXdf1yTJnFOEpUmSZcI2T3XzwBSbMv\n/5PPCaF396HY49s3anOB7EfjUDbfQpVi9Y6u37wLVxRZ9smF2jUKqu+GHv4O1079QnPUTYB+BdUL\nV1pz4dmfhIYrH+tniIzEEj+Lb2U7cyB0tn+lLIvp64F7e0JLRJdlKwsZXXfxUhnLiyf6aWUgFzbI\nkC/KL7vgRUpkyPqByDk+AHV2qfcvgITygViJRz5MfSmf45y8R+PuBrHYQS2pjDrSGapXY5/6f+uB\nsnHbd7Se9Lrq19NX+A43CmJR+dTLA41HFxWPUEp2s3UXFAr9+LakDEy7Lt9UOpqaNy80Bt038APh\n7zY4px1f1L2tc9lqNqWxXQLx4N/S2AbioA86akvhDTwQFdbGINmqJdXNv6P7fVn8QEF9crUP/06T\neWmpiFRkq1HmxtKOnpcEpTXl7P7RM7XxEJWMxbTWk+gIDoCO2lktaq6EUXKJrWnORDJ6XySt98zH\nUc9g7E7hMTp5R7afrFU+p/XIm/iw9caBktkY7odeBx6gFkgVMrIDMrAz1Po6+L3uSOuB16X2dfr6\n/yzqRxYvinGof2otzdVgV/4zAWrPBQdaFzWr9gjur6HG3dPT9VmUKavF2s9taJW6JowC0WxOz3EM\nLcUylIg6en+zJb8bzMBV04cQBSUyJ0p0IZ+yfn72Xl0yxgMy152BfpZq6h9XR/XxTPzGAU9NNKJ3\ndDog0OCXG4Mi8o5RzWzp+omXujlRTgyoLV7+3hwgccV+LAjiL+iCj6imvnOwxqZnPJe+cHctbiu/\n+ZASRD0pTt+7QT81QEaO23BftdRX3rjmbDCGKhR7k9GUMUCxpsR9rYL6x8pYW2p6cZArSWwzNJTf\nQXTTmIL64SYkNGunoH11akf9kUjBmQa6uRHTXqVSA1XGXqvW1nOvz7RHuYDTwZ8TsnN5STaajOtn\nFIWz3I76Iz7PulUDnYxNTKfyPUmfMuMpEJIOULxd5toNPIcVePocN6CsEbYpzGRbszP15wbrTmJB\n68PapvYedaOOuTgDjWKMOb04NrNL9U8cX+KNyp66PZQ7O5rLU9RYMut6Xm5h3dy2jDyWQpVs3uvm\nWwFFqTGKZCv4cwuZ7gKhMiqq7v0eCHG+TRbuaQ2JsvYNUc+MgP7yJ9SWkVc2sgznYcSlPmwdgUxB\nyXWKP6qh5hZPoSYU0u8rrCtTkIFTuEr8KHhlI/JzFz31abitOZ3kW8YxZKwC8P018I+8P+XW9S7Q\nZWG4tkagGhZXZSvOgQb/zTOhIRaSrF9wJnZaek6np/p5aW8ALrSrC9n2rCkbSy/DdRMHvTbSerN9\nXwjMKf19BYqty7dpC8RnAX++/kDj4Uxqb+BlL3rb0mI9maK+FEPhMwf3Wm5V47f/WqiU41PtHb0x\n9e/qovaCHtSinCAtT19pb/rmQHN4fl173M++RlkTJNCzv/zu57qcPX9n/O6A2dwSAnp1V/f04eQq\nvNGzpjX15S4nO+5+rf2RE+TwqxfaD3bg99zY0fx59Ju/NcYYEwpp3h69U5ualpIfaK/XfNdPUU0d\novDrBKk2KOm6/QLopn3QaOlVY4wxy5zmCAa1l4j6Va+ffvut2vlK+/Dcgvpu62vVL+jV2Pnhg9rn\nO6LwWnuh/KJswsNaeP5UtjCZqD/q7AvnUnru2jecIoAj7ekbnXxJTP962MVGytjFLnaxi13sYhe7\n2MUudrGLXexiF7t8hPJRkTJDosBTh6J7SbeiskcoxzRPFWlzbylC3awponZBtHcMp0DsK0WwBnAn\nPP1OZ9k2icTfe6wzYmNQIP0uGfAgWT2y9aXhiTHGmDSR/wTs8Yh9mOPXigY362T10LjvzUAtFPR3\nD2iMMNFWK+vfGlpnnVFKINp6SeSuXVZGOLei6G8c/pHlz1QBN2eSq7A6j4hur3NO84tf6KxvBf6V\nuXllRnzOqHFznnjjjurihEPEhdpD5Smont8rOni5oSjgPc7D+XOrxhhjApzrffMXRWxbFWV1Nj5X\ntsVHlnyBsclEqQPv97rJbt2yNFC2Mh1FPQNDzrC3ZTMN2MobU0VN46CbIllUI85QTaoqQu/eUFR0\nMtH9vRvVJwznToDMweWxsjVth+6fn1fUeAFlGUdd773gzGyZ890Ww3jiLhwQMHm7vKp/iXPfV1X1\nbwjE0uqWsjxd2nX6VLbvZcyzX6AEwHn61oXeW0Q1qzuQ7a1nFLH3gHBpvtJ1tXOLX4Vz0j7Vp+aV\nTU4n+r17rueFneqXBJH7CaiISUH1D0bUvzmOd58d6O9W0tHn0TjU3yr7VOX++5+q/x2w1zdOlY2q\nw5kQBqk0G2nu3Kb0S4pQ3zQvqbNQQg9/I44Y51A2e/oHRfAL18rOb+7u0Cfq23ofHh0ymAmfxqYP\nL8XxkWyiXgNygmneWRer+wIcMxfHymxegnbyXaNoBVfN8n29d2VT8/zmWO/be66zt2GLrwkE4c66\nxjSzrvrUUK948VuhBLpV2d7qHdAEWfnLqZUJJnvlgTMrnsPG4dS5KXCOeneRfpG/bJLt7vVQdZtb\nVfvJ3h8+ka8wQdns0op8xQCEyOlTtX+Cn5vfVlZt/jOhPmKobdSu9LzX/6zxqZeUwXXBd7V5T4oG\n0ZTu76I2ZaEYblsqPc2BLj5rSLYontG4LK6q3xapn5t2WaogtVc6S/32W6E/pgP50vnHGp94TDbd\n6ak9naLs0o9iW7suu3uGetXRt/L7Ls7zB7c2jAv/1SPrZCk4jeHouIALprKnsaugxBJK6B1z2E6Q\nzGYHf+IZymYuQcKlvMreRP3qg3ZVdb38g9a4AeefmzXZzsI9+Y3UOmtmlWw42eVGWfcP+6hBnWgO\nHKEKldnRnNz4RmvUGEWV6kuN9fqynrv99+I+CKNEuM/aeH2g9l709bMHPKBwZXFY6f67jzUXZ8zZ\nyjUyd7ctY61bAbh92m2QmmOQfD1U/chUx1iDnRPZEKIgZjqEiww+lKmRHzVdEEcO3T8mc1vjHH4W\ndZMxCpCdhtphIVYmITLuqHIMIBhxT95zA9SHNyYz0fO9oFQmZOZdYdZFuGqqVWWCnUPZyQi+qYHh\nvfC9OLzUGwTQqKP1P8hr4xNdN3OQkWbTlJ+LGgdIMVdAfTVlv+QE6TF16Z1OI1sfsU/zwCnj9Klu\nQ/ZR4y7IGjj1AtQ1BzKyTVa7D4rXFVEfhMJALRwWXwZjOf0wpEwNtaiVMXsHkNTOgOrX6KnvW1W1\nr3SmORWDyyoCqji8ozm+/rX8zYZT/rMJamp4rrlUQUXUoPY0hS8ovSC/E8mpz89u5BdrBdbDllAF\n9apszz8n/7O0uWqMMSYJojM11dys19WPK4yho4HaXhNuLLhoDr7T3sXh1NxLgLJKwDW2RpY/u4y/\nX1B7OlX9f6ut/g8k9b4gKA9HSHNhPNC4T1CJ6vM9UKnI11VRIqpdahyeXMA3lZdvWLqv/s2CErvj\nFzrAGGPWHt81/QNUsdx6/4Q9ZNgN/5bFg1dW+y9eaJ3zgWq7Tcnih8MPhW51wqk4QY3NUhvyptT3\nWXgkF0Co1fxWVh7EHijOAOpFrpieZyGYw14QNaj5rLK/74PAno40hmdw3KztCKU6AKFYastfh0Eo\nTqeasw7E2wITzbkC6pyDmfrIlWV/jKpr7L72NO6oxhhwmgkl9Fz3FGpaMdsAACAASURBVKRfQOvJ\nUkBjXD6THzrYFy+HDzWh7g2opZzGIgYS0rMIUmZO/uzkJ+1zu1eoyIbVfy6U2Sz11gHcaCenIHs4\njRBlDofvaC6OQbrfsHdzs4dau7NqjDGmzvfDDXO0DEfQsu/DPqn9oN7cET3f4ujy49MuX2pvdvJE\nKLUBJwZy27KrANyZTpCszoJstA1qLrEkX7H0Jftut+zl6Ht4VQqln+uS21g26fk5EwGt6RyrDvvP\nNCb9juZfPqe+Si5qfg9ZS65eolL5RgiYgMU3uiPkyBC02NGfUVF+p76bgDBcvqv9V9LibmV/3Zqp\nTRHQZGmQ590b7T16i+u8D+5YbK5cRz3zRnuM6o381zYKVguf66cPwHUDZPzh99pjnbJ3CcJxE+Y7\nu44yWLGm5y6j0pr/THuPaUvt6XQ1Z49QX23U9U0Xzslv/0fFRsrYxS52sYtd7GIXu9jFLnaxi13s\nYhe7fITyUZEyHTgeun1FwnyEuLxZRYHdIE4mTUU7W0XO8IPCSG0pIp8hUpZEfanyiSJViThoCFSP\nZl5F2FI5/fT6Fbk7ROGmCDLn4T+IYya9qIjg8WtlRp/9ThFzp0/1uvNrcSus7yjqG+B8+bSryOE8\nZ45d//hLY4wxbZQoXEYRPXdY18WIipcvFFlzwyET+0SZ8hX4NwaoU528Uj0jKB40UDPwEzXOT3Vf\nhYxJ8+KlycCrsfG1suB1Mo2Na84tlxVVdPYVYZ2M4A5J6Nk+UE0D+HYGqHkUCooW3iFyvr4NsuZK\nY1i9VvaiDyO/s/thccCIS5H1itHP2VT3e+jrWVl9GKiSPdtFsSBKnzZOjDHGuAcKhwaG8PCQ5XKR\nlfIkNNZNl/rlpqp2pbyyoQ2ivWOvnls/VDT4+kSR+TH9OQ8iKL66qvrEVc/6AMTIoTK/Pc7Dbz2i\nv+BaOHuubFelofe7t/X3HNmtESiC06ZsoAf3jRPlHT/nuiNV9f/RvtofgeV93i/br800frOBxjfA\n2eTrc0XDg2HZXAzE0RXjVwOttrKujIiro37tHFlqIHreZKR+K1aUwciRrYzPKwpvSWLU4QTqoVhk\nKZY5rQPktyjXMMv7QfXcQ3FryLx/+69Czu2fqi7rW3BN/VoIDBdZicmZsiKVcz1vOtD9/a7q6o1b\nqCY4BRZpC7w9r98pM3n0g7IbWTgAVh7oPUGj53WxvYOn4g+5eKkx9+aVltr5VHPUS2a1DBfWiz/p\nudfwR4Rgjd9clQ0tPUSRjAzgqyeK9BdfK/Kff7iqfuG8ewsbimd13yJcV3WPbOrtd2RnUCWqwwkz\nhKshv6I5YXHyBDgP/9NroZ8GI9l8Lq+MyiZZw3BE43R9Blv9n1XPPlmsdF7PXb6v545BkljKOu1D\nbP8DQRDZoNrZC6v/IwBtHDOUY6IoF6CiZGUJxyhZtMmsz+HX5zbVnhU4fvpwVTz7V1AdZHCj61of\nIg14OOBuiG7q7zvMpcz2mjn+s2yo0NS8aHDtNK756TGgB/BbATgLlpZWjTHG5BZQhsJ/V061ZlVa\nspnsnMZi4YH61h+U36yA8jScyXeNlaba3NXauvKVbNLFWvx8/0/GGGNKb2WbsQ2NabqhtW0CSmBl\nTe/b+FudvY/gl08PZFsBVIGSoNa69OHR9+KVe/Unzd1oRPVZALEYiMFhg9JC7pGyVCHQTU/Odd+s\nevvstjHGDOGTmKCwk4TroG8pLsKB0O3D/WAhVcKqtx+0gTOi9mdX1H+phPzxGJWqCdwMfe7z4Wvc\ny6BKJvr/EUYe9ci/OxhXN5n4SU+23O6/V5gJxZLGzXl6F8pC06ne66E9Lt43AfWWzagfPV5QK74h\n/aDn+lAuCmg4zdWZ5qJpqH7hObXTV1L9xvCsuF0+wzbO9EH9XJyzjzPq47FTY2QhmXvYfDYp246A\n6pzCQzEJwPs21BzpMgfiqF20OvQFqITITPM6GETRCjTTDBRTd9YwH1L8LbWx7FXf1aYgp9m/RvAf\nTtY8x4XW7Gt4+C5/Yh+5L7+TT2nN9MwLqZiGOzAM95QJw7tRUH2rbvjbHCDFVzUnPl3S9eUV+Z/q\npep3fYUyIyjY1rX6PzLP/nlF7/OSmq6B5PYyPlFUUAMp2UhomQz1CUjKkt5XrOhnAfWjOO2Kk9k2\nKPg4yEhf9nV/f6Q55INvLgbXmaUgmchp/DKgf7szrb83RbWviHLOADTg9WvZ2XBR98+l3/NKZUNL\nZvZI13ca8ET11c5ZTHY2Bzo7BLK0g7rebHL7BWeIEuER++NYTH2xCLeiAaFdv9a+8RQ+oSqIQA9I\n5O2/+4Uxxpga13vq2tM7QlfUGZTTTG0pHKgPtna0NkVz8reTgsY0uMb+GL64Hvt6R0mL4RI2WDnW\nXqNworHcvSv/n99U318zh6eoxM188lcnV7ov2NXfgyjtTFCzO3uh/w/Dz+GOaL1qwpll+WsXtuCC\n9y+7KpRCcEl7N6cLXzHRHAiC2sikQat6GTv8X/4h6qcj+D+t9/EcHwpfp3vau4RBuGfTPCclG3E5\n9PfZufZsM5R9vQ6ciuPDOMwmcJV5QWI6WGca55pjtYbeE0HlaWVVP9c/0Xj0R6r/3oXWu05Z9tac\nsN4ntcdwgxK8KKn/6xP5zmxu+ee6xDJZEwj5TZlTAsV3zK8z7R/TnOCIZfXM4g3ce/tCgtRQ4QyD\nbEwty7+MWUsK7/TuLipnKbhW1n6htmw81D62DyLwCNWjEN+g8xm9tzeUrV7sqX5nlyhLZeX/J8NV\n1YOh6I5QxnLLH8TzspEB3DgXfPfXj/W8EsqWmWXNhS++EeLexRxuozKXWQCFxN7F4nr9OZ7At08Q\nLsOVLfEVxbMggf6DYiNl7GIXu9jFLnaxi13sYhe72MUudrGLXT5C+ahIGVcIrhQOYndgVd/ZUOYx\nf4fsGdmi64oiWs6IoqhRsmWD/4u992iyJMmy9PRxzplzf87CPXhERiQp2lXdMxi0DERmAYEMFsCf\nxAICDDAz1ZVV1ZUsMoOHc04e55xhcT7LnB6RLniuYmO6eRH+7JkpuXpV7d6j5xBl5riiSRLZd3Mm\nuYmSxJgIm8Uh4Z9XJGyxSmaAc5P+oKKR7bqu78IhEU8rwhUJKUKWCBOlDSnq220oYngE83VrrOjs\n4rwihtec3377gz7XVvO0U5+jA8XIwnG4aFxku0BrBDiT7Y9bZ6RVn3M4dqxz7EuPxfo87Chq/s0/\nfWueDhQZXn4Iu3hXfd0iopxBtWf+f/qF2grvBEdUzQ2oJjdn7jOrQgn4I7qvi75xwFFiqEuJTMAi\nZ2ojy387Svjfl4FTJtpHYWo5redbx8AbLjgNYG2/m1U2ZkTWvuEAUTPiTO+Ms/5kNEOoaPhQTqnB\ngdLrKpKcIbuf2laEvECGoISCT6tG1gnW9TkUZdx+lHrIrlROFf3tkpF2E/1NgcayIv6NfUWHXWT7\ntjYUPR6DJOldqV7jou4zQfkrOU//xmTbTVBlfVjrA2SLaqAOYm1d782r/V2yak3QDWtzMJhzRrYP\nw/nUr2h0JqB6j2Acn1gZdp8MZjS2OHFANi2o/yIZ2dvVnjISFRBG/pT6L8WZ16FleLcoMbLGa1uK\n5A/J9h59rWz7xSVorqdCgjyFLX4Wk83sfav5evCdMgQQ4psAnFLpO8pE5nb0GYmBAkKZ5uZY6Kez\nPdlEChWQx58LSTejfgd/0nV1MgVOeHQSy+qbJ58LUTP1eKmXOGZK+8pWucjWrD4QKiCMUspMQ2L6\nA43l2SudF75+KTRXmiz2xlPxebTK4gIYwG+x8kBj6QCVVnqvzMiYLPzcGnwicdmMB16JdAzUFcpa\n375RfetF+Z35OfXX6v28+jOguX8D6/5r+n3cVT9sgjyZe676jsjU3nwDuowM+gg0hOdnoKmMMcbP\neEba6rBugQz5SP797Xeq/1VJ47jIGeIVPsegBJsgO92VE2OMMe23uk/lSuN6eax1YGVB7bn7W/lU\nLzmQq0P9rjrUONR7mgMnX16a82+FngpD1pRf0VnwxH31SRxVjTNUIarHupcBZVQ60NhZCJZTUEsp\nEDJbz2Q77oDWlh5og+y65l8Y9SaG3iRWdV0EFML5kcauU5HfmX+aN8YYc+8T/FSDMcvInywsqM8T\ncd336rXqt/dGc20urue2jpUR3P2L+mLSUPsWV2R7i59pbmSz8m9VFGkmF/hzUBQFOGR6Jc3NTETP\nvW3xBOCXgEeuQSbZNw8SBpucDrQeDeHWcSSs61UPr0dzK5OHA80TpF4ac/dM/tyDcs4Q1akwHAOl\nnp5zjaKcF0SR32Gpe8iWhm3VY8Z5f2OM8c+8ZgLnTNhtqdppQN2gxYbsha4u1c9h7GoIWsLrBFFD\nJnmM6pbfQWaY9bdbU73cIIgmcOHM4KbxhuMmlQDFGZHNtFqoE8HL45uqrW4QfOMpnC9dfcZTKJTA\nnzEDiXxV1x4mnQXSFmbtv9R+qIdCVRQlsslE9x/CudepwleRuf1aY4wxxqO+D0bg0WAf1kcRZVxi\njQcZufhQc24NnqarCmptKFWeXzHZDkDJZdReNwjqKNxas7b6tDviPvAmReY1xgtb2jfPgZqLoFyT\nLOjvBfaJ9VOtJ8VXqmdrX349AdImm9DnwAdqDE62oF/9tLMsnzTdUv/2utrzVFCtqx/K/18V9Flj\nz+IHYRhyw3PkAaEy1vc1kKrNPRBVbtU3lISDiL3DwgIqfChVzkFc0r5Rf5+jXFSCb+tiKl9h/jdj\ndr/9zrAlNCP4srqgukZdUBNLut/KljL4m1/Av9K/vbJO36O+uYYTq7vFHmJdftgJOigOqiCd1t89\nfY3xeIrNs992DvQ5QRlrZil54ReCRdn0sCA/OrknPzlBHamOUut8WGuSpewaGes56YTeeTw9lGPL\n2te1US3qben+4aFsfgYX5Zjfl660Bl6BNPGB8tr8VH02upTNXuyiwufLG2OMSWZR8lpWe6JZ/X0a\nguOwrfoUQIhfg85wjLGFHe1dsiHZljch23GAVGq55OeCIAk7IFN8IdCxAdWvj9LP2zfi6VsHYBn4\nrRCeQ5QunewVXPi0RdDCnYnaF/Tgi25ZnD7VKzwFAQsXV58508V/O+G4mYVl8526/P7hnnj49l+p\nXxOoYq2BLIoswhuFap9p6Tmequo7HPyEsBz1h6Z40Tb7u7LZcRklrTXN90e/B8kCYKzDmEZYsxIW\naigu29u4p2fX4POJIhDY5h1h6mRNDaFmeql909sv9fxGVba8ta19u8MhGzwCbTXo6v93H+j7HHMs\nGGMNvdQDu+yV+jWtvbWC1okGanBev2zGQz02P1d7H9x7que61K53X/2V9mhupKJR7qt29MeWspjm\nRG4NlPFdFMKcoEjP/zYy00bK2MUudrGLXexiF7vYxS52sYtd7GIXu3yE8lGRMgm4UKKgDFoVRdSc\nPhAhGWUKqmeKTAVRxlne1PUNMs0Hb5V1S6FJn8kqOjx2KuZ0DBdDBTbmxN8pyhknUzPP2TcL9VEr\nKcJ2NVbELhNTpuLZQ2W+60eKsB2913M5rm+6cE+4QYXMeqpPm4xMnTN1RdSfVlHcySzDgUH2LJdT\n1LrRJIP69kT1nlMEcv25InlznBeslFSf8oWyo+k5ztZN8sYYY+48v2dSm4r2t5uKOF+horP9SJHg\nKeodrhZn1eFP6FVReUC5xEEGbPWB6lC6Ura8zdnZN6CByieqS4cs+ITzfYng7bMNxhjjbiv66PCT\nukzq0+VCNYSslDOovvc4YHkn3jhtqE+HZDDHI0VXvWmZvo/jzhO+P0cRIgED+Mpd9VuvZZ2LVET6\noqgsVxo1pGxe0doE5webFbJE5xrD6QAjicuG42RcPUnZYAH0QhE0QCyr66JkNKpNzY3iDdkpskzT\nCEoVi7Jhn6dJO2CNJ/s4JRvZqOo5qVXZSBA01sW5oriOgPotsaBxalfV7nLtxBhjTM5Sd0nr932M\nf9BSvfsgm3xOzqGTKY5wtnlwijLRgfrFByxlgXOWfs6+jvuyp9uU2Jwi8hOyTEdfCW1wdSyEXHpT\nY7IIO3oX9YzjPyhrf/RO89yNskoGxEZ2Q+eXo6CaIP43H/6kbMrRG/3OGdDvVh/LVj79rRRkumRV\ndv+T2OZvDpWhzCZVn/nPhFyJralv+mRwf/jT17oedaTVDfXl1m9V/ya8T2ec9452UGoYqx5N0FjJ\nVV1/73fyW5OO2r37F/F5xFfkT8Kc1W2Ariofy0ZCZNmiMUX6fVZmk47Y29PZ2cs3QuZ08Wtz8JWs\nP2JOoIZVeafM58WhPgMkaWKfKiO5sC1k5MAhW//wR2WBmh1lFjbn1b9mqP+7gj9v+Tp6Kw6bE8Y7\nviSbW07ndX+4X/ItqXVkyfxMW6roVUn1rsIVEwyo3wNRZfnSUbUzsCF7yT6Tj4wylz/8+Z+NMca8\n/6Ps05PQHPKnlC2cDB1m+RFj9lRZFg9qZBcX8tfFusbmeld1sDi+qiH5oaWp2uJDreneJ/Lvdz7X\nZx+Vn7f/j1BkHfhysk85Wx6FZwH/dn2ttWvc01hUjjgPvirHefeXcGKBmjo/gsPmUvV1tWS71RPd\n7/RM9U/n1Uer99Te6j7zvScbjS3LNlMokE1AdpRPtYZe/SDbL1/BacPZ/yD9lUANJLKgrNitS1Bj\nMkVlsAbawj8GARrQc0YgSIZG9XLAt+RgDpqCro/Aw+FCnej9rvoxEZLNTO+o3wJ874dHyk+1g+yF\nwiFU/0CzOaYgP8twz8x+ynimIsEfuWFmqGv5PHAzLMvWmnsgrVByi7BnGvnVbq+LzCwZfYtzKBpX\ne+dW8sYYY8oezQm/B5WTmb6fjshYu5wmiIqdL6A2Dy/0zCn8Ou4QEk7sQcZwfXQ6WiOGQ7U9vQpX\nXk2/n52pr/1Z9XWIzKvLqzpPyDoP4dgawh0WMLouA6LRUiq7bRlO9NxaBX+Jf0rMNNZmqj3EuEXf\nU68x+7K77Pea9+UnF65lwwXW5joKNxE40SYj3c8fk7+aYivDocakcYA6EfvSwo7qkVzUmOYW8sYY\nY9IP5Z+KG0KIl0H9Xu5qTR7soXTmEhphDvTGGBTVGGR7bA8Ey6r6L5GQTS18Ki7GhQ3NjaUB6LUr\n+QJHWf+PgUoegHpzD+R3Jyv6vgHXwwxEYhXejBBcZhfcN8W6lcamc8ua88mCfMg165nFbWaMMZNI\nxPhCcKOBdAqALhmAfiujCHf6VuPybl/r5erqtrltmYGeWt7SXsKbV107oLVcFv8FfEtjuJ4CcM4M\nQqigoVqUvC8b9/dBhFgOAtRWel7XLaN4k8ypT9oWsvtY+9YkCI/GFaqcR/KjflQ5o89R8aNP42H9\nP4mKahVkdMjN/hoUWm5D10fDoMcyoMciqCjhf2KgTi3E9dWF3qG8Pq0Hl+wPo4uy1RhrZOlIcyKJ\nqqcDtEUQFbvCKUplJ1rjrX34Kuqx1xfyS4VzIT1z3NcNAtWALFxdh/eO30+KIFY4pVE+QqVqChLQ\naK9yCbIll4d065bFF1R/9eCp6lxoz1eDJzF4T/aQZB9tvT90buQrSh8091cXhNjZ/p1OSTh76p+L\n19qjlSxOyxb8eBXNoYW11R/rkltZML1+z2yAFPfc51TEWt4YY0wiqTF5e6A+HssUzCyjvoxgk3E4\nZ8ZT9en1sWyweyJ/Xi/q/7lVPXvqBkWKElTMrf3l+j3xKc3BS3d6jdLVsdqUva89S3ROzz050imD\nETybbeC+QxA1IU6DLKECmvPq9xP4mOpHJ3rehvatZij//eprIajL5xqb/FPQZqgGVg71HjGBX6nJ\nfnE0k01cs/+7PNP9o66/vW+1kTJ2sYtd7GIXu9jFLnaxi13sYhe72MUuH6F8VKTMAAWA7kSRrHFV\n0bz9mxNjjDEeDnb7Ud6ZX1KkLkOWpvpCkf1LWJrHZPcDqyBfHIou9zmD2+0ptDcmy3TJObzLQ53l\njcYVbQ5xvtLX1nnFGOf7/ZzHnsQU/R2d6wzcdKbfrT9UZn0bbosamXdfXBG16IbqPe0o6usnOm6a\nqDDBOB7gvP/1O0Wxj16rfumGosyf/Q+/1/PJFFuKEAPa9/bPimT6Y+q3reePTTCqNvzwf4ulu1JQ\npHVpTVFFH9+Pp/r7Hn3bBl2UBukQWVOUEMEZ4/Fy5p4zrk7OakZcul+J5/THuq4Hmui2pUPm0edV\n34RQ2KqOuC+8DEG+Z4iMlyzLgKxbNwDnCWiqABlEB2d/2wVlDrxJZQSSK4qge8OKxB/9ET6Qa41J\nEObw3B2Ua1ZQdigrOnpzroj60KF65Igmewca2wrInllbWaEh55mtDONCTpHvaQdeoYoyCrOp5ogX\nNns3Cg9JeJJ6qB6NUbrwz9R/9QbcB2saH8+W6j89Q6WlSSYihFIMygXXL2RLdSLsq08URXYnNNcO\nUQJzjUo8T5H9UE62552SBWuioMPZ4AbZwMWU5qpnTZ8jkFbVKdnT2xQi4nugk4ot1WntuRAPc5y1\nd0/U54d/VbZ9/0CfLrLgy/fEW7H6iRAZBL5NG96I6z9qvl+cqk8iadV546mek79DJhdOkv0vhUao\nvNcYL+ZVj60vOKsa03OrJ8rUnTPPmzXNue0nqs+9X+iz1FKmYf97IS5C8O4s5mWrzaLmwhCKgrn7\noAzasq03X39ljDHGmwDtBpJjNlQ9LMQQ9BxmAf6njMWPNKAfztS/Zyh7uXEGedq1Aw+T3yUbOfpe\nfvbgBxA1qMitPZE/W18HFYKq3sF3mmOThsYzhzpRiOxb4Y0yptPhz/MllqJNCH6lBNkyH+ouHlSm\nmmRaTqqoeVxb3Aia0+kt1KTgvjGgMg7e6zy9k0yuA7s8eiWbL77W71Mb+v3TfxCrfyyFItGHYzOB\nG6tThn/mVKisgzf49Cj8EfCRhVAfioNcy2Q1/84vZdv9azJq5/r/+bE1dso2Jeb1u2hc/sDiiCoW\n5McsVIHXrevWH6jNcyDzciF9XuxpzG5eoYyFv++GQFw21aduj+b12ue/1u/JSJZQblhwglb6VHOq\nDbKn8JXaf3NxYowxpgE6IYL6SGxFfRp0wUnFue9p9+fxhYTgHBuCBpuCepjAQ+QwZO2x+RTrpov1\nZ9gBkQm3WtwHmooMr6Uu5UWpIYaK1oD8WM9aV0EkOumvoVu/S6f1u8BEfr+M8o1z9hO/kjPhNB5L\nfQmFSRfrWMCheh5fg/LFPkZRVDoScLZNtS5E3cpCWipPgyqImZTqcXOgzwHrjQuf5PChGBQNGBdc\neMZFndmPxeGMGfDpGoMwHqJEAnJ45kSZj/lagYulBO9QuqsxGKBc4gNJMoJHLwSKbDjhTH9X1wXh\nBAj4fx4PxBiuQrYSpg5ypwx/3KynsfMMUDZryIYD7+Xnr/OyicWM1tjMumw9dwdlS/x/raz2jSeg\nlP2aa4spVETY09SutC5cnZ8YY4wpHGhuX53o/3s57Y+XFlEdJEO99kRz5sFDITYLqETVjjSHWxXN\nhcAUpRt4485B7Y7f6f6TpNBxSXxPfhsEYEb13U5o3auBgptWUOZirxhHxcQRgBOHffsY9G0N39Eq\nyNYb56rn0dsj6qt+yoD8zK2ofSFQJ67JT+vE8tMFY1Da8fpRe20IAdMu63lWJr9YA+1ngeSit89h\nz1DkirKPigTxr6iWJuGFbDNvS6iZHRf1uQTXSsCledVHFc4Bb1KhrrWkea4xWoQXbj5tQexQSxuB\nMsuwr4VzsSJ3alJB+YUl3q0m+CVnVGuaM6jrSyC53/6z9hDpdfXZHRTNruEGtFBwDRDUoXX598CC\nnnN/QWgqn1Ptbrbwr4z1y0ON6QJ+2BHN0I/yTwtxPa+GytAAJH0SxbMa+9wh6Lsx/n/Q13V90BhN\n/HIW1PGUd697q9r7DUHJutqynbZf9bizyX37st2kE8XfYJv7/Lz1ZgJXpqWCNXWiHPxQcyf/BH49\nTl8cH2vci1e8e7I+LIC6c6Mk9vZb7UUu4fDJc1IizxxxLOaNMcYE8qkf6zJzuEy51TStscbO1dG9\nvA0480C6HH4p5cUuftMLL1JwTvecsp/e+1ZGdr2nukZQM1vB76yCBg56tU98f6Z9cx+emxZKg4UD\n7RvPmSPRRdn0o6eypctr7W0u4fjb2ZQfybtVnzr8oYlF0Gigeic9tfPyxOKwkY34zjQXjm5QU30l\nJEzqjuaYb0Fz+ewViCGEK2PzvHu51V/BiGwmxd6q3VZ/RWd/e72xkTJ2sYtd7GIXu9jFLnaxi13s\nYhe72MUuH6F8VKRMj2z/tKUIVaWhSFmFc5CzriLyU6K8PThWpiBr3A5Fg5tV6KA517wGk3U4oIja\n5lOdW18CNZDNK+J1+VrnC4s3qkdmXdHTtXuKOp6/VgRt72txAASS+n7ziaLETp+4IyxWej/KMYcF\nZRoaZK4ffqIM8san8LrACj+FIfyUc5AnH5RtXLmjSF8OFan8J18YY4xxOBXxq5DN9DcVlfZ71A8t\nOCwaKG5sPJfSUnpu3pRQoAkSeQ4kFb1zT+EoKSoC60uoDYYzk46x2haPoLZE1uv0lTK4L/8i5M0m\nUcsH8F5YHDUzUDw3dWW36m193rb4OaIfhO3d2YU5uyhbGReUxYk/UnQzaUBBwZbeacqW/EFFRx1J\nRaANZyw7DUVLR0P1w1xetpMFBXH6Qc+5vlT2yVKhSN2VTc7D/t6vaEzen5NlKih8Or+lesXv5I0x\nxpy9V1S33SGj3OQM8ZBoM+cPhzG1o+XQfTuoeXgG+nsHdav5uNAOuZAi9rUCHVZC0axJxoFz6dkF\n2WDSynDUFA2e1Wk/vBoT0GSlS7XfyPRN+o7GdRpU/7UGyiY1QQcs3JddxePMsaL6t3As23ZzPjwd\nQtnorm7s9cLiz/l7b/snjoT/v3JxpWfEQOesPhaHyjpnYEucCz4he1BkXiZRb1tBWSv5UGNh8TWc\ncca+hwJBCV6Mhbjm0OYzqTh5l+Rn3sMKf/Zac2MGwiZ3T8iRsGNE4wAAIABJREFU9Qd5Y4wx04TG\n+vSDIvBXKNp4jGz87r9V5nSNzEOrrbm59ydlKEiam81fSdVniorSm++UEU2FdP8c6LYbuHUiZOu3\nnwt500W96e0fxHlTKcNhc19oqMXH8kMzlMBK79VvzYLmQphz4tEd1XdzG14KUE67L8SNUyGj2W2r\n4qtcd/eZeE4MPBqv/wzyEQWyBbJsObgRxiegqFgHhhbPxy3L0h2N86wAlwWQoFZN9mMpSVTImPZR\n5/CDilhZ17qQ2tB9Ol6tN6ffa1yKLzT+CTK0Q9AcDs4YBxNqz9oz2UMoIR9ycyo7eP3iB+OCuyrG\n/BmRMVxHkXDxPtnkVWWZSmT++g3N79ffyZbO93VPM1Xb5hog/4KyiU/+4Vfqk035uQhIvm+/FGJw\n0NOcSS1obFNb8v8+p9bkCX3/7muNVRnFhgkKXQ+fCwW0hAJB4Qwkzb6yXb6JbKQAR1f5RNm0ebL5\nTrgSuqd6XquGYplf/mUDVOqdTY2Fw8hv736nOd640ZzJZUEz3bI0WZPDqM6FQVP4ffJ7FlKkzdyJ\noDpYd2gPER7LtgIzuCOSqN85Lf48eExmKCyO4SZAbaWNYk1/gDIQikPOALAM9jw+lH7a+6gu/Teq\nHxNXxExdqC7BJRYBuXNzKH9eo1/n5zW3vPCreJi7Vr53BM+Vg3W/X9Pz3G75zoU7k3/RTz2455wg\nvlxTY7r0jYW2Cvn12wnzzeKasbhGrofq++qN1pb85hLf6+9XKAg64KtzAmn0RkD10EfjgfyEa6w5\nM2moHl14grqguTygqm5bAvBozGc1d0IezdV2BdSrU/swpxu+t45suYTi5fSl/GyZ9obgU1pep3/m\nNRY+UE7FU9W32hC3SQDbTMbULyub8iN3n4qDYXlLe4Iz+C+udk+MMcbsH2kfew4aIQnXTCYHmiKl\nMYw9FcdXHa5CL8pua9Ba9Hu6vtpXe8qnmvulouZ4s6J6h2Pa4yyRmbZU81rn6qcKKDRLrSSQwA6y\n6s94iD0dKkvLef2/O6fnVs80vsUT+aw9OMMOLVQhKDq2Osb8h/9ork6OzAwFIS9zJhACVeLTXJuD\nVyTvk++w9v2eGMSItyj1ouZXz/Cu0pNN3FxYaEvWEtCzs3lQBC6N6dKc9mE9uLkqLc3b+8/0zlG7\nUZ09AT3HBZLm+Aj+npn2dVOLY4b9rIHPzjmPaueq+nYGV0mTvdQ0ZN0flJuf6+GkCYH+H/c1lgOQ\n3l44ZIYgut0DPb9zLb9xdqU10ke9cnfVfs9YtrGAalBiVf4dt25cDvnlPgi8KtyFM7jWtj9D6fIf\n/53qR31n+IIs+28HKKxoVjbZ4b7Ffd2nxXrkTKk/8k/1DuWER6pR1nhGNzQ+7ajGzYsEpieov9+2\njEBOujwaR79TthZf1xyYwg32/ZdCRxdBKafvomzJu6onKI99fqD3sSaot/wD7fef/xblTVBu++wT\n2gc/+b6L/XemVR2ZNupwft5rq6y5M7ie4qgDP7gnP7N4B+VF9klXL2R7N2eal7FF2fS9L7Tv7HvV\nl22QKXuHQtpdvFfbsqug7RdAsrVRKlxRn2yjauq03pF+UB+uoDa3zb7yFE7G8++1R2k1QNMGVK8S\n/rp8o/3s4jYKl0ndt9pR33/yuebc9u/Vl822+uzULRvbADEdDskPx0BtZTc011rMJXMD/1v/b3OY\n2UgZu9jFLnaxi13sYhe72MUudrGLXexil49QPipSxu9SBM7rUDg0fUeRruSqPjPrQl1c7yvCf/BO\nES8nCghz8Hk8aymy3+JcXo8zviUQNJ22orehIJnNE0XGal19H/VwZhnEiWOk//dKyqx8IAM9f0+R\n97twMQRg82+eopwzU7R1D24Ivw/1pbGyjR5Yl8ecY6zPFLX0OuHOAdnjADXgyyg7+QUZ2ioM3wdE\nOUsDPffXv/mdMcaY+3cViTx3KhptyCQ1K0VTOFT2IDmnNuRWFN18+63O61W7imw/e6Ls/10UUYYg\nSVwLilI6YeJ3gAxxoyLh86ovGlxf56y6GcHXgIpEiHOFty0Doo7hsO7Tder+FbhJpmTZIyG1x8F5\nvea+2mvxO6R3FPEOB5SlK6IEU79Ru5fnhQ7IJDlfDBqpuaeM8xgER5p+WLmn6GirL5u7Olamt3Kl\nesWSsqUF+I8cZL1qI6EtHG3FQ12oD3HE2LTIALjJCPgsNFhdUetWVRkXr0v9Pk+me+pW9Hp6LZRG\nFdsdkun0pLg+o2jxrKn6nF9onBCRMiEyJgb0WPVGNprcUWYh4VIm4OzmgPaqH3NLnGle0NwdD2Cl\n39OcGE5luwtZeJkAwgzhPvCN9YdhTZ9O68D+LUogqMpndjR23qH67uQHzZML1CJ6fY3h2gPZwuK2\n5he0PKYNouHse3HBnKBC5PHq7zki3zuPUGFAqWX/K2UwD0DiRFB1y3+hyHo6o/kbYAxudjU/L97L\nTwSjZB5+gY3Oa0yvv9NYvqYd7pBs5ukXv9V1zKX3r5RFCXM+fOcLoRR8nA9vd5XJTMDb0yDS/+61\n6ttCeSv/XHP+3t8L9TYDDfH+DYhCzicHQxqz/Gd5tQ+urA7cNJdfS2Hm5hRVi4n6/Q4Iw5XP5dd9\nZE73/qh2Xr2Sn43Mc3/4i0Kg9t5R72BP/RgP/zwuiB6cBs6a5sSI/gwHQKk55BuzZErjKM1ZZ5z7\nTvkSP+fsJ/BjBUE4ze+ovgtPtT4Mb+QLTt6p/0bMaa+Gw+zu6u/1G5A6zZlZ2VKmMPtYfeQHUXJ4\npDWrQxbrcqas9MkLrY0Wz4ZxWMqFmsereY3pKn1vZUJL+OlCRZ9vd+W/9r9T1irkgmtmHgUZpLIu\nD/Wc9rHm8wXzP5FV3y2hEGghKm8OZDPHcNhUUP3rtJXlHtfVhyWy8m63/IzzG/VNYV/ZrgFKM/Of\nqG8372tuzdx6zsE3suXKiTLRfbgY5kHk3bqwZtZb8GYM5J9x02YAB4zHpz+s3FF9jlAim8KtYODc\nskhiOn1luqcoAgGqNX2QpJEQ3AdO3TcI30UuSsaaTHIQdIUnBNcDaLxU9KfsWzBgjJP+t3inYl71\na6GmbKQ7pXaszSlT7WLvU4XPxDNSPWYxtoicv6+yV/GisrIU1f2LBX0/tHhIUmqgKzIykzrqFzwz\nktH8bcBDNmK/M/bBq+bT9U7UmQZjUD/Y9oA1fga3i4Vk84CgdsFFMwYZ3R3Kb0zgK4rEdD8nY+kO\n3B4BYYwxvoFstjvVc7Jk3QMs4hPQTs0hPHxJtW/eqznYtfYWqIlc1mXj/e81NyIlraWry1o37t7T\nulM+1/0spMveuZCIu0eyjUVQYetkzx/+nfadK4/0WdvXXD3bh0PhB831aySA4hl4+eDtCzH2FbjE\nzCm2mlN7Y0vaSyynhNi8uZFtXbbkmwaXKKb1NCfiIIvmWYfcRQsFp3W2Biq3tKt6Orzs/eLyRWG4\ndHJwemUfy0/PfaK937QN+vkEv1uXj2rACWaMMVfv28Y10PcTlNNcNXhCmFMReP2CZMwDoAStdeE2\nxeOWLYThMRszn6rsRYxP8yezqvnXbqgvZvifAciabltrlqukv89ADSwtqE9mY/mZBNA2b0K21epr\nTB3wVrrYL7pQVQ3DcxGM6PdXx1pHDr/VGhyaF1ph55kQK540qNXfoZiFOl3DKX+xmuM9gDV5hNKj\npcpXachmC6jFuR0g7kB+m6DqtYRi4wQEyeWe/HkbbrN1kOxjhxpcgItmAhpsyLvVyqLaVeqpv+P4\n48SObCWIyly/qf7KZzWHBqDQrouypTAnCipNzc39D9q7bcPLN8d9U/CHhJLAyW5ZvC7VYzbEXjJa\nR8Nj1KngPWxU9fwUqMGHvxBaxME75N6e9lCVivrVyZ4mO4faloXk/4uUhPbYy1n7DWOMmfr8xhd1\nmnqZd4yw/NDigq7pB3SPBryVDtQnLzhlUQN5UuT9OgVXzM6v9U4ZSanPPrA/vOBkiCsgm1q+L1tb\nuy8FKYu37fgArkN41hoVzd/CAegrOGsyoJd2Qe9+/0ft45M+1SPzTLbocWiMB2PdJ4FC493nQthY\nvKeTQ7XLUuo9OJF/e/vX/6L+csoWH4dRia6oPZWm+mF6TLzhCgUs/P4K6LR/rdhIGbvYxS52sYtd\n7GIXu9jFLnaxi13sYpePUD4qUsZlFEkaGEXAFlOKElp0Em7O8bkJHU3hUmgS+V5YUQR7Gc6YEjrg\ng44iaMOpImDDmaK2zT1F5Oswaq/fzxtjjEmsKqvTh9tm0FY9osu6/5NfKXPsmtN1MyKF3Z6ixOen\nynREo/rdk8/IVJO5DnGotU+E7+pK9UzmYNi+C/fLmhp4fano7v5bnQ9cyCnS53aon1pt8Qi0yebN\nfLBLZxQpvCqhB99QZC9YS5s2SlD5jKKfiQVFJxNRsjycx3aD7hmipnBxqsxonDPu6w9R39ng3B9n\nHv1E0ksHihaWCqrj8hO17Ufgw88Q1THGGCdn+U1YRtGoKdrY68PX4NBzM5zV71XISBQUWXY79f38\nDmNX1+8OCopAO1GXSMAREyV7fvwDEWqUdELLGtvNZ8pGdVBPOgX1ULwkqkrKYn5N0eXpHFr2lurQ\nhcY4F0GVIy4bO39loSFkU64FZWVGQWUPJ2V9dluq/wocEwHOX7f7uv9ZSTbemciWZx7ZamZd1zs5\nP17ZVbsmFc77w3Pi9qm+7ara409p4DJZ1Xc2UT0K+6rvOELG9bna60K1ZH9fKJD6hexn8ZH6LZpT\nfTtdIZlGTWVKyrDlGzgWPD9DNSWzpnsG+6rrO/iOjn44McYYkyTD9slvFLF3ZxSp7nMW/aStedIv\nqg5VxnxlU3XOLsnW4/BljBpq49HbPxtjjDl+L56MHIiRB79UNsaN+kZjLFtpvtZ990713IhLbVx7\nrrH2pDQ2b7+SwsH5PyubkYDtfee5FGtIbplv/5nzw0X18c4vdW54GtNc/+5rfd9ogPjJolwGmsDR\nUKT/0S+VoVj4XPXud2UTb/7TX40xxpyh5LOyJHTC3U9Qs8pobnXh2Xjz/VvqI3+YJDO6vCobT27r\n/5ayzYevhW44e61MQhLbmwMh6XNq7r9/BVcBSm6+gOasc/bzlq9RW3OrhN+OzFA66mnce335jPYB\nPhBVmC7qJ8k5jcM6iM5hC5Ul1FzmUECYC2uAditk+VCyWd0Qt9hyXpne8/cnxhhjogsah+R2xgTh\nFrA4PHpV2WYJxFk7ARcTylMjOLQiCfVtfFFjkt0BBRbXmM9AOF4Wud+B/IUX7i9Dxm1tK2+MMWZj\nS2MQ2dF9KyfyO4Oy+soDYuL5b2STmU9kwxzRN8dvZQvDhuoZJRvvjZEtXwdtmpTNTxuqjweUWa2g\n59E8k8nIv8QDoAbO5N+udpUVO/kgm8tko9xfc9eX4ga3LCGy81O4BxygvNourSte1PzCSbU/Qn+7\nDoUcLB9p7fXFLLUm9XsbXo4JqixTUFgep64bk53vNkBjTfW7YUDj4wfxaeBfcU9kM6Wy5qbX8xN3\nzmzsNj4y4lNQHD2ULCr7skknaiP+JdlJnb+32TPEQ/L3zpHqAejOjJu6TwLErR9uiIN3IKHwLYsp\n5vDE+aOSE2ABEwPp3OzKb7kG6ovmJRwjU9U9hLqHB+WoFhx6XjgJAqhPIjZnGvCiTfzwPoDecozU\nhxFQU1PQCy4AMmPG+Lal2QWR/UY2122hALmidWJKJtYNV0qd7P2sL78fTslmFleFYIkUZTOFfX1W\n3p4YY4ypHuj6hXvyN4t5eJQeiuNg6UZ7rPND+ceLK63Jl9caCwuhuQrHzNyO5tBCVnudDnuhkqWm\nVGU/Of2XimkOj8avjc+pHAsVFbhSu7Obek56Dt7BpGy07ND3l1zXBVGeCqBeB/J84FK93CAZmyix\nleDla4FSKByqPpa6lHdec3U+KftI+GXr/qj2Aw9i1OeTn3LPv3j+2NRRfXW1UOJpo2LVlE+p4Ytq\n1Nvlkt1NXbffvMZjWuMmM/lfJ1n1hS+0Bwkua40YMi/HrImdCWipkYwztqy1tgPiZcwG+uZK87T+\nQX2xeVdZ/lBebXb1dX+PW88voxj5Gp6NsAMOlE/yxhhjHCD0FpZlG3EQ4Z2+5lTnrdbqcQFbyajv\n13bkd2pFVPv+oOfEUvo+/gAUE5xli/fUni5KbImwxmbvQGPRaqK+lJTNJj3qhy7vZj3W3AzoDV/o\nXyICq/AF9kGMlD5oHerl1C/pObgiUYC7eqm94t1t1Stt7T3c2tM1sUnHVPVc3dAeKO5CwedE112z\nP7+/8LdREP99mVh0qCP1V2CqdlzBA3hyoft7wrKP1U35gjp8qx/+9EdjjDED0LbzT+UjEut5tSMs\nX3T2Ur6kBoJ+47HQKJ///smPdbn/5InZ++Zbk52Tf1p5pGdFWVNf/CCUzQW8ZKvWCRPecz3Mq0xY\nNhdEJWkC39Ff/ixE+el7bPae/OXWF8/oDPXhsK0xfPmVnnN6KKRMFJW2RFg2MarDBYuiWNIJH6e6\nwqQ2NNZPHwvJF0Odufpe686Q+iZAO12d6e9vvxGSZwjnTYpjBN3zOu2TLW38UnN53JWf+vCt2hUH\n7QQ1mnFwimHtod7PY5zW+NeKjZSxi13sYhe72MUudrGLXexiF7vYxS52+QjloyJlunD8h8i214lU\nf3it7FcRVMfKtqKmD36laHODyNTVnqKIsSQs9iBVOmQuEnOgP9yK/J0bzlOSlVrm3H6fTMEP//VL\nY4wxBSKBbrKWSTKbaVAGPpQQ+nV9Vi90/XBd972zquiw8SvC1j5XlLJzA//IO11fvlFkMLmEAkZQ\n0eMe0V4HSKIR57b9nBO880A8ARsTZS78RG3LNUX6vAP1TwJm8GAwZnycrz46V2atcqpI+2lZn8ub\nef2W7NSwr+yApQbRHZJdjnBG1acxG0xQmZiqD+stXT9x6nkpWNoH4xSfpFJvWfzwhbiqZCyJyM8q\nep4VzbUYrw/JXpUKqA3dU2TbkVc25+K9sklNmPszK7KZlTVFP2tXyh6dwRzu4Kz/6ifKIAxR7Gnv\nK8Jee6nMRiCiqHF+XZHqDAoKQ1jzx2XZdsyhMY3lQIURYb+uKzsTQXErBzJnUoTbBTZ1H1Hi1CPV\npy+TNJXXqm+/ofpPyMxm5tQ/8/fUvlFd/X9dZHyN7h+HJ2PgU7+2UcaIcnY5BLKqcKm52TlAveMO\n2b605uj1gcLUh1+pvbkE58DziopPyJpWOA9qsf87J7Irn9G4eOHquU3ptFWX2qHadIPqxA6R+O0H\nmuftMEia74TiKXNeNz2nrIt/Sbb/YJOz6pyZv0GV6N1rlKYaZG3gXFl6qj5+CFdN3SE/8P6F+JqC\nIDocKJuEyEgu3VPfzYfyxhhjjuCKKr9V5nMZ9aEdC3nH2dUfQMhUjpRV2ryrrMccNn72tbL2w0v5\ng9XH6ocwib4qCmKPPhfHQYaxKV9ZXDNC6lydyQ/luf9T6jHwaGyO38I1c8oZfdQ4tnd0fXpbY+9C\n8Wc20P0L75RNO/9a/rtPhnvxl7LRRZBPN2UymRXNocSSslnRCT7FK/9321KtotbUUT2dZAu9G/KT\nEa/GO3yj5x0WdFY57FXuYmlD/eVDteMG9axaWXPOC5KqQO6+7dZz7j+SXdz9jbKZNdAQQ5TRPFO1\noza7Ma8/gLiDyT+9wLxIqQ/zD2VruUVlKCMvZQMt/HVkVWuJB3W2y/fKFDZQEDv9sM/95Weya/Iz\nibj61gG3SGJD83JMZrJ2rnlfK2lMIqjhpVczPE9+8ub6xBhjTPMKLio4UGYh1kzUpJwJlF64z3ld\n7W6BJGygOtKq6nlTt4w3BrITcQ0zcukf62QQ1+B76oOGKNZJm92yTNgReXwoPvjgCJhp7XW64epq\nySamiyBFvagPjdX+DtwQEzi9hvBZZQO6XwAuAQecNS4P/YQaooO1fjEvOxjjc2Y9B9UBfYFqoHPc\n/rENs/HYsHUwySRz5Vp+v3YtO1haVT9GfUI1tPQ4MyyDigAp4++q373wuIzhe5mBqA2nQPGOye/B\nmzcbWPXzmmFN9xysoGYGr5gjqvnvImM5RQ0JYKHxBNiLgGSbDvXpgJfHCcJmAGeM1/xLxZVhm7rm\nNJazCfwcqND1ybSmwnPm5xTnRGPlnWlMr871HH9Z/w8kVL/QWH0YJos/JNs+6KAICSfD+hocZ3d1\nXf1SNnvzTnP34oP2GmenysQurKBQc0/7TIuzYfVae4+LA/mvIv5/ev0H1RNuwiUQ1ZGE+nc7gaLl\npvrTOZAx+EEDT+IaS6dTttI5B7FSVH3KID+bZO/nQUZu3YPHA0T41YH85dF7ZcwreyAEQXckQdgk\nHsgnZR6pfU54VPr4uGZBe4Rr+rFaQs2pDEeRS/cfkZFOgeb6X//n/2iqvaYJ4ZPCafoDyNQsBDoO\njrDJDCTkFBUY5+25hxxeVNfgLQoCNcvdl3+aOlBiwdZXsigXgrxzM9+mzPsMXF2WypoHtFYZNNNS\nB44ulK9OQcuHelofLG6sFKcS/Kgo+UGRzZzqk2U4RqYgAwMBVH0ien4A1JQ3KVv2B+X3hg6NQXhR\nfsXLehWE86vVhDtxXmMxbIEia8KpUmXfClo5tqWx83E6IVXWWA1nuq5Zlu+oX/KuB3LfUplKss9u\nt1kX2YdG4d6KTkCQpvX90C3bG0dUnyh7v4ATTq6sfjda0f0HRyfGGGMOUYQcsi4U2afftkCTZdxB\nEEFj9gZdjZ8T1dVHnwkFnV7XXHn9T/IJ7pramX8iNMjSL+Baq6pdZ1eq3wQerNwSyqFPtX8Y+Dw/\n1uXwh5fm4N2uya6p7QMPfHagpCoX2pfOb+i3OyhTORyy8Qp8SWXq1O7LLw+13TPjpvzaBqj5p5+z\nn0RV7/gvcKWCWJmCGlqBr3LzV+qDRFJ7ovPvT4wxxtS8Gjt/Gj67iP6fdsl24qD8S6dwcX2jfXkJ\nm5yxn/WV9Tx3R32+8/far+XhkjqEI9GLStsE1NhrTgV4QQw9+UyI6CKnEOKMoZmor8flv632ZyNl\n7GIXu9jFLnaxi13sYhe72MUudrGLXT5C+ahImQnZnZv3irCNUPLxc24+FFU0M02WfjpQNLf7QVG/\nYR9td4ciYWcNRRcvv1WGYfMznZeb3ybruJg3xhjTAIkyg5Olh4KBA6WLWVgZD+8MJuyIwpkdeFl8\nfn0/t6r7Nou6rydGtHWiaHXlSJHF+o2ilmnOd2cz+l21jSJDi+xSgug0/CxZzj+m4JQ5P1K2ctDi\nTDVR35M9nfWzzlsubgq14OA8occdMD4QLv2OnrFXIEsNUsNzR9FLD+eu+6d12qw+CoJYGbtBrNR1\nH8dQ0cBJWWPl4Kz8sK3IeRWEiEkqShgO/bwz/i6jvpxOVI8RbOteIsu+rLI+VuauXlI0dEKmIbth\nsaGrLyym8D6ZgPSGMgMDzgCfkv0edxSRjz1UlDYT19jdNBUJL30jW/N0ZMNzj5SlWs4qE1KCY6YP\nx40vrueH53Q/H9HT6jGZjJr+P/8sr3aSlWqckSnuKLo6tybURyiKrRX1fQf1kk5b9Qsl1f7EYxRq\nsoq/Dt+q/5pl61wlGVBESgYoLXhizEGZohn3rOydUCMeEjd3dlRfJ/xP1y8UwQ8Y1Xfhkb5PJDRH\nd79S2LzeIMI/ko1PGM/qCPUP9+3Vl0oougQ8ysLcfSQkWWZV87cCMuLdP4EwgVPkMXxHC1vKshSO\n9fdRS/7lw9fyIzewsAfJDqVB7kVQU3KB0ipT5YNvNB9n3Ce1qTGbopw1tyqb9MX1+8t92dz+a52d\nDaZkIxu/UjsCoNde/pMQLAecyV2kb9d+oc+L9/Inu7tqZyan7FJyXiiIflM2mzIa1GBO9Tg9UGbx\n7Wshh3CD5tNf6/krqFoVOD/9AwgZZ1++YyEKu/1jZWyjUXgqGvBLwfcxnunG12cgEUHvbTxTdmf1\nudTjaigC1fZl2x7O28+hCnIOWsMUgUvcsoRzGqeOQ5kg51i+bNzRwKV8ypTE76i9cZTIvBmUx5i7\nBz8IbVK9UX9GF+SD5pbU3034nXoFjXffId/1CuTUEQpHY9ATy6Dr3JGAWZqpL/JPhPxweWRzBxON\nDSAnUzzWWHzY1XybkNVeDur6C85l3+zJj1kIu9VPVcfledl+nGy5pS5x9kFr8emuxmYEd1exrvls\nZZnTKB108Mdn36tt+yhOReFkGYACG3Be3AuKwQPfxu4H2fzFG82B9Lz6OgjiIpKXf157on5xwdVy\n8UZ+pHyu+iW3yIbB2dIFLTcgQ3zb0iWD6yeD2HfA5TLRc/tN2YovoufMULWIktHN1eUbwmSQx304\nwpqyVV9Mf7dsf0zm25CwtGxiADLIDdL08pi9CXPfCcJzdVtogth/s5Ob+b1m6IbXBLRAe6Y525+A\nHAqonk7uH56Hi4LMsw9OCx/Vm4IcmsJ10x/pumFVPmyCaomltkLC2UycTtNBam8Gt1WMeeXxacwG\nIEj6fVBIoIXCMe0VLL4LL2ilUFK/c8DfFoB4aOjV2ARBt7pCGhOLm9CFAmQDFYyhW20adn4e4i4I\nEiabIjs/Uv2vOyCmr0FBdOWnXPD1eXIoDPbUjsZr2fy5Q2txcFH+ZW5N933w75SpXSznjTHGXB6c\nGGOMuSmgPvL/yq+mFuTfQ8yduTu6j9/JPrQBX9Cufje80f/DIbjVgFV5GAePB3Qy3D3OiGzBBadW\nKka2PSN/32CvVIbPboB/dsD1srSpuZNe/ZUxxpguvFbFQ1DbBfVDscrcOpCPcPP7TFK2GXbD9YiC\nZBauuPGKrp+6+9RHn+dk3Ks3P6kvnbz/3sx8akccssogaO8J6ll+l+xzEOL/IGhSiRVz29KiLxqn\n6usoyJQ8/DtHr9TmzpXqmAKpvYqi1AlqeE24mtJr+O1P9X04qT54/Ex1dMVRJANNtpBmbnUYSz9o\ne/z3sI9/RkHMIntsgk69QlVv+1O9Qy3Al9aHH8QJGnhdWbltAAAgAElEQVTCguSYV59G8GMpuHCG\nqCaNQNo3eB9weTWWLjgXE05d78uon7oD/e7N//mtMcaYGHxISVBt9ZbaM6PeY1SUKhXNCTMnm8tv\na+/VBaF/xbvf0gqo6L+XkmWJPUefvUmjpucfHmsvF17L67br8rcjEO1bWY2bJwaKKvHz1Jc8Ltm8\nywVSqKV69SFnm3sgDs8wqqZ738suLMSrpdaUAAnfhgdp/1vsB7XFeFp+esqcukJVtfxC1/3v/+Y/\nmJd/eGM8Ea8JwfM2g+dmUNU8jaAUtv6Z9mnhmOr6/V+1n/nwjfaR6bjqdGdb+5oAnKpeTpgk4HQc\nQzR6+I3G+IR9Zf5O3hjzk5Krz6v5mEvIL17cwLcD8s4P2nYC31qPd9Orc9nyh67eseo9uL/GqvfS\nll5itj9Rexqgk3ybet7KHe05SvTp3rdqn9eJYiT8eAGH+mnlnvaNRZS7Xn0tdTx/BjQaKtNeo3r+\na8VGytjFLnaxi13sYhe72MUudrGLXexiF7t8hPJRkTKmr4jT9bEiWrENRa6e/uYLY4wxLid8GzeK\nJteLnJXdVwY2AKJmcUsRvGZRUcFCXZGtFbTsffCbHJ/r9y+/k3555UpR2+3H+v3WJ8pMOP0oYLhh\nZb/Rdcc/KCs5f19ZwoV5fS6uK6IXWOK8uFsRsV5L0WFnQN28BIIlGVeU9YYoejKreraqyhSdER3v\n1vTciVv1K3A/D5mWMecY38Mx4SZLtfWJ2Pn9nOO/OT4yYSLnqwnUK3L6HKEm4UUTvnSujKk/or9b\n0cIMZ9uXN8SDcf1KEdY37zQWS4/0++0Hj7m/MrnFE/W5v8JYbCniftvi7qnvuvze2VAWJBBWtDGV\nAcHTVTakVVOUMpFUVsq/YClmKbrauFIfhrEdNyzzXTLBnSu1fxaGsyapaGg7qDHrfauocB3umeCy\nMhYbi2IQ76IocYaCViSZV7tBU/hGKGc1USa4sPgyZEOpefXz6IZMywXoDSObii+q3oiZmOs63DB9\nFMdIUQYXyDjnZTte+IeuUZ0yNTK3Qdl4EEWxCdwybljxPR3NweYPalcbboJ7v5ZdLMMp8OJbZbxP\n4f9YXpKtB+9iu5dqd+lM9fX51YAQ6LFKV8+BnsMswe9ym2Jl31e3FUlvkzG7Ptb8OjpXpNxJ9v2z\n//F3xhhjFmIa+32Ur3ZBqiRimsdRmP/X4VtKkS1yhdRX1+eaA0NsvIVCyoxz0Zm8xjQNyuz0CAUb\nkDsO1IYuyGbkGasc2REoB8z7P2h+H73W2dXMpmzuwe8017oFjcl7MhWJoL7//O+V5epw1v+soDFM\nBmTTZ98LeXcBb1RiTmORX1M9/FnZ2t73yhadvCU7Ax/SHfxlMAyfRlc2tv9B/vX0Wv2/EJVN+1AC\nC8O/kflUmQULbdUlu395RBbxgiwPSi9jOCOmZIo7MyvLd7syx3l345Jvq6Pu4erp/+esQ36f+qlZ\nlx3F+ijjXKs+F5ydTqI2cv/vtF5508owlV7Ih8Ri8HKgUjW4gQ8LVafVHWWSVh4rU+OodE1tBBIP\n1bJiFTU1lGcuD2XLvbpsbQrEYhu1pMU1bK5BVtmhNkXJtM7H4boCfVC+RHEEnogBfmsAmiEY11ht\nz+t+a/dU56lXbb0GIXNWVj3j8K5tP9Q6kcFvNhjLIvP8EH6Ms2P5o0SO7BRzbGCtS2ShAlHOkR+r\nf8oXaleG32UXmZtjMr4jPSfAenfb4oG/zVPQfWes5Q72KlM/KnigNipkliOsr7NNjW2pLBtwHOh3\nMzLZLpBMk4GuG7s0d71ufUYgtZn59X00pD1GKggCiL2NWdHz7jxSBvng7dWPbZi1a8aXQB3JUhhq\n6r7jruo9dKh/O6CEY9Sv39LffX71o4tM+sRCzoCIGfX12Ytqj+H3qL+6U/VHbSj/nuyOjSuAuhnZ\n72iUjKFTfdGB0695o2dMx6qjC04+v4dnurDRGXw+AzgAuI9FRuMg1+gcqe4uUEcTeI8cKPvFsM1x\n4PZKf8YY0+7r+ijIZOeKbCw9FIqhOtSeaGb0fb+kdaUHqigIx4kPno4mKh+VvwqZWflG/m8BhMn8\nPdn2g1/Kz6x0QeKcqT/qLe1tZqCxTFrtX3uouTrX1TpXOpINDUEkeeHWgXbIFNqg4lAJ7YE6M+e6\nb++F2h1MsLfCNyyyB3BOZJNNkKgN9gKtE/3dB59FPC2bXmGPkoITrn7NHgNloSa+afe19pITi4/P\nr+cF8LcueJEicf1/blm2+PQf5YP6nZ/46bafPTKlQ92vAadQAftzfKCdzElHAFXYTdXXUlC6TfHA\nZ2FxAvpYC+IhzctIBu4RlKaiCV3vRzE2GlZb2uzH/AmNabsoG3eH9XdXTAh3J/xJE/b8E9CZLido\nI9CsnTJI8xyDjh8Lwp0FXYYZsGca1FEsPJY/e/9WCMX5pbwxxpgcyO7ujeb27nf6PnWhMdze0RjU\nLmRbN/BvzLFORXLau41RY/IlZRPTqdoxdmgsMym4I0EvheC2cnuF+CygpLn/te7f57mhT3W/s1ON\n+dF34kdpbun7pUfa6xThqHSzT3Z41Z6gG7XAMCq1qNaVGFcPqL4QPmTsRc3wlmUIF+UEZI4DhKkz\nCPKJ8bn5oH7dB60RyGo879wXcscDJ87xd/I1V0fWHgVk613Q3WkUj+Hx8w1/mhv5R5smM5cxc6hk\ndtmv7NHWALbVrLFH2dfafbmvvp3PqY8e/xv5qfAS6NV3cM2A5h8Zi4tVa9nFa+2/jRsetXWNzdAh\nmy+gLPUjYoXr6yXVb/szNsq48UIDVTzQatl52fbife1Xo36Ux0ASukHINQ/lb9zECw5eWMqO6vse\nSpKLn6t+a3BnuUDcVVGEvDnS8wHcmTwndvpD/G/lb+9bbaSMXexiF7vYxS52sYtd7GIXu9jFLnax\ny0coHxUpE+Z89QIR/XlQCV6ycEVY1jsFRVn9oCM8ZEpGQyJdLkUDNzeVKY8SMZ9fVCaigZJLMKAo\nZwId9QhJNDdqHpUCyjw1Xb/zmTIfca8yEwNUjfxk3Dt1RVevC4oi73DOsMSZ3eIrRdrCq5zH9Co6\nOeLsc5OMfrOmjIovwBlWsnW9kiJvY5eipptzeVV4nowI6i+DXwoZ43aizOBSRO/4W2UeDq93zcaG\nIqX+NBryUz2zTVZk96/q6ziKU1sbnFVPK8vUQJEkCZKjPFBG7PJAbUwv63fZz2GP5/x2t6LvHQ71\nmc/z83gguhNFkLsgOipoxicyZO5gR++01FcDr8YoSEY4PUMV5EQRf29V9wnfVRgzBnN3rawoLkNq\nzAj2d2zFja0VjtQPMxQgttdBoqCws/e1orN9VETu/1795SDCX4GzplVXfbOEU5Mp3cfVVbuuL9WO\nDhnVUE79O0px3rpDthCeEhLsxgnP0MKiorjxiKK+TdrfBk3mJPsfDMm2nPAWxaPqnzHyJo33mntH\nnM+em9f4zt2RfVQKamfllWw+xfn+zBfqN0QHzD4Z8T4KFXd+JTRIlDl9/U7R9hBoCM8AYpNbFF9K\nfeZIKNI++KAxOr08UZ3g51n6lersgnvm5Vc68/kBdYtHS0I7rcBMX61oTkyrqDCQ0dtD6aqCukVu\nU2OcI1ve4sxolAh8qQFHClnuWJKsFNdvwE2TWrJQXWrXm/+suXP4WgiVFBnTz3+tyHuXM6pvvvuv\nxpifuBQe/UZn/Vs9ZTi+/rPaOSNTnN2WzViCKcth+bkESjwdsmN7f/2L/n+j69fuaswWH8mXdGqa\nMx9eo6ZxAzKwL5tbua9+XFvW58U+/ZWV31vaEqKnUVL/vnglRFATJMzKpuZEED6icRcYFVwRofjP\nQ8rc1JRZudrX+Lnww5FFoQ28IFjq56rn9bHQHPWC6umLojhXU38E4X6o1ZQZaV+QOTrRHHf3yP7V\nZW8T/P3qXd1vEVZ/Jxn+d4eHprKre0yRyppf0TNWVvPGGGNmHdl4m7ENRzRvF7eVSQxl1Delsu7p\nIuszOJftvbxR21sV+e9uS8/xUYfBCG6rLDxsT+VHfG49x0KMXLwRYvDk5MQYY0xuXtn4pU+F+kkv\ngDB8T5+AwGw39Fwn6j5PH+j6DRQFuzPd//S9bHYE+mp8LmO9xI+kE6rP8qqyXwauk8I7VPFw5Mvh\nn4mUIUs+hvrMD4J0BFrDA/9EYIACEOuoB76JrZTaffF/CC1RvpENza2CpsUnTNl6Ob0gY1C6mLGG\nO0B8RlHauWHdu3lzovaDaouvoAo4/EnVcNCYGEcMxR/6zw1CJzyn9SZs9HdLjSTAnqsGF5Gb8/9+\nMvtei9eFbOaoh0qUT/48f0d20oBjyA2iph8YGS8qSXX2OVEQgnHWHCecUR72M21swFItcjj1rCY8\nRDPWeid8Fr2p2t6tyf8M26g0BfU5IDPbZa/TnzHvWZO9sdsjIIwxxuGWH6mBUkvBbZiEdy6EWucY\nREqvoH1usSq/Mpioj0ITuGnugPIaqt3FovzJ/vmJMcaYd9egyZK6TzaaN8YY40ZtJJJDPZAsf2uq\nevXgzHKDSs1t6XkNuNOGdXjxQJ48eiT/7gwIwVgboyjTUHsdRf2ujBrhsKrf753o+0RAPiAJf4XD\nqznuHKl/Clw3OBKKYsReIhNTvXILQt8uwV1Rx8Y8Df2+A6qkBmpwBBdjp6P+rPG+cHYme0iCxFlg\nnTHGmIX1dRPPC/kyQH1lSrv6N2pvEzW8GD4m8VztCoZy5rbFg22lljW2obDGpIuiU2JFbYzPqS5B\n1C4rLtm8N6463/tMtjngXSkA9G3E/q1ekz93wz02B+dK80prTaeLahv75IuSsv5rIa3JQ3ieivAA\n3f3t740xxuz86pfGGGP8cDoOXXreKqiDGLwgLvxkMqMxv7sKXxug1FAcJE5XY5VFHWkBXk0XCJXy\npWw8lNX3aRTCVu7o3XCA0s1fT8SrF0a2aP2JbNU1UvvufSIUgxeVomlI74bZnQ36D04vUHgjuMPc\noJkNfn1pUc/vwlk5xkc5p5pTBrWpm1P12yiY1+8Yp9uWqYFvJA7vlUPjmwZ56JuTDdZ6qt8i+4AU\nPibKe0H9Qvvn66LsYQnU9c7vpATkCOGL2NuNmEv++E8hgOXFBTNwG3P4tdauo3O9D7dRsr3/hdbq\ngENtHOEfMnGNZSgPyj4pm3n36oUxxpiD/yIEYBwORd9Abev1QRmBQkpvyo+FU7r/GTxztRPeqUDB\nxkD4bf6dbHj9mT77KJpNWGf8vJttwbvmiFv7O60DVyhluS+1v/6AMu/8omxwxhoWQBXu3jPtNebX\nOV3BkruPaurZKxBDrM1PP9N7uYnKdgqnqC51/vY7sI2UsYtd7GIXu9jFLnaxi13sYhe72MUudvkI\n5aMiZTweRSW9IEOmBBlPv1cWrlxRhOzeF4rgL28qkh4h+35yqezbzaHO0c3QO8/sKLtzTdaxcqFo\n8QbM5Z/9+98ZY4yZTBV5K58runhxADJlqojWqK+MdGpLWa5PiRBmVxQp232j51aulZkf5RU9rUOM\n4eDscJgo69nXyuIZS4uec/NVrzIHKzs6H3l3XdHfCioBYZdiZz3vjHoeUw9FCLfQjS/s6hzoi/8i\nToc2yjzx+XkThtegCU9Ns6K69pq6t89LhBallhiqRLsfFP27OVPGL5PT9xF4IjaIQnrhybk4U19e\nHdH3ZJ1Xf6Pr4jlFnm9bHGSzJ2Q1gjNFZ6MRMnhpjfkV6hTTkqKaiRyRcp/GoGupLoFo2SZT4AiS\nnUO5y9FSFiYF10wwot8PyDB3ivp+DsRQNqtM9s3ZiTHGmGMrqwV6IrGhfj/ZV/+1r7EtECqLm6pn\njGROh3OWBuWWKNk4P2pNlnbVkOxjs855fYfuG2Bc4nnZqrOv35dQI6nCW5T1wH8EV4MzxBlmFGg8\nRdnmyZ7sxMcZ34019ZsXBYPDPwndUESBYZOzq/l0Xv1xCD/HIbxRqH1kVpUBaZLlKrVU/zFZvjFn\ni29T4mS0GiVF9CsowHjgJkhuqy5TB/PwtebhFWdiV5c17+79WkiZk5L+vvfPivDHyAJ5QOK4QSks\n3NXYz6dhhYcjyjNWlsrr06D2m2p7IKq5tnBPf3ckNZqDC9n2RRluhdMTY4wxhSNF4JML6ut7DzT3\nnChVHfxZXC+dJjw+nKMe8Pz3b3V+muS7+YT2eUDqlEEUTeEOuHojxEuxRX3J+mz9nfzg0poyCAXO\nEL//SmPvmqr/5/PqB0uVLoCKVB3bq1fl5+7eFRdO7UztPX6p5/ZH6oe7sOEnNmQDozLoBfxlKIxa\nBuN729IuqB6da9lqIK5+cMmkTQqk5dZT8bNc7Kq9ftj/+1P166gtOwut6vohyKDrY43XzYEyTUlU\n9JZTZEOD8qlTK5NP9cvn8inNi6LxMQ+3fq2xXLmrtWc205jfoL7QRG2iBTLheF+oquke2XCy7LV9\neGz8qmN8mex6XmOzg2rDqKg1qbGIv97Kq41R+ChAg75+Ce/Fse7vyqmPEhvKCAf8qD99J6TLwXey\nlWZR644PVNgSSmbBFc2F8lD13P+L1v4rFMkSKxa/k363AQ/Pg+efGWOMcQ7V3u//9Gf97hQOs7Qy\nkGFQVrctHhebkL7GsNWVzWUCGqwp6oFTYGZtHHKWLJ0bpcYBqLpuHQRSUrbj8oGeCui+kyH8KR1U\nC0E6Of26bgQCZtpHmRHOh4klTudUdtKaE8YIGRxxyEZ71H8Mqs7tUj924BQYgfQx1MvptFAr+vPU\nypSjFuVy6f++EYpFLXwixjzuomQ5VXvGgYDx+3gWiAkXPAeJDY19Z/dEdfWortaa5Y6CDp2pTwOo\nNQ1nKDqC6oL+xgTg4ZmOQcKAQnWQBR/hNx0obI0m2KD5eepLI1SCAgYUKWucPwQfnwfbA2UVIrN6\nd1WOptGBKxCkiYN2hDfk39c+FWqs35EfrpONv4ET7OJQc7Czq7kSaOt5Dva/cfadbtScYqgUhUGU\nh5bkhzpjIV7eoTgTQ3Enjh/0zem+c6Bu3Xc0LmsDITF78PBVyM6X93Sfy5bmjq+v/u669OlGaewK\n9ZLxMTxTQZCocI0FQEEnk1pXPCF4PbZV/wWjPcYMlN+gK/vqjOBsY50p7Ovz7QfUl/4XY1788Suz\nSPvdPt3PiZ2FpqhzNXT90Yn2bIGJ+mkVlbzblCl8Q46QbK1Y0LzooaIXxg+HxurjCcqzXoM65kxz\nodXVXmPEPmmFNXhQ0f1OvtRePw2/xeJvUeEh394EhZp0yNa6oA6GbtCbvFP0eurLVlU2XAXR7ANh\nFwPZGP9M9Y251Xdt1OdcKHnFnqiPrq8slU/2pfCDTBc05y0ewEYbNTj2bv0g98N2gyn9ztVX/6ws\naQ754DfxTuGqtNDH8BsNe3CX7ekdbY6xXlzUdR3mvpc9hHte/x+fq1/rKLI54EA7upJt79zVO6jj\nQuNy+UrIIw/KkrXcT6is2xQPyPAu3JlB3si77MNncAU14Ig5vdG6aFCec4fkOy6O9XcvPEhb9yxb\nVTt2v0TxsQyaeaTnTjw/KQEVSh1Tvrw0npm+y8K7eQ/Ou2WUw65eqE/7cFtZe4okqHfrXW1yorHN\nzWu+bT9GQTEiW6m91X7Mv4Ttomo6hgusybuKEw5A/7JsP+bR9+kF1afH+/E1PJxTEOFmJBv8cCSe\nIYNiV+FM/slSHkusqN5zvPPefaD37z5+eTiSf/Dhx05/AMEDr9/hrvojzbvm2ifaP46iqG5+r+d3\nmuqPZd49/7ViI2XsYhe72MUudrGLXexiF7vYxS52sYtdPkL5qEiZIhmG0ssTY4wxvi1FLYtl/b1L\ntDMUVZRzSNZmTJQ2hZpG4VoR8e6+ImpPnikjXLhUxvz6UPdf2CKrt6kobOsUhYSgoqeP/0GRMh9R\nz5ZRpO7ouwOej6KASygNF9kx64RYsaoIuz+oyNrnv9W5zApZs4MXOmO38wtlGjJ+Re7aqK8codd+\ndabMSHZLEUQnmaL6a9XjgPok/pGsW0SRuTbZqz4KRVG4ErYfLRgnRBV7LxXZTcyrL7LPdI0HdIHT\nozqVL5XhHJLdiiXUZ94skXIOjXruw1SvALVxTtR3biLQXpelXKIIeDXOubpblqBDbaq0YTcfqS98\nibwxxphWXfVpkYmdJmQDybzGwHWtyHAR5u8IbOfuNSLEnD/sw+Fi+qiORNT3ZqApcn2o340gSUnA\nd9Fyykb2yBybNLwRT+CbgIPh/EIophpZvmcrQgsEc7quxNlgc0mclAyGc0XR2dpYVjYf0v8nLj3X\nVdP4cKzdLCZ0v7BLmY3iqdpdPUUpgv50ob4VRhFhPCOTC1qjsqvPaV/9F8wqKu3PK5p9UUIprKC5\nFw6SKVnGnmCRL12rXc2++nf+V0JdJFGJOiC7ZrqyP28YdQL37Tll+m2UROqqyw22sLKeV53InlwU\nTowxxtQ5T7vGue6VZ8+pq/zB0ZfK8ru98gsPv9BZ0mpLfTTwKsI/R7b8+kzPHZKV3thSHxmHbGz/\nUvPVnyQzB4dBAYTdBOUsb0l/H1+jBoECw/J9tcOFulsRZZ5uDR6omJAYac6+Vsaqn9uvOfjkcyGB\nnEH17elLZU1Kr9QfPa7zkjVJkild3BFCMeLWXDr5UmiMNy+EwFlclO2s39eYJlKaOzXY8o8OhKRp\nw6Uzj1rdlGz6mwMp9+DWzZN/qzmRpJ8OUbXqoeTgDSgjM4NnyjFmzt6yZLL4sG3OcQM3wN2bFoo+\n46Fsuw7HxXxO17lRnOngwsKo38UZpwDqd2ufcN79vuxqGbTcDcpBp3vy8423un/cr/svLs2bSFr3\nSGY1VlXmY+ta2ZizD6rjBHSTC26vyER9a3F8jMkEhkB5Ze/DY7OjLJAvTfaHteWoLgROvyE/Y2VA\nr9uqc/0A/8SZ+40nWnNy66g6gH6onyqrfPNGc8nKZO48lA0uPNfzA6ylBeZc4QJVuxtlu1ef6r73\nyVoNOyhmwS/hArnXaGoOhI2ef++JfufLaK44Qxa28HbF7dUcnGpoTR0FimSe9QKkpkHBwYdNdHus\nK4asXlLjl2OvEkvo+rEPVRFUNXxwtzhBk/jhmJkMyZSjetLpw6sHesANKiSAH80s/YQICvk9xoPy\n5BCelXBM1wV4TqendaDK+pABBZiC58rp1Doz82p9n01kL1P4/PwgWKNZ/f+qxN4MBK5jQe11DmfG\njTpFD0oox7LmXw5kx7dlIT/67Afjy+o7ZwheN57lQp2t2dQYWLxuHVA8Yzd8PSDuenAQxHugmKbs\nl1hDR/TxuPHzFFPicYtPCAVB0J9jENAtbLSNMovjTP4vmVOGNA1v38ghf3Z2IX99cvFP1E/tzsDx\nlYSPaH0TpZ2R/GunoedVDnX/MaiINv7VsO91NGUDU/g6sisa6/mE/PbVnPxs87387BW/85UYw7ie\n54JPKAPP3lwMTpgtIXsqqyg1Xup+hQtlpLs1/d6DmmkCjsQBfnOCqlF/qnWwdNbi97LNsFN7p4iF\n7kC9K+MDHQ26zRvTXA/PqZ+CCf29cf7TnrPZbJj+PpxgoMIMvH0jEFRtHHwTPhYnCkC51O3Ru/45\nOFewNX8UHqEk6Hn2x9dk8eOoESVBAzSL2n+PeKeo8g6xjFqlC/jrHKp4aVCpjphsK41yonMmxMRk\nTs9NtEG8sZ8P4B9X4an0gmRM4ActxGXbA7IHbpj9ivx84a3q707JJnY+f0R75X/8fvmTupv9JDx0\nHct/hNVug39sg7huw6d5+V5jH+BdafM3stleX7+vF+UfDbwmfpCa1+9kc2lsdcYU/4BSbQQulvCS\n1s36qebMzZlQ1JurQqpOUSF0G2xjqPvP4MNauivOltgayB4DlPGWZTJBfQ+FsCnI/KjFXwfvSh1F\ns3lQt3fua69kUNactTReK0nVY0A9D/4voalL15qLW7wbR+A2a19ZJJrGeLzGBJIBs4AtJuCzGVU0\nr9//WWv0ISdE0qua/yG3Pi9ZKx2HcFFdam1eYe2PsHZd7qHedKk6+ec1Vwa0sQgS+/paY7F8R/vQ\n3DbKjMco3HL6YPIajinWQmcJxaob2cb8ovazy6DzgyHZMAdYfuTt8eVAq4FSPfqr9qdRj9rVq8rf\nXLDfD2c0Vg/zsvnMY/mdeF5z8vUL9X2wj5LinN43Qtj6v1ZspIxd7GIXu9jFLnaxi13sYhe72MUu\ndrHLRygfFSnjhqU9nVcEbI1IU+CIjO+VMggzzlO//M86P3l5qIzt01/8whhjTJiMQqWvCH2IjPEC\nmVxD9DQCOmRM1PkaxZ0xZ2PjW6h9JAmrwjp9uKuInJszY/ElfbrQkt9ZU3YuDWN3z9IjJyvlJoMe\n5/t0howtQdXuDVHhK306UAHJ5olOw0UxAnXiD5EFjSgK7UJdYGFD913Z0ueUTERkFjCXJUW2+y1F\nMZM7RNThRqkfKPr4GjRPhrOXi8vi4cltEjXlvF+Vc8QTWOVbZUU//RPOGd5RHUKwm1c5f92p6zm3\nLcM2Z+5rqncsrrFe9aJmBOqhVVd9sjk4VUKK9hbLisbWLzTGC5/C9QL7++lbRWW79P3yWox6q29L\nA9lAZ6r2LcypXe459U/1TMij7lS2t/JA5ybnVtS/H14oA10l45kFveHn/KJ1Bv/6QOMT8KpeS3PK\nbE/HiqTH4D8KMGMdqEGNyqp3nHOUaTLtPRBFnXO1f9hUvweinA1+qLkxcHCmFUby2URzpw9KLUNG\nd3ELpQy4DDqXFlpDcyljqV2taHya8IXUD9UvGRSSVjbVL80pigwN9b8buwrndd00eHuVrsq5+s4f\nUd23Uf3JPlC2o1NWHeqnspVBR89yrTFf24roH32vDMDIoTrevS8bajQ1f/ffyP/4yUJPsEE/g7K4\nBkrIp+zKy+90fQWkyP0doQumqG+MGxrbgFOZgtlQ/qgPOiH1GM6aVZQA8CMXFiqrwZzY1JgHoxqj\nWUNz0JnQ39192cIeijmX38t/JkAILi7J/6ZWNVg3c48AACAASURBVIbeeZCJKKa9/xIW/a/0u0V4\nPh7/XlkX49H1Jz+o/yweqjAEGOs7mhM+lL3OQUa6yLo///diqQ9yhvn4pbJj54fKVKR8mhNhFMHK\n8HSMJ7dHUxljjAP+jfZEvshNVs6ADikWQX+9/oO+h/Ns+nfK9HRAEx6DGslWNd5zKc3VblXjmtvQ\nHPCRudn/QetH5bXafQynkZPsYvSpMkHJaMa0+pp3+19KZaJR0jwpYhOBmGwum9Ba5krLXy3CPRMD\nDXW9p7EaD+CSIUNrcTY1z1XX6q76+OB7oRUs/zKAaqQ90XNbJfnPtU2QKDnZVvFGWaPSkcakBFKi\ncA2vE2px6ShwqJn6vIYSTfmdft8H5bmxLlu3UFpWNutkX7ZVPNVctdYrwBFm0JUthOEaGxRBgjiE\nJLptmXFeneS4CYVkG1PgVN6BbGiMOpw/rjH24H9HDlQt4O/ojC14iGxr0pN/c4Xoj7AF00KJggEA\ndGF24UKbTVBzQXGoO5IvaAPcmToTP7ZhOGqZUVsNmOZATcAJkZuXnVyeqt+bbY1XgnVjZUW+4JoM\nvXes503dIGe4XZ8s4WyiduyjOFZHGSezpHXS55ua6VTz3oGK5RCehBTcfBHUMpvwI3lQVnHCFTBz\nqo888Cy4ffhNL9xd9LUBHeZw/3/svVms5Ol53vfWvm+n6tTZt+4+vXfPxhmSGooSZVmJEiimBUkG\npFwENgIjFhLTUCJZEklBEmXJNKLIThzYUEBYlwSoGwEREoDWRoozJGeme7qn19Nn3+vUvu+Vi+f3\nnzFhLqcBwwNE//emuuv8l295v6Xe9/mehzWtqbZvw9MTCoGwYdvbY40bRp8PKTOeaJ2Jx+l7UKID\nyl3Fx8d0zqCoz3tP31B9QREkZzWWYnn43zwOEmjHzMzuf13z6DR8HDat9WBqRX0dS8rXV2+qb1pb\napdTsuIV0G6nj/W83WPtRQ521N6z8F/MzMEhA+di4giUbYV1k3nPWnr+WUl7nnv44ixz0PQN7Z+n\nrqhfs7dW1T7HcOKwBxux7qWWVO7UlO7rxeHiGcFVw5xT3tIc2CtpbLWrat9noL0M5TIvqLxIQOWP\nJUCLhD7YS0TDQTO4yUasP374FL0Z1ScehYvOUJ67jjoMe7fzmKcnX/B7QHV6VKawT2uK89tm4544\nZm7E1Kd5OB3DYfaBt7XGVBqqcygOT49HvuugAKoAAjvfFK9ZFWT8Ikgar+n6mQusG6CVqvAaVVEk\nq4O+8je07z15pHJO3ZIPRy9qDxPrq01T8Ij4mAcqBfVZkbG4mtF7gkOQhvRFYKQCl+DMiYAM9Tec\n9pKPRFHV6xhoONav42eabzbua926/rI4xrIX4R3ht1Z2Sb5Z24DXbkt7xZhP89z0FbXzMKjvQ0P5\nkNcjn1vO6bpAAu4Z1F1DWTgl+Uwzptu55/tJ7TW1D0BEy0Q1l/FTz05rKtcIzssYY2tS1wXPUAw6\n3ZcfJeFtaTq8KSgP3/rxHzUzs8ugVirw3tWiH6CNM9mcBWN+C7Lmnh1qD/Ho23p2Gx+cga/zxutq\n8+ZTZ1+k631RjbugH6XcjNqojarxU7iwBiAeL9FnZ0W959EdzS/+rPru4i2hZdv8Btp8pnlx6JMv\nLd1SX8+ktP/d6mptm/Xqd8Dt17RPneDj25vaX479jqIY+2RUnh/eF/prF0Ww1XU4uOrMN1H58tzV\nVT2XPUO9Tlzhz1BzeqB6TnOqwhPSdbX6B0qJ381cpIxrrrnmmmuuueaaa6655pprrrnm2odgHypS\nJsH5uak5sjwwePtmiEiRpauWYaAuKmpoRHFDERQK4MmIdogykvnwwEQ9ldHzh9y313HQFcrq9MjQ\nHHxd77v5cUUAZ1Gg6MPyXmkrkuaFK2JpXRG2PlHjISoc3YKi1KGwor6ToCKGQzImb/zJ/21mZhde\n1LnAwIzaYX6gSN+ooYheiLOyLc7xz5DRTqLjHgyrvnfeEUfBkHOJNz+l8nfqRCZ3ntkERZY+kdMG\nUb9oVWU10Eh9VD0qajpL5fSu8UiR/vKGssRPOc93fV2R2f1HiiqWYVH/WzP/lZmZxW+hGFMWoiOT\nUGT4vDYmku4FORHkrO4oynny9xSVHI7V9vkVlcfIBOxz3nrshechpwzssKr7y6AOUrDfJ+NEor2o\nVIGiCBEpj4JO6hSFfClt6++ZvKLB6+vKPhHgttMHivomwooer6FeFQ+oge880d9LsOLf/vRV6qd4\naWui78PznI2N6PsuyKFaR/3pcFGkR/jGsXx8YxP1j4rqmyOblSTbVngkfpCjM2XFZlDpSqfU3o0g\nZ5jJwE9Gel5/WxUMRBUdzl1SNDmKutVpVdkxH6iESH5V18PFUCorWt071HXJuKLvCXy+3zk/CiJB\naH9uXmXoM510yUY9fUMR/AIqN+s3dbZ0jfO5O2Vd127q71MX4NmZVlnqKARMx/R9ZE19nZ3TeO0W\nyOKAQnvrHWUvascaIyu39L4ZEGzFA7JecA9AXWKFbY29BKo9l66K9d5RINt9g/PBj1XehXVlEK6/\nyDnrlsbe/hOVNwZb/BnzXPmJMgwpVIcWPiFfy6dUrm5Dvlw51P3Fhzt6HioU6zc0dl76lJAtXq98\n7963hQjavi+fcNSibv6wkEoesuv3v66s1oBs3+2/Ja6eKPP+Y/6++VhqTGnORy/cUPs1S2q37ojz\n135HguZ85qjA+OHJGvqV3UqhrjSV05zhcZSHZjS/zpLpqHO9L6oxce0FtV+vp/KMmG89zC17X5cf\n1FugDgLy06WPi2vs0nXN51MXle0clTtWe1tzeQneoABz/BocLpcuo37mlc81QUvFwurTNoiancfq\ns3JLmc90S+M3DKpsdAICsKrPKbJS6/AnxWc1Xxaf6f2VlObDtavKpteqen9lU6if/hmcVNMaE2vX\n5CsOr1OQM/ydPfnYEcoLj0D05EBfLU2rrVvwBT39muan3Tsqd2ZG828ENGuHNa851Lzk7YBCIwsW\nNxayc1qX8/Njj+rtRxEmRNbPE9Z7HG4xb1/zXRdEZQdVo0RKf28dyxfO8N0858m7Qa03UVCuAbgd\nvCjnOFwS7adaVxOgJEZTer7XC/cD3BFjB9pkZp1WxwwkZb0DzxWKQP1Z+UHjKXxOe6g6RVBnIusX\nhrOnD2o3HIdbBhWwSErtExjrvsq+1qlEUOVPsU52J23rxXWNr6e1q1pVHzn7vuxVsv0V+CHCIGvg\ndvIF9a44akpDssRVlERSa5o3w/BtBHuavyYg3WIQSvgZv6GY5u9KTX0SjCTseWzEOA4wP6WW2N+h\nOuIo03jj7LlyKkcW/odyQWvtWUtjvLnJGFxVOfIoF+arur4C0rJ+jHocnAox1JHqcw4Cmz1GQnNE\nCrTE6aZQBaORxnCDduvUhD472teYXGQOiGVU/rk1zbsXJvDRwaFTg0uxhfrpIeU5+KoQldkt+dga\nSpvOehNLaKyc1EDXvSsf98JfEoGjZmZJ78+xb099XOu6deEr7MkvGnAF1TqgPeAP9DXgL/GDvk1+\noDATm5qyTkh7Dk9P94c9KHkmUGFCqWffB+oNtcWT04qd1zp+jbsBPD/zi/JND/xtnqQ+b3xC12dT\n6rsyaIMH2+qbuRx9mVBbHEHM5AE91eyCPgIxF0ddLe5RWw1GcA4eMH7HKOIsaG2edk4HtOST3jrj\nHpLCCByNbeb3wRwKaUyrobU1/qE28zg8Tcxf/SGIGBS5cstCRUxA/Z6daR94aUp7HT8qrpOB+jJy\nRdfPh/ScSchRzEEpp6f5OMb+/Ogu3I1d+WQmrNMUjm7pCutbCGXH8pD6wO01P89cVGM9Kci3aiOV\np7qlejhI+/6exkCVvcXt//on7HnMhxJjsOn4NIibmvqp0le7Z/Kqr7ensbKNGmy9pvZYQfXq4iX9\npiyUdf/iitovClfRzreFAnnvm9qzJZIfzH2VypmdHG9ZB5WgMOMmCcr29k3tMxfWte8Z++Tbdwra\na+Sc/dItcaxEmCfTCbX1PsqR3oZ8cfEV7SXWXlHfN1B4vKTX2MKc6pSaVtmf/dmfmZlZk336+keF\ngFkFJXz0UPut4rMdMzObvrRqZmbdgdr24D3tLx0u2eWX9fzkBM5E0Lf7u9onr7+i/dn6C9rLHO+A\n/o3Il5ZX9Vvv3l9qD3R8qj6J8xtohhM010FCV3zEDyrfP+ziImVcc80111xzzTXXXHPNNddcc801\n1z4E+1CRMvWyorzv/qUywMtkjhfyipam4VpI5BQ9XA8pyjm5jFY8yfQnd5T1aZ6Baph1Mg7KZFT8\n+r7PQe1UTJG7hdvKzu89UwSt/gg1pgCIl75ecHasyFljoKjl1JIyACM91poF2O9hmW+SiR1wf4Lz\n1yPOvpZQIroV4Wxx1knt62MSVVT2wduKag44g70GV0Ywqkhd81QZp633FKmLcs5/QhTdH9XzawcF\n8xGhz19WdNIDm7hz5jAJv8ZH1lSWEWoWZThZdp4qAt3hXKAvoPvji4osrzpZiW1FTRNx+Bj6uq5d\nRz2CTNx5re0dUGf1SSyl8pXIiuwSXU1lFdVchevFYd6uERVd5Nxidk31evae2rbdVdT14pVXzcys\ni8LAYXmP96lNVxYVFd1B6avG+eh4QuXLX5dPBsdKIRw+Qc2kqHrPXVamO7+uCPvWA7gaHgopM42P\n5DmjW0dhYYhqhsenrFgQsvRmQfWfBDjbG1G9omQM6sfy9Q4KP8G0osFTcDYEGqgj7aPmQjtHyU7V\nyVQHB/pMXZDPVYqqd6GvesXhXwnR/hOe2zwEPQAPUyKtsTiKasrZfQf+FPhZ4isa8z4yIVVUn85j\nvjiIFcZtbUv3Fvfks62SGu3mTfn+5dc+ZmZmpydqm/37irCnllSXJZAZATK8QTK2wxRqFD31cWdP\nbXx8qLoUdtTng7HqMH9d73vxE3pfF0RFaReeCzgNOk34JBZAmHxMjP4Rj/r8jb9QBvLosbJn8ysa\ncy+9LsRKi7O+b/+1OAvGKIrNvwRDfw31ErJxyy8r6zKzpuc0n6n8J/saK6OeskfFbdBTK6vUQ+eR\nOyiK/fVbb+r6XWVwZy7LB65y1th/pvnurW99Te03JR+68ZJUiaJwzrz9Vyr32R3ORc+rP6++rPk+\nmFS7nHIW2OEISD8nF0SZzO4xWaRpMrhjzvkvrGmOuPRD8KbAudNrKMO809RYNQ88Waw3Qx9jkWxc\n7UgZkyZz6+yy/GnxotqnG4NrAm6cvY0dMzOrFPas+FBljIOGXH6FeYNzz724+vD0Pa15+3f1ruk1\nZXmGfTgHUG3Kkil7CY6WRkDjb7+hNWN6XoiG5ReV/UqiVFbbUjm2NzVPxRKOco3mo6TRBqACwqDG\nIrPyqfQy6j+kcE9ZWwdV+VYQ3rcbryvbdYFMXwCExTb8Tq1N1WPxqtru5U/IJ2JkVLdY+1NZ3ZdZ\nBv1Gm9rk+ZAyw6HeFwqonnEUI/oc8h8NUVNBWWeSYp2baJ6csD7OrcLdwtn9EHwc3YzuC0HOEgw4\nfCIq/wRkytG27mvV9dzkst7vG4GMQXHIZ/q+N/wAKTNq96wDjYajfjUhe5eIaU4LjFW/IUBZb59M\nOvUNwt/RC4Ja7jOHhFV/P4o1Y1AgozFcFCgkDdibhTwfIBeG+A5bD7NRgLqosF0QZiNUmRzEY7jr\nZLOpE/PywBOhzeRLEdDAVaB5Hri1xnl9TuCxGA440+9RXRzeivNak7V5TMYzC7eBlz6plf08V9fH\nUQWaXkIF77J8vtTSvrEPb1SLG6ZAlITWNWbXAqBdQTE3QSXVS3rfCLTAkKx7aHHVzMwW2Uss3haa\noQOv4GFNY7pz0uBT9+3tUK/CDuWXTyaSKn8iJV9N5rUXSt9QPRZuaJ3Y24ALBhTtcUPrajPJesO6\nNXdBYz0NKmyT9eP4wTM+4RmJyD8iZModxZhUVuWJ+eSrGRCyqxfxB/p3DMdXH95DM7Pbn7hq9Zbe\nX7+r9x4WtR5H8ZdYWu1/6yW1W2YZBHvLZ+e1zqn6tLgj5IvHr/kgkBUqJw7CLLOkfWO94XBRoSyV\n0TuTU2pzD6jdKOieEGMg6ZwGALnm8E62z3SdD56Ncldr5+Gb2r+2GqpjckFtWzjSWnZxFUTPrPap\ny6wXGZ4/Zg3vM8C7A12fYSkeBOCbA7XWA83Ueqjn58JCQ5WbavshuIBwjN9CcKqUWxoLM6CTj09U\n/qP/V3uEHMq7YX4PxMMq12ZTPtgHfjwBseQFWT81VHs4ikHVseaK9kDlSIEWG+s286K+6vBe+RKg\ndxdBysC5FQCpmIuon85rLU5TGCp3jqJjKKR6Xb+i97bg0epU1J4ByNZm+A3rcJRVJiip9dTenrH8\nbf+rf21mZgcFkJdT6vfrr37k/bKkQxHb7fVsGuTJ6pL2QR0WEz+cLM7aurmlfWn1VH2ZZT8aJaxw\nsK/vN4u6vnrC8YEoqparmg96I7XdNqjQwRl9kdKYOP338tnNd7W/ziZV51xCfbnzNtw3b+l3fJ4x\ns/6C9gyNqtpirwhSfFnz4vSS2ngXDq79R9oTzd5cVdugklwpqNy78PSsoIZ6uKnfurun2hfOZ7Xf\nX1lU+RppjZEJyPDSlubtUOP7I7xdpIxrrrnmmmuuueaaa6655pprrrnm2odgHypSZsTZ4maNLFPX\nyaLBGI4ywDbcBulFRffm5hU9rKK44AF8EZtX9DRBhsA7UDTxlHPsPqLI6y/CXUOWPpJR1DS3zHlF\neDV6nHsMcDZunjPEkZG+3/xzZYqHZEQufEyZjVhRkb9dOC1SnD174VVlkOduKJsX4ZzowaYicN6R\nc05c33veVeRuZCpXLK1yTOC0GfQU4V9Hsz4K2sJPFq/MGdhau2FX1pSlufCSzvsdHSrKt/9YiJEQ\nGbILy4qSGhHgsy1FF7t+ZYuTSbXxaEyEluTBDAoxXq9C5i0yaSW06E9KyuTG46v2PNYnIhyd4Vwy\nyjWPTxV19KIytHJLGUQfahaFTfFSTCLqq0uvwfVyrHLtP1P0NRRVvadQAHi2B+rqRG04vUbmkDOt\nvaay4m04clZeUpZmMa7Ps31lrrfvqW/iZJAXbys70+D+6iNFfQEl2IUFOFVGKMS0UFtpwsUQVH80\n4FDo+JUR8KP4EIXHY4IyROlkR//nHHZ8Qb6xFFD/7ewr81A4UkZn/ZpQWH4yqXXUNFIghDxhPb99\nBBqEcoTSZGy4r+8n8zBU+/i9cpBZFMuKJ+q33g5ngSMa68m0nl8pwr4/OD9fSKuvOkQraotAEIWx\nOJk9GOsz8xrXu1uKyD+8J3b0KCisJbikwmTkyo/lsycP1VbDriLe8Zye7+novirnrycgN65cUcR8\n/oVVMzMbkIW+g4pReV/ZjBAIucisnnvpshAyQ9jdv/GmECS78INcv6Zz4Ld+TOV0xIPu/4WQhg3O\nQd8EIRPJqq83N/X3ZIrsHApi7S3ND46yzbjEfIqqSQL03M1X9by2qW8evPMNMzNDcMHW/stPmpnZ\nMioiLdBhd7+tzEXApws/8hFlUsaosNz596pfFYWH/BXNPVc+Ic6VMPPu/j3xipQO9dxkRGNq2EV1\n5ZxWL2vsjei3yILaAyowqxyBruM8t/k0RxzuaUwXH6kfwiCzgnFUvODRCKEOVed8fRz+kKWPaGyF\nUY54+m2NodNdzr2j3OD3eSw+pXls4WVlUKdQpdjZkc90Cpqvz7aFbhpwrrvXAWkGWiAEAmYdBErs\nktp2sKF3AniwLCpO47bG28YD9VmpIJ9PweORnZYvDFEOONlU25RAkc0kVefssnwAIKVtv6cs0inz\nYg6ll5mLlCes8ndZRLuHem4ZpOPCdV23CHeBF5Tog7vyieKGrs8vaJ7ynRVoJ5QMY8/nIz1H6Qa1\nJB+cDIAgLIjiTJg1OcWYb8PFUEd58QoZ6Lms5vXT8jHl13N88JuMIg5XGdm0U/VPF8632CXVyx/S\njf4gEBTm+VpbPu2vfICUsdy0+fCpGIifJoilGujk1JQyvV44ZzqodOVRuOhMaW7qV+Rn/oTq53V2\njF6UjAYOokjXR8P6Pr4gv+l2hu9zLgUHcMJMuBdOwGxGa1y5qjZKToG+hGOvz16iAZLaC1dMFKSx\nB8WqvsPpV9X7YqBMR6B2Gz3VPUldp+c0PqP55+OmSg9AH/XV5q2S3u9BCmyE2lAVhazDfb0vFFdb\nzs5pHUosw8OBep3/tEw7gBQpOHxsoCvgf5hfAzWR0PWnG9qjHZRVnkPQwakp+U5sBfUg+vzSrOaG\nRg6E35rK2Qec2qGdT1mrz1pqt+oBvraHCsuC+imVc+ojn0csy6olleuIffApSJ8LrMdT7BkzS5oT\nWh29t3Skua4An98AJHq1rUmlsg0KD/SDZwvkzEDl8aVAQI0cv4Bw5af/O7v79UeWWwNlAWo4BZri\n6Fua854caM7KnWnuufnJVTMzy09rHj+PJWLq8xbqlT6QZtbUZy8mHz1h7+LsMZbI0l+6qDXXQd33\n4Q7zxfS8Ltn/EpyFE/q4B+dIBRW/JHybaUdNFNSWPwgCG+RNGoXXOkjnnqkPunD+dc703NpjuACZ\nFy9c1++KNsi708eal2dBa6VBTs7/+OsqDz8YWifqm/yANbOg/e7R5h19z2+wwLr2UkN45NIe0HRd\n5tuB7nMQ2DOz8HwGNe96OE5RKGk9qD3V+hbeUntc+BHtpbyoBFZOVK/ZdfnG2C+f6jXgzLqS4/3w\nmYJUzGRR22P/e17zd1B1Mo3p/JzGxiCm+jWZ73eeat33B/T+C0sa2w24NE/vaL9eLsFxuaSxPp6o\nvxvM0yurImxZfkXr6Wxy7v2y1EotiyXCdvmK0Lke+IB2HgqJ4ke1eMC+09tTG7z6oz9sZmYLr8gX\njkC0FHa1X5oOa15YWxNyJQIaNw2q6BTfL8BXGk+q7fst+W4T1Hx+XmVdg8svkuFUwK7aaDGl+67+\niNC0YeIAu8+0z2QbaksvCgGUyqqt97a05qYuqHzXPyaETB91z23UM31j1Tc6gSPnqb7P9jQvz82A\nOkP1roESmSegMdSoal85CH1/hLeLlHHNNddcc80111xzzTXXXHPNNddc+xDsw1Vf4qzoCz+hyFY6\nrChgs6SMQqmm6ObRe4q4x7cVSQv+5KfMzCwVV8QpB+LEHwMtwRnlA6LID99QhjoF18zadamW2LQi\naWHOkKZqirA3y4q+moNCgA8jcwF+DK8ifZ4U2USvoqSXripSuHFH72vAyXA0rUy0H1bqVFD13t1S\nRPHRO/pcXlN0N5NV+bycmbsEx8XcgiL1Tx8oGt1vKsp94VVlVc/2FPF798/0/g6IntEkYGEUnvxk\nF072FbXbfiQkyys/rDINvKjutBXxTa0qYm1EqlOogSQW9X13omjm2QO1xWM4Dq5+TGVKpRWxDced\nc4Iqx3ktSzbauqgFcT69hoLA2poi6ckFvW/nvqKXDl/I9FW1ZZpziAeoTrTq8q2PvPCjqrejIV/R\n8/1E8J0z+F0vmYUd+WZ8ov9Pzej9o4juP3is9hz7Vb4VlH6iKUV1Dx7JJ4/b6qskfB0JslhVMhtD\notSRnsrhqSjq2lqCrd3hYplS+eIeeIvIrBSq6ocJ5Oozsypni/PpB3uK3iZAqExNqxwNEE2dmvp7\n6Yb+Puij+nSqsdgGRbbwksZGLAei50T173YVTk+QOe9S/+ITja0JiKGFGb3Xh8pTb6ysmrdy/nhx\nKKx5IEP2YO+EjGkdZARZ77JTNpSo1haEbsq/pqxBBFb1x3/1LTMzK4GomZARmOYc7nR++jvq0ER1\nY4rz2HNkDA1ehnuwzjdgd5+Cpyi/rLpPgeAJwfuz+VTjtwRS5+ZrmleuorJUgk/ora+Ljb57pj69\n9UnxImWv6Xmbfym0WGuovlh/RRkAHxndjaeal87gR1rgHLgfLpX0BWUK+yjEPHlHWabeQPPkS5/U\n2BqToX78LdSGyipPIKX59fo1KSB4Oxojb31VzP91+DsuwU6//nGN4RFs+fe+qXluQAZ4iTEy8cnX\n++c/4m9mZtPLyoQEyH4FUe0aoLRWOFa5jzbl4+WhfDWLItvcmuq7/pKeE0NZaNJR+23fVbZqsKXy\nxkIafJ0C6n4NzR0H2/KHOPxPyy8rWxfzBK3eVF91ivKdh/eFliyAhJhjLVq9BDdYUm0aXVWWKBpG\nZW0XpIhP46i0IV/efkufTZRuhjGyNidk2/GJzKKySYtXNEbqqH7c+/P3KA+Ii/l5rlPbxOfUR13Q\nRR18z1EoDJD5q8ODVHKQmD3V0wcisd+SbyxlNKa9fO/wq2W9TGxwHXRQZCjVnUwlmdjp59viOJRn\nXvhHWPasG9f/s3B4dUHh9nqoMhnZeDLjNeaG4w7IwIbmiERLY2eCKpQfNEcMlafCsdbRLlnCHGPI\ngxrfJKD3GVxm4a7eV7Xx+3VIjzwW8sEDAiqjDa9WgfXejxqTobARDOl5A+o5PtPzHPTEAC4cx596\nqP4VUTCKg2oLZtQvCVT2yuWyjVClC7BP8tYdjg893ANqyOtnj4JapQeeOgfh7EEhMhoCjQXqyOGv\n67RA55J1DzLOoZswqF9sQrbdC9LG+5y8Q6MQilkBrb3ZWfmYP6p5oefX92eo2QU3taY14TS4h7pH\n4glqbyiJxYAhNUBa18tqt7HJJyIgHeeWNcbyrENzqPANi9rzVAooQz7RfaNd9XkygarSsuaQBH01\nYI/luEQiq/Urf33VzMy6qJWeol7YP1T7FuBs6UyEOpgDTZX9qNohXFMHHT4SJ0NtX6i2d76l8sTg\nr7vI3iRyBc4z1rslP3wjKNOUu2Saz/TeKnNSvcU+F+4LRKbMg/qgs/cyMxvvN20XlHM+ixLlAmjd\n17T+PSXDf/xYe7VCVXPm1ZdP7bw2icpHF69qTZtbVZuXdvWMCVx7Ya8+g5fhlYMzbA9Or+IuPGaz\nuu61j0qu6eiJxs4Z6M5kCqQg60EehbEJ+s0wjwAAIABJREFUHIkGB82l20LgJBPOaQH9uT3WPH7W\nUlvnQUAHKE8goM/IQ7VNibU8zv74dEd9sf94x8zMGjznalw+HQvCVYnPJFhTMxnUOu9rTWzz/OKr\n8tV0U327tKr9e1zVstGM/lE/1T62DlGVbwkURl/17qNgtgpX2ck8fKQt+UAU9Gq9rPu3vyn1w05J\nPhxcVDmP+C136daq6l9EcWxD5Z6b15gZFoFUntMCIJbCoP+64CSO2SMUOiim8XnxdY2VLgjVU7jH\n9g9Uvrmr8oNbH5eiURVlUOP6VFpjsnKisbT3UL793/zkj9vb337LFlZTVodb6RQE9cHdHTMzi4EE\niaJsmObkRiajNjre0fi+/y0hs/ttrWGLt+Uj0RSqdxXNH5U7mh+P7wmJM2bNuvGyfufGQEt5NzV/\nhFLylamcPnuctEk6CJaL6uMRVd57qv3os/uabzPzev/MqsZ9mfmoxSLnKFXFPCDCv6Gxd7il+juq\nzN22yn9W1/0zOT3PM9GYePIAZHoWtNcSCEq2LHF4lb6XuUgZ11xzzTXXXHPNNddcc80111xzzbUP\nwT5UpEyUzHDUFEI6IvoYCykCt7KiLF3CqwhalfPscc5njr2cK2zBARAE3VBRZMoHk/kqXAXRaf1/\nzFmxHpmIEHwZwxiH5dCuN7JzBxuKRvY7ZCY+oSjqhevKPAc4QN9qcvb1iHPVoFOmpxTBa58p0xDi\n3PqoS1YKdY/clKLYY5jDOxCOBDnE9/BNZb7fe0MZ5Iu3FdlLZXTG7vCBosKNliKIN1/T2cBeYGJ+\n0EPVLUUdg5yJX0ZJaggD9p2vii8iBD/N+i3xWEzIjB0cwJOTByER1XVtziGPJoo6xsn6hKLqy2EN\nrhJ4g85rXs5QNjnX3D5Q1DOXU90vwD7eIUN6cE/R0RBcNPlbKmctqj7aOwaJAaoqhZLAuOqoBsmX\nfDFF9pNp/b3/AEWBkvpu7hZcNGSG958qsl0+hB8D1ETugu5vjhTR3yLqGkNRJnsVVnuUW0aw1U8q\nsOiX1C/etMqbjDnn7+X7oaSizWP4PMoF+Wqd9gpx1jgKIqZ5ivLCSH+fXVH/zU6pvfbuKeIe5Sxu\nalrt228o812AqyGQVhR8Jqf6tbMqT3FT5R0RTZ8P8f6G+mdwLF8OhlGtgmsmRHg7SRarGHUkOn6w\nzWTkw+UGiIWHQnR4abupi8qOTC/JZ8LLKIlwjvfsTGV6euebZma2f6zs06V1zRvTZEGSKY3jAbwL\ne7u6r9uSz8/A/9DxoMqEokGZOoUW5DPTcEzNLiIvgpLNLoo6e+8pe7F0Ew6Ay0KS7B3uqHxvKoMR\nBgb18k9KBSMNamHrrsbA7ol8cW0NXhG4cp58U5H842dCdkQWNc/OX4Gtvq35Y9xW+Q/PNJ8lSU3n\nXtT1Q7JYD7+mcsci+vuVFWUOEhn9v8VZ2rfJIASYfz/6Q8qIpmfUHqUjzY8P7ypDEXEUBtbUDtGh\n5oISaK1h4z/g0TiPRdTv4VmH90TlT4RAKt2CL4Ss5CyqKNkl9XskD+oPbocm3AdHZFQ3WSd6qKCk\n55CLyWjOgN7q/XVt5rr65SL+eXx8aEN4HDrUrV2Sb2WCemd4BWSI8XcU+OZQrWhnmAca+r57oj6c\nDNWHuyBiIqhWzKLK50cJJ7+iMr30UaFXk6iFvPuX8Kf5nbPpGhtLoJwmSa0v+3fke9vvaY1qHKvv\n4yivJNeVBRvDGVPYPqKt1LZLtEmENhzBSXXwUM+NZDSfxIPyrSF9OurouqVr8r0AiJUuvHPntQkK\nE+MxyJGJnjuGh2gQQuGFru2Z5kG/kzmGs6HDXqaxq/rFUBrzkpqeoLTjQzUqTMa4jXIMwEwLBPT3\nsVffD9nj+PqgKnqaz8sgq8zMLOKzkA/VlKz8prSj+dtZp5Yvqt/ioIQn5Ocm3OePqX19E1SzRqpw\nGAI/H5w3w5HDbYbyD5n1BiiG2n7ZPDEUQ2irID7UBu06BHWaYL8UQV1tDPhoENP/2135tM+ngTQE\ntRNk/ziolb+jDsmMfHcwgaOPNT/qU184/GaxqedThPS2HG4/lWP7WAXN5sjoxuGji+o948SqmZlV\nz+Cja2ue84RVnimy/gHWl0vLaq86XGUOaqI8VB9v7sDFeKw+nbussXXhmtBt/stkpEEoVXbVRx1n\nD4VqYG+E2lMdPrqgfL3YkO/26ZcoPpKd0jzZrKgfW1Wta/tPlekuHuv+hevzlEtzRB4ESuWSyll4\npHI7/BcP7mv9CD/R2EiDSPXPoVoF70VkKsXf1a85fK7BnnIwALl6AocD3EF+3wc/czILaQuC9Gyd\ngvwZqN3zc/r+akR73hX4r7oD9UcO1dbzWKss/++BYBjT9sVHWnOzc6pD6DKo+KiDnNM8HljUO+en\nVJYBqnolEChh9lurrwuFmoZvowlqM8n+/PCuxnunrrZOwJ/p7A+P76vvQrPam+RmtQc4PERatqg+\nnrkEcuamfGwaJKAnAtprVuV66aM/amZmcfiGxv7gd7THu/DRXQCtEA/JR0bzao/F13UKIraIwhpD\ns7CpPq1xusDhWYrMa73oDuWT02F4Og/hMmPs3P6EUMbZC45qEntGeEs9zlK9qPrPptVOfhSAOyi4\nGWizJFyWqx/lt+o1IVj8iedTX5oguRsa6flVFMhqbdU3eUP9MndZ7Z4FrfLsofgQa5wqWb2G8iVo\naR9I9qdvCpXcPmPsd/WZQZnYi7qqmdmV9UW7+kMfNT+o/2NUOy8sas2evao6BuBB67Bn98J3Wfq2\n1ugJfD/rL6nMKy9pn1cCaddCIct7zG+MGfXFK1yfhWPqvffEBfPwHbhpUEcN7TLfoz53sKW+9qHa\nlylrLFRAqU7Bd3btNf1O7oDudJDNgZF8dFDW8976f/Q7e+9Q++y1F0C7LclnH7LHCUxUnvkX9b2/\nq/lyHhTz2i0QNCiWFfc0f3vC3x9N5SJlXHPNNddcc80111xzzTXXXHPNNdc+BPtQkTKDliL2xR1l\nhqtjFWfxdUWmFhcVRU6g/NC4q2zdM9igs/CazN5SZCqcUvQ0SIZhuKjnrWaEGBnDz7HxQJE351zd\n0m1FAqOgF+I5RdYcZZxWVxG3blnPK3cU8TvbVqQt5mjYe1FvysMVcE2qJJlFRfbe+nNlDwNjlS8/\ns8x1Ov+XW1fU19qKJOZXOW8KZ05vT2eE+7DUh8meBoJwJMwqCpwEtRLjvmwmbkewph+3FIGdI+ub\n/Jje7WTfn72jKODaq4rQI95gVTK2z/5CKIT4gp7zKtr0l25xDvi6opHRtLIPe2i5D3tkTGeEvDiv\neeEDGVWVhRqYsjGXYfK2oepReFtnQSuHir46CJk8UdijPUVTm2SOly/JtyJkirfJdpdLilhfvqS2\ni9fUp3c4BxkOKLKdX1VUtwqy5eAR5505OLi8rGy4w3N0+FfiTAiDjkrOw9uBok85qYj+XE31aZp8\nYMDzo/hCbKCQ/ggFi65P7RyYqHy7p8rM1P36+6WUxlJwTu1SOVC/mRcuADgbWh31bwtVqwTs7dE2\naitw0LQr+sxeUhQ4jO/3ixoT9VOynyHVKxBUZqHeYDAdqf2GGQ4Hp9Wf1Z4yHcct1TcU+eAc+A+y\nYlmZvRI8PUMY6S+hhnbhunx8CE/D6T1l6kpFIRuKDWWzfX217cd+XNmnRdAAPTKOhwX4L2ijQllt\nceWynj+9Ip+sHWqslUBOOCwXi7P0+bVVMzNrksUvvKNM4faexl5iVvPYAhmGbq/BdTtmZhZMyIcu\nv673puGo2rojH9u7J192mPyvvyYfOML3D+HWSa3KR6//sJA2gzP5Trul65Io2iQiIEW66qvmrnz9\n0QMpJSTgpbh+S8jBMPPR3o7qc7yp+T2cF1LnxgvK5vgz8pEnb2keLZ1qjKcT8qkL66rfBIWIzU31\nW7MuXxuPni+n0CtpjGxt6TkpyplcVntHUVG6cFHrge9FZXzOCurnExTTtuDn6KJG0OiDGgMVmHtd\niMd5sqADVFpO3lW/HIES8YEqaIE6ON3fMJ9xPhqAR435JpvnTP+c1qhQR3XfP5FvHqAMVXTapqZx\nOMsaEw2obiuLZHE+Shln5AOVoto+eigf6IMCeNtZczfko8mcfCG9rud14L9ooA5VeAaKSVWyiy/p\nfSs/Kt+Ios737Ew+toAq1MUfUXniKfny/reU4dt9W74z8mpsXoT3YguVpp1trUd5OBuimVUzM2uD\nJmiU1R7ntSCoVwel2gFNlUySSo2p3b0gGwNwxUy8qnAqpszmALmmQdBBbWjsj+GeCfQ0LwYH6mgf\nHAhHxypvYqLvB3E93zuUrwbYIw3Zy/jgc/IFYu/XIZyIWGJO/uIHRVI8UsZ7DD+H11GVQu3P4FYI\nDb8TodicoMRGFtDhsmnDO+V3VKJi8ofMjOpv1LvebdisT+8IgzD0wwHmQ1VpCN9QJqZ7Bsz9cRA1\nXtBDE+QzvH6NgUQSpCFreKnAGuQokID+9JOZDIKssDAKUyB1WqBuz2v+JH0CgruL2tzuEehUOG+m\nUAFKgBadAYFXBuV0whioHWn+W2po3klc0b52CTRA/qr2hWeoM52VNNZbBdTznu6Ymdn2lua3OXiI\nglH5rC9Be9f13ioIyP631Z6VMAj1GY3tKZSzPHA8pLjPm1N/rL6isZq6ikrTPvv3+3rO7h3tJY+3\n9f819uf5NdVv8arGfKOuMXqyrc/BhtbNbdB1vX353tYQ5GQKtDB7hziokgycPG0PfE9wFw1M9exu\nfMAFc7R/aBO4xIasZ9661vP2Ge29prkkC/ohn9PzRiBBz2NBEG195g1fF0IjuJdGLbVlsaR5rA/y\nwhPXu6Jwzczjm6WJ5tkgvl7vq875eY23nqM81tZzKjvykc374gCLg8a6AgqpUJXv7z6ij+DPjFxS\nuYY78uX9Q62VDno0gcJNi7aesAaegU4K6r9WQmUp7lMftBgbYXguHa6rhtfhJQF9wdzg74GAjGsM\neflt1oOTK+ZwOrIeHJ/ByQJausaezcs82mL+CqLUFk5ovuyX5HtT/ObLXFK9SnDf+CBams7qvcle\ngPqrogmQkx7mSe9YPnRuG+q5DfrPUZDLLmrMTzH2gyCRzkD+jGvyhwvw3KUclT7a//7X9VuzVlK/\nzF/Q77kbr2nsGupcpdMPQgDpSzmzkc/ufk0+sweq/yKcVYOs2mbIfqZxKN/ZBzF+xv4xCafi3Po1\nygT/GhyPbbhQE/AWXb6m60KoYT66p33lwT3tt+aZj9ZffZWyg+g71LwzBuW7BBJ9agV1NxTDgkn1\n9VRc886Db2l+qpblm0uz+k3aG8pH/KjrXb4ltPBlUFYT9vsTOLaures3UBY0avEpXLTwBNW5rvwI\nH8Q3p8LfXxHSRcq45pprrrnmmmuuueaaa6655pprrn0I9qEiZTpwF9RgyA7DYxLlLPDQr6jhuK+/\ne8eKKlaqijhNEir+fIaIVUKRsSebO2ZmNhoqgrZ6SRE0EjJ2goJOvavsYDKhKGImqUzB6amiw4mQ\nynHjoy+ZmVma6Oqoq8jX8Z7es+RTJHHCuczjU5U34lfkrJ1SRqJaEseDkzEhaWi5Of2jWVHEvnyo\naGgMlMUcGesRig3RLOe7YUTfJDPhZJLmlxX5K/UUwQwcl61KlO/JQ2XTq2llSF8kWhklA3rlY4oO\nzqPlHgyQ+RuqTP6YoogpooN+GLGrDT3/bEPR0wln/T0c1szD3ZJMPJ/6Uh3W8QocKtNZRbRDSUUb\nayBoTsiy+CeK+C/nFWEOgDQ5vK+2aMMCn4kpmlo9gv/jKX1DJiNLOcsl3dcqcT6Rs5izE/lG5b0d\nMzMrgKKYzqrtfVNCTTR39fdSXc4Xn1c9IqhQHcA74j1VfDR0WfXyoCA0MLJsHpU7yBne7lDP8/dU\n/s4xEhNHis6mSQqmp+QzERR0Tk6UqfCgKDRuqRylI/nqoAk6C4RLr6Prjx8rCu4LK+MyPaWMSd1D\n5hRelu4YBE5Y9emgxBMpq7w9pDDyPtWv7ZH/jOryr/ZI0fTQWP54Hqseqw1TMypz9gW1/epFzpZy\ndvzBO6iinYBEC6lNV+bgjrkmREk8ozbeAAlXuoMCQhS0ArwQF0G2XbghJN7hkXzo0T1l71ucrb1w\nQ2dkF15RxH1QhIvgDa5DzeLiFWUMluBaCYw0Pz7+JqpzZPHn1pTtiKK4tfWunnP8RAjCqZy+v/pR\nZRa6KKjs3VX2xAOXzvVbel8P9vm9A7hqpjQ3xJz57K7G1sE+aZihyrUCGmzlFZAvZK8239R551NU\nLKJLzpletVMf33jvGzq726spC7S6rjlnBj6mFhxiG3eE0gjCG5WExyqRRDrinDZuwJ+BSkeHA+tp\n2qfYl+96Jmrn7ICsIqpZhWeomKCskVpT+6ym1A4Z5kZvRuVq7Ov6nXc155Yqen5uXvVL59Uu9R3N\nYe2DumWvgNAj0zqP4t7aDSEQZ2Z0b/GJxnmwTxYGVaKVBfnk4o+obNEsZ+f3NH5TqFQE4QeqNuV7\ne8+Use2doCoB10uxArLwmup48bUfMjOzELxnD74un2v0NMZmrmsMJeDkyl1WRnQM/8fjbwnRWCR7\nPctYTbLO7H1DbXXnLfliclrz1/qq2iE41nsHbdV/bm5V9b2NouJE9TqpacyOPc+nrNOHiybC3iGZ\nVLl9cNgEyeyOyRQPQAB2girXBPWrBEpu07TDOKHnJEGNDEMjPjUPD8h8OvxUcTjAQqg8ef2aRx10\nSQAkYrWpcnhDH+TXwuGspbi/TSZ7AkpkBkW1GNw8jmrgKCTfDSVAI6AoZx4y+3CEBVhHvIzFTp29\nGOtRGE6dQFztlQiE3ldX6sEVOGk6XIDyGV8L/rmwPjsohQRitAFKkMOqvh/Qdotz8skIPDeFvuYL\nD77pH8A7BEJnBL9Fhz1BGmR1NPZ822BfQG03vcQ4Huk5JyA1KyAJi/vqs4pfe6PcAtez1xqzR6pv\nqh22H2l+3t5QvXNLGjs5FFVy7NU8Ic3bXY/uq4302RmDhESlKO7wuIEyC4NozLN36sJTVG9q7T0G\naXO6q+tiXNfARwNwknUW2QvNakzeuClV0QY8IdtH8Hlsqj3u/uVf6/5va124sKqxGr6ovdT8IsiX\nee2dVujvckNzRHVf62rZ4YCpMVc12KMM9JzkCtwwcKRNYur3PnOcmVnm8pKd7ev/Aeb/Rlt+VdjS\nOrd7X/2QAmk+/3EhZuaurNp5zfs+94j+H8upbmuXWFvhmKoynpvwYsZBgm9vqQxP4Sh0OBSnrmsN\nbcMntIFaUWoBX7mmtvUH5TML19THYVQwwyhShTIq38IrqltwXuVqeFSumQUQljk9NxyUr+7DSTYN\n+is5BS9oVO+p1TWPBVAvbfVR/LrF8w401gJB+eTBscbGFJCXOipHJ3DWrN1cVbugnLPwgvYIySX1\neR9+Tl9a83CY72d4vncanlDWjSaoW09T7f3e239hZmbX17XnCoG+OgXlMF1VuSao5B09g9ssiUog\nc9Lxttbwtdc/UME7jw3xvT6qq/EFvS91W+uiF66xzW+hjrip9dEDF5k3jVLSW/LdMUikagFUBmN0\n/SXtHwBY2dO78EA923i/LIe7p9bqTqxU1bhdgVPx4k2t6WGQd89Q/90u6p159jG3fkgnQ8Lw4xS3\n1bfPjvWOZlW+3GDNjF5VX/ai+o238aZ8ef89lS0xp3lo+WPaX6bYr9/9ptC77bLWtpkXNDYuvqx5\nKBSQj791rOsCz+STh481P+7taL+c4Lda5uqqmZnVOuqLqazWqdSyfL+1L1/89htC8ATAvkfH6rPD\nN6TW2gD52AIV1/Non9wHNeYHiTOw789z5yJlXHPNNddcc80111xzzTXXXHPNNdc+BPtQkTIRorJJ\nzgZ3iCA1CopuVp4pslbg3N9iXtHZRbKGA1icfWVFrvYcbokDRZEjqB71hooChzm/vbqsaHImqyjx\n0qoiZtv3FYF/5+tSYZnnvPvi6qoKzHnMGNHWm6+KiyEzq+/PUFrYh00+ElHkbhnW9qWLes/cispv\nIUWf+/CgnJBZfvhNRQpvvSqEzs6+6tUtK+IXgY1+AKrgCapMIb8iixc+JbRLEG6aTs1sYV4RU2vo\nnZWKntlsKPsQzqoOl7wq42SoyHeJyHijhxIJXCrLRNhzqO9UdxQVPd4BtTCtPl18QXWfkMnrjZ8v\nu92rcdYSNYxxWFmpCbw8pW8rCnuE8sLqBWUSpmKqz8F7Kle9rEj2lF8+4YPLpXCmrE6vIh/y5+ST\nQ84pnhLdbVccdRJF4nfhbii8pyxToKMQdPwWHCtksIu8P9SCaXyBM8In8vH6KaiohHytU0NFo83Z\nYngnPElY7HflA4UWKlpEZVunqBbh4/ExmQLO0Fahkjkl2+RF3WmQUrv24VuJ+2HZb5H52FC7durK\nNORzyrxHPZzbfkg2kPaIjhjLRLFLcAKlQQ9E+mrf7pjz32RyCyihtYcq19xz+EmUZ08vo6QFv8LJ\nA80De5ugcEBeLF3TWFhKC8Hiz6nOEVQ59t7U+Ds9AkkHYm4RVvVOT74Sm5cvNPuan47IsFlDbXUV\ntvf568psDhqq2+YjZTv6DdV99TYcWi+oXHUQhFt/rUxEfaS+XV5W9iSLqlFxT98754aT8xqbN27C\niZKRT269hQJDQT587QXNS5EFZZ8aDzV/+Mbq06U1zZclzomfgKJaALGXZ8zHUqtmZuYhC3Xv23pO\ne0flml5TvS78BHMPBFU7sN6PJvKdy3DnzJK9Lxc0Nz19W/3gh9tgBiRTEL6KUfD5lA7GaT0nUeO+\ngPrdn9f33r769fC+zio/6cJDVVB/ZPK6fvYF9Wue8gZBBxw75/j/bMfMzAYd3edw7Fx4WevO5VtC\nTHlAXL69pzkmMzdnV+BfmKD6E4C/rAVy4cmG2mT3MTwOcJAsrKCeATpspNtt576yO+UqdeA8c/lM\na9XZMSpNdc07ARJ9oTz8Euvy/ZWPqI8iZNs3v6E1rnmoOucuM6auaP1oDdS3Jxus4cfq86dv6nMB\n1ICP1N3GWxo7D96VD6XhQ3rtk6+bmVkyrevffUPZry4IvQtXhXJdWNL82WRd83fl6zHa8bwWJcs3\nDmg+ajnzdgLFNp/KGww6nBDK7CZaZMPwySGIzQBIn8jYUUvS/B0bgZZA2aUCmiTk13WpIOsU/x+g\nNOmhYzug6CIGchROLjOzeG5sPnzuGB4mT0NzXyim7N+Q50XIzA9RYxxDTVMBnTzqqnzDARwPKMV5\nQToOWW+87GUi1N+5r9ysWwieiARrVcjhEcOnM6xR2QXQq8fw35C5HMOn1G+j3hSRD8dQRdu6L1RV\na0d975vTGtyD8yXsAcEGv0S/Da9ETHUJ9kP2POaoySViIHLIri+AasvC1zZsqw17ZSFLxqBIOyGN\nocUl1EzWNG9XQHwePtW6UwTR0TnWWN1jnzm/BAqJ/XByTuuLs2Z7gspET6jvOAQCCdRVKACq4Lra\ndYzvFFErLDL/Drt6f2XAPrugcu0fyaeDdkA95FOxVfX96rLmx6XcGs/T/fUnuv/xHSFmfO+KuyKd\nceqh/sxNa10OL6l8C3Oso+8rgMqne1vyk2egRqJH2qv6F1m3U5oL5y7Jr8zMVm5ftKVbWkccTqEe\nKi0NVFNr7BeKB6r/5pba3wsy/TzWKCEdBqGc5wTOriAIaMajH0TdxOCgQbU0huqcBTWvx0FWxwy1\nHJ++X0zJp3xetV0cVNgx81IGRMekrb4/KKOeCtdNekHzdQgEcxsUsZ/5bx6eys1vqc+ePRTXVwPO\nE++U9hJJD6p4jL04fEiTCtyIjMXorPq2XdfY8FS0fg192lfm4Qn1F0Er9NQeXTgPxzHNJY266l0C\nIRqAxOzkQL7bgr9kekk+UOBUQxNEdwYV02gHZGSWOcrLGJv2cb/m1z0UIZ/eE9Lz9i1xaeYyek4H\n5d3o6Pl+UjvzbXSCCh9qpCPQfs/uap29v6d1Ngiv0QufULt7mL/LcPfkZuH/4zfzEH6ublj3HT3R\n+vt4T+00e/EDPq3FT33UWken1gPBF7uqfWCZ+aIAp957Gxq3s3C4RF/WfqYfUx8/eVN7jgrqbDMp\n+EvxlWxCfZVf1vwwYJ5sdHbMzGzuI+ISXIW3Mooq2vYdlbmGsuTcJe2HM3A0bh6pD87O9Jytd7VH\ncuaj6LTm6URS8/SV6yq3lzavwvnnrLHNPc0DT0FIG3uJS59U309Yzwr3VK5pTlGE2Z87aqxNJoEz\nTl1k/d9/vXGRMq655pprrrnmmmuuueaaa6655pprH4KdK6z3xS9+0d5++20bDof2D//hP7Rbt27Z\nL//yL9toNLLp6Wn7F//iX1gwGLQ/+ZM/sT/6oz8yr9drP/dzP2c/+7M/+32fG5hS5DmUUaRqzBlj\nL9m6PpnlMmfuL19RxC0c0QWVBtkpeE06nIsvFxTxX4E3JEJW/tGOIn3Roa7PkV3snSmS1R7qvnxU\n0cZsVtHfHIzjFZRnHm3qPakMvCpxRb6GnDNf4tx2bkVRXx9cC36yY9UymfsmyJ1ZRfw8MIYvooqS\nndf1pYeKbjcreu/8DynCl42o/CmPytH0oAxEeQiG2tnWhs1+UuoXL/wXyjw+3dgxM7MYoVonUn9K\nVrwMO/fKmiLiKZAn4zLZY3hzCmNQPGQYoyiqLN1apS3Vt49QYom3vlPd4QdZf6Soow8xnmREUdb9\nJ8qOHL+nNslFYOieAbV0xrnuI6EN0lV9H4flfXNTfdlrKyId57x2aIrz1mRfGvBfzBD5D9UURT6A\nN6Rf0XtiV+QjU0n1ycljRbZrB4oW5+b193E1zv2K4rbbip6uvqpy9OEtaqXUlxPUlvonnLtMK/PQ\ngIsmyRAekKlIVFW/cFTfRzryhVMyNZUNsnZ91SOXA31lql97ojE4OlC5JrNq/3kUCHwB+ebBmTIR\nNZQL8nDX+Igml09U/nGQvyd1XyLejrtZAAAgAElEQVQqPyuSmR8V5W/Dip436KuevuD5VbrSaZXd\n3yc7C5dHdV9tFUGNKemMS5SvxkE4BjZV1kJJ97VPVaYp5qfZ66squ9/h31HZwz31QbGhzyHnj69c\nA01E5rfbgJPk7o7+f6i6zoHAm17RvNY5UAZg85HGSrQrn7h8RRnVJEieUUN91jyTjxpqHrPXVK9u\nWJmNwzuqz5lz3hklntllXdciI3iK+kWeyL73DFWNu7ovk9L1C6vy7SpcOVXe366Q6TjV/JVZ11hb\nusm56DZcM0/h0HmmLF52RZmQqTDZKJQgjo81ZhNkXhavws7PUdyTPb23O/6AK+A8Nreq8sThdKgc\nqn7TEZU3PwdSqiwfHm1pDKdfVib79k0hED0o0Dx7oMxs+x3VZ4AqXgwli+SK/CA0ix9NqZ9PyETv\nvCvUS7Wo+1dWr1oEHo0zOK4OKMMI1RwDJZBBoWsVDoHFNa017a6uu/uG0J4j+mrppVUzM0uF1YcH\nd1H6QiVo9YLaOL+icedPwLdQh4MK5MPu47fVRvdUrgTqFAugUjsoUVU2OT+OMk2zIh+4+qrec+k1\nslRNvWf7jsbQ5avKpl38uK5LBuQbO4wJR+1pdVbzSZzsegN0xcmO1oPWGfPK1POpYXiimu86ZGD9\n8E4ERmrXBNn3IepFbXg7gmn1S5MdVQB1jhhqTEHO+k/gZJmACPQwNmyAuspEc9IEJccBXDIBMqLj\nEIgXg18EBct+/ANlmFE0an3W2WN4Mvycs/fDjRAMksIna+fnMw7Cp3uqOa5bVf+F4DIKRUEwDnVd\nEyWfCGPVR5b19JHWt8mkY37EJgJwcnkDqlMTLqkEKKhkTuPjCISir6O6xsmWj+DF8Sbhz0ioL975\n6tfMzKxRVpkXp2jzkNpmiFLWRE1qNRDWY5/KMfA/JzcVCL86ymeNffmcfxH1HlTYwiO9tw6aaXSm\ncV8sqU8On2r+nZ9RfWbgHYlfg3dtVgVulXfMzKzapd0OQZmWQFVE1Zce+JPGKF024S2JgJwJAr4Y\nTOQ7lYnaIe11uAv1/dS8UHGdBj5g+vTB69dsar2oghhtNLWXGjzUZykLchPFnLmk1s25j2j9WToR\nWuKsrTHbQyFtvKMxe1JQu4YOQY0tan72MDeurMGpk9D754+1xzgCBdE/0dirV9irVjRP28/+gm28\nu2XpNApDAc0dUb/W6ZVZva+FQt3iGcqf03pPZkHz+XnMDwJuzPjwgbLZ21SZkiinRhbVFkWQHSlT\nn2XnQKOCIuoPVZZOi/3wtHw71IVrkN8qhnLM6RPNlwN44fJejZ2zY8ZlSL6WzuvzZEtr0XBHa+uY\nvYb/k6+ZmVl4Tr697hWfXSKq90zgA3XUg9pwwnRL6tszVPL8bOBz8O9N6urrwoZQw4MqSGtQTB7G\n5KO3hMzJoF7nA0kTgj+q/ww10Bta2+tHel/lTD6aA2UXHsGhyLydn2NthqPR79d1D++JHwQRRAuA\nKIrGVZ48aOEM7eFjLxAOw4HIfH9eC4ASrHvhYEyAYO9obtinfbMrGjup63p/5IL2JDugxmo50GvT\nqkeVMeqpNHiP2vsM1a3kquq/8Pr198syTKds7+lTC2U1zoILIM45udJkzcq8qH2bow7qKO1uviPE\n4lNQ94uoTy5e0nXNE7ih8I1+X/NP5Uh9f8Iaubao95d8qvvmPVTZnqpvk8wnvisat3uU7wDuqWxa\n5Z6+rT3Gwqsqr6eo+bTT0BhqgJze2NWYfPxUn8trGpMJfhPH2GM4KsmeBfnis7tCBIVA9CzcUJ8c\nHckni17VZx8kYoE9SiiGkuP3sB8YlHnzzTdtY2PDvvzlL1ulUrG/+3f/rn384x+3n//5n7ef/Mmf\ntN///d+3r3zlK/bpT3/a/vW//tf2la98xQKBgP3Mz/yM/e2//bctnT4/Yadrrrnmmmuuueaaa665\n5pprrrnm2t8U+4FBmVdffdVu3+bcYDJpnU7HvvnNb9pv/uZvmpnZpz71KfvSl75ka2trduvWLUvA\n3v/yyy/bO++8Yz/2Yz/2PZ/drCraW2soijciGxSNwwqfRmEmRHa9oMhZ7UARM99Exb+4oqzZmKxS\nOKKoYXaBc9twHjSqiloPxrynp4haeaDndTmnmLqsCFwGdMQ4rOji2VNlOpxzeYMVzr7OKLLXICqZ\nmCOai5LDUVsRvFJJGYfJBuf4UWpITnNOEs6F5BLcNZx73Kgput2E12WWDEWH1I8vofdk4OaZwEje\nInN0Vi7ZCcowAXg1PKg8nIB0GB6oLIebyiqEIiqT57ba0gsKqLIFogE0wqSlaGeRPoygptMhU1fz\nqq7eFsotMNqf1zK0SRC+oUFN5Rj3QZZw5n6VyO+EyPMx2fT2QP/PX1S6rnigcnQDiujPLSnCHs6B\nNnqidnLOo8dAVcRaaoe9Y7VPH3b2HNmxuWvKrown6psWSJxBSvflOSd9tKV26/h0/8IV+e7cisrR\nGdWon9qtWZfPljxkrDk7nJ1DpQUfap+pX0dkMPqMwzHs7vUTL/9X+02tKOKejaufR375WnBTaLIy\nGdkFFBeicBSccb69sqGob4Bzmrm1Fb5HjQVliOspRZdD8JfUHim6PBiBTnO4b0zlXCJK30uf/2Rl\nq6Ky4MrW5zztgGxykux0FA6RcV3zROmZ+rLb1bs8KIiMYO7P5VU3b11l29tTnxaYJyLT6pMaiL54\nSD4zBrnWKnBWHa6Awp7ui4bUhyF8ulDQc9sOAoQ+mkMBodfTcysjxiqKWA6PUIQ+7NZVj9KhnlMh\nyx0Zqf5B+JJ6sMQfPobbhWy9B9WLUllj2oOqSWoGZA1neYuoaoQZy52mypNPqdwZVPBGNbXzxhPN\nXxXO5vtSnBenP4731Q/HqOI5SJPpdZCIPjjDyEj34bEId55PWefkPZWjVlMWquCgs+hfg9ejtk12\nM6T+T5Olq7Y0x229qeeU95TBMc7jx6Z03VQexSHUZgbwtjzaApm0r/s7DbXX6guauzLpuD35KymE\nne3smJlZq41SwYz6OJPhzDgIxDEkMJsb6vOTTZWpeiJfuYDCVgCuj8P7+vspCn+JrOafQVrZo2YX\nZUKQbp0WPAtktWqgnLwRtdXMDSEpa8z7JyiK9RvyvdFY5Q7n1BYzjmoG6NT9x9SzpDZfQgXkjLH2\nrYd/YWZmFRTKZmjj/rx8o7grX+wca94unoG29aHMuKZ557zWB2k0hCNlGHC4ZFT+AOolfRR8+vj+\nKKn3+UEUGZwz6WmtDw24f/oD+EjwGZ+jQkeWMBpF7YO5xIPaU89B1tjwO8rrgYMiyFg1M8sFItZn\nXW6DqkuSQfXikwZ3mOOjIbhyBnAB2QCUCuXxoM40AWUxgXPCUJ3KJEAYUbwGHG3xUMpiKf3Nz9rk\n66Lm01fZfPCvjWLM+RO49nog1nrwbaCKlwDN00MRakS2OwjaZ0SZhiiXBEGsOE03AZUUAoXq4//n\nNjhhIry3UVCf1uBAHJLl94IwjOILE9SMOqAnJsd678Oa5uHdbe0N5uAMDOf0nHieLD90IhX2mRPQ\nAOUIeyQgSV6ffMnh9vJ6NM8F2NOFRyiHgVqtV9QwHRTQojMoiE3gTwqonTseh3dIPhMFtTeGi8sD\n99noVPU7pnyVoeoVZp/roPVCObXjxM972hojZ6jf1c9YX4/EN9VnvUnNUg8Q7ZE8nHJhzbu1jvym\nXYdXA14TM7Pyuw/sFISsH5+NDeFzGrN+J+B9GbF/CPN7oH5+lHcf5dhqQW3jjaivy7tqozayTJfh\npYvxW6bU0Xw2GsKj8VC+ESa7PrvAT7Yt1en+A3G9TKNOdOVFIVkm8EuGOhrPNa/ee/pY86qPn37e\nidYFZz6unarNjfms12IfWtXf+6D76yCt/RkQHk3V76iDWl9R883oVO3QRB1pAZ6jOpxfzSJIQNC9\nA/YiHdbk032tN/2++uhyTvvMY04NHOzvqH1QkwqAoBl0VJ4BnJRV+DxO2b9aGF9mTDShDTnc0tqc\nZF2szer3Qh8Oyp5f7XUAuqvAbzlfGqR4CvLGc1oLRbgWSEx/Xe1arMGPgqrV0qwQTU2Q/e89FdfM\nyb5QhYV6lb+r3g32fllQ4pUBv1GDzjqheh9VTt8vyxvfeMs6pUPL8Vvk9Fh98nRfe4YRiMXktJ7l\ntOmzbf39rAD/pF/v8NAme6fa320+1jgOhEGygLbf4zlB+sTDmrtd0Zq/A4I6xb4ysqT90llV1+8X\nhNotD0AEhuF1wxfOQLxVUeo94BRApq2+KpfYB7KdDIHc7MB3OYJP7QRVwNM3hQg6KcqXXlzXb5xj\nTi+887bQXSFO0nhmQXl51TdjAzr6PcwzmUwm3/eK/8C+/OUv21tvvWVf//rX7Y033jAzs729Pfvl\nX/5l+4Vf+AW7f/++/dqv/ZqZmf3BH/yBzc3N2d/7e3/vez7v9PjMZghguOaaa6655pprrrnmmmuu\nueaaa679/83+0R/8tv2fn/ncd/3buamiv/rVr9pXvvIV+9KXvmQ/8RM/8f733yumc55Yz5f+r39r\nv/q5z9pv/eNfMTMzT4Lz8jPKLjU5r92oKLKVn1GEvdEg8t1UVDUGamCAcs1kyJneJNl/0BMnRWUy\nImRA/aAsOj1F1MJkpRB2sCHRbEfVyIkWT3h/OKtyplOKzB2d6flh+JMDnKm1OpkeMgo9VAU8GVRF\n4DE5BkkTQNkmAqt/j8y3+akXjOkBEDNHnMVNz5AZiirT0qgrCjqu9y3s8PZAzOCrqkxNVI1iEycz\nqLKPYOxPZlHjgSG7BB9GCMURD9lu75D7x7SRw7YehmOkrbrFQ7r+V35dff6D7HO/8s9U577eG5tW\nBNvHGdujmiLWc1llHDxE8Kswf4f9EBTBjN1HFag94tzjutrYAxnAHvwgcW6bSina2SaTWCkq6juu\nqV7ZdbV12qO/7/ZRBthQO08l1WdTs6tmZnZ8qmhtHU6V/Do8FyG9pztUn50djex3/vn/Yp/9+79u\nZmZeuA7iKwrnBmDjD5DJdpJ9XTIZE1AYHrgGgkTY2yhyJabIeJLFHNXU77W2yu9wHmQv6pxkFOWL\n7WNFrSdFtePUmqLW6ZzK09xWu5co0HxOCKFgUu1zcLhjZmZDnreEusugQka+SyaZ8/D/5DcU5P1+\n9luf/w0zMxujPhEiq+0Nk91AMSQFK3p3JJ+plHR9EIReirP1Q798beIoUXEEtEnGbUzkPJkRoq1L\nmzoCKNFZzmM7/BqoIzlZ7XQcBF6a+QZVtQ5KOzZGSQcFs85QWZNWUZkAP8opXfhAglH4kKYV4W8W\n4AXqqM/TTgYir3J5yJ6ViiBTAhobwRQZ5iaKXmTD81N6bgvOr0ZJvhJ1Mp1dMg0duLpmI1zP/FpU\n/YeUd2YZzgfQHpV9+Uy3r3k+TkY8lFb2r9VFqawGgqcXst/5Z5+3L/zWPzczs8/9xj+189ivfV6L\n4BDET5T1IYoiW6mq5zu0GRHOjaeYA442lU6rFzUGcvCoxLOaA3wpFGp6asdq1eEJAcXWVDu1UdZI\noZ6SYR2oNyZW3tCzAyT3QzG9I4ACQQjkSYNnTQb6rIOo67MmzlzQGpFlbSmjcnHyTM/PJ7Q2hS+o\njQc1kB81jesx/GqTIQg7sv1tUFez86pznNPJtX35aLui50xYH+Ih1IficFKRET46UTmctXAOXigP\nzyvACdMh45lMqa/yKaHHGmQWG2fyLb9cxMZ+jZHpZc6Fw6nw9//bv2/nsS/+H79rZmatfflIj8Rx\nEPW7FGuywflyAI9dOOPsOeQrkzHIGpR/GmRWB8zXUyn6FTTesKt2KYMI8k8xh6EMFPORsR6TkQU5\nGQVRM2C+//yv/5b97r/9ffPAJeSgAQNx9XcEBNDII5/0GqgPhzshqfIWUbYptZiP4YOJggoOtuDh\nAjU4Nat1IIbS0ump1rHeSdvC86pjMgw6B6Rbhfl0mnnEE1JfleGBa8OvEwmiNgR6MsA7onHNH0c7\nQhPUT+R7CXjtJnEfbaf3puCXqLR1XQNVywTIvM9/8Qt2HvvC72q9ibMnMObZEe/r1+WzPdP7gnFQ\nVPAvhYagq9gr9UGNjkBLjfuaf8NReCKYn/ogOCYo94yb+uzCH+cHORiJ8hxIZLpN+VIHbpg4vG9e\nL/NfSO3RRsGmW2ePAT/Q0FEGCwM1Yn4cO+gsnhMD4dllLxnAx5xyTBhMHfhHfAHn/VyP4mcdUslA\nF5RJl/XED/oBbjEvvFdxlMr8Pr3HQ3sOJg56Tdd95lc/Y7/9B180D+3s62ks+hz1LR7cpJ7eCSjp\npK5PoAL4P/xP/7P9IPvffvOzZmZ2dqYyz8VUluIZvBLMi7lFjZsqWXn/+Dvn2yOQELkoZVnUmtHj\n+qMjITtSKY2dJThPikUUs0ABh0G6l0rwsLGvn4rDe+cDEVhm3xxUXSOgIiqgfqsO7yeIkQz8TR2P\n6tk61nq0CG9dF6QKlDaWmNV9bXiD6n09N2Wql3/GS3vAoYWKVARfDC+iGAkSv4663FQWftAA6Lqx\nfDnqICvhUqk47Q9fYCqIUhvrXKOo52XYG3hZPzpFEP+m9w5AsI4Z04bKUWZae8J//Cv/xM5jv/Nr\nmksqqDZFplWOAap/LVSh4nGVp1nXeuf1aE7s8VuzA4xuhr1Imf1AgnUgDUq6guqqjdRfXlRx/9d/\n9Kv2i//qn9vY67EUv1mGqNSVS/LBbFhtNoCSJNAH3TRU23ZH7B/5XT0N52kH9G271qaN9P0Yn+u0\n5SMxypIEmVyEe7Xa0PcZ5v2Iw/vJfNODo2+Q1Zhy5vN6TfPALOqqp6wPhiJskO9bQ32f8rKuTGtM\ndndV7xF/98Jb2uFUSJ89wOqi9iT1inzuqKA1d5p6erIq76QNJ0+3ZzPB763AdK4zAl/72tfs3/yb\nf2N/+Id/aIlEwqLRqHWZME9PTy2fz1s+n7disfj+PYVCwfL554MOu+aaa6655pprrrnmmmuuueaa\na679TbEfeHyp0WjYz//8z9u/+3f/7n01os997nP2kY98xP7O3/k79oUvfMGuXLliP/VTP2U/9VM/\nZX/8x39sPp/Pfvqnf9q+8pWvvM8x811f7vHYZDIxj+f52O9dc+1vgrljwzXXvru5Y8M11/5jc8eF\na659d3PHhmuufXdzx8Z/fvteoZcfeHzpT//0T61SqdhnPvOZ97/7vd/7PfvsZz9rX/7yl21+ft4+\n/elPWyAQsF/6pV+yf/AP/oF5PB77xV/8xe8bkHHNNddcc80111xzzTXXXHPNNddc+5tsz0X0+5/8\n5S5SxjXXvqe5Y8M11767uWPDNdf+Y3PHhWuufXdzx4Zrrn13c8fGf377XqGX8+vOuuaaa6655ppr\nrrnmmmuuueaaa6659p/M3KCMa6655pprrrnmmmuuueaaa6655tqHYG5QxjXXXHPNNddcc80111xz\nzTXXXHPtQzA3KOOaa6655pprrrnmmmuuueaaa6659iGYG5RxzTXXXHPNNddcc80111xzzTXXXPsQ\nzA3KuOaaa6655pprrrnmmmuuueaaa659COYGZVxzzTXXXHPNNddcc80111xzzTXXPgTzf5gv/51/\n+YtmZvaH/+q/NzOziGesP1Skl+7tRc3MrNMom5nZJKC/x6cVSxr0hmZmNo6FzMwsEJLud22vYmZm\nIW9Sn1F9dsY9MzPzBHS/t1MyMzN/Rs0Q9UfMzKzRGJmZWZPPxNKUyjUO6v5uzczMwu2YyuXXdaFu\nX+UKtMzMrNjUeyJp3RcJ+szMrN1smJlZdkblqoxUj35X9Y6jX97rd3TfKKBy6TLzJVROn0/P9/R0\n33igcgUHut4T0ucgETJfTW3oHQ5U9pjK1BvpcxhLqQwNtXFAVbKqp67/R/V9uNnWMz1dtd1MirLq\nOUH6MNGfUZlPVNdxV2Vpp+NmZvY//s7v2Xns9//l/673mdq0faw+7J8cm5lZy6s2jXtUYG82p/fz\n/SQq3xjVdF9ppPp0mmqzZFRtHchl9NlXHzbLTRWgrzYO5VR+70h91h2pXlG/nhMcyFdLfT2/Nama\nmVkmhA+m0mZm5onrfcNt1ac80We4o/YMhWdVrlU997O//tsqRulI7TCUz2VSasfqhHK25CuJsPoh\nPq3n9DpymkZVvhHw6XrvjHx6PFH7jFs8p652Kld0fSQpX4vF9L5wUGMl6NX/B335U7FZ1PP1X7OA\n6p2dU33HPZX7tKfrhlVdGArpeZGM+i06on1GKsfnv/gF+0H2W/9UbTRMqK8SQfVF+WDDzMxmli+Y\nmVmtSR3H8lF/JGFmZoXNfTMzW7i6YmZmnoDKcHBX908tL5mZWTqSNTOzw70t/X9O7xlG9LxRW22Z\ny6quW9w/PbtgZmaZjMbE6f4zMzPrUJyUmsqmKGerpj9s7anPL1xe1PVttUnjsGBmZit83x1oTPaG\n8vnTvV0zM8tPq4+zq/NmZrZfkG+W9/X3JcoTXVA7NKrqm14grHIn9Pnsnsoxv7yq8kZUz/1N1W8U\n13Vrq6rn5pMDMzNbWJLPDwf6++nGE30/r+fwtTUH6rdGRfPxwqp8oVXRGIp61ED+tMb4/u6ZmZn9\n1hc+a2Zmn//sD/YRM7PP/LbWm1pF9fQG1F6HR5pLbt96wczMJsynZ6e6bmZB9aq09f9HT942M7PY\notrv6toVMzPr99VvlQcnZmY2lZe/ZJcumZlZu633PH2kdsP1LZPT3+PTXgt71Wb1XbVFta+1bCqn\nPpyd0TxVOlZZWnXNH8mk2iiSUt90K/LJdle+EUvrvm5Hbddt6+/phTm1RV3rw96xyugL6jlLy8tm\nZtZjzSxV1SfW0fU7+5sqO/PJ7BW1Rcqv67fekq8lImrTmWurZmZ2tqfnBIasvTP44ED1qZ/o+XNp\n+cI4qHmsWdPf+0eqV+qmyp8Iat57+OSh2gGfufXKTTP7/9h70xhZsuy+70RG5L5XVta+vaXf6717\numfpGQ5FihQHki3Y1DKCLUswDEj+YsGGDQNeZNqEbcmQvMgSKBumKUswLAtaLUEyFxEcaLjNPt3T\n63v9Xr2qV3vlvq+RGf7w/8X0UJaG1Z/6S9wvWZUZcePec88998Y5//s/Zj/zp37WblL++m9rbn3l\nkezfH/63n1E9/P7LmvoWZ0vwpzVc349uvcfnr6r59tNcN+b7//mfys5/4UtS/j/E9/8srP/nvm5m\nZvuvyX7HYuwxfD3hD31ROnXN9X/vF37bzMy297a/34f/4SsPjSlsn3pD4/HdX5NclgM9f/W2xvUx\nulzJrpmZmVeQnsxkAu2VzxyYmdlQ4rBf+/u/amZmpbL08Ut//AUzM1vj2f/kq9LbOhX8qz+1ahf8\ndvyexuyPvyC7ecX371P39379yMzMah3Zuf/sTz6rvnPd35XZtIWGyL70BX3+iP3O8h/8lj7X1URL\n+7Ib3/lr/0h9elF23gs0t977+q+Zmdkv/NX/zm5S/r6jUftP7R+amdkj+9/NzOyhqd2/cedrZmaW\n+KO/R/UXtdZtX2nUjrclreJMOj1uai7sxPX/kPVnOZDWLPO3zMxsmlPHVxzdfzI8MTOzmCt5xrCP\nq0+kO4lAc3lW1pg2OpJ4sHFgZmZbqXMzMxs1NFcc7H1wpTnbq0pO6cWxmZkVFtK9Y589hqf+Dof6\nfi0mpZ/u6bPS19y+nkiHM11NhgV7IG9V/emP9dz5WHN7vav6m3n2VlPZhlFe7S8xFxJZ3XeBPuTz\nkoO31B7O7+tzusVm1sz+p//oz5rtq92DifqXbUkP6iuyeTsTtbvF+tPd1iQvDbUH/Jmf/fftdyv/\nzV/5z83MLO1+1szMJkP1LZOQsjdcjendvvaRjbL6upvTGvl0oXmb5p1lcc1++uVjMzNb99Xpbko6\nkxppPvcP9WkF9f2gI52r7cne77S1RqUGWvsaaV3vM8FzKd5ZJpLJ8Y5kUjnRPjAV0/eTTckiz7vW\n8I7a33Z0/71T3ln6moT5pPp5ktfYNya0N6f6bx2qfWvrWk+8QDrwqKix6KfV3nsLrV/9oXQ27qj/\nK67m2JEnXcxNZed6CbV7o/DAzMycnv4/WdGcKI4lx3ayamZm2ZHqyZ5ob5VZ1Xj0FuyVUpLn1Zqu\n25lLNxcdtSMoaT36t/7ol+0m5S/+5b9sZmbpinTZTUke6UDyGAwkB1tKF13TdQmXd760+jMaYSt8\njbvr6HdnJjkM2VcHzI1lTPVnBz/Qlr/4523sBZbmHXEQoy3s6ee61RzTTXNX89pd8k6xUFvmvp6V\nTPO+vVBb/Jnm5yKGTiekIwHvzemk7p/4+t28UOeQLe2c826XmqteN6EGxhPSvYWDjJbsK/k+Zbwj\n8s6WYt/qzKVjrse7iKd+jbK8u3b0PD+p5+Tot089C+ZwDJ0N2Pskc7pviltj0dRYdP2e/bASIWWi\nEpWoRCUqUYlKVKISlahEJSpRiUpUPoHyiSJlcnO8eGPFlxIzeZ7ibXk7ARFYZiIPVbEqz1oJT97p\n2QdmZuZsywOXdOTRnuH1LXjydlZVrU1AU8ynit1cjhQh9xxF/TcP5OWM1+T9jXfx6JdUT7cnD1d1\nQXQvpU//Uu3J8P3IQEnEFRnKF+7o90DPb1x/V/1ry1u7GshL66fkWUvUdV/TVzQ0V9X95uk5k4E8\nmI6j61dcyWVRJ/JRr9NuRSZWn1m39kBRhuVUXs0kbfXn8kbmXEXa/CZjkAfxkpbfboUIbGeo6MuA\naHO+emBmZtNA3s2Lx4qUJbPyhKcuNTbBTNEb+RRvXgANmdOVt7R+pSjzqCnPcKYiT/UYdEIpwxib\n+tUhCjX+UGM9AdVQzEv2mbKiTsuh6u81JbvRQGOdKal+Z6j6BkTxPIcoDKilfkv9ruEFLaSkw1k8\n8kFccr0+Vrhv9FTjsMSbml+V7nk56eK0K0l1T47NzGzRH/O7vLEtn3aCTCp4an8yqcjEZCwd6hAB\nn7WYE1W1y20QxQIttjwPUVU1wuAAACAASURBVBLo7IrkUtjMI090rqnndRZqTw/0wOxa99mK5LG2\npetHRB5659LN3qU+EyXpfHFFc9YdSm49w6uON/0mJYwiB8zPeV6yuCKEVsho/k57kvmQKMMu6Jxg\nIdm0TjRHKsioCwqhRNR3mdCYjMeKluQC0EhA2M4u9H2ioAjcZELkM5Cdy/H8cYt2EsUZ9kCdNdWO\n/hy0VVv1+SOh0ayndtS5PouODNpq5xZog+REOlXn/gHRrySIvgSIwzOQMVtEW647GsO4J/u3ntAc\nnsz0ff0YlBPoKW+hOdev6/nditrVrkvuiRhRp6TmwGCk30MwVa2p+zzGunElnd6qSicWRDovidoV\nQKM1QPxMRoRublgWUkm7cEDZtVXP6YnktP6abOC9bUX/Z/SnsKF+vvd1oRh+88O3zMzsoHxgZmZ3\nX1JE3zkETcIcisXV3rt3NKebH2jOPGwpwp1l3XoOlEJpc83cha69Pv+W2noonSjfkw54a7ITrTo6\n1NH8XT2QLsYzuv/kiSJ8uQTIR5AyfUf2wyPCmFtVm2ugK697spNzkDJVkCp+nChSVjr03onQUN++\nftfMzDZApa7/hJApiZL+n78thMZj1uQVV+08PH5HMsjputc/80UzM6tT7/sPv2pmZsOXFDF+9bNC\nHXQfyH48eOfXJTsTXCJ7V2ijb/ySYBLxuPpz50fVnpuWSyKf/7Qlndzg+18GzfHzPyJUxMpzws5M\n7Q0zM/uvuO6z/476O/qjsiVV+wkzM2vz+8//iZ83M7P/8w/+UzMzu/7fvmRmZv/sb0iOv/ELv2Jm\nZn/mL/0ZMzPrgBL+W//r3zYzs4G2DtbTsNs//G8lpx/9Iz+lL35qz77zW1f29rtqx7/2riLP331P\nOlvOSJffyCry+42vq2WJpfZE6TX1uPG+9OCqqweVcpq1X/3Nv6XrPI2T9zXZJDcrm/rz/8U/0PUl\nzeHnzexQXbO/9KfV96/8hQ/NzGyRAynyv8heXTXUhkWs+DtkFn7+hf/yF83MbPRQdvRX/+q/bmZm\nP/PvSVev3tR1f/2vfdPMzP6TnxNK4epQ9f/WrwmdW7+U3bldlf1o9H4gXHyD8kfsv+avX+HzT5mZ\n2X3sy9dvKfr9blbzPc76cpHX81YuZOcyt/X7rC+dO0zLbjhdzVUnp+9vDTWGk55kPCYS7BWk41Nf\n68BOTXN/cSDde9JhT5SQXMvAuwLWjZOR7M9miojxWHbx7ED13F4Q6Z1s8nzV+0xaYz7K6PkV0M9n\nvubyra5sRRPkY26u/vT2ZTvWHSFxvI4ENkYu5ZnaO1+XvJYT2eOVudaTYUL15zy16wg0bWxNtjAV\nlzwTV9oDzWKy67MLQtVmdhVMLT9TPX1PtsRZyM6nrrWuBQG2Mim9yLAvL17fXE9KZ5JJPqV5c7Wp\nPtePXjYzs52k5s+0o3my3gWdcA9E+hPZ5QkQtGlPbXY1Le1w/Lzuy4AYfMp+r6i27l3ownc2VEG5\nrec1hxrzka/9V3IuBMmOAyL6WDKtV/S/31K9S1cyOi/P6J/s0igtnToFu7d1on6PzzQGY19j7Jek\nW6VTIQ8PX9H9bl2616rouvK1dOqDQOjkHU/Gowzc4P0z2d18Ceyhq7ncb2hd21lIxw5vSQ4bNexY\niLrooeu8U07S+n92rD3f5kL9CEDKN0r6fcweb+VM66GVpdvv9NTel9v3VO9OiJW8WXE43dBrSK4J\n3kv6gXQ6MWK9XgE5M1I7pg397iTUvhgokATojSUIGQ+bFGOPPJ6CmGEzNE98tM+ezJeWiTk24L3S\nBcHig1Hx42pL0kc3QPMkQZo4gZ49pQ0+yO0ZSJlMhjaNVN+YeedmQOjFpGtpTzo65RRAeMoi4N0n\nNtF9U95JjNMNqYl+X7JiLNzC72jn3MHeDsPngSqaF5CZdPJ6Llk6ZdmjXEJ22AaS1Yh3LT8JUgd7\n3BvJrubTIGam+t5f6DnDqe5PDDjy8i8pEVImKlGJSlSiEpWoRCUqUYlKVKISlahE5RMonyhSZg4H\nxNSXJ2uWBjkCL8gE718yTZR/S97TVFqesDHe0Y2UvLXJjDz65ecVGY/jEQ/68tgtiVjH54rEFDPy\nnOX25K3OFOWZTyb1/SCp+zJJPGVEmRxX3/euFDl2mvCuFOElgUNmRmQ7EQN9MoErZqz+unF5Agec\nRcul5V3uO/KoTeZ6jgeqxZvq/wUR4uqB+rldUP9bkDTM22q/D+ogtbpp6Zie0TvibCW/zfCCTuAc\nmTY53+fLc1zY1Kfvw+ky4xyxH3pk8YYmNGbjEI00luxTS3nkpz4y7H08lRvOQXrMs9QvL235Bckq\nV5K3NB+He8CRbnTgZBg8VZQoHJvtO2vcp0jhAERM71JRoPZUz6tyDruYW6U/6MKqvJxZIr4zvLZt\nVx72lYzu27ijM8MBU6x+KLnXQYRUb0k+uyuKeBTwAneHigpdPVS7x0OiauvSzfWy+jtI6DllSFyy\nZcnZ89W+kyMhhAaX0rGNNN5m0F1tomVuB+/1XcnjIKu5EAchtJipPQsQVgt4jLzQK95F97eke5Xn\nJK/w7OvoEI4IB46au5L/Tlm6my2pvvY1qAkiFC6cRzcpyTJcTxm1OQuPz95dnrGGZ5woRKJJX1Kg\npu4pyjFnvsbi0rX7dw+4juhCUm2tcG7YUuprBQTKENRSiujF5n3NnSW8EGMie/lbGss89dV6cMJk\nNffycen27gSfOXYn5agdB3kQfQX1N8PYOEQSK8/BtQVpSWsk2Sbjas/2FvaiJ93KwiWwA/KnaxpT\nHwTh9i3pcg4ugT4cDTk4axZwpbiEZXbuKRrmceY3U1C71+NCECVjRHqJVBxsSffiRGB90HlJxiuW\n0//lNfVnD0RkHrnctMTWZTsWnuz/3c8KZbF5pGiac6l+HR0pku8iJ/eO1p2D/KfMzOyLdyWHN37s\nNTMze/7+j5mZ2dmxIq9nj1TfEI6ETEr9W7uvKN9PwlGwcR/Uy2PphT/qWq4gma0++5zu2ZZMKnCA\neIxpEZ6iIK55X9nFTi0l2411jeUwrbUgRByGvGYxovD5jXXqlYx7gcY6wRgti7Ibk7Zks/e5V/X5\nJUV8N5+XbDqcYb/98oGevyV0Z9BQ365bsjfeqmQaByG3tannHbyh+lLI5smR7HFmV/188cfFHFK4\nK9k2LsQ/Ur0rlNLLv09j+fvOhBAawtG1ex+OhRuW+5+WjvyshtR2+P4fwlNS7EgOXyyq3U3Rkdib\nv6h145l/JI4X7xXZlB6EKk/hvXjjzwoRVMD+H/1t2YzMUOvDl7/8+83M7JVnNZcevau5fCcjOTjf\nYf2Zan177kD8JTugFMzMVhIxe6YA51dHcj+AuyGT0pzxOnrubVC2Y5BQFSLfm2sgQQ8lzzlz8YVN\n6WwqIxt19BXBUzKBIDwvZDVuhZTG8f3/e2SLr2pevFoRf03hVNc4KUVEDw5kF+7+MfhvQNb84h/T\nZxhX/JG/oevu/wkh2QiA2v/zZc3X2J+Bs+ZPSEf/APf9IgQ89wtq85pLxHegPpfjZft4JUTofYpP\nlGMKYmMuRI+X19zbDjS3jtPSnWxJc3Dc1ZhWNkRUVG1Kp/qu7HIs0FhNS0KBnXuys6vwtXkL9Xdj\nypwqSuePLjTmRVC7+aJ+9xfar45dkIim7+vTY/0+lC3ZiEm3Ln0hdFbGILHLGq9aV/YzltOa7vrw\n4S3gsYLjbDXcI6yo/hzou7kvHWpn4P3DNl3B/7dkrlRXVO9iyp4KGzLc0Rzd61Ef6+Z8otnaLmjA\nCznJdxWUm5lZajOwPvVUQB8kQNX1Yhqno1XVtwHHhLuUvA+Dm+9d04HslA8fUOt92syYXLq820xV\n90pask48lI5mfex2S5+Vnn6vX0r22ZTGMnmpNi9XtNZMp6CKOqCgErrv8VRrVTyteVq5QrZpjcVh\nUbqVN+0Rqg39H19qfajXJJOMIxlctmVXr3e0Tuy+IzvfTUvmzRU9995jzdkuSPteQoih4rX6Pcpo\nLHpH0vVDV/vD1bLQpPlD7W/rB7puBAqhmVM9e9egh7Na7xa+5lLmu5L7W6/DJ7Q8ltw29P/mBH6i\nmp7brMv21Df0vD5cYS6I8GRRzzmGGzH+nsZhFb7SwxdltNyW6rlp6cNF0+wi77n0pg/PUTyr56XX\nmONDUMtNrTfzpO7Pp2mXqeFeUuORjkvveH2xJHNyzvoY8saYmc1aQ4uV0+aOJaMJvGQu76fJBVwy\ncd2T4h3QsfAdUNfHl5IVgBsz+GsWDqgpF9Q/6Fx3HvLj6IYJCJ047yrTAB4c3j1TvFN5IGQWGdoP\niqgzZd8F8jAb8v6w9+mO1I/mBci6mGTebeidqcOeJb/O+sAeJIXuXxx16YfGaIv1Kw0X1VO4BQdL\nPa+S0xhMZ6o/l6vaDysRUiYqUYlKVKISlahEJSpRiUpUohKVqETlEyifKFJmtJBX8pwI8Mqqom4j\nojDd3xJ/SO1anqvNFXmgvD58FZ68kuecCTMyuhRXD8zMzO/KU3bxtryn6XVQFXvyVE0gQe4dSwy9\nuTxtjZ487gt4UryFvMnLbXkjw0wSJ3ixJ5wx8+4pulms4jJ8U9Gv6zZne+FiiK3pHPoYl1huE9QF\n6IJWW17gZZXzhXn1s0G+gu6FPHSx65BRW+0ZBPLejqqKJJW24bxYWzd/orpaZLHwtuURz5CBZUhm\ngEkLDzpeyvhM9z09lywXPXlsU7fVpvyBPNL+Eu6RucZoxdV9naHalvYUuSvqsTcuM1jiwwjySoYs\nHyXpSJz+tIZqd/MQ3o+OPMnFDcmkdFe6lSajV6upM7aXXUUW/ED9q2zJ65kiW5JfgPMFHo8h5wev\nxyBROuKISYBaWF1XhDgGOurqKZkM4BO6fyAUQXZXkYYFfCWXDxSRPO2r3gXn0G0fdNg2yCCXSAkM\n5TH4QeqEZOun0o3mQP3KwfUwgD9lFW/1GJb33H2Nf67KuUsy4bS60rUwS5KbBJXAGd7eJQimVX2/\ndpvoHUie+tvSp+5cn+VVzbld5JueSb8ef6hxGLVIV7JkHHJhjPp3L8FMbQrIQtHF074sakyu4T8q\ngqQZF8g8dqGIYJrvU3DG9EDUhWdDFzN59Dkia7FVskGMiRRy5rS01HzrwQ2TJLPMPAkSkDP6AZkC\nJqC/Eq50YDbQZ7rAeWJY5fugqwqmOeRjb+Jd9dOpSFfHfc6VkxUjB79IGtp8Z8onoLVETro07qJz\nKZAthB46oxH9IDIM98wcnomAs8RJH24DMudkQA714W+KD4nmERGdwXOSoB/XRH08g39pyDln2PMd\nYuXtOu134cOa/fCzuf98uTpkziel2z/xxT+ubg2Eavi7P/t/mJnZ6Ink8IXqp83MrNdTFKt+Jtv2\nzKauzyU0lwcfMhfgf1kMpTdxOHWuWrr/6EwRGUBulslqbj/tfUNy+ODcXnxVa83tHWXiap2q7kmd\nKDHRJW8CKgtkW/8cZINPNAa+BwduqwTopiEyS5AhoH9Gdg74hDyHSClopxHIwdMnQkRs3gZ9lgT1\n5CmyOT/WGnu4ECoi+RLZ6pKgWHNEn9Jq7/YGPGtE3wenfWSq57/2OfGBZEhNNjhBDk+kY+WMZDeN\nk9FgDDrg7i3ao0jtRbjI37AcfUtyar2vuYp5suuviaPlCz8pLpzKriK57/7SV8zMrPbw75uZ2b0v\nHajfS435//jlv2pmZofwEH3qWaFFSinZ/3e+ooxA5T3JcXgp3fvzf/LPmZnZXu4vqF952ZanH/4d\ntQcEpJFR57d+STwq9h/+OTv+jV+2Qklzu/tE+jBdko0EPXjwPbV7CcdAtay53SOThMf5/qe/qQhw\nZkxUkox163f0/9mp9kDXM60/q6uaG6W81oF3/snftuVc9nfnWRCC8JB9/R1xAj78bdUxjyuK33hL\nbfhHvyZZeSbkSGLzH5uZ2Ut3xNtwQeaXRE/8PB4chLVv/bKZmf3Mv8v+8s9KNntkpJmxZ3j/sdbu\nZDzMD3XT8j6fL/AJUmZfDfDvgMgjc079UqiubFxzexbIfl4jy8SZdH4HzsACezO/f2xmZi1Hur/T\nkuHwdySP9b7m1nlaa/3WWHZxsSEdytYl7+UA1Buo2uWm1p3VseZqDnSvW5RcLgxuhqF0pb2p+9bg\nZuwQsS7CM3JZ0xxdI5OjJclweaD+za70/CKZ33x4BkdZ6ZgPsnQXTocBKL2kIzm57I+tA39fh8xD\n8BSSrMpGoE1us+4u4CGcdkJWIrPBbNfiZAgKiEnXpmrXYhOkU1f1JuHh69zT787BzZGZH6xr7d1b\nauxnZY3Vt3lmGsLMtZQ+F3M4Ei8lsyX73u4uGRt3ZG82a7ouy55kvInMQMplmCvHjuZhjHesMZwu\n06eqL9UHKcFczITckRPV93ZJ9uiyLPuyDpfZO+9INq/31E5vTcjAq6rWq/I7en4eRPr5lub4/EMh\nddxNjfk1YzRg0u7ltA6NE1Ky4Exztetq39gm025sLHmOi7rurAuCfSm0XG+hdaV1QBbVM+lk8llQ\nt09lWybwIH3bQC0EZEh7W/vkekX287mH8O+9LPnXRpJrEh0qe1rT939b+/P28x/xF92kBOz/E6Cx\nUzNQFXkyGkHA5y0kJ4dX9hz7+TjclkFMcyq+HHOd+j1j77ckc/CcV9MF+//4PGT4M1tmFjYZ+Rab\nqw8OCBUvJTvgMr8D0DYzMrG6cfZrIU+NcT9osFR4egIUfwo075C5kOS0xmIELw5Z1TyyjU7S6ptD\nhqlJmnricGi5ZJLKw3EF6tOHJ9QBSR8DulOgPR1Q/7YANVzUc4o5zQ2H7FApTqDMOBUwu5aOzxyN\nyRxkXTCULC/gzRzxLhXfhMsrFLXbsB9WIqRMVKISlahEJSpRiUpUohKVqEQlKlGJyidQPlGkzKJA\nZLTA+fdVcsybvKxnGSK4OV3X5rxjhrOn5QN5X5ucLz96KFTCbkBGIaKEkzye/R0yytxTlK/zUGGw\n+lN52AspeU3zu/KIN9ryVh4/lWcsdUKk9AVFEa8W8JjAu7JRFlJmXpHHrQ5nTpwzbOOKooxzQqXD\nmTzx+/CKOHgi+8d4IkETpAq6L5GXR69fV4THb+i6c1isJ2Sl8vCaT7vqx+WDgTW78uoNOSxZjCsr\nhRsHTcB52UFJde1tqG/OCjnbJ+pTb6k2FvocOBwoGtMO0TsDzvfS9vqlZFdG1WJwFNy0JEE1ZPbU\nnjVT3wqct25caOy6V2T3mYRjresSG0SdQCmcTOTxnl3L65rKyiO+86I8/el1yScFw/+YLBx9PNXt\nrvrZrUl3yjCHVw/EbZCVU9QO35U3dMI5xmfuKKqWBL0xuoQ75kz1DOtqz7KkMc3dhyvhdXnmE1nd\n1+urHe6hvLYndbhw+tKlgDOnhQNFYl+4faD7yaKyBN3lDxQRCdELjab6NaB/BdASqZwiJD5olOZE\nXuYFkfjVe6o3C1dEi36N82rfPpnDNu5IT0Z1zYX3P1C0c3Iq/YiDTCpXZQvysOXfpKTXyL42BUHn\nSxZrDtxUrmQyhlU9U5UdCNrw5RBBtBhZhWYhyzqRMc4Vz4kcJLKwusPHE4D0A7Rk2ZALgC5MOWuf\nKOkzkFmzIE59BaIeQ8neB1VV3NL3Q6LXPtklcoGeP+RMawq2+mVV7cgNpCvBlPPQnGkNlurnFPRa\nLA4HFfZ0DjIwD2fW988Kz3RfmJGtUgCZGJMOzN2QZV9fuz5Z65Zql0d2j+RI7R05IJG2ZQcnZGVa\nwlIfC5GP2KIlyBOvAHKGs8yTxMdDyvThPpiSKKzTkO4VyERRvXNgZmZr29KP139amXGuahc8V3O6\nNCJ7x7f0/xP4q8pV2bi7X/icmZnF4e3y4NNajbHeISgfG3Q7J9uztp+3IvwTk/PQ/qCzvmSYW9Hv\nC5CHHpG1Aci9pJG5gKwKsQHIwRjnm1eIxHLeuVEDGYF9XiPr2irnnv2s6o9vg6RjHai/+4T6Jcud\nitawEgjJcY1z4qeSzYSMLAHZmzbhgrFrzdWjbwp9MDG1O4DLa9DVc7/1d5T5qmkawzuviWcjSXaM\n//ev/z0zM/uwK3TqHnPqXuujKPlNyuO/+QtmZvbeOz9nZmYXbx6bmdn251X/AYiWyXvicnnvW0IQ\nrYE+WDsArXqlfrxRlo6+8aM/amZmz74o+Txpab1aAUWVy3G+PqZxXMWO3wGZNCFq2PtAe5yYJ8Hf\nKsg+L3Kp7/fhmbUVi8GXVScTmpdRO0rwA5RBLiW3Qbg6IQ+e1tPlXHN4DXRcqkB00yXySvqndFzj\n59De5ELPG7GOJAbXtoQvLQOaZkomkFtkdErA3TH8gIxh8OD85BtaE9bW93mm1qDObwoJ00R2r9/X\n79UX9Hn9VGv8xbHWxu2yZPvsXY1R91ptDEBmpAsfLzb5zmfUn91vaZ6XPv3fm5nZeFc6+ksbateE\nCG5pRzJ+eix7s3IAL9BT2Y/lOmiIlMZ05OizPAUVF2gPE4vr/u5I9jo203OcklBjzdqxmZm5ntbc\n2pqi+PGLkP9Pn4vws6E1u1DV2I3I2rdDZsTzgnR0Hf6heQaOwoV0dHYmuc3vSAcSj/R71wHFZrq/\nsNBzLrBhWy58UGScbCxAfKckp2KIQB/p+tM0aARTvestbJ6rcS6zD2/BxWg1FuIMWU/gpjEzS2em\nNgJF3QX6mvMk5wy8iB5yPuuAkp5L3sXLj+bY71bW35HuDu7A9TeTLq7NWctBsfqlb5uZWTwuWT4G\n0bA+0P4t0VDbZ57sxgXcgOOx/j94V/uqGFn7epvsNdibXCQl4+xTMpqBsHzTpDt72M8a2YfaMfV9\nZyrZTkFFnD7SdSH/3AdxzaH9qzXaIx0Y3wGZAmI7ybtc9q7s5QwUwh57swvWpTl7rQLvMJ01tXeW\nlj1f/ab4myYv6Tntx5LXkEyb6+wphiHCpqp1al5EFz4ErZzTO9rzh0Iu1rPSmQzcknNQHy83NF4P\nE9p/Z47IeLkO9861+rlgHDtZeJdiECLdtCQlz1XQJbMMnHFk5E2xH3DJYOTDKZcDRb1g3GfoTTLc\n00G4lQjUrhGo49wCvsEMe173I/RX0vVslox/P3NTEg5BH47FOWhLYx7nQZ5MlnqWR4bZkFMGSlSb\nwUnlgpAeBSDGQYc5rEkenE4hZ2EiruviZGke807m9nXdKKN5nOH/8RLENog+Yx/dZw/kwnvnObzb\nwC2WTfCeTibcWVy6t+yF/YKHj9MPm58CBYz3pARaeQ5Xzib2L8bz0sUscuT5vws3VYSUiUpUohKV\nqEQlKlGJSlSiEpWoRCUqUfkEyiebfcmTp2rgyPPUHMrT1J/Kw54mWkfSEJv35Wl6+IHQBRucr3em\n8rrmivL+BcAV/LS6N+JMV2NJdHEkD1gNDocePCNJk1d5dVXe3U0Yt7OcbR0SdbuE22CCF3jeknf0\ne4/0ma7rvotD3efF5bHboX3Nuv6vPVV9QVLe6Wl4Jg30QK4ib3hltkQeMLMXwrN+6v/6vrzqPc7d\nn/uKpp11yIzjexaQoSoHoqHRkUfYIatGm4hsiHRwQ88rGViKVUVzAtA87Trh/pq8mKMrog811btW\nUF/mZApoEO1Ot4lm3LBUV0DG7KvdvaY82Fegm+oXQg01YeL2MlIWr4oHGd6LwTVs5mSLKtw/MDOz\nPTzy8VXp1mgEj8eZononZ9JJm2lMml31d/W+xn7vBUV801NFeVpnkl+S89lVou5uX9Gdx8fiSep1\npBvxocZ2ZVP9zB5IzjvPkmGH/jeOVe/1oSLUs5rk7Xfx8hLx3Pg9nzEzs+1V1TMig0/3TB7+2qn6\nlfJCrzXeaubGAVHJWUne31lDcu3XFd3qwi9y9zVFcGNbaud1jXOWcMLc3VQ9BVBhV2SmefQYfqcR\nWWZelk6Xk/pMpLAJI/TrBmVMVrOkzxn1hXT5YiwZ51eIutcU/QmzGHnZ0LMf8umovgVcMgWyCY2I\ntkxqqt915HkvZ6VrgzFnV0GsjWCnH/N/yOXiJcnyAHIkGOi+ImfrJ0N9325p3i4qIFE4b7wg05dL\nFo84CJf2mSKuuYLGzAUZ43ckQ9clCwZM+0Wyw7WGisim4MiKj/S8/kj926iSHQiOnlEXToIsc3si\n+RbLmkN5eErGIFm6Dc25Etw1ObImHQ+IJINASoC8CRpESInE5sgU05+qHkdT35Jk3/AXYRaUm5XX\nPicur9W+Krr4rmxH33SefTWlqGMBdEj3qb5fXms8Xib7X5Lo1uUHmkuZodqxcx+umQ2iZ1eST+9U\n0b0MmRTyRIS7TyX/TC/M6Fa2YZex9kGsoYNZxjRm8PqwpoxAvLmglgDnWIZnjFFqDx2KkSJhBrLB\nwR6miebH4JPonB3TV41ZKS0EW1CXDjaITG6Q8bC0Ldm4HfXp6oHswRCeoyLZ4QoJ2aXNkuzyNRkF\n+x8IBTHAHj3zKqjZgq577zG8ImRyyMLH4RelWz3mfhCXLPe/qLG+/7KyNt20lG7JXr9E5HPzlsa6\ntB6eyVf74szpH/mDyhqVZU5ftbUuNQKN30v3xb3mFjVuJ+eyQXW4YFae4Vz8gvPqE/WjtKd+jPqy\nm0M4KPJVMrHBPxdjnV1Of4AbINex0QiOiLzGyYdjwM2Dwg1A14F8SQ6ko7MYqAWieoWc2hHAGZcb\nqh2NuXQ/6cFVtqPxDTnlpuzl1vYSFmB3Rl2t/VPmc35HupVkP9atKXo9aKgvVXiVpti7Tl9taxPl\nT29Jpg6Zpc464qCBStAqe+pjDLvU7giN1QeNldqVjlUqHw9x986u2nPlyz782q2/aWZmv/Ka2nF+\nh4yOTdlRpy8ZBTn1u0dGmdmudGq7qTUxGGtsNw/gMkO3u3DTWJMx6JBtcF06Wmqy56hiA04kn9Fd\n7DGcZauOxqhTlw5m1rVvDKm5BnB/ZYJjMzMrsiZfJGRj1i41dxdV9W9aUn+qS9VTu8M6cqH2xEz9\nnq3o+e4Fe4GdcN1VsyeQ5QAAIABJREFUPTvH6tdljOxQJclnh2wnmabacUmkPLUOkpJ1yH+s+rsV\nEKGe2tlZ0/e7BomambmdhSUYv80jjVcTsMDgVN+vsWeNpTXH6i3t2W7DrXGTMsNOLB5rDBcgFiYF\n1TFISHdeA5G8rKsv5QyI5btkZBxqTTrfBVU11tgfdDUmJ1W19dkG70RFje0Za2SyJkR8Lq93ggv4\n814/Ud/evKOxekGqastV/X8Eyit1zZ5iX/ePHsJR1tV+fAh3VT2p9rwyEYfMk32NmX+qMXucUTvS\n7CWm2Ne9KxDjMdVbW5XcdnqqL3UkXrf+Hc2RASiN8kLrzSCpNXx8qvZknpcN2Xuiffl7oM3WZ2Q6\nG0tOC5CAqV32NmT/9NtC0gQgwt3n39b3vQMzMyuOyLC4RtZCkCcFsq9W+vr+psVJ8c7Kq3iczG4J\nyF98uLnmTNI4qI4A9G0c9HOQBP0M8j3Fft5Yp5PgL5YLjeeSDJuu/1GWU9filnJi5qQ0Zv4Uzhfs\nZyKmsQZw/v09iDPTs1yQ3DFo3BacIghAAS1Abod9dLBLPlxaAVw2RdBZ4YZ8DpItBeLcScseuuxl\nJuxZAge+1BRcsCEiZcE7XhJeVGSWyiNjZDuDL9SFu8bH/jgeiPgknLSe5lx8EkKBGJs0mdTKWeQJ\nuiwFZB506mgWpqX6F5cIKROVqEQlKlGJSlSiEpWoRCUqUYlKVKLyCZRPFCmT4gxZoSKP0gh25vRU\nHjivDOqBs6Kdp4rm9IgsFntEUEHadOANiZ/Jy9qL8z2ZXc4POdMcyMvq4V1cuGFGC7Wr/piUCyU9\nv8A5+xoZHkp4ACtZRQJq17pxTjaUOTTLyZArYkXtWrmlzBBOXO1ugBppNeQBDFmv50GYdYQIT7tH\nP1Tv6QWZDkAzZLb1vVPA83iFZy4ZejIztrmnvlzCf9B8QNgZFvNyRt7EGFHg/kDewtG1znT6ns7w\nf58Bmwwzsbxks8jDs4DHfpezjdvPi0tleCHZ9dM/nHn6/1eK8E7ApH31vs4X1zgvPhirz+sgUrbI\najQhchw6gkNeiwxR8BxjMgbZ03lbcqldX9MPxsQhAgmny/0vKPJZfV4e8TiR3usH6neb+xNZRaWm\nsOWfX2rMlkTpyq7aUb6rSHNxRWO5CmJmNiGrxUOxyh+/LaRKjPOWHvJ+4dMal/R9smARKm88UsT2\nsiZ5DTgjm3MV8XZX5d2urJOVKi/9CNrqTw9+pv65+uVtqn0vvCY0wEpFut2+CrOAwHGQUIRkBgru\nwYnqqT1SO4rbum/9dcmvmFWkaPFQc+L4CeiW2EeR39+tJAcgyfbkoc4SFX7yQM/erIoDyunBjUK2\nsmlLOjUHMVMgQvD0XFGZOsqz/7qiLDzGEszTdg9eoTQ6ij3xyXiwScaFDpm9em31LVdU+y6bklmp\nretWKtLhOJHQRVPXO2v6P0FGgFr92MzMnr+l6NOSjDs+0XtrEVVfUbscUFpnZ9KlNFlQFimiRFP1\n52BH6KZ3v6aMCh6RiMIK2eom8I/kNBeG2OWzhuScwA7vHEinq3CvXJ+rfXu7moN38tLZTlNRp0Eo\nL+Zw40zyypp0zsEmTXyiOxMyV8C5c9OSga3fByHU/1D1Zarq351t/d79UP189yvKquLMpFeV22pf\ngnPnM85pl8iM5sNFdHWErauRnQubGeMs8wD02hTUwXQpPXTdjGXJNNUlSpWBx2EOEmJMBC9N1qEF\n8z3uhtEo1hDsd5zozmysPn8UTaLtoLrSk/B+9WE40/1tsjl45TADgmSZIvIbY63rfCj7kuH6+Vz1\npGMaw2wSTjIQi31QX5OR7HcR3o9iVrJc2VC7MiXp2g7ZoD58Kg6Gs3M977U3tL78/j/yB8zM7G/9\nyv9lZmaPP1CE88UN2cWbllFLc7/TgBsBvgsDGXqNXZ0inzKZYXoZ+DVqcCmE8iOKNyIi3CWDQ5q9\nRQ6eu9bgWM8hY0OFqNuYOWeFEE0F0gmep8mZfo//AL/S/LJlboJIMDZoMSVTRBvEalLPmYHAmRHN\nKxFZnmRB/5HBxlIgaPk3DQ9AACJg3gSlyPn/FOuv15pYgH4vHdURb0pnHRB8Q5AyUFoZtEfmX8iu\nXJJ5bNCXvaqQrcdNaF52His63r/W7zn2HtU1/X/dg6vqXLIvwvUXI4NJOnFzBISZ2UVGdt/dUL9W\n4Aq7rKMDt0CUXLKW5nV9YaS1Nr+q/0/YA5wWdP12BX44EClpECM+iGgf5PZVV+vA2pXseSqv53RG\n0qUlkeID9ovzKnx6da3Be2ROm1+Dtktg58tkOqvDQ7HC/rir9aJ+oL2NNyRbU1PX5yqgri/JkgcK\na+8UVPMCBCKcEp0Ze405vHimubWWk66GHIwuXJN5+DNGOTiA+hr3+rVsxWBT7boNd5yBlB16Qo1c\nn2tPaGaWzCTMPyMyThbWDsOfPVM7nCKcajEyHvUl15PVm/NT1UAi3wH51+VdpRcT38/LNcb6Ga3x\nKz2N+RnPzp1JNw/XQRGQyabr6vutstA7xab60iEj14B61gP9H5uIp2neEHJkyivfB2nN0/jxK5LF\nUiiy67h0YQ1kuw+aaaMn1NqjGWt5Bt68Gvs+T7r9ZhmuqQaZseCaeb6ttb490f65B2qiMdMYxgL4\nhsqyv43BS+p3Qbr1xTq8R3fgksxoHUiwrhQ2j1VvRzq0fw3fCEiiHnYsmSVr3HOae6Nvcj38dddV\n1XNYO1A/Blo/NuH2OSYD14AMOs+3NSeXM3R3SBbRGxZnGZ4oUHsy8Gv5ZBxKgOp2WB+9WIgeAUEL\nx5vvSk4LuBjDhEghd5wDOmU4JjMbe5HhD3oAEgVb2NhckOML3senTfjHeOaAsYuRrThEgIfZMl3g\nOh68ooadD3gfn5G5KkbfEux5Avo+D7On5UCEL3nnCbNuxrRAOCmNSY53tNlCOjSNccoj5ELkdXgJ\nR2IibOcC/j503g3f9UDjZmjXIMzuNFa/hy7IIOa2BewrGZske6oE9s4rwQHG2rn0f/hpkQgpE5Wo\nRCUqUYlKVKISlahEJSpRiUpUovIJlE8UKdMdKEpzfqxISNrkaRrCW7E1IPLAGbNYUh6pO2Sk2dgQ\nr0Udfo7JE3lj/V15AbfuyUO+OZUX8+hS5w/z8GCUkvJ6xiaKODiunt+4khfUI2PRLE/GifflnY4/\nI2935YCzrQTTjMjGrV15lZcwpTfralcfhu8p5/uzcCnswN1QJlK72lIkwxnKyzzhLHWc6JcXsl53\n8VjCLp0mqlhal1f+4oG8tguvY9sJRSeqBZAtbfgxZnioX1f0+s4r8lCfnwqZ8RTuliJtCWCS7nMG\nfWBErdfUB4eo1By28AFnLvstIrvFj8cDYWRxaCK7ywtFezJE3VfXFQGorioak8SrOkRmvT68GkSA\n20Sgx0Tvz7pkEmipP0mi9jEimdUNRQCq9xWByK4rSjUmc8Mh6KvrQ+lWJqUplU3DIwL8qlCUNzbn\n6P6gJPdtIqH/k2Ru6eCRv+wqwvHht9XfGOHDnWc1frf31K4gUNSqeyQdfsocaBHByGRBab2i8d3Z\nucN9ek63o3bWPlRUaPCIT1Ai5WfV7zsvhFE+1XdxeKznnEj3VmHRH4FcOn+iiMcUvpW7XxD3QnlV\nczIgonr23rtmZtY8ZZxAFrnMhZuUNn0Z4tGPg/66gh8pU4DHpqc+xSrq05DodVDT56t/QNl2ApMO\nnTWl+04gWWbLcLIM1LZ339fYb3xW0XpvqL5/67d/1czMlq+/qr4k1LcruGheBTFX5Iz6e984NjOz\nSh8+jT2N0XWD7HML6cZGUVGl935T3AkXc3EHJIuyI6tljdHhA2UBSZAh7d6rQhk8bUqXFilQDwn1\nq8acevklnadeAxXVB9mTX6j+MzK53ErqORu31Z4Mc+2t771jZmYFslVsPK85efGPpZsPiczeeUPt\nCW3DFG6YHhHh00tFyMdw1jz3Rc3x5aXk8e1/9o7Zf2w2g7PrpqX7oSLUH3z1m2ZmtnNbc+L13yvE\nkcc603qkyPtiqnHeJetdlnPac9alEkeDkwE8MPAveUReVxdktsmQCY7IzIIIjAOKJcX9E39pE6JI\nBaI6E6K+Ced3orzmRHvS4dqD7jlwhLjoTMD9i4l0fwnniueDBGQtGsCl5YDsSOfJvgfKIeuoXp9I\n3NiV3Q8zHww9n/bq/hJoqrRJp2ecK7c+vEsgNADLmlckOxxIwrOHivS6E63Fi5jWgewYnrgnsteL\nhqLkzkwVXX6gOXFeF8Lz85X79nFK0NQ6Q6DbgjJRsA4cYftEJpeSg0tGMm+GjQBNtSCz2pJMW0ui\nfGu3NGeSLmn6MmQiK8kmlUAgeaBc+yEPXpJoXiAbkl1wXZWsHdOP0B75vbz5ZF8KGBdnpHUmjLSG\n9BhuUKJ+/R+Lg7AhwppMk+mCLF+pPLoKGnGxhAMhw14E9MfCJ3rqx2w+B40LejQBcmNBlg4nB7oL\n1JdLBpLgmkyKZHHzV7QmL9PMBdBW6byeub6m31Np1iLmWY7IZQlks0d74hna4Xy8jJDDqmRyXAAF\nsS8dvV6RnfMm2gsV8hJyeaDnH+7IzuYdjf3qie6HMsUuEurH3aLum4Nezndld3tkK431WO/WZb+6\n6Nh2RvZw3tJ9j8p63m73wMzMDtZ0/yxJppxr9b/bIzNPRTq8hW6lcyBFQEEcHatfsQyZtlzNtcVA\nv/cM7pmq+tFoYWP2NHfrNexoHNsxB21R1u8tX/XvwBH0qCV7Hati047hB3GIZGc0VwfwJB0fam9R\n3gE56rCPVvfUxuDMHJBJdiLbsbklOXh3Ve/pQu3ZOFc/ZnHVt3Vy84yQHtnvvFPpcgXE4MzXniHe\nUBvWQD6eJTQ3sux/zpBZZ6R3nd13pDNrSdCtBcl8paI9Sguukcu8ZLrigdZMSecXA9BPW5K9Qwav\n/FBj2Htdsr7TkkyGU8nydKl9W4JMsW88VTuPctKVbcbm8VjInzTrQboqpOITsgXePpKST9kD2bH6\nNQZZU+YUQn2k949SHl65juZ6CyRLpal2xvtq33Fbcz6/kK5XDtSfGBk2718in3uS81szzZkKPEHB\nhuT6DbK6bp6RKedzQg7NDjXmxwmyzMJddutQtuXosxrP1xbw+qU/3iu1w14pA3JxwbudB/IytPv5\nuGzgBAR6Hp6tBaCLOKmAAt7nHNbnGdxrJA61VdAnE5D4yVm4gTBbpsbmTWc2npApF7iNM5PuLEOO\nRCAfc9q4gIsqzrz04E2akg3Jc0IkCjw97K/DbEbhSZc57xCeB69ZQn22SQhRZ++yDBcv3uVAdIf8\nPAl4l5bMBYesUQXW0iH9irFHcmO0B9TRPA7ijgxWbpgtir1KGiTNcqbr4ynQouzNAjjApnDNXD8m\ni+hIuhL7QYP0LygRUiYqUYlKVKISlahEJSpRiUpUohKVqETlEyifKFImEZNXLwc3ygpZkNYTiiQv\nCOe03hYKIcX57ZW0PE0ukYi1mCIAzTXO9Tnyes574Tk7ziMO8RJ29P8F0Z2zlqJyG2E+8ZHcimFW\nlZVV1b/2nLzbSTL7NMZE5Z7IS7tCFpLuhrym0wvVc9KQtzZ/rfZnqngzyTAzGKrdblv19mryVreu\nOJe/AlP5HjwmnHefEGFtThUxSJ6qXwPO8+dX4C3Z27UC2TNaFc58Xsn7157qnm6dbD4lZEd2jiXR\nqMIqmZ/I+DLek+e8XJHMSmSXGJMxa1QjQ9WZkBvTmryYac6g37TU2pwb3JKq7r2myOfu7oGek9Dv\n0zPJ7OxQsu9wX/dKY54hA4AHs/65qzFfci6ySDS7yDnjnXUilzl9+mldd3guBNH1W8dmZtasSwdW\ndrlvT554D6bycV+/pwKyWyQUAfF8jXWGrB7TMAPClRAyjZrktrmlubH1iqL5ecLzEzLrHD18T+24\n0PUOun/7Vcmn8pLGLV5kXOCKeXKs9s9BDDljjV9xR9Gql/YUiXDh6Jl6uu7xB0K2dA6lc0FP3uEJ\nGYtGePo3t/S84isarwLRz+aR5srFdxVJuTribDORnjIRjvTazflCCnnNp9pI0YFnntW9L/7Y583M\nrPUd9bXbkg48C4dImAHgOw+kO/efaqy8JJG4oubM8UPJNpfS//vryLQHX0dTfdi5pejV9h1Fb2Kc\nh+6SUacNKmtMVGj/7oHawRn3U3RqH26Zmbpj9Q8UhXr1RSFvDu7oOYuedPsaO/XMjuxIN63+PXxf\nY51aFXIvG5N9HRHxWN9VJPHh179lZmZHrjInbO/p+sZUclkp6b7335JNuPaJkBLNL9DfO7tqd5+M\nO7c2pIv7txVtmwylM4Ae7OIdRQ7u/5iQMBtkAwkOJJ/2Az0H0IFVS1oXDogO+jOQijcs6S3Z8fyK\n5JQkE8WSyEyItnDgbdqC56m4QoafGXwZA7jLSBIQkElsgS0dIt8MCBuPSI1PZNhAghpni0dGFsHF\n1OJExmJEawI4YsKsSsGYbD0gFONkMJgTKTPW1PFC9ydoWwqeiRl8NmnO4o/G4eFzzmXznDiIjAXR\nny4InjQRYBJkWQwuknRS7ZgStXeIxE1AcFCNeRPpagrkSEDfEwtFXp2k6utNyVxFtD13R9+vFQ/M\nzOzoe0IlnKBDlTuak//mH/6ymZm1L6S72fxHfBI3KdDSWaVAVHygjl6QKazk6zNdVLuHU7JacW4+\nmdD6MyRb0dLRurqek7y9AsiTpdAPSzKuZcjMkIRLYAIiaAWkiw9SKURXJWhnkESePxBfy2YStoQz\nyCODRZhRw41zbh6USgZ0mE+0csk4JufoqBdmYQKtDP9etqfxGiXC8/QhDx5oFzLiLXILK9KXIB2i\nvGi8j46BDiqR7WLGPOuCyCjAeTKHw2pJ22chSgcUWCKn+iZkVgkjoWX4eDxHspsSdfZA0ri5j4eU\nmXog9FIyZP5COpY8lp1Y3pLOTMeywxlQBgegzGZ+yIWg7+NnWnPdqmTagOeuHVN/3ETIFQO3wg68\nT339vwqtW7+t+icuGdn6sndT+EOSc+15fBAf7ZLGbCMtXcyC0u3eZh99Kvt6lIAbqyhdLaBbccZ8\nOeR+X/IFpGEr27LXLRCPVexsw9QOG7J+wmfng6K4cjXH2ApYUIfTjCwtR0T/80Wtb/5A/VkhK1SW\nfbRVZBv6rY9QZIVFYLEmvCIgp/bP1L5gV3pwm0h3kznRc2VbStR3k5JukuWGxauR0eczCbX5nbtC\nXtwZSBfL8Ms1mE/TuHS32JNsC9tq4wko1S891hjPY7q+uSE7GQfVMHlWOlg9l0zn6/AxDUBe9kFv\nxjTmtWv975xK6EcJtX93qr1HYqS9z/XzQiCun8Mrl5e9a22AQgvg9btQv7b3hLY6hdfuWV45T+DB\nG6SkWynsxXJfe639J5pbj+BwiWUkn8Rj7SedotDPa67GvF3W5wj78zwZw1obmpMXJ/p8cV3yf5ts\nhmMynq3zLtdZUz+3jnTdeVfInZ2k+jk4k3zbnxGa9vZC9QwhZ1nDzt+0JNgXx9j/hnCMOOtzIq52\nF7c1JwtkIIql2a/Tj0v4mwJsXYbMP7OJ5NEbgf4gQ1Ibjrl5fflRY4a+LR3fPOx0iNrJgMpdwBWV\nA1yzBE4acCIkYPFMgo71vNCu0mbW+lg8ROUy/8NsqCBq4twfInLSrF0jOMQc2pUEwZLLwKVKu9yE\n+trH/sfgmhnBpxfnPicOEoY13M2B0kdmCzgiA1DIFtd9Q/Y4aZ7TAe2UhDty0FM/F3MysIH2aiDz\nldJHGa/+RSVCykQlKlGJSlSiEpWoRCUqUYlKVKISlah8AuUTRcrEsngBc/LSlqt4KcsHZmY2J4tS\nMy6vbIoI48VTeS1reIGLG0IzuHi+mmRm6MMJEMNLPQMN0uccXeWuPOBr+4oMVwtEZMi7Ph/JI1a6\nrUhGcqnIQ9LFC1nXc6o5Mtnckvc7k5RXs7GQlzg2x4u6q+/TKfWnMVQ/2qc6J7kgann2VPcVU5JP\nGfRCldDBZAcGbjJszEkLc0V7PM5KZzc5917M2Cl11sh4UsjIE54k2n11rN8r8OcEnNvLpiSjIRw0\n1xdqc5+sG4kmGUT6ZB4BwVGKKXqUr5CdguhSaouQ6Q3LChHJzXtkbIFVftSWJ/3xt+W5r5+pXTMy\nNLi++lfdlgyyGaJNcCa4E/gfKhqLDTK5lAqKyqSJ0l1da2yu33pE/xW58JfSgfVnhWDZgAckSZSu\n/vR7ZmbW7sKNQJah9Tvi7aiQVSpxqXY8OD82M7PBBZGJotpfeV7s+B7nK598KKRO7UgImQFcOVub\n0uGNe0IlrGxIbpdk7mp97atmZnbWYPx9jcse59IreOI9ovvOVDr79In63flQKIrmUOObz5IxYlf1\nrKaJkm2pnkxSutsaqT/f+y0hZIaHinDMgRms78GDlBBqI7MOuYH3UTaR362MyXQy5Hx0jSjVRlW6\ne+5IZiubGrNBHu6nuxqzJ3216f1DZR1yyXJ067YQHLXH6kOKSF16Sx77BIi9t976rpmZ+Zz3jTF2\n45jGZuc5RQwHb0oX3vzqm2Zmdv91tb94m8w0PaIft6Ubc6Lvp2/q+Y3H0r1cDF2FG+tbX/sN9f+W\n2nfvM58yM7P6ueZEz+Shn8KZ1X0s3XnxlZ82M7P1kubqyduKDq1myLZxqSjWrTuKTr3+o6q3Taad\nR98W2umFuH73Dbt2dGxmZu+NhPqanOv5RVB0uT2NsQOHTu9QOhUvaswTG5Jf87tq51ugwVaJQq1s\nqr2ZzA+POPzzZYw9nwSyRYdnatfmd9TfZ9alg4U1/e/CY9XF9o2wcUGKCDtouASs/DMi8R7s/0vO\nFC/mIWGHnjeBrynB9QvQCMF8ag6QOS8eIkhAnsAB46TJojTWvT6EZgtnwvVhtIqMLUnOaYOYcTmH\nPZiT4WQeZuqTbuSx+4MQMkNfM750fgnyIs7WYeJhRwfwOY3IoJAD2QH6KEX9IzJpufzvkQ1iwnny\nNNElg7cpzEBTWSdj2FBr/rCmuXTypuzT3rqi7bfItLaTk11KTW/OTWVmVuV5SzIu9DOSx0pD8owX\nQYQQYFwh008sTK1AVG91InlMHHhUiP5NiNJVQDQtClTEnsIHbRCHNyVgT5MiSjmDo2zJ+fy5T2Q1\nJIUxs6lrliBKOOL3HPWFiR/mPMcBRTEnqpkf63nTpX5fck4/3MNMQWgtQZymybblEk1dwkcSK+i6\nyTT+/axBcfQ9QRa8dF7zYADHi8OanM6H/EjIIoRZEZGNO/p/6cE5SL+9ArqOHY2Dyo0bPDdwEiTD\n6TgmA2PwkexuUqoF0MUgElt17UWWa9pjFJ9KVtdkqhmt6LkV7ECnrt8H7E1yIKqLXelsDMRIDrRW\nJa3n1chKlGddyYN8nDtaL85Al7nPSJeS7JcLY32OTdf3Y6z9geybsyE51DzNoRJzeear3kxJ45HL\nqx2xmtbZBtlFlp50IQmKd0nGm7PjkJhJ9+f3NH7bdaE9JiXtrUZdsu/tal3rHUluni/5Nve1b5+d\naF1Ym+k5zZL0YGOsuRCA8oaCyLxAe5Tq8qN1IlG7a80d1XcAf8sxPFsHTTKSkTlspUxkvqHrk8mb\nI6r6CzWiWpGMnyNz7Ih5s11UnYlzrTnXz6gte+iSe6E+vluVTGZTzdNPNY/NzOwbBXGyVI91XekC\nZOXnZA97NTK/hvYyr/3b2grchW39vgF6N/6e9qWNLDxHcE2ts57EEtq/JVvYIRA9i7nu//xDjcV3\n2e8/d8X+OQk3Y4XMsUu1pwGn4kYAcnxVe5XVNnObsXy+JZ1uYa8qNbXnaqF9twtqrgvXDbRT9h7P\nceD/2N7Xe8J7l582M7O7Ve3ZvulqL7OW1r51OIJnkMy5Bdb8QVU637qnOWFJ7b0+fFtzfu81Mosd\nggK8YUlw0qACKndCdj2f96jGucbt/V9Rux49Vj+SFY3D/u3n1e4LzSUnp/o2yLbbrkt+Y7LX5lZ5\nl+bNP0HWKzOzpc0tZp4l2J84oDBHoGFdULLxkM+M/c0owd6CDE8+WI+lx4mQcGkM1xI/3JuAOJnw\nvs08tKTGPsa64MfJwgRCJZYieyp2bQLSJhaugeyncmQSTLJOTOHtMZDrc9bWJWhjZxiiRkOUqebu\nDPRqyNuWd0PEpq4LOQXDPdGU56VM/VqCgt0lm52f+OEI7wgpE5WoRCUqUYlKVKISlahEJSpRiUpU\novIJlE8UKeMTxZ+eyIvcxyPVOJdX1iHqtk7EuwR3Qa0h79/FAzFkJ/GM+Zy/n5LZYQ2v7fbzB7r+\nCTnu+/JSx9Pyht4hgt4gA0w2xXnQpby44568qU1QIQ7RpDjnPn3O/WXLMKofKCvUIHxOXCiGFJH0\n2VwevNSKPGZZztSu35XXNQm3zZJDcqRjt5NDoRwu4GkpFiWvFGfzfLgMvI48m942WVkSOXt/oPOw\nk448uWvPcYb0HNSNI892viyZjfA+HsgBbdAs2IxsF9UKnuQ19f2YM5j9R5zlryoaEg+jV3jcl6OP\nh5TJrMuzOyESfPqmED1H78M5UJPu5Ncli4NbQn7kNjSmRVftCyOUzkD9zKyofSVcxgnOe18/1VhP\n6tLBJlw1gUuEs6yx3XlWnxm4ZFoteXmfviv+I7+hdhXWVO8+XDi2qnZ2T+rUD0fNB5wv31R/791G\nflWQTG+r361D3ZfjLPHtT33GzMzK+xq3OVHIt74hpE7jSjpYSMir/MqqIgWlW0RSGNfOpeZi51j9\n77X1g4+8smRUeO2z6keJdi6Ifk4aeJ9PNGcuW/LoX5xLL9wJnBBbmsvViuQXK2mchnihXbglQv6V\nm5Qi54C7RBKnZ2rzhDP5s0LI4q62PjlW9qLc3htmZvbcZ8gucUZmr7KiIX5BMk4i635b9fkTuGsO\nYORv6vcUmWyGF/r98FgInJ1/RUiZ9TW4YE4lkxW4FhbGWf5Ttf9sW2M87+r/SlXP6TelI6cN1bv9\neclwQhT+G19LZ/XLAAAgAElEQVT/TTMze/Uloat6Ofnct/c5nw7nzONfl90cgTS8t/si9RBdwt6c\nHUs3C8hj60XZp/I9kDpXcA0Qep6cak7uvqJsVLe2hGh580q62O00uF6Im+eeJxNYmPEMzp/sM2pn\n6XXQU0Qcxqd6Xi6n57d7qu+mJXBA7NyXjcjGZY+9GQgibInfBkVApovQYmXDNHtkVUrARzWBvT8g\nZp8NI0igTZacA49n9ZlYkvkupjmRAe02iWUsRlYynyw5LsGjKTbem8MrwXnnBZwAKc62G4iaORPb\nn4IjoBMxV98nefaC6NYS5EZAhiiP6FGSbHUBawtBZPNAHSy7sotTzsQniPPEiGzGyBg4gv8izAaU\n8qWTvYXsTmIWZqoi2hZnrpFFrgf6M8b58RyZCyugR9tXZOb6njJrhVmPfvJzX7SPU3z4MmIj5Oqq\nXcktzs+zLibheInBg+LAtRIjajgpgKYboENkAEp9P9iOLgyI+hHxTWYYcCK8wQDkIs+NE+2b+mGo\nM9zzfNSHxMIxPwaqgUxr84BME2F0Ev2Z8b0NwigfXDLYMmdMZoz0kn6z1wgYz6zmULAM9QQOHKKW\nWSdhBno0oE9OEpQVnB0FMouNyWQVI5KYzGrs033O/juShZvuIUE4miA5CAOtqTIZakDuzUGWJEGw\nTUZEejOy09kfiBbfpLSuZXf9TbL/rKq+W6B1a3DWLFc1BgtH9bfQ6QVop5Wa7FAvxxrNHiMJV2Lc\nAV1V0x7GmYPeApFSJ6rudYnMkg1lCSfKZKExaCzRxTY8Urdl10/I1FIO53Beaz+qaIMD9auiILzV\nBmpHzAMdC+rK4PswdKF5Ag8KPB+JlvbFl6BFVguSQ74hG+SH+nCpfW0F7pxrbIo/Eyphd1N7sctL\nkOdXqndUUT8qpL1bzuH6udA6MVyHT8PM5utdm2FvmxVQv7UDMzOrb+u6zYb08azHnmZf47V/XbWb\nlnVPMr5IfU735iSL72xqLLZn0tGgpO/Tj7TGeyD1ZnA3vjrS2tkbaq1sZdXHnbckg6Mt7EpP9ew8\nUZ/zccnqakM67nb1jpHJSsbVJNnShvq+B5/nZUlrbzbQZDqGm+SlguzFrRqcjaCsWujQaE0y3ejr\nuQ831Z9nW2RSZK2c3SPb3LH6udhQPdcD2fEN0BSPsS+3yfo2qam++IC9SEK62vZlK/xd7ZkGZH0t\n3FE7Tx8IjryEI2t35VjtRnc+90R7lAeg6n6UrEbnCTgnUfLEQnLZOFE9m+MwnZE+ptd6nv/pj/iL\nblKSU82ZLhxdS9o/Bj3WP5UuP3koDrXrY73H5eqhzmvcaqCaMyZEjwskckymSAeCwjTcmV5F+uPF\nPnIBBMuUxRNLm6B7RfY7cTI6zkEUzkGSJFNk8GIv4LIHibNpWUxBEHvYbfY0flb7OQckeJiBMeeG\niBvWKrLoOfDnJPLIjH3bku/zWfVpDBfsFE7DJVmZp+hSYsbeqKT/U0P2FCFqmPfzgOx0S7IxZXgP\nn4DuD1i3HLJIeUvaGyaJAqUcwJ0TY6+VzrJPHv7w9SZCykQlKlGJSlSiEpWoRCUqUYlKVKISlah8\nAuUTRcpMOfPagG09nuXc4SNl1+ieyvWUJyOFyxm3Ocf2qnBC7N2Tt9Nv4eF+JFRBgAeveQXipSEP\nPQF1a+flxW1cqf7WEZGZOOe0OZ84wHPe+hCESkUe88qWIgZ1X17Sk1NFsNtX8tBdnsvbusJ57uux\nKizflafs9n1F0HtNGMRPdf1VI+SG4aw1jOkDuA3GfTInrMrrvgWcJYZnsfsUVMw1WUz8ni3Huvel\n13V2dHVDnt9vtNWneV8e7Mmx/h+25PHehstlSsaRZldtzW/Js72yqyjGmHN1k3N5aFN5ojcpRSOa\nffVtlvqBkN4NyoRIb/+BZHJ4GGZN0nNuv6SxL65IBnl4iiwuz/CsDRP2TP2fjtWeQniukbPyh8jh\nuq+xyxCxLuwpKnZ7TWMX39X/cRfW+kMhQk6O1a5+S7qwtS9ug/uvSn4hZ8L5O8dmZtZ88I6ZmQ2u\nOfe9r/bf+tSBmZl5FXnyJ4ecBz+XTufS0p3Nl5SJJ56RDpx/KITO4Yfi8Yh5et7dfaEzNlfUnjSR\ngNqJ5HlyoXpHE1AIZUUkChX1d+dl9TedV3scV3KtNRU+u+TM74SECiPQEklPc7qyJZTY2m3pSyYO\nL1IPXb7UjUPczJ1LefrDiOtNijeULmynVfc40LOvQKzcvSd0TxH78t4/EHP+ex8oClVwOGs/ANkG\nAq05OVb9muY27+o5p33ZE4LNNuF5C6Llz8AvdN7WHPLhzSguhRJ60tG57yxn+Gdp3V84IHLocKae\nKEYSLpginFSJgSIDvUDt+Ymf/nEzM3v4QNG5NpldPDzzo6H6tboDDwRn49/6ytfNzGx3Q7qRIwtJ\nktDFFhkV+n215ymZtuY92Zc29nhvW9c9/JrOaW+HaA5HiMPSXem2BxfA5YXOSQdEJvpk5Vj0hFQq\ndTS31rbIXuQosnJ8DQovRkQl+fGyL63tCXnz6ec0DiPOSCeupfu1QzIWwVFkRK/SS5BQARGaQHNy\ngc1Lgegcgp7osz5liMx8/wB3Hz4VziTHwmxNoCDSqbk5jnQgNoN3AiRDhujTECRDfhqidFTnfKn/\nHaJRMaI5Sfg0ZiAzUkAeJ5zXdkGZZpDpmPoXIyKZYdwmzFQwJBsGa3YC5MaEqL5DJp0gzLoEOiEA\neRNGk/rY4wIIkmVGY74AqbNs/86sU3THEnEQgq8oAnrrCzpTf3gte/qV7/6qmX2UPemN36sMbDct\nHoiQSUy6lYGTZUxULENDpkQT3SFyIcq3hJMnNZftmWdRBlAOsSHIJdAZk7zP96z1vmzPIqX7EwXV\nNwWF5QZE3dAhl3rmPM/MbB6LWXohOU18opPwaiyXtIPx8JJh9g+QUNicIRHbVBjGhMNmAZmOQyR9\n6kofMqzHY/ZcMTjJ4vOFjdgLxEAeJNNEmSdhZhX2eYhmAhLRJSI7IErvkrXIIcIZoHuFeYgOQ2fg\nY3LJmBXyKA1B/bjw6ABQNMvffK0xM3Nz7APJ6nO1pTX+aF/7rYBMJxsLRfUn1/DvrapfFV92vFWU\nvauQiWzRguNlIfu06Kj+fgG+CPo1PZG9TW7LPs3ICLZfBEED8mXB9j7B4lwkS5R3qjUdqgOr51V/\nfEj9E9BUXe0dWmndv4PuB2T4qcOVkyXrSIdsSitFxmuk9bhHVqQYaL9aXeteFt4jz9N61SC7YbtO\nRkYtH7aPrWvDZ7LYDNOskC0R7qHgRO09JltqkNXe5uDqI3R2Ipk1f6w9YkCG0CLpAOtwZZyVNVeq\nZ5LrxRMyHG3fPPvSOK82lBNCOLx1V3XutdSWiwJzgTXFWVNbPfarr4KcnuU1Ry43tPY1V7UWB19U\n2+79hvY28ZxkeX5Ha/3+GdyI8Jj5I82BWv+nzMxsdaF3rFpeMl9gD+LMzeuC6nsJpGIHGFoC9G2G\nLHPrY63Rx2T1KaTUnliHzFi3pRvNp5L5XfbHx89rzAdzyXblTDrXAEWxtaa9zIeH2ufeTmvO1bPS\npUYBlDKnIkoN7WFGB2R7ffIFMzN7LaG93iX2cwPkSHKoOXS1pzH98SvZjkNf9nXqa46sNtX+B68c\nq3/sRa6TGt/XT+EN3dN60a1/PA6zp0farx+/I3lNQWoegE6ugFx6/fNax17/HJxnbD7LcIPu7oPa\nm8kGJUvSmxSojQF8XaU1UBrwrcSyH72PZTfS5s1cC5csByTiggx9HvvbTLjW8Y5k8NIt4/p/zAt6\nMku24STo36neITzmfdYLUbG6PlWGz5T9slemnpBb8UjzNMH+K1VVe2rHmmPtjnShsEZGrV29X28G\nE2Sg+gZwt/r58B0RJA3fx1ljlynptM+7W552jV210wWh7huZDX2yciKvJfs+j6yBUOyENH3/0hIh\nZaISlahEJSpRiUpUohKVqEQlKlGJSlQ+gfKJImXSnHfeviXP+X5GnvxuT97eANbz0oq8rF3OyXWu\n5SHff07e0THn0i/q8i53+/pMz+Tl7ab1f2oiH9Tde6AQJvJSt5uK7i/HZNZx5X30yKIUh4k7xdlf\nL4HYyALgVohuDjgbXZInL4H3eWmqr12TV9Z15c0cb6kd9bq8u84QdmlCONk8KAW8sMUy+c6pp1CS\nN7VQUTvnCXnqJm15AC/7MIlPM9Y9hzMkB7s7maYSU7nvQiRDyEx9Oaev5TDjlNp0BSv81eU1z9T3\nAbwPObIZeWSqSeFVrBZhNy+oTTctYZalLpHBAoz7659RpLTKGVt/JO/oDN6feYMoU1fRqHFbYxzA\n8zBOqr7uiLP7RHR39zXWO2uSvbeuiEOK8+A1OGfOHsnDPRqpfYsyXDA/Jg/9/rqiNvOR7jt9IHTA\n+VO1J2QC335Jz7n3OfGApMi4dfY9ec4vH4r/g+CTrewoQsDxbTt/U7+fgfTZWpOc9z+jzEH5ABb2\npqJdD99UO3qh13mN7FafFc9HdVfjXYJXo1lX+68fKdNO7Vr1jPFWl4igumnJ/95L8k6nNoWgKhdh\nVu+pns6H6n//WuPkz6Q/rbHm6GSiyEQJPbpJmV4RMXSIvMIR8sF3lZXo7u8RZ0oOxMzmrmS4Swap\neFltPK0RMXSk4+WcZJD+tNA+j/rfMDOzIJAOJ9alK7UPFP2ZPJFduPeyOFVWffXh4tvHZma2/yxc\nJszrh9/UWMTJlHWwrefMQaDsHEiW3/mKsjXNRvLMp9J6zjd+/ZfMzOxzv/8n1c596Y6blE4XQGqc\nPVY0595t8Q+9uKfo0/RSc6KYJGNYR3MiR0aALbhXRhON3fa25sJDIq9zol6Vsu5/CZSXA0Lm6lDR\nuBTLzEsv6PeTDyTnLvZpBR6oJUi/8yPpSAdej08985KpwZozI6L02TI8KjcstRNF3x4cC6nkk0ln\nf0PIprvoRUDkpHahfhuRmrERLSTQ74GiGDEeWfTOh88kIFuMC0pxlgUNQWabIIwUk7ln5gTmcn55\nDp+CTeGhgB8jBbIv5D4J+SNI0mSZmQzDOEzqEyJYWKtmIfABHhyoX2wBb4cXopaoP8N57MUYxE1e\n9XlTuFAmZGdyQ7IZkBjIZg4XTYZz4EF4rnyudWdJu/we3DZLomr0P1kSaqCc1Bw9u5TOPCD73Ag0\nRPVTsnM//uV/Q/WAVggyHy9yGSeyGCcSGSNy7JJ1ygU5smStX4As8UD+OPCC+An1L458FuF5dNrj\nhwgg5LjMUM8kzG7FuXuyUbleuJeQ3QTL9f09Ryb10Tl1zxwbeiEaCy4ixnGeCDlw6BdRwSn8Aa4n\nW+pBwzEjvOcuyDxG9sIMfHqzwe9ERGVBP49S+n80NwvgzfELGtskKNUAPpyQW8ZA2PmEahMjPTsV\nolxz+n1Gpqo0a8cyAT8S3ADTOVwzTsjzo39z6MoIxIkDyidEN920TEnAMquzRsGNGK7J5a72a5er\nas8KmR8HZHSswcex2pFuN+ayd2vroLNc/R4iUYImqAtHa7ZVJONMgv0r2eyuTuDOycpOZ3uaK9kN\nrStdOzYzs7nJzk2y8B114EJbau+wWYXbrKY9HpRfNmAduEpIbmth9pIzfVYJAZNUz9pZ/X8X5FOY\nWSaVh/Mm5JM70fdl5t7UDbPY6f5akux3GXS8pfvrIOg3E9prNLa1B7oDwr4FSng0+ihr0jg2tVRG\n141mkn+GbKxJF37CS63PliEjELZoNl21m5bWudpk9+FQcbWfPltKV7sZeCjH6lM7j45gFxLPa/+X\nGqltW86x7gN9ED8BMQEKqZnW2JTbshvThJ73KK3rJyCdY1khu/vsM4uP1UevBKJ8rus/fyHUf2dd\nfV9zJbPAVfvf7Qqh6OxrjV87lk6lj0GvgaR/WtfYd/dBdJMBbPddyfJolfeMF9XfdI29UU97tc/7\nQga9z1qa3ZVtGJJ51uCyaYBoWalJhxdrqq92qn4HWe11rkA1ZBZkT23rficnOVx74gC6Szaj4Yqe\n+/IZXGH/H3vv9SRJlp35HffQOjIyUsvK0q3FKAA7ABYEljQaYKBRk0YzvvJv4iONxieKJbHEGm1B\nEJgBZnp6uqe7p7u6ZFallpGRobW78+H73a4dGHcm+6n54PclK6LC3a84V/g53/m+Dc3V0pn6YXcT\njqCB5uhiWmetm5aIs0W5yOLB/pLk3TiswZviOMtCOL6Ye1OQkNmaQ7Go/cOJ5lCGpTCT1/4YsY8l\nq/BRpV/vG36pZv5sapkK829En6dQoOI8OeNvJQ8n3gIqS77Ww84INFeT81FLY3N9pHNXE25GD/W9\nGmrEWRS3xh3Q821dd/K1+vzwULY2v6Hz4uqmzpm/+BuhoQLUh+/92Y/NzOzNPyAzpqN53bvQ58V1\n9YWfh2uyp+9Hc5zXGJM0/oEQpMwk5/jkQIsGcH3xnp/Owr3jFA4BIXkp9hmQ1X3/t0NlYqRMXOIS\nl7jEJS5xiUtc4hKXuMQlLnGJy3dQvlOkTLKGB7oAhwPKAEM8015R38/flhc2IC++C+eK73LFTuSa\nOv1akdCFujxhG+/cMzOzNBHJp1/J+1sJiAaGIFqq+rxcUUQ9Sz56bk7XlUBBHH4mD9cZ3DH+u/JK\nz+XkMZvMy8O2vgrPygN56vNEhh59SiSI3OhFkC7ePaKKRIZzeCLn3tiho4ggzPb0d6rnnb3U59EJ\nXBg4W0MUNYpZeU0337tv2Zr6stkSymj6XJ7j1sShaUCMkHuYx1Nbgy9iVJG3caGlKEyUlIc+QWQs\nMae+SeXkZe0+E5qnhfLIICL3PPHtlA4GLT13/Q45nuvq0zQcCG1Y570Deagvz+RdnTbVJxdjeeoz\nxBYrafhD8F6WbykysLKuMS5gO32UIlrHishevFSk4BRei0QFRM374qnYxHubho3+4LHqc/5SiJom\nPBw1UFeVt4Ty2nmoiMCMoPzu5/Imn3yqvxMiyLl7ek4R7/LxM3mN96dw2LyhqM/dO7LhiH4/ePIr\n7qtxnqZlg9sf6PdbD4US8OdU74sX5Oy+EgLn4kh20oeborSCmlRdqLYyShlp0BIhaiXjlOr1/KXm\nSvtSz++/Ur1yRGpKIAN81Dvqy+SbL4LcukGZoRBQxPbWbymKc93RujAX6l6DHrxJA/2udyabvbes\n+VqhTo1T2c5VX3XeviNkSR9VjPOUbLK6IQRHYUlRle6RIoxpAVxsBbWlq31FDkZZ9eVbHwqVdHkl\nm+qgOFUoq14//df/yszMfvzHf2lmZhlfzztG4eyDHY3xCagj70B9GgyJbK7KVhITrS+TE9lwVz+3\ndFJjFhR13eGF2nlyqHXVceN04Va56mvNqE20Dmcj9dNsKBv/1d8L8eN5+n6lJBvxKopk7H8t7p7t\nd1SfxI7Gq9PQc+pZzcXqfdZ5mYxlrhUxWUwq2tVdVz+c/0pzqtFQvW5ajo/1+3/zV39tZmZ3PxQ6\n7fsfSqGnkJbtHTxTfSddOH3Iu07D0eP4rHxCIQX4j8YoHiXhsPBBtfQJyDgJuwgel2L2N3OyvcnA\nDNTNbOjUbVA5AyWaJGpj8Nhk8+rDwRSkRgZOGSKBKfKaZz3HLYIaXtIhXuDnAOGRgOMgMXScNUS3\n2XsdNmnC/f2UbDeAL2gMwiTB+pmfwXkCOYwHish4/nBGxA51PB8ug+QQHg7QDddwlHTgTnFKVwct\n9vR5zbU/+aFQYy+ffkU76K8blim8Gil4UCagozLkiwdwsyRQ/AngMxmxnxRA4xporiScLzOnSOGI\nTAj0+ijGpIiADkGtJbk+BZRpBkLG6Oc0qNgANEI4eH2US858M/p5Ci9dBrtxHBPRWHY1ycDfArLJ\nUb6NaG8CnoApiNfSQPcdYCdpUB192u8iuikUMIJExmZwLeXMnbuYVwaCzCeqC79QgFKIU8NwqK8g\ncGge3c+pWCZCEITYUgf5uGI2QV1RugLlUwRxN0OJLDF4rc5zk5IHXTQkojoPIjKR1Hp+Rl+tci49\n3pGNpva015bzWm9bG1rPU3CeNFFQsWXtV+GF1s9FLYt2hGrH1ljtH+0Dc2N9maS5Lq91fDWts8Yh\nc6me31a7UZYsghCZwcECLYVdgzh15+YUZ8LGPfXjNoqOlydcDwdbEg6uYgB34lDr9+6i7rPMnHk+\n1fMctc+sRAQ6rf6Ym6ifzi40rjkQLFVUk07gC8yUNY6XVzprFEFItZhDkafrhoXXkenS3pX1UQyd\nw64m83CfHeh+h4aS0Irsp3Op+y47WaoblO2AvQvura/OZKu3d3RWOG6qD9Lv6f+r8OUM4F/zL3n3\nQdnxcgHE+ZfYzpJs4XRBz9m4RvHvUvfdX9a5NjPTXnYKEubBVDZzPGTOvK36hE3Umfog3XjnWPRl\n04vYRtADqVHUWQbAi3VRlyqXQKBcskfm1Z63GzojZPs6x3fWZKP5rJ5bfSnbGfHuF1zr+5/f0u/K\nAz3o5FxnG4Q0rehrbo04f86NUU8d6DnXBaHL6lca8+ZIY321pPov53SGOXmheqbXZEuv3tL/L+6D\njKxr7Vg+hUNnR/+/VdP9o0uMqfaa2+smpT6nOVtk3AOQpDn6IYRjbZxwKFz4ToGvjdgHI5CYFshO\nKr7GMVXQeKRTqO0uyaYXUIG9On1t08ulFZtfydqIbILTA7UxCb/cwhLvq5wJmqd6abl6hgomvEKh\nQyTC4eoUF4fXus8AjtfOufrsoqv3dg8enAJ7yAhbvILTcKmoc+DSLb27ZCMUd3n3GV1pzDOB6nfy\nqWzuFdkGly0999ZdvVevbes6I1uksKZ1vQyPk/Fen0JdNMkePiPLwXFr5WcOJcv3qO357ozFOXEK\nN5bP2Py7SoyUiUtc4hKXuMQlLnGJS1ziEpe4xCUucfkOyneKlBkdyXPWP5A3dhLJs+afEz1DgWKW\nkecpgislgza7D/dLlnzDVFZez4AIRmUOr+i+IqQXV4oQBER06xX9Dcmvzs+TN000rgV6wUURAe6Y\nV5bHLlfU9SNgDr19eZ0bQ3nGKpvycg9BiRRdtJH651DasJw8gdddPb9PpCgPt04SxvAmHAftmTx+\nEzTuJ0N93wnw2JHPnSKaNhvNbHVdnvM+3CoF8gG3UXCawnMQLsublyV4lITjI9l1nlg4BFbkyS6v\nC2WQTur6yzIs8kQU24xhytTGCV7Mm5ZKWZ7khTuCHxxequ3NtiIGnUN9np7rcxdOmTY59JWc6l2j\nntWqvKkVovNWlPe3yFAcY4tnh7KV5oU877OcfrB0VyiM2+8JheXjHb08VbvPHityMd5VvQpz6pet\nd8WevnxbHvH8HLYDumLvuaJEg6d7ZmZWTsojf+euEDhFco4viXKdTzXmq28rQnz/riIIbRQFTj5W\nhKTzUhGMhduaCys7QujU39DnAXn8jV8KTXHOXGkPNM4rqDFtPNxWP5LHOe7Ag3Gg+0+ewOc0VOTi\ngjxOADu2ABJn40N5pyfkq87IBa4MXdQOVELOsSb87jIgib3b01gVyZdt9RiDlhBjlVX1/VJS83L/\nMXnbOdny4obQP3dQJPnbX/zfZmb24LbGfAPukbM9zXN/ihLOkmxpRPh77xjOp4yiO4UdjfWvH31s\nZma3yyivoOKUqMuGdu7Lpp482jYzsxw5rhH8PCcvQcQRQb69prHsXuj706/U/q0/l82UiLhGr/T9\n9UshacagGErkebcbasd2GaUsFMb8F/p9y61DI123tCzbrCQ/MDOzZ18o0rGJotuM/ltYku30TvT/\nj/bV33eXZauZovrh5IVQX+mK+jc5U38NL2WLfdAO1YRsPSQPfa2k59203NtWv/z5n/+pmZmlttTO\nbEZzu3G+Z2ZmR3CWZUnIXl3RcxIoCg1YjycgAGxM/jdrYHKidXwMKiE50v+nQKklUNoZpvX7tK85\nEEY5m4D+TIe/mb+dCBxqAMUnImOTCXVIwEESsgegljFxCEiX/41SWJ9ofgqEhAd6M8k66PG8EI6T\nGeoeaXLVzUchBQSGiw5l+qqfR3SMZdgCLsv5rj3k6IOQSxE2D7ooPqAicRno7zLo1c13hBJ763tC\nrzlEzCf/49+YmVnpPshO+C8qW0in3bBkiyBP4IIJffXTiL3bcbNEM/ZJkC7DAe2BF8khkHomG0iA\nEkkTXZsxPiHcMVPQHo70xy84BI6+j8ZEESF7mYJ4Ir3dht7r6NskOTKD+8HgpOk6NBZ58QWUv2aO\n1wgk0xh1Pj/jlMKoz0jrfOjp9xGcNR52WHbcRj0GGnRZYAkn3GUJFBwdN0wKlY4QnoMenEweaKlE\nz6EqQScxr5KOiwbVIp8c/lHeKZDBLQYCMYPq0gBERp69a0YdI/t2aCoPxZlVuFf6cMRcjrXeVjjX\nned11lo40PqRDLUOOvUfhAvNW9DviwmQjVOdlXx4nw53FYmubIGOutb582xD/79K5HXc5HwMhcog\nwwPONLc6BfXLXEZ7+KwKGg41qBbn5wncMtVQ+1NxR88pXms979dUv5WmxuUoCwKy5ZS59JzEbfjh\nXmicuqCbV0F0TuFeHBFJzgw4oy5r7i6hCLnva392HEPLNf09B6G0AefFcajfbxZl8+cv4F9Zeh17\nDucTVpmpft7into10X40rqAox5rXBYKUyug5Z4lru2nJb6uNjbb65g04X/qHuufU0zwZX4NK8tXn\nkyJKMnfU12Ga60rquy0QFMu7ICjr6uN5uBFnSdD9DRAcB+LXuI2609GcbHYOxbPTrs480bLavP1Y\n9Sqfql416HX2+kJ0VzPwfYIa6MGX2eppHbsP39GQ9hZQXGtV9bvahdpffa6zxkJJHDdBuE29ZVvB\n25+YmdnZVGNzWdLYzk+EIJ+rCPnh+EKqkc52Pd7pUpdwos3r+b8qaI4VljXGDz9SO8/vwYW5oUlT\namkuN1HyWszobOJ9QkfMydbWl3SWeXqpdpST+n3qBZJhNyxDkP5p0LMBqMF+CIdZjn0UhFOGc4FD\nLmY5v0+pntUAACAASURBVPtJzfE+/CY9VGu9hkOb6ExahSfxBBWpY5Ds/91//Z/ZT/+3/9VK81Xb\nO9Q6tf+pFF0X4dfc/IHewZaK6uuvfinE8suvhEgpr6C+tqj1KQv31MaOzq+1W7pujvNvNwMq6xpE\nXJYxgs9uBl/bZqRzbpW9KgL51ucd5cM6CotwWoUz/W6M1GMa9P0d1FOrnMOCAmNVg8etpDmVA/nn\nwVlVhDOny1mpTLZF0gkrjuFxCkEJgyTMcYZK8nLZc36G0W9/t4mRMnGJS1ziEpe4xCUucYlLXOIS\nl7jEJS7fQflOkTLTOTzlBHnqNXmLb/0+HAL7RD7whrYPhWKYgb64vAQFUNPn8oY8VqNzOGae6vfD\ngbzDK3V5Xe/9SN7NyOCI+FTqJr0+zNlEdjwf/pNz1DIKql+5ijcahZgcnDGHX8uLOx2iLjKD+bwn\nz+MQdagkkYXuWJ7G3kzf59Oqf/OKiLhPyGPmOB7UUYs1ODBAj1SJah0/13Mi8tFb5Eof7n5tRSJ1\nnSNY1LPbugecA30UbEpoxXfbqtPFPwpBYenoN+o62e9RN3h+2qhnNOU+XNmUp/92Rl7W9oH+vzsj\nenPDUltTn0d4KTvPhYhp9+X57R0oijRpK0oUoGJRKCliuvZQfzN5jUWFMc8ToewMVZ8vX2jsLuDa\nmWTksS8uywO+9pYiCssLGvNrVKEOnyoiMnqiegVwKjz8wbaZmVXX9dfPkRvaJh/7WDbSOZENd8jB\nL8LKn7yldqdLqCDR3su26rX8vuozv6S/V4eqx8Ev98zMbEjUbOWBbGV756GZmSWWNL5nn+v5p68U\nqTjt6L7lZT3v/ptChyzsEAEgiXcP5a/WY/1+eCVUQYKoll+HZ2lbc3hlVfVz7P4T7Kq7q36YwPvi\nhBXy8AQMiLrdpJS21WeDPvwTOfgs5mSLjSYKAR156u8+kDpSfkGRzes9/f8Mfps73/9jMzPLFX5p\nZmbZQJ7uLFHi3gRm/hlR7Ioqv11VX7W+VPThMci///g//4/MzOzA9JxqDcRFX/P04DF8Q/Oy1U04\ntJK+bCNFtKfpFLkutY6t7aiPrS3b+rophazUNVFxovnFitBJ13AA+EuKDBRAib387Gf6DMfVak6R\nCYeacApZ+09AtJCnvLmk9adzpe9T64qMNPbVnrvvCvly/y2hGr56KvWqPKpVC9uaSy8+/lL9caj6\nLrHO7rJUXD3WupYkNHHMnE0vfbvtq1ZjTfpnPzIzs/Muc30ISoP87RQotnSWqD9rzwTFsQi0h6XU\nnyl4taZTuGVA3vggpyYgjNIOGZAjioXaSIRCTpCaWha+DcSOLMl6NSZyliHnPCIaNAM1lSJaPCU/\nOuPB9I9qHSABm4z1zCIIiBAlAIdk6RF5y/EcqmYZuERC8r09CMxGqCelQ/LGAUIWQDOExH0ClAds\npoYlqG8e2+qDIEmDDKkCS/Xh/9h7TtSujjLhhmz06Wfas/+vf/W/mJnZald7+9a2EDX3f0f+9j8t\nE6Lko5TWMbYTS8Id0yfaFYLSyBINK4AUGcD9YyCIPKJqebhmRqgSQnthEUjUBAiWKEvEdAgSBUSM\nefQjaKxoQP46RwS/8FpByE9mzLDRkDNMgeigo7Txyw65A0KRKF8aDiAnWBMCdUyBVpl62BuIrQEo\ntiL8LGN4AdNULDXqWcR8iIpqa4ox7ZlDadEWIqBel3mScgpX2CiqPGN4FJwqk5eDtwjOkSSN7Kf0\nfR7FqWEE30MRnh3m5ST7Wp3nJqU1r722eyIbqc3rvjk4CwLOFkkQPxMfFC9KhAkUYpIl/X+xDZdg\nQvdpcCZLgqYqLWm973CfSVLIxypnr7POttqJIk0RpUynpDZXAlHe0ThcjYnUlvS85Ev19/IKxn6i\n9u1vai5dvVA/5+bhgTpDJWpR7VllzUqkdRbr5DVOLZA0a5sgcZIgH0EgjlC9Wo5Uvwik62wILwrj\nFxE69svaB/oBCjqenhewUWV4kYhS+v8SKkvJ4msk1GVz0UZ3NP6FI3iTQE8ctViDFkEhg/LYS8KX\n5N9c7a9/BJKhqrNGYvATMzPz2kLDDjbUN6sVIWPO4Wq8Herv8ZX2xGJa59bic+2lo02QazP6Hhm3\n54s6j9VRpipPhQ44LYFcn+msMCxp7M4u1dZkTTb0sKN3kVmFfaSosdhvaI9Psb41kB7bW9Pn+hFz\nMK/7Lh+iAjWn61MLrJtP9B6Q6uvzVxs6e6VH4tdbHur33gN4mi7Unvfoz5/leScEjRE2NbbVkfaB\nsCrE5NIp6kv3dZ5vofxVKKjf7VDvLY15nQUSl6r3SV5nrWoFnqq0zgYvz3Xd1j2NR7uv/mie6Tyd\nfQAiiXN9UP12qDv3vmLwz4XwlSRBPqZA+UUZp3LL+u842rLwlAayh5Q5BCZZFPBPeZyNz1Ag8gfw\nGZ69fh873j221O65jTgP1WrqmxooLTtTFsB1XvdcgHct98G26sx5pgCfUW7MeRM05ZAzTB4+m6qn\n+1fZi8IIJUKQk06xMcmZxANpN0QJMIti1YiziaOO8kugi0DEbzpU8TqKjrxPO+XKLNkA6YJTVQYp\nA5qsvqx3mA2UE4eQnO2/ko1lGJMqqqUX56xLZZ1v6/Oy9VSfrI7+bz+3xkiZuMQlLnGJS1ziEpe4\nxCUucYlLXOISl++gfKdImcWqIpLLFXhNyNnsdOSpmjXlsTs8wnNHZPfu2/LE9XryTs5S8o5u35WX\n+coUUZ4O5SW9OJIXtoDnLEUUp9EiitYn/zGn/195T1G2GeiFNrwlLqDS78kz9/yZEDaL83runS1F\nNHpEcAoleU37pvp5gEsWFkHcLMibfX6l9tfnyZkjH97xCTg27PoieZ4FefZ88jrb6MJ3AijSO/K1\nLazKQ1eqF62FOtE4T045CiIz1H0uTvT/Q9AExaK8fMMWUfw6KkUr8GoM0ZB/BVKC5PbspMZ9dN82\nXstreBoGhW8XufRzavPpmcawcy7PbueaCCN5hem6POmLK6p3dVPR+DTKXgHoquZA7b/cE0LkAgWr\n5pg8bhSrllbEl7H6Q/V1nhz9q4ZQAUefiduld6V+XLilSMDOjhAmaaj9rw9V3/M2KKxrIqIFIo9E\nIhGKsMwakcc6USKigi7ivX0HjplFtbPzQt7rZ58LnZHHyO5/KA//MqokV+SaHn0mNabrl/LmJjQF\n7a0fyfO/cFftLY1lm0fwMJ2jJnVxoHEIiSjMLSrKtbqmCMJCWc/LLcsGW+TvH5/p+sEj1bPRIUoY\nac5lUQRKEUmfZl9Hfn9XGU41P6+mansqr3n/zh++Y2Zmv/5I/DrPXonTxScH9L0ffmhmZrOJ+vCX\nX4ulfWlFUZfRkWy1t6X7jbv4sEHxXJDrf36k9ebDD9RnpS0hU1787O/NzOzlkXJum/Tl4K7QS3N3\n5YEvrsp2m/taz7pdRTFSb2g9WVpVH2+/od83uqrvPJw1K8uKaG7C1eI1NDearAdzdf2uuau5HHTV\nrjcXNNePVmQr0QkKWYxxAgWWH3zwh2ZmdtrUHL5ESeuDd2TzD7a1Nvhwruz9Uu2dpmXDD27DgfBc\nz91a1JyYr6ofXhCZ6Q207i2AYJqroFCxAHIFDgTvijzplvrhpuX5oeb8p49/bmZm1yjarPxX/62Z\nmZUqcCnA3dPz4Phqw6cxgTsGdY7ERLaaLjilHUVMPCK50QC0RUlRqhkKOROiXzmHJoGXJJimLSTK\n7zhaDOSdgdIJIOhI+475X//tgWSbcD0gKSvCKWPknM8cf8bUIV+oAxG6DGiwGfGaFNwqU5AhE9YR\n35ON5afqkzFtSDiOkynRaKJUPiiikJz4IWoSHvxvfoL1PE20uiLbiEBFnRwrej+8QA3pvp774TtS\nzkqhkFh5X+tILiPbried9NXNSjqnddljjkApYwH8bSFUZPmA8QAR0y+pPUX/N9WzJjP4KRzChGjf\n1KlhpX5T/coD5WqgtHyQLL7/mypLoeOncwgo+tvMLD32zCPSCvWATeHdyqSJoPbZfzCHHEiZPupd\nJc5IEejBGcpHHuMOqOwbhaPeP4lm+iPdP0pHloYzZJRyz2RtBwKRoQ+SqJP5vr4fwjc0nDj5JfYM\n2tlDfaPgg1hEfSkCzRXCkzT2QH+BIhtS1yyImVT07WKT66/0nMai1r1BoOe4yGsPrjG7Vr3Lvmwz\n21P9Txiq6ino5ED/f7Kuz1vwNl1iC90jrUdbVf1umiKyO9Feeh1oH5rj7DNCRS51ylxJw3e0DH/b\nFUichtbZs03UsI4110pz7DuorwxuoyrIeBTntA81W3DSeHtmZlZL6mzo9bSu+qjRtTj7VeB88DzO\ncGntW5MOipYZrb/zDmxQ0/o/u+Tseq36Zj3Urub69IMm5XwRhcyunjs3r/G+On39mjPNjS2D0k8p\n0hozgrvHcdWc7oNYn1c96yDXh97NzyT5qu5VhgNwL693iumS1qf6TGeGvYn23lWi8tNz7dEbFSFs\nnqyob3I11cF/qTNNPYPi40j3vwMX2aCjs8cQ5ZoaiPj0tdqcP1G9mlXZRKkl9FG3Is6YPIiZk4rq\nlaRvyl3ZfA8FwvVj1PHOtLdvLuhcXFjWXpmM1M7mEVwtq/D8HKsfanCcbPk6u50XNYaVI50t9pd1\nHj2u6ncL13r+RaAx+d5Y6/vju/9oZmbzbY3lRlbtGb/SmHtFzdHgMe8rt0GMz2STY1B0VRQ895ZU\nn5UX2Oac5tivfCF6kqEjR9Ncr32puVCHd6hQQjryhqUK8tE81sBI4zRASewbhTinUoiiz5T9P7R/\nsl/z+yRrTQoVrey81gRvnn0MlPf6m5vf1OX7f/AjS05nNgDB5rOOJpi3EaisKcpPhQ3Q8CgjDlH8\nc8i0wImesWek4DwN4OBLenrnGmf0+xTwzCAP0g/kTHo8+43fpUGnRlP2jzznK4eoA96bmqgvZ6xD\nky5zLAeKDcXHSU9j2erwrran82+rK1uO+P/0nPrQoViffKz3hCrcjTvff2BmZnkU13Iga562PtJ1\nZK6srG3bbysxUiYucYlLXOISl7jEJS5xiUtc4hKXuMTlOyjfKVJmQE7/VULe3mxT3sEezNDBOUze\nF+KhSCzI+xrCLfDkma5L+KiO3FdEuQ3L8soqqkdr8ug1TuV13Xslz3shIhc1UiQ2uygv89qyIsAv\nGijSoLay+UAohTqqSs8f6XunSlIl0hqRu7yAWkuVqF74CzGKT8m7niXlE8vWgCsQrUrWVN8J+uzt\nnry6+Yo8cs20IgLnv5RXt7QAGgSFhL1X8JyUhV7YKCzaDLWEjUXdY/kNefUqaMOPWyhGod2+AsP2\n10QdsiVFLdbekkc9CyfKJWoU83VFb4q+xqjxicas9wrm/64LoX47P+AF+c0dFK6umvKkZwvkM64J\nmbG0IE95GV6iFO3tX8jG+jB8Hx/ofpcD9W3KUOkgr3B9Szmqcxu675SQ8y5oh8auuA0q5PRvvamI\nwiI2M0E56+VHyhVuXcjWimXVbxUejquhxm4YwdS9JpuaX1Q9PJjLR0Q2y2l54scVlB0+kw1cE1kg\nvdPWVxmfmn73qqnIwSnKXYWBxuPhvW0zM0vcJWe5KO9340T1+fqxbL99INtLz+kBa28rilYgz3IO\nRFWZiGqPdjUfqX9PiRSdkiNcJtS8uIYd1nW9y/O8Jic5GMp+blLyefVRFyWo0XNFK0rvCLWUX9b/\nV5Ky6Rc/0xgOL4W0WNvSPLUF1S1LRODWyrba3s7zmXzlqTzec1W1IXOlOjf2NdZvv/19MzO7MwA5\n11OfL39fYzOZqC8+RSHrx2/9gZmZbd/R/T79N4p8To9Vj9mqxmhhTWPw/FNFs/b2NLY/+EPWy6L6\nbBjK5meenltZ0XPniUieM6d7l9SrJiRNQK7r8QsUEFA7WfoL2TaCOnYJ2un8CWoiWc35pfuaM+8N\nFVVKoViWL2td3gHJkwfpsrKm/n73nqJSpxM39rIhHxiIn1AUK70ABwVcXm0QhTctAdwvT46EiKo/\n2NbfVbU/eY3yQRoEzEyfc3OgtwZaQ0ZtIu95/R31iIzD/xGxjk/JUfaJ7ExY933QK32ikGnyvpOh\nWQIk4whOGA/eIcd64RP1joAqjIjKuHxqyxOGH4F8AJ1AirlliXIZe1aC/GkfdOcA/oQEyjWpHPMT\nOo4JyL0E3CMuepaERwIaEDO4YUKQIhFozxDEjodaRwK0kuOBCBJ6XhLkzBQulSqcVPMoJsxASkZz\nuv8HH/zAzMwus7LZEYpkrS4Vv2GZMQeCtO4zAZkSubGCjiN0nwN94eVRQwFBOkQto1xgvFCrmjjV\nJBSCPEcug/pcgf71UEEajbG9jAY4BznQOHDIGWdbrxGo/WzCUqAakih9zVJw+cCNE8CHlIRrbgwq\nI+van3VIH/iWyqhOdXS/PGpfEdt6NiV7mfgge0DyRImEjUFfJUHbZGaO7wZOD64BcGJjEGpOQSqF\nCsaYvTgaUXcoPiJ4FNJEmyd8ziRQbUKRxmf+j7K6fkhE2PE23bR0ipxLG1r/aqHW51ZF69GtJhx/\noMGOsw4pggrJArxyIGKaLdnOJii3HuteFwWVxLrW1/S19vrhHEpZTc2J+iL3YW+fXWlOJ1AhikCL\nDeBE8RN6fhUE3zIIovaSzqEeEelcIBttNVW/POpEnQON9dSpiSzrvJoqq/1n5zqPz2U1V7tTra8n\noLPXy0TCQUiecf721nTf8oC9P4tBLG7rfqYz52FT7ViFN6nNvjB6peeFrAndY+0judvYk5nVUy2L\nQDyOUQia0f+JHqqtcO00Z/CkbGIfjZ7dtDxpac9cBRlz0dQzF9Z1rroOVdc0e0XhhZ6R4XzYAhEy\nZV18kFWfnjDvPrkjG1mGI6zZBEF3W7/LD1CWOf3UzMx6fwJP07HaGrZ11nBKMmunQroEq0ID+J09\nMzPLLun+n5e1p1f21Z6tGXw9myjebsJNcqz6XbX1nBY21dmFfw30wqik8+MnNX2eb8uG26s6Q3ig\nnud6sq3yqa5/s6sz3N4tPf8B8Ig2aIoARa5kU7+7BhXd/r5s4faezlwXq7KhnUudtXookK31dJ9z\nUFgrU9Vn7lpny33QYLMdne9Tp1rvyyuyzbNAZ86blmmo/mUptBm8WUnU+JwCUMBaNeOdtcyBoOcQ\nNHkQMezHURmlO5CqKfohAc9LWNJ9gtnrtW9a9C1MZc0HCcJRw8Ks40+TrWTYoyYoKHpsilV4cfrc\nMptzZxXVMW16ZujW9wz8QJyHwgI26hDJ7FU+56wUe1nInjpizNOh1q8Z62XWoY1Bvc5QBExTb5Yh\n60X6hw9nbYu/jRPZxKivMT9/gkoq/E8VuCOdkqSNdV24r/N1CLK7dak5sfdUfodpBBLRKSP+O0qM\nlIlLXOISl7jEJS5xiUtc4hKXuMQlLnH5Dsp3ipQZebDLEyWqwguys7BtZmatnjzZ4ynRwEV5oHwX\nCXFRxDqM1D15oGZJRRSS5IDdgocj+YWaO+rqujr8HZkLcnWb8ojt7SmyMbuGywbOh5V1eUnLoBqu\nT2AYJ0LTHcu7e9qAMwGW+wS5xc2W/j+LskV6hJrLVB62aVXe3bU1/Q0CRRgGT5S7NiXqmMSb24cL\nY7Gk/FMfLoZKW8+pFlTPQWJoR6fy+pWKqDjAkzBKw4NAdMSnbzppRVMaTXkBB6jrpF/JU+4R5Yjg\nRAmIHAaO+yCh36dQdKkPFHXphkQ/bli6qA4l8C4ubYE4WZGnnSC65Yhqd8+EzLg80XXNK/IRZ/J8\n9yKNSRZ1jTV4dzbvy8NdS8rG+igYvHou3qD9Z2Lazhc1ZmsPf9/MzDLzIDyeynYaZ3t6DpHoFe5b\n2VAEJAS5Mz2TNza7qf6ZexM2eLgkWo80hlcvlHucXQZNBT/SZR+FrjRoiFuy0TEosuYjzYEpzObr\nzJ1KTaiEFB72a9Adz+G+6Xd0XSEl23v7bUWga3c1RyzU+J+3NDdPqU+rJ3SFYfOXQ30etdX/1QW1\n/8GKxi9VxrZPNV7HXytSM2qiQrWlOXCTkvIUFdrcEBKjS9T4hHl43FJUZfNdebhvvS3b+eLXiprk\n92U7tz4USqrXU9/fWtKYfPWJIqJrY9UtA//D+SN5zu/e0brw858ov3kxo+fk0xqT62P10e0f6Ll5\neI6e/73a3j7VWD58T/ni8/Oa111y+m0IR1ZdEYIPfv+Pzczs6YUUAaKq1oUrDY0tosTSfkXu/joR\nQ3LmB224u/b03JMjrXdZIgqLK0LLvdyVmtMXLxTde/sD2fI5LPJ9XzZ8hS2/AkqTAtFzAMN/sKe1\nYH1b0ajBhebi4480t9a2ttUO1pjTfV3X7ci2rxjHCfnslXk4uibfTukgByrwrR/IpucXFM1sHmot\nnPxa49w51zjXl2SrCV9zZxapn1PkOjvlsJAIdM4jggQipjhRP/RdNd1uC49KglzsJLnNM3/8DVog\nn9E8GsOxkhiDvnEIlyQIEDhMJuR9Z1AGmAWE0kAJ5Igozgh/BaAOCMxZsu/UkdR233HLJDQX/BK8\nb6g+BY7nA0RLBixPCOJigpqSRfp9nihVlHVRa1Q74PfwI6cmpbE4OEHRClW4kDEYe+qXp5+IH+rj\nZ0IwJu5oDC4SRIrZL/6Dd/7Cvk1x/TowtTcHp8+I6J8Hac4EpItPtMxD5cmDO8dAKAWcVaK++t9F\nvg0lonyPPHpsYsJ4+iHRNPahPOiSHtxoTplxknOcM6/nQmo2Mp9+TTCOBeJvM/hafENFKou9DDEE\nuCl8opQevHh5IvqB4+gBdTJG1cnLwEED+iNw3DPDrCWz2iuiIYgNUDgO4ZIdwTHgkGQpfXbYHw8e\nuCwR00kRtaWJq7v28hKKXml4joasJxmIdfoZ5gIoo4mbmI6k5oYlPdb6HtaZG2c6a8xoR7Oq9WnU\nVfR8MYXiGai0Foo1yazqVwFpOB1pz8s1tP4vr+v8Og3g+qqCYtjTnJiuaKxSp+qXYaR1e6Gg+/dM\n95vkZNNLLdVnrwcnTQuk5ypKLEmH3NkzM7MdFHXm4QRqp/Tc0gpIo1PZaOVE7WsvgWAKtB+22uqX\nJdTmbJ56XhFZR+kzCZJ0cKAzwSQADcdaVjCQOVm1b34VDgq4gBJd7V8TUIPVtuyjG2h9z0evz5wJ\nf8USW9qvLlug0oa6vlrWdZcglUozrUUN1jyvdHM+xNyCnvl8pj4Ol3Svdqh3kUwe1FMWnrWnWt8i\nuFq2QEYP6tprn09lpBXUkqbsHdcgQ0zHSLvX1l7ZbaqvVwcai/3HesdYZ9n+vK7nNvqMIdwzRwOd\nNe7OZDuf5VTvWy04AVPq0wsPFCz8IdGV6h80dAYLQWH1JlqPrf62mZktTHWf7rXa09iWTV/x/vAn\nn2ldBaRl7Q09fwjqNpnV3MiEui7hULd52XbjXJwx6TqorJnj6uFcWpQNvftUa1I2o99Vh5oDu/Mo\nwyXgW0JdrnQH9FRBKOE3dHS0wgIKvg2N6z/PiLfupqXNWTMF70kSLrE8ZGYDp1DHuT6bcvurvi/l\n9f3UA3XCGbA8Q0GI/cqrOrU9VJ2ysvU+7wFmZotba2a5tOVB5UwmssUhCGEftKYHZ0uBPWY20UMn\nrNgF0JfBgD0tBy8dCJwpSn5JOAjTKFANByBXQAMNOQMVRpwl2Mt8uGJT8OAFoPQTnlPJRFlyNP63\nL7MZvGsJD9W5gdoxyur35SzcVJwvHYi1+wF7O3tgpsac4yw2hu8zia0EnAkySSEo50CiD1GVKld+\nu9pfjJSJS1ziEpe4xCUucYlLXOISl7jEJS5x+Q7Kd4qUScthbZfnIEdMkYNZDobpkf4WiSREObmD\nJ0Qe1h8osl3f0Pd+Eg8+Uf8GEdlsW55wrwO6oELeXlbexOk3ChfyUV08FueEUz9yeX37e3BVdHX9\nNUieOZitt9YVgZiEsPMfw8cBwiVf0+9WNuVNjrpqb/dzeQy7fUUiKiX97gKVE7/l9N3lvV6/p4h7\nF3WoCmzSaZAx3R15szfu6+/M861zJk9570xtPduVBzt5qTpc7ulZiR3nVlQfL8D5MSbv+gouGef1\n7F7pvm34gZJ49JNtWM0rREZr+P+SN8/LNTOb4iHeeh9lmQmRvAu1o/tSkYRHB/Kgt69VH8ugagQS\nyAowhsP7U9tSH64vMRYh6kTPFSl4sitkzOWpxnB1U2N7531x8WSJPJ/vowq1q7Hz6rrPrQ+IiMCn\n0djXfS6eKVKwUNf3t+GuaaNCdPQroSfCpn6XC/W91yJfvq/xquJZT9fk0W8Tpfex2aUd1TdckEc8\nTwj+alf1aDxxCBfZcL6ufnj4PamZzGNrSdMcbLzScw8vNf6Os6ccYi95lIrgWEhSjxxM48uodrmI\n/tEXQpmcPlF7y2Pdr3Af5Z30b/cm/9tlBKt5KqV5s4DiV1TTPVLHmh9fP9WzfvDOD1UXFFVOmdeZ\nln6/+4X66Ic/kOpQPaE2JyL9/u6q2vRXT/9P/W5D96tvax1qgtZK5fV5dAjqjBxav6K+vbshrpc2\nKnPDpsbw3prGopEGlcY6+IvPhFzZfCAExxAlszb8EbV76rs+HvzzvsZ4vamFtgTzfhW019IdeDAq\nQjG9/KnQSj96R+3zF9Svf/fxP5iZ2fZtRcPyS0Qw86pHfQNFs3NFm+7dknJZ0odf6VzRo3v3NHda\noKGe74vbZe4NIYqqRJgNBZj8N/nWqu+AiPASimK1JV1301KD9+rP4DNKVTUeU3iUnj+XjZcDcphB\n/ozJVfYcL1YaRBC8Kkb/Ay4wm+r7b9ATgT7nfNY+VDwct1gISiETJcxALPaIEkMhYB4Ih4QT2QlV\nhwLRrIhI2QQ0gEfUqeixTqKOlBkQKWOvS4L+GiEtmJ3IRkYOp4DCwYxlPA8njKHqMID7Zkwue4j6\njgeSIk3++KSAig+ooDQ8FhO3fMDh4nkgLojOhWV1wN3bstFRQf//fF9R+Mqa5ljtXdbbc9T3aO/9\nPS2cQwAAIABJREFU+3ft25TA8Y84xAjcKCWffiEaF8K35HA/XuB4PJzSj1PaQpmHyLIH6iBIqZ4R\nEWXXETM418Kx5k6J+jggUwJkywQunjLojK7vyHzM0tOsjVKOqweVRRTBDCRmDj6AyRD+JBAvEehd\nqmk+aiM+9tQnepnJqZ5pUM5TEEIF+j1EvSk9mVgQMR+IiGawf49rR1nQSTy7jC15KXh4UrreKYmN\niG7nx2rTqMT5ifnpUFlOSWsCmrfgOGvgOkhiSxa87rublDDn1Nd0Xa6u+y+zf+TmQCmhRjKtgCZ+\npfWxUVXkdAdOrGnecc/o/lnqPcf/XxCyrXFc9xOslxmtWy9BFaxUQOFe6n5z805t1KnJaa7Mg3Bs\ngy7LHDg0nr6v1tlfUKiZsu8FDX3vEQmeRy21WVTHlvooN4KEGpbUzvGVzkbNK103N8TGqloPC0Sm\nUxXtP+OZrusdq75RkvM06oelqfplb6gz3wTOr/m0/j+PbTYDVy+M2cwO6xO7c6X27pRlBxc1ULms\nfYucLZuOk2cAIsqt9zcowZXqcOuhzpFHAxSe2JtfrukZO22du0+3f8/MzBbSIFLgPSpD2rTDHvRF\nWXWqc+5aqMmmMqCWxiWQ3Mvqm96Zxqi9onWw+VJninyPsb7Q/G6lVN8N0/8P8uKt226hgJjTc/ZR\n5ewXVb/+qdCzHxaF5vd91b9BXy3OqW9P2+ytQ93/6o5QqXejPTMzK3VkW22UtXob2HoXRUZQSg1Q\nUJWRPmcY411P3I6JLPxHKLNdren+O5e0O696XgZC1DyY6izQ4b0icSobeD+ncfvkFrxXe/CIlHTf\nzrbmWg8U4DtT2fhlCS6fG5YU7UihdGShWxPZn1FTysHXEoTwuhTUDyFowxJKP0negZPYQT0A1QJS\n3ouEPJrC2zLnvVbtq9bLdtW4ti5bRS2PEi8orAEZGAHrq9V4FmglXsvNR31uGDkuL5AkOZDagEkz\nnDGGnCFyPtwwoGFt5tZ7fU57jscOlCh1Txh7GftKinUymSJrg/XfB+E+5XzmF0ELu3MmfeWxH41C\n99khZ/BLcLZJgTpOkKURVRxaln3JnSMXdX/Hm+lnYqRMXOISl7jEJS5xiUtc4hKXuMQlLnGJy//v\nyneKlCmgilKvyYu5kCdndoT+eAYeEvLixn15JVPk1xtqHQ1ydJstebJqC7Cw40Xc+1Ie+Cze4AUU\nHroXRNvIYTaUbZJEyZqgQPo9RRo6RKVGHXkda0RASwXVOwNPRnVZ9QhO5Vl8Rc5xtqLfj3t6/hAE\nTLqg9i1sEwGBc2LS030nBbglXN52Qv2SrslDd3VBxKGI4sZLfT6Bq8bmzIppeT3LohSxK7hi/Gun\nMkFUCi9osS4kSfUOEdhreQ/3n8tjniO3vP6+POVjKLeHl2r70gPaktBYXPeFHpgmbo6AMDNbXlNe\nXrmsPnv1RM+//JX+nhzpeXnuu0bUI4cKUzulvktE8sSvLel+M5R2ugeKGBy/Uv2uT4WKCInu7aDg\nc+ddeeKT8Bg9f7Kn3x8KWbNYl8d97cFbZmYWzWtML56L9+P4mVALiwvwHG0rsjvE23vxRPeZnSrC\nkUUpKJWWB3zS0fUzEEs5+iNZRqFmSe2potDlp2Wjg32hvs4+Ufv6bbXXywpF9eaPv2dmZvMolE0D\n/f/+riIZV1eyXQ9v8lJR/Zip6P6ThObU4CX8KJqKVthR/++g5mVj/e7shSIQXbhyanj0N94Xn8qU\n3OHJBJu/QZl1ZLO9hmw0rKpPF1lP3l7Tvf/6fxKyZbmusZyfU5tPQXmFBa1HL0+EnHl3/J6ZmaXJ\nrT/cU50ra0RzUppfRygVVFEuSAfqo+gY3oi6xnpuHa6Wx0pIXkhojBsNUEgv9L13DXdJFTTVe7LB\n3a+1Dl0dKfoVHoJWW9J8r8PNskIUrbsGJxeR56LjVujCneVUMupErwZqx6+/+qXu86Zs5J175JE/\nQS0PtFTnPfXj+oba++xY6Kc352QrW4taQ1501W/Dkurx4M80HkFK/dMPFL1pDTR+iwX17yNy+itd\njcsQvpIhedjh7NtFpcbP1e6PHv3CzMwS5MP/3vc+NDOzt3/4rpmZpS7Ur5FTcBurHllQHIHLXQYV\nknaRf/g9QnKLByBo0qDaJj7KFyjxZFHW8XP6PPUSFsBfkMuCfCO630dtKekQDSBVInjZBkNUcVBC\niPI+/w/qAITMBJWkItc5ZYQQnpxBqDbnUP+Bzs0yRG6jIdEskBgFuLlGKLH4M3jdQM5NqLdPeCyZ\nIn8cBJ5T1hrQtxkQOzO4YWbYrpVVz5NTrUttuK/e/W+EZvvT9/4LMzP729N/aWZmP/8f/trMzE4/\nFRrrpsUnzzzpwweXUftmdEQm6VFvkC8himHwXqSRuYpo37Sg32U7solhGUTgEJKaEO4c+iHFWSBJ\nP47S+v+EQ7YY9SNybvBHOZUuM7NhYWgeyJsJ9y+g9BhwZurDz1SYUc+pnhcxbsUuZyKUkSYoiRVQ\nwJgQWbboN6OAAyfZAUoka0mbgYjxULWZwC1j2JA3Ar2TVtsHoICyjhcB0NYoq/ViNnSqSqpDboAS\nVFk/HAzg3nP8O3nUPZL6PmQPzTuFst8Rufynxc9qPZgHmXMNv0UbvrzbPL9M3wTXWqc6i5r/6bTW\nz/OUvk8Eqvc6Q3hQ1VjU4VNaYD/opTlDrAv10B9rr09ktS+cT7WO356ofhGcZOM8qqQACysRimoc\nD33H2VjUD84ZwtUr7U9REVVCVAdTIMwDEIPDomzKG2nc/Es4G0CHXU915iqA3OxswiHZUT3OUJNK\nTuBq2Nd4LhdV/4M54II9uCJ5bdni3H0wUrs7i2p3FRTe3EhnmdbF6/FdfHFiXkLn9GMX6b5W/03b\nqvcl6OmFQGcx39Nz8r3XKk6/q9wp6tx0fS6YwcqVkH7B2x+ZmVmRaL2diZuwzTrbq2tsV1NCqpyD\nssqWtXc9/FqfT26BTOyqL07fVN22T3WWuJrpfDa/AKL5kCwAeDU83o2O09tmZlZP6nnJa/XNFJW4\n6aL64PpUe/1klTnLnuZVNUajY5CcW1oHE1Ce5S80Jgv3dR/vRPW5NVa/TFm/Ugs6P3YWhKi+vJSN\nFeEgtK6MdbuiuTBqoOyDqtxSEoWbeT24A8LorUj1OeBdbaWlM1gVbq9fV1WftSwqdxXe2XiXersp\nWz0v6P5vgDzcPEDdr6L6ZVFka3Sp7w1LcrlGfeBBQhoolQLhD8dMgr8pODsjxnHa05zskPHQ6WmO\n9a7grSppjVjcABHU4azbB70Cj8p/+Sf/vv3kf/6JtQ+eWBuurdv3tB7Mb2+bmdk13H7jPryPvLdn\nJyAhk6hIktGSycKL1+NMM49iIHx2LfaMDIhk3/GN8g4QomQbTlTHGWeTBPuED/ozCS+O72zSoYAj\nx0Vj/D97KXvseITSJPtCkAMiBIrIKSPmUQKb5pwKlVNARFWKoUpgY2Ou88iY8T2nPAnqePrbuam+\nU6dMAFlevgI70UCd2OUwfnpKagUTvPnklCv1u+SKOm+GzPFVH4m/HRlgmgPj3KI63clB94EAv/xM\nsPqQzl7NCqJW3OYF12SUfk6f72xqwRj7MsqzF7zIt4AKTrRphBCX5SHurY41UZfWNHoLW3rJOR/o\nJaaHMYRAG4c4GCqOXLGsTeFknxdrJqCX1uB3OHj5kKyGHHCbbfVL92Vgizvqq6W8NshsCfg00s4z\nDs8VDKmPvPZsX3/D0MGfedFc1cRbflsvnJOXetajPW2EfV4OOkUHX1cdc1WH8b9ZiXCEvXyuxeaL\nTwQ/LJAetU0a0twSULuyvm9CzBtCeFa7D5SWF9b2l/r/p0dy2A2QpV24pd/dWle7NnZ035He0+35\nS5Getp5Csgz0dvM9paKM6KaDL1XPg4acIttL2gxWH2pzHrNZDJ8hp3YpWy/z4pZx/Td8Sb2dlLT6\nPVuTTaWXWRCRuAsbum53X/Lr18/21I9AvXduy8Z37iMDPdP3e4+UGtM40e8NQuj5Fc2BuQVdF/Vl\nWyOcNRdHGvdgpENDfUP9tv4Ojom+5uD5EfLyz3UgzS2rHQs7OgCNscOzfWTngteQ499VMi4l4JtD\nMC+qr9hAH6juD1cFWfX3taHaMpKX8xrzCvKVd9+RY+2K1K7spg44czPI9pABv/8jORdODtUHZ+ca\ny++9qT44Nx2qrwI978Oqfr87p0NyEfny5QwpBBCGp9kkzhoa+6WKbOc2Tp19Ur6mTjJ1IFvs88J0\nlmDT4H4936WW8MJNKuHVqe4/vy6i8Hf/SAevziNtvvme7n/7vpxTISRzR0/1YvzqiQ5y9+/JmWFt\nPffFT0XgO/+mbH1wrfbtfayxLf5ztX8MvP7ZM82Rzkjr5l/+xX9oZmbeM/0+vyVYfJWXqY/+DzmN\nggPZ4E3LblOO3I+f/MTMzFY2NAd+PP9Hat9I7TubarzqkK6mILYb8BKZR4Z0ADzV51AxYo4V3GZO\nCtLU6QZHv0lMHPDCG7LmTmeBGTK63gRCP14YMz4ke0wLD6eKIfubIiVjxoEq5ZD2ITbCi1SSdc7p\nXZKVYvgaLElbIqC7EUSUEX0foXk9BU6dIG0ygZPIHdZDZIsjHGkzDpVF0hRT9MlgCmE8h+ukI2+O\nuB4C24DPVyc4i3dZt59prjYMstIv5QC8/Ey2c5y6Z9+m9IEu543ACI7CGYGh3Ij+LgBxZv0Mkc52\nEt4B9XaS0yFpmynnXMk4gkWIcRlXJwIQcsZJIPc5wqmWJzUkARS86yR1U69Bz9lhYJ5BhgtkO4AY\n0kjxSJFSHfaRm0/wYo3OdJ/9OqLfExBxehxoPdZrRzScYa7kRkDcCagFFphhEylSusY48NLAvDOk\nA40Z+xSS9DNS3yIchEnIq8fOhjnfOU7rEc6NFOkrLu0mRfpKlFbdZk66Ncl5CRn4m5ZL0sVLpn2h\ne6q+zJA2O0xrXRr2dW4rQtDutUnF4EVowlzqtFTPQxx92aTW8wNSwhbmIZU+kc11SziDeCG7y5nq\n2T6pxju6L9kFdnqABPUpYg7MTTJsbFQh7SfUHu5fQ27Ni+vlQH/XZjqDHdTV/s0m15nOs9GFzufB\nqq6/wqF4C7j/UUlnz+hQ47nL/liAEPj6tva3pQXdZzhT/1XQEPBIXwsmkOKStlSdI0iB0MaQYOiQ\n9OVg7bXsb2M7YWWcMMUL7feNNe3/OVIQd/KQ60LUmeUFNl3p2E1LY0raH+k781dyDg+vtefMJUhx\nnmk9O3tP5yX/Sufnvwu2VRdTXZ+SxrLxBiljLf1+2tXeuFzVefNrxmIjrz31vJynjQr4vPFKffrr\nlvb8jTQpxGndZ1D83MzM2lW13T/Wc4o1DcKrvGynntX9l3s6x52Mdb/y59QHB95uHULgf5Qt1zb0\nvHGLPZJ16Rodi36GcyQp0nvsmX/Y0Vz3L6GqoB6PltTP2ZGeN7ewZ2Zmibrm1MEVY9/Ue0KpJdv6\njP1wUlR/hF3Nre2MzqelI51dvsLROZfX7y/mZFvNrGzmwJfNelWNZ9LHWG9YqpDepghe3iJdtsfc\nTuK8axGIOjiQveRZ2xIEdK6v9PfiuebSFalGyazOeOe7akfrTPUbQop9Z2Pnm7oEnbEVqyuWyeLw\naWtsOq+Ukja6JCjIXpfF2TDwHfm01jdeRWwAGX0U4NQYk47P+ShNCnbIftBn/Uv1IaEnlSvB/jDh\n8JPl7JB1KbkQmSchvZ6SCj2OWDcJcCWhnIgcMTB76Zg9OOPOQqSOjUib99O8B7DXT0kpTrsg3IBA\nDJQZ7kbJwAWq2PtTOJf83/4OHKcvxSUucYlLXOISl7jEJS5xiUtc4hKXuHwH5TtFyjiv3cVzRQZc\naku1II9aEvj3AM/XiMhjqUwUv6YofgPYZLkJuSzS2v2+vk9DPjp/S97fGmR6zYKia0VgRbUFoR5y\nRf3t5uQ1HbgIAL3Vb8vzdnIor251Q17Uhaq8nUkHuQMe2zwXgiYA3gRS0XqQ5bZOkJsG4RJCH9jv\nIBuKZ896eJUTimSvbMnrXnD9BKHa9o7qkUL68en5KzMQI+dJ1TmL/N/6tu4BetmCa3k120gUX0OC\nt7QERBgN1U5Lz8pcqm/G9HGnr7rlaEsZiFirg9eweHOyNDOz7gFkc8Dn60hYb5FqUILkb/xSz9/7\nudKFxnhh10B6VPHaXu5KQvXwTH0+X9T3y28KtbDwhiINdcilG0/kJf7qU0UQBlfyFt9ZF+ph50PS\nkDCOg69AhBxrzDcfKnJwa0tksDYHsdqvFXW67tFfyKVFROs7Lm1gVSGEzVXVq5JC+rqs37eQR+80\nZatXh7Lp4RHQW8hYH/wLwWKXa7LVawiSz3cVYWld0F9r8pzPv63nZuifw6/xPoNkOWROFCAWXfoB\nkZe3hEpxkfdHkGafksKXWZA3e5Po1LhH6soLoU0cQXC0dnOd0kxV9yT4YUPu+fxXGrNaAfQTqWXX\nx0jQQ0TbJMr++FTRhrXvKbrVeaQ+HCAVnd2STXx5oKhT7a76ajo94Xlq6/Chxqa0JA/6Z5/J5h51\nkcg+0OcmkcM0cM1Hz4Tce/cd9eEUycDdL/X9zveFWLEB0RRsuFrWHKvMaawDyLFHj1Sv7UV1TIGU\ntsxdzZ3ne+qf81PZwq33hCTqzPbMzGz/Y8bEEQO/p/5784EkpXefyubyDyFjvSfZywJzYc0j0nhX\n/fH0c/Xb+Lnm8v0VzaGoBpHxV0J3NZA8fHWhqNDyHbWrkNO6vHJfSJuo/O3SDrYe6PoPU39gZmYP\nf6T+XETS/Nf/jxA+V6TuZW7rewLvFiBfPIBtN4/sceTkg50sJVGoUR4UQh+CX1ANaVAQMyI/M9am\nZHpsviOIJXqTBWY+TgOVDdU3Ywh4kyAyJqA3E6ArPaK7Adja9Ey27dKjpkTpncywH7m0GyROh67R\nSHOSelYEbWUQ345JYcjSB9+kMUFYHAJtJqhko7Q+Jz2iRSAsPEhTJxAVVtnbJ3UQO+xx2XnZwps/\nIP1mXnP/+f/+d2Zmdv6Z1tV/9pf/wszMvv/G983M7L+3m5UCiMRJGqJfUBQR+88MNG5IhHdGO3JE\nbuFttAxS1gER84CU66ik6wpEkkPmapro2bCLtDn3syTymnnOBqBLZiAtHQHkuJj/pg2JXMo63N+o\nZ5qopg/U25EfTiFpjab63qPeEemmxaxLV9LtfPpnnNf906QIBUQHI5euluHsEpp5yIFPgI8XAiRP\nsblMBLqKa9znydSlzIECK0F+yt8ZkqwRqXd50pgMBIw/1VwZgv5JkLaeIh3R9cl4dnOpYzOzjZ7u\n256Cak3pfpNFkIlHOhNUS+QHHTIn0mrf1CcV4VT7UhYEzwapIG0iwfk1nePapA0s35UNnB/q91ug\nCo4ga17bop9IcTg+QE43p/1sVtbzGyA985cas6wv9EErq/qXIS0tDLW/JDKcW6v6/1ukIF5Ndd2g\nsWdmZmEV2gGkuLfOSKUktWMGCsAKQoNsDbQ/TCDc9TraT4ojoWeDvM5aeeThL8hDiFY0x4Oirg+P\n1J+5NSLmy9of6g3IV5Mg8c2s1JvZMEJqnO8SXdIsVtQfr9hfk0eyzxmoxM7C6zn2u0oGAu+Q9Prz\nd0jTnGhPfvCCvXqkMd74e/og1N7feA8hh1f0eQ2qhMdaF72y6vhkWXv6s7LGYo6zSpJz+gAbm1/R\n9aesV0VyAkOIac+L2nuXBqrX4aLOMt71j3XfiRAuySVS8651v/qenrO69q91v4L2zMSu+rjeV5+F\nc5oLXyR1zp6vMEd90G4ZoRGK2O4BJLHpl+qPxwiE3AJ98Jj3kaVzECp3ZRONEXLql6rfLZDjq32d\ndR6VJDawUtI4nIAKe7KkflqErLoJ/C79jmzw4JlscJNz+hFIGT+lej3rknZWfi0xfZOS5IyQIKW8\niRx0+6XeH47O9/RDMnsaR6r3PO+q9XWNV5WzXeFD9csO6awu7Sk7gepiQdcHrLHVWuWbuty9V7Nk\nMm8TR3bPu9+0o3lVnxPaaAv0rJOyDgas044GhHe/KUjHoI2gAuTQqQnk8BCc+6QbRqBKI85FPmeb\n9BCkCe+oM/bUMONStEG6sO6nSdOfZUG48f7sJZ3YjCPt11wof7P/sNeRVpUiLd0HlZqGiD7ivAa/\nr+UdOjj6zfYnQEGNyYCJUpwVwtfkyv9fJUbKxCUucYlLXOISl7jEJS5xiUtc4hKXuHwH5TtFymTh\nUihWFXEuVeT53liCjwLp6qvnQm0ktuWBWkFGOF9T1KbdkpfUkAI8OVDkuwuBZpuo/pOPPtbv8PyP\nIvKqXVTvUKgIvymvZedMkfJhS5660yt5ZTNDXVeBUHT7NiRYeOqcnGSrK2/nMSSo2SR59QXI9oh6\nzoGeyN6SdznFDQZXisBs35GHcjENggdi0801eXXPIe1tfqEIb7BB5AjCo9pq0fKrij50juUpffVY\nbb3Egz2Xl8d0CNHUEH/dg4eKnq/c1hi9PICL5ctfqc6Qo+Zr8hxv3ZLnfyUNf0cX1JPLx4Os+aYl\ngJhy4b7qX/NAI6Hb9vhT8VpcfY3seUZjtXVPvy+T03vwYs/MzBqXGtsK0ZSFW8odrW/pvo2RPONf\nfSxCtsNnit5U4etZfAeuGbhTmsi27f7yUzMz6yK7vvb7ev5bD5HyvlY/7X0sW756pXHoQvpUhfcj\nuw3PyboQQXfeAk2Al7UL4qS3D6dBT/UakjdfPJNLfYHxKLwvNECG659+oef3X4p7wSvKs/797wnp\nUlhQxKXRlu3/6iPNreG5bGtAJH/lrtp/54fqv1Rdths1ZOu/eCF0R/NIUb5yRtG5lVtw9PTUXhf1\n80DHzW+q3qXSzaOXU2T+8jXVvbSgvjv//GdmZnZ1KhuvLugZbdBJWxCYdT3Z/qPHigb90Z/9yMxe\nE0N6Kc2vLCSkv/6J+Hd+UNA6tbWu6EvvFoiIjv5uv6++uSQ/fBmix8ldzef2icby9l1d/+qFxjQ1\npz5YmdPvP/qXf2VmZqtrum5pS304PFe7955oncmequ/XfvS+7l9RRPJwQgQZ6ecHG0JdzQVaP44+\n1pyuhC5CoL+FJSKz+2pPJ1D07DZrwXlHc+kMJE/7nPXPk42EmQb1Jlq3rvo3z9T/XUhHt7D1zJrm\nSA/bc7xrKaJT7SRz8a6icdk1JLRvWNIZ2cfqm7L17Lr68fCMdfNStl6BjLsKqstHzjSEM8dJ3UIt\nY1nIrguOd4Oc60SW8BZS6EnQC1OPiAqB4xzX+ZOcEfT/htB7AmdMAPlLCIFvmnk4zYGwA8HggCxW\nIFIGxCEEgZKCHDWEQNcHceOBlEAV1iaOEyVCfhgurh7hoTQIlynkl30nbQ1Kapwk+hWAVnAE77Qn\nDZleziPfnPDQhChXCqJ1VGmtcSaEXp+9/vaHkl3fYe787G/+1szMPvlIfEH/3sZ/ovqsLNu3KSF5\n5468j23LMn3y0lPqtx5UBWWIfIfwdCQgh54APc0lQJCgFzqE86dHlDEHb8gUXqEM6K8RnC8p8uYd\neqQL0XOW8R6y32Vnr/PU+6PQ8oz3CIRVEDm0Aogj8uYZXhu754F8nLpoIsggj3z4EWSMCexlBJqv\nDNKHahmAT0tPPRsT9fb4LdQClorg66HPk9yzQ0SznHK63BD4Ol67b/oaRBqRxxwchQlQQA5Bkw7h\nuSFa7AOp9MZIsU6/XWwyKmkd652qXrW61hGvo+emCqrXfkPfb2xovWuda91M97W+zWfgCWJf2j/S\nmWxxQfvK5bnOsbWcrrs40hmnMq85MLogggsSJQ3XylkHKdccpP8DIUY8EKQefBvJsn43mmkdvsVZ\nLlHR2egI3qN5yKlnM7VnfKLr8nOgo89Vjy1QuBHcNMkkxMEuGP8SDglIave7GB/Dmg11ptgHmbJI\nvUYZJtsCBP4XcF2k1K4UkfDgSPtci7k1yELqCt+ImVmnsmmDS91/XtufpTmz5Whfa6Z9K7Gm36XT\natew0bSbFm/I3rmjOpfP2QtBefVARy2OtGcPaqrMs3V9/84T7T2l2xC5djSWNkT4YUV9vzkQ6vaL\nia4vF2RDVfTVWw9Bz3+q655UdB5drugMMylpPs+3IYNOqo1zEJPXrmWr7YxstICU9vq+nte7J6T1\n8Ajurgt9f/wme9q5bGULcu911ikPRF31DQiA99XeK1BTtZH26tySkO+9gn5/PhUixUlJh4gqjJ9D\n1npX/Vu4hFeKTXZ/DpGXlvqzBYKwOFG7t6tq1xVcMka/zX2u/jheVDuGrOfvXekc/dFbqmeKuVLs\nfDukzLNPIHTe3TMzs2xVkyWfZs1MIwaDnP36puZIAnLsDLwoEfwrScjk+lX2aZCUE0jQC1Wd/QLk\nqGez1y6AWdKsG0WWmYG6ZYxmrBOONy6ChH4AkiQBl4rjiZuFjDHuhRBBGt/JmLP3TIcOISwbHDtN\nbcbGIVXGebU1BUIlwV4YJVzdQZmBOJ/B21agbQHCOKEbmgR75sQRztNe9odUhXMwPw/ghAmLjAXr\nVXEEZ5Vbn9h3Asj+p/DD5eCsDZCJj8LfLmISI2XiEpe4xCUucYlLXOISl7jEJS5xiUtcvoPynSJl\ninmks8hVnSLXe9qRBypPLvAAj13UlUdtjghrF29ocOnYmfX3el8RhZVNZKDnt/X7K1jlidTWFhVF\nyy/DxN1xcmuKjI/5XMirHgG5pt2hvKhjPHX9IdJ9z+HZwHNfQZ54fQdugmXQBHgAszN5n/P3hPxZ\nXVJ/tK+RPfYU2UgZUrsZecebIGPaPfhhQPpUVha5Th7JDoo+yw/u2cqqohb7eBUH8O1MRuT9Ipk2\nT5R7r6dn9JC67gRELQb6vhiRx+sVeJa+HyGJ3YW7JugydgQrMpVv5wdchlsgRYT4xSv1ycFXiu5P\n4eOprmis17fl6c7PqR1nvxLHy+WZokulnPp6ZRUW/DmiVF/DfYKs77WLmhc19ltvCH2w+FB2240L\nAAAgAElEQVSeecdufvxYiBM/J9t4Hw6D1fflgT89Ub+9/FxImvaxbCWLOsb8smxw5S1FGCrwloyJ\nVPZhi7/e03WdUO1NBbouAYfDDC3qHHmMhXm1M2xpzrw8FJrhCk//ztvqpx3QF9FQqIO9Xyvycbgv\nFEdjqPuvrup+3/tA/Va9D/oCvoBXTxR5OXkmtvfRQBGGdF7jUrmn65KR7OO6pX6pr8Fun1V7PLgx\nGsc3Z7FvXmjd6LEu3HtX6KLbd5S/XEDSM43Npmqqe2EDuUoPud1L2cCoobHtEfFbf0v3WSwryrQ7\n/5TfaUzOUUFamldfPvtS6kD5NcfKLlv8/KnG4EOUvb54JNtM7Ggsyi53fl8R0jd/T3Ll99fE5fL8\nV7K1jW1FU9bvgizcVj/87U9+qu+RDLz9nlAE6QvV7+ALPX9a03pSrmhsQtRMUsADrpEvHuf0eR2l\nrlMQiGfIxq/VWG/IPb5uaswqOdVv3JGttclRLheFmOmh7Lb3WHN4c0Pt2KqyXi5qzrdq+j5A4efF\nyz0zM5sRkZkg337TctxQ/+1eK5q4u68oY/YKuUzy6++sKMI6I5c4RDJ9lAQVwPo+SRHhAQGZRgVv\nCIokQHmoSMRmSPQrgFWs6PiTWJMn6bSFY91z5pj/QQd4RItC5IWn3DtJ1CgF8iUBMiJEKSxkTmSI\nFo3glvHhikrDHTNJOFluouBE6IZjkBZwxuTZH3xQDhniOkNy132S3/MTzaExiJsp/B15VKVG5If7\nTi0KBEoK9Z7BWL/rwrHSmLAegIpIgIIorGjM3v0zzZHHe+JGOH+pCOujL2VzNy1O5WnC/bMz0E/w\n2kVp9Wuadk/gI5kwhgWkShModTmuMR8kSr6IMhxKXSH96ZA54YAIKDY0dkiZb1SkUdWgP9MoMNrk\ntSS2n5rZCERTDrRWADeQz9lgDDdNnjMTQUgLUZdyXDYh0cciyK3h2ClXgAJj/x8ike2kXJ0s6TAK\nLUVkMoGCSX4MYow9cMZv06CGfBSjLOFkw1WXxMRFv+GpoE8d8AxaIgum8N+heFVk/QhYp5KRQ0Cq\njzvB6767SZnuao9LcybJeNob+xOtLwVsJH9bz+nCobAFiqHjgXBGjSlKqD+WQdQdISVrIAu7A/1u\nA/leJwG9vgyCMdR6O4IbpQBKbuTBa1LRmcFHBdTnTBPCyRM4xa8GiHDHjcW6fcX5NtXRfWaroIqP\nNC6rSIJfRiBO4IQYjXWGyvVVvymqTYVQ63uP35WwTQLctjzPmQoeprMT1btCf/emQimUr3TdK/hb\nCln1exEke7Cs/bt/idS2mS0FIwtM7bhEXWabdb0JZGe5qfFAPMuyB7pPe3FqNy1Hkcbo3kv9fXVH\nfbqcFjJkto666cUbZmZWHe2ZmdlDeChTG7KV1hBJ4zH8bgbn1YHm8Ys/1RyqvtD8mwD06ITaO4v/\noD3+PAevJut/bwyXDXxHuVWdMw/7+t7P6fpr5mIGZMUO+855TX202dEZ6nJDc+KwpvXjXg91JDiz\nrjiP189kw9M34Cv5SGer8UO1r7mgMVx7qv64rshW1/uqXxeOMp/1pwGiZxWepM6eQ/zrPomAc3xd\nZ4W9BzrXlrog5UOdiRIHqMku6Pz/in12v6oz2NR3Z0z1yy/elQ1usu5dtUF9bd5cNt3MzA/0ew8S\nxkoNXqc5ncfDwCkdgTpBNTHgcwR35ox+91nLcuwPSZSJAtCAaae6x3tDlH699o0sY4WpbwFcK6GT\ncmbNd+gaD2S6N3DqRuwNbEVp3Aqe4xBjPs4KcB26dbiAYiNeCH/kFAJBvoDujxhLz+BhY53MsFe7\nPRRguyU5i4S8k3kgVAqg06ae5mRqDsSNJ1vwOevkZ46LTNe79/9kRnPRo48T7KG+UyQETRqStZAE\nxdppI+3NO1ov+dv5MmOkTFziEpe4xCUucYlLXOISl7jEJS5xict3UL5TpMz5pbzGZx1FqHNtebD6\neB23l5X7n8GTv/9UHutxS56nInTMXTxvG/OKZPfwdJXhXMnn5AFrFBXhPSJalF+RK7yE1n1hTd7W\n3UeKhKfwKm6/J/dz4MsrevBYXtP6sn6/OCfvaSOt70fkoFVq8sDd2pHn7BqVk7MX8voOE/Kw1ZK6\nz5hoZPNCeaZnJ/pbzBJhDXSf3Wfy5np4NL05eQKncFmkCAwkifSa37N9EBCNc0UJchX19VpNnvH8\nutoQgb7JwHtzfqQ6dPvkMeu/bW5eHunSqp5x/lie7hG55XPwMoRTeRePr9T3BdQ0blomRJV7XyhS\n2ngkD3WlprEvv6tc1gW4WDx4Lvb+QWzrp/ADLSzJ87zznmwqB9P37mdCK1wcqX6W0Jgvg66qvaXr\nqj6RAxAe3Re6byFLTuqbiv7M4MB58nPZ9LNdeeIRp7JqWfdZuyebWtnSdSGohJMD8VucHD02+8P/\n1D79R/EgrcLZ4rhiem15afsNGMzhIfLr8vinifLM+m3ar/7ZXFFUb86TP/bwUnwkrc9+YWZmV6ey\n3Sq//96PlcO7CFImGzEHdmUXF0+Enugfq19meN6Ta7ru7obaF8zwIuPVnt9Q9CuPp9/NjfN9RYhK\nydccCb+rTNNErQeqW3egzp7AHXXekG1ew9HkF9Rnx31F9pLwJKyDYMkxb7/+qfgp0iA3JgVF5ioL\nysvtHajvehPd53u/98dmZrY30hgmyF3fyW6bmdlHX/2N6pHTZwOlViAMvrwiRMrnP/u5mZltkhO/\nCIdWa7xnZmbPThWVyiyonj9+R8/NHAgd0IfHo8z6loVT4Qy2+jQLxIi53gOtUKqoXo2mbPfFrpAs\nW28rmuWvKbLx9T9IRenN7wmdUL+tdfbJsebQlAiHG8Gza613m3BjzWGcL/c09/afqV3XeY1PNVL/\n5lHxKKN0cK+u+j891NxODV+ratyk1LPaH1ZY2077Gr9FbH1rUzY7bJO73CIyTAS5WoJzYaB65Ins\nTCPdb0qudQ5OhP7Q0fNPuA6klgsNgQAYsRb545FlUXYKCBtPQxYOOFmSkUOkoLRCtDsd6O8UuECm\nACqUCKJT8soS+Rxg8xlQBynCM2xJNhoQIfWZW0TD0hPdd+jyv2lKrq82BtSTdGvzmZseiJIRkb80\n6NcRaNg0yBTHWeKj+mMT1WNtQXOjMdGY7X4spSx/WWOSLaJeVIR7gCh9Cxu/aYlAEqbGDjGj/k/B\nyzSeOQUtjblfiGgPkUr6twuqI8qBoHFqKAEKQ6AExkBUMgN9P8mj6EP+fYGzSpc56qEKmAj1/ERE\n9DGV+KYNOT9jIQo/faJ6HkjVNMglA/kzRQnJ4wzlw98SgdrLgJA1FClmILE8IuYBfB1pUCdDILFO\n0TJIZm0Cf9iM84uPeobjQ3KcAD7IjCx9PKVtY9atRJuoMMiGIntYnz0kx4oTEXUOk3ABcE5K0icz\nkI0pjD3r/3Y1jH9aTiOtx8W8bCMJ51UTuFMGIqShr/0nf80YroIE2tUe51APpSPQB1vq8xLcBoMs\nSGifNaAJrwhzxstp/Z90NSbnS/AtoSBzAqIkjXJXCw6XSqRzql/QXFvc19zqbGkvL5zpvoUEqqis\nKe06nA0deOK2QFTug3aF96rf1lzJralfr3VUsJV5re/jPZ3lVjl3n6KulQFxs9dXO4tZECue+itj\n6vcIZbqzCfsn6/eip/vugd4IX2rfK80LHWFmlhum7TCPkmVmT+3mfsV9uB5YA+ez2tfb6+qPraPX\niJvfVdZCjf2XG9r71nfFgXW9pXXr1qGeuUc0f9nXvU+v4PJalo1nsNUJ6Kef9VT3jaT2pqipPTq/\nqbGrHsHF0tX5fDYGIdnS2WZW1lko3NT9mreFShrs6/eTdfVl76Xq826EMuwz7cH/L3vv8SRZlp35\n3SdcywgPrUVmVmZlVVZ1Vyt0AwPRQ3DIMY7ROAtywQ0XNBr/I5rxL6CN0cY4NA5IAjAAjQLQjRYl\nsypFZGgdHq7lc3/vcfH9biYA4/RErnIW72wyw/2JK84Vfs53vy/za/VR5Z76uncB4mQLjqwVPe8w\nVF+5C+rDqyv54Eyk/fTkG7V1/Ydq4weovnYH8jmzqLW4ca73TrZAL9zTb58hyl+llN6fvdRY+XhJ\nv92mvOfsgdq/casxspDSe79YUnlqqBTmO2qnrYba54OW/k7NaV/ssWdpwBe304G/yFf9PlnUXibd\n1F7xrlaZ0++BHOhlPwd/nWU0Yb5NgWQdg6PIOxa9ApI1sgsuCFjWsQkcM1N479LM86NA/etk3iB7\nir4xQz80Hs+awHnlt+SrAfNolnvHBfWJAxI4BaHYxIWzBZRUxO/vCKW+YpG1nvXAoa5Z1u4wUhv4\ntm5Mzx6/kezmwkNB0mWNDT04wkrAcPlNNGWdqNb4jWtRqCAzA/jysiAzvUXtu2dZszPM4+dwfoWs\nS9tbKHUN1A7NQ+2bB6gx1eDI7TflI+MxaneZ3x52SZAyiSWWWGKJJZZYYoklllhiiSWWWGLvwN4p\nUiZTVERpYUkZ1Nmaoo+3X5NpRfEmV9H3xVlFpAznLmPOei0u6PtalWz8K0VrL14pqhpkFdkq2Pt6\nZNXgzRjdKErs7urzDOfC+yhFlGqgD8gW1p+DdAkUseuOFMUskZl3iABWYeyuwo0wOOfcJ2nJ3fuo\njqBtf3yqDHvvRNmpPBwH1WVF5Jpk1vNnih7nCopYxoQS7Tl8Z0btsPZYaIx0JmMOXyq73QA1sEym\nLOI89+mp+BXiluo4v6Gy5Ym83lwpQ9mJlI0obih7Xl5R5H6xqefVbxWxTqfhmpkqEh7aTOA/yOjd\nxboH6kuzosj34mO15dIGWZOh2q6xB9/FnjIHrbGyMutk55cfK1MRkrH96jPVd3Cg9rAqRAucfXXf\nU5vPZvVeh0yhY3mN5uAWQA3jFl6T7gtFS4/O9Xd1DqTNd/S85Xvi+SiUiAofwjnz9+IhuYanJKQ8\nq5/8wBhjzBwR9DaIlF5L5R4ic7GwIV9Y+lDoAo+o9AgUh9tTf1zuK5v2oqn2GqHIUCbj8OE/U4Zi\nbleoghjkU+dA6IwXl7rv4kjlcDibujBDdmtL/ZJbgscFvo0J51FDOGoCUGAHT/X+W7h3TFFjZ3br\n7iiI2oayDJ0b1fX8WG1TAeEyX9H47X0uxbASvpQFhXX5VD42ranMC9+Vj21/Ih8n2W+ujoQEefBd\nZZ36RT335S/V535WdSuCItt7rvnne3+oc8lbH0nVaaakuj3rqq63nFnfeSLFsuu+xtj5uVBWMez2\na3+wZYwxJnWhefDnfyFEzXubQosVXZSzXmh+yvflE6kMig1tziXX1ebhhLP11xoz5wcq99acxvTB\nAopiRj658YF8q3uiuaB+qPlqfkbtvLFJJpczveev5CtnR2rf/LzafXdD5Zzj7xU4tXo3uu4WZM3T\nU2V6C7soPyzpvukXrA9T1eOuVgHpkupqvlxk/vzBT//AGGOMSzbp4tMXlEf9MoVXq+RauQ54UuAb\nGY84Q51Xf8Yje+YZ/pCYzA2Z9RTXT9JkfIDRBbmUmSDp5DLeQ9A4KbhlAlR0vCznqUGcTCzUBcWa\n4ZBslU37kr0KUHqK4Zyxqm6Bi/pPaBE1oA64HXCZ6Qea5wsodPW4YJDX82MyiTEo1hTzLdQlxk1r\njRxTD0SCTAwKdcw64WbglZtRny/sCFkXwUlwiCJjn7FzAn/GqKuxs7upeX+bdequloXLy6pfAXo1\n2Tyo1AnoCBBGA5BDDmvvEMRImvZLg4yJ4a0qDiyKA+4e5u9JmWwdyJPJFFQW/HMlkEBje94/tvJQ\nnKefvkF79IZjY0CJ+KhZpUtwCcCTl2Ud9lBG6oLecmhHi84I8F2rdFSEb4TkoPHwuzSKZD7yXSN4\nXDKZ2ORQlOq/RrKABgDRMrZrAlUKyGAWQIF5oMeGBf4GxTWmTFatIyID6qLmMRrAYWJRYKB3pvAe\nBT5rVPR2ipDlFRAntyr37YbKs9nTcwct1XOhp/I04WeavtI6Nbug70sg5a7KKFeeaj96YjQPb86p\nfH2QNhcrqNIdag2PB5q/fFSTnEjvuR1YVSIhYKI+6wsqTV6dcsO11pw/5H6Vo8yeZtLUfF8iKz+d\n03MbfThtjMpzuqF1ce1G13VXtJdIo1qYn8cX4D+6QDXVuwXZPaf3hrH2BNBVmV5K7bVVg5+vp+tn\nZ0FQwg0Zo7raLqv91ysgYEP53UH5DYfDSWpo5tq6r38DzxWoQjejdf9mnXa4VkGqHY3Js9LdUd7P\nqlob359q7c+E4rqaHm0ZY4z5Bs6w8qrmsaNzsvNFvXMuUlb+0pPy1tGpePKcTdqccbzcAylSACnD\nT7pWWZ8Xy4dqg7p8ZY26Zi61drYCrd0LNdZ0xv1qSb8dXoUoED6Uz33yFERPSm1c/cCik+XL5+cf\nGWOMaaDwlY11n7+i8n4JSqLiqU92RkL3Dq5UjvIy68OhnpvO4tNN7bnSOdVnvcdeq619vAO6ucEa\nnI60l8iCTp2uqL5feCp/vqHPyyP52LCk7y1SszHS3JEBpdu6ULlyKfWTcwCi+32V4+uC6vMRPCd3\nNQfwVZrfYU6EUiNjJeVZ9IjGXAaln8DyqDDtZ5lv7bo0ZR+R4beo/e1qmO9z7LOzFtJqjIkd32Rc\n5zVyfDrgNw7cKD7vcChTNkJtzQorMm/7JVSILBCSkx55flePQd9mHfZRxvLn2Trrtqldk1xQQVbu\nMjXkfVqbeqzJIc8JOZVxC4/oJfvdndUd2k71Ozg8NMYY09qXLxdK6uOH35MPp1CJ2v9G1331qfbb\nswuafx59X8q213W978VnQmktLm0ZY4x58L72Ht0Wirl9lIHv3Te/zRKkTGKJJZZYYoklllhiiSWW\nWGKJJZbYO7B3ipQpl20kTpEnE+rvXvcbY4wxDc6oPf5YEX8vrez9xb4i6jmif8V5zkNOlcEYdJX5\n6FxyBpnoc5rsf6mgiNjNcxQEjhVV9eCu6XSFchi2lWF4+YyzYGQTb4jwO9ewzRMqjPMqRwUUSuNM\nEbIuXBY3V3AujBQKnIWFuT2AiR21knnOqln25vKOIvjuhTLINxVFhUtWdoVsZudY5W6iRlVcImOU\nHpg4qzpvPYRDBiWo/LIisM2vDo0xxlwe6B3VBbgG5vSOiLOWGaKblhm/8QJU0lPY4uvKKjQcPS9u\nKu6Xq5Al9uG5uaMV8opUr2woU9rv6zm3Z8rCvHgmXxhe6F+3oqjq/e8r2lnYVDa+21T5j3+tPmg3\n9O8yZ/Rn8KHyfaEEchm1cYqM6RUZWPdYfX6DSspkLF87vwXdRDZq9/0PjTHGrH8s9EChoj69maiv\nj/5C7XXLOcUpGdDZdfVPtYp6CinJL58r6lsgA55LK4O88Z7+XQHZMwS1dXmp+o3JiFxfcf5yarln\njDHGmAcfSC3KcvJwfN80j4X+qJ8cGmOMaZxwHnyI0tem2mdhU+08h09myAAZMgbX9FfQ0f3nR/LR\n4FzPDa/lR2U4iOY2VY9U+u6cMj5nYGccEGlkMAsV9d3sup7tXaP0Quo0N48ayKr66PlX4l26XFKW\nKFdRGuMKNNPeC0XCZzbVR+EMLOs1/fvsWtmmtfuaZz7/20+NMcZ8/bmyYZ5PRriovqi9p3nv8ERI\nlU6gLNgCaKNyWtf//Zd/bowxZq6rvp6f132zoLriS/nIfEm+3mnJV5yW2n79kSL27V3NR3FKPvQI\nRSwXTob6nt6/DbfOVk0InJNn8oWoJCTP2gcaK7/695qnXdolzVna1UdSlHj0Xeb1OpkXxkgvBZs+\nWfxOpPkqDWfBCqir8zrKY4HmlJUFtXthXnPBzRVEGXe0+qn65+QXQg0GE1ANH5MxhWerlVI7d+EN\nARRiHLKMU1ABVl3JBx0xHaCEBkfMhLkyxRnpFGekDbwd0JYYP6t1Lh4MjZ+Bqd+qKaGmFqGIFYEy\ncMmnpMnCR6j5BPhYHo6TCa+0QIqUo/k3Sxlj6hCTqZu4Fp1AUeHLGMMVk86leJ8+j0PGKZwwabJa\nti0ckJYjUAqFkDaCr83Av+OABMqBsmoPyVKn1SdD1vQB8/5sXvPNexviCDOL8rEq2a3F7ygrtlbS\nWLyrdckUp/GNYg7E4VD1dDlPHqHkUIDfY1qiHcegcGOQRyAWexkQQChapCKb4gSpZOflCefyUWnK\nwrdhETHRiGwiHBMOSJuRm3tdhzibMS5oLHcCKgREUwwq10P5yweNksqrfNOR/CO0ykbc5zmWIwfI\nU4l5Xt1pQhA9ffYZafwi9N5w3Zmc2m7K2f/pFEWvEOQEz0ih2jH09CzLo5QbqowDQ9ugqpGFbyEg\nA2v5c7w8dSCLHw7+MXHSmDZ3nDdtdxfr1UFNbaq8owP55DCjbH8TNaXNiXy/OI9yZE57iCit6wog\nNuZPtM8cTEDTbqASAkKjAVosamney27r/TcHKOfkNN/3jzX/j4GfZSJ9PlnUWHnV0tp7j3nOh8Ml\nx56kzUR3mrecDdpDZNg79EfaG4VGqIybkdbH9ZZ89Ark6DwZ6s6mNhkxe0VjfQIeO6eG2knUoX7W\nJ9UOVZTAXP9Q5QT56jPG2gsoh8KNEx/o/biwybK3XYMu0Bhjwl7PNOAbWSrrvYMxal4LcPhc6/PL\nWJ/7wPyKk4q5q9XYDxUPWGvyoHMv9QyPef741X+mGx5pLa25+vyyA4fhunzgoqL5bwj66FEOBDou\nfe9UY6vNfFHosk7AVTPjq071h+Jj234qPrhBBuT0SG03MWqzY5CYH5fFgVM60Vo+XtOavJqGKwbk\n3/Ws9kyFWL7xMZwsJyDtbkraUxRAC0zYJ9fL6qzFT7R/HzX1/ostlfvSgFRvqPw1T3uDXupQ5flE\nPrF7qb1bGx6UM/j06n1QUnB/BQP5sNvVe0L28Y9iOcnNlu5PH8rH6mm1c6uq/XzOVf2Crp5TrssH\nF4tSH83N3Z13yBhjPBCNDvwlnkWLsK7YkwzpslUuYh2FB8nACZMbqh0HcNBlUVhz7CbDbgD4c4hy\nZPgPypLLxaY/9Uwcq83K+GgffiTHg7fT8tDAweKDjvVK7I/G1CVrFaMshxfOmgN9xdtduy+CB8cb\nq+wWPVvg93If7rGI99ZBMHugS8eo1F2hjDtqqPxTEM0Xkea/vNuj6VSv2RnUmtivXV3puhTryfhW\nbfp4Vz5crGleK4LMHIH6evKxTmPUSvJ9H7UpJ+AUAWtnOvXbf9skSJnEEkssscQSSyyxxBJLLLHE\nEksssXdg7xQp0yfjMIWPI+spwjRbUFQ2AweAA8N1nmy6d6MMQ2OgiJff19/DY0VTJ31F5mbmFdGa\n2VXUeXkDdaYW910rOtokepjJc75SxTDFGUXALNKliYrJ8q6ycB7ZPZJzptvX92POLEcIP0wcZQb6\nDUXKYlAKDTgLxpGiswMYyGsLSzxPBeud6bohKIVZ+EZIeJvxUM/tjvSvPTM9PBE6pB/0X2eJ4gr6\n9VP9vVCmziucI+Z8bh3eipRRZHzAOyYwZQ+mcABwxj+FEsDCkqKps6gFuQSqG0dyteC14sIdjfPo\nzYbuf/lMPBstECBFFKtqnANcXNcLbSb55pXK/+xr/Ttx5CvLNfXh7rYi3sV5ldvlzGWjoz65PIHn\nogHvCJw5HlkTZ0Hl23qi7M7uiv7NrIjTwB2pnK+e6ezrzbdCxowbKHQV1W75Lfl8XFB7nlyp7y4u\nhG6YLcHbsYKaEZwT2Zza+aqNKtQRakiX+CKZ1PyiosIzKPnMr8rHIjLr3TPd98VL/XtbF2oiBvEy\nt6r33F8TCmKupqydm1HmpveSM8pjtW+E2tJ1S+3V6unzMXwp5Yzab/tHav9sVc8PA72v07j7Of8A\nRIhLRnRMtr51rHfejFWGwFfbXp6QAVz4HWOMMQ+3lG2/eKmsUZOyLm2pbL4C4GYc6nOXzG8RWFH+\nvpAoe18rW7Lyz/8LY4wxj/7Zj9UWdbXR3g1opwWUrf7o940xxnz2mbI8X/xcvD3L78MT9GNF5ief\nq69vrvTeXA7OBaPsVp5/nU2VJwPi5Oef/6m+J/MZoYy1963Ou997rAzB/Iz64vRbIWK6L9X3y/ja\n9Rfywc6e7tv93nd0/3ugFsry3ZO/ExdLOlTWa+kDjbH8qia8IWd9GyBDXNSj2uco6hzp/Y/+tebp\nmSX57N6hsnvpWa0HhQ09r1R7O/WlKQpEHVAYERmaq4NDY4wxIZDD1r58tFbSe9KckY5BSbgTkJJZ\nzm1DbTPg+0weDgzm2GhseWA0twxAxaWZwB0y1JlC1nhwkxhjOVrIRoHuHMKrEICEiXOW0wNkDepG\nPUhg0iA2YrJXIWuWByLEvi0k6+OgWDBiHspPQOyRnZoYPkedp+CrLUcTuABAib4+Wh+rHHkDkgeF\nmixIDMtJMrXAC/qoDCdZlFL5z89Qe7uAL2oV1boF5ouu2uWX32gMul8rw/vHf/gvzNtYnsyiw2H9\nEZnKTBa+ELL0LhlLh/YIuW5sYVVkbKcdlB1zwDdADo0teooz/77lbgEdl4P3zligDBw8uQwcCWQP\nXVB3Xjh6XYfsYGJ8MrBj1JZCy/0ywpfhrOmTtcuBCojgcEgP4T2yQhah+jfAx9N93ZeySCzGUp7z\n+h6cCONpZKIU3C0oWVkQ5Jibx9bXujazCupqZDdmaruRVSKBC8ydwEkA6sh5zeMD1wDKKhPLywPn\nX8Qan4UrxXXujso0xpgIgZVynzGwbJVYQOY0NH8G26xpda0ja3nUSuCeQajqNYoiXtUHQxS3ZiPV\nd/5K1+fvyfcNKIiTVd1XIxPbTWvNHIGQdloqaA4VwKAm33nF3mibfW1rjYwvmWWS9Sa7pOcOcpqf\nxw324bPMa209bwxfkblE/WQXtAEIzrYHN1cWnqeCnjvtaJ69AWGZNto7za3pOfWW9mx+SutTAQ6Z\n5pyuHw5BA1xr/cmBOiutyD/aoDjaOf2+MMaYWqds4hk9t57Hl1t6fsvX87Oe1iUnoyOQix4AACAA\nSURBVOdUGYTp9IG5q5W+Ul803xfatPFSfRk80B5gBXWkOKt3rp6xxu+qbWeZL6sT+dJmS+++HKrt\nrtZ1/SNAC40JKNmM1sRiX33V3VTb18407xRQCsznND8OZ7RGz7b1nhkQgqOU9oH1GaEayr72AJOK\nnndc1Xtum9oHTvKoTJ3qPa/eV5svfrZljDEm5DfMyAdNdk97ndu0xs41CKJySj7VHGmfmu7K5+fh\nXeq4KvdSRu+dNkCpLau98k3thfxjFHfWLZoDLptfsp6BsqqvoRr77U/Ubi+1zky3tE+fCVjX1oR2\ndva0b14c6jkdAydlQ3yBR97b8dzFPdZ+lIe8vF2fmfiZ8zw4x4r8ZLcKSfFYf2dQ4E1n4EOdaGw5\nrNNZeLd8OOdyHnPC+A3HZ+j7JmVyJjag4l31cYrfbKmA/QqKThbs6c2wv4zYD6OKZPntYhDRGfo2\nBycfdHnGBR1bAM0TuXLqAP65Cb9RyqgkxVZJknUDijEThxoDsyALwzk9rwpSxyIvnZHaZok91TTW\nvDOaqEAu/G8OyJmlRc3jE1STXNY4S6azMaP6OayhE9Zku5eagxts6NnFMlFfSiyxxBJLLLHEEkss\nscQSSyyxxBL7T87eKVJmAB/H9YmisPlFzsJuKdIVXyri9NkvhDKocVa02VLkPmv5K3wy5GSThmSE\nc5xVDSaKdB3tKxPbOOOsGufFV96H+XxBLzh6pc9nqvo8hll7FKg89+Ad6cPvcfmVytdpKzNQJopc\nXFF0d3YO7goYwDPznBsHFTA5VxQ8TUZpiOrUuKnzjC9vFI2d4fvukCj8NVmvrp4/Dyt0cVnR3Nms\nPn9x+szMFFWnIbw4zSOQEB3UOuAuaY3IfhcVuS5Rh/slRcxbru6borZkyNRubOqdoQdbeh/Vn67a\ntJ/T8+Px2/FA3F6pLQpjRdazZNcefKJIed7yEZE9q58rIn+BQsHFhXxlYR31pmWhI2beU70yHEC/\nOVJ5g2O17U0T3+yrb2JURKrznJteFIphnnPO+VUymIGuO3khtv3Wc/XdVVPlm0VxZfmR2itfIMMB\n6qt5Kd9Mzar937+ns78FuHhur9X+w9fKARzqH+j5/abqn6IflihfekWZB1NAiaincp1/qXatXygT\nMGVKKMJVs7ksFEkJXpZiV5H3cxA8F/iuNwS5FMj3B8ai2FSOKtHyuQdqt8qS2ssd6vsGfEgNzr0H\n/t3P+U8cjc8xPvzgic4395kfrArbvYc/NMYYc/D36ptXf6WsS+178oksZ0MboMTcJf09Aw9DNSOf\nOfscRAln5X/3Jz81xhhTN0/1/YUQIZ0hqKwF3TdFledbWNrLsL2vkJH0ttUWObIiBbIkBZQFSiAt\nGpcg687U5+dj9WUbH/vB7ws1tt9W30/IGKTnlBHo/krlOz1XxuD3PpaPXX8DKq6pMRHCWVNbJDt3\njLLNQ435IqpXlZH6vFEmUwD/Rx1uLlcfm/AcFRK5vPloSwijekfvPf5c2anml/LxlZB2K5OBoVxW\nMSaVfjt+qty6fOpR+hNjjDGlRbVHek3z6pf/B+f/UZcq/0TZr2pKc18bpKM7glOGbFboczaaTEuA\nglEGdIlJ2fUJ1QEyNmakfoxBrUxSGROiYJApWFIXzc/9IfwJvkUkWM4PEA72nDdZnhLZmL7NZmVR\nKIA/wbfnu1F7sAo1IQo3bsj4hFPEB2HhgC4wOY3vCN6MTA6ECc+dxpz35uz7yKo5MWZ8Pp+AUpiS\nnnczKl/Oli8ko4fq3BAlspVF+Uavq7F6dSFfOx+guPBcGc9Ha79d6eCf2hQ+jpgsl4fSQ4SqhUs2\n3sDJMgEJ5IGaS6MeFdPFE5SD0iCYJmTXJuxRPBBOFv1mQDaN4V0ZUf8CiJoeKBJ/gnriQL6bybxR\n/YjjrBnAW5QjS+igZDEFoZNhPQ7gAxjB25KCG6gPusSHmybDef8QziEXNapB1/IJUP+evndQ8Emn\nssaBu2VsNJ9OAusbtsAgy/LyqTgs8zHPQl0yB6LYKji6yPS4oKomjDsLXfb6ZDbxqYg1NgaBbfeL\npehN293F5k40j7hF+cZFTvNXJlLf5zpkTrMgMkHU7IMOWwI5ODby2fat2nIupXm8VUdp0ZUTlVZ1\nf7MuVEMTn5ljXulX5PM1o73QsC4f6yzgIwYfcfS+BeaGU097qOql9nxT0M8LC/jGFVyGJRQvGfuD\nvt13o+DW17w9cvWem30Q6iDC5/vaS7Saui6GdqPX0ueLQKdOu2q/pRPmQPgA86iOni1qP75dV31v\nUJDxIlSbJuJIewmKy4RaRyqZN+gFf7ZgxkX9ne+rgO622nnzWuvsMcia2Zz2+Sl4R4Jc3tzVzj5R\n3bKn6oOFnnyuNdY7/7qvNbVGUb9dghfvgP2z0XWrr0X11CZH9xjXrM17X2p++44nZEvW0TyZrep6\nl3HfX9UeqHUupPPTRfnUzDkqRkOhmG5W5cs/bqGUldZzh0daq0vfUVu87IFui7Xf9C9Uv2c1+eDK\nF6x1Fe0v81V4Quib/LX+7p5rrzb5WEqP7Wv5VKGlvcb7Lc1Lz1ryjfmMypEHgV19oudD8WX+LCWU\n7Xcbev/oa7gfN/XeXz9QfVMjlLz2xRVTyQuNG4/lwzPPUV1aVTvMf8mJgG21Tx8+rGBV7dxu67kP\nWIbvavYnLEBWk2bdiUAozaH+mq/ALcd7s3Pss6/k41ct9XsOLpmQebnMuhyCRmlcaazcNjUGVhbX\nX5clmPom40YmVZKfQxtnMsy3AcpVGTiWxqxtHohg36JEKauLz8+C4umzpqf4jbGxglpnBp9/BbdU\nVe/PVkGugBqdAi3sN1F2nGcF4cRJBi6yEVw0adbO4RAFQvZjMcjwCP4li4ipgRIdEk8wFqkJt2SW\nUweZvOrzGs001f1dlGit4mwBlFUflb0Meyu/8wbV+v9nCVImscQSSyyxxBJLLLHEEkssscQSS+wd\n2LtVX+IsVm5HEaXCrDKXCylF0OrwWlycKeOcv6fPSzBr54gprS0q2loMFdE6k5iJaY4UQZtYNuY6\n2Xi4W1aKqBw5KsdlR5mN62NF4jNkgPtkZPotRdKuFhW9tIoXJ6gsuShlzJEaDo0ie+fnnHvsKrJ2\nf1kR+YjIe9BVxmLUV3nzqHn4VdXnuqHPoyJneHswqXdUnrAptEJA5mKhovst78rVq6bJbitrPr+i\nSHbnmrPfIBqqsyqLl1PEPEebZOEaaLX1rEZdEeyxo7LMoM5xAAu5A5rHkP0pku0uOSiMcD7wrlas\n6f3zO1sq3xSkDmdJj47FWj94qTbq9Tj3mNH7Pvq+0BG1iuqdhhvgak9OcnCp7JSLalGTs6KmD+oJ\npYLSqtrj4aYyDW5a9ZoQcb6Bj2P/mRA3g4F8Yhypr9c+BFnjy3dmYK+/6cgnvY58af2+yl2aR0kB\nuvSbr4TuiFEBKW3refZQf6Ml37Xn5LM59Xe8jNpWUb533hUi5uQblS810NiaAem0cl/Pra4rS8TR\nVTP6Wtf9Zu8rY4wx7XPdb4nTtxeVoSji2/4IXiePjNEufjFR/1+cKAPT21N5bprqtxky6ZVlHnwH\n8+F/OMcnnp1o/OZB23z5XO/4Lx/ofPf8prJLjZ/9rdqAss6vqw2uXiirNDgAyVbU/PT+8hP9nVUd\nfvZrZXe8ovruwY80joOOfHF/X4iY+/9a73tQVlbi26fyvaijMdOLlXnoW+Tgt/p8E5WheRfUmqf5\nanYVHiUyz05L7z/bF8Kjtaa+iuGgyhfUDmkyHZ0VtdflnrJMXz2Hz6KkvjNkkrMZPX8LHqEXh39i\njDHm4ufi7Qjyum66SPYuq+faY8rVkHPsq3rv+FrXX56pfYsoIpSo3+9+JMTStK+xeHyiuWn1oXyx\nc6Us1TX8R4XB280lpYLG8jQvX8xCHrYIsmqzKT84/TNY80EmjXHyTEpzQgfESxV+rQi+DZ/MfkDm\nyMmQvpuCIOLM9QRYigu/i1W/Mr5rMjD+T/t6Z2jFI8gCTbsq4ySjd6dsWiWlv6djm42yxBB8bVUc\nOA89hDvAMzzP8uGQTXJBVAxypPAAIUBV8xrxQhe/JqeJ4FzxabMBZ9zdqf2cPgPxY9V//DzZN1BQ\nkUVDgBApLJPNzquv5kEavjjS2B7Emof/8//pvzPGGOOAyFwbLpu3sRDlhzRKWy7z7ZBz9Vmyb2Oy\nY6+RRT3aybOcK2pnv8AWC2TLFJ8oWRVDVE56qGdEKF4U4DcasKYDyjV5fMVDzWoIOmTU/weVKAUm\nN2Rs2ix/aNU69M+IfvdZDzMWWcW5/jzn30P6pdtl3eHzvhXggG/DBUllfDlEAIojHk6MAd1Toi8n\nrlXZ0bNGRdUhYrHJoo4xzaovMlw3BK2TgqsgQCXE8hhlh2SZUYpy86hv4rOTskVnetQFbhRLzndH\nG86oPkXQx+VbzV8uiMSbttbcMepKhYLKX+6jChhrj3DR1h5iHaTNEbwSS2Tr64UK9dP146n+3chq\nnWtfam0tkJEewFcUl+CgiXRdCcW1KbxPzTp7mprWmSK8fZ0mvFLXuq68oT1F6pX2Ej3mlPy82uu8\nB78eqIyVoa6v57XONdhjzpZ5X0frwMWyrg8DfCzSnq62oPZpM9lUb0Cue1oXaw21V9NV+772efgS\nHVfts4UCTcQcOlrcMNbibMOkmRTHYZ/3wxHHnqsaC5F0eyw/3UFNJZ9umbva1leqk1/VvvOvPpJv\nrF+rzTbYFzmgBEZj+cD3mb9focRqUBPd21YbPLkAsd5kftgVx+Lp59p/rVXg3srL17tdxivqSAPQ\nYfN19WljoLZwq0L7BymV9++68GV48KoFeu+vbrQHKfLb5DeM6VVOHXwCX1/P7iWeq++X+U0zBsHd\ngOuqOq+1/NUlio9XqC3NwjNaV9982FSfu/e1dzhdhausr/d04ex6jM/tsydbAK1wUtfeLb99qPo0\nVf8rFrRgSe1e+ULt6KaF6loYqx8HOyx0LfluakVj27d7gln9Jn1L0J1xQ70/A18KtKAmuJav3fb1\n++TkQPXu3Wps7D5Wf7bh6Tv9jD0vimNhSg9aBhlv5uC9eoYyGsqSzRW1v/mf/0dzvL9vyrVls7oK\nLw+//VLM+W7eonH1fQ2gSJ7fjiFrzLCHMu5zteHBHm3cYh4L9O71bSG0Gw1d9/mnQivt3NPavnZP\niG8fVGkHJdce3FY79/jdjO/Z39/ZkPIXUTsqovoWW9VPjYEMCD0/DT9oTs+f8eSDHgqI3ZEqGoyt\ngi3/wh1oeUgrIQrDIOKnqMIVQDY6oGm749/uJAlSJrHEEkssscQSSyyxxBJLLLHEEkvsHdg7Rcpk\ncopAF2uKYPWMooPemaKcqYo+X3mgyNn7Hz8yxhhTryvavPdLZaK/nSjKazXeDRGsoi9kzeOHum8E\nq/Mt3DIj0B2DQJG3TBG2+x1FUbOc1z8H/TDlzHCqp3+zRtHihW0i7BnOARKZ77YUKXv1jaLZYzgE\nzkAtVOdUvt75JeVR1HVpg6gu2dBJV9HROUh15ivK+E9gvW68UuTu4kiZ8mii9wdpPW8m45q5WUXA\nC1W1eSog23INEuUDZaMrKdX14EBlGv6STCBRwkxKfbL6SG1U4vz23teveL4ixgWj6ONAokWmgNpO\nN2tTq3ez2hK8EmQUL34hhMb5kaKrhvPXuQVFzN97X21aWFQUNddVtPP6Qte3zw+NMcacDdWHRVQi\nsvRdqQQHAAoB5QXQR7uKoHsjUFXHykg0ngqlVG/q74hylnZ0/Xd2HxpjjMnD5TPm/PbZiVAKYYii\n1qYi315R5bh9ofY//8XPjTHGxETiH/xIfTsJ9PfFnpBCE3gucqCk3B2VP8350NtLja0BKJIsmfDq\nA2WFlh6rvQqc/W1dKkPw7VPqeamOjIa6b31R/rLyie4v5lSPCPRCFu6EVEv+cX2hMXt6rbHXgdOo\nMNJ1tWX5x/yc/MrLAxG4gxVSKvNWTb7i+2qDBVTXji7g7Wkr+1KBy2ltDhU1+JMWUQIYbqiPzAWc\nUahpZJ7o+fNkH6aBsvPPniqLUf5Qz8kuqDzjZz/T/W3GJRlii9jrpNSG5QW4WRYVYd//UhmDo681\nr3HM2Fye6r4UHyzf0zxwiwJApsX8RvYkPlRGIrUiH7iOlI3LVjVW7n9/yxhjzOFzzaMp+KVaKY0N\nv60x/+Bjoc3e/0iqSw7z5uRW7ZRaV3vnd9Q++7+Wb/fhuVj/IQpny2q3/q2yX71zPeeI93/4o9/T\n56AyrpgXFzbl8+tLqu/Fc80BXvrt1Jde7MuXf/WXQvyEu7q/YM8wL3GeHFRcj/nbh/fEokegHTEB\nYyEFz8Yoz3l1VEEM/3ogq8asT95A/6aLVklB3/dHvgmyFiGmvvRRyRm69lwy45vszBSUlY8akyFb\nY33GA6zjgVgZgVixa50hcxqD7AhBzEQZyk7W2QcZOUBZIQaFlmEeJWlmQtpqjKKKD9Iky3nzAC4S\nb6pyO/CJOKC+Ys5fj4ZwUpFlyvO9RclGPeaVzzX/DuCdWHhP89j6gnzGKu7c1Zy05SPRe2NUKvLU\ncOBQHrJoDtnEmD3HZEKWHh4iB1WoURquLlBTIYikwFgFIL0/w/Mjsv+ur+fl4aSZumr3aUbv9+H8\ncfNvUGPBIGXoPjMI6W840aa0dx5kaAwya4CaVBGUxQAHynD83c+pHbvsoazypOU8iq1/ePCqsLUc\nOmMTByiKwHcUwDdj0ak+mcgJioIxqpOprJ4V5eQ76TFosB5oqiKIELgBLE/PyMLD+ipTHp8LkATz\naLsY3zLdt9uTzGatSojmWWde8/6tq/ltaUV7oca52rQA583pstaLXqC9wcK6fKNNebO0YRkU02AK\nN2IftaFr+ItAnnThICvWuS9UedIoZVpOmnpJ91vwab6s9WJ4BnLJEbIlrMJ5CFfLBbxGC2WhAurw\nmGxdqj6rECe1iypPhHLYxrGefwzSMtPRerC/onZaOQCtXWbebMPFBYrWTNU+fdRVNmjX21VUTF3V\ne/ZlwOd6zlZfY98Za9/r2Yx4+GZs3JwPzC5o5eGmrrsGjWGq+IEFqWxqL3zTUblnrFzWHaychQ+J\nvfs9+HLSrC1t1uz7jvZlpWOhaYeg9ctwfTRGrOGnoORv5XvP4RoML/TcXdBoI1Bk1fw1dYKH8luI\nfO6r7VsH7OM9vT/+Sr85MsuqcwdylG/wvc1btfkq+8PTG32/7qivKoyFi1DlXjAoWTFWbuE1uoAj\nJQXir3CgdthZky+lBqrv1rzW/nEe5Z5t8fUdjqu8V3uPPmpQza7aL8AHnvAb7Vujvcd8xs7XKJIV\n6MsOpzTg5noykhJmvES/vBSHzdNbtZ+3qHpdrQphMp3qeSsVrUOv8vqteVfLz6m86bTqOfJVf6eu\n/rv8/NAYY8yzn/9C5UIBqcRYCSOLOpMPV+Ce9Nkb5QtwhYVWKU79P5sR8mguW3ldlnLsGK87Nbms\nfKNYZU5HwSk1UJu4rAU356i38RuoZHnE4GxpoJY25LdDE/6iVl1td/lKfd/k9MWoju/BFXgTqy+u\nA3iB+H2cAhWcgS/NZ//us98s89uvgFJhDILQqrMFGdBYfZXfsZy0XfVxlNb7emfsXUBozq0KJeah\nsjeA6ybvgsDMv1GyMsYYFyR4PAKhyImXfPDb1f4SpExiiSWWWGKJJZZYYoklllhiiSWW2Duwd6u+\n1Fa0sk2kOgw423rLuceBsmIjuCJOLxRJK9hz3WQeQ1AAHpH4FLz+Q7hkLm4VsSuDQmi1lX0ajoku\ncqY4l1VUdX1e/45ho69ckGGehU4+0ntuRooODzn/V9xR9DE3qyhlgMqAX1S9HILVBNbM4FQZ+M6Z\nImjjkPP+ZOdSqBZcnipqHHCwvHoPnhbO7ZdQ8Ik491iaU7tlyJTcVK9Mh4yax5nIgIzZFHWc9I3a\n1jJRjznL2IZbJZvmDCycBDEqO35N74rhXpnZIHIOauH4mVAEN21FG3NEbu9qjYHaxsAv1LpW1qVY\n1PPXPlBUdGZGUcwpHDeDQ0VvXx4oO967lq8Ni/KtlYrur9xXuR2IMIIu0VYYtotb8gUz0ffnXwr1\ndHks5E0DtvviipAujx4KneE/gl9kqPZ69pl4RFovVZ7qrPps65Haq5xTdHr/RKiB4xP5lA/q6vGH\nykD0J2q/m2/FMRM21T+La4rY1x7KB9NkSG6O5KNHR0IXOAOyT3DGVB/puWn4mC7+Hq6dU9UvgtV9\neUb9vPlY/CK1+7ov4Hxl50qojgFjdGLJJlry0euhxlCEksYyKkwbFaLZnsobDeBJuhYq5C42Imsy\n7GucB/RdeYDqWVqR/t6pxrtXwfdRtPn8r9WnT34g5Mx6USijazielmcoI6ir1Jza6iHqQaNIfTBA\nAWt2XdmchS1QTWTuSpwpvf9dMf53z1TH8aF88oMf6nMXvo1XhyrXwkd6T2oqH/6bP/2NMcaYH6Ly\nViqpfB9+T9muBU++sPdMfegONPZvDlWO/JLe98lPv6/3R/KJuEyGsayxcY2S2dW+Mhbzm2qXPvPz\n2TcaY+s1qV4s7PIvqnevDg+NMcb4dfVtEOHTnFH+6APV98/34FQAzba6oXZbfKB/xyj9xDkUEWDB\nvySbdFdLoxpQWtHYm4I+6N+oX1bWQFqh8tEA3eXCT5WGm8HyhYzJzHhk6rN8H4GMGZKgtYoJLmpa\nac57e33mYquoZEZmMiErxfwMbY3xB/BuoKbgosYxgQMlmKCEgApOAMlLGt4GS+WSRtVpxDyQs7xA\ncNbEU+pAljwztUomel6W9wegG0IQgFPKY2gDB26SkGzReALHCGtzAKeAg3KVCS0qQmtrzLzZIas0\n7GleOGGMz87K55dAKfTh1Xj5f0pB69hofnx8Xz5+V3NBgnTJstFlJgWawQc5Mo5YN1mrIzLjhrkm\nclF+ALThRPpPkAIZlPrHyJWIbL5FJEUgm7Jw0XSLKLPhVDGqSQhgmDD7ZitXML7pgHQpvFZzQvks\n0PNDuN9sZj3FOhbCt5IBYRPCkROD1Irxg4jvY5SNwlgNE3mobfV1Xy4bv1adm77mEwLRQhbdBW0T\nqQhmmNP8WgbdMwaalgJ9lbKwrJ7adACPmmu3s2T3HfrSBY0a4ssRPh5alM9b8twFPc2TOYs+9vR3\nfXLNc0FskO0/tug0MraplPYy55Q7d6hyVihnY0c+NHuqtj2e03u2FvX801u133IBPpAZ+mioPm1d\nw4UIv1N6Q/PYGRxmtSa+VVB56p72BuG11vibiHlqAR6Pnso7ixKXA3rvek3z/CLInCglH6iXtJdZ\nAx1moHUqsgd0QLZMUOcboKQ2w9xSodzeQBl1xFPN9AoeqrT2WCalvc1uR/fvsV/eXJe/HU21DudG\nbzLT6Y2CGZ7rvf2e2jWMdZ0Hkr0Pt1E53FI7WXW8q565q52sqU9mnjNOF9XmC6HW9NUVjcez9sfG\nGGNKI/VBsKGyDH3tc5dGms9/5WntHaPSVP2C/dtUgybeUFuVyeqfR/p+CjrhAcpY7W+0V7p8ovK0\nPkcpBo4qL4fKT15rcWlfe6KTJ6CovtbvAO+xfG801h7g8lL7399J6b4L0GyrvDcbyQcfnMJtsqq/\nX/wQJOKt5u0nm/L5/TZqrjmt1f1TlWOuKt/ZT2sPNNPVPrQ7VLs9jNUeB4vq883eoTHGmOdZjYmb\nkcrpO/p8DV9bPNYY/mJRPrF9qXWlCafX2qr25fu32rMMNSRMYaT33u6ovMv9t1OXnbBOTIb6vRXB\n1ZZjz7F9X3u/2rLKEaLcuLQIZw98igPgxUW4hEYDEP/MMSE8XWOQTgXWmWLpjcppvlI28SgwR3tC\ntnT72q8dfq26W47C3R8LpTU4k098/jefGmOMycI/98nvCfE8z+9e/z4nVaB2moTqyyxrUA6kioMU\nlYNq8MRBeZffBLlH7F16fA4cNMqxnwfZ3ItBoo81FiYohYVl2iTCB4eoNsHxYpeVgH16E0XeDKcn\nFrdQdb3RHuSyrn9rK9pvV6oqf/0aZS9QXhsf6LdODyI2Dy7Y/5AlSJnEEkssscQSSyyxxBJLLLHE\nEksssXdg7xQp0wsVURreKMK2taKItxcoOuoOFakL4YBov1I0OSITXqgoprS8pOhmbkFR3GOUdaYT\n3X9xqDO+TQNTN+pF8wVFuJycopWnJ0IxuBPOApMhT8HaXyor8pXiXP8tGe5r0ATVHucN9xXRuzxS\nBrjK2dryPGiTeVABRC/nHigK7nQ5z9+zjOyKuuZRIciVFO0twutyjgpJDy6ZHOU92VcGodNWpK95\ndmtSKBJU1nX2cnFDyJL6pa6plJSOWIYfJ1uGQ6avrJVbQRFgT8++PVCo2CmgqoTizOm3ivC3ocbv\nXanviiAq4sW3oydvX0KxT3Zl5j1FxrdXxNXiwKPRPT40xhjzYl/Zqe6t2sYlG764qjbcXFNmojIn\nXwhiUFPXcJwQOa+t6D1j+C/OX6iND2/kg1Oy4ffXlJFYeiyUQG5WfXNxJZ87+FLlCFEQyy2r3VfW\ndb1HVPiXzz4zxhjT7MJM/gBuhD/6gPrIF473lGnpjvT3wipIoR3xbWTLKNccSCXpaF8+CFDKbK4p\narts3z9QNPvZscrbOUJRgTFQfiB/Wd1QxH4BPxgcKhp9uaezvq2OMjATUBfBPGeEYemfvS8fX60I\nGTSegDYgQ9E8Vaag76qdPIsUuIOVHPgvFuXDiPmYUR9lMatuRKR6a1don8JIZXq+9yveSUZ3Kl/r\ngMp6b0e+1mirbW4vNU8EpKnTI80n4YV8+8Aqj3VIs6PK00Bp4cGO2r6dlY999e/EGzTmMPvmpvro\nIqW2KLlqq52PHxtjjJl7oXJlQBm8vFBf+yBnPLhKrMrJbE4Zz12yd1/8Rlw3vzbKNvmc0b/gjO3D\nJfloZVO+/Zu/1HnmP6iRDdpRpuPqQL59jZLWCIGt1UV930bVYpNz7E2a49vnE6SFWQAAIABJREFU\nem+MUy4+VH2vQGcFVZVnGKj+3SO1y9pH6q8nP5BPVhffZHnuYssVlf+f/f6/VL3J5KThSYkuIROA\nD6SSBT0QoWADymOKjzsDvT9E+cFB/aWPH0Ft9HruTQ0tSoKG8nXflDPK/qRgXNCS/ZzuycUWXaB3\nWSRH7FiuL12fyoJAgb8jBo2Uci0Cxar1aFzm4BKZwIszMXp+FgSIT95oAldNxJn8yPK2gQxJW86a\nVJ7KkuXmvWPOUztk7HybVaeNPBAcY95foK0HDhwsrM0j1pfRmf7ObGos/M5PlIXrwff2b//dvzXG\nGHP4VNm+tXlU6u5oE3hPoLswiA4Zh/XLcs5YZMjAB/4K30QRlEEUcB0qV07JojS03kzhjinwPeAD\nE/VAEDFnDfGhDFnKMM8HqC5NIaMZOW+2ckFm+Fo1agBPi3E0N1juGuvDmT7lTOv5E3w8QtYrD4dB\nl4xuifP8oeWHAVGVBWkagdAZpVXPcegax0XlBt4dL1BZM8DAhiARDCgbF8hMBxWiLGNgwLvNBD4K\nOEx8VD+gjDFu2fIx6f6Jq3ktBg2aAtmYRilq4v/2M/7/1NLsGS4batPsQM/bikCzoga1juLMMbxG\nY9BPJbgIvSMQ1L7WkzQKiLdHZLdRIEv7Wlu7Pc3ja3mNhVfwb6zOyTeb+GKYUZ+XptqL5GMUXBhj\nZZA3h3CHLZORdopwKHbYM7ThB0Sl9Maq68HDV7tAfa6kf8/hopjLqf7HV+whh5q3JyCdhqcgeNb0\n+Uxa76udqDxnqP/NpFXfjkWssrc6AyGVTiv1fgxi0UfV6eJYe9jdqfYo+4CdjTEmOOwZU1J94ivt\nfUue9oJN5tCI/f0UTqAQrreO2TJ3tUUQMsMdrWFPnrMfXgY1NVRfrRhxAjbvqcwXPfnUUqx/r2JU\n35qoWvKTbXNHypGlZ/rN1Au0L+0H+k0zvtC/s0bvPQHZOA+nSgXFm+ysyhHX1MZPAvXFy1u9LwUS\n5/BcvvGDLaEmfn2geXUOlH5lRnuE/ZbaNtiWT+ThpOxUtCmLfqh5ea6h+XP3Bl6SMmpOdXXWnM9v\nrljlvNzS2JjCL9K/EhqjwR6vWIAbx9E+fq2mvv26Jh/Lw7nopPS+nKN23ezIZw7m9b65NPxHKfn+\nD1/p+d0jkOi+2jnfVXu8nNdza6Cob3eAdd3R6vDj7Z/oRMF8HpQ1+27LQVQL5Ot2/nYApvaZn/Nw\nOo7gp3NZv0N4TqYgZ1J2mbDrBtxuxhgzGqeNGbdM0NR80UIBrH2g3z4p0DV+Q21dLmscPtwWgmTq\nwd0Cr42Dql42Zn/OFiGCN88BdWnRnmMQlfxkMy57jRwKvHSZqWTVRjHqxvY3jANfach6MrVcUh6o\nzwaN9nrN0nVx3qJbVe4KPG65mnx2yvcTG4/o6L2zFCjXavO57u8cyIcanDq5udI8FLPmzxV/u48k\nSJnEEkssscQSSyyxxBJLLLHEEksssXdg7xQp4wwV+S5MydrBQJ3lnHOXc8mL6/B/wNnSO4L7oAt7\nPxwB/TEZlqaipSUbneUcXo7IVWpxyxhjzPqWMtauj2rJp780xhhz9FSZ58qysvqtjqKrrqdyLs0p\nAri6recU55SRWVpXOW7gmGm1FQWNS0LITDh/7h+jyOApIvfwgVAOzWvOe94qUllKK6Ox+kgohakb\n0G6oD9TtWWrqx1nbMioyDooMrZprArhWRmQwh5xz7hFp7l4o252ijCOrPMIZU9eqUaDO0enDpWIV\nFEDptF4qsp0n2zG7qzaKLYN2FeTLHS1TUnmWdhSZD+BCCE9BJT0Vcuf4ShH4KRHrmVW13fKm+ri8\nqUh3EV6JBsouTSLh6Z7K55TUhvWmMgeNhvqic6HnF2DoX/yIiP6SeDzCgtrz61/rbOwFfBpW235r\nSVm0le0tY4wxEZnP4y+FNMnAD/Tx4x/ouR+A5CGjcPyFeD0mh/LtjQ2hPdbvEUHnPPfxlzrjewaK\nKofC2SbXLa0LxRD34WDYU5aua1WZyOQW34NfZV33OQuq98m3Qupcf6aMymSsfkiDUplDIae0Ba8L\n5zg9znfv78k/Wry3QZR5DvKG7FTvcRc1Zu5iV31QOoSYawVlXXpwRvkzaoO9T5XlKcODtMh55dFQ\nN3YHyq4EqOw0u2qT3kTZlhjEijsjdFJ+qveO4SjY2JCPNhpqw/2xvs/DA9T85tAYY8znr/ScH/yL\nH6kcj+Ubhx19/94H3zPGGLNMduTFK/lUhbOzDvUJmT+aA/XBvQeaH2drauvpn2mMNicaIwu7ymis\n3KqcE5B4i3DB3NTli8c36qMPHqp8MQo7+y/UZw939JwsiL1sBoQO7dYaKDPQ+I189bSkdv6IsXiQ\nVz2ffikeIpes/S4oOH+eLGFP89v1QM+5GqhcPa4fOW+HujtrqD/dAlxDWfXL8afKUg1dPX99Vr4/\nmeCDzHXDiXw0gypeJiYLGKs/HBAvRVAoU8j4U/CtBGRsphOL8NG/aceqAozMFHSThzKME5G1jZh/\nURobobaQJUMWgsLJW3UkMqzTUHUNQEMVQOJMGWcTznH7cNAYw/nuPsgO2tiZorDlW1U0ypPX91PU\nj3KBVXShhmSdXJAYwQC+iqzKM0GlLff6e1BJgBc8+mpuaUvlyWkeHsMjt4dPnp0L6Xf4ldbu3cda\nMx/+4RPzNlYgoxqQNfeZlxHYMhGKDw6ZUq8Ap0OAehTr6xTUh48ixQTkS3os33DolzjW3mICoihX\nBHrE3ie0rgK6JDKWK8CqQal8Mf1qjDHe2Ddhkf6D4iDHc1yyhAOykOkciBpUnTzU82IQUmGebCYI\nrBCEVmj3UgHn9tlKunBaOKQ7c+7URMzLU0d1nqKw5cTs43AWBwTGBKQa1EtmbFU9WEsdOxZ8jbsM\nPBJQA5gCaJ3BRL6VRb3JG6tuXhG0p22w8O2QMv2+9hL+DkjEQ8pTYR2ag8OM/alTBt01Vpu2UZca\nL2pe3hnA3XKhv7NF7UFqeZX76lr1m4C2OvI0P+Y66oMzENpxTuuUj7pbhnk2c0hfUI4OXCyL/pbe\n11U/9EH8rC/KlzsgMYsjPf8mgIunRIaaMZxChWnHsMe71bxZvqd2uTjUWM2B3Ik87amyfbVT5VT1\neQniKbOo946N/GUZoc0paIoleBAPY+2vt5b0+emZyhWAgt7v6nfD1hgJUGOM505NtwY3UUbXWd4o\n07Hqeaj+jbTOX14LKTBTvLsiZJ01z2lqr3HNBBKhKDu9kq+0HqpPJ0Z9UkHR5eCVFA/T89rHzZ/B\nNeWo7XzQBo37mv8sGtMxun7xWHsHHy9fWdPeZhzS9gXNO3ZM1W5QR5qHzwPVqKmj31Afd/We4oXe\n+2RD+7/rlPbJfZ890aau619pj+GDRsvOorRThHMQsMDVsa4bgzoozcvXJqCt8pegwVAbrMCl9Yy1\n1G3yGw/lsLNd+9tRPrHe0/fhtepVeqTnzZ3KN+JQe5U5JqkAROA8yCH3SteXcvxURgF32AShkgXR\nsqJ5e/drUH93NLunzDKmQ/wjYu8YNSzqWddHcHylUO/z4duyinMx7TIpgh60nHCgSHKs40P80fkH\n60a+4JtRtmqycLVszumeDRDT7iTkOta6tJ6d+75Qq1mrSgn0xQOtOwE1OQkt+tfO85QNiLWXt7xq\n1BU0rcv87AEPiliDJuzDPCDJLshLn7Unj6qmA/pzAs9dKgt36xA+UVSZzMAqIap+KVC6xqKWR6Bg\n78u3hr72iTkWWauImV1mPmcPZtU3o7r+HcE18x+yBCmTWGKJJZZYYoklllhiiSWWWGKJJfYO7J0i\nZbJVRa5mHyhiZTlXxrAr18+sYosyAHOc7Twic9wn07vUgql7qGjpmOjg5qqixRFn2m5RC+kXFClL\nwxJfJkvoc7a4D+phfgM1pwh0yHNY279WFDW7pnBvYBRha/SUEZiA5ph/oMzvGuWYGkXOzl8p8j7s\noMtegzH9mqzfiTIA97cUketyHvDyVJn+GXhJ0mSxoqlVVuAMHVmxUkXR62Lz1hTJftRgCa/ckOFC\nYWXagrNkqLSEb1U5yHz14NFwQDXFnFXMkLl1asoMpJtWKUF9miGy2zhSxDk/erusVI2oY4GsxuFL\n8VEMfq2MQOtS5c/58p2FH6nNZzaI3MOF0GqrXuff0IfXavsWUdultMpr2d2bA9W3c8u5Y1BQS98R\nesqZUfS4A5ri7E+/NMYYc3upSH+Ws7bbm/KRyq4yAgWy5idHiqzPeOqPpXu6rk2U+ZuffWHMj/57\n8/znf6P6tfX5xoOP1C739P4ePtv6RucYm+eoaKGWtLQGUgg1rBboqvqpeJfal8owu2RwUztCGK2t\nqd0jVD9Ov9J1XZBJvZyyaruruq64q399zsBmUVO5PIENf/9zY4wxwyONkWpZ0fH7K4o2Z0hXDTJE\n7jnfeRebwsvQI1ufgjsmB8fKBrw758807qzKgrNFnSsou6Dw9cHvwbBfFpdMj2zSy680Lh/dQyGn\nqjLv/Uo+uLOhz1c4g8pxYfPgiTIJo7zG7Vc//1NjjDH9rtpi+XfVl6/+vXx7GMi31x7L1y7a+rvf\nUN+WZ1XflQ/k658++2tjjDGtc/nsLdwAs/fV99fnsNIPNP9tL+m5p/09Y4wx2RnNMzMgiI4+l284\n72ssPHwi9FOPM7VxlazcksbcFJZ7q8i2wHO+s6v3XnylrM9xW+W7ty5fCRgLnVdk/+i3+1ndnyYT\nsjCrelbI7v/mM/Evjetvp5oyN1U9m32N2ZDz66sF+YdLVm9KNinO4CdwU8QxKoHMab002TJQJyMH\n1SVUSiIyJWFe96dQUAoyGhN+pM991gsvlTIhaMycsWQm+i4FMiICdeW7LN0TCw/gezKtQxaBFMib\nLIiXIdwvIeMz53EGfQpyg4zaiKw3giimj6pSgCLh1LGcNZwbR2klZA3yU7p+SubRI0tmyBo5qLON\n+XwSaj6JyL5lQFNk0qpvblHl66OI8PWvhIhZzGq+9Ze1Pjjvac3213S95Q67q41AyIQgQD3WdofM\ntCWZmcKpU+Rs/jRQew5Qm0qxbrodrbvjEtk90omWu2ySsspEZKZR+QvgT3FAqI7xAxfkzoD5ugSf\nUTDyXtfBc0ITo/yYgRsG4JXJwHtkQCjFoO9ycE6kQHmNQA9HVkUvSz+NUfWiPCMcxLPcNCCycjbf\nN8magGsd9mvWN4ZkOKdkIF3GTxq0puW38T35csb6MBlVyxlgETOpvu7rsndJM5aiEZwBoEkH8AEV\nULaZMs/c1Tx4KwLG/VVO5ZjMCEETNuGZaOrvel0+u7YgX4zgwYtnNX82LuDFyIBuItv9KqX5Moei\nyiDW2jzH2Cg5mo/PQe5kx1qjF+jbm1hrfm4Jpa2M9kBOoHmvcEN7rGmvEg5VTo99anasebFfAvFp\nFdWoV7umz7OhytGDo606Czou0hgcOtrjrOKEgzWQlWm4FuCwKHnaJ2dAVZdCtfMe/CLZiebNxQ29\ndwt0iA9qbsHyZ4B+aKFWOljQemeMMbP5e2aEolmV/uuA8OxX9PlqS+18UlJ7xHmVqzG5uyKkO1Eb\nhCE8lxO1eXSjsr+fR41zBnTlldrqJKN3f/Se9n0HTd13uQhiY6S291Y17w2rINUZv51nP9F7trTG\n7WV5HnuRQVF1nPHkW6WS7n8F0n0NNOoEVbvCAYpeG5Q/r98gc/RdKq/nXfe1Lwxbaqv1nMp3Uhaq\n1qvKZ1evUCuqoCCWA+njqn5ngdb+Ab+5anMaW+UzeKk62tNsc325jEIban0zp3p+54HauQ4S8fyR\nfPDhS3jf1rT3acKBs31B396TL9a7jN1dzSW5I42lkwV977J2rx+D3AcJnl5+O6RMviz/2HkEUiaA\n0y0NKg3+LLu+pxn7HnveIUjV9Fg+/Bo7jI+nQUZG8PcN+L2QBW04dd6sG07GmNwkNumU+t6xexA4\nUSfsGcasVRFrlUX5Ozn47SiF51kOPtYYTqwESBhmYvaReZQMmS9GedZe9lFZIJNDlAOdDHsPoJEp\n0EIRe5YY5aqIMTFlvcjw23PCepLNWGVC2rACooW2TbPH8mm7KacOQk7yQGn2Zm8Gl1fBkgnCdZXi\neeNVtWsm/O1hlwQpk1hiiSWWWGKJJZZYYoklllhiiSX2DuydImU8suMB5+AzZCJjsi1ZzjtHnNW6\naSqa6ZExmYG3xLORtJ4iVsVZRewXthXdbcAWfT5QuLjqKBrbONffna6iqv4cCkRVReSqnFW1GeDL\nbxUNDtoq3+I6mWKj599w3nIZlZI8KJLqvJ7bIWMyvFGUt4v++qStKPAskbhgTpnkpXU9p4fuuQ+H\nw9J7ZHbRhR/+QlwQN0eowqAeU17m7PRwZMotRSkvQYikr4icciY8XVZUswQ/xNr7W8YYYxxfkdrn\nIGpcQrGzIDsKM/BIvCBzxtnGEhlQx1NdMyBACHbe2TxH2YzmS6EFhr9WpHrQUfmrcJ7cf6y2yvmK\nWB+3D40xxrx6pfff1pVFGk9AQZEd30UBoDynSHgblaPzlvq0BNJl6cNtKi5fvDxSm19+LjTXtKH3\nFBZ13b2tNe5XX07IUJ58q3JkRnp+RFbr2W+UobjivLTHwcrFvLgRNt9XRH+erFevLp84+EZ8GI1L\ntU+AwsVajevhFxm4oL2O1C71Y/n+hP6duad22P5YiJ440ufnr8T7cXmM35D1v7eldl/dVrs7nP88\nf6X2eFZXJqL/StkuL6+xtPbd7xpjjKnW1P7OmZ57e6Zz3xGcEuni3ZEyy1XVsTijSHQbNbKLEz0z\n90P17RAESx3umEVPfbP43pY+H2n8PH8hZYO5ZcpI6PrwWG3bGmm+eHRPqKXsr6Sg8M1fCy314BPx\nWJRow/6ZslaVB2QgjtUW+yD+Vj9BCYtsyBF9VIJb4P6szi13UAIbuCq/Ral999F39NyefPPipd53\n/0PV75ZszrNnQhfcf18IoNFIz7t9qnJ/9FBcNp1j9WH3Wj6yuCukyt6fK7u307X0+CpvnzF9eSy0\n1tyNfO3j35PSmf+56vPiW2XZHv2RfKA2p3Z4TvY9vCC7BfLmBuWw/Jzabf6PVe7lb4SuMqk3WZ67\nmMPY+Nu/1NhdKss/fvqv/htjjDHpSO15DXt+Gu4ujkYb3wVdAErBOPbMM7xUZIJspjl2URPgXH/o\nq7x57otQHgqZAwLXM5m+2mKCmo6XsXILnMO2XC7wcLjwPozhAJjwjnQG3oehyhSldT1AFRPQdo49\n9w0yIkYBwQUBEca2r1VW11LPeCA0IvjLfLjCspofhiH8H/byESgkK//g6PoUXALpAmfgObc+7HP+\nOpQP9lzNwz14fNqgFVa2ND/+V//1/2CMMSazr2zbp//m/zXGGPPtrz4zb2MhiJNMzp7dV7kHqFzk\nLHfDhKzaGJUq5uu8Zw//qz49R5laP4aDxqobZdV+6bF8LvAt6pXspAVvkEX0IdkJbb/zHoQaTS5l\nO8aYYTZj8qDOxqAusmnO0VtOGviUDLxbEVnDCFW8KfweRTrc6YEmLpGthHMmZg6xHEIOCMeJ5YGZ\nhMajrAG8OT59H4+sulKHOmvvEdDWJVBYvTa+4INsnFqeH/aHGZA4KFO5lNmixKxgWCq2PEFqtIFV\n4XjL3KQHV0GV8uRAGo49td0tfV7nPQtwgHUzzBNkUq+7ag9At2Z6AcKxBIL8WvWYkt12QtaforLx\noxU4vXrswfIrXM8Y1pbE7ME/sXUlxMiR7VMQ4zOswV6GNZzM9lxwaIwxphcIbVG7QX0QfqReS/Xr\n1/TcYld7mClqU5coks1BodCeZy8IQseFU2KY0p5jiXn0CF80zLeLcItZ1Tq/IxTGqQd6A/+ZY88w\nZa6srOjFuVdvfuY0ilfG72kuuVG1TO5I7bPC3u4o0vODga67V9Z+ohktmbva2awe/nFb+7MIpHp9\nW23y+VR99fgreDBRZJld1L7w+IX2b9GCyrSDKpAHgqJX1Ro/MLovBLkXbaEieoaKUwl06wbKhmm1\n2VFea+rv3qg82zOaZ4dFzUc3N3D8/UC+5oHeH88KQfIN6NEVT3uCgPr1D+E4Kan+abgTuw3t0Roo\nFi60Ve/pisb2yZ4QPqN5fHJW5fUmmiuWmY+O7ovT0H+hPUDkgN7w4ZYpqa8Gr/T+hVDvnbDuXN+X\nrz98ofrl2QM4AWP4aod2Uj32XdRVFzTWs3W4Huf0nmoZtAWoiOaC9ix3tdjyGYHuSHfV3j5jNAD9\nFY1BVIIuCUGjpECDxCh3hpH8w4UPZTpEWRLkpcu+YgrHaOi8QQl6Y8cMpr6JUQl14THzWJsCu09j\nj5FhzXP5rReCUHTgfgnHGn8uCEAH5Ug/ZByzNsXMa1MQKAX41sagSifUOVvSexFNMkwzr/dRJkbd\nGPU7L6vyp9gnezw/n9UD+kMUwpgvXKuECB+bATUaUr/slH0b6CWHUxUO83k4Zd1hLzNhHbMIosIY\nFb74tyO8E6RMYoklllhiiSWWWGKJJZZYYoklltg7sHeKlAmaiiqewTcRlhWJz9ySGUUpZn5J0cpp\nSER7URlsy2JcLisqOrxQpntsI/rHioIGIFKW5hXpfvw7ygg3h4p2Xn6tSFmV5/VQUDg+PdR7UFqY\nXdJ7a3BVrL+vDMHT56AmngodcEOoKyQBVD8UuiNFJNHPKOJX8JTBr64okhcXhFbIHOj6/oDzjW2U\nLYjezszrDHA8UTmdWJHG+VVY+VEIylhOjY1t0xuqTXqfC6mRrSpaWUSVyCci2+ko0j7mnSmyJzER\n4TSB1YVtISU6fUUB67S16XE2dUcZzEJbZWgMFBl3x2/HAzGCb+JiAOoASZOdB2r7uXVlFBxYzJ8+\nV9b/8huUc0ANVbdVjkfrKleJ+kdEc69PhcIaHykjkUNBYQHfc4nG7v1cPnZ8dmiMMabC+cDNDz4x\nxhizck/tWYEufe9AGYb2oVBWVyjAZFGGyJBti0CS3IOHyHLGvP8dVKdQFnv5lVAZtyfiBzm/5Wwt\nqK61LfF/1HYUNU7BXXDzhTIadXhHSEibjXWNncWfwJ/C55cvlOG5OlG7lDk3ub4DzxK8Rr2eotKn\nl+qn6+fwlJBNWySTPfdAaI8UnBf7X6ifLk5AJGUVRV5Na0xkUjbH/h+3fl++XShqXAzIZnueshpl\nIuqLG/KBHmio3+yJw2UZ7pVlMoo/+8ufGWOMWYPzae1H4oRZfF/jc9CUr83SZw/uaZ66QBVuHlRC\neVlZrOeouZUMPEM8pzEli97RfWuLKkcV6EkPn1zekK+n8/KJ/+fP/3djjDF/4n6q6+dVwdmCfPHs\nCyFSNtbVp/NFtc/piHPcC/KNWka+/3f/95+o/SK9ZzUvH37+lfroux8/MsYYE8zo/m6svo4j9d3m\n91RuP9R9n/5ff6H3oPLkVDgHXVS7nA91fwufnpY0tq5O1A735lFG+K64fV5+9QtjjDE7qFHNbKkf\n04W3Q8o0mXsGN1p3WjW4vsj43FyT6a3jTzWNxTCy6AiV1wtAzJDRNjZbBUfOEFRaFs4LFzREiF/G\n8K6E8HS4ZNlMFBsLwsnZbArqSCMyjh6Ihxjukxj+m3TJZremvAMVDauGMyabE5H5hCsk5vuULx9y\nHKv+84/zNUWyTsOQbBOZyz5KCOnXGTzOlafsuW+yVv+kqxy4cUIQOmNUf6IMPBGMIQ/0g1/QWF5d\n0fftrtBoKRakI1RHTtryyYsz9eX10pl5G/M5KD6evoYEUV/QHgUWQLonKpD964NYAvWUAsWR47x9\ngE+kbZqPNTsAYZRDvSmw60GEr3HOPhdbiKnatwvqL9fX9xGZcmOMycSOMZZrgHrEkeYqH96WFDx6\n8RilCRTNJpHm9xy8R10QMRnLI8AeLIT3wwGGYpUmUvgdACPjTqYmoK5eCr0jkC5plD/GGZUtE6Lo\nCFfAkPki7qPOASdMxFn/cQQiDfWyzEQ+nM2iIMlgchlLDjwLERnQQp7M5fiNAsldbAqiovdKe57m\nguajFHxMGzHrxDb8E23UQY9B/ngaYzVUfm5ALe/QDnX45sabel6Eks6kLJ+eL2gf27kEmceYXp6C\n1gVt162S+b3U3/WU5TzT/DeoqK+6uNZMXfPujC+kSL64ZYwx5jaDKmgJtRPQFlsdzZM3xUNjjDHF\ntNaV2FU95kfaXxvm/2EXxTiUYdp97adbWVB2Rb1npa36pY3aNaqhfsp63OzpPXnLXQNX2EUHhEyg\nPexkGe4aLUt69rRmTEbtEpyrXdpb9NNI9V2rq55tVAD3z+HEQIXvLpY50zva2yhMPYX30YDwKKI8\nmFPZV2/VVmN+I8ziY+EZSmIo095uaB5xz7Umt5fVl+snes9cSm156MvnZk9RV32s++d72vOkb4TU\neVFh33kp33w5p/kgz/xy3lVbVkvq87Mh6AAUZSusXbM3ui6T13sbc6gzudpTTEEO7p7CmeXoeam2\nynXv+9pr7N3K12966rR1lHKevocK00v1mbuksVc7VDkvVrXPPgE51F2SbxSu1B5zoDUqVyihLcuX\nTj3Vdx5o4ucof5mRxsIAnpBbxmxuQ0idUaC9TbaofltBYWjaV/3valPQIgBZTMgcMoUXNMveYqRu\nMh77eZ/fI0OQLkW2EOMpaois05Hd/FqutwHrSwGuHPgSjTFmGIfGc4xx4IqxHFyjMajRHJA37pky\njhxQOg7IadfVdZbrxWd+HqbhKQJFG1hlQ+ZjK3A1Av1bBp07hvfGAclSmAWRE1qEDCqWU4tsAVXE\nSRvLlxnCVWPRnNUySCAQlAF7jtCqsPF7IIbfyIHvblIGCTNUOQrEC4KC5gsfRNGgrHYooLo3hHcv\n3U+QMoklllhiiSWWWGKJJZZYYoklllhi/8nZO0XKxGnFhKooJFSzKEBcozNeUobE6oQPTpVZ6MDp\nMA4Vqe/fKnLFkX4zjRQRu7oiozsi4kZWMbJsyUS6hhy+nUGxonutyF9aAuE0AAAgAElEQVQDPpQ8\nUd5MWt9PiGX1OnDgEH1NkVHNu4q+Njlv3fBAG2QURV3YUpT68kYZicsLRW1TKUWbG0R3J0QCJyP9\n3UXh4fZY2b9xhyxjUfVaWt/S9UO4Il7qefPbBePFastz0DWLjqKW1e8oG2wzal+CBDm/FVLCN6pL\n+5hztvNqs24Lfou6MpMIQJkKfUiQ1cQoEcTXoBdm784VYowxrZH6YGlLXC0zC4qgV9cUqR8+U4T8\n5UshSJqn8o3cjrJVDzdVv9lNMpGwm7eP1CfNY/F6XDblExmy2ytFIvkl9fnVvpAmnbayNrsLKs/m\nmpAp5RLnlDtCKZyBGKlforBFJHymCIfNjBAqK6u6r4jymOVmuQZ5svf0l8YYY2478v0m58z9nB54\nH1Wnte+pvP6cntM6b3G/+rG+r/7Locax8vGWMcaY7e8LwTLmDOv13yuD03il8keOxuYM6kq1RSFk\nOmSG66fHXA/KbU7+sbYDcmhZ9bw+E1Lo2RdCag3hCdjmebUFjQ0/hJsofMOR8B+zUYcIPa5VBmkx\naWicHP9SfVKxylCorn37G/FNBLTJH/70d4wxxnywK587PRdqKoUCigGFcPFL1eFySdmqSkF17BOJ\nv0UJYBUOmehjZf6+ORC6KRcq7TELEuP2hXx4eoGSwpMtY4wxzpWyQTd78uknPxXq6PHv/dgYY8z5\nlXzSz8unKlWNjeJY9/VRvloCpVSsqD4nqFV877tCAH3zVPUY95gvFlSfg8+UFcownz35WAjDQXNI\nfdSuzoLqufMh5AjbzLO+5popKlXLuxorrw6FHHq49kNjjDGlHY2B/aeqz+Wh2qO2QrYRzq3Db5SV\nsmomo6F85a5Wq6h9fv+//VfGGGNm4eaaTOWLp1/iJ4HGUOkD5vuu/OO6D/cCMDOP+T4DF5ALp1kO\nLowhn/sWVsGcaGlD/AFoF1ALXsZ9rbrUZ81LwUvkslRnQlCVY7XJEN6aHPN7zLnpIc+0zP8+vGsB\nSAYAEMZDVcmzLg7vh5OzCBqrhCAfsIAN6CJMnhvtmXUPzpcxCBqDsk0I94oDAs6qTEUgOLyJfNKB\nOyWwCJmyvm8cacydhpoXC1X5TMpVRX7+b/43Y4wxN38lH//nv//HxhhjfvTjf2mMMeZ/Nf+LuYtZ\nsQsPZZYUGdYeSJcMfCgh3GlpsvMj+joMQZhOrQKD+stnD2Izr+kh/UWWbUiDunAH5HNW0UvPC+A7\nSqNGRRLReHwfTd+QtQ3D0DgoTMQpi+JSPQpkVh3QIUEZpYwevoxaYQAXUckCgwp8DpRygoJSCf+L\njOaaEeiVDPCLfiY0BU9lRPTIOJZrC16ETAQvDVwoI/h8fLhN0vju1AFxBsKGxKaJp6iD8J4UPEge\nGdgxxA0R/Em5AupN7HnSbs68jXWY/xY2tAcYtzU/l+AZetEEuUOfr6NwVUYIbFIC+TwGyTEEVQtf\nzyKbJxeuEweFmzJcXmfwPdXIKPd7mheDefhAmCNyrAOlNbXPAIRiM9T6uFRXOU5SW8YYY0YVreFj\nuBZ8MubzoACucboSE9mJ0dh0erpvcAuf0KL2SLNMMiky5HUGVxGfbxdQdcrr30oXRPyc9grmBgXP\nE33fQWXLX9IcVjpTfZyU5uUKCketntAW3kjl6NXfKH46zWtzuKaOKFS0J8oMQTdkUW3Cz+bYi8zg\n662Nu6O8a/PaF1Vfas37/9h7jy7JkjvLz55wrcNFaJWRWZWiJFQBDWC6p9k93eQ0uZzDT8Dhint+\nB34ArslzuOCCh4fsIWc4zQEG3WjoQslUlZGhdYRr7f7e4+L+LBPoMwCjVrl5tvFMD/f37Jn9Tfj/\nXrsXsN1MS2J9Lgy172n6umeurD796FAffFqAHbSmeXEMMzD5lY11xcp712iHzPR+ZaY2GcG4WSmp\nLb9iqZzntban+mrDtRs0DCfq87sR+8YL7SlMRvPsZKi9QS0PGxTtlvZcfZQjdpba+8YYY7JHOH9d\n4oZEE1+vqC/rMIAS76OF+AIdEfYS5UvV5yiCjdzXvnRWU+x8wfz3KF2jfWDol7WHGDJGLnc0tu5f\n40Y40PvRnsaus4HzZk39kJps6cKOns/HDWoOW2/oas8QwRJzMtoXt1poAlmK4C2Ly4JaYG85xb1v\nyhzmwoBMoCtlx2SAJtgr5gs/fkPmhAJ6LOM+WjKsww5zz7iv6wx+l8GamBkTBsaZ4lCF9l0aBkpy\noHl6iq6RM7ZrJPeGWeKh5ZWAiWh1M33cLOc4QKbH1uVSf5+xLliGSgJmcQqWbjSmbXB+DDjZwpJo\nEjyMb3V6YO9W1mG2sIfy2YB1Dcw9tirJkDUbJ8gxayVbJuNY16Uemrf8Fg5gnPvMbwWcgIORZXKy\n5+opZrzolUfWf7LETJm4xCUucYlLXOISl7jEJS5xiUtc4hKXN1DeKFMmtQD63pB2QBkE+ThQ1tKf\nKos6PCVDZ6yHuzJiV4dk/sk2psv6fnFTmfL6ojJWF6fKiBvOcr38mGxqHxVmNCLGsEiyVWVrl2Ah\nOGgxnP1aSOrVKS5Kl/reoK2/11d035X3dW608lT1v75SZqzAmeEk11/AwWLcU3Z6/7nYEIu4N9Ub\nylYnM8o4Xp8oWz0fK7XXw0mowFm+CLXsC5xyTs+ELuYXv2vGnJsbdtW2+yhkL5+RpZyTkedseQq9\njFRBr5lTdBKmej3bVQZ+DBq08lAo/joMkMETfa7dUR9ZTYJE5vUZxtuUhZoy0wtomVweCIE4/DWa\nJ5+qHnnOO37wDTE0irgOTZNq48vfKPO9j46RuVI2dA5SXOaM5cKDLWOMMWs5xWZvrNgJr/U82wmh\nMY1F9c24rfY63BcCcrCPjhHn4y2jZxNtmsWGrl+pcK4ZdP3mEq2ar9Re0/O2Mf+NMXsvxBoIKjh+\n4TLV2MJdKSvdkDnK5pewQo5P1U5dXLMy99Qv24uK6fJ7Qgq6N4qHl1/qrPHJS8VgFW2Xlbf1+YW6\nWAZhW2Oos/+Ceqt+pTX1z8b7D40xxvg5tevBrs4KHz3BFQAtiy1cnpJlfW6wr/i77qg+xtwevXRx\nkhmjr3N3U20zB0XY/URsowVXqM7dj8Q0SYDqf/pYjJD2Y9Xh7oYYJK0D/b84VVukG4qxs7Ji4uaJ\nUJ/5RJ8zVfX1r9Gq6XCm/qN/9dfGGGPKbT37/jPF4Hv3ha6EFcXS5W/F3HlwT7GYLwll+8WP/84Y\nY4zDOfPMAqgHkMC0g1ZCWm2WQ0vnJawkA7JQSgrtOfh4X58DMbjzSO2VZh4dgEgUYJl155rnsrgX\njTivvvkO8yNQw1FHsda18+WB+tyq8t/dkPbM89+oP7w9oYFVHMu2yrrfdKL2TXiK7bfef0f1G2os\nLy0IFcyj5XDbkq6gW9JVzCENY6pZ9J12dL0sGmKdIUzIgT6fs2eCATpmEZoUQ86Tp6yQBuwWYt0D\nBXNB6gMPpx0+NwERcsehQYrFJEB5ZqA3IUwNqz8zBQlLo101QIfDB63PoU1iQNgC0PPkK0cBkDc0\nTZwxdbDGJ8TAEPcnDAVMBm2bWRqaAkyaoI9eGuTWiLV2ROwZ5v/MXH1oHXFSntp6AJo0oT7Fksac\nh27QwXON0VZT882dvxT7q/FQY/XqRxqD57/R/LsNIvzKOu2WJZ2GVYvMRcQYSTDWxmiaZUH9BiDW\nLswgD12hMG2hcV3In6n9XfQ2HLRrpvRHmnP3DqhkhA5LBHPG4AgxBr1PGOtupZgdua9ZY747NFNQ\nzgIaAwH1Duy5eGIwwMXQMqwC9lZJaIdj+svAiPHyuDXCBpwy56SsjQhxOoKckB37ZjYjNqhfRN2z\nBIvjah7w7Nn7lNosnNg2xZkEVlAEGj0DUU2hyTXL6v/T4e+7hCRAPFNoy/StBkHAswVfT5tqxdW8\n0PXQnqqrbfZPdd009Qj79E0DnSXadIiWwjm6DykYQytNtcMNa62ZKwZKK1qT57gGRSyRqSK6Qw10\nL9DaaVQ07/pDdULvlHkNNsYFa/jLEsztpJ4jgeaOwSHnPIFuR4SrE3uQPCyBNPolPfRJRlVixNG+\nNzHRfD+ECb62guOntjqmPCfGllSvToIx1SlzfbQe69IlycF4Oe1rz5eqql9PWNerINijde2hUjiQ\nLS28RqZHqbrJj2nAFvp1Oc0d3QHON0XmgJz64aio66wfZM1ty8Kp5h+r3dRcVlsuWQYHaHz1mfar\nYUP7qZ+hGdNIq8/PZprnmlPFwvWG5o/vfK41sDtVG+bRgDpc1G+Pm6K+nxjRN+gRXQ21pt4d8dtj\norEVwCoKYC/MsuoDy0Ju4mzVMGqju89gMxXVB9d39P3LU+q7CbtiWQx2c64+bDTVhufLavN2V3uf\nYEvPs3Wueb48037SbWrfnPYVk3sDmD6RYut4R3smB22sLPpFxxl9fhOW6tFMfX6e+zNjjDEPE1pH\nLhbVDv659tXVZe1XC+gWzdjTjDP6/xMYnwvv6PWyp35NFmFXuV9vT1LgtIh1WUrZ9dI6HTFPF436\nab4A+2JqdU709/5Iz1mABT4KOaEwt6cudNkpDNCkr3hJTl6fXHAiY8IgbVzrtGjZOa6uPWO+DplH\nU6w5yEcaj/1NImN1cdCcgVFcwvkpVUJLipMuM+bhAqcNCrjbDY+0Tx7Ans2XFJONFcXG6AbXZRwc\n3ZrVc2PdQEdnMsSx8Vwxml/Sddbuae/gwbi+vNG+s3cDgw/GXA4HNOu+dNxUn9f4vV1aVGybiead\nWQ9m+LLmlyztcPJEY79H3uEPlZgpE5e4xCUucYlLXOISl7jEJS5xiUtc4vIGypt1X7oBtWkJeeC4\nnylyxrd/gQNATxmo2o6ypss403gZ1NlbnFXrKiNWX1emrba1ZYwxxs0qs3Y22DfGGDPkDPPCHWVH\nlzjfPcalySNTlt/+fU/3WR9mDP/PTVF5JptpXZXyCWVVrzgX2jmAPWGUvS6hC7K0I4TagOxMr8ku\ng0iXllQ/m3kc4q6SGIOanaN5k8KtqsGZ61Dfm4PalVYapjxT497sK/tYXiYTjKPIfE9oRhKkq1RS\nRnqtgfuQZCdMAp2fNK5DT3/7jDbgvBw6GS7nA1OAUcVFkN/c7dEGY4xJ5dWnx3vKYj59IpaTPQO7\n+VAsq+UNIQLtpmJl/6WQh7M27ke4MOULuv/ylp4vBysp1VBflvPK1o5vFFPXT5RFzXBeMVHW+zcH\num6r1eM+yvxnKmqfnU0xh0ofkC3l4GMPZPIQzZn9Y9W3gzaPG+r6CyXF9ub7YktU1oVq5ZZwzQKh\n7X2u2Nr7AlbWABV8X4jKxrfUH1ucf08vqN8PTqRvcv5E/dfBuWxpQVns7be/Y4wxplZT+wxb6t+X\nINVNtGTcBufTvy2EZoI6/PkTOaqdwWYrlnWdDRg+HpSAk8fqz5s9tWOITUttA8j9NgU0/PhYz5Dz\nNR6qm8qIJ9MfGmOM+epQDJZPcfP59p9II+XqS9rwx18YY4zZ+qZQmHRbKMLFb/X3yl215XcffFd1\nhRHyZKhx/b13P9D90eX40Y9wIGipzRqbatujJ2q7Nm4Ub60pVi4qivHTc6E6bxPbRVhOGavTUQKd\nZx5JtHBSQYtg7b33jTHGDM41j118pfpvbQiVquwoFvZxi/NxYFi/o9fTpt4vRhorJ1/oPHdtRfVw\nPJBfR300QFNge3vLGGPMzoaex7nUPHl1ouf59ttqt80VMWyuDnAL4bx6Y0FMw4sbjQV/pvvUMoqx\n51e/NsYYkwSa6Ta/nrPOwbmYS//+b+VeVbynsf5f/6t/bYwx5v43xfI6+Vj9dXihfi2gy+Jxnjvt\na2wWsjBdQqFTBtZgBk2MIWwCF0ehKSxEh7kzg77IZGgdhxImgL1lJUnSoETzrNrKoU8SQ42fGUyW\niNfExGqbcAHYlAadm2kSBM3H2QUmRRIUy2feHsMKykOdmcAYCdHcSnmcWR+qPinLwHD0jFm+Pwat\nSoGmTfiePWfugMpl+EAap4XxRDFl2iDHNc3vmaLG9soDxdg9G2u/1vp1+UIaYXuPNcb2cmJl3bZE\nBl0g1lozoO/z6D3BTJoNVf+ch7YPSGYE29edoT2TwSkiAUtgjLCKr+sWYEP0YQz5nDcPQhgsOFgk\nI1giM11/DgIfJmm3yWv3pcDLmzSMmlf9BrMnIoYj+jUFY9ZYJ7Ch7jejHgkQ6hGIszvU3GbdQTzr\nyoSjUgQDK49biZNOmDn3dLnHHGQzgZaTFQEYwvJKjdAfYpwFPNvUtRQ12GNDvQ5A79P835KLcrDD\n5ujqTHAuy9IHUx/nKe/rOUJ2YXUV6PMR7Fjr8pNw0Y1LqG27+zgkuorpMnoQF8y79TKuUoyl6QTW\ngtHnGi+0dp5vWMa17nfR1v1LLkzOuv4/xfQohNGYKGr+tfvk/BaaM6E2Z70Dfc7LSo9pitPPDK3H\nImzbMe5Zpymt9fmh2BJV5qZddKE2klonL2EMlQt6He6rHwa4BVYvYXMZ3JJgO0xhB2bH6Hb46Hvs\naH0oGrXHxVx/LzDXdW5Ub/eImK6rPi0Y6sYY04yaxktpD1ROguzD1pg7mveXRjDoiziovWAOTe6b\n25bLRT1TflHXKh3Byp2LSbJ6hePL22g3nqsuRTRATuZih57YsbKgsfDRCY61DauPpNeGLwfYNOO9\nCTP7Zqg9RQVH25LR2m58beifDrWmT9Z0nUfXipUk7knBktp2+0zPUTuDyQFDO7hUrKZc/f3JA32+\ncoHO0Ej7vTvMh5WZ9mhOifmloc9Vu5obTrPo9KGtU29o7zFmv3+noOd5gktRcKZBN4cF27lQ7OVD\nvT9xpF8XUN/F2b4xxpjDQHur9z5RDJ9uwnpjbnFy+n/QUv1fwNwuH6pdmxkxanK8v44+UdDiVMYt\nyxT2idVmc16tL7A8cLU6GWs9K6XtnIaW15B6Mg/PcHqLcBwacwIiLOFYhuZXyPdd81pvKR26xvWn\nZsDanRqz9hess55l3bIGQL+xbMqI37HDgHv29EwtnHeLPms9a3jnFFc32PpLK9qXVtcV62dfadz3\n0F5df1fzThXnr89+q5i/uVZMrdTVV+sfaE8w6CqGX/wSp9qn+7p/TW30zvfElBnS530cbUfMu+s4\n8G480r7QskCffa7fCZkCv/frmjcv0M08RxuxcU/z1Le+/wO1U0/tECRfM/f+UyVmysQlLnGJS1zi\nEpe4xCUucYlLXOISl7i8gfJGmTIztApahzBdyPYtrXLWE+eXTEuIZQZ/8GQFJgwe7i9aypQlOyiR\nc55+PFUWOqGEnOldoracVcZv5T7aAmg6DJ4o+/n8uTJm07Qy7DXOU9ozrMtrynYXYQkkjoXY3hyR\nZTbKnI1h3HhYE6VxMhq0lF3uHuh6UVHvZ2BTdC9wZJiIxVDEgcIHvRvRbsNLaUb0QURKdWXuLnEv\nmficoe40zWQEQpnXZyp4qkdoehzO1MaTga7d2dX/Q87Wt66U/dzkrObcnivEnSg0uu7eY6E4Du46\nU9gEs0jZUT/8eiF3fqj7JquKjXUYMfUSehwwWj5/KoT0+kTP7kC7spouy6D8CzV9L5NRZt9mSVNo\nMpxeCEnoHSgDfXWsbGsyB5qNXsc4wFkFZHrjobK463eV7U3hODMccJb1ibKoNy/0enUmJDNIEZMV\nYu2+srd36urTjbd03cAoVjoHis3jx0KGT44Ue8msYujRXWWLC7Ut3le738BGe/lS7XT1Escf0LuN\nB0IO7m2LVeKXZtRbMXi4q1hrwnxZ2RAScf97QjZmxMNzXFJah4qfHGyvVfREJkaxffEz1aMNolJH\nQ6K4JiQin7y9S9dyGWX9uZ51DLPu+GOhJA/+uVg/Cwnd49dPfmOMMebhB6r76l1YVnsar2liNbeq\nZ+y0hVacfvb3xhhjth+oj2acee/u61l//uwfjDHGPPqW2nDljlCboKmxUd6AfVYRU6T1ueats4Lm\nn9zb+vtXj5WJX3lL369zBra4hEYBjBkfxxSrd/EVGjJZWEb3eb7jH+mc9iEaA/c+/L4xxphKoJh4\n+qnQqAcPd6gnY4w54pd/q1ipgKA07guxDEAwPv6NEItaEt2kzS29Likmd/9naeIc/UKfW8zpeZqH\nQg5GOO3M0rCsDhVz2SV0lGrqj2JdY219QeyxhfzXO7+dsu56sB5cXALCdZx0JporcoGed4quR5L7\nzNAOmyY0dziB2jkBu8KkOWNt9ZBwREjg2OMEIPM+jjlG61g2A/PRGJOFhTkx1q1Ia0IUoh8013fd\n0GqU6NpZ9CSQHjCePQ+OlpjL+JxYizIcbJC1MSFMmSHMC3uhvo9jSkIxF0wVcxgYmkwavbdQ10Xq\nxgysaxQfHGdgk+LIYtkTjqP5wMuobQJ0LUbnmheuB5r/l7YVc8vbip3+Y8Xev/sf/idjjDGH/5fm\n6Y2PhDDnSjg/DBQ7ty2zMU4JGSiesGAj0LOUo3b0YF3McapJ+Jbdoe85MGQgyJjh3DJfYJJw5t9q\nBSUQ2UnCdrOxMcLBcWgRUmtqhYaah3ZP4L5G35LOxMw9EFHcS1Ksw06I+waOjYHP3oavD4mLkH7J\nTxXjKda7MUymjEGTLVK/zWFcpXGrmlm9q3nSZGFHDUac9Yd9g+SSmVk3Mxh4Qajx5uBkZZ2efNBy\nF7LtjHtGOD7ObSyj+TJknPl8wYf1NMzAmp30eGbztUofhpuDpU4SLanFQHuLm6bWA6vjN8N96Cal\nWF4xWqOjUPfvDNRm5Zpiuj7T9U6r+v7NUGOihsNLHweclQoxyL7ZT2v9mgZqP3eu576oaV0pDHT9\nRk//3y/ovquR9hCzRZiAx+iNEJtN3AmLac3vYU3rVjvEQSgJOxf9pACtxURRWgsn0P4aadXfR0Mo\nW+pwHe0Rgon+n6yq3/IwWZqe9kDtrtpvDe2X6aL+7sIm22Av0zQ4XkKZStzAujPGrKer5jqhdjcz\nzfPDqvYFG6fMcbClz6faa1XRO/EPb8/yHq7pHjWcGy+Tusakr757/h5syS/07IUiTjKl51xA3/uL\npsbxF0W1TVRR2zV87TMT6LLtL6HliL5RrieWgfdMnztL6f1JQ325DjvpSgSSVw5le+uKkQXcnHLH\nml/2G+i9XSsG+in0PFd1vVxdr90ujMtVxXDlS/VNxYOF8A3+3lcfbZ1uGWOMcWDsJ7Paf4+2tBc5\n67LPR+uqA+ttwO+IwZZidYommvNSe4P6hvYap3mNvUlOz1V+or1NrqaY+GSovdfOldr5Bi2wOnpy\nF0l073BfqnvaYx3tKybXSlYnRPVeuYPF2i3LEEfO3Y7GTKNuHX41Nl3WjRSTW3uoz+XyMB9hKwcJ\n1Tdg/zCwOnkwGAusL2PWpQzrT2C1z4wxJpM0znxq0rBu5+x//BAtGebxDL9Zggm/5dDljGACW21T\nF5e1GqydGXuHEWtogvmlhkOhx9o/vNJvpvlUMZFgTeocabz2s+ifXmjeinCCnRr1cf+Zfn/7sFGX\nN7R3SKNN5sDG7x7qPtO5nicDCzWbtUxM1bd1qr2FR1uHnGq4OYPFzPPOO7p/t6lX50vNU19YPTb6\nslr/4zESM2XiEpe4xCUucYlLXOISl7jEJS5xiUtc3kB5o0yZfFnZvHRemaQ8GbqVZWWPw6yyfpfP\nlFlzeiiZ7ytD1m/h0d5R1rVQUVZ4AmrUPyRTVwOhBN2acO65PQANA40LcR+pLCpzvrgp5DTy9f7o\nXJ/rXysTli3jf4770WUf1XnOQ5IgNBnOiy9vCjnooPJ8hjtTEkTAsiFS+L5f7Cub3eFM7cIDZcPT\nuJkEBX1uqUwGLwXiDIJTKeu5Z+Oe6VypDbOcWcyjYJ3GU322yNl4WAFTzNl7L5Up7nX0/lmgZx6j\nHp/Jkn3knPW0LxSlFKmu2Q20UEByuyBwty3REno568pwt7rKgp68FOOk+ZmYOd2+nrmwjnbJml7z\nG/p+BoRyQtuf4PYzQwl7jpp5u6WYm/eVPfUqQp0am3puHzeoFALapUWxKYqwCsZtXJ4eCy27vhBL\noXuNmjp6QEuL6rvKHcVs6S3qixZMd6ws8enxvjHGmB6MmHEL5wDO/q/DbtjaEvvC55x+61L1uDoQ\nC6LbVRZ6zDnyCto/K4/E6rhTVf3b6GI8+Zky+FdXe9xXcbD6tur7zvekW9LGsezpb6Sy3zpXnCxu\ncf37YmskrvS5g2d6ntlA91nf0fnPInEy7Kh9uk1d5zblAiSxsggCOdK1f/Ef/tEYY0z9XWXK374v\nNtDNmLPmXyhWx8DPEXo7pydiauQ5E7rKGdgvf6F5JrhU59e/oTb/c3R3/u2P/42+v6yYQF7DnL1Q\nzC4k0RB4JHTmC3R8Mk2hLxvU8zNYUMcnoFEgB8msYiYLI25ypvls6y/VJx10HHYv1WepDzVPbDTU\nLr/47U+NMcakV4VMVO+rjxoX6vsnvxZTcJpWDN35UzFqVhf19+Mn+8YYY0qL6qu1Nc1n+13F4OBc\n555fvNSZ2vWP/nPd/54+F6L14LRxEAK9T6JOn13VfLUAkptd1HxodUlOL3CGK2ruuZl8PSe3XEPt\n/72//htjjDGL74Gg4Oby+Y+lP9JG5+jBe+/p+VeEDl4+AwEf43aFW4hdTyJYdz7IcioNojuCTYie\ni7FMJ9YNF/V/x2RMGFp2DSxK3IgSOLa4OMdEuPZ46ClMQMTSMGkcC2LBVAmZ918xBMeatycp9UEB\nNk8ed4YIPYwRjjgDGDlp6+rEmAnm6jMPzZqILUUKt58ZjA0f5DdM4v6Aa8TcQ28H55RJXrFhXaAK\noGhF9C0se+3ySMjkp8R0WNP9vv0DxayfR5fup5q3blsSuOa5sComrM0hSCOSP6aPdZdfou/Qs0v6\nMGC4bej8vrtSH6cdh7HszKzWi743sJo2aO346Ou5OMmkcRSauvbzes1kX+NrXpg2zgCHoiyxymQ0\nIR4KuG5MPf7O4MzC7hqgRTSAVUx1TJL7jqdqlyQIrWV25Wy7wByp62kAACAASURBVCI0njEBjDTD\nePFhMHiMowQovgOrxxDzIdec4dZk0L8J0FtI4DAVOpoHU65lX4FgolGSgLjmZhhvIKajpK6bsto2\ntywZnGpMAfc9mNuYw5kF5udDnnP7Cncp3EB76CXVM5rns03Ndx104orMx7U0mlVt9ONgrTV97UFa\nE7VfAVeqiqt5vt3Q/FWDQbLURrsBhNjqVCwMNabmxET+RO21D5vYxxFycaz6dbOwjy/Ubt0cGhFX\nWg8qJTX0ZAsG/KXWr40L3BCzaqA+jkEvYZUt48IUwXCZDVXPFsi7D5XJR8PnBYya4hnssrLqd4Dm\nztqV2qOY13O1I9XPGGNmJjKJF2rH8yWtfyXm0Bdz9VOITpQJ1a8OWhnd3Njctgyude3zmfYGp8Rm\nDn2d/HONm9o6TMGR5rNUT32wPENPA+ZetqH33RuttdZBasz7gyounsxPI9yThvc0L6yOtV9uMIGt\nTfWsblNUmRK/aU6/r9hLXMEeMFojvZdoO97BRYp6FdLaM3wZqI8/SktLsHkmNrG/zv68p7EdvlC9\nandg+E32+Zz6+pz6ZBOKnaiKtiBahQWsxw52cLj9RPPNBF2lFCy2Ecy+7Zfau10QC2tLuu7479EA\nw+nH/lhbb2tsvnDVf6EHY8hBu+VUz7mT0PO009or3ssQ4wam0y1Lb8acBLtvBNs7v8D6gL5oEqej\nWQqGZFexOOM3aNbAiGQdScO0iXLEPqc1fFyeJqzrmdTvVMaNTJgqmQxuSwGsJAcGsz014cD6ctlr\nJBM2jYDGYREG85zXVdim7Ak8fjOMjZ5xPeIESGAZyDBKlje4DvM+a6WDJsvytvYCmTS6bei8WTa+\ndRiswJR89zvShgnZo3RhQ7k93TdT0/w85DdaOFKszdC/y7M3qVQ/0nMQUyGOW5GrPrn3UH/PZayu\nm2JrCJPQTaNB+AdKzJSJS1ziEpe4xCUucYlLXOISl7jEJS5xeQPljTJlJm2hUuO2WACdjDJfg0vO\nfPY5U7qHGwcMmOUHW8YYY/I7IBSwAMI0mas2LA4Q0I37yi7n1tAyeCwk+QxXkkkLn/Si/r66qSys\nPZfe6cEiSXBmFXX3LmyRYkXZzVpdiOr2AyEZ05HPfYSEJ0uo5QfKGF4dKjs9JguaAcktLqseU1gN\nflbPubGMLgfe896WcmoV2CQzT9cv4NTTWBci77cC0xySwQUJbR3r3t5E2cBmV/9PwXiZODg7AVlu\nvw8LAV2E5lNQFFD0xS313ZNfqW5Tspq1Zc6ct5WNDPyvh2430NlpoTL+yWdifkx21Qf1ou77/rvo\nYKyB1rjWiUDoy8uBkIIxzJqxx9n3FIgxbiYumeR0VX2xdn/LGGNMDjZXRFY23VcsTvo4DzxX+17i\nGDbrKiM/yalvFkEDy484350nJmGLQRwx+xdCufpfnRjzN8ac/r2uixSDKS8KeXnrh2JppGFJdV5o\nDD09Vqy5ILeZomKgXFc91rbEcKkkQFjQkHj8hZCaqz2haO0W57txjtl8R9/bfF9jo3mjdn36ic7u\nDjrq3/UtneldZ4zOJ4qHvadii7g9y5BRFjxnFKuXjPEWrk45XAVuU+bnit1j9Bc+uCd2zuKmxuPo\nTKjTblN13siIuRGBhOUKaoPkkmLok5/8yBhjjD9Tm370L7+n/9/XuHyKW1PyPygmf/Cnf6br4H5R\nW1AMNvLqq8NPxLDovdBYW0VzpbiF0xcMweq2Ym7nPdWjtqSYGQzVV5doTX209U09+FQozfkZ+j1o\nXw2/gGH3Qn9fvKcx8iDUfUcDtcN4rOuufyhGyDlOag6Mj05P9V3/lv6+f6R22X2hM7bZrmLk3jfU\nl5Wk5oKT/+1/13M/E4qWwj0utaDnGeZA9ZqKiZqndprNcITxdP8ogVMMjm2JBmw3kI1ofnvk0hhj\nAtygKguqz1sLapegrblqcITDETEaMH9DkjAZdKUSuLwEE+sghGMS7IAANuAEFCxtXbPQmLAIUQSB\nwEM/JHImJsign+HxjAHaImh9ZYC2HJgtQ5bwHGj/JEedrAUNFAfHnpMGVc9yXtwFvYrQnwjRIRsB\n1yRw/5iDJns4+g1xGszAhHFgGga4SEQwMxJzEEmohT4olJMLuR7nzGlkN7B/F/JZzut7nYGet3mp\nmCmjsbL5fbHfuoGQ30++0PwXoRdyx9VYv3UBBRwmQQmpr4cWy9TaDsHiTcKCGvF5fwyDKIn2DOyE\nPv3ow8QZwJjxra6R1QCwyyPt7OF4YbXgprBFoh7MV+bn4ey1MMrQDE2uAHoIw2rIef4sQTeyOnes\nZzP62QXV89GECUY4a8A8smMuHaIxwx4rDasjmsD8GeLukRqYeV8x4OZxXwILDGgDF6Q0iKzWxz/R\n2bG6O9Rx4KluHgwZq6k1gh6WZJ/o4eg1xYkqYu/jwwT0qKsDInzb4hmtA4UzxUpY0NplmTrXJ7rf\nUlX7wB6aUcmJ1qduE/YbSHKuhssUmgQdZB4GpzjUOHq+MZoxay19v5PX/Ruevr/b1ryeZl6/QovM\nr6p+dxibFw7aCWg+DFQtc3WFNoKn9SOKYE3hbjUba63uRVq38jgFlbNo+Dgw1JnPliu6zvW51osh\n7b441XxfGmlPcrikNX9jqOe4gQHlXRH7xHwjq/fTK1ofhz36/2Zf9SHm9nuqxwrM2dFI67UxxiQD\nx3SYn+s4HoVbes1FuKH29PsgqBFXGVgT4e3Fhxqg8IZY+ehS+6sngfZPi7CDDjLaRz+qa629QHcy\ndwRLNKl94gL6FLO86tTNaI+T7KltC8zb3YLmTQeXpLunGjP9NbX1zrFi4bqsely3db+VlsZo8Zna\naoOxt1vW/y/vsDZfi5Ub5TTPhjfa793xtQcpEns7be3TW8zvU5gohUMxYRItXf/gQ+2TX6IRk1tR\njK/CBPeeazCcbPAbzxOzetZVrM9T+r91nytP1Y7lNlpirp53saHX9qnqN/4TmIAtxd4ZTmzvc1oh\ncUf9kviZ9j4bE7XrAScAFvqKke0lxebRSN+/B0PqtiVf1fdqMGRnMBMTONDNmfetK2AC1nCIC67n\nMwbQK5mjxZiEETVj7nDRpvP53YMBnJmnX899fjZjUp4xIbGZYs/gJnAlhp07w4FxUBazxND2KatF\nYx2emNdDTkkkE1ZHU/MP20AzZY1NpDnxYb/PeHPRa0uggzYlpiDzGo/frG4RVz00uQohmxhYn1PW\nrjFt8+oXBvvBkNMUHpo3IaykLK6BntW5hJWaQGNn2Of3A0zCYkA7waDJMd9kHcbm+I/PIzFTJi5x\niUtc4hKXuMQlLnGJS1ziEpe4xOUNlDfKlJlzRnaaw4GGc+7tLl72J5wx5jx6j8x+mbO79W1l6uqc\ny0yBYE6mOAxMlBnrwtLIZDgvWVbGqoBbxiShrKuPM0WupOzl+VfKonZx5tlcVYbeWVY9h5x1LvK9\nBFlNryIEdjzFlWmkLHKto++bEi5Si8q6JlDwXqzpupk65/i7yvY26vqcQYNhDzaBVeS2TgezFjor\n18o2+xFIVCppfFDomyvVJZlW3ac4siRxgFp6INS7i8L0eCK0o3hnS59D6+DsRhn6CQhgCKqdxRUi\nESgbmAX1Pm2BJAa3Z0AYY0zvROhRi3OOCdgND/5MTJF6Xm3jo6fROxJietJS27cOxJLo9vTcPtnQ\nxQWhPU5BfZXGEcKD+dNYhtECcng9RK3+cyEEAayL0ZHue5MAbUHvp7ojF5DaOuwlHLQCEGcDY+gK\nV6TOhdr77KXqO8YtxUfP5C6MnWW0dXogrF/89rf63pEQjeyCPv/wG8rY+wtCf4qu+q19IWRi71Rj\n7PQCRXPapTRXPzXe1thaRwcpu6p2meNKtfezX+h5QCcffFufK6wJwcl19HzPQK7Dnp6vsgl7C8Tn\n5FJxND/S3wtl9ctCBUT6FiUBI8wdq81c+nIF1fUsZ/n/8R9+Yowx5uGDbxhjjBnADrMaH++9+4Hu\nvS8kr3km1lLrQm1156FQk3ucpf/x34o50t3TM1TRMBj31KcpUJDUVOPw+lrXWaYNFpY1D315onPY\np5d6v4Nz2BSk4M5doVo//qk0T95lPqoyH1339Rw7H37XGGPM+an6dO9zva6+z7nyt3Wd578R++r4\nXOjdB99Vm0cVIbvta8X2L/6dWFB//hf/mZ4bVoIDu+LLw58bY4ypnKkeK//s29xHnwtAtM/3dZ/S\nHaFaqZLVn9L83CdWSkXcSM6FdvU4e/zu9zTWyym1z2yuebvc0Ni9dZnqe82Pxbb4f3+B/tFbqv/y\nmpBgd0Gv0xFaNjiOJUHaXbRgpgaGI+e3Hes8M+DMcBIHJFgvc85xOzAgrd5IgjPSfuSa6UR/c321\nUSr6fSeSMSiS1cDyrc4G6Lo31lrkocsxDUGJQG/ctHXR4Ty4w7yXRW/NugxNcE8CHbN6HH3YQ270\n++yfPue3k2O0ZNAJyuAWMUX7xCJ/GZgWIUwQPwPjY6R6Nxg7EfPZF8/F4mrva427+9GfGGOMefsv\nf2iMMebLn/zYGGPMv/kf/xd9vyGEeue/xF7klsVHI6UIUtzj+TzQ+xQMmQloVx800JpYhGjkRDA8\nzQyaFQinz3UMDJR5gCsi0gkOaGMIUjpOqd+zjLkBzKdkETeNrvq7ACvEGGM8NzIOOluudTvMoykW\nsQdij9SfghryvHMcKxLEh+/DJGUsOrgxTWDypJLER6D/h8bq44F2TjLG44x/FLBPQrOD7Yxx0Iay\nyGOAw9PMtZjhhLqxt4i6XA+WFfNlEYewoWf1jtCLoM1dGB8Jy+JJzH7v77ctZXSZDtAaSKa1vqTT\n6FXQJo6reSxNH193cS9B828asme51DowB6UvBBY5hiW2DGsZFsI1f89hnbbfVJ+sZNQuZxldf+sK\nl6SC1sERjMUVT/P7EKZf8kb9c2dDc8EL6/hS0vVar3Qu0DZEC6jdg/UFq81x9Pe1NuxX+rO6jK7g\nmdp7uIDrSVvzbtDSc7Sq2lukYDr1PH1vdUlxc3yq+iwtqb43C5YltqXnxUUluwJTUcuyWfdfO8yM\nqkdmMQVTdqTr9WFlZNeZ83ychhBoucSabD13Ym5bBrjcrETPqaN1WVKlBvyWScCw8860loWwnoaM\ngW5fddhG8+kz2LDbQzE1Wouwgs71+dMsMZ5H/+599cnWhepzusK+/ETXeX+qzx29pe/lmL8vMYhZ\nfKH9Y32mvdCv05rPy0faMxyswTrDhW3YU0ztV9FR6+j/I1gMGda8s6z2w+cF9fkmbkxnHa31A4ff\nHwndf5m/76EX+HCmPjzNaT3IHovBs5HXXqi5qusmT5mPrzVGW6vovp2pHaoRrLMFPffRBPb0PmyR\nPJqJMNrX5tpTvcR5rPIcfaq/2jfGGNPuaY9z21Issr5k0NEL1V8uzPaQ33guDFnPCpWi3zLHMXKK\no1wWxuQYx7oUbEDLwMnx/ci37MPEq7q4yaRxfWNysOsn6L75/Cawpwjm6GZmYasGU407H724MvPy\nNMcefvr7+nMOrngJ1krLULGuyTNiv8C+2eBwO4bVn4YpE7HkTdBFmxG7HnuXECrOFMZMMGTtREdv\nAkPS5TdwwHEFFyZzCJt3goOagxvUFMbhCJawy/oxIdaT7LlCfic4/IZka2W82R93lo2ZMnGJS1zi\nEpe4xCUucYlLXOISl7jEJS5voLxRpkxpQ1nh9ffuGWOMKcyUcY+OyQ6m0IT5Z1LyDjuchyQjfn2g\nzPX5vlgCjmvZGsrC9tGCefKZEN1sRenfMdoCm29xNrYiBHnAOdD0gup1hYvJAPZFMq8sbrGCovVY\n2dseZ8pah0JgJyhme2R1O02y3pfK4qY5kzsdog0z1fNegpzMWmTqrnXfcV7PE+Fl39kTIlOCkZPi\nPHq3xflCtAyGsDgq2w1TwyXIMfrMIgyICVotN2NlhNNl3Ws6Etumea2sptX6iHBdcDi/3AQJnAW0\nBZ+POG+dbJCRHaOwzbm725YxzgGbD6ScvXEPRW6QyOYzxcDoTAjEFboQ/Sbq5GkYGgVU7dEXKqXV\nx5kC7CpcTRzQ7TGMkKMTXbcFe2ts25gsrbekdr23oj6triljbyzyC8OmfajrjMhkB6jRX4/Ubtcv\n9bkcSufL28pWf/BDsR+SnGfsXOk6L58KOb5sC3Vag4Vw/wP164hzodNztGZe6D6dC30/RLwg2dCY\na6Din8oqY79SVvsUyG5ff6Hs+MkXOiucQpX+wbsau35N17nG2eH4t2LInBHz2++IhbGwKgSghT5K\ncIPuBq5ZVRhA4/wfVyj/3TIZaJxc46YWHvzSGGPMF02hKH9NzCzf1TOV72m8zPfUF/vHQj/uE9Pv\n3xO6vguKf/q5YqG9q2f74Uc/MMYYs/622vzixjqW6fPX+2qrTdrIxTUijRZAmkx5hgx/8yvdf/BQ\nf1+a6Xtd3Nca39D8F/kazy+eq22nC7irgVAOk4r9zJLe3/1Smi5WT6hchyGIPhKmEubiMcgliMjG\nmvq0eayxd/BM81orq3auPtR16qDmza7m3yePFdMddDNqeaFOAYhHNtQYG4NAlFb1/URF9VlHkytY\nZj4MNOfkfdgAixqrH/8fYmmNDtVuty2NhsZUcU/1/+pAY+jBquLjG/9Czj3DU42R48/1XB7ON4WS\nnm8wU7skQOhHxGwaBzgDwp0CGulP0OPAfcmyUzCjMS7tM0nMTQamQgSTbmq1QixTwVXfZmHIzHE+\nCEJckzgzPudcdcCZ8gIoTWBZB5aZQcyOYH5kImiodppGC2uEQ1QCxNaB+RFw7jwHq2GIdkyqr/eH\n3DgNWpWwzgag6EmQ13GgNkmhizZPq89HXcVm2FVMJXn+nXWh2bUFxcz1irQNvvNAY2Hl0ZYxxpj7\nOK7dtjhj624E2wEnnymaKXPYuAZGSwEmzWQE4wcEcjKGaQIQ6RhQRho2jTuI1VfJct1xjvP3ODdk\nuc4MZx4/RCPAMp9c3LSSuVfP4A1Tr3RMUoxpw3qQAHVMcJ/5nHgjzEKYOO7s9zWC0gkQbxgxCZgw\nVmPHBd0Mea4s9R3n5sbAkvJg7gL+mgg2VZ6JKIIhYRkz4ynuPjzLfECbooc0QQ/HwBiZjdj/Rdb5\nCyetqcatBwI6B2WOmL/c1NdzX2p6QqedJkxvGH81GJpl0PUDUPgyDMqCj/ZfoL3EoCemSLuM29QA\nl6MtsXoLMCUn6GAMA103vwW7jXWvtKjnTZ1rvl1fVTuFsOmcjPZAaYSirunT9khjpVrBScaDOXqm\ntTq/rvvfXKKJcKr27sHkHhbVbssnxNC27n/I2A9K2lenTmGwbOp6nQ6IeV313IjYs0xgy8LqNsto\nNozZs8BQT8A0XD0QW+GsrOs3E5qXB+e6zzouVCfz14zKxLBidnGu2cro9cbBPYo5tkgMn7SZ9xto\n4zi3x7DTae0lMvTxeFVr9kN+wzTrGk+lS+1JXky1NlU29L1BE+Z1Sa9XPbTGiuqjI/TZTgday9b7\n+v9D/2f6O+yt1V9rX3qzru9lOtqfnlPP5SXtbcaDLb0m0Q5jj5L4QHuoYg+2U1luosOm1kx3X23r\nv6Pnqx3BVu7puZo1tWkXptDn99VH9Yn+XrH6bQfo9sEu6NxR36zO0OvAaev77EE+8zQGttgCeHnV\n6zCr+1yi37Ra1/cK7GXmy7ikrum5Zl3F4re+VIzVqG8THaZRT+vLesI6canfimm1xwFsu60vtf4M\nVr6eu6wp4Q67iEbMVDE9xFkt1UdvDldUu3dyu+onJw1TE9rIqzkOFyo3h2vhVO0ZZK0DHc52duI3\nxhTTeePmHePDpo3YU1RLiqEha1FnqPmiwBqZqCkGeuiuRYb5FAZNAvejNAzjEDfikJMspsKegNMV\nES7IVpfNvhrm64h5MZHh9ASaNq+cAZETsqZ6YRYWL/OfB0PQXjeib70ZzBbWNn9qtQ1xXrTOkpb5\nA3t5juOga/X0cN9M4mo3ybDm055O8Y+vNzFTJi5xiUtc4hKXuMQlLnGJS1ziEpe4xOUNlDfKlDGo\nq1/fkMkn+zkdKAOV9JVhureuTNwVmaf2x/vGGGO8NTJrZM7mICSroPelAec3j3A5ItvYHyrb2h1Z\nxoqyxb2WGChW16JQ06s3UGZrSIZsiMZE9wYUb8aZNas+fyOEZnFDWc8tSVGYUk1Z3HFbGUKXs9Hz\ntDKP854yetcdpX/z1uli0uD/yugVKsreLlK/Ne4zQKPi6lp58PaZrr9YbJgMzi7NudqiP1NWs42G\nQfdUGfoXaZ2BbcFC8nA8yKWVfhxeK/s5GKJ2XiWEumRBQfDmOETNUcj3yCImQmCyW5b8PWX2G6tq\nu+eX0rm4+tW+nuNCz5ggq+lxNj5XUywtbcOMuSdkNQVCOOnpuc8OhMaHbT3nxVTX865ApsecAweR\nXl0T+pNYFRJRXRLKMwM5nZ4KXd9/oUz88FqvmbH6qtxQhn3Y5b7EVgn06y2cv7Lbqu/cUz2OvpIu\nx/WJ6meR6W9/80+NMcas31ffX9Dne0/VTp09IQQZNGpy64qVxZpiyltT9jkgO54AlZwNlXHf+0qx\n3nwutkSEbkYDNsV8CXTspeo3vAR5gUH13vcV/LU13e+0ree+OdHnTBp0tK/2vIQFN+3e3ukgRQiu\nbwkVSJUZJ2ON5xsU+a/OFOOluyBp34QRcqlY/8X/+X+rzu9KD6iEq1kFXZ/zv/uPxhhj2utq421Y\nUc0b1XkZ1OLyTM+YfSjE8e6aMv+fH+tz5zcag+vfU1+8M5ezlYlAjUCrXh4K6du5q/q89Y5eczAw\nnJme7/Gu5rmDor63/kiMvskNKFYBV4td0Jec6rVZ1+sL+vbkE8Xq9n+lsbb8rmL2CmexC1+xtPW+\nYjPxjmL1/LPPjTHGFFK6T9RQbC5UYI19JcbhwZ5iJOGonxYbQhEvToSyFdAfmedgFp6oPU7P1F4P\n74vBNHmomEwn//jZ3H9awopQsSIMyXffkbbQnW9Ln+R6qvY8+lj1DECTVmGNTYaa1yd9tMSgQYQR\niAkIkdUDmbsWldJc61k2Hm4AThJWBU5FmVnilc5MCFMhyflpNwtqjp7DOK17e2NQGdg6kc+aiH6N\nSaKbEaptowCWGLoWHihQ1gFhs+5HnLeewVZIoU0SoE0yC2GyjVnLMprXMziFjdAsy/VwXLAuThbd\nQp9njEtUirYK0HcKsYRp9vT/Aq5UtTp6b7uKgf1jxVZ6lb+/o/m+9VJ9edkQs+/WBRkSyxSymjfF\nGZpgMJEcUL4pTJU5jKKkp+dLw46awYbLuvr7jPlzOAK9w/ltjlaaw3n0EeukgwZbyljmE64a1q4P\nTYrXygDGuJnQpNE7CYALXzF+YGt5Y30vk2E9p//TEzSD0IKbg1Q7KcvwgR0CA8uzmjiWQFRAF6AP\nY6rrmoj3PPZvc/Z5Dvfqu9orJHH7MdwjG+B4CLvXt6iutQ4BcHSs0wjjy7OuHFYPJ43bEezWGZop\nXganRue1Hs9tSnFf83+lpnocB1q7jtlbNab6/wr7xf5Ya90JLh8bU5BZtF1yaE71ljQvVQ4Zaw21\n12ZRfR219P7Ngebh7vKW7kP7nBE7Ky81r/dX1e7tc+Z92MXTJgzEkea1KUzOCdS9EqyOYaB1b3NB\n1z+AweShgWOSaNBsaQxudFhXctrP775UPR0Yo+c3sLSH2gv0YDHPF9Q/sxO0vGB31fra+7RqWi+W\nmPO0ShkzX9D1rbvdQMu8qZS1fgX0+1qraWzxvZnxKsylU3QFA/XPcKRXjz1iYlXPlz1TQHWcqrlt\nCRlXFVj0+2i9vDBi17aXNX+VjlWXLeaVvWOtrasd2ASXMPY+0BqfYaz0fbGqvnuq/wc4gLm7atu3\nt/UbYPhQseqfa6/RhW21Ql/9PNDrQ1yWnjZg8OCsVbGOgTVYxLuKof+Iw2Qxp/svPtX8+NxX269G\nWkPzMElGOKul55xWULVMq6M9TbCp3zxhB5fXL8Q8eb6k+34LhtE+OiXvRDr9MEBP6NDTXifKqZ2W\np9pbnFceG2OMqW7BQLxB52Si31CtdcXuNb/5yuiCjDltMe2jLZkSq+ygpvXFJKUDOK9rDxQONKbu\nRV9vT7KAZlhyYtcHjcmlFA6Nm8Qic5yDXtUU1uAI3TuH38wh+4As7I0e+/DUsuJp3ue3Kut+av5a\nb2kw75oX/8+u+fRXYiL3cEG++10xtRsZxVab3721Zf1/7ZH2ZUl0b6IsjlJooVqPzID9rWXtzmFj\nzSfW4RGWFXuQcAazOmR+tvO6yz4MdqrHejJhHrUs1BG/2ZJoMLKkmQDbJo9TAAbnsgm6Ox4CfSny\nBQG/7aJX7FF+47LfT/n29zz1wCnrlQsg7lN2Xz+d/nHX0JgpE5e4xCUucYlLXOISl7jEJS5xiUtc\n4vIGyhtlytyMlf0c7CmrPGpwJqypzFX3XDnxw6SyuTc3ON4klW1NL20ZY4xJgAT3QeU8zioXAtxM\nsrp+YaAMVXFVmf4MLI8MitStpjLlF7AMhhZRsdnHFE4TF6pH60r32/6msr0ZtF+m/D3F+XkDEjPo\nkOUGuZ/pv2bz29JLyWPhsP9Y9y8sKPtb5LyhdSIyM9Xzukn3FXA2ynDmDvS0dals+cVN0WSnnGc+\nH/OeUtXL68pmrn0IAwQXocmVkMb6gpggK+/oc8fP9L5XV7bx7l3V/epMz+TNlcVMrKgu22n1Xben\nPr3xvt75besZ//xYGe893I/ynjLBddB4D1QlxFN+6W09r1sT+jKmD0+eKYN/9hQkoa+2TAfKmuZX\n1YelJWU9c2CQ2TqZ9JKexyyo7S9O9nVd7n9zIMShjfNCIy/ko/y+vpfmPGPzXDGZL+g+Gw/F2nBz\nqOTv6jmf/Fy6F15SWeA7OM7UHooNkQcJffHpp2qnJ3quaKAYrCzpviurfH5LYyLCJcPh3GfPjsUm\nWeajL4wxxhwe6L4O+k7rNcVDBn2N6+cK4iHONkXa++63HxxUCQAAIABJREFU1S9pMvF7z4VYPzvS\nc6WIxySsjynn77M5xU3ua2gPuQnUzwcwNMrKwK/VhdrMR7AGLNuLOldXFbsPlsSY2O+KEeL19f3L\ni31jjDHf/SvpUnSJ9ZMv9QzJosZEgA7D8pra+uinQlG2S2LguAvoT+Ak83JX9xmnVI8cbemgnbKx\nVuQ+mv/OP9F56QKOVEXr6JXR/Q6vFHPH5+rDu++ht1RSbLQv9Rwj2GGFdaEmS8yfO7hn9HHiGqBz\ntLih2C3gmJO60vsXHdzfDFoHHXQvznT/Pmfx/Q3VYwHnruu20MEFztxu3Bcq9sUv1V4Vzs3f/YF0\nlBKwqH7yd3K5CtLf0itOcROLmN+ytM7VTr/dk9ZOCmTn/Q9U79Yh58jR8qpv6fkj0K8pWjlZkJw5\n95+BqDg5fc6xCA7skdCq8aPyj9yGcfheIo+mjDs1/gyHGeo8t04uIF4RDBRvCvsgp9cBjJr8KyaD\nvu/ijjZyrXaI/pDDxWk4wXkA54SUy/wP6mRwbXNc+tQSHWHQ+I5Ftagfzgq+ZTGg0WXQopmiYRJA\nZ0hYQhxMGQM7lssblwsVVjWfJDFk/Phncp07nWg9+pN/LYewEL2JH/383xpjjKlnKubrlKFlMaF/\nlKWdQ/pyFljGj54jBP1LwNa1fT9BRyU9gpkCTWMCMOnjkON00ZopcC4eXDGDBluPGE3gojFyrBYP\n97O2W8SmMcbM5p5Jc/8pe5gcDCyrKTcH1ZtNQHZB9SLW54jn9GHxejxfhOYDEjtmQrwlQT1n9lx+\nStcfejPjMX5SaPYFuFUk0ziNcW0fXaEerJw549+BMePmbPCBHkOViWwbuVyfZxvPcZ/0LDqsWPZh\naXm4Mc2i13o8tynRCsyJU9V/YVVr/fwcxxmYIdGKtEhuulpzVweq9yEI6xZs4gnPVwcpTjK/n6Gx\nYB22Opvaq5TPtI74sMnmXa25C0XNW5eB7ut3NJbzNX3+ZihGpIGlVcjBAphoz3BILPV5tfVDJs5U\nHRg1dVjQuFitslTPh4wVo/m+hluTW0UrcarPXxd0vyJaPEctsRbqKc2/F3Xt74eMueq12mV8rXZd\nx341HKu992FzLbKHaNvJs6s92/nvGjl2fBPimDaH7VUMtC500nadQ6dlmf34utqv3r/93nU8U587\nl6ztCe3b5uzvlv9BTJAqbmi76JAtJNSXh+hwVB+qDUNPDJC1RdyCrmDvZ7UfOyiorndDzXezOb91\nbhgjG9pHTh9rDb3c0T64UkIf81htarVkBuw3s2WYjodaC59uaXx/51cw7iM5VgYJXF1ZX6ZoOE5g\nyNTRX2rhCuXcUSxmjdo6mdX748+1ZxvlGKuwzQ59MV8ehVq7w4qCbpDVnsUyDGcttcdeQwyYzZdq\n5/57+3rt63trZ6qX/2TLGGPMNo6ZDuzYer/LcyiGBjCUpne191tDP+4CRn0Vg9y9zO21EI0x5jm/\nZ06O1M8T3Acf/bn2QPVVtfv1Lho4Kd1vbUG/12ZzscWGQ42dTF5xlqjw+8jXmFu8C7Md/dLDJ7rv\nTefiVV2m/blJJj2Tn+oZErA8fWIoqMF8a6FDClsnaV2La3pts4aaD7RfToZ6v1pRWy7tqI4XuHL2\n0Fr0c+h84k58xX2mp5qAQubNMXsdg+7cBCfHNLppJovTYYSzMO7E4Qw3KRdGt4PuKAzCFKcifFi9\nIzQRHTRaPXTemD5eabca5hHHw1kSrouPO1PE3maC3WDCspj/QImZMnGJS1ziEpe4xCUucYlLXOIS\nl7jEJS5voLxRpkyWs2AuGep6VRnzNhn3s6dCII6uldFqz5RpC/LKXDcT+t4NeiYztGEGz3CI4Vxz\n70jZ1MKKkNnte7h84FgwSArB7YEm5nktFThnXVLmMLcjxfEA9NEf6r6NoupFktU8PRWS7JVwUcK5\nYlIHFcMloI1GwbiL5kCb85uXytKmskIMIqPrpxDPCEGUPJChs0t9P+OjTeArw+e6yhhenl6Y9CrZ\nyKIqmRrpmTz0cMYwLizI4A/1/35R2dHZSBn4CdYJBU99kEoo61hMw4Th/LNBHfziTLoYQQ82D+eH\nb1umaNikNlXfxl1liKtjPeMYPZDukGfPCpmYoG3TfyGE4QKWUR803y/pSZcePjDGGFMpKRPvAd2O\njmElkZWd5fU8z2AT9F/ySqLZBUIek31dXhMzZYnXcKI+evn5vjHGmDrI5crbOqOaRJl770tl+Ptt\nXb+Iu8kmTBpnLmShfajM+Ze7QnmO2mrnVFExvfG+dEo2toUwBwV0iyboJx1zjnqi9pkHauchmjSd\nkdrJyamf1++IDVZG3ynJ+esC9V4ocs68YJXVFTe/fiZWyNVjPU+qAUujyphyyI6niWkGUeD/8XOX\nv1sC9DGGTT3L0wt1yiChWPvwz8V0eWuqNtmFfbSb2Fcd0NtYvae+CHHz+OTfax5ZuqvYKFdh2jxV\njId0fmZHbXtnR6jG6buCTaKc+vzmQG26cE/MlupcKNrBWPNO/4ViN/+IM6obmmeKK/r8BLTo5Lnq\nu9RR/Rbf1zy2vak+buE21d1T7K4VQSDXhR5dnaKZcqRYefzxr4wxxry9rRitVlWvPmyDEY5byWUQ\n0TWhak+e6Drvf6A54YNNISKh0Xx1/rnQrHpB9dl4V/Vw92CYXOv6lQ3V68FbIKnnipmzptqluqOx\nmT8UczBV1P1yPcXmsPf1nA6aOMpdwWZL+oq16xvFydam+i94zjn8GSwTXDoi9EVmMLP8Ke55CdYx\nWBKuz+sQzZgUyFMaByOQ5R7/8KeWjeKbEJRm5ui9JAepJ7gtZdACGcKECPluFsbCCNemJPcYw4Rx\n0X9I4+A1x5klyqEFBvIXcp8I/bIETjJz1hTfym/AtDG4DTnWvQeWwzTg+w5sBFgL1lVojluPdSfq\nMQazwFB9GCYZ6l1dhJVlna1Yryprmne+9y0xZS6M1tSb/1UxsllF1+iWBeKLycBEsdwMzz4HLIhM\nqL53rWME7Iu5Rct86wAEQwlNgCTomhuAQKc0d8zmOFcwn/poTOTnav9eFh0S2AWBBzrJ+j0LX2sD\npCPH9Ce/r3vUsefyrc6RAzIMLhclYHklYVox/TqwfafEwQzmYwpNHQ8HpDnXt/0f9kEDvdCEA91z\nALJprzm3MT7WZ6cZEEnrHMYa7iR45rk+l2XcjFlD2a5ZQrIJqXyOth/CPnMYIxMcv5AOMWkQ1duW\n8Erz3GgLNsK+rvsyozbaGmqt60Wav5fR3ZgVtGaunWl+7za0r8vAuBlXxDboHKDJgJbV1UjXmx6h\nM8H3ylfEZEXz2WxW5jnR2ctoPesY3de6kyZWxEZwWOsPttDwoV+iSDG5e8zav6oxNWpqXXFAvtet\nQ1xX6+PVHE3GjtaJKMdeYAjrrKd5s1iG0cP77hJzzoWeN9/Xnm6hqXaYjrSnaTdgltr9L5o8KyDS\nTlL3TV2zx0UnZRS9HhuXK1NTDXDP66MtkVA/rZ+jc7eq+Hsx1H6C7jOd5duzINbOWVvWcZm8hrmW\n0Hz1ZFNt+71jGCsNPWNmF3c90P7Cqfp+/qHqNLhRG9ZO9axhpDZYONRvm8s1sQrKoP7elvqsc6g+\nL25/bIwx5qj5L4wxxsxg9b+8ozZ591Jr/ld1tem957Qtv1m+wiF2VNNaeXSj722vaCycThUbfdgL\nzuBDY4wxiz3VY2S0tmdwORpk9P4MN1Lnff19cqWxbd2XBk0xXn65pj7bGWoPs4Fr3bSmsXODXl16\nH6b8XcVA7beKmU0ofh+Hqv+M0w8nHV1nqas9RrOqMTZqoT90d0vteaD/X+C0tpxCz2mo7+1UVf/b\nlimsteE+zmFDXFJ/q+e7/qn2z//4E7GFJzjY/clfSQcvBzPm+kKfC3A2ssTJHFpn9Tt6nstjjb1D\nmOt2/f7v/9v/zhx/emIqq3Xz3X+pa48ZHzn2CHa+9u9qTR11FQsZTicMOrr21bN9Y4wxzWf6LXP+\nUv93WOt20CTc+0rvjznZ0VjTs6ytKLYD9r0zNhfVuto4zYmQFGtVwJ7Bar84/D63jJWAtTxCY8yB\nBezArEnBuLSs4ynzZAZtqxA2cASb2A8tq5T7ZWDeoNeUQ1Omi+Zhivkyj/NVp6+9yR8qMVMmLnGJ\nS1ziEpe4xCUucYlLXOISl7jE5Q2UN8qUcaZ41WeUaXfIxM0v8VhPiBURhMpku5yvD9FEOOIs7MFE\nGbrVJWVJt3DGmXyurHGppMxecVnvu2ndd9DibDBOEks73zPGGFN/oKxy51iZ8huYLPMuzBaLCoEq\nXoNQD2CX2HP6eTLsFc70lupoNGwpe7kXcoYYPZIO7XJzrftNQFwMqJlpgoJy3rP2jpTcIxCL3pmu\nUGkIiakuqV0HydDUF0BdTpSlO0cbZnCgzPjcF7unuiNUe8A57dG5sp1TkMn+RG1Q8jj3/FSZ/tOm\nrtPICAmwWcOz5/p82YftU/ldn4j//5JGL6hYwZ0HBsnBuTRmLp6h6L8ulH9jWVnWZk9t1N3X52cT\nZXWLGzgEbAulz6Lo37tR/U93OaO6ACJYEOuh2dX7zSu1cTTT85cWydJOQJvWhFhUlhVz7pAYeaF2\nyoIYL+MQ5oIGPnmizHgUql8Wd1TPO+/pOm3O5vYfy+nmcJ/+w4Wj+s0tY4wxD96GGVNXPSzU297T\n58cv9ZyRo//b8+ITV+8bR2NrcV3XWfuu9FbKc9Xzkhi74Xoz6/4BiyGJ7tMeLlRXtNcacbW+oXom\nYA949NMQttfxBQylErSzW5RyUeOj0hBjwx2o737+j3JLmh3q2jnQ9xQsg/GJUI0APYW19zRu7Jnz\n7ftikGQMLKqsGnPOue5eS2NigJvSswNpo1yjVbBaUpu0YPD1L9Vmb91DQ+pa80h7LubOcMBZ2y81\nr9nzxEsJVO9/ruunB8q8dw80P5UWVe8Jji2Pfy09IIOjSuaB/p5Hmyo1VEynarr/8YVi84IYr9/7\nC2OMMYf7MGVONHZqHwr1On8hdf4SrKbKomKtvqAx3knrPs9+pXpslDSPp1KKrb1f6Tz56lyv+S21\nbxvk5Zd/L2eFHyY1b+Y4152ZqL49NH+8xNebS+7X5SIw+BNYCUM7N8ECAS1Lodo/Z/D4aOQEIOoZ\nkBDLjIzQU/Fhj8xA+pHOMRkYNgM0MkLYBnmuHzEnTKLQRBaVcey5aOuCI5ZAAPvKg02aYp4NAn3O\nseenLeOFY9ZznPxS4DBOBr0N5ocwyZqGM4zD/2cjUOmANZDrJ0CpIu47xbXNHri2EjHhK3cge84a\nliltOcDRxRmrzSYFXT831zp1zfMNr9RmozKOV5z3rue0Tj3dU6xd9jV2Bj/RvHPtvNZauU3xmI9H\nrOHpjO4XoZmVo74GXaFZpHksZcV2GIMz7JsizpsHQ3RSHD2PlR4IJ7ggcd8pVJ3pK1YssQKDKvB0\nvfGc/mFPNPNeu9WNQtcUcD2Z0D9pXKU862hBPFi3KGdKXIEyTmF7OXP7vLpvBgTcTxHcMGddNIIG\nXVyZiD8/CMwEHZwEbZhCg2DId72U6urCnJglmK/tHoRYyRFiVosvncF1BwGlGcgmwK2J0MfzXatT\nhBtHUnuGsXW8Gn49nTs/o/rW2QfuF9iPwQRqoWPkRJqfk7j2IEthrguKydWOvn/kac+UP0KTpqB9\nbMtDZ2IJthdsqOWJ9pv7gfapjYzm31JC82c40fvtkcbCogdK/sq1REyUEUHoH+CIg0tgBIvLXdca\nHnV1vfyi1o1WW2v8dKb6XeW151rTcmXO0OSqDWAITfR81xWtg8WW2qfU0ObDu9D90mxZOi9ws3I1\nhheYUxaudJ8TLRfGQS+pkNV6kxyqX5oTHIlwM03MXv/MCW5mxsNpZ5wREz9gbzrZ0vqbY73e6Oj9\nG0f1TLu3Z8rMMzCR07pm/y3c4g5gPMMWesY8WhijPVVRmyZqiqnpWK/NM9370Yn6Igej+3CoOubT\nqmNvtGWMMea6rOuUO6pHDW2u677YU27lZ8YYYzYZmxdouLxkX/aIeYJdoRmvqb4zWEt92KV3ytSj\nxbpwf98YY0z1QrEyj7TGP85qD5Jehoq4p79n2YPswLJ60nufeut+0VQs5z71X2qrL6s9XD83dN/e\nGWMEPRN3rljuwjzKrRSpv/Zag47a4YGjvZuXUz1uYEukPNV7uizNnCPYaqmRGONpxnwedu/L/0Jj\nJZX6ejyHxpLqVf1Ie8IBMezC+hjA4nj04UfGGGMSvtq9UlRcubA38laziHWpN4cRP1EP9r9QrI/Z\nQ2VZN7OJ1zGdzEYmPR+YOfNmtsr+CjZmxHwbsr9Jlvg/n5+j29nA4XWCu165hB5PT6/NU9WtEep7\nQ+yYPH5btmHUVdhnGVj+PmvjnD6O0LnMoc8WsmZadz+ffbgPg9Cwps18PU+C3wEO607EWJgb/T9p\nNXU4JWEGMC0RBfTRvRyPYKVm0R5kT1DBzc4pw2rjNEfJWjv+gRIzZeISl7jEJS5xiUtc4hKXuMQl\nLnGJS1zeQHmjTJnJWBmzuacMf4czsv2ZMk3VRWUzR4GywWFLmbTcDirMOWWgapvKhK09VIbOuiQF\n58q2jiyId6XrfobmRKerjJeT1XVGOO5cTpWZGzjKbl9fCHHYRqOhhi5LyJnZM5DyKgjJw3elhTAc\nwYBpKkvpp3TfqKT6hqBuRydCVMpVQQAp2CYDkIJ5W/cbd655X9dNc35w5ApV7MFWKWY4ewyUO+9H\nZkQ20iVLl0nob2W0VAzOBhug6hm0TLro3KyuiDVwdq5naJ2jlj5Qhr59JvQlCxpfy+sZQtCPAq46\n06oVJbhdGaU4i3uu+5w/F0MmP1YbPviW6lXLiE3QAwWyzJQWKFnhgTLJ27gQuSCgB78R8+T8SN/L\nFS1rSkyaEShLcw/0zifzjpOPDxI8qyjjXV9R7Nhs5/Gu6j1rKgiXNreMMcYkBiATJ8rIW5yzcV/M\nlGoDtKypGDg/0PP0cUPKo6u08r6utwlDJk9W+oqs7O7nis3BgWK4N9bf86CLuUXVo1bSmd2du2Jf\n5bfQbeoKlfvsEzGprvYVgyVYILUKsvPE3nlfzxuMFaMPcIna3FZcJdAgaMOg2t/XdTvPifUCrJfM\nkrltOXmhexZW1YplxmE6oWc4PdPfc0lltP/53/ypqvxS7x8dyt2oaDVCyNCnOY+7/xJGR1l9W22o\nbpO+2rgz1vy1wPncBWLAX9az1gcap88+f0xbqE2KBcVsuaLrFHC3+PiznxpjjLn74D1dB7TtDKew\n0rK+dwQTMNVWTHz3B2KyPL0QoyaIdP8O893JWGysWlax2nhbfZ7qqu2tc1duWfXd6XBfXOPqGf1/\n4+F9tQ+Mj+6R5oJlX39/56MfGmOM+c3PxFTKdtXu23f0PM20YmXvifr+nUd6ntwjzZs3oPse2ggF\nnNvOH+v/bXSmNlHzv20JYClM0OUI0U0ZwQLcu9a57G5TsdlY1hzmEEcpkJLeSN9P4v4R4b415ezz\nDGe4OYPaRbsmAZKfsg5Dc4voWDEMxwScGU+gsxbh0JTCRWEyt1YiuGpYLRHunUA3Y5zT51K4LTiu\n6jwc6PpZzoknOc+N7IaZgDKn0aqZZ/W9aWBRM93Ps442PIv1rwns9A5DZRbac9w4T6EvMgJ1c0dW\nT4dz3tbRIIkezxUxjGBIMq//b34gBLWD+9LFT6U75L6rGPzGN75vjDFmCQ2H2xbXWPYGTBd0TAx9\nOMYhx8AoSjOn9Oi3LMi3YewFbD4A0cwEJorVWPNwYJvw3Gk0aWgOM4PxMhuBAsJwyTvEXgKmyu8s\nq+lkaKKRPU+v+6dgurgOc5xLv+DyFPHcgzwaEsg1pWHSTDnfn0B1rvfKHgynSz6XQt9jSpiOHdc4\naN8lWTsjWKURbBqPZwmhluVhsIxx90hZNhA6OQnnnzBj+LsPc2KEJkrIOM2zt+njdGOZkMkQ1ljK\nKgfdrhzW1JbJa80LXoU+TMEQmSr2nRM0tuawnEqKxVQNzcRdfW5lQftMP7Wl6ww1r7sXq3xe9Svl\ntQ7tJ9A4o42dE32+Ode6lElrL1NFU/B4pDHi4jZabKreziJOky2128sOOkyB9sMz9hiXBdUvbIu9\nu4iGzHBbn0+faG46v9L+OB1pnRlusA8/0rqywB5t7Gjez2CLlFjH6WtPVJuFRbGzry91n8mm7t8l\nxhp7tPtd1b8VsX42db8sjKwgCzO2wR7XGJNfSJrWACe4c/YJEe5d21rHbi4Vr3UcRhMd9sqnt/+5\ndJPQfqw0Vl2m+2JcfL8sxsV+qP1ceihmSNHV/LWIbl03QgMxELuziDvQWVExVRtoDR29qz7YxTFn\nrSPGRh8XtHFG+7OvmODT6GAuoctxUUc351pjY2ei64w7irVqVTF7w/2WVhRLp0l97nqm+fZbMKS7\nu+rjz1mWOmXVP0t9+rCBazuKifSh+uZkR/VYfQ4jc0OfH6B/t76Bo+yJ6nmU1t7Fy2tP9d6NYmS3\nrM8d8MPjviHmRtrH+ik99zur0tb57Fp7jkc9xfbBsp6jnlVs7PHb1BtqvRnBRFl9rth7/pD1lTE+\n7Xw9J7d0Sv3pbarBkmPdfzhR7Bbyep4cenfuEKYo67VBO8hqxmRcfX7i6LldGJ8O7ETLLptncRL6\nHdJGKZ81cz9trBmdDxPZhf2ZsGsOvyG9Ab+bI/VZGmazh/NueqRYq61R2anGzwxGSt5KeVHnaQaX\nJ9zzijkctnDnS7OXCEpWnw7NKqO+yLEHmuNGnHVUnwk6SO5cnxsZzdeJKdfLq/6uz55kbNcDxXiS\n35AzdEgTdssFcyebtFo0tH1H++kRjonDC43RAEevXB0H3z9QYqZMXOISl7jEJS5xiUtc4hKXuMQl\nLnGJyxsob5Qpk6sri5uvKKuc5DxyeI7WCmm8OUr/o74yUMkzkJJFZVfbPRCEXWVxu76yj9N9IQb1\nSFnGYU7ZwpuvyMJWhN5bJs4VPualKWfBHGW0EpvKkGVW0KRBw6bDmd/utbLayXVd38/pc9dfCcE4\nu1AWt+4ps7haspoF9nw+Z9wgHZRQMPcRBNj8lup/8ATdgH1l1UPOkY+OhKBfoxeTTYEwTFHD3jsx\nK12xjgYDZQ39AdlHspttVNTnu3oNYOdEOIskcMexLhJLaJYsLChb2UZbJZ3XQ9Tneu2fkXV0QSe8\nr5cHHJzgHADjpg4barWhmJlfKTYuvxJCcPGFUJi5p2cv31NbLO6o7adAgC9/oQz74FR9swCDZXsb\nxwIy5Gd7ytRn5zBkKmoHpwTySPa3sYQ7Rk8Z6IPHu/r+sTLfb28IcSjm1Q5nh3o/DPX/TRx+TEnp\n4929fWOMMY8/0XUiNBZybysmtzd1NnmpLuRhgnvS808U80dnQgb6F+rPNHpN1Spsj5JiqrqII9C2\nYnaMts6Ln0vX4+Uzja0JiPzqphCD9Q21x6Cp/jwcoj0E4rv8SPVbxOnMgf3w4qk+d7ar6w4PNdYs\n82h9ZfH32uk2JZ9Q20+7MGUWVLd7j4QcXl+oz3/z1W+MMca4Nf19tqAYuTlk/A6FwiwtoMFyV/PC\n2a/UV5OZrlMDjXc5W/v854qhlSu9Pz0F+VvU6+rbarPPPxUjp3+Ixgzq9gk0FLbuCLXZ+1SxUmJ+\nyGMTUt/R+1vvKVb8Z7r+k3Ohbom2zjuncNZZ/kB926Peh1+iKYBORfNGsbK5pM8Frur1+EDnrssD\ntVMHxf7Le4rB9YLGXpZ2/+xHP9brpe7znR/+wBhjTDGjWDv9XGNzc0Xss5339Jz7nykGTnBmWMlq\nzihkWAcm6o9tXLEczhLv/kLP2zx6raNxm/Lpp2LF/fyzXxpjjHnnh2KFeUm1rzVzinBE6M+FqJRg\nFQTomyRCtGeynG2GMTV0WSc4W231PsIpTAFHMT2cofZPP4xhVRgTGR9NGS9gjUKHJzuxzk1odiCc\n0adNsjgJDG0djXXTg3ECK8BPWyaGXqfElhfqOr7V2wA9dql7NgnCBlHEddH/4Nz1uA/azFn4CUy8\nlHWF8qxeD5okOBeEuGsYB1QKrYQxfZCFqZMua2yt7kifyBT1PJ/8g2LngHl6taI9Q9kjliq3n0eM\nMcZhnZuASJq0Yt8DiU7DqhihBTOCOZKCJWcdGVI9ez4dJJWxnEbrwMGpZ2rQrqFfpjgLhTBjMgHM\nIetyhTDJDMZhgNbPLP07W7nh3EyIvVSE7hW6Riaw7kto7eB+N4WhmBzoex56LlYbxu3jKJHm/YHa\nJe1Z9yj6Hc2bHEhv5HomyTPNQHXDJAwGGIQ9y/7J/76uTgArK4Cl5eBsOEWnJ5lkDQa5HLLH8KAZ\nzRkrA7RrkqDEAf8PLGL6NXUg/CPtOxdcrVknzOPrPc3Lh77myQWfPkGnYoGxNO9ynYKe6wI9jqUF\nxfLFRPNNtYgTjau/X93ofmEPbZYdtFFwoSqtiH1w1WGPArtugb3MONRaPEG7YTGpPYKD0457xt6n\nqH309FrttbaOu2EHV6mqPpfeExo/97VnWGCsjUfaW/TQZqhzn1QXTQb2DD5suRHsiklVe50OWhSp\nu2qfcRNttRJz2YrWk+D/Y+9NYmXLrjO9FX3f3xu3b1//XvYNk40oUVSSKoqkSpCq4Cq5GgMGCjWx\ngRoYBlwjAzY8MDQyDBTggeGCLdmAyrbKkiVRYkmkRCUzk9lnvnzdfbfv4saNuNF3JyI8+L+TTypL\n1M2J38B7TQIRceKc3azdxFr//v+BfgeQxyogGxe76teTmN4PD+ExMbPcQdoaZPqvokQ3BAFwDGIx\nwJ53QnkLoCuawwO7rK0cas+QiWkfFJ2T2k27pnlpDW6XUEfozBDI4ItFrb1ZytQ/1352MhY6tVsD\nzZ/X9X2UG9umtfU+6ILbHf1HOIXzZT2l+XFSLXJ/1b10HwRFU751VjylznqfQKUzi2rm3pb65uot\nOfHgkZ7XGKpex4zJMDyarYl8ul/UdVeaKKZN9d9BIckSAAAgAElEQVSoFNNYSX+ssRNMMQ/uMSbm\nhcz+dKq+XJhRexyBxJ97pL3ayHSfSElj82c+MDMzOyyovNdRR3p8Xb4T2lafJjf1/UlEfVtg/7od\nVXuOF1T+1li/+/KW6vHpHf3HjBVQwfsUrp8bPjPo5awDytrnM5nC1RkBfRuP+nAS1mOQogMQkpk0\nfsKcNxmqfZM+gjbmc5mhdog6YZh5PzZ5ojwXnYlZxDI2ibN/Za2fwqEyBRU6mKKOB7IxYWqDLAqO\n7SnIlJivSKgyjNn/xEE6RoDV9pmnwpz8SDOfDeEpy/G8JOiuYQQkuq9QuJzmd+qTAXXylRRtKp/P\nszdpXqBqzP/t3hF7nwzzDtuxBkiXHvx+q0vrZmZWZx4//3hH37Ou+CrStceah3tV+WIHbq0qHFc3\nbvx0BWKHlHHmzJkzZ86cOXPmzJkzZ86cOXsK9lSRMh5nt0YXyoCMqigLHCvq6XmKTqbJyi0T9Qs0\niYouKup3fU2RqiH6RaHHykItJpRJWJhXdi08FMriLK/o58QUPR0mFdUdjRSF7bQVYkutK8I260tU\n5MgEtMhicW4/Bzv+8rpeww2Vs0UGZgEVlYWyopP1tsodm1XkLxNG4YGz1gEidBYne5hWPWZmFZ0O\ntBTiS5Exaif1+znOAK+sKhI46qn8rUbDMtQxW9K9PCKpBbIZ228okt6q6xnlWUWivbgisPtvKctf\nQWlq6RnxV8Tyim4OTlTn2AS+BhJ8XVSPzlG6SmT9w5CXM//+qzeVzW8QbRwewbXytsqzDyoqQXZ7\n9Xn1+eJtZeWHcfnE0Sfq40Fd79efFbpgGQ6ZizrqVB8p0zCGLaF8BV4J+sR6vgqFfOKioqhvdZsz\nvQ2128qLygAUUiCVWrp/r6/y50HQDDkfWT+CYwWkTNJT3+ae1xna5euqV36iPq5wlvb4J4rOXtTI\nrHDOchFFgZk5lWMmpfcI+phVdf+PPxVyaLClbNXpsTIUhVn50POviB0+C+t79b7quQ8nTB8eo5Ub\nyhgUn1FWblyRXxxt6f5nD0DwkOHPzoCG2FC9AnFY5yeQKlzCAmWNYzvXuLr3ibJP0aCyRM8++7KZ\nmdVrnNftqO9nQR3NDpXpuzhTG+aWNEY2QIOlBurjD3+iLFb0TGifa8/p93cC4kpJ5Dlr/57u8/jP\nNaZe+LLa7A68TMmUfKhWgeeHs/LhoHxgkedXW+oDKBlsWtf1jTYyFzm1XQYlgirZuQ/eU5ooWZLv\nzq6qT+ZXUByLqO0f/Znqs/bz8qXbL6uPSyjbTEHcXHhqn60f6hx2D4WcL7/+Zd33irKB1V21+7Ch\n+tz+witmZvbRh/rd3sfymWCaM79r8q2zI43ddF7zarWijGyJM8Rh5qi1DdVjbRlkENm+y9rybY3B\nb95mPfmizvnPxTWf+lwzRpbO59EIRH1FHNSXGPseZ40HqDVZFFTGQP7lt18A1MmITEqcs9odDxQI\n6IpAYGzTPkiGHlkjUFRTEBx+1sbnxQiD3Oh4Xe6BqpLPKQKxTZjz0lPqMCCLNekyzlASiJMpDKfV\ntj7HTb8LwgPkxWAKuhMERohM3HDsZ+TgvAG94EvPDFF7GKPqEx2TRYuytsN545Gdi8Hz1GdNHNa0\nPoXhptl/pHXpoCbfOvxIvtQ8Vr2+deub9nlsChQoGFe7pjz54MRHJoHaiMBjkeC8vQdSZAQHmd++\nyQHZQq4P+fcHYRKHM2YKemMKx0+QvY6vDDdtqz79qOZZADyfIWRCvsyemU1TQ5uO1c6INhlD1nqg\nAcJkLUdjzZkZ0F9dEJVDEDJ91tsoc1N2BDcRSJwQGd0QiCGPvUybBGxi1LcJ9wz7/DnwVozZWwR4\ntq9uFh2A5koy7sY+fxFKYLRlwEf/+GoajI0pGdwUfDcGaiuQAGkDyilEhnfc/3zqS4veupmZXZSF\n9FsDUXIWUbk20qrv8VDPK9H4A1LPgb7mvXYbXyjAV5RDXeRcvpEEHZaoaL+6U9J9pnAkBB6Dkpqo\nXScV5ifmgFhZv++MtddIVSGQmEc5s6X1IjxQfVbnNXYOQdSk4Bc6h48uCXI0c+5zN8D/lsFH6ipH\nOAfqgz1RP+/3D6gKlDQnVbW/rwAW7YM2BqEZH2ivNIFn4zzvcyhq/SscqHyVTbVX5AQkUoExe669\nzOwVUANmNo7UbMXTunmAWlYsCVclY29MJj/WQaW1q7l1svIEVfC32aNF7QW+UlG2vHamMj87r7Vt\ni2etgew7LWpfVP5QHDMXN4D/oORSDmmfVV/W71qMvyoI7WCHvQScVW/Nqa8K+/KZT+BBKg601jWj\nWkMTC2qbDPN67kx1rr6qNX+8q3ni5hHr0qt6n/lTTgPEhTYdZzQhncS1sezG8BlQF5GU2nB7KGTL\nWlX72fFj7gtCsgaCcLMEd01O9cyPhKyptLXXunos5FF/Re33MIdiDhxe9xBj2ozIp4+PtFeb3wVZ\nck0+tbT7oZmZjUA0nbH/nDuST1Qi2hsVQGzeQ8YuCV/ReKj+DZe0t9qBh++yNvLkswMUNaNxOGwg\nIRszVlIgZ6dwrUXgXfXgDAuyRwrnULgDcRuESyhSUr9N2PhH4G2xyRMysmxu1bxozyb8vx0XQJyw\nVuUCPreX6j4AyTIGwTiaqmwJoIsj9t8xuFvCvI+AnOmAqopyWqAw8VG1ep9NgXQE+dbkv1D9kfaZ\ngwaqfEf6b2bwN+2/r/9uzQv5dLqgPiyBNP9svkd9LnjB/Lik75Mg5Xa3tc9vVeUL1efkkxPU2R6D\nlMlxMiZ/RWM+TR+lV/X/IXumPo3F9JxM5qejdx1SxpkzZ86cOXPmzJkzZ86cOXPm7CnYU0XKBC44\n13yhiHiCM6A3b62bmdkGZ8RaZ4owdU2RqlpfvytEFfEqXINVH06YapOsUp8zqHAiGOfMC6ec2+P8\nZXJO9/PPPgcnZOX6irJ2B8pU1OFTSbc4SzdHpsA/cwdLdK1LNi+riFsqr3L0yArWtxT1XrqjjESL\nM3OdLUWnz+BziUfIkPxY922cKbobyarbPuNRaet3Yc7mGVmyGGeaVzeetQzZWfPPKHJeO4h2+/Ki\nsjehnCKp159TRLvdIUr4SBH+cAvllpRezyuKYu68r8h1aV4R42mSc39kZ3z+jSGoqMva3OwadYtS\nDiEuqp8qC3J4Lp+Yy4MSuiXkS+qqftdoqp4H95V5qNwX+mCTTMZ8et3MzPYeqa+3D4RuKMHl8Nwd\nfR8x+Wa/oT5owLDtS3udnKkdkkn13dqXhDoo50A93Ee9CH6heElR1MScfLLeVz36R7DEjzkPfluR\n9yLcOBwZtXufvK36P1C/DI4VSV9d5qzrVZV7eV6/n8LT0SXzXNlW5uF8X78/PiCLRyb96g0hoW6+\nQDtCOf74fbV/G0WiELwiq2tCISyUlKJonur+daLJ2zW1rz/jlMmmLS9qDCTJHDXaun7YvbwiRgpe\nhuCSfHeEOs8770r9p3RN2Zwikevegeab4CZqEUTSH3yi7JEXgz9pQ3XOr5CJe8A4bCsLtMWZ8xqZ\ntFmyDhtzGjvDFiizNxXZ91Lq0/k1lWOYUJ8d/0S+8e4b4jqJomizMSPfmJzBhYAaiTWYN8P6fXld\n9ZhdU1/dWRE6rLYHq3yiTbvo+pmbQux81IeL61A+kMvKx9pkb2bhyNoYqv2ifc7W74JGuC9fXZjT\n2EvHdO79/q64W+JdzUOZBWWpevBWdaeaAxav6Xe9ECopZP1iK+qPrqcs1N4HmgdDoS/pvkUUdWKf\nD3U3PNPYP26r3jUQU9N5jdXomfq3yVnlTI/sEui/BC7ZD+t9gIz+dKx2Snd8ZQP5ctxXZeIIcYiM\nkc91QSLaOkkyRt2ORcJkeWMqWwf1n4ivRJMEKQiiJYDCXpK5fgjiYgKXzBj1uigZV195IEU2eAjf\nhQfPQhd+jyQcUOa/MnD7qDb449U/C+8lQC/4GThUhAKez6nit6Wv0gPaCLTnKOjzfOh3vuJOt+Tz\nNKnvTqKaJ402i9R13Ze+8nfMzGzjF+WDR/c1ljdCy/Z5LPbvccT4lC6BLlxs9O0UBFHbQ9Uko/5K\n0NctkEtT2nMMp04A3qEuPpVpwT8U5EFj0Fk+gojPJ3FfLYnMM4oRU8/PgPpySGaBYcrC8Ej14Ybx\n0be+WuDUQKkw1/nJwxAKEtZTOVLsKbogqTotOI3o5iFqLtOAzy8ASph+73shS07IePbxe9A6Q7K7\nEZS1vJHKFDIQE4yPBPsy66F0BSopEvNRPyCswxqHCfZpXcoYYR6K+ggZUFsD5ln/OZe1JvPjpAka\niX1ro6z7Z9uaTztxrQMLNfoiqzUxB5dJaoK6UVrzYmJLe6ok27i9C+010kV9UOppDKS6vuqQfteH\nM7GEMtj5qq7rNbUvzOCztYgyvyXQspNTzbOdEgqMh3CtpXRdpq16QbVltTPVLw2/VTWBKlFA90vn\nVd5KFf6rZZXvDM6tOOvdXFX740cb+PoJc1eWeTCu+1zk1D4Lx/IHr6mM9LiBamtK5Z/vaqzW4YgY\nhfW87KLapTZ6wj122lmwaQK+wbL8rbuv8jdWtAe2odaH5oL8abnCenR4eaTM4qH8/82Y9lH1OdXJ\nmDezKDkGtZ2yuXXtC6dpOBKr2h9Nyuxt6nLm9xbkI8FZkDQtfCOsPcHytq67P2VtLeg/Qhgum05e\nfbt+oraZQxkrAAptf1M+cLKrsbHS1/z5EfeZ/VOVawTyPFYGPfzuupmZxV+X7yeYpw6W4GX7c+0P\nb8zpec0J/3leVjs1Wd9ePtfY2F3Q+4sBqDHmoUZe9X4nKBTubFvrwfqF9iTD6+rD8T58dv7/AhSC\n+kWNkUqN+bikdgm1tF5MOtrrVIso+95Vfz3c0D7+aljPLxyo3HnT7y9e0v+R9UNQzJe0KUq/2SRc\nYSDvg3FUcie+MpGuS2T4zzpSvbomf8nnqHeIeR20njVA34HczEZ0/xb763A491lZ8mtZa1dS1kmo\nTedR3uoO9MzmkfqmDY/ZUl6+kswI5T6I6PtqS/u2WIz9Xxn1ZGCbMVC0cRS8MiAcGwCf8+yTQ118\nn6rs7mpeO9uRjzWP9ZreZt7q6P53d9QXoxPt8xdvaB4e++pMzF9tFH19JM78Ffno0uos99PnFxX5\n1tHb8PagmJUDyeMjpANh9tuoQsfZe2VpxyJ7gp79Jcmrv8YcUsaZM2fOnDlz5syZM2fOnDlz5uwp\n2FNFyozIZEyJnA1AphR8REuBCJMpst1CFSkyUSTOPz8YryiifdKCEfyYB4DS6Nb1fcc/g6aAm6WI\n1gZqiviX84o6hhOKOp92lGkYHJGd4xx9MeujSPS8I1AYp0G9euco8pChyG8IPVA9U+QuTja0NKNz\njEEyOy0aZBa+lyYZlgZn42yIWov/fDLPGZQ0oleUgb+gPc9BM6SnI9v1yOrCczNFAaEE6qaPKlKB\nTObhoerSaKpNIqg9JPOKenb6cMf0VcbMqrLhS/PKtkfP1TalnPow0OB8MZndy1qPs5Gtu4qwHzxU\npL8PV8Lc7B0zM9t4WW1ZJjp73CS6eU8InoNtOcVmXuUsllXOCn14cbSjz1Nq2zuvoiDAGfnqOzqn\neNyR8/g8HqGM2m1lSfedWdPvoin97uhdPX+nqkzJ/LKyPfPX9ZxGVyiAk7vqqxFR3LkFoR6W53Q/\nX/Vk/xOlViq78s04alpzz6j+V14QSiIFS3uzIZ+r7SjTUd0mU9FDiYf+mNmU79xYEYqivKAMSbun\naPTO23+h9nisdowvcf0d+XYmr3Ke9BR9PvtYKIrz5o6ZmcWy8vnCkrJSi7MblF/1fXSoTEW/pvKW\nUPG6jB3XNQ6Sad3ryotqi51PFdFucjY9Trbk/oeKpMdWUUO7JR8K3NZ8cYEMD8lq68JJkJ1T34VT\nqst8THXpc+65fcyZeiLnX/zyq2Zm9u4b3zczs9apbvjBJ8ouDUmrX39dz+8c75iZWQMVo4UVtfEg\nrrEWjStLFofn5xT+op0j+cQGSlxzz8gXH38kn+rsoHJSU9/NvfJzZmb26nPK4h2icJZi3tu5L2RP\nZ1E+urS5bmZmHhwpnXP5xKfv6zx2cVNjfH5ZfXpOhvcU1aVbX39N9UWd46Kjvq50Uac70Zi+uaby\nP/dVPW94qP6qgO4Yo0w2BikUUTdc2rpk+RtHKBSBnOn01C7zSbV3HBRglnl6ANfXkNcQyKxIAPRC\nXH43IAMSBhEwRoUpCurDgz8kjMKNwQXmc9AEgkEbgBaIBTUvR8I+NwvKNQH1JRQu5oMIRmSvwihJ\n+ee8p2Nd3/dFfOC36Y80b0RGZOJQEEgEtVaO4KwJgGiJoNoQ9VWe4M8IwfcRhEvGV76xgM+Nwhrd\n1/1GIDH6Qfg0yNwleL6HrydQvMqSjT+J0R5k29uMyX4JtCr8RH0yh62K5oR2UevVZa3NGf1011fU\ngrOBZHsErp8AY2UC94oHcmYID0qgTfbfR9Z0eI+PADyxPggaj/U3NgFZyro38ZW8UC4KpFSQjo++\nSoEW+Uv5tUlgYH0y33F4+3xfHAAfSWfwWdBdQ8oTRrIiSb98hmtlvfURUNb9q3wvAVS4fMmLBEjP\nfqhvQT4Lgc5qcY8g/DQxxtMQLpjJ2FcnA9mC0kh3rHEVA+0zACk9BcqRAGU0hZ8iNKKMIZ9Dxi8i\nimW+umf88ggIM7NDstWBAziiyABn4WJIZZXVXstrXm2Aaps2Nb+14IformsNL7flu9tXVb8ye5XU\npjLQIbLaEy1jdpEig0yx50qoETWU9S6i0BNCVbR+IWdZzKtPaocgUlLa1wYGmu/3psoUT8HGHMJ5\ntZ5X+SKgnY2xbxGUZ7raKyYaer9a0hzwCC62wlB7g6OJ9gRBaPlWUDFpwTsVPNbzzq/ArwH6OJzF\nd3sgoUBLpIKq3ylcDaNzNVAYJFUuBGI1DrLUzLKLh9Y9VXvWQVDNLGkdymxpvxAtgh7oaL1vFlBx\n9Tdhl7DKivpwAy6v6D7jnH3W9kTPDD0L71Bbz+o0UPBD7ai9pddJAmXVgO6b3dd1FyGVNeipL6sz\nqnuqDZdYV88LnMD5l2CeDWgPVLshX/AO9PwevGqry/ClVbTGr7D2BkENXYAMTLaZ376i/XG2q+/T\nIADbJyDMl+EBBa2bm9X7wh5qpCsqx5thrb1RFqzZbSEfP35Ge4TxvsbEZl/tN1zQXiMEV07iI5U/\ntaixeTRSvdpX5HtXdvW+DLpuu6RyXAcxunQAcmio9n17Vs8v7oL2KOj6ekz3WQ+r3v78HrylMX1Z\nK8DbEkqAAmuyjoA0PKqqnhN4t8Ksr4Go9nbtOnsMeAKN/UGylOB7Xd9r6T7dC93XVwROz6i//uNf\n/mV7+3//cxt1GtZoadwtX9d81cTtq/wHa4/U5kUQ0OVloae6Pu8bJ2BKK6h/BrRfPDkF1c+eIwMS\nroDS6uMtjbM+/2niKX2fz6GuxN6kVNDz8tQxmkRJCyTy2jM6LeGvO8mifsfBGfPgPPRu6z4h0EQx\nFGAHcIBtsM9e4r9OEL6hMUjqaFDz5YT/bB68eD5vXNd0fYa9m/l8RH8LNNMhZZw5c+bMmTNnzpw5\nc+bMmTNnzp6CPVWkzOySIlG5JUXrvLswXu8p6puFHZ7EhNVhuh6HiIi3FUG7ONHvjh8q0lYOwyHx\nvDLQ7UecYe6CsIkpGssRZBt4iiIWOfceSeuBy2RiGwmixqAmVlGa8VBVOjlTM6YLQjd0C4o0xuGc\nSKAJPzoHosM5/OqhuCQuOEe5MKtoaQSW+RBKQEEySONlRYOjRNwaddRMyELOcf4+dKFI3i466aNI\nzKZE7eYyil6mFuCdKeqZo7Gy1wcHisDGK2qLHuocc7ee1fWkZ6r3FWmfoNSyviHkSRwkTRVERQqG\n/lxKn08LnK29pA1OdJ8BilshVCOuLou93Ud4eKQytz4Qn8WDvR0zM+vUVP7l64p4L99UH41q8pmL\nh2RdEutmZnYNnh+vrvbaeSjlmNM9lSMzL19N3VI7ziVRs0KJawJr+933OJdMn195UeWcX9P9Hzf1\n/S6KNImu2qW0wlnfZ0HcgGzaeyDETeuxos3xpPp8/ppQIes3xUrf66kc9/Z13/MHQlHUBipHmgx2\npCxUw+KKMhmFFflOwVO0+MFjoTl2Hqmfew2NkYV1td/a8+LhSMblPweoRu0eHNN+nCstqr5+Py2n\n5C/dlqLJ9+4qS3cBWiM/qyj1JH35qclHLpxx1nz2TK+56xov6QTcMEvw49SVzWj7qCHQTj3/Puf6\n/RTOgdWE6pBNaELY/5CMwYnuky0r4u6P0x//xRtmZra0rjpPQUqsPKc2b4Poe3CgvvnGV3/FzMyq\nAX3e7xDJR42oVUVhB16lC7JIS5vi0Nl5rDZ8tKf5b66gPozOyzeXN+Ujj36gMX7I2JxkNZ+1gso0\n3ihr3izA2XUM79D8KoggMqXRdZj+zzQWh96I+0Wpt8bGe2Qu2204uVA7ic+qvTJ+H+MDdz/hvPtL\n8q1aW9mt/oyeO47pPvcf6boK3ASXtVV4mWJr4qYZjZVVmymp3v0aHAgnWn/GZa1PWRTYLI7yURc0\nChkQD9hKFA6ZIOftp76SDVJ0IxCMHuiIWAd0CfcPJs1siNIHXC4+oiQB4iXAuWiDP20QVV8Ep2rb\nMGimYAyUAOpNiREZuB4onjCcMmHdJxZmzQFRMwQjMQUh4YHg8KK+uoPK53OOBVAyyaGQ0PcPgo9Y\ne0GQJD3S5AMfegJqgOumtMkUbq44yCGoGCxEZnB2UfX4ebhkZsn43Xv7fTMzu/s9Iftu/oLG4GUt\nji93/TP88IeME77yjcoThZNtAEJk1KK8HDOfojAx6oKeoj88ON3Gbfo8DuSlT3tNGEtk9Xogn+Ie\niBS+CINkGfTglpk+Oace8KYWHKPqQXNn4N2YgMjxWTZi8G8ExvKjARnk4cRXqND3E36fiNE/PTL/\n7GWSIJl68CwNqW94krYOKkQ+PChCyjIM6mdEn8fhT5iy34rAITNq+YgzHy2mz+N97atCQcYMvttD\nMSsU0udBuAMDIGqicNYE4PUJtj8fUuZ6R79v4guzWTil4OepoNRida2trbHmt/AsPgGKqdBkbZ/R\n8zdqmm93UXxJsJZOF1BiQz0qnNPzeqiiHKP+tnyhzj5dVN9l49orLIE4Og6gwAmip8a+cwbUahsU\nW2+MgsyynncER4zvg1FQeJmU5t9QU7/fTup96gTeqU348FASi3Thk/JAW1zoNX9F5atWUaSc8n1U\n8/0Q5FQuC+dXAhWYIRnumuoxX1Lm+pT/Cem66j8ZPeH5iB2l7YK90xIkYZ0eaDK4foI97WlOPNUj\nk5Y/VQsJu6zFynK22mMQLysq8y7Iwfl5+v6x9ig9lP4mm+rbOu9bz2oNPYebqgViZXqoOmyMfqL7\nD1V3L6i1q4QSa/1gXe+Xtac5PNC+Ofas9p9eVfNIakb3f1yEs4altRjUWj0IiWsxOwf/J+tGLqF9\n66cZzV/FiPaBo67QCrme9koZT/NwJwWqaajndOdA0bHfDvq8HEW1+afboLE8tdNwbUftGNFYgcbJ\n9uDcCaW196jsq/6ZGV1n29rDpWvaz94FQXn9scbQCK6y9KquPzkQYvxLLe2Djzv6/xAcas8VXtCY\nbvI+Aj9Wak97lsvaZKL6DQYow4FcH6MAPMY3I/BHIapo/aqvOKzXMOp8hrrruA6qmXk62Nc6E8vp\n/fW82uMvrxuTWssm44CN+Y/V3UfxCbTXbE59UGb8Dvgv0TvWuPERdkmQkM0j7Y97Bp8lJz8irGld\nUJp93gfgrgmOqROcf2P+AxkKUj4fXSio+WXEmtsHKR8MsU/t+erEoNW6eg0W2H+ByrIsSOYR+1OQ\n2T5mJcRzI375mAencCH6p0/GIX/PAzqYvVovoD1SCPTsZ7xtf4M5pIwzZ86cOXPmzJkzZ86cOXPm\nzNlTsKeKlKlXFd07u1BYdomzwi04GupBzoxFFYFKEpkPtBVBG3C+PdAgrdQnsl5ShCyf0e+TyFz0\nZ/W+WFS1o6g5XQSI3pI5CXGmLcD57+lAkbOTYz2/WtLn8bgyIe0xEULODsd6+v7xAYo6cZU/FeNs\nW1QZ2MGp6u/VFUnr5BS5a+3sqFyHQjfMbyjSny0q6l4uKIpcKZAGOyRSSWQxllP0d5GMdLyYNQ/e\nmgjnuoNEF9OULQuT/SBNXWAtj3Luu7BIBL2hqOHBUG0WJlOWnlHUsoTi1AC1njFKKyOyPP4Z+sva\nEI34xKrqvlRQFmNjRlnvFj60e/c9MzOrHCgjkCyB4PmqMgNXacMBDN67Hwsh0y9w32d0/rhFCvEB\nalK1viL9s8+ofivXFDFPoS7VAcnTek/Z+5MzzlvDJfD8C+LTyG7IV3Z2UIECgWJDRVXLLwodMH9F\nqIYEicqdDxWp34M/JEYGYeWW6r+2vm5mZl34lo7v76h+Wyp/nPafR3kova56zKA4lEKVZVJTeT8G\nkVM/1H36UbXvtRfUjvk7QkyFJyr3p+8rY3D2SBkCKCDsylVlbmYW1O5Tzn9Wj4Xm2PtQmZfBoz7t\no3rNlohe+w56CZu7DVrqDLWehtp4YBr3W1sq48qqEBFXXxVzf/NAWZHDR3pdvKI+zb1CdutA4/6w\nKh946daXzcwslpMPdlEhisAh8uw1cbRU78rHvLZeKy1lDJYD8oHNFzT+P/hIfVZ9hK9daP6q1vS7\nZgsejxIR/KTKdci556989YtmZvb8qzhtU+U9P9V8sP1I88+tl15SO+EzB6fyvZuLQledB3bMzGwK\n6qJAFqWOEsQ+HAejC/nIxqYQR2cXqtfJY2XH5uEjis2rzxMpIXPO4aWqe6pXHz6jL/yD76gdm6r3\n6SP1W28LdJyqaTdviycpE9WckkV1KZf8fPxUU0/tc/8ttXcSJNLVWxqjIdTzImTAY6iGZFc0j9ZO\nUAvBybugRCKgPsYB+Y83RX0EVb4YZ5uncAQCfgMAACAASURBVBHFUG/yVWTiKC8MexELkxH1/Owy\nyAaviy9EUR2ChyEUJaM2gLPEz/YOQTyM4cMJ6pkea5z/+zjKOBxFt+kYZATKUwZSZAgnWSoj353Q\nRoEQiJ2B1sZOATRnD3QQWfwg+Z8h6hAx5r1uH+QN6IgeWafBmXxr/0w+HCnDMwEnyt57yoJ3E6C9\nJppvTkAqtlD564Uvr+JmZjZEGSsCUigMqmEIh00MNG0/AIJmhPoSfRj2OXdA4YZBPE0HcDKAWBrE\nQVXhI0nQHF2ylBnQDBPK4QVRfwIyNJj4WTe4egJPxkJoMrEgyhYBUAY9OF4iMfY4IH1aA9UvwbIc\nRBkpgs/2WqC5uH0Ioq3JZ6gX0GBk9gOoV2Ui8odJf2xDEGMeUJYoHDE+kc0E3M4YLq4QiLJWRoVK\nUtYp+7EJylgheH88EIQjePIC7HUCQZ/PB0Tf2B9bun807HPP+Gwzl7P0MSogH2nesufgIoAja7op\nn8hneM4RPB89Xbc31cQWBfVQPNaYqc2ozWbxES9PuwXggwCoUe5oDU/MaM09MCFVOqsaK9MmXAzw\nQrXOQAQuyie6cPEshoUWaFU17zbT8AFm9LzSCMU2D4TPsvaGvi9OxqiHzoEMOgXtltb6uAQX5Bil\nsI7PxwSPXxIRvcpU2f25pOphLdSfoHY5Nz2nOlR7zzXmuC/8H2l4r041Z6RQLQyi9JPsP0EDRFba\nNriQP5z0VN6ZOvyByxrDE9TAyqALvBOUIQeXz2GnH8EBggJV70J1X0M5a7DF97PMI75C2FR1GM2B\nzjxV3VfzH5iZ2eNz0K9nKktnQ76/3pIaZ+1I+8g6Y+w6/02Ox0K0zN2W73ZbGt/zI/nCXlBrdwS0\nQwT0fT7Lf6SG2qgcQCWqrDV6l/18cVd7gnFG9Z3u8x/pNa2dFy09Nwcv3mJX+1nAbtb0UBDbU9/m\nDvX9yjxIanhAinXmDvg/7+bhKlzWWKieaP88C+q4YShq5YRKPh/AkwKabVTDN66q3t1zFHMaatcH\nOf0viKA6uDAjjp0HKbXzNbh7+i35ZuKZz4e6u4CjMhRgwYihfggKZYIiZdjTmEoznxtzh32m7gf3\n0IQxB3I2DfLTQvKbJBxg3qLPgfYE/VVay9soEbN5FP36ExSa4JCKeU8U/szMhsyfU+4ZMX//I18e\ng5ZkOrY8J2P8/4wG39kIBdcJvpgAadNnPxaDw2XCXsKvM1W0EMiaKGup57EmcsQmDBooBAlhOAIX\nGWjjKQj3KZ8HpiCfJ75SIWsd84wPIh3SZwHWrxi8etMMazt7sHAAtC/8c0P76euNQ8o4c+bMmTNn\nzpw5c+bMmTNnzpw9BXuqSJluX9HbKeflkteVaU7GFSuag005u6AoYe1IUb1Om8gVWakFFG9imXVd\nt6/I2fZ9ZdMaW4r2Xs0rNB8jGlyrKMNbXPWzYyrP/oEyyckFzjP29dwpTNa+AsKE8/BBzu1NZlE9\nGiry36zpftdTKldyUVHvWEVR1VZb13mwyqfRZy+UhEoIwUWTzYE+8Qm247pudU5R38ZYEczOsbKE\nJ8MD2kmR/hs3l2zEeb6jfVR+DnSPs1VfhUF1K6R0JnOW7PD5MfwZoJlSPncACJOTbWU1Dt9RFLCK\ngkozqAjwlHPEZSKyo8DlGezNzAI51W0RFvR6TUiYI/hyHrzNeW3OUi7fUrmzm/KJIucG995TdvwU\nThabE1JkY12RdT9rt/+pIvTNhspfXtP311eUxRnT9lsfwdWyredHO4pEL13XGdOZdaEyIkRdd99R\nhP1xFd8i+nvl5vNmZjZfXDczswZM4A/vfmD2nf/IHjyQj87cUD1u3FZG2Mrqp/OGfOnsY/Xr3kfK\nciVz8um5O2Krjxfke4UZOCKaKtcZKK02SJw6fCwxfHuJ9sncUHsOUda5/4muDx/p+YtX1T6reWWp\nYjCqt8mEn7+t9jre1/W9hto7Cg/SQobMUApOmeoTxYS/zWrw8YTC8vHonFJsV68oe/PuD4XYaP3w\nxyrry0LKhEpqg8qbauP4WJH8K7/wsso8kG//6N13zMws0YXHIS2fXJhX2T/Y+tjMzNbhmMou6vtg\nXHVKJfS7/ftqg2JaWZbNdWWnSgP5bAoEiBdXH7VPNY7nrsCRdV3l+/GPfmBmZpmCIve9I42FhWX1\ncbks5NCjj4Sy2obvJ5GTj/7kx+LbSIPcaVTUDucPlKUbcpZ+OS/f8U45Z/1A5fnZO0Lo9IrMdx8I\npba3o3ZOlElxIqBVvA0nwkiZlB98TyipB29sUW+10+Y1+XbjFGUwfCfSJxMCP8f1orJXmcTnU9Y5\neqQx8uO/+BMzM8uuaF156ZtfNTOz0AxKO7D512I8Hz6l4UT+5asChOG2mDbJqHD9oIdCjqd6ZDhr\nHACtMgbd4ZH5HQ90v0BkYg2y+XH4yyLwaAzIHg1QsZuQ7Q8PWcJRShnCZVIgQxYAAuGBcAiRpUnk\n4ZQBeRMaoGYEf0ezrTVzglJMHETGJExmNMl5bRAZMdT4omEQFnDhROFH6pE1y6JM0x/ofTSvdSEC\nl4lx5r1J9r5LOZ+7IVRXOKX2eft3/tjMzEYTzVfpn9VYysLLloRTIJzw2VMuZ0myWWM/c0lmMgzq\noANy1FdunMJnEhqCTGHvEmc98VDRGPP7CDxEURQoRkHVLwCXTIR2m8TI/sMpMA0xL5KVjKdRsYLr\nJRR9sq62YmZh+JK4zWfIqyFcQuGOyp+O8/kIXhY4a6YJjYWpL6bF7ydw2ARzlNvnLvKzl/76DsdO\nKJO2SQdeBJ+fiNdAGIWuuI9YIbOJkkgMX/TSoKTa3Ad+ojE8bh6+F+gyZlIq4wClsSk8DX6bxhmP\nIfqiC6/DZW25rXkquKc+/fW1XzYzsz+eE5/RCcom2ySWgyAHQ/BFhWtCpIxRXkzMoS4ahEOxDf9G\nUPN2lvluktL8fHSsz3uPVP+5nNbiWpN9bIr97bH6sBfUnqS3h3oce484CHJ/TzDKqB2KU/3u4EKf\nJ+DMCaL42J+FoyHA/pUMdJ72ARxmA/b1rX2tM8E88yPrRgzVuT5ohvCR9mYHi7o+BC9GocbYACXd\n4bkxUBWpElyUIY3BaZQ9KwphvYAvx2o2jGQtUdK+ONcE7ZxWvS6G3J/1eh6E0HGxTnkuP5cs+Gpp\nY917h/8Mh+MXzMys2Fk3M7N6QHuMGNxSsRPt63K7ZOvhY2q8orJdvafP18r3zMzsrCufPtIWwqIh\n0FLb2o/Vl8Q5cyODItZdtfV0Sb4zPsKXl1TOZk++moc/7eRUvhqcRSFnqr7OdbQf9VXaTlZAcj8A\nkZ0E2bGlPUiH/zRr91Tf96/r/Z0uKOGs1tiHL6jPrr6j5x7GNDauVEH2Tfz/LUIpDzqqz0VMg61c\n0h7LV3/zQJwkPDXQXRCiy/AVvVtQe9/akc91ZnTfwBwcj6gV7dxQ/1UH2lNmgvA9zep/wiZ7uA/a\nwL8uaSO42kJwdYVZp7vw/QWnGqsBEKbmozHGGpNDxnIEHpMI/InREQgeeBCncPWM2vChguZIDgef\nlWWczVs06BlNbHHm5/BY48rzFfdQIYqyVowi7G9AlERZewbT+F/5fAoCLcj1vireODTmebqf5//P\npS4h6hzw12RfpQ/Olhjl9ChPHIWxIfeN+SrLQVTsxj7/kK9syfzHehHxeXtA4ESYDych9jS+ciR7\nMv93YVSXgqBd+6z5Y59Hzhfd7P30/8AOKePMmTNnzpw5c+bMmTNnzpw5c/YU7KkiZVJJtOXJeHbJ\nOHbROW83FWlfg9m/DiP1FtHLdBT2/HlF0NodfT/gPHTo3FdG4Jz9GlwuI31fu1DEfUL2LkF0ssfZ\nuVhEUeOFWUVHBwFF4GMJdNk9RYsJHltmVtHdcpEIPhnQKGz6TTgY6vso0xD5j3E+3GDvT83APdDQ\n6xkcExaBW2KkaHO352eMFJm7OOb+oGICcbKeo4B1icBWm/pNIs65vYoi0dML/aa5ShTzXPfqVhV5\n71T1/Y2XxapeXFOb1I70fc8UiU2GVMbFTfFAVJpkmVUDC0Uvz2BvZpaKqg0mcBtUKopkHz1QBN6i\net6d14U4GYfUx6OmshvvfiyESvdUWfJkWWiC59aFAuiRid36SGiIxomeM3dTCJHlBWUcJkSHH70l\ndaf+Y6EGkotqh9tfEPohShb8BNWn9rtCAxyeqNz5Itmo27p+A99qEWU9Bqlz1tAYWNtYNzOza88r\nAxGmfQ/3lC3b26Z/tlS/8owi9es31U8JVJX6RHkrdWUAvDP1ZwtVqcmJfCyQkk/Po7KUu4FiUVP1\nqe7I9xIo6Sy+Ko6Z3ISsXF/32d4lc0o27Lyh1xScCImCsnfFG+qvEGOy1dJzQjEyA5ewMSipIeeO\nU0V4GeibF55nHAWVwQxO5fNrG/KBVk+ZyJMPlWWJPtZ8NDuj12d/Vln6+BGqF6gJLd4QeuuDU/li\nq635oXKi7yee2ur2V5Udq6D49eA9ja0O56On87DCz6hNSufqo+NP1ZaFJRQbFtWXz/2COGIWonr/\n/n0hT+KgkK7cWjczs6WbzFOozr38c1IdarU0r2a7yqzm4LLyFXqOjuTbX/6Krg/NqR0PPlS5OvRl\noagMyle/9hUzM7OkfH8f5a9IX/Xqnut5L31R7XDyUNmpE3hB+qA6vvBdtXMsqv45u/tDMzM7/Vhj\nqEJGIoEqVn8IEcolrbCmsfzK6ypvbJ5sH9xj/TPQHDn55Bg+knadsUHWLZsBoRPT/H3aU/0mZHBT\nC1pP0mHN/5Oq/LINGiELMiCYVX1yM7rPuDM2r6Jr0jnSVb5KEYiV6CqKM0OVrd8CkcFB5wCZrw7Z\n7SjIvmBbZT/tah7qk9GbB/HopTS/XdRQbuGsfqyoOgSRrmmPdL9T+JSOupp/FjbkI+WCnhuBa6Yd\nUfnDICZtDMImprGQRNFgAJeMd66McXesNl2ck6+sv6x5+xRFh0lU5SmuaOx++evy1bGvoPgT6j0G\nrnVJm5p/nh1UE3mrOJCRQBqkj48gQWWqO6D9QYr4x98HIFOCZNsiKMb0OPc+IXsXGajdpnCRdcl0\nJkHPjcm8k/SziM/z4WcVA0+4DMLhkBnn68f4yRDkYxyerSF8LaE+KAQ4woKQC4W4LhhTfwVR8erA\n0xJsgJQBxRLugVL083wpFXTS7hviGzYeeJSVjCdn7adkSEdwCIxRGhvEUa/knh3O7sfHbLi6WqsT\nGV3fAjEzYZ5I+TxKEX+MgAob+qoYKJXRNpe1CiiorZ7m2+99749U/jPmrW/J5+biKl8LcqxeTfPG\nYgCkNJyErV0yu1c0thsbIO9ONb+eVeGFo/PL+P54zkczw2UzT9+C7O6j0jm3qHm7XEMtpKH7DmLy\n5ZiP0trVfc4Kum5tTuV5dKR2Km6q3Ycd+hyOxQlqT7kllBXh1ql5GrOhOa27s8dl2k9zRSCiPUvw\nRO1yxDw4PcFP5jQXHDM/R1FJSTS1n+6WNS9PqqD8UL+b1NSugS6qVsknvFKj/YllWTbaWc0xJfaM\n0Z72jOOq2uVoVs8rtvS8s2nHLmshEB6PGtofhcpqo+eOtbaeMq9no3pW6j7cK3BLnS7o+5WU1sge\nvECreVDBcDvGh5ofgy3mK9aD4ZrqEgHdu8vpALvFdXusYYkdMzNL17UXys7KVz3QAIWE+mp1S5/v\nvQAX2FC/T++qnIt31Be9htoqOdb6MPS0D70YgnAp6/UKiJ9dFBHnDSXLCnu55SH1XDczs0+X9Hng\nHPRFRwifOrCG66CjIjX5aPtC7Tq9rc8ft/Wcq4Vd7qO5IANazIOv9NDTfeMZvY8sap0Kn2tMj5qq\n9wKI1MBVePfgP31R1b60pTO6b569QA8VpkxQ9QiAlJnkfQ4v/a4F/0nWR0IOUUZjvu6j0Jn0EbLw\ntgxw/gQIm6Gvkmhmmbm4JXsxG4RBdoB6nYDGzc/68zPKkKxhOf6bBeGoMjhc+qBr49RhFFKdfEXC\nJHxEgbDqMkDZN+HxXyKBcuQAxCNcNB57iCjrxQiuwTyqcENQUkn+x4fg6Rkx34f5LzSCAyeAglWS\nNbA/gssM7sDgBHQyvD6WpZxMB6kEKNOp5ssAvHxZEJlD+iIMKrlvP53nziFlnDlz5syZM2fOnDlz\n5syZM2fOnoI9VaTMOKyo52kTRQGiuT3OsgYvyCatcZ46q6hi6Y4i/f2pIlH3Ffy0GpnymTlF5IPz\nnE9H6eEkI7TBBUoR/ducQy/q+kFOoa/BhZ53YYpCX3AO794pCjGw4rd7isxVTvS7aE73DZMhPUG5\noYJKQIZMa5NM6yIqLmc7in5f3FO0eBa9dK+p5xzXOYMLc/lZh2g3yKHiqso/WtPzZlY5C5wEWTOb\nt2ZLZRjmlF1fuymeilFcbbR3T9woJZ4dgRCiBdqmEVa2Yx9ER4wzjYOMnh0vKjvhFYUuCnOesJtR\nFNXbV90/Oxt5SZui3LC9rzY62FHmYGYT7purQitMBsp6HH8iXoutitADqZaiknMv6rq1W+rzEZmH\nvXfEh3HWBj1xlUj4oiLrCTK9j98WGqJ3roh9+boyG3N31lWvnqKwW6g7nd9XOdodMr7X1S5z67pv\nekn90AapdLatek07yjItg3BZfU4ZjOZE7bf3qdAXRxVlAIINle/KNWUkrr8Ii/5IPlyv6/mdBiiH\nJigN0As9skmlVUWNy6uqzwIqK33Y6LsV/T5t6u/0oq4Pn6s/dw7V3pUQKAoi8n2UMSJpvaZMYyM3\nq7E47Ov6TkfZwwacNcno5c/552GW77eVpjimjapbZGvI6uaiuq56oM+Dy5pHwpxxbbVRMePseCWs\nLEkxiYJUmqwJyjLTlK6PFDUOS88JibEJB9Tun4lrZgffT+aURarjI1nGyGSfSDoZ3MlIvlVpa2Lr\noHAVzsnHlheVCcheVR+U9tSmH78jnxu/o+87YZTG9vR57p7mjyUQg+eP5cujEAozWWUi9v5U59WD\nnAV+8Y5Up7yC6v+jN5UZtpzmiGsoe02mZNHhBeqmNfY+fOv7+hxVouuz8ukJ3DVv3xdK7fSxxsby\nSxrbsbr6q92FY+cElboP1X+eJx++rM3Oqbx3ihorYxQmdvc09rIzapeVrzPmdjQW33ogBNUZihCv\nRNQehZsgrbjugO9vvibOotmi2mGAWsnh3R0zM6ugcEMS04am75OxrN090DxT7JPF4bc1+BW+siml\nqGRObTUEOditsnadMv7889kl+fY4IV+v7IhjoP5AvvnKV8QPNHtVyMAc/Gj1jjKt/abulyALnodr\n5A8/+cTMzO69rb779u1/ZGZmkdtaB87ehdcMZcBoGY4R0ksH94X0KxTlkwtzylB6rP3n8POEq7rP\nG2+JD6ozlQ+EGGPJmxpTHzx408zMtjry3fa25tX4Mo18SRvBzzYZ+rxQZM84eh/y1aNQbgjBrTPg\n3Pgk5KM44B+CYyZkoIDJxk0CvgoSYyaCutYAdRZQIj14TyIgT0agPwYgj+IokEX6TxQdIpORRZB/\ngk7FAiCRpiCdAmTrxjEypuxVwiCtRihIRsgijkGpJED1hoG/+BwzHdAwQRTFgpSzF4hbZIqiCyDZ\nARnWBIiWwcTPZLLvG4NKArk3Zp+Vgh+uD4poQtmmbepNmcbwcARQSByQyZ2C/vF8xRG4CpKRz5eb\n/Hu73zUzs4z9A32QVbk+HWueTQbFk7E/0Njw1jSft3Nq2+Y5Y6HKPjKi+adMJraC4uFmGJVNENSV\njFBpc03URfbUDkM4vCZ9zUMrcCS04Vqh6+2cdgyAtu2ATO/ATTbdAGmzDTJkrDGUKKk8efhHvCJI\ndRS2eqeqfwUloAxchkFQYKGYftddBYkyVDkDh0K5lVNql1P2ZKGS9gAzQ/g5KO8ARcjgsurv7/dj\nWXwzgNIZqJHQkLlmLLSHmVk41rI+76cmBOn2keqRLareiYzaY+1Azz0OqNyBzOU5ZQ6iqtvGHJwx\nn6htHi1r350DedE9Ba0akg/Mr6uPo+fymVFc+7xnKtpbtAKaN4c1kOGooy1s7KguDdaFotb2xKnG\nUDauNfUQ1IHPe7HfFKJ9sCLUUqgCyiqi8i23xJOU7qnctz9Um53M6rntq2qr3aHaamWF/WlPv9+G\n5yk0UNtWG9qfzgW0Dy3BnXPBf7xOE16fPGMzKh9uptX2Cyd6XnNH18dDqtfpGvvoIsqYnK74wjH8\nRDOqxyArn8jXNWb6h3fMzMwy8rnxWJ931lS+pQOtm+0Vvc/AOfPBifhPb93TPj0Oh+OPvvL5/t+k\n+QceiWuuCoFg7PO/JzxCoZf1IwJHWgbUhecrOMJN5qGSmPaBtvRz1OdNAQUTGvn8KU+QMuFk2kKh\nqIWZD1IoOo5BMo/gR5t4qKfBL2cZX/XI5xWjTCw+gxHPgEMmBLxnOvFVm/BJOCEH1DXOf4UIexlD\nGTgBApDp3BJB1ixOrqSYNzt8PoTjz1cqDPoqTJC0pkt6Pk1tkTEqnCDvRiimDeFZSvEfeVwAIRPR\n/jcCymnIf68Aio1BfCMGf1B/9ITH568zh5Rx5syZM2fOnDlz5syZM2fOnDl7CvZUkTIjVIe6E0Vh\ns2XQG2SFujVlOAbong8HijCtkeHuEnlr7isqXEkoo52+qtfuCPb3iM629okedk4VEsukFME/I4Pd\nhf+i2lckLdlSBMxPNdSHisRNUHnqBXWfvYgieuOhotRNlCzaCV0/qCpSlkip3IvLcOAU4Puo6fNz\nBN0DMJrH4N1oDhQpTOUVFY6S/azBz1FLcw58QPYwqHoPq4poZmohm0Zg8Oee9WVlixtkE47jZJFQ\nrwhsqs0mROzHY9XtYKSyTBogTTjfHaNtshWVLQ+fxGCsMs8AfEhHONt6SavD3xEqq45Xn1e5Emti\nb2/tKsJ99IEyCCd9ZTVmZzgLe3PdzMySnI9uw6VyuKVMb2Oi36/fhj9oU4gajtDbzifKILSa8rGs\nnzGGU2cMr8/DXaEZ2sdqzxRn7ZeeUWagvKZ2z8RBSxwLeXR8ofJ2x5wLh5NhflGZhiZZ9FPUlfpN\nznunlQGYeU3lLsFNM27p+bVTMhZw00yrjAXOYcaCKkf+Gb0uonCWzcPO31Y/HjV3zMwsHiETD4Kl\n6qsowUWULKh9b5f1+1rMn1rIWhH1ziY5d4nKVLeh+p/twplBZndSmtplzc/8pdK699ysnhXj7Hwl\nomcsFdVGH91X2ydRLrj1jMZC51RZqnJW4/L+I6EWfKb6UB3Ei8nn+6Cj2kdCpNz7kbL1ZcbYzUXN\nLycN9eGLLyi75b1IthqenosqWZi8nvv1b/+crsvDu1FWvY5Aznx6V2iAXEJt/do3vmFmZsUoSJkl\nlfNL3/iamZl9/9/8jpk9UV168XmpDY3OOLu/KJ/44j/7D8zMbLqkvn/j3/yumZk9kxfy4+Vf1XPO\nDpTVyzD2+/BSnD9SVu/ZXxO/x/yi+uH3fxO+oHO9pkrqr7klzS1fKMkHL1Cg+OShUBxx0Fav/eNf\nUDuENAf923/535mZWReusMvaMcoPH95TBnv3xOfs0fNfgnMnD/qin9b8eXqi/tkCDVYcacw9O6+5\n6FFbaI5HJ/KX5dY17qu5r40KUxBE1QXzfPVYWcfeUGNzeWXZZp8hqxvTNfffEp9Ora62vXqu7493\nxZXVqWpNHKM404FXLHik7M6rXxMS5tp3pCg2KKpOP/i9/8vMzD7d1f3zm7pv7Kra+PRtzadv/Yl8\nZuGK1sJv/JNvmplZZk11n5toHsi/qExuELW8j976czMz29lW2zzzTT0/6+VoK2UuC109d+XL+r54\nXWP24A2V86Mfi1cofay2ffkfykd/5WXxAu22lLl89/sae298ImWt6/PrZmY2imnMXdZCcK2lUMEa\nhkClZnyYB0oQqGL5PEERVIx8lqMREhY9snwZsnIBMpbBCQoWcJV1fIUJso1huGfCMT87D5kAGWnj\nPL6vsmTxJ0iZYTduQzh7gnB9RVFXDKZA57VBWWQoN8/rkllNc55+Aj9AEK6dDkpF4bT8LglPC6AV\n80D2jOG8SSXNuqhi+Kw3UfYafVCsnqd7TOH+iA9QtkqDUvL8ujW5N7wS8PRMQ3DrwbMwCer6Lm2W\nBJHdD6HaASHQlLYPkG2+rL259T+bmdmOaV1ZV7GsDIJvuKF57OgFzSODn2h8x0A2dihfZh20WFtt\n2TrSmr9B27cDWqcSY60LparG3HZabXtljgw0e7FMRvPSCTwS5aj2DOMp7ZsCORTSmE3FQbbA93Fw\nJJ+aI5teAZ0QmwoR2BjtmJnZ5Eh7yfEV7Rniuyiv0Yw5FMFaCfngGXuccV/lnZ2onskrqJ+gcFbu\n+egulecYtGACnrnpquaOmRZIq4yeM2yqPgHWoURY824TDozljtpRlc5ZPaT3S1X1Tzqv/jkJghI/\n1pi+WNWcu1gBOZu8Zpe17giuroraOD8A5Z/WPm8+ALffIiioqvadA/ZF/aLa6lZea9yJpzIPQfuO\nUvKxGZAob0zEURgoqO+WPoT/DqWpblV9tTLVc/uMmfOM1ouZDkg6EHvdgtbKXl08b6n0jl6jui7X\n0P08Tz5fX2A/3tP9Pw5rHckXQIGmtdZl6/C2HYJ2mtF8vwuPSDHBqQlQEE1P604CVdCLuu4bgU+o\n19bvN95V33g31L4L8Hnugdx+BpTxIfv6NPvRQvyAeuvzbFS/n7nQhQ9vgKJuyueDff0PWOJ3sZF8\nKJZFWa37+XjujFMT6SX5+qivvV4GBMs44nEZ/yVBYPoKjxNQxHEQNhH4Xxoe8z1ccDHT/QqoMaaT\nmlPG3hNcxurCkrX7YyuFQZAD+mzB95iGn26cREUNBLqPnPGRKDG4T3uUPc3/9F4LxBunAbqgMQvz\nPpKEslOkOH01BBIzHWtfHfVhQKBQA/0ObeXLJqEQiaqn5y/dI/iY2LdDdWMp9pnxOZWz3kD174IT\nMFmPesnnI/y3C8JdmyQ+4eXh2ILHkuIpFAAAIABJREFUzWOfNw763DT6XWggX/6bzCFlnDlz5syZ\nM2fOnDlz5syZM2fOnoI9VaRMj7NZzbiilo0RGYK+r7ij6OCQc+5eD+WFPpwFIGkO2nDCcIa/OVT0\nsodiUCiqSFYppc8nJaEM2pApT0CmNNqgLsKKImZQX/ISiuSP15WZjpBJ9zj72xkLDXGcUEhuwnm/\nybyit6c1MsRhzrjB3F0F2XIcVBR9iDpBOqZo8IhMQwXUQiaNmoqqYQNQE6c9RfpSGbVX7IL6wGey\n0o3ahPPY4YCif4fHKKVwNr4+ViR4hXOAZ4dkxs4UNQzDZ5MtKaLbg8G6OuA8XVx1uSB7f8p5ukwR\n9Y2I2jZSEhrhshaIqpwlOFg8siLHZ0Km7O0oYp7Iqo2f3VBfxJfUuSHadP98x8zMhmeK2IdI69xa\nl5JN4YqyKx2yJDu7yhSMQZjkb6j+pfLCX6n/NmzxIdj0r5Bp9lFNoYJ8r0fm8uRI6k2tM/nOhPPP\n0Xm129qsIuc1gsHnDdjwE2r32TX55OzMPA2ksXEK8uasodfAuerh0Z8BUFolVF3KZCiiRT1vHJFv\nnp+qXueHGmujMWg1uAc81LTCRKtXV9T/8RSKNSNf6YIMCedJEyiKjeC+qLVQ7TpCJQCFsgz3iQ19\nva6/3WJE3GtHemZhyllUIv3DYz3rzkuvm5nZ1vvK0m/9vpAPt/+5fCYTUZse/FgZzH5DZf36P/lV\nMzO7/+ZbZmb24Y/Ey/EKCle/+sXvmJnZzgO1/bvvi4PkSy/rebU33tV9E7pvBpRSCr6d3/zf/o2Z\nmb34XakT3XxVqIGDT+Tjr936upmZrb0ulMK/+hf/0szMvvdYvlz+z4VSOKxpbHz0I5Xzha8J4XL7\n5hfMzOzx/yIEyuY35POfPFQ7/Plv/b6ZmT33C7ruxi1lZN/MaV6ZkJU7b8BRs6MM7Hde/w/NzKz+\nljgU/uKH8JR8+5dU/vflg7sfCVnz9//ur5uZ2bQtn/3d//Ff67lf/1kzM9tY1Jj57d/6PTMz28L3\nV78gBYvXnlk3MzOPLFBg+NNZ7P99y6e0Tly5oqxkdE390SVjbIuo8kU4d4063su/9KqZmc1O9LsX\nX9M59M1nlEGu/xaZ2BWtZ899W7wvDbJaJ++j3rShsfL1ryv7eFhXfz38gVAvXj5tP/N31Mce57Sb\n8BZtBuVri6jCPfy/NT9lntFa9uy3ftHMzD74HXGv7P2Z0ECtrMZRn2zVZFbz2AwKXamM5v3Mpuat\nuRXdb4qy4VFdbbR8Uz6x8Io4CJJLQoGtnqs8qQXN/wd1ZYuiIBNvr+js/Vd/TT7RjmqeuXsqVFcx\nrzGXAeWWvqF5/uU1rYlnMc2/AbJWq19UG67k5PPnP9b3m7PK1M59V99fhaNmI/v51Jc6mqYtAMoi\nEYcToY9KUkbvm2QHsz4KARjuAMWuYJKz/Q1UshLwn8T0eQiliRG8cIYSzjSm58amet+Gg8YmnF9n\nPUzAPxVEnbBnT9Ae43TfMqAAmwGyjKgCRshGDtJ6n/LRJyBeoj7vCko/U4ZYH3RH1s9a+kggT+WL\no7bVR3kiDIHM0DxLgnSZ+mgejtQH06Bs4aWJAgqaJHgoqcxEAG4S0DpQV9kwxA98FBKqHGk4rUZo\nPkIPZEH2PtGI2mYMojnop1Ivaa/bf/bXfl4yIRytr3nrj4J/rPKE4B1qa57YyWj+Dwzgq0jCnRLT\nmG70NY+cZ/V5qa+1eNvTWFm+UH3bC3A4nKhBenAXxsJCL/jKLcGQnjdqqByz7NWC8FNU4eBZmNFY\nqh5obF0JsNcbq90iZIo7jMkMmedd1FjGPiBlXu0era+bmVkSJFSLMVONqp551unmEXxzs/BcNLQn\nKc3vmJlZIiefq0Q1B3koxxROUCoCrdCP12gvPd+Du+LgL9HT1ZIFW0TVNIgfTFFFTQVVzxAo3fGF\n1r8G/xvSZ9t2WQuuqI2moJ8qU3wRdZ7enPpuD2T5MmjLzKoacXBA27RAnoPabIOqvzdSX5zP6jnh\ncxBx8FU83tC6sQ4nYOOmHhx+Tz4UCavP4/C2tVJqk6O87r9S0+8ermqtDzd13xP4NZo3hFw8jWi+\njlyofBdLasN+SQjLbkX3nzlSfZPwe3ZRo3rYU59mV7SX6W7p/stFtcPdIvPeROVbrWkvVy/reQVD\nyawA8rup788X9ftVuLXiD1T/pabW7oM+vsSks9/WKY1Xx0IhP47DzTOrcm3E/0zlu9DY8EAKfmjq\nh2U4wpY/h0KXmdmgp/30vR/smJnZMeqoM3Barl7V+lx5qHW4sq16ZdbVj1fv3OBGGoNndf6PcIoj\nxhw76er91pbu350IdT1CQe1Xvvaz9ulbD6zTHtrBx9rPnYNAmVnQPPTKl17h3vx33ILMFQTN6qbK\nOmyAPDvRPrjTgqPpptouGVYf71CX2ol+v3aNEy0NkDhTUD0zmvfff1v76Md/9oGZmQU1ROzal7Q/\nC7blY/c+0nMzoP9v3tD+PsB/YJ+EbOtD7a/38Y1YQuXIg9wewylTQoU1PIYTJwkP60NQYsd6Ta3o\nuude0T46Bafrvbe0v0tHVeCVDe1D/yZzSBlnzpw5c+bMmTNnzpw5c+bMmbOnYE8VKdP1ddBRDmhz\nztqrKHve8ZQ1T6HBHov7GQdFWZtk8YPGGS/O9ram8HP0QAuQdWz34MWYcNYY5ZowmYMxEgLBlCJq\nx5yzDPT0vEBfv0v3LnhP9ovsWJ/vT4gqpxKc2+PcdxvVpBIZ8nM4Dbqc9w6QxTqpqf5h6jek/m0y\nSpM6LM5Vfd+aqOIeZ7FToDZiKEOkomlr9VTGQQAOgnNFmMe0eQwkRIdoY/1M2YMuz5xVAN0mZMZG\nHTJ2nEm/IOuUJPs7DXL+sK8yBkCWlEakIi9pmawivREYt3sHioSH9RhbR2krv8QZVjKITc7MNyZk\n4cgaRdfWzcxsI0H2iKjo5Eg37MKxk8roudkZZe9Tm/IRL6hydE8VQV/PKOqbXlKUNwSTeAAVjl4U\nRbGaItTWIRpbIGu4Il9bBS3Wyet99EA+nM8r01LgumRSzw8MVa92EwWaLqzyMc5Fb+h3iYjGWHAq\nX/R5LSJpor6kEYdHZBvb8skMiBoP1FgcLoRoUfWKM2YCZDAmnLXtwNSeDcr3SvRfCz9qGQpGnu6/\nsqx2G8C/FMa/hl0yyJew0ws9+4M/UnamfU0R+UBKbfwHvy9OlYUF1aWBgte/fVsIlfy62sob6dn/\n7re/Z2ZmNXz1K7/2Ld2XrMYfvfd/6ne/Kd9//leFZLnY0fUP3lRE/8qCUAQf/cmfmpnZG7/zf5iZ\n2be+I2TNym0hJppdlKfggNp9U5mA3/vXv2VmZoOpPv/Vq39f9erquQf3lcXa+0RZq7MDZQje+t4f\nmJnZD/6V0BURNY/dRWlsdKYxlC2qD1t3hVr43f/yfzIzs9UvKOPx4Cc/MDOzNThgKjual77/28oa\nfeGqMienD/T8B/fhEfldZS4e72sO+Ys/FC/I66+qHZNkVv7oI/GadOFA+Gc/85+amVmMM7qd+8oe\nfvi/ql+bi+q3d7//hpmZXXSY8C9pfuZ8aVWoitlZoT6GGV9VgMzzrvoxVVQ5CjeFXIr24VFCNql1\noXKnf6w54jrn/Q3Ux+hEPj+Cx6lA5jlV1PVrCc1dp1nOWJ9XrLqFapBc1Qol+BfgohpH9TozIx/P\nXNWrr1508Y7mgxBZ+CuLQhnVT/SM04fq+xvXxbWyvK62OO/ISQZ3VeZIRGvvq1+Sb6cW9L4nEID1\n62ojr4M6G4pl8armlbkllWt2Sci+xKwye9OG5s0bt/X8MojCCipx3W35WKygeWHjmnxxUANecagx\n+vC+uHCOURzLLiorNgsvU5B5+Ozh51tvoDSwga8MhOxSEG6YaEt9Hpj659pVngG8GHE413pJMsYo\nAoVQL4r6qk4JX1ECRCAKQV1QweOEz1Gj70fcZ8j6Zpyf7/dUvnj8CWos1s6aFwLdACrXunDVcL8M\niJuxfww/CicBijn9wZB6o2gD2qOJWl4GCE0AxMwk4SNidd8oz5tMzbwEPBlkc9Mg3AbwjgXgO4hM\nURrxKBtn9gEyWxu1jjBqTWNQmHHQomH2YeM2PECgg2KgZT3acDShzeGUacY+X3bbTCi0iv1TMzMr\n28d8/u/MzOz9P/wXZmb2wUugGVoam1XUiVJtreGthAZT+lBj5YTyJdmvLlVApc5qDW2AHg2Dquof\naD6qw2lYKqDENtD9s3G4Co805pdK/j573czMPJA18zNwuFThtcjA1xEC2XKgMTiClwNAiQXO1e6z\nOY3ZyoX6a3Cq9SKzAE8SCPQSe7HwSGOeLaaVw/g4exCbQZXqsa6zEv7SYe/K9Sd51TORhH8JvqdR\nSKiCSE2ouXTkyd+ccnDPjuqadwt50COLmptyLc1B5339ruCPSXg6av2fnuH+y1amD8nNWxjFqsCM\n5qdBRW1xM6E6ju4AM2rIVwLPqU2X2d41Uc+bpuAxiqGOeV/rw0TbX5ttar47Smtt97lP1vdA0qyq\n0QOo4PVG8o2TGflq+VAlvjcHAiS+Y2ZmlQTcLvjYIj4wey4Uxcd5jbn1Juqi/Hfxyrp/riJEx+pI\n9exwumF+jf10WGPx9iIKO4dqh2W4qarMAYlXtAfwVWMXa1q/zthfXi+oXe6dsD9d13oThZumA0Lp\n5bsqx25e6+nqjvphLyP0a+6q6nljR2PiLKP1KBxVQaZV9cfMsuakE3j/RvHL71vNzBp76o8P/0B7\nnCP+J2w8K0RP97G+f/Sh9m733heS585rUoC8uK1yvg86e/8DzUVrIFufeUU8eTVPHdZ4rD1j9TFc\njnXd/7/9jf/Ktv70DUuXy7b7ntD8x8eafzzW4HuoC21zOuH4EyFqlp4VgrgHind7R23+6A0hRCKc\nEFl+Xn21ua7rKsxfZ03VOQ4nzQF1DS2pTV/7spDUXlNl3n1T8++I+a1cUt+F8YH739f3E5SC96/p\neTMr8rX5RbXNCW3/6I23zcysNCcfia2ovrGM+rYBsns4kk8n+O/T/lRt//CeEOeZI913FUTf2UDl\neeePtV+Fssq+9C31yd9kDinjzJkzZ86cOXPmzJkzZ86cOXP2FOypImWyHT1+OeizKyuqOo3BXB4m\nGxdW1DYRUuQpDXN4Gj7/YBQFG849h8mwjBQ0tWiXVDGM1WGUFcJRXxlB4ehelLOqcWUmBiNFwgbo\nrmfSPsu0yjUmMpeMKcMRgUG8BJdANEMGgAxQf6xyLZJd8vi+FdDvIjFF4uKeIpEhypmJUC+yYUFU\nC8YRRZHnUaVKBRRjCwYV4YzwfXjStyxqSFMYoWOcAV+l7G2ySfGc7hEimxSOqs5hOD+M880lzuWd\nj1WXddQjBgOFA6Nkr6Il/T4Pg3c8+PnUl5qH8DGQuWvDKZMJq3OjKBEEDuU7FQ8FKzIMY+qZynMu\nECWIc9BP3ifKqgxaKtcYFNMyakIGOqt1gFpFV+eKJ1wXjMB71IZLhczkuKMsWGik+g9AhhTiqGUE\n4CfifGXvAgWGKhkToqp5hugIrpbmkTIfIxQXWmQfw5xfzIdAvpB0inMGuJ9Vg3gNlaN7Dr8R6IwI\nmd4YGeZIUq852pck3mftGTgDGdPT2BuCxJrGNFaySZR5mvq8OQJtNtKNFkpkPYfy/Rj+E4nC35SH\nEOYSloMj6pWfV/b9Wc6Y5vOKeGcZz3MrUnpJfUN9Nl5Vm935OfFeJDirnibZcXyhcTQ7q7JGXhJX\nyD/9e/9cdViGNwjensVbyrj94uq3zczsi99QhH8Y1Q2r78vXbvyiEDLXbijDcHao64ur8tHsFb1+\n+5fFwbJ2Q9kbO1F5v/bK18zMrHlFfegrzcx+V6iEckrZqsV5ZSbCBbXp69/8ruoPgmg5rvL/8q//\nip6/qOfOXlM9JgN9fvtFcdBEnwM5EkZ5p6h5OXVb5fvFX/pHZmb27OvK4swcKAMSS2pspVd1fZL5\n7x++/o913TNCrITILj77JXEzrC0qc7G5qixbFJWtn3lN/CmLKAJd1oID9eMYX8x05yiPfPwY9Juf\nSI90mdcZ05kaCEVPPu+f98+1aAf6uQ6HjI9eW0dVMBtSVvPkLTK5DNIF1LwiiXXrwotkR5pvSufq\nkwiqRt5A828hhlpaReOr8kPxI6W29H4jR/YIoEiuqbqvJdbNzCwNx1RsANLhvu571tNzsnn5SBzF\nllANJOW5xn17qHk42dNYSoWUPSqCqEilUauA/+Lkj3dU/qQKtJiTr86hgtGD/6z6rr7PL6lNCh2N\n7XCMNfs+qkIgVmZAPM6b2rZ9pD4Ynmvsdsafjy9kmAB9NUbZB/RplD1Hx1dcgCejE0BlKKz+ahn8\nJ/hOEoWILgiaJOvJsKf5e8o6aSALIwGUikDzBkDEREDl+mv6iLU+Bi9Ga/REfSkc6FifjG4cDpiu\nz30TUH1GrJNB5jwb6f0oBicMt4uwvvg8ePGAxmCL9T8MN064BU8J83/X5zIbTz5TmgqyNk1B40B7\nYCHqOPHlPqiLB3lMlLKnJmT3Qc2GImqj4Qj+H9QtOuQaE2NQl+wLJxF/D6JyDHwenfHn25NsmxS+\nqqZstm2AlPlPhCorv/0bum+awbepCSUPqtZram+QDKxRb80nUXygy96kHWVswbEY78unhyBm2qBK\nbRMlmL7GVC6psXSMEtuoLFRCh71HAPUh29Pc8rhDX47U18Ek/bGNOsqSxsT5oe5bmEWJs82anUVl\nBLRrFN6oU4oXAymTm2EvBcphmfJHa7pvH0RobEgmOgCvyjno4rDaLVxkvW2BNOyC/sijkoIKas7T\nfL6be7JOdPeXLFHU3HXhK63BTZMJqT2mKAq1mZ9Dy/p8ZZS2y9rgSPfcL+s11lD2//BT7VGWrgrp\n92AfZOAQxHVOiIfBCYhvxl2iqT6PDLRvvD8jn1sIaS3u1uXD3TgKZKCStuGzzMTUtvtw0bx4Jl9q\nzWosXLyvto6uC92QOND6kR2rfJmwfOzjrvYGQdAPZ0Ndv7mt6x/Pqi9yp/BqjkEfeUL/dvMqZ4M1\nNLSn6wLsH0fsuY6aQsoUZoWM8f+/VDPUs6H1pRsWL0g8L1/48QP54NqayhX/oer36bNqh6U97d+r\nbY3dCP9nRiH1eQ9eo/PH8rHGENQuiKMkpzuWmOceV+FUzKhdu5XPh8yM5/W7618U6ngDFGAYpFMs\nibrUMypvuQT32xrIHObzpTn5RfaLQvWWZ+EtzKL8C19rcU17rdkFreNXezc+K8vKzdsWTUXtK39X\niOYu/wnznIYwuKPCfb0vZuXLi3Pqi3hOZd1c1L5q7buaD7vwmkU5CRJBHXUTzqdyRb4fCIL6zEgx\nMgDqfga+zcCq7vtVFFzH8JwursknA235xuu/hMod60UirzbwWKsLJY3nQl5tuVLmNAB8qQVOSQTD\nwLNAOnfb8uU4f4Y2r6nvN56T8pnPmZa5qnIFe3rOV03/R7pTrU/l+Z/Oc+eQMs6cOXPmzJkzZ86c\nOXPmzJkzZ0/BAtPpdPrUHh4I2HQ6tUAg8Ldf7MzZ/8/MjQ1nzv56c2PDmbP/t7lx4czZX29ubDhz\n9tebGxv/39vfFHpxSBlnzpw5c+bMmTNnzpw5c+bMmbOnYC4o48yZM2fOnDlz5syZM2fOnDlz9hTM\nBWWcOXPmzJkzZ86cOXPmzJkzZ86egrmgjDNnzpw5c+bMmTNnzpw5c+bM2VMwF5Rx5syZM2fOnDlz\n5syZM2fOnDl7CuaCMs6cOXPmzJkzZ86cOXPmzJkzZ0/BXFDGmTNnzpw5c+bMmTNnzpw5c+bsKZgL\nyjhz5syZM2fOnDlz5syZM2fOnD0Fc0EZZ86cOXPmzJkzZ86cOXPmzJmzp2Dhp/nw//5/+A0zM/uv\n/4v/xszM6r26mZnNLZTMzCwyCJiZWS80NDOzcUO/myZCZmYWCur7gE30RUzVGQ8Geo3y/VjXR/oj\n/X5KLCqgG04mnpmZDSdZMzPLpPT8dFy/6yZbZmbmNXhON8j9L3S/i5huV9TzM8G4mZkFM/p9b6T3\ng+j/w957xdiaXXd+6+Qcq+pUjrfq5tu3M5tNstlshhYlUtHywLAxL4YNAwMMIA8geATPQGPPSOMH\nw/DLPPtlnixLQ40YNIxik+xmh3v75lg5n5xz8MPvf5oQMBzVfeqXb7+cOqe+831rr7322vus9d//\nxfP6nbqZmfWyXO/3+ZAvyn29oSj3d9HvZq6FfO2qmZnFPVzfiybNzCzY4TkDd4PvdwY8P+LnfSJo\nXi/3bvZ86kvezMwadT7venhGcEBffOGRmZmFDZ2MEm0zM2u3XH9PB94hOhmMkM3tp0+BVJq+6/LB\ncc7MzEIhZPrjf/mv7Cztn/6v/5eZmXU6yFVMZrivh+f3vE3k7DOG4QDyJAf8v4PYVtbQhRMxMzOr\n9xGs7eYfLhdjHELlNuHneT1UaSXdv+Pn+kCDf7h69Cfq0/0lVyekMeoy1kVMzxJhnj9o8EHLqwcM\n/bqAzyNu7vOP/+2/MzMzd58x7vimzMxsNJQNdhhzV5j+DIOybZ9sp4V+pv0axx79aDZkG4EIn7t4\nrq/FOA5c3LcVDfF+wGvdjRxJD8/zl+mfr49eerFJ5Glwn0qPuRjj8TboRiUv8vnD6LnRQf9+H68z\nFezv//6T/9n+ofav/tk/p08u+hQJ0hd3iHsH+sh+kN83M7NUBNscxfm8V6cP0SBjVj/FDw1dfL/v\n1X0nsG2fxsrrRka//FG9Tp+6Rb5vEc37IfLMzizwPdlmsYeO3S2+1+8yB4ch5Aoa9+23GcOBG1tJ\nxpn3I/mNcrkrebiu3+hKfr4fGttkgDFLefh+q02/a60icgSxzcQEYzgeE28LuWonyDv2vwsrS2Zm\n1pTc7eMC+kmjN7+bsc7V8XueKvryBLHBWCouOZDPLz312sgZTtO/geZuvYRem7ruz/70T83M7E/0\n+g+1f/Mv/jX3Q3wbeuUcjHEK9jVnfZqseo5Jn03NcV9TcsoPu/qMSyfCq69BP7267yAmn9HlfUsd\n8g65zjXgfoNI1wYu5mNIz26PuGY4wvZcI41tDx2NuKV522HuYRozv089Q7d9NzY78vEaGjCWba2V\nY38SCKnrLu7v6/N5PcxYej1c73dx4VBrqkd+tC/bdvVlM/p/UGtuP0Q/Ql35M894LeW+Ud135OE6\nTws5+4Zu2wP0MdAaZwHZSI/nePXeE9QYaG383/78z+ws7Y/+6I+QS3uN0DRyRHvo1xfluYMA+vCM\n+tIL/WiPkKPTla23+H4worVe41jrs3fo9rHBgKV49Wst7zGOFa39AQ+fd6OMS9qNPN4p7jdsuj7p\nw5/+i39jbtlJq4ZPCIbRSyCOfbl82huVkbva4nmjhvZOdM8SY8c9Yk6b1hdPi363hsjnGo9nT++H\n9KszDFnAgy4CCcY24kP2blgCN/l/r601RzZnWkM60pk/wnVukyxdbDkcZ0yGIWQNuJGh08EmGzXN\n45HmZ5DPozH2ecMe7//5n/yxnaX9n//u35qZmTc2bWZm6amEmZmVdk/MzGwwRPexpPYadcnf5XPf\nLOuPr4sOyzX2YsnxumSMTacvv99Cl9Go1taBxkr+quDhPoEA+kknuU9D61BJ60syytiPbbF6yn2C\nUfmjIOtCNc84mNbTWILrGzVsw6e1vzfiumgcPTa0dxgOtZ9tMw6+OLbdHDGpvBp4t5/x6BW09ieQ\nr6+fJb2u/LOcXDjGfZtV5o7fw7iGTOuh5l4zLF+jTVcgKmM2s//nW//eiofIHdTew689YznPerhw\njj1WvYEchU3Gdfw744//l39q/1D783/9f/DdLb7bkT/ye+njoM+zktonV5roplNCh7G5FfrU5Zn+\nPro/Hve9i2xTG3NmZhaRfz09ZJ9dqWNT0+lZMzPraS9UzLHWj3U59kf5Amv3zDL3C2n/eXRyQN/r\nPD+Y0Rzr6neD/FGlhK36tB5NBtin+xNad7Re7R9k+b7W3qT286OgfrPIdgqH6MMfZG5Nz6O3/JH8\npgf9TS4wB3tZ7lfXfnjgYu6FwvilRpW5EAwgoEd7rJH02Khz3+XFGeTQXmtbY9+q8LzpC4tmZjah\ndTSXR8685tq5DWznX/7Z/25naf/+f/xnZmb2bp29aeDVS2ZmdlxEn/NTF83M7Py9j+j3HJ+/rz1S\nYJE9ZeID+rn8Cnqavb1iZmY3L75rZmYnN+nP53vL6OF3kf/Dn7//iSz/5M//W5ueOWflx9jOKynm\nz83mF8zMzNe9a2ZmCwFsdntDv22+R59rsrHQNPP7yup9ZP3lDt9rvW5mZmXtN6dfOzIzs4HnqpmZ\neX/B/Y5DT8zM7FzrN+mj6y/MzOxBFN00VtH17y2h+1PXN83MbBj4hZmZhR+/ZmZm7z1E/jUP99sa\nMJbnPoN8l54i70cj/OqFC9h2KPhjMzP70Yh+xu4h96VrzOHT4DtmZrb815fNzKzyGv7vI989rs+i\nj+IRfu1inTl0K8PYvTHHXPp1zUHKOM1pTnOa05zmNKc5zWlOc5rTnOY0p30K7VNFyowGRLiP20Sw\n6oe7ZmbmG26YmVlshkhVu0yEKddVpD1PBKrbUxZrHPFOElWNBYl4+Y1IfVPZtYoCVP0u9xsJKdPr\nCB5R4fOyZ4fvx+fNzCyRJNIeUfS0IxRCK0u0sTUkOl14SqQv3iZq6Z8W8kbZr14cOdptvl8hKG6+\nBpHDvp/+TtANC2aIAgeU/evXiZrnSkS1y4o6hyLcP+Xm+26hL3o9RZuzHnMFyFaEYi7pTBmwEDKF\n8ijnoCyhdnlG34g2xuNcn/Aj3NBLpNmviPfIx3u3smJNjVW7TuS6nKWPqWnG/KytPyCqeTIion7i\nQY5TD7pvB5AzPeS6CSFGGsqw5pV96/mJIDfasb/Xr1aS60N17htRxLziRdeeDDotutDPoWxpSRnH\nmDKG9X1lJNPYSk/xzgOl5Rt4cbwSAAAgAElEQVRcZkllXIfKio1trhdQBtrH2MWUgdwZoG93U6gO\npSIayijX6soaDoRISRG1bfvQi8eHnLW+slBj1FUJ/Q2DfD8yr4yrkDMuZbVcbt4f+JR96vC9Kdl0\nQlmymuzFqxSrf5LXmtAAqZCee4otd4SsGvaVgZ/kfl5NRZfm1FmagAyfIEUKQpb0d3lmKkX243ib\n+dJPYxOeMn3zyQ3GF4iY9wYMVkm24NXYewbY4NYJn/uGjNXSuRUzM2sJHdAVgqKbI6J/uE1GoLSg\n+0XReXgodJNQW31lwSJz2EY/wnVHB+g2u/vUzMwyc2RrZpS1cvWVxZ/j9bRC/7JPyRBk1kG0jJpC\nBKZkc8ry17LKBlXxv+Ns2SiC7c3NMMaVqr5XIpNiQz4vKotUPsEvz49NUr6gVGHu+2tCO+SQr1jg\nc698U0S+6HTz2MzMojP4v+VrZHfSHmy/fcz/qwX5qjO2uuAP4QC2NmpJHje+oFETItPNeLfbgugM\n6ZDHy+choUiGHr7fEkrAo9cxkkjqNbfQaeMsXlevHqHORhH5zpbfRsoOezT/68qud4V8iQmZ6Jcu\nem5sd5xVHw6RsVvnPgP/GGkjBIlQBs2AECzKNrs7/D8v1EJAa4hfzzXddzhgzrR76L7uoy++JnK0\nXPQ1NBSyJyL0kbL/QyE3qkLWdFrKvgtBdxpmjAJCZnhlQxoJa4+ROCakXV0IP2WgvdoTBOS/XeFn\n2+L4hYgcjpDX3UHPpRE23pfNpbS+9YWKcMW0Hga5fmS8d2n96wpm5ZtFnrCP/gUb2EClrfVSyMuw\nECm+ONe3c5pjFeZYI8Zcj7S4TyI980kfPOGQRQfI0a+in2yOOePJc30qje/IzDPHXA3eVz2nPK+E\n/k5q+K64/HzSrX2D0IN+IWvrIe3JJIOrgv02hj1rCQnWk9vwCVE8HcbfekKMnSco9E9DflTIGF8W\n3dSVHfYGx/BXdFTRvEsps+uTX/Uk2GtMCJ1bbOBH67KRsEs5SX/LnqW5ZZt9D2tUV8jmmtaJVhYb\nT84o635Ix08q6HY1Jj9XFsKwhN8frEou+Z29J/jj6JTgB2H009OYdrvyW3mu88YZy9GSECVNbDV/\nzPPrcdaV2SivpSJjG2pgq56Q1ocuNhvQWp9r8Nxyjmx+NIktuIW28msf3alho+0y/WsJsTTf095D\niMK+G1splLjePDxvRujigQv9tbNC7YYYp6AP1Ecni55LAZ6bdAmxmBJ6MMf73NaemZnFVslcm5l1\nmm0r5rfNzGx6YRV9So/5CnMk09f6O0Y5H7COeien7azNo/ldFQo/neC3RL+G7W79kjFLnkcnQSHt\ncsdaK7WPG2ptfawxPN3G5ian2MdGU9heXf720Y1bZmZWKWoMv4oNJtOaAyfcp9dgbY8IGnnv5m0z\nM2v1mcHLF64hr4/7JzQ301Hmf1trlmnfW9pEpzML7DUCy9hAWbZaPmEv9ODuHTMziwdZ8zcuI0dc\nY1fVaYQP3/uA54Z4buulz5iZWbem32yaayntGbYeM0ZP72HTsy+wR9pQP3I5rg/HuX9Ce7SjrUdm\nZrbz8Sb9/eoLZmY2IQTT7RugPQYD+hmYRo+eGON59/ZD1HCPueHzgCo5a7v7NX7rblTxVbff5XmB\nMnue+Ah975Y/h1wX2MP6Nx+Ymdkb0/Q7Z9hD+gZ6fP917MfTw36e/9IXeV6A6/vvc9+1i7/1iSzV\nUM9e3fPbRgFkSH77l2Zm1nwL3bQenjMzsz2t9aE9dNH4MjY16h2amdkLCWT33sKvfS3KWHyQAJVz\nPqk1pMU+c/k8rzuGLvtN9tkXYt8yM7NOnb7FvggSJe0RMtFeNjOzZA+d/WIT270exJavdJj3p+eR\n88X2m2Zm9tE28/xuif6tfwO00UkH29ktg7z5UvN7Zma2mfg7MzP7+UN0+bWDFTMzK3wOG9nz4M8C\nWqeebyJHsMYYlOJfMTMzjwvbj+6BDPp1zUHKOM1pTnOa05zmNKc5zWlOc5rTnOY0p30K7VNFyix9\nnijmW//ot83M7N53b5iZmVscBi5li1LXiLRlXES2qw0yDi2d4T050fnxx7xvzxC5ik0SWY+tEFlb\n9PLaENeMibPF1Saa3Sgoq3VKNLJbJFJfyvP//hwZC6+XyF1mg2iv181zFnSOc/+QjEy1QD96UzoH\nHiVyFl8iyrriIdpcyRNRPNjm+4Uqzwt6eb+SIeI38+IK8mSJ8k63iPjVCkJ3KFNhHb7fzutMdtNj\nI3ENpCaQaSpCBD08x72D19BtWlmg7qmy8+LhyB3wjEKXaGiqT/Sx6hffho/7trrI5hUfjxKkFp4k\nEixwwZlbXBnhfNUv+RQljZNxGCrLHhbyYlBUrs6v88biuBnJlvqKeJcMm5lRhNk7LYRLEx2WxF8x\niox5jXiuAuwWjXG/kIv7HA94flJwLL9sLuYhMt9VVr4fFSeLkEcdZRwbLvGYBJE/rHPkZcmTkq3E\nYugxMuZmEOqiouzSsC296GxueIyaUvZRQB+Li6+j2RMCpy3ug7gyEcpIhxd4XnzMaVPHtjI6A+zN\n6WxuANsec154o4xLPD4m4kAvfXEpNHSOPBAXx00U+WIdMkUhr+AWZ2jx1JiTiXk45ULnxUP8wdqL\nZD9mrzLvXMqk+lNCX90hWzLy0+fLXyQr01Mms9FAt4kZ5ornXc73FsY2MkI30+JiSU5PSAdkCA8f\nkUVqVIQ+E8XB4iXOyHbFKVAtosuA/NbsBJH4a5fR9ZOtFZ4v+qFhUXxOfeRYWcVPrixcMTOz0yXm\neGR2zczMclnk6GWxqfMvoZeRMp67O8z1srJxI3HVpDfQU3AN/dx/ID4JnWMP15XZlj8NiftgchE9\nrHvO02+fOLoO0GdH3FpegecCGfrty4AIKh4hR36f/iXS+IL1l+nf1BzXn7UNlE3sC+nSco3JZdBv\nSBxgA4+yThmhHnTuPiAEjFv8St6o0CBCmwXEJSPXaHURWgV74uMST0rUO0YViktG60+v57WGkHIe\n8fTEhfDzdcRREuZevY782njei1/D7Uf3bmVoe2O+NCE/XOprUPwaLSHhfOp7UtwuXXEZdAdCJwgD\n0R7Tc4jPLR0Usk7zfEp+qhsQH4Xu5xLaqC9kxUgcZi7juq44E9wak4FQZ6NhSDoTb4iQf+FE8O/r\ncCDUU5HvVcZ8Fs1nyzuFE9hsz4e+p5fRZ1TZ+tIOewOP5kzlRM8rsycZipcqGmbuNTTZC0f4okx5\nvN7wKloo88om2oaPCAeYFNNT3Ge4zvUdIany8m2lEnO2vl37pA/Zx/dtOEdWM7pOFjDWwB8f7pGh\n33tA9rMrZOzULBnbyXm+153gOUf79CsnboncIetkOo4+Ehl8aijFuM5Mq98u5ua0ea3RRbaOuF16\n2hcVDti/ROQnA0IFxRfxs/0Rz/IpG54KYiPJBPfuCwV7fIx/qAi9VDhF9lRDPHEh/OjkDP7RG8GW\nA+IOzNf69ixtJD64vPz/TAQdtIVqyO3jt1YvsKeqFLCZk8ePzcxsVuuDq8DcfXqLz9eFFHEJGb1/\ngM7THdlASNxf8g2jCja/dZsM79w6/Y2H8I/9Jtc3T5GnWkTfyWtwIbQqyL93SvZ87SJ+uil+pu5A\newShK3Li+fBO89ymUGKhdTLjeaGjTu7smJmZJyqurhfZ67h7rP1He7z2TpArlcHWa3FQEX1xAXXE\n8VIW16RnFV/R82IP9WOh9cRPl/Gzznm0zh5oPcv0x/gts8ZRyUrijHNLvniE59ZO0NfJHOM16mHT\nuRxzLR0I21nbmA6nX2WetDyMtTsiPrmuOFp0XVj7ycWNFTMzu7Cwjizusr7HGpxJY6uFHPO4JQzh\nnE4VVBaYv6mM9vlp/FdMyO6AULVeISdnNrDRy0V0PTGNLc9PMfcq93V6QPu/6IwQmgXGoJAFjVTO\nYTPTFxjLiviH2uIFXVtDrmFrzONDx5fXhPATr09M++GNq9fRixD40QkhzLVetHvYTjqV0v1B6ATF\nAxhZOq9+c/94m71PKMl9LmvvNahyfW0Ceadc6NkXRl/riyvIm0KPMxN/nxNoRajmkU4/pGeFAjlj\nOxXXTeADnv+lt/BRW13885Ob6O83fuslMzPz/hB/PuMBtVV4l+fOLrMnHb4kNN0Oc+C8m/54FvAl\n5/WbMDHJ+D0spz+RxVt22X+ai9rv+5jvCfU5fmPHzMwmC8jY+6+4vruJbb5Z5Rk5LxwwNxpwwCyJ\nS+rK01fMzOyLn8dff/gEG452kXG/BhJlKs1vpu3l58zMrL+Pn+k20cmgyRr4vjhbx6cUvB+Lb+c5\nbPdpUkj0tLhfGgjcK/0HMzOb/wp93/8Y278um3S/B39P7svY4vc+pP/fSNLP8CP89n98gf6+/Uvm\nxuFVoWg7rKF2ACLor0Q0uh7hud4YtvjR6t+Ymdk/tj+0/1xzkDJOc5rTnOY0pznNaU5zmtOc5jSn\nOc1pn0L7VJEy5RKR97I4Goo1VYRoEn0dlHT2uEA0L3SJaGhqiajr2gzR0HUhRQ53iS5u7pHd2b/P\nuTvPIZGxycwK95nSuUBVdBhHPQc1VSgQ0qSpKHSvSiYiL8RMxEs0sjqnc9Vi8Y/OE9G7GOH1qCfm\ndWUEWntCQyg6O9zg+wsr9GM6TXQ8e7xlZmbHj4lu7uSI8kZ7F8zMbHWeTFJM17d1trrQ1XMAs5hP\n5/3rrZHVsuO/kWH7GB37DunbxBFRwciK0AYrRPXOi79iblaIGWWvW8qwDaOq+qH0fVLM/j6dWR9X\n5RiK6b8WeDaozFCM/qGiuBN8ZDHO+Ymgp1aIHPdUpaS8s2NmZn1liOfmiYYmNrChsrhmTspEg/0h\nItETXZ7jT4pVXuef3QllWSJE9jefotxwgWhtepb+p1KqzqTMQFpcDssJxnpPXAqdI/QYbKJ3b5t+\nLE+o2pXOofsKjMfFmCrVjNCf269Mh3iURkKJFEtCKjWEKtA5dB23t6oyqkFVIlpZwJZqynYdl8i8\nBA6Ihlc83Ccse1lQ9aaesmgh8a2MS9lMedBvV+fI3crI+sQ945Y8cZXjkprNmxJaLcAcPMqDkmgp\nc3yW1uvLb6iilEcVsp6cIEPttubpEJnz4jRZlm3nNC+rXTKJLWWBRi5l6qTbl+fITlx4mYh6XRVg\nDh8xT/eeMKdqRfxabA6/MLPGc4p5+lQ6wD+FI+i0VsOmN++SMU1N4jeOleXyp8gQDIXyWglzv4ps\n7slHnLUtZenf/Cr+5LSjbJn8ak2oq4f3OIPbiiH/pTWyRhc3iPSfurCx7Uc7Zma2tQnrvjeO3xEQ\nyXyqWuJb5UxwThWDtnWWf1d+bH6SOdgWgqSnUmgecfd0DrG5DaEilhe535TQVgd30MvTXebAkksV\nE6rj6klnaymdqzehQywmVJrmhE88Ky7xU7WVvYsLZdLxigNGaLP+EH26xogqydVrIpdLfCgtVaqI\nefi8MhCHhbjH3OKWGQRaFtXfHmVlR+KtGaNvWkNxp7jRnX+IbZj8Td8tpGKY/3uEqPGp8pZPNtsV\nainaHxPfyD+J/yGYUKUa8Vv0VUkqJiRPRFw2rXEVILe4xVQlbygekZb84UBVhvyq3DKu2ucKCBU6\nUiZUVfBsXMFQXDY1odFc4smoVYRm7XPdcIT85hpXBxQXjxCRZ225Tfz7A+0lyi3m0soyWfiy/OW5\nOHqfWmJOtEqsm8dlfMnkBLbrmWCOJ+8yJ/bL3D8h3o2uMsPhBWWAD9HTnQNsPqnqR9EQ95t7kTk6\nr+ossYaef5L9pA99j8eePoVbYqbBnmlOvFIvfBYU4JaqeWyfIs/+Fnqdn8LHzVzAxz03x/qaK++Y\nmVlDKJddoT5OVFnN6yKzvjDLOHSFpJxbWDBfggzoQJVYPOvYRukBY9VVlaXNbdaosPgfEpPYYjzK\n98s5ISNUmW96HR1ktOdYDSFrucLaevAAf14s8N5a+MeF8/qe0ANWDdqztKE4pzpCr1Xk99Li8Tlo\nqEKMKtZE1hi71rGqgKp6XiLCa3QXpEpMSLyg/NTMklBOqnATUGUrb1posVmuOzkSAiaGLbTb6D4+\nQUZ3MESu/UPGeiLBWt3RnqO0y14oKpsOa29VesK6Nj+LP46qIk9bVQOTWtOjkmcg7p7CKfvVpFBz\n42pQY76k5AHy1Sfxn7EF5Ay7eX5L6OKoUAelW8jn0r47kkZPxQJzrVtifH1LIHZiq0Jqnoojbrxg\nmZknFbD5KTLqbqEuQhGuCw5BzLaEEl9Man+wzFyYeAZX4pH9+1RhqiudraXwJy++Anogo7lRamD7\nTaHkd8QHd7gtnrmUUKJXQRH4txiLqPxkTdXaRuNyo6ooebDP3uCSj++NtC5UCug0NOC3VDKNjU4k\nVdFR6Kr9e6zhbiE2J8QVGEuKb6iHHGvn8EtXhdQpN8Vd02Q/149gyyVVoik+4P5BVeuMq4KaT9w6\nl/Vbr9MeV0oTh6KQ2Ls/FVJGyJ6YbD8RFZdaR5V2q+y1dk/Fn7TP/1dnsLmk1p+FSWx0PLfmxJvU\nmFS1K6GkfdXx6QMzM7ML5+lvPMYcSUa1UJ+xdd/F5uN01975DnwjF78Gmu03p7DFvY94XXGxLt1M\nqprXNb7oeyS08l/Tn/UXVszMzB3Cvu66WA9Oy/DFhMXhGPM++ESWq8GMuQ9v2Lt51oBUiHtffpW1\n7fs/0+/pH+JvBn10eCvF9VfL7Lc3vG+YmVngVXT5lwOqGf3BNgi+3ipcLtEp+hD8HhwuP7nA2Hwj\nj83VvcyVx9fgFwp9iDyvvICN/vwhtvXqK+j8vk7S+D6mP3PirhqkeJ7ns+i0/W108xu/xVi+8x5z\nzf0aa9mLP0DX3wth0/9fizGefwEbWjygylPrK+j2G/L35WPkupOBQ+ZFg5PmyUt8/2s3VVX1BNTT\nr2sOUsZpTnOa05zmNKc5zWlOc5rTnOY0pzntU2ifKlLm/k/fNfv8V+ydb/2VmZkNK6oIoRrwI2X/\nHu+QlWluwc48Ie6GWXEKzCiivfjSq2ZmNrlChOz4iChpIUd0sahzmKMGmYeweFUmlYUKTxGZHy6K\nK0bZRHeN+x02yGD3dda1KR6ToqqRBFVNJJvg+8G4MrDKXh53xFFzA3Zo7x3uv5WhP3MX6EdELO+r\nQnEcPSGK/ugDIn6nvNjMspBDk2Tx4kvoI3lecnOZTYe81te5W7eqQVT3x3w5RK6PnxDt2z4mKhm8\nT5RzIY1M04s8Y+kyOmoK+VGqk6FzKfvdEkqhW1YWRIfmh0Ja+H3PVulgzktkPhhRFagTxrTv5f3E\njKp3KFtWmhUSRwz8UxFlq8RVUi4LxVAmm9PcQ56QeIIWF4m8izjbvG6hrBQBnwrTv90H2GIiTnQ2\nlkSeimwjlCPamllkjGZiRIF3ykSBmweMg9dHtDWsCgJxVSIIuHneimysXuO1VwS10O5iW3NrZCC8\nOl/d7SvLswT6Iais3LGyRb0h2aXpMLY81cdKPE3sIBbjuXVVc6rskD1KiuMgEhOXheRqFnRmeEXZ\n/gR2s38X/YqOw0INnuMXP8BcGPkzs9hXWRQyLp1zT3XOnnFoCdWUSiDL9Ix4NVpwVkXi44pbOhNe\n3VEf+N7kCv8fCWHWVdWyug6Gb23hfwITZKVCqt4T6pKVEAjBDlWdqNmUbQqBVxHX1EDIkqe63yjM\nmE8qm37+GueoF8XvVKuji5LO8u/vc999zbm5i2Qqrlwju3L/xk300Ban1S42r8Ixdu3NF/n/pLLr\neWzg/e/+gH4k0cPy7Lrk0ln/vNBSi8g5t4if7XbxGaEkfic+xWt+H3+b3eZ7O9uyBVUISkXxb5Ux\n14rOY3fvYnMNnRe/do3xu/4lWPbzp/IpaVVDEvfCWZsvKD4P8V35xHNiAosMVXmo7VfVOlUoqxhy\ntgSRGfWQdzTg/94h60NrgLFr6ppXqJeAfEi+J1SHKhR5lBUMKPNuA7dVW6rc5eEZQ3E7Bf2qGCjU\nztC4riYdBEfimhGnl4r5mE+kXiHxKvTC4+p4qpLmao+F5bkDVVARx0tQnGHdIK9BoX5qXaFMB9hi\ncczPIz/rlZwezbGOX1wCqnAwrt7XVZWpkPrZVjY86sK/tFUhx+NG/n5nzFHFi0nOMceLS4gbb0YV\nEJ9xi+MXR8FkW5lR2YxLfCaNHP29uY2zyCyIO0VImvQE41TMsU6pqIgtv0TWLbKnOSVUW6uPT5gR\nGmHjAj7g4IgsYEkI0937+IyjElnKFXEoRDJ8b+Xiryo6vPj2i3b/NnuGY/HsVcvc5+rryHH5NTKm\nGXEaPNkko34gtMrBMT7kyhUQlQn5qJlXQA3ExRfVP2W89zfRy6mqPBVUperw/lNLi5sgKOTghu7p\n0WtGVYW88ov1J9xrf5d7XV7TflB8SFs3ydjW93fMzMwtHp+kqniszOO/kl+SHz3F/27doW/FO6zd\nLs1j1+BXnCNnaa6e9leqcueuqNqGbMWtioOVovYA02Th55PIV26js0khD6PTqnYn1Fq3Nka6TEo+\nVREVCmLe8J/DnlBxE8zlQGzM28dzG230mlRVwaa4UWpCy8UlrycsuTUHveKrM/XDJ1TEqMva3iuo\nv0LHVuUT/CbOH42nT0ikzgg9jepMhsk5Pq/vi3tNk7krFK0vKhSAKhgNAtx/KHSdR5xfrnFFSFWE\n8whl1/VpP7+oipvZXyFlBp2AecVNNranoDjmElN8r3wgriDtq5MR7uP2nZ17KKm9/0SG/Vm3znw4\nPsJvtHPYpDvDvVfn2a8db2GjAitZMCqkeQ+ddMqMYeOYORI7j62fC2FLoWvqq/iKChVVswsLgbIM\n+uDRlpCABztmZtYTJ5avLaSIkHiV60L39xmLxQ32a2H5790D1osxUn17h7W+fIINBgWJXgkJKf3i\n82Zmlp3FVian0fnJPnrpjlQxc4HPH99mvzwt7pblOfYEj7S29o94jnuR33IDcXj1xRu0sY4/jbzN\nGJ+cglicSjInBkJPH2r9yz0BNRGSrRWKzNW0uNWG4hY7ln+3tnikqrwOg+zJztpe+SJ7tp9nV+j3\nLDwosYfYy8MI1Zy2/Ojnrp893CsD+hH+BZ97fdj+j97+spmZuQ7R9xfj36X/7/I7Y9kldPT8u2Zm\ndv/7ICftvzfLTGzYw3tZy77Kb6Dp++jmo1l+N3/1OSpAfT/+Q+69C/pqewVbbPtZQyZ30O3dn7FG\n/f4XmK8fDFVVaZox6f6IH7LFILZ4eQob861SpegnH2MLV9OvmZlZepqxHmhP8tnzjNF7B8ydr84I\nCd/Gn5x4uP70PjZTrnLfi19lzvxwE/TQ+Tl0PKsqdOXP8xvr+lNsbr/KGD2/h+26p9iPNndBnB+G\nQAaFjuDGeTXCc2+54Mp97T7y1hqqunn6X64s6yBlnOY0pznNaU5zmtOc5jSnOc1pTnOa0z6F9qki\nZdZWiZRffYEzVkq+2byqj3R1cK9SIwK2d0h0uVIgmrz3HoiTvRjv51RtZGqRDMnMdSJ+4RZZnqkD\nIlQVnU0en5H1JnSOn+CsBUyValRPPaGs0ISbaHRD5+M74ngYNMUyLzbors709sM6I7xMpHBFGdH2\nEdHrTUV563n6lb9LFjE4SwQwcZWI3sUVslMzx0TJD7fJomX3ub60TZQ2uis+gAVFzUWsPfDFLDZJ\npHek8kGBi2RVZltkWWYWVBGhSMT1RIz8ewdEYms1ZE0sEP3M+FWJKqiz8zFxzCiCPVKlk1p3XFVH\nFQNGz3Z+eyCER0wZ335U1YTEJ9G7QbSz7h33T1wMLb7X3ifSPSgjV12VEwLianAJ2TJKMHbuKtf1\n8hqbpqqbzGCT4S7yz6jaSMqjylxlntPaY0zaOm/uyvJ5fIUocUzVmoKGHFOL4uRpEkU9+vBDPl9Q\n9kv39wbEv6TMZCLFGKd1drajs7NdcS1U7ilzPS10h/Q1LPJ6eAebm/ITQQ8KYXP+HLbmCnP//fex\nNZfOtS9eWuE+yvA+uU3Wsism9Zmmqr7oeq8y5MEI1x8/FXojjrwjVRCKkiy0hQhypwZn55RxBbD7\nZmd8jppnN1WNbCBky/p5/ENQaaiuMl+rq4r431YVJqEOPvsZshI7t+Ff8Eilm3fQSVlItutfIIPg\nUfUgl7iyKsoc9kqM+cXPcb+AsvEDVQ9pqHLMkzwZA+8JD+qqGlTmec6kJla4z+ZPfmZmZnmhtl57\n44tmZpaapX9Ls8hx6w5jc/hQqDBxN2SWVc1D/BHjOdDT3AincByZRWx2U1mjthCBp0fInd3EHwVm\nkXslvWJmZjFV4rr0O1R36hSEPBInQkJz4WSXbE8rzxxbFEfEjb97j/6JHyrswQ8XT+hHu86ccctf\nn7W1C/SzKx4sn1CDvZDY95V59fmYM66QKomJz8SjqiA+8Wf13PJFQnckdd1QlcPG6DeXuGpCysYN\n+3zuFopkIC6dQdttgxgyhbvYVk8cLsOBOFe8qjQmbieXqiT1dLZ/XM4j2uL6rs7Mt8R3M1AfwkIt\nuSXrOMPo83JdWBWlBm1xwjSVrW+L80VcUi7BxPzilvGogsq4mlBIHGJtkeJ4hvi1UU0cWFqPBqru\nERaHTMuEdJHcHiFmfGO5Isria73xC1k39GmMu6y5g64O/5+xxYRaPT8lzgahTzMT3C+qvcnJI62P\nDwSvq6O/VJq54+khd7mwgxxCEjUFzhqj9w7vsn6Vi8yF+UV4MSLT+LTrl/HH05PMqTtPyUbubeOr\nfE/IJHfEW2Xf/G/M0wvb9VdBzhQ1p+6+Qwb2g5+Ja2aZuXzpImiA517Ch3UW2Gu9/wHr0MPboEr8\n4rRYEMojJk6z6XUhaVJCfKqUWlloje27O1YX4mLrl+zXcqroFFMllMYqMiyKC2skvrOQ0EFtfT8z\nhQ5mZ8RhlcWvlA5Z88rvkOEsLLPPy2jsZjLso668ztgUVGXTKyR2r/5sPHcC+FlDVYBMqLBuGFsL\nq/pHtY1ck36t1eLtKCZzVVwAACAASURBVJXQoV+Ij/CCKtqoettAiBi/UKe9LO89QqSMkX1NVWxM\njdHIMSF0duVDNEZ9P1/wyaYGJXEtuDQnx1ww4uHLqESjxLHemKcpKKSf7jcIqppWSxlsVePzyn9G\nVPGypypVDe0J5+KqZBkX+rdO/wKJsY9DbtdIqA9VXvOIn8Ut1J9fPFgq0mW+AetEY5/++9uabHGV\njDMzl9dsoEpDvQAdHMrve8NCf7WRt1ZCrpD0Mka1naX1tP+cnNI+JiKkYIV73W+J50gIGm9IWfpj\nbHr2HGvzc+vsTaphrouNWLurh1Sq9XTpazoIGiA8gW7nhKA5+R78F33Z0MoFvu9NCM2ripX9Bjrt\nDLhfrqsxE5K6qd8BMwvYWmiDOToT1Ny8BorAL5vaceNnvPLLOVX98fjwD+mLQkPJRpI1/W7Ia58p\nH9BBHOuXWRdiK6ro+AK/8bweBj+Zkb/3ggR8/DF+cvOIPdCU/FMyyfVuVTn1CRV2+Xm+59e60jlF\nP36B6KJBIdM3dBohyfut2ztmZtYVD1byojjezthuPdAew43/7w/wbZEp5mj6BpV8pt9kD/jOD3/O\n58vo629+G5/2+sM/MDOzP/wb0IU3Pw8q5OE9+pe9yp7r99rwnBwOxRtz4e8kyX9nH2Sz5p8wGxRZ\n2568wjWLd/l9fX+dMf7i+9hAb0booNvo5Icv4d8nt9HB62/xve+crpiZ2UoUm5/6DoP6t19V9VG2\ns7aRxN9XGm+ZmdkbS+y7fxAFqfM17ZPtKferDlkr5zqM6UddkCvxzxFPOPDxf9+32acuzGF7uR9y\n33NpOGYihq0H55lTIxfy7arS2bV7IHX832Bt/Ksn2JR7kXXmG6e8z66BIP+x9kwjIfxSJebgvhCC\nSzqF8euag5RxmtOc5jSnOc1pTnOa05zmNKc5zWlO+xTap4qUSW8QzZ2+RlS0vEU0tqRMc0Rs9PPn\nQGesXOP6Ro4zaRUhTA4PiVgNGmRgTlQtpJYnujiryjsTk0TK4n6uf7y1Y2Zm+ZtknXI6n+5TsNMl\nDoC4zmNGI0KF6Iypjatr6CxuTOz7KZ2RrQaIjkf8Sq2IVT8W4/vzq2QLDyI6m7uN/A+fkHkO5nm/\nrIo8E7NkXCLnQACdRMR5sE90dFf6GJ4QkXTFlPkeeW0QZ6gnekQ/A9N8dyJO2M6zxucLs7xOXlhB\nh1tEEQ+ekDl78C6cMwdirp9Q7XWv7jdmTzdxtLiUARhn/dtBEVycsbV15r2d1XlknZ+OXCG7VnGR\nKdx7qgpVs+i+46Lv2SLZlLjOyqbFk9HX+cW2st6NnLJJquaRTPK6d6xKCkOirck5bDF0hUh9VJH+\nowGR7ZjOKzdFE1GtIb+/QxZoeR4bajR4/mREPCdT2EBFmZNei/FavkLmtt9RRqNKNHlyksh3KII+\nUnO870r/xQJzyT/g+8vXkTcXQ7D9BzvI4RU/0hA9HWXJesUTfK+qKiF+cT+UxK8UjCO/N8z9Du4T\n6W970XNLXBcXrpKxTUu+QR1q9FxJ3EaPVGmtIU6iHvfzSg9nacFx6rDGWB72GauueA2aR2R7h36y\nTq48z75zh8h+4C2yFSWd9cydMI/6QvscnzC/lqbEQbXG/Ivo7PyE/MFwgfvEzqtiyS6Z0g9vMndm\ns8xLFQGx9IQ4EC5jU32540oJuW/dIiuSWcSPvfIa539jyoY9vUe/rEx/9lRRrCbkT3SG+8WmxMD/\n3R/xf6EtvvBZsmuhCGPjcWEDx/fIMh0dMTaBOWw25tI5bFWY6ZkylllsaKdJpiKfFRdEk8z3oI3t\n9NLoa17fe7KJn2upet6sUFjLa8ztj29jK6E6frClCmn5LfGY7GOrZ21DodNGJdm8h+e2i+I/qQq5\nNM7QjjlidI7cr2opSnqaRwiemIfr+j5NeqHejoWyG9v2YCSUnjLsHVXeCaqiWjrgMa/WAndMlZ+U\nNbaestXiemoJthXuK9svZIprKD88o3mrCoMeVWBxq5qbV8iURk//Vxaq2RcicYwQDCFH2i/OliTZ\nJ3eA+/k0zz9JIjfERdUW+jMnnjitkaOwOG5S9NkfQqdhccYMx2gjIWWGQp2OVOFmzH0zbHH9QDwc\nfVN1QVV4iQTEsdV7NmRmU2tn/gj5PcfyCZPY/tXXxcv09pvInQE1V9xmrjQLcHMlwvjl+gn6iAbx\nmyEhbTKvMs7hGOtkUSi5Xk5V/nbFPXGO781dZk6/sZzWc/j86VOykZsfPfmkD+9//z2bXQY5c/6z\n7JlGX0Le1iZzc08ousdFVTpSFalL1+jfZ0PYdkE+a/cJvrL4CLn2jDm0JATnSYl+T0zz3PUXQPhc\ne2vWzMsYPb2N/+zsi4NA/HD37pEJTc4LpfQafmnpIn6xlNsxM7OIcoi+sCrFXBWfWpuM64Ob+K3G\nkSpM3mRP0Migq8AsYzKhVKVb9yk+eTZOmZYQkyPtF9t+XvseVUUSV1Utr/uuCyWR5P+nW/R3Ki0E\ndgBdn2TRRyiBzc7GseWDPe7TEt9a6EX8ausEmxdA21TA0HpaDztCrc4JxdaSnznZZ8zWrrDX8wb5\nvFnk+YOUKrxFhcCpcf24mlTYz/rnF39gYR+5ZrW3Cgs9HfGy7hSyO8ilCl2B69ia55C5Pa5OF1VF\nt4b8s3ea66yh/lRZRyYn0ZeJA8wlFJ5be9zaKfJWqyCSli6otI2Z9YZNy5+gzwlV2hkKxRbySQ9N\n5PIbPrAlPXYGZ0fKhBLI3iwzLyqqyBjUfjgxxbxfv0xFGo/8uMtDtr6fRSf5KH32lXj2yqvYTPNN\n9lU18eH0xPlSvIc/8CyrQpiqdh5pDS3uc59mFR1khOqa1NxrCgmeSfCcwAvodk/7PG37rauKMyU9\nf058ma6gKq0JINQTP1/phip/rWMjoaYQK0JNjdGoO3XW9Ngx/jCtqk+bbfxQOad9plC3cVXXcwsu\ntSi0cGWHfu9t8b3+3Hgd4XuVHP3fvoffTE8xXguXQYPU/fj/mTr+v6m5V8oh5+IFfrMebmrPUFY1\nqBD+/awtWkWv3XkhFQMgXP5ulnHo/D5+9Os77PUu/+7nzczs3pD3L9Sxk4MrjMc7x6BArtXQQ2sC\n///NLHpuJrHlj+RjrnfPfyJLPHLeIovftT1728zMXnmP/Vf5M/j0eze/bWZmJ69QXeitd/jtlf4q\nNpv81oqZmU2IX/L2A57xylXWrEfvYiPf+h10HVcF1994W6cM3mVs8qowVY/B9fKFD1izTq7q9+8c\na1fgNt/zvIGOXroLQub2JOvLV11cfyo08T038s7NUPksPYMN/LiNHBntIZraB7/5CFt817djZmZL\npd8xM7PlLL/Blhbp1/EE/uqpKkMGVMm4/fWfIk8FuVI/ZmweXaBfv645SBmnOc1pTnOa05zmNKc5\nzWlOc5rTnOa0T6F9qkiZ/J1Ds5fN7v4t553vv0vELR4gYh3QOeaJGSL6SUWm4jGy/iGdIzynakf5\nEu+7ynQ3jonOPlHlmoU1nSuME1W98AJZoXpZ0WVVT2pkVVFInDZ1VfLp1XcQXJwEIZ2drerw7fEJ\n2bxol+jnIESUNxpRlY0Z5OuIDyS5QDT6coDPc4qOloSYaeZVEWmLSFyxRTR2Stmo2Nw59Yf3iT7R\n3K4QNnWXOC06PQtWiZBWW/Sx/hSZdwZEJQObyjDqTPxCXNwxy+h2OkIkd2lVVRUeo7OaKhj4WkQZ\no6qEYEFlRLuq1qNss1fVMc7a0j3kaY2Z95UFiohHpBXk/5FJ+rpxHtvoKeuR+wjUVLFB5Dy+QgQ5\nlESu7T1spd0UAiSFTsNxUAxDY2xqO9hSsYCOfR2ub6oa0dS8zoevwMxdOyZDkt9GX1M+oqfRSdno\nY/6fKxIF7utMbc+t8+m+nORWdn2oig/igqhpjMfZuqR4hPzKcu09EeeOMsn+EbYfSfH5whzyJKfJ\nes30sLXqAZmN03GmVizznSr2MRgqIzCL3qfi3Cd0lYxLoMtz2qrq0hYfVCePnlITzOVchSh0TjxJ\ncVUi8gl1EBr86hz4P9RcKvEUUib01UmdD04r2/uUyLZffBeeScY2W6BvLhc684uZfkJcUGGdw56P\nkfYZtdHl/g6IkF6bOXT/HZAw3Rpz4YW3v2pmZt4OYzOhjF9L3AU79+FMuV9SZvAEBExthK5e/Dxn\nUwNhVTpT9bhBC5u79vUvIdcBZ2J7OT73qgJDUdxZVkeniy+SLXFHVXVik+y+T5lMb0QorxWyJrOz\n6Kn/DnMus8qciakiwqjBHHnZF9X3Nce1nGyLhyKe4P8Pb8JeH9MYe3vocWqC++0pW/9YiKJUWrap\nij8joT3OqXJDSyiJaPzZUBBtF+PoTjJugYo4F3T21xMeIx51vl6oM78yuG6hVNrNcXU7ceWcjKtI\n4af7QgJZWzkPn3ifjPH0CSnjC+Ezh2Xxq5jbhioB5nGN+Rv4rlfIGJ/fq/f83y8+nK74zdziSRuJ\n02OkNHqrO+Z04VmNMafWWMY2fqqjiiQjnaFPRvBXcZ3JD0bElyaeiKqqLfVV7aPaUSUtcdR4hj69\nii9D/BABJZ174wpU44oqE+LjcQuJM4HcfpPt9sWH0RDPj1AKI6EFBu4xYkj90/nws7bhuMKWbDmo\nLPnBx9h0+YTnr1xm7q2sY8NzC8ifVfUiq/G94yPmbu4OthIK4u+7TebQhHg05lTFz7eBjaRPWR/u\nHJDd2/8JqLnoPHJtTOPjXv4M63JucvWTPoQjYbv3AVm5bFVVolbI4K6/jC+wiNBrp6ryIR6n3qmq\nYa2zp1gTB0VUVflaff6fO6afbpEuJH3sZR7dE6+LEJdTmZjNXUHWS6/Q5+ayUJPiTtl/yhpw8gF+\n+t3iT/Vs9iBdrdUl8d3t7IM0WVgFKbO2Jg7BqyDselPc9/iRkHhaM4u38IsjranL12Xj6WfbBvfF\nESV6JhtpvnvFTTKICq1aZR/ZTQhxIkRM9efoprtKf/xp1qNaC7lTKa5z95lzvTpjmBcXSld7LF+U\n63J19BbWWjwKCb0mfzTmXHN5VIkxC6JoZgN/n1bWfE8oqulZreVCcWmZs/oBqIOl50F3iMbP7u+w\nnqQDQshovYt4UNCm1lGvuN1GY043rfEjra9t/b98iE3OpLGTsBCLvayQQkLYD7RX6DboZ1jI9KBA\ntk+3WN+f+8xnbdzClrTCCWiEeHSFz9x8b8wtNt56DMS/1xNY0V8/uy/pdLGJao7vuMS30xMX1+O7\noPODqmg4PcNYxKeZI7Ep+u7z4jc+fg+OlqkS89EijNmi0D4+P2NVb6mi5CT7s6vX4HWLqwpnQ/vo\nXG2MkMZ/PtlhbvSFhpqeZz5PaT8Ze4XTCUPx7NSq2O60EJRlVYMaefELq7PMzdA8NlzfEPdNAjkP\njrEl74ix37jO9YMWyq8KoR8RKnlOc31qQryAqt55pDm+9SH6XHwFPV55nn1mf4Qfiy/wvqQKZN0S\nco+rKzVVrSk+g97jIXzG9Dq+5VjIwpNNnpNJjKs30W+PEP2lEXPorO1S+00zM6vs4X8Tb4L68/wF\nCJ7YC9jLzW3saX2eikUP32E8Ugv8dj54wHox/+o3zcxs4TYVNX1l9Pfua6Ckr4+oCPT2Dlw1ler8\nJ7KkSg1bcI9s/j5rzc+TVHJ68//9lpmZfTAEnXXtMTw0o1eFOHsHW3tvRZWukozJQgJ//OFtxnQ9\nwxxw/5U4ta5gkz9YA/00nWctW5Ufm3wNW2oPsZ2YSATLfdbenZzKEP/0J2Zm1l/BLzz/c9a6/ddZ\ns3f02+lLDZGsnmNsT8Tr9AcZxqxexFaHQ1Cp2Un8x5eHrF/tTfbnO0LM9bRvvvQu/bi+gQ38qION\nBX/A/fp+9sFTL4Nyynj/yxWIHaSM05zmNKc5zWlOc5rTnOY0pznNaU5z2qfQPlWkTMuv7JqPyFNE\nZ0VTUaKVfVXeyR2QWcg/FaogRFQwNk/2JpoSD4rOQfqErOmqdnvjiEzDww/JsMSFlJlfIko4O08U\ndv6KOBBUNcWls6UtZXLrioa6ekTeBopWr0SQ26/MT0PZ/9opKIyBOArcpspAqmBRLyKHZwK5lxaI\nrM1sEJnrnIgBvZzV84mhuZS5jUaRIz4pzpkI92n1+b4J+dMeDs3K6stgzHuArEWhfKo6c+oS6/j2\nMeexs3vcY+4yYzKVUhTzdZ5VkWxZZQZDI+7fdI2rc/A4l7gAQq1niwM2A7qfEB9dnblvPSKK2poi\netksIcdxmajlXEpZGfH8DHRu0JRB7St75JPNRUpCElXEKC4ESkEZwYZQD2s6szpUxjd7QJTXdJa0\nnaR/BXEJDAbIW1ZEvaqIfDaLTXZK2HZ6Ff3OKDPZymELpx/z/JAyLMEE/evqcO/hIeMzHaU/c8vY\ndPtYaClVNth7ClqhXlD2v0c2zQ9FhHlj3LfewbaSHfQVukCmoCsET7Wl8RbXzvpl5o57JNSBSlNE\nhJQ6VEYkv79jZmYTSa6PR8mYxKa4zq1zqLEoUXH38dlZ7D3GswvK+lbEcZJOk03ZforMSfEmrIkX\n6MWXXjczs3CCCHpH3CcpZSBrQspNXSUzmFCVCiXpLR5jPtf2GMuD+4xV8QF+ptWjL6Eo8l1+hUxD\nchpbKd4no1DRmf3jTbIjp0KkrGxgCzmdz36oTPLJDn4llMJ/VI55f/11Zc0fkLnMi99jYYXsm9dN\nv7yqGpVeIkOb38NfPRQaIJYgszixgnEMuvir7Rv4hFIFPc+qetNI/FEpcSC0Y9x/fQMbPj7BVxSe\nyMdUsJELymCG04zL7gf0/8IFMh7zC+h99+EjyS32eiEFA8+IlHG7hWQ07uOZxuZjPsY/JFRIQui3\noaqadMVdUG8wd+tC1fXz6K2hSnQTPsbNFeX7k+KJCkZ5TkBcYn1lA/vywYOmqsectqw0ELJMmUyX\nEC6NNvf0jf13T0i9HGuiR5wtdWXH3ZqvAVV66niw7U5TVdF0Ft+jtSs9iS1NqxqbT/w/7j7PLap6\nRmGPsRiKL8Oj5/giGGkkga3PpJhjYf+Yh40+t8SN05Q/HuhMfauK3BVV4mqpat9gk8nWF+eMOyRb\nk4313cgbjwntNBjz+/QlnxagM7aE0HUpoWoza3AH7N1jru4+ImN655c/MTOz/SfMoeUZvhcSCmTu\nOfo/ucHryQN8w7072HjnA1WIUaZYdB+WnE5LDlUZOU+mu18f8ynx/I8ekCGdnsGfzonHyszsjbde\nt0db+I7SPuvTo78DHdHL4isi88y5iy+TFbS+Mu06519/qKowZXEIxRmHtXOq8iSOOJ+ykBffZO80\ntbpjZmYF+ajjg207UIWotPZXUxPY5OQsunr965yxPxYPzsM7yNrSHIh6hN59gbHwTjLfPIJwHGzj\nf+MZxmJxTuV4oviRSBnb248wXz9Zs+OaC+MqSmds3p7mjlAHblUGa+rzcYXJodCv3iHzPCwkZk/8\nGR3x3DVKyBUdCEmo/WlH/nvQ5b79nqoJStxWcIzYQ45SkbU2ERWCMTxGN+ErPELstfK87w5UEUfI\n7b72KPUcr+lZZaa1xygXkOeq/Fi9Jj9ZZ67lGszdcyHGdSTfMRJnWFsIHBOKrqvqcxEhXiJCAe5W\n8GntthDhCebimEOyo98Lvih2kd3X50LLtYQI7Yofa+y/zcx8g5G5x3vAlirKCeHUGyOKolx/Il+c\nlo8xf9rO2lxCoEgkm5qiL1MZ9mdZVeUMGGuDX1XqGjn64lUp2hXtGVbW0W27jI6OH4BsCa7jP2JL\n0rXQtAebQrKP+N7+Lmvv0nifuYx/WbkAmiEgo9oRP2dzKJ6Mn4EqSszh34biLAsLGf/c59hz9MQv\n9MGP8Ut+VUndL7JnKatS2vUvsuZXOrzffsheZXmAnwxkGINcXpxjel5Rv18Gff32O4f858XJs3MD\nnzGu0mRCWN7+mOfPCRFvkzoRkETva+fwSVFx1wRVefcgy+uiKsStvIIfPj3VHNPvgNVl9se7qlrY\nL+n5Z2xbnxn/tuQ+nf+AXp//Arxae8ae6+gtfnd5c9jNzkuULIrep/Jmbo51+fLNvzAzs59/jb1Z\nfBvfc3kOnphfHqPH6jzj9WLwV3xa+6GqbQVfsJc+h46D3xY30xr71VB/xczMWqvY8OaH+K1mhBMu\n64cgaOo1bO6ReH8uzjNvhkPWgUuz7EdLmtd+ow+uSSpD5VRt9H4Dm5s44LrPi1/vaE0IuN9Cd1M/\nRXeFgqrAaUnb2WTsv7ryW2ZmdtsPejTzt9jAB1/Gzx0KZfzqU6F7VfWpGaTf7xrP/0wLv+T30O/X\nvFSJ+tn6d8zM7I0C8j0vbsknXdbO+Ml/5H5H2MzuHEj4X9ccpIzTnOY0pznNaU5zmtOc5jSnOc1p\nTnPap9A+VaTMomrbf/6bb5qZ2cMUkSSX+D8+ObSqEHhDZ++rLSJizV29npL5OHWT7YnOE2GL60xu\nYJpXd1VZe1UKOD4i4pYIEVkPzxOtnVKVpGGGDMKUMtUxN1HmYY3o41Coj3HFmIQq0vivwAYdmSda\nXVUN++wTMjq1vLgIHpJRD4ibwTdL9DeZVLaSYK5VdX4zv03/a00i+HFlRBbSXB9TBaWwUCJ+cRhE\nrGMdZRLDQZ0RVaZrKca1tQ7n9KxM9qQlhMO2kDA7t4hEH6jaUGiKzNyYISaiigNDkQXEVIGqLVb5\nQFO6ij5bpQOPMsJB6VhHdc3XZoz6HZ5T09n/4Q0ixvU0ttETk3+jjlyHN4ieDmQTHvEN+ScY5L7O\nL0YDRHddOp/d66CHvqqHJDJCCompO6JsWeOE607zjL1XPBYR8X6MZCPpGWyrrgyDS5UbJuNEoXtu\n5K4VdK7ZxVS9/EWiyK4Rcry/TfR595G4FdrIL6ofSy6Kn0l8Kp/wYIg9/+ZNosLRoKqzBLhv0q8o\n9dL4nDjGuLdFP7PKcIwRMNUC45xVv+fn6N+MsqEC+lhMaAe3spy7EfElFbifR5wUC8bZ2rO0jhAp\n/Zqq2gjh0hX3SEJwLZeyH7d3qCDWbNDXCWVW40IbxSZ4/el3OOcb3cO/zKyvmJlZUuezz50DkdY9\nT7ZmboYstkecU3vSRVZVQD769k/MzCyVxHaCC+jmvM5dz66R6T3RGf33f8HYXL78GnKJe+roNnNz\n7QLfz54ylvldsvlHRZ6785jIfrlOZN8fYiwPD7h/4SG2GlT1qHaBbNKjWzx3qAxCRtnxRo65UhNn\nTbwuFEWO+2WnmStl6d2lCmjBFPoaucYVFPj86ZZ4KdzYeFYcYD/9EZmH5Wn88SNVCnPfYrwuvXDe\n7O1vWKX+bFkpv2w74Md3NFU9z6Ps2Ehov6rQZX2hxlziR/IJHecf0J/0Opn4kNAhYVVAcntUxUM8\nAh5ljGo5xsmlLGRXqJG+EDbpjbjN9FWJS1n4jqqdjdzIVquJh2aoyley7aG4u0JJZPC6+X5XHDOi\nyzFXGNsLab6bD9m6LSE2Aox5SWftszlVQpGjnw/S59QVcc0k8BPRkCqriNugJTTWSEhBn9aBUVBr\npFccMdLRUHxKzVMhC2vYWO20L7mlewmS8NHfTlioCVUZ6fTEuSOETKN1dm4qM7O2+EdKj9Fzco5s\n2drL4pC5whx9fAtU2ekx6Kmnj/Crraf449V19hapVfR1+Quk74Lz2M5Ac6Ss6iBjm8sKAXoc1t4k\nSYZ07Xnxf0wzTtlj1rfCLSF4dtjT/E//wz+x92/etfQyPuXaJSo/xHXd8RP2HMdC1+UXGOeYuG1a\nggF2ZGftNvf1CTVwcoI8sTRz/c4t5DwU38j0Ivo6/wX6fa68bA+ekm0f85NtlbCZ7U384vwaMizM\notvLL8JNUC4h416e/7vEB+Hx0bfpGK+1lnRfxD/tGLoJecRd4sIWF+bYs0yK288dwFYKQgedtQnQ\nYkNVlfJqbXab0KTimwuLQ6stwiOPqiPFY0LyeORvnqqKiDLHPqHLSidFvRcvnHyAq8PYeEKqPNNi\nDrSPmcuxi4yRbwE990vMgYFIcMboXRPyLyE9zmj9K4q7Ja51KRQRH5RQGP0O/YwE8b8eoYOrQv2O\n/OxRfALGaFm2Ofmsel7yFPHDaaE2+n3uU5HPGYiTxqOKm9VD1oex34wK7VAZiCerwGtS3DBuoZ3r\nDaEkzMzl9ptHnDwjVZ5zycd6Peg14JY82rNWQsgTjD0Denco3jTtExviDvSKW2tGuo3M6seFNki1\nU1VNyjE3Uqvs6efXQbS06kIZaQxGfiHdP+EjYv2YU8XarNbqY3Gh9Gawlf1d5Knm0fGEeJtWNTd8\n4nHLi28tEEHesrhnPvyIvU4rxv0Sc9oPNxjjFSGlt3d5n1WVOM8l/Oi1ZdACp0H8hl/VqDJCiQVj\n+J3CCXps5xmDzQPkXnGJV1T7zMOCuAmF0kg8x2+wvlBfef3mWk6AXoj2haZeRr+hOM8PRkQU9R7+\n/VGR+04uMKdOj5mTkxMaT/HpLa3h72LRZ8Q5aC5fVKXKG18BaRQf4cvuHaLH597huogXxM7Vb2oP\nM42d2D3G597rIJFcT4WsfSjk5R57qrKX/3/ZtWJmZo9bv+I3+cz8Q2vdTtj7U+hs9Q100ThkbK9u\nYGuPivCGvfkGuisffs3MzD7SWpFIswa+Kd6y2+KauvAdoWNfx7+0tuC1WT7FhnJxZOtrn/bNPa6/\nlUGen/RA5FyoUwXpnmkNW+W3qT+r/WcZnayKR+j+eyBwJkagj2Ir2NRzN+ByLPiFwHmL3wWj98R3\nGcc2U03um/8CY7+Sx3Z/IB6+ohA2f/kyNvXyh4zl8zrV8M4fYDvnfiA/U/mF0f5r+881BynjNKc5\nzWlOc5rTnOY0pznNaU5zmtOc9im0TxUp41aVoiBBWYvqXPtA/CFTisKGZnTWUymKmjKdniLRz0KV\n164p40Gw1AIJoqjRDNd3A0SwhuKIqYjlfahMcrGrc/OnykAoYl/TGVZ3V7wZYl82nc8fBohSV4Re\nCCsbGV9C7tSkZvxQ8gAAIABJREFU0BLKkPeVVdrMEzEsn/Ic3wMy8u0QWav0It8LLRP1XnsVuWvH\n/L98SETvWMzb2w+5byhM1HRqUSz98bTFXOigLNTRqRAxnaCYrVUlwx8nuxLM8H4jQ4S+Pi3+n2Oi\nfa1TBs0dFo+OECRBnXltJPh/VFmiQYSxHSnqeNY2iBJlTc0oE+wlOlpRliizhLydFJHqkqqCRKd4\nXuocEfW2zpoWlbGoHPIaUES/3ZItqOrJRIyM3+J1nam/x/eHIfpV2EWOVpEx8C3ynHFmpCfuh1IB\n22zo/WJiXnKDcjjaYoz37orF/SFjGdD56lhcehAHRKOM/iNxnjO/SnaxWkHP5TLytHWOe2ZuxczM\ngl700ZzS3FKVrdGBWOOPmAPpOPouGHZRLREdnr+GfqcF36pP8No2ZTZIjtlcHH0Nu8yRkTL+YaEe\n6qrSUmqSNXXPK9M9zdyqHgkR5Vda8Qyt78Kmphax+1SYCLmrrXslhSowdP3wMVker4f/bz4m0p4R\nl8vUMhH7c9dB8kWE8mlovh5uoZODm/BDzC2QgR1z0gQz4ll4gci8W6iuvRsfm5lZPqQKAMogHiui\nv/QiNnR++pr+z/cWL4BUGaqqRTcI6/zsJXTqm0Nuf4b+XUqB3MlM8f9tIVIuXGVsFuYYu01ly2aU\n3Z6cV0WDTfxI4ZR+rj1Hduu1L2Br9hpcPNU6eo3skH1fnQPpeE9InDG6bfUyme/ZDHrqK+v15HTH\nzMyurNHf2X+Ef979CP4j1xA/Nz9BFkuJcAsoM5wYPhunjMsYl3pd/CrKEo262HpNrwPxbDWVqQ2P\n/bq4FMIBVQBqMzlLB+JWaJMxaQ/4f6Uqfo6sfK24DUJhIYmCjENUVUPcsZi53eKOEs+BX7w5Hi+f\np8LYQCilSiOqUOUXv1Gvz/uAB7/c1TRqef9+VaQxCqFZx1+0SszLfBEdjPT9CVWxW5J/y6ypIkqA\ned8Wd1hP0Dy3eED6TfnLujK5ffFpiLus3ZQ8Qin5NTY+rV3j6iNLa9hkR1w33j5yNbXme6rI2xHn\njrW0Rgox4xLa66wtJzTY9n38cF1+d038SmvPIddzb1Flr1RR1asC/bl347aZmR09YQ7sPt4xM7PB\nZ6j0GBAiJbHI3DynihE1caKdKNPbP6Zfj3fIStZ+wThlNpR1fA4EzPkN5vr2kzuf9KFxtGl7R+ip\ncIn7Xxd3zPw1+lHc5XlHJXGHiTvBq0y3q4adpIUq6PSEpBFaefUi8q9cGWdT+d6dB2QbU0JmLj9/\nwc6tk7UupRn72BC7P6xg2zXJ8lj+deQSJ4oqu7SF6qw94BknJe5TmMAfjdGXiZCQwSFsplfRGlwS\n8jqgfZY4w5YX0EWvv2vP0rxC3cbb4hb0CDlS5XOv+JE8mjsRoXkrfWwrLeROvMZcPdJamRGCxa0q\nRB2fOAU1RyIB1omGeEK8FVWP0jqyL8TQvDE2celhXHmyVeZ7/uh4LJEnPMH6El5kb5L7JRnszkXe\nB7XXaIlapSZETGAdeYJhcZu1xJM3UDUkIX8iEfGCSH/xMRJnXNVozD8YFpejyh2VxJ8Rj+LzXEGq\nHlZqPD8uBI1Xcz2bxS7mVlQpTpWDqrmKjVvPN7K4qqZWvELYetGPq49eoqp4NxLPSle+JaA97Vla\npaoxGvLdnHjZjh4JeSi/O3QzVtEl+dkrvPcKZtTMMzcaFVXwEopqmOC+Ze0va+I6aTcYU3dSPHk1\nIaiFSDyvtdYlhKW7ixzVErpsZNmbJFKM+ewSYzwnVGghim5b4tv0iYenWaS/ySVVNw0xN5/7HP/f\nTmmfOx57/abKCZHZEgqqqfUlIfRCTpUio+L6uvw8ewmLaw6GkGcuyt7C52XskhnkuPQS14+EuO+M\nkZlNPX+TvWBbYz2/AW9VWpUhoz76cVF7rUaJykRucUwWxbnZFRI+8oUVe5Z24YC92TvPaS7WWGe3\n3bwWc3+LPF+jf78s4Ofnf4Dfd61gN+s9xsfvB+ETeISe3xvQ/+8t8Tvu5Sf4nh+/966Zmf3h8jc+\nkeW7337d3v79H9pzf0EfPtSJkVQb5Mtym/2r6+APzczsF28zbz9TZL927SLfO32MzX7sx5bsUNUp\nfb/J6wfI5p5h/5zeecXMzLIvY1Mhueu/vMNY/fYcY/NUiL7b+//JzMyCU/T98iSIl3dayJcUisrn\n4fUEOh2beIc587dL7HvfuoYOVvL08/vfBQX2xlUhHBtwxri+TjXA0/eYa4kMqFNXC76n371Av45/\nQZWqnta+yhPun9wF2eMdgNiZWVYFxF/THKSM05zmNKc5zWlOc5rTnOY0pznNaU5z2qfQPlWkzP0P\nbtjvvfyW/fQvv29mZicHREvnVAM+F9BZ1k0iWbGUzq+HiQKHxbafXue9XyzwbZ0vbwgd0VPFnpGq\nsUz6VHHioqLORTICcZ0z9KmyTEfn4t0t8ZWIS70qvo5ig8haR1nGkf4/FEN4pEy0dzKkaiEzRIEn\nF4iUvf4SGeBmk4h9+YRoab/Dq6vF8IRd4gMRc/v0AnLVF4nS5o+IkjeUEc/VxN1wE0HjMb9FFDmP\n6My/1yPmfvHdHI6Ibg4Pkb1BANlcOrvvH1fpUFaip0h3tsXYJJrooJMUOqcvTgNF5AfiFIiZ0t1n\nbCFlkfxJIu5lVUc63iQiPFgj2+Xzq9pSRWfhhczxonKb8IzPcWMzdXHNTKhSV3QGHe9vcR7xtEA0\nNe5TdlxZr2QYPeR11rQiTpqcKhQs6Mzu6jIR6vlZbHHzKRH/rYegoRrKrI7PeYddQo11ifRHziPn\n0iugFLLiDHhwwMDMRvh/34ctLF5dQV4Pzz8JCHUlNMhBTf16wn2Si5o7Yo+fmRGnhFjoT0+RO6vK\nPB5VFIpMqPqWeI9iYqH3T6GXbpoM/OGjHfS0j12FKmN+Dfp32mBOLjwX133IUOxXyQSMsmeviNFt\nEWFv9ohkV7zYYmOXvoYnhKyYBxFy8TLncpel4wfKajfyzPuy5uP6nM4tL9LnphB1+3exvYP79M21\nSBaj4ub9g3fIAARnmHNz83x/KkWlgsWLIEKKW1z/7g+IxA962FB6if+XC/iXk3s7ZmaWnOV+65fI\nervEcbKzxfOGD7GlZWWmZy6RHampP25D97OrjNlIU8KtTGUsRHbs+QX8zIdCrNy/9aGZmVWFIFne\nWEFfY/6pPHJcuIS+3E/wCftb2Ew6wuflIv0dVPGTDz8ABVBW1azV8/jFkVBwF1/EJsZVVHI7ZEJz\nYtnPZ/F3Z239vqphiZekK/4rt9aDqaRgacp8+7yq0KaqWz1V5fM1xtVGGK+OkDAFoRw68t9uZUnT\nMXxgZgn7i3iUiXGrSoi4d3ytqrnGVeF0tj6iakMxoUY7HXRdrqDLyq7WJNlKU5WhBir7EfMJVcqL\nDXvi4lKVtGBIVXRSzOdVzZFURmftxSU1FL1b9oQ1urQNuuxE1TqqBca6ViWrP1RVoeSs/GcwpPso\nDzTy6vnoJqaKKXFRwBRHjFX+UHILwVERr8WoIZST+CTaHfmXsCoTCmHkHxOznbElw+wJZjOMYUwI\no8f3mQu72+hpaZnsvS9M/2ZWgQpe/w1QZP0T9HLjPZAjO7fI4g0CjP10Qhno86xfnSZzcCYgv/ol\n8RXdFXqtil+99Q7n6k+2eb94mbm1cOHcJ3146be+YE/u4xPu3kDu2hbrXUZoiJkVXheC+MDkJOPg\niyL3wcMdMzOr9Jhr7rBQwlXkPDnCDtNpnnteqOB6dQV96bk3btyx9XmtuR5Vt0jQp1mhLQdB9VlV\nyuriFEiL6yqpyoAJzYXkIYv6aQV/XRGnVtlLBnYqSlZ7UTbt6uBP9rQWdbvYqj+CH/D4Q/YsLaBK\nOeOKhN4Oc2qkOdUZYDPhSZ4/0poeFPKxqTlZN65PiuevMsSGp8VlMmxgy54WuvfMCPEtLi2/qi6F\npvh/YEeVKlUBcyKCrcUq9DNbJsM7IY6HTl28JC4heDJ8fk8ogvYJNpYU2iot/ZerrKszbeZAWlX2\nij/HJ3SrshkhZQKqLlpVtbp6Sui1CdaztqohxUdcHw7z/Iq4hJJap70xbLYpn5NexF8vCCHbEK9I\nL00/ZsRTMqz9ijfD721ZXz6nXhdCRlxAcfEstsWz5VOV1aBQGEPtmc/S4kIXNT30dXWNNdm3wv+z\nJWwwKo5Gv8Y8GGfMF9JClotHri7kWkxcYGufJUvv1f9zqs5WOmbfmk4yR453mfe5PDrbF69ZTVXv\nAml0MR/HH1WEWqup+lM4IFTRMfvJgJcxu/TqZT0H3Ver3D/QQZ5Bm7kY0775+me5vpRjzfbp98NA\nS+6ju9hmTvvg9ddUkcfwd74R9xmOxhyS2MZAFb+SK9OSGz0cniBvUgibipBAhQLcOmsz2vcurJiZ\n2dEuC81Itr95pGpX4i2JiCumldVpjAx+L+JGTx+Lc9OnOXrWdrqDHJMR9qDz28jZev4HZmb29XNv\nIF+Afb9/Fl82e4otJlaxi5+twBlz4RH2c8vNnH1jnfHt7gtJE6Fq0/QKn393FX39gZk9/5Uf271u\nxuJL7Lu+usE1PymCGHn45K/NzOy132SffWOfNe2OizXvXJgxTE2iM/9d9pm+NZAsH5/cMjOzpE6S\nLFz5/9l7kyfJruvM8/g8j+ERHvOUERk5AonEkBhIESAJUqRIFUuU1F1qUy9URmsrWa9l+h9kpp3+\nAC27m10ipRIlkiIIkiAxJ5Ajcoh59ohw9/B5du/F93PAZCYWI1dY9LsbT490f+++e8859/o53/0+\nIUxKL2oMCz/Wda9MypYudGV7P4Cb5msNjX3mtVc1eFtC9P06r7F/tas4fnCgOT/KaKwiRe2vb1UV\nF15CKXK9jGLWsX4PPNUVCurOHcW1g5dlaxfL6u9xUujYLvv65L+J/2edccp1v2tmZokxPcfFa1IV\nNL9UqXYfqV/bXdngf7H/uDlIGac5zWlOc5rTnOY0pznNaU5zmtOc5rTPoX2uSBkjO9wsUm3bJ8N+\nCqt9muyxmzOpMHj3qEy0IsqwjcAVEScz3yWb6OWMf4v7nB6rguEDXTCgUurp6/th37DqpszXwK/r\nZyOq1MQyqsBMLyhru5BQRrFbUsUj11KWusK5zta2stSHJ5tmZtY5UnZ8k0xdJqOqZHpCFYAw50Tr\n+3r+/IEqEmv3ldGPPuDMdEZZ8LFLyvxdvC6lmtaK+nNK5ejwRN+3/YqZD2SMW9cYnxvKaajqzqNa\nzc/JX55pD2b69qEy33WqQMETzqoGGUNY2qtwEUTgg+iGUBdCgWQQezJOmXYJZv2asqYRzo8nsxqD\neJQKHyoc+6ucS0YBYf0jUEcoXCXhH2nB9zBwU83pc4aUqnijyBzCMXDImf+4R3OWDFJtisEhw3nt\n+zvKeGfTQkcEqL77vTD3D1UscrKFGApjfbh+eqAfEBuxMJWRDj5g8C31QYM1USvaQX0pnZGtBuOo\nZE0rW+1BsWsf9aTuHtwFblWkS0P1qgGVjLjuN/0sZ4k3VIU63hBKZAZ0SBUVDw/nvCuDYTVP83Z6\npOtbS/+fmVYWOlaTb3Y29f9BVGOiPc1vq6XXszRPRM9Ub2KLqOU045prL+eMdz4UCmcvuWlmZgdH\n8rtuX/9/AYWD7cd61g9vSalrZkm2NjIKn0dGc7/wLP73ZfnQRRMHzd15VXf6qDs93tB9PUHZYK4u\nX5rPaAxTi5ozN0iMaknxME/1qbsqnorUJrwPY7Kp7Bhn5zl/3kSl7ZNVquMt+XJtd8iTIWTKBIou\nHpCAp23N1dVnVTFIXtBzPvW8uHVq64ojmy2dLc4XNOfdor6//1hV+Q8z8AjV4dhq6P73PlJ/qgX9\n/dnnhSK7cUNniTstjf/Bjioth2vyjRBcLlHQWUEUIkZQqUvN6PWszd0lfqJaF0iCFokMFTCwF9T4\ncC1zgc5ww5NS9VH5JqaEZuTbWfg33Jxzn5hC+WwYIxCL6rtBcLI+edryRdfAZx0USho5kCJUh3bX\n1IdyWWiheh6+JFSLfPhdiCrw0NaKXDs45JpBTW5sQpXF9KhsLxySjXeJ54WS7lf4QP5eoELYht/D\nKiBTULDxZPSsKV69JT1blfWjgxLK5KSQIWlQXMm04qkfNEEdm83niW/lIv2Bqwb5vSRj7QU9O4b6\n08Ajn/QQR3ugF87a4gls4xUpqy1fUIV355HGYXVTFdjNByi6BBQv1x/JB8YnNY6XrygmPP2KqoyD\npnz54S19/vYtVT53j+Vb0SCVYFS0pk9VQU2taJ7OZbXGZ2ZlW9vvqB+7Hyo27N3TuvNf/+jPrXCQ\nt5Ur8rEgCpKHt1Dp+xikzQPmiXUlu6R5mby2yHNoXnKPdJ8SXGaVXV3n5Lbue+iVvRUmZEcr18RZ\ncf2LX1H/dtesjtJeLafvDv19ACfgSVnxaWRc8XgkomtGp7Wf6YO+qsC1N3ldcxJDGbIJcmRvRxXI\nYziuQmWtfZkx+eeVF4QuWN9VnGmxJnZBOJ+1eVAO84P86fngo4MX6VPkB3uLCiizAFwybsDC/ZTu\nm4S/og4szN3T9/uotLX8+sLsmGyqfiyfbrAXSKQ1x62wnruDspcHZEc1pH66UPjyZxSPPCBpCoea\n27Fl0F+gL8oofK1clO1NpNTPR4/g7bug62aofK/C6VPeBr2Q1bxH52Qbxe0N+qF+p7zsFQDF1vya\nx/CA8QCFHINTJzGrCvXhoewmndV1xjKy2eH8n8KLFQJp5e5/hpRpeTyWYL3MF/k9gVJSLyXf61Gr\n7oOQn8jyvvsENezhkvKIeAYNZXoJrpYJ+ddjlAUHWX2uAofMbZRlp+DtaaDSk+M0QR90a6mN0iqo\nrciEbPOorD1ML6g58k5p7DzDOAvyJjUpn/MnNOYVEMzeqGywWpAtHTfg/WkoXvnhBOvMaW3uwUVZ\nrGruT7l+qaTnyrIPbvT09yn278soV/pAqxYqiquVgeLlDJyJFcb+GISMB8Togz3ZfAYFWoA09ouf\nCd37/Iva04TgURqAikrBXVYscNqhxvp0VXF3hDh+9wEImA6nNkChVU/VT69Pz5+9pn1yHK7Is7ZB\nX+M5HdZe6NZA/f6WS3vDx7fFS+KvKxYezGjcFzzy1fKRYmqvLh9b3dL8v/htxY6foq71tZLsoe+S\nL5fPaU/2fGP70770Ot+x1dO+TUc1iJk3NFeTL2/q2a5rbbzLb40XntW1Prz3hpmZvfEz9WmqIbXQ\niRn52aMH4lIZS4lbpbyvfejonPq0xly//CXN1b/8QnPU8IGMXNH9f7KtZ5m9L984x/7tuVOpP/3L\n7+uZ0pV5MzM7n9NeyTWrubv6Lc1RD86/hwX9Pf2sEEAP6rrO5VGNyUFBSJjcBxrTaEpjWnqg7z0b\n4beXV0ih2vz/MDOzCyXtHX4xr7mZzIv/LTQxVE3+n+9JHKSM05zmNKc5zWlOc5rTnOY0pznNaU5z\n2ufQPlekzLkVZRUvfVnVpIsXqaqnYUE3ZdpcA7K2TWW4qqfK1B9tKmvarMNA3lQGzeBy8SeUffX2\n4UJIwjDOecZhhT3Mgfs2Fc4ovCQF1Dl2ToSAccP6P15Uv1PzypImqRJNRVQpD6O0U7+q+w6GFVbO\nfdaGijdUI7ce6dx5zK+seGBMmbnwOGdpo8qw7ewqq1qAQ2b/WM83mVE/ppZVGRqdEKJncpazvJfL\ndrKKGgfM+dvH6lugJkb7NFWoYEp96IR1zfPzcBJcRxGgqr50DpURr8CmXi9ojhIw13ddIGRQDfH7\n9UzBz4oWZ2oND2pOBVjb4xrreFb9C3s0Bh6QQNEYKACUd/oelSyCsN/7JvX/sY4qFeVTZWWLZWU1\nC9u6zxxjF0rBYo+K1OkRiJlpXXf+gs6WupK6//Z9jWerpyywG4WacFU2dfUZVfkQYrHKseajBLqj\nCKrhcOcds//tz23tA1VgW02N7+j8vJmZXUR1o3Coas/+B7yuqZLi9ejzY1QIfPBajMfFbxTExmbn\n9H57f9PMzLbuqQIQd+vzM4vK0E8Elblfe18V2TrP1aNiH5qUnYyck29Ee6rABNp6rpkFvU9MKJve\n98DLcSTf6uzIXqIdzpXHzs4F4QvJRlJJ+bM7o3uMNDV38wn5w8O0kC8NKrOnq/KnCpxQIdAFLVBg\ne9saexeM/ZiwVTv6/j7KVLl/0Jh3iVdp1Cg8UWX6PS71zw16a+02vEBf0OcmL4pDJp0aooNk0/Mr\nqtq0qXBuP1R/j1D+SsGb8czvKVMfIsd+iq2FPZr75qzG+mhVthtD3aPvBkF0U9XzHRAqN99Vdcbr\n0VwuPa/q95U5VdM6KP5MJuQjhQPZYg8Ugws03fINVT4278oXKid6bndUvpPmXLaL8+vnshqPRx8J\nlVDbUrzdfQzXDgihzLRswxd5Mr6QthcEVU/j0spTgS/qtQPPVL5PKRvVlnIVdBlELUGQlgm4EkIg\nj4JUkpNBzXe5qPHNP9Dz9Ku6fs0Np0JTFak4PCiVgcs6qKYd1eFyOlFfOh7Ulqj+jsIvlB6V7UTi\nVIWRNIm01MceyJgeSBWPV88ynKsDlGJO78s3CseqWpWO4FtoasxCw/gxrjmbfkE+NrEwr2eGWyqU\nxoab+vzRNjxnIHwqeyBfNjfNzOzxXVUiofuxIEhLF2vyUCnn8rKq4YlpPbfBxzPUQ6mj7jRgL9AG\nWVPpPRkyc+9IvjXY1rgniLfToFHn5tWP3byeowkqrJXT+63HGscaKoVpFCmmp/T6xW9pvtY+UlW/\ncKi13AO3T7EiW7/7jiqmsS3FkAvXdP+FJcWE2RGt07lN+fT9xxufPsOHv75no7O67qUVcVmErql6\nF2uhvFOXzR+dKqbc2/jQzMzWWQeeuyGkzZCzbBxUb4NKrReuCG+FCj78XR0QXpOX1d9YImWZBfnp\nsJodQA3T69H7T+7o3s19PfvGpmymw7XbVc11f1s21J3SHI1MK64nWaujMcW1nVubPBtr66muOz5c\nm+CS8RI/XUefqfOcpQ38igPt0JBnBx9jzxF1wwdl+rsLhTADidEGYdOBXyk1NVS+YY/SR36E+FAB\nXZCEB6IMSqsOmjmLOmeEtT4S0jhU4Ljqsc90wbuXhIPGj9LkEXF2akFoqbFZ+XZuXxXjngd0NEia\n+qb2Sv2CvudJy/cTAc1DviffmUcpLRRVTAAwZZ2oxi8E/+BQkTGcggMm2ef55MM9xjkchzPivvYM\nbaCHngx8dqug41BgC7A3bNlnSo7BTtsiqOj1D/RcXRTUBsTxJPyJbbjOuqA+3MmzI6r8wxAPF1Zx\nB9RrR3FicWWoCiob7YAYHM3Ir2/eE/9Ghz3DzIqq/AW4aMIxzYUfRHIG9FMYTrKoT331wB01Mg/y\nbkzxs3tHe5vS8VBRRr813BnNwfyEbKEZ0aSFAda7TnTdDz+QAuQeqN9nrum3TwPFrAlUPH0JkJgg\nEPfe1v745D7x6ctw5aAOGphCaQvFsMWripdD3p/jE41nDI7JAhyQCd7Po87kQRU0lNbzFzYUlw93\n8Z1FVOPwkeK6/l6FxyjC75bEcC8HOne2q3H0g6z3oQB0bVKfayeBxZ2x1Z9hnjpaB8Mr4l/Z2EHF\n7qJ8qwDX14W3ZB9T/1lKPz998KqZmb1OLHn/W3qezpHez78v32nNyWfuT2k/3/sn7enuRDgZ8b+b\nbeR/aKP1V2wZFNTGdXHGxCZf0z03Fb825xQ3GqgAH8IXGp7XnC524fdB6Xb5gp7h3Qs/MzOzhYqe\nsch+6+4Dfu9ugpIK6lljLyluLhdQoCzIJj5E0XWhIp+4E8LZfg4P3hWUuXbF5bIf1f44VlY8e29u\n08zM+l24Wbdlo2n4TnsxIRJf7HK6YE7rVe1FkOa/kU3lr+s+B7/S3+cnvmBmZvWS1KG+BL/SG6sa\nl5kZITRP3f/zfauDlHGa05zmNKc5zWlOc5rTnOY0pznNaU77HNrnipTxB5WZ9gaUOToMwS/BWc4m\n2dIAzP+BBBXaeVV/5p/mbOgJyBNY34OcO3TFlL2MxpUFjpGDasA90eTsrsfH2dcR3XfgUkWl6eNc\n/46uewDHy+GaMnlrh6qA+vq6Twr0gdevbG+QrGmwR8Xcreyrh/PjYy7dt8MZ13CHrCwVlZEljY87\noP4vnnC+/YgK8qqyv3sPVHXbo0Lkm1P2eIqzxt5Yz9pNZZI7ddRvUOPxoFC1CSdMp00Vg4qsUe2P\njFKZBX2UdulzUdjH3WmQOEMVDBQNSGp+egZ0gBrQWZuPLGzbrTHbP1ZlsEP1I1/XWAQS8DRwfrjm\n01zEfCjzVNTfKpn2yXmNTQRliFNY6etHylgH+3AVXFU2dqrNuWXOAA+VBNxU55Jw6IxOqfo3zhxX\n4DEqcyY/gMJPl3PVcapJ2SUhUXLwAW3t6fpxUAW9Ft9DoauQVVbZN8A3spqf6B5cOS2NR2VP4+Mb\nIZOPT7kP8LExZZlTVGi8FzTeuT2hP1olTeDIrLLDKw1d53SPSjRKX254mzpU1oN++VAvqKpapS2f\ncXU0L3XMqw5ipl6Qj/VAb0z0gaWcofWOQTxMaKx827pWler5ZFJjMZHVGIeWNDcdr/ysur2pv6cY\nyzFVQ3wgH3w9jUlyXhn/sYj8evJYY5TPaQwfPxQSBGora4JuWnlKmfcI1az+W2J5r1ZlOwe3NUaP\nmhrTMMo32Vk9z+io0EyXf2/ezMzOHyjeDThHvvdQtmJdVb3ynEdPwfszOycb9uILPZBEF2dUDWtQ\nsRwb0Zx1bulznQ31Z/uu4sxsVtW8jW3FvXUqjksXdP2hQoR5ZIPnl1FT6sHBMESqUDl+/LaqgSfY\n5Gvf/baZmU2hZFOD+yVlxEkUHTbWN83MLIcy2FlbFxWWelvjc8p592pvWFEmPntQfIN/a0Jh2AL4\ndiwO6iuBvcAXVaFSflSUT5RyKNqBIqx7UUYCLdhn/k6bihG1QMsSA9CPoB0zV6igjsr2whn1sQeq\nM8A9XSBnjRm5AAAgAElEQVT52oxVE6WsfltzWEeZoJ/X2Beb6kQVfgZ3W/4bRxXoHHOQGp/Xs6Jg\nNoCrhWK07ZxoLFdBxHj9rF0hxSMfldcIilenjP3RATxyOcUxF/xGPVAGvpTW+iBzs40iovdYc+4d\nCqEAKmjwh4Ebng2/7tcbnF3FzczMS3VsfRv1uh+xzoEeuLYoXhIjPk1m9XwBVJDOHco2Nj6UT+/+\nUoiX/Jgq3Ms3XtD3rujzyWXNbyKBAsWefOg4p9iy9bG+99H/UGV6bFExZPkp+dZQdSk2m/r0GVa+\neM023pPP3tsX90tjAC/HKPxYae25zn9RFe7UvmLB+iPtJfKbsuHgUJkoI1+Pw91WBK0cCGvcQ6g6\nbu2DiOoyQf6mTVzQ2umnMpl/oGebvYC6xRVVMn0rGuuDh+p7DwWuUFqfO97W9+7d0Ro9sae1MPOM\n4uPMeY19G54bgw/uYF02k2ddyJzTmj+S1NjvVZ9sT9JHkTHUwaea6ncJJZgQ+9XUpGzwAD61+bbi\n8QAePOsrHvoCoMIAdFS78qEI2/NAGd+Ak8YTg89uXajV7ojmNjkJWgLEZTuHOty+bDoW1H3jKHw1\nQUfnHsrGpvDFeXjotuHmOUVudCQi2wn0NLd5kDoLMWJHEjU5lDerqMp5QRg2iP/RhHypB4Bo0FAs\niLR1Xy8IlzZoY4MXJQJyqNXWFzteUB7s1aosPxPw8EVAdG7mNm3YWsGg2az6793V/59UUApqz+t6\nIH8O1+BOK+s+3nTWztp6PtlGjDXYj3pelzEJZ2SzyZSevQkq6NLXxePWbWpMayD/rsKjFEIFKIhK\n5s59xSlfVLbSyOl6xyDVvewvTxsoywb02ynGvtXg9jtYk891gvIZ3zyqRdhGj33zykviPnkxprE7\nAv05AYLwdKhc69VcLc5rHUtPsP/kt1bzVK+nZU4T1DTW0wtaNz5ZE8oiFOH0A79fdlhnnrsBEi+m\n/jdQmDxeU/w6Kui32sic5syflW/Msx5EiGNji4oBhY7ib25Pa3YgoXEulXT/yEN9rwUv3nFHe6A2\n16uhtJhMP5n6kutIPvmxS+P7R00pER+8rL+/85HG307l479//XUzM+s0v2NmZq/EhTJ874HuG1lR\nv0pp8brMva7+j9QUl8MuxfXWH2j9uALnkZnZ9InPZlJ9ew9/edX7LTMz++EdVO3gwJqb0T1iH+ue\nz3xRiOg0ew33I9lsICEEde2S5uja/yvOlRq/88NhIUy8zygep+LaF2f7erbCQKpJpXWpll7o6hkS\nXvhMQ/P6/33ZWiiiZxtn7fnxpDhiru5rX/6zKcWT39/W3+2B3jdelq/cr4v78T4oqx4qfd+Iav/+\ng9sgPm+AMt6X7VxsaryO+O3zIKW19OF9OLzm4Gd9X/vbr1wSh81vaw5SxmlOc5rTnOY0pznNaU5z\nmtOc5jSnOe1zaJ8rUsYbQX2iS9X9vjJaxaYy+OExlGSqytSFi8o+n5DN7MPYPZqFrT+szF0OzoDS\njrKlofKmmZn5YQCP+8jIR5TBGhSV7SwVlI10RTnjOqss6/SleTMzG19SVar7jLLR+4dUYPaEOunu\nkcFr6n2loOxu2K2sb62HMgZne8NVDX8nAQ9LFbbodWUkYwlVJpJTeq6pMWWdZ8+jlJBU/04aqsrl\ntjUurUOyxqiHpPyTlj2vviRMGfpxn84U9svKUDdyym52Yew3KmuVXWWQj+AAyBc4x+vnHN4MzwK6\nKBCDVwIeoDiV1TZVmrrryc7426jm3E8mejSl/vsi6sfBsSqB1ZLuMwECJsoY+UoayweH75iZ2fGO\nMsOxIHMb5bxwk2pVWLZwUFQFwqWjt+b3c767q9Jsra3sar8qG8sfK0vrr2nc3JyfH+kz503ZVB9U\nU+tI/ej1lJUN9vX5zPD8dVKZ/aHiT5OK5fYdMYy3CiCaUDyIUBmJxPQ5L2ddU5wT71Glv7+uftbh\nTSm+pfHLjnIeE36WFqiB/cf6/IBKeh8ughjqTANTPw9WZfM10BIx+tXmfOo63DFJUB5dfPbCy7LD\nUlq2//imYkCj9VkG/3e1CJXGUFdjl+csa25T92rvy7YPtjbNzCxzHp4FP+ieAVWkXT17dl7PPg1/\nxdY9VWfe+1exsY9PaaxSWVVbFmHen5pRBTMQ0Zy999ZvNCbEtSQ8DC34kYJZ+TPHv610QmXYrerG\nTk42/cgl//ZE4YJx6XljIFyGvB+BqPpbQk1p+w2dCbYXUFCAW+HkQ3HI5BZ0XvuojO2+8JyZmV25\nBrLnOdnSx7+WzQZBI/gqqoZt31W/RggZ29uKi0V4ORpFFBqAyw2C8GZ0FKeiSY1H2/S55tFQeQcl\nigM9/xRxePYpVV6Sc4rfI9NPpnTgw4YHFP/DMY1XNjCv57+scU3E4JyAz8SHelKY7/UhQDnaQRlp\nH0WaY+I3leEYFXXfFfV3HvThYKDxGKLlKg1dL+LxWAhEQiipZ3Mx1x2UAcsg13p7sslyS7brws+a\nDcWZWhs+BMirWg3iHHxILbceJhIdqvHJhlPzoIHCQj50QK6VuL77RHHk5JCKKGfyO5S9mxXZ4qEf\n5Axo1RRxNUSV/9mXhRjxDhGVfsWDdk3P12KMOzX5bnFPPpHflW002DOEUerxsheIjOBj8Br5gqje\nnbGlJlW1mx5h7UZl7/EtxUk3/CODmO5XAyHZjyqeLqEqdekVxbX4Hdnu3fvyxdWfiCvAP6vvxfwa\n79qYYk9mWtW3sSl9PxaX7dRA862CEhkq8IwtapwTk8ufPsP07LQlInpuV2GIaNTnS1tCm9wBZbGb\nB8XxlGLRQkZokybP6WE9gbLNVp5Svw7htxsE4e9YQr3vNko2LTgbThp28Fhn6RfZvwx51D4B9RkE\nRRAHiecPCBESTgll0I3LhhKo1a3eQkVvnzP6/6Z4UjtVn2cWFH+7Wc1llj3H/n19PpfX+hCd0bOG\n4k9mI34Q1n6Ux1wNuF4OUBdCSTCBUtbuTVWEuyiGzcMB2ATV1odHqO2GeywIYhtlsfoaaksono2A\nUNxzaW4LqFClZ/S8Qfg3tuFsqFPdz47J5moR4lwAlVHQ08eskzOXUGab0h5vKycbmz+v8Z+8CJKc\nPWMnpfsHg/D9deATPNU4ne4oZozAw+FB4bJj6le5CAoO9aUgSJfgKTEARHkwpOu367Ibf0vjWQvo\n//18PpkAKQRoofMIzgkz651WLDLkJfQrrhcPQU/DveYFrTcAEVsBdTwx6NlZW7uvNd4/HGPQlH4X\n+2r8Lnessdm7rzU2Oac1qckYFI83zcxse1P+2h8qyoLe2d0TamExKORIeAJE4obm5HgfhbKu7uuZ\nE0IvPqZ99BRzXO/JVpI+/X8URbK7d2TTRzsg52KKR9ER+JRQ5cvdQ3mWfkVZd9bbsu3Srp4rEVcg\nmVuRLeUPtc/+4L6eLwZHWmoE/qWB5iILMmgQg5sHLq+Fy0IQBdkD9kCA+oMg7IljXSCVAZS0Dg4V\nv9KjssmXEupfn/13I6C5DhD4PFV+xwTgB2Vv42Uz4Qbt2s8Ckz5jO9hT///oKvvthmLb+E31qx9D\nqSeiWPXhB1qHjr+sGHcFAcr+vF7H3xQ/6xuoF477ZR8noMm+M4lCaPNNMzN7UPr6p315EBy1u6u/\nscikbOD/Dr9lZmZfG1HMf+OB5nrsfcWD1S8LwRL6uWwy5Fec8/mE9mpe0X555sfyvx8Q5xPPirPw\nqaxQpzO78uM9j8bCmxVCJVnTmE8H2X/v6zU0pv37rQq/VVLaf331nJ75DTi7vrYldGlgVL7R/UD7\nx/Z52WThG1oLpx7KRlqv/L6ZmV0LvWdmZltvsLfICo306pZs662VeTMz++KsbDOzrvuVdzRO2W+j\nPPlTjf3TC9pPt17XeP5z+A/NzOx/tf+4OUgZpznNaU5zmtOc5jSnOc1pTnOa05zmtM+hfa5ImcJq\nwewls70NwREerylr6oHzJVJQ5SSZVJZ5NI5GfUhZxFBKmasS6I1QXNnDhWllO+tkxHNDdMCGkC2n\nA2XWupw793WUpTzdUsZsqJIxGGb2MvNmZjbHGWTvChV1KhOz8IF4lUg0D1nnXocqWleZs5pP2dyh\nCkuT52yA5hhWDrqouuSpOFd03NMOP1F2fai2FL2gisbckjKAYxfEPN6gglve5vuNph2t6ZpdlJwC\nqNsMuVoCWWWWXXnQQxVVCUIxFFhQO6q14LOAG6XN2dBeQBn5BmdpB5wp9QzINHdgTXdxnvqMrcv1\nWyA0pieVqXenhqgkPYfrU84SlHJ6mqMmXAWBCdnMWAtUARn7Exj2+6ecW4bDxhVBiacKyiJPpdhF\nNeaCMuJB+H9OONA8aKla3q5ROezLdoOw4vs5E+wuUsZpcE76AH4LlFiKBY3nHrabmFcmfwSUQIsq\nVBQOh+AoFQ8UyY7gsLEpZamzk7KVhVd038YGNoaiRRsURacCSg1lskxa963vo3i2JR+6cEXZ5wxI\nnE5F49ikYu7Fvs4t6XPVuubn6JGy4N2SPl9v6D4tL7AuKgOB9mccCb+rFTqaoxSZ9QgVu7EZjW0k\nwhl8uKrmQV6U67LhHjwORZQRinCyTF6Qf/cGsqEOaKdGVVWhvTXN0SgKZHGq09kL8pWVZ+SXQdBS\nXc53e+B2mVkW8i6CP/s+EKLmhdeum5nZAWf8VzdUIYhGFS+KFY3lIK/n9od03xtf0Dni1suqYLz/\nD2/quhnN4bOXhIbYhWPB5db3jyqy+bsf6Qyvq6fxe+qGkDPehGxi7rqqWCOLmvO1d1W1CYwr7i6j\nIJGrqSLthROmTaVxHDRDdF7lncCi5mPtjgLczoaqV+WSxrd8SlUrp+vlT1Ut8oJC87ifDHXnG9c4\nTaLW0Q+pf3Eqz96BfKkPcqeDCt/ukdanU1TvypsavwI8AE1QKb4IFfKo+geFmDXrspsCdhCKq99D\nNEMSHzO/WbMs29jfkC1UC7rnaQE0JfcaDNTHocJIO6CxdHdYY5DL8AaoYvk0p6Gs5mo2TVyCX8gf\noOKHD+3BaVIjjvQbICeG1XzGPoJtdIlviWnZUrerse279Ox+4rLBizFwu+m3+uuHtykQIs52df0g\nlcjAkpAg88+ATmBwO1RGa/AF+UrD8cFnXWevbpuZtb0ar6VxrelTz4tDYQa+jgqqc104fCJU8Tdv\nwnV2IFuevCxfWLqifg852o5OtMdpV+QTJz3ZeumRbCoKN9jivKqGaTgRli/K9n1wu+W2VFnfeaTv\nb6yhIPTfzO7+4qZNjKq/bp/meeq83i9eE5IndUeV6W04ZNbfgQcgyLoIIiniwbZ3NF8Xn1M874GG\n6IAAGDsnm/fBQTcgrh+v71hlU/7T6WlMnrr+rJmZnVZ0z5OqrpXb1RgeHGiNmEHdLTQjWzr/jOLb\nC1NaA/e35SPbcHId7eOnRcXHKZRcMmkhdOrM4WZBcxC9r8+3n2xLYlVQBC44WYaIl0GbvVBCYxgA\nBeaj2H2wpblaXJICyhH9zK1SxQeFGxlyGoAsbHtAV4BQTE+hPIniTK6kcZyd1/i64Qvyosw1VBfq\njGuORoOg7UBuB/D9yonWGZ9L8X10Qj5w/IC4PKLxnJyULe7e099P4DRLTQh94UIxs1XQ+uWuqP+h\ngXxrxI+aSQuVl2OUMlGMi6aGsYKfJ3CtuYkVMRCbAJbMV9L620KxzQ3SMcQ+213/TBGnWD+0xSkh\nAcIpjccJimP1DpyWI3CYGegMutPwnZ2fCmEoqxXgt+wT14IgMKKKb5cvag/gRyXP3dfrSFx9bsTo\nIwjjIRosGYbfYly+sEy8iWTYH3oVJ4KTmnsXfB/tvmxuF+SNeeTPRZTPUuyT06BIZ9gzJEdkC8M5\ny29prBonIPCamutEdqhsBqciiJQDbDjU0/PswCE44tP9Yi64GEfkqy1U3x58Ih8NTw/VnIh/e1oX\nRxP6+2Fdc50YVfy5SL/rcOZET9Xv6Lg+X9vV5z/4ROMQBMmfGGMvwPOXTjRfPk43XLiuvdUV+Io+\n+o1QFJ19jcfI+JMhZbzj4lHJ54M8h/i1eq/+yMzMZtqKFds3dd2jGa0LX17XuPvCWh/WF+TT5Tn1\n99X3hIb+5Q2tP690ZFc/gsPxxf0/MTOzMct92peZ3sA2WyE719FY3B1ojt6Axy64pHtnp/VqIX6D\nXFH8/dj7RTMzO1dHSesjIUSMfesL81obR5va3xb/L8WzDXg9E/j/V2/p2d//A629iSlQpeviIHx6\nQq8/YS3ur+pzd38pm/jmiuLRTyPi3xkLCsGz/7pOGYyt6fNTDa0HP2rLZs4dKl5uLSnu7M1p//vI\n92MzMwsHXzUzM882/E1VxcsPntX3q7uyhZdv6v0+yOp1fncEcxqXy3eEILLv/hf7j5qDlHGa05zm\nNKc5zWlOc5rTnOY0pznNaU77HNrnipTJo4hjqFGcW5w3MzPXQFnDE87Klk9RajhSdtCbICt6CPog\nrtySF54R37gyeGHO5WeeRmVknLO8oB/cMHbHyNZ6XUpt1QbK4NWqun9pTxm5vboqw76CsqgHHmUI\n4yhhhONUxH3DaiJZVq/+vx/n3HgInpShQhBojhLqIi2Yv6diyswf5tTPSk3Z7o84Axdf0/nDVlT9\nn1hQJs4fVgbQg2LP4f6JNQr6d5gqRAqeBDeKNEGqGE1UdCotjXWgpXvFanqGNBW4zhJ8C0X1vdzV\n5wdUPENBUAVNKrKcz21RZTprcwVAM/TVr8MGaCmQFz0qeVGq9Yc5jeHeAWdbUUFqwwkzPSubmFhW\nhvnxY53R73BG1D/JmX6QJyl4fe5/rLHuwnmQntb3Y+c5/91A9WhVzx/zaE66q8oyd70ar2Cc89ph\n9ae9L+NvMq7j3O+0LVvxoGQQS+n/l1B8eFhUBYHiviXTsu0SFZXCprK4rUdIEvh0nSBfcMN9E4jA\nQn9RqA5vQ+MwrMR6QBEE2+qvr63P98hqjyzouQaXlNHff6QKux9EVJSKh29E49pIyIb3K5x53tQ8\nRjmfnx3Rc8RqmreztCTVpACvI3CrRAcqUcbwz6IfZais/CQGks73rM6oBlEIe+/nyqjHIurLxHVd\n79wLGqPJBVVzfv0PYspvF+SfpbIqvPtbqg7Fke0JwCUQ7KIugo2631E1AxCD3Xuo9+0eqhzwZaT5\n/jjnp1eSZOp3VRH4zZvK0P/T939oZmazU6q+VeCW8aFEcAQCpOVTnJyZntfrC6qeb97W3L3zvs78\n5h7Cb1SVTX/0oXwl7laVqOJRP3utoXKCrjcaEV9ImUr44x+pGrR3qs/HNxRzzl1UZXXIOTM9BTrh\nK6pQ9AaorqBi1G2i2nQXXg1U8M7afK5hTILLC76NIyrQx1SuKyWtL5WcxmvQUowxKuPhqF6nlxVz\nUpPqb4xqZ68HCq6n73VaQ6kg1i/QhO64fCfEOfZet2fdnmwjiQJLyOb12YTG0leTsXSp2vo9uqeX\n+BCBNy1Jld0bpWpONdwPEq9Xo3pc0bPmd4UeOGGN6ZRlqwE4wfpU/XvwVfhZ27pDXgyekaP41vNT\n9WcsWhH9RxAlmQOq+64ecdwLUsav+OKhEhkGFRUDZdpHXamPglcVn+rUqbaDDOp09fzDOHXWVkJV\nbvMT+UJ9iDxCMSeYQoWKcRiNaHw9Hq1zxwebZmaW3xUqIp5SPI/DT+Vnrst9jU8HDqDgia5fOdT6\ndq+pc+3xHa0X588rvp67phiUYb07Ad2QA+VrZra3umkufM8LKmF/Q/OzfFmxLnNeFdTRq3p/sKZ+\nBxIgLyOal3pRNrz3UNwSbfiw4ii3NeEoah6p2hmehX8ppvG5fP2SPYbP4fZDxdXRbe2bQlxjdlHf\njT+nNWLrIdwnIH0f/Fp8PJ0tzW3mOX0vPa/4YaBPjw5U2fWANsutqwrcL+v/k2MoCI6j1uEB6dKs\n2JO0EKhYQLcWAnXrCnA9+JB6oI56Po3JybbWh4vXZCspkDXbRVVyG/C4uZNwqIAmC5p8r7ouH11c\n0jjFQTXsvH9fwxASkrEPOsyDwk4dBTPrDZEeoAFAp44RS7ZONN4hUAHJKdn6g/dlk7PwkowE9f19\neJ3K8NmNJvR5XNV27oOa66Pmx9+DcPgUiedt9iJtEONJ1t0BHJFlVADHlkB/gMZwMQ9VIDMR+D4o\nUFuNfbi/8VkMqO4d2eCauCwyIOvXb2uv40YNsU1l2wf6zxMYxjqPnbV5mbve8CcOyPIwam3bVOUH\n8NotgTgeMBdu1IAWrsnvPfDldUH3ulmTO8TnTfZRbdBRPVCgowF4d8Igvw9lC24UypKsHxuomgZR\nvduHJ3PA3M3PowQ7oTnugNTxIMNXRBUpmAHFCtK6U5RvTV0RcsXP/vGjVaHc9nY29X3Qv9ug6qZQ\nrSrv6n00zvPy2+3BI6FnR77wFTMzy+V1nSrrzDlUBB9/pL1CEyT3slucKj0UbzMoYm6iNlqBJ3T6\nhsarA1fl3bviJwkPbpiZWTqjuP7wZ7p+vq64eG3iyXAO7QtCjWw9Qu3vongIE7fn1a+UrDl7FSVg\n+I/W9tSvxZTQJ9Wu4vn0B9pDvjEue3m1r+f9qK75XEppr1h/KMWkD2e01/s/7b9ZoDZul/6kba4H\nsrkpxmb8UHa/u8WaMCGulKb9npmZ3Udha86tgHjb83MzM3sdNdMdoGahpGxs+1+1j538muLxfwpp\n7N0bev8Tt/aPo0dvmplZ8UBzufhF1OI4fTA5yqmDWXwGbsj1jp79S29K5ejnfvl7/0hj9KtnN83M\n7NmfyBcWZr9gZmbtjzSWqR2hoQYZreFj61JNqv6exjbDmlvMzZuZWeBj7be9IT3vXllxJYYa84s7\n/2xmZm+RNyg9hYLjb2kOUsZpTnOa05zmNKc5zWlOc5rTnOY0pzntc2ifK1ImnlQ2cnJFmf/lG8og\nhTiPXuEcZP5Eld5TFBgK+8pmtlF66MEJ4+5vmplZuA/PCOzsWTTqU7PK6LlcymrW95TGLnaUETPU\nMAJDrpmgKsgRMnBFzsU3OOPa5Jxeo6oKSH8XVAHVuVaoTv9g7O6pn1FQH0E07VMhZdACs6gBwB6f\nvqK/p59SfzqgGPqHKGIUlbEr1UDSVFVxiHK+MjOq5316csaOGqgwbOk7hS58FKjijC6pWjVzTlm/\nACo8DXhttjf1ufUNVbkQCLBBmIx7Qs/cTsIZAHfA8FnNwxn07hPyQARlCyE4EuJUxbp+VYRj0SE3\ngqpGLng79osaE3cHDoKexuzoVP2PoF7hw4bcIH1CcLsUSvq8b0JZ2HCCs71UZOtteCeayobWqEzU\nUxrnblvv3VQiQthiowQLP/0qNvT9aJ7z6GENLAVjq27D/ZKEM4fz4LWKbLhKdSk7Dm/Hgmy2NUTG\ngLZyNeBfysmHTqgIeF2cm4ZLx091r43aVQTVFfNQaffquttrsvlem/P1aT1fgDPTlXX57ANUALxp\nPZAfDp4slYzNnCohZbh6PNP6/7BXlZmztA78PZ4AVQRUljpUnZ56Sn4U8WquH95XRry8repEkIrj\n61/5AzMzywzPHTfU99u39SzHxxrzL3XE0u5PaqwyqXkz+0wFY39NlYRYSTa6/kg25wM1NJOVnx/n\ndb2VjDL43/xjZeT3V1UFqvv1XDsohv3qVzqLuviUKqKXllU1H2UsD7c1lq203o+D1KkytoO27r+D\n+tLetuLPxS+8ZmZml1HECcM/ZEeymcOH6v/WLVW33CH5hhfVi25HvvGru/r/1KTGb/aiqkCjGVW0\nG374qODYynJOvYtSTgElhnA6yvOogtKBZ+gCFYYTUBaBzJOhIE6PdJ0iihD5nF7LBfl+ty/fDYZk\nq9k5VcNGFsSqP45iRSY95HTQ51zwB5R5DncdVZKe7K4DT0kb0FoDnpbKoXxx70Dj1h80LZIi3mU1\nB9kRrWXzaSEa3CBdXC6q8g14ivqa4/rwHnCrGP5XaIL+RGGw1VVcLxzr7w04QkKoIIXS8vexgNZO\nP8iHEPcdEF8GTdlol3jVYe1zUT2vEe5DLZCYnC8PteGE6enzXniHGnCPeeHwKm3J9mqche/X+b6b\nuB9DNS8Ctw3IkLCXfg2ebIsT6utBdkuyvcPbqoS24bCJBEBlwMEwCz/I3IR8Oopyy9aq4mM9rwrr\nzFXFZW8Y5AyqVP6I1t10CeW4Sf29MEQ8HqgfH+IbC5vygQRIzalZ3X/04mdV/IXnL1kHJFEpL9tu\nbos7oZyT7YXDitOzF1RJ9YBySCR0/+Tz4qYI+VCmycLPtwMylXXtNKf5WD/SOAW24ZgZk93MX162\nyy+KayA+DmKPtePksRAKh1uKl8vXVEFNjOreC+e1FwmhENbYVt+PP9H3fSEP14XTLyy/bNdRb4Pn\nIQcvk5f4HULhJjCuufRVnsxGun2UXQxkBr4RTus6JfjpWnX1LwYP01FNn2/2UBjDZn0uxcs6fB+V\nhnwzmFLF1TcmnzwoKz4tdXT/DEo4200hbfIH8uW5p2VjJ35UhOBIHHKwDEDpNkBSe0GpDkC79Zu6\nftTL3oB1yw2fSNsDzxxcLTH2fiH2DlViScujzyfgX6q7WS8i7LMT6pCrqhg25IYbmwHdl9a8Hx0J\n8TS+qHVyJqXnboPSGrCn7LbYo7D37HE/l+ezdaKWd5u/TrCish9P/XsOsO093S+eAYXYh4ev+ZmK\n0+9qkeRQlU224AdpPjYG4gSEy/qm1gAvqNaoG7R9U2NxDP9Rp6C/1+BobHQ0d6MRFGVHdf3OieY6\nA4eVN6o58IDwfojv+UH2xWe0pi34WdMZuxpz4hnIZjf3tCeJVOEAi6KkBmJ9E/WlxRvy2YxHtrd7\nqP9vtHW99Ip4Ri6e0x5mP4RyGLx6YU5JxFEfTcPnOZMU0iaxoHGNjKjf81f0/6dDPia4L8Mgz6Ns\npBPwLbXbep4h19iV61IKSl0ELfvOB2Zmlh1RPD9/TuPocmtcDf6+AYpu06i8zgXgPw2dnQvRzOzr\n+4dBsscAACAASURBVOr3bk12EHpXHD+l78rHQv+q2BiK6Hm/ckN8Kz+9rf+/MK/n9z38mZmZveXX\n8/vdjNcbOt3h8sh2J1c0fz99TuvqaP7ZT/uSfCFuvceL5o2JQ2V6l7XjKSFJSo/1zAebXzUzs2+M\nCqF3va595w/WFOf9cL3enxd3S2tNqkOvlBSnHy/IpivwwIV9is/5Nfn1xYT8b+Pht8zM7O3npJz7\nhzf1/+/mNeYFl3zki0nZZhU+n/YlrZlvRb9mZmZfPaA/7A0QO7Y+96ltCy107iXFzciY+tPta23+\n2Y7u/+WTeX3+A63BjXH4eebFxbhqUr46DOg3dnhO/SxFNG6DW+JEuzJBvuG3NAcp4zSnOc1pTnOa\n05zmNKc5zWlOc5rTnPY5tM8VKRONUQGAa6B+U1nKWFbZyWxa1aVxspGjK8rCWk0ZstKmspe5vM7L\nHR+DYMkpG1w6Ehpg9xNl0DPTyn4mJ0BZwBGQ6ChDVm2rkjJUWenAkD42ogxcMqx+DRUkLKSMfjAC\nm71XmTjPqd63y7rOEQoR7rL608wrW1upK9O/WVd/PXvKoHlGlI2dDnN2eJqqWkrZ0diEl1dVcCdB\nh7htqB5FlttAaWSTNh5T1aVxBe6VLWUD91Df2X2kbOfuofo2Na8s4RxqHbFZvZ5Sae3uqprTLCvt\nWAAVFObMv8tFZdOn/2+0NHaR6JNxynjIG/o73OdEY1ZBHaKeUD+WUSUKolLhBekyPFNbyCt7urWt\nzPNxX889Nqox7vk0tvGm+rn2of5/55Hu44WBvFpWZrv6Aaoodc1FFYRMGARP15TZ9jIebh9In5Lm\n0lNSljh3iNqQT/2M9TWObXhD2rhoiTOrEyN6zsyMKqV1VJMKVRR1+tg2B7i7Tc1nPKu/h+MoLaBq\nFQ/pc71jPc/uMVWtvDL3iQy+OK8sdzuH/ezBZXAg34vUqFiHYZ+HE2I/T0UnBQ/HjKpdvQk9bxm0\nwH5Lr1EQRo0OB/bP0jgr3yzpO50WCLgd2cYJ/ElB1H+Wn9PcHKJe8eGvhRzZndSzGGoRgSBn0lGa\nufexuA3eK/xEf0cNYvH39Ezjy6pSjIPMG39WSJajPVWpj4/0jAuTimv/+t911rTzWHP49PPKpIfG\nFVfOT+i63uc0Jr/+0b+amZmrSZwx2fiLX1eForIv9bXAmOb4k4ey9cPbso1rf6gqVXxCFYQCHAU7\nd/S5wi09f5xK9Qhx0tqqil3M6LoxYkkJtYpkVH9/5933zczs9EC+E7micXvh6zqH3dbH7eE7v9Dn\n6vLJcl6+c/ctVXxboCgODqhwRzW/E6h+pEd1/+CY+nnW5gPF5TJVz6ZW9FxL2EE0rnlLgorzuzk/\n3wMd15AP7oDeOP5Qlf/OEesR/CZROHd8lF7brqFaiOarD4/LKXwihpKS2xOyCKjHMMpOp3HZVLqh\ntdLjglMGDjB3E2U/quj5ovpSg+OqUUM9qQOCkXK5i+p9NKmxHIOLJkT1PmJaw+rwEHVzoKZccBpQ\n6XVTOYzV4Y3wasy8QzQBqhudPvfHR+sgXzzwOPUHup+rNuSI0feqPVQ7WMuiKcW9+Dz99aoyOcSJ\nlEDc9Pu6T7/3ZGiqDKg5/4SqYfPnhN5ohXS9KEighx/LBgYuULQ9+XZ8nMp1QzZV2hiuF6pYhlOy\n4bFFFCXCmr8wan+L5/X/2UXQryfaEzz6SKiS1V1VJyPHeu/dVly++PT5T59hYXnmU1RtrYKy3BiV\ne3z2aEcx4f0PxF3jZ31ahCepE5ZPLy2AugMR1AjC5RDU/iA6rnWzDGo3l9N1H98DoZXP2cwF7dtS\ncHGlQdKVzuuzd29q77F6X88WhmNg+aJQPMnx7L97lp01xakGqkLTqNiNTILggD8jeY77oFA25Pkp\nF1CUilGTBPV61tYHTWV1zXmffayX9aILL58Hn3AFh8gQ/T2fH6q1yZcHy/p+uILa3KrmaPFF1I5Q\nZ3t0n/UpL5+Ig85No+J2uqW4O/+MbDY0Ip9puuVbfnzJ5dbrYKhQ6dbzj4LC6/vwWYU3iw59KMTe\nBt+torSYCmoP1UGttHsfFaemnmeAYtigpPW4Qwzwgn7usZ8uwgO4MKP5jMV03SOQK92Bxi2EemIL\nrrEeMW6Q0Di22DP6WO/r/c/2EpFI0E6JseWi4vkkfHht+FNOj7b5u8axgn144B47S6uA6DsE8dYA\nldtssu9cli8cs8Z98oleL72ivcHUohSiqu/Jzw2E8QT73PV7QqB0MhrDcfiZHha119h7KNvMzmgM\n5uc0pnXd1g6O5GNHKL2msLHSjv5ucAjGQO+v/5PWbFdQc/X8l2SbXr/Wyrwffs4gv7VSWrdmr2gP\ndLrJXgwFw3ZK1x/GqRC/xVpx2VazC/8d3IR3bmv8RpZ0/Qb8bB/eVsw42pWxToX4LYaq4FA5MsNz\neEFwvntT4xpAmScc0ZpdZD0dvKe9TBp1rMxwLwTKrAUX0OhlzUccXs+a9wn2rWb2YFXjv/MNxdOL\nFcXzyA8UZ20JnlTT3s/7llDNnafFPfPxKpxrz+vvS3CGtjubZmZ2J6J1aqmo8Xg7pvXquROhOnbz\nP/q0L79+65bNLiStui8kTGNSY3G1LyTJVy8q3vx4WXHo5r5stNLWmL6e1t/DC6+amZk/qD7Ul/U7\n9e1fagzHx+BNyytOtNdlu5fdeuY2XHzpsNbMLkqxv3hK/jh+V3O/cgUVT3iNCk3tl1fva5/+B3HZ\n7MER3FOgQd0b2mePPCd/znwkX4l9ItTQ9pSeo/b/CFF/IaQ4FNzXWL9wiVMGs0APy6ileuHTPNbv\ni5s9vS/5FNeW4DSM92Rzv605SBmnOc1pTnOa05zmNKc5zWlOc5rTnOa0z6F9rkgZb0TVNF9BWdGP\nP5L+eBSkSSCrc8opkCPJRZ2TmxtThSGNikqSs6azx7rebldZZO+qMmC1E2Uvt+5KQefkjrKtqXEh\nZBKTyk7OLCpb3EUdwzusJFAlc8E9UGmqv3kUC1wUWoZAmgHn8Ucz6uc5jzJnrqCqWcGQMnt5vtg+\nVmbweE/9PoEFf3tb1+9s6nNBeD48n6p36H3Ap3GIe6m8wp7vHlYh+zGLz/JMVBgn5+bVx3Flgmv7\nnPPeU2b/eENzUTxCqWZMYxTyc84YZvpOWGPs7yujPWjBRRNVH7xUVaAqMFeF7OIZ24CqU2DINcBY\nl+BSqLuVBd2H+ybkVdVkyPmSXuRs/IT6M3JC9cavalC9pMpFsADTflS2NDerrOjRCUz80X8/p2UO\nJno7XIeMv8+nSsdRSOPlhoH8dFcVhvRA9xmHN2PgURa11VIGO5Xg3CMKCxPPq2JbbsJ8Dvt8fEGZ\n+SnT5+onqlScwl6fA1EUg/fEBVeNz6v5SYK0mZimMkoVsnOkLK6f0ODl/HgMJYT4ElwvnJVOweVT\npgqXjMPtwxnn7hYoFtRkcseat0RGdjAxB3+JX+9LEG+03GevcA9QE0qNyJ/b2P9pBTb2dVVF6gVs\nBib+p68LweHCpsMpfW99TRl0v0dzd+2GztQmEyBuvLKBB6tCmGw8VnXq9L7mwO/HVnf0zAVQXaVj\nzWFrfJnrKsN+CiqpjorT5gNVEDbvyievvyJ1n5lz+l6/qedYe6CM/tYGSEEQJ1OjqrpMLGlu99yo\nZdzXODRAOdTgmEn59bnVW2LmD+6outJcUZWrXaayGdTctpv63tvv6SztS1961czMLsMJsYpST/lA\n1avDVT1PclKxZx8luN4ncDFMyYbHz+v7L3xJlQw3CJN7t1S1OqEyerCHKh68RWdtwbBs2ReGHySj\ndSUKx0ODKtrRqqpytYriaQ50XKuo+9YYDxdoFR/Kbl7QJl18uYsCkod1JBDTuCSzKleeh/MnEh8i\nczxWAVVZRSWjTTV+/a6qLs0jVYFKoKQCVO39Ed0jAdJlFERJCt6hVFzxxpvWM4d4H0CFwkDGtCGl\nOS1rHagd6bXsVnw1OKzaIFq8KCOeYFMDF1sKeHnicMoMWqCOABkE4eIKUdn0RzQ2vhm+B7dOODpG\nv1nTSrKZXBW1DBQhivB4eODvMSq6HXsyDrO9HOfbWU9cTfUvsoiyG+p8l67r9XhD8TgYUL8nL8hH\nJ8+JG2AXnqcjuMH2Djb1/h797IIOMcXXyTmtG+l5xZqx8/NmZpY6pz1EfRvVOlARDx7Jp2twhNmf\n/x92+5cPbG5Ftp4EyTIxqf4MqMMtX5N9Fff0urslFMn+pq5T72vec+tU2q/o+224ifbKinFTIDcv\nPiv+gDmXfOXhbVUZixt7dvNfFVfiMxrblefEjzSxqDEMsDk4Ri1pZ0txL7epZ5t7WXFyLinFEC9r\nZGFTn7v5ljgLZuCgCYN8y05oDEdBOkfDmqNyn70ByJqG9+wICDMz/wDFxM4QnyXbj+H/gar63SzK\nd8OgVCMleOlOFV/GsdEk3DFFEHpHB3quqaLiRBT+IM+mxmcf1b35y3AeTstmNu/DKYYPj8SHfEvq\nZcOtOQ10UWeCb6kKcjuR0XUqpvnINUFww8sRgjiqC8puAPqtN+D5iUU7oKfrffnGdEZIlNKBfPr0\nFCUieEMCcXWwDdfXEKkTRlU1yP63jFpTxMu8gfoq5+WrIyCfKh3FphTIyIGB3jUzTypk5c0hmlB/\nW8IOeyAd/SBteyBsgi04ZYiZZ2nuFqqZ48R801zGULQ6vyIUWBgOkIct7bfTKfn52Lhe19pSLIt7\n9LnprH4D5Xc1hp26nr1U0VjmHsnvfKCHOw2tB26QNp0w+1Ti7cGm9i7JCa0LffjRAiOygcUl2Vjn\nFd2nUdIcxeA8i6Agtp7QHmQDJEwElGmbPdfohD4fnFJ/ggWN8XpL9++zNjeOiZM9vs8cDBURm4/g\nCWXP4OMnz0pCe56OW75WqGl8do7la1X4ksaHqD14qlJ+3Tc7q7ntFfU8lVP5bm5brwM4MbvH6ocX\nftH2KYhWkCneGc3DWVsXVPL1f5NvZ74tH/7Jq/LF136heX+vIz7ByLPijln5SKpTa6DQpn8GD9Uf\nqf8P/lHrhDvzsvp3BR6TE42/v6C968rK8qd9efkL1y37Vsz+qaYTK+c6soneu0Jid7w/0Af7somn\nUZ59r6d94TuXxJ92dU029snbrAnPap+WuqE+RUblT5H7+m3zelNqTf9cVZz/5uta23fvymZH4dXr\njqnPm9fhFNzWPjG9oj3A+d+gVnxJNnQnr317+Osau+IjxYvOLPEsL5Wl99b1/Y+uval+PRa3YuBr\n+r1+8VdCxtdzGrubS5x2ONb7FzelLrpSlW09GPINzWkf7e1ofM6XxNVzM6Q5/1/sP24OUsZpTnOa\n05zmNKc5zWlOc5rTnOY0pzntc2ifK1KmVFaGqulXhmtlicqswRafQ8WopZT26X2pVLR2lakam4Jp\n+5wy4eEpVdVWAuJWsFll1HLwi3TWVbE92lQmrnAEj8b+ppmZ3XugzHoiDXM3Z1T7bWUjo0qM2cCo\nFlZgRC/pOjsdVJ1gUI931f8E2cwIShaxaWXq0tPqdxC1l+UZZXvPnVKd5Mzr0YGyoKdFKrRIWvhD\nqvhXK1SOOds3KAyVKkApdA6N4pP1bylDPEYlMsiZ1FBMmeQaXDD1E43dUEWn0VFGezqMIgAVuPRQ\nTYmqhMFREsjreoMQ1QofWcohZOaMzVNGyaSm6wXi+v78rLK105yRbXCmdeeeqlRt2NJToxrr0Vkq\nrU/Pm5lZhspm60gZ9SrVkwEcCuE2zwHp+sgc/ENJ2Vx3kupeWp8vbiu/Wabi7J1VdrfK3LcONRfH\nRV2wPaL3s3AY9Asapy0UfLJH2L6XzD1qKrv3yDrPyXZcCQ1AmH4FxuUrI/BypGZ1/35c7/NryvxX\nQYt0Wsr8pzl720RRp0pk8B3IZ6r1IUpA/Y/yfG4q2G36f1iUb6Vi6s/oOVV2th8oy/3wfaEeYmV9\n37+kGx3DVRGND9VZKKmfoflQW3P3NGdpt8bGc0XPMga6aRsukPsfqZo0ROBVWiq3jHo5w08c2UQF\n6e4vdaY2jVJBelJ+PNNXZnxvg2r4puKAD/RWF8UqKyrOHexqrIPuj+kXCgLTOpvbRS0q49b3Pryp\nM7VDHpDUlPo3HdX9mwH4d1Bbq+7JB1ZrGuuJCT33xSWdp+4FQCM9Vn92NmQLX/mu1KQWqMrnDuRD\nQ1Tco2NVwU4/lu1deVYVjnpV/b3zoSokUZBEJZAlAxA6d26Ks+fys0L8nJ+Q78ZmZCMzF3TfQUE+\n+OYbVIUi8o1KV7YxM62zx4kSz0HF+qzNb/p8uytfPT7RvB8TN7s1XXd47rzFupQF9RWaVXUuTSXe\nH0aJAVb/dldlxgEqewNQLz24h4KopvR8+v8uyMZeXvctNGtWH2gM2vCmnRb12TCVuviMbGAuiv+k\nQFTE5S8+bNprso0OfBH+AXEaqagGyl/H8FNUuqg1oRDTMvV1WFGcmtKcLV3UWPRQgTNU7soos3QY\ny15V12/BZdPL6v5TKL0EA4pL7shQgQE+CxRf2sGh4ovWo5Nd1tZd2WJuU/2toyJlqPBlUJPrEr8j\n0SerO3lAj/m96m+trPsc/BIfn1VsyETU/10qqU24bFIbqnhmZ+TTmZhsOPmqbHdyV9/vMl99lCTv\nfaCK7u4Dxc/cjmJJHJRdash7lFaV7epr2iuMzOk++x/tfPoMpZ1De1jTeFlfe6bwuHzNC3oiAtL1\n8pIQMJlRUADY/AF7pdU9bRxa+GbHp/lvwUlx86HmI7Wnyu7cFdnJ+ZdVxexdKNveQ43dvY8Vz279\nBiWwHcW/5FOKo3PLsuUySI4hd1PzA6r2F/SsKy9pf9e/tMDYKb5YFwUyeNEOQVaYVzbgjWjMS0Xi\n/axsxvDPs7YOKODqKRwtbKOjoGmboCRaoIpicF8Ffbp/fZ9NRRIkSIbXERS4dtkXg8yLxeTriaD6\nW2AvMA8iL5LRnARium+RNTsNAieSoNJc1twO+aXcqCqV4XCYTGo+fHCW9RkntwfFNXje3KgVBb16\nrUMT2CP+eWIaj94OPHs3QMGlFT/3tvV8l6PqXxrfdaHm1CrqOm32fKEprV/Nsm40ANnkgsOmH4eb\nBl6qeks+GA3LR/wxNu5mFnYFrcoeaxAkNmZ0nRzKlKFRjVdby5jVQdymWQ/P0txB7QEyIBZ3D+Bt\nY43umvYATVSQQlPsE6PDfY/myo0ya6GsZy6dMLco/w38KAL65DtPfUm/oYYKsNvwWCZQewvCXTVz\nGRUl0MD5DTgmj4Wo8DLXj0xrfnsA0j7B/remsauzN7l+VSiHpl8243LJptdB3FtJ8fSZV8QvUuH3\nxsy0ni8xq/h4dAD3YVq2tQLyujvH3I8w5wXNSYt9aQ8l2yhqsGMhjccLN4SGTqZla20X6nbwetz7\nRKgQf0IxpRPhuaqoD/L7YXpBcXvIdYaYoH30j0IBdiuynUDkydYbV14xceerQr7cvqW4mgTZ8y/f\nVj8uPATxOKFx/vim5it6oue59jXN08e/0bzl3OKM+dOgnm9zCx+pz+s6X9C83f0R6/5/NXOfvG/v\n1q7by1/Qb4rqofzo0SuK33cTGsNrJ7KBN2/r7+2Hss1vTGuM/nlX98h6ZEvLqKr98yy8mp/oOlf5\nTXKrIhs+94zud/hvQlJGIrruPU47XL8jxMrEQ/3/x8vyU19Zz3J7RGtd57bWokRF96+tKy5cqH3H\nzMySW0Ks7Dfke1++APJmSjZ0K6I194s/UT9bryhu/QZuymfv6nq+mObKHf+S+ulnf198w8zM5j7Q\n2Lqr4uj5+Ys6qRNvy0d/W3OQMk5zmtOc5jSnOc1pTnOa05zmNKc5zWmfQ/tckTItN9m/p5SJWryk\nbGnQlImr1ZRpah8rC7izjaoS7Pm37ynb6X0Ah0NcGb6JcWU3Y5w7DIAiGL2kqtD4siosdqJMXbms\nrOMBWeVDlG4KB8rG+ny6/rDCMBpUBm38sl6jEVWOqyB6il1Yl8mKVw5VGcjnVKFvPdSwu+H5mEgr\nu5uaVlY4gbpJeFL9vjAO70cD1ElpeF5e1wknlIXudpWlrg2ULe2Caug1ulYvo9KDupKfimCnrntH\nE8pQLy0ra9m+qDEqHuoZaqgt1Wu6pp9UcTei6oHXo4xtiOoUICILRlHdKKNMEByewz5ba4I6GqAA\nUNxRVtMd0nWmqaZ7QeAE4TRodehAV3OSg3Ol2pIt+XyqzvkSqHfAT9TZhVsBtRF3VXPU3dPnDkqa\n23oJnp8FEEN1jcODimwnGpGNRjqqlPSS6n+As72NrrLCFlVFIB5SZSS/DnprR+Pbc2kux7NwtBQ0\nj12qdMd5+cT0DEphGdnMfg2+C87Vp2GP78MufwT7/P4q5+mfk+9MXRevR38froaKrls/kG9UqYQn\nxmCrp1K8u6Z+DFEdgWmNx9glUGYzsOv3UIfyKktdOxnyHlFh6ep7gdbZq1IDuJmK8GA066ingYDp\ngZRZvixOgvQY6CJUMe78RNWKYbX53KJsIzk55OvRWB+sKgO+EVD1IpGWj1x6GqWWCxq7Joi58SyV\nOng77r2tqkW5Idt4cPfX9ENzNnJeczV7nUowc744obhYoyo0rKSOXND1V1aEdCnmZBsbW6pg5I/l\ns4UTzfH1L+qM7cpTOjP7y38SJ0yDqlctoH4V3JqTl55R1duXVf8f/FzVvT4+9+0//K7+n/PnRZQb\nmlXZxOJTQsbMXp03M7NBFcUtOAXuc/79BD4M/5hsItHX59r4rNsjW5hdknpUdlr9nEHF6qytV4Er\nAF6lAXxQAYhO3HBO+KmEj8IVY274n+CIqcIz4upoPiqnGq8gPFXttsajgyZQB26FdlWxs3aCmhOc\nNe4etu8emBsU1EhSY5Eala3FRxWXUxkQJqjjeEHjnHZ17RLIlV5JY9oeqiAVFG9OqUL3Wvqcy6Nn\n9EThpKHCmKaC6UFdw8X/l4ffa4AIDOhZY6AE3PA8uMdks224DbqEYy/V+gbIuO6p4mIen6iC8jwo\nqcpVQZms3aC6TSU0Maa4OjurcYlMgUaA06zq5TnrT6aGEQJZmAnNm5nZ/LPy8e1bstXqKYpjE6oK\nDlWk6nuqktVKeq56V/1fg2MlXKPqVtX7iF/9X3heMSOMslgTRcnHIILyIG+qAFHbbnHQHC+u0D9V\nDS9/Kf3pM7z0teesxH1ycM8EIvBs4Wura1pnSp8IoeNHyWfxqvoxvqhqnh94sJd1NQK6wb8s33v0\nvmJN4WDTzMx+8U+KATPnUVqaitu5a/Lb0EBzt7euudxZZ5/EPmX2ae3Pzj+varAfpN3mllC6hT19\nfvacnnnlRZ35X3lJcb0Muve4oPjormnuB1Sda4byVFFz49+UvydAK5y5oYTmb7LXIG6GelpnOqCN\nS1XZYOS8rh8xjeVOUTayTLU9BHIvE1Jc3akKIXSKmug4PCOjKLGtH2o8ylWNcXxB1w2zRzlek8+k\nr+vzY0mtEyfwBg2VdTpwdnmaet/38Dx+eN3gkfOBcq6DukvWUJ5JoTgDiqOFCkqUvVkO5Ey3x95k\nVGv/3Q9kk60pOG7g83CjWLafl432jrUeL9zQ/CK2Zbk1FMAm4YQc1zrd6srmj7fgmEE1ZWIeHjwz\nq7V71qnTT5Ql3R7ZSQ/EexL0uN8jp6vu6Xr95Nn3JG1+o3S87PtAvAQGqCbBmdcDjVCGp6zkkz92\n2pr7PqpIURCUe48Vh1zwkwV6ssVb24oLcfYmAdTWujldd/hb6sEtfS6Ylq1OjqGqylpUrso3A+zP\nqjn5XBVVv4VrijtDzpaHHwidMLYoWxxjTsYXZHMvVF7SczZASGbVv72HQg34UMTpHem+R9van4+1\ndZ3chmxhgELh018WR8oR6K7DfcVJD0q4IZCNpQr75Jaev3is/maziltpuLBiVXwCHww2QNAXtJ9t\nomz28Qcah3HGLRWG4ws+Q28cH596Mk6ZtYtCb3h3xZ86+Yh9+CSoth8qliTGpK70KP7fzczsOtyX\nM6+on3s/Yc/3n9SPL9zWvuAO9+lNahxWG/LNc7eF8Nn2v/ZpX7zJGzbqemxhj/yogJrcF27J/3qv\n6dqPsxqr1Kj2d/2SbOruDY1RAvXQmZDWuM6h/HiUOfqgIdsOrMmvlr4tbpfJ+0LCHF6QzdzPDzmm\nNvX/A93vN1/THF//sfx1MCdby38i27j8hxqTe+9qjF56Tv17f1vPfJ3fIKXpeTMzyyaEYlvtclIn\np316q6U5/uC2bP/l2X8xM7Ni4+tmZrZxDrXn3R+amdnVlsbybX4H3BzTdZ7/MQi+XygOXrquGPDb\n2u9MyjQaDfvrv/5ry+fz1mq17C//8i/twoUL9ld/9VfW6/VsdHTU/uZv/sb8fr/94z/+o/393/+9\nud1u+9M//VP7kz/5k991eac5zWlOc5rTnOY0pznNaU5zmtOc5rT/X7bfmZT5+c9/bleuXLHvfe97\ntre3Z3/xF39h169ftz/7sz+zb3zjG/a3f/u39v3vf9++853v2N/93d/Z97//ffP5fPbHf/zH9vrr\nr1symfyt1/b1yMhzbnp1DWWZJJwPfmXAQnFlTS8/ryxku0JGvKLs3+k658zLynruva8sYwuOh5Rb\nGbv4nDL7sYTej6SolHCeMexSZm2J86CtDpl+eE2abd5TtiqSPc57lJUci4J48Y7wHLqPewZW+xO4\nH2qoOIHQaR7r/QFnWnfG9blkTpnEsaQqCX2/srthuBQaA2U9oZSw8Jiezx/W/cOcI222uxYqquKZ\nzShT3WjqXkUqk72Gsp9NjqIHqS6cm1cmvZCCI2VVmevcPhXZsjLbMc7OFzjbmXDrei3OCQdi8OBQ\nPTlr82fJQFOx6/Os7ZruW+NcoK+vORk/ryoatB8WiClDvlFWJrl4omxusK8PRAZ6ThfqUT13g79r\nvOZQ9PGP6vmqBRAmVO2inEdP08+5EhWBE2VRT4rKlgaPqC659LkAgKE4HC4ukw2EeY5eVO8Bwf8q\n7QAAIABJREFUIlk4DGpqRK9BKrSHG8pCn7Q1H0EqwxXTOHdyqrwEfar4jlHB9pxDGaiBz7U0Pz2U\naHwhzdukFxREW1njGJwUSc7JN/CJxSXZ1cm2xvsQBE/vMSpOZN3PXdD9U3NCo1QHVMDxAW9Hr/0g\nfCxnaD2qTm7TaymvsShsa6521tWXEAiIGNWcSy/qvPFzLynDvn9fNhXG1uMg0AYXNMcurzLpp6gj\nbT+G/6EhW/K6ZKOP4DXauq2KZnZSY1VCSWBlWZXjHc6ZF6lsrt3TXKS+orHuw3u0XuFcOFW3m/el\nyJDZU0V1nYpzf1jtyajfobS+f3JLvv6rN980M7OLl1Tt8vRBTa3BRxHR9Y9yen8wpvgb4Hz3sHL6\n8Xs6Jx7woCiGakiB6lQA3++7VP2pYouHd9TfJKpDQTgNbr4rTpobL/yemZmdu6Jq0RF8G++8rfu9\n/S8/Ur8HbrPf/2M72dq0J2kDjusHULHr44t9FzxPHdl+E4TkbgNuLpRmmjXF4yJIrBCKa26Uhtwe\nuB0SkCz0ZcMe7DIa0byEUUAag59kJII6SDpicc749zibHvHLpjoDbLukKkvhkSqsvVMFxGIRRAlK\nJLW2bK0JGqgDL0TaDb9NUvcJwDUyE1dF1sVaU4UTpo0aUQ6EYrEm3woQx93E/VHWvmB6qHBFtTlA\n/1HPa1G5NBCVLdbCRrvL/+u9B56esWXU35LwEE3BoTAy5InQnHWqKBhSwW2W4BCDH+iszYNtVFHf\n6NQ0R0GQMZYGqQk3Q9bUH3dGz7N3V/OTSIOIrLMWDxgPn/qzeVMV5tCR4n9wUtcbfUa275/W5082\nNQ9BULK7ee11HhMDKlSARzLyVfuuWbPn/rRS7RnVvPgiimnnV4Tq201qPWyiJLkLd1wVTrCRFaFQ\n+iAuu1X1OzyqeZoGhXz1JcWydl8ol9V78tUTKtaP39sywpYFiBPJ85qb9KH6tHusNWD1Y8WLpRfE\nOzFzUXxkIyktgut39P/rnxBXdhWnZm+orzFUiAYmvwummHsUwzrs0/qgCXwg5CoueBXO2FpD3jge\nrHrCmp9ENdQlnygd6brLHc2tCyVG7x1QEMTPPv0YsB2PeDS2p1SYB1c1Z0E4G9z39fyVI8WAsSlV\nZuPwb2yz3i0OhDgKTcORssqeib1CPAlKOCpfq7JuzkJqkAgpTp2i4ulrwInF/jgMWqME92GrDIIQ\nmHS7AyKctd8Hp86gjq8eKGbF2Y+Hs6ChP9k0M7McijtPj8iH+l353moOrqCw7jt3WTGs0lB83f6l\nfj/05uWb2Yv4rpnVGx1roIo1+rTW8+H6VD1AAWdcaLEkvFc7dc1DlBh2lhZws98ljgUz7CHGQGqA\nvlxraE7OT8tfwyAj+8TFoVqqv6VJqR+pLxGQgoOqbPr+Q/wOLixPSPcpgKQcxX99XlT48oobocV5\nMzM7l9YYLYCs7jP3bpe+//bPNTYj8OukvLKdkQWNVcit6++sC8XUQR2w3VY87PvUr0CJ9SCn68Tg\nKamgQJmHS2txAv4h0Ga7a4p7c0/L1pPjer6rbvXbBy+TG47LRl62UijBicgeqgXXTWYOPrg6SMus\nnqdTU/wbAzEZHlX/Nn4oHhLvRU5znNOebmpOe6nkBMq9kSdTl714UegNzw/V322vfr/MlHW/i6wv\nj4rv6Xlz+o36b+55MzM7ehObh28qcgjHY1jry/x99mRj3zIzs+tFxY6bx/LFb94ofdqXXx7ftrnx\nhB38RkiV0NKbZma2yr5u931+h7cVX7Zf074tNCXkSGRfvzUuxDU39yKozPGbyIuthmPaby9hGzfh\niA0wpmM7QnCfPCcE+Et34HrJimsw9KE+V4sBnauyP3MLyXL042+rHwEh0fc/UX8GQa0P2xd/YWZm\nx7/SmnW1Lv6dLrYW+qbG8MOWvj+b1338HSHYKxlQp26NQzCsOYg8p/yDa6hG96Hiy95/1vrz9KbW\nqZ+WNs3M7M/tP26/k1Pmm9/8pn3ve98zM7ODgwPLZrP27rvv2le+ImKi1157zd5++227deuWXb16\n1WKxmAWDQbt+/brdhODRaU5z2v/H3psFWZZd53nrzvOc85xZlTUPXT2iu9FAAyAGgQRAkRIJgVKY\nNB2iQ7TDD7RJmRQZCjo0mA5Z9oMlOixLflCETct0mAApkSCBBhtAj1XVQ81VWZXzePPevPM8+OH/\nTrcpEURWhCI6HDr75Wbee885e1h77X3X+vf/u8UtbnGLW9ziFre4xS1ucYtb3PJny7E5Zb761a/a\n3t6e/fZv/7b93M/93AcR4FwuZ/l83g4PDy2b/fBcczabtXz+Lz475YUt/+4NRVfvfV+ZZS/n9EZB\nB+TGFa1MkjWbjOj/USJrU/OKgC2RuaygdV9eB4lS4PzhbUXudvo6Y+Zozw9g5E7HFS0Np4nswcYc\nh68kAYqgWecsKtm9AZmPRyg9RFA4CJFxj3OGLXVG9Z8Ocv/BgpmZFTlPWlpXxqiISkuNrGh7izO2\n8X36R88fDvT8+qGizJWuInRxlB1GUYiIpkPmA+FQqqiOHjKetQDKVEVFAxtE+fzvkHXnnHEUjoM4\n56Z9OV03GKDqA8dMrAd7OaoZHs6qm1/3bbYfL3M56KovBvByRHLq2yrIjsLGIc9RlqXVB20AN4L3\nlGzIy9gOfGQ7ImQkDnS/YZcx68JSTjasTHs8ZHh9ZByjbV496uso0dIRVK3abWUFg6AOqijwZJPK\niMTI/vU5fx7wqP7RGc53IyxziPJWp643svAjjYNgik3AAbTBufsDbLSi8fWTOdioKaobG5Mt9lFj\nCafUbm9E75dQZ9pf05wcHxGiZThE7aSAOgmZ9iTqLGNkNsYTiqbv7mruRYL6/m4R7gtQZ5EZ1b8C\nW38BxbVeX6+LZPOOU6AIMQeU5ygETM7TtoDG5NFDRbLvvaFg8aChZ4yNqO451IAmOKO6ubKmur+j\nLNSTPyYkx8LnxclSbr5iZmb5TY1tBrRUBPWkPBwvcZAY/qTqMbKk58RHUTE6oT7a3lA2aAgCLh3Q\nnFlDeWb2hSfMzOyZLyuyX9mBh6Op51QO9JzpnLJJF19SRiJKJvb2e2rHwxtC6JRAO3RRzrl4Thnq\nUF9z/9oryijEYnByLYPsQNVj4578Ur0P+qGn13BMc68I2iDLGf0emeGJc8r2zKOqkc6p/5st/Ogd\nZQ+XLiqT8Qn6bTDUeDbh1umF4Hw5ZhmAXOmCVvDhu6JwmwWj8EnBkxLn/3YK2xxoTs/BcxVFaS4Y\nkQG2Auq3BMpnPTgLkviiYBBVJtbOAGiUw658Z71Yt0Jembo2fq8CH1CtBu8MnE6DgcZugHBMMITt\n0VejCfVtgsyp4b9zKNAM8FODMlw02GpxDT6LEjwLfZCDMbV5dEJt8fnVlgFrTo15fQhfUK8Bf05H\nbYvAbdMGVeQoe+Xw55E0KIq4/NnkmD6PjoAOCDjqEeqzKtmrLoqExS7og6H8qRcFtBDqdcctZTi7\ntt8VkmR/TzacGFd9oJez6CJ+GrW4BCipflK2uY+CYutIF0QCamcyihoeCJSNG5qTvQ350dwYvgtZ\nwWQahCjot+k0yErUNFplrQ8bO8UP2vDOq6/Z1MkF1dc0PnWf/PkleJlmTyvjG8vAu3FGPmxvE841\nk/3tYX/lPdllNK+5v4Yy3OxpZXaXUV2afEI+apJx33tw3+I+HHNEbciyp+h62K/0WNMPyci+qSzv\n1AXt78Yvy5azJ9Q3B/e1j3uI8tNb31K2eWZadR1FTWcQ03NKoA6yEY3h7CwqbkmN2RZo0uMWD7xp\nAAvNPwTd2QMxx/w2OAbbIMK9rJV95o7hNwcDXecIWY6Mqp6H9EfXKz8fhn+jG9ZrDcTJKDYfzmmP\n07+hvUC1BtIam9sGfFptgkbDT8dA2FQael7f2O9m5M+6qMRZSw2OsIdyMM8B1qtuCD+GCpT5QJzD\n4RJDlWkItLvZUT/mYvqejz1eBfRxi+uGBsqCOeDsZTvYvj8GWoF6D5vU40Cfz82cNqckvB0rlMmI\nw5sSb+j71ZLmVnJS9fKk1a5AHM7G4PFREAG4/RpbssndG6D/p1CXSwrpsnJDvJjjoIEyLc3HGvvz\nDgpb8S77xa7GvLK2prahCBlEoWt0BrQBfnPtjtrYg0Ny7ozeP9yTDW2jPFvbBcUwpbaWQcwnYvwG\n8uv7xX19sM6phJkp/NaM2tsFvZbGn3s8jGkVZVgQdCG//NfkkvxGhLV2wO+Q7DwKPRnVN5ZhT7Wp\n30A+r/xyHf67g9dlu3NL6r+xJfVvuA+vCXxWAbgjBw3Z9rtwq8xz+mIbBOoEyMinnlT9mttCPXST\ncLmB/trZ1b66Wld9UtN63nFL4o+1T74VQgksIHu4eV42u9yQ77Md9f/1iTXVq6L14f5ntE6dMP1f\nvqc929xJuDAPZDffjP6J2jWQ/68sahx+9/5rZmb2V+w/tSeWkla6GbbpGXGkrGx/UfdM6BmzT2tt\n231NY1SDQ2U5I0XV0JFs50/fFmKl96R+O7zS0D50LP09MzNrRH5Xr8+oTxOjalOsIyTKkH3ds3Xt\nL5vn1adT34Fvp64++kZT6B/PA43hZz7PaYbvClHjSWq/Hs/o/hN7soFrX9c+9+JXNCffO5B/3F9H\njfS6bOhhRO2+OviKmZmNTH3DzMyeBoVVH6pd3vE3zMxs70B9/pNH6vM7NXEwJnd1SuE11FizF+C0\n/QHFMxwOj71ruXPnjv3yL/+y5fN5e+MNVWR9fd1+5Vd+xX7mZ37Gbty4Yb/6q79qZmb/+B//Y5ua\nmrKf/umf/oH3K5aLlk1lf+DnbnGLW9ziFre4xS1ucYtb3OIWt7jFLf9/Lv/V//G/2X/31Z/9cz/7\noUiZmzdvWi6Xs8nJSTt79qz1+32LxWLWarUsHA7b/v6+jY2N2djYmB0eHn5w3cHBgT1B1uQHlT/8\nw39jX/vpn7F/8k/+FzMz260oWunfJ2tDRL9OBL+BQkOCM7vJCbJ/o4qgjS7DGUPWsIRCRPdA0d3S\nUPVrl0GHkLAIVhWlbHb0/FZXcaphiHPzZCK6fbJl8H50UZrogVgJczyv6nAH+Bx2f0WbG2T7vKBT\n0lF1fycMez6HycrwanSIyNXIDMQAD3hDZGBBEmUzio4PQbmUGrouSOban01aimxuH+RC2WkTbfeh\nGlHj83BTdUrMKBKejMO94tV1rTJKI21FljtkcuuOIhRnarucpQ941YYwjP+//Bt/145T/sdf+O/N\nzKx9pPt4OnrOYVBR1MyS6lcjI/hoUyiAOApc3k/runJE3z9ESWc5qix8aFNR0ei+rvf1QGeRFapu\n6P1eAKRMCD4ff4vnaGx3W7JZT1Ltn4RzpU9WqZlHlQTllvoBWTRioqPwjkQWQG15Q/Y3v/Yf29/7\nrX9gZmbrD5Q97INiyJ0UmiOAQkXXFOX1cC6yW9Frksx2xK/MRYP+q67Cyt9UPU6eX1A/jKg/798R\nmmxyQs9pcZZ4c02ZkERa/RaJqn1DzqUH6xp3P3MiPqe5ubsLT8meMrHTZD3tlL6/k0ThoK25mqpp\nLv/Tv/6/2g8r//V/8V+qzWSyIvBYxOB4mb8gZIah6rNVUF08IEW276K+tqH3L1/RWfxqVXPi/ffE\n37BwRlnhiRxcCA+VYU1k1MfLLwj5MprVmOztqW/ra/JfGztq+3hGfdz2ySYWLsgW719Xnxfa8kNj\n0+r7EmfoTz6tdiT8soGeX7YUhzsqv636PrqtOTC5fIJ+kC0X4ThYPKMxSYCeeHRP2Z7RlLJD5QPZ\n8hqoidZQ/iozDs/UKZRiWso8ZEFRlFBQ6KFadLSj/jx7WWdpDzhHvvNIWbYIvBzZWfXf7n2Nw86K\nOHlOv6BxqOOPp1BKS0yG7K99+W/Y3/9v/56Zmf3a3/47dpzyd35T3wuT+O2CNulzijcAmi45KruJ\nhFBGw5f48bfpBJltzqd7yOh28Lc1UIODA41joSmbroPgrBb0f6Mq+yg39b1Oe2jhoe7VZHHqk49O\n+MlYJshuz8nG4kn5jRFUIRIJ1HJStCGjpEcMtGcV1EBxhzP8oCxLexo7jzFvgygBTslGHCROEBRr\nDw6yak82N6hTb1TpenBedXqgSRuam1HWF2dMOyAqfX3U7FDAGsJBYCBsDIW1vul/X8/JWsvfBr3q\nrxZrrjek+g3hWfrNX//bdpzya/+5kkrr6/K3I6iKeMgdPborFMICGdxsUnPhxDll/Xp+ONrg8jna\n1/q4g5LYaFjtagdU7/oGSjSgxOqsO+fPytdE4V8KJR10ra5fq66pfSV45UqyrX/wD3/LfuE/+XlL\nB2UncVBq61ua42Mgb7b35AtOnpTPcpBKSRTQvOxJAl3Vb+M2KF3UtO7d0P0cjjgvnGtji+O8yncV\n1x9aFyjj7LTa4gOJFomi/ILtPVqR36qinuTpauzG4a8ZQZ1zHE6wypZs+fZVXTesax6Fk7ouDkKk\nBaKkWWeNSqmPF54WZ02/Jz/6n/2NX7DjlP/mN37TzMw2QQKeZX2J9pUJfeP74iIYgStq8RnVuwXa\n9uZVUEunlQ0fMmdLJdmAt6L63XwgPrpPfeVHzMxsAALnvd9Vxjk6pX584mMvqT/w22++Iq6H+Sfl\nd6dOq343rymDnBpo/Tn3vD5/+H0hjh6uybY/+ws/zv20Z3rz93Td+RefMjOz7KiQ6ZvXlbHOo/J3\n+i99TO0pqT/f/mPxYrz8WXFOWFbjcv13fl/1Yt2LoTLoi2o96BxoXG98V+185itfNjOzJGiJW997\nXc/d0zryqR9V/wSyuv5P/6Uy/dlJzd1nPiN1l7/6Yz9hf//Xf93evSZ02id+8nPqR1CDV/93jVtw\nUXPgyjmpvazeUMZ7GFK//eY/+HX7YeWf/c//0szMduFgbK7LT07DETM9p7V544FsoQSv5vhJ+iKh\neX33Tdn2KFyADjfN66+qTrPLcFCx/w6zX59c1G+vO1f1vQQkhguggC3LvnkbPrv7GvuLV3RdG27F\nvkdrWQK1omhAfXPnPaEIEhGNddVBfTUcrhj54UpPc38EZMz9B/B/PpDNXEF5Jw1f3c4jePggU4yi\nPNsy3S/sUTuHCc1tf0HP/8bX/x/dx6vnXfq0ECF5kPT33lM/PveXxCM4Pye0wtXrev/Zy7Ltu3Dz\nbHJq4akXpTy0vitbC2fgOptYMDOzV39b6Ak/iPfZl3Tf3/yf/qEdp/zT3/pbZmbmW5Q9rFzVc30o\nCT/1rtr58CeEgMnWNGdbQYEiHhS1/pzmlMb1G+qvl3sa90fz6o97VfVHDh7W9NPyxRe/o73WX/1n\n/4P99b/7f9q58VWbzMvHJ3al3fQn5zVPzt3V/8OXtDZ1vqn5OfO0bOUN+NcOk59Und4Wknx3UmP3\nLOqXD2jb5XOyqT/ZgxPmddnoSwvfMTOz+x7N92BWNhkLybaOZjSmmbLmztKdZ8zMrG1Cc755UXNl\nUISH54Y+HzxPu25pn/3wULb34Au8/45QQ8ErKAnvS610eUU21rsghM+m96fMzOzKO9rP/9FF7ef6\nrLWfA4F39Rp8o1khebxIUB7ee9rMgmZftT+3/FBOmatXr9o//+f/XDc7PLRGo2EvvPCC/dEfyeF+\n85vftJdeeskuX75sN27csEqlYvV63a5fv25PP/30D7u9W9ziFre4xS1ucYtb3OIWt7jFLW5xy3+Q\n5YciZb761a/ar/3ar9nXvvY1a7Va9hu/8Rt24cIF+5Vf+RX7nd/5HZuamrIf//Eft0AgYL/0S79k\nP//zP28ej8d+8Rd/0RKJxF94bx/n9sKLiu5daOnV+5SiemOwnkeayjIdFtGc31aGonmkiNkmmZJH\nDxSZmpgArTGpKOIU2aZMWJmJNqlSPxmJHtk1X52snpfznC2UIYi+Omz7Ps7QDona9jmjWioR5UTM\npIMyjZM5DQQ5Dx5Tv3TJGibiKPKM6r6TcUVD/cTMeqYoewf0QwO+Eavovg3q2XIUd0Ap9Ime93s1\ns5D6IrVI9mZakXIL69XX1zXVptqwR3a+UoBPobJmZmZx+Bc6CbUl4Nf1Hs45h0DgtFHE8aHEEoUP\novWYPBA+uE8CB2prAeUp7zycJkuyoYkR1SvMGdjDiNoeIONaNEU/e6PKpu30Fa2NMRaNMPw/TbWj\nkeZcOiomMZS2vKZ+8UT0f9OnPm8PUBPZUFbOD9dCkv7JTJNpgE/oUUvnGbs7ykBWamR28+rvVAZO\ngTG1K9NWO31tVEVK6o+mR3NghnP3HjKcO++IZb2Bzc3y/A6ZVkM1qwDao1TSfYIzancsh03ClTM5\no2zb+OSCvs/Z5vz2mvoJVEgbFFcmrNcwXAonTiuD4A2r/sEo7PwoYoTjeg2gQhLe+cGqbf92SZKV\niWCDhw1FtvNHqmPhFUXAxyaVJUosOTwVuj5A9jebUmQ+Nyc/dHZOZ1xPP61zxRtbGhvn7H0a/2Kg\nC66/pufE4WA5gbpDxScbquCvejV4JyqKsHvg4uqTLeq3ZKN1WO99pnYc3lff3SkqI+A/Ur3HL6ld\n7aqu37urMd1d1evpU+KYqTNm115TRnWB8+dHzPHKtrJ655+U/z3xhK5zznHvrcrP3nxdKIISvEGx\nCGgM7ucPai68+6oyttUD+eso589v35JtxkHUzPZkW/2a2uMfU/93QYXde00Zlw3UqE5zFrl3fDEM\nMzPzQn0zjOK/QW8gumTNvPqrUpEdTJIdHNRQJvOjkFCHywd/f1TELzs8IgPOHBd0/05Pth0MO0o4\nakca7qMpzs9nE1OWTKuPwjm9xlhDA44qE/wSfchkfC31UQWUQJEz+9UVZSR34HWr76lObYd3DMRj\ndl5+ZgmFl4lF1SkQ1HPbICKrINia++osL6jMVFzIiBhoolAMDpSe/H8HxAxH/61dq/M5axQqHR7W\nutqR2lFlbnSqDreCxsDr8HjA3zOEn6MP/1LYQYfix+uhxzOSAJnf6UVl22aeVzY/PaF2tui/7prm\n8t11nafvgEAKJeT3Jk6DYFrU9fEc6lim/pyf0v1L05pDmJa9/76yezfhbEmPy1clxtSvp57Sefip\nKPVBUW52dvKDNkzMzVt+XXPZhzrhyIjW/VRWz+14hILbfAjaoaR+Hh/RfSeW5fOWUIWZWkbRLSa7\nHCXjXsxrnDbvCjmz/1C+wsPWsn5UtbU12WIeNNcQBZiLp5UBzc2obk+8KMTH5pay8If31cfbG7Lh\n/U21qXZJfbqMXzv9GSX/wvCu7TzUvEwl2D/VZQv7PviCdvR5+BFoM+bWcUtoCEKuxfYZThxHxSeJ\n2poP3rWjovZvKeZ7AiRlj71AGxRqj+tHJoU6iq/p+vy+jGN2UmMTYk/QQ72k22eOgCQJpEDPgsjL\nwueXRcV0f5O9R1N+N8ReJ8Depl9lnxoCXR1WvVo9UGooRvbZGwxRPhvABxdhT2X46yPWy1HUjPx+\nUH1hjXtrBxT1DMhLFOAcH1jdl/1kJpZ5X/fxbq7p/qB/J/1qfyQllFj7ENXU2oe550DMb9aHAww5\nvmgH9JrDnwg9Uw/0dSAOgqd/fH4qH7xDUTi0ovMak4cbsuHq0OES1Pd2UPYLDTVGS6OaX/Wo2p5D\nuWwCPz11AHoWTpYOvHKre1rDkqjw+bGp/VXZSizBb46I/O5uXj9WGqCbaiD5fEH9X3io+xyg3JVi\nH9iqwRfqV31brKWz4/IvobDm4sa7Qr7ETmnOjsKBM85eLMBpg6OO/PQAROg9UF++PdSD0kAVG3o/\nlFB/LC+rPuevaK8WDsgWpk5ov5lK63meptrdAK1RQEGxVZAvWC3JDwdnUVBsa8+ywX68cKB6zES0\nXqZAYc+cZ+/FuhYKH5um1czMbiTkt0Pf0F7y41Hd7w9Nfv3rPyVETOYV1BLT8q9NfODBrObe7EB2\n9emIEDe3UfXbiGtv8aNprVNbVSGCIvtCmazY8gd1edb/rtXfPrIqyqhrqMml31ddykk4A2/JfyQW\nXzYzs8B19eULz2ot6d7XGlZ6Usi5GqD44sY3dX1Yz/x2UwiSeEH+4pm41rYSyMK9rvaZn7+nfaR/\nVDb1+/9G3zuV0xj/QUfz/ERRCL7eOjxqLwnlFLqoMa28p/t8f0HXfeopoY/Ofkvt+5PPwzH4nmwk\ntyMenu9/Sfc/eV3+d2NFa/PMF1Dh3IW/p6H98bcW4Y0aky0vFPmNXFO/RmbhHPsB5YdaUDgctn/0\nj/7Rv/P+v/gX/+Lfee8LX/iCfeELX/hht3SLW9ziFre4xS1ucYtb3OIWt7jFLW75D748Xljv33M5\nfLBr9gmza2/pjGhjQ1my2Swa8CcVUe9wvjARUyQ8Nqco5VFSUcBIVNHOmqOnvq4MweCRooqbcDDE\n5zlnDQ9Hg6hxH6WGRA329rD+7zdQDXGYsdO6LkbGJzMO2uIk5wy9isx5yJqV4FBoosDgPYLDANr+\nEOdGvaAZOgNUlcooS6TQbzdY9Ylup4mqH1bggenBck+9fU4mgKxqb6Nmu1VFRhvvqw8nMorIZuFP\nCMw46kNkDUD3lFb1jNWGIsnehuo0jopPclwR7JBHdSe5YvWI7htHRqiOIk28enxVHbMPOVQCIfXB\nVE738U6SiS3qfttHal+fCgTgUPDU1McJuBjqMUWmdwj01zg/GaJawabaV4BvIgxCZjqovhxb1H0S\ncB20huqf2ROKyMexjTos8qvXhQpYQKll6ryiubmcoreZMbIvoLXKK+rn+3d2zX725y1/XWdDg1m1\ne/mcIuTFimxq/86aLm+rv5OcazzCdqrrakclrDkS8WucpmmHDzmRSlXtO6rIZqsOWgPOg9qMotdj\nKJ6Fyoqi9x20yajqN31OcyLKeO+v6Pr+pu7b4v7+gD4v7+r/w6MS/UHWbgiS6xil5fyBslesI5sJ\norq0sqG2P7y/ZmZmi2XZfp8x7HPeetyvSPiNdxTxD7+viHgEDphATP5mflTZoQxtbXTVrZeiAAAg\nAElEQVTlb679qTgANld1/cRJZT+C+J+nUG1aOq1s1923lAUpMJan4JGIjenz/UP1zcPryjwsnNRz\nB9dRukG9Lt5ENQqul8tPC2m3uqPsydzpBTMzK64rm331m0L0PChqzCfGZLvlgsbq/as6O1wl6+Sp\ncp4bPhHfQDY2t6RMtw+oSY7z7SNkOCM9ZUCaIPcundf3F84ow310pH4LkqE8COr5STLRs+dla92B\nWO7rRxrHJkppvfbjoSDCUdlcB46c6Kjunw7DPVaXj6k3VN/1DZ09PtiCR6Wi7NlRCzUU1ELCYfmi\nASozubiek7yo/+dSZOsm4MTJaO7HB2q3o2TU87SsA/ynjjJY5UivXfjWKlh7H76aYpnMK/wWJWzG\nUDZxVNZ6cLZ4QqjURVQHY83so0Jx580+90V1B/UdX1/XJVEJSYLqjHk1xq2enluqgDaF7yjkA/kT\nhasM9YpASH2TSqNEBYdOxw+qtEWfg7iLh8neO1w0QzKrQ2fs8PcBoDQouoTIkB63VFG3qu/zfBAx\nT7AneeGzUnQYopB49U81NwtFzcnerjLKB/BzjJxBvQNkzwGfj93jXDwqU6dQS7oU1By5fwtVj4LW\nz/yR1oVSRXNybkHrWN+ruRgG3WdmdvrSeQuipucH6blVVH8k/XCIPas56GN9Xb0rzoQ1FI3ab8Oj\nAcIqOAoPzLj63W96zc5oPD0+rQ/7D8mos1c6c+4Zm0FFaXddz15b1by6cVVcXbE91fXCFWVAJyfk\nx+IgS4Z52fbKNfmljVflX1vb8C3NyG97l9UHjmJMB86ncFx1n0HFMzApG85FHRUjB3p8vDL0sWfw\noCQI+rNQ0KZiiBJOJAzXF1xSQZCco7Oob7Q0t/O7GtPxebV3gNKNj3a0QUHUQ/L/oznZ6OYm9Wa/\nF4K3LwmvUQ/uxJ5PczoDt8PODT230UOpMgcKj3bVerJtaOJsiHqfH76oCP4/DHdbE581aOv6cFz1\niTN3cZsWh4fPBzI0CjfbQVnojgHo7LGzGs8oCkblLRCm59Rv6ZzGdQ1OsuK22pEdUyY6k9T9d7Y1\nh7rDD8e33/dbir1pBD69DlwPUQflAHCqDQqx11G7vKwbxym1rvyOhzUnNSEbb9V0j1QCThdUkQ5L\nmhNZEIl9j+aMD/6frT3ZVmpf8ysECqkz4DcB3H8Xue/EovaZSbjFNj1aJ0Zm9H4cRN96W2tZt6r7\nF1e1xk6eVB9W1+UXyg/Vl45Nx1GaDIP0uXtV3CSOSuj4rPxebklrX3QGxdpd2g+a2IMfacP/OX0F\nVC/rV62EyiB7iKa2CGZFrTc+/NtYVIPmRXm2C3dKo6P+PHFZ/FEtuF+Cjg3HNae67KVGxun3s6jd\n5RbMzKy0oO+1a6pXvs6+HyW3AeuqJ/Z46rKfuC+f9mBG9bsaEpqjDa+gGfYTlb8/OlC/nQ+ovql/\nJV85/kmN49fTQhVHAg5PnubMtRvq5/EFza27BaE6kuee+aAub208sp84ecm+01UfFB7JBpJPsjcH\n1XPwuvr2vWk949MnZVvpqNrwWkuonGJc+9gXQNClfH9Z1z+QQ1g6UF1uLsi2Wp/Wmnntruo6cSBb\nvjP2WTMzq22I02WprjmQbsqfp76k+9z/ntbIkTOq55WM/PIrRdnAlyZAzvdRi9vXb6lXn9bzzr/P\nPi36h2ZmNrggW3zu27KV8U/L5se9apfnre+Ymdk55uIuyrhb1+WvvzwvzppX7FUzM7tc0X0a87rO\n7K/Yn1d+KKeMW9ziFre4xS1ucYtb3OIWt7jFLW5xi1v+/ZePFCkTIrseH+h1/b4yx+W2OBNWbim6\nmuVsVmpcUd7YDGduZ9EvP6uobJ8zsd2aIl/5NUXODtqK/lY24WYwRdZ9eTKVcdiVa4rM9ciA+jno\n3SqDOHmg1wo8InGQLRNkXDNk0+KzsEbHicgn4f+As6aKGstmRxG/OmeSnYxzn4C8j2ygk+0MZUGz\nREHscHY4xnnxaZBEUVRVApzdHVrZqvdgWS+QUSXi3txVhDyxr6hj9ITaPjWurP3coqKF3baipXt3\ndRZ9r6LoaGVVfeQgUQJZ1D88ZF1CanMINFI/qKjicYsP1vYyWaUeaKORRbW11dGYrO2oXsm0bKNJ\nxrS4rShtEG34mdOKZvbJjpcGeg2aI8UFZKategbTer/ZIkMbRWkLZYjmjqKwvr7uk4nKBmIDRZN7\nTV1X4Vz55pq+t1+DZT6qMTo9r0j8QUv3H4IAmmYsu2R1+igdeFvql9aRxnPvvsat2YALAk6FQUDP\n3b+njEc3htrTJOO9oOdX18iqeVTvLLa0XiPNBY9TGJtrw2XgA61wyLnOdEv9H0upPpUaihgeMgh+\n2bJzLnxxTq8+EgNNzkIPmhrn45QOqhZVEGbOWfSTF5U5C46AQiorzbLAmdJuV8/wZNSXjq0V3tRc\nyZdUqRGY/3NB9eW9tzRnIpNq8/nnpBL05I+JdX7HOX+NfygU13S/HY15FJRCo0EWG+WDFio982fF\nfTXBXBqMCPkyD8Km64EfYkVj0mqh6rMm2xm54KCpdN/II2UiQ2Qmn/yU1CqyAfWTo243jmJYEBt/\nuK8MRnpeGYQ2SitQo9ipMzrHfe17yoy88x2pdDz3cSFbxpdkY/dvqR6HRdlg22QLza78r3eguXT6\nrDLla2TbK7vq73MXUSlp67VYlj9n2Th26aF85ouTZSRLGSZr5gmrHhkyO4NxZR+DMZCSfdm2j7nh\n9ylrmJjSeIyNKmvlR10mGNL36nCLNcq6r8Ob4qgVtspap4q1ofXJ8FV7qEyAuvTT5wEa3SdLnYSH\naBxFlLkz8iMpxjqd0vyKMAcGQ13fxZ9u3hWnwNZtZey24G8Y1NVXKThNwmnNW8A9Vt3SHHhUkN/1\nslYFEvA6hOWHhkGQeHDgtKuc5R9ylr+iOTQgMxoIgoqFj8MXdvwymU2geZ4k/EN9R20J1SeZrvl6\ncTrs+NltM7MG/V/GD+29ztg8UH2nz2vPcWVZvEtPvCw1jz68QauP4D/ZAnGSV/sWntB6mvaqXpvr\na7r/hvY6Aeo9cUpz8Ew8x33VXxs3NT4HmyAp98AHJtVPtU3Vz37S7CB/aM4yG45r/IeHcE68qwzp\n7qHm/sKSfOHZJ+Urw0G932Dut1vwuGyr3jGf5kw0qv6PoT41MqPnNIrySde/p73c6QvzFp+RH3jq\nkwtmZhZHOax+T/P74R3ZUKcu/zczonsmxzXfMqgvBeFqWXE4s/b1un6g1+mSstbeoGzGAyqoA2eL\nz0aps2woOKLv+TuPh6ZCFMS6hsKkz1HRdBBzmt+ppGxlr60x3Af1duac3j9c1/eGjj8bys8CqrUU\nk74BN1oEJbGQqf+sQ/3J8ocCcGVhGk24YIYghmJhVbwNz98htjk1yxwflc9orLEnnJX/S8fVrgrc\naZZCeZI9T8ArW4g22UPAOTM6ofv5ymrnVl82OLEE/5+PvaKDMsuC6gPZlEWNaYt6VvfIuId1fTqt\nOVKqyua8JvtJj+v6tQe6X6v64V6i3wiYF7XCISi9VkVzvQs3Y3R2Qd9FQa0OotRBuxyn9JuqU/tI\nfZ2Ht2bzUH2bnhaq9MrH5BdarMFeUL677A1CE+qjKsjIvQea/x4UWdtd/PD7mkMBEBLbFa21vbz+\n39gTD0gzqzkXy8gG/fNau0ZB5vhjtDWhuXfuWa3JxQzKhNPy64Ow/g/DQTN3Wr/BvHBUFg/FC9WG\nSywZke1VHmgPNkjQvoS+0ES1aeehrmv11b7MkvY+YyMa67Ud0M0+8AQgksoNjb2hsNbqyFY37wpB\nP5KWLQbG5RiT8AdGZtWOFhw9R335uwB8d++8I0GbUEbt9kX0WtiTzXjaen4NTpyRabhvjlnyeY3v\n7Xk9L4k41tif6tTF/oxs9cFzQlKdfZPfrnvq75VFjb93g98xSUn6pCDQG+zID3sualwKcIBlwz+m\n/1uOiqHZpcsv2PaNPWvPCTU7nRHH11JYz9hhUblwUrabO6d7pzpCj+68rTqcXZAfXh/wm3NXdd9/\nn/15RPvPT/dlozE4pTbX5f++cEHfr3KC5J1RcdFY84tmZvbSklTSuhX5u8/c0TzdXdbc2GzIn72V\nk62f/r5seu85rdmxqJ5zBB9mzKs52IhJSSvqVf3en9Za+WPvCOHeL2mv9N0dIegnn5JNnRvXGn7l\nqvp8/KL2v+8OtGbPjIhDZx/VTmuwp/kBxUXKuMUtbnGLW9ziFre4xS1ucYtb3OIWt3wE5SNFykRQ\nlrjyMbE0R0eIWj5Q5mPogw+E89FhlF3aTUVDuyBODhKKviZGFP30EQlfelZR1nNNnXVrnHP4UhRZ\nq6H84uVcZJBoZ5AMqBdeDE9U3zsE6VKB2+BwVdHnjR3Vd2MTLftVRQyTY8r4jGZV/05D9xuM6H7+\nAmocTdj3PWQbyaQHQX2k42Q9w4oAxkACBDm332openpUUcRuB26IDOz20dFRG31SdYn2FbXrkqUt\nwePTzitCfABCobmpKF8UPoTpCRRpXhB79+iW+qC9C3qIg8MDItcBuGS6Q3h5QAslUXk6bqmQrRiQ\n/ep3FW0to/bjX9SYTp3TGI+gClHbU5S0eENRzeCW+iRF5vhcQLaXgGG8i8LVoKT6nphVPf3wgfT2\n1E+hPhw8IV03NEVzt24qStvraEwnyT6dPaNMpKOO4hkQLR7A2dJX/5V31D8Dzj/PoIJxdkHtOeDM\n/8E1oQjCRP6zYRSAWmSEi+qnE0uKVjcGei2soI6xokxEo67vL5wDhTYnW8kxB33Ten9Q50wvyKD+\n0Mmgk3VMKfrcviWm9AJs+T2yX20PiJ9p9cNYUHPgMK/+CpHJzY3o805Ec9xz8BczlP9/SwxVh9AY\nahF+zaOjuuoytqT5Ei/o2UXO+K8/UjZ7ZJGz+pz1P4PiSqeiOpRBOCTJntzi/HcLNZAEtjQ2q9ck\nvBdDVJfS8Oesvy9/cav7npmZTZzV2D71shA2Xfh23vmGOF9yGfmhMlOmFdEfedBpuZTald/U3Fvd\nEUdDNS9b3thWpL+G0suAzOnJOT13va4MyO3XdB48k9Pc9cIX1Wro+2MoyGy8A7KvKH8XhgeptKfn\nr9/QfWKgGqIgj4ooGNxqi1+pVIYXhfPwQbJ7Fy4qY/HwbfXP7qbqtwwScuasMjRt+J6Cw8c7v+2L\n6boOvFleL3wdTfwuiBYffFRxlCVyM+QuSJFDGWMBUBt1RzmoKHvogKqrH6ndDfi5WnXNhRa+sgNK\nL0bGOJyMWwyEy5wzLxKclfeD6vRB4hSB58BRYULJpQkiLcha1ejjhwvyM234J7zwaKS4T+IJjfGl\nEEo2OTKKcXg9hvpeAeWvRkl9dhl0USzJGo2KXRfUwLCpsW7V8LMgY6pN2WiX9cbjVTsTYbXHC8+T\ngxBqM6c8qDV16HsvXAOGIqInAlqhhgrg4y03NjqnMY+nGfOg/NygyVz5tuZ+uKL2+HP4KxBCC6A6\nHNRueRVeKHgxxlFaPPux583MbOeW7re9Ll9UGagdcdo/AZfByU9pj5RaUf9XD1EHeaR1Ya/U+KAN\nR9c3LTar8cgtaPyef1povvWHmoO7O1oPDt9T9i90Xr5m7pQQV/tRjW8VPpf6lub+4L7sZgsUSgVu\nnZlz2mstPy+Ogg6Z6uZBywp57SV6ZGXjKfXR6Cf1LBvTmFXf05qwV1XWvwCap98XQnBkmf3clK4r\nbOv7+yiNdVrq46kR+bdITH7vyK86douqsw80aLvCmtb/izOX/3YZDjW2Ue5jzLkEfG13QYbMoYQY\nD6lvj7bV15mX1UeHdzR2R/DsTUU0Nx1+iiYKPVGy8X7Qp21gVb6WxsiX1P2boIg9XfwZvmIAvM3j\nqIjCfdUuQtAxr/6cpt92trU+Tk1rD5IOZGkmc+oAdAAqpaMoO1Zren4gClII3sJKXX6xsKnvT07L\nnw8j6vdqX3M+3pBPQOTUgmn4A9dB2YHqDmKjI1ntWfY3QFq18DlBtc+blr35Oh+iAbrDI2O5/mBc\n9spw7ACSBphvIR/cRGXQyY+DlKGvoxHZSBT+m7Vd+b/VHhyIIGNGZkGag4D0NVAthasw+ZzmccdR\nCixrXsZZQx6BNkhS93BMfTNIqi9GloWEi2V13/aRg1qQTXXh16znZTuFbY3FyMSCmZkdsb/sOHx9\nPq0nHjitTsypfkG4wvJ5lGxG1A8Rxvi9jTUzMws19fnJj2lN97FueEFSOhKzGU4P1AuqzxFrbG9f\n/+dBNY2MyVb7rDtBEInRpH6nlD2qf+2hkCJnltXfnprG59br8oupM/L3TzwppEqpAkcOqnNTU5rj\nUbjUBh359xtvCl1i6cfDORwFtN5OjQpl/ERZ+3nf0/JpxTX5jDdBAcaDyPTVtR6me9pzXbvC75Xq\nt8zM7Klvazy+Ma29Zci0F4w80Bw6/zG1c/r616nJT1nVM7B3f2TaPtf+np6Z0tp0Fe4WL2uYF3TU\nqSP9Vrj2tvpo2fPHZmYW87BP3oTPpyP/UULp6RMnxb1Y92geP8jp+2dnxYcTz/PbqiekzlRCth17\nsGZmZt8JCIlyKSfeszx7las+2e7FfY3ByXVQqy/qt2GsD2/et+SfPpbV3IqFxFVz85b88lRGtvXk\nCgpWn9WaG/6WxubipOqTPdLavLqu525uaD16sai19VJc9fjOhO4TR03qxLTa9YOKi5Rxi1vc4ha3\nuMUtbnGLW9ziFre4xS1u+QjKR4qU2X143+xTX7D9vCJRCycV3WtylnTjgaKFjmJBd0gkfKjId5jz\n9NaDjR4eEV8YxAtM4UGyfdmUInt+WNZ7nI8OkVmodTjHT8S+y+ceosO5OOcqz4vbYO60In+lA0WN\nd+4KhTDgjKoRdS7XFE2dIKMQmlCmIPCsopuBrqLVraEieK28wx9CtrOuaO5hWZHHSlXR32BMEcI0\nfAHZpKLhfc7ANrYUTd/dWLM9sgfRKbVhJI1yFZwewTF4HuAyOdhQhHbvQNHFlbfImpNlH0eFI56B\naZ/7dRqKegYiakuArE6vD0rI+3jqSxZRvcJwwUS6IC2Gyo40NxU5jnFOuVPj/mSQx0H4VFARKX5X\nUVrLqR0nsuqPnV2NWRUOlNS0svZdU7v3NzW2/ZayW8mTGsMUZ12dXFsayQIfUdKByQZbnBvvePXN\nsXN6fn1H99suKeLtKHT5u7KZItHm3oGirUew46eXUKM6oX7ZKKGetKso7UBvW3ZBmYhUS/1QxoZi\nZDDaTbW3dKg5FYHvI5FW/RJw3hzkVa/6A90/1UWxbBEOiCyKEah5FPO6X71GRiakzI2fDNIuymg+\nP6g4DtL3QSuMxMiiHqN0+qCQ/MpeNNqKkK/+icY6M60xGmP+NYualx3OyK8+lJ95cHfNzMwuPHne\nzMy6qDl1OdN+9kVFuH/ia39d1z0QV0oB/og3H2kMRkOgC6Y01peXdS47gRKLBxTDvaviYgmPw0my\nCK/DuK6refX8RgUFrTXZSh8ulpOzygCcXVZ9Zx8IFeZFqazek80vcMZ3B76Q7YeyoVNkzz/34wtm\nZuaLwnd0IL+Rf6jIf4zz4LGM6l0g21fj/i//pM4Uzzwpf1hd0/v9oPzYVJQzyIuodcCztMeZ3npb\nth5BlWjhvLJUoxk9Zxjl3Pk+aiHwnOTCGPkxyxCFMgvKdrtDspkhEDRwd3U48+vvy3ar2KQXWY7K\nACUjxqEHf5YPbocm593DqHWEyKolxkDEoNoVj8CtkGAZHoas7Sh8wBVVrjsZStCUNXgy+kBIPPDf\nwIHl8aK6xMcJ1rYOa2cX/zmAWyptzPtR1gHa2CMr/mhL893aDooT9Y2cMpNxVJVaqGgclZRlb4CA\nCXS1dvk5H+4HTZCdEyotnkHx0MPYDOSfmkU4vBw+ENCsA77n+McBSl19+CAa+E8v6Kv2h0nyYxUn\nSxVOkgFe1tzxZcWfNPzXUscolVDrQPnQSz8nTsg2Fz1q33ZI68rmozUzMyvgN0+dFDIp7sy5fVAX\ncMzcbWj9ndjmfmeEEslOaI7Mn1G9RhfU7sL6wQdt2C/vmr8GD8C6nn/xec3NmfP4IBRyNu+BfHpH\n7TpxXpnb6JSee/qCnru5Id8TaMhPb69rT7a5p3puw5dy9vKCrp9UVjFkTdt9V/PW+776wBfVM+df\nlP+5/KReD3Pyz4d78jtb78q/Nory7xOb8ncTF7WWLS7r/3BS/m4XdbkHd5RNn13Ar8B/Ec2CFElq\nPmZAhtjBlj1O6cAl02COWQCFKjgDAqi3dVE0jA5BD7Q0Rl5QXxZUX3rKstkQHC1e0KJVEDSRaV0f\nZH/bgbulAVeMt6/vD0DuVFHaCp9Udn8AsrDlhRstKRvKb4KIuQiCCaTo+goZaPjyYuNk70Hy1EAd\nHxZ135lprW99eKrK93Td3KLu1xg4vEmq3zAEyg010bJP9UimtE57j/Bx8F9MpkFbjySol/o7AHfX\nEP6lNmqBfTgfsz4GKPSBPqNZp2dBOHWG+O+gQ+IDT4uP9TaMwpxDotZ8nBx2A2RGW8+YSmk+pcc1\n/3zw2e2vCY0QAhWWiMj2a5wGqBQ1f0Mp/Z/lN0gdBORBXWNaBfkyMqk+b8N7tntfiBxHDXT8pPoq\nDIpqZ0U26ouqrZMonr33rpAjSVADbZCSU+OyxdK66pngd4UPfqb1dc25wqE+XzKh4sbYL585Lz9U\nq+h+mQmtIwFQv/6knte4q/WvC8fiyKzmfDgnhOGA9bEI4v8I1Kx3j990ftnUhY9rzzaEe+fd17WP\nj0yi8HuOvdoAFUG/bG58GhTyWflZB/F5Z5X1sKrnTYyrv1Np7VenTmltP255dFG/YxqPxE128Axc\nZPCT/EhKczUNkuhOSf16OK/xP3VL/etjvXx0R9/73WX5mo9XhF55Lap+6wC1euuO7HNp9kP1pcPv\nl23pRMzeXFRdXnpVtvtgQrYTAFWU/7j85jtbQkDmT4EG60ol6cY1zZMnn9Czx+E1arwoP3A/ot/P\noTd130gRROGM+v57I9pPLlU0N7rf0VqZg4M2X9Rv0kxDfujrPfiRQGkNB3q90RSKP/o9Ia9Xxr+g\n+84JNfTKpjhxIhP6rXfiU+qT8/Av3b4lW11gXzeMfsfMzNZPC7UavKffbJO74pzxpXT9/Sv63gW2\npwu/p3onRuW3vo9a89+yP7+4SBm3uMUtbnGLW9ziFre4xS1ucYtb3OKWj6B8pEiZ5LSiiwMOfh+u\nkCVX4MvOXlCUcpOzrVW4Wwxt+irn1H2cQx/AJeHlfjtHRJmbij6uwVYf7imSFpsEhQFrvZfDpt2h\nosddMqb1oSLl2xn4POC2yS6gEZ8CPfKMMj75IucYbyua2wC9cbijKGewp3oFmwqlJdG2p1k2RAGo\nCmt/qcmZ133OcZKl63Km2A/HQXpGUdv0aUWBJ5c4W20Jq8FDUScT12qobqOjoH9mFMlPLCoiPX9Z\nGbLerr5f2FIE+9EjECOcR474QSHldJ2HpEM/JNMKkxUPJ0H/tFEOOGaJezBREDhezlWnGmmep+hk\nnbPvPRRbcgvK/F46qwxng0zerdeVEUzE1XdTIGUyM6AmDhStjXOOMUIGoTILt0NZ9fCThYmgSnJE\nVmwflFJzVxnEsJ9sWFL3CU4q8j15URHu/Krq3ybCH46RDdvjnHhF9QpGleHIZMiK+fV5KCsbHMuo\nHntvr5mZWelNorhkw1p93TeXAeHEwemjPKgq+DseVfT9pTPUOyFbSnRkBxurZKxRvPANYZtHNWUO\n5I6N6/pb73JG+RFnoFGzCs8oE5E8jUJRRP1VAbEUCx6fU8bT0j0D4+qr+QSIMWLOJHksBHwgcVK2\n/olLn1PbybK//44i8PER1e32m8oWbYGIaXWUlVo8j8rapMbgAB4fB/EWBhGyj6rSXbL7oyB2eiD1\nGh2N/eG6stAL8xrL5z/1su4/oe/vkTk+2lQWqrOp+763rkzFbET+0ReQbc1NL5iZWQpbCydBMeXU\nEW//oc4ve6+SOSVDTSLVvJz/rqK2tHpPmYPUhMZ2tq3MQg1Vui1UpXoN+KSC6s/Fk/LfpR19b3tD\nPui5zykbH0FNbndFGZEU3GGeE3Joy5c0jrtwCTy4rfHp78pfbm+yHhyzDDhXHur+2czooAXPipe5\nHVP9nfP7QTgnmmQ3A379P/CTWSXr6CFTkwLtMgQVB4WZ9ZEGKm2BOhio/mX6bdirW5+z9A2QKR4y\nhR6UnKKO8hMo0YQHJZGE0AS+HhwnIGCGTptwo14f3Cw0rk/2vYCfGNJH/SYoTVBADn9OPAInTFj+\nvwV3C6Ai86Ns6Nw3iJJhGFWOUIjOYI3chTOsWQW9xFrXdBBCZED7ffXHECSeh/UlCJIx5JHxhmKo\nuyVk+97k4603B5trZma2877W+vKT6pezLyvTGIIbrbCudcLfQWHrodAZ3obqG0e5a+kp+Zrl0wtm\nZnbnqjKtRVADyaT8ZyoHbxWcBa0t1X+Lc/TNKnxPqAbOj+s8fJSM7vyVxQ/asPyZp6wHEnH1hubW\nyqsoQ5xFLem09l7JsNah96/JJ1y/8ZaZmfnuy3ZLo8r8ekD0jKJcsfykUCon6vIFqwXtsXxNxjuG\nOlg6ZAttPaNaQf1yBQUZECWNBfmv5DllJi+NqS3jnPl/8J4QgNuP5IeKDa1FE6CERnN61pVLuv7t\nt+DW2nB47UBowCXSbYFcm9b9B9GoPU4ZgJwOgLSrNcK0WWMRgLOltMVeAnXONBvbakH+rD9gjrLm\nB1NwkaF02XEIkVgLB0O1dxBzlND0eWugOReC8qSLMlaEuTuow6UTBlmd0SuARzsEZbs4gcoVymcH\ncDKMzcLZlkN55q7W6OGePp++LH9+75Hq3XTUpILKcHtY83vsZWLMobpDg9SV7womZUtHtHN/Vf23\nBKo4Ajp77R35zYAXBFUMtLLj0+AbDLGf7/cYeDPzRuPWpN7dgL6XyOg6D2i+bqSpG1oAACAASURB\nVBsf5AX9NqpxCzaPT1DlY1MeRD2t2lffeJJ6VjSqwcrOaB4O4WjK37hpZmbjCwtmZpbyyR9sbGh+\nhS7KViImv7Jfl9/Y39aaMvCqjifPag4V2d9t4p9a8FYug5irgHoaoNYz9XmprSZG1MdePyqZ8yAj\n4Xa8fk17j82evvcE6IZIVGPWP5AN1OFwLGcdZDRI8oSMb7eg1ybImnRskvbI7/Y7+v4wA7Imp/Wu\ngQro7nvql4kz8ketlmziKoqQfWx5ehIeKri3vFflS2pnNS6jc7pvAURRs6K5mfU6Y44CLhxs1YY+\nv3NX/bD/QP0/eoofr8cssRDj1hVqI3lNvqgd0dzphqU01L+ldeMTz3/JzMy+/aauW78iO/o4aqs7\np7RujNyXj4yxZ/3K8N+YmVnxvFAdd7qys9bK2Q/q8sQX71v3m5+xab/69OZPo/75ba0Bg8vaz50Z\nSA3p/Q0hURaWtS98cFcIFM+8+ig5JQR3/R2NaWTndTMzi6fU19VPaM9/Oq/fzRs+2c5F/HYNNeT2\nzKuq83nZZuiBbHXHUQgbyB/NbmneDvz6/3BGfZC+ozF9YkZz59qubO3L/H63Xe1fB179hr05/6Nm\nZra/Ixs6/arG9B2vED7ha5zACWq9Wf/xf2VmZgHT74nnSrK5Q/ZUmWdBE9dV3x99T+2xn/qP7M8r\nLlLGLW5xi1vc4ha3uMUtbnGLW9ziFre45SMoHylSpl5SlHSbTPTKNUXopnKKvE2cUjR4DL6Qhcs6\n/9Ygqhz0oUbSV+TMYSIfolzg7StiV+tzvhPW+EFBEbmGoyxDMDTkZONSipgZ3DV+v6LRRwccUB/o\nnOb6is4DOiooc/CtZKOKwIVPpmmfunkPbpzSKhnWodqbJAocnFRELpfQdTMndJ9JzgBHYf3vlnR9\n8Qgum121p7qlyOD+n6yZmdlDB1Uym7EEHCcdVHSqB4pcV+4rgh5KKvLqKGAlR0EyjGkMpudUl6kn\nFIE/eqS2NIuKNLeOFKGOoKgSAB3QTYCsqIGY+YB95XiljspH+5HqOYTXYuyS6pXMKiOxfagobeNI\nNnWwo+d7Uxq7TEwR95GcsmOOAkoPVvfQnL4/41H7awX1h5HlGwnrOXtFRT8LqAuNT2isJpeUrem2\nNTbbj2SjHrJTHp9ss91Qe3bhFSmTMa2jHjIeVUS/B+pru6Kxn46r/zOLitLuD5WJeATvR2SKTOiC\nMgY1D/xEHdnGoA2y57TGzzsAXtUg40tmp0HKu1yQrQXIakHbZOG45lCc89+HB4z/QN/P5TQuE2Oa\nszGPvlcqqz9DcNVkxzTHvepeS4Oaa6d53ppzYP+Hlx5IhXAZdBYIjOULisAHG7KBAGP41huKVOdX\nNI+9WbIkJfVpFOWbp1DJeOIpRehvvyEb+943lH0+/aJQWGNzQnQsJpS9yZzUPI45qhh7ev5bf6jn\nvvQVMeJ/4i//mJmZbW8qa1Hty3ZW3lO2OnYTrqg50E1J+aXgqJ63/pCzsj3N+72W/MEuCgcIHJgX\nnqOFcwtmZja5qE4PwB90647QYw76a2pS929u6X5xMo6ZCyi4BTRXbryheq5wtjYEH0kI/pLYiGyh\nidLY23/8B2Zm1vfKxlKg1A539fm9oDLcu5tqz9JJZSKml5TNCZ9XZiYcU318yePbiJlZF/8eIpNc\n7/1Z9ScPNmxlchVwD3TgS3GUMXpMBgfM5SjNOFwPHdAiXRA21QGcM2X5hDaqVg38eb+LSojXb6kx\n1JcmQMCNOlliVJcGeu2xtrXJMrfgcGk3yRaDMBn29Ywe/Akd/NDQi6IL2d8P1ORQuwiHUGULyQbb\nUZRQenDQcMY+GAONFtR1obDmcRfVOg9Z5xoKJptrsikDGdNw+OHI4A55XhDVqTRKiPEUyjSgViOo\nNfVimnM+0GdB0Ekkva0DR9hxizci24qi5Igwix1sk6kOYttT8ssdFHKqD+Xf7nwPPqW05vRIlkzz\nS0LazLJ+egvyCbFRMrDw34XwrxNzysrtntK6V0Md8WhV/bfaU5axcVPPW2R9tp/4KWtWy3bmKfEy\n1chM792W7ypc03NnoC46c1lz67mUsnxHrOfbh2t6flXPDVfVoev7Qsr6RlF18WsOA9CyIeqLceaU\n9ZJ28rK+Y6Be744ou1xAvW4fnofkbfXhMqqZcyfgS0hJbeMQlO/6+6Aqu3ptwsex/JIysyefkUJk\njyx8EaWWHln08rrus+0lC+97PDTVECTcgOtx2xZG3S2SkQ0dgrodn5AfDLOvzbMeDOAXijs27OwF\n2L+24IjpgdYtMffSPfYA8DPtMbfmx+ALidD38Dm1yL02QCYFxuRTYvANNVaEdgjNqL+nULKprqt/\n8yXU8Zb1fiXMPhQ1OR/j6gmh0IZ/u5BUOx1OxjDrUTAKUvQA/+dn/QYB1GXStUDReQOs61H5Bi8K\nO/vbGs+Fy+rfoKOU2XOU3di/xz/8meOPJK15qDlUr2gdyoAA8qP2VDU911FFdVSg/LUPFc5+WAmn\n1JZ+XXXaBHHeRqGqB1/d3BV97h/Kn2wyZuVdOFVYk7twgB0cqU3RnGxn/Dn5CQdQHkKdLgnq6YUl\n+Zt91DtbXo350oLej7X0/A32tXXU8bogQXphfb/eQ4kWv5pZWjAzMy8ordF5PW8yqP11o6IxagdU\nn4OyvlcpOypRst2JCaEwiqByl8Yc3j/1dTeM4hfKabdW1I4Ec6lTVz+l45rziSnZdpt6OT83DlEN\nTIMo9w71vN2Hah9bJKv2QRQVNZfy27LFDIqS558Vf1KXdebu6/KrwTboueMDvM3MrPeW+u2Lf0m+\n4uqW7j96Dd8x/AnVd/yP1I63hVL5/JH66Y3z2rP6QbK+UNMe8eufUEXmd4SMGbQ1V7y72rt6++J/\n6S8NP6hL/sYLFjqbtttDoYhOF7RmRc+rjx/h86cf6TeGb4k1uPJ7ZmYWgdtrnHk3fOVl1fm0EDKj\n0xqjW1uoNBU075aTUhu9ev8zZmaWekaozRNecbds9EGEF1HFTGhs3uHkyScPPm1mZr9fUz0v+fXb\n9OSXtLa9siqbKe4LaT3mF+LnEX56YU4IvXfva81eOyF/OP0JIQDfKOu6S/f5zbwlGz8Mqd4Xvin0\n0u8/o+tm2rrvECWt4W2NxUOQgHemNde+Zn9+cZEybnGLW9ziFre4xS1ucYtb3OIWt7jFLR9B+UiR\nMr6GoqEeMoqdoaKhD4vKYJff0zm6jU1FxtJE8uNEuIJ+vR9Kgv5APz1MxsGH6kUyqyhnNqBI+2BE\n0cRhi6g1vCSBOufQY4rOejmv3ycz2hwQuSczsVNSRN5BnWygZFAY1/PnTigKfOGKMu3zT+u1WVLk\nbgP+jF5e3++XFJmvkEFpdBXRHwsrQ+GZU6QyG4O7IKes5OgpzrmT5eptKoK4zlnh7lHJihFUK/yO\nioaGvk+Wd7ek6KIHnoZeX21PjnA+OasIdG5KUcbYqCLVQRAxLaMNEHjUyCAGQFiYV1HURp8I9jFL\nCHWNHhmHgQd2dULbAfqkCf9Pi0xzaKBo5MpriiRPwpsRCcGhcKj7PXhbaIO5U8rODQNq99YdRWeD\ncUWs00nZWnSorJyDEKqQ0a371P5ETv06HpWtNnY4K3ygbOAuxB0puCGsrucFgrLJI6AjNVK9WyjG\ndGh/LEd27Ah+io5sKNxD6eaKorO5kO67+kAR8rRHcyHG3PFh+8MwrPqX1T8W52A68DG/ozxDpmAB\nPpaZ04oW5/eFFrt7V2iJ0rZsr7qn/q+UFb0u1fS/f1LPH3Aefwvelta4bDiT1LhGOyADjlH8PkXm\n98p6xv41jXkVhYIm6h3PvqxIfYwz5i04nHwBfV5YbfJsZT/sSSFGnnpKGYNMVH20Qluj8GV0Wpr/\n+V3N30f7ej8J10t2moj5mjIQ6/A9xMKqwMoj+bm5KX3v6J7OvK+gPHOxr4j9xILmTnyMMUrJZhcW\nL5iZ2b0V2Ww1L7/agl+pXdaYXDinuXvxZSkSTID8uHFHtjmZhCsHtMC1nnxF1IcSwV3170han3/s\nRbH013uyoVxW7994VYiXXlfPv3RJCJcuqkXeIf7YKxuNzgoRMzonf+ZFPWQb/9/t6/lpkDElfMsH\n6inHLCEQVd0BKiwt+YJGRPYTdNT9IrwO4Clh3XBUvnwdXV+pqT09lIEiZDX9Qc0RB2UyklE7UwHN\n+VBc32/T/nSQ6wJDG4LeacIJ04LvyFEcOTpUHRpdFP4cpSiyu50BSgYOT1kQRRi4ZMKO8hR+O4LC\nYI/56EV1yN/R95sR1lLWkjK8ONDxmB9/32XtLRzA49FClQhkoB+TnRiXzSYvguLMqU98Efm9NGp+\nDvfAsIeKEmtvkL6Gysa8jEGro/p1avRtW/+3BsfngTAzG4OjJZuTr/AxdiOOv4a36hQcX33Gq3ZS\nviK/rjlS3dfrnfuaWy0yz5EsfHRp3bdX1broCaBux1zqkjmemoLvibnZXgRRhILP9jbKlM0PEUF3\nb94yr0/1nTo/znM1PndviZ/lnWtCxxVAxEyBzJmYQqUxpaxeyENm+YOMNxxle6rf1q4QRImyxutg\nR3u31LjatRfPWgDetfPnlWFdPqdnzS8+YWZmxRXN85W35VdX3lDGsrarLHVy2eFhEw9GG1tuHWhu\nbN1Tm7pV1Sl3Sn4ukVOdMhntVfoeuLdQEPMFVa/hsGiPUwYejWEfVQ4P6NJhX2M8mtB9Nza19vWZ\nywn2Ktsrel6Q7LVnXLZkoMJacO+k4K6KVP28D6IadFVyG7+0Dppqin3ynPq+XGBuOIgW5lIkIdtI\nJkDg8LzynvY6yXnVs1EXUqZVBZHk1dyNJdWPhz6tkx240YKg+AJB9n7s1XpxVO0O1N4eS/sQnqxh\nhT3Ooa7LTun/kWmN2zbrd6qnfsjy/MJdZf3bzPkQ92t7ZC/lhj6PRj/8mRNP5D5AGXaOtM4Gx7X+\nBPFRvqb6scr60Aat7YsdH+Ud8aM0mNW1ixHN3zp8Gg9Z84vbGrt+CIQwaN426KIi+6ZxVJFG59T2\nPIqsQUchln3t3n3d9wAE9OlF7dNS/Abau6n73eqqb0ZHZMtn4OvxwLvXWdQcCsBFmHbaBZdZ+oLm\ncq99RDt0365XfRsFFhWf055gEUTMrYr84T57Ey+20zrSXud2Xf7DAuq36VFHMRdOs7QGaWFRvmAi\nrvp7Tdf3UQg6i+pohDnRrnSpNy3R7c2X5Dcj++3NEr8rcnpO4W2tO/ceytYr7NlSCSEgo5xGWHpG\nqIzkyONBZWbhz1rvaZx8O0JTZ76k+/zpd7XHSc/Kbi7c0l70D76ifhopyl4erKt9W1HNZb/pftfv\nyB5GP6v27LVkRyfO6vvF3tvU5GsWv3jTpmpNawTll1cfgFo6LUTI59t69u1V2ebJZ+V/Xmv/lJmZ\nTSV+18zM4imt5W93f9/MzBrf1e/eH4Ef78mWEOhdVCivmer8meT/ZWZm310BWRL/lpmZLWq7bBlO\nC/zRvNryTBm08MuggeHySuxocNPfEo/Oqae1Nh/BsZj/Y60Tp5j311DrO/mM+ir4R6rPmWU97w+O\n9Ho7qXY1//L/bWZmuY7myI2bsukXbsomt0/JFhdm1bd7Nbi1UCr8NKcxflBxkTJucYtb3OIWt7jF\nLW5xi1vc4ha3uMUtH0H5SJEySy8og/ry3/yimZlduq2M8O6uIlY7j9bMzKw/RMFlTyGz5iGqRjB/\ndwKKbHk5Jx0mM2GoWnhRXQpmFN2Mk61yDrl2UBuJdJT1rxKtjvuJ+qK2FETFJB5VdHRuFP4Pzmda\nW889yisiVlpVBK+dE2dOIMvZ4hnd/3ROkbZyXVHm2p7qUdxQFjRf5uzznjJIHTK5Y3Ax+GhHcoHz\nnCfI8j2ns9ULKFU0m0NrlBW984VR14Bt3TpqywB+nmET9M8uClabQh2U1tSmw3cVYQ+Mq++iOUVy\nMwk4XPqohPhQfCGzOggq09t7vOPb1uc88GBSEet6HU6WIkpYR5w3JrufHdNzGzy3eqC+q/t0/fSE\nsj0TfV23tqOoaQWkyRj8Ikk4T7pw5PjGVPFoDI4FIu+bqyjzcLY1OK2xuXROmdaKRyiFlR3Zkp/D\nvwOy6XugotolFHpSsPFnNdbFpKKvg7oi+hmSei3O7KdHdF1oUrYTHlH9/GSVhnA3FGtrZmbWfCCb\njMYVVR4AZQoxXrmUXvdQSjjc1vhbibkwhZJCR/bk9aI44Y1QT9QFxvT/BGeNQwPVb/TMgpmZ+UK6\nvrypfq631X81VFRiHx51/aElGJcNZ8Maox4IlpGO5vtKRWPgY57PLyly3oNRf+qCIuaTi8r65vfu\nmJnZzdd1lrR0Q/4oHIXfAmWXOvO950GhC86SnWtrZmYWSck/ff7LP21mZp/9nM4HF7Y0lyIgVU5O\nLZiZ2fnnlEGYOaksxzvXYcgfaK7eeFfXmUzD+mSxpifhG8rIdk4vyQZbBWUYN/Oq/xGopYMHQtR0\nppWxPlrV+/45jVkRpbLCtvyPJ6vnb76v9tQvK5MyB2qq3tL3p9Lql+y43n+ICkoP5ZiTy7LlA/in\ndveUodhYUabh48twiJ1RvVa2lDXqvKtM+AFn/zvtktnP/ryVjzSuxy3ekKPco3aG8f9JUCJ9eE16\n8Jx0UC3pNFBUc5BVnCcfwf960urvKOi0EOvDAAUiP3ZibbKCoBwcxY19kE3DVsnyZa1x1TWNyeYe\naEqf5kvcmR8JJ9uve3mjms/BCP6ENS/QBn1Jnb349d4ABRj/gP/16kXRr4X/bDXU6LCDOEHxwE+W\nPeKVDUOzYRFQDCm4pbKXlamMTcoPTIAe6sLxNSzreaWi2nv/htaJFlxfw6H+H4IIanhRSgHB4QOd\n4Kj+MXQWhvvF63s8DrPylvqrV+e+qJtU+npuizGcnpVfTDL2IaBAc88KtdYj0xt/n6w+nBKVVY2n\nw/nVGer9kQm2YmRuHfqKcFrrXA8UQtyn742d1bo7c0r9mxjOftCG83OnrHBLqLxBT77u1AVlK7ML\n2nNsgPbbeFtzq76mdfAe+4BQRvaUAeUyOSM/7Qdxs/yi9hgjBY2zp6P+3r0tH1rIgzos1G31AUgL\n0EMR9mEjU7p2dlH7pyhjdu9dZaX3dtT2AjxxJ57XvJqfJgu+rD5/BPJj76G+X3tf83UaNbtIgn1b\nBu6RKT0vyPOOtvP2OGUAcjoAYiaEbVSqDlIEtENU/qYbB9Xg0fv9nvxes8P+jfr54UuylmxumAC9\nhqpQB2R2LiU/GwPlcICa22hRNjCeUbs9DdSQjtjzdWSTY8zNMfz0LgilGoqauTOymTJKOFur8GxA\nnhOZQi0qovZWeU4XHxEBqeLIXSXguVoD0dJ15i6ovRDovAb75uBZ/Q6YZF27eU/rQwNfmJwVqtj7\nnvqzU9HzA23ZeACOoC4cXw3H/5pZNNk3D3xZjSqqpvCLxODZy07Ih/VAq3Saeq53cHxkZhWeywOU\nZAo+OBf5bRKs6vPRlMZgQHo8dEp1T3g1/7p3NZ/2W8wn9o/dA619NfaBk6PqKx+O2M9YB+FuOayi\nKMgidrgh/+XBhlsNeM88cDCiBFZFuczb1ZiuX5MtBBhbzxSqpNj07jZIfNRGS/fhH2L5OISrsdlB\nWTavsWzAt+YZgKDht5cjQOZF9ai5w+8R5mwTfrpEAOVGh9et5pxqQG0Jrp1iWdd5UDkMQQwXQoHX\nA09TZ6D16MRZ+bnxlMbDD5Lej0mVQYTmaVfG42CKjlfuHWmP+UXm1tWibPjKrvZ+XijY/KtaZ/71\nmVfMzCwy0Bzt3EON73n9DslsiEfxAeqqLa/68ynQKINFoV+27mlcR+r6PWR/zWz1+0XLBzzWW9I9\nLhf5PfwAFCz3SuXg1HtbYz72otrugUdp/VXWtoru/cmXQGDf15rUG8j/vskasZjX978TVduTKPbO\nZEFow1XoqwiJM/JtOMfmhNZaG/Jb8/fFXTP4uNbgWzMfNzOzh2/pPi++zJo+I3R+fUL1Tr6lvq9+\nU328+zk4/vaF3Mm8oDk294rmwM2i+HhKfXEqvsD+d6WmMTi/p/p++7x42p7n5MrOFzXWvWsgI39A\ncZEybnGLW9ziFre4xS1ucYtb3OIWt7jFLR9B+UiRMluP1s3OvmT5e4q4dYniZlBbCjrqJfuKaFXG\nFFkbtBSRm/Mpwu7hXHuRKHEYVEiZrE/XOIdfUKamTeYlDhN3EIWcgk/RxUFR9eg0FQE7JBvpd5Az\ncA144QjwjioyFiBDmiRSH0zpuUdHqvewpQhjpKbrE6OKEmfIWIxMKBt15rIyxQTbrbKtDMbauu5X\nyiu7VjvS+4d7iqavv6+IYCSj509OKHMeG4lbIEzWpgV7e4lssE9t9DYVUfaR3R2dVV1mF3WPQlln\nR/OwlTscND3OttbaijQnyD47aCNvFA4YL4iZ+uNFkiMZXe9rk3FNwR0T1hjWydKE4JnIchZ0Ap6G\nQZss9BYkCD31YW4JdMEUqCMOOnfg0RjJKLqb5kxqkLOj+7uKtNerevWT/YoFZbPVPT2vnkG9iDPE\nC/OKbMcWYIcfU9R1m/PgmyVF5jc6stGZmKLGPTKx1SacLLDRh7HdANn/Dhnt5jaZBs7WpkdQ5Yiq\nXRW4IWIZ9WOXzO/KpjKmhX1l2yIgX7i9NQdq195DUF15DnqG5EJ6qGvVwnp+pkNG3DRHM1HZehSO\noS4ZmmmyXiGUG/oNjU9ycHxlnRLXBLC97Bhn0qOaVwGy6x0Uau7dEhJmZ11+5YmKuFEso8aGgurz\nhTMosNwT0mSLsTpxQnwLfY/GokEm81Mv/4ieQ6T99pvq0y0QL03O2Df2NXfmnlJGsEFW/vZ7QpZk\nULm48ryY+OtksXpFzckoiKC7t9WO135HbPVrh7LJFz6jDEHVybCi0JMA/XD3dT2neZI5g+pFoAey\ngyzS3BkhW578uFSm7lxXBrtO9mb/AefiyXKFUDeJhclaDWT7K6+Jt+loT7YxIEO9MC1bO0oo+5Un\nkz4a0bi9+MInzMzMN6asXCojm1q/q/PUreHjoSB6bbXTg6/otOTTHIGeGufj+y35liDfH8TUnimU\n1tJkcAzkZA+OmdohajIou1VRsiiTqQ20QMgwDnXsJ4APbfkDFgyQzfGAvJhVtjozIz+Ujct/hDJk\n+EBteUBRRkCgOHJpZeZGBS6QDjxuwzKozhoKLHCZtE1+K42tBqeFrBifVtsDET0vDk9E0PQ8f4iz\n+XBW9eA46GIbRVTiXt1dMzOzrQ0QQTugX0EyhkBchFjbh2S1gynNxWAAdAKpyhAZUn8YpRWUwcxL\nNh4/dtzSA7l4f1NZwjkPSFD4LfbWVH8Pij75FFw2HY11dnbBzMxyZ+VDZs9rDo2PC91RmJStD7sa\nh0ZB/XJY0v8xMrbGXGpXNYeGEGBtHMnGKkXdJxFVfzTT4x+0YSw3ai0Qr/feVHYuj78eQ0Ht6Y/J\n502iRthnb7QJYqkJ79VBDcQSnD7V+/CCZFTfOKiX8JzGYfpJZZaD+7KrWLdnwxX16RAYUxvEx1pR\n861+Qvc+kVUbJs9gswW1cWtLGUj7vmwzPCr/sHRhwczMpi7LH0fhnDq4L8TFwT2NoR+Eo39S+8Lo\njP4/ASKkvfl4Km4DD5liEBZ+0F+BltpVYJ+XjOs5HrLxZZCUjQ68FSjtTMJVUA/IHzQb6q8UfrSP\nUk93F6QKKiiRpPZmRxXt/2rbui6aQklyQq+H+1oXqgP152xEmWYfPCUBjxCQR4dw1uyrHjE4GOwR\nyowV0AxkpnMhfe7vO3wewLvSus8A9F2buRsAwdreUD/FxkE3j6qf8quaC7Mga1LwoXTeQjlsV+v1\n0qxseAJuyDL7672q7GZkQs97yN5pF8SnmVk/ZDZzWv1dAK0yBl9XGN8SCcEBB19Ut6D2jMx27Lil\nyxqTyMInBCtLAcT5Pjw1Y3C/jGTUl7v3NRaHGbVlD5Rrq6r7PYHNtvxwyNwW6nUOFTVH0Su/K7+U\nnZLNjKW1fmSeUxsd9b0kijnvXJOf2L8FT8+o5mJoVvN7/ASoqjvyD52ybGlsVmiFiUntl4dRjeEE\n69TWvv6PwuN0+mNwN8J5FWFt3djS/eJ+PXcsI9vN76n9zZZsLjwvv34EknIaXtGRaV0Xjerz735D\ne6Iec+zik0J/hFEZjZzSc4NF+ZSNfY3L7AnZXKUim46M6HuJiPx3FU5OD7+TtuDxq2yBEksfnwvR\nzOxCXb6gMtS4xD+uPWie37gNgS1s/nuaO5/raz0OlzR3j+bUP/tXxRN4dyj7uXRPcyX9otSXfvcN\n9cNn+rLDKd+3zczs6u6pD+qyfylle3slO1OQwtMQtH9uXQju5kVxy5x4S+9bSGvE5K7m30hb8+Ta\nec3LHmpwsd+DI/YzjEFbdS4daH88vKJ97vND2Urrjmxq9oH8VmFeSPaxZbhjvZobt0/ovmdfEzJm\n9VP8/k6LL+3BLjykzwrZEilLJeqt6P/L3nv8SJZdaZ7XtNZmroW5CA8tMjMiJZlkUmaRrEbVNGYK\ng8Y0Br2bxfxZsxmgiuguQc2qZDK1DO0R7uFamdZazeL7vUw0UKzxWMXm3Y3Bze29d8W55953zne/\nT/vK2r/Kpi69IoSNc1m/a/9G9ShswHHYgqcP1NbiWP1zo5Y1xhhzrOqaa17QWxn5kyBr6KH/a9Vr\nV/ffDaLs+xeKjZSxi13sYhe72MUudrGLXexiF7vYxS52eQHlhSJl6g/2jfm5MX/41a+NMca4Cory\nzlxVtDKVzervNUWB54GOlNG6H8KOHg0QDYYnw0+ycDxW9LHnIrMxVHS1SVaq5eZMq0dRyYs+Xe+E\ne8JvdN9enawjaIF+TZGwBpn3KtwIRzuKrno9nM8EneKkQpMjYmCgMZwBFCjIJASSZF79qsc0WcLw\nsqLZ1y8pgt+uKXLYKCu71W6jOgNyxlFS9HfvK0VxR22P8XuVgQv51RZ/YeMElQAAIABJREFUTPce\nuXVvL4iZEkiG8aGy+YtwFcTWlfG7ekd8EvM9/V0scl68pb5wtK02qy8cQxQCAnq+pYx13lIr674+\nMr8+6tNljKuc1yMAbiYwg8+uwrMTVrT2QU1ohcZX6vtplG68ZIYbZN0DnKHtcHbfA+qo3qrQTmUg\n2k1lDIJk4eZWyFS0sA2yNhafxhhumiq209uXzcXIcFvtanM+vVOzeCw0tkOPoquLIHsScUWjC5wt\nrlSJ0sK/5IBPJOAiWp2BbwjlnNSCrneTJGyhXNFCIcEZUT8EQXPNLihTsPVMWadBX/0xnxGqa6Lu\nNidHymodHah/Qpw/HZfV7tMDRcl9KFT0UV1qzai9jaY+/R3163mKy0vWnHmbP5Lt1jvqmzYKXjdu\nXqBO6ovJ73QmNAJnlBNuEUda97twRRmCE9ACZRBrqzeEcGkdKytx7yOxrD/bVNumL6H+wTw+KHLm\n1o3KBf7Lu60ztoVTMrsl9dGFjrJhV+BuqRb0HCe2MT2v7MZrb6jTCw3ZiOODj40xxgRBM/iCFupC\n/iixgBLDCmfySfxtP1MmuvlYZ20nIfVXxKn+2IJT4AwEybCu+x4cqF3zWfVn7lRjObWqsf3RfxWH\nTiXPdSVlVO5vicOgA+ors6Azxse7yvg+zSnTsYI6S+9M45iYsfyk2jfm/Pt5S78BPwncMRXUrTAf\nE/EzGWbVv6kkanez8mEALk2+oXWk8rky8Wc5jbtjjBIG/B8+smYh1D8m+ArjUv96aX8kAA+XO2wC\nac3X6JTGKEoG1QU3Sg8llS6IlxYIuwrnmtsF2ZiDv/1ReH6mlPFMwqcURn3P4r+Y9NQnPpT9EJIy\n3oDmRguei1pJfqEGp1erKD9Qh3+n8QWon67q1TrW/7st/CE8Gx4yukm4ZuJpZVrTcBSkYvLP7hBj\nHWDNhLvGSabX4rwZgMIAzGqGKNuUG8+nvhRDVXAF9NLCuvzbyktCgGRWlBYrPRPPhYXVOgPFWj6E\nl4rz81NLsm0PNpQG0ZLK6jmdDlnAsuagY6B2nZTkzxNxEKtZ1WNzU3O0sY+/L2pcmqVv1Zeqpb5Z\nvfa6McaYQHiT6+S3c0+UXWxd13XTafVvYlY+a+GqbP90HX+9r8x5CrRa+VOto5uHyv5FQO0F9lTP\nuZvKWiZRrcok5owvIVvu5uFSgQejgm20QLacbcgm11/TPVogzTyPZaNNft88Ud9uVmTrq28Iybe0\noTGKpLPqh6M93afK3qYk9E6FLH8MJNyg93x7Eku6pc9aGwQVbKn9lfAPETi2QsyxPnMgzD6ygR/y\npbW29vDvAZQHRwOt9S1USaNurRsjbN3JGhpjDAYV+eORS/eLgG5zltXuxgGbO4g6AmNQHChG+n2a\neydnspWZuNAOabjKoj3U7zqyvRBz2ZWEr6qiv7uoPrVpZ5o5vAOqroXikB90xTz8WAXUrCo5jfvS\nVX2fSOm5Z/vyKRfu0O/sh4/fR0msorl3YV4+bhY09OE2SCtjTL1dNNNXsvrjntbz3R31WyCujLgH\nPo72KepYqMMaC4V3jjKss8Z7NIZz85oDHt4Fuj39P3+isemCYD4G0Xh1UX3/47/+vjHGmKd3NQ/7\nCdQyZ+UPWh9oHsanUEuayM/njz7X/diHBVKy8RIIk9GJ2nblXe1xli8Kme2HVycISqvp1FgclSx1\nOE4fTBhbVO4GPj137yF7iQXeuYAXHB+rj3tFzb04PiFOv9Qtjpwm7w3whVRzcKmxlqZnhIrrdoUS\nLhbO6EeN/epNIUam12WzXZCHA5A6J/v45YHu6+7J3xbgvYpnZJPQBJp9fFOrIJvPgHRfzMKp5dD/\n0xd0QQKVqfMW7y3ZQ+oD+TYnaoTFKTgkj/9sjDHm376n3zX+SQtgdqzn5d8UgumHoPJyeY3v4ZS+\nHx3TXqPxLV3QXqUR0xw6q3xL8ulKzJirX1ZMbM7iWtI+7bOmPi/mUQy8Iv/wy4917cxbmvftX6pv\nHDHZ2uQ+yqszWuM/Gf+zMcaYn+yqz/2oyB1wmuCdkeZtMaw6/tqRVR9Ye5qg3rFu39QcOfmHPWOM\nMU9QgXKc6PejXwuR85ZTNvcPK/9ijDEmsKd9+/wPtO9vz6F0m9J9U039/i2H+mz7kdoVPtFzDoOa\nYxnaU/9a39cjLxljjMk79L4dPZTtZgL6/6Wk5sK9nObk0m3Nlb9UbKSMXexiF7vYxS52sYtd7GIX\nu9jFLnaxywsoLxQpE+e84mxYUc3NXZ1Zq95V1HDhmKjeLOe644pi+uIwhjcU6S+V9Pt+F5Z0NO0t\nyEzEo2a64ajpuRXJq1T0WW/oOldN/w/CBh/iLHCMTw8s/4G06hsHBbA+VPS2SiY2l1Nmu050tTnW\n873TMJM34cKBYyBHJsdVJNvlVCTyzFKNegRfC9HwGAzaS1PKhPScyr5lmurPalHtmpvS/QeutvH0\nOPc8IkszgqU9or5MZTjHB9poVKcOcAHs/FEZshyZ19Sc2pBEfaPrhy+DCHMEDpk25/HGPTKz4efL\nbjs595vfU7ZoOghLOsHGKkoxJqf/9+ZlE34D1wsZ3wAoqISXekf1d63Y41MRfNcsCi9E7I8/0xi6\nQJjEFpVBmCYi3j6FdX5TEXPHGN4hlGJ8Ufgm8urv5qkyzB7OZ2dfUnQ4wlnYsy2Nj5dz4pOBzl2G\nUGwZYvuBWTLcFbU3NlG75kCXuVO63zaZ0eLeFvVR5sYBm70vpEzF3E3ZR2sHxTCykIhfGVdMHR5P\ncaa4o44NLcIZEyNbB4JmXNc4ZddkV0dHqCs92eSGso9sXDbdCQghcNLWnPeOz5+VCgL3caN+46/C\n2XGksWnB5n4cVAR8aUNZg0U4U/aJhDs4E+smHe/sc6Z8oHl+sqf7eV3KVpdyss3GLki1ku7/7HN9\nLq+meI4ydmuryl5bCLcJGdFXfvE9Y4wxRw91361nmmuVHY3dg4+/pp2637BBxhME0MXbitS3bip7\n0+vIdsdwloxrKIh5Vd/YtPp8CG9IApREoylb95NBrlmKCNvqn+U1Xbf4irL/TzeVGTAJ1E+2NQce\nfyZb85CRbaEAFk/J9qI+OBJAS6y+rP65PMqqvU/EQZNwag6dHSpT06hofOeteiS/VZw5TwmFyai4\nNPctRaB4SPV3pFBYm8DjgSLb4RmcNweau50i6wWZ32XQFOGMfGM6gspLUM8bBdReF4glS6lmDErO\nytS7HcaMyZb3QT8+I8PY7mltcRQ1L8tN/T9/CGKmKdscg7AbwnMRJIPpQ1UuNIDfBhW5zAWtZako\nGUJ4OSZk5RunyryVj/W8CihTM+Q58AN5sSELCDlxqu88EfzLLSEw0imtVZE5ISuioRB9iVqSLjft\nISpIXRCYIF4GID6HLSAzBv6Knp5XhUPMAZ/S8yIzjZt1akb9ViipnZN9zUmL/yOyIdtzRbQeJC7I\nRlp1FH0eyweU8S3dA9XzNCa/njnR9cur6g+PF3Qb6NnAGbb3QNd73bK1+Vkha1zz2hPV4eN78uxb\nNMD9z++ZVTLv0yik/egdrTNb95QlLD8TSmB0pN/txrTOr5Kh9iX1vLkVXedHMOJOQrxZj+/JNwWw\n3aMT7RdKcNNMsPm1lWsmuQQHCiihAAgxB1x+1SeaV19+qrP9tZEyl4sX5Z+zL4tz4DgqZFoL/7kP\nZ0zjPdleZlqVXN6Qf5pe1PPGqF1GG9qXdZuscSg59uD3OW8J4Hfrfd1nDL+HCy6yfkGcXWG39ggh\nD3uKlp4z7IDgrmluOeDXiMCNWAD5MgG9PDpTH/tWZCN9eDAcqCotLMl/NpkT/bzW2vCabMSZlC33\n9zXGfXjvmiB3ZlZVzxh7u+0vVf/YRc211KJ8QwfUQXtLNjNiD+kMybfEA7rvszb1Zk82gR8kDhq5\n3dScTsH30Uug6AY/VCUn21y6qHovzMtHff6V1sFxw0Lp6vdPnfJpzSP55TForfii7GHnCeuUMaZw\nVjSXb2n9r+XgyUPtK3tTPsoPErMIf2IPFHbPglSeozhQRhzW1OeHoFmjAfXF9TvwxYH4y4BKGvvU\n1/Wc5nU5BFoKpPVgWwiR6AwqOrz7JLZRSoRTLDUtPzW3AvJyRp8N0J0P8UtToIqnUlljjDFrqGOO\nvSh/gX5NBdT28BuaW+VNoOq8L1inFDKod0a43uuSbeweaG/j9KCUA09SBmTKDKjUY5AdYVBgtUP1\nz84jfX89DHcM69TS6lvGGGM++0AcKT2Usgbwejqc1t5E49Dakg+I3xGvSGpDc/PEUhjry2ZD8KHE\n4A/d/lp7kDBzqVjVPvWLr+RPEx79fjX2fMjMnQOt6x34W4IzzNFfybZd3xXq4+3faP05W9Mc2kur\nHtkFzeEWan6JE/mU6pl4BT1G6JSFlzWH/KjG5ksiq5ks//mbutw+ODWz41Vz16k16pR3ix+9831j\njDFl5t3/SFnqaVrzMr/VPKoY8ddszMjWP0ER8Om2kGzBhsZke/Ud1XXmD8YYY9b+BD/om/L/j2e0\nn3oFDq2PjPYQr8PT9MkftfZ431Wf7eW0TvygKnWm0xnN/xjvWG+uoR56We1pD7PGGGNeDsim2nuo\ntIaFpLn1pub/5bj8ULur++Vb8otLR/JvW/PiZQvkFbcIMFe7edXHy7ta7aZ+n66pHxxN/f8vFRsp\nYxe72MUudrGLXexiF7vYxS52sYtd7PICygtFyiyuKutz+ac612idcz/OK9JWP1OWsHGsKGXeqyhn\nJKEIXDyrCJrh3Hs4QHQaRZ5BUZ85mKxDbkWTw9Oc0+acdMupKGehS3R6S9Hjw2aNmlqcAMpkpOCK\n8Xt1nW+ObNmiMrjrryhzHSCy16wpUmadx3R1Ubbpwg7tI3MDzKRP1rDdUfSzWN5T/VAhOOVc5A7n\nCDNRRY8TRM+nUmqfg3PsnrbDdD2KZrqJ/MZQCCgP1OYT2NpdAdVlblp1zNxSW7wn8Cc8Vp8UH6mP\nAg6NQXJKbXPDgzOCV8Ed5sy/0XN7vedjJw+QOex5/2f0QoCsTXpeGYExPD3hgO7f6ivT6hupftk5\nMsEhzn7C3O8li1OHR8NnoYt6+ru6Cw8FahtpVKnm15VVKXM2Nv+h+qdOBjvJWVkX6KrOWCgCH7wl\nbtQswh1FbzPMxIhH34/IVF5a1j/qp4pS99qKpA8qal+IM8vdMFw+I7V/9qIi423QDyUy6l2QTNUt\nZdMSGxqXmRnZUIvz4ttnmmuNHEpjKc4ic7a3iIJG/ZHOOqdTqHCACmtNyPhj8+k4qllR9UeVzPbQ\nqXpHZ9VfrQEZ3CGZmHMUJ0gYJ3wbsaSesfK2Ivelimwjf6h7ezx7xhhjluc0Xx0QEhWOhfBogr46\nOtGYVfOqaxeehxD8SDMpbP8nb6itXdnmKapLfY/8lAcE3ZNtOKBAH+ROVZ9XvT9TPbzyRxOUqVIb\nylrfguBjDJdBLSe/8OkfxWXjQNXDFVefP0XFIoafGTjJXrllA3tfcX55ThmB5Yuy5dUZZcVj+JN7\nv3vPGGNMYweUBBwyjYHGNEhWLIEaSglEyWCodj16hloTimDJeVQzZmUrw76+v/++sk7rG1ljjDFz\nc7Jda646aijfFNSuyScPjPlbY/pktc5bnIzzOGBlevR9p4XqyYnat99R/auMk5cMbgDFtMU7yuTM\nrWi83G7agypLGyRNAUWHTl8+0FHHF+K7hm59+nz6HI+MMSj+1UAI9liD+lXQRX5UilCLm13RGhCN\nKjM2vaQ1KZJQnQEjmQp8DPuoeRjQU6cnoMlKartrojb1+rIpppbxwrGVRl3JRcbQj79x4Rfc+Pl4\nWL8LwjcxGLLWodI3Lqtv91Hk6vfha+uBfERRpTuERwOA5XAAIhI+Dif8PB4vmUUUXgIgN12x51PW\nqXAmv9hQv7iZe8egFQ48QnG5whZHDP29oPbOLWnOT61+X+2sq10lUG/5HfmQoy+U9c8fyNY9QbUz\ntqw5EmBdGj9Vf9z/jdREpkFCrqyjenJdfCrJSzPftGHplRVzAp9K/mtlPecva46HURcxfo13taH6\nFcggd/Zl+4m4+tMTAomE4s9V9jaXXkLRyI0S5ggutWP5gH0QPo/ufWmCp9joSGMVRLEllVYfzn1H\nCMLWp/r/U9R2ms/UV5feVrZ4blFIwOA1PTMakp89O9Ne5PgZSDaQNG6v7j8/qz62OFai8+rDGHuK\ns8cF8zxlyBrexe8OQFc54SjsOeRY+qDSECI0fmtMXfp+1OG6GiizOfVTwK3PbgA/1Je/H3vV7ga8\nQyXWo1n8pvdA+9vdXfVDpqExn0vDUwF3TLnCutaWzV2Aa63dYQ830mchL9uYvowCDdyMpZjuU8qp\n3l3qFZwC9fap5koBBbH5oK7vg54I4W+9IJUCoN2mUzPcV+1q5/n/MqqD+3p+oajxTcA9OQVXVxuE\nkBu1whSoDIf51gc0ynUzbqu+4Tn5sN7X8imWOtYKHDKjCAsEvE2+2fOvNzH2fc0O/G1jlFgLupff\nqG8fbu4ZY4xJRoVA8U2BFirr9w2nECbL7F+9Y/guQbuuLKutZ3DTBFHUGsMnt3Vf707ZgWzh0mUQ\nfiAc60NQRs9QNGTfPM3+3wIanp7ItuezqsfQob/3doTcGfGOVLEQ1Nj8HPu6gE9zuFaVn9h6oOd9\noxo4qz1El3VuEVuaLMENA6fZEWp9+ZzegWKvqJ5ToK0qcE+24VRbAikYC6hC98tCJNUg1HOiOjia\n572haHFHqv9vvaG93WRywxhjzCzvVj6X/P2N29oLOMeoIIKaO2+5Wf2FMcaYT3h/Wt6Wj3KE1K8B\nUFzFy5rTR03tFf25f1O7Jurvj0Lq/4UmHEGvqB3uRdnLB4/U7htXZfORe+rPlfC368Z4K2LKNx6Y\n28+0pnWuyCZbTtnWJLinOv9J8/O4KbRN7yfyJ0efqC7xJ3Bd/bVsPBOSzXlRHd3yC70z+lyoy8S0\nECilM1BYqIrGrgvN5P9cRnhvIFt67Z0fGmOM+e2/6H048ZrGfGv3TdWv8YExxpiHL6k+tT/8jb4f\n/8oYY0wuIxWkBwsa+7du4Dd7cF4hx3mIn5zllEnkIxRsXerDyrvwb7bUjtvv6x1656ey7b3PUTX9\nQsjPnTPZTPY/aY38S8VGytjFLnaxi13sYhe72MUudrGLXexiF7u8gPJCkTJ5OBxGKODMwvWwcJ0I\nPNm04qGyVsdVRaAOcvrc/0SfIdAKM0llIrxTipqOA1bWD0UIFGD2yIDGpmGPTik7dfWSnj++qHqV\nyVY2yMRU64qM9TqKiJXaqlePrNDefUW1fVOKpi4vkplJKUrpNmT/uA/H5Y2XbFwnrhiZ28k5zSiZ\nHnhM6nFlCApF0CpHirjl88rwn+woeuyBQT2MKsDI5zdBzsWaMJwkMMzHu+ojBynRHVR8cjBnR0Nk\nAqfVpzFUe5zINPUajFVNfzvDKGIpcGwJTZmgE06U8bds3+cpDrhcFq6T5Q6DemgrYp4kYxmcVr2G\nPj3/gPPmk6RMPBWTbZweql2NmsXqrr52j8hGeRQFnZrWZwA+osojMpw7ytZHfCgrgAwJXVBE3rU7\nsWquepE9T8wKfdCwskAniiLnOho7qmEGBf0+O6tzh2tZRZmPB5ojJwey+ScNslPUbwwa5ElZ968y\nZwyKMDHO1/snGvfCtiLwTlIhfriGKmTPBi7ZasWh9vp6Gv8MmZyRQ6iK6rGi1Ucnss2UX/0ybCqT\n8nhb948wF0fwmAzhBjpqqP3uHP3clk0vkLE/TxlwRt2Qyesfwyu0qDGNpzUfXfTV3T8r2z09Jxta\nviZEzSzKK50xnFbwKRQ7yiIXn6qNjVN91s50/+yPlC2Jcv9BSG1MJpWFOHusM+0Boz5cXdEZ1ePH\n6tv9e8qaez0aG/cY5Etf/mA6zZn7GdnY6g3UffzKEIan9Jx4SN9PwRNS25ON5+qyhbkpff8EJGLt\nK2XRvUBGnj7UWF26ID/YrsqWozy/21G9dv5ZZ4G9Xvmt+Rsb9J/m4KX/Vf3hxtZGHo1HGWSQF3SU\no6459vh3YqWvkelevqxMenpB99m4rnGI12R77afK3Jye6fO8pUn2zIuSURcE1LCp+nWDmgM+I19x\n4bL6wTcnWwxh252ebPtkm0z2gc6VH1Ofdlt2MUHdxEV20xvTfQIRPT/K+PXgQnIPncZhKVyNZcuW\ngpd7RX7TF4NfLApKkyyxG+UQP6oMAy+ZwInmRnRBfb2R0X08Do1Br6K6tsf6uw9PRGYA/xmKI1bW\n2It/tdL/Lg9ZftBdUZR1+qAGqiBejMVbBNJlCO/ThLXfNZF/d5M59eIvxiBfhkFd52xrjvlAI1ho\nKr8TdT4DHxCcWZ7x853xD6NOOGjJ5mduC4mZYp05+kpIo05T9z2tyQbK+IJNo+xaZEHjtnZVKITp\nC1ljjDFzi+Lv2PxMKA8HvESdLhnrffVH9nXtGeI/UKb20YeyscoRCBcUKZbXQVxeSH/ThtUrV83c\nnHxFEcTMCHW9MAqPgTXteRaxvZMZXd+FY2bkgxOurXE7eu9L3Q9epUAEfqiE7MqNTa9cly+Ik+E+\nzO8Yb1H3epYTqrKyo7YfPUVt6W19Xn1L860C78ajT5VBbfxGdfLhh9bu6BkLN5WBXL4kTr9nj7Wm\nDVh7qqCSdjqsdXk9J7muvo2ti9djkvpWueo8JYCa2gj1pf5Az3GH5R8i7K3GcNX04SWKRixORNZQ\nOMpqILpnWC/62LoH/rshCMe+hTxZ0hg+uqv1Y92fNcYY41jSGOYfCx2x2MTfJjXW8Yx+1yRj3QPl\nNE5q7o7rWveC7Pl6KLsNm3Aqzqu/vaDJhj344+CycUXgPPPiW0CJjQf6exQFQRQB/QsSxoHtWApx\nhYIy19W89gLJy6p3Cls7RU1qvgf/EWi1sz2tZw0Qs044JMNea/NrzKjVMa2G/h/BtyTgM+mDxOwP\nlLHPBPX/U4A2Pff5ee7a7Hf7I419EdVKiyts0cfaYuTnGqCcFi9p3ix8R2ve2KmH+1lDHuxo7BI9\n7QOTK3CFsO9bgV/I4ZONP/i9UAPN4z31hU97j/lV2aoHpGGjjH8GFRvyay0/BV18sKs5lHSiNgpv\nzwyoIgeIxJUynIigk5ol2dAYjhj/WPtZd1d+1AOyZ+KW3935XHPeb/GtedWP4TW1Mw2i++hUPqRw\nAAp3SXOni7/afKz9f7GiOXYdXqrQnGw9Bh+RD7TqyiUhebxwSX7xufali+yVwuztSmeH9KNscfWS\n/Lub9a/qfD707tH3/8EYY8zc779vjDFmCzXc713RfX53T3NrVFb9X57dM8YYs1TQ+8HHddnPMKn+\nWLiguf9+S4iZ7+zoujTvwA/fF+LyilPrQdL86Ju6fBEfmhnfZbPP/ucwofmQ/QSOvFXQo6d/Z4wx\nJvKOeHxKv9U93g7+D2OMMe/NiucnAeo3/EQ2EPsr9bH7DyAbfeJY8W9r7ZtdRyG2r/k32NLzFy5r\nDJxt3ef4N7KBHxmhxT4qa96Pvqf33/u/Btk3EbKytSobjkV+YIwxxoVS4nc6spHuZ0J/9l/RPv+s\no+e9PJStf+VUO/Ju+ETDGvPb70vtdMelOf75gHXokT59Dvkd6x2vmdB9Co/UD3+p2EgZu9jFLnax\ni13sYhe72MUudrGLXexilxdQXihS5uyLr4353o/NR78UN0IHBMjihqK0F+YULV7/jliOsy5lTs9K\nZIDvwQFThgMmD1dCW/dJwIafSnCOPU5UtqnIVuFUkfjjfUWZY88U0Zpf1POn5xWJS7+mDAFBVdMG\nVeDmXH6urShkLadodxPVpc3HiuC5BorIuQOce4cPYEBGtd1XNHjCWeMk0fEI5xcDs/qcW1LW7hpR\n4f7LirZXaU/T4uIpcNYZVamWq2P6DT2rCfv2aEuR92RYbY1xZjwdVxZm7IWTpKo2HZ/pGUmyCu4l\nlAVQBXJSh/FE1w/GcJ6MUPXxo5BjLNWM85XOSNFFHwz7piuTHdYVIW+59f8GYxGk/sGo6uUnU9x1\nWPXS7yfDINfpPh0UYto7am8iLFtbuiEbDATVX5VHoJMeKKoaTVnRU0XOa2kUHbDFykT9u7ihsauB\n/Dn+WpmOHmdXWz7Y5sl4HHL+ulUBWYPSQ9AH901f9RmS8TYplME4E1s70nVDn+5z6RVFd3vwGJ1a\n595rKEJ0lZlIkR3yzCvaOxipf5pFzTXfUFHqxWn4QZL6/bM99du4iYLZOuz7IfVz+xiFixiZeM73\nFz1qV/FUUe6WU3Op49VzzlP6nBcmaWOGVT1j6w9CxFgSXG+9Lu6CZFpjtr+rsRxGdYZ1PIA3p8ZB\nas5F18hQLixrjAegj44/FwKm91u4EiAGsvyE2zqbSsY2GtPf61fkVzZeJfPI0fUd+tAFcuMQRYDT\nR3uql1OImlfeVvZ8+pJsanisufcYtNKdn8K8P8Ev5HS/7Ct6bnJKffvkvtrtA821+UT+bwx/RrOt\nOXznVWU+Fu7AY/FEcyL/pbIyTdAQ7bQ+C0/k9/aOZeNrF/FT1K9RkF9658c62/v2z//aGGPMWUEZ\njQpzcfcjrQv+tObGz97V74oh9ZPP93yoOyeqWsYFWoBs5nhO4xaDy8GFGkrXqN/ONi3VF9W7VkB1\npSffEiAja6k4TSU1592ci4+yDhlQGOOmntcfaq5WgUx6+nXTi6hu02Sd3UAcLSWnCFwAHXgYuhXN\nq14Zrqku82wAL4ILNCqopvBEfVmFq8XvIA3sk9/ycSa/H4NToGUhR2QTLT79cJN5UZvrBJTFKsI3\nNGlpTkwcqocL/zUJMldAwnjos7HRdX4vSBfaF2ItDIbIfsHVYDxkostwzMBpUrfUmkBujtwWL9z5\nSg/eplJVe4rZqjK7sxflD2NBeOxQp8ufaG5PWD/P8hqHk7taH0an+v/Uuubc6ktSeLjgVXbOFGVj\nB0X1Xx0Vo0ZL7Vhe1lzz/ELjVt4TUmbzkebe04fyQeFD9Y/53/+COH7nAAAgAElEQVRPc7i3aWYS\n6sfZNWUdu+xZBiP9rjpCraUoe1q5rvVhMq/njt0aj3hQ9d5+Iv9c66K+Bzoxd6Dvz/Y0d0+25FPW\n18V1Ew7EzfJ3Ue5rK3vfO1UfH94Vsnj7/hfGGGPWNpR9X3tHqhpxq0/3NO/2nyq7fu8QxZNp1e3y\nNfm11WUhaJzwwxWycMtQ17Mt+aOzr4TunIC6cnueLzfp9IOUcWlta4LojoCuncvIL+fg4CpV4KOD\nKyuGze945I+67FfHHlBy8At5fWTBeyAEyTwPvNp7jVBzm4Dc8/n1uyAI9AZ7kGl4QHzToKJ25deD\nrMH+gWyr3dW4RFEt7cNp2GC/PYSgajapej31yr+VzmTjWRCaQVDJXUtVDpRvxLKpiJ5baclm0kFQ\nfyn4AXta56oO9QdbOuNGobFfBn0Bp5gXmLFvKF9RPFN9E3CAxeG/MsYY4wiZ0zOtT5cvyUbTIGl3\nd2Vf/YLsJpBGzZHL+6PzI6piDotzSX+3U6CfUGRZRynRPyPbfnhP6jrH26rDpCHbCVvqbmtCKzib\n7CtLIFuqrFFPhJTI7+0ZY4y5dEV+ywlPZw1EdLQjv1bbV32a+N0wSEknPEiLS/IH8SX5n9afNUdr\noLaCvGM82dceJZ3R2I/Yjw73eKdir+VgjozULabGPq8Cd9nFNPvKW+qX6YWsMcaYrceoTcHHNJvk\nHegS/hOuHm9QY72wAJca75IOUMDoVRqPhRQvqn6puNbmM/iIfKBoJ271w2kN/g+U0ay50GcdLu9Z\nCp/6e/nOinmeMp+QElH5p7K5HzvV3g93tedyvi6k03/+TPf9HeN/+BZ8oge67rsO7bEOeN+4BVI0\nj4LQqCuk43pQe6h8G5Rx/ME3dfH6bpuZ0EPjmBeiMfy1+vKY7XACpFrx+5qfN77Us+f9WoOO4reM\nMcb8b1kQeB8KSfJL9hCXi6BHNzSWwQcaC9fr+G1OWYSXtC581Qfp97n2s3cSstVfOfS8NpKAF0D0\nbf1RfbL0rmwo6lA7NjfVN40l7W9zy1rLb/X/Svf7Uvu77/2L7pd+U2gtE9Ccy9yTzU9dgQ8qp+/f\nP1F7l72qZ/G67v+Tkmzmi1dVjzt/0ro3nFV76/n/mC/TRsrYxS52sYtd7GIXu9jFLnaxi13sYhe7\nvIDyQpEy05yDXl3LGmOMeXyiaOzJx4qE5TyKYIVvKBMyh3LAzIqigfPv6rNXVibgYE9RxGFRWSw/\nqhnJec5lwvC9gQBQqaBo6PGZskaVbRA3O8pC7TxWxM4V1X1iqDaliLxHiOxbCgxpuGyqIFRmS4ok\ndmDXt862Bjg77OfsdLWnyFrhUNHx/qGuq+ZROzlT9LxYUPsTi4oKz4b1/GhaEcgMqBfnFT2v2VeE\nsFusmNpAUb5OVfcuNoncw2Tf4O+0l/O018jqpJW9GjQVeS1yTnqcIwMJusc9gDOEDKwTREebCHPA\nRaa0/3zqS/4q3CagF5xDzmzCLbM4pShk9KKQG6W8IuBnOdWzipKOaSmaGnHK5P0pZX0mqEQ5Kign\ndPSc41Nl1VYCsr0IGesa55DLDbLcVUXqZ2KwxaOkUtjR8wI12UI0KeSN341qB9kZT0L3m8rq72pM\nv7cyIZXHisK6uW5mQxmFGAo29a6ixz6yWO2qbLXT4gwvmetxSNFqx0j959dUMFHY151xUAKc7V2a\nlo2VD9WeJ1/qLG15onYvgbqYzqr/HX3Zaj6nObvoyBpjjAmlZUeulNoz7sL/RFbNEVX7qyjxuFq6\nf7dyfhZ7P9xLCZSoggu6Z5KMXP5M9xzBx3H7J8qQjcn2ewaoUhQ05u9vfagbf6Hs086TPWOMMa+/\n9X1jjDHXb+r6eEQ2f7iv/2/9Sf4iuKh5mfmOzv3eekMR9d09nct+75//pOtRxbhyXcgX11D1bdRB\nMZBRjc/qfpvU5/EH4mAJrev5nZL66vHHIEsaROTd6vPRQHP8I6ZsyCe/k0Y1Lh3SmMyhRuUP67l3\nP1BG+tGO/HLBqRuE6vIlC6tCzljKCEMylZ2WxrL8VL8P+4UeSKdV31OyO6eP1N+LF5SVO2nIbwfI\npgVAJdzlnPn2nNpv4CVyB55PWccDasMz1lzpk5lx8bxxCx6jJspHRvXxjvWDSEb2snSBzH8crgU/\nfC5ezum75fNc8LC0LQkjUCxduG3qJc3ReBiUyILLeDLwBzHfHYzhGCSg5Xe6cJoY2tIFveWiMQEH\nCi+0eYJfboJsQTDF9Mg2T1Asgd7M9PUY40OJxTW2VI7wSyAYHTUHz0dRBTWPvkc2FOIsvjOh9lic\nL+4xPBkV9fUQNaVWh8ykJY2FIlkrCALlwOpLffb8qD/h/9xOi5cNZObw+dQwOm1UokBDPfxSmcRT\n1Kmm5zX2Sym4IEDFZUiJv3RN62UU9alaSevD0bb85wi+Nw/In2myjxnWxU5Z/3/8ofYgPa6Prml9\nyF6BrwlOs35ec6+Ccpgxxgx3iuZZRAM4KGk8Oi5LVUVzNjYjX7Obl09yNDRnazWQR/DeLS7r9364\nezKL2oMkw7q+if3Un6h9Ww/lA3f66jfnYGJyO1ojkktq8+yU5nXoVaGGDrbo40dCsIzI6s+ldd3N\n1ayuuyz/dPBIGcmzp0Ij3S2r7ZEF7cNSIIr9AfVlCgWYGPuzE9TRvCgEduEgOW+ZgHDxg56tNXW9\nGzREEKS160h7gN6pvh+sobYWRbWNrH1rpPZaijEWd9WJU30an5ZtuVAHGhbV7lmQOT3W9EBffigC\noV8LxHbIaP2JoIzpxr9BKWPG9LcD/+R1ay/T88n/DZmrvYH8uTes54RZN0pHsp0l+n9qXjbSANHS\nyuFH2ff6fLKDXBV+jmn9ndLlZjKB4wvQnx9VwxD+ug86pFbRpxekrCOmG7RQz/P14PWbA6lojEk6\nnKZeUH85VjTXE+x1Dr+Wj6y2Vd9MTHsti9vH4Tj/61IbVOZxS7bWhx/O4VKdTo/V9kkbhMUi++6U\n+v7uP2utqw70ThKnb2c31Ld99qtJePCmQA72XKCuWrL92ZT2IMcoI3ZG6jMfaj35U1CfIGYKT/Su\nMZoSGiKS0PW+ofooGpXNeZyyZWdZc9Y3D3oM3swDEDuhaNYYY0zskvbnMWwm5hQSxPhle4co3pqR\nxqBi5L9286pPAH/UxjZL+KkgPHplfEI5on6ucZ+ZtOrtmuj3+bL8oMWl5r+h38/CSzrGb8+iKNno\nyQhjjL0TJbIoPE1fn2qP9Gxb45W69q2a0XnKcQl+lS+Eqgj/QD6vW/lXY4wxP8iJ7/Dve7/W/Vc5\nEfBvQo/MTomX5R8OxFOykfrIGGPM/EToE09HnDIp+JK+/oH251fLavf9wOE3dflZc9d8Fbhpbnyh\nPv3zbfVZBhR9f199GkdFKD6nfVvxWG0+TWveVLeEyvkiLSR0eEV+1h3Re/b7H2lM376ueZuviOfm\nTzvy729yeiDzHSFZhq/Kln8Pl+xCXGNz/0vZsqMuW/X8Db9/CpoUpPkayrDtAyEMf3L6O2OMMU3q\ndSeiPs+H5C9H7/2tMcaYyF/L3368qHqv8E4y65ENvf5DzZ3KRP41+57mevmW9rfN3+j6Z9+F63Es\nG73XkO38pWIjZexiF7vYxS52sYtd7GIXu9jFLnaxi11eQHmhSJnMlKKDN+7ofOBSVhmOTlmRsjMy\n0PljRaoeHylDsH1f2baVRUWc0su6bu2qorrFgiJ69X1FcR88UPQ4uqnoa2hK1ycXFOG7wjlG52VF\nvDoVRS9zBc5vnum5jT34RB4pEu/wKMvkJbo9F1H2P0zkfewkQj9RJuH4SBE0xzFnfeGMiS5lVY/X\ndP34mpXBUXSzuK3fbx+jAvOFIoB7DZ0/tM7wRpOK4nrhN/mGX2U2/E2kfSmqiHx2oj4eVfWbDmff\nqwUUqp7qPN7oWNFBj1G0z93T/3ucQ3aTxQg4dX8/1C9Dzl37Rqqb089Zddf5GeyNMcZP3zrbuvGA\njEB7qKisGwRNbKL4YgjOgeCEc4ugmpzT+n/zTPU/2FcWJxlSxi+WVd9Hh4p+WtwA9yugHwaokJA1\n8buVdSqNUVYgmxTk3HTHqSip1wffSRmuFDLWtarGNGAUoW9BoZIkyxSJwjMRVT9XSorChhuWGorG\nz4f608ERZ0fzal9wWu2ZhEH2lHhuXvfpcAY2Htb4Dcm41lA/KpLRdaH+EgyrHk34S7p6nBmhvuJl\nnGNBjVedTEbnrqLDXi+Z/ZjmXgc78nsstRXZjzek/nIOSUGfo3Tbmi+7KBIES2SfySRGPXr2l38U\nksQD6cs854/7pAxX0+r722+Tdbioz3sXNM+rp/ILDz9VNmJAtn7joiLw8aDmM8T2JowNhrKqxzQ8\nTAdPlBket9R3ZTJzqTldHwuj/laXLX7vxz9U/V7WWdj6sz1jjDH5nvzA0jV9H4jhzst0DBnREKpN\nh/flD01Ac+Ey57ZzHWUunEZj9+a7bxtjjFm4fcMYY8w+zyvmlWW591B+6BX8dudEtlgFGXjz52K5\nfxf/bMhebazK96Ti6ofiU/FRRHKai2EQJpnr6vfpafn1GBnvPgoUnRFs/Jx/P3fxyLbcnD93jWQ3\nXgtVEZEtTrLy2/N+rSeRiMbFjU/rtUFe1WRXNRQ2zshM+70at95T1iFM3+Egw+5XPSxuI3dck38y\ncJsqa83pPihJi1Oqo7qGsVUPKkgT5osffgcfmdhqwELIgA5ygihxqQ0Th5VlRhVvgoobQJQQiLlv\n3DX+t4FaRwjusDE2l4RbKuhUPfx8Pxzpe5eBB64mWynn8DtjrY0D/FgYxao+CJ1eXzY+ydGJFlIT\nqE/Ur6ydM6Y55vdbCCHd3wEa7rwlhjKOeVOIFF9ItlDY0niMCvIBzgvig+rAp/HxE82txSXZjDel\njkwmLLU7eE0azDXL1iIae0dENpki6986UQZz/yv1j3dbcyDGnmUM6pbEs2nnvuVqa/kGJkEmdxRT\nf9WfyiYfbSqruDHWXIzHQb7M60ZJeEDO7ssOj7fEv1HtahwCcB0trIKkTam+U6+ov8Io+VRBQBWO\nK9/wzpwc6Lf7rLmRjNrsg+9tDF/R6cdCCZ359/SsS8qgpi7IH7z+YymLHF3KGmOMKcENtl+A+4m+\nHuKfMyhOpTLK7M5dUmbUUiA72z82z1MGThCWUFr1OnAWourpvQC6FrW1w1PtJdrsuXwJVNhQvirX\nNddme7JdhAlNHbTv3JL8tycgWzz4Qu2Nbuj6EGjTWlHfe9gDDVA466PkBojXuNhDBUHwOcjNVtmj\n9BPw8UVkE+Ua9a+qPhE4XNIztO9QNl2u6vtZOGy8cLTlQXFFptXvThBGDngI2xPNgSl4OkJ+0NUo\nwBmXPttG4zrCXzsDzPGy2pdKwV8HOsw/1rhOz4sXxRhjgrG4KaPyN4SPxBlWv7oium+poHbOzOl5\nLhCrHupxnjLsq07JRZQfM4z1E+2r9x6rDkH2h2NQQLEp2c7KTa3pk7bamJpCTY1TAHvHICxqB/QB\nCEi4FIMzrD1QhzRr6ovQrOb9zbc0h1Kn8jPNBhxl7F0G7PcrcNuUmrItV0lGFADdOUnIb0/PqB0x\nn/qyB3rNF2LNLuj3xR3tBx0gPJdXNPaFpio6NaP2x8PwaE6pvosXhNgbgLwfN3S/paugsuCpq+yo\nPyZ1EEHLsul4Sv46Bg/J1p/lB+NwylRHmgO7D/V9dMxejj1J3miP4vaBJAdd3Y3oOSH8nnX64bxl\n4UN1+ONl+cjQH+RHf5AR4nLz8m+NMcbcigh1UnYJVdL8rva6hQPxb/2ni/Lvv/k37aszQ9n28VXt\nw9ezqmfmRD4wdIBP2Pi2vs6NkAkPf21KG/rfOyPt7/57WydX/Cmhm15vqo+2UdRKXNPaMP5CY3LP\nqK8vvsIa/Qehfh6OtAf47ht65ucPNXa1jPaD88E9Y4wxHzu0BodH8LX9KsJzZBtPK1L/fOemxs6x\npj5I/VpjUviZ9vmXK9rHfpXX2Hovq28+cGh/+bePtI/03tIYHAflt7Ig6Gq/Fvrpwl/zPh1Uf7Q+\nkY2dBOTfCqClrn1HJ1Oih7Lprg++OI9sc+VPb+r77/6TUfk78++VFxqU2bt7z5jXXjW/+cPv9QUw\nyMUVTYjZrAZhFtm3FsRguxzvefKlOmfniYITc0lN3MSCHFgCubURBF1nRRnyybaca+ipHEQIKb40\nBLrRWRnF1CwEctfVyRY3Ui4vx1ghSNNraLArSAWOgAJmlnW/9DKbgbSM7PRIN9o500ZunNMmJJOU\nkabTWhx8QOiiV1Wfl4Aw54EiVnmx9x6qPmUW/55bfzsgi/U8dZkQ8MIQC+3CjAx6CFncyCnn2WDh\nqzZ1rwaScwPI4xLI9jpxtiEk8swEGHpAC7MXQl6PB7LREdB+oF/nLYM+Et7Ap30QRU5YNA6fqg8r\nEAjHIMp0cNwqtqEJPX1RfXsS1eKUv68+9LGzml/ThmGAlHXgUO072ZHNDSGqTBHccl+RTbqL2rSm\nIDIOcUSuxUbID6lodFlj2GOsihwbGxGg6+UYSwganTi8RhHocwtyWTb/gZE2qHGOBQwhNssRTAr2\nZIMR4KahOTnCpctqZ62l9nWRSu3XtOic1mSjDsi51m7IwV69Isd3lpQDDkXU37WCrgsR/LrARtnV\nVb1yR+qfAvXy1dn0A7mu1dQfvRBEpQM9d3rIy9E5Sq/BSzoyii6H2j7kmMscZJdxSPPOCO4WdyAH\nbakOLo79PduXX6izUAd5EUn5NZ8PIXAcs/HYeE3Bi6mA2vT4fcE3j9mMcorSzF3Q5nDEkQo/m/a7\nv/yNMcYYB5Kb8xdU36NdbZgCQY42dJAFDjBmVc2lZkM2Pcvmve3VYhCD9O3yLY5Pzcv/Fcuy/fVV\nvUB+/smf1S9PdEwoz/FLJ0dIMrOau9/5KwVb9tdlA/NT8kd7MY3x43/SxiLxQBtPF77ijCOEw0Nt\ndlt1Pf/gkTaW+WP5GAseXiIYdYxsZWOivxMB9VsPidlq/vlepr5Z7Hq6X5+jf7UBfpwjnK0HBFYh\nfR1B6OsYy3a9lsQ1gY5xgGMBLnxgl+NPNY7CMF5Ojk5GCFzkIef2Uo9yt2/6kL8P2PSFrBeooPrC\nH7EC75YUNP7YLf8zwOd7h7rOR/BiTFCkD9F3zyJ+5cW1P7SIeSFWhxmxwbGooHX0K6z7R1NIIgc0\n7/sEGXx9taWKfyvWkcCu6G8PtpyYyRpjjMlkLOlXXnQJprTxA94Gx5w4Dmu9yBq/6tPh6EmjbAV5\nODJCMGrAmJy3OHlBXUqpfjPXtdEaAknOPdSLfwTC5OmLyLc31L8OEiE+jrQFwvh9SKW7e6rPGBJw\nwxG3WEr19c5pnRomIX6HvN/b0N89gnNRXlzd2F4C+L0xxvTHbTOp6bqZm9rkz5Lw2mK9LOzJ37oI\nVDoYt2UCx4vf1xFNP8mGky3NtXKp9j/9fu9Q68UiQTQ3BM3THLlcXl81jZZeMJwcbSuxj5vgv8K8\ncPY8JG5q6rsccHXHfbW5gN8eb2g/5UUiO/syAaE8AS1InivHsoUKa07pTAmWmab8WfaW1jZ/6Pxr\njTHGeFtqY8QjWxzWZINtjjbPQ9rv4xhTC4LiJoS/UwkFzKw5VC8hxVxmXUAyetiS/48uyH+7E6rn\n7tcK6odGenF3sqdr84LtHFgBP2TWOxrDCQTIdUjDYx6iNKz1E45IOgkOLa5rDJtHql8T6e5FjodZ\nQhTjzznazDHhS1d0dKIJQ+7evtaFmxAxd4IETgk4ePHH1iEyP0nGIUGZnhvfNIQUnCOcA4IzLo7S\n9ZD0tgQ4cHUmdO3bI/P+aMBM2Ju1EL9w+2R/LtYfXxufWbV8h753BGLmvMWBMIXTpXsFIVovMCYJ\njq5llvRusfV4zxhjzB7JtTGCEFXI5UtI0js8yAdPU2f8/l5V7xBJp/Z3aYINdZJte4+1ZjcqlnCG\nnj/CP1rUDPEZ2dj8ku7jdrNGEbRPBQmopiASv4Tfbuu+3ZLut74ov1hFThiVdJM70Vw4OpQtOSF2\nbyHZvM8+dsDezUmwx0cS1Eos7TxVomwSJ9nA8dEhCZxMSHu1dls+JYKYQe1INnLEkbqpCnNZJm3y\nT9RPJghZ9AX2y0eylRDE+a60bOwmx1WnV/Su6I6R1ThncTCO78ziZwMKwowOdezocP9dY4wx8ad6\nx82/Chl3T3PrWVi+YPChgAUXvZrTm5dlJ7eeyD/36+rn6CURBx95tTethK1d0f9t/hTNmJddPzJP\nL2k+15qywTtd+dvRIx273/IooDfgWKhBTv1OkH1vnSPDfiUvxxBld6bVpr5La0WsJn98Nq+15vBA\n/tr7tmzw4I+y7ewv1Jb4B9qXJ90/13PYNy3u6rmPljUH5vbVF13eGWNkkM9WZWOvPNG68ut3ZVvL\nRQkJbZzKdr66pL6JBnV0LFwRncEqx5+OV1XvXkk29vqr8udDt/rrU95drr4i27vySJ/lroJZ3/uV\n6m/+D/PvFvv4kl3sYhe72MUudrGLXexiF7vYxS52scsLKC8UKVMfKdo4KClqururSFjpRJH5qTRZ\nKWD2C0uKRF15Sdm19oYidDUI1ZolRQUrx4p0zRPpvwDEbdpF5mJX0dvDAz3niONRO4+QAkNCNwSp\nXxoZtjiEQRlkfsNXFSGr1RQZax3qPh2geFvbyhLOJJRpj19TVHR9XdHmbENR2GOI4IbHytjWi5C0\ndnQ/Cwbrm1Y09uq6+sPRUPR3iHStJU1bQSKsDXlfpV01XTKXRweKBB9/QYSYLNXsjNqywvEZL4iH\nbk8R5RbooFZX9+x1yMiSjrBA4m1gjWaEVPYAAtyAopQW+dp5Sx0J79ax2haH6DYwBUFtUFHdUABk\nihuZciRSdyFpHTpBnFhShUh2V5qyoVhJWRAn5J1hZG2XhhxTIlLu9mjsp6zsTFs2UT5E0pQsU68J\nXL+uzIAjpWhzZFnPvxwUuqLL0Q/nRFHdHgRx5VMypDHZ1syinnO2K1RCxyJbXebI2yX189gPVK/H\nMScSsh4y51GOSoTIuu09VhbLEdH/l9PKcNQamiM1SGdNROPu82v8akX9vk5GNgiE+LSrjEtyRv3p\nSJN9Kqvd7T6oAc5JxGKyu2pLmYJKgTkUO3+82JKNDJOVqiN7/vgTZRHCUdXttbcliT2zJv9RZr76\nIS4MIG/uCEPQSqa1F1bbb2QVgb90UdmRjz/7ozHGmByEk70JpMpwlHaRPD7b0dwxA7W915PNvfUd\nQVKdt9U3RwVlQ9zWkRLuc/dTwTVreV33g7/7mTHGmKsz8h91smlj5IELoKuq+LUnu4rsTy+orytk\nVKcgr778ujKxL91RBuSYYzidoubs0zPZiPtDjUm+zlHHhubASla2/fP/9jdqT1/eYPOhslrt3J7u\ng58KZGTLly4rc+KCsLfekW/a2lZ/Bjn+s0h/x9fV3lmOq2YW9fd5S4MjdQ1QI01IxAdt2Z7Tob9R\nQDc9pGa7VbXXCWltkCMnXotgeqjf1cm0joBmW8cKwl752JElb+3mKCHE7vfwHc5B32RvCZnx8ncE\nFZ5fmeca3WtYVF07I60VDdaABscWW0O1bdyRH8o3VHcDmecAv+wP47fJPntiIB+Bd5uR/Ek4zDGm\nMUe8Jqp7gYzryZ6yU3VkZJugrIZ9jtP4dF0qKluJe+UfetRru6g+8A7IhltHBCzJ7KDmpoXAKZ/p\nOZY8sJOst4XkNBxJsZLavtH5j0EaY0wrpz3Bk4ci076KBGmGo4U+kJhDED0diDwPOUITxQbGyCIv\nrmtuX70ifz9aUjue3hU0ugtStY0f9a2rv5YXhP5oMofbeeTUnRr/cAZbiqtemdupb9oQnV00Dx9w\n5BK0wfoV1WfjuuZ6A7no08/1u82P7xpjjCnsaQ/mmZcvzF5VvSOrkJ5G1J5+VfcNsH4OQSZZ62Cz\noX4MBWOmxxHfBEjkJCT3g6TakJ6RP54gWBAJ6hnBB+rLQU42lz9QxvNZV/7MDdx88bL8T5B0d2Ra\nY5RZBN7OkbczjozUQeaderSWToLPJz4wZNfsAqnRJXs+tFBuQD6SSFD3+X8NJPVsQvu4KEjAMvtd\nh0U43OTYe1f9M4rLmCNhzck26LZRkT3PBuheBzL2EAb7o7KJRh455DldH3Oqn+sdjd2AIy9tCHYd\nHSS+o/JFk4CuGzTlYxqII4Q5OuiAH91RsjpGHx3mngP0lHVsyd/Uc9qQW3er+l2KI98e9tmVNiTk\nTT0/NAEVwjGIq33QeRkI17eZI5C6jtv6ftj59jUnNJM0I2SY6y325ylIzDlG1/OB7EQe2WtAGnXO\nj4Log75t9nTvgQcU5pm+94XUaX36yjmtMZlYR9kg2I5wLP/kUPPSQt7NXeB44ghp5rL2me2e/FWu\nljXGGJPguPidH+johAHRZomR1PoaC09Ic6cE+t484OgffsAx1NgfH8G+vKPP5DzE9E3m2DEy5ssg\nxqnPS68JjRCL6HvHV9rrxDjCGI7JFvZ2tWcogyb2QShc6WqdSHK2r5/S3F9Og4gBHW290w08oD0Y\nMy+oiQavHz72jIW2fnfRCMW1sa77RRKqpxuRl54XVBfrYh7EYJXTDj4IlEMcsTxvKWY0jj4Iexcc\nHDs6kT3cKQnZUnxL/Tfr4shMWfZQ3JQtF38qG7/5zxzJBwH5Xi5Bu7S38tY4Ut5VP61+wOT9L8Z4\n7j023rOGiQa1L2vf0bGlulf3uF3kKNqU1u6EQwjrvfc1Xxfm9OmaaP+29Y96h3rngmzgVk1I7N8H\nZIuRixqMv0mozz+C5H8VkZOzN/aMMca81NWxoV8iEvL2HSFXPH4JZIQRr7m3JL/Q3hSqPz2rMbmR\nkR98D6TPMvvg4zNQq2H1+V4TAY5NvVOtJrT25sqynU9moC1xav06zoA2+pSN+mXV/3tJrWdbhzrW\n9MWKjkv1ZjWXW8QH/qv594uNlLGLXexiF7vYxS52sYtd7KkqIJ8AACAASURBVGIXu9jFLnZ5AeWF\nImVuvaps0E/+m85YFb+EwHZHGYw85LNFCHsPtxWNDZE5SENmF04ri+MM69N1qIjVyV0yEPOK1M3P\nCAUyd0Gf2aw+86AmynuKhB1wdrlORrh9asmxKRKYWFUUMzyr6zMBRVVTF/R9saDnnyKL/OBYWTfn\nliKA01PIGkd0vyGkiBO4C5rIAruO9PcpKJDxyZ7aH9JzU7OK0MUhgPMiDzq9Ik6KkVEkcNk3NiOy\n84OmopMWiqYHKicIsWOPzNp4QqZ0Wn0coO9SOSTl8mpbt6soZXekNsQctAFyNEsSO9hWtLHmfb6s\nVBCpVYu82RtBzhGS1sxEWadACJncJOcIIQ0cIdnZhodiRKR90lP9OpCTHn0tNECL+oYgQ00ElY3v\nkW17+hU8FmScO8hh1oqKuE8j2R0AO5SDa6B5KNv2cdbVCzGYm0xACARPANnKp9t7xhhjwrQnugx5\nlHXOegB/EISdoTiZ05j6I0Q2qwjPUB4uhEYHJBPZuxLIlAgZ8mtvqL0xiOru/1nR7fa+7uPJyMad\nZOKDED3GQJnkkaHbhQ8gPSX7Gcfg6Xgm2/aANFoM6v8OCN48ZI6D5fPLHU9AyIzcqkMQItelrObh\n7iONzZefKOvgR5Lz9InmuTetZ8/AuxOGnC/Emfn7v1cWI3eosV7kLO0J56IHFdlmkOu//3c6B9yA\nwLcEB1Ya0uSHX6tP9yClW7mk7EoqpTOs7ahs9/JryhBY4IGP/5WsSUE2NekqW9OEgNEYjcmFy8r6\nuDnbv1MUmmEqJH/jden3D+6qXW6yMtkVcRQUa7rvlev621+DTBX+oN62xvjJp8rW9F5Tff0pOLAC\nGo/rryhjsHpTvoNEqBlCQhceqT6Dof6xtKH6rtTVb/mcsn9DSGZ3HwtdMItEbhwE4XmLBx6OiEPP\njUXJ0MJPEkCOOhjTpx++j7BPc7UJya6jr/q3kNdsQQjv9qkfE0ide+Bu6OLX20195iAZdyIP/RIc\nGalowoSC8OYg2/spHFI9kCCjoWxu3IfsEtSPIbM44Wx+j7qGIhBwQ5wYhDsgDFLG64VY2yI7tvgW\n8H8hC4nCp6MOtwn5nB58P2OH+igahV8HW0vB7xaCM6YA0rKyi18qKNs0HHLOPAgCcxykHpDbtC1C\nYtmuJXlt2VogneS5IB5dGoPu6PnIoHsO3a9P9n57TxndgwP5jOWs2pNeUDbNF9YYzjAFc7uy2c5d\n9cvgROOYX9T1G1fFY5KEUyd/oN/vVvW7Z3n5rKurmgsGUmgn2bxH9+Wvfcd8H9gzxhizeuPiN224\n/dIdEwbFdbap+3/yK+1BprN67qVLmtvRV5W1TKaUFa0gZ799T/ftljUXk7Py037QGh54S5qQogbg\nmri0IWRNtS0bH7T65v6O/F/5I9WhtiIuq25R86YwrX1W2CJrvqYxzFwRQs6xKH/UhTOsCbfWBDLs\nybhPX2jepi6B4GCti7G2zL4qv11/BvLNT2YVwu7zlgB+zAFReADUZxm+nzFtN1HZShyep2FOfdu6\nprGMII09CctWW/jXxKLWAweIEYuz0AWZdwY+j2JR91mFwzDAnO6BMrV2Wi2krJMu9Wsiqeeenmqf\n7aM9EXjxDkDJjgOqtxv07RDy1CHE+gb5+UCA7Dx7pyHM5j1EILzw9nndSF1DeDxx6zmOPugReKsc\nPlAkIDaHIHg8oCo8nyH/XNX4p0Ehe+FbaZQh6E3gEz3fIlxGkYBpRKkfKOwxfE8e+KAmVX3vAoXi\nBcXssKCr5yhhr+ZDd6C2LUCOHLoo268j+dwFATg41by+f6p9msePv4WzMRHKGmOMicGxUszzjuBQ\nnWaXNO8GcICZDn2Af/In1HeBKfbJE7irDvW8KCgHx1ca8yN49SYt5j2IzWnI7u/+UacK6l0Zz9Vr\nul+PuVl6Jps7LMvGAh6NaRoS/Uxa/r1akH+KL2uOLi7qPmH4lkJetc86/RBY0f50yPtHGQLjNIiT\nGNvGMDyA0SlrTwhB+Zr6Y21Dv68jvuKCB25hUfvzBnx6IeuGp+q31AX5kMZjiNi/FGovxfj2zm8i\nej4I1XleK37ngqNspHfRC9fU3w8z6q/Zvp6ffyjU9tR3Va+FM60fn/xCc/LaE6ECf/qK5tqvJmrX\n2j2h33ox7T3LP1r6pi5917F5+uNfmOt52c4fON0Qg7fn8W35qXBrT3XsIPTwqtbI0UBryekBRNse\n2dAHSND3+rL9FXiKrrwuIt6P9/7FGGNMnM4rBNTGYVN9esQe6KU1zXP3rD49bSFmCk7db/6ubHHN\nw6kFxBByCAZVm//ZGGPMVzNChy6tqi8SRu8q/T3NuVxTfefICJF+9OxXxhhj3nxX9Tr6f4Va6r0m\nZE3l5m1jjDFZp7ghH/LutoDQSLau/jlzrvL5H6N3baSMXexiF7vYxS52sYtd7GIXu9jFLnaxywso\nLxQpk0Oet3iszzbZuJduKQI3vqOYURtuldKhfneSV9R0j+iyIdobdCiamIS9vtjUZ/+IjLlRxCoS\nhkdlXeiDINKrM9cUyZonszupgJABKVMgOt0uK3LoJOvnWkbOjjPEvg2dyZt5CUbyiqKfp8+UsT4t\n6/vmqdrja6ne8bGiujEYtKtk+4xDz+nsK0Nd7SqDsEvmJMp5/BASq56U+jE0IuMb7RofGS5jQAGA\npGh61LbTE92zdB+pbD/yjfSplyx4JkYWmEzloK+//XDnD5xkj2DGdiKhOkSiNYi603lL160+HaPn\naCVpvKeKxJ/1UWQowJWQUb0SK2Q0QU00yf60yAQmVxUpT80p41kvy5YGZLNdyCY7ybL4kG7u5pUZ\nzNV0nzR8JA5k0KcuyIacIE9Cm8pslMgo5O8rAu4mA9xAKSCKnHIaaVSnUYalMdD/40jdhpPIte2q\nf72WrC9ZunZZ/VLyMW6ogLgHijoPC7pvOA3CZSIbaRXUntqJro9xxjkds9RDyB6hitLoqx9SKFek\n5oXOmsC5M4ErYnFdGRAEF8zBUIgkEiqmXJadeciwhzNIRPKc85QhY1Y3yr6HO5rP81llpS+8oTOd\nFTKDdRj3M+sgGfr6e/uxbGARlMFtuFY830Mq1DrDztn2SU/+ZQr00HELZYGnyqIMUY04O1LkPXkd\nXgpk1e9+Jdb40h7cA8iQj/wa20tvyo+EmUMuZMlrOZB8PWV6vfA51JHF9MfU9xdvq/2BDjK1cDus\n35R/HTK3K2TpK2SuHz7WWdjhAC4C5vTVmzrDm1pXVv50W+3qIhG9+7Xa06jLNt6+I7WmQQzU2LH8\nnwO/5ptUaL/uE6/IhrIoPwxA342a8IiANjtBTaVWsvQ6zldcXriHYqDlSKB6E0jIwrt0CkolUNN4\nR/B9oxLS3/TXyKU5ESBLF4UHxeWBY8ZSzkCueNJkvSCDm13V+CzOKFvldEzMziOtZbv31ZdluEb8\n8Nb4kEI2IETc+MfANKpGUSEs4igPumfgS0KlZ0IWuVRWNqlQlD/qwBfRJkvc53ldlFEmHdmgxT0V\nIMs/HZW/uvoqSjasrXH4dOogKVuo+CXgkfBell+4/rrOf3vgBGiMGRtUl8bwP0xQrnKiIONH6nro\ns7JwoBQquk/LkI13PZ8axhzKi5kZZSLDCc2dQ1RDto6RIgVNtnZByhELb4ivKram/m8daxzLKLxt\nvy/lhRz9sLiu8UksguIwsvl7D5V5ffiRkCtRULW3UFAzN9TfrY7mzvamspEf/XfxTpn/8n+Zz3/3\nBxME2Xr9JdXr/se6X/GZfMNjUHxr11XfxIZsMJuWb/DMqb61nPq3mNMcjTZkb4tZoViGJ/C8fPSx\nMcaY+im8LivKZi5eyprvX9P82HsEfxljbGpaFFr4i/2H8g/b++q7lRuq2/Kasrzud/FbIKGfWnLd\nZY25Cz4g10h1bOK/2mTDIyAgk8vy12PmiBNFlnMXeIs6yMIHwrL1NvLBLfiOZhJqZwRkZqfP/hFk\npXdW18WfyMbKNRDdY90/M6+5fnqq9s7NgQoGYW0p2ZiRbKPvk62HvVYmVv0ygtfDeJACRzq6c6L7\nV5ljfTivfPTfiL2aAxW9Hmu1Ac3KVDYOv7VHwneguDMGueJmvEfM3S773dEA/j3W+i43DHlk4z14\niyxekugMMi6g+Mol1S+7ruud8E+NOyiEBce0g3obY3x+j3G72CuhLOahnzzswepIgA/hvnGyp/H4\nzr8n8UThy4Ez8BAEdW9XbQmgXJi9pf1iHERL78+ap82qxrxyrL6sV3TdklfoUz8qQ7ubeqcJ+bWP\nm57TvrMLmnPngVAGbhCNzrJs38e7w8k++9gF3X/jshB0tbxQAU541cJIQ8+vad6X2Qf3XJr/0QXV\na4OxqyZBg6Ly6fKq78rIri9n5dceIEs82Nfznew1zp5oDzXH79rw8fVBN3Xgjjw7Rd4cnqEqGuDV\nruZWBpn1J0/kK+IR0GlxfT9mz9R3IYe+K9vpeEHPrQhNUTxVOxOs1UtZVANBsWUYz2H8+VB3rfbf\nq33e76gffNrjOCOygz+cyvbeLsm/5w+Fpk6EpFg8+ELr1LAon+n1qb73p8T3Ep/R3Hu5Kh86+qHQ\n1rsoQ97uWShrYwa33za9jyam/7reBS99qLXjwxvs0dPqgx/9veblrxzah5op1ekn+6rjX4XURx/+\nCB41+IPeviUb3f9cff3ZppSmXrkiWzzeVFvG76Es9XPQPGGtZa+zz4zWhbj89LdC5sQi8oOpOe09\n3lvQGEx1ssYYY1aj+M8l2ZDvodaVek6I9ZFDa3pn/As9z6jvnRHdZ+UNId8Lu7xD49/WllSvj//x\nl6rv1b81xhjzs4tC0Nx7IFu8vCbuyK+9qkcyDK/PXyg2UsYudrGLXexiF7vYxS52sYtd7GIXu9jl\nBZQXipQ52FZE7oN/0Vmsg88Uoc5eURRykezN9JrQDBk04ed8yk4NjhSJqlcVJe2iDOHpKiqd8Ctq\na6mS1FD3qOf1+617iogFfMrgeA4UlZ1DeScyowzHAOQNR5DNEaoZuRNFgzsKwpr5jK5PzCujEYez\nJhNSFHX6JZiwUYdpNInQg+jxgZKYWLwrRKGtbFWnpuxWt8zZZHgGhvCb9AbwxOR0vwZwhI6jZ/yc\nmRzCIZBwwscAe3oYxMMYJEy3rUhyvwK/w476KO8k2+yzzroq8u4mm+/JKLvQJ5syAWEy5DxxsG/p\nNJ2vuIPwCKE2EedM7SCtqGm4o79rJY1J/YTMatBSFtCg1Tb1/yb8DlduKgqcXlJ7GnC/RFFgCU2h\nsgR/SKigv1OzGmMH5497VSLrLdjdK2SHXIryNjr6Pkx78oyZP6UMwkISBR04FnaaGnMPKkfDgWzs\n+JDMNRwFDWyh/FSZAk9I9zurywaWplXPqRtkx0gWDUqyg9Sy2uVZIBP8RNHmws6enltTZH2GuRdJ\n6P7lgm5U+0RninMnZCGTqpeHLF2LTHK7rP974jN8KpPTmej/e08U4Xe04DoCPTE1sXrs/78MOdvu\nGigCfwi/z91NIT6yLwnZ0SopUh2ZUiT+pb+Swk1gpOv+9EepKbXyoBW21eZ6U34qBCdMKqPs1tih\n61xkCl1Fjf1nv1LGwD/WfG6AZsr4dd8A57t/9r/80BhjjI9M673P5I+sjGFpS79/2NaYemEJsLhe\nUstwMESVnd55n0zzPWUS7pKBzD1SRqCC34n9BGReUn4p5pcNzG9kjTHGrN2kfSgx/OP/80/ql2PN\nkezrQvB4XGrvOsoKU2vye/ufKjtXasmWqwey3WYDpM5t9eNsXL8vH8qGH/7pfWOMMcUlPd8TRVHg\nlvz+6hVlyrfuKfPSbD4fUmYEb0mvKhvuw4tRLGmOueCgaPI7Q6bdCcqtjeyKpwdrP1xGgaTs7bFM\n2uzuoDoFy34yIFuOzIHIRK3KxThvHQkdMei3TAO0zgrcH6tRrYUeh2wm6OWMewDFFbLGbrf+32FM\nBiACy8/kV4pH8n+Fsvq6DUrBxfMcQe4DJcFkoO8HKEl54fNwwXHSK6mPanDYjLz71FNjvsn8L4EW\n6sJxEA7I9oJpVDg6um8wIr+BsIxxGtmuB54M06VdbRA1A/mV0RHIGHiJrCxTAJ6IEefXz1saDdVz\nBNeDD0TlGvwe7XtSdLO4Vj7/N/mY5dOsMcaYeVAdqcvKWC5ckc0kHmiu5Xc1Dof3hXDxzaifLl2R\nj3rluzqffryrcdr84gs9t6N1cC4lv7346gr31x6puHnyTRvGfWPK2xqPID5j9rJ+d7CtfimghDb8\nXOu6N4Lq0xUhnqZmZXdXNvxcp01OI0/GGE60l3+sObn3mcYrD+/W04+VLTzKrZh1+BsWQVOajuZf\nIwy/BH2bO1PfPf5KdTr4s/qoewgvx01Ui9YZE3gcTE1tefCFuAIMHCi4ZdMsoDQDsjCMmueiQS2E\n+Xze0oKrYMRaPo6DpGhpT1U4Vn3noWsIzGn+l0Faj0FIB6+qvVG4rHZOlLHtsZ75oqrf+BHcOagF\nRaZlA3un+v1ZBXTrBFUkH+jcor5fyMqfGtDCZgQCku4zqJ34QX56UPgZg5Zzwl/VAqbsA6XQhc/O\noDhWw/fM47f9oIzzKF+O4Fex0Ls+jypQa+p+o5bqH0H9dAwCvEG/pVP6/Xxc/TUE2dlq4qfZ2wYX\nUJ1qa93uFr5FA3hdbhMdg74+0/fdvuoTgRPucAtVPtaBIHvcfqdszlsm8OakQQ6G8W+79EEf7qk8\n+7zorPzDy6+BXItpjMvr6tOT+xpr693g8nUpJZbhtSsXNbYLKBRmWGtcQZRsmQwBEDW4UePD/1eP\n1ba5hP4/c0H36cJz9PCu5mK9znoxBaoK9b5BT+0toUrUgeNk5TocOgP16e4zrY3JJK+e8LI9fQgS\nD2Rg16fvZwcgzpkL0Yn2ZIlbQmH44nDmxCyUFxyZQbXDBUI/fwJKdcgpgp7m6l5Oe65gIGuM+fZd\nCjolM5PW7zZZXwqH8oPOqGxlH+XgNuvkePR8r9TREHunY9V7Ht5Qz8p3jTHGvH0q3r8v4983xhhz\nZUZz4q2W3oE3XxeisViTv37nU9nLVyj8xj4Xb0t7QQiZhycoVsY13iffTg2TfO9Ls95ZMPdHesbp\nqta6V860X3lw8o4xxhjva9pH34qJ4+/gUGNS9GpfmjvS/swnkzWjvvrwXzfV1xZwLePV978d6L4z\nqJWWrmsfO/+J5m+wofv/yS8bnPVozbmJYtdkoHXl96Dso0eaY+OKxuQLwwmYQ82FakX+IvwK6phf\nyYZ2ItqHrbyuPow9VZ9tVn+q+hEAqDm0zpx9kqfn2NcZ2fjxrOrXPv6dMcaYuynta197oPXLm/mP\n9602UsYudrGLXexiF7vYxS52sYtd7GIXu9jlBZQXipS58JbOkN1+RxnryeQjY4wxzYKipo9+r8/d\njxWVTC8oyhcmyza1oGioewrFnaGyNw6nooQBLxnsS4r0rQwUXW0PFc2tl0GinCoafMZ5+/yREDXt\nvKKJqSllNNKr4oaJoG5UyAsNUdvW/Q7OxEmxu6MIWvxLRRqjnDeMZFHAmCirOXQqXN0nozo+3FN9\nUTJIp9WuOCmNzJTa74KPxNEDlTImi2jgQelzFnisiOBkMjRdIuI9mPHbnFsOwFXiRpVjjQi220cU\nkrPnrQZKCfuKPg5RLRpOVJfhGM6CHioesLQ72voeUIHxep8vu+00ep4nyRldj+oxgdtg6YKy6N2R\nEB25XUVZJ2TBfdRrPEDlaKCIupNMRmeg6Gqbs6h1uGIWqkpz7fWV0fBbvD2wwhuQQQOUB0ZdXX+K\nctiQc9oBl2xyGFZ9/EONTcQpG4guKCNSKysq3CPKO8WZ/PmLij5PUB+p1VFDsToUlvgJ0W0XmQI/\nbO1+EEZuxnt3S9HiMqpU62RoEwuy8d09zr0XZNvh4DT3F+rL69J9ozOcoYXLJkYGv03SMWL0d+VI\n4310XxlfaEyMn8xQKKYodSlChgV+mED3/Oe3xyP19eKa5uW6R7b3aFfzIkXfd+v63eEnivCbrr6f\nQnlgRKS7gWpEpSgbP3iqTGW1qqzEtSXN72pNv7fQRMuXhSBx0SZnU2MTpK8y/x977/Ul2ZWd+e3w\n3mVGeltZWVlZvuAb3QDbN9nNJkVSM0t60Vqj0dKT/iC96F1rpJmhKA45TbINGg2gYaoAlK9K701k\nhvdeD9/vAppZZE/WE17ueYmqjIh7z9lnn31P7P2d75vUOv70l0IG1le0nldHVVWfYC4SVDzLVA6W\nMuJyKRXgUjhQpn6mJh+OTYP8GLa4j+byKgiTxhVl6DeeaNwlFNSO11SRrqAsVqSSGvLJfvM35YOv\nvq6qXK2u2LF5T77x7OkDMzN7HcTK/Lzi4yt/rCpPr05FnPPwTUOhAZRXZFl2euM7Ok99hep9ZlJr\nYusTVVYa8CBlLmtNji+o8hHNUPW5YOtTyfX4tGbNo3GHfcTNPmslrpgQCut9L2gOo8rWh2fEUwON\n0Vf/2hF9PhrSPDa88sdURNU+L6iPsAdeplMqLVThBoGAhby6dhfEWacNkgQESrXM+qciN+ho3ZTg\ne6igyNIBFVYGMRLv6d7JEY19Gp+NZ+HZGCEeoYrmIOMsAhqLOF/pgYypy5a1Ez2jN59org4OFD89\nQ/lKgmf10qVJ/o/6HPwSHXy4fqS57/hR1mly1t9DFR1VkW4XBAs+Ggjw7AfpOWS8PVTsQk19/6LN\nQ9w+y8OVUJGd5t7WWvKBKmtX5PMbnwqFdvxCz52DHVWCF9irTC9p/JevaS0tLKmieQqXz95TreUn\nH6sqN31F7999XXuV7Ii+v/tYa+3xY+0ptvZUNZxb0ZqLTWe/GsPNH3/Hzvd2zMwMkTwbH9P7kbDs\nkT9W/zs1+e72FlVE1J8iKAKVLil2TM+APoD/7+kXioVX7ohP4Mq7Qp5e9uqGG881rt2Hm/bRh7JJ\nNqO5nx5THPDAV5Q/1L2v34VfKKZ7bcJZtf1Q9zo413VurgpNFBuhMnpN68w3Ih+pwpPRC8FrxB7C\nGvK1AUjpDsosnlbUXqZ54PPpRWU7/5gqpZGqbNMsokhZkq9OZPR+7Uj7w2JN+80Rj3wkMQo6mf1q\nuy/k3Tj7zvWwfLKIGt0sCmAHT7Vmy3DORNmf+kAB1Ovax4aT8HIQ587Kuv84CBAf93XuH/LIjnX2\n03HiZom94LCk9x10rjcIzwc8cxGvnl+pqOy7VdKarh0qdkxdUr8nQBgdoFbq9cEb4qD2kux5copx\nvRXdL3Epy9/NzMwqh/yjT8wBQVrb1ffOGpoXM7Ogr2VJuHMacHwNjD1wGAVLkK0dR9mOvVbvJVAQ\n5+cai5/9UT+tZ1oE1P3eIYjuY9k0hapm4UBrIT2qNZCY1xwME5qDHVR1vPCjxca1H+2iWFgpysd6\nIL6P9kGVhkCSxDX3MRS8YpOai7WHeqZ7QTYmxlEaBP0Zg0epDp/dMC0bx9IgxEEzVc/U/+Kx9kxe\nUMEJUG0ecxS79Cy/8bb6FX0q3x6ZkQ+XQFa2OwQwUP+bBbhTeA4MZ7S25pqy1xZqc372k2MoG57j\ng9OcYpi/pbWXOxOcI5NUP4YdThmA6vWA2ppf0p4jkVX/58YVp2tF+dAxvxmnsl+rGV2k7dyX7978\nMfxJVT1vVgN6nlTGNf79ymdmZnalpfH+55saz3xbysUrcY1j+0/ls2cmPr/DoeyxNI2y2K/gq3pX\nfrRfuvlVXzZPf2jX/+J3Vn7OOtz/iZmZ7b3x/+re5R+ZmdmzR5rL+aji0/U3FMd/vyub3EgL7TX1\nVHv+X/yxfOWnL4Tu+eCHenY1/15z/fZD+dz6KVxfV2TLHrxy13JCfkdL/MZbkm/6LmuuvngsW6yi\nBDvbFZ9OJSculz7cr60/4nf1Y9Z3Vc+D+8vaf74blA9/7FOcGuEkji9IPiKt+73d1379yols1yZe\nrfmk0vTwRM+x4JE+/9q+7nf4UzMzM09VKFKzf2P/XHORMm5zm9vc5ja3uc1tbnOb29zmNre5zW3f\nQPtGkTI+KqPTk8pafvv7ysy1+zBo7ynb2XqhbGLhUBmralnZv9op57epAtVjyionOGNbGej6g4Ey\ncwGyygnY5MMZZZszCXhK2kIrVKkinZJhL5E1nerrfiG4YpZuKVM2mNf7p9v6e2lX2egc1bbznNAT\nZbLIloDHJU6FljNz1YEylK2iKiVrnMkdIyvumaWSC3N4zMvZ5r7e9weUbc1w7t/rUXY+nAzZMKnM\n+EhIY/PDON85V5bRydAXDuE8oZjsG9U/IvDdpFeocJ7oeo0qVYoSDPoeZTG7gyF90BgjVHtqL+ly\nfYMLB36HKopd9ar6nwqqHz7G1+D6Y1QApqdUReuT8S+g9HIOs3+srDkKY8vkijLR0QznjkExHa9r\nnIMXykiPjijrmswoM57w6f/ViuZ+CgTM5LIy9U3GsbMmLpY8bO6xGVWxwiCVhpzhHcCpQIHaAiBh\n0iiFhTgXOfA4HC7ywUbvjPtwxhdEkLXIfgNU8lAROcioEpCNyV5dEC5Dp7rlh3sgsGNmZhNTWquj\nE1oLB19qPBuPtcaCQdkh0JPfRPuw7/vkkz4q3+GkBrawJFRBfhIFjs91rrPvv3iF21EIOKFqP57Q\n3EVRAhjLioNg/rJQR0fzqrYcPUX1DRTVpQWt3/ANVVNiWc3hnbd0RnSXc901qlK1TVWNTgK6nz8F\nR8Kc7lfcU9XqaF1Vj7BP1ZYGHAbNT/X95o4y+V1QDF3UQPKgr97+KRXOE/ngi9/J5n3ikH9flVlP\nQ59LMqdtkHTxUVVOxxfkqwG4cUYSut9xRf101ObW11CfyGtObt5WZbpFPPVAC5Wc1lpvwKXz/i+l\nCHD9FSFrmvBu1ExVs5m5RTMz++y998zsa+WY2QlVTCZmqCaCLmuDjlh7pv7kdrSIvcTtcOzl+EK8\nAap/PfU3AN/GAGWJQBR0Sh/1Eop0XlCDPiq3HpQg8Noh/wAAIABJREFUgglQgEPnuaJ5j1+TgZzL\nDFHeaBR1nQ7oFi9/93h0nZ7fY95+g8/oyx7UJhoDxbtWHxQXPt8nDnRBHXS8imvRCfVlGV+chesk\nMy0bG3FjCGqnXaJKT5wqw0fR4pkUCcC1AvKwQVzxUmW+ckNr5PKrum4Y24Tg3XG4vKqgUvNrilPF\nOiodnG2PROS7sTg+i9KMZWXjjF/ve2MoKzKX/S5IuxLxEDWnnvfl1P5qqDzV4EZYRwWpByfCyPii\nmZlNw8llSfm6/0g+/vip0By1c/nsZyBhxuZA2WL/JM/V1ddUPTwD+fLonlS3yj3FhJnrev/Nv9Te\n6GBdz43TB0KPNHZkv90nqojb//q/2ePfP7QQnAcJuIfy7LVmMup/AM6GLuiu+FXZubyN6h9Iq5P7\n4szpNIRqNq/m9fiBYm1tT1W/IFXL5RVVS1dXtTe6duuubX+imL4Bv1FnIN9JZ2SLjc+oCjeFFhq7\nrD5e/7586hhbrX8ptND2U43dC2opW9YYZuYV34JLKA8SD3M+2agMT1CuKBvG8/Ixhxvros0Pt1S9\nquvPJtj7eOFyqcl2HThshpOosj1XvOqAAm0W4HKJ6Dk1wj70+ASFyIwqztlxIWN2NtTvyUX50viN\nRTMzO91Q/J6+JNtH4IRpFjSuJEppVWJE9xDlHNRCYyADR9jDbeS1v/a1tecIZuFUcWJFHo41uF1i\ncLmUQbz0PA6qGIU0+AXPTvW9+VXtyeKTqnz3N7XfbRNzwqhDhUDaBDtwy6BcFvXKb4ZjWttnIFob\nQY33UkJ2KXrgs2JPZWbmaZlFsOfZjp7n/iEKmKgldoh1Duq4C2K1+xJ8iFlsVqjwLKVaP39HYw9m\nZfuJ65rj3gn8jyDV/AAVvTwHFqdkq2hQfczAAeUb1+sIz0Q/z7JQCi4WEDJeUFJVuMbKJ4pXKa/W\n/ViKvcK89pd19vW1Y6EWskva96Xhmmr5dZ0EvEAOF8ur7yhetaur/F3xp9mWr/er+v/WOvdP6r6J\npPa/HvZ9CeJTleff1BiKXAP58sHnmrvOnvqX+JHQuTU/fCFwvMTYrNTq8pHHu4pFXhA+W+taO1GP\nYkmF7xUq8DHhW31+BzzZAnVxFd6Rec1LDY7O7KLsftE297Ym+ktQaD84FcriXu9vzczs2qzGFTnQ\nc+HTG/o90Rpqfp5tsL+/KT9o/bXmIfpz2WX8R1pb26h4zV1DrTH/F2Zm9p3wL77qy18tPbVfNaL2\noxfysU89isvemHzkOKN1AUDG9ntah40jfjudaD/7OKQ4Nb2kOV5+ovX8H0blQ9/6d1oDc/j4MUjy\nfEzfWz2RqpJ3Qc/Sta7mqBEWEj27LdWm/rn4eNpxxeNiDk7aEZ28aaKSVPTotXCwY2Zmvr54dv48\nKu7H/afymbMbGs9CQuPY+gvtnfyfo143rtfKH2vfHflH4iiMof0cXFfHip+vvqV98+dxPSsjQ+Lo\n50La/EvNRcq4zW1uc5vb3OY2t7nNbW5zm9vc5ja3fQPtG0XKrH35yOydn9s//ce/MTOzON0ZJ4M+\nA0t+dF7V9CrqQmegFvbKqng7FeuIVxm5TlJZTx/s++WiMlXlFztmZuaNKkUXCCrzH0UZJpohQz+r\njFbwXP2pNJQtffFbVagjT8TFUJiBa2ZK2cvlJVVqCiuqtC9zdvegqu93z5Q59FEBDqPKNErFyMjU\n16t6LeeV5ayiLtWE82FQolITpAILOqPnAwZR5bwqDOuDwNAifmWMg9gmMuCeMaofHVjEi6CDmigA\ndHXNRIrzvFQuQxllhP0BqiUYO2HwI3jhPCFz7anDAeClfHzBFqfq04IJP9hVxrwx3DEzs/MzXT/E\nOW7njPygpf61+8pot6iYVqlOxyvKMPcn4HwJoQzg1+eSKEJEQqoc+Bc4q3mg7GgDfpLEtPo1nZQ9\n99f0/XodNARZ2hDohZFRzfmzE1jxC3odnZWP9zgr26kqY79zT1niWh21KapVibT6nZrSOD0RKskl\nRylA8+dFsSEC8mduRT6br1OJgK8jiutMX9Lnqie6jpdK+QCk0SCB6gsKD0MfGXp4Q7oxjTsIx4yH\ns8fRUc17k8+dPZfPthMgYji33Ydfw1PW+C7SImTca/j9PlXeFhWuz48UJ3zAv6ZQo+jAeXIK14A3\nBO/OvvrWraiqMneN88TTqoaMwvdjA8WLCVTXCqz38Izus7CqOc3lxL7uIC1+8K//Uvc/lW2fPlQ8\nSWd0/ZEJxY8vn35sZmaVvPo3s6S5SydVNR82tab2d/X9CCo/bdbE7/72t/repHyj7yzJiK53BRWn\nWItK7Zh8aQbOnL0nindP1lSZPj2QL8aJIW/9659yP+LbB3KikZR8oxWEUwcioakrqjC8+iOx7bdO\nmHuqWPc/V4Uhsiaejh6KXLOgPoZD+XL9THGx27i4GoaZmReloADKXm3QgsOOo9qn/jjoAQ+VUgeN\n0UOdJDSUn7RCfM+vz3lRyGmXVPHpwA3kYQ21QeMNBqpexkClDFAIGniaNgxrnfipUvezoHFamsPR\nKGo6KHYFg1wr7VREQfWAOGnDVdCEK2tvj8rtmfpUKsuG5+ea8wY2bcI71KrxjAG1GYPzJgaX1sQV\n0Giz8tkocbN+pvud7KtilyvodYDsh5dz2yGQdcksSLqw+t0EgdNsUQV/orW8BkKo3dFzytPT5+I8\nO70BKq4jskfCr/FftGWTsnfzkqp6ZeLw2geqVKYzqh76VoWQ8YzqvguvC0kSWtLzIoyy1t6Gxt08\n09rYX1f1r78mO1y5qdhy7TvijfLD7fX8nmJPYUMxoAwnzcy83u/e0PcixPn85tcKQie7e9YP6P/p\nkOarDjqvMaHrJCd57rX0Ogvv1NSU7NUpas3toTA5Mqm1G4dLLQnfSQ1unBO4hD7Z0nn+SFrzcPWt\nWzZ/V3HQYopve5uKxxOgTK+9qfdPD3WvL38tdM7Niv5+6XXFqfCcbFrfFuIid65n16NfiovwfF7x\nKRSVL83fUFV/9JL2k5nLGlMChcFoT3NdrlfsZZrDc+T166HIMjcb1VqoOZVX9lSjKGZ5Qab04RHp\n1/X9ADxL/qTib+FEvu65TgUapavz5yg68r1ZuGp2B/KpXlV/96X0vSDcKV3QCh5UoxxlzSZ7FD97\numAM1aGyfNWD6l8qqnH5g4pBB3AxrHplz1hA99kDvewfEnPism+sq/jvQZmyhdpSNIvKUkDvO8jK\nBDxXmRS8dSBZKjuK+zGHk8Yju23A/diD4214RzE0NKHYcvxcfmFmVqz2LRliz0QF2xHba1a1t5pA\nWdQD4qeXo3Y98hKxxKPPtuG06qG6lCcOHhwJPZ8a0xjqpmdHiX1TDGTL/uaOmZllR1FeBXncA7kR\nm9TnTkEgtkGDhdOauziIwTjInBF+66SGmrNTeM28Nc3BHJxW3p7QRB+daq6LFdRYO+r/Lrx210EV\nt1AufAFyL8O+PUh8rKMemGH/W0TFrQ8C3B/TOMr7oJtAI3vYQ/RL+v80SJGpn2jP9XRTe59FEOfD\nuuLiHv3ITmkc118TAqUBAiYV1ZqaGgdRtCD0RpQ1EUOudHZC/W7dEqKp+wxJIdDV7QO43NYU0zb9\nX/MXXaTtwBG58pl89wOg7B511+4dC6mZnBF319XRHd3+XPatxxUrqy/0heW/EP/KVkEx52BNfCnJ\n2+I7WfhC3/vge/rN3fytUCX/o5l9cpqzm6817NGE+MySlzXnT+DBvMapgnFUjI+S+E5TcWHuR/KF\n7Bd6dm5mFL+XkvCnbbOPndJ6XVvS2Bc/ky3nbmj/19/UnDwp3DUzs7sx9SdjQsi03tTa+uSJ5rZQ\nlGrqbF3x6OSh1v2Xy7LdG3DA1Jvy7d4drY33GkLa9Jb57XKsPc/Sktas7/dao0O/+pFA1TXO7+xG\neEfjTYtPbW+V33pnev4MONkTn4X3dFeo0u985w9zIbpIGbe5zW1uc5vb3OY2t7nNbW5zm9vc5rZv\noH2jSJnRtDJii5dVhcmhcrK9r8z/6b4yaxPTIFKuKYs8844yTZEDUBNwMhSpnoVgfx/N6voLYWXs\nalQAemV4SpKgN0AdZNOq5MR4Dcd1nV5en187UpXxDGWBs+fKnBWdys2G+pW9RTZ6Upm7SyOqaLSi\nGmfFlGn0U4WrlVHkoZLiVKynYJnv1pVFHw70WiOzH4e3pUdFt4lCj8+D6kkJfoBSzeqMfVBTNrDP\neTunsrnCOe7AGPwc3KSyc8I1VKXJ5fS9OJVWG4XLgDOsIVMGPpKAH4cqih+VjNjLHd+29hCOGNQ1\negNlZSNhZdD9q3rtkl989gAU02P124OKRyoAL8+SxjlzRXPSC8lGtZ7sUD3a0XjKyqgvzCsbm0XN\nKEX1yU/lOhNWhn4Q1/u1qO5b4Fz45idiIO9FQcqgLJPk7GkJRZcg1X9/TlngIKpK8+O6/ukx1fY+\n2digfDQzy7lsqmE90/j8KD9Uqsx3RD4ycVnn0ad6us7a74VKqIPomV/Vuc2FOa2J7U+0Fk84L2od\n+Ud2Wf1afU1Z5DAEGrWGxt9nXGML+lwLWaZtWPkLOX2u9lRZ87GB1s5UGOWixMXPbw+JI5dQivFn\ndG/fkOpOXT6ws6kq90hW9/Jc5czpsaoU0SwqTM+0no82lSkftORb8ZRsmEyAgDuh2sN63HqouHB4\nojh04+6i7oNKxdGOxp4/1X3TfvW7Cw9IjzV39c+V0W8k9LmnH4ovYkD1Pj5JNR6uk+uj4l7oc/Z+\nnfjUPFQFIPKK4k6VCub+LvxIXs3l5lMhYrIoH0xPqF81k93Gqd47FcudTVUez3Z3zMyskIMHBeRJ\n/kw+d0IF0x/V+wMqtWMLiovdlD4fy6j6Fd9XpaQLGqxTVHUsRrUrmdF4n62Jf+PsGI6uC7aOR7Ek\nHKMaBTrMCyfCgHPxYTgQDCRlmHP8NtD3e1QxnT83WyBuPPCu4BAD1PD6A9ArAV0v0EcdD4iXlxjV\nj4SsX4U7qws6B8WrQFu+dubXNQMtVNaoMPpBxvjTinPerp++gf6po8YEOmyAcpSDQIyATIn6ZevR\nVT17QnCItIO6Xh9VDGto8EOQeFsPVCn0eBVPAkP1I5WVr776+qtmZjZGZXIA71MII9YYr4HU3DuQ\n7xQOUDpzkDxwoA3hBxqJwzUwofvFmbMgfB6eEJw0F2xDUAMrY1prgRHZp3ak/jz6RGtl85HWWNcv\nu3Rz8EKhYBNJ6vvjC+pXaFmV1kFH9j9ArerRZ6pslkByXlnSWhj5ruLm2Q5qJ3W936TSOxbT+4kp\nKtKTX8fL22+v2MGpnideKtGFx4pZp3XFwEZdleFGV/NWKKu6OAl3T4TKttVB7X6pGNSAt2UuBWIH\ndaiFV1DnOlJ1cO2ensNPf/PQZl/Vd1ZQEmw1NIb2ueJhZFZx5+bbi+pzXDY/2ZatHW6A8Uuqgk/c\n0LPpplf3Xp8GMX2m654eUOFsymc8IAWzs7JtZlHxJxKQzToHX6OMLtL8VO8bRThh+rJVKKM45x+q\nvw46KgoaIp7SWsitywdaoNFG4eOJoP5zfoJqJmsrGuWZGFF/91HAuv6q7DEGJ02OeJ8Jyj7pS3C6\nDPR3H7xywaiD2AMpAzq4Bw9Rj5hQqlEZn9B95pbla8VjPR+7Z7JnJAMadqB+lHguxuLy0cgCfB0g\nWRolVO/gh5oiZuVLmq95n/Y001ld73AXbsYm6LhZ3W/8MgibdY3DB7InMgTVnZbdtopfKzk2SufW\nRwFpFNVFK2pt1Ap69TjclPAUnsCFlJ28OHrXU0cVbhQOwIDiWxNl2GBXc1ID/T+SVryojvHMJO4O\n/ShhNRTHcxV9Pv9sx8zM5vGBqTntK+snILrhnvISF6sd2bZd0n5ujP16sQgS8AFxewplnSXN3VhG\ne4ckv5USI7KZs8YSIa2lCdR9Dh6LpyMIl0uAeDqBUm4E237xgdC30RGhK+ZQeauMaF/YAYkemdB1\nNn4jNNzmY/nm4jV9Psg+sVqSPdsoZHlATddKsmeK/XeH90ug1bKoN6VRKX18rPh1ikppelJ2SE7o\nev6ssxeSbxRBoIbG4BMEQXjRdmUDBGPgu2ZmNvtn8psXuz83M7PhQGp7PzoRQufjHlxFbf2uSJaF\nkHkDnq6HIEbH/NfMzMz3XRSF/y/ZKX1b/V4J/YnsMPnkq74Ml962yfqH9tG31aeJL3StG0HZ8NqC\nuFgegL6609G1/uEDzenCrJ5pX44LndP8WNf29fUbof229o2/qcDhOq7nweac1l1yDYWxrp4HP039\nP2ZmVgXNeX9XiJcgcapR0PPj1hX5/gmnGZ43NYc/2NDa2FlB2WtWvrz+qea0G/9rMzP7VlrI7fWr\nsvVn94V6TczqudKqqD/9cY33RVvId/+I9ki74/KNdxua+w88stfihJ5PnpgQMnPHsku18/f2h5qL\nlHGb29zmNre5zW1uc5vb3OY2t7nNbW77Bto3ipSZWlYma2lFVTTPUJmqXkHVpsK5srrb95Xpev5c\n3Z2jYjyzqCxn5ltCwkx7lGHv7sL07VFm3lJCFVxCuabd1PutgbKlAGesDDrivKCMXoKzyf4xZXuv\n3F40M7PlGb0ekVmvw72wd0wF+W9V3XL4V2IgXhCBsdpQGcHioSoOLc5G9z/U34dp3TcWVTY7k9H/\n44yjBydOta+MYVLJdAtH4GuhgjQ3ofEv+65ZK6wsYoeqdiGvKs5ZQVm9k8KOmZkFURHKzoJiWhZy\nolnW6+BYGffdnLKUw30USaiOtyaoQrfg7elR0fWrWtEdUoW+YGueqTqyu4/K0piu00vrOvGCMsEp\nKgWOUlW+ru91qX77UFqpldXPvR29P7Ma4VXjrWKnwr6ypH3OjhZyVKx7sJdXdV+K+dZDCcbDeNMj\nqvIc93SfyonmOgl/0Mq8sseOEsUBqh31U83P1IiyuaOcBR4kVW3cfY66RxdVqJzs0air4jGs6f4x\nPxVkqpLn91Xp9IXkM2MObxIqUgXOq4eTeg1NK4sdd7gqYrpuhTXi2Yc/BPSXJwHHwI7+nutobfjh\nF/F2dJ1WV846MgfCKAKvCOosDSrno4GX8BMmodSlen+q/3tDcLtQhQmApImjjGAdIVKaDVVtpkBw\nzOD7n2PDOVSL/BTKQpA19cKy/aiXih62bKC69tn7mltfCB+E5+HRjioIS8uqZqQcRRPUiL4IoQ6E\nQsDcvOLHwtSimZmdUjXJn+pzY6uKaxMr6mdsSnHi/CpV7XmN69FzVckz45qT77zzIzMzS4IUyR1o\n7sbm9L12R9efAskYRQGhAVfC7inqUxvyySRro+GBR6MqX76UUFxOg+irUmldf6i4fum2UARTqIeM\noez15HPF1XJOlY+5S3pOzFHFS8IBdtEW6WgeunDAeIbyuW5N/eyb/j9saKJbKDEMPXC/1OEJ4Hst\nzu9HvKiU8DgNjLJmcOFQAI4zOG2aAX3uK4UzVLLaZ3UbeEF6DFBwGqDCRqUvBkfBkGq3H/SOFy6v\n+rEqhlzGgvzdB6oqntXc9sbkW+kIPDlpvT8MqeKXDOr9Hgi7cFuDGYB4bLWI98xxCyRm23kWpYgz\nI4p3Xb/GWGnoc/0dnkNN+JyawJao0ndRshmdlk9cuio0WDiBsg6cAH6vbFiC0yBQkm+WkM7yNV7u\nedMH4bjn0xyvjum5d+1nOtfudzhz9tg7bMv384caeLEnu4TDin/FquYjlZbPzqLud/UtXa+JzMrx\nJ4rPp8ThueuLZmbWwaeaFVWmG32UZ0D/TS0q5gxSX3O1jS4tWHxFMSOMryUmNe+VXa05L/xGLXhI\nap9oH3CKoNnNVcWmPnuc8wN9rrq+Y2ZmR/DpjSb1heCY5mP5riq3kYhi6P7Zlq1/9Oy/uFYEZKPD\nG3H8kXhoLt9ShfL6kp49z+Cl2/pS8fJ8S3HDy/pdvM0zakQ+u/yafOXkQGM/5Ux/YVNjq+8KDTB3\nWc8D/7Li4gBU6oVbU/0K9DTmPpwLKfh2gsRTq4AiDmkOYqxVXwgfR1HS5DIWDmnf5mvITlXU70LT\niqtxENQl4m7Po3HE4TE634X4DQTiFGonvTb3O1fsCIHQ6+AbfZ6bMYdDpaPgUTvS2poAkZKaELpq\nGzsWT7TfTU7L3mNT8s2jNe1N7r4unxtNas0cotp01tQam5jR372oDlZ7oCRAKvYiINdDKEmCeqii\nJOaLy/fCoOPyLfU3yB7Cm4TbLPQ1EqrRqpu3L3uOzshv0K+xCv0LwYXjhb9rGAdZ7xuzi7Z6QDav\ng/wrg2SOsJefmJFtinC6OFqTbfa7yZTm7uprUnCJRjTGFDRq0Rq/hebhglqQDzysKx4FiMurb4rP\nogsy+vd//4nGTv+Wruv96QnFpyBDPCyoXzvwYGYasnUWLsFqEzXRkvbJWY/un1iQbbMz8uU+iO0i\naqMjS/KhSFTPpdM92dzh9amgJOaN6g+ry4onyQWhJPYO4U8CKeQBzVtNwxHZkp29PNeOi0K8eAt6\nv3Cq8bT8IGt8+vw0qLLpSdmzDwquxdoeFBRfz3Pq72hQ/TvaVX/Pq4o1V179w3wh/3VbTmmeTu/I\nPjv/tzhi3o2Ip+S3V/T390fVz0n4SdOTi2ZmVg9rnOevye5v7Csm/qciimxt/aYOeDXP99iDxuBI\nuzuy8lVfGo/W7B8v37LM32ldvBGVD6znxWH494zxUkz71OqZ1u/Csp61URAwb56DMFvmGXlNyJKr\nf6u4WRv/gb5vIBkTIE/86vvbbe1Tj+tSngq0FB9uvKn1HX6gNfLlj1EGe6b7ZtZBx8JPGX9dr9PE\n5U/+TnHryjJ7iF3x9Hhv6P53o8oj9L2yXW5Tvhq6Jpsl85rz7FN9vx5TvL1a0e+H9p6eX+NwTrYe\ngIj8mZ6lp5P6fO8mm6R/oblIGbe5zW1uc5vb3OY2t7nNbW5zm9vc5rZvoH2jSJnnG2tm3/qR/d3f\n/XszMzvdVAV4eVFZ0eWUKh+eObKBnIevgoLYfKLMU/CZMm4dOB8QdrD2OUzeAWXQIlTX4j5lfRst\nqoGcOW0jQROBH+PYowzgwK/z4ynUAsYmlQ1NzyqDl83e0f9hDj/aUHazeKysZmVNZ+3qR7p/Egby\ncFLZ5MiM+lNNazytU1AdFZ0L7xWUO9uNwD1TQamGCk9woIqCJ6UMZTrijEcZxEh43TIoz0RhtE9R\nReh1le3cPVAWtLGvzOqL+7J5elHV8dH0opmZTY/oHlN+zdEQDpVqBR6FHjn/IGglqjQtj7KDPtjl\nL9qisM2XqCp3QOC0OR993lPVZZIqvI859sRVbQrCK9Lj7OegrP6cFpWNHQxVLZue1HVbKTlPJiV7\n+UGWBCvKkA+3dJ8W6k1dUBk2R6XgsuYitaJs6VgfPqJD+Xa3qutU86AhUFyIwx3jqymTf8558+eP\n6SfKFWGUb+ph3b8GP0gHhM0A/or4VV13lPmuoPZ09ECV0l4fFSfGWZmSP1Rysluhh8JNU5+bB5UW\nRMXpkApEEUb1kh/lhjOyw8xP3iP7+KOoAcTlbyN3QfJ0Nc4XZVUIBqAPohGh6C7UqJZ78bF8Seuo\nBH9NFwWR7R1Vm2t5VUnGUAh58kKVx1JRfb76mpRVRuBLKO1qbexz9nz5muYqFNQYYpzbfvfa9/R3\nqi+nnOuOJORbs1lVYVYPlYnvD+QDCVAKtQ/0+c2nqkTEF+AN6msug3GQHmTsN+BPyhcUd4Io3URj\nKNiAmmh6ZONiDR/Y098nssrw9zta6+U2XA85zeHJlq477D40MzO6a374QO7eVbW/CnKwzXlmf1Px\ns/5cFe5TFH3qNcWEzADuLKqG+5/q+o/e1w1uv6WKQ35b/Sx29f2lVflQgIqzBzWQi7YeSJkBPCxe\nYkET1a0OSkND1LiaPsUyPz7Z84FghPMmnYHHxAc/ClXEPkinegeFhjZInBb8Vay9UB/+KCr/mYlx\nCyd0zZgTx8Z0zTBqGREQMr2hrjGg2l4F+VgBwTfsUjXvUs1HlSno1Vh8MUcyBsRED3RPHQRlAN4b\n+HG8bBUGqMM1Qe4EPRpjNAlnQIiz/CisPL6vs+9He/LtwgkKhG34dVAFDGR0/xTV8akFobNGOKsf\nR+0vABq014dfrajx91E+a8FNM0ApqxsCgXPBdl4ASXkMRw68G0P2FllUPi7PqIp2PqX/B/CRgg/F\nmtSimZmV9+Ghg6tg757W9tS7Gtebb6latz+u2HB0umNmZr6q+h/syWdLeXylDV9JRfasV1Ta9o98\nTdb27KNHFkjq/8uLeg5dnlV/6/Oyq7XoZ57nCaqC5ygTNXhML95SHJ5e0fX213Tfbo0KP6jj7c8U\ni9o5B12h8dz41psWYm5roJA88OJk4BI52ZOtXzzQPil1RzZduYMSDHxGIZS7drcVr7e+VOXTB+dX\n6Ygq/JTutwgXYQR5pMKZfCSf05yk5uVT4Zfbklggio8F4AJroMrjk+8O/RqXj4AZgh/DQMX2fLK5\nI1DZ7+nv/ozG59Ag5Wt6TlweaM6m8b3PP5QvFQvyzelxfSG3vWNmZpWK7BW/psrvAF6hU2JCJK61\nNwIvXauMso+j3IbSZqkLRxbIlcik4lwU7rKTA63llWXNdWpGiMjtx/KF6isafwbuhSP61wEZHpzU\n/MRi8DYdK2YMUKsLg9JzUCbhMCpOcM8E4FpMJ7SWdutwkqH4GQAA5Q99jYRq53wWCWmNO89tjx9u\nR2JWEO6zLpw3DjdOs35x9SUvSMcOvEXnp5qzmYhsdBkuwKOCfDkFR9ZRTWPfOFDcvGV6Fg5AHkbh\nUmwQB8/Yr4WmNZazDV1v83PNQYw5m1tUnMjMgz4Kw+3lA+05Kp8MJjW3I6CMRyNw1YCMDAeEzLv1\njuKWD47FiA/uRxA32bFLjENr+vmX2sf64debu4p6XFj3O2cPMuzI9tv4Sga01/i0+hsBlRVCVa6R\nky+ExmS/efgEF+b1fqkL99iKrhMqgWSpKY6mZoX/AAAgAElEQVQeYa8aCM4wa+LybSFLksT9c+6z\nvyMfy96SHaava7zVT7W2CqiaXrR9ek3zffuXsmMUFcP8t7Xffuf/1euXl9SPq6/9nZmZ1U+1N/tV\nR78rlkKy93s1/Ua9u6q9ncPDEp9UXL62z5r7kfznk6aeR//WzG7/ccGG1TGLL/+TmZn9jr3/zIoU\nml4lPkQfyCfiC+rr2PkDM/v6dMSv+x+ZmdlrQf22GuVZ89kPQLSUNcd3UJ4qoeTYZp1+hUL6SLau\n/VC/mTwR8e5sgRp949fEm2/LFvtHWveTKfnaK6DzPwPZ/g6BdW1X8czf1+/64e+FwF7/gdbS96P8\nnk/pN1DokcbzeUn7/X3Uqf7Vvny7YIrP++f6/7WbsvHhkeyT/FD9TacVj7+4L9Un+5/sn20uUsZt\nbnOb29zmNre5zW1uc5vb3OY2t7ntG2jfKFLmChwCt9/S+bnnA2XKUm3OnlHCmCbTHl3U5/tDVRba\nJ3otlpSdTFDFaw+p3s0qs0WBwnIlZSVr/MFLFttLpbSPOdoemLYDIFCq6sd5UWejy8+VhbYpZW8n\nppQpm72hft5YEVtzs8IZ2LZeW2fKVnrgkJiYpNKeoJ9UAlqcr/dSCag0lCn096iGUTU7RpEhWNHn\nqg3Y7VH98HdRRKgPreFVFT18otcYylQp+n4X1Z3imbKPe4fwRTxV9nBnqGzhJsel54PK4HpQJUow\nd90+53wD+vsgwiH1KPw+gz98nu6/bn74GKIzZDeprvlnhWIoe0F0wHPhg9djPKDxeVFvKvaU6fZT\neU7WlTVtc+b/CGRHIy7bzr+uuR9QZasW9f8s3wvBsdBOUGnGZ7t52X5IxnzA+fJAW1ncAvwnhRPZ\nIzWi+y1e03hqoK8O68qANwugQDgnPbmqNRAKqr/VcxSE/Lpf80zjGfSoeFzR/I61qIblqHRS+Rhb\nVmY9DnqgBkcPX7cD1DRi05rHK3Ow/XPOPX8MZ86Wrjtkvi7D8ZMak58cHyvr7XE4fjgL68nKfm0q\nJI2W+j/pc05Z/7ebo54TReUsO67q8PmkKo0puGF8cflGvqS/B6GWufu2fH8DTped93XeNjGFj0PQ\nUTuXrx1uas7O4dc5ysj3QzPyuTHO+8ZCstnJsdZS+UBrqUflr4nq0q1RZdBf/67O0NYrmvNcWbZ/\n8nshTuqoifSpxKYmZOMELO9ORbN7qrWwndN4XpnRQH/2kz8zM7NHD1VJKJU0njZKWYGw5n5tW/fL\nwxkwktU4Kh5dt3co38llNJ6GgcqAL2ruuqp7q0GdVz5cV/w7xwe6XhQA/khxv30g+3z5IWorB/LV\nDtwtlbzu+/weiB0fCkPhr3k0LtK6DrcAnF4eECqxuJw9m9Ja8UFVE0E5LoDaih+FtRhcYUGHGwa0\nSh3lpGJFMdaLYoanpHkejKiCMuX4K8oRHqqUgV7Meo4SV4mH1rlez8uaiwrPhBKvXhT86ijzeVh/\nASqqcZAwIfgRWpyvtjb8Cw34E8Jaxw1THAv3edbwrDIQNiHK+z4UpDoeXbfbgdOGuNgjvnRBEczB\nRzQDB0IWVQ2fszaxRYTnhZ856nK9Ql5oijN4NtotvUbhvxhSOfWBlgO0ZcPAy8n9eZ24Axrr5ED2\nD/1KXAx90A2Xp6lo1nT9mE/9OC+DjjONJzWvNTo1ogrtJx9LieGz998zM7PxaXil4J1bnFA89qA0\nlp3U2j68Osl41b/zDdlpwBpoer+Ol/nmmZ09ERpk61OhGSZSigEZOGhGQPqkiR1Ll3X/rSDohFPN\n2xDFtpmr+vwbVHJPz7Vmo1GhFALbWtuFPd1v/TeqQl7LvWaJRT07x6gqexjDOM+SGApaVbidjkDC\nlECMzKMMGSN+p+a1R4kwx8e7Wm9D4lgZZcgYe5MYcdxY5/l19bFyoDXVHL7cNrgBYicEqq3Tg1ep\npzkPxhTfOqh4tnm/BHlhNA4Sg4dsNywfjw2JByh61ZtaQz32VLEM6LUQPHdbGsckyMKIV3NxeqD9\n4tVV9pMs4Q78ckOUcUITsnutBwIE9MAIPEcDh+eJvdGAefKCpGmwv+2zZlKoXA3uE79L6kc6Kx/z\nE2/LA/VjAJrEWrJTp6957LFF9EV1X29SryN12aXCPr5eI7aB+g7zPQ/zE26BRHWUxMwsHhtaoabn\nVqovn/eF5VcBn+zQBHk1BKnjgQ9x2Lr4nsSDzOj4nNY94dKacAH2u+wNniheBKc1p298VwiU4z09\nmzOjWjO1PM9YnwLQBGiwDkjGpEdzsnxNz9wMKkfhEGhPbDHgN8QZ3CjDmp6tFZDgqVN9L8L+LMCc\nNajf77PP86C0GJvQnMcWNMdHp+pngOdJ+pLQEpf5LRcH8X2+rviQiIFWm9RiX/2eUAqxe/LdAIqJ\nx2X5Rg4OmrAXJbCm/j6b03UMpGcWhOX2GUqTHTiyghp/PCmfSDLHJTh0Wj1Qw+zTp3luTYzKvuPw\nDgamFVMmsefhtvZqFX5fXbQN6kKh/Dr9SzMz+7NT2TH3e9T2vie+rehHuu8/zmj/PyzoN+if7P/Q\nzMyeLogXZWRB47//ua4z9YZ+s759ReiMk5LmIfrvxdVz64f/8FVfih+9Y4mra3awIP628d/IN8aH\nmrPukhbY02/pGfD2R3omrV+R7a4+Vpz7Hr9R1rdACsKPefOBfLp+U/Hu11/oN04wCbdhQWpLltY+\n7PffV7y8UdX++NC0/5u/put/yG+SZltz/8aO1vXcHa258ocgNBdlw/UZ+XC1q3j5akEIlsoPdTpk\n8OvvmZlZ/qp84P4jvd/7ueb69m/kE68M1a/f/EjP6pHfgnJLCnFztiY72EBr4HvwR63d09+zf/KH\nuRBdpIzb3OY2t7nNbW5zm9vc5ja3uc1tbnPbN9C+UaRMBC6F5VeUeYtwlrP0SBWMwrpeT57rrFYo\nrqqTw8ztVO3iY6pMDDknOQfvRsThTRmDVd7JdIMw8ZIR7weoXMOHUa2pQjEcqBLgnImuDpRtbeeV\nAatt6XOnuXt6f0eZ9/gVZeoyMHnHQlRqRuHdoAKR21fmLBZQBi6QhA+E/rdRM4lG4aCBr6XL+dLb\nnJuv1FUxOaE/h+dCG8Sasl8ombAuZytbdWWa99eV3fTOKGN9ZV5ogfhtZT9fHVfGvj6lzPfxqaru\nOc4RH6EwE61ShYih5pNyuA5k0wElgoafqjMKJxdtbVjU/VSlyxVlQ4dFXb8/BjroiHPCoIYCVIFG\nIrLVMCwbjnD+uF7WXO/soZLRkc1qGVVLSj19b4TKRJ+z/f4Ic7sqO6XKqnB0qRqVqDY1N0BFRKjU\n9pRpn5rjTH+Bvw/kg6GIssnhUXgnVtX/0DhVMVRF/Hsoe2XhR4o7CkG67tOnQjkUDjRf1pd9InGN\no8W5yO6exl/xcT4ddQ0PnBXTWVUuAlTxW6DQdg50/UFZ9ugn1L/YHPN/rvGEp/V9H37nsNkX6/L1\n4TP5ge812WXsNWWTTw/g46hf3E8q8AbVz1Qd5nizVXbl6+1rss2la/DUHGqOyj3Z+vYfyddHqUo/\n+J2QMsm+bDJ9W5XZxFWN6dorUs66f0/VibNNFBae6X7Hj1QRWL0j5YTqut7PDWTrfoNz5ihyDeGx\nGKRBKQS0hsZWVBG449UchKKqDq0uUYnY40xsxbGDfPC1P/8Lff+xKgSPPlFFIhCnAgsSJ44S2LX5\nRTMz63bUz1RIPn60rHEkQNMZyJW1L2Sfo02hF/Jw9+TO4fUoaw7DaSrbYY3XUV44pwoYauh68RtC\nNr0BV9egoX5epSJbaWqAPlARZweqRmU4337R5nOUhRzusbSuH0EdxTyycywNh0WQmIW60pCqYamh\nGHNyIHRAFV6TdqnxX3w/SmU/w/n5QFBrpgV6pY1SRP+U50Fp1wpVrfPOWZ1ra+xNUJA9073CIPgM\nBEwKhZNoCh/yw/ES0T0dNoQ4fGldkC9DnsFBytMBzvgPOv9l3PPyvQ7f66BKF+Asfh0ul+5A/w96\nULWb1poKZlRti2SoSgcc3h3dp4fSVa+o8eepcOZL8CLB9+MDTeCPojrFHPWYm4BX1w0ifdXxvhya\nKjOrZ/XQi5peAhUnOHRqIHXOI1pr7SrPBaA5zYp8+tm+zvQH8f1FVImWruu5sfcCbrG1HTMzKx5q\nvDFiQB7VkitXZc9hQuNNsqa6i6gQ1uQPqdTXyjCvf/8H1p7T9Xf2tTabB6j1faT7jC2p/5kknGk3\nVGFPLmq+zp6A7nsktZNjYpWDAnYUw/wxzdfc7RnGKQ6DJx9rT/T0+bolNzWmRFz7mYBHY2vARxME\n+ZaY0RgjZc7ufyCesQBKfVlQAx6UFIO6nEUW9Hc/cadhmqN6U3OTJI4k5jTGaBhk4dBRLHw5HogO\n1fE+VfxuBARJHj41lBDHQW8ZSjkdFHEGPGPL3H8KVLEfLqp+XXPqqWvP0gQF1weVNOLR389RlzIT\n/0ViVn8/3NAzugVyMQMS6Dmo2zRcaAlUsJp10LV19Ss6RrW+DUdiVfvI5cSimZlFxrSWT55p7rtw\n1aQYbwjewNyhfCz1quYnBsq5kpO9/VFnXCBU+rJHJ6C15GNN++Dwcvbpgbreb8FNFBrofh4gjn0k\n4JqgCONZhz/LLOhJWLCi+1fgOFq4DQdQUv3s5zRuRJdsG8SjP9Kzi7Y+66N2CI8Pz4wQqPhAUnGm\ncPJ7MzMrlTUHKxnGxr7uAG7BYVvvz42D0HhFv0Vya6rm109ka4efbHFZvt4L8puD3xZ5B9HMnukO\naNWxEcW7zIR8aO8LoRKefKln/DQqTjGUq5690P5yAQ6WWgJ0FCpLdTjR+qBMB8RpQxlne0s+NTuq\nuZ2KoWjDqYAdfHsuIdun4dXLwzGZSOvzi6gyOcjPPXhEQ41xXvX3PChnh1stTKxwOAybfs1TOqW9\nXgUOoH14AaNhxb0xfNBb4j4BzdMy6OBh8OI+YmZWf8LvhKHW9nFbe6Bn8X80M7NvlTXPPq/2ep3f\n/8zMzH7yLvbYUnxeHhMS5uA9oaB/EtP43/tIe+Lf+NWvxGuKBR+k9Vz4y84PvurLRudXNhj9lv2p\nX7Y9mtIYewfa5355RYiV1Q2hRv/DbakyXTqGhw4eyDgopQmQbUc52fxpUfvRVFOfS/9Yz8Q3fvkL\nMzNrsM/e6mo/+N0Ovh/X9WbO9Xv6H6eFEoqeCOES9ckHiqvyrS9yn2lAk3oW/4Df0fm2fPjqHc31\nZzy7V3+n/e0731E/ir/T31//PryqHj1zf/EzkOh/o+tcO1fcugfq7Sfd98zMLPg93fc/32dv8NnP\ndd/L2jf/Yv0PY2FcpIzb3OY2t7nNbW5zm9vc5ja3uc1tbnPbN9C+UaTMp7/6wn524wf2n/73/2hm\nZkXOBk9GVXUJjZIBHyrrV6iBXBkqk9fkHOT5zo6ZmVU4txikuhWBGTwaBTUBj0qMM7Meqvy+nqqM\nsQVl5MZbylYWPUqV+7rKiDms855lZdZ6K8oOn+2r+lQsKCt5+B5n1EJC+GQj6teAc/49KjOQW5sn\noGyuv+OwvsOEjmpLimx0mPOjUNxYHFKMdFzZ7RnY+eOc4+wcKxtdHTRtNOowySvT3oLh/vBYNl+j\nIubZVWZ8cUHZyskl2W5p/NtmZnbpOqoXG6oynNU5V1yhouqH22DojFk2DsPyblQgL9q8fn2/H4Zf\nh2pUvyEbjns0d90oVXTY7CMeqlJTnPnHhiEvDP6TVHWYW3+Yc+qXdb9ySOM5bGkcVc4lH9U0Jytw\nDowG5VMFFFYaVflEbEKfG1JlicCuPzol36qi3NA+pbrGefoWTOEj4yBxFoQgqW8qU17B19sFZX99\nWc19C3TVZFBrZR80Vv5M8zszu2hmZr0Uah5lZcG7eZBCDhIHBE8c3hJPUz45taD7OMinp/vqz9iE\nstejM7LTKWoA9Q3O9iblo8O07OeBw2fvhSoXcXiVQpf1Gh7T570tyqAXaI5Cyci4+hiM6LsxKorJ\ntHwjPibfmwyqz9tPdszMrMk54GhYtl+5oapIjOpN8UC2ub+l6lEOpEkUdbZXf6xzvSWq3bk9Va+u\noHjyqKjPX0elaPKa/n7/w481gKp84WRd1ZkSKj0TcfXTiAcbD1QFaZ/JxyooWgUaGt+Th/A8BLCd\nc447o3EcEw/yO3p1+CqMKtzGM8WvV74t9akKqiEb67/ReFbV79ExxZmpV+WjjYr68elvxQlzQkzx\no+hWx6cnUGYoUcFsfamKRvtj3cfDmgqH4VBAocJRObG2o76iSsneLtxeF2xx+FqioC0qLRTUQLvV\nehr/8Jnmq9TT/Txlfa9A5bgOsmXYghuBmBbFv5IZONASilE7ID698DpVm7puvcn9m/BGtTzmo1Ia\nZ85D43qdG1FMT2dQ7JvQOomHWT/wUvQacDOBFmi11PdO2VHHU989KLQMm5o7XPSr+DosUbUO6To9\nztr7QAk43FAhkIDhAKpRk6jJgdzxE/cG9OPwmZ4vzYpsUYNzpgt/RrMH7xqoqBiImFhGz+aww5UQ\ng1MFFFOAtejFh/r4XKDztfLKRZoHZZ1LV+V7yVmNY8DcH3i1xjNUEw10wjjP3hmQQkV4krZQXyrC\n5zGJ0kR8RXYZ1lFKRJHG0wRZmtf3nn/G82Gg8ZRQ+QvCS9IfyHdPv9Dz2/6Xf2ObTx7b/JzW5s1F\nofq8bc3no4dCUQz31M+dE6G9KmdwYNxUzJm/KjReG3TKF8/FKff8gWKFRWX3o1291uBNWb0rjoTX\n3hZKcPFa1Wq7qsrW4XA5BL1TKYCapNqcQkFmgvVTK+heuefwqyUUFwcB9d2H+lkoAlKywFl+UApR\nuLuKoD5joIwmmDPPqN4P7r4cmipg8Mmxh/KhhDOAz2hQpwrvgXcpg2JYWHPeQyksnGT/CWrBk3C4\nDfsMA7Qo+8LUwOEuk+9V4Oqq8EzNTmttdB3VoZbs1Ae10Ctgt3lQdKjoVQ4Vr9ugrkZntYbboFa7\nqIkOZ7XvzYAoyUfk4048jF6C1yMJipa13ULFKACSxVnrQ/ii/EH1b9iBJ6tBLItqIP0kexGQMR0Q\nP30jaMFnFY8zTlDaHa7nc7hrzCwyM2otePIaBcW+6bBQDskpUB9FjatSRy3M1N8AKqcXaUOTbctD\nra826JxEXD4wBbpo+SYqRCh3DQYo84HqPweRkXuhZ12E50KVfVoVZEh0Vt8/eKq1koDvKJ6Sj6VH\nFTdWr6/qunCv1AqKLxsb4h55Z+QdMzMbhxekgFLgFLwYgVHNYb4qn8ny/xhcYNFJ3efSVe2hdomD\nYU4lTF/h/WOhG6IDhwcUXswT9SuFKt+tm5obi2ocpfd2GP8p49TzsDXgGV2R3SopxZbJa9pvz8wI\ncXJyqLgagLdpZEZxsoZS5ZW3FBvm4AJ6/ol+w3mALwRRuO2BsHnxQnvCOqqHl1/V76aLtkurLNb1\nt83MrJOQotwPuz81M7N7R1JbWknrurGw/OYXNdDUnASYua+1+/yaeE3ON/9G4wtoPuNTsu/CZ39r\nZmaZ6/LD9Wr2q75cn6zYoadj78MLVC1rv+n54z81MzN/nt9EUyjr+eR742HZ/AP2k537+j3fHlOf\n73iFLBn8+K/U51/DzVhSHCregjcvBPrzV3oeHH9bceb0MyFzvD+UD86bfDzX0VxkUATsdORTqQX5\nzlvPQOMuwjXTkqrUXvNPzMws3ADlP6ln51lLaNPRrp5TB7/S/bdf1773O1t6LbyifXssB0prT9/f\nWvyxmZnFH8mXeigx/voH2jOk39ccrLxFnPwXmouUcZvb3OY2t7nNbW5zm9vc5ja3uc1tbvsG2jeK\nlFmcVqZsEs6HDLwjCZR1UmFlMYNUyzwRZRV9HmW44lRQq3ATHO0qI5YvqxLTyquScFJWtjp3qipd\nvOHwjKAQQbYxE0J/PaksaZKzs+Ee0JQYZ54z+n8oraxv7Cpn6Pao8OzouuWW+hFqw7cxD0dMTFns\nZt9BSyjTly8qS9yiABBCUahNZTmcUZY8G1U/HURAMgGPwBTjiIFquKpx1M/OrXIOs71P2cNsVn2f\nWdY5wdwNvd+Bl6Z+Kluuw+0xOkq1IIZKBuoQGf8IY8GWFOn7Q2U9PQGY8Jt6w+soSF2wkai3QVFj\nn4CvITyD0s5VZVV7SRntxT0y5qAJmkWhqYwqeH5CPuUoATj8GoG7smkGzpeST9nifIHzzGPyueKa\nbF1H8WsmiBpUUNWZYUzvZ6nytLua071zZUvbR6gb1XW9Cior5T2UFqhmRab1/QzcMRZD0YvKSDOv\nz21vyacP4d1IZmTn0Az296awk9ZUvCBf9J2oHwlUQeYoSOSLuv5oRPPc2KLaRMU5CjJncVX9H5uR\n7/vhxjmokbWGGyM1If+4e00VmtyM/v/w2RP6h4rAseatcaL5jZ9dXKXL56UiCuooDBqoWpUPn6HU\nsrsuX6C4boMT/f3R79SXLqivYVQ2SqI6lInKdqMeZbjLX6iCcEi1ODWp89v1MzimNrXuZyYWNeZz\n+d6gAR/SJOpBSLlMXtL1V95QReHZvftmZra+uaP7xjSHw4Yy8M8fysa+jGz1k5+qAtEsK07c//SB\nmZllRzWO1delaJBAMeDoic6Dn5V0nZajYIOaRe2Yc9YgYAr78q31E4272UMF5E8UHydGtabe/TPs\nU9KailHZ9qTkMyEQIV98IL6JxKQqH8VTzcvRA/UrOafrjFDhLRInr92WKsACbP6JKeRZLtiqdbgs\nupqn9jm8HqiHeCvqbwdUgVPRrVXlV72B/CqRRXEig4IN3DTxsOxRoUJdwx9KoNF88LH0qCqOgfoY\nUF1MpkcsNaoxZcdBc8JHFkyi1ALybtDQ3NRQ2jrrwOeD0lO5SbUGLoNBC5UeUAYekCs+tgARkB9x\nfD6JklmSZ66D1Gi2NSYvCjodlEtiGdZrWzZoUWU+bahSOgRgEWfN+Dh3vgSK1Knmx1B9CmKboaMW\n5diuo/ebPJe6DYgfBvCJoIIEeMEqL/e4sQb8QMWuOjyfhFMGpOfJmdb2/rmq7aP4dvVY9h+7hNoS\niBP/KFX+APETROMUz3rMYTXQD2GPYsHIrJBRA9AGezndr4Bd06B2xy7rc5X/Hy3K+cNtO3yq6t3U\npNbm5TeEdL1+U9xxdlNfWH8B6uKp5mntc/nL6Dxx+6bi9hCkbBc+kAAcNyGeo59/rvPyn//qPdkH\n1PGlmSXLzMuXFl/XtSa3FQ+rJWd9gJSD122S6njsip5lO6B72vCS+XzwOjDHN1dk60JN67MIp97Z\nniqeXVTvzk9A7PQW1R+TbYb+l+OB6MEJ4znXXMTgV6qD1Oj7FC/qKNxkULoan9Hcrt/TXAZAg/rh\nV+rh6xFQxo6STB2Ombge1RYf0fPgpKU434THLpBBTRTURQdETwAVzh6IzIDfUUBk7kGIDlHV8y0p\nvk6ARNrZkz0rh3peZEEEHsIX4ijXTC2DEES5pwIqLzbQ8yNEfPR2hLIFhGuhJOg21qrzHAui8BMC\npYwenVVMe1Wfs+aJDV4QSeaIOkGr5+8TI8ws5glbIqJ+bqwJfdIjSIyNyOdPiZXH8JCE2UN1IxdH\nVPlQj1tYkI/V4bscsh8G3GuZOV07SpzNn9BX5uj1t8V3d8a+bmJRyJoSz+ZqTjaOw5lYrAnxclrS\nvnCqq/tmQeCkxhWvIyh6ReCrK67DjwR6cwgqyIlvFRStplGqXbwsJOEY3DcR1EGTKb2Wa9pHVtmT\n5UFzbT1C+Qtlw2Ra90/CZZOZYg8FWmltXePwwUlWAd2QBa07MapF0eX0QwxUVA3EdiLO99rqx9ZT\ncX154CUaX9Ta3IArM/5EccuCIIKO9PfdQ/Y0k+r31Ax7PuLhIepz6Vn26xdsG5/r89/+ntSXIn+j\ncWxsanG8+pfqXyeg3yVX/0l2nEJB7h8ndP933lRcf/IMRcy89ko//K72Wv+AX80EZb9GSGiR2edP\nv+pL4UrGfIEXFrynPlx9XTYYZcP8BbxuUwH59JfsATyTPCPHFI9mPHr/fVG02On3tY5GuK7BWZXo\nS/npi/fV97k/48RJBEQ36MvpkPhycn351FvvawxvvSNU5t9dl00SWcWr5D/I5zd+rPh7+T+JN6f5\nmuLfeA4fPxDipvJzzcH+p5r7VkLPurHXNQeLaZ18+aSoZ927Ha2539Y4fXFbz9rOklBV5zWN/43P\nZa/jodZc9vuam0xcaKZ/qblIGbe5zW1uc5vb3OY2t7nNbW5zm9vc5rZvoH2jSJnMqjJkb/1Q5+fO\n5pTF7J0po1UpKgtYzCtL60cNpUPmO4ZijW9W2dord5VNvNzSaz6EMk9JGTjPub5fpkrY7lKB5izy\nCRXt1p5eQyhOBLygC+A3icaoAFCJHoFvI4a++vwNVa9aTVXNisegILrqT8ivDGOWLG9mRdnvOtnx\nTs15Vaav5sBFCpxRBmXRJeu+d6LMoieHQgXqBIF5jW8ymbJgRlWA8q7Gdn6oakUipGxfGlWiAaik\nxpls3Hymqs4uBDi+OOzn6HlkUdNop+EQQFnBA+N10o9qiFdj9gVfTumgR6a9WlI2NmC6fyEPrwYI\nlHG/bB1GZSjoVP87cB+0UeSCQ6ZLFrZV03WCB2SQI8q6lru6bs04Kxui8kllwwPHjY9yXT+vueH4\nsyVmZc8ePhyi+t4oUzUCURNLoihA2agT7DMu2S23pfnyICAQQ4EhCiN5pU71EC6C9JjscN5U/7rw\nXjROVV3qUsGpcH58mOBsrlffS8MV0aWUE6WicrQtnpTAtv4/QmXXV6PKF1b/Jy7Jpyub+rwXZaHq\nAvAvqoIZR+VlIHvmS+pniyx0l/FdpLXJ5IfgbWh39HqO0phRVR7CyTQxuqgxLyqjHhlSNfmOMthh\nFL/e/3tVGcYXZds3/0ps80GffPDj/1OlgNPHqpJE4IzyBuQTqZSc4eolna198FTV5NY//crMzJ49\nV4b9xoqqLitviv9hiG16JZAciMbdehIcxL8AACAASURBVPe7uu6Y7vPRp+JkOcvJp67dFBfM3dty\nlhyopfyJ5qCFItfUEgoOnAH2gjyM9hUTgiHNbWJO7y+jNuWrag7X7itO94uy8/NtVUKM8+VNqmKd\njnwsC79FyuusHfn+wg2dW1+9I4TQi6Tmw6GfisTlaxvPVKnIbauyMXNNCBtf++X4QgacW/c5Smqg\nFtIh0H8oQYSoxPtDur+XRZ1KoZyBv3WDIDjbzpoS0ipc1bjTGfnNSkTj9FIddNRJfNg5kgwx3oDV\nT7Wez+pa9709oZNaFarvFXht4EypcpbdQfX0qYgmPbr2IO0oSGmORygjR2f0rApnNcdJ+CUiCThp\nygOuj8rQwMP7ihN+UK1xFLkqIHZKRfW30nK4YeCiAekT7mqsXZy6DK/PECWD/hjPPjgVgjz7ah0U\nE+v6fBM1OET5zNvT9TsozQxAI8V8LweV8eTkI7ltrRXHR17/ns78p+DT2FzXOHOoGFY2VLl8sa3x\n3biN0lgLZCRQltkV/b2NCoiHCngDTrFRaJ5CoA7izEu6Ip8v5LXmmse6b8d0v7s/+9ZXY3j7r/7E\ntj4W18HmpsbR2Jfdsovy4atvCj1383Wdi6/MaA+yQ2X6cA00A3unsXnF9UBf/jNg/rLfQrli/o/N\nzGzrheJ+ie9vnH5iXnhvsleFyk1OKR6Mz8qXYqBrDzfkawf3hGCY/fZl+iq0QLukSmMZZMYzOLYe\noEg2NyfeiKtXhLSZiGpP4mEPsHGivcxwKF+rwf/joGov2qLwK7Ud3xxSRWd/mPCgsobyS9ej+42A\naB5iw1BfPtuG/y2Dglcs4qiztfi+3u+gzpQaUdwLo3iZz+nZvhDTHiUD2i3Yl08NiTtdUA5txu3x\nszfhedZAye3sSPF79qr2sUFQYbubmp87r+l55vB5nPN88aIGGotrjXRQjutV4W6ATpClan6U2zJU\n7+Oo3zXrGk8oJZ+LIrNVD2mNebqoqhJLOiA+JyLyJ09TN2gAvem0vka4dPxdC4CA96xrflp5VAbH\n9PyJzsqutSOttRj79PBLPG7KDX5DlEENnctG2VnZZn8XTj/QVGNwmxSw9QlIOoOjcO0xPHUgBcMo\nsFbYv/YDWo8Oh0qjgVIZSMTjHdmotK/rjMzDB+fHh+FBqoLKGsDtlQP1WtsTWq2EjWYnZaONLX5H\nwL8XcBTWgpqjdFpx7BTU0doTrVloQW1yoPe3UXCcnpPPBbycUoBvaZrTAf559bdUUj8PNrT3MjgL\n23C97J3JHncWdB0//QoTv71M5sjCol5LcIGBU4h7tXaC4/r85QRclHBzXl3Sni3M/jsNV+T0DD8A\nLth+2hFaJPfrvzQzs9iq4vZJVUih4N9o77XzR9r7zC3z++qe/OeVO7fNzKxZ1fz9BORiY05IpnZa\n9g589K/NzOxBV7FpbPSvzcwse3flq75caoQt1BlaBVWkfcaWOAdJ7FcfPt/Wfu2Hi/K9DXzsxwco\n9x2h8javOJ1AafXsSH163T40M7PdP9fz4LWr/KZ8IF9IXNb3JpjzzbgQKHd6muMPa+Juufz3skH4\nT4UOe6Oj/frHd4SMqUSE3Lk9ECfi/UffNzOzyKuKL6vXtTZf/Ds4rHjWlog//Xd13cQe9lnR86UT\n0TPv7cnfmpnZEMXZ9+qKX40vCHBzslPw13qe7Xxb4/n8Pd3n3/4P9s82FynjNre5zW1uc5vb3OY2\nt7nNbW5zm9vc9g20bxQp8+zDB/bf3XzDfvF//DszMzvdVGYqYspuZlN67YdBHfid8/DKLq8VVWn2\nPVRu6XhKGazZGVUMIlSFAqOqTkVGOFfX4lw6Kal2W9nFy/B0HME10KgrE+ctKDvp1FN6IGgKJ3Au\nnKuCMD6iDGETBQobpUqIylNpT5/bJ+vtiSrzmJpT5iw+pgp2ehz0RQKFDXgBipx9Pu+of5U9Vb88\nZHVbnK8fUEVtH2mcm6GopZLKYo7FQGZQ3d3ZVaY56NFrPKbqUiSpTHf/urJ7ExVlO/tFqsldzU2b\n88ohquKOuJInTDUK5v3oAMRL7+UyyZ6U+jHaVxayE5HN8znOpYfgsqHqk5qTzcZH9Fo9pZLp09wu\n3RY3S5eM9/CxfKiCAk8wiQoQXDDDY9k6DV/PKDxI4yBSugd6/5TqXTetuYuMUhmeUAbdl5D3pKmK\nx9OyQ+45FQzOwc9xtjYxrqyyo0RwsrdjZmaTK7DD31KGO8hZ0wZs/BE/592pqtVystf5mao+fvhX\nqltkgw9AxsxSjYMbyNfRODKgBfxwIlThimmhzJAv6/OXLmnNLUzIh3c4t1k+wi5UD5ttlDJgyZ+g\nkt4HCdWs6D6T0a8VE/5bLUU1PHJl0czMwlHdayqoTPXUJdno8KmqwA6vg6PSce/DD8zM7Oie/r+0\nKttWqF7ff6zvJeEQuHZLCL98S3PW2NL3Jq+xfhf02sHWQc7MX39NZ2Nv3VIFeG5dvtc+1xqqc+Y/\nhurapTs6M1s4UpVpfUOZ/7thIXo8DcWtT3/5vu4/ojU5QzX+8Egp/loFha19xbO5TVU6fayVQVHj\n3Hio88XZJfms4+MDD1Wqvu4X4px8nNLn6SYKM/BtTC/JFzpFxaGtj1WtGQ3Jd9e2FPeGBcWMDNwy\no/S/P4SLhupX/5H69/Dep2ZmVq5VzP6V2SnKNhdtMbjDYhnF5yZojFAIxAuwizgqIQN8fxCHuwDU\nV7dJBdajNT2Ao2wAt0EkoPkM038/yKAhvFMtONC88EOdnei5kT8pWDcPOpIKaImY7qEKHUnKRoGU\nfGQMhGJ0SVWn7IjiSjCGcklfrwEQkJjArI8SCqpCOznFoconKN0gZBOCnymRUAUzPg4fBRVMh3fI\nQH5MUjFcYi4DCTi/WGu1pp6BdVAL52fwplWE9hw8k+26fpAzAwclG6D/IH1SGreDlBlmUFgMoXAT\nQYkGTpaLtvAU3GdHuv7xup7V28xlYlE+fOWmkCbjM4pzXp4zTx+ronxaUmzwV2X/M7jNuiAih6B4\nvSnFgsOC1s7JE7jdsO/ciuY1Ad/FeFp2zZl8aOORKtX7eT1v/s2f/s9Wquft5o/EKTC6o1hw8lT9\nev4cu8OFMHFHa3VmQvP72s+k1pF9oXHubmn8XeJ5oalxnp8oJp2A5puAQ+fmNfW3iEpU/7xom/cV\nV06fKw4cHYAsRBVz+rJQOp2O5vbzR/p8DkXD2WkQL/BDLF6R7Qc+zfH2F6pEPjlWpbQF91QABEYS\nDr8wHH1DeDM8PtCqoy+3J+mG4T0CvuqpyiZl4kUirb1WBfWfLqp8fvZzoSzPYHg6yicoLoJw6Q7x\n3Zq+Zx0HxQCq1zSu4BhKMKzBWhGVKdBvnZZ8rwvCcQQuGOg07GRHvhAcVTwc8LzbAxU7cXOW7+l1\nc1PPn3ZTPhvMajydR+pn9VT3iaDEtg+CpYpqXgcUcxh0Vz4nHw5CDeZNaNz5M+LjKM9DuHYa2CsE\nmm4It1kJJbcpeAbrIJOaIGUH4a/56YbdtgX9KLX5HcVIxcAkSMiRpPZ42ztak5kUnD3hMbtomwKl\nBVDOmkOeFSgL5nkGVo61jsZf0Z5jdkTrZ6oNZ9SYnrW7R/CagZSeuOSg8VHKIV5m4prLxBhIthTP\nupz2As/zii+JSa3vCIjkbki2H8mACkqon9k52Tr3SGt2kHWQIfr+syfaG3krmpv5O8Qr0E1nA/nU\npVvqb3ZMcaIBH1AUBMoZCjYjU/K1blvjclT8KjxrT1C43f1Mn79MPJ4eZ18fAGUGVyNUixZLyx4O\nb9AgAFoKdFgYOwcT8ISghJYmXlcq8uUeanlr+3p98UJIRJ/pc2PDP6ys81+3v17WXmylI8WisxPN\nx+V31fHcGGhqn+wYZw/xyXXtaWNejXvhA/EQtoOLZmZ2D+Xh9ntCUPrn/4OZmRVKQkZef/jfm5nZ\n4aXHX/Xli/WyLV16y9YK2mf1nmidP/yp1vmduOLKqV/P8NOs5n72kXzn0YFUiV6/rTn2rqOe9KrG\n8OqGfKAbUx+DG4oXD/hNGL/5OzMzm+wKlZr/QOuu8n3Fl8u/1VxPrspWuYK4FFs76tenZa2l/Kz6\n4f1Qz77f/lR7i9aH8skpwuo/ZYUsj13+z2ZmFgHBOBri93pHcxNA+azNKYedn4NsXlf/FnM/NzOz\nsAA6NgOH5a2+Pu+bVj+q+9rLbc7Jvmb/PFTGRcq4zW1uc5vb3OY2t7nNbW5zm9vc5ja3fQPtG0XK\nxOG3iEA4PuZVFrMPU3korAxcYB5Fm/iimZn5UADqwx1R3FcleAsFhNNDncvzrulzEyMappeKQBRu\nCa+Xs7lxZQIDGWXcFleUce/BSxLKwU7fVUa9BcN3n3P8zbYyfh3QEmclVS6iQd1vLgRT+LeVjc2V\n9f7JlrLPxT1l9A+oSrXhOBjljHGfQ9dTPl0vOaH+JjLqp9fgcICMoelw5sA94z3vWLtANZbKncMN\nsALTft2njLiHTGwypb9fnXBKkbyU4TIoovbBvVoGE3dIWc8ovBhdRymhojH2SxBkXLAlwqgfRVVy\niKP6FM7KRqcDZf4zpox7FqZr6CussdfBBrp/kGxq2K+KwIjJLmU4ahJtZT/fmVbG/8S7Y2ZmlXNV\nGqY6ul4E+4QmUUZoy0ADKonlHarwSrzb8Ezf74E6yFDp9aMwMDhS/8Y9KLNckv0uzWg8QxVtzOMo\ncVFtz5CV7Z+ogjCyqOzu7Iruc4S8h4dqT3yAr4/LfnU4KEb4XIxKwekLVXKS+NjCVc5Tgi442FH2\n+YRqWKAAL8kQuybghWpo/sOcm/d3tebTsPaPsDYjQ9nvqLGj+wwvHpr62L5e1lzkUdtolli3oHKe\nPBIXSmJc8WRpXhn9MGM/faG4EeCc9dU3VMHNeOXTnz0VouZ4TXP0xqvK6Adiuv8hNqkW5JOPOJ9d\nhfPFnwBh4WO978hXUh35rjeq14NDVRYWPZrbUE82XL+3Y2Zm7bJ8NjmqqooP9Z9SS/Gp81T37Xnl\nI1ffFLLmPK1+NUBNjcK1408pvvhQPZlEAaiAesaDT1RNqZzKx7JwzfivqbrnofoXhsPg+i2prJxP\natzHj1VNWn1F/ZhYVnWneqxK7eNnmpc5zu4fFTTOmz9RJeP1n6h6XwVFEobjJUg176KtT2XdB4oi\nFZSd/KbrDXz6f30guw1Lsmd7k3P1xLKIB34kD+opPo0z5lRkHc4YuDTqnH83ONGGQDSbPq2RHuW8\nQDhkKWwzPwoXTFh9i6Hm5sHXWywPumQBHuVdR7GEyl2HM+aeur5XoWqfK+5oTHBL9anqx0FMXEIh\nLJrR/0MhkG6nssk53E+pMXjVeCYnYqCd4HEooQI1pNofG8j2o5d1Vv7mqyBHvOp/C1WlZkOf74MU\n6geoqjOevoeqe8Spmus6vQoKYh5VStuDiyummJmlqPDe/iPFu7KjOnWuAFzelc9euaWKY7Cvfi29\npliQgD+pWJI9eyAOfSe6bjas12fbQo30UCuZuKJY5MlpvC829LzYfSokzMCcz8neV28pzodC4hRY\nf/HoqzF8+f7vrZhV//8/9t4s1vIsO/NaZ57n4c5TRNyYIzIyMiKnqsqsIe2iPJTdFpaF1Lw0CMGD\n26AGWdA8gARIyGqQWqKRUItHhGgBtrHLLldVVmVVVuWcGRmRMceNO9977nDmeebh951MuSmXbz5A\nPPBfLyfinv+w99prr73PWt/+1soN7Gn61zlPn3mCb3lyi/5svM2eYyfKupg7RXb0zLLQcGeEKhT6\n1i8EwKO7IG8aQjx98qe09/AyPjOTxh5Wzj1n6SxZ3UKJdxwXVJFlB1sMCGV17VX8T+g2tl9Y59lt\noWK74hw5voqfWFylj+EsbXr4Nv575yFIG58QameugJjMZVmz6/UJb4Z4zYS4OKl4a+Kk0p6jusV6\nMYrTr9xZVcQS119BfmtOHIj5WXR0vEumua2qUq4omWCPkJL9hrgDhZqI1HlPuch7poWI6YibZWdN\nqKWVRd3HnKpsMDbT4WUzM2uKB+p4m7mZPycOsRR7hsdCNLWk9/AUf3cfsN4UqvgArxAxwRjtbg+0\nX05j45EJ4lDcY2n5640MttFv0d7wNDaaSfF9S/qNNuW7/OLRENpkPsP7huKCm6CEx2eYGy7RSHXF\nk+J2f8Er1WoPLS7OuJQQVHWhoetnVNVPSKdYlvWyIW6fbPfk/FRdvaO5w15fFFi2OCUeOw9r2654\niKzB9XubG/RF3F4BIVrCCfo2GfujqvbTDR7cURWmjip2Pf2EuRP7Jmtu7iw6Xt0Rqn+KvmYXWcML\nQgXtP2XsXR6tXfJ/PfFxpufxD+nEMs9ZZa/lUrXWktCkTSH/DnaYA1MLXP9YKKyauLEW5vENdfXr\noMXcLYiL0TfCJjpazy7O4+8ygkiGhRy9/DyIkKMd9qMT/9t385ydPf5f1W+uXJb951GH8XFpT9DT\n3qguhMzy8/S3vsP1B4/QT6Ir37KCXktHPL/bF8T0hDK1z14pqqqKySuMT+zjr5mZWbH1Z2Zm9mmC\n/1duizMuARrk6158qPtV7Xn/ijn9DY2T/6IQW2X4EHfjzM1C/n8zM7PnY1+gNTrdr1r7bt/s1QlS\nmHl/8+l7ZmZ2+AR/sHruN8zMLPIBY7YfQje5Zbhhf+wBWRJXBdvqHcbg+d9k/v5phfm/mMBPXn5M\nm3rfw7/4fp39Yv8KY3z4I7gUH36H9zz+Hv7/6ivMx3PiWv2JTgX8WkacOOdYE4t/rTXQja7OeHnP\nE4MTcnWd/u7+Lt8/+QBdf6uqaqwD3vd4LPTRW0IMuWR7Zxmjm0/o/0/ndELnEbZ4KYUfabrEUxf+\n1Yg7BynjiCOOOOKII4444ogjjjjiiCOOOPIM5JkiZZJLRMjOXSfrVG1xntBTUQUGZWp7ymw0BjrX\np/RgLEQUOX2daGtoh6hg84CIXLNG1LB7IMSJ/u/VufTxQLwYHbHHR4lkjTxE0nJ5Il4hN1FUr592\ntbzK3AQV5da59bbOvY+bquCzT4SslOR52WPxiUzTzvnznDUbqqJPVdw1LbVzoAyJS3CLkaqR+MWi\nH9J5/0GcyFu6zt8bQiC5hBAIZoc2HPPvgZK2Y0WgXeI4yShL3Fd1ompHWYL79HGc4tkx8WS4fPTV\nM9A7mui04SFqWSwrA+rneQH1rfslw4DdLhH/gZAsaZ2pDc6p4kmZdncONszM7ECZu3hf566VKY31\nieo23iHzGF5kDEM1+j8v3WYUdU0llUXS+fHSmKhpVdWoWjrXnVwl2pvMoofKhtAID7Algb3M6+X9\nwzZZpnqB57s7ZGumxBFQXyeTOeyUzX7v37GBzgJHQtzfU4bkUPxEwx7tHzSISvf3de67w9ywYzID\n4zo2507Tn8U59DjU+HtdykgbGY5YQOeoC4pa62xwJMZzsuLN6DZ0Tn+D8Wk3NqUPMkJpceB0t2lf\nQzwBgbGer2hyfAbDuCyegfHg5KUO+rJF0fiY28d8aFRpS3MT3cVH4m4Sv40rxP9feIEscuMyCIj6\nLmM0GqKbuDKz17xkXOuy5X4S95kR71G7y3ujQf6ezpOx7F2U/xHyoi8OqNwUuoypasTSIhnU08dk\nOVpjoQyEyHjld7h+rEk0u4TfS6fQ1eE2ttfWGfx6VUiceVUyUPZrW2dmo2fJvoU8QorsMhZeZaQX\nUtw3f52sfOn+Bt+H4+ofNpQWsmb9M1VEEGeEqyRUh2FzHfnzzGnxJgmFF67zntwi/l+k+dYWd4vX\nx7iMVdEh5FMFsimVJDuhuHviOSqq4oQqGo2bZPD7A8anJQSRmm0hcefE9P5+jPf2lUU0ZcdK4kLo\nqprVQJUzbFLtSUjGkc7Je1Sly+eVHaUCltRZd28IHbuiXOMafV5miGd0xdlV5929Q6FGxV1SFlpr\nrGxyQwBFf5D74yGyPXmhLmcvYntRL2NTc6liwj7z/+jJJONLn4LimGooY+n28v+iUKJVVbPwqBqG\nLzOpzKK1UBm7ie0NQkJAxrguoGoZfmXVQy6um1RQGzT1ng1so6Iqc10VKgxqDWz2vtyCU1TVk5KQ\nnbFF/HtiCn1tqGJaY5/3b+9umJlZXVm6cIK5HHbTbrfGrztLv6ayPK/tVlVCL3MmoT1JSkgT/5Q4\nD1RBpqUKQev3ZKttVdNaYs7c/Mqrn/dh9cJztqG5Wn0XG186zXVzy8tmZhYM4mc74orbVVXGow36\nNzIyryGBSCpCCZw5jb2cPkeG13cZROm9zz7hPlUh3N0nQ17b71liTn43CvpmaZXPvtC1m0/IrHpW\nyWieV3Z64SzZ/NYxfmlTaKWnQsQ0dxjz89dAzFy6CfqquMnYFTU2W+KomVvSWh3Exv1COA6bX3CO\nnERGQlinxf3S0dpb2kXXmVfYz1qZ9WPrAajTvNaDmE+o0H3mbiNM/0peMra9qhA8st1wm+dUP2Xv\nsSd+ubMvgRrw+bju/i32NnHxiMTFq3dPY7sspFBM/vrhJ6CdwkLnerQvjajS5qM7QjheZe7lxOkz\nKNDuvafsTSYoroE4XyLae1XL9OvRLvq6cJFx8g2xhw216znZRbMk5EsNG6/W5tU/9Fvb5HmpS9rb\nqFLkUBXifNrbdoeqVKd9eMQ/IdIy6zba1tEedyA+raHe290TGtCtvZboshrihgjHT85zF5QORqqk\nVVX1uOo6NjzUsxKL2Hp2RX73ECRJo0ZnYmN0tXSFedYWWj8vNL0oBy2ZFtpJvHqtY+Zvr8wc60WE\ndJNNlIRADAjxPq0KtvF5EHsBrTcVVdE89mMTWa2B5TpzzC00fmYa28otiH/OL6SdeH7yU/z/wS1s\npl9hfcqdR/czqSU9l/ZMaV+bm6M/O0X2MkOhjQOqbDvWGnuwCeqspIKbeVUAm3suq+t4z5G2DNNz\nzMVWSxV8pvENhXvM1cNNIWjOMG4x7XkOI+Ke0emKgBDeMR0lCPu/3HpzrkpFzntfQb/ed5jTBVUr\nTa5818zMngax5Zfmf2FmZqlz7Enbb9PvzRxo4lgC9Ed9j/5Mr8LT8tQFkjNwFh+R6DHen3b+wszM\nft9+z9wXntrcYsc6Qp2euQ8q6N2XeNbLEf02/BC/cDf+LTMz67p45n6EfV/vgN+14VWQ5clH/H/0\nM2x5lGUML77LGvHO77LmnV8CEXM7wjyf8DC9cQUbvFXAj5y9oapM4vLqVLk/lIFrzPuU6qZrPvzz\nt/y8J/oi7fvzd/FfqSkQP09lg93CT8zM7NIN7t/bZ0wOovjF1gx6OXuJ9nRaqjT2Yz7DrzFnBkWQ\n34k57v/LK+zTv/IQPRbv3bBfJQ5SxhFHHHHEEUccccQRRxxxxBFHHHHkGcgzRcps3Vk3+47Z/oTd\neKhIU5so4ShIVNarM/ytjjKmOoO7rwhYQBmGqI+IViCpmvTKWHujRMZcbZ0P706yfcSk3GJdd7UV\nRnURzT24z/+9Qju0RmQKwnpeX2iJuJA05lFGWtVfun3+7q4S/a1UiZwVxKSeE+u8R1FXlxjCEzo/\n2uQyGzdA8rSOiDB2a7zf/UQcFcouDtXfaJ92+4e8rz3yWF/ncocDrhnrzH1zUmVjwokixEZPVZXa\n4hoYb6N7/2jCAULjg1mdIxYvQ0/U/m7xdPTEq9FV5lJJ7xNLSFn9UUop0C7RzkBZaARxEXhH6K5W\nIvLt8wrRoYzEICqOhYqqAQnZ4c+JRyhNe8stxmrrXWwynMS24kEa7gqKw0CZjEGZMY4meH7Yj768\nFZ2JdWFbiSSR+06L50zOvM6KiyGiikDeApmU8j7j4NO5xsUp2nF4oIo/e1yXyJOJyM7oTOwOfx/s\nkV2KpND7SJnZ9jHZNgX4ze/S+WylhYodvp9OisW+RRat/IjsVVfP82UYl7ksc63aFEpjg7kZF1rA\nrbPRLSGmpsSV0a1if8f7tDfqEgJA3BWBL3E21yMepJ64PPLSZVQImkiS+eRRZRWvMXaVx/S1HOH6\n+SjZh4bQYFWdk/bepe1BN23zqbJVSTw+DdyQpYV46Xp0nnygVNuk0o14QYYubG0pQyawvY8uHos/\nYkaZZVeF+5pebDUnP1ESR8HRGjZa0t+LPfozJW4Cv2x148lTtU+VelT9o6lz0A1VJusr4ztyCfU1\nxGZyLrJKFgqof+jjyQY2MSuOl1ia/ndq3BfR4f65lM7Dr2+YmVldtpGeUbavN+Hsoj3pKTILh0L6\njGtCPchnDVW5Ydj9ckiZfaFJWg35d82lXlfn4lWpKKCsWDwlFIeqh7S82HiXRJHVxLMR7IvTyKvM\nbQ19DuVz4qaqVRFV2RIiaaQzyqkk31f8HjvcEzq0q+py4lWIGPe6UyBNEnpW261sjWA9fnEUTNrc\nEM+ZT++y+QlvG/7peJfrtnbQSUFIv0ENv9OR/02J5y2ril1VISfqQkY0VIGwN8A2/LovNuE/6/PZ\n2qc9H28pIyx/7VH1DndCiBmhVWMZreWaywfKsPYPJhUUsZmQbDMU5vq0KvZEEvjHk8pQaaqGuGJ8\nbeZwMEQmN5FgbvnSamcfv944pP9FVSnKCOniDdCPkqrrRTqqvCjbCGnPs7MtlNoizx0JqTTh1lo5\nC8rAJYRRTfx5hY9AjfQuzX3eh8z8lAW66P9Q1fHW7+NbekLcdMWzMbe0TDuEBivs4sySgnh2xBNV\n38ZPr9XglxpNoaiL87RrWtx0bmO9OxZflqfTt6O72HLFy1jPXQBlk8uim63ahpmZ7X9K9c3uHH7Y\np6xzaIa+nV3Ev+yEaUv9iLmy9oD740ILJBe0sVJVtaY4+wpP8I8erZULaTK4Ex6ik8qk4s1QyLuW\n+Pp215hD+RTvr5Tp794GNnQ0jW4HIWz9cAu9tMRfERC6qlfk70GtI+0671kTH8feAdn8qX35+RB+\nq3MkpOLHIIMiGfY2bfFsFFRSbVFVTftCGT/9BBtaeJ5xsYY4Z46ZawVxnYViPK9UVn/WxD8if1k/\nFvpqoDX+UIilQVXPEfpP+/jGteZPbwAAIABJREFUU/F/zAj9VUI/e7vi1xOaOeDGlreKXB9Y0z5f\nc2Bvn34kH7HOdVRdta6KmoEprV9mVi8cWKXGnFi7pz1UlP416rSjXBAKu8h4ujziKXSl7aTiCana\nj5AiSSG8Jxxg7i46DuVUoTHNGC4KeVbaU6U/8crFhIaNlxm79CLPbYhDpi9/H9FeYP4mvBohoXhd\n4hqL6j5r0r4J45ZHOkirOms6p7GynL4XYjHOOuAZsdYlFoTmMnEkas6NxIVm2v8HxTU2e5n3x+Tn\np1ZUYVbrmneffpbFQ+RLaE53VBVPPFDZVXFh7mvfPEHuq6qdN6MKXpOKXdq7TQnJ49L6ZKr8k9Hv\nBNc8vsanCrserW/mp1+JDO0TDZZ5VWU2Opj8lvwClXUS+VB7o1ce4i/f/HV8VOpn+l1zkf6c30R/\na2kqf948wA83B6ADB+vMjW4btMnUNHPz0MW6lT+9wffiB2y2QPOVArzP/m2z5Q/r9mYoaN890p7h\nGnuM1Z8wFm8eYVOui1Qrqp1jnrzQWTYzs2oLHVxXtczNCP7Je4Gx3T6UbvfESxlmTczs/iXXzeA3\n8ntv0OcSNvW+dGB7OoHyGTYaDbP/nb6pCrpeock2aO/MnX/DzMyG4orZHYDm/O0c6KP3Xaw3Kel2\noLkav63faH3um7mOn3j8A/zDYIr2JdYwgk+nXjQzs+e38Mv+83x23we5M/Mj9iZvfwu9XM6zFv9d\n4iBlHHHEEUccccQRRxxxxBFHHHHEEUeegTxTpIxnch49rVI5quQTz4onQ6gOr5+IVFLnz3vKGvrE\nRj/JnPZ6f5sfw6sMuDea0d+JoFmfCFxV90WkBdeQKKrfxfUDndvuDMWFYERJfRPeiygxrY6oBeI6\nK+tX9nI4R3tcYyKELaEk6qr4MxwpAz+coFNUtaOv6kuKxg6FnBmGlLUy9VPnK6OqCOSaVEgyceYo\nuj4cuS08mFRHUuRXVXd8Oq/sVWS/r/NzEcXr5ofihhEZzVAVXfotnt0N872vqQhyFGX6hFxJp5RJ\nVOTbQl8uDthM8NzoJBsjqhGXj3YnVY3J51X2R6W8euILGipy7wrrLGiKjGZjMEFyEMVtK8PsCQsR\nJA4ei6F7f5gobiIsDoeO+H6EzmgLlTRWJtOTor9eVaMKBPpqv54rREg9qLPAUZ7jE09SwKUzphmd\nv4+owoAqAflVIcadwMb7A1WWcauST1VVtnKqVuKl/ZXjY7VXfB5N3ms6A+z1CdmiKht+VSJqLDEH\n/BH00daZ5rGb78PSY1PVqwaTdrrEv+GjXS1lZEKqtBA5ln3JdjMunlsfndw1uVQ5zKNKMjoubW2h\nvoZtMnDtnmxVVTlMba/p/PWx0GJhVY3op8gq1+o8pyU0QlJVj0LikjpQ9jnm5Tlu8WN0ykT2S0I1\nuVQxZuRSpZwM7ws1yYrVVIEgrFINLWWzBz1spjMv21IlgnoDW4yLA8Ctymb1FZ7ncatyQZH/D9J8\nP+rw92GXv7uESAwH5H+UeT3YZy40u+J8UCZ3YgODEv2ueHVeXZW7ekVsYCTEoFeV0lq8zlw12fbA\np3ajpy1BjsJqj1vZfssqW6YKQqa55/uSKYX0nFBxY3zSleeFSohhq175FLcX/Xrk2Otd5nJnYlhj\nISTFEdORPw5Kf+GwbFfIyr4HvTc1Xn5VIvLr7yZ7a4xqdv4yz+iNVdFvQpKizOrAK6KbEddFNJ8s\nLHSkdB4RN41vsrhNuEm0tgzE01Hs06fUMYOTy5BVDgvhFs6js7D8ureJzZcaUv6AsQuKUyakyijR\nDO3qCnHZOBD3VJc+D9Uvl1BnlpSflG7qQiN4VG2uoaGfHi6p3/TD45efcmkNFK9beyD9tb5ctb+p\nFfxgepHnx4VwjEe08CRUaUfcCouLvH/EZVYSEnGkORQJYyuLMXE1iMPFH9F4iTtopDXc65rw5eFj\n6nX01h2hj/wCe5P5RVUq2+N97omCzKzbNktMsUcJCOUw1J5mOKb9vbYqjSmTHVLlsJDu8wqJtbSA\nPWQyZBFbE36/IetIo4XP8gixGgqLh+sUz0mOwpYVn9mhOD5sJH64NH/3nacCzKigvmotbWm+RFSB\nMT2Dkk8twnFVy2otUzW6lpAr8R5r4Uwa2x1pba0IYW0u3jOpZPM5ovGE4hHicZSjPdNZ8SZNUGHi\nbolMSi8O5TdnGfOwuM1OvUDmOSo0WCqJXx4PQfBM0Ewh8b9disC5s7CvKqJ5oZX93LfyomzOLYS3\n0AC+ONl082p/nUQ/p54H5eQXcjSew1bCr1KxJyF+qkQS5KJLSOxQFJsNKUvfle1kPt8b8N75F+Bg\nmyDWI0Kk9/PYajIidIY4bobPcX88daznaR2IMH4XrvC+XFLVS8LYxemQ0CNTk98H9CfiV4U08ZmY\nmYWm8uYR/0fw1ZfMzCyWlP/OcH92iC8MBHhfbEoovFjUTio98SW5E9hGOEkbx/rN4zliLlS0hxgI\nVRUOMZaDWe3TA7QlbPy9KY7Dcl3IuxmheIS2miC9fdoHjwJCIIa0hgq53YprzyDSqKRQ+YUD9iot\noYVD2q97tPewuPiDhBLNpdFtT37gsMzczgg1OvDR3kPx8nhULS8zj400tEdya80P6rdVqDlB7rOX\nmPwYCorvJBxV+4X6HSR43vQ8fupwG33VJxxk+j3QG6sa60C8gOLAbDZ4jjdG/3Ir8k1pIQbFH5fQ\nGp8QsjBQww+X6ozTWKjmk8p4TMW5RgaU1+s/4Dm/8MMRM7itisKzH5mZmesTfMb9HOiMmPy6Rd8y\nM7OnL+t3yNvfpL8J7vu1D2j/m+IcGuzQzjPZy1805uyiXQma7UVBnMzfQ6fFF0Ho+e6Avrkyx7s7\nqhC4tPE+bf4O1+946NPxAfu54Qrz6qz7B2Zm9tXtr5uZ2dvfAQnn/gn+vJfDvx0UeI/7KbofX2Rs\nTgnhWPTC2dL2cH2yBcKvv8nc+rnQYS/N/42Zmd3+c/p8/OugiO7n+Q342j7tapwDUfdWC7/SEv/o\n7go2uBCgqpJnRlUDG9z3aRD/+G+uUOVpraiqpG7aE4mydm6kWV9efpd2PC7CI2X/vv1ScZAyjjji\niCOOOOKII4444ogjjjjiiCPPQFzj8Xj891/2/9LLXS4bj8fmcn25M72OOPL/B3HmhiOO/HJx5oYj\njvw/xZkXjjjyy8WZG4448svFmRv/38vfFXpxkDKOOOKII4444ogjjjjiiCOOOOKII89AnKCMI444\n4ogjjjjiiCOOOOKII4444sgzECco44gjjjjiiCOOOOKII4444ogjjjjyDMQJyjjiiCOOOOKII444\n4ogjjjjiiCOOPANxgjKOOOKII4444ogjjjjiiCOOOOKII89AnKCMI4444ogjjjjiiCOOOOKII444\n4sgzECco44gjjjjiiCOOOOKII4444ogjjjjyDMQJyjjiiCOOOOKII4444ogjjjjiiCOOPANxgjKO\nOOKII4444ogjjjjiiCOOOOKII89AvM/y5X/8H/6RmZn94T/iM5QK8pmImJlZzBM1MzN3JGBmZolY\nyMzM9o9qZmaWTvMcr/H9XrNjZmbl0qGZmWWCdM+fyJmZWbNbMjOz1sHQzMwWllNmZlbrEJvyu1z8\nf9Q0M7OIi/Z0Km3aE+L7vU7RzMzmIrNmZpZfWTAzs96gznv22nqvh/+3qmZmFojGeX99ZGZm7dqB\nmZmlMkkzM3N56V+7Sj+KjWMzM5vOzHCf3tuuj7l+NKCfc3m+L/HeSITv2xXeE06FreGij8mZmJmZ\n9dsNMzMbeWhTr8+zY/6smZlVCjtmZuYdMwb1PjoJh3lO0Bvm+xZtzS6eMjOzY/U1HOS6QZ82lY55\nn2tM2/6zf/LHdhL5h//4X5mZWXSpZWZm7uHPzMzs9d55MzNruN/jwt3TZmb2N1/dpR8/OMv7vnHb\nzMy++nbGzMxuLdOexuprZmZ2/fubZmZ2+ybPW3yHx416j3jsOfRxNvyJmZm1Q982M7NTFa67tf0W\n/buxZGZmX//Ib2ZmP51CLy+vrZiZ2Senn5qZ2cVpPqPt13nA478xM7PtWWzIXcGmPnnxnpmZ/Vv/\n7A/NzOyMj+c/Nmzmuwe0629OodfLtmpmZkc//LGZmb1wmnFtj/tmZvZXB7Rr+ptXzMzM97HPzMy6\nCfR1fYc5Up/BZoMzPzQzs60mc6j2PnPmxeWb6C9K/7ZnEmZmFtulHbt+5sjMGt/XXivQrh8xRwOv\nMi7hvZ/zfWvazMxee5H3Bn5AO9/0XDIzs3/xL37f/j75T//jf2pmZr1N5rdfsebPbj02M7PZxXk+\n53lXK1A2M7Nkco42f7ZuZmbVBn3w+Onz9Reum5lZYWeLPpfwOwH10Z1gLjX76OZ4bc/MzBIR/n7l\nxg36WDwyM7PbH90yM7P5Zearz81zhgE+01nas7/FmByu0a7EacY+N4cttY43zMxs/QFz7cWXeU+5\nib+oyw9NzeNPvA2ef+edh+jhLPrIXcSG9h/Q7uIG/XMFGItXvvKqmZlt7z0xM7Otz9DD3Gls1OXB\nhsLT6KtSZMz9Lb1vbc3MzDKL6OPUDD7iYIPnjfv4p6ALG5q7yPflEs/Z2rxLey/S78QM+nG78Hv/\n/f/4z8zM7D/6D/6JnUT+5J//SzMzW3lZ60WFdSacYPwG8r9BLYv1BHNn5KE/iTK+IzDCh406XN8d\ncb+7hj7GMdrfiXFfL11XP5mTsR7XNxv40MyA/x8UA5bq8c5SirbFu7xzkFL+xI0f7Iy41x9nrfMW\nGLORG389HtG2fpi/R+W/B2lsvFxjbXNFezy2zPMSXdoyDPmliy596NGHeoT7IkPaFxiii6H8fifM\nmHpneV53gC6M19iwxX09DzrOH7jVHy6I+nmOd4rrWk360w3Q77Bpje741C7a6/NjE+6O/FeC6wLH\n/P8P3vgtO4n8J3/4j83MbFxW/1l6rduk36U2+va4eX8oRfsCbq31R7Sz66E/uQB7jJGHca326V8w\niC14XdoLlPg+FJH+XNhoW8Pu6vK8YYN+epJ8PwrQzkG7+3kf/ugf/nvmi/JeV5Tr+j3Gv95kjkeM\ndvsWWRddNXznsEI7PBr/kTG+reZQT6dBCS/6dWWYuxP7cFdp33Gd98VCCYvHsIVxgGeUKthgKkkb\nPGPuqbZ5RmeAbXj196Sf+y1MXyb+zTo8zzPE1mN5njccoKv6LroeyvjCst1RiOsDbvnHDGP5X/3T\n/9xOIn/y3/4XZma2s8XcPHV6yszMWg3G/ngTfx9eYb0JxWQrdXTbHfH/7R38YCCIDmcWWRcGNcZy\nU34yvchzklk+I176c6R9Zq3LmKZy2NSgwfc+N2M49tDPA/njuJ+/5y+yDlQOaXejwufsZbWjwziU\nHrAXiiV4fjeBHiv7rDepGHqPzzFZmh3GrbandTYmP5vmvQfr2+gjid5i2q9ure1znfb5sQWeN67z\nnPI2455bYP1xy7cNm9ha5xh99Afoz5dlfRt56JeZ2R/+oz+0M6eWzczMJV+1/WhXemJ8InPshfwh\n9uXWxV5bmgL/9Qns5L/5n/4HMzM7aqObvvbf1maeeQybjobog7m1pmjtcWmeDer0ZRyWHx2xlgZc\njHF1QJ9dY2worL3EeKC9yhhdtlw8Zzjqq4WMRVi/Sbodvm/0+Iwb93kStKMt3QZDjO3Axf2uwcQv\nYNMBo529CP3rD/l/sIfNuKP8faQx6rX49Pq5bsxQ2jDMdT7fQP1DT72aLvAH9FrtxTr0S1sq8wZ5\nn43VLg/31zxaJ9p8hjRHhlpHimqv38unx41+olpfqgOu95j67eL5Ize2lGij9//yj//ITiJ/8t+x\nh3G7tR7HGf9GjedEA9hgJE77Gz3GIZrGDrwe2lNeZ2/mlv0EvdhDQuvg5lPmamKWH81e/TY+Lhc/\nb8s//5//paVyUTs6xG+22nyXk98ZaA2q7fB397TW4CNsN5hhzKYXmbeDBvO1sMuaGYwzr6YztH23\nxLxLyq9EtFbV95kj9Rbzzj3WXiPDZzqA3xg2aMdBk/dM9uXHdf4fHtLHzBl+Ww2OsZHhWPs4rZ3V\nKu+Z7K3SaXRXPUAPPr/2ID76aUPmRD7JHNmTDtsNnjubxT+Nh7RnMkfjXsawqN8Zf5c4SBlHHHHE\nEUccccQRRxxxxBFHHHHEkWcgzxQpM+gTWYuliGjPCfHR6RJh6niU3VP27khIEa8i48UoEayon4jd\nSp6I2OwCkTRvi8jbOM/3y51lMzPbDBGRT8wSuZtEr7NRImT9Pu/3RYleHh1yfUoRw9GTB1zn5flb\nBSL/fWV6Am5iXY0B7WtUiDAmlF0LBom6phPneO4i7z1eL/2tdnm73D87RUbjuEVWa9om0XAib9Mp\n9LYeJBMSVmapNuJ57VDL3C2ik62y0EQ9ooLxABHekqJ3M5fQYbdNVnpmjshqrUpEu91WRHvEfZsF\nskIDoYmOSmTdT10GERHI0OZxh6x/Vgibk8p3XgBJ8ubTr5mZ2VfPofO3HoEkyVYZo8Ih0VbXAVn1\nqRdozzAI4mKrSzubd8j+f/suY3r3m0RL+yXG8EyHiPJHS/S3u8r7mntESQtuxu7jtb8yM7NIAIRK\n7Jjnvf91oqSjD0HoPLqMPu0IxIjn4bfMzOyhbMX9DWUCqs+ZmVkt+ddmZvaNH+XMft/sfOiqmZnl\nSrT/rBIr/fqymZm9EAYpdLj2Ju09y/XNJ9iON0C7gg0QOgv3f2JmZusv0q/MD0H+/FXsjpmZrYaw\ni55fc/FtbC07y2dpBFLnbdnFt91E9CvzymAHPzIzs/bed8zM7JybfrsVNV73cF/g/AUzM1v+U/S/\nfo45sP010BHT74GIOonUhVA53CQirybaoz1gT/Hxi2Zm1ppEtotcEOyShahuk2Vo1mmjR1n80TK6\nKB0zVtt3QVXNLtBW5WqsLzTSYMR1xT0i7HtbZAx27nPf4UNsLOXFD7QVE295eU8ig25cyma1O/Ib\nXfxd1M3/S23ub6zRj3X3Z2ZmViiDbsvOg6xpBIV6qNDS7fv3zcwsluT+9ApjXK/jJ+yQjGRDWanB\nFXxC5RFzorzP+zJ55lq5C1xsrsVzBCS0xYWLPG4bm12dW0ZPmvqhCP7Z36Y/21voJxxnPEpl9UvI\nnqCyXpEo75k9z2c0i188qYx99GPzkP5Vaug9UGeuTLJ/0TD6b/SVtRoxTj2XEJBV9On2j3Sd0AIN\nxqk1VKa6Qz/KFfoVH5IZCmldyVTwyRsCOdSHQTtoMDa+ba4t+XiXd4pntwPc64tgS8MOYxRoCmFS\nEEJihC2VlWFz5Zv6nncN+7y0s6U1UsiHVFPoJ68yjX101Df6OvAzx/aCtN3l53t/A1tzVYTAK/Oi\nrpCVYWWXBsqsekes+XW131ND5/44/+9qPRnOTuv7CSKE+7tt/u9t45cbypQmvEJoVLkuYtjaSaU3\nwEdMkC2BHv/PLgn5s4u+ahX2IqES38dXsUW/kDCbxS31l364w9hSoKMM8DT6CMQZp2abOVDFlVn4\njJBSQj+0N+WLWhtmZjYXo1/RnHzM4dbnfWiVW+aLop+5HO0atibjwlwvdvFVy2HsJaCM8EFT41al\n/wtC6bpD9KNSZs53g7Qvqr1OfJ7nVGPKWBfQQ7F4aP6U9jPKzgeEmmoKoZyeZX74i7Shfsi8aXf5\nPhpDdz4ha2Kan6Uqa5u/iy3HIviFoXRcTMiWdoWkEGJkPjZBI6BTj2favozUGrLlDmtfY0j/arvo\ntqcxX84yh/ry1xMkY6PAZ1GZ2NOXsClfGMUcrm/wHM3JXBYEYXjM93vy+0/3sZl8BL0ktE8s9niu\nCU3RbfG+jtDR8bgyzX58w9gtvzZBZxwy1x9vsxa3i+j3ijLOPu3Pe2H0mRcS1ULovXwfVHG/IcR2\niD1jfYM5ubHFOnVFKIBWg+c3tf74lcn2ttk7lo4Zv7FfqJER7d68h56GmvtBIancEfoxKmLLI5c2\nTWY28npsKHTEzlP2pMcb+NrZa6CtU0Jk1taY47UCc8Xvb9tJ5Ugo9UMh2LT9MW2jLSEE2n4H3USE\nOA9H0WnDjY1Wj7Apdxgbmo4Lbaa1s6z7ul7+nhMSJaL53Jf/Lwud1Siw3wwKxZnS/RMU0FFR6Aah\nDhZ0nzuMvz/UbyOBR83f43mjMP3pDfgsVWh/X369q7Gb8mru9YUHGAtNcMx7TEgWv9BWkYDa3aWd\nAyly2EK/0RFjaSEpVkjRfluIP60//Rr9qglFNtZvxpmQ2m1ab4ZCCPqwvUgCmyp2tKcrav3x8v+o\nfs9MAE+huPpxQqlMTlF08UXNBv0aa33OX2RvERwJkZni/74A/TqusR5rmTb/FH44JaSS34efDsaY\n+9k8vqq0g08Y+yZIJ7Pc6Zh5/H7zHaG7ZIB3Tc2wBqxvsca4lmjL8izzvhmjD4lpIdg69OHpEWtF\nKM31+fPsS1uH7At78tttn5DWR7TpcAP/5k9jw5cv6Hd6kLHoHmALe8c8Zyz0UFcIyMU52hFMsMdw\nqYuHbf2Oz0wQziO1g/eOhKxpBLGJQV8nUZbRocuwia7mbN2Nnmp9/ZaL8r1HyMGGbGpcoZ+RGfxn\n/+gLnf8ycZAyjjjiiCOOOOKII4444ogjjjjiiCPPQJ4pUqakM7/ldSLa/QGRqYrO1Z8WV4tf5+by\nXiJRtkCkyypE0IfidDgsEbHaeUjm2O0jEt/zEoGfThBBKyvq6dJ7bt3/1MzMcllljnXeMKzz8uGk\nsoKKsAcivN8lzpmBkC+pGVAZ4R5RyeGI75PGe1zqR3tE5OzRZ2QiUntEAjc2Qbp4FDkMThHpO9DZ\n44L6d+Xa82Zmtnlrw8zMPhvz3EKFqPrKaSL980tkgNr1sLldtKFV5hlj8TJYGh0Nt0jRHW8SNdx5\nTFR0472/zZ/hVnbl5su0wdMnMpzLo1t/QlmrKTKA/r6yP8qSl1uTM60nk3cOdc48QHv+5lPa8et+\ndHa0QPT0uh8ddR6AUAk8B4Kl0OL9979x2czMXh+B5HhywN8fvQlvyNQ3iAb/eJWQ8yk//Zktqt+t\npNqBrdaukb1KbpCtulhGL27xmNwT6uvUE2zhR0LkrD0gDnqYRT/fdIEYufOj75mZWer34Xx5v/ux\n/btmdvETbPOvV0EffPsWaIeHr79vZmbzv4DjpVXVGeI8z91/nTkwEIrrhZ1lMzP74IrOh/bof3AG\nbpf5Q6K/3k9ot3+ecbz+HaK9f/Hn3P9NcVLkdtDH40U4bHoDkDFtXmfL17guc+clMzMbv0bU/LcK\nRKvfOs2cXF0ELVb4BXbnzWAfez7m0klk6TQ6nAqBzjr9a9jGqZ+DmgplmE/duFAG+2Tqkgvo6pQb\n9NR0Ct1s75F9qHg1r+fRydQUtrB4DtvaLKPzeoc+vfIGKKj9Avcvppd57gq2cvMaiJ35JSLvVUXc\nN3eY96klbLAuJM15nZ1viiOhFef92StE4qdWyOxlejo/fETm77TODe/rXPnKGfxIRJxZAfF9DH3y\nT6fgU5q+QP8bVcYqm+H982fxg+defMXMzC5epp13HmKbfmW/1jZ4/+Q8fDxLP906C9xo8Nz4HHN2\napk5mbtNe+cv0462uAxWnnvBzMw8ynCXk+i1F8E2Bzq/fVJptbFlzwEZkqM+mZZRFXsZK90VztLO\nvjLuHiEiH4mzLCgfmKmTcR61sOVOVQgZL8891Lrj8+Fbj4K8N1JUFmtM5qgvfhf34MhGu6xl9RE6\n6/Tx6S4hMNopvs9XxGMTEf/YU83fss7qj/BTnazWLGXrJ9wkFuc6V1l8OiVs67jNWMQCQn0KpdSR\njZddjE1MGVt/V+e0i0JK6lC/+6y4UZo68y5Om7gyfnWthVNaa1uGjqoH+A2/eCaaOq/tmReKTNQK\nnRrt9TwVJ0tInCvKmvU8wrHFvzgzfxLJRNFTRei3seZibEa+YpU5svUhSM1ynfbOiWMgdQPfkNjj\n/Y2guGbEv9FtKesuvrz8RfY4oSj+dOvuh/Rjws01vWxmZoMp9etn2GZD6IiVa9zvLWU/74NvdsF6\nfdoVSqHH9MXz+hLbGzxhnRoIEDX9POtO/4l8023GOzDDBen8GfTwhPVud5/x8tSw8ajQcKcv6tz/\nWXxv6em2RZRd7ykF2BeKwBVEt1NnF83MLKM1Kb6BbdTEFTAUumpJnGC9BH0ei9etOhQiWNnz6Qu0\nNVmlLZ+KN88vfqPkMm11iefDP/7Vmct/XZIRxjT1HGuXOyTuFT+6np7Bn7iUzd66h38vVtDZuIE/\nW7iG/1h6Bd37paDjAn7ttLhmonnG7MHP2S8ebomTZQo/PHcDPxr18dxSA30cCnHU0751+QzrY05o\n6FBMKGGhNvxCvdXlJwNCCq6+KlTrBdabrdv0ZyAURV3vq9zBprZ26GcmJ+TSSPtZ8WVcfpHnzZ+h\n3buPNmjXmPGZv8xeJ6pMuduHvltDxnckFEG/zxw9JwRPeAE7GlSZ84ebtCN9Cl9hZvbCay+YXmOl\nMu0/9Rwo5cWr2NfuPja9tc0cD7u0DqRDdlIZKQvfr6HLjhAhLs2/CdIk4BbyQvM57Naaqb9Hc+zl\nA0KQ9OR/g+L1Seo3SFM6Hoijqiv00LGQcf0eY+0Wv85QnCPtsto7nPBt0MewfqMUhZAci9umIUR9\nZ8Df/WHxgDbwd1EPNuzzcV21Pmk3HT6qifPRJ26WkPiIhLwbuCdrIetFV4gXt2x7wlviHWITffU3\n5OL+sX5vTH4zjof0t605IBop80nfXiFl/F7mYlXPHYkj67AhnqGm1nYXz2sJEVrWejMU8qjY+XK/\nb+J63+a+nJnQ0QtXl/k+xB7saE8Q1330slfg/9Uqe6JADBu/uLzyt55fOcYHNJsM9PZn2Mlhk/ty\nM1+sG/3ewO7fe2yP38HPnHtFe/cN5tP2BvN74RR+pCp0z3FTSPEt3vXoXRDOXb3jzNf4rXh4n/s/\nfp/fLqkQqJ78FLrf2kVl7pJkAAAgAElEQVQHyYhQmMvighFadespv/Eq8qdV8RwtnbvGc86iK4+f\n+8sF2r32Kb/5Bi36npsXQk/oq3KFvdXqBfx5OCCU6tIEuY5tP97i/cUD1kaPuM8GMcbwkrjFfNpD\nNJ9q76Y9xKCFrXk+x9j/cnGQMo444ogjjjjiiCOOOOKII4444ogjz0CeKVJmUiUoIvblaE5wCkUP\nAzqf9+H78GZMqdxSc1vnDA+IzF1cJTPSK3FfSWd1X36ZDERVUWG/Iu39EBGtsDIRPnG9XFokAjhW\nJYUn4ppYVpasKgbrh/fJCKfFgdAPEkUOJ4mM7d/fMDMzl5fo5SQSWO0Rrbw4R7uGOks7rYz4wtfI\nHJSUlYyLM6d8SMR/NCDKvCrW+m6a96UjREdXzxBjq9bI1HaOiA4/enjLrpwjK+saEp30NHU+NqYz\nlorepcR87xJ/zlGId5w9t2xmZvc/gnvk3h0+14XEyGyQHfIoY7mjCG0wgokd3SdqOR8iCnlSmb1N\ndt59kajm0iUi7z/X2dHWBuip2UvYwN734RH5zibXTVANjyNEOR/8NdmlUp+I/Hd9RG/fd5MBdD0H\nJ8uDdaK53vtfNzOz03U4ZJKn0PWxm/4s+79qZmZvHTPWvhTR4efd6Oe2h+dfEpfPTAQ+oicpMiA/\nfZ+x9V9VJQqd9f/Wu0Swy13GsJcier3/29jw8vdAknz0mxu89y+ZQ4UO7XT/kGzU1859xczMdqNw\n1Xy9yNzY3iUKflbZsb98BWTNzU+ZA3+hDHPtx7Qzm2N8f6iqUHmhvNzrtK+1/hdmZnb52htmZjYa\n0c+f51VBQ+f9Z8TLsbzO8wslIv+Hl7CT8Az2U/z+ybmHHjwEPbT5CRH0xstU1lpYJLPXiuv88RQR\n/eKYs7C1oNjXdX57Osx8TqsCVT/N/Myl8A8t8SWVxQEz8jCmzQ5j9qRN9mLrEbZWSpLxHKtCwKkM\n8/ZhWciJQ64vKrvTKU1Y73ne/Aq679VURcSnCmRt2pc7TT9CLfFTiN29n+ez+kQcBxH0kLvB88ay\n/cPGpDoGtpOY53O0znvKYbJ15QFjtfmYfq13xBFRxs+cuUqmwuejfx2j/dUqPsD7RGgJIQqbQlNU\nhQCs7tO/wlicN8pse9P4ikic++PTOi+d09ll35fLcKcD2FRzA5sLKsPTHaCHXoDxDB2q+keM/rU6\n2MUEMTMQR0IvpTPTLlXp0FnqREVVA9Pi65IeElrX2qpc1oruq5/ib+q0baCqdcNd3t1X1R+X+Hum\n51WVJ6Kxkl+pH6u6nrirOiWdg84IQaNqTiNxfPkOhbyoKhOq53h6rHHDBLru5/Bn4bL4N8QF0FOW\nyutjbpR0v78+qXok3rOMKk8VuW/spx9h8VEMlbFMKZN5INRrQzwW1ST3ZZrifUtgw92+ECNCavb2\n6EdgIA6boCpg5b5c3skz2Yuo0sKRxi6kiolz4ktavIp/7bxLRbUnQkzOC30Qn8d/5yemoeoqD7ZV\nBWkH39A6J+6A0+wx2gWygwd7vLdRZc2PCuUQPIe+CkIcVo65L5db+LwPubNpq27Kvz7iulie8cyd\n4fqKoKvDx3zvWppUqMMWK5viwdplr3Nxdpn+3eRzfFe2rSqNO4/ZB9QD9Ds7y/uSp3MmN2LdPcbw\nWNXKYqq80hAXV1RZ96DQtgL6WU+5w7qP+6djICJ8V/ADB7ew0f0ybc4MhS44z1q/UMTv7O9smJlZ\n8xh/k18V+lU8EyeVsHg7KuIVKtzFFmtCaAT97J32P2HtL1YYy/lVbCYjxMXiOfYSPlRpd26pCqC4\n0bzz+KfHP1P/tlk3Zk5jC0vPL5uZWVao2w/efZvrNhiLmSUQmlcvgZKKRbDNuqpfbd2jqtLmFr6m\nqzntE6IlK/RTapkx3Vhj7b/7GQhJUTBYZ4DNaNts2TPct/oCc8Uln+YVCsArVIQNmQtH+9hgOott\nJ8UjUtjdoJ0P2Ye3xFdiykynVK0qfZH3FbfQ08Zd2hedYxzGCZVpNbPDVtmOd7jOrUy5hRiAuz/H\nlvcbGF48j6+cW1a1wS+KOP29klD1s3FIe4f6pHoSOnAZffD4hBSRLicVZ2pCNI61X/eqgpVpr9Dr\noLtAQFXsVDFy0MIGO1rjvaq0JaCJed3oLKjqQm5V8ppwt8TD4uASJHGkioNV8WPEBa2LqQpTuye+\ntAkXYQ+/HxMv35TQBpMqUBP+op54fqJCZdXdzKEj6cmt6nNh+dOY0ErlImPTV2W2mLjKSkLuVFqM\nbSKo6lEh9ioJ6SEZ5zefR3u4SlF+rIKfrXWwsSm9N5GgH0MhexJCJMVnNB767djtsodIiy/upHJU\noT8l2fr0DL/TfEIcPfqUffnxZ+yVYgnGr6/fzjMLy2ZmNr/CHJ/JMFeffgSv08ZdISJFdTMjfpT8\nPL4xMClXZWafvvfQasdlWz7F6YFLQsSsP2ZemJBzUSEM9z7m2aUt+l7qSyctxvLMSzwnJX7Kz27x\nmyorrppz1/l+UuXNUxOH4hJ96h1h4+++h1+riRNrNc/3+ZvMz/l5fuNNiJu2P+Z3wMM7H5iZWVBj\ndOEVkOod76RaJmOfucr+OCvd1YRGqh4eqn/yy9qHL7zIb82FBfxLVxUH09rTfPZz/M+ROLJmL+A/\nLKqTPeJl+7vEQco44ogjjjjiiCOOOOKII4444ogjjjwDeaZImZbOI1crRKQ6h6oFPyKi1GsRtS2I\njf7sWTKy0zqbvzVSffQ42S0bEXVcjRA5W32O7NE774K06Ysl2a/zdzuqhz6dJzqZmuf6gtjtu+K4\nCUWJoB2qTEZMrPFnLnIG7VCVe+JuIoAtZXquXgb5UqzTzv6aas+r4oFHjOalmqLbZTIC6w+JimaE\noDl/lahmp8r1779DBLCqzEB7kaiyXwdVjyeVOAZE5DbWtu3MLM/wqjpC7bFqwSsDWunShrtqy0CR\n7IAY9ccJnTUVV8rpeaKFI/FJ5KfJ+nSOiap2dYb03ClVrNL5XMuio5NKZ4Zo7OllopnJddox8IPE\neM2NTXwyIuKev0R/ajP0Y/cjdH5qhC2t3KR9wy3QFLcO+f5mhOzazns8/9Mm5yBnF7GZ9APG+vuP\nOS95acD9o3n+n6wRtU1dI865NuKc8osexujoKdm9e1fpz+IPGdsZseR797G13Wn09MlrcfsDM6v+\nxss8/60f8v1zZJ+2LgvddYeob1pVj554VXXjH5D9+ss/w7ZPz/yBmZk9IvBuhTNwyTz6kPH5jqq1\nfLQK0uhKV+e+HzD+t+Jk1W58AP/KUh37+D9fA91wXdU+xvfgmJlO89xyi0zFyw+xk/+rp3Puhv18\n+zWeu9PieS/+AFs+e4U5+7/a3y9hsZ1Xjxjze2/rTOspIdy8+ItTAXQx1ryriqejPmCM1raEWAkw\nX1v76DCzwHzfEWv85Ox+RJHxgKqlTaoELS7Sd6+Xsa2IC6o3y1iFm/TxYo5MRENZsXYCXdeVrXEN\n+X+1jJ9sR1UVToz93U953ilxvwRUQiGuyjhel7L96/iV7R3um18VakJcCLtHZCqbblUn2uLznJIo\nU+fFXSPUgE9llpqq9tHq6py7MrFZcelc+wo2ml3munVVh5oUBzklPqHulCorqOJCcVeIJJ3LL1Rp\nf9TPOE9PSpDFvuAKOImMxDOSEPdLR1Wpij1xxcyK30SZZK8yLH4dvG8di9tgmnF3TzjGlOqOK3sX\n8qh94g9IjrCHjTrPiRifOs5vsUlmOpCwptA2xx7GbuxSxZZ92hLSkp07K+4WD2MZ6LFm9ktcF6no\nDPoEaSe0VtTF94mxKk5VZJviZyuKy8CtSlRZZdJcyoL1++LJ8bImDlUVyddQNaQq60pXxA1zQmAW\nY+LR6U4qq2BzXRfrSWQaHcVNuleWbFjhvkZXVZrCzPG5kDKeCd7j09hExqr60xPXWeuLyisnEbcy\nz4kec3fgZ85vP8JHZFT1KCkUQU48FsXboDRqj/HvPhd/DwoF5V1CX7N7PG//Ae2sfszeYeoN9izT\nl7mvuUPmdn9TVQH1vtkkPuxok/vX5aOC2dnP+zCXj1rnGL21jlgPDzfYC8w/zx4nOSP+rDUQncUH\n7DnOvQyCckl7ocfvkPVbe8rnuRtkN2fOsJ/oqYpjvaaqTlvsfTxtofdyYxtNstXiO4ipqk21zme0\ngE4z57Uv0p5i1BefkFsI5yJjXpuhL8FTrNmJHXTfuoNOtp6gu6tTZI/T5/A/1R10eSw0WTKJv44K\niXdSqZWZ51vqx4S3YmYOnaRneF88gK2fScCNlZhRBZsi/u1AaNHS2oaZmT3+mAqJ6SzXdcZCl6Xw\nN1cusJ9cPI/fbPfQy/0HLOq7D1X58iztWBHqdyzI0c9/AN9eVwjJ8IQjJcAcT5zBVs+eQa/xNLbW\nEY9I4Q56HagK1OpV8fGJ+9E3mlQaQp8hcTs8vIft9IQojY0Z56Ntxu1I66orzBy4v8t7Nj9gbzAc\nTyqDsl6uyFdExLnY2MT2PnuXPY07rfV1cdnMzDxjIWzM7OjhI6ur+klGfFt9VQELil/x5ZvYTUZz\nu6r+lx5v2knFHVIVH6FaRz7GNO5hLFzy162uqhXVhEBsibNkII4XL+9uqMpo1IeOoxH+PxRJSk0V\nFCOqCBhMo5uMeNLGk6pHAuz0tbaNVVnQ1cMWDwro3jdER2Oh9fNj/caaw1YaQg66VSGspypTUWNu\neLX2eWViY5UH8o6EpNR1fdmeR8+bFFHqyWYHqkBb1PWHWq8iWjMzaVWPC6iCWU2nIoT4N3G+9Nta\nR1v6HSOOHn2YaEQsof1zLs94RVUNy9tjnLpaHwZCLA3GQmH7eW8kcPIKXWZmbo2Hz8945VTBaKwK\nmKMaCpm9wNwIpejvfgUfGBG60Ly075MP2Dc//PE76gc2vHgNZP38qWUzM9tcwxfsF79ACQZbAYtk\nl21xBf/16IEQJ78A4ZLIy/8KzXSgfdrMEs+OeBmriFBV+Vn2+He3mMeDGmO9/A1+s4Wi7M8fvwfa\ndHTEYAxi9Hn9sTgLNTivv0EFXm+f9x/WVRFQfnR3h98iG7c3zMwsM4OuznwT/xuN8f+O/I4oFa2t\naniFkua5kIZNVYCMS8czN/Gn+UuMxYGQ44dP5MefMCbb9/DH00LYLYgbx60yUMPkr96TOEgZRxxx\nxBFHHHHEEUccccQRRxxxxJFnIM8UKRMc6bykzv+FokSWQqrssLhAxC6vc4BnnyPytnZAhGpmpPOM\nqooyrhBp2zjYMDOzH/w5/Bq3PyAqeONlzpRlFW08KJG5zSuL98P/5ftmZtbRef7ANBG6mrgF9oo8\n16XzkQmdy+u1dB5/kjlvkWnwJMgQxYaqca8KRhWdpS3tEmHL+YgYFlX1JWpkLEyM7bWnYhDf1Rns\nIvefvQSao6Os5BNlXGKzZJ6uvgFaY/X6rEWl45rOv0UTREhPX4HfJuwhGrg7IFsTV0Wnozp9v/ch\nGbWDp+KKGYi/55is06WbRD8PIjw3FCDSn06io76XLEZafBEnlV4KncUKcJhs3OL5+UW4Uo6mdO53\njbH0hPn//cf0PZ+E62R3h7GIb2BT7n3QRn1Vafpol+zL9dNE6D/5oc6uzhNpfvprnNF8XdHet4u8\nbyVN/+OnaVdszPXhI6LIdza4vpUlkh96i3YN4nzfWiZjvLHD+e/m/d8yMzPvEtHjpY/5PJyn/eEM\ntpF5Hxv48BzR3NZFMgjx96iC1PnxD8zM7Fu/S9T37idCh6xgi9/IgMD50T9gbm1WeW71LZAuUzew\nqcD1d3leDe6c29OqhlXYMDOzUwegKNoz6q8LOzh3B9s++wL29D1lPGbn0H/kx+iz8CHR7/M6E/zW\niGizL6NM/wlk5UUi2OE488gjxv+haV4KBbDXUvULcUtlPNhKTlmIiA+/4AoRqy40+H9GZ9LPzpIR\nSMbxF/tt8VaoMkFnyFjMXKaPShja4L4qyiypYtgtMgclt/yAmP1nQ6po01bkvYfNLMhfJXU+PT1N\nxvDooTIQfu4vC+02OuTFs8p4jmvo3qVqQ8UtsirJJf6eE3fL/BUysfkV8XV0J8gPfEc/ir66qqDm\nUQWIUZn/+9riBalP7hd6o4xfGwmBVK3QjsdCCLl92GAoKDTFMrb4whVxcW1wf13Zs7a4HMz35Sod\neCqq5qFExUD98PvEMVPgM+RnHPritOgOxJYvvpPIDuMe76vyT17ZvhJ/7ybpR65FP1pJVRpTJaKj\nba7vz6HfiHidmosxi9xQ9Yk7fFcoY4vRgKpmVLC1+hh/NZ/jWf427yx2me9VnfWfcNRkOtiQRXlO\nVWtOZBr/PDSeGxozNr6AOKVSPCcclP/aVbZMXASe8/iVsNCg9cfK9E50nKEf87M8v7ArbpqBqmEI\n+bKrdsZmdT68j+7iW/iBQVuIIM3p4Qo2mVa2vCcuAfdTbDqr59bHv7rSwb8uY6GoglH1y4QCeELW\n8NHHG2Zm9oL4p5YX2ZMMtEYfHJJpHiU4h+5VNj66oCziMnPIv4M+ShtcX7rP3mduER9xMMXcLe2x\nzpTvkc1buCjeqyC2XFa2sq8sv5lZ0J2xmJ/vu13xywlNMsxgB4vT+KhDZf/Ln4qjZg79Tuuc/l4G\ne9rZ0l5pGr2kcqxXs+rP3iZzoym04lGdcQu34xa4oLVEPBHRc9oHfcw1LVXDC2Xoc1pZ41qnoD6o\nkkucNoZq2i/mmL+zU/Tp/joTtloQV9UuNh5foI2xaWzK9YT31YSI9l/+go/nJNJQZtWEpF44iw34\nxUmQXVTVjpa4CVR17vaPQXDWy/QrEmHMuse0OzWLDayqclX0Cu0el1TJTCjngydCVG+QGT56gu3P\nrqK/FVXnHIvb4YEqOI7kb597CRSsyydb20VfkZTQb9qj7YtLYe0z0F8doaEWtWdcvgCipC703NED\n9FISaqOv6oS1ffQ8d5q9kQCg1vPRnuxZbHFB+/u+uG3is6x3+eUbZmZ25goIoWYbve7fYk7ubWOj\ngQx6v/pt0Lwhcc88+BC9m5l1jvqWzKhCUJw5OVQmfuEy7/do3/1IyKXKnhBCQjGeRBpV9lmP1ph/\nJi6umSntQ4Xu9Rs6iKoaalsVaTJjcdGIj2mo3wxucaNEVPnF1aVNQ88EMTHhy+D6Slfzssq+raFq\npCMheeaEHvD1VKGyzxi2tF8LCilZlr8PNoQq0nv8IivxZLHVTnnCiYN/q+wzlqO+OGCEBk6oWlHS\nL7RrBptLis+vNxDiRDw+tZH43lJCbo643iNev76qAOaTmjOqntf0CoGkqlUe/eQNC4najfD+WSFf\nXHGu76vCYu1IejP0ORBy5bDG8wPil4oPuW40+wV/0UnEFeb+qSztGY2ZM40jobWPVE1RaLz97mRT\nIg61ReZ8YY2TA7uf4RviqlR35g32+S5xpD0RF+hnt/AJV5+7+XlbcheXrbVRsK1H7CsL69huRFXW\nrlzFr/gmVd6C+NMzi8zf4q44DIWa+uwdUDt3d3hndhHknQ0Yw1s/+amZmZU3VCVU+/BJheCA9h6X\nL+NvOuJB/ekPuS8r/jfXHPPWXcUm51bxM+dfp+8DNzZ5+ydUNhy5VKlR/ichNJRrjP9LiCu2a/R7\naZV2j7SO1D/Dn9x7GwTRXA5/PerR71SEPdKcqjkNZHsNIXo8w18ddnGQMo444ogjjjjiiCOOOOKI\nI4444ogjz0CeKVKm7SciVqopCqoa752mzniJYXznCRHrNWU4Nnbh3ZhRRrWjaiXHFZ4zdZpo9EyM\nCNfCOTLcGZ27Lm4q8t1XjfoMka2sopLe54j8Rc8qwxLg76d9/H0s5vStOx+bmdnbPyIiuHCBDER/\nwPW3emSxSs0JKz8RuYMDIvN1MZYv3iTS5i8RvV5OE/nbbqCH9oGqpMzQnuwcUeyFy2SrtvbIIF3P\nxv9Wf+7pbFtw2LPeMVHMRAQd7DzmO1+QiL5H1TZaFdrUyYkLQGMyFyWjmlzl733Vbn8q/htfDmRG\nMKTsuc70KwFqB1uqFGU856TSWifauO0hohybpu/dlzfMzKyts/MXPyW6eX8GBEZS56UbVVAFl7uq\nGjUkGvvGiDGZUWb33gu/oB/v0a/IPLbXXSKK636TaKuvRdbG/Srt2NpgzH73Enr66TrRWl+e/t54\nil5/cQNkztjD/Ze3iajHyny/7SNb99ui+K+0qTr1v89hGzdmyDY9fVNnjX3Y4Bt1smSFDcb18Ygq\nS/Xh62ZmFv1zbPSaeD4Gs4zPu31s5aWnOseewg6aU4zbyi1VJvoN3jP9r95CnxXaOdXmur0b9GP+\nB8y5h98VR8Ec2UDPmHa9+jPed7uvak1+sllXOyCooteJ+Fd2Of857J4cKTPUWdBYj8/8DG3sKlt/\nikC7dcWnUdxn7APKhhSUCSuq4pRbN7p82EJ1l2zy2iMyB7Niuq+UVBFmlnnZ2uD7UEJVepL4gX1V\njkkdM1br++KRiDAXPDqjn1KFK9+MeEH8PKepEi6Ht/B74Wl0Phzy/VRK7y/hn3qCgkz6GfaQMb1+\nGdsfuMlajX1Mzo/vM2d8yloFxF1T3cXvuHIgVvo6fz4okI1JBMnGHB7wfJcOrB/WsOGgEEfFNTKa\nKy/pLPGymZnZqIQt7lXxX/Vj/HEjTP9rY/y9qyn0wxn6GRWfiF8InpOKe8T7uqr04FdluLjx90FG\n4zYQmqOMrba1HgVKfDaztM+r8/x+U+a/pPPyykjXF+l/KISeTMiirNYPVw0bbwghlLaBJeNka2ZU\nWSY5ZA15qmo6wYCqMfV4xtIV/En2G9hE+RHZ7dImbe3Ifw+P6HMprIphbiFPvPifeJK/V5qqilRW\n5awYfiEkxOM4LL+l8+C+c3yGg+ikeZ+x2mwxdknxO4SWsL2ZTbJw258o+19VpR2dQx/N07/pVWyu\nqaoX9acbZmbmUVWPgzJzyjeHvoJp2hfuqgLiPjofhr4cX0irp8oIblUjVKWv6j6+pSwumEdZbPby\nNfzW8hX2Iu33mNs1VYB0JfGv55PsDdLimGllWVc2NhjX/cfoJZqjPwvLrO3VRwW9nzk3rapOs6pA\nUf0EPR9tdz7vQy/YtXSc/jfG2M/+IfYQ7/HeXILvZ3K0Z1NIoO3bZFAvfxs/nLsGErL4C/z02iMy\nsmd0ID/pk71OyZcqg1s8Zk/W3RlZTZVCUivYeV5VNEtRzbc1IeHm+IzNqbqSEGbHmyBCRkXmZVF/\nj04JhbTM9dENdFQ8QBdPN+jTuRzvyy9gU+NNbLsmv+VZjNqXkaGy6fNp1uYFcda0WvS5psqTm6qm\ndLyHTYzi9HdZGdSY0FaDuNaNkHhHzuT0PCG/tVcrrjPWA3GkTHgwzl8AKbryIv7VI4Tjx++QGW4K\nhbH6At/HtD/c+RC9VvawCR9DbR2hBvpFbDOVY+3Oi88uc57+jqrM2fVfYLtN6T+Yov3+CHq/8S36\nO7OATe8ccH03zHWnLrBH84kbcutQiEWtL/lp9HSwxZx7cI+9VHdHyEWhPa5c5/kRlfu6/QEo46OP\neJ+Z2cDVt8gUvwuCEfk+ra/DohDn4ug5uKvKonkUnVIFyZMJNjWOYKu1MmPmE+qrp7UoEeLv7hi6\nmlZ2fjDCb7tVGdKGQucL8d4VatQlxIfHPynzJq6WoVALVb4Piwul5xYXjThjRkJ/dgLYbjLAXIov\nqzJZT9+rPZ4O/trt5zke8cuZ9gZ+oa3aQhGPjDEbivNkIBSByYYPxY0yAaP6VEHHr71PUJV+4uIB\n9Ij/razKtduqJhrW9SHBk4MmfYtrJjNNu8YTdJQqb4Xb+JRGj3ZFDb25WhPyHSFT9byy2uMT+sH8\n/L/VEQfMlyvkZr4eet0+YO6Uq0JKzWEP/SDj7FG11nwUW/QnE2o37V8Tqi0p9MiZ59mjhoQYevdN\nKhi5hag9f5o5OStUnplZfWvXtjfWLO7Vby2hmqZ1miC6yBq7d493jYT4aKli7J7W9gmSeuRR9VJx\nQD3/Em0qF5gDI62R18VN5Zvifbv3+Q2REw9b7RB/+vgu8zLR47prN75Ou+s8b3fIWrs4iw2XxBl7\n60PQ/sEoY7Wg6nANjXE6Rb+CYaFPR8z7cFm2HmBN27vFb6md2/zmDcexyUvP0a/tAu1cmGWtn5vH\nH935hPiAW3M1Gf/V642DlHHEEUccccQRRxxxxBFHHHHEEUcceQbyTJEy/Q5RTR0LtKSyYm1lYeID\ncR4kiDhdPEfKe0UM1QvP81kTd8E4SKRqStHa3U/J6pT3JsgVzoL1B2QAlq4S8V+eIbJ2aETExkNi\nVVvrnKUtVHl+XWeIr14jclhVlPP0WSLvL4nboiimb4+ykZtFMiEzYoN2eVRho0HE7574OT7+xZtm\nZrY4QySuckyU+kyc58Sy3P9UZ4r3Vb3q/R+Q3Tp9nehnfg79bT6l/2enT9mR2nAqgy5vvEKG1e8j\nIt5qoqMDZfVjYaKb4TEmEhDKoKJo33M3iQbmLoqbIILOKkdkT2oNsjp+VWHKL5Fl6Ik9/qRy4XXO\nD3oPv25mZu80iaw/f1+VDGbhAeqGaVdiAGfL/RRpnze20MGjr5CVKUVAUaxfQQ+bFVjKe224XNZv\nkl1LPyHCv+mhH79zhv5+b4Ns/QvH/wf96lGF6UmVLFxDWbS8qhMd/Ca2tnKPMXxvBCLnxmU4Wv5U\nHDn9PfT0Z8b7MkeqLqIzxB+0sYmvxLG5d0a/zfMv8b7VI+ZCcJ3xuKQzpZ+uwtky+j5Zsa0+mdeX\nP6DKxk4XPX1452dmZvb6KRA6jSp6+fjxb5iZ2fFXaPdsTEinAu1OPyZ6fK8ndvgjUGlLOeba7T30\nFQ+RsYhXsNWHLvT/qu93zMxs91Ns+tQF+td6wDieRO59CNLj/s+JSC8naENNXB3Lz9HmlM6+Hh4z\nF7JubHLU0TnlBu8u97Gx/AJjMO1Bl+MwWYtwAxvfPcCWMy5xp2yTle4F0KnHw5yZERohGON9N59j\nTILKROyvY2ttZRR042YAACAASURBVD3KB/z/iYsMwKyy4+4UOhzHhQy8t8FzNOc2akT4Z/NkVSKq\nfNM8UuWaGf5/pGoV/qiqRSlb3lUmulbguh0hZbJCGA599CeQZO4tifMrMlKFh5EqFojnyeuif1v7\nylQKyTQaYDu5ee4/9TzZmrFKLwxa+JwJR09FKLuokIZeVTny9L+oqnES8fmUGfczjsE4/R3ofH8k\nqqyjquOVNRfHT2lHU9k+l5CT7WnGPSKerq7O0Xe6Omfv5vnhMfbgy2FPdWUf3Tpn33OJe+Fp0KZT\n/C1xGrRko8m1wSbv8jbQRaCHzT5+n+zR3iLPdinj10upEkpJfvkSf/eKX6kndOkwgk4zKWy83Wcs\nywUhPtzc31RVkEic9gXEu9BvTngWZANpvUdzpKDMY3A04SRBF6E0a/V4k3bYEbY2fiiOrBz9DytL\n7S9jI80mfrCZ4P3tKmvtTHZSrQL/F51S/8Qzd1JxaUxq4mTIqOrgtCraNA5Ac+zp3H06xhyal7+d\nOc/60vyUbF//Efqrh1gH5hdBBSRnmdPeNdpfLDI3FlXJMazqKVGt+W1VHekfMw5KmFp0UhVFfB9m\nZqNB14aqauKVbbuVlaw/0h7pGnryi3fKjsl+Hh2oCotQgelTmuuqsLN9l/uPXWQlPWnak8wyl315\n2u2qUA2wUKpaV7xq3QR9dCWZR3FV7NsTR96h0E8eIQazp7Gl4zJ9aGyj+54q2Yxy6Nw9x/Mi4stp\nVlU9o4NuBwfimxMKLTKDX6qJu8DqX65iylQOWwgIhVXcw+9XVLmyVUcnu3voalJF86Kq+vi05zre\npZ174pTJRplL5fvoo3C4YWZmpU3mxvxpxmrmDM/xmngtsoxlW1X6br/D2n2kqn/XXxNCRnwXWx8x\nh3aF9Mwt8dyl86qo2RaqwY8fb/ZUrUk8gsd3WKs3HwpRovV0YYE5evoK6+/Et8TEZ7ErNNa9O9w3\nt8oewOdifNc/4/vDD/n0ilOiWcAOnjxkL9fzMUcvfp09bEw+ZyiE0J1ffKrnqYrp7BeVya598zVL\nhmhXUdxmhQf0p6bKaHvyfdklbHrueSF5Kiffu8ZjrGHnXctmZnYcEhLQrTWrLZ45ccEER0Ku+HlH\n36UKj6JN8wb4kdQqY9N9IWiG2lc1hb4d6DdULM33SSHgfUF0mXCz9o6b4qxRpdugKmKNxeVSV1We\nnZL8oFCv44QqXaryV6GOjblb3JcRgjIe0joxK1SVuu2bIMGFSqoI0ZN3ab+bZO4HpBevuGxcQ61n\nqmwYFj/d9JTW7rj2BkMhI4UW9g3Q63GDObazIwS3m/Zm49qfqirWQFWqAuL/9KiS7qwbnxHtoYeR\nfgf5J2u5Bz1M+7/cetPoMLeGQh5Nq6JvyM/7muIXnM/hf0dRcfXsYge760LI9NHb4nPs5Y7lx/e3\nxe2lSpHnX2RudvVbd+Md/LT93nft7psP7NSpnK1cZI3umyoqyl8ffsJ8ui8EXnQe3dfKvLunfXAo\nGtf/0eXilWXa4GGM19a435/BJr3zPP/Re3C/jvw8J278ptq6y2+XmKCBmef5reEReuv+Pb4fjlt6\nP9c9+RzRzRy58U3Q+c0iY+bqsobn8+hsf405tPsuiHR/HtsorDG2O+Kumlnl/fMX6Vetw76y1hKy\nro+/efABnDO7JdaH6xOur78HvOsgZRxxxBFHHHHEEUccccQRRxxxxBFHnoE8U6RMOEwGJSv+j06b\nqOm6OBzm54k4dYdE5CqKEheUOfXrTNd2HU6IA1VqiFwlk9GuExHLZ1VDPkbkrVDdoAE9QlbvvfMj\nniMW+oUzRMIUDLalVSLl/XUi9U+2yYC4lGEJe4jMba8RmbujM6/+/5u9N/uO68rOPE/M8xwIBOaJ\nAEiCk0SJSokaMlOpdJbLdmU5u7rrpVf36qdeq/+rfuruWi67bJfTzkwrJaVmSiLFCSAxjwEEYp7n\n6IffF1Ivr3YafNLLPS8ggYh779lnn33O3fs735cm01YUc7Y/BpKmJ+WJ2SmuO62ztN1rQrqI/2Ov\nz3N64mRJm6r81HXOcWaOz1+6zv9Xl6+rn9glnuYM8PX5OXPvC1AEEbF1nzzm2vlzsnnDLq6wX6BK\nPzfHs9nENl4rkw3c3EQFqUsy02wfU/UIie9hcYLMeDQOemhSmvc1nTF3Nl9MMeX9Bvd/N05GeDbH\n/49KVL1ePeK5c3f/vTHGmHoD9aBUBJTTvu09njNFf/78NyBCfvMeVbc/yf+JMcaYjZv0r/g7wbaC\nZOiv7FH9efKQqtzgXThbYj1s/0GOs5p3pdxTbIoXpIAPf30MwubmNBnqd6P47t9u83zzcTLawymy\nrJdPGOPNiU+MMf/Z3HmoiscE/f6nmz83xhjjzGDP4SG+VFAFtfE6v//9I5x31YnPtuZAnvz8kZA3\nnr8yxhjTXhI3QADVpvoZ/T6u0w+n46+xkzhk/nGPLHomSJb550cwnI+/S//Ht6jSff0Zv/el6dfz\nFudGx6J8f2WOuX+eZ648bGOfcHfPGGPMqzZ89yItOcOzjs7ML0xIyeqIedp08GxLC9w7FCOe+MQb\n0Rsh0RL8/rhJxcxrp7qcOSe+GFW/EopLASFdklLdOMsyd2xuVSGOxEWiKoV3k+qyRDFMIsD3h1I4\nC63RZ69UmOZ19rTUwyftLSF1nEKfiXdibl4M/DmqNFEv89/uFfKwK2RPAZ/PqHLsbfC59BT9aegs\n/uWYquhS/Am6iZ+tChn/8wMpEfj5//YGZ/cXJ7Dvs33ZoaXz4ONczynlgE6f53zwkIqJU9QwRR3I\njkg5ZiIFgrFWpqo4Ogfe60mZwK3z7Bds/TrPU+lx/abOCjt0Ljz+DnH2zl34mLpCGq0//AdjjDG5\nb0F/9VRljOjsdVUKScUNYmNN5+KPcvSnPc/fF4QmG3E6tLo6d1/Dno1u2Wyfcu1hmrFtpHhWj5S6\nnDrH3RT3V/45PuWq4OM9ITtCTpysW2F+t4RYtDXEcyPKpoGXeHS2TNUq1McnOoOIvk/Fsc4QmKGU\nSzoefLapCqk9zHO5Q1T+Olo826dSx5ByQjsm/hyt+Q3FraIQPdUMn7cJEeNexDf94lkaVKSu0eH+\nNsP9zgx2mg/hk3bD8w+cL7bF6RrsVFVltdFQrJiimha7go8c7zDWx7tU91xT3Cd2S9xrbfGhPGSu\n5TeEgIwSK0JS6AlLRarwnM8fbHHflduq0ifYs2yIE6YipOO4+C1sQq0Vq99zytTrbRNIYC+fD7v4\nB1LIEX9W4BLPMT4npYkMMWT9EVXCo2esT9fixO3pRVAUjRzrdy2jDUBe6k+S1EnOcJ3kCr5e+Wbd\n5HLE0XCeeDwZo0/eJM/uPcMHTrLYyDnDWjs7zrPH5pgL/cxIzQcb5HfwhaUIPpJOYfuGbFhWNT5/\nypo4FlVciwgxkxupYTjMi7RBh/jz7IgKbVt7pL5LVXZV91MrjNH1a6jaOfz4+LPHoEuPxZHoVTyz\nT4OAsYvjKuTF11bf4fdj4topnWPHg0PmgL9MPyvH4hlRNf+Nn4DIjM8Sl/eegt7KfaekJS7FSe1t\nFE4L2oPs7e9xPfF32FRx7jlG6kX8/84qFehRlV/LlTnbJTZljlkPTsVF4Z9hXOML3PdA4/n4E6r2\nYfGjrK1KFUvrweQl5kRM3BYu8RfmN9iLHO0JddAm1lx/C16k1VvsLYwxJhQPmA0hcQ6k6Bkd8bEI\nOfrKz0ELJ2ewt91O/08Ku+bCrcazmBY+ERJfm098brbIiBuGNbfXxUf3t/Q9oTIjQrq5dNmB4mpU\nKkQVcYU1xGNWK/KzUxXKKKDNhtbcsHjQhlKcjQx4Ppf2HN0hc2HEoRJ1ix9EUJdieaD/B/TcUmGS\noqXDPkL6aE81OgZhuF+tzf2j4nNzCk0R9HPfdkVoMRe+XaoJcaPnj4gXxCuumJjevariN6oo7rrk\nozWdeujqtaNSYyHTMJhhSxwy3+0FRjx14sTqEptGe4G+UF12radDJ9/zOxmhlvvFTgJEpKxp9/Iz\n5KM/x1KTNUJhFIXAz68z9/O7zBmv5vCll3nfarTkTxli7qUFfh8Jske2CV23/TtiQc/x/R5q7cqC\nmVm6ZPphfpc7wd9PnrGHb1bwLY/2ySuvMu8d2tBGo+Jmksqkd0lrppDYTx/yLrJ3ssf91lBDbpwK\nsezmOstSW2qLi7XnEYfXCnEwGSAebD3lep4hf18UN83Qxd9bNeKPL0S8zwhV++gD3nknk/P8vsN1\nNp6w5nl9+OTSZdYwp8Z0EGR/fukG8WRvB0Re9kjI+zDxwqF9tykxFldmeC8JK57khWr715qFlLGa\n1axmNatZzWpWs5rVrGY1q1nNalb7AdoPipTpqeJri5FF9k+R4VpNkSmLiL/i+BtQB7kdqjK5DJkp\nh5+sn1es9YvKoKfFtu+sk9lrKrs8c5NMfv0puajkJTJ+I7Wn6dep8gQ9ZNa++opMWErnv40BbZGw\nkREcTiurrIqLzU5m7No1zrpeepWM2gNVkl0tMvE70ogPqcrVV5VzbIrnm1EV7SBLZXt2QZw3New1\nrvP700ucUbN7pFwjBM9BDnudHVGh2Pz6scmekDXsihcnoyqIPcK93vsLqip7Fe45I2WAj8TLk5oF\n8fHK9E+MMcZE/cq4O8koX5bCVa1PZnykkHWic32VXcZuLP4iDPbG/Kqh83/3ec5nFSp9V4M6q3ob\npEXeD8O2vURVynQY04yLzLn7Cf39bYiq2psFsp8fT6rC+1DZUy8+lGvDFXPVRbb4vwSFCOpSRbnX\nwrcuKyP/zaeM7e23scv+hrKsr1JRvF/6e2OMMXdP4Wj52Qpj+FHmx8YYY2a3yHxXfGRVr3XxCfcr\nvzbGGPPPByBZxmx8bnqPcRl7A0RK8xvmREKV8RMHPjd8yJyyHZGF/uZ1qmnhOlWklSfY7w91rrcf\nZ05M32LOfD4m1IVTyjyPqAi4VsVTUgd5NFHT+f84/nAriC/Otfn9vctC7qgq+JkkeALPqI5dnyXL\nXdnBfpnJ7yu//1YbW6QaEOiIDf0yPpAJ4ctfS73j8/tkwhslft8rYpNxqWh4lCGvJJgjl1fJzHej\n2HyYwZfu72AzvxBvXSFqErOqAi3jY46yFMB6xCm31Hk6YqsPRqXGJp6kw2MqeNu1PWOMMTGH0AtL\n83y/zVw4zTMH7B5su75D/3a3qfxVBsQDp9SJwqoCTd6mYhpZU9W7hC8ExCNSK1CdaaUY46gqy2NO\n+jkIEAeTN6lwjjiuvFI+GHNT5fHrHHNV6AhHifjYGTDnYlelRtTi8+PLmnN1xrzWwf5JqbQMbFx/\naZ7P9YK67uh8/gWbPco4tZzcx6Fq5pE4BtqnxKjhFrHLpBinGqANU5yhcptSKSMwj9+0tpnjfcMH\nfeeqXA+owql4Zwo+qlXhKZ13bwkVI261an1g2o/EtRJiXjiletScFGO/1HPMMfdsCUFSENomOsu9\ncwGe3eZTZVCVzE6X63S7/L8ufh9vk+pNRD5XT2B7r5TNJKZnGlI8cY1je69Uk0ojPjjNiYjQXw2d\n8S+Ke2Y8Q1Ws78F3/AN+xsU1UN3neVQANfU+Y+acFo+IVDTGz7h/rsb6EhTvW83HuhCu4zP2wIud\n8fc6hDwp4LPnqtZNxYirU9cZw1pDFc28uFxOqNYvX6WaNrbEXqGyjc/nhRY4PGEtn7wyb4wxJilF\notqxfEX8HHb50EB7IyOFr66Qo81pYpVd3A3D7Pfx0laxm24QFEk/rUp5ScinkpBRB9wnoj1X+CYx\nNHyEs5Y2WT+3Y8Satav4/tIMnzuSctiIC6d8ROywS20rrupo+WrJNITQyJ9LgXGF+W+LY8NGij7Y\n+4xh5Yw1txwljk8tcK3hPn06kFJJ/hnzdXZG+ych0LIJbNo7YOwqUvdMiJfJ4cV3ukJQ9+0vJplS\n1Bj1i1xvbhmbOMQx05MCjM872iPxc/s+qKqTA3EPiMvwkhAjUXEllkpSE1SFuKs4PlK6zAiBMitU\nckpx+FTVemcXOwW8zPVnX8HL9+Rb9jAp8RXF5ogtNqEhDtYZw2yGn+VTfCA9xeembi6oX0E9H+PX\nFqfjiL8i/5TxOT9iHD12Pj91he8v/og50nIw7rVHQu5I6ezma+wF/OPEoqp8tiUereI+ny8cM/5n\n4qNKCEk095LmoBCxmces9+anxrz/D781LSmRzi+IA0fqMk3xuHRb+MvzXea0XetE6WjEn/VvN7uf\ne3eEAHEpHnWF9rQJieJRHG72+BkZl/qdUJhuI64UL2MUFlppoFe3CRXlqy6um24Sj8ttvm+Tr4fF\n++YQb5FNak49KSbWu/iOX6jRSe3Tuml8rD/kus26kBVDrhNWvHRJhc3Vk3KjkCbNU+J3T+8dkSQ+\nM1K2HOv5dF3WFachvjWEwBxUhUITgmTowq4jxOhwKAinuF0CQugYcdAkhF7rCnGUkCKYMygEjtDS\njrpUCoWQH9TV/zL2sNtG/ZWyotRnW9rbVXWKw5F8sVdq90hcK4+9NvLae2jZWl4Td2eY9aewje/O\nvgTy/cYCpy86Hb7/XPv5SfFYBSaYu0++Yu9rxDs11HvLG++99t2zpK7OmP3dbdPZYi3O1Jg30+Jo\nDd9iDYjPiOs1CeLxq19z7eNdni0hVGnaxZhkt0EYnz0ibi0IAb0gFOzODnEtOksc9OrkyP119kAT\nCe4bieDsB+u835bPmf+pWa5XlVrz1lOQiD0pYs2/KgTloRDo4yAvL99hfTk9Jp7EhACaFFInEJTq\nWwY7tMQ5+c37nAY4ERfsK3d0KsDFnFvfYL2bXeS5vfP8vnhM/yuFP85hZiFlrGY1q1nNalazmtWs\nZjWrWc1qVrOa1X6A9oMiZXRM0JxL0aAkLge7n8fqNcm0j3XJWI29TFZw6RYVXyNN9lZfXCtNqoj3\nvoXno5blBt2GMvgFPvf1far7d+9yvaOqFHKujxQvyLIer0uRID3P823zfE8zVLRDM2TAwqosu8tk\n0vaz3C8rtZF8icze3AooiKQ4Ka4skKE/fMx9zp6SUXz2Fdnl/QzPO+blPifrVK1OdHa2qkrNoCsl\nDJ3vHJ8ig5maIWPpCznNjM6zrd7hZ0iV15afzO+6+CYe3gcxsu4kM5uTssDUONWYM2m7uwrio5ij\nchiZZCwef0ZfI6rCTKh6dFIjkxsLj07HXqx9/gxVpLcKZFNtbirJz0vwUZx8TbbzjTfILz6N8DP3\nDWPwZ7fJivbWpbRjsO2jPuch737CmFbWyNjHj8iQl+bwiadDMtdjgV8aY4zJnnL9+Vk4egoTVHUW\nBvjUN+fY6e6fcl23zn4uH80bY4z56hWypLVTkEWe6d8aY4xZ26Off1P9nTHGmD9fhTvmyx3GdMX+\n3zHI76nuDRfwoef/hC9OTpHd/itVNq7eoyq3tihlhhxVskjtV9jhHt+7/y4V3YgQNQdhssCrBnWn\n6a/p/29v08+fOP+O5xoKoXONOfbhl9zv53H86d4Zc2u9DdrEfYXx+nWNOfCLT7FP/U2QV+Y+KI/s\nOzrf/RH+d5F29Af69tF/R71sb5bsf/oSYz8zrfkwR8bfsyT0QZH5uiAUWFbzfvsIJFujOzq/TfUl\nLlWjSklcUj2pd9Tw8VIF36ke8PuBG1u4dE47Ps1cUdHHjCWpDHSDqoKpUuAqYIPNTcZoeMzcdCou\nVmv8HEuoAuzke6+8R//GUox5VmolZ0JBPH6Az+YHPH9X57uXAnz/cI+KQUjPW9f59KdFKobr53vc\nT5UQ5yEd6TjxgVICH7Sp8HzzLkg+d4849WibOezoq8rk4vMFqU61Hfy+o2rUCGFUU+X8yYaUGqaJ\nYZrKF27VnhTAXFJLqWG/gIfxKmSw6/0uqLuuzgaHIjpXXsFe1aFQK9NSzNA6MLZFhbrSZR1KFIn/\nPVVai0N8PhiXatVVITC/Bc3Q8Z+avip/R/e5dvoV4s1I0cqhNa0uVJf3CJ91unWmXujTiKZRZ5zP\nB4v4hKuNT/uy9Lkc5H7tTXy3tjaqTGqMwtgguoPte07GfCBOmm6K50zWsVHNh+/0pNbhOGMMfYdS\nNQpzf1EsGJvQCj5xotgHQsWKJ8NToj8uocIGqiTbx3hev5A31Qr9CRgpoYl7wBUaIU0u1nzilfBJ\nneJMcy84hv1nLuH7yVXQEc1viRWnD8RnJ2TT5TF8tHGdz598wnpysguqLb7IOhic4zqJTZ4/f8p1\nylJgm1rEVw4msENBCM9EkecbC7IONHc2v+tD6TBrZpL4Vlx8To0c49yVwlF7EzRDa5zPpaUg2V4g\nZn6bATl5JO65RErIJvF6pJtSIWkJtXImPsBtxiV0nXFamJs3daFvcpv0rZ1mbGNSA4pnRvGKeVMX\nkiE3xTydThJ3I1fYL0WkIFaoE9c2M8y/lQkqnHEhV/JZvl+UKkawzhhOxKV4c4ivuqP/hhzGv2h2\nuVQ6zH5xRvu5owP2ZyNFMImwmdIu/6hIZerSPHExusrz2IWsyQmddSDVzMqReKTki0HNvbkZ9jyp\nRda1gri+jtZZq30eqfrlsXvtVGqjQopfuY2dPD6hW7f2jDHGdMV9GBbXWeoV7rN6k34aoQPyJ6wT\n6/dZd8tNArFDaIJCE18d01y5vEhV3z9GzKq1uc+jj/h+5ZQ5Nn9Tn0uwFynsUVk+eI5dq8fET+eI\ni03otZff/Sn2nGB97Ql5evCUdetUHDrG/B8m1LOb62/AZTF9g73J2Q4+vPE16+MIDNIVCnA8RcU7\nGvKYi7aSqvbZE3y9qXedEceKq6L4JNS7TawxIT/O1RbXS1F8HbYcn6s4sZVD6KOYoBa+gN4BhLBJ\n2YjLrQE3bhr+XzkYnR7gOl6hD5IOrtMWV0tbvHhGADy7TZw4Ue7TEyLGbefnYMjcdYhrJT5g/peT\nUrSVotdgxDWj9WugbV7YzoLVFBp43I3vTDTEnSikdkPIyYG4KXsuxZAQ9hGFjwkOhcDpMIZujYfd\nNxpD7F3u0EGnk/uGFdfqQnFFQ0JPiQOn2ubvzorur/FzxMR/lbz4vtUYY5pFjfMhMS8gJbXpNXxz\nfAK77IjjqyceujGhOA7O8fHte5qLIfECzuPjmUPeKdtd3psuX2f/7R3Q/3b/e4Tl1//0W+OKB82c\nuE192l95pXLntvOd033i+NkX3PvhH1A/XVxhHz1zk2cPyXaP1lkjw0HWmuXbUlbtY8NKbaBnwpab\n96SSfK79+Q3e98+lOPX5A5B/c5fmjTHGxC4Rf08z9DEU4/+XF+nHUMrAuQOpPiWZIx2hTvNlzYUx\nIab9xKfTpvhUS4rrWT1niDnzyqt3jTHGpCawz/0POZ0gmiGTFpfXWVtoX6lzBsb0AvCvNAspYzWr\nWc1qVrOa1axmNatZzWpWs5rVrPYDtB8UKePr6vyemMfTS6AHnGK47udIOcUCOmepCsrHz6TaEeFz\nbVXHPBEya34nVZ13/hT+j2aFv7u8YvyeIQv6mioBzi/J9I0Hyc72ZZbXV/h+wJCBP+lSvbIXycj5\nr1BxcAWVdc1Jxzwo9aMYVaepcSo93SFZzKYYsMNCq/hyZD2DDjJw4dq8McaYy6/y92GTDGIiyn0u\nvwNKodrHbnZlce1uVVdVfSxIIKFTLZvSEdWU3/x3spvFMtm7eWm+D/NkYid1DvrGrTeNMcbUdDYz\npbOc249QN6qLayRzSp8zQvVkzsiivvX2/8wzDpWpH4jZuvZiSgdX36ay+NkhSA2nh+c+KHP/6zqn\n3neRrQw82DPGGFOuMHbtfyDrOjTY+OgOtuqnyYb+xgcaYVyFxtzrXH/qIbxAqUnGvjNg7G+5qeQe\nPxJbvvgyxpThHwaxwz9v8Xw/miab2nv6CX8/Ig86E6fK1fr0XWOMMZttnbcs8lz/LXhg/rMx5k9O\nyC7bxuj/+7OcVyyfMjdW/pxKwNO9V40xxlw7JWO+qIT9P3xBhTSZpCo36/+/jTHGhH/KuCeFvijM\nUk1a2+e5889BvjT+DL9p3+e5v7oj/qcHXO/zV1AueyVFdvrTNebe4kPs7tPZ1UVV1/o7jNNH8zin\n7SP87c6PqaQs3We8m5WLq3RNzWPL67PED4cbnzu3S50iL4Uug69OjWHTms6od8T51ND1AqqWOxtU\nf44OGetHR1QwvWnm4aQ4T4o5+lYU/4a9iK8FQoxRRegE/xV8P6cztkd7e9xXiDrHsfgbXgPF5b4x\nghOoulNVtUcogHIPX6spE59fB4lypiq+V+fWI4JNRMc5Q5881xl7cfDMjom7JshYBIbYyxZlDGbE\nf+E5JsOfHKdy2N7jOnZVZl1S1DkpY+e+qjrlE+Jl+5DKbV3xtbiPz9fPqTLVRSQSVIXFNU08XLxJ\nxWEgCE4gpipbgDl30eaIU3UcFLhOfUz8SEa/P2UcSkL+BKRo0beBfuj6xFuS4udJG7u5HPhLdww/\n1Me+Oyc+4hJquvHHXp34HFnGDyelHNT5bGhqZWwQUPG+/ow+xlXdt4lXpyRv9QthkpfqRTjH5x12\nIVRi+F5cFcKmfKLdpq8RO9etSY6iJtSof8ia5RV3gDvG9RwnOnuv/4fO8aER1sBVlSKVOFCcBcZ8\nkOf6rS42aI3Gepbrh+J8Pvc1c6pdJd72T+lPzY2vuVxU7T0BjZ0qy4kidijmVRkV6moQeDGFLpeH\nnvjF81YfCvUqfoloivUgdo051jnjfjsHe8YYY46+Fbr3NT43P4/v1vYZr+Mz5vjuEf1ZU3Wxuczn\nM4o151KkCS4zDrEEe5MdxY6BEz8YT+CDh+7v+ZWK+awZr/L56BT2rK9ij0Iee/VGKobfEt/948Tl\n+AJz+9I59995yt83N7jvapzqY2AFn01INaRwj+tVDphLmSjfW1pdMenr2KrwG8a+8FTI5ARoorEU\n965nxSMh7pfqHnGjo/mVkhpT/YqQNY+515m4UJKydXBanFoL2Kj1lOuMeB+Shn3ZMCgVttbF+cuM\nMSbql3qaK4IqFwAAIABJREFUEH1b4irbfA5SJTqJjYNp4kFwAhulVaGdVH/PxLdxds660pdsUf4A\n33cKUZiSqlFqlngRdXD/x4+lOrTDmu/wMidmbs0bY4xxhblv+xLPMzlH/NeSbA6+1XrxmDjsjOBD\nQzt2cXno31GFdbAmNcHMU9bojpRsQkJ8z0vFaVEqhcmQVEO1jj79GPuUy+IYqzHek5fo3+wlvl8s\n4Hvr32DXjuZ2eIX+zN5knY/HhZRvaBw+Zx9fknrUUOqrQSEZjTFm7fXXjUMV8UdPWPeff4j9nOrv\nym2QTJ4J7D3hEmpcXJYXaW2h1msl5rNHvGu9AH0Iu7iX26N3EikmOpr4frvJ36N2DVZEaj9efMoh\nvg6n1JQ6fXHCCH3aFAqgp33piDusM5B6kkOqST1s0xLKqS3Uqr0qfqSglAEbQuVrj9MTB01cCE6/\nuMNCircdqd5FhJjpac/ynaSt9jJFIV5y5/IJ7ZWcUgCa9I/reZkT+1l8ySlE5op8Ntvh/6Uqc2qo\ndWs8hI+INs5kc8Sl8qg/UipLh4mXeSGBRvtW24j0RapGdqHCyqP3GvHx+YTqHYwxvhdtfSM/SHKd\n5FVimDPA+rj9gPXkVJygU8vMtYDAuluPQHk50tj/7iu8t8SENtv4lueeXQK90ovgh/eEpHdJVet/\n/d+NcYcS5u5fvm2qe4zFEyFIZu3YcsTFZxNipHCODSfWQNvffpN3HUeSex8/EBIuyx4gvaJ9lNBY\nG3/gVEb+hDmS0H7IH2IMrs/De9nvYKNsmesszGODt/6E0wQ1IQzPNsWHOoNP5or4zK74dBpCvtxZ\nIS7lWqwb9Tzf97j0Hq51qFAWYnubv/uk6jR2jTjlU7z98iGnJEriLvvRz0Hqu+TD5a8Yu4QUzwLh\nP/4ObCFlrGY1q1nNalazmtWsZjWrWc1qVrOa1X6A9sOqLylbm06LS6GnM641MlguadbHkpxj7jXI\nBvbtZJrefgc0R9GQWXcMVdl065yfsqkPPwJd4BPjdyjGdcpF7l+UYoQtr8xYjkx7awdUhN2GmVI6\n7ze3TIUnuTpvjDHmIMvnYuKqiETEWVEh45ZVFa1n01lYj1ic75Op39uETyPgFzeBQ5UeN1niZgE7\n5Ltk7MbdUvh5SKVj5gqVqMMz7nPv99jDJXWXkC1kwmll6FW9j8yQFYyMGPqzZFztqjw+fkwmNS+V\npqHO9DerZKpTb1BNsFV1tlVM/AMxXmf3qQgeHJLpbWVBtIyqVxdt7/8tWc7xgc4H/8e/MMYY43tA\n3zdVjfnF57L9j6R08/cwd2eXQJCczP2DMcaY1x6ITf2ArOfQJpb4viqKj8jWPk+hlpTdYQyn8vw9\n9yYohrQ4Fpo3qXJ9/Y0qGTbQU3/p5vpnX9H/0nWyyu4UmenTHaouZ5fpx2yB8cktcd5y9YOmMb8y\nxj7N5+0FfPAnBdBdX3hBLIU7ZItjE1QDd730pzVJP9/yMc73PiJTXtUZ1o+r+Nh7frK40y18qHSV\n+x98TFb6FQ/2/XUDRFHqa1S6/AtUKV91oHSQTTP+vQ9BBK2nuf/yc6pzW0L4OGbgrHnFUCE2L1Eh\nLkQY37Mu97/mlcrMBZpNvBGL71BBiwWlfKAKV0nnuAvZPWOMMfWqkBJSjbCpelOV+seYF9ucqOI2\nLVWPlo/5OaOqitdHptwuBZy5K9jCZ+fzTql6PNuksphO4RP+BjaxuVRtmuB+W+tUcZ59TFxwJPm7\nVxl60xLPh+Jct0Pmf25RyDgPPhiSesdASlonqni4xS9kL4oLR9W0alFqR058pSflg2abMciLkyB/\nxpj7hvhqR2of9Qa+7BNHTamL7xyWpDwx4P9jMa4/vsSYD6QQsDJLfM+Jk6t1wPPWxcFgF6KpEsan\nQqpiDcyLoe4cXcav4eV6iQJzq2WjPwEbVbB2XuuBqoE5G3PdVhb8bMj3cyHmbsA7z3MKleI4Zryq\nXuwaH2C3YQH7tIQSm/Qw53xX+Hz/MGnK4sxylKWSoSK+L8Wzj8eoHk1GiNcZIUj8J6xBTcF07D1s\n45cqmk8qPhGd5a+PMbZlVaEDqtx2skKJTeOLgTDzOjcydUPx1SZkhBAvfidj4hvgY9G2eIbs+FLR\n4EOmyf07ASmzOBj76HWqW4tNfn67i88ET4ReKjMmDh/2mQpgM++QzzeHVHjjfmxdyzKWnsSL1Z1s\nqiTHolKpamL301OeZ+cAu68lWW/sQpE1Mtyvts3PrIf+ee9QuZy6DMLntCX+vB3iaUM8V+EFfCE+\noUrsoXiGhDBMzWPXHXH0FE94nuQN7j8j3hVjjOkdNs3p1J4xxpig4nJ8jr1EJS9FjNKIu4Z1uniP\n6y+9zjrRn6Eaeb6vGKHz+vtaNyelpOPUnicqhGftAc97ILVF38SEiQuhF01LPTOHDcInxNHpqPhs\nkox15UiqZ3v48o4QgZevMk9ji1xvroQNDp5jq/1vWctu/IQ4PHMV2zyTilBth8ppcU3cXmmc2tl8\nsW1wu8Hny1lsV6prT6QxXnmNandYqqC1ImN63uD+x8/wod1d0Ed2P/HEK6RiVKpD0Utcb1bIR0cJ\nGx9uMtfP99kbTUvFZPEq619yXnxz4kQccdn0y1SuW5obe0IYucTNsjquaroLuwSFHHeUmcMNcQPZ\nxXFz6WXW6tQtfMUjdFp2E6Tks32QMafiUXIPmcMBKX4tXxtx42i/LLTfmRBSHgfxefZVrj8pFMFQ\nPIXP1+n/+XP2Dh0p6IwLCTu9xvfis99zOPhTbvP4C/aGx+Lu8UV57td+Co9eQCiDjLgkdjKqnItf\n6iItESHuzl3D14YV7RXE/RUQAt2lPUBHcjsuqTWlEnrXEeq/WRHSsCeumJzmiNDAw4HWfu3nI9oD\n+ePYMKG1vdpijvUVt33igLH1tcaJy6bjZT2oVDU3Otj2XDx7pilETUmIyCD3qYgDpi3Rt7LWIbt8\nyq090VhM/2+Lm0bogYbWI7cUCdserYc9ceeMrtfUO5yb/ri6xPlWXeQ9ndG7oFSLxK3TFheOX0hL\nWxS7DEZcYlKabGudG2hP2O6KK0uo5Y7sbG8QW3pC21WrUuO7YBvquWx6fzJCle1kiRUl/ZyZJb6v\nShmoqHWoJ3tcWYNDxhdhvXr60YfGGGNym0K+CqVd3WDP4pZS5u2Xr3/3LGvvvmwap23z8e/h1JuZ\nnKfPM8zP/cd8tyCEt0PzZuEO74JtIQE3P+b7O1vs+YMB4kh4kjUos6O4KZTvtNaQBaGAehrTZkso\nqgPWqpB4Tt3iSTs5xgZfv/+BMcaYiKFPk0LMb2s/HdY70OoV7h9NMnZffMgaXFRcu36H7/mF/iqX\neU5PlHiwcJX4GJ3m++v3icOtJnPi2l0QmL4xPv/8M97rq1l8OP4K61Kv98e5qSykjNWsZjWrWc1q\nVrOa1axmNatZzWpWs9oP0H5YpEydrGRRrPtdnfFyiUHaniILWyyRLey5yCENw2QvSw6ykuuPyUhF\n+mJtF6N21KkKr86a3f4xmf26stVPNziDerJOhcV3g0ydU2foJpUZC9t5ntN9ni+riu72OZnD+4/I\nvC9dobIx7iJb3MvyuewJGb1LPyIrGQyCtMk7yKC98hYKNGllHjcf8Ps9oVX8qkA4lN0917nOQQc7\nJMVN01f2c2mBamoggP2Gzbbxxci4t5SHq+awzcBJBviNt8RjoQpnRpW48BUqfbMrUnlokGluNLFJ\nVUpTgSWyoVdegftkKLWHcSnMxD3cPxT548zT/7K994u3jTHGFB9R5clUyfi+8x5Zzj8cYeONBzxf\nTZwD9p+TJT0+oUrT+JTvfdSi2tL4lbhy/hnbu3+GYtfabzkfGavSz394Xdnb34gb5Smfy3e5zrGH\n78+Ffs3nPIzRyTPs53yLSknzv3Fu+roLdaX2z7HXeUcVCvncycG8McYYJXvNSY+/31+kMnH1kLF2\ntMicj7/P3Pm7BapGN2be4/cfYP+OeDNmbPhqNElG/Sc9ssC/e0JFYXIWe/zokLmQ/097xhhjvlwn\nK+2tgzgqe/h9y8nzeO6LJd8GQiadf8cYY8w/Ge7vfRXfd+1QFYteoarlesDfsxsf0N8DxnlrRefO\nD6Swc4HWKwkJk5EtxZPTDeADoQTV+PE10Dk9ISXmpGbhDpNJzxwRZybD4gRQtWd5lThgi0ptSAiT\nTZ1RdbdV3akyl3bPhQoKYfue+DyOhTLrSbGgrDOv3aS4BxLMEZeqNCUbcaqt55pI4IsDnd/O2bGh\nL8IYLL3K78c8zLlzcSgU9xVfVc3ffM6YTIhNP9Pn/0EbdvDrfHZXZ/U3pSZ0eow9RwidUJnvD8S9\nMhnReXfxX8ylpS405OeBVDD2dTZ/X7xWp1vMZZtQEVNLzEEvrmcKdVXf2tgjX6V/o2rYRZtPcn+9\nGs/dN1zX39W59TH+7laF1ilFn7B4sApdVdwHVITsqtxEQtjPM6Cfw754XNr4UWt0fl3oC9sz5s5+\nkDkYTOt6EzGTPME3TlUB8zaJ022hOJti/q8GpCwo33KGuXZZFVOfbYRM4RmSV+hTsMEztyLibhEK\nNJBjzQlLya/lF1eBh2d3SD1jOMYcq/akONhhDL0d4m9b3AGhCdaHkJPn647QW+Pcvz1kLEs9bDEx\nxZgH3uF7/r44DySnUXaIF07KLsVjrjuhirDbx3UrUr8bqWn0Ki/GKdOocR9/gEr3zBi+XNinn5Vn\noA9yEeyaktJhfA30Rv0PxK/sc9AC4SRIw/FJ7DMllMehlGHOHzBOqZfEETPF54+62PkwQzVuagy7\nTqR4npp88bxPbEsuJ77rw8DvNpljrd8TzF3/JamULPC8HXHvnG8zlw8OeZ7ILOtVdIXPpcWf13/C\nOl9f38NOQgcmJnmeMakB1hVr7OLaKT1/ZmJj2HJqlWc9rnDNo02u5V9hvqRUDbapCu8+pO8VVYUz\n8smJVSqSsXl+Fg9Z46vPxVmzwLMmxL80I0XCU/Hj2Pf0U8qRfSm/XLRVCsxbhxRMJi/hu6lF4lJU\napnPn7Pm7q9jW9Nh/fB4mUsN8VAsXmZvEAkwRl3xciTESeOos75sfYFPnewRL4NCP02vsa/tS+1v\n4yP2jU+3QIJE7dzXmx6pqDAeC68IYbqCT3rHsFe9iH16TFlzkMGXGlJnikjtZPp19np98YPs3v+G\nzz8USkyKPRHtPZd/hPKLL8T/+0Imnu4xXhWhAnIjxbOQ9hYz88YYY9p1/GT9M1SSTrewbzCBHV57\nlYq9N8r1h3pfOBXfoTHGPPv4kTl4il2mL+M/068wfp5EXM/Pfn5HvE8eXNk4uhd/XXINxXnVkVKq\nuDvcUpoZBKVEZRf3lVR9hvIdv/bX7TY2aYnwboTgcArR0RNyZjhkjNs2Bq0olP5QnCghKSC6tGa5\n/EKOiL+p28d3bGIHC4gTJuTicyO+uVCLuWKPC3Gufd6gxVpZ0btXQ1w4LqkBtoViCI2QKNo7GcPz\nTAoNnJoWJ0tPiBe/VKm0HvqEsBm6uW5A60R/qP25OHrcTT2XUK1eoaii4skbiset0Wdc6lLe3Fe8\ntXu0joncLSTJTI+QlAHtgRza84ylsZ/H/j2310Waa4z+BwdCQAoBZXrE0ek13jOuXRfSvcK68PgZ\nczwZYU4PFEv2PsR3j6RUNC8+07GQ9phT9Ccxz5zPlavfPcuDLx8ZT6NuElIaXH2V98hKnnhz/Jyf\niUmuEVtR3BMn4f5ncL0ePGENnI6xh5+7y3tveob90WdP4JLxSTErdYv47NX/nz4kjmcOpPyrNdge\nwVZFqQ8XhV5dnABJePkV4ktP6KvCIetGWHHSeJlrZzt8z639+OWbfO/mXd4PtsTNeCRU0fSyuLFc\njP2p+rcrpOLULeKIJ8Fe5OwJ76q723vGGGPG57BnXGqD/ap8+19pFlLGalazmtWsZjWrWc1qVrOa\n1axmNatZ7QdoPyhSZlSRdOv8ZTRJBt4hCoXkFJm1QomM2ewcGbN4ncxVuC/N+DoZqktzVBy2zqgo\njDvJkAVeE+fDFBmtb6WbHtR5+ZVVqZJMk3XsnJNBmxQj+voplZFwQuc/bfz0+cm8XV4jI/jGHfg2\nDjNk2H0zZMZCl5XxV3/2v6VyclzYM8YY47ordZgyGbWB1D/mXqYSMVKfqjfFzaAKSngxLHvx9/Ku\nKk7TZBTPNqjCtfptU1NVaqhqQ3NAhtzpxoZXxGi/q7PjgSrXjATFV3GEDfJH2GbziM/N6Vmef0n2\ncOoKNt3b4X7LL2GbbFlV5u5Ip+Ni7Z4TZuu3CmRjFyM87+bvGOsb41TfPf+Bsa3YqH75h/jMLx4B\ndyh6sEnmElW1CaTuzZevk1H/2TG+t/4Gtt/5Z3zoF06e+/Q9fv+pi+vPOunv0IDSqoV5nsRVru+V\n1v2Hvwe5E1PlujqDnc8+oDoUfRn73NZZ184k2eIPOp+Z/80Ys3MT33n7v2L/rV9SiXijRvZ58AHq\nR3/a+bExxpjz3/yNMcaY4Bg+vZGVj8TFRH5Axv2Vc7LLl/4T43j1YzL9n5ySXXZvgGzpz/PcwxX6\nea3H9x78LX5xEsYfPGOgOL4eE6fEKRn9PzzH7umeVGP+SWgMP3Z0/PKeMcaYL/56zxhjjG0MnqhA\nnqrbRVrfP1IfwzapeebZeYY+HesMrL2O79RbVOji8XljjDGJKPMuL24of4z4sl890+epipSlLGZ8\nUn1wSC1EVZ1znQuuqMToKDKmEakTNWpUANqKK40jnnf7IRwygzbx5Pp1fGlavE8bbnEPpJg79hb9\n6H/NfTY+5PvNOvFhz0e1aX4e34tKfSmd5v82J3N7ahyfz+4y5uNOcd7o80e72GNskmpL6prUTTrE\n26RQdnlVNgdShCgeU1EZtrB/6UgVbBGkTK9wtvZqGrv7pEZU6qsCLDW70BS/H3awX1Cqcm4p5Ljt\nL8YpYytx3e75vDHGmFZJij5i+48MGHdHXLwpOh5+7hVPS4N+D1r4gTNHf9pufN5to5/xHvbNhaQW\ndUyMzFfwo8KcYrDOMidVJUtUxk3fyzWD5/yuInUKd5ZnyNvko1q6bRqr2rm4XcSv5hQXQEkqSf4B\nfa2lpD7XYawiW9iy4BfixM3nvTrr3hUPkMfw/bY4w1qqGPa6zO+hoW/pEPEy5KT65Q+pEhmfkI1G\nfBEu2U4+I960jtQ6gmHFLR+/d5WkhqGKrkM8STWPKs9SNfGWxEvUltLX+R8/v/0vW1n8GS7tjNwz\nWrvtjMvxI3GbbUtpR3MtvUbMKRfZQ1Qe4MsHG1TNAuLYSq8wh9riYToQD5xni/ukpbDjHAhVkuE6\ne7t8Lj7F/RpSp2uK/842Mf1dH8aW4mb3KfH+bJO5PSs+rEAKP0mJd8Sbk1/leZ7DR8QSVwqE7MwV\n1tV8EXtXhKLIPmbdDfnFVTeraqCeo1ICcXm6VTRj06ylk9OsdZUCa9D5BrY82MJnx+ewzdQCz3os\n7pL8Bn0/fs41o2FsPCVUUXsGW2yts/YeP+AZ4x7WmKVF4l73lL4eFrS/ExeZX2pJF20+fd4jLsKA\nlNH6Oa776BHP+eQb1ja/lBYXl4gTDVXTb4grZuEOa2f9mHXppMRYnG7R79ozcdFsqPKb5v6Xl+nX\n0EH/H33GmtmVyt20+Ptmb2LvkPhKzhSvW235UFWI7izrzPkhew0j7plMjWr6/GXsObUkVNiZOH1G\nFfJ95va4FGgWVqk8B5fxNb98cPshFebTPcZLoADjkCqLz6Zq/hTjXOqyhzu8x/OVhGCZSGO/tR+z\nF/IohuU2iJGZrPop7iFjjDk/OzGza/PGGGNW3sTHG0InfPU3oJhPcnvGGGPiKfx1YpGfg+Efr3D/\nf1tJijBHBa6ddDM/nOKQKXfFM6QxN+K7TEfErSKkjEdo1lCYv0fHGfuB9u0jJGFDaP5mRUiZOouX\nQ6pBvig2dUnZ0C70a6PP2me34cMxoXv7faknOaRCJ2RNosX3bUPi4UB1/WGf7wc6PGfcw7ox4s1z\nu1gf7OKraxlx37h4ro72BjbtbdxSqxp2uG9BaoFhr7hkhOJtjBA6DaGeA3w/oL2ITepTXr/67+O+\nLiFsRijf9ghhKpRab6A4KZ8MB/m+licTa/L3kk1cNkPmUNB3cdVQ3YjnaRMTBnon9sj3xyfx8eIZ\nMW39C9aTnsFes9eIAS7tB1p9/COmEwl2ocBzLWJfcLRnqvF+ciJeK2OMCSfcZvbWZePSiYtCnns+\n+pATJV1xvSy++afGGGPcUhne0XzeFrIkEiNOrLxLXGu6sMmTh8Sn/acgya/cumGMMcand5/nD3jH\nePwF8WRipOq2xhq0e8hc6Ugtc1Lv7dGIFGTr/P7hbz/lvn5su3YTFL4bVzSne8wNr3whIg6v7Xv0\n46tP4cQZynfnr/IcVfnuoI0NF1ew/aUZkDb7GeLZ4f09rq/nunIbJeCgfCtT/OO8QxZSxmpWs5rV\nrGY1q1nNalazmtWsZjWrWe0HaD8oUmaojHo4JkZrZeTrBTLcBfGe7B1wfq5wSmatLMbrrCq+FWUB\nU8rgn9eVDVRF1Yh9fkvojUNl2l/7Gbrq9sGZ7k+mbTfDmdi6j2zk6RYZw9WfUcVPiCm9p0yaS1XJ\nY3FEPNumUjITo2pkU1Wy2KSfo4pRYoIKgq1KvzeegeDJiPvhR2/B47FzwN8P98TEnaaSctLjecMh\nKsgH2zrLq/OsZ/tkLldmrpiWMtwJoWo841QxalmdTT/iWlmpBV1e5nxuSZW8zEMqY7PizXn7P8BN\nMj9DdetbnfOdmqHK79VZ85tSlfjNwV8ZY4xxd5VqvmAbWwdZ8vsWz/neV1JaeI3zjIV/5Hzw2XPG\n1PZLKqzXHWSC31/lvHXbyxj+O2W8h0Fs+JIbHzwdk/LNU8byl7fFKv8B/Tl6jTENikl7+xG/T04I\nLdXEV3ynjMU/trHv7C+o2gx2yPZWxbrfT4A+eKXBGdA/uN81xhgTiOMD7gxVnLv38Z3Oy9hxVeT3\nAzf9yyQYj8+n6Y9X/CedDXwgmCIr7U2R3e658aHqKRXZ5pDnyAql0bslFv8KGfQ7Bzx39Jws8H+Z\no/r2xho+mtvADrkSWeSxn1BpnTtmrjYXyT63XGSHb6ZAf0WKVEkLXVU6rvH7n+R1NraD/1ykHX3J\nPT78+DfGGGPOp5jv8VnNrzQVyuWr2HDnW6rP3oCqC2J3L0qtYvIuVa2pIdUfv0fVh9tUPGMOxtgW\npcpyeIxPTqgi+tIlxr40Oouvim9D6hvji1R4q/NcZ3rA906kbpTXnHyyzRi4fDq/HFD1Q/Ficoqx\nCEZVne7iE2dS52iURggfrucN8v2dI+JpXQpaPY1BVapwzm+Ju/ceUrGYFSu+Iy2OnCr38bXFDdBm\nbK+kVLXpUe2Z8ONbc9eo+uwXpNhTY67kVP26NMFz5c+xd05zLKDz6Q6hNibE7u/sMMd99hfjp7IN\nxR2h6ppHHDODFs+ba+I3817xUy1T8XHtUMEZazPHBhXminfI89t0zt6doH/NgZTtjJBaIY2fOMaG\nz1UFVcGkX1VMcLpMryxeiaEqqCWuMfBSP2kE+L9TXFMOVW3GovQpdy40Z5Oxdehncw8fq16lQjrQ\nWXl3hzkQrTJ/T1TRjDewdUoosLJU2KohquhOKZYZKVPVg9w/2yZeTFwSJ4ydedwsMLcG4pixB/Ch\nbo/v7Z6DAnCoFOnsa6y9+Fg0ik/Y9oWoGVfFNc/9feLI6UqZ0O1qyE6M6UVbQJXE82PsZBPPxniY\nfrWSPG/+OevFSZjYM5liHZxewU6PFRPa58SWkri5xoSqXRxnTq3XWL+KQoF0EjxvWkoRc1HmxOP7\nxKxqjficFo/cQCivgbf0XR9803GTVCypbRGDTuI6ny+1wpR4n/pL9GfEF3LWFNIqy3MtXiO+T64y\nt9uf45f1fZ4zG2bdvbysz00x55s55ornsGCOjohHHilATl4j7nXK2La8xzX64hQM3eUaiavYqlXT\nfm9LPDshbBUJsMaMLxPXa6cgctq7iucBbDT1BmOTmuN6jSf4YuOQZwyKF+KiLSzFltI+Nj3McV8J\n1Jh6WXx6Qj3N3sY2bnH8OSrEtZmleWOMMecZbPn8U7gWauIdSYrbrC6eo+Q869LKm+wLo0kpRWrv\nNdC+d+0Oa+mUxqwgbrHDR8yx7S2phU7Qb6dQE9UzVaJz2LnrwrcWb+Izc9fgmOhLJenwU/aX2cO8\n/s7+e/o6yJXxEcr6nPs//JD+7e2Jw1G8TKsvidPFTzwfav1wNLBD7iE+XJEiXWwBu129A5rXaeN7\n25+zlxqpMnmFIpyY+x5Ftnb3pvF6WD/au/j8N58Bm7aL8+vlN+AJHJN6oVNojtyzM3PR5pdCYFxK\nUF6p9lSLUjUqEL864jRxdLFpT+80bsUx0fIYh9SL6hXGqiLEu8PN/HWL88sjxOBEjPjp0btHTZw1\ntRZjXxciJS4f8updRttA4zFSVhzRtmmN7DjwEWdd8d0tjhiv3ivEe2mE3CmLm9HZpn8DL/HMrnXn\npKc1fsRTJ460pnjY9gpSbRX3jq0ltNJAyprykYH2+34hdZoj7pchdusJmVkX2skn5UafeIeMkPRp\nH75Sd0rlSapPdqHKelLsPB/yvKdCu5qB+AWnX0xd1kih8lzjGp1krhlxu1VPtX40hbIWr8n1dziV\nEZllXXn6CeiOrNT6/CFiRUq+Hhbvi1fjU9olZvWlDGeMMVPpKZPJZM3xHn8zDvrkF5/ZrZuv8Wsp\nPD35A8iXkpB8Xu2Tr/6IuONI8P+zR+xjW+IyTC2yr7qheb9zzLvAzj6+OS+umps/Q1nWJk7Bk03i\nR3qetTOU5jqnO1z/WPv4QYixvPNTbJSaxBZf/RbET1EcjS4vtnD6xOO3yXWimjsv/3v6O0Ju733O\nutEWYsYlbscnn8OneZTBbnPT89jzMuuYQ3x/O5vEpe53k+r/v1lIGatZzWpWs5rVrGY1q1nNalaz\nmtW8K1FkAAAgAElEQVSsZrUfoP2wSJmaKskVspw2m7K/XumNiwXa0afyHE9Twewck4VdngMV4Dqk\nYrH9ORXNz+6RUZtbokLb8/L5sQZZ1FKZKtLpLt/LD6n+vbxGJSB6k4rKmJcssjtChqzfJat5/wFo\nhpUlKjB2MVvbG2R9F1UtGo/xvEVVHtY3QC2YMBUE06aCsDRHpWfpBmfPLq2RlU0v0L/CB/CqXF+j\n4tIYcB+/FDkm5nUePc3PKVUXO6rULt2+bTxSMAh0ydoFUmRQtxwj5RQy3ck4Nl8S/0RNnAbBOlnA\niUmefWMfmxS3leU8I/sYm1HVKcKY1rojlnWyptHQ9yoRF2nDy1Rf3t3jOX8zJNt55einxhhjnL/6\nC2OMMS999oExxpiPndj6i8dkW1v93xpjjFld/LExxpjNI/rvmf6RMcaY/j9S/bh/m7H03eL69/6O\nDLTvL/Gp2KHO7obEyTInFMMRY5z8JffbzpBVXdX57Pw+VaPkEhwE5w4+t/SIjP3u3T8xxhgz7icT\nHmhQNSzN8r2qH3TWVkLnr9/n92vX/i+evyRlrnPONS41qV7lDhg3hwNE0+k03DNvlsjEP5WkwNKu\n0GBlxml1UhXQCtf74Ez+UNH5SMxmTuNkta+f8PcHkx8YY4yZZEqZIwd2Ko9jV9cD/MNt/pGfiV8Y\nY4zx/TeeJ/hLfm+XAseGEEzm/zT/Zktd5x5v1n9sjDEmFieDnili064qrbEs8cWWwvZBZfzHpvh8\nIKBqySQ+dyBky9Nz+fYQW28cgyBxiJOq1SHTfrAnpJphjowNhU6T+ki5QhxqqHK4eUxVo+TiOcs6\nV+y36XxxlzHy6hx5S0WovFSMymeMcWQKn5mbxQ4TUnhJuIRKC6q6PqXr+IgjQSktNEtCH5S5byhG\ntefSBD6wnNS5cqeqTW6pWehcttH58BHXS8hPf2viJ3FVsLddqI5kXLGgwf9t4ilZjBOv+8ERioLr\nZ8RnUTzG1/yX8Nlq7+Jn/I0xpukQj4rOj1fL2KfopBJjE7dBRzFvVpVkX5RYub0tVIbmQrMmBQ19\nMZDHlyOqvPjEcXDZy+eyUsuq6Dx8uSu+lwz99qf7pisf7OWxsdtwLY8qdB0hVDp5fp8Sx4rfxfd8\nMalxCPmQL/D7vMZiYYeqtsNLRdDj4vujSqop8azDJvcZiscn5Y/r81xv00PVx+XT2FZH8San52Os\nGqq4hhzYOquKcbshpTDNnYaPvUC0x3MEj7Fdr8r3/U7xrcUZg2GRflRCfH5QZAxDdlWahVYqq0J6\n0eby4ov9Bv2qZVg304vwIPUWWavL37JunD3GDvY5oTLmtXe4zPPsfSD+OFUfQyn2FK4JKRJ1maun\nT9mDNM+JIW4/1cDUde43XmWczu6L201ohYifuWTzfc+vlEgFTU0qSlWhErJZxaawOBsmWd+Dqzxv\ntU6sqR3gyyWhKmpR4nFaChalYxBDx+I7Kd2nOlmO8Ll4VHuQJNfdPGuYsrgA8hPErYR4asZvMKaV\nEn9v5MQFso+PTdwUX88V5ke+IMSEVC1OJvj+8i3uVTxmzdl6QAV3b1+VUyEK02Pct7zA3CjsYMuK\nEDoXbUWhkI7E5+MTwmJBSifDS8zV8DhjENd6klVF1ykkTFGInm0pcRX3GYOU1DqcY4ytV8oys6v4\nREL323wAMuREnIerL4EcSqexx8FTxvzZJnsHR4f4HpnGB1fEaeNXnFqvKwD2sfvqJfqTFF9QR0o4\n219xvcIpvrUorrHxO9qPO5g7zzd5vsNHzJVmhXVuYoZxWH4DH/RKdXDva/HzCcHklOKPw8nfF29x\nn6iUzKJB/GRbnEO5LWLCuLjKlt5iznrj2m8bY7qdjskcSl1lnc3KQGiJO3fX9Px8/0TqKkbKcf3a\nxZXcRtwttoLmbQ3bOgfEhYiq8Umf0LfiPDEBzWOpBzmkEJMVP1tRyImm0KNR7fUjWqNcYakPCfHX\nGMiHuuJm0RD7pVzbbfGLTl2oYanbdQb8vqg1yjGQGpN8Jfod9wpjMLpwybD+tPS9jt6J8kL6hKQu\nZXPw/cNzfN6u/syOMWecTuaIVzx3TiGHPOK8GQrpkh6Xj3g0xlLGdOmUQ1+nBppSrM1JLXaoOZXS\n+05IqBC7ePKcQn2Uxf01HHHnDKVCKN7AthBEXSffr/dfjFOmXuM6Te2RQkmpSrmwUzTM89vaUsW7\nzrqWFG/L5legnjcewDUzFh8pshErkuN6HxNqeuchCMi958SGgNYtY4wZDLqmXDs1U7PsDcZSQltp\nT+KP8NmTb5n/9R1sOTHLvWaFAnWlhXjWMx19y3xLTGHry8sg+RpSd9t9QtyfTBMnFxQXKhnm32e/\n+cwYY0wvgK1vX503xhhT1D76ZJufHiFzrrzE6YjIJL6z8Qn5gP1dnmPCz/enlrlfYCi1VgdzcOk2\nv7eJB+qTT+CoOX9Of6/qRE63j+86hT4aF3fM1C3iSLmqEz/brKX1U3wpJnW4f61ZSBmrWc1qVrOa\n1axmNatZzWpWs5rVrGa1H6D9oEiZvlieezo7GxVnQFQZL4eQM8kQGf1kmmxov0rGbMSR4HeQPQwF\nqAC8dJUM+Y07ZMwybTLiiSCZ/+mrZOq9YTJhX0ulKHO0Z4wx5qtPQMJcnqKiPBATeTQlhQdxGrTz\nZMiye2Tgql2ysy/dpWJR1Blde4vPv/UuvB4eB9XCffF2RFRFPDwmo7b7nMrH2AOymUe7VBr+h/8F\n1ENZqiFDo8q+zs6eulRRblIJOjzk/47eJ6Z2QFqycK7zvytkNZ8ck/W8vER2tCS298fi3RiIZd0o\n815rznOvDFWNSVXGLq9yvrer83b7j8jIDqapDLSU1TyzXbzaYIwxz/+WjH70TaojVze4fiH9a2OM\nMfGW0EiqLt1+QNVpU1X1V5ex7WaHLOUVqSc9fU4W95J4e8b2sM9YEB/qpLBTraJMeAyEyrVnf2+M\nMWZHVbHcNBwqf/5XUi36FT76aB+UwVsvMRYHWaronSf8/8lIuUFs8uMPGPPUy9i5aCMr/UXpQ2OM\nMTd2hW6YpwoYOmD8vkiSle2meP6VvT8zxhizN/FfjTHGvLfC9Xa/wlfu+fl5fY7Kd9CLPTNxstIL\nNp5/55oOM5dGShPv8HfxJuUiZPb/eghq5D/m/5LrvIa9FsUTMGPDx6snPMdxGfvbX2dun18lCx7d\n+HNjjDHvnzN+rTcEublAGxd/Ufgl4sGsVIeyJeZNpk0ltG4Tp4ebPo5Y2MOrYu4PMr/bNvoWN8zb\nwZAqUDpFHCrZhLgQeqCms6nBmub1Mb7WKhM3zjNUVnNtMu1xnXN261yy06ii2uc+S3c4y9rXueqj\nyh7/d6pi+jp8T4NzKcxkqaIV9nRfcRBsSJWj6WZMil0qziH93ynVu8gs8UOAETM+ga+6xP8RlN1K\nA3wsNjZvjDEmmpCi2Tmx4jBD/9riBms/o5JartD/ilSGfC3GK6FqWE/nzfuq1s1KeWA4zXoQE6pv\nsMTc9AToX+/FhNxMOyLlHj9xuT+P/SI5cQZI5SMrbrGOqn2RS1TafUMpXGziV6E8ftI6I6bV/Ngn\n6uE5B3Ed0A8zt+0xxr2T1fqVE5owRX8qgXFjglxjcCYVjIBUIsQt4qnz9574hVqqaJowNo11hcoS\ncsXfoo8epqNpVunLSHDG4VeftBPwqrLbCBP3K2fEofgCYzSco89Jt5AYUgeyeaTy0cA2xzbmkq/L\nz9JAHCgG3/BJCas8ho0mJPjiGvC8tib38Qhx6VOVvhDVWf8y/euLv6OrdardpzLYFHIk4H0x9aWu\nKrpeVXI751o3F5hb/lXsHK0Q/zNSRfJ+QrUv+At8d3Fl3hhjTOtQfE1PGID8Q+LnQpBYEhJ6rdnD\nx/Pr3O/8CetJVKpVy7PsadwZ7Hy8hcEyLn7OjX9f8exHQia5LH6QKr8/L/EcRZ3/H6HaojM859hl\nfrb7/P0oy/pnE9fNzbusfxNS4GkKbVzcZV0/Fo9H8MfYO3QDO3lLZ6aR4VqFQ9BCgbTmdYJrja0w\ndgf38OX9LfY9wSvYJnKV+TSRwbfPpK5z+Iy+B8cUT25LrafE2BztcB2bUEoBxfmkkCRD8ZeZ8ovV\nJvs5fDQRYMwu3cI2zpj4GsQlZh/w/6NvsE12Q2glH/06PsMuRfEPjZRjwuPsXWLiv2sFic8BufLm\nN1xnb5Ox8sSEYgvxgcdfsfc6/Ia9SUhcNMvvwFMX1TrX7zGntx+zfz0WJ+H0KnsqlxCkjSa+tH2f\nfhSfqeK8wp5k4jro3/IR8f/kYI/r7Wt8Yozf8h2Q6MvLfL6kuL/3GfvtDXGorWj9Xlzjc8MmdqgN\nxJNVx+fWj5gr29/wfa/W1dQUc8UmfpVNKaGZXxjzxYdfmHCYWJpYYc97Sf1ISIVl4w/YraQ968Qc\n62ErdHE/sTmJo1Epp/p7+Hw7gA+nneJcEadMSVxO1YwQIgNxxCiOBcWR4p4SelOIE6eLz9mEEBxI\nWTJbIn422sRPr9C6kzF+NqWaZ9ea3tLexe7huXtt4kZISrB2XT/gZq1qClHjdvBcbYFy2zWed9gV\n55gUKX1efV7x2GXXXmaWse0JQR+UipHTzveDXp7DXuc5hh5iRUe+G2gKvSt+zZ7UmlyCYQyF5m2K\n/2N0KsMR5LrdodbuAZ/rC4layhBjcuJai4XoR1rI0fCQuXH5Gtd1DOh3wvHH+UL+ZfP5hC6e5roz\nQiQO7FJJ7HG9vBQt7VLb2m5w6uI0Q3yemNS6Lj7DcAJfdjSl+ChU9kiJdEynKhZX5r57lpgvaELO\ngFm7yXvzyZbeRzeJnwMbvlXWvjmiuDNzRYqA2osc/po9fUuKjDPzen9PjFTbxCN3wrvnUO/xYyvE\n0537vOOciLctkcTWr78JEqUnpa4vPwYlFHczlmmhPx3Cmnz5AQiZo894p5jWSZuZG9goLa7JQoZT\nDB0pprUVf4++hqsr94j+piewsVMcMYUaY3NpmXyCS7xKO094t9zTCZ6QBx+dXOb74dgf58u0kDJW\ns5rVrGY1q1nNalazmtWsZjWrWc1qP0D7QZEyI0br8haZuJqyyd06Wb5Kjkx7vaPMdpxMVOmM7PCZ\nWO/398hqripT5iQhZqp2srrbn5PhP3JQWbDr3N7wSGecg2TGxvtkK1+aAukyP0tG7fkZGb1yTefY\nG2TOUspGRoNi3C5INcRDJu3pDhm/3Sfc99IpGXyjCnm5TWZx7ScQdfSa5MgWr4A6mRyIU8emLG+e\nTOWj9XvGGGP80ll//A3935Nqy53LPP/qMvaIuEPG4SKD7E7yzLMLZOs6XrKOE+KrCXao8rjTOlNf\n4t59G1nB9CJVpoiPMYlcFeIiTJXqbJdnWbpGNT8U5/veKNWhQfPFzlzOBqggeL/Fdo9/QcXy8ro4\nYGpc90sxet+9R2Y7PcbYnwToV6sjBYcYz/PqGf3L1/Glly+TVR2d6w6JtX77IzLnp7OcKwxFqfZM\nZ8iCuvb5/2f/I2N5/gfs98YyGfntfTLa/ijVlvEgmfDrd7BD/oSfj4XsmQjgK8b518aY/2Tea9Cv\nYwdZ2+EiiJJvKFaZxiL9WMkynoUj+uF8j/Pd+xSfTHGBzzn2yS57o0Jj6Dz9y+IZqf4T/X7pdapm\np6dUeP0bZLl33cw5/9vY90qFKuE/h+m370gqS+OqZn5IFnlOnBF9D3Mq8zkIm+eeeWOMMeEAlY1X\nnXzv9JkOnF6g7X9DpvvTvwVVtCC1oHFVCD2XsHm9SjUjtkzlbu+IM+9mS8oGqgjGDsV9ssaYVWzi\nuejzTJs6l+yRGk9HSLcJZeLdHlVNrqviWGCOtU6wgVdqTDOqCM75xA7/GWORfUTlryW0QMnJ991p\nnqOk891uncP2z9CfsDhs3HbmprfE/VJzVDK2xS9RN/h8Y5f/u/tc1+mkYrF3gNOcSG1ieUa8E6p8\n5IaM0baT5xgIVTAM4/PTQtJMLREXVWwybptY9BVj4qr+Vfewe1WVz808dnVHicd1sf/HY1x/KkQl\n3Nl6sZqCv8DztqP0o1GiMmOS4tKxMxcbh1L28VBxbgaYgyPVgbEk41s4l6KE/Mp1ztypjtOPhFj/\nL9142xhjzMEZ65n3feZQ06ezxkKB2KaMCXSxWXMBmzr6zDNnXKgn8a05VY03dp5JVCHGPq54HOKZ\nBhv0rdYUr9o5carp5/rjUkca+LFNR8paJyWpTRTxgYGQGL0Elc6EXQqEbr5frfC5XJHnGRePyKAn\n1QxxyURLPEdFVbeR8os3SJzoCE3VkmqSR3xFCVW3vUn+X2oJZRXBV3pl5ohd61KrxXO4fSNOs4s1\nj1SuOlIJ6XaYkycFrndtklgyOyvU3Dn3L+SkhCiVpJmXia8j1MHJDn/PCL0aOMD3IrdYj2Pj2LF9\nhP2bOVW8H3K9pbusd1M3uV6uTAxq7Uj1Klj4rg9ue9U4F8Q1IbRde1NIGY2Te0cV5RDrYXAa1EC8\nP8/nGuJdOaLKuH3IHFhZ5DliZcatJS6J/DEx4Wiffl1bBeUwcWnBHArNVMnw2dw6a5zzNfo8LZWi\n/iHzZfeQvp1/g+3DP1U8f1nopBo2rOwwf8on3DMp1Oj0LSkqNulr/oD75RVnUzfEIZZmLo24Ai/a\nPEn2OkGhjdwe5tj+A9DDu1tS2QtJeazK2BSLxJXFZfYsHXEDRiP4WvwG/ZzWHqspGw8yfH9nU75Y\n5P+BhGx9R3Mnx3O0tD7NqSK8+DaVb7eQPIf32Twc6nkFDDRj01IpvAN6uDPkeQ+e8IH6LvYOxbhv\nLI3PlPP8/ckjoeYc9GvpOnu2CSmSxcU7lNnHPuufs1dptPC19CR/X3iF5+1LWefkOXG4VKHfXhf2\nK1TxK7dQBTMvsReZ07q9J86L/Nb3qNvx2UmzpMq2O4wfqJBtnksdavOZlMoWuM4ItdA4a5iLtkqL\neCcaNjMMEbdsQyFNxBHV19reK2u+FfiZihCHvA7mhk3ULREv8aLZ5vt1KXk5nLybDGvEz7Z8+rTE\n/UJ6Z/GIc2Sk7uQLSZUnhK2bQ+JcRK+GLiFJBuK56wzwab84XewuIVvEyxH2jpCbUjoUR1irI9VA\nITer4ixz2YTAPGdOn0hpZyAkzYT4TAbiJstWheBr8FwtIfgdbtaVqE4/mJDUU8Xf5vfyc2aefazd\nrr/7R+pK+LC9Ttz1CaEzKXWpcEL8oj7sY6QM2e9i366QOH3nxfetxhjjTIo/tSbkaB47dIXaPRWK\nbiikzq1l3u1sQkH3S9g7tUi8dSfpV1t7qaMj9hzZJ8z5bpT7LF7j/SCRCn33LM1yw5hK1xxvsJ/+\n5h774znxpMXizM/ogPkfXWINdIfp+4lQlT7tB9eW4MN02Pl/KYet+kI1TcyLL2iMZ2lrPtfEb3bl\nVd6Dw+PM14rQm38Qx2pfSMQ33wMB2NfanXnO81e38bX5a9js6ho/Q5pbmU0QLZ9L9S6RYr/pSzPW\n5cesH+kJvTO/Slwa6jkjDnzHIZ6l/ccjNBL7u9gs69DV61KwFcfN+cEfPwVgIWWsZjWrWc1qVrOa\n1axmNatZzWpWs5rVfoD2gyJlVIA2SaE3/D4xS6saF0uSaU/6qExUdE5zdY0s78IUVZtH96i6J1Vx\n2S+T0W+dkCnv5cXVoDO1dlW8v3kklaYZqpMVv1Q/0pglsioOBjvfj3jJwg4nyfzFZ3RuTxwOVZ1L\n7AkJszBFJTzUJmN2/WUQMQWxMmfFYRMfZdx09tYbIRvtkyJGtEUFo5gjU1g6o1+Tr1OBHZ3nH0qJ\nY2ye6xidxa0cV83SHFnAop1rNXTW0qW+O8Q83a7x7Kllqg7dY7KFZaGRdtbJLu5LAWa+QjWhmgVJ\nUuySkf/pf3iPvooDIbtPFjVh//7s+0Xaj8Q6/9ufgHQZ32VMUmKyPluk6vJmhrHJXCMTvrzM5x58\nREb5Z+Iv2rrFecd1Vatmz/8frn+PLOZdG9r2v/sx9737jPscJlRB/pLrVIbc98af4avf9vGJcICM\n9d4z0FktZXkjPXzS9gr2ev8x2eDJy6gizUzzuVCdbO6nDlSgml4qFPYqGfrer8leX13E5+qf4wOr\nQc5Bb/47nq8kJZ3tQz63tM6cif97KiWff6kz/yviTljFLu/ewC5H779hjDHm0Zh4iW6CQhksU+F4\nO/Mz7OAARfZ6VMzru1SfvtGR4jtXsM+DFH7W/pT/v7pE1nlm7iPu8zf41/t/QTb+nW2dA79Aa0nh\nqy1OluYIkbKsedQVsk6+6RuS4b+xRh/no9ikrarv+bGQMD2pH0kdxCEE39UUfQ1JOeFgFxvFRXJS\nKeMbA511HepsftJHZbGqs/EdcbA865A5t52rmjXEVn1xoMTDms8tqjNb53v8vUC/gnbmVijM8wR1\nDn3vQBwzGptslyrU5TTP49MZ2cI+951RpbLW0txQpdDrlpJNjedMRohnlRZzy6vz2bku8engjPvu\nPBKS6JTnXhA3xG6RueC/QjwOifcpOsX9wgP+XwhKnUkIwcoJdvOJZ8Ppunjl0hhjGgHGcyAOCaeU\nh4KqwrXd/D7bV2W7Qv8OtunXpOwYsmOPuB37h6XGVJACQ0cITneRKt++zveLYsg4Z+lHo8Hfnapi\nNrIR4wlyzYIbX3SMyF7i9DUi3rLTJBNsIA6v7Qj3nhMfT7jPPKsonpt1oaya2LQt/qApVc5iq0ld\nh3mY2GIOnR7pOiHGPhUCqeGPsn7YysSPmFTgKi2ep7ojxI7W8r44FALyWZv+bxNCrhinohcX/1o1\nIeRLQTwdftl6dh6bxfm+Y4d1oStltEaR70VixMFq58XUl7yq6jW1pnZaXKehOV0eitdI9po7xh6H\nj/Hp4nPxWI3xc3aaWNNZZS4Un1H1z+5IzWSKKqF3gvg+KcTKXoa4faj7BnP4SkzcLxO3hAb4vVT9\nnhW/60Nup2YCQgcGZomBSRVwHVWuVzrEBwc9KbdJxSml8/+DYxxk6ynxPbsOei4e1fn/G+J9yktl\naoPP5Z+AsDyLESNS6ZgZCFX05JC+F3YU59L4WkDIhvBLxKVQXfucA65V0toe0Jn8iQVstH1C3082\nuY5X3B/hefo+Ly6bQ3HznR1QLfaniVf+cWxaLYxU5C7W4lK6yQoZ/fRTbLh3BqoopOq+zc28bwvp\nPL7AHiwoVSNbVqipMexz9SXQqrUCNj16SBwpHtI/h/gnVq+y700t098Rb0h2h72Zw8n9Z2/OG2OM\n6Xbp39PfSQ3lPujd5BRjdO1dEDVJoSYciinPBMfNPmRsPRP0e2mV5wzFsOPBHr7hcxNP56SuFJsg\nXpo2dnj2IXuX4+d79N8u5c/LzIGrr2EHlxCijx+wBzo7xmejQuj4pDCU0vrrl6rWhCr3LaH9ivpe\ncPg9j2Fyata4tC535Ls5caBlD5kkE0nWn4gQjB2t/93GxdX+2lLLy5xLfanBfqbXkS8IoZEQ2t4n\nnomFoNSOYsQzX4O45/MTt/PaTzeklmmGPJNvIO4WbRVsQhG441J7035/IHWgQo0+neV5zoAX247r\nvg35wLn63LM19ZN1pCdVo6HeeUbMXTGpGbWz+OxZhv4HtLaGgop74sIZ2oh7dr271LS2+r1aSxXX\ne3r3C0sRtxnUfcUr55CyZVPKXwPZKS7Uhk88Si6hgod+7QVKI64aKUim+HxoIESMEJtdceGcnxFn\ni+figZJv96L0x+V9MUXItlSXMuITDYoXaYRMTU0QK6auzRtjjEnLTzbEu1I55b5jEfqzvst7R/6M\nGOvvSaVxTep407wfjc+zbq1/wruz+Z+M+eo3n5loNGKM0FhXFogLa2/x3np0wjw/1v44LfXO0il7\nlap4fBZvgFi0DYlDn/3jx8YYYxJ+5tXkG1IRziluPuQZmvLFictSTRbK6fEXvCM0i4zxiEPy9msg\n+lpSYTv6lHegQ6GuYkIhpWaJu+cNbHz4iL1MrcPzTiVYT269zemOppBxed0vNYbvtPLElbrU2OJS\nxys8l2rgFnHVJTXm+SXe/9tC8Jycsl7U6/TzX2sWUsZqVrOa1axmNatZzWpWs5rVrGY1q/2/7L1H\nl2RXdqV5TGttrrV7uIeWCGgQCSTJTGaSxSqyWauHPelhj/on9ayru6pIFllMzQQTCREILT0iPFwr\nczM3rWUPvm3A6lqVZMQIE7sTW+727L0rzj33vnP23XtUvofyvSJlzE2ErSsG8IG02Uti8M72iEY2\nlY3bK5JtmpVeuomhvK7z7Z0W2cPCnjgJxolstYJEhyNBrsvprOp0mkzDuXfJ2j/7CrRH7pgMxaMW\n9Xn+gAhc+jzRxpDUofYfE41MKiJX0Tn/nTyZ66iiq44Ukbq+h+hySOcde2FiYh6jnpXitpmZPfia\njMKEGMl9E1INiNMPVz4gszB/k2hnuUz/1dSP5ROpLz0lsvn4zkObOa8QekJnNHW+eeUK0bzsK6KH\nd78hAnvwUmf+dXY0OSuFK+NzLkZG8uIqaKYtP1HAhNQzkkmxerfoi7JPbPHB784wvk5peIjStqWI\nEzwU1800z6nPEk3NPuZ8tHOa7MhOnijuJbU3LwUtl0t8IcpI//7ob8zMbDD3M76fJKv21z5xvpwS\ntf0zZaNcn/Kc7i/oz18Gda7SpNh1yphlmiBmeu/rnOEGY/aDMv3RX+N71yOisy0Ptucpc6784o8Y\n22+8PN87ga2e7NB/Z/dAtlxYZYzviS1+sYHCV6IrhZc52v/b59ig65+o51/+BVnHE51BvvdQ6Azf\nDTMzc18hyziTJdt17j5Zyc9mPuR3mzyvcx2bK1b5/msXUfR0gXb13PSbZ0A9Q33Uofp+UGqVv2X8\n0n8K8ubMFtHp6KvXP+c/dQ0b/tjEZyHVhROvEC4dnlE6UnbIy5gMxLN08py2JEPML4dsfinGmAVn\nGFOnzg1nath+34cNhtL08bQyjUP+pYIO67vFz9HS+d/0nPg5lOyKuxlTh58M6LzUQR4r69HT2Q1t\nA84AACAASURBVP62zvQuxPmc9lHfWoEbpQeMcb7Cc8ZSyrIVxZGiM7mHXnHreMTxUmbuD9nhiwKg\nOBxcl2nQX6bz8M46/mjnKXMlskZ/uwegI6Yis3o+GYPTOM9ZSop/5ID+iEvB4WSP+k/N83e2IlWj\nNv0SVX9FxZ8yNi5FND5euzS81KOu9Jpf58cbKfxyLEk7Chn6L7qlcVMWLzdNPZ2T+PWFNO05KuNz\nPG2hRIq0Iy9VvmJUvCkJZQmrer6Hfi/0uV8oV7eTDmtCr6RMZFCZyYIQcy6hfKSwV2nQN/4CdTxJ\n08bYGcYgsiO+Hz9jFaxLSUsZumyMrNK5y5rnGfzNg664xbrM73ZR/B0au3BEfGUh1tITrcEx8Sfl\nJsR7UQH9EBeaqhGXApqy4TZEKXTou5aUCbvKwuWUCfY2GPspKTXYMtd11C81ze12ivslpNYRi/zr\nSgf/Y2koC+8I0P8NZZYH4jrIb7K3mLmOrcdXxbd0CmLn9AVzvjhElkziB8cvMR6n4sk7LjEXPbvs\nNZYi7EF8M/Tn2LH4mPZZbw7XpWo0S0Y7ubpoZmb1A/ptb/3o2zbsPd+3GdnapLjcHPM83yt1ks2X\n9FNrn/Vo/wX9uvo2mdTQVXGgFbDdYym7HQWx6XM/ELriKj4rL7s6FR/Hyyd8XngnaulL4uFxco/c\nEz53X+F3AzHW0vQcfq28Sl9u36PPj1+CsFmYxr/OLLFG1h5zn+MhwnEDpEpY3DLjC6yxWXGBdF9x\nfXkH1ELkHM+LTbwZUqagLHRZvD9t+fuFBfpu7jpzoyvEhqdAn6/MYyuuAHN4UxnTsBTQjh6BSHl5\nZ9vMzPakYjR2hv45+w4o2qT2AjsvuH5DfBFOzcGlWTLRHSf3za3z/dE6fnxqFts6/664GIT425aS\n1kCqhdkMYzixzF7k3HsoSsaUWT7NSJVFKiTTc7Q/tSy1IilXZoV6zUrFJeITL9U19hqL54XeFuri\n+TdSj1qnHmNC0qdnF83MLCF+j64y834p0RWklnT4nDmT22KcppZB0piZpZJT1uvwu9Ihvu/4mH7p\nVKVUlKD+bvGHOFNSUBpr2OuWoBSz2ofY+KDFWuoTIiMg1bm4h7p3pFzT87KXGAg1W5FtneapQ7PL\nnPBI+WuoAOnWGLq1PoQHereQ6pG/x9rVFVeWS/x5nRO+D5o4boYqS0Kp+gPM636X9hTFY5c9ETqi\nIc4acbDEW+J8aWu9EkLGIdWioO7rbUv9KMB1MSEnvX1dL5vyhoVWalNPt+oTE4dMp8b/u0IYlYo8\nv6tX25pQca48Y1fUKQk7EVdkUYpeavfMOHu9nt5j3E6tM1lxAWk9cEopbUzvRS7xCE6430xd1jns\nd+1RI0KX+YQ4CsT1ruunvg/X2ffv38LGx8/i6/riYnOIZ2+o4pSeWDQzs0RE8lji8Xv4Ge+02web\n39YlNrtsNz68aAO9O2RrzI+jXWz41h1+MzfFO090Eds9kvKgp0Cfl3LiyXz+ezMzcwmRcv4n+A8B\n92xzn/ntc9PG1RusKRMxbPrJK5An8Tj7shXxoAaFXGloTD//LUgay/Dc1CJ7mLQ4txxh8eycYhuh\nMPM60uM5gwnG7OCEMX76GM7WirgPV5Z5x/X3aK9DiPNOhb3OupSGHULWXfkQBE9qmTF8tc73Jv8W\nlq39oTJCyozKqIzKqIzKqIzKqIzKqIzKqIzKqIzKqHwP5XtFykSdRLLGUkQH++IS8Ojce1jVS85I\n3UhqQ5EgEa39pyjJHOqsV+mQyL5TzNSJCBHv6jIRrMOXZAs3xHngMCJ4vm2dLXZKj3xRbPZDBYgA\n9VwVl0SrQ7T44R5nXgM+rr98iQyJnRBdPT1VxlfR27u7oDEKioIHhGLICmnT13nI2TkibMOMSL3K\n9bu7ZBzyPqK7T/+BCH9m81C/I1MxrfPuEbH6f/zRNVv8I7ISbY84CO5u0yZFAU+UlVicI1p56Qeo\nCnUVFRy0FXl3qK4BReCFDpicJ2pYVIR84y59U8rqXK+XPmyo71+3bHxIhL/2jM+ei2zY8T7ZmnyS\nCPP1y9z3l7s/MjOzVhxESMJP9mR3VYo4/0g/eH9K3/z7wH8xM7PKc6KrO9d5zvo/kZVavsDvimmh\nJb7h+cWPyEZN/nf6/loTDp3N0C/MzGxs5lOeL3WoelEZxCq/HwTJ0nV6IEx2s4zDj3WeOXtrzuxv\nzJqXsKWPfsaY7/uIlIff5/rbt8m8XrkgxYannN987Oe5U7tEe9NCKXyY5H7/8BlZq/fLjOfFiBBP\nUvB6crxNfX7InDt5hW29fYgttqexvU0hiRbcZC//ZJ5++3Uarpwnd4iq5y69b2Zms1HG5aGfcUit\nYSeDbf6fD4FOuWWShHiNEnTQ1qV55ksiRAS8kyG7Pz1D2+NTZA8cXiLt1idbVMpLDaSj7PwRtnQv\ni39oiGnfNUa2Z6AsU6RP3+yJTb2hjN6Qe8rn43etEja0m2H+NppDBRls7dIYfdcRAie3Txbq1Quy\nIeEztK+hs7z1IL/zzcH7tL5NxvRsUvxOUneaFHeByR++rYyfzzc8Izu0Df7e3MA/7uzRHwFlZ5wh\nZYHGxJFTkIKCuK28Mfx0cSCeCmWT+kF+X8qLQ6UltQwlq+o6y3+Q4bmhEFn3E3HOHClzMXd2kfrq\nbG5sRaz9rjfLcDvFseVSFq6ik/Bqnjmmhip/ZIYPpN7iFZrDLRW9pDLdXSEtHauMW32bdnYr3Kcm\nbozEPv1TaXPfgLhsqlJ4c54Os2Ediw2wLUeJeVnqKTvrwrby+rsp7paggzqWldXpCzUV3RGiZlxr\nqpQFSuIvCrYZo71jcWHdYM7MfUjm7aTM/493yfJ092ljZIsxcwphExvHxgZx+jbbEF9QlrEfTJ+q\nz2hzMUZnl/epl9MtnqCX/O2eFx9HjXa43UJgiOenWhNvx6k4rCY0eKqfq8bvCx5xB4y9WebS3deZ\n/g42FhI67FRqRFkhYuLHtDsiBZfQHOvB6R7123uBDwmt8vuZafxkcI16O+7jt4vPhEoIcN+xC9wv\ndZnxOOiR1StnGbf9Z9jBmYvYUnxp0czMTnLlb9vQPq1a+THj4zgjpGuY8XeeYY8yd8qeaGuLudd/\nQb1z84zjTJy52J/gvp199iZ1IWoP0tRz9hzXLZxjfbAD2lvY5r7rKZ9dEP/M1CrX1sXBdyg1pszG\ntpmZJcKsHVOzrEWZY/HRid8ossCaM70mxMYKa0WxQga3+oo2F6Q8NTHBHmFxjbpuZZi/BSmK+U+Z\n/+3paXuTUmgwB/w+bHbtEioh/jB915Sa0K44ShwdbLA6wZzdvktfnxzSnuV5/H9LqiTFOu1YfAf0\n1PmbIH7CUn978ZC18tktPgMT7PeuXaBfkgusF6d6/vEGtjYxie1MnWW/2hLaYO8B3/vEvxEVZ9iK\nMtazc4v6PzZU3MIG1sWhUBfv4FyUdpR3+Ht/i/Whssvf0RR+bvYy9QymscH6DnN9c5O9UGaD7H0o\nzXqdPE9955aYc0Up3pSLQklrTuYOpVwm37a0xpxcepd6mZlFQm7buCU1LnE0NqQElFyjnecucb1o\nFq0o9bD6d2C0f7N43My7ae3lfUX8UsjDWhBXVr3Ypc4hrUWBLmNS93C9t0Zb2i4pFYrHLVAXIkbq\nqZ6QUPnafw+0Ngqcby5xwXQa9FlCck69VeZGR4iWuhQFzSHkRUicNzzG4g7qEV/EFiWqZG4pM/bU\n7uGamhQ3Sn8wRHZSv0YHGy9Whkgc5lJKyBC3SGqG/EoOk3qon0EJ6B3RhBAK6hRBRHug4Q3yQj/V\nOtiiW6cpeuInCg74O+jhvg2pFA7H3me6b5j7xSSn1ROSs6b1olamI+La87xucbgYh7GEOF80lytq\nZ+6Ada8nFaZqib/nL+NzPvyE94wToXWPtbcZE5dYME6/Hor3sKPTJif7+NRE9DvUxvn3V63h79v9\n3zEPB5pn0+IaHE/iD5avLZqZ2YHeLXYegAqdPMu7Y1gnSVZm8L+Jj6WI5eBZv/3NL83MzCclyfPv\ncL94mvuvf8m7yfD9+/wF0Ka7+6wpL56yjx4MOQ0d2MzlH0llLsoYHefxUxHx/PTFX9T24ocLUmer\nu/jb4cMmFhZYo8cWfmBmZlHtnTZv89zyDv6yN2BSBDWnL72H4qJTvEybv8M/vjoGqXjlMmtvSGpO\nf6iMkDKjMiqjMiqjMiqjMiqjMiqjMiqjMiqjMirfQ/lekTI5nV07kgpJX+zMPbcyuj0iXNs+oo/5\nQ7JwF94jcpaaICIXSZFdPKvzdVllclOzRB3digI3G9z3bXEnDM/h9aN8moP/+wdiAHcTyZuKicNB\nZ5mzOaEj+pwdmztPJLCkiHrBo7Cyl+jx3ATfux1E8BZXyXz4xun+vs6rH4h9+vwN2heTGtNpTudP\nI2QMMl36xSfUy/Mg0da5cepX11nm7hHR08S5CXu6+RXfiYtgf1cKCOrbwq7OTHbou5N98W8cEx3c\neUXG9O1Picw2i1z3s7+FGyQ6RrYpOkNUcSxEnwV09t8nFYvDPFHG1y3uAooBP7hJW8pCHaT2iBQn\nCvDv5DaIlvZuch7wP/6M7++nF83M7Fhs8avTXF8s0Xcbbsb68CpRzstF+iOyAKrpS7Gq289BDjn/\nF2zwA+Oz0yXr8yudzXTO6ezvFlmwv7hPNuvOx2Icv0U20Kco9J4UGYKz9N9+lX72BJ+Z2f9uK79i\nnDI9UGGvkiByZpVpDo3Rz8+O6Je5ayBlPrxPdmp3+s/MzGxwDZv98j9jO71zRG0/M8b5fXFOPF3j\nvhek7hK5RbsKE/RDUxns1hFz6scJbPVpjuuan4DuOPt7rjtntPPgG9oxdpm5cMdL1DoaIVv1/BVz\nYCG2SP8kGY/XKQfiTnrxS5595gb3qPgZYwFgrOlgfroETHAqQh47Q2Q8IdWMiNQZKj3msbuHX+jE\naEtbSIoVZTATU1JnUzbIORArvXgWUjFsL5ggE5CY5jlbd6n3UZnf+bqaKzpnvXCT5wZWQRsVSzxn\nX+gzpzK1KQd+ol4Vx1abvq4JzWY6Z57b5nexuLgOIuIb8TAmi6vKvs+SZZmNk0V7okj/mJv7t3Ru\n+vJ10E7jF6jfrpAzlTyZDmuLM0yIl4LUscZnGHuXbGBignZOSu0u3iJDuqrMistDvxyWyIj6ffSj\nq/5mpDIecdS4xZlQleqSR5xlrtCimZndfJs5FU0w5/L/JDSKE1ttSzUptcrvk0b/tXvi7Dmmf/t5\n+dYo2SvPOHMv38fnuL3ctyG1Pt/AadWi+kBG6pcKUE/ntf1C2ew2pXbUEW+apJ16WvtCTq05fuoY\nV+aw5xPKp0bfDhVIjnakGDXPmJ/7iHo4vsSGmxlstdGk7a0sv+vOYWvj58WbFuKzKaTIcM61w9ho\ndIIx73fog/KpVJa61LO6SbZqyE12UqPezgbn1msB/JV/VuoZx0K9+ZQlzymT6uP7VAlbed3iqGOj\n3jj9F21Qn1aP59a35LfFj3L5I8YpLc6WnlAd+1LM2XxIv8Xm8bczKyBKakX67egZNuLZ5bqEONAi\ni+JnWlo0M7OdEuvgocYhPU0/xy6xJ5g+/Y43w1wdK2t8XFI7dM9je+kkc8stfryaFOl2y7THdZ+5\nHnmf+yelZlg4Fi/Xnmz4Hut43IPPSEgJs84WzE4fMndyG+t2FGQMp6WOs3SObHbja3F/PBJ3wSTz\nYW0N21s6oU8fy0Zf3aZPYwnaOqv7DaSyc7y5r2fjhxKfiOdijuuSUmrMbdGGyqY4BkJz9iYllcR2\nPULuuZUcf3WXMdo9xgYC2nemxrn+ZIjkKeLHVlSvwCS2VlY/RIRCOiO/2pUiy/o9VEqe3wdpExzH\n9s+/z97Ek2Ju7T5gLd58CCdZS2iEuXNSrVPiup5l7sUjUkZz4/dPSviCXos5dJrj+5M9fMyxkC+l\nCnN7cgFbmphhjpczQiIKXRaWKtalj8V/4cEPV59jQ4e5bTMzy2oc/TPY/tmb7OHG5rCxRlnriJA6\nuQ3soVpjAKIJZehX2AenhYAatL9TxLnzxZdW3cbm/XGprC4wPmvX+F03Iu64Z+LCyYkbrmOvXRqn\nQqq1uFc4KL80YJ4NESk59VEvwKB4x7U2CkHhjwoVqiZ4dbqg2sLGmloXmiUpFOp+fdneWEToXim5\n+sWFUm+KC0xKMo62EOlN8bUJmRJ1CLLip++j2qO0Q6wf3ig2GBPSp+OQep2b6wfit+uKe6ZZFUrB\nKeSP+JZcQh0EHPqd1AMLOWxi4GVsJ8d0ikJzwhnh+d3hu1ef9jeFCOo2tcaLhzQltG+/w/87aWzW\n6aE+gSHCyIZIJqGlpQQ0aHNdS6jmsk5bNPK0Y2zm9bkQzcxcQlPXnfT/6TGfJzX2406pT8UT2MXy\nGdAgi3PMke0T7Omrr+BvCTupd1frZvaIObYthSCPbNs/Qb9Nnl34ti6hVNzu/vMjc4mj6/zbzFen\n9g4102kIcadufiPVtRjvdtdWecfJt+irsmwgn8Xm9l+wJgT1vvrOe/CFujxCkstfbYofdE5qygc6\nCbKxi1+7uIb/93noA7+Q3g6tdU83+L1VxW+keEKpwnyuiMPQ46QvpoSMSU5wP5/mSOYIP/34Lu/O\nLSHo55dpZ2xKCEvxz4XHx1V/EDIZIRCnLrCOzcyof4a8Rn+gjJAyozIqozIqozIqozIqozIqozIq\nozIqozIq30P5XpEy4ZYYw0UNkDpDpDrmHPKXEJUcT5Dd+bpExiTiJ1p82iVy9uKE7E6lx/cvpAoy\nOUbkyu2mmVVxwSydIzKWLxGFdTUUzdWZs6M9Mi4zkzy3mSMy+OwOkb4dcbssLJMdOhpw3fZTzuKt\nTg65HIgILt34wMzMDnd29VyxwncWzcysNowOt4ncVZv8ffsXKPKcKDK5chm2/KMKEbhzE2Tq/Trr\nl0wSFd/e4zlDxaJctWr74giZmSIi/+5VMnfT42RPCh6iirWczsImxtSHOksZI5twdpXM2aGUr3xB\n+njuHFHVw4wyaOIyqFaJnHsGRE+DjjczuaDY40POj8zM7LMgbfxQkf4XS2QI5qZJY3j+jvPot7xE\njvt+ndWcJML8Kwf1nnrMfWcVuXefwwa27hFtzadBAbz7GdHQ1F8yJo7/h2jnb+bpx5Uz3G/lLcbg\ntEu094fGmP3uC85ZxpvbZmY2qIOuWp6h3su3iKL+fIVo68dGO45e0Z9T81z3/DrtKn9NtLamjEGz\nRv8717C9zoZQZJNSMnOC+Gn8+idmZvYB4klW8f/czMzabqlnpGnXWvCfzcys8BX3/73OYy6eMDef\n3eTvt3cY39rVz8zMLHQEgip+qIPXJ0TVawtk3e7qXOb0K/qx5iP6fH8OJM+FHIii21764Yfvwp3z\nOqUmFYz9Mn2f3sU/RGe418kmdfCnpDxQwkaPmozR0go24q4xhukJnTdukwFwT2D7tRZtv/UEDoP1\n5/ipI6k3TEvVqF4js9bOD7NJ/L4j5S9nlefNjDN/a2Ui94FFnhvx8dxMkeyGBah30iPVJvlHJRws\ntYg/W1DEfr3A3MhVqJe7Sbt2T/j7XED8JMp0tkviiKnQj4UGWb7MlFQxcrR7/gY2eJzH1rzKwBYf\nMKaeCbU3hk3Op7HtKz+mPac1nter4Kdr4k8Jz5DpeLxJ5qVTEpJHWUKXzuxW5UNmGjqT69KB+dcs\n3qqUfVrc169MyrFL61CJDPQzyWL1QkIbrOEjIk94fkOqUVkpTUxdXuT+eSm81aWYU2WcfKd8RmZ1\n/l9IH+sxJ7pShuufxq2RkrpDlGeGdSY84OK3FSlTJZriPtmhD1pSOCjNsphmXvD31CX6MrYsNZAi\nz8q78CNB8V3UnvP/3RZIwvACYxIOSFkrzNgHpGDQNGzxVJwIMaFB41IGeyWUUKjL/ffFHTORoL6R\nadrlaHH/Xo7rY1Jk7NX5v7eOzRYG4sapYGvfZljHmcv1U6l1aC3tijsgP/VmeadGU0orQk95/YxV\nVBxXA6mYlE7FqfVMfHPLrIu986ynWaGxegesxdlnZHrTbzEnUqtk+yoH7F064gzYjrC3OJvE/8+I\n8yF/wDpUOsEnbEsh8uzMmK5LfduGSHrOBlJaq2SFKJKCm6NLv0bOcH3ahMZ9ypzPZUGZRI+4/+I8\nPmruLD7mVPeti6uh8ERKRkHm+NyaFC3qfO6t1y37DARJ0IO9T05hS+MLzLvj+3Bi7T9k3xaL4z/G\n10BYzJxgy/sv8e9bd3nm5Q/h1ArcYO1yFJgjh8e0IfJUnCjXtYaPL6gPybx2S+LZyLXsTUrXha21\nWvIDWfrqeF/qQlIaW7kG0iMyS5+XDob+jz4PiufnUOpEZYcULfU7X4o+PXhGfaviiJmKMnaTUh2M\na73YuMf+dP8Ba3BQPCTX/ph9Y/r80ObYf3alulc71Z5Da3CrSz1SU9hqMICNdZ2MuUNIzillls9c\nkqqKX/waO4zn+KwUvaQ06ZAC58tH4o55wnV9KcKkxF2zdJFxj6aZW/vbzPHGS8b15Qa/80kdNXWV\ncb1ynjnjlmJP/lCKYU9YV+xv/jer7u5ZSIo540vqP6l+mQ35/FAgPT0mUx4Osr8PiAPjdYonSt94\nhfb0CGHcH7BoO9VXcS1hJSkd2g7PNJ0SSAtl5QzwbhAXyjY5EH9cFX/p6KnvJW3TFOdKVWpJLtls\nWAqVTYFoBw3Guqm11CEES3RMnFriUPEI3dnXWjnmEYJSe6i9E6kf6XlxIXXSMa21+r9DcyPmFdIz\nyv1cQnB6pL7na2Nr8bFF/hbfkVuHEAa6viPusFaH9kqkyUJSrnUm6I9IWP0+4O++uDIdQht7dGqj\nISTMnnidMhkeGJbNT4irseGiflXttfxCJQcSb6guK14kq2m8xMvn9FPPlHhBk+IrHZdy7+k2vmZL\nXDHxBtdd/pD3nEOpJfZOaGdSikWTUk7zaA74QuFv67LzxTPLbW3Zu2/xDjFUC/ri66+5VigcW5Oa\nsfaHS9p/BqQSnPuM9/KaEGy+uJDAmIKdvaJ3mQDfv/qc0w2eMvedWhSXlNClAydtuH6dtk2P4e+f\na79YEso3n+E5hRJ+4uq7tCMojpv+odqq/Xggydgn55hLXs2d7CH327hDH86vyd+u8k44sSL+0Res\nR7Uca/1mnrVx5zb/H5uhX2aEAK85hSB69a+fFhkhZUZlVEZlVEZlVEZlVEZlVEZlVEZlVEZlVL6H\n8r0iZQotopAnRXEyKINaVUC6WFEGVxmEeo2/vU2hLsTWfCEN+iDqlLJDnljT+TOw83fEaJ4V6/7M\nhBAweSLp+SZR6JVZMgIuacfPTRKpO/aQFVsQG3xsnmiuP0jGw+cl4tfX+bzZMSJvXyrC6LpLBO/g\nkCh4/oiI2toNqZuUpWwgboluiw7wO/lcuQCa4crbnB1O3tb3biKAMTGDu7u0O+CmPWvvgS5xTARt\n7Ji6BqRkdbxDdubBM7IrXXHNlHTebr+q6KZY2E/qQpSEdBb1iKzWuSsgQebPEk0stIjclpTJzG3D\nkVKukJ0JJcQB8Jrlls68//RLxvrTecb49gn1/mAaBMehzqdf/Y9kSnN1smgunbndcP83+mSDvlwX\nWmCxThbNrfPclSUQGh9s0O6vkpzjzq1LWSCOjV45S8T5hXFfz8/eMTOzyA/4XWFA5PzCjwkPv8oO\nz1crIy3Ogsgy9f6Bmyjw/hxRVGef7NPnNTKjwUPq/cnsopmZ7Th1Hvq+UAxhnhvsku362/u058+v\nYDP3fvhPZmZW7ZIt8z6CWXxvT6iLD4gO1+7CeXMmQvZoy/GfzMzsWZc5OnkiToQY9Qn8Lf9fOgti\n5r9mGKc/U9bp9ir1GXtB9Hr6GvXO3AYl4dzWuf4B4zW7QpT5dp1+fp1y4Y/ILKYnybAuLhGJ73Z5\nRq6syHSUeRHVWVB/CRv2O6lrpSjOmD39Tln5uviCZteYQ7NSi1uM4Q88XWxyeZH7OuqMSa2j7LTQ\nP9ldsiB7e2T6VuawqaZs/PQBY92JYjt5ZaG6OhM/PcbzCvKDcWVCj17in7pC6kTEUeCWesb4NeZo\nUlm3xUmp0pWEvijy6Z1jbAoH/M6tTMJelXoVhAypCR3RlETBoZRh1oLMidoBf796SbuCAe57KB6N\n9Az9lGnhf8/E5cdkMzMzZDwL6ge/Typ1yk612rSzE9B599csDtWjobnpVFYsXGW89zZ1Dj+Mb/Qr\nW2ldnl/V2edmjOub4gyarzEuvneZ616hD0ImVa+C+FsGUgUMijcgriyo+K361YbVulJqUmY0EhQX\nQJpsi9V4RrdJHaoRsj+NQ+a7f1con6iQGlXma3SMOnmXGeuCVBraZeavPyOOk6ZQOxX6ZkLZ7eAE\nNlzKM8ccLdayXp221YV6jYtvI7GwbWZmGnJri1comFTmdow1zKkMX13cMwFx3XiVwUz36Nv+Kdn1\nnuaUV0icTo/+aTdE+CBVD7dXmdHKm6n9tcVFYB72DAtar1odZXBr2GC7RX/UnuBbTmPY8MQZ9hCF\nEv5x8xbny/eEdnBJjWV6mrniuE7/b35Be4rr+MmtFO1eeJvrJi8IYVjHT5fED3U6yzhPTSx924b4\nUtKqUm1xCG1cPqTfan3m8jmh9BJn2LPMFJjb+8+5/94TfF4syH5hbA77m15aNDOzg6esW7tCToU2\n6feZy1yfFmdZ7aRjuQNs5cSB30uGsZHVVa7p70k9RxnP4mNsI/xD1sQ5KVZVt/Cf+c1t2i705VAB\nqnWZOuaesed4lqHvXcdCEq+obsp+V0+4T9PxZjbiVJa/K1sIOrGV8BRjf/4ya5l/CtspHAixsQ7C\nspBnbOo9bK0j9PBbb6NQGF6mHbv36K/NDdZQn/xjVCjmsPg8CkfYVlZcOhPj2OKld9hDRMRXt/eM\nObT1lHa3td9sVKnP5CT9dPEyewC/MsjWwvYefYatd7ROLlxjnXWHqP/6AxBRJ1us4XNC4jUWpQAA\nIABJREFUkg8Vgza/BoV7so/Njk1LLXSNvcbcRWy+IZTb3oZQwbu0q6H6TsYYx/A55saSxt+hzPuz\nz0GfHQixMxjCJ8zMtTRpS+KOCSbkU4X43NvD5k8PmCsTU3wfFVquId/zOsWhtXlvT35YWfihYldK\nqIOgj7EMak0qCXHRG75TiD+ydYp/rZ3i93s6XhAW31rfIZTvFOvBZAgb8A/lkcRF1hMyxiOeuXRc\naE3ZljXxw24hd4ackw0hb6Li4fQIRaFXDvPGqHe4TbvGhaIaqgaGAvwuNKAdhbLWN7f2SFWeWylL\nXVB7mYTxHIHazCfFwqbQrPkstjh893GKt88rxKVH71DFDOOQ116nM1SHijOHBuL5GAj91hWfYFi8\nUeNx8THp3TSgG0SCaqYQRI43A91Zz4aKmIxPQLJVgTQ+L633tbD+vyNFzs2vmWuJceZQconrm9rL\n5IX2WBhnvz8zzX162su0muyvtx7jK+1/Nbv38CubXbxoTvmjZ0+YRyHZ4vkfgDzxa005EseTU8pV\nG1+Cfj94RB2nV6lTW/cLBKfVVvYQe5t6tpTEzl0F0edI8nfphM1DSzw/ri62evfuv9AXL/EPc+Kc\ncmjNvimOrbiUBte/Af1bPsEG+n72QrEQc8/fEefNM9p7KBVSl/Zeswv4uV6cvzfk555JYXhc/tXj\nEsp2jLl3/aZ+p5M9baFMzSm41x8oI6TMqIzKqIzKqIzKqIzKqIzKqIzKqIzKqIzK91C+X06ZMFHK\neUWa2jrf3hZjdy9P2LHY5mxXbJpIeuaUyPnjLTIIMSkKzJ1dNDOzc+9w5iyV4v75Q6KCnhbN7Spq\nHQ4TKTM30eWpMTIEAydZKI+PSKB/nnBoYEFRzWOeN6lzes080d2pJBEyj85Epxe4/+wi9br2ARG8\njR0idlFFXxsHZAAsRURtZlnn+D1kOoITRDdrymZ2xefSLA7PWtMfrjqZpJZUngrKXm79+pU5pDSz\n9BbooVaJa8eTRDmvvg+3x6GihZ4WGb1chXvPTepAoEORVvFB7D4le5J9rmxYhWjguz8iSpnQed1w\nhhCzb+zNeCD+Y5p6vrpLRi/j/q2ZmX26Rt+ePBJ6StHRxL+IpyJDO77+lL+vPCRqa1na9aMuY/VM\nkfveXzAmf3SMbfxDF+RLbI3zjrWv+P977zFmn31OZHthXBwuMer3/DNxqfw52aLpv8X2smvUL/2K\n/nl5Qj98WKNfHo7pHPOv/sLMzGa81OunwY+53ssc+OwFSJ4/FpfNP/8lcyb9CJsPLksFShnbapEo\n8dLfMx7BGP2y3WVc4u8R7d07BlU1Pw7qYuvgV/TbRTIPn+lMcOobfn/8PhnXUAzbPepiP/4xvm9f\nIIOz6qf+hShz6lEGO1kQ18H5i8wV3xmiz1P/L1mvaSGZXqccHElR7A5tP9rlGRPyF4M+fZQaE2fT\nATbjCfN3XZH/Ypf5tTIp5EaaT5dUhDxh/nYY153kaeOpkCv9E3ENSFlr6yHZipvXQfI4lD1y5mib\nI0ifVlX/U52FPX8B4p+xFmPUq+G3Emkx50vlKJok4n9hXspjQk+0e/Tt9vq2mZnl5V7qL7EhZ5as\nVfmYTIPDSTtcUsUoNYQ0HOjcdgSbDylNNH0F/3Qmgt9evweyZFZqeDVd52hTr6AyDlUpJKwpo5zM\nDZUAyMjulMlstjUOL+4xngsrZES7Qm0klNF1B94sp+AVJ0I6Rv/sFemHQF8ogoy4xZ6QleqF8ff9\nJt8HxSfS69PPNaFAtjbIVCe64ooQ18FkmX46EqdZ/Ln4ta5jn/U0c9jf1rn4qtMGbe5dEv+Zy0Ef\neWP4n/Qs/qsT4BmdFn1vfmzPL04URwe/WRvg12JzICMa4jqIbcqPi0OgKj4cv/jMOj0+y5L9yOt3\n4TDXOTtS/BJ/x+4Uz1vyiLPAi+26pEjmEbq1sMvfA6kBOcRFElems6IMZHSadscm6bPKC3Em9KRK\nJQoVj5alslBLXb8yu8rwevpvpobh7dA+R5H+bsWoV9hD1rwewJ+njf4rCfWwI4RJ+D3W7Emt/XWp\nQ+XEuVBR9jG8BBoslsLfLS5Tzxevts3M7OAR1/nnec70mDhd5unv4iOuK4pbYNzzncpUKhSwfpL1\nxeXFHhoZ7n/0Aj9cCtC+ufdAdUycAz1wvMu4eEr4huJjKa+5xAm2QD+U89hd4Qg7KZbxLd2KFH2k\nCjj2zqQ1f6Nrdum77Thrx8rbrEmxdxfNzCz7a9r2aptnhx5R19kLQvZd5J6PHrHv29iiD4KrXrWB\n+5SaOuO/S99s74EQicXp8/Blxqb5lfxf/c1sJCZur5dF7bfEaeabEXLPy1hvb7CmtZ/jV3Licomt\nUs+1VfZig/iQV4Mxu/eb35iZWf4lGdu+lHumzpEVdzuxiXIGv3QsG0hOsZauXSU73vAw9i//EX69\njU3Qxako62J6ic8xrz6vMB4uIQSP1um33SPG9uCIfp1dwRb9Qmiv34HbIStOm/FF9kJj83w2pFQj\ncK9dvskcGVsTF5B8THEbv7ixT7u94uRyaM8ZEB9JX+p/CSE/Taiw519jqy8fU+9QgvrNnmGOmZld\nuXLFkvKhBy8Zv+pz1pnsPnvZrlvou6q415ritGl+p+L0b5W26nR4wH7KIy6QFXGbDMQp4xEnSlu8\naRMx6lzvSNKris1U6vzdHiqvqk/6Qgc5nLQlqPWiIOR79nSYnZdCTBh/69VzI+KdLAkFGglL7U8q\ne+02czcQwH+7hRgsteUnxZOXEM9dRH6nL0RLtcecPpDiVVtI0HBkeBqA671CNff1ShoQ98tJhn7s\nyZ+7fEM+OdaZUJz/u/Wu4xpy4DiZG5UCPsft4z4dIX1M/nLIMROUP3eLO6btx9+5dPrChDgqZMSr\npDnSEVIpoHXMLw6b1y3xCM+t6P2sJXUrT5X7HAtV3a1L7WlH/KLXmTvnb/DOmt+jXsVTfNr4CnN5\ncgmf8UL8KG2dRunr9En1NPdtXS5duGRnb75rrzQffEIiX/oQBEtCPEO3v8CvZTPbZmZ2KKXIdJCx\nGVPdFpeZ/3UpfwWFDG6KL+hAa+byRfyJdxm/fPCQd5JsjrqNy+/V9d5/vE8bL2pPM3uWfWhFJ1xC\nc+xXD56CxNm7zTvctJAzsTPsXRbTXHe4Szt2pJgbkkLX+ffxzxFx5Ty5Tbtze+z3knO088K73LdY\nZn/r0zvmQKrNm0JIBr1CyLi+4/H5n5URUmZURmVURmVURmVURmVURmVURmVURmVURuV7KN8rUsYr\nBmync6BPZfuUBUxeJOIUdBBhS04oI9zSGTOdnQ3o/PjGAVFFC0qZ56u7up7ocXd4Xi9JBLDd5/m+\nrs5dK8NcFiP21ottMzMLp3juoy0i+PfFw3Lpj8gy1YV0qepssadKhsKljMlghfZkpf/eOVFGtk+0\ntlojAthXtu/O74nwdXqKivaJON77Hfwmcws81xElWrugDHxgijPYbkVxe3Uyu4mZsAVjRH7zR2Sf\nBqbM3DZRv1YVTpDbt+jDc5Nk94dM1ZeUrS6c0mdjy0QRUxP0rbOhzGSeaGMiQh8X+0QlM1u0caz4\nZnHA542/NjMz7zLRztmld83MrLLJWDjPUf98S+fRV0BmzFwkMtx8QPR1/SLZox8WfsvfH9BXF+pE\nQQ9fkvm7ryzPv1vm94NHPzQzs388R7bk7wvYmneR520qkv504h/NzOzGM/q5ePCJmZmV/gO8QjO3\nuO7+vyOSf/UO1z3/gDE/18LGvGv0z5a4ef57m+hqTOobkSi/+4WP7NQPMtjaVpT6vrgNcudPpUTU\nP080d2OabNn2GTKd3tK2mZn9+HPG776QN8UlMiOXXvyxmZn95jOQOct/Qzbt+YDoteuA8d5QgvZP\nD+Csab5Lu39xV5nuJudLP2iS7ZzYor6/SZCZrXvpn+4/EG2uAyiya09QwnmdMiiRwduXylKoSuR9\nmOSoR8isDYqK0GeZf+kEdYmJK+rCLL+bTi+amdmR1BvqJi4TQSOOX/DpaDGXQtP0aaBMnwSTYluP\nkb2qiLcjKXb5YJh5GU6TRV8IS2XuREoFaldP7PUFnSOP+KXiITW2tBAnxQb1jPbwPzGd2Z2ZlTqF\nOBC2vAzWkEsgFGNuDhUVxuNkFKcc1NtRVAa4waeVGNPiI+bKXWXBig2pnRg+od/Aj3by2G5bWX6v\nDmB3hfxZ32aMl4XQqeqs7fgU14UPlBltSbXKSSbC35LihM40v25pq9/9UjoYU1asWuU5oaDOs3N7\n8wiJ42woG2bM3cNTqWkpO3cgZbXWJPUPtDWCsrvQKf64oixjQcpkC17WmWJUmaS5olldKhhlbCzv\nU+Z0TOpC4u2ZukGfeXuMVeMB92i0qUugRx8OtPYdSf3D3ReXgZcxiZTJpPqNOvkq1Lngoc7NKP+P\niI+tKDWmaFaoH3Gr9ITWzPWoX8Sjs/st6t+SSkjfoQxmiPZEpDZX106kLdW+wKSQeYs4hLPXmFPV\nllBuSfx59/hI/SWkTYv+6A5ob1RcBq9bnNo7VLI8PyInEoqyTnTK1C8knqi6Ms7VHP53V4pry/P4\nN0+OfvYUyOIXDrCZqJ96+8eFWpDiTFuorK2DbTMzy91hL5D+EX59Tqjb9g72kdlmPR4PfcfB5Y0F\nvyV78Dil1nWW+ndlyxuvQKuEJ+nXiRv4kulLUiT7gvHK7jLnvAuM/8JZrkvXqXerwhyuZaVmkhGS\nycs+IDY+bY6z3GP9K/6X22Xtjq6Jb2KBe4UvM6alp9zzaJM1LCik8tx5/FOhwVq8v8399u/QpvMf\nc93CNa47lbpc8bmQHiHW0IUlbHQwjj/sNwf2JuVEXAfNEmthcgl/u7IqFQ8pv+w9pp0NcUmNneG5\nZ6+Q3faylNvBC/Yw+y9BeBwWsfF5ceBMLCvDKzW6ZkE8HALmTGr/Nx4iMyuKFDv8gozzsdT0Lkqd\naPUyc6qufW+rzJzJ7G3zuUmm/EAIGVeZub4olcKVG6iQdIR8bOYZj6kL7Esvv09mvebChmoilvL5\nsI1wknYciR8jW9WczYqQoy9fJSRor8b61hHCPSg11q7QGNtZ2cEudjM+xe/W3qKdwcnvFHE8Ea/t\nS73r6R32ug7taV3ikJkXyiCSZi675Tubg9cnDJGgns3OC63rxNZdesepnYrbqyGFxAF+Jp3AljwO\nIVakqDi3IO6XbxUYxWEiRMxASIrhGjlU1XNo/egF9O4TpU3OGv4hJy6XVmtf9ZS/dlNPn7ho+n1+\nN3CL6ybIdVFjfemJE8U3wN/061I5qos3SXuxRkMIUA/116ueDfq0O6l3NE9nWF9svddnTQ0bY9AW\nH1Ojg+37xPfRFbo3athYT8ijstQKJ8Z5brAvRE6H/nOJQ6ctVJqrwnWtjrhmhJINC4nZd4sPLsj4\ndHSfYuX1eYfMvuP1O9hgPfCmaefUGL7K5RM/nXivIjfZYy2cZ1050imQF894N4zMMken3djyxgvm\nxMNbvD8trzJHI3NSOJob+7YuU29dsIPctm2sMy/OrDEmQWE3Hv78lpmZbT/nnmPzcKacu8qnDfmQ\ntL+uNejDep815VRKUFsPWNP6QtGuLAmlqT3/0zt8Tq5IPbnGWJ+c4kfGZ0DOTEp1zy2ESuElzzna\nZm3b3eBzQn7r8p+AQK/lWct2pIz44Ava5fQzljfe5pSEf4K9ztbX+Iu9u/jnxDz3mxTfT0O8R8Wy\n1KEHQpxvievrFf70zFXGLBrDxv5QGSFlRmVURmVURmVURmVURmVURmVURmVURmVUvofyvSJlBkYU\nsyYlCLcRMR8oMzqQ4s9+lohXu6nre0TmHUtEttauknkonBDtXbsh5v9xosodZXG840RPgx4yrCUv\nnz1xA2S/4exXKEoELBghUnZJLMrDDHMiRdR6TOzy2QARunnpqr/Yor71QzLMpzo7d7AtbpwUkbZO\nmezZky0+b3xAO0RGbeU96jcpRvEr0l2/dJFo591XZBr8A4axXqH/tl8SmQsliOZGp13mU/Suqgjz\nO+/C9F8qKEKeJ4J95RJ9dG2GNmeUBW/qHN/9eyAbJpSdKZ7SR32fIt86H73xnMjtkN28LsZ+75hY\n3l+zOHaJqlZX6JvOw9+amVlWDNdjvk/NzCweI5Jd6cDM7YiC9EiE4UZx5sR9cEYqSr9l0H/1V4tm\nZnY+DCdK8j59ublAFuzeqy9o79x7PO/XvzMzs940v3O/TQT6xe0/MjOz5z8hCuq5w9gUJhiTTkRZ\nnM9QwunFf2ZmZrVX2MJvI/Rv/D719F0DyfPWsjLJ4v5p/pyo8FsZEEFfdJgDseY/mJlZxIcNej4l\nGrzr2DYzs7fvEyXe6aGAUBXq4vBTjO2TXbJpm4+l5LUiO4mDTCqXhcaIM44xnbt8t0l9/+l92v/T\nX/NcT4hs3859Mgubf4V9zRTJHv6wjp1s6wx0/ixzLxwSi/wPlPn9v+zfLFOXiZj/2E9fBnVWPiIO\nkqJ4bIIrYvxfIqIflLLY4SZZCqcyhidfgA5qd5X1WMDWFq+AoppIkhHt6dyvQ4iIfEXItLg4RXQW\ntyu/0RGHibdB3wzPmw+EmBiL8rtclj49fMj3/Z7Um8rcv1FWVkoqT3ZEX530+f8gydwM6Wx8KIU/\nOx/Gb0XjzMF8YciHoTmmzHP1lAi/Q6pQbinSnPHoLP4Bz0v0+H3bpWyR/HhG556Lh3zODdVKxPx/\n2hZCRciTakDZqJz4kbzi5jrLmeGg2lPpiusryN8u1xBT9HqlJyWGVkK8KU2eV3fipz2Ca3gG1MtZ\nVxZtgv7qdIQa0bnyulRcXKf6fkfjO06Gp30qwhP9risUhjMrln+pgQWjZKva4YQNPNhqNMczdpus\nGe5nZMyeyiRn/dhWaMhzVqCvW0X6punQ2iYU1Y7QmLESbe5EWGODLTJygSjPDevMvyvMmlaUGkWj\nT1uiXakO+alISOoZohiwnhQRBi76IGT83tXD33SGaXwpvjilnlTM8b0zRjuyyjiedugjn5sxGihb\nvphgrvbK9G3fx1wYuIW0aeCf6oM3U+gacuxI8MvKJ0IlTFEPd5N+cPuUeZ3h+tyGkELPxbUVYUxT\n04xbeZL/x8RLUVP7S/vYQuwC1y+8hS9rdZjrx9vcN3MPO5i5zh4gnhYP0guymlUhR83Muo2BhWep\n78m6FNCW8YlTl9Wur7jf0w3QFIEl1rfZFfY0RfFu5XXOvrCP75g5y9wMLbC3aL+go2Je8U+VaFe+\nhP255gc2cQV/mReybPsxZ/PdW2Qg1yZA5Y6fF0dfBtupb7CWlCPs9+LvwkWSOCt+Hdn84Q5rl/MF\n2eHzUndbXuW+h6cgpivKdDaCtGUgtb5+6fWV/szMAuJ+mTqDX01FGOOKxnT7Dnuf0gFjEkzLFkJC\n5kh19Mnvqc+R+tjpxz9d+5g1d1GIjcwRtn9yzGdMGWkT6q1UkOLkJrZUl0qeN8DYXHuP+6XG6Z/T\nY/rrxUOeb+IV8YfER6K55xGycWKB/p64ij/2CNWxtam1Xup55y+wt6kU8Oebd+D+qeTxLYkxbCbz\nin45kKpSTBwv0Yj3/9eu+hD9MaAd8QvMveU19nBdrYtO8a7MzdFfK+cXqVeS3+2sY+tmZttfPrSc\n0HUt8UaNXQXBtHyBuZUQGrAp/o2BS3uwk+9UnP6tEhFHzHyUe7cbQg/IX7m8QvsPuVvCtKXRF3eK\nPv26rlGlDytCFZ02GPO40J5u2U5Y/JgerTUhcYE11Yd5/a4n7sdGV5wr4qgR1Y05TdxcWruaFamp\n6jMUE89dAhuJDfj0OPTykqKvkilsLii/nTYhZfSO1xGfXyCovu3Snobe/XohKTCKL6SvevX8+HVR\nudhANuMSkiYvXrzIsH0iHxsikhxCY2l5s6p45QpSimsLFJUSj6AnJBt0Y6sZ7Q3aBfZKFfE7RSff\nbL3pDKS86KO+S0KzJXQq5DQr1LITX5VK47tOt6jgxh3exxJz7E3PDxE091mHTw/5/bW3sO1rH0l1\n9YD1KHec/7Yup0+3bX970+bE7TJ/cZH/b2tfvMs9FxaY50s3eUeJSqHw4TP8+s4D/MqcEM+T81LP\n29G+UdyDV65/YmZmTkH+nkqNaWpGKqE39S4jk5oJSt04wf0cUgDbWmc+H2YZu8lxnnv2kvja3rqi\nvsDvPP4V60Fc+68zM9R/VmpyEanbPb7LdTu3WX+SQi9dew8kjdvNGGzv4ceqUhE8qeEXE1PsReLT\n4pg9w3rUkdLXHyojpMyojMqojMqojMqojMqojMqojMqojMqojMr3UL5XpEwwRiQpKtTFxAQRqkaD\niFpLWTS/GMbPXyTyVZH6UTlBpGo1TSamnlaWUeHTujKQ49NE+H3j3O9YZ96qJTIU168Sndy7tW1m\nZm2dwc1XyExsvpTOeJGoqLnFl5Khnrs6+5yOEsFriQNiepEosVPR34kK7ZhZJBvWlgLS8OzzyhXO\nC3Z01u5YLPvdkM7Lt6nXZ7eIjj65Rybi8nkigZNTnLW7qjO/k/NEJG8/eG418UKUMsNzvkT/H90G\nxXMmpWyOzllvdujL7cePaIOLCLFLbT+v88PDjOlxhfuk49Th8ARkSMCoQ1dZfIdHoe3XLPe81Ouj\nDVSETqUedaZLVDYh5YNftomurojpO7kLWuhcm+hn+CrZq9uviIp++hdc9+S/0oeej4ngP77MWDif\ng/yIvi3+kQacO60b4tZRdHXI2eB2Ew3ttOAbKqSxrdUakeneKhHpyCa25LhJlPfDn5NtG3xCv94P\nkNUZbysT/FJs8FJ6WFbm/Pgn9LNz9xdmZnalRvQ284z+uK2zuYtPiBpXPmI8Eq0PuM8uGdKjCnOq\nm6X+J5imzTZArmRTRMf3ctx/LE52cmydccl8ADrl3f+b+n/+NhmYFSeZ1x+qP3a3yeJFrjH+P3Mr\nUy6ElvPhopmZndEh49sBoQxeo+xIXeN0i/nYecEzPcrSe3ROOFqkjSVFqmfOixdB2YoFIeQKUani\n+KnLkYO/H95iTLuat/0+WSdfhKxGq0rf7yl71RCSYizF3Ok7qE8giNvtSU2t7uLv0JhQSsr6v/XX\n2E71RFkmp87sHkqxwEPWJDTN/WPKRFfkt17uiLficNvMzBxxcbPonPfELJmHoepHSJw0tQj3WZ1U\nplbInoQQK4uLzIGEzr+X+9jIRCqu+tPfc0KlpZbxzy+ekRl36vz54tv4x+lJxqFYor63P2OutntD\njh76JTLG+PgD1KfSfv0z/mZmwRbjXPRTz9YqftZXov8aJ0I0DflVerQjLCUwZ4z2uE+EZHLijx3y\npb2GkENufu8P4vv6Uo4IVOinSpl29Cr42FYee4rN+a0Vo0+7deZRQFwphZoUBI+wmX6WrM98HNuL\nd5iP7hpjX6wJRaUsVkXZ6bBkixo9bElCWRYy6hTXmjrmkyKiuGSO81LHcHHfmPxsSZIqUS2N5hPP\nhNQ8OgNs1Cf+N68Uwvw5/d7FHiBYpX018Q0VitQveiJFlChj3k3S3r0t+jjYZY46pDCWLA70XCmo\nOf7189v/Y3GKp6IZph0eH36oNkTsuMQvpb/HNQcWZ6nXxg7jFt/Hls8qS1jxM3ca4kNKxRiHQ/nz\njM7px26wrk5eZM/SvquM5xMym4lJ/P7KGuPTKEj9UGgKM7N67tTGdf/NMLZayYj34yo2HC8yt4+k\n8nQ4x/PnPwCBtTTPnC2e0O+NY+pZKjGeySnmbGxWHGpCx52JUa+TklP3z1pAbV9bFWdMlb7JPN2m\nL5boy4UF6uaYwa/uCmm3tY/f9S5z72kpitQz2OazV7Sh+ASetYKy27MTjI13kj59tY7/OXzEXJi4\njP9zh79TrnqdMszGt3PiVcuw1+h7hJys8v3ZSzw3Kf/XEYdLV2iFuvzGsjgVkpf4nE3Rtzvr3Hfn\nKRnbhHgBa1P43+OnoKSG6k9eqZssLJ5R+5jTVXG63PntV2ZmVjimP9Nx7jelDHFX/rQtFaTZWfov\nelbrjNRVsg+wxUaFdkRDQ54iqRgJcdkVKmL5CrYsYKq1KoxrSnNjXqpPrZOS6kE/pSLi2koxPsGw\nuLw6rB958WWUjqR6IpXFjLgldo8Z72ZGCkT/p1kp37SEkOcTS6w/q2+R8deyZQfPsPVnd+nfuN4/\n+uLpep3ilFplO4Q/GogpzicOkm6NvkuOyz8K4ecRQi/QwU8UhYzsaO1ql/A/ct/WEFogKC6qQZDv\nyyX8aMuYa40aY9QR4sQpaGMwyfNTQi/45c+bUn/yNKjvjvrcxAnmFsRE4kyWEz9oW6cdomW9I7ml\nYiQlH4/fofZzH58Lm8uJJ+k4z316evebjINC6/p5UEiInp7W1oKQO72mkH09bChuQgylaU+1Je6d\nU9m40GZutdchpE9dqK6GXo2DLtpdrQpp1MbnyLRN4GCLpajnm6rLurVOTo0zVyM++mt4qiK7ycK6\nfE0KdHtMoqePQeJHxcG2dImNeyWPrR/sDlWY8Jkz83w+P2LOPPlnfEo4/R3auGMuG187Z0tn8S9D\nxPbmI961BlK8WjrDfHZ2sO3nX/M+uvkUvzCzRFsu3QRR0xby7tD4nJ5nHShIZfnxz35tZmYNKTTO\n/Dnvr76wuKOK1MMtRcqc9rXlI/ZfBy9Y2wLT+IeBOMiCUkMuZbGJ9fusE3H517MXQa4MeddaIfr2\n3j3ejQ4eMAYhje2l9/ETIfEX3fs9fVk8xSaGKNt5IbwX1xZplw9bi4iPaGNjuFn6n5cRUmZURmVU\nRmVURmVURmVURmVURmVURmVURuV7KN8rUubkiAjX7jqRuG6fyJUjJS37PqHrWSnnTE4TWbcQ0cjc\nEZH5r78kq1/IE1FLB8gabjzl+ztSK1m8uWhmZj4/9+8qWpyYJgpZGCdy53Lzf7dX5+j7RAS3ckRZ\nI1LlGDSISna3iVY/bcMvsnn4SvchA+FUlHg8RVSzoDO/QTGdK6Fvzz4jenn/EVGxFRZ8AAAgAElE\nQVTQRJpIX65IJqB/SlR14RxRz8V/x/2bTZ2jLNKfuX364dUe1+9tZOyHH8G90poiGph7xrX5J0Qb\nW5fIHhSkKNCUKsfEDaJ+F3SOt16grQNlf1tikW+1iXLGpLqUXv7IzMzCYn2vbuscb/67jN7rlJtR\nIUZuCdVwnvpfVV/8s47SfxIjCxS+QWZ4R9wkix6ikp89x7ZCTrJpv/+VFKy8Uo1wkjW7UuL7Z9u0\nL3YIMmftI8aklQFpUhX7fMwLymowC5dNo0j25cvMJ2ZmpkC+rZ4QTX3xU+4f/B2ZzEoMJNIt0fVP\nn+P/c//80uz/MHMtEH1uHSoTK/Z9z2fMjZ98SFT573Qm9qdPyYpF75HxrBwzByaPiSL7jfF99CfY\n/Fs+kDJ3P8MIZ/aJWn++jE1d9lKflbuM3/Yk/VuIE3X+o31s8/PL3M//kvtsfchcyMTpr7cS/41+\ny5N9W22CrBq8oJ7PlfnY739uZmb9ldc/vz0+tWhmZqGG+BOULa9mpUQgmYuAzh0HpE4WbBFRbwfE\nJbKijGWaLENCSDvLbpuZWWSoftGkTxJNqQupHs0AfmpMHDObT7CtxQlspVqiXglxSlWlnJOtUO+G\nUd+7T7GRc1JKOW1y3WKK+0d18LsrNalvzzNP8P/pccYiMS/+JqnXVYXg6DWxgYGP76fHxIHSk58a\nog+EGBrsYgubJXxGdUA9J8fES/QYf9MbKvfU6b/UAFvNrXN9xoVPGRiZB4dHyg3iSphzildDHF7D\nLGG5yxyOzlAvV1AKCi4dgH/N0m4oY+HDh5WV8XBLdc8tBblem/8PMydtZcB9Z+gnR0/P17nuVluK\nEW2dl68znpUU94mpn33T+LBM9kDX0R630o21dbeF3uYZgVVlOh/SZ819qRzJL3vz1K05hy0OxJPh\nGODHdVzaTorU8du1B3dvLangdQJYb0+ZWY/Wqs6kVI4iZM18TuZnuYIfcCeoR1QZzZ5T6hwl+sLf\npc/yMT6d4mdK+lm7hspk48fU76Avf6o51RAvRemEvo7pnLjrVBnWBg3sS53OIS6cslSHYkXxQaSw\n0dctVYd+16Y+3iBjGu7znEMdwe/4lNU/z5wMJuinwCa/L4hjpjOHrcen6Z+SUB/mxhanzjFX738N\nOsz9CNTt+fdYnxpzZBt374D+yzzEb4bf5/vpGZ67fbzxbRsKr3bMfxG/OjGFPWwJyRJp04BZreuH\n2/y9d4fxDC0KCan7pp7y//IeWcHsC+wulmSuJCewv/o6PsUhtN50knHefPqNHd1nDZv8gLXyzBJt\nepIB/bp/VxnMKDYWP0fdihkhH9Qn2RjzxjsFvCsmbpmYVOKqB4zR8WOui4lTIHwRv5KUrFpWKh7u\nI2xmZillb1IKQsLktJeZ0hgnhS5yaX8a7zEXToQ6LijD2xCvUihIljq1RF/1KtT/7hNQudtPaUci\nxf3GxDFTPpYSmjLFE7NCT13XHmeICH+FrTy5DZLU4+Z5Z88xDjPnpNYklMWhuA0H4iOJzNBvHfEb\nbWhd2rnNXqvX5zlN2cCEj8/FRamjLGBDDe0N8ztknh191oXzbzHO5qafyvJBog2x9hCcUWI9KSpz\n3xfXS0bqfi1xC3Va/CAqpPmQU2fmfVC+ZmZXPn7LTvU+EErwfTnPfn1/V3uc++ICEkIyPckcd/hf\n/3WpJe6op0ImtArMi2Qc202m6auUuFS6ghH1hVYtKF/u8uI3whH8e3iK72ccqktNfGVCzDiV9R8U\n5Uf74oAKS63Ji63640LtOocqffRp5X9ARDqkwjcRZu8Tj1B/p1SYPB3q2RZPp6fCdQOn0LxSiSoK\nzdUUoiUcFgo1JMXJkNDCberrCOO3h8D6gBs/5uzqlEOBz5KgKm3tJULiKe0IfTyk3etU+X7gEppN\n3/sdWlec9P/C7KLuh026m7Sz3dLaHqB+g5AUgmWrjuE65H4zZKb5ub6t9XJL/FLHGWzwrN5NF3QC\nYXeH/8fH2Evc/HMQ6QHthe6uC1W4QP+ND9GJh/iSvUf4gukl6n/pnY++rcrs2qTtnJzYk3XmeX6f\neTGRZozmlt6mykFs8ngHf5GRStviLIN1VqcZHFKOevUle/qBuBXd8he54WmKJGNx/QanE8a07/78\nFmvikOvRI2R485j1IC711NSC9o1v69SBUPZ+vbfv7uMvB1KDWv4I/+fXPnp3nb5pbmNTeanmpaSc\ndultrp+YYuw3pI6c38D/hpb4//iUxkoqS808e5jHep8/GafdjvK/zmE2QsqMyqiMyqiMyqiMyqiM\nyqiMyqiMyqiMyqh8D+V7Rcp4vETMQzpXHg4RWeuLT6PUEXdAVRmQL4isbR0TMZ8T/0lbWbZkkshW\nap4I/Tll004SRMDPTJNJqCtj3Chzv28+R1Hn1TaZhRWd254+xzk9b4NumjxPWHR1gf8X9rjvtUUy\nDsllInkrJ9TDPyCCt74HWsGlyPsXv4IH5OpluGDGxeocVpR1TtHRS+8QBS2WtmlHjej2yx2ioT4v\nkb1CUXwuivyHlR2cnCQa6muFLS1GayXKzOmlLTdT8FYsTRHdK+teO1ISmZFqw/MDztnVlI3aV4Zt\n7aLOZbd4duaA6GCgJRWGBhHm8okOn46/2ZnLl98wtn9yjj64/Zj7XVdk/kKS6OOtNbI9E32ySfsv\nyDYd51Ader8Jd0zz+r83M7P1j1EhKh9/YmZmN8b+3szMQr9hLD79WBw8p/RHpfU3Zmb2dZR2p0Nk\nLp/8hizg7JpQAfO070KHqHH2LupNt8Wt89bqj3jORaLA974ia/hDsdBvBrj+P71zzf7GzAYb2MDM\nJNHWOx/Sv+NtslVfPFk0M7PzfZApn6WlYhJBdSq+91dmZnbyZz9TfYicf9Cn3o//M9Hug3Gi29cW\nGTfHLrZ5MEbU/L33QZGc6ozruS71yk0RTfd0yKi2PyT79ck/ghj67QXOZXe/ecvMzH4R5Xl/Wvmp\nmZk1pomifzjBuJ30f2xmZkvrv6Ef7N8uTakP5V8S8Z7+EGWx8Rnmiy9F31Z0bjjWILLvTTBWmT3q\n1KeqtqcM4+IS/mVPyjVj4vsoCG6wOkUbC8rm95RVci7QlmxXZ9rLjP3RBnNnLsP9PF1l48fwL+Nr\n+JXLfcYgKv6m9Zf4w5Q4pU772Ob4KjY2PcXc9rloZ7OG32w2yEx44tSrKeWGoluoC/FMPJeKVKfD\nHEr5mcv1afxXtTrkcME/OWO0Ny9OhJQywzNr+C3HHu3xKfO7I//lcfO7jNAZ6Rz+cnOX752qd+mU\nejZDQl9IAcIdXzQzs1B0mPV6fTSVmVnfTTtLOvsbGnCfrp/nlCM813VIfxZkL44Zvl+9ynhf/JR2\nbv8M31OT6snmnvhCBmSWw176JzhJRiac4PfXYrT/RGeWGxWeV28MzJdlDGLXmG9r4ozZPmENKeaE\nqjkVesfBM53zzPuE8X21wJh4pAYxEJ+ZIyRFqYHuk2XNbXTxazmd8Y/1GXu/G5vzTvK8WJUxaxht\n8/h1pl88RF2piQy5YVziMvPytR1JvSIWYF3xpBnbCQ9+rSEkplNj5RDPRVMqF0EpDTadUhgTx4Dj\nhLGMN8VpY/RLJ8eYvm4J9JlT1QL+rD+GDXgnGDtvnKxbpkR/hnd5zsQ5oewSoCLy4jup7/B9Iojv\n2A+RhcsXGM/ZZfzi8kXGYUM8Gf5j8TddZH043mduZLbJ0qUv0I+BNfYeUaExzMyOGkfmyOHfF5VR\nPRxQj32dZ79+hazn2Qus38/uglbO3sImx94DabO8QL1vV9lznLzg++l5spHTfvltE6KmCKphbYZ6\ntVPztnsodOiWuDyE7FheZKyenYB0fv6YOp+/QtvmxaNQzlLnXankBTexzRmp7CRT8mvaZ/UyXFdI\nUsdQiP3gohCEPXGK1TP4+XrwzdBUEa/84DSZ2UVlo13ivjoRUucrZbVrQnoEPHw/IaWU8JQypwP8\n2M7XIIfKPubW4kXqvXSWdaHWE6psi3bOyd+ufoKyiksIvueP6e/9Z+xR/FKHuvoR6+LEDHN4/5VU\nmJ4w9n4RlUxeZ0xDyog/Fn9Fbh0bFJjD5s9im7OXGc+Qj7lTy+NbDgv07+FdqYEKXTwjTgqTstDB\nBv2UWedTW0eLzTEu3pB4sKSk0xF/lLMqtIeg5qkLzMHFZfay3T6+IeT5jnvs6ChvmQ36JynbjvhY\nn9tVfMvcAkjNtXOM71Dtb1fcFa9THNrm9oW08Pi01guBUStrvmZZC1oeriuJf6Nfo2+8UnoNhvSu\nJG7GrkscV2q7NyquFb2rWATbnxSixdmlU4st8Rpl8fdHJfxvXWtsUopVPg/+zi9uQpP/Dsrfdnpc\n75Vjj7nFARjm+rba3xZyMeWTupFQUimv1ienUL9SRUqlWE86LeZorUB7Sz2hEvTK6hbKbDKEjbQD\n3DcsmFVHRhQUIscj0HPdRT294hG0HrbarwrtKtWsilQGA5qLXqkVtvTO2s4I+aOOqbbwQQHx4L1u\ncQut4Reqri9U2pRs+MwH2GJZCkiHB9tmZrZyHYR8R3Cyh7d5hy1JaXjl+k1dz95kW2i5hHzi2jso\n2Z3Wv0Nt3PryntnALB6SmtoVoS3T7E9KQrU+/JI1qCUulcAs18+/g3/p+pig+1Kh23rCaYDFG1If\n8tCn1VOePbNGW4Mpxmr9PvOzIWTcWozvB+IiHMzy96S4b3oh7W3U9UcZbCd7yHqy8ww/FL/A9ZbE\nTz1/gF+rvMA/C0ho8SnWroXz+LWBuLyeSb3viVCrUfHbzSzhz/pSEz0+5H6ZffyZs0K9kxfEiShU\n7R8qI6TMqIzKqIzKqIzKqIzKqIzKqIzKqIzKqIzK91C+V6RMaIKoXVLIFv8U0eRaT2oXOSJuwaDO\n90lVaUIsy+//+SdcrzO62TrR54qUAiriPhiIaTvbJDrcKhEdnQiInX+W+08ukfHwCOVwqoz585dE\n7CKKhLWPibI+fEYUcvkamYijltASRbJK8STR1FqbiOC4kDHnKmQ2zlzg70Mhf6JeqQZMc4YtkqA/\nnj/nPpcu8busuHNayko5pGk/O0umwMQt4Wrw6Si9sgfPiT4+uUeUc2GF0HE8Rt0/F+N8vc5nRxHv\nzkvO7z1/Bt/NzWtwhASlWPDBDc4knp6K8f6QTF91kz73O4h8zy4zxh4p1bxuCf4EG3mhs6DvHnFO\n/O/8RB2nnGTZfnCfiPVXAxA9/z7D+cSHf8lY/XdjrP/052QMD67+0MzM/kPgP5uZ2d9/rUh9mwjy\nx21s6XdVMo3Xxb1z1s39tp7Tb+8tMLa/T9Of3ir1cH79T2ZmFj/zJ2ZmNuPCRtf/GzZZ/SFj/6cT\nIFr+rv4T7v8Z2ae5BcK+uXeJMq8O6D/vz2j38VtEqScuMT7LBSGdgmSV8vf4Xe5DKeqUiUJfFDrs\n6zpR6+kkc6x9GVRH4znjuyUOCfst4/rLJbJk7+7TjtrNX5qZ2Tf/Qlbt40+5zv8rMhf/MiHFoAnm\n3K1F8T0d00/Osf9iZmb1huZcnnblKmQLB6dkE1+nHO1g05/dAh2VLVKXhjKi0/O6V4B57XEz/6cX\nOWsejpANvyCehUBMtuDE9sbnlCUXguTIx+dcjEh6s0IGrXGCv6hFlFGTLZx9izGNBKnPkLMkv7Nt\nZmadY+ZIrcRnSNnt2CQR+48SOqM/Tr0ePZHqhtQmHuzwdzgqZElbWSIv7e3Uh1k4Mh0T5/GfDmW7\nLySZG3XxdfRczNEJZRo9E9hqVagHZ4z+K2WUvXFT72hTqIoOz5+9QH/OBi+r3cy9rQK/m5cKkttP\nvZzKVNYcPCecwJaLHZ7XFXeWqz/kfnkzpExVWTmnzhYPHNh4XfweTrXX3RPn16mUgA7IvD8/1pnm\nOONTn1HW7lAcaC5sv56j/T6dfz+apd4LE6DwWqs686x1rnRfaJNy0GonzJeEFKHG32Keniny7JdJ\n5kdtT0iZCJ9uIV2KUpPwBWUDQ0UVKXTFhd5pFmRzXdaQtjKHTXF0tbzKmErFImFSJTLq3hNSxdur\n6Plc3xcPWrArZbIqzyt1WDv9pmy3sltNccW4Y8p0Tuv5miPtsmzuUPxrQiEN+ZiCMfxPMCRkioMM\nbkUZ5LGm0vqvWUIe6tPQ/QuH+Mf0nNBP4sto/048dgf4tfk5Ze+msPnSOv26u8nvE+/g32Jj9Nvz\nU34XrmNbY+dox26G3x08YyCi4p6Yv8n97/xu28zMXgpl9danoCjiK4vftiGcSNuJUBq+NP02L5Wk\nzCHjfDqLjYdX8L+JDda7zBb9vZymfolZbD3ygoHJSrGyJGWktBTWkrPUM/NAihRnpEB5YdoOayAl\nth6DyIgpu50Qn86M0FbDOr/o0MbV87Rt7iqqF6XfkHnNPeMZkxPMn/lV7lN5Ju4AqdSVhWYq1Vgf\nwj5sbG6JPcTuHv66m8/am5SOe6jEJZW9FjZ38Dlo3OMn9FFZaLTZyzxv9sKimZmNpenT3QesuVsv\n6Z+WF/909W2y4BGphxQrjNXmY/x8Xai0K7ouIKTN3dvs8bLiQJuVmtXkDfaTiQD9/uBr6rlxX5wO\nYebawsdkxhPxITKE8Tp6Sj/546wvM+I5WpVaaK+hdXGT8dt4yu9aQkoGYrR3Seolw+ftbzFe61+C\n8nVGh+ouqvcl5oS3JB/yAN/RFO9h24NPSQmpfuas1LvEi5XNkCk/ePUdj+HhgweW1nq+dp69Xlac\nNO48GW23lH6OTqSy2OA+OSGAXqd4wvTVvFCzAylOOR3iinFQx36YNieEuOhLqcw5Rl205FlXfByN\nIL/3CTFjbqnYCT1UzAkKL6WcsXH8dVBqT54mfdny8ruaiz70iTPGHWf9iAnq09HcFIjW+lKBcgj1\n6hLqdCBOnKp45IbISJe4Dp1CxoxrD9U0oVQr6mPBn4JebLnSE1JFyJGuh34ZuMUhI7/u0FwINLWm\nC02RinGfIe9TSWqE5TaoO4+4dFLiM4pMUC9Rx5hbc7ythgy07ph48xxJKfxIhTA2xlyNav153eLv\nYyd5vXe1u9RnXopj2Rf44Tv3QMYnI+zV/FJVfHH7lpmZHYhn6uYHIC/j47yfZO5KEWkRHzS5xFzp\nCSX8UmgRMzNX22uTZ2ds5v9j7z2e5MyyLL/nWmuP8NAKEYGAVqllZVV3te5pFo1jNBuuuOQfxCWX\nNCPZM9M1XdNd1SWzUiABZCKhEQitw8O11oKL3/FMmzarKmCFzfc2bhH+iSfuu+/5veedI26sVoOx\n++Y21zTT+MmQOFwuXuG3glscf80KNn7v89vGGGMGHfp0/BJr1+QS725qbzAxLuXCZeq2v7NnjDHm\n8AWIFI/2pfYl+qKktXEqzlo60G/L9AvamD6SsqPQaANxsS5dl7+6hX8o5KQsfMRvp5kJcY5N4Bf8\nQamRCgn/TMiY2hZ+PS6+ngtXab+mkNk55Ht/jv4IaC8WWKIdzjC20uvJyP5AsZAyVrGKVaxiFatY\nxSpWsYpVrGIVq1jFKq+hvFakTEHnvQsjZIsh0uUS50FN5/3iC0S4IjM6h5gXiuCMDMKdL7/g/2Ei\nao46EfXzF8haJZQBfSE0iFsZZVtTLPUHvNfnJcq7f6Bz1Ybnjc61T9wg4ra4SGStI+b0OWnMP9si\nQ+Dpk6E+d3XBGGNMPa7oqXTWw+KeyJ6QJdvZImK3q0xJRGdvD16QeXj2JTrwAUXRndKm7zt4z+oN\n/j86m/v0WyKNDilSRINBM7dMVmOUXZoUUsbu4G+XuF/8LrJTy++CzAiG6fOwn8jw2gpn0T+9DSrh\n5//KZytHlDQyQ11u/ICsSO6QqOSgw/e5YzHsv2SZukd09KmUsrw6A/s3PyF7U/mWMe5fot5Xi2TT\n7r5LVunKr6lH9SKR5t0F/j/1NZm9X74DQmUhCufKvjIIv50hc/A3DrJPDxtEY5ecf2eMMebCxL8Y\nY4y5Mw8ix/GAzOktnb985mUMHeNEjTP3ed6KhzEPDT8yxhhTcFDvy2GQSA/fxcamu9QvvU27T8fo\nt8tXGPuuiwzMtNSPipOgFLr3+f5Slcyox/XfjTHGPDojSh19j3G/+Tk2sj+NbXvvUN8Hb9HfV37D\nXLgzR/0Wxzmz+qxOvc+Nk7FfVGrd9wjkUfMd6hETR0FaXAbnh2QSvipLXUacE6WmGNOb2McHUO6Y\nO0s65/9/mz9ZVt4iO+B2E9lem+eZd74lwj06R+tR5LusrIxbWZdcjezSyRZjnBFvw5mXOve92ER4\nwPwsnxEJd06TnTBCASxeJfNWELt6dYjtPD7gs3jM/+fnQe7MX1NGQlmyw6d7xhhj6uKPOFK23B5k\nbA6FEHSIv6c2QbYjeZls98okfftknXYsK+NYNw09l7FxRumPw1MytT0bfix9wliFxNGVzfC3O4Yt\nVXPU36MzxEFl4eLiSigcU+/6Ce+pF7Atj4/PoVAXVZ2zrwgZ2SzT/9MBbDMgBaG0zjvb4/RvxcN6\nEQrSb92I1KVesnjEt9LP8N5qSgoyyqw6lWWslFVPIa1c6/i+whAEVLuk8+19oUgifF+3kVlyKdWR\nUZbQK2Gcgzj9He1pDhgpcIQYn7NyzXi62ORGhgzZYpIs0vj/BodT+BtsYF+24Tuizg2dpe8P6atW\nk4ygzcYa4ZXCk8vH3AjEyF47j5jvLRvX15QJ9AhN5JZtdqUqNxzSV347fdFzjtSVlGmNc39yhAaT\n+kezhc2WGlI4zLPetFe4bko8G6vvse6UdBb+ELdtDj30R6fA9bayUFJuZZ3E+dITysIr9ZG849XU\n/pwR5lSsRL0LFfrluIo/mruAjab28F9nR6xDmSz9uTKLbZ7NsS6lla0/Ea9U4AJZQ899fMfuFu28\n8D6ovRUpwN0Vf15OPBZrV0BMTSfx47tl9ihbGebm0vmJ79owMX/ObGTxffVHrL8p8dQ5h6Ay6gf8\nf+G8fFCK+u8+5r1n+0LyTPP/hat8dsShlhd/19wy7ZiZA0lz/Jz19fAF98c/vGYW16j7s9ushXsv\nWOtWrsBBsDTFvS0pN+XFh3OYYd+2rEzq+QxtXN9lTLLrzMOpG/i/yDjfF07xExG7bKWF306fYoML\ni9hqao5s8ghJ+LIlIOR1W9n2Ypr6lLSf60lR5dJNIT6uSaGxyVw50j70cP2xnodtrX0AotAbwi88\nf0x/pTd4fjTKdW9dxxeEkoz909+zFp9tsW7FIuJEWGAudfTeF0+47uQ5142l8EPL10DcBGPY9PM7\njGFmh3oG5NDmr1E/vxef0knz3Ocv2H/nDrEFrx8fdOGHjO+UsvY2/dx48fiB2s/ccYmvY+US6+e0\n1EUdUnbb3MdmCyO1qXP0z8yKuGyEDh648Z3bm9p7PMZHdtvfj+94fNpMXWCPVavi3zfuMQ4NIXBm\nz+GLHNqHx7Xe2CJN87KlI2SLu0md3OItcwZHKPaRuhG20tVvjJh4fLzimCm16AO/OL3cSsvrJ5IZ\ndrHFYZ33zM4IUSiAYFgqQT2hgb09rq9pvRjT851SqgmKo6Qm/rqS+PpqUgc1Q66bjmOLI0RlrU7f\npKUy6tFvo+mQfisNxIlVF/eY1IrsamdMqk5O8ehFYsxRV1iKh0Op1wl52dZpgX6NOV0dsL7Zh7Sn\nJlsYNvis96SiJJTtiJvHO0076oIaZWvYRKfLdUkp7dr6QseJL6UnBU6HU5xnbb73/QkUxL8vxTbr\nYWlzzxhjTFAKwyH91svkmPshn/joPmKdKElJrihOops3QG3MruBzHn+DH08f4aeT4lu1i69wZ51x\naha+t+m5tVlj90ZNU+qQ20+oU/YQf3zufU5qTF/gHe0d9h5fC21jF5LMmWIs33pHvDfiU2qNdErz\nQhLrhMzRUyGRv8bvuJLcf/Ud5ulAc6Iu1JTdT1+fimssf8DnVAh/EJwTAlkKlXOL+J/iATbz1Ves\nP8bOJJl9k7XaKxtsFlg/Tu/jJw8fsW+bWWHMl6/ym8grXqeHet5QiMWJ8/R1tcjc6RR5bz0vtdHB\nH1fospAyVrGKVaxiFatYxSpWsYpVrGIVq1jFKq+hvFakTFLnC6PTRAeD0h33CQnSlnpIrE20NC82\n46xY2JsVRcB1nvJHPyZjnq/p3Lqiv+UMUdkxRXfXLhHxaxSJ9DVrZNNEAWGmpQjx3sdk/0/2lCEt\nK9K/QeTeHyCmFZwlCr3iIbJncxGBO3nGfTmpnGSCRI2rymJ6wtTTr+zcSI3q/BVQLWFlTNZmFniu\n0Be1HFHO/bLUZurKbB+S2Vie4T0XrhE9LeROzcQM2aaO1CV8yj63z4hu+pe4x5OhMzcPyKDmxeR/\n0pKqxy7RwBGPz5tvg0QpiEl7QlHJXoC+qhjaOsgSgW6XXj7bYIwx8SiR8A/y4qtYACGS3gKxYSbJ\nCB78lmjrvjKqn/RQHfqNMnmh+0RPA2tw4FxPorb0349pz6HBFv/+hCzLHR9jWo7w/7lrvPdu45/4\n207f5v5ZCA8H0dF8jqxL60dvG2OMWdpUVmlFHAerjMOv/xvR548+od8j+9hi/AWoqK8dZKXyz6n3\nx1ew/Sdtzn3/8J/px/q7PO/rLJmF5rvY0NSv6PdEk++DHWz8yEGmPPwBtuW5y/VzKbJd155x3efT\nfO+8wd/zvyQK/fAdIvRPXOI9mSfK/FmPrJenyXjdKhHp7+1Qr6dn3P/jPyOqvPtzslLzE0y6jJ3o\nc/6X2JP3z0EivUypSg7CO0J1KSt8I6LIt4v57HfTl900tjJCbky5yDjOiGXdKV6ImhAdyTlsYdhW\nFkpn/WsVnZcuSRVklj7zq+9cCcbQo/PdHjHsO5XtybTpq3NrZObCft4bcpNBONuRyppscNjh+tyA\nTGKtSX1Kdcb6sMJ78orMV8r41WyW+lWVyYzrPHZ6kzl19X2pvQWZswkpxZxU8SfTEbI099NkDjzy\nk235zfEQ90fneZ9tTkierLJHdtrbzONDbFKNKwst0Urzfb7L3IlJ8W1bZ7Q7+IgAACAASURBVIyv\nXMOv15QVtIkzwlH/XlXjZYq3xfvKOq8eyWEXdSGHAlHa0SiRZRpkaMewJGWJqBBH98TVoyyaW/wt\nEalSVcQlY3T+Pl9k7gb2yGCbpM7T61z64JRxDHk6Jtccnf3Hr/zu5/i3icfiiqlxT2jEqxNV4zz0\nhbOB384pA+pri9ulqzXGobPvarMzRl3TR7Qp4ue9nl1lBgP83zPk/zWb/GKdNXowwXttIh1wjrhi\nJqQ0EKLtzh1V00Z9Cg7GYrjFGpYP8vfGptSa7PI/HikqCgiSaytblqb+FfE+BBeZWx4hdnw+cR2U\nXu2Mv1vZM1uQdvdr4mzY0JgusL4FV5mz+R3mVFEou4pQevOrVDj3NVnE9CFzdPGtkUoTn8enfH+6\nxRydXea50/tCy23y/OnxBZ57ib1B6bfigHkiNSRxDRhjTPhCwsyeYcsnaXyItymOBvHW1QvYaqku\n21W7hrtSrBA/wNiAOeASZ0JAqIfiCf1+dEL2c2GK9o4tUM8DKSGdnMTMpNA4sxkQM9sHZB6dD7Dt\n5Q9QGDm/wHUP7zDPio94RtnNO6cvgThpFbGB3KbWOCH3wuIzykjtyCH1SZeUbBriWjmRwk00hh91\nu/545vLfF5uddaKcE8JbNtiRGtzYFcZwUn1hE2piZwu/0joTeklcK+M3WCdC4kzcvE/G+HSPMTiX\nwq8uvEv/DYfMlc1vbut6UK8zU7xv6WOu89kZ84Nd9nDVLHMrHsRWpuakLiKFnke/hdulfMp1a2vi\nornEHiUZ4L7DY8bvWPvNTpr2Xb7B2h2TapIjzOfhI9p9ssN4FoUknVwSb9YK7V8QSqwpLprNFzz/\nZBsfMTnHnuI7tRNt/x88VeZbvCLtCuPfF99HYoL3GGNM4sKqqfd4/t5tEDt5IR9vvsfvgoVF9npd\n2U1JqoCD7PdKNX+qeMV340nIjwitVSlJpScoZSj9eHEIDRAUmqAqZErM9z9yYjWEKO5laUOuQZtt\nQhVNTNJHXg/vOxUK2Cb/33eMVI94XkyofSMFRVuDueX34keHZsQRxns64nYsdrW+CEnpFbdNeIy1\nzNXgfW03c82nvdOE+OOa4ovzDXheSL8FzUBcYlpD00+lJNnjeSFx8Hh8Ui2S6lPZLm4ZqUz1DXPU\nq3Ulor3dQMgWZ5/6dMV/VxXfaLEqtIeN53ZVLbukfdxCzLTEi9KpCAkV4vdNLCq1qpcsXc0Fjx0f\nNy9usJ6d5+blhxeWNac1Hhvr2PyYFB0nF7lv+2tOXazfBmK6OouPm1nTyQe1o/lIXGnD7+s76NqM\nzV40+YI4m0ZKeh+AeFl4U4qsj3nHxm38d+Icdb98CwSfX/xwuaY4aT7FT0WCI/4d/MJACoXb4s3x\nCyFzTsp/fvGpnazjb7akzuZI4l/7mitOjXV4mbW3LURNuyvOwzRjsyfurokp9mGrN2lPagz/9kKI\nuYwQQH0bn+fEfbYixaojqfZlH9P+bJt6vPMmv/lsCSHq06Bgo1H6PpCi3f38H+e5s5AyVrGKVaxi\nFatYxSpWsYpVrGIVq1jFKq+hvFakTGVIlLLXI5KVUxR2mBPDtjIQFakY5XQOOh4jPTh+jghUd4xI\nWUN8I199DtrBOyBiN1TsqSslh9H5yfX7RLpCYnf2ilNm7IJQDwUi6I/3hIzROfa+eDL6OSJi3+4p\nO6nI+pvvE1n0tIl+X1klwhaZJuJWyhD596QUvVa0+WCLiODeOpHIbpMsWmFHrNdS/Wh2lbXU+U97\nk3rFlMWKpYgYVqvU8/Off2qCKd5ZVZuuXSU7MWLMT44RcXX2xFfTJ9p48TrRv6uKqNoUUS/t0sex\nKNHN0/SeMcaYbEMIGaGEhiUp3ayB2KjmX41Txi+Og58pW/PW19iK94Y4DX5N3wY/JCK+dpuI8sMy\niJb3e7z36dqCMcaY1cf/aIwx5hsv2ZB6iPZePsaGfvk+7Rk+4n118YhU84zBOXEqbHxAZvMDQ3bn\nxT+In2SH9v3ZPrbonaefzOfU6/cr9F9jVhmHXwil9RcgeOrR33FfD5v94H/ieZ4y7Z7sYrOVP2Nu\nbO6SnUpIIcAf58zpxNgPjDHG7B6gAnXBzv9NEETM0/tkhQK3yI7N97DNzc+ZW7EE2a3YMdHubu1v\njTHG2Cv/zHt2yaJVEyB75v2Mw/N1spd340SZr/mxh61PsO0D2ceiV4o/QWUYTskOPr8KP0Bx8+VV\nukonzM/7n5L52n1EZjApRv2uT4iYODZ+ksN2UlNkXXxxxjSdIyvcl0pPVpHyRlPqbs/o84DeGxmX\n+tIom3UijpmwEBlSXBgfo802h5RrXEJQHCtrVCLTWe9jM6tL2HwpJwUVD2NTEwdOq6Ts2jj+42yX\nOT3mZOw8Uk5w2aTQ05e6kA1bn0/hNx1hceYoW7XRYOyWJPnQluJAYp7Mwpqf+nl8vCer8/L1DH55\nYwfeoYQQfy0hWozOz4c0d8wcnwt+/Fkuzji5azx35jyoqbr4QjzKoDiqjEdHKJC2eTUuiI5U9dxD\ncd6cKavnoj9dCZ47LmTQ6RbPr3bxzxN7Ov8vNEvPgQ8w0+KkmRCqJEz7azqb7KlLCWKH/u3X+L4n\nXq+YR2g6f9n4ezrbXqJPnR3e0XmCDXgnGMNQE5uyu3l3okMdsxrzfpv76+oiR02cBEnZ6ho20m9J\nmUyZyXZLqksesjphl5S2utTV5mGO9ELiBOjjv7IRbGnepfuC2PggIc4vO3N0b4cKOXTWXwlf04rg\nb9p2oc7cQps5pLphFmh/V+oZ4mAoiKuhWuLvsTh/O3TGvzr2amp/tZY4G2STkQ71ONY5+/o+tjEx\nyVqbm2LdyBxjU+Gi1C7WQDdEi2Qqj06Yy7E8c29+kfZ0jkCyFB7h/2bEobA2i3+9u4G/PhQi5vL7\ncJhNLJNdPBJK4Dix+V0bQkOfsV+gfs0K49WSkqVXc7Bro78aLaEnPPSzZ1p8Tln8dfFYKIn3WEdT\nQgFWzpiLxwfP1B9SqrtJ/xwfS33qm33jmqDN42/g2zs16l44ERJinTpN3WJNWrrBs599pUznI9bQ\nsSvsq+YuYVObX/Puyp6U/QLse3Y0hrU8z5lflrrnEXMin6bN3YT2JmPf8/G8TOkIxVaT+lxIvB2R\nVeqVXKEeoT7/P90iszpUhtQvFJhXKh+5PLa1fpc+a0ptKenHdhOLUlbUHmDjGYjFivbD0UVsZuVd\nqTEJmfnoPvvH7A626RdHSnBa/lTInGKVOecOMYdXz4PGWpQqyZE4H0+eiIdOyJWE1FPmLtG/oQQ2\ncPKC9uZPsM3sEb4lssDcfOsjuGbCUoSTiJU52WK89tdZv2tS42p0mMveBPbT0j5+S+g0ewBfEh9n\nPbGJoyemDPrSGuNijDHxkNtsjJTJhOp75x32XudWFowxxhw/Yxw21F5nn+tcw5dHVA3llxpClGWE\niIg46fNyR+jettQvXbxzTIqPTiFPbH756w5jZxcSpCJESU1oUZ9fqNMC1wtEa7IFbGYw0FoaEIJE\n6GK7lG394vizaT3pGqkLxfUbpddRvYX2bTKm4b78vJ4T8bGe2KeE/pRCjtHvB68QLeE+7RhIfWnE\n3+aWKtOwJE6z8Egxk/4cC0m1yi6OHu0BvL2Q+ov+bPe4ziZUVE2IE6/mRk18b84O1wft+Ps1+TdP\nTFw9bXHdSMnXLmUfW1+/vaTU2Zcald3zasjMkPhRvCvYbjCC/z07Zm5PuZlj03H8+f4G6Iuzffaa\nVz/g+5L2FiefMecn/Vy/dol9f79D/bfFv5Lb2zPGGLP4zsXv6jI2GTaHRwemqdMMXp1YGdMpir0H\nzMsN+ePoJH1+4SZ+Z9Qn33wFMuZEa0AiRN9eXQNJk69hE/mzAz2H589ofYh4sMX1e/y2OPmW6yJC\nUs4ssz/M7tMXOTtzy625VRFPj7EJrVWkXiMU50VxnHW1V3p4G8Xe43v0SVwcZ3OL9N24EPDpE/ru\nkRA1AfGs3nwXntWQ1KK2D3heXzyaY5f5nWAToqbU/OO/gS2kjFWsYhWrWMUqVrGKVaxiFatYxSpW\nscprKK8VKeMoETkqiOn/3CxZf4fOP+biRIHPXSEytnqB6OVA5+/6YqB27JEJqHSJUobF4v/B+/B+\nVJXxtenMaVjs+X2d25tUlufxCyKBpkwG44GyU40ckcMrP37fGGNMsDdiLFcUWYoSXz/YM8YY4/dw\n/xNxx5SOdO7xOZH9A7HJTyzTDqdf+uV1orYX5xeMMcbUu2RyVq7AVROJxHQ99e8NR+dPua4kZaPS\nIRFAp9p3bv6mmX+Lvj1eJyMZdCs7q2v8yqD2lWVyG9rcDqlu4pTpZrg+LXTC7iER3p09oodXw8pQ\nFolMJ5WlCoWJltazjPXLlm/6IHr+0kX26MvLRG/f6xAp/nqKrM3473VGd4HoZSZCOx7n4aNYmyXy\nfFD4kTHGmMmaopju3xljjNmLkb2ZvcPfkyEpf9mxgX9UVv0nYdqztEk09Xdvofa0esT7qxkyn9kZ\nor5bX/DcToLMwMX/j/pti4Xf9h5juSW+jve6TMnWAeiETl3nN7/6c2OMMdd/IPTGM+p3Y1ncDrtE\noXP/yvN+eg5bu3VKJPzbWcbL84zo7wW+Nt4VEEOffUZ27wdCVD0Uz4WZAL1w8CP6xQzIKiYdzLnd\niFQ2GrRnfJkM74U9+nv9Khngv8txTvROjOj2ppTRlh28x/3XRMujvwGJ4xDfxsuU2dkFY4wx1TUh\nMtzqQ7rI2PX31AzzbdDnuoZs1CZuk+0MGYDJJcauq7Pty+LHSF1n7Edn+iMdsjTdMTKZvYoUFSL8\nf+MRWYsxG7bRqpCtmF3mLOvUdZ2NVfY6vUN22iGeinVxBVwSUsNI5aenzN2bM4ztpDhgZgJkWVwu\nbNvpICsWivL3oMuYnIjfqV7kPX4P/inmVp87RggjxvTeF6CpdvcYu/Ek/eCeIYMQbksZTfwUvlll\n25rK4omDJ58XQugh7eze0hwocV+rLb9VItPqj4oLQOfzU8qouL3KunleTX3JLzKc9in3tyrK1pXp\nt46QR85FMtSBDv47UBaiyadsXJf73S36qyo0oE9ImbEJ7vfG8NebT6l/sq6soDjG7EbqHmFx5Ey6\nTGOfdw1wI6bm4p6m8FnBNu90jFQhXNi0/5zQkgWyyAUXz3EUuS8TF3+ZlK6aLvyXR0jHvvrGVdB7\n8kJBrWDbbp8ypWXZiJvn5TxaP+yM7b4QGG7xSYRsWnPFBTZR4vkHR9hSSJwDtifimsnozP4c900a\nrfniMHCG8Ue9MtenWjr/Lo6ack7qJVKdcr/iFsfRIrvnkdqFQwps2YHW8g3WoXmpV01PcN2jjFAb\n4shJTokHZZW5WTzhuZW72P7sx/R/QrwdxW/gADh+TL9cfYd17/wq79l6BJqhcIofX1b2v3go5bjn\n36+r6cMjk7jA+hEsUd/yDv3cb2v9qEptRYoZ9mV8wGSKz7M8PmC3JE62BnPeLPHpEkqjd8g6kJuh\n3lOLIGomrtC+vds7xvWYtW31Fm1KvsV+Lvcla+f2rpAL48yb+BLPWMhS59xDvn/u4jkXbtH2+HX8\nQbnI2Ned1DXh429XBht1zOFXpqbx609ekMkdHrJfciVG2MeXK+US60Zc3GWT4g8yPuZ5N1dWu7CZ\ngxesK10hPtzKptfk9x3i23AnhOiUmqczNuL/UAb4iLF0lJkLi1IfcoS5f6hM9dNH7MVOpNwVlSrV\nyiL1Dc1gUyOEdlzKPeFZ3t8WF8Sjz0G6HJzSjrA42xKz9Pv8HBnnlpPrH3/90BhjTFEoqgkpySxe\nx7+uvXVFz6e7zqQ8lslwvRGfSbHA++w+7luQ4tmk0Ge1AvvkREpIogVsLZhgvTvaxjYn4vhpl/me\nN2NrfdfUTplL06vYQ8jP8x8+YL3e/TV7lqF4X86dBw09sDfMy5ai+NY2dnHkLpdQlOPiYhGCsSsu\nrr4QKGWhflzisuoP8F+uKH0fktKjX7Y2LbSv081a1slL6VDqRl7xKjmEjOmJU6QjjimHXfxmXiFs\nhGCpSMF2oFMLibiUAiPMrYE/pHZRv6FUmdzi4esIpZ/t0g8tQTYlxGPsA94fFfeNyx1Rz/F+t/or\nKHBSS89vauyddvxWVf8vDLQO7GqvJFSxTS+MCH/QdzF3nVKMHKlc+RzYUld/e9rUq+cUJ0+L9lYb\n2ju26J8TKXhFh1J1mlADX7K4derDL0RP4UwqiIfYqEd7t61DzZWsVGDFTRZI4QNOvsB2Rx289gG/\nfcNCPj6+zdysiwMndQHbX3vz2nd1adfapn50Ypzi9/GHJtQ26vDihDpMS40zJB6xWoM9yr64whrH\nUuST4u+V6/iJinhIT36L//VoH5daYo1sikdtfZc1rtqibxfF/bI8L4S3lMe2tB9NxVnrIlIn3X1E\nH5WFyJyVenM0oTEU0vHJPfqspH1paIa5cvldrm85Mb71F7zneJvfYuMJ+vT8LU4HhMa4bucb4gfp\nfak1zfC7vaM9V+WUMR5I+esPFQspYxWrWMUqVrGKVaxiFatYxSpWsYpVrPIaymtFytjdZMFcUaKU\nIR8RuLpjdA6Q66pdImaFY6KHg5YUDcTb4RFDdlvZvBcl0A3xPJGt4RnR41GEK3uo57fEJXCZSNuU\nMjBjESLvkaiUZpSpaYi1f29H6i06I3ztFpG8ntSYjDheXEL8OKVgMR0kkmdTFPa9D0EPVBrie9H5\nyLE41+cfSjVK51MfrZNxmUqShfMoUzA6s7uwSj3cyrzsnxExnL2wZByKZhonQ+6PEp28cAskx9Ii\n2ZO9F2LIP1LfNsSTIUTD2Bht+GjhY+qiTGGuQlQyKub9XJfoYFLnjm1CK9SEUnjZMmyTpb/zKyFe\nfki26LcPGYvWeSLxyQTZofXJfzDGGHP9K+qVuvz/GGOMeZImO9ebJJqZstFe9yn1fKvHezY+EReA\nj6zS/1uivX89TpS2KibvxjOioR/aiQbffR/b/eQ8NvabT4nKejqfGmOMWf2EiLbnOraz+IBw73qA\nDGrcK1WNDP04M/UvxpifmNa/YWP5q0S6axmyiM+yPM8dkOJDiwzn/k/+zRhjTGBjwRhjzHSYz0Od\n0Z1fgnfl0yj1HN/E9hdT2FzrHebQhdtwF9jHQVZ9GaX/+l3xHQWwh/EnZL/mXUSTa8f0Z0lnpYdf\ng/B5cUnKP9t/ST8ek42q5LHRqkcKBxdpz8rhy5/z9/WZB9dXqGNYEfzOGdmM9TTzt9vjuskZ2twV\n4mwySd+FJ8n6Ll1jHtWefmmMMea5Mnk9wRdqVdoWD2HrLgfzc6iM7bSQbrNr9M3MKv6keZe+PE0z\n32vPxfMgNFJQ6mpJcWX92MdzIxfJppdP6aN7z+8aY4zJS1mle8D/D5vM2VJnlAFW5tZBhsJIaSE2\nwH9EHfinoN6fVlbIIYRQaBGb7h7Rj++OwS81OtMfFFLGIQ4Z+wF+Nqhz6FWddw9PSiHgPP21v4EN\nhbX8FHSePCMEiTFkwerKolWK4mIRCs4EhIZw/nEW+39fHHpfQNm3vLh3vA7anRDyaO5N5lijgB2U\nzjgj3BEfVi2jLOAp9/cM7esNqN/EVXzHUmPBGGOM24atH93X+fcG17nFiVA/x7oTi3lMXAgL5zFt\nbqexibayRn5xBLjFe+NbFl+Dl2e4xZ8U7TNmNTc2FpDbzQbxN5Ey87HupC421b3n53lFISkHyupP\nO3QeOsFzO1IicXalTCYFsKqNeh108AdjKc6bh0M8Lz4JCqAsPiJXlvqUenx22kIH9PeMMcY0ZllT\nB5prfqmVtGWjPWV8TRVbSHh57kCIzlpyJE/1cqWmzHWvhx8em6O+0QbPOToGxZUssk6ExkAAJRzi\nUNnTerTEOjV2TmiKMH/vH9DvyTPm7oRUnEoFnjfiH5nQOf7kIuvCiRAxew/p1/c+AfG4JCTT82/u\nfdeG/Qf7Jj7O3J2Y4fntAfcNNMU6bWUthXhNxGlfalqowAPaf7JOu46Wqf/C4gLtWaVdW19gL8cv\naFdAqIzVVXxxbatm8tvYRnGOiZeSEkhKPHP7D5lf60dCBoprZPoi76jmGNvcoZB+EeZNcp41vOGh\nLcXcSOmFDWGpwd/hNMYfXOb/qZy4+Q7xM43iq/mRaBRbDLj57JwwNtkSnwObFLsO6exBTcgOKXMl\np8VBIy6YQYD1xzvihRJfxKAiZB3u3RTFadBrYmM9ISibQqk69H5HQCqeK2Rq55QVd0fwm01xOdbE\nKzFCWB+fMdZeoRW6bsZrQUjtlBCAtjEpo2mNzz8Tp4MQoZcvkH33zdLPIaeU1oQE33zOOJe2uc8b\n5T02IVriq+xtzksxNC4k0rDM90c7rKNlcZ85D8Q9KaW1ahrb7Repb6ci2OF/+l/M3uMHJihb97ip\n79Emc+P0BXaVmGPvtvYRaAOHuCOKUm95mTKQHwun6KukOPQcPtrqdwh5HsYmAiHmq12o/rbQsFX9\n5uhVZKtCpgxqtHUotGvHLlW+MH7PI0UxmzgifSNqrSF/25NC2w/EgSLUr2kJqSilx4zW8ICd9zo6\n3O8W315BNtsVUqQtdEGjyN/2PsZbFpfg/BR965NCT8DD9QEnY9Hu8b6e/FNH6oFGKNqOFHeGgktU\nhczpN1gXm+LH60n9aUwyU4mUVKQ89FNLJwQGQov1hMQc1vm7XmeffpbDRlsO6u/WXq+jcRpI4ask\nntIF+6vx3Hn0W/F4X8hTIZTiUfpjSuuDAEzGPs4cmJuT+l8eWy+6affKe0JhSy3v8W1+Fz3bZg88\ne465PLXA3No73vuuLl/cuWN8fpu5MIHv9s7yjJ0D9sUFccTMrPIME6ZPBKwzXs1f/3nWxKllbDor\nP7jxOfvWXo+2rYrv5rjN/KwKgZic1f5JnDWz09Q1u4Xf2Ht+R32EDc0sLRhjjDnaYl/5XAjM8fPs\n82NL+I+S1Ew37vFbqisyq4Vz7K8Tc1IgdLLnOnjIdXvbxBNWVthjzVzU/rCGDT28z/p1Jq6qiWX8\n7fybjNGBkHnODv01meK31x8qFlLGKlaxilWsYhWrWMUqVrGKVaxiFatY5TWU14qU8YppOqazo7lN\nInI1caXYR1HMM6K2aTFMr85yRi1wjuzbwpqySmEy0uMzRNDCAaLUpT4RsnyGqGs6J86CCSJ7jx4Q\nYevkdDbORoRsZl7oBZ2RtYu7IiJliqM6EftNRQJzGZ2pW6U9camMdBQVX74ES3PbPuKwIDKfOaPd\nDvEA9I+IlW3rLHZkWtHbBs+JBIkkprO04/lDFHnCP/rIGGPMwEVY9bREfcL5iDn4BnRRyEnfPDsi\nwl7q0rdPn2MKZ+tkYa69R4bTP0Ofbum87Zk02hvKvm8fED1tSynFKwb/GSFkmjpHGPERHXWYV+OB\nOHuL9/8kyn3Z+2SVVoZSCcozhsMTorLT5lfU9z3GYPqn/7Mxxpi5NvUvK8u+vUSEeVW8Ps/vEqXd\n+g22dzFBP/yDjch64wbR0KKya/M22v21W9wGTaKxv4gRVb01tcD3SSLnvRKRfCN0RLb3iTHGmDcy\nPzfGGPNpj/f709j0jjLC6b8FsRJuMJaJJ4xXsSzFhC3q1f4B/b2wQ38/K2Kb1WuKBiuTXnusufUx\nWcebmW+MMcYcxveMMcYc15hLz8L/2RhjzF9t/YUxxpi3hS7LumlnZo52NsvYfvoaSKb9is5d/xX1\nc4mDwraBzTqFDOq8z9xaqtPuL4u8Ny6Fsd4S9TH/p/mTZf1LIvBf/p4xXptWZu8SNnBcZizbYZ2X\nVua0J/6IxVvYul2s86dDnjOsqO/GsBEzTeS7o2y6NyMOKy9jls1LFWmPrEVKZ2bbBcYs5KQ+PZ0f\n73eEZDlh3psJ8Qs9IOudLfD/ZJfnDoyyTF7uq+/xfXlPam7i+TB2nZ2VAk5J9Y1KuaDZG6lLKONc\nIFt31hMSUfVevL5gjDGmoYzCmLgX9tP4q7gykF351bM69fCVmIuOMdrz/DbvSQXJgLZj9E94ApsY\nn+T6eXHGBOP0U1mIn2pNGXCpFHUH4ngZSt3pJYuzy9zv6vi6WxwvBWX/+lIpsc9p3HS+35FQVk0K\nFS5xPQQEPswXdJ4+LTSDxj8qJYdx+VD7IS/O7elcu7KhbaERe6m4iSuDFQ9io9k2YzVUBtPUeHe7\njT+xNenTlI8xzEhRJLYpdQoX1xU7QqMe04ZTkRq4OzSilZCNqU6tiNQ40vT1SZQ2Rnzia9JYhIr4\nkbJTqh5NnZ/WmX3/Icg8zzj+p+MUl0CK+kn4ygy74oopSdmwpCxcQGtvRBncqFCo4oGK96lXS0hO\nR1bcATahohqaEy9ZeuILamaVmkzynjGdW28eg7QsCoW6dI7MpEcoCPt9UFF1oVeT+v+EFB1Lu8yx\n/YOn+p71bO4K32cK+NWtZ6Bir3+M/58UumTzKfcdC3GTWmEOHZ0efdeG7nHWvNjg+9WrIGnik8yp\nvFRcnKfiYKgx/o2U1F+uCcUyx3OzNepTEt/eQEjZ5OIC9+/iW0/3mTvpED4g9I72ZlfPmQf38H8b\nQiIMJ1kTpq7yjGaHMTp7vkdbHrEfW71OBnNa6j7DGu/Y35PfGTLW8Vv4+6Rd/Dra37WOsZXqiBen\nj7pTIsFaeXrMmtopvJofCQkpcyQEUCFDvZ1SYfIJRWqc2NLsVWxk+gprnoRtjMtO/Q93ub+wTz+d\nHtDn4Sjrzvg8c3IQY86EA0L8TGEzjkmhDoRYPHqADdq93FdpjtAWjPlxmnFo7tLvJadUSV08/8JN\n+tOnfkqKHyojDrbOLv17KARl+ZQxD4axZXuS9ceuPUxphD44Zs91/OxI1wvxrf5MLOIvA0Fxovl5\n3tYDMtCHj+mn3B7jNik+PO8IASR0dq0sbkUpzvQG36Ozx87NmUlx8QykhmIq9M+FN2h3eJbvfUKd\nbD3kvY103rxsGQH0Ol7WNEeDsW51mW8ObQc9YfHSjRAPDf7OCxpRcXxPKAAAIABJREFU19rqD2I0\nKT3XZ1hj0l1xh3mw4ZAUZ/v6PiB1oKF+6uVLjFlbaN/2GZ+hmPYWYaGVXOL4m+S5LbcQNVKg7Q74\nrBve7+2O9vX8PaE57nUv8F+5U9uQeoWkfFNq67fdPmOWEX9bVBw2U0n8lgQfTcynPUwTW5x2S+VK\n13c01iNkiU9oaNeIf7OMnyuKK6coHqYRum1BvE5dcYm5pX7lkPqT28H/o1oHg0Ifu/Sby+94NZzD\nWQt7yAsFNy3ln0n5vn6S9fLsWDykHsZlXfykZ7v4ikQcX9AVUujuHfbEuTRzde0avmdWaPLqBnZw\n8ADeKPN/GLOcGDNzt5ZNc9SEBn4mKzRNPKTftZP4hU5L+xZxaFV3hdoKS6nRx7wflISaktrn9TdA\nyCTH+bt8l7ZHk9O6D38wbGNz63d0MiaLH1gUh5QvNOK6Ya0sag26tMI+/dpH/B5uVrCpzQ2+t0Wo\n36135D8CPGf/iO8P1+mzonh9Vm7RdwvL+Idj9X1aSMOhhzl6XUrF4UsgZfpS36wc0i9zqzzHG/nj\nHGYWUsYqVrGKVaxiFatYxSpWsYpVrGIVq1jlNZTXipRpKANcbBBlTNoV7U1Ks92tDKSb6OiFFSJ1\nE5NEwraec15u6x6Rur0okbROX8zjKWWl0kSsVsWbEl4FaTMTJ+u/leG+5AxZpV1F/sc8RE0vLxI5\nn5wkklcNExkb15ngZIrnOgP8f2yerGHlBVHg7QdEOcfEWu1ziMvGxf1vnCdT3+/x/4gy4VE/2apE\nVHwk4pAILXBfbo8I/4c/RBUqtUIEMJchiry8ynOTU7OmfUoUMDZB1qlU4e/FOFHLbkTZazeRV3dP\nClibZK2Mn7G4cYXo426GaGIiSF1LBa4/eML1NZ3vbdTJavSmqFvrROnllyz935P9+NUsYzxjeM/s\nm2RenTqD6tmlr3/+Ahtq94lK3jRkjfo2cSi8Q9aqnaePVofihxD/x8RTUEe1NhnKQeK/GWOMqdzh\n7+1Fro/7YN5+OwHSpPSQqOtsiUz33Xki8O+W/8oYY0zmS51BDfH+ahKumdMnZBSuKSt2v0E9LvvJ\nauUVbb6RJmp90BafxxK25t4ngl/8OVHcD4YgZFzvKjuWpV/WC2Ss/0w8I+UMU3/7yx/Sj+f4/8k8\n/dI7I8PbV0rnyV8wjhP/RjQ4rXP7C2+AKnt4zNxcbBOhj3+B7fbrvzXGGHOWol+m53i+43e039Fl\nTk3/Le2o/isZWfclIvovU7zTzONZPzbtDdC2hDJeoVneOfM2Z91rNZ3PlvKIVwowp3VsdvOErFW7\nzZhtGSkeiGeiJyUDd5fPYhY/4VIWpZujz91xcT41dX68yVhOnJPKhrLRLWWK3XH5Q3FVDX387Zb6\nhk9qQzFlU5J2skPBkM47KztUcVDvjuams0Z2yKnz7TahmYZC5k3P4U8iIfxYa0B9wsqGNbpSYuiT\nrgqNCVkiTpZWmP6dnVmgP/3y09PUc+M5/q/fYU40T8guHQzxzzMp+uFkB5ufzDMOHaExbBGpk3i4\nz+OR8sPw1ZYve4JxGB4JBSJRjrbgGpkGZ5Zr97GjvviaIsp+9QLiPaqL98WlbGRZXD5+kT98y/Oa\nLfFyCZ0XEhJopqI5W5biRY3PsttrVv4SvzUZYp4dfUEWKPcFa1L7UNndJm2wi7vgpMvgN8SXUJ0h\ny+zcow2JLn6rrnc5T4UeEyLGIaSjX2gyj5T/SgFspHSmzKAN/zvdY60sOhjriJB7Q2XqWhXeexbG\ndio9/Pi4jba3OlKLiuBnQk2uy9bVJ0X8Ti1MPR115kxQHAQtKSi2xRvhE/qg69HckUJavTMiU3i5\nEvHz/MyBFMqCZPnGFxi79CE+oLLPnOpKlGhlDFsv+uGnyB+xzk1K9SicxBdFUmQFtw/53DvdM8YY\nM/MmmdGpM55z9iV+PKcs2/wCNpd9TnuOd/k+JtWkhZtL37WhZ7Ob2h7reEYoNH+SOT4+hW+yn9T0\nHMb5cJ/1PCYljEntlXL7jM/xPu3JTgghtAgfXnR5wRhjTKuMzR9tYAchcZQtXlwzhS5t2r9Hnc++\nxcfH3uYZc+I+aZwxX+ob9Ek1ScY0lcLWqteoS+khe4zTPcYgNCFEmrgImlnq2pbC1+muOKNmuT6q\n9aJyMuIxenlVHWOMyZfpw/wZ892bYA1bucn7h0NxmeTwIyNkRl3qQke36YdMGn9X0F4kJsTl3Bz1\nW77OXmEgvoijx9xnpBDTFKrBXuXvzQ1Qs9l1ENZTS+xJTJ921rfFjVYU4kPSNueW2XNMiSdoSrxW\nWxvsNw838YuHQjLlpajjtgu5IyTN/HnGMSjlxNNDzZE843F8wj5boDYzeV1zf4y5NR5iHNO7+Lrj\nY8a5qPXYLpT1pU/Yi61cYfJ16/TD5kNssyckZXwJu0nM8h5jjFn7iw/MII/tVwsan2Xa7U/w/swR\nc+HOptBhDewyGY2Yly0tKVq5pKaZ1d7CNWS+5f3UOdmmr5su/u/UfjTUkgqRuEES4llKai/QEMfX\nlPYiXSH8fOIDqolnqCTur05Vz5fSa1t8S56gEJD6v8vPvs4mdaeOQEZh7bu74vgKNkf8bNoDjAQi\nxas30G+7YYv6eaVk5RcipSqESKUh1T/99nOIA8Zt575KmbHP6TkuO++LCHFpD6pf61JTClHPgYzM\nXqadQxf91R9oLxERV1lR6FchZoYDbaJq1DeZpN/d4hlpdoRj6NC+jl18evp/b7QJe8nSEYptMOK+\nmcX/uqM8Z18cY80h15U190938G2LM8zx1cvMhUJWPlTr6OIb/E6ZELrkTDx2zz7Hl3hi36+Pc29e\nMKVy0ZzKTzikLtwr4dNH6Mhhk3nT1cmVWo0+9Ei1acQVFpESb6HDfEysiDsrwTx++pzfJPksz4sk\n+D6gPcZA6KSuoT5eqV8O7djMiy38SdjO2Fx5Fw6ohJTBSkIu//p38GzGNXeWP2atjUmZave+1hOp\n1YWkBLZ2iTjB5Bp9fPpizxhjzM4GfT+zSBwipXa5xBlzLBWq4hafTv32DU/x/mL+j/8GtpAyVrGK\nVaxiFatYxSpWsYpVrGIVq1jFKq+hvFakzFBs7SaorNkKUcleR2fZcmR7AgMiWrU6kXdbjSjw2a4y\ntPNEFz0FImY1RfIGyrS2GkT8G1Wi0junPPfkgEhcuSnVkFUyBmN+IuvZOpG2+pDnfqrsfq7A/xcU\niX/04DNjjDFVadf37eJ6aBHlnZSSQrchPpEM2a9+Wlr3LtAcZ+KWkHjJd0oaDaEitrNEJg+LROC2\npS51XWeAs9/S7vWH9NNEivcaf890pPx07gJZga9uk6VpRcVgryOhiQTXJabog3xOSBidm644iPJt\nr5OV8dxAvanSUwa3RyR3ccQarrHr63xiN/7HNdr/ffm7v8cm7v8TproeY8wz/5VIcvU/8r7oPNry\n59doV28frpbCkPa+CNP380+IEN9s0r72XxBBjtZAeOxeJcrre0K88gvn3xtjjBl8RAT6xz+F76MU\npz5byp47L/3CGGNMrMJ1iy0yjamNd4wxxjzt/ZTnaxxC+0SybTPY/qzY8+dy2Mzh35Ih/+tvOfP5\n6xDjtJbChn84Q2T8Tp4xXy2R1emMMV5DGxHy8uXP6Y8c/fIvJRAojiNsd+JD6tG/jc3MKU47n2Sc\n/q1Jluwi3Wm++eRfjDHGJH5J9Hjfy+fECdffvEqU+rkyFaFnOq8fxHYfPaFen3xI9vDLE5jUI/9K\n9qrvoH+GXzEnXqZceoc2uYUWaDexieOCztCX9owxxhTF7VRVhu/CFLYx6NFnN26hvhNwiPtD6hft\nnhQP6szbdlJZmQrvsYnHw6tJtLFFJH3cz3NrOr98/Fy8TFX6qOclwzgwZJcufIDtdZQZ9Y8Rge8p\ny1YsYQM1KQ7UGmTV7FJrW50TGm10LlscBJUm7Ygoo+ARn8eFS6AyHDriWjnFhip1qd35aXejLv4P\njzhnxNdxfpmxP8wqm+fl/19LTaWq5wwbZFZTE2SU/VFl+07J2NbbjNNI3SJ8fvV/qEddZ/nrLfor\nJgRjuyounpcs3YGydBNSFurxXn9VWc2gkDynyk75mMPVmLKJOlY/tNMeV1/qK+KVah4pe1YSGsEI\n5RHDx7SkljI6C22PMZdDhzpXXhmazdtkjwZ72OBYURlN8UrYm/jRwSHPzitrNDwjaxSt0TfJHm2s\nhaXmccY7bS1xDhxR54Rh7WzbxG0wJbRqnzV2cKQUaGXEjUV9OjHaPh7FP5+N1NbEk9TT2Ix4fEaK\nV2UPz/Eo89limTBBZafsUv2rCMU24obxnDJH7FLtsIkqpiU1jXZLqDBlGB0FLnAMXi1zabzMOZsy\nq7kse4fACutLchmb2HrMXDjp4DeT52inZ4P+LJ7iKyriQ0pN8NzoJD7HI7RF+hvun5xkTzEzh+03\nHmKbR+KzmPrwA2OMMeNr+O198YYcn9DOBZ3zN8aYiekFcyaETecJzw3dkp2I7yQh5M1pln4uaE+S\nTourQapRgQVQGxPfMhfPHrPe+OzsoWLT2Fmziz+vPQC9vP+ET9eE11xU33Vq4rp7TJ9u2fk8/zZ+\nd3lhwRhjzMYRbTtZx4+65K9m5vAfpTJ1zm5Tl40nynAKCRi8hVE5pNpWO6CvTzKM2bSQ1h7Nv1av\nZl6lNOSHx+LMkfk32TfapdKzswXatlMRakFcOiOumMox9Y3NsYbfWGD/Fk8xht4gc6EvZODD+0Lj\nbtNfkXnq79c6UDjk+fk92huI89xz1/DPPSE003Wuc8RZJ9bEoeKMM3dsfWzj0a9Zp549Zu2PCXla\nrdFPYys8f3WJ9co1ji/w6j3H2+xhdqRG4hIC3BbnumtvU6+Y9pjtY+bI7jPG/cld1FPiPuoZS2CD\nYSHQY/KfB0JWpvdBBpWPsd3IEnN0/ip21xe6whhj8jvbpqg5k1R9Tsrcd/A1ezubUCUeqUydvwlf\nXtv28nYy4uex17GBkRs6KuDfAvIvQ6rwHdrIN0tdg/JnTaH+BxVsYbfFnPD18NMB8Wb2PfT96WgP\nJJVTW4e2BHwjhVvWQLvGzNWVP5bttqTgmC6xvhSz+A+XeHsSaldBfEgxuxyxg/oMpLLnFMeYryfk\n44irTCpSfr1v4BNni0dqceKw6Y+u1zqQluqSw651wUH9e0LqeILMRfdQvzPco+fy9wh9EHLwtw4j\nmOj4iHNH619rxHlDP4z2fjVtY/12bLUbo/5Ocfp06/zfb15NXdbrEwJqgRfYpQiWO8bWHOIVnAjQ\n3lIGm5+aY+6tyPdkn2vu3GcP59OecGx8wRhjzLpQirkDvk9Mg6x85+Mb39Ul6Eyag52nZizB/GkL\nVWsPMU+dhrr1TlmzPF5sSgdZTDuKf04lhWgUF2u7jy21svTxiwJ1zeTwDx5tDqbXdCLES9/u7bAm\nnQqRExkTOlicMIt++mDEsdUVUuXZQ57fqrKvmtXv4KsfcCpkYOd9G3f4jfX4HvvOqSVxG16kzzxC\n1hSEan28wamA86v03cwSv22fPsavF4Q+npnmN8z4Mv5nQeqrvQFG109z3R8qFlLGKlaxilWsYhWr\nWMUqVrGKVaxiFatY5TWU14qUGTh0Fr9AxndfZ63aOk8eVPSzqXOYW1L9eEMRtSVDxD0RJpLedxCl\njLiIVEV0DvOoz3MTi2Lx3ydiF46QvdoQG/wzcb/ExPgd1Bm3mxfFuqws0lsxoTSUYc1XiLy9vSqF\nBjvtimTIfIwpq1jMKZKf4P0Lk9Q/q8jjfEyZdyGIOg2hF8apt1cRQZ/Oh8/WpGgjJvCjE+p/fplM\nyphUP5o1Y7afgUhwKAK8pezCW9MgF443edezT4kGfvj3PzDGGGM89KW3TSTXp/PLyzOct3vjyoIx\nxpgTksvGFeH6wDyfzWMiu+0+Yzpoi8jhJcvP/pGo7VvOr4wxxpyzU9/tVWW3j3UGNX7bGGNMNvfX\nxhhjQsoM+M8R1Yx06OvOLFmYzjoR/tp/JhqcDXAesfGmFLQuUN9kmnY4lMHtvgPXQztN9qd/HyTM\nupQGVsQjErtEtNahzMD5Jvw+7mvYwme/JXuXWiV75eoRjf3FjJjMe3C93EsRye6d0W8PElz/sEc/\nXFRmxHwkpS+pgiQNqK7Mf4FvyP4BEfKuVEw+nKbfhlIHuJvivkupBWOMMb9MMCf+/kvmwu9XlfkJ\nYTeuOTI2f3eB/t6c/r0xxhjnHrYZvkp9HhbIgr65SCbn7gLtuP85KC+7k8xv7n3xd0ipwfP85ePF\np7vY2JY4lyJuIvXjM8yL0DTv6AuY5xAizTnV0f3UpXS4x/dhIeX0XOcsfqCvc9xxZVMSQdpaqzCv\n40HmqX2EpJH/SIR5cUzopekrzM9dcR/UMvRlTwezDzaJvNtc+C+vH78W8uNfBiVsqi5Vpc4m9Xyg\nrNrpPu1ILnB9XefLB5Pi2chL1cjJ+71d6ukOM9duiVugrjP8/hTfV6QSt38XGzjawnZGSg4tZXOm\nQ/T3YhTbaYzOBgtx0xti40OXVKz83DdxWRxaK/TrhM7Tt52MV1UcY3E3GQxX5PsM6MuUvs6p24X2\nM7IPO91hXCVlucRZ02zp74au0/i4Y8whr1CGnpyULYp8XxVqcMQZMSOFIK+ygvkAth3Ka85GGR/n\nftMcV4Qu2hFKyKFscYe+dFSYp+0Q876blcJMiDZVE7wrKXUl7wFrYyNPXyc9TbWNOtbK4pSZkRJK\nWGoVk9yXGmJT+03a0lceZyieiqiRaloK/9qUSoS7y3UZZVT9A55jc0tJRmpz7Sb+dXYJ1FZFyiv2\np1zv7PJp72htPBvJNY04D5QRVjbfI44dr4f3ntlfzUY8LnEfJLH5E6kceYVIDIlDxXuArymn94wx\nxkxP4+dSy9hyucMc3jkFdeCeIAs32oOMFaW28gLUxNETUByLb5GVn1Y27slnjPfxPlnH5Azn4fe3\ndN9T/PqMuOKMMWZ8Zcacikcvk6f+MaGCI0LsdAJ8Tk7xefAIezh6Tr1D84zr7Bh7rfQs7z/Nas/z\nlHr5hviMiTXGcWDjvq111r/9x0+M70PadP6CFEXSjGVJ3DEFqVHMr9Hm3LGQhfvsRUJPacPk26CI\nkucWjDHGNDLMgX6GvljfpQ7XruJf42/QJxVlTM82yMwGp5hLiVXem9fa/rLFEWCOhWLK7GoJfvEt\ne6zdp/Th/AR+bOjANr09cSd+BFfMyipzpi91kuKREDXKDBfSzLGTY/4/dYv+ufg+a3oryxw6Ez/I\n9BTvW71F9rwfYS4di8PHG8YGplaEkBS64fAOm7eSNnFnRWx9TGiK+Ztw//ScvGd8jP61ya8VnjLW\nW4+od6WKfx+b4v1JjfvMHP3uFnfL/n3Wkfwm41s44TOc4r7z77PXMp0RCpvPhnhUKkf4JHuRuT5z\nSf16g3HpBRjfo2+/R92e3dk0fe1R8076ryHke0x73ZkP6d/IDPe7e/jpvWcvzMuWgVSCWuKdCxsh\nVYSM6WhNduq3TSErf1pXU7vyY27GqNKjjd4+a449IAVG/d0TqvRUvEwBIS5mZxjzaFCo29qIa4vP\nofb19QL+pyAevXZHCGqXEBw96tvRb7ZBG5ttSCHXLeUxu1BGHXGSndm0xmsPEBeSpid1KM8I0SO0\nRb8rBJC4XwZB7puWCpKrrbXXTXtHPEPDoRR2crTDJqSNyyMutAH90RLSZqB9ZjQslT/xv/WEzGyp\nXcbFZ0d7gabWk2pRKlqSeXKpP32T2mS+ZBHwyAy017P5ND4lqeJ1eL4zJq6eCu9fWWN9Pj3B1zz6\nHJRXUr95197Ehp2qv8vBdYtLzMV5/W4rH3+P2vjlr35m6idVc+s97Rt1OqIv/p6e/Fg8hV9t6LdH\np8dvqaA488odfttsrX9pjDEm2mJv0ZYyl2e0FgqJvPQmvyWjKSFk7uGnj6WCNLkkNNEcv2dTUgFN\nC8Gy+Y1+s+XFXSMktk97mBkpF1a0j3v89e/oG6F/p+Snr75D34Qd4tR6zO+CfaGQfX1sb24Z/7J3\ngj/IneAvlxfwi7PaI/Q1lukK/qUlHrr+kPf+oWIhZaxiFatYxSpWsYpVrGIVq1jFKlaxilVeQ3mt\nSBmvopnjSSJnQSkfBJxEzFZvEPH3DonS9qVzvnKOiNmLPhG5srgjdnaImLV6OvMvTgdXRLwm00Su\natItH51hu5pSZlxM12PjRObuPSLCXk2jILMl3fKLHwpdckIkbULZpg3xhLz4hrNqQRvtSukMb/aU\nlOzcKpG5rjguRqpLMxfJhOwfEFErKPLXztKuzAnv7x+TYbCLyXxa6kwBP/VevUpmo3pG/5QaJXN1\nkTpPzdOHo7P2kwtkn6I2/h94l+jl6jRZh508WRqvIYtQkapSZ0j07/c/+x1ta5I5nL0Av0dzl7o7\ndC4xoD6wuV4NKRNbIRpZbPLcjngyZlp7xhhjHrSwlZMnPzLGGHNO5833/5r2LD8DYWML0/cJ258b\nY4ypCYVV9dKns+EvjDHGfFrlnGLXR/T3Rw1sMnvK93ffoF1zJzy/Vsa2pqbIepVXYPre+CnR3x9/\nwn2eJNHX/Q0hd3w85/xtUFiPlUl49z1xA3zqNuY/GvPhV0IV/EjZew9zYvceNrGqDLIjhg3WfLzn\nK50dfutD2h0cI/p9NGTcv/5n0BlvdIg2z55nXPfGxFL/hOd8libafLNKvX6nTMKqzns/0Tn93mPa\n9dOPsM2b+/THwgS2XJ4jej1zV2ouQsj8YAo+psPHZMXKp9jR0wns8GVKPMEYnJvBRlJhxrBlxE8R\npU0pcYm4w8yLYAibnlvkvnZG3Cfz+AN3UTxEl/l+Kw0KIHsohYQhmbYjcQQUY1I6EAqhkcbfnA2Z\nA3XxNzgqUkTR/7sB3hdQO5bOg45y+xnT46L4G8ZBkviqZJ/GhMCpiLPGOy4+ECHz7H3q6RAnTbsm\n1RBlmDOb+LuhUFMVv/xRnX5av0eWP7HAWIW8yqDoXPa4+KOKu2Q4XeLWcYnQP70HGiBbUlarNWoH\nz5taxJZ7Bv8ddOLX85Wq7mfu96bpL88Yc9Yzz1xxSBXqZUslJM6XFvWvSxkjERVC04Ote3JCxbWZ\nc948duGUQoQvwnMcQ/yt/wL1qwZop/OEekZP9JwG49qMSrFCmddakOeEWtihz1kx9qx4aHZpo03Z\n3HySd0ugxZSyPMvvZ/46smSDOlId6gi1ExI6aEq8bRmdgXd1xX0i/iGHlzGIeHlvxy3ukzX8a7TC\nPG6dyraLUhhUQnEYl2rTLG3pZ3nupLJodWUkbeL1sQXoo7wyr5NjUilaFBq0SR85clIuE39SS0oP\nQ62ZzgFjFBvy3LLQpBEn10Xr2ODLlo6N/ouJQ6GQpIFn+/RzdB4b8UkBMXsqNaa+FCSWZTOnUolK\nS0Uqo3Px5zlnPiHFxs4p62t5h7lRP8dzp6Vkth/Hv2a28IuJBcZ5YobxOf6WLF5h6/S7NqQiSTMT\nF0r4gPe2phmfQJQ5KnEsE4tJqUKcNt28/Pm2MvdzPMc5IR/glmJRGTvd2eZzIUa74jfwlQHZ3emL\nQ+N8wj5qdglU6ZK4ux5LkXDzDn7VqWzxxev474FU7HZ28AMOKYqNSa2tNYPNnrqkLHbAvut4jjGL\njXFd7YJ42h7znvwhfR2co00O8SK9bAmKd68nVZEnL+CQ2dvAn0YmsN3oOcbKIU5Cj5AqySUpdUkR\n88lteOPaffarSTs27PRi04sfksFdvcGnS2iGR0/g7ho0sdn5d9+kXlr7Tx7CT/XiG2xk/go212sx\nhl//DtvrKOsfF0r2xlvsJ2eXGNNSnTl4ekb7Tk6Ze+myFOGOsZ2AB9t97yMUOqOTUukT71Mhwzhk\n/o3x3HpBvWJJFozFa+yFpjVH3FofNzelOiUFn7AQLcMBPiM0y5yc0pxoN+nH9EN4jTYfsFcyxphG\n15jZCOujx63fG9O8f3qFddgjTrktIbn6UnFpZQrmZUtHnFr7adZG/wjhov1rSuh2I9vw+US6VWN+\n+qSSOWxLlUforF6PbLxdqN1qXbxqLfzp9BQ2FzXiWBEipaQ1rVxmzlT5t0mM03cu8duFhaQcKR12\nW0KJas03GhNvDAcyVD0c3REXDO85aXO/U6jijhCSJQ/1jTjoc4fmhEOcLl5x5VRc3M+MN6Y/QrrY\ntD8dKfRIfbVeGPH/qf+EXgurX4v6qdsUKiqk9cd0VQ8hJI3GaSi1qUIJWx94uN6lcW0JuWSz6zes\n9pKDV/t5Yzri+xupKVbbzLVyQacqJCsYkwpUShyUIwTQ/m9AyIQn8WWX3sTHjosva/0ZvqV8LGR/\nnB7dfyaFs6fPVJP/3bgHbXPzx7dMdAJbqFaFNBH3k11oq+FA8/8R/sWlkylxp5QFhexrlRmEyFW+\nd+cZu4A4wpwe/FFEylY7nzNP792D33PyMraeEL9ZVmp7+w/43e3s4PfLFZ578RbooGSA+VuS6mjx\nkDHfFGfVcMhcGl9S+4RKjY6zT9v8En++fYDfCUtN9OLf3lK9sZWjZ1J/EkIoKYR5Tbx5hX3Wr54Q\n7ckZbC3g+eNoKgspYxWrWMUqVrGKVaxiFatYxSpWsYpVrPIaymtFyrSlzR4UK7HH6Iyasn2H0vmu\nC/FR1Lm9TUUTdw/Iws0kiCZGZolEXZy9pu/J2l+cJmu/9+2eMcaY27+G/6IupvGuzqdXu2SJLvvI\nVCdmiU5emCWzEU6Iy0YR+X6ZLNh0jAzy6bqyZUH+XrvGc2piEPf7yBTMLYNOOdoj0nb3M9AU+SYR\nvaFY9WcWhA5RRmBaGWKng89qlevjAaKkLzaJXD45AK1xWiOLVRkMzHXVJXtGVLGQ4ZkPb5NdqqVp\n+9jsgjHGmOebRFjvK9syM0ubekYR8paY+Oe5PhGmj0J+op5nBUUJxxjjiM6gloevppgS3Sc6u9Ym\nu1XOcW77uY0+uBigL8divzbGGPOgStRztkZ97rxDNPW9dbLop9mkAAAgAElEQVRM20f/ZIwxpjT7\nIfW8IsRLnfYlIuJg+C/0044BUWKf1xnhBv24IL6Qz4/F7+FDfWnxU2ywOa76+v+S+/7tl8YYY9w/\nRr0o8oIo8D8tkh0K9lFY2Plnsl3Jn2CbBXHj9O1Ea5NnRHl3k9ha8abG81NsYO7H9MP0z4hu/1oZ\nyw/fJos17qU/jrt8/41X/TcOKqJQIgp96yLR8tqQaPO3Cc73/9lz7vt0lcxt9A52ULwMZ05KbP/j\n33L9Zhw0xHtfkTF6EIfTx38RZMyv7v+dMcYYk2Fur86QJbs2xB7/L/Ony4ZUOp59xnyfTxLJr3mU\nTbIz7yZu0kdnh9Q568O/JDVf/Q5sNZel7w/FjxE7COt7ZWrneW5whb6b8BH5Hgspu14kGxXwY1vV\nBvO00qAPnj4WukmoJn+dueKVelFXHAjDjnh8svjFZpf5XGrzvDNMzEQN/it7JKSKVJuSIZ3hn2PO\nhZU9m7lGNu3QwxiHpGjjOqYfU07+zsWxmakQc8kbE9eWl+f4dNZ4chGb6CgT0mpiY11lnULiOqhU\naN9xWdn4FhmNk10ypxNTZFRcTp4/PsscaSqJWJHygGtRSjeeV0tLlU+4zxttqD/wZR23lNKkGJYP\ni68qzfdNIWKiPfq9ryxZ5Dp2c+MKNn5SJMO//1PNJamluHSOf6gMSd+P77XLF6bHeE/UMzTDM/qg\nkRcERbwNyWPGthpWtqWFLbmVKWzO8EzToQ31KmujX+iloFA6EZ2LbpSFsNGZ+P4u9+cMc8M7pjHU\n87p2+mAQwAbdFb63tfEvTikbDoesxUE7Y1OJ0WaX1qyOzllXhSZySVVus6c5WgMKZBfqy6v3921C\nmzWoX1OIvVBf6Ce/+I/GeE69LW4YZaZftvSFvvX4sdnoJO062SFrVjzi+/gE2bGTNP7y9AzbnDsH\nX8c5KQVtpbnvaBc/GlI2PrnMOlPJcN2+0HbHL5iDobf5/8Q19hobn+8ZY4yZLmFTqQVs7egpPupU\nHDfGGNP1O0x8lTl+VuC+7AG2GxHazuNmvBtCJ/vHqE8hDRoiK2RPSFlAI1TumHj4umHG5VAInYfP\ncEbXQ9jJ7EWhFctpk97jmSMuvHMTQmK8wVq9+Tnz5egJvHCxj1kbpt8CbXr6qfhuHvCu8NtCVkzT\nl80O/jpboA+3n9Lmix9KBeMi+6jCIWtT6wVj2JC/9k7HzauUbhPbLItjqyuOrslFbOXCTeptouLx\nkNqGQzwW2YeM1eYTMrJNJ2NwWcqPCSlptcQ9EPeIcMMmRPZj+qsjVMXaeZBHHhv12viCPdKBuFoi\nyqqnfPRHpsqcj4box5S4FBa1x6tlsY3C8Z4xxphH91hXRVNiZte07oWppyvFHiY6QgJKPWr3MX59\nlMluFbCDmqRsJsX5cPk67/eI76h8RH998zXtrIuTYe0NKUq2+LuUw8fNJej3bhN0QWGHObS7x9zs\nOb/nlYqsjX2XIW+1hHgUJ1pRvE2nG1L/EhJ+bAL78AW/Vzj7U6XnFB+ZIGlF8WxEe/R5RWvomDhW\nBn6us2m/59L93RH/RE8IFqn7ePTbacQ5Mxxjvvfl35tC/PW6+Es93jTtUjmK8xmS0u1Q64jTJYUY\nrTshIVmMTYhFu7hNhPod+kZEfV1Vk/vd+nukIFsUQrJxRB9nDP4wJpscintstLcJCkHUkTLPiAMn\nJFseuKRqpf5pCUnjGXBdMKbnas8Tt2tNl8KZMyWETJfr/eKVa3j529WkPk6dsnA7RypatC8qhIzb\nrudIYSjkejW1P5tOhQR0qqMrhKdnSH3D8gXRIO+pSw3w+TYIl6rs4r0b/MaNhplDX36GD8i8wC/7\nJ+if5SWtCwf89lyaX/6uLleuvWsi00FztqX9qta07hz7sHKF/fLx1yBhKl3mzZvvMP/7Qq4MxDXz\n9sfwdNqktGXr47/9Qak5CVW1o/n2fJ02zS6zT7/1LsiX4yPtF4Xymooxf4cJ9qVzOuWRmuH/m1/z\nWyojlG0koj4dUI9L71Jf/9QIcad6fMl9D26zZgeT4u95j982/SZ9fedXnL7o1pgzlz7A3/uCzOXN\nDZ3uEE9TPK41VzKnNiH0/lCxkDJWsYpVrGIVq1jFKlaxilWsYhWrWMUqr6G8VqTMsEVErZAnK+NX\nxjKZ0rl0ZSQmIkSaIop2FnVWLaQsoDOi84s67+gJELHrK4vnnyOSntR5wB/+w38wxhizeIOs/PEe\nEa26XUo7HqLErX0yIUc6z/lMEb1Ci+uPj4jIJ8akXKFz7UszQtScJxN0tEHEvVwnQtYWl0zTSXsW\nLhLxu/gGUcvDEzIAsyvi9fgFnDZrH4CiqJdo184GkcWwSxwYinJHdE58+Qec7fW47calM4v373Ne\nb15ZaH+KbHlB4bn5y8rcbTMmFy7RhvM/+tgYY0xH52qPntL3s+/DPVMQ30ZbKkTXrpDVSO8Rqe0d\nK8Mp1NDLFts4mc/PskQ53zxPpHdw9K4xxph+9DfUx0X2ZpjQGV4Pn/Eo7fvtHjYU/BFZn7Ff0w9v\n9Xju8SnZmi9+SGbQMUk0tNMSgkZnMKcOGMuffYCNXY0wJq40UeGZHlHSgouxjnsYu1yJiLdHHT09\njY0sSiXl9iOyeSsfU69wrWuM+U/mwUVlut1kjZxFnnshBpri6SE284YdW7xbEBv+D+i/Ww4hfaSG\n4ZvCDn5wjnadrYLw6fwL41ZfwuZc0/Tn5Qpz7b+66c9vLzBHvdv0T/qHqEStuciCTfyCufHf/+Z/\nNcYY89HvpEjhwp4mn4JiO5rj/3OZBWOMMbN/Q0bmwT6ZgECK979MqZeEINHZ9ltzZKvfeIdn5CvU\n2T1FtmBhhayDvUDbHC75EWWHovIz0+JBqmWZj0U32S63zhsfOOnbthKZ4zFsadClLcGY+Jn0OZFU\nRtNDNqNxTGavL0SKv8Hf65tkIsbEA1Er8P5AUNk38YW0jphbvlkyrGdSj/IWich3J8kSdStE+L9J\nY8M3L8M55a3zvV88HG1PQPUTr8Uk7bQJSXiwR/86xJ0SFBIomcJm8pKOSEbIdGQ7+M+Lc7R7UKD+\nW+LPmIoqg5Kkf2aC+MGDKvctpKQ4pKzXqZQXRufPc9VXW76cknhoHynbF6G+dhv2cDKl89riZHAl\nlR1T5qglbp76QHwhVWx10MJOwk5xLCzTLm+N/rENsQe3VKT6Lsa5o2yowyYlC4fLeFNkMIdSxvKI\nM6Bpp4/8bfEWzUjxykmdw27WhMaQedpz0Gd12VR9UWgwF59ucWY1N5mv7cZIVYO2pe1kMl3TQokK\n9eTTmlVWhjYhNYuueB66WnOHVRATbT/vcUl1pK22Ojz0aV17AAfLhzkbUyaSapuW1mR3k/fabLL9\nthA7fallCN0UHEpNyiblxlcTXzLtvpTCpO6RUP9WbcpkClE0viYuMUPD0ptcHzlHPUKzWm8ek92r\nncqGtqWOIpUO1zJzzi9unLwU2TLbdEggqD1RlPHIlZkbqz7sZFJKkdlS/rs2VKoZ453Hx4TWpZyR\n4f6euHj6UdolcSvj9gvlEOOzN1J4y/A+n0SvKj3+nzjPejXZxNYPDkBAbos/5uLbZBevzF003x6x\nVhQfgMqtXsa/zEjxq/c2a/rRl2Qot+6xhs5eZK24ch0bPJZ60ulXrCXxK9w/J+SDSzZ5to5/OfWz\nVl+5+pYxxpiFBfzQwRl1zYkPZykcM69ShlK2qgkRmFiTApl45VzztK8j/5zdYA9TzmV0nziqpDL0\n3k36KinEYT7LdSOlsbJ4n4qaq2dP6B9XSMgSJ8/b/IY9Qk5cNZOjvdsF6hVSFr0pLrHUefrX48Uv\nPruHze3usa65RDwSDOETzr8NStgubsczccJUT1ivslmuczp5Tl/71FBYipxJxmleHC7Jt9k7BpU4\nPry7x+c+9RuIT+vGx3A5BKLc90xIqJkl2jV3lcz30WPQubki93nFJ5KaZK9rjDFrb9w0DqEeTr5m\nfIrH9FenKp9RYrxmF3j+zDKfQ+1tX6a4+tji8nne3SkLUehmLP1uoWL7I3SpUFRCtrW0xkxN0eag\n+Ia6Yfn52og7i/eVpG7aGvHfOMRrJrSWT3xoU3H9trLz/KpNHGM2ISaFcLQNeM+R1uJOg7/HhVxx\ni9+n36d+XSE7VG0TEm/bwIWDGWurfVKlcg9GXDPUa+CgfYMiDSp5hUSxjRQTeU9H/svvwAZ9Um/q\n67dgwK09gzhpBnbth/u81yZj64zWkwLPt7nlCLU364s3ZcRx4xYotyNlXUeHerbFcVOVWlV4yDi8\nbPG5hUwq4kuKZerdEFfk/8/eezU5ml3nmhve+wQykd6Xt91V3cU2bJJNJ0pH1KEUc4Ixipj5BfoF\n+gG60YUiFLo9V3NxRDkeWZpudpNsW12+sjIrvU8kgETCe2AunhfdI82QyrrqiTjfvkFVAvi+vdde\ne+0Pa737fefEd1Vtse9s7bK/G8Xrl74O4n8ozjPg48/gUTrZYA3FJohNV8X16ZG64b5+48Z0CsQY\nY/q+lvnsvXsmr+fSIT2LGHFnDThNPUP07c65rxljjBmRmtr9XxIPhvzEsdgMvr/0U+L/4CRI0omt\nKjnG1FS8Cnv43sVXQJ4UhaTZ2eS6EzrFkYwNFP7YL8raEw/W+D18nKH/Y9PEv8QY+4t/Ur4jZN3z\nR+xHu0KH9hs8qwyLs/bym+J27ON7G+I+6zfwoavfRHk2PUm/n9wl/myvE1dG0kKNzrCHh0LYvpT9\ngv/t/6tZSBmrWc1qVrOa1axmNatZzWpWs5rVrGa1L6F9qUiZoCrOiXEyap6IMkl1ad03dK7dSYZ9\nZJTX6AiZu/gY3+sry1uUpntIuaa+qnSZNTJcO9tUGJLjVNKLeapLT5cHvClkyE4qZOgqhu/P96n8\njqiiMh6lEtLNk3lL6Tx27oSs6oc/ec8YY8zhEhWHvrLbTbE+F2qkXQOD89xXyMTvS9no2RP03XsF\nMoCPH9C/UY2/6lAFokOWdXbAHu3j/xU7/d47IBP44MkDM+SncpeRWs6dy2Q513UmvHBCtaMTIXu5\nsgKiZDxFFvBQ54trBTLDB3Wyi/bPOAe+vcz5aGeK7GpY6g8Vnde1ia/BH6MfZ20Rt85j6wz/T8S0\nP+2EmyU1rgz7r1XFCJMRrn5G//bvUFV75StcJ3gfhM37KWy/V8Nn5hbJhnqf/aMxxpjQayB93HV8\n55Wf4VPPGmSm3zj+G2OMMQ8XWUKXlrnOP38dH7av6ozwEoiYkzmdd1/WuI5UkV3g+92UWOF3GWdN\nCjTBNlnd5Kfc/1NDfxai3zLGGDO2TiXWt0BVcEZoj5m8Khkf46uRNGvmwyA+39hl/NM6j+78iirU\nq/RDNCrG9QZ2+YN3pCbwDMWHsT+gIvHOOuOq3OP7ua+BOPL7sOMvvok93jiVokKA7134Gcir/g/w\nk7oQNeEW/By7TnFknKGdn6FK4Pu6kB3ipnq4TF/dkqyJiMG+KbTB4Pxxq0KcSbr4XD2K7RaukLGv\ndvD5pqrNbVV/shv4VMPD3MQbXL98RKY+I96Mjp/7HA/OSwdZA32xsw9LOcukeE3N4ON+ccJExI+R\nFidDM0J1uhjRfcNk4ptCZw1PUhlo+KUspurY5jq+FegwJ50GPnoq/qdAQFX/XfpfzFP1aevscCUk\nlIOqZvUOFeOCURVHCjHD4pnazODsx4/EzSNeklJT57t1triqKlOxKhTIPj69dsC8+JLYoS0URXhU\naiZdSUicsUXFIdCqM45jHdc381RGI0I6lm3YySXFOb8ffzrqSdVPihaFTfpZ7YPWi0Wwf1eoh1oU\nP7Gr2pcOqxIrpE+tr/3NIc6ZrsP0elINEgLCLSWrqHiCjFuIihVsaRso+A1xb5f4GipOfLXnJR74\nNLbIDPHZm+b6/o542j5mr6mV6bPXzedD4mnoip+pKqSKSyQFXaF9fN4BtAWb5bQGHRVxCajqFnEQ\nlw/FC+dTNaxssK29je39FamMKJ4lOvjmcQNf8wm1VPMqTp6wdouqAEfFS9QuYq+zNnuPcfbFf9SP\ngywKCFV1esiaGr7AM0FqiLV2tMYeXVmmkhm9xJ4em2GtF7QGNvV955SUZFRlrAcHCm3sV6U1XkcW\nGVdA599r4tfoqOrnmcMu7UeZz8dwWNoyl6SemByjn1t78AHsHrPPp1M8A4WTrKWa0Hh+8fO1NW9l\nKVU6hJCqHWP3VIr/T0wxTzkhdTIbrKXxlPo/es6MzDDmoxX+drSBLbxe9urJERCNtQviNXq4he2E\nkIsPMwe2FL5wfCLkyZrUPUYZ49QIz0GdU9Zl4Sn3OwyxzsZHpY4xx/un4uEpZV4MKdMRmmBIa3Rx\nkT2rJS6F0ydUTJ8/ZJwtoYO9buY6KU6WyZu8hofwhcO7mqNnxM2e0M1hzcnOLuO2x7n/xQvY3j0i\nboQya3JOaoKpWezSl9Lm/gZ79UAZqLpLjFhRVX0zT3/HkvjuxGsDLkWeQXxC2mx8QuV7be1I77PG\npqa4n8crnpKofEfP+fkTKdt4hXrIMD/PVpmPlScgfdwOxjtzlXnvRVgDD1d4fnfruTeWZt72Nvne\ns8fYzRcQEmcCO0y//AUawOYxZvV9xrl7H1RBJM74huelXORn35+8xP2befa5NSGrztJ8QlzUxSPU\nkfqcXcjATlU8cU58o3TK/wsl8cK5WAu9GraoC4nSzAphoj3FJpRvV9c91h7qFBfXADlYddGPbpZ1\nmhXyryjkeyDE++kE8bcrvrWc0FoeJ/epCvVkl4JgvoUPeDWnIfEJhfWs0HDRf20nJtbkubcmNLK9\nLc4yPWPFFvEVr9SQHHb679b/G33sYpMCmVdqoj2Dj7j028jWIE41HIyjUxWaWgjAvpBJQT1bGCFT\nKoq7RrymDq9QXob9rSxOma4ghkctKQoJ+TM0Jg6uMzaPOGRy+s05uO/0DPE5ESFmnIhLRoAiM7uo\n52w9Mz79lGfd7cf8Dogn6fe41PzaMeyzscb7pSo+bR9w1xljPn3vrgk4bWb6HM+TMxf4rVM6IU44\nxVc0cp74MHyOdf/0l8S7iuLflXOsn71nrLPVx6yzC2+BWEyPsx43GsQ7h06ETMaJH/4Ez79Ha/ym\nHPLp+U/x8NMH/L1VoF/nboD4C0aIi5FJ8TWl8Mlmkblt95n7/TWQNwdL9G9Wpwb8E3CZxX3ElZ6Q\nkB/8Ap7OdhXfm7uD7WMpfPfRe3DCrj3gekHZfOIS8cfuE5+e1GArev79Tc1CyljNalazmtWsZjWr\nWc1qVrOa1axmNat9Ce1LRcoUpG1vxKztUeVXx9vN3CXQChs6I/xkl4ycQxkr5wYZJ7++t7zD5yYT\nZPJqbrK8gREyeo4T0oyFDNWi4x0yW/YCFYT53yEzWJeCTIAksnFPke2dTEspR4zbnW2QMM9W6Fcn\nxziiqlxcewVUhjdGRm15l4yh3U5/qjWqkx2HkD9dMpQXb71ujDHmzmXO0vrjZBbHR3n/cIesbU68\nAPc3YY3elG581M/nLt0CBbFw5aq5dY1r5XNkykNigLYfcO/EONWepM77RsJkaGNeMr/PPiMj3q6T\nDV2YlMrRPDZJzqqqH6Ia1S4wF81TcRfUyFb6bL9do/0/tol58Q494D4JL+fBVz1vG2OMab33S/6e\nAC1RyZB1jV8VR4qqU7Z1fOSueChm5xjPqI2s6Ee72GXk0reNMcYs1jgb79h+1RhjzPPvqUq/AwLk\n43V4iW69Kc6HEpns72xynaODbxpjjPnHBtlc3yv47EsHzH1okurQz9u/YqAurrevqlneLVWsDL55\nHGdOv56Gu+bBuyCUSt8ja3vxI7533ML3u0P4YkaM350h+jnjxQ+uL4KC2L6HD+YT08YYY7JBnfu2\nM87yx/z9l18B8fNffay5f/yA+/3ua1TZCttkx+N27JT6V/zg5+fJYh8oKx69oEr/OteJ/ivjb38X\nn74uc+Sr+O5Zmkfra/Ky1HqOqYpkN3V2U1WnqtSVMiXutaAz7TWd8V9WBt2X4v8+GxnvgM7funR+\nefIV1spshzW0dqSKYRJbuwusIb+4SnpN7tcsSEmmRnzZ2yMTXxVSx6HqfDBN/IiGhWooMVcrOXzB\nJ6WEsRC+3rRLralPleckI6SQKoh7U6zVttR+ol2hq4JUFI6PWKMpKUGUpQYVC3H/mM7uNxNSVstg\np6gPn+yWuF5jkRgwIt6h4YzOd+fwFdvg/i18pC++k6YU4bo2Av/YLL5mevSvImTJ0S7zObTAPLs6\nv73i8B9bV8o/PQf3CdVUMRdHz2mf8Xra4iWRvzj7WrNlkD1lH3HfXRWqYksoDVV4HR2u79qh/zUX\nlZLCENU0t01VvUFJRJXYbs+YinjR6japOUywR4Yuik8nxz1aU7zfLIpTRXxAiTZz2W0T10oObO+r\n4mNe8d9MX7oqm9C3yAY+ZssxR4EKfW8JVWUXasotFZ6SCx/2DLFJ9obwWWdBKiFHfP/UJ6WXLv2y\nVYnHYQf/PzlgTuw5oaXE++TX2fyIX4pfSVWaFb/3+thFQoVGgBmTF/+FPcPnfOnfrnTwH5tLvtkV\nmsoTEVeA1kZ2U+MVGi48xBoMr+IbmcdCi0m1aeg8f88uCbkk/opegdji9mBfV4C1O9ShameECDp8\nwlrz+LG7J/zvK8vOEXy2t2b7fAzZUskUpKrllyJQY4UY5TwghvSmR/V95i0cHii6cd2IlMI8bsZd\nOWY/7Qgllzti7UxfolI7I3Re51MQO5viG0kkh81UetoYY0xtSQqMW1xrM8B6nrrImMcW2UNsh/jW\nzhM4A+wt8UfMcI+Y4uLGFhXTonzsQhqfHp1c0H14Vjh+yF4a+gbcLfFZ7ldWdbop9Y2zNrePeGFL\ns8cda/2ui9OkfMrcDZRiRmTr5DCvAVVmvUI7LP2U7608hRPBLnTA5MK0McYYlyrFc249h14RwkZo\n5MN9ECQlodpc4kE6FndXqYK9+0I5Ge0f6wdCHAmVu/gqzzpz5xhXR1w2xRxzuvZEvEFLW8YYY6bE\nuTJznf3FL1jf7rrUrcTtUK7i2702MWFinDV50GON7+/yPB4MEoumxOmQPA9awBhxlSlgDi9SUXcI\nFVfbwBfHxunH3CTve+P4Zv//Mb2ZX2+a3cf4TUQotytfoYLfc0lhU4jWpx/zucYJsbZuP3sNu6g9\ndOVQKqRV1lNcXDKhED7rlSJMRPx1QwmhSIV6bzbpfCYnJIxU0QJJ5j4hbhWPm/cvCQ3WkHpRXwg3\ne1GnD4TY8TS4ry/NfYI1fLbeYb07PVxvdsA5IqSOU1w5DYPPt/JC0NgVF2PcpylF3aJQsD1xwSSH\n6Z9bCJdcR8qT4szxefCBvuJ/NstrrsF1kkntZzbilo1hmFaJuLZ2LPRpmzU6HhfKQsifsnhK7Ypr\n4ZZ4m4TYydf4nl3PsaNxoalFHOju4sMFp9SppJDpCNKRjuPF1JdMies3xfvnFT+fN8X1DnVaYvmR\n4ql4C7tO+rPyMc/V20+JAWPaj67eAvXhw01MZp+1fqzTImlxzQzmwRhjkiNBM3/z2ue2bbSZm7v3\nOPkRdg7QuczB0i9B3Tz+mPi6KHRPU4qIq4+I37PXeJa/ePOW/k4c2RWqMpUOyxT4ev2RxrTKmMNu\nobO0psZGNDdv8Ps6Kq6ZA50o+ZzrKiO+tig2qUkFNXMgVSYhHSdnyTMcHPK95/vEo2KFuBKN8yy1\n8Mp1jR8f2HxAfN1YkkqbfPvqdX7zjGgun2/ot6T4AT0OS33JalazmtWsZjWrWc1qVrOa1axmNatZ\n7f937UtFyoTFtVJSJroh9va6spcVqZ20O2TqL79Mlb/dVlUtB9Ll3AIZ+4j4T+J+MlvLyniFdN5x\nJMXnPCPkohJJMurFDtlId49s5UefkMlziwsiK732qM5dbkrTPp7WeckQWcueGMZ9l8iY1ZX523xM\nxvAoT2YwMEqGzq7s7eP3yAyOzDPuYB+0wru/5Kxa+5Tx13Qe0u2iUuRTZTfmJ9NoGyVDZ/pUPhrK\namd29s1nutfxMRnlgqomV84P0AJkEcsPxCGg84HLp1T4HDpHHRALevaUz7d0ln7rlArhwjDZwCUx\nYV+ZAVXgU3XeH34xHoifrDFX1y8zF0viHlhMv2+MMebBplBQF+jfmwt/Z4wxphMA9eSoqgoldFFJ\nKkLzdvrxDzMgYxyroApuF6jSu1NUs1baVPMuKBOfk2rS5Wf8PVUnu/pOkPv5P8QuzZGfGmOMmeig\ndLPY4u/vChXxxj4Vj+/fIWP96SPs9bL4gSptKhCJIXx5QuMt2mD8vhCTutU/fWqMMWZviCz0wsQv\njDHGeH9C1St9jfm668d30mWuu1HQWWI//TmZ2WL8u1y3svI9Y4wxm+fEq7SHv/yDl6zvG/3fM8YY\ncz/H9aaLZKX/7gF2/b0u4xouw7fRuEDFZfj0Z8YYY/JCceX9VKkuPSfr/HCO+bJvCKZ2hpY/Zk73\nhHa6PIfP3VhgDqMO+pJxqpy+DmItrgy400sVqO3kcz2pUdSEyOs5qWqfikepJW6Etqr/2QpVo9EE\nY6rFhHDRGVa7U0gRJ/EtoAz6xGXij1sVwM0N4sRJBd9aE/+TP0Zcc50yV0UPNk7YhGKwMwfxAPcN\npulvz6+KrjhOSjn6X/UzLrufyodzhvt7xVVTE49EX/Hv8QZrfMDbsb/H+G1XFL/F4XByzBrr6QC5\nXSiO2TBxN39A1SsVIf51UuJPElojNUa/6zoX31MFO+EVV484WRxunY93fYEOOEsLuoiTmZ5QCwHt\nM6rgerZ1XZ8UjYTOcHaF1lAVzF7lOo2SlBhCOt/uHfAEMM+egpSJxN7f0Ll+s6D5krJDKUC87yw1\njaPLe51x4lxNahRHe9iu1xciRdXtplP8QEKQVITScjuFhlKVvFNl7qriSctMcz3/KPFsfJH1lxth\nzpM+VeT4mqlLmeSowJx3g4y5pgpi341PxaUQlhfqyVUVWGwAACAASURBVFfge65dfS4iVaC6VICk\n8lQUUqbRY4/szeMLnaD4PkJaq32tpRb28RS5bjEppE9V/BqqSBezZ48jxhjTE2q308WHW6qyR6Sg\n5nVh18wGseaqOFvmLuAjSx+wjxw8ZS1cvD1tjDFm4jL9X7/LflHfZy3HrmLnQWV7wOWTDoP2OFwF\nldWQWkhfCKFcg89FJ5igZOoLXpTG3r4pzbIfTyRBAwzPYZfsMnY72NwyxhgzP8wzgztBfLZpf22I\nP8Bov44OuIJyXLd4SMw9meS+kTnGH8+BYisITXe8mzfxOPErMMHcNrPiABRC+WBdPAqX6OvIFWxW\n+gSkwtEWe87wGEia2DR9CbWZk+ND+nRSxIfTI/j0yDzrKrNEHD3cwteGpTw5lBJCTciRszZPSBVj\ncW3l8uIKUNX7grheghGpMAlhGRlRxVb7yuZDKqzHUuNIR4nfY5fof3peiJWCEOR1fK/WwXeWP8bG\nRw94duhLWWbqTezYahBXnS3Gmdd9B59LaL9YuMkz4PBVfDm3yjw9+hXchnbxktTEXzV3mXmYE2LU\nq/i59oi9e3eJ5+kh74ATR6ixEeYrISW47DPmK6F9Z0IcO4PneG+PtX6wKSU4obcljGNW1rlf+1hI\nnwvapxVmC9vYxeT0hT/4b+bJ0sfGpV89w1el5Ckej+V7evYQV5nPQ7+C4qILO8/uJ16hPJ1CKrek\nFlePai/xYBO7V3Nkl4Ks1nWzzvfd8s2YVIQcaebMLfRlWc/4QfHJ2fWTTo/ppiOkoysu1ICNz/sC\nXD+ofjnEz+Nrqt9OfKwpNFdAvzVa4nRxdJkjx7iQJUaqT+KyqQoZU6wRl31Shi0XFd/F3XUiBNAA\nfTYp/ru6h36UxX0y+NVQETLH6eL7uQqvHakYBaSw2B1hzhxxqaB2hbCR8o9Lqldujdfn4+/eJHPu\nl5O4hfSxS+G30cKwYXGs1Xvcpy+0tcPxYrGkWseelYKUPVOM3xUUckdokkCQ+166TLyutfneaYXY\nNyqVrwXFDnscP3r6ITF0Q4pAnQDjmV0QL2rxCxhZbHLK+F12c/fX8NNUpT7s1lzcfIPfGOUW621L\nKmnj41zr/EvEg8yJeNcS+NzoJeLF06fifnqf58m4+HIWLvM9l56Dt5/xHBxtM2cjY+L2E39ObIw4\nki+yxx6+i8Lt5gbPpSGhdhcucXrC0eE6y7v49NAEa29G3Fu1Gr56sMV44/p9fu3SbV0P3ypl+P6T\nZTi1KkfiEdJvtDtvgE6qC+qyfA87Lj1i/1p4iXg+4Hn7Tc1CyljNalazmtWsZjWrWc1qVrOa1axm\nNat9Ce1LRco0BlnCDtnUyS4ZpAHXQSVLZqpxomq+GLS7YsI+OKZykBymEttW1c4YMleuNp97fJdM\n1fYeyBqXFCzCsQHvibKnyoS3lTm/ffstY4wxhRoVnZDOGR5K1ejyNTJtDWXWbXFxzZTIou7cB8WQ\nLzLO9PQ0921KHUpn3RYm6P+NO6AbKjXuv7PE+b+ZUc7qlQbnJcUx4RjwwigTODsjDfojKij5Xfod\nqIfMpIts5uJ5qhTbOsN+7RxcLZ+9DxLDK+brAZO1v8u9bnwLlFL1hL7vHpL1TI2SMa+JDX1+juxk\neIL73dTcvPcLkCPd4otVtyc9ZFHHEsxhoUq2sdXAdo5JUA9XPOI42ANJ8tEClYSJR/jCio0M81ed\noKC6m3CzXE3+tTHGmNPxHxhjjDmZxWf2t7huQeecf3mX7OvVC9z/4Ry+sPVr5vz8y//DGGPMswDj\nTtXItubFH+LYwM5vlbaMMcbsGuz0ySOyqeNDZMpPf0Xm+sP0OfN/GGMub5Md/nVNS7VIdS2awpfn\nSOaaj7qQsTRO4Jj53hVVskfI6n5bymRbeXxoY5d5W0zKLh+RbX7Hj19c7VOhmLWpeimOoOoRn8/H\n8elGiDW7f5tq1uID/r8UUnUwzLiG3sGO3aTOKDvvGWOM8R6RLT/1gdDJT73JMO+pRG/+u/nP2t4G\n9/7gpyDLavP4fVfrPC5Exui8uASOdF57QsoCTWxra4r3KExfG6qG9KUQ07DrbP42f08qg28TL0S5\nSjzK5rBVQdXtWBNfPc6K1yEoJRUpkqWGeXWNUaW5NIoyVSZH9Wl0VKpLQo6cCkHT79Dfwi73y+gs\nr/+Aua6Jx2l0jDUdmcLnTIt+ujpCPVSFMmjiy6USPjLRo5+eYlv2wxd8qraNu6meNcQDkndSwbDr\n3Hazw1qqZkEsLm1SucxLJcUlwZ79Jj7ni9wwxhizu7Kk/uADI+fov2+SNdUTV0PLKSmCM7ZeSFV/\nhaC9KrEsnFWV8AQ7NDx5fUOIH8XpUEiIxH3+71QVryNuIW+I/ji7rL1mhvn0tLhuR0IPpX3s5RJq\nJGiXElukY06EAGkdMMaelFtydXGdJIWEUTU4IoRjv8Mc2VTJO7Vxbbs4ZkyFPhxL6al+V3FkRggN\nuUY0o71xmDE1arzuS9XJW1aF8FRn7VVBTPQYc15KZ96WFBu0pmr6+4jUlOxOfMBRxMYVcY9FGuJb\nc2Bb9zVs6Jpk7Xal/hQ+ZpwHDT7na8g+4lYw4tRy1zX+M7Z+m3E0JHORsNH/vn2AipXylo0K5ZEh\nnvlmpo0xxvg3QJBkl0G4nEyIH2oeFIDzEXY5OmBNTC/yDOHxic9pQ6jZr7LWQin2m533eeawHWn8\nw1wnYLBDKv4FUqZrN+ZoXcglPROEZrh+/oB5LEjFqSZFuYRiUnaI+ShmWAPTbiqvnmlVzPd4vyq7\nH4jHb9bN/CTHuF+rK26cXNO0mlzLVsWmEVWvXUlsu52lD0ZozIUxbJI8j4/sfYatWo/FPfIWe+mY\n0Ef5Es87G0fYLj06jY3GcOrdFdZQeYm4F5DanTuseFItmBdptjDjONlWnM8UdV/2spCQiodbxGmX\n+DUcNXwrWznR9/DNpJc46p8WimISm1fy4hXaZK02jsUPInTEQQa7eRWfrr3F3h9UnLr3GYqGhS0p\ngiXYm2e1DwZifK/vYR7WPuSZ5+l7fM8dZp4WzlPpHvAXxaUw427Rj9XPeDbbvYc9oqocj78i344K\nIRpXnGtqf5JqX2SGfWNoiLV0rOf6vNSxtte3+P4Q99+scd/aCZXt6WusLbuUbDaegg5oau07Al8o\nsI0Op01kDr+anMbOp6vcJ6znaP+s9r3QgN9ECMjDs6O8Awn6OuvHxpUwe2pQfZQglfEP0JpSVRr8\nInO7Bhwr9MUXESJGClu9Af+GjTHWhLrMao2Vs9qbxHsWErdKKKSx2cS36dQ+IQ6rgrhlIsKmlAUV\n3Kvz7FLpsP4nYtjUK2UsZ0PPMH18KRhjLQwJYahHBmNrsw+5xJs0JBVUh/azpt731BjHpJCAHZ/2\nzIFyWFeKZkLmOIUksg0TD/uau15J/IJF1kA4pk04zOfb+t3SOpVyjxBEbT27dcQP1VIHm+InbGQY\n56k5/Hf2m4y+mJJbS34QnQXpMjs3bYwxpqh5yBSIeWNxfLbnpr9P7/LbsKXfinOLzEdPvHm5R1vG\nGGP29hn3kNBnCzdZy0PTKV3ns8/70u11zM7jdXOqPSg9qTj78oDDCRs8EpKmJ869idtc0yXEeVGq\nSB3x3GVz2GjrAfdKLXLvS6+/Zowxxqu5OviUOJJdkkrpMD4UPEccGSgAbu5xve3nfD7UES/TMGO8\neIU4GJcS8KNH/A7PCvlz+SLvn2ZA5GwsibctyefP6zfx7iZ2WFnRb7MCcWJMPG3zN6RyJ+6qSolx\nP/hInINSW05dIa6du8Xz7YmQOb+pWUgZq1nNalazmtWsZjWrWc1qVrOa1axmtS+hfalImU6VNOG4\nWNDHF8jInZbEraKs58g1soQenVPM6Yx+XIo0RucKs/fIsFXSqogmdI5Q58MTU5yJMz2GXXdxvZYq\n4imdda0qO9mT0sCjjzlr+uplzowlw9zXpXPXdz8EZdJ0kqUcT5KBD59nPC8rMz/INH76C1AmXfW7\n5qEfu3nO6DVLg/OKqjaOCY1yIHWVE8Zp03nVZVXmbarmuVQ9HRmnwhxLp8yespXVfTLBBxtUo91i\nPX9+QHXiqs7/Fgtk4O89BdFQTVIt6ByR8c+V6dudYWzacqhqL4brnVXODTYy3PdgB5tGVU06a9tM\nUSUK/vzrXP8c/a14yeB/N8H9n/4MW7zvIZPsq4tbpgnyIjLJ5z/oYeMpqVA8jYGY+WqCud5qgegJ\nb2LLjQbj/f07cMNU10HaDO/jUwsxeEROnagnHX+DzPx8WxUEcQU8dlLpDPbFibODL8yXGNdJ8hP6\nucD3bDE+/26Xfo4mv2uMMeZJE7Wp1/v05+9/ynhf7ZJ9fnyBcaxL+WBiGx89fI33nREy8r/rZf7W\nIlQmfhoia/2tf+b/5ev4Wm6HTPu+kDFXnXy/tQkyp1JX9c9Jlvm6jaz0vVvY/aUd7JifYRxPusq+\n7zGepatUPHo9vve197mO63X6/3/9d/OfttRF4sedJrw+48rwV7NUEzKqZDYdVEma4koxQoqUpfaR\nKwrt42fddk6pNo2cE1fVLVBCsYaQNUIH7OfJwIfc4gE6Twbdqfg2UKwJZUGNOcNUNTY2lo0xxtgN\nPlLI4Wu+hBS89si4V8SV0xE3jV1cNkPic4jPMychnYOui3sq9xloqnVx3tjWWDu25ECthEpy4YT4\n4RXSrydmf6dQGaUMvrB1zNo5zev8tE3cKU4qHf6OlHekEicRCzOUxu63IqqgCkVX1/lv3xp2GE1x\nv5ADX7SHWQtNVcfaTeYrqFfngPfijK3mV1VMaBJ7jvu3hGZzq5pnFwKmmGGN6ni6CQwPzu3z/ZMD\n5t0Vx8cDUoFpNIixpbiuL3Up5wZ2G/AGuOtcxxXkxqlA3HgM382I86rZ4zsnJ1xjWEgOm0scMTrA\nHGnxPa/kKGwufLEndaJajzFl64y1dqh1LnW90YEKhDjB4gnNUUpqP1Ij6sj3m8eac6GqegdCgzqJ\ns8+FNrK18TlXk32gIuWVoKrnMVXHW3dxlv0qcaIutZJGi+s7xck1popxb0xn/XX9nMYXtokvKEq/\nk3Yh887Y+gMgp1C8ZZ3dHx6XMlqe+JQXz8XBAdWz2Ws4SfwWa3Fdijo7z9n3rl4DBTs+w7PBivbH\nvPbR4TD7bqlCde5kn/GmLxJ7KvOsqZ0l8Tlt8X5yjJgSjk19Poagc8hU87pOie/FFqQUtId9W0/E\nIRcmvkeuskbDkus46XKfI83v/Cz9CF3gGam0zvcKUoTbkFpMcgS/DESE6HIY49TC6orTpKX1EZ3F\n98bl6/vrRfVB/HR6Hmtltcfsb3GvLXGh3BEfkvhwVtfVlzFez02or+Lw2j4kfsX3iL/BtBa298UU\nIat6DssoDnqlmJiW8k3zQKpDmsOZC+xHXQd2cO2z9pxSSfIOM56Q4p0pDjgbePbJ7UrpKywEuL53\nZZKKb1TPmVGtqefvgxQ5XqOfl3X/ySu8djqs9c3n7A+NCvY92h6gcFXJ/jZ7eDyIb2TKW3xOCKDt\nZ/j2yRp/n7wo9ZGbqKLYhKY4lrrSqbjfinvYJZvjmXPqHM/Hq/e5/5o43+x17OFzYd+UTzwmceJy\n/A0qz/EQfvRkhcq5UxX84ZexTyTOeIwxZvb16yYs5Ez5ELs+F6Lc7+R7caFH6qeMsyf7ZGtnV/uz\nC0XUlwpaWFCRvp4ni4qn2/L5tpO4HU+I60W/PWpyTVG7GJtHyBZxT4WlHtots7aMT3ucUwo6Ut07\nLeNzA/TQAJ3pjorLS1xd3oAQh+LRswmRYhf3i1PIeWOEuJEaqy0oZI/UoOo17lO1YzOf6cgeetaR\nPZwDpULxEvn8IsPxMD6H+EObikNdccfE/dirrbXr1D5oq7DvDBTQyiWdYtCzUdsmJOUxr0d6NjI9\n+hOXHZwan1/qdD7to03xmDRqOrVRwRd74sTxRF7smWTIx+ebIe5baEuZ82PWgi3A+yPniXEZPdsZ\nPRNduskzaUpqXAWhkjdWiHV2N+NfOAeaLDCC3R6/B9plU6gyY4xpbmZMvpg30Vl+N157ie8US9xz\nc5XntE6dOXv5q/z2Cg7hkxsf8bx9uMMceKRm1ili4yE9F158iz6fFJnTpz+Bu6oqbqjgiOLPy8QT\np1TPnkqNb/s594mm8ZUh7Y1dIc97USZr5Sm/1ZY+IC6MpLBhV0qGx+v4clBI9IvXeB7eF0/Pcz1/\nj4rDZuqlrxljjIno9ERlX78hP8TmJSll2b3Y4+obnC5piqOwLEWw4z0+/5uahZSxmtWsZjWrWc1q\nVrOa1axmNatZzWpW+xLal4qUCfrJDlaUVV6+TwZsd5sM/uiYVIqSA/QG2b+Zi2TawjqL61SVfl6Z\nLrcUG+w627+Tpxp1/SaZt+Kh+DaqZPzGx8mE1ZpkQTeXyGSNToqJu0pmbFAhrhbI/nbLUqpQlSp9\njqpVvUwFoCxUyS9+jAJNS9lsmzLx115jHElVep5sktkrqXJbs3GfgBi9nTEybRNJxjm2gELD6TGZ\nvYbOKEfTIAeMQwztx02TlYpDeBibXn8Zxv2JaaoMg8rWqJihN3SO+aWXQJKkxbDd1Jn6SSFpwl5s\nF+wpk53l7wEvfUjo3HboBlUNW//F1JfGfiU+ncl/MsYYM5Ki2tP8F+Zo//x3jDHGrBThEzEJqinf\nSlNtr3fJCId0PlHAFeN5RtXm9/eYw3dOt4wxxnytSab/4XeZI2eBcf+b+nP+FuPbH6MaNP0JFdHp\nf8WHJ2d5tV1i7vY/pAp09Bb9eiU7bYwx5u68zr7uc+Vb95nLzk3sc+VHV4z5Q2OiUfqTuE/2eapP\ndfDpFfKpt/xk0k9nOBcZXeP+8zf5+788B8nz3XXe749wvV8+JevsF5O6W1XFWlq8Gc+oSHj4urm6\nhP9033rPGGPMuxOspeDPsWvr939hjDHmF5fIJs8uMR8bMSGcDsmyv/4y49ueYyIms4x/+1P87u4t\nfP2rXjhmztICAyWDMOs3mKbqEp8SskXVkMCo+A4CmtuwzjW/JB/exhfsAfp2oDXQXse3KzrnbFTx\nnZpR1fxQSJYi8aIvtJbDqWpxUZwCJeZm4jxGnZnEhhEh+p4fUpmz7UlZZ5t+x+dYo3ZDdedUiJrd\nOjbNqWpz7hyVQY8q0+cWiUdjqpQeZIkTW9vE2UgMO8Wy9DvpwC6tGHZxdbDry1KIaduldONTRfuE\nuez1qDg8fMSZ4fDitDHGmEZZqh8O4lvMj50f7IACc4tdf2DPzC733d8VF4NiUlPVRgGKTCjNvLra\nqnKdsbU7jNfYhHpQlc5nl+KDnXH164zHWxG/RlWqS34hKUeJq8Um44nE6EdziL/7nOPqH+NyGvGU\n5Hi/dozdDltcf2SKeH+UtBvPJdbt0C4+s1Oir6EjvpsT3c1wmGqQq4tPNzx8z2ZjjMmAeHcm8NHe\nOlWcfoOxtPpwBPR3+H9eakX1NntnUgg6p4f3Y1LhKeu1n8MnwlLRcIe4f9uD73ak8FJXVc3TUFWq\nDCo0LMSk38Mce28ITXZAv/Jl1rJrT1VqndtuCU3QDouPx8b79YrUoiLE9f5AyTGOD5+1NcVd0Oly\n/1qDqn4nwHXCM/S3e4Cddw95f3iKZ4yhSdbqiVCq5X1QaKUpfCIidJsjJ3URoS7GpSBpkx0PhGgZ\nus19/VISMjtSOcFMpiQVp8TcyOdjiESHzNHGFv1fxgeHbrCPDUfx4VyYWHdywHx4Q8xT0CX1jwBr\nsJzHt48n8PVwfJrrNokx+VNeK0IM2Wr4Y0Rosv5c0rgdQiwPS71tk73bccCcTV5nj6wa9qiVD0H5\n2F7Cd2fO87xTbNDHzACZMY0tUyO8v7NPn5tH9Nk+yljDC3oeFFKjKs4SjzhOXC+IlOmJZyghforR\nOeK4P4VP1/dZI+evSA1PULvVp6CT97LiKJyUqs8kcxMWF0ytovi/w9oa8nCd4UV8KCA0QcDHmi3v\nE7eefogv7W6yt4/NCiGj5+WB4tbGEyrHTSmNjSUZx7j4jRYvUSH3ixPi/kegWE822A+7LuY4MIQP\nz3yLZ62FSfEmiVbj2S+I81sZxu0UorIm9EMwNHgY43qbj0CPefusgQt6Ru1FpXgj3iXjF1+KUIOP\nn9C/XfE4jc/jD0NDUkEtfaHAtv1g1TSFWC9kiIldPc+PXIAbY4BO3JY6VFD7osfWMWdtxxXiwcom\nAdvbI775hJJ1CrEx4ALrCNloK7k0ZvrUrIrTSntgQQqMUaktdcTrFhTfhl+oAq/Bp+OjfK7nYZ36\nhdDpBcSpov2g1BbC5FhqeX7idcBPf5Nu5sCTwle6fT3reIVkkaro4YlQuS5s5ZMz1CrscVm75qIh\n6ImN/nfVf1OV+pPU+dwh3VecMwO0XUO+VBdHWkj710DxLKLfTJGkeOH07FQXp2JLaKqR+IDzhuvW\nxd3YcHP/ekb7nbhaYuLkcQcGSFXu4x8orGkez9rsQe5X2Mdfarq/J4jdZ15n7fqEYh6sQeck44+M\n8fejEhvC0XNiS9NP/wZIGk+c661+zG/r47s8O6Ynv0CRpWdnzVBj1rgVD46FClp+wm8cm0BS527y\nezcxzt60+ZTfWE/1GzMirqqIFL1GxqXymRBiUr/3n/6M0wFRoVpvfh2CzGCAMR3nGNPWE5A0dcF+\nz53j+Xn2Dr+ZjlaI60eb7B+1HP8/zdDh8XGeP6/f4bes3c/9TnK8f+6G9pc8c7l1l7g1GSbejl3k\nN+jpEfmHT4TAaZziQzNT+HBiAeRQUsjMuhOfe34X+0SH8DWf47fHEQspYzWrWc1qVrOa1axmNatZ\nzWpWs5rVrPYltC8VKdPVeTmPTefOpc0+N01mK3mB6lFTuaOOMtppabY/WyEz98E9KrSjM2TkLlwj\nQ17aI/v7UOpLjbwqLaeq1IjhvO2gSm9vC2VwEcWfmUkqBwPEjksM5kZn2rJZMokPVAFxKMO/VyBb\nnFJ2Ob1AxcIjSfh2j7Tv1iPO8y174JjZ2iXTd/kWlaNIEnRF+ZTs8voRFZCEm6qYY5rsp9tL1jQr\nRYSIU9XEyoB53WMWblFFj42QQe+K1+DXH5LFszW4xicPseXIMP8Pz5AtPNggw2q3MaZqQ2ijB/R9\nV5wBpkkmObVANnVrn2ynvT3I4A/OpJ6tjV0AGfIog6te2NC57W8yN5vv/o0xxpjRt+lX9l0yzo9+\nyVxef5NzfZs5Mt4HD7HduR/I5s/JWk7vTRtjjFn1SzlGldaX41RLXB8ynidS07g9+hPu83vY8/a/\nUDl4b5g5eaXO58IvMccvP6EC0NoCMfRSiH7/aJhMdvU638unsfPbr5PVDZWYU+cwFdjMdZ2p3eXc\ndW2FbPFJmirZ6DjnwKvbrI2JBcbR6uHT3SbzcVMKZRu38ZXff8TrP75O1en2s7eMMcbsboDyiiWo\nhrmkHDMS4Tqpc2SNw7+kH79KUGFInVI1a9WE/pqg37tag7HTfzDGGBNcxf42oyqqTxWfPbhzztIK\nJaoHS5+A4tm4y9xOXaZPflX3YwH+ny+oWqOzpV1VNktCSCyMM3fjFxnD5Xn4e1oHfK9XYwyBSWwx\nOiyFLZ0lXT1kLsKqbrh0DnpN6ku7O2TcM3ky+kn51ACpNzRDZn5MVZ+hOHGgq3PWgVGpYHiFYFkm\n/gwF+PvuGvGpaehnLUPc8nnox6Di2Jaq0ukp4/Y1hRRRXNxcFSu9qlVOIWSqYcYbV//CUsV4ZQLV\nqH5CleH7xKtqjjnu2aji1CpUpRJexh2Lcb/Z0LQxxpiIKqP+CXzUJqTkVhm7Ddj6u+EXU1+KaP8w\nR9gx66Ny4ZUMlL8jNSkpGpwUGOfQLnZqRsXDQbeNe4Q4nvESmy5N4V+zr8AfMnqFivzRr5iPwifY\n88BOxafeI2buVtj3hkdLxhOkT463VKXZYIz7HXwnKe6XXJ51PSpuAUdISJQQfQoJYVdX9b3tYU/1\nnxJfygU+35XKUNPH59subJQ5UuXWL4WuOq++EPdzCZjRSYiLRDxrdqlpRLLsIx3xLNVqVCgzbeJz\nvKL7fYW4lDqPT9Y/43PlIyFUyuIYeAQSw7HA2gio2lQKybfzfN5ZEI+TVP6cDtbYWZtTqA6H1EGq\nOk9fKFFVj08zzvRz1vjmAdffVYXyitASk5dYs49+wvcO13kWSd1i3/LqHH5GXG/xc1TrktMYdusR\nlczyfewRv8Hf02led8XvVNjiutHxL7jaRsenTU78K7sHxMbUCPvPxBzoEdcpfrK5yucaR4zHm6Rf\nSfE/5VpCeW2zRjxCLKWmVMF2CBEqPoDqAftVS3wCE4ms6Ur1LXqReJEri/vlOfcOTzKmuTme95bE\nt7b9gHVz8ZqQhZfZgz+9j29tbnCdi5fkQ372yOKBVJGkeOUVysc5BgKnJhXLvvgZhkeC5kVaoI8N\nGi7G7JQvdrKs9+M91qpbz1h7z7nv0RY2dg2zFq9cxRdicf6/vUa8PNZz4Kkdm8/OY5d4Ejud6Pob\nD/CdbJbruoUACYsT5txN4lHphM89f8hzcELqgtNvcd2I0FF1gz2a4gl5+gg+wcJTfHFoXhw+moee\n1KQ6HeZ6WwqNhQ/x+WcrPKNEJ7DXzBzf64vTxqO14hPivDxOf+dfYr6TQ8SE9TXm+UAIq0oVn8/u\nc59On31ueoTn+IWLfL+SJ8bt3acfxhhzupM14TR+Eh/GTrN3mIeAuH3y4iYKuMRZMc2aaUrB8iyt\n38c2bi/xNSrOD7+De9iEMImkiDM1KSm2xZtpKuJwEXdio8znulXmqKhqfyiOj9XEJebs8fegqvRh\n7d0C35tiAFsHtBU6HOzFXiFHig6htNr0J9Vtqb/4TEuo0Z7B108OxFkjtSKHW/xKMSFWdJqhpWeE\nhGzo6wkh1BeHjeYwp2eFjhR5Q0LUeFP4gsuNLxUzur+QQ/0w465X8AmJRhmbR6pNdvHVCYkYE7K0\n5iIuOjqsAacXexQr2rtP6KffxQUFQDEe2bcjWKxdggAAIABJREFUlJdN12n9dmGd/1erVAbqW9g9\nJGTnyGVi5ogQpRtSpNzZY3xpKVJ6tH/XDjVup9Br13l+cETwizWh4/YVi7xCIS++/OrnfQkG4qbQ\nLZr8KvFif5ffED39Xr1xm9MBPqmw7T4nXi3d43OeATrnqyDc7OJJCkglc8BhtbspVTjxHb1863vG\nGGOc4pDdXaaPOamuxWSDUSlIpaRUtf2UPfDZpyB5pmaJoyMJ5tLhZI79ek6tRujH9geg+I+lUGYX\ngHpvnXGExHuUvo0NTw6Jt2sPGa87Sn/uvDXN/z3iqiwwl3c/BAHk1XNkQ6jlyTnxerZ+O5rKQspY\nzWpWs5rVrGY1q1nNalazmtWsZjWrfQntS0XKOGpkQ0sVqlyjl8lwh8QJM2Bd7jRVPVe2NBQmE7Y4\nqaqZhjGrM6gut85rCoHzFWXKFudAJewVyUKmp/jekSonx/tUZtw2Kiv3fklG7+EDzpiNzFJZSF0Q\n27PUlt5+9W1jjDHJGTJ1Dp1FdTvIFCYCjKfpJgsbUgYtUyQzePEVKgRz16nIxxPKGOpcuEes+7dv\nk5UtZckQ7t7nDG4rp4pFW9W9OJ/P7pBxPMhnjCtNdrOzJgWQGn2rN8jQfvt3/6sxxpjtHbKko0mu\n0a6RMb6/hg2m5kDcdKtSyEpOG2OM+cYtzuNmG1QOw12+X+mRovcHhUYov9j57eYFVH5SNaph8TTZ\nzGXxNrz6CtnQwmO4TFxx+rn4OnPpEOP1wWP6941vkR31fsL33rnCa3mBbOirP5YyQEMKXn1859nr\nVFsCOrf9eA/ffP0q/fKPgDDp1rDP/SXm4ltv4ot/NwXCZ/iA8cze+W/GGGPefkb2eOdj/u5KUrX5\nzFYy/6cxZnQIX1rdIDN+cw7kzagNO96zM5631sjedg3zuXOF6s5oln6s7nGfcx3mpRxiTZU7+PQ/\n1v7aGGNMyMn3Pr5EVrjtwm6dOtXJxr/y/q0gGX1HAFRXU/wZ301TVasWvmGMMabwKv1tPWft+R/Q\nzzXxe1z4QxBBvn9m3q48Jyb8i87MnqWNjjKGb/2OqkVSFDtUFaIqXodEDN8P+bHJ1CjrtZl2qY9U\nlSuqEvWYarPXx+cOpDbh1djbqhK5hZQYmqZSlz9hDJOq3DX8rAFnnGrLzG3inHOP+6ZUfS6VB+eJ\n+XsoSga+fETFtJDntTPD56JSrjEusbvX8PVmQyofQu49fvdDY4wxdj/9do/hk6EAc5EUa/1JXoif\nOvevH4FqcM3Sj4LGWc2yRlyqqi2t40tjOjPr6XGfUJiKZFh//7wqJy4Bm2LP3lMqk/asKsriALPX\nxZNS5noNB/1LVlTZFafAWZu9InWpksZ/SsW1f2HACSEkjNRgPJvM1+mp/r8m1MiEEJPHvN+KEc+P\n9oidvgR+1ByUI0cYr/cq9vDti/dEChE1rZ3tXa+JhljP40FVmSbwIWcZHzm8KzUMH759IrWhhFSR\niqqcOuLihEpTVfJK3SHykL52bawFmxAlDVWvIwkpldVZfzZxzEQOmateEx+rSU3DFpIan85VTy8y\nV6NO9rT+B+xVeXGQdI7o564D21UfYrPxK0JfzTNOR5P7Hh5hQ48P27f36hoftoyFuK69hy8f9gYV\nZ/Wzpbk6Y/NLfaRmhBTKYo/OIf3xjBKHE+PEvfy2eEqOeM0f41Np37QxxphIhNiTOdQ89fG12STz\nen+JuDojX0yMsFYOHlDZ3Nkn5iSmpLCW4v4RH5XRQgYE0WTpC26AWMJrhrXmjk+57+GK1qwQSd4x\n9s8RpzgUVlV5FvdPOyhOCjd2bnY0z7vi50oLlXGOftU1P/m79KtXkdLOdtM4xT3gnqWPyRxzUs2z\nJ2Ufs9dEXgONOXuOuLbyGbbZPmAvn7x40xhjzOgic53bIW60FcejcfaBgtSKDrLYdP4qn0/HGftx\nke+59fxpbCHzIq3Q5HsdoQhKQg+UpOZT2OFZwiHUrVf8F1NvwTkwLTt4xIW49Yxxrj1jn2lXWBvh\nYeZwNMTnM8vYaW1FSpqa2zFxIo69xvOvR+g4I9Wg5VXiqi+Fb1++Q8W70affu6v4WFa8Fj2t7VP5\n5EClanyONV0X6m37LnHOHmYvHxHKr1bEPnOXQAXfvMPzdl1o6X3Zp38ibrQs441EFbO09j75ORXt\n/U38JBIRt4t4qOJSxrkwDRI9NMIarbbE2bVB7MnVv9gnhqZHzegszzAOKYb5dL3tB9hpcxN/S6ny\n74vKnrWzwyD8LnxclI2mo98oA1SqXRwkIcUbmw0bxMU9Y/PZNVYpQYX4fqzNXPR0ysAmtFK3qVMH\nHvG8BaXiWeF+Lb2eSJWzJs6SESFHguKI6SWEvrfTL7sRf6YQlE4hSlp9/T9KPydiNn2Pva7r1TNJ\nC58yNXwkLLSv3Sa0q2SlgnoGCcyII03IfY/mst2WelOJh7KOvh/yc91mjfu1pQhpFwmNy67fGwN0\na5vvFRrsI8cHA/UlIU+Fwg3btW/Mal/sDtTk6H+9SX89PuzmFt+Qe0B+c9bWUzxOSK1Vp0UaQhQt\nv8/z9M4KqLWhCeLt9BT7T12/z3Z3ibduIRSdhn6crEiBdEkImSHWyNVrnCAIj6c/78rGs3VznMkY\nn0O8dHp+i16WerCeU3eW6dP+E34TxYTGmnyFZ/yIl2s+XeEURvtA8fGYdR+bxocvvQWqf3iYz9//\nOXEwu0Zc8Q/hCxMzxJ224kz+Me/vLRO3puLsZVevw0PZPmVNlDq838ywbje3sWFll//fuEE8bgaF\nmBfX7NwNrucT19iTD+hXLIZvXHyJ30QD1bp77+u3m3wgJLW3xVeZq4a40EwPX2l1WIO/qVlIGatZ\nzWpWs5rVrGY1q1nNalazmtWsZrUvoX2pSJmmhHg6QTJMNbGkbx+KIfuALOulm1QAnE2ym88fgmDp\nqJrnHZZigiqOy8+pzld2ySLGR8mkr+1SfdpYpyp/WCWD32lSOXF2uE6tRwYsJrWAK3fIwA0NkWFv\nOakaPnlKpvDqDdASG2J/roqzIu9SJWKbLG6vRP8uzoOGSOqcZU+cMXUpFzxdIrtZ3FPldowMmxFD\neP6UTN/CRfpfVmW925AShirnVTGBB8bSZu7CtO7BWAeKUU1VeVxdXOH4IdWa5nnGGvByzeQi54kv\nvfoGfdjiOo1BRbFHHwrH9DF1DVtORfherY/NXLu8nrUlPqQf48dwk/ydMvlvFAdnaLFFoEVVxTFH\nnvGdPIiVyT6Vxa93f2yMMWbdRTXtWYLKbN/zba5/8nNjjDGHCVBPL2Wp+NU/xQeuvsR4fprEtq+V\nyESvrpC9PXeOLPF8m4z1vhNf+5v7VEQds/jU1e+QRX1+gq/EVBFIOfCh54egv74XYx4+O09WNdzn\nvv1nXOdkmuxx6wr2+Fi8KK86WDuj7yv7/CZrYP5jxv1Rj3nLvi21k2Ps52pztjT+E6pwnnnuP7PE\nfO8F4QuZHyL7ve1hbU7ayaJ7rlKt/LdTsuBfeQlel/SvQcysikvmwwh29UyBkDn8Kf93T4izwMP1\nZk910PMMra6z/IdZ5vTcKD43K987TVCdHk0yh60d1tfKEnHAF2AOMnUqg6EyYzhpY8tACR8YVgbc\nr7PomUNsXmnQ97jG6CzSj4oqtcdCtvV1XjxfFQSnz1ppd4XMqYn3qEiG31SkYJBkHK0k1+uV6ddq\ngfu17azhanbLGGOMJ8n1JqbI6AdzB7q/0HEVrpOXksugUhiKqQrXU1VrlPJS/Dz2M+IVORDXwbif\nNb+6gc93xBFz+ph+7Gwx7vMXxBkwiAEpKi7xiBAzUkFxBHkd8lChcdmlsFBmfJFz0/QrLBRJ6wVV\nU1T16wwUL1qqStnxnzGtqYYTX15r/8IYY4wzq0qpKq6hvcGBfFURpWKSOcUOh6vYf1j8KwkX369E\n9H87/c8JxecR+qPna5qSfKlwmbGNBYjTyQhxpDMpZSpxMZ0aKnr5KrZ1tBXXSszFSBqkR3qCvSIs\nnoblNXys9Zz3K11eu+IesItvKaqxuVQZLEqVqO7jtaXqd1NKBoEUY09KMcwhfrX+IdfvNfHZyjY+\nGAgQj44CjMMdYNzeBN93DjOu+h5z1vBgu7EunwvIlo24eIoKxMmSgznt7bzYIf++k+9HZNd9VbBP\n1hhHYhwfGJ6gf8dJ8U1sMC/5p8SzsdtSSFwknq2/I46dZ/QrJrW7iI19Ii/liou3iYsTM+xf20vE\n0dNR3p+cBmVXSmK3AZJmZ2fn8zF4XU4zeoVqX/mu1rr4Nxyy73hE9xcXjb+vSr74NOrirnDP4i/J\nIJ/blwJme4t5mRSnz/DwNNcfE8/SJv05KRSMY0coID1P+c/D9RLcpHJ6UuSaR4qTo5P4/LB4EvbF\nZ+ebBRU0oipx4SFxcH8b35sdYf3uiCOl+AxkSWuKPcwzz/d8GcbWybKH2ca+4OM5S+s6GGNUFdpE\njPhZkg/0pMySEh/f8AVePW2hU4XMfrbF3B9ui7tLaIGRa4saJ3Hfpmez/JH2J1V2Z+6gVjInzsJu\nE1/fXua625qDfpl4PnmLz1U7jH/lI56Tm1LYctm4bkz2HxKaamKWV3uPeHz0mPnwhkFALS7gS7ae\nUFdNrjc0x/tl9evBr+F+qEihJySOCK9QbcMj+Hx2j3k+2sO3x0fYf8bFs9EX0rHuEdJQPBor91kr\n3ZqUdHa2GNfwF/tEIh03RupZe4e7Gj/v7TzAHhHFHu+U1F99QplItessLSykSVbcKKd5vluo6nnO\nx7N/VLw1KfH8uIRQs0lqsChV057QRF6he1r6jZEpCPlosGm2y3XcPiFPFNAbipNxoWvDQmb4hayp\nVkGKxKXa5HQR59raI/NNbDz4jdaQMmx0wGvn5HM9qRy59FxZavP5boXrNyNCQEtBq3HMfVri3okE\nuU+gw+ecsofDxau9zfU9Gp/dKR/T2grZdWpAgJVskfEVj4R49EldSkibpE4x9EOMoyMEZ73K9YIV\nfGWgktTUs1HFxj5Rk6Jlo8Pnz4mT66wt7KYfFfGY1Ir4rs9T0v30Gy7K/n9Rv4W9Ei5b1n7iE93R\nvLhDfeK6qVTwt0CE30ET1/idEopgzz3xRpnvfc2s3HtsLpybNZNSG8rIpj7x1u1J9e5wWUqvIe7x\n0ndAvNilpryzzAmO/FM+n45KjVIItSs3uX7+BB/55AEKrKviprl8mTh18RZjbTT43P4a+8HuMvHH\nE2AOpi5hm75QvKuPQfKUTvl86pzir1BeicvMkSuK7VfFmWVrsJYqQhltfcJvzmKd57pzt0ByVooE\njA0p0joMvrtw/RX1i7Xl6ODjG2tSWBRnV8vz208BWEgZq1nNalazmtWsZjWrWc1qVrOa1axmtS+h\nfalImb6XLGDYScZtKEzmPDxEprqfJMMVDpGd7JXJttZVDQwP8//TXbKgDzJUKoaDfH/mDlnDoM7u\n7q1zFm08SbZ4oPJRK5JBG71AZbmqykFBCkNzc5yVLbXE9WDj71fOUdEI6xzj2hoZt7aPDN54jO/V\nxVFQ95CJc7iUMWuQcbv3gGxrKMH1AsoWX3+VrKZxKu3rx07xYyog0TiVFJf4AY66ZPSc4jAYM1xv\nciFkWsrk3t/n3r0O2buNZ2QTh1pcs1Pm/ZQy400fLnKyQx/ft/+rMcaYzEOypROL2Gw7I7RTi8zs\nkdBB1SIZ36IUA/yJF1M6+LcZxvidFgiNxYfKcrY5x7fzPbKqh/ex5deXyTMWvoMvzf4E2+QqjMP/\nP8nWer6PjcL/BpfKmLKpvREy5e9tUzG8PS9lriRZ0W8/B+VUc24ZY4yZ11n6d95j/C9H8LGnw1Tn\nvqMzp4chxl/6H2Ssj/83MvT2PfrxiQMf/Nab/2KMMeZermn+d2PMy8vM4UGBbPJH3u/S76EPjDHG\nBJ9zvbEFqkg/24el/XaOapf7gOu6v61zjUtknX9nj36+d8RaufaqOG9+zZrMNPGP/AUqvPXR140x\nxkR/zVnUpnhOMm/iF0s/UwVfygyl90GT1JIoIv1u6ZvGGGM2HaDLdvaUpX4Juw6rMlvJMI++F6g4\nrC5T8bz7U+Zy245PzrwOB4E7xPpPRVink5OghoxNVR2pGbndVHXSF/GF4DjrLe0Ws39O56aHhDK6\nypnUnJA6caG4+jp7OizFhZjOvhdKquwW8IXGATZu2QY+TaUhLCROrc51S11smxKnliNOxTeh8N3v\n0h+flHmOTpibfSHwWopbE+LDaB9JocFGXKlLyaFU4H42IVbaOq/9ZIUKZKFAP7qK24FLVDL6UlNa\nmCZeHXVY4+2iVDZU1WlkpKxTl8qHFBMiun9BihRxKQG5dFY5U8XHfG5891DV+p6f+Txr60tJyLh1\nTl0xsdBTJTSIXUe/Q/WtaogVxV+rsq5z8Q6jaqQUJGp17B9psi9kylIHSQh9oBiabEsJyYc/uKaw\nT7vGPJWOPcZbpi/ZNnPoEkIhLDW8uNAGpTxz58vxObvOLZdXiTeVKnO5orP0szY+F3SK18YjXp0w\nNm3nmdOIKqCdliAz2nt6qlQOuAHsJT7XO5V6U4vqVUaqI/0o/XB18Lmkm8/XNfeNKnNw4gZx0VLx\nKBIlLnZ030Sd6xy7GI99h+s32+xbZVXzOwk+71al1l3B1vbQiyEz+309kwQxXPMUu2XFPXC6hQ/7\nr/MMkR4ndqwfMa7umnis5tiLR8P48kZC+0CGtR+UOmFKSjxFKbIV8/Q3ITKKnQ36saf7JiY7eh+7\nVjKgQYpS4DHGmFyxZjxCVkWjqhwLnVddxtc2p7B/ekoV9Kvsl22tjcISKIXCcz1r3GR/OC8UxeO7\n7Mcrdp4Drt1iX7Df4JnnpCIVpq2SOTlgDw4KNRWQekVglM9WCqyXxiY2aMXwgaF55narS18OxbF3\n+SqV2alR+nwshPLcGHF9ch6brT/Rui7w/ugoNi3F8I3WrjhU8uaFWkAKME4/PlfYJi5WThnfyDRx\nZFG8bqV91ub9JyAzG4o3Xp9QshfYu8dHsXFoSHxtRaEfhBiP+Ph7bJy4GIkxx4dPGN+a+COyOXzs\n/CyoqpHb9MMu5PSmOBJLe/hocBh7TS7wbBNJivNHiJqaC59rbW7x/zLjGRGysqS4t/+cvb0izh2H\nUAmFR3y+ILTI5Zvsy7Ek+5yvL04f+d7TD3iGiUjlZe4az4AFqaOuCQHj0+8Ajxv7tMT3EcJMxijW\nBUcGfzBmaGTM7Ov5+fgB/tZo09+kuNPmboMadgeEAhdawuM+u3JoXXuN0ya0qYt1FrNhM0ef992q\nytcZmqkeS5GvIA5G7a0x8VsMVPWCinNeoWQbDtlQPtUXosQhfqF4mO+7hYjr6jdJUUgbt1MoX4/e\n58+m0+A6du0H1SbxwyE0ml1KgoP9xCdOk664UVIO/Zbr4wtFoYFbmjvjF8LFKw4dn5A6Uk3qC7lS\n0TOOP8Z99UhhWi32AZeTv4tOz/Rb/MPvF5+QuG5c3X+PsupLSS3UIu6WhT52ah80XtZaX78Fqz2h\no4WUP9BzsFdIH/NioDuTH6Br94nv6QWp36VZs6eKAW67eALFh7gnRGZmHX+JKGZEhSTd1e+tUp64\n74to3xfqZXWVfeNgafXzvsxdHDbnb90xGxkhUg74TFwKWpkj1m9wCFuOjoF4KVfxgY37qA7t67dh\nNE48S2ovbXkYw4CbcUdcYQ7Nza3XQInOXJ42xhhTqzNHj9/7yBhjTF3KiKlhcRaKL68rn8mLe6p0\nyhwGY9hweJQ42a6yD53s6aTLNvevttkArl7heT4dFTrMjy3nrvB7YlqcNSsfwh/q6TCe2Vf5eyjO\n599/l9+mvhb9D0oleXSa/aqo3zq/qZ0JKdNoNMzbb79t/vZv/9YcHh6aP/7jPzY//OEPzZ/8yZ+Y\nVgvn/fGPf2x+8IMfmD/6oz8yf/3Xf32Wy1rNalazmtWsZjWrWc1qVrOa1axmNav9L9vOhJT5q7/6\nKxOJkC37i7/4C/PDH/7QfPe73zV//ud/bn70ox+Z73//++Yv//IvzY9+9CPjcrnMH/7hH5pvfvOb\nJhqN/vabq1J5WNE55l0xh+tco0Ny3rWczpxOk3mLNlTpnSHTHkyL3X6QzVRG7v4jkCv1Lpkwm4b7\nldeo+h/nyJQ//oRsYcdGVrQpZaH9LBm//iyZsIw4KNa2yD7O3wCJMy5OCFeUyu3Vl6kEeAaVaKXB\ne+KUaB+TrZ3XGd/hFhWNlM7OFvZhym45scPTVdRThseoqKyt0y+/lBdMies3nVI6imGflUdULpaf\nNY1LNj2oYYtv3fgvxhhjZhapDqS9vDoMGW2bS5lrP30eBrBh5lRNeaaM8/QwqeGdCplemzLbtgi2\nHksxJhV+TcrzYmcuv75BZn5nhuu4y7weVEnln/yTuGOggjF/IwWD8fdB9PxUqKY3ksz5UQ7bJjrY\nfqhN5fn5FLZKqJrjknKA08t1Vj9BGctzgyzvxjb9qvnxjbEwZzNXKm/RbxdztlnCnqUQ/Qx9myx0\n639yfvnoVew3JAZy59K0McaY00nm8mmbuXS/BtIk9Jjsrv8jKT/MkS0O/vxdY4wxb7qoPj65TjY3\nG6TK9GqZ7HDxlDVTTDFPVx8wjvdn8G3zfdbs5V3xmdzDt1I6s/rZm/iRLycOBC+qV5/NsnbfED/U\nSecnxhhjxiuM/6ffIut+62Pmw+kmq+7wkm2PHhBftg84D7/kIMt9lnZFZ/adNRTE4kIiGCHsdnZZ\n54UG69yXFnrIxtyHG/juzqaqD1mhulQuEl2PCQr5sP3OFt+bgsMgJwWcWSnCHJ9wnWqLOXWdqGKo\n64zPUeX2zI/IBsSdY3ELzAn1tNqg+uL1kXFv6CxqP0/Gf/dQKh9NbBcTt1RNa7woBn8jVbbeADTg\nYA6yYe5b1bnrfZ2x907Q76CdeBYVa3xohrXfVGVbBQaTPWJN7Prph1PVtZdfIWj03NgxmqJiEFWl\nelNqUjVxDvRU9dnXee3IHPMaGyAEvVTQa2HxK3VfDCnT0zjcbinEqJIRlbrfsTgYgrNUTCZfYm0d\ndomzJ/eENpPyhE/okXiMWJk5kp2GmJ/GihQw0ozLqUpvU5w6w2nsXyxL2adxaCqnzFXlnpAli/hE\nzy+Upc7C+4T6cla4x0mDe3qkKNNb5Tpl35Yxxpg1cX4FPexdNqFTOzpn3fMxmS0br3Uf1w/76aOj\nLzUmu0qBqv73mtjMvi5ViwxroTmLb48HWFsuIR4dJWxfPMJ3u/vcp6r7Os/zf7+fONWI8P3wMX+v\n5Bhnscve2vcwNw6XUKxyCXcXnz6145Nnbc0ya8MRF4priLV4KETK4bOBGhJz5p8CneHbE3fEFvtH\nWapMnktwhc0I2fL8GftP+Zi4O6YYcnzAM9CxUABj1+ALCU+yFjtHrM1SifEOp6Sil8Cu+3vHn49h\nf3PdzF3k+7PzxNH1Hr5n25CKkjgW6m6heuP0Z/Ia92sK9bG3hO8W9xn/iJQiJ+dY2491Hn89wn4w\nfZsYMXqBYLPSLJheG587PcJHEgn8f3yMCmZ5j72uVMR3iqf4xtC8uETyrMPNQWWziI2TF4m3Jz/j\n/0e72GZ0XM9Ja6yd3BrXHRkXx8s8PrFT4e9Vnf0/axMQ0hSkntbQs09/oLaZYE1tiwNhb5m9tdLh\nOfHKDWwYFErKI46rdhmfza6AFNlcwg4exWG/ECy9Y3xrUzxEpcEzS5IK8o23v26MMWZhYtoYY8y+\nUL+rz9WPshA9N7DrhJA98RR2KZwIdbdMfC71xJN3wFpvdAbqpsQor2KITTwltyd5drJrMXqkfrh4\nG2Rleoy1sPFYiJU99vzMgZTMhMicuMXaGqic7G6zf0dU7U9cHjx7SbHHQYzMyx4OP/OTlnKZMcY0\n6y2T25OqoNRZp89J1es6a8nrZYK3VqUcKYBMpVg0Z23lOp/d22fO/dqKPQPuFO1htp541fRsUBnM\ntZQKbRHmPCb11HCAsdqkkJUUj2RTXDOehhDuTSFc+kIUZrFhrYCN64b/ex1SoBISI5iIaQRct98S\nx4tbipVShwt72AdcXiEDq/S3LKRfqa9nESFL+kIVOAcqS0Lk+EcYX7PD95sV7JbV82qpJK4zkcTE\ntR919ZsrofjVcCueSd01JLVXX4BYMyQUc1fqch0pSLZs2CPnkH09sv+I1qaelSQ4ZmxF/t9zMu6x\nRdZydMBzZ15MEdIhFHYwic9NTBA/u0LTHe4JdZIgVtYOWJvH2+wHTqlGXbkAStkusplGRcj1Fv06\np98JjQ52byt2XTh/4/O+LF6/ZjKZVfPsE347DIlbKZ5gvRr10ZtgT/HOsldU98VZKNtOz7GOpvU7\nOCzu161dkCx9PVfPCCHodDNnbcWVbcXxzV+xt7jt+OCNN/kN5nLiW/ketmiIFKou1bpsBdv447KZ\n1sjBIf0sSVU0IBTyxMvsleNpxrP5FGT4/ik2vDjKHv5wBa6cpcdwYy2MYdOOVEGf/IK/t4/xxWuv\nYdvAIs8yTj1TFaXS+Zvaf4qUWV9fN2tra+att94yxhjz8ccfm298A/LOr33ta+bDDz80Dx8+NFeu\nXDGhUMh4vV5z8+ZNc+/evf/s0lazmtWsZjWrWc1qVrOa1axmNatZzWr/y7b/FCnzZ3/2Z+ZP//RP\nzd///d8bY4yp1+vG7Sbjk0gkTDabNblczsTj8c+/E4/HTVbM9r+tOWpk9bwtsqApJ1k9u4usZTMs\nlntlE7t2sqTPdsj4h6TK0SwO1EvIkF+8TYZqdiylfk4bY75AczSbvDryZDudTZ0jFxO6bRiz1FpS\ncZmWWtIgaz1KZu7mbar8RzoLnRX7/to+mf/9Zf5f2Od1/iKZwzUhbqYm+X6/S3b10TJojdO8VEum\nydC5pGV/XpnLis6d3niLc9xZVbWOVGm/OE0VyyZOieRE2viT2LTdHKhlGD4jJYKTOpnprpu+bIjB\n2h3DNmVl9nt5ZdBV9Y5cIHM+qSqY6Yo3ahytAAAgAElEQVSpf1yZ3yCZ992n2MTvJxt51lbWnCyK\n0f8wraryGve5eItqUk7qHD/IkiHfmyXT3VynGlNPUGWbKHC9f7Njh6EQtn0tP22MMebjFNlTj874\n312jutNNMWfn3uG637il8eZB0qxdoUrl+Rh7rd8B/XTp52TqH8TJ9vp/RRa2fonM9rB4iOobZIff\n/QrXHW/Rn4tj9ONn98hCf0PqJquvvoV91vne+gTM4MmrjPP1KtWxn1eZz2KHquPiAlnqv1+hYpt0\nUFX7Rou1kl8iS+4KMq+Bt8kiD29SvXvnn1gD54P0r3HpZ4zrGv1+ss7715Jw6hxlSc5+dZXrqwhl\nSgHsPOJgPv95iJjytRwImt1LKi2doXmmuNZkGxs3mvi0y8U1FxeFSNMZUSOExa5UjDxh/r9wUTFM\nZ9OjiguHGarj1ya4zrRUN7q638GpeH3GGUtqiLHqKL5p2PnH6lN4GDyq8h+cMHezo3y+IOTLUyFQ\nlj/Fd+cWWM/uMSoBxe0tY4wx5br4JaQYY/dwnak5odN8jKct9FK7iE3L+yz+0AwxYeYyFcnhZeJd\ncAJfPjjEh0yT6w/i36kqpOOq3rk8xMeBetSjLcZ1wcU4T8vcr12mH36pWB1UWdPpi9w3HqVysnfA\n+FJCBu0eU2ExBeztiVCZDQ+c6YzN0ef+9Zg4ylrMb1v9rmn/eP78F8YYY6JaE942/hX1835L6ktF\ncRUFhbwKRTS+Qyo/RSdrtqvPH0uNaUScYY1RYo/Lo9iQ7ZheTTxHQuNUToQMSeGjEd0jOKi4pqSO\nJKqu3K74b064TlcKNR2pOpgQ56N7Hq7v0dn+rhAlNW0MPQ9zV5LKRVgKUqE+f+/k+b+jx9hzTp2f\nlppfZ0OVy2k65hoWH88C94k4eL+6ocriFmvTI8SLPSHlM6HAyieM097mtXfI3lb1sCbiQqlW43y/\no7m1O19My8AthQRbDZ8PS7ltTGf2j46ksPicRRp/ZZrXcaqHefEm7RZZO0HD+/4L7N02VQuLWluJ\n6yAoYynW0HGRynZQFedIGrsUSoxPBWVTU4XaLv64cPsLhZnKkcMcBnn+GhZ6LzkhBJZL3DJSTyxm\nthh3hH6Gzotf7yYx51SqL/t5YuDwnvi5xJeSqhGzdgb8Axn6MXSOKuXxScnkVqhG16SElYpyTVc4\npf8T5wpbvH/a5tXnxZYhxVV/VrZQ/EqIl8c+iS+WpJIx4ua6E7OKM4esw9ouPhNwsIeHXEL8eXrm\nRVpPqITSDmOvKL4FVY0vdIlr3ZyUVGLEzSua65SelTf0vLa5vmWMMeZEKmz9Ov30xnlWmpFqVFH8\nEEcl2VE8EWPXuG4iQpzqaG3vPWfP/uwTPS9HpCZ6nT19SHHLIUTL7go+c/gcREp2m/+7tT/apMgz\nNIf9zktxsuvlfff/zd6bxsiSXeeBJyIzIiP3PbOy9nqv3qu39Nt6U7PF5iZK0zYtiYYNa2AB1sxI\ngAEJHI9HHlOkKVkjmTQ1hEAO6PkzgC1gfgwkeGwttkSRpiiyuTTZ6+t++1J7VVZm5b5nRmREzI/v\ny+6RRXVXA8K8GfieP1W5xF3OPXfJc777HWY/mZ1nyyxnMsb6GoujXTf+HGeCW6/hTJhPcS0J4/O1\n00DArDyBfWnErHfzI/IwxaC/xAps8OEebHP7DrNJVVDf3DozurmcNCKyd/OWVDYx7qtL0FeYvFS9\nQ8y5Wzs4h29XYNNFC/31IpqcVKbcwzWifEaxWYZYrI+REeajzkOCxUyGUQ+2PkhjnmkaUa7MwNUl\nH53H1LUZ3kbQmNHrYMjslh7qi/DMEyFXVqDAvdPE+56H9TE2A50GiEIlOiGeQnu7U/KmEe1l++Td\nLDO7HZE5tkXOMR/fN5nBZ+xizkfIC+IRFTE4wlnBdTgHmfVPdzGXTB/tDUaJ4CcvZyr4F7Nz6kSA\naBqzD45oUybqdVsYB5PcPHki0z0Dzw08nhl5OyHYAUqsPWFWwwneD5FnL0v07szWpQ89jJOGvBdx\nNYxDgBw3FaI4PCKlzCQ+Ly1iH6pRX1OeE86T78RcJ7/Wa5hzjYf4jbjCDL3xAuZK5WVkFLI1ngm1\nt/lNXn/5+9JtaJIp4jy7fhHn3S6vOeiCPlvklPHI+XLQR5tGzIa5+hjWfpPz5fabqLNLrtbSWbR1\nPIAu776KdSARQ1/neftiNkYrF7H+JRbw+vb38f0uubNS80RbkbMsy1s961fQfjNBfjaem3PL0GU0\nTUQ4dXz3Dtq5eRvzPrKEcsILOGfa+9DpGrlsVs4BuTMhN2S7hTl46hLOs3Eiie4SoRhits6A+86Z\nZTXf5ynrh8gf/MEfSLlcll/8xV+UL3/5y7KwsCBf+MIX5MUXcTVjd3dXPvnJT8rP/uzPyo0bN+TT\nn/60iIh88YtflPn5efmZn/mZd6y8vHMo86snv6agRIkSJUqUKFGiRIkSJUqUKFHy/yf5/Jd+Q37l\nf/i1H/rZOyJlvvnNb8r+/r5885vflEqlIqZpSiQSkfF4LJZlSbValUKhIIVCQer1+lvPHR8fy1Uy\nFb+T/Po//jX533//X8s//YV/IiIi2QvwiLldeCd3u/BCajF4IQ1mP3nzTdzt+sgHPy4iInSiyi7v\ntl1+Ah6ybUai4wl4BctdREyi5J5ZW2MbyYQ+zzu491+BJ+6YFwlj9O7u3wVqwSdSaHEF3+/0yHTd\ng+dw4yo8721mHuqT9fn0GUQ0bn8P7T+/gfo9olMGZNo+HMLzf4b3ttuH8H5HydnwJ1/5hoiIPP+T\nyEJwQE6Mehn9feICEDR3d9/k60ty7y65BGKIlhzdQ6SsmEYEcEyeirWz8PINR4xS5ZjFguztgz6i\nOM1j3sv14KU85B358xvwso4zqGd9EeV/89/9mYiIPMXoxz/6BBx47yaf+93fEBGR0hDte5ls6pf/\nCPV960kgUvLXycQfR7TsSZLM1A5Rby8FJElJh1d0MgVC5WYYEcpcD69XzsMr/NL3eZ+SXtGr9A73\nUuj3q/8BiBJtDpwq7gJsprCJMT26AmTZtRr6H1mB/rq30f9AA+XdHH5bREQ+fAVZlb6+AE93cVqT\nX/8HX5T/+t/9dyIicm4ExI71FfTzPu/KXjmFKfxyCMiXjx+g/jdrQOQ4P4bvL/8A+oozE8MBTEOW\n4mQmv4Lx/rMdfD8wQPnWPLMAjBDB+cAm2huIMrtHA5Hfykf/Lr7fBpdM6AXqZRXj9h0dNt2/Tc//\nHOZCEFNVxjfQ72c/BP1MXwRi5ue++AV5N/n8r/62iIjUmYUtS/6MaRTz3eQCURkhahJPwlMeEKwr\nPrNEpMfo84CZSpbJ2n7rJiK5xQVEChwiZEZE3NQGDIsZKH8yhQ3leZd9jlnl2tt1lrOK9jThkU8V\nmN1tD7qci2MOvfYixnRhDa9dotXyzGAWSyCK5GiMVrWITGG0vfwQ+oiW0K9EAc/ttsmBw0wq3Q7X\nW9ZXPIt1eJbjoM1sR7kFzPUuI6qlKOZ48jFmryKCqFYn7wXTLs2QKAkL+huRe2GbUZ/FZTw3GSCS\nMGTEo7CBuVk+gF6mWeg3dSojn/iJ/1b+jz/6P0VE5Od++mflJPKvvvhFERHpkY9KryNS3SIqY0Qk\nS7yAvyNGUrJH0J9PVEf7CPal8fr9XImIT/I/NUfoV7eBOdeinVm8p28+jfHc+BEgJxc2VlHu93fl\n+Gs7IiJSv4c9ZZRAn50kyvbXMN+jvHmc86H76ABj3yci5ngTYz/sDNgXfF7KY12Lz2Hswz5stzFg\nW+N4LsCoWDSHMb9witF4clRNO7CJrduYK/t1IPQ8ZtwaBYmsYTS6eBWohbiL9ad2F3tg+yXYattm\n1rUCbGNuDutAcgob22mQB4g8HYMB5liQ3CoFNEv0EdbbMKlkRqQL+cyXPicnkV/9zP+MfxiJXl1C\nwc6EaLfXkfVOikRwfgB7rZA/bu+7iLaVm4yaPcEMiIvgHth9Df0+3sGcu/QkMr04HmzrwRtY9wrr\neC6eQJTu+BbWzwDRv8uMnFbJ89E/xPh99sufk3/6C58SfRF2kk1jLseTjICTg6C9hbm+U8Xc0pPY\nn0pPAr17qgQbLV+Hvo++D/SAkcL3lp+F7Wo8e927gX3B4JFy/YPol90wZO8lZPBzerCt4lVy6DG7\nkssMkFs3sIeOc2jrGaJNQxZ0e+9l7GkTZqzZ2EAdE/IMHbyJPWTjEmw1HMQYvvwyECNFRi7nz2Bd\n795B5HNCfrxPf/afy0nkNz+N7+1WMM/zBcyRwjlGSEuYO14dYzy2iRqwoftjRmwf7KC/s0w3mQXs\nA0tExiyuwZZ7Dexj5VuYc/l56K3A7+80MXeGRGo3uuQ14j4QnKLe1Ss4Q+SW0b5OFeU2yO3VZMYW\nvw1bTGVha4sb5BlaxFxcWmIWP4c2z727SURUf8yzIVEH+TVmfyICtcIsWqEg5xD1pjPrXzrOrKUJ\nGFf1TdhovYnyw0SBjFz08/ge+h3IYM25fAXogTCzfM04iH75H/0T+bm/9/clmceaceEq9OExC+D9\nl4Bk9brMeJPFuBbJG6Ixe+L/9I8/Je8mn/+d3xURkV2HaCQCf22iQ3tEdU3I7WGRsyXNDC6BPtFY\nRHB4zCbUmRD1Qz40K0OIpEvOL9qymYOO5kIY6wl5OAJcZ7pEKehCVBfRu+0BkSVcJ5KzoD7HLkbk\nocP2akTamMyUGNCYQZKogKbNLFMWbEcnEmfM2xGGz992LGeGbnYCeG7sER074dlKRz8M8pHySCdW\nhLclErCBKVFbOn8bMbGX2ESAhglwOeZvzcEI74ds/uaMk9eOfH9WGO3ruah/0Maac8Q5rpOXbmMD\n9X/50/+jnER++RdgS8fkGcmfxdqUy2I8J0SnBTpoz+4O1vsS0R6rV2CbB/dxlrnzGlAZef7Oe+pj\nHxIRkQZ/r91+BWtoeoawSmEcf+tzn5dP/fe/KqdX18XMoO5miyhdntOyZ1Bnj1mDJ0Sv3n0d63uq\nhPXi2rPvExGR8ib3jtdxNli8jHmZXsf8230D823QwBg/8378GHCHsIGDXdRbIu9pjVyur72APXSF\niJSVM9izavvkE+W5NrqKv1s3yNH1Kn70LF/GvhJPMpMZeYrubmJPnE6xXixdAxImT37V6zexzmUD\nnGtxcrd+C+9HmBnr8sdB76L5sI3797B3bmxgrALRvKQWSdL6Q+QdnTJf+tKX3vp/hpR5/fXX5atf\n/ar89E//tHzta1+T5557Tq5cuSKf+cxnpNvtSiAQkNdee+0t1IwSJUqUKFGiRIkSJUqUKFGiRImS\nvywnyr70/5RPfOIT8slPflJ+7/d+T+bn5+XjH/+4GIYhv/zLvyw///M/L5qmyS/90i9JPB5/17Lc\nCbOA8A5oy4Gny+b7HlnWTzFiunyO96OZ73ttBe+Py/CGRjx4uDo+PP/9ATx1zTK8oHPMCFE5AEpk\nZ4RIxV1GPNIhlFu7BW/jE0/g7q1Fz/pZRrvS9MBX6H3MRvB5mp7/cAKvY2R37vL+/LCPyESRHkcr\nB2/m5hYiICsb8Pz5Poeli79hRqzTYej0uavw4EXiaG+J9z2DQTKW04M5JIdDr+lKrQcv49US7gH7\n1OEHHkdu+FuMnBWSiFK0XbTV5x371Dz60r4NT/zSBtnJGREtVPD9U2eg45sH8A76HvowX2RYWX/n\n+3T/uRx8lR71BDyLF1KIVA7W4e38keSOiIiYP4pyOz3Uf30XKISgDQRKf/P3RUTk/k/A1j60A29s\nLoCo014V+jioQU+P/zja33FhS//+BspPvAAbvPpTuKu51QXjdvYFtM+Yh8d79QY4VQ7jeD5yCx7w\n9DV4VW968CoP6QG/vwduFu8IY3uHd/o/9hrGq11Eu2//HXipz30Ptq6HmY3lITLG/MkKbPvcBbT3\ndAc29sqH0E+rDa92I/u3RURkJ4O582PXMZ7PN+C9vn6J0bk45tBiCl7nOw9ga88xi8oraVxRLBMN\nsLyN9u6VvisiIvkj6Cn2E+hv+hL0fPEO9NJJoJ77VxDpeP0F6OfptZNn6dp8GZG0638G9NLFc/DI\nz12ALbSaWE+qe4gmOOuYp36a97R5p38ugz4OtqBby4TtpcnkX75DZEsSfdljRPKZZz+EeojMCTSJ\nLvIQzWoxG1KUCJcxL5zrzCgwYdaNQhK6ypcQWXziGdhalOvEwwrWx0qD2ZWq6E+vA91fXkOE2CYf\nhcZIqE8OhBG5Z4KMIo2G5HDg+tNn5rI0M7EZGURqjSjWn4tXEJGoMnrVZLaqo+tY34wwovkeEUUT\nE3CFLjPtaA6z63HdGpNrQN9FtC6UmkUHYQvxED5fKGHuuAWi4Upolxt6b2vJ0Ge40kI0sk6UYJdR\nrgTXulGX9/Fz0J8xYn8Y5dPi5GEZM+o34H37Imw2ncdcctif6R72F4PRwdE2OR+WEC01H0Lf0W5C\ncivUTRi2OT2m7WjMhHKINd1OzrK6oS3OeawDqRbqHobQx9EbmBvBCtpqkufH1NBmm/emp1OUE26S\nayDKvh7h7w75HrRzGCt7DiHKKCOVS1O0u9KlbbM+22LUvoXIXJIgrCwzvxwfM2R5yCxK5PeYErEj\nyRlvD/afCVFsow4jqHGst1Nyz0TyGLMgs+qZxnuzkSizA/amWEcHfWb6KUGvhXmiE4bY+2vM4pE/\nz+yFK7CplA3FDMiF5pDPLpFGOeNDzLlOi9wyq6vsD/lRmDEyZ/J6Nzm3NA9zztXQjkgceh2Rf0VE\nxAy4EiAPnT9C+/suOXJ4v36J2QxtRoYPXep1B+3qGbzfv4TydWYIq22h/sZtjFfuKayxSxuIcj68\niTWg8irW8VMbFyRIBPL+mzvQxSb67DJbkLaIsfUP0XdtTJuuYf3UT6HN6TjW3eo+6nAa6HMhhbE/\nZuaU3gjlWyWsh0vMctYnf94ki3K9BOqfkhfnpDIcoZylJdjw6StAdXkhZgVh1Ptok6jiMmwlSKKA\nqcPoPc91a0+siohIkdxePjPTNGccJ68juh3neTJQ5LlxD+fXWy+Sc4s8VDkiKBfmcF7Nz+H7QWbO\nmRDBN62i/Bh/BoQK5ANcJiqC2Z7CRNeFyc/R3YEN3HkDY3x4GzaTjROdsYz1eukcM0oW8Hf3TZyV\nIgbas3wZ/dXJETMluqw9wlrXIkLm5m3Uo3PfypPyIE6OxY334dyc475g0Nav38FZxq2+nV0rUUjL\nxQ/gXB+PEIXHLFYOEaPhJdhZhgjVCLPD9Ponz740Ipqrdsj118V8ynFdjWqwWdsiAoSZX01mubPD\nzKTqEgnD41B0itdeaJbFCO/b5HoJM/uORkSJTVvttMg1pqO+MPdejQgQjehfi9mRhkSE2A6zQM3W\nZaIEolPsQxrRSQY5a+o+170mngsR/TTimNbrRBUL5mqJmcqmQTxfYZY5GcGW45yjHe71vh6mnlBP\ngnxILZ4ZnC0iPz2cbbIzrhxy+mg1vN8K4iyQ4D4ZtPD8jLc0QM6aITNBGkQARZkmK5hnlqccESfk\nqEwx++yJJcQ5OEeOxRxsbjgl+m8ba9kSMwmtEXk5H8EcOLxPxOoD2FluFXP4Es9qISJmdr+H300m\nM24unsfzhvn27/SzT1ySkePKD77zAvoUZAbdBe4xdawb9+5i3QkSGRxPoW2XnwBKP5UjIu4+1onM\nGubpymP4e/8BkXU1zMtrT+O3kqFhrF97/TuoX3jGGGCMakSH5c6uiojIcz+FjLTNMvaDnT2eJUiv\ndvQqUKvbb+C3XGYOzxXO4xBiMlNWdwf9alexBxbXsEeHyXGzt4UxsHf5m4v+iO4BMyjOo19nPoDf\nHVYSNvriV3GjZZYVL1ZAuQP7nTN0ndgp84lPfOKt/3/nd37nL33+/PPPy/PPP3/S4pQoUaJEiRIl\nSpQoUaJEiRIlSv6LlveMlPnrlDARJp4Or2Wal/TjZxHFmRDxEvHgrby3hbtprT142Bo3EOFotOBt\ndOK8ZxmG13PcZiSTue4X0kCFGCV4D600XGqXyEiejcKTdUDm8yy9jp0KWfqZ77y5ySg/o3YLjHJt\nNRBJN76BO2zTCTyJqRVmtughghKZh2e/s78jIiKvfhW8J6YL3pPOkKz9vFMbHOD1pAPve6SIdj54\nDd7RbAqeOTfKe6Bz5AHQEL1aXCnJMAidzfgs9o6AKrhzB1wqe1vwJg7y8NRGPXhQD8uI0pROIarx\nyveBtLj2zAdFRMT34C0MhaHrowl0O2jCMx8/Rw6Ry4hameP35knu8S5t7hr6dreC+3p6nl7KFto7\n2oX383AV0ZiBjf5+LAgEiv2jQNZ0mriTuTkHT/HgHsr98RLuG44fol9bO99Hv0q4O58eYyz1CJ7/\n1h/DRrOPw0scgrNXioyIWD/A2KUYKf5T55siInLh68h2pH3gP4qIyLUB6rsVwXicSv65iIi80cL7\n1kPY3t5p9LP/JiITawOM/dczsIUrNvqpHZC7oEK2ewPjViHHxJMr/5WIiNy7Db3+1EVElsdpeG9f\noG0+Ti+y+z3YZOsCbG/xSZTzXXIIXbu3A/2MoM8lRjTM8qqIiGx78DLPb+Nzc4A5++085vylFvlG\n6FU/30Z//v3LJ0fKeCbmx3TKDGLk0ai2UdfCBvmBopjPq0SqDYkasCJYB86eRt+9FcwffQjdeAxH\naWt4f2kdWdEG3/iWiIhURmj78UMgHzRGGCecc/qQ2d3I2zEWZho4JlIkj6hTtY71pbyHObldIc9T\nAZG7MRn5o7zLOkd+B4vlhaOM5hQx7ws5vB+MIurVchGx7TBCYREp88zjiBwOFzBHYotYDw+Y1e3V\n64iMPGCGlQ71un4RejhFJE+Z0RqTiJwuEUMb54Ceqh4S2TPhffYBo2vMFBbl3GkxIjJ8A3eHhffH\ng208d5H3xm1rFgY7mUyYfSkiGC8mL5FwD9GjOu/rp45RT2/IDBkE+UU5R0JjtLvsIrKrW+TvWEA5\nax/GmhHehR1u/wnmdo8cFiMbz9mb0JfXRb1xNyl5ZhpMzzFqXcQ8ZnINCR6T94E6sftcHxcwvx7/\nm0DAhTl/v/9vQcq//SIiamaIqKYF7i1EH2gJZsgqQ6ceM5YMGfkrtrDn3ScvkhWe7bkY+8A58uoc\nYi/ymHnK6aKdvTJ0Ludgo/4cvlfcwHOHU4ypqaM/8bOIHH7go39LRES6At1Wv4X18c6bzGLXekB9\nYD3p27AhJsYSHaZ8YomRc0Bsoug6RP4wKm+cWhURkRDPIM19/E3kmJWIGW5s/g1VETUcMDtViHPD\nzOLzMbN7TBgZLRCZcljB2aLH7EnxPPTUOCL6zsFaU4gxkjz3dh/ckC0mUWkmz05DRrLHVSBcLGay\nSJ0FemKwA3vpd4heLqP80BLWyhgzWDaOsZY45Jyb7GDcIkQ2LpWItC1DL529hsSJLM6uMlrOdaVx\nAJs4RS6C+UX8Pd6ErQ6OoQNzgZxYjMq3K/helwjpNN8vLeJvvYy+J7OoL55Bm8rkOrGYBSQZxzod\nDLy3jCmpOdQTTGJhaBF5sn0H8/loE+22yI+RKcDW86tEF5tA2ISIOkjyPOdNMWduvIlz7vEP8Fdj\nVH/lI4iSN7ZwBnnjJZwzY+SA2CDyJMvI9Syrm03ktcMz2ZT8ILPMMxMP9faJLnC7+DxcgF7GTbyu\nt7F+zRBK9QcYv9VVjG9hHfXOn0P/gszGsn0Xc/XoHtodiuP7OtEc/SaRmi2iEibYD2o7WOtMG7Z/\nhkiihcfx1+5jbTk8gL5vX8e+2e7gOYNZ7tbIOygicv4Dj0uISJ37L+GsuMdIutD+1s9gLfWYGcej\nrdebPTmptKtYJ5vHsMGwDl2EicAIMwPLQoxIBSaJG4ywDsSIbg2miZALos1dooUMZpfrEPnhE43f\nq5HHzYVuXBtjS8oUyTAjY6LAbEIe+ujyTOGRv8lhtiFtCl06HIMIkTV9ImXqe7PyMQd0ovutFD7P\ncU93bPTH5d6peeTbdPHaF57hiEyxmIHXT+B5k7x09QbWpQHnhOkTQUOez8M29BHg+tcuYm5kmmiX\nbaOdGqFHXpbnTyJ3HCJehuSKORyjvJ6gP/kEOTPj5KXrsr1RfG9gvrdMblHh7wWmv2qRj29zZ0dE\nRCJRtL90BmvNYQt29e3v4jejR+6dGM9+57gG9HjbZOsl/K45vIPnLj1DbkoilLr7e2+15ZWv/yfp\n2K5YRPw9/QTPbcxmuvMQ8zKeRluW5oEYiYdN6oDlvICbJrW76MPa0ziPlneIgOO6PT+PdcLg7/DX\nXgKaZ2ijvksbQJ44RCgPiJzMM7Pu9jHKv/VV8LBFmP1uYmPsjg5gKwYRgitX0V7DQXu37nFdeoBz\nrc2bOQvkHGvzRs3eq0DiGHHaNttT5t69ehnl2hPMwTdf+IGIiHR4vv6RJ/CbzEygfb0b0MNfJe8t\nX6QSJUqUKFGiRIkSJUqUKFGiRImSvxZ5pEgZk5TYUd6DjPJusTeBJ607ImU20Rg67yPmHXg580uI\nIpUW8JyT4l1YIkeK5Ec5PoSHrUzP3c4uPPyFOXjGXXpd/RS8ifEwvMXDYzJsH8GzlUrzfjW5CaIB\ntCPKbAFrOqJPZg4esRqjWqeZgajcgFc0kUZ/g7wfevUi7uLlMkB79LuIKBejvK9IFEpjF15Ns41y\nhDntrShRCPTa1k14+NpNstPX9qVTZiaALLyQ2hBlGDFG3ZNEyPiMVEbh8R3wfvIikSWnF3nXnazv\nPfYx2CcfQwy68ukR391HtMdhkKEzeuf7dP+5fNhlu3hPML2FyO/NB4wELCH7xfpp9PmpV/B9XUe7\nbmKIZbh9hgXAezo3Rrv2OrCVB89AD+eGuE8Z20OE0E/A0/xMAZ57XpWVa08iavTSn6MCn2P04Axs\n45aPMZy0cLfz4x9EhGLTRHmrf0Im80tEQdyCV3pahKLObHxXRP6hVNcQBeobsJEPnwJXy5/Oob3P\nfQ2e9e8twhv9Y1dhe7d7qD81gjmGN7kAACAASURBVBd5+uqHRETEexn3HC8/g3HYS2CcdvbQvh93\nfkRERK7fRATiiauwoXvfRTSrHQfnzeoSvMDjM/Ay3/w2xmP9x2Av+4vgR1n+CiLtnTIiC1eWMJcj\nCPLJax+C3p56HfptXUb7/24cevpdJDF4R3nmg0AfPbUExIfLe8ztI2YNSkPXwQRsd8Yh0GK0Z9RD\nG6sDrCOJMeZ//RDfz8yjbbtcNxp93sNmhDKboYe+BR0UmPHEjeL1hCzsOWaVsFlf7ALKcXVyQA0w\nJnlGcLW7UFKSkeYAOXAMgc48ztG2tSMiIv0xbK9OToZIg/efyUcRJyKQU1nKD2Fbbhv9bTC6Z7V5\nN7+I+hKM5qUCWG8PwuRCWSKy5Rj1kRpH5hKINDR3gGKI8v760IEeHzu9ii96sOHjAZ5PryHU4mm8\n362hP0lmkNitIWIRC0BfMe+9bV+JY4zHQLjeM7JiMFJeIA9Im2vV1OL9dwefmxZRBwG0L9Qmh4SN\ntcdbQtSwtUuOGvKazDJjOER0OXt47SeYzYlImZbXEpvRXYvZM2b8EiYzBPYaaLNbw1g1IrChyXWU\nZd1BtCngM4PJXfR1GkPbR3VmcQoTZWCwrSPy7PTIu0MepoAO2+gRmRim7utTzIURs0QUDWbmKsHW\nxlW0O9BAedo2nn/4Kt6PzXgueIc/xkxmTgu6qPEu/QvXwQuRCEMfjU2gHAbMxOXZzOhloz2ahj1x\n0EM0TWKEzJxQBuRmMCzUZ9ucm+T2Cecw5vEE5mS/jXb0iepIkB/DYuR5wj15SJ4nJ8WsVIyYOzps\nZkL+p2mGSBqO05BnoRgznWnkkBiXua6uOvw89FYfLM2UATNXBpjNKjSF3sdTlHfMbFZpnjHSSfTH\naKAf+h558JhdMRiDXtJ5jHevT33VMXdNgk0SAXJezNBy/aqIS+RFGHXFGMWdMCtlp8a+MStbkhmn\nBm3ofrCPOmIWxjIXYEaaMZ7vV2HromFh881Z9jPo3LKwx+aJvPaHXJc1dEIPvrfo9ixSfHyE+uvk\nByozA2k2j3acu4y9PzkHnehEMrdugb+vTET0EVFoHa6/x3WMQYHr5Kl1oIxzaejlTfIvLZzHefPK\n44jUShGvHaInmg920L4j8hBZRCu43O9q5EghmirK8+0SOXyWVxB1r5bJN8QsUN0jjF+G5+ely0Dw\nRLLkSWnh8xs3gEA5uI91O0mE+srTZ1gf9Dh9iLUhwH2gTeRRh8j01EWMb+ISM0V20f7XfwAk5ZC2\nvLAOvZ/6EUTYC2s8/9ff5pTpPqjLETNGlh8CARpf5ng9B4RjLgk9Pthhhrhd6MntDuWkYjBT6voG\n5w/RsmJgzH0iXlymL7PJiRKwuDeQT+3ogNn0Wjhv2syktZAiEm5GmTXGP1MdOvSJiJk6mHtMniox\nnhlcIgurNtdLngE8H3MwSsRMimjUsMnfIOTdsYlmbfc4x8LkU+O51OKC4FtoV2zGRUOuHdKViGFD\npxOhngw8bzMb1JBoqAYzRuouzzRE4ESZMVHIkXYqi3VsyL06wZ+4U2bTi0VgEzq5uOIO0WGsV4ZE\nwHCurfG2gx8g0obj5TZQX9vHWTI4IP9d/uQIbxERLcX94QjrcoNcOknuI2tPAOXlBlDv+IDIzPxf\nRKvoEWZf5ML84I0dERGxeJZav4C5nFvA3C4zI1L96O2syUYmJM8sXhQ3Bd2Op+hT5RbmSYBr+nIR\n88vg+XnnLvbqCIHLzQOsT8kzQJ4nYkD9trbwfkqDbVjkWDzYxPu1KsqZW0affPLY7ZHHLEBEeIIo\nqvp9ZldOouJ1cr1UqtBlT0P7SiX8NmICLzncBpKlsY89PR3HWaF4Bb9ZAjrKq9yBbSfIY1TiLRJ/\nav2FfhWisKnNW1jvdN4yeewq1u2Mj/P0/ks4Dw+IYvurRCFllChRokSJEiVKlChRokSJEiVKHoE8\nUqSMxmhRyOD9RodROUaMc0SsxF14NccheOoijCQzeCgjB56nAJ1+D3m3t1jgvXmfnBBkOF/Q0O1i\nHN7Gh8zDbgYYzWJ5UV73zMD5KkXeGx/V4SUeW7y3SK+xZsCTlwnCs9YnEqjTZhYBcko4U7L+M8NR\noQgPnOWgXR49aZoHn5nDaFnCRL/jFrMULPFOHyO+s9GMa/g8TKb1UCwsCxf5nRY85JbMMrCwbEbM\nPIuZDwy8DhpQqt+DLs/Mo60ptrXrM/pLVu/QGN7JUwVEH+zekO/zjup7u74tieC3RUTk1sNnUG/u\nwyIiEhVEb2L7zHrRhDd1agOl4D8Gr+XZPts3j+iUeR1RHed5RB6yzF4U+RoQIl8LQR8XBmSXZwaE\nVzagr7Nz8LoaDjhnzA9gDK/tw7t6MwKv8nIEY3NT4Em/s42Irz+AzX0rDy/r5RtfFRGR1auIHhXu\nwhYPK7j72dLJkfAN8FKYz0L/j91AFO7+B2FzH0rCxv/jn+Ce9PvIa7IbQTQrdQVe2u/UEW0K1mHL\npT2UuxpFffX7sLnSj6MdLzJinF4BIknvgBn9zTrs4aMxjK9FTosj/Ssov/t3oAfez3zxIdr5vWV4\n6M+m/6aIiFyY4P3SVaItXoK3/N8C3HIi2bmP7AnHdxCRy2egowNGSvfqiLK4QUS84uQEGDATQsIg\nLwMjnf0RbKZHmyqcQ3kFH40aO+TA4nrQ34HNbN2HjbX7+DyQZDTJxuuzGWaHGyLaobUROdRLmJst\nIt/Ozjhpkhj78jFRCU2sC04fSJU0uQicAd7vJ/G8NjFYL9oVrDETz5hZ6ggiuHiBLPLkWPCGXN94\nzzsRilJfGGOHUZeACf1t7zPKxvWzWcPrJNEdIa6jkxrmwBGRitMO1sHZnf0x0RjdIeZijZmA0iE8\nH16ADU8ZgW146IA/OXnkUkSkzYw0wz3MbaPFtY/6EBNRpDEz33TuMYq1hkh2oshsJORq6DLKqAWw\nBtReQns6FYz36QkiReYAc8hj/yJDRqi5ZgRj0L/baMr+Ar5b6CFa6zMimiA/hcNMe40KI4C8O28T\n/XVnHzYfTTNjS5tcLYfQucv1esQ9aRzGupFhpNMYoNz6AcY6R3SBRIkO28HYtJhtz1pkJps0dTNL\nfeARbnSMvx7bPXDIz7bObBUjZs1okbOLkdPpd2ET92pEyvjMbGhy/9LJRzRD9nBPdTt43QlirqUZ\npTqpBGJ4fkyQlEkEz5D75LSLfTHszuYK9NNmRNssMYItmNNjF2M71jDmeg9z02AkfNyH3p0w+m00\neSZi5NNpzNB2eC48ZSSdthc4JOeCGXu7D2ZApjqRMgNGmM0SyyGHAyPcxwbKTZDjokPuigHRJPYE\n+2wmyIxs1EeIdmQzu1S/g/EMMGuTScRXr+2KTu4lK0rUV8iiTslb5GJ9M9PQmR1GX4LMVjlm9hwj\nD50FmBWj18P7wQr28liaNkxUVZfz2y2Q94HZ0IZdop9mGceC7+1Q0qyg3U1yDvg8tz62gaj2ChEd\n+jz2+srtHRER2X8Rf49nWT64zudiWN/iRHzPn8VeWljAfuMQhfzKC0C9OjxHLr0fyNAA0WBbr2Av\n75O7YX8bCJ5ZRpdIHhHdOM+nU67TGaLd5smpJkRH1NrQ/+YWULfDBvdPciSeO3dNRETSSYxbmRyJ\n7Qr00trC68I8+nn5fThjBXLQy9YdIFHq5I4ZdnheFYzHEnkIV8+tiohINAWbuv8aOCv8Psb/zFVw\nm81dJFcc0WAvfhtrR+sI+pK/L7Jd35Wwh/6tXUT7i8/iLBbiHLp5G2jD3ZdxlktliRw13j2j7Ewi\nGmxkMMuWpM+4mIjEo82ZYdiiS85CKzjL6Ie+mSF8zuVXvAiz2hE9GstCtyaRLDEXYzogB0shA51p\n5BGyeY7n8VZ8wULnjYlQJHlZg4APl7cNYpEZFyTK9ZmRME/0U7QImw2Tf6fFM4lL/jpfiDZiNiBj\nDNuacdoE4+Rk6TLLU5+ZGHVmYQoQ0Uf+EZdz3ORvLp08dRqRn2Ei/mf7o8Y1R/PJ60G+wJmNB3ju\nTxJdoev8XRElJw55RGZw4L7BTJD8TRmNQe/J9HvL9tdl9tUmM2rGmLEyzMxfnoPPb7+E/bzdQ70r\n65irDs+iB7dwBht3oO8AUXHLhEU7zOpXPkA9zX2eBXP5t9oyl10Wf6rJg5s4o/c4doYFnayvAW3j\nGOSY2sN5W29zjyLKy2SGvyJvcNSYfW7EDGDxONo24S2Lgz2cm4MB2EaM87xDDhnNw/qaLYKDxiOC\nZ0gUaiqK33Q9HquaRNolirDdJFGkx8yK1z4gAoYcLxki6oQorFvf5jmeXLJzXL+EKNd+hTxRPA/v\n3cJvq12e30urWIdMB/19eAOfe+S+za+885lEIWWUKFGiRIkSJUqUKFGiRIkSJUoegTxSpEwoi+qj\nEXjtnDY82DpRGGEyYh+14QW0GfnIleD5qs+yIpHxurgAj1aGvdIYXRPe+05m8dx4yijUkBFt3jc0\nbZ/1w+Vmd+Ah7BEtMa3Bq+pTbeMgfFo6uQriIXgK37gOng1dR7npM/Dw1bfgOdMLiIi4Nto/2oOX\neJhB/+K8PzjyEEEaDNlP3tsf9qCPFqOdzUN6jaPw4A15r95O8n66nRKfWTB8Mtx7ITLwM+NLi/wN\nwz1EOdLz5IqhN3B2B7HcQ1uK5I4x6RnWhvhb471ojfeqpxrGcOowaj/LbnFC+cY6+lw8z4juFFmL\nfvQQ73+PmXYmx+Q8+RnyPdyCh/vpBXiev7KFqMdTz/0NERHpHSJKs9/D/chc4WsiInItiujTpsAL\nfLkHj/QW+/WdVxCtem4B0bDCIlBZ43mMSXsOWZN2dsCJMqjDa/oRBMck+H54dSfMALPL+tMvgi/o\nXu7H8b3D/yAiIn06cVdz0Oc3NtGudBr92RgCNVF/+DERETE/CsTL5h8BsbK4gChX8sxPiojI8gjj\nPjqNBpUPMR6X5sBV82ZyVUREMl3Y7KqOqNF0hDnU6qFBxhHGdXMO+ukzEn5f3iciItr3Ec3q/20g\ni97f/X0REbFvov/dH91Be1/l/VAf9ZgTeKPPL5CP4wTi7CHSVqeNFh9H5GvjPNq2sIq/Dc7rGPmQ\nhjpee2He1yVHwZkF8Pe0eIdUi8OjXgrznvcYEYQZYi94Cs8/nYYHPBlCH4bMgDONQ3dmCDac66Oe\nRoIZCnJoT6QGW466zNQQgQ6cNeg6wUheawrbM4mO8niP2COnVvocETSMNAeYuabTx7pwONhBvXlG\n8RgAvLAItFaFfCHGFGtFJg7bSwzRjhKzWBV4X16/Si6sMuaAT4TfgoPn0guYixmy5geJvjL75Kdw\nsfYUomhP0yAKQ2N2KgvldSPQW4rRQI8Iy5NKwCOykdxk2m3oe/wEIrdz5EMxfLw2XMz5wyNmq5rH\n+OaZucFnSouDu0Rqpkg4tYU52U1wPEOwo0wL/WqOZ/fb8ZxXJ99LIyZ2h7xFQWZhuoA+6iG0qTQk\n/08Fr23yHnU2YStz5DwJ5GBbXSIj+i3M99AsDUcS5eYHzGSySN4hcsAc1dC2sUFU2BazCkV4t/4Y\n5Ux2iJ66gu8tEVUanDKLz4ARWqLQAnWigxhF8mj7BjkX2veYaTCKfSi3S2RHHrqzyQfUNRh5ZWYb\n32d6qj2uUw4aErzGKPkJZULknhaEfkZRljvTm4PyZ7tYgnGt6Rj9dQYYD5f8KJaHcsZcH2MWubgG\ns8xhjMwS9DWJMoRtY130pvhAn2A8ZnNhOpxlKoMeg97bUXwzEBDDgV7GPPtouRnKjVlNiHpwmHln\nzLNLjIisLiPDXgfPedRLzyCXD7NuTUfkGWG2wzhRDg55SiIhS+xZVrwB2hhhFHs2fYd9lDklaitG\n1E6TxBM6ObL8HqLlDlEIwvNdw8B8cogM1omwtke0NZ4RHCLldBN995mNbUKk20nF82CDKfLtZUvQ\naXKJPB7U3c5rQK3ukgswShs/vQ6EYuE01tE0UQ99tlP6GPPdTSBA6/vkKyKyc4WInDi5GHdex1mj\nuoPv+bSlZXK9XDtLTgXyB9YfIhKcSZJjbB7rstvBg+X7mKvtKs5UPWZLWeI+urCBdkeSsJl9nq12\nt4lIJZ9glhk7T50HqtcOkb/uxVdERKTVQORam2K88ytYJxdWVtE/RqZH3EcPvoOzzN4BzkBLy2hP\n+jTaP6ihvO1b0LdtY65cXMVZRkTk8tVr4jJir0Uwh/Qm7OD+NjjcDnYR2Y4R0TO/hn1sONHkpDLm\n/G8RYdehDoXINI1jOWkQOcPsRPPJWVY8ot25V3pEkeVG/G3EWwN9jllnjPN4kzwfOjPMLJInaEre\nukEf62GUCPFgGOe5fBxzyMoQ2cjbBNLF+03yeyZpQ1OeHXTOe6fCzJPkWxsTMT8iGs4k91l4Qo6b\nENplBzFny33yTLUwdzM5IrYTaJ9JPhGPtqDxdZMcN7Nsr7kM9mhusVJtVPgaek2SEyvAfUkjStcn\n+mJCvbjcfztVnO8HnFN5otv0KcaryrVJY5arSIgH9hNKiEQnFm8/xDLk1zLJpXMAWx4RVVJg/0JE\nPnV59h11UX8+gs/ji9wXybtXJ4p8SiRTiHM/HY+81Ra7bktntCPtKuZRcQ3zKkfuF60PGzzYwfox\n9rCOZlJEj6Z4jiWXYZ8cfSbX9yB5frgVitPEemHwd/7CaXC6WPzd3JgSQUzUV5+cU9Mh92Bm72zr\nsD23gT7H+bvccmaIbvS9X8cghqPkdUsCoegw62ajjHWvW4ZOs+TWKeaY7a+Jvd2mrQuztk6YWbGQ\nxD6Q577Q3SXHIOdIlDxL2rtQmCmkjBIlSpQoUaJEiRIlSpQoUaJEySOQR4qUCQo8Sy7vT7fIxt+m\nx2oQJpv7BB6qeh2ep+IcomB6B562WvOA5cGjPbB4Hz6AiMaojfJavLd35zo87pkqIhGRDLyiYd4/\nH/QQrYwE8Hr7BiIRyQXcy16h598jF8N+BZ64Ee/STarwcnYEn8dMeAIPR3h93ofnrUeui4N7iEiE\nT8HLevoM+nHYhUeuehvtTNFLay0zfzvvzk4DKKdNRvAuI9bJPDybXiEoQ3IK7D7kPeNF1JVbR9R9\nxgr/YBd3F0s23j81z5ztHvrUvg/djOfgrZxPMbMNL+Hf/g6YrZtZ6GrhMXxuD+HhnmV7OqmcPYLX\nNu8h2nPgQseHx4gWLXvIxnQj95yIiDxdB0eLd4j7yH+oQXd/4zSeP/xP8PIm3vdRERE53UW2pcEp\neKhHCdxDXnydXs6n8PxzbXhxXyHHy2EPnDWLBfTrT4+AkLl2D3q60sP96W4J7XlxhRw+NUSAn4/B\ntrqvoP3B9PMiIvLa05gDZ3+ASEN4xvj9EFP1IxHYxHcWYYPlr0Ofl94PBNG9CTP3RIBeuBvFfev+\nDXzvzPHvod2MXDyoYHwf9jF+j53F3LlFxvPTQ9jaqwH0a2hhTv3kBbSr9Wd0+7rfEhERJrqQ4yz0\npO1h7n0jB+/xU8y4cHCHSKMGuHlSHwLCZ7+Oz2MVRChOIjHOl2gVUROzxCgSEXDVDnTmxHkPeIi/\nro6+mIy4jsmsXz3G93vsWpJIOWEUOBIiGoHRJT9IpByzPvU92Kw3JZLFxdxyySElBd5RJ5ogzqiM\nvYb1ztDTbC/vmfN5n1mAouQwcMm14EeYrYSIPSOMsZtxNojgb2SRmW9q5G7gPfLuEfoXijGyzCiM\nxwwIYWZq8BxG/3l/utPA+hNm9hKP/Q92yKUzwNiP9tCvVAo23SEqL8zo3ZjlD8iDMcu+FGU0vk+U\nVqyEcQ4wM1HUeG/3t2MptGMxjHLLjC4GGHGJMcISIWKnfsiok4HISZqR7PzyqoiIuMuIBPttRLOq\n5DhIMCWGzaxXabL1uyPUGyEytGhhnL0po1X9I9E8rJsa4Z5xcoCluUcJMwueSUC3O0QvuW3U6fHO\nuc2IWsKETltj2hb5jFJ5zBGNOizOOGHmyEd0l5xbBJvOZzHfJ+RysYdEPzCzToIcKkkTe/N0EeUl\nj6C7gYE9Ms4oulVh9qUpMxhaRKEyg0tnnyiiHKJbUQ22aMy4zDpEJw1RTywLPUxCRBv0yFPx0nvL\nrCPMvOYGGUHtU08Tcj+Qh8Ql2sPVyaUygt5GVawJoSTbz3KCzHjT6kKhFiO0DJCLq7Eee8Ly2R/y\nEbVDsAODYUaNGSDtPvUZrL3VhWHUEJmSl473/3sjZrgJYpymYbw/y34yJCIqwAh7PEauIHI89KfM\nDpUmEpUoY5dcGQEiYSca9hHdwPiODU2MJqPQGT7DKL9nM3LKKLbdRtnhBBFy5G5y2NfGCH2Mh8nH\nQd1qjGIHiHjR2aYJY45NroNJDXPHIxpoMiSPj/feYpMBooV0Zsoas57eQ6y7ExvrSoUZ0iIGbHZx\nBYiNQBE2bzOzzIP7QGhMZ5m8AuQDIjeYyWydkRLWhgDJFG/fx1ltxHNtIoKxjc6To4YcMh0SiOww\nO8iYvEuZEj5vHeH5BrldehPYiunD9hYWmb1qCXu4P4Ge730fZ6luBQidANfXTApjn84xIxtRZPVb\nQM82ySeSImnjjNciw4wzU/KWHGwD+dpiJjG3QiR5hHM+j/Y5R5iT+8w2NSXKY20V/Qsk3+ZwaBzu\nSbfDTHXM3BMcwM6OyY0Wj6CfGerR55nV80++lhhEoA3Ie2TTVlPce6ZEhzaJYDSI1OjFsM4GBpyP\nFXI70UZDSfJMttD3Cs+TGrMluURSBpihcZxHm4NDIjv2cf43w+SNI2rfYobAFLNGaSbmxibR/IEa\nbDOyQISmxcxhW6jfHuP7qQWiK8jjkeV5r0eEiz3EnJglo9KJhvXbRLtxf+r0MMbRAF5POOcGRIw4\ns7ndxFnN5pkllsZe6geghxmSRicqzgrC1nQiehJcK2wi+6bUc2SKObxLTi9nyjlRhM2a3FcrZZ7B\n+FtMcu/t900gRvQEeQdHzBprb5NzrAN92SOiicn5NSHK5KjZ5fNEanLNPCZvlsfbJK0DrE3xEuwr\nn0A5x523efkOtnfECDiS8Jkxi+fMA3KoTFuYH4MaM/ASaeKbsJ0uETbVKupKMINjmllDHaJcRwfo\nE7cmCZMTdUTU0VGVSGbaxGCE9zMp8pkFiGAXvF/Zw1yb8foYy1hnaw1yHjK7XTRM3h/y7Qxpi4N9\n6GDUwxgHY1ifLQs66pKXrb+DftV4DsxyvQvH0S6TWaBaB/jtUiUnj04kkLWC9ag9Ihr2rxCFlFGi\nRIkSJUqUKFGiRIkSJUqUKHkE8kiRMgneB4/Pwbs6x+hTmBHidAqeJU1nVL3LqGEW3k5rGR7tZB+e\nsUwIHqmxz4g0r20Pi4hOFXV4hcM5eObSSaIQ0qjXYZQxykwHczncnY1ewHPxELywEWYfqS7zznMF\n5a+V0C6bkW+fEd7Z/fRQh95jcjSk0ig3zdzxkXSM/WPGDBsdWF7B5xq92CkyrhvbzMwDNUiYUdRh\nFXdtR9rsHntMxsvoa2kDf6MptCWUYPYHMtIn6PULFFFnOkFeiRY8y3l6wq0MvKgW70+7PjzKU/1Z\n1Mmk9aEk7wUH4B2MePCenlTil6Crr1TRyfddgef7/S0gWn7fuCIiIs+O/lhERO7of09ERB4niuFc\nAv28uQ/ES+JZID82w+BQucDsGS97zEb0Bmwjy+iJ+T2MyR8yw9azjIDcGAGpkvwG9PDRCCOzfejt\n5irQWGePMEYfo15f+iqQQ996Bnr5W4/h79fn7oqIyMofw+ZyvKc5GeFvqQm01n0EHsS6zujNKvT/\nh8mPi4jI+gHGYeFDiN7f/B7a++T7EY37Vm1VREQe1pF5IBllRoM0vMSxHSB3zizjPvpLQfTjSd6j\nv13D+PqRb0BvH/0J6GULczBRgR6raejlVghRKu8N6H3rI7C/XPnP8drAHCjq8EaXn8X4Bn0gfU4i\naXqg38fojGHi72iMNjPoLAazf2i8D2ywT+Ewo870YNstjHU+AZs3iRIQevpjs+j2GJ72Chn8Uxrq\ndZihJJZGOYEAHqjzTqw1RF/DRB/1Jpi3hs7sIYkZGoB8DyOgp5hwQAKcqz47Fib3ixHH3PLJAxFk\nFiWZzc022l8KMVMaI4AmOQUmE2YjsakvcjyYCWa7Y/vzJmx6oiFK02yjfbMEDeEwM7cxquT3mAXF\nga1Nuoymc5wybE+f2Tf0GcIpib9BZo3yDfQvOMqJXBRp1RGlO6mY5NgScj94HvmgNN4L1zHObhr1\n5lbR3koFij8O4G/QpZ7mGQEhuivVQMTFJXIoyuibE8T3B8wG6PCe98BFpMmMMoPQoimJJrNgcOgG\nHXwnMs/sROR8aS5w/Q6Q+4u8RROX63UJrwOMGqe65ICJoQ/9ANo+Ik/SHDdLvYjBT84xKk4kiGSY\nJYkZuawOo0KCPjHwKl3eH3cZBouVGGncwxxopmATFtsbNmZZNaBDJv+TWoNjwkwwPiPENpE7xk3O\ncRPrd8TH+jMiomTIzI5h873FnWwX7Zwy8hhh9o0ps3NoI5RrcI/3uHZ4tFWPZ5ixx/2O39M8NNyO\n4nuuM8ssgfZFiQ4bElVhOIzmp6G/0YiZu8gB4JFvZchsI4PxjKNGxHA0kSCzhtC2w4yEB00igBjd\ndJkh0mH5oRBRGh4z9CTx/Vn2GGEk3mHkOcoMPrZDDjCfqC+PPDAhEaNIZMqYfZvxQvh4xouiDyGi\nCWwiJYxZZhoimHWuYxNyDoTI7DPLVCXk8RgGua7HaXtCBKMwokrdTX1msYzOEIUnE6fNf5h1KECE\nnz2BLTo22rGyCHRtlOc5ITpp3Mb3u3Wsmwb5OqKzbCBRIGKCRGRqYSIYx5gzDRJcGOQXSaxir84S\nQTIJMiMb05EcEykeYWa01Doz5ZCTZsTsKEJbXSwAARjheTJMdJXNbH6NQ6IXJtBzdgMo5IxF7gnO\nOYdrQotoZ4v74iJRyzEeXIM6UXfMiNNCQFr8McbPEugzeZpR/gwzn/FMVmvh7BXLQG/zeawlIaKB\nW+SCEBEZO7YUiNq1uT+6DtRS8AAAIABJREFU5IRYWUW/4/M4k3hRckzSbj395GdXk/wzF+egQ2dK\n/kyeu8cD2P48+e0iOs+bcfwdTlBXmJlvDGa24fIgU2blyTGLp0ZevJAO3QzJexdndp4hM9qkkjh/\nBriXWTPUGDMZGkRqBLkO6jmis5aJVnW5p3P+Z87zNxQRdlHyOYWZLspk5tsWeUGmAfTDinK9Ynap\nxQL583See9l/iwhFj1ndAnNE1xItu0ROtAhRzgGTc3uCdsQeQ/vMKGziLZQx14IJ9RAgSm1KFG+c\nvxsSPL9OI5gzFpGh+hg2G7lENK2Hv9Hke+O5c7kmRIgC0WcphSNo3ywr7iTINYBEXFMbcztR4Lo8\nmZ19uc4z86VYRPas83PeMrGJrArVB2+1JRUzJBSJiRgow+bvVoM3VSK01RTP2TEio504s1QSYZML\nQuehBJFoRChOmZHLysNGdZ7HI9wzeuR8DPPcFJojx9+IvHP8nRskgm9ApPeMS9aiDoMW2hGf2TB5\n3QoptGtAnftEGQXYjkwBth4O8zxN/qcJ+VjDc2jHYgLlRcgdE4hAHwNmvuLPC8nOMo1Z6F+Ic1xc\nhZRRokSJEiVKlChRokSJEiVKlCj5/5xovu+/t3Q4f52Va5r4vi+adnJWcyVK/ksRNTeUKPnhouaG\nEiV/WdS8UKLkh4uaG0qU/HBRc+P/ffmrXC8KKaNEiRIlSpQoUaJEiRIlSpQoUfIIRDlllChRokSJ\nEiVKlChRokSJEiVKHoEop4wSJUqUKFGiRIkSJUqUKFGiRMkjEOWUUaJEiRIlSpQoUaJEiRIlSpQo\neQSinDJKlChRokSJEiVKlChRokSJEiWPQJRTRokSJUqUKFGiRIkSJUqUKFGi5BGIcsooUaJEiRIl\nSpQoUaJEiRIlSpQ8AlFOGSVKlChRokSJEiVKlChRokSJkkcgwUdZ+Wf+xT8TEZFf+Rz+ZmN5ERE5\nqByJiMhCOiUiIr3eQEREJiM8l8klRUTEs+BTau0eiIhIaXFVRER29x6IiMjq8rqIiLSbTRER6UzH\nIiKyuDYvIiJOty0iIo3OUERElgslEREpN3oiIjIXj4uIyGH7GM8l03jd6uL1cgHl1qsopzUVEZEz\n6yso5/gQ7SouiYhIrY12BHxNRETGI9QbTZpo5xH6WTiDfpQPtkREZH6xKCIi3Sra3+2ivpXsAvpb\n3RMRkVOrZ0VE5LiM19k42tcwbInqqNPvo46u5qGPaX6njj7FS9D58WFFRESWltD2Shl98YMwmXQw\ngTb20ZaludPUAXQ/Pwcd7G3huXweunR6toiIfOY3flNOIp/90udERMRrod3DcQD11BoiIhIKwgYK\nGYxN34ZOnVZLRETCEYzpOAjj6XMsreQc2pnLiohIs47vD4Y1ERHRQhkREclkoiIiYndhE5Mx+p8s\nhPH+EOU2q2hPOIzy4tkI6h1wzAbQbzSOzw0TttLrwAatMPqVzcO2azXo6R/+g/9GREQSRfQjnkC5\n3SPU1+nTpguwET/koN426pt6GPdkDJ9PByi3WtkXERE9hvpKKzERETEtjFN3BzY0stHOUAL6iqXR\nzoMDzDmxoJ/VAvQ/aEzwfA12YeYzfA768prQY3uI9kkwyn6j3kGrA/0YqOc3/9cvybvJF7/wWyIi\n4jq0jQl0Y5m0uQFsfWqibSkdfXWjLgrw0EdtauC1j9dDH2Md8zE/fR+67fX6aKOOzzX2zWL9owls\nKcjntDjGLMA52Buij66P+qIm3tcC+L6M0C5PR326HxIREZM2YjfRD4efh6B6MQ3UM6qh/QHagoTQ\nvmkfc0N32T8PcydooB2REOpxQyjftn287o5YPr8XTbH90OtoiHpsDXoJBNAO3UA/QibKGbTx/YCG\n15FYjP1Dud4UttGfemw3vmcZqM8K4vWwgXX0X/7Gr4uIyKd+DX/fTT77W/9CREQyYUtERI6P0V4r\ngnF0LPQ/ItCz73A8AhjPiWOzJPRvtnu6tB/Tgb15Ceg1bnEt6mKtHBh43hk5rA9rjT7EczGZiowx\nH/0wdDARzA9ryjo0jMXEhM4SMZY1wvcNDLX0J1gXJmyb30M5nok+Wg7WU83EGMQCLDeKtns99NFP\nsvw2dO+HYKtuH50P6ehjL4LnMxZtjroYuvgbDVCnEbRnrHFP11CfiSkhwscDHvszhi22OddE4xyN\nQZdhf8zHOAenSbYPz+kG1oJP/dq/lJPIF34b+5Lvoj5bR31WyGV/2J4hbCcUhG3mYrApmaB/R7Wy\niIgkYtBjIoN13wngezbH0x2hH50mvm9yjSicWUT5gvEq72A/Hk2gt2AM7UqbOegh8/ZR7vNf/qzU\nelBkkrY91fBXd6HXJPeZXge2PTrA3NMTsPn0Es4FhofXx9U62j9F/2McT4f2ksqif34HNt2qY1zM\nbFwmbdjIyGbdYdhEroB50R1w/ehjrDwfOvEi0G0mje9P29grxy3o3uf6ZeRhwxZVsP8Qe084jbbn\nVnEOHE/w/GAHe49u4IFgEH3657/yeTmJ/Po/+6yIiLi0Uc2CbZhTzBEHQyi+xX/atNEg2hOmreo8\ngw1pWzJBf3wdry3agmfged/mczZeexbXZxc2ZeiwqSBjrS73MY37WJBngdlZyA/ge5Ex3p9oXO+4\n/jlcEzTq2X8rhsu1iOszl3PRPNjqhJ9rAZ45XY2lolxdR789QT+NEd4fR1gQl1md6/10hPL0KGw+\nQDvSeI6ercOaQ1unHqwAz0KzdVxEPvuZ3xSN/bc16M1j/U4YdhEc4vteCPUFffRb41z69U/9iryb\n/NrncG7tNGFz2STOQfk8Nut2FefQ4wZsfm4N5+ywhfWi10Mbgxr6Uu/g+wnB8/FVzAmjizY2x/hc\n5/zs9nkuLuE3VSQK2zl4sI3XRczXaBR9OtrCvA2nsU+EEyi/toV1J8H1JRbBcw2ed6cOxqJ0Eef9\nqI7B272xCUUkUO/8Mn6rHG9hHXF7+Fs8h98sHudCj3N8dt4f0PbSxdn5Fvro7OAMkMrwnL6IteSw\njH6Muyg/U4JeM0msJQ9v4zdVZ4R1b2MN7XY92IIeQPunNEIu82IF+T7X1ewazsMt/nas7OI8HeVZ\n63Nf+F/kJPLl/+23RUQkfx7tdLnfDCYYx7WVZRERaXRhm9XX76Hfp6jvIvrtcQ43dnZFRCQQxuvl\n8+fQzhp/3+xj/HOrG/j+ceWttvyr/+vfyNqF09LvYSxqd++KyNtjF1jEOlu/B90Pp+j7yrk16KaD\ndalTgy06fZST4NhkVrCn9Kr4TVjdgg3lUhib5Fnsef0GlH58576IiKTXLqA8wfse99hUEuW2j3B4\n6LE9uUX8VjJ7+F53AlsY61iflgrQdauNMRvVoNvUIurvCuZegefE1hFssj3AmCxdxPc8nqePK9DH\ncgF7MZcL2TrCnr4Yhu32+NumWUM5f5UopIwSJUqUKFGiRIkSJUqUKFGiRMkjkEeKlBEfXtnxiFEn\nIlHGDXi2YqvwwPWP8Xp4BC9oYuGaiIhYQ3jCdmZIkQ1ERI6rKO/MOnxO0wA8U/VdeBHPPQbv4e4e\nov3dBjxlTpQRzRY8fV4Ezw/68IS5jPrvb+G5pVN43XXgPe1PqqzvlIiI3Nu6IyIipRI8jWNGgsIG\n+j2awhucpGvtuAEv5uppeNbKh2jvmXNAoXTq8LQ5jKinFuGtfbAPj2aQkZi2g6hXZIr+xN2gGHl4\n4Ftt1FlpwYtXyNFrOIYO0hPUPTik530VfUnF4GXsNPF8/BS8m6N9eBVzpxFtuH8TY3Q6Bx37Ltqi\nTTC2HSJZTioxG+X2GUXRiCLQqbtEfBXtoYe/sQ1b8QS6KKwgUrC3j/74E5RXXMX75gjPTRsP8Voj\nsmQZkcRkGFNkpwL9xATe4GwAEYO9FsbeJQJo7hRQWBJFOcfH8GxzyGV+Ed7i5hC20t+HNzm/xghI\nCu2q3ntdRN5G0OTD+NxlFM1pwaYjIUQ0IvNob5/j2Gd0Lupj3MMFjF/1AWxZ01HuUhH1xbIof9TG\n+FW6qCdBz39qjWiRNqNkRIFEiJzSw/TYe5gbM0RRiQgmMaCPvoM5YNMOT1+BbXddjK/nwp68+MmX\npmAJOp8MMD8GN2FjGqPyAXrIDS53doCRwzE+b3RQpz6C7jyDEU1GjU3qrkMP93AAHUZTjNLo8Kg3\n2bdmDZ/nEkQfhfA32GPEjfXGDUaZM5hzDtux2YFthDj2iSwjkA7GpOFyDjLSG7JK7CfaV6nviIhI\nLEgkTgk2FwiiHZ6HfvpExLgedB8gssgUPDcd0EYnnHN04Y+CjGyjG1IrY51K8HljA8ZeiGJ9mrhY\njzsV2JY9JkKFegvm0K4Oo2RDRiBSHmw3nUd7tm+hX/s3YWPVQ+j7pBIhmMFNEenSxb7RdKBfvYF+\nNVzYcsKCfqIW4ScIhEhnTFQBEVhRB9/vhaBXq4r2lxl9C4SwNvhpzEktyUiJy0VhgvJ60hMhQs7n\n+jH1oKthCGNt6RirkI9nqowGRaMc2y7nJyObzpTRdUZ/+lXMEZtImaYHW7Us2FqQcyWYYd/L0L3h\noy+jAfpmMxI7iHAMKrCROyGUX3RhOwEf61IjiOeHJl5bKejOnSFeQgP2y2A9LN/FHHSoMtsHinYo\n6H+swuj5BP3d68HGfKJUtSjW6ZPKQGiTRJO5wihZBe3sEx2ROYV1LZ2DjfePEYmcITVzFzDnckns\n/S5RuoNDtK86wN/4COMcL2AdTp3CXA5xHJrbsPW2BwVki7DdUg5nIyuL9lTLvbf60O9NpJDDXExl\nUG5jhPGI6WhXf4jvD4ls0SOw4RSjovEU9NDexnOOg31V4vhefg5rlhuaIavQjsMu9GRGYNsRKyzT\nEGwvleezuQJbivlmct3uMkYYK2A9T6WIkGliDtQZPdd06NKaQzkp1jXso57YIibqXIm6jPG8tc29\nj+tpjucnvfW27k4ijj7bV/iXSJCRS4QLz2EhIlOGXD8CnDvC9cchis2YcmG1uD5MUc7UIZLRx9zW\nfLyvhfHXnqAfPtdvPwJ9+WOU4wpsRosQcTOFHlyuIY7H+gyM9QwN5hARGCASckqkjTlBOXbUZL+J\nonMxB3WD+uBc9ad4zjCJkGG7RiG+JgoryH3K68MOgkRsWpzTnoVyJ0O2K8HxJhowwvYJEUshniV6\nU7Q3JETUiEgwoMtkjPo0Ipk0g4jM2f4WRb9Ne8L2QP9h05GTijbEunG4iWi/eRrn4SSRhp0jIBRm\nv33abaJcuVdMGFV3iS7q78N2J3H02Yjje7UJ2tTcwjz1qZNpAjoMUfetMurttlGfTducRPG9Om8n\npGyMybSFudqxMe8THtaFPm2w2eE5s4F1L4FlRurcS3eJHohxDxeiuRpt1BPoQbdhIoW0MMa0uQ+9\ntfgbTDTYtG5iTHSe6/tNIjwCM+Q/2tskUkaIaghwDRlzA9nbx3ncGhEldQp6CNJ2OryN0CeCpMXx\nmdVr8Deh5NDeAW8/2DW0O70OWzmp2EQSVT2sQXHqv8J9IlHCWqbF8P6RjXqm7RD7z/V2Dr/HGjba\nHWygnbllPN+nnrYbWIPMAp4zkoG32lKp1yTSTEs0RDR+DWX5XM8WFzDIPQvr7PE92HauFGIb8ZeX\nMaSxifPV0OY5eA57/4hQwkYVNjR0YOury1iPmzZser+N+vUO1nmH564ufwPmlrG+d4jK7+1jr4yG\nUV+IyLpuG7poHOE3XpKofiFKtzKEDQ6gWpkQbZa/AhRXuwmbOLqFWyDFVZz7pz3o8pC/LTWuW6UY\nyq/v0QbnUHC3jP7a3Xf+DayQMkqUKFGiRIkSJUqUKFGiRIkSJY9AHilSxqLn2SR3S4YRXe36GyIi\nEs3AYxctwoN2yPuZKaIYPEY2szlEVrJpog3m4NmziJ7Q+ozaZHi/PQ5P2oiRitUz8AJHyacxOQBi\nxcjBy+js8H54Au0zo9dFRCTAyETQgGtQ1+A1TdADH2JkOkh0Q30Ir/LZLModOXgdza+KiEgsBS+y\nGYJH0h2jfx7vxztNeCgHPTw3nsDzVhsycsL73Q7vxFZceBoX5kti01OcLPFOK6P9yTTa6N9FH0wi\nFHqso9Wkx54Rwq06ypznncqey/t8QyJwyGXikM/ikHdPF+aAYpr2GV4/oTgp3usl54A9IG8FLXfu\nCiKh0xY/b8MDnLrAe5AZeoJ30d/sOUQsFpfgZd28hbuvwyC8oafOop2JRfxt7dwUEZH+EN7N1Wvn\n8f0weTJuIZIQPw1Pdf4axrZ2nRwAI5S7fAXPReLwpu7vwJajS7DN3GXcER3eo9eX3AGLK0Ayxddh\nezu3YZtttvfSxVWUexpz4PBb+Nyf8S+tQz8mIyddl5HcOdhB7iKRPURv7B3wEi3vNC89ifKzWejr\n3iG8xc6I9y5/9JKIiGhE6Bx1oOfwGrkWNnhPc2tHRESafUbGedc3dwHldg8wgDFGz0LBk0e4zTE9\n1vfgmT+ih760jjryy4iiBMjnYzFC6AwRpSiEMAY9IkNcRiojCXjEZ3f/Z7wMMfLghKPQoZGFjeYY\n1dHoCQ+REyHo4bmRBd06jORFyI8xHWFu9hgptMl1FQvhPnE+g/VuQI99hGiiSBA2ESNnS3VIjgHO\nsS65TUzarsZoVsSEHpI20RQB9HdErix7RrXDCEk6x4gmIyixBKJMY87FfhLvB4kyi3iYc0NyFhhE\nawUctMsZM6LJqLtJjrBQA+vsmP1IMSIRIPfM1CMqwuC+ESXS5KTC55NxjEuTXF8JIocmWpjtYxRx\njDnYsYG6mNTJ72IzShaGXvdriNDo5CQyub9EOPeHCUZMKkRoWRhfPYh69AA5joKGjBOYBzrXa70F\n2+syih0mwi1EHp+IC92WHUY6ZzaVQdkmUQK5HAY/M4/5lmLUOct5Xqlgzoz7RHKU8blGiF+c61Yo\nQBRUkRHMEBATegpjlhNGWA8wl+o+1sfeAXVn8f06vh8kt9Y++xWzUW9JxxgZDMEW8oxsRrFOOkTW\n2PPUeRnlhetof23K6NqIEdcTitNFuaM2onIdRp6TC9BzlsjS4gLmUOX+joiIbO/BdhfOYl80cmh/\nrYV9YOcmvue2MW7pJegtscA5zLnqMYh2++CGiIg07+G5NJEvgRxQwk4K+jq+i3vxD24jAiw/J9Lz\nulIqYu0oMyLfpl46syjnLiPWSdR75grbQ46Gowe3RURkn5xwwRDm6KlzGA+dc7xJfoDjhyh/htI9\nd+l9IiLSrbXk+BhjfqZwFX0kxUd984i6A89DIgXdLfGc1iZv2vbdWyIiYruoc+Uy0LvJVXzf72KM\nDsl7ZxH1o5MD5OEt7OHtMnQZJn9HzEZb3cnJERAiItYMtUWExQxRGSDgZkJETIgo0TgRJUfkjHHJ\nvRWdEUDxiBIiJ1idHIgJnsWMCL7gOXjOHeB1HEMiLaIfhAiPMOdqv0NuFZ4FdK7/JhEkPtdZj4gl\ny0d7XEJdJtMZbxTXRfJHWTr6OyFCXIiQidB2egfkhSPHQywF2xoHyQVDVIHGOSIx9rPN+vmcz/O7\n0yFXGxE8sQj0NOOU6dlYM5PkOZSZvtrcZ8JvczgELE2m5N+acfVkLChyaBN9QISM6ET/BsnLNXmb\nm+bdJBgmnxxROhZ15EXJ1ZXGYMRNvE6Rq8UlSrRBJEkygfVt6TTOoy4RHQMimfUw2pydzQVyGGrk\nuoqRF6cdIILR4lhwb3bIWVNcxroqRDE5DmyjRBRSlPPfYRw/V8TYhPoYy/0DrPNz5Ik699gq+sv9\nwnZghHmu526RZxOifRt9jKHGvX1pAefSWAL98DhVHJ5l9AWUPyU6mD+xJGZAH06S6FfuJ1oHXyjR\nRsMRzM1AHK/Hx1i/Gs0ZwpJcNiY+DxEdZpIPazTg/sqfM6k82psgD+pJxfSgF7eK9nU5h6vkXlzg\neTxYxP5nEkZx8BDttPt4bjmJfcQlAmhvF+f07DnaBdFl9RbW3K19IuXPXnqrLXbIk/uvvCmX3n9Z\nRES8IPp6/x7Kiqxj7BIh9PENcnPFkvjNUbyM5wxyUQ15Xm0RneMUcE6aK0KnQyJiDu5B96lTRO2S\nQ6pXwfrfKkEHGt8/3AYye+UckZAa2nN/803U0yVv0o89IyIi4xHK3Ztxjc3xlgjP7VOP69Yef/O2\nYMvLp4Din3FhlYn+mt9EP1L8zTXiPnLzxddERMR8+iPQQwzPdXa4526TdyjwNjrph4lCyihRokSJ\nEiVKlChRokSJEiVKlDwCeaRIGX0AL5/PqMuIEerK7A4XPe6jCZmveQ/aZYaXCRmpk1l4Mfcr8ITF\ndXgFJ2SD7jPqleDd0CrvgB1v4o7Z+qmP4fv0xHeZYSEdn91vhyfP5J25dJzeR96r1zV8v7SE6FRz\nCG9nlvf5OnS898lLEj8Nb/KtOu7knWZENsIIT5BZOs6vPobnbHhl80R3eLzGr9HLvM6oncWI/ulF\nePB2W9BHMpqRWw8RSctk4e30yfI9JC+Cx3vGeWZfKtFz7prwUi7k8HrzDnSWYRTozCr6bNGTvHYe\nr0OMUsXIhRDLom+RKryUJxZmV5owqqNxbEL0cCdT6Hu1Q6UwepRlNGXMTFURZsg5exFRsgGRPY0H\n8F7GmZGrdO1J1NfE+9tb8I6mVzH2+Q3ob3fG4h6GF/TiBhjCZ/wTN47Rzyi9pYtnoJf6bbw/0GAL\n66cRPYwwi8b98isiImKHUc7yVZR7xIhEq8z2MsKafvKMiIiMduHlHZL/yCC6IHcJSJXhPqM9dMMu\nPIX2BJi9ZZs8SW1yDMQfgz6Wn4InvXyEeptkVo8toL1ZInjufQ+2PGXWmIUNPB9NY3zud4B+c9mA\npafo5SZ6RZrwftuzjA0yS8fy7tJn1osmI3Aesy5EOBaaTW4VZsoaaRiTQBK2OWE2jwkn6pQRzXwC\nffF5x9TvEo5FfiYtwUw05EbRE1hvxgcslxm7ZtwxFu8Fx02sH8J2jsiV4HKep/KYa/kCuQfIg3S8\nhzEYkEsrnOU9cWa7iJJravk8omFDRlR9ImeCzPJkzP/f7L3Jc1xZluZ3fZ7nETNAgATJIBljZkZm\nVld1VXfLZDKTzKSl9A9qoZ3aJOuu7uqqrMzKjIyBM4kZDjgAd/g8z4MW3+9FVLWpMsEVN+9unIQ/\nf+8O55573znf/T5LBUP3r6AUc/1SGWWXS/2190AM/b6UxtgNOqvXJVt3+y8VH0LMMbcbtagxKA/8\nahtOHCvDOSJT6YNrq4cakpUrGKJ2Ne+rf0JkynOb4tOIochw1zKCo2cwVuYmsLSymOqHcQY+ljnq\nL035uMVC64mFyEpQj1FIGXvHPmpRZPt6NdXbxfrj91u8LHAugNRxZ+WsQgHNpXDQY9x+1NmGIEG6\nsqWyQ/Oye6X5PVMSy7jInudmqEU4yVKNZAvtW84zV5VZc8b0rB24q/xZ2doXcFL14bcpVzjvjf9s\noIjggjdjCIpztqP7pLKqd8ojW1nfkO0MUeG5XVP9S2PVfznU/PbD4ZJDeTEPx8ywTgOXcOpcoQBG\nxs8blv+fw2nlZ+xC8DMFvZorF+M/nZX678sQTpQZqk65fIRP+cs26iLf/+bvVS+QpA++/FL1R7Wo\ncCh/2ijKr7XbGk8L5ZFf0Xl144Xbh/5uN0BuskdJZUA67Vjcbuqv8pH87TUqJ6tkpo0x5vHXPzf1\naz3/6o1QJq6Ifudjr5LfVj13PlG7hkY2fPSDuMwKBd0/6tXz7/9K90+BJj46UDaycqrnWwo9G/D6\nOWYat9t62Wx98ol+uyUbufhBdXr/QpnN2LrGfu8B3GCc1S+cqQ4OsuVPn+1Rd9W5+Fp7kffnQvVM\nQX+tbssGGhXZwPWlxiCLja+vae1xB7VGVqs180GF7PYM9Ts/ijkGpFwdRcQAiEAPXIT+tmzFUqyx\nFAZnjI0X3oxZExUibNcFP5QT5bQu++EEeyxXG64yCxWQVX+F4MOYjeAMw695vaBR4d3ogJRceuCk\n6cHxMtU4BPMgKpvM/b7aH0uo3dW2fIYHrptwjPWhItte4v98DtV/AJeD26nvXXAxeOEN7Pas/tHv\npuwhXX04GYH8uNWtpnsNBw/ojzDKM5MqCnYWIskYs4hFzKJXo/0gY5hjS/bATvi23AvQiSBRl/OJ\nuWuZzeA0XNU8yz2WP1zCATaBQyTAO4YDRalZmD2AG1SqXzYa8mtMmw0QJXCNmTljj+1lUG4doYQ1\naaA2OmPPElRfBB0a2zHEcIOe7hcGHRRBzbNfFbKiVhfiLgLqKQJ6t81+c51TBLn78lMtFHOnLdm8\nEzSWB76+0Uz/r6Fc28MG0zHd3w/vU9SvQb5h3zmBc8wP6ioSstTlOA2RA9UFT1QfjrU4ijyrX8rv\ndiqypc5xgftrffJ4NRe3VvWe4ABJOGPPY+Zw+uCjRvDvOSzVq8bdbcQYYwYosY0dum90oj1HqKr7\nl17Lj28Z7fO9cfXz4Ey+r9rTurG5Ipv2uzR+fvYspycat+3PtY8P4ucL38snbu9u/liXmCtrLq9/\nMLVD9U0soj47eKlnNQqykdg6/mwsm7p4Lz+bzMjGXfAmWSipEcpP1XdqSzrMu6ClblzUGlI+Ul13\ntvTcCcj0QVE2lFqTbThAdN++Erp3Y1fPNSCYb77XXufLL2WDCfyatwIK7bm+n7NOxDdRef4OtFRB\n7R/cwhnYifNc2cbFt/p+lfam/Fq3Tr7Ru1szyekJh+ZudwJSBtTpDu/x/1qxkTJ2sYtd7GIXu9jF\nLnaxi13sYhe72MUuH6F8VKRMf4iSA6zEiyhncYmkzxqKSMXTnLeE46BaUPS2CToiAirg5lboBUcE\ndIUVc+rq/ve+ULRwPoWbAHSCxW3QKypSFgJN4idqa8iktoiwj1ALGNR1faOoaO/eY51BKx6Jcya3\nI6SLE86IyJYijEHQKMPfc9ZuR1HYXkXR0rdzUC3wgBwdKYP91Zc6T945UeRxTtZyMdUwVgqKHCbz\nivLOUJfyrWdMEi46Tqy8AAAgAElEQVQYJxHfKaoPiwmZOs6yzkec203Ack62w7WtPvb4lDXoENl3\ngri5uCCzl1LUcAR6YGbI0nDOcDL/sDigjyR0g/PRE9jJs2TVDFmq0YyMHdryQ3hD/PBZhNeETnBw\nxvb89zon2fHoAZ880lhBA2Se/52ivy6UbtY2fm6MMaZPpvICxE9wVZHtGNwppUPZZhu+n/Vt/T0M\nu/zzGipPXhBJKIxdFvX3WknjsPdQf1/At3H1vc4rWmQxm3CxeMkynZI5ncMvtH1Pv/fBe1Jpqb3e\nuK5PrihD/vz5H4wxxszq8JSk1L77D7bVH6gsXb1Tu+ZkBFY4T+m0FIGKmhupvPo780QR/VsyEPU6\n7PRkSxOguVpd9WMD1aco2a6u4+6uKbGieZrf1D19AZAxHrgF4P9ZgCzzxhjkHqoZVfmRy+cac3dI\nGcrkFsz32KwXpQKvk8wd2YigT7bZvlHfXMD7Y2XZwyhYOeA38nJ2vwniogtqoEcmMMIcciY0FhOQ\nHVPUK2Ih/d5PVsdB9slNBnUKr4ejrzk5BhESjnE93DB+MoExaw7DNRCOqn0BMrEev/rPQ//NuqC2\nirJxB5lEA7u+j3PwTtRB/Av5q2RQ/58nZfv+sK7vQGIzglDD54Kbx8t4ga6aR/Uc78hP/ZBTumNx\ngzKpqhtNiPXHEdE4BFkHIj64CfbhSRlpDsVRqxqUQEhFQXO5dV00sM1/QUqR6R628IELXd/mswK/\n0hSVg+ZiZhZzfDh1cPv1ub4FQmQTJALoowkqRO4G2WAvKj9u/f26Tt+O4f7Q7c3hkeZb4FQ2srUq\nDq7AusZk4ws4Bjz6nNVl4zcobXVQOOy90ZxpjoWwuM2gOoTqTzQvP7W2o7Uxsya/FIYnYkz2uX0L\nNwA8PNkd9XG/x9qcVma1eaU1rd9QQ5bwInUtPh9LyWYgf+QKfBhSJoDq1WQCpw0IzwaKkJfwHgXx\nMdt/Ie6UHMpCRxea+xfP5c8NCnBrT9XunafiFpuOtO4UQdRM4F4bwRXkd2gcIqBgU6j2dUAlVMn6\nxUAkbcE9Zowxt5eX5uXf/UbtQelnf1fPdcHTEQ7qfiMULt68lFJkF7RgLCgf9ODnQrnEQKscvJLS\n4/vvhXKxFOay98TVtgFXWbVOdnM1YXKrasMpz3j/7WvapN8+/Upo0Wha+6MX32j/tEQ9aG9PdQ+F\n5I/ffPNPut/zgjHGmCBr1MZXsrGdbdXh/JX8VCAkP7GyJdTpjD1CHT6cefPDeO4slLEBpTbBL3qy\nqK214VGCIyzNOtLPaEwbqMa1WbsTYZTIPPo+OkNFEJRYPKw5hGkYNwqHc/xnIKc504GDIXUP3qWh\n/GinofqERqyHKNI4mGuehnyEe1X9bQF/+kU90GnxosTVr11U9Kaoyzm9WgfmDri+chrXEnvHOKiz\nMOtus6G9xAKVluAm/h2U7KxlcW3B68Gc7N9onPugsvwJMu4V+fURike5FaEKGml8ZOcnTpl41G0m\nRTjD4HZLBXSdH9TCNchbJxw6Drg1uPxOxQkPRXZH+78A/DwHRflLHwiZLVCfb34r/8mW3vz6f/sf\njDHGsL0yb5nPC17Z7v1M8638Vn1Zr8of7jNfazXZztmZ/m4htWegNR2o6cVBlJ8faP88Qm300UPN\n2Xcd2U7pSGMchwcoBtq3GZLNpe+rHe6I+rD8jea4F2WwOEppnqy+H4FOq/AuF1jVHu7eX24bY4wZ\nc3ri8oV8xpQ9Ugh02zKqMamCwhjBlfj0V/Ily5na+fK//tYYY0xyojmUCqn+tYH65eRUKDsXKLQM\nXJRbX6o91kmCw0OhIHqg39a35B8D7LnGHj0/BCrsriXQQGEMNLV3DT4kJmHxvfb1wU1OBvg0Lg3D\nnpX1Y3NbPiaGit8le6Mq7ymbU9lLBD7Bm4rQio0DzR3zS2PCcWPC3sSPPGm7j/S+HOM99OL3ei/9\nxf/y18YYY7I5PfPwpfqy9pD35zWtMTEQ5XVQSe1jTjOsqs98KLaG2F9fFNXWe1vyX5Go1rTba9Ux\nGeUdbipbOX2rvcjmmuq5Cqfs8zeqZ+VcextvWmPvRwW5jbJWH9TTk3W9Vw9AD8/hpLl9r75d5V0l\nx/pzeymb7Tc0J1JJteP9QrZVfKPvc19ozrE8mG5bc6Ee/9NqfzZSxi52sYtd7GIXu9jFLnaxi13s\nYhe72OUjlI+KlImkFWEKwyA+QdVjY4soJfwhsbgi5FvPiPbBJu/LKTKWvaeI2sFvlb2xIt7WecNj\nuGN2nimK2iRd6IVTolNRRGzph70eVZHrcyFvJnAbBIMcYiWzmiOCVmgr45LOKJL2/Lnq8ennas/7\n97rPRoJIH5wQXo++j25t6/63QtwsnKpHdl2Rtu/OFNX0EFnsVIgAujgzS4a5UiQzkVeksTlU5sBd\n65pAQpHqGRFnT0LZguyWoo7eb0kDeNU2t09t7dQUQZ8j4j4Z6PserOBzzqSeHyjK+dXf/Ex1qoCs\nGOs57SpnSv0fpnTgg+V8BNu8H6RLClURL0c4h03OeLb0uUCtI7CboJ6oHnGW8rakvl7ZRXkLxEv5\nh4IxxpgqGYbcM41ZEMWv4ZHGug9aYO9XyuKZsfrv+ohUNEd+14iod28VHa2huvToE2X1vGRCuq8U\nvY1x/jmJQkS/oHq2YFvPb4K8Sape5bf6Xe9GUWgPkfrVJ5zLBGXR7Slivp7R37vXamfxgLnxRO1w\nzhRJj2Q05+pluANodyKlfo+jHlI9JmsHu/7quuZokDPVBSL9E86P57f1vR+VmB++V0bFMVL/LGOy\ncZ/v7iiICXw7/Rvdw2JLX8CB4p9pXi4AQCAkZtxLOGMc+v1ort9nwrIFvjaRuWynBX+Fg+fGUViY\ncFa+Oda8bJGBDYY1xjHQZVFULMZBEClj3W8JQqVckzEHkfHwLNetFuqDJMzCpftx3PzHudpva4zb\nJdWjA89IIqOskg+lB6elruFGPcqlsYmm9f8E2RYXGYAYfmcBgnEIC/5gCQ8VNuWKW2eJ1R/DiTIJ\nV0ey4X5X9dqGd8LiDHB5UJLw6f4uGhpJaNxCIIGufyNU17SuzEkPhMldy8CvesXhDBqQAZp4NS7x\ngcajH1S9ZxX112CurF6thAoAGfxbMvGDoOaefwgKDY6YIKoiJoHqH6ofvSmqVGRqfCP9v1o3pr9Q\n28qsKRNsJPCt+tYV0/zcYa0MpTQP3X717QhEQ5Sz8Ftx1aXn0efmhvzv4JgMa11tPShpjXJVNRZr\nTRAaYa3F6ax+f39fnFudXfwg11e5vn+jvjo7UYZzcab1Y7au75OnGssFiJZAVX066mrOTty672ip\nvlzf0xxYQWks/Qz1IfxpHc6cBciY4bnmQB2lBOcHImUc2J6LTPYCJa4Falgpi6trUzY/Q53p+W/V\n3hsQqetwsKXhMMvntc4MrQzwK2XGb1ByiMZAmeV0nRcuspVdcTQEZvKvhQtdP4W3LrOp/iwVij+2\n4fXvvzHZrPYOj38lDgUfe48BvHY11DkO3sE5g3zJ1ica72RM61YEpM3ZH9W+4lvVO5FSux6SmXe4\n9fvGFN6pCUo9S4c5e6tnHB7JFpIgLu5/Lh6eRUjz4/D7l9RNtpgJWWqX6vOzQ9Xh3TdaU1bJ1D75\nlRAwbvzVLfxqh/DorWJD4SyqlAeykXFPcyES+DCkjBNFyF4JvjzgDGtp+ZFaUmtkq8jaiB8PgyKr\nncofTvDzLji4gqCOapZfulIf9kGgJFHOvC1oD+MH3RwmQ3x7rfuOh/LLsbDq0wEJ0gOBk4HLoQMn\nxKyH4qMD1G9K9RjBSzQ18imRNX0/Rblr1gdhArnLtMt+FvWsoA8+JdSMYvc0XgE4Gi7gTYqyfgYy\nrBv4Js9MNusE3QswxwxZp1PebWOMMU1UWjsFZernFvdjSz8ojdU+Y4xxLF1mHEXlqSLfsXRrrjhS\nKKBVQOaA1HGyt7P4Ru5SXG7N1yX7oLNj2WzxnWz4F//7/2iMMSaXkW383+//T9WZrH5kBcTDG6Hk\nX3+nd4r9X4FI29XeoglCuV2QDffhrrr4XvO0w7tMAiXZm7r86wK/Hd/fNsYYs/ZMcygCr9EQtFLt\nWH5iBN+OOwhpYwC+N9TiiscaazPQ8zoo2OTYJw6w4cgAtSiQM7Ws/KUfFG86qzE/BXF49ELPj3Fa\nIgeHodvF6YWSnlM813VPfvGFMcaYew/k996/1P7y6KWQ5q0yaNWBbM8FN1keTrQHD+CJQ0ny8Fvt\nOV6+FKLmwWfyjwHmgvWeE5ApmSl7jLuWBapcY1SUQn31QxYunVJd9WyeyOZzKAX7QPs5UJtt3Oi6\ne3F46mK8z5zJ9kfXquAafFOFETyF5z/NjUF7YeKpDVOG46XZBgkCivb8O9lu41DPyob096MF8/xK\nftUFx0rALz+Yn8uf1EFlNq60X7L2pQ147U4uhcJs13T/lTRoexQGq7xzbuc1N968g4uQPUYcDsYE\npxlKF7L1CO+M8YjqNYWvbwiCcIQ6lJt9fhTlx3lDY1Nb6nsva7eT/XypqXp64lp38iAQmzXVKw+y\nz5VX+xPrqNn9mbCLjZSxi13sYhe72MUudrGLXexiF7vYxS52+QjloyJlllbKmvPxTbTiU6uKEr4h\nyhnJKYrp4ixp4UQRtbVHimo6ieIGifB3OesbIfMb40yzm2P3C87bxY2e02zouet5KzMN0gYumVAS\ndnwPjOFw3QzIBrXaysws0B9fwlNiUEOZd8kKwih+UYT7Zo4azEwRyUZDkb3kiqLl1plqn8XNALfD\nElUZFwztMaLro6mitrEV/d1LJvvg7NLE4LfoT8n6ckZ+Qhaj1iD73FFf+ImEjxaKFnrosxDZIGdA\nv1tNqs9OC2rTguO7Pvg34ilF6D0BeILgs7hrmYxQOhipj7I5RdKtbE4NNvrejcZiSdY9uKH2Wuoe\nFbJIp8eKqrrhp9h4xhl/WOKPXii75g/qPitkLj2wo78qyPbCZPn3ssoYXl0omntTVT/k1veop6K6\n754r4+HuqJ5Jor3NG5AwnOVfh5k7hAJO4V1B7WesN/eVAXDBa3T4vZ43JWObe0RWDlsrv9bv5x3O\nezMOp4egxVCCyILomXD+s1GDnf9cEXbfQPdPPl3ld7LtSkk258XWI1GNd/da41Uheh51aa6FmYtl\nxqF9KHvb3dBcdnFO3hMFQnSHMrhSxLoIp5SFwEhwDtfh5xw1WasgY7m0VC/Cisjf29PfE0m1IYpa\n0pRM6JDstAeOmjZIkIhfNpkBbbWNElcUXia/H+QOvBdBIvIT5v8YBIwTfhCfR/ebcKbdOuM/xr/M\nhqrPgOz2akhj2nSonSX4eTKgI/xWZpDMxdLo+f2Gnndzoixe+1TZqcy6frf0WVwHev4AH/H97/5o\njDHm9ko2tEYG1G3g2MHGnHBdzZsgSmiog3PZbhQkFi4ykJzf7uN7LETSCETJBNb9AcoEnsWH5RQC\nbj1n7JTPmHZAQ0R03+kAVAQiW01Uq7ogG52G51r+PCY7mBjaAzKpUlBWrcF5+jA+NoiyQizHXEDh\nIgEaYe1Bxoxpu3ui396CMOySPZr05S8K5yBBDuWvJti8G3WFaUD3dIHASG3Cs+Tb1rMeaR6vDjm3\nDcJhfMN56pf6f83xrTHGmPdJzZFsVmOceCgbjaMkmJkpg9h7pt+5x1pfrq409lX4lpwl+S2HT9ko\nH1xbi23Zgqci5EXIo+vLh8quXXvI2hX1//imsttrn8uPrrr0/86DZ8YYY9ogQEr4WyMakj9bwsyV\nCShdwGGmjoKjY67xGI9l+1Xun+Z3X376teofBVXAetRs6Lqra2UbT18ou5gCHbHxUJlvl182ugA1\n5l2qHm9ea/24PEQ1Y51z91PZ7PmPymXGrK9kzf5X4kBzoEZShTOi9BYOL3g9fGS+v/grZZgDIfZE\n8J4UydAfvJFdZNc13ntfi4MtBgnbNegWN6g2Z0X91V04Ta2FWkVUz9r/JX0Et9S7b2Rjt2cFY4wx\nHiecXiBcBnBtNYrq8+ye5s3jXwo1FU5prS/8UXPhEE6aYFRtebqvNX5U19jdtNQHKcbI6/4wFbeo\nG5UleCB6DfX9dEf3WUOhpkGfdOBVS+2L+yCOrdTJqPbqmkvpdd0vDhquUFB/TAayfTecaWHU2+o1\n2dZ+XnPI4wFp0pKviOxrTnjPNCbduqU6h0JNTOtP+RLVJvjzcgH1SzAsH3LDXvHrx9vGGGNqcT1v\n2JUNZeFe7OPnAjEyzbSjW4b3Ah7AAAin5S1cFC2UKC1FMpdsvQ3CZS8m3qQqzy2VWXf2QaOBGq6h\nRLaEWyYOB8W7DuhlY8xssTR+1sVSV75kC/S2LwZyCK43H+g4N/xR83+m4vTnyhxlwxljUT5RX4ec\nGqMs3CBT1sI11E4T8OTcsA/94e+EHkui1Ld6T/6t09QiFYjpfo8+Vx9dPFcfHD7Xmv70l5qnSZBy\nVdSOiiUhSyKM8S/+g+Z/h31o4TvNyeKx5sr9v9JcW32met6+1O/r2Ggb1NTantaTJ78WYt7De8DB\n3wu5c4VC2l/+H//OGGPM12t/aYwx5gT02s2JbKX6RmPWu9I70f5jIYTCq6jFoayWgHevcq65c/1G\n/tXFnm0Kt1Ufzq4qvmXjkdarRIa9FicERkMQiX+Uv/v+P//eGGNMEDTfLmqpPjho2jXtDXqgSkLx\nD3u/mc8tH6J+mWfhH8WHhBzyZZMCCCf2DomQ7CEY0Xo/YF3s7mkOJanHMUrGbRCWOdaZHAipGTym\nxhjTOOqavc/2TKUNOudafmtlV+8yBaM+uQKBmIenLAxCpFNXG6Jh1voV2bI3p89lVWtX6UJjndwX\nUjI+VVsWL9UXtRey7c2vNeaZtMbotqzfe3csNKfWniJ+Kz6F8zGleTpkf9znVIA3pr5LDfVOd/Ze\n6KnJrfZSAd5dnFONqcWf6XbAjwo5zGiienZA6Sbxd164KENwLU5K8qN+OM1S+O2570/vW22kjF3s\nYhe72MUudrGLXexiF7vYxS52sctHKB8VKTMPokpChNoFd0t+VRH1V98pC7Sa5ywYkavSoSJcbrci\nU8WSIlYplAqab2CDJ+KVz6AIVOLsP2dQk/c5q3zDGVm/YlRFkDOPyTxP28qENGq6r3EpIhiKWyz8\n8LHABROEhblEdHPp5fwlCJwOGYt7RH/dtNuPWscDsoCjjp6Tu6fI3hJlnWgOfhg4ZQz1HMEXE/Gj\noAH6wWXmJrGtfw/6ela8r+hijDGIwKMxgu9g6lBWoltXn81A3QzJDHbb6vNglgyqV9c3q7pvMsiZ\n+4EyZp2q+s7jVNbmrqXRhQk/xPk8P9l3PtunZ7RLkfPsthAX6/BRFM/0fbmk6OtsrPo8/EQZ2RTn\nj49eKLM6LimKmwXtsJrSWJyCWOmdKaq6+ZUY/p2gCW4OlaFYwKGTfqyMQXusfioXlG1act56TvR1\nCCIlS5Q2HlJU+fJEmYIh/Bm7sKtHUPIpPldGYFBSRiSzpqxiflX93gGVcA7PymjE+XOy+Y2q7pt9\nqHYksqrX8Zlsv1dQf8Qc6vcw5yI9zJ0x0ekRChMeh+rt6qo/6mRkgmQTfSsoU/T0/fu3qrcbtv/o\nl9u671DjNGndPSs1I+uejKO+lIBHgr6yVBM8brXdFVZ2fcFcmJaVHbm51nyNZohoB1GrAFkzRtFg\nMtDfo5uoKXHYvQdKYTJVXw8GGoMwCjEe1IeWAdmIF2WwJspl57C2p1aVjQqDEHSjEjS4tTgENCYx\nFHp8oK76r5RhPPhH+cfRfd3Hv6UsV2QF9NGPAgHyG8MmbPBz/T+AbToXunBKZtiAxlii2mFcup8D\nJJATbgQPqkldzrePPPp+LSEbCmBr06h8hq+jAaqQ/UugpjKi3U5SByso+DgANHqw9buWYU/tXOBL\nfGQsZjxvlgAJBYVPzE3/5tQOXw/1qW0QUKhapeBBckVQokG1qg+iZonPrJ/Ll3Yr8gUXzLHqXHbq\nSbeNd1v/zgOPSqNWkVv7VM/og/IBWdLAr5bH8n/jGpwtIT2jV9M8bzZVt6AbxcMD/T92H7RACv6O\nNWXapoZ5CGfYdVH/f16S3/FdqI0ZOKbSAa1RUbhTXHCvRDf1/wQKg+4ac6QPmsqruRfxclY+B18R\na3CCvi119PzBJdmvA9n44QW8cvACRTlT7yY7tQQJeNcyAJXQY93pjlSP1kDPX4ObIber/kqBxIyD\nymjC4XB0AlfWjH5Hsa1O5nYFjp3Pfv4L1XtF/39Lhtu7UD0OUcW7hLMtv7ZtjDFm9XOtT31QGIHA\nT+vq+sNnZhbR8wq/0XhdvP3eGGOM08DnQqY0/bnGOwgP1MFzZcAbN9gTymebn+q6zz5Vpn48VzvO\n3goVNqPdM7jCKrWCMcYYXzRmNvZRr4D7b9bSfPoDdaq/1lqRSGnsdj7V2ry+I5sovFIbnPjLe58q\n+x9COebin5SFP4TzILuu363/TNc5EqrTNYqLvgkIaHgbPD9i8u5WxnCAsa0ziw7qR/gXCw3qfW+t\n5agCrWvuRVHkuTjXHA3W9LtxW/46COeYtT9uoMgYXodzLKP7V19ZiGut4YGIbLN2CTKJfvcwR0sl\n7VG2QOP5hlo3Zg1lvocL1KqewHfnke1Wz9Wvw7rGJQvf3cHfskdxoVQGCmE2Zt8N6ur7E/HWVcjm\np8h0h2J6/vWRnv/4gdoRZY4V4ITYfCzUlwslyiGo7DYZ6ZUN9ceMvWXtWP35YB9+luBPskn926EJ\nxmXToyH8JxD7peF4nDB3nG1QivBvpIJ3V9ZJw+kxAEXZT+BXWGNP36nNYdaMR0+FolrAn1NHETKP\n+lvmC6EVpqie/tP/87fGGGNiYRAcD/X7twXNhQA8Q6sgcPqWjBO2Pm7qXerglfxUEoT1EP6cS5Rr\nkqAknn4pLrGID1tCCmwEojvMvvDh1/IPuQeyoZvn8g+XnG6Ye/R7F/2Qyml/ff6NbOTlgThcRqBU\n85/pHenB3+B32G++/0Fz+RG2+uRLoe8O2ccP2Df7WA+2PxHyJMy75to9PdcJMrFckq0V4HasVOFg\n2VP7t7/QHiqGYtztja4fT/Scdgu1P++HrTdO3jlNQH6+BM9Vlr2Rd1dzrQWyMT5DFdGtccxzEqE6\nA/U10zplndYIeTU+FupluKH+9MJZ1EGdyRhj2s1rE5g8NOvY3KtvhIzZSuud6vGe5m3pWs9apjQW\nLtoQmsOR2JdtTRsLvmf/G4PnEs7DFqpoYT/vLgGN3S0csBu7IA839Nzb339jjDGmhvpRCCUw7wjk\n4UxjMUb5N4giYq+l5zThH7oHP17zQmPZ4hRFAFVkR0b36+IPY37532BS91kWef+HW3aIIuPYjSoc\na7u1t5lxSsEfZT/4Z96BbaSMXexiF7vYxS52sYtd7GIXu9jFLnaxy0coHxUp4yTT4LYQKUNFuAbw\niDgninjfoiIU6ikjMYeNPxxRtqpNhju7qTNuh5x9Gw1QFSGDcHxe0O/QOXcE9HtLFcQfUTQ06CXy\nx3n8gHUWLUrm1KvnO5yKVlpB6CWcESGixm2ik5lPFG1NwrtxMVcWaiemCOTNua4bLxSBc6N2cvDu\nt8YYY1Y3lEGoojAxbiki2G3qwbMW6iUjK1Oh/8/nup9zuTCLmf626Cg70Pepz91ErnNkJGcumUQC\nZEQ6r7/nfIqs+lxkheGlcJFFX9vTmdbLltr2yYoi90Ui1UtQS7MJ0ll3LIvJiHpxzhfFrtFcfXDN\nWUnj1v23iYCPFpyX5vyiB8WVaJzz6lsa0+6IKOoB9yHDur6vCHyfc4nFt4r0B5wWmkkR7Mq5osUl\nVIoysOKnVmVz16+V1RnPUBpA1cLtku3MPMpMJFN+6kPm+0jXZxKy1VRW9S2XZdPXqHYsporqbj5V\nu11OXde4KBhjjFmCiJnP4DWBx8Od1O+2nyjy3h6oHxpEoZcD/W62LdsLJVAHWeo+XeYmw2CMV+1x\nwg81hC8ljeLEFH6N6jUqMS3Oiz/VnIsm1c7CS/3dWb+7nazkFOGursomp5zTXbjlYJZOEB4LtXlQ\nV1t7Q7Xh/FoZv6uDgjHGmDXO4if8um6OAosLXp3hkjOmIz1vHlCfXr2VHzr4TufAH3wqf5QnEzCL\ngBZwaW553eqTAeilRc9CrDCvJ5xlJ2s0BC3gIjPpDpHhXcDBMoP3CT9j+SmXT1mzAEi8yVL3dSJd\nlt7ijL+SbsbBHHBzHze+ow0iML8t248uZGtBp+ZkIKr6TCa6/vRc2f36leaGZ19Zmrk1F0EQTZao\nn5CBdhjqP9enIyp/6oOLwdHW/V0fJuRmZkm122fUUFcQpJMPPiTOZ09RpYqF4ZyBA8hENM7Dhh5c\nAtkzO1UmZbhUhqdpqVJR3xHn+e/vKYPfJis5g91/AFLzXaNhnKjDHTngoYFbxR/RPVJbMPlHNAYZ\n+DJWo8piL7GF4QgeDuZ1Gz+whOup0ZSfPviDnpdmHQg9VB3vg0qap7RGrf4SpQL4J4ojVJXOtDaf\nnGmsl79DxSmF0kBcfbEIgGTxqf6TobJJfqN69uF9moDeigbJOPY0VrGpbH68qvYMu/IrZqR2VfCX\n791qn6MmG/bEP0wNwzGGe2vCJ1ukjRX1w/2fyR9OPLLV6iVIzHcon5FhtRA+22Rym7dkOlF22HoA\noiin/nj5g5A/N6+VAc6m9H13ofUltyef9OgvhP5YMDfqKA0Fkj9l8V1LYy7JJBeOCsYYY4IJPffR\nM6EOomsowcFF8+KtMub1jvoxEdHzH36mdkdTGq8G37/6R6HyJnCZJUHMsryY2Kps/NGnT40fNECZ\nfVrthZAX0676cJNnbD5WRtQBQrFCNvrmWLYaRhXOR7b/8JWy8MdwyWTSspWNr5RVD6+qTpZqSBnV\nyhRIE3ccFAMKJnctkyH+uouKnaaOGaIOkniseuyBCHnxjyI0uj7XWrt+T3M2GtYcGp6S4X2o+3ng\ntwig8uHE7/d/REIAACAASURBVE5QL/Ev4CRzoIDJHiIB4u6mDMoJ5cogiMrx2OK/UP3jSfXD0o/S\nzoVs19nWfSyumHcdIZqq5YIxxpitx+pfL3uTekn71wgqTe65fFU4rfXBBzFT7bXWgU0QUPkV7YVK\nb9UPtZLal4d76KKucZ3PQHWHVd8gCNR6WeO5uqfnWPyF9VPZvuMeexe/xRVpzHDpNGEn6+kI5Zuq\nPhf46ygoRYsXzx1lvJd9c9fSrGhMB6ydO89UB09YfnqIqk79ElS/i7W9ojokHmi+b4L8btQ0Ntev\nxPFUPtUY5/5CCJE5CqwZUEM7n6AoBf9kuVTQ85fyZ5v3tBYX4WYp/qD9rRuUp49TCJuP5W+GM83z\nb/+LkDiOhuqzCkI7DjrAH5DfvvxBNnP8g8Z8++dCeq6gIFYHwV0+FfqhXJH/7IMkzK/Lhp78ldoX\nREnsu9+I66Z0KL/71a/1nhGIas4NnrMv9WjuP3oqRKGlpFk9gBcFv+hFZa/8QverwQGUe6zfPfnF\nX+s6ULGXr1EIggfJgwqUFxS0P3B3hS5jjFl0eUcbqr8HdZDqET1vhTl0WNJ+3zvSnB+APgmiYOQA\n6TOCG9MJ2jsOP2LPsreirsvw/tNHPcoYY3qnddN+XDeJNe0tJlP51+KNnr3LO0+9rWcseFcJwWU1\nhozP7bP4SzUWft6PszHV5aCk/XaSOiW25Rc9nIip/CAbv0G1M/dMa+jGtvyCdTrCE9LfPVHeLZvs\nfyE29U5BqIRQZ6upfu2p+jr9RHPEOuWw19M7bHhHtnbJ8/N78MmFOXkSkA0tuL/F1ehBAXMBH6B3\nG4Uu9onTvp4bXtfY/GvFRsrYxS52sYtd7GIXu9jFLnaxi13sYhe7fITyUZEyU8KXQ7Lr8RToDWJF\n+XtCmDiHoBlaitZGAorQj8pEFVuK9o2HykwMOUd/dUJEzacI27SPigbcLzFQIN3vFQnzwOHiBPHS\nhUtm1iMTuuD5nKs0cElkOb9pIXxW0XW/eq8s5CbnAyegVOoVRQoDPxdK4OK9/u+Dk8HK2xy+vqQf\niK73FKlftvQcN2pM7iAqIV4y+WSzaiVF+u7ff2pGDc7DkRX2VdQHLSLeM/giWqdEMe/pDPm8qetq\n4395ZrKOqo4TVJAjoHBo+bl+33qksTGwzU85j+t1f9j5badDfR9D6WTGub02mYgJygzejKK44S1l\n006+U5Zl1FG9N/NqT2Oi+jgcMv1GAdZy0ArrnOHMoO5UIktnyvAWfYFCANmnm2OhIixFm41dMiKM\nRZsMgHesfo8/hJuF/vCDIBk34TW5QBUJHo7VR7Ktbo9z8Ud6Xteh34W2lBGIbalexVOUX3pk8eBh\nmns4l55XNHjZVTQ4CZfQm+8Vne6SjXPDLr+5rmhylfPXfQdM5y09vzdQ1Dxt1B8Tvz7DoEdcLj3n\n/Znq5eN8d2pXGaD0Y83xFkoUN6cFtSt0d0WMDtmBLupt84CyAPdAWPgT+n+7qOsqdWULQj718RbZ\nG8f0wb94tjcI0gQFsl5NYxSDbd4B2YkLyJ8bf7azBodCTmdow5xV91kcI0Fd3wIt5Hbqfg9+KcWC\nZJ7MAVnowUi/S4Cm8sC8P6ihGAAKK+jUWO/9QmOcA33kdlgqQXC/LEETAEZaQDLj9ei+Ts7Bz318\ngmQpv9QYXtWVKdhJb6s9ZFpdkPd0QBuEo8oIbG+h1IKvWMz0fZNMiwd/n1nT3HWHVU9HjEwHvCDV\nI82NDuftJ9Wfsjx3KSHOsbtH8vcug08ZKYOD+ze+KHZSk4/wgpjqFMjILCweJZBYkEtEATq1UfV4\nWdINwz6tQ62w5kYM+0htqb8zMWV8vnDumCbqd5MrMq0O3WtYV7bl8kA2c+vW4Hk9uj4bQjFlU34m\nua26p8NaezbyGovlpn7XuNEz18vyj9URiD/Oi/d6sinPhvzLSlp1DmZkK7tLrV3uICp+KHPVdvA7\nZY1RyyV/MWXt7ILccYBkHI00x5ZkcBMW/0Nc9c2sgCpzyB85l6wnzI32XHN7CoImcE22P6TnzgMf\nlncawKE1hHvHwK2WAXUxJvt3DPdKp6x+WwfJsvbkMfXW2NbhACoey3bjKFEE/erHo+81py6+EZoj\nyvdW9r/dVHtjIFGcKMccfauM9XCoOZQPP/uxDaNRxzTqym6mI/r93s+lGhLwytdcgKS5hpPMb5Tp\nfriLcty6/LM/J5/z/o9C8tRQYQrA07LxYNsYY4wvyB6HdeHeJ1pH5yFjzn6vtp3BTRIGybj9hbLc\nsR0U+0CyNN8e0hA4qrLqkwTcKLegX2vHBdVhW3722ddS8zBrut/pH7RWnqJQGE6BiNsGVeoj2zyz\n4J53KzFL8aUCwgIki6VgGaxorBLr6gOPB3UokJj3nmmdycBLdHSmek7h9nJm6Et4l4Jp3d8x1P8n\nlqLYleaQn73BEuSLo0tGGMWvKApcATgI+yC4t1GWjAfUX2d9oQAaoL0icICFWL9ui5rruT3dd/OB\n0Awvf692T8m6rxj2QHD2ZOCbKqKuVSmyT97Q789Cam8DZbDsJrYOEr3fVb9EQXEY1t/BJQp0bV2X\nzcpnvHgtm+7cam4kIj8pOXqcMxNy63kOZAWHV6q3g71jKsv4nqm//EN9zj6AU6YCGmAIKnXjmWzU\n7wBFwL5p4VEb6kX1abuhd4ZHMY3ZEoXH+hVrZURj/OVfaW1fyasPb9iPAz41AbidWiXd3w2SZsE+\nLfsJvHXwbkRXyd7D2+SEW2aGfzl9AcIEtaW4U7ax8kxr+x58QKUTXfftb7WfjMB/9+mXQuhZiJCT\n77/T/bCZaErr1/4z/A6qSEsUba7e6rnlA6FR43F4QVAPGvBuF8uqn7c+FxotArru9iVorJ5sL8le\nqM4++aLGnhCVpcdwHMbiIFX+IBWkKqhqrxfFINDB8TXVN7DxYUpuTpA1AYuXj+WvAQpsyTqRZJ/f\ncwP5qcGPyPtV2Kc5Nm2qv71u9Uvcq34dwltau9L6vs6JgnAs+2Ndlq6B6VzdmPWE/PK2xZN2KZuc\nsG8xIMp8Wfgm+X3rAH4z3kVmTvV1HX8fTqEmDA9Snz3CakR9lgT10wfZfdvX/aJF1WMFzshFUP5g\n2tH9eyCzLR6eG/ad5Wv5wXXQqrOu7n8FD9unD/XuUUYZsuvWO0sY5av+VOtVt6K5Gs7p77G8xqrN\ne8TuiuIOpx75x/KStTcqW14sOF1Q0hqaXeTNnyo2UsYudrGLXexiF7vYxS52sYtd7GIXu9jlI5SP\nyykzJxPKOfNgXBGkk1OyMbDrT8hElHuKTO08FnLk/LminwHOgM4GigY7vIo+jon2Jrd1f+c7RTUT\nPkWbU2E4Y9IWd4yui6zq020F5jk7G5goqhxBb3wKx8R4oCjtso+yBO2qdBUJ3O0r8zCeKyI3mqie\nUzgUAG+YWERR3XRA7cmuKYqZ5Ex2L6iIoDemCGU6o+t7t4r85VaUofAlYZGOqF2xZMoMOqqDH8TG\njMa14LFxDOljOEvWVhSNnAQUqbU06PNJWLtpmx+0QNSvyHU6ynlt1HgWXT03TNS1tviw89tzIsle\nzuktxqCWBpynnqk9WbJtMxBB1RvZRmRnW/VJoPhSQo0ItvQRKKgk59ijsMGPja47PYIrgSz32r4y\nDJOG2n99SuTZyrKsw3OEok8FNNdqTmMRzOjT4YL3BPRXD3WPQVf12vr6C2OMMb6wIv+XJzqX3rrW\nc7P0cwoVDaheTP1E30+96q8YmZkayJswnDwzzqz2ympn/Vjj5EEJJ/5EWb7gpqLP8xNdt4QHo0e2\nzjeWzQd2NHeTqA7UOQM9aCji36e/V5OKTgeeyFYd8B9dvBLz+nKm+yfDdz+ba/EC3ZK13txAgQU0\nk9tBW+uymdGN+jq1j+LLvupyP6QMgDeMus6ATB0oqjpZK9PT92uwq7u9RPo5K7ocqo2+vPpiCUpg\nibKWl3Pm55xjvm1w1j6/bYwxZgbyZja3siHqY3dA9/OBfJlN9fwgNjREbcofBBnIOWezBL0AP5Kb\nLFEfFFfxTJH9DBmG2YznwRLvnNB++CecA/mOEMpAfj9qSTM3z1f9Vujfskt+u3pDJnmifs2QBRqC\nknChihR1qx4L+rk3BBmDEtyAdi8/cPlygw7rYvs+dYuZLlFqIAF9WoBPhOcMOmSw4bAJJvFJICYT\nAdB1D9SeSUJKFY/mqm+hqc/xpfr5oCg+DtdrXb+S1hzPRxJmM64+6/wC1NIUFAEozClj0LjlnHJV\n/qdwoGxWj/nvDWnsI6i9hWPq03XWuCiKhME1ISPSIAqDKGs1z2ST3feav72J6p5NyO/4VnTfNAph\n8XvKrqVcIPPI9/ThShjP6dwxmT0ygsGl5s4sqnWn29cYDZfyHwt40rw4uBCqEkuXfpf+UbkKf7uP\nssoBmdELEJt3LJ4+9QT5mNyAFwMOrpsT2XK3CJcKCJmNh+JoGPY1V46vNR5XL4VIicFHtwvPRb2q\nfum8U+Y1sqrnfPGXQiA5XaxXc60/nrlstgCnwQ08HKl9MspwEBljTKVQMqYr24qsyZ6c8KAcXMjP\ntvh9HiWgjceoMMEBd4tSxcXvZF+nz4Veecj6t/2pPp0zzYE6mWZvAM6gruz08t25uX2v3wYj6sOH\n/16IwDRr4fUbob+K5/AbZdWmCHw7dcawxj5qkUChZIO6PNX88cRkIy//0z/o2WTX47tamz/9QrwW\nvpj6ttNR26bTkfmQ4gfZEUtpzJasmbd13a9fFLo2/5XaubIt5OLhW6EDykW1d31HtnPoUxa+gwrI\n/ZQyuz6v5ta4gr/bgbMQRZWpka02eG6aTLaXdaxZ0hze3RSCKBaWD6jDlTDelE1srsvH3LxAqQV0\nRSiOqhNzbYCPqJdlu9lNjV/iROtSGS6XdoHvP5PtJVFgOweFXUURczUnvpCdx/IdFVAWobrmnkWZ\n1mXvmkyov6IgeArHur6ObYf43r1Uf97WQCn7fkJnO8Mu4/GCWk7oOa0LreudB/KdYfZW2Yja24Xn\nZJIKmruWHHv3LvxwvYbqeHku7qZpWwgRH9xLu0907+VCYz9Efe32RNfl9jQWOw+Vfb8uyC+/OVBf\nLoeqawgFsxqKYI6B/KUzRvtj+r+l/9J3ql7Nop7jMfDpNNTmGbx8wbjW2vsb2+oLFHZcnCpow03T\nuNKnN6q5uLsjxMoQBZqTV+LJbJyrfel7sq1HX2vNTPHucnmEGtP/+3fqP3j9dlfV/jCcKIuFxaup\n++08kB8Lw5F29UKInSoI0CDIEi97jSTcjl/86t8YY4yJrfMuyXrz5h/+s+rzVr4pksUGV2XzC3rS\nYan8wdt01xJa6HcDeKSCIGZuQastrS0ONu9xaG5PY5r7lYLmagJf4ebd0eJ98SBimkaxt3QFYrOq\n9TyZzvxYl2Bs3ZzXG2YDfxhLyU9eN+UvaigTOtJwKsL/Focn82SseXfR0VqwktO9vQ24mbAVqFqN\nQbFv5OFdEsR6IKYxwZ2bchvbpu0xS8UJxPcYpTDnr/XOlEel9Bg0aZw1fGNNttN6IVuw0FVOkDot\n9tuhsP4f8qg+lorys/vsmeDXLMDrucJpjrWUbLfyQn7QdNlvowbVaahdw4G1x/j/LzZSxi52sYtd\n7GIXu9jFLnaxi13sYhe72OUjlI+LlOEsWIsob86nCNjRdzpn/XifjHNcWabmjSLfXz/7C2OMMe+m\nisg/+EyZACdR0FRIEblAXNHDsINTb0Eyv5zXrHFu3pDpqJIRDaPWMkMlZN5VFu+yAEM5CehuT1HK\nZkv1mrt1vtLTV7uiDiJlCWUigijSrJBhIRBoYl5FdftkbIdkpjdWFN28KRAtX+P8/ET16rVU3zZq\nICGP2jeGByZFttTpnxoX55PnnDVMkHWfjRS1S3AWcj5QHQNEA/dXNAYToogezv1N4O1Zcpa8eqNo\npyEbNu0p0luDB2eDtnqGH6a+FAj9S635PmfWXbQ1iKZ8hrOT50VlFmcM0pPPlME8fqfMYLegeo1C\nGpMUaIYpvEUeo76sHioK2xuoj9e2lL3Lh2SjL775nTHGGPdIY7y5rgi9d6r6Fq+UkfQR4Y+DXohz\nHn0yVL80URTrtvR/JyivzJ7OKfYmsO6X1d+BqJ4X+0S2kctqPCqnssEWXBSbD2X7M5jHQ2HVIxqx\nkCyKpF/VlGkxQ5jTw7p+hUzomCjvtK169KyMw1Tj7kW5J3lfz1v4Ff2+vVUUeQLLfpxxzDMe46Wu\nOztVP81A3qTCul/Ad/d4cYTswMZ9ZTE8nIFfgAzpYDPFU2WplhZr+hAVNmx2HpbNzKaqW6shW53D\nXxFxofJAhtc9ZSxh0O9ynduJW3Xp+Z4A2RmyIgvOVXfxN5ElGQCY8p1hlGiGqqcHBEoENNd0ZCH0\n9P0CFaegB6UyMhzGUlkCaeiYy8ZcY9SHUnB3cZ484OHTq+cNqmRoI/Abkf0br6ndrqClQoVKkUf9\n4OUceKOt+p2hjnINy/1Xv1ZWbA5C0Q+6IgAHwSIKXxFcY2GQQiuPhJDModQTXbdOM9+tzEAsxeFg\n6ILCc0Xxmy61NwSqzYkfHWOLwxutF90LjVtgqXWr4yRDXoFPiTlmdtWfa/CBjDbkIzZQBXSAjmud\nwxU2CZmJS34n1gW9GYCfKKs+aeZU1/WHcIHdqE3VEeo/fc3LWld95EB16cqyGR2TNoOYMmZul+6f\nJTvlQnUvRHY7yLnspcUpdYL/LJHticAdk0I1DbSnSZPtgufI+ODQAiU2cKBQOBUKIshS3PKobxfw\nOHl6sqEeqlIja20GcTlHQSvYVPuuUG1rk2ntjf90Vuq/L2H4PJwgRL1+jWHpRGN8fakO9KOKsfNY\n2bcB6+jpoZ67aKhdXlDAq49Q8yOTevZW2bRAEgTNL7XOBkG2HP+9VEmqZDZjAY1DGVW80JrsY/cL\nccW4/pm7nLu9JpKU7SZRJVnCJxKEBy+K6t7aQ9XLwW7k6K1QXJ0TZbwHKFk8+Jky3nvP4I44Rxnp\nXOtHgixhhvXpogjvy0nROFBOefil9kdJ/Nz1ofr06EiIhzzI37V72i0cgDKqwxt3/4l+nwVV1GyD\nEER98vKFFF/KoJlyec27/Z8JiRGFd+ngvdo4R30nOrdwA3crE9Ccceb5CK4T15nqeXGDgkxPNpB/\npDE+fy+bKoEmyGSEisrdUz0rFfVDdoka1Zps8QUKjpkbXRd5or2B8wf6kbGyUFPZHP1zrv6d/Urr\nT2JL6+PRH6RgU6sq+59Mw++2Iv/cY28XCmguWYqVzTLKiiCMxlnZTvKx6nUNQuiyAOJpBzRbHsQ2\nPCCNS9lydR0OGhDy81X5mAmZ7mFT7Z/CGzLfQOkzrz1Y4Xvtx0cXKJQ91txJoOrUgnvMm/xpnXC6\nXGbCe0AsLHsrDwuqV0H+PPI16/BWiPZqHJ3dn9Bof66EUGwNgGq9fA/vZVv7olRKbXCwxi3g3tvC\nn7jhfjz4RuiqNs8+filbOHmlNXWCf1t5pPtF/Ozjx1pTegY+tAb7fsO+Pab9mkHJ683LPxpjjPFO\nWF9An62iOhdJgfiZ6vo+SOjmtfbbp2/g1oIj8NGG+nZqud8qnJTsMTbp27Vn8is+0Mm9pmygCar0\n+lRjmIT7Zu1Xut7ltNTvdN2Sd6twCKQN9aocamHxod66BBl09l5++j6I9Ecgw7soXb7+O+3vj1+h\nhgcCfmWTdzBUamcN9fOorX52WpxodywzN3smA38R7y1+l+ZMpaTxdsPV6HPSr3H1l4v3i05P/Zt/\npPFqX4PAH8M5tyW7YIqaEe83+cfRH+uynYuYy+tbM26rD0KcVPGDhve64L/h3e6a9+KHX2r+rpc0\n9oOixswJijYT1LPHVV0fROZz3lcfNkH/Rtl/u3Lw4cXlX1sgWtq3qCTDj+egL/p1zS3XAI7VAKcR\n5vCGvld9N77Y1vMT8g/DFidcOO0xAP21sirb3ATFVvyj3lHmE/VDgt9ftuUvFwVUpuAyi6B62mQN\nzH0iv+RnbWzO/vRpERspYxe72MUudrGLXexiF7vYxS52sYtd7PIRykdFysznqGxMVY0wzOC5DBGn\n+zCWg9qYoG4yITNsZXLHLYVjx9Y5TM6+JruKrN0SdR5zhm3R0idiSGaBkkUf3fTWraK+A87tWco6\n12VlYPa/ULZ/tiTTjP56kqxanQPzM48ijYOKfrdAUWKKmsqYKLmTCGHzraLYxyFFRyc8t3yqjEAs\nL4RQh3PrC1jp3U7V8wbOhjznBztlIoE7PjONoBRQUbQuBXrHBcrACV/N7ZUynsevQQ149btKUdHC\nnRQKVzP1sXuq709BRli8OBPQPm7OboZjirK2GsCM7lg89NUUREoINaEY3AhlsvpjsvK9muq/ta+M\nnoewY+1UY+CK84cUigVkTTwexhguACccLNEN9c/ap0Sg4bU4v9T94imyQSgGzPqgnTjr6YeIIryi\nsfdgMy2Lc6Woz8mQ8+JbithbmdCbmuozGsMlk9b3qU2Nn8W2X36niP4sYvWPMqEVGMVDqJcsOOM8\nqCuSXkddKkR/BlAqSucV3W3AWWFlJKaMdyyvaPdKjnPsCUWXKzeoDlwrShwOwzmxbyk96P/Pf69M\nRq+s+0fSqAGgPrL8AM80dXE2lGy8lyy3k+zD4sfr1PchP0gXsg0O6xgwfBWLmbJW/Zki+x6jz9Q9\n9U3ULVteokrUJUteO1LE3s8Nk2O1ZQ6HysCleo0n8jNDkDX+KOpMMTijOKfsxM/1p/JH19eyuQBI\nnNiasiALl2xh6QcpSGawT/bESyZgAnWChXzxO2W7uaxsvEJmtw/yx+tTu1tV/FRMz026GfMA6iUB\nbkyGwNlVewPwBSWYa4ttZR5izBVfAE4tEgeBAFw2rAPLGbxRSBL48eMLVJQ6/Q/LSo0dGncPyJcE\ninMkVMwYlZeY0XUruxpvN0jLeQdeDxBO00tlK+vXsPHXZPsH5YL64Q3cDxnsJqv+iMDFsxHQHAoE\nUZJwNo05AwES0NgF/ChAkUmcB5U9ypBZ9W/JduIgzLKsBff68ObU9NnoyH90UBT0dUACwqnVQmlq\nAaeVh3kb8st/uVBjG8bwmyjNHJVBYKKIM3cJSeIKqC/jZFhdAdafkUV+JT/VZiy8Hf6Out48BqIS\nbgCvy1KdwCZQRJl09X3YAXoUdaZ5TXNsFri7YooxxiDKZwaoE9YcQu3WbjXmoYD2JPe/0h7Agw0V\n4WiZ1eXPg4z5mqXABk/F9StdF8UPrn8u9JSPdfjgv4g77BAOl9UdrRtxlB8cM9ni+p7um1pX+1/+\nJyk7mP/ZmNZt0cRycHYl4W3C77vglxpi4xMUaErnWt/rnM/3xXXfBxugU+7Jvqol+bgL2ruWZz1a\n45x/Rf00rICcCrvMxj1xquT3tXeowel1+lKqQ1GQy/l728YYY5pVxg705v3PhAZaZQ25eqv9UPFc\nNugyspUZCLT0pur09N+K08WBezp+oT5qsjZn4NNJktG9a6lUQLbBt7G6CQ8ICmbFN5oD9RPthTZR\ngsmAKm0VhIiZ/0xrXgq1vYuqkJzdU635Gfh7IiiuXaHMmPpEz7u3KeRLEaWfHploFyiNfpWxaMuv\np1FQK4OSvnijORv5S/VDak+flYLuN66wd7G4aBwaj+GtfEo9oj1Bfl1zobkPOuqNfn8C78kTFMlW\nH2lcyiiNXZzo+r2/Uv9HJiiOgfLzRjUHO8ypeoOM+iocbrwX3JKRTm7BYfNA7Wwf6e9VkEnGoG7j\nAzUGomhh7XFKIJzgY4ngl2tGNj8Y/qTi9OdKv6++a1zq3vWK/Or2J9v63BaqoHSpe5dBkS5n8mOe\nhPxBtaa6BFygNHlncbEPfoDqUQT0UId3IbefrL4fxTIQ6scnGrN90AQrn6s+1v6t10UZK6u2W0ts\n6Qz+Tp/WrDhqSSX92czdLuojW6jA33d4LqTPNgo4v3zya2OMMUXQXzeX8Ajdoi56rjFwwCPy4Ol9\nfq/7Lti+N0HonT0X4iWYk99fD8nW/PB5eOeaA16fbCaYkIMfogDpnOq6wnM4wK4Kxhhjapc3/+K5\nuw81F6GgMSWQogOUcOt92dh2SO28a3GwV5yAj7AQU+GEOv6spL+nG+qf/lLr+BrcOf0k3JbwVO0C\n+vPhU6tHav/9XdVre11zrYVaVyNvndcwJrO6ZUpXFTOcymZ98KDN4ahaYv6W4lP/XG2eoR65+Yk4\nu45faW9/8Ur71XtrGsPc+rYxxhgvfJfn2P4IPx7gHWnSl205qWuMPULlRmui06M+i7h0n3kXjtap\nBseDSl/Yr3q3q/JHjZJsdx3VuRb8cUsQl81D9aUrrz3Y1o7899UfeU5Vthn36+9B9jidW076WIqR\ncOk0m3DcYiMhfueYyk//a8VGytjFLnaxi13sYhe72MUudrGLXexiF7t8hPJRkTLugCJQoTTs7nNF\nd8MwiDtRTwpDIb2a5Zw70cAH9xXZHywVDXy4qyjpwRsxbodgo3ehmpGKKDLu5Fx6hAx1NK4oaDKk\n7xFJMvE8Kk4L1eeQiF48pueeHOs5DnTbjy+FVlgGUIogYnd1oijmpz9X9LlHBrlaAiXgVYTPHYeP\nxWFlYIjUwWWTDak+CbKVjoCud5GFc9ZBCGVV3wHcGA3TNJ6JoovvC4piPtxTBLhVKBhjjMlHdI9h\nRFG8xRKFlISigY1bRT2Dj/TM1osldSLDB0fKxuc6vz2qKkoYhXPGimIuXIT671iWXkUtB6iCJGOy\ngRkqP9N3ipR33ETYvZyF3VZWrggSpFHmXPpXGus02ak67b+6UdTWTcZ19Zmye+Gl+tKF4sHVO0XU\nJ6CVtn5Ne+Fe6V3pORYPiYvz9BZXy9yg4lFUiqHPuXYXakPJe6q/j0xI40zZqcVSv09twQUEumpy\noQxKCaWBBNmf2Ib6fXmpcSnVUU06lg3PUCqagt5IWMoNeY23ByWx2qEyEj3UXlKc147sq57RiGy6\ncqQo7XjJxAAAIABJREFU9u2t2u1Lof6SIFtIJrUOoqpEtjAf1f32Hinrd4taVbd+dxb7Xll90DjW\npwuOlCFZgHBG2eWNFdnO3Gj++V0gL4IakxmKYgaeH4df1w0dFjM+imKoEvmZjwt1pWmiguZCDSq/\npwzCnDP5Ac4rL6b6fzIGIoTQ+HKJ4pRDfT+DV8PAgRJGAWw41AMXA/3QxbFgtwu1OheqHHDOhJb6\nTGMzHmzVAfrgmLl98Vr+a/+JsniOuMYkspQtuUk5z1A8cLvVb+OA+tsNq/z5gWxhDn9GZgeFH9Q+\nfEnZ8Jhs4nhJfxv5FGeADC3qWUvQD6WW/OCQDPCITPpdi9sjdMgcnpIZ58xbYy2Dnhu4hWa6f7Gt\n/vEN5FfnIJDcqFxF7gk954ELYV5BFa8DxwUqfAvOQjfIZg3O1C+XJKkynB9fBFMmDVLEA1Ck5WCN\n8sApE5KNNkHQzOrqowBSBSmyUAHUHFpz+fV0Suik1GPNwzk8agPGwF1RNnpIOmyGNJUzjHoTnCO5\nJShQstaxjvxLo6exnYAUDDRUv9FMYxRvqh3zLdXXH5VNRUDLBtKoPPX4HSoUbiZHAKUuz2Nl26P4\n43Zd33fhyHKjiDhPcvZ/cXc/YowxHdT7Bj21zwsH2NqabNysyXYdPv39kix9taGxjXk1B+MxeDJA\nvXVL2B4Z7DxKbU4ULS5P5WeLx1qH0uvq94dfKbM8Zf1eVDnfbyFrfqf1/Pz9ux/b4IxFzDrolDh8\nSQX4W8rXGucsqnqNlv5/ea76x/Fxe4+EkPFnmXtX8hFn3wrlEE1hV2SQhw3N/QKpc7dD9hDJpk2K\ns/nNisboPXwNE5B9+78SEiYcUZ1KFTKhea3hCTj4jt8IzXPwR+27LKWWh5/r9z0UviLwZQxYF159\nJw4ZM5NtrO+qzltbqHG0P0x9aT4CaU1fJlZ0v9yu1rImtnDyTmtcclft2HwoxMzf/dN/NcYYU63B\nRbCnsfZdqj+u6iiqTMShtbcrm39J3/ePUPRax4/OVf8+aK5hU30f8Gosa6h+JOFKiGS1326c6jld\nkDbxrJ4zglOiUCuoXmSqIzn2KCAcLw7YE8TkA3ZZN0rnmhNNEDf1nO6b3pLvaZ5qT9a81feTufpv\nFpHvWfpYN1bls4YD2c0te7XsvxcXT+qp7KqFbQ9BxOSwl+mafFvxSnsOY4zpXF+a9INf6DnsD3yH\nmksLYCijEtwUOYvLTb7G/We4IP55mYFsviyhbAgPxu5n6iODmqgDt+LPyQYur+BE/F59Ed6TLX/y\n679UG+HouznWWhjaVJ964c9rtmXzcdSPMuuyyVJXfuaGPtwEZRWLyEYcUdYB1uzLisZmjtLWiHcS\nZ0hzbJ18/if/RnyeBvWhekXtPkVN04//zm5QTxQha22NVR/VV5ffUqnSWmu9fzy8r7mTXtE+882b\nF9xfc2DUY33Zlb+LpC3FXq2pwzGck/dlE5tfar/ufi0/VXmj/miBsnPFtcZ/9m/kd8NpPXfQ04Lc\nbGg8fagzOUBi9uv6/zjwYeqyC9a/NkqeS6/WHx/vwL5jEPsLngO/UmBDfj0X0By4bGv96OPPV5L4\nEjjB2iiUBXkfcUTVzwM4No0xxu+PGxNKmhFrTPgR84P9ns+ja0Mgmc+Hmh9H7zUWn/5P4gpc3ZZt\nvftBfrdwpX3x05BsPJjTmAZPNXa9G30fWxX6J+DRPJwFUHKkzpMz9VGKNa3Wkk0OF3BQTTk5YnFI\nrcAtW5JNdEqgQC2l3ShcMg3ZRoN69s7guVvHdj6Rv+zQt86sbDOCSlOTEy9tp+rnB2U2KMlWezO1\nO+rmHXj8p8MuNlLGLnaxi13sYhe72MUudrGLXexiF7vY5SOUj8spgyLQBBREs6Eo66itCFoTTpU5\nHArLriJ3Z2eK4ibJULw5U2b28T7KDCBuHAtFYTtkEpxhRdAuLhVV3A0rg7t0KEoa31JWf/Ra1y9R\nTUGYxyxRQ5lz/VVJ0d4nn3xtjDHmvKDI4EZQkcLkPWVGzg6V4YjBWZBHMchN9nOZUiQveKXndWD0\nfsb5TB8KCsG86hclM20RmweJKA59ZMbhKliQbs3GombShmMgqWxJLqNM3sm1sk4BIrMLYEJNjr1t\n+RT1sxAVuQQM92t56qa6WMomQeJ810ONZSoLyzzZlvGHkIUYYyaccQ2Cbshwbm/YqvM9548TKE7t\nwj5PVv/dkaKVoaj6dnVNY+5ZMIagmDxw0vjX1Mc7O8pQHF3r712QNhcXykjG1zWW2XVlgWooYVXa\num9/Ag8J59UjoAMal5wNBjESgoPHlZNNJGP6f7uqaHEbniM/0WIry7UcavQvTlX/8Uztz62ov90x\ntfe2rQxJp6vobzvP+VA3qkxEpbPbGucxykC1mjK2rfd1rlf/b8Dyn4uqPU1UAa6P4RgyGo9cRnMg\nwbnQxVzjf/pCc88LGU7msaLmU9S0yqAKwtbh3TuUJGMQBTU0CelZQfiDBiONYWeiPgugQDIGlRDk\n2S3UFwyKWzmfsi+OBMg6P8gUuGkWsNUM+oqge6jzFAWtCUpeoZ7uv4RXo48C2phMpqtPpnam+s3g\novFydtcTVB9ntpQ5nHZQ5omSwSMC7wBp0xmpHRPOuoZ34F3yau4kI6r3ELTEDG6qOnxAjX3ZmM9y\nfHG4duAt8YG8ccIz4kcJ580P4kQ4eyl/t7YtpFBeCWnjJS24wI/W4GCYgc4Ik0VzkElYkvAIgIwM\nGAtRyNndOCpTdyxTUGpL1FK6/N0xBMUGqmJG5qMFV1BgoDkxnVgKD/jviPrbD79SOEKmGeTPpyhV\nLC0ONK/m4qgl1EEDRYwBdjdpjUxtgvoQHFMLeHsqPj3b01KnuPD+dRc8PhPN01lPdYt7QR/Ba2Yp\nfIUisqEk3E0+EHWRDCitOQg8j7LojqXq7B+g2LUi2zNRrQObcfVZq6Wx6YHoCML94mBdaIMuCzKG\n86Dul4nKT077z4wxxnQ5J95yXv/YJ8YYMxhbvCHYLkhFP8pp4ZT8jdfAhwQatQy31V2LBwRSPm2t\nI/p7i/ZYCg/9usapeyWf4wD9FlhXPzpByfpQInN0NJfccOfcFFC14lz7BO6D9VWtq9tPUD0BDXH0\nG607owm28ka/O36pvwfjPynMPPn6sYmBOrk8F1qj+F5z05/WdWugOionQn7GUNa4/5X2LH7Woevv\npGhUPJBvWIZll/s/U1bUi6rf9VuNlwO7ja9rnUjsrJpAQHV581x7DYuj7/HPlWVfyaouZ6wNraLq\nlEjIVk/fqA43lyiMpFW3r/5aiImFX23qnakPa+/lf26b8PvAg7ENt4s3qz7twydh7TvvWkIg+Apj\ntTkNuiH8UGvZvYfiUPjm7/+gel9pf2ohZWJ/kI31boXw2NzXOuP3auybF+qH+qbqtb7Lnovri6CD\nkw+V9V/dk+2PQQAuQVK6JvhvFFgcbvio2AO0b9T+G7gh7n2mtXoDLscySO4260hwAYfYpvbd3pey\nqZPnav/nfyPE0s592e4VCjf104Ixxpjtn8tmIvAjVQ60B+rfqp7+FdlgvY+Sz6qe44ej7Opatt65\nVv3W95RZn4JOLtBvOwnZ1VZeGfDzsMUqZ8zZTdOsg5iKR9XfbZfsrQdCtteTz8slZWdOMvw9i/fq\nDiXolZ/cvC9kzP4v4DoBmfL938o2zFhtTz0Q4iEEmv9qKBveWOfvKdWlgIpoEb7M1Ew2N1qobjP8\nZZc11fsIf4aNdGuaM9kVrVXFbwu677XG0gGfXsCvdWPpVt9lM9vGGGMGddnE6yPN5Z9v/ltjjDE+\nePb++MNv9NyZ/OSTp1I3clT1/98//2/GGGM6N6htbqtdKfbHA5QxhyBzRvDKVeGKXEAEGmQNT20K\n0beCspiFXquDPBxNtW74YvCMsDcznK7ogmbNUo81xquLetXJa+QK+b+T9xcnalApUHmOIHvD2U+2\ndpfijMChVkORM6h1IWzg7snI1qcN64SB+nHi0hwJg/LmsIQZoV5V92q9jXp0Hw97S0P7nUZzsDr4\nCdkzc/dMNJky9QWoSdRJPetwL7G2j8OgcnlvbbIGNkAIzuWujO9Ebasfa34VXfL7ua81FxK8z1be\nyA8s4OjyhTi1AUdkAB66MWv7YKGxTAZAZXFKo1yVv3m4Km6b1XvcB3/Y7Mg2kiPZRIQxjGBLbfh9\nrgucYBnDA5rS+uTJyEY7DRCOIK0n7AkG7IunYbhq2AMMxqhKRYgnzP+0IqSNlLGLXexiF7vYxS52\nsYtd7GIXu9jFLnb5COXjcsqg9R4lA72aUWSqAtIjhOa8k7OcbtAW1bIi+9GHyq61W/r/AHUljuOb\nAFIKzZ6yfukVReYurhQxi09RTrgtGGOMmXCmtN8kEkYG2kX2cpMs1qwJ5wNR7vS2QoMXFscMikCZ\nJEozbaEOmvowA85Z+he6jxO+lZUNReQOQQJNp4p6D6vKVNStv3O+PujkzB2cD2l/lvsTUayqnf2e\n2/Q44zps6zO+oqjf5FzRvXhMUdF6XpWcleEU8Gosun1lD0oNRRFj8GxcVjlT31evD4g8X8NF8sVf\nKHvShPNkDlfKXcuIiPsSXg4n0cbKMRH1CdwGGzB2c965dKTsTQPkxZMvpVyV2NSYlL8rGGOM6Z8o\n2+VfQZueLI8ZKQLdvea8skOZh6lD9dnYU4ZiCa9I+1bt9aHMMp7BWwICZeFQ5LpK/7eIUK89Ur87\n0zQ4RGb81Y0x/6sxky62tKmobiio592gGNBA5cIDMsZ7z2LNVz3bNdVrPla/hJzK4EzVXWbpgCfF\nB1dNGbWnlsZpzBnhjSfbxhhj0veF3mq0FNEvv1Q/jzjrvLqvqHrqgeaKASVQulA967D4bzxWBmU9\nreeenqmeY+ZmIJs1dy1BeI1cPtBgDo2dpWI0d6hufdBO7rT6IET2ZAk/xdJnZeHJ5oO28hqQFIAE\nDAz57SaIF3g5duAO8FioAPgZRmT5DRwu7p76JJoA4UJWZAByLskZWUOWyjHR/W7ONf8NnCUu+Hgy\nlgiRH5Ukst7utGzdz/lnLzxHY1Q6GnPVK0rm8ulf6ax9dkV97/KBWDHqJw8KDsEk2Rcn2TmLg4e5\nsLsvhEwM1JkzAgrPAZLRwDs0QfltoPvytfHCfeOkP/ogHZtwMFiIljGcOXctTtS1PKgpGbh3PCBj\nmm4918cKMkGWyTHVXKi2lHGewncURm0vGlN/+J1k8WYh7g9PiqUcF1K/+zzqlwdZEDsJ+RzHqGda\nRWV16ksyY2PNs9CQ+WlUlz4Ixl2UwZZ55psHTihsIoqSwSwA9LGsvuxcaz6aBqglMmomAV8SfncO\nirXWUTarQTYrPJWNeLIatGQK/p8AKDSyWsM+6LCa/NU1WaqlR+3oYlth+EGWcGJlUAcZ5TVW4br6\noQpSZLYAwTjTHMqCVLSQQ66Ont/7sCP+xu22lBpVz9KN/NHUr/re9ynTPGfdqbfVrmRU45FGaSaE\nT+kVZQM3F0KsNPBvHjgUUttCA6xmhaJwRyx0lfrx9d9LveT9c3E05HbInI7JVsLXsv3F3o9t8MXz\npnym9fbqB3FPBFFB/PRnyiKOUQUsleV3w6jtBXn++R+FTnl/oXFfvS9f8vBruBZQ93j7D9rznF5o\nD5bZlL2ldkHVGa85pO7X73Wve4/V1uyKbO7dN8rSX7zQ2uBCbS2chD+Bebn3mebJfdSHvD79/d23\nqsP1G61FmbT88M4GHGIO2dgY27g91XNC7A890w9ThAwxveNu2fzgQmM6j4I4eaSxWLvSWB2+RJkl\nq/qv5DTmzZZsYBf/7llR/ToXGtsOXCiOHdZK0ACHv9NcmF+oHamkkCGhbdQ9b1Sv9q2emwal5Z1Z\nHA1qb5I9w5y9yFVZNvr0818aY4wJLLRvHlxpv9rpy2c88Mg2YzvyOe9BQGWvVb/8pmxyDMdNGYWd\nVZR0MtuypeN38v+tru77cEXjuujKB47mqld2T+N4/F7r3+2xPre4X/7hturxT7KjVEv3izzQOIQz\nWt+MMWZUbZvptfx+GHRZMMUeDiTMEvUll8XZBu9H6APMZO6UX0rASxHPyJ+V32p/df1OSmDTscY+\n/1TIlftfC/0UzaAkOdHnd/9RCJS33+p3Ww9ZMywlSVT1nEHVvVWUjTQeqC8//RUopZnaUjrSmNzc\nyD+FIpqL2U3QERYK1qN6BVCqvG7KJq4Zg9dB1Wclr3mfBQlkrfktp8aw/M0/GmOM6VyrXul91T+D\nrbi8Wpu3EkI/udxaN0agZq8vQWEYlc//nU4nuOKywdJzIeLfPS8YY4yZNuBQQVWqj9rpf/u//qP6\nbSQfs/lQczTLHugaJFCVfb8XdIcXtJ8PHMMUdPHABSIJ4/CCur5rmc/Z16MAPISLcwB/SzYL2qKn\nuVtvozREPfpZVAhTsuUJqOYZ7xlOCzEbQunTp+uqTfYRxZ8WyOnCZSIbHlN6Dro1rXe++JrW+sYQ\npDKKjfE1zd/bqt4Z21X5q/BcfboD39i7ayFYbisFtRVFqXhWa703xZo7k6162fcu8Fv+VfZhc83T\nUUfPy8C5msf2uqheNuET9cVBnK+pD6tHIAbbavMogBItSoSRNdQxgWbfVPVuOIzo+tRD+aEpcYv2\nG9nkyMimH3j13IqFxAftNgEF5saW/Ms/fQrARsrYxS52sYtd7GIXu9jFLnaxi13sYhe7fITyUZEy\nY6eyd00UCDa8ilTVeooS7nymqOkITplIX5GziaX+wRlXD5GpboXIGtf3B7pPs6JocBbWZF9QETYv\nqix+FCacnAuM/n/svdeTZEl25uehtY7IEKlFZZbsrmox3T2D2QEI45I0I/9OPtNIGIgFdhfAqNbd\npSuzUkTKyAytteDD97tdtjTDTNZTvVx/iaqMuPe6OH7c7zmffx+Z7mlH11+VlJ1bRbHouqW/d8jU\nuuBhGRHVPnuuyGDkI/2/T/3mqHosZihJoJZyfKxs1pOPfmWMMeYUJFCMCNvS2oYxxhiHW1HuPjwr\ng4aivTc3ihx6OUfuh4k9sqJsVTQTMs5zOAlQcOlP1OdlmK+nbf0fOgTT5Sxnek3RzOWUIsnjkv6e\nIbLcQ7UhElRbltKKqi48qmsioKxIuasxcMNrcdvimqHQFVFfzOAwqdQUqQ8HVY8A2ZCbM/39/JWe\nlwCttPGRsjDlmqK8ltqFdbpvl4h9pCBbuC4V9f2Zor+pbY29O6EOyoC2mM5RXqkoMt2/UZQ3ijrH\nSka2Nm7JhqonKGTBU7IEOqo/hQW9htIAEXsrarxCPy7gS+qgnDCA/2RvDbUNeJOaF8qiVZuaY8sb\nek4IFYDqEJWoKec2F8pMHN9gW9e6b5R+XbujDLAX9ED1Z2V82qeyH49FNbGnaLLFoXNSVD1uDsXQ\n7iVrubWnLFeHaHjppfrZGQHVEXnHkfDXSulCY15GuSSOkkHbqE+CQ3gy4BCYzTXPHXDDBEHMhVFl\nC0Zlw46w+irCGBiv6jRj3t9UNE9nRfiUOGMbiHMeG0SHGzc77en5DrLcyThqbHDGmIF+P4OfwnB+\n2ReyzkPrc+pC4cah54z8sjUXHFoeuE68JVSGjNoxC6i9Q/o42tf1flAOU5TAZiBJfNzPaXGtWFkn\nzvC226ClQJ0NUF/afSx0XHQFriyyR8MOqIuGfI1rzCeIxEVYNjNEfYrhMU6QRH6P+qN+rfY3Wu93\nftvhkB2MnGRCUXCzygpIpjZIl7gbdRJNReMZ6vfeluZo5UxfNBbK0EfGqJMEZT++COgP0Hu1Kogg\nFIlusurfHIjQsGfPxP+z1rxlL6pBIF58oJQGMxAvNc4vD1WHTsuSa9LfW6Anb/yan6EKSBiQctOJ\n/l62FAfaapM/ADohAUrKrevcTo2lgzP6503N6yD+6hKbdY7x78wBd0hzKs2aN/MqczzHVo7q4tuY\nnqnvJ6DbluAJSSzLn4TXlRF9gHLKnJxpHeUcx6nq1R4LIdI91Nj1fO+nrDMBtdWqql+8IH9WUSMK\nkPF+/q0yxF4Qho9+LbSCF7XC4s9Ch1w8RzEMlZEY68v2I90vSSa0fK7+GBW1ntZB/ZaPlNFevSMU\nwoOPlUnvgWByYBeR9Lt1tX96Zk6eo4A2lL1s3IU/b6RxePn0G2OMMSxfZuuJsnyNivrtjOznKoo8\ne0/gYkMd5Om/qX3nT7XXKcCx9uAToWA8jONNsWwuWYtSOxv67UPZePVUD69eFI0xxvjDljKV1oaV\n++wxQIv6yJ63b9SmyzfiGDl4oYzk0hp8PJ+ortacaJ9prerXNe+yGfaT8HQ4Ilb+/XbFAzdLKqf6\nj+C5sFSARttCaGzuac9wfvjfjDHG1N7o+7RPe6rLmeozIJudggPtzAlXWV97mKqRLSbWQdXuy590\nQI9Z+9GtTdlALqtMdetca2rtTL/b+Yh1AWSQH7TdYCTbax7Cybar/nWHtGdwx+Wnb0DZNXvaG2SW\nZRv7z35SOw9kE59+Kv+feajrT//xT8YYY+rYQYa1P7asPU39EATrnubEFCRqF2TOVkbPyRY0By7Y\nU4TyKE2u6TnxZ6r/6SvtB7bvyabXs9rbGWPMfDwyjbLsIbIq1Fs8K39d2ldm3HTh9XIpQz4Hoe/2\n3x7l3UGB0Qkfzv4PstX6meZVYX3DGGOMD26tKYtdr2e9s+jZva72i5UTVJW21eZHfys/6GeeXRbV\nJhfcj0NQodegpTZq6vP2UGO5/1p+KQcH4eZjzdsp+8Ih9Y+ua4zO38ivWoqOj+CDioU157wgNXZ2\nNfccqD0dHoDuBWWx/kBzI3dfPmDc1O+s/fbCh0rVr6Q85gDJeX6mMTe8p1SjjH1T11WvQSBy6mDr\nY9RTc7wXHGnuNSugve4KMZjEdson6r9TOLaW4APxBPUcl8dC5aLUCS9R9UJzJ4Eio6XMc9vihztn\nDj/ehHGvXFHPB7Ld9kjf9xpaDyp1/T26rjm8QFEzzrtrE5R3g21BhL1dDBR0wqF1+6T19pe6XLf7\nphBfMZcB+Zu3V6w9O/CHBkDyjdTXw4rumWavP+ZdoAqa9u5Dvc/2bvSs9jPZ8uVT2cTq5+yDUTQc\nzq0Nnz6rDVD692lrGm4p0J2bH8mmN+Fe/e7VU2OMMX34z7w7ui6QRVGyiIrTDKT5WH29gDswktD3\nqZzmxM1L+fUJtmUq8qMBTvJkQ1rTj451fRku3GBMNjNmv98HSe7Fr0f5/j8qNlLGLnaxi13sYhe7\n2MUudrGLXexiF7vY5QOUD4qU8ZB9G3HGao7aSL2qiJMHbpbKJQoyTUWudjkrOoHTZWtLUdEBSJQc\nHC++pKKIriNFP0cTRbaCnKe+rClqnfYpEji8UcQruqZootdLdjCm7Njymj7bJUXAljnHDzG3eXRP\n9Ti8UFS5B6ohhwJP6Ux/n0zhLEA5ovRckcQnH6MSU1KUtHhAvTn7PCHL5Q3DxZNAix5+lRlqMA04\nJ8Kc/XVOjDFz9fHGJsz5CSKsAd3TF1bfTMawnl/BbcBZzD5Z7rJR3Tbvi8/n8FTZkXxS0cUxnAEO\neCP8nEXte1Eymb7fmUsX0cgA58EbFWUMnHAGrO4qi7JAjcPi3XDRt/mCvo+hVLOPmkQHdFYUdEN0\nXRHzKepBlygGLLyKWyaz8F90iaCTtRuUyGCXQROM9Onb5axoUvV+9kbZvGZf0d/NT5QJSG5wrvpH\ntWvUlY1Py+r3BNePk7LJroLRZlRW/QMWqmGlQD+pvvtFVEGmsoHcmubMUNUy/SE34vzkBDRE7Uzj\nmczITpY2hTCy0Bq1faECyuey5ZCLTHoQdaY0LPhkSpqv1Y5uW+O/CZ9AIKd6nf6gSP14pLmb2tBZ\n41jIIkr56yUQ0Fgn8sqy+Dnz6azxbPxMNA9aKGFlQazzuvI3R/uynZhfbbKyz9NdfbrJQgyGum/r\nQnOkT8ayQEYuAuLDseC870htmcMzZFzyWz64EvxDsmTYTtcF+oj7heEZii1pzjaI9COwYNxwMARd\nnM0l01crK1NqHYYPT+W/YoxlG8WXn14qa3b8rbJ5v/qfdP48mFNW3kI9uIbwhHBee9JVBQZwWPXg\nyJqR+Z24UbPzwQ2DMkQPZa8xCMN0Sr4jRDYN0n2zGKg9TrizQqjXBZKynTyfty0T1J7CoLXcTjLD\nMXhIXBq3WFrtjfvgHHqg/ptM5Rv7TVBqoOL6h7pvt49iETwqCzL8gbTaH09t6Dmg5KYgOVsVtbve\nODG+ay0mLrIxflBfkylqSSH91guYqhOUf3OP1afQ45hgXVmpDoosNdBeUdQ10inN7+UnqtNiIluo\n3KAW5JAfioMijaBkMkR1LQzyY4o/61U13xugV+NuMoes4eEUfA3YoqXy5x0pW33R4Vz6ie7T6akv\nS0X5m96Vvne6ZavRDCgsFLvmKKw1auwV6sqmvSeljBnhO9xp7SGyKPX4QO6dHchfTZAn3PpK66AL\nDoaX/1XcCaevhVQJoCC08xtlhpP4oCDrx/6PcDucqn0h+D7c+I7lddVj6QutF/4g3BTfaW8wd2AP\nx8yFvzPm4Olb04GXI5aUD3FSj9I1WcSpxrPwt/BtRNTu8z8W9XxQeGsfoygGr9/5txqPCvwe2WX5\npLt/o8xzIqX+evGt1pHyyZlxgHBbK6jtc1A+FXgtOozZ6h09a2lHdesaCwEtvzRvgTRk19pqKPtd\nuAeK6Avx3XhACr/5Wnw8wSmKgJ9of5ZjTjWx2cmNxUJ4uzJgLoWX1EfeJGPyTIo6lmrRzrael4CD\n66YmJIalsBhysw6MNYYD1iM3WfcW/dSF4zCb03NSKSFAbq7EoWLx5i215CP8y/pd9hiVo0v5gkFT\nYxhG9a8S0HUxEJiXRa07V3X9PQP/3mQFJPnxhO+FvrizrUz1+qY+L9+oPtX7IGFAIQSXNI5n+7pu\n/Z7mQn51wxhjTPEH7cnaTRR5QBcfFbXH2PhC/bHySD7r/B80txpv5T8zX+k+qT097+L34hdplsgy\nnuGsAAAgAElEQVSAx99lphOhkGmgkJkDIeQnUz9xyy+3x/Jt2ZH6y+VAJRaUxG3KmH1cpwGv2DPd\nK7Shd4bPPv+dMcYYgHbmHAWbZ18LVXRS0vzKZDRvtz6Rja88UFsTZPOP6LsGnI8R+PUMCOfBgfro\nX8r/oPrcyK8WHsmGHn8h/+sC2f3v/+efjTHGOEArpLPsFbqyaZ9PtvU3/7uQOqM23FSg3arsCx2T\nOb/XfUO7GpvclpA0mYLG5MdLIfau38JxFlD9MnDT9FEPvT6S33Vjux64aQaBIP2hfrqbFWoitq3+\n6fJO1/DLv94Fxbt0H+Q8vEyv/4w6XRS0BJw9HVAOzRPVa+2erku51b8/nQgp2OnLlyU9su3bFhfv\niGED0tSNah7rwXhLcykO2mOA6t71UPaRmGtd8lobAvhZAyON08KLol1dviYL9VgjoT2td/GOKGlw\n8db4VjImymmHm0sh4PqgbJfW1ad9UELDBoizhMbWh4po6UK20ovJ72RXNJ8t7q7LInW6kF9zgFiJ\n4vdH5ygAXxWNMcZMqnpnWObdovNc+9oB/Kb+nNa4xHP519qx/NhKTHPNnYZjEuVAa21cXgWFxImY\n4o3qn9yWTeUKqvdNQzZtIRPzWfVt/K76afwW7phzzfmwW/1UCGs988Ip2HFq7OaWVNZ/UGykjF3s\nYhe72MUudrGLXexiF7vYxS52scsHKB8UKTObKWIVMMoUTPrWmU1lNkjemX5HUeQL+D22dhXlffVC\nGZQdzg82iNClQKYswRp9/B38FAt9Lm8qInd1oehmnKhsqayImJ/Mep2zs6PLojHGmO6entscK7MS\nQJO+dK7sXQgmdD8Z8R766A/vK+PcLHPWdUPR1EiIzC/n1sM+RebiMUUeB90a/YNOe58z2CVFj2cP\nUY1hFHttRXNHnOErl5QRqF2UTGPMuT6yIBOy/SFUNxxhRX7zUT3zMqZ7eUEHWMzRLSdcB7CFV68V\nlUzeVd0vq4pWTkHcDOBw6dd1XSRMJP+WxYpcG/r05lxjMg6pTzbIxlztK7Lch+9iY1sR7eCK6t0+\nULtqPyuynQDZE8kq0xeDV+PoSBH7/o36OkF2L052q+KTjQywze5I/dQELpUlKxRB+WFKtsviTAmB\n6li7K5tttkBHVZVFMiBuLOWwTE6h7TiqT1W4axpV9esKqkxry3DJlFWx1qXqk0eBJ76tuVAr6frO\ntewhd0ft68Ih058rar1TYA7l1Y6D55orC0vtCvTYFLWpzJLmxgxFo8YLsqCnsodsWv1XWFO2a0b2\n77xSNMYYE4TrKEcGZdi5/fntNCzudZ4xtCL5AxAdPt0r4ycLzXyZwr/hMvp7ENSQ3wXyBLSVCz4M\nJwQfYXh7kiHZjmdNbU6gOOAgs+aGV2nO+V66ztDFxpdE1YFsj4UQdFBBLwiajtFcrcNuf43imS+M\nypPR2E6p/wBTGjZlS96Z7uND3sg6f+xz6fkBqFlSqC1FltWfVoYXsJWpvioaY4xpTphjm8pgrMBT\n9OYHZdH7ZD4SlmoF5+bHKAANQdiEwrIxR5QHhFRfxEhMYKFxG5I7CNAOF9nAue/9fImBO2LcQWVr\noHGbo/KxmMg/T8uqT8NyrCCSJpYqTAwkFgob+YLsoD+QHXVONF6XYxQQDpUxMqD44lnQbSCfIhHZ\nbcDlMJUG56kvUXr6/oUxxpiWX8/K9HStZwWEYwLEy4ayPp51/S6ykN9oz9VGS+HKSTba4vdxouZk\nqTYtr6pt3ZY+S6zJXZARo1iLOqsv/CgmuhJk085RSGxpLB1Dtb15pft44D/y+9Sp86QGOwtyczmx\nofvBr9TBBq7r8hcDVJyaU/VPkzP9ixYqJHBsBWp6ziD1fgpdoYj6z4O64ALVvfKR1vjGlfxZfk9Z\nsCTcamevlcmtnmiOrt+DB8NSGsrIjx6/VFbt+Yui6ge6amlF68EqGdpxT+u03+JsACl68r1QAG9/\n1t5n97F4OCqN6i9tGE08Zm1Fz08/VmY6jMrVOevHEspf466besnOevjd+58JAZRY0jp5+FqZ5GvW\nlxRZ0004Ipysaz/9SZnv/R/lCwIhr9mEBycD4uLykDEcaM1e3kRB6lO1xQfC9+oHObLOpWyuwJo+\ngIvKERTMYAvVngVqlc/+8Ee1DYWUB38v5cU0SMq3R+yBquqLsDNi3qc0mvK/HvxoYQlkRww0Euin\n9U31YR4Edf17/CNIzHFftjYFdRZK6j5REJQV9nsD9iLdnOZ8dkO2ULokA4xCW+nygu83jDHGxLc0\nRsULZaZ7Vd0nlELhy1KfQqUkDrdXnbleWJJ/9mX0GbUQlley2Sn8IoUl9evha91vcKb+XflY/ZGC\nY6sEN2OtrM8CmXES8mbE/j0U0t89E82pLkoyCdBeEbjYqoeyn80Hspvcqv7+Fv6P+oWeE7v3Dinj\nCvnMHBRLE8RjIq05HGIv2IEzrNPXehUCQTN+Dym3QBxOL2hqAssaq+1HG8YYY5wB1eH6WM/oNOTP\nUtuat/E1+QFvQH7bm1QdfVPZzv5T+aPr72VrPri6AvBkJhiz065s7nxfiJDlda0Xj75Qn4WDuu7t\nz5rfJVSVIgndZw6y/cF9IVBGM9nIJfergMiuMHbhGDBX3mk8KJQZ/HjrvKjfl0ByT9QPhbtCQcQT\nKOk04Eu60tin8BHL7B99fvj1RqyToHjnbniSKpr7J3/+1hhjTK2jdeLJr8Rz4uPUROWI/Ty8o5mP\npTy2+1i/e/7fhVy6OJct3v0E9DAIUsdYSKVBh3176P04ZboD+TInioyBJAjxN/pso45V2NNcXmOv\n23kDytYl+wm74BSb6DOE2tKwxd7PJ1ufgxYOcoIhl3jn+2rljum1umaVd4rOsb6rFeFUvcN8DugZ\n7bbGeMbYJlAfbR3KZi/fqs8iW/LPy5uy7fpA95uh8NiHp3Lu1JjGeOfogra8hk9pBeT4WRQFKTgk\nd36rvglvwR+Eyt/0QpPvQUG2a6lIlV/KdidezYE073bHJ4zlteoXzaoeuZLmWO9K923CMRVfV7t2\n4IfrsgaHa+yF8qrPEB7A5hFqTn9l32ojZexiF7vYxS52sYtd7GIXu9jFLnaxi10+QPmwnDJuReui\noRj/VwYzZp2jRxEmGSNiF9T3fq+isZcXQj18+aWYwF+eKRI1HCu7lV1TBO+K363BtzGCU+LiVKiI\nHaLT7XPO5sK7ErMiglPO+6EiMmkXjTHG+ODTaBD5j8CM7g7p+ZdktjdQxnkOwuXR54oKu91dPsnG\nkTlaoHzRLCn6u7Si+0aodzKm30eJmkY5azw+V3tSMHLHXqqfHGGXSbYU1TyEI8Y9VpsGI1SDOJ89\nQI0nmVZbw1F9OojfrW0peuhGOao7U5u2w2RmYaBO5vS72gK0UVcR2lny/dSXHDFF8msli6cHpYJl\nRXNnPkVNj8vfGWOMWU7quXGQHpOhItenPytjYPFxPFzRGI8jyqospvrdsKlzklP4Ntbu66z8cAx/\nRJfsVgvEzgDVjLFsdemOzoC6QB0cg7yZtzSWWc4Gp4Pqh9f7ShNdXcgWljPKFDjJIOdyGvOOR/1/\nRRTX7VeU2V1QO/x+XXf+szKxzi6R+7vqD/9c49rCxscN0v/8vY8ShAcUSILz2xX4Py5P1H+rjxSt\njs1kY8dteJPgyRhdqT9KbaLhfn2/dE8Z38CasnQlkDTNpn63/UA8Jn6i4K3a7VVTam3Z9Bs4YUJw\nkCTIuvhBgy3SZHGQihpgm46++iq/o0i6Gz6MoRs+IzKKMz7HPbXRG5btROA+8IO4c8MLMcYPjUGL\njW/UVteSIugRt+bvDOhMGzRD0qPne0C2uAOaq5iY8YDccXPue2rVBx6nMIiOLKptIcZ0EvgfkR+j\ntuZ8AsSK9yudLw/5QQChADSCnf70UP6Mo7nGtQOvSEKZhv5E2bZ5Rf0fuKP6haPql9ff6HnFF8ry\nbe/INtMFZZQn9HeELJYrqAeFQKT8XNccWVT0OexY2mm3K4uFxt0XQQ2KdkQDqm8PxNSYcZig9FCB\n38mB2tMYFv0sfCZ1+i+dg2PhK9l6Cq6IiyEZ8mPNvTqZp/oLslwO+ZzY9qpZTaqvCjnUKUbKxnSb\noEVv5AeHnF++KWt+Hu/ruo1N1SmaEgLO77PQTrKpWE82W+2BQigqgzYh629o2xjkQ7gqGzhfoDJX\n03Ul+BWicG7F6NPgAnQZyI7+BB6esPrUdSZ/2GZudIO6ryOgeichFIomN4wxxiRQ2VhJqx/8T2Rr\nhjFqgzIYX2gdG4PS6qMY44Nf6bbFRSa4AaJoMlC/94aaW7606pPMwutxrL3FyXMpP4SZC6uPtSex\nVIjOUWE6/VH+2crO3/tS60u8IJvpXmt8Ly7I4mfhLtvX869QIdm6o/V264mQONXD41/aEIm5TAok\nT9Qpu6heyjfekHn1Wkn/sNblDGojOTLSoZRs+s1PQr4cvRCSJpKA42ZrQ5ej5Hb+nEz7geyjAHpl\n+eGmya+qz5xzzbNOQzbrWmisV+CF88I9c/6tnnVweESdtH+aeplP2FAQhbGJRzbQOtY8GvRlW/e+\nlF+JZNS3VwfiIqkeqA/W72gNjnne8SrcpoxrsvnamP0iyoZ3doVuePb7PxhjjGmeyTaW81pLGwnW\nXrL6HcPcYG8QBQmTyqvvK0/1+wVqU1P2Gk74pmIh/DYoic6xbCaMqlwqrs+5W3O7xx4vlZLtOLrw\n0qXVP4lV+ZzTq2fGGGPWm/JnKe6XSLEfRsXKQmRbz4tanCwj2So0RCayonW1jU2XDlSPR78Sv0di\nicw4PIGRkfolCn9I61TXZT/S3NoqqJ9/PpZtttmzrd7VXIim1T+tvt4H0ubdntMR9RqHV3PSQgun\n4xq/1K7qef5vap+F0AnAEeeNmVuXpYT6NP5r2VYIdI/lZ69eqc6lS82XQAwOwuUNY4wxy+uqyz7I\nuDYqSu4N+DZOZRu/oHhBPMyGoOoTauPdz1BC3EJJC/7O/rXa+KYmv9G9li1sPoEPCPSXG85Jh9Fn\nldMFR8+E1Ju15YeXHsqmVkAODvx6/hx1zRF8UPsvNSec8OdFt9Spe/e195gYC8Wksdl6qPutoNjm\n5D1kMNQ6dfCDfEn5UmPdbep7L++KJ/A7eeBu6YLuGnMKws/6lUCpZ+2O5mpySfXqlnXf89f6bHyi\ncQjxHrS0Kt81W5MPyjPOty3TKahq9nC+gJ6bQ/ns/DW8LDmNx0pOyMfnL4Xg6ad5n5vLRzg9fOL3\nAy71swcOsUaZ9RaewsCD0C916Y8vzcI9NC7QToEc++Ca9n1li3M1qXc/365svPMUBae7GqPMtvjP\nnv9ZnF7LYfZPdzWP4ry3jjsoKJZlQzV4JTdAlcZAzxdfqc9XUJWLb2v+X4OEiZxySmFV91/Ax1Mr\ny1bHM41pFK6tty9QzZvC6ZUFSdfRWFzva24to568eQ/V5aey+cun7INjGusc++wiSms1OGGTcODE\nU7r/2zf6Pu78y2gqGyljF7vYxS52sYtd7GIXu9jFLnaxi13s8gHKB0XKOOYoNHD+cO5Vds2KNk5D\nim4mPIqQ+fOK7sZWFEFbQskgsqQocTik+4xR1gmQgXZ7FNnzkw3yo1rkBgWSRKHg5FIRLhfcA164\nHsIx/X4ZVuryuaKXK2uKXh6eKLMzRGXFE4Tfo6iIWm+sSP/VKaz1dxWNvq7xPBfR7r6uT3O2rjNX\nxiGzrshgDXTGYKhh64/VH3MHkX/oAUJp9V8AVQDHzGHCy4o+hg9QryATFllCeQpm/mmPe/ZUlwsy\nqQ2yLA/CQjS0OVedu0eEmfu/eKaM4R7a8R54IHJh0D7w+ty2eEhnj5qKhs6J/GZXFZnvdhUVnY/V\nN/lt1W/I2PcrOnNaQ+EhEYX3B8b9hRtuAjKsjaKiumHQFVGyKLWyxs7RVbS4N4Azp62oa2pVtpzd\nVFbm4Ei/v4FV3gfb+c6esneNup5780pRZhfs6TFQT9YZ1UEERNIZnDlt3Te9ovsldlXPLpw2tbqi\nw44oCmGcU+fYuWlzBtgJSiAZ1/WlusY5v6IMcJgs5LPnRfXTQuNYSHJuFG6BGUgpZ0RZqn5D/de+\n1mca9aj8pq5rkFk5Pxd6wE0/50BNtMmKORy3R0E4ekSex3CW+MgWgfpywHruok1+vJ6D+dq26txV\nG1PwFflAoviD+hw6UEdC7eL4TVF1X9UcGoBOiEc5M9qSbVhIujIop1xIfdJFtcgPSmsAP08bRN8U\nlThXSLa6vqI+uiLDHE0xvzmb24ZnyGFBYUDWuUCguEHK9PA7z/6gjGgbjoUCWTIHSKMRnDBO0FQh\nkIxu6u8HgdOnnYGI/GQqIj8MDdUvKLlxV/WYOXT/mUv1HBnZhK8HnxBIwAXcMg4Nj5niA/pku9qD\n99PW8ZFd63lUn3hA68gcDrEkXDGjvPytE6TQikPtWcDOP6zr+jrrzALVgQYKFPOefu8l47N5R5l+\ns0e2r6/fX5xqvAYl+YBy8dpcX8rPZhKygQznmpdQqIrBATWBG6zIeeUpakvlE93z8q2QgyPUGOIo\nu4Q9ut5SOthYlu22/erz2Vx9EnFqTDyMyU4f/9jXcy7heBm5UCao4A8TsuVVlAtTWVThChp7757W\nnZ4LpcAFnApd+bWxmm9aKIcN3shPnvj0vedQ94mh8hNJyjZj+LEWKnB5Mo6tE/nN25YRXDbjPlw1\n8FDlyRpG1zf0d3jwqpx3T2eEDFn/CnU5eKmOXgvtcUpm2c9eYutvlPEMgow6gCOi+kyIlmhIz0uG\nNO41v/q5sK3z63uf6u+9a82944ODX9rgdBnjY8/TgOPt4PUhDdS4WRnezJbqG2TvVG2D5vpRCM4y\nnA6RlLJ+n3wl1ZVUVP19AkdO8anWHf+SfEIWPpNU1GMGINzOrvSby6L8zzprTSCqfdXZ10VjjDH7\nRSFacukNY4wxD/bUV0egCubQBC1/htKKR7bd4kz/0qbut5xXnU8OxU1w/lx19YF8WCTgZ2i/nx+J\nhDU2Z69033pDNp7e1lrrfQ5/z0u145Pf/b0x5h0/Xe1INjkbaQ7U8J+JueZ6Mq3fhb3yC4OOFu86\nHCg59rEz/G2ETOzgSHO2+VZzZxVejCTqcjX4hAqfCD3hQ+20WdLv13bVz9dF2eLNkSZj8kv2Gqw/\nDVSa2iBUMyn1dyiImuqFBqiZlZ+LR+Rjeindr3EllEilqr3j5u6Gvu9qXTi/1vdRr/axQ9aPDhyN\nKbhjgnH5thKoj8SOrk/mZXsTt+Zwx5KsNFrbgqC1x6DYLk5B2iRVz/5OjfuqP9e35Utc7CtuUwYO\n+bVEQvOsARKicqIx9YBsWF3T962Jvj98pnl3eii/YCHEMxHNt1FXNuaC32bgV1/HQS+04VJxHGre\nF778T8YYYx6m1Nd/+Nf/aowx5vgHIdsiKOPsPf7EGGNMjv9bY1SEt9MBt2QTdNR0orVy+0vZzL2v\nhPgbwCVWeSvb98DbZ5jjS5sgMgeynWhOc7GEbdeP5f+s/XsOlamxSzZfPYYwD1VBD/xA7haKj375\ngEBYtnr/b35tjDEmGNWYOzt6zqtvhUAKs7e581txySThAvr+n9VPF3DlbK7Kl0x4Z3RNWGdQ8OlP\nZCv18ftxysxGmoPdPqitdd7L1mVzB9/zHnGk/roDh9dNXv3kdIH66IPuaoK05SSB01KAZC94zumQ\npTX16xbqtMYY4w7ETKN8bmJJ7VfiK2rbFcqHPdTj5nHNg9Sm6tgp6hkdOLoK25pHRygZXvNevZRA\nCdAvfxVcWGhWlBtBcW7y3roBN9bxj3q/brY1Z6Kcwji70twoX+u6j3Lat023ZMOlr0E3nav+GVSb\ns375w169aIwxJrekd8bChupVYz8Weas1PPOF7puBJ/TqudbamwPZUqzAO8wdvmfulXpq9zY2Es5o\nrAfTv4yFsZEydrGLXexiF7vYxS52sYtd7GIXu9jFLh+gfFCkTGuu6PAVXChpzqZ2yVCHOfOZWifl\naiFCzhVZi5KxqJOpdBHl9BqLLwU1FRRowij/OObKUDhQWIhmFJmbc13vUvdvcfB6Dkt+q6q/1weK\nCK7Gdd6xzTk9v1dR1cK6oo8ON9r1CUUlF2E9Nx1XPc6P1f4YKIrmUJH+YFztOoQ1/8lcUejOJRF9\nmNUbZFwWRK29nPs/PVIkL+gIUu+SiZF9cdCVllZ7Au4Td0x91YPHJgkfR7erCGx/qAh40Kfvv+O8\nd2YFRYSuxuCa32+GdL9SVVHMcEp91XMgQXPLMgXN0O0oMh4qKNIeQ8Hk8EdlAIMJjWEsrwjxzTdC\nAczrqm8K9MIQhRpPSBHyXk9jMgX5M+ppDOKcgx/P4RGqwyeCKkk3IhvwgziKLel+Fvrh9Fxj753p\nfutPNIYhkC/P/x8hirpnsoGNL8lUxGQLL/oaazecCC0QQRYo5M6yorehkH5/Tran2oCtngyrfxvb\n4lxmt6X6ROBuCaIYFoqilkKG9grVpMaB7rv3laLn/nX6d1+ZEDdpyyCZ79ZUc2QKH1TsvuxjGgWl\n8LPuZ2XEY6uyCz8Hto9bsivPALTHLYojAopnQ5lXwAEGN2KGQ9SUQLyMPRafDmgA5kTU4pIBiZIg\n2z1CTckBp1SZzGaTPlpdUyQcMILxgnqak0H0jGULg6b63lIccPD7ABwqSdjavTP1aQ8+Dh+qaguf\nLnDD01MlsxBZ1f+9ZCCMA24ahMucZDB9LTgJUJgJh9WuLj8Me2XbLh+Iw4HFZaD7+Dn37nSG+V5Z\nqRHduaDDZ7DTt+DhiI3Un3HUPO7/5nPVD76TqA+OF3yLCz8/aKlffBPG94GyVQY0Q35JPuq2pT+z\nkEQanzIZfL8b3wBpjzumzLFBHS81Qa0KZYWxX+1wXoPiG3OGGWRj9VQ+qXuiOe56qzkYz2wYY4xZ\nyZDN2mK8Ev+zMcaYtbWqaXB+2+IUuUJR5QokW9LIRhIgy3bo815L39/kVYdRg7Guyc83sQnfEA6t\nlmynMRNSIhnQfebYXP0GG+ypLWNs0jVQH8wjcMS01baWizPxIDO+J6vlC2iiezewATgVIlnqHdW6\n5I2DEjCgh0KaU94l2mOwtTqcXqeoxYGeqjJWIbL/lYoyi6PKe2YusVk3/CW+uPxSgPWxS6b49Fho\nAieKNTlUk5zwHB3C8XJ6rL1Ndknt3CajHEK948V3PxpjjLlB2SyRlt/e+1RZvRmZ11pT66ql2Hha\nhKOtjmKN7x0CdS29bExH41MiMz9HiSiJStf6R/LnC1C6x9Tj+lK+KhwQGiGR033XPxPnQzSj8Tv6\nUevrWzL7wSS8Kh8JCeohM13vNsyEPUDnVLYcYS2OYcO1ktam64r6bHNFNrn5uT57l7Lt6wOpY6yu\nCS2UWkXV57my3tcnsr0Ee4Gj5yBkWMMiqASt3xPHQBBOgF73nXLVbUqQzGioqM/KsdqVWdLY3L2/\nYYwx5u0Pqk+5qTFK7+n5vbaQG10yraalvhvDreCERy4OMrvf0ZraQf0jvSQb8qFIae2Dh3ldd13U\n86YfacyzoH2Pm0U9DzXAeFYZ5Zcv4JDZk01sr2lc6m3V/+ZU/i6P+smpX2t0jf3r9h58UDn1Zw1O\nhgHXh7lfbFO2XfkRJS9QbCv3VT9PBm4cULTGA5LUBR/LFZl1kD+RdWXk3SjQNE+0h/MuWE+XtA/v\nojijOnWNe1WI0ERK690lvCQOeEFyqMhM36hfBqyDgcDtSWVKKIxdzWTb067G1oE6ZTiAwhR+JefW\nvUcgMcZs9FZ+o/k0A3F+81Z9fwwCb+Wh0GLpOIo0qM8dvpCNOQPyU6mw7l+GsyrgkO2uwq0Ywq+0\nzmWTr78TQqZV1v8zOVTgQCRuJ+QH7n0m5FwGLpl/+cf/2xhjzNs3GuN7DzVXl1DBc8/gC3XCdwRX\n46SjtTiyJN8QasovvXipNTR+ATIkBgoZPpAxCKP0pmxoGRseWnuPsGw8s6H6v/5Wtnn+k+bS8j3t\nKR6D2LkoyhZegSKOoUK18huhzoIWOhheO2vdvQKtFYm+42i5TYmyN6t2ZS+9nvbvljJjAnWsEgii\n1C7t2VZ9J6iyOji9MWmq3Z6kxicJUj3ole+pXciWZ0HmBEhcY4zJ7qRNuVg1oVXNd7dP8zqDwuIU\nNbJhUXVc/0j+uQLn6dWlbG3pieZP5pHWxLc/C7XbzKIaymmA+Vy24IMPacE7zlVDdY6m1DcLlHEn\nvKs5XfILGZfqaSlwXXXhaAym6CN4eS70ve8O3Feo4V3uq8/zBfXdOu8Pr+EsG3ZQiztR/SIgBVM9\nC9kj/+aNyc9YJ3c6pRbPZV1ZBqnvQDlz/peRmTZSxi52sYtd7GIXu9jFLnaxi13sYhe72OUDlA+K\nlPklM0u01AVDtrOrz/OWIlZ52Ns9ZOMrMIDHYaR2w7Yf9Oh7X0wRqylRQ45/m77hvCMKBkPYm62o\nag22dUNGOjNUpMvBc9ukhOtc598VuiHB+fYJnAUBlImmPrJ+BMY8sOS7UI8KkZ2cjhTVPOP86GZG\nkbceWcPJRBHKm8uiMcaY3Yc6A3dI5uRjlBjGN7qudq4IYJTz6q+fvjDJoCLCHbIx5QtFJestRbD3\n0Io3ICkKv9G541lNkffCUp42KJI/aujvgYLu9xqW8CD8CzMypWW06tcSIGr+SpTw/1/6Q91n4ebs\nLNkjwxnXTouzqWQiJ2QkaihxxeC6iXCOcIri1WSiaGeP+gzglBl5dX3UqbGKTGBxtzhthmRrPMoa\nZfOKrk4421l7rqyc1W/BXdWrALLl/FBjfP1GSJPoisZle1kZixqcDdMrtWuwUH06oLSWQDUsP9J9\nqyjDlJ5bnAJwLWwpc+Gey/gvS6rXaCqbWt9T/UdJRYGdZFi8IKIuqF/YR5Z/Q2eHpzW1s9JQf7hR\neHAGNGdqZyCE4por6U2ykTX9//yNbHbsV702dvT9HBTHhMyMzxkxty1RsglRMpX9kcZyBiJ6s6UA\nACAASURBVAdMxCNkxHChyL/fOtOJzc9QMHBF1AdRuKQWZCADIbVt6lAb4nBhXaNG4fTr08tz3Kgn\nOYnsj6bqsyBKYvGssjaemebKBLWkMf4p4uc+KOV0faqPpWLRhJvq5TNlJvIj9d3qjuaE16XPkF/3\nt5A+TVTeMi4yBhFlFDwb+gymVL8ZhEN++Jt6jPUAv5zLgTQcM0fg4FkmkzCCn2pxqetaXtmoP6rf\n5eIbajf8TMMRSKSZnocbNVCMGSftiOFXBwm1YzJ9P1/iZ24EyTB3Yup3/wj1pbrqUW9pDnYqcO/M\n5E/9U9lLzKdMT4EMSSor+4jsqv1jvzJI5prMD6iX7lPNqa+pTzhkZaBVr7Vc1qzd1TxbUoLRDBry\nF1dVECMV1H6uVafAuvokX5B/frAqP+KEd2wOYmYwV4aw/FZr3BVKUK2pahOK6HehgPxCCpRXLMd5\naNZqb1DzdgE/kdOjvpu4QUk14AaAc6aHSlRzoPqW6/p96VBj0PcpIxvyMwfnnDeH78eJESTdIHMG\n+H2H/OHlG3iJxuILmbY1poOhnh9xv98Wxw2KKpDU2PjTsr0GfBeVc60rAa98ydrHWieXV1HTQ2Xp\nogYKYE/jsg0vig9Os7coDF3tyx+uw4Oyui7eoQGoveJPyjjPsPV0TvVyhFXP/pjs/cD/SxsGk4np\nncpu+iCGUqAU7n8qxMucy26+hjsGRNb6ltbpDHxIzYH60TPX8y7/pL3Tjz9KWSMFKuXx79QPfvgA\nLl+U6a9DM0HxcIA/XNtd4Rn67c2hsswp/ELuvtbEGln9l3/Us5z449X7WnMrp5pPP/wopEyGrHh+\nA54EkI7ju7KZ3bu6v3HAecKa2i2+H++QD7WnhMUlBjr45JVs4x4Z5JNz9d0+ylRPfi1+i/S66nl9\nqLncn2putIagRslQBzf0/84x3DNwMyw/QlEsBmoNtc9EXHPnYqg9Vw2VpHRWtlW8EeqgA69QIi+b\nnfysuXVNNn7pkfq/9wKV06LmaDwthOPWhnzMBQinOlxpkZie043Kl7wFGfUJiKbIDutNEZUm0L03\nm6p3AUWbSAaOoDeyoQC8hz5UCG9Ajjq9IGKyG2pXCf7DnubKffoj3IDXxBgz7xrTn6CsGYYzw6t2\nXB0XjTHGfPG5UBEdkEStqwr1uD0KIoDN9x0aOwvVEwPlPqqQTb+U7cXYY+RXZLvOlMbWD7qr/FY2\ncnqs3yeXZRsPvtI7SB/VU4sH0xqjVlVjuuhqP3X/kVTh4msg12903Tn79PPX2r/1QWZuffFI9VqV\n/xihillpa27WqvqsVGQDb76XP4nCz5b7eMMYY4ybPVYFFTjrVEKb/WsCxPnjx+J2OT3S3P7x/xI6\nznNP7frVrzU2lSuN2Sv6I5+UjWVWtJaWURk92dccu77R3OyV9Pc7n6tdyxtqV4m1+vQ7IWQs/o9P\nfycUq6WAWfxG/r3WglsHRGLIqb1LOPl+nJnesLXH0v+dIOOdQdn28l3Z6KtnakdpXz4gzKkQD8jF\nEON/XdLnTkZzMLcMvxJ7J2dI923UtA9YCr3jSQpntszxi+9M+AYkShb+TU5ujJtwH4KQdi9QOeV0\nws/wY1ZLquvmimy+fqIxGXLyZRqVbaywFg4L6utqT3sFbwN1ujHvfOxTFyHU++AP6kXhqXPr/i24\nEYMFOGfv8o70XP6rgZ9f5XTHzals8QL+uoef6r260RKSrnat7/sNtSuRBuGJWlPpWvWzEDErG3rH\n8xAPGL+SLTWv1Q+RiGwjoGr/h8VGytjFLnaxi13sYhe72MUudrGLXexiF7t8gPJBkTKeiSJPc68i\nYH0yEPEIWaIrRai8C7IwCiqa/SNFrrcekzGBBb50pMzHx58rSt3kHPoclEUur0h89UrRxqsAmV7Q\nAkH4RvJ5ReaGZMQDcFGEEmTW56rICO6ECdm4Wl8RtydJZaNiZKwXKEyEiJo3TxXRM7DAz04VtaxX\n1a4v7+nM8Epc9ej31T9V+AA+ggX+6qXQEZ/f07lTb1gRxx7n/ncfKut29vbMpJYUlUytKwvihW/G\nO6fvp6rjKeo9201ley44K+k0il62LshqwYCdSFjn9pSpzBT0d09Wdel8jUpHRs9ZgIa6bZlzZtQD\nV4A7qChle6gI9QJt+eQq56kb6tsuSJjVgs7c+onKdg/gaCHr5IaAxD/HFuG/WMBmP/SqX3o9RdoX\nAbJY9GME5MrpS52Hr1/q+X6j++TXFXW1+u+MTOrAKGr6+L5QTh5sqfKT6uUYwl9BfQJz2VikoPOQ\nc7euP/n5G/2+g1IZfEXprBAoHdSOKqhP+UN6TmxHUV2v21Lu0fgELFtrqt9XHilbFCMDcPZWNlcd\nas7t3pWd+Mg+Gs7nB0HOBIgOn52SDbQUGzjLm4kpkn9dkd216rqPM3V7TplWXZHzwx8UETcgK3Ye\nKMswdyhybiHULK6ZEWdTu1Wy+W1F8kd99eWmhRyx0FRwkDRgVQ8FNX8jKCBM4HCZTDQ/WyfKBL6A\nPX55W33uCMnfuCJ6TudKc6r8VjZklhXJj+ypD5MFZYF8RmN1BS9HnPkeJgviQ3XJ6dHYjUF5ucf6\nf9irseyT9T/lDP5kRLYnIb8T98JHYnTfiQcbDKNmhXyVy6CA4CIDEFa9KmRoh6AlXD5lDpZAFo1d\n9Bf1bZItc6MwkQiSdQrp+e6Z2vkchFCtrP6vNm6v0GWMMRP8cJ9z6Qm4FUZkNqIL/X/qA4GZJJt0\nqvaVeijzXOi5R9eyWV9D45TNqh+Dy+qf8DJZz7zG07mj7GO5AVqRzOz5GTwypVMTOda8jWdy3FN9\nlltV3/uymv8DFEmqRmPZPkBFLqV57g3KZrITeNbgMlh/oLbEWQuvD5l3IAEdICNGLf0+6NXnAN4f\nRO5MCB6kod9S2oK3Ka41ObKlMVvs6gIfNtUk0zprc14b7ppuTd/3O3Bz9dXXzon8zWSoMYqTQU6O\n4WbY0P9HHX1f98j/eiqag644m4ZbFjdcZXP8d5O5eQlH2CwiX7L5RGtrBNt58Uzr3xv8+2pe47iz\nqznVhs+o+Cedr99/pWxiZFX3y2zKN0z0X9O8lu3N3OqvlWWts374WDrXGu/LC/mYHrwjxhgzGvWM\nF36+JcZtHWU1b0A+4e3X4lsp/qTrl3dk86GUPvdBcSx8cDfM1M8lMt0ru7Lteyj8+Avaq7z6RqiQ\ns5/VH4FIxKzACWCy+sw+FmpojPJIGy6nKfuj4muy0SWtGXH66Mkn4q/wpTU2198r87kUFSpg58sH\nxhhjgmn9vgsqNQgXWP0U7oGa7hsOgsb0vF92uz8AKQNHVoJ15QB/v7OhufWItfG73/8XY4wxLdQ+\nognm5grqQig59uBgGbr1fRK064jM9GFRtjhBYSfilJ+ZgDAMZLUAeeBSvL7RdRZCyAE3gqUKGnsi\nX5Jf1vdHqC5F9mQD6/f09z/8v9qHtxPyX5E12WIQvqqbI3iT+H14WfWsPdV1N6gbbt7L035UqEr6\newgUiIFjK092//x72Vp6Bm8Ge7LWS1B+F7KXBx+hRgU6e3Koes5AtrvG77jHIpGkaeNz5tuoLS6p\nvc+/Fjqjhj3G0rruBiTQ3JI3vUWJcG3MB5rJBTSNPcbMobHz418rVyirDoREC1jymMfwk6HymduU\nbd37nRAvHlSJmm803wz3jaP0NbnSfTy8W+1+CccfXFUHXwuF5sWfxwuyudV7+tyFE3DA/K8zJ3uX\nIDNG6suZGyUw0AQbH8Mlg4LOyY9CafVA2MeZAx4UJq8sf5hEGQ0FyPyOfEUe9Jyfl8D5VH4xwh5h\nDqL++Z/xWx3N9WpTNjZ9qf4L7WhP+Jv/VYpoE1C93/3rfzPGGNOtouKaU71d9Nv5D/KXLw81R9aw\n0Qzqsx64OSP+2yO8jTGmxR4oEQVd0Vc9y3X5tm1QYGnQJOOO1oVpTHNl0YbTcUm/S820Tl3daI57\n8b2BhHxCqiF7OK2CDpx1fqmLLxU0C8fQLLrIXiZBLrMW5/Lw8ryRjY6ZDvOI6m4hm08u1ee5L+WX\no1vyc1WQbOkha1hefTVj3xdu864XhH8SPlAHD/KClPRwKqF3rDHOPtJaPGnD+dqUH16/p3erFMiW\nOra3ldNYJbLy32VUMKvLuj58D2QOyrJnDfXldUPPi+Hf28vax139Wfv26Scaywjv9QvWnVGHd023\n9koOdcd/WGykjF3sYhe72MUudrGLXexiF7vYxS52scsHKB8WKYMii9etSFaI7E4CFvezpqKCoVX9\nP1ZXhM0zVkQqFdbve5ynG04VCZuCqhiS8a5fK+I14oyxdV4yFLGQLBzyQknBCRIlHNZzYlkUIsio\nxAL69IUtnhOUeoqoJ3FOL+ijXfCT5DOKOk+QQFonQl/to4Iy16cnzpm7dWUynHBP5OHnSK6grLOM\nSkqQM7ojReE9KCr02+qPiWtkGi39O5Uh656A94IoZTKiSH6U7NGMjFqciL8TpEbxraKGASLULfgY\nAk5FqiMpRS1jICCCZPayOT33/Obd+d7blCk8G94QfD0oaE3qisZOfIqYh8jeFzk3uJirDzJ3UMiC\nnbxd0vfBAoghUFGTY0U953DLJEFBtGuq7whioFBBY5/f0Ge7C3cO5wr7ZdlS/oGixFnQAWcvyO6j\nxrFxR1HnxK7qdwXXSutGWaDouu4fImvjsc5JxlFTeqlocJ3xSBO5X99S/3uRAqo9V2ZjXtY4rX6s\nTHac8+RNuHe6Jd1nRKYlkJQtrtwR6qvJXKyCrgjG9f0SZ3irExA2PKewp8ys6crOaifKekF1YXZg\nyR+bAc/X/RMF1WuZLORtyhTVsQFopPAA9BPz2MXZc+dU89sRkc34Z7L5FjxCLs4HJwpE/lEgg9bH\nHP6kzF8JDoS7H5ONisi2nQtQBRONWR11pAX1WZDR9LlUjyA8EFO4biKoO0RB3nhg1jdV2dibayFF\nilca+yBcJHnOzjqRkbJ4MeZwUv3SbmzbA8qgW7dQcPCPcLx4AoLR7dIfcJOmE5A/nA00F4dkeYyP\n8/MLeEWu1WFj1J1yZDi9ERAkPjIUC/XPfE72ENTeaC5bD5ItHJHFm3Bue86c8M7eDykT9alfO3Bb\nLKKg3iayhyGqAHmUJaJT+WvXrp63jLJO/Vq+pwJqcFiR7T5/qvHxfoNSEcnO+DroEZR1wiiYra2L\no6FFRmh4VjRFsjndb4T62k9jkyMUshBL8HjIYgG6vAK15PxebVkEUQwxepYfzpn1oNoWhCPs8d+p\nDl0QbNcoFZRK8guVb/XZgbctAkHbxFImC2nuTVHSyrk1f91ZNT67pDXQiT+JzOFqScj/epap31z3\n77G2O1BGmxghTbxky2IgAqeod/S9uq/PyRhONRcsf3xz9k555TbFAxdEu6brG3BoheGv293eMMYY\nE0xqDr09UIa69IMytHHas/cr8Yd0h7KZk2+Uae2wXiyRsf30V/KvTlBobVB7PVBhI/juukPtWYbQ\nKM0G6g/XVHZxD+4BY4zZ+eKhOUUZLtCBB6Ondj17Ls6Ho5/EwxKMqV2rW0KZ9ECReAG0Frb1dyd7\npG5X47vJuupBnertf//WGGPMxU9CG6RX8ONPHprAGOXCgMbUj78rvlFdak+19rjgR4hm6OsdrSEZ\nMpNuVONe/KuUokqsGdu7WmvDEZS3jtSGellrzqRCx6R1fcCrMQqntJ/yTj3mfUqjrOcG/HKMyVXZ\nchAOlYN97TEefSUEczyivqicqf2FvGwiyd8H+FnTki1f1mRLH/+teC/S94RK2kdVc3AmG3K54Ci0\nVJicICY1NKZ+LP/keqIxzMCvd36m+1uKNJt3hNL6+lJrewleuMdf/tYYY0y2oDE+uFCG/OGW0FHJ\nHa17Z8+VKQ6l9eDUivYgp6/U8ceHsomVu6iUPIB7piOfU73Rc7dP+R6UYCYOnxP8h3ufqT/CTo1v\nDf/v6cKdRobfDT+Vs4MKq+sdiizoipoOiJohdhlLotoysZCbqk8Ku3J4QOtNbo+Umfs1XxYovbpA\n5dZB2yaiGjtrTBo+/BWo+aFbfisQVl9tfyrEd3gZThr2uc9faR67QfYlM/LDv4hXgiq4gWsk+gIe\nIbgkx6w3qU9R3oL7qluT/zlB7WmA2tAM/j4/6qQDuAD9Y/X9R59oPdl4Ituf4M/OUYp1oVyT2oBr\nMSc02U31T8YYY17+mzjOtj4XEuh3/4f8aIe5/vU//EH3xY+ufaLfRSJq/+FLS/VUzc+y7jX8ameO\nd0nXVOvn0VXRGGNMGz6T5I5sLw1H2JunWoeb+/KnaRAqax+rfT74AC9RehvyPnLbMrZODsTg6QMm\nsdAWz8zYo4RRFDKgfYO4jEvGJejRHFhKa/x6bb1nlK7Ub2vsq+N3QELeyAd04GcyxhiXf2rcHp9x\nutSGfldrx3wAqius+Z0Oa/41OuoTn3U6IqK+7sF3N25qvsbhJysfar434eBacWpf1ESptc2i40vo\nuQvQ/QMUIT2oE0fgvesPhDod83fr/byPAuwMm4wm1HftH2Qbo1VOzoQ11vtjoZ9OjzTWuU9kk24Q\ng+N/13XdqfoqO4QjxkI3geS+PNZz0zn54Sjv1m04rFIBUGXDv4zMtJEydrGLXexiF7vYxS52sYtd\n7GIXu9jFLh+gfFCkTBeW9OFQEfX6kTINczKuC7Jl044iaZ2a/p/bUpS17QaZQnQ4T1YuwPm+MFk0\nP4pBSbhfunA6zMgoj3pEHxf6u58zrC3OI8Ziimw1e4qUZVYUQW+UycK5FCnrk+27ulHErFpStPK6\nRzpzpHY04CdxoTpSn8Bev6Ro58GBotRhEDD1ip4bh6G8VlakcXv9AbeFJ4V2PP5C0ep+RxHPVG7V\nlNBUd+cUhXTQxj4M2n4//DnwPzSuFAFfwJSdX1HfHL9SXe88UpSzyhnMZgu2dbIXtUs9bwzreq+D\nehFohNsWL6iixVhj4CKb0amjnOLgDGdXfdk6VmQ4QmQ4AIrhTV3Zmg7nt9NR2UqGs77PO4ruOuEP\n8vrhxOlrLB2cc0xiezNQEc1DFA040x+KwgOSVZZ9UVf7ywecFUZZJ/Wp+m84VTsuyM6MUPiJhTQO\n7ihZPTKms6ps8hgbiaHUUNiWTXoDet4M5YdSUegOv0fR26U9ZbEQoTLXz5XB6JX1h7VlZRL8WdVv\nCW6g3/+Tzh5PUcyJpdVv6YL68eW/k00CBZKGHX7Q03h04JqJb8ANkVO0+eZQ9TMj9csqmQ0rQ3Cb\n4mN+3v9I2aQ+CmLjiebTnLb64iDzQGIsHGSlS1ZWXX3hRXmGxK1xGv1jUMeGx5r3iznniZn3xqNP\nn5XVB8ny4DPN0zQKDOMpKnJj2cwEm45toXAWCnB/VJO68iPtojK/XgcqRkvK0LpAiS1ACnW532gg\nv+HwQXYDgtDrlW2sPlKGdN7R771kjzwLzZEpfBSGTECzqvo4EwNuJ1tLcA68yXnzq0OleZKgC4Y7\nKMeEUY4BMTM4li0//1aZihzqHJGMFCVmtNPtlE2tritTU8B2kqnbo6mMMabfBzE1U33abhTX3PBI\nwasUR6Gundb9vRP5khQ+Mr8sm08tqV5ulDTKA3wbyhCNgcatRga9YXH4XOm6TGxD7U6i5PbkM7Ne\n0vwq3dG9WigEzIfwNLT094BV54jGLst5ZYsLqzdUXYMtkCUoDp7MNabhCuelWXNTqCxFvSgipECb\nksENsNS5sZVeTH0XNSAvXWSRW6ypJV1gKQQG4Jiap5RVd870/5hLNuLPqN5B1mpfiLEBDWBQn6oy\n9xoVzdUB8C6P0d+dHrhPrmXj8/r7oamaFc2Bfkdzx5tVvQrbmpsDo3p8/09CazjhVMhsyVa2HlqZ\nSo3X6++VfXOhUlXY1ZzdAmUQTGv9ukRd4xLbubnUHIphG+n7G8YYY5JkaktF2ZJBcTJz784vbahW\ne+bijWzPCwqjSn/VUYVazuv3H/0noR488JOcvoYzDpWYDOixq8OiMcaYAP59WIXX7kSZ+uOf1B+x\nddXvo99KRcXMnKaK/btnWlsubjTfX3yrNSMMKvLBY3EHplCNHDU1prWhPluv1Sfnb1j74CRIkqkd\n408bKJa5WiD7/OqjaEZrdyKo9cJC4lk2ddvi68kGSmeykdym1t7VbWVYX7zWnmBjXTaTWxG3geWn\niy80B3yg3QoPtCbP4dFovVK/3IC0LIAqDQd1vzLcCQlUiSZwMYwy8MUtqT8u4HSpwrextqc1/YJ+\nvCgqA7zzmIz2gWyyeqi9W/8Ryl33Vb/LP/zZGGNMb6R6Rdb1nMG3Qgl08f+5e0Iv5HbkN09ew9Wy\nr72ADxXBxLLW37NvpVJSh3Ni8yONky+h63tX+t0IVEEsoHFf+MiMj/S9Y6DPOdxrjqj6czrSHDbG\nmLFrbtysA6YPkojEdQTOo3JF9pPd1noTSLH+D94p1fy10q5icyDg4ssaqyuQ2scHmp97MT3DR1Y9\ndQf+o7eqg6VuF0eRqg/H4x//8Y/GGGNmM435vd9ojzEDmTNlb+PHFmZwHR78u+apB0Wd7F3ZboF5\nXnqLetyJxrLT0fPWVuQvVj7SnsE90Jz58z9r/ndQqt34XL/zo/Lz/J/FeVj6WX5wdU/1HAM/LqDK\n+umvf2OMMeYlSL7wsurj9qvdp9Tr/LlsNgWHVWZT/eoMw+vG3HTNWI9QtUrl9HfHSP1zzByosedb\nXtXcWL+jz9ASRrEo6v6c3gjtcAIAjpbyC/m2pz9rzhZA4N+2TFsaJw9KaksoRNbd7N3of1cXbiJg\ny3Peb/p1VAevtV7mH/5O1Qb8NwDJ2Spq/V9hPVkG4Tg6f+f7YkOfCQYDxjDfAkEh1zyg7itlvad7\noqDsm5oX6TwnS/Dj16B16/AgRQL6fRLkeeVE/s9xX9clgqwxqLk5voCfh9MW5zP50zKI6tya7pNZ\nVf2mVZQjeadzDUDfTtRXg4GeP53wLjqVbcxQSw16UfWsyCbrJ+pzH4iXXEZzZNbXWt9oqR983Hcd\nmxhM2KN11f4gPH5D/PWAOEF09peRmTZSxi52sYtd7GIXu9jFLnaxi13sYhe72OUDlA+KlLHYiFNR\nRc7nbkW2PE74QwKKiJWKiqBdolKR9Ovvr4tSNXn4WOfOO11FF6EcMGGvosEjsmgdMuYNGKz78KyU\nyBaWp/pdAVWOw6OiMcaYjTVFF/e/V9SxkFV27+0rZQA2CxvGGGNcqC2NGjBqJxRd9cDpMJwrmjzu\nKpI35qxs7UYRtjubyrS8PlXm4P6mMsYHqHQ8ImPy7K1QCxs7irJX4AXxEYlLotr0EyiO3Xsr5uWf\ndE0qqKhfx6FoX4ez87Wysim+jKJ/l2+VoY1toMIRJfvSVAR9z+zSVvXleK6sygzFl6uiMn/hBZFd\no7GYOt4vDuglM+cmi+Qaq41zJxHmCGgj1IJ68Gg8WlW2po+yTP1aY+sKg/zZVmaigfLLnPOL0ZCi\ntj5URdoz1DzI9Lohipg19ftKUTYUpN2ZTUVNV1f0+yKKOhYPRfwRPCBEea9ONHaNIvxJaT03QyZ1\nSubDMZRRnzVBtrQ0bmtPlGlY4Wzy1fnp/9CuSUv1XPpYGYwkHEGVI2XRGud6rjugzIZvXbYeI/PQ\nPtacKp3qvrurypQEYFQf99XfLTKwgan6Lx7TfS6PZEdQIZg7G8pEuOBdumyoHWHsYgGnRBu1ptsU\nZ19jOiWT5TbqM4sHwce8dFCLCYgRF2dQI0n1eSAY5XpQOg5dFwO5klsm4l5S22dkWr3YoBe0z4iz\n8vVrOFP8st0JYxmek7VpaExdfdUrEYMpH9tzu9UXExRpfA6N3Z0HqoeDbIkfLhlPTP+fV5WFu7xA\ncSut+2RiZHs4sxvNaoxmPv3OjQLYYKE5FwEVMEOBIIjSj2+hMXY4QrQL1ScG+abBmWIUufLDDf0O\ntJbll13wUU1QfvMvlCENkSuYcebfAfJnAJ+JCwTkMASU6ZYlFFM/DpDfco1R3wMteD3S/Ruce69y\nNtqh5cf0yVoujeRfA+vyIdEwGXvsI7isbODqAtQENFptEI+NK82JMujF/gv93xPymwKZTf+m/EPq\n73UPJ/w9YR+8OijAtN0aC+8UThmQdxO//GO3qrWlC4fACNWFyxK8OnDJTCuy1VpWa0puS6izvQ1U\ngVDgco5RIujK1qd9FMtAQPYj8gdxUKCuOnwNC9lk7wy1DJR2hl35H8dr2VoPlKtvquvnzOEA/HEB\n2j9ZaOz6M43R4FpzYNTS/0mIGvcM5Z9bF/Wz5Se9Gc2REVm0m7IyjpYy2PoX6qd4Qr7kCtRdBZ6U\ncEDt2fuE9ZKs4Ai01sV32lNcvNFeZtwDfYY/f/BroV6DcfV35Y0y6GWyjYb1onlV+qUFJ09/Mq0b\nre8PvtTeyDlU//ijZDfTuv8URbHvn2t/4B5qPVve0t6jfi6bPT1QeybwryzcGs/+pcZ/Y092svNb\nIW9cqJDs//CdMTcWL5zmzzGorVBMdfni7z8zxhiTzJIZfaW+OIYXZ95GpQ4ukBRKVHd+o/2SNRYn\nL9UHTTieZj31WTqL8mQCVIJb9WnO8Xvl9+O5CyX0vP5J0Rjzbm+RzsvWo0WN+cmZvo8mQOXmN4wx\nxpTJRJfIXseW5XfyKFr5k0KeVOB42diTjaXTssUB93VjIwPWzhLqncltVN9eg5QBDXD/nhAxmWXt\nLS6fy+9sP5KP2UZR8t9OmOOHcnyFJ3rO4QuN/Q31/urXsukkyJfqtf6+NxAyKI9S5P6Puk8Vrp+t\nZVSf4LU7xx+3TmRrk8fqj5WC2ntx8m/GGGNGZ2pfEARjACVM70zjMYJzrD0BMdOFa2fl3TrhCQXN\nNajkLVAVPniVVkD/Hl6ieAR6OghaeTobm9uWLi8bbpdsIYjKZQ0FrXFdfsLxG41JEBXQoJXl34Bf\nqKyxuELx5vxcY1mBX+7T/+Xv1BYQKN/9679QAX18/L9p/rucmpfFV0KsZFY1pvc/F7hFaQAAIABJ\nREFU1fevXurvR8/07pHxaUyXC7KlcBTkCOpRbBFMAnXARY89y1Bz7vil5vBzuLaiQfnT3U+1X+2P\nVcEaKkk+OGFSXt3vBmR59UjXT10aywdfyC95Exqz3qXuU6/oXadbs3g9tNdxstfrN0Ano0rUhIsl\nZs3Nx2rvhH1pr6uxdoE07E9RnERZqILy41VF45hI6nn5O6hs3bI4p3BkNlFtZQ+Xc8sOHFOQoz7V\nv4yq7PYCBaGA+v3s1OJV1X3C7PV8GZTqUGeMPtC66Q0KYTScON7VZWJMYpY116D+c6DuU6gelXmH\nWWK/04IfyTmQP7be4+sLvRc32f9GH6qOBZA0Jwcg63paa2JB+eXZXLbXqMv24yk9f4oaZxll3eWG\nbHIDPzeqaqyuQWT6OWVgeGfzsxeadjkdcqa+yj+Qv5sy70vHWm+cDTgqQb67UEBML8uvdUAzD3jn\nSdA//rTGqtsEcT4DWcdmxDsC0Z76y+/ANlLGLnaxi13sYhe72MUudrGLXexiF7vY5QOUD4qUaRF1\nHcJqHu4rw9GewDjNGbEAWZcwuuJZsu3fH+r84RJRym+bimzNOR9dn8BSP0aFZWExmqO60lCEbXVZ\nEfmTc2WfImSzqjVF1D65p0zON5eK/n72uTIE12WhB0IRRQpdPkXyvGSYp16ikBwhm3kUudslql0j\nkkhAz0SWFOEbvlCkbSWhdn/jgDkdkov+PupRfqEfrslc+FGFqsE9cfpWEcmPf/ORGc7UJ6ElRfUS\ncSFmfA5l6twxOD286ovrjs5IRlH7SWQVBZx2UHiyuF7IXs8muv/OXfXN10dq2ypnVuegn6az9zO5\nwZBIcRvEDtnzyILsSFvPr8LfkOD8Yn5V0dcGEeT5lfps/cmG7udW33YaRWOMMX2XIsnpmKKvMzgO\n3GQuHSi2DEE1dUHGBOFS6Eb0+8Sanjvo6vtzVDTcUY3p6o7u74W1vXmmrI17RIZyVf0fhDG811V0\nulFT/Wo38IGsqh3bu2KBH6AScsZZWSf8Fy6L5X8bVMRQGd9DEDzzCf22SjaO+o9QKDt7rWiwm8x1\nnDO3QbfspXakqHrTmktJRcsDoEu6DbXfB4JmZUP3b9VQQLAQMV5F7hd9tXPYun1WykdE/6qoCP2g\nr7p9jBKKcct2XE5lRIdk36NQ9Pviyrok8+qLgF/PdozVVzVQWK6ZbDG0Ib8UQ1lsDJJjaDQ2C/ia\nFg6NuZOz72PGvDtV/fwolo0c8H/AExKBK2EByuz1T8pin79RNuuz/6zseXguf+CHu8ZBNmdwBSqh\nofqHl3AwJAz7ZO+GPRCEVRRXPBo7v5cskVs26Ib7q0N/DGtqVwSUQw+W+xSZ20e//dIYY8wMfxx0\n6cETy5ZHareXuXrvIYptOY3X0Ks5FQ3J5sYgiq5Ad43IgI6vbo+mMsaYcVf3mcKxEyY76SbblIWP\nxMG6s0S7Fx59Ni1uiwv9rnYM50VE2bLzI903xJyLxWh/HoRSVHMgmZdPTN3I5r0D2U2tODT1rs7M\n9+AccHRUxzxKLy4UECKsLf2ObGocgusJBMrMQjs59YzwnmwutCJ0wfZDzVsnyjQNFAJmnHH3gvas\n9zX/fWSLJknUkYYgWciWjeEX8lFP/0zICZ8SwcYHCsrA7zBDYSwBV9jAI9saoLa36Gt9iYP+9LGI\nDlF9CwRQWJioPV1Qa6YN8vMlCMSWbM6IguGvlgBoNQdcLRO36tU4lZ/2gEzZ3JS/HLCu/eFfpAri\nGuJbNpWF28ijzMY62Xkr/zxnDlbP5B89Lj03fVdzYg8ejxAZ3zff/2CMMab0WuvyEM6g3ZTm/qz/\nLr82GbvNw1/JR+RQ2LlG/aRXR1ljCs9LT3Mt7UdV8IEy0X4QpQff67pGV+P86I4y3SnWqbO+1pHE\nlp4zIit49sPvjTHGXL2+NBu7QmLMhvquQGYyv6t9kCeuNr74g/zc/p/FexFm3uztqC8dUZQFwxoD\nH7ZzDr/axTEKKHCsrNxXZjN376ExxpgMZ/yP3j7X/fArnuA7zpHblKBf64Uvpfu1erKxEHuK6MaG\nMcaYMX19A0fJxn3ZzPqW2lPaF09Gkz1CYk33XdtUfx0dqJ4tlCZX4W/7w6GuK7CVCqf096MjrX/3\ntjT31tb09zkchPMt3SeP8uMlSJjaub4P8/fQN7KpfbjBsk9U7w1s/s0fVa/OQ/mMFVC/zy40567g\nlimsaK+Qz1kqSkI9eIcaD+NT/4X9sodeV85o0dR9Q3BFBnyaG80rfT8OwL/BXnaKck0iKd9zfqB1\nqVJRPfIoiBljTHY9bc5BgzRROkpvbageeSG1zAvVs1ZRPeIgaMeumbltifrkBxpl+akDeHdaLfn1\n5W3No9UdjdX5M/Vp+UZ9uL0HDxH8a11k10IgIFZQgcvCVeNfoo7w0F2CRnu80Fq8/FB97ISjJJrQ\nddUzVHoO5Ve8Aa0Ta38rVTjDWvviB6kizZ/KH+58pD61/EsI7pcbkNylN/rErZjchtqzji84O5Xf\nePFPcswOeICGoGd9ZbgZ72mufPZrtXfMe8f5U13/47+Ls6aLguLepnyEQUV2gQJvANsIOzXGh/tS\newpa6NkW+/FTzaHzS/XLtM66CILTOYXDcqQ5kg1pj7T6kfx8HHWn25ZISjbcfgOHJXvEEKdB/KCX\nHeynxy/lh1v3tIdKolTXfAW3J+qu6a/UzjWUzH48lP01mVthTqkMQB8aY4x77jOx1ZA5/T37QYfm\n2QJ+sf651oyuR7bWAb0fspS84HxK8O4yBbE4bKiODrhb1lEAHnY11h54NuMOXTcbyUY7IFAiOfW9\nmz3NaV22HbSUhNm/zd6yVoGWDThkw10/e44onIug8/0TzT0/ysP9Kcpd7DUcqD0fvikaY4wprMmY\n/fA7Hb5SPYZr7JPnGrvUBmtjEwktP3uKEXsnEH3/UbGRMnaxi13sYhe72MUudrGLXexiF7vYxS4f\noHxQpIw3DN8ILMldooSLniLiU1iMZ5xxGxPV8yQUWYsQwYuR3UqnidoS/WxdKYK3lFHGoDO1VEnI\ngJIFcwTVDV6PPuMJZfWWt3VdkjPM8XVlsdxE9OqcSXW49ZzBCMWGuNAL8zHcFmSSa9eKHHo+UcQv\nGEYd4JQsnxeOCTL6zanu7/ZZGXTVw4naTDTPmbrXivCtrOv7CRmpVFy/c0ydZkEU00Fm1RuBoZ4s\n/8VLRcrjqzD6W5F++nz7rrIbwRVlw+MF3fviSn3v9BbVFjTiewtlZZId9dkANvSReT81DIcLzoIE\nbOpp9UXnCjUOVC5SUUWoAwXVPxhS/d7+zFl9ryLRMc4FTozqeQ2bvWOusU+vK4u9gMumQqYDQR0z\noz8cUUV/5yFlrl2gsiJEba/IjnWsyDQZzfiyxqxRlS0MTonaYnvprKK3s7Had47NDFAf8YFYyn6s\nLJRBIOfwWFHZLsox+W1QHff0vHUyKk9/VhayfW2dYVWUOHtPNu2KqP6V7xVxvyFDvJLTffJwXpyX\nisYYY8pw4kTmmlOZO6A24E3plrCDXT0/ENScev61sqKlvup7D36OKcinaPj2Kl0zmPynIyLcqHCM\nUG3z+UGscPYeMQ4zA0E3ReXikkh7p6H5Z5019yQUsXcwTeOcaXfAYA8gxkzbup8XxYXshs7OD6tk\nI1yy/RkcKiPQR+6UxgrwkZl49LwOtte6EfKt19X/PaAHvETsDXwfF0+FpPn2v6BgkNN9kimhCWYg\nBMOoGo2rderj+B/uGwSdNgzr77hNEyKL1uvrD9MhKk01lAIsVSiUE27g0FrA02GJVEUD8EDB5WJl\nhUIgWBxw+bAcGKdf7ZtP9L0H/+1wvjsPfZvi5oYzfEoF9T13m0wMymsWJ5GLrJjD4g5KKXOy4tN1\nzQGZWrjM+i7dv9pRBqV+DYoF5Qk3Z4ldAdS9jHyHJ8Fz8yHj7GmeuUZaA1tn8h9lTUcTnChL3ojB\nvwYCIwC61I1DCAdA7VCnQETzzsMY+lPKpM0jGsMFfTGsq28Pm98ZY4xxcra+jcpbbl2/D2Y1n3Nk\nifwBK7On59YDqscCBcDJGB431ocOSJwGKABL2STo0NhM4LTqw/MTnZJypUBlZbox2ZBjyPn3hdaj\n0CqIIdf78YV4QMh0Jrqu9criqFGGcqegudRwalwuv1HG1mupoPyt1v40e4gKe5fTn5WBrcNT4Q+h\nMDRT+xJrWr9yd+T/vSmtmwdkgl/8QeORIDtYeKz+L6yrPjeN+i9tiKaXTDyt+1+j0vT6e62DEdB9\ny0u6T2hdc9UFys7tUX1/+lf9vlKUT8w8kC+Lk8EvXWi9aaN4kwXtd3Oo9jUuVJ9kbt0EllDrICvv\n///Ye48muZIsS1ONc06dmxPAwYEgyTMrqyunZEpGWmQWvZ9fOCMyvZmRqumuyk4WGRmZEUCAOeDM\nnJm7cc7ZLM73IrpaurIcK2yeblzczN57Sq5e1Xfv0XNQP3IxNodfCblw+VJ9mURJ8OGPhVCOeOEy\ngWOmfCGb6Y3h6GMf5lmoL1d/IpTQ/iPdZ7iUbb17L6TdxYEyvrkNtT1Blv+2ZerR88JhVNi8oGJB\nIThA86bo47Nr+eNOS2ORgpMwA+9cB16na7gDN/flAy4u9H/lSPXd2WQfSga7BxIkc/dHqg9jUr2y\n1gnZgGepuXtzyloMUicSFjqjfCpkSA5Oma199dvxn8XT0TzRcxJ3QG/8Rdcdgtp6tC8bXEE5sfRG\n9U7ndZ9kQfU++7Oy9c0JtgG3WCiN0htcDt2e1mMn6ITUtubGzCd7qR2jXhXWdbMAaAj2OFPGs9qQ\n7aamylwbY0xiM2x8SVAdoCE24N2z9td+ONcGJTjZdkFph26PqErfFRJmeowSHzxzqXWN/f2/l5+w\nsuZHL7SHHwzl2LKg7xGjMwuUYrJh3kGMbGQK8rkMD5B3iZIi8Ps2yltRUAdOpKbOXmksLs9RM8rB\n0/RzIWtWN2Tbb38jdaXGIXye6/o8kdA+MAxH1TmIv4tTkBpwxOw++4UxxhgXnFs3A9nSAH6SRkP+\nPpMHcXIfJLaLMQWJUmLuj6taj6rsS90p3fdvfyC1N19c7bh4+S2/0/O2fyAE4N27cLbBFxIEeeP2\ngvwGvbFEzTWd0xzeeKzrPEZzqjfTXJ8bVAVRCi6dQkB3yxJkjzNPoPo30vMX8Nd51rSu+qw9GXuo\nS/aqn/9QUNTGruymiA8JdEEX7qk/kjXNqTbvYVmv2tFBSc0YY+qzmQnEsmYZkk104AsNgJqMrGoe\njmdwNlW0BvY2OemSkC10sdUk7+UD0KuTBghr9s9JeHPKqDTNHXCuDNSnM97PZzP9H7H4fnjX6qJk\n9hQEXxlbrF3oeY2KxiKFWmcC1eXqtfZW1YH8eAjVtQAos3lbY5veLOhz0K9N1JRXQABm8xqbSd96\nV1R/JfKylWBec3UKyrjB6YDY7K8ry9pIGbvYxS52sYtd7GIXu9jFLnaxi13sYpePUD4qUoYEqHFF\nFRvaiim6Vx8pIjUl05ogAu840rnqaU2RtSgcKuen+p3bo2higIz40AE3gU+RuTCKDe2pvreYty+v\ni7oPHDFjFCUGdYUlS6hkhNG8dxDB84M2SaIMMR3D8sy5/mod9nY3kbEe5/5qqpel5OMgYzyDEXx7\nS5G4aVvPD/kVoRyWFV3ut1Ez4By5kwjiOucLTzhjvZ5VZqN1cWFSSUUJT4pqSyit/31kfc9KioSn\nt0Afcf7v5Vtl+PYfFNQnqDrUroGODFTnIMiRRhtug6iikz14fFJE+NvNvx4l/B8LR0VN1K37j8jc\n1lFGWTjUR/5VjUGKTGK1oazKTYnz0g61N7Oi7PQ1nCrmSpFiH2fkE1uyCdNEXemc50zU154V1SME\naioAL1Knrr+NrvqlXFM/p2J6rgf2eu9C/V05VL9NdZlZ5vR9YEXR3sq5vmjCth8CPbBOJnUR4vz0\nkb7v1ZQ5WGam1JNx3IalHq6Wq5eyDRc8LGkUvNyoroyasrH2JQo6IQuZo8zMEjRX+VL20i4r+htc\nVdYxlmTcQYfMPKDVvJrD/aL69RKOg7gHNRCUykZLZdGWU/XvrcpIbmxjV8+ezFHB8aOyRPbITDV/\n5w7ZkHOOkkhYkfI4HDQun2zfg1qTs4HqTxRkBVnxGYgNrx+OE5Aijrn6wuOXn7i4UObh5EB/736i\nc9XpXWxprj4dcSZ12VPfOUF2rD99ZowxZm2voHoAqVnMNdf89NWETOOoJ5svuEFxOWWDXlTlei21\nu34FYgdk0QL+ignqJPzcuFklVjc1hi24WRyoTQHoM2PO/PrcmkNhuGFGU3g2wvyerPrRO83B4ZUy\nDPfzOgMc9+s+EzIiCxS5smSNnJwxDkZg2b9l6YN8CQHC8vpkezFLnIOzx14fCE24deaoe3jg8eji\nz7MoZAQNmX/QBuOgUIUWn4nF21QhIzslazoZg7SsoBIYyZrwqsZsPao1wAmn1XApP9Xpwj1VJfsy\n4My7S2Mf4txyF0TKoqU+rNTOrUbqc5f6Ph4GXUqmzkfmL8p8HPs1T51LPad0AyoBFGoL/qWsD3U8\n+C0cQTJ+8DkZEDROUJy+lmx0AJ/cFMTIFKTKuKz2Dpi7ZVSBZnUHrVC/DMjIhsf4pSaqTCXdd5Ds\nmA8pPcamVZEfcvnk/wr3hAawVKCunysT63OoP9f/gzgWMqBy332pvcoFKLw+qoXb+xrXREAogvi6\n5sRaTtc5Udl497WuP/9KiJWNXSFVHvxUPHJzbH8xVfubV9Xv2jBoXpuaG3WQI7XHA7p2/+dSJQwl\ndX0ZXpHyEXxcY3wayKm7T+R78veU+ffAu9S81nhksvJh7qXq3YcfZYkvy26FjAMFk1BCfso5JCuM\ngokXtJeFENl8Il6IBX3xLX1Zfc8+L615lkPNaHdX89M5R4Uuqb8Wf87hN0KClC60JifX9PuVtfvU\nZ2w+pPSGWpsdETjJUMFbvtMaXGPObWflz67i8ptN1PCWGdUvc1992oX3rgpaeZ9s/iZqbq2mvm+N\n1Nex+7pfoyy/uTrUGK/B73HwUjyBvoVsN7qhPVEZdabcRP+vPCmovkdC9lmInK1d3b99qrlfLGrd\n+nT/V8YYYzY2ZLs3XwttsbOhffv6M2XtX/5aPCGVYtEYY0w2xj47pn6fjeAic8vHBOHw6oMc7VZl\nHz0XvBmoZoVX5b9ff/0nfb4AQTOXLabSoM0y+n2jqDk8rsErZYzxhtImC59KkXW5eaPrE094T0ii\nuAY8cdlUP3rTt0dmDi3ulqzanN1TnwZQK0rAo3T4W827wxea5wkQDBdRzaMk+/YZfHOzOfxA7D1O\nK7KZ6VBozCk8H9tb6gPvUHVuMMatsvxQvYPfdck/59f0+1hWY9EBIeeAH2/vida0tSfyP6GY/Ozx\nCajQEggRVACnXlT3LP6MvurdZm/SHGm9Knwqv3bvE/mZGGiGN6jRFb+RLTeuNFYx5tIqvmL3E73j\n+OAFefWF/HIdfiMDF0/nEm5H+NtiSf0+APfMGaqlIRChGz/WHs0f4SQA++UW6nqzvmxzjiJXuStb\ncXn/NaLz3ysdFC3DqFMNQVt3QEDNJ6rfSkb3ze/JforXQsw+crKO7Kue54ey9dIbfb//mdCGuW3d\n/4T3niQoQbP8PgTQn7VNzOU1Obiyej7558WSdzzeKaz32IuybLdtNCaZJRwvDtnMYl02MoUb8aqn\nMY059X92Q/7XVVId2nD23WGDZq0bS16ShnP48TwoBF+gzMW+NbWuPqrKLZkqam6xO7KV9R35z5eo\nq3Vqqv/qQymQreyrT5pFzZE8/GnrvFcMUPqaeuQnV3hnHKMi9fpcfq1U1jrgTaFIBrFSBZtcMfAS\n/RvFRsrYxS52sYtd7GIXu9jFLnaxi13sYhe7fITyUZEyVhR2WleEaYpiQWsBooTM7zIJN0pAEaaL\nqiJVibgicVc3igr22rpPA6RLBQ6Gm6k+3zSKfJXbyhg8+5nOHnda+n8rpwzFHIRNGubq9pmyXbOh\nYli1KhwCXUVJhyFFgwMJReICIHgiGUUvY0TwIqgO+FHGmZPJD6UVkayS+dh8pjNypfdkTrY5Gw3I\nxDlVJLHaVDS7cQN/yQ4ZlR4M75xtqzVqZhe29Ld/0tn0oFdRz/VV9cnNVVE398okkuuKArrOFUGO\nLRWdDCXUhhnnAL1Ozv8NFKHtkiXyw2lwea025Z/BRcP579sWf0iNdrpAP1U1tpMaqj7bKHLdV32n\nqBhVUbmYzfT8Ow+UxcHkTO09GUz4RX5wV9cvjSL9Fwe6/7wqW4itKwocRaHA7VK0t8uZ2Bk8GwaU\nQQCFHUcU1ZSg+snJmeEmiggWv0UmWTDGGOOBuKRDpnZZIwt0X+NXyCkqXT5VxLvGGVgv6IlgTBHx\nbFbj5EM54Izz9N2a5sTKI0WPfTGdOQ14Vb+zC2UaaqAU1rZUr8SGMiQnV3pu51pz0O/jeWSz/GTD\nTjmnbibwIUXh27hQvy5Au93/EbwBec2RwdA6q3t77qHBCL4dj+7hATk2R2VpCs/GFISLByUsx1Bj\n7c/IVnNt9cWSM/sGjhUDZ0DArfvPZrqvx4tNLjj/O9N93SEQNhNLPUJ9O8LPOFEfCoDgs7hWgpxl\nh07IDPCLs776wkfEfRF1/6v7jieykWBUY727o0xzeEe2sgzrhgsfLPhhMh9xtXPR15gtYPh3gl5a\nBsimwVdxXlSWaDpV+wIu2PEzGmM32bxhnL8ltXPZoj+n8u9u0BABeDtmCdXbDRrMbbHfO3V/wzlr\nz1L1csEB5nF9WE5hEVR93HDEjDkH3nFqnOcglBa0PzHxcZ1+7yHDEyFj6hyCwoCvy8DdsJzD67QK\nJ1FAdrXJausbqN39vsbBMVY7R82pGS/IKFb1WSqvvk4EhbDYzugmix/r2j7noPsT2Z6/saBNekYA\nJM0QDpc+mcpKD+XDDn0d0u/HHHJPrWnNycVkS4MAKkSXul/nTGvM6Fz3K10X9flbizcHFCf+L+CR\n38zFNTdz1ln5rPyQG4WCuZd6g15q9lQ/50Bj01gq2zQ9IauOf/eO9ZwSCl8+j2zW2YKU4ZbFNUNJ\nLKq5kyRLNofX5OpCfvR6oufc+1TrSoyM6usvxMFwflxUO+DNszKWKwXd101GuV/TeLXgG7k+hMvr\nUH4ymNfv736uTPUCnrj6qX4/KWlOnr0/+K4N84nLuJ2a05Gs5s76Q+0p4nABnb7SPqD4Z/npIEpo\nqw+UvQwFZcuBKFk9fOK7r5S57lT03NyaspTHx/CZWBwR9wp63u6mmVTYJ9HmJqptyZTWjChqZdMb\njWnrXH7y+kbZ8fJ72VhiW9n3B2TrwxlLRVM22YDHZjFD6fFMNtu41j5qZUt7kLUfC8GSACVQa30g\nzx0O29nCL/nUN6mU+uIMdHEbFaa1fRCcoIlK74Vq8PP7PAqV5/+sfrkA9ZTe1Nyo1rTmVsvqj33m\n5tegVK/Zq+z+VGPnPYEzAY6Zu0nxl1TPNXdOShrzvXtCAwwq+v3RAftN+AP3ngnF8PalOGT65/AL\n7ckXXZ1oD3AIyurp5+IjWScz3QXhMwWKaKFGXCAn66AnvPCHZOGn6qDEVmffnUdFKgsK+jAoW623\nNAedJf1fyMku8qAA6he6vvdWvtIYY1xjp0kW1H/FQ2XEK52irptqrm2syze9hnNmOZFNLxwr5ral\n2wDt35O/23uqa4d1rRlvv4Enjj38xr7GYntfcyKRYq0G/TVmX9SHMyuX1bz0g76snTOPnSCPUZSy\nEN7nr+BkQVVz47H8VjoNNxko18m1+uwQDipXSJ/ffyJOFi8qTzfwBhVfyR9mQN6vgKgbgzi8/hYE\nyqquy6c1Bxtt1WMGUmQOcV2L94Uu60s8qfVubU3vak5gu6GM6j0EsfLiD+Jtqh2rnRs/UvsS/P7t\na9W3dqR+v/NU++l2BfTwieoThTdl4kRxsiUb736LrbHnc4dkIwP2yWPQw9mtv46C+B/LwEIdg9oO\ngqivV2SbjUONeyQuu4jvaC8x5v3mkn391j35tHReyKGzt/BmpXR9ED7BTRDxXuv9ZPw9d6N7NjLd\nztiwzTIJlHcr8G76UAFO5mWbZy9ABnNaoOKxlAtBTEOI5PfrhgGPnn15LXTVxkTrwQroqEvevToX\nut/uA83nFbi7Krxz5NblJ0Jj+e+bc9BG8Ipa6qU3nCwpsA/1ZkD0rMgGu5z66O1p/Uiuym/VK7pu\nBrfMBvvpkwOtfWclrb07cGX52OclR5yuOCwaY4zJb+h56RX1/Q3t7E7/OuLORsrYxS52sYtd7GIX\nu9jFLnaxi13sYhe7fITyUZEyiFwYB+fKnbDWL1uK3rU4m+UZo/hAhtNinn70A0U7TVtR1RqZmAAs\nzqlknN8rMjf1ce68ooibZ6bz1e+PisYYYzIoJly8J0oL/0gT7Xc3ChLhhKKRUTLXbbJWXs6X9xr6\nnW+hBtbg/Wh2FbGbEt1uX8PGTHT78Ez13PmhMh7n71TPp3+PYhCRvyjn9iNpZQ6cZIb8/O3BZeNO\nCf3x+v1rU4CL5Lytut5pg0KCjTuZ1L3adSK+OUVSPQHOkDeUGcsGFfXrEkl2gmIaXpCxDGtMQmTd\nT46VOZwOVZfR9MPOb7udioqOQUOMYeZfgoZIogYVgO+ncqH2tSwES1B9G99Tlr5Z1liMurpPKE1m\nAobuCizyLZRvnF5F8FN3CrqPT9Hgfkc2USqrXwIexTfD8FIsYeauH6PI4NVYT7qonLgUnZ16QV2s\noBzQl+2PuL8hQ5u6q2js3KvxKJZVzzDcD0E4ddwOXT8E5TEne1g7UP8Fw6pnMq0ori8EdIgob/dK\ntuNirqUeqt+WTt33+oWyZgaFoWiC9mbUzxNDFowIvNuoHoOBvm8R7c6SJcztafwsvqQR57sXi9uf\n3+6BqrHOvnsXsuHC54q0u/1wd8CnQYu/44BpwE/UYOwtdJEvD++Shz4GETdqvpQ2AAAgAElEQVTr\ny4Z7M7XR15CNLEEZ+IPKEMzhqvGSeYul4UWC02oID0Y8guwSmVSXT99XL1DgsVQiHipD6Xerz/st\niy9Dc3Hcl/8Lw7jvAa22mIPSqut+E56b3dScT8OFsiTDMQdh6Icdfwnix59HvekG9n2ALEN4TKIp\nUFG0r8hZ2whZ+NlU4zQaq50h1C6C2KzTa0mcqR/dRvWcjDSH6vBeeYBRDEAI3bqQjeqgtOaeyy4Q\nKDL9EEpBJ/INx0v117RNFmsOdxDZyzA26gBdMRrBneEF+QinUNpJ+zPYQUL9mWQOzZrwgQz9ZuZi\nzDuyxepLS7kLlFBS18RREAm4ZJvLDGgn0FqxIAotPj07+QAenKHWlpRXbV2CWph2ySaD+lo41Qel\nkZ6TBE21npINxvGH87psb4C6Q/lCzz8baKw6bXh5+vK7c2xxDmLQU+f8eBjuLrjJ3GQk/XH1eSCs\nPtv1ax2ZeTRog7qyW8OmMqSZR/In7XXQpW3UJX5jblUcnAOPo1LVhYOgDEqs21Q9H30m5Mnaptbm\n0yNl0S6/Q0Fojd7nd4ElKkdkbs8P5JdbPfXTnLncXWp8N0G55faU8TUovV2jeNO8UX+2qvKbidj3\nGdonn943C3yQGy4EF2os7/4iRZ2jP2tdtnzSwx8p0+ogq9mqKhNbfi977ILyq1xrXX34WHbkJ7M7\nhUsmfV/9f/8zZf7DS595fi1OmPKJxujeHSE3klsau/Jr9V3pXH3hRLlrygZx+6HW6Ls/+qG+d8kW\nS5fy9zdHqmu3DMcWc8QBP07hE+3z1j9Tnaes/RcgSubT2yv9GWOMJfrWxh+02XcGd+Fc+BPKYmTl\nM59qDQ1G5G+//VqopoCqZ1KPtWe681Bjbilm+bPiOsiCWipS313QTKubsomjQ6EkCrRvDTW/4ona\n5YJjMQD3zQF8E9ugZTcf6vkvfvs7Y4wxpUvZ6IN9UGArIFMutQ5lgur/jRXZfoPPr9Pq18yufETt\nDZxhcC044Y0KYctjMvAXHX2/va3xNaAfSnBWtOKy7YlH/bC2rX66eq5xrx+r/ZMdtT8S09z3+PT8\n7vB7dHat3TQpVGGSqBOOyijQdWVvHnzNMsDrkVu+ZjS4Pco7DIJ4AHfKm+faN/VQ4wzAo5R+qPny\n+d/JRr1+jdUNvBbXDbXRNYHXjncbN/cPpNSGbFx+xk+dnT2N/dF7vVOUqrKdbFR9v/0UVD/Im+Ih\nfoX5fX0i2w2lUXS9B1fisZAZpy90X09MYxJHYS2AQlV8Q3NhpaC5W7vU8w9faqxubnR/PzxCJ/jb\n+cJSj1K77jxCpQpunePnst0Re7buO/VPBdWjPCiIH/5Kakzja/V/kX5I3IUbDBTD0R+lRurnfSKy\noud6QcKXQVMsjKW4pjkTz6GAeaP1bky9g6Ceb1tc8NONWvCn5uV/V9h7Xr8qGmOMaeZZf0ELrmc1\nLpU38nmrqObt8Z5zge/pX2gOJe5ovNOo05Z5j+o0Pd/VJeCLmtGsbWbsq2bw5azf1VhegeJ0BfV/\nACTNGI7CcErzyJvSfLnmGfez4guKrGgsSm/USQ3m/3quoOsjqmO7KBt0P1Xf5KIa08tjrQ9L3lEj\noPsnoGOncfVRflW/vzpV31motVgexUH8dK2o+zXK+hvNqu8S27q+3NWYbG6qnRYS8v2NSGvaY/Vl\nBKXYNJxW3ZrGZFoFqcmamrL8zeCvK0LaSBm72MUudrGLXexiF7vYxS52sYtd7GKXj1A+KlLGu1A0\n0I2iQTRDjChscRrAZE1WLJLR7x2cbw8TuWoNQZxwtrTbVSQqhLpSjCxiPqFIWZAzzLMAnBEDRYEz\n9/T9xZWiwbsBRUUdac4dks0Pk13azCgj0IfXI7+mLJ5B1zwbV6Z+6FS7VrluMVME8qaqzNHddaFY\n6gNFf01b96ty7tIDf8vxZdEYY4wTTovpUP2wiKp9bot/haxZek/tcR9FTSKiz6IohXg4819vKZq5\nsV0wxhhzRtvzKz8zxhiTdGlsRm5FNx0Rjc3NiX739L4i0lOy72HO+05AO/mdsLAPFdX0OT9MDcMZ\n03M9RUUfOwPdNwjfxCbRzzHnE+tk4waoIGV2FPWMcjb2APWpKUifzXsawzmcLOfv9P0cBS3/hiL9\nK+vKKHQdsoGmlf1pqj75Hypr5CUaOrhCYQJVpkRWY9x3gYSBv8IHmiKFOkajqev6jG0kq36LrWv8\nGtfqvwHZuZ01VI2u4DmCg8YsFL0ewQo/bCrqGwypv7JRjeuYrP68qvYMbug3sm15VDpqZBqaN6r3\nnX1FlV2gFkIx/b5DlmvIuXg/nBIOMioT2PCz+xb/ku7/rgSarQPfSko2fZuSXS0YY4yprCgLM26A\nSGOeuDkk6w3rf+eYLDvqN17mv3cOX4dHfTdBFSkOm7xxaCxCYbhcQILUBsrWpC31pQnoARQY3GTY\n8gXNBesMPTQgZrnUWM5RCHNbqkNT3S8FN1QupQi/1+JU8er3nRvZxHAJtw6KNJ4wWR9QXH0UFyp1\nzhm7ZHMhUrbdpurl5Ry3Gz8VTOl3BZf8W9sJmgr+KbexUE0gWxzWeW+1q4f/zIxQK4mp/zLMqUEF\nrgE4apxw1jjgdLG4cuKoanT6cEdMgFressxRlInBDRZc0frRIZORiOuv8478bboJ10NFc2PUUDbO\neUP/+jX+njlKZ2Qtxyj2xF3KSjZQE+ydy9eevULhBuRV1gHnmNNtDLxkHjihTFRtXoIgm43V95dv\n9HfZFuKh4gchM1NdgnBbeUIWgo01Ngq/AxwoMTJyMycqR3AeDHrK1rfhqJm1NZZJ+CEcHtnCyo7G\nLk3mLv4rtT1pdA7bUgPpVlT/waXu2yihWvdOfeJZyt8NFmSGI5zVH+v+YR+2GJa/i8aUpfLhF5M8\nfwhHl6eMTXc/LO/kAqlSu1B92hPV1/TVP3v35MfXCmr/DciVb7/8s+qBKsmjn4lfI4KvKKP+Mfxa\nc9A6V+9EjS8e07p5b0ecDOFN3cdSoSu+FZrkGq6FBetgOqV+2Ppk+7s2ZO8VzJs/CZ1SR5nSA9/e\n1XutbzlUk5786hfGGGP87IlO/6R1/RB+kXRc9uRE2fIxPHwFkEjnpaIeClouFbMUOlS/b9/8xZy9\nVFtTO9pPJe6pztX3QjIcPVc2N4RK0B5n+/twTqVQEJwM5IdLp0L7XFyojrOynp1EzS67JdsLRDSv\nsrStdqS2HxwKzRRgbmywL7ttmbGHmjXVV6OW/Fsyrc9zWdnGZRkunCaqIasom8FbUb3UXuImItRT\nblW21Qb5sUQ9ygHabdDV3LA4tlbgGjx6oX6ogzRKpfU8zxJ0BjxVqU3NkYPnso3isebe7r6eu76p\nep++0n0y67rPyn5B90GNqHSp62K7ILiNfEbxRBnkZyt/Y4wxxgeipXopG+xb0HivfNEMtPCYzDLU\nZ8YBksWAiDIVXTdk75ZZUzvmHfmWw9+JB+8GldRIQjYYhbvR4f8+M+1oN80YnpV0VL9r9VHFs6Qw\n4cKIuC0UsdahafT2SJlY1uLq073nJeYtKnSr9+HsQlm239F+6c2f5W/KF0I6JNh/hePqkwnqdcUr\ncb6UQYTvPBX/z8a+kCWHqBbV2+r7vfvyD1v7+l0PbsGDV/Jb5yW4bTIa0/v/64+MMcaEwrLpPv6v\n+LXqVSurr3/+5O9VP5QZj49Ur0JIz0smQKR8K1RbCzW67J7av4Ifciw0Rt2O/HaE/WIb3rbJN7JJ\nF6cPcvu63pzCE8e7YhbbL19ofRxWdX0gCToqq/rUUP/sdNQ/T/9B7ZiBZDr8RoicIDxHmw/UbzfX\nGkfr/cbHeuqHZ8Xtv/2+1RhjfPDiVUHaxDnt4HTpuZ6A9iI32H4Onqk11Phe/foPxhhjSldq54PP\nhW579gnqhqjLXr+X73j8K/hUUChdNk++q0uj2jLZwqpxX6ntNU6qrFl8l+u8g4Es9IOI7vc0dps/\n0F4lAjLlBOXYGajaVEK2H3LCHwkf3SSpsQyzlh03hF4azeF8TGh/GaGvPLwfz0EPz9gvhuHmC97R\nWB8caW60G+q7BX25ua41ttlRn52D4soHVf/8hvro7Ln8WaMBn1BWz5uDJFywZ6qCsHPU1O6tDbWj\n35G/GBywX/ajgpr4Hp30Pys2UsYudrGLXexiF7vYxS52sYtd7GIXu9jlI5SPipQZLOEQIDPchdvA\nyuKlc/rrQmFiCcjCUklqlxUFHAEOSBCtrMN/4g8r2hpLKKtf5xx7PKcotpfoZDKHSgpqLSEyK11U\njMaoMbVryjaVOYs2WJJdfKPMRrygDIgvomhsKKL7NMpwK+wqI2FArXiJwKc2dd3qjaLLM1RMNu8p\nau2hPqG4pXuu/wNw5ORgal+6UULiXGOADGwwHTcTst7ONUXxgnCt+LJ61v5DMe6/+X+V/Vmi+OIJ\nKPI7rCnquBJVhPUv1+pjL3wYC3gtBmSDy5wTDnnhfwCRM7fkj25ZwmPZxBX8D5OlnuNirA2M1uMK\nGVi4bVIw9e9x7rl2gfJDUdHZdFzfJ/OcLzxUBqB5rKjmk18q0zmEe2GGElivo+tnVyjixBTFLZD5\n8ID0aB+ovRMOmabI7gwmKAIMUKXaV+Q7mtHYlV6oHqOerkujMOEFUXJTLer3flSPUOD5oqEMxRwG\n8+RS43LNFBuTOQ9v6vcubNBPNLeBgoXXrf71gCobdhQVPweJE4VDILOmOXVCxiTD2ViLT6k147zo\nnqXmoTm8CHJ/UAS1tqLQk4bGbx7QePz1U5f/uoSDaqvfrT6ZwCETBLniZJ66nbI9lwO+HbIz7aX6\nZOOhMqxuOD8mbkXAx8wdv8UlApfUwKU50Hyvv24NpYkk1QYXbQ5k9T+UK8ZHpm4JmQmAHRNL6vMp\nClyuoeacP8b8Rp3JDarKM1FG77KIIswrZaQLPxRCL72uCgW86uvTK7LzQ87k3tPvFpAk9K+UgQ4w\nBsGg/GzYp/6oFzW2X/x/ykxaqhi7qMU5fJqrDrJZm5zRNZwzD4AacPs1LnV8isU9sHK/oOsjui6C\nCpLHD/oCpRd/Wf00i36Ysk4INN84gkIQCKZFEFQJHA8eJ4o722rP4y21c1BSJmWQgaepKT/v7Gru\nuHwgbrY0Xrtxzp271T91EJ3Vlto9aMnXRFnffLOQCaMI4wdNtEQtx/Op6tLvy9aM3IQZz7QWrYKg\n69XVt22jZ/X98GwM9H3pGvUlskThmvoghn/JYVuLjMZgmFPfTOu6T+lc9580lZ1vX8rBLK05uKJs\ne3IProGw6u8E+ZMH2Rhr6HlLHNR1A5UJJsOYtSyDUkGwqzVv2ERRsSubmcBJEyAJH+yz3nQ0Jm3W\nyNuWVl3XzZsgeNKy3bVd+e8Q43GJOtIBSjtrcCrc+VshRxNp7V2Ovi7qvvhJN9l945Kx5TY1B/fg\nlpiGdF0VdEmpoYx39ZRMcUT9tl7QXmH1jv73Y3vGGPOH331pjv7lj8YYY/Io5cS8uv/mffXrJufm\nnSHZ3vNfa05fvFF2cIe5uL4l/z0B5ZCGS+HirVAY33yj36fXZPMRlNS6de2dOuctk3mke/3oc/WN\npXj4/lh9l0RN4+4PxKEyxO/1SqBFkaOrwe9wdSrj98LhtP5Mmc+dJ/LfE5QQSyXNr9Jb2Vavpsxt\nGEWrO0+1N3C1PkwR0lKNcy7kf8bwW7g25R/WHun+nQuhEDqoeERBUEbI1pupOuIUFGogKVtLgtxZ\nhvW9G5SZxf+HuzFJVD3DcKDcoFq1FpO/ipKZrqDkuP2J9p/xoJ5/+UqIofUt2Ujmvsb6+JXW4nPU\nP+/9/Je6bkX9/fzlb40xxtxJkbUviJPm+W9+rfbW4Y1j71XyFo0xxjQqIA1RyIywx5iMpZwzHMnH\nBEFbh9mjeAIazwpqTLGA+nkD2zx6p3q23uu57oKu94JaC2X0vzHGzCcz0wBJ6/ezIC9Zd0F8TkCu\nOt3sWVAe80/+eob7vy+XFxpTR5f9367WrsIK7wYgO+rY6Jsv/qT/6xqruw/VdxaipnIG99cCW4Uj\nyjeBGxKb6Ne1n4rAPbNzR9xO+4/lZ26wxfdfad52Qdl68TvRLfmTzT2tWQuUp85fqY8X7MNDtCPD\nvHcl4dEDqf32Wu0JwH1ThvMrvaK5/jk2FWRvcHquPYx/qTna78KJ8+b3xhhjBqi23nsmpN72nhBB\n44baURmpnqWy+v3kQJ/7OXUxA7FZ/KPq1QD9usWeb+2B2vviP/+TMcaYr7/U7/7Tp/+HMcaYwraQ\nKa9Rn5ssZUMbWZCNMz1n6r49F6IxxgRYuILwPnWH8PWBQs7d07r58h38SCDvw3BQRqbq3yootnZf\n4xHegrdpJnuovZWd9RughHn/CbDOGmPM5auKKaxtmyzKed1ruFBrmodzlPh8M42Zw8W717VQOG4j\nha4ECrHLQ6GjOqeqWy4rP5NFGayJGlwSrkQfqmnDU7gHm/DRhfU8jxcSw2WYuquvZ9hKk9MAuWeg\ntPY052r0afdSNrrzmfogg/+66rDGtorGGGNW70spccpabykkhtO8WE/0148SsanLNg/P9fwnn/BO\nBydjta7PZ3DSrs21l/i3io2UsYtd7GIXu9jFLnaxi13sYhe72MUudvkI5aMiZTxOdM7hGqihzFLj\nnN+kCeN3SRH2w6KitbGUIllHL4vGGGMiZKWCqHk0D3TO3gup/gI0w9FXygSH/fp9g3PPC4ciXu9O\nFNnLg1wZNhT1zcTI6kdQ+jGK2O3e0+/moB4GdUVPPfBrzMaKar7jDPPOHaFRamNFDpvXus7zqcX9\noPrWbpSp2NhStrIHF0SfDHeYs7CdLgpDI0X2h3X9JXhu2qg8zbsjU7/Rb+dosLfJZPXbyn5M54pO\nekELVTmDHic6ekK25dE2HCxEzEdTjWEmjgpIEF6Fquq6voeiAEzbfueHYCCMMaiJzMeKH7pnMPhb\nPDrwDV28ueB3umyTeno9iqpevFJmL+jS87NbykQM4Wooce7Pm9NYZ+8rs3D6QuevT2/UfncMdSOf\noqfJu2SG15S9OfitsmPdjvp5876ek4Y75tXXOi+5JPO4vgrv0FSDf3WtbJDLpf6NWJw5Rg0bgVxJ\nwlZfg5tmeqPnpbcVufeiitR5oXq7YPxeX1HmxetEGQxYVfdcRjOf6rogkf95FZ6Skf4Pwmw+6Glc\nXPCwBFAeOzhWpiIKB8EuZ2B7nNfudTR+7rjGpdtQNH7cUX0SWf0dzW4fL74AIXLAGIeZSJM78BGB\n4LA4RZYu/V9FjejiRlmIbFxZhiTZGze/96JQ5QnBr4F+Uxseo/a1Iv5L3Gk4pbZGQ8pY+lOoGLlB\nUZ3DGXOBsW5wFnausZ2SDKuNNKbGqey0mzOsfjhbzi/13JOvleX2gTQMhcgkRJUFGc01tlfVG77X\nnI7E9f2QOdYEseiogTDchTMmqbHte3SfFpnQtbSyNCGUcgIgWtwgIN0h1dcF2m0IR8/CSXZmrOd0\n4YoI90H+gbpzzVACIoN6jgredPKvbfq2xecjo9JXfbohMrY3al+DOeecav0JF2Wryx2NX4aM9Ogx\nLP743WlZ962CEmy9RQ0mrnYF87o+kZQ9PLwLYtKJ8hgZqU5lZkqo3Ey/lr90upTxc4Im2Ajq2bkV\n1D3yyhanUZSaNFXnARnV6hA0kYNszRS0JYgTF9wkFo+Cn7VyFtNz4guNUXRN1+3+DHUMOK/KVfVh\nBxRCHSWDw+eozo21Frs9ZGKzss0kaLI1t9aNbdQ6+ihaTVBtcsLXNmLu+BLKegf7Wp+W2JC7Idts\nW5w4ZLcWCeBPtyw+lG48Efmt3LrWLyuDefSN9hDlutobRc3kwS9QWYLP7d0flX07J4sfsdBtzOW1\nTMEYY8wmmdopaL6j3wnxeIUfTSb1+/ym/PbuPaESfKgjWlw/x2+1dzH/UZwkK/e0Lj39mdApS3xZ\no4YCG+vI5XtUow5ks7kN7Tm2PtMea9mCh+pC62uzRsb5W6GDI3A1fP4LqcfMAuqPUlFolklwae6n\ntRY3WGuLr9RG5xSenifiQeh2NK9Lr4Wg8eXVR72qpWZU1DPwZ7l9rZ2ZfbW1BzfYqz98aYwxxr+E\njwjVs41n6rsoSJUhEGtLWfK2ZZGWv47HUME703MvUuqj3WeWeqZs5PJKfjyW0L4usqI+C0RRUGnq\n8+a3mjvhHVTxQIycBzSXPChQ3vQ1huGwUBABSznyRjaw+IR+iejzOjwej3bljyw+pOOvxB3RPYFD\nhn7cugu3A+jhLJwKW/dV3xnrT6vJdZ+Jf9Cf0fp59I2uS9/BN93V3qhSlC+rwVOVgdcwiiqVmYH6\nIBPtCMJvBzK+zHrdO1F/rf8UW93QuHbZT/trGocB6Iisn4y2Mca9EjWTkupnId2zoH8n+Mw5iKYF\nSpVszYx7cXvlUK9TtnE10ZjEvepTBzCx8iXIh2sgLvDfpbc1Bg9+LCWqakd7icMXmqcPPtPasfFU\nSJHZPdW1hMLsm/8mhJzPo+c78R+WGs/RscbciRLlT/7hp6ovSoAd9unP/yg0VB90WoI16/F/FFJl\nACK9iWpnCy6cShV1U9Bt+w809370qThblmP1YQdE9RFqcB1UUX1wWEVBR+RRCS0tZcPTgerzxT9K\nTu/mvcba60clEJRGeg1ulgi8dlUUvVCtszjICoWC7nOs/jkFkZLKWwpDuu/NjXzS5bHe5XYfCjmT\nZt06PtLeatLRXuW2Zd5GsTMOx2NFc6DJurW5wftFRXuH0jvV41lKSP7VfbXj+JXs7PxUe8KNu6CN\nM1o35i/Vrmpd/RWP67659f8ORVarmHLx1Pii6sNxTLY3aqhtHUuZ94mU+tK885ydaN89rskfzDLs\nH+E0bB1q7FK8e2zs6v7vT7VvzV0XjTHG7O1oDb1gTamwR4mwpnicWludC61dqxHtHS5q2jO8hz8p\n7lSfhEGTDuBQrF1rjLev1Tdh/HC0Ir91fiY/V9jiHSupz6cLTnnwfj9nv+pDSXEBwtGM9P+gqnUs\nvQWHbUp/u+/k/6bevx52sZEydrGLXexiF7vYxS52sYtd7GIXu9jFLh+hfFSkzJwznBm4AtKcUfNG\n9bkzq6hqIgSXQFzRwlAEpYWuIm0bO4p8RX2K9vZhnJ4F9LsUKiMHN8oGbT1UhqFTUdR0FRTDaVdR\n5JDR83qoJl2QvQzFlG064kzzPoznIaciapctRVEf5BT19AyUUfAdKCK/uaXs2w0KFAEywm4y8SFU\nqJacqc6tCVlz9a5ojDGmCt/JWkH3sc7gDsuKOvv2Vd8kyjVzjyJ+sYjXzDnDniUi270i+7JQxPz9\nK7Up4lB0s8zZ+oc7QnqcthUFzRUUHU0WNRaTnuoUg/V81FWEvDtR1HGXc8WLKvw8H3jmcuRT303m\ninxbqIdASO3oVNTGTgO+INji85vKrrRgtS9faez3PyHSP9dYdq5kA0uj63c/UdbOzdiUz4r6H6Wu\nzVVFmBewnsRWFGluVRSlPXiNAgI8PxGitaMZiJxT9VdkQzaW2dX1N6eoc6BUEABJEsvrd+Ya+BPn\nJ8cTlF2mep6XzMjeXkH162vuDOHSCdBvsRDRX/g1BlXO2w9BN8A9M0ENZUJWcMOt664PQLa0yKxu\nyx4mZGwbF/TzD4TYiW/ITo7+b0WJ3V6Nf9wFMojo8xgE08gj+/FMOD96i+LhzHcmQTYalaSZQb0H\nzo4A6kBOslg+eJNMjWcHOLvvUp97yC4vJqAHYJlfuFXHAJwCfhAQMfyWDzSYC/qIuRfumL7qM2gq\nqzGcqs9jcI8MxrIF/1C2lwppTkXhklr69LsAnFsRt2xlZRXeiJz6zBMiQ0GWbUI7Lf9pzfkp8k9+\n+EfiYT3fzRxyzjlTP1Y/JFEVufcT+aU4vmTgsjhyQE+NUWwA8RMK0V8OuH1AKK5uqX1+D7aHqsmQ\nbFp8CcLGq/5cwhMyRi3DUtG4bemBGvGF1B6XdX/Gc44qU2Sm7/vMgfbX6p9aXnPU7YA7DDSaH/RD\nDnWVkVe+qsv6MkAJokr7+mSAFyBpIgPQLZOFCbdQGAzDX0bexPVOyIRqUH9Dx7pXCi6nQ1SUkn5l\noTyMyQIOrx6Ixnm/qP87+j48UV/W8dtjR4M2waOQ0BilfPCTsaZ6c5xNR8UtmdD9sw+VFcrfgErq\n6X4tkHwLsm3VkTJ6wwm8OqC3pj7ZqNOneluqUH74hVpL1SuxoTkwH2qsgh5QW0kU1rbUruXkw7Y4\nIVT4RnAynJ/JnzVLqFR49L3F+bAGt9ZiKds6QrXj5qXGyQdKbmVNGdUFKLsUc9aMVc83KBCVikVj\njDG7d4V2WNvRnPORJXSkNd7n34JwQdVp1v+eq83hS5q7PxNyxY8a0ts/C/HZ+e78v3xEpy3fsHNv\ni7/KwPdRfHzzL+JWCCZB8wbVnjycbff/RoiaBXxXp79Xpr74EkW61TXjy6PMhw1E4RdKB0FegEA4\n/Ub7pwQcWimeWXwjtFGvq7puf4bSzJ44aGo12dD5gfowiKrnHZAxc2xp1NT17y7FX+EDtTDrfZiK\nWwB1vhxqRlfw1J29UJv37so2CvB4nPzjV8YYY64PZRMrPqGj8hn5keyGMsQd0Aw9lMPu/Ri0L1xc\nA5bEHhwzMzK2K1u6zwncNK2GPk/ktE8sfaO51rouGmOMWUflpBOUTZ+DkvKi5Jje1dpdvtLeonKI\nGinIl9yqbOr6Rj7qrsdSF5RNvAH9sLjSPjeW0e/DcDAMS7puiKpfIsl6Cy9Jh/Z15qhX5aUE1BvI\nl5yClKk+k92kttkPd2WzE3jxmsyt1FR7QGOMSa3FTe1EvqT4UnaVuCM78qAsVwe55PbKV4VQbelh\n+7cpkazWhlW/ECZJ9hRn7+UfXh9o/m5syla2P9F8DadYS0FC90rw38QYU1SYZj39btBCGRDAY7cN\nzyV7DC+8dm24XOKgVNOP9Q6U25b/6sB7UeVdonok25iyV/oUhHQW5HfLw/wAACAASURBVMYLOBVr\nB/qdw2hO5FP6nQnpOatwVSbTav/V10KSv8ZPstSaDCqn/rhsJAhX4jyk/zNx1EdPNEeqLdn6Sko2\nW3ikfgyiBtpboJTr1X1yK2pHYl+/c07Un9cdvSs28D1Rr/zr1o+FMKyfyhZOv9VzV3IgOx88U31B\nGI3b8iGu+YchM/tO2ZYLfjwn607lQnNvY1f9HUJF9vS32keP4aXzxdWuFOiUEQjOBnyloTyolYyu\nvylpnDNh9WuM9zljjPGml6Z9UzEJEGJhOJ8shHaFMaskNZ+2sIkA/voGlH8+Ckcq3F1n1/LPzbq+\nD6JOZO3/LHTP7opsMZXVGM1492uB5vVmQeg51XZvEl4c/P0MjrKLN/gzbCmU1VjfnKlPyyCut1c1\nhpMgfES8l3dQSguyX56y93FxOsJJHKACn12uoPaHCrK1Bu/ObtbexBYnc67kwEeO79fq/1mxkTJ2\nsYtd7GIXu9jFLnaxi13sYhe72MUuH6F8XKTMQlHCAdmuwQyUBefIZy5FplpD/fX6FCnLwTof2VBm\n17emz/Mbipz5/6DIVTAPP0ZOvzcKoJltorLPXypyt8b5u8m5op7VGkozKf3uzbfiAbm7LxTF119K\nG35nT98vyQQHOWMWhvW+1VOk3x0kS+khg0pEv9VWFHyCznkFVIYLlEWLM9bzOedOQ8oSxiL6fjhT\nhG9Kv7giHH5FLcbh4rygc25icL70VtW304Geff+xsh+Na0UJN9cUpXx5raxOn4hy+0oR9HZFbV0N\nK4pYJaqYJVuxONf/s7HalEtrTE6XQjVFAyA/bln6sJIbv9rqcKqNHvgd2hfXPE/f330sJIwvpTE4\n/VLRXY9LtrCeU+T5ZVHn2nuofSRBdGwQ1bw6VgayUdYY3HmkTGKYiP8EdIEfpZrL18q6TAYa28wD\nZelcUdX/6i2ZAZj+99bU7+OF6nX2Ws/rzhR93Ssom+ZaKtrb7qn/+8APHEZR5KBH2brYmmwjmlM7\njp/rfvW+bGflrqLa3nWits+V/SpfyEaNAz4T0Ga+DdlYIETmgfPadc7krq4om5bhPPjxW93PEwNR\ntK/6W3ZVgXdllaygB/Ra5Vz1CwdR6EnAwwKXxW1KCnTQKjbaQQHLNZMNAvgwU2xg7laWx+HX99kc\n2SPaHAwyj1BnmrtAlqDaFCDb7YqpLx98prFewvszDmg+BkHIOAK6T26Tc+Vz/V8mA+yiL5xO+UEH\nmd1k3kJ2qE8CSz2vN1D961UyBqAlHGT6gsyRAKC0MFmRYVKZwymqQ/2uMh4LuGg8nOV3OUCOTEGM\n4H9cXcsP85yg6ucYyN+E5igGkfmuk8Eej2QjERTF/GQuvGQiZzPdx4P/CsDuP4FTxr3QfaegP+ZO\nfj/6MNSdG0Uj7wwkU1Bz153Ufbycs2+jVDSBl8TJOfbDv8i3OdvyZR63fh+HGybC+uOFV6Swz7l/\nA18TXAWGzNME1a85/bj0+E3WAU+RW9dkUZgZo/rWYm2agq65GcLthTLWBWjPIciJ6Jyz8d+hMWVr\nDmxi4ZHtJJ+oLomA2rBEYabaxf/3ZAN9FBMcHbVhmdCimod3bYT/2dgQcmXNIz/heqy2jzq6X3dC\n9qtLVjsom96Ys2YzJjO35kzAr+cPsI2pQ/2RWoBAaaMCVUX1rgTPRw9epluWGQqNs7HFzyZf4kVF\nZOdHWh/jZP+rTdXj/AUKMnCPOfyyDQsFHAAVEXBYvFayrbd/VuazA3dDYUcZ7Aeg0Sw+ucszjas5\nVn8dH2kcYjHVa/ez3e/a8OzHn3z3/LdfiNPn5KWuj+fxdWQ5UwXNqQ1UmnpVZb5f/xH1kpiFOhEi\npt9X+0JLtd/L3ubgC7Xf4jZYB0F59/PPjJc1sHyqtWPIWtZALWN0TMVRnVvdFxKm1tbaMetpLtyh\nT9Y2C8YYY5p19cHhb4XmcXtke9s/0xozh8Pq7Zeary64UPwgGsOrqmMgentVHWOMGddUH28CnidU\nLn//R+0LS681JzYfy1Y6G6rvzbH6JgpHQxfkxVZBa/g5XATlG9lwFWRPPKuxTAc0FyYg8OZ99U8y\niqImaKr2le6/8kB7shg8Ha/hHfn06d8YY4xZvyuEyNfw3MWPdd/dO/IB1aRsqnQmvzdq6fs0++fL\nQ9lKH0RLfk3XvfxStn1xpvptPVFGOrUmmxvhW2ooeE5UbeNOyof0QO1NQHG5w/obghto/lz9MyTz\nHdjUcz1q5ndoLsB+plXRHDbGmJnDYYJ5lM6+UGZ9jH/2sI66QBVO2Dg4F7KP4OT2Sm5jVO6cQfwi\nqPY5KNCtfSFoLM6q5QQFWviTAkHN0zvbsg1XRXPipKh93c1/EY/HCpyGj3+mPraQdge/094gvaZ9\n672fiwdk2JU/vDrQ3PntW9mExdWYXtdzY38ndFLUqb4c91W/L/7l18YYY65fqu9X1vX89f2CMcYY\nH5uOKSqpA/hAT78SQqYMGmyJwuyDX8qvbMJlVT5V/Usl1c+f19wqgEorg14ND/T5Joq2TvZm5Qbc\nVy2102m5/5TGdH1H6LXJVOPRfweSsytbffC56pO/q377zT+KW8cRls0+/Fz94ue95ALOMC/j6s4k\nzYcUAOrGhdKnF3W75Vs40uBOW4Ev9copFNo174r5O1tcLzs6eC4fE6qCIgNBurIjH3H2XONW8sk+\n7//Nk+/qknn2wNy8rpr5pcbOu4oKclb3cHt17yvem/f/F+17tz/XmtV9K/9QAsG9dUfvAFUQ5jec\nErgLb6d1cuQbVOCOruVnQigMhvLq4yanA/qWgrAfThfWnmCAd8IBXIEXIMN5z955IBvJcOKm3tBz\nCrzzRFb1vMA79tEoWbab7FFiIIdQ0I1cqx9qPfiH3BrzNdb4Ygk0akf9kQjLMcXWUSrz/nVkpo2U\nsYtd7GIXu9jFLnaxi13sYhe72MUudvkI5aMiZRCAMZOxsmCLuZAd/ZkibREr4t0nalhRNmnoUhTQ\nO1ZUtlMlC4cyThwURzzGIVx+118oSzUhg/36tbJBe08U8QtF4fdoKYr487v6/DUZ3TufKHPw4khn\nhAMR3X9+qgzM2EL69BWJK1UU7U3kFc3stXXfQFTX+eBwcIxBtiwUJY+tKHUwmao9I1SUQgv9/t2J\nInTpAGogHVAsKP5ctPX3MZnm6nHZtO7pXoOeIuhnJUWG/35DkePjMczTO4oUJ8hyp1CXWNtS26tt\nRbqdnLd7+RspHfx4R5HaWhsehjp1Iqt/Wdbz7gVALd2yeJzwcXB+2hQUFXW4FX3toPaRSSnamfhM\nEeEaWbQLsk4PNuC24b79Otkksm4zsnkWV8z5iZAfbq/GKrRrZd+oR0S/93Pe8YQzuKvUI7yKsgxI\nkHoTNSXO9q5sqF9bx7Lp5oXGJZjiTC3IIzf1aZbgSGAu9B1koh9xxpgM8xg+EotDx4oqRzeV3ZqO\nUddqMJemul/EK9tbwMuSvqvMabuq55armpMDUBTRXWWn2n3ZTZPz3jt7mjNu6nP4lTgGDNHs3QeK\nFlc5t93vanx2NxWx966pv12aQrcqwy6M/g4yWX79DXAu2wMfxdwFRwzKUefw3wzgw0ktQczBCTOe\nqM4RhjwI94gTPgaLm6Q7UN/dXClLs/dE3w/xN/Gg5oob9Yz2hWzz7ESR9AiZxw0QM/0lCJU+/BZz\nsl74yUFNttdBNaqJClR6As+GH79gZf7IMIxRzHFN5Q9dEc4dj0GIkBX3LkCyoHLi5vx6/URZtcO/\nFI0xxixR67j3U7LmKKEt6B8nSJKIhdJIwfETJmNxJpv55je/M8YYkwJ98PgX8kGOJagpVKHukI2b\no7rkW7s975Axxvib6oehnzPCjKejL/89j8L3sa36zfLKjARuNBeD8GwYsnh1eLMaoFWqx6+ot+Zm\nzaPlNbGl/vaAzHHgOyMAGadkil1Dp5mj6GTV1bLBKOoSUc5hO2b6342thlHAmkdli86RPF2jprr1\nWhr7JQiVuCtGG0FHeXQ/Z0RzKcDZ+FAQP7tUJXvY8AwFFdOUTb4LqS98ZOKqK7LdtAMuFBA48wiN\nTcqm+9iKp6kxqA91v96p6uWLaB3pRmRLC69sfBDW/d1z+Q9/RfXuouA1ulF/+NoQG92yDODaWkDS\n4MQf7mJ7YdbDw2811jesE0PQafltsnKo5iVW9NdSkbLQY9dwS1RBme09lr/d/UQIyhKZ9sPffaH2\nkQkOw2G2/VB7ir1HQu8OWdeNMeb6umqGr9QvJTLVOVDFdx4poz73ozAHCqVMhv3wa7XLCy/VvU+E\npgjG1C+HBxpfP+M4ea76Xx7In8dTmjtrj8WRYZZT8+orIRIq7+RvFyAYk6uaV4WHoAZQ75mP5Beu\nX8rfZMnyrpOpLB4os/r+hfxfKKy+efZz1XUx13x7863Wnjnzc/0n6tuAhb7Cv/U+UMWtOWLNdKjt\nuTvyg9l3mvenqK8FWSMzT7Wu1NkD1UuyrWhQfwPwiIThj2uEULQ5133iqDTlQVXULtgzNOUXcyhe\nxlc0h7stuFRQwdsoyO88/0r91WnKJpLroH+fC2nULmqNn+e0Hq1anAoguptvVP+5pqKJgHruX6kf\noijRpEHjlYpa37ZRyUplVH+2paZ4pvp4VF2zeIQKYYI5Dhqh39H9fUHZnMev8ZqB+HSguDaHJzDC\nOmbttVo1+RBjjGlUhiZiqRMyN0tXat/aQ9llJKL2l9hbtn2yp6D/9ujdpVd16MPVMhpofoaTuvfn\nP/vUGGPMEFW3f/6//tkYY0wMvol1ECBt+OAaQ/nXfk3+0QfH4Uoa7kILXTBFXQjk99oz2U4OTqvX\n/0Vz8e3XeoexOGby91GP82tMF3D+NRrq25uyNmTVc/WJG56+EJyDC/YUNfZzI5Qka2eoNF3Kn7lA\nId8BXbwO71LQI79aB9n3/o3q+YOEkO+5HbWj1mZfy3plWPfKVyhqYUtxFLdaM30wgnNyucM+F/67\n+I78oLcvJNIihHIn++y9Xfkob0L9EoazpvhGPqhxDVoZDsikpSR2y+LleSMQMe6ofEmYOdQ61/3z\ne0J35Ta1TnRRIotk5ctiYX3v84qraA7/XheumSAIyXBE/XJ1qX5cd97/ri7byU3TmFeMi/dNP+/J\nvhXN21xefXTwlZCHLZAt2YzqMD3WdRXQ8Tvb+n1kU/7vHCRhtaK1aG1Hf9PXstXWpdbGwarGJJ1S\n3SYOfX6ztOIE+n4GT+YIrsUE/4dD+r/yRrbqSsjPrfk09y6Y1zPrkAAI7zh/PT75Hwt922bN3trQ\nO3BiU3Pz/LlQUtM86n2crPFFNVdHKJP1WnA1ciIo5Pvr3FQ2UsYudrGLXexiF7vYxS52sYtd7GIX\nu9jlI5SPyykDVGbKGU6XVxGlSlFR3N1fKJpqMWR7HWTneorgNVuKUDncitY24Iyo1BUJW3WgCFRV\nhC3htyJVihYmVhUBTASIlHmUrbOy+m6QMJOA7utCh9wLNcBsTiY6p++zA0Vz/USfJwNF2u7Bo3HZ\nUYYim1KkrT9W9NYTVpQ5xFm7ZKag+7r0ed2lSN3GA0W7S0Qio58oMhfeVLQ8Cx9HmqxqHkUOl9tv\nfLR93ifLAGLCuBU5PjsXh8zdbZ0DvAIRs3qhCLwVeS5zTvjpZ8q4vQzq+iTqP5UQKj8ZRXrDcIP4\nF4oOehykWW5ZZiMUXQLqdL9DkegRyjIjbGJrXbYSNBrD1y+F4DFOjX36kWzhYoTNhPW7BNmpFsia\n9oki1tOO+ikEg/dWSH1fGWgsglPVqwmnzowzw+tPFd21slgTMtRRItQGPg6nU/10daAzok5L/WmL\n89fYaHOocO6EaO2MQ6jZffVnnPOQ1Q4KLyW1t9LTnAmldZ94WrZiReSbsPovRurXgJVx2QdxBMri\n5L1s1llRf6zAZzQPMXfLql+YOZJJKrNwdCj7KZ+rv+/cUUbEBw/L4TudMXbH1Q+rjxXpL7fUjtrw\n+3Pg/14Z3Gi+109kw16XnjFKk+FaojIEcqaNjIVnQIYSdSNvWvPGv5DtzhbKRnTIXrn78k+hDd0n\njPrP14c6Y3ryRlnmzfWCMcaY+LbmRpTD7acVZV9uLmUzSzhrQiDelsyNaFT3v/JwKB4/sHTBXRXW\nHHCBHkjCaeBZU/2cfksNSZfXQTm1KiilgdCbTdWuaQBkDKg0T8BCFGpsnGT9/DD9J1O6PgzXjYOs\new+EzWSoTPeEc9YzLzazQEHNDarDQp2hqOML6HlulBwcTtnAEN6TqQOkEAoJnt6HZbgtNIMPJGav\npv4LOEEwdUGjlUGlMHfCWbX/Eez6ffil1jrwucA71aS9YxQxpg35qMsrtXtJls89Ex9A1aN+cIdB\nSPqTJgmvQiqhZwbD6pNmV3XvcbY/xnyfRNQH13P5s9AMxB+qG6GMMm97q7pfd6i50K/iBzg3Payh\nMoRKnGeC35mDevLDq8Aa6GdMvNjwDD61gEdtGRzqPkcdVPcWQqUusM1FCl4ioxIk++WFV2k+BWno\nIAvF+e8lyBJr5zIYakxCXXifyO65l/yNfBgyM8h5775T98tmtKZPl5q7h19qnTh6ozFM39G68OCJ\n1s30mvxfE1BVA6XG6lXRGGNMpyabiIDKffBI6I61u1qfSu/V7yd/FnrMi3pI4cda3wJkaoegg9tF\nZeXevdWeyfwnY67evzMRuA32d4Skie3Kv0bhVjh/KZ/Vw0abV7qPi6zjp3+HehNEHW//KMTOFFW/\nTdSjGqx7oaj6ef1TsqNw2hQv3pjumdYQD/fO3VNd7nyitc6gcnnzWtnxQ+q29IFEuae+LVfl54vw\nt8UyWtMe/FTfB/FDL79Q3y26ssWnP/i56gjH4PFxUW2f6nvPhwmmGN9cc+EC1aWtbaFw1x8qk/r6\nD+JoKR/KL9x9TDYbniWLs3AJt811GR4kp2x855H6sF3X2IxRiwr64VCkHZ4RiEzWBYtXw+KD6nbl\nK7Jp+YDgUuisqxLIywKKaSB9+h32NHC1WMjKtV3Vx/jlHztXut7p1/WzEWjmAD5nXetT+RshYWoV\nMsc+1Tcdk6+Kd7T3Omfcu2XVN7MKtxv78Q5ZfzfKNMGobDIIEr4C6ncOX0o4rvHIJGWTzSt8iDFm\nen1m3KuM1wqqq/D5dWq6Ty6p/nDC+TVDpWvuvT2HmQ8Vt+5E82PR0LwJP9A9F/jJq+fyJ+Oa6hi7\ns0ab1JZDlKzaVf3/9CdCFK+gitqq6v5/+c+/NsYYMwJRs/655sTSIVv54v/8f4wxxtTgBlzf0Px9\n8Eh+ZczaXzvWHsqgwjnE1r09PefuUz13dV319Lg0JifwRbVbcE55dd3GllAST34iZNAC7pRpQ7ZV\nflE0xhhzjaLi9anmtn+m/olsat26ONEYHf1eNpzdVf1nIDcHN3K4DpA4E97NvHHZ0DrcNyHQVtX3\nmnMBfJIvqPscv1B/9+CLKuyLi2cJ7dT7r7THm4/glEzAc0T9G97vbe02JQXK7y2I1g0120R5lyuh\nlnS/ANIeXqVWE4Q6HGrJe/LzfvilZnCRDVtwXCb0rpuKqp5n8K50Tirf1cUZ9ZtQPmcmrAVLUFkx\nECPJGChdl8bonGt3PtXnEfzI+69lQzdVjVn8ISpw7zTfyq9lgxv/oN8n4Xwp/lF+LnINEdAD3v1Q\neDQd9iogFB0+MCW8A47YT62j/tS0EIdw+QUAVs95t+mPQPdyesOLbfZnqt/uhvZ5377Q/+eo5+Ww\nvbOk/Nv1jfZim6gxh7fkvyqvhPQMLOQvO5waifNe/m8VGyljF7vYxS52sYtd7GIXu9jFLnaxi13s\n8hHKR0XKeDic6uXsfYoI0oxDp6ucBbvskBlZV9Q1EOI8IVwRq/cUmZ+Q0e5PFJnyk72vozQUJFLf\nqOj7XFbRw3ZbEUEHXC/xhTIwE86VR5b6vIMakqVc0WkqguasgoqAY6JBmuzoQpG1e5xHv/qTImex\nH4a5n667eKXMRHCm6w/eFI0xxqytqT9KdWVk7j1UlLwIH8qIaHIMZE6lpKzceKpYW+MCRZ350pDo\nM17OovpROrEyi1Oy5u646uDk3Hd1or65u6LI+0FZY/GLGIoqoInqcJPEYpyFnCnSOyT744WvYTT7\nMMUULxHpONnxJfXpc/Z/bVNj6E9prJsnMISfK3Kf2lZUM5DVmFVfKdIeSRSMMcbM2mpnrao+joIo\ninNW1VmQLXRRTGlWulyv6G2vrj73LjRWvqj65fpUZzsTG4oCuwi1LyfwI72XLVXe6vqNh8pA5AuK\nKo+NxVOh7E2Ds8cO1I1294W+mqEe5WgoGtztc46yq/5JYkOJrPrn5p2i15O6otyALkyM6G4qqL/1\nku7TeQ/qbEtR7XmUOUV2z09GKLjDHBzDB3BA1BvFm8gjtW+4VH2vG8oQbdE/HhBE3SshsRbd29vJ\njAydLxylTnCrkL33wNLuYowmEzKVaT0zF0Ghhgyee6z7jVGKmcNENAjAsUJ2fg46weJrmA+VKfWn\nLCSOvm8EYeYnIxxBOWzEmfiJl/PO1HtI9qcL707Eo0yEz43SjFO/r55xTj2i62LwbQQzqo8XNFbl\nubI/9aoyqEF8gM9lqRGpfQsQLAN4TVxkWqcj+Zu5S3Ng+77QA+GcMhKuBWpIcOs06laGlrP9qAt5\nWG66Q2UwFlF9vvdIKKpERv7dGQM56IODBa6gl0VUN25QquDs821LIM4hYtScIkM9fxSxUB762rVU\nBmXQQPHoUOPZZdnxe1CQS8p+/OvydbuoQjkW+r7qUDvuwWsygPektdB9/aA+FvAOdNxj05+h1AT6\nM+oDaReWn8tCkVKj78bwlA1H8hO1Q91rMZIt+AL6vIVi2HhhZWlAyllKVDN976cvJh7N99Xv1II0\nv0OskYbsUpC1e3vCXIObasCZ/zAKi40SyjJ9+edWnfPqKG9Fkpz1d6KIE5FN5lG2asyZIzOUZ8pw\nZaGg1oEfyDfQIPpRtWuPPoxTxoXaXBjVFJebDPI1/pps+hpZwUe/khrH0qg/zlm7i3C0BOEES2TV\nrtSK/HvED28G5+RPUVVpXCj7FoZ3ae9nyr654Lk4+/NfjDHGVOEU8LCeevzfI4I++eXnxhOQTdav\nhFQaVDR3zuCauTyWX0+SeU0/UHu2WU8dIIxevRB3ws0lyNktZWR9qMNUj7SncbJH8nrUrutT+ffa\n23OzAOGwltd8zqNKNGENP/7mS+qqukVTqsuTH8ovjFBZe/cVSophlGk+V5bfH5dNv/mj+Cgq17KV\nwhP5Y9+mxvTwhRAZLdQ38jva04Q+kOfOjfLhpKv71HvyQxnUhxxx9UUV1Gd6wvqSQCVkrDkVY208\nPRZHQ68tf7D2A6Gn/Kwvh6+VnZ/GUH0KasxiqJO04SrwD9SfDdBMafx4gDH2gzBZ3ODXihq7VBI+\nig1UQeG/uwG18OxvxPEVyJIhvtB4zauae5Nt9skgQtPY+plHNl2rwaUIj8d4V/v6lUf63fFbKXe1\njrRnKOzqedmI6jUzum8F1SlLVimQUH8HQAcfl/ScJai+hF925GjJdo0xpl0emlR8SP/p/uZL7dMn\nN6Ac4DqKwscxaKkfl5Pb+5Ie/nTWRAUnA1/FUn128F9/Y4wxpkZfF/ao6yp8axZ3E4i9tU/VJyE4\nrYaovt3AX2Rl8WOgOp1L+b+Lvwi19ebXQiav3NWcevK/oVI6VD2PXqrvF6CBkmHQD+xDO7xr5Xe1\nRofgWLl4LtscNPQuFAX174OL0QX6td9nrWOP0O5rbrRZw11D9kygwSIZ/C5I7OsjlBzpv2c/19yf\nNvX/H4tSSUrckU3t7wuF10DhqwnfZqMhP95FtbUHon97R/vQe0/hdUIl6vBICM/uqe7Th2tt+07B\nGGOMO6R+LvdUv+X4w16pEeEz4bHGLYRqYhIOtz4+pHOjforB4dNBia0J982kh4psXvv3y3Ots4mg\n+nOJquvMr9+n87LtHopqxhgzH41M1mtME35Nzo2YLmpDhX3N/xxIuMFQ+9NaWz4/k5SNZwKaV8Vj\n9dknvFvs4j/efyt/1zjVGGZRLRoHi8YYY1qcMqhdaqwsZIo/obFtvrTeu7X/TXjl3455f25zimJ9\nS2vZeKb7VeE7jUThyQOBt+1UHy0yalevpHp4toXuSuypfleH8PikZSvrHtT1BmrnDH8YRX21C+TF\nbWQzLrgR+4O/rghpI2XsYhe72MUudrGLXexiF7vYxS52sYtdPkL5qEiZwVLRvxlZsAVKLh2jiJYZ\n6vPalSJjLpiqp2Oyakv9zaQUvV3M4WgArRDxKmLls5R1qsoenb8TiiEcVfNfoqSQCRKJGyk6m+Zs\nWj6sSJ+DJKEPKgMr890zqrdjrqh4jHOWARe655bSBdHzoFP/F1b0++uqInDrnL+8bivyNm3AiQEP\nhxdOB9NVBbxTReA21hW5q1XUb1lLFQp0x2oma7ycnXQT8U7llO22+CLWYKpf31DEPh0gUwg/zTyp\nKOC4qTGpW8iNkfqgeqCsUQDFrElXUc5xV7+fkamdzj8sczmFL2MAm/sSRaqER30VBpVQ4hz0ZKB6\nhVCH2NpUtmxGNr+HqsXaptp3fgabO+fPfbuMWRwIyYJIP6goF4gdP2ioc876WqoYzoXGbI7yTDRD\nf7Q01pUL9UurB5M4jP6FPWUgPaA+Tg6VaRy1yRBzHnFjW+MW2dbzzt4omzVoq/6jup7j4bz3+qai\n1kvmmMVHNEEZKL2i+6XhlLHO/F5+Af9FQPdNbCsyX+acaJN2PPypMrkTxvf4BYzkKIoVnmicVlHK\nOfhvyrxabP2ZHWXNypzLLBVVzwzZvduUdA4+mhVF/V2WahJZfTcx/9KFsh9vf69I/QA1ndRTRdQN\nWaMxmbkZSJHliMxoXn3gWmr+WepxqTX1XQ/VjxFqb76Z2hJwaKw2Crq+f09/KyAxpj0yf36UcByM\nJZw1ARfzHXREj+zbeCQbSmLrroTa6ydLdfyNxuKYM/sJOBhW74iEmwAAIABJREFUC7LtZQg/io0v\nQG6Myb5bmdY5vBHjoYVq0NwJWOz3C/XTAL6TaVdzPGAd4gUVAPDQBP2oPzGHJgO1oz0FrdaDHySn\n+ngsHhHU6eY+UH0hi5HkdmVRl00NwqpIkDPIfri9DAgpB1n/paU0VNM69fKN5oRBzaXng2MnpH7x\nknULrVq8TPKpM6/mWiAgO4hFdF0cX7ZY5ax1p2SqIPEaZCCPnMouR0NWNkpZ3E1UbmLbst24S2vA\n2MGaeiMbabaVNXIN4fRKq+6plGzAG5F/X7qRgmKNXcI1tqiobywumoVDYzSCK8Zxpd9VZ2qzF2TI\nLCx/ObRUox7q77rvl8YYY+7CEbM4l820QE2423DLZFV/V0x9t5pWu13zgu4/0OdD1Jr6NV3Xwk9O\nTuWfXM3vz8zfpjjm8B2BNqhwdr/b1vrihOdp69EjY4wxnrnmwKsjjVfvtXxQdheetzvyb+6e2ntN\n5vYapTY/KlIrae1NXHH5S7cHBbi+6nP+XMoVN2QfM/c0lwsgK+Mo5RhjTCKVNwdfKkNeK8mvukHB\ndSZyWntPVa87D8WZ0MfndOGouPgncdS0y2qPDw6c9V39vQbZMwPJ+vgXv1A9mNs3N7pu4XKbjfvK\ndOZXQPzBG/T2rVBB5TM9c3tP6M8UCiM1UGAnf1HbJyBmPv2F0Em5vGzum98rm92Bx2z7se6zu1Mw\nxhhTOhQi5OpA/nDzrvo4G5afsbL4ty3OkMbWOZY/KJ3L1vZAg2YtlTXWgUlPfdRhrxRkjs3Yf/qD\nqkcJVbcBvENJ1gtzBEfDRY3P2VO4QCeB4Avk5ZeX+Kn2JUo590Cm7LFPfKn7XRzINvwFjenqmtbR\nAQo+J/i5Mnu5u3c0LvF0ivqovsNLta+0BgdNXv17vKa13j1GvQmFMLbDZoc9z+5WwRhjTAOlzCa+\nKwgSMWBxiDnhiBnL9uaW/2TPOe/JhmdwSOZW8Enx79eJ3kXXdDZlf1Gv5pA/CDoCnr3VB+xBQOKc\n1oUimQ+/n2P/XgknNM+y8AxtrWkMWj2N4RveOQqo6d3/5d8YY4wpgUg7f61n7j0Q4uPOY13/FxAv\np0ey5bVVjekP/ve/NcYY42FN7oEIYek2uQfap+0+FVLGwf794AXofVBs2Yj2/wfv9RwnPJ/79+Tv\nHKjxvftW/qX1Wjbky6N4mwZ1wLvZkHoM+hqzBXweYfYGQTfvGSHNwa3PZRNeEIpHx7rO4t979Fin\nBZYTza23Rdlyvc7++Kls5O4Pxe1YhNfjq38SJ5bFSxJJoQq4BN26ouvu3+VEAOqFX/yjVLGcRvV+\n8EOhO1KoWbUbqld+raB2sZ7etkxAUxu4N5cWktUDIeAUPiM4h9IJ2dN8Qzb+1R81Z1q7WqeiKLRN\nKiBS2+qn2OaC9uq2LjcIS7iC9OyxWSznxsUamMho3lyCdFu9J7+V3dW8OjnS59WSxiD92QNjjDFb\nzzSvvv2vsqHJO9lUBl7L86Xm69mZbP3ppsYq+EDvIjd/Am1/I/+ytiLb2srKr/RA4FXL8idZlGVX\no2r7+an2Jp/8WPVxjzVGtanesxfYlvtU/49/LL+2Dlfiq2O1s+uu8HzNvbOX+n0Xns0x+3GLX88Z\nkN9a1GTLUzfvIajBdeH3mcGJ+28VGyljF7vYxS52sYtd7GIXu9jFLnaxi13s8hHKR0XK+GBXT+QU\neRvOFFl6WNCZWl+CyD+Zax8cEYMbRcJGHc60EvWtdpWdC8H30Seb5prrb25b0c2DE2VWfrimqOuf\nqzqLnM4rUnb+pZA01w7VbwgCpnqk6O4MFICbc/9LOFx4vPE/Q/Emr8ifm3OWY2Ol1nVdjHODby50\nVrrwUBHDNFHZSUuRyCDnt6cgiRqcEz+Kwi+yo4hgh/OB0bja7wopQujz+Ux/TpQOhZEE55mbnE2f\n0oYBEWcvZ8pzZAvcaLhvENn3gbwJx2DKz2pskiA0Li6U+fTC4xPyg95ZfFgc0ItKUu9Y9Y8m1bbc\nKmpI8Ewcvy0aY4x5/BQOGaKTfjIHlf+fvff4kvTIsvzMtdYqlEd4yNQQCaCqMKV6RJM9MzzDJfkn\nckFuSA6bzTM9Pd3VJQAUREpkhvRQHu7hWmt3Lu7vA7r6TKMCq9x8tokTLuwz8eyZ+XvX7n2lrByB\nclNAiaXd1lhGwqovua6o601N9TWIboZAByTg4mnw3L6Te+AJjY/LqzFP5ZV1msLw3arCJdPSeAfI\nxicOlKVJ7HM39ZXaUy0p2+XB1pwezUdyX9m4KRnUCndtLcWtdkvzZ7Gwe/OKHtdRYxpUFZ22KAgy\nBdXnmqg916eKTl9e6e/uA9lknPuiL/8gIw+C6oinNR/HZG7qDdng9gfKzKRBl/Ste+onen4SXqYI\nzOrfvtaac4KkGjvuzinTJwPXLit7EIUcZDlEqQukicfHvW4i5143ilFRkGhJ1C0m8hdHLa2VKcz6\ncbJBY1R/+igWLFx/ym8xhx1+Bh8HpmZaZDua58oELJYgQUDcWWgnB3fXk8z5CB6eZlPfh+7IpFB6\nCSX0OYelTgfXVAnFgstT2ZSV+ZuhUpIh89gFKdJiHMdD9S/HXd95VB1Ioso0h7tmwt1+B37bUvJy\nu1BviuMj8Ns+UFcB5udqIh/RYY0Fw2qHY1/vD0DcQElh1naVxZpzn94V/XFcEKOQMqEOFz5lqf9d\nKNLMeT08Ub1bYY3n8L4ytvfHysCXUEQbnikbNa5pvOpV2clVWWi0EOMUh88p5lXGaIVxC0e0Pyzg\niUqsJczeQ/X5sALig7rG13pm5VL/X7+RP/OByvSFtY4i+GEHyJcMHFBBv6X6Jj/nHnNHvsPnPbIR\n47EUadhrPfANwZcTRL3PhVpSy6d6RiP5q2lRa7Djly0EQdw4m/D4eOQXkyFUnRwaozFqdrWO6pmh\nENPxw8eEaedAdDrhWUplQS6u6vtrbdZSFYSJqrlzcaLgaPogGlGBc/i19lcO9Hw/qhnHJc1H47Xm\nI7Gh/XDlgTLSg4784fPfSK3JGZKv2IXbYT2p7F8VXpKLotAFwaT8dmTOfXX4rQ4+kr/e+Vh7fn+s\nDa1a633Xhy9+/1tz+rUy8ektrfmtnDKseVB9myjP3KKk8/zzz/Uc5iEd1jisP0FNyS37coIatNAL\nDz/UWS0d1fy++vy3xhhjzssaj+3CvkmtwlMDKrRyor3l5pUQi8k1zWUcroJ2Q3va9Ush/NwhPfvn\nv9b6C6JSefSVuLKKIGFyWbL9ZP2PXwkp8vqZznsZ1mHqkfo0ANU1Ym3dtXjwXzFUgmZj2XyrrX4t\ngyAN86h6oDo3R13IUp8L9jXWWfpdBRVQOpdfifH66oHOJC/hOhiikDZEaSc013hkduRPakXZZKms\nvXrrWj4lnAXFAE/ezbHqa4IqW3+AzW3I7zuTOkM1y6DlQBmnYqqnv4Z/bMhGByXZeuChbK2Q1zjP\n4dQaDeVTyqeqJ5lnn3kgn9B/BlJ+qDMSpmb6cD7G4W5rG/WrBqJobvR+EMRMHQ7GEMjQFL7GGKlP\nemcgduBNCbAm5/AVWvyLHvbf5Vh2G/D8cIb7n5YpioKbebVphTEtf6514XXIBtJ5kBec00qHmvvJ\nQmPm5tbAxSudm4YocsVBauz9VGsiBK9SGwQbYF6z/YHmIpfVWcEdlF/+8m/E41O/0Vr7yV/+zBhj\nTOVaY//lF1pbD0CvRf7yU2OMMWffqP0nn8m/JEDxZ/awHc465QsQhnW4vuBtsrgDE6Aflk2N+dUb\nreGMGzU9VFE3hxpH/66+7+O34G/+XyH5KnC/bLwnNMPaPZ0RJiirtUF6Dgb8lsIWLAQjwmFmiv+8\nnqp/VzdFvcFhaw9/vv6hbHoEenbR1ZqfTUBpxX7cmWQwsdDJes4MPiQHiKIxuIkePH3JByg2hjQ+\n7rHO3a2G1nxiT+0LpXQGqzXUj52H+l00Sur7U9b0KPC9EtDI6Te+YNCcL7WeEyHZjBcUa6OHQh9I\nv1gaVUzWYelW/nZnTTZ9EgLhd6zfHvGE1lvmnsb+9kr+vX0rvxUCUR4Pyx+MB/JLjbLqd+O/Q6BC\nG5yRALKYOLcS3lhriPPcUs00blCcWTgOjysas8JI/sSbxkYzOnNco4j1YFdjlLqn94c4pp7FWwoy\nOjzSg+Z+tXdicTOCdo7kLMQfKKh/odhIGbvYxS52sYtd7GIXu9jFLnaxi13sYpd3UN4pUmYBaqIH\nI7fjRBEuJ8iSak1R3AD3oJ1zuAm4T+hAKafVINr6Ut+PxBSNHRExv+nr70fwpbgWCo+GE/CAkIbL\nbup974kiY2vwXVyjvDBWAM34wnAHpBTVTXYVKat11I8gCCAru7eEA8YDr8kQzpoRUd/BRBG/W+64\n+WCHvuVOXShmoQr0vLU1tTvpVcTQg8qUB1UWixOiBvdErXxuChvKGhQvlBF9RLaofqxo4ZLsf5Hs\nlKUgFSfCXHytSLbfr77OmJtJX89MhjVWTh9zA7LEA+rH69OY+cka3bUsp4o6Djz6u5dTxLo/UHtP\nj1D5Sei5KysFY4wxl/D0dE4UBe3D8h5GaccKRw7I1m/s6HUX6IcS0VMfvBVR+CLat4oWW9wqXjLS\nQTh6RjFFkUPcK6yhrLUEieIheuvzyVZW1mVzU2zjnLugi46itN64Xg+BTEqvaR6vjzRvgwr3xu+h\naAFfxmZB9fqw2VNQE02QQrsoDKSS+tzVqdBat4eKbieDZErv6f3bqqLCnbai3qm85sHizqmTlQvi\nUrZ3lKEZoDB0xtrsk1Vc29fd4WVb490sqX1xbD0aurtr6jfIysCw73JoLoYeuE08ymimuTe89r6y\n041r2UQXchinxSHi1PqfoyTTvdDrQ1BmHrfFz6TBdEI2leZe8Ri/5gvKP03rstXSW63ndlNjaSFR\nLNtysTaccLe4gta9a03isgvainvQoSQoCDhLHHDnTOCuymVk0/fhVnCDMjMe2bxB1WiJApsDxYZu\nUzbVvNUaj0zlZ0YhzU3Qp3YG6fd4oixOuUH2iH6E4VZYWFf6UYPqgXQZgDLwIQGWyuk5QTjBXH61\na1CTj5mCAPKnZHMWQvGuxednfEidpGKav8HIUtmCO2gqf38KYig6hZsoqbWdzqMqtaPs4hLuoHqT\nlMxI/WpeYF/wVbXaytiXrmDjd2lNxFfhDkuvmxh7yuqOMo8u1C4CfbW1zdh1rzXnTVAFk57WX7us\nsfdPtY5PBvJPlphZwIE/hQvFE9J6nM3J4vTg2UE1b8mcO7Hl9BrIxxSZ2jX5AW+BzOcnZJkaek7r\nSn08bxeNMcZcVdXeZF/1JEGn+dPqby6rterJsoZd7L1NzUUDNMFwqrV+4pefdw/U/hEZx0BN7R+y\nVu9a2nDw9FBw8AQ1ngHQHgk4F5YgIAcl7aehiJ6z+UBZwjmIwWM4G9xe2ezT94XOja2qntqN3j/9\nTJnrEMjTB0+U8Z32NT9z+PIiefn/+o36d1uX3x6d6nPmfzWmd3Jltjfk3/M/QbUFXifXSGv+8KX2\nzeNvhVBc4rMefPKRMcaYTFzzPoaUosJ+FmA8ffB1dUD4XP0XZc7LNdn+GqqH+7/40Czh+CqDWHn1\nlf664fqwOGDccA10qrKZaE7vb70vVBDHKvPNV+KHKIGESXhV/zqKKG3OBp2KbGVjBaWsv5SahicI\nb9tbuEJ6P86PLEB/OeAqjAXkx4egQQcg6ZZGa8QThYvErTXZbLGWu8pIr6DIdRaBH+MU1NmB+pNd\nh0eO7Pikr7XebcGRFdDcZFE9KrynNfn174REslDE64+x4Qd6Xr+juXsD107zQu1ZRQkyCMrO4wMd\njM3NQVSub6FMiapI8VC2uLmm9vrWZEMOkEEROGouUazs3Gj+wqhCLUFSBUBWhmIoe75V+9JR8Zrs\nrKt9c/aD1hXKP2TwmyCItuFKy63DGWeMWbTGpgN6I5DS84KoIZ5dq/8tF8hNv6XyKh+wdA3NXUut\nYvk/UEYoH7av1bb8uoVc0dh8A/9G7Uxzv7ep8/QYxMd1Wet0awt+ILhh+n095/wPQrr1G1rfjgC8\nd/CmOXe1ASzhKAk4rT1I9RfhYyqX5W+3Uch6/AshZAZtzfHRWyH5ZijHrn4iJHUenqbFRGPU/EK/\nI5qcmX71S3GJNcsgxyugfjmIMwxmMdL+0eEsMWDfm/MbscnaGs/0/saB1vb+hxoPH/7p2f8jxN4F\nCO5gQDaWv692ru5xfoVX8OgL+a+X1//I+OlM9vjn4tzafix/7GT8Lsrad2Z96zcWtzd+3M8b41/C\nGenTubo61X4Yisln5Cwlt7r2k/xQ7bZUuOIJ2XgNbss8pDG+OL/3zoQo6s70fjqs+m85C5nW9+fs\nUefKBDYLJsJZvnerdeKHgyUEwqPZVyf7S+1p7qTquIBfaD0vf33Ab8yj38hmbisa6xycijdXGrPz\nQ52LH/1cY5zpa67efq65q21rT9yJ6XvRPZ0PLw81Jvc7Qmt6QS5G3FoDwx4chU7ZRBRlxTSI8aMb\nbL6lNZfa0W8SB3twk7XQ20dBbQ2e0SuNR9dor7M4JJcL8Tt5Y9yQWQh11QdhFMamEOL9F4uNlLGL\nXexiF7vYxS52sYtd7GIXu9jFLnZ5B+WdImVcZI9SaNM7iHD5I6gVTbm7BreMk+z5eKaIm5VNShLR\nfmn0+taKIl4j9MPrRJ8bq4oeNkB/NOBTuWwpYjch+1W6VgT/4yeKEvsicA/AVB2PK5J2VlSkbolq\nh9NL5pX6m3DALD3cZSZTHfQqYjZFxmkfRvGZR9mude5/jzp6Xh9VlzEcNybE/coQKjFjoscdMiZk\nyRYoPswjS+PZ0BiPv1Bfousa0+pbjcH6ru7xueCNWH+gbIRjqjFvVRU9ffRU2YoGsKE2RDrLkKKR\nXSLgvp6iqV24C8Yzfd7qwl1Ll+REACbrKFw4N6/V7smt5vw+d2IXIFuaXyjbNiB7tX9ftrJI8P6N\n5sYJX1COzEW3o3r7db2fyCo6a3HKXKB21G/KVjcPlN2LoqiygOOhcy3buD5XBPzRB58YY4xZosJk\nQGUEqHcC83//Wz3fT5YoGZPNQM5uHF2Na+dIUdiJU58LwKO0oP2pVWXVqk1lC/vnGqcEfB/x++qv\npTBTgR9jBEJn76fKgISiWqPFLy4ZL+5CpzUuHbJ9Y+6dxrcVyQ/CW3KFAlD/ROOQjilTsbKiNVQt\na61FjfqRyardLu/398D/XPE4uPOJukcELhe/T3MTdqot1jopnWksYtz9d5D5NGTZHV7NUQE1tBZo\ngYWB4wW0z9K6c8495aDR+vPB1bIkyz0BqeedK8K+uq015M+q3WNLxgmVCw/tjazJ1t1TbAReCQ9c\nKJaajzOGzcHN4uqg4DPU3IQ2FLlPoeBjKZj1ByB0yEzmuY+dy6PMA6/PAtWjEDxCDp+eO4+oPdUX\nytYVvxFvRjqpelfC6qc7jPodKYDJQM/vTeX/gqxJD8oNbu5V81hTgmfj2X/+W2OMMdkD2e7YATrg\nrsWSogD1sRyhkkd/TNBCZKqhDRQKJjfaH46OtbbMK9mH9TVXRO3ZSIEoihaMMcYkH8LP0SILBkJz\n3FK7uygtXQFfc1+XTNAD1xS27NnQnPnd2rtWmEPf+yBq2rLRmVNz7yabPQKd2UWha+BUm2d19X0R\nUFsmoxDvy3bjbf3fInU5b8GHEUYl6RxUVEc2fVaW39iMaf+I+JW5jNDu0EeygUAPrq9bZafOr1Hq\nOtf+MWgIJXDdA80GP0Yc/5cHTRQuqJ453AkVS4Wprf53UepaXKjf4/CPU/vzgb6y7tqvo1K1iFtn\nFFSUyKrfgi7Yuqd2ucIa5/Jr+X8nqNUHoD2C28pAH775Uu3/g/yjJ6Hn7f8bnV3CRmvg9VudXcZt\n1evNaVzbIHmcDfYR3/cKQtFE0qTZ7xJh2VOlLhtush+dnQitkgrIDz/51U/03TXZ8PlzzUfjQvPr\ntvx5U1nMERxlkz78AyCb9tZ/YYwxZoeM9HjgMDevhQI4faO+JMh03vtUKJ4UiiFv/pv8h6W2ubGj\nOiyOj8MzZbMbFe3NGbfauvFhwRhjzCptqFxc0Gat72wB7iaINl5/pr1z2oaTJbVifkwZw0k2s9SU\nVtj7ySiPu6Ak2upHISLbiKGw1X0DJ8qJ/NFaHmWyvNrx9ecahybZ972MzoPbu8rEPv9acze6RmHM\nizooCMYUyJrN+5qbXkUZ7OobtSv/Syn6rNzXGe+EM00d28jAhxdDXSSYUv1uI1s7/apojDHmw1/L\nJzkfFIwxxjz7r6rnGm5DH2vGmdU4xZdk7485m8Gvl0yDgIeTbTzX2t3dVz/+9oXGY/xW3I8f/JKz\nHspAnWNUoLzwcFU0D0NUUQN55J6MMc6A0/QZV/d7qt+7qf6NzoTumKAiGICnxTlHLes7yOefL86Z\n+lKDd8LiAkujaJPakj84f6Uxu3khJExqGz6ef621Me7ht9nTPZC2tFHqOkXBbDqGNwhejcVAY37J\nmqtW5a8DPvVpBv+Fa6H6nn8tlFMWVb9f/bv/2RhjTGJVtnn0VmMzZe9OoAKaPpANRVEdKr/WmBdL\natdqXv3Z+FD7wNH//n8aY4w5+UycNb/+j//eGGPMe9ugn+acJU6LxhhjBkXNVX/EmW1DPuEXf/Fv\njDHGONjHavzuuPpGqlAXb+QDnEu1q/CefE4yX9A48nuiifLjcCrb6fU5o21p31ndFQrD7dVefvZH\nzVObWxh+uLUCoSz//zBfyD8vA/hNZi34SLpaE84kKrCgznqopg56mucg/Cdu0NDDK9mZWy7BBLkR\n4OzCawj/yhJFyJBHduIw3yNJm52mSaYemNiObKRziv/gbL+OOtEQhcNRVbb54J781ms4s9rYyir8\nan3GsnpeNMYYE97XmK7tytZKb/T5xUR7VigiPzn1yH9Xb+WX8iiI+aL0Za4zQLsPTydoVXcGJStu\nFzRaGrN6W3vkxgf6TRPuq91leDST+MMYZ6xmTc+dtmSTM9SOA2tqd3Ckz/Vv9HpnW+3wBOCYQT2u\njcJWghsxQb7/LxUbKWMXu9jFLnaxi13sYhe72MUudrGLXezyDso7RcosuT/YGxPx7yuqFwuRrYGF\nfof7152hIlZnx7qHnT9QFLZGxsNNFHjnsTKXpy8VzVx9pExFkrti3wUzrfvnKFKMDRlU7uU1O4oU\nDm8VAasSwc/vKep7eaMo9KN7BWOMMX2ykmNLB51sl4cMxtCt9i/h2Shd6/u5sCJuJyVlNPYPhJzx\nuhUNrdaFJuiVFbkj4WoCZEhuy+qnI6DI3EZB2bhmUxFAbyBuVuBtyKwoCxKMEMWc6V71WlRj95Y7\nmFv3dc+7S1ZqbPTQVEZRwJfcLY2nFfVz1NXHUlER7Waf+75kbC1lGIt1/q5lTlYqEVSUdtYgm4LN\npMkopxNqxw1Z7VpFc5bl7miiUDDGGFO5VHS1fqnIcpxIfiSspXDyjd6fz4iq3te49ev6v4Lqkg8l\nn8SaIvdu7guOahqvM5QS3AkUWArKWNZ+p2iyicI0HlQW5+ytPt8Z6K7s/SdCqnhht/e6ZFuVpmxo\nROYgRGZjTsQ7RDsiZEjffqZ75Q4kgNLcO09zJ/W2qgh8+5Is2brmN3YgGyrBAVFrKbsXQ9krjjpX\n55q7ySjwrJGp6V9o3o6/ZZyDsq/CI0XDOzOtgekA7qJttSu6qfFuDe5+OTdmqdd8x3yv74acasMU\nBZWXn8tmzz//zBhjzPp7ioynR/IPFheKg3vR7pjaEhkr0t28LBpjjPGimuYlS+LzkY1wav0Nl6qn\n/LXG9vJKNrXC2ll/JJtzJ8hWkYnzkNAb1TUmfZQJvPB9zHBcXu7eQwVjgvCDOC1uGLhl/HPZwMTI\nZgAQGb9X2bq5CxTEYkY/9L02a7dzqbl3puFhQglsJY3CzZT2dzW+PUsZgjU5tZBIY/XPb5FsfdcO\n/fUgBRaNaFwDtGM0xveQBVvw/BB8R97Z3RW6jDHGgRKcleluDlE2A8U3m6leZ0Tj4ezq/wSIpSgK\nbbWq7KMDb8oU1YH6l/K30ZTalYErIrLH2ogKjeCMaX7HIHWGVyBpWkPjICtUZezHF8yBke1+Y2Rj\nANhMFITKGvxCS1R1kiAe0lFl2iwOGUutacqd/NlQNuNagHyA+6BPhq2d1/v9KRxbzKnTrbmZk2ks\nvlCG8tYjfxM+wu/Bf5aLKMvljmqtPXoKn9wD1NaqGrt6VX79nP3lAj8Qj2gtJsLqz9o26DiQM549\nOGdADI32QL2CmjC/M3cqPlQrNqNCb3gjGuhqRe3qTjROlbOi3gfhsnMfjphL7T/X8JlEc0I3JBKy\nncYboRyuf6uzTQAVkg//4pfGGGPcZPve/IMa3KnqeZv7yqw7I/IhYzjAlkvut3e+57twhmMmkZUz\n6d7q9fJLtWfUVj9WQUPsPRXqIAGX1+Fz+cbTL1EQI+tYyICWYA31a6D4djVOmbj+DlG6a/XkEy5f\nnpnmrcbEhVrHwwP1JRqTzX75t0LAXX2pMVnfhl/oMUgZ7vaPuvr+CuhSN/xD/iRIB/gZSufyF0v2\ngaALZcIbjaWFZIkncrT97ggIY4wZNy30AvtLXGsq6tA697LXzi7Vng6Z5pUcCjsezYXFmdiZaq/P\n7Mq2XV8rG18/kw3Hc7LpCGeYBDbdLsl/hTe1lkdT9WfM/rW2oj28MdP4V0pCP4WKOjPcAw29ikrR\nHDWo1pXmbtbXWo/JtE0EG1nM9bwaZ4dtFF9yKX2wfq7zqIfzfSKl7yX34N97pfG5Jbu//pH6H0bx\n6+hCZ7fNB8qo5/e0xl/9g86mpbyef/BYaycCMsgD710RbsprzoD5vOzIGGNCO5umArovVdZzN5mX\n56DEO3DUJVBj9QdkPwtUVO5S0qjEeeCzGAzlJ7cYKxdnhhnnTC/8O5kN7Z3zOep1Dnju+E3x9d8J\nLeSCF24VjqnVh5pLC1886enzDaO5vIJ/IxTS3OTu6XuU0jCCAAAgAElEQVS7oHa7Q83V2pZso89z\nX/5fQrQMQQvsban92RX5oTbcXWdf/4Oey1kgi+rmw0cFfZ/bB13Ukvyobq7AmdZFwef1M83NEg6b\nSFrjEphrrq292MlhptvUvjSCH6nfRCkzqv6tc44uwDfVb2gtfPlc6Ks5iE+PR3P99BfinYpuyK8H\nQdcVvxTy5xjOzeQ2fn1F7Rmn4LsLfq9mdKfCGdLFPnPNb9lZU+OT3JJtXnyOD4PDLLqhtR1xa77a\nDrWvBV/VBvvEBUihJtxG+/s6e7aTGp9JY/pdU6o3XbOx0TYOfgsGXGpLjXPodKA5SRm9f8FPmeBM\n57d1UD8tfo8mUxr7xD3Z1sv/IltKDmWL2ZzqudJPUFNvoyQL92sclbfGudaxa6S++bgF4MC/97t6\n3jRGn0D5eqLyX5aC721Zzy31dJbIbuJXitprJ1co56bUrhK/nwddePf68sPzHRD4E/29rspfz0fy\nQ36n1o7LC9IOjrPbodq7Ofp+zP97xUbK2MUudrGLXexiF7vYxS52sYtd7GIXu7yD8k6RMhPUTcY1\n0BQBRcL8NTXr9IWikvvwX3g9ipDVJ7pb/AlcCcU33Hseq74G+uPHz2As/1TRT4v3wjMls51UXDlK\ndsxF9HWXe4vukCJsKe61l4+U4Qh8wD3tMyF23ttU9HE+1/fLF8rsWPcUu0TDb4ki+xb6/pJsUm5L\nig3Ft6pvOlW0dwxqIu7gzjKcCJMa3BEPGb8bOHLI4jmD6mfnpSJ2PqffVFFSWaI8Mm+pbgdXCsMb\nik5OXhDNXFekv3OrSLRZ6PMTt8bk+lhZlw8+0ti2DKikrLIgDrJTae4lV7jj6g7+Gerpf1YiAdlC\nva+GjieKuvrjsgUPmdsanCXtC0XkgyBQDh4pK7ecaywuzhRpdsw0RjvYVhMW+0YRRYD4yp88p/8C\nJm04YbKryjR6yXQuURYo8/x512IaF1JnScbEsoGDHUXanfBmXF2qfjf8ILltPddN6qNzhvIPWX13\nTlHkWEDR2hYRf39I7e6BxuqiTHDvQDbm8Gu8umeKGvdopwGtFdrTeAS5q1ssKlo862vesqis+Lhn\n3qsqe2VQsFmgeHADOmTJnejc+2TDcpqX81Ot2UQcpZ2l2tWEu8gM746CGEE8dHtroZhkc7FpwRhj\nTCCI2g4qR9sPUEBJwzXjlG2G4NtxMKYBSE2Kh1JGOXym7MqHf6Wsdiao+gJZ1eOz5EFAh81c2Dxj\n6Y+qHQtUi3z89aDq41zq80cgAV/+Vz13d1f9WEtoTXkDqmfqUCZjCGdVhLF3gPpyBkCouLh/7ANa\n0yeSb1RfLEy2BU6sxols+PKFslpP/0dlICzU1ohM8AIlIDdKLI8/0rjGyW75XPqcawGXC6p50xa8\nHcx5BIRPH5U9B2iwPspuoU3543ug9fJk+SORu/MOGWPMdGhxG2j8nHH1v89+4CaDXh9rHDxlZUiq\nAxTU4F/xOC30mj638LppDxw73NNvvYXbogRyKas1l1xFXQs7C4EUykT9ZgSnTBw+pNsqqBrgkUEU\nqRbw/YzJFJYHqntSV9/OWOeJiebOQinEJsrILTLwtPngSxspqxPWsjY5lP6SHvZmn/xK1yvbWaKK\n4exrbxsdaO2F2mTVQBE5UJpqB+VHIiAr3Ruy2VXQEv0dZWD9oGWjqAS2z0H03Ki+SkN+Y1whC4Ya\nXYh6xigsTEZau9P4j5PDGDB3A1AQfbggamRY3agLruQ0HltPUX4AEVn6vbhikhFlMh++J79nfCBu\nXqu+COiEe0+FSPWB6nvxe9QySlpbO3vy2wE4xjon2idKNc2704ltJZLf9WHzoweGaTMlEEgOeKTi\nqzozFZ7Iz7tA3739Sqoj334mf57Z0v6/vad+hEFktsvsF3AZJMnINkcanxI8BCMy1mPn0sTCsrXC\nHrx1KIBcPRMaqn1iqXZoTB7/Urw6FpLuj5fwvIEO9aPOFsbfBkEdnB2qnkpLY2dlhV3c7a891zpe\nQOvmJSM88Pw4HgifSxV0x/A/jOE5IoO7CGntdAfw/gw1V+40aKM46qAo04xRTpmj7pFJwNcG6qqz\np2x5FoXItXXNyUlJ52PHAN4pUqylmvoZAjmdQnWp8XnRGGNMBZXPLVDCYZAmxqIl8sgnjNo6I93S\nznhBaIwcKIFKRT4nmoJP6LHG4Ra10tGVbK/nYs1w1sqihnQCKnvZZM3D33f+pdBa1YbmcR31wNNv\ntXZuiprneFT9jqygROOTH74EKVN+JTRZEuVRY4zJP902X/0fer11rbWU/UBreJVMe+dW8zbW8Hyn\nEjbs3J3DzI8fynysPg3J8s/Ya+b8Vik81Pk0wRmlipre6UtUg9z6fIPfFEsmaR9enZ011V9jzOvV\nojHGGB/+ZS2pTjTK4nVyzlHnXBNiObquvafSgNMQtMLxc51Bil8LxrADF1aooDXjsZQaz/ncayEA\nHUjLvA9P5oT+/vb/ln+ZL+UvfvVvtcYr57Lxb/5OaklLbOXgQOdmd1jj2AeFe3MJH9OZbDybl02u\nFdQfH7/h6qCN13a0pmIoiZWeq57yF/ptuOC8/d7PNE738efdptbI0WutsYvPhQB1xeRzMiBTnSiT\nLUGcLNx3R1MZY4wLbrCgU+0c8hu1/kZ+dO2+1vzqJud6zk6DG81XPKD/q9wSGYPqWKJoFoU7pluV\n3fS3Vf8UfhjfsvNdW/rdvun0Lk2A3xAdkN8+o3U8rfHbw2MhAvU9y5Yz/B5//o3W1eYja69AFSmL\nAhncMrkHsoFQSm0cvuH3cYpbGSAhq9cn9F3+IBwvGGOMcfjVvgFKwaFN2dYcLrEmv1l3UiDl6E8N\nJN+jXdmOx6Gx6Lv0/DBqxq4uZyV+d/dQ4wzBpxrZhLfnc5DToOGCnJNNWPvAfAZvHqrLC/8Po6ls\npIxd7GIXu9jFLnaxi13sYhe72MUudrHLOyjvFCkTh/ciktHf2JqlZKPId+hQ2Z8Q96xJlJplj3vt\nY0WyvGSsYzCbOwjhLZ3q3s6moryX8IlYakiW0kK/qUxFD7Z8p0vv36AUsbupzMDi+k/5OpKwRF/X\nFMH3u/R6kwyHHwWHANwH1p3ZKZG8IbwaI+6qtpbAJjwwb8NxEICjIByD+8andruIMC5RCZm1icZz\nN7jKvXbXwmUGt2Q0QVo0+txDruvvEpQPV0tNwKsoX5D7tL6kIrl57r7GUbJKrWpsX74Sp0A2BO/C\ngnvddKlBRDiQ+GHm6X9eFvB5+J1k20EDBFHiqsD3U58qSpmEX2QtrGxMjGzKq98KXdW+UYR995Gi\ntBEygFefC5Xg6MK+/kT9DZG9f0Xm1su9wAyZg7BPc1S7UPalAzIlRJqvsG5xryjabBKgOFbUvpsr\nZSbaTdW/wx3f0KqefwWXSx+lghxR3+ymkE3Xh/AGgfLY3Ne83B6SseTO6tp9ZbGOvtY8jeBTiqJ8\nEwEVls/qudUr2ebNC2XA+ZhZQV3Jjc314NOYdMkQMF+9IUpCoEjiOa0Vt5FBzEFBBAIa/1P4lMZV\n2UkkbfHD3KG4yY6jvBL0KmLuCmlMRtyvdk80FuEt2XQETiZvCG4ruFWicMs4e2rLgOxFf6S1Mh2q\n7X6AGkuf2joGrdQqaq5ibsb4sVAAiaDGwBNUe5ZePWc6s1Q7FPFfDKyxgRsnYiFa9Hdi1N4Fqkkh\n1JscC82Zu6kxbtdY29wrDyXJiJJhCC7VryHKLYEJPFBNMp1w0cynen0BAmk+UX11VIXq8J+ELf+L\nasUcVJsTuNcwAELIrXb5+H8wQflnCr8IUmM+/HgClIBzU5n2BRmPvgPncscyhkMHOpbvlMzcUc2f\nf521yZqZ5C2uIKEdpqj1jVrqP/QlZg7iaWhlvZBAGFrZxL788NUL1e94KV/lB6FZ8MtePdu7JgvP\nRSoj/7L1qb4z7qGiNAAhMoE7Bb89Zj11UCTwdNhjUAKsf6GxOsWWJ/BOODwWikuf97v0vDjqD3GX\nbNa/xt13FG/ca+xNCWWZEln5sxAIHg/Inc6N2t18pnacojbieM39bNTWkvAUeeFU2KS+IAjOLnPV\nbcqvVVA1KaLe5nspG2piSwglmDB3/u9a/Kytfle2Pe/ADwRaNruj9gVQ9ElA7vPVF9o/KmXZ8Puf\nKgtnvNovT/6oTHXpWrb/5JfyCdE1ff+MzHT/Qja0vYU6HiiOE1AlnS68SjHNQ3ZDfwOgx4wxJhoI\nmdML7XfzmuxiQfYvvYUK41D1Vl7pc8evlBFf3yoYY4zZ/aXUAoNkrocdlCSnmrcJ83ED38vlqZCz\nPhBBiYeat0w4a/ycJZygtZooV50cilPPzXlm/UOtsyXonTf/KFupXQn5kAflE2dPDXL+6jbUpvK1\n9uA0Npl7pL2yDl9bDb6i3IbOKFmQcvUfgYBQ55Qp9h2pr92e6o0vNWcxbKXSYm+nfevbGpMUz317\nrD3/hgzqDmpCIc4G7Rpr50rjld6VT0iuqf+nZOknqPotkbZ0sPZroKMPHhbUPlT1SlcgdOqg3hbK\nAPuX6k/EB7IkqvPv5bfyKZkd7f0rT1Xf8jONd/FQaIIHZL49K5rnl6z5SVPtKAA92cirH0WUg64a\nKICu67kvh+pXHTT2NqiLAgqZ9TKIxiO4iuB1evK+5nv9VGeoi1uhIapvVI/598ZEcxsmuKU1XCrr\n7LTv/MgYY0yS+s/P9b1OReMSd6PiYn6YC+Kflg6I6sFMvw2cC9YRczmED2PnsZBwy6DGfsYzp6BZ\nrzlTOPDHv/zFXxljjEkVNFYXL+QXbopaS5baXs6rMcz/9OfGGGM2pnAxsmfPUJh8+1xj3wL134PL\nJYBS7If/6S/0/RUUXY3qL19qTQZB777/ntSiRoyRj98Ht6ClJuwLhY9VT3vA8/9B59EFyo5P/+2v\nNB6MV6XK7YQIZ5wjPf8a9MLaNjwj/IYagcz2wu9UAunytiX0lcUrtfZUNpjOwbHpB1GCAmad3xWn\noKM9IBI3f6qbASGQpL0atxRAp3kNkox3LHPQ1A6Dsi+/LW9Otb+NUM2LRTO0DyVPfrqPOIcvrdsX\n7HtezkZh1GhH8KMsFtqXggtUCkHeGmNMKO4ytYue2diFJzKjut0V+N966uMaiLmYhRhE5XMVtTwH\nakqnIGI2P5DaWyavuR8caU04dlFs9cnf1S60Th1doZ5ioOo9DvnrKufqrU9A84f5/d3UcwoRoU5z\nOUthV7az2FB7Uwn5zd6x9rLFLoq+QdW/QEUpAGdMIgmX1Fxj2e1p7CMzjfUuv8XSu6g4sbYSOfan\nrObIg3pqjTWz6HyvlPjfKzZSxi52sYtd7GIXu9jFLnaxi13sYhe72OUdlHfLKYMmfPmSaCqZXz8Z\nRjfR0KumIkuxOaoYvH6OGkqvof9nI/TCuRN6C+dBn4x37VzRxzCZmbB1JxX2aHcQdEhEr1/BDv/h\nE9j+A4qYTcZ63samMgeNviJk954oWlw+1v3KgFF0s1ZTJDEJf0adaK1B/WPSJgt4I1SEZ8K41DQu\nnpEiepv3hdgZzdWvBKiQeJp+3JDVhKMgEFREb+Z0mikogPm0zWcU+V2QJQlYfDX07ZZ7uV3uFS9Q\nNqhxx99DOG/KXc+g31IqUaTY00BRxqMsxgJejcCPvL/tBP0wJyvkp0+NoiLI/ZKioX7mcu19ZWNa\nZJ/aLZQHTpVRCHDfLw1z//JGc3MLU78zqfavwtkyAD3Vr6v/biAjuV2N3wDVi26JzO+A6KjF2cD9\n8XqXaHJUzw2nNK6vvlG2yelVfdkPCsYYYybwDY3eqB8DMpMJ7kfPUb7poWyR31QWMUKW/7QpG9tI\nos5EZvQC7p3sPUWbo+vqZ8VSkgFHUDoUN4LHJ5uPrSmzG0PdpXuDPZB1c6Cq5SJD402onvRM7Qkk\nUQm5lb254Ry6PlVUvQqVeyIl2/U6v4/g/7kynevZ074i94E4vENwqHhQ/rpEEasCV8r4Pb2/MlfW\nJMCd9AnphhFKI3nUQPxTZUkyOa3jpeU/UOJ6XVKG7Tf/2/9njDEmldZcPfq4YIwxpheTrQRYE0ES\nbxO4E9xwJGxuyYYDbo1lKK52jOivE3/gNNwPBgESAbW1JOM5Bp01QvUou67IfsgLX89MNjGFf2g5\ng7k/L7+Wg+MgQWbaDe9FxAOPxFK2FGQc4txjds3oGHePxx4yL3PZzAgbSeG3phN8Aqg0D4gfL/xV\nA7I9l98IbeDq6f156XvFmbuUMAinQQTlC6+lYmVxKPBc7mcHQCgt/FrLqXvqtzOotT4d6HP5kb7v\nwOf13fIl46ler1VA7XH32cArtYTn46aMb+n/0ZTdIBpW5CeiAa3rkEEtDeb+KXwVxiO/MmPMJ2Rx\nRiikhNuyhVhAz/DC7zEEfTR2yIYcPX3eRYbttqzsdsmpv+4zUElujcnSA1+FBx6jjF5PpdTXZFb1\nLr0gDt9HsexS/qw511i0hrJRhAxN6hgVpoDWTgzejxx34IPwH+Xhr1h7pCzYoqQxrcLf1r+SX7RQ\nTXctbcZhPoR/LqL52NhHCSjGPXFU/l5+o+xhEaRJNqfP+eChKJ4I7XFxrfdXOQNkIrLt159pX7r8\nUmeGBAptA7hrutfah0OQ/eQfKSs3AL0WglPN90+UyFq3ddMvKePbG2ucnQGtzclUn2sheVG9AU3x\nifx7/v0P9T1QGm9BQUQCZE1H8rVWxnbBmo2m1a7Hv5SPdMF71bupmvMT7XHTU7LdKHwFyO7u/1T+\nJgCnyC08FtdFEBrr6nuWObC4Uiw+ttK1/LnF+VT4WJ8bddT3b98KDRSzENXbes6M7P0Qjr67Fmst\nOrLw87XVn7lXayyCcsvliWygBxfDchelszXmoiikyPyStbwqW91g7ZeLWltjzgJL2ulx6/mJkPoz\ngIPLg1qJIwgKivPkAfBnP+iH5bX+n7LHOkEfl7pFY4wxWwHNh8VX8rsjzUfrWLaw8xMhmgZ50L6g\nxJoo7mRQbgwf6fOtK9lSry5/F0L50ZdASQxUQmhTazsW19pvwh+SyKn/K6B4I5w1q1XW+JH2oU5G\nvnJ9W2cbt1u+oPhCmXljjBmUb8xBQfvrs99qzXW68vuxvMZ9/lw2vhigCgsk1he8O1JmBk9QF8Sx\nK44iDGcVF7wUR99obJMginsAjjt1EBggJe4/FfpndV/IjhtQZi9eiOsksaK+x+CguYX76cCtRXKw\nK3/5/EvZyuE38itDFHVaxxojX1Zz8v6nQg9lGJM2HFcnR5qTYVNjEZ5pTadQtk2ts38l4ajkzLC+\n1JxaSMzf/uY3xhhjFiCnf/2//CdjjDFxUGSv/rM4aHqg0NIotrk/0dqavNG4neMjrr4tGmOMqcKp\nYs0xwBnz9vUR/ZFvePAr/Vbzwgd39I9ai2/hM5rB72fx/q3dh0PsvlAcU37z1Yoav84IhbU2D7xj\nCfs1X7WS7MQPD2ACxMwEHhXctllw1nNatyRmGp/FHPQ0OAs3qlELOD0nNfha4CRyufS367ROlcas\nr6yZ8aBj2k3ZlhMOQO+G1uVtDzQPyOdQRmNSheNp74nGfHNbf49BOIaz8OLA/3N0pjNLtwnHHzdI\nypzfR7eggVA/TWMTg45sZdma8Lrq7Z5qbqdwQMajWiPnr6QI1nssm13J6vfz2bPfa2zU7O/2riq3\nFjZB50bSWlPjhdaya6L2ts45L+Y5m6yrX80v9ZvpOiEbjDNHjhWQ3m+tqz4/zHNnI2XsYhe72MUu\ndrGLXexiF7vYxS52sYtd3kF5p0gZAyImxZ2ucUdRO2deGYhoWq+HyHCmcorAhfKw3feJjMG+fz2C\nK8ELa3REmYQwmZUh9YTQU++A8ugNFcGvwxuSJKNwfKQodPtan/Oi2vH2K90zTEfUvhsUdx6BnGnB\njL39RBG7q5Iij5u7av8CtSknWcWVgj6X3EJJguevoVRRaimKvSSL2ekrEtfi/vkYDhlnjOwePAHj\nuSKdO7t5E+XOqq+u6F4WZEXgpeYgxl3+9T21cTlWNC8OP0SjgkoGPDipDfW1XlPE2EtkN0om1h9V\n1sbPPb4AdycXs7tnG4wxxguRdZIs2LirqGepwp1/sl2xHdAMZGwnJ8q+VN5obrpkKA7gArCy+pen\nmuMFyI8VsnY+kDKXzzX205kyqGmUADwBZRCaFdlMt6Zoqo9obSqsaGtwrvFz9zSeMbJgHWyqda5I\nd/ZAc7+C6tXZ72VjLfiOMtxTjMBkfnIoVEZ3qYxImmj0YqD/Ox3ZYOGeslY3PQs1oWh0al1RaCeq\nUQGnXp+jntK51XMTa1pr4bxs0eGSbZVAg3WaGrftA30ukdTa6jdRACNS74SVf4ZKh7lWO6s9PWfj\nvuYvDhJpvvhhhvJ/Wpy0PQDiBMopM0ERKrRJZjGnDFrrXM+OYJOxpdxgANsckDlcoOpEwsC4YOpv\nk6VODkDi5FCPcMlYATsYL+pCnoVeDy7VpxlcV2OPldXQ5wZV2WynJNt2GZAvcAYMhrLBCNl6R13t\nHVmKM2TjXCAwOiB/wvAHhb3WgJFtIUvTByU3r2htLcigBlKyVReZEc+SO7moYlwXtTaCIZBKIAkD\n3M/u9OEqgGfI2mxmEz3PwTgMQbMNWlpzEbI5q3ky5H69fooPaKOMs/DdXaHLGGMcCVSrULUz3BMf\nj9Q/V1JrpnlpKQsxHh24I6J63w8nTxJluOhMvtNN5tyb0OtLlNn28hb3lx7r4d5+E3Saa6E11z1b\nmElDc3/N/emTPlleEHhp9jQ3/qxlAQ9RfgqHNAc5/EEygx/K6v0Ze8M0YfGy6W80ojHttZlzyMDG\nt1rHs5HWaQVOlCF75nKodjYO1e7TedEYY0wsp/ZtocySJksV+UTqFpmA1uBWT9wlvaUynsNbsmVF\nlK/gVqh2xHkwDMnv+fG/YTKvZqE908fcNWtCuc4XPxJNNYePivGMbMkGpyBLB2fK/tVYqz1UhnL7\n6t+TXwhp4ujK33Vv5SdDMfmg7Z/pfn1vsKAe2Vgmr3kqfKh6pqiWRC0luIj8bwWeuN4t/QMVkHZ8\nn30rvnhmqqAPwvDzrbO/xFDWmLdke7uWos4j+e8myJm3ZPAzIX1/dbOg/oC0rDn1dwVltAjKG26Q\npt/C0XZ7/to4jMZu/4my765cjz6pb+G4+n75QqiiV2+FiEuDBImug6QBZTQDmXZZhnPmEDRRVvXM\nsJmTV0IhuWd6/sO/+In+D2udduEC9Ph+3JlkBPooCuffnGxzu41/TsCHlChqDG70nPxM/CGptMYo\nTjuGbfnDBohqH8qPKVC19RH8cHB5eeE8jKzKHzZO5I/nDT0/E9ZcHw2FUJqUQPAY2aS1H3hBSXvw\nKe2iPjdln0ll4XQM6/3GK9ne1kPNRwx+JedL+ZBSQ2iD7bBsKrqhfja+kH8fV+RDvKB9E6CWLcXF\ngRP10x0996qoflff6LnhjNq/ui87mKAE1/mdPlc+FGIqdU/Pzd8Toqf+2efGKqffnpv7BdRYQHI2\nUN1LggL2gpgfVDUevhWLuy1o7lpCK1qvS+Z0AFdhYgV10omedQN6v+HQ+5kCPHfwWkT5LbAOCqkI\nsvj1b4ToGOGHdz4tGGOM8fNb5+JMvzkaqIZ2ONs0j9SeMGeZBx9prhzvibfHHbJQrvrz5o/yX61j\nja0PFH5uVe2ybgGcl8QHku7L9pf3NJc+lGSbt7LdCQqIfnj/9n8qfxcHxXb4lfzOMSqoHuBwUxCL\n7z/RGvbBC3r89+Kk6be0X0RQjYs95Nw6AQnq+6kxxpjClnzEkjPem7+X2t01v/2CIEG34GGa1jjT\nJPV3VFU/upyVRi2Nf9QLLyrosbsWl0PjEHSgkgfixcU52sdvzBb7Tgu0sTMkf++C32oM2ngI59d4\nqnr9cHyVUDq+BQ0dhMvxpl7/ri1Tt9NE8vdNj98cg6HmPMAe3q1onczgJXWwXgZvsTU4DFN7Wr9n\nHe1BRRQD9/e090U9K/RVbfbAyzZxWkqymot0jtsR/A62/G6jqz0qCYL74hkosyoIFX4rTbkB03mO\nihtcYudwfnVAVYW5zVCFA7F9q9czm+pH/0pjXZ6rn4G6xrL/rfoXZ3zCaY1X61BrOvhE/UvA0RXI\nqH+10Q+fW22kjF3sYhe72MUudrGLXexiF7vYxS52scs7KO8UKWOpgpiYMsh+LxlMEB6BrCLe5Vuh\nCaJJRboiczW7R/TP0jOvtRVR/wAOgCBZmzH3JlfJHja5uFkhQr6ShHWd+9Pvf6qInnU3zUKHPHmo\nTM/psbJ28Q19LzdSZKxPZrreV72PSJk364q83X9ExvdU0ecuGYKZC04HWJkbFfU3aUUcXytyGA0q\nQ7BKJsZHhrxD5NIf577pieq94Q7wxr1907gl48gd1QFKIVfw1tRreuaSO+I1LmPmiRY6L/T9qytl\nyGKoOXzzTBHyrQcFY4wxtwvVN7xUFHHxE+5TTxWBnsKDcddisdKP4fmYd1Tf0GKZ3+Le4X21c8w9\n8tJbRS3D3G1PpfR39ZGimlY2qATKyRvX3K3CzD+bK2PQaakeF5wp8W1FO+detafdIWLe13P93H9M\nkB2fhcjOE/+czxVRv/6WCDWZ6p193emfcv/8+EjjOEWBJocqxoy1UWtoHhM+1e9Pa5zOLxs8R+MT\nhJOhN0C9Kah2rWZAeb1SBL5Bc3Ip7nNmuZ//QJmFthWlvoYngy+EiNgnCrJtV1Tt6RDxD5NNNCNF\n/qs3Witd1ABiW1qrDx8oU1Pvq1+d9t25h2ZjzUU0JT+wCMJrAxJiDhfVkjuxCX3MhFIag0GA7JBL\nkfUZfmWCoo0fN7lA/cy6t90DTeCgT1YG9umHP1N9IEGcbmUnBg7971uQAV6qfS6P5rTZVj+ODmWT\nq5uy7diBbCMJGm1KPVUQdC5sedzDj4b1fpasTZA13QeZkwRl4cDGnaCq2jX5hLBLthSlv5EsLPhz\nvX70Vhnqw2fKUm1t6Z51kvY6yMS6/Kgvgc5Y8NZRqysAACAASURBVPr6mtZgB46Expn8tiHzGXBp\ngmaMs8+NehYKPT74TFxhS0fpbmUGL5MfSNUIpKbfWstw8Ri/peqkdjgX6kcIFFy/rTVWq8uubobK\n3Hi/ld31aJcvpnqdzFuMfSmL6tSYO9H+gf7Gs07jRk0nTUaxY40dWZ05PGTBjF4voNgScWnO3U6Y\n/YegmjyoDzk1x24LnUU2qIOa00kR9NRIfQmFVL+DzGt6DWTKE2XJl1XZ9HgB70MdXriqxuRqrNfP\nGKtbslhu1NpWgtqr4utq35oPLrKYnjf4V2r2fKLv9Ufscay53ly22sZPzM+0Vss9EJQgWJzBH3fE\ncSbgB1mirsFePqujNtTSWg+AnImta7/IPtC4TLGxF1/8Qe1D8efgPSlDeODDOPzDM/3P+O98rPe9\nQWXxFhX8JDxHtVshT27g5Hn8M6EAcnFlmq+O3nzXh261ZjIrst0Hj+VXA+uav9K3+Ptr9o+Dgr4P\nR9s5mfUM+9jeU7WrWZWvOb4UUsmD4k14VWcgD0p3RRCeR18LpVLYipqDj5XdTpPxPDpCMeYcvrRX\nRWOMMfWybGYNLq79p0IdzUN6loMs8eVbZdObJRDEYZARm/reDAR1GJ62p/+DjCmU0rp7+1LnIge8\nGC7vj/MjI0vha0nWeQLPEPxysVUQ2in5g1FdaII5Z68oKnoJ9h8Hfr8K8rnwM82pJ42iShnuL/aT\nRqtI//R/Ds6HVgm0LpxdOZQl2yCpl/B39OeyKQft8GfhqULZq9nQ+xvbal8KLpcK6qWDM/UzvCsb\nS6xpn6lzZunCl5JIaG2cL2UzE5BEPrgYoin5otsjeI84l7tAWSfCWhujsp7bbalfa090JknMNU43\nSVAE7IeDourb/4WQSRsTrRVjjGlXqubWqXGJoCZoUKLzekC0okTnRHVl2YYLKOQxdy1ejj0TbGSI\nP19GZaNhFMkCbfwmHB9pbgcYzrV+0ASDntrSBJXgwM2nQB2FNjQXSdbCCNW9w98KCd4CZRUKgBp+\npDNFOiEk9QC1zEZTa7D+XGPeGav9CX7LuFP664pojDJ+zodznZNvTjUXFyjNLOENnaAkGU2p3wef\nyq+kXWrP538jxEq9ek27UBsaaU34OE92sV3XFAQnKkibu/JDGxsFjRv8ep2O9rMECHrj0PfP/l7+\n8uilfEl+Q+ip7Y/1G88R0VxfXosnpHmp7w0XspklypURzhLRKLxDkbujqYwxpucF4cq+0GnD7cjf\nOLdChqjfHr76RuOAP3bBe+fPweGFcqZrT/urH78cHOmv40b9CD7WjYhk5Pa7tly/ujTv/9W6CQc0\n9l/Dh5YOyvaGXvV5ANo+HoW7it9YdX7zpZmDLRTCbr7Wb8TBKUpkIbW5BX/pJoi5JLcySvCeekac\nJzk3xeBH6lTUDi/nqyTcM6MTzvdxPT/v13OG11oz4QP5oxB8n0347PZXdH6twkFZP1e/9wufGmOM\nmaAQGXhm8VzSjnO1cyMpf7/p17n2WVd7tadhqXuqnW636vEuf5gv00bK2MUudrGLXexiF7vYxS52\nsYtd7GIXu7yD8k6RMrMx9/3IpjWJhmbSis464Mdw+RVBq98o+utwklm+VORtF0bt2EIxpkhckbAM\nUctGQxmEWATVFO7d+eBeePhUWa43Z4poebmv6CfzXWor2robLBhjjKmWlE16sK//h6AdrPqcIRit\nXYpOW1wRwzb38FE7mXIP0mOpiSz1twRPSYRMRvta42OpMTnJio5A8Ixmitg9PlBmacT18hxqBimf\nz5S73OflXqxnpuxQwCjCW61pbH1jop4nim7eu69IbcyrTFvMpb5mC6gL/ZEIrIsMI4iS3lD1DVvK\nElnaMc7O92zfdykhskHdG9nGYMJ9Qq86mePuqMWjc1JUlHOE+tLquljrp0ZjGXIpAn54pDkcD+Ar\nsjIOqHyU26g3kRH2xvS9uKW+QVanUybTAQpgJausUXhL9TRhj1/oMWaO0kodpu/0liLaa1lFa1+9\nUGS+W1cEu/BQmZMA95p7PdmSmXLPmfuYM9AP42tlOOLck/SvMr9viJCvK7NhFprnywvUVVBhMWTW\nc6g2+UOKYl++LBpjjBm5FRWes9b83J1esdAPIJm6lygmcMe3V1Xmt9KQPWztac16VjVeLlAQ1RN9\nbjm6O1LG5QclENccBUhTuVEv6sGTc/mGiD3rNL2Nas5StrwgKxWcyD/MQOQ1jf6/vZa/GZOtX49a\nGUw9z4ma0cp7WneNijKDjYHGNjXjjiycLYvln6oOLeFHcrvwi/ApRYKqf8Y94zoZh/albCQCos5L\ndsfQPh+ZBR/ETCE3CBbaO4OLawGr/XiIkk5Cr7tQ1lly974PP0evS8bTyBay8FH5yNq44SowZF6H\nsNYH0vByoGxweV3U33OtoVxez/VH4aLBz1XLsvlJS+MSstAe0x/HFzIDceMH0egwoADhV4kHGXc4\nBWZGduMooWw0UTsyDfVj2ta4WKp8YzfqVCgxNODSaJbkn5vwKR2hhpXEHnzcY3eEk2Ya0vpZAVno\nJtMVXdceOE5rD4vib2ceUFgdkHggVTpOZQJrcDtNm+w1qDctsYV5EAXAsfxFCCRjDZsYxDXHDuYw\nRDYrt6J2hDP6f++e1vPwI31uoyt/NoQ/Zw5ipIRK3UVF2avLr2RLo6j808LihvGNGRt4n1AanCw0\nh7G4xiVCptWzJz+0954yvzMQOadFPfeuZQ5fR4BM62SsuevgtxaoAbpRrwqTIQ2T3roEeehFtfDh\nI2XpD0CclOBKmKAwdu+h9qcwak3HLzVvFdSjfKD9Aozz40+kbpTfE0rg9KVQJ2++/Z43wx8JmQcf\nSK3EA1q4+IXQva9RItqIwlWR0Ro4OuZ+/Jr6c48z0XipeThH7SQKn9K9x2p3KKt5OCPjXD7VeBfg\n4nn0y6fGGdTcfft7tfXFCyHssiCcIwm14f2fiW8olgcttCB7fCP/cHWlve34TP8nE5rzjS19P5LT\n50vww2V2ZINu0KKv/siaONffTLJgjDEmHftxSBk3PBULePcWC/mPBspdaTgTMpwF3hzKX7dAQMcO\n1L8E6LPeUmeNCoiQgwbqRfDaxauqN0aG9bLc/ZP2pHd0BhqBBB2ey1ZjzH0Etb1RT35vjiKZxfGS\n5AwRiaKCgvJa/r729GyioPahjHbbUDtDe/IB1jmz9Fbv9+pl6tP8Lql3PEXVsA8fBuiAGb6sfKt2\nB9Mal2xe71/fWmhuoThat9r3kqt67uqOUBI1S9ntnLPVNjx3q2vfjVV8I2s6qDaZodoxQbksyP8x\nEEzOOu01eq4/eHe+kGYLxMmVxni1oDnf4Dw9x6/M3oAk6WuOu8xNwq/PDzk7nB4WVfFE9T3+VGjc\nNsowl8+FRlrsy3Z6+NkG3FFJOBe3doQeArxrnn/2Wz2nI5uKxWUzAT8qmU7QqQHOsyC0+6BqP/4P\n4gQb7WkuXv713xpjjLlFYScHj8bWA7irNliTLLlXXwrJ8+1v5b8KH+iWwtNfqt4SSPQOc1/+679X\nv8vaP6LWeRXFSg8Qotq1bGECStpCcZ2gZuTgHF/4UP65sK39a+pBFfCVPhfI6ndBHnWsCWeX4bXa\n0+3IZkZjre2g+8f9pF6AGHdE5HcXKK21UBjqGxBGebXX+Vb1l99i47vW7wettdINXJpjkKJ+zYs/\nIx9UL+v16D04NONb37dlMDHVSsesrum1EEiXGbw+bRB0qY7GJpeTTXlAZdbgp4nccHshpnU59qlN\nfVSR43CpdjvsqRk9JwPnS4ubMXV4NzkCGF9e7Zq09L7FseXEvzQH8ksrLu1d4RWdXa6OUBIGEbey\nrbV1cSqbGMOpGIuq3Tf8pru9FfprdUXPPYtoDQzLILrZG+ctrRVvQms5l9aZZARXWAUu2Hgajkj3\nD2NhbKSMXexiF7vYxS52sYtd7GIXu9jFLnaxyzso7xQpYyFgJtz9zXLnt9lW9LfeUCRs77GigTOj\nyNPWrqKub8qKsi6JjobjisqWyaxmo4rIdc5VX/xAkapRRRG65jX3AkEFLH36fq+nyFeKDEtwhUw6\nUVAHmeu5B435jiL3s6myYS4ysXM4KhwuMs8+Rdi8cA4EIsoIDIPqd2GVDElSmaUMyhJb20I3+DuK\n6PvJPLmIAjdO9Xz3pp47AGWRyGnc6uOqCSXV5pWIopr1uSKmB9uKFHsJXWd3FC08+1yR6OHQwZjo\n8/E1jVF9qDFaJxtTHypquH1f9Y/+CBrAgXKLW2M5tBRg7lhmHvV1NFOGcYqKUfieIuMr8DK8uVAW\nrnoKL0ZU7dxYgReop+ju2VvV074EIRJS1DSCKlLfqUj5gMxyH/b4IHeBPQl9vsv3+2VFXwNkEBM7\n3C316e/oNfesu9ybXqp9wYhsYu0jZU7aRHHrb5Xx8MLlsIpKVg9kjHOicY+OVX/Lo/9rRc15lwxE\nBAUHL2uiC+t6nvubvarWRIl7/AcHIHwKqHNcwG90KkRRu6z6D/ZBCk31/EEIvhUyKaPXuq8/H2nc\nQjPZbgUkVhIugsw9ZWwGZGjK3JW+fKNx3dj6PoL/54qlwNW+UF0Dr8Z6dVVz5nNoHcbyspUsSgdu\nlE1ClhqRgScDThU/zPaOkvxJizY65/r8xqZsy2HdF49QT1/fWzBXBjZ7R1Kvz/EjUxAf1p12D+t6\ngyx0BpWOhU+f61+pX6/+m5QXXHP1a2VPc9eHA8cBh8BQpmbcGVQ7FvJz7qDGazwDFVGSXxo01E8v\nGZAl96UDII6moB58ZCbuf6J76UHG1Y9fG074PHO+8Kj+tF/98zhBc6BSN5spkxAMofzjBI3FnWMn\n6IjkCgprtH/i+3HOZAoyyYPaUthoH2jM4HxZwBWE+pM/oOekt9SeETJc3YDa4wzL3kZwg0HNY4K0\nKzEP0W4Ufeaa534be+3qCx1Qdo5WzbhBvJzCAZNCEeACxb6exXvTt5ByPHSiZ/q92qscIBPDjF1v\nrDmZuDSmfeqdTrQek9jiyKc5SK7Lln2oOMS5+35rZMu1V0IkttP63MWhxjC1ChrMq33E4P8DKRA2\nBoRlVeu8bDTmXvgbBku1z9NV/zoh2fykBM8PElatG1Qxshr7mEf/z+j/AhSShXq6a5mDfmh2lVns\ngexsj0BJxUAfkIWPcj/eA3rXKRM363C1bIDkrF1oH3j+lfxjLio/O+Z++pd/Kw6aFiopDw6UZfRj\n84kIPqaveX77QgpFh/8o5EsUlS1jjCn85KlxoJjz5pmQl9cgeGIp+cS9fyVU7QIlswaqX9sZ+bQJ\nqnynnwkBMySTn30iv+1LwWF2rPGvgObwJskWPuQs5AmbF7/XOe32tdA6qwc6Izz9KfwNE83ZLdxM\nZZAlXbLxJThZXKyTezva+9f3NLZjH8ooIIQtzpaQQ2N1fihbPXumM0J6RXvq+q6+v4CT7K7Fzdli\nZCE7pqjnFVFTe1+2F1yFJwllltJboQxW8kI5xVCw8aHGcfON6qufy9ZcMc2hL2MhQVnbILPPUNj5\nyX3NiT8nP/z6RBne+Bj+pQXKWCmttRgIo8aN5jxj9P5aRjY5GWnNNUF7udi3QiHNW6Mim8nWUCdK\n6XthUAvdkvqRfmDxp2gePEbtXg7ke2agh7MgULoo+YRANKZWNc8NlMs88NiVL+ArhOMl8VDfd3i1\n+N48l71Vi0LGBnwFY5Xdx1um8kLzcFXUmozcyKdNdjQu0SSqgCB6Bk3QCpG7q/25UE8zFo/bgc4z\n2Yye8eaNxr7XtxS4tDe8/Z3WawReouVQ9bSZqyhneidqa9eHqNY1UcSB06pdKRpjjAly/vv41+J1\nMj6N5dd/89fGGGMuOdMcfPKxMeZ7FdbiW33f61C9abi/KreamwpqSw/G4mtaxd9k97Wm4utqZ5jb\nCZaibAC+tstnem73EvU5zjCbnId9K1o7yxvNVZlzaKMOn0kaHpJ92ciM8+Yf/qC5jzPOSfhKq5xf\nJyiz3X+oNbj7QMid9hglL5Tcwgmt2U3rnDqWbR6+kQ+bTNSP71DNoCFmwx+n5OYe4Nc5E/l98Eyh\nfNRDRS/+UP3Mr8jPDxqcdaP4XTXXBFAk6qBimPboDLYSLRhjjKlcaxw6oL5T8e/3jWxhzUwbXdMz\n+sxqQHPm5XbEfATi74w61/XbMbqmz91+rddLRdny7i9UdyArFNI5XKwphxb+ooP6Jbc4UiAk+y0L\nLSTbWOJf1+DzhILVDGmX9dv2FLRnF/SYP6P6zBv5/z4H4iDqS14j2xqx9jzwjrpAyA04v07y8mMp\nOBOPq3DKwj3ZB0neA3HjYX/wct6dXKNqh9prCkTQv1RspIxd7GIXu9jFLnaxi13sYhe72MUudrHL\nOyjvFCnjAzni4n7f2r4iUa0qXDJwKMSiinp+e6i7yPtk872kpW5PFN30wBfyLferN5L63OGFoqw/\n3+cOb0+RsVuihusF3UHrkLVvc7f0tKQo9Kebv9D7JUXuPElQJai9JPxqX5y7tfErVFPial9oRZGz\nQIjPJSxlGrVjjrKNB8TMvKFo69uW+pW20A5LRRAnc0Wrh139nZLxnlLPGepOOzvKVh1+8dx89MFP\n9Qzu9V4+V5YglIP3AA4WDxH+FZAj8VX4dSLqc4570tZ9P2+OO4twvQRC+nxqVVHSYFj/x2Go9s3u\nnm0wxphBlwg0dy3dIdWTgQOmDX9G7Znm0gU/R7pwQLsVcbeUqGpEYb1kDOL0fwL/w3Kg/g9rqJ2g\n+pFG8YrEpmkcK8raW2jM1+8p2xRKadxGcOBUQTE5RprrLsox60+UOVkBYVJ+qYxnp6So6vqH3P2N\nKso8uSmqHrgfFgsUIFAFaaG2lAIZFAV11r/RPI0r6reHrP23p4oeB8iErH2s9rimsqnSjTIDXpBJ\nLtSdYquy4WZT9eVQEfDCRVGuoH5CJmfihB/KpbWwtiG78Pr1/tWXssPlUP0OezX+AdbOXYo3qO/0\nm4qUOwJq061VJ1UFyeYE4NsJBlD1IDQ9n8LB4oPRPix/UkN1JxBCfYkskNsFMgZEm4fMbA+Op4ml\nyJVQfS6n5to50ZqYgvCbYXMGfxD0aY2EVzSHoaxsatAT344H7htfUg1fsOYiKHE5QHxEUEhYDtWP\noRMkjQMOHPyIp6d2DuEl2nJb98r1vW5Hc1tCdakBJCQL+iFgXRBfwEtCprPG59wxPa+PkkMYrhgX\nPFBb+7LxCIhEF0imIaom3hDjgQqA0+LwsbKRdywhVLk6KBn1UNnwVbUPXXfIcDuEpuugYtWZWHxS\n8nVBeEScea15J0infAVf1LUQQnA8TCzEkewvh1KCE59q8bUMUi4TcmsuemR9/SA1HF0ypm7V7Z6i\ngtbFBsiee+ErKviFYvKA2BuA7hwzll7Wxu1C63VYg+cMW1wstJZ8U2WdFkPNddqF+hx33BugmUb4\ny+s37GUO+TPDc8MgSgIFraEVFBoePWTOUfYKhvH3U+2BI9CrA7gVfJZyjNH7dfox4Z53Cz6L9kva\nH/pxRxw/aKg5iobjofqTARW3tauMpTds7Zta61XUDWdtfX5M9u6YLN3Fs6Ie4FO7V+9pXspwJvgD\nso2ffQAPBvtbvaw1f3IsfzwEMTXtKWuZQBntyc+ffNeH1NqKKb5grYLeWGe8N/bUfgt99tUflZlP\nodgT2Zd/v7lRprY50P39dEGZ5YcPhVIelOElqasdhjNbCLRBiCzh2emhKZ0pq57eFPrH4sWZODiv\nHbL3oQjlnskvBkDBbqIUuHFf57RAWH3uct4ZVVACBI3brmnMWmOtjdK10KcJOK/y99QHS72yDq/c\nXYsPLpTVnNqxBA3Rgjuqca7nr8S011Uz8hOXRXgdrjR2lsqQb1/1+N/qe+dHRfUbRa8AiO0xnGVx\nS5X0RP26rGiuHu/ojJfYlu24KxrH7oXOkf689pG9T+RvGyA4X50KQZRZ1VrDtRgX52QPKLkYKnJj\nVFObqA5u39e8htZAYcNVkzkATRDTc91x1KBAE1TgPdk8ABFzo7V7cSKftFJQJj7Ied8FInF6yZrz\ngFjlnOtf0zymOX9P4D47OpT9GWOMZ+Ez+QPm4zUcQ9hL/VJ25ka1MDCTD6kfqj9mMjd3LW7UQj1w\nHzrxU8fwGpXPNWfrmzqPzWeyzTooo2kTlb2EbGOFdRdEua8+AYkcQtEvKb/lwn/O67LR5Jb8lC/J\nPlDSGhvWNbfJdY3FB78SUub6TGNxeSz/ce+RULt7PxHf0wDez/ZI7bz8WmprFZCYtbnm8MGuVN/c\noA9u36jfX38jhEwN5dvCh/JbHx+ofzM4z07xS5cWj9Epymwbau/H/9NfqJ+cNU7/TgiZDgphFi+Q\nxWeUwPbMBjcGUDPtIYRTghOrV5cf7/MbrfVMqOS+ZXsg1nNrWkNx6mvx+ySw/HHo3RFnhyk8iJ4s\nio0BPefqSvOcWtHrKyAw69eapx7n9PCu1u7aitZKraK1dYWi28GOfNFwIPsow7GzXP2eTyvmyJl0\n1GUqTdnIcoJK6H2N3VoAJUWU+ob39Te1qnV/8wwUUUV1B0d6ZoRz7OItyGeQ7U6/+t5qyC/u52Rj\ngV2tmd4LbhlM5Q+at3rdy5xnOAcOOeA7ZvKHLVTuNlGfO4YXs9PUWK3zGzaTlF9qoqbnXsiGU5sF\njeGt6onXZNOFPfm5qxPZcJN4wQ4ImD6qf064ZqIRrc1aTDbVA+0W8P7wbxsbKWMXu9jFLnaxi13s\nYhe72MUudrGLXezyDso7RcoMIJG/qSgSlcopolUFhZDlfrOTO7exsKKAC1jo8wlF4q5vlNks3FfE\nvU+0c/1ACgRnp4qe+tPKICQzitgNiDavcf+wfCOESYB713Xunk5AOVQrqseHatT1VdEYY4xjof+d\nxlIbUVR1QnbPQ/atcYmGvFPDDjWCqV3o9TCKCD2YtzuwVW8/0H3Q+VgROCfX5L1RMv9k5bzcee0v\nFVHMkoE+fPu1CeT02UhLfa3VFf0/2BIio3KoMRxONSn+oKJ8nUuNQRWOlSAqEZclRTejZMSWU9Xf\n4u5m3MrQonw1JQLucNwdAWGMMXOijl3uXsby3CWF4brySu0YgHqK5WUzG0nuXs4VMT4nO7UEKfTh\nr5WR7HIFtFYr6nlhZaUM2TqP0fN8KRA1LdVXa8nGYnO9H0zBBwQK4eJc9bWJ2qZg9nZuKjK9tqMo\nba2jOT4GlWVxAWzABu9ApWNa1nO9XtlUa6i/cxR+MgXQBrCxd+BN6p6pXi/jP4ftvYMa0spjotnc\nJb49VAanVFPUez+pDOkOEXgnWcFGW+MdJoO6IKM8aao9Dlj7TVy2ngENZ8Ky0UpR0eb6lbJ4cdZy\nkva7/Xfngoh7lDlMcZ/Z1Zd/8IEEmeJo4qg0Tb2aY2gnjHuhuR2StfDy+fGt/h/1yV5skk22OFmM\n6nd4USqAY2o2kM1XrzUHbjK7qQz3vuEF8br13CCqSZULRdrrXfmPQBEOAa/8w7ivv0nQRuG41pjF\nYbWw0F4g7pb4i4VP9Tsj3PtOay5HqAR9fvuPxhhj+jXNncdSaYLLxkdm8/JYtjSC62tlV/fJIwmU\nCbhbW7osGmOMOSbje48sWAQFtAV+0QHszOFAPQWFswDcBn7G/fhrZXK/+HvxbhQ24Bv6kepLQ7KV\nCZBUU3yLCxWpBMibbhh014n63R1pf7oua03MUfULFEB/wecRzGkeEqDKzARltJaeMxkoe+dBYcnh\nBuUBwik4GZthT22YhEAiDuGFcMlvx0CSdQOqaxfkSxk1tPlQNnddV5Y3NpMNhZyyaS/qQs4sqkkB\nZeMn91AA62jMW7d6Xgu0l2Ev8vUtrgT1wR3GP7J3zXbV5+WCzCJozlFAcx4YwNPgli3P4DaL+zQH\nba/+BlG0GfblP8egYCcgS2pG7ZnLXZl2hWxVE94eEBy+vuq7axmPtXZbIGVycLqsg64Yci+9dAx3\nmR/utBaoKHg8FnCR9eF6SKAetfpUXC5BFNEcTWXxd36mjHSCeSnC5XJ49I0xxpgIe30qpEyxI6X9\nxI960iQY+a4PZ8/fmovPlZl24n9DZAWn+P8mnBYx6tl4DK8eZ5vyIWoi7EeZ7YLGB3N4fqSzUvtE\n54aVDY3P+gfqR2wOUujy1ORy2iMef6jseRtuqsMXyrJ3j+E3KCjjWngklKs3qbF3+jWGXo/829E3\n8gdtlAOt781Ba1r+0wXiOZTU3rj/kf6m4Ooqoea5aP2pmtGfKwM4UfxJFNLIfIbOZIxX7Lm5j/W8\n6I7GZvJae24fhRS/UTvWtuQ/LD6+l7/XuKR3lZl1wu3VBYFp8XPEE7KFBtwooxXZbjqmuXThE05f\nKYN8O1a78v9OyjYO9o8TULOJJUhBbBqqLeOdqJ3TADxNPVAEoC5m7+ucvZFRe5+/EGqhB5ejC/Wn\nFAjVPrweHc6Kqcf6vgvly6NvhJyqNjS/FgdEDCVJHw1rnFgKP1p7wYHmIw2Xz2Kuz52eg9ozxtSu\nLs3uU6Ez1kCfnHyj/p9z1t1f0TmiB3+gy1c0xhjT9Y7NXcsAfzXsyx+9+Vpofa9fffJgq4WPtSZc\nqIzG07L5ZEa2MB2B3FjAcdhWG5Z9jemHv5aNLeFjKz1HXQ21peQWqCj428rPdd4KrWvdP/xI6IRQ\nAMWY3jNjjDFh+r77WL+pBnCQeTzyM/mcbK9/qbE/vZSNeSJwuMTl/6ZV+cNGEQRQEMR9Qs/P3+Ms\nAj6gVJE/7IA8DOdky6uo/bmScFMCbx4dgdoA+Zf/WL9nkvDcDTnLrX/8/7P3Hs+WZdl537r3XO/t\n8z59VlVWtUOju2EaNgIIkhMONFQEORdDAwVEkQQJEBIZUogRmjH0Byg4kCJEiqDEIAkCDbTvcllZ\n6V++l8+76709Gny/U8WW0I1XAykne03uu++ee87ea69t7l7f/j7VY3lLMTqsa3x79h0hcvrMS3nQ\nsaf76iszeKyqqMndJWaGEbVfH+R9m3nJFB4w5QAAIABJREFUT3w+Dl/HfJCtU+aVeFL1TW4pdqdn\nWoO8vpRfyhW1ZwbE+ulAa5J6Q+vpBxv6rbi4oPo8g0tssMTYt6Z27qNQd1k/+qwsV7NLy5cfWAbg\n4Bk8aBvLoLUWFBPHx4rl9iuNn+t3NF6nq+p3lweau2pT9f/0Agg7EHe2pDoVLjSu7TdVhoWU5okk\n42I6of+PGMdSE1D/LNw9T7FVZt0VqKcOQBHNV9WPq1v6TXEJgi9ZYD7Z1O/8zpHmn2kwHt2ljbuK\nradwof3y31D5Vh/ovs++/z193zTnpeD8OjxWH0+XVa4syJyDZ2rDxebPVyB2SBlnzpw5c+bMmTNn\nzpw5c+bMmbM3YG8UKROJKitXjHCezvR62kUJYEW7qj95rN3MFVjjP32pXdl3t7QrWhtql/LtiNj8\nz/p6H2E3s+drtzockOxHtFM3nSnDMfG1m9rgvPrd5SCjqWxWnkzo7kNYl8ku1dCqD6O8UCeD0tjT\n/3trui/E3Lb/VBme4jJnZMmCHsB5c2NbZ2MncX1/QNaucaGdvBD8LH5LO47BOf0CZ7WTMflnYUG7\n2CkUG7xwwsacJZz1VMbzhnYhv9zX+e6LC9SIOMuf2tY9TuBE8eFOOa1pd/T8UruoORRNSpyBb3Ju\nbzCWLy/qKF3B6L8Agua6Nu6jWpRXufKLaMWDlrrgzOkAVMR7t7UjPMupbS+fyOc+PBLlHVjgt7fM\nzOzse+IpaoOKiN5jnxL0UxLOlGRGMdFsgczpoHm/AzdNVa89oDevD7VD7c/hJ2G3OI3ywzyuehzB\n9j7eV1uv3xAXRHmB89mwr3d8+TM6UJcdcWY0UlZ9Slso5vjE4pnaacg5/UJc7ROi/UJw++y8pcyt\nDzLo5GNQZaAGMvgzTFzUQH/M+qp/Lsh+jXTfDgoz0ajqm1uR31Kc/zx+pl30i1MyC1Pt6BdWVP6U\nDzoBFZTr2EVLWY82Z/ozJPMHPfWzJIog0TLoGx9+CpAdYa4Pz+STRk0x1W+QgSOjeC+FykVaX4iQ\n3YpO5IMZKk6hhMaNHBwpkYjeTzP0R4qBeJpNQHC0OSs74LlPL5Rx9F5wLjqHegYqG3my5yF4PXw4\nEqZtZanqV4qRTIoMBWfiJyBheihwXaBsEE+rz4xSgdINymuck06irpRDsawY0echzm0XyFTUUImL\nwlEzj6BEFibTOFcb+6hY+aA4/AHKPEH7pTi/XlP9WoeKvW4VJbTIF8spRFAa8tLqS/GE6jGMgjgs\nqhylsGI+Rrt3ZgHSRf46QLGsdaXM+PdBC2Tw0+qispYcCzcvqnE52lb5Xwz0nEDhppNT/PqHYQuj\nVGXwhM3TKkMK3qLIBIUApu5hkvExJh95IBFjbTnxGdxTcxASfll1zXAOO5/UOJOqBsojcIIV4eYi\nQ2kbcJFcqKyGApXfkU979IlcHB6LuLJn8QvUmkD8+TWNLwGnwMlLxo0O4xtKOCMUyrIptfEERavF\nOXP2qt5nhip3eUvjaWFB/+8x2TcGEGRc06YxPa8Yl1+WGVcHdY2jJ4HiDnDVDuPXKdm5DPNbJA43\nFsplW+8py1bK6L5H+0KyTOCJM+bnp9/VfPTJ+1rjLDN+3v6K0A0zFLvOQHcUUaaZ1j9He/SOapaq\nqh5bO0IhpLnPqKm+F87Kj4t0ttNPFMONjuoxGen/tx8ok1+FY+7oobJ99Veal7ZAJ66+I/RBnPH7\no/d/LP9c7tvKW1pj1Jry3cEj1b0Lx9TWl8Udsvl13SNLZvSKfnb+jMwsZ/9PPt1X2UDULO8IOdcB\nuREjhrKL8LatknldVlu+PiF7fKU+Futff64xMwv3VI82SL7tB5oXyutbZmZ2RP1aN/V+E/WOY+bq\n5oG+X6Kek0W1fXpbfSz5sZAbZ0eq950t+a8Hv1uPtUd2QbE/Y212fqjvRVi3Vu+obVKXaqsrynXW\nVJ8sbWicW1hQH2+gEGldVE16irXchubRJbLsrx/rfkO4D4eg0/Kgl0spUNOgdYct+WnG/JFhnvTh\nXen1NRZU1/WcRx9o3qsf75uZ2cqq/BLJK4bTjGW1K9Yac43PJ6wV4yi+ZUAa7T/9nFPm1bMjq6LY\ns7K1JX8cKc5qII5WyGzH1xl74f4JVKmuYyugmCbrKAyyniyB6i2iDBlmfXn0ROOij887A3hs+F6A\n+mrAezeF5y0S12t+k/kiJB97U60BWq+1ft890njSPtT/7/+axpM8fEUvPlZs9Ouq4+1b6osz1kof\n/4c/MzOz+gEKYqBV8+sap/NLQmjM4QLsou5z9lrzRXlb9X7ngWJ5zlpoBvJ8/4XaqIvi2oxxO8u6\n8N4vaYxocv3jfyfUbAuUwyacN+vwgRzDa1I/13i2UIEviPH4eE+fv+QUxa0HGp9TefWFKb/tVt9W\nH3n3W/pt2TvXfFU72Dczs0FD5Wmfa/zNrAO/vq55gQqi6ltIqJx1eJi6IFTr/D7IxhQ3FWKyntR8\n3YU77GJdrwsF+O5mUum7alLPWxqr8lGV+2y//VlRRrOxpQZhi1Xhn3tfdTo8Un+/947Gk+0TVJb2\nQLnfUFnLK+q/vQM9q3slH8dWVJZcmnUopzBmMd13ispR47XmoOQdIVt8+D5DhyDS4TCcHKjsTeT2\nbhY13ixX1XanL9Xmd+4wTq7ofkO4cBoNfX5/Sb+3B5xC2A1i5aZiM0BYHoNW3QcBvrauceXlY42z\nrWdaB5YYJ5PMyQPmu/LKlpmZJXLqm93Zzx9HHFLGmTNnzpw5c+bMmTNnzpw5c+bsDdgbRcpM4YqZ\nlbS7GCEbGE5o52sHTpnnr6Scs3Vbu5Wf/Om/MjOzTEG7ucG59wnImBFZ+zCcCAF3wKwdKEXoNYda\nUvfqpzOyCdxSrMIXwrnC9lTPubOqHbY9GNRv3tIubjwGNwVcE7MSZ41RkDgAtbD2ns7xxzkrfflc\nO4u5vHbS+gMUj3hOGxb8Fc5x1s44yztAxYkMyvmZ0C6Fip7XBTmQXSpat6ud1lQevoljlEdQJPDR\ndi9VtAOeK6gudTK2y5zPs7GyI/fJnD56tW9mZner+t7TXe14ezPOyIIg8XaFMgqnv9g+oEcmMsYZ\n0lIczgLY0AOG7PgCCjRL2mkeguRonGm3ds55xuoDoZ5mY1SGTkAIFSD44Wx+kCEIUBEAQuzkmIxv\nUjvMC5yn9OKKnSuUF4agEFKUp7yDilJemY4mGdcApZAvKoO6+s6WmZm1O8owNNmZz6JEMxu1fup5\nhbfUDv6ysnC1lzqPXqfeMVjdIwXVtxPW86u3tNsbWdX3jp5wlhcOnDi7y8tr6otHD+XvC+4boY/G\nUcY4PVJ5h5yNLa/p/mUyD5cv1VeudnWfUFTl8Nk9XtpWOc7JUAyn189w+3CeeEBPOmndewEE3BwW\neetDIAQHSwQkR3xB/TST047/0/fhLHitNn7nF9RfM+vy5QwEyRz+BQAYlgyrLpOO2rYH98rKtp6f\nB+mXZJyrdTknfqH+Xy3IVzu/or50Cb/P2SV8Q3EyhZyr9mGxT4DY8RJkycgkBpw5kwQQQR90RV31\nahJjN99RNr2KQloGzp0R4+QoBofMqso/hydkBCogSh8N0FT+VJ9nQVnkk6gNhfAXCmlLQQaDTOec\nvjduK7vXGul+maLq/ZVvicNm6S4KXvCZXNemoDiadTmmGFPfiqcUs/OB2n9AuIT5fywfZIAVBwub\n29RDfhvVUQNpKXbbuxpTuowhob76+LSo50ZBURjIqGDeSO7MbNbSOJBNqu6jMOgeYi6J+oOXVuz0\nw/Jxj4xpoqNXn7ZcjGnO6gUKXJzz7jbVj2dniq3Rp6r7BYjAp6Asc1lQBHM4ydIxfEWWHOWoLpxV\nyaliJuCjmKPIFR9ydp7yREA2Jpd13/CK2jLSVt8dgQCK1PV5rMTcPGROJVbyJWUOUyD7wpzr7kx1\nv5cXn2fJr2NZ+lbY5K8uGesWaoMzeDXicI8dXaqPBrFVeQu0B0iUEGNCMik/PeF8+v4rIQarZc3p\nV13FzhnI1O07irW3f10Z6Ck8c89ACZeWlCnNF1XPo2ef17NWu7RFUBQx1hSDK43rsxHor6GylIeH\nIJV6qufSmvrkPc7Nl1AYO/xU93/0A2UNk5vwd6CI1G/pPmenGlvCPbXX5uY9y6LsdPQEX4EQ27mp\ns/tr7+gZs7li7elDPaPOnBI2lTk21z1vfUlZ8fd+RSjPc1SAHj/UOjGLatM6iogB10ALTqzOia6f\ngTROVb8Y79CYcba1Lx9OtlTulU35bu8naqNzsunZb2juX31XWf/zRxoPWg3Fer6pmK1ss1YAMXIM\nr0WYeaa4gOLZp5pfEsyhETgQ5xGV4xjlreVFPW/jnuaT50fiG2m+RJksq9hZvqU2rL1QDJ7uq53O\nTxSLxU04vuAhCT+V/wbwacxQYvRRXAzWPNlQhvtorKntqd6bIFU2Qd5cwLFTfKByrt1RfV4f63vV\nsuoRTYNYGcEVV9E4OxlobJzAVVaDK+gX7yk+bt1X/czMLo4v7QK/Fm8JHbFFZj5Q8GmcK2O/kdlS\nvRZUj0l3Yte1UEjXrizBk4FiVggk3nwon508Vczukm1HnNMqc/XfEFxU2ZReCyhBHozUhz78jhAj\nm6wvozHWvy3155GBauI3QgkUZwTV0uffU187gC+zCNq2j6rcB9/VODUEhZZZ1boui6pdDL6fcIXf\nLKBtTwLE/ZHaYsqaZIayZJL54MWBYmnMb5c0SMfZRPWfDEFO8tut9kL1OX4KvxtroMhM9emHtO73\nUUAcgeba4/rT5/r+JePvJipM3/j2b5mZWbuuzxtH8Avd4/QCCKTnTxXDITg246itlor8nkIJ87qW\ng0+ue6T695nncnmNXWMUii7P9LwhCPNg/suWUJfltEWf31npr6nPZlfVpw734d+6SzzeUV8evDr9\nrCyjZsPa/YZlbqKqeVNte7IvX23fVpuU3tbc8PLffcfMzGr4qriutYtVNd77LY2750l+f8OtOoZH\nJ4MqZxcfXNVUt+WR6p4Hyd5sqQ1jCe6fD1SGNT8s31T/LoBqPdtTeccgBIOTLd2CYvfiRL5aB72a\nXta4OvDk4+ZI405mBfTwgcp3eCA02fYvyi87KxrHmod6zuhKfkuj+nx2pucsD1TfUl7lm/d+vtqf\nQ8o4c+bMmTNnzpw5c+bMmTNnzpy9AXujSBljZ3vW0E7YOKOdsj4qIxN2QSemHTfftFuZJaMdZErz\nFb1PkZ3KFbVTZWN9b3NbmdV4Su/bLe1U3SGzMfX0/PVFXRcOdjvZDT5Ap3zW1g7dEC6Fy9c6z1iE\n02XIDliqop20ZRiyr0AxhJvaUVtZ0XM+2BNjdryg8jfH2qk7PtBZvVu3vmpmZofnynwUPM6rZ/Xa\nbCqT0QUx03mlDE15XbvmH7xQxv/uxg3bb2kn/N11oY1Kl/puNq0sQCQM0zzqD2NTHQ8OlCG7eU9Z\nrZfPlEX4GmcsW490djwShxcIFMCYtltdJkuT1i5jJPbFzlwOPM7OosySypANekHGd6JdyHsrqADl\nQAm91C7lOdn+1Vtq6wLnBJuHMHvDP7Rw8z09h+zTBIWAyjoZDhSz+ueKzSwZgkXUgs6eKxZa+/Lr\nxFOsvvuukDTzivzRh61+SvbLG6Hg8pb8lM6obZ89V9YmQPhk4JY4goNhVtKu8cJtxXofvovTC9Vn\nRGZ9Y0XlH8HnUc6pfYpk+9JwDDVfabc7UPC5c0/ZqqkFsab48VBfKXJOPky7944UownY+Ve39LnP\nLnH9WJmhUU8xXqWv5ck853N6zkvqNx9fP04yZLcL9+ECgasgjsrOlPHDUHTxqONwFrC66/vdocp2\n9Kn65RiumssaHCYoj4WBTWVAOvioCIU5K1p/LV8e7e6bmVmOPjaK6/oIPA61S8XgFSoSW7d1f4/s\n2Iiz95ks4wm8H0ZGcubpPiOy+ulLteUZWfcc5DUpsmwJX/UNMV54oBJSZZBCFVAX8BclI8pk+hdd\n3MdzyiByQN0Z6KuLPdX7tKa+l06Sgeb8uPVAR0G24nn4H38Mr+T/+kD/92O6f3lT9U+kIrxyPeC2\n61ocLpsZ43ojrDjIktWbJpStnJ2gNkU2sd+kvKj1pZLy/9hT38qBCFogzbn8ts5tRyLwnwxAJwLs\nKcKVUy/oHwWUjIZeyuItxe4IRMt4pDKmQygMhECTemQqQbT06KckpazvqYyRmu43SGtcmsOD0SZz\nGkb5D0oti6LwMujp9ZhYiU/UtjW4Dbw8ilUjxVguUEeCHy4WIsaWVN5SSnPc4mqgGKaMboeuGYro\nj3iA6mrASwSqog3vUJMz9p09Fbj1+vt6T2zNAmVDYmvOOHxdQ2TExvAvWVvPCTghIvBOndX3zcys\nB1rg1pfElXDjjsbxozP59Ypz8r2G/FcH2ZlGSfLWW4qVC5Qfsosa17ffEwprBifbj/5EGfEoSja3\n1oTIOXyuzz/8yU8+q4MX922B+TpDRrXeBUGFGkkf1O6UJeC9B+Iy24RDZgYH294Tjeuf/Fi8foWc\n2vu9X/xlMzNLEvN7F5rfE3MU7pIqZ3M0sCvG/jHj49aXlX1ehHNlMIY34bHWGpcv5LM8/SrMum8U\n1bNLC4qdq0P57Ht/8h/NzCyFgtfdr0gNI13QuPHpj7UO6gxBDzA/bKD2k4oV7ItYgN4dTjVOXNQ1\n3m7dUH0KKGKdgQ6983XN+dU11efkGRyBjEenL1Xfyh3VaxH07R5Z71ZD68adbdRI84rty1fy5601\nZWxToHpf1YW+OD1SxvcWSMjlTdYiE7ixPiZjfF9rp6Wb8m/tUOvdq2OtQ5tXmleLJbjSKvJzra25\nejBWrMfIeHth9dkqyJ/DU7XfAfXcvqVYK+4o4/4Q/qTbbZWzdEt94/QHyuKfwcGVQ6XQQ7Vujv9D\nqEWVM6i5wPvXbbHe3pHfzMzyubTtgwrOVtQ3Vm5oLXJBu3SvdN/jlPxQRQmpNj2z61rjUj4Zg4xJ\nGOvrumLv2U+EUOmwhs/Bu7ET8ACldH2/Figvqs6xZcXW7TWV8exMsds70n1ioDUHqDVtvyNU2TLr\nMY+1wsFLrXH2d4UqKMM5FUapcf+J+nMexZ13//qvqJz4ogMny6unipE4iPoCCrjl8paZmbXWWe/2\nVK7miWKg1dc4f/qY58DjuXZPvyvGI5DZcO08/S78mvDklUFlLC6oXgnUoqYBZ1YXnj/4l3qgpONb\nipXiFvybFZVzNgXBzviYhb/k8lT+r33/Q5X7EqW4Jf3mK5S0RuqytgpHv+BPata5Y1QVr07Vjkl4\n89Kris3pASi2BlxDqBIul1SPS0/Xn4N83N5pUj/Fy+5T9bEmaqebC0KXFIufz4+jXtv2a0f27rr6\nYQ71u/oz0J0gDTcfaHzdgFvl4Cm/Txl/E2WUBUHTR1V064DyHZ/Ix1HGyXJEZZjTtoOuXkNFjUft\nBOtB1mOpCgjrDzTOXYAkX0Yh6xj07DEKjFtZvc+iWvf0oeay5hncXmWNN6mMYuP0hcad927ofon7\nIF/g+rpYC34zyj9XoEP7oGpvr6gPn57CrcMplTQqVub//N82DinjzJkzZ86cOXPmzJkzZ86cOXP2\nBuyNImX8POcL4QPJwU+R8kBdJLQLvFnQzlgkql3PIooRNtLOWXTM+W02EYtkiPdPtFOVRXlmGiFD\n3tfuZx+FgSG7qbE+Z4/hgtgqK4OQGGoXePu+MjwFeDri7MxnkHuZXsJlQxayiYrUGFWnRFzljSUC\n9IF2BL/yqzr7GvF13z4ZlEV2r58e4rCQnrPKGdsM58VXKuwQduSARZADe/vKECUefN2Of/wjMzN7\nW8kSazXJkDa0m5gFsTAZqA7ljHbuh6YyrsBs/cGPlJGLzpThi/Xg2yETOERFo1nXTnwLxvqrc+0u\nZsJl+yKWmgV8FPJ1h3OJHXg78mT5s2TTxzPtzHdBdkD0bQs7ZN3matshO96FpGJsEf6gQRfuA3a+\ns6Ca6i3Vq9vRDv/d9xQLQ7L8HbJZLdq6yi5qZkm7pienygjMLmE792AM57xyfl073sMhO/MXqke5\nol3awUzfm4+0y7zMOelsXuV//ROUF47hmkH9KLOoeo3rxCBcAxfwFNmxsj8h1D9Ky7pfrKJ69+CY\nCfhTIkuKrdK62tHvkYmfklGvqN4x0GxXcBcMQ2ovj3P8yW29hkCxtOFt6qFElAlf/5z/HKWW1oV2\nuIOzqPGcstaZpMp80JWPQi2UZUr63myisvdQWCmBgsotqA5LZfksAvJmMkPRZgofU1gxWCf2YijG\nbMG3sLKpvhSFa6VPptZHAWthRc8r5NVWlyh4vfpI/EAJkDMZUE9J1Jzi8FTMJmqbNooLE/p2Ai6U\nJMgQPypf91u6bojCQZLxyFLy29KCxts56IMf7H6s79PW2/cYF8kCZlCFawZKP12Uu8isGn3JJ4OS\nAqEULun+r3cP+Z6yaCvbytRUVjgL3FI5X7xGIQJW+w5ov+vaIEyfBoEUHcsvnQTcPEMysCi3LbfI\n9sP9NR0pHkZdPb/Jef2rczgYUF8aobBRIA4WIuoTyYr8e1VS+85RHTmP8r3JleWm8p0XgrcHVYbZ\nBN/OdI85iJBRVGVMjfT/Wl7fzxKjwXltf6ZYjXEGfrNMnYrKdlVRlBk0aXvQoPNCoBhG/5+iKEYM\nT4m9cR8UFvwdl3Af+BO1bZvJOUAKxpIqXwplrllCbTICrTbpKEa7PdCyjMs+HAOxKOVBJXDYQNnh\nXDHRP4InaFmv17VpW8+fzci4gpysN9SnSijVFCtq47VVIVKKt+TXl/vKwr/6kZCOU9YOZXiRltY1\nH+yAoEywJhlQ32RK72P0mZePlcn2QHPc+6b46zyU2Bo/VOZzYeNzNMC3vv1bllpTn9yDM6B3AXcM\nynId5qlbd3S/MiiK81P1wU+/p8xq1OSPFbhlbn8L/rwoanoPPzUzs4ND1KdA885AWBWWEpZZZDwt\nadzIZvXdi9fwQzwR10kHpFy6GiChyZSi4FUARRQvglRGYWUJTpW3vyn00AREzYc/0Frl9LkyvdUl\nzWmby8Q841yfsl7XZsaaZEgfAqU6CautV9ZV/hdPAqVG1NWYh9KrIDvps69RJGvvb5mZWWlb42QW\nBMcuiOyd94QwqaxoXjt7+EMzM+s21ReXF+FWACF0Cqq5QLb9Jpwtl0fy3znIkALzxA0UaFZuqRxP\nfiQlsM6urit9Sfet3JC/X77UfDqF7y/gYerU4IN6R+2wek/Pf/oXf2FmZs0L0Ajr6kvJZ+orr+Dg\n2b6ptVW6qphqU87sL6mvReOaj8OoZvUZG0obeo7R946Zt3a+IVSXmdmd9+7Yp+8L9XByqPi5cx+U\n2HugnuHfaKH+lSsrpvN2fURVnTapwd0VCqi5QNcew+EyA1n2zXtCH6xsK8YP4Ro8hxcjDoSvDap/\nE8TM139bCJaLR1rrP/2uXmMp1n9rmnty8MEdMj41UVtNwaW4TKz5KML2V0Bhva0+tXJb/X/3Q40L\njabG8SRrn2Zba6fxY1T0bmo8KVUV61MUwTxf1z97qrm8AU/PrXXF5o0HoC924RmpC9XQOdb4uLoj\nJM7b3xACKAqH2BievFHw2y4p/2c2FGM50LoL20J9hYaKzcahYuvf/Iv/w8zM4p7Kv7yl8gzgnzrZ\n1WtpM/Cn+sKkA1+Kp3k6gprWdY3p3LyE/jhB/aoKD+kSa72FIsq7fbi7dhVQ8fdU/zL8UEOU3Zrw\nQfkp1JqqqNGiilXkFEeq+Dkv33ySstbelbXK8ILx7OI6SLID3bO8pH5RXJRvL0A/nRzrN5/fRU0u\nh4/4beC1FJPnV2qjPBxRkVjw2w0Vzqbm7ERKvg6jBlevqQ2Wb6DGBg/d8z3FfOmmOAerb+l7u4/h\naiwpFpKs63JzzbHdPX2+lFaMLqNs9fJSc2r9Al69CCikqJ5/+Knqe+9rKDSyvv/0JxpXbqwohpdY\nz/fhthxdMr+h7vazzCFlnDlz5syZM2fOnDlz5syZM2fO3oC9UaRMdAZHCtnyGOfR/Zl21gJG/w7Z\n8/aZdtAm7JCfX/KezHLA4h4FwXICU7bltRO2gLrSJCAj6Gnnz4MJ/OgYnfQ17UKPh9o1ffRSmZYt\nmLhbDe1GBuiBBIpEF+yGj1GgaB/CC9DUDlmLzPR8CiM56Io27NKRGbwb1Gdoen6DzGznTNefouxz\nA96Tq+6I76sAIXZrJx12sycTi8AdMrzQM8JkYp890c53IapdxI+faGe/uKAd5YjpXmnQSXHOlE9B\nAy3sKMvgk20plrQLel7XLmq0x1lOU9uOPTgDrml+UW05aaMeQlYqTKY4vQEiBURJvwmipAdXCciN\nbCFAoui+I9SXklXQByg2tDo1vse5SDLM7Uu1QTwFlwLqQuOGdmG7+DUR0XPWb2r3NBznnOQFCBky\ny/EKiJEQWUFUOi7bej7HM62wKL8efKIYihXVZ1Y3tJM/ayiWWv1zni8/59dV7zi71ak5akyop8Qa\niv2LpuJiAloiU9X3itxnF9WOgJohUVF58mX56wLEURhhgjXQHIYS0qyt1wDpFFvSjVIgsWaosbSa\nqkcqpedmvsA5/wvUIppnaoMYCgMeHFMzeDTGx4rNEEiYZEJtMIKjpIfaz8KOylYhoxnm3G0IxYQ0\nCBkPZZp+SP/v0j9DkKtXVuHzYTyKX6quo6neRzOgvEA1peGMCfpoHIRMDEWFXEqfeyq+TRtwz4wV\nm9O+2jKb0vVzlM6iqMF1r0AtjYnJAaoe8BUlaVMPJZ+9Z4qZg4/epz7KmCRSoDPg5vHren9IO3SP\nVZ4QaKpIRn01CpJoCu/UBIRNF26t1wcaf+PwQhVRCCgvk3331dfmLfWFyBxCkmtaKAH6Iad6eKA9\n8vRFL0lfiaKeN9T7EsmvZEAzAu/TeKLBZDaFR6ouvzWO5d/wuZ530FNsxw4ZzxN69ch6tUFAFpMj\nm43ov3B6eQm9n3JWfQ7nTCdQHMkPs5tpAAAgAElEQVSjAtFXzPRBsnhVvc8N4OMg5rN05EoB9Z5g\n3EbZJbmu59TIzPYY3zzORc+Yi1KIoyGwYkP6e/dKMTmHU6bpo65RY+6bc8Z/hKoGAJcC/T6VV2x4\nIC6yICsLi/AtJTXuLRTVGL20xv2bPnPfucbZ01eKpdre9XkgzMxCcCqEKV8XNO0inGWLD7ZUnzpr\nCdREjj5Wdm1vV/Op35Mft+/q+hjn1pMgNzNx1fPwoTLGNcb9nZtC0rTr8tslvClrb2mezTBOP/uB\nsoPnIBnf/sZXPqtDuJSyhz8QSqAGj0egWJOES2wFtEiZ+XPY13V7HymTHkfR7d4NoXgzcDdM8csn\n39WYcHm2r8+ZX5c3UcPyVNFENf6Z4kyfdc4reGpe0t/DKMnc/rLqGIxfzZpiqAK4dummnjFlDvdZ\nT5UXNF502hrfH/1YCJI2ilKrq1tmZrb+zi38AwoMdOi43rAvYsWMgr6TV5s2UF9bZj1YBh374lOh\nnK5eK1aKNwMOG7V9irXJrKu2fv1Kvn9nQxnfrTvKCO9+R7x9ly80rqwVND89hmOrN4RnDkRfFb63\nJnPz+bHWrxmQRusgEc/3FHNHL/dVflSPFm+imLivPlc/BylzBOfNkupdhSutA+L71rZic38COroN\n6gAU1/OE2ukYPr873xB/UX5R962jWrf1jvx3s6C+/nD3e3reJTweN0DYgKS6OtGYtHFTfXT5Boph\nKD2u3PocUVm6vWw51vlX+5p3SmUUhQqq12JV9fjkkfrmvKWY97Ixu66lmcNqFyDT4MtYgINwC86n\nMJxMlZvy/RCVnavniokIqm6xtGK/yXjwFGRdZls+ClfhrWSyKuQCFSA999mfqa67ZPNnpvFyFQWq\nSB61Nk8xtM3/EyjIfvxD9am9j/bNzOzGjp5bfiBfx88Yz1D+On9fbfbgLY0fG/fVppcd9ZWop7XV\n4oJiOANaYVSDp2hPbTQBiV9a39L1d+U/P4OSD8qNtWOhHo5PUQ8FRbx5R9+rboF4b8BtU4fzq62Y\nG4H0L72t3z0rG2qf5x+L+6fvy4/3dnSflRWNb0cgbRqH/O7ofzGiuzFcaYm0+mYI5Polij5h1E/L\nINzPDhQPnT2ttRoZ/T9QAxzw2+/inDFnQeXyJ+oz/ZHeX6LyF8p+jpTJJ9et0Tq0i0DdDV6dYqHK\ns1XWV69VxvtwzyyuaVxtwKHCssjqa6Biw6wXQd2Or3TBucGtxTp8MmDOhf8sHZlRRvWR0xONYwvb\n6iulDflm73354hA0aHqRGPlQMX9+obpWby9SHjhc9xSLjRxqoSjgZkEYNljPlncUCwX2EWq7es5l\nZUi9WE9ONV4cHMOThDrTgPH9AgThUlmvP8scUsaZM2fOnDlz5syZM2fOnDlz5uwN2BtFysxR6Bn7\n2qlqjEEJkBoZkOGeD5VhiZJBSab39bpAFovz2mOy7rdWtLN16mmXOpGGk6GsLNjCTe2UDeLaEd+8\nrV3fp3AUrMJt0+jofq8/0dnkbPZrZmZ2tq+sWBdugxlcBckcnAWcB0wmtcOXRy0pe6Xd1RHn7vN5\nzrDCZH6DTIaRWRqSEprCDJ5YVT3sKWf22D3N76GTDgqiglrL2o52MOfxhO2A8gl4bTZXlRUYg1Ja\nvq8d7x+fq25LsHaH4EkYo+axvAiz9LGemYSzoHustutxPnuVM69HqEeUUK6JB6nRa1p4BmM3Z/3n\nEzhLlmCzJ8kVQsFhhtrICE6FGDv9RiY1UBWZjeXb4Hz7bArvBkozCZBDfbJoPTLRabIlYWK3d6Sd\n52lE90/FQT3ldL9uQ7vFrZaydvlsmVfF4iUKYbO2Ym9Y4zxlRPWL9XXdiPPrBieLpVS/GkzhqTY7\n9ImAC4fMMufc613VN0ZWr3dG34I3JJHVa7YIV8GMjPZYu+JjuA+KZKcmsOc3z4MGALUQV8y3TX6J\noxpjQ71GQGilYJuvj+S36YisZ4Q+zpno61huUf1gaQnfcs44FiM2TXVp1sgAgPCYof4WRhng8pl2\n1sNj+DI4/5zoq8wD+DsiIX0eQkEm7un/paJ20s9BcqR4fhx+jdlEbROJwqdhIHFAQfTIMI5CiqGV\nGxqXgqxzBO6tOSpSfVPbXz1VxmGMqtFCSb4tLCkzO0d9KQJMbL4bnINWeSYgcnxUiNogCcOeyr20\nqazZ+hoInDhtGpYfAlWV0AA1jChcNygCASC0OePknHPUyYnKmcto3Csuyc9psj9huF9mA7XXnFhJ\nk6XywtfPXJqZhUaKzQkolATn872Y2sujr83gDujH1E6Tc5UrBmrsHC4gi+jzRFkZmwW4zKp3yFpt\n6n15quvCTTImqAvOUYjIMBZN+wOb0I8bE84/51TGDIfPJ6A4U6ir9SZ6xjwNUi8FJwscTV2GC59u\nOolxLhq05THcIB4IiizjUpzM5RiOgQnKgC1ffWUOf1CGJPQkqzarwCO0mFb2+d6yuMdIltkYdacG\nGeEuSmXHc8Zl5qMsyl8FVEgWY/JxD6TPuAtCsAmRHGjXcBxFsrHKPywAW7umeSF9DzDXZ/xQmU2U\nybq639lroSDCUcpV1xzu+fBofBW1P1RIAsWzWU9jzuHrfTMz2ztQ312DR6XAmuSTT6QskaJvLsDH\ntP9E83PjQPPv2prGiMry0md12PvgkR19ItRFHrTg8jvqw2HG8fKq6oOYk72C1ymO2tXmeyBkmO9e\nvdLYeAm6ZdRVvFU29fytt+DIYR49Rbku2eh+xtlVO0LNDqWpAmjUtdtSPiwTc+coQ40G8Mbd1ZrD\nm+rzF6+Uva4fozgDx0iaTGSUcebtG7pv6RYIwwjIilfKuI6DNUI3a1/E0kvqM4Wm7luDU6rVV5tU\nqFckD/oBJMkMxMWYOTG7pPJstrT22j9C7Yc1x+KKsvb7BaGizvZV7tIvqa0LJY3Hwz7zByqmHvXP\nkdUfdFFc6+v727/8q2ZmtnNX99/9jrjLAtXA1ZvK8Ba3xXPSeKRYOoezbWFHsVTaUrn7dZV7uql2\nyuRAEJ3p+s3yL5iZWXld32vU5Kd+g7ViRQipj4+FvmrDu5eBv8Pe11hQe6znbNxVrK2tan376acq\nXwNE/eaCyt1+LA6by4PP0XLxSNxubIoX6ZMPxbM4AlUXuQ1fyA21a+FSfbsNKiWVKNp1LQ9/xcqW\nxoHte+sUQLGWSGocqC6qDcKojH4Iv87Zc2Xbb/7CL+r7t3Xdw0eKpb1niokx6pY78Pws7Mj3EZDJ\nwxONqweMN13QZev02+Itvfqg94/r6lMJX3W//L7K8fy5xqOVFd2/uAkaGXTxGuqmbWT8mvBEpViD\nJJhXBs81zuRBjS2uqC18eEN++Md/rudeyec3bm+ZmVkOxHgYPqfERPVrmmKo0VLs9uBfGvL74B6q\nVnm4U3Y/FgfW+VONZ4s7uv/b35J63pR1bY37XBKrW7TjGspgczg4xw/hHwGFPS9/MfRueAguAu7N\nEGvTCfx9wTifAzFVAJF4dig/Nl7zmxluzEJM86Pf4XdTdsR7jeuRnD7vnsLH+p8AewrpiDUufWu3\n4ZdjPbd4Q+NMlt/Fg9eKkXPQ7kngnwPQnldwGq7ABTiYK0ZzrJOHQ9b+l7o+GQ2Qyqigcqggh4pb\nhvGyB4L8FGRcCvRPLqL+23+sNqvcU9uHQNuO4NmMZYI1gp7TamlcaPI7PkP5pvTzyS4nXYogXEAh\n77VVjgsQd+thlX+ZdewZSmjF0ohyKFZirDtn8B/9LHNIGWfOnDlz5syZM2fOnDlz5syZszdgbxQp\nM2VLbNwguxdGWQKdcguDMhhpF9fn/RnM4WsDMYOHQZLsw6Z8Z0E7XbUu2aS0dvSa7ArOQDk0YTbf\nWdMO/4jrLYGqEqiOeRyugRLn8LucTcuQEcnAkzEMeADYhYQzYRBVhndMZrU7BDXB2dj2iXb4MutC\ns5RO0KgHcVPk7G42XsVPferNru4cboNj7Yr37+p9kh3BFw8fWoEzqd0WWZsJKB6UX2YgOEJkjwdw\nxsx8vT8/UNYjEYElHN6Irbf0vT7Z3h4ZtJt3UHM4UAaxStao0//55+n+n5YkKz2fwTUCcmcAT0P3\nVL48RSViBOpqBFdKnmxS+5WuH4J+6rZVLx+0Va+pnfaLU90nUJGoR1X+JApfcc5FtgPFlRPFzOwc\nJZsNZRCGbVSg9lS+UE3lmqBiMurr+S1UQqILKBdcqdw5OBbal6gf9QK+JMXC8ET3PSDLk0irHmFS\nvBCZf8b+P9rD7xF2fznf3wfVUZ5zXzLOEc62Ng/ZlY4qVufwPTU5K918oV3xGJkDG4O+oE/PTvWc\nZodMPqixBtw/A3adB3BOJJIgqabXz0rFTLEci8O/0UdFByRMBF6gKXwRc54RQ5rLy6iMM7LwU9ji\nQ3C9GNwsPhnHkadhcwLTf74o37RQV2q+ko8HBT0v4OcJJUFbQRgUzuo+SZAnTXxw+EgZzTl9KrxN\nJpesVJqs0eSMrEcr6O+0QS7G8/Q+EUEhDFb8/SPFbsBRk1zSOBNNo0qEGlA8o1guryrLl8zjD1Ac\n06HeJ+CkWb2Nqgn8Ttmq6p2EO2wy0fsY2JkW494gpnptv63v5xZRN2E+aFPvBONZPCl/pypfLMMd\nZCwsoj63D+dX+lx9o0l9/IiyXxEyNTOUwBIgi8ItxVVtrr4x+QAVlUCxJwlSCf6t9Ca8AUllYu+X\nUDha0X3m8JIMvKlFqHPUFGt9VI3mI9BLab0WQ3A2cR57HlFmbTJX7I/hF+pfMV72A0QJ3ARzng0y\nMMI4YE3FoodK3VJBbTLf1jh6NyIUag+4UxTEzIDyWIds2ET36x2oj0Qq+n8hobZdr4Ls2NDr9kSf\n19pwqTCu1FBAOYN3aARKbJoB6RdSOTKondSDDOGpxpf82heLkRlt3gW1VkZJa3ZFlo5xL+qjpEif\nG3Omv1rWHF1Kqe+EUfQ6ph7jkeo1q6s9UozXKVAG56eoRoGM3HoA2pWMar2l+2U5Z1+6qVi6AG1r\nZnb6+tTyKPCsPxBSKRJTeQdXxMeV5sODPWX1rsj0LpMBj6IS8/Kp2qO+J36+dEV9YXNLqIdcCV4U\n+Jae7iujHvC0lKtr5sHF5TPnLbDeqq4pFjPMCae7msuCTOPGHcVcmjbf+xQ1pZcqaxofrC+rDwSo\n3wg8CXkyu92GYnNQE99F4wI1n7J8F40HWL7r2TjgBGOcjXfg/roCzVZWbOYZFwf0xS6xMICvqcY8\nUwZ5sgfXyukLrWNvvCekzzrqJ7Uzxh0y0VHG9xjqgx4IzCaKXyW4Wnz68jlt2bwNj0Vlg3porj99\nrj6WL6E6uKy2HR1p7XGxy/pyW+PeMrx2H30gpE37HIXFiGIkQOhcUf+tJbX3kyOtaa7IlK9W9P/5\nSDF+RSZ+6V2t25dRkDwFyTM40vdSJfklGlVsBsip0voSn6scZ/ufK7C1LupWhUepuKu+Wj9ROYcx\n1nq34DsBHXfxUu0RQkXrOlbjt00V9aF0Svc6hYOpftWk7GTtXwVcWJr7QyDLN+7JB6mKXksvNHcP\nC2qjKesnY25bWAZd9RGcUtR95ZbGseX7arMc3w+AEkcfaM7r9xUba1t6fos5LpWVL7/0a1J7mjBn\n/+jf/6mZmd3/BY0zt76kNomVded0TOU63IM3ifLv3Nf1i5wWeLEvZM35Y7VBakf12PiG+sD0Qm2/\nBxfKDG6y1kR9yg+pD67dEerKlkCgN+Tn3ddqw/P9fTMzG8FVk0WFaHFDz3v2Y8Xy/kshljIobt75\nln5rZvlNt/9Y41yNEwIB4r6yrHa+ro1BLrX6zAMgXEdT9eFLeE9C6/p8gfl/paCxJdRX+3SbcGGW\nWMNMUFe9gs9ryFiR0LjegiuuDCJedfMs4kVtxvjUn6rf5zuqWzmie53BK9ba1eflNdV5CN9Zv6Uy\nt1Dyiy2rn03n3GdDc+yxQs7q/FiprKsNU6wF2qgJJ+GtqzdB8b+v8SqzCVIddeUepxLa/CZM4cMh\nvwc6nLbII4U2gAt2fIByGIigCpyB3Q6/GfcVOyWQ4vElFaiJKlwsoj6cyevzCWuXxksUznZQS4WT\nJk65fpY5pIwzZ86cOXPmzJkzZ86cOXPmzNkbsDeLlMlyfjxHNgrlBX9fO3XFHAz+n+0Cw5Ew0I5b\nMcM5RRRpTsg0ZFA1mXBufojeeYSMaxwUxMUVu64xlAlCoBNAJRiZ90hfu9gtsj/dnt7H2NUcNpQm\n6nMecYZiQwduivRA5UyjKBNFYaOU1+vhqXbO/Lp28ADqWAe1lnQyyLi0KY8u6I/kp1JIGaPXDe3Q\ndZHCCYGeuHh0bsvfUjamB/v2OTv2hWWUDk60Q51jR3UGCUF0jBoFCIgpSlLhOUiPLszV8NlcnGt3\n8O49nUlvwXxdIus17X4x9aU6vEJhzhX2yTAcwpAdYhe0ja+zE5AYc/mi3FPbH53pbOyQkJ8E6AIA\nJJdN7Xoevla2aI2sThO29uSG3o8a8vV5R7unZ89R8II/KMEu6BWZ3eCcdgwUhg8C6bKr8rVQmEjC\nI3JMVmq+owzC3r7apY6iS/mGyv/8uc5Rn3C2dHlT14fHaofu/IL6gLoIqf16Z9q1PdlXdik+pQ+B\nHgmf67pOXf68ACmzeVPf6+GPQNmgd6rnBOewR23FzdUp2VFUW9rcr5hRFqtF5qTF7nWHLFQ+rwxO\nt3z97OUIzpi9V6rTwrLKOgLV45EPyqCAsgj3y8xT/5g2UXEja1HZULZn46bQXlMyj0cvdQY9k9X3\nyyiyJNdQ2iI2H38iBZbNVfkkB1dUHuQEj7UQnCiBCtTVCHW195U1Ku8IpZCGcyYFP0SgZNW6ks/G\nZN0LC8pA52MgUlDWiZUUe81d+XzvI2WMb+5o3Fq4r/KlUIzwwqpf51LZooMficNh+Lbuf2tdmYJY\nBjb9psrdAHmSQvlgBrrNKpx3ptxXDY1BT7//Mc+Rf/Mga6b0UX8Ev1NE7TeC18raes70CnTHNS2R\nhWvBg4uhoJgvoVqXheurnVB5kn0QPvC8zJN6TTKfFBPMW6iehKe6T3uqMdAfyC/Hz+T/Tkx9Zj8t\nFMMCHEBROICGqbSF4G4ZEiQpeI18kAs+En91A4UFIi9UVux6XD9G8ctQkiouEgMj2mKm8S8dV+zW\nF1WHxIn6cxMOlBZcVzGyXKMqvojlKV+AeAMJqGHUhlPapqU6JmK630UJxGNB41ooirQOXC6Zoj5f\nu6n37bF8GDvS/8+TICI7Pn6C52mu+hVBLVylNCaEUTS8roVBneZA4HigKEaMDREQQWnQcQZfVBR+\nqByqVlPO41/UFAsdMpkBV1gOtY1EGdQXMXgKh0EOXjhDEazJPDAHEZRGlSMK71y79rnCTMpCtnpf\nmd9YRH4/B+XgUb8Q/EnznvpYrqLylFGi6dbl336gtlVSOZa39XkcnoAmSpSd13rOuK7yVyvKyBey\nGavBZZVMELMgGDwfVQ3qdg4KaW1NZc9mNRfUjtXfz89APxXk67UtjUd+Rn1lfq7xMAu/2wilsvqY\nGGXc8fJqo0wanjM4Da5rjRONn4f7CvZpE3WetOa+jQr8IeGAuwylrlNQyqCKBnV4IlCsWslr3rl4\niUrdAgiNqHxfLcArB3fOoK/6xVIorPXlh0kHxTTUoLJx+TEy0/x49um+mZmVNzUfbt3QePb0udZU\nB68Us9trW2ZmtnxD89zZ9zT/nZ2hSgKCpwgauYmqSh/epQzr8+mAbDwp7xjogxZ8GEtlPX8FbshJ\nU/dpgQJJgkLzIqp3fSgH5lHyjEyYL1AY9cmo50ogXVDONDM737208pfk7/Vbip+zR1qjXT5V/JQW\nVd5UMlAwAinbmtl1zUNR7BD+tpNj+a4N70aB3xYXXcEFmmT503BUlbbVNgPGlwtU3Zr8Bth5612V\nDLWd+VD/3/uRuK5OX+q+M8qeTwuFn2Ntc7Wv8aL1WoiP/eeKjaWy+kYWTpadjNq+X1VbhuAovHqk\n6ydHcHutMU5vaM20CLr/+JVi5eJEa485CMvmpXzdH8IPVdO4nrtPTN7RvBSD8/CQMaLPaYin+2rz\nPJxoJRB+6ar6Xn+kNt/9UP4YEoN5X2uc2Drzy77Glh/ufcfMzHyDz29DsZECdeX3FFPP/1xrlldH\n8m8+ojVCGMWf8uLnakbXsekclVd+D8wDnivQZt2Ofrd4DZWjjuJkdkntGAbtMR0pfiIJuCxRP8xU\nNDYsovoaCtZSUX2vM/mcA2centnCesoMRLOPOuRwqPEgOldsxDOa+9td/caJ8/u3AuK7uwKPZ0TP\nHMM5FQE15aE+t1ThdyxtM2XtM+G0Q8iHc3EEwmSs51ztqa7RcICoVp1CM9Y48IoOuswz+KzLb8+o\nB48eoPw2Ks8Z1nvJinwz536Bsq7H3F7IqG+8gjezcajYDlc13hRzek6d3z4pEI4x1g7h2M+PEYeU\ncebMmTNnzpw5c+bMmTNnzpw5ewP2RpEywVlciLQtDteLReH5QAEnltbO1rCn3ecEZ2h7qKJMyCrG\nfO10xX19Pk1oRy9KhtNjpzuBjrrFyJT4nNMua2dseKELinBChPPaceujTBBB0CFK+QJejAks+1mY\nvr2mMjY9Pg/BcdHkzN0cZYswfCVN0AKxsMrVQO3DIxNSA6VSYpd9csHuKBkZP6byeR3t1GUDkZRi\n3EhKmX8J8qSnD8Px8E+VJcFOebOtuqRK+Ag+hRFn6bO0SZds8EJVZ0SjEdUlyAZ9prDVRHM+EmQf\nrmeZgu5XWdbOeRRFmxXO7Kbw9Syltkqym1qaazczz1ncMRnjylj1Ga5pN3RpRTvsLfiFbr69ZWZm\nuayyN/kVeH04v9yED8hDCebGHdRKSso0JkFztTmHWLgL31AcRReUxFLs7qZWFLuJlNpwg93kMpmS\nTbJZUc7drxd1n8u+Mi7pmMq7xBn/LjFWGOk+/ZHqUSqpLwRokeWw4iDt67rSkrJH/SSKMyiArZfE\nabCzzM48fvRaKA5x/jJPZiFNPE0HQJD6qH9swi9S1HNaHeImzf1QBaM4lphdX33JJyMagrMAeg0L\nTfV+2NMzMtQplVab9meKoeOHyqZ0UP3Ir3Je29SfECWy7qk+n3K/tftw06AQNod3oocyzAA1nmhc\nbeuRxQinVckUTPmTnHwzhqvklHEkgSJVClRCBK6XNopXRyfK1rTJaKwnlJ2OFFAXAr0Vm5JBhZdi\n0ofTZaDxJAIqIIQ6SQgumwY8E5fwUK1xnxAZz+lA9Tl5FZz3Fnpr6Y5iJWlk1WGnH02ILbLpDVAZ\nUZBL6aT8nieT6oHu6sKd5Y1U3nP4iVqoulzXZmSmB9EG5VfDTkKKNY/4SDLuR0NwE5G6mHf0/KtL\nUCD4OZuTPwJVvWgYLou0+moaHqcJfCuJS2WYzpl+m68Jem9iQziz4vTDVEj9Yj6QT+Jkg8OGqhpt\n2gVemYdfaZZRGycZb/vw1kRTKD2RMRz1f1r1oYF6RKmtz5twDLTPUN95SZ9AmasQoD9DgfocSEQL\nVKE40w7KaTKRL2qPVP4oygkplLpalHewoOdXiB0vhoJhnCw8fabTpc/34IHLyZe9ETwbYSa+a9oU\nNFccxOEY7oE+mcxAKc0HSTRENSMH/9IErqzaOWgHEJwp6lWAe+Az7i3m6HNUjfyx/BRHZSMcqOUx\nHydBhcQZEwb7ao/x+ecqU4lE2kagia9OlcXrX6ocVVDFE/rUaISqXgHeLbiMOgdqpxhxliqCjJop\njs5bmn9CUBWNu4qTQlLtloBnb9KZ2rCua72Exv7JkHGsrTp3T+Bxw4cREMTdS9X99IRM7VT3LlRR\n1yDTOUM1c9AGOQHPz3AGQgUllwSLoDAKgnPWbxO4oK5rs5G+F2UcHXOf8Fwx0anpeXOQfm2UD/0R\nCosoq/QH8PWAbBxQoUZXa4cn39P9YyC543DkxBi3khGUyIYaz16/1P9P9xWrhLItr2heSKDUdgh3\nzCAMSpe10hxVwTqcZjEPjoe5Xuf04d3HuzhCwVtAISxADTdQ1xqvqb3DoKcDnqoBnJEhUB8Xu2rX\ngENsMlDMne/um9nnCmsIzlnrROiLq4Hau3el+Godg3gKg2BioR4oipmZnbzctTSKl0l4l/ykrmsc\nqly1Pd0/gxpMuIN6YuH6SJl4Tv0smJtHFyprOQdCroTKDkiFLEXP8cw5/HS7j7Q26cM3lwTR3AWB\n6MdV5iv42XxQnTlUnQLkRmcMr9D3PzAzszF8HQOAEqvbWr9lqypXwJ3lsY6MwAv06LvfNzOzIXPw\nwrbW1z14PWevpG406MDjdEVbowq6gBpTb8gapAOPD6p9xaLWDj04zn7ysXikwlFUSTlVEfIC1API\nUNrUp9wdOBNDjM/xkByc3YDPDy6f2qn8NgI5n0ipHD7r8g5rlcOTc/yo6+IxfT+aZG2HUuRl6/NY\nu47Ne8E4rBgcMd5GB/R9lIM78+B3g9o/EVU5c/Bp2VCvMdYPGfhLfXi2SiDdx6hXLQZ8re3PTy7M\n0mbZzILlGeNbHTgG+e3XnYAiBTk+hdOrzTqytKZnLcF9GgN96c2Z+1lHzbh/dlP/CDVR16Qc/abu\nn+F3+ZhTBKmInt/x4c8b5qmTvpkL8xszQMyF1PcmnCRpwCOah6+puqI5tjdlnGZOT4BkyRT1/X6g\nAg0f24w2KeCXFryfBdaP6VyA3AOBbypnHAR6JP/z5xuHlHHmzJkzZ86cOXPmzJkzZ86cOXsD9kaR\nMrOUdqCSA865cX67uqizWeOGdpSKIFW6Xe2gLRb1fl7TTlSSLF1+CTUjkC5VGKrDvj6fD+AiYKcr\nF9fuYptd6HJSO3szmKtnI32+BKtynMzIiKxjeVO7xAkyGW04LDLBtrcfZDpUjsoCGRWu82Hfr6Ko\nEwqBmogGmRjVdwkuiiFoliyojD6ZCi9Q+ygu/6ePtW4DP+QTFkIBYUyGM7OjXUIb/HTGrJIA5UMW\nPEW212enPZFS2YoorEwvtP7n3sIAACAASURBVJMcZARXVpepu+4bB9kxDmv/LxolK3xN65xpF7LO\nueK1rMod21AWpoBSwBTUQ5+shjcB+WPwBaGEkAA+FOZ+Ec5HemRcUwY6ATWkcUP3nwXZdNRGfPh6\nUuyqemSLIuxzhuCL8DgXPyeTEKGtUgnt3pIQtw5s8oWS6hXwIhkoqRKZilExYFdX+Sown8dzgQIF\nu7u+rk8v6/kZMq9eELtkbCYohUVAByTZxO2n9JzFHGi1POfAid0o3A+RKX5ZkB/77OinyaRO2E0v\npNnJJ4s5Gur7Cc7Tl5dRqOCM7Hz8OSv8X2VTMpTV++qPBdQ3+vRXG6K+EFZZg2xw6FIxk4Rjqryk\nc8Elzgm3GvpeZAyqiSxOgHjpd/T9EJk1H8TaV35HCgULqDuFQJj0BmQ5UHhpgJyIk4GIpfT+rV+5\nb2Zmy1n1sSFnc2sXet5sKt+USvA2ZMhMgIyZXuj63lCZ6BGcVMEZ3y99/W0zM8vCmzRHFaRFRjoO\ngrC0or57/5dUngIs+hEyvZ0pKnBpPXfz7g35kTO3llK9A16KQZsMNrF86617ZmaWITOewq9D0AET\neEZGZN1WOC9eyer50egXm76Sc8XgBFRIoQDnGO1mjPceaLs52bsqnBgjuHESqG9Na8xfKMGlyZ4Z\nyKhSibPOcM/06bPpqcaYTlt+WyMBO4sMPlNnG3IG3AfxkQ54iECUWF8+C3MGvQt3SJS2aYNQmdKf\niik9JDlVWToxzTm5quo8I+uTJpsez6MCF9F43hiB6vRAc8Lp0gnD2RIii0+mL0EfipHxDYOCmqDs\nEFlS3XsTsnG9gIdI5Y3BHZNE0dBYKxSS6lPzMWoXZZVrmgGhM1Afub2gWBmOv5iyTnoG0hMOnBEZ\nxRnjYYJMYxJ0WSRHXgu0w6wH5xocQAnuV2C8nKPoOCDtnwHd15gpZhJ53S9BtaesTaIgazLMY2nW\nAmc+6lnJwmd1SOTzFuvCNwLnm4cqR5oxqQP6oMh8mPYZo0DFzaPES1jtnwbV1+xoXDfG1nmYTGxZ\nY0mgOJmagQq+aJnB2VKBPmjM+OWR1S+wpkhkdEGqrXufoZSY89SvQovyUS4WcIHBp+MHcyrrJxSt\nRsR+GF+neE4kprLFP5sWPudVuI6FQVquPdA4GvDyDPFRh3khzvozCk/IhHIXQcQMWP95rHHioEU3\nMnCUgXbrB31irudMAp69TMBTxzhDFj9bpE+D6JmAhkuXApQWCB9iJMR6eAkUQiNKn64pRkbcL5dS\nPeIz+JwmAQohQfnhSGNMCRS/ZvCHjFjLZBdBvpO57sHRGIqh2BOgrEGcBujrAjxZkzH8GHA65uB0\nm8JX0gFhFadPhausdc0smclZH8We4VDtkQmr3our8Okx5vgTONto1+nw+mvXNGuQbF5zZoj1TMAp\nNQA12kZ5JrkGlwuKj214gfoNoY7Ka1qbZMsqQ73HuAAP5Qr8Ph7rq2xJa4cRiLizXcVYKML6f0U+\nWy1rPAiDzjcQG51awLfJupB14GCq6xfWdP9SRfU5a8I/cqkYzBd0XbYInx5zfAQFnxY8JD7KOYWA\naA/UwwnIuzjIwEJFSPxCHqQQCmieh1ImqnSXrBUWl4N5DDXUKaiyGeMl/CKLK5onvDXdd0of9OCy\n6bRVn1JRMbQc13W5anBf1AZBzodnXwzn4MHRkwSOO49z2oHfA0nWULlFUMoBYianege8fdlUsNZA\nfXao+k1BCEXhhPOY10IhuIu43kz8afGR2SQDTxqKVsH4mUeJt8F6Oc7v8UkG/jHQQhn6v59DNRNU\n0hxVpXFE/d1nmEkyzg2ZW1OhAIUKF0uUEyrZoC78Rggr5pL81gqDqPE8XV9AYSxA2oSijBugrmKc\nqJkwnsfhoRsF88kCKGBiOpqY/FS5Qhtqs+olfHsWoK1Ur9hMfWMMUigJsno0//noXYeUcebMmTNn\nzpw5c+bMmTNnzpw5ewMW8n3f/6sv+//o4aGQ+b5voYBLxpkzZ5+Z6xvOnP3l5vqGM2f/b3P9wpmz\nv9xc33Dm7C831zf+/7eftfXikDLOnDlz5syZM2fOnDlz5syZM2dvwNymjDNnzpw5c+bMmTNnzpw5\nc+bM2RswtynjzJkzZ86cOXPmzJkzZ86cOXP2Bsxtyjhz5syZM2fOnDlz5syZM2fOnL0Bc5syzpw5\nc+bMmTNnzpw5c+bMmTNnb8DcpowzZ86cOXPmzJkzZ86cOXPmzNkbMLcp48yZM2fOnDlz5syZM2fO\nnDlz9gbMbco4c+bMmTNnzpw5c+bMmTNnzpy9AXObMs6cOXPmzJkzZ86cOXPmzJkzZ2/AIm/y4f/s\nf/6fzMzsH/3zv29mZqOBb2ZmjaO6mZktZpfMzCwy0t5Ro9k0M7OtjaKZmdV7LTMzi+dyZmaWTCfN\nzOzl3mszM0t5ql4qoc/7x0dmZjabhczMLFGo6D7dSzMzu7G1bmZmnZjK1z8547563uiqZ2ZmaZ43\nGIzMzCxfSJmZmVco6/vtE10XzpiZ2eS8ZmZm7XnUzMwKK7rfRUv3z8dV78k0b2Zmr2pPVO653qez\nuj4Vmen7RT0/k9LrwZNdMzML56qqX2xqZmblkCrS6p9YPrGFD+WDTmdsZma3bu2YmVlz3Dczs8qG\n6nK+r+syOdWpOdDn6ajumQqpbOdHqmumRN3P1HZR2iId1Wujfa73K6tmZvaHf/Tf2HXsn/4DxcbB\nvtooJFdZLpw1M7PuQM8fdOJmZpbdUptHYwX9/0Qx02lQrox8Wazq81jG0/1f7ev+3tzMzAolxUZk\nqvftVtfMzGa63EqLm2ZmNraOmZnN2wMzM/N6tGVBbR3vq81iVbVV+0zXN4i5UmVBN4yq3LGxYsyP\ny7+/97f+SzMzG0Z036mawfpXbZUnpvuvb2yYmdnFwbH+H53IH9x3klPM5/LqU6dP9Py53zAzs3xZ\n5QvPFBfp4paZmY3Gqrc3VsVrx2rHcFQxllovmZlZhj41Cet5rSvdt99V+VbuKj6mEfXl5rNTPT9C\nrObXzMxsnFSfiqXVPv/jP/un9lfZ//B7/72Zme1/pPEgXFHdGs0LMzNLthXTTZPPehdpMzNLFPW+\ngM97S4qhhdNF3acvZx+V1BbFV+qv3qLa8HCi/latyHelqGJxeqg+8nK2bGZmo+HQzMxS1U/0vPCW\n/t+nf6/LZ36YNj5mvPBoi9cJ+eSm+lLcVz39ij6v76vtSyvynT9WG818lS9cUxtkR/reJKkYeB1S\nrGz3Vb5pWP/319Tm44jaLH6h92chtZXvKbbSE/l1MPHwC/XpqS8kx7ruPKL2iIZ0vwTlj0X1vFZI\n5YtP1NfqA7X96t1D1Wuqvj6eKEbaiyrHP/z7/9jMzP7gj/6BXcf+83/xe2ZmlmIeWXz2dTMze/41\njXXxD1XPX6eeP5nr/+Gtm2Zm9rXG2ypfU3FTbaie/2pLr0uZ52ZmdvvsS2Zm9sE7atdZSPV4r6Ex\nYdLW2HEy3Fd9KsRpxDf/9JfMzCy7qTlsNfrUzMy+893bZmb2W7+pNq89umdmZo8u/62ZmT1Y0ecn\nrT0zMztc/F0zM3v7kWLq8Y5i79eP5NvvfFkx/Mt/Kl9kv3zHzMyiqT8xM7PvH6vOC1eKqcbvrJiZ\n2cUHaqtvXyjGHn5D/fzef1AfOvi2yp+JvtDn//6bZmb222sfm5lZuvuOmZldymX2nd9WPTP/WrFd\njWsu2x0pdpd/Q/PFL16o7/1JTr5frd83M7NZ9kdmZlZ4rHoNf0X179VumJnZ9lxt8bf/zt+069jv\n/6N/qD+mais/rYKGe3o/juo1FWacnqiNpwmNaxNT7NhMfdYLq29FxmqHeUR9ZtbX9amcxphRV+9n\nIfWlLK/dpO6X7jCOU57oVNeHmJC6oflndfi7f/R3LRrW88Om9pqEdX10PqVcej9s6bpMRN8PzXW/\nkakvWFLPDY/UlydzjZGhsO7rpfU65PGRgT734/KTeV0L8b9kXL7wecZ8qja3ieo091lHZTWXDCiD\nP1EZ5558lRzourCvOoTx/SiiWJ3gO99U5mRf3x/5eh/NaHz2B4ql2Fjj99/7J/+1Xcd+77/6O2Zm\nNu5qHPNC+n5oGR8MtXaYeipHpKc+Ns3Jl6GI1oWVmeodi8g/45yu7/uKlVRTbdXtqK92snJy2nRd\nbKjx1FtSLPbHmtemHbVJqEPMxfT8JP6KZtVXJgXdpxzEzkTlanmafxJ1/b8VYbwfyI+hqfzWmLMW\nJEbiQxZHCY3XXlrlDtEenZi+H6npfuOs7pPpxXiv6yYa4izTUD1mrDm7IZXf6ykOamm9Zue6byUp\nP84n8ttoRGzSB8zM/t5/8fs2LsgvBX3NBqy//Z7WhmnWA7OJ/u9N9f1OXu//ye//Y/ur7I/+QNeM\nWDeHk/JJ60y+tbx8VsoqVvptxdJ8prIn8vr/nDXMjLVApqTx0B8pdnojte0orD7j8RsqntXz4qy3\nAp/2a7pfht8qllNf6p7QVmH1odwiv3k6ej9g/bywonKNonpe95i53JPvM2t67uRK9a7X6XNp+kJa\nnyfCGh9mY/ljTMx7PuMca4xsSevjKfVqX6kcsXjwucofGel+tSHrYtosHlX9pyGqm9QapT+SnyeM\nAakkfccU8922xp5UljVNUmNVr6nyTvq6YbGs9a83lZ/a9JX/7g//W7uO/eEf6LroIuN5k+cTe6tf\n3TIzs0Rc9Tx7vG9mZpe1KzMzu/dlfR4tyk+HT7QGOT3S+vrdtx+oHlXVr3amefvx+4/NzGz7zp3P\nyvK//Nkf24uXH9p65RY+0Lrl8EJt+c47WnP0THW95Lde40TPKi0rNhZWtX5++icf6dlZtc03fltr\ngbMjrRlef/DQzMzW39JcXa4qtp+8eGRmZhHmqNi6BtbzT/W7uJzV+mn9Xa1JDj/VOtZj6i0sKbaf\nf6L7rC3r+5vf1Jrh5LnWo68+1ZpoYUM+zFZUzieUKxVT2975ktad+x9pLZbLK4bL2/rey490n+Fc\nPt76Va3FYn3FwsPvau3TfqW+evvuXft55pAyzpw5c+bMmTNnzpw5c+bMmTNnb8DeKFKmuKpMaaWs\nnSd/oOI0X2r3shXSDl3riXbWrk5fmpnZ+Eo7Uac17QoWtrSbubK0ZWZmZ88/NTOzxTXdvz/UrmLZ\n125urKIdsOU0mdeedtpqpu3kFz/UztbwRLuK99/5mu7T1X1SlP9y75WZmR2XEtRHO3gvf6js3c6W\n3p8+U/lHY+0w3vua0Cmvj5SJXX9L5ShW5YfFsHb6KgV9f17X7uyrH2insJZhVzyt62p9bRFuhrTT\nd9VSuRtkGPzuxOKryuKPL7UjPu7Jx012rg86ymw2atrtfPjofTMzu31fu4vN1ypDvig0UTymurda\n8tndku7TH6quobayDRdn2tE/ONIu41vf+qp9EZtFtMPeeKU2ytOmXlJ1O93T/eNx0FWZd83MLDbW\n5wf1AT5Qli6WlO/SUe1Ip8LaYR6dK2bGZBy2bmvXc4i/2nXVpwrCJshWJae6rtvUzvruS8Xowo52\nfaOLun8so2zaeKIY6tXUZhvsYEfC8mOHDGqMbE+S9mk3QGFM1MatoXZ7y2Tdlpb1+vIn7PznyHIV\n9H8DsbJ+Uxno199VLHXJeiVANCUS6oOZjN4PzlXe0Eh95+S12iGX0X1vva2Mer0lPzfPFXtTMhf9\nqwA1pus8EqjnV3r+NKX6p2/L770LkDI+qfRrWLdJVkTDgEUSiuFqUtme52RiixHV6WZHde6myKCO\nFFMLUbJEE7XxzNN93unLlwd3dJ+ykkNW21L/S3N/L7StOqf0nOVlZfdHdcXiNPGevniotkvfkQ/f\n6ej+TbJD3aTQBH4TFFOajG9UvvV8PaeVkM8W1kCUnKpvplMlyq/r+0P5OBzX86ZJ1e/LYz33JZna\naoCQyctvK1Mymhsqf2YMCupM95+U5Mc0iLxqWxmSS7Lu06Ri5VZJ/z+LazxfOpS/J2SnlsqK/YuX\nel9cUb3Ok6rnrKPnhfNqn8VzfZ6sK7aua0VQal/vKsOyF1L5/9q/VNYolP4dMzOb31AfzsaUwZkv\nKWt12PrfzcysdFfoi0lc8eFN5LfukZA3T5L/Udc9kh8PN/W83lhx+oJZ9z2T39Iff9vMzL43bNpv\nrQk58n+Cfjo6UYymKoqlLGih5lRBeKOpMs9+QwiR9J+pn6WiyojmQY781jO9H5PFvgmipnz/r5uZ\n2f/a11z65YJ8uzxQNufHcbXNL58rG+RlVZ5oSr6pPgd581W17fy5kC6zlPrGl39XvngR/w29/vEz\nff9tZY2+/S8Vo72vyzeffPdbZmaW+4ZiJ/sXqmdrJF/d+jU9//En/5eZmd3/3b9hZmb9tMbnR8yV\nX/tE9cn/gvxxXZuqK1gGZGAYdMCMzLDv63U204XTFBnikWJzPFU55zFQG4yDUdYekzB9GTRrl/E+\nSaZ4kND1w5m+H/J1v0Fc9fNAwMxnCqI+KIfs1P+sDslQ1ryhYnJCeSOgFMK8n0bVrsk45ZipXD6o\nNfOIuznlmGnV47NkjLE2o9oWBs3sxVSeCBlrS8ZsCJpz0NM94yk9y+Jcy5w8Yhz0hiqbP9P3wmRM\nPZ49SoJe4n0UFEF4CPrI0/jbpy0m0Q5F0fgSGuGbuZ47jnyOpLiOxcnyHzcUm7nbatvlkvrmZAoa\naa7ytT09J886bZiV73qeyhcCTdWZ6f/jkcbpblcxOGTcHR3q88ZU5U+nyVAPWVvkqOdQbXURAY0w\nl7/7Pkgj1mZj0MW1pD5P9OW3GIiUNjHjTfT5pc/aIqFYA+xhExDnMVC2Vxegvq50v6kHEhNURDgL\n0rMlf9RA0ti53sca9C3QvpOoxqwkKLVeSf6shHR/n7Vgsw5Koqn34YL8NGIsMjNLZlOWy+i6KaiM\n7EQLh5Av/w3pW3NS1o2I/Jbpjey65scVU9Op7uWFQEnFVOZyVnWc0W9moERTq1qfJUHgXY70/1ie\ndRJzfp2YGgBoiyZ0v3hO9ysnNPeMWad2mppXjOen1lTnMGuZq7l8slwJkCF63tWh5o1EXG2Qzmku\n6/T0/2FLsVDc0vMSpusuh/LlzGPtFdfnIZajSWK/VQNhHYwfrB3KZfkhlFSbzwegzXzFbtZnseeB\n6MmBCpuCuhuBUmVsqRT14Hhc9b94rt9eEcb1/LLWGM2a/BACVZYBSRRPE2MN1h6sl72SXudt/j8C\nknNNS+b0/UpZvxMC9Nj4M6S5/Jitag319f/sN83M7OGf/5mZmV2CSr73dfXBm29p3v7+v/43ZmZ2\nNtHvogfr+v76V7UGjYL+Pj87/qwsxcVFC10mbVpRzKwsaO7cr/3AzMxaPVDt25rzb37zG2Zm9vEP\n9PkQ9Ow3f1Nzfex7Gj/e//MPVZewvr/yJa3rDg/1G/LktWJz+aZ+7y6/pfVvD5TW3S+/pfufqR+2\newr6lQ2tdwdNXbfLSZhbD1hvDRQrr5/pt513yO+C2xoPTs7Vtq2pfPyVr/81MzPL5eWrx3tCzCzf\nVXnGXcVm0CdW3tLzYwvqKw/5fb6wqN9+X1nXerD5b3X/P/7f/rmZma1nVI6fZQ4p48yZM2fOnDlz\n5syZM2fOnDlz9gbsjSJlGuxs7b2EX+L/Zu89uiTLrivNY1ordzN3c61Dy9QAUiAJQYACrFoEW/6r\nnvSkZ71arUWyWEVCECCQQGqdoSM8pGt3c3PTWvfg24ZgVTdIz1FO3p14hNmz9+4991zxztl37wER\n9eMymeSlEBGnqRSRpcklsodXz/P/u7eJdMUXiS0FYkRX5yL8f0U8G8+++NzMzCo6O5q/D2qjkCay\n96RINPHl80TEzl0lMue59pqZmV3YIPL2+GMyqDPz1KvjGT+fTEU4qOizorUXlziDd+Uikb2WMh4u\nRV8tRnR27gx/G3WdDR6fhW0SYRv1iKYuf/u7Zma2sUimuVHUfRV9FojC3I+pR8iwZ+b8tNVbhMTn\nzoIyKutc7jhivXOLLMb0MlHMMymimt9ZIRp6fwKbJQJzehj3C+mc7YQ4QPa8tGE+S6WaQfFhJGn7\n2gXuf9riEbohskAEfu0c0cno0jLVcIHkaJV0PlpogF6SPsks0betMsbxyDfCS9jQ5+H6yaT4i2a4\nbukCUeI7vyf6GUjgW9lrRKJbQrx4PURdh7JnIkPkfvki2fRwgvvXiqAZhi2irQtrXLf+BsieSpmI\n9f6HIJb8Ie4XX6OdJ3fxVXMRiT/7Ar9r+7G3P6XMQZr7z13SfY9AE3jmyaQsTtHOhzOK0Ido1+wi\n/dIO4rsZ1Xv3CB9KpOj3mUWygVMrjIn0MmNs/y4Zcm+MqPFKlutyU/jF1HnaUXi2ZWZm0Xlx+kzj\n+8kN7l+vUn+f6/RTU8ulDFaW30xFaUM3xfiZKDNftEr0vXdFXCg+ZbNSOmsfUuR8nTqNqmT+vBF8\naCGETXb8/I1MKBPXYZx72oyhKEdyrdQATeBOYHufMqXD12TjE3HfpBmT3VnanqvS91N16tMTeqg6\n9ukBfdbNUq/lnQXVmyxLzK+sdkecNmHuO3JRj5RQZJUL3C9WUIZaWZ6JDhmLWoL7eZQyrE9T75hX\nB9Td9GGtw/Pyk7L/CJ8pzeFj+UPumxUy8XAFu83Hscd+CV+aeg0frwollmnSzsKsUGMjZaeKjL2D\n0fMM6GnK8S2dlZ79iHqtv8L/U/TfYP5dMzO7/il8LBdb+PTOQ8bQRJ+5rJDWmPjiX8zM7KXWC7Tj\nFTJGW/+Cf7yZftHMzNIl/MlbJ8Pyo2na8ekD5prWJdAj/r0V+9st+nL9lffNzOzoDD4cMGx42MJX\n7k+DdFl7ibUt+y5nx39d/czMzGJ17j11xDw2KGGrZ6/Tpztb9EV2kWzV8vviRTr3H8zMbJj/mZmZ\n/el/pE9/1fqBmZl97wQbHDz8wMzMVr3YdONl5qGfP6NvVzeYj3N5nr+is/qH38YW3yuzflR/Snaq\nwvFvm1Jm9dkMPv9ydsynJi6THPf57oDP77VAEPU9oFsTD6dkL2z/98Mt+zpFOXur+1nXQmO6DWW+\nvVWNYfGVRMQhM0ZHDMWv0Wnww6iH+wwGyngLrTA07O0Vr8hAfBrBHu0ecx6ExCXWFrLTJURLTzwq\nPq0nNf9zpEy7bxYaicNhqL2GUAyi/DJXF3t6hIwJRdSOqnhedF1b93GFxr9XfbriovHR7z2vEERt\n7jca8/L1QhbUNX0/17hE8OAWEq8lPgrPiGeM+XECYfEstLmuI66ngPZd/a6y7CPx/whN1Klpb6Ps\n+UhopZE4wjoe9hID9Y0vcHoEhJlZIMoat3YO37780z8xM7OpddbQ6i5rffOQ+lc6jLnRPs8p9Fjr\nm+JqKJaZT7pF/u/RPtDEIzGVFOeKEHcRcSQmYkISiSeoGRTypikkuLgfXJqv3V3QBsct/t8rcb3P\nxTpU6NCn9ZrGlPaftRTOkBojOdPUqzZknotvMYc0hKwZtoUe0FjuiZvG3Dx/IN/wiBcwGhfSUjwo\ngw3uGwyRsfaonwLiJ6lrPQ0NmUO6Qr52Z4XAnBHiRvtrd+v5OhG4lrFRm8/7JSFmG9rLGfUf8yP5\nutQ/Kk6jevD0OewxamskvjWvkGVeoXG6eXGkDOjrMZfhVIC+3d0F6XfUZM1YmmOfNdQ4721zv1YB\nG4SnNIYi1LUV0v0P2CMU9+jj5JllKqgxtL0HSrQpZHIowvpSFFfM8SF7mpWr9EVPiO76Y9bEsub1\n5bTWhTHPSAWkRyxCX46CY8ShR7/DDidF/morZuFZ5u9RVNwyJdaTQgE7tfOaPzfY0wWEdmtqz1Q6\nwne9QhwmvKxzQ994L8K7ZnOPvk9pX9rX3uiwwO+H4r2a1X62dog9itoPZ1LYLyHk4WF1jDj/ekiZ\nVo8xsbM1nvP0N4C9Dp/xjrwrdMYLr7Cv72lu2N8Ewbr3v1Pvt/+K9bSfZO90+Bn9e5Rjr3L9e5pb\nwtRz+86TP9Rlf/eZWc9vzx7ie5OvgVqdFLL68WfsLR49oG4XAO2YTyj8z9/9hFv/gr7LuvFZdw3f\n+/IGpy9ef+ttvl+lDzff5736q7vsg1zadx81sPXMNON6GOC+Ozfhqvn8vpAqUXz9SPu0JxneVafX\n8OW83oEefcyeanoBdPH0BL75wc/5PLWh+zV5/vbHIGWmxC0Tz6i+v2H/WPudTolcgWtw70B99fd/\nR7tNL+ZCpHfky9WG+uCPFAcp4xSnOMUpTnGKU5ziFKc4xSlOcYpTnPINlG8UKRNKE4W8+gaZxlGB\nGFEqsWVmZhmdizxOKEMSVaRcmRRPWJH6mM7g6rx1J8/fmtAcpSpR0G+9DD9KNMXnl9f5/0xV5++l\nanT/gO9bAyJbxd8LWaPzdyHxdxx5dDY2SlQyVyWq7IsS7d2vKFNRp941MaVHmjxn0KZdj7Z2zMzM\nq7O+Zam1+KPUu16TukefiN2dp1z36BkRxiVx2fQC47PY4nOpU39/LGoPHhBRTdeJeB8XxUmQFjfA\nWaKEE5N8PwqOWdN11nOIzSekInR0xO9j4tPZLG6ZmdlhU4oGOovfy/N5WSiBfkVpklOWUEjZsjS/\n60ghp58jG5VX5DwpW1ViXD8/y/+bVfpqu0pEPpEigh6bjKgdRPQHAWw1uSI1qh59sCvfmL+4zPdS\nzjrc5H5+ncfuyuZeZbPil4kuV56Q/S/UeU4ooTO/KzqHrfPwJwf8vpbDx+bmyN5P6czqR1I9Sos1\nf+4S/fRUkfJcBR+aOcv3yUV+t5sTyiNG1LrYpR4jZXgzS/hOw6tsnc4oH3fpx+M8/bzwsviJgtwn\nKNb72jhzckKUOCgFjUGKG00t47Ndndt8pvZ5pDQRUya8K06EQp8xMp8Q8ucUpRti3C3LtuZiPFYT\nUippYpNonLZ4dU7b4+cZcb/OR3exaVfKYZ6hGPfTQsAEsdmEOFtqyg4HhjpjvyAOAJ2FnZSaWiWI\nTXwJzraG6jrfLN6I2r2mUAAAIABJREFU9CL33xdyZD0mdNgu9T/O8PtYRmoj6iMLkEFoRcVLEVbf\nKkNZUwa6pkxwLSdum5R4kXQOOujn+gMhW2Z01rZ5ht9N5FkmEnFltoWk6SijO+jTh/EQ/x+uSRni\nELtMXyBbFSrS9+sBMsyPpZZyfpV6HAumENK5+Y4y6ssN7ONtU//gkpQqbMe+TvG8qQzMLeb9hS5j\n9c6Q+/z5O2Rqjy5g4M83mFt+fA+/+HmUzNG3knDLPL0EGu7Ch7TvRKoxGz/aMjOz9If0/8/FVeTb\nwc8ikQ/NzCx8QdwXXeyxcXZo3Xm4UpKboDYHI+q6EqTNtz4k27TwV/T9V09AzMQ192f/Et8P/xN9\n5s1Ql89+ICTgE53JXwOZVvqU668vssb90xdkvV9+nT71lunrqUPa8Ns5cXKdpz6fSiFn9WfMpy+K\nf+ezIBnJvtSb5h5Q76V1FBh2L+CDy9tkqe4JBZvd5f5nfgFC8+4r/D/2JfN9WZwDcxNfmplZ7x7X\nNTNSCsvx3PcyjIVX7oEW+z/tdGXMFeOWUpBX3AKuOu3wiK/EJd6Jtua/kRCMHqENXNGxmtFY2UUq\nfVJxcivj7RNPRnOM9tA6khDf1Uiosa5fGXcPWcmhsviiczKfFGjMzHzuoXWFfBn1VC+NrZ4Uc0J+\n2lfXFjAqtRJXUMiYMaeXQCQd7bUC4tdqiB+gJ14SV4z2uMRr5+nSXm+kaa4W1w564tXRPs6jrLJb\n3w+lEBgS2mY45iWTb7uEWBh0+X9gjBoQcM8rtcqxOoiJw2kkhE1H86G/p/sLSTzoj1kCT1ee3mKs\nPNgmyzx1gbHUHGGjxi4+WNSYKWrec0sxsS4OFZfUOZJt+iAixceJq8xDQ+0rA0IYhYXU7GkMVIWa\ncrV4XqWp+bHOXsGX0DzqHfP84MsRtdvGiMYa9fEJFRWZEr/FNJnmtHwpoex8XcgXb368T6b+e0I9\nqJttos0/pmdoh02xtwrHxVUj1JVLmWQTumOksVDdk9RkTevKWD3rgHofePHRpLL+voEQ6xkpxgmZ\n1DX2JmZmB589MZ8Q8y7ZZ1Kosapb+wKX/E3cOnUhcT2j5wpn/14ZN8kV1m8DzHcjcZaUW/SRXyiE\nxDrzc13januf7H5ognl1WpwiZXFB5g/FBSI50pAUtTwJ7ZOlcHUipIUrgW0WMlqrdBqhmSvr+cyT\nIakMbR1KAUfAuZQUcA72WW9Kx+wrsxeWzcwsIPRZ4YDfhX2aL8RB1tXeKaT5pX0sxF2R57tnaN+E\nlCw78qlKdayYqXcrH99H1J6RsI2HhTE6TfvV87zXJGe0TxXn4c6OVFj13rIwr73iIfZu7+Jb0xvY\nMyj0V1lKiaER6100pDGi+Vn0Udb9ekAZ83mEotV8XDyh32Y3WM+WQuwN9qSG+1Tr/ZI4K/0X2IN8\n9HOQrZs/g8Mtq1MfbfGsnjwCgb/7Me248AJjMSauSzOz3c071uv77Xif/VB7lmtmFtkDuARxOzwA\nWVa5R59cf4065p9Rl4efU9f0ddo2kWRtL9+BO+bTEUiXoNCfkQzz9lyE51T0ntzdwpeOn0r1yCWe\nM/FQHt0C0XP5LdBDMe3bP/sZiJ0Xv4Mt0+J2ffhPXH/vn3l+9hIo36QQMLnPeZe6/iL7vLlpfOjZ\n59juW/8j16+d4d0s/xCf81+g/tdeYm/zUOpN5Zvi/Dpgn/nyayhTrqrv/lhxkDJOcYpTnOIUpzjF\nKU5xilOc4hSnOMUp30D5RpEyXUWeW12ipo0BUU6Xzh2OxCR+9JSobv2pGP3F2dIrE21u9Yg8tcWQ\nXatyv+2mzpwKjZD3EOU8FpfDV174QorilPG4dF5b3AGxLFHUVaFH8jNkD2veoO5DJCw+o3Ogm0QC\nl+eJRj+RTrpf6AZTJmI4xd9psTA3Ajx36SrR8kWhNOaE2rjzL0T2ujon6SIJaBNT1Cct1aaneaK9\nZ7Pwnmz3iHjOnV21urIJr2yQ/dgWYqHf5Z4BZfzubZIp3dtRlDJLNDCnc9KDFFHKvJSj1paJjoZ0\nBvSFy+Iw6Crif5uzjgVllQ6W/+0o4X9biupLT5i2huJE4A8eEzFuKEO3fJ3opV+ogHYNXyge0reD\nNlmXyTnab4rgF25go5aybpk5oprVPbLaAfnE8uqKnsv1x0d8v3yR6+s++mxJmYNgDLtu6Ry7VzxB\nnRRZmUmdk2x4haKqkA2Kz9Hn516gD0cBZUiFJMmK+8UtFv39fdqXinO/1Br2388TzR661a55orxl\n8TgNlKFNLhLN3hUSZ3yOvCIW/ckN7D5ziajx/i+JxFd1zj82Q8bArbFiJXEcCDUwneD+zRz37Svz\nsaD2xWeIMpcOpezQVuZn+fR8IdEY47PREPv5FcbfdoU6JWZ1bnYXNFguxPgPirdmL0xWpOsRr4ay\n4/aEPvNJZcenjGVb2ZBkn7bmJ+jTcoTfp4RYOVTGzvKMmeiIvu1UeP50lrFRUnY5MKuz6y7mqf0k\n1w86ZCTC8mlfmHq7M2NlAj739/GFnDhLkkKJjQr0ZSykrE+VPk0IXXYiBZZRnPmsnqQvvC2u8yW4\nb9PFfaZmmFdPitzffUJ9h1xufXEFBNfFI9IUciiN8tpAigApKSt0RUARy4iPo0P9j3TuPSSETrfE\nHNUt047mkOectvSN+fHCAe28fZF1ZGGC/iqmOCT93iSZkb95h4zNljLMS0HGzn4dn06V+P4jNwio\nSx/DQVbIMce8M/MLMzNL3vhTMzN7+Qf409Gvf2RmZk9fYCwl1xlD0f90z354+Q3qoDm9/hTuloAb\nH3zh+4yjDwuMnytfoqaQvq7skbLfD7rU+XwdHzr7Ac94EAGZEj+i7v5VxtnP62fNzOwnO6wLO/LV\nze8wj7z+IQoKwz6f3zTGafwJWaylH3Cf/K947vIefD2hDm388idvmpnZ6KnU5XbwmfZncL+sTtHH\nt9+m77/zDn31zodaK9e4/5kNxvLW+1x/5TrXfSwVqJe+LaWsD8mO5S6cHnFnZhZu46tj/pKBxlpL\nCjARzfNtpcLdAyaDsWJNXRlhT1/rkH7nT9COZm+s3qEHDsXl0BYPltSx2nV83SfUwagndaaBONrE\nadPRXiQoNSUzs6CnZ81RXNcxlse8K96eUAdjwSFlK2tSt3KrHR5lzEODMWJGPHc+rccigehqr+ZS\nxtgnmMRAHEihrs8Gml/CundTa2pEiEGvULltzWNtwXqGPfmK0EvBwRg1JIWqFjYOmDhMfOK8ktrT\n0DtGPgjdJISMXwiL0ZgDRWveaUtLbez0sfl9ZVi9D6RwUx8jO3jOSZ56tOvqqyQ2jHplj6llMzNL\nZ4X0rogTTDxALinPbNXx9caAeWiovvSJu6AldU+ryIequk7opnAU3w1MsQcLin9kIcOYjgg14Avr\n+UKqm/qrL+4Vuaj5PDyvFWc+XPAy7wW1fx7DLFpR2hGWUk9HyMyuuG2aVdp1eFOKYjnGeFVImo6Q\nUYOOxkSXuW5CSpnHYSF8/FvY5zbXBb3MCa7Bc/hCI39oXrUrJY6ywYDnCGhkfiFY21IcGwgl7uqd\nXhFyJP6ZuBAjDSl+VY8ldxTjYfMrIFCiUoq8vwkHSFvo+rXX6Bt/VGv3HalmyseWLjH/RxZYHwZS\nCT0sMI/31Eer2jd6pNKUv8F+b6AJZlKI6UKdtblck8LMefgykuqLzUfc1yXF3OwV9t37D9kXV6UW\nNC3k/TAk/rWAEIJdqR9tswYPNI9OzOJ7kUn67Pgx/CINIVisR5/HF1kHYlK8OXrCfcr77JGS0+zH\n1y5jt25zoOfxvuBpUZ/Vi/CGjilgdnb5vcWkFjXD9z1x5jQq4g/UnGJhKbtpnTA3dg90vx7OwdOX\nIplfyH5xT+Z3xdU5y1iNRRhjRzdoR097quuvsH6eucLYqz1lTxlJY/9EWqct9vQu/YC9zfo89lla\nfK5OGE/MmKvRtacHzDc3vmJem13DNya0T9nepG8+//CfMYXm6/QK+/DKZ/RJu8a+KjpPX7XEdTUd\nY206PsIHn97BpzIxoX8SjLuI1rijp/jA+ndA/yzuUJ8nUnqspUHivPQ6Ksk3f89epfAQHz7/p9ji\n0kVsVJeirPciPHwrK/j407tw5pRXedeZEcLvlx/+jvqdZezNrjJmb30Et8zmJ6B2ZxexT0jxjMIN\n3qVz97ew2y36NjO3bP9WcZAyTnGKU5ziFKc4xSlOcYpTnOIUpzjFKd9A+UaRMi43EbRCgehk5YCI\n2eYOEaaNLBGxQZ9szwuvLZuZWTAFKsAjpYKImKqrdXEZiL05NElELjRmr68pPZQhWusWiiGSUEZ4\njsiY3y9NenG+lKV33lREMKYM7qtvw7q/Ktb9jM7ibggFsbss7fjzRF138rSjpGxkpUx99nOcdfMr\nC/XRYyKU2UMigaMmsbPVebKjHp3LjE3TfcsLIAPaOvs6PSO7EpizfCFv2wc6/xYjcvosBx/NVIhM\nYueYNqYC2GL+2z+k7mtEGfNlsi6hKJH/oeJ5Tdnw0QF9lpRSljXpi0kpZa1c4bxdZoX72f9hpypj\n9YrhtLgSXDw/V+a5sQWhEGaJwrb2iYLWhIo6kcrH5JRUhs4S5Tx+LBSVWN2XN7BhTBmMG9tEWVPn\nQZhEpBL04H0y196E+DcWud+TA7Ll4aSy+FLFyIvNfXaZiHSoqcj4NL7SOMFOHWUoptSXbpEFPH1E\nPwXS+FRIUeb9TTITsQnu40uQQYhEyEjsfkBUN6TfZbJkIO59wXlL7yJ+EF2gvhVxNkTEUu/pi9tg\niucNlS2qK/qd0hiaENKl8iE+HZQy0aTOQHuUEi6r3T3xBkzNUd8xN8FJju9DcSkLfY2MQzTIODoQ\nn4Nb6kOpIFkRV43x1xoy/twJIuZNvzJiIcbZXI3I/GRQmbYofVt5JLWKs7Q5NsH4yx/pDHyQSP6C\n+H964k8Ke+nTziR9OXGELSpdZSQLjLXGLJmJ9BZjpbpO3waVKThckNJCQzwUx/jMNIAbS2UZmyUP\nY6HuFt+Rl76vCRHj9nAfd0RjROfdFwrMIzeVNmonGBuRGPbrdOjjmObP3AgfWJBizLFP85mRYUjI\nfjkhXoZNqcFJyWDo4b7LygQXpKAwVyfrd7tP+5NSaSoMaA85MLNiiX6eaX29DPdcnuxQ/6dkRvof\n4dvX1snYlCNkPq4VeG5PaLK86lESv8pCg+c/nN8yM7Mra9zn8CbXBVfIRvWry2ZmNvJy/8avxZEQ\n575/9eAtMzN7lP+tmZml4i/asxnGhS/wazMze+G3jLuCuDuelcgGreSlDOLDKs0O4/XK3/L/3iJZ\np/eUoW2+wbz18q/4fOeYea0YYa1ZC8Jz87c/QXnKp3knfZs1x/caffXVJuO09CLz+HxPZ9XLzI8H\nCe7/42/R1795ShbrojgVisqyb3zG9wfDX5mZ2dFFfKn7Oeeu3/cxRr7lwzb3H4DkOVhhfvFkqP+2\nOF7qUdafrSBop/z3GXtv3vp6PuIWmjUkTpcx71tY/B21IX0XFFqjK8SgyycFSHHPuJUp740VgjR/\n+gLi+RACxd9jrup4eY7XJWSLVAEDQs1Gx5lUIVT8feYUj9Afo9ZYN8psOBha0COlI3E9tNQOl1An\nfRf+4hZPiEvzcFgo5FFdqiYas4M638ekxDYaCsIjbrKW0CltqVB5R8wpQ3/LulI2GQlp6JEvj8bz\njY9rB0IehsRv0/YIQSiFwZGkozom/hvx9vSVpR71hRwUb86gpevc9JE3yPzZrXGfrvZLYc/Xy02+\n/h1QYKvrmt+09/D0GN9t7SHiTdbm+Cp9MNtjHuwmhUIV6ncoipfqCXuOXIP5vLdPxrlxLO6bJu0r\nJWhPPCDEieoVEkeaydcS8+xLXSHGQFCIRG9kzN/BeqNlwOp57NgdsrBUi+whCloXe158M+rGrhFl\nhifHHDAe7FoNs54Nn4pbR0iYk6YQRA3qXRbIIBnExyIj/sbm2CslXPw/mZSaknieBnpt6dXG3JFS\n3RIyflKo4oY4JsYcOWZmL37vJWv3sHtZe67+MRaMBseoZq6tRblfvCKUW+A5/8a/VyJSkmoOqdvJ\nEfNmXdwh5zZYS+JSGzraou9rz9gvTq7w+azQCaVj+nA7j02z8/Td6nX2iy2Nma3Dx7qePkxJZXR2\nVUq02+zzalIpmr1GPdJZbHX/d/zeF2Jszkpt86ii+ssXzn2PtdovjpVnD/hdZo52Z8SJcrLDc8JS\nXypqP1zW34g4GlcusZ4cChmTF5Km32FsLpxnPZhYog96Grv7eo/xSiZv9TX2diM/vrN944bqwRo8\ne5Xvk2vYNX+L3+cP2XOsXOb7+BR7v/zOFu3Xniud5L7+eXww0OfvwTY+NEb1nbZ0XeP5nHnYq73r\nyUFJ9cD+8WmpuApFd/IZaoNbUqjLTGLHm59S3+Fd3keufh/0buAic8Hn77EPuPUuex134Pnc1+2a\nzU/PWXYBHrvKLuMj4AYBePEF9h7X34Jz5c6n1GF/Ew6V2VfwicAE8+HmLfYGIXEe1oWMG0PtJmfw\nicg9+npXvr0SZ20PTzOfHeyCzFlsMS+k1rGJ5xGff/jz35uZ2es/4B1zfoG9xnufUK/g5/h2Soqy\ndz4DSeO/AyotM0tf96va1/0z/HcXvwNf3dnL7GlyQgVn0uxRFs+y1+rodIlLyJqY3rUmpBLXmKbP\nCnXm9cODf5sL0UHKOMUpTnGKU5ziFKc4xSlOcYpTnOIUp3wD5RtFyvj9PD41TdR3QdHLqUMi+Rmd\ntd35hIh9K0gEKlQjol0Rh8qxslQ9nWuuFvm+scf9/UOiqhUpyqT8RLSGOs84F+H/Dd2v0iLSfntv\ny8zMprPUr6Mzpi5ldIo5sdyLD2TvkPN+aWW/dveU6WgTIXxyk8heTBmS1SwRQUvzd/kCEcoDMaxP\nRnWOME/m4fiI6HfjPtHdkyrtys8SwTtqE7Uen/c+qhLpDLqSVqkQ9e/lidQPS0R+V9Y4E1qJEKmf\nmRB3ygGR+c3HoHj2xOi/MkFEOyQlg8VX+P3EMVHN/C62H7qVUZNy1LEi/YH4v63R/v8p6tvx2c/a\nkWwqzpT1S/BURAL0yUNFW+fCiloGiZLOXV2m/T5s+viQKGpbZ2UjG2QS9nXecDDAHosbZIobOqN7\nojOzl67x+UmFvmnXsGvoD2dDsX1rQF9MT5A5eHhIpqKXwy6BvrgBhB74w9lgL79rVqnPwiWitY0q\nEfRynvqduUB/SRzDTp7gO60G97v0KvVsKcNRrOEj165gt77pfLzOo/tjjJm0OHR6Gjv9mtqjaPea\n1KP6Q517r/F38grtnFnBznmx/+cV+Q+EGdv+MNdVa4w5l7Jdfimg9dzPORL+vVI4wTeHHdoyVPbF\n9QBbxya4Z7DO50cN2jRznoj1iWzfU1anXsenZ8VP5F5VRq2AjyfT4tMw+iQ/IvLebOCkC7M8b7tM\nhq0ewzcXdNa+onPKEz36sFXnPsfrjOug5rn6GvWZaXCfLS/tS0TJTDbUV6kcvw8k+P+UVJVaGmtp\nJQqHB8wfUWXhPUHaH1qjL+e7+NqzQ/puLkD9pnv4jE9cNe1HzG8HMf5O+kExbE3SD1X1YXrEGDyS\nr86UGTuRi+K60VnhRJjMR0cKMtlZ6l2SmtNMkfYWAprPlQFtdL5eVqpzQ+ogJ2Q4Ai+8a2ZmD3+L\nvUbfxd6bB0JLXITVP+DBPq8+wA5fSKLsz7wgbu6ksNd+nPvPl8hOTcxx/8O5Pzczs3fVn9e+Ymw/\nWuL6lXfpvw9erdrwY84nd8Nkpd79AVmY7z1hPI4WpNZQp6/em8P3Ys+Yh1Z+zHXn75ER+03oVRr/\nIX0xlSDjebtHm97oUNdfxf7WzMxmOqy1K0K6ffmMcftREt9/ISulgXfhpjn5LuijiSPWsLOvogLx\nT4+XzcwsPuQceFHIw9xdsmfxv6ae1d/j66/t0ccvCjX7tE92rhzEeXth1p2NqNRLzpGx/LaXdm3d\nw7cf3MQOF9Zp52Hv6+Wd6h6hKgb4QECIFpe4XEJCa3iEhPSEpELUHKPrpKIk9MAY5esbz7NjTpmB\neEC0/rilOOQ27OtXur4npTjr8JxgRDwb4vTxKdPp8/0rpEx7YG1xyZiUfmIRIXaqPMdjEd1W6K7Q\nmMdEvB4CFUf7QumNs509vndpDh0KuRoV98541na5uJ+n2bOQOD0G4q/pCi1UF1Ix2BPnibhnGrJ9\ncEQb+91xFlkI6PG47/LMvq7vCgkTGQnqoD2KaR73S42pKa7Ccb26rufKVacpBXEfdmSLKy+ylmal\noNNvMw82SyBTGnuM1UKJ+vk7rCe7N8R3p/m11tU6oz4PCv0Qk9pISevKdQE2WkEyvFMR2t8TBcxM\ngEz0wMfvvG7my5pffHFskawk5Z3DKn99Q/Y4B+LAiXrGCE3a0Yrx/7DW0XaV9fX+SKqkFV3fbqh+\nUldJynBCMk0HmVuyy7P6HvsnfKwDUaHVBgnu0xbvYTTA/UfiRRmqXQtCBnmEKnN1pMol5E7pX6Fu\nKwGPdYXYGQxod9WLvRINrhtzvI2ERmsLHTah94fTFL+QavkT6tzr8ndRWf4xP8dYOqy6jw1H8t0F\n7Vf94j06eAgqQYA0W36BNdcrNdHcp8yrR1rjU+JeuXCZ6zp95vHtW6AD/GnG7dnLrGHlQ3z0RMo7\nU+dYk6JL2Obh73l3SU5i89ks9d+7x7tH28eYmHvhe1RQanNd8f6M6vTp9pZ4l8I0ZPkl0A8+cVAd\n3uR+DSHY166wTiycAYXb1tjZeaj3Gb3HzFxizzYt9dOHH7OOHW+zx8jOMa9efhV71DQmx7yfqXkG\n1ZrsOhxR//09fHyo+Th+ke/DQoOcSF11VOB61+LX4zAb9McqUkLa9PHtoxz9eLTPnnB+nrG+nKVf\nH5Spf2mL6658l3U+ob3qzXff4wGqzsVz2O+8eEp7A3HllJ8rij27/9ASL0/Y0vKymZnlHkqx6vaW\nmZnVB4yvtcXxyRDml/sfYutRBJ/KSknLFebhzQbjrHgX33vi451y6SyopKkF3r3yeqfrzzNWMku0\nees9uF7u/OZ3tPWl75qZ2aUX4IS5/+7nZmZ2oBMoC6/Q1rNZ9gw9vfNk10DMX7xMn+UO2I8trfD8\n638KAvLxDd4NqwXe51cvgSa7d5ex0TzmOTGhgne3PzUzs0nxclbq+Gajjn0uXwJxU/9LfGQqxOd/\nrDhIGac4xSlOcYpTnOIUpzjFKU5xilOc4pRvoHyjSJmIMiOFChHoo2dEmA6FzmivEjN6fI9se79G\ntDahjEi+SDZsYprI/aSUXuI6izytrGJQqij9BtHi6SSRtMN9RZUnycRsK3I2ubZsZmYvnydKfHmD\nCNreY6KWHZ3PPpF+easmtnuhCI7ukt3c3yKiFlamZ22BKGtyifoOO0SHvWL2vvkRWU+3zkJPBoiK\nBi+QgYkqwu+6+oKZmXniytjPi7FcCjcxKfqEFblMZhbttSmuWbki1vEH1CmgaObogExmoUNffPnB\nx2ZmtjFHBrRR4vPKWa57poh3sYRNRw3xQ0gZKqls+VDqR1uyRSD99eKAsTiR+YDOnRcfEa30Klsy\nPUvmoVGVmkdFFZhcNjMz14RUJcR/4XYT7a0qKrt0lusyq2RcP/0vtMs/iV3i+ntTDNsT4lJJZaW4\ndZ++9piUYqbwhdx73GdKqKj4hPg0OkSfW3Vp2E+PlRC4LhXkb1OcPDqabzM6t/7VPlHhvviNJhTV\nzh+IV6RMP6XFdePzioPnIVHc6QSfZ1bwh4OnRINzx0JlrJM5CYpTwVXGXocP1R6ddQ6GlAWUmoCv\njy+n/NilOxhnCRmjsSDfx9bEeSE+kar8xhXE1z3KSNc9p0fKmOq666VPp6K0JerDthIksFGMbEdU\n43EozqX4DBF71x6+NYxj+/aqUEcD2lw85L4XaqAMElILKu4RaZ/08fv8CNtOztL2mZvcb3uFNi5K\noaqk7PeLYe7bPeL/Cakl7cgmrix95xeHja+J73cbjM2cm8xC0k9GIplmXuuGqMdcmYa2z4onQopd\nPalYuEL4yIKQO9HBOMslPpIsc0a7KqTJWWVClBk9AAxhwxOhJoJkRCJNKeakeW55B1+aydFfgRC+\neNQQf5Gy+iONCW+Lc9F1qV+FTui3vhCC/jRj8bQlf5a54ekSZ5Dr20I01bD/T45+yvPFSRZz0Y79\nWTIn5e/T37PdH5iZ2d8FqPeLN+BpCkSxf3ifM9fFV0Ch/NmdfzQzs/8kxE8lDl/M8mfYsfyWzs/3\nlizV4hmFKm39q0/og18DorTkr5iHzs7jE2cuoH63qOz20S+2zMzss5W/NDOzoR/1o8w281v5bdaG\nb+fx2Xe6IF7+/BJcLHf7/P5znZ9+y4XvHt6lzZ826ZO1MG3pva+s81nuO3jAuP+BD5+5XcDWr+7S\nVx905bOfaY1787vY5F1s9H6ajOeFMvPQvSZj6jtJfPajMn2x0SEz+P6Tn5uZ2ZXvsSb+qCvUw3vM\n28UY69hpi2jdzDNGdQzkY5pvA1JocXfH2XbGqluKbX1xvPTc2CckmaN2T8iZCNd13cwtQTc+2BbC\nZjDmeqnR//6RUAEx8XFIwSgkfpCOlMFGymKamTV9XnOrnh6hBGojccaIc6zl0f2EJHJXxcshVZGw\n5vO+T+jgEe0YKyB19HlIPCP9Jn7bDoiTTEgd9yhmYU9f98K4AanpeOpCYEg9Z+QR54mQyg2p9ASF\neDDx5vi0dnTCXT1byljGfNQUgsIlshavkIY9KeGMhCJtC8kxEnfXacv2bxkzj54wHybX8NVomjV6\nJJWevhAoffHfuYpSCyqQva9XsUvRx9+oi+8DbfHxJBmzgRV8eUOIvIDsFJLSV0Ccg+Go0LBN5oyK\n1Kn8BdrbVTa/XqXdTRfzTlOIH5/QvomYfFRcL+c13wcyUttrYt/iAc/pdlhvWkKDRSLUdyZNPaMT\nmr/FEeER+qpjk9k8AAAgAElEQVSg+XC4J/RDl/m5LZ5Cf0AIzZGQryGhTtrKNMdorydM/4eFUPfr\numFOnEUt7mP/w99Y7uO75vXyuVsIzVSH+7SEkBlo0xUNFGUX5pSe/Pg0pSsVPE9PSmNu7jG5lFad\nqcP2fdaeE2XZJ2ax9dwCa2DliThg9tg/p5bJ/mdmmL9PpEy7/5B9aDjOmn9FSO5BnD55+A7zeU+q\nTVf+gnUjoH3njvb7HvXh0gq/H+/PKmX2MufPY7PukDG6v0/9phbZ181m+HvnEe8yXqHiqnX2Fp0a\nvrUh9aO0lGr3xUnzh33oGdAYc9d5Z2pX8Nn9u7S3VNO72wZ7iPNnWDdyB9hxWzwfCXFinX1Dyo8d\n5oJ793h3a6h+37oK6iIUxYeefizF20Pul5Tdl86wx2m28LHy023ZTYqXsa+3JwmIG8cl5blQFF9e\nWhXKT+tO5UB7krhQhBH2Vvef8E6c1vvLhXOsr7UdKbUJyb+zjV1bWg+Cel4y/TwEMCgNrLR/ZIO4\n0JTypRnxpvXFEdhuMA4yevcw7UcLx9gqX8H3p6SYOCWU04lQmq1DfMF1kbrGpRD19Dbz0X6IOr76\nJ/ho/YdwuBSl/FWvsc9vyAc9U0ItibsqXmK+8Iep7+Yt3pliS+Jpk0rU8ZegiT/V6YMLb3/XzMwS\nGqM3P2evlZYa04SUFOsaE3EvfTEl1JQ3STvW4/OyB/Nt+RGopaOHjMHReXz6jxUHKeMUpzjFKU5x\nilOc4hSnOMUpTnGKU5zyDZRvFClTV3TR3SfbXimSXekoe9MoEuWbV7Y/c47obXiS6GejR4QrMyMW\n5KH4Sw6JXvbrRPiaA6LDuTLRVddAnA0FInbpKFHpySgZ8YkU35f2iQ5/8TsyI3fuc/5wNcU5yGCU\nyH9klcjYUlEZdPGKvCn2+0AmqOcTyXu4TXRz9zGRxckpzqwFR0RtV6eXzcysdqzIn7JlbWU0glIi\nqolXwLNHRK5QITq81xa/iVvsz/mm5XUGPKEzqjmdj+sFqcPhU5AWq8tEQZd0zm/12zBqW17qQn4i\n0+mOshnKDEYULfS1+XwqSZ/ce6Yzl0KIRL1fLw7YCutvXqofZXxiLoXtx5m//CaRYK+imEGhqdyK\nunri+EyzRNZk2MHnoikixiPx8TQq4pK5QETcNSQa2jnmual5or+JSXzkjtBJ6QmiszEpSxQK2CGR\nJrrac3FdJ8r9lOC0UYL6+3R+vtggGuzRuflAUufBVd+6OG3OnhPiSfc7FM/Q0GjP6uqYzZ5+9uvs\n/8QMqCsTIuXwAUiZ+WXGQFoZh3CA6/dvM5YqRWXmXyXjMPLgT11F4r2qp0vqSrEY9+8rs1sVZ81M\nkPqVGth7IP/x6Az2QBwL0fbzzO+/V2oBZc62dM64R9+MMtiwt0NWZHpSZ/5v40sJITCswHWuFDbY\nqzJPeE3nvxO00fxSrjmkD67M4tNLc/T9ofg30rJBMsEYambIJuV0/rl8Ht/1lqWUtYstpnS+uLeM\nLwePaUe3LR6nBu0r6+y8vyebK6PcM3HjDLBHxks9+2nxPbU1xhNAW+6NeM5cXRmQJJmJVlvnystk\nCiORJ6oHPCelMmOsPCLi33czD4UT4khwMe8Op5m/fEPxZGwyt3Rb2DMjdbyyMuPDWZ4bFdKoJRSB\n5wlzSUhcLkEvdthtikThlOXHuIF9vkhWLDpzS+3EHuW5/2JmZt45ZZwf6nx5Dvuf+LbMzCwl7oW1\nG5zzn1thzNzepP8Lr7KOLe7jX/4ac8nfXOHv+/d57ofXGFvfefevzczMHfxnO14VqnObzOX7ffry\nR01s+etV+sz/hM+XnzDu72ek4rDOfBCPUcdrmpduZxmHv/2U+evNJr7wyltAcG79g7itwqyV3/cw\nzw8vs+bk3iPL0/3v6KMv7zAPfE/cV58k/9nMzKZzrGUPS9xn6Qp92TlhLEQi/H76AfW7+V/oW/85\nxublp6COtn9EvUYfMuY+7LH+xN5jncnNa75/GRunnpEN+7RB+y7+BWtvzfBp+1//HztNcXuxa1vr\nQUA8coOIFBgbjJWwzv43Yoy9sNRKuh3s0RcyZazEE5TCz6DDmBwNhdYT30looDHQl6LPWHGop72O\nuCTcQqR4hWYYK72FpIhjZhZw9Z+rMYlrzS+0SCesuUOcNi6pFLpGyvCKC64REMeNeEVcTc2x8o+A\nuDBGJv4SoTz8Qhj1hfQZuHpWHeFbsY7QNCEhVzw8w6ttqFscKmOeszE3nkscI3VlRmMBtUV1cmkt\nakoRK6JsvEfqniaVomFbanlj1JMyvO3Rc16F05ReiExrIku9Rz7mvVtfwiHVfcT8NqYzqu4LES0V\nqtQyPpwVt8DsIj7s62BTXxbbZYK0q3MsVNpAeyChkwYn2LVUpk+ON4WIFJIwqPWik9caLBXSoPo+\nokzyIM71sxt8nhbHol97l2pbe6QTIXBGtHdSSJrskpQl1R6PEPBtrfknNXHDbPK7/Ih2FEpS3RIK\nYyT0WEQcQxVxh3kDUjhrCrXl43rLCWk/AFlfLWPnSJn+dieZe2aTIiQ0M5fXbeGI0HRSYxy4hXQP\n0T53Ryg0oQm8Xq2v/qSdtoyELmhXGW/JBWzqzTDPVaU+1HqwRb20V58Vf4VHXINPH7IfHUih8Pwy\na43LhL69x7tEv4dvX3kN9IFX/EMHn4H2LAlJPXuWPc30wrKZme3vsygWi6wvyTVQw5ExZ8wD1Pm8\nQqElZ5nHi9u8a3SNPr5yHVRouSDORyF7ltaF6Cnh2xOz+Pqi0AKlA3x0+wH3i8TFHfZt9hqeLna5\nd593sJo4etbFAzLeX1fq9OWzT7CHR+jh6ZdZR+JST/3qXRA8DZ0MmF1inZg4g92OVO+nQk1HF1g/\nz7/A934hxA8+huekLsXfCfEY9sNf7/3GEwn/V/XPn/A3Jh5TvxCRI5eUxxKsl8s+7FLO0Y7yI50a\nuYj9JoSkyokjKLDAfXwTzKmHh9Q7636uTJaM+61WO7apuNTPssxjT8QXOWjikwcHQn8esH8Zvzcv\nTmOjgxy+9vAj1uz1txnH2Xnq/tk9Pg/dxDevXH/RzMzOXGf83f+MPUBUyq5+oTLzJ9QnusUaunCd\n5zWP9N5fYJ/aOmaembsAwqV4yHOfPsS2b7/O81xv6Xm/Z+9w+JD58+r1ZbVX3GdHtHOUZf9Wl9Jl\nVRy2+1LNG2wxr1x6AVXNQJw+++y9f8KOXzCWAknWjz9WHKSMU5ziFKc4xSlOcYpTnOIUpzjFKU5x\nyjdQvlGkzPjhQZ0rPBsRv8QForWeFjGjYoNori9KJP+wRnS1pfPNDxV5G/WkuvRsi7/KnKzOkj0b\n854MGjqHuU1ELyLlgsdlIncB6Yg/OeA+b16GU+bFq0R3z60TgXt0nwiZW0mpSpV6lZS9WrtABHFH\n0deGn2j2dIKoefrtZTMzOz8P6mH3IVlPn9AZh1+AYnCliH6WR0SzIznu98ltMq5Ll4mee6RWMp0m\nMjg/r8z/0xMbKVO2+QFtyisyu3SeZ09coq7ZFaF2VOe2zmV3FI0MbRAlzSqzGWgRsfXHiFjna9g0\nFMT2GdVlXZH55CxtP23xKqvVbfN8j9SAkufwkb4yElWhhkIJKWXpTK/LT9ZlShHp7QLt905KySbE\n9cc6H52MkmFYWiGCntNZzBOpKc1dJ/JePlbmtI7PTQgV1XPrjGif6y2B7/lD1MPVI9rbEerCpQzn\nQOfah118JzKpSHkU+52cjLNJ2DU2hx3bipT3ZIepVbI57mnaV9qnnzcyYnmXgk1LqlgdnTFd2aDf\n4z7uf3CPzEUjT/Y/PoF/LIvv4/YO0eVIlSj4RJxMhKchzgJl/eqq10BqIWNuIHeY+sVb+NGjNhkM\nV1yKGr7TK+us6tpclEzd5Bc6G79IduCRkHTF+2Qz0lJj6hs+s3Jf6hPr2K75gAh5QYpWiz5xu7gY\nf4fTQryU6euAOKIiyhS2DmjzeR99c6vNfLFeFV9DlN/vHpIJSFepT3PI/Uc7/D8ZxcdO9Jx0FFsF\n7zAmWgGuP5MGxdToc11d3DllZa3raVAPc3ekWlejr2ZDUo+SytJ51auhs/ldnY/e7mCIZWVtVgvi\nEPCIt6Oi7H8cn9zu831PXFtzU9SvfZb2bBdoRzaEby6sUM9ne9g5PCn1lDbZHo/GsO3QP1vKqG64\nvl6G+2Cd+l65rcxykHa2X2GMV38FguaZOBDSZ2lH8h3aH3Iz/x9dlUrUm4zd2u/w9dXL/5Hvk/R/\nog/y5mGT/r/9AVnEF76v9eYZZ6VrLuxzfWQ2qEnF4S3qEGxiq/dKnH/OHP0F9zr7WzMzO6nApfL9\nVe7x8wZt+O9vM39/8EOyP9d2xMNhIB8fB/HZpDKhzR8yvq/+gnk1ID6i4T1lx78PKmj1LhnM/fYW\n35+HTyMZ1fxXEOJwAxsvnJC59N9nnrmUZV78B3EtfH8O5YLgEWvsvfM6v/45a2nmDfqo/J+5/+Wr\n+MjwCe3LvU8f/H3gR3ze5/PrP5P6Rupt+zrFP0ZnCAnTFf/FQEo9Himx1MVLEREH0EC+GNDfkPhK\nBg2hdbVuhZRpdWs+bLS4zxjBMuqJB0QKaU1xu8T1txsS34gUelx+ccK0nm/l/O2AtYQQ9Qlw6A/S\nrm4De/ZCQhN0NF+79X/Dt92CeQyUDfSK36MtdEpEvBt9qZIEgrSzIb6RaGAk+7lsIFuNvOIu0T5t\nIFROp8NfvxAWgTBjoC3uEJ+QLi7/2NZCkUo1b6idZE9I4ob4cgLDkOwh5IOX+49ks5EUcUL2b6th\n/Lfl1bfJtDYjtH3lVTK2BfHZHR1IaavEGlos8lyPlLzqHT4PBNjXJaVKFxP3VqTOfW/W8IHBQOpN\nXfnILnuBalPzn9SXIlIs7MXFTeZhDKfnGDOXNKYjafbbowy/05bH+m7uV9gWV4/2UNo220hrd1go\n3paHPq4pk+4Vh85QnEEdcSAO23xer2P3eJJ2z8/w4PArIBU9aXG5GfUNVfl/V3wkrbaQiBpjLqFQ\npnzM650uc+bMIj488EjF1fOc5+P8y9+1bpd1s1DAjg3NWdEa9yl7+TyodWfUlnKZ0MqnKe0S4yEg\nLsNEkjU32uXzR+L4KwvRllqizRMp9ioVcfEVj9lPLyyRpY/N4qt7R9iiso9ts2tjrhlx0RzgM/tS\nY4qnpEK6xn062qfmxUXjEjfW2jnxxfXxob1H2D4UYx1yCXFeqlK/xVn2FlHtkT5/Fw6xjl98Qous\n4YclkJbTSdaZvtR/cvclBVahr6+8geJhRKcN7gk1kdvGXmtSP8peoJ0Hm/y+vkN9uuL6WljgVMWU\n0Bv5bexxtIM9E1khM8VZY0WeX/mSd8DQkH5am2KspwOsl8cPeDd8tsnf7BzrUkpqhf7h6XmHzMzM\ny3yclLpdtykeo76U5iaEm9A7ZVs8qKNMRt/j84dSjfWI17DnF7pQqk7tIvZOLWK32An7grGaoJlZ\ncjZmm7fum0d78JX0spmZTYi3sy7k3Yp87ek9ECTVsk6sXKBO6zFsf/srxlV+l+vOX2ONv3yZPcuB\nToIcHmHzmLihZvR+PD7VMHudPcnCCj5bVN3TQ6Fv9dz+r6SqtMV9x/w/S6v4wKfiTboZ1/5a71iu\nKdp38PiZbIrvxVKM+6172HDBT30m9F6fmBDi0KP9q06bVNfpwwtvgSauiTNrjCJdE8LnjxUHKeMU\npzjFKU5xilOc4hSnOMUpTnGKU5zyDZRvFCnTU/bImkS8D+pEAcubRLyiI7EdHxINDStifvMJWbDM\nFGff3A0yDavnicS5vq0Ma4r7rmeITN1/AOLGPyRClony/GWdszzeIpJ14Ty/n6qCQJnSmbndO0T0\njnbI1BZ1/s+q/B0qKzYcKuOQ05m1JzB5u6XrbuPzh0IhbDa4fu8GEcCVGaLObjGwLyu6vXUkNuws\n0WnPGvX+1vdR+7j7AWiDZpOIZq1CfXYPG5bWWdahECeZDdo2kSE7sFUiyjc6IXK+uc/5vMCJUAib\nfD+QMotP6jhHNbJNs0FFTxVpHqape+OYCG47pGxGX1I4pyzePhHfak9qF1KV8EeUNSuQKWjm6Wu3\nsvUh2XTSR1+PzwfmckQt56fp44bOLz+7h09NSskqKK6W3BN8b2ESm6fmiIifPCMi3ZFiTHqe5zZG\n2KXWGPsefV6TokJZ7O/Xhd6IRPi+E+Tz2gCfmQyRwezWeH7pEDsuzoJoiUUwRFGZkL7O/LoyUqgR\n8qaexxdcWcaKT6opzarQC4b94tPr+lwokF3s5FL9ptaw11GF+ux+RUZ6/RpIK2+d63pCg3k6Oret\n6HBUPCshKUfU5Pu9utotlFlQfhpVFu40ZSieh3lxjJSqjJ9uW9wBEWzRDZMtPp4Ut0qd/48C2KA7\nkDpElD7u7FMHlyL4zQXZqEtE/aCv7Mwsvu+SitCMzv/eEafIhrJkhRZIuGIdW14L0VfVDp8PkkJk\neLHNboO+Xoho7JWwcXdGPD8BbFUr85yWkCe5FGN0KNGJdk6IoR5jPqJsXcwYo3437T8U18t0hvnu\noThlRFVjmRD1amrs+cUf5aoxNiYnaX9XiKWTERXYM9oxXBQfVIl57ql+dyZDv6WyYt+P8f+u+DxM\n58MDS2K9fyrVkhYZkdOWyHnmtht3pCD2jPp6jexc5ywZlPkjnvPkC6nEDJkLz3Wo78o8Y3+r910z\nMyu8QT1mP0VBKDnFuvJoX/N6CP/5E6Mfe23QduEZvt8JgNS5u/1tC2Rh/H/7N9Tln/8UW2f3mONz\ncdSGvpuVkksIpMuDCBm/yRDKTr/s87vMP+KzrqhU0H5MXftd1o7w53CurP5CijJnscXDRyBx3u79\nmZmZ/fAD7ndn5Qv+P8O56ZMb2LQ+5HfZb/+DmZlNvLdsZmY3Fn5iZmaXpTD2y9fxqR8b6kmbd5kn\nipcZA2//grF09GNQoN3H2Oh4Thw0sv2ZEeijBcMnSxFQSektslP/WZnFa9/5ezMzs//FTlVqQrCE\nhQSJuPl/T5wOvZh4ULpClXnHfBWM3bASpSNxafWCUsYZjOcz1tORFBJHUh4Kq796UdrrEwecCc3V\nkMJOJIRPNodCFWs9rAeft2EQ8VikJX4pgSmGmo+H4p8aKkPvEWKxq3a6XTRg+AfEEH44kCqjX5xf\nDXFajExqIMq4epThHWnoejpD64grphVwqw48M1rDdkOp2vjUmLq4ZwJdqQQJTaqmm0soHE+P37cS\nyioLddT7A5pI6jtjhIxQvWM06ljBcOD+eoi7G18y/x8fM1Zzu6DF0q+BUsueZ/2YrzM/L1/VPHJA\nvQ+rzAND8S6N1+JcTmu19rMNcXN1hAgfhdmbpIQYnx9ny+fEMySeu7RQCqkxV4pLSptD5tdiAzt4\nu+N9rPiNtB4O3Dw/L5WUrnjyvFLP6gyZP6PikxpVmZ93GlI9KvF7v5THgvNSrZMKiysqFUGNmUKQ\neiS1N3LJHnntadxSWa2dcN+wi/W9H6feExFxx4mvxNvk/q0ac8ONPnu7/9n+gz374itr+qRk42Uv\nJPCwlWLYX8Asq1eE5jX5x4DrT1PafsZfTCidyBzjqCS1pBPtyxJR+mpjnTWybzzj0TN8LCAuwIWL\nvAP0+tRlV/yWAamLzp/TO4+LxuzdZY0d6h0kcB1ER2JNe6T7W2ZmdnQoNOhZ0AgTSeqxf481ryNF\n2exFfv8H5TMhW6bn+F35Kb7VldTlxuuMiX5TfE8V1p3oIutOeZ/ry0X2Mql56j+9QN/uPOD5J5vY\nYTrLfnn1hTFSHR85El9gcCTFr0XGxMo51hG3Cx988iX384kXZek12hMUgv7Jbdaf7QPqlVnneZNn\nxCcnTsm9uzq1obls9jL1HtYruu70aCozs2FTipbiEKr3xgqh+HBQ++W+5l2PUGhhY25bWWKO2S3w\n/4kp7Z/ls1u3mKNOdPpjJHVXtxCQxdHxH+qyuLxo9b2CNR8zPxUnmccG4rvcF2/n1BQ2mV5kHrjx\nIb7Yl6rbK99ibZ+cpi7bQq5MRalDeI61aEJL3EDvdhNp+j6+yPv6kx32NokJ7uOdYH54+Cl95ZrE\nl89cAb07u8F88fFvfsnzE/jy7FX+Zma5T0vz7tyG0FLX8KntL3h39WhenD4Doqe8Sx9tPQT1Wxxg\ns8s6NTExjz12xXv6ZEfvkk/ZL9Z7OplT5R1u3p7zv/3/FQcp4xSnOMUpTnGKU5ziFKc4xSlOcYpT\nnPINlG8UKdMSsqRbESdCQaEzP39jsWX+q+zOsrhcJq8oA7HMWdRxVNebJDJVKRFdfTbWNT/iOdv3\niYTNiadj95jfhXWGrdwiqnwihMnBPpHBntjXnzzdMjOzCXFReMSY7k8RdTz7Hc7SdYpEwqZmiSTG\ndEYtviqlCWUcbn7yO+5fVAbViOBFxDeSb4uzQNILm9KeH4g9fvOQdtZ+re+/4MzcvCKNQ537dHvK\nlprAdu0S0cz0BFHJIyEiyjkixO00955Wdn9Z3C2tJUUFF8hGtKVMFSkTNVzIEHlOhsWXkybKun+L\nKGrxCde3e1/vzOWoq8ykziP3jGyQT5/3QjrfrPPPaWUOR7N83s9LeesQX5gJ8PuBlAeOt/CBiJt2\nL0+AJhjkeF7hmCjnjDhXQi5QAIeP8IHMjM4fzooH6GMyFNEoWaqQOFpOilJ7Ek+HLyb29F3snt8X\no/g5MiJpnbeu6vx45YjnrV2jfoE498l9gu+cVLHrXEgpUylNeAN6ns49eqQgcLhFhjulrKU/TNS5\nIeRTpyxFoBXqk5CCT+kRz/PqTPKMuGYq+/hmoIcd3CNlsA9oV2aOsRlc4G/ulnihSvhfUpw0E17q\nk2+fPuNQKeKDk15sNufSOegy88SJVNaWJ7DNUykNxONCia0pO64+Wla25caxzq4rg7vcVhZrCpvu\nECC3WIRsT2xVmcmnZCNSaoOnT3YlHeF+YWWN0h1s3gzq3HWX+zeUbUnP06eDZ2Rz/CmhkQ55jmse\nX9v3MbbLaWVay9hhe0GcC8fYdGpKvBgPsHl6Fp/quWivTxlKv9REgi7mEZf4pfyT9OV0h7mjqYzD\nlEeogT1lvtP4zGPNW60F7DPv5vvNKN+vlPj+UZh+CK1I8Uvnu6tr9JdH9jzbwY5Nn8ZmiHqctjz7\ntbiBZpmnR1JEmx2ReTnQ+fbdBJmX9eqy6qtz+mdQGOrn4Y6Zu0n9i2M1Fh/3KeTgN1l7WWowv8F/\n3v8R/XnhGfwwvgD1yZ1hXfjh+d/b+8csye9fZV6qd8k4Psphi9fb3zIzs+0ma9OTa4zn+D/SR6UQ\nvnT2AookiwVsfXgVH4kKEbEoRcJil/F6zzg7X4uCtvzBAn3/qzZ1/ukMSJzzQg7uS0Wvdiw1u9eo\n7/4vQd6krjBvHc3iq7cOaddPGm/y+WdSklnGJ6K/ZJ2497o4yLaw6Qct1rRLXtp9d4/6bQVA5nhv\nwsvjCsBlkBbq4twbrFdrBeYVs//bTlNc4o4Zif9jjFQxKQgFq+JaieGTntqYp0RjVXwbLkFmXOKg\naSrb6BdHjc9Lf4bUH82u/q/lsRPFtwI1oRGML6pCf7ikVheVIlG3+3wr1+91rC31u0hNGVipQY1x\nPUEhYnyC0gwCQtJ06E+/h/t1h9TXKyRnZ4xWEcokqvnehEpsCmYw5rLpx808UgT0iPOlL96FobLY\nLj1rKGREUGvVUGukd4QNW+L48PWo60jKUsE6929JPcfVETJkpD2Csv1jC9WFAvJ6pf6p5562VHcY\nW7v3leVfZU8UOGSM+aVKFJnh8zE62XWB+WBFnF0CzlklJGRJiWz8SBw3PW1mJqSm5xbSsy3+DiWY\nzZOQGpF44ooDjc0C60Otgp28JakNDVgnDlpCyuzTWQHtTWwgfjpxS7QlOhQv8X1FijMNF75XFtdP\nMEn7Fs8JBTzFWh8TSrZX4blV8WYdKnu/u8vzC25xPEpJKCBeQn+KPca0ULQRIYVCaSpW7WK3owOh\nAKX+0inx+3L3eWZ69/DQJqbEZTTmlhB/VEBcjn7xqfhiQlRpz5zwnf51Kax3g1CcNX4khMNBjnl7\nKFRt9hr75mGWuhS3hcLaYS3ZuAQHWCpJn28/gD+zdiw+tnX2gyGpnR49Y03PPWY9mJjGBxc2WBd6\nmid2d3mOJ4CPra+xxnU1j+V32TNFtNYuTVPP/IH4MUuMmdGs1mK9P0yuMm9PihvnwU24yMbzU0Q+\n1tR+VkPYsovM06MWvrUnTkNPhHZfeFOqU9rnP70FkvJESjvXXr+o++s0gpD8W7fwiaMce5vMMnZI\nzVK/3CG+81jqpaEMzzt7iXV36KWCjx+DfmjI7tmXWF984qZ8otMT7j6+fdoS1FxhXfbL7jFPVJy5\nLOIWskWIxiONodIhftTUPr3dEwdblveVUJY93doi7ewLsb40xdxT0l7s/vadP9TlqNS3SDJmBb2L\nnAnyzIlzoJv2xetzJJTWK99lLR+8QR2f3eb9+vETxnVLSMYZqRS7paja07PbWju7A3wnJj6kmQ2e\nl8vjg5UWtrl+lTW/XRYfU4W2urVvXZZibmeH6wpV5r9AFRsnIoyxTSmWRcTj4woyj9RG9OHJA3wz\nKQT8wgV82jPELl0pD1YPeK47ho2zAWxeF2Jw75h2He1w3b2PsNvaNHGLP1YcpIxTnOIUpzjFKU5x\nilOc4hSnOMUpTnHKN1C+UaRMfFKR6SVQCJeWiaIWt4mQZSNEyO99oXNvJbLzh3vKytf4/VcPtszM\nLOrRWdQjooiuABmEpDLEwbQQNlc4dx7YJTo7pWhwTXwgpWdkQnY2ycx6VziXvzBPdDSriN5UmCjz\n3V2itnWxuT/4hIjY4gLXVwVeKHxKJG5imshcQmiKjatEedM5nduWgo0VaOfdPaLHuRJR6pUazx/s\nYw+3zqWfEe/H5deIFOZ2iPgNEkuW0hnFvR0iy81DKRJUiOrNrRAZnpfOfXGPyHEnLyWXXaKf9Ro2\nrtQVLcm8tf0AACAASURBVGxga/dA6k6PpQhzQnRzNBKvh1jjV85Sx9OWns5G1qSUkMgSdQ2HyQBU\nc0S6ewVle5alHhHBl6q3iSS3fLRj/rq06x+Jq+WI7y+d5zx4sUn9G8pi+YS8mV2UqlFLkeoi7b7+\nOpmMwIDn7h3zeUiZyu44Kizm/syQaG20RsR6q0S0d0pnjqeWyS51xf5eKdCH6fn0f1WP3DMpGuhs\n7+Q8GZnpSamVCOXhE7/RUGdSI8oC5XWmOT7NGAgJKbS3t2VmZp0Q9vRLqcjTFvN5g37tj7i+3ef5\nA4+yUUnsXqqJ40dnkFdmiGKP+Z92xbzuq/D9/Nkxkot+7g1Of86/7SVCHR5xBtXjpk/KU3Ri0CNV\nI2VOJ+MD1YFsVarPPLMt9aGabDERZzyO6tikdIlxmZhQRPyYrFVJ2Rl3nLakNZ+44tznfo1pdj1G\nxP2ozhhMCKFXkdrGnM4751S/mHiBagMhV+TjaaUud8pcNy2W+PAh7WhN4YOLeepx4sOHIkfL3Ccu\njhbxMS1MimfohHYU0lIEGJEB6Q+kavJYSlvrtCPnkjJXjUGyLy6dwarQWS6yXe0iY75+xOceqezV\nelKXC9C+QFI+lFDWfsRcM8zyf/8Wf2Ne6p0c0s7TFtccPvate7TTk2G+/s0O68LqnDKr6qfUSx+Z\nmdl1N1nCmR5zzwcnzIUXwsyRw33xBfyVFC0GzP/bP8fuf/IW8/zZB6xjgwT3ydzlzPLR/s/MzOxJ\nJGpn55fNzGz0O2XOLjBeghP49vYqv13+XHwSX2G76jrz7A8mqct9Y1y/IxW23q+pkztIH/y1+uqk\nTB3fXMfX3s2DjBzu0Rc/FWrhgw3myRf190Yb1aQzV8kSvaT55pdSlPlOg7G0PWJtbF3FZ5/dZt65\n/Qb1e7nB/e69IS6Dd4y/3+M+2YfMy54k3DBeF+fVK21xer3JfLl0/CfY40tl494BUfN3l58rr5ym\nhDSfuYUcqQ+lOigFlqFU9Ho9fMUl7pi+j7lkjAbpaD0MCdHi1nw+kCKQV2O9I2Sg25RpFRJzVOV7\njzLXPimfmbjGRnUpq6k+Xs0VZmY979BEo2J9zcv+oZAvWtCaaqfPx4XuFteNhWr6HT4P63eekdTw\nlDn2KOtpbuaKlnhf/GMpSnGCBXt96wyk/CTEjE9KUia0Z0AA6V5D3ChqakvcL36p7QzEWxPsSVkx\noLW1J56cIXUMB4QQFK9QQLxvHXFhWVWIHak3uX3/ipDnFOXMNcbIS/8Tyl6v/Ph71Ffo1P3b7B8P\nH4Ck2RFiu6f6mGweD9LQkFT7YilsGZsSmkrKl0fynX5bipH73Lcj5azCFvNK80horab2y0LpNsVn\nFGjJR7S2D6Uos7rB/2vam4SFYPIEpCAktFdHqCxPQIqYQikvx2lHPCOOsgyft4X83j+RguWh1nYh\nLP3iPuymqWfSmIdTUg5LTJIxn4+BXhj4mDO6gmEVq1oXtVWYirFHSk6z1xhGmDsHaqeZ2Zt/8y2r\nSqGnsy01rCH1GAmp2tb67S2qHUKt+bynR++GI9TVF2ENrYhLJrfFvJXJssbMnsdm23v06eEt1pR4\nku/PXQbVmdM+cPMG16XFH7QgXslhVTxAe6gcDYT0y66yxqRS2PDOV+xZ9o7Y/66d4/uk1IOOxUVT\nbmHbxbVltYh5unifNduX0FgNj/mbsNniDPXpSZFn7xH1PStF3eA061bxS5AnvRD2iWWx14Hq1SjT\nR2uvgirwCgn08As4UvIF7r90hrU5c5n7F7ap//F9cffs4XvRBPa6+ALvcsMBPvT4PvZoqn3rV9g7\nRjPMTY8/BgFakgrrzDrr0vp5nlsVD1RnzIno1fx3ytIRr6p3pHnfIxWmMmO5M8Neyefl+5BOg6TC\nzFkdF3NgXiqsxSP2NGuz2DW6xJi49Vv2Mr44n8/OCmH17PncN2hWLLiYseNHcKB+9BEKqy/+iLV1\nbpnffvxrkL5h7WNiemdMR3nWZJLPq0F84/g++/D2slBUQoW1i1II29wyM7MtY7+4uCauWKExcw+Y\nT/fFh5SdY3yfPPsdv/sKnrul10A4z4u76uEjfCUg31x+iT2GS1yHgyJr7vW3eF6mDxr4q8/Z25xo\nLMwIxVXTu0pTqFN/TNxnWe0FdCqhIw7EsxqboTbP/+J/gw/QhLT5Y8VByjjFKU5xilOc4hSnOMUp\nTnGKU5ziFKd8A+UbRcqYWPYrOlua3yfqd+v2Z2ZmtuElGnn0hCyhnSG6d3CfKKv/is4UKzo5ZjB/\n9TVQH6OgzvK6xehdImN+UiWK2tPZ1p6HKOpsgkhZdo1I3sI5oqZxRRdLx2KZv0t9iz6eOxqMFQeI\n9E9d4PlnzvD39qdEAB8+pl1rVa7LiU+jXSeTWispwz0H0iW9SoY5ubjM51eIBi8qajzKEKE7m+b/\n22X+X5Ge/HZzy8zMwsOE5beJoBZ1Hm8yLP36PhHj3Da26fmIVN96nyjpxjIonqJ4f6a9OpM5T/Sw\n9YRIb018QFGdB65VpOgi1aDCXaKdvq+hqmNm1qrpPLhY5S1IFNYXUnZ+B9t2fWQ1UooM93RWv1Sn\nXesbZBym/PjCg6e0L6wznalFMhb3v9ri8xA+sHiWqOxIWb6TLaKnGZ/QBFm4F2o6N1iVHbLXl83M\nLOBXfTs6gyvFr7qQRNbCBydS1DvU5b53Pts0+5FZV885d56oa0nKBvtPyKjMLEhJxi9+Eh0vtzLX\nudW/noj4SoTYGYk3afES0euuWPIbO2T1klLEmZoSV8A4utsijus2ru/qUHBigjHi1znz/ce0LxDG\nT8I6/10X4qnbkArWCvZLzGHfew/uyR5ZO22JufHZY2V73eJ8mZigzq1N6jAZ5Jmzx7TtaUqIDSka\nlI/ED5QQn8QktmvWpaTgou4bUi4pLPC8cnGciWR+qnp4TqQtlJdUkHznyLqkb+IThxOcbV104WO3\n4+ornYFtxcgqPRTKaUkZS7cQHesdsiMt8V5MRqjXthAdXaXLwyPm1dWQVJ40NkyoJfcZfK+o7LjL\nJUSQMgkuN/V7GmAMNwO0e17ogOJ5ZWnEWOFK8fv5gM5Bn+ArZ7pC4iiT6w3je61b2DW7RNYmI8Sh\nZ048TreZS4a9ZZ7vIrs1+QeGjNOVY82B7ywKuTLFHOCZ/UszM5u5zZiv3OG6QBlE5W5ZinRXUPf7\n8y/fNTOzfzyPz76os8s7m/CbtDJkE7PXmMerKdaLL55ix5cijOUHXep/bYd+3symbW+fcTKKMW/5\nCzxzocQ4n9/A9v/Soy/eFn9GdYcM2v0Ga+PlBOpIySwonPUMbXlnG988uUKdfG7mg8EKfTMjlYly\nl3GYqJN1uvIxtnnvz8isDgNwvSz8PWPr85fISg2kQHD8iHr+KPmGmZl9fOsTMzOLXOD+U3V8I3sX\n3zt8kT65OPOhmZnVlX2/W6N+l8Wlc3GS77sVsnOPk+wR9uZAxuwm8e2Nx8xvP5yj3f+Xna40RoxZ\nt8aCX2gBr9b6qrgiAkJwig7FQuL96Govop9Zy8sY8wgx6RXfR3uc3pfKkltKOXVxz/yBbEE8Fu4W\nn4fGaIuA1nqRvPRDz5GFvm7MhmHuOwgypnziYgj0qH9D66XLpfXVJ26DpjhlhEoZad0dilvGlPUL\nSNGnqfuO3My5Y+6CYUPtHXqt4xbvTkCqN+KI6UtBqufHZsOuuGMkGxfocc9WQtwiQh/VhdzzaV7T\ntGiRoRQa9X3TzxehvlDB4vMJic+n7ZMyju/r7UmGCfZAPiEqa1V+f9Ri/3acF+phj72PX+p+A/Hp\n9ausPyEhiLxaL/bz2g9u4fN+2WEoValqT3x64loxqQ1mfEIKiW+oJcSmRzxIvknaPyU1U7cyv94B\nY2gqIz4jD/dzeaSY08Ge1TD18fZZV1xSrIm0mBPMh4+Xt1mHD6TMuKe9W7QjtNk89g5N8ByvVEvm\n0lo3Rpr7EkJUHuNbhzWpsuaxb117ILmRJf3sNfzK1LeFColIxc9C9IOZWaU2sFFFqntt7hNp0p56\nkHa7utjLLV6PYUO+3jj961IwLs7AqvbBm6z9yQR9cOFl3i26BXx674Mt2iTuphfehpvLhHLaucG8\n7pME2eJZ3i0CQmTnbnP/4x36YIwmmBR6/lCqQqU7PGc+oVMD59l/1Qv43kGBfWw2w3oS8YnnbZP1\noiqE5VSc/bLXg4+lhBYORKnPZx8xH6cnsdmZ66AR9oSk389LAfMqpwl6Qgge3eH58SR9N7e6zHOl\n4FPcYe8QT9DHS99ije0Lmfn0E+zkTkm1UJw63gy+2hd/SE6IobqQS1OXec7CEmvzk4d6JxXyZlKq\nq2ek1DNWo9t5xB6uI261hH5/2jKeJ7t6L/JrXm0L5VavCoXh1tzWxp9CCcbwQHNnpzbmMGOsVHfp\nv7nzII1cmrePC/h8SHstX+I5kjR3sGevv/1ta70CV8xDIf5aUqxdF69mT+OwOeBZ8QN8JO9hHIb1\nvu0Rx1RLPpzLYdP0zLKZmU0s4oOVE3xKIH6LpOm7VSFebr0r39thbzE9Q9umV6jPQPVr5PVen6GP\n2094/o0PeO/2/hn7s6ROI9z4F/YSo/fpg5jU7CJSPR5p3eqJcyojBd78Pu0c86ulxTXZntc7zG/Z\nLz67jI/NLPDenj7Hu3Rz3NA/UhykjFOc4hSnOMUpTnGKU5ziFKc4xSlOcco3UL5RpEyjQ1alq4xn\nTFmh+allMzO7tEqWa2KaSNzyKkiW5BkicRNJoqC5AlHSvPhFXK0x7wlR3KZY3ceZkq0HYtqWEk9P\naIK+0ADdLlHVXXE9pAI6N60M+cETotIj8XWks0S/81Uii12lbnotnaev6nznHFHriy9zTj5UgrMm\nogzQ002iocHI/8vem8fImp3nfW/te3V1V3f1vt7b9/bd79w7w5nhcDgbKZGyFlqi5MBGhAByEBsi\nosCmqVCWAilxFlixYggRIiNxFAe2AVuUlFCyKW6iOMPhbHfuzN2X7tv7Vl1dXfu+5Y/f881Itsjp\nsQMQsOv80+iqr77vLO95z/ne9znPQ6Z1V7wbUTG2t4WAqY2SNc2u0947k/xuN8v9GhEie80c14eH\nypYcpK2nl4gWBsSxEhDhTbGgM5WTZC8652nbpcuociwvE/07FEN1s8yzmzpLHo1w/1NLRD+LOuN6\ndZQI8z0pKcRniG4etzT9OvcdUnZMylzuthA54iQYGQMtNDDGcx7cpw8rNScLT58VS2RNqnk+n70C\nuiGsduT2uH8rJSWeBb7fWWFs3cpaTU0R+Xdl6IfVe+tmZpbQOfdBMX1XBV2J6fz19o44Xba5n3dQ\nLP1JMgVdZVIr4v4ZERt8PEHUePchtre/x32nznCOMrdGJiS7y+8mo/R7+AS/H40xrncfiidJGc3E\nHP22fZvsXkVnWs/PkUE53NZ59QLPa4kAoNchOpySatJ79RbKoSdm9ISyeq4i/Z7z8n9MCKC6MtPd\nFr/vesVNMKAs3DFKb3RC92Ce5x1FFHGlxKeYf957RLIrmscjReqeFoonUGH+d3QGdXSU/8sFZdRW\n8SeuK8z3J8uM2bUSGURTFsLTIFvSDNKnhz4p46jPXTN8HpSKiHtEfiRDmxt+3WdU2Wahj9bFsD+n\nrHwjO2dmZr4o7Z5YYMx2H4EAic4K+XPEfSomtaEofqizITWOO9hK4KP0vah2zB0iW5UXSqChbHgy\nil/aW+RCn7Lp3pZ8ilSSBuKMS+Mm/R4RV8C+UAKTHWyi6cJmo3n8ebzJc6dqZKk2ooyP50j8F03W\nA1eHv8ctl2r4npgH27Qk/XqpQL2+XcN2K2HG4Yqb+kXHeO6fHDFuxSmymCf9QkRdoT9zhXUzMxvO\n0d/nZeP3CvjcH3GDJvla9jtmZvZcl2zma4g52Ysvn7cbk/TN7iT3jq1zz+1D5uF4h6zL6F/iGa9+\nE1t45mN8/9Qb+LlMl983Duij/Y8yBvkabS8/YC3tXcGmizfJbKbzjGXmJH68RdLIbmn9cN3m70+1\nQcDUz2H7l+ewpXCAOXUrTjZprCwOhavKCN7mhqMl/Oa3xCdU22eO7D+NrZ37Q37/mZdo70qOMSg9\nIJtVf5bnfvSV3+W5s/B63FmnnQuXQfR89RGIn+OWiDLVLmXH6uJ38wSEFJGfaynL3lamOqS0fU9o\nhZ4X3+Fu4iu84i/xRmhHXf4uKKSKg4xpO+hbJdOK4mjx9phbHoeWJCh+D3HYhP4M2iMY7FlbKD2P\nuOREP2Jel9ZPh7tA6lteoR0a4mLzCLXiEZdOy/S5MuOdgFSojBt7hYYIqF0N8QG0Ah3zSpEqWHPQ\nooxRRwhFl9R+XEIJBZyz+S7u6RdnlTdIXwUiWqMrXO8WB0hN6J5wJaA+4v51N99HxW/XcwthLaRO\ns/U+H89xyrZULn/vt14xM7Ol58mejz7FfjXikcrSBc2hGqiIkRSD5xFixaf+2NG+01tiDoVkE3Xt\n38pS/0zWpFwjhSyXkEKRLnPeHcEXzIm/LzYglSuP1EPitDMshZi2xj6zx3N3pKgYbQqpFNXexHlN\nqNFvVakvHTXZc9Q2mLsN7eNbHe6TlEqUw0XREP9QYkL9IKRRVFOgJXRuV3waFSEyfVn6KzguJIs4\n5PxdIY00Z+oHQrOJ/7DUIlNdFGL0v/rPPmfX//kfvJcRH9He1B0Uikw8dj2pxjh8UTGh0yriADpO\n6XTlb8XN2FVfzp3CVjzazz58FwThUZO15+qlp8zMLJmijje/A0dMLs1+dlbIh8ETjHn61rqZma1v\niptQiq9nxMXS9dKW7HXWrnKdNfvk4yBtYkKNPbirdxHxCfk89PnWDmvgQIT2DIZZ0wVktK64seLa\nQ+1JIbZYYk9y9QLtaQgltnODNTAR5/r5C9QjJ+T3gdSEzlyln0LyMzcfUn8H0X1GiJUhP+298zpr\naqFE+65c4r2lIkS4W/6wKaTo5iOppApZ/8Ql9vk1oYdXpeg7kcJGphfYP0flm95+Fds6OqK+Ywls\nOyTbOm4J++nvrKPQJj69wSBzJh5zVGdZ78riYaoV6M/ZWSGa2txnd5v3tFtCVp1p8HkoSr32pJ46\nU2NcJycX36tL+v6m3UjFLCUUVUxo0L1HvMcmxD80mOL7+w8Yawk62WhPXDJH9OH847yzlE+z5h/q\nnWdjmz6cn2APEhnF/6zcgPdu+R5zZXYGFGx8hr7f2xDKVsqQ8Qls6P4yY+nK8/2ieIYCC/y9fw2O\nnNwO3y+coz4Xnn/GzMyq28y9ppQKAy7uW+g6/HF6p2mLU6aKjbVxM5Yx4g2ndZLl4hXGqEu1rCcE\n51nxHgWT3181tI+U6Zd+6Zd+6Zd+6Zd+6Zd+6Zd+6Zd+6Zd++QGUHyhSZnCQqODcBFG8lnTDfVmx\no3uJoN1TJN6fJGq5KeWYnUNlbarK8qwSuS8GifL6XeJM8BKZcqKykyfF2K2zp+0iGYst6av7O4T+\n2lLZaA8TgY8NEgl85i9/1MzMogGprqgbs0KHOFkqn1ABvWGpkoR1/r9MZC27xXPj00Sfz3+c+p2d\nJaK2p+h4x81zqjrf6FOGPjVAuNolTokL5zkLaGEigkPDRFGzR3kLKTKdV+b17gqR0mmxnu8LCVG6\nTp+vH0mxJq42SoUjLpSOR0gJX0vZr47OS1f4fXqXugfGyCL3dK7brQzjcUtwiOdZgcxps0rktzQs\n3g+dnR+dUTZGKIfOFs8ZExt8PEZ09OZDmLV9OsecHMf29o/INHRkM5GhOTMzGxona37n2zx/fk5o\nrWl+t7FGhqGns7ZjIyk9j/rka0RXC3ls02f0074yiyeTymgEsKH0OpHu/QKZ76TuF5PSV3aV7wel\nojI+TBT5/nfIQJw4SRQ5kuT78DrdtLPL7/K7zKWAFMQ8im5vL0sNSZnfiNp3+02i1+Ew9nPyNLZa\nqAgplcOOKmvYtIl7xxPhvgllP1f2yXQkz2DbqTnG5UCIK6sxZz0+nf11H199qZrBJg49ZD0uKSNX\nvUUd8uI+KcXp86kOtn4otNjZNs9+U+e1h4WMiXvp+3aYsU8Xsa0z6zqXHGIsr5Zo41aN+6+M0Zfu\nImNwkCTy/0j+bHSaOVU4EBKvy32GpFi11tAZXJ2Vnx2hfqv36MNQh77rLdCu5jr3q49gw3NSILu/\nxVjUos6ZWPpnqyviIZ0X9xTJxrXz2OKpFvcpiOMrLL6frARY7vnIDiVSQhJtUu94ir/5TfppTBnO\nUZ0p7gWZA+fS2PpqV+gwqWqMrtAfqbDmZJv6pnrU19emXweVTdpWVu+4ZfY51o2vvApb/4VdMj7v\nvPjHPOeIuRPqMZfeHAOF1tjHx526zPi2mtR34TUy5t+Rj3riPrb92iTtTUlFq/M1xrf5Q2LjH6B/\nvrnFdUsF+uPl/GtWn4U7ZfwubW+WGZvyCWz6DwfJzj/+FtdNPCWU5ivw3AwEGKvMKWxv+B04aaZe\npQ2eCnXYeZzBzLxOn6w+9cNmZvac0FDL64xFcJkxPdOU/5smo/n7J0F7vriJn088ACXwlR38Vn2G\ntWhyBKWGwqufoC9naPs5v2xsmftUt7DtdhHbyoU/SfsPyCQ3lBE+df5Hzczs+tv43QdR1vLH38VG\nZp8mK7Zxl0zqjy0x5/6ZHa/0hEpzUBptIf3CDldMSdkzKfn4pKxWEgJF4kTWkYRQROujKZNZFRo4\nIt4TtxA2LSnb+Bv8rukXSkSoPq8QKW4hMVtSHHL4n+r197P4pVbLwj2Hi0BoCaFFSlIocgvx4/Mx\nhxtd8bbUpeATFl+LfKSDHvDrOV2/UBdqRyMkficBdryO6lTLY92oviuLI0YZSUcR0OfFtr3a//XE\nD+FTzrCn7LTbJ0TLewjrpu4j9KWy8R1xonjc2h+68HPuKn3ZEV9DR37X5/1wCl0RqUal4iA7zj4G\ncm7uxefNzGxI2e+uOEjya+tmZpa+z1pX2BGCQ6pSARPiQ0qIvkn8yfgUf+vKdhcPhXQUJ41L7bZB\nrfUOwkj+ue520Lra2+xJBUVIlJyy814hdep5oQrEeVCJyL9KLaun/XZL610rUlF7Nb4ubCuhPWMh\nyPP31f4DIZqid2hHwC90WFj720Oe19P4dbXfHhRKqyQET6RM/fJtKUNKwWxQ60FvFJ/YqWr9Cb+P\nhDr9kacsIFS3Jyw0oTjfWgXxLMkuCvKljlpWSAio45RKnr16Q+iseakYRYTkvvs2SIzsjpDNJ9lX\nTV9gzI/WWSt3NkE8pKakMneed4T8Bn734X384My8FHC0n6+LNy7/ttSW9tbNzGx8DP8/M019th5h\nE5k97re0qHePQ6maVvFf81dAvGzusH8s5Vk3xkYZu5K4pXZ2uN/wEGvr0AnatXwHtMWhxujq88wZ\n573h2uusc8lRfMHsEr/bWueUQHZVfHyL+PXxGb4/EBJp/TbcLmNXWU+GJqTmtMJ66RY6weGB8uqd\naVZqsG23+EC+K/5SoZpPiXOnIwT3o2X2w+t6j1o6xftAKIGPcd6HjlsEZLRwjX54lKX/kinqH2zN\nqL7iMpNf3hT3Y1AnECLiiQppTncfYVd5vUvPXxF/lN6hd4QEOvv0s+/VZenqVWsU6zYo5aaZU9jK\nyk1sY1tcfmMp1txIlIlT6vHMnviE0rLd+cvY8shp+ii/o/fzu+KxExJ85jGQhJWK5t0y7xJlqR5P\njVH3WzfhgNm8ic1PnmCfOHYSRE5JaPysuANN7QhFVK99kDodIRIHJrHR+CLPyaxgaxWdpgh42YNN\njWBr9bjDN8ftg1oHNqRyXJa7HBK/Uklxibsr9Nu9a8zlmTPU93uVDwzKvPHGG/YLv/ALtriIcZ46\ndcr++l//6/aFL3zBOp2OjYyM2K//+q+b3++3L3/5y/ZP/sk/MbfbbT/zMz9jP/3TP/1Bt++XfumX\nfumXfumXfumXfumXfumXfumXfvmPshwLKfORj3zEfvM3f/O9/7/4xS/aX/2rf9U+/elP22/8xm/Y\nl770JfvMZz5jv/Vbv2Vf+tKXzOfz2Wc/+1n75Cc/aYlE4nvetyCN981VsTmnCRs2a0RpvW4iZIMK\nWOeVlV+/QaQsERa7uiJh8+c4FxiXEsyYGLorUk9pdYiQbWwoOnzA/dLvEkHLK7L11BLZxfkJOAgG\nF4kY5osgZx68y/OTKSrmV0aio/OVXjGHV4ti028SQguU+N8n1v0pRS1jAWU782Kt3yNqvLtCtP09\n/hKhQPaU6R4N8JyNHBFIvxA4W4p6nxDr89b2qsWFuCg/EpN9izpElLlriX8nNk2fn4vSd36dgS8c\nEXE9eMQzXDrTXt7g80KdMRwLEbE9UtujZa7buEdE2xP/cCfmQl7nrD73qStb76k7yBydQxePjlss\n42lFZU89BuN1rcj1uyu0f/Is0dtOjCzR3e+ILX6E6OiQ2Nb3xVp/KKTOlSXGurJDP2xv8f1lnXHN\nHfD5Zp4xSkWI5uaL2J5P/Z4cx0YjU3zvyetc9xaZ5qkEnw9OMn+aJaLRhSbR2rmLBEmb4j06qmHj\nF0bIzNSkvNBs8rlllDXsEt09sYRNORwB1bY4hWaJ4nrU77UOc3RyiHp4E4xvT/VZW2VOlHW29rS4\nHA6vkblwKxvYkjrIoLJ6+Rz1zG0wBzsD9LdXZ5fb5eMrYnRqzBsR7ptX2ZiYmzGLVGiLawYb3S3y\njFFl/30esibn22KL92K7hRBjVCuDICk4yLkJ/MdsnDbsuPFX4/PiRjigPu0TzOvBOjbnVp+a0EPD\nW/RFPeKoWOBXpvbJRLh3GLvMHPM85qHvSwX8wlySTOKWsk3JnPgdJqhXPMHYFWWD7Sr1HBG3S7fL\nGG7vC8li2N5AGH9XFQ9GKSPFFqnQJcWlUqzw/YQQIQM5MgTlLeZQb062J+6WfI3fB5PYQmONehTo\nJmsHxI01RRbndJP+udmhnu4B7pvPcd+h3ofLcBdvMCdPvEB/Nh/w9ydeo5++9AnG1bdMP54VMqdz\nwbgtYAAAIABJREFUmfZtvM44joyTvXo4il0072NH9z5Lluyci6zmykPQad6fUoamit2F7rJeXXqJ\n5+y/y/NPT/qt1aLt90+B0mkNf8PMzBbeIqO1/G38VOoqffXuOn2TEPrzhjKAsX3qNLrEPKzt4v9H\nL+zqdyBtPjWPn3cr2/z74iBwrQtR4wF58twQNvooQF0/us9auSE1iKrO6LdcIGIiJ5W1WpkzM7NT\nfGztN+mjb9Txkxd7r5mZ2a5Pa674PVZ74nSJSXGxzliX88zh0wHWuDttxtBjN8zMLHOdMZnt0Pd/\neFcPPmapS13OKxRCUIiShlSuOloPA3VsoqVsvzsolSKhbv1VxrjsZGaF2ugKEVPRHiAshUh3i+e1\nnf/LQnz2pCgXEupKiBaP0H09h+OlVXmvDd6u27xCL1Sr4pwRuqThFrpEf3s17WGC3N9RhfLV6P+W\n6t/riNstJkU6rbMh8W60m0IFq75tkd/4umbdqrhjoqprgb4MhhwlPkc1Sfw86ntXj+vcOpPfEIK5\nK/8eidKXxa6UA4XWiWqsao40ltxQ2cvzPUIvmBSl6uK8OW4ZmpgzM7Of+TzZ/os/CyrMI4TMW99l\n/1bQPjWbFcr3UEi7gsZa93MNiitLSMu0EIM1F/0RljpSyssa2RjWWMmG6ttS+NmHP2mn6yByBNuS\n8tdYQuguIU9qQgj5vXRQRAi+dks2IeSRX37YHRJvxry4ZrxS6BqnPUlxcbWE8orWqbenRKZ5uInv\naBXxLbWmVPuE0g4kZCcl6rEllaRGne8TUsvyjLDunYzyt5MC9RuS0ti4OBozaq+n877aycjFOSvp\nec1t2lloSonGhz00msyNiBCMVaET2u2cHbe0pAQZGKQuIe3zjsRrUZXa6WACv3zyEgiYplBJqw+w\nIbf25RNPsL+sar+3/Br76XhY+7mL+P/CLn55/W38flfvNCNSAZ15DP9YLtPGR7dBsMSk9OiKak8i\nJP24ED4uoW1z20JaC/UfSVH/rbtaZ2qM2elLICeL4vs8eoC/nzvH2CfH8dvv/gnI9ZZ4fc5+hHWp\nUmc/uXoHZEooxfUXLqOiWtT3t2/QT9Epvr94gf3rzqpUBrVHeWIRGymVGGNHbG5UfHUby1L4OWA/\nf+Zp6u8apT8efBe0Q15KwQk9L3WJfXR+h/WvuCG+umOWgF8VEYIqKYXgqJs51W3KZ+g6B2FeFc9R\n+h71OXGOd9UTS/DUrcn/3hXCdEhImsmzQr98G97BQyGlzMy6oabt3zmwIb2zD40zb4cEJet1hWLX\nyROv0dZgTSpvOh2wnGUPc/0r+KOLL8LvM5rifm+/Av9PW0q0py7S18NSwF3dxS+svQFi+fFn2fvM\nHcyZmVlDaFqfl/8HUtRn9xXaWoxiazMR9mHuc1IrjvL/9ho2vHeLObRwQmrHc9hyTcjsyj7t2Nql\nfbUDcTA6nJQTmlNXeJes5bCBwiF9/4Ta3Uo7nLF8P5n6/gpd/06cMm+88Ya99BLEei+88IK99tpr\nduPGDbtw4YLFYjELBoN25coVu379+r/L7fulX/qlX/qlX/qlX/qlX/qlX/qlX/qlX/6DL65er/d9\nU9JvvPGG/dqv/ZrNzMxYoVCwz33uc/b5z3/eXnuNDNfm5qZ94QtfsL/21/6a3bp1y37pl37JzMz+\n4T/8hzY+Pm5/5a/8le9573ylYAlxT/RLv/RLv/RLv/RLv/RLv/RLv/RLv/RLv/yHVr7wX3zR/v4/\n+h//wu8+8PjS3Nycfe5zn7NPf/rTtrW1ZT/7sz9rnc77BIvfK6bzAbEeMzP7w+tfs//02Z+2f/zm\n71MZQf62RXYUk9Tf3iMgahM6jlOsS854GqKe9RWgczHJca7dAGo2Icm7ZUHu3NJxOxIZ7fSkSGAl\nyzsR5feRAR0LegA0LCf4Z1zkqcsbwJoSLmBNJckAF4pA984tUM9aU8RpgtH6XPy+G+NvTzLMpSzP\n39kGqvf4GSB6t9+GkPLkR4B3VQVJD6vdp0Q6e3+N/prSMaujDUgTh2cknX2QtcQg8MawJNbagr/1\nErTtKAussiuyYpdP8PEWMMZuFwhWeh94X1JwQm9IBFqSxZ31A6tevwcMbyLB9ysicpxZAPr/uV/8\neTtO+Qf/lGNzqyKLi/oZw5EkELubr0PM9fRLQNxcso3vfgU4++MfhZS5IzjfvZvA9i5/+nkzM8vo\n6NzyKp8/+8lPmZnZYYf+yN8FJl8+ADL33F/+ITMze/n3IRCreBnz534YYsrX//k3zcwsNk39zj7x\npJmZvfb7IhNdYOwiA8BFh8aAJeZXGMPVe9jqqXNn7fO//Hfs//hnv2NmZvvLfF5uiFxvXtLje5KD\nzwPXf/IFINWbt+j/u+9iU4tzHCvyePj9uGCg1QpQwe/8MYSal5/nungUeOrb34Co8+qz9KNfpKZb\nr0FaVSjz+/gJoIfzp+fohy9x7CIY5cjJzCU+jw1z3+V3gTZ2qtjf5XPAc9c3mctNEWD+z//dr9sH\nlc/9nb9vZma1A8Zs6QoQztmY5H0L+I+1E5KhXQZmWXpIny4OU8dkHQjobdUhGQUK61oCAlt4lfnX\nDQKHfOwZ5vd2kb7vzmP7O2Xu6y0DQS0UGKvxAfpsIMY83d8Dzp00+qRUo2/9dwTnv8B1uWH8WLEr\nIvIb3P+5sI6qidQvFJNc/TT1Tks2/WEKf9MW3D82gs2EH4morQPUd/Qu/m/MA8S5IXLTToa580BE\nyYnndAwgJ+LFXUG1x/AJ/m18xpabeqR01KFXkIT0CebG2qZDSIkNRYcI0C+JNLWcFJm3h3oXVnQs\ny1W1v/G//YZ98Wf+hpmZ/U+/+4/sOOX/+pfQvb71B0Cm/U8z3pkhkdrel4TuNOPsuc84f+IK47j5\nJn9HY7Svuqv+fkxS4QXm9Hd9+MiFFr50s8tzWpG3zMyskRBUOS5SxTeB0Y5cnbPhr+lIxseZFxnc\nmD0Xk+xtCj/x7TsiXp9nHscW6KuhluR+RV752iPqFEp+y8zMzk+IjHoDaO0LZ4Akv7yBDQ6u/0va\ndlrHPnX079kuNv7dBr8bOcOxpvg11qbGOWDwa5LLzXSZzy9tM6Z/UqPec2lJRD8p4sEKc3NyEv/x\n+5LGfn4aGzvaw9+nc/wucJG5OLrHkbBuDH898Ab3Sde57/40fj2XY67/09/+BTtO+bu/9GtmZtYT\ngbyzjfG2GONgW+tn0CGrpX6tHscBgg4JreD9Ae0tunW+92hOtWoi9g3Qnm4PX9VuS7Y5xP0d/tyq\njgB5HHEBHYfy6bnlHp//vV/+Jfu7v/LLFjSOZNR0fNQvQmB30CEe5nl+kd6W2iLuVf2qOsbVE+Fx\nMMDnPh1JeU/CW3PbJbLHjo4zucI69tTomHl0BKvOM/wiIW5GdVxFx0XcIiGuiBhc7spqQTrBq6PW\nXkmTdkRI625zYUdHL7xFHRHTcalwRUS1OtLlFrtmU7LdXhHU/sp/+1/bccrf+lt/h99XmWSTl9mH\n7RWw8XyOeR/r4McD2t8Fk/jzYUm9hiW+0FM9u5If3pJEdS3PfVoiGQ2IYdJv1DetPZmvhp9vVSQd\nreOkngDr2kiYfquIrLnV5vqgR0TwYWlSa8316MibW9LayThjmWgB/7chSVun1M91/HdD8uy1Hjbm\nVr9GgviukGyrrn1+x4uf7RxqoLV3K+v4WS9AveIiAm6GRcJd528wz/d5HYX05UXgO0A9XCKOrur4\n66/+zb9l/82vfNE5zWaxHtd3JVpRVH089Yj6hfXZLwLkuI5b/Or/8L/aB5Vf+e+/yDN0xDg5zJ7k\nlo5ulBvsVSYusdaOzVGX4jI28M7r+NexCWzmzEc53rnxNmvX3hZ+8vInkPUNinT6jT8iWe4cLRvX\nsSlnzgwusV5svsVeZDvNkYrHnqUe1mHMHt7nHeryhYu6jr7Z0Z7pqecgZ+3pZNgbL3/dzMxGtf+b\nvcw+dO1Pr/+59i6+SH3rJWzm5us8Z05iJ2PnmEsr1zim29MRuhOL3DcWpz1vvQzp60CA9WvqFMf5\nazqiuHKd/ezwMO8fC2chKr776ltqJv1z7inW4Hf+mOd5EtjM+ec/ZmZmu3dZZ9YkgZ3UO9aUjv/H\nJct+TfQHMT/rzT/43/8XO075+//g75mZmauJza+sso55k4zngI62txrY3uTJSf2SubR2l71GvsR+\n/4kXaKdfQiBvf5l13zlaOXGBetd3mGuxSfr9C3/jP7ff/Me/afdvrlpAvnvxCn2zs8qYP5D09Pnz\n2HKjxNi0RCB+4eMvmJnZqkRedt/iPfnCp3l3SAxiWzvXeCfZ0dGy6WnalBhhn1zfYw68dg8hhbOX\nsUFPnT64e48xOf8kn4+Pc8T5wXeZG40j/Fs7QR/sHVG/j1x+zszMBsfwiw9f5d2xKgLvJ55jL1Pe\no0/vvMM74UVRUzS1D9277QjwSCzmLMefgmH64903qLdzbKt+gK3937/Iu+yPffbH7PuVDwzKjI6O\n2o/8yI+YmdnMzIwNDw/brVu3rF6vWzAYtHQ6balUylKplB0eHr73u4ODA7t8+fL3vXe5w2K1laaT\ns6tM/GxGLPM+Ofu2NulZFsGHaxhuT+cV62LzPzmmlzCdRx8Wt8tBh/stnKFz62GxwLcd1SUMuiin\nv3yPYEhbijCPcgQUZgMYtF/cEDOP4UC8XZ217fL5uIJBGxtstsMR/g9qw/VoUwLnKZy/T2z5J5d4\nsZ8XZ4E3hkM/IUeakULORo1+WtEkebCF8biDLCJpKfs0D1h0g82w5fbYVBcLOP9SjvOAZTnrmJj7\nH93TvWSodT91u3iJoMeEzu+NTNCmgwwbj0yWhbFU0ZlUOfF6AUPN3KXNg0GdoTxmCcUYw6Ee9T3q\n8mIXkBKOT7weYRMruc7gan9ngQRj82CVt5uOnJyrw9gf7eE4oh7qXRV7+Z4CctUCNjo+hyNq5nnu\nUQ2bOrnABqupoFQ5wOczCpj5pFpVqzA3RkeZEzVtRHeWcSCuEk4zGNEL3mn6N3fAy8WWXlZOX8AB\nZNI4jlKOOTKjQF4pTz/k9xm3uHiXJhYYt6x4nPx6Wcgd0N5IClsbGhZyTS9XATGJh2K8sOc0rmmd\nrR2Zn+P+wzj3Tk6OWu1JnmUOpXT/jTXV+x7jOX4Fh5p169xqTgHfwPHVlxI15kUqQl0TIe61qbPl\nDSkBFDL05dEEc8BfpC9uZunzZ6QGNJVgUbqZFE9Pns89KWfzy/PSNRaTurgQagGdOc/wEl5uMyeS\nw9Qn+5Cxn52kj9ZVT/cj7j/goV4NbZ4PNsUlEHSUWejjirhybhk2fLLGIlP16eVDY5yIMGbuPX7v\nnmEuRNdYVPxD3C+3z1hvRKmXxCmsdsT/w1HmXHhQfCN78hkDjGnWw/enFNg98vJinEiLv6JLOx4Z\ntngmT73ys9S/u4uvibuYI7XGHPXtELhrtXVefpDvC0Umd/XDUUGY/S4bq8MwG64XX2HDsi2Vqx99\njPXh3pvYS+kkfw/e+QMzM5t3fdbMzDYOuf6d89RrTL4iKpW9U3do3/KPYSdPV9iw2TqLfvcB/dEo\ns3Gc+wRHgbf+sGBB+aXha/TthSCb0C3Pl7hnGZsLfwS/e+k+a8Cr21x3aYl588jFGvaJfTrplXVs\nbydIwHFygw1MtcTn9QR+Mfwsa71ts7lM3WQNe9Ai+BGa5P7ZfWx2LMDaWFlhU/zUHPXKefl9YoMx\nf0FbgU6OIO9KgbF954D7PUjR1y8t40f3RmnX/Dv02eolnjP9pl4epuHr8F/7Kn8/zQbo6P46/dbh\num/XUKU6bnH5sVlHOTEoNbm2OLtcUkJ06QXW5KbiPeZGTQGHroIzLudF2PvnVYwCUfq7rusDXSk3\nat0NizusYXrRDvP8ioIwvqZ4LpQ8cYI/Zmb+aMSaCnYHXfiYbkhBGNWzqXPxoteymFSaKlLWiWrT\n31Vg2yM+pHJHiSYFToIxPu9JscYtlaiOON/8rrp1tM1sKjnlkRKjT0qMDQWI6uK68ksFr6VnhDzM\nl7peAtrqA09ISS6v+Gv08u2K0MaI2tiJOSpC4lIJMRY+/c5dOv5aY2Y2qpeHd/VCGU6yNidPiiNw\nHr8aUzApmFdSTgGtnBIZ6Ue0v9zF1v1VJ5iBA25pX9hWUPxAY+mv0ccRJU4iUg+JKAEyOYKNerWn\ncbcJ8ngb8scx/HO36nCt8Lx6XGOmxJfriH5ruNTvEakv1fF326+znvYkO5Iu046eVFT8WreaXnFU\naJ2MShWlpUDCkF5k3eJ0CyjQGY9xn2pDwbMD/G6my1zI7ojLLCD+PCVFXeK3q/QUbFfi0MzMNzJl\nMW0OW+JQKzZ4jrclFbAe92mL+yg0wLrfKHjsuCUo/puAEr1FJSVzCryNnmSPnxrDbxfztGlvjT51\nS5Fr6byUZUra06xp36S1Z3ScsXzrNZKE9Tpr8dxjBHGCUl3LZGlrSAnvnfK6mZlNLFKPwDTBhqyU\nbTx12povS6HqUByJZ7AxlxTT7r9NcKTbw5+dOgM3ztEWe5+D/V21gyBNXNxl6/fZB4Yk1xZOKfG0\nKhVPjd3Zi/j1YomxX76mdzPt9+cv8rzMkd59dliv3Nr7jCpBXkjT/8Uie5RTT5B0yGaZG3mp2T02\nQ1LSr+T0xjLBq6iSiaceY7+q93NbfZ33qrbU9YYWvjeH6l9UPNobmYJJyTjrfsvFHBhI0q+1ND5m\nZ3XdzMzGZua4fprvN7/JevrwXfYaJ9Uv555gHdzdZlxz68zdknijvO/TLVnJHTZPsGubm/RVYlS8\nOVKgymeY350sbR2fZG26cRfbeGeFIMeZBfZRmQjPvPUt9hrzCoCFlbysfYe67GmtyRk2Pj9J8Hdq\nU8lTjdFpvW/v7TPWa28yV8IfZ789PM/eaE+8eEuj2HRAipK3bhNnuDjInOvo3Wb7nT81M7PgEDYw\nscicakod8IHUpyYuMRcDUhxbvSc+o11xVIpbZkzviv4kNpj0KBncURKy/j7/219UPjAo8+Uvf9ky\nmYz93M/9nGUyGctms/aTP/mT9tWvftV+4id+wr72ta/Zs88+a5cuXbJf/uVftmKxaB6Px65fv/7e\nUabvVYKSn4wHMPiRJ1jsAk29pEgWd11Bk06LRgUkX5bb4vPMHhOxoxfUjRafT47QSZEahl/JMLgr\n2+tmZubzMPG2NJHPJjDgtAhAXxT6YrQkCW1FXVe3WIzdQYxpe90JSOBwfQ/4vr7J594k7RqLMYFu\npwkEnPAxyEXJz5VEbHck4+92FRRSZK5RUDZOmYrRKEYbm2dTP6ogjnuNjXf6CKMJNodtZxODnJZE\ndSsroj85/8FnJevoJ/p45Vk5Q8njBrTZevgak35vRX29TN2c5aonuVipgpsrTds27+LcYmMfzmmZ\nsmtHFQUTRLoWlURc2FgkzIMDKW4KxTSgjYvkiOvvUI+QZBr9cnruEL8fnZJ8pLLfjTLPm5LqWDLE\n91trOBJ3Wi/A55nwlR36KaQNTkLtvP+IjIdbMo1JSfm99XWiqZEBkadOUP+asl9b+9owaHEcX8BR\nOVnFndssBnNXcYBjIziSm69z346ySP6kyEWHeH7ukTauB9TX2+W6sPq1p6xmdh9HG9UioZidFfbo\nR5de4uaVoSi1WLz3M9h8K8rcGhQKxRvSnF3F4TvEmAtC2Oxs4MC7cqje43GQU8egNvFukSK3cbr+\ngBANLTYAViVjNyEiwUwO/9ATqeaepDhd48yvcE+osXHuExLxn2cH29jXfHVkIe9oU7iQ4nf1R5IX\nd6SWG9oYtKjnhW38yn2RPI+dom8PSyIod2Fr3TaLS1iEuW2Rj+7vUJ8pIV9qyoY7MrW+isiV89hQ\nRCTQm10WjUSb+tbGqV/Xx1y+v4n/+9giG8UtbcjGCtjG0QobF9+iSJxFgNiQnHzYhc342/zv62F7\nWY2pk60fD1DfR258hleEcd0BBbGUWbE2/e055H+PI0NcPv4m2czs0Y/jG8ZL2MOmMtXP7+Pnb94n\ni5k6P2dmZtNTqv+d/8TMzN75CcZv+3f53U+12Qh9JUzgoDclgk+hKlzfwJ6an3zezMyGT5DFfHsC\nEt/EDteN3WSj+erzXbv0MpvF1jx9eDj6r83M7GyXOi3dpA7dUfrgDyR1+cmMUFzZdTMziy3jF17+\nYdai0Ze/bWZmk2OMfcvFJu9bNMEmH5fs7P/7p2Zmtnue59c/rUxvWgS2uwRVOkcgBg9XCVg9HGZu\nbRTZeHm8jOGDaVCwkQZZKl8Y/3dGga3ux/k/fpPnZCIkBSLvkqBov6Ax9inrv8468s3OizznCmP0\nzK4CrZJk/eY0c+qzs/ip40pi+/QC2BXio9pSXl3BkrbkcT0KQnSVvWvLbwW8+IKegjBdEa4HFHjo\nKQjjiAK4tGGrisDXLdJaByLTVnCl7VfgwaOgkOZW1yfy2+b7c6Fdb1q4y9wsKRjjrTjtEkrXeRco\niNA9InJd5UxcLckeixS35aIfYjGe13Sks0sKVoXUrorWmwEhvjphcyuA5Nca0irRxpZb+xeRG3f0\nhuDU1eWXv1PCwxvjOk9TMuJCOMjdma+jeefS3sbH77si8m0ryNOVnHmzIulsz4eL7u4ts7/aPWC+\nXz37N83M7NyPCjWWwY/3tI88eIu1dmNfiZ5tBRU6ejFVtn8kLsLaYfnrJDZfbwup2cNPeuoaizb1\nLuuF0Co87+YBqLWOEmItJScSE/jhAY1VUqIMdUlfh4QQKZckKVsSKa0QQVubQi6W+b+lBFtYW7D5\nCfYoed3HcszBlq7PdBiXyj3tQeL0f06sq9NK3ES0nqfb2EdDc7DjxvZ8ktYeGlbgo4Jv6gxkVG3J\n2SvIdZB7X6Z47cbblvTTz1Gth04QqiHkelBInkiM/qwccV00+P4JgQ8qsTBtaUvYYS/DWDvonZHT\n+L2u3iFK6+z500qWjkmy2kEy3P06CYSQgj1L51iz94Qg37vP2pYS0evsLGPx1ncI/AccNflB9pnh\nEfZIzgtoR0nGslD/btW7JT81eJZ6hGrM5TXJ/OaFBnvyhatqLzZ5/xoImaj2f3Gtqblt6nm0j22F\nk9ikI19f92MTsxO0o33I/R+8i00PKam69BHeUxRLtuXr1CeeFIn+47zP1KvYwvo99pcx7VsTCYJA\n9++B2kjKT45Os/d6ePOuno/tnPlx2udJYCsr7+ADcrKxkTHu2wt8uKSzS+tJTj4xL0GVno85MHKC\ncfSOKMEmieumxiviZ907cYbrOiK13pUsdWKQ+kSHGPe2QzouXxEoR9+rS8jttom501bRHn9PqKhx\nkQuPTIkkWGM7NsOafu4p9k/rD9k/Zny8A5xUQO1ohzH3tNjHBYYY2+kZbL2YEax3l/ldjwndKSns\n9Ye8u47PzpmZ2YKQOtdfZwy2d9gTTYxho8qr2NqOUPxx7lsWwbenpiDPE0tqt8RqJF7gOc0cXZrh\n/Xx3lb5saH96ShLfRQkSHW0THGqEmPOFLSUprxAYO3FB++15vcN1NRm/R/nAN58XX3zRPv/5z9s3\nv/lNa7Va9qu/+qt25swZ+8Vf/EX7F//iX9jExIR95jOfMZ/PZ3/7b/9t+7mf+zlzuVz28z//8xaL\nxT7o9v3SL/3SL/3SL/3SL/3SL/3SL/3SL/3SL/9Rlg8MykSjUfvt3/7tf+vz3/md3/m3PvvUpz5l\nn/rUp47/cJ2X7g7o3Jxki+/eJhsX0tnfjT0idjMnySJ6Rvj81DiRqJEDor4nZ0CB+A+JqjaKROLu\nr4BWGI/w/fYeEbTnxL/hyJs9eR7I342bZEDyNR1vugc6pD0OTCqdIRtXq1Lv1U2QOScV3e34JO/2\nNFKJWcFtQz2irBclKzw9R9Dq1SqZeAcZdF+S3VPjkjdTpDAcJtIWFOSvFiHyWMny+/s64Dmcoj/G\n5okGj3SmrK6s/4kZMqjueWU9dBRrNEVdtraJCuburZuZ2br4MkYkR5sWTHBukbqcn0DCLiHIqRV1\nLEbHZ/xHkr3sEV0cnmYMjlsaed2nQXRxcoYxqAsFUJesYlNQ6LIRAU4u0Pa6jlcVVI+FOcmkKTJe\nFUqprUh1OOZAq/l+bJJoratJ32avMzZDKWVuFak+EiIomBKSRxwBB9tEjcdP0+/tKs/J5OnnuUXO\ngEbj2FJ6HVvKrdCOoSSRbiW9bOcOcyEm3qPxRfFVFISsyfB3dIrMtU8oDo/kIevK2DYVMY9NiHMi\nLTSaIvVFIZQGFuZoh7JPhQxzKiU5uJjO6W9vCHYr7oPhKbJRKfEwlbP0f1tHDmeX+L4reO3eJtHl\nVBQ7dAtZc5zSbNKnm0FBd0/T5w+KQlSUdKb9iHmSGWL+nZQD2umtm5mZZ5Q6jhXos9I4mc1dNzbr\nGpUsuLhRKkLGtRYEMW3wnGWJ2rkCgslLJjZ2RCRfCGU7P41tl8s8N7LOWCQEDW7s87z2CFk072X6\nMuSnXWlJld7ep68WpgULrWgsJFHacwshKNj7YI250auT2XCdEH+Sg0ao0e7CDkieoQG+Xz9gzHzK\noDpw/HFBhfcl9RqPY0sx2UjROa0ZxubcbrKDQ37ZXg+fUj8UJ4COSXl3aU9nnLntjfC8VfmyQf/x\n0VRmZiXJF0+Lw+H2PkcBvQ9YL86eJPNza5znV74FuuTMRfqrdItx/aFZxn2lwvXjQmyGEuLMucL1\n7j0do6iAXtv7JnaVvgoy85Qgy7WPPG9mZh/7cs02r+Jf1vZZsz79iD756gJ9daJNVuik6y+ZmdnT\nh/TFkSD9dxZYE4sLrFk/8jrP+G6KzOrLX+N+HyvR9ivD4oDZwkaHdSz1VJc59C1lLj92h3l/cBVO\ngKKONa2E8EMfF2rzG6k/NDOzn/j6Z8zMLDsEoqX1AM6ByIyQhU2yUG/eYOw/4wMt5Hoc1Kf7GpnN\nTk5HOaqSqfRjy0+m4e5KzvL9K9f4e/Ikmc7HtlnDv/0MY3Ls4tdRCa3hDR1T8iq7FRSfnsCu3mIW\nAAAgAElEQVQHFokyph3B6Zvi0+iJm6GmY0ge8Ze4o+K70JEJE/LRH5DUdkvHihrMJYsyPv66kCyS\ncQ4oK+f4vpav9l4TIh6P1YUuicr3dPw6eqJjWF6t+wLXmUfXtzyOHLWOKlbYa3iFXmjqaIrbwb27\nHXlnrg+pHgX1k8e85mo7Ip8+3UvP0rOr4nzpenS8Rgg6t/Y5HqFyKkpChzs6/hKib6MV8erouFBA\naCR/q2l/tgQC6iMHxSs/W/V+OMTdno4QbN1hru5dw08EBpiL2Tz1TlSwvbxOtcZ1BHjmMervTbD/\nbIsLx6esfqBJ3xVCzI0RrxCXOsqW8OF/M0UhXg51XKfL3BgY5jiTK6TjW23qUayJH1BcNctV9hL+\nvFBVVZ7r1THcplHfsJA0USFQR5PsoWLiKwkk5fcHWYdiOoIdrupoeYh6HZbEv6Q9WUf8eKajOy1J\nZmcPxctUw7ZLHsaprXWiJSCPOXLwpjkk3owRyQd3xNcXab0vJjI9N2BZIaYiIR0L1r7ZLe6Yjrja\nKrJpj44Vl6vfP8P9Z4tf+8iijivltWeIz7NfSwqZXcox5vlVHS8SquvESa7bF3LlUPc5I86VttCY\nt27i5wODjNXFsyBI9rexzazWptNPYWtNgcIGHQoH8QVtipfyaE/oUO0d/KJiCMboq7W9de6zT3uW\nToKMNJ0CeHSdtTSvY7hXL/BO1Rb/5oo4HF1Nvh8d4fcOn1wkTb2y2hMd6DhqUGNx8jFQpi2dsnj3\nTY5PhVzY0txjoNW8epd6cEvchaJpOCeevmYPmzvUsa6ZUfZ45bzoGLZZ3yZOUb8hHYXZ1CmEvFBv\nw7N8HvGrYyvvo7KOU3xNfGFkEBu3BP2fKzCnGw3NjQbj1BHaI6+joJOL9FtIc30vw7h4dHQwV2d9\nHhMPaW8QW67eBb2ys33wXl0KmX0bP79gs1WOaN18hWNHmze5x+JlPi/sMJ/XJcedWuLdZmhOlAsZ\n2byOvlbKtGHzEZ9fGeG6qOpUK+jYeoE9R6OJfxye0fHxDd5B926xJxg9zYmWhN5pjrbZxwaj9FFI\nv4uVdYRYR5FbQiYu3waNO9HVMftx5uqmKBV279Gno2Psdz1xbGLrJmisYIA91tIZzmRveLDplI6d\npiv0y8Z1Id33hdwsc59y6c+cGfsLyr+TJHa/9Eu/9Eu/9Eu/9Eu/9Eu/9Eu/9Eu/9Eu//PuVD5dq\n/P+57JeIfJdEEutRhNylc8nTs2TThkbnzMxsKkEE7NrrREcLQRFe3iXyVSkRdS6KbV7BYFs4x32e\nPEMUdVoM59Onifi/rvu9exMy2Ls6TzjsJSuZUYYh3BVhprJBF8bFDTBIhnlKZ+9uX+fcuxNtziyT\ntRubIDK3s8/9vDXxebjI7i1dJMNhY2Tcl8aIimfnyXJOzxGxPFwliltWmmuoQX8p6Wb+MREUPVzn\n87jbUmGijwOKyG4oQup3eB2uESk/FBHUXZ393FHUM/4MGVK/ECotIR4Oi4zB9Q0iuMkYz8npPN/Z\nJNHGYJLoqDf5/aOE/2ZpicvApXPpvjjZj5009y8pS9apkyXx6eD6eJIs/7pY6ptCiEQnye70lOHr\ndojilnSO+NQsUdgDcawExTGQV2Zge5+o7dlzXBeQMkBdiJiYF1soZ8TBIOTHzDy2cec2GfC2WOUD\nOpe9s6H2CBnkm8F24kvcb+8Vorxr+4z95ceI0nZKtP9QDOkmNMHQGZFVFblfcYPfl3fWue8YmRO/\nuHI6IhzLK9IfklLZoIh/09eIRoccla1R5lReCJrdbaLnZxcZ54BX9xWp1cE+9xW9kyWXsHHrKlsm\nVSifVGYcIuTjFE+FsS65scFHNdoeDnJeOC6EyM4hfZlogTyJhrkuHpZ6mjhjhseUbdAYuYSsSBTo\n49osiJeDtNR3lhT5N3HQiCDR0jqv7VKfijA47sbvHZyWAldDxLEnmGtPlLGVtGFrh+J1GtoGORec\noW+8Rsa0XHBi64yFT9w5vZF1rhOCp+tkccQX0YhJxa4gRa9hsdYPMsfzEXyCN0z/dnXO2UT0Vikw\nxmN6eqWrOZrR+fAENj2QxL/d01nhRFcqchHa301oDiujWVkl6xebIAOxIr9uMaEX3OKWEVHyccul\nf4XNvzpPRuOZoz8xM7PDWfxs4wZZR38dP1ysY+ORLv0cUwbm6x4RyH2N+pQv0J79dca7VqBfB+Nz\n/K6grGmcdcHG8B3tBdo7sEpGOP7T37Z3N0GwjGveHGZRNAi+wDXzbUiKs93/x8zMHorgd+G8kIi3\nQJykQ6wZ6WdZ4/bldpMj8NrUI1LNC0HOVyqTmc2tMVcuhunjiSJ+5u4oa2zhXdaFoRO0dfEuE/rt\nU2SRPv4qtvLGIBnap6Zox4aPdl0P8Pm5OnOwGeL7b0SpTzjLHDotIuPXO6xH9QB9VfbgTzO/J8Sj\n+Is+7hYPxS0pxIifoiqiYbP/045T/FKvsiBj5iBOmiH5a6HvXPq/K0LKSuXPI0fiQry0lOFtBUX2\npwxwU5lNcd6apyIVJPFFRQf42xE3TE1KD16hzFoeh69JqAL5WzMza3TNLdSIS+RubinsuHSfrlB2\nPhGqO+qKfk21Ylg+TDwbHZE3eP3U0+MgdNxCvYgTwiOETViojmajbB0JL/grjGnVL4JaoWnqIsMP\nCw1UVp+5tZZ7fFznKgr1GZQKkYhrTSpCXfWdy6hLRf4qpLWkJ/LpZrWupuEHe8dfaszM7MpLoIPn\nrpAhXnoOP7F+X4iVEutES0gWk2qSS7xAFaHPOsqoHmVlSyLMLXlZHwaF0vIJEdgVL9x2VCSgFZE3\nxxi7oPiiFsT7E9HvGhVQAHURqYuiy6aKDHZD+9tGAT9WrjKnA+P0VzzI3OxExcWiepXLrH857X0e\nPtA4imNmtMv45TS3Ix31gxA1fimD1eNSHlNGveLivgXxY7QrQiFL3WloyuFRYo57EvRzTApu2iLa\nrPjwfFJSMzObeeZxGzuSmp+40gol6t91OBlz4pHq8X/HsNtu+IMVZZ1SEXFsTqikWIo1bWJM3B9C\nYm+Jf/LggLosnBAZ6jhr9r5UkvzyFxNjrD1bq6zNgaoQ8M+j8tnT/F656ZBQ01cT4iTcX2H/2Gvz\neSUvm5SKZ6vKZEidZ08zNIkN7IuzZucGfvvEVfFknGEvdHh73czMNrbZs0xNs/7ERXy7t0wf50T8\nOz5Df4xrv+gVEuTBnlC64jOJTnPdwhwIIG8Ym7p3HRTHwS57tatPg14YT7Ae3rkLOvVI++rFjzFH\nE+LQufcG73r1HJPBd0n+XmSsHnH3jInzJrvHXuRA+9ypYcbBLSGSIyHcPcHjI7zNzAryDd1DxqEp\npTV3GJuu6p04NkV9OlX6I3tAf549M8f1KdbvjvgJ4+LxOxB328MjPj/3JDwqiZPa0y1vv1eX9dUH\nFksFbeEMY5sR6fLhXdqWHMQWRk/z2+Ub7B1am9johau8D+8N6P02x7ydPcEeYuURe4ite3x/cg6/\n1DlFXe++IwUsKdFefYnnlBfZO1R2183MbEgoqEpQ+8VDrT3b1LM9KiJfIeamh0TWr/1lLq/9uFTm\nkjo9MX+RMciLny8sDpgT57G9u9/FVpbvYKPnHufzuF8E5jqVMCl/WxFvZ1d+eFx8orNj7xOP/0Wl\nj5Tpl37pl37pl37pl37pl37pl37pl37pl375AZQfKFJmyEfkKjVJdNg3Ks6EKNFYl7JCt18lupuO\nE6HKbBFJm5skIpWcIdo6Oi55uSM4WPJbRH33WkSTV4xs/80bRH23Vjmj9kDS1Zc+wvnHiRRR17On\niRj6Rohd9cSzsX6XaHBVkbBHDzlHWd7kPrdvc+6wm1KmVypMfkn/lcRjsqXMdb5NdPbOO9z/3gH3\n704Rmbu3Sz3n98kEHBWJ/k7qzJsjsxlM0l+LCaLUlRTtnw6P2UaBPkvv8ndLstwnJriHjpzbxz6B\nJKrDxn5RYzAi6b6eZCX9kqmM6TxeS+e+ZyTR11K23CEOOrrLc0PeDxcHbHvJUnhniKZGfNTDXWYs\nB5V1q+p8cWKcKKTfTVajvs8YeRTNdCuNUt6mb3P7ZEVmThPx9k/x+8NrRH8HlE3ZP2IMfQnJJj+G\nzaavES22ApHowQX68/Ah7U1KkrorJE5eiKJzFzifGRrkefXb3Ceu+vnGsOmGpKUzQh4lp5gz40JV\n7crW0oc8bzhBhiWsjMLOGrZTlGRhcITnjeuMbPM9zh1sZW6S8exMkN30KZu2nWHOnJ8FbRARB879\nt8hY+Ou0Pxxn7lQK67R3Uxw6Qg4NjfA7j49+2V5lHGviLugFGaee6/jpy6aD4HCQbEdC3AXow26A\nsT7hoi/XxT/RViZwcoEI9u6aJJfjytCKRyhwVzYxw/UFST9XJd1na4xJWJwIM2GhfUqMTVIZzbgQ\nbPtpSeil8Q/lJLY0cF+8SEv4v0GdSy9lxbvTw79M1pnfEfnPow42vikJ67EEc6WeItuyNipOFilk\nhaRiN6o+d9Q93C6pvY3zvPYKWZmlIn87kr7Oh7CNmOTka9NkoZLiUzpsUn9Pl/4Z9PP8gTw2t67s\n+5JH8s/KYDwQl8xAVhnn/Bz1cFO/6qAywzv0W30AX3Pc0pzjOZcOJOn9Erb29VsgGX9aan3dR7Rv\n/Bn6p/QqPrD2NP3v9TOnqsrgnBUf0tgwGZbhMtmo4gK2favMOM69hF09+CPqH3+audTbecvMzH7P\n9bT9VAYkXb7zaeryo6gbffTox83M7LtpbHFgkrVqcpK0dP6QLNTKDH7wKT/3Sb7D/AtImXBUnCeB\nGcZg5T7fZz/FPD83Qdu+nkf9aOIsGdfym4zhsPgy5reo+yrUNjb+p+LTmWSMMl3WxPYdSUXXQBWc\nfpLnzJzHT9x5Bdt6foI5et/N825JVny0wXM/HvthMzP71iL3HT6Njfl2QS9tD/L7tx5nLsztsr4t\nREEOHbc0AvJDytyGxPtTb4oPxStf43C1SDLbHxYEsC1uGSnNeJT59LVlS+JCCNaYYxEhVWshRw1R\naBGhOKJ6XLSt7KCUgnxC4riCzI1e9X1OGVekae6iZNcHuC5UFPJGKI2ej3Y5alAt1bctRaOQEKJ1\nlyMXjO9zmdAOUb5v6r5d8eW53Q6/ibh0Om7zCQnjEZdMUPwOVXGYRLUNrYa5LtLgnhWpCrmkdNUT\nR0GnIqlm9b1byJGo1OSsJYUqZVTbDoeM1lKXg7SLiv+n8eH2JL5B1rCz5+E4XHgcNbrUWdbgsjgB\nG1nmRHafPitL0TCTx9/kbvF5TQpXbRf1ikqg8jCGvxgQUtBBsTZK2PhezSEE0rqnPZkzFs5+0OHJ\nGw6xLsVikhjXg1La8wQlUR0O8Jy6B39WKEsausXnpW3GOCdUb13qeyYETWZd+1rtiXw1BqDno75N\n7U3C4sVwyQZ9o/x+ICWEzmnm9rDk430Of5MUImNSbWqKnKin9a0rhGsrLfXFuibRJ83St7es7CBg\nZRj+Ju3r1cu6vwzGUTzTPsDjoOiOUVoV7tUUenV+HltxLG33BjaSX5MCV4S19+Q51o76LnuM9AZr\n7PQJ1thakDpkhEgZnWIfGB+iz+6/Azq4KIWZK8+yRoUcaWztZx1VTM8RfqBc5POAJJhntM80IWeW\npayTlOLVqQtzPEfS0Wt694mF6MsTT4ByaBa5/8Ed9tOhgPZc6g/vALa5f4N3tkPxh3iT7PPnLoiL\nUSqh+6pHeoWxHRdqeVpS3JlD1rmjW/Tv2Dj9urjIfjubpr83HrF+jI8MqL3sVQ43+bwi/1xzjlvo\n3S8R1Dog7rFMmue4pTAWFq/ocUukQ/srQvd1XPT/gFRT60JDu3L4huAA7cm/y7p25xafz59gT9gQ\nJ1ilyfgvzvI+srLBqY/8rt5FE3w+cfLEe3UJNvy2+upNG/4EfuDMk+xL70lx9+EuY33+EmM7M4If\nun2HkyVd+aGUkMdlZ777xDMqMGl0n/1PJiT/Jn6lAb2jbYhHKL6AX/JImbAu9c9MlTbEhSYrl/E/\nNaFlOzp5UwpITW2QvvFJHa6zSt8tl7AV3wAos9g03x88on5vvwma6qkXOCUysoitPdS7YfERaK58\njzkebTM246fU/iP8UUt8fwmdIqlIle97lT5Spl/6pV/6pV/6pV/6pV/6pV/6pV/6pV/65QdQfqBI\nmYDOBnvFen6QJkp6cI8IVsKIlnqbRJoWE0SgZp8RQkZogpIyKgFFVyOKWp48JbWiNFHYjpSBpme5\nbkYRvQs/RKQsVCWUd1Oa9o+2iYRtvs7/fnEmeNtExobPkC0cm54zM7Nzk0StJy/z+XSASN9shmhn\nKkp0elgs0WOKRovuxJQAsNQE3w9K8cinKPdcgqhmZogs4MQIEcC1e2QP74n3oypUwtYq1wXng1YX\n83O1JzTSCFmGwAmhb66TWe1tEfFe1xnSxRkiv5sam71V7pNtMSaONvy+MrCjdZ3R1Jl3t5AtZUUL\nW3E18pjF7Sb6OOji93lx3jjZp7h4HqIe2lPpEkHf3yPyf5TBFsbV3oTOGR7uEuUN+8Q1M0sU06+z\n+C2xx1dbOv+tc8WTF8jgBkN8fvMR/TU9TD0GhrDJ3WXGYmhK2fcM17eVvQtM0m9psb8XC7Rvem7O\nzMxcXqEYqspGeYh8z58lc2AMoz16RNYtHKRecZ0V9bixrcIO/T0ew2bnnjqt64mw33qdDHtbSKfo\nDOiDqrh2DpX1a4nJfGhO431ARmFrXfxMOqubUD8++CbtHQpy37g4GAbPcQ7T/Ny/dsQcG5VKk4BZ\n5qqLzf4YJTSCzU1uM6aJISlyidvD3XQ4DbDFSaNP1w+p45UEHB+NiX9tZmYHRfxLVVnlupuMYieP\nLYakFld7JCWyecYm1SbD0Mmu8/missprQuxpjgxNMzZbcfxeQ6pRuwEa78tz/0SAv7kCzxlfVZYr\nJfWnFnMzJPUkD27KahH6tCB+nnAPGxmuYetTB9hm20VWzvJkIhIjbfUT/qYZ5/cPpYJ3Siin3QP8\nqSlbnu2Ic0u8GWXxR7V3pLYklZPODHOodcB47Ih7Z+mC0AQvc9ue1Ok2lCEPuLE5t4MUEnt9LPfh\nfEl1m+snH6c/3ijgp1/swi2zc4Ys2qCLubziwg7a4/jj80WpvkwzDtE2f1fGxb5fZDxWPq4MTZZM\n09kqvrV048fMzOyHlNH/vSDjdGWe38Uyb9s32rR9eJB77rXhQfvR4lfNzGz86HkzMzv5Nebjd0jS\nW0PZ/tPb+Idaiv9fEfLsh4XWenOQvrswT0Z15B5rVKuLX82Js+WFk/CsXb/FvOwNCMV0ivvev/aK\nmZml/xU2shhjjF4W14Hrk6jKfWceDptn/ggbvjVAPXa+Td/+UOsNMzPbVb26f4Bt1zvM1cJPga76\n42/w/Lgxtw+l3HhmgLm85qMdL3hoxztxrU/7zI3jFndDyoZefu9wlXmFAnDQHCFl1008II6SpKNa\n1JOaUlPri1dkWu6weDJq+uuj/qGK5khIKIWKOAQCQnX0sJlI58+vT70INhkJv9+GRrVnnqCQLEL0\nuGOqj/j6PAGpDAql65ZalF/XOcpHXgdNIORiTegMBzDki9JPYbejkBNWP9BfATNrSgnEpXv2pNrm\n1Zpa0jNDqoNba1NQ6jtubVM7yl63ItQhLGWrrtSb6lKA9AhN4K3q8wB+1u+geTRGnQZ97HJ/OMWU\nre/gaF/f/JaZmS19DLXQgSXW3kIZP9JVOwviG0oYfeMbYcwupsTdIr/qiiqzLJRTpc59OiX2UsGC\n2qPr20Y/haQ+lNVzvMoc13Paa6TF/+fl776jbBjhPvmWlMJG1A9u7ZV8+r+mfq3qvmpHTPwZPbf8\nvYc5Ho5TjyFj/9pJaS/REM+QS+p54txxjWtPmmD9HEo6nDPi69Der7wqrrcqe493j5RTFvdMT/tz\nT07qTmHtRYvaVPyXZsvv3DWPlIoSPnyXX+t8rke/O/vwAXFeVuqqT+x9bpoPKpl9Zc9H8ItRIaJ3\n3sXv7m7Tl13xHC1eYg2IDjEmb1zDtuIjWg+S9GXuNm33h+jLoVP4ydquOGwerJuZ2fg8zx2ZgGtk\nd0f8a1na4BE/W0ecXiPaazSkaOMRf872lhRkylLNfBY+JW9HSOy7rG1HOcb06pPwhwSkDrrzXVAU\nOSHTF5/A7w/qXa0oKcq0OBFDWn/OPU5/+IWsv3WbPYe/ylgkhK4Yu8A7UFt+bmuDvU1dymzDZ3le\nT/xU2WvYUFhchhPzH+V7vYSlV9nLBF1CmHqlbiSOl928+AAfstf0Cf2XPMG7n1vvV8ctbR82VxU3\n5I6UfU8s0K6oTlfkGtRrUUic6iX28UVxlPkj2PjUzJyZma3dA6UdGWacfaOMx4b2kHH53Iufuvhe\nXc48fdXufvdP7MFt+nDgJPve0WnZkE6o1Kv04dQZUFgdcXlVhFLyBumbqPg0E1ItreSYA9lH4qqR\nouJglPvPLnG/ht4tE1J/c8/RB5k0v0vLli9f4t21KRsvt+mLcFBqaQ9AtJRD2Na5K6CzBj4G8mX1\nDkiY3XugiB77BJ8Hn2NfeOcaCOa9dfx9LEo8YVxKxd6E/FbB4ZrhHXnyjPytJHNDUisNjc/x/PCf\nWaz/gtJHyvRLv/RLv/RLv/RLv/RLv/RLv/RLv/RLv/wAyg8UKZNRFmvjkMjc9rLYiktEKceWiJBN\nhYgKuoeIVq6/Q+Rqc5m/a2mizvkdIlarD6Wf/hK/71WEPBkVmkBs8jtSGMpsEzVtbhLpayjjMj1E\nVHJqhKju2ALnEutdorIhscE7Z373KjrDuk27dpVJ9bX5/6BHlHvzPsiWnQLR7LbpzF2JegTHaad7\nles7OjMbCOjMnc6bFnW2LiGW+MWT1PekeGI8VTIeY8MJCwlJEhLvzqBHZ0gdlY0FnU1tEafzTtCm\nSXGQ3E+vm5nZ0hKogrx4KaaHiMAGDqlbxyMlgAH6PqlszNwFsvJz02STjlv8YzrbWuN+2S0i64OK\n5M9NkqXpSWUis88YjvvoWy9f29gZsaV3lFFYp+9cfo2llLIKJaKtrRaR60qTMXEQNQMJ7nO0pSye\nFCVGn5Saic7Ilhp8P6rsXqYhNIPOUQ/rXPdOhmyYSYkipCxaY0DnsMUEbm1FXZXhrO8wfmVF/GdP\nietFZ3o370u1RJne3jjjP6DxyOq8da3I76dOEW0eiOr3t4geNzKgQGZniRJHotR/9U1sszdAP8XP\nMLfqDbKSR0XmYlzRbpfGMR7DljfukvnYLdLfp+aEAJKaU7t6/PPbbvE4+BI6S38gXh6he+JCCTgn\nOT0a65KyD2t+slBVw7ZTeWxoLyK1iTJ+JugC+RAXp8BJL3VP3JRa0Kl12qo50b1DH/rizK2IGz+3\nkaCNE0dE2rsuMnZe2XAxq8zeC8pihbD1jM72t9LM2ckZ5mC7xRj5h/ldT1wxkS3qZX5lVYbp86z4\nL2Z8ZFMKUlI5coPEi2mMD3v0z4CfSbTvxYbdk0LsbYq5f4D+Pgozp6JubKnoI3NQS2sOzFHvsNAI\n+QFGpFomm+WXEsyWVxneAPWKdnnOyBoZkEKU8fAVPpySW+gl+I/+6Brtn8grG7YEMsZXoZ9WhGB5\n+i7jEowyl/5ki/F7dhc7aJwnSzgf4fdfcVFPX5ps4sez1Nfn4TnrY/TfGxUyMM/myQitK+v4+PyM\nJb/KPQ6exwZd2ZfMzGy5w1jWJrj20QFj31IGsHvAGIVD1KWepM5PRMnMtoScG1V2q3iL6+JL1O1r\nGeblC8MoGNwSP8WFq8zL3G3G5OER/vfsCcbQcyT/d4W5k91EgeHgumx/iYzfvR9n7dwXGmw6w1js\njTFnY0IKpj8Dp1nkNWX+lr/C5wkpK5zR+vUHslkpng18ljlcuo8tegP0z93A91c6+DdLI8Tv/W7m\nqEAV5i6J/0LoBLef9lfFXebwukXFlyQwl3mlWuTriWOiJX4Ohy+lJ38vdEdLijTeEH601nSrPkJR\nCBXg1fpRUfI+4n0/i18P+CwqDoZIQ3wtygS7HY6bGvXpCZHZFKlcSBwHjiJRy4N9tYVy8Yvkplai\nHwLiQ6k6Kk/qN7cQNlWf12JCtFRc9FFIa7dLe5Kgi9843Cq9hjhBlHSOaE/S9PJ5UAg6EzKiFqEt\nA0LnNLtSHRJPj1v+3x1RHbtCrValJBX/cNvgtFBKDx/CTdCd5bmzcervFmqtFqReDdW7oux7TPxu\nR4M0MNIQP1GHeoTC+MXQIP7DH8Xm46fEDzQgdJbTj8osN6VOVZaqSC+iPUOVOdvI0v60UKhVKZ1V\nMvw9FPdhS9w7JY+4FGUjQynWNVXLXELnhgbxk4NSPZX4kR0J3WtS9vFKfckXmuN3IWw4KK4FEw9R\nVnuH+hZ7o6b48rIOX5P2bNG6M0ekNCZumo7QC85eaGDAUWAzO3N6wTwdccqFuL6dx4f5U9QzmP7z\nKLHeiGy5bscucSEmBrQXaEkl6KH2PaPig0xIDXQ4hf/auCf+zCPWiqeU3S/XsYlSkfvMLLAGmVf7\nqYf4+a6LNk8twLHSEVAwu89z2y7G1C3Vz6BUoTx6p+g2pGArFGt2j3ey1Ax+dFLKsFvr4rF7gF+e\nmObz0cusF9lN8W3eoF5jsp2pGerVqknNVGpOXim0jUwwN2Lap66I+6W5zX43MSfVIHFbRsXFc9gQ\nR6QQSG7xmQwPiJuxhm1ndljbAyH6f/AE/Z9P0470NrY2cZrvhyelPrrCfXMPuU/PRz9OCpnu8BPl\nDvn+uKXrx0cNCil+tCsUW4e54x3gPcY2ML6cODLDQfp75z5I0/UVqWJJjclBV1fFDTY3BZLdH+C6\n66+CYA2ltG688FkLBz2WnBgxbTct2EnpGmxi+Ra2+eAN/N6UOFenx3kneiSbPZC6cM0lviRxEC5d\n4h3woY//s+JmLYinKDEk1aIyddqW2tKZKdA8KSHcbr4N/+b4MDZZFO9Zu0nfxWWrdY8gL50AACAA\nSURBVEBa9u5b1Leq9Wf+BM9xufE/6zdplw1Rr4V5janU2BqH+IfoOH9r8tONtubiHHub9Tw2FB+i\n31w6UZM+wP8mpBY1qLnyvUofKdMv/dIv/dIv/dIv/dIv/dIv/dIv/dIv/fIDKD9QpEwsSeTo/EUi\nTQuTOh9YF1qjoqz7A6J7ja7OBot1/5z4NeZI0tlwmOhmoAs5gVuR/lUxVfcmiNJ6dAB8U3wWs1Ky\nCS0RNQ2KcyYpLoR3NkHUtNpE8G6/TaZ2QFmxXpFImHtXZ3Q7OvsqbgYnSjkgxvORT0rZQudN13UO\n0ufhPjNj1KczJI4MMZZHekSba1mdB98nw7G6u6brpYrioR7VFvUrVBrmVQZw5zbn7PYytN0n5QKv\nVH8e7hO5DQ0QaR5x830oRXZhcFhIixxZoJI4UgrizXHO6ypoarcPCFfefBNVja7ULY5bogGiqHuK\nYB8o0j2QEvJHZ1N3dohSHijiP3ZC6IVBZed1n7pY6RXEtIlhorxDYjW3itQsFEDuFHVmfoSxi+sM\n/8bbRIPdKdnMIH/3VxnDnNjPe3FszS90QKeh89tKRVZzZAAKLaKwbiFtYk3xdWxzv2QIGwoleM62\nUGJRKU2MjZL5PpIykCmjMpUgUzAxwvetNuOaXyeT7VY2aXSO6w53mWulI8Z3ZgFUhEcp44MdbG5H\nZ4inT/G7uJjNd+9z326TSP2AlHmaA7S7rnblD+if5BDjNBRVv1boj57bybd9cPGXsMmmeByCeT1L\nZ8DvNPEb01Jf6owzpn5xWW2nxLniqKO1+btQUjZZWeuVDm1K+Ln/kDKsnhrzL5hRFnqA525O8buw\nG1vxinOlNyQukiD+Kh4EFTF/h3ZkTpNB6HRBnLSjQiMoc1wXWqE+zvOGh7DdqhS6ijFs7Wyd++RH\n+X/jAX1akkJPV5nTjpRcBm+rf6RIYFNkfYp5MsNLdXGsDOKXQuKESO8K5TVBJiTf4/uZADaXLdHf\njXWpr9TIFIwp29SuC4UWwWZLISZnrCHU2ahUPJrYSm4ZX5SZ/3B8IS8DULGTYdaZkSEyJCUf43Cr\nzn0Db4GA+foi2bFn67Tz45fol5W3+X/r4FPU64D15skkc+vbC/T3n7aFZMwyZ6NScHs6wTl2b49s\n1aSXdeB6pG3lYXy/r0IfPDcBd8tb++LyWIdEZvGj+K3Vu1zX8jDvelL7yHSFBsqx1nwjqTFaF1dN\niLY8VQWxspi+SpubzGf3wDfNzMxTou/H0iB2Eh9jTsRy2HQvjU29Uhe6dQs/vBiks4vrzP/ZnsZq\nC5s8vIANZKW4sPtV/Pr5Hya7Vipj0+te5lpC69BjWdpx4zS2GByWYtom9YpoPbiyKTUj8Xoct/gd\nBRY/cyPYkW8Rr4VHSjLuELYblF9vCJVQ0Z7AW3U4sfCbBSFqfE3mknSCLCoUSUBz0B8Rf0pbqkZK\nWwaUDewJaeOoHvnC1KvbfH8r53L7raLz9T7xuZiUjnry4y1xWQRl245qR7crpKKU2FxaCD0BIXa6\nUgoSJ0FLCJqI8nsV8ZMEwy7Vq2aljtomPp6GW4gQIR+qQuPIzZrL57RVqmdSA3KXxFejvq8IwRGq\n/HkFqJ6yzN2Yrg9L2aTu8MMJ0SIES7v04fYkl0+wX506zxz86E8iQTY6S7uOpP5Rz0nZpixlq5IQ\nF+s8dzuLf9kvaS61uX5QaCavnznSHpEiYYaxKR2yDpWENgjLRiLiUogrgzyoscqKqK2jPVA4xhgN\nqr4xN6gLt/q/IH4OfwY/blIxaQoN5RGnTFeImkYeVF4+y+e7EaEI2kJRTTHOUx4peGq8j4TybUjF\nxJ0V+k6cNBEpaw5rrk/6xOmmPYtPPFRRw5ab4raot1pqD/Wrtt5XJvOlwlbNYQdFoZN7QlR5i9Sz\non1CRaher5Cozt7tOCUmhEVHKJ6Dh7xDePROMve4/LxQX2v6vrCPTYzOKdseZc+fuQH3X0gIm8Ac\nY7y7yd4ls4/fTU7jv1NCnGzd115CNh7Q3HOJF88v/7SXZz8XcEmdT+4kqj6PDgiRKRW69MN1MzPr\nidxw/jxohoAQg6s3OA3g0Y2mP8KcMe2BVr/D2uv2aQ+jd6SKxiorREhO6K3kFKiMhN4veiXxugmF\nsSG0Q7XO5yldH5wRf98dkEIN8fpNzmJTESFNb6wJkSNbH19kfDxSajtc1bql9fD8Oe6fGmP9u7vM\n+HV1guC4pStEeM8j7kWvEJBZ/h+YwFZTUkWtSC0rNIbND4vTc2uD8XdrbxqQOurqLd67IuLhWhTf\naVM8XNmd9/dQ1UrJ8g2fpaWqeUIortEJ3n3mxSfZaYqHTCjZXaF93BFsdTIpTsBdkNg334Ufae4x\n+PEmFrmufsh161v4sR+5BMr23EUpO94CBVQ8hZ+duwpq7P9j7z2+LLuuM8/9vPcR8cLHC5MZ6ZEJ\nRwA0omhlKFOl6u5B96QHPe//qIe9qlaVpKJEkRJFAxIEQSQIpM+MyMzwPp73/vXg9z1gVa8SFRjl\n5J7Jy5fx7r3n7LOPuXt/5/vOduhjkypaSmvPc8271++w54h/lff957/SmnfEWtkWn9KyVJJiMebN\nTgXfK57Sx4GW1OaGtD86jU3Dk1xfkErTsLnDfbVH6ClOEcnSR8//m9BvT5jn3/vzr9sfKg5SxilO\ncYpTnOIUpzjFKU5xilOc4hSnOOUVlFeKlKlLf/yoSmSqcE62r3UktMYukatQgmjn5DyZ16oy1NUQ\nEbD9B6A/SiGihT2xzMcniGJeukHUM63znbu7RNQmkrpvkgjYsVjrRwfU436L6PGmoqiVZM7MzPIl\nrl+9TkRvpGjttKKv8Vnu23ZL8UioguI+nzuPyAzspl/+D39vBckARHvUI78NOiQmpIyvQWTuQBHK\nFWUF128Q8YsvSAGhRoZit83vD0t1MzFmt5X9SAeIUnZiRMKzSWwV9iirsYCt6nXZNE9U8ndbKJUc\n7GGTqSxRyapY3cNyKa+LaGE2QZ9lV2jLhCK4Fy3js6bNvBisJTOxsIKtaxFs0ahgU48ynJEsfVAv\nYQuPVCvqTZ33bhDtdUWxQ1fKDw3xjASb4iPSufWYlLO6R7TzTJHx9CrtC0aw38sC/z8+L52ZInOx\ns4HdPUqRpt0895l4LZJi5w+FidrmD8gYHx7Qb+s3ifo2GmTJWmfcyJfAB/odxkypIubzMPUZdYgq\n93v4WKwtFJW4W1xSOhiPhUcPdBBzpGyVOCxOn8q+QyGAxB0UmBF/itS1uudnei5/j0uN6nzI80dC\nVNXExZPR2Dapu3T3yejEhxdX1vHoHLVvSJ+eLlGH6BDfDou7o+4Sw38QBIo/iq06Fa4/E8JhckXK\nYbv4xPEJfR9L0Pa5PX4/UoZyKNTBSYv7z/aJ7HubOues89vxFPNdr0sftEf4arKLz02sChV2Sp8d\np7BdIMb9Kmf41kxbZ+fb9LlL3AUZZVPcTF+22+J+PrHf18TV4jkRGmqZeqUe0BfPkthr5Yj5JxKn\n3Z4Qvz/py4eEbvA2GCOtJO2ePCSz0J/jTG5kD98uLJFJDbygft2kMpglMrTJBHNMtKTz1ULSBLI0\nJPFSvpRjPtvZUvsbX45T5vV5Mi2HSe57axukZWOec++Dfs7MzOZuoMYXToCA2X/JnHYrTSan8B3q\nOVUlG+hdB6pZ/afx+Xzuf/NN7PXRLve9LgRkd5+s58PNPzIzs9sxxtzKzCV7sAJKZ+0u4+QX/wtq\nFv3P+P61CfrG9Yhnf6+BrY6voxzQeSmVid2fmplZmS60wV3Ge8RPtutWhjrc2wa187qfTOLWFL4Y\nPSQTuJoRL8W72CL5Y9aayHV8+zfie1gQp8mgzljY/CrcMH+0xXPOpFTzYu0vzczMHyPz2Jd62zuz\nzKNzLWzn8eMrnTJ9VB29b2ZmpTnG7h0phr24zpiISnXP52Is/HMBFFMs/Xf2ZYpHKAqPX8iRPu30\nSAXJN1YmazH2e0K2eJpSFnMJEeNj/espIxmUUo1fmdfhiP5oCH07EDdEUJnrrjK6QyFuan7xsSiL\nH4rhg23xpbh8rs/bMGo2LSpkS7MqpKtUVrpNKQ5pfe4JuToSV41fvC4dAYw8LaFKAsyhTfHAjKT4\n09d63xDqwC8kTl8IgJ4nagHBUgddKVBpLWiKE8WEJqiHBQWsitNDSMdRnWcEpKgyRpkGlV3uaH8k\n+jbztZjH4j3+3lSf9IbU3T0SuijC87yjL6fiVigzBvuTykoL/VDs0q7dQ9aJzjk2HwnZeFqn/fEC\nz/WEhbYSasFzpn2f0LyVUxCYY+SPJ0n7ExHuk07S7pjQB5Uydnx+H2S461wKjgl+HxI6KpDSfjIt\nFHBH6qQyv8eL/QJt8VgJfRBRveqtsTKkfDqpPUEde3tc+MxBKqHr2CNUfVJhqgqGfMw++lj9GdJe\nKCpumpHU/6ZbQuoIzeXNsl7EKkJSDvl0TfC8kU/rmlfKZoMv1olR2ywcEaK1xJxa79Henny9rzEY\nLWLvtpv+GYYv/roUCFOnot4VxnyTKzeYVyeFXH7wyWdmZnbwQnsHofRn1ljz6+LnEHDSrl2SmqmQ\nIif3xYchhMTla6xFJe3HS+INMo+4CKOaP4Q2q3bok5r2iVNL4mIUmqoq00XFA5IvYvvjY+bpmaUc\n1+VAupxsirdOfTtWC51eBEn9Unwg7S772oUrvEPVy0LeF/j/ycv4TCLGZyhA31YbtGeoebqfZ8zs\nb1GflBDvS+usE2PVqLHKUzTEXmhKXJm1MQ/KAfWdmea6zALt2XnBGBxz0SzMcd3MddC2Z1XqPRSH\njkdI+osWn9DCTZGQuWNjFVju2zwfv/dISVh70G6JdielKusVSq2vMTm9AqKqpL3bwwegci0qFUOh\nPs7KY6ZFs4E3aG/deMM+Of5XMzM7fbZjZmYpL7/1ijuwvk9bB+LziXrZZNSHPKvv5XdvvMc+6vED\n+ry8gS2TN9nTTF/B1i9/iLLkw6T65hr7wuAO3zfvipvwmrgiheTWwRHzDcRFdW9Xz6NeU1K4DUwz\n/w3Fo3Z8hq8fVpl30uKOyVzFZg0pFfeEki2d4jsz8pkZ+UA/IXUo8T01hZRvNPj++re/ZWZmJ9/A\nDr+49//SLvvDan8OUsYpTnGKU5ziFKc4xSlOcYpTnOIUpzjlFZRXipSZihPdSyrTfdIgypce6mxq\nnyjxsoeI2cG+zmYpqlxRxEyCOebWeUALEwG7/5hz7b0+94v5iK4u3QRlEVCmYlDk8+SBuCVyPC8Z\nIhJ2512iucsZoqfPjsTQPUFkbecpUdaSGL4/+x33MQ/1KReJzF1eJmqcFnpgNk4kL7Y0Pk8uvpGK\nzqr1iNRNzPK7tM6Jxrdp/1Ra3ArnZPM2nolTQlH5sFRWpubjFunrPK+4Q5LiZGm7icwei0sk0VMW\nXJ9Fnc1PXOZ3Mzp/vPQVKVNN8X1rmyhlQAz4JZ0t9YtFfX5E5N/zJV2uWxIyRAgRt3gbfCtkGk6e\ncW7x9FQcJvO0rx8nWuoRMmi/zN8n0joPrTP+KSnx+ISI8VWJusYCfA93ab+SctYRh45HqkNz0+Kh\nCJFmqssZMxF80+fW2c0zMgyhDM9z+cWmXiMzsHKDyLvbx31PdJY2JrRCbpkM9e/vwjGREpdMfHrM\nucDnWUuKPbP8/dmYtT4g9IHUM+o17JES+sxSZE7PivjB3CVQBWN1jeMqGYf1y/hiMM/vwgHsPFL2\n7FTZJ5/OErv98u0Bf6+Iq6YptNfUKv019GNHl7gSBsMvMr//Xmll+e2oiI8mivhIQyJG1UmQG8en\n+MLVM/pwZYJs0maLbJUrgY+eKivlWabOt5QBLb4Ukm5R5307jIHjKTIAw7pQQYfKDK8wf0SFtDte\npI1z4k45EvdTqaj73tBzhQ47djOer06Jm2acze5Qn8gB7YjOMA8dVhize+v4Tl4+PiMZk3BEyigA\nV8wnlFjRy9wwPOb7UQi75DaUxZ/ARyJnO2ZmVpiTqpNIIMJ+fGx4hk/PVMjqhKQ4lpqQYk1S58SL\n1H9tRqgzY149jmvsBfGNoTLcZ3PK6jXJUGRcZItSuPCFS9wjbp0E6kiF1z81M7NPfgyCxWv45lKY\neftUqILmN+jXnzwng3TjJc/ffIMx9tYvlSnxwKnTrTD/Hipr9947jIXTDdqRv07mZPrpR3z6WPc+\n7O7bV5XJ/OAv6JP5l6x5/Smhro6YJ357E19YfCKFsRx9kC9LiStJlua5mP//PIPPPdM8sFsUEu5r\n+O5GL2dmZm/PwFmze/gPZmZ2/hKugKVzfLigbNXGyjd4vpBx+U24acJ/g7rTt/ewyftTDMLvZv+C\n+rvIio0+etvMzGxN3CZCpf3XCu24rvlkKDWgt5u0py6EyMMK680bFcb+eYd2P/uN+NgWWPvXV3iu\n2X+2i5ShR2gMIUHcI8aUry30RkSKLy3GUqCjeUrKYe4Rfd5140se11gZRplnU0a0J/4TrYcJqaK0\n9emTT3jE8dLtYqeeVKWGQqR4hTYeDb6QhnF7/DZS1j+shatv1MsfYX3qKB/nb+PjvZF4prQHcXel\ntiTEkEuKSKOgEDJSOIo1+V3NI+ROUMjSlqA2IZcN1PaA1oLmaHwt92xJVdKnM/lDUXeMUTdd0Ys1\nhAwMiDvM6+K6jhT/AkJXDqTO0xEnoLuJDYdRoXmlPtStjZ93caU/fi+1oo/w1Q+9jGNfmPluZ5Ox\nOtLY6NWV3feKU8xNijfiE0dBVkpcUiYLihswGmbejaY0pqWMGBdCJtrlPqctqToNeN5SBv6OvpCX\nPbWvWMFObTf71+ERvlCW3V0NIVGEeup4GMP1SaGxhDQKTlLPOaGxBuLliwaEWBUyqnjM/c/PmGM6\nWh8G2nO2tP/Par/vygkRKd4lj0t2FtdNuwB6OCwk6X5TaC8Xdm9rvXANsUvSK3UrKVba/2m2u3lg\n7pj2ph7m9a7UVMIa86b79IXCHtXYywXqzKEXKeU2NshLXTIi1aIFqQflt9jDH9wDWZKex4aXbjB/\nFnbYLz7X/ja7pjVKSly7j39jZmbFOr5283V4KpLisXj0KZyDwxZ92JZqXEA+lhQ64GALXxiJ2yol\ntaIxr2df60knJeR8R+o/ca6//iZrXk1jbPMB68REnL3O8k2Q9OVjnRI4YPMxPbOkelDfB49BVE5m\nxVEolPCh0BrDCH3iFuLdL3RUVeis6Wn2Bp6kuHjyQumOZfBc+O6kqCN9pr3SNr7k9+CDU2u0py21\n0+PH+K4niN2WL9OeMcLl9CXtqYqzJ6X3kwsX8Wa5xmp/mpe9cfZE/R6+3Wkxtr3T2MWjd+Om9vHl\njpTeDuif7GXeG5Zu4leNT7i+sk0/ZNfZ34cChc+rsvVw03J3lixxiffjqjhaWl3uGZvAePUy7wA1\n8a8tCaGWF4Lm8e/hsXFFxZ90ifno049A224/Apn8jT8DTdv5GvPCi+es6WGpWU4KfXW+hw1OXkrR\nUSb2hdmHZqTKvJyj3u4T9jwRceH0p9iPtnfx9auL+MjBFjZ8qXfX26vvmNkXSmMtcYEVtjUWH/Ne\n76/p9McUvwvExfUqBcnHHzH2bn4LDp2v/gn3ffg+Yzag9/Z/qzhIGac4xSlOcYpTnOIUpzjFKU5x\nilOc4pRXUF4pUqYgXo+N50TW9naIzOWk4x1aIQIXElKmssvvl99CKSIrRZyTKtFgj86Kpv1E0PaV\nrRvrpBf2ibiFBzpv2eL7VIrnzU9xv8tvki08ExrArZT7To1IW7lMxL5UIUK3dZ9oaXZW6iAFInDr\nt8mkT4gxfGFBmXWhF0z1evKSaPiUzuxtitOmd8Tvah666SAkhSOdyQ17x5kn2r0wI9b9Bc6VesQe\nv/Fkx0KKajbzRDP3tnbMzCwo5Ehjn+hiRZm3rNSahi6+T2XJxlfFWdITouSkSl23N4gOzmaI5LZq\n9OW5zlye67x0LCySgwuWkrLOI2UqZ3Igc8JSZjne5DmBNBH0y+s5MzNziVW9tU+momnYKKus/0AR\n+oaQMOnx2UopFpiPv5eF+JmOE1mvnNIHoyZ90Isos9oUZ4pUL2IZKdVI477R4He5W0SZ80VxCrTJ\nRMwu8Pt8nu/tvLJCUidqjcR0frxjZmZvv0VmpKjzjjvP+f+6uAxGUijoS7UkIc6CVol69Ptir58A\nvTVQ5sHq2DktFFlJihHmpX1eD/VrNnW21a3z/TV8ud6UvZQRCsW5b32f53fFhRMMShEpIYSMzo33\nQ8oaepUeu0DphahbSlnmbpxrd1yMm6HOuCeVefN1xHsj9NhEC1tsH3HdxJAIfbyiM+fq+8gc88TD\nXfo+/jq/n9W8cVohkp6SKshsgLHwvI1PZLvMZ62alMOWqVevT5t7yvi2Z7luINRVLctzh8pe9ZKM\niT3jPpeVKe2v6feyQ15qFB6hp5azfK//lsi+p6MMYFCZxT7tTQro1xTHw4yy5VUPWZdglSxfM0c2\naVIs9eUSfb8eZd4cVrB/XFozEdcY1UV9n2t+nvwB7a0J7RYQq/6wTWYmpnp11G+9OPPc9sSXm0u2\nelJ/+Q3nq11XQJ9dm+G+HwuJ9Oky30Pqt20hklaVsm+tidPrHnPRv9axazTH2elp9ZP7BZmSJo+x\n1sGHZmZ2dUWow0usY7/e+EczM/NvTFhFiLW/fkAdNt+gb56nsMXaKnW6s/lXZmb2bBrOFP/fc6/Z\nv8anAx/DK7F0nXFYF7LuSpW2PyiyRhTtvpmZfaPK/P5PlR+amdn1I82nY76Oz+CCefg2Ppv+NfNX\ndIn6xZPMq+Uf8fxih2zYn0yQkTuYIUvUXv0B7Xj9n7BBj3r/UupBN0+E5LnO/DU/JINaEKrgNyHm\nnbjx3PeVdXrtXs7MzGqTKDa8cYvvsTLtuWgZZyrjHezdklJjN8w65m+OkSz83t3jH+MMrmcMutDc\n44nj8y4pMnTEcxKSmlJHFwyFPHFrb+KWAlxHSMWxFt2ww5is9cbqSzx30PmCF8Xt6Zv1xcsh5SGv\nFJCaHuayYFscMeLzcEuta6h9Qlj1aWvv0RdvSkz3aYh7rhMTt9hAPE9C3AiAY8Oumd8lBIKy8VGh\nUJtCQXnUZi3xFh2J92Y0zh6L50d9M1SWu6G1J6Q9SzcgFK3mX4/GoUd7mZpQmB0X9/VH6YO2FK0u\nWobKih9/xNhpimvr8tsgqnMrtM99mXXEJUVHn9BEzQq+nJKCVcSY/1xSi/InaG97KMUbL/Nfq8Oe\nYOc533tFJuqOUKVTIa6Lad35nFdOPEDZ20JteZkT+mNOG63p7ao4EVr0YTOPnRPqF3dF/dQTgrHJ\nHFXb53Morp6gsvdhrR/pFHse1x3qNSEEUy8pFFZf6Cztpfod5leP1LkmxOvUl+8NA+yjw0LKtCu0\n41yImeaOuM2kYNarfaEw442OzC1uHZ9Qz+6xcphbiFJxRPikLOR3a28XujgKojeWV3PxjKyUZsdo\n/n1xlSTEkbh6Q+gmIWtevOCdKBlhrVtfAqFRPGe/e7TJPnwiC4Jm7RZ/Pz0VcnEbHo74DLYP96Uw\nFZcKqVBoJaHs49o/h7IB3Yf7j7mmArLVoMp8MH0lZ2ZmHinX7D4E8VOtYLvr7zDvBzX2Pv6U+d/T\nx3fmZ7n+/Ayf9sles7NC1uh94UT8HLdzrC+NIT7Ykp0mhHQ/F+rYfUZfF6aYW6bCoCRamrB7HfEv\n1cVhU8ZeiQQ+kV1k/Trb450uL3RWdpn7hMUhmRfHzPj9IyNOxox4kC5afBqD56ch2YP9/KxQtl7x\nhnaOhdKq0y9xce1kptiTTQo2/OQj1ssDqaveuJyj3gtcX97jHdYnDsvlK1c+r8tkNGmBQcyyGWxc\n07tTpaB3lOvitSnhA48/wkaTi6Ce1m+zlj8UevL4BX1x6XuM++w6ffvRP4D2d0+KEzVHHcslnpMv\nyeZz7K+i4obNP6ENG/tw8DXEIRl8D/RwSqpPT+8KcTOvtUyIvmKZfX7dxbwcXhL36wMQ05sP4PO7\ndJsN29o1xqRf78C1A3FNNqinq8313gz70JvX+P7hb1Gu/N1/+bX+X8piYw6rgz8M8XaQMk5xilOc\n4hSnOMUpTnGKU5ziFKc4xSmvoLxSpEy/QkRtMU20d1bqRbEWUdnyMRmN/olY6ZVpCDeJOPUP+d2B\nzl82g0T2RE1gZWX/szGigjunUsXQ+cxSiedPKKs15vs417m8z+6RCfFGiYBlBSaI6Lx3MsX161eJ\n6N38Buoc+2WiqAlloF8+IGp98BR+gO3fw2GRWiDCOOrSPn+KzOpr8+Keuabz4iHqt3tCpG4w4rmD\nCdrVPiKyeKAI3NPTfdVP50s/fGi5GBHeccRbx/EsFeQZs7eIDmYu0wcDMfkf7JOVP9smIvzgYymV\nBAhtpzJEdM8UwV/SWdKaMoELHmUf1IakMgYXLQFFjAMTUg5Q1v74VLw5YuRfUVR1nEXrPqcPiuf4\n0OSqsiM6x+wa6Nxzm2xLQlwAsUl8oPZix8zMojrH7R/zA40j1sqiJKSK0ZAywaSQQkEhdfIVItMJ\nKeAkZO9TKWulM9QrKbb73VMQR6kpsc/r/Pb+Hj6UmKd/pqbpwPufkFHJZvCFyAxRW29IigQ6t19p\nizNHfBnBSWWxJvj/6qF4jHxSHFCWMRmXIoLUQ4rntNP0u3SAaHejypgcNhiDMxkyNFU9/7iobFeF\nT/9A3EXKtHTFreNrkW1z6+z0RUpYEfa9cVZBZ+Bzj/DR9gTzQ32a+aMmBanMKeOoeSlnZmYL96Su\nNCnenVnx7tSk9DIgU1CYE4nVIT5fTmjeStDmUpH5I3guJMkq1+WPdQ54FaWcOanNpYvixnLz+68I\nldTo0veh3+GTU7NCKW3iMymhBl7OcP+R+C78DXx/RUibkJTFwlvUc2bIPNQTb8S0F98prPLcA/FY\nRD3Uy7MttaEb2Pf3fezqHzBvZUfMY90AmZMTn1Tz5PNHGpPBDBmP4zB97Q3SNUZ0wQAAIABJREFU\nL0fy/bAylW6NgU6fOSt0yPXnOcZovkF2a0IZ1ouW4DL90lpgnn36O3hQyjfgmHn9Cc+d/zX1bv85\nfCpHv+f/vQXxhKT/g5mZbQ/IhHz9e9ht/+fKNAfJPl3towz0Dwv0xzviXPjdv+TMzOw778DbslCl\n3Z8GEnbpOX/77I8Zj4m/pe/fWSebcxCEiyWwQmbyUl6cVa4fmZnZyT42CUbp0+ZP+fzoPcbvN3L4\nzNtFxtnRACWEYpk1Y80FAu/sFjbI7JE9+uwtfPOaUKin6/ShawIfff2fydj13oNf44ef0ta/uUW9\nJ3/G9+ICPpNOMQaGR9Qn5x8rHZAFuzNWQBAS52mLNXvepNT1A3zgaAufDK0xtmYH3+T+3Q/MzKwf\nYj6+aOkL8TLsaexIIc1a+G7XwxjzSaqmK9W5YRC7+7XuDVpCS9SU9xIKICw0XEu/H/R0/VCcNQ3u\nO4gJJdLkuqr4oULiZYn3ua4zEhrAG/y8DR6Xx7phpZ4HMbULH3W1mTv6LvwhFqK+VaHtOm6N1TEq\nQYBFz1CZciExvUKvdMQfEhAfyVAcOn6hJrwJn3WajIu2UD/DmtagsO4p5ERAiLOG+sDnFseKKXPr\nG6M5xfcmFFNdqkymOoTc+JQoUKxel0qQbOcV90y9ob2FlMMuXIQCCggBfec2Yyj3VcZmSCo9fSmo\ndCrYvi1U7nSd+pW3+N3ZiP1bXQqXYz6MgbjAKh3WoWCd3xX7UqTRXiIkDoag1ouK+jp/wFhpiO8j\nuDWWfhzzb4hHRHwboz7/H5O66VRS6AqhwXpTQigJUeOu6jqha+vaE36uICMlySkf9SsI0TSs0M66\nePWCsk/vXHxH8rnomE9JSjEezZ+hlpBNogvxR3n+mOOmHGHM+8U3lZ0V1MfMbt7+tlVNKlIl5rDC\nIfUIxWq6P9eVVY+kOGaarov7SUAIE5+QaF5xuHROhbxr8P+T4oMLxHnG1mesNV2Nv4U77CmG4nk7\nuMd+b8zNeOkq+/aREDkb96VUoy3KtUlsUSyxnrh8XNep4lNFcZEkxRkTSWPrxn3Q+031VVSInWBA\nNx5zqmyB+Nl+xp5iVQiY2XnQC8cPWVfOtB+/fIWxEolz/dFLralSpmwL1ds8ZW81d4n2Ryeo15O7\nvDulZ8XlOKXTCXdlF/EDXdVpB9HeWf6Y/XZEikEDP/vk8f7ep/a5hRI7+4T2RLzM02tS8B24uf/L\nj4V00vvI5LLWv9EXvnaRMtDYmpijv0tn2Lvb0ckCcTP6pYzZFLLnsdS35vUum5rDvwZR+vvsEe0t\nzLM3nFtlT1KqMHYP9niPy1SXPq/LUblucWuaewab+k4Yt2f7jJPwEjZfu8W+qLbLmrv5e9CpJhTt\nzArPfPEJ/1/ZoO6XX+O6rt7ny4/xjZIUYAOTerd7yjzXLmOLmWvY9vJXqKvvKWOneiC+pDy+HL1E\nfWeO8Jl+nb6MroHaSu+zPz14vGNmZtfVp6/dwVdOxHe0/4x507UiRHtU72xtxqDXL1W/Aj7QOGbM\nfv1PvmdmZq+vs7/cOcOH6mf0STrEGGtUvuDx+Z8VBynjFKc4xSlOcYpTnOIUpzjFKU5xilOc8grK\nK0XKJKTK4Zvhs1giUr35XFl7sbV3j3bMzCwk3fB9cbYMxue2/XyuTRCRcos9PuUn0jUrzpjYIt/v\nrHD215/lvuFjIudVcT64C9Rjep6I2+0b/L5Qoj4RRUNjUi85yj81M7NzIWF2j8iQLk4TBe+UyWrO\nxznLO/O1P6L9Qj10QjrD2qDex7s8v6Bzj4MGmYeRGLrH5wkHLvFwiCshEZRaiFAu6WWe/84f+2xi\nOmdmZr0R9w60pf4woO0NZew+FnN2qKtsiJAucTFZv/EO5wYjWSE5pCiz8TEZ1QUfNhuVuT6RFlO3\n2tIWi/mFi7hbOsok+jr09daO1H903i8gtaP8DpHkoBAaIbG2Z7NEbwNCU3XTUpUyoqnxsLhPpPDQ\nKZNVX7kCc7ZLDOMdRV/jYiL397kuf8Jz0ymitYcNKdLo/OH6ZSLV5ztEgWsbRJ+XlOloqB1tIXGS\nSXyjqKiqV9moKaEuCg36sSl2/OgVfj+Zw9drVew8kt16NSnEeP9Hzhm/zlcX66A2zPj/YFLRay9j\nJqpz6e08/ZiYwPf7iuue7EldSufikwk+RwPZW9xAY8WMhDIzXmUeykLSDCOakiIX55Qpd5X9cDHu\ncj0Qa/UkPhh4ptSmOJbqss3ARTYm6KauCSmMdHUmvnWmc7s9bNyaY1xd3ZfqhlQ01rexcfV1svZ9\nnakNHmLDijKY5UP6qBWXQomb+SA4wnbDHTHxL5ItmnmmeUsZ5YkU7Xgu/g+3R4z828yfiRV8YrZE\nPdon2Lp9ju0XL5MNGs5Qr/6JOAsmsNsNL///2C00hLI1sxnqs6eM9EKKeejMrfPtSfrKpazPbpWx\nsxgAvTa3SfbufI5+CkuxZiCFnYwyLt0sY+fYqP8tP2M/Py1+I/ESTervUSlcXLQslPHd6PkD6h8H\nrRH5ADvdD4BQ9Kd/aWZm9/6Wue17f0lGpbbLGeP0fXhZFjkqbHf/AXstrvK5uUD7/SX6J/BbkDWl\n64wFfxN75h+QObr/F8yR9qsH9tmb2CRaFxJuGm4Ye44qx+vilJmKs6bE46x5ey6hj+rfNDOzxDK+\nXI7zGe6Tzak2hNCo7FCXfRQQ+n+jcbpNtihzl7YHvy3llSjXF0ushW2pdmTmmR9/HvyvZmb2nQ/+\n2szMvr7Ofd7PU893l8Rp9jG+srEKomZbiIvZDOvK1hWyYoshfOv9IxB4X9vVmJsV+qzD2AsI7fZQ\nnF4LO/jG+z9g7Od+TGb2oiUSkUKOlLcaQdbF8NjVhBTpKmnuEY+JpytuGfEn9YUO6/ulCCOVkDEr\nhUf/iirDPQyx7ow8mpswl/nFwzTU2OvVxA0TE49RS/Olr/l5G0Zur4WkxjcUJ1gwOuYnEZeN1lFT\nJt8/EgeZuCbcXnF/Dfj/lkeqT+KBGXPdmHg7vEKbDIW0GQnl0Bh4PkfEBGoa9yPuMfxcMIq6j3w8\nKxJo69a0oSMeiqhIZ+pCRpiQ04EK13XD3KfeY02L9IQQCYzUZil6iVfHLXWdMVfXRUswBqfJrf+N\nCeCd//0/8f9RbHL4MVwvB1K0rEktqNtgzDR81CM55v2ROlK9rr4/F+LFxfUBN2tvYIl5f3mWeXwy\nw3dPm7Hq0VpbG6kvesxDff3dX2OePRppb7LHcx9pvraGFDRNKn1a28NB6umLMbbiGSmOBbH70qrs\nF4QzotKM6JN19ME+c0ftUIgT7UFHWm/j4jupT7M++ITCTcnFBiyP5j/h92fiEho2x+s4zw8MeT/I\npKiXN8wc0VY77T+aPb57z/zybe8YShWWYpq4ckZSRnOJ/6WkMRrqXpx7qNWgDwJCAKaDfBalyNVp\niKtlVXuEAvNcUfwdM9pvp9LsGbbFAVk4YF6cWWLvkFqlT0438ZWKECHT89pbTHOf2jZrfFJos05V\nvG0ap9NrrG1jxZkzcRomVnJ8CvXaOKddR1LaKYtPKBMU59kb1LdWxtdePLir9kuN6Rb1Oq9xn/MS\n7fFqf+lSX0ZmaFdaaLSDF6wjI+17Vy6BRjgSQr9exaev3EbCMpPieY8+5H2mLgmv6VXWl/g09y/n\nuU6ip1Y7Zd2qFaWKehnEzxgR/uQRSM6KkPHLV9nXR5hyrJD/wyiI/3/py/6uxljFT/NsGX9p650w\nKP7RdDDH3/OM1coO/T0zyf7gao454ZO7oIBfPAARk1tkL5aS2umggr3n0tHP6xKIt21/68Ru3sYX\nxqpJD7d+yr1+jpFi3+fam9/H1q2f0setGra7ugzy+ETvSJ99+AuenRLie53ram32ACUhJ1evsP/y\nic/s9Cn3q+zz9+gEPHiZLPNffox8EWJmJcj+0bOIz29+AtorIC5Ij1SY+uKKbQdoR0Qqq6MTvUvq\nHbCn9+qg+IaicT7TadoVT2HrrU3QW8/ucrLm6jo+Ee2zr0vN4kN3/vS7RsP/8L7VQco4xSlOcYpT\nnOIUpzjFKU5xilOc4hSnvILySpEyQx183H1GxKsgHfKRzhLfvEJWrqxI9tUVsl4n4p+Iz+qc95jV\nX9ryXWWlCh3xoTSJXm7sksHYeAyixVMl2tnT7xcniKLmpebUVGb9aIeo8LMHRN7CYvePJInAHZ+D\n7Gnn9b0s1MBY2eiUdlanhHxRJO7+Q6Kcfj/taxd2zMysrwxPUpH+Vp76jJVu4tNCfTQU6Rffyfwk\nmYqwIpReZagKxbK1XhApf7lD1qIxwDZpoY8m1oTAEG/CQoTM2nGRtnXT1Gn3nEh1Z0/KM8eK6J6R\nFYko63O6h826B9j2k1/Av/DWl3S5Xh3bBcTAnZnAJvW7KJ0s3SYaqQSnPdmjvutrOWwR57qelA4K\nFWzoE2N/O6SMpljwKwc73E9Zu+QCUdmyIvVHp3y+8RaR6Y7Otw+U9UtNEdHeOCAamxFCJ5rETrsf\nUu9Gk3qszhO57kr9qe/h+oAJHSXOiOl12j0UmuHwiDHjE4rApTHSM+7bllJZvkbFpoTumowKoTJB\n9t8jhZzz43HGUxxAcaLNvUZZ9eM+lTIZjvSyuHMaUsSQ0k/YRYZiENAZ2bKymxXG2rUcWcazsWLP\noRjNdW47OcJO3ebFkTK+OJmvs5rG23PGoV+8Qf0MfTEd4hkfX2V8ejax9fxIvDstn+rAszPiWdhd\no44TEc5Ft3ugppIHypKfMP5mw+qzCWVuu+KOapAZOJ4WH9EWbQ+vcEY2dMC80/RSr/AO2aEbQ/FA\nnPHp8ePrk1LEaRZp12gWX1goYPNunaxOacjzInUyuuU2fd3w0keRy1zXWSPi39P58sA6n1OH9Onj\nbXxuVtwDYWXFKuKCyCnr5zmgXi+F1AnExZcxyZwQ7zL/Tokn5MkWf2/0+D5/LP4PqV10z/DlTI9+\nOhTyqbwpewS/nNLBpjIp2Xmem2xznxtCKTze+DntWkdp6Ls3sUN/CNLn0Tm+2UoxVl9LkRG67mXu\nGwl9MjMkW/ihsne5Nf4/a2Qfl5eVGddzv/Mpc8QnN9tWztMn0XWudcfwhUSWOqzM8Kyff8b/Z+/g\n00vvsTZ2xJcwVBb+sngWCgUyihMtrtub5/9vzeHjLzrUIf0Qn978Olmf+m/xjcEsvnQnybw+iOGr\n20eMiclFrn+8TFbs8H367I134dkIN5hHryfIuj1J/amZmfkfcu78Bqa14FN+t9/h+d+/9n3q89p/\no/5p+jD+O2x/LYG9/Dl857PXaM/kTxhT099gvrb/xy5URkJzNJVN9yib3pfCjafHetETb0iwiY+M\nwlIAEqdKuCGEouAg3Ygy0z0hj1ri0Qhyv4HGVq/L78dsSaMg1/WFXB1ztoSF0HRJjcTb+YLLoOdu\n2rA3RjoKESuePhty55EUGwdufQa4zxhh4xpJfcmELtE+YWTcxyeOi6DuYyNx2kgFyhuV0k+3b80x\nF4hQmk1l6wWIsYHWrJHWkO4YuaKsuUfImKHmab+Uo4biJRsI/TNWTox4+HtdiouuNm3ySPHPxPcR\nFi/QoD+WzLpYGR7i+1s9xmLmx780M7MzcWXVpcjSEPdhS2iv4JB5MyR1wGqIsZhJUL+lLD4b0toa\n0V7C7eezYlLMKuM7xS32y608+9lBS/OVVyiDuNaniNBe2gtdM8ZqUdwx0x7WyXaderZV72qb9jWK\nrFfRKvepCX3Vm6cdjZra02dP2c/z95FUozxSTgvOKxPdZH70aX3rBeiP+SZ/7weZX4fyvaAQ81X1\nb3KIfUZR7hudVyZdY6kjzhnfgHqVml+oL/XKXROdknXFPTfU/jnQ1ahzCy3mbuor/98KXnzv2hNy\nLS3eR4/UyY6lihP0C90jtP1IKCa/kMOJCdb6tof7FLUvNfnC7I151Y267m1uq83YfuYKe4uh9lFN\nIT+m49jMFWX8RsLay4RYuw/luz3tQ9dugpboikPmxUv21yVxTMYX8emlO6AB3No3b3zAfr/VpO9u\n/QnIlojQCc8+A8FRKDLPLq6z35y8xF6gW6Dde09o98tN3pXW3gBpE0lR7/33QYSM+ZUmLtHuqpDZ\nhX3m/+Q8e4XcGzkzM6ucM1bGaLbpKfHXjaS8mWKM+BLMEbvPsW9XPCcrq9glExEq7FSKlLUvxynj\nEvKyr7kqJOf0h7lPS8phdfFsTU+zf/bN0Y+HL0ECVQ/HnJKMgdwavxvv5ytSw62UsIsVxPE4+8bn\ndVldyNnG82f2bJP5+M4boGCvfJc1eP8Rtn4sXp8b4tDKzrJHONjGluUUtrj1Jmv05q8Z5y8/Yf+X\nvQSSJKB5/vwz1vq0FKymlnk3qQgBc7ChfXGcv0cWGRuBCd53O3tCWufwtcvL4mEqcb27yt9d4g+t\nict2HG8ISe05NUef77xgr+XT/Dxa14kXqfXd/xSk9Ztf1/vDTeazradcVxxQz0qbMferv4Pvb+sT\nfPjq1Zz9oeIgZZziFKc4xSlOcYpTnOIUpzjFKU5xilNeQXmlSJlBgKjehKKNCzfhgij0dOZVGZAj\nsTUHh0TU8lJwie1wfWaaaOB2QefzImPuCK6bmCcKO6fI2qSYvF11rhuNlPEQI/f5KdlAV4L7eBWh\nn5kiInbtDe7j0nm/wBnR4gmpLbnEYp/L8bnrESdEjPvn20SHO2dELyOXiS6HE/CLLIt7waOo6ZjD\npqWMcXSCevfE77F7SGSy0ieq+uljtOqTUmQ4bJTs9h0izFPL1Gkuy/k8n7Ipk24ixc+eguTIXud8\nX6+4w++l7tOti9W7QhRwKI6V/BHf/WIzL0utITfPdUtvg3qaXSPCf9FSVV9PLVC/RocIekvKNXEf\nfVJVFmcg7XodjbdCCx9YCoBsaYujZdgXM/8i9U178YkHB8ooTBJtdQmxUnwBwiiZIAs1sUxfnTwg\ngt6Wck4vgq9UG/hibhLf9opMoKOkXHIKtIK7Le6CGmdzo8okdKVmVFKm9VpEZ4fLZCrOj/ic1/ny\nxIJ4VdQfZUWH/Ql8IDKP/VwJnSk+oH5H+0JbVLHbpFBbbvF9FIQEqhfwdY/UppYUiS+Ke6dyLCWe\nZXy875EqSFNoNHEojDkHKnmiyuGg+DSUqekoG9itiFThAqWn7LNXHEuNiR0zM5vqkTVxvcAW9QUi\n3sEstjwsCfWzR11DstGBzknPZoQYOaJvt6awTVp8RKvP+V7t4wN7xvNeL9Omup95Yt8Y51da1O9J\ngXnCn8CXfTPKmuHqdk9ZqiviPshLwWXBp+xzFNtNJ+jrjniIGvNSa6rxfHdKylgvmB9mK9zPn+Fz\nq0v7bgi5016jjzoFskXHQpLE5sSW3xeSMUwfzzbIJDR3GUOZAc/1Rvidu0PGIJblvhs1fH2uRX09\nM/K1+9i3dBUDrDaxY6uOXc99XO/yYgd/jPlzVJOayAXL2318/WMp6cy7ycAcrzAnrDwDbVK5x/z5\n6G3+/0YIX586B+my8hZZslqA6+9P0c/9FmP6zhMySaEyGd3hA+z5mZ92vf1N6l2KMnZ8Wg/ebQTt\nyTJozOS2kHEuKaK0qMuzD8g4Zr6FqlHxU/GHTcFrdualD+LK5neFALwiLq9PpvDFN3/L/PW7HWx/\nOw1Pzq99/O5bmsfP7tDX/mP68nf7rA+JuR/wKTTqtRzzxacf8PnO3NdoxyH3O47+2MzMnosjoF8A\nUXNjhC0918nC7f6cbNUfa578+OQ/m5nZe5dRSPj7HuuPdwIOM+X9bDPP2K1/xPzWepcbvPOLL3fG\n3xXBnhFxxDR68jXvOPvOGB5zELTEIzIYagx3hLwUt4yvL8Ufn9BtQvVGQoyFulAiwY4QnEJ/aFmw\noZexGdHcMBTaryFkTECIna54WszMAn0zrxAyzZ4U2TSvjsI8x6Vj7QOpvLiFQunZWBmH9salJiWh\nNusElWGXmt9AfuUW55lXSJqBlC9bwYHZWMFJSOaER1wufnG7eMUNKM6Ydpxr3UIt9QcythAtIaF7\nBBayoAkNNOK+9Q629ii77w5qLZKN1MXWFbfLyPXlcpNHeebTzbsPVF/6aP4aY2qsMDmv+a0/zfiv\nSsqqI7RpWzY/rQqVK76MwQT/LxNbVLYchFlL23khVtgCWK/KvFSQmTolxv6h9rWmfWBIa61cz0KT\nzC1p8cf1xJs3rUzzWgf0QyAk5RchR0ZC+dZOxCXmY4zNyGk7M1qn0tS3K8WvuDhghkHG+ERGyE4h\ncnoFxvaB+E4qFfnJJOtYdlJoBj/zqjclJGVHSjxSBmoPNL/qubN+9r5mZtf/8nVraAzbKQij0qnU\nrsTn5IpyH5dQJ0O3UMSti6svJZNjhSwhFU5A9NVL2Gr2TXwlIrT/k9/tcKFQXEmpjZZ3mK87e9hy\nYp41JDPPXuZ8AwR85ZCZMLWOjRam6Nvth6wnbW08/UJut4RcjmifV8sLhdpgrZ+f4/5TUerxfJP1\n5fQA34+nmR9X7+TMzCws1dWHD7VmF7SHEnJlcYk+Oz5i75J/QV9P6d1v5Rr7+IAQedvb9M3JntC1\nM/jmlRvs43c2cP78AfZcf/e27Mb1j/6V9XEoRbcrX9E7m9SUjjcZu6OSeDrfZIyOpGbXlMJktcJz\n49ozTS6xHpakVnpyzu9aTXwmIw7Ni5YxCssvZOGY78olRaKU0MANIV2rzfH7EP2TlwJQLS+EbE6I\nTb/GaAefvXUFTplMEnvvNkDY7Mh/zMwC0zFbaOfs8X1QTJ0aa+xkblLPxEYvP2N/U5cC7tx13um6\nQtxtbvKentH7cuomyJiqlBZj4ke7fJv///RD1v6dp/TZ2jX2DmtrzD9PVL+i3iUm3DxvLste4lOh\nlPalBNaQUtXAI3Sr3u2m/fhKQ2OyWqe+fvGPzgt91izTl80iPjo7pP3Tt+EAfFTFpoVT5tncNGN5\nZlGnBwL4zJ1l2n9vC187PsSXZ9YEC/43ioOUcYpTnOIUpzjFKU5xilOc4hSnOMUpTnkF5ZUiZWLK\nmrvFZuwXu/n+B0Tv0h2igt09oq5FMf1Xj4h4bZ5zXnB8fvL8nN+//gYRuEPpl3sjRHELdXFJSKu+\n1+Z7QjwYZ2MUgnhMInGizqUDIoJVRZGHL4nYVZTdEnjD/NJx97aI0B0+I4I3lNpIU5lyz5Dr1r/K\nmbtkmMjduc4eHxwTidva57z9jBA2vbz4QnR+0qdMcdNDxuJyhkjmklSdLr9F9Hi1W7RIjOhd4xFq\nHr2KziWfcq9qDVtsnFNnnzhF9nT2sCllgHgIl1m4SfZ4JcP5v6M4kfSZCJHdpyZbp8VhoujkwDM+\nLX+xkp4hsu8J8fzTXaKh/lki+DEhV55tEFm3vlSM3NTbv0g01R/nuecHyva0yDYFdaa2LkSOq8Vn\n9ha2ax+SXT+VOtD8bdrblELB9nOin9PLQqIogxlUOirjxY5HUuzp6DlhIYgCIepRruicu5f6lIr4\nfEpnhl3i1Ck85f/dNfpv8l0QTW2doy+fqr8G/D2u8+pjxvBOD9+qFvGZgNBYsxmivG0p3vR7Oucv\nxE7HJ3RamihvQmdtH9wlSxcOKmt1GR/sV0FD9MU1lI7TDz1lfus6/x6OMWaGOntclkKFJ3ZxP3GL\nOym4iQ2zyhYEdU63msYnTwdkq+Ixvh9mGT8VnYFvuaVwFSIL0RzQZ6dKyXr9IBvih9fNzOxgBh8P\nuOVzD7C57w5jKIDr2vS21HYyUr7pML/FPWRVmlKiKld1XrwldTkxS0QT/L7XypmZWbKP7TeN63pL\n+KKnT9/lphgj1QHZodiI+u2nmb8y81wf2FFWW5H/0Q6+mhlKzSOAzzwtiMPBQ9/PHfIZ0pn9ipRv\n+uLaWdzHvi8m8Ym3p3i+/5DnnM0xzw8f0v5WBZ+Y2WUsnxn17MzT3tgZ9rwmNN52T5mMKaWGL1j+\n5UMpgn0X1MWVX8Ah82iFsXhTGdh0i7H8+9Y/mpnZVJGsUiFEu54/4fsP3iZD0k5wfv6q+uXoK9T/\n7APsOX3lZ2ZmtrbBnHXvHu2ZeRsVvpDmmH98K2L28Xeog9BGd0pkbz5YZVxcmiFLNfolfZL5yte5\n14Yyndc1T35Cm4Jfw4dCXn7/eh+ffj+LT12bY94836UvU+/g640Wn9sF1tg7brJWP7mNz6xXyXgm\nhJS7/xQkZLLzoZmZ+a/+nZl9oVyy8a8gfDpV8l7vXmPtqy0yv/xdkbH72vexcfsua/FMmnWmNWD+\nC37K9+kkf//ohD5497v4ZLMCkudegT3AT3Sm/qKkMi1xOIR6+P7QhV1ifuzbFbfM0KvMszhVekJG\nWkzrXFNbq4C4X8Qj5w3SH1257kjze0tzTNBPP7k8Y/4NIWF0nt3d5HfxoDK04vQac7yYmXlbEWu5\nuY9/rFro4bruWPhBJGwuIXxMqN9uUJwGggK53GNeE62X4pppiJtm2GAe94aFEJJ9oq0xZ4XbTOpz\ndbXJ29Ez3FKqUiazE6RyIfEnmEsooy73bqpvej5s3BqjjkbiaBIEJihoTkBtqAil6W9wv772S56a\nuEKUUb1oufl1OMLStxmb3/lf/9jMzDJX2RucFSUXJF6M0qmMXuGzV5bSo7h1TKDQkTEm80LADJ4x\nxl6Ku8bGCCBx4ySEKojOMF9l1E7XZanVCRHSKGNniTNZWAiQWpex590TCixP/U4n+OGp9lIVZds7\nHeweCjDfR3rMMf4Fjc00891MkvsF1B/NBv1QPWRerB2BOn7xiHUuKMXFuFDGs7OsA0s3QM77PNyv\nc8b1VRnofBs7bErFpS1+p7DQY2HN16dCH5j9J/v0ow8sJZ9vad3Njmh3QUpq3rIUxDRnjkbigPv8\nPv9+CYfEfVjFVoe7zLOxadbWtSs5MzPb3cAGxRc7ZmY2c501Oyrett2X2GrkxldmliX5JxTZ3mPx\n+ESETM8xH/aFjDl4xl4gmqA+8UUpHP6M/y9X6Nus9o8TEdbAiQlxF0rdyuldAAAgAElEQVTh5ugR\n61E4jg0Wb7JHimS0dznC50vH/D6WoJ0r4qocSUGt/FTKuuLCmhA3SyCB7xzvcJ/8M9YdVwjfuvJV\n9lweKYvtPeF9IxVmXzkjBNHZrhQhz6nH9BUphomH5PQ5+9Xdx9h1eon6rWa4z8ZT1qe29iSBm/hS\nZhFfKmxw/f4j7r88wxyQmctx3fDLqcuOOX8a4zHZ4ntvm35Nvkm7/G7qmT/ZMTOzmJCkU0Hxl0jN\nKqd+bmXx6YfvY8cXIfZOuZvi7rmG3R99+MnndanlKzZ5edFuap4u7Ikj64Q1PncJtM35EvPGo09A\ngOSO8IXcLWxQilPnx5+wV1mYHPPzcN+XL5nXPHr/X5CS2MDNe3XpZKzkKhU9Idiaigecn7IXCkg1\ndUmqy7PiYToeCjFXxQbeSa2N4/VBS3NH80Uhr/laqOLJa4yx/V+D3PnVT/7ZzMze+Uv2a0vr+MLd\nh9iudVccs9PMhx3xGS0sUf/kCu2+fQcfvrTyh9FUDlLGKU5xilOc4hSnOMUpTnGKU5ziFKc45RWU\nV4qUyReIjOWfEPkqitm6n1ek6cZXzMxsaRLkR1cIkZs3+d1hm+zd6i0yFPfvksGM6TxnRNwFkRix\np86ZMhXK3u/vkVVrRoiSlnRGzoRMmewT4W8oxTA7TWQvHZUCRERZsjmiwiPxqBztEU0NSm0gpDPV\nVanElKQGNSfFnCNFo89PiUBmZ5X5kCrJXFznMQvUb0pR5a5bXAg5MaDrDN/9Y6Lg+VPuu7dzaP4A\n0bx9RaDPxVUQ15n4zBQZyNvK/qR0vnjnkIj0yWMi6e4YdeoHFTEW38Zmgd/VU7LBsc4Hb/G77SdE\nFUMJopEXLeNoaUHn+47EyD19mXoOlSHsnYEgCep8dDsg20mdqKMs24GUsvwJbJacxtblHbLXYyUH\njzKhu2IUn1+gj5fErbNxj2ivS4id1TvYL39MpN7T03lGw2dOn3K212TXZbHMN5r40Ok+dsokiTJ3\nh/x/LEtUNu7TWdYqPunOUP9IlHrV6kI7SEGn28YOE0n6V8f37fiYqHdDnDOhBbKF3hmdXX1IRifh\nZez4lLHxBslYBGbxRXcooPvQ3rllot0ZIaKeSO1rIDTF7BzR4dIWdk6GFJUWemS7gj3HChtBP+26\nSGkE8YWpIOO55MYG0TlxRj3AB44T2H6otgV7OTMze6AsU7LO/DIXw/ZFZWBLfvrc9Zj/z8zTt/On\n2Kw7wKf6k6CmRibuGjH5Hwpd0JESVjjC85+LK2ZaPpts8Pdn4hq5XFCEP06f14VE8dXo00kpxDz2\n44O1MP8vV7cZH89t32bstNtkLCINnpeWWsXJszGvEn8PS83iSCiB5Rg++WCfeXO7ygNWQpyxDQxB\nRySqzDe1JeYaf5XnH+5oTAZBU0RK9HU6S7v653zutJmfr4j74LTG2BsEqc9ZWGNVZAqqxoVL+Boo\nlNQByJZNN1nFP0qSNbIkLPk/vMLz/mRbmWE3n6UW/frWFXx28xH90RmCyjg/Y467ssj9vFV8eH4H\n//wwrUGYZAyEfyYej2nu8/ZvWrZ5hT7NbdD2n95ijXtv/6tmZnbvufjJEv/dzMwOXjLvld7F1978\n+CdmZpae/ZaZmW0P+F16guuj/501Ytro85L6YPoy92nfpc7N1+izZc2jXQ8+O/VLobC+/WdmZvab\nEON/Pq+16AqKDf/yIzhjLi1g84k1bJMSeutfO2w9YsvsAf6iiArEaUVoKWXrm+LM6tdBeP7pWyBs\n/nmf9gZ6ZLnS7zMGNrrMw8OX+Pxk5suhqQJCovQ9zCFDGyv8mD7xDbfm16aUIn1SU/HK503zm0tI\nlXZQnGdCKo5VVDyuMRJFY1VIlMhYeUg8LAL92UBIw+ZQqIgA1/dbX7SzH65btEW9G8GRnsPfe0Kd\nhJvcfxAco0+Y0wSIsUCb5w40B/aV5ewb9R+KlMarDLhHiCG/7DMUX8uwHzCX1gDfeG5XnTojqUe2\nsbVbnGBDjzgBQtTJqzXSpbXZ1R4jFtQGIR3CHfWFEDIDKVD5e/pdROgf2W6k6+K+iyMgzMwaIa6f\niTJf1vr0dX2TtbN+xjxYPcS366p/s0p7QgLIdIQ2CpSETJFKVLcq3iTxw7XFR+Qd0v7AAvNFOMIY\n8GcZI9NJoYC1Z1oTQtIlfreWFA+7Wj/q5+Lo6oPmKOlT1ITWrzNPuZpCswb5u78kxNGU9kpH9F+5\nypq/G9QNpBjm8TB/ToinqhumXeE5IW3EITlGQPVO8I/8EDt6BT4IjF9XxEFk09Qn1MYOEz7msJ4Q\n9Z6KUG3G78zMIsOoBZNd1Yv6tdzicNRYGwllFha/yLACIqkRufhc0nIJiV5jX+eWUtT0VebfOttY\n2/+UbHxE+6mVJeb787JQAdvMb1ll1yfHqjv7rIGFE2y+vMD+KynU1JH2+aUm68mtd+CQ7JaYx49L\nXL8wwe8nJ/Dl8yF7j9oJNjh4yf3dUn6dEU9GUgiRXo3/z+tUgKeh/d4K83hMvzs54e+nB0JBROWz\nC/zdI56l8236vCWurUtroNLCSfadzx+z3rRO8bm5GzkzM9P0a3vyxYjeAReXQCc0hFDfu49dYiF8\nenadtbs1wskOthh7afFBLa3Q3loBn36mfXwyJST8LSE5hYJrFMYsZxcsQnmHNOcthBkjB23NHUKF\nTS5JeUjKaWVxywy1MJX0XrMvVazpBdbZ2ir9XT2kX3eEzFy9zZ4unSx9XpVP//ljm1jJ2uRNfCXc\now6f3WNfmwrSp7NrvG/PpLDh08/Yq5y58JV3br1nZmbnc7yzlHXKYGYWW0Zi2LpSoa5NnXDpiAdt\nfHIkJj7OYYW+79foG5fQt9Es93n8QvvvAr43d4P9V1WcrV3ximZX8bVGjXFfOJPPPcc2XvcYdYVv\nXv4me6aNX71vZmbFZ7zjrl5HderGdfYs5W1xA2pfHZqmL1095pOO+ETbY4leKUj+W8VByjjFKU5x\nilOc4hSnOMUpTnGKU5ziFKe8gvJKkTJxna+eWVe0VNkZV1ocK22ik4dPiW4eiWF8bpUMdblK9LVW\nJhL2eI8o5rtC2PiFRInGiGDNzZDpvHyFaPTkZSJjl3OcldtXVHjk4/9jyrBsvoBNelrRyqDY7De2\niOpGG0TuCkIfBJVNmp7JmZmZV+cEZ5ekarJDxiI2ov3NFhG/VJIo+DBOhLAzol11nXWtCBWymOR7\nqUU0eCxDUN7l9yNxL+y1yBx0+l27dJuI89w3iZCuzPBZEHt4u3kqW9G2ceT39jW4VcYKBXGdYdza\nJNvdFm9PoEr0saPs/fQUEd20OENWF4iaRtYujoAwM+sNcdEyQVubWiBam1ygj/KKvOfLZFvmF8h+\nx5Pjs/v4SmkHm5SESHnjtjgQhAC5t7NjZmbuNFHZkNjki0X6dukqzx1nmY4PiA6nriljILtsvLhr\nZmZzCSkF6Ix+uYQvp6XE4JOSwIvfwhvUOMJ3rl6h/rUGvtuSslDpiHqXi/TTpdfgxRh5qf/5EfXp\nlXW+MSqliYyyT1Im67XFDyKW/3iW6/1StmnX8KE9nVGdvM7YiCWJHrvdRNoLJ9TDpYzGzCJja6To\n8PlT+mXlLaLKnjj12CqQGcpdw/+aysAe5+mfjFRO/JEvES/W2ddumb4OFvG9jFTPXlyiLYEqtmke\nkz2Zl1LXoRsbR6WYci6FmIKfvvUVlXHT0f62VHSGs/R1MqPM3h62PFKGL50Q8uQM3ynOY5voJn8/\nm+Sc9rxfKkYTivSLyd8j1aLtXe5/KaN54wDf+XAOnwl0+X5iQh4m6WPPgOvCJSm/XKa9+0JxDUbi\nhgnz+7GSlvV0bn0Bnykb6IisMpSuA2VKc2QOpoXQ2zqjzzNucXhJNa4al3rGGPHzHN+8nKGv765w\nvjsWoJ/2I4zNgVRVhnXqP9+g/Q0P94n5md8uWm73QFvYHtmtsg+/efEhWc1mkAyLwGX2TCiwme8q\nu/kz+qsUIlPUX8R+367/i5mZPXqb7FT799xv+yp8T2mPVAD7zK1BcSQcuDm/vrSIn25G5iznZg1r\nXRJHVZw673XhV/jON6jb8TE2cR/Tp2c/IpsViIKQOajiO1erf2VmZuEF5ue779Gm0yzP/JtfYYNn\nLVQtVuf5XhRqof6Uvnw0BfJl7fv4wNnjn5qZ2btJ+vakxnrwq12e2/sW569bP2Xeq/wV83/2H7hf\nZILxvVrm85eP+V3rXeYJjzKcq+LN+LTM+lUXqnT9Dr5+1mXeeb8IQihkZJS/M0kGdLMHKuqipSak\nSjiqOUFn/d3iIQkIEdKNjlEY/L3XYawMxI/hU0ayK6SJ20Wfe4V08UsFpKUxG2iOUVlaR1tSQdL6\n5PYwNvxSDQyJF6M5UMZUipNmZr6hx2p+r54rpUehQfxSW6n7ub9PfFhupZr9GoOtPteP53OveF7C\nXXGcaU/S8Ynvwy00zJDnDP3ical7zeXS/CulpnZbilA6w98T8kVLkLVcyihq/qqGtS8U/9lAKJ2Q\n+sLrEieNuKaGUs5ya14fCCUcEtJkJA6ZYV1cYoMvB7k7fMo8eab94sNNEJoeoXLd4hcK9enjUksc\nZwHqk6pRH5e4dioh2u8ZYI9onHUstozdEuJETGTFH2G0Nyj1wEqHMb23w/2CI22W/PhUcyDORo9U\n7prsmyMFqRy1aE/Tx3X9GnZOCE2cSjEX5VJjLiDqWajiW7V91qHyUDyCm+JQE6dNTPCrlhQW40ID\nZ1fFvyf+wto+9js9ZZ7dF19KVzDfCe2lZsRRkbnJfBuW2lV8rL4orpzAsbiIgl9wBq29PWtecTOW\nWuLLM+a8gfxv5JUSZAX/aGisBzXWL1K66hsB1Gx6mr16WmigZ894p6gW8b0730NxJqJ958ZdFGm6\nQmxPXQIJ4xffx/Emvucb0kczN6W4KJW1rZes2aE0bZnJ0odbz1HWGUl1bfoq+0235qmzHfbRgxJr\na0sIvtWbrA8+vXsEZKxnj6SmJCRMSO9YYXHJ9HTaoLzFPFWXGt3yMnueSIL5Lb/L+pU/xXeSUjGa\nW2atbqrPKlK8SUcZWym94zWkJpUSb4jLh72Pa/hSY1ecWEK5xedlL6nJnR3wu4Dam5a66GhIfx0+\nQ4mopzGbUb2CQioenrH/9skHL1raFewYNCEW0/jadIV+6xWFbBIRypQUQH0uKVdKaSwVE49KmzGz\nfyAVJr0fJKUQ1xcnz0CI+/Wv3fq8LuuvXbLtl2eWFt/m9VsgRZpVvdvIdzJ55p+bX4fPzjTnPxb/\nUb4szjyh73fES9csSOF1HV/2iisrr3knIsW/cgNbJnUSJhDBxvUXvAP1+rTl6s1vm5nZtRz7rEef\nMibml8Q1Jr7QLSllJbO82yVu8PzWffqq3We+ru9w/5fiQ7v6GvvBCSFv9sQ3VKz/xszM5oSUCU8z\nj20/2+H5y7w33HwdHr2XL/DZ3/4YDsNQUEiZ/9v+p8VByjjFKU5xilOc4hSnOMUpTnGKU5ziFKe8\ngvJKkTItt85Lx3R2tqVz2TqPHIupektEPZPTROimVnNmZnaijG1I7P1XZ8iuJcXYnS9xv76i1tXx\nucKnO2Zmdu8e59xPp4iAbUr9aEVM3AFFJZvH/P6oSEQwoLO+tZo4YG4RsY9McN38JTKr6YAy2Luc\nhetL+qDWpd1zY2RMgP9PTxG1Hvn4+1SUaGdyiQjfUGdgm2WiwQ2dXXbXiK6XR0RNx4oPb79OdPvQ\nO7JgCFs8fEC0M3+sc8TbRMbzDaKbuTWeVdWZ1ukkEeWGzoMvLRK9TLmUEZwnU7ryBpnMAyFRegUi\nsa0TnlOrKwv/JY9ctuvY2C2Fl/Acz/MrIr19QD3d4jJJTVNfl86TN3UWtH5KvdJBbD65RrR0rGjl\nyQsJtMZ1pSbZ7ei8kEMtfOqkQOR6pKzbwgKZgZAyh+6K1Cjmyf5UpYjT6dHHEako+fz8rqaodCJH\nu0IL+ExvQ+ct20R5O3muS0/S11NLUq4RwuR8Ax+LCtEylaMfu4e0uzktfiNlFizO9+CIz444BTwT\nUuap8jmZxV7dNs852KUfJ5L4+vQU0fCR1LGOxG7f0tid1hnoI52BHog3amKZMeMTo3pHWbeR/G+s\nYnWREheS5V4Gm03OEf1XUso8eeoWjWLDwRMph7h51pyXbE+4Qh084oaa1/RTr9Mn54r0d1JEvpc2\neUB+kfu55ujrms4VB5WNdkupyjPE1sdv4HvFY+ad80PaGniN7FL7/g6/TwlZERHS5SVjIDOH7Rd1\nHPjATX1Tl2TLLlkuXxpf2ZQiwJQ4a1pN5plhDV8ZCJHYT1C/UZo+dHngSJjIMCaeDKiPK4Ad2vJt\nV1b8TBl8uOyVulSETEJpn+dO6wzwmdRDDqbJ5rlCtPu5l/YtKdszl+K6mrgYPMp8p8WHYvvY4aLl\n2I3PrRVoT+cqGZff+EE8XT8GhnLyUAij74t74RgVge4lEDKfPKRfc1cY008X4DkJ/gz/Kv85Z5Bf\nf44C0Wez1Nt7KoTmLO2de8zc2y4xl711mrPf3mFOn3/E3H1nCLLsiRT8zp7Tx8/fZN7yiXdj6inX\neXz05ZU/Yz77VYM++55Ucm4/xOejWerwoRTIChrPl5P4zrO73C91g3km9ZQ+Pv+ILNANIS/3fgta\nqtETimhIvdcajInO17CJ92+lEnJbanhLZI0iRVCt318nU3r2e+bRozexWevn3H/xTdanS318qvIb\n+mbrHXzta6fc5/kiyKL4Er41Vc/Zlyku8TIN5XNu8UuZlHuG4jeyoThVelJsCYi3Q3OHW3uZUYSx\n7+5i/+BIKkVSOxpI0WwoVF+3x9joav6MS6Wurcf6tI4POnwGurJv64ssfqs7sugYIaOx75f/9JUZ\n9pqUfDpaF7qaG4L8f19oOvdQXHK6viNU7lAZ78E4M930qT3cPywFpKZ3aMGwsra18W901l7IN6+Q\nCEMhSAKykWsMnRnbxCv1DHHUWJ82V8UhEwiJx0ZIma6ywu6Onie0b8/P82JjNJPvyylCVoXOffkU\n9ZHv3fgPZma2cIN1oi4uk35FSJA9xmw7RHs72nZnpByzoPmhP4UvRAIgFd1S3IkFpEx4pmy3+PM2\ny9TDfUxfdHriXGhr3mqN99VkokfKtidc4iATasstZc6msvTpOXyqIbTVqMr1rmPmluIZ7eqrP2JJ\n9jrLUj9JXmJd8aal7Kl1rzL2IWXCD89YZ8Yo3WhPc9Mt1sfbLhCTDfFZdbVXGRSY/90vyMAXN6We\nKoRVSL47ctG+QW+MXvg/7MlnTy3RGqsr4RfDEf0wErKz4ROaTdwWce19Som4XbSMtH8J9KR+FxMK\nIC/1yR3mw2ntnxcuMR+f5Onb8+cgJmel0pRdYf49ec48eH7A59pVzc8xPnd22AN1xDly6TXWnFFb\nqKYD1thsXGpM4kYpb3O/M+3T0il8YiXHZ0LKMo0qfz864j4n2+wRwkIx5aTuNOnnsyje0MMDbBiX\nkk5iER9vu7nP3gFrYbhLPVeug9AfCNV2IpRER9xlriD27AsN5tP+e6x91DlkbLREPJda0jsazbFy\nAzt73Phue7wHkrps3MfnqdC/lSLtmE1JzTSL/YZdfNIlHxkJwXLR4hEKsFHns1WnvXM6WTAWy2tI\nvfVMc0t4SnxbQioOhJysD7DHglDI9UPaVSjymfHQrt1txk4w+8XJheDEgiUOS/byffY7ab/UNG/y\nPhsWQuXBc9bYsPguoxr/fs3zTanPLV4GrXq8wXyyK37RkBSiJsRnVNvXO1pJfJhjleWQuGXf5L1+\nqgNq/8FPQb++zDBPzC6BWtrXaYHKGfebu0afjxHgDx6wl1q5w7yyqv1cQKj8yibzxMEz6h/R/LUg\n7qvEELTyyY4QQVKRunYHpE69KtXN3/H37htw67x2jf32++KLiv87tKoOUsYpTnGKU5ziFKc4xSlO\ncYpTnOIUpzjlFZRXipQZ6Rxz/Ygo4Ms9slsVMWvPZ4icD5Rxnpnie1AqTB6dRZ30iJPGx31Oz4mY\n53WfbIpo9OBM5xUVHLw6S1bv+mUiWZOzRE8n40R9C1VlIlZ1tkxs074EkbO20CPZJe7/QGeLW4q6\nfvgpqBRPlcxE9xnR1KYi8dlpIo0fSu98eYnnnRd1DrPC75NTRJVbylqlOqLv19ne+cs5MzNLiN3+\nRYUs50mN6z9+8MAmlJHzCK0TU6Q6tEKWYDlLtO/mFWy89ZgMZbDH3z+4C/dJ5YC6unXG/LzPs27m\nYOzeuUeUMJvk/iVFrOtF6j5Kf3H2/SIlIDUHv3iBolKeqohVvt8kUj0Uc34oQlQ2KNWL/TMi+yMd\nG49P01f9tvgpFIoOZ8XRoIh1v04Ef0Z2qo6RRfKJiTmivX63UAzHamdZqh26/6Av3g5x1fSk+NCV\nyojLo4yrj++jkrgJpNDlL+oceIZI/ZL4kCaUgb37KWdd60IErd+Wkow4BrY/2zEzs4TQFQGhyPo6\ntj9GGHnFV+RtMSU0O9h30MYXR+L2GYkx3TOiHtHLRKNbW7R//5yMy9IEY2WcJS0fMrbCceyRHo2V\nx4iejwLUIyzETnt0cT8phukbd4M+SVTxiaLUEjJJbFd4KmSMsjPNc7Ie02Fs0vIzXmL75FtGt8Sv\nMEcdw8qKBIT+8r4rxNoxfeW9JjWOLSL81QB9d6VCRL8blGKXF3RVc8TvHgex6ZsDndeew9aNl2T0\nYjqXvSeOhYBUffpp0AnZOtcP6jpvXKOeebHZLxbwiacu+uimsv7hNGPrJKXseBzkTnWK+W0iSvue\ninMhIrWNkhTYOqegFMa+khPXV+uU53blZG6hoA48ZDS8EWXtethxcInv83vcv6n2BjNk+3pDte+A\nsR8V2qo9KSWbC5atT5ifH6+RYb/Vh5fpUo45YihOCJ+UCkaf0m7Xa2+ovtgj4GYOLLXF7RWln74e\noj2un9K/ny3x9+GITNNKATtHhLTJfguETv8+v//7Ztu+Kf6F+zXmgekQ2Z/mGuPqkwocTcviKOl5\n8Knpm/z/gYt73/8htvtenHnhsfp41QUi5eATMrHVE3zja1dp07+4dszM7O0QfXleF+9bjevfXxU/\njlAAq+9JfSPI72+38MmpH8EbcTyBL2yk8MmVLe4/9/CbZmb2q/8ovpH/Qjbszav0UaNAn78WJavl\nzXB+fUuo2kezPzQzs+98wLr1cIJ5cO/q98zMbFIIxEDqy6n9+Vpab4SYaTaUddfYC424r0/zYUe8\ncC6hBsxNe7pR7hMRb0k7iv3q/YZ+z/VBkU54hN4YSVkirqx9TepOXhef3Y7UlgL8LizEZtfzBZeB\na+C3vlC2fqNePSnQeJvctxfl090SekFIn4F4trwB7BZQuxriDhsJxeIb81UJ9VuXXfxSImoHqV+w\nGbKB+CtGMXzaPUaS6N6BkeoQF29Oh2d0xccxEsJkrIDV9Em1SfN8SHw/fcM2g/GaOkYRhfneVpbY\n28XWLr/6qHlxrhAzs8wia/UbGfib7vxf3zUzsxtL7CdPD3bMzKzXY37fPsO2kUPxRgT4/1pVCBpl\nhod5oWPrzEeNghAvFdaffFN9KW6TtBA+LiFqJqLUqybet6AfX4uFWZdsAoOGY4zV6XllrMUd452j\nT8vizfDvMXec9qTwdiYEk9BjU0nmtVhaKN457cXk2w2PUBbahwbE7VMekaFemteeUBxBdSEgR3GN\nOakTBoPM+4MK9aiV2HMWGlLqKUgFNYz/TPVpb1Bjv9f/AnUbKniswvJmKR//8Og1aIxeS2sdbmmf\n3upIqbR0ce4hl5QPB/KxTk8IOSE3AiPqNnUtx+889OXOI3HFpPm+dAW0QVv8PC9fMr9GAuwBolls\n2fLS9kYJHwqEhWQf8rvSGfO2X3w5mUn6vHvM3uhgE5RVKozN198Vh5e4Wk4OsHW3KQS8ULp9zVO5\ndebhsBAedfH1FHdYn+pC4s+vsV9MTfC7xgbtqe8xJjIL2DqSY7/aOmWMlE94flNcW5NLQoTM4vPt\nOvXc2xOSR6iM+eusQ7kr7OO3PwPZM5JKXlLKu6fih2pWhFjR/O7SPBfRGIkF+f2wJzuIg7EpH8vE\nv9z7TVTvsqXx2D5jnm7PCPkf19hVv/XE4Vk9x39WbzAGS0JaHu/y3nZtmXYv3cLOjz5kT+MSijCZ\nkYJvuf15XYIpr00trVv3IXxHh49BAqYWmS9Cc1KIKrCPbp3iMwsz9MGMbHSm/e/KTeaFy18F4VL6\nEXuM8x2uW1thTe++LtW9Z9iyXeDvZ0KJhs7xkYUJfOcsu2NmZge77FcbQ2znE3p0zKf02gJ9fuUt\nEC4Hv+b5J3d5Rw19g/1fNEz8wL3K/NXTvLn7CJ+tyDdvvwMiuit00+ZdkDf1Gd5p5vVOeFoXN80n\n2C+sUyV3bjFGptbpm3+rOEgZpzjFKU5xilOc4hSnOMUpTnGKU5zilFdQXilSxi1W9KCgK0sxosLZ\nr0iLfZcs4fkOEat9MVyfvg8zeTOvc9ApnU+UEsHSGln8lct8zt4kU91U5jqd5nulTBR3X1rwJ2U+\nA34ifz2/OGuE6KmIpbmjaGReWvI7Z5yNe/6SyN10lMhbX9nM63dgYa42qX8kKJ4SRdETk0RfvSGp\nlKSIakajRDNDCerhaunMrRSIwuq+gjLSzx8QIcykpQKQwK43r+dsfZ1MZLFEG8viUtnbJnveqBEN\n3Njhnu1dfrf2OtHMtWtcH8kR/Vz8/9h7r+/IrivNc4f3DhHwLoAEkN6QSVKkJMqUVCrfXd09a+Z5\n3uffmX9h1vTUdFd1SWVkKEORRYo+fSYyE95FBBAI7808/L4rVs1aqgaf+HLPS2QGbtx7zj77mLv3\nd75PijFPZIuVGWzQLRExnl4ggp+Ncda10yDLkbnCfS5aPEZkt67zyOPAv9WW7+q88IRY3ycmiSif\nvSDaei6VoJU8GeF2V9FYnVMfKcvmH/Ccsx4R51ySqG8sKu6aTxVrJgcAACAASURBVIjUR5Slmr6F\nrw7lE/tCBAWz/C68SPQ0EKLvfB3qPZbCgkc+NdYp2IB4Q4ZSjRqK3d6rs8hjZUoyaaKxDSFPOgWh\nrhbwublVfORgd8fMzELiAPCFqI+n6ShUKLqcUJZMCJVxjPZ1hQqJJahHRBmerrKNwTD9nDau325i\n14BQbcuKCtePxbpfov251JSuoz3j83O1S1k4UwZH97tI8WeUEe1Ql6MJ6j7TUVb5JXVNtdSnQpIc\nN4mIh3Ru2S9U0yjGOA0+Elu7lL4mffRxIcx89GJM5H56g/tt6vx07qZUQe5xfXFGKhEJxnPuMden\nPHDfPG8w9vbmqM/VhNSfQkKKNPh9/oznhqL4floIjFNlGm+V+TwRZ0Crwv99QhyuvGSeKCh7v6Kz\n/tem+P5gC18pKcs/qfPXEyX6bHeCLE5IGcQlqWIUDxljuXnG4FxV2SJxOmwOhFSSKkhwEjvsid8i\nU+V5nhQZhmkhYc6LfGalutJvKKsTJ4sUP/tSVeMiZfBt7PDXfRr2bg57v/VT7Ou9Sn91ppg352Ks\nM+89YsxdyzGH7OeVWfklc+Ttp7Tn50kUNFZv0o5vCVnZDHMGO77DetSdZgwdvcvfIwPakw9U7Hfn\n/8HMzAJvk4XxJ+nLv2oxD7wnBJrvU84rvzhl/r19lwxjYJbz1tn7ZHXar5AZnBxQp8LeX5iZWa3z\nrpmZbcTx9UiFrNGfvsQWL3342Kn4bu69jW3ynzsqTtim2cAHQ/+sc+XiEol8j99vPiBbtCy0528u\ns3a98RPW3tx/pz31LL5V2IYbZkoIkMJ33jEzs53H+M6bWfp85xk+/OG32CukX/B98qdc90yKhut/\n8jf2VYrP4XYR8CQo3olxQMgZ8dclhA6LeIX6EqdKKIavDuSrLal9RKQMNBSy0iMkiV/cEw0hT71S\nQ7KhlG6EUBn0nfwZ7Qt7HYSOuHv+FWjMG/CYpyk0oJS+4uJK6AuROKyLq0ZzxXgopKSuDwvp2dZY\ni7Zptz9Y1fWOuofmOqFa/FJGG0qNyRvwW7snlFFIPDpC/fi05tjIQSExnwyFCA5GxPkhBIVfKNa+\nkC8+hyNGa7LHx3184poZGf/v9cXtIiqatrLaHT3eQZpctGTm8mZmlvOABujtYrsvjj80M7PTMii0\n8bnQTR3xDdV4TiMj9JSczNtnbJmUME+FjvW0hDTUPi+Vpa8nZxlrqSn2VkGpmDq8IfmEkEl+5gSP\nUFUBE0p2JNURjbGaULm9R/I9obkc1aPMdcbY8mX5rhTKDvr63TZj/Yn25/WX4lYQAinjly+EhC7W\nwlLS24cjjjSq0I7SiN/7ToQYj+OLOe3Hwynm8XyWvWTvVfWvl/b5mpqDhLbtpL/kHlt6844FhGZr\nHkgZTuunR9RCo7qDDlbmPCqutd7Fc9geIUocBbBUir4/2WMNlwiapYTUqOyydy8XaPvCDeZhh/vr\n6T3m24o4TqYX8mZmNrUgRa4zfndWEwejFGIDKaGwtL+NJIQKrlK/0bn6cMzvZm+CKvBrnjvag18k\nHJV6m0fzR5frJ/NCEV1lTexp7T4+xBdO9g/0e/ZeG3dp17jFdTtSXeppv7t4i/cGv3g79z8FOTnQ\n/6NTtHd2Rbx44gN5/hj7HbzEvtkMz1vdAPFT79HnlSq+Oql3roZUUY8LfD83yTo1L7uWtthne9X3\nLZ2CkAiW+TW3JNTPkRh2umgZ9MQbKIW6pniQWuI3jQuVHEoLwV7j8/DFvr5nbszM4l/7D5nX730B\ncvT2a2/SrlXW6b0veI9p+DXHer5EkXVqRcuupK1yorVcJzFCUsFMLGITT4s+fP6QvUfhiGdOrbC/\nufcJ+53BOygi3v0u+6KpG+wjf/d3qBf1hOZaW8/TVodz8ITPXJ156nSLtSw+R58t36Lve1LGTU6K\ni8uLT5+9z57n5ZP3zMzs0nV8OqsTLQ9/i21iS8xngQz71nhCY3YNH5zUGHn6+F/43QOef1NqTKcZ\nxlz1mOvmvkFc4eaU3jua+Mwv/ts/mpnZye/Y86Snse8fKi5Sxi1ucYtb3OIWt7jFLW5xi1vc4ha3\nuOVrKF8rUibm1TnmU6KEnSHRu/1zosHnOl85rwzz5DyZgcUwWfgJMXknMkTKzsQfEhDfxqN9KQ39\nkojWsxIRtEaK6OcXOjt369p3zcysfkRUd7up84FZImkPth6ZmdlIHDLBoDgdukTIFlZ43srCuu4H\nMubpEyJyFZ3nvvcFkcUbYn3udIj+Xl2DsyCYUTS0SZQ3Lz6OQJQIX8OJap+J/V5qS+MCEcN+nShr\nbzqP/c5pT715YsUi53r9ygrlF4nAzi8T/Qx4iMhnp8SYryzE0K97D8nQffIRkesn0oA/KnDeb1gn\n01rQeehIlT6pHIknZ58I9o2FL9m+L1LOhZiIzGPjiLL+zQ/oE18GH1i8RIT7tETU9uAL6pFQVn5S\nUdLf/lrM4kvULxQh0t8/13lrZbEjUaLEx4dSiGmIHX6BaOikop2Hz3fMzGxwhA8vr4Ogmc0SFX7y\nGdHRwRg7xpNS0HKY/6v02cQNntetKXOqTGVXHAdzOaKvMTGi77zEt/1iXV++Sft7Df5/9Lyg+gpt\npYzmoXwoLW6fhJ/nHhzjHyMP9w8q4t9RxqUg1YBcWJw9Qry8vCcuBzGWX/0G5yUjUnR4pAxPSAmE\nuXUQVWcFKSqIsyEoVJhXGepx7+LqS/59bDsXpu2plLhgpMbUFt9BswSSLVSTglgR361LrWxlgvG0\nqQymJ0Md5334/ssl6ijwlfmNjOhEjDa3o/hceJ++KigTcMeDD/eL3Hd2QFbGq+xRUZnh+fek0iTF\nhFoLtMRdH9dtBrF9eiykTFEZAx8+/LIulaUKkf/yPEaPhKUco8zyXJ/6jM7whdCCFNZWqK9P2bph\nnfvcmqL9jkpQ2CdFtTnqEw1hp2Od8b9ylbGV+xQfDyjjceIXf9A69pofkHWf6DJmE1Xa6dUY7k3g\nc2P59P4kn1FlzYL+r6aa0vGTXfrVkHp2P2IO/PF3qccf/QtjovkK/VE9wK5/vUQ9Hk7Ivn4QTpVZ\n5rROmzH0v/g/MDOzhjLJgZ5UBd7hd7E1nnswS79sSJHuv58IPTj7mX1jiM0fCzkS+Qhbndd5lu8G\nNpiOMbdHy6xlnkf/gzbdY5776C9BX40/Jqtz7Zj7NOd/zPWHrG33Ivh8e4N5sRPF9ie7cNTciFH3\n80PanGuxThy8T5/mazzndPQPZmb2bB2f2GqBeFlpMV/77uDTISE1S1fErzaBrUZSKelOskbv/Zq/\n31S9vcf6+xJr9lvf/UszM/vFCF6eckHcXbew7fwXPzUzs/v1r7beOFmqtpCNca0DJmRMT0jKrrKI\nfnG5xIXWGAiyEojIl6UY03E4z5R97wo14nDShAZSGAopO98QwjFJe2JSEOoI2dgVGsArLrB/lfC0\n8WhgXZ/4kYTwGYnXZSheJL9UnCLilBkK0dkUt4xf5/R9I2Vw+/JhcdR4pW4YEAfSQFwKHWUXQy36\nox0zS4p3ZtxTXwvB4h9yrWiLLFznH34pqTR7jm1AMgQi2MJBjnSE4vSI32EojqegkHUSZrHxmH+M\nHESk5g/HJgHPV+OmOt3BR5+/YG3fLLBHCIy5XyYknqAq9W02hC6IyRdeOusLY3BSCJ5RDjvNRYSO\nTZDdnokxDwWnsUegg/0KZfEQGWM2FZHN5TM+rQcjKcPsOHx3bSk6loXUGTKHnNbpy9HIUc5SXyeF\nUBF6IuIXakwqSP4O/dMPMmdNSTUwuMzYi42EdAyxfoYD9NuER+irEb+rSjlu3BKiRpnohThzTnR2\nRvbBLsN5oUCE/Bloj+qtSIVUmepI5EveDO+wYh3tkxtCcwWqUqoRetenPUk4IN/usT54Oim7aOkJ\nbeSb5jcjjcOyxoIDLeu1tM8TemduToo3GSk0HrFm7DxELWdhgn3X2jeE1HZ84YU4DY+wwfRN1vSE\n1DEd9Z16BZvWa9h8SWqmqRxIl2Wpdn7xkPWgsofvvPYWyMtzKc6O2thk6jb1iAuN9UT7/bMt1raQ\nhzE59RrvPAmhlnaes/c6lXrqongxJ/Wu85n43wo92vPaHdafVkd7BUeA8WjHzMyqh6yPcamAztyh\nXr5JxszZ5zyvf0a/+B3V0CH1jkQcVVPW36EIrE7FF3h2oFMUc4zFeSHih0IsDmpSvRp+6WsXKQ4y\n06/JKqv7dqSUVheHTlTvnJkM//dJKa15zJ5qfQX7eG6AjLl/j/4rFxjb2VnqXZbimbamFgw6elVm\n9erQ0pmUDcS5dLDH+3fFx5qeT/GOEZyhjr4XQnQfYNubtzhV8fofw+t2/AWImabera5ehlsm/BY+\nUdK7YiCBr08vSsVISoVtqb2ZuGCfiNez18UnJ4SaGlWwTUdqdukF+tYrvpyWEIjZDZ6/sMPvPafY\nvCPOxBcv2R+GhTx8Q6pP3gF7mf0OY+f4DBv6hMQrHvO990A8cfM8/4ZQYaN92v/zp4wJ573/DxUX\nKeMWt7jFLW5xi1vc4ha3uMUtbnGLW9zyNZSvFSnjKLv0+0T/nr8gcpYSC/pRkcjSzBUiTvUdMUjr\nPHNH4dLQAd+3T/mcyBORT/qUzVkg+npDZ3LX1vL8Lkek/ta3vmVmZrsPFXGr6gxdhChm/RJR3oU1\n1EMWV4nk7xUVne1ynwfSLf/iESzPDz7h/69dFprjDpG6a9eJwD26z3n7lrJyhY/IwISi1KMVIDLY\nl+JPUBn/F+J7SSvK3ZcaU6XL3yPKfDjnJ/NX5qwvvguHw6TWIzq4s0XUMBggavj4EffIKinQlATC\n+hUyrvMO/88iGcxcXGzpUSLssZSUBYR4KFZ0ZlOR5KwitxctAzFX++O0sXuGTUolGLRvrZPRjU/T\nB3v/QkahJiWDvCL5J8oWdYRKiE+RGehuE6kvD/HBlQjtiOrsraO65B0pAp/HMOEcDay8y3POhVqa\nnCYjfHxAn9Uq+MjMAhH4mOxXe8n1XSlBBL1En/t1oRccpZc5fD0+Q+ajuE1U9mSPTHl6FZ9MzlDv\n/Sdk7dol6n35LlHektSvSqc8d3E1jz3Ei9QUIigcS+l7orlnBX7XqDAWsnnaEdAYrO9LzUtKaLkJ\n/CSgDPB5kfvMrpLtSkzQzpePOEvsidDOrLKBNZ2nDzgZpQuUfp82+IPULXeovk3ge8WYfOgQH6/X\niEWHPFx3PgLtExwzPqf7jMdjZZurUszKTvJZ0Nn98pC2HCjDG84SqY/H6PNzEed32iDkluP0Vami\nTGmIMbiwiu/u79L3ixo8S0pnDI6xYSaY5/c6w1+6K/UOKWvVT3b4lC8luvrcE3fOJSmlNMT0Xyej\nOXMkZZ4RSje1In1zlBaaSs+dlDrKeRwltqw4Ic67zAW7Oled3KIvs1K1GuhMso2ZDxcOlVGYwP6d\np+IOu8x1YfEtxZXRbAp1EFDm8rjDGPKGLs47ZGb2xiNxBpWlBqAzxa1fCFX3thTQ3gfdlUrhV+9u\nM1//4JtCDHXFD3JJmeY5+vu5Dzv4O7T/rAiS6v5N/DDy8vtmZnZnj+fuLdIf1yo/MzOzZbtlzw+Z\np+6UUbMrKrP1Yorf3vwNa0t2mjZ4fkhW5mGbPq6MWVNe2WI8FytkWielalF9Qwi4H7N2fnMVn96+\nh7NO36GPD/V9w8P575uRPzUzs91Tvv+LDLb47ArPmQ5wdv9aDN88PoHbppV/Q3+Hb+PuluaPaB6b\niFNlvcD8+sLDvBaM8zsHANK5Rrsr73E+fXiZPtgQcu+JzrOHU9h8MYYiTqLxoX2V0le2PCR+krZ4\nkUy+HGwL7SA0gV9rbzeGPSIN3UfImVaI3yeVkRx0pO4naEs8zPrqKDkOtd554lJ6azIG+37xpQgV\nEdCc5mTr+pEvFYT8/oB1BE30CoHTFookEBe/SFs8JAkhfFpCiA65/9ijMSf1kZ4QVdo+WCsi9IpU\nZLxSbQoHpUql9o0HLav6xJvQpw5d8ZGF/BrnUgtq+rnnyOHuEOdUSJnLqldrg7hlInFVRso1LY1L\nE7pz1OD3XSFqorKFJ05fDsXzE2hfHJVpZpaNM9+ezJAhfvttMsSp15k/fFL9LIkHyiPuw2FBqCNl\nZk3oI28c20bF3zMeMla9QSFQjumj4kPGWqOidsluEfFSlCNCHiWwR0RKiv0I7QtqT9GL4LOZmPbP\n4hlKT0v5UIoyh7J3t0J9I+L+MqFor00wn2aXyaB70rQ/MKK+5xoDvRb1rbeELNQ6XByw3rWlypXz\ncN/pJdbJlFROQvLZijLuz8ugABpP2ON0O1pftN4HhVwce1gfhyU+7X/7P+zBz39n/iT2TUxS355m\nmeBQ6mAaaz0nox1kLMSF6LxIGQfYR6WFbG42xI8jNaG40P2BhJQPh456mpQTa9imtc96EE9Q5+tv\ngapvC1G9+RTkYE/8O+lZ1oP1OdaHvviMakKSNMR15fBYRqSc4/XyfaUqPqB7rMnL19g/B3PYtHAf\n9G4gpveABfadJ4fMf/ubINj9sunsKmjeKb07Var4+s49fDkkNc5L6zfVbj1/h+fn9a4Um6H92w9Y\nD0dl+qK6J45IqdItX+a61AKfDb1/NE75nVfzurMeVo4132kspYVwL2yCEjnRu1ZY+9bla+zDvdP4\nXHmP/hxVdaJg9NXmkqEQkG0hLnua+3pCVsYS2gdrLkhpzFmbvdNnn8O5FhUqcOEq78rpHfpnZ5d2\n3F0A6XRpBb+otKh3S35hZtaoNy0aHtmlFdby046jyIdtatqPLa6y1s4vUaff/OxXZmYWmOC9eEHv\n29s+KvXkPdCsiRX2GItL+MzT99gXn//sF9TxDU6YzGhcjoTMG4e0f9d8fkSTrC80fUvImnCOPl1c\n43Nrk/1mYZP9XDz1He6nEzD1Eb54bYo9SUKopy8+h0PmYEf7QyEf/ZoXAkLozAy5/tFDfLVxRH0b\nUiQ+FKpt6Y/ZV18WstIn5dk/VFykjFvc4ha3uMUtbnGLW9ziFre4xS1uccvXUL5WpIxfijOpLFHY\n11PwkkzHifKVjojMZetEIT+QlnwwoDOgR0T5Yjq3aDrfHNglitnSWbhgTco3SlAc7pJN26sQ4Tr7\n2X8zM7ODe0RTVxZBxviWxRTe0zn5Xf7+5CnR4MMtkC3LOhN3XAYdcXnjjpmZXX+FiOP6FaLEHz4k\n2/ebh2QRa7tElyejRBhLp+KwWCfC1jpXRkkKQJMznBucvwwaITFH1LagzHlfagXxCSJ4uwUilZeW\nVmwntGNmZmGxp3tNCiMtshP5JSKoTXG/ZJa4rtwmEp0U14hvgThed+ioCilT2K+qrjp7nqJPnMj+\ntS4R99y84AMXLOmAyEh0drY54jleRTWnFYkflOncXWWI8/NEY2eFhvr4N2RXEvK5UITPl8cgayID\nbJyYJYo5qhJh75awrS9CBmMgFv2yzvRXG/RhRqzt6SxR2hefgb5IivdidYMs+ukBPlTd5v7reewR\n0Fn+Ws1R6SD66w8p6xXBB0/2ieL2hGJIX6KdoxrR3NoZ0Wt/XFm0Kfrx6DFjJ6YsWVLR7G5FZ5vr\n4qa5QtR4S4zqET9jZ2MdX6uXhVQq7siOYvVP4k+FM3z4rCl0ic6f5tI6/6lsVG0fxNTCGr6cDIoX\nSmPS57t4vLgu206dM65HE9ikU+AM+rxJSUa+4xc6Jz3kbHqvgo8dL1GnWSEeOi36qtGnTwtSZ8pm\nsdHLFvNApErf3JFtGwXauBHAZ0en9HV/CVtnMqDJNkV34RuQ9YilQF31zpgPhpEp1Yvz1eEe88zg\nnlRKmtyn5mG+KSvrcn2M7XJnZCLSb+XNzKwkBN1UErvsOOegg4yB0hzzVW3M9dNlfLghha2FLMtF\ns8/YaZ8xZhq3xZP0Ie07SODTTZ8UXUbYbaqoDLa4BxbES9EYCbH0iLkjtcYctDOLz/SNdvnLypzU\npE7yFVeviTz1LpOEtGuDn5iZ2eFf4gfvKyuZ9OLrzzzM/5f/o7KBQkmMc6AvAkGpKf10h/ZcIiP0\naJsx8fpd7LxQo337EyBiKtm/NjOz3RMy7cE/JxtYOzy3mxHG68+H9O3gh9jyuyU4pN5dkC8VsOHk\nh/hqegaEyY0VECIf3SfD50uwRn1Y1xn6H4vnYcha9e4Effaqxts4zHj87gc8v3HC7xZG1OujH8mY\nj0HkTC8w/61+xPpREOfXeF+KUusYO/MTxt7zHyoL12YNTP+O622RPvBvCuV6kzE69x7n0r03sNHn\n/5k19Nv7/G5D3GiZn4mjS2vwSZ8sWPyTN1Xh/9MuUoYOqks+Fxbati2EilfrZ1i8Gg4SpS8OgnFS\n6kt1xr5XaLrmkP6yiHhThBIeConT1fdR5cmGA/7e1XoalWJaY8x9Y1LsGgWEuPR9ORj83oHFhHDt\ndIRK8+r5Wq87Xu7nkxLSUJwQJsW6/oh1qCN/9I7Ycw2lpDNUJjckhMzQz9jqSn1PU5BFLWpDKUf5\nHHRRWNwl4rNpBJg/A0LG6NEWHPDMqpRZolLP9AkZ03X4cMQL4ah5esSzNgjy/bAlJI64awLtruos\n2R+HN+iCJZPFhtNBxndGqhureT4PdsmIhqv0Vb0mpS4pqY01cfXHjI2w5sWO+OX6mqfLBX5/2hTq\nVqjaSFwcMiOe74tKlVQcKv1D5uNSm/v6U/jClFdqUI76p5BKPe1Z0mpXOs+8lxC3z1gIJ5820OEz\n5iAnk16oUZ+y1pOB1It64lMaSiUlOBKnkJCmvRHzbahJvY6n6I8J7WH6yoBXd7U3qgjJI367sNSv\nGiH8qS/+jUxTYyPL3BDJsf82M5tbvWJ9oaCH5/LHIPcddKQuFdECMeD/NqI955Ev+Tf+ZyUQF8rV\nEVNrMk96GuK3WJGSao66FLeZv2slrotL7Sg5gW/OT7IO1GvY8tGHIBjTCe4zc4s1a+woksnGFfFk\n9jS/Z+Y1CFSxhpDjmQT/P9G7hC+lNX+FeflgG58uif/z7f/IPN4JYqOTByBoxlKAzArhsnyd33s0\nTz7/GBRBWej/G1Km9cxjr8c/Yy/iSVHPhRu06+VT1spGgXVp9Qr7/nONpXiOz2hGCkFCd7TFH1Le\nwQ6Lq6xv8TQ+/+AJe8aE5q+IxsRJEV/2h6QmKxWssFBlXfGJNvXeIfE58wS/Gj/V2LRH6km9L40/\neIXcCUhRqFOWMpDUSWfW2AstlaVy6vAALvO7GalhvfiEfcPmPU4WTF3m99mI1KVeHv++Ls2TA3u+\nnbaIEC4lzUd+591OnFDdGGvJ4oZOoByDcvJ0NQ8Hse3aOvNhT5wuDXHFTl1jfvn+f2CvsvU5+8wz\n9XHbQQBKyXBiGlRXLSB1pR7zYzKg+jTEQXPE8+cTQvKJu/Czx9jgfHuH+4a1DzzAN04v4TtpKVjN\nF4Xqn2GvNNbJncOnjIFaguct6d3S78emmQz1aUmR8cO//6WZmcXEl1nU2OpIPfAPFRcp4xa3uMUt\nbnGLW9ziFre4xS1ucYtb3PI1lK8VKVM/JSp8LmWDzhER6lJvx8zMyrtStMkQLZ6YI4J1+RYZyp1D\nMsF5qZ+clskOWldZK7H7V0+IiHVrRIVrBaK2y3nQDX4dFV24w/39USJbZwUyEPWGzqSWid4mFGl/\n5RIZ6rlZkDVLFSKA8UtSaZGO+/4pHA1jnclLzYjL4RXakRK7/ESZ+syK8+bsHlnO3hA7RKUecP+Q\nqG9W2baDA6K9WXE0jJQxaR9h18dnD+x4R0o0UppZnuPaQpHGT4g/odBUpLxJFub4UBwBTX7flGLI\n3jHRw6lJKVFVyVKkpShT75Dtrutc9ehMGbXUVztzGVYWrVRV5DpGHwRTeq6Y/I+VPfEqw5l5LU99\nx9isK06dVaGXolI16leJ+kal7BALip+jhM/4hsreLIKOmAjTvv0jcckM5KMbZJQDQ+x7ekJEPxPn\n+6AyrqWCc4aT5y+ug37a3qOvPeL2CYotPT1LfdpCwpxWeO7kLJnp5LzY2g/F9l/TuXkpMThk8BWd\n687pbKxvpDOnWygSdRXr1zFL67bo57F4WkLK/Dx9JLWXNFHp3G1892xLmfUz/r6ygW+3fRp7HXE1\nBJxsk3hV0spWDvi+LQ4DJ3NzkZJStqaVZPy19mn7YFln2AM8qzmtTOULfHFZCJCO1IkSj2lL5xXx\nOyjjFpWam6ckNvgNfPBGEd9rBJl3ql2d057jOcNP+ftZlOckdoUSUka1OgL1dDlBXxwK2Xavzvwx\nN0M9mxXuN9vhPqXLjP9Sg3kvIU6d6UmhoqJkPxJi9u8oc5lQ5rg3LaTJibgIOjtmZuZtY7cbPvru\nffX9dJksy2GUee7SGtf/dkzf5gLYI55iDFYOdE67R5ZscgHf0/RpuSZ/r0klpblEPRY2sd/mOe2t\nzTAfDg+YR1PKHgY8OHUh5pzDv1jZfQ7iyLuK/d/t3jYzs7u/Y35+MAVfSfTPUO5Z/TlZNc8/kMk5\nWvuBmZlt6Zz6hBcUxsYa/eGJirPMx/f/8Dup82FOq0xS39TDv+P/fs1FP8dvG9c/tY+SZJ3+9GPG\n/z/JNu/WQYzcfYKvVK7Sl6l50FpnReaZeyGyUXf+Cq6BR34yYuNT8QlFWNNeKZLJLMjn/Ws6N/0F\nClLJxOtmZuZbZf7+7TTImDekWPZLoaoSv8V2w7ep3/xnKBk+mMQnGwHOc78xByfNnFQsPr/6Q+rx\nHfq63yYLNXeMjz3s8rtiGF9eHIC4XB5hj/qAeawmDoZml+fnhHLdmWKszb3F9/Y3dqESFAJ04KGv\nhl0pfQmt0Y4yP4XFwVAfc11w9G85IbxRIY9aQsx4WcdMCBiLCVHSFfJGSJe2uMnCQliOxDtSS3Lf\nSI15ceQT34fQJL5/JUTW736Z4fUK2dlTJtbjF2LGWZe1Jxp4NA/rPqMuf09Ita8p9cCAlHQce3TF\nK+Vr8X+v5tq+1ru+9S0kvrZ2UCgcqQIlxGcTEBfMSNd5/TC5hwAAIABJREFUtM/RI80jfoqBVJN6\nQnz4xKMTHQgdoN3sWPOdV5xcfnESDAdSRROCsSuOlXGkZV+lPHhItv/+HuiAZJx56sX/xVho/4L5\nwVPCFvvnQkkcMV/G9FyBo8wrtaVmgnoHpL7pDTOm81dBkHu1fiXFPxHSvrSh+TJ5zn0rMfq0p0x3\nRz5dTmO/6SFjKLWqrL+HuaYjBGm4zn19AzLhA3HDdNpSCpL8oMQ9rerXnlGZ7VSchqWFVJlYBe3g\n0d4zbNTXO8l6Ex3x+5azLmjPeVqifqEy9ou1uG9nBl+e9LFObuS07i5LwTLAupiMau8X+nKdWHh1\nxapC+/a1V6srs+2VGmx/IDRZXPvushBYQklcpMScAantbnMfJINHCpHxDeblrvjrqofYdCSI2YQU\nVL0aX6fav1cLIJ4d7qmFV0GMjKRkePiY+dnZZqXS+FA0JE6YMr7bE/fTlPg7+nXGXnlnx8zMsmmh\niNWeglR+Ztfou8yU5tmXOjUg5dulSWy/rv3fwMv1Z1+AVD94Qf0nc+q7NZAex9tS3N1iz3b7Td6t\n+rL9/jYI+MUVnhsVuu2synqWyvG+EpTPDYTUPnj+VNdTj+WbvPdUT7BXrcA75/KbrHdnJfrJQVGk\nF6ViNSt+PO2pxtoK9qR+6BcHWEI+edEiei0780g5TNyVGXWgT6jvqN5/Ts8YGymB++al1vX8s6N/\nU/9AQu8jUgk8lV2HMfZ0t69w36Wr87+vi9+Tsm6lbRs36RMJxNr+PuilsdTl9vfE27am0w9CNG/u\n4XuhE/rAfIxTv95l9v4FX2mH3zMzs/ylddXV4SXVWlaRMqt81O9nfDuKW9kZ2UprZngOnysL9XPU\noy9ubHDfqSqfDsLR22PeOW7hU5V71Ls6w9gryScS4ohMiLMxonn39IC90Ib2i4ms9gwtbD+9xtgJ\niCeuVsQOS3l8KTrx758WcZEybnGLW9ziFre4xS1ucYtb3OIWt7jFLV9D+VqRMlGxxKcHfG5WiHR5\nhHoY1pX1T5PZbI+JbhaKREefPhQT9wbNOH+ps2ZhInVJsUH3pek+L9WknnhSwnGdqzsj8jeRIRqa\ncLgeQkS0JrNitA4TMWs0ieRZR5mJOmHTk9qOmZl13yWzXCmBflirElGckUKQxzmnrVDk/iaRSK9z\nEFvs/VtHRPLGPZ2x1dm6vQOuH61KgaMi3hdFvfc/JWoaV/vM67O3v41CQE3qEvM6i/r5O78xM7Oq\nkB17O1IiEfqge0as/O512pBaIhO6VyRaOZshQv3khWwYoE1HiloWHxPh3X5GxPr1SSLSFy0Dn7Jj\njhqR1Jfykzw3Ola255Tv/coMTimserRJX/mVdctFsclZjfpXlPXO6OxsZIKo5uELfKkjRRn/NM/T\n8UIrSF3JyTTMpcluNYSgsUN8eOI79Jkjy1EXkmTmkvouxd+Ln5PZnl/kOZMLRNwdFY9GkUxyv8dY\nWVzjOq/Oex+Io2XYFxN5UuepY/i0T6ixWJb7+rz4VFdIoUCaekSVrfOFaXdM5y9LJSGf+vhHJn1V\nf2ewPN5EkSe5tCK78LvPPsA36wPa8cosGfa+n3oHpbJUDakeUpAYKJt2kZLq8oyqFEFshUh3WWf6\nfTP0eUoKNSdNnb9OSV3hObbs38AnFpQhGPe570RVak1lnUEV59V0TCihMeO8FCCL8eqQ+eJZRtml\nA64rOugfsbkvHktZK4Zt5qJkN+oFMrC1EUiOaWVMn4sTZ0KcMGHxgowb+N5SUupQW9huy5s3M7PL\nOuvbPaPds5Nkq3rXlMX6lEyCT+gl7wL2m/Ty/3qb30XKZBQqdbIrlwqc1a918c1ogHomE/hK+TSi\n9jEWglXsW9U56lgYX8p2GAuHea5L6wx/Tyz7/qB4R/b5fr6Ab+bCF1foMjMrvUV9EkIYNt/Fng/+\nmue//ZiMR/ADUCQDZd2e3GZMb/yE+t6dwG4PZ6hgUfxVDR9zaKvH/D+bJqtXpjstNCFUwVtkAefH\nzB2vfUL28uzjN628wm8LsyDogkqJ/UUO9YS/m4bPpv8J42V7hfF9d0PqcU3qXPwZz7oyoi/fuUuf\nvRFGgaDfg5ultcp56web3zMzs6VFxuejTWWjZ+jb6eO/5PpZfM/OQdTcjgrRU2KslXP/wGfxm2Zm\n9qM5zo3f22J+8/nEHfObHdr3Bu34b4+x+Z8vYKxqkfXmjW/QN48ruu8vUDLwGn1xSdn5gxQ+cXIt\nb2Zm3/gfQol+xl7homUsFFZfiJawD5+oK8sf7+K7A22dkuJiqUttzivuF19APBpeJ1vPHOLXejaQ\natFQCmx+cXr5ldEd9MXHIWRLTPwdHiFQmmMn+089k50v1Zd6/rGpGRb2Y4e6UHKjulB/JuSMOGr8\nmoOGWickNGEjJ9U/0tzaZw/TEWImpOuHJrSLl+/9QgD0+l4bJ7DByFGcaou3RwgOv/h/Og7iTuo9\nXj3DG+b//p54fIzGOQpPHse2Ary0xMMw6mHLmGw0lGLgSMjIQEQcJ92vxgMR0r711Ti+mZliTIwH\nUimSytK56psTiiq5pr2A+IiCfvEhpbQfTPB/j9bO4CntPxe/h28gzpZTITrEGeMTgiYq/qHkjPbP\nPYd3iPUh0hVKasSepyneo/KIebl7wFzxhRQpe6cgC1OTtHc+w/y+uJ43M7MZ8VOMBfk57QqZ2sJX\n2ifU52ys7H5XaAPVz7PNc2txobXkq0Htu6dn9X2KeXRCnEE3p/DBnt9BStGsjuAL1RM+hx6p80lp\nzH5odv7y2EYaSyP5RWuEX4SN57eEKgtqzzIe8L3/4uBdswS2H3aw+cE5dUoIzTo7kzczs/1Pybqf\nvMRGG99gfotOs097Jr6N42fYNrfIWnP1+jU9hkq99y7za6iLjWavYLPJVfrs2UesK2dS7Vz9Dqqc\nmSR//+wZiMLzthQg71K/oXic+oLMrKyxvxvKhxqP2YOEB/hudp09gYPUK+h5B5t6J/HS/vU3WN9M\nY/DwwY6ZmQWS+MzEAvPj9r7U/fz4ztJlxtyBeEI6p/Rx/jJosqTQtNv3QGUU6/jY+us8z1HIfPj4\nt6onYyya4fvCA/ZyFuJ5WSl19QLifBFC6VR7wY74qTI5odtiF+cdMjNrSGnSV5FyT0Pvjjq9cXme\nuWU0Qz+lxaNa2GUvFptgL+rRyYGRkJ2RReoxq/Wwsgki/nwLuxXS4i7zpX9fl2B4bLVi2fZPeFdr\nCRmj6dnSWptG2kf3y/hsSO/ZmV3xcArxlljAptPzehcZ8+64f0Tf9KrME0G9O/l7znxM3Q51qmAs\npPoVQY6LL+njzftS4I2Bflq8he/tfsi89VhjryauqXKYeq2v4MNLFRCOkaTG/wRjbnQJnylLUWz6\nGtet3mLf9vA91KK2n7H/i/eY38/EQTkxlJrTBr872KQ+h4f02XeX+P4PFRcp4xa3uMUtbnGLW9zi\nFre4xS1ucYtb3PI1lK8VKRPS4/s6yJydJ8K0/hrRyZMtnekUc/mhOGde/k4KL9twDXQTRLh6Un4x\nKegcb4npu00EL6RzjmdiJp9tE5OK9InKBmpEBqtCD3gzROSq2yBTGiEy7k8+IeoYCRBlHUmJ59JN\n7t+aJwJ4+9Yf8X9FPatCnTx7QiQylBT3hdSh+l0yA0sZKWQI7bEmbfnMPP/3nCljsUTW8bQqVRXp\nug8bPGftFufwNw8PrTokmrfzOZHg86CyLsqGL18jOxG/TPZ2aY6IfPhdoYFOyRrUvEQvn78kAzmY\nJ6tycqwIs5/fpfzi47hJlj0t9Z2Z6yAsLlr8Cdm4QD07UknyTGGD83MpTyn7HZZNy8pWNaVIMytO\nGFPGsC8OFr94IDLL+JDH4auoENlPZIiiTmWkonFAe8vP8ZG7b8ABETLau/0cXwml+f+SEC3bR/RR\nUaztdxaof0++3SlyX88NMhwxsbif75OpbjbFQ5SgfSEfnwFx+bRPsENQak3ZK0SpeyKJadS5X1vn\nHMPiOuiIs0CCXdZrMya7UqlqiOOlvI89sorIRxdo1/kWGeuRslbTGnttRY9HNT5zl+j/5AT1drgX\nSrJHJsHvPEIm9f1K9V6g+IScqPiw8fpbGudCpJgoofJTZD/CmhdqLXw9IwWXh8eOLfLYYGLHzMwG\n4rGIlPGFhPp+5i7j/EiqInXxL7xQBi43yfg8q9AH5Q7j9w0/vvagiI/4l8gcXvHQCb8dUM9qn/ku\nGpLCVow+DIrFfu5c56ezjMX8kc6BLxKx776Q2tE+94tcxUe2xP0S6xOxH89R/9geSI/dJGMlt0Rf\nN4UkLNWYI+Z+q3Pl1zFs+IjMQ/wEXx2JK6ASIstXTvP/oFRYDsRHMTzAR6cmsWcqij1qDrJnmfu3\nS9gtOKQdzaiQN3s896LF2wLtkcuR6YiIUyD287yZmTX+GLud3qDdd/4fnlc5Bz3ymyD/n3qDjMfr\n4uM6fUg9Ht6R4sTqP5uZ2eMO91nvYbfZRakN/hN+s/dD8XMoN/LpG/ds/fz7Zmb2/CXZldxjsj+d\n72OT73VBPL54G5/fPgKxspAlE/jkGbYsKpu8cp01YOUDxsa9VXynmxcaSNnpPwuTkfzZJgiVbJwM\n7mIdLpjMmDb96rf83dv4KzMz80kZ7L90Gb9VD/UYz6M8kHn3T8zMbH+NsfP2JD6yUyZT+/fDd7k+\nzjz4js7Atwv0xXtbZFrTb9EHsyPmr60/lvrECN9PdtkzXD/mvPrIC9eC7y+FuPuvdqEy0FoedBRa\nBsxDQaFiW+InGbeE4BRAJSz+iZHHQZDgyz2TGp6UyAJDBzEjRI74VcZSfeqI6yzq43c+KQz5xKNS\nU8Y26GOOkfCMNSNfbuW8/YGZuM86LSFfpFY4CFAPn/hbfNqDDYR0EZDHRlL46Us9aiTURU/ZxpHm\nqIHUWwZe6jUUiiXmlfJPsmsNzZ9Bj6AsQhx4+tyzHRX3QEe8YkLK+CJCT2reaMSEFhrSlmRfvDpS\nlBqLQ8aELgq2qasvyP17Umkaiz9nZHz2x19tG+ysUc1p6lsSH4gnKvVPoVl9Ug/yiRevI6WtCWe/\nKT6gskk55UQIw/vcv9MV4kROlpTP5ZSxDuWm1S7GwmhRdhlLpW5M34Xlu6b5q9zCbo7SYeOQejUa\nfB+UfUJZ1uyw+m8k++1pzxWRr3a0p4rJJ5tV1q1+S+veCdc97dIPgQ/EOTYWh0yIdsWFLslE2Fv4\nA6zPs1nqFxHKuVXdMTOzrpBUz1/S3+dn2LHT4PkjKekk7Usk1PGLZxaT4lEnwJyR0Bisxhz1LiFs\nnbHpIL2aduES6Dm+Udb/qcPSq8yPdaHtHfWf7CJtvbTG/u+siI3377NXyQptcPk6/BlevRs8vQfC\npX4snsw3QQ1Mr+IbVaEXdoX8nhOX5OoV1qz9U9b80uYOzxEnzFSeehwJxd+R8pajSFM6xMa72nfO\nzbOnmVrF9+p616k+ov6dBr6c1/5/elL338YHSyXm+aWrvC9YUGqd54yt9CXxrh3T11vPeN/I5pnn\nN6Toc7zJu9Wh9qW5KfZEl15j3WocYofSOe2en+R3jmLbkdSdwnHx102KB0kAmKCUwuqya0j8V4EY\ne5mQw811weIVEVZMpzTiDd4LahXqURSXz7TDaTmBnzSK9H9myFxQibJXOpUKU1v8SAtCf4QXsVNj\nE6TMoMxcNXvzS0T63PSanZR2LKg1YeYSz/IUsGWrI7UyjcO6l/liWhyp/jT33JEy41QRX2jX2WdO\nLmGj4T73LW0xBhJJ5o/sbfEQCb2UK2KDpk5d9HPibr0NZ1+jxfMOD/Cxa6uMraV1rnNUOwPnUhI+\nwkYvE/ja+YA9x/6OOGgWGGMhoX93q9gqeV9KxTotsiFlMWd/X+9Sv5PHoNXKUu668+eg3l7+ivbd\n+8WvzMwsL76fP1RcpIxb3OIWt7jFLW5xi1vc4ha3uMUtbnHL11C+VqTMfkmM4oosbe4SwSoeE0nb\n2yJ798YUSJFolozjXaEJ7v6IM165ef6+v0XU1afDn9FzorOVY52TvKTzk2JbPj9T5kYR9ZDYnHca\n/H2lPqV6KAO/xv83Vok6Xl7nucc97j8dIjNxf4dIYV9ZtZ1tsoMbG3BEDHQufOoakbZogufXD4nk\nxSJEAI8fiJVeZ127OnfebnPd9g5R9uIB19VDRCx3dD61liKiee+d92xqmgi5t052YiqnKKIivf0y\ntirWiPpVt/TsIm3vS3nGN0m0s6rzhIdiyPYqm3NYoK0+cdK0i8rMKbuUq301pYNWA1sNdKTdN6K+\nv0cFlYX8cPpQkeNBkexMJCCG7hmyL8VDIsm+ITadWCAqmotz3/oJ0dOezqpO3yKjG4rxvJcf4ZNO\nQHxG5wPPz7m+VCYTnRHzd09nfvcOsMvMMj6cXOXvD/8WX2l7yCzEda68fcL9KkLm3F5mTBQlSRHy\nSElniD1rDaLOixtEc9PiE9p7wrnLTl1RaT/28ClA7u/wnLGOm3uWyLDkEvhSf0tKBeJ3mp8lsxAR\nF8HWC8ZKQko9kRQR/6NtouvRCfolLJ6ns5LUBsSBMC90SVSqXD5liK198anJN4eNQvviD6pwr422\nMo06g9/sE/GeL9CX/VO1eY46+5VRO40wnsNpUArbL6jrREpnR5tCmrT53aqQIPeVSehLZeTco8yA\nfteXeshhXUpcl4R8q/D3wbKyG+d8nhySlWleVnZ8Gd86fY6toytkCPJNntOxM7WPv/fE4dJJOPXV\nGE3gG54ydsstYusnFSmNhcnY+nPixRiIqf8lc8ee+DuS2/jyWoQxeDxkPmy3yFblpsU3pIxF7IYy\nJ4/Vt9PMLVt97jPSUduqzgAHGlIrGuCsuVN87agm550VZ8AFy0ToZ2Zm9tkWWcLwf2Ld+Y7Gkud9\n7PHBVebx7XkhEG+TMVkRB9jC//gvZmbW8oIeaf6IfojHQbksqD+GH+B/I3HJ2GPs/qCFPV8ICbU4\nA79L5sn3bPFbzLO9G9St8HfMW/fe4TedVziP/Z09ndceYNODkbi1NJ+15vDl+Q5j4nMpIbwVzdNW\ncQDUvXC1/ERKXD+8vGNmZjXDNz989mMzM5tdgItmvcH9s0sgdM6vUd/y5p+bmdnlKuvCG0FsPBCS\nZX4LRGF/i/tNXPp7MzObrKDC9Gj+YzMz+94nIGIOvqF1ZZP7bJQYU/+UZR5dPhKPz4gxet+Y5xZ/\ni898dJuxsnzKfHXRElW7m/LZsOaplpc5JeQR6gIXsWBfPExCzLTELWM+rXNSugk1GMs9zfMd3S8q\nlZa+1q94X3wp4lAYeIRo8el6IULbHnERSDEn0voyvxbxRK3nETpAKJFRAF8MO/UQOsHroX6ehtAd\nQe7v6fA7r5/rAlIdGXV0/Yj7d0Q5kxhzfVcpZUdBqdUJmChezBcXB4kQIzZUHYQcGce4MDLuyEaM\nl5DUmcJ1IW6C2KSucft7RITWpHBNSIiw0LJC5IwH/G6gPYSz5jS9/0q66gJlcYH5KiE+t/ickD7q\ns6CMMkyQ9e90eG68qrWvzsLTKbLfPROKue1R9l3qISPxEWXD4tpJC40kZOZBkbW5WRHf22Pmq5TM\n2xRaKluXDwikOtJ+c1rqStk55unliINQYmz5ZGfPuVAPRamVPOF5B35Qch3Vb3JE+1Nz6ic/949I\neCwa43tvmnWpKV9OCZnSkFTkuO3IbjG/n73k+sELnntizI0Cm5kvI8RhDH+J+cRRUcfnnT2umdnA\nzHptwR40aFtx8SnJ3iEhempJ2u8Xoskb6dlFS7Mu9JP2IMk8Nk0nQS7sfs6a4pfC48YP4QwTgM0e\nfyCOGHFm3XkNxGNfa+/2J6wZRfFozq9z/8nLZPHbVXxqa5P9fFjIicWrcNEM67R171N4MUID/p+/\nJvSpFF+PhLCZCuAjCSnFbn32jpmZeXzienmFdyLr0se7B+Kfa+DrsSV+N3MTJM5gjH0Kj9grjKQO\nlZri+X6hsnx+IQKFvN4+Zv1z1FdvffM1MzMrFfROJA4xvzgRr9/lnSvYok+ffSqezgb2yLyCj7b1\nDuptsV6mpKg7JU6ZjpQ6D55IQehcCCadYkjpveisJAXgC5aqOC19jgyT2pkSx2NA83GtzHWxGerb\nkVrTwTH1Do6xR3qe+va1R20IaTR9mbnopIx9nj/Ve8xC4vd1CcwErPisarUXnED5hlST4kLklR7L\ntuKtcfg1F9ZYg6/eBMGSS/L7nsbxqKyN9gq+v3QH254+Z40+PuDvc3xtqQnGRHEWn6gLLfvoKbyV\niyvsJaaztHnvPn1ytMn/h0Ha1G/wjhcTWj86wf3mZrV/9uqd7h4+OCgyoSwKTdbdZy9ztr9De7pS\nKNY7TNPD/m11iYqHArSnsM31wRQnZX7wn//MzMye/S0o3ljo3+cdcpEybnGLW9ziFre4xS1ucYtb\n3OIWt7jFLV9D+VqRMrlZUqP5y2T3kyvSmg8QwcrNkRHd8BK5+uiJmMgPifKVK0SsiuIP8XWJjFUO\niMJGhXw5rhMtrAkO8OAlWbWpMBEzT1ZZsLjY/kdE9EI5kCxL4kdZuE5UdPeB0ActImWFUyL4JWVq\nnt4jCt5eoD77daK40w0yzcdVRVN3nLOuRB4bReo9K3WX2umOmZmNpdIxrnAf5xynN0b0d9AjKjon\nJZ/UTaLSSws6c3zrji1dJZoZ0fngYYuo30hZm62nRDfPxZzf6RBdvHpdv7vMvZeWiLQ3lCnbPZQt\nc0S4S1XauBzDtgcB/l4+EeKiJnWiC5akeEBOt3WGX8iT1CxZkUdPQJpYF9uk8vRZtaAIdJzUQ1RI\nofoREe7oAN/IXMG2fkWai4dEgyV4ZRPLUpsQ10ztnLOsl65yftEvZYgt8ZSEFPHO6ozpoEqfNg9p\n/8rrRO5rJTITp0V8Z3mGaGs8TT3OH5Jp8IrnqKHIf2MH+waEPCrrvv0evrZwhei2P0W9WzXqHY7o\n3Kc4X6zB89tCEk1EpAiR4/k5ZXpKUpPqVYky+28wRk/3ee5+ieduXNd50AZj5XQPf8oK3RYXgqZ2\nQOYlIPunpvGTkZNyrdK/vsjFOWUG20IRGX3uP5fiic5Vex7hy3NRnjHOio1dyk+DBbIRfSlmHQYY\n/+sFfn+WweaHUere/hjE3PEmtrwyj+9nGvzdJ1WL3ArPPU3jTFtLxMBbQ8GSJkWu8Bts7T8RB8Ay\n8+LaE3FZRfndXByfah/ig40Ifb2ljN+qzhlXZ4jYj86wS91B3g1BR0R1Lno3zdiM9r5lZmaXIvhc\nUWd5Q0HsMJdgHt6eEsqsIvWSAfNQQ/wd0SDPHYrLwOFUyB9Sr6IQQ+OMEEB9xnDVQzbv7j5jNzYr\nnqhzfGYckgxTUsppcWX7q19FDsOsLTWT/kP6Y3kK+/1siF29G3CF/fD9j8zM7P0hSnFXnmL/53dB\niyy+BQ/KgdS9Vh4I3bEu+3UYM+0p5pzGJRTuDj5gDruzANLmxTOh5FbhXSnE92zz6Q7XLIHwKGXx\nlYnbtPmzR2Qaf77I/L3mkYqej/kvX6cNa0Hm6Z+VWYtuvEKbJz9GAeEnHur4jUtkGtPfxsbHIZ7/\n4uf49Ny3vk09hEjMr6OOdLDA74K//gm2+xbPLbzD83y38bXPE8yTE9v46GMPNrxbIBNclZJCeop5\nx79Au+pS86sWUG8q/tH/Szs+o68+b/KcyNvUM/GIbP04L6WHLNm1rpe+vGgZirckLHSDaIwsKGSL\ng7YIdqUUERQPipQj4kEhXcQ/4SBdeuKEiUt5cTzUAiPUSFhKLw2hLXxSyhmLo8YrpMwgrvSkfj5Q\n1t/3r3hR6t6eeTUn+Bv6XqiOcVi8LMrItoVyiwl24KM7bKT2N7XOjMU9FxA6JSAuBAcy2g0o+zcQ\nd5l4AgOhsQWEdOmKw683FFJFKMlIWPxj+rtXqFSf4LEdAeOCslnd63AAcp+hFFvG4phpSyEloCXF\np+9bSb6ICG061jztdRSmLlh8KeoxPOP5G9q/Xr7BPLB7jA83lK3ud5jfND1aSIonnmXqmQ8KjWRS\no3IUrDzigxNfm/cIn6i0GLuhWu/ftDOxmDczs4H6Iqb98UB7lLB4JwJSwKkKMZOSYuZIKDBPi/4Y\nijMiHqZ+07eZz7IdPs9NnD+S6opUmPejKd0nLJRYQEhwobbCsn8srfW3pXVLalqjgnypxnralcsP\ntcdbjbIPb6axX8LDmGnLTnGtLwEhdzwODNjMlv/sB9apsW/3HwkpNWKdivj0oBjtHcseYx/9mXAQ\nPBcoA+27ulHqML/APqemd4DDbSFQbvL9jLhaHvzqfTMzO9c7xVs/AqkdnOU+W79h3iy8ZK8zs5Q3\nM7Oc3k3CQ2y58wXIw9MzfO/SJa7LSMH1eJv7t6SONJFnXZmYYu9ReM5a1lR9528yz9aFyD7SHmFx\njbU/NcmeaPsz3s0aUgfKSEls7hI+ExMnooNuONtjrZ9dxw6Lc3xuizOmUqSvgj5xPmrMXr4DN41P\nMKytj1ljGy3sevk1xmJ6kj3Ds0esF+VD2p1dwR7ZJe775Jf8XUJpNn+JfetQfEKnH+2YmdnJLkjN\nzBT1XFW9Cy18s3by1U4CTAu1rKFqbR++ms2xd+tLKaw14P7eOu1Nyp/aUfqjKsS6f+wgHoW2LmCP\nsDhrrr+KStXvfo6fnT3/8n0sv7BuvVc6dv+XrJnnC9w7NgXKZi7G+B48x2f2t9k/bot7Kh2jzgPx\now1GtOVkl2ecN8VVs8beZmqStXrrPnuHe5/yznDzTfpuYRmf6eudNDqibcMI8+LMVXy21RfHoJB2\nixN5MzM7Ff9ascM7Xa2BDfdP8NFJvS97POL428E3olqjM7dpd+KAfWJ6jvaFYoyJM737dtcZM4u3\n2Ot88OO/NTOz+38Dmuz6bdqzdBefjaxxnz9UXKSMW9ziFre4xS1ucYtb3OIWt7jFLW5xy9dQvlak\njLWJ9G+egDJ4vrtjZmZhnfHtnYAo8eeIjB1/RpRnBNAzAAAgAElEQVQyoChh6ZDsXvuU6+emyBpu\nnxAdfvU62bxYmAhafo1ob3KKSFX+Kvd5si9ugr7QFYqIt/tECpvKbD/6DdHFgxL1KMeJkJ00qPdb\n3+RcaPw/oJBxZ5EMykGZSGFKPCiVA50B3icKXBvwaUIPZMNEu3MLRBRXVxWlloLOlFSXsgtEKMtS\ndzJF9ku7RJm394lo+vxeqx1jy+260AAvsd21ZRAOSbGnv3GZSOr+Ib/NLJDt+Oi3n/P9gdQtlKor\nnpJFuHmNc37tMyKzpyWyIEU9t3OEbQsJHZq9aFHjasdEORMb1NM7QQT+XDxCDnt9NosPPH1GtDcd\nBemTlk990VBIWtmuqSwIlVaBPioeOWdKlfWRhn3lSKgAhdJzCzG1D18btqQgM0f0tteUwoy6NhWh\nfnFl5eri+8gokp8VQsVOuU+rRrsHaezfHeg8c5YsUGiS64/eg30/NS22+Cz1PpRi2HGR+mXEZRMT\nYmb/Bf1/2qXdK4v4sl/Zy+09+eYpf5/VufOpaaLIx88ZA0nVb0Znhncfcj7z7Jz+Tq/RX/EUUfEX\nH1Ov4QRj0slyVpU5Gnh4vt/35VnX/1k5nxNf0T7PrCkTt1zjHnsjnlEuEPEOLdIHO03OxK8oNj0Y\n4iu+h/hIK0mWJJfHd0ovlBGI0keNJvNWa8gYmpwTz8NHPG9fCJCszqhOjjgTq0So5RWRP5xh/kkb\nY2XtVGo+IfFA7ShrL0TKKWAli7SkdhSlnjtd6l8zfLO1pjP15/RRycsYWp5mfukWac+UTz58Wdlw\npifrjMi+xOeYM4Yd8R1JSaZSE9psgrkiqzO+4xKfJ7rOpArlm8Dng14hmnrcb9TQ+ehr+Ly3S9Zt\nWko7RWVSgx7sFW5Jyab61bggSlGel5ojo7H1j2THXp2T2pOHdmznQJmEjAxOykC3VbawZyhCf105\nI5Ny7w3uE6/TMb3mj8zMLHeTTMrC+4z95z6yme8V8Js/Df/AzMx+kYIf4O1q255O8tu/izCul9us\nfYkP8Y281rjOPk6UbDM/XaoyTrev0VfRvyejmolhy9k5fGpnGqRLryIFlT73S0QY/3uPqeP4Vdoa\nu4/P9oy1tP8a82Vhn3k384M3zMzs2c+x3WstfP/wIWtrbIMx5rmKTzQ+xkcfNbB5af2nZmZ2NcFa\nd7qCraZP+N2rb+6YmVnrH6jn8yl8/YeGnSp72OXMR/3/6xRjMOBnHn/71/jwRUtbqApHhcmjtTUc\nlRqRT1l8nxA1LdahoThoeuL78Pl9ul7XSd2oJZUPj1/8GrJXV7wXPqEaeuKlColfydd2eDOEQoiK\nc0HcaGONETOzZCBswzb1GEb4DA/4FBjFRuKi8dbFcSMevoB+54vyvIj4TXpCBjkqS15HdUT39YjD\nxsnQdruCb7S9Vle2OS4lv15/pGdiu5j46FpSVesNeUZIKkEdIV88If4/bgpRIZSSg8jrae3wjIU2\n0vTQEP+OVYXqSeLbEfWZL+4oAl6sPP0pKK4PH4GYa9fF+aexqi6zoExQ3lWmVnumbon6RTWfJVJS\nmBTvU0Xo3oGy5mOhlh2BrcwEvCGJV4RGymDH4Dl2bI6YT8NCa3jFFzKUb9f0XAdBZLKzV4jtwfhQ\n7WK97Aa43hOgPokhY9lRdukI1eWVGkq3Jg4Ycbq0R6zDvRn1T5/nnJa0PvUYw+0+/dD18n1CKlat\nHmNlMkd9xgn56FiqSAOpLpUFa5P6UnSg67OCP5hZsNX5PWqsLfRBTQtyUOgzvz77XvxxbDy/48DT\nLlAGSanqtMdqM3UolkCYJIUgubqeNzOz4032Yy/E9bFwh/l6ceWGvtfatMv+aWFFKkvXmK+DYylR\nPcY39/bow7SQJ0uv4TOtAT56+IK9w1CopvwG828wSN+dFtjH9cWBFRG3Su2M+8aFrF6Z4f77m7xz\ntNusK5N59oNBjbFhSmipLu3fL7IGBmP47Mol5u9RmOftFbhfyLDbVE6caVIdTef07vMMxE1pX3Zb\nAY2Qu8R6UdzbMTOz4y/07jjLmn3pDezRORdP3i71WZjXHm+OdbPyQuvqS+rjy7I+rb7Bu91I6Kri\nY64be79U+rpIGQrmNu4IYXgkpM2E0NZS3Srvc/+m874xq/280L5DqRXWdJ+1q+xJ60Z/fvEQv/jR\nX4GKXr/Dnubpp7/7fV0e7T23ueUZy0zSxl2haDJ6H85doi6JV9mHHv8K6N+ZbDu8Lj4c/X4ih4/O\nZXknOq1yfVMnXVbfBIV7/TXG4VkJ3zqvi7tGKkyDPuOvLqWw5lPNb7fhlPWmGUuPP2Vs+OLYJJYU\nF5fGYqcgrq+ag/5in9dZYz7Z1kmc5y+lBrfMvFUQh2t7HzvMXMLnX+xz3f1/BpX22l/A+/T6N9nX\nlcrMi/ffxfYPfv1r6tf99/etLlLGLW5xi1vc4ha3uMUtbnGLW9ziFre45WsoXytSpu4jautRdmhl\nnujf9CyRtcYTImtxZUpWL/P9q1fR/67cVsROikHz4qfwTBMlza8TLaze5znNFpG2p/ucXesrc1zY\nc5RruD67rMh4nedOR4lsdT1Exr51m8zvXJJI4PYhUebZBf5/9AVZznsFsn0750QA5z1EEEdKar26\nQVS3F1H2TBmiqqK3x892zMws7afelQHR8n5Q6gJCWxyIMycWlKrHY57rnC/NRkNWkjpCStn5hTx1\nmV3Dpg+fgoTpf0KG9eglUceNu7QprLPv02t57hMkGjkhtvFEiPt+silkjPrUJ/WKWUXsU6l//zzd\n/780OlJemNR9LhEV9Xh1vlrnAVeEfhorW1bsYZulnA7JJ5Tp60upJ0wfhkOcK3yxRR9FxB0wOYsv\nhKTsUK8SvQ2ElMEMU49Shb6ZXOY+lX2yN5WeskqK6CeVLexJCSw5LQUgZQ+7bWWRdIa/q4xkWMiV\n0ZAMwrwy3q1T/t84Y4ysXCVyH9OQLj+iPTEpXjiKYe0S96tXGBMpndWdmMIeTakeDSvUM5HArpNr\nZBg8cep7sMeYi4bUDvlXtUa7Q0oTTknNqTKmP8oNMhJLK9wvlcJHT1v080hx4qCi5BcpESlQdVrY\n4LzIbxMdsh0TCdpyoGxCa4KIvy/MONqvMa4X6yA4gkIT9aI7tKXMGJjfIAtUOaLOZxWhhKpkgxIZ\nZT2WsW2mrTP9k9xnoSDVjkPGji+CD9045/n7QrrNJ5iPJqKMze5zslY25/A+gFZohLFpalccBxnx\nXdS4z2lTSJi0kC1j5pUZqZv0hTB6csTYumZCrixip7NH9P1yUsoIWezYM+pdeEa9TzzYP5LCF+c7\n9PloF7udlqln7ox+iQ2liBNmPmtHQJi0n9KOmxNSeGgpCx+g/t0jsnOZSXxsJ/TVUHftQ9o325Iy\nGOT49ihHJuNNr1AoUut6TUig/o7UR8KMveefkNXM3aZel5+RzSxGuE9jyPn2sp85rz6LXw68vzQz\ns1uXQOrUSyBprod57lHwhU1/JOSazrTnhE56kqHN53PYMhTAhoWP6NPUMWidwSpZ7LbBRbC+9o9m\nZnb2ad7MzFpjsjk/yH9oZmY/TTP+v/kCZGF5ivH8lx18eDvJGvWNEDYZaT5+ccjfvbLZD5eo99n3\nqPfEY+oXPqR+z7VWT9/dMTMz/4nmtTvYYqou/qMBSMx7RSFpUmTBT4XIuPwa9XtQQf2p84gM69s/\noE/6D7C5vwKC52zh4vOImdkwgp2jY/p82BOXi9RLxj3Gwu/5JxKMJY84ZfxSb+qKa8UnxS6/0Bv9\njtALUSFppATk9dK+iJCcYZ3Lr4eFTBlInU79Imo4C40jqkf/922o+brm0Xl6jzhnvOIkC7bEpxLk\nOf0kv+81xc8kJSC/ftfUdUFxyHhM61gfO/nESRbsitdF//cLneIJDywo2wxGWtO0//EKWdLV3sEG\n4t2RwpMDAI7GeVavww9jIeYJRwFxqH2T1yPUUVTcVVoL/WMhGONCcLS4/zgiZODQedLFysoy80BQ\n2f9XX/2mmZmdH7IXOGsyf/fELdMHBGpl9anDJ9SRbaM7/D8YYL4WZY4l5sUnFOX7cZexXe1zX68Q\nOj4hTwKO4pZQE3Xx+wy1hkfEqeZRotY/IcROGjvU2kKG1Ligeaa9XAf7V7dlgC57xF7fQXcJ2eOh\nfuEAzx8OpRbaI5Pefsn943Vx3AhtVe3zvGCb9bcuBU19WFQck8dPNZa6rENjcTgOtW72hSLr1cWR\n02MMJ31CGf+v/7v95se/taks7c7ILoGkkLJVIZbizDlJjf2m3KM1+BKN9j8rfiE8app+Rpo/Tfw7\nluZegy42OH6iNSXNfH/5NsjEap2+3hOiIS500updEO2jMb6zf3/HzMzK+zhbXBwiV18DmZjQO8zv\nPvgXMzM7kUro6jqIicwie6WjbfF17uHLuXV+n5wXF8xTjBES2qjc17vVOX2by7K3qVSEXqsy36WN\nfWj9iPv2jqR+qn1gYpF15FjKsW2pji7ckGKtTD/Wc4ZSjjzZY18eFBJ77RusM+VTfGnrU9CucaF4\nV8VDEtB89ewea3ZXvEPZO6AvBHC0nedaVySLdeU6a30wyfMOPgV56heKIyLkykWLR/6QzWFPUaxZ\nvaz9+YzeH8Tb0j3Cno5dEzGpynr54bm4ghpr1G9ylj3Y4ye0897DHTMzywu9HYykf1+X88+2LX7n\nii29yR5hUOAZm5ugkcpS53zzTXzz6l0+j47Z0zdPhK4dYosHFebB9QnW5IzQVu9/hs0iWd45w9O0\nTQdOrHnGeL22nKeOV+Rjx/RRXZyqtQV8/fpl8ZwecF1H76TZZfYu5qXPi+IDKmwL/SSeJkeZN93i\nHahfks9GqFd0BRvtPuT30xH2Nm9/+0/NzOzRr9iz7D9kP5df4H5JY8xM6J1tdh27eh2lrT9QXKSM\nW9ziFre4xS1ucYtb3OIWt7jFLW5xy9dQvlakTEIM/ZMJUAbbUvM4PiTytrNDJnXNQ8SpeET0tdUm\nwuYXv0dJZ139YrU/0Dlz7xEZhM3nREurS9zn7JEUg7xEb2tCmoxHRLSa20T4nm/umJnZupA31RaR\nuJ4p+98mUrcr5ZuzGhHCR78DKZOXgkZAqiHBBM+LiRPh7IRo75MjspzNriKNXqmB9ImolcbKTJe4\nfkrn2g+lZNQS0ubSNX73rdfhtpmdIco9Ox23FwdEwOPSZj+VUkyvwzPjY36bEVO+b1ZnWnUe0ILY\nNqiD2kcVqe+I6yWgaOLGa0TwL8/S9vIznU+W0k0wo1DwBctY55VDWTHhJwiZP98iaukw83sDyq4p\n2xMYiZl/muhu+RhuARF0W2KSjIPD41Ot43vZNFFOz4TOHVe4X6WoLH1avtAlmjsScsbTIep6ckBG\nY15ndBNz9P3xx9hhZYXMbnKRFErjIyFglpVZzIpPqU4mozeggRnxgAxFtXIkXqOuzqFHV/KqL/fz\nio9jIs3zI3GHA4d69EUu4ER1OzJkRKpcDaUKZlI6tz8l7hdxDAzkN1Ni/w/qLHBHbO/eaSL1A2XN\nik/wP7/4XrKT2NGU3SxXQGdMJMmc9L1Kg16gtJP0XSrNvUdST2gGyZa08tS1HxYCZcBncYUMrf9T\nMeD3yBallXmrDxhfiYiyygP+Hhzxu0UjS7MtFNC1AT7omeEzUWbeKTUZh+s6X75foz5Znafut0AX\nzAyY9+ry9bjQEb19bFVT5jMkX4sFiOyPx9jWV6W9qwEyBN0DfCiYYmxOnEhhq60x+Kq4CDpkg7px\n5s3bXeaI50ISvtS8c30IQqdco57t/Jz+z3xaiGHHVp7bR6Xyka3Q7tMd5hjfNZy4OMIOSXF51dXn\nxQa+G5JvTGsef5niusFIfBcj+vGiZf4WPnr2Ce35lhTSfvozOF3uN+Tz80KB7GOHxz+gP75V/xsz\nM0u9zv9/MfiemZm9PU0G6FEIRMybT1EKmjzFnv93Wfwm4gdIF7H3T5Q9nLhH5rf1xnVLXGP+qC3R\nx7NSWyjexscTD8hwXT5hnHnSIF6OYqgqXf8n/h97hbZOppjfPlzHdpNPmTf26ur7T7D5vcv46PIJ\n172zwtnzBT/z3y9FrhJ9ShY5cIu1OfBTfCtl1Kf4lPn/0mucwR9MMK8sN/ndr8V3cWcDDrLeB2Td\n7Sa+/WgbhMuf3ySj+4sa8+itP6PP3/uY+3z/dXyvXdDe4G+x5b0U9vuTKlmpwg++mkJXTutgP4gP\nDKV8Vivq/2P6KiLOl7H2MH6/0AEdKd/4hQKWqlxLmeqI1u7hALv6hKAcDqhnx8c870x/445TDyER\ntf6qWtbSFm44+pLLINGL2EjIm7F4V5oOV5dfyBzNy9660GtC3bWDjFk91oIDKW5IScOkIuUTUtQn\nrrO6T+u7w0ETYo4J98YW1BrZFzJmXBX/WUAqbV0tykGhBwJCUoSFiOlqvIuvoeNwoXgZG4Oh+DuE\niIgKodGVrQNeIUqESjDZpudwVTk8QRcsGfE6eYRGCFzBFpGa+N++EJGc0MLjALaPhsUhE6Xd4zT1\njGr/2GYJtGJA9dtnPzmUL511mXcHLdrRaUoJK6Q1XZnZgNT2cgHGZveI58di2K8hdOtElfvWtY9t\nCFDSV3/ExIs0lCqpT74U1l5h1BfqayhOFv2+KVVBv/a5Ye1781LlC63rU3wafiFVml4hKE+xZ6+P\nHT2qWFt8TX3xH3mkTuUgx1va+wT8rENxv1AXDprMzOY3cpbUmB1onfdVhJTR3qrdE9pQCNy0Etue\ndM0uWvo9+iihd5RMkDYdNFgrQzFsWe9Tx5Z8Nr0mBULx/mzeBxE4GuPz119nfjWhvJ69w/1MqKlg\nlrFw+Qp7AL/UfTY/A+1w+BQfmtbf128w7zsKNodPud9Avrp+jXm2O6CvSyX2PC2hzxbFHZXLcF3H\ndPrgJT41KwWdWJj94JG4TfqaR7KztLchrq3zMvULxLBXVMibRlX77TZ91xbPSV9I/Evz+I5P+9YX\nn3FaYNDl73e/B5qiqb7fei7OxVPaMy27O6cddp7yfVnqqOkr7JNzl2lnc5O/n55or+CXYm/sq/Hc\ntRviVozhc0khV4ZSex0IeT6QalVbPEfNInvTpSt5MzPLv0p/nonDc/dTPl/7Juvg+iqI1M4Bc0o3\nIjXd2/nf18UbNXvw0fsWEV/na69838zMJvRO8kQIl/ffwSfnLmHTbIh98V6XPUFkBr6epRbvXGcF\nfPzad3gvvSnUf7cqvqA5+jgxha/Wt/GBA/FvtqXe1+lhk2CKvtr+hD3GqOXwm9GOsuaLWEGnIpK0\nJ5HiOXXFFSq77GkSOe4/CIp7scl9O09Yf9bfgiN2FKQdv/rbH5uZ2R/9OXuu/Cu80x1LLXVPfGxN\nKRzemOTvS7fZH+Y8//47sIuUcYtb3OIWt7jFLW5xi1vc4ha3uMUtbvkayteKlBmLhb99SkS8c0L0\nL9pX9i1ChG4mB2pjaoXP0YCQ2FScTMdeFY4Yv6K2Y6l5+GJEL3M5orTX14ngpZaIhq4qW99+QLSz\n+JJURaMgrgAxnF+/TJSxLIWLdoMIW0VcCbFJYlvTyqB8+0coQ6znOUv38OWOmZmdSa992NUZuRAR\nvmmhDcKK6M1IwefknPrkpE5wTBLTUgtcb1LQSHWF+FFEf3+XaOjLAxA4c5GEPRXb+bI4Ao4VMZ1K\nErXLTRDtLJvQQFIEePcxqJ/yMdnelWmilAEx3y/MEHEdDKjj2SFt3Cvz/yOpPB2LS+X2LaKrFy0t\nKeckI0SobYBPnB5ijJlJRVnj9HGhTBTUq6x9V1m6vSMi2+ko9Y0HiTyPz4mmNot85uZ1BneC6+rK\nCvV0vjgQp90eZSZDQrK0pDQwHIuf5Aq+0JSvDMXFkBFvUrWqc+VCbaRy8CQNa9i/qvPQUzpLGlC2\nqaG/N4RQCkfx8YiEASqK3DfEUzKZxS4hoTs6Veo9EmdM9CpnaAcN9buEyJIB2hkREic8xk/6Rzy3\noeRiKCMOBUX8iy3s8abY7yd8ZLG2ykTu/z/23ixW8iw791oxz3PEmec8eXLOrMzK6uqq7uqunuxu\nu69tbGGBkEBISIgH3hAIXhEChOA+IIGQeLGuBLoXuPa12+2+7qmqu6q65hwq5zx55jlORJyY5wge\nfl9UYut2c/IpX/77JfJERvz33muvPcRa3/6+0Ax2DWXFrC6EzOjOrl8ZVs/g9HwhWXFTrQaxxasu\nsgvHacZ++hBfeaR7xb4Bvp8UDcOEuAbutxVZ9zBvB+LbOV7ng2ekbFNM626r1CJCUiTYC7NeXJzG\nFg+nsE38gP/31LnDPi3ul96ess8hfHhdigzuCP2ZzSgTOkb7Wn1ljZQxmBEkpeLhc+4Wy/m8W5nO\ngHyzzfeTUf4+7LFexWuMbUjKZG4pI9S17sYT+ECvgO81ixtmZpY6Sz9SKTIKhwWe566TKciKp6Qn\nUoChFBrKBWU+paw1GKmiRHC6cEX7gTLj4yX6U29LwSaF75YDZOGC7ueqGqcpe0/p780wiJ+n98ge\n/uEk6IxbRa1pSaHQruhef/eXZmaWkNJYIE9W7rtVfPeTWSbf5c82zMysdCykUYDM0MoU2cfjX7FP\nRb5K5mRynLkXuMraMv3+ezb/TfYo71+JB2iFv7eGZBgv6TXpJgO2No+tFme0N9lXzczsowZKAtei\nf2JmZrUzrIux4ttmZrZwjUxiRnfQW0vYOvypUKK3eV0Vh831I9bP21HWr0mvst832A9+9Ig5Mv1N\ncQko4/mhuAJKd+lz38Xrx1FxgS1/Fxu+hy9lu6wPnxyyHy152H/8OXxoOGQfSO/goz8VImfhDutL\npIO9ylf4e01opdOWQUTIlTxjGxCZQdwvREqbuVsTz0VEiEMl8c2vdJ1LGdmOOMHcXSnRCP3q9WrO\ntcRjof3FHZCCTYD63JorQT2/o8y7qy0EUBR7R+rP82suX8eG4qqpi7PAo8zrCL1WFbrE45fyWEco\nXiGiWuI682rdDwjpY31l+MWZ1tf+4B2KcyYiVIX66wsGrd8VwkX/56pLqSksVQytW6a+uX3KXHaF\nJBnZSOuXS6QoA5+UYaQYVRG3idWjspk4BvpCFvbom0uqel6p6Yz4fk5bfvM5ahvv/RRU1g92XzMz\ns+U/I3N6+RIosEFAfET7evVKwUsqIN0Q7YuIE6c4z16d0Vmh0RKq+ZD+DYT8dOmc61NGeyLL3Ihq\nv8iO059+j7Fuyre2y6yzwQc8Z90l7ps+9kwHGeuxOWVyfULrCVHem5ZiWJj6cgkhlaLKfG/gY7t5\nxtets42nhJ3LEZ7jFydO3Mu4B4q8+rLiABLt4KQQn30pegXEz+QSgqcsnqRom3NwryXeEnGN9TUH\nY67nvFKXLt8wE0IoX2UfOfGLg0h+mBD6wsSB1NW4Wfv06F23kC4dZc1rQhW5WiP+OdbRuvacShMb\nnREnyUkdGx3qdkBafJq5cdbFu5+AMCzrvH3uAutqdEx7qzj5dp9q75HCbXKO71+5jo8GY7Tz2Xvs\nF4U9bDLzKqpOEa27O5+wX1TWmffjs6zD0UkpZokLa/O2znM6d0+Iy7Cic97WKvvNmG4fRMdY71vi\neSvs4vuRiLgFk0JBPQX1O/rdcXykuaB1Ob1Ev8p72KMsTplzN+mnd0JqTL/GbiXxJU0lObNNXsV+\nbqEbDp6KvzNIO5aWOTP0eozLxvaGmZkNhfaITDPHQu7T8w6ZmQV09moJ3REUgkhLpglUbUmhr3Pi\nmHnyHr/tPF9Q78pVOOTGxcPy5ClnjX3xGM6JQ3QvT392pM7qCj736eWbl224f2jvf8z/PQjDZTg+\ng21WbmDLjQcgszt1bJg7y2+63vuMbVncWr4o69PaLfjqIlNSuUvx+uQZfYjojDCT1hiJj8iT1jlT\niMB7O+J0mRHKKkxfAzHWTReuZHu3NcYn2GpRfJ+5ZX7bjXgvizXGLjg2kO3w6aRQaQ+E6mru05/X\nbrLOf/Fr1rXCtrhsz+NDjTZzd2KC8++elIM//6t3zMxs/T7nzch1od1+S3GQMk5xilOc4hSnOMUp\nTnGKU5ziFKc4xSkvobxUpEy/pruzVaLI49KgDyV1r1vRwrKy+lvrRMpaISJbY5N8bnuf96+eIep4\nSVHNuXGitN4oz+3pznKsTuTrWIiYsTHueuUUmasEiIaeBKjn/hOijvUaEfms7h+OZ4jshXJk4Hc3\niEZv6r7fwRZR555QAEuLRLuzQmEciNW+e8TrmiJyzTxR3nubRCpXztCfoO57D8X7Yj6piUxQf7VD\npn95nGj5doFI3lR2zFxeIs6zS/Q16tGdz0meGUgRab5zn4j5lCLykxEisf5FshYzGSLnt58QTfUr\nm9JqiAm/r3vLyvaM1B9iuhMfCb5YVioZkRKOV1wpeu6gTgh5Vrw53qSybreIYkZ16d6nbJFJYWdZ\nEf5RRm/jKdFdn5Ab8Rz1jTJ/h0fiotnmc5NXyW6Pi49ip6T72EWyUF6pHfnTPG/1I3wnpqySBbFP\npcQYx5OM3VC8QKU8vpOLKLvnVxatLmUE3d8eqR1FlW0cJUrbHnzJPRwhe5TNErfESU1QGGVKszNE\nkw+kQObVvXGXn/e7Ut0YmsahiY+FdY/bF8UOh4dk0qO6Jx9PEC0uHTGX6k3mwKTujbaErHIVeG5K\nvFHemrJUwdPf89/flm/FWAcGV4hctzZo0xeTtKW5xTN7LY1BgrbMhJQ10R33cpeI9nQP36pXeU5J\nClmJBs+pxXlOo8yYx8Wt0polc5CTalFQ2ZudLGPjcmGLTJAsxr6frEx/lCnM46uBkw3ap7ErdMUJ\ns4Xtj1eIxM9HaFchwnNP0oxlS2OVGiibVcDXZv3YqeTF9pWg0EuPlclOM2ey+3y+cEi76xEyJkdp\nKcAkhGZQ1nxTaAj31xnz0pwQN4JfJaVMU4+RIZkWYrDopR5vk/FIDFhnt84u0K51rf9unu86oD87\n2i9OWxbOifPmL8kOtb+D3f1Sw1p+FXuGPBDLDm4AACAASURBVKzv9+7SjzeOyJBsfxX73179mZmZ\nfW3+n9Cej4UmfAs7btyiX69mQQluR8TvIkWNd3qsQYE1nnNdyM7O4Pft6BPWk7m3N8zM7KNfM5/O\niYNgo0y2KjKEB2el9Q0zM+t+iu9Wr7OuXAvDCbPQ+5dmZvbFh+yFN6aFBHnMeu7xw0HjusOcueVh\nL/62eBs+LeFb3RugRV8v4uP5D9h7fvbVf2VmZvMPFszMLNHEd/5uIqz3scm3EqhA7X/6AzMz82n9\n3rqGL8YT+OJAqnpvNKn/rvYlK0nljgSutbbJnH6/yH70s+9w7/vVB++YmdmHB2Sjpr4ufo9TluMy\n7dndITOcErLEOvS3H5dyixAmJoWtfpi/Gx365RHvUU98VK6qEJZB3u94xZfSHSFemLs+ZfUDUlWp\nCBXRDgmxqDPRKGnvESqk63mOGhu2vTa0f6jyFK7Tj7bWfZ/aHxypwYjHZNikf16pTw1EwlavaT+K\nSiVKqIKeSyg9maMvThm3OCc6LbOB2hZoCfGm/xuhM10jpT2heVriJjE9s6e9sSX0ZGTAf1SrQsyI\n9yjUEWrHJ7TogL4FwuICaQl1KvWjrhAV9f7vVsP4x2V+Hp9M/BCOqNf+nT81M7PMddaN5p7G3OhI\nUfUNagxacJx12S0kkFdoo7R4NfpCZ0lsyqbnWD97btapxFX2G59LvHhSBvMLOeKpYMemULz9Ht+f\nCPB97zX2nRlx4mRi2LGms16oI2SKm+/lj8RhIySTR2jb/T7/3ymJyyXCHFkIsy63hLApyWeDQoz6\nClJdEjK+JW6x8iOpYaXpeLgBj0cqSztjOmcPAkIViEPuYMjnB1IqMvE1dSSb9LiPvf9D+yP78PY7\nFu5Tf8rH+d1jPN8tv6noTBXsCFk14i/xnv5M0tQ64Nd5N6ZnDsWJ4j7hmSdN9roJoZvi4lLZf7TB\n91xCQsyAziyJq+XgLuvTWXGBTZ7BF/eegBwsHnPuDE1QXyTN3hmZFAdWUAjyW/DerT4T18wYvnHm\nHOfcVkGoqm3OQEGtC7kL+F5Q59TtO9RXFSLn/HdAcsayrDurf/+Z+sOcm5aap1fI6PImv1XKVdb/\nlSXaG87w/zv38LWylHHmzvJbKjnGhuBr0597d/CxhM5e2SnGuCjkS7WIveemsGe/r9sOPr5/tCoU\nRJ5+TI4tmJnZRFy/NdfZd46e0t6xGaErUtijE3sxThkL61ytWxdt/S6JBvDhmrgr/du0e+ES+80r\nVZD1G9tSNpthnBbPSJ21zOd37oAaiQgtMqffrraMfe+/f/vLpjz69LZduHHBlq5yNqjvbJiZ2d4x\nPnfhG/rtOKExfYDvhHR+PKN18fCEtly5yFnFMwAxXNBvgctZ8Y3O0db8Fp+PJlgHS4Kdjg0Y89gs\n60BaqqoVzRmXfkN03dQ7scD6cLzB+nPwkN/PIaG2stOsf/4Un+vWme8nT1kfkrP41ph8L6AbLnc/\nwEYXb+C7U9PYcOuEuTa8R/srOjPFfMz98bPiAbonLrADKTsOxKH2W4qDlHGKU5ziFKc4xSlOcYpT\nnOIUpzjFKU55CeWlImUi4iOZWSQC59a9y/qRWNuVyR1bIDLlHrHpS1knqahvNEl0eUV3346UtT9a\nJ3rrUVau4iIKnC8QIZsYRWlbRN6620TmAkKkxKOjy63UtxQCsTLQXeTdPFm41FB3WsXD8bWb3Ouv\nV4msucUiXcwThW3k+XyxJO4HJcviiqqvTJ81M7O+S3fihLBpnxBxa6s/9fYIYaNMcpnobS5Kew+k\nEz856bWDkvgrVjfMzOzeE6KcawWyG3NxIsobe2R3AwEizc1DIsyDmKKBBaKmu1+Q5fDNK6thRB+z\nMSFyxPHizhHFLEnFKLNAtPLURUoAu3v0cWkWX0iIT6iZJ5vRFEV+UaoRc8u6q6r7wT1lO9q6n9zf\nIOLd1t3USSllZSYZ82ad6Km3zBgOAmR9QuP42kDZmcIzxrJeoJ2TZ/h+Rjwhn4gbxpPBLkMv0VPP\nKBMpdEa9JgSKrnP3pcLRUGYhqEh+TONSrIuHScPqFTJm2B4hXaT4IMSOtUuyB/aammRcvG0qPJZS\nT1wZ7vEEc6BexD4j9FZV98OTykQMY/Tj+A7+4FfGu+vF3hFlrQK6n93sMkeS4mTIV2nXUDxRo8Sx\nN3z6rJRPGbW1AX2Y84qLYJE6io9pu3eCh6+Je+DqFlmVvkf3v5ewTXVN6KMUKKlMWWimPbL1rjh/\nT0nNwi3k3n4RtMG8bNUXyquVJovSl480w0I1zChT62fsl7YZ40P53ribdaCZ53PjSWUIxFmzd8hr\nbFGopSq2zqtdrWWpHunO/lgXRFA1RiZi4Vi8E/Oyk5zJtYHPrCTxkaME68rwmdaKXalbJRfMzMwz\nwd3bgD63WcU+Gd1X741h16jUkyZ3sMu2skpBZUrbk6x32wdSinGRWdlZkkqG2PS7k2RA0oMXy3Cf\nU7bJnaWe+RBZxoMw2a7tAO0brqPuN62s5o/7jEOwg0/eaL9tZmarutt8PUSW8uHPsf/KgLkR2MJe\nN15n7SgGV9Vf0CU3+yBtosmfmpnZVuzEpoOs8Vs5xuZygHU5K7WbUkrqFFLbaBQ2zMzsyQTrwcVH\nfM61wvd+/Tl70bebQvEEWffvnyjL3iEr5r9GRm18gvXrROvbm2tk5g7uspesaewXv42v7Iewzdlx\nbPVLoUn/9CNxKCzhA7cK7M2rr/zCzMxCtxnz71+n/k/n8c3rPuZy59abfG6e/gXj1J/6S+q9vcjn\nem8zJ4Nb7FO7yoxG/Hw+UnmxvFNSnGEDZZj9TezZbAsBuo0PRqZAHvky8lWhCPw+Pt9o0f+QVI68\n4qoZKklWbUopxyV+E3GwWIi52tUa5hFcxGUilfGIX8U3Ujui3rb7ucpUy98wv7jXQkLcuMQbMvTT\ngKCOfvUR4rIuvhahO1zK7HekUBNw8X5vpFyjfSoo9aXGQM8PYCefeADanqZFhKo07cECuphpL/YL\nvdMJCGUpVaSKvtYST1tAqksN2SAmTr5WSygrqS+1pVY5lOJUR7xwrqA4a8Sl1TatK+Hfnbn8x2Xh\nKr7XfI0zw9QCfz++jQ8eboIEbErdo1EQeiqMbbwNIV3iQv5IpejISz+TfuamZ07rSIxz52KI9aYk\nfh9/nfVq80hKmhvMhWKZev1S6+tpHQ65sctUjr8jMeopH2LoqFC+7RB27Cvj6/KJ32hnpBbIWrMv\nRa6sMtYHQakh9QXxGWdcQj3WwYkJ7DW4JE6hIv0oSUVpqsF+LDoqq0rx55G4GF2PyFi75UB+t9DT\nUfaboLaDoXy/meKNdPQ5P13QPWa5rNSeNKUCmnpVIWgCQk71B1IQc/GBzuD0nDIhIcN9cZ2jTsR7\npHNbTnyWPvHqhKR25Hfz97HQCVHxVFqX7288ExfYNO9PvwKipbSJ0VbXQLDH5/itE51j/bYDfhOZ\nlBuLQozsrPJ+RL+Flq+xJ4Zl21sP+T1QOcKnzp8DmTI9y3qef8rYbG/DMzIlBMzMNT63e5f/z+9z\nNlgQOiI+wfk4MOS5h6u0J+hnrHKX+M3T2ef9Y/3GiS3SvvEF/r9R5fvHq1KEVD2xy7TPJ+WtHfH+\n5cRh49LYl8W9GBecK1+knqi4tJYuUk+vx9zbuk89o/Vxep5+NPxC3xZPr9BlZtZzaW4Z/e7IKWMZ\n5mZS9ezsYMfAI3wzI8WiwxL9enIPZaSR4u/SBfblrjgo93Y4M90SD+mlm+yvN28uf9mW0KBv2w/2\nLamxnRGS/NaIo2WDNpy5znmnI8RHaZv3J4Ve6uo3491P75qZ2fwK58hKAd/crPBcj/YIt86B6cmR\nWpw4Z77YoI1fYf2YOsf5enuNvf1kgz5VQvjowleumZnZ+Vdpx727+GRdv+sns/RrQv07FIdsp4EP\n7T5lPU1PMHfe/D4In4fvM+bHO9j6wll8MKhbJp0Tnn8sNG+rwD4zdxnEfEcUMn/3v/8zPpcHQfTb\nioOUcYpTnOIUpzjFKU5xilOc4hSnOMUpTnkJ5aUiZYpSBbmvKGurRQSs+UgoDKErNh+TYdzKk6U6\nd55I1YmYq5uKdH28R2Su3CFj3t8mwp3QvfRIn0xAX/f0XCmxuO/qLrMyMYkM3ys9IQJW6hL5Gp9X\ndHid9roaylDont7ugL8DRtT0U0WZZ+JEj9s7RBBTithNL0pJQrwh+6M7biXsUN0he3ikLFp7SDS3\nWlTGWFms1CyRxQvZBTMzO3uWzM3BOpHFhH/SKgEisGlxgHz1u9/hb3Gp+Nu4wvgsmdLsDBH2/W3d\ne5antHWXfPESdbqU7cqfEHEfSvFgXyienQ8ZuwNF5L/2Z2/bi5S21CqCXUVTFcXc3OIu5c7+Bu2+\njC0TQqT4Q0RjQ7iQuXVnvi1+oqoylMEJ+j81RzR20KP9z2R7n+64enP4SjTJ5xvieCkL6ZEJYo+A\neIkKVXymLITPygKZ1aSPLNK6FLVM7RuIe8czKaWDBlHgquKmi+L5KKzhY9W6fGmW8Uzk6O/TJ/Ch\nlNSPjljsB2V8KlRXhlX19HXfvSxpr4VF7DsUT8mjh1JEOy+FsQXs1D6SSogyQIMGc2pqnP4HgrSn\neYCvNg6Ksg9zMRVinPZOQLMF+mQmIkKdtHunR8ok4nw2sU8m0HdPmUEp0xwo41fTnftwldc1ISVy\n49h0YsBYnZzn1S9UUkwKZU87ZC/SQykjHNCXQYysRPGpUGRD+lxtYIuwuG7csun9uiL/Ed0775Kt\nqLr5O7upTGNOPEchPr8vBQO/S/M6xfrieSoeIfGJTCjF7DtQ1kkZ1brUpCJb+LYnp/vhylQX2lLq\nStKOpy4yA3N1+EQeD8kYbDfw5cYGnwumsONSh+dGvxCi7wo+MCWU16pbCkCaQ5d2+f/VAu0NM3w2\nrIr7IU37s0MyLMUz+PrRI15LUy+WleoqM/1T+5WZmZ0piV8lJ8WFd5hzvQtk+bJFUBzfe/Vv+N46\n97jLf0KW0rUG6uRnn/P9N0z35LOos7zrYw2NfYYf+NPMzdevsFYE0yCMTLwdYyePbYOu28pHfHf9\npu4hH9Hn4z1s/PiP+U6jQR/C97HpOwX2iJUQigft1+jzTz77upmZ/V6BvSH3Jn3tvstzrk3Sp3e9\njHnp/2K+Z4VG/aKIDyz4yJKtPvx7nqNs9o/nsMGlSXx5ywVaYG0gFQspj4XH2JtvXkLx6qO/pb6p\nCBm+D5uM6Zk36EfSh406eVSkupeo5+Jt1o2hxq6QhkPnMPa+mZn53/l9vv9NEVqcsnzzP/gjMzOr\n7ODjdfFg7N0nw1ioChWre+/NipTDtN4N00J1CDnS057e9DBOfsFiI1r/+8rK9/T//Z44X8Tt45V6\ni8ejbL+UiLxChfikAjjaJ/lw2FxSaKtrn/Pr8yPBs5aX57jd+r44cAZdNiSvuNhCXdayji+h9glp\nI4W2gRA63vCo/TzfLW6yiMtj3SY2GI6UPsRn0/HQmJi4Vrw+1tm6kBreDrbwy0YtKTGGvLSh1qWN\nbqW9A9o7elIC9HjoW3RI31plj2w3apsQEMPnKKPTlF+8x7q7/hjUwoVPmGuxFdbBkPiDvAnmbq9C\nO+pF+huVDzXEsTMUj9185qz+Zq5nPdh8xJ1wIoWa8i5G3tUZwHVM+wsn2G0oBZihR+pMorkIS0mm\n2eVz+TucyRpCnntaUiEVWsrtkx0TI0SjEEl16ksaczUvHqFyR8hLoXtda4yPK8L3k1Vx5+RZ/9yx\nBTMz82fExZDSviaEads41w9K7A9B9+gsoXNyh7NJt8H+NhD/StfHOpyJgybIzj7/mbP8yqUvEZfu\ngRCtWnM84ovyC31R9AuR1JLfjiQuT1G84sQLyddPjsiiR72MTVLn5uMDbJeaEjeUfNktlTN3m+/v\nFMSVGGcPzy1qD5Si4e3PQErExMe5dAMVul6D+bwlTpX5+RHnicZG565pIR3jWc5/W3useyO+j6xU\nf6aFgOnofLt2W7wdI5T/V0EBtKr40Pp92hWekTLNshR0xT15tM7zi0ecbWaE8MxGOVt99DmcZ0Mh\niS5e4Ptt/cba3uL3RXWHsQnoPJ9Os8+NfCIilFhXSPHiDmeKgJDxvoQQjvc3zMwsKgXJcFJqqfvY\no36Mz6VmaKd/CV9r3NF+2hwRYp2uhLSud/20uyxewlKZ58zEuUWS0aWNffEkeVz48Jlp7LEjmaa1\nh5w1Y1OM16UL7Me5efbbBx8zHhsPQL9cvfiVL9sSP3vOCg+P7eFDfkffvMmZYeIaZ5Fbn/Lditbl\nyTSIlM0DbBkZjdFrQEPWnnAGsDLvn5sAORJJgIg5aApltcZ5cXmJMVt8lb23/Bl7+aMHnJvmL+Bb\ny5dpz7MBvr23LkR7Gl/2CQkdy3GebUpZd3efs0cgxBz0CA2V8uMjB1Lne3yH/p+9zJlkeoXf6x/9\ninNjoyIux6/Szqi4bWOKQzx6RHuvfxM7fP2HnE1+/n9yfoxPSybqtxQHKeMUpzjFKU5xilOc4hSn\nOMUpTnGKU5zyEspLRcrEjWhwMk6kPOwmHFheEu9EiOile4+oYTRGhCmdBJlytE3013Rfu6Co8dIZ\nIu6ZMaEXJohmhqResr4tBYVp3neLvT4S4P2kMrkPH2yYmVkiqLulYquPRYjoZVNkD8cU5W7c+Y2Z\nmfV173osBBrh0nWi1v0Joppd3c82L9HmT+4QgcwXifydUaY2oQx9UuzznoYuWZ8heusVb0m7LPTE\nERmE1UdkQDpiKm+FCpYKjZAt9K2tyH11QDQxv03msaIsyH6Zvh9uEV08N0UWx5VQFksR+RFHzHCP\naGOnRsQ21iNaWZulTw1ly0L+F1NMcfXIHLi8urNZJ6sxaEhjfprnJaUEs9YT03WZCHw3Qzv7HWWP\nymQeEtNEwuOKrDd0977D1+zwCyLw0xlsvTQnRm6pMp0UyVz0pBISFcIkrEzn8Fh3ZJUBzU3qHnoP\nX9vcIds2pgxCP6n+1ehXUQ3JKUQeDAglUCAiH1bSJpMlatwSyqIoNaglscaPuCj2FcEfIZsGuk/f\nFceARxerh1ns6RevU1MM6L6R8oJ4jlpSYRkk5WOKMofCRM/9Ug3ZKxINdweYexOz2N01oF09ZUyG\nCZeeb3qeyIFOUSJCuLnEkN8+ZP6ldB93TNmq4yPm036QSP3rffo03OZziRC+MNkV4sFPZlIJWut4\nNPbKXLqVhRprkTVZm8WmT7dYf64aEfqjZf4OK42cK9DOxjE2mPTQnrE+Y7uv7MxGlbGMX2Y92LxN\n+0YcDcm+1IQSG7TrKX/PncV26THa21xlbKPymd1F7HBfGcDpFJmMKSWMT3ZH2W/a3Z7EFxsDIYNa\nKCn03azD/ikhg7bpXzgtlatjUA6xKO2/mMc36iMEpFuqWOKn6En1oz2vDHkU35iUIkFb6hizXeyS\nCo3IKU5XEkIyvTKHmtKnGve3V94xM7NFqUt9IA6IrLEGdMJSERjyd/wZ/b01YBwurKCE5BdPwIMs\n/XrrI9aA9xqsxyu+b5qZ2eH7zJmpKO3/1+f+kH7t3LOBuEt+JR6g8BYZxMeT+OT0K1I7u4Xv+LXe\nzG6RjeleIms0s836siRkXu34r8zMrFERoiHI/euj7zI2+58wf/uzjFHi3xYa4de8xmOoOD31fd/M\nzKLTvL6e4Hu1u6AChm72wIcJ2uNXFj0d5/0rvyFbVjR8ae6bvzYzs2QVH5t6THbp4zXej0+xZz5a\nYB05FwOdlE9ipyf38fmrZ3lduP0HfF7r+MTn4s45ZZkUAuT9z//OzMzKH4KKjUfJOLq1rwyEQgj4\ndA++x77klvqUxy01Ob16wsyNoTjA2kLvjdQBg2HOCi1JD7Vb4oTRmtGJCQUgNaeoEDJlZd5j/efI\nQpe7bzWpD4Za4rXzMacbUvyJCjlaF0LTtBa6hHhxuelPX58fCKXgE19LS+hdv/bVQYD2hcVp5hZS\npxOJfMln45W6kqlvbqkO9aL4kLvCQtB38+qRkqAJodFXHY0+bfCIa8aUoXUJpetSX70B8e2Iy8bt\n4f9bIZ4XaI/knV7sGBwSEsSv+f/6N1D+Sr4qJS6pLwV6+HrjIjZsdNlLTypCISlr7ytxbt2WfTz7\nG2ZmtlVinTzZFWJE6n8W4+yRjGGHlJAxqas65wYXzMwsHZQqoNbJulBOSalyNhLYryZlyqKIgiZr\njE9HZ5V8lfo6bXw/7KaesNDDIakbzqV1HnUJJdbguR4pU9bE27FxJG6vDuf3ujglvFrnp3UGiQup\nOnTLl1L0P6Zz9dgYr+4W9hSI2xoV7T9CDh084qxiZnb37z82l9ATuRj1+aJ831sRbFlTIiwFs6Z3\npHzWtdOWmLikejUeNixKRccn5bAROieBL6XHF6irwvuNpniBxFUyIeSGR5xTxwVsmH/A+dwnZdnr\nr6F6ZJobTz8XWqHPWKZm2aNaLcbSp3NZeIK9ryH+y5LU7QLir5y7xLocl5Lt6gegCYpF2nnlNSnE\n6rx875136c8Jc/jat0BY9jU3d29LKXPA9xMpfHnpLL8zTk74fVLI83pOZ6CweD4ff8B+criKD81M\ncFaJ5LBTRj40kIJWs8pZriLOl5DsuPgqZ5jKIfUcicvn4qv0N6jfHXc2dRYQX9LMRSF+NKfK4u/s\nu4RyPmWp9vGLZIB9JCb7VqTwWe+xNoyQQtEy7a4cSzFoif16Mcb3HouPcPUzUHz1FuN39avixcsx\nRx8K7RfxPfmyLcFwxCYvR23r5/zfxj3QNBe+x3nJJ+XbshSommprS0SQDx6zVy68ylgFhJDbWKeO\nuhCKr0zyuzk3TluefYZtP3+PPf+NN1hPL67gM1884Bz59GMQiWcuwfUyIaWpWoGzQaEmBMsyCJeY\nzv0VIROrB/h86Ay2XjlP/SOV5Eyd9WlvV0jxKD56861vm5nZ0vEF2YV+7j3jrLW4hG0Xr4CEOfjn\n/4+Zmb3/139tZmbXrvL7/0vkYe85x9W/qThIGac4xSlOcYpTnOIUpzjFKU5xilOc4pSXUF4qUiZ/\npAh6S1l4ZU4KyiBMj4EuaAeJeE2dEdu+7uy6UkTiJueJ0qZTRIETE0T81x8SIW+LrdmjSF1R3DXB\nE6KsxxWpsIi1fmWO55X71HvuItHX4wMibkdP+fyuT1wUa0TcurrDOi3ug6Ei/wWpolRLG2Zmti9E\ny/KMlHrO0O6r3+NOcssrRZ4dorfhBNHXzTKROysxbJETInsHj/jc3iERvNRIIUiKDZFAxdJiV19/\nRmT26Igo3+tXiUYG6tR5fpHI8aAlno4ZZU/Ep7O7Sh23nnDfL/mMbFHpREpSYvoPNJTJ1b2/9AwR\nXW/ixRRTQkmyISMG/ZbaVWsK3SQ0kc9Pvwp5IuKTM0QnIy4pBjT1faEn/Bls6pZKUUdKNt6ksloe\n2t1Li1thXqok+/js1tqGmZlFxckzc47M79MtosLeEp9PRMWPMYWdKlt8v1Nm7G58jzud+/u0u3OA\nTyWFyhrX/cjmMRH+gqK66QQ+NqYMQ+OA5wabjHn0NcarFpDK0wHR5IaQQoU2EfWJCO3uRajHm6e/\nFam7+P28nxMzemGT+ofKWqaVtfK5lZGV2kBP41w7xjfbQ8ZtIIWyQ7HAH+l+5tL5BT4ntIpr7/RI\nmZKLtk378OlwlL52WmQuO2H6PJ3D5oltbHlygk9OLIj/Z5X1ZGaIjzeDoMi888z39Drr00Ga97el\nZHA+ji2ny/hMyU3k/94Sc8vvxQam7M25PakUHdE+X4T3GzGhosZZl4Kr2DZfxJaTQqDcc/P3wKOx\nGyHqdqmnp3UhXaD+fET8RD3qyZwIcddgzKLijWoNyHD4hxtmZuaugDpzX8VOk01UiY7S9DP7DIRf\nuy4kUIjsUucWqLukl3GpXFNGvMk6Okxg/ympjnREdFGOiy8kz+fzc/huRRmMkfpIs8M4ZddebC35\nlQl5OQ1yJVPkeR+/g69dfUV3kNvYKXtTczUoVKDUSgpSqQpfYtxze2RQSvdYn1+/wnOrEfaRH5xn\nTYjdIvN0PwLfSan+Hs//kPdzTZ91jkCYXPz+O2Zm9vRn3zMzs2/MCw3mYn1+LwBaKdgn65T9Llmg\nx/u08ac98TAcU3cqzHNqr//SzMzmf8EYzSyzF86Kr8hdBc3jrdCm3nn6mD78YzMzu7GLrzXFKdMt\nsJ6e/R42++wX2PDKN8UxNcE+8fk77OU/+6743X7O9y8cgdj5tI4P3Jwgw9o7AGXQz9K+qb+mfd55\n7a3XyOYNa9+if0Xx+HyDzOLVf0E/GhOsR6ct7/8ERNAv/xmKWDGdkLou5nR+jbGdm8Pe7gviBemy\n90dD+G5NXGSxKOMw8nGXFHa8Qiq6hyOfFnJGqLGBSTVvoHVVCFZ3iOf02vhyTNwK5qt+2Qdvc2AB\n7YdtoTnaQgMHIqy3XaFXQkJADqVM1Fcm2NUQAlLtiUg9TwBHC4qDpiHlnJFaSV/KOEOdtQK9ttWF\n5ulIeS8gHhu3uE2aLvG1eYVAEcqn39IePRTPjZc29xvUGfRI3U4Ahpa4qyID/r+qxkaN+hqyhfWl\nihRi/fA3To+AMDO7dAWeh8uvgqCbvCbEtRcfOA6TSbYy60elLQWrrpDeISka9pkr3Wn6ERPvWnHA\nq1eIlagEdNJSWAzFWKdzGeyVmeD8OBDvXO1E6GUX9R+KU8Gl821ZXI6VGmM44oCJCQnqDvDqnWdc\nbobgTgiltH/Etf8IYTJo8vm20K1DqbL0dTZoCZmalqJPJ07/96V0U23gu5Wy1AEPeD+gM144Q31j\nQp0lsqwhxYpQvfKnWovx7gsx1aoJ7RXAzmZmk4sZiwmV0BdKtynkq6uDHfpCULVt5KdCkfVPv5YM\nhGZt1xpqK33stnimKyplWalYRsQruf4Z63JXXE7JGdb76PyCmZltfgLyZfUh69GiztWLF0Co+LLi\nvxOS5WiPs8TYOc4CyXH6vvlIfEdd8Lge3gAAIABJREFUbB30STlnBx8p6IyUSWDjiWm+d7iLbz7T\n+Xf2DGORuUo7809p18YT9sKLF5kjyUna9/n7H5mZWUMInLNLnB1yIxXSovg8dQ6eEZI8N8/3d5/w\n/Ee32dcmz9Pu3A3q6bflU5pLJaHNDrd4Pz2m32hfY29uC2F4/xPOSCkpky0sMemON9h3joUOyZ4T\nD2hGKItd3j+p4dvZ+IvxU1lZCHmpULlc+Ee4zdxsNqTcJlTcIEZ7GztCBYqLJy5e05WL/O4Jak6W\nde5vlfk9MPUKZ5W+VGkLar+Z2dbqY7vy5tfsta+DjPn8fXFl3caX+6P1Vm2p9ZgXI9WkvPgz3UdC\nx15hnUpVGKP778O1svaAvfvGq6+bmdml74F8efpr0E+f3WUOXL7JurPyOvN3/QO+/0TImTe/j/JY\n+wy/mx98BmJ5Qvyd2SWQNH2hzfakYLV7mzPJxHc5O0Qn6Ed9X/xK89j2i0+pL5eUYliOM0wsJ9So\npH53+8yxm5ex243vcNbaFe/p5z/mbHKwJtXlDHb6bcVByjjFKU5xilOc4hSnOMUpTnGKU5ziFKe8\nhPJSkTITUmK5LkbublV3wApEnrae8Pr4c+7HTUaIBlaV3UmkiKCVnm2YmVm4Jv6RHpG8jDgL/LpD\nFovQ3d6A6GNlyHPOx8jKVcWHsqxI/NEuka7gUFkl8XEkcuIPCVN/RBH2kRLQwyOi0Lv6/tg0d85y\nRubg8jXaNZsjerl1QPS3qczxo1Wi4YfiyMntEJUtHImlek6cOlUy48EAGfbzV4kQzkmJqDqUQsdu\nxcZTPCM+rzuibf4eD/PZZ0+JXh7VieZtPyHSPNTd/VG2ui40QDZD1HAsqmzIgChkLktbulu6T5wl\n8pytKPvQ+d336f5xaUqx4Vg8DrNieR8ITRSNSxViJA8VEf/QhDh0NHYD7wgthc29yjC6fHyuNiQy\nn60SLfUrZZmaIZLvDxOh3hdTuF/31OfE/9NtY9ejdbJT2RXGKObBzq4y/W7rfmN0DB/o6s7nujIa\nCWUqQ0JpKBFpXSlQ+KQkkRN/hT+qe5tPpXgTo19ZZbEaB8pGam55dIc4NsnzY2Gyd76Osk1idy9J\nNWRumvZ7JY2T38Y3g8qg9L3K9OrOskt3bPs9nlt1U29skfZGp6QkJFWuQJB+JdOMS2EXlEpHGabT\nlIQyfcc1fK8Tp63ZFs+ePWQ+R5Whe+yhbZ4ubXUVWX+SAd199YorRVxNwyzrx850fVShmZmlV3VX\nNUN9s/K1ujKQvifiE7outNYmvtSL8b2pPgic5pB2XZIKx7ZUmrxl2lfpYQvfHL6RaZEdqUV4bsCv\n++BhqT/VyNbcSFBPfcDY3Ff/o24p+QgtFVmlXWfTzOUnhm/mw8oaNZRxnOf9sShjd6L77+kT+nlW\nznosPqPmDv3I3GZuphboz3oPnwxJFqTb4/WMf0f9xQ7LUdq72tEcesw4DINkd0qt5xnQ05TaGGvF\n139z28zMPnvzz6n/FebO7k+w05//AevoZ78gc+PXnMlUxL91mXHo/XNe15bEhdAmg7P9+dv8/QZZ\nwZ/3yAhNXGGNjB2CMEr6qM/ziu757/ftOMiY3PsAtaE/+eP/28zMDnZBIRU/ZqzfWmJsf3mRNr6T\nf9PMzAZ9skx/domxuZfR3fonPzczs8kI2aHeGG0rvs+6+KRDfXN/iA+tFRiDs/dYxzMLjPmvv71g\nZmYzP2KdCOZA0CR+Tn0XfkD9n/yIudj/4T8xM7M/OMt98bldfKV8HmWHYQrbX9rAhn83YD/yv8bc\nCN/HNl+JMib3ZjgL7P017Qi+znqxpgzr5RpcN/deY52KHLwYmupwwJ791n+Jz333Jlm8v/inIHi6\nbdaaSh1fjj5jTP3ifGm42Z/iI3UiKWu5RHjhiUpJaARsEb+cRFfM5xPSULJ8rQZz2R9kfRaA03xD\nPjeUgpvbnnO19V1tG0qZMhhiTtZryr9JLcnnoz2tkXKR9tOh1hoJO37JkTMI6H0hePojhZ6A0CtC\nEwz9PK/V5P2wtc0nJUbR2Vk7IBTtSGmvy+vAdDZoU1dYvD2DOM8adsTPIeRjq03ffOKgsabGOqYz\ngvayqjhkgkLEjNA87qpgP/7TozLNzAp7IDI3t/DRz56CePMGsLFbiJ6Ixq6p9XGE8PEkxYOn82BM\nimsuZWSnlzkvRr7K+6G+5pIUWYYeECVdnakOSlIJ3WEulIrUW93BjoOO1DqF0pryYceOR0o3Z7GX\nOwQ6YHpM/fCP5g7tb4j/4lBoX2MJspoUKAvKvveNvwd1IduFEstJkSsgNdT4MvWlhPQM6Txe1r7t\nllJmt0C9XSF/vlgD1VCv8ly/UFoeIYWmhBYJiodrISwDm9nK+FU7EirNDvdlB2X4xdvR7QjlJmRX\n26W51j692l9QKJu9IntYp0PfkkKcZBfZS6o6R+7tgOpf3WIPnBUv5uQK58uKUAg79zmjZBL0ceEG\nvmI6Vx/eZp0uaV1KiOvw3E3QBE0R5BWFGugIPZaN4Atbuzx/IC7HiRVQYU2jnftbG2ZmFo/hu3MX\nWZdbefp5/xPW55gQ2OcugR4Y8W/k11lfly/w/sQy9T77iOdWG7QruyQfCfFa2mNfuvcJCM74JHNo\n+WvUnxCK4+49cRjqtkVfCL/gLGO48gr27Gkdu38LdEWriv3Oi/+joVsST7dAHLnd2G1ZPCcDqR6e\nbEjJSzcN/JkX48z0CCHVln0T4lpriTusXpEisBTn4kK01zT59nbxi0pT/Hsz8KnEhYiqipfw0W+Y\nM1MrzInIBPX0m64v27L2+VOLBbw2MYlPZedBuFQ1/5K6BRER6VJaqPeG+JM6TebVkw3GOCBVuFkp\nQE0KXfRMPEdDIRuXZsWhOs5vys1VfKjTZ/06/zo+mNbtgc8/48zzQByKM+NSFQ3x/S8+5AySS/P5\ntFSdMnX5yAa2m9hjrrhNaNaAVDDTC/z/Pv05WN8wM7Pp8/hGRhy19Rrr/85jfDvyvpCEc7o9sUi/\n3HXm0g1c0xLisv1txUHKOMUpTnGKU5ziFKc4xSlOcYpTnOIUp7yE8lKRMiclIlarW2TL8ptEiZs9\noo5Xzuh+3ASZgqs5Im53doScGScq+Olv4DqoSWGms072r6XIfq5JVPeWm6jiyiLZxr08kfIFn1iV\ndf+uuksm4skDoosz00RzQ+J+GIi1XSAHiykCuBQnxjUhHfSsEDeLU0Qct4+ovyVG8KeKCD4UEmhc\nkUn/kHre+i535qZmiXbvlYnILWfIqDy5L9SGS4oIYmzfPdDrUzGv93q2GyPi6pVakD9EdLGme9we\n3eMeD9LXyHki+dmz1NUqiRW+hM0CumwfHmNsvJtSgYjyeqzsTUuM2Hu6Xzc/CSrptKXfU4YwLgTM\nlBj3n0jNQvcauxr7pJRs/EKW1Fpk1YfKdrjHdE/dq3vrUp2o5RnMwCLPHRdLvUucLPka2ROv0FYe\noSICY0RfD5SlCiT5OzdPO5/dxacjh9SbnGIsmz6is4Vn+GpUd5Bnx/DNp09ALp14pH6hLJKJGyiU\nZHx6Q9rbNNqXiwj5klA2TFw0lROhInQ3NzOOb+5K3aWnLGVY98Wbsl/Px/MiUnE6qZHtG0uKR0kK\nYpFRZlaZ4oHu2HqHjF8qqIyFeI72ysx9X0qKEVns03yAvwSECDpNqVSkBLIk3o0MdfsO6XNcvEFt\nKWd5UkTYjw/piztDm/wJslM7bmw/GaOPA7/UGZJib2/iy65ZcQKEVH+D+RtVdmZ3mr7vB4mYn8sx\nX6MebFQOYnuLMle2e2QEwh1s0jgrhEpFGcORGlKUsQ708LH+Ir7nU+Zi8Ijv7Z/l/z3GOuot0P5A\nDp9bWCVT6QmL48CjuXyO9kdqZG/WJqUQE4OLJVqgHZUFZVkOpbwTAc2Ry5L1e3KM76yJ2+FSh+eG\nktivO8TXJ9M8x7urOS10nGcf+8+2WY/LQkjaADv3XYzvaUs0xTjENsmkvPoF9n94FXtd/AbP//Qu\n2bj8FPUvimPh6Dqfz/0KhYvF6yBeyhnWmOK1b5iZWUJcOo1d6ht/qnvxXfEBfItxSf0t4z24p8xu\n7m8s7MXvo1fIWP6yyBikP2ZeRH+P9/9+mz0i/IGyvd+AA+UtZWjffaas7+f4Vvk12jK1LV6fAevA\nsVCXwdcZk60+e8zbt5kjn04yFpk12n5zmnWlojnzbo7XN78OR8yDre+amdmffAtkzJ3HIHO+mJEa\n0S3m+aF4NVxCeIgiyy5cp11P+szNirJsJ3fWZUP5xLc3qK8Fl8Djs/Qr9+GPzMzsfAUffRTGbqct\n/9mf/U/6F775Xxnt+F//D7h7zkSkpFBh/dzbwgfzUhnx9Pnb6xVHlxAjwxi+75LaiFdnCLcynANl\n66raw6NCTPZD2relWFQTSsTlFpKmL0Ro9zmnjNvC1hKSpdkeIT+19mldr4qnxd0Td4G4yHxCPFbF\nXxL0iYvtH1LcmMcr5KUy6m61r8GLecMjXo6o+aIjpIXGQkpVLTfrQkR19MT71nVRWcDFfGyIfycg\nFGZ7pIKjdaKttvSF9pSgoHkiWrd7rM+uKM8dmmwrG4Xcz7PFpylDNz7ojzC3phP4aFz8b/2usuZT\nQi4eY3uXeNeGBdm6Ld4eKViFG+IE2xHHSpWxPVJGtlti7rUr4p8ryAfaQnQOeU7FJY6aLOtMeA47\n5wLsK5lp2tnT+TTgor6gCISOuszNVpH21mqcYdyrzIWaMr+NIuMzyGDfUJV+dsaFogrTnimpQfmF\n1vaLCzIn/qWhRxw/an9C6C47Vju94p+r62wjdb6MOGU8Xs091d8SMqjyiHaWhHL+983sky8+Mb/O\nKlGPEE0R+l1uMG6BEQJAc8PjZ5xHZ8jTlKqQcT3x7ERDWkcnF9Vn5llTKjobjzfM7P+DAPkKSJKe\nEBRPPoLfIjDEZudeBRnpFWrh89vsRTGdccJC9y7Ns8f4vPjCxh1+KxW38anFi+wLLp3ba/pRExa6\nSIKI1jrmt1FkgM3Sl+hHW2p0Oxvs+bEgNjt3HW60phB/tz+CnySZ5oxx9grfL+ziW7sbrO9jUrKZ\nnT2n9rJXH+1zJksKiX9WakIjfqA778OxtiskzvwZfmeEMth9UsjyYZj2r38MAia/ih1mhYBJCb21\n/WjDzMyOt/HNuRXaE5OK7f4R7e4WOEvFhX4LhV6Mw8yr31+NlniwhIiMy849KYs2isyBgW5XjG4q\nlCqsGc0jfDfv56wYNdqRSLMP9rU/7ei3cTbN3AhPznzZloWZecvvl6zbYizcQyG8BZjL6zdgXcqz\nQXHJeITeSSZZZ+JSNyvJN1r6XR+bwQfnxUHYOsI3jqWmmc3y/kAIdqtgi6L22LEzrB8rJ/hOVQq2\nbbV/fIWxq+3y/eM92unTbYLoOD6wsMhzjvYZ+1QYmx5LMdBTED+nkOPlGs/ZFJ/qaL8aC4trRzx3\nI4Wv4y3W1bEkc7HB23YsFbr580v2u4qDlHGKU5ziFKc4xSlOcYpTnOIUpzjFKU55CeWlImWGGSJs\n0ZQUX8pE3nxVIla7+2QBn+heXzVFZOv2HZAlr3yFCFqjQAb6xtdRXAjovndHmZfJWSJjoWdEUZMJ\nImD3HvOcSFNRTzGkj50j+zb9Blm7oO6yNQZijb9Fuw6lj14fcdV4iNlVM0TOinkigM0a7dlRNHxp\ndsHMzHJZRT1/SOQvmyHzfqwMSH6Tz5d2yVDvH0sffpp+nRR5f8LHcx6vcUduTMgelzL2S6/OmUlN\nYVAjmpmcJrPYLxOhDUewfU3oAU+QbMfOU6GXWgdqI7Y7OCJCm1E2Pb+LTbpubLH/UHdWa0RsNzdo\n++SC7sCesgyKRHSHurte7tCuRp2xmlim7z2pSyTC6kdF6hjKbniUtfEm+XvEGH58e8PMzKqyz0xM\nEe+SsnDb2GPinNSHhGKqyxdOCnyvrozozDT2aSsrWOrRrkVlTmPiTjncJJN8IL6P3IKit0X6VaqL\nL2ggDgZFut1eIXpiykxKjaot7pjwFL4XGPI6yIv1X1nG9Bi+JsELKz6GB2NsUtwxuuPakQJBhMSE\n1XVHt9XQ3ehxsksBqUsNlV3qd3TPP6IMsFKrY2O0p6FkaVt8Kcuvkqn3VYRm0T3ucOT0S9PBBBHo\nWAXbnyVQbaJDsMI9ZWI19gF1PnFRiiF51pWClLeyRp8aMXwvpgj6dJm54wsrg1tSdrvLOhG5pOzz\nJvO4H9MdVY3hjhROLuj9WIdsR7XA3PGEmDPhc0IN5TF+rsKYhD2scx6pb+xF4TLwJECOeKJC9O1g\nu8MTfDayJAU1obH6UgUpLtHflTK+1g2yJmQCA9mPMVzqj+7W8/m9vjh0kiAV18pkZ5b9ZHMCDbJU\ngasbZmZW22Sdri7w/UKX7w1r4hiY1/OzUrt6rHV0Fl/qFcksnEiZoF0gG5eR2slpy/7P/gX9/x5o\nh4/f5TlviJPi51LjulIiu2gBMkNbr5ClvDHAPok3ef/Ozk0zM7vgw375tsajApImu6k1Rv7SuUmm\n+toecy4VvW5mZq9HQKFUBn9kw1V8ILDLPL00RCmgEGP9DMYY49wZbOgZ41lJ8Zjl7ynD2me+Lb4K\n2vPJAW1MXybrU3kKqunMHe5n18I8L7cttJXgBlc3tR4uMrc2PyRjuFqjzZcy2OaoS1/OPyWb9JcN\n1sfkt7HVdIT/33nlx2ZmNhZ8y8zM4hvMtbkjkD53/po9fEyorLeu8bxfpNm7r7VAJby3yz6yHJWy\nzOe0r/oK6NJuXOvRCM566rKg1//azMwKxhnhW/85e/lYhNcF3QtfK/D3ygqIII94lkZX9b0ZfMYj\nfo1BgDno01lhOFIEE2IzGGSO1JQtdLtZgzqjBVsKMG1lUEPix+gKHWFm1ut7zKusv0tI00DEreew\nT8TqtKMn1F3TRfvcA57jFuqkrf3L3aB+l5cFPCJkzEBIUtPzA0JCaqpauxs0b1CqPFIE8w75uyGO\nEU+XOgfaM0PiPmmK+yXSFU+NX8qJQiF0pd4kcY0vuT/8AaGShLg2oYlGCOVQn+fVhN4cvmBucjon\nzsIYc+2VfxcFxeAcc+NkiznZaUpB5oD6TsT15VW73K4Rdxjrf0kcChXN1cP7oNZaHtYpr5QkfSn2\nh+ES699ySGi3rNBQPjZAd4LPmzhuul7x6J3wfnGd9bpzSDtrFdaYToH6D9Q+f1NrTkTKYUJDpC6x\nf02MKH3mWe8mh9QfEmK8LSWhgoaj/pTnf3QC6q8sBGdPnBQ+P9+bEydEfHqB+q+qPqkUSsDIGkc4\nW6vIPt7Yo1+9Hv06KCrzbmb1Qt6GIyWbuFBmQqN4u9ip7RPvkvzWI/6Q5gv8WhopP4m+0vwp2h6M\niY9MwLadZzrTi+/o/Guo0YVCtHH1Hbi/um18d/wie2EmS1sfiZ+jW6C+5BXWRb9UhSJCIO+Ls2Zn\nU4huoQdSVzlLFHqcCUaI8IB489xCE42mSHhBPJ6HG7T7gHqHXmw2c471ORxn7O7/BoRMW4j5y2+D\nSPFIaXHzXSk8Crl++Qb7XrmJTzx9CP9bbon19txZ5ljUw9it3WF/Kz3j90l6ArTFmcucQSriBbTm\niEuH3zMnj7D7eFbKt+KmKUh9Kv85/RufY3+6/CZ2r0nZsr5Jfb6ebh7IngP/6RHeZs8RUxbQ94Sc\nbEelrhfEyStCxAxdrAl+r/hSpd7X6gslfsz+3hCS3jfUui/VpoxbXJP7Upd1nXzZlkA0ZsPGwIa1\n0fok9Lv4xkJB/na5ha5c46wSTIo/VOtUXntO0Cff2+NzmbSQbSn26qA4ow4KzNuk1reYvnconqTu\nU9aJdkGo+knWF6/UiXfWWD99OSndamFICfVZecjnXOM8Lxll/SgL6VcLiq9Ht0i6QpEmgkLeVfDl\ngIm/TXvriewQFk+bSyp73iT9iMYYg40TzhAb7xPHmF763edWBynjFKc4xSlOcYpTnOIUpzjFKU5x\nilOc8hLKS0XKRF1iRRcPyJz4PhoeonopvyL8ih5e1H3DcFBqQ68Slf2ZdNGPG0S4tj4letxU1v78\ngM8dKiPsLxCpO7dEhuPqVTKj+we6H14eRe6JOtaOyNrl2lm1l3a99i0yJbNCpqxv8rmwVAU2xbty\nbYWorUf3/MbniAbn80Svd28Rze1JsSGrTMrOiZjYF7grF1M0ulmnnTvr1OcT5467Rn1TiSk9D3tM\nzs/Zs4f6bISoYFP39T67y13UdJrM6slToo5JqQ41y/SlHlJ2X9mFHd0F9SwQbTwuEQ0dmyainFqm\nTefmiIwvPKRNqQuCMZyy+NWuRIgIfq0gjfgU7QjO4EOtEfKjSfQ1VKf+qUvizbhPhsCr7Iv58LlS\ngaxKUNmZ6QDtO2jwnEBE7Oez2GP4Pr414u+JzxH1DGSw07GQNa4Sr6nxERoAn/O18amDPPWeu0xm\nJKy7tru3QNDMpKgvtUDE/GgfFJQrHPsH/RgW8Wmvl78jKT7fUSaireiuS1HslO4KR4VsKcTw6dhQ\n2bw87Q6m8NXJnOyxi/2TEfoTToIOqZWUfeyIM0JZS38f+4aSY2oXf1c2dadV45eJM76HUilI6o60\nN3T6jEMqyhjl/UTcS/PML38Jnw0d0peNJG11e9WmJn3dzeAjbZ9QBGnmxqzUKIpaN9Jd+jAoCY2k\n+7/+CbI9+3PM85iHueDriNVdGcsTZVE+ET/SV9yMhb+HT7c6PP+pj/enl2hfVxndQldqGuOjLBxj\n4BNqaz6ND2/OiUdCKkcdKagdr/C9XomxjmhMBw3s508q+xOkHZk69vRneF5T2bNshXbtu7HjxAx2\nFcjDFi7SzoaQJ8NzX6j9rMPDGexSqZL16cRBj8W6QirNw+lS7IPeSCeUkamJkyArRQvvi2WlrvXJ\nCtrPhPq6zhxsixfjptbxsTT/n7mDMsO7d3VX+gdCv7XxJ59QBwde1pbkMet3oag1KUAW74EQSX9Q\nXOBvo1+/lupMMoYdrq4lbPU6Np9flDGfwXd29CbzIrkmTqon75iZWXGGvevfesy6/S8XlLXZBWET\necT3L5yj72PboHl+/ZW3zcxs8jNs+ChGNuqy1NQezmCT6ENxH8wwpzbmQaz4C9ovPsMGl0OsTzuX\n8DX3h98zM7Pch+xxtxLMkfEpkDAHg1+ZmVlNPEybV7Rn9UDefHeWdemnLvbG4Mf4TDdBfRPz+ICv\nA+dA/VVUnjz5B2ZmdvgR+87KFGN42vIXP4ar4T/5czK0f/m/8f5biC/ZOo+3xCx2vvdL5k4syX/k\nJpDM8QgSmA2OOLmkguQRWqGOT3XFMxLUutqX0k0gOEKP8NoV2iraFcLG9Q/zac0R2YuZ+fpVcwkd\n4Qrz+a6+19X6OlLW8fW0bruFTmvzXJ/mlpKj1tN+4RbydSAlykab8YgoW9gZoV+k6uRy16wSoO1h\noWiGXvoUbikTOuK3EcdMxyeVJKFxBNiwvrgKQuJh6Ij3ptWlztCojUI21rWeDML0xd8Rp4wyo9GO\nUEexgb1Iuf8RvByf3ecsUIjQ/qllfNGtTG/CLzXRbdbZVpv1ppJX+8riHNA+ktCZwq3s+ewi62sw\nybrkjTIHotozfVn1fwTLErqp4mWddwmOUdX6PtxmnznZ5UxQkmJWT0qHEfWjn6K+eS/2yQWZm+5p\nKWpJvdA9I2SOzskRZYobLvaRw23qKQtJ2RLXYV4IqKAQo9Ex+hWLc3acmtPzA6yjESnftE6kfLYH\nf8j+Pv2sBsTJI/TE+DLfz4Vo98Xhc7WTr/3gW9YUUnTnROhioUQqSezprSrzLwRNVSjtaOM54ub/\nr3jEpdcVt1JqnDYGxQl4ILXMmngmxhZp45h4JTfvgbY6yLMPrFzRbwi1ZWeDPWNnT4iPM+yhmTFQ\nU/Wa+nSI7fcei1uxI0XIGwtmZpYVOnXtQ3y5lxfHoThj0gucN0+K1FuR+tKufk8kZ7D15RvcLuiI\nh+TxI9p/IrXSufO0L6nfPofikDmUAtaFGyA3vUKBPfibDzBkhL/P3OSc3BG/1IMnnBGau+KclA+d\n/Qr7nU/72O4W/U7L7q2CeATj4ty5AoLT22DOPbrLHPaKi2b5MlxiLf0W3Xwi7hqh2San6dd4lrWr\n1hLf1SlLU79tQx7BuoXabR8LdSwOyIiXcaoLgTVSCnL7xcsVYLwbQof4qsxt34guS2ufS2qoQ4/W\nvOJzLrJh12P+ftBcQl+OQDw1IaW9WrcD8sFaTzdEhDwMiLesLRW20Z6S0Fi0dQujI97NWFDofCHk\n+lKKGvqZ9+mU9j6hgGq6HRERytMjjixvQ7cItK76AlLeio34fZjng5o4CMWP6dH63M9rTw4KlSok\njHsk6OvGli2d1zyyh0e3TDwBqczpN1RHc88V1fpznTPagZQiE9nnPD7/puIgZZziFKc4xSlOcYpT\nnOIUpzjFKU5xilNeQnmpSJnCCVHM4yOiwa1NImZ7YlWeShJpqhaJSB0kiKo+3hMSRsoz1SaR+Zyb\nqOXEGRA1Pd2ny0iRpn4i9Y8RP8k+0ciPfsG9x7KHek52eQ0lRgzYROAmx6XgI/RBfpt61x8Rtd1p\nkb27dJZMQ6HO5+6vkkV7qOi2T/fK9ztE1saXyBC0lXGI6i5uMkTEbnqGDPOzYyKJbqk8pefo57nL\nygAHiGq7IlIe2iBSee+ju7Z2mwznxPkFMzNbSPLZkO68X7pKHUUhI2Z0N7Pcxsb7ZWVflHUK6F7g\n/AJ3ZTuKHmbHec7Wex+amdmqMgJba2RM54USOG2Jj2Or7X1sUy0R7UxOSW1DPpIXO7y7r/ZlNVbK\n+LUVrfWH8YG2osFlZdUWF4mwm5j6vboMHMwxNh5l4w6/RMgQuR7PgqZ4JiWF6smGmZllkiO2diFk\nxHNUFaInJOWBcaE6imIgL7Swz8I8/ZL57Vgs7wtnyYR4dK87f8RzexrzYFT3ucUxUFUU2S+1j9Fd\n38ZIwCJAg6o9fL1Zp39LyrwkDsM9AAAgAElEQVTUdDc5r3vyqQV8LRLhOc+e4dsDqad4pcZVrzJO\nMZ8i9FKbOjjED6enFvhCBPuUvuC+ZWaWet2+08eL0xP43E6DZw+rzL+JOH3ZuIEPDg9oQ1NZ+26O\nrFTmHvP2OE2dx2V8+fIyxvdFyVYcHZAdGo/iK4WW+COK9HkM4J0Fc4xtepPndqVSNFREflCjHcUs\n9ackNjGos765WoxhPaAsyRwfKK4xnxtCGc0HQVXkxScU6tPvC1fIAv3mPmO/LPWpqXHqP5DKRkvI\nmvV5fOfMrrLdcXy6MuD9tjILrij19qQi1fPR/67UmEzcNcU+66LnGr6dfMT7W1LZOBOmf1ttqRTl\npCIiVSy7y3g2kzw/oIypV+tlWYhAd3zEu3+6kv4j2vnhAc+7tvBXtL+9wPN+yRr1WMoX3fm3zczs\nrWvc63+/AYfMWyUUfhJtxq/7c/r74VnWwthVEDJpZf7nf8Scrd0USnGP78fe0r40eMPMzN71duyV\nf82a/uky82dJWe/pGr64IbW0xnf+yMzMvrMpfo0F8RJFGJvl7/zAzMxuPWHeuhrMr5ESwMzcL83M\nLOUhUxhfw1d/esR8XD5H/Q/fVCbtA2zduy4E5Gf0/dkfg+zr53H+uV/DUXPpa/hcogoCx7dJH8tX\nyDQ2Pmb9DPvxiaMOCJOolzHpP4WXJyxFtJVXeO7tCSE2PwBtNO6X2l2A9fp2n8xm9ff/jvf/Hp8+\nbZm6TDasUcM3/6N/D0TPL8o890f/LZ/7H/+7/8HMzP7T//i/4PPi8AkqEy2RFBv66F85wNyMtmj/\nl5lKIV5cLsa3X6U/XiFj+kP6Fa/zfl3qKu4wr74w4xOVco2ZWcMbt6iHNaE2xAfDXXHBSH3E2g09\nT8pqUjCKBRjn2ojDRqp/HvEM1CJS0dN/D+pap8V9MxAaJqx9q+/x2kBZ2nZHnDAD8SboIT7x1TRd\ntNEv3oOhmz5U3SPFQ9rc0V1+U+bSHRUaVBx6Xb16hcjoS1mwG5I6kFTgXHp+sPZi6kupDHNgaY51\nzLcnlREpQbbUjy2dGcwjlaIePp9pSRUqxPkz0+b/h1pnA4InNZPU4/Mp0yvf2i6AUj5+yvN7XdAQ\nVuTvgYt9qjKUUmNbii4ufCSuTO0YLm6ZOCgMX1oqVx4pdImHr9PHjpkT2tmUr56cKCOtTPeWOF2a\nbaGoZdeUePOCWebsq1PYwaOzXSSuevI8vyoumNoezz+usbYNdWbrjRTFojzXL24yf4szUnlEI6Uz\nRyDyXIHtpHhgDflbTOf4lsjnAl4hMPs6R/eoxydOo6aUJU9Tuk1smJEaz/gMYzkUx1XxWEg/ccfM\nCcnoauj/hUTJznAeik9wFlh/yDreE6/SxALrypmr2Hbkg+V1fKJWZuybQgksXWAvmjrPmLs0dvk8\n9Q0ztHf+DOfeoM7PpQJZ/p1VECKRDO+vfA0Or5DQvbviuDnJgxYIT9H+BXHlRIP4zt0tnjMmTsLZ\nM5w5qrqt0JUq1YWLtDMZ5zz84HMQNO1D+bRuI8wtsj5ndP7dekY7GvrdMHWRM0VN/J5T4sZMzVP/\n1hZIz1YBu11+g+dFhVTfe8jZYFVcNPOTk7IT9myWR8pEL6YIOehqTeoxV3ziNalUGZdkQyhqnSVc\nPs3xNuu+wCnWijBHA0J5eBtSy9XtiqGQi10pj4WlXNeqPkcJuodNC4b61tF65BeyW8uo1YWI8QpC\n45I01zDPujz0j5CI4nDUmaUr9dLwaK8rCX0rFSOvR+v7QIqB+k02ImYb7Qfuvs5PulHidmGjoX77\nuJvUXxPaM6AbJ14TskcootF66Bcypq/ffK2h+Cx7/D0UQqcvdFakLi5JoVs9Ia1DRru8XsbIW8Qe\nxR18pV+Oq120t6n3f1txkDJOcYpTnOIUpzjFKU5xilOc4hSnOMUpL6G8VKRM2Eu0cnKMyL3fR2Rr\nRVHh4JBQ/pGHSLm7TSRqJQUKYTrB/ycWidamhBQpSfnF7eHOWk+Zlok0EXrrEDkLBYhg+ZO6P5jm\n7lfpipR9knz/ME+0Mh0mYhfykeEwDxH+Md3LnFZ2KqH7o74IyJioFBauXyMLmsvw3JpUlmKTfL5W\nIeIWdNOuiVHMrE3747qnmhTzdlAKPNUDMgtd3SHu1Wnn3CyZ28T8hE1OEkmPSAWnK5b1uJfXsi5u\nHweIAralRNWpE3EtS8kqoizUiLX8pC41JGVXtnewjduk4qAuDEbRz+6L3d/u6c66N6g78HHqT4kV\nPSC1ivKO+C8U+U6JW6V2gO8k4kQ/40GyHa0myBqvlLWCUzy31hOLue4j+hUVPhS/T2Ic+02LDb7r\nw05HW4x1fIp+pycYs/Ud3fuO6y6+GMUjKXy838W+xU3GMDkhBZpZXmu6WxrUfc7ImLJzId2zHGVA\nxf4+ymCcVEZZIOw9nSNj4U/S35LaW1V0OjySCUgqizRDew+lNDZQdmzqMs8ZigOhWhfngzI+6Sns\n/+xzMg71AHbwKktpQUXNdR+9r8xQRwpF0THGoX58ekSVL8+88Fapu1KjTScXued8dEdcBC185EAZ\nthsBPrf2df4+uk/2pjLHvLkvtYzEAlmu6jptDqVA8k268IVCgSxKdJ11qH6J9cwXAhUwrPC9syHG\n9GCdSHlSrPY+qWfcGTAHYwHa0RmTrUTWXld2vWHUn2rSv5Ifzpb9INmuyIQUzvbJVm3NcE96Osu6\nkfWxvmx8wXPGlRkoKHMaigih0qHi9Txj+UaWD2x6+X5J6LAZZTQqy8qmn7BeHsk3utcXzMzssARq\no+/C98uT4pgw+hsSx0CzD9pj0KD+Ds2xhnibeiS1zDX+Yve3764znteW4Qs52qddtV2pAGiJejsG\ngUjzBD94ZMBLLrzDXNiapJ/1KON1Kc7aGjuWytUR9oiJN2r9B6A8zj/DX2YneO5GGf6S5DP+/6r5\nbXeODN3MDupEq98AJfXVZ9jsmxf/0szM7vyGsX0/RNun4vTlK37xBvX/1szMvib1ul9MoA6UT7A+\nvPYTfPYnf8w8W/4lbZ2YVXb4Ica4coP15QO1Y+KXrDPDMdSSuqsgXCIR5l77h8zFmDgRvGXqe+gB\nPbQSYI4svYaNEofMrXd7oIeSjd8zM7NiEh/42kfY+Mdh+nVVaK+hH999Z+9PzczsB0GeH9PrmQqZ\n0c5N1iX7CztV+d7cf6N//VCvzLGf/C/U+0//e949MZCg/zMJYDu4jR3jUezU9ktJ0q31vIXPNEbA\nHS/9ikh1qat9rucSGs20pmn/aere+kCKQzri2KCvs0PseX4tEupbXWtXUPU0o8o2Cr3rCylrKZ4q\nl1DFvSHjGxgpSYoHL+wW74sy/QOpjgQS9KvT5zUmhR1XWJw5w9pzhSkhm4d9qXpIhakpZHDMhDTR\neWegO/pRgYD64qtoK+MZ1nNqWofayqiGfbS13ZYCl2RzorLpMMD3201xqvhf7EySnGQevzb7B2Zm\nlpYqUGd0Xnum9WvAnDpUNjrS4f0DwzeyYakIicvEI/UQ14jvp8nZ4qQKqqK/JWUVt5AsQkGFvOJm\ncXH+9bg4I2T9Izgs62jERzvCkZGUDoata/2tKEvfEiLRu44du1K8PDgUikMIoKBHZ7wh7QslxHkT\nZZ8RzYe14rQn5mIc6lIOa51wBjl4psx2edQvIVbE+SIXtJTgZwHtU64gdg+NFG+E1qo0xK2jfahY\neI6UKd7eN09S6F0hSD3i4+vpjBORX/bFKdNxUW8/1rfTlm5U5yqhP33iXDrYFo+auFuSUt3MTPK5\n7U9BwgyFYJ6f4mxwtMf36kJ6nJHKkUcogZZQrSfb7FHb25wFUpPYaHqC82pymr0q0MIGW09BOreE\nTJk8IyXYaYy++4Rz79FTIXfE8zF/EyRjVLZ/eJt1t36S1+dYx5Kz+GQkx1zc/4KzT219w8zMpi7S\nHm+C+lZX2Td8cewyvsB58yBP/490np+fl3JtjrnoFf9ReZPnbz0BNR2RSl4kx2tZMKq0zuPtMv3e\nVf/SZ5lT0xc5w21I2WfjMfVnxvn/qddBS/fa+NymxifQf1H1JaniCk0SEOenqz5S/sFv3GGh+poj\nVSytheINTPT4fl2fawmBE9IaOvSM9hn+duvMFxQHmBkcSv320Jq6SRIQQi6k3yy94UgFjs+H9Zus\nPRCXSoe/40LQdCJ83lfX+jbidtFeNhSCMiLkydCl56u+obhl+2r7MCQkteZAUOute6R+JI6/vr7X\na2tPkqqTWzdPTPxBLalLecXjFvWo3ra4b8TD6dO+NNSP2YCQf92WUFFCbo7Aqj0dOY72eU5Ez02M\nUU8n8LuRmQ5SxilOcYpTnOIUpzjFKU5xilOc4hSnOOUllJeKlAnq3rKuiFmpRWbA1VTKcnRnLCbS\nBR8f9BvR0ZoiYh7dSWs0iD63lZkIu6WyMdA9bqE8erp/51KWx6fIVU1s9E1FjY+lRDPw0o7jku6M\nidK6K54S30BRyVEmu0g7hrr7aorKjrKJlTbPd0tlwCvUilt8HgOhIrou8YW0eN8VoN/9gaKxITIC\ndd3dy47UqpQ58Sra3j2smjdOG0+2QAt0pMLg9yrtIGSFtyFEh0+ZuhZ9zgXFmK877oOIUDqHZDBj\nutfbUdIpPclz+8fYKhSWRr3n9NkGM7OeskLjQnrMC8HhTRKWDEjpaixNdiaRJiKemKK+ihQPLrzK\n3dT4Iu1q7mOzs+eJeGfPkM3pd3n+mRkpHqTIZnnFhzF3gczp4gRj0ajynFRWd0yneN+TVER9hqzP\ndEqflyJYWHdl4+LoGUvw/0szC7w/TX/8yj7NvUY7p2eoR1dQbeKsFBo8fC4j1aySGMAvnifzMS2F\nsbp8yZ/GPufn6F+/KXZ98SolkjynPsHn53UBfUaZh5Ou0GRz3AWOKqMTHVe7Z6h/ycXzczN8Lr0E\n6iAmdamg5t6ZofqdgavC28FPT1MOM7qjuUdWuv8RUIr6I3xm2UvbHq3Ql/BPyf7sZ5iPV1OMxbQ4\nSt69R90D+cqlNrZ/tsBYup8yfwNJnlvq4IuDI+bCNy9JRSmK7ddaoBJi47SvKnRZ8xGZyMWvcn97\n/9mhngfCZOIzbDVxA9SEZ4LPHz0QW/0Svu29jc1aR/hi6JzG9ga+9fEq68xiE58OjNPuiRBzce0e\n9ZyN0Q+3EHi5FK/5deZ2qUJG9cwUWbqZByA81vzY5YIL5MeBH7t33ayD00WhvgYLRsOx89UNfHZL\naf9kmM/lMlLpkEKcZ4J+hIR+SPWlgNbAt05b5pWJTf4UHpU74V+YmdnyRXH0LKEA8eAT+EjO1MS2\n/7Vvm5lZdOn/be9cY6ys1jv+f/d99uy5X4EBBhGZMaCUantQIRqJLegxYsVqIMYYCWZC4hdURFO/\nqSDxxhcJDomJJmKwMTS16vHkcKoER5CEMyDWDgUZhrnf9uz7tR+e/zseG21pUtyTzv/3Zc/ee/b7\nrrXe91lrvev5r+ex9ootMO/fsuPm0xig4vIv06aMGvqL2wEAn/3RvGy/4b39u7N2Xf+mweKvXAja\nfTEZN9u/1NqEa2t+DwAYvWx1jkTtWM099vlghdnLIio1mnvNE/qvS6zfii6yfn6VzzyZ8fmmCsqM\nWV3rvKYA8UfsGq06YWPFpaXWj6QnmBWjjfu2vWutbXr/EQDgc0zJU+M3RUtZ+2cAgLndf2d1OWfX\n9Lv5pmatuWhtM492fs13Vo5/H7sbAFC4xc5/6wVr60+SVs8f5lj2pIbVVp/VvzMb7SlauSfmmGf2\nt5PW5iezrdam19v5rw+YLUXLzRN75fT+7Kc3Pmyv/2Cmg+pNawAAb9RYjIOuQfNwNzMzTkWD2Vya\n6lnHwzkI97f7i/QaMqaLlyoCd3wMJswWU4yH4c1x3C3YuJKkciVLmw0xEwQApAEUqNjJMWNRIEqP\naKUbe4ZqgLhdlzSnFL48M7ZxrgWq9xJBO06YKgcwVlgyxrgl9Ljm6CUthNwMHA6cOCcFVKjkcqxT\n1sri0JMZD9prwVXTMuZANmplcFjXCL3LWcbXibhpQhhPYYrZMoL07JZT1RmPWX/i57wrR+W1x/e/\nU8r0XGR2vUEbZ7KJVqtPvdnQFNW7DjM8VlK5U4yyTbOMfTBs40Vxwq6BG/+tPG5j5zjbEOyna6gm\nKPJ9JOfhK7ORlNlxkj5TGdTDxqlY3r4v5KyfHh63ftnDmI5jOWvXNGMolOVcTzXVUYwFVOY6eGnL\nQcYlSlfZ+ZK8DtWM/TDKOBj+yza+XKLyJFtgbKCMvYLKp3F6lEEFTrDMzXJox0vRg+/wd8m42aqH\ncTZqGMPGx4ydZRweKjM/xoLJ1KYRoTo4x8w+GSqDPGWMLcHxPEQb89NGPPkrV+82udlBGXsvl2Pc\nNMahq2J20sVLrZ8rUjWbYACPRQttvpTnPeBl9rRrl5gKtrLR+v1JZqwJT1BRRxXBvDrrJ+cusPli\nkRkqK6heSE2wv6CCr7HFYtpce/1Cns/utdiUlbeF6rCWdpurVARtntfH7EkFr/VP9YynWRWmionZ\nS/NxKrsZk7Flic2Nli6x8cTPTGmBhLXxkqVu1iGr/9Bls435VMhc02blGJ/kMxJ/l07b8Zuarf0W\nMgZimM9CE1WMxVVj3+eoQqsp53POMhu3fDlXqWLHr6+y+s5bbPPf5mabO546ZkojV/xQW001xxXi\nKdi97nAXRIEPwzXljJPFZ7wg748i1SkO40vlfW7cJz6/0YR8VNulEnzWZQwyrxtHJcvviz+WpVgs\nIunzgJcMCapwfH4rY4bKwhQ7AvdalfF5tcD4cLmUPWcXKAstcgx0Y9OUU4GTp0o042cMMD48egN2\n/BzHgWyW5+OuAMfHrE+Mn5RjLJgQY2+5z3BBrg8ks64CxuqeClJ6R+UmqNJ31WZhZi7MMoZOwOvG\nnLHzZxjHzuE1d5i908/+wsf4SgFmRPQxJk1jnU0ewgEpZYQQQgghhBBCCCFmHCVVyowNmEc61W0e\n38wYI5JzFTDG6MkpOnc8E+apzfroQR3m/nZ6eZwa+6OmwTwUXq5OB7hy5jC2TNxnK2rFFNekoozy\nX6CXzA3uzxX8PKNGhwNciePvAo55IpLuyr2bycAfdwtkh6fyJ8voyxGGzK6otVX0DGPp1HPvbZF7\n5CpjdrwMCxR0MxxM2HGCbqYgruQVqt0VR64acw/uWHwM4aSt7iXpIauqtJXsAFdgvdx+XFdvje2b\nYltV0nvCmDOZnLV9iNHl85W2glzGfbregq0mJgbs91WNdrxwma1wV8xhXJ8rJHnRvCzJSvNOx6qo\ndhjnSj69HHlGY58EM94wzUis366Nt5z1cVUKTD8U4P7B2DmqnHhto4yiXsdtgyl6gTxUzFxiJgAP\n1VX+mL0fCDAiOTN7JalMGR00j8bYgMWACNIjGg/YqmoxZuWZ8tgJ098BuB4Y+db2oQeoqOnP8hqn\nrF4T4/ZaTi9jLn3BykvVWJGr1eN95gEfGnLVZPQaMi5Tjvs+MwVrj94xO16Se58LjNZ+qYeeFu7F\nTdErVs24SxeHrL5T/eaF83DffA/Ms53us/IOp8323dXt6DDVcYzyX8SVxwtZglYAQMMiK3t8lPur\nvzcvxoIaUzflRqzOx0bM+zP3qJUldre18WjSvCDXjJuCITtAV1vE7inf2AX7fJLeiRar86LvrQ6D\nAbu2vd3mVUqz3wgN2HmvybtKO7Z1r5XDG7PftdArFuu3e+MSr0Vb3JQh48xCl/uWsbAidp5aekMK\nvOc8J+xey4esfu2j5mXq95gHtr3KyjHsWH39bI/LeWv7W1usfpPMtpHL2efh89wnnjJvWhfjTwQm\n7Lhjw9Y/e8bNW1bhs3adZH0Xh+3/Rhh/aJTHT10yW61jFqdUq3mxsuftOnhb7P+aeG91N1l7zclw\n8+4V0tJwHACQYCyeOxYye9agKWeiw6b6cP7KrvuFo+Zlqy+3ev0hZ/VfcMRs4V/C1r7zI+YxP11v\n8U1Sk6Zi+c3t5kWMHLE+9K9vsD5rYthiAN3Sarb5Tz+YV3DBhRTOXrSytN9j1/Q4Y4P8qcLUOiML\nzUtfSe/SijkWW2WRHRINReuP/7DMxrK1rZb1qKqHnrhKyySVmW9emz/5bMzxjFqZW6movBCye34w\nb/e4M9+UMQuLNtZ0X7bj1Y4wC13cYtj8vs3qEjxvbVvjtTY7X2Xnvf7fbBy6lirQ4fNWz+i39Jgy\nc9iir4/aeaPX8Pzsn3+we7HtlGV1+me/eTazjWcAANeN2D32acvfAgDuDplS6EqJMhZa5X/5fFPr\na/xrHV/tvKv//n0AwFC/xSGqZvyUFDPsxJi5xe96RDneetLWjglmbghxv3vBHRdoM25mIj+zoPip\n8s1zbuTQ8+yt+DH7kj8PuIl/XDWIz816yON5qC52qHj10hsJP+cWjAHn0BuZ53X0MotHkjHkfKxH\nht7CQNh+54aQc8pCSDE7UmTK5juuwjgLzj3cbBecW4Q5n8nQ7euFm73J+lMvlQ8OUzwVEvTGR+z3\n5VR2OKwjxb2oCNj75BTnc4z74bjK4ytk/mJr0/w8azOnhgpDxgtqLrpqYyqB2N9l59AGp6hCa6KX\nn9nz8lQQJqkYrKFXPM96RthOAbYHhTLTsQ98jjtXYyaXLJU6VNEW6C2vjFhBJ5hZq4lZrVJUgJcz\n+4o/RRUt1RU5jslVzGrkc+NU0MPtYxyifML6lIRvlO3AjC8sbxmvf65gc9BkhFmaxhibgZki4d7j\nlAUnmcksz7h3TSxPNG5zwyAzThYcK0cZ++uCn55xAJUL65Efs/LnC9bHVVE1kM4wLgljDOWj9t7P\nyXGV77/3cP85sXE7ZpLxaZwhG4OznAPU19m1SPvs2BNnmGGK3ns3I4xv0tqwSPVQqMzKHu+zMX4y\nb/1dIWfnCdKOvS2MTUWleYoZYUbHuPsgRbUYXxs5J8jE3TmIjR/5cbs3K5pMDZVnvI/BflMbR6N2\n/iraWgXsnk/yuHGqK8oSNm4VGc+jvJqKdcYZ6T9rx/MXXZWZHWcwavNPb9LGk7Jau7dGhu3aJQe4\nm4H3aJGqu7Iq91nPfjfSx6xOMaq7KqzckzE7fkUZnxnZx/T9h81fi6xfmDbpDdp5Ln9n5fWxowuX\nUYVcy90RV4gvw+vHOH0hZrEt1DJ+aZDXhbsxcuwTmdQVBWbhKjATULmHWRI5NwuzHVxVSpExxhzG\ncQnFfyxvsDYAT94DHwePGvZjQcZcKWcsqpwbY6XcldlQSUaFYDZuZfaGGO+SSpEcY874Q1TSsL/y\ncP6aqKaah/2Xey87HGNSZXZPefNWrgjHyHiS44LfGiVcdGPLsHiuEJLx2iK5n2Z9ihUZc5L9VIGq\nLR/H6gKf72s5Bro7djJcX0iO8ZmPtpNJ2TXlJUCiwHGAzzoZqml/CSllhBBCCCGEEEIIIUqAUywW\ni//zvwkhhBBCCCGEEEKI/0uklBFCCCGEEEIIIYQoAVqUEUIIIYQQQgghhCgBWpQRQgghhBBCCCGE\nKAFalBFCCCGEEEIIIYQoAVqUEUIIIYQQQgghhCgBWpQRQgghhBBCCCGEKAG+Up78xRdfxKlTp+A4\nDnbu3IkbbrihlMUR4lfn+++/R0dHBx599FFs3rwZ/f39ePrpp5HP59HQ0IBXXnkFgUAAhw8fxjvv\nvAOPx4MHH3wQGzduLHXRhbiq7N69G9988w1yuRy2bt2K5cuXyzbErCaZTGLHjh0YHR1FOp1GR0cH\n2traZBdCkFQqhXvuuQcdHR1YtWqVbEPMerq6uvDkk09iyZIlAIDrrrsOjz/+uGxjBuIUi8ViKU78\n9ddfo7OzE/v27cO5c+ewc+dOHDx4sBRFEaIkJBIJbN26Fa2trVi6dCk2b96MZ599FmvWrMG6devw\n6quvorm5Gffddx82bNiAQ4cOwe/344EHHsC7776L6urqUldBiKvCV199hc7OTuzfvx/j4+PYsGED\nVq1aJdsQs5qPP/4YfX192LJlC/r6+vDYY49h5cqVsgshyGuvvYYvv/wSmzZtwvHjx2UbYtbT1dWF\n9957D2+++eb0Z3rWmJmUbPvSsWPHsHbtWgDA4sWLMTk5iVgsVqriCPGrEwgEsH//fjQ2Nk5/1tXV\nhTvvvBMAcMcdd+DYsWM4deoUli9fjoqKCoRCIaxcuRInT54sVbGFuOrcfPPNeOONNwAAlZWVSCaT\nsg0x61m/fj22bNkCAOjv70dTU5PsQghy7tw59PT04Pbbbweg+ZQQv4RsY2ZSskWZkZER1NTUTL+v\nra3F8PBwqYojxK+Oz+dDKBT6yWfJZBKBQAAAUFdXh+HhYYyMjKC2tnb6f2Qr4v87Xq8X4XAYAHDo\n0CGsWbNGtiEEeeihh7B9+3bs3LlTdiEE2bVrF3bs2DH9XrYhhNHT04MnnngCDz/8MI4ePSrbmKGU\nNKbMn1OiXVRCzFh+ySZkK2K28Pnnn+PQoUM4cOAA7rrrrunPZRtiNvP+++/j7NmzeOqpp35yz8su\nxGzlo48+wooVKzB//vyf/V62IWYrra2t2LZtG9atW4fe3l488sgjyOfz09/LNmYOJVuUaWxsxMjI\nyPT7oaEhNDQ0lKo4QswIwuEwUqkUQqEQBgcH0djY+LO2smLFihKWUoirzxdffIG33noLb7/9Nioq\nKmQbYtZz+vRp1NXVYc6cOWhvb0c+n0d5ebnsQsx6jhw5gt7eXhw5cgQDAwMIBAIaM4QA0NTUhPXr\n1wMAFixYgPr6enR3d8s2ZiAl275066234tNPPwUAnDlzBo2NjYhEIqUqjhAzgltuuWXaLj777DOs\nXr0aN954I7q7uxGNRhGPx3Hy5EncdNNNJS6pEFePqakp7N69G/v27ZsOMifbELOdEydO4MCBAwBs\nC3gikZBdCAHg9ddfx4cffogPPvgAGzduREdHh2xDCACHDx9GZ2cnAGB4eBijo6O4//77ZRszkJJl\nXwKAPXv24MSJE3AcB0kgpfIAAAEvSURBVC+88ALa2tpKVRQhfnVOnz6NXbt2oa+vDz6fD01NTdiz\nZw927NiBdDqNuXPn4qWXXoLf78cnn3yCzs5OOI6DzZs349577y118YW4ahw8eBB79+7FokWLpj97\n+eWX8fzzz8s2xKwllUrhueeeQ39/P1KpFLZt24Zly5bhmWeekV0IQfbu3Yt58+bhtttuk22IWU8s\nFsP27dsRjUaRzWaxbds2tLe3yzZmICVdlBFCCCGEEEIIIYSYrZRs+5IQQgghhBBCCCHEbEaLMkII\nIYQQQgghhBAlQIsyQgghhBBCCCGEECVAizJCCCGEEEIIIYQQJUCLMkIIIYQQQgghhBAlQIsyQggh\nhBBCCCGEECVAizJCCCGEEEIIIYQQJUCLMkIIIYQQQgghhBAl4D8By7MwYNRERYwAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAARhCAYAAACLezhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvVmMbel137f2dOb51Fy36o7dl91N\nsilRomxLsuRAEhwkQB7kIFSQBIlhJJDsIImlWBJtWaJkUWNMyYIMJ0byYGSAHuw4iB3LdgYnNkmJ\nItlqsud7b9+6Q81VZ573lIf/b3dbBkVWA4104uz1cnCqzt77G9a3vm+v9V//5aRpmlouueSSSy65\n5JJLLrnkkksuueSSSy7/j4r7QTcgl1xyySWXXHLJJZdccskll1xyyeX/j5I7ZXLJJZdccskll1xy\nySWXXHLJJZdcPgDJnTK55JJLLrnkkksuueSSSy655JJLLh+A5E6ZXHLJJZdccskll1xyySWXXHLJ\nJZcPQHKnTC655JJLLrnkkksuueSSSy655JLLByC5UyaXXHLJJZdccskll1xyySWXXHLJ5QMQ//2+\n4Wc+8xl7+eWXzXEc+9SnPmUf/ehH3+9H5JJLLrnkkksuueSSSy655JJLLrn8f17eV6fMF7/4RXv0\n6JH91m/9lj148MA+9alP2W/91m+9n4/IJZdccskll1xyySWXXHLJJZdccvmXQt7X9KUvfOEL9n3f\n931mZnb79m0bDoc2mUzez0fkkksuueSSSy655JJLLrnkkksuufxLIe8rUubi4sJeeOGFd753Oh07\nPz+3Wq32dX//C5/+OfszP/wf2a//2n9lZmbFYmpmZklJvqKK75iZWRrrMwmLZmYWFqb6+0J/n/Tn\nZmbmzuUA8hsVMzMLKm09qLbS75ehmZk5vVifpbL+H+h5TsUzM7Nyot8nUWJmZouwoOfOR2ZmFs91\nvd9Ue8rcJk713VL1w01034Gj5y5PlvqdG9K/upmZeb7+XupoOkorPc98tSfznM2DSM/z9BknjNdC\n/Q1T/b2Q6LrlYmxmZiNLzAt0j2aixpbr6sPS1feANkZLnkafE7+vrwvdMy1wvafrrag5KAZq+yxU\nmyzS9/lqoevGGlOfuf3Zn/9Zu4p8+pd/Un291H1qtHv4WJ9BR3McVDfNzGw6G+rCtzUXT4Y9MzPb\noFkbd6u0W38Yrw7NzGy1qzHcb9wwM7ODnv4evqWB29/W2PYvdd3J04GZma131P9K47q6naybmdlk\nMTMzs85NBh6dOu0/NDOz9lLPK1alA/VQunb/1a+qXcG6/ezf+En7xZ/8b8zMbHdNv/eba2Zm9mis\n9rUitWu1Id3fjTtmZlZI9Hzf7ZqZ2eE/fkvtRpsaH7+p8fI1Pn5R969tqT2ur/GePVZ7u40t9f9L\nat+s+4yZmd2uNPX8op67dHW/y6fSm627LTMzG/hq5+C1+2ZmVm3qeaVNfU4mWlvLU83n+p7m9+d/\n4b+wbya//LO/YmZmnZi5rmiOoonsRKUo+3NaUxvD8ZmZmbVqmjOrSrfrvnT76fBltX2isSgM1Jd+\nacPMzKaVEzMzK0c3zMys5zwyM7N4yJxvPad2FHTdKMIejDWm/kprIylJd8olNWPkSWdXJY1Ba9Iw\nM7Nx9djMzIIRhqZ4rmZPpMvj69KdtVTtnfWlc49O1a69m7rPUaQHuQdaI8V1tXfvRHMz3NOaH3pa\nS/Fc902rsiO3npFtHz6QvW2OpIMDn7VUZo2u1K+jty40HtvbZma28NWuwkS2pnh7T/d31Z7kDdnB\npCJdqE2wb6Z29opdxsfsT/2HP2J/82/+upmZ/cRf+oxdRf7Sn/+zZmZWYj6CjtaAW9BarvelB/cj\ntb9Rl25XI7X70qXfscbRK2tepkXN55puY8m6dPrpPfRxQ/O6bGs8WwXd98lbsgnlSHrS3F0356nu\nMd7QnDgdjVX7CfYVu1Xrqg2j0amZmfmB2lhyNAeTsp7p9LTeywXN7amnNXHLk44ePnlNYxHT15Z0\n6vFEc9Jp6/p6rHb0PN2/3ZCdc480N1Fd7VvU1I70Qn2rt/XcWD+zgG1j2NV9KpF0LVjIzqTejpmZ\neTNdN4/Vjmhj38zMCnON+bKmcWiMNHaV7m09H/t6WpYu+QOtpb/wM3/JriJ/+Sd/3MzMwjM1NDb1\ne+2m2mW+dGAaqkOtruzxeCn7W5trDa5qun405D6exqPoaJyqC+nCsqDxjUzjUU2ke9NI8xc46ucq\n9rlez12gB+ZpnLyh2vkj/8mftb/xG79mg16m43qO4+izVuUsU5JNTJZ6nrvkDBXKxoRz6cmYNbje\n1dpY1NXemP29hm1YTKWP/lLt7vUu9dzYseam5sB1pNOlitZHtgevCrqHe6wxWA40VnPOQa7pd8WN\naxqjrtpWYu8ccLaIzo7UNnSMnd4Gp/pDmcdWd7UnXQ49+qC+/PSnr6Yjv/rLnzUzswpjWWlwfnRZ\nczX9PRrKIFyc6/nVmp5XWmgc3Ib2o+mSswxrq1xjQ2B8Lp9It1xPc9hY19pLHI1b6ur3q1jXFy51\nv2Sl6+N1zWkc6Pr5SPY11eW2u4m9N+mCx/l0qmZaf6T9soPOeJ5sxYBFXa1gYxKt/fFAa7ba0DhM\nR2pHyNtGGnAWTDUezVTXDYqsoa7WWjKTDo0Gur+Xql1eqLVdrHLW4nvB03gXt/T31UwdSC6k2z/0\ng/+u/e2//T9ZUuZ9Yqr2Nzdo2IzzOverVjRe52e6Txjp95/6z/6ifTP5+c/8FTMzczhzrG9ojqYr\n9eHp78vurm+yB7LHLUbYzQrvKGs6dzUbGvv+iez9IsE+lDV2mU4MZ1obw6k+97Y0t/2Z9qLKQrow\nOtHZoFzVnlpv6u9nPSnFbLCgHXpurai5Op1k53m1d+tZzVXQkE4sLp6YmdmK82yhrnZu7MpOntzT\nmWA05wzW2aLfut9aXe1YcPZYDjQOFye6rryu50QL3pkKmrvBJePW1DhXt/W8aV/9dOfsm/vqT7Gu\n+49H2IZszZnuH6zLekzPtd/MDjXuxbb2oZD2+SYdH080vk3e0X78U1ezJX/zr/yc+oEN6LPPukWN\nW1RXu2cL3sdM/Y5C1lAxW9vSfe9U7Zp60uVWU7ZuYpwtQ2wt7+Quv/tzP/Tv22f/279l/cHA1phL\nl5emeK422VzXrmJdG4x07Wmo9dXp6FnJVDoyd9SnDd4xCwk6kcj+RLzXuwWNfYvzYcw724T3+yK6\nWahrbBfoRFKQTjq8YnmeDPzU5T07Vrv8CF3g/cBL9byIc5sFsjPFltZC1Of9YarPlHe6Ukm/H411\n/vdrGo95SZ/lsta6mdoVYvAWffaDUP3uMBe/9LNfX0ecNMWD8D7IT/3UT9n3fM/3vIOW+aEf+iH7\nzGc+Yzdv3vy6vz85ObGtra336/G55JJLLrnkkksuueSSSy655JJLLv+vkn/7x3/c/vtf+qWv+7/3\nFSmzsbFhFxcX73w/OzuzdTy4X09+7bOftV/8pV+yv/AzQk1UiEp5dbyzcpRZhAcsTTOEiDxRgwt5\nB5/eU/Q9xnu78RFFdNd3FSFOCkQqL+RBC2NFmptG2xq6bx2P3iIl8oLHy8WLOyCalODBq3dB9LTk\nWYyJtFeIVo4jomB9RQ4evi4vcjqX56y9JW9soVLiu9obEE2jm+aBSnEKcgn6M43TAiSNt1J7V7Ge\nN8FDeP5Y3t3QDa1RlLew1QbZEejZAVGOEhG6eaCxn+D9zKJOyQSvZkke+AZj6oGUcUP1Ia3qfmPG\nKibqNRrLG5nGmsvP/qoiCd9M/up//Wu6Xyi9Kp7LKzkm2r/zITn8klhzefYmUZypxujk96UjzR2N\n1R/51xQ5cMf6+8tv/19mZtb+Vt2ncU3ezif3FbKegpS587wiGtMjRePmb0qH2o5+X9x8Uf2talzO\nHul35e+8a2ZmDo74x1/4R2Zm1uJ3L3xE7SZIZJ/7735P38sV+7Wv/Jf2K//xXzUzs2D/lpmZPSIi\neznQPPiuxuNaSTp1e1fjn57Km9s4ktPzyRe+ovZvyJtdekaR5SO83aUNIrnPCQ2SLNX/0Uz3bxB5\nPv3te2Zmtrn/ITMz29pQu4ZnGqdohne5rP6Ha+pfA+/144e/o3Zv6Ll3tjRur72qiMTqbZA5H/2I\nmZl95jc/bd9MfvOn/lMzM2stQbA0pQNbtKUx1xw9rBO1b6kt85U+V0uN5U7hWTMzKwy1Tl1AY8FS\n67kEumcKSqH54e8wM7OnX1Cbk97n1Q5nV32vaI0dERXP0EGABGxV1eKavKVojrOlB7pVRZZ9R7o6\n6msu1tGZ2VD32Q6kC5N1ECpTrd3DtxWF+tqZxuPFW9IB/5oiAcWR7MzS0Rqqr7BrnuzXxSZzeSFd\ncbwHur4snfFAIO2Gun71DrhO4+KM1O8nsVBVt679cY3bTMiaKFLEoE8Uzl0SQSmr3zdBGKURERGi\n8McmO32Whvbv/Myv2y/93KfMzOwn/vIv2FXkUz8nRFXlQnaxvkFAYKb2eImef4KN2XlWNqR/AXrD\n17guiaqtQOXtE/kdsF+UiIbGoB0ckE/JifRq7VkhtB4d6ffD6WMzM9v+xPO2euMV9f1Yc7T7vOz2\ncigduAiEDqiAwpy7mvti1pU31MbNfbV59FB2qljb5Fnq24dYv28dvK2/T2QPv+O7RMz/+pdfNTOz\nsAESsaA9cB7Ljre7shPz+2pP3FB7U6JL3QLIi5nG5jFImj0Qh8f3NRb7HxNi5/RV2fd6GYQHKIjH\nI7X3xuqGmZmdeZq7rX2N3eMHGpdrL6o/UU/flwegCzaE0vrRn/spu4r84i8IBTE80ziyldvOHkiZ\ntu67SkAluCCYsCWjSHPvc2apsDh6A+lY4MsGVQ1ECoiawAFlO9N+GpY0ThwhzDNQu6me5xC1Twqg\n+XpaMz/z85+xT3/qJ80HBVFs6QarFPRtiQhrW/qwwoYEc83zIlT7J+iNxxks2FA7210i4iv1x3yt\n9RoR3ehca/rkLdmeMF1Z9xndO+J8VMIO+2W1JUi0jpYPsIeX7DUnRH+b2kOa3yKkTAHUZee6+h5i\nJ/pvYqfOsbdELi9BF4Sx2rhzRzp31JMO1rdkF3/2R/+8XUU+89d+Uf0AHdwERTTn+7WWFmOvr/6F\noNkKkdZIDKLE29R1yZJzaZGItC9dqHLem7/OWAcgQvZkE0qc3cacV1fH+n860NpLiap3ntG4bT4v\nHT79yoGZmZ28IbvT3dDZp5Wh2jqa0/BE83La1zh5IAQba5rPFdH9SlfXrTxdN+lr7VSIFK9AvG9u\ng2wCgTN7TbanwloHPGztPc3HGATU9FI2x+es5RC5XwN9smyDngjVzkJR3ydHav/5qxq/v/jTP2G/\n+QuftRp2372mdpWA7yUj/f6S94zKSuOfrKRPpyON56f+3I/aN5Of+7VfNTOzBefW7ZtCWAScf1/7\npy+ZmdnedZ2f0iL240TrpuJKVwvX1JfNW3qnOXysd53ZhRZ4WJAubIDk6x3J/h2eyT589HnN7SkI\nmg106vhl7c1Wl05u7uh8OwApM3hde/XWluxnoaY5PwdBMznX/7t7uu76ixrTwwOd4xYL7AeohBsf\n19lq/lS6ce8NXd/paE4XU62RRk1zXwA+nEylQwevvK7/r8tueb7GMSmAwhrq+hXIwef/2CfMzOzy\nvhBJT0eyJc99GNQDiJvTN99Uu7C/UUnjc/s6qOBT9ecR59O1DRArqcatlKgdpyB5WiW159O/fDWk\nzN/9BaF8m67s8PEhcNsuKGnODksQOMa7IABHq1W1Rk4eyf5HZyBHuc7f1bww/XaJzSt2ZROKoHp/\n/od/1H7kN3/Fjg+OrbupOVlbl271Hwk5/uAVzWl3XTpR29Q5d7ZUG0rXdK7psWd7PY3JtXWNWTHK\nkMGa0zZoXIf3/QKooxJIvsG5xqTdAb3f0RzFc92nN9Gns85aaaqvZ32tofGpri/7uv9oBhq1LTvl\n3dYY21gImto1nWlGJ7Ivr/2OxrLuY289tXu6qf41W5qT2RZrfFfjMjvUc4ZDPefiMe/j5/r73W32\n4j9E3lenzHd+53fab/zGb9gnP/lJe/XVV21jY+MPTV0yM0tYABncp9LW4FtRjY9GTEIJp0ScQW9l\nwGod3Xv9WSmYy6G9y8tQgbyiAi+EPaB+6QDnyb4UMjtQLVM91wXmn5qeGzWA4HF9tNRzQebZhJNT\nEvFyA8yy5LFZV/W81o6UOAa2uX4DpxHQYt63LarIoJaBdY45hAS6vRViviekruCcCYFClyYcFp6V\nwawVfPNT/c9P9L+Cr2dkQKlhpLGIHRSdezUqavtkxhjN9awYSFlIWwpsItMZUN2u5tLh+uQJDioW\n8JUFiFsZNYoea8wqdYzXSsan4XOgYy480q0umKv1htrTDfSieVjUgWDS1jg8U8IBVz7nPvqsN7Qg\nO+hA+LrmJAgxJA09dy2QIUmW0sWnjgzEbsjB0GTUvaV0a3tNOlIHDh7NNb6Nhia5xeZtpOCdF3T/\nCi/qB6ZNrYwzZtUiPSEB8o3VrgOVjgNtQutLOYkWfYx+rPmoNUiHwPaHTV3fIX1tDGx17abaXQ2y\ntSSDFlSl20VH7V6k2gUS7j8OdbDq7NzQuJHC0uuR4lFV/w9bt/id2nsVKa3rwDN7pDnZJcWgPNWC\numjJiLbGGusph/ynb7LePW1Ui01dnzlfm9khek1j33vMSzaHteYzpOgBX3RMv19pT7Czpvo4b+q+\n1Ue6z9scritvq+/LHg68KSlw+0xCoDU1Keig0iI1YJHKCfT6WGNc5gB2XpKuJlU976P/upwhezjG\nvvSSdLBG+lbD0dzGvDBPV2p/eaY5HAf6/SscFLYXb6h/ReCfvsZ3WtCaquBc6I9x7LZ0v04VZ/tI\n43ZypN/XmhqPaUdzXZjqOfNAa6hMCsTZUJ9TnCEJ0Od6ku0fV5M7gWzRkw42y9FaOeGF98ZH1M7a\nV3TAuxhr3GrP4BR6qP9vk3Y2AY7r8HLg35ctcDd5ObnU+Kw1pGejS43LDJsbrek+q4Zsjz8Y2KKl\njb3saCyXQ9nwMmPsj9n7mqQcJDpUrla6rliTTgTskdPranP5FPh5WW27U9HYrSoag3NeuNKV/j9H\nd4ukz2QvgJeu+lhnDM3kULwWSEf7pL7NcEL47OnOikM6e2o51VwsH6j9zY7sx/ixXqyD2req/X3s\nwpp0dYLdKYxIp+WFrTrW/49cHZDeCLRWnmWfu6o4eGId9t7+GQe2dc4gpHn6eGsGpCT2Hql/rktK\nRp0UiTLpShW1ZxSS/lPJ9hG+p0CtXQ79pMoZZ4hsH61yGI8j9j0cxsuNzXc7sfTtwtV4bFQzfZLu\njTkL1XAkpgv9PSWFswQsf+DrM/D/oJNpxXguCvp7OGWfnGmfc4u674IzTrB0LDnTb1NSqdItjckS\nZ8Kwp+8BAZ7ta7JjVRenNAefootdibX+w0m2jjmnkYY+JsXNJfhVqPA8nAh+G10nXTGwsb0X8bMz\nUo3jM6kkRrrQxOVsRfr7lDXbK+DcN5xRZFpXN7ALseZsMZAOuw2t+aGzpJ36HPCGVSOIGA/1fd7T\nZ8g5slzV8/ukI5Vp9yxQfyc8bzXSeATso2VeC86x730CdHXO03PGaxJqvmbHpKVtohM8b1wg1WKu\n6y84mxSxwxG63Us1XsFC4zfnLOrh4Cyy385M+0OB9NLLnr63t3W/fkn9jZ9oP12ckRaLU8XMbBSM\nbTaVnmxFjC9n0jHBggB6gtNYz20F2scK5W/8MvXPi8c6W0IDcImzo8o7RMiem67p2TGBG5/A6tJl\nrgiY1HkpX5FeOsUJUIqYCw5uDvQEkxOtgcE2VA9TzbVXlp0ertD9U9IUA30uJwSq3gmI4PDDadBu\nqn1np7wI047pjta/T1qpjdWfHoGh3V39P2ZMHexdeCL70SfdyjY09wWCB522bEEaY+8ZR3+NfYDn\n9Wa8Oy6lE04g3SnsEIiaap+YMMflMmn3pOTFRzh12AcHVf3eJXUZs26DBxqP5pbuP4OWwFvgQCy8\nt8STNegE6qS+jyMc1AvpZsRZFuYNcwlkNddIwyLdKVrpDBteqn+lfa3laqp9YsCZbzLFYQ3iISBl\n0cysNEvN4tj8KefTZ1iPr+EUIahWIkDf3WfdsTeV1qSbwwDnCro7xuEVhJrrcqw2hKSlNon813iX\n9OMsjZJ0ToKrMQGAC859AWnzWSC4THpsE11xWecz/AvrrnTJ49wX8E57CnVHc0I6I2ekMnajgLc4\n4ZwY+Vq7/i2NS7Wlfk7m0ALgZCr72nur9Gu6wB7F3/hM8r46Zb71W7/VXnjhBfvkJz9pjuPYT//0\nT7+ft88ll1xyySWXXHLJJZdccskll1xy+ZdG3lenjJnZj/3Yj135t2U872sNPO7ACFsmD9S4Kw+Y\nhwfMAwrcSoCtbpCKk5GghvK2km1kC8siFqAm3hKU7f7bQkk8FwmitnddHi0XargFUUYjWuQH8p7G\nS91vNYd4Eg97Ewhzxqa7wtM3h5fTKclT2AJa04SQc1klbQp06ojoY4L3coIHMYPqRcBcS0CRPaJb\nFcj5aqA9UiJOWUrSZRqbEyriVyDqPC+orwRprUI0e+RkBFJ65uPHB2Zm9rn/UakZFcg2/+if/HY9\nsylPbAqBb4DndzEjSgTB2NtHioBuuSBArigRRF6VufoyYszChdoR+BmCB6LZFnB+dGB/g6gSULxT\nYN/BRN7N/Tqoqk1FEk5Qng2QQuFNeTcHSyISVXniXcJRxSY6swkZIdE/f6pIxXgm9EMDr2vMOMVr\nkKoeE8E40f3qcEWtINuaEcEwV/c5qioycYYHfbstnUq2IamDcKxT0Tg9qGjc3aZ0rnZH43WUIZZA\nWawqWgNRQ/d3iNj2GqT6XByYmVlrRwigairdfPqG2nFjk4gKUb/lEbB9CHyLa+pYHWKxGaRX/om8\n71la2+aHIX4jkn4VuYDkspVqrmbH0pkzj9SyFPuyBlkluWJxBSRLSeicUVvR+grYfx/7cTHX3+f7\nus/gRHP55b/3d9Xnh4oGfft1PW+1Q84fCD+fiOhoB2JeRzDJxnXZlS5plJdELOeQbC5JFSwONBcD\nUwTQySgsm4rgNUkZPASxU/FJt6moPccLrYl+Ue1eET2Jphpzl6jXYFefbVALxUifdU2ROSVS32qa\n82EFkmoHJJEvFNY6sPzGnnTWh5TvdACECBTdKQSVi1TtGpLecDqUzrYBY8SkfS0hn55ATjhbgCa4\noow9jd8GhG0RBPDRFANcF0InYU0/dbSWXiwppadf1N+3IO71nh6YmdmqxHg/S47iofo5Jaq5tg5R\n8ER/dwqat24B8sY+8323YN4TRexGWSS1qMF3VkTFU83BWYm8GlIHyhsQhR+pT4VA9s7makPvBiiq\nV7+mP5c+rjZuaT+ILyDXK0PITbRoE6Lh4wwFBtlf2ZPO9rd13UMijJsbkHYONOddSEZXB+q7u9Se\nO93+fX0PNZdrkGq+TkpdF2SkAxl1lrYTQEqdfkxz9RoRygY6Mh5Kh6tLpVn2/G+x9yK1EhFXyECn\nrKkCyMEiKCdvCbS7J6TPYpaljhC5XIegeU8pf9aAqHcOusNIGyK6H3JYcEhhKYA4nfP/1aXGtZgh\nUYaKOsKBaq34XTTAYLyw1Zj03Vg6v72ptRhzvycXGufApdgA8H6HKON4qLUVOSBVOeLU96R/HiSq\nZ5H0MIGYMiQ62SAFJy2UbUQBhaQImXsiXSnW1JYmaX6Dsf4/gXDVq2T2Vm2pXgdJB2rr0VLR3/Kw\nyDNJhQBdtWKPTECMFNb03DLor6DGXDN3V5VwTF8zQOMNiNxT3efsVM915qxh1lLFo+ADOrCcQDT8\nMe0HuyVFt5/ek/2b9TRHc8LkIeit9X2dDXz2k/nbOkMkg4woGBQrKPX+Y9mQwzNQaCC3C1ug7+a6\nbsH5O07ZHyn6UOXvsy4ogy3ZO6dH2tVpZkNIpyc13l+n/0SWz3rS2UpIuj92v+aQYtfGdkAEaqQR\nTWM9p04agheCjIqhJVjIBrkg7/shxSkctadYf7fI7GoVWbCt9ngQUPsDrfF6ovaFoDlWMB0vSEnx\nw3fX2DeTxVxt8x3Z9mmW9jMSArJUJYUN1Qsz5GIHEuOx7Nk5drQ2UZ9LrNcjENcTUrx22iDaOCeX\ngd0PD0CArGRHl13NTRES7RnrPuG8GPUg8mWME8il+yuN0VaJdPQy6Hz2yEFfdsYHUuJxPgxWWqPn\nj6VrBR9Uqa/9JCQNazVmzTRIIQNd1aKQR/kadumCIikd3u1c3ae+qXE6AXESYxuqUFg4l+rvWV9z\n3Il03k1AVC44f87ZP3r3dQ7u1vX3OvwD/QXn41NQHWvYQ9LPHFAXV5UgBkFFu+tD3XdeJ9uCNKT4\nXP/vg3gxUnzmoAMD6BvSMroOQj0CseiQRVIFQV8CdVeJ6++0pWSubTSqVq/KjjZAInpV9dFAY4ak\nKc4isiWmmutjyPmnHuulnaF5KcADI68fg6IH8eaBzqqBoi3w+2pJ7wK1XezYEKRhzP02ZEdC3u9d\n5qBYZMwg/HYpOuKTcrzifT3ATpVB9aYgLkswwt+6I3tcJEUw5t3wQYb4Af06XOp+j14Xajgoyp5X\n1+5oXCBpXoB8P/kmySLva0nsXHLJJZdccskll1xyySWXXHLJJZdcribvO1LmvYhLFCaF6CskYjgj\n2bYIoaZPjmcKcmVFRHVJLq1XIP8ZIp4mpaVjvMaLmbzBKwiIUtAMacJ9QeysiIxbVpYs82IP5R2F\nX9eKRHgbJXnalnjAbJmhTEDw4N1OyaH1GnjD+3iXjxVhGJNbWyCHmOqlNszI/shJ80BZhOQq15eE\nashvL0UQtBXJiYXobOiGVgWhUl6nPCVjE7u6V5H83TJRlCkIGp/8u2KW55cQEST67hMR9IsQzJIn\nSPq2jSZEUchTnNbeG1ImvJCXc0n5yQJkUe4N+DyIoBre06yMmRsRAQS9UHGJGMADUd4jigKR5ZAo\n/pRyiN27ui6F/yIMpANzdCxYw6vb1jh45DUvluQ33iNiuxL/h8M4uXV5jx0TYVsSkldd0PhW9yjn\nmOXELrKojzz+2xBFHsElM2ZizZ04AAAgAElEQVStTMj1rTvy4sbkWV66imB4IJpu4P2tXYKcgnSr\nVVD/YsYzho8lQ0L5bRHTzShxHjvyHne3iYLehJwLT/z4KdE9EEe7ROCdTdAfPPcNpcJat6O1sWd4\n16dXR0EMjzV3KdEbv5IRfKNz5PnGPXm2rzF3tqOy3sU56J1A15/Bf1Mi0hiCxgqK2f0hmgQZl74g\nUuKQaEtvqN9fFoluZ/YqIXqTyA49NHnU6+jcCju3ahLFIpe/xXOXVf0+HMMLxRp9zJp0iMg+gkR0\n/pLKoEf835+TG7sNETm5r6uW5m5ItCWaKaLaqYucL4QzZU4kOzVyc8mhjQuKaCSUgj2nHU3KNn7h\nNSEUG+uUZ4RDq3uKLjHuS4+IeCQdvQAZsyRCmRYoJXus36+wr1eVnqs1XfKFbtisCNlzCdHzHgSS\nh1tCFVy+dWBmZmcltcvran/w4D9KQM6E8Io09tWeMWv64lK/v1NQf5Zt6eUI7oTas6xdOMhsUrPL\nguZsN9LYTyOty0ui3+11zcXFKYS+Y7WhmpAjj50YAzQ7qWnve3Ff6/il13SfA4i7g0RR72lBfX0M\nTU9nQzc4JvK3tSmd690HQbFDvjm5/B5RfXdP7bic60b1TaJTPdBNN0GPDdTueyAKCzdu6H4nul9j\noTV9DEo1Ky85oZTpRkX2aQ5aa5zApUNJancMIe3wvUUu+xQPOAPttAC1uiJS3DShxy4CSoEv9byI\n8r3DY11fI4LpgTSqU+7TZ424IG5cEC0e3C0pJagNvpCQEuYlOGbmIKYq2EuP8qOu824Uf31/zYIZ\n/Fh9OHwor9xaU7tO4J2L4RBqQOTpZCSsLf0/HBNxJw++OdHz01T3L4H4KaQgA+CWW2T8JYu5bfjY\nByKI8zn8FBQ4WED0bUfS9bfPRVZaWkiXFxyItjh3PfOx27RBe+PZa0JFOZQxr8Dp0rvEzqw0R6Ua\n9wORAYDZksOrc4WYmcUQWE4XGXmL1re/K52r7GhsnAXliV9TO60HugDuwbVN1t6F2nsEZ8rJqwe6\nLUgP5xxSUXiN4gg+vUsQN3AiRiCOojGRas5KtRczjgPZ/1Ff7XY4l07golkeSefb7KMOynAOce8E\n1HJGttoHYZNwri6Arl1CAL8GGjuBHNV5qL8fPnpI+4lsc+4tFtXP1l3Z39K5nndxoP2oAF/IDKbg\nEdw8wy31qwRBaZnS5Avs+mLx7vxWym1rg1Jubuq6E4fiCUcU9DjhPL2SvvWAswTp1ZEy6YTzqMvZ\nPaPWvKRNIFAmK7W1C5H4HK6/IciRjONkeI+9ZxO0Ktx94xGkppDIrzM3Dnw/6VPpagL6d4kO1CBJ\nnfG7IlkGDnvRBJ6fQp0zD+ipEkUF6gv2uh6E4xFIyKrm3OE8PmWOazXNfQrKtgla9QxuKpf7e1mx\nFM5EMxA+XcinRxCMR6CrAua+DQfOJYjB86x4A2cRr6VxnL0Nv9EhpNnwlNJcM/bm4aGeWwKu24BP\naADagirptoYOZmWZ3eK7yJOriO9T3IEzXgqabgWyZcV7loEaLPKON8/ev2j/3r7OC70CfHjZ2YN2\n7e1d44noFdxhdvHu/uhFoTWCDStgj3uv6F4B715bEPlO+lkZcnQ8S7eg3LbfpVBNE/4gEIMOmR9p\ngQwQdMjibM9gDLJzXR0+JFDzLufEDDGY8k6aISETdNogs643QJ9i73uH8O2AXPeYqhh7MbpAt9co\nDrMrPr8CZdKXnMFaxzyfs0WxCyqUPbVAP1aXat85BOFH7O3P1b6xHcmRMrnkkksuueSSSy655JJL\nLrnkkksuH4B8oEiZFXwTZ6+q3NnJAzxz5HRdf0Hev8Y2eXv4kLLAYhFvagxD+KRJrjKREp9c1lJZ\n13/8T/wRMzN7HjRHFmpeEvFYjGGkxjOYgHpYleQpqzcy1mdK/eGYy6onJaAdMk/jIoIjZiJvdQgX\nToHIdR2vapPSQjOudyknWhwRqafMeAoTeZ3fNSkhHpHzOje88KBgGqApgnLDZuSmTi/0v7WmvHtl\nrpmCaHBggS9SlWNzTdGtH/g3/6SZmbVqihSWGIOhLw+5B0IlBmnTBWFT35B3db0GWcpYSI6rSkqE\nzi+CNsJbetnH29gGsUJuu4uX1OnoOVmFgplSSK2Ezi26ity2yQO/P1Q0q4DHOgjhbiCZfkFedgM6\nD7sO1wFe0ioRaaOsotuVLlfIOR3W5EWuwWUzG0rnwg3pyDr8G6MnVGAAZeFR/agIbwXV4KxUhD+F\necsiEFmEfElJ8ACUwQSP/4Dc1BEVDQBfWI9IQIX8/GCNqP6ZopCnfQ1gxVHUbK2iz+Ca+FgWRFxK\n5F2e3jihnSCL2mrYZZ/oKKVtPfL8CzF8AOSxTxpX9xc7VMNZnFEq767Wi800x85SfanuaI4uv6yx\nOb/4nJmZuVVKak71+7vbihpfwOuwovKIXUjHT8+kQ1s3PmxmZi98mzhHLl4XyuG4peevUbllBp9E\nCDrgkDKUi2ONYXyoyGGzrjHebcK/M9L3w7bGakEp6p1L2Y0+FQQ2t9X/JQiNfaJVpy46nEVAtzU3\nQ37XPWYcQAomlKV8a6D21lqKUC5mVJ+oaU3NiV7VeP6ESgqzI/KWC9LtR+ST12PKJRMpLlJdb9DV\nuDYXREBLlCQM1Y6kJ5280aY6xowqKiAUi42rV+gyMwvhozp+C0QlkedmIITQW0SAquQ4+2tZtST1\nZ0ne9wwE0XkEl0FRa7T25HkzMzujamCYiD8gpsKOE7L2ulR0mEnPAGXYxz8xseNz1kdXCJLzc5U0\nXR2R73wzq1QlpN2A8pQXLtxZIAOTJ7I3CxAPJ3AQLMlV9y4o7dzSHDSI0M2IFHoD3Xe+AwKurzEa\nE6EbUoHhOuVnH1EdzqeC4Rp8TQXW1KwuHan04H/a1f1eeUU6supobwvI9x5it5tUXFix16834FQJ\n4X8qyD5V4Xmabyu6FTwS2iJZvjfeIYOnrUYFx9JYCJjBhcZ/c4+I5RwOFhAo5Sa8U9eIfHJ9nFUD\n9KiyUsCW9EEpgJCpwQ0xTzK+DY1nHXSIQ2Tc4XsWBfRaRBmxJWZmkycDC1asRc4sFmh8vAT94PAS\ngAo+vaB8ckYeQ9SxSNSvQMWiCZUvqpxBeqyZI85QVapXZeXgJ2ehJWXpfYvz1oo9vbAD71EDlNOW\n5q5EJcISZdbXGmr7CeVcz1/RumtfF0JlBRqoxN4xHYCSGlAimRLVPnPlUNllo6r794uP7b1IyLmt\nzFlkNdDnrAPPXKB17c3Vjuxc1qI6kwOadAmfhEu0uwxn1+5NITgXx+pnSqntGJ6+y7fhi6BCmwMq\nIIhBKYAacEGnbt/6bv29rOu/+A9/W+06o4IOv6+sGDe4IaJYZ4xwnvFLKdreuSuk0qSvanx9+OOq\nlOedM85jdPbOvuY16micJhfaJ+ugDJYgD1egHErG2acGUhx0wuAQXeRstEklo+Ia3GW7WhNHj2UT\n5lSpqhffrdIXRqm9/YrQww/uy/BubGT8R6AuKlmVV840PMfmV39dWvKuEnMuroDyn4KGrbNeplRK\nvAUib8Q5+eKh5taDm+kSKMcae6BjaitgVFucsBdxVtmoZmcO1vlA17ucE4tE/etNsg0oW1yhMlpy\nD45A+ITKbdBTG+pXE366+L7W8nQEAh2+nhKvlpMi1TUTypxTyabdAbnfxZ6DegipNFuAL8RtUUa5\noP1o4FDunf2ussV5vwgUiXaMFzq7xCHvWHBlXYBWmJzIrmeVxiJsU3IJfA6U2RBETgmd6Oyo3YNT\nnVFK8MJ5Bd4zvKwq4dXkkiyIJqW8Y5D7Bd5jKlWQorxPJcz/OJHuzsec6z2dQVJQHw32+RCOsqCZ\nlaMGMXSueQ2Xl++0JYx9a+637fF9jd3pgdb37ee03gOqZE6puNenul0xJWOELIwOdqjAu1UTfiWL\ns3LioEWpShlz3rIMTR9LVyYD2Z8xlcOiDf09oSz44JgKZFv6u59VXcbOLo2zyLUsUwVoDO/FCZV3\nkx4lqz3tubMJY29kaUy1tw7ncJGBeF5i5yKyUJ65rnbEdX0eUyn3wVRrwPqMq/ONOcxypEwuueSS\nSy655JJLLrnkkksuueSSywcgHyhShiIjNoWN3oXZu7MpT1aaoRZgivaXeLhAcxQC8tmJqs9jomLk\nEocBEZcVkQaiTG5VHrRwpPvPM24ZPGiTie4XkV/uwIzukJe4SIj0UP88deSJq/K7BRwWJaq+jALd\nB2oCK+IVXRC5WM3kEfSyqlOHuv7e733JzMy++IoiC/vk3X/7t4gLIYVJ3eq0J81YqPUZw4mRXPbt\nc3/rH6kPuOG+53uFGlp7hmo6ARWfMmZqqloY0ROfPOHeqSKQTaoWOfBrBCkRPXLvF+TCBvDtVGDS\nX8bvzZMctEHgQOizKOLh7pKrG4J64qPNHIzJ1VyU5aXcTNXPVY0BIII6duTF7VCpKiBSOAiINNKO\nC/IcD+FCuf481ZFCKitQDcNctXP7jqL+3hiUU8Yd0FX7L+Gh2PYURUqqimS8TR6lewl/xwYoqCmV\ndxjXhqfrs2hhWND8RKeshXOQKFVd/6EmEQSijgafUUAUaS3THaJG48fwK00Uudkca14Tqi+1iHSk\nVPHIIsMZaqtMLrFtEhUkKrYiR7lxqHa4K+7T1n1HVFQoOOrvVeTmsxqD+zD3lydwTC30bMdXxHTx\ngGofVFh58ft/0MzMDidCQS0/r/UWk+8d4LF3yb13ixqDObn/SU1tTKeK1IVEhGtnmsMJvA+zC81l\nTJU490ied+9EY3TjY2p/MFK7Hr2l9hR3FX2PiJDu+EQQfJAzfbXjmMowG7EimccdPT+qgIKDC6a+\nTWWrkiIfa89Jl+7sgGCBt+OlU3GujA+0dhwCDMMI5BFkW72B2rVJBLH4LHbW1zi0+0SfanADEFmp\nDIjWEQGdJvp/+TWtlX7GF0Lk9NVD/b3pa03NjIoN76FCl5lZdahxCLHbTx6h01RuK18oAnJ+rvZt\njBQp2SSyc8w8VupCsXgjRUIOXoGN/4/C/cC8RG/LZpy11e74sfSzP9D8lW/BRXEspFRcetHO5qAA\nBrLxBRBtRZBvtYf6fgKirQt3y+xM1Yx2bmluD4ZfVR/cD+n/BbiciGovumpzGt4wM7M6faw8pILM\nOtXaTmTvq1vaSxqgreav6n6FF1VNKX4qnan3supyVBiEsywCbXrc1f9vrtjD+gd6DtF57xZrDkRd\ns6i5GcFd0puoHW04TG7U9LuUqFWRCmYniVBs+633xjvUAYUVweVSzL6DwliBdoL+yFKici0izaum\nEI3ZwcqFFy7jxDF4oubs/QnkbWOH5/hEtOEO8KkUlEWQ47F07xGowBLcafHJ6J0+ROfnNoWzYR3O\nHyeU7YnZJ9wAng0QL6tLeFJA0U3GoL+oMFENFQUNSuq/C7daqySd9+Cku5zo9zUqj3mrmZW39Awf\nFG1KNZ3pguR+eDb8jCIPVJGHHSkXeDaVp7IqRi2qEvWo3BWfSTe2siqUVNNJXZDDflZdSHtfCudJ\nSoWTq8ruTVCtnGWipaLWF8eauwrogrpHlbszEIZwm5w/Ub8zxE4VZPftbxc3mXsTxMcBfHNUKDR4\n45InmqsKFdU8X89JZrrfdAYC5bF+X35Da7hYzfZsta820dw9eSDUXbyn32/vaU2vQHrXt0BVd6nQ\nOISTJwUFttD3GCSh08jWgprdP9f1RapchX0q52C7ShXZx2ik/eDpI+ne7In21/CBvu/Xbuj3dd24\nuKH+VOEqikGOJyDnI1BcjvvuPtGMajagGkvjeqbDsuNnA6otLlSdtZHASZFVcQS5dSWBP6MEMsbH\nIlSwA8MlFVPvy96vbmjvrpX1jNjJ3kFA+1C5dWjSnRp2aI0KMr3HqvwyAModwJvTrsh+PLwPbxCo\nzoR1WwDB0wABElA9szLTnhQ2QWrLLNvGR4UGXVB96OhAY5UVpprDn1HBHpZaut8IhHihDA+RqzkM\n9kGdZQQfBZDxTZCEVJZc5z0liNT/02N97rbJPoB7rcH5fsx59eSR9qV2oLNUYaH7jl4HWXRb416l\nA+cr0G4x6NYx1UkL2lfaoDLGVGycUDEo455pUgnoqjIH+n6eYMsguppF2bkfFFwNG5Zythyrvc5M\n43kBV2ZjUzYh9DS+Ty41jw0qfjZbcNOBcjaQM2Zm7ULL4lVkDuu+vKmxmYEc97HxZwmoT/a+OjoT\n8E4yQ+dbLtxa7BkVeDI9qgjHvHPMCiBpQKYVqWYUkOESg/Lklc7qAeesqnRgBUfNMqvG6YCo5v6F\nJjxMFc19ABp2xb6QYVP8gGpOVBacuFTahZOszvt2BST6iAq8zgW8Q6CSl5SOXMO/sAaq9eK6dHCn\n+C6q9etJjpTJJZdccskll1xyySWXXHLJJZdccvkA5ANFymw35L3buyXva/02dcPb5AbjrVwBqUkT\necISk2fNhU8j4wogRdfSEM+8yWMVJ3jMQFU45AEmVLKpwDY/IWLz+b/zT8zM7P7vvWpmZs/vyDt6\n8/u+1czM1m+DgmjIy1jBW70kB/j8+MDMzNa25WmsUOc9LcGkTWTBJU90Qp5glvdocMIcPND9Hhyq\nekmL6KD7HbpvQj9KBAIqVM4h3dN6M3m5p49HNn0kr9/WTaGRWuS9GWOZLIj6kK8XwatToTLU+BGe\n66fq2xyvYHsdPo47cIOUdf85HC1xVjkKpEsC2/xVJYaNvQSzdwoHwvhEY7d+TTpxuSAqQsr+8hwe\nCPK/l2vy7lbLVL0AGTOAY8ZPFC0JJ3j4J+T2M5YFKvrMQMQcUYng9h3dv3dEha9Qc/bCrqIr03M4\nUs4VyahRiaLVkk4sr8lrOoJtfVpVPnS3RaWY2/J812Dyfn2lKHt9RNSQfMwyHDj9S0UBPRApx4f6\nHpbVv1JD7a+DhOoRoS0QbSowbmPQaYlH3iQR6p1jIhwZDwu6m4J+CECHFG/IO14kOrokZ3qNyM+S\nCOxspfHZIWd3QuS2P7g6i/3pSLo1ZYw7IGESF0/8UmPZqiqaQoEau/v9z5mZ2fqxIoC//ZXfMTMz\nl7zksKUIaNmHG8DThfUG+dCwuZ87v2dmZo8A97RRmmWNfF3WWvlMa8IPWAN/QhHXH/nhHzYzs3sP\nlMP79z/9183MrHZOlbYy1Y+o9FXpgnS5BrorVfT8CN3YhgMgjTSHDzCMK0+oiUpVyKHTqebm8T2t\n2TtV3W+2AA1A9KkFt9ZpjQhwJF2bV/W7JdGh1Zt6zjBWv+dD6VjXIw/9jviHZkSDiktyiunfQM2w\nb/v+F83MbB/Ux+n/KTt8FGuNHb0qHR72FeG9qkDtZRfYlM2IyDVm+fmE6llEIw+pcvd8Q+O49QV4\npCA1a7c0r28/UPs+8swfNzOz8JH6fXasCPftmfp7CEfRdCz9/Pgtzdfnx+TtJ2NrH2suJzvSTZeK\nI+lcYzwNQV1SXa1GXOWrUz3ruevSqd/5kjp1qwxKa6z132bPcZir/Wf0/Umk9f/2I/3++rbs0YMD\n/d0nwlkcaowekGf9b1DNIxxJV9+mr+19raklqKOWT07/ocbu+Da5+KmiR71EY96IUAJH41CkQpjL\nnNlIXAv7cC+cF/j9E41D+0Nw2DQP1O/pe6v2NxhQaZHqc20qQ3SamiNnLPsVE8ksVmXvIiqm1Ymq\npUQuo5CcfpAlqwsQQQ7o1jEIRRBFHrC0OMgq2/D3lmxQlf04JlrZLsNj99xz7/Sh/bE9c/qa37NB\nhkbI9l+qRZnmq9oCKbqUftRH2IAa1aXg8okW8PVR+SKBO2iccdyAjIrOZQTH5OX7hdgCeHUcql4W\nM94ejjtLuAArVLsZvyXdegRnQOMT0sVb8CcNt6jEuCE7ZE9kD0KQGnXOHEVQP8mCPoDWmrK3tUPN\nacN7b7xDT46FPOlTxWh9R+2gmJQlIEJmrL1KCbQWaN69O+pHVhVkiS6NTjUn4zFV7UC8rMM1Mx3y\n97p0euuazs0xlRSfvia723H0+1EqHTh6SWsmbMOZBSqhtS3uGjfJ5gcuF86ZTqhxnj6RbXn4lvbX\nRkuR81bGu1QD3ZqAvqIiWsZbdfo5cUYmoGXTCRVm4PdYFuC7+JDavRGAjgNtMqoxnnBTxD3ZzXsP\ntBbXpjpT1W5TtbCv+7VqRNoH76KzB4d9q8Ft4cKd9vQVoT1W/L0Cf4dXgTNtTPUluJCuIlXeVUIq\nN2Wo+owjJO6BhEh0Jug/Rle2hLTbrMmOHTygbaC6HPZmVNfK7J1ekbaBZPeuaw427wqN2afKXQ8O\nkWvruv8cvpwBlQXvskfXx/BjjODbQNe3El1f3dcctdf0LjKmjOYUbsdSQ9fvrN8wM7Mjqhm5c30G\ncN5093gPobLiAGRmmXYtqYib3FR/OkPtb28+ER+gwfNxyZprbEg3Fz3pwNErcEFeUztbvsbr9ERr\nqQ0yfY3z8gw0XqHKexFrc+Jpjd24KQTmMajb1AfVB6Y+zdbAFSXKEIXXhZjfxd6+eQLPHu+UxTY2\nKqaSXBnONtAbAWfMmUtVLDiE4oV+V2mACp6i86ey081CVpXJLHVjiweOrX9EnHnNOsi1nsZwNNLc\nN7IKtJztGynIFZDpxZ502q1k1TOz9as5Zaothk8t2/sM1HwML48L4i4G2TecU8WO7IvCLu92A85I\n8J+58CVVOIf3L6VT48dqT9CkitOu7EOETnSxY2Oqp/ZBaG9TLcnrgHykIuHoQvuU62ccWLrf4lj7\n0WyoOdtjo9u9ofFqnWWl2L6+5EiZXHLJJZdccskll1xyySWXXHLJJZcPQD5QpMx0IY/S4YE8WRHM\n2ht9PG9NItPwnSREwFNcbQ5VirKqHCHogSpeyyAlumXydKVFomYwU7srecQmQyoJkGu6OiDn2fCG\nduQ53NpVhGMH/ou0Lc/aaiKv69OX5NX+3X/6z8zM7MPf+6+YmdkzH5dnLONtWdXl6Wuv5FnLIiYp\nUbkZrP5/7HuVY7xD1HGL/MfSJhwQTf3eh/06IMc6KlMBYgGHRXNst79N97p5Tfeq7cjr51B9YemC\nNiJ3ckWu+9mh5qZTgzX9lrgA3AIe8Sz/ewSbtw/XQA0vJ5UJlgneT/e9qZxT0XNnIc9bnfBd3so0\nUTS9BjxoRFWJqS8Pcw32et8hN7Ysj/Jwqeu9I/hC8NauFXW/+Uze14fwEfVHem5simRMyROfbZHv\nCPt7EJAvDfIjIAIcrqgONdd1i9vysm6AoloQ1XJ96d6YKJLT1/ingSLWO3AmLECDhf0/WCHGHZDH\nCVt9aU3PPaNCTrGkCMcM3qGtEDZ22OaLntrTConmUZjCWem+vUDt3wRJ5MJaHy/IA4+1ZgqRxnWD\n6Nsc9Fc8JdKTSGfXQFF0ycP3xpq3+vjq3EMrIohBllLahWeCKkkeFQ6csfp+4GpMGv+b2NCrDT2z\nsRAqabGlZ88S2R8fDhMvQ7S5Wv8n8BudPYC7Cq4qAm52DvP/NcbmKfnR+/Tx6Csay4dvCAn3aCjk\nR0hEbg5XQJqqf6Nz3bi1qzU7GKo9nVg66QbSqScPNNaVdc1NqaH/P/bhIvA1t3EWFXKPGBeQdg91\nn8sCkVJy+BN0+HKKL79FbixrrMucr8OR0zvRuL/5u/+rmZk9dwlrfZ3qcaAggpHmadjWOK4VFY3q\njrX2Xw9B3VH5p71GZZ46Fd2uKItIv9/vgcK4rjUzmIizKyBXuQv/1ZCIh3+s6GGUSj9OiXp+uCQ9\n+9KYikWgH87WadfrlHy7UPu34MY4mGq+4+S71A72wZI3saTBHniihTcE7TkvKSp++VTR6u6a2tCm\nqlLyWNc5C5BsBu9NKiRJt6Bo1xN09wy+sz2Qag3s9vBCul588gP6vPdl3ZfKK8lbVBIA9Znye4pn\n2IIoUuHilOeoPcsHcJLdVXu/61Bj8fQMzoWvSve2rgux8dZj6WS5LftaqykS6xAli0Z67rPkxC9B\npFSI1lXhCgta743DLITbJgSR1A90/06ZKlAglkJ0Mc74S5jy1qbG1znXWludEi0kaheAiJxTPdAj\nHz4hauhUdL8ySJsVMFiXM08NdGzTBel4qXn3Rk/e6cMyjiwC7VCiAkXIWcArM79EBVcrjVfUzzjR\npC8bVMOanGkeSqnGY0lH/Yxfg32xgG2MiCx7cxBZadFW/C1mj627Gss+VYiip3AwgdzzqFZ22qca\n51PNyQH2JloxVsz51q7G5PAVtSUB1RqU4UIhquxhv6A4sGUI51btvaGpjLNOABLZNc15HYRFOAK1\ny5pIq/p/Eb46N4PzUtGqxlp+9LpQskf3xYPR6GntbGwK4VjMoDhN0FnsEzHIvhCuw4tTzbEDCUNS\n1z6Urc2ECj0duHliqvS5INMNzpdCDBoaRFJponnrrFMNtaT7rLJ+TjjjwLMRgPpawYPhMt8+FWIi\n1kSRqoIFjEg6rvJ7/T3JlvBMa2rjts5oKfxIoxXklJwDiqC/63BOVrbf5ZRZ32rZtY8JIRRR4eyr\nvyc+rgIVKK0IavdY4xjCY5IUv3GE+58Xx+Osjx3yQf/XqdSS2avkVGN1/rLs+hptb3VAATB2lVjr\ns5KBumog+ODziOAei0G7RvB0lp6VzmxVvsXMzN54S3vdMlDfHbIF3JLuU9jW+fjauSpKnr6qsZmy\nns9e1r5y/bbeicogPUbwxS3hZEl78BE1ZE+KIKmnILv7nCFaxRtmZnbjRdmVN0HkjDl3TxOQ7Weg\nl6iYVplT7eiSPRyUWRde0CbcPccgYnrw1BWqek7Nx76DjOxsS6c2nwUJOVP7ltjhrGJaGWTKtRfU\n7pPX9c43izPelPeWCRDAHZRlf6RFjY8DrG4Radx8Ksw1suJQM1DKINDL5YzfiXfWM/W7dVPjdXah\n8ZjDkxrCx9f953mSyg0br0bmgIocM+fT+9pbytnec0cVIaG5tBTeswJzvOKdoDjVs+qs6yJ225jT\nKtyrTpTZfdD/Nc7dKXL9wH8AACAASURBVIh1siQqfM4L+n+DqscR71oLDEU4ydBdoIqzak/Zunbg\nfoXbqwJn5LXnhVY63mFsR+pgQn+aZOSc9qVr8UqfJaoqr7Bb09e/pt9NsQGcCTyf9/0specPkRwp\nk0suueSSSy655JJLLrnkkksuueTyAcgHipQZTOTJ8ubybGUeq2JBHrCSR2SAmu0p1TpceE9WMFCT\nipal7JpDbtnQIXpG3nPgwaQNO7QLosaDoXx/R56y7n8gb/EnxqpQ1G2TL7gOkzh5jsvLDJ0A/8au\nhvO5b5OX+foz1Jwn33zhykNWICK9rOE59NS/CezvEd7ZzCv7AhVvSlneYyhv6BJvcBHW6aGv38/h\nSTFf7d2+vWdba4raVojUeQ58NiVY3kEs+KnacO93FbX/3f/9K2Zmduu6vKPf/gOfMDOzuzfk9RsT\nMZyQ454uyQElfNKjLdNXxAJerasvV5UggE09Q/SMyCsGSTKeETUCETK5hD+DqkvlhtoZdnR9Cou5\nU1AkcB7JM14ycn0nVIIxRfvL93W/WU/RleInyKlPNJ6rIfxHibzJGwb3zIQo1hLGbtjwQ/I0LVI7\nLqqKiLcSIt7kt2/e1VxHFfiP4KYZ075NTxHlalHfT6a06/DAzMxG5DR/aF/Pj9HBZKro48yhmsoW\nFQayyglEhkNY3efkqKZw0OxGQkqFRKEiqkYZoIlaWRwRA1d/X5BT7ZFfel5TdHGDNezPNI7+uSJB\nyTuRJe57BWmwHgdlGYLNvua6b+pzOVAE1WMOqgPN0cVAHC4Hb+v6/m14GrLU1TYR1pl0aLZOtHog\nD3sJtNVsXXMzG2ss51Rq6VCJLPL1vB2qQyzhX2gTJfmf/+Hf0ZiwfpfXNTdpwBolsljq6O9DqnHE\nVKg5Jup1A0TMDA6DSaj2TAP9PkiEtmo9ULvOi3r+bgFE0UQ6+XSs+7aaau/sVGuk2sDzv05VFHQ2\n4jljOCP+1R/8U2Zm1q3LZvy1/1xzO6CC2ToRhx7In7sdtXtZVBTuwT8R0vAr9ZfMzCx5m/zobY3j\n4E1FFZfBN2ax/xdljSpTx3NFoD8GV9B9dHZMBKfJON/KbEWg593cl349rqid9U2twdqe7nsSa/6e\ndbUWT/dBEWa511TO+eiG+lHDRrXbel5tGVmH6HO4R3W3xxr7my2N+dFU62VRUMSz1dZcBnXN4XyD\nqmpdPeNpQWPXXWpP6tTUF5cocSFWJHMv1J53CULkxlhj+3JZ6/f5strxCARG4cmBmZlNAkVgrzdl\n1//pkao+3epqn1ixv7y5IHcdjoIJY+uCLorgPOnMQWS6+t1OSfZqDBdO6suO1AkZjjdk/xYD6dZ8\nH9Ts2/CWLN8bmmqrSwWxh9ofZucaj8kaEeymPs9Apa7IF8/QH806eerY6Qz5WOHsklJdbpDBKPpw\ncYEeKxJJNyKfKQjIJfvdjAoVSyKzBZCYQfjuUW7xcGBFqhBWqQSR7fvRmCoeoDQul9LRMRHsi0uN\nd4vKSMVr0g+/CqJnJp0tVKT7blvjtISvr1ZXu88fzOn/wtqedGNJ1bqAM0CTc88xOpYwRt5N6eKd\nKnbyY9hfV1HtNwaKYO5uqQ3TotbXghNgB+Tx6qn6Pp7Du4YdTog+nyw0tmvpe0PKBPBIEOg1D6RG\nCoJuVYCDpKfvPijU6BK7MNcYr4Nia96S/WtnVaSK6u+1F+ADoZ0JPG4LKke+9M/+D11PZZ6gpPuH\n6Ej1eY3zt/2AUADnE9mGr/09rdF790FOUsGsU9f5dwTvXphmVU/Yk+F62HyWNcUZ4AEVbkJ0dA7C\npdrVGrn17To7FeDCGYIQPXuZPb8IV+QMFImr8QlBedWoGjUf63dQMlr72g19f6j+LEBFTOEXDIro\nfJpVWTF7c/rUEkf2HgoIO1ppw29yRvGWmrdqi+pVEVWuSldHQcSg3Q1eobQJRyE8lDWQiSHo3TPe\nWRaPZc+7uyDWttXWgHcknyh7PeNl2tMch6Bq51S4WcKJNa9oLHa/Q0j5p/TVptp7L7hv86F0YbCR\nIeuoAuXBh0cFyMdf1r5Q7cEFE+l3jgPKmMqXFwdqx8a+zhxr8K+NZ1QiO9QaWTyjOdp4QTp6tgfH\nzus6szkL2Z0nda15j0o9LsjtMbybLlWMsipQgK+sAtfi9Fj3XetoXC+3sNMRVUopjVvd0vyU4eO7\n6PEeQ7XUAe+OlS3QDz3NbzSUbRvOvjEK4l8UjzNgfKh2zB2420Cb1Rk/dwkqBMRkAS7I1QoOGapN\nVUAf3/mQ5qPHWfDey+LgOXmqNbJxXWvSbwTvtGXqtOzirUubVDXW9S3e5UC716+rLd0tneuCiu41\nhN/T7cHrA4dXEWSKC9LcKUon/IyDkHfOOvxpYQ806RS0PIiZ2VR9XlWl4/UO505HfSs0QcLDHzp5\n40B9P9DcNOGYqcFdayAEh5xxMl4iA521DnLR39fzy1Ttu/2M7r/DOe/lz0mnlg78bLz7sR1Zh7PA\nBRUXT3rS6Ub5G1cNzZEyueSSSy655JJLLrnkkksuueSSSy4fgHygSJkinq/bH1H0PaLWe53c4xSG\n/wUcEC4R6HgqT9ccjpYQb+bTh7DPV/R99wVFUuKlvLMeHr8gkbd1itc45b6DJIsOkTc41/WzSJ6w\nrPrTyAdtkpITV9Xn1rMv6P4fwdM2Vz/mXEehBJsSgSiFuk9CFZI5keTpkMgwkQkjEuPNYHAnWhnN\nM6+sPHhBIG+xE+n7NOL/i7oZVSKWeHqLTH2QFQYg73pIjuuEiitLcimHfbVhAjv6oA2Sg7l5h3Sc\nXMUlfbSxnjuib+8Qf1xRIryXC6LPTaJA4Upj0yXadgYaajqAsyVRBOJeSTpxa40cear+bD2mMg5e\nzDIogmaNGvVPyYuk/8GMKM2hIhfRXXlFx6CkYpAvTlX3nZ7o+/hE7XGaihR0dvDoU1VjdZ8I96Y+\nSwXdfxVS2SDSdclM/69RoSII8f6Sd359oOe9cUaFIThZ/DvyiDszqhqlqoRQaoFSI0g4KClaV6Y/\nPmz/fjHTIa2FRkPjmoJCmR7q+Q9NOtso6frtbpY3DudEJK90Olc/6kQ8lh3pxQBm9GaD762r+4sX\noJxWx+rTmy09Y83TnAbkhPaJXCYN6dQYJF5omtuuJ2b/sKS5SYIMrUOFLipC+bsaCzvnuSAgKpe6\n78MLOK8q6nO8lMd8Z0+f63UimllFG5A4ia/7r4HuWpwTTQuJMJIzXziQPbogUtEwteewp/zmwg1F\nWJcm+7Z/S9cv0IlT8tHXQAIN7kk3ji6EvrhEl9b2dZ9wDLppKF1ckLM7xU5fW2hc36AyzdsH+v08\nIJIwE1KnTP9mgcapBefBqCL0RsuVDg6pBFSmwk8NzgffVX9nRAkLyXtD3dVreu7ZdfhX4GZogQKr\ntdSOOJYeND+u8TlpUIVqB46uS/2+tJ6x/UuXN69rXE8Kmp9nmGcPJFVEJLl4TWu8DMLxmZtU1pjW\nrdGWXblO9Ym5tkibxFSzuCl78jXQYae34Ha6R1W6c+akrj5Mp+SoN6i+d0djcHqk9TsH0TZY11y3\nzw/MzOwJ3FLVCBQn9rG9I519EOi+A188GHu7anfhSH0Zw8uTVR/Z2dIYHT3RmLbugl4wRd3mQ+lO\nvUO0CbRSlGjtBeTad6gKdXKGfdzkbBDCdTXQOExY42733UjgVWQKgm+JDXD1WEuwg8MpyJMmqDh4\n4OZwnsW+rpsl6k8RXrsllb1WcMY0+yBIIyLb8HnUQPOmgean7eg5Qx9kEUgeb6DxXEyzhr/LnTMZ\nLWzYU3u6z2tNeZ6+j2KqGbogfTzdZ++ueJzGr1PJ6Ej7mAOyKewQoc5C0UT7ggv9f5lFGyuaz1JV\na341MktSUKBE0Z09zj2cPpOZvgMKshnnoik8cRWqNwU3hLbao6pSACIm4oxRzCq7oCtWgssmYmyo\n4JWyV03h42l7I3svsrWutXAOkiekfVFJHbpORcoxXFPpGee7N6iu9Fh2LXlezy3CeeJvS7f2duD9\nO1U/j76mPdtrYLevU2nlGI4ueCRWRZB+2zrrGBHfixncOT7nV0ffO/AIenA1FtbV/llP9u70SGv7\nAv688l39ro6d3urKOE1BUIZNIuXwmcRhxlvCeb6js0O/pP1yuUVVLJCEk5Vs1PRI7axzLl7fkm0K\niLy/8VhccBXW3oK1V6GaSoFFkXpqXzLMFonZfHlhRyegDJ+AmActVhz9QX4VH74WB6SNU7s6p0yG\n6EgXoN5bnG+eke0fBvr76Sl9jUFGUu3y6LHWTwUUf7OtsR+D3ItBY5WpRLai2md8BB9aQfaqx/Or\nazojFEClRmQlVPvw3b2pzwRU8Tr2LR2iY0O1f/VUY3U6UjvKIOa8QDrpghAfgVor0b4qHDkdziCr\nge4zu6e1cLEru7FD1cHRl3hng+8z/Kp0pgCnTHCm65eO+plVa4p5d7JLPb8cwke6wi4zhZtUiT2D\nU2YK4nv/Wa0dKBut+s+EgB+P4X7JKgCBTOpQefcS+5pSaeiqsjrHNsGXNLqUTs421c91+PP6gcZ7\nwXuU36biG9WUZlPQbRlAqwX6ljNTtaJ5r9/EdoLiWFJh08zs3ktfs8npqbU+JPu2WeX9uQ4/Zg3u\nlD0901/X/yPWmw+6NZqABsuqeJbhmKKaW8JY+Yl03nE0l37E3hdTJYk5c7mP0+T9H06YHnPSKsMd\nRVnVS94HjL08pFKus5SuXAw4U3Bui3kPOIMfjVc+C+v6/RR+uM5U95+DTByT0VKE1y7jsdvf0Vrc\nuibepVlPc9d7DbTv8hufSXKkTC655JJLLrnkkksuueSSSy655JLLByAfKFKmAhv9jHz1kIo/hgeq\nUCbXNCbS4hO1r8HVQuWIJ2/Jc/75/+EfmJnZ5p07un/ne/WdgOpwhmfcJzJChSC/TC4brMq9I1ib\nyYOkLLvN4ABIqACREEWMyZGbUy0gIbrUdAlzelQi2qBakgvCxkCvwMReretBGRphTh54mSpRc5jN\nw4wXBlbrRQ0vLXwEfkJ1gojo6ejCVn15I+vwzLgF/abkwKVChYQWUfSPflRevmdfkOe6XoQ5n1z3\nGL4JgzOlABN26IAcCYgoUkt+O9IYFBbvDSlTPJMnPaCy1oLQccHTmPcu4SGiClRMZZkFEb0qaIWT\nTXlli2NFAGN4ijrb8sJOhnAGZHngIFJWvsajPicK42zwe93/hCoaN/ZBmozJP6aiy2Km+1a7RBZn\nsMnDezI+kRd2z9Wcu7jyV5dU0OL3l1TqarIWumv6/eGrus/aWP2rrKhM0JaHvwCHwKoGdw55nfM2\n3mMiJvWRxmlJpZtJRX8v43SeVzW+Txa6vv0V9IAc6f2yolnpqa4fUsmg1db4DuE9yTz+05Yq2hSp\nojV34QnZVt6nV756nv9H/oiivFuVG3pGSfxF8VS6eTIGYQL/Q5MqHxdPXjYzs8hXmyOi7EkdpIbp\nc1aXzoRzzWUCcmYI0qNM9YoxqJ/vf1H25zv+9L+n9jz5opmZfel/USWb4RuK+tim5nBJpO/eueag\nBLqg4Mr+1FtEIshfbnxYY/Tnf/jPmJlZmkqH/vHf/z0zM3v8JY1ls6M5iKgkcNbX52KuHPyQqhq1\nmXT3+h2N35/+5L+l519XP+79A9o9k52dHxPpJKSwJPLQAJ3w+y/p+a8/0VwPqETRhSus56hfE1+/\nv7ZSO2fwbDjYkBDOmxP2AeeMqNxt/X298y5XwFVklmje10AwXm7Bt7Krv4d92YStLhXL2DemNSqE\nocuFAVWosLPXvkt68xRbtfuMIvovf1Fr9zqoNKcpW+gE5McTbWs5srF9JzXb1zruUYmw4ElHelRb\nMKpGVBPxPyzgDmjf1FxN4AOK9kBvnioC+YQo0g4IlMq5uKwqLSFqxqBGvRvS+XRNc9yugpwDsVK+\nQwWWY+xuIp2/AFW2eZtqUXBXxYFQsPELum5wT3bRqWgs3KbsyhZ8S5OAymCgsCbX1I8p3AftLB+9\nod8f1fUcvy+dKlFZcb6nOSudau1fVeJH2uO9x0TniJj6JUVWk7rG18sq0Wzqc3YJsuSp5jYYUcEN\nZGoNHpMiVYoWnawSmfoXgLZYcTYwULBeoOcuqxr/KtFBv6rx2b6u8Upm73LnbN69aembVLQ5BZ3S\nBdW1Bt8ISNLjS6EwAu+GntfFBj6RHhZAI6e0b05Uke3dIvq36sOtA8plUaaCxnxm/kpz4IN0iEFA\nV+A5CwroEtx9Jw+km69/WZ/ePd279d1aLwAZrAkXStXjTAM305jKLg3s0xgEcQJqyUC0rAK1tQ+a\n4KoyAMHsZnxvA63JNOPJaNIuX58XIEcaJXT0pv7uMvf9lw9033pWgZGKiCeclUBPpOzB3a50s02Q\n+823pHutqnShUKcS4ttq1/lj3d+6VDfh/Bu29Xu3ALphgu6DourckG2o34A3pKZx6s+Ell6+qfbN\nzxVhBhhjnW34TThv/87nxEsYVVWVxB3D21fSWSmhCtboTO1ugGicunrujWe1BjrwmwyolhTG0gsP\nhFAKMmkBJ0xCmS0ffg4zM69Rttmh7PSKM2AAN0W8zDjAdJ8V1WIuLzXQm801u6pUm6w7eDNOAXBU\nympb43mdr8efl44nRO13K1qXb52CjgL139wDOQh31XDKOa1JFb41uP58KpR9CT6QuZ4/6YGin+n6\nhIq0DoiRiDPS6Ve0xyfwWKYh5+ZD6WbpSO0cwh+S3Mn4juDnZE+eg6xJIqrn7UongksQOWQPzC7U\n3kcvfd7MzJ65Df8QHF7jE9n3FWeCYj9DY3FufwjKaRuOtBLoCxAiUaDvK1ATbQx698PS/bOXDszM\nrD8WMqdb1L66y9nofE1z786o6vqQ6qHY0ShD4WGXLXxvZ5IiPHaVBWi5SGvWn4Og9OEaoqrgbAqi\nvkiFsQ3WPPtVBPLpeAmXESjdG7f0u33Q4809re3Jk3dt32owsOFybB145vohqB1HY3k2kQ5cnvKO\nklVDdngfBXFcpAJVClqquOI77/UebS+yV/hUNqxE8PNkFafWqaRV1LoP8Rf0hnA+gY7q9UAPYT/L\nvJM8d1drItjQ/cPs+SDOYyopFjnfLajOHM9lB6MG6LYSiMCldO+Esc7WQK2tubn/6MDMzMbwApXX\ndJ/pGtWRb3K2Oucs94dIjpTJJZdccskll1xyySWXXHLJJZdccvkA5ANFysxh9F5kEYGGvi9BYwRE\n62MikkVXnq14qt9NyduOIjhiiID2LxWtGh8qL7NWkoeq2qYaiZtVUoA3A9fUl7+qCO/lU3mvyy/I\n07ZxW15Gz9X1l7C0F0CqJNQjtzbeSyLxWe35poHymOCJL1LJoEX1pDDrDwgh8shLeByjoq5rElFy\nybV2yWcsE3GaErXq4ZXPOHDKrQ2rtuSVLC1hD4e1OyLq1AIxM/XkWQ7gS6iBykljPLjw70RwlJRA\nGS3x+EYFeBemul/qk/cNcsJN341aXEW8obyUIXnQtZHGoFMSMiOZKLLwlKpLIV7dAnwdMZ7xMciX\nZKWozow8x/qaIskOuf4P0IHNOpHSMyrhFPT8yqY86aRHmrckx9TVeEDMbUOPuTpTe8qgAZaXRBrJ\n0752TIS7qOevgW4wV17o+THVOYg6pRvS5RKVEtKp+jM50H1Hfc3X/keFKrjVUDsOeopunQ30uzrc\nN5M7ikad3QCt8AYIozfhUSHi2bhLnvWXQJPh2a+2PqZ+wdWTwv0TVeDKIcV2RLWnQlUR+FGb6CLg\nt5NdrfGdFZGA+tWjl0/Iyw4XiqoEREIHc419M9azMz6l0VJImuMTjV3ZIf84C/9Sla1F9aSLlBxb\n05hdnsIZUBYaqQ7CphzTWfKnmy3pxOMLIVHc8ZfMzMynMs6ypLHskn/euStOql5WyupNGPcv1L4q\nEcSNjtbEuSmKU3BYc3C3JMxtVhWpuKU18t139XmxhN/irXPaAxJopQjJiCjN/JXfVXue6jlZJZiy\nUUkBFIEHaqEAt9fRV9XP4VNsDfbKeU7Rt0YfjoUOeeogkv5v9t7kSZI1u+67HvM8ZkaOVZU1v/l1\nNxqtRgMEIQCESJE0mlEUIJNRojYybfTXaCcz0aidaEYZYRIJkQKFuYHXaDS6+4316tWUWTlEZsyz\nR3i4e2hxfv6KlAmNrFVx4XeTVRHh7t9wv8HvPd85Q+RMkqhcNcacQV7BAVTg+Vfy7ScohF3XyqHa\n9QzUQQEunwzs/M80RKz+vton+VTt1cyoXS2t8qdQ7zhuy7/2c0Iu9Xpad3wyvMVdtVO3B6fPDc0h\n25dk4eDziMbWwH1ie+8LZfPoiepeMfVhYQr/woGQcDmQbd3P5KN3H0oFac3vumvNK7ce6BmDL0Fs\nNNV2kxqZzpLWliIcJ9mm6jYje75Vlu/O8cmDlspXvqcxUM3ovt1ztcWd+/Khq49QD9pHRamour+Y\nqO4zVP5q8CwNj2mbI80LblP3vSKzmy2p7y8v5fvbBbJyfa3NVxWNxb057YOaUP/6NBBmZrYqgqJg\nXp9MyL5NVK9NTb48rZCBRCFx1Ff7zPD5FDwf0NFZF5RvE4WGDP+voLriQ+42J7uYXKngAYiYNXPL\nCsWwUQ+0HutxEzUo2cJCsv3zHFw9Pr7Leh402JM8BvWVVIY8cwliyQW1t1Z/V+C4mYJqWKMoVCVb\n+tVIe6b5HH6sDoocCbOkwzYT5RAPhcY5a5zPliAMNA63t+Rz4S+qrlvfhLugpjqddKXK5kTIhgwZ\nzRRIRtClS9ZUi0BmKf5BZrcV8eKh3HJdm8G3s4ZPZwznVqaotlt3Vd+7t1SPg3c0pubMPymUErPs\nP4v3orUfpRcXJZfPVc9cAkQOfBzuKWpOoAdyUzVgEX6/zRJOh0gxaw80c4E92Duab8vwUUyeg8Y9\n1zzvww1RRYlm/x2U0xgbEcfM+VfinJm4uq4IEjEPwrMKJ5lzBLdNIeL7gFOoo/uff6Z1mC2ppQoa\na7kd+JjYU07yXIcKUmZIP/Me0e2jisjeK9nU5y3mTDOzd9//wM4/FgqlFMpXNzc0z2fxvxX+2TsB\nvTvUWO2M//0x9tdYRr69SqnOHki/y1O13e1bQgoXIsXEjr4PUHCtw2dTYd8cljVvlG9pTHSfwxHF\n/nIb9GxpBTIkRE3pJUpgSfoW4OBwonHcBF1VCVTe7hOUcqbqs50SnIYRLwfvHN4MLi/QSWs4pjIN\n3k1A3GfrIM15N9qDl60Pd1YAV+LZl1o78yg4tvbYYz05VvuACPWXKl+jDtoVhMsC9FVhHx4UVJcc\nuB4TY/naZaj/3zwQ6ml/oXWzcyo01wB07/YtIZnSBVSa1irfcK4GTIKQcZZwbdG/kQLwda1xoCta\nBdBxFcZqEqVJyG0SvEcV8qwLGxBPE9Y5uHFyRdDbK11voJHXqPUNB+wtUcvdCre/Lktrd2Nlp2Il\nlPTGl9qr5/ZT/GUNOZBPzOGS6WRRLWONOEAdLgSFb6wZWRQGEdK1AG7WHMqJa1T41j39/orTFXne\nLaplUGLGXmjEO+FuhNiOCFJpK+arFpxdM9a+y57uO2P/mAOJmCHeMKa8Y9aR1iEIPfjk2udaK1fs\nu+uo4q2YwBrwaS4bGpONHflQe4hK3ZSN5l9hMVImtthiiy222GKLLbbYYosttthii+0N2BtFygzO\nlN369COdEb11pEhcY5dsENHaMlmzABb/yVpRP48o4uG7R2Zm9pv/7T82MzOOLlv+vqKFAFJsydnR\nNOTHS7haPDINN5rwn+SEntg7EBrB4YzvlIhajYh6/0xR1bMr/b1be8vMzHKcMUtl9bsNcIACZ1gX\nIechp/zdoCbiquAb1GAg97cs6AOnRgaXjIhH1HbSA2HDefQUZ6lHhCST+WQEQrKADJzBFeDDEeKB\n+snmFEH1VqhncNZ/SZYgH53fBcUTMd/n/CJ1go9hrijr6Q+UZV5MVNb7IE2uazOy7DVni3IqS9Vp\nq/yHHyjS30K953ipLJADsiYfHdHv6rpVFL1F/chqqodHJHy5JEoMw3ZmW75RoY88T7+rFhTPXIfK\nkhXIaPqoUDR7ai/ERizE58o+CJquMiWdADQHGY90WVkpn8h2gLJBGmRKPqXyPJspM1lB0WYOOiKd\nBB1V0H2G+II7RQXpWBmHl/fhzygomzVIq7/WqHt0V8oSfbjLWFjKN89C1f8iKZ//uT1l5L2yMthD\nT+UI55zP5H5Bjii2D+s9/uSu9PvspkZ94TgKImWxv97aT8Sl4qI40lrLB0IybMscnE1LlYWjpPY3\n/va31QYl/e34T83MbPpMz+5mlcVpTlXnBRHxImfyN/BLZB1lZ7IF+cKLn+rs/P/0PygyvkmiOAPj\nfWo7GqeKwNtYbTlDpWJvV303vg9y7wQOA1/Pf3x2bGZmT/9n+fhRQm04IsZ+N63ndBrq4yncCTdv\nan693xIip5f7wszMTr4Qx0wJnqaf/Pafqr6+slAHRVBOKIEN6yhsgVR85ui+61AZAL+vsfre90DP\n1dXn5x1lRItkzn0UxoaOsjfZhXx8QUajw3y4LGgsFDaqX7vG72evp6wzjFj+4X2allGQMPnuVk7l\nW56REcqpfPMumRTG+O6hxuoXX8kv7n3wD8zM7Pi5MijbqAWUyeQvSvKLRsi8XQalwPnwuw+VLf3B\nb39idx78nJmZOQP1fXNHZ78fn6BEMldGbJfs7o/ga/hu4ZfNzKwEci6En60z13ybaqpvhqjWbary\npUkGnombKCuQNU8wXItNOLoWjOslHF93NO4752qji7p8/nBX6NJpKJTVXQ/VEIhA6ntkeC+19lcy\nWqPnFd23z/nzNFk3f0Q2bXFkZmYj2myzBxfLTH3Rm3PfG3B1Pcf3C6+HpjrMgER8qD6sTMj6NzSm\nBinWO7L2qy3mmBfyjYkLagMOtBlqICEyTh6qGR4Kidkq2f4J3CxkMmug4jZrlMGKek7tQOUroO63\nPBcUp91++XUd1kycwAAAIABJREFU+v2lbYN83cAdlizDU8X6nNxnr/Oe5v8U6LVSqDE27um60CMD\nvNYYKYA+yAfcd5s9Fso6ATxQzpnqPe1PzAXdU6btAuqeHjF+mffWnr5vQ04yhavqXkM+FTKOBqMq\nl5FTJIufCEDYMY+t4KuAxsema1BQLMabXc1L+fPrrzVmZpmynr+Gq2v3CFQrKpnhSnUfgwreaZKZ\nxQd6M43tPPPi9q54NFqoB01/rOuTZP8DNjE5Fq4xyMlUWfPlg29o33n/nlCrwy7op2dfmpnZxVP4\n4lh33vsNcbD5+MjVV+IMK6dRK0RZbYIKU/tM1zVu0E80V5DS2N9vsW8vgURdomB5oT3FzgP52O59\nrTsXjubNYKKxurNH5p16ORMQTLTfy7zWZRek1QhewMOq0Az5K1T8TvT7PNxuOXwxW46kQc0S9YrN\neQFIoMq03RKSyVCsWcMLlUflJXfImCtcn1NmM4fDZY2aHCp4fTW1VV2hdVsoLZ519P/xRPN0GTWl\nCipIK9SBEkm1dekQhCL8FpUL3b/a0l4kh3rm8BilmUhx7Iz5EfWj1k24p7LyhcpGbbuE92IBr04R\n9af6A5X3+IWUHsOarqtvw02zYV83husLZGb5iPcMUBTzvr7PHrEHwkcvngoddpc+aR1orA2H6pP1\nufYkm7r2zwaKbIrS4wEcKuUtlSfxAnVBEIkBc8B4Lp/YZuxcssfrfKE9wda27pf11H9hV8+dgbDP\nsdfKFkBVzOBmDH82X8j/11Z9jdXBVPP4cqDBNTyUr09B9tRrav9wF/VXD2W2Hx2bmdnVM7Vn84bG\nmh2hZAwhaqoCRx28hAb4d115tYfazZhd3i5ZGu6pdE9r63wqXzoYcCIFleIRiMFWCE8d761ph3fF\nkHfMjNo6GYBoRyk3BRJlxEmREuMrfRM0FiiodQgfGidd1vDf+fAkrctww4BQDzucPOEd6Zx5MldR\nOfO7apNiG75NUEqNIOKOkS+MXur57RH1gwutlAUB+a726SX4SpdnQ+6n9nRrqvejK/nIk59qPtzN\n/+zTIjFSJrbYYosttthiiy222GKLLbbYYovtDdgbRcoso/N48E0ktxSpyqOPXiiRDSLD6UbsyWRt\n/AUZBdAdFTTmU2Ricym4XmCTT8KCnyJjGRDJywWKTZU4R1hFFWnC2d7lCHUmMsNXKMz8wb/4XTMz\n++RE0d1vH/1dMzP77m98y8zM9lBmsIZCZwXOUTqcH5+5IGBg7vaTZOOuYLMnalqs63dl2KY3RGMT\nXcoP83maegcFzp8S7X7+/NyuiOId3VKkvfiWIq6RmlJyQ3aD89aW5GwoUc082u8O6KIkHCop2MGD\ngspWB6a0eMz5X6KnzlQRWu/o9TKXYRF+BgLQPfhB0j2y3GRt8lvq+8apnn+FQsr4VD/wiWQfwPOw\nyCgzsURJwAGpMd5SxLlCfRYt/b8AEqSAr41Rmzg4grl7A7Jmo99HWZ5dzgIX4AFJP9b/J676ODdW\nn60qyohn1pAQNFUeI4OZJRo7zKg+8w6M59soJ4xQYfLJcN7S8zPEXTNEj6eoZ7Tg5gnIlCcyW9RL\n2bFIhcs4yzrLHJuZWcdTeyWIwCcOXcqv57/8WOU6QJXKbqjelSG+TWZ4MaH+jLUQrgoHBNfl5Prq\nSztZZZX6kUqEpzbMOSiGbELqqroNQHX93V//J2Zmdu+2xsQ//6ca392U0gjLZaTERdYFVFMDroKk\nq/u4NXgzGCvhLUXsk1/pfu6+np8NQZd1NHbKIGi8jMo/WoHUQA0pP9DzIhUP23A+GsRGdh6pyHGe\nOor0w9WSgANmBw6ci/5nZmZ2cFvZlCsy10MQe5lbKq+XkE9sl9QnNJ/1W7DSuyrvy1BjrZhAUQte\nKS+tdm/dUQY4uyHrR9b9uKPryqEyB15ABoaMRqZPVi+l9tn0OE++QlEBladC+vWQMgHzdphTu5We\nqZ3rTbXbFx3Vv5XX96sNmZkJKnugvryFfHMdqD26njgKliynfVT5ZqDxCh39bnMD7pxLtVdhxlzR\nUNYvde7Y8gIExhP19RWkJPWuxv0gJeTLPbg8sj354uxMPptBJSi3kq9Pn+vz3ZuaD84v4XIpqC/K\n+NA52R9vF4TkjEyio+em8NEvT1T2O3c1X/gD3S9SFcokOONPxvKMrDeARNsayhdD5u/GPc0L57S1\n14FfKa3793z1WVBHqewCHiTaes7v/BP13QBlRjeUytMCLoHr2rOO2mvwI2WCDZXCzLugIVCNypJ1\n85gHy6DTAnx1TqY8fAHCqC6fWcDtVkAlKoHCYxFVrWCp+y84N1+DE20UoFAzkT8M8Ye8B6Im+QoN\nsJl7tiSz7U513U4g33Nz+t3kQvXMRz7eY13pw8e1UHnKZNC9NVlTEKCZyE9Q61vD63IQ9VtF+4tk\nMLZEtPbXIgVEMrHbcAXCoVfYQYHkKz37i2MhqAf/Gr4j5tk0+6CjB1ozS3BRLVEH2syYJ5mHNgYP\nTgf0aQ4+iKT2menC6zFBbDbwMYEi9uGLy0eKhqBbFzmV92J4bGZmp0PtOQaXzOugbN1PaMuRyjP6\nWFwtd3e0H3V2NIbWKLssRpo3Heb74j5qKQuQ1qAbQk9jxocbYhkpuYDaWIJMcke675bDvHdOuVFQ\n22NPuNoWN0v+SOjZmw8YW0/hFTxWfTagsbw05cBnhl3dfzEBXYzKShIUQ2Vb9dmgXvrlM43B2oH6\n+eY9EDcl5oqnIKrY461eqLz5gtqx/dWxmZnNArhs/vZvmtvuWR3OuWAmfzgH8ZghQ59A4acA50+C\n/k2gnHQdW870WwfOD3cDEhHVzcdTIUOaNfVdM8n8gIJr+abacOuB1oY5HCHzIfNmRdedzeTbF3+h\nebH0QMjGnHOk31/Il5agyDYzfO2Jnp8oax4rgkJalUGCRGh+3pk2+/p7+y31/YAJfcweY/sBFYeD\nrP+R9jKrgeaZbEF7rERLY7KfkE8e+LzzVdkDnai8L+mz3Tu6XymhuePFQvWtcXoiyfw4R7V0wjtV\n9T3VP1FSe738HIUyVFDbl/r/Byj1HtTk2+2PBWUa/aV8NIey5gaE++oFil0831+D4mBsuvCVXtcC\n0CMZ+FQ2O6pHLo2K4kZ+4fbh5ilHhCwRJ5x8cw26zU2q3VL4WeOG6lfeQWnN472GfYAbvFLDbWzt\nWf7hoeUQ8vvqhZAms8fylfGxfHMKd+sa5dTMNkgy5vENJzRCThdETRJxr+YLun6BcmOkBBxysqTM\n+B46vHNx0iRcoASJoljAO9fG5T0/2oM0eJ9mPzrva2yk4XK8c6g9VBdkowPqswBix1CyXXU1/wQZ\n1bP4UE6+XIBYZG+0aFOfK94bWDNPeAd6/PhY9/2KPcXeKx6f/z+LkTKxxRZbbLHFFltsscUWW2yx\nxRZbbG/A3ihS5s7bioC/8x2do2/eROEgi0IAGZXkGE6FqqLN5S3Y6BWMNY8o4qaqzxNkCoIk0UcO\nyCfSZDphrk7AZj9CL93nsOwyUn7h3KXDWbYN7PIOzNXVpCJu+6aI/bv7iuru5qIMMkzZcOA4sEIn\nONM8PY5Y7BWpv7uD4gbn78t1lBpqqJiAophxnjAHPYoHY/mMs9WAXOwKxM1n//IjO73U+eJf/cVf\nNDOz795Uhs7h/G2kWJAhizRH1SFCiAyGiixvNoou1pNqwxxRwxXn7bJkVLfvqBDfyQs1FHbpy9Lr\nZaX86X+oKV8B0eMcEX6l3D2Y9J05/BNEP/t9+VQpq/KXQU/kJvr+bKZyVlNkb+6hjgQ7fejo81lK\nz6lWUe4is7kg8hxxDgQL1fNkoUy1M1Z7bF1ECCTdb95WRnHloMKUUn+sS/o8YTp37qZV/05O5d4G\nxbC3q/PZXTKv6VPUlSBQKi80BtJFeDnyapcq7WUZ+eqqq0j8JgHvEZCkvRLcLmPVYwk3RPWW6uvO\n1P/nZPLnoDvSKIsNYUQv4quDlOoVfqH6bNqcweVMrweKpNsG8ZN8FcH/62xSQvHjAvWlbc7wu4pw\ntzJkCAecx00qYn3yqTKX+bR8d4Z6UX5Jm4DiScLXM0CqbMj80kzDJj/QPHO2xfnqkdrGv6XPOdpu\nc5QKhqg95baYp3w933GVcVihhGNwwSwvdZ9FmutADBbhR7oIVd4GyBeoTKzI37AGcgOZuWfAy3Jk\nRGtkqTwQhd4angx4hjxQcsmB+rAI39GcedFd6P4Rmm6YFV/In/2O2rdomifDA7L/KY3JGco6QUHP\nXTxXlqwO+z/Ts22NNI9dgqzsfKz+G59yMPqalgPdtzpVuUd7nOP2UHJzQUEM5E9PV6p/Kat1avBY\n5Z8y/yeZn4fH8CmZeFTezSjrdsE59HnpyMzMnJ7umzynXZcoqjnqh+E8b1dnOAufrS7JYHb0zNwL\n9V3ilzRfJKfyyd4XmlfKb+lZBt9Fe6Q+uFFWxjW/1FrjkGnzDkEnwAdUm6mPu3PVaZIB1QOSr3Op\nPjpcq46XFXHa9JDQeWkae05N4/yqq+vv09e9EmjTZ+rzmy2t/akvQdzASzF9W20LZYrdKqFyhPrG\nPV8++nKp+alRkm8kF6gmvWSM3NXzrmt378gXWkO1/4A9gAtSczVW+5U88XcsyVR75LeKKABFF1zA\nFRaASMruKIvvMp+XQZ7mUQfMJOUzHqohDvwoxUhNZKKxcVjTmE03yPq3Kl/Xod5qmA8ycrONr3O/\nLeaoi2GkaKlrciAouyBkUmRqC2U9pwHyZpFVh0CPZ95I5dug2Nabqz02oCvy0y3zA9SAWHoc2mrJ\ntT68CQEqlaUtff9rf+tXzczswQcfqsxLjfenT4RMHqO6d6MF14efoOwg2eDiG/flU040/uEm3GKf\n6dVebxucq2meTtXke1dLlSOBkkyR/eVkpnkw32P/1lIGtrHLxg1ugeVG13eP4Wvi+pmBiNRjbAif\n0wBlnRtk77ugAYIXQkLapda9PVSMDkBjuQWU2Z6AyIQ3MAfip55H1Q/k0Z0VfCCOyrM6YS9URwUP\n5Ix7pnL5LyOVUNUzyZ6we6x2SE3016X/Ey6ZbUe+nUVVNeIKutUUuiK5BPm5Ah0WKV1W+BxkUn1H\nYyCNql3E0VM5VHnMzLbv1s0Zqb26Y91v3NF8XJypnZp7EUcGaisOLxqdvl3XNp7a0AVlH8Kpt2Jp\nD1njt+D1yYPCiXg3lif6O3tPvr3zUAiVk89AJ8AxmJzqd70r7ReTLghjT322Xuv6NcjxKiipGdf5\nKIeVoXYZMY9msqr7Eg6zENmmCvu/b+wJNfDTP/8zMzNzkur7nRu6btZR316wpp+01Zd53smMNd6F\nQ6uCmt2gwJiE72fuq/yVunwx01MfJCuclljr/4kIaYRCbx2+v2pR+8t8T6i7RgbOrAuti4sz9ngb\n9lZrNcT5p5rnd/aP9FxP5V+CcJqWeT/inTBRAVm4eL25ZA7qz4VPpUG7v3gKtwy8fjn4U9u8q26Y\na/Km+fn+z79N+eAMq4BSCUE+Plf5elfaIyd4/5knXqG/rmaBFacrG6HyuxiBvkHZrwwKqQi3aqTY\nFeDjDvOGA3frgrWrxhLsFXjX5NRCjdMEERdYKsG6wJrvzuSbTlNtk0XxL4X6WnIXH3I0/mtwXK05\nXdGPuMoWGhsp+Jnm7Lev2iCYQXyn4QprMhhuH+l9oZ7RPBpSr/VA89jJc42hHdbeQo53R06+5Dfs\nneC2XGyxbhR/to/ESJnYYosttthiiy222GKLLbbYYosttjdgbxQp43uKvroLRawWLxUdzOQV/XNy\nimhtQs6ukmkeXSp6+OVXinBfPFeW7/ZNcRjc/jn4OdA3T8Ah4xM5y3JOMjrnWckqAjcigx129bwi\nPCULVI4coqM7qEP9nd/6DTMzW/vf031q+n3A8yJVgEqOM2pZMt6XCh2e/JGit7/7Q3HTPHCUEfpP\n/r7u+962Iv1Q0NicdnBSIHo4rOduQOaAJlmBdtkuqjy33/rQ9rbVJrc/VLQuG52r5ey6R/bd4xye\nQ9bpxU/JSj9XH2XhRqk+hMuAQGuRc4YzVIx8EDTQ6djmhtp6SPTzulaqqHxOWtkKyMqtWeSMfElt\nseF5rg9L+5l8qF5VFHMbpIdn+n0apv3sqSLmmYL+f/BAf0f0Ya+taKez0v1bB4qePoWHo3hDUdqw\nKR9JFJRZyJASaZRAfV1yljNNNLaher0kWzjfqH7Jpvp4zNnR0z3dp1VSVPaEjOQ2HDObx2Qot3W/\nGwW1S6cKJ1BA5hM292RSUd8sUek1SJgyyJciCjsbh4wMyKSQbNI+rPfTrH7voHh0WlA7bu6iwsE5\n0E1b1xeTQtJ0u2qnaUe+vT9Sv2QC+We4Unn9KedEr2G9J6gjgXgpLcmYMd6nnI92UJ9oXuqZn/7Z\n75iZmXf2HTMzq4A4ifgbyhv56ihCUGQYI5ynnizV5uVbnPee6vvLpNqqsdEYezmD5wPlsPIO57F7\nqE4U1FZbLllmP8o4qO2yuxrHswUoI08R/wEoLicD6q0IWq0HF1eNzMNY9U+jDhWcgH4DTdEBHVWa\nqJ6JquaTEeelc/BoLHPqm8xU5S948p1hT9+vynBbrWDb5xx5scGZXOfIzMymW6gwkektUM8go7G1\nQfnsTkUIm9uo4JXquu73/pf/R8/Zks9c15ycfK68PNYHS2XfwrH6pZIkg7wldZLlD6VK1dyBJ+OW\n5gb3Y/VvmQR9wJxyydTGVGo9kE/5ufoz+AB+LbJep4785p2B2rnUWNrLU/VhI4nSFWibu3nV9XlP\na5U/RElsprPiZzONv2/6zMtwvaRG6otnoEkd+NOc5Cm/UwY2yj4tPT2vTzI/QkKGOflef6My9yYo\nuiAROLvS2JnCVbJj4iNqn0jha/g+yoQr0mbnKCfcozx7tCFcAvcDIVaWIB/dpa5LZHheWs+vPwJd\nUdXvDktqt9mpvs+nlc2/rg168mnP8H3UlfKs+eOZxkCuytZpMKN8ap8sfEIBig6VPOgoKF9csm2J\nhOqT3WgsWkr38QJQvI78YME0GJIlrJZU/4mvcmzG8NJtXnHK+DPH+mQDWyv1a0D7bVLwNsGjsuQB\n2/sqp3vGgt5H2bGvdd+rgzZEWTKbh78kAefBocZS4hP1w3QCtCgTWvh1RhTfhQsloq8LGC9hTvde\no+B3tVDZw56y7dG80mroWQ5KLtF+Z90E4eiherbQ9x6bFOiJzGU+cuDw85Nlex0rAkGcQr6whTJM\nl/UjVdfEsA8CZtpjr5Bnv3moMZsuUE72wSmQPXX4/pJLkD5PUSvqoiRzofuOfI21ZkljZee21uYN\n+8AUmdsKiJl5Qr9voGjTSqv8bkc+nyBjXAUdXd4BbXVLY/RyCqoLjpr2Vx/r+2dq2Gageh9+U3NK\nC26XDnui80uhKgJP/jBGpekA/qGId6QAyqFRAGH5kHX0iVB5k5HqnwNdfHRfv/Nvwa8x0/d7JTLU\n/17uef5yZL6r71MgTwtk8EvM4wY3Rrqp+X7bV7kscX1+qo2PAgyw9bQLMjgDUgXV0gAOkAqI51VL\na8bZuebNATwU26gbJVcqwxykm+dFXDS638XHQkJsoWKZWGqecEG+IQhjVVSD/BF7ijvyhf1KxJem\nsZdbyRcuQFxGe6jDu/LhT75S2w6vNN+2Wvp9JsW8t1K9Zx8Lqb+pgHhBKTYBojsYwMPHmrgELpGc\nawx4Vbhc6ih97ejvaBIplLG2stam2MskiypfI6++3GWea//42MzMOl9IITOD77t5eOyuNIauRloP\na1XWNxQi5ygTpRGTLSRBFtXgL7qmpVDJSpZ0fcphDwaix4aaIyb4Ta6jz1egxdJV+e4WCMxgAMIq\nhSLnWv1//ET16Jzq780DIe1Lh4dfl8XPVm0wWdnLK43vcSfiA4VvNOIejDhMK/IBP8FagepcBYXY\nSC0zyILKdEG4RIhs1rYkYyRv6ruZ8cKbU5uHM5DsqPhNfebTDWpN9O0YX04FKDeiFOzRtsfPr6go\niECUKGsg68KZ3rVyIFn24bYN4Fvy4cJJgXSscQJnG3RZa0vvOF+9kFpc2JevvVPT709KGmN7i5/9\nDhwjZWKLLbbYYosttthiiy222GKLLbbY3oC9UaTMxI14SPT/BKzFCbJ0DuzNYVK/SxUUORuDNOk/\nVrZv8KWinfm0bnR3qCiqU+S8HhGxpE+mwYOTBj6VKso7k58em5nZxbmiizc++MDMzCqwQTtplIZg\nY07lYZMmOBoQKYTOxPI1RTcncNkshpy1Ay1SbCjS+H5ZSJtbdx+amdnBEWf1QML0PR6QJVK3gquG\niGOK7Og44rLJkSm5pUzCg0bO8qhppDJqux6cJ/mINTyrtnXIfIXwZnz2p5+amdkff/T7Zmb2vR2d\nXTyo/z1dD7Ik4My6rRVt5Fii+WRt3FBtmgxeT31plld5SMrbOqM2zJNZLGzr7+opFwwUCd4U9Jyj\ncIfn6gazZypfEn6feVZtnS7pPhsQJCMHrpm0oqoJIuFr2OaLAez6Rc5TN9XXowvO3BeJut5RhjhA\nOebZx8p6bYqKqjrbUYRdz83Cor7e6PqRcd65Dit+TVmx5EwR9EvQIYUGSj+cSc1xkHN4qfItvEi5\nJ0V5YXHvcf4bhYzyERkJCIv6T1Wf/BLlh7x8Nw+XwXql6LMbytd2UcgYoSwUzvQ3x/nxPKpVzpjs\nVPt93RelsvA5jOlF1fs6tg0vxtU52XR4j9Ij9V2KtliGjBf4coZkra8KQkiMTmH0L2isTOGMWc/1\neZY6JU/UJp9fkBk41vPfelt9ujA9d4pq3LKOahyooEuyLGV4czzU5wZO9Dspx5zBbp9j7FRTIFwa\nKleS6773bbXhs5GQHc5zVDBAf61DjYmpq8xCC16iYaC2LmY4gwuSpJDhnLYHDxDcXj4ZxBIogdVA\nkf+Co3l4eqL5Kn+g+fdbD5WNefzpn5qZWaqgcvhw0CTJVIbcdw1K6wDVvfVU7d1NyIezK7XvDEWB\nKuiI65pD+3or1e/mocbmuK/2+spVe93bQmFtA8IxpTnoBu3zuKx+O1ir3HdRYMt9X37SH+v6LdKS\nk7auH/bVPmUUIJzn6q8gJ94tS9StPZHfH70t1Ofgo78wMzP/LbV1Oa/M6aqoM/1Fzuh/Qaa0SEb0\nh96xyoyIW3Wgz7PwDp32Vde9Q9ZYVNWC6rf1vD/TuPbe1RrlXaHSBj/I0xAVIbJHAaixAXxK1Sp8\nbWS53JL6MBOojxMJ1SvYBYl4xVo6AcUAQu8uiod5Vz7WzSvbXyRDaDu6ziMLtn1bXC/tjProKJIO\nu66Bsjg9VWZ3Ao/d9xLwIHHePdFXfVcoo62n9PWKfshqjOzd1pid5eTzpZK+nzCfjgIQlaBA8mX5\n9Goi33dMzw/hQkuV4Z7o6D5PT5TB3g1fKTq4lrAQVEWmxvWgdl0PlFsGtNZQ/lboa8yuQN/l86g6\nwRewXLMuoVjR/lL9FlY1d6byKPOgQJRAtW/jr6w60ziP+C4iboH0FpxKF6hrwEmV2idD+anUP776\nSGVcd1Sn298Tkm1rB2UolKPycGGt8fH6ke7j7YC2dUGEDOCYAUW0DVr4uvYMhPZ4pLU8vQ/3H7xz\nhSTcgWSKI9qG9qV89wwFra19jekwA1rBl8/Xd9UXiIvY5VhjJ1ICax7qeR6cDdXbGnNHt5S2n4PY\n6R6DLr7S2O5lUTNCaa3IGJ3CI9Tpqfy7Kd3/YinfrO3Ca9RUgaZ9/T/DWO2ea+ylQJa8eC6fTD/U\n79PslYx9d419eAgEfIn605176q8ZpGjPHmvvWV7Ih3PbIFYbuu96qusnfY2ZDWp440tdv9pTO9T2\n2IyaWWd0bvkSvHUPhBK4w3rtLyPlR/XT877qVW+gUOS8QqP9dcY0bHn6KLWP8hf7tjq8ktl91WU2\nUF/tHmi+XQ/UFi8+Ud+Xc/DZwOU0BBFShGMkXEf8mxqfM/axAaizzFplb7ynvl+Dru37cLqAQqg9\n1HN9UG39sfqq8Vz16J3Lh3YOtGbVbwrZM3+sMfHimcpX2NBmzI/9x/g4fZjqysfGK7V5FT7R/Dk8\ndXnmsxmDAJW7XA4V05bQWLWhvr88PTYzs2Va9/XhIRqDPl5v5BvNXbXvnaYasneFahUvnVleTzzG\n2nIIqgHIf6ml3/m8Izrs0Uq8p6xW11foMjObr9VPF5xEmK7FfzILOS3CHiJgblzDxZNlbxqyDi8u\nNbfl6qAQ4ZpxUBrdOapxPXNwQ76fbja/Lss0t7bZ2dT8hOb83YraMiyrjxcn6kPPGNdp+fSAMuRR\n2k2GzA8+ClHwrJXYDxscj4U17whL9W2K0xkVlKhyvP9P4bBJsdcpJFSnbBWkeUfzVPelxmumCZrz\nvnx6iQ+ctnkny7B/BsWaZqzM4dtMwfWX4p1stgJpP9M6s7ut+wbELwCx2hKuxRAOnnSaUxmgWPeB\nalbDmFMmtthiiy222GKLLbbYYosttthii+0/OnujSJlGQVG9vQOij0QDM2jA20jRzDVqSCVUL3y0\n3D/84MjMzG4eKfpZv0mGBX6NFMoIyxy8KWjdF3K6X5es2FVbmYTf/z/+tZmZfdUW7OIfTn/LzMwe\nfu8dMzPLcq7Pg62+QORvQz2y24oYltIgdGC3D1Fe2KzJltVVjm/9kqKZ735TmZ81meM0iKEZvBw+\nyhbJLFFYuCsyRVRniOQtQ0Uqgyh6ToRu6eStWNZnGc6CZ7MojiwV6c2i0uOPVLeVh2uA1gmIgk7I\n4E15ZmGsaOWEEHOeMrqbqE/HlE23S/uvl7lsor40B9mySsJ+TpQ0el4mdWxmZqksigxXen4VBuwA\n30mR5UmimHUbHowB/Bk9VEISpLc29GWS8+kr0BFBDmWfHufbm8ogrANFQ7ucj6+iAJRx1OcvUcGK\n1IVu7f6SmZl1aOdtzt97bbKAl6A78qgzCSRgQVHXp89Q7uHs6JpzmXki4QYPkX+s8mVBtFSnymwO\n4QIa5RXjEF00AAAgAElEQVQVT8KnMutxtjdS9nLVDzfeIku3kn9c8vsUrPzrgtr9ACDO5ZXqn3A1\ndrYa8rtcn3OmOf3Nd0CLgGpL7b7K/P51dnQk9NY0+NzMzIKV6uTuKPsQDNVHGyLtWdq4XCDb0OF8\nNVne9SURdThP5kTsi32NxzmcCL/wrSMzMzvjfK+LVEwezoE+KCE3rWxVGkb8WgtejDPQa0X5TIaM\nQW+utsg4+v2I51dD3b/URo2I7PX5UPNHNlCfP2csHqL6lkMRZ5mEa2aq8sxOVU9/Reb6Dmd1OZO7\nuany+3AAZMmyz1BBcR/p7+a2MikHt1TOe3/rl83MrFHT///8T1CUmCpLk6hwTpwxVkK5Icff+Zx+\nmXIO+k9od09jKCQjOhxc/4y/mVkVtML0Ps9nDnDvgA4EebnkLPECtF2S9GR3FzWPc/XfYCi/efu2\nfr9VlF8sEOuoNTWXzC/ljxW4jUbwjbioV12gWObey5iNVedVThwy2UONZx/urDPm9MPbaqv2I42v\nWQRArKpOhWPWwKbKfBkIfXX/m+or+yPNB7uc8X/cZ75CHSn0QHEdq88rZLVqKMNcPNKa+e26xqkL\nh8npX6hvvvUdoZAmbf1+8RX8bmTdvQnIuGNU4VAjel7Q94crjYka6hR+U/Nb/ULlQ6TOpo/UXnYE\nSqmidmqU1bb1LeROrmnZt7WXKExUfn+t7FuQhWfD0frjnqkcThmfhu8pkURVKaX2T9xhjQ5BaGY1\n/9bIsE5foooB/1QBlKuVGYMZ1WcVqn5+HoW3I+1J7g3hsAle8aLUywUboKY0RxGjGUTIG7h82AuV\nQP2u08zTbL2SW/Q7wjWVO0f63a6eN1hqDnG7+v/Rnso79FVerwLnwtCzEQjfcoI1JdBvAvgwkihr\nXV7pnke3tDaVdtQXWX538sVLygTqAOmogSvfraDGMbxQW3dC3S+Lsk1ocFeR2SyjBrUKr89fZma2\nU4KzjK1MAoTLJkKLfQnnFAjE2/eEZHwHH330w0dmZuad6HcJ+nrF3uxlWwic3BqE9UDZ88ZduGNa\nWu+CCvtFFC9noZ7fAVV2BS/HdC4fu4K7pvz8WPc9VL0HKCjOuipPakvriFeEF/CAOaOg8ozH8L7l\n2VNuq55bt1HxYz+fuYHaCPvSwkJjodhTv4XsX7fZgxXh4smyv32Jakr/c4256nc1BvfvwD/nqr3m\nbbXDiz8TQmd8prktZJ1u3BPXjpmZ7xfMAzXmsOdtw2virOGBYQ8c7d+LIInC1vVz2F4eNdMDjcPt\nQz3r9EyIhgKIt+13NH5efKS/I0++3dhRHV88FZ9S58eah5J5ENbwX67mKD0u4Qhkj1Bn/Psg85YJ\neOVamu8jRI77BQjyrOazKtyTZeb12Zf4RpK16+RY9UChaq+qCaI9Rxnsj0Fs7KoNq6H6oMO8vZjw\njsLa7TEmVzUQHqAcMuea1ydzzZeZDFw18PyVQTmEd3V9/xS+PBS8QlDAmTFqfG3NOd229iy1PdVv\nAMpiNY/QwcynKIBB/WXDLbXD3h4oNubRgPekEKXMRPh6OIcc3GXZpdrrpIsq1jZ7jyyoDB+UNgRc\nPuiRgD1mBkW5FTysSZST2h6qUPvq79Z7R2ZmNgL9Peu/QqQ7qZUd3m2ajxLqmrZIg3SZoPRYZF+3\nvMsEOhY8agpXaxa00MoFCQ1PKQBpK/G7laMPCnAb5nln2lCXSUp9E/EErbdVDg8koA/iO1ig2MW7\nShkkjgW6f+jzboMPr+fwxYHSihCHRXjjPNbKeaRQGaknd1HfhA8pt9B8l+L/GfaNt94DGYQ66hW+\n8Qi+p3TtZ78Dx0iZ2GKLLbbYYosttthiiy222GKLLbY3YG8UKbOuK4I0Ibvve4q2JvuKFdUryv4U\nyCAEYxAnZMFadxWJr6CKkoEPpXumqGeIqkixqd8FRMBCA9VBZC6B4k3zjmAIdzhfWb2r6GxYI7LO\nOcQa0doVyJ4ArgrfVfnaKFZkOFuXzBKxU1DbUiPOe3K9U1EUNh1GZ1aJJqO7DnDGjskUPfpXOo//\n7rd0fv7ed5U5KRVVH5/z4LO+7lMsJMxFBacLc/+NPUWal+mobYn0LkDlwIj9C78mvpvDe0eqO6iA\nRk1l82jLDNfNffVBDkWrZE7R1eRYdZ7MXu/89oJMQBKETdaUTWnATWIoMFTXiqgvQcw4qQXlRYFg\npfKPTpSl6qNgU7un+pTIeM5HarsaDOBXqJ94F/LF7Yc6y5okhL6aKEqcPlb9MrlvmpnZDZArjYjH\ngvOEextloToZ+eSNlZ5bxccS8JVkYJO/W1B2zO+rPRtwvZRyKs8cDoN5oPulyVatcro+Y6AatlCo\nILhdK6nfr3owiyuYbCtPmRJnJPb/+oasEUpGGVN5lyhYJGAWd6r6XTGrDPpson7fKZAxWaHeNUah\nzCOy/5nav9nifDrpy+yGgl7Dpig6LYlkh2SJqp76pIvSQJXIuxs1Aqo386b6xu+pbJuCxoaHuoUD\n59QIpMb7v6E+/M//8X9vZmZXn4vT6p//s3+m3zvq+3GfeQg2+k4PNQd8y0MdwxxQBHNlLbYret4/\n/B//K32dUrkuP/5zMzP7yTGqR//3v9Hnn39kZma7TfGQtMgkD+EIKHCOeNz+TO2EMlc6K19JgETc\nBc62IENgbfl+4YbqPSdzciOnMRDeBWGzEZeBm9dzu0/UzsW39fztAj5vun+Ds8ajlHxjxthNH8iX\ncxPVP5OVb6YDZad6kXrUDKKU8ustX3MyNLZWvdOotsyMbCMs/hO4EvK3VM9HQ61LH0KU5eRRHegr\nIxvA13Qnq3ZIbUAQmeblm9twM4DUOmB9+QQupHChzHiz4dtyrrbyTXUt3VHdyxWVedkT4sVbqIxb\n76oN6l9o3OXhaZjvw2lyqD7r/1B9WZ2K56ecISN4DNeAg5rdUmMigdLh2tHY6S5AnNxnnv1339ff\nd4UCiPh+kiNUmVC22SYbVVgri/0ABNBZU1kjp6XPm3AijCf66xYiVQ2N4bSD4gNZsBRohV5CqICb\nCaErFiAqgwrn1F8DcWdm5qRV3xxIRGeBfCA8F5WcnruYsaaPmAejzCoIo+w+vgJ3V6WDAlBB7eFP\nVa4CyhTzIei1jp5T2FV/Z00+6Ww0xw0nnGMnI5oC4ZgZeF/XoZJNWKsEB80IXqubup/NGPsNuN+K\nKudqqLE7IaPujvW7q6nmmsZncOWwHnlww80jFDJcbw77hgJ7mXU+tCWH7kvwOuTJhPZAQ+VaqN6t\n5Tt9kHvDT7S2XlzC4TdUtrs91tr383uaF5cgiZst+cjmln5/DgeCg7pGBuQHAiuWYH7Jzl613XUs\nYENWBC17OVa5SknVo8h+dpWH/w5Owu26+uD5F0KALLv6/S4KLKM18+mJfMHxGQM+XGTPta4kmDef\nwytkU60/hS1laksrjb36luaZSgPOnjRjlz1EDl6kAmv4hPaYkHFOg2JtvPPzKgfcPO0rlHiYz1Z7\nKv+0zLxfY+zfQDXwQuvaAnk6F0RK3pU/PGI9PPlEvIU7u5oDd+BTOp4KuT76S1RHV/qbK2puzA/V\nH4eoMaVK1GtH1+e3X/FmlG5WrPtTlOdox8QTjflMhGxCbS/bh/cFFF9mdX2VLp9Xq02BfegN9c2A\neb3b017+rd2fMzOz6kPQnx9pnk4eaT6rbmteHr+EowmkXgX1oQrPWcEJ5oPuzO6oTYtVXT8Zy0dc\nR/e/822hay9d/X8Rqo+Ga7XB3m0pUvYvI6QKKIK25rfLj7T2bZWOzMyszL68fyqY6PkQlabb8NLN\n2ZfCXTkB0WIuyLq76sMtkDzRWJizfqR4V1qwV3LH9HFda/HWASpDz6jnRM/zN+wpUOw5+VRo6r2H\neterwOk4Bw21Ag2dRfnWCbS2r+ChK+1pjV/AtzcfaywbaoOJMlDDa1qxpOfsVVASaqkclxBKnYG8\nLCQ0toKM2i+gXZYBCE1ObeykdZ8rUChLkFapOui+SAYQ9cTjfu/rsnizuaWzJTu91PjIzOGKaWrN\nLm3r2q0jvRdPdkEAF9XnQ5B9kwtd52Q5rcCalUroe14NzaGPHRB+ERmr66hOeWCbkc9kQEz6Sd0/\n57GWtkAb+fgo73553g33ub76UHuVfMh8+kh7kBX3KYIod1C+arc1v0ccsOUdteGsDU9RD05alHwT\nvENPxip/9wanKujjxB3e992fvd7ESJnYYosttthiiy222GKLLbbYYosttjdgbxQpk4ad3gN9UeOg\n+BSeiqueIlnFCWzKS0XeKpyrnm/rc2eo6OJnnyqC/+hP/tDMzPJwt3z3H/yCmZnt3yRLD5N3sNL9\n0juKXP36P/qu/g8zerqEeksabgqy9wnOb5fJlPiwNvsZRcSyoE+ynDf0yQxk4GbYJHRdkihuqYDa\nUnSWj0RwM6N6dkeK3l49Uubo0YVQDLslRcvvv6vobbrC2b8Z0doS3DZ+yn70h39kZmbt7+vaX/0t\nqSdtf0PZ4E15SZ1V1gRqSlnO9H9QVmYvC0u574AO4lkJztA6Cc6w+iqLg8qDHyp6GKZfMeFfx4ZT\n2hCkxb27nKceRvweimDXQEdsLxUV3RT03OIFilVl/c6HguC8RwQdpYb7ZMVzLiglT1HR9aXa4bIL\nr8Zb8qFaXW3/4glIlJE+f/8DReDHY5W396ki0QOUV5qcMU6jMjRtqXwHWV23JPt+CXdNyldmu5SC\nX+gl7OlFfIksf4VsY2mt502+Ag2CUoFzARqsznnsVcQxoPqvB8rMFDn/v0op8h+g7JXYHJuZ2XAl\nTpxUxE2jy2yyUrZ/nFDmYr8ZZfU0FtIzjfXlOdfPpGx2hALaZZnz7nAvhIXr84VcpXRtvwdPxr4K\nNW5oXK0WipzPXdA5qKiFE7Xp3pzzyiX1WYo2TSw0f2yl4DrBdfuPNT89+oPfMzOzzucqc76rrMmq\nLD6KX/j7UrIplPCJU/3++AUcBhE/RHSuuqG2ms3UlifwbRTIdHqglI5auv/8XWWFSkuVNzNUn5bg\nHSmQQZiTMWjVDszM7B/9F/+1mZl98B1lw37/D/+lmZldnKJ2dCbVi8mF/r/uw/8Bv0Uf1YtsXlnz\nFGz5WZ7z9LkQOe5QE9kVXFurgbJ5c1AUdZTZwuiI7UT91fc1VlszuHXgREgs4YTY5yzx5vWyUnPG\nzDQNQgd+lCKZ82qaTAzokDKcDfUuiBY4DLZN/+/BvZOn/9y3dV0wUrskdpVhSXP+fz5BtYCM9MF9\noUs6XRADhYK13lPb9B6rzrld1rqsfPxWUs8e72it2y/q3p+cwwmGQuH2lvrqMKvM4yU8OnX4jvby\nyqAuc1pT9naUOf3yqead8q58NgPa7ElWZf/5gua506r6Lr1Uxm23qd8HoKQOuyrXkw80T87nKle7\npXn1xn0QIPAMLVFxasGZwJCzY0hN9kD6nTAvf6sKwnNff5P0Qb+K8toDMrLl1+Mdumqrnd0hqFM4\nxUYokKXJoKbI/j17oQWlcYP1ApTcpKT22qtHaiaoBJL5TE1RmyJ7uMyrXR0PFAAKGOMFfFS78NbN\nUQdEacJBZWQ+Gn9dh7N+1zLwFJVQMvP9iPNN7Tlbg0BFqc6hHFAlWHUbhFFe9VigglUwyl1WeVZw\nPzgzEJehyj9mH1BtNewIRFsuoe8GqBRl4ENYo+pj8JRtHaqM2Xuo87RV57EPigk1tOxKbXZxJRWz\nlzmtWQ5IyByKfsEcBOVcz8lugXICYeEnXHsd29tTn/YitBmZ01VFvliF7wLghX15obH6p3+k+X8c\nceMwNte7oJ3YrzmmsRmyFt+9pd+du1oX3ILa55u31UftU7i3vtJ9C47aseuo3s1but8739F6lIx4\npr7QWhzxmIQZjck6ak7tiXzqFO4bJ1D7zdeqb62sPYAPN9fsCrSHp74PUSM9P5Wv+gMUa1AfCUEc\nHj0U50sGpbLsLFI10XP9E5VrA3rt8ED9nEHB0p9G6DHQxPBnZAL9fnzxamzM/KxN4LZowNOXvae/\nT7/QundwpP307qGe68P/tK5W7LqWg6Np4sLRmIL3aEt1PPtSPrG8UJ/us9+6HKnO85fqk3ryyMzM\n+mmhEbyuxtkSZZfSA+YjeDugKLEGCn9fY3t4xxistD+8j1LW2x9qP/2jPwX19WPtZw/21FelXMRz\nxzwLGqB7pjYt3oJ0JZAvlgse36vPe6DAMil4OxpaD7yF1rxeEj4pThk83NU+/KCpsX3ymdYnNwQV\nllA5zi/VTgfMU1vvgao6hqOroz1IBQ6YAuvm7ER7NHepsZKHOyuknF5C7byOkKg1IW4GIFLWvLvt\nvS8fO/4J6kwg05MoE13X1qC+HPY48y58WXvyyToI/hIIoQh1lwaV++JL1TN6D1tMmYcd9tEJzQGZ\nmf6/x9gZg/zcWr/CZaTTfbucDMztwdtW1X6xwlKQoA+uRmrDAFXgPCpu6xRcURXUi+Cpc0AY+yBi\nVpwgycOj5oPMW8P1GvL51+p1oH/X0fPwJQf10RD1vDQ8nUXaygNRgyiSFXMaIzXW5nnE4ZriZEkS\n3jfeeTesdU2Ut/KHarslSmadmfazBdTh5uwRhpfy/XlT88VgS+U6duVb+cnPfgeOkTKxxRZbbLHF\nFltsscUWW2yxxRZbbG/A3ihSxlzOvcE3MiWrE6I64k/RCUdXvFxURMpbc6aXjOOAc3L1oqpzC26Y\nJqzw+zm4E1Zk5zg3XUBf3espmu2N4XooEKu6UkQwS2QuifpSxK+RvVBkzCPyV9hWtDUFQcf5saKx\nHiodhw+VQd3Ap5FDXWlJxigHI3typvosYIdPEYx++70Hqh8Zgq07CmESMLRExD69UfmCNNHxwdjO\nf6ysyBVZjQ3s5AWYoZdLRQ9zSUVDV4Tck0TW3YGilD0iyDn6KjqHm04rYl9wVOYe5+bGp8oEnH0s\nLpe9fZj8r2k1zurPyAAnYCmfoi2f7UTn9uD9OURNqqN6JbeUabyEF2TMmVtrqXzFsnxwCN9QJaPo\ncL8jH0nMFBGfkyVfXCrK2Z3o+42jSHyuqvaYt9VuwUbZLHeuztvAuVP2QaDsqw/zKAT0v4pUq+Qj\nQUeZlNRLzorePjIzMx8VlAsUEHa35AMBnDdX5ygG1PXcLV8R9culorWdBUpDV6pnYqP+2K6pHtOp\nylEm23URKTKgHPNeIB/073A2NQvq40qZhP0WWTBQacUfqP091ENGjjILNw8VNc49VDtUyYpBG2Vp\nlCOuY62inrV450MViezLZIDSARH4Geo7kxM9ZKuiNim/9dDMzCpX8rFnU7XtIeO6R4Yu11BfRdmN\n4z/8iaruqG4FMqStPcbhbfnA3R218U8+h8eoQuh+DRdOgBJDUiimRg7llYHKefxTjZ0lfXDjpvpu\nG0TfjDG4yKoN8zNlWS7hNjj04UzxNBa/7Mq3fnSsLMvp//YHZmY2nnGuu6p6DlE5KmdQMIP/aLWt\nvnOHmldzA9Te4NzKpMnG59T+flcTVJDWWJq4IAKLum8SlZSHDTILU57P2WCEESxTgxsCNNvSIsmh\n61kRVSeXdkmTucmCGgiSqm+jqOc8fcm5fBSQynBgpFtw7LgoWlBfW8G5U9YYm7AubbNOTVHZWqD+\n0cyrPQd1uHyGRWuAEijDz5NPaFymQY+WbqMkAFKjsKt5cKeoOpSzQq60yHKNTPfZr2hsPGHt2TpQ\nRvLxXGirO2+pbxYvxVnTuMM5atBA3gvmk7ruf/fWkcqHKtFmoPLc+rbK/5R5diuhLH8FOTYPDoHU\nlupeuKk2v5iRJd+LsmEqZynHhJDU97srslQr+DNCZauWoOJyqOhlsqBZXzPtVMzrusw9tdvilHUF\nNaV8Vu06K8sHh90zyq32y0VzDP13+A6campm21yA0kiAaAT9G7IHKBaivUaEMIQvBVRYdktj7ulA\nYzjJXFFqHnxdh2V3aBN4jqpwSqRBdUSKM5bU2EsxBgJ4WTwy+1MUeXZAHY7oh+Zt1bONqslygyIF\nSnB1VJ0WcKD1hs/Mq4BIkyubD1dAoUYKtgyiER9eTjS/1Lc0ryfua149Sej76orxCxVBuYUSY4u2\nBFFTP5EP9RmXPmiCLNwBCeochq+3DZ5V5KNz+OYi/r05mdweam2Jssp99xvqg8Jdlb/WIEPcUfmy\nTflyGt/zetp3jq50/9wdISNbFa1TI/omSbsV6+qLRDLiYZPTO0A7h9Q7BcdggPrIgv1rEjRYsQBy\nJAVyFHTeX8Bh2HgATxNDMg+yxoMjrFzW3OQ6cCu05eMHIA5zDXhMXhybmdnYVUZ5BGLoAPWS9pXG\n1BoEU/l9ynNH7eiw11tO9dy5DyoF5aE0iJ7NHITM1SsOh17n0sYsKPmiyn/jbT13lRQnW3YfNb6u\nnnP+WP1RdK6v0hXxADkT1WX6COVE1rAqyjQXH0XjTM/KJzQmLp6pTrs3tX+rNtSmQxDj86TqcHdP\n80G+pX3UxYufmpnZjLVz684e5dC4fvLsEffX9dsHun+ror3ByyfiIHnxb471Ocpo+RUqrKh1Lscb\nfi/f27qltqztHZmZWXum8i/hdByh/roLD9SYJbM+UJuOI4QQvnr0gdan/gxVJFBXLgj51Tn72Tyq\nfIdqh1IdDrWe2r2Mb9cYo8kAZdtjja3EUgWpozY1hisxCbI7AJFZDzSWXTjTdm9qTBZuaIwlFqgi\nTV8PvVvgPckdo6ba19yX5V12DpJxDf9ghb1ZmndQj316knUvDzJ0HZ1g2IJXCV5FA213g7m2CVrX\nzOzDbz60H33/S9vwLlQrwLGCatGGMky6eq99AedX6321xQa+nWlSbbiB48vpoLQ6Ar3DfOAwX2bY\nd46g/GNasUJSC8YKBLax/zXGYTAEvcT8XgD5PIeTNfv1z+FyYQ817KhtO5fwMzVUbg5/WKqmNnvw\ngRB8C5Ri60daYx3U4qYjuGXbmsdSHU78QN/WuqH55GlK9fzsC+2319WfvSmJkTKxxRZbbLHFFlts\nscUWW2yxxRZbbG/A3ihSZn6lCNPj//NjMzPLNRWZe/BtZeP3GyjdEInPECHzU4qMJR3FlKoFRbqz\nt1GSAI3RqClCtiECZyvO63GuOw2nywY2+gLqRauJoo5eiXPzniJ7FTLwiJRYIUPkLanI2uRC13sj\nRTt/8K9+YGZm5y+FUvkb/9mvmZnZnQ+UfUoSkW8sqBfqJFFk0iHqmiTzkCA7eeuB6plBIWPGOUeD\nuyYBV8VyqfIl3LV98OvfMjOzPNmmG+/oXknOX6fqikAHZO2zHuf7OCIZkt3dK8AtQ1Y8hTLWNEK0\n8Myk6X6nXyky3/mMc9QbDr1e0xZkHjeodlytaOO52vjGPYUlN1NFM0+HyiRUbimqmamqj3t9MYo/\n74hTp7QFp0qZLBaqHiHnqx14SE4461kt6H4DuHWWabVPFQ6AJUz9q+i8fFaf3y4qu9Xpy9eHHbVP\nludZRZHvEpHvPKitElmxPOfmi3nVc7ZReVwC39mVylUE4eQO8Zm1rlunQDDpMRYsVb48mYCJD9KG\nM7e1UL6UnnB9oN9tbfScdVLR6YOpvl+B5rg5i3hGIr4QMioZ/T4JI3nJUdap/Q6InHflYOceSKQf\no4SUuj4XRA9eoUPO216MlX2oFvT/M7JE22nOadflQ9u/+utmZvZf/tpvmJnZD3/vL83M7PgH/9bM\nzE7hRdjxlUEcRhF5lLLGa92nwHnrFUg+F8Ww5ana5NOTP1a5QJllF+rLcRn+DhAfw5x8ZpM4MjOz\n9ufyVT+htsoFyur0yRAM67DSL5X1mWeU9UijcpLNRnwQqNl5mifdfycOhh99oqzYYqT5tYGqyMJV\nqqKy69Oe+n+ETKzBAzJE9S6N2gfUDeY7qs/lX8pXNyWN/bSr8pVR6Cqcqzybm8qIZN55x8zMDr/Q\ndU9GGjNucKz2OlO7F26gxANn2HWtmBMK7fQY7p/GkZmZpQL4OVLK9M5Jdvk3lendh5shUnm5sQNP\nywlqUjXVp0ciNbWteobnmvtyd/TcaV/+1wFdsHNT7dm60HOedTdWbQpJd5FWGe815LvtR/ByFFXm\nRVllvhNqYB+DFMmAONmpkc4GEVlHUWDMmrk+0Lw3+qmyRYm3OIt+LN+qp+FfOgBdVALVhKJK4qme\n3zqSOt9FT3wMhZwysw3OUf9kB/WeB1rzwp58NQRV2suDMh3KVwcFFBFBH12x1rZYo89crQN7Y12f\nq+h5nXP55IOHqOTlI3RXtPhfz1L49GKAUmMCHgxXYzYF79NmhcoUaNsV6K2Ug2pT6j9EWIaseylQ\nuJMpSkEuHGxTFHJYf9Ocd5/Bl1VKqH2SKIbtw1Xjwjt3mGx8XYfqvds2/3OVb46qVWmov1lQxxs4\n4ybzSDVQc1sJpMyorTGbZV6+aKgf62fymyR8J5kg4mVSeRfwDhSz+n9pXbKD+/L/3I7ufTXVHD8d\nsg/b0b22yHZPn8l3HRRI+iP5zPkP5GMuHCD+p3pW5R35yoY1tM0ewDJ6Xrmg+avXY0zAzRVGil7u\nK86R69jwsVBK7VP1Wbej+tRQoLJd+ipQeSZk4w1E5QylwgIcDAFd54PUe/Y5e5UfS3Vojwzz7b+j\n/XAPpMnFX2p+qbm6fw6Fmqwf3Ve+tIaHo/1c89RnP5YCzdu7Gkvv3JGKZxdfW6Pa9/BImeKdt+BA\nyEeKWvKFSD00N1G96uzD93zQ0qjlHdyTz+RB0XZTKkfiTOXrjjTG8kW165pMegjZV5r1NtyRj859\n1A1B547O4OVA2ezOW6qPm5OfRKgJM7Pxp2c2HAuVkV2p/1cgWvePVM5BR+0fnup+Zx1x1e3k53Zd\nC0E+ZNgHrS5R1XwJWqqjtWYacUH1Na9m6CsL1MYleNDmEdoMJEdqBMoL/snWgyMzM3s5l8+EFfZd\nN3VqoDTXfFQ+wXc/O9bvpqCkIuWqnvpsMheiIneo/eFsEc1jcHkt4NoKQMfCGda8i3pTUeiJ6F1p\nuSL2/AYAACAASURBVIJ36VA+U6PgyRyI8o/UJ1cL/b2zrf3m4Tc0n4dtzVdnc8q30Z5v/ULtlIYP\npNKAzwgFs1USFB3cOHkUt9Yg3Scj1afMXqfRgC8KNFWW0wy1u/DjpXX/Waj+LYB2dVBDivbL17VM\nUb+vsbfs8f4QoNi5Zl++WeFHV5rXe67qvbhQPRqg1CJ+lOY+yB/K2QeJbkyNeXhVvGX667JM3LWt\nhwtzQe90BmrrbFF1220wj4GCSgwjlA9r7Db8dw21VRGOvslCe5kS/HSJCfw70X4J9U9bu9RZ16Vy\n8pmQ8kSKkAnQniH8PWn4NhM7vOsUtJ8ce1o3Nhu1UQ41Y8+d8RdVKJ/re2qLdajn5ZuUH/4iq6AO\n3dJze2daIxdtzUfFoho3h7Lv8qXmjfZA9RihSjXD9/4qi5EyscUWW2yxxRZbbLHFFltsscUWW2xv\nwN4oUmaB+sZkrujlnIjV6IroX10Zx0RWv5tx/jlJLGk2I1IGamEN50EGpvN5hAKBOTsEIeMkUZQh\nUlcGPdK/UsTLhrquAWt9Kg8vRsQGPed8NprxW4mI00GRsM84Z95+qYPkZ6as4uxC99k8VDS2WOSM\nLNFwnyipeaAuiPAFge5fInO/JjodkMAoJaNoJyzY0RnppdorUd3Y0be/qbrO9d3aU6Q1hYZ7DvWi\nJKoPXlFtFig4aFlQQWWinyGZSw/kxoozpzk4arycopbvvS/UUwe1onqDc+S/a9eycAU3QVpt1qcv\nPZQBCNBbrs655UDlSa9AI7icVSWjmK2S4YsYu+EVqRIBDxwi4iXVI1tXe01Jn7eSiuCXyK59sdTv\n39koqjxGXaoYkmlO6nMX9YsEBxfLFX0fDtTHfh4VDSLnmyK8QCiATa6InMOBk+vqueEBHDJp1fcg\nrawk4AfLeHA3wEHjd8h0kFmtw13gkkGwPqgAU7nvrZXh3j/S9YsLlXOcbFMeZXjKVZ2fXMIXMjjl\nfOVU7fGyIXSGuyFznpcf9CsaEw4Zmx5qMo3XOOd/8Uj3PEUVYj8FuzptmkDVrcv4CU7IMv3bPzEz\ns09rIF02tAER+WY1S13hoNqoTsNAfzucXS2XdN9Mmwh5DmWCF/o75sx71lFfLkClhXPO5KcVmU/B\n4zSHRX4E6qxKVuPKg+m/L98JNmQCF6p/IlT5nxflG7uc1w6y+NYOWZ5A807J47w23A0dIviVojIM\ni7l8K6LYGpHZXa9gvw/lW4uUylXoaLIYctbWAx014WzwLdRFNhWyhGRYNn3Nl9//p0JMtloq3yTQ\nfXbIwFxc0q55zQX7O6/QAdexVQWOobmuX3Cm2eeceSFS/+uSJatqLNRK8pe+rzPBe1v6/aMCfjTC\npyOeKjLOX+IvWw1lUK5AUXRACtTLynwv5qqHmzqz7IL5daw28neFnCk0lL0t7unzXTiixvD1HFWV\nxfqaNy0bnXsG+bgln54sVeebLWVOk1XdZ+WSckX5IHMThExGfZpGUXByWxnJqx/g+014LZKq+4h5\n+B7KKh5ZsbCococFVEQuNQbKGdV9tQdHCRxho0PNs8Pner67wGfXKNCgCDYN5FubgtbYPGPJa7Om\nHjKmr2nLNki9K7JoK5CCKDSmK2qfxULtevvekZmZrYtkXmn3CupN689QTgNNEHD2vxiqv9ZbIIXg\nr/LIDhoZ6SScBsOlytGLMsNF+cnZ94Xuu0rqXPw/+W/M/Cuz1RLeFvZYMzKoJeqDAJolVnCdwVGU\nOILbp6u5Ze+G5mlvIb9a++r/NKogxRr3q4AEuoQ7bA6P12xsuXO1aSmje4Z11alWgkswpfHR2tX3\nV0PWmC6o16rK8OH3pBa3SYLkq2t8ztgIVarsbVDs6qJgk2c+TZDBzFGXJNw089fcBocZ+XzjJohM\nVO3WHvtT5kv3VH31RV9rZQl1TGeAih3rQWItxZtyAC9RWr+78U359uG72gff+iWhZwsPmS8+0v5y\nTiI3zXycRuVzDQ9RepcxiOLOEXxvFRQyx21QBWeqz3Sk/y9BQe3/isqZa2j+vkRRM4UqVrun+c7x\nNNYeoOiTS+h5j56g5vcT9hBk2utl9dOoq7ntL54KwXPnHe1Vc6C0j6+E7nAv1L4b0F+7VfwpRCkU\nNHftG2qHCvWd/+9CnJqZ5foru5XUXFLZBuXg6r7PL5TZDs/gjASRv30D5D3KSdcxH6R5agxnE9yC\nS5BuHkotPuNyXNT8Vaiqz/0Lfb5C2bD2NiiFE/g1cppHJ0W15e17QsTsP9PAjtaYpqffOZG6W521\n/kxtvkYFrgTvZtphDXwup+ozNPIhKKkE3Fe3UCVC8XGYlE8fNOXDhZr2jQucMw1abL7QmE5U5Zvf\n+HlxnfVH4ifZnOv3wy81zydBqVaPNOZGlyB04LJJ1NWOy1O1SwlozqAAshxUVA0eztkG3qk86xvv\nin0QSnW4EpcQec5WGgu7Ra3VBQ+loHM22OyXPfYQoRNJSV7PFiAtJ/AeXrHvndLNm7TGoOvr+w2c\nkojZWgOlISdAURi0yQZe1nxB7TXg3TjLe9m6jrJvb/V1Wa4ejyxdPbB7uyBKRswbpyhDgQxPwD96\ndFOnL0ZpuABZw3zaclXW/JpEBckD8ZJLM0GCnBny/l7hPXZNHX2Qj2nmm2VZnycYl2m4AZcg8xzQ\nRlnGWHQYYck7pJdi3oeH8+Zbut6d8a6VlE9W2PBu8PkwA/cW9fLpmwzvtGW4CtOOfNyBU3b+jLHP\nfbY4+XNQitWXYosttthiiy222GKLLbbYYostttj+o7M3ipRJo0X/i7+iyLhXVYRuF06UBCiIJFmf\nKKO5NkXMUnAlDBdkTDhjmiuR+SyoekXuFyYUoUoldf2SLOLZI0Xof/d/FQfMHJWNv/dbv2lmZgdv\nK+rqcwguVed6UAGFvCJpIZwzGRjLv/kr4pD5m0WUI76lKHIGNMAabgYXNahMHoWKDeexi4ro+VnO\n0hJdT10pKp0G/ZGBRd4jI17IkilBgSKzLlr+awZt9OwnKrvrKQqaG9DGRTKuFdV195DIMQiLJZHh\ntacMZlAk+0Q00YUXp0GUNAWPQwkWcc9/vTP+XkVtMqgqwu5wzrg7V32yJRQVUD/y2mrjdUnfrxYq\nVyWptix+Sz4zv4RhnGxbOyd0QJ6+2JT1eQWW8uEClMFSEf0+7Pm2RnGB8+93iLIuyJRkT9VOha58\nc3dHEftKQX3ztHtsZmYpMqH1W5y/b6ocKfq0x7nJ5kTtUNglc8z5+BdfKiOwmqg/W/vKIjkVXX++\nUIT8krOyjSys9VW1Vz1JdJdsX3ABpwDcO0vQJw1QH4uxsoMHCd13mlc9uzO4huBPaUdRbNS5NrDw\nJ2/p/wgl2GKs9jcUbaa562ccSvhwpPqwBmmW2NX8cmehz9P4osFj8/lLZZn/r9/+HX0/RzmkoFB4\n0YU/qaa+WznwVcz0vImjPtiQJVqAAiiCBDnNc668R/aCMRIhTTZV2NtRYJmmdP96oPI6cMK0QW05\niWi+UduSZLH8GlWksspR91UPDw6DCeepDzxdn1go2z0kC5+kfHmScaMFanAZtV9v0ee+RPhR1llu\nQAxCPJVuqn3v3Pg5MzP7hfeVvbv4XJnO8UuhpebwQ+VQswtWIEyY51dkFt4KNa8NQZ2V4Wx48UiZ\nz00f5NA1LadkpK2a8HpwTn6W1txRhNOsB1/IGv6qbFW+OhyKwyGsqJ9rIDjnoA8QFrLVlq5bwjf1\nLOLdKGkd6a2V4T68+ED12Fa9Tp6YufBgTOkrh2y0gYwbkG2697bWlHGXjCIo0hwoSpcMWWFGGVGR\ny470+zlZagAR9gyUVfJQvj2tKAs0B/W5BzdVlWxRAk6Dioe6HIi81DmKWA1U7DLyNR9uLgdOgYtz\ntfHNJoiUU9VnOdP9Ci5tOkTxgST1FAWI5hoFGtTkTk/UXsMtoaCCAT5NX17XtvY05rtXGlwLkKCR\n7krESeDCyXLwofr0koRjEkWH1UTfL0Ci+udwGWT1wxQohhVzQXpLYysz4dx8Rb5ToR9mpE7DnL7f\njZTKGmTAO68ynmlbmZfQmN+k4S9hjJmHQiQqVqul5rY2/CDmqlzjS7jUKhqDzV11gEv751l3nCxK\nOKANEnDnNFBhvOgPrdvRs/ugbYNA/99HAczgzsvfkDNusloLRiPVtbjWwPUDOAd6cOWhRJWHNHA8\nB627wzrwhDUErqgi3FFZVH0cFBGT0SJ0TXNQ9QnZZzbILKfJWs9ewllS1/pQ34bHB+TjbE9t5p3p\n+d1zzeezNGN5W2N3awPi5IHG6hQORINfYgHK1V/pfokh3CslfV4AgT2eMsZu6/+/9N/9p2Zmth7A\n0/QvUHoky54fwxl2KQRPxN9x+MtCw1ZDPX/EHsx9ofJPX8pns+wJaqAb7n5baIjOQnPJCG6fKvxW\n9pWeMxrr+iLzcemG+q28Zo8JQr1Q1NwSKcM5VRCfKKQ97ep+pSW+nn/1mrO7W7GwoM9LOY31TUH9\nFnFYJvbVTlX4nXqf4zepgl3XNh4IRJAe6YifEo4ZP7oVyMQsa2n5lvrah7PlIqM17ru3tWYaqprz\nT/G1FWMDBF5p58jMzDqnuq73VH+rVd4pNvTtFRx+58xvFbVxKc+aS5svulx/D4Wqkvq0FIkMoSg4\nZu9l8Ae1Gqgc/Z76vAIKDnCDvXyuNfQuKn/7KKhdLPT//ql4OKdIrN3Paq2s19V3V67K7YEYnIBE\nNNaDqO88YA0RV1dpR+07BFlTzoOKSKLE2FQ5Dhuq/5MfCO123Nd9d29o/z5njzRdwN8JD0nx9cSX\nzIXzxqF9WmW1c3Ki+3Z4n3KnnBBgD+j6/B/E7H4xQl/wPRxlESeNrUEY8VKdHYJ8Hb1SJjt74loQ\nBlata/yuEnDtRdANkNR+SvcsR74y4x2M+W+9BYp1qD5Ow4k1d1D8xdfdiNuVfaCHenCERkrAdxPx\nmeZceO9Sms+iV8kUJ19WcMbOhryjgISuFkHQgEFJwveUy/H+Dd9RDl6iwI9U7FSfMKfrLs+1LjlN\nzUtbKB9Oq6jmechGwf+USujz1h7opBp7pSkb0b/CYqRMbLHFFltsscUWW2yxxRZbbLHFFtsbsDeK\nlCkViVBFWSK02aNs0myhaF+kEJTN66/vKCLlJxRRCzaKKvp5MpIV1InIas0dIu5wrmyibF/0PWdS\nPZfzjiBikgWyVkS180RtHRQMlj7RR6KYiaXK27qrrOT+kZ6bJ5uEsIE5E87lO7ouA6okkyCiB9/I\nFVHeIMpcr4kQgrIAWGMT9NcdMuNeQOYpqXqOhwO7+kRnSGuobuw+UAbOyOR5nsriogWfmqrsbo2I\nM2cwNzm1uUP2d066Pspi+GnVtb8kjDmALbxPZDp4ldG7jqWTZIyNDEGAalJd5UutOFzJOfE5HCVe\nVhHnNJncdlsM4K6nqGWpQvk4316oqQ9Wl8pWLfGBUVN9tVuC/6dCdh8ESwAKYZBUVLYEGmt7R/cd\n9ThHnZZvVVGvmiUVdV2DAJqayn/rtrJWozQR/6KyPl5JEft+D/WNQ7HbezP1Q3Ou89CXqDvl3lL/\nLsqcB7/4yszMkjdQIPp/2XuvX1my9Mrvy4yMjPQ+jz/3nmvL3HJt2EWym80ZDglC4GAgQRphDCCM\nDCBAAvSif2CAAQToSa+C9CDMjCBoMJCBIIkgB9SQzS52s9pUl73+3uNdnvQu0kXoYf2iihygW+c+\nlR5ivyTynMiIbb5tYq+110qg6u7sm9lXWgjejsqzO9TvZ0PFTfdciEflhs4Kb9+HPVBCF+AC7Qpc\nmEYotQcJWB24NU3UbDY50e+9pNppdKrvfkJIySbte520d0uuPT1cirZy9K+++pHrRf0CtGpbZX03\nrbLMp8Q2uhk1Ymc1A92eqyyeKTYCF/c3H70Lg2XmslP+XCyjZ6DjjYJ+X1nXuJDaArm81H183DIm\nNZBHXJgqIL+FE7V5KdKGgUVxDnOudyUXJTcnZsrNQDEzKinWIp2oq6Ses4QtV6ZP+qDfyz4DSgV3\nIfpAl3HSBelOtNHEQnMlwLUuGKr83jeEYP/27/+6mZn9zzPV2/nHIOSck08tcNW7o9jw9jQW+VeK\n2THOB7mJ8lltCKktdvT/dPf6Dl1mZpM+GjsgNtuY1j2/UF+sfEf5MBwe2g9xHaiq3Q4PGLs2cTth\n3mk9J65g9Y0GjPeMNTsixtiLotq36Qj1O0bnqeIr7jaO87Z6CJLa02/bzDEd0OnMJRpZWWl1nfeY\ns0bK80UT55qPNV5cuKqzZIWYNRX6RUJ5KXLWPzvQ+DjuCwls4+owgyFTXKLPcaTrc2gLDE55Po5S\nflfXPxyBhs81bh6e6fdbjKP+ifpIEe2sY/TTbF+xuVHAvQ+kudTTOFTHeWx2k3PvWH7t5HAcG6Dv\nttDz+7NXc+gawLAZDfX75Iny9xI0vogOh5NT+dO45znI0Q1cNGPQvZi/UJ9ZoHfl+KB6kftIVd99\nUMA5bk+DI32/A9NxCfOlD3KdRQ+jyZjSfO0rfaVSpWptGI4zXPZcHw2FBC4kS+WvSJwFWZVzuNQ4\nP0D/6OhC8baCoZNvsRbZYs3GGiOFNoWXwlHHUfw1d5p2721pocxvwwhcQSljTr8kVjZxrEpmFYP1\njQ7PFIr8/EDMxsdPNZe9mXxgZmZr69LTaYIaj2HGWEFONA7rvzGaYpFIVoKYDZJfocXXSbkkWijH\nsDtZIwVoIoT058IE5g7Xj5jT7oCw+hnV5csv1PfCKfpqI9okqft/8YcaQLwPWbOA8FZhamdwyHJw\nWGs669wfB8TlvpmZ7T/R2iK3o3reLKs9RjgqZtA0yzD/FGELZNE6LKMZcToVAu70FEtVT303ifOO\n4dxztdD3e/ffNzOzHVh7vasfKV8dFtZoVGxVxVRZzImlGYh8WbpaXlHtVLup+d5Hb6rXjdwGlZ+j\nH4lJWUaUJjX7igk1Wya+RO5Pe7iywBRdVHTd26wnxi1dd95R3GTzbbtuitzJ5vSHIsy2IGILlNCg\nQgdokNGavr6tftz05HzVO1XbT9HO2nwdPTacCC8ONS7OH+ozyemBYMHa/2dqy9Qe67Q+OkOwrcZz\nWMSwjDzeody68j1FR25Whm1WQpNxS6zY+QFz3RON59O2YrZe1FpgloLJAXsrYM53rlSXL38oXb9N\n3IIqS+6H5uPosda1fRgfedqyyFrGpQ3LxPoBunMFT/lNeqwlyrq+5Cj27Urj0zJaZ5ZV3gti/c03\ntb4+OMVZ8QTNnxTjLFovKxgtkO5skYjGtuulIRNHj77cHqk852PFXI/4CWFreDj9hjO0yjgtsYJB\nszifUg5YLQYbmLjjUIXN/IjV9tUaaqN2w0bnp9Ztq23GaX02cLvLlFWXw0eq42EfpnJZdVIaMgme\nRy6iuJ7ewlmsw9pmBKsSzdMM/T1A03HhRi5yup0Hc/xLTRf0cxxcmlzeOTNZmDSX7BfwnBDCZJr3\n9vaUNVJeddtssG5Fh2cOI3OKy1PqQOPLI9yWSk2NrxsbYuyVYI8104qtZV35H46UvxbOjGec6PEW\nv5oLEzNl4hSnOMUpTnGKU5ziFKc4xSlOcYpTnL6G9LUyZVKo2LsV7Tou0trdm8P8yKFCb9VI9Rkk\ngl3dBGhUwE7b4IV2tNw9zkGzo7Vg13CS5KxxhJgDot34tnZFv5/R/Qs42RR2la8e50CLORB11Jwt\nzdkztGuS6GeUOWt7xZm2Ba5OARoRiYR20gp43OfY4V/hzLNYguBwPjufQ0Yat6Y6yA/yKjZDIdwi\n7ZyE6q+Nnkrr54/sj//XPzUzs709oel/8x/8lu4Rec97qK8bO7S4Czkgdln0JTzU1WcgY0nYPFMc\nDuagx2l2YJ2C/t6gDp1FdDr/eqmCVkz3EHeNDZWpsKU66eeUr+lCqNgYFtF2QXV0+TJS/maXElRn\n4cFY8XW/GWdTp2ugR8+FKmU5q1nYVRteoskwiBwg3lS5smwaX5WFWGQo7wKtmeIboEIjIQkX1O/a\nthCQ/Uscbwq4U+WV3+EdIQWrI30vgiZmRspHIaH2OobtkGYHPXIWyybFmjiYCfGcEnOLhmIudal8\nuBF6SX0sQHJKoerRa+pMc4tzl64JyQlaqu/lBMR7wu9wukjjROOX1Mfqvsq5bCm/Z9VIYwjdFDQd\nkonrD00h2jGTC8UIMhs2SoLWgx71YHasC5i0cUVtmKQbjzaJLdw/uhViJVDfWAuFFFwV1L+8Kxy/\n0ugKHYDAwWq4VdL4k8OZJjEHQTxW7NZhKy1gyHg4ebkz9fNMcT/KmH5Ho56dKtbf2nzbzMz6r0sF\nPzhTG6cKEZIAmt9DuX+kchRvC9ZJbSj2ttDgScPOGk3VpreBGPqHGlfnINLJioLdmSk2VkWYhpRz\nfCB06fN//Sf6/iw69w56hSbNcIk2GG5N2ZnGW3Nghy31PcMZ3+EQvQ40bKZGQ14zvcipDxdxkEm4\nuDEthPxWL8U+aV2pXiqdHyhfE5zrTpgPXur3RV9IyXiq/KcXdepB9Tjz1Q4D3LwcHB2qR6rXBM5l\nlZzG4Gdnvh2BqsxLOFcNYL6hc9R/pDInb+rZZ12VwYaqMw/myAs0BiYTsQryvvpfdP57Y6x+OMRh\n4RFOUpdtjV93Km+ZmdnzH/+lmZmt4zI0Q1OsAbq8+onu1x+q7MsuyOyZrjs/E+shMg3ZuKvnXA31\n/+eP1QeboFSHl9Ltae+LTVSbKp9hibP3PfXl9IXqPMW59QQIZv9Q47Zb13NOX3G+SdIHczP16dIa\nbnAPVB9WV3t0maMTNVB9nCSKOE2s2ugWjdC7cND7oM83cIUKNtQnKiCifRhFS8b3cCBEeskEkwdZ\n7x6rL/hd/X3gfaV3MXNX5qHRNcYdqwlEmo/iC32mMVpCa45icHpDY9zdmvp6viH2wgmueSncmoaw\nTZIwflZoGjHdWREXws7g0J49lPtOrqQ5JNEENUdzqbqrPBpOKKul2nTah4mBm8bu62LceMk9MzO7\nf199YBrClmX4KI5VlwtPeWBYshXrt4Dl2yQR/ePVHLpc7ruBlkClICbH6lRtcvKX0ihcrcE+narc\nG9/R2su7q/HFCTUull2YGm3VRwK9IQdGzDvoTYS48M0Xqg+mauvM1dYZNBq6ucjNT/cdtln/Hiim\nnwx/amZmyXdVf6ul8h2ChDfWNG/t3tb4lNlWH7jE1Skc4TZyR+3old4zM7Ms815irnZrBcyHaIpN\nWQv0cGbcxglm9zXFWD6teeioo+vPPoOZCUIe4gyUhbV12lI5Q5Dx5KbGgNs1tYcNQOITX2HPOXfT\n0jjkbL6udgnoo+f7ctcboC+46oHEj1TfSTRorpNStEUObUYfLZPGNswT3JWSl4wDnBKwjK5//fU9\nMzN75GscOPiJ8pauKM/FJkyZLxjnXuzreZGukr7a3EcjcaG/ezAm+nNOHaCr6fMykUWjqk5ffI5L\n64pxLtlU7NfegFWA3lsJhsY5zJaypzVLYarfL3iPiJwTm2i49D+Vdoznqw0c3FGzfd3/fKy1R/dj\nzXuzHbGbl7wbrkx9psG7VQhTcYTmYxk2mPl8f1sxf4BuaAINmlTENEmpj4x55yrDCOocqB3OIt0k\nHDsTMPlDGDuR5td1k3OE9kuKEwdYBpXQQYlYYv5KfSmFtmOA3mh6Q78fD1Rv7bbWOD4EIAfnomxC\nY1ERvb4pOqWN/FeM9Ne+98DmJ2vWR/NklVV/yuzS3yIWz8W+7j1hrrin6xwcZsdnsK94H81U9JlI\nqQwh+pxJdHiQGLOI0JZZMI4wwAVsUySLGm8TMG48Tm04MPhcFvKTNC6ozKkLGHcR+9XhPbuCNtUE\n3bWLjpgwSVipG+gL2RZsfvTWyjBk0lXlp4vG6xL3JoP53qvpvs+faU11ifNYGS2wX5Zipkyc4hSn\nOMUpTnGKU5ziFKc4xSlOcYrT15C+VqbMfIAqf087VFnOUyYjdeYlO2Aj7aw5SFsn8QUfobr//AMh\nMf/bH/3vZmZ2OyMU/2/8h39f39/WfYNlxLTR79k8/nLHzsV5qMxZswAUqZDWzlyAdHhYiRTTcQFA\nBX6Oe0gWNfdy5IpyKzpbrOuyBc5le7ik+CrfRz8VAt45F1J0+9elWp8pC7W6OJLzz8FLXXfrvv6e\nLoKseMrPEpZBARXr3M2KfeOdPeWpoh1sQHQb4UyTxis+H2hXcQra0eVccwoF7KCtshyeKC+5ktCO\n0qbQ/aLLDvyS84OgPpWmrpuip3PdlFkFlAUXoqHycaupv+dwTuidwEJqaHfTu9BzvZbKG/ra/Q3q\n2uXMV5XPC5wePBgeeU+7mcUKGgkocDt7+nvwgXbSvYwQ6GrhN1UuTyyF0TJChdDsqer6WVr5Gg3E\nIpg/Z8e6rljMgqiMKmrb8IZitVtHZf1AiEPVBYEtaAffOaVPLGCZ1dgt5vxzwC5wqsC56AC0y0Cg\nieEwhDVBLA+6uk93oOeu3RdbIB2qHq6O0SjY1ud4qN3kMQrlzU0U2Ffa0W8Gqp/5RPlOF+iLtM/J\nUP+vo4Y/KF7/nP/oUijG5FgoQamBajsWBxOQzVVCeetH/RlyUA0rgRV12E0JAUiEuLWh99BP75uZ\nWXWmsrZg7M0P9HsfZ6rX3lBM/Lv/yb+nvw+Eyvz4X/yZ7tMV6tMbo5OE20Vtobo+bKHDVNTfyxWh\nT7lAMfTWN1WHv/ef/5fK9y8Uc//sv/tvzcwsG6CLdAgLrgGzAx2M3gV6IF2Nuy5aCMmpYqQd6vq3\nYdJ00Y3YmKsPTZPKRx9F/+IAlkAd1KYtVP7wY7Vppq36riCX313iPLPQuLyRjTQNcI2bonsBYjFe\nwQSErVfO4nY1v74bhpmZy3zTAYEugBoeoMmQv4LlBWJ89EPVx/SbaucsWhE58jd8hBMaaNlV5Ay0\nBnMG5HjYUx9JM1bNYOaUcdhIRmhjfmWrA9VZARSqdaa6uYuG0zH9NnI+qebU1vtPcITibPwx9eOU\n4QAAIABJREFUrKJlRyj0vU3FMsCjpUxt3F6prd46jZgyiuFqUXman4AaVTmYDUpvl0KJ+jA4ipT9\nJwdqm9o31UeSfTFt+lewsfrSaxi8+MjMzILXNB56RdCnM8bxmvLRwOUneISDWFF9fDVVvlMZxQbH\num06wyEhodh3D9CquWbKgFCOYImdHKn+Wx8ov85d3Ife2tN3kMsMMdDDTWnB/NpvCUHeiRwpIjcW\nmKaNDVgHJdiwp+gsEaOpIuzZS7Rl0HdaKyg+Zif63ckXz78sw+DyypwSOnUV9U0fLbfyUOVKgnyH\nC7X7eaB68/sak55fiHlVxdnnCLes9Te0ttoldvMBLA80aPKRLgCaGiXXsRDGmBsx+apqmwuYvFsN\nMUjmgdp8ir5GxLx7RhvMPlMen32kcSsMiZF31SZrCdVZmzoqo8MwY3wb8ZmA5ZOJ3DIiG7trpvYV\neg4wQSJGSn0u1HnvhlhpfhYmYQ39vbbG99ZfwqZFU6ye0f8hX1mrr/KmoHIXbwotn6+hmfBC9VAE\n3b9CB2M00fi8eQu3UFxKC2iQPdjYMzOzBZoGieewanGP85q6T4ex5eKh3EjXWWts3FM+6k1YcZdq\n48sn+2Zmdvpc5dp7Ryy3FTF9ibvpArS+BFO8RzlDdJlqaJnVk4rJi5ea9xKMSdOE+vpFS30hjWZF\ncVf5Kn8DR0jYZ8//SL/vfIL2j5k5Rytb3dX/726qXN0u89IX6JlcUR+8H6yKGjuTjm/XTUuY1wGs\ndh9tleRdWJd1fb/8c+nf5DgFcHSgcfzm23tmZnb7jvrbZ3/+gZmZtf4ClgEDTImY7qKvs4K96sKI\nHDF/GM6O+aJ+n+dUwBxG9BQHyI1NHB4f6PmZn7FehTk4RJ9uL9RcnIOZUoZZMjvTfDTlPcDj3WZ8\nqD4b7MBYwQGrndKE1PsMvaNt9JJgFhUmum6AM1ewgilKPpwUjHS0YyobnBI40byUcdFImyr/N1KK\nvb3XxLh5/KOPzcwsjf7Tqq+2b32mvp1fqi+VU4q9QVf15aAXkkSLy2NN404Yx6+ZAnRV8ilYFozP\nfU4u9JnvUpyamMKEnxCLxbrGsMVS9T7bhyYOc3SOK1a2AGsQXdSyq3jIRe5MZrYaXNrxi0eWKCgP\nbll19ehUMelTxuybWtNnXuLYWGFtACM4O9Y4N4CRMsnDJprQJ6asq4mRFLsQuVWkw6Rxf+lxP5z8\n0syxDrqnPizfQvSu4HEdzMe1vGJ0sQ6T51wx0PEVG/Ut1d0FeqM9XPCqnAaZasllPlqVeRzFpqwR\nIOjYoqi+9/JUc3A6EJstXdFzEx5uS13Yq5H25C9JMVMmTnGKU5ziFKc4xSlOcYpTnOIUpzjF6WtI\nXytT5uJIaMyP/u8Pzcxs+4F2hW/cRzejiKoyaszuFG0GGDNBV/9fb2qXdN20M5UGaclVOVuWiNSZ\ngSJAhA1tmeFAO2S9S+10zVKg+zs49UTn+FxYBhx+C0ByZrAL0iDrPZAHCDOWQ/smAYuBI882H2un\nr3eh3eLOR3r+JWfubtxD4wE16Cc/kBL7AKXzm7e0K572VN4J59pDFL2TnOu+eXfbmqDebhK0Iquy\njZOqkyX6N200ZbwcSBhodgKNkMOn+2Zm9n/8039uZmbZvOr+e//w983MbJfz4RlciAI85Oc42bje\nrz5P928mP/KWx0WouhDaFi5x9ynijBNoV7TGYcruoZ6zgBLUn+IsgMOAw+5tCg2a2VBnW9Mz7eau\nlorBdbRXnGPtzq7h2hSO1ZbFuep6DlKbaKF5ACNlDoqV9NSGbdxSBjj4lD3cUZbaXZ6COFeG2hH3\nZzgENFSezDRC24WABNx/fV3tNuA5Tlrl6IDO2a7qIQ+7o089LtBZ2qGd0g67vOhkWAp3Fhg3p3Xi\nYYpuUg/HGvShWriMZHBzegPnmquP2U0/AOW7h0NEQ+3VQJ9luqHn+COsca6RLo+FarTaQp3WlypD\npaZ+d9XFaWSqGFrUVObOQ1gHrws1zi+FqqQ4G+uAJpkjpOCyCxruqw0d8r5zS/e7aun3O7iolXAQ\nWMtrXPtF818pf7gmjUFIK0OcGGbKx41NIX+JecSoUyxNYeKtcPRafSrXpadTIZRBR22aTaoNVm8o\nZpoemgd5dCJMqNS6r+vSOI8NTGPEv//70qh5++3fNjMz/x//12Zmds6Z2xIMwlxObeRzdriH080S\nJ4QV567bofrE+Sxqa5gya+iaMFZMQ427AUhNcYQWTU1j1aKjdphndV15A3Tpmqmw+OsObmsgpcW2\nxt3pffWBG7TbfEOxXsHFa5Goch/1rVPsAZZFfVZGio8z5pdbTd1v/6nK+fY9MR9/2vvEzMxur9QH\n5owle7W8pfJCXRagPDMcstKwRmdp3H521dYzWFq9W4q5Behxaa7fjzdU93nQnXwBZh7I2eZSsRnC\nPsoxL9TQUknfgvKRQacBBLYEIrkqwCjMgM6DtC6aeu4cbawGMZnHzWkdRwUvAHVD5yGxJ8ZlJafY\nmcD2rOwo3yfoWpTDSFdI+XHv4tz1EOZGXnUb3KUPXzN1u0JEWxcgmCXYTCDSmVKkg8c8koWlGs0r\nM1wIL+kbc7Rn8mKDVGCQdHDLmuyrT23l9szMzEOXbgkiOobJmk+rb60C5a9UV3vcfaA+NXr6letH\ncWvH+hzUz0XabyXWLugz5duRToby6+JUs/cdjQGLpxqTahW112lb98su1RdSoe6bQlstl1Y5Z8e4\nv8Cwyd3bsjWcVVa3dE2Ls/7LpfrFnNjwcehbgwBXeV3jVaKsPF+d4zzzUHW3DgK6qusH4xlzOai+\nraHF8pJxLqXxNohcMKmLpL2apkyxDINvAuOnrzm2kFZ+b/3Ob5iZWR/9ngs0GoyY93GByprqfhUx\nnWEvZWArp5lz0w3l8+b7GpdPAs1zpx+KrXt1IKZ4EkeaDkjszm3Ng+vvqE/NhzAk0S1KMM6t7+BY\nNmYeRafq+Qvd/xKnSA/HM4e+Netq3BygX3RyrDGptqHnbuPyNAc5DiaK3RkOku0XaAqxdhjcVnvW\ncCtc4VS5+nOtdS6PiZOk2r9CXCXQ4UiMYbRGLO0Z+hrDr9o3sZyanej++z+QftX5UOUMFmrXGkz8\n6QqdEOb9VeYVxpIcenEBzPGO6nox0jM212FqJBQbSTS1loeqo6O+YmTvJq5EsDenL3V9bwgzAze3\nEg6144h24Kut/DEsU5glQUJlaK6LVTRES+zFS7VdF7bv/V3p1W3DZB4tVOezp2hqRXg+zPX8AL2m\nK10XVmH6jTRuDE/QIFtqvFvf0vjVxI3vaqBydQ/VZlnWj1ncoBzWuT20zBycIVnWf/le4VY1hsx7\nun4O28KfoKVziX7cm1p3F9AP6u3DIFkw76LVtYBJugrIx0D1ucCFykVHZAUDKZF8tVfqiDFUgyY3\nTqr+E9HpjRPcXhvqIx7X3+XkQfTcgzZroTrtgQ5rl/cuw8EydKgXXAb98Kt19vnDZ/bi7LHtbItd\nm0lEbC+N+dU76vfvbort2vpc70x9tKqSOdb+6OOM0F71u9H7Mvo2LnMSTD+f/prhXTTFuJhK8V49\nIK9ogBVx0prh/rbA0Wvm40QVdVOMpYrYFLfRTZrhbHXRUluOztTWQfR7GI/nzOHDU5VrgHaZu1Tf\nXv8ufSmtdX8n0Lp6jnZOZUux9O0tMSc//lT5vuPzLvRLUsyUiVOc4hSnOMUpTnGKU5ziFKc4xSlO\ncfoa0tfKlHFwHWquaUepgQtThMZ4MGQWyUiVnx3xOY4uOAg039Gu67/zH/3H+l1Ou4jNdf3en4Oe\n+drBKrETN8e3PGKNFHa1e+pkhLBE5/iSEdMFn/EVSGhYUH4LOCtctbXj1nqm3dcbt2FBgKolMbMP\nQN3cKWefObP2+nvfNjOzW1m2+nDlePxj6Yx8+KdiFIWwWb4jopHl6+yC87Msu7oDzq/3EgtLszs3\ngTXUmWvHOg/iZSCsxhnDOerm+RJn4dGG6Q60k70gdMrcL7/EGYCd+AVnJBOg0iWYN8vOq6FSPhu5\n7pJd0gzInI/TyaF2fquOEL7Wc+W/hD7E6Uq7vp4ToTmg9ntCb6I2MNyHVgsh1dUGu7HnaLT0hAqV\nKm+Ymdk27IAVTj1JkMTXakJAcmjRPEOVvrnQZ4ADzWRd9THOwpJAC2fhKx/ptpCR9Ei7sJvspI+U\nPUuzo16OziwT832chlodXRjcEQKR2ITBA1I+/AWON1nFWH8VIb/aPU6hIRGirXAGyyyHWPtpUbvY\nJy1pLaTYLS7fVN8swX6YzHX/5JmCdTXb030TQmp2QfQ/WqHPAaLkbv/q3eS/luq4XIx1z1mEIqB1\nkuTcrWM4AcxU11V29CePQXVeU2wnpspzd4WOD+j4dktl8wq6/xX9ORMx4xpquxdnckr4k/9edZ8v\nKTZXEcrEGfrqSGUcZ3QO+M4be2Zm9pt/T+PYo30x4yb/Sv2/N1cdDXHA+dEf/0uVB4es6utoZ41w\n0ajqe8dUrk3cf1w0YnJ3QQ7aKm8OzZ0LtFpuubhP5RQTWbRi8kOVd4ka/iKAtYV8RxJtmOO0/r56\nCVqIhoAPA7E2Egq4QMci6StG+q76VJDT85aH6BThGDFa13Xhscp33VS8rXINDlXfyabaK39bfbk5\njNA1XfdGQcyWL2Zqx/U1jeePYEpOt9SHPZzm9vO6bqPMGIVG2vTjvzAzs8q69ASapyq3s64+7IS6\nPrNfstRYdbOFDlJrF62vjPpr4QF6EDj/pXFkye7hdsdc1twQep6qiA2UAnnbgUGRR3OltiaWVdLR\nOLm+obJfdRVjNxP6e3JLeT2d08gVMWwwh7IMbkfb9J1EVshr7rZ+XxwL3fddxWJzd8/MzFzQNS+r\n8bjAnFwM9fxCTuhc5AyWNpWvtwmK1lLfn5vq9BIdn1xG/78ZvJobRn2L8+e/rXrODlTe1pXKX0Rb\nbQWetYjcO5gfM0nOt8NyWzF/ObAhNu5p/nB7qp+T9r7ufyQEN5lQO49ZM6x5jOdcNzhT/Xl5HMp8\n9al04au+UCymbdpBS4bx23q4bVC/M5DzJMJarcfqE85NzV9hTX1wlhBSvoH2WRpthsURCD/6LCvO\n/Tsp5W8A+2U+OLcpZ/8zA7WRV1ebJHDbSV/oc7Kluj7+Qghs/lLjWsHXs5es2yp3NL4NJujT4aZW\nQo9h4WicTLBW8IkJyzF+j2Egso4K3FeLkRFsgEvQ+MgN6AQG4slT1WWaPtweqY4dX3WT2xY7wM0y\nnrUUC4Gp75RgBh2tFBOjp6xFcK2aTdGLg7W78y4OLbDGInbyBBdTSLs2OVf99p+TD3Sm7nxbfXnY\nVj1O+xo73ryv8S5fVB90z3W9BwO1CyNpAz3BnKN2ya4rv4W62m9zUwyiNrohL+Zq3yoo/3yhMejk\nL/X/h7Ajyo7GojzaDplTrmfsm+dxEpvps3ss/ZPVS3RSsHzbvqMYNjNzNxM2XbEWhAy8qqDdtok+\nRx9nHuKpegvNLxjp10kuTI4iej5DdHxanyiPxbswBkPd8wK9i+RYz+qcK4ayzJmlnOp4hgPM6onW\nBH4K3TzYpU3Yu4k7rPcSaMS8o+ccYk1Zruj7jbfkaHZ4rpjqHyrmBnvoCG1pTdV+rHyMnqOtEpVz\n9te1VQKYfSsqN1fS/7N5lWvWUgz1GZcbdzU/bKF5c/pUGi/LQxiCrDFSsKemJ8r/HH0iH6eeecS8\nTOJOFbFYYQxlRrrP5RPlv8L8VV/TuvXqQ9XnLKG+sYT56cCCTXdxAqNdEyvFYhkmzhyHr0hL67op\njWZY90J9akAsZ+uwhmHOB+gaJpl/jFMWS3S5qjAp77yt8idh1jz9TO95C94FG7tabz/9mco7mX71\nPpacjsxJu7YqoQGGpmGpgyPqDL1J1gA0tbXHmguqReaYMh2Wd8QJbkR+R3U4cdA3QofIZYBaeMQI\njGaW55ZiPPNwlnIZHyZQStJlnLBw35t9mTF9dHEGzJCv9aTKFTJlTnBD7c6ImQRt3OM7bZ7KapzN\nMT7PYNZlMrh5onlVhs2b7uvvBeaBTYf9gkTMlIlTnOIUpzjFKU5xilOc4hSnOMUpTnH6/136Wpky\nOzva1fvOt75nZmb5GyCjoEwJzpgFM86NwyhZgIqFc3zP2XjaxBkhCaISgPalXV2XAT1LZLQDlprD\nHuH3xYZ2o50QtfxznGtwMAjYjTV28Cec50yxw/bw/5Ha+4c//IGZmX3ju98yM7P3vq/zmTnTjlkT\n5s8iDepZ0e72bXav5zmV4+LZvn6Hs8GDzdvkX+XLcd47pH4yCe3QAV5a1qW8QcH6bDvOp6qTZkPb\nhD7nnss17agvV8rTCI2Z6RjGxFJ5u3Vfu4X/9n/6D/S7qvIaolmQwit+EWonuQTa7ZM3y71ayIUj\nnGRwM0rkdP9CX23kBkLF0pzvXneU34uBEL8KKP10U44Ae+u4FO0rX0mcacZLWFoN0KGu0K3updp0\nOFA50xXFRB1l7TY6GuXIhYKd6znMlsQLtGR2cKBpChkYjfX/ZzBfZg7I9X3t3C8KnM8cq77aB3p+\noycEolYSwuFs4xzgc+Z2pp1xn3Pv26D+4W3V/+GxUKLWQIhIAXX5WUHskQFOFMka7iUFHGvWhOYt\nA8WUt8l5+ASo5Ihd9CIaODk9Zx29JT9U/hNJ/X+vqb4QTnAf4bxmNq3rQ/RVrpN26UfLm0J1HOo0\nhwtOOFb/Cjlr//77qrv+PX2ODsRIOTxRWUtl7XivUTcd0PJSmroKYT0JQLTkSOjD1owyrqntPvy5\nXCd23tT13q7ykZziBsJz3DO10eVYfz98JlbB/MNfmJnZqen5TdhVIWjaHOX+jqmP5FwhlQF9uAej\nsIG7UEBfmdKGUxgeVZCE84Huv/9/yiXq4f/1IzMza3d1n/Wa+uDEVawUl6roLFo1BfqmU+YsfkvX\nXd1SOTdaMA5X6nOjjmItqGvsqb2rs7dNE5o4AvFsgWSeXeIAB8q2WvtKR+M6KZtW+1d3dN/lXH2+\nXlSsOZuqh0vGyMKbQlh/ATrXfEfXr+HgcLCvcty9ofkoN9LvPgvVt+7eBmHGiWyaFCK8/prK24cp\nVPGEABXu1+3iSHU0ug/s8xC9iTswEy+EMtumYm6K48rameYug5FR2lZbJQdiVNS20btx1CYJ+mMj\ngXNJUf01u1Rb9gr6vvYtkDTYS120qcpZNF8u1cfKDk5aoO95tA0q6A6townjpNQn9r6t518+VAwU\nbqmN6+8qvwvYBfW6xqGHyHI0qMtcSf//CCbmd3KcY4fh2D5SPdzeppNeM3Wm6iNIw9jUV3scXglZ\ndJ+rHgt1mDo4vTmwOYqc4Z/n0RzDSTLJPDpnHiy/uae/X+HQeKKYwdDMMj7sOzS/NmowhkBwMyDI\nK5D0VeTeYWaT7sQSPHcMu666UH0vIwe0idoli7ZZbg30sqk+4uGuNRwqX8EK5ivPyDN/len7CVyc\nhji3VehrR5Y0H9eykLP8TgKNqDzjxAInqhXaIi5aTswRaZh5XdN4swMDI1vV+quPNkEuo1hpJzT+\n1lgXdTy1YTqEEcl4l1jATgiuP9eYmfnGurGHi9qmxt05zjHrm2idwJ46/4EYIJc4qxVxzim/prne\nhRFehXV0geZKoocL6BHsoz98yHNVb2UYds0NMfBcmCPHI7V5mzVMfqQ2SZ6r76RwVlyguRK8j17G\nnuqxccU8yvjYPlR9Hn24b2ZmW5tqnwLr8BRrkGITBBvWsTtX/ldoSwQDXVdLKd+Rfl4Np7Hwjtp1\nA02yAP2LLUMbaENjXPsMjZuy4iX9/n0zMxujUfTxn/258gdbIJnV783MwmrJ6jW1V2pXz2/RjqOF\n6i1ToY+P9Zmc4K7qXt8RMryC1bRUrDuw9E9+wtqirwHNQxTF6eCEhUNscKmyn7ZVplu3VIZKSXXe\nLf51vYsC7IMxuhtl2MMZn1MA9/fMzCyR0O8mODHefPstMzM7uFAsnH+kOjj+sRgrO6/rd4UEOp19\nWA2fKtYS0TgHy+EC1kM70rqB1ZBNay5dog0zg1E/Rwsnf0/r81KbPttXPlIwuQub+n0wgsXAaYUU\nFrrtY1hZt9HMLGteG53AwE5rPhy0VO7D55pnNtZ033JK+nzTU/1/yDtj/XXFZjGr+exsqfG2kFJ7\npdDiShGzi/DV3JeWntqzcU9jUsgph5es5wNG3PEEbUt0UAa8m85m+l0JZlAPHdHGirGOd2YIVpZg\nXoncchP9rzRl8vdrdmtRtgUOeqMLdC3PcZMcaVy4ONc4drrPnJjB9RStqTnjyhTmX8QYHMKMnPLe\nnYRBk8clL4y0HNGLS3pozKBjZx7v28z5loeVxTrWZW5LwRicwJgJ4HWFadVtAk2bKu9w7/+B3ske\nv9D6bHCFbhqMoTIsL5e6O+/Lrck7UB9+3Ns3M7PCIePeBk7DOD/2Yd5N6MvzhsafX5Zipkyc4hSn\nOMUpTnGKU5ziFKc4xSlOcYrT15C+VqbMeVu7lU+fSf08d67d2FIhci+CDVHSzpZfA53K6XvBtON+\ndardS1txzp4zYbk8u4IFoYourk3zjHbaAKHMBXAd4e7x8Eec9/6FdgJvvycE9+7vykEhBDW0QLuR\nDtuQ9bp2H79xSzv3a7hCZVBiL3P+f5XU9TkoOiPU/xd4yk8vOZNG/u58W8994z0h+x47mc4CJoyv\n79O0PkMQp4idsuyH9sH/+IdmZvb4kXQy/vY/+l3d+w1ccDLK4wqUxUNrxol0HbCS8oDyiluwenCO\nGSbVBmNP162vqS66p9olbH+q3cXa2quFXA6XpPZUbbvZJz/bnCv/VLuVaY+d8ox2xPs48pwfRB72\nqpv1PdXlGerpizN2mhfswnIesAsDKFsVmlXqqtyJSxgksBo2doVgHB5xphXtmBHn1V3chxIrUP6Q\ns7Js/oZpMXpGMxCOS5VrzJn/9FS/T5raZYS0uL8BEjOjHiockO4Scxzr7GVx4XiG2xNq8XkXHRDO\ni3qcpx71dX29rE7R99ACAv1P3FC7HhUVRyN27su4rNyCjVIC8emf4XBxT/XvtRQv7YXu58ACK6f0\nOQ05N0o8XidxbNoqJ+gYRMYAbbVhsQCzBb2epyj8916oDBnqttDUjSYd1Xk/o99VQZ0vfcVaOb2n\n6y/0+4kD+0pVaR4x+Bu/pz/M0Uw4dMW4qB4oNjqwy8IttdkSBLD3QvlzsorpFEyK5UtiOa18XiY1\nrjk55T8502cP557yFcwU1OpD0K6Q2JqnQKBD9Epuqm0XJ+o7wzz1ktqinLCoYO6sFqB2KfQnzhQL\nTz8U4tAbi/GSTqo+t/c0fmUYAmog4RnYcwk0f9Z2hZqtfI0ZLueiz480T5x8dGj2X/1jO+gwDl8z\nFdAjuRzovLxfUX0XckKAFiArPhlsouGwAKn284wZ9BW7VDyFDVDLhvKzQnuss67yDTZ1v31YaK8x\nH7XH+l0eRyV/WbJCct/MzGroBB1VVPaZqzy3M2qL28TcDRiETyr6nWUZd5rMeaA3uW8pT/dBgRz0\nJiK9pW5P123eV2y1PtP9nW+ibVNHT+FAqH9lXfmZhZwvd1XG7ljjSnNHzw8PYUzmYavhwFXYVGxd\noafhbGlcLrzU884ziqUaf09cqe1X6LEtIybfM1iiDX2fTNVGJVdri+lcThHXTVcDxUTYQb+kqPt5\nDZWnWlV9FWAwOjAzu3McdbKsVdDFK8F+8NHy6sA6S0YIMy5THVgfs2McdyjHCiT56lBjUQr9k9xt\nBj1PfbZYKnxZhnwqbwkciUJQxjnaZckRri2ggCEOP3ncS5yK7nMHZ6PTn6h9VrARAcQtEeJmMoVh\nBQtignZBWEGDZlWyLVx1krfQWMLhxcO5ZYwu2/qO+kHZgQmDrk5urLx98ZgYOBOz8Y3vi4mcqqNF\nAGMmFaifz9I4uZDXkguyinPNcqjn5kuv5giZjzSgYIuOFqpbj/Vq5q5iZTGBRbqNfkeVuRmmdiSC\nsPFAbKM54+LlD3+q6yJHGZx4lofK93oZLa6IlUVfNrRc2qy58jBQWswnTU/r0mJAX0E/IzhmPvJw\nZAQZdjK4pDDB5o81n2QSrMHW9X3KWqiPY83oSDFxgMPjGi4kHiyCYhIHuYTGnDZuoyEx1NxT+Tqw\nnM9x9lqOdN2TZ5qHC1v63PNZKzSVX28Pd5RAa7PRKeKLZvb06BO798Zvqlzrun7/hRhIC9yW3r2v\nMWOFm97pZ+hjza7v9jdLwiQJIpck/T041xzX9TS3LXGXK6TQ6orW9Ojm+Lhstvow3EtigGy/qbm0\n7akvuLC/JoEe1KipDqdZtUXiLuOWq/Hi5GON4xcwErcLio1hWuzc/nP9zunpvnc21ac2E7gbtVn3\njyJ3OcVyvqjrgiyMO7QS+0a5ZjjdLPT/HuviRgUNxTfEVF/8LHIUIwZXGg+zVZVrAtvW9Zhzhzgm\nwpivrCufZ/ti/GTyir2QcbX7TPVaTyl/Hu9mmYATAmiaZejr4S7vcA9xmQrU55bMe7kUOqGwNa6b\npoxJA97VprDmui8VJ2M0aooBa1NP9VvG7W8K09Hv4zKLluTwklMiFd2vkEJLEu2aHH3ci+Z1Mys6\nRXNvJu1koHudf6T16rClWMiP0ZRa02clciR01SZp9JHOWdeEC5Vtlmdu4b09WLBuou5XI96JMryf\no2+Zh505g9mSQb80wBXKzUY6m6qrFMy7DFpiIevSCacgCjgRTlnXz6jzYKX7OLyD1DZ1/wxOVxmY\n589w7jp+qL6bvgsb6wAmjq82qqI5eUA+B0UYj5u4u9qvZmbGTJk4xSlOcYpTnOIUpzjFKU5xilOc\n4hSnryF9rUyZ/FI7SdUk57Iz7JA1tZvroWxdZPdwlNIuXwja3vW101Xd0A7UoIdqMw4TKVxApuib\nLFBTTzmRrDPnJEHIh23tYJ2eaGf8yYnOGZbQPLg53dP1Ce0U+kvtrPVnqsbN95WPG7+cBn8zAAAg\nAElEQVShnfZ0RvlM8/wp+crCbJmgRZPA6WjR03XDC6GEiyw7kmjD1Nh9XoB0LIfadfbxaY/YGyEo\nXLjQTt9q1LYRPvYB56HDAP2LDOfsprhbgMKnl8rjkh1hFw2CxUy7gmeHQnB7QzRWdoSCVXfZpQRB\nbHWElj/9QijXfV+7i9dNM5DABG4SHSJ2C2Q3WdaOeBaE4PJEdZoboW2w1HVeCtsgzqhmQ+2u5rJq\nQ6RwbDuv/J8cSvtgfqDyN/Nq25Az/cgZWQZNmYzBTvpcu6hV0PGtnBCNwUw780+fCImYFfbMzKyA\nxky5onwO8kIMSgdiGzic7Q9AtZL0kVlXz0ni+JP31T6DJue3zxQLmzVQO3aBr0ZoVuzr7+bASjvU\n8yp3pX8UoIy+6EtTZxbCmsAVKUV5Uh6aOW31mfqGHMQSfRgxVf29RPtt39JzU1F51tADwIVlBOLg\nL64/NIW4uM1muscYVLqYUJ3kQbnfuvGemZmd4JZx/MEHZmaWuaU6dtE+WOFAFaEMSZTuHZDJXkk7\n5psBTlo5zsDTV25wln4My8wpM95M9PdlDs2SvOqw04aRkRTicHUhZGLJeWUPlpafgkWwQR/lrO8U\nFMRrwV5I6+9DHHfG6ci1A52OCQhHA50ImHcDnBeWVcarNuezKZcPsuvgtBbeUkzUfI3ja5zd3/i7\nYp6k+7ru0SdC5ULU/AsFHN44o+tM9dwvfiiEpYeafXlX9bX3TZXr9rp+//N9/f1e+tWmr05SsRhy\nBnkAqjWtaYxp4e6UBHFf4bB2zvnyWU9jVx5niwFjTgDjqDRTvgZnKsdyQoxvKv9nJ/tmZvbO+3J1\nCg9Ubh89lsUyYa0pehvojL1sq20KhlvaumLtElbooIBWyCPlLXGHMR+GWtVVXqqX0iObXKk/N++r\n7a9wkNnKMM62GQ9x4nJXYuIUcdM5AeEchKr7SAPhChQ8BRKbb8HoGKmMq7d1H78iJG8TzYFDNM36\nuE4lqrC0OI89q+i5M/qKT70UGH992KGXINNrOO1cHMOKuKlyXDdtb2k8Hmyr3uZPQbx76kNdmCvB\njHPxODRMcWcKK+rDhQxI6gB3EtxRQhgr6ZHqr8eaZjFW3yyC9nkpPW+5VN++bMn9bxbBaB+hGUAf\nqJW+0s1I1Wa2akXn9NGRGuNglFZ5hl3yW9DvT32NecePpGd1F7aaj75dzVOMjmGn+bBLSiFuXkXY\nF2NQS3SfHh4/s0lGbZBu4gxS0r2KrPMGOEi1YDRcHuybmVkOvY0yTLsd2D+9sWLZQ6PgGG2n7B10\nLLZweDlRGTMFxYzr0Sb7Gn+nKdBwHGyum5YLnGVgjAwzsIQvtSa6ulAfDND+4vGWQvNmipvnjHHV\nqeqCGXodKxDhXEN94kZa/8/BRgjQ47AyuhrbOEE2QHhBdNcqe2Zmlr6JRgIOLtki43hRfbKHCNvP\nPpGGWD6jGL6b0+8DHFqKzLNz8hfpESY3FGtF5rfDCz3fW6HDN1N7Nx6IBVFsMN/1FHOn54q5F481\nT6xgsteKer6zwgEU16wkSPoAPbrDjhgzd3HSuYdOih0RH59qzDMza08HttNVnLkzdLu6ysd0rPH6\nsORRHq3FFgGOaPOKXTeF6KXNYFGVIqeWpPrjAp2aPi4+0fqzAqtseYwTJJo05jLu99S/HvyGdIRu\nlVmTHBODK5Ul52nOiZwhHWJ1fVPM7Bd/Dur/sd5xas6emZmlU7g8DWB/dtUmPaPPwXpKoA81OFN+\novkoA0Pe6FPBfa0Fik20r3BLTTnMW7yPTJPK5+67Wi+3XqAtxhphNOXUBKclHFgaqR7jNEz6qa8+\ndeuW7tO5gaYPLk3JqWImjFzySorhwpqeM2Z8TQbMQ7ic7sFmHs5Ub71ztWMZ/ZN5Un07zL+apswU\nPa0pDkMZ3gUzjI0rnB5HsLgmHRjxMBpzrFFXuOgZa5ol76YdhZEVaxoTF+TPTaNBNG5/mZdW+6Xl\nazctE7nF5VUHy6d6tuvA5medV1/XXHmEM+CI99AF7KEkTJgr3t/nnEZo4D6ELJll0Y6ZwmjMwh5K\nrVT2WcTOZHx0GzgbMjc6lNmDdZ/kpEixuUGdsH6mjpIIxi3GipWrQxjYL1TeDdbFPrp6Tl7324KV\ntNhSW6dSrFmKGneSE9XTFWuEMbp6YQ2d0LbG2f5K+fxlKWbKxClOcYpTnOIUpzjFKU5xilOc4hSn\nOH0N6WtlyhRBqJuvaxe24KD9UGBHHLRohXNQCu2BThskFxX6YqgduRKuGL4H4lDQjlUljHYTOV8N\nw2bF+cFBdFa0qOe99T2hRDfWpbfS3NFn0tHu5Jjd0xAl8BW7s5ZFVXldO24AIpbATcp87RAu2UHL\n57SbvETjIYmGQRll9OWIHcEJZ3U5Y+e62sGbsMucTnFmu4gux1IP9mAgre/u2R/8Z3/fzMx6kXJ/\nJUXetUs5Q+skg8DO0menHyerTAc0AVS9sgT+WVddFHCEWuBF75vysFvWbmXpu1RR7vpog5lZCrRs\nkAX1GqqsK1Tdk+yQD7o48MDs8O7CMMHxprtSHa6BWKxBFHn2xZR86fuM7K0O1NYpkA7DjSrnCWkI\n2RnvnAkJSO3jTnIhxNoraIu62IS91EaZ+4wznDjVpNeFCCR3dd/qSPU38ZXBMQ4KATvbxTLaBJx3\nTKHhs+yB5sMsCjzO4qJ9EGnbVF7iRAbLKkjrurmHmwtnm2sgFHNHO+wnE/3uGyAaTXarR8/E/Mlk\ndP9URvUUdFV/WQ/F8rSYOBugm6mbuH/R5wdXOETgwuSt64zzdVL7sfrD43OhOrduPtCzipx3PhSq\n8cWOYmENJ6sEzI0kGgRzH0cutFTSpyBt7PBfXKmNdxxd/xQ0ZT2HvlBf49AnoBnuWMhpsKV8ZEtv\nmJnZ0EPx/kp1PqmJwTFvoZ+00v9XY/X37BS3iBzaLx0YPOgFLTjzv5wrVsqcwbUAZs6lYqqUknZB\nUFNf7h+jkwTqMl8jVntq86Kn8hUqivUW49jOSsjk9ESxX03ruWnYcn/n7/1d3e9K5e4++W+Uf5h8\nK0cx77uM++gqvbMLoxFEJtGj3KBZmboQ3G9zNrm0e/0YMTNb+jjhJJX/q+fK7xb6HP4lzBec085u\ngnTAoNlBZb9yJqZLIQPK+QTkvKbxuNBSX3VQ28csxtqPYHi+rvo8mKmvFq5Urxvupn0Ok+Xfeg6z\n4pliZIAeUiPNXIbb0PnnqqsAx5pjHA066PtkGNh2kmLWjboqe+1Ic1y+ozP3F2XVzc33dJ9DGDP9\nE2V+nTltfIYTQVGozxLGipPS+XMXl4gkEicZYnj+me5/+219Dnug0ZxTnzzDbS6puriY67mHA41z\nT5kjb+IIM56CPK80N/cAwxOg20FC5Z9fXN8xxcws0cQdJNJO20V/6RlM0w7uczixjCKUHceHIi5T\nYVnlC9CKWRB7BeY/F4bTYsIaBdRvNEEnBOeZBuP2g99638zMJn1VeNODHQyinlp8ha8tJzNbVTm/\n76ue0i7MKHSmsqyl8huqv+FM5cqvqeFcblfBcXKMQ9kCHbwCjhleFqchrhsC2N521X73du+bD3sz\nxBlkUYWxgeNf5yewsjZVVxv31K+XLzQOb6TQTbuJbga6bYt7YgPkTOj1HO3BOiye9j7oPUzClSl2\nLnpoB8BUyUQaUddM2Vuq+xrfx7gQDXG0mp2wpoJhMUDXLrxA/y5Em+Ge8lPb0njSXdPc1/tU7IME\n67jqtspZDtVWhx/Iga0Pa/nBNzXfTeqMGTiCtXEzCWFXLHFuvF0Qy8LJ6f4V2mrngeo9BJXvohHT\nOt5XPnGwyd9RfVXe1Pdb39TnxWfSZim8jNjIipF0pAmxwdzfgKkI02YCK7vK2sx/qT513kCDJtA8\n08JpyOW6Ba5ZKfRNOrA3ppdoNJ4pGGs1GDFmdqu4bqOX6I8wv93IoClWgeEJCzDN2Jko6ffh8vra\nQx5aIAscCtfuqh/Pz9T/i03loQ07FaKJ3amKTeazbqrAcAlYF7XRcFomlfe9B7h5NlVnn/7gM9UF\nzDebqy16j2HQrHM6AEbM/s8VGwEud2mELBMFHMVwU+u2dN1GFPv31ObnC5hzEEQ2airn6QjdH1zq\n1nYVwyP0SUbojbiwrzpdjWNVdO2ae2qL/ZeaV7L01TTalqmcyjHCWS1Jm4981adb1tri7jf3zMzs\n5KnWhnkY3kvmmSRiP823NM8GT/T7FDpHi6nWZi6M83pOfbDf2Ve55zC9U6o/J7LyvWYqomdSxj1r\n6eL2hOZLl7XgZKI4yMN0XKEpY7zHOTRAsab3j2JR7ffFY8Vfj/eYNVft00M77eD05Zd5aQ2uLN1b\n2gitvPpCZc7dgBkN46S2Rt5wUnVx0wu3VDfrJT27xztM8IXGcX+ivMyZB1I4gYUEf4I5yYNCM0b/\nssI2xSSNNgs6RpBKzVvTSDzindXJ4VjJ9eFEfen0hZ6fY3xswpY639dpjpCTK3kHp7C+6qGHvlAj\nrfXzVuUW9aLy1XYUs5nI3a+s8eKKOf2Tx1p7jY/RB2z86jVJzJSJU5ziFKc4xSlOcYpTnOIUpzjF\nKU5x+hrS18qUiRAPt6zdyz67puECd6GQM2A4Abk9dhNPtKv6+Kc6D/l5T2hf9U3t4r7+a0IeSpzh\nNZgtSzzqJ6guJ13cSELtbuZQAndu60xqJcsZaM7WLdCGefYTne9ufarnexwa3vy2dmfraVgJ0Zky\nNBSyS86qoWmx5PvcUf78rvKRB7kuldgNRTE8mUDtfsHuLNoOXoozt+wMptjZa+MWMzw/tBkIY62p\nOkmCxEUosIeGSInzdsa57zqWADPO6ocwVwr3VKYdNE7anGW1ETvFqehwJl70zT0zMxuPYZ5cMy1d\nzinSZhO+dyq6r4suUbulHe5FoF1PP5SuT22DM6x5QamJ22gNAHoEwSdmZpbz0eXwhXptoSdxmgYN\nr2s3eAmKYnPFbGWltn4GgmoL5XM7pxhcLbQTPWupXgO0dnbusBu7hoMX5zjDGrvUsLfaQ8VeHZ2Q\n5YM9lQPNh6Ox/r7Kg+pkVS/ZUKhX2wfKfqFYSQ4U06OOYq72DX1P3RTyEbSFSHxGn9nFAaKJDseE\nfM1ArexC7VEd6/57Tdhd9KlWQu2NEZqtohGnrL/3hmqvY1wCCmgcpLzrI9zuXaEqD3CkeeeGkMM+\nbTd9othc/egnZmb2aUr9qwhTZoTL0ZL+EowU+2v3lIe+wBoLQ/Q66L+7E/WBZQ9UrKA62bopxKBi\nGo+efCiHhEUevQXOwA5r6B+11YfSDVhNZ/p7GopFaV11fjSOnHOUnzqaUYuh2sqpqK3Gx5zZd4Xy\nMDzYhLO9q54Q6jUYLqM0Z3wPVf7BUDv7Z5+qTapvKEY2OUM8cnXDJg5jIWeJn3XVx15+8DMzM+tw\n7rqFI8DNXY09C/QpzNH/5+hfBBn6QCCkZYWO0SnuI7mh6qmH/tXpc7njXTf1cK+aZYRwRI4Ng3NQ\ntgXsEtT6GzBnGj3F6DSvekujn7Rzrvlr6aiPlXDDenah//s/F2q1sxTCst9SIF18ATJ8pPY99nFL\n2ehYF3eeo6nuOQW1PnoGa4mz7Rs4pgwGQl9yuOB5F2LALCd6ln8Iu6rw62Zm9tGlyrIeCN35HJcg\nf0iQF9Q2k8eK7fR3cEk70HNHp2K8hZTpEH2NMg46I/QuPFink0cL/o97XFpuSjM0UhIHuDLRdw7n\njKPosfVeaq5fdDX+FmD0dD4W26q0LZbV5ZncOt7d+m0zMzs/UtsejF4NuRxf6bl9Yju7hDFZw40P\nBmI2qfL7M1irEcMP+SgHVwsH/Y4FLiartuozecp8UtTzGpuKlXRBY9K0jS7UQP9/eaxYH5zoe2YT\nnb0JbIPZ6MsyBLmiueh7eE09v1JUH7uANdFGg6wK0t2f4YJX1NjVRctoybjvQL5L4JyRaKmdjmEK\n7WxRTuajRyDrE3dsWdyUJoybeQQ00gwDI7SZRgdoMLG+GQx0ry7sqx/9hVgA7SPl4XvvqA1Wb8Ec\nxOVymFHeejCMa66uy6Inlxgp1gOYENOMvVLy0CwYTxSzCxgUblVt2qzDco2YFQm1XaR74QY4iCGQ\nd/TFvr6jQ7SAPToeKPY6E9Xx7FIx/8VLzSeDERo8n+rz1vd+Tfd/TX17iubY2c90//ETjesOaHyl\nQl+HfbDRUNsPqLchjM8gCePRVZsa7kkF2FfHS9XnNKdxPrsLS/eCtUIJB7IKSDZ9eLiAhcE6ONtQ\n++WqYlUUcKua0/5BCiZSFEcFtcMMfZE+AhpLxsIa9VzdROfEzG7c+JZl6MsT+noi0nzLqJxDmPhz\nXGN2txW/Q/9Xa0H81eTUWeOjQ7GEXVDJwlBjLszOQOP7KttlTuNIhhja2lUZL88i90/VWW+umLhd\n0nq1dE/j/j66PMGxYilc6nkD2MTBsb6XTjU+dC8j7RHERwoqc67Jgi2LTt2J5plTT8+tfktsq11c\nTD/5if4/rcN8hFUx7Ov/9QeKrY07aouXR7i64bxzAVthbUfjSP01jYcnx4qt8QCmOePM3q7q57SE\n8yyuTiExec5a5OZ7WrsMPcX8fIg2F209NrXLzR3NIwuo8p0vVB9T3kH7C9anxKgDY2a6QqtrpOsz\niVfTp5rASB8vlf/+UvV7gZuf76v9Uyz6Uk1YKQ52XpwiyWUifVK019KKr8iVL2J9ZGFVrwowOKed\nL/MSlqY2T5VtcqGyVJqK+0YOzb0hToBD9CknkQah7lWFupJoqN/WYZ7vpzQ+zWBuWy7SkMFFmXVd\nGn24BTqXGdhAPlozGADaEgfCFS7LIac80jBtFrghzxPRezPvgLioZqq60WqJux+nForrKu8io3Xi\nBK3EHco/W6hPdYlZh9i+5F3Xc9GPQmdoxcmY8Qlrq5baOFP81c6yMVMmTnGKU5ziFKc4xSlOcYpT\nnOIUpzjF6WtIXytTxgFhnfiRXkcEWWiHacX5+TTn/0ZoOCAdY5USu8ewGqrs0CVwiuifcf+5dvBP\nPt83M7NCRdc13+NcfYBuxnPtGs4m2rWtbWhX1luAqICIXp0LMXh2qN3eu++wq13DeYGduTnMlRxI\n0Cw6DznS/yem/AVoUsw5Yzdsabe0VtF9S+wUhhH7xGPHEUTg2adCTp4faYdz53XtMmeaQkJak5aF\nga51BtpdrLLjbC46GinVcYBzjYur0pTdyHwlciTRTnrnhXZkp+y0rt1W2cNMdI5Pt1+BIM45/xsE\nwPzXTOmMdhe9XuQ2wU4wCOZqrjKvYFi0EqrTZFptlN1Uvvucz56tKWOhy/m+Oo4CM5UjxEVpkBIi\nXC+j5QKCPE3ouv4VCGJFzyvdxsUIBkku0G7yfAk6hzJ3bQSC6ikm/aLuczuP7tAEtMa0u+wEKkcL\nNOdeVrvTY1xIeqBZsxf6f7OhdmiE6IScZMiv6m3yQu3TOYdlVVX5t2+DHiWjM79C9/L3xDi664sF\ndvqR8lWB0ZNw9bzBCGeIK1AtzmunYdYs2LkP1hXL7QQsFtgFo6rqZwxLoQgifZ2UOoNFtNS9n6CL\n46J/VNtW/5qmxPRIokx/CbpRbOuzhJ5CgZ3zy0vV6bNf/NjMzFqnavv8jupixnizxRn71pVi4Pe/\nLzbA9nfkRHW2+F/MzKz7ierUCxTL2SJnaotqk9UT5ftiuG9mZpNnnHF9R/35RlbMm4mvujsPiL2M\nxq8jzuJu1WFigJ65MHyGxzrzPw4Ue5ee7ls6po+tNO5u3vqW8r+p8g4e6TPJOOYm1cb9LKgeCGue\nenz2Yz3nybnGMYfz66ks7IAlzgpug/+rvhdp3KBwuimncCfx9btMoJit4KoVhL8acfg307SKe90j\nmC239D3Nue7xGRplJfIF+yM5EKttiutWw1c+LtrKx1Za9RMxFHdfgKTf1PywWRDauN5Gq+BQaGay\nKBRvdcJYlf2W2T46CfdU9koKhBB9h8RE157si81Zg/n2tPuRmZndhlGYhiWWBUEcoTfWHantbQ8E\n94hz1sxNzzsq40lLsXCDuh+eavwsHoBIFnS/u6DNT2Eh5UCAE08V2/mu6ujCVI63QMU/Pwcd69MX\nYT+EDi4XJe4zQPugpZh544H6wMFEjgnfKSpWn30kpsy8Qf3VlO9ZqHH+usnLqtzIGNkgJfbYAleh\npBux7JSvwwu0d0b6zN2DWVNUW5dxB+x3Vc/tS9XT0BdrwT3Cue2+Yj6TUflnAX2LxU4FpDRAcyaH\na0cCtlzmr/QF18tYItQa5gJ0rl4Qm3DcUj3PtpXfIszY3EzxEulvDGCjhXnGzgMQVZDkHnheAX2Q\nxvqe6geW86UrVsvx8xNbX+Ju57LGSItxloeFs1bXd7er/pMfKXbSMxxjyqqbvYh95MKYQ9dngmaW\ni3vdNgziGshuCq2AGQ4nblnPLVf0+1XwlebIddLFMUxpNMAKoNQpHHdqe2Lm3NrVuDj5mZDS5VLl\n2irr/6c4nwx/DvNF2beNnMaLakJ1fHmpcSTXVTnX3tRa5E5NseLf11pgXoKN1lfshANiBSS7+YbG\ne4Zdm4XMzW39rjNVDCwZxxZT1XvAGigNyu4w/7SPxTIe4Tw2m6OthebXaC1yZFOsvWyJWe6iFdZn\n3B2hIean0VfaVbnr98VemPUirS89p8SYl0Eb4vGFNHa6V+qrRRhLo6n66OgIxxozO3vesve3NS8P\n11VPwzNYIOjalSuwCNBZGuDq6Idju27Kcg8XVH+WVv8v3OOdZkONULhEE4q5aXjCXLzJuvM1rVnC\ndRxk/kJ5jE4ZdLtar7391utmZlbfVt1cPVPMLM40vrTRpwzKysc0ErHhXWLIO4/Lurq0pTVK45bq\n4CStuhz2ND+EGT1/8xty1HrUUz6KWeWz0lCsHJ9onK4+hwVc4uUNZl9xDssJ16EXn2ocf+01Mb23\n7qktz480/nZxMLzzXfWhzZH62JMrzQ8piJGdscpTQvezip5RO698ZGErd0/0u60tHM9w9prAWFwe\nwyb+QrFSuq+/p9G0SXY0//mwtZK801435ae8v+j2NsNly2DgYAT5pVNcFfLdaMHpD1xO55E7E+9l\nKZinzlztNgk4tbEklue8rzSrX+Yll8vb3E1YWNF42B3Rf8tqgzqudixjbMTJE4d1m9PRONId9Him\nfpdCe2+jopiro3uXhXkWOfVGrm4u75xJXIo8B5a/S5mYeyYLVUZozPnUUYiDq8v78oRKLDfVdj56\nQR5z3NoeJ2Lqus+Ln6jvjFjnVa40P00cPS9L1wlpi9BU7sMXGkeyOcblKho0b+u5p1do1BY5jfJL\nUsyUiVOc4hSnOMUpTnGKU5ziFKc4xSlOcfoa0tfKlJmxM/3xR9pN3dzR7nFzSzv6lkL7BY/5BEc/\na3vaiXob1yEHv/BZKnLK0Y5ZKqPfewnOVe9GO3cgN6jDt1DN//TPPjQzM7+vrbD3f/f7ZmaWu6ed\nrjVPuhvf/a3f0PO/rXOVmxUhqYk01elrV9fhTNk8i586u8PzjPIxQENmdo6DEOfxq6CW47F2ItM4\nH6xgEnlTtC6G2vH7/MdCLJ5/LsQlCL5pZmbf/tu/ZWZmu7cemLfijOcAFAA0xEuhUzMDHQHJDDif\nvUTB38cBIbjS7uLDH/3czMyOHwuleO13hFjuvM2uY1llKji4ZCw537e8PgPCzKzHmUl3S8+NvOln\noc6MFjhP2KsKWc2U2OHOK9+dNZWvk9CO91VKdVTgzGx6Tzvl0yOVd7yEzTBFo4UzshcwQ7JX+h45\nXRlMnRJo/0pArl31xbQpm2K8ShtOQfuXK3aq2blPhEJIrjpo5bDzHmyovbY8IRjtCWf30dTxkiAr\nFaFrfc7rp9gt9vicn8ECqYvFUfUVs/5yX9d3dN/0rmJs+4l2ea9gVuUdtGtAxRLn+n2T8+Y5dpH7\nI8X2ZKL68mCLZcl/l/ZKgJLOc+qzi5cqz6IG6nkVeVv8fyefHe7VOQr4uFxE8uwHjp65gVL+5lTf\nSyuQtCIuE5zrXp4pdi5wHPvum3/LzMwKv6OyLfa1kx7W0fHo6fnPJ4qlv/wTjWfZCz0nfCIUyd9S\nf86mlA/3XLHpInDUS2unvVrXjrrVcHA5pE1vKJ9TNF2SWfScLtS3Gowz3qZitHZTbb0J8nHFmd6X\nTx/ye+W3MMcJxlP+/gPck8oPhFR+8C//hZmZffKBUKzjsdCytaTuP5/r+WsZnBSyOJrBrFkA73jr\nyt/FM8VCBmevUULlmnRhEmbVZ+b0/cWV7lcIlN9RTfURpF8NU3CI0QkMnOKYM8Sv63P7QM9b1oQm\nRk48O/cUF92ZxkCnq79vlzjDvFLcFdK6/4MdXT8919jQePc1lZf7ZZmvOnlQK08Q+ei2Y/OPcBi4\nqTKP/kK/uX9XA8ujnsan9xi/Dkwx2AyUhxIaI2N1T7sE7cqBVqX3lEcfR7D2Ja5GW0ImnTFOVxPl\nfUid5UPdsO18ofykcSTEbW2ridvdCGbFa6rTZFH53gQpNjS7nIS+l94TCjU9pO7v4d5kqqMyCGoC\nx57QR5cI9luyDErH9cUSjMiUEMMGrITrpsIGLiRjjV+psfLnJGE+9pSPwru6rnKkz5MhLhaOyusw\n3zo4KZa21A6XbfQwAnRIYNW66N95ntolvVIfaZY1RpVzykeZc+3TAfefqpzjUf/LMmRCz1YVkO4B\n6GBJ963fVruscAuZws7t+rDnOridLHDZQodqijZcBZZK6CvuggvVk7+ptVGkT7JoKt/J4bkt89TZ\ninHLV9mTXX2mF4xvy0gfBzeOAYhmZU/Pvi9Uvl5GC4xxbYbeWrLf5X6wWnGkWuGwkptqvGls4gKE\nhkDSezV0ezVDQwGWbaOitjnpqm9efqH12PgMSspAdZtiPsrhZvfNd7RWCmGPPpuKPdU+VTlKrGVK\nkZMXLIZEX/dzWcfu4HoyrOo+w2PFArKB5tT0/713VC9eSTHqZlXuoxOtVaZnuDwKIa8AACAASURB\nVKPA1i25Kte9b+I4CXOn01ObL9B7yjRxV4IxufmePueXqufzfdz5ZpH2D2sGMOEZLqlTdLR6IeN9\nR31q2kGPCRZC6b5irQ/LJImu0dVC80MVZ8qtBn1siuOlmdW2c5aBYdQ50/POHmu90G2LXZG5r/G6\nXFG5epdaz3spx66b0sxNub7arkssZ2G/u3PW16wFahXl8binsoyvVGcXR+pnN+6oDaZ7qoPWh6qb\n87bWDLWy2rAA42bOnPT8XHWSTqG9CLvAZ7xo4rI07PMeEIrNNM2g61PTHL8FU/vwcz33uKM10P2b\nYujUcEOdJiI9H43Lg0vF1AVza4NyFtGwGsOgzE71+3lX49EJ402poXF9bVuxc/hQz+/t75uZ2c13\n9fw0TJxMD/fSrtp2+FzlqjcVMwn0jTz6yAI9vd6x+sZyoHw5PszDmX5/+fyM+sBdFVerIcT/LLpH\nMxiq105LtNvWcBoKcTuEvLdCYw1ii/lpnNxge4xxYazV0eHCmTMLG9vP6X4ZHzYyY6sLM7KQ+EpQ\n67LjW72ybaVdjd39p8pT94Xif30XPcoy74Ro/XkQPwY4PJ7DmOnDNGuU1J/cmurMHfDuFUQnSfT7\ndIiTFu9qDs6wAevLOWUowWbFeNba6HGm5rjo5VjPjmDrw8BzYMIn5jhYwTqt4NDrcfqgz7jhw9g+\nD5Tf/qN9XY/r0mYZd1CYPgnKFTFAnabKc7MPK7mkfK46DMy/JMVMmTjFKU5xilOc4hSnOMUpTnGK\nU5ziFKevIX2tTJlpEsTB07ZgIcuZV85cJThbNkQ12WOXd4i68tFICHTTQFa2tKvqoHAeplB3TuBE\nsA3qloehkmCnfaz/O7ihpCO3I4cd+gk7htxnzG5j6Gun7XwAKlfT9yS7vEl0MQLyN2FT0kFlOrzQ\ndZ/+ENbJqRDo7/+BmDgO5ymj3dzkUDtvS87YZWFB/Nrf+J6Zma2/JYZMuQ4SBGtiuuhbyvS3ELbO\ndIWK+AxXJVTMx4YmAWVLofHhF7XrGKCMXbqlvL1e1ZnXtftCQMu4bkRoyDwA1Y5cNVKvpinDRr4l\nZuxC+kLyclntuCdQ4u89EtqxipA9NroraJuM2KEPKkIiUo7K5XggjyXlq7xgtxZ0rVpHJwhbjcUU\nNCmj+2Y5554j1s6PdJ9cSbvL/pTdVFTqGwXFSlDD9ShUmw+IKQcNlnV2fYtp7cpCkLEM7lUJ3DsS\nxGbahXEDESkF0jlDC+fxQyEm233tZm+/JRSsgCZDv6rd7UxHO+xBoHra4ODkyUjoWgb1/3BEMIO4\nNoq638VI9bYa63cV9Dk6GCAsJrgSwO5YGo4ZV5ELmPokm+rXShuhbt67T93gjuOstDNd5f8jmBY1\nB72KBuMAzi4uLhcB442TVJl+7x++Z2Zm2S2dRf/B//RPVQdz6TSEKNm/sa1YOEfjpven/9rMzMaO\n6nQb1tgEtlljqZ35KQS/+7tvm5nZP/on/4Xy4att/9k/+R+Un3NdmFpTrGfP9LzVBi5AOKaMISUc\n/+Cfm5nZhxXF8BsNXZ+5AXL4QnXvFiJnGJXj+ETst9bPFStHf4R6vAtaPlMsDFGbN8bxwlzP932Q\nVPr8Io/eCOfakyAVPmPNcAhygjaDx7g7x9GrjltWWFeMOhe44a1eDZVaR3XfZXzsbOOYk1F5ZjfV\nPs057iQ4mh3dRMsC7YXcturt9AKnCGJ7TizPX1NcTAKhehs4om3c2DMzs+eMwW+6mu8mkiiytDO0\n5q5iZ7suZG9WFjupVte1TebAxG36/yP1rz1QpRVIauan6Gvs4MiFttfahlzhRjXF9thAh9/GTQh2\nz+UzjUt7VSG0nTQaAHdgJGZxxsGhwfXQA8LNKQ3Kni6oDVuwVD0cVWYttZ3DuNFtKIYaN1WHhceM\nPyC/u2O1wTbntwemv+cRL9u7o78vYWiGMDWcPbS6rpkucACaDjVWZEMYe8xDAWhd6wIUHyZmbqZ8\n+2gk5ED7Rym12wzmzAXIdfu5yperKObefVOxtCzg8JYV68JfqVxXz1X/rac4hJ2r3jdwnit6X6H4\nSRvbLELvcrDDxsr3Icj1zo5iu5nFmaip+myk9dmbqy+Wcajo4qY3g72WuNTaa4kmTavKOfwZnynl\nO7tZtQns1nSa9RksUT9aZ7lod6Bjh3ydeehyfPThD83M7GdPxQp45++IAbyAMZd16XcDxWDE+s23\nWYex9lkY6zv0MtwqCGZyaa+S1l9Th02gjZBBX6nuwNaCGThD48yFSePC6DyYw9Rrg+SCZq/QWEms\nlJ+rc9VlYgA71tf/aVpLjqVtc0AshjVYZmnVR5l5yX+u8fgl2mE7t2D23WcNxXq6gDvUDPh/xtpp\nUd0zM7O1utYsBitsSH2OOirPiHnXWDu6MJYyrFvnML9XFzgA1VQfuSKaOBka3td9Oy81NjnPWJMl\nYcfBOlugJZkuq37WRxrzMojmpFLoA9pf0ZQ5vLCtt5kgYdKna/pcy6tearieuk09rwxLMJxff+3q\njxQbIe4+iVOVvTvX3O32yHtL/Q1jRVv3NG6dwc558seag72/yXoVdu/cQTcTHcmDD3TdCn25RFls\npdBBz2io6z30lFbozxVvU6ebMLkP0FGDOXeFE2Idp8pEASbkzzU+TdFj8pbM7TB9nClt3cXt9CkO\nPDuKiWyBtQqxmUCHKOyqjs+ei80bpsSy8BjfPObS7pHYyLWbaOCEONgyt+bR7WzT1xIDXK9YLw9Z\nWyx6+rtvkfYOLAyYJKs07IkLtcfhIzTeGoqxiMFi6J6mkq9m5TZn7RT09XnOmmqcUyx7GfoIDKQk\nLGl3U2uWbQ05dnjM+w/tPERj04+YP7CSp/T17LriaBMmqplZKZO3QipnqarWHvPnMM7TuqYEw6x9\n+At94vC4zXvodKFneLyEFGBLTWibRk/3mfaUp3wVrRgYMvMpLHw0YNI4/0bOUwW0YyJXuwLahuks\n2oCRyAustPYIB9ea2rSY13gwHfHui8PVLJJLYyG+ctSGm1u7FF/PPUF7arVSLGzSace8NzRgwKSr\nzL1T5kZOo9RCdFHDmCkTpzjFKU5x+n/Ze68n2dLsum9n5jHpbWV5d3276cZMzwwxMwSGcERQBEkx\nyGAopFBQDP0L+nv0ohcGZShRlEACBAkCgzHonh7T5nb3deWr0nufJ1MP63fmAgypVffp8uF8LxmV\ndfKcz+zPnL3XXisqUYlKVKISlahEJSpRicp/duW1ImXKVXmg9x6+bWZmXlye6iXeylhCnrN4XJ6q\nNkoPv/wTIUs+/ZFUUY4PlFf45u/oPrsPhN4IMvLIhYI/LjlgLqz9cSISK/LV33hfEfH43yB3FWWc\nlYvqE0ze3RtFCkJekHJC3tPVnOilR0QapusleX8LPIkBeY+dM1Xs2Z9LqeCFKV9/8wfywn4rq8j8\nGi/2Eu4Jm8kr64eIojffNDOzd4gwrNBZX6Pc480CG6Fs4BLR2wDR0ovp78W5vKIxHxWILXn11rRx\nDldAMqm/735f6h9pVHlGcIf0iO7nEvJeLl3UkMYoIDhf7SX8T8sGuZvJnCK3z27knT1OKtd1nSda\n7crd2Zji3fUV1elkFdFLHdIuUFT+KYpcMGY/nOp+qSNFhpdwK/RXGtst59jMzF7MFbmOpdXOki9b\nCNWFijmNLWny5sV1/zVe3TnU3T1Te1ITUE8wdrtrIsFjjWEBr3HvUnNh8w4oDnhABpfy5IcRYXco\n24nnZbPxPpFsoj+XRGYOKkQs9vW77AzOnVNFNKp+kfbBLQDMq54mUoMNL/qynyrRwFB1a0DO66Sg\n+2+E0Uzm1BV8K0Ze+P4G9WwoQhDkbu8vbqEcdv5cedUbSWyV9SSeQnEL2NVlA/6NhsYgDa/DCKWu\n4AIVClTZnn9M9OjmJ2ZmNvwlOfvb+r05ilqsXbWhgircZKTfbZTIpdeQmF9FPYRoV2xOTiuR3ucf\n6zk3H2neNwLZanUNuiCusRs6umGReT+HayBUkxsxh985PjYzs9oKtAPRkyFrwDSpz7zp+4sffGpm\nL6P7jRNFGktVPWfArpFDacXmRCTjslmnEeaPa33vgFqrkXObAw3gwTlT9NQP7aHa35rLBlIzzfXk\nRJGI2lP1e5cofBhVu23xy+q3zF2tCQHcYcWS+s2HeygGv0kvqevLjG8OvpYV6LzVIxTLEmr/VrzJ\n3xrf+QX8Aceyk+FC/ZnxNG491AHOUby782jHtj/WNbOy1s3N94l8LvV9PmT039S8GXWJamv6WQWF\nlFERTqpD/WP6VPN74w4Ikry+D+D7cLIaqyxoqMQd9irastwh8tsHvQmfxqCnvbp8R9G11lOtH3ff\n1P+H1/DCEWGtvacxX9dUjxGImkyZvHWQmS9AMnpV9dWDOsov2Njxjp4b8gMlHsA14xC1gg/CIwp/\n27KfEfLkHKil80z1SoJc3NnT/ers6S3AWrkdrS0TbLjdl23sgygcoZaRIKpobsCH6j+Hm2w9Vfv8\ndBhFhH8JrpwdVJSWG3qwM5FNthbZX7UhyCdsHgOtkdPvUvCgjK9Qv+pq33qnrHauKhpXDztYhrYM\n50XM4AYjD9+BT8mDR2/nIcpqcOO8eP5TMzNbOHEbTFE7I+I4gLsqWIV14xkLzZMJEchSSTZS3OWc\nU9M65NI3Y5B2yT3NiQDVus4UNTs4+toDPb+Sgs8txViV1WcJOAVvW+aBrl+AnO7DeZBEwWWKYlUc\n1aed78Kzx/r+5M/EOfOLD8Rvt/sdoQG23gDxQfh7vYNyyrXq3WzKRtJE+7N3USc6BgWwpX7rnwhh\nMp6pv3MT2ezz5ydmZlaYCGHjebKlGNH4pA9icCzURQo+qrUf8uhpPStlQWzmVa+7RXhMErLFxo3G\n8bqu9boIUmprC24akJQrOMjSD+FtcvSczrnOTH221+BS15+hlGPwZ1Xu6pxf2ND5P5tjv2cNOXmh\n9i4vX3IGtYe/sPMT9cfxO8f6/Xe0dk1b8LXM1e7trMYvGYefAzu6TVnCqeeAPlpMtX42P2fPBN0a\nomTHbeb3jubfFnvDCevpJUpdxTugj4Zq65C99hkqcJl91X0rpTYWQBEFATwbnGvHoZobZ6X8jmxh\nNgBJD1JneC1b2NjRHCvAgTJpy8b6X4KGvaIhKNVmQAesgSF0zuDUQanHSapeaxR2UgPQs/CBxlqg\nnq+FvloBnU5DLNptaw8fPxW3pM/vhg3dZ9HV8wH2Wx91vBwI+0kj5BVRv3RM95+i9NU3tWMXhNCL\nqdZpp6H+KeQ1R/N53a+HCqrr3p53yMxs6mvtuKH+dfo9znvWJOTKZI304d1zQcoG8Ds1v9SaksCG\nC0l9TlIhmkR20zOU7UCzxeGMU2UyNjzrW7GkeR7wvpmA9GWG0lQPqF4elbPCHiiqtPo8CZ9nf807\nwYAzSZhBkmXPAekcRwUucGQTKXjOViHKiTpOOKdmJygEw5NHEoKleXe9msN3xvrksVdPQGIGMfbc\nMZxT13zPK4mfhI/tkervb2t9aI91TlyOhrSP9/u+bHyOwm92FPoD1OcVeHtiOfVXKvGS/+3/rURI\nmahEJSpRiUpUohKVqEQlKlGJSlSiEpXXUF4rUiaAzySAT2PQIy/Oh3WePHOfKLtHfma1Iq/t0QN5\nFXNbyp9Mp+X1DfDAOXiBXaL9yzjeXFjkYyM9P0XEZu++PGfpGMoBUC/0O0ShMvKGvnFwl3rqax+e\nDFsSaV2QJ+np78Q8zCWTR/BXKAO86Ud35Zn0r4V42UjSbvg55k3QCr6ek4yjWtKBOwdFhtESVAqK\nDz4RinlmaT4eU0PJagrb+uc/F/LjT//VH5uZ2eGhvIK/80//gZmZbW1U6TN9DONE2/G8B3gVl2tF\nERIgQdorPWdBKHHRk2c6vv4rntlblB6ROXelvj+kLxckc0LjY2PyGMewzHsx8vioJ2TslgEp1IMp\nvACf0aIn20jDWh7gha0RgRj7srVVQV7ODAzdHRR1PPp6tVR0v/1M98t9ByWCJ7Ltq56iVKm8+jWT\nV7SnQmS7jzJNjsjJChWoHFIKKVSU5hmQT2lsokOk+BBVKKJpQV1e3GIV9ZCFbLKDctBuWnbRHYXk\nPeRbLsmdbcoeMjX1R0zBPesQxcr6em73nq4Lpsy9nCI8g6VsO0eEuDdHcWihfpzHmYNTTbYFfEnu\nRDZ9m1LoaAxaWaLya9VlnVR0aToGwUbO6rqoOrQGqlvaU12CK+oW19jkk/KMXzxTVDkNI/90U3Us\n+MfqiymdUVhRH/3/BgRFJiCi6xOtGcomVqx7R77GoE/06s//6I/0/I489XtT1W9wB+Z/cveHJXni\nr1FvC3k6vv3rf8/MzP7gW2+p3igP/Nv/+39VvT7R2CTgVxrFVZ9ERXNq5Kg+TeZU5h5oLRTbZuSL\nj1BT8a6JkBKd2j3QdS9GqF4V9P2AOTJ0NCebfdlgFo4d/03ZegJeiwx8RKUr0G13dJ+HKVAF7qsh\nZQogHRcdre+1isZ3F/WWyY7aMwBNEPI/JeEuqG8pinkylS1vZ1FECxXqQCv0d3X9cKV2nZjuW72j\n6N6X5+xTm/p+O6b+6iUXNtnSGOeH6rv4Nlxg12r7vZL6LDPR2KdRYMnD3TIZK3K4hi8i39fvRuTk\n95Oq436BXHl+3y2jSNhnT91W2yv3if57Wr+22UfSBdTcXH2fS6pez7rYRk7XBbvq68uu6nVvR3Pr\n8kBorOSO1pnlGap62ydmZnbEnrpKqQ89tqEBf1fK9OFE9U07GsNkyGVzQOS59WqcMhPOBrt5UF5J\n/b55roXv6DtSqdr0iRrCmRai18ZDfV9hjw/g00jcaL8oFNTP/kOdIRa+bHnugaBZaE6uTXN2CdrC\nBaHoEAlv9WRLlpENrdZ/hRdlOjQ3x1rYkS1mtrR23fuaUBn9Fc9lY+8vUJjpalzH7J/5BPWHk6CL\n0o3P+WHW19+xAvyAoFpW8OZtFao2JJIYh7sqBnrInaLoxzlsgeKUD7og5E84eENjcR+kX40x6gCl\n+GZFSjFfNtWW/Fh9n2betU70fHdH60sa9c45+8XEezUbMZRxGgM9P/km+wsKXZMaCjBj9gv49eLw\n4sXZDw6PDqknHCk9+DewdRtpDq0W8DWBPLlpcG6swh1T1Bni7r5s5pM6Eehr2Ugfrq77oDCqGzo/\nP/zWt3RdXvX95afi7gk51hhym3yqMf74z4TgnJ5r/yndE7Lm4A+OdR2KlBlUlFIn8OfBS5SCs2WW\nko104YyZj1AL3ANpaaCaUeNK+fAmPdBzPNa05bXm2mCkM9fVgHoVVP8Mn8U7L9ELe3cObJTTuv98\npnqe1VSPFcpo1bIG4IRz92KgNc7j7HibEuuyLnDGT8E5ODsPEdiyuTTooO6V2pB3iaYXtJ44PfVh\njfPvsBOqtbFec55rD9rUET62Q86L2xpzx1E9On0Qe7wjjJP6/u6Onrtaa889+TGKYV9oXejB7+GH\n6KlT5g5ogfmZ+tBhT7R9jVk2ibrRjerVP1c9s4cgNlkT1qwBZVf36845T4/4jIfrDXOkp/rXc7Lx\nEq83LmM6YiydhPpxvlD/ZatkUXCeHnTg3MmrPllXc6jZ1piX7+hsVAVsNWA8s6yPXh5E5Yr3m+D2\n51Yzs2QVNMUmSnGAKFoLzeHVROOxGKldza7qlZ6iFkX/5TIoAuVls05Fa9x4zD4JhL2Put7KOJuS\nNaIfjSyT9myTdTIOwqMDv9zc1TrwtTeVVeAXhQB81vjAzMyefqGMj9iR5s8UJGGcd7IYKCqOnbYg\nnWAGOtdPqvEzlHqzLu/PgQY3BWJvxTtsvyEbXJQ4fwUg/nhvd+AqDNFok7nun2Ud6g7hUmzAcUY2\nQ8IFOQMq6nqozJyrmvrOK6sdBlo0gwr09l31xwqk+jLOORMUWY3z+Q7vCf9fJULKRCUqUYlKVKIS\nlahEJSpRiUpUohKVqLyG8lqRMkmiPBlPn/FdUAwruB0msDKT01kikvntqjxd73xdUZ9YLGRhJ2+R\nJLM4OfxTctR82I/n5O0NOnAUDHHd4dHP3JOXt0K9PDxsnb48aMtNeUUdcuD6KPP4fbzY5NyFCjQJ\nTx45HxURt0DU6h15N7c35Y2douyQ29B1he0wBw1VE/LCjQhsDP30eSbMTyfCBA+AEzJuz0cWn6LO\nk9P/ykTi7jwEMVO9Rx/Kw7oeoxQDn086AHlCmydEe2IBkT28mQ4KAC5M+8Oe2t6+koe3kEGq5JZl\nBCN/uqa+DFBD8l3Ujh4rAjtMg3pIKALshZFCPO3VEUz6A0UAYg3V42Dy1xWuhguiWjG5W+MJIEIT\nedqXID+aqDZt8ZnNqJ5ffgY3TwaPNMzfq13ZYBrVkr0N0FZJRa16z/X94JzIQUbjdEBe+YAIdvNa\nvCneQPXb2Q95j1TNGqiKzFI2NNgATZBRPQ/uo5JlijDU6ZdsjhzoHTgeyKF1sZs+tjZsw8QeyCu8\nzOr6PkideFpzIw26zS2A0AHVVcyC1AIl0r8gYrRJPxeJoLgoJNyieKgJbZ2pLnGiUO2J+mBvDZIG\nhv8FamuppRAjVzD6FzZVp6BO/vA20Yu12nLW0xgQPLZBoN+PUNkoEuXoMv83QXQ4U9nkKq/PoRui\nq9T35yD1MnAl+CnNsRqogxg2nyBveQzqaA4iMFkkWgWd0jgnW/vgCyF8tq41R2JEMKesR5WY+qvO\nupVBrWKg4JplQGt1V6wdII52Z/p+UtLY7v8XD8zM7Jvf/fu6P5xb//Zf/qF+B59IAdRCgGpeoor6\nEZwtcfg4Chn1WwbumfQBvBX3FNktE+H+xq8pYnPbMiAPfUlEt+Cp/7qXqt/GoewliD0xM7NRQ3N0\nSf75vbLWyNqlIkeb5FKXUW+pTYmgEHkZBKD84LLoXqk9HcY5TU5zE4WewnXMSqAge13Z2mFFe0Nj\nMKDtIOXgctpJiX/hJo+CjbrODtgqzmYgGteync0ZdUTFaTKALwIU0Yw9NANyMAfiLg9H1JKx7IKw\naE81749QNEst1Te9MZIG8Cd5TdBIcLBsJlG9a8lWSzuKNnXhYTLWna2p+sFQLCiPQXKgHpgk0ufD\nGzU2/kaF46YkvonblsZjouaop/jk3l+fqf47LxSNd7+mfSAGp8ACFKwD70UTNEgiBrcXefnpLZCH\noD6WrB0ZOCd6bX1/DEfNGC63aU0D27rU/To9kIsoxGyCQjMzm2VmZqgQTgeqdx31pE5d9Vv4oYIF\nKBF4ODIgjdYolfVeyPbz3M9b6/sV+8HKCX9Pf7d0fY215q3ffWgWk20EIJczqC55vubBfKS2LUEq\n1k9l009iUlg5/q64/nJ34OpLaf0aF7QuLrNaV0METuNGbS7DnRUQER2P9X0hpz3GA8k8n2bsVUpv\nBp/TUPcrzmST8bjq4dBXBZDZE0BMRZTG9n9T51aXPbuP2l1/quuhL7LZC41V7VP1y92covwPMqCR\nr9Xnw0+03p42NffGpyeqD+p+e6DvRgWNmZPSAj9g/xi3NR61U/XTkjNfylH/bm1oDYq34UKj31Zz\nFMFONEedO/r9FDTGuKtPFwWwEd97nMMXHT0nNtFZqZETcmgLZZhkXL/zQIKnt5BkzMF3BbdN4wlr\nGra6CKXS4Iq0/MvxvftPvm09uCmu/lLotyWoiyzvGds5nf/nju5/E+h+mYOq3bZMV6CfeGeIV0DD\n++ydICF8UEDZlTbvcUN9WaatZRCJ/Zn2yt6Z+qKwpT0z5oGM8GQTl03tcYsNza29bdQ0ecewa9Q+\n4WxZgZDzPPX54XuqT+1aSMbBOevxKWNH1kEbRHR1pT7Ogl4bgYqrmtpbKOi+00utjxdnus/dDChZ\n3uk84AGDT0AWpUHkgHqIo9yWhC+k3tUcbDNGxSPURJey9SbIzGUKnhNQvW1soXCgMb1qy2YGZCVk\n99R+H/RrCtRWiI6ONTSeC/aXakr/d1DYXbNe37a4qLwWWY8BIxuiVZaGb28O4n8KMrTd0jjnOS8U\nU+y/FY23X1B97wDKuEE9agZiJs31ydhLLjJ/q2DuwrHOWH0bqg432UOmIBsPeT/17mk+jFBT68Tp\n24DMlX3WjTlKkm146VbaG0KVphRKhQZfEGJPth7r+jEcTx6o1DVchG6G8yRjlGCfGXDeX6JYlcqh\nTInylLuh+mbpu8uLEzMz63HmKae1DllX69LNc82ZJZyNDkq+4zGfK41NmvN8OiVbbPOOfRHj3W2h\nfs3NIvWlqEQlKlGJSlSiEpWoRCUqUYlKVKISlf/symtFyqy6cCVc69M5kpevAOP/OB3mGst72r6W\nF3bZlceuQ7TJg525ANv+oK7fzfGIZ1xy0mCHjiUVQUjiSS/hvV6ESBTy98ZE7QJygR2HHLc+3l1X\nHsM1eZwBkdcF+ZAhV42NyXVDCGKVkdc3nlb98zny0edEIBgVx4MDY4xXm8jBjOclyRWOg8B58aW8\npwMiRI/ehSsiVzYPNu84fAgjqpbelTfvd//7/1L3BAGTLcCDg1dyhUd4hmfcIc95CZIFsQybEdFM\n0NgS6g7xmX4fC17ND5jq4DGHDb20hMl6Ik938+ZE9dlWn5QdtafXlw1sFfFKXpNnnZcnfL/51MzM\nWgP9vxCQs/8ligw+eehxcjphzq419DyDZ8glr/AcRZgcSgSxqn7XJ7d4uKUxnEFuc5PX9XdSKGst\nyX+eyxtbnBFpWOAlXpAf2Y/RH+S0kjMbU1DfqvB4LMij3DXNlTb9E4flfQwLfaj2FDCOmwSdZmco\n72QUwXFb6p/dA33OHqNkdM3zNuRNdndRDYGXJIZKy3Ap9IHT03PLoM8WniqajKGidaS/g4vbK2I0\nrxVRvEbJyQ1RXAQtrmjbYCbbWMG+HsvAhzTS/x0QaQPQA7MREcyB6uS/pUglAiN2AYfKZppILQoJ\nz0xt2yb/u71B9Ij83slUNrze1ti6oJ5OPf1+8zmKXAT8ruGicTyUeML8X5EAMwAAIABJREFUaaI5\nNpDt9IiW3UyJdKC+0QpzZwEEbjAnxkTfY9u6YS6h+81WihTEQOQtkhqLFIoyMR/1qVClIlCHZIa6\nLoDbaw+kXov87QTr5/774s56d1NqeXtvq6G/+PNfqL8++Au1JyVbG2LD/Y+lMDCoxM3s79mnrb+S\nD32LMliC3lhpjm3C7fOEvOwC9nMVV38+In/9J2eyr+/vCx32uKt+rW3rM14DTZgjn/9iQD+onybk\nPq/T6s8MvB1Xz8UvlT1WP4zTgXWuVbcpvDQOY9xtaj1z17q3vwKpwp618xuy3Q8+UISz+C2hC5y1\n5tUYzoL5tmw4DzdMaSTkndXUxiKqDc9QRrHPNf/7R6AvG6pXEkSMz9+dkAMA1aLzuuZMtwZXQAFF\nhxtxeY1APqaSiiK5SyEGF0tULFiX2zMhXRJ1rR+DgdpReajfLy/1d51I6BsgNWuoNWViGP0ty9ae\nbHGIZFgeZZ6vvS80WLAm+g+/RCGjdk87mqPXIERTII6SjPkSNaSYg0oIiMbAV3s9uNLWrN8eZ4IO\nimj9E63/3lj96aAA4TPnQ2SMmdly5tresX5/dalxy8F3dAkXzCVIrAp8dmktjTbeALW30O/bp0TS\nU/DheUR0r9Wu5Jbq9eZ7UopsZXQGaX7GXF5NLL8PX0Vfvx2iYlNYg8pF5azqwmMEP0IAMqG0o3n6\nfCHbqcOjkeGsMWxqXh+A8q1/qjnUrnMuZO/swmE1ChVSShqL9KsJQtr+ljbb9JbqVwTNNlzK1uYg\nXFYr9jZss99FSaaKilJRv79uqo9je1o39+F/apVkY35Wc74VaM4lMqDpmurHDc50Y9RJF3CneY5s\nsDNQOxegiIdzzZmf/aHW2VJR3+dzoFebut9iLtubsc7H92QDAxCN/SF7+Fz1qjAn6kvOmvDV7ewI\nvbBGra/24rGZmeVAY9dQW81eqX/8N4Fqomr1aUvjXjLN6a+9/T3dH0WezI3WhjRn1AyIrHEDRNbm\ny7nRsqz5cD6GIDG3Be8GdjU9RH11JXtK0I8517dbFzgJFznVociYDThgBfBO5O7LNhwXRPSJbGiS\nhcPlodbF/JXm78noxMzM1kTds3A+ln39f+KABO/LBidVnXeP7qMgk1ejk8/0+yHqbc2W9oF7h0Jx\nvf1r4qN7eiUVtbUDX1BKc3nGO5pT1N85UGu18w/NzGweZ79AJaiATfabsrE6e3ehoHbuoZg7Q2Fy\n/ET1SyU4Fx9rTejyLuVCFDIdyAbGzIGNd9XeVfieAdBygApffK77V97SmrPXVr+c19RvSVQPPVQM\npwd6XnnBeXemdS+XAukI3K3ImtKevdqZJNVm/+jprNluyTaL8Br1QcZOaY/DvrABL8nQR5kOlat+\nGyQnnDPOjvrHAYUSB8kTQ4nIRUHJzGzVHdqzp9eWKlCHkLcIbq8QdTRC4dZ5wpkExPXWwbfVpqzq\nOuNF9iCnNjTaINDhw3TghpnTdz7rxhoU7gq0vcP5N5aAGxYVzyXrwRhEzQLEci7F3APRkwJtFiNj\nJjYAscmevP1A568HVdXHh6uxMda6FqouH7yJ2hsKliuyRq7OZDsf/lDrqoNq22VJ9/u8CYS+oc9Y\n+avRVBFSJipRiUpUohKVqEQlKlGJSlSiEpWoROU1lNeKlBmSZ/6LD8X6nu/JQ370TXlr82jEh+pM\nRlQoe6zrMn0ixUl57lNZcsloVmZNHjTcNANQHi6R3nRa3s8SHrUlKIyF6T7rgTx0ySoR0bE8ZE2U\nYxrXeq6H8oV1Ucqhnokyedfki7cHoEyGct8uiXLO8qiJ8Hc2pudOyat3yVcMUHyIwbBtMJ8PQQ49\n+8GPzMzsh5/KW/3Nx983M7P3fufrZuTsG+ii0+fKnb+B3b2IJ3l/F8hFGPUF/RMfwTGyVh2XqZDd\nHIUA2NOXU3lZu121tQgiI4/3cTZTXW9bRih0zeGm2UnBI5EFMUKuadAIozkaizKM34a6z5yc90yT\nKBJ5iJsLeZJ9uAEu6mFEEiTQFhFMxjALC/10pfZMfNjdZ8phdbfwmMPHcTVT3vKj++R83hdKIE7U\ncOQq2pUdwzuSEm+Fk8YLS5TLHygCkMGNmkqof2cTecZtjGefnN/dvGzlvEeEk3FOo/CzLMrGi2U4\nI1DNWKDW0QKxs4Ib4m3yvOd9zZU6LO61stpxL/GO6k2kplWFX8mVPWx01O+TlbzP0woeeljyd3eI\nCJNr3U295Ej4/yu1M82fp78UkuJeRZ77/B3lXQ9BQKTJ/Vwd6JkL1h8vrajE4Lkibl34bwK4q+au\n6nb07DP9vanvtyeymRsfladTuKyyspkO0YlZj/xuR+vNahP02VQ2Mu3D+YJHfkQksjZGLQTFqmER\n1NgUREpKtlcyRcX24WgYE0EtFkAfwEe0WIZKaKABiEqNsOmmr+9zJpvqpsn9n7Au5nXfXEz125mp\nnz//TNefffkvzMwsWyQCzlim5yBecuI+aIQoLP9navfPtN7PL2Rrq5QQKTk4uYIyUTciq51LlGI6\nr6Z0MG8QPeooKth6oHZsweX1VCIC5m7Cq9HR82+eqh3emygYzdTflz8WoqjIGjhPa06k87Lt+hco\nqaHI0E3r7yRIqusboo2rMIJUsuUTxjCmedLaVF+k4LGZTlDLSaBultQ67p//Tf2N2tr0WmMyY/2c\nnKvudTitQvUzv0Ee9k/0u92HGrsj0D7X8Z+bmdmduRArZzPNscyVVIgmTdnuOWjNaUVzonqq3w9+\nIX6Q/juoQ8FRkALudfbvZVPf+dvwisAL8dlz2fhvOWpHo6n7dkxqgVup99S+pq6vD9TOfE5z+eJc\n61AhA9zslmXOHl1nrvfJ8d+4o/W58BZRQ7ZTf67vW+wXxnq7aqudfaJiaSLClXuqTxZ0wKymfkos\niA7CXzVmDSgFIAv3FCkeDHn+DddT3+ziZXwtHgxtjUpKjKijV9HfW/DUTXzqR3QxjE72nikK+pB9\nezmEK44IazKv+9QGWvMu4S+pvgPa90j25BZUz+m8bS5KMvG82r4802+XI9ngGuRZD+WUDt+XQA4n\nfY1pnGPgHmpHCaLHLTho9mJCZCxBHi6egs7cB/FQQYLRQC8ZKN7Eq0FlhqYxW8w1Ru0h0XHIYxYo\nbvWeywa/8b7WN+OMUX+uuTb8RHOpm0WRBj61DupJIZdZPKv2eqDeEnv6/t3fF5phXZQtffaLPzUz\ns+u+1oQMSKQ5qCzX0zi8+490LtyGc+36VKjhAJTWmv5YhcCQA50Vdt7XnE9+LJv48ufqh2Er3F9A\nI9RQfeLsMthWP6XjRIzzqKJyVvKu1N56A76UG9U/nHwxVF8uUC9JPGPdbKkerSbqSFW1Nw/f0UVH\n/T95/HKfGHz42Dog6Fcgae7dF1dZiJSJgfJrxNWO1mOttfPD26N346BaAahZIkSLoUY0A/Hs72lv\nvXNfe/VP/xhk4kTr4eYDjVkCtFhspLpMQWWVM+rzABnS8LztokA2Zx9ZpDQ3th9pLjWzcNv8TOvp\npM37QJ11Yl+2eP0GZygQ6znOgekb2Uw9rT7be6T3hkJW+8HNWH3/9WPO6zFQFR9pj0zCCdkF4XIf\nLpQ7O98wM7OPAyF0BnO16+BA+2CFd7QOSKFQ2fakI1spflPXbfdlIyegIwzE0hX32z/UeORzer7z\nE411Ly6bzpc0cOUN2VRqJRvuttU+AykUm+t6y4C+yL5U+rpNSZXUD4mF5rYPzykAHws6qneS/dKt\nqr39teobwHnmxUEYgcR0QemVUGlMwi2XNd6BUTf0ly8VLJN939J+1pyFbKhJRkZ6U31RRL0twdq+\nDDjfohJ3WJWtjEHIxUa8H3MG2e7pMwEPUJb1O8k7o+Pr/4hRmu/CUTVFZSnPJ+fcWFdtLhR5VwD6\nNpyw58LtOANJ2bqCVwfuqLijPdX14WxlvxlewiEb11lpwVxMb2uOOkvmtqf7uJCAxeegSkNOK/YX\nS/DOyxnAzX81FiZCykQlKlGJSlSiEpWoRCUqUYlKVKISlai8hvJakTLZQ0VVDt+QB87Zkecq75Nn\nl0BlhMhEghzTAUo4mzuKVI7I+57GQ31zeSsDvLOkjtoaZAkkzDaDQyJDfl2AkzOZkCcuSQR9iW76\niHx7Zy6v9Qqlnhc/k3f7L/7wP5iZWXVP7fnuH7yv9qTJfcXbSSq0JQvkd8blaZsVFfUb4ytzUIBI\nkuvrhDmtRLf6BH6W8LtsEuF98FQey22YzQte3hJ4DeP0UXVb3tBEWR7j7CaqPCjETCZwkEAHnsui\n7DSE92YNcz7qC14OxSzyjz/+iz8zMzMoTGz/SB7s8j4hxluWfB/t+olyPxcBz4HPI4jJEx96jFdN\nCD+M55yjWrIFYmZFhc5BlOyHKCmQKCvlL1+dqX8K5NBeoRjR84RkmTJ1cjPQFORDOn1F4RdEiv28\n7p8daUyyKDA0vJCLQNVZEgXKB3C+ZGRjmUuNYQqCkWQFfo0ff2JmZt2q2r0LN9AIZZr2CFsta27E\n7xHNGqr/vKTGaUQktgS3S4+80WxS3uUBCKE1ij9LuAV6Dh58VLm8A0VwWrvkcWdUzzQ23Vrp7xjR\nqx65zPkt7hvI7nyY3/3x7aOXd76liOG9e7KxQkFRm0dv6O8a6h6tz8W3cXqK0lVPdd4BNXUy1Fh+\n/7/7PX3+I/Esnf9I/Ag/+OM/MTOzS1AIiZXakOrJY175lj7/63/835qZ2Y9/8udmZvZ//fN/bWZm\n47f0HB9P+2FKfXX4e39gZma75Kx+8IWQg9NzjVntmjEm+jRPwy8ER4rvKQpWKymK8+EP9ZlbCuWQ\nxmPvEsWO0975ltbbCupLWxPZ7BhkjJNWNC6OWpTfkg02Mqp3Cl6jo0PQYQutIZ21+rsQquBNFdUZ\nkw8dL8g2u5eqxy/GJ6rnUlG0RFnPH0yxpQbqfJ7q56JskYNz4bZlSgBj+kJzLzPW+G3eV72an2nu\nHqWUY7zY0P+H8Ih0r1Sv1Okm7dL/1w9QLtLSYQNP9pVL6P8XHUUjK77GyTrq18OW1oYFyKbN71Wt\nAY/N8krXdCuhqpHG+mlbNnEnqb6+7Gvvuf9rso2blPowf6qxzR3omRMTf83Vqdrw6JHWC5+o1ehE\nbd+saO7cDEGRPpGtV3KKuD77peZr7g3WB/iMxu0TMzMrJsRl0zRd96mmmD0og5xg/1nH4bSpK0Lr\nPdG6GIPnZ+e57tcvak4EIDUvySffOZLt1Icg7q7gmauoPfGl1rWzM6LztywOe7QPOvXycyEdFz4K\nQnlFy8I9OJmAPyNGXvxCNrmG82XegNyLbWkjVDLLgDCdaT1eTVEx7Om5BKCtC59VrIOaIDJ7bowI\nKIiYabjRmlnR960zRNUpVGkaaBwRArPtd9Sv7qb6qUfUc91V/TMFfZ9Joubio8zDGSl7X/ZxuASF\nDFpkPAJhuQHqL2FWAE0ag6coPkB1iXUmgTLYmLbMOrLxL5+qzr92pN8vd0KOEiKc8CE0/p04SqYg\nVLyl6vr8qWyrHNf82npXcyFBBDTm6XkTIrS3LS1UiiYzrUcFotlx1ru7h9p3Ll0NeuUN9qMjoQBe\nOELI/PBH8MetUfKaa46sV7Jt47y5ZE9/caY9v7+pc++U9XQJF1iHaH5qU/2yeaiz0boVqhGytsBX\nlWOsG1fsByCVkvAP9ueyyZanvbl6CKcMyKbFhWzT7bNvXMlWJg4oLc4YXZS47rwvdNub26g/NeH+\n+THKnCiIta5A1bY0dzdKen7CZ864oP1AAiXgloj52Dz8JntlrSnDGbKEZjZ4PrASCmJzzs0JeJuS\n8F614LYpcI5/9z3Nhcmwa7ctgQ+XF0gEH1WfBNIyo7FQXEOQNJl7WlcO6+qTLgi0FKiv4/fgubhQ\nX5y/UF+vUV7MJfW8OepEsRJoJ87pU8bALWrMyzuyge61+sh1dP3Jp0KdOff0d35L6/EkDo/lXc6x\nTRA0XRD0B7rvdly2/ssPted1UnpO5aH21BeoODkZtWc4lo3V2xrbt/6urqtcqx2fPxG69m3OPP62\n9i3vFF5AFA7n7IuDCe9uoKRzrF9JuBxPByiUAbvb/4bu122BVKmR3ZDX7+Jp7fV5ECp+S+1MYfMz\nFG+9CQt8+LJ5yzIDYVp6pPFfZXWfdY0zKvvAGsR52tH/RyiGBSjBGcrFm2QkeFl4rlpkNjAXq+/q\n/cUH2bMKJr+qS8kr2Ma9A5smVafPfq69bwbn672qbOX5c50x+jeq0+qQZ2/INns91X12w9mCTknP\nOEfyoj3i/TnF+74P30/cQTGSdySX9/4Uam8OyJkuqlBl1PTCM0WCd7EA9OmU824M7rIc66Mz0nVP\nTzTf6x/INor7KBR/nb2cej/9Uv2xCRo2AyJ8cal2VFFJTRbZ10DUt1FDvahrfyr5X20kEVImKlGJ\nSlSiEpWoRCUqUYlKVKISlahE5TWU14qUiRMO2nogL7JXRc0IL94cJYYVEYBf/lB5hu3PFPX75u+J\n7fnwfXn/VjBhjxPySMWJDKxAmIzIq4s5aMsTXFp6cEggITTtkSuXwAu5lgcwzCFz0EtfEE2bvJCH\n77IjBu0FXtnxb7xrZmaVHB5+PHepMvmccBEskMoZoRpTWOPxK+u5awI5K9iqjbxIBy6bnSxoh99U\nPz56X/3i7COJFJ/baq02TTxy0MmPq+BJvyKP9j/873+oZ8LXc/yOojK78HRkKihQLVGumanPs1nV\nrYK3spCX1zCYyRNbIqqdC4gC3bJM4c8pp+T5XXTlR+wR/Jhf6e8tV1wtAVwl1SX5hVcK1cazqs9k\nJq9vqihP+BQbSRF97z3T3922bHF7V/2ze6A+dlC5eAE3Tw/xEi9B3vscrpiWPPk7eH+HWxqrbFZj\ntNvTdY2Z/t92VJ+9va+bmVlmAw4BIpFJyGTmn8to26g1bVXJ1yaatelqHJ+BDnEv1N5cWvVvw690\nVAHpslQDgu6xnkv+5xlKZVswl/cziqDUiLSMN1EVyGtcAC7Zkv6MI6CwQOmnHWjO9h8renlYlne7\nfPSb+j88Lj2833Hv9koH84Ha2qwpWrJCdukz5rERhZn4stmtLdBMK2x0rcpuHquNm6hFlFkgTv7d\nv1IbiVZsVUFprUDAjbDtMcpdqL0N1rpuhVKY01B9RjkZ7zUqP+O6IBbThNaN84/kud+AxT2fAUm3\noeh2BYRFvfjXo/BfH4tXpO4r33s4Rq2JSEUuxbqEcsH6XGiHK3JxVxnN8VygSMggpojvgnqnt2RL\nmZr6sV2RTRZAqaXhrKmvdf95Uu2ezVhzlpoT7ZrmEEEdWwzJk8+pISuia0ZOs1tkThkcYq4+azUm\n3y1LPIeayIYePDXV82CoNW6d1lw6g6/q3ZHm1L0yCM2M2r95l/7/uaKax0Sl+nDD+BlF/7aTigz/\n4FMhKN+7L7vsnmlOrJmDi3MUdcYFc3d0j/xc8x+aBUsYa3kOBYKp5kcf22uzTiZGsuk5nEwTxtan\nTZsDlMnaemYhC+/Qc/iVvqk+32OPDFGdPU/rh600B2KmvtkFLfQZKIUpSlxv8v8XROg2+6pHGZ6G\nSVr1vUSFZIlaX2KssemVNAezOfWDM1PkMwaqooHK3fNPNYf23hMq4PRU96+A6Js5r4amcolwH35b\n6LtKVvV0NxVR/ZUSBJw8niPbqcHztE7p+X5M61sB7oJFEcQhSnDrhtqxRokiCc/TIhPynsD1RdTw\ncVtrxuDDG/6veuYegiRinzEzy/nb5q9lm01H9VjMNdfP6lpbOm31C9QJliygCFlCFSWv+7eJUhq8\nASOUJMZj1b9yX+3f+rr6v7tF3n8CZFOjb4kN2VJ+oXv0Y9h/qMbTRaUItc03vimE8fgQvoY92W6z\nq3Wif6K/t5EcXA9B6ya4D1H4UMEk4+q+q6T6cjzSdTnOKuPxS5TRbUoWVII/ASXAOt1daOxizIVy\nBWQhKp7JC+1P3bVsqFiFA6esvxNafi0TaFCCldrV7Wt/m9d031lW9/vsIyEhV/T5HpwP86r6rQdC\nZmtHc6daRYXqmbi8PnusPXnCmBYt5M/Q+j4GOeNea529egwfUYexz6kfVqg6BfTr7h6KLwnd52Kp\n+jcCtb8PF9j1M6Eg2vRjlv1ni4hzuEYUeS/YrKidz05lywu41o7fFDpv3AFBDnojVF3NoGxkZnaU\n3LRKbo/2wfXV1px1pqq/F9PcSFvI4SN7yw+/WjXlr5aA9dkh2h+nLQWQJ/ZEe36jC9oVU9841Do7\neA7KqPmY++n7CgjHq9MvVdcl5+sd/X8Wg2uKtgVwzIRKVr0XoDjZaz0XZJ7HflNTH5z8DE6uKig3\n0Ad+Ru3K72neP34sxM+8xn3SOjP4fbVvea0xd3bER7TmnLyK6fmh2ut1SzZ9bwRqYkM2u/5ANlhn\nj8x4+kxnULCEt6jBO9kE/rxCTmvOBrYzBSGfZg1acnZIH8kW7j7S3On2tb7Oh0DYh+qH9bY41Ypx\n1XvKS1m8rucuU5prsRhclrcsJzcoss3Vr11kcXsrxo32Bnn2Y9SYciBkRr7mnodC8BgUR28BgvFS\nf3cWst1KuN90ZXD1+mfU5J/aqF833/csAXqnwN6zIGNlhhpw0APt3lYddnaOzcysgWrx5y9km0ve\ncZwN9ckcHs4NEGo+3IQOfRkkULRFEdYCUEluyN+jr5MpOGNA5K15B7V1iKRTG2dwMrr76ss02Rwp\n3i0WZIWU4b7p1TXmDu/IRfZEB9WnVlPvBys4XG0dctLAXbsgo6ULx9WG/n4E59fgQnM1Hfvq/SZC\nykQlKlGJSlSiEpWoRCUqUYlKVKISlai8hvJakTIBUXWPfGwjorCAx8LLylOdH+j7It7C8Tb8GkTX\nDNUiB89ZmP8IXYYlQagM2oT9yEkrZHS/PqzLeSIYE4JrSaJszkL3HaAhb3hlHU/12/uevMZ/O/1P\nzMysRD13j1K0T95nHI+2IOq0yOu5QYG8v47uG6qhOLjMxj09N0kkN4mqlEv/TYlU98mHz+Xhrgnz\nBQeBJVx5ztf8dgGSYw0g4Qw+hY/+tdBIngOj9iEIkApRAzhPAgJoCyJ0K1L33aLG5Ht/S4z2nbme\nk0yojYuQ0OeWZYYHOFYkl56IwRKkzqKNkgPXb4Ss8QN5c2Nwywxgay+iOrFcKSqTqsBuf6GOuMZE\ncuQzLxKKZrkd1J7ILS0m4XBpqn3jM43RXSKTmy151MsJobhK9VAtSe1o4nVeN1TP+AYcEShvlQN9\n/3MQL2+YvLbpkuo9eSE0QwN6/zxRqvWB2rGJN/vZtfIgS+8qIpAjz7GXYsDKur7WUBTSz2J75Ff3\nQDpdDxVBWC/xWlf03B5TsIK6VYVI6xquhfVKdrXKyns8LqI8lpMiRX+f+13DweDDf7K8fXLu6gxV\nBrgIloQc621FcVYZ1o+UKjsg/9fLgfDYhh8Cvo2nP/2JmZld/I/6HP0fsrHNimxgHFffJMlJXWxo\nTHsgOf743wgZkbrRGD14V2PnJ4higWYIXK0TU7hufvFY61oAuiER6Pp5XGObgKdiCK+GD3qhe66+\njZmicBvki5dnKHptoIDWJqK7h6KLD0dAR/cf/lT1aA40JxZx1T+VJf+7qzFPZ2ULk7jGbrkhRGC7\nBzrrjIUOToT5lmxodKP2pfMap+umxrp5osjI8UHIJyQbTAWaY8upro9tyoavLhRhtdmrbV9VF6QS\nyMhyoKjeDbnNpQcap86APPEjIiqnX9Nziewf31cU7/JSkZMcKoGLN1EtONFc+q3fUHt/coO6Cvwh\n6/c07sln6s+rAxTh7g5s9BhU5lo2Wj1QX9aI2HmH6oM2Uf7uRxrD402N/RyuGSdzbGZmKUdzoVNS\n2wvwRbQKig4ffYv5j7LLPKtol7OjvhjCnRKq9iW3QErCS3FV0+97cKVsHahNtb7WgQdEyTyeuwa9\nVczpuq0jzZ0BYxMcw2kFV5fNtU7VdoXoWa/0OWQdKsO3ViBi+LisdpVQHvMmoY7F7UqtJ9tuXqL6\nVNNYvgeVTONE4xDmkb/3TbgARrJxz2GNqaBuQf54j8hrdgq3REzfx0E6OQk4v0L4rqPxcPP6/04J\nPpZ77MNwzCSS6r/J6KUyzDS5sincbx58JHnW80QbpYsBnBRpoU1KKY1HA2Wgi4lQFM5I45B3NTdX\nMT2/x/51WUM57lO1ZwwPngMSNz6ZWCLkLwNBkgEJN+kT/e6gVPgJ94JDJgkPR2kXRa+y6rL/vuZf\nyld0+0X8RPeH52FNVH9VIELLWJRT6sOrNesrCpGr+Kuhd4uHmtd99oP9fc2xInvgxbkixUMUtFx4\n1J72xSVjoGnTqImEokStmM4SG6gtuXyapzlZYa9OJfW85CI8z+p+CyLFy0sQiWfaFzpp1WvjDutv\nSf15WFb0f26yhSyqRbGE+jk21n2bNyjX/LG41bpD7XObcExkQWEErEnDge6TSMuWRyDHn85AIbBs\nl0I0AMqRARHsMujbAeqC9QVzB6XG3jXrKfx8xbe05vnMqQ9+pn1/PYRPcPvlPjEqza1QBeEEgnb1\nRLY9nckO07s6w60S2vc7j4mgl2+P3k3HQEizV89BKOdBHid9zYnOp+qTwlR1yMBLlATZ2GYsW58L\neVKhTzZ2tM4M1+rbox3tlZkcaKHPNOZpFL+yIEVuQOj5TZCNqGLOiiBXVrKRTl02Eavr/kFW7Rj1\n1SeFtGzDhUPr5hOdFSqg+0trkNkfwzsEj5oDqiE+VvszMV03v1b9nvx73cdQefVMc/j6p6CY4cUL\n4PmIA5/w45zDz0EzgHKowJnl+nC0mGynf6bn9VGZ3eBdcLkByvkxvH111WexDVo5qXV+zrvmApOY\nYzuZ+EuOltuUEE3m806adKn3brjOst6DqJ/egKRE/alc1bifngrxMn2sfl5ta64UMyi3gXaZ8m58\n+Uxo6gVcdWZmiaRZqTq3QVvfbdxV33nbsjmfsQg2NK+Oj/XsxDts2BMUAAAgAElEQVRCQZ01dS6L\ng1JNkVWwCtWO4C3zM7wPz+DiW+kzCwfseq7fpVEqQyTUxiDPE77qFRT0/DgKWjGXTBaQ2SHKaI2q\nmo9fIURGjhzmHHx3B+9rL5wO2RvhenWPZdM7U9l650tQrgXVM88ZZBmiVUOkJCp2fkG/G6K0tjn9\nasTd601fYkK6SFNPIdyKA1tK03lzXxPm62+IKO1rb6gTt0jP6fW1sAwggpwHpCnhlOjV9P+bj7U5\n+ryIpx7o4JBL8ILMZu2GhEGmzn/6uV4sP/9UC+PRMWlTx3p+ekeD9+tHIqkKSEfiHcyW8xA+C8lf\nCscAhGMJDrTrpup/+QzZtocyuiQkrz7EkavQwQEMajHTJBi31b4pL3N5ZOYKmazNeYHLO0jlTWQw\nzTBNKaWN7ff//j82M7NKFkKwA/qKVIM5i2WMVLE8KVWBIb3KQSvtIiHtqW8GUy0my8HtZQXVNl0/\nGivtpZuUkwPErG0/wFF3hWQqm04C6PMUuF6VxXjmqV555JHPG2wykP5ltzWm1+QNPEQS1N9AJhcY\nemyM9PclaQBtFpI3ZFNtiNViMZ24hi0gyzjWdkjtuIa8sI2kqlNhk+mqgZm7uq7u4FTxke6DpLra\nU72bD4FThuSFofwnm+7A9PcUZuGtr8kpkqEe04b6J7jkAIT88pT2uxyA5yw4s7JeVnKQWFsF+U4f\nPPxYm+M1456ZaZz2gBAOSB3J19XuYV72OFvqc7t1e2nBMQcdF8K/UHouu0ISbwa0l8Xfy7BuIAvf\nJTUhQzrOuKZ51LnhsJ7RC42/UluGQFWzS4gR18CtM0itQgR8ndTcyibUNxdBeD1pNC31af9GfXq4\nxQZ8oDEZ4FjzIaqcZOT8zZDycbPUc3oDPTddReb2ivWBzS/+AkI26lHF2VxgLHxH7Y/Jt2LnJ7Kx\nVBcyQGDgO4FsZBzT9WXkKWv1IffRJtflgGc4gst1Pa8OKV8RAszU4slfq39yQzD0LnLy85j6PzfC\n2XGpl7Z1SLyberW0gxiEcN4R6aP9Bv1A6gxzuw8MfgEJtT0kvQopyD5BgfwhBJF7ul8KKds46+5i\nW+OQfgipXgHy6wovTxCOZl/o+lQyYfGC5kNzWy8mKVJmLx9oHdndgRwe2cpFXjZ0NVT6SK6sg1Gp\nTGoZsOjpHVIi5rAdr9X326ZUkdmbavMA8uN0aIOQb/YgPR5wqO5UmWPMpVUfcjwI4WcDUsvexLGV\nVLtuSAn+9iPV76dncnoPU7rPWwQBng1l2/GUXsCNs8FwR7ZzJyWbGXAgS5IVcK/OQYwD0Z1XhJMX\n7iJ3CVlsF2L0h9VjMzNLIQPfP9GL9+pS7Z6TcrLcUX+lcbguA9nE9bXm8hYkgx7BDdch1RqZzzTp\nYAleyjp9zeEAYsqJp/7rIXYQD8UAtl6ul4t5YCvIYqdN7W/jpPqhuguxPySFXlb9v7Gvfj8nOyrA\nKe4n9dz+E5xAyJ0eAv3u+ZwnPLVzxsE4TJVsjn3DJKyPs3UFXD27huia84rDy3kNieUVgYzpc9X1\nBinr9sca828g314mshQn5dhLqG+zmzgrOOVOSUMPerygQAods5y9SukhBz7vaz0cIVgRiink44xF\nhhRqSKL3IJBcztRH69Apjtz9pMf+cimH2Pbb75iZ2aO39bIwxLFa4aVkxVZ7PdW59OLnmnOJsWxq\ncwspWyZH0ORFLa/6/CqlGRtfMeYDnD3VkpzWJVIhAs7hB/fZN3Dmd0iJDCDvj8/16cbU38ePdC6e\nelpva59zTh0g4IGz2tV7oo1xgGbLOO1PdX09pvbNSdGY8bwp6+wAIt6Cz1o21D6xyL1cAw7fPbYl\nL/LdF0oNes6+ssuatx2m7g11Pmg8031jnPFuU+YeQUTSECdPVffUkfagnZWe0XhB+s+CNKEM59Cm\n+nbaVRvbH+m67Pd0brtDoOR0paBbKnWs9iU1pj9jjqWvCegS7PKu5KibGDZM2tGwqzmXK2o/GQ5I\ntSMld9UiDcbT7zMlrRfbMH/PP9P8b6R1/YIAjuPJZgaBxsJtab2qjWTzKciYE23Zfn8BsTy/80mz\nHRKYySBxXUF8oNnQ92VSZ0JqhxnS0hZAfDvS3w4vzinO250vZFsu5+xqVrYy4ew2v8YZsqn7JwgE\n8epm0zWOV97xRq/4Su0tedfE8zDqyNaWZZ05V6zbw5bGq8073lYRIRBoEQ5c7ZP9+7Ivv6JJ1OW9\nrEDa1QTRhQT71O7u4a/q4m77dn7dsHFbtpcpad1p845Uh3x/AcjgrV/X+hDEEaSAfDoBmqAcCtYQ\nVExNeZci4L9mvUlZKMzDezNppkvWF49U6lWf8x5BtSR754Bzfop9IFhq7i0gcF+GfgTO6yucLd0z\n0lhJ5avsai/ssP5N6rRjU31ZOlZ9v2hoLhfzpNrlNBYXTS1g/ZXGKE1qYXfKvpTjHc//asddlL4U\nlahEJSpRiUpUohKVqEQlKlGJSlSi8hrKa0XKOIasclyerQS4xiUEuKMhXlpgT4ky0rMgUBZ4d1ek\nEyWH8j4HJSSyIRqqI634f/4v/8LMzAqmSO/f/WeSos2+Ka+vAbvK4kkHBWsD0ocMJE0WeTaPoONs\nrIhJC29wKIU6X+v5GVAqXhzZyNDbmtZ9r5Ftfv5HgqD98MMPzMzst772+2Zm9vV/KGTOKowK4mkb\nkr6URVJsQWpNeqF+cArIDc/NMnO1bR72OQRfB2V58WIgJsqQh7auiEL05fULgC2vIZJNr4GM0bYY\nMLwwXjcmvclHMtt1kbWNvZr8pEtkzoAPDkE9DSB1jUEIWd2Wh3lwBTIl0N93SHu6RNZ8J0OUqqr2\nnz9R/T5ty0buIoOeJGI69IlYQC4VI4UhA8Sughe4Rypaeq77l5HiC5FqSwjXEoQNA2D2ranGvplX\nf+eoX2ut+nSRkI0thTzpgSTx9vDq7kB0DFzU6yuCWkPmHeVVW7iy0RJQxFZAOhEyk42C6jHqgGa4\nlld5DwRMBVuuVfV9GmnAvZz6uwNR8jYRgznS5TdNINOkrfWHRECAVZY3IA5OysM/R0K3MWLO3aIk\n8dT3lprXLfi50/RxGhnZyVI2OCHd0XMgq54qSrGGaDJPGmBAnd0VcrXA3aekFKxIW5qA7EiAXmhA\nSFhA3nYYJ5pNxHiVg+B1oMYujyEiI4Vjcq7IXSZJBLYC8qVHZIBIwRZzuAE8c9yCIB3YvuPIpgpE\n4WdEFvq/UGT1py/k8e+wzu7cUeTDUXMtuAd590Bj3K8S/V+ov2ekcNTPQSU8UGQ0BvGZQ7pAm+TC\nEqlx3SbQYxCNR4e673vvf8fMzC57svUxPMbxX8h2t4jK9cfqr+2tVyNxHY20hsS3L/gGslmI2PMz\nRUSCntbh4A1I9/ZJHdmWTS4hJeyC6mg5oB/yoZy8+qeB3OfultKfPoGI9M1DRafazRMzM9sAadld\nnloeqeIuRLLzY/ayU+TGXa3fFdS1l09lW3U2q83jYzMzG8a1fowgZky0ZZOVt9SHl1+w14Hy2QjU\nxnkMuL1pEuVJzejEQdIFkO/vIyNeJvUqoedt7yIlDXo1Fs4pkDstpJ9Pk4rI3r+j535JZNbfUyR4\n9hw5W496e6pnxbQfLUmTTW2QEgaSZptoVL2MZOgryh0vSD0OsppLTkFj9pyUtEpKYz0lNXCMZmlI\n/u9BGji7g3Q4RJO7IDWzkPKPv5SN5xMgPd1wzVG/jzuaW0PQedmqxn+rASLxDuuoo35OJV6mVgy7\nTcvkiT6mSdNlfe5vqp9HpAw9R649Vf4+94EUHeRTfqF2TpCrDxexyRoG6pTWmoM3Zbetkvprwbli\n+uUXNmlBsgkypEbqRDWsL+vt8aEijukHevYFstp77z0wM7MMqXTjgupwA4mokUY58WGCJHXWhyQ6\nWSA6DtnlmpTc8VTzP5sIk59vV5akO/bipKNeSOBhSuqCNwPODuJuSurHnd8R8ffRgdC+n3z0kZmZ\nnT7RnFouSUFOanKvF6p3s6F2tW+0Xq+Raq5sqs83O9rXlnnOh0SM0wnNUSejfl2BmnhGikhxn3Ms\nKSjhOdpIlWh8rrk6QHhj/3sSU3j0ntIVLr5Uu+2nSI8PdN2QNK61y5kG1N9ORlDMksn2Oz+DEJN9\nzOUM4GopsSEpmytSaYrM+SLogARniSef/NjMzKagGjJp9ve9v55WbGZ2HutYklNqH7jD9hua08WH\nEHdug2BvkkJIerMDeuE2JdaDvB1qhPbnJ2ZmlgXJUQRGXwcRswBFkCywnpLeVE2ERLiMxbnWgxwp\nyO6X7Pl99rBNISbcuNBWzTp7UBGCV9rePoOwHLLkJoicbdY1H2qIxZXGZjzVfnSy0Fjn74KWykBM\n/IS9MpTI9mR78z36bqD+cEmjWdXZT8bqh0S47sQ01nPSMnNd6BLCFGZQbf4ONAJxhDJAZHu0Z0F9\nl0Uks+nvxJB3Mwjzk6Axmi9ILXl0rOeUNcduzlSf5SWIo7XmSpipkgCpOJuSVhV7NXqGioX1InsC\nae9Q3jlg/B1P7agUQMikQsJ4UMac/yuktbVBofQv1c9OSv3i8s5ZhRg6th/7VV2ejc5t8rxjyYXO\nJ9kiKK8TkGUdMjU8PXOKEE/nI41R7VQ2l0qT4bFBJklPNp1n7HmlsSUonrCtDhiRDMg7B9RYZkI2\nAEi99ZB3Ihdict633QmIGUieK5sg3q6EyurUNBeSW9B88G7XB0Hvk07ZB906aTEXn+r5ubTGPp/R\nWLsLPWfWZU5kWVdS+r4FonsIcmfmkKLd+2q3S4SUiUpUohKVqEQlKlGJSlSiEpWoRCUqUXkN5bUi\nZWJwqUwhAnNDqWqHyDXkfUm8nyF53QRSpf5E17k5cl5DYh68wXHkLQvwoxz7yGrOdV+XiPMayasl\nxEMBpFEBeYVvf1MyxYf35WWME4noga6I4RmrhsTCGTgK1iFJEx4yok8xiIESYz3XJwoYwHfiILU9\n53driNzWeAQHeP49ZOEC2pvJq14VUz/4SVAIzaatiDKv4WkokA+3GsvrV4fc6fEPFL158YW4CTbv\nKXr+9ncUrSqHnvgZsrdEwXPITjop8nshHx6GxMDkKU6DV/MkLwp4fOnjxV15wBvPdb8s8rOLqtpR\n8zQm5SlRNVBWTl42NoAEeUX0KsyxbA6IisChk9xRe/oLjXmBPrWa+snbhnxwE7lLgRusDZeL0yBa\nxBjlsrIpD/nMRkK/G8zlbZ6mdH2cqFbaQ6IPdMH0BLSBqGVsYwF5lk9EnedMyKWdd5H4HkNyWNUP\n/SzEk3h1fbzQRUftGbrKXR7j7V6kkOMklzh7CsdBBi4hvMdF5hjUP5YiN/kehJLNsfp7byTv9oYv\n/pBJX+2dIWVYBg0yrtxefjIGgs7Hwz5GDng0Ieq91DNQf7d0Gl6bBfnP1xB+bWreXhDtDpFpAaR9\nDhLWBU919ep4/iHzHCJtOu3Kli4u9H0+qTGeIO2XHahvC67G6tEbQlK4e4pqf/QDEQxvIR04giPm\n2VQ8Fu8cKuJYPdCYOkijzpKaC5U03ASg256wXtxNqP7Nue539G0h8H47o5h1I6uxvfzBj8zM7GqK\npGDIPTNE+g9J2HZc6IEH91XPLrm4PlwyyTHoMZAoowHInX3VI9kEXbcARUGkOAk3UIlIROsRBMIT\nRSqH5PqnQ36UWxavpbUhM2T/iEGaPVPk2N9QpHYCj9LFEtK8PsSiJdW7N9f3JYjn4nOtcR3T/WZE\nKa/b6ufjA33/F+ciUbe4uNFSKbVjAf/AeLmyEuvpGkRhugYyowB/xRL52qK4YFw4PBonmp979/X3\nL7/QenVEdMuFU2bIup3bxHZpSwKZ905PbU0TvQ7J9dabms/tM/EwPICQcHMflOgNCEBQrzHWI9cn\n7B1HmhmicSetOXQDH9SKyOO6rzHN5bQOOcisj8n7duGb24OHqQjSbwJXQRq+jf0OiMPCqyFlCqAg\n1m9qzbh3oHa3IJqcXqg+Nx21a+tEtlq4z/oJ+V9hF5Jt1v3lczhWfq52xepaG7bvc2aB/Ha9gVxo\nEW6fvtr74nM9v3sJ9wPokDqcYvfLf+UoF0/ZbA6fRoimBTmzmdI4jGIat0Rb/da+gRfgC9mRW9Hv\nDvc15+JE+UrwtdxkdZ9YludAgBknGlqCV+q0ZDaCnyeP8kJsorb2IWLtwMG1AJV770CIki0knPs1\noI/3tR54vta92uWJmZk5RGJTnJMyCc5dEE361GXsh9wEEP1yHlsnX0aLb1OqVc2ReRMEB6TXCdN9\n62MhEQPOXF4aeXqQfydTyEaBAnrYcAXxgADk0M2X6pfaZ1r382XWe3gmxnBiLdmvknDEpAL6DU7F\n7UNdf/9bQrj85b/8j2Zm1kbcoXIsxE1xn/X0Uv10OtLzkxlk64daewZIWM8hvgxmIAhBhs7GXAf/\nx/wjzdXknX3qr/otkW8OhvrMIR6QP5RtdSBIP3+is2jlgf6/wxri3tM47PrHZmY2vAfPVOfEzMw8\nH16uHsTwZja8uPyVMMgUNEruazrjTmNqf8gFOQMZkzE9L817yG2Kn1AfTBrqmwAOx3ZOa/4m56US\nnDOxOAhwqFHKoDA90GXpiebloIVU9V3tKWlIVGsnOmOUCzq/ZhA76DRUjxbwV7+kdckBdTbhzBTO\n7yl79BpuQN+B828Vcs+Alniidm1yTotX1Zf1jr73ySooQKbswXm1ASq2Bpm+wc8xYa6mQtlxbDyY\na29Og9DrtnR99U0hKgHl2hobWjpkXQA3WHHmKrIuNxpwtszD6/TZpV15sjViMY19MIYn7yn8UyAp\nszHW64V+F8Ct6bmvxnNncHEtWFdziN20OQuFaDuLqR0ZJLFHXZDnjRMzM0uzhmVB0qyn8KnAj+g+\ngI+qKLtaw/83y798HwuCrA3XZjneQRKBrh3xPrxxn5cPshDGXbIJ4KErwFnogI61mJ65ZD1aApGZ\nkomSg3c0YK+ymdbtxVo2lIaLJcxgybThe+P3ad6NArJAOnCRLUB3psk6GDisM6yXqarWl2VRY5mH\nvyi55P0BRM0MTrBuXu1dh1yQ8KZenGpdieW0bn/9N7SOFEJOnIr67ymk+F/+qThnmsuvzgKIkDJR\niUpUohKVqEQlKlGJSlSiEpWoRCUqr6G8VqTMjDzCHtEcH66GOJHTMJqXICqUQ165dyFPVoxof2KO\nugoqRAnkwkJZusw95cj9g//hn+k5ODP9qjxaM/grsshHDkL1JZQr0nhxvao8eaenihAviHQUyWFD\nFdOWMbm7S0juBvCJTEGTeOTvx/GobZfJjfttebfDyHm+oChdElTLeISyQwXUCPwC/abqPX1GtCuu\n++7vwrged23kohCCZ7iHzPgQPg0nqbo+el8yidtvKX+4BKdImUirixTdBI90sisv4HKiTl0udf0A\nhErjVJ7ui4/FEr95/JLt+zZlktCYJ0w8D3FUiNZJeYBL98gnJ/qxmsC6DhIlngb5ArfAbEnO6lpR\nlsUBso9jeeD37yia1CWieP2xIhtHdmJmZql7cMkQTmltqH5ZIhnJgT67qCplK/AiIQDQGSj6UziQ\nLTWn6p84ufjl3WO1p6Hvh7tIaSMnuT9WVGu+S9SPKTzpkk9Z0oOy5Pz3XI1b7hT55m/Km7sxRhVr\nRb463BSzocZ380iRiRQ5tB1Tv25UZasx5KDDFaRETmwGVEQD5vJkT97i2LXmzHiNzPEhCjfXun+s\no3FagU4rhTqhtyi9E60HE6LY249U9wWSeMFUfdsgKhGnLSEyLQ8nSAKp0jUKOMFav/MbRJEWsvV2\nMeRVYn4RrinfyCaGZf1/E5WL3gz5X3JV+/t6/mc/V72L8IdkTdGZDZCAHhJ+7ZHm1s5E68jf+m/+\njp4PMu9P/lBImQzhoeshigYouJRLWo/GRIlWROfe/e3f1PM21Pfjnyg3P0e+tQvb/dpHcrStv4ug\nvb7xu79lZma/91/9QzMz+/EH4hj44H/7n9R/8C71kLWvoggxuVL/tEEodn6pufx48D+bmdlBTOOx\nBNXnpfW8uaHkgMLaYPJqEe7GnCgZyhc55kjsS5TO1qwpdbgdiuqXYldr14NjrYmrtepz+lzjGXyb\n6OVc15+jWjWAO+H+7t9UBf7jX5iZWbqp8R4PpErijdWes1XfHr0lXpvWjySfO36b+UwecjwAxdnT\n5+FM0ecxtt/eEqKR4JA1LhXNOdwjXxujuflMbVzdZe9AkctnL54TaZsVyd0HAbeE78L7hIhlUbbW\nHaqPVsjQLzNIVSOpnEItaa9OxDUBImfBmDRAfx6BgIQnzee+20QgVwkkWuHWCvZQbnkRInXgsUDJ\nYbZ8NaRM/VINveypffGq9oNpQnPy7l3ZZg21kMQEfoupPsdlfb8Fl0E9UD1QxLU2+6E3UHumW1oP\nPVAFBqrB5UwQA+U2J//e4yxUddSvox58T52X/EqL+dQsg5JcHLljIt/JkvhMwqjmBrxYSSRunyDd\nveyBYtuU3fXXqm/KQRo2KzTIAlWTsxOdPdxDlHzisotVMmV91IDWPZBnqG+kMxpjd0PnnGty8Geg\nU2fwZLwYyaY2XM2N42/Ldjz64GTMPMaG1kTPcynkhXeR5vJ1/wAFMAcVO9e7vaqOmVm3rTFsniny\nWSgLtVYG6Vhf6/+puWwyRlT+6R8JhexvwY0Cn1A+lJpFsWsFuiHNOa5k8OahxDYdyqZCWeI662nv\nKdLOBRTX4HFKgHrKgKJLbMhGfc6A0xVzMKGx7aVlAzMUblYorDVrau+TPxJyZxNJziXn8DVy6x68\nFlnQE2tftrwe6X7rFijmBnxJE91nEoPnhKj/Bkphu8ca7z04c1rso/Fngiff/w2to3v3dP0P/vkn\naidojZj/8jVn+NGNtTh/J/Kcgfqo/OU0bt0EKn38vganTe4VQtirJXwTnGcSc9RHedeIeax/X9fe\n6oKQmMN3FJRBWW2CiEHqugUXSwnOmmRG92m90P+v/b+OSgvWOlOcwxF46Ol+uQO18aahvWvuqh5N\nlMNSZbhbdtXn2XPN3eU1qC8QNF1s486x1P+gyLE1vErjNFkBgX5/dEf7011H7wGXH0tmPdMBMbLQ\n/VM53a/4Bui3qeb4rMX7gAey5ED1zjp6zqimtcYBWd93UQU80Lk3BoJ/glpUjP0tRAxdn2juJeOy\nYQ/5+clIz82jPrpIc0ZiDXMMxGDi9qqhZmYpVGR3+ux3O7zzgQbso4q6BrlaSsvGrwcgULELH7n2\naRF+VZTuqnB7oeBtbk/2dQMHTy6U1TWzrfuHNmh0rQ7XX5Y2ZnwZvpvV389v1IeNM+2RIbdiAin7\nBcjABdxOmZHqMuSdIcPeHmd99DirJFbw/TD/Y/CRBvB4rkD5L8iwmfE+HRJ3NlAvzsN3OoA/zQMV\nlEO5ccU+UEnKBh0Q0I2abCqBgu0hKmy5ebg/gOJiTiyZizsFjcEKPr4nn2sdCbZkK5dwYZ1cqc83\nJwv7qhIhZaISlahEJSpRiUpUohKVqEQlKlGJSlReQ3mtSJnOU3naPv7hh2Zmdu892OSP5HEb9cir\nK8nrmYrB0QB/SAefUhplGIe87N5AnrERbMwuXtWNsjxWUzx/YSpbHM6EuZHji+duCGJmSrRtAddA\nIa2IzQ7a9v0J6ixz8kf7eJVhXXbx3K3IsXPwzMfJwx7DvVAE5ZDflrd0hrd7TYQ3jurAHIRR/RO8\n3HA97OzKuzpD+qiDSkjWCcwnerImlTOZpk4wXC+n8OyQx51BrWEOJ0xtpOhJeoonH9ROjs5a4VWM\nw9WSghV83hdCYkje9/aATr9lKSSJTIKA2c6QIwmCZ+nBBQNKatjR85Il1aNEdG0SU3vcgEhFR5G+\nAaoXtZTG/pOM6lf2yY/OKErSL8ujXCipb1cj6gHqoE8/pWdEtjdAUYFQamX1fwfU1coUkc2peVZb\ny4s6K8q7m1jB3dOBy2BGdGtLtuGSc9u8lrc2HSJMiCJ1iEa+EZeNruLkVzeI0KA80J+pPTki5C9O\nVL9iAR6nu7Kp1KlsutNW/xZyilAkQCukivI6r0CLpFDY6BFhTQTKAS6viMSu9LwkXub1Wt8HNY3n\nbHn7pYkmWwd01rSuNmXJx47lNPYHeLq9vCKPzy/VlrQvWz2/Yn6WiH5sqI9GcLNMNlBIGMPPgyLA\nMkYED6mrXdanb/32d83M7BplmdqVInuxS91/MBIa4vKxxuRgHEaKZWt9lBh8UAw3c3LsX6ivfHJq\nt/bIV0fVKMl611c1LIuyw9KD72gIMoYo2fO/PDEzs8+uZZNTOF3KBdrPWIW8I8OR+vP0Std3TlWv\n+YdCs/U7et5+WddPYqpfz4GHAmWwo3216/3fVfTs+QQUAWg8Ax0x5X75QM8dFvV3B46t25bVBSiE\nJTb81l21+wTUCZwOXh9UYU12lPmp1p4KCmudmdbvEvvT5ceoTzF3U+eyu6cp/e44q/7sLjUgn3xO\nPaZC1XWw+cT4l5YgJzz/RH2xPYVfgej1/AR1H3gzym3UL840P7fuoWByoWdfhjxmT9RnCxRJykTn\n/Y8ZW1R6WkPysx2tA7EzcvLhvane6H5Phqrf3SNFIBMzOFWean09RMmgd616TN9mL57oPpk1yjIj\n2WK1rXXu/Fo2nw55LOBlGhzr9364vrVVrw1sYRrXc8/hzFmXtT71b17tiJOuoFwG70kKFMAkq3X0\nso6602dq/8ZDUF0jItMoPsS31Z8ZIDL3v/s3zMys9qdCtaUg0fHhzOk2iR6W1e6rAO6YvCLd9x9q\njWi2Ub64AXWGEsU9FNfMzEpe1hbcl+3Npth07qE+fSK+qTT7A2i2g4rGMw+XQbDU2SNgbXF29bvd\nyrGZmY1c7Y/JR/rdgjmdIqpaSW/YVMuMZWIoPYaKM13m9QHo2oz+3wlkMwkimEV4hOZELBvP4LUA\nUe1CFraGY7DI+Wi11mcxzTpUgD8N5cBEAb6f9avFJoOR5l7oU8cAACAASURBVH8MxEcACmFmoLma\n+r53o/vfKWt984gApxZqR8i/4+3DQbjS9e3n+szkNDd2vi/bcoBqXJ8LsdK7kq11X+gs0z0VmnZr\nQ+ua56sew57WmU+v4K9z9Xf1TY0ZQCa7uNZALbDZJepM5Xc50xyhXHkFh82UfScDeg90R2JX7fTe\n0Nlr75HOLPVzcW2dfyH02+RGcz7uyLZrT1Bb2tHzt+5pLawcs5GBTk52ZYtNbTv25ENxsGXSur53\nKTvYQ6HHh+vLzGzn+IHFQRylp+q/ESiM02corLFfe6jHHJc0DinOAbcp8YxsPIGa5fIAdTR4dM4c\n2czurvpoBXq/VVMfJRlr967atLmrPnjxbz41s5dRfbcIT2ZXyInmmfpuNNC8zsMHMm1onehuqV5b\ncEX6KNgOUFlao9Q4hqeyBP9GtgzqNyE0bJIzT4892n0A6j+t6+ufMpYoDgbw481Kes7xnu43qGss\nVvCNrJecUeDZ9EvwUOX4fKIzRzunNWALTq5t9s1nPzkxM7MlcLkBaOclB+2dI51Da6dC6KSWIPtA\nqlyGZ4FNsjPgKFtibHOUPFOO9psEvEQOL1brxFejIP7T4sAVk/TUH8mx7ptzWRt43hx1xXlM/5/n\n4NDhvWuUR22qrTkfG6FEzFlqeK1+zm2CBh+gpNl6iTbOusdmqS/MAcGyAEnobGkvnQy1F3RaoGzg\n0/FQTcvAFXjDu0EWZPNqIltYs5e4KLMuUa6NLViveR/2QemuUO8MsUcxEOSr9f/D3pv9WJZl5337\njHee7405IiPHGrvY3dXqFkHZEiSQtGUbBgTYfjL84P/Jf4FhGDBsP9iAJNsCJZHi0AO7q7tYQ1YO\nERkZ053n6Ux++H6nkpTZxUjAcD74rJfIiLz3nH32Xns4a33r+0CyF9QnCfOyybnbwGmT4307V0JZ\n+FBzZTjV37u3WgdznHnWqJAmvNMMeqCJUaNrNIWaPTjVeh2u4QEFwdN7IVTy7XOtw6uV2vVnrzhX\n8w7lnRyY77IMKZNZZplllllmmWWWWWaZZZZZZpll9g7snSJl5kSyHBe1jrwiVgXQG4GriNcWBmy7\noEjcBsWJxdfKPF8u9b29h4o6+6imAHQxjk20cIUSBXWPPnXaVp56/bUiZBvq0q1IkbdxV5HB83+p\n2ubeQhf4J//JPzbGGFNBtcUGrVBOTvX9MvV9vqKtK2rjlrGinQkZFx8+lzlRbT+G2Zs680XaH1P9\n/pqMyF/+L//WGGNMsaz7/Uf/zR8YY4ypNRQ9DiJl82bjpXFdRe3WMF7XqF+2A2ryiUJu5/BYoOEe\nUldr+6AOIAMvwF+xhsU97/Os1HFbO3qGe76yRKcHqmWPoreLA6aKOTnUOpYzjcnOHrwbt3rGEtnr\nThpZJ3JdhFugkZPvvBjKl6bwbDQOlAU5raKcgrrTCq6DxTXKATtkkLneEtUiA8JlDwWeaU6ZwxLo\nhLiOT27lGwWUxlZwFJCQNsdtRaU7U/nelKj0k6qizOfXij7bASz2bfV7H86cKdmyfAtekhyIIGp0\nHV+fa3flBxMyAM1rXedrkEh5S0pjTTI8cQ9mcgcG9AqKC3AOxJVU2UI/E1Aa8QZlI7gw6qiDzD2h\nEWL8xYKTx6befNDWODfiu2el9n9fiJRj0DkRHC/dzxW53sBFNZoqYt29UB+HPPvef/qHxhhj3LML\n2kyta1rfXVEWavlM83wGp8ACFaJ7n+gnpftm/Eo+8rOcMpqDL3XdqKA+OgaN9aPHmhMjnHyhRzcj\nMgilpa57UwaBBzfB//6//a9q70jtmITwRaCgkC+ieEC22wclt1kqo3Hl6Eb5L5VhXF6RqbXhESLD\nOk7kIzH11Ksm9e3wUE3IfPzxX0itaf4VmdqQ9WwOorGgfmzDqh968unqjhS4djuaI198pu9HIB97\nU/nksSNfuyZ7ZqG0sDN6u/rtOKf2zibU3bOP7CQaXztWu3YGWucPHn2o+0W67wbuolqs/ryFkybX\nV8ZlkVcd/HJ+ZowxJvgTtbP2EBXBMXXtn6kdVkP9mUvnyuvAlFooAJDhCvtwpLD+DkdaX3Y/U5uu\nQQ+NJyAFL1ADWrAej0DeVeB08aRsc7nUs2yHyjCmXE61lXxpOFEWu05t/fb3NJaDn8qHirZUmOz7\n1HUvWQ9+rvtZ8FeUEo1hdaBs1dlYfZzzQMWCvJmTrbK+0vd3f6T17l8N/tgYY8x/uNH3fc4Klyi+\nFMiKzdPM4Yj1+UZzzLLeji/E1LV+1vPq31TtwkUpcTtiPYy0ji3H2s9isotFh0wl69vyhfr5/IV8\n5PW/ER9H6kM7qNQtGrpfcx8UG8pEl1P5ZoLq3e1z1P9QfVqDop189AYps16GZgXawS9ozdiU2X9Y\n96vsCyuUkV5+pv1j8FONTw8Fi92KOOZ2aoz/DbxSj1EMK2lfXYy1tlYrQiFOqPuvNepmfSuf9VDX\niGz9fP5UCOmjU/lUrpXyrOnZTx9pPpXyZFTb8okQpa3hK7XVZgwuUW9qgYQu1eErIxu+AMlcBHld\nAxG4XL3dmaQBV9kUfo7RSGMQoIjogzbYu6f//+R7OgPdPJVPds/lC8Ge5sbuqda/KX2+trVfjG91\nvv3ofa2T1onmgFsApXoLsrsrnz1BccdFhbMH2ur1uZApLgqRYay1ZVORT6xA/IzH6p/lRIgaZ48z\nyaF8pv3jU2OMMfWZPv/6/xRqYwZKo1RVu5aB/v/mRmgE00FZCD6sIhul+0jjvu/re+5U9x3MdUa6\ngiMxtEFpd0FnW39z/MZ9+D4eyeeOn2idTThLTfA/Y4yZLgPz+KHmXPr2c/sXQsggtmJy8OwlqKzM\nQeDG1cTc1UL4JRx4MlPlvgSE3GTIOvmpxiyKNJ+CSPN7XoIfE5XL/fc/1jN+pe+fgZbd3YIOsDVG\nW9Cb0RLfDpkzrGfLScrfqYdvwgUzQjbTRU1zzvl+CbrrGDWo10vt0XkQ7ytQCwkotA7r2QS0m9dj\nnZmC5lrDs/Y97UOt91ByBKnuD9SupQf8eV8+X4K7xV/p+jdwptjw+j36WOfWp+cgRvj/mGqJPufQ\nk472nUpbY74+V7trfG4WqV8DkH4xCHsfNUS/CteapTlcK8HphjpUHN/dR4wxJhzoepMxHJCMz/AE\nFDDoQbustWFqaxzLeygkdfj8S7VnAzovAmkVJSAhUbKkwMHUYqpLRm/a0ohi8+FHxwYwpskZEOMQ\n1FWowLi/AxKGaotFi70R1WEf9E7RA5G45B2kD69SHn4yOKRc+M0SeEHtOpxTVMZUWE8S1O18uGrc\nKQq2ERyrXCcPl+MU5cg8cwkKVnN1pfV18LV8uM553M4xF0HkFdk3tiDVO3W4YeEvKuATazosV9D9\n7n9PVQOznNa3P0IB14xRgbK+W1k2Q8pklllmmWWWWWaZZZZZZplllllmmb0De6dImT1UkT79QyFO\n2g1qzVyQKobUs1Gkaoke+vpamYk/+eeK1H/xlVRDvvf3/pExxpgf/FNlJqrU6dlwSnhEssobOBY6\nZJeIkKfZra2l73lxql+uyF/3taLJ33QVads7Vvvf+13uR/ZrDsLF3eg6643ae91VRK0GI/h2D0TM\nUpHDPHXhEZH5ICTrRr2pQXfdoubu9lKZIdeoX776hbgu9h4r27Z3qN8btapxQGb41D2PUNlxQQ+t\nifDGiSKzPtlwh6hnyO8Las+NB9cAWYUVHAERNYoRyJFOXX2wom8naRj2jlZPKwrhoSitiVwfqC8u\nQ0XG7Z7a1cpRKz9X3Z7Th129SF0gYzt8pch9QpS09hgG7lBZn+1UvxfRsp/78BnFaXaeqC01/x5q\nKOELor/H+nvFp3+pp3fJ8C5QC+k8UtT5iBrQmxt9vhig0rRStPUj5kbZJ6tORrs+YVzGsPi3yNgO\nydq3lIE4uiLTvAO7vqV+Ou+jkhLq7/nmqTHGmClcOcGlapxNQaiOliv/seEzcYmeeyUUflCEGETK\naMxG+n4M0mbnhyBmbM2lAC6JTaqIU9c4tqt3jxdvfqEswZfc632y3U0i3d0KiIitshoO/D6dx1LT\n+f3/VqpsX/zqF8YYY379PwiJMi6qDXNLz9KwNN/qf+892qpsxUs4DipkACcEws9/LY6VjkW2J5bP\n9VYaq1ZeP8fMrWmZLAzZ7aUn33ZXykDs8P8XPRS+lvKRAoiehGzS+LV8rPZA7QzItm3zqHA8J5N6\npueJ6HOT1gh7ZAyWun+DuTbvK63SAPWEGJXpjmHNp7Z23CZTaSsbWIJTZkr2cN5Tf0T7Us3IH2qu\nxf+TxmXTAalElu5mmapTkR2qaHyHubdDyjSoe++x/lfYT0od/azV9fMKlGDJk8/WSsqQ+JHaWUIN\nr9lVP80d1k4y9LUWNcOOMtSLELSeEbqi19V4PzjUHJ198yfqj82uadQ0pvU5qE5fv8dN9oYRyjQt\noXm8FLkIMsK91F6TL8GvhkLgDE6vJyiieKANgpF8YF7QdTu29gwHtNQrVNTeO5Ov7kXKOj/rak9u\ngLjYA+1joSKyDpWRnKC+UR6AINzR795IY9oHSdN0T40xxjz3lc6v2dpbC67u/3qg53iUAyWbKGM7\nnMsX1oxNf6rnyO/Kl8azt/OR2VDrkjVTe1+AIiixPgYLsufsd34Mupd1PlyDwsqrf4asEUcPyJDX\n9PcyfCcB67AD0qlCHX71WGvV1TPNdWtXz1l9oP/PHWv9v36h5/b8NxnaZbgyBk60eqL+OpuwPoMe\n2BZRHENhsr2rOdtn7YpGIBhBeNqJfN0OtaYtVyjW7GtuLOBS2IAGHt3qfnWrbVZj+MlAupQgmRnB\nTRLdg5eOGv01HH0h/ApzkMVFV+vw/iP16fjP5AMuqpn5VYoe0hgVkTzsMc+3qAzVUCUqgl5Ydgfm\nbWwOaq15oD7xgbtuGpwRXLUvAqr9aojaHJwuW0s+H8PnNoRbpQtCZfIVc96WL339jXiIDiu67mCG\napGnvm+8r35Jhrr/dqwx2ymLW8YB/ZAiVhqoOq3HnO3K8rHGBF4ozjJ1+JG2qPDdfPU395vwSv2f\npGqBu6ATyGxfvRRSNFW8aXxP43/4/U/0+RP1e+815124H/Y+Ai0GZ9DNEC4J+APzqK7kUSJbV9Xu\n4n19PwR5vv4STjLmqDHGJFFkPDiG+nAbrafyi+qp/GU3zbQPQKiCnLeDsrmruQ4cMqCpvCbnRM6P\nV121bck7w+mH2guHqDT1L3UODV6DUmjr3i2QHl1QRAvUeRCcNbbV5v4omxXVx/mivr8usg7AVXL0\niXgypijX+Aa+I545ZC6Wd7QvHL2v8+jwr1BB2oCW2Kg99QONxdEhfCJwzlyvNQaLZ1pfHfhDazuo\ncYLU7oI4nIKOLRpQvE2NvTUFCQQCcX2OotcRCpgdnVOn8NzNQj3H8EI+fsCc39/Rejd8pf0mArVR\nYW7lGOsI1aN0/y2CRo5AogYNlHzgDd2M3u6VesD7V65HFcRAv6+Ys5u2+qeWpGdCVJj2NM4zJ93f\n6V84HMuo+6XVIHMQPwGcjyHKapXym31jMrww48XC5EH592/PjDHGlODaq3fgvwFllQMNOdho7Ob4\nzHqC8hioqR2Wn0oZlSYQi+m7XAL6JyroGaAwNK6XVmvovhOqBHIWvG821RqgtkJ49gxo/WSjn6st\nZx0U0WLG1vNYT9rqy1yJd7acfDNZUdUwQG3vmXxqmZ7TWb9X+FgVZFALn55Ymgv32rrvOcrHOc5k\nv80ypExmmWWWWWaZZZZZZplllllmmWWW2Tuwd4qU8WGSjoGCTEaw6jtpLZsiS0kOpmhq06wtkama\nIl2HHdU9t+uKlBe3KFIQMatvFRUsUvNmGij2oFCwnRNRJxIfka0KIxQR6mrHx7//D4wxxuyPFXW9\nT4YiT+bdKlJfic77LFJEbHStqO6/+xfiXtg70Pd+9A9VJ+qWUWyIqFtECceQ+XapmWul0feWInn/\n8X/5n+t7Rs/dOFAUuIkCEgTeJolnZsaz5FEasKiLs2CwrsBgPQkUAR+TTV68UBTy2V9IKeYADpH3\nf6w65wi+iggeiYio4XKlaOZ0S40mfD1BqqxyR5teguBw9Ww2Nbopiuphov+/uUZFKgYxglJDcYKq\nyEBjUw/FM7K/hnvmFT6FckCezK91rprTOlmT9li+UyzAAzRSvwxu+XwA4mQCgqYFm/wY9aKafN3M\nQKAQZfYWyqonoLj2r3Tdm4lvzB8aUwuo7y5ojHtkpL2+vl8mMzIiC5jvy6dLTT1f3gcd4KfcP+qP\nsE80eyknWa3106X2OBjIx519OCVqihqPieO6+GZurfvj6mYJ34fXQWmIWt2AOtB4V+0Lqvp9Eei6\ngaMMSrGuTMzGfDdD+V+3EbXohQtFskd1+UBtF2WpEaoXXLJFlt+Dq2k1Es9DcCXEXejpekdbPdvF\nSg+3AR12+H2tN4Gntu4O/7X+35avLBbwQ5AhyJEZuIETykbdqdCQb4xvxK1Qn8Mxkptwfd3PnZDt\nIRPbgcfh+z/6ka5zqrnrdjXWq+nnxhhjnuHby43uW6YmdtzSzx4KP81AWbnIUoR/GOt+DfiDQmqB\n8214fybwG/WEBHFqyjzMqUGO5sqa3YCMKaB4VoPTJSX7yvuaYyOgRU4TxFCg/rPhnnDJPF9Sb1+O\nUHLYIutyRwvx9eJ9tf+mCb8JCmC7ZGSuqurfLagI+4kyt3YsdIqVU/36ytFcdKvqt9mC7Bq8SAcL\nlB1cZZSrD2D/v/gjY4wxpQ+FlEngP/mid2uWO79njDEmOFTfT1EU/MTVZ6YH8rnwSL6SfMNeQQa0\nU5evvqjBw4DaxwB0TlJF1cLWnrTY017ishcPHOaMq7//qqgs/gFKJi9RuJmOyfhSsx7eBzWkaWy8\nSM98ciIU6dW5VDt8+IKcx7rf1Z/r58cfqM+n/5ZM7yegzuYa+72e/m5AAG3IflvP1McFOFPytsZ2\ndAuXTZ09847ml8ie8TME5VQYaGxv+5or4xv1n0Nmu/IjqSslqDXF1LM3i2QXyeq34GbIo2C24WfP\nk88ktyh4+RrnGdm6lGfv1ZXu2+bsUtkj24gChjHGuF7VrHfVr90XnGlAsAJsNT7oYQs02G5D389/\nqr/3P4OjABK5MuooKS9eBSW7HAihuK19Yu8TzYXt50ITh4up8VAmLDj4HMi8+onWyxJIRu9APjcm\nVboBMZ1mz4PPhYwu3edcyHkpXsOP5+rhZqhelkDKbPvw0bXgTWLdDlAYtMZv+HjuYvOu5uKEdbVY\n0/rgsgcuYiFEbNaTV19of/FQwNl/LB+ofABfBOfdKWeHyoE+t+ujQgq3wvg5KAdQtGU4qXbf0z5y\n+yuhu26/1hnHXWlOVTsgh+q6n/NAaIL41xqP6a/lKx79uNvQfZcJ/HagtSYvNKZtF04XR89R/TGo\nXNAQCQjO06nOuQ6Z6TxrRrGKohxI9G5P3GZb0GXNltAbJZDuzm+0zyzhuRs1UZLkTHO7ULsuvtL6\n7PTkL6VQ+1wrerMGTJ9dmFtS9+FGn8uBfApvtR/0eV+olEB5u8wxUG13sXWObPyW7D78ZW4RPqA6\n6PkX6quTE7XlpH5qjDFm/Gv56nKjvu9uxOFVK2ieNfLwxL3WGLogCsNH+rm7o+uEn2vs3bJ8NQBl\nMA513/0j8ablH4HmhZ/JAU01eKX1P0Bx5+EJ+89TtctGNXPwxZkxxpiqI4RfA76RNWn/jq2xHg80\nF7uf6+ccFF2rhkrqUOtVzLq7TrnGChpz43CGgl/v5oXaVY2EQi7m2I8CzYUI3pHtFJ4m3u32OB+H\nVcYe1b6VAwKS++Rd/f92D3UlfGfwXP1SAf1qFTjPsi7f1XwQ8An8pd6++ndb1XOUa9r3pkb91P1G\nzzUH+ZhDObgGurkI2mQb6fupSmM41Bxf76r9Dx9r3OPWG1KZ+frW3Fz+yni8QyVzuPA4z1pNfScY\noKjbkI+UQaotQTF5BbhVU44WxiCKOEduQb5R+QFFl/Ft5hnvBHGi+8dwEubhXtyC4i1sta/keD9v\n5TW2vHqaPqjhIpyLMetoIUWTPdb1o5QviPlePVAfrUDzjm44U30ljqwSvG/5hvp4Ap/TFIRQE8XJ\njS0f2s2rH5YdteNw8t3vwBlSJrPMMssss8wyyyyzzDLLLLPMMsvsHdg7RcoE1FeWYU3euPBkkAVb\nUhedoixycAh4pVNjjDE/+QeKQD36iSJUjV39NHAC5Iik5+ADSTli1nP9/xa2fm9GdLhNPeOVImev\nu4oi1uGWqD7Rfd+jTjy2ydiSrEzWoAxAPfgwmI/OyQp+Ls6LHBnkaCsG8i0KRw61uXlHw1JyyCpS\nozuDcb2SU6Tu7/+eanM3qKQs03p+sqb+SFH0wItMDpRNTL1ti/q3IAcihmy8SzRyr6z/P/taEfUv\n/kS15JOysi8Hp8q2OLTRy1Oz6Cv6aBUUxfRWKAagkGVZf43u+w7mpDWxLUWQk0Rjlt/KV5b4jrNW\nH4VDRU1rHWVp1i4KMtSNLzaKAls11ITkQqZ9yRjk1HfzEKQNGcE87PA5G04DRD2Kc0WNvUT9UjhC\nlQOuFuMDVwp0oxlqGcUZtapw4aQorq2FStJEKAZ/AmX4LtwEgZ53NlV/z0AA+SB4rl7D9QC3S4Lq\nVHGjdo5n6ocEKvLq4an6o6vo7rYP6gvuGq+h9rdBJ4zggMiX4cPw4TdZa5ynDTKqN8ypnq531EDB\naK7+Kx+iiDEACTSDwfxY7Srd3B0Fce9Eg/Esj3IUCJMb+BMq8N904TbxfLVtcqkM3C//R1TOAniU\nWCdiJ0UFkVUJ1bbemVAAhQP53HaiscvB5+OCwgpQBJuQIa6Bwvr09/8rY4wx+/f0vcV/p74dD8kk\nFFB76Knd06bGwEMZzaIWN7rV/Uh6myUKYfOxfKUJF8NtqizWpWbXkJ37vjgHiqDKElTbWvjU0EFB\nYYpCAjW9NYhMvlxrzLZj1kmUelYlteseqAwrRLkFtMHWVj//X//9v9D12uIPyRX0/wXm6myl6/ep\n4S3XdV3H1+fau+rnu9oe6iWjgdbhwla/91GdMjX9XhjLH65ALLWO4UeSqxunBsqQTH87UH89rSob\n96SsNWZthA4JuxqH3+loDZtewlMy0XONHurvXjIyIRwy5VONue8qA3h2qmy414cvAeRZ6R5NB8n2\nvKixrpZRvUhRTFs9c0KfPSfzt+eQvZ7AydKG9+JQqJ7xv9T8DY7xyZdan4IT/e6FqIjswxtRptZ9\npTlS3GFvmqH2cCyf3sCjNHtf3xvuKVM6dP617lMTEvPhgXzqBtW8h/e+p/Y9l28UPlZ7rkGw7Ozr\neZ9egvyzNYZ3NRtFxIWRD3Yaun/VAn33iZ4vuNGcGW9RBlqTsV2SfUNlb0i7l2dynm8GghIdLtkn\nCvB0sH8W8vBlgC7JoRznhbpuYnS/Ppw3taLmemhdf/sMsWuMgcdjwhkghANtTVrSBXF5C4fB1Wfa\nb8JX8CuNyGam6L6O7rsg+1cAITSaa3w3ICofnei53Ofq9+nZ1rgbVDfGeqZWAN/P+3Dusaf04PCY\nL9QG51Y/O8fq60tPbRrfai+rofSYqmz2QvlwHgREsSpfeDnXXhIM9Hf7PXh5yCLHJiXtu5u1H/GM\nVxrbAetcDU6CWk3tiFDdGLwSyvg1fFCRyxlso8+9f08Z6J1Pdd3rZ2O+z8FyrTk5dvT9RkXrVKpG\nEoBOjeF321zreeYRCMg5+17EXLzSWL5+KmTJ6FrXz/vql3s/0bnSxdeiWPtOg/4c3tJfIMP3PxAa\nbgInkP211qzI1/drOfXz+AX8fBu1K7yBDxAk6wD+ksKukEUfPBQiNQFNMf2pfLSI4lvrR1oTn3yk\ns6gF8mkJCmNzgQLa8A1nUPhF30wbWs9LH+lnrso++UJ+tRernxz23UP2hUXw3aopf91c0DkbUEUb\nlLlKkL+Ui6yv16BzWB8czl/lBe8WIMWnl1pP/WM9Uwu+vBnvEvFSY7gBQbJ3lHIhNrm+1osik2XU\n131XM/0s5TW2jTYqSCvQ/muN0dUzjcn9DzXWNVRLk9coD95qXVu7musGFVQPXqAcZ6cSaq/9K9b9\nM/m629T62mwIadO/xOcvNHbWYxRwzKnaBdpi29M+0u9qr60eC21XjPT3kDNd0gWZBHfM47LmXOUE\npGIs320XQErW8SWUypyW+ueA9W00ShU4qcIAIZlfvR3qLuAVfNBQf6Y0qjN4Qscr1Eh5H6lQiRBc\ngOC8r32z3uZ950j9W7L1O4JqJqqwP/G+NJun6O/Zt2056z01k8HUnB6Ji3ALD5ETw5HFnm3YI61H\nutfBY+6NT+W6vEuiomaD0onhH4p5l7BWVBWARgqYM1WUolYhe00JZCOVLwUQ2TPOmVsQeitL31/1\nNdbb1/KhUo31kSqLHJyuRSpmbnvysflC61IlRf9yzmt9qO+tb1H8AoU0pLogQVXpFiTQZkz1QYeK\nlWPttSfwBEIr91stQ8pklllmmWWWWWaZZZZZZplllllmmb0De6dImbIFW/tGUVXXVQR8SaY6XFNL\ntgTlAT/G1oaVOVLEqwqiZk6GdeMounj8SBE8v4KO+VxR3xI1o56v61pVRTdjsvhX1I798hfieth/\nouu8B/l63CATuoWnI4Y/JAenAiVjNnXk7/1ENbK5yj8zxhjTqChKXsmjkBGi2AAjulPm+WyykXDM\nzIg4tqDGWVMzPIxU32jBRp3AtL1EFcSOi6aaIwNnkb2nkQEZvSmRdAO/TbOpNlZh4P8Pvq/MZRFm\n6QJKUU6aESiqzQlqDUlMTS2KJKaoqGVu+nbZ7QNq+234hK4WeniPaKcNT4SNmkQONYnRQN9zQMYE\nRwpPFqdCR5Rd0Fdwuizwmc5Q2buITGAe9vLKPpH5RJnNKlCZ6Ypa0oqiswexWPTjlv7/+lrfaxzr\nOqUlaAA4fZxI2TVrobHNoVK0XKh/A3g+DvCxUQ5G0SIwdgAAIABJREFUceouQ+rjrUiR9p2GrjuD\nhb1gqb2LHZzmGvWnFMlkUbtc1/Wn1Mmfwk3hLciuweVgV+UnQzIJm6Wi6JuR/h6WNN52Q1Hz8g6q\nLAa+Feaue6FxCmYgq1BVKQ+V/RoSjb+LXZJlWhXU9vFW2ZKGRe04PuJ8G5mHnyenvr65UoR8E6L6\nUwbVNFHfedSDr6g9ff6F+uyQsXJOdP0e2a08mbcFqKbKimw+dce3K/nKZ/9KtfQXX2u9yZf17JuC\n7hem6mwT9e1qqPY9+VgIl3UfzoUXkBnckokoqd1hU2NcInK/9lJkIigFUEzPZvr8qz9HzYR0TfuR\n1q2gAlIQn/IKQis8OBanzbUPB86KjEVP7X36dargQCZ5X9c59JQN+2KgfshRg3vwqdBXhToothK8\nFSB5CijA1F04bU7VvrvaGsRlgV3PhdtiewlS84F+FiZqj4PiW+5Ttferc/Xz+z9Qe0YTspogcKpf\n6rk95sYuiB67AMLxhLr4K7XD90D9PSSrt52ZNeoKE5AjSxROHnvyoZt9UFdHamMh0LzyV1rvqiD5\nLuGS+QTFlp/a+r3G8uvB0+F9iNLhWHtJMNX9jndI2VVB1jU1x8qP1ScxCgIF1t0LMqs/PlGffIm6\n32lTY7wga+btHXAfje0WroFaRd+PS6gSDdSnObilAlQqoqn69BGqfgFIjpqHGhA1/7mXvzTGGNOu\nCI16VwsX8MuRzfuGjK0XaKzaX6qfkp7WjCLIIJ8MZILyj7dA3aSE2tIjZfP9Ls8Nf97WUv/MQG2k\nqI9yA3UWBCUOQTlEDzRHvC4oYuroF/Ffy6/tFM18y1nnIesrvHQTMuMe6iM7dfl2vgFK5YjMKet5\noQYP0x5cGBc6E61K+l79UPvTBuW1V3CtRXDgFEuuMfBg+D1QlnD3tTkHvbwUksSwdxfxhdKx+nrn\n7+uZq57+Hv3szBhjzHigvaUJd0uziBILHHtxeg5CEWVS1DpXBJkMxYBxym/HAxEkoHLhBpuOUMDx\nUE5EASa+0t+dffXh/V0UzI40J62y2j1g749uOMc+1xyMQL74H+jzdc4iE1BOva+FTpjB/dIA1Xuv\no7Hp5kFH5DkXxnxvLERfiax+3ELdBGSiVdPnSw359s3P5es5OFrsSz3XVai1oXLIGSvkLDnV/69m\num4u0RzIo1gz/UKIlE1Vz3NY0zpeg2fF5fw/vODM2Je/PNyXv6SKl6Mh52a4hHb25S8T+PDsM7XH\nyb1RTaocPTL7J9o/KzX1ax8kzcVWfmo3QHBBiDJjTfDh9bqLOahUuqia2lt4iED9+CjO+OwxN7/U\nGb7Gs29ShDTooVSRZg36tYDvbNhrQng/TCCU0rQgHzh+XyjU6VjnW6+fcqzo+ou/FIJyhcJhaUd7\nbA2OMagazeC5Ppeqt5YtUAIxvDusFwvmYARayuIdJtnIB0o5FHaX8rUpyrPTGSiFPRDxvKeMh/KR\nwZcgAeHEdHjeMvvCGJRdKjSWZ6xKGzgMAcPOJqirduVTJThdNqCc/YbWik5LPnZ+KV+NEl2v+T5n\nkCHoDTggXXhKPPftUHcL3tkaqMamiP/lJefspdY8h37L2fJly+fzvDum+06KdpvDMTmCC6gBoioF\ne52fn+kf1zfftmVpxyZoVcwCbqdNDx9hb0lW8JKmewKqyPMreMUuNe/ctdraqWmMN3C/FEAvWR7o\nLt7bV7au04bbdcvZxGc9CuGoMXBvzROQNqzfec7xro+zjjhLsJk6PHTS1d63LmqsSiX6EJW70Nfn\nE/iZPNbTLVUlW5CJW6P2hWBaFmvGCB+vsM7X25x/h1oP+yhkeaU3anB/m2VImcwyyyyzzDLLLLPM\nMssss8wyyyyzd2DvFCmzoHYzShQJW21RtiGql4cbYl1XhCxBUeHy+ZkxxpgxnC9Oi3p1oszbvD7X\n6ChjUgeBEi9hKE+pZyxFeV24ZGa3sNSDDvngfaFDdh/q9xbKQ+MZrP9Evy2yfWk0Np9G7Mh6hknM\nffX7NyBxptTq7cA1EKNIs4ZrpwinhYfeeaeu++QNvCaoDyQgAlx4BgxZ0RAOnny4MhtqEgOUUCyU\nrcwUXoguSiIR0cuSfq/DSfLRH3yqPiNblaPeML2eTQ17wpg5HlFHajoXG76Xe7tI8pSseg3W9mhO\njT0oJB++i5jI+gyVoskVSjT40g4InWn1A30ehYYyaIFyg4zfjSLpDTIRFfpwZpRFcW7g93AVQZ92\niBL3YT/vKNLtD+hfor3jl/o9gLHbqSuD0fJgMoczIFwq+xXk9XnLIWMaq303oBFmIEsiMtsWY+/v\ny6cGnqKzddSUwryi2CVPPrO1NK7LmmpxKyM4GGr63BzeonJO/W4MGRbG1UUVZIt/LB3qR1NuHVAJ\naVbUNerX/TmZkrVqcjspIugxPovSUaomcxcLD3SNyhVqEKgg9dppllufS1XRhmQQk7HWiXFJSLhy\noHtfpizvKEyZhZ65GqpvfvOKbHNVSJFDMpH5orITidF9FnOy2HX1nQ2nzL/5n8Wl8vxn4mm6/0io\niMZ78HZc4qugAGZBnfvJl+Y7Gut03VuRQW0G8qEBSbP+Rn3swhs1NKAKQHAsyVzXG+q/VAHh8kxj\nVR7peSqJnmcdUEfeAVmUoi5ATcQ53b90X1wAPziEU2ZX10/G1NYWTo0xxuxTD/013Az5knzddlBP\nWWhd64FkLBj5+ufjc2PMf2Fe/Znq3O9qM1zLmeo5co7G3etLrapApn5JPXZ3rbl5GJFpBQ3QR6Eo\naWsurknZRHAPTCugPR7DUbPUGrmx5NOnVT3fwlIW9MDR9X8RVcztFLQRiMTnU/E+5DuaR9scygis\nA+Nd+XhcJKte1HrUGrIOt9SH9jXKW01liRNHSJIxc8Xa0ff7OT1L+Vukg8bagcMrN9WYRmXNgUVT\n39uBt81dq93eUs+auIzdSN+vfJ8MXl2fy/+cdYmM5TYPcifSnJq7ymo5oM881IBqBf2+agpdNrrQ\nde651H231U+LgnzuruZRd77eqn87FIB3FqAi4GVagTzdrvU87ZXut9xonJagfBOye+lcq+6hDMn+\ns7xhn6V+PT/Tc1XJQM9Rrrh6rUx6+Frr8WIER8UDlH+SN9k33wlNGe6YJIEDZ67vj8+1L9S2+v7N\nnP17o/vdq6Dkg/pXvqo1prwgQz1nLbmSwtC0Jj/ojuHhu0Uhzpfv1yah8VFyjOAKnKP41MqzV4LY\nmNxqXX4Rqk+bT+EmacsXDx5qzww4F8WcOTw4CHzW94j5ZTGWMdwom/TMgKLLEsSLid7OR9ZwwwQT\nzb0I7ptBX39vRjoLrFAJKaK+kTTxadC/RW47eKp1YPynZ/yO8st9je2Hv3dqjDFmGoIw2mqsdh7q\n+n2+n8SoMf1YP8sLff9qqzPF9C/UnwkcXw0S0KWIjHeFdQz0rO9x5iFDbobwfMDV4HM2CkM99xR+\npWQuX6jd0/1rE1C8qPkZ5ua8nOaE4X2q7PM9UAhztcOFV6pl5MshXG0B3GbjV5wx4eHb3IJYLfKc\np3smtWqtYkYgNIuot1oobB48AoGJWtTgG619Nut7vl4yd7UlKCfXIRsPKn/VlY+vJ5o31RWI6Q17\nSYqMmOpzLvxKJO3NvKLr1j24AnnHSKsIliBeehf6/vFDrTeNPfXdaipfKYIy6+bO9HfQ+AEcIxve\nNaw6SBeUda6+0Hlx71BosA0chV6sdSWPgtcSfo3JLbyeebVzHXHWYC8uwwN12wNZXUyfA4Vc3k9m\nt+xDVc6TcFO6oJsTuG+2PaoXmiBLilp7LN69iiB3ng+EFjvoiCNn47BegZIoo0Znulpv0zk/AblT\nQQHs8hxEYfpe5X03CuLftyq+1amqvTbcmRt4Umw4bSLeCW34Bgvw4MVDrRUJSmVuBT9CeWjLmuQd\nCW3YQP1vgcruLPdGCejJxz8y/cQ30RjkL+9yZqExsqh+KHm6dsj7+KgrFNUk0b3aRVSLqZpowLVq\n8hqLHHyaDu/jDu/LTnpWWOm6sc9eCcLOL+rZ3QJnFl64Q/aVGM6tvbbam9toPVmALltN4Gwl3rBB\n4SsB+ZL39HwrDoqbCMT3hZRkr/9KZ4y9e+KuLLBXdlryyYqn9ubgP6pZOq/+1ULr73WX82Tru5Vl\nM6RMZplllllmmWWWWWaZZZZZZpllltk7sHeKlDFTRTs//1w8H/WiIk77HwkdEYBO8OZpll4Rsd0D\nRagK1M+viR5XiXLmiWIWi6AM4JBxfLLx1OGnSJb1Ut2wQoni5IHYp99TcNGs4GJI6zvDWJG0MkoX\nXlURvDUqScEWhYlYzxek2bXLPv+PsoJRVLmUgxcFVv6tA8oDdZMZ2cGIWr5kqeioQ+anlNf1Ls6U\nKXh++9IYY8zv/I64H/JHLVOk5jBCHcKrqY15kC8xLORJDNfKJs1q6d5OASWpMepEF8q8HRwoKmlT\nX+0SeV3AIj9e6POzZ9SM5hSFvau51DXOB2RfNvAA7asO+aqhPh1R97hGHWJ5oJ+IK5lRU1HQ2krf\nL6BgMKGm1Qp0nVygjEJ9BXqrLF9yUQjwbfnA5Rx0Usrjc4z6VKj+mtfkI3O4Eww1/m5Z0dQk0f+P\nUa+IfUWfg5LaVYrI+sAc3lsqSlshIh6S5Xu10nPtHCqjcl3X53YdXd/Ow4uyxtcfKFq8IAMRUv8Z\nw4fUgKcpFyq6a8h8WEfU5sKgviwpiuz3iJ534C64ndIvKAQxd3w4EcYoRdigKmIy8vWQbB2ZDy9F\nGt3BnpwKmXFV1VhejjSWlYnGpu+qz0oxSAwQMJOUh2eHGnhY1X+Aksj+0U+MMcaEZPQGqDnU/93/\nYYwx5rzEvIRLYINy1hSG/zVIiv2F+vqSubaHwsE//q9/V+1/8g+MMcbc9r80xhjzCqWshLEvjnWf\nwZdqPwF/U36lMbrpq68u9kAGgaSzyN73XLJYjnx7PNH1DuuaHcf/SNmiH3+qdgyu5EM336g9g1fy\n+atYPjzsaYxzoNOa1NTOUN7aWcg3Pvpn/5n661gZ7ld/+qfGGGP6sONH+/KJGsoxPvXUsy1oEEvP\nmwfNtoX7IA9fSVyDB+uOFlyB7kB5rUNGeGur3VcbOA0SjeNmpXV0dKnPL+C68Q0ZFTL7ZifN3DPn\nQpR64EJ7Do/HCSpgFvwnN2SaTsiONZcFc4lSTd6TL96CoPsh/Aiv9skOTXWNT/DBr7pktffUxglI\nu1moLHEFpOLqWuuKDVfLknX6oIDiFiiinZfwdVgoIj5V1qe8o3V187l8PPcl69pK9+miRJN4+tx8\njGIY7VpO1CcN0KWv4SYI18pc3gcx04OX6KBOdh0E4XSo9sSgr9pbzZUZHGETEDmP52TVBtqf7mwe\nHFuomThwrzV2hTCKF3qunYn21uEtcAfU7AJXPuRvNdds+Kg+/1pcLGVQCTbjsfDICLfZv2L9PUVa\ndurKSJdBRj1bam3Lg6hqVjVeI5BSxhgTbSMTlNSPyUJztw/PRjGG38WoX0a/lo8vxvAbnYqPyxRQ\ntqiAggPdUT/QmrGAr6WU0xz+yRMhae1DzgMv1b7u8KWJkaf0yfI2CnB9gdYtFODG64CCZU/cTtUX\nN7/SGEPpZYqolu002Uu4fgQ3jAXqaAW/ReUU/jL6Z4UiVgSKtRzvmLexwwOtZ89Q99srw2kAv88a\n9aSEvW8L6ta+1P1Wo0vaJaRg61hzx95JORVQ4jlRnyfwVIxfs05Wtb4cNbVGLOdCwMQ2CltLfAyE\nZkGgJhMzJwKjOTpn/cNFzYGr7w2/UOZ75sER0UOJZqrv13OgLnKaC89+/itdgCz9Ej6Lw1C8RRv4\nlgYoKhYO9f1GSb77zVAN7G1Qe9rV81Zi/f8QzrHLa/ly40D7eR6ky6rHmWSMcpABdQc6bVN4w2NY\n/2DPbED9nj0TQrIPr4ZTBMXsa+3ZQsBVaOC/+bdQ1oHrYwMXiQOvmgdS3L/WPJ7Co3FSly/4/P+E\nn0mqIuSg8sMcsOCySrPzPRS1iiCTe0/lY8Wp+sLtcE7DR/sj+WLlCiQ07xibPMphwIubIDT6S/0e\nwvex6ml9DAP9fQVvRggPlJ3nXLtRX1qsq/Fc6w9brcmzF6+6us+oq32uBq8mgm1mPNIYHaHQm4T0\nC+jTdRklryrncc5kAAFNrqq9tw5K4aKruTS/gguRd7LbJdUFIEmKINJThbKrX9zyPKi+Wvr/MSpQ\nbnT3c6sxxhSQR/Jv5R8jo/XYLmrcvKbWpiJnjgTOtUVP/dGF66wEwry+1JxZwJMU04HfruO9Oc+F\neiD+YYwxYVA1uzt5syzgM5bWuTXzaQiCxIIbJa6C2o/UpgJ8NtUVXICc01JCpByfs6gc8VAmKwW8\nLy9R3aPPK1XeTXnfXrPur1NuGhfORcBkK7gQc1V9Pn+ovrBBXB/eQ7WJKo/1gPUQVFJvqnUv5J1m\ne6R2eOzJh+8rLtE40bpWooKl97Wc+cULvRN7qK/O78ODimrVFIWvy/V3KxBnSJnMMssss8wyyyyz\nzDLLLLPMMssss3dg7xQpE0aKHK37yt5d2MrCxE1FUw8oBQ0LKNeQYazWFYnb3VdEK41GR5EiU1ad\nKPMY9mUYuz1QHyGZ5nmAegqqTy4oDAOHwTZVUYpAG5AtyhERtMpp1hKGdVIOOe5TSNS+6aGirw9a\naU0qtXWOUBgxNc0T0A8lfkKyb3xYpPMp8zaZewdUwxKOnN5rZRNf/0wZ7sOqOrBcapnEQo0oRvGq\nrzZbVfVZqaj6uxgm+8RQGzlU1HFGZPv2RpH1OFHjdgMiuitlGRYgJNwyGYIpNZhEJz0yinc1G/Ug\nUwSpg8JNFaSPuxFqak3N6XiDEsIpmWD4PqIpvBX4UC6l7p6pPRsyG/kW2ZFmGulXP0U24dgN2Tmi\nuLav/snBMzGOFUlfOspmWWR6o74yCHFF/ZAPdL+ooehqAkeLZXSfRUOZk/iY+uqn+v8lfEYrUFKt\nJ3quAszhS5BOYxvmcKKzRTItDuiwMlm8+S1oDIY7IjPRK6idDerFaygRBE3q6Ify3dVaz9upCFaW\nVOQfNqiSWY667Zgo+CTlmkEZgbpMSoKNAR3h/zWOhL/L5jNFokdwENhpZqwhH23HutcKpSdnoGc4\nJKIdbVEGGOgZlxX12XOyyEsQbZ26Glmuy9e9rjhN/MKHxpg3LPE5OGWqIOWuyZ40Z8rKLG0981EV\nDpLZb/T9c/g6yDTsUvN/Fenvga2xPumCxPlYCKGjhe7zm681B3ao3X2VR60NfqFZpPY/WuJTu2Sz\nX4q3ZLzW91731W8vuz81xhhTcFFEmCj71q5rbo0HqrXNl9SPZZS7ArL/55/puuFrfe7iQpmI8m06\np6iXhkNmY+BkSPQ8PVQzTlLfo/b45EOhBx49+qF5G/Pg+ZjznEVXmZToUj+9Jii0mZ5ji2rWN3BY\n3KKU8WSp8bgBTZhLxa8WIK7IckUF+FC+VEZ28rWeL1WuWIAAWj/XnG6Ucub2G/nIEeo4yRk18C21\n+cFCn7WG6ttZoHXChb/iBZlXZwQiDmTgyFXWa/w1qAFQZY6rjNpyLV/chc9jAy9ZaaU9eTNBsWWt\nvi/UNTeullq/9jz5RPcr+UgD7psr1iGf9XvzFHTVATxNoLym1+rEKhnWecj9bKG4OvS5W5EPL1kf\nwjVKETnUPFDYWTbwyeSNusSdDJWraKnv3bzW9bagzVa/VL+1aGeLM0G5A98S+4wXqn3Ftj63iyKO\nB//bYgunGVwOCw/EEYeTFXxSc/irljOU1lD6ybGm5Jbq99Le0bePsNpMTaMFnxEIpYBxrYHAqlTh\nlapq30/Vpho1Xc9qq11MCbNFUWeO4kbN1eI07KKsQZbTDEDicrZazLamAu/EqgJqCwRHzkeNoq/5\nXgJF+wEQ5dJjFE1O5TP1str8+lfiQ7KhHfPgMoG+w9RBTke+fGIHRRkf1O5oqLEtlNRmr/V2aKpx\nV3vediqf7qTnLD/lRSJbDp/FFP6O857mzO4+SDy4FaqcETafwt2wo++Fdfg11vB8wOHiJnrQ4YXm\nSH+gOffwkRDe1ROy99cgguAEqzq6fg1euXkIMqQDRyIcPC2UGBegsybn8sHehfr58Qfy6Ty8Q1VQ\nVYWH+n1yzf6I8pt/I1/6BkR8fPEL9cOPha4KQAKVmvBZleGQnOk540RrIkcYU9vHZzmn5/Nk8DmL\nzr/RmrSZgHb29bsxxgSFufFKWptGI/lllNeFay5njo6ue4S/+ZyVorpj7moe5654qXkTgMotwpmV\nsPeVWM9nM82B9qGerX6CMusL9UEOmNgEjpEikJlKG94gvl/g3aK41X0unp3pegudOUoNfb59iyoe\nXFErOGH8mtpdRuUuBCVRAT0xQFFsa6fcLXyfc2k00FgWd1DRhGNqOtPnrRZIFtpXKug5O2XOKEO9\nCxYTIfaqBgWfC9DI6RgAgY9WcKq4cKiBvnPYs0PeQ0zK73RC/4Jw7w3lIwjxmCkIok4dzhY4D7d9\nUMZB6itakzyUg/pzXaBovx0/VcwamMNXLbh1DOt55VBzLWAOG5SEEzjBvPQstdUcmdAPMcisDcim\neAZ3aF3r82qg/aZ//vrbtoye90w1rpsl6kvxRp/55rnGZpOu0/fUlgpKvVGY9jnvHuxheSpTEOY1\nPu/nKeTRTStGLJQE4TtymP91p0k71DfzDe9oqLbZLkpVqC9ZK/XNhadnLYGUjC09x4o4gL/CB0O4\nzlBJ3ZxpX1ge6Hnaa7jA3lNVhsc53CnDWRakila632im9djpy8dKD0GzVbUO3jZY3wrfXS2SIWUy\nyyyzzDLLLLPMMssss8wyyyyzzN6BvVOkjFVUBOngA2VGYuqg8/BbrFECysO1st4SQ4IPY0XkzQMN\nEYOosVACsApEtGBntlEBSApk6WD6Xq0UgVts4EOBIb0G74VdU1RyQ11knrrGKdmjaKFQYAO+kAXB\nXB+uGrtAXTos/IAvzBaOiw0pABeUw4gMbBMOgoRMfkh0OgTtEhC5KyMnde8D1bnXm8oEtN9XBsd1\nPROg1JTf6h4RigQBjQnz6otCymcTKLpYKoIuoI/r+4qOFhibqYW6xErPkIMHI2eDKkLZamtR/2e9\nqX2/iwVGnWmRWQjINL6+pJbSUV9UHEXEB3DeLFtkgslapxm/5VRIjk2iTEGnRY3rQmPXh4m7OiPD\n6Os6ARwA8QQuFnwygJ+ka3Rfb8DYUOu5JhM6qWtM3rvR9XPv6+eCiP4G9FUMx02DmtjoRte9heNm\ni3JA4Cka628VdS0W5bPlCtFguH1mOKP9kEwMNcObnq5vE6m/voXPibrpAzIyfk4d58E5EYJKyV0L\nlVGwlMme5dUvtoGB3CEzQT9PHH2/HGruLOCq8Aawzx+gJASnz4L+u4uFZ0LIFEIi8Dn1QZUk+Rwe\nnJB1Jc86MifiXt3KB2oWSlUL0iZGfbK3Ab2EKtP0Ss9qoSqRPEH5hsxAZ6gxG5BNOZ4q0/mKjNwH\ndVBk17r+jExiLqf73mdMXi3ku/XUF2KNzWWo9h88IzsCki4BgbG5gU8Jjq1hHe6picZmaas9h9Rl\nm4GyMr2CslR9fCP3Cl8/TDOuoKNA/CQbPb8Pu32S1/NX0gw4Yztk7TmaUc8Od0EBlEaEip4NSiEh\nC1ilnfNDFCC6oCioZ5/f3l2hyxhjRnuag95XQuws5WpmY1NHj4LQc9S5lihF2NSrD7rqh5jMTOKp\nHTnQd3tkFyNY+w9a+v6f3oBy8SlwB9o4QuEuYo3ZbI7MmO8ehpq3G9bf6VDZ+eoeNf6X8p2dEkjC\nlf7eioWIuYZ/bURGbIe+3XhknV+jUPIeGcu1rvfMU5/uuOqrnTLcVhP4h3z5yoMbISpsUEU2SmAD\n6sZ9V33qghxMUExwZqhokLX3F6hDoExWK6GgeKP71j8UYugZ/FCpmlEVZZkgVvZ9jVJMCT6nHtmx\nZVlZrruaD+/T6akyvfY+9eihxrI3ku/c/Bn9UpEPtBa6v0Ep0imwVlyTWXbIBi7hh7pUP+RL8hnH\ng0Ompv4tdPS87rX65+RYaLx7UyGVuj/VPra9IXv4wZv82tp3jQcqboXy1woSB3/AWnYLr8YvtHZ+\n9Qv5YvxP1e7vfV8ovEWMstuuxi/4Wr8XyNA3W/K7V8+12Ia/0Zz+EOXKQj1nZvDBnXDmKBqQJTWt\nS89iIRm++ULIw7CueW6/VlsOf/dj3etHGssq/EEW6Ks8PGQRSMU8vESzJet9B3WmBH4iOBFc5pgT\nvh16d3Whvl9NNFemXGdb01hUW9qbK+zFS/ZsZw7vHPvKFMTmX+LrPkjrm0jZ6+g3ut4KXo8GSmqV\neyCsOYMgOGbmoJvtpnxp1UdxE9TXuo+qEujUAB6ji+e6f+FUc/X+e0KwhF2NpQt3YvsEhAwIlREK\nX6NUzWQChyP7wGle/z8tqT01EKzjLTyFoDL6UyAwoJVD0BPbgXw3djS31iB4vA4osT24iLheNFC/\n5Vogg+DqWpy9Qct9/eLCnB7BXcTzW3BXRmTOh+d67jMXMh4g84f3776WxKkiIRxUiYFzCiXFXE3z\nfraA1ycGEQLfT6ctH1mAFkpdNFmoLWPOidU6ypFlXddBfSlxeNcY6Bw1zakPAqDQbgskdJH14Zl+\nRq/laxPOTG2QGQtQCBYIvXgDoj5B6QvU//BSz3ME91RxR+19NdGcKTPGFojzAKUuD14pZ6r13IZf\nqoAvrTZw2Mw0B4qgmVY5OCYnuo9dYo6DMgtfg0Racz7m+4dtEItwbRl8aA5/6eAcBDpoNncJ9w1o\nW59+WVka3xzotW30du83rp8q93JOhiNszpxZgnyZ8M7rb+Cg4exaZG44x1qfayg5clT79kyYr2ku\n5OCkzBf0HMcoYBpjTOukYOrHFbPmrDAa6zNBoHUuautdY9VQn8wLrOdhisrhOpz1Hc5Vccg5x9N8\nq8Dhl6orGVSQli6cUAkcMwUQOpwDkwREHv86KYoMAAAgAElEQVRv8a6xwqcSkDMx7/HuEddBoar/\npZ7DR7kqh7JvjnfIOsq1Lu/dOfbykq12bUGwhzyvu9DcqjT0XB98T7xzG7ioopr68YAzxQpOr/Ly\nu7EwGVIms8wyyyyzzDLLLLPMMssss8wyy+wd2DtFylR8onWQx3go/MRFasls6qtvFVkLJqgfEa0M\n/bQ+kTo6J9VqVxQ0gX+kTGY2AdXgovKxBcWwpKYsoSi5nEbEiPTnCFPnyXDEEYpCl4rkFYksOnug\nFqZEt4nc5WCtj0ATFKjB26LjvgEF4lLL1ygSjeZ7c9QCiqAcVmRBU2TNKlB/NE71/DtH1PrBDO5t\nPBOTXZpT4190FWFNVopCBtTlRjOenYBzEqgPHBivy9SWRmSHy1tFC9M66gJZhSW8DTbImzLZ77SO\n7662Qq2j0k55gRTlbLj6OaCP0lxX6yHZeXiHyhaIizp9SU3oJmUhL8PAXZIPrrdkNq/1fPmHijA7\nS43BDczhhTJj1YaHqKf+vPSI6qISUnhEXfwA3iO4IcagqxIXjhYyA/sNZSouUexxyTzvEBUeUGPb\nCPT9VQX0wJR6cEdzZITymA0/ynYMa36FqDYZ6d43EBKhsLNsqN3BPTIdM2VeFp+pXjKqgpQi8z2j\nDjsCXVIawtSOD1efgzgiOl7FZ0NXmfYmLPbhGJSB6dI/Kf/S321XIO6+ei0upV0yiI0KqCWyLWGs\nNt6ulbU5CJT5SvkUzuqaR/sgbgJqRrcg3ZIAhQA4XGYTOGdAFdgz/f80IXMK59MY7gF3oeufwT1Q\n3lO7mkX5WA/OlQV1yksUB3JH6iunLB9dvNZc/PoIZn2yKE34RF41yDrNdJ81EgQtsmtDOBTsuXxj\ngaKOU+Q5WL+G1CVbt6yvkebAkDrrNlmwLWvGpiQf66/lG3sdeI9Y179iHU1i9dt1H/4m1slwAneX\nUTvWoO0q8KLk92z688wYY0w3flMPfRfroDCxtsiwBqwBFD0nDnXpgZ5vYeTzDf8jY4wxbg9021yf\n30vgEIN36zoCHUgW8GYulMe4KHWSm9faNzpwMSS/YtxYa8tLY3o9UJfUc+96qeqZMn2x94ExxphZ\nET6jkbI9NdadCMRey1PW5gWKLV0UuYq2avXXec2VAugxs1HGsIRSwiI9GvQ0Fg78TP4OvpCHJyTS\nM9qp2pvFnsv6cx3K55tV+crVjcbwI3hFxjz7Kbwbxa0yd6lCVzLWHAoLer4Ge+esiVoeahku688q\npr1zkJ+o3N3V1lOhBi6vNPY1sm6dez8wxhizd09IpPil7tclQ1sEBXtLRjcPstHqyCfsW9QuNnAZ\nsIa4zM3TfUgS4FCzUdF41T/T71f6XO+FfLCHAmOro/0leCMwY/x8xSzHQsD4h/p86xbEaVG+326B\nlvhQ7Zrfipfk/X0hcWw444ytC3shGWnGYQs6JYY7aJNXe7o3Gu8PIl1/sZ4Yl7FdNvW3Xc5VfkXr\nRIc9sgq6oHQs9OWoAMIB9NPTcyEXtmdaP5qR2l5csl6A7JijtlEEMROCGOzUyW4nnK9WegY/eLsz\nSf5A63XZYi5MQcxcwU1g4NaiC8czuA3zrGNwEN5OtH7tPRZS/Oh9Pcf0c5Rq2Ieq8E0EN/K5NegG\nh/+3QDVMQe68Bim5QYVwMtD3HVAWlof6EiiFly+1FpQdjXXpU60107l81AJJHoJM78GDsgzhWQIl\nMBlorUlYt0dPtDa4K86p8PW58D1txxp/G0KPbcq19ZWuO3zFGlBknVV3mmv2v8VCa6ABCW8a+nn0\nUOiREL6j1yv4jowxUX9u1qfaRyNQKR5n1a0lPymhDpYfqz3zCugSkPV3MR8+odkQn4vUhqN93Tup\n/81z5RT0+9TV2B080DqTX4BsBx275v/X+ESIcFi5wbsJfViEE2w4JqufqK+nM84C+5pzVo31ING6\nO+lq3/G2nOtA6RcP4AsC7JkqFtapIihxTh6Dep2jOLN7T9cdowK0QM3T9XW9HHOx2dbPIcppYRO1\n1bbat30G8pzqgnpZa0mO9W3m6L4r3gsKFbWnfazfz56p/6dzeAbhX2oWU64eeKlYvyy4MOdwKy7c\nVDFH/VKCwzHl9TRUeVhvibqbe6jC7sAnCLJ1u0ENF56+lKomfc9ajeBkdECoo647p2JhHamfCw+0\nns+XKGSiblVmbTwEHWKMMZEfmfPetalX4d209Z3aLqiigv4+K4LG4pztwc9Zc+SDIW1x1tyL9/Ri\nKn8Hv49tg5riXFatag8sWHKyGWOSoszqII8dCwUqzqkxfKk5lFyLvCsWeffpckwMQP8nFSpx+L5X\nUx/UDjVHFqGerzdNuWn0/TJqf0NU3SY3cN3CqejV1D9T9vR4pDnQ7GhdnxXUzhq8p7/NMqRMZpll\nlllmmWWWWWaZZZZZZpllltk7sHeKlNnAvjzfKqJmE4l3yK4ZsmJWSsJCffNqCeu6RT0e0VFvTZ0j\nyjbjLqzNriJU9Q5Ik4E+d3mlzItLVHjniaKKOVAAG6OIVjxSBG4BisBChWP1UpmZgDr8JVHOKNH/\nt0Cu+KAcUo34BbroWxR7InhSKMs0mwkZ579Stm6OSofXVr/s7lBLB0t1WsWYGxK5RC1mStbO2JFx\nHN3DnqtPXSLSFmpLK9jNp6CA1l1QPTDQN6j5HMG54lObapH9ycFJMwPhsSI7s7CUCahEQpK4TcKO\ndzQHdaPFCmbuhjLDgYEzgELGYQDSg2htm3rEZVF9HlIPaaX8Fz21L6qgSkXmb/EVGWEUwMpo1AdE\nZ5cBvkiWKdjV94OOPrc+130TI8UZPyc0RnMHfo6yxr6SJ8Lf1++tRP0/zqudTTINW1jxPbJt/kg+\nFVvygeOOnm+Ypy4apSF/DceEo4zIpgrr/6X6LRzp820P7hm4K0xZ0epaQd8voPrxFARMjoy429Jz\nlYng98kYl6g5rs+pO62CzLkGYdWEu4Yo9ob815gspj8k2r5zdxSEXURRqqRnaKbqDH3qo0GkdYea\nD2NLfVy+pzmxX5ZP9i/gomno71+SzS6B1NuAjjKPhVb4AuUpp6u5UXmk60yvlG1vw8P0JeptTlNZ\no6OcsmDPUTL78UdwCRCSt1jXzunL96rqI1+PZb7+uTrdGWhs81P11W+mcJscKDJ/0tBz917rfheR\nkDj1QBnMIWiGGkovN/jGuK52d+FKaMAa//S12jNaaE4/KAp1YeX0HA9ctecKxYnoXJnT2Z7WkIut\nru+UtNCFnnz6+TW8VPA9/fA+CjgoNHyW13M9ZA16/gWZhgt97s5ma9y3H6tdbfaVq0C/B3vKWBdH\noCy6zH1X7dr1WVscZepfuhrndVNImtqt1pZFDt6lExABV+rPsxI8Ke0fG2OMmTY1HvZQfruoV0w4\nJ+MJsmXXQ1Gkh3oCyidHofpi7iurXYyFprqcaX4eHaqPu3nU6F6w7vHMG5uM3436cAu/Q+MsVRhR\nnx+e6P+f/kL//9EjjeUt/Dn33tPPXqh27IAC6sE3MQPB8tiofedrXWc6VN8eso6FZKmjldpfPkx5\nQtT+2rn64eU9slfU3g9qZ/r5VHP13gP5/vwL3deP3m6/yZEZ3dkXWmPbFVojXiibN6TO/iV8TnYL\nNEYRNbu51t/5Ur5mk3Ufoo7h72nOtIwyucMLuA7qqa/BS3Vf35+91H4Xnuu6uRJKNZyFSGSbIllM\nY4wpe8b8ZU9r0+8eiItmUVM/jp9pDh4fCElV21M7mgfs56ABuvAn7ZXVj8smz6NuML1btfu9P9D1\nH3zvHxpjjPn8j8UJMecs5vVjs56zrpbhsAKJ1scHLRvuvjb8cBoC0yVTe+9jccq02vrcV99oHsVf\nsaeR7Q4sXT8BbVZ8X9n0PhlbpwqP0lh9tYHfJ0SJ7K4W4aurS/XxBo6ySgEeO1AJExd1zKFQSzN4\nOTooN1rw+6UZ39mW9Rb065QtOR6qnX2Ubxp1UBjs0QO4CjwQIwcJ6Gemcpik6Fj2Fzhg1iPWf09r\nSTUPAptjo7sB+cN1uiP9R7zR5wvvo640By09lo8kKEjeoohp9UBmTjVnV2N9/pfP/tIYY8w9+Ita\nbaFIpi+E2nr9VHNv/1iohloFvo2B1uPFrc58W0vtqv1QczZV/xv2OSPGbxAu23zZrMd6zgLcO2uQ\nUtGtrhuV1N5GA5R3jrOzCc1dLUXth6h2xnA63azV5x3OKF2QeAXO5fO+5tUa/ssi56UI35iCGlt2\n5fPrqZ5xAydKE0XaMapExoe/p6GxX8P9NOZcv38EqqiD7y5Ydzn3Dfh+lWy/XwNJuWD9493Fr3Eu\nBalxA7o/f6w9tXyfdf9XeqexQKkhSmVcOE8MnIbxWv9fPIETMdS5dDBEwRDlWwM6NbzVnF9HqBXx\nnuLlj7i+5sD0mdq1qoHiaMJjt2UOorTVX8unjpq67xC1pm9lQouQVDKXCvRDEL/dWjLLaZx7AWpb\nOdb3EmpPJd3fA4HqOLwnTJn7l7wXwV8ag6DaNDSuiByas7HWjtGlfPz+hyB0jmrftiXoBWZ488rM\nWSerVThXKhrrFSp6VUvfqdP2al3zpQy3of2NfCxVwlqDJvJA1W+3vMuEVFWgqumBqBnCs7Neaq8v\n+3BIMdYT0GCjscbS4h2x0ZYPTfH9/nOtIwmKrwXQVYZ3rOUcFD9VC20UCUMgjq+e6Zy390TrXAVf\nGA/OdP++1v/Dgs5/ESjU/BZOKjjRKoRZCgHr9N+BzMyQMplllllmmWWWWWaZZZZZZplllllm78De\nKVLGBS2AUIJZkUldwrLs2YqaVlFLWpEJaMC47XqKRG0M3AZwKkyCNIqsSJqXEBnn7wTyTQTPR3cB\nN0wJJZwdRSlz8K8siH66I5A6IHEMkcItUezNa0XWAjglWkRzYzIaMWpJCZH7kqvrLcgqriZq73IJ\nA/iVInizgX7WSDSNqBctgQAy6Lwbmzp96sFd6tfdcGuWMVFFov45eBoC2hITn3OuqQ++VTYjKMKz\nc0BmFeUpi/q9byli4GdwUTDxiOiaW7VlndPn8+6bjN5dLCRNs4ZbpUkkeQWKyiXLlFDH58NfsY5T\n9nhdJxorQnw1TWtu4e0gA+pX5HsBEeqZTyR9Bu9QfsL3UGSx1K7SBhQAalDTkaKkNvXTJThsklj9\nMUeFKr9GdcRWv81BwHTIak1R2llew0EAiiDfZ0w7ZGBuhIJolBWd3uDjc/hRtgnRW4qBFxN8Bh6l\n5Sv5zniV1rLCc1FCWcFNUWrMsSuyjKhquUS7m2SlDCoAy5zus30Baz+ZHHsDzwm1t/Wyotb9Lplm\nGNx9c/f67QB29aCgiPavIVhIQs1H30FpZCuVjxeXmk+f/K54Ir6AYT+HUsxTMoqveigGgC6Yw+wf\nX+nZvrhCAWFP99lZKWKeorE+A5lxOdFYbFDtybfVV3/0x//cGGPMdCzkzfFBWv+rMbh2QEktlUks\nkQGYwRY/L1FH/YX64UX318YYY35wcqr+eADfREsZy6tzfT9/KB/tsxxGM5CFe2RKyfD+ukdGo6YM\nwbPRnxtjjFlfw7fxHiojNgos+/BWgeJ4evONMcaY06bac9bX/Xfga4qp/X21VvuG8B7lUblakAEe\nnovz4PpQ3+tu9PlVmwXxjjbx01pmIZaWcPpUxkpJFzbqh+M2mRpSzdZXcOPs6XP5pZ5vZ09rxJb6\n86CjtcC/1BrT6GtNsFvKMo7PyS4ey78ewNJvUN5x4thUE+5Fbf4T0AJXASodSz17yDq8pR475R6o\nsH6UEvnYHvP88pT6bJAq99en+txDeIh6qDlU9fkjFMnGrBtF1HZuQZXZKMEEZHqr7Nkr0KRbkIsu\nc2eAj+Spu976cCNQJ+7C55YHOTecghzxlf2auZ+rj0A31EBmrhm7nZSvgnr2XEFZ91pZ7bizgYrb\npiolfbWrB4dNHgWfeU77qdmipgLiMI8yRIAC2TGcLJED7xKZ7X4P7i9+BjeoqHTg/XBR4YP76xVK\nacUi3FsF+DsYT7f2Zl/dOT4y9vnPdF1wtBEqTLfPxcNx6QgtN2F/czZ6vu5Uc3u9lO/eq//QGGNM\nhfU/zxlrsNRaeQlqpfGBrpdn7Rt8rueqtTomyulva7oseQyHDHvoZQTvGWiw4VrrXg+Eydl9UKsN\nZd0T5sicNnaQGimSad3G6mOXvaXGObPZRHkQlG0YKpPqJW+HphqDbnp2qXXfXqMcVtNzpUOR9FDa\nukIx0YDchn+jmtPnz3/2c2OMMV/+8V8YY4zxQTG0q/DUfannXL1Su+sd+bbVTLkVQdHBv3TxjcYm\nXul7c85GfZTA8iVQxXCAeexL3kK+e/W1EHwpP8b1X6n9L3+u/eXg4x8ZY4y5X9eYb204FiBvWF6i\nNtXTc7R21A/pvnL1tXz3y0uhqkoVuCBKQt9OzuRjz/9Mc97b6mxUvafxg17F3F5oP5+O9Hz3UDGd\nfal2vPqlxinfefOaU3UjE4IMDUOtIf0v5Qcvfqr2nJ6ibvU7IEE5G7eSu78uVR3WtTbzbKC2WyV4\nJ3eFHNxNlVhBOmy4x8rS2Ps7nDMTrSNWAVUlozYHqVAkVQf1XbW5NNP9Jg0Qb48ZK96Z8rGeqXCg\ndb3Rli9WdnWOnD1X35mc1q29UxR54KCJzkHI7Ki9pZIQc15V7eq91npSRJ21fP93dN85/CQoUpbg\nYjl8qLm9XGnfcxJ4TU7lEyeH6rfrLzS2Ttnn7zobRZF8xeY9oeJpjhjQyqfH8sWbUAj2+Uzr4l5Z\n/ezt6BzdByXm1ODIpCphx9L/L5egRaiCSOdIyu+5DN8O5xCCVpuzZmyLnH3g2Qt4FzTsB7HP+xqK\nRQG/e3B8RrwLFkBZL1BhnaA+lQMx76KOmCzenKGSaWDCqGhqVAXEKWqVdyyLPb7Eu1MJ30jgTGzA\nTzeLQUGBUK9QpeGgemSxd7sOPHih+tgpwyk7hDuLPdizNXZ2DlW2RcoHCt+Sq7k2RiVq1NW61x/r\nmeuH8t1KR2M25Nw+BrHS4B03RDFxiWKtY6WKZvLR1Zx1E07BGJhqwrmygEpqCEds7lu1ZM2FRoJa\nIMj+32YZUiazzDLLLLPMMssss8wyyyyzzDLL7B3YO0XKWLCeRyhM+KmSAgiSANblNXwfRSLbEx+k\nCJE0EidmjQqISxauXCDaHFPbC0TGT9me78HJQB2iB2u8Q/3geg7Dtqv22dTrR0TCmhWuj5rKGHSG\nA8P4dq3fDTrnKVF3Alt1RE31t6QwS0XsAmqNG3uK8NUOUPAB5JAjsxqQPbV99U8CaiFGRSRy9Hcn\n8EzeS/lndM84TpVllOXIoUATHqovHhXIEoA8MQ511AWinfy5Ql8uyd4njKFFZrBChtWjxjMupRTc\nd7NpeMv9FC3dgCZad8koUmMfTojuoihzONFzbMjCBCPQUmRJnADEj1H0c0jkvBBr7GzQUSHIkzH1\nkVXQUSt4LgbUTVf68q09IvQ+Puowpg7KX9ZWmYhorqhtQJS3Dr/HZsZzUmNaTHk/8KXikT7vt5Ux\nWVNX6c3kHPOSosUF0FTBWlm0Sa/2N543gtdoRQ3tcQKXRVW+ejXZ8DxkcED4pHWfS1AbNnXkE6Lg\nnZQ7IVG/OKgrrXO67hzFBj9E/QtlhcIyRXeBWmunKaC/20p7ZM+JzD+Y6ZrnDWW86qB+lrF8Yv9A\nfVRvkFWgjto7VLba9tL1Q2NBKbxpLZiPD/VsUfx9Y4wxj1AVOSQrNQ+VVSms1FfWEyElcmQ/alz3\n05+oVv6jB8r25FFnaqFwlmyV3dor6ro8nvnB+xord//UGGPM2NL68Agfqe9S20/GOQH50/ie5nTu\nkX52rpVRmIyUfdon4wiVjHkP5McBqIwPP1LWfHBf990jO7NNlF4q0487IBkf7sIlABqvwnNVP0TJ\nwWLOwX4fkDmplNT/D0FLdWt6nuNdza052cQHDerQ72geaJKSR1Zxqt8HKAqtxqDQALBUQOo4rN8t\nMkK2q7m09jXuJLFMOyefjk9BRrFOV0vym9Doe5HDPteE70mJFFPKe+bjU2ra4Z3YwF+2c6zPFsbc\ncx/ExUC+VXised06173cOvXUqMvtFfS5FVntCBWd6JU+345AFcBJNa7ADVZTRrc0U1baRXGw1dDn\nK7usp/DiXEdqx3FFznrF2BVWesh7W7JrsZ6nvNbYTzryCa+tdj9Atc9zNNc6x3pujwyhNaH+G8WX\n8lrrYYoyONnX89mr785K/fsWoGoXgG6zQL0uaHduF461DzTHLfaDGzgJ4khzYXpFZtZXv3VC/b5c\nw/nDWaPQBOm5BVF6hroSSKc1HDUW67WFapW9q/5ZATO+7l18+wwXFy9NBZWU7o0+X0KVqnGk+xUr\n6X6pOXh7T+3x4McrtDgnLIWEGSxY90GbtCLxDaRKQtavUzUsuNLWuq7rTU2upTbeoIrkwtWVRyEr\ngJduvyNfLFVAA5A9boOwCT/T3uKkfG4p2tVGpaek+bUqaOz6XRQDi3oWHximN4RLgEPMHOTMXa2B\notbph8ruB/BfVMMN7dLnYtbBxgMh82yUb3xQT1ZFz78DQrIx0npcTNG6ID8O7mmO2ChtefCvWXAt\nHN5DAa2hv9c5qyzhmfMfc6bZSZWA2PdoaOcAFSn4MUIywDHcD40259QfCNF5cCQfqKW+COo6LmlO\n7H2sddoG5ZWDH8viTHT/Yz2Hu6N9r15GCQgEeh45ug9+JI6Yzq7GleE1eRQqg0T7Z2ehNadeUH+G\nnEHrLX2hsg85jzHG9hyTK9BuEJmNhj735In8rrmDH8Ih56UoBlDAd7EJKp02CrMeHI5rFBCjEWp1\nKcg9AN0VoSg70XoQb7W+Djg7JIzdCgRlcaPrjOBwGV9pHqaogiIKZ2v4LAs8c8xeuOb86pXgZoGv\nc4mircWhYzjUTzePUiyoiQFIi3qBfcBBddRXO4agjWstkNWgCRz2+hDuqsVQm64NsnCNKlU4RD0V\nvo7Q0XoUgHbYOlqv8qA7AgNCpMc5sojaEzxLrqU1YPRS7xW5Xf1uw6dU4by95iyz2oJyC/g+L3FB\noL/HIFmcb0sG3g69O0IZbuTy/UT75XStv4d50LZr+qfImQS1vybvIU0QP4MSyj+sjRV4Wk8OOBN6\n8ge+ZuzJm/2xUz4w7eKRCUuo0wXqk80+78Wcq2Pej90RCx0qTOk7UzHWvQvwlS5Byca8NxvU3GLe\nKScQU+Z4Z3NTniKT8rVRLQCfZ2jDP0mcwK/Rd+z1Du8UDVvrULWlc73PuauEUqBvo4a3A98SVQvl\nHIiWe7y7FniP5738dFfnzmRP9617KOCiatfgjFCM1NfbBFTwRr5RZX3+bZYhZTLLLLPMMssss8wy\nyyyzzDLLLLPM3oFZSZK8XSrp/82bW5ZJksRY1ttpu2eW2f8fLJsbmWX2t1s2NzLL7P9p2bzILLO/\n3bK5kVlmf7tlc+P/e/ttoZcMKZNZZplllllmmWWWWWaZZZZZZpll9g4sC8pklllmmWWWWWaZZZZZ\nZplllllmmb0Dy4IymWWWWWaZZZZZZplllllmmWWWWWbvwLKgTGaZZZZZZplllllmmWWWWWb/N3tv\nFitbmt15rR07dszziTjzdIe8N4eblVmDq+yy3YW73UiIRgjEQ4sXaPFAvyGEBLTb7cbGZYOABwRC\noBbQtBAPCOgXZLXaGMvV7nJVVlVWVU53yHvPPfMQ8zztiNg8/H87swt12Sef7steL3FOxI69v299\n61vfF2v9v/+KJJJIXoFEQZlIIokkkkgiiSSSSCKJJJJIIokkklcgUVAmkkgiiSSSSCKJJJJIIokk\nkkgiieQVSBSUiSSSSCKJJJJIIokkkkgiiSSSSCJ5BRIFZSKJJJJIIokkkkgiiSSSSCKJJJJIXoFE\nQZlIIokkkkgiiSSSSCKJJJJIIokkklcg8Vf58P/2v/z3zMzsb/6Nf9/MzL72C2+YmdmzZt/MzLZ6\nHTMzc7e7ZmbWGztmZub5VTMze3GVNjOz9Zu6mZld5tpmZjZbHOh9t2RmZtWvXpuZ2fLkbf2/szIz\ns3jp2MzMWh8lzcyss63nOQM9r/5JyszMyomemZlVdtbMzKy03NH/B2UzM5uOi2Zm1g8auu/LppmZ\nfRLT52vlC/Vn866ZmY1Sarebf2FmZsFFzczMxm21pzh3zczsLK/3Kyv1+2oUmJlZtqx2Fq48fb6p\ndvV31N5JX59Pi2rHKu6Yc6zPWpWlmZltPs3o2jvqa26yoXtdDHRdz1ebNtT3sadnvz18y8zMYlnp\nvBfX+6Oirhu6Q7Xxg3U9O3Gj6/Zkat6e3v+v/t2/Y7eRb//e7+q+MbWnklO7pzONYWKh/1c5/Z/0\n1b/eZGZmZs5c73tewszM8lsak9ZQ7U0tNPbeUv2YTPV+ItAYLLIJ7qPXWEJxzOSmdD/rq13+5ZWZ\nmS1Tak9qpXZ0/bmZmcUT6n91c1PXefq+29HzJhl9nonrOfOW5sBv/eZv6nNf7Utk9b2Du9u6LtDz\n+jeysflkofYEalcQ0/cyBV0XD6ZmZjboSj/pA41HLrn6mfcTS+K1adlqYqT7dqayLcNGq3npM45N\nj7rqT3+q9icD9WvpyP7iBenDSRfMzGwak/3l++p3e6zPE3G9/vZvfNv+Ivmt3/k9MzNbBWpjZikd\nBa760p1M1Jap2pBOSCcrV2Pv0tVlIs991MfEQtdPk7q+5Oh+rab6aEnp+O633jEzs/MLfd4+fWpm\nZqm0xtrtS+feUn2Me/q/u8Ams+rrciwdBgn1w8PW3JU+D+jXsCvd1tYY+7y+txhI10Fa7XDjzLml\n2rla6ftZU7+DhWx0NVd7xq76m1/qeQ3THH/7G9/Qcy41lz/4yYfSR1l+x8moH8W0fEh8oectxtx3\nsOB93XfqZtWurJ5flCnYElv1PV1X2NtS+9qyzQ9/JL3mcrLZ3//bGve/9e3fsNvI3/27/5GZmc3U\nHMtis4uJ9LwI5Ls8vW1OQf3JxWQ/F+ttJv0AACAASURBVJca9/RKtj9bqn/pJHO7qHXAD9Sv0Uj3\nXa70fX+lG8c8+fNyWZ/38WUZf2n1+kh/o9NEVtdaSq8LhyU7wE90NUaTnp5ZqmnNm6f0fy6Ov8T2\nFjPNtzE2lF9y3bZstTWWDpYd2VDgyFZKfH+Zwx9iW4kcaw5+ZTJu6b6pHH3H9n21fxnH3yali+VC\nz6ll1e4xtrfqq51tdGfLOLrT94tM2rbp/nFf7Uqieyepds3G+vrv/v5v2W3kb/8nv2NmZinT/Xot\n1tCVnhvPqH2ZjPrnyv2ZN8eWVjKuGHr1x6wPrEvGWp5kvZnW9H8wj/Ec2UK4M3P5I5ipPauFbNCd\n63sJl/tl8p/14fd+7/fMz8hGA2x3vsL/ztHPnHWpq+9PjfWS9Tyx4nlZfS9WZFwcxnGk61dN5k6K\n8Ynp1WUuLzJzSwRMqJh0s1hi7xPWqL6+M1zo8yAhG8wlpfNRXv4iOWUO5PS9hC9/Fk/o/fiENRp/\n1uU5oREk42Ebdb9YTrpYopvfwj/8RfJ3/rP/wszMHPYkxbIcmN9Xu9t1jVEhJ3/QOz+n/3p+Foc3\nXKq/6aTamyvLmALa47OHGeG/7Vp7s1VWuk1m5X+nHfmMcaDP9+7v674V7ZPH+Ijxpe4TD3T9YCa9\nDRnLzS3pxXLsDaayoWWZuWWy+da1fMeQ58ZisgGHPUSRvWJyXz4lNdb73amen8FvdujPnLU+WMlX\n5ZhrI/ZMazX1Y7XS8/pd7fMzBdnVeK7xXblqX6yo98P1prYt32Jm9u3/7vdt+DHre1LP81cDnq9+\npgp6bp3+5dkfeGXZ23/6O/+5/UXy7d/WmjRifzmdyTYcY41DZ17oL+L6PxNjj5JUX6au+jZqSWdL\n9tdLvp/OyZZS2Naii9+Z6HXCGp/BZsZx3TdXZQ547I189grsM1czfW/sMEdG+PeJXpMZj/7gZxJ6\nNfbhKV1mK9afGPvoiYbE0gPZwnKq5y/Yp89Y31KGvhL4nwR7CfyhO5Je+h5zCB+TTVfQk2zbXag/\nHv7YLak9Hr4m9CWxgdo/8NWepU/7fL3vm653+owXcyJN/2N5/e+yxv/2b/4tu4381u9qvbm60Tqz\nVVY7C3f0G/b64tLMzEZN/bb0+7KnSk2+YsR9EkN9P3ugPdPoFN9RkF7vFKSX06n2cKNP5ROqb9Q+\na8t//3/9rxbPJOyH7/2RmZml+tJduqTfrQtHOg9GeuqqorZkUtLBaIKtv3ysthb4rbJ338zM1nJq\n808v9bvXHUtnu4zJnN/347ReV139pppcSefZgvzd2kPZfOtIfX7x5GMzM8tvyk/sH7xmZmZJ+t7p\nsRfAz006x2Zmtrmv9uQy0kH9Un6gMZcN5LKyuZ3iQ7WrFNAPtfvmha67vnoiPW2wr52rneWybNWf\nsBbWpb+1AnPl50iElIkkkkgiiSSSSCKJJJJIIokkkkgieQXySpEyU7Jkyaki6u/9+KdmZnb3rsKp\nn5QUddy80v+5hDKX7XNF+/aziiZOZootFXpCsFzuK6poA0X0nvwZUeXUD8zMzB2BZliCCtjXfYOn\nilImV4rEFSdE8q90n1P/xMzMvhfo+ZXnijo/XCkS37EHZma2AA0yKwmhUzjX959NzszMzL+v5x9M\nFb3cin9qZmaNrNqxGOr+8zO9f3Ks/jQ2lQ1be6FIYqujyODRUpHJ2PM9MzN78FcU4bsTUz9GL1+z\n7puKjO5eq88/PlTb/WPp5uqlMpMrV4iL2FxjsueCSMnoXu8l9KwHEyE18i6ImqxMadxTVHVZ1XN6\nRMxLH6rt/uzPjxL+/2UB4mPZkg5HZPsTCUUrW1ONybJDhD6hdiZo92RGZiJQVDM+0P/DgaKW4wm2\nMiajPFeWq+zqPskp93H0/CWvc5Aio670FgSKxhZCVEJK/fWw8SHoilhc12WIGtdbev6IqGuiKpuf\ng67odjUeK1/fG480bls1/e+RKbi+UvaIBIHlidKOAukr1tHnIUInzC7WciGiSc9/8t53zcxsRpZu\n503ZVDrMuN8oS7YEORQwHrVCmDFRe1am+4/qmkPjpWw6GOp7d78i/STmyiZerF6amdngXPoorcv+\nbiO+SecOKBunIJsOZmTMyD43F4q8T4cgN9BNgjFZ0caCR+YzofutYwsGCmFyfKy2gsR5dE/zOOUp\nct94LJuomPqQIUPb8oUiCJqyvaUeayMyxdOUnlceqL0xR+1Ll0CJgQSaLMg0NmXLhSTzPKvP21Pg\nAWTT43NQDQvddz7VmCxmymwYqK51smeeqZ/+iGzKju7f9aW/zvjUzMxKW7LFFRnVPv40lwjRHbpP\nxiEjTlYs1tT/w7FsadBVu6cZMsKgD/YevmtmZqc/1rgMya5VU+ihoozEbSWdl7+M+ZqLDhmMXFl6\n8LGTFRlbt6DndQLZ6CzQ+M7ium5Btm4FImiw0OeuJ70kx7rvwpH+mKq2XNO4ZtKaA0FOPqXsJaxL\ndnc5A5kAimdK+iTPBF/l1PZ5HYTfTH3KYvPdgdrUdpUVHoJYyYMAcbAhd0t9DcjQZYZ6f2VqY+Nc\n3w8yICxGGlN3X7aSLoL8a8tPeWS/VjHppsiaFQcB0+vqdTHQ/S5AFdimdDQBxZZMqB/5hWx1EKKo\nQDK2UmrfGLRbKo1/bCjDWk3pfhlQSbeVPPcN0hrD0kL9mC3UnjWyg0tswMjmz7LsZej/eKj/ZxM9\nf96WXqcr3S+Wld7TY56zBpKpBiqEzPW0HSJbWtxHhuDHdf94WuMxSq0+68PCXZkbIpPWpP8862Fs\nIFtegWwK17t5X3NzApLKQG4WPcZ7Jf3bEh8BUmvGuJiv9ixCtayV6FfSFvi/FbYda2ueDDvSxXCk\n9wEQmlfFb5FdzxWko/SO/vcTakN8rDZP+1rb6vi11VDvryxEi6mNyyVrFMgMjzUtSH2xPUkpBxoV\ntEJxX+0bNkDQXcgGRx11aNHDX8T0fmJT+7wQLTDF72xusNbG9P/oWmM+QU99MtT5pNabGGuuB2Jo\nCjLIzchG01sa6+lC35tNjtWOOXMHNF1xR/op77L3mGruzBch2hhEpbHnSEvPybmeM8dtJ7DB/KH8\n8ubmoZmZDTryIaNz+YgOiNW5H6ICdX2QB70NWtdL6rnhXmbQwtbYE45AlyRW2PgdkDOOXlPsoTKg\nBMzMius7Nj8CXbgC+Xqm/hQ2ZF+VmPZEiRDxw/oP+O9WsmAN8JYac599ocNPrgTzK4ipzwvGtg9C\nY1EANcYa2QdpE8PvuKwDSxB6Tk5jOgK1OW4zKEmQJAUhKMqAoebcb9KWDgChWWlD7Q7KGqPlta4b\nLtWOVVpzJwlCMgVKbA6SZFxnbe+AEMzo+8lAY1DK6TV7Rzp2QfTc1I/VP9AMC5Sdy+vzGQiUFfvl\nLt9bsZ8tPdD9siN1sNPQGE8boHOxzSpIndg2/gvU65Q9wQJUdQCaLg/KymFvFlzjSyagRuK6zvXV\nvmTpi603w6H2VK0L/fYdp4Uq2Wvpt2OzpfvdXEmPQU+/IZ31O2Zm1q7LxhP8Vi07mvNX7AdKnK4Y\ngD6ZzTUXbyYaz+nx5+395KfPbPutsk3QrWFbI1/PdM9AW41lq+E+p5gFkXemfdqzT4/MzGwCqrLO\nb6WtpH6rHZ2ob8WcdJdhf7UCbeSAXJl4spV+aBsVbQyv8XfHPdnCFf5/CwRLdwS6ld8Fgy77OZCM\nR5fyq6laiDTX90ZJ9tsu+CNQZuMkpz/i8tvXY439pK998CJFP8ag/1Po3GcPNlN7+hdCTPZBlP88\niZAykUQSSSSRRBJJJJFEEkkkkUQSSSSvQF4pUqa7UBRy911FwFYxRZZanC+8SzZtVVFEqzlSNPDO\nNxRJ618qIlX7xW+Zmdl6URG5+pkyDmeeInJ3lopoxRq6309MEbstUyTwMnhuZmbFd8WXUugpa596\nQ5naclqIlQ9/+HV9vqFImftEkcAnBRAwdUXEDi4VEct2FRHrbqq9nZmiwPmPdL8ncaFNxvcVda5x\nENMv6v3iLvwaNSFw1nviVOhOdL+tXzw2M7PBWPprVDSc1x/rOUcPFA198/CntjHRPbyMzhv/6kxR\nzotflW7aD9XW8VK8O7sv9ezuvvgjDnqc8e8qKnicVMS1xrno4VzZit1tzkT21cb8PSLvXY1VI006\n7JbiT+FnmKlvyUC2EYB8GZ0ritlpK2p69+HrZmZWzCvKOuor6tm9Vj8Tjmxpi+x4Y077OxqzDJF/\nJ8N5665sbkQyLZElO9dUO7YfCRn04K5eLx/rOccvZGOZMWdvA/W/zXlGh3PQi7aivEkyjmtZ6S1G\npqK4KTRYGPU1EssdosfzgHOSZ7LBABvIVzWeMSL6VwN9sRZXVHoJZ06/oTOrAXrqh5wQMc0Nz5ee\nHM6DzyagSzzp/QKbH/YVLfeKun61AHkFasIdgjqg382+xstLEMUm85OHM8Ll/dtI3pVN9cgWTfvS\nSawIp9RDIegeJDSf50GIolIb54ClEvDzLEegBsgI+gEIFnXZjibS1dq6xipBVqdxemxmZpfwMa1l\n9Bx/Xbq8V1F2I+XBS8S5bJ/YeJys+pj2uWTwZmTJ47jrDH7s4lRjXtlWO7JFzcGLibJEQZs5kgZN\nMIRHAohOmeemxpor8yt4LeBLquTUrx7nyEOeo2QOtAZjNuqDAkOfTTKhDiiPLGiFJPxPCVe2lwVd\n53HOfthRu+dp/R9MyTRMmSNkRo1xzcY0zrcVZ6Zxw5RtDOoiaOq52aTmRjIr/Tt5zb07G/KZ/lB6\n2YTnZUp2qrqh/i6wjx7rVgM+Er8lH7Ocq739ji6cg4YYknnZ2s7bylHWZn1TY1JIyXZX8AelM9JN\nEe6Bp/NjMzPL5DSPq1W11YMYJwHCZT7VM+MjbH9Ixg10VHlXiJdFThlVb6r3D5S4s1iMTBvcXMMC\n85pEW6+pMR13NZmWPqiAFmPmaCyLJXiHAq3RaxU9p7itNSwP30XCke05cCZsemSAQT+4cLr04dKJ\nxTj7n9f346G/grPhtuKDCEkN9doHcZQANXBC9j1IwxdE5joHpUuAbZbJJCdT8DcxlwDnWaUkdEBu\ng3WmAjfPUO1vPlcGtX8Nuq8B1ws25GXpL4iYiT/+rA8Xrb7VQJksYB0YOPp+bHTDc8hAgxj14BAq\nFdXA4j1QG9tqd3wbe1qqf7Gp9FoHBTw8kY8aweEwGDIZnIm5zI+1lOZX/E2d+V+vaf6NoA2Kgy5a\ngFAIOae6ICF8EIBt1qzRXM/OLVk78qBlQVjHQU/l4BpxyNyOsJ0cCJ4J/v62MoYbxyE7PulpLHpw\nkLGt/Gw9WYAyniako3QSPw+aKw2/z2QOghG/0FzIxmaDkL8jHDMWrLnuv/0N7T2y/V0zM+vcaN/b\n+yD0FfhTUMRduBqdPIi9Pc3J4hsal15dNtf4BOTRjfrrzrRHWuJDPFB2IUohBt9RAt6SPqiDAdfP\nhnC4gHTvgk4I162tNc2JZUnXN+C9AjBqS9Amwzh7kIX0mAbJufVANtvDpo+u5X8n7P3MzCaDkc3Y\n2zj42lIalMlY+h2Adsgk1a9UyDuyKNqtBRSQxfQMD4RdtcSY85tgBkqsfY7Oj0F+w/Wy/bquS++p\nzX3mV5YNaZDRfEzlWdPP5Z+ya/o8tSG/WmOPsJhqjn36WDwY9Rv91okvNGYJbKW6yz50DdQnXFhu\nXq+pHe33MuxtPNCwjUC299HVsfoHwqO6LR0vY6CaCtLL1NXz8qCT/AQojLJsYO1Av4Uc/H/3FOR3\nQ7a5/iWN+Z37b5qZWa8lm1q+p/Zc9mVr0zocK+xtPHxRbKy9xXVXthKH96P2ULZYuaf1cGNbc8uB\nu+X6hXzQBXu0Cb9dSyNQ1beUAv529554S9Kg5SzDuriv+65t63fNdCr9VV6TvjJd5nJLeu6zTu+B\nZJ/ARdeIaT+xzmmTtV/T+31+35iZvf/kAzvtpsyDC7FUA91U1hhdJ6TTPvxGcfYxDfgq11+TTRQ3\n/zUzM3Pj8HsuGZOixuD+SPvgOr9BznvYAL+R5oyJmw/jA182M7NESmNSg1ez+i9KB8E3f9nMzEbs\nG5cN1tS+bHzlSWfJ6s/yuj2/EnIv4+n98LeRW5Htu6zFl/wWXsz+zMzMTi9kA+t3dH0tL9uIl9Sf\neB++OU4N7MGXN99nbFt//p4kQspEEkkkkUQSSSSRRBJJJJFEEkkkkbwCeaVImZ1rZQH9NSoKkFwJ\nhoq49XZgBg+Ugd2Dc+WU6iiv3eUM75NjXV8kkvc6jNOct/c4T90nw/EvpKnAc6MoaiYphMxk9czM\nzLJpzriWFb2+ChSFff3XYeyG48b964rk1x//iq7/FhnqgTKsm77a+WlFkcV1g0fjpSJmRU8InWEY\nLea8dm5HkcrDmCJxl3HpY/6OorD3ONtXnejzxutqR3yu78/i+v/wpSKCL7y8jT34ITj7nXuXs+85\n2Lxjij6+3lff6nfV1vubukd3qCzK5J4i8vsdRYpnVHN6F3TToEf1pg0qSNGH5CbnkH/wxSLJYdSw\nytnSFNWN0lROSFJloppSVPfgbZAlfdAHJzfcR+1bki0LM53WgfMkRrR0X9HX2gZcJ4+FTgoanOt2\ndV1iCh9FSlFVL6vrR2E1JbI0mR3ZbL4qmwvP0c96uq7TlNHnt4nMv6vUdIiksU0O6fc4s9sj29eU\nbQZxZSqqh4rWxoqcE6eqkhsWoPih5lKbLFlYWWHKOUsPvpSdDSGqNmr6fA564+Yajoh1MuvrsuHZ\nsVBfcTJDIXdCek3jXINvJaDCTOxMmRSPKgHOml7Ljto7qsnunCl8J7cQn3mTJmtchydoPtAYxE7V\nlyQZuQIHq9fJVHp5uJyWemaeCL6DjmJjzoKCaIiTCdx5U/P08kJnaJc99S1f0HPS2OYAVvlW2J44\n1R7IagRUcVo1OKMPx0Atjm2T0V0j65bOaA4+Ab02pppFkmxXtiybLN2XzblkkgtUz0hB/DBpk0V5\nLttoYJNZqk7svi1bGDXV3vaZ5nwJPeapjLAsUZGgxf9kVvIl2O3h6UhSISI1I+MIj1HckU0OyBQv\nu1QTuRCaY0IFgtSusmYBrP7DBSnUW0qmTHYPLpkAFJo7Ds8e6/k3nJmenciOBqBSTq/VzkUFeEgX\nTgwfviRP9ymklAkqlvD3nKMPK/gUQHAu82ElCWWGOqOxDXrK3lzjt5pLZXsKJv+QX5cN7Gyo7TYK\nfT/+hbP3CSpLJeBXirlqS6oMd9U5fgRumRTVgBoLqvWM4fmB92IOGqqHzuustbV7ytLnDw7NzCwH\nZORAqrZeTO3z0HkHjpT2MQgOqos0juGLANGTBg0wC0ISANqRpUIaqNi5r//D8+1hlagS1atsFtan\nuJ2EwJrRAj6PpuZYyGmTcKTPUg2OhrfktypboM1AFi56Wm9bH2usb040rj5VlIYV+e8MXDWrBpVj\njL0FFXr2il/Sc+7BMQF6Iqy4MwwrUmY/50V599GBeXn2MPCljJnzsZH06NY1DoscKLg1jdMC/pUi\n1ZRWKdlDvS19jC+FOhg04GCQmVp+UeB5at8E/qvxfGQe/rRB32eB7D2OLdiIilzwv7kgSRyq4Q1z\n0p0D50hYwfBgTWtlgo2jD5J60lBfOlREfEk1z4lL9TsQiiXQtOXMF9uTxEG/NuGwuWnCvVJn/wfS\n0TmQDp0dOA1NkyIJl0GJNXIIN9jlBesWPB5FKo4lqMqUOmTf6v9sBS2fSmMbr2vMn2Brkxv5TYeK\nZ1nWEQeep4Xbph8an3V452KsF2FlnQS20MUHjGchmlb6W0uqX/Gy9hBnR9K7fSrbqsY1V1JAiJpw\nwoRV+Xpk+wsrXeeuQvQXaLGmrpsX9VoJ9Hk7CRcEvFMLEJlT9n42YM/zCciiv2l2/qcXNqBCZbGs\n/uXvsg743GcufWYr+M4FiMYZlSdvIQs4sbIu8xnukSy8ZsEEPqARnFQ91gJ4LeIgYGqH8q9h0b0k\nlV2bE/mlwlJtzi903/QeqB/cQRIk+wTuwykEQDTH3LhsYTZjDWQvsQXS0qWq23iiie47oG9PWfPa\nefqFruDX2N/TWj3I4VdW7MepzNgEjTXqsR++0RxKlUA+rmTLCao+xUpwfdEeDxtaNDTXbjztQ2Mj\n9kj4ioMNrcXDLdYB/HeVvYlX4ncQHG69JXsq1uTm+/DhXcqPT1BsC2TTsAPML+Qgq95+36oHgVzn\nd00TnqPVMPT30mcB3sPdqp6zfaA96wAepPPvqh3jqfoZgAZL8XtnRoWxDj6l1NZ9qpXP2/vozjds\nNhtbKh6iVdWWBuifg4x+r6/f1asHP2ezJVuow6eWS/NbAL/kdqiqNuD/Q+ZGX2M9XMmvrKj4mhtj\n7PiHZkBl24KuO2rreWWqxa1X9dtnXAcN3FWfxsyJSoYTKhus1ev3zMzMh9usPWDfDUIv2Vb70xmQ\n3VnWtqTady+l3z4POQXig7TsgpAOWXrarvqxCbrJwQ96NWzm50iElIkkkkgiiSSSSCKJJJJIIokk\nkkgieQXySpEyjTVFsJbPYRIHFfBOTpGkiyKM4ysYpZNE6M8U2W7APL0iu7PiXH3zu5wDh3KgkSKK\n/GVlMkYviVzBBzKdKCrq5BVJW5IlNM6FF7KKzLlEe0uurqsvFBl8Y59qLpyHbK4rg9CFA+Eesa/F\nS87WPqJCDdU5JtRFH/mKvE3b6m+RygqDR/reOhma3pfItJARmBYVSdx6SVS8rPebbbJd9sIGT6Wz\ndOHHatsfwt3BOVyPM6jTrnSVZWz8hPq6U6WCwB48HDll45NlRS8/JbtdSapta8e6fxvkzYoM68bk\n87Pvt5EF0dPknHPhK1jdV+rbxiPOfG7oTGZ5TxHw4z8V6mlGtDWgSoezJDN7rQh+y/R/0lH/smRg\nD/6yuHUK7ygb9+Qf/5GZmV0/0Zlfx9MYBQ3Z5Muh9FI/0udxKuLk7yqrV9lQdHnR0XMbNyGXC/Cw\nNFw2Td2vM9R1/g0ZTpA8yQRoDbJsDlHaGecp0xZy2Ki/b35FUeF2oOufc5Z4QcS/RmZ7CUv/+pba\nO+F4fIfs35J2ZqvKYGxw1nfpqT2XR8okxKiukkhpHB5+7ZtmZtaFKX0G0mdGpmTY0vUFzuEvsWmv\ncHsuiBTZpRmVwGpEsntkux0QLoMOZ9mpDHAZVkSZyMZzSfzITLqq5kGkleFEAZixfUcR+ioR+p/8\n6D21OSvdZMgQJDj7Orkh4wdvw3SsrEUipvYN4GlwyWpvUxVkUpRtx+AOcGpkNch6x6nUkAOlNifD\nvBbnbD7cKBOQH/MbjaFbD6tTUdUuC6qKLNOY6hcOFcSWVGGqj/T9jCv/toBQZGtPtp1661D3gTOG\nxKzFL6nERsZxwZx04S9y4npu3pXeAioF9N5XVr5PFu3tb8k3Dakgt5qAorilNMnuT6g0EyKiRgFV\nPuCy2IDHZE4GOBaDR2Mp1Fy8r3HIkTmpwt8U55y65+jzIetFWIUgMSMDC5IpvoNPW3Lev9e14aXm\nzXIg3ed8ql3Q1eFSa9UCRN7lqVBcPmfpDVROrCRdzzlTnqLKR86ogAVfz4wKLMFINtC5ohoPFQp8\nj7WzJlvegu8suQk/BKitcZPz1yeqzpegTyXWlViezBxo1exM318FWpdiZdmsF1YZceSH+iHPxlD+\n4wYkz7QL/1oK9EVL7/tw2czCymWJL4aCKML1UimoX10ymD6oAdehfTXddwYn2dGRbHU+BD0FWmB6\nQoaSKiBFqiz5jG+noXYvKlo/woxpCcTTCB6oxrU+7x9TOQZbToEISoPwNDO7bNYtRrWrRFH9yKOP\nCRnxsLJO51zrzOhc61F/LD2vimQNdzm/fyDbTuTFWVTZhfMrTYa/zf6B9eDupq5L3q9YohxWIaPi\nR1ttbz/G/x0JadgGBTDDD6yBhN6p7PO//IzV4GQh+d240X2aT4Ssm8Mh0qdqUJ6MZwWOgiTVm3JU\nP/si/GVmZglQZYX0Ou1Qu+vwXMyXem51B6RgjYxqIuQQ0xgUHRAuRa0j/ZdUXPnkhfqVkM7vgsxL\nbWo9uEumuXUmW2icSn+LM/zWhcZ+DvdZsAk/EtU4H36DTHdBe6an77+v+xxpfexdY2NH+n6NsczX\n1N9yUT5mScWdEAWcAS3sg8C8OP+JmZk9u+A+ZSo17ml9Dnk7MuxVFjm1u4VtN5k7K2wwC/pr+5uP\nzMysaqwrT0G0/wRuSBCZW6DqnnblM83M6hfPrFqWv15RhWsKnDhbACl7V/1heKx7BCos9gX2JB4O\nm98Si5jucfNUfmtY1/udMegbUFyZomxlwwNJMw0rkYGoacrWeu9pzM9a+v72I+m4ek/IkBj73Ztj\nPXfYPjYzs7U9dHhP+9o78Ds1r6hYA/dgCNTO5kFjheikT/X52an2kVPQFBX2hbvf1L750b/8DTMz\nW15Jt2cv1F6fimKjqebiEP8Xg2/Tc7TeFKhAdn6BX/0R/p1TBQP28S+fy3bnQ10fong3am+onyDI\na7vaB8/gXpmCZHdA+26UpI9MTLbfBOl4cyrbqn/wMc+nuiu2uAAhE/KSeCCQbisu+9511pHJUnPr\nhqpYtQLrHJxi9bT0cH7y/+r7A+0x5gWtt6k13dCn4pEXaLwKMdlDElKzIcjTCmgXM7NqKW6+rWwK\n958DD5wTrkFJuFQ+la1NmGeOTxU6/KLfp4JgJSzLpven7G9rIKr7eX77tKmaCuozW4PriypQRarc\nNWnH7ITfQFRHbSzhpYQTashphhp+vpdkv4xf2bpDtdIeXC9z+V1nxj4YblcXns00yGwXPr00pyRi\nVP8bxpnjVJPyhiDwQV35VFDLrcJKWZ/r/J8nEVImkkgiiSSSSCKJJJJIIokkkkgiieQVyCtFyuRB\nKaw4N16gckyno1hRmG0L8oo4ZU1RxPY+1SqWQiX4Q0W222RG5neJvPcVAVu7UQbltK6IWR40xJgD\n5Lk1zhbHFfnyBoqIXVcVqd84EI+epgAAIABJREFUJ5N9KPTF2VTtOnhNZ3ePyHi73qGZmTmch19r\nwikA14uTUoRwRIbYJRPdXdf7mWN9r0NGuQAPR5pKSZkV/BuJ4c88d3OmTMZ5We1ZjhQ5LMKW7aUC\ncw/U9ssjZUm2K4pcN5+qr3NQAemEIu+xNaKeSzJkbypyu8Y56nFNEfkZFQgGh2qzP+C8OMmn5L6i\nhOsn1JyvfrFqGLMBFRk4a9m+ICKexHQ3lPVI7HFu/anGfMx54gzcKEuPTOEaZ1+BZrhEg72Z/j89\nVWS+dKz+1R4q0v7gl76i90tUKeEcc4/M7PUPxGI/hZ9ik2xShrOdmaJsoEslmxTnn4ubsKivwsyA\n9H9zJZttXyt7RWEhW8GG/+bXVEmokFdU9uh9ZfEvj9X+1geqmuXMyEzDefDoq79gZmZ+C8TRQPc/\nBxFTb+k1yXnxsJKRmeykt5Recx3Y6jm763HmtUc02G5ky8efao4mQx4Tzv23yRA5nMNs5kFlEOUO\nq1bdRsYE3F0QKsU1zpom1Ice5493AsaMc7cTzvInemRhqLgypuLXgkh45wpOFiLoVXiL4q4+vzxV\nH3/1HWUe6y4RcjIA2bL6Vt5ShrC6JV0m0F0MW5iDHnDh2/GPQE2BUHFA2gyXan/+QPfz87KxaVvz\n/2MytpOlxjYdyOYznE8uTjivnVVWqpTX+/42PCJHQl/EY/AGZeRPZyBoilt6HgkE654pA3Ha/4GZ\nmbWHGtshHDWrBcjAFdw+Q31/l3Pz994iO7aDv8evXVOlLg4H2M6m5uKPn39P1xe/WPWleUM22wIx\nNaBKVJxz9z1MN04FHf+h9L5LNis21wXH8DnF4TqLn4D4TOs1EcjHztqg/AxuHxBG1SrIq2spMGWa\nc9PAMRf+hkxFiJQ3S5rvqyQZ1oXGrkQ1neWUakdFkDFUtwizUq7PmfwxWWGq4rhUDXKXavNGnvPg\nZfm3FX51RVaot9L3RilSqKCI1mmXs0vm8BjuGrhSnKZsYEBFBS+h+/sLqofAhVJLysbSVJkK0np/\nY6axGHt63U7qvgE2uQItsWIsPbJbcRAbdSqG3Vam+PXjG9nK1XOQhSBdghQoMqrjFaqgqNYpvwTq\nK3dfa/JWVf3YAiGYZw6kd1hvH0hvqTvwhnjq//HjY7X/x/LnM5BISRCipW0QrRXQWfxvZpaJlcyH\nb6R/rfEZwWHh42tcqkilQLu5ZLorGc3B7T35hPjXqAS5TSUh0nj+M33/Cv6ucxCkvZbmxDXraNov\nWL6mNmZKVE0bkjGMg+zbU5Z6a19VNtJUiJmRjY4DdvJBszbJtrcbmjfW0fsF5tXa9jt6HhVbbCZb\nWYIkDPk9vIpuPPmMBeB2MgEpl2buxApaw737aseQKlFp1h+Ham0FUEVNsvRHl495X+1IrqSfzBbc\nKqBXZ5mwfxrTyrb8S3yoflx/LJRTa0WlmaH0E/JuxOByWRQ0Nl2qjDzc1/MqZ/Kr3ZcaS/+lxqc/\ngK+qrPburMHJ9Ug2co4/PTvVnmt3C14Q9kBuT+M3vvpI14/hStxQP0rs55fxMHPMHFmjctkBVUv5\ndJplLwjP0WZFeupfgUT9SD5mQJWWDOiwGtVPzMw2UkXLHmiuFUDzduLSy4zqVml4qIoV6WUFn+Gg\ndXuUt8f+1Amk+/mV1tQWlboSZPXz8OJUd0BxbWhMO1QEbP2xkO3FfZAQId9dmkpUQ/mrfk9935xL\nxwH8TXNQuWP40pL41y2q+CVAi1VAJrdDnrSOtB74ak/oZ5dJ3acM2jMJcj1OhbU0+93gGm5JkOEj\nOG2S8PYdviW/MtnRXqr5QkiU8HdDJql2Tdgvn7dk48lMOJe4cBtkKOuNC29bWLnx6oX20XlH/Sus\npJcBaNlrfhvGWE/Su5obX31bSJ8JPEqXH8mGDZ6SO18WIihe0Difn2ouTEEy3VbmV9JLA2iSu8H+\ntwqag6qG6QzIR0dzfAyCaERluRrVvDz2rHGPKoHhb2JQcg6osBoIWh/EjJmZt5rbfJIzz6OKHQiV\nEtcO2JvXR/IvPVBO6bTmYQ3Op36CEx9sz7LYmg00Rl24rOYN1jTWvJ7pvsMrKowdaGwNpPQ6/KWj\nd7FxwhfFntrZYp3w4EddTuFdmmhsN/eolgTn39pbuu/4+/DGjfTqJOUX5mVsFu6bGGim7TvwZPLb\n121SWTIl/9lfac5UxhB6YiMhsiif+fP3rRFSJpJIIokkkkgiiSSSSCKJJJJIIonkFcgrRcqQSLbs\npiLb7uDYzMyac0VPvbyy/6Ohsna1iaKvI7J0CTLI47kieet93WfNVeTq7L6iotubun4DlvchNes3\n9xSxm1LZZkmEcJVShKw6IaLlUR3qSNHbYkIok3NfEb48Ue96UtHcKtnFzELvP20pKlzOK5sU4xz+\nAPTGax3QJkWyXUN9PoxJH8GFInwv8py1fqyo6kZC13dW0tMu506P+H6MjE0ykbN8RzqcPJQO48+E\n/NhaKVIcRh2P02Sf6kSqibi/26MaSFkVWYIb+ChScBxwFn71UuHKAlnj+SfSabcpnQ2IBN9WMiV4\nNAJFHzNk12Zk4xs/VAS7/fEnasdUzwuIiK+tKYJc21b08/CXVUmrvK73n/5E2arRY43d9TON0Z/+\nz/9Y/aDaUDyn/sUrilzniH5WMxpbc3Td5FhZoxncDcfPdd/GqaKok5n068454wnxUXaHSgZlZWds\nzPsOVUb6VI9y9X4BZEl6S68k1Sw+1PUTUA0//PSfmJnZ1qEqjFXvUMWFM8I3ZP3Pnqmdh1/VdUXO\nsSc5Z50isz4AUfMUjoct0CH3ee0dyx4+/UB6ffwPv6N+VMi0TjSXEmTKK68po3z/gfidFjCWX5/C\nkXELWSzgOUKng4XamOPAbhqOEKvp//tkFeyRdJ5bqi3DBegDkuuzY9n85PjYzMwafekqC9ogOeRM\nKn4iBs+PlwO1QJbizs6hmZkVqCDQHzi8KjMwA7EzHep5JKPMIz1VAbnRaEnnbVBgm2/ABxXDRuB/\nergPo38GFNaE6kdUHFstlGlIN2SzC1AJMbgIoEKxFWiMXMAZ2xmoCF+24DugOFIyvjTvr2VkY/v3\n9Jy8qf1LKuUsyWTEqHDQ5sx/yVe/anmNT3Og7GIQhzuMM8tx9DtefbEM996jQzMzO5hofZlT7WW1\nlK2NyLgMyOT34XOZjDQuhbz0tGLubFWVISJJZ4u+Bi5Fhn9K5rU7IaNiPIdMeZxz8I0RSK20WQqk\nSwfExhIES6ZEhvN1+Yf1DdnucBcUDvwRmX19PwZPRRIEyuRaYzRq675uT7q9asj/p0CLBj216eJG\nfrB5SZUNMrPThcYqeKk+PcUP1RLK3p989CMzM5vVdL/KLufLVyB4GrrvAOROMGIOlTS3nLL6WSBb\nHc9rDVsE+t8HXeVyXZxqH66BGAngG5ppLCvLL1YNYwrXSgZbCyuG1ajcUCSDmX4ov5V7qH4FZLhj\nHdlO+0jrU/+l1r3OU6HYumSWnRBF1VS7B0fSx4DqKGlPc6AMgmWnotck1ZOmp3rtjVgHQaaYmV2e\nH1myqH7H4fKJU2XR+P5owTraJet5rnFObQJ/q2g8M1Sue/ZC4zMYwgFxCvIRbgyGx7b3tc8oMvcT\nGwsbc6Z/1NLa2CeLPgXVtKrDs0M2P87akKSCWFCQzpcg49L78LRta+0tYGM+qIFRU36y/hQeM1Ch\nLvsnD743O9C6UfqC1Zf6A/Wjcw2HWU3tdw90n0wg21lkNN/Xtw7VPpAgFfaLj3/0UzMzGw81RukD\nKmHep3IWFSbntLvbgScJ7pnWDXOZPUJ2HiKSuN5R/8pflS8IfI311TGVvxhL9xw0bU/fn+Cn0qCm\nMlQ0SzKn93a0h4olxeHSANF49Ayk9lRzJg1CNLur53uoOUQDLly1vxGi+J7qdes+iByqbAU1oLBU\nBLo8EXptfCP9Z1ryCVPmwumficsmhv1sPWSPZmZOJW9Dnpe7g4+AKydEEc470scQbsv4TD6vP/0C\nqDu4rNL4zWwbvp8sPDw19W2bNSmJTtp1+eObF6CfXgiBvfO2rrv/C0KB3XldVdkK9/X+7jr7RviY\nuiDW1qgAmIFrJbWh11FHfX35Y/mnLpUjY75soFyjkiKo4Thr2dbr2h86TrjhxF9ScWwOj+az92UT\n9Y/FjwTA2sr3tWaGKLnKayAzFyGPEH4S267sg3rK0q82qOEcpyV2hXrYfaT957Knuff4n8o2/TNd\n38Lme3D3OJySGNZBj4HI2UiKe+aNX9KcDOmmesdqxyr0nyDsSz57PviVZrHPq+DdRrr428WFbGu2\nhIcKhJO70pzLe1Jgl8qVlV3tl3242Bz2aA78ddkkfKRU9SrENTe6VCjNwzFzvUh91pZmqm/lnGvB\nUJ3uMKZL0JnBguqirLWZNdnSvCA/fj1lrec3oTvWPF4mNQYbK7hZqNCX5bfGw3/pr5mZmVeXf/pH\nf/9/U18m/L5nX52nItUgTfVO7rtI93/m8xG/Wd0MCDf2j+OG1qY/+sH/bWZm5aLuUwU5t2rLpkIk\nfQlORseHI7HG3mJT/gQwsmUysnE7Yn3Jqz3h3ivkGMsS7/AroGp/jkRImUgiiSSSSCKJJJJIIokk\nkkgiiSSSVyCvFClzQCS8SgbgRZUz947OFx7XFcEqu8p42IWigr2sIlGVniJouU1FQRsVRcjWHX1v\n11XkburDNZHgrFiRqOIHus9NRVHa7ZYihH0lwazyXPd7fl8hrteI0k6GilK3rxV93KopM58gs5yE\ns+CnfVjjA0Vd21RrisN1Y1uK0E/gbVkN1N6UUcknroja7ELR8w6Z2Mlj6emopvdnOWXMXyej4C10\nv/mcKGw8ZrMtRRHfpjrH/J7aPM4qeuhPpIvqC93ruisOGsfVdd+Z07e8zri+S9anVVWEOn8qHXk5\nRUdHZ+rjTZlKUjGyHwPd97ayRka4ElYnotpGgwzekmoSadLVWdAQN01F3Os3ygRU4fsZPCW6Ctpg\neKSMRJg5yCWVHcqTfRpRDal+wllRzmpukoFI3CPbAvImAwfE8JxMaU9R1zbEJ/2+bDmXI5vmwEnA\nmf/d+4quPiyIM+a113W2tdNUxiSkeLn88FjNIUjbrVMdCZsvQvgxTEo/KcarASKoOYE/ZKHPdw+U\nabn7ldfVPvo3rMsurgK1e0F1lMGKTAbZtUENVnxfevKwl52HGvedd3UGt0fm/eoCXiXsY14i0wyf\nSqx0+4xDPCudxeCzGVL9oUmWPX1Dtr2hzz/sq88Tzk1DJWJZOJ8qrsZkg0xAcV/ZndRLsipTjXkO\n1EF+yllZIvt3H2oO1Z/DEVVXn5/+QLpfLeC0ITsTn5ERxU9kYfDfyStbHauqf+fnQhmUaorU776u\nbMkN1UZCPp4slXG8BZwJGbn51FjPW/Z03bKt/jThABgzl2JUbHGMSH8b9noj6+6p/+lAz5nndd87\ne0KgzECXJU39nHIO3mtyzp4zyoum/HnLU1Zt6sJSDweDS3WjpEv1uhFoigTQFP+LVV+ygvy/l4Dj\nBhKZpAufB5xm++twMMChsGAOXTwXGq97Dq/IhvpVwjclXld/fNAmgel1f4yeQHjWsvgKMkDdp/KJ\n/eMrW6zUpx7nkSkcY60rzZfWGITLuto8eCZ/nMuBFBlp8UpvUykrA/8RjP8etkaC07bIZu9ltA7M\n01Rzo1LB2q7mwvq+GrKkfb4nWwgzb1WHsaUkTo5KJS4oskQFPid4kZagSeOkz6cuVUTg3ah34RBo\nkf2CW2uR0lj0E/BEOPBAkLYKwsyfrzlf2tRcvK2kQ5gYcykdZtFn8qcDBzTZcyE0R5daR5ZZ5hTP\nd9vSQ+wYFNyl/GIprTlVXsdmslrPSlsat0IRvie4AgagMWYX8HfAGTZ6QVW8HHuKTPGzPhRrFavt\n6P/CvnxFHFRvuIeYgWT1XSq9rZHBDvkEqGwRgEJ+sCd0RIgS66+pf7OPpedJS9nRGHrqdtS+Yiln\nxUP1dbuo/V4M4MP4RjpbHckPtT+Sv2yca+2OM89XWX1/5ytwroCsTlakowAugGGTyorwsk3gOlmG\n1c887SWyGRA4JPtjiy/mR+YgHZcOyDf2DJugZRd7GuMRKKLJlfxapqb2T6hU5ftwh11T/bOm+xRp\nX4b+ebtk4+dwoNCv64+1t0mPNGdim/SvpnakCyC5d6gmmD40M7OnIHRevEdGG94ln4pfOXjuvKTa\n55RkY80hY7rQ+KTzcPVMmMMgoWaX8JG8xnp6yP4W1F95R+2bU1nTv5ZP6/Q053N+WN1Q/Tmoqj0p\nuMyefU96bX3CeujJxj2XinWgRVYjOND+Gd6M2sOaNaZw78Bvt/UlVepJ9PT/TVcoi8mRDLWED0tO\nb1+la9GXv56uqe3xPX7bDKSzApWh3FiALqiYBfdegsqIKSrFpBnb4VBjltjWHDjcpvpoWTqof6zf\nBNaXjmIZPacKYs4r4y9AcrdNz59dgQLIy6Y9/G5YoWr/jvYaW2/w44iqQFc/0G+1j0GEj5tUlsxq\nrIZxkNbroHVBsF9eg5iGU3Dao8qgL1vugsg2OGd29tTPmSsb67VBlgxBNcCflAmBkUnWmRiVFktU\nPATx44ecahO4WHzWIxbGo58IjTUB1dd4LpvogcRPU6VqfVN6SYFv8Lwvht59vSL76DKOLfoFVaWt\n8vh/H7/NaYhxQnoMuvIlBfx7YQe+1LnucznWujH5VHNy7MEN+qvfUnupXGdm5jqOtds5ywZ6+Dq/\naRagKj0DHQpqd1XVPOtQ9e4YiPl+INus81tg3eT3PzrSPuf6E/mPzXe0lmUy6vtoqOs/+p7W1tce\nCQWV2JDfm6a1PtRAk3aoKBuHM2wYcnyB8FmAzs8wJr2l7v/D52rHFlxn33rjr6r/VGU1qnoOh1Sa\nPdT/F890//MP/nczM7uiiug6SPZHX9IauV3SniPkUjyGH7TFbzi3+/la/c+TCCkTSSSRRBJJJJFE\nEkkkkUQSSSSRRPIK5JUiZb4/bti/Y2bfn6pSzPyHiuo+I8pq8WMzM5tRHaPAmbPVIZFworzTnKLA\ndk0kvahIOEVQbJJSxvkBpQNC1vwnVaqt/JAzaB7R0aeKqDVnqgpgT3X/73HmbLz3J2ZmdnegCNlF\nQpG5ckcR/u/DDv0gqWjqvKHIXKxFdam8oqP7l4p+5jgT13tH35vV1T//SBG+yYCzfRxpHW+QoZ8r\nSjwnu3fzXNHozFfCLKuizIVYypyZssznMF/vlnR2MttQBPU6qWhldl/3DhJCAxmVVe5e6VkfdZWd\neb8o5RbhQ9itq6rPzZaijQ/IChWJFg7gWQiW6PSW4pM5aPbU/ulA9w/mGuskGeLuDXwUNdnQ4UNV\ncrj5QFn4xhXZm+8os+yQhR93FH0dTGQDlRxVNbYUhV3boWJOFxb4G2V1Zl3ZztmTY92PM8C1DWXD\nnRhcNAA+9nc05umvSc+FsjLTHSqQ1X+orM8n3/3AzMxKyZTZv/Kvm0O2Z7Oi+wZ19ePJd95X/6ki\nVYE3Kb1OqoBqHyWybG04FmwCJwRB4SR8Ig4M6a0TRXO7Ld134sGEnmDOva6o9Wu76keGSgln31d0\n++ZH0s/avrJP99/RudEVaLVzkDIOlWvmTbXr5ZWyd3UyJMXMn3/u8p+VBBWmpvBMpMkGjDvKilzA\n1TKDkT8HGqBK9YlCTn315xqjJJmBgCpoU7hY4lQcmFBJZj6CU2XGdfB65O/outUxSJxr9TXgrH42\nAwIwIR2u4AxwC7L1JLY4m4GMO1P7V2RW1x4qa5bET57eUD1iAYP/h5oLY/xjqr2kP6AgyPQGM7JH\nGdlAiipH8W04AUAlXJ7DgUIlmW2qf/joqd5SZuXkyXtqV4wsOwidBOeiSwb3Deewi1Te2YDPZJbh\n9Vw2EMylj00qzExAJgVLfZ5xP8+A3kaunskPz3qyjzzZyjR6mTvS2wVs/+kH6meO8+wGF87etr4X\nInbSzOFUoHbO4CgqroeZHOZOQvpwmVN7B3o/aGt8h+OBHe7IPzY4H00CzCaX8Kbdp8pFCp6el1oz\nllRHmp/JPw/hBFuRzQ/gSUgxD20hv5eGE+ZqR2Psu7pP+0IZSY/z2N2u+l6iekf+Hhm6KplTzl3X\n9tXnrQQcW2nWB9boqy2N6exGz1nBNeNscM48pzmYDzR3SlQMG8CJMgMpucFYrNLwbKDbsFpf/ZK5\nWP5ifCHZBAjINVANMzgRqGphVE9xatLDxh14nfZZT0AkzU5AFIEszLhwAYAIzD4A2XRPeokV1K9J\nkUqSR1rvLi702n5O5vgM7qCinreLvay/9nk/N7fumFtQO8JxDEZhFSbGn0qOAVwIMTLEAZwL1zPZ\ntNPR83p5fV6FOy5GmZRyTXr3QD2sqPqUgYcgXs5aNqa1jmIeVmcNmp6pb8Mzzu67emZtRza1VlX2\nP9iFfy0DHwQorUlLNnvzGJu/ICuOn0y/JhRvBt2WK/AXFai2mQGSCOfNbSW5rut3XfY0VK9LUi1k\n50Dvd5entE+Z4cUzjUWuKL+/DR9Ea8m6VABBsyu/1qR6UPYCDsE8qFwQiw2q6I2Gur8zl+3Gqcbn\nZqWPs9Njtaum7wOWsD5IxtZLzbWUA8otL9vc+xIoMTgg+j2qRn2s++VN45qhimiH9e+6o3HdoeJO\nAWRTe6q5cHGEfzzU93fvgswBNVKjAk53qA1v84XsZc+E5s0N9P3ec/m2KyrYJGv4qF35xDmV4sZF\nfk+YWXY/adk1oXabJ6BCQPdlsZPjKevjS825LrxUtertURD9kWywuNJvlhT7NH+lMTmCYyqFXyhu\nsJ+lelv1Le3PD7epkHVHOrp4qf1V85q5M9O8bD0DCdEH9TUCjTtVHyZnVO6CyybPGrbJGpeHm3AE\nv+b0FL4n1tgVPz4W/AZa+CA42FN12RcP8X/372oOH/7SoZmZZUBzdeCuOv+x9pkzKhqmE/B2gKwJ\n4FDJgRAclahiNQUBfqJ2dD7VfRZ17b8NNFzvJ+r3KqBCz1356TX2ZvGhbLpd1PgURtLPgvHpMCc6\n1+JGnExAMIFiK4Ckn/XUjmZX39/YxKfcUo5ACwbwT1mPdYD1bBNewYD1PpdQ+wJOVwzLrEddza0h\n7Tg5Vb9CTk33baFOVufSVwY9xaYnn7Wl003ZVjFlRRBnY37XXj/X2IbVlA529Xmh+JratJQ/yoPm\nsXl4ioH9KMjoB/hjB86tAacJ/uC//nt6PvMunWAeUwlywX6+xfPzZY1BqSVbuRnhZ6/gO4vJZgpz\n6ezB6+p7kNR68q/+ZXh4QDr7Q34vgCB3lmrXElvsj+FJ3dL/+RSosyEck+sg05MhN6TmSnem18YI\nVBf78y2D0/LnSISUiSSSSCKJJJJIIokkkkgiiSSSSCJ5BfJKkTKVPzgz+4/Nuu9xrnlPkSR/qihy\njvPZbc7PNcjA7r6Ep+OuXvuPFflKwQHh9RU573E2zM50pus73O/BSq/VNUWFnbJQBjcnOh+Y2VQE\n/9OPqGt+qQja5UMyOj9QhOwJUcbFQhWJVlV9fv89IvP7nEUtKSrpkWmIwzJ/DGqlQeb3/A+Vvdzf\npTb9niKRbxPZH+0pEnhypvbsU3v+03VY9H+kSF77x4qaju7ptbietHXYuBdLRemcmSLAy4Qi2gki\ntIuO7rFD9ne6rXtPOXt+byYERJnzdzMquxwn1YfqhSLFj+PS7b0XisSXvqGzpzcx6fi20oEvowO3\nSz6vPidrGiN3qbGce3r+TUvR1o37GpPSLyrj0PueUFBBXdHM2EhjVdgWmqgEs3+nTbWkvl63DoQA\neu1XFGnPPFUmc/gRqK2wqoWPzZ3CUDInQ0lFoAxoitcODs3MLHVXWZ/tlmyhH9fYNz9WJa0LMrMf\n/PR7Zma2uS9bmML7wXFvG10rCptOgtaAD2VM1Pou57GLZELrHVAQe9LDBpwL45ja/5M/g6MioWhw\ndZ2sIvxPpV/W+N/5svQ6bWkO3qCPZR6OBaqYHHHetE3ltF5b/awmpW8vRyUeF16YOJkY2PFvIwHT\nrQi7+wIeiM11zSO3eMh1VCDgTKoPB9SQtgI8sxmVq8IsiNORjkthNZCGvteLS5c5T/5jRnZic4fK\nIzE4S8gU7GyJrydWgtskDQcBKAObaFB7IHGMTOZVX89PwXGSL2oOD3oNnkPWJqnXPueyXThXAvxS\nxfRcZ5tsDFnzHFwCPVIhI/iAbjg/3RuoH+tZKgHsKuPw8kNlXVJw6UxM+p9TamGCbSfJwA5A1qQH\nVOKB38pNyH/vFdSeOhnOGe1ZO1B/p/AidfugQrwvyCkTKAcxo4LQ5FjZqfFU7XXgJXHJNJezyhD1\nsa+XL4/Vn7Zss1LWXMjAaZTzqKYFSqDb0fowoapThnWgUiTTH1e/Z3BM5DN7tqIin09mMA1XSaHG\n2fVt6ahJZnDAmfNcDL9eBKFQ1BzILVlbb+C5aciWgpb8qB+iLM/1/jIp3bfhTwurrs343vFzrX3+\nU8Y+pdfNtLL/EzJ2libTSpW67Jb6PgWxcR1W9VjK74y7mgv7BVBMVOCKU6UjE+j/JXOpTyZxzhzJ\ngC5bFfT5Zq5E+z7Pkt9GLnuyiVWbc/JkXNOB9L79QH57896hmZkV76vdo4r648FfNcuReSWT6fdk\nY8/gWvO6x2Zm5pzo+8GW2p+g+paPLSZBPzzgOe4mCBgqDPX6auf1+5/7y09+/B0L/0tntYfJFahe\nyNzsNnX/9rXaM7qCq2JN+guRoiVQDjlQbr0rqj81sb+PpJ/r58qAF5N6TvlteACel+3lufo68uGI\n8qnYBJI5XgfF09AasZqpbzdwrWRBRhiVRJYg7AKy2hlQWMV1vabGGqseiLjRpa6fkgF1qaAyKamv\nMeeLZbdjVDcKUQ3QOlijrb3KxjoVEeNkhE/VjxmcJeO45sjOoZ6b2PtZjoZNKn0tl7LtTx+HnCtw\nqFDVo3pAFZS+MsHVu1p++DHxAAAgAElEQVQfNr+qPc1gLD0+fqk5Oj3THizX03N3PZB9VARKZjQO\nsw3pZRrT3Km+oz1C8UO17+mPqcQ1gtAurB6FXg7f0RxxM/i9CpV8VnruzYn641CJrJKRb1u7p/Gs\nlNSuZEl7vJP3hcC8fk/6LDKuCdbhxjO1J73Surv/a+x50tLr1QhOSjNrLB3bLej+fqC58+SxnnsA\n/0sFZDrFvKzXkV+PrW6P3k3CuzZy4U8bytj7V6zxj/VbYJigKmegtm/saAwLIM3zIC8yoLDS8O8c\nvS90WP9YPGfZtK6vHkiXu1SU6Xelg0H/2Mw+R86ZI3+euA9qH0RzB/RC3ZfNjED3X15QKfFK30+A\n6ipTSeatR0KmzwsghPb1u6JSVXvcAVyELY3VvC8/CRjBdg+1p1iFqCyeO+R0g3stPa3YqxnosgVI\nnvlA/fEAArbhUsmzxxrD47cO8tLLglC8ZpzwPQ5cOxlQyPGH2nfX7ql9VZBG3bZs7+L9Z7RLNjJo\nfzFOmYcgLmcgDVtURVoMqPjFb1+mink+fnWpfUK1ovFaOBqHelf++GBdNv5X/sN/08zMNuA9+YP/\n4f8xM7M5v++G3c9xGV5sYsnlumXyrPlwEDZasrU41x5NZYu7INFTMeC8+OUsCJsU+6CTrtbU1+7o\nt+A3H/yamZl1ulozei/gmPHV16Kj73d89iRH8E2yf8p4zCETz0+3Ll19/a//qpmZJUHOP/k/9Jvv\n8oQKaGuyvTicOIkWvErsk11P3/NAtaVBuU7hoFy/K53H78gmNgLNnT4otOaQ3xUBv1VBaX3pF/Rb\naausPdL0TLr/eRIhZSKJJJJIIokkkkgiiSSSSCKJJJJIXoG8UqTM9C1FxnJfV0S8XFbE68FYUddr\nXxH6/al4NpZvKRLX/YmihaPB983MrEdlg2ZHEb3iVNHmNc4/HgeKuDnUNT8J9LzDwiMzM/OLino+\n+jVFwMZkdNbfJBs3UqTvK02FYVsPflHtmnOOD/IaB5TGKHtsZmbPl4r4PXym6Gf9dTIyGUUIg08V\n+XO6RDtziuCdLhTBezej+7QC8btkHEXw7vwC/C+fKkL3ZVAIp29KL6XST3T/l8pk9F/07MWG2nif\nYP+QDGycygX5Paowva0+zZ4qC+xwljyfUYR8raK+tMiul845G+9iSlOqC3X1+nKNM6FEK9/oK5t0\nWxlRbiiTAkmxRmWCFGzp1KzPhfwWXdnQZlJRza//JVUvypMdOfljcczMhrKN/YfS5euPhEZ68aki\n36cfyOaChjKCsx3pNrOg6khM72/nycjWlJ1qnmksb44ULZ3EqCZEpZ0n/0TR3fgTva5ASfTDrOCu\n7rNfVvvvPpJNTtLwFlU0J+5XZBOXp+JyOfthiMyRTWzfV4bz7V//mpmZzcOzv+dq94SMROmdQzMz\ne/ehslulu0LKvPhj8Tw1T3V9Z6p2dt5Ttq3xvpBWi6X0niMqvHdX50ZXZMS7ZAedOXYE8mYFuqJD\nxjdTUHu2d6TPwAtp9G8h8Ev04PJIj0G6cMbTb8jP+CONfZ/qOJ2VdB6CcuIgMWIGB8FQbfFAtsRA\n4gwmui6JrgsltbWLH1obkvG7w5y6lC4yXNeDT2N0LN3UyTisOAfuxMmCxOVvBnHN0V1QT33m++xS\n71dBBhVhm1+DA8Urwj6/AB1GuwZUvrG++nENb5ELx0PnWH5jUt9HP+j1nrJETbJK7Wvdb+OuMgF7\nkBUs83DHwN3jgkRJos9YR3NoCc/J6Eb+uRPSXYToDCr4VMgg+/AejT7C1kEw3Vb24cKpg6KI7dFO\nqmtYV/1qJqVXt0hGHlusgERa5KmmROWHz/hLqN41I7Mah1BqtpTPchzOgae1nnTO9fnTx/KJ+WTM\n4l21LU1VnREcUXH4LxZx3WujrAxk6dc0RikQL0uSMMUt3cfvC/HQ2ZXNLZ9T2eaAC104QO5ozUyk\n5Df6kNlkGcMAfqHNrK5bZqgIQ6WTGNXsEvDnBJy59xroaCK/GNp2mooLsRToNvh95iH4CY6BcYv2\nevIvJdBVqU0q8cBnscqCBKqTFY+R7afa0G0lmyP7R0WZMVWGjLnfoTrGxXfFgbV8rusToLtWU3Ug\ntqLqSIP+vdSYL5h72aRsIQ8fiYFwjFFdYwHPVJyKYMkGvEdz6TmdD9EJ6M2dfdaHw40Dy6zxeVXj\n5QVqT+dC7Zj2tf7kwyQnvB7VPfm6LMjI3EN4l+DaCSscjV2hDJJt9SPAJ+a4LgcXRinrWXAXbiYq\nyOThFAgzhs4hXFfX0l2nqTbGBvBkMI8CUKnr+NUSPBwBiOhRB+O5oromFUiGN/T5OWtYSjayvkO1\nu8KGfRFJpNSP2j3ZSB7evCuqAR19JJTBaqh+5tC9P1d/BzO15xS0wFpFNpBP676JKn4CtEByIn/c\nJLO7CEAu7qv/sW09f16iIhbrmVfQmG7M5C9Pn1DB7ebYzMwONg7NzGzroVAAMZDoTkL3n0y09sdB\n1QVZ5i4VbM5AGi7g3Sh/GZ+0K332QRs34VXZel1ojHRJc3V9Q3uORUl6On6f9friGL3IbhLXVJoB\nAT8YwcsEarryrvToqbs2YQ7fe1vtmc81B8zMEmuuGejCVEw22r/S74bjF7K3cD/gbWoc1kFOppO3\nR8r4oAQyQBzCanMZ9nEGl0uSfXMSJN4irACF3yyyP19P8VsE/rMO6LLJtZARyW3pZK1GBdqH2kdu\njuAZwl9PjkDYjfW93JAKtTPWLHjoLMl+l2pMq6Ge2zjV91M5zfesCwr3HaGAp3FdN75Qv+udFz/z\n/BTo0HRZe6UY6OXiG0K214r6v3kixPglCM34CD4pw78yZ772hlBi27+o33Izqop6VPAdNrXu+Vf6\nzXXKfnzTZBOdG73f/FA2MPVkS6+9JdvZ+5JsdANOyABOrVaPqkUgEMtDzaHsGoRNt5T2S+25Phpw\nOmSLOUQVwqWDz4PSrM0essJzVvzGDKg2lW3JjhoXsp/nH8rPx05lb4P/ReiROXuWzPrOZ20pp4oW\ndG/sGRyI2/Dw/Fv/wW+YmdmDt7S3/5P/U9WHHv/hD9TGLXg0l7KZVkBb0tKJAzJ5ADeiJfX/eMp+\nibXcGVJ5sivbio+o2AUiPQViewaCJTbTWHzpL+k0w7/91/6GdAFO9H/8vW/r+uf8FgGNVIjpfhOe\n5xSxGVBZWbjCuvDapROcQAFRFxTl70L07Azde5CmrVFF9Yq5OjzV90Zt+Hv+gn1rhJSJJJJIIokk\nkkgiiSSSSCKJJJJIInkF8kqRMl8/+HUzM3tQo0LLfUXx+peKlmZniqZepRSh84ZEc9cVic86Xzcz\ns7tfV0Tquq/oX62nSFr/lxXBygWKGucXykhWTxTR6+QU5Xx4QDSY89KzTanlkLNzPmz03QN9vsWZ\n3mlKmQBnrEhfoq0I24QqTJtpzr/PhL4IFrrPuKPobvaXFe3MpNW/v3pBpvaeoqdXP9X18ZqiofOH\n+rx0rPP1F1vq33pNEbtSSs/dOv+mmZn13hAfiR9zbblBlhvOlImnCPBuGjb3nqKGd1y15c6vK5p3\nQ8Zz3j/Uq1E9J6Vn34VRehWTzp+TbSmGlUlecl48r6jnJ0/IPN5SsjVFHafwSKSoOR/n3PG4G3IT\nYMo5tXfS0Fg3Tqjo0tPYOSu1pwDSJgA90LiQXsbYznygfjQ41z39niL3bc62emT5l/tCCUxmuo8/\nUQZiRKb33h3p3YHz4OyGKifPQg4HkC0HGo/9d1VNI0UmIMMZ1v6VUB7TpebAnW9qDiR3hSqLu5o7\nL99XNHYMiuvTS43vEv6RyUTPn8KGf/pTRbvTjGe1orni76jfJwNlHFyQLdNPyYA0ZAdxOBB2dshe\nZfXaT0F6QwUGH9RHdZfockoZ/sGnOhO9gLWfRLClvkDVlAU0FktPf4x55ohslWHDLpnWLNnn9fKh\n+k4lroBzx96EzCZtcYaKyHdB9QRNtbUEaqtHlnva0dj3TjW2d9/R+x+9lM5PPiSzyBQYA2tYOprP\nBc4TO56e59OfoK/57+0qW7Po6P3GlIwGFcM8UnxTkH29kMMKW05ypj8IOOceUJFhXd+fcq7dP5XN\nXB6BUiCzeS8tfV3eyD8lQCjFqYjjwEpfguNmBU9TkuzgjEoRUyp5eXBLDC7hxnHCs71w04ACiFOt\nZJSU7c+bytJ3whJit5QJ/CTZbaq59KRnx1P7VvvK+JQmGvi1dznvTT9f+qC9YPUvePLj0zS+zlV/\nunXsiOW1wRxM5ai89kjPd+fMFVeZl1i+YrExlVd8ZZOGVIXoBdgCKIDYSm2N93SdN0HXKfnF6rZs\najMtvwKIzNJJ6T67RoaUzKbty08uTa/xp5xth+spSyWYeQ6eCLLwaV/Pmy7ULhfbTTL/k2npzM/r\n/wnooiuqRKzgrfDCyjqAHUIEzbCjhg97yloNXK2B3Q/l5/w0meiMxrYCh0N2QTYcdNJtJWFkPtfk\nX1cJEEEgBSecd/cLamhpQ3uJ3L5sNQjpobDpo3+qdWURh8OhpH56W8oi5mt6Xlgxxt3VuC5GGu+b\nx8p0nh4J7XB9DI/dWLZW3Ff/7sBRZmZW3N75rJJb41K+oH6idgQ9tSMGB0VpU+tNkQo1qySoC+AW\nvRP5gLOwQFFb45f0qRSX1HjvgbZIhGm+vK5LVzxLVnXvWYxqP6dwulBlrXcO8u+EjCXItcod6XZv\nWzrJ7mt/Zdwv5KPo3ug+/QsqIz6HK+CKiiZUBcrCj7NZheduk2p7+dvzl5mZJahotpiH/D8ag1RY\nheixdF0ABRVQscVbAyGyDy8E6e+YDwppAGLoJ1rrfdathKPrQ1STU4bDagfUQVE2Pz6TfzyfglwJ\n9D0XvabaVJA8JQOdlV5KVN4p70kfWdBSL58LPXD0sfavSbh3AqpblfGLrZz6NZ1LL5s7Qj14W7Lh\n+lDPHcPpM8vBx8F+fpN9dopqe90+HF/M+d4zzaVWW+tZxaN636H2qrs12ccgARpwCOKFnDOUNrpX\nZ2qloe6Tzmi9Go00Po0X8K3gg7e/+aaZme3ck98eUmXwNhIC15bhG1MqyO4empnZ/jooVPZpNyda\nU68fa02/6WneT0COpEBkl/Hrb/yK0PrT12Vry2mIxgR53WHzEmiPkQZhOS3Dg5cGHTZXuy5eSMfx\nPvvipV6dknS9XtMYFUA6D+vyQ0P4OLyXIKpZ4+vnWqPHoAX296XLtU3psvpAehixr0/EdZ853w+r\n2C07sqnRlmw9EaMd9zRGC/xzDPRzit8dO29rX14/Ub/8lvxeH84cFySKxzoTbMvmk6Ap5lQCmxzp\nex9/qP3uNZV0XCoM5Srye+W7VDP6fMRvJRcj0MnPjnU/eEe8dfV3caS5cwn3kNNU/xYz2W6ydKjv\nJeBiLEifH8LxdfG7/42ZmT18+I6ZmXUHsv0syFtAf+pTomiDwpk9eV/opsuG5kOGqqMxkMtXcEI1\n4CW6m9TnaaqTDbtwvBZ1XUAlV5cqSl6WtQc0a5pKXsOY1sbOpsa8UAfRkqN62wxkOMjtzkzfHzzW\nb4h/8Pf+JzMzqw/+vpmZffyHOkXw5mv8js7oPh1fz3dZq1KMdXIhvzqhCmcqqzkyjVE1dar2tJqy\n1ZBONJXWfeNLeEEX7GPjVKcbs/YuNZcz+M2fJxFSJpJIIokkkkgiiSSSSCKJJJJIIonkFcgrRcpc\n9RWJz+UVvZxC5h6eJWtmFYHLkLWJh+fMOZc+fchZXM7AfaWs/y9+SVmnr19RFeWrcCBQ+ae6q+zP\nwojkX0gNsa8osrcW131aTWVgsrDp77UUERstxdnyeCRUwSPOCPeqyigUqso+zcke1rYPzcyse8r5\n80NF5q5zum+VDPfsEZmgHrwi31Rk8dqH1f+JInjDGJnXkvr3CYiAjaEim2c1tTs+Vyah/Jpn/cr7\nZmZWDBEN5yAqqFaxRnRwPhe65uQjMqZkIRJ5RUVXZMyKN2rryZp0n4OjpUbG7SkR8rU3lRFILo/N\nzOwrnOP7B3Y7SZFlihc4z8wZyBjns/2GIvJXF2RRKoqcj4405j/45LtmZnZK1icJOiB3l+z7hb5/\neSOb8KlSsuIscA3G8CLM3yPQW5PgZxnKe2fSz8sbnSfffVf93vuGbKH9kWy83FFmuw5yJD6Bjwju\ngk6Cc/Unx2b2b9hP39e4jbqwydcU9X3vH8p2D/ZBWcC2fveBIvfNI9nkJ//oT8zMzCVbuIBhvBxT\npP3sKdWRHstm9nbEYeNVlZbbJpMakDF34orjelSWWDU5tz8kg0xmfDkBBQLcxJ9Kn+msMhj/H3vv\n8SxJdp15Xo8IDw+txdMiX+qsLIkCugAQICibI7ppRrNe9cyfNOvpxYyN2fQYN91GjGijJgESQAEF\nVFVWZlXqp3VoLT0iZvH9vBJNI9EvV7nxu4mMl+HuV5x77vVzvvt93/0jMaVXz8Xl8+jPpbDQJuMy\ndX9zNPnXi016dggXk3fmdDxQnWKWh4SRbfSGZN8PUctBKSxF1tdCacwhcm/6ZE1aul8woQh4Pwlv\nREJjMK5o7BuXQlVtDsVnFMrrebNz9UmCLEUygC3PyZ4H5Q9c3LLXh4uUnh/kPn1kojIdzbGTYz33\n/GfKjszgbIhZss0Q/CR5uFFsznWbLFkneIoKW2p3+UT/36vI5izoRybfU70TcxTQZvjPY/mnykPZ\neAekyYKzxImJZzPKUMxbysiuuWp/NKO/O/AcXTyXzYdL6tdMWc/tdrFVlByCodc7vz2uyFYHQ/Vv\nMugpOsjWOnBZmLn6L0IG2YGfKljX+HdAAoUDZH4Xqkc8xhyJqn7WQM9rjdWB8SV9X8rIL8dRncpd\nh5NntWRCzJdQkEwhPBGW0b17qEP0yVD2TzWGE0TfAvR1koxf0KiNZ0/k3+oXnuQN2feyLsxMt/T3\nvq6r4i9HIDYWrFEe54kJo44E8iY3pR5d9aGNgsk8LD9cQP2hB19FeyzbPW9qrtj78vODtO6XxzaD\nE/x6CNvMyc9dpuS/LLhcWqhyBMi6JeC6CgReL3PZH+l+nUu1//gF58BRi7IzGrPV+5oz05j6Y4Cy\n43iCyhznxoOgGJavy6/GyM5PQh5yCHTVc9n28AVqg6ja9eAnisBVs13WulVa1/oSXVO/Tcev0B67\n54em/jNd58JbkgFW4uT0/IXHwwU3QquGItlMvwvn9Lwp0mMJ7DEMv0tnjspIXeN9eigOsmHXUzXU\neFhrCbMQiNPMw3pmeIpaUp9UI/61B4Jh3ta92zOy7l35tXgH1TLQAyEHdTsQJoGKbNdTKIxGZeP5\n5S1dv6nrAiXZUjKleTta/BqU4gplOkEVFL41G6W0yaX6rP5E9R2U1N4Y3CcLlGnC2/J/Kze1jtRR\n1Gk9AzkEH0Qwpuvn3voAt5lHgZO6IXRUljF9UT1QPY5kQw34NQI4ByesubP8Dc3FUkH3bTCHCmTp\n126DYoUT5+Qnyjh3zrXOZFB6TG2qHcm56lGDW+EyIZvK5bZUb9AP29e1l3j6hXjrmvBdOPiSwJT+\nmrD3HHlqXXCKTRivrNqRWgcVd0N71AA+pnYuuxqzlxo0X3HB2C/75qwpdIJDe2Mo1KVs1aMeZB0l\nI97NqR/GKJBdpUTC7OnhG3Jt/BIcMjPDOw/gm3lPbY2U1QfLidX/6j69S1SPsnq32XoPf2L0TjMa\nyLY6R7rv/sfiRJx0mQslT80PdSeorMZzOKL2tT604YwyqNblUXPauaPnBUDanD2BJ3NX/vEcZMwY\nhEuzwb52Ct+eJZuIw+1YWNUYx0EHV/bVvikInyMU2+wWXGVd+dUi3DPLKEHuMmce/dU/GmOMcfh7\n8TrouiQImzBcOdjYFDRDeU3tu/k+3Isolp2eCyF+cSpbOTpS+9oVPS9say6u3MKnsXeJhH8NenKF\ncu22uHiSWxrXJRCPFXxdZaY5FzvTeuLGUdRFedLt4Y+j+kxtqd0fLWt9OjmULxg1Na7pnNqLKzCj\nX0MbTwMNUy5dN7fvyuYAMpsHj/RO+PFPhEhJTrRWpAqaP2n2s+eskRn2rZ2c5lNhlbmAelkThcIM\nCldTI4c2412oBMK6vaS1JATyOA4v0QB+N3sZlOzPVZ+/++qvjDHGFJN6zo1b8mMF/E6vIVtKwW85\nYPsYYj+4YJ9ss78dYbsZC0QOp0CmBbWn3vf2WrKR9BxOHQNqec5z4E1K0dXDwG9GZvpIGb/4xS9+\n8Ytf/OIXv/jFL37xi1/84pc3UN4oUmZvpEzD5WeK7la8yPg2WvdVzph6OuKwsRc9HfUXitQtbivy\ndDJRFDDRVNb9Jefm488VLd3aUuRqAUfM6glqR8ugH3QU18zWFCl3YuIMmJ9wPq+kSN7SvjIE11L6\nPqqq/iE4EC7mgvzY0+8ZY4ypE9U0b5Ppninqu9xQhG2xkNJRhbNud2xlEMaul+1T1POSDFDePTDG\nGNM5UP/lNxUddRrql1POk19bUYNi6ezX6keXsHXnbyuqt+AsaZeI9Mmy2hSakwHt6h7WSH1YaXPW\nPiP1iW3QCJUUZ9oXipzfMPpuDVTXIGgG647aetVikfHNkCFNBDRmC7hYzkELmIk+VwrKOkfg+6hV\nyDAQvczdEJKkcF9R1H5LWaT6rjIF9oDURUaRajtLlBNW+w0XDpkI/B0zfQ6962Kq79pvK7Ow8g2d\npT05E2JnASpgrcR5SZRZwnDItIeqRxNW9gQcOSn4PAzKAkOUb14cKZKeh5MmYql/Ipzv7hCVXtqC\n/T6m8RtPUXBwUXmpa9xrDzV+qbLG23L0vATqU0l4TbKcjz9AbQuBCROHayKyRPawo/4/O1KGoU5m\n9XD3QNehZpJAKSi8pTk3G5GJvUIJgP6JTRRB73P23crKRjoDkCYt9elkQAYNtaUFZ0prTThPOBcc\nCqrPwnwuxTUPS/BNBGFbj3iIlJGe2zzQGJ6uaX4WY5qfE7hMmi3VNwqCJ0RWKgSCZwJPU3sK4gUE\nRgxlk5qnvNDS7yKgBlbuK+uSBvETixORp19GqJQsrC7t1n/PGXuOd5vtDSH19jtqx+N9+YBvcZY3\nm9X9T0E2xmxQcbQnjo2bGWgwOGdCbdlQBOWZMJnPjXXQXSPZ3m5D43D3W+rvAIilEdwTNip1sYVH\ndHG1Uq0pI90ha9Qcq56A+kw8qnEOFUCnnHJGGmRSGB4mC3RcC8WgwbkQkpdwygxBtSXgFAuD4gha\nakdtX1m3ylSf9V1lsxKXI2MXdU0xrbrEOPseAiGXyXF2nXnbToIOY+wGfd0rC6IiVNPaVICjKcGK\nP4croA2Pw6yDEhlo1Nymxmo20QVRbKXnqu8DSf3BbattITi13KbGKAhfRpCxX7iypTCogfV1reV3\n4OMJZeGzCKAGGFR7936pvgyCtBvPNRZLc87c5zW31pjDLln5iKV2915PoMuEaX+ypDnlotzTUzVN\nHCWGEVw/zcfyv25QWcT5FFWLKbaOCpNr675HcLQsyL4FUNkLxOnXrIyxtKz2b8JZELJQwZrj/+O6\n3kN0upFX2bdCKmUK76tfoiCG7Lae02KvcnJJZnuML8ihOAc6rLgkH5DZYB1c5xx+EzUpMuHdEetm\nX/VyN/S87E2N5/L7BWNvsQ8D7dRvy3Zqn2lw+g04BPCvKYh5ZhnQSY6uD6zBOwQCol4j9ejI1gZx\n3ScZVl1Daf3/HITgCMSaXQHxhoJkMPR6aKrABCSdkX8LDzTWPVBhru3xcmjuBMnAxoKoSPX1u0Cf\n9WWBmhu8RaOe2pGByyGFL+iF1eeNlsYgDipijrqdNVJ/nuyxL0WNajMvnwHgz8wLql/0Bqp97Eer\nPaHDIk9VnwT+zLI1XuNz1tMlFNsm6l9nFVtJyy+OBqCuQSLO8PNT1pksvisEl1qXfWsV5cvADHTH\ntvZoYWxwG94OC/6RAONZsfScpTVlxGcR2eBlQ+1KTl8pOSbyjrlARWXw8kt+r/YWNreMMcbkIijX\noSJjzeBnSQ3NVcvCRoUu6imJqQ8HIKX7J7K5/iWcW4BwSuvqk7XflrpmGyXJowPVtf5C83ZUx8bw\n0w7IQnMGD09F7yznx6iRdrRv3YRn007BW9dRX/Zq8rNt9tOFGeo+IKzHoGITAc3FASisEXn9KIqG\nhTv63FzoeZ6S2uWFntsBkTPLww2Jg56CcOzg581U/z+Dg8uw53Ci7IVKek7yTPvKT74SHC9a0FxJ\nXRPnTo69yfkIBGdPk8AKaCxnrGc9lLhS7MNDNd1nytzIlWWLxS35KAdUVmiu6232Znb89fYkQ5Qv\nU6zHI3xKt6F+igU1p1buiDuyGVV9zj6RHWxvoGwJx9yswX5hS39fYs502iz8AXwg/CmjuSd3aEy4\nPzdz0zB3PhL/jMHPnPRRigXlGjZbxhhjovh6N661uNSULUxX4Zfra1624I9rc6rhwc8/NsYYs76m\nd6R3f09jZcXVF01tm00KWsk2qpdOH78CX90cVbT73xc37Wr7jPtqrBK8Y1W6KPMOWHtl6sZe0fXd\nHsqOnKLog0wPayqZeUnt2d7WniqcE2fr2UtxfwVpdwuUbJZ3xk5H1yWmaogL5Dz031CE9JEyfvGL\nX/ziF7/4xS9+8Ytf/OIXv/jFL2+gvFGkzPKxsmWnx4pk3S0pRnT5SCGqalbfA7eJ6BNxO0somnp7\nS9HPrqdSQhR6ENf5vMAjVC0sRa7+el9RyGtzuBTyigCWeoq8HVa2jDHGHMx1zn02UJZ/Z6LotXcO\n/BTm7UgHdumoMtTjM2UC1shMjJLi86j3FBFcqisKe0T2M5BTdLP1peofbYFuIIN7vK3IYZvjkOlV\nRYWhCzHtBqz/fdWzD+t8Mq16nj3RhYP1unFpQ6auNtcfqS+2wsrEHeUOVOczjcXFsZAwVfgh1kCa\n7ISEZDh7W9HR52QAe3AX3HDUli4IiT4ZuLIrlMLz2uupL03h8bi8UJTzcAE6KKcI9fI19e03/933\n1b6M2nP4S8ZwqLwvycUAACAASURBVGhvCeWGVF62sL2lSD7NMs8jnBPvcAB+gdpIWxmBKqpHblW2\n1++ApuLMamJb6IlNFBgiRNJPK2RGyDj0WrrPKCUbiKwpirrxgXgmFhP1/2dHus7hjG4MXg2LLF19\nrH5on6jf8yG4CsLKnAzIWMdj6qfVG8q8hFGg2d874/9RkLhQu4JkbB04EgYLeIzqum51DS6Hbdn4\nnL9folq1sqK5l+K+R1XOx4Mu6D1RmPrL3b8xxhhTq8iYC5yfT8Ajskhe/WzuHIRdhLrH86p7EGZ9\nE1TbBigKJFF6iQTVpxMHVE4AxRbOsI9qnOcGRTapydY98nQHPo0mKhEmrHkXKSpSv7+nzMDmfRlZ\ncVv16z4EGZEArTZU/buu+sIaq88WYbLgZHFCIdnMJKC+nBi1Z+Ptt4wxxqwsqe9nYdALHdAFAdSb\nMPbZRH7qCJWmFtwIc84Cp++IC2fyFTwTZFxjZP2nF56aBgowcVABa2S6I/rdhHPWMZJHNonGUFVz\nxW3qP9yFsmUTsu/zsNqf3pYttPrq36MTMupJtTNU1Lpw1RLHpqb47xC8KoZsYaetCs47Le8KY4wx\nURQs6s/hIOIctrOl8YijOpXE7krLoAvmwDTgbAiM9VzLqB3Bqe5/B1WA6DxoWqcoax2inBXGJlD8\nGyRZslFfGJMBRJTIxON6xvrvbhljjBnBWzYqw/UBymC2qbomQ/KXiWtaS+wOiIpd2a5VQTUNDoDo\nup6bXdKa54IsCbVYB45VbzsNN0FbfXk+0Rj2ZVLmrK6s+HkN1aQJvBugDO6UlX1fsG7UUWQJoNRS\nN/p793NvrqgvU3CPBbHBYPzqiDtjjImiDBEFGpS6J5teBc3gYvOdEGqA+F17S7aUcXR9F5WL9qda\ns0+eqR/aNQ1UnozuzqY4tUo34UC4pusHoORqcAGdPBMiZ0KWzQ2hAJTWuMXyia/b0JqNjEOmewgv\nxqQJSqwmH5WM6vdbd4SwjJbUf1OUjUxC/TYFgdTYR81wV+ue+1ID2WDdiHQ0/qUC6DNH9lZv1o0d\nVF0PGhqbMQiXcV1+ZDHED4AmmBv5ryhn8WOgVCOoGbkoaq3veFJXrC2H6ptZXZ8DkIH9mmynjdLi\nfI4RDmQja6mMeZ0yRUXk/JRsOxlSbwRWbsgWyuzvLPgsKtiOp6D2pKI5EM2pHTa26oLScrL6LH+o\nDO1OQnPu5SPZROvLA7ULZZ5wVTY3OSFTHZD/cWLMpaL6vY7/MXc0t3eWZONffSIekv1PtAeyQUVk\nLTK9Rd13bOu+I4esO6iocmnLGGNMbyIbGVVB2KDWd9RSf8/r8F3xPUa/WB199kEKjTf1fc46Xt6B\nlwoVlikIqC6cOblLUuwgYDtfaq8bgrvLGGNCw7iZsQc6Ze8RiWpOxLfUP+V31F9uXfcLBTUOofHV\nOWUSaW+/JltptbUf7i7gx8TvzfqgXkHdNkAHLAVUh6V1zYHGnv7fU2E7+1Rt89Qu730oTpRUXHMj\nu6JTA4GJ/FYWVbdYWWO98LhEsJlgQX28ji2F8pxCGMm29z4WUscNsZcCDZUFyZKEv2P5JraGMs7k\nubhZSiz+zkL1HQ40hi6KYFP6Ng0n5N3/Xoq8i7TGuL4nFO0CBGSrBl9nTvV8/3eEtgjDc3TvWx8a\nY4yZ41OO9+SHJxP2MvRb5Sm2eqC1PRvWWAe19TDLm1pv0nfUviT78P6Z1p0aPqDZxSYvX4+fqoWt\nh+BkLICwjIMUii3rPeW3/ljvNwbU1v/6+D/ouRXUtUryMemY1iUHxc4JHDq5Gb6Xkw09ILPl0Cub\nHodmxnp+bB5/If+SjmusA8sa415Q98hYetb0KQiRkH5vGfVJJKz9XS6teTeHS+vaR9qnRkG41DiB\nEnBVpyi8nWwBTB/+0TBL+IQTMjZcXQXW/ISHpoIzsvFMCJb9tv6+VZKNvH1PtvniEQqOQMPv5LUH\nGqK6VmTf6hTgMgQm+/b/oFMPHVe2ML2UbbtVOAkd1b/N3IgXZEvzHu9WcKoN7FfIvX+u+EgZv/jF\nL37xi1/84he/+MUvfvGLX/zilzdQ3ihSJn5PEbRvFDhPGEA1ZU3Zm3hWf0+fKIIfRwHC6SljcKpE\ng+l+IMTN7boiVLUGWfygosqffawsT4Yzof/QVzT4blwRfNd8YIwxJuIoA7BBhvzpTBG/xzXdp/6l\nIoH3yvoeWNVze0aRt40l3b9TV70rRNoyIWUdDwZk9AsKw1bIJHRKigg6VTLzZIYDRIPL5/CfGF3n\nwnKf3FO0fM/W7zPwckT2FdV+UVT9b5xVTSesujXIvi+5ausjRxm0oa3IehA6+PUtRQ93AoqkN56r\nrvWxkBmRTzgf/QEKJE91fbPIGXo4XuYgXfqXem5qTJbqimXMuWXXO7vZJ+PIOcHZXbLqhLZ7ZFue\nPzrQ9TMUbKbU4wVqExMhNZbeEpt7Gg6Z2HeUuTScX5xz/rtyoH5okqmckeUvkHEsFxQhbw94/n8W\nY7nLecggKiZT1FHacL1EeqrP0ZKiytc4Rx0yyngMCRM7PbKKJDInXkLzHZ2jXt5WRH1QIzPD3Iij\nQBFyUayYqF05MirnnPPso7713jvKUERQODh/JlWN9oEyDZ/VVV8LFNuQLKeZqn0HH+vvE/g+hqh8\nWTE4IxyQREY2P4xpfFvUq3ak35dKr3F+Gzb2NvwKDgoisYjqkEjo/7NJ2cgAzhYX9I4DzfwE3qOZ\nq88wvDglFAuq3D8wBEFS1eekoTmRSmvOLN/RWD76hWzscl/1KX9f2axAGlUjbDto6Cs4o+wgqlEu\nWSnUfkZ91TtcAonX4rz5I6lZPPgYlR9o5ZOoNSWj8kMOkgsL0A1DDs1OCNwnM/JnNv1RbapdG9eF\nsupUlcK47GjOOZxTrsFRY3VlG03OaTtGc/UYXpFgDy6YurgLFm1sMqd+bsL1U9xUNi/iCBFz/FB+\nzgC+yCRv0k9ICFyxhOFIcApwQIw1/h24X3IL9WsNaOLaOsoNNbVzHJWvNK7mfGuguVMFJdBCJWA6\n4Heg67IZXb/iyI6ySaHiRqDMxqdklE3EJHJwjLBWheFWaoJiWiP71J6D4pmRFZ96SDnZ5LiDvzrX\nvJ2fglTBbxRQAZqta0yWQCUYuE5CGfXBxMgGqw2teQvQWVXU9kxffm/Wg3sAtFMSzpmxpbanN2UD\n6ZSMLVrQeuFl8kycTHFT9YxFdJ3rKPvl2XIOhcVBijP0cKyMu/AwjXV9uKt+ycMXcdVSbSrrVz3G\nT+8LodJGlW/M79J35EtuvCO/m4RXI+6Q5zpRfaw89b9HPchYRuKekqT67eCF+q0P30V/DDITFSab\n9c6GU2jptrJ25XeVBYyvvkID3P32bTN4putOLjX+3brW+xkcQm5Kvx9x7r2HH5/0VI/FjPGEqiYy\nV33jKNMFljSO+Qi+qS5fMWqCXn6o71ZtagwonhBcL0HUNRddrgXh0quijhaRzYVmus5TuWjsw18R\n48x/QjYQ8Xgo4FWaeVxQU82FyMzjUwB5oy4z2bLGJpB6pc5zlRIG5eBlnVvHmu/TsvqkUBSaOHFD\n/mveU8VSLbWvjuJjvydrigdRqCyCwE5rrRyxF6sfagy9zG12rDlXBQUQb6CWAqKltK3+sWyUZuBS\nXMrLv3emss1xC+XMbe2nS3H2uye/MMYYszhDta+k++Zug2YDeV6Jy0ZSIDOXNuSP28fy4xXQISHQ\nvjZIpea5/l7bl41kN9RPmfdUj3BF+/Kph8rw1sMYWf0drbOpZfnxyufqn/OnsqM1/p6Fp6r+UHPa\nGGO6ey0ThdNs9Zr6MQrPRmAEOrmndgbzsvUhiKtxe2yuWgZj9vT4sWAWHroLzQ+H/V4YZHVmAWcU\n6nv7D/XO46A0a4NSiK2jWsT8XLA+VI9Bbt+QDa7eQFHxuvxUBOqQOajQQAI06Lbaeu+GkCUjuEbc\nGrxP7PuOa7q/AY3vcQ3mylvGGGOiEICc7mku9E7hKIRfLxlVvVfuyQYd9sXP4fkYneodbWpkc+Gc\n+iu2rAXr4lzPbz2SbfTZu2wU4Yjc0JwrLOu6JEo9vYH8aCYHRyIojBh+etjX3Bmc6L4nAT0nE4BH\n8Jbul0YF1m3pBqeP1S/Vc6GpoqAfJq/pS6Zwdzaquk/6JhxroMNyQfVzfSDbPvhK6AwbNaYQCM0g\nfCgOiE5PVcuFsygI/sIu6v4xfj+uvLLpuHFNs1wyTkX+qRPR/6VBoJTghvLWBrOKbdbgGavJX8US\nKEWCtIuDRCx/S/vId7/9TWOMMZ/8UH7GWJrnpyjg1o94xwCpUwJ132Jfnmpq/o7Sqt+wypr9UH34\n6EvV317R82fbausKKm2NPSEBa7zL7fy+/I8NWq0y4KTOvt7h/vGHOjXycO+7xhhjHKDfj/9O79nf\n/W1xzCzBUxppqn8GttbWPojCJXifZjMWoH+h+EgZv/jFL37xi1/84he/+MUvfvGLX/zilzdQ3ixS\nJkGE+ntbxhhjwkSikyi7OCeKnsYyilZOOas1qirT2ofroPVfFHl/whkzwzn5GWdSb34oNEH/E2WU\n8yFF2sZwxHQSisztTGFNvqlMZpG82OKFsmCFgOAHx1BILMaKes/IBj6I6b53yRgHQ6gi1RTBW4wU\nIXt++Xe6jkx5tq2IfqeqqOeoICWH4edwIMzUD28TgYxtKLo6LSkafm+o/umCCgl9W5G7jw5Ur/NC\n1KyTrU4kiXYS1bzsKRsVzSlCfC8ppITdUbxutKq+CNu61/QQfo01RQGrn27pmW8rOtj/nCwNGvI3\nOANZX1ZmLz5+vTP+XoR6GiTS65ClJjt/Duv6ZyikWGH9PjJAMQXllkARVnPOHzd2ZTPt4x8ZY4xZ\npp3f/MPfMcYYE3RV71/8UP8/aJOtIbuW3QEZg8b94VNJ0XRR1jFdznNztjgGB04YNSWPtb1NvY8/\nUdTVOde4rMH2no/oczDQ2CaX1J4/+Lca48JN9evwTO35xZ/+xBhjTBTFhxmIlOc/liLZGIWEbIgs\nIZmZ1R1lfO/9ic6uVlEVefGpru8O1d/DEQpkUdlsDk4id6z2dAacVweNElolCs05UquhydOBZX7r\nLWXHhkjgdA7Vj+Pga7gmztEmUBbrwClQhfF/gmLLpEH2IKY+iHKeNjCGNR5enBG8PXEHLqs4nyWd\niR2RKFigOGPHNS+TqyiEragvQkVlCE5eyEZvvqu5VQyrT/oBsjRE1ifw9wQm6hs3iIIDnDNj+q5U\nlE11Ksr+9PvKTiUmZILJNM96IFuqqHEMhTixQVfY94VIXMZvhWzVt9WQ/+p3NFe/998pizZukv16\nJBTG0hIIElQ12tiIS4Z6jpqIYVwiqGJVyegWbTgJBvrugJa48U3Zog0Ia/8LZSoKJfk5awMOiNDr\nLV/JHfnLhOXZhfqvO9d9sqBFwnXxUZXgUenn9f+psfz5Sk73cdP6ezOAkg6KPB1b9mJ3WCg4Bz+H\nn6vSVZYtBKKpF5a9RBdTM0CpqTADYYeCQJFMXAL042Qg/3LW1LyxOCtvN1DngQtrBpqq0dIa1NrX\n2J+ittF5of9/9BnqESDWlruar1GUvCZRMrNd2WRiqLnSt+CBgGurgDqey5n4oCtbOH8m22jMqCeK\nYKktzYlEQGvfyhr8EUllPiv7cAnUQQLR57klUF+gwGJk8cZztWcM4iP6mjscOwyyZ039sejJRtIg\nA2cxbCUHdwxoq/4nD/QdtY4R62caRTUTot+QWXENYw7qIwmXwiSkOTFqa7yHHmqEubjIalxSSTLa\ncAodV16paDx7emRaIGTG8GaEUNEKwH8yeM7/w3fUz7C+ghKIws1QgscjGlA/OPAgLYays8kxiJ4p\nKokFeJbW2W/cKpgwKpj9PmpItKX6QDY4SMKbNtc9kqhJJq7DDVbQvXbK8ptJ1vSxh4wmG185Q10P\nRcUpCES2DCa7IttKLq/SRtbI3uvxQFjcb07mtvyO7mcxBBWQ1Z2HmjPlZT23x55igf+GJspEUAHJ\nrsGFWJDtnTyH/6+mdrUv1OczuBgqD+X31/O6ztrQXiEIHduUPVvAQV3kO1vGGGNuDnT/l59oH/2g\n+Zkxxph8RxXyuNYacBVewnexBboqtQonDIpgA3hTDr5iHQJJMwYxPnwsX9WA+qEIuniGr2uzoO5s\nCNURWxKKLgT3zRDUSQflsxRqLwFQtwEL5NEL9dfJmXxJAjRw58jjCDPmya8emBt31Q8RUAZhOGdG\nc/npLupfaVB28xSqiMOr8yH22IPEM/izIqqh8FtEUd100lGerb44eyr00OHPP9WNIpobb39P+6T7\nH4k75Xb4d40xxrQO4NzalZ+dwrs5T6CqV9EYNZrwDblqY3RZ83t1W3MthLpppKp67x4dGGOMsdl/\nb9/e0n06GsTmpd5JGoca8zl7pmZQ9Wjvyy90ztSuHHyh8XWN6fKSxrqckC304qAtQCG/+KUUehxL\n7bg40XNGrIN5uF8WSEjOWEtPn2id++xnetezUeZMpTRHshvsW+OaJD3WydHE46XCn12oH7pZED34\n0f1n6u/OKTx8Nkj5d9U/S2mM/IolPJL/nYCC/uIXGveOq3o4VfrvZ9q/z+HnSi6r/wrvqD2zCgie\nmvx6Gx6TRUzjnp7Bizpg3WE9SlqvUBuWVTSW2zOb29rfdEegJ1nbwyHUJh0PuQ0/T4i17o76OJpR\nX3QWasOsqz57/J/+0hhjzLO+7nM21F4/HpUNVvbFBeNa7H3Yg/RREIxH1UdV/H6yp/t4aqMLTq78\nAMTdDAS9xTtJm7HuwbHopOCAsUB+w6c6isoWlh2929z/hn5/745OUdR6B8YYY3Ir6qc+qKbBCJW9\nFJxYXbVrBP/Qy0P9/Vr51Vr9zxUfKeMXv/jFL37xi1/84he/+MUvfvGLX/zyBsobRcrU0GivT4QM\niXLOLfZUn4llMsh7nBufohwQUTTQhmMlNVNkf0Qm9yStCPh7ZDKqWX2/+ft/aIwxpjBThG3oKIKX\nOVBkbs45/TDnrtc4Bn7rm4om9tcUiavUlU168lL1zlygUPO5orkPOX+dzCjD276tKObqE5R3+soc\ntMgaBk4VtexdU2Yi0lfEcTUttEId3pFTlB2ssZA7H5Fx6O4ICRS8pvbMB4rgDe+Q9atcGDenf3fg\nt7mzJB6d9BSuF0dZFrtC1A/kS7YBcuMDsvPrRNa/UN1q31GWYUiGdhp+zxhjzHlSqKLxI5QPULPY\naGnsrloW8EAsHBi/4WyZzfS8YFB9cn6usV8HkZHkHGJnAoM/6iQZkC7JhPq+jcpR9QXqUKuK3iYt\nkCx1eDqW1f67998xxhiz/bvv6/6cj/75n/21McaYya7al8wro52A02USBS2wAlKJpIvVRQGowZnR\nlrJ+2WXZyBgFsE5LF8TTssUWyJ3BS3G+7P1IUebRCJb7bUV5O224W8jOT6twCmRBeaGykd1UpiQw\nVr92QUtE4IbYui+bHKOwkCLT2xlqDjfhlJmTTdp+X9Hq7Q9kD519ZeV+9eeqxwzFnVW4GHayQm0c\nktlotxXhv0qZz1THkK2xDYGcyXP2vh/AzcF/MJhpTKYT/S6IbUVu6ffluWzHbej3dThG3BdSc7PD\nyk6k8qgPbWsOTDOaSxYqUMWM7vP8F2Rwh+rTEpxSHfiNhnDbxFB9mkVBU9lqlzVTX13AyVJwUFz4\nQGiCcV+Zxd7I43bxOBo0J2Ip3SeR0dzN5PW9B79Rl+zY7FR93ieFu/GW2hXfUUZh96H8WetS2byt\nFfmMLBnsm2sa6wgKLvOQbC0MkmSuy4whq+4ew9fUVvtbHdl+jOyiS/bw/IXqVbojm0pl9LxBEy6J\nK5YRvE4Tz1elNPddOHQa+P9IUnOhmNM4BReMf8ZT4IGLyAZFQXsDKN44jr6no3AEoQiUQ5EtDEqs\nh6LGHB8ztpJmyHluO8HaVdEac0KWJ4oyV70Pfw1yRm5Uz0yQrp+AEghtaMztFvxsQRCFoICyoI3S\nWyDyUGUbHmu+emfdrbSeHyypDbN5mDapj6pwUzXxP8mUxjxS1HUl+JzCRn0/gneo8wIeOfjjsszR\noxWtpRM4bqagSsOgLY65bmQd6LltD4Gj50c8rq9N+eGrlgQ8JUFQqbkV+dugqzGcoSLSY92ctnHk\nGbUrmiWbD4+QOSf7dk6W70Lr5px1LQ6SMAkyp1AAobIkH3V5pHa2P9d1F2fKUB+fg1bQUm+iW7+u\nvlQz8bTasQYazpHJmumFfIkLOs+Fx+R2Fs6Fbdl+nAz2NI3aIPuA412NS+NUc7XxK3128ZGra/B5\n2NorrRUiJg23SRekc3MXJB48aYb5kL8O51TRQ5Xqfxd05aglW2+CnKgcCkU1hXsvONccyF1XW3JJ\n1C9Aq465zwQOmjHcM1boNRUhQSAmLM2htWsasz73vTwXWnVakX8LldUX8QRzdFlj055qLOaoAVpw\nJsZQxrHhWxqek/EFuT3rglCEZ6qPylImIgeb9OoDqmvWBr3F+hMDpRsEXXD2QAiTIRnfBHuo8Iru\nM8jCr4ffS9+UH85b8hm7e0IWDvdlGxGj9qZGek6zo/5qH2j9cL6hjPPmB1r7WzONY2sqFEf8Gjx4\nS9rDZEARTE/gLBvCV3SoevZGzKWEnju4VH9E10FnwAlnjDGRQNR0yUWXHFANy7KDfEzP85A/tara\nvVKGww1+q6uUBQpdQ8CScxe+IPz6kHeZOf4sGASZmIVzCqXDOWhSgz+y4PTKx1HNBInYQC3UZg+U\noI1t/FSTNb411J6gCE/PDB7N2IVspdUEvXSg+65e1xit3mI+g6z46u/Z94EKm8QOjDHGFFB3yrwv\nvzPZ1txqV5j7LzXW3QpIxplsJOUp1jLWbZAoQ9AYI8it1j7YMsYYc/89fXbo1/Yj2fATEN77T7Ru\nJvPql3s/AMVQ1LuSDbdZHFRUEVuPhEBdeGhqEJED+Ed6qCUN4dZaW5FtrbN+xsJXtxFjjEmBnOrj\nqxwcdaQDX5bHFROQjwzBCWMv6zk1TouYBHuapq4PgzwPlmTTxZT8+tmX6tckHEcm0vu6LrVKwySW\nUubavxF3insm4/3sz/5MbXfYW2TVJ5ExXIH0VbejOoYXsonGSz3r6EB9Z8c0f4vLKDmmNe8y8E8G\nw9rPWtu6z7wjGw/aQgbanCiZOLKpS5Rt67a+3/+eOBt/74//nTHGmBbKhT/8v/531R9evOIW78dw\nmtX34JICxRpdkq1f/xDV5O/w7tUFgQ6w8ju/DfcXYZTpkD0QHISRFGp3c7Wzf6Hnx3gn/ZeKj5Tx\ni1/84he/+MUvfvGLX/ziF7/4xS9+eQPljSJl6sh+7B4qgm73FM1bJBUltC4UwcqVFZWdW4r6JYKK\n1NvfVtY9PRTqoxDV9+XQljHGmNC5InvXiijdkP0pNBWJD9QU9Xz5HX3PHyjSNTSKQg5Hqs+LqDLd\nM6RvppYig7e2FS29mKtekYIigdOmMgbVpto3Aj3RCyk6eXtDkcL1HZQ1Jrr+VlhRyxkU4cHcbxlj\njNnZ5Vw//CyTuOpxcsYZ3GXUoeBkWDpWKC8OAiC1umpqZ7p3dllZ9aOpIspbm4okP3uoPs3dEsJl\nhbOaoZnqdtoma4CK0/Sesh3Fqtr8dIPzf1mec6E+PVwna/JYZ+5rqCRdtbQnqDwtGENY1a/dJktd\nVF9e/lKR8m6FLFxX9XSJShbvqh7b/0q8II2qsu/ByYExxpgZyBPvLOxkLtuYDpRlCzY05i+e6/eD\novotT2Q9nVEEfio6DBMk8xAEiVLO6fmr30ZhAL6MR78Uw3f13CMqUlQ5yNl+twe3T139Wk0o+tz9\nseZGhSx750I2VobHqHRPmYrV+2SbVhVFnjWUGanuKRM+3NX9vvqR6vHkqbJe5ainbEPGNCFb2t6W\n8s0Ijp/jv/1HPR/epAznNOMJeDhKiqafozATiGpcQmSf4mTq220yPi1Y/sn8XKUMYLDvwyVgcfY8\nnFYn57MgOkBP2ZyJnWb0OfPO9YJIa9eJmJNFmHLGdVpR38XjqGbkQQ1MNMbDoT5jZExDCTKNEWUt\nIjPG1DuLf677BYdkHFApiVuqP6Zl6gMyu/vq4+dHZH04hx2BZyORRMkhruesbMkYY2RgF1MyzJf4\nuTPdr4YqyCyOMtc1ocGuvSUbmk3lz/pd2PVBPwQKIAzhl+hW1Y+NqWwxyLntAH4rgopKB5Ulm2xg\nNALv1BEcBPClxKIoEXFmuZCQT2m5qK8Mr67QZYwxZw/hIqM/FwnZi7uAdyrGXDYaxwOUFSausnoD\nMuSOC1eDpf5wO/ACuPIpLysHxhhjluALMSX1z/IduM7IZk6Y07OGnjexqyYAqmBrU33Tauv78ofK\n7tz/lrikDg5A/Rzhx4x+d95WdqgdIjOJUlZtgeod/EEOClKxvL5ns7r/wOh3mRgoKfh70mRmOwN4\n1lw4TsiC9081ZouAxrYOgmTG82MB9fUZ6AinIITIsKM5mutpjlbJ/rfwS/06/DstPT8+lQ1kbqkv\nl0J3jDHGrJXh2xhrrNyhrksEX++M/xTlw2aNbNxT+CrIkgVHal/qmupffk9+v0QmuVAg44tPqYyE\nbJkf637DOGiqmK4PY+Ojmdabr55oLQ+TAR2DkpjP1U9L8CotwyXg3FGm1Vl9pUT24Xd+2zTJcrY/\nU/3PD/GrJ6hxkHnPogB5hMpgaIYiW0j/70RBZxgy/fCUFMuqx/p3lU0M9UHFoR42QO6ldn5q9o60\n1xh3PP4juLJANEz39dk5h+8Av5Lc0D0DGdWlAXLQIbmbtGUTiZz8VLQkmx5W1ZenKBxOQADOgqBG\no2prFLXKNAi2q5YpSJZBU+vF4IGe4xRBXK7DaZJErQgVDpPRc5axmeChxqa7r/3lGSiF+DONVR+E\nYLOp+6fzZJZR7Ln1De1lYiv63giqH9Nkot+5oX754le/NMYYc/RLOBxsuLlAtc3pn10QSDdYNyJ3\nVN88KLcG/y5HYAAAIABJREFUIIBpS/2XuKF2FEAZnx3Kd4zaWi/CLOE5eIY6Bi6YBGpUK6qnhU8a\nk2GewLW2UUItcajvpxfa43X2QeUO9LwEvB7pMko0KLiNDvW7QvkVemHr1rIZxD20tfo1g8pfZo0M\nPnvG4xPthU/2sP3A1debMPumcEZ92qvIH9X21dch+DMjzOeVTThPstq/uR9qn96dgHCey7ZewqF4\n8oWUHWsv9f8xi/T9t/TOkL8rjsQ4/qYEsjIAH8eC7P0IxbN2C8RinVMKINCtGGswNpZhzS6tq74j\nUGYeh2Ectafla+I6NBXd9+HPpCbV+Ep+fco6c+um0BGr9+THJ6hxdkERn8ETFYNfKALHS4C5FQVp\n1ISDMLokv3iTuejEQC4m2YvVZRs9kH02KLsZoFs3Kh9VQH00v6rrkvfk5/IoAx+/BNHKO2yW+9sL\nD/13tTILaS7lSrLdBnvJVRCtXdaHCOqCIXgQq3C7mbi3t9L3Inyp/Vu67u435SM24Lx59pl8wP7/\nK9u+6O99XZelresmc6toiuzPOnXWqrj2BtDWmRBKtoMA6NUI/DaObPH5S63BdVDzc9A/5QTvq1us\nkVPe1QIai3oUXiTQpcmM5oozUFv6MV3v8G7hBS+qp/BfPtepgQ34mD79+IfGGGMOXqituVXUkdhv\np4qgn+AFnaCyNroUmuvBTM/3sLa7x2pXIIh6aVpzIuntJ+FtDYdBPnZksxnU5dI5eOrcVxxX/1zx\nkTJ+8Ytf/OIXv/jFL37xi1/84he/+MUvb6C8UaTMfC6OhkFbkbNSQZmLHhnqW5aivRdEMVcyOksa\nR2N+dqCoYPiaIm6NvS3d97oiUemgImMVGKyP6pwdRTliklfUc2dXEbNnG4qGlg4UIStC/HFJti/1\nYzhecoqdhV09r0g0+UZKEcSD5U2eo8jhvKkI4FfXFGEbT9SOXhQFnJ7u039XWc7lNtHOiT7LP4AX\n5adkpMPKpk0LysId7AvNkWsokthN6zzl1CVyVw0Yi+zu4SNFdoNwpuwdKHJsbamO0Seq0wu4Qnob\niqQvw0VyOSe73FMbLjjjuooSzcVQEd/otu67ONbgFd9XH/1y//XUlzyVic6MSH9RfZBBeWr1tjKm\n5y8O9Pxn9DlZ7fS2xngNLphkGa6VCspfZFncOWdZnytLNXDUXmviZfP1u9qF/v/wT4UoWYXfYmNF\ntpPcEYKoHSfj2lN9KrDUxzg7G19RJiI2gkF8RTY1j8D/AVosfVf3HXO23xppHGPwqOysKvtUjcsG\nWqd63uWFIvn595RJTV9XPZuHcNXswTkB/0kyJFtpwI/UIFK/4Lx7H0RO5KZsrAhbv5sCtVDV54xs\nZq2lKLH9qRBSYzImgRgZVebU0eMDY4wxI0h/emeyQ/vXzoH/t0o8DL+Dd247B+IkC0M/GcGLC/kJ\ni6y9U1d2IcrvomQgzRLs7A5+KUWWfkd/b/TUh4MhLOuohoSNbGWy0H2PQSWtbckm0uvKphz+g7JG\n/bb8VKkoPxUA0RIMao50p0JgxNNk01HMcl2QLXWUDpooH4x03T5Z8OlMGYMcyiuzEciOEEgXsluh\nsMZ0HOL/R8pmld4XAtHAdxS0UREiW2YPZXMuGctnu79Sv6Ds05x7Z4513xxIw3hSPiJd5Jx6Qv0b\nDev+w30UIu7od3fuKnM77OIHUZoZuq+nmpIgY5qBd2TEuA1ABRqUbxZku85Qu/ISG1aVDCtnj/vM\nfcdTAiI1HKmrvxcpEJkoITQfc76e+/YacFm48E+FAyZU1j0uD1SXvV2tOYui7mU9EXfUg4fKGodR\nw8gugxpIwWf0oVSNluHSquXkr8b9DM9GMas/oi/gFOjIfywVNCdssmFTo/rMHIs2o9hF5i5fVxtW\nM+rjbkD3D2ZkGyHWifmJ1q5MUZngelh9ulyWHwuijBUP6zkXcIU1JwPqrfY++bHQtRbcCGF4onJ5\nrQ8OPBPJjVdcK1cpKbJZxaj8psctNu+h0hGAdyOj55mJnnd2ojlz+Fx7mh78J/MnzCkQj2FMNras\nuVC8ofVofUPPnZGFqz+Wr6o90XpzieJOj+ednJA5RlmutSuf8D/d+EPzt3/3N19nqGMXmqsz+iOo\ny02oqvW7gmrKOK36hkEoWkmNZ5QMvAUvSxT4XtLLaDfhQoN7qANPVBi0y9K9DZO5D/ICfotgA9W5\nicbmrE+WnTXAMWQeba0B4ZLqcBc00MRV38/7IIcvQPs8PTDGGDM6k/8ZRbABuFKy8B/d2NSewFPH\nc+a/+Yz/Py0OmdEufA/9nmx6mJXtx69pTKOO6tehfYGMbDUJZ9d8pucPWQdMiLG4IHP8UBnbOgpe\noU3ZzHhTcyFXks3k3te6Mkcl6WikbHjGRdUOxZo2CESrd8z/q1+bEV0fw//1F+qPfB5FtPfUXyn8\n1VN47NbguQrU4bPowZ3wUtn3FNw0mW32SOuqzxgFyuGa+iWzJPs4QRFzdqnnnEblJ4PsOYNwgSVs\njePhsRQrm0a2fA2utXPQHpOx5sy1da2vxhhTfGvVnKNANoGfq8X6VUiCeB+rH6Izj8cQ1F+7Y65a\nbPZxYZB6E/Lf86bmZRM+ySwIs0ZDtpLB38YL8j+hIQpk7E0WXbWpdQ7/G5wrObhG3AVrFqpwsZD2\nMPPrGqsIfCCBsNrYnbMn8pDxKGIlVrQ2JyKygR7vRB2QggPGpHDd40tCCQtbv3wu2w2A/IiiJhiB\nLyqEnwmwjwwBVrP5XQs+pPQ6/xGFU6ej5z/7W6G/ghBOTVHAvX5f7165G+J8XDCWF49l89Vn+hy0\nZaPhJOpy8MGNQbdegpjs7up5pVsal6U871gg50+e6R1s9oXeucq8b1y1xBjfgKeCF0XdCuRrCg7N\nKSgMKy5bTHdRy2LPN2Ff3WFv0t1DXTevd8obb4nv790Ppa7aREHz6SdPvq6L416a3Z8+Mn/6n35k\njDEmCIr2w9/9ljHGmOWgxrge0FgsPFUk5msHBPDt97V2lO9qjW9cyL+9gOdnAVdTJA3XVAsZuq7u\nf+/b2gsUloS2evZA6nDjjtoUZn8VD2r9iCzr9EEFFNl/fPS/6H5n6rvMTfm3BAhCi7nnDkDcgDpy\n4h5cCpvqaL4PF6hyOqgjw3+XrIHaQnHLYaxMDAVF0KXJHH50W8hCy33F4/PPFR8p4xe/+MUvfvGL\nX/ziF7/4xS9+8Ytf/PIGyhtFykRWFIH7g28pInZhhCaYwopeG6COFOcsKtHkERE1a6GI3OIpSkBl\nRT0Le8oidWvKFIfSiuT1zhRRa2WVDYzmFFXtTMgyHir7OJvrvu2WMg5WX5Gu45zO500Sij4GjvSc\nflqRNpuM+05Inymj+p5/gFpLTVFodwTaACbvk4wia0tPYKHeVDQ3FVJE73RX/ZG+rwhdp6lo86yv\naOoGGZnTF8oYODlF4i6mbxtjjAnPp2ZEBNgmMj9roe5xqazBtPL/6fsFGcu4shLtE/VFkojzMYiR\nZFER4mRE0b8X1CW3fGCMMWZE1sf9psZk3FY0dAdlFfMfzZVKCP6IKIpY06r65EHtp8YYY/b3ycwe\nKeK/lAHd8L6yHrEtZRwmZIn+5v/+me5zgrqUDYM/fBvBoqZEHqTKkLP2U9jxVzije1FX/9Xh2Qjv\nKzOQ5YxwIqExGpM9qnKm+Cd/+efGGGOS8Bs5xlOagDsGBZ4IiJNMCUWhqGx175ki251TRepvvycE\n0M41ZSyOnQNjzKtMSu2Bsk/N8x+rnaeq58mx+iueVzs3Od+dyKFAAApj7Oo506H64eininYPUGuy\nUEXZ+qZsLVVEHeqZ5uSnsOEHiE7P4etwyQiEJ7q/PUZpCE6cRBRClSuUIYgMA8KhjVJIB2TMbDym\nDmQuQY70Rpp/E86Q54iAx2GsT8IJsx4ncu6pIZ2giDLU7yNpOGfWNKYtstTDhtq8/l0h/ixQRSeH\nnO0PojJhg7TgXPSQrHY4qPp6Z1hjm/AFwU0VBlEzber/XTikFi14n8g4z1uovg052zqHRZ4skYtv\nGKB4dXgJgifKnFiGTT6vOdB+rjFtoxwWh5PhxkfKeDqubGUw0pzthuVLAhP1twX3TrKr8ep5mUtX\n9e425f8S+Kjb39D6UAF9dY6K3Xihcb1qSYfo55jm2LIjG7Py8m02ij0L0BdxW3ZgNTWHzp8KDRAa\nyke6IKN6cbJTcGYcPNY6VhrrumRRz1vJoahg1I9BL4M9Qomj1/t6/k36soFQS3VJIcLBkmCKY/xH\nGm4Y1JaanOO2ngpRM66oj+ugj5J5EGuW/HBhY8sYY8zaexq7QVPIvERPY+6GNTYZfr+xpXlfuKa1\ncFCR7YSSel4U/ocomT3b43kASelydj4T56Q2GT0Lfo/MhvwHU9H0TlTvREk2k0bxq8dzmq7q06lz\n3htOmRGcOsHG1VXcjDGm1UJtb6h29SxU84IgRvrwwM2Vse5E9N1GCSxUkM2uxdSOxPsoSQz0uxB7\nAgArZjSSjTyDr2qKIuWwRQaUc+nVc41DYAqiZQ7fB0ge5/or3owb6eVXGWkNpwkwV11UUEYnKNig\niJRY0v2CayiJlVBCyrP+wHU0AGE6OtAcDIImSKJ0uXVLGdnYDojZ+0UTW9a9Bpcay3pT+zobDpjr\nnt+agdjAz8S2A3yCEktqnjX3ZeMHeyCOP1cfDtpNrtf+6uYN+V1PmSrCmjMj2z/tou42+s1n/P9p\nmaB0ksE/zODdGTL3sqjuxeG3sAayle6p+u7FpTK6UVTorIZsZ0Rf2mzLE6gJxUCOx6+BWo3p+T3P\nP69rDtwoqJ86v9Aavf/zr/QcDZUZ7Kqe+7tafzyU7/JtZfeTI7gM8yCAXLXHQ32srgudXAM1MXqm\nz7AjfxgNqf/P4O75GmUVYZ2EEyzigMqO63nlFY1Xj+ddwi9nP9FeZVTROAeH2MWW2rOakG3OUW+J\n47/DYfZOQRBJFnBBY8wgPDJrKIgOp5oTnghY9an89vxrNRX93eqqPaHwwly1WKC05iALs1my8Svi\nULFBPA9ImvcXGqTLlp4BHZvpw3MxP9Sam46qr37wb4V4GHZR6AIN5vHH1arab0ZA63sqpPkyiJOw\nHoCQjRmmQbGu8a5VkD9o1XiX+Ln2nd2aECbQ7Jn8BjaeZg7UWPN7snnL0hiVPC6st7XOWCMQIi3V\n68lfy1bbcz0vwumDTBKUb1SflRO15+K56hEJeOuR+jW5BZKP/XeXDm7saWxPnsLZFVe9c6ChZzE1\nyPbIZaqaY5WGbLD/VHOmubNljDEmCLo4Ccfl8R5KcHCiXbUki7pPnb1lzMgXLXhv6DpwDznwEoI8\n6jjenkr3WczgiivBydYVmu3P/oPek372/+jz5j3N+cuuBv7Gyit1wkDcNoHW3ETWtMbuwA+0Ete9\nayhVhfoaW4f91AD0pAV3ltvCeIFlJtibzI/Z6+d0n2APvkpL93PDqtO1u3+i58Nb1PpKqNi9OUqT\nSfmraZt3rxXdZ5uTNWNU5rpZVPJSIAldxmYEeg2VzXARhHtLfT0daM0NBkH25VGBRq3U4u/9Eip1\noP6nKGQFzkGgA/Zvou5kNlBxquj+/1LxkTJ+8Ytf/OIXv/jFL37xi1/84he/+MUvb6C8UaRMEubu\nsQWHARrrzbRQAbaj6o0sRQ+rUWUmpklFzkdkdlfOFcHPVhVNvqgqwjdsKTI/7Sqq2nqpyFoyrs/u\ns1+oIiUyBSgqzM/IWMNJk08c6PcvOCe9r+ji2Zrqvwz6pLenyKH1rtoTcBQqS6UUDc4OUADqKara\nbHPmLKCIYp0oabuiSONZQu28PlC/HDlqp2MphG9z7nJfATszOYPTYEA0NCYegc3zsSk/U1TwSU9R\nwe2IMnONrCKvKRjmG2vwHyDWML7U2c0D+DqGebU924aTZk1ZiJ2CrmuAhLmN8lXTVt8Nu2JXX1pS\nna5aKlP1geG43gzFlUVAfX56pqhoOk60E+WZ6lj1ie6RpRqpns1dIXziYxRw4PNwQNisvyPb29nR\nechnn36u+x0rez/m3Pgmakr1U421O9IYnV8IReWBN1IF2eKt0rvqh7qyhOOpft8hZ+qOvfPLoAFA\npvQulYF2icIO4BRwYInvz+GIOVS/QK9i4nA4NGrKDMRHss3RABWPBJlTxmsGN0SI895p1JcCC33O\n2rKTGqpV02eK/i6CnP98V1Hq298TcudFTNHr9gXoMNjz7U1lkG9vqp+nMYwXdEm0rvo6k6tzD8Vc\nOEbgCOmN1MfTJmfeUe8JgCxxbM72ZzQ/HThbwjzTYvAiPfXpGWM/QmksOJTtR8jGzDJwp4zVp2Mi\n+hMQKTtbQhENhnpO41j1y9MHVpKz+HBdLSz1yXBEivMlYx2RbUWmqC/BezRx4KCaga4AtWbFZWOR\nGYopGTKXCY1ZqKvnRpbkJ7OcFT46VlalA1oqs6TnbSxpTM87uu+ETG+gr+vSZdI2IH6yDgjEDClH\nbGnc0X2boADSI9AQ27rP4OiY/1d7bn4kfpTm57KlJohGF26Hq5YO3A2nl6AEONs7BBWYD5MhJQNk\nZeWnx6hkdU90fSKgrFuZTHMKjgMbH3T/HdmFzUF57+x0DPWvMYoRYc5I91DAGS3mJogqx3wIrw5c\nAkH4IgZwLnlKT0M4ruY2iDt4K0IBEDTw79igcjz/4KKENcMf1T6GC+Wl5l+/o+dXDfUAotPe032z\nZCqtiO7rPtMYl4OqRzwnm0nAWxGE18maq68XPbUzRTrJISMaQ10psgBVZem5kbyyXZFlPX9O9m4J\nvqdpTf56YcFDAfpqOPjNWal/WiasGwtQZiM41y7xmzM4IZLwVGy/K39WeltzOUCaq42izsGvUHB5\nJJsNoKyYvwESBcRTeIwf5vu0CU8HKemNTbUvnkXxYVU2GimSlVt/hZRZ394y3YquH1/I1uvHWvfa\nx7KbQUV2MwZ9kJ6qnwohUCkmSf1AGcBd0UIxbAyPQOuZvnsZ7GFQc9Yhgz1pH5p2Us+0xvjfsdoU\nf6E+PoF/IgWIdmkbBDQo0tGB+u7rtDBjMZp6Z/W1L0okxN0VIOvdBvXU5/7NHsiSGZyCrKWRWNa8\nTomENUZBuGEWUbW5N1NftuiDDfy7fSkbn32pvUSlf0g9WIOfyq/XL9U/W7fhptnBX8Ov5mypXQXm\nQLOtMTt6BIpiS9flUQ9tnmlMumPmflAdPK7qswVKK7al/k7fgfAIpFG/gprcS32uplgvAuqvbk/1\nHp2iyMZ+/eY12aoLqniYUH9YRU2OCP3UPgd5klI90g39f3OGIcA9cXFAphnk6XJEdrHyvsZ7jNqp\nu9B4LrGf79soaYJMNMaY6WhmHNa7DAifXebEyUveQwJw96BK2EJ1JZF7DX4qOEdGHiLa0ZikVz0+\nStb4Lw+MMcZUXrKfimpM75aEREygfrf3Qn3dJJufymq/tf6u3onSy1qL6o/Vlgcff0Ld8d8r6tNg\nVKjTcpnng+SZ1EGrFUH3FmQz3XPNlaMn8h/dtj6XrguZEsgxhqg5dVCougCJHUFdaPWO9v+lLd7N\nqvr7y0cau/1nQnfFUfkL35TNh1BBSqLAZl+HFwTOsRynKsKM8ehM9b+ccprBhgcuwHtOFtU6lCqz\nG5qDS/iQdgU+oz3tu9sHsokzuLuyKE3u3JcNJpZB951rrlnD19uTPDlQPU93hWzZXtbJgwycbhXa\nFUJybmJ7HD2yr0EEBdCu5pC7DqL/O1JbjbqqVwMl49MDtSO5Aspj69U+u91xTaF43fzW7+pESQCO\n1MYEniLeNYoZb38qfxGb6TPE2r77lTgTj85Y44Lq4/KSbLAdZv/syD+Px3C1DPW8v/jf/rMxxpj4\nVPNu90jIwuv3tQ+MZtX2OUi79IC13kEdeUtjGWE/bFXgMkPBbJZVPRyQ3JmF+vZlW31Y5Z3RTsmf\n7VhSvIyjQNuYqh+SoJkDSd4/WPtzc9YfOGETOf1uTHyj3/zNCl0+UsYvfvGLX/ziF7/4xS9+8Ytf\n/OIXv/jlDZQ3ipS5PNI5vSdkc0pBRXHbDUUpC2T93DOUCTjTFWgrOxWrKYJ3XhL6osjfE1EiYl4E\nDcmDCJllO4JKEmzuwbkyGEe7iujZRT1vParPakCfBQJcD7YU1VxuKBL2SUlR3ft7+sFjUBzLqKIk\nlvT81JIigwPUOFqcGQ5UDlT/jiJ4L4wyKTZZwtqpouuVIynZLNuKFnd2FEkcW4r4J8uoAhzr+nlX\n0eWT3YrpLymbEo0qi3B2oehkeIOzpJv/Ws8sK7NXrqhuZqKo6QH8GyuOIsc1oqjXOQ8dOlVfBAO0\nEdL0WeqmMcaYdJ6sTAAIyRVLgrOuI5dIt9H1XbI4Y3gq4kvKHHThhmm9UAQ+FFbUchkU1NYttad+\nJtsbwNxfKug5NmpPp5ecQYXtfobtpFJkx+KK+Hv6L4NT/b5X55x1HptLqSOsvvrF5WxxyNIYesmX\nBQpdNThqRt5Z2xdfUU89f31HGdq3/9VHxhhjpnCyfPE3Onc5ZUbnVtTeypEi5S78HUnO5s7XY/SL\nsnkxoty1l8qEjEdqZwLbvn1LkfdaRXbkwqfUaGn8H/xUqLODA83dzEzt27qnOR1APSuNukkPJY69\nB4qC2xYoFVQAogHNxauUBbwKwZzmz0pUdY7K9IwFsmzs8jtQSQYOgB7ZjTYyO9OmbHzS0XWDpn6X\n5/wxR9gNInDG6ntKWiDmUFqJB5VFCU1BrqBgMyEzG0yqzydNeCyyoA7izCGyPkOy1c0O6kAD/X1M\nxH4MW3wAXiLHUn3S8F3MbPmHGIpqFsz9UY+vaIq/NGSS55xPZy7Vq3rOekn1yzOGCUv91sd/f3XI\nmeE5nDZwEQQtVONQGJiRCY3Ddr+ydI3+1Bx4fiIfdFrV3H0LZYF4SvU2c9SxUF+5aonnNdmKIT0/\n5Kh9HVRUoJcyfZbFGAf7cxnNuXQBrgTUSWIx+FO21B+1/VMeRBYtihIZZ6XNXOiJFuMYrsMh5iGz\nIlEzAZnSR23I8b7XhUzpYWMDsrtdT1kQFaMk6KRSSfMnBlDEbZDJnHNOGm6wzaj8hJXSD9dRqLJA\nsGVA0Nnw7AyiqA+hMFiBw+B8eKB6DFTvNCgrQ5bdQ2t1mKvnARTM4sr0OscosWT0+1xC96mh7hPy\nFL1QIZrkOMsP98CMM/YczTcFMqP91uutNyUypkHuM+wwlpdqjwVSMoPj9jgEXjyT3wtMNB79MxAl\nHdW7gLJkbkXjk4FbJ/4W40F/23CnDdM4cvhWumey9T4cOYMJSjCg6qItEKW/Y8zu5/umV0dFsAI/\n1RgbB/GaymuvZHmcZhFQYuypBmNlulsotJmk7CkPGsyGvySOOmGZ9XC+gCepA9fQhjEba5rfkRBI\nuIr87OBUdVyBnywM0tBO47dQIMmCbHBA8lkoBYba+JVzULOX2mNYfd0fIIqxUKNLomAWD+vTZt7N\n4EC5ahmhcEN1TTqr+23gv49qIFh+prU7EWXNR20qitKZoR8umqDb8M+TqcbGKckIhyD6wvT5yjtb\neq7R7x/8+OfGGGNaP5X/ybJfnZzq/lZPNlLIaR2w7sifjYxs2uunNCpy5R2hGhoFrfWPP9Gnt9fK\n0I5uVf779IFU9zY3Va/sHREZTVOsm9dAsq/Lnzaqqmfnpfpx8jO1LwTfXABuLoCEJsc+fLJKhpz1\nOs64trRcmzHrRvyOUBxxI98SDr1Cy/XsuWk34RCCSyIdVD922M3N4JFKu7LpNmi7YeDqHGZj/JKH\nyjr3aIsG2psvmAsXNa0JLjZjleATKsg2i3C8DDvatx8+Ut/VfqJ3lgbrwM5HzA2QltURam1D+YnY\nhNMA8OO5ARQEW6yBqO5FevK3rQDcfgjjJOLw+RS0qbr/R0JElzdVv+4UG0aNyG3KX/XgLhmOQHg2\nZcPDBQgXEH/rQSFEwiG4w+AUXLD2B+HAuf5bGtu1c/m1zktU5I5Am7Ffr9R1/+1VjeHb736odpXV\nX3VsqLyj9a/0gVBXyX29F0zYAzpT0G5p2WRqS5w46VSBdqsfV3Y0Z4Oz10PKGBCxo4r87Wl2S/UG\n1VZijntb1hmKPjaIGQv+Pgdloc1basfGTY33o/GPjDHG9B9q7uSToLrTGtjR/JWC5aA+MWPHNSl4\nbgI2vGzwyU0bcDDxfjyEJ3Ps9TlIthZI5OtD1Sm0pjEfgEALQ9bkglAvzj1+HxSjTmVDH7/Uu0H5\nmtoSWdPvhnA7zUGzemt8PwaKqM0+Ge4X6NCMy+mCGChShzW4hmJicUP+YueG/Ff9iHcd1OxmWXg3\nbfowCVeWC7cgiobn3nuAke1neqg/oZSbzvzmfauPlPGLX/ziF7/4xS9+8Ytf/OIXv/jFL355A+WN\nImVip5zZfKjI1mFeEf9lSxGr8RNF4NJhRfmOo4oqxwh9OS1FK9N1ztWRHbOdA/39prTqwxEhTSIb\niioenCjy9tYNfX/6C87ipoWAcU4UTZ3DwRDJKdMTXFak671jPbeRVSYk9okyNI9mqrf7WO05COo+\ndzhDnSigprIqjolhQNct7WgYWrYyRvENPTexL26Fk5kicdmoMg6BJmd5f6WMhbuufgka1FXuCJ2Q\nhUG8XE6bJinE4K7qXv1jRfXCl4qKbocUDbRretbLtxW532gp8rrKOb7RTNcPULaJBNX3w6SimxGy\n9FCcmOFMz7nmqm6HbXgyrlgKOWV1gvDunFQPjDHGNDnf6JTUZyvfVUS7QYbW/lTR1A6KVyOUuzI3\nFeXtkzGuEaHuwWVy/FTR3uqZUhtDV/dLpXXdgMxgEg4Ej+X9ArSBp1mf/2jLGGPMhETj8U8UVZ7R\nb4Ud2crm2zqvGAkKmdT88d+r/igHhOFMKCY11jc4Kxri+UdfKPMymaie62ndZ+ubUjYroJJRfapz\nnl7IfYyqVOdctjQAwXR2KluaX6q/wws9Z/X3ZQfb39BcePkjIWMGL/X7EXP58KeygxoKZJmy5l5m\nGX4hjDf9AAAgAElEQVQlosVDFIHOHioaXsrq7w58J9McmeArFAvVJUPWwO3DfxRWm6JEzJMB+Q0X\ntbQkGbgkiI5FkGzvidregNciTfZj0kU1B/WOfbLggRl9hkJX2NLYOXPY3lGo6qKkUEKlKQyfUAuV\nuXJJWZiFpT5bv62sUJSshh1W/aMRzvKm1E6S06bn8fCAVIlcomIH98D4UH1eHyvLNAJJOACh1wb1\nVLylMQ7HZUsHn/2ZMcaYG/eFzkq8RcaVbLiFGkkIG7L4jMHxMwBlVsgoY5AE0eQkUYDgbLDhDP8C\ntMdoovYd7qNiREY6iyJMMPJ6OYUwcyOOmonHJZRIag5H4RxKJ8icoh5y8kjj4+CDMh5HDOfyo5vU\npy+0XBbloXRc45yLa1yLqJzEUPbp76ld7R5KHYGhseC6qpG1nW8rMxlw4Igp6trNOxojOwz/QRee\nmp4yb/ZIbas/VvZ4EvTQVWRKByBcvgQlcAG6oC1/YMP3Vgm26BPN3/mK+ijjyn+N4B4JxFXfXFlj\nGh1rToYa+vsIBKWnyNDEaKcom3RizPdj1kr6NjzX52QoG+6FUS/qgoIFtmZVQjxXY9cKoZoUeJUJ\nvEoZnKieAU9pra85nk2jnAUnQRyFl1qSFHhX/rfBOfNIVvXZTGutX6CoFguiUIE6Sx9EYg4Orzn8\nVJOKxrHXVL909rV+jDyUFVwIhky3ZQe/bsNk0DNLeY2P2WZ8QM2Ge6BU4AibofrUmqk/IwX5ntUS\niJpV1SuEytcCXpZuR5+BoP6/bWlOzYN6Xmqd8djJmsw2CokoT4VBjTrwQwTSqKJRJzfscXiAzCvL\nL2fSelZvgIrQoda+2hP2QzP9fQlFmNKO5luIbHxspDGbsFYvLtT2WvPq/GXGGBOK6X7e5jkNuqx8\nA+XCp1oD+1/IHwws9mkXIDNRVsnDi7S1KVuYUo0A/B+pDVBrtsbm7Fx7qUJLtjZnX7galm2esR7N\nesyxx7KZAVJfcQ+FsUF/5rVX6zInAVmYZFcogQUQmhIIpXZbtuvx+aUj6ud+Tp9jOF2CoO4c5tAI\n/o/IFoghD3H6XPvbi2cgYOA4i8FzmIWDK3NX+9kxCmczj0evgcpKX9+b2Pb2UO8N8Q0QsyvaNxtj\nzNb726a5r3F5+VLjUWYfMDsDdcHesLCm8dkIbRljjBk6V0dURYzGfDSCa4l90llabc3AA5fLwB/0\nHbhUWMtHqDA9a8CvBgeLCzrA4wBsn8gWvvrLj40xxuThICusaj+8CsIjxlo5xG9aEVT64FUaXYLe\nZ+9gBYTMLN3R2nX3j4Q0iVK/KCijqQvqAN7LMKiw9eva73dR8RuDID9ps8fIam7euSPkuvmWrrt4\nDuLlWO8jIQCXiZxsataQ7XS7+t0uHJGne0I7hNjj5ddYr+b6nDr6ewDeI0+Bp1+TrdUf63ktkOVt\n0MlREKfxNc3t8jbcYSAUBycaV09Ozw6/Bu+QMSZ/TXuaxYo4hGIBuME4zdGvq5+hrTI27xcTb1J7\nJw9YXy8/F2Lz+DOpzA7qmtR51AODrNP2RHueYXv+dV2ihbBJj6dm1IETdS70z4h9bA5en8k5qp4g\nq1dvbhljjPn+N4SwO2MsmsesifDfJIL43bDaOAS9b6PwaoOI3NnW3ib/EQgZk/2v+qA1Zv82YYxl\n8iZdA7mT0dzKcmJmDNInEdLY1yOoOFU0J07Zq/yP//MfGGOM+ZMV8X/+l0/1zvQX/8f/aYwxpg0i\n895t3ee4qn5punBUwlNUeh8FWtpfactGwl1UqZzfzGHmI2X84he/+MUvfvGLX/ziF7/4xS9+8Ytf\n3kB5o0iZ8YqisPc4O/sPrs4VRp4o4tUnY9CaKnIXIcNon5OpfVvRV/cMHoosqiczZUSrF4p0zTf1\n/5tThdry9+B0OFO0+O1/r3rkYaWvE5HvoCqyDkv0s4yiqteXFQnLjnXf5KYi7P0jMulw03SJJJ5Y\nipQVaoq+9qf6vv6Oot2zqiKHnQJs/J7e+0zR6c01qQ/s1VSPdkwRxJtdRUvPWsoMxMicWAVF7m5+\nU/dvDa+Z0kJ92EqTTeI3ZqSo5hnZizSHSJ2J2vIiLr6eu4QpA0NFJ+0d1fXsQJHhxoqXbVAb52M4\nV8YwWtfEhzOeksG7YpkzZoOuIuWLviLDuTznuLeFJpgvVN9UAJPm7H/AeNkwXT9pqE82P4TrhgzB\nFKWC4QTEC2c2YxaZRiLTDZQSgmmNhc3zCmQ4N35PyJf739VnvaOszOL5XxljjDknHeWd08zlUFaI\nkgF1dZ+krf69d1NZohKoiVpLUeIvfihETZPzl8kw4+ES1d5VFjGZVMZiUlA263hXmfPzzw5037eF\nRNq4pblXgCui21I7L18IyfLFX3C+v6h+bR1qnGc99W+uoKzbNkoOLgzj5yfKvFT6iuCPXY2nTWqh\nsC07SaJGMCLb1vcyAVco4ynqDyMyhGR/AmONeb3LOW5QT0GXyLkDX4Sj7EE4qbqk4QKJlfX/IVs2\nHiih2DUku32sNj57Jj9yI6dMXZz77JN5XBBJnzd4PtkOZ0l91X90YIwxpgbaKF2S3xhN1HfDLv4t\nojG+TOjvzi4ohKRsIobtTuCHiKGwE+X8dgD/ECKj3D71Mo9qxxiERxFkYJzzy0cPZWOz60JpLSWU\niajWVI9rd2Wbt5dka8GIxtKFH8iGv2RMds/L5I6m8lt9Mr8jEDv5Vdmk4dz42VfKFt6+p7mSXUX5\nYfZ6GW5rqudG4TU585RoLJ0djsOfEVqRf11aBUGEsoTFOXebdk3hC4iRCV6Og1yCB8vMZAdNbD4I\nGuUQLo3eoZ6fCOn3y4WsmZXVt+u00SLTWUCN4bKr7HDlqfxyp6F7eciXm7elULBE9jcNv824jQ24\nur+FQtaE7A5CA+a05yFv4IZpod4Av1mrhk0twQkDh0prpjHcsuSXS+vKThdvqQ8GC/XRCIWrPqiv\nCRnlAdn4aFB9WmhoTV2EUA9JauzL8GG0keqZT3V9ZyAbWUDrM+uon8L9V5nAq5Q66wwUOqZKJnqM\nUo3BhudZeDo4h770lsYrje0PUQX86u+Fvj19IL8b4Zz+8h31i9PWZz2pudyfaI4HySj3zuVbXDLS\nNspCIVLW6RSoPzLjxhjz1rvXzZh+aXTh7Zio/udk78Yv5b+rqHLMsNHyOxq/QEJzIBqT/ZgYyFPW\nr84x68MD7rsnW06BTAo3USWZhs38VH+bjlCugh/OOVMb+nXVMYVS1/J7qGcUZKsLEBoHx1pDDh5r\nHvVYs4NB2faNa1rDsne0/4uU4exyUfVBza77WHW+ALWaTb7eNjgIN1U8obGu9+GCgSMlD2dMHXWS\naUN9/eRXmrMR+NvCoE6tZRTLkrKN1lT9FFzVPvO929qrPHkq9MLzL2RLYbjKYthMtq/79Caaqwu4\nu5I2imdj1StyT79zeG5wgfImHDfuC/n7EHu4xQC1pf0DY4wxF6ihbH4Lpcr31I6Ro3Fy4L4ZL9Tu\nUV/73dOXoNo6He7PnK/o/731JAL/SW8DJSBQasklXX/50htPePJyqG+BZh4u5LtCKG7GYlqXjDEm\nXSwY09N17T3ZT6cBrxMIpsaB9sS5tNDBQfhdoqyfVymhEGs0qp65LbhGQMYZ0LqpODxHIIi9LPnL\nXXHGnH8lVaIB+7r8uvzNB9//geoMB+HFQ9nEDDTnOz/4wBhjTGYhG9h9rnWi1YNjEL46M6OeqLrZ\nVXjk4JbJ8s6R21Q76qzVR/+gUwIt0KHRJfnlIlwrqaJ+71qaG5cH7OueynaOc7Llm/dUz/IdjWEY\n5bIFa6ynHtVv6j5nK8wNSzYUzel3KxGhNGIeYh1U2BB/tbAuuS8cNfCbnDOnnv0cfs6J+qfw/7P3\npsG25Wd537vneTx7OPN0p77dt9V0t1qzLCRCImxXIFUGKqCkSEicBGyTRCkVRRQSgc1gicGSsWOL\nEpLlkIiC2MYJIMAghKTuVqtb3X3n2+fce+Zpz/O8dz48v9UNZUs6DR+6ylnvl11nn73W+g/vf1jv\n+/yfB4TgmLmlfoyy74nGhg8VphHvjH6HAyf7mtLXuQwk/CKo4v0Oe02f+iU2A+ECOrrRd96nVM8Q\nPCzzADbLIDvbPtSiQPL75tdVznCP38FNk3qtvK3GxHqToVVuqo96fflUghMjxcfEIxTy8062jbob\niqqetMqejOnvahy07JHKOgZd5I/Kt1Ko13kGKEm2QLYwVKJjzeMTL+/jUAqGq1pb+rtaq0sVrQtV\n+O2GcCFeWkZV7qLWhU5De4oEfE9llGkncPvd/wONuWdONP5Lv6X4ge8YdNsiiM+p6lk/5nRIH9W5\nv6Z3tYfe+jaVZ1/Pe+nZHTMzu3tX9/PDv/aNzEXKuOaaa6655pprrrnmmmuuueaaa669AfaGImUc\n2vfB9C1mZvbUTJGlyrK4YJJxRWUrZGCds2etGNwFqI7knlQkb/ZAEbgZ5717ZDKKDUW0bvoVMXsT\nGQY/WbxYVxG7ySNiXV5cVYTNQ0ZzeqiIYMWjiF7oHgpAoAsyqDutRjmn+FcUKRweK8p81cOZ3wZn\nmms7ZmbWJWOdJsNRnClSeP9ISkKheUVxvWT/wnFlJKJERXd6inZeGSnaupdS5C95qOc8gMsi/0jK\ngl5FSJNhstyc1cxd0j2Cd9QWJ22VaSGkCHWRs+MlMnoxQrLdmKKVUz/KMfuK+C+j7HI/q7KskNXY\nAr00NNX9vFbeEsKneaa+8JGNDsNRUn2gLEv3JUUhh/hU0VFqAT0w6ypy7E2q3A+/6z26/4769PbZ\n82Zm5mkr8rxUVJuG4L/oOco1VSLqRKp7E5UnxfnvWUDtcFpSue89o+hruU1GkkziwU1l6Ua9PzIz\ns8SyfGcK+spQSeqSIW2d6frOjsbIeEe+vpaWr06SZMQr6o+bX1Nkf/khRYHzaSFZxpvyoeVryr6t\nvlecByGyl62o2rOZ1Jh78IKi0Pe/ouh5blHtO2qqnAMy9LF5VD7mlOWaFDhH2lEGuwdq42Qb7qKM\n2i0zr3abgAwaktHxBjgoeg7zkmUOOOM6KL8fG+ecQU35TH0/Zix06ctKQ1kXh2+hFFLZYi1FxDM5\nXR+NqYyL+XX9zkEVtMWvU67ougSIumEXBRJUQqpdECRcFyULXUThqganih8E3Iz5rovyWa0C4gJO\nmNFQPp0gkzCZML9Ao+ELK1s1N0YFbkFZtnhb35fgkOkTuHc4UOIgeZpkldr41DGcBZlV1N5AwdWZ\nZ0r7yGDAbRMim9+pOypD8Du1UBuKqX4dkDqpiIMGkA/FgxojtT21y2hV94mAAgkFXh9fSCCgctL9\ntpLVPB3LqgEmIICmM7XraKwxMx/mPDvAnDCZ2C7qfTsvCQ2xe0djc4qCjT/AmWdU9lpzjMWQbuRD\nGafb1QR/4+6ZDWKgKVHdacCTFJ5Xm/edBCfIlRRIvgKAhi5dsDVSBnMCOjM2A8EWRIUHJEQ8T3aL\n+XS2q797CbiqFtUmm2TcejFdn7iiDOe4p7q8UlPmNOBBIXGkNbcJp8BpFRUQxtDE4aHg7Hw0jBIY\nygpOBjGCil8Lzq+T6/KJWV7z04S9QLyn6/PzoNxYK0f47nltmUxvPKn7JfE1fxu1EvhQAkug7C6r\ngEGUzFoDuHFQdLlwWWiCDfYUySnqfXOoNDFPjhkriS5IGFQy8oxJ34L6ceRz5g6UalBca3VPXq3D\n9Vvb1mqrnSas39E+iE+vfl98VOVeA+XmB2UYWALJ1JcP714XwrXVA3nkc5CkIFYXVW5vl/Py8GlN\nIiqffxa1eVCt8xvKJM6qusdBXwjg2gP52lFHa1zzBc0zM3wghEpd2PH1osbtBcYE4CZrTVXm0g0N\ngsEBa/+U+RwUwYy1Zg41Il/kNT6e89hkgnLMmLVwxPwMkqTrwbdR6/EldP+VdZW7berLbFp96V1W\nX8zwtVlb80gX1Z9mR77uqDgNevKJ0rH6vIUCzZA1dgP0rf+aEOA2A9WWlu9mUDlK5zW2o8uogL6s\nDHH5OdXDC+KmONHz5kAvnFS0tzjdUfteetu6mZkFVvDNTdQIm6Bz95VxP3he81wEor1QH+XPRf3O\nB1o4SUbaQVqeoYSzGuY5oEaqD+ST8RXVNwhKIVRQeaf06+Erqo+9z+zouZvmg6/PO6PdUYb0gpz1\ngxCdduQvE1BisfH5/WQAsiMI2vLio9pn9eXaVqrLV5sg+sYoCjo8c9Ox1qrNN4tzZQo/j5/9qIHu\n8vVVJh/o2BCosASIvjBInFAKVdBT1mDWFZuqbhn2ICGQmScOMrwjHxwd6+/jOyhyfemLZmY2yer7\nR9hrpC6um5lZek5/j3ry0TJISQ88f50z0G8BIYEm7Hfz7NVCIClroMqOt+Q78+zj15/UvLr4OPVj\nvm6dyGd3b6mc1Yp8P1zRoh9ZkK+znFnlQO1weF373Ngc89pj6q/Uw6pHnzX9xte0ztXuqd+icf3/\nwlN6d0zCL3Ve85RQqxpoLoqhcjWNgSaGMGU809zY3tEetXqCMhJ8imO4wJbh75pNVc8IEqHdFCpN\nVfn+AhxntfhrSJnwbGC98cAufLvQtuOG+mRn6zk9G/TshDnet6L54+BlzeNn91XGeF97/iNUkTZR\ndRumNN5iKH/5G8zPaVT3gg7SHY4WUFMerz7zNc1/DxqaDzrw/kTfqro/9pZ3mZnZ4e/9gZmZDVBx\nC/dQdWrpvnOoaobzavPcRO82z/6bL5uZ2Vf/r/9b9QThfuFN6yrvstpjwjtyNI6SGKcmnn+Rvql9\nSd8zNk+P5TuFjJzO6/vmiDsXKeOaa6655pprrrnmmmuuueaaa6659gbYG4qUuYrSyvAJRXETAUXS\nHp0qSrwdUfT2qqHIgjrGGvrf1S397iitCF3hqqKVBwlFRxfQYB94FO19nIzsHa8i6Rea+hzldL/c\nTJnk04MdMzOLwd58Z0ORuoWOMqrNlqKXw6oido20opLpOUWFh5zRzTyh+w2D+l3x84qs1ZJkv2o3\nzMzsSz19XyQLtxBXZPKQs3jFgaKZs4U/rwITzSti1zpRRC9O5O64rczTFE6D2dbv2NnD4jgZ94SE\nyIDo6N+Cr2eVrANRwFFJrlEDhTNpq412ngfBEAfRcI0ycmb9FmX1jhSxHaLJvurVda3T13fG3xPQ\n/QtL8o1wQFHODgnVMSgHP9kXkihWP1N5fHAn+CMo3nh1ff0l/X/rhrLczXswd5MFi2XlO6kN9e3j\n71DmtXcmX9r6urJKxzfVfifP637j9tf0f3hNajWhnbJh3WdpXn3S4Szo/raiypX7ardMTO3T9WpM\nlO7r/9M2LOs9zonnyEwQWW8NURDKEoXmfOXgiAwzZ2hDsK/nH1emIcSZ1QfPKGNRPnTKqzPCF6+J\niXyhC5M6KiPhoBp62ObMcVFjdGFdfjWu6/tDkEqRI9XHT6Z+5ZoyQAuPKMrdPFS270FZ/++gonIe\nC01Ajpgi0PEN+Uo2sa7vU6RFUHGLGpwyDj8D57wHsLAPmihT1Z0z/mrDAeevxxGNw56pjjMY8FOw\nvvvacKlUQDlxZtUb0XODHt2nDdItOqe2nrWEbhii1lYdoCQ2URsm4AdxIvZpr+o3JbMXJONHk1sX\ndFdsDAphyvlo2nacbHJf+WZ7BoSkxfdBZTBDjjpQTfVyztaehfS7yoGyWOUzld/bRXWjonaaMRf4\n/fBfIDHhZPkzKc3rszcpk5zKy4dOUEIYk92fvfqpdu35Xx+nzM6LOypvR3NdYCxf8zFWIimy/ZwP\nD4b0+/tw6vS7ap+1h7QuLcKHFEhonk+EyeDCQROaV6Y65FemuzYEcXOmsd+C08Zv6o/cWsKC0fU/\nV7ZhVM8sLqgvmg31cXBEFhk05tEQRSuyMoMTjaf+sZ5RR/WuB7/QNKQ6GWVNLKB2ZKg3dZzxDVoU\nBTAEGSx3AocI2eadu0LAJcPOmorqB2Nse/sFlS+p31c07doQJZsQyLgAY+lCRN/3q1rL+qiHBKh3\ngnm0sqc2rdc1Rvdqap94WINgOSlE0Hmti0KQg1g8KcM7VEdRBtUOf1zt1rij+f90V/3lqE4Fhii+\nDfS7aUlzQHmkfkjDibOYFlIlsQEagvbau6GxVQUh1KjCf0H2PupB5akE6or2MjOL1qa2eEGolOi8\n2nsKinCGSlfvFY3Zsz35yfGunuPdlS+Gmc/nrsGr96T4pBIZtcu4pN8NAipHKAAnGkjV+GX5a/ix\npAVi+u0eiGNHIaT5itrOP1GdsjmNoxyKUZk19V2iqDoMQCrMUJU8ugNHTEW+HEsxLy7C+XcVfgay\n9hFH9QweuRYKg/Xamb0eCw3gQ8rrc7Wtum7XWDde0RpaKStzurCpeixtwMvRURtVi/KVbAE1tw21\nebGmsdgG5bb/otBK/gHzEmizGMjL+0cvmZnZDG6ULCommQtqxyl7hCZo2BJ9NWTenu+pPWLsMU5B\nhZ0eaeyXyhqDxWXV8+JTQnI3AI60ZprPUgWQmHnUqTLqtxPQzM0bmiOOD+Tby3n9349aVhAUd3Jd\n7Tpogrbqw6/Eugwg1GYgDsd9+dd0ps/8qnx/9YLm6Ze/KNSEmdnenVMLTUGboJ4yCYJSAZa3xJ7P\nswKvIO8Nk+j5c9gNQ22NPUQyBNJ6Tn0RqOn/1T2t8Q9AA03gr7wA7+U8fELFVXGuOPx5L72g+bR0\nXXVrP1AZw0G1oZd97MD0OaMcDgrUUvKVxSsgJYPyvZOy5oPUIWhQUGgWoY1img8WL6ybmVkCpFws\ngwobCJtxSM+ZDh0+Dgedpv1ePMt+3AMqt6uxUgPwF8/A28d7ShCFtjAIwX6V+RQESBj03XSIshuq\nfY2A2rfRdF4YNE/PoaKUZU/UPdbzZygrJijfKgiU3orWG59P3++GxA81AGEYimushf8M8uQ81jgG\nsRQEDZLnlAUImVYb9a0j7a2KG9pTfMfffNzMzM6e0xi+e0djq8z67gFlMmGMBHknDQZQ62N9jP0Z\nzrWDvbKtP3nN/qu/9d+YmaHzZfaLP/aTKlNb82wmrfdsz5zaJNnRPdvsRfzwWOY0jCwxpxMlo5ba\n+ORIvh6ibFGUxqYotfrZC1Q4tYDwrJ3BCdaZqW4bV/SAd//Yd5uZ2TsDGit/svVVMzP75x/7l7pP\nCSXBvNaHEUhuH6pzF6+KOypelrNPMxprI6gNMyhcOsjBEvvs2DycWAf0ORyJB6ytwx4KmknVyxvX\nfWNB7bG+kblIGddcc80111xzzTXXXHPNNddcc821N8DeUKRMe6Io6MMtccpszeA4iCrilIVl2Ten\nSP2E/9/uKMo7t6xIVK5MRiSjSNdVh904pwxIyvPXzcysuqVI37eFdf8RikQnur21DvR3MqGI2H0v\n2f9LivDF24roHS8qu7WKQsR+AC6bnqLCR2QPT8uKcibj+rswp8hfPqz7l0E3zFXRdT/Vfc5A+FzJ\nKeJ4Mw8Dt09R36J/XdfTjrU5lWMB7ogKbPNTMlHbZyPzfvE3VIdNsZRX1kGezMG30VGbxJv6O3IK\nAqOge5TiauOxklw2Rskk+a8VuX96RdHBC6h87HAe3B+GXZ6MbP0iXC/nNJ+DcPHgG/iAD6buYEgR\n9IUnlb2JhvXcoxNlELoVPTc+lW/0d5Sl+fr2M2Zm1qCNAqg3TX3qm5OBPgfXHSUDPSc/r/L4UTvq\nzjSEApwrH9OHztn6NMicGVmcYVM+kEnKt9IgXoZhOAbqur6FekcPtYxjFHjyYc5rw91Q6qNogHLD\nlSfEkO7wpezflnN39okyg9BZ9JIZAFnU3Nvh+bDKq3h26TEUIlARSJNBnqVRkKD84RAIIFASdVj7\ne6cag0PUpmZwDaRgtw9zxrjOGdcUmZhk7Pxnc6ctjY9xnOzTtuq6N9Wz+144YyYanx4AFlPabgYv\nRQYUUZzxGvRzTnuqDGWf7M/eyY6ZmXVBDS1dVV0uPKEsx40/1BnVTlVtHZg6LPMoC3g1r3mqipiP\nUD6YoULn41z4BmilVhDEy0jlGaA64WShBlGHMwHUAZH59YTqN2jpuY0boCbgGEj4URFBdalBJqN1\nhmoGSJmFoua7oBd+pQFZNN3WkiCAEuvKOHgTauAA2boZWaohHCq1itpl4od/A1WLONlEb1/XHzVU\n3o1ragcEA6xLVi3EWePzWpCMS4KzyQGPMybxZXg0EgjZFKOqdzinOccfgm8joOcPUagIxuE068Dz\nATv/uKF2CsMpMYJbJ5vV/By5yLlx+tEf99u0QEZwSsZzoDLF55VlsYkyZo0jtV39VGXJgPKJXAKV\nVCQb5IxX+GwcDhpfFD6OOPMHabFuDW4RzvKnqLPHg++BFvKeglBE1W3GOfB0Wr/zzum5qZyy1eF9\ntcE859DTAV0XM42ZLgiTCGiHFFxa99pkmlE4GMFFFQAFFmd98IAuS3lAQzR1XTTx+tabRlf1OkNd\nqAlPUgyOrSxIwDmU0yZpULELIFim6vPKPoiUW+q//SNHtQMEFKpTp0Otu3ZdY8XnU3mDM8056SO1\na6iPWh8ojVlc9w9wPj00H321DsnVOZsxNvaOd1Sv+3DSlFhXOO8eO1N5fWwFFxc1j6fX5R/RS0I/\nhLOoFIKiaJbJQIO0OQTZM4YXb7jHYLs7tSgcWzFSgDmyyevXxNswq+maERxRmTnNv5EF1Dd7qktl\nG46VPdCftzQ/+Poqi/+i+iS0JB/vd5n/4L46AKFWOoCzZUfzeSTy+nggGsy/sVNURfwas5GgfL3v\n13N6Hdrczx4C5E+0qzbvGGMSdFncr3oHovKB0QTFs1vaRw7C6oO0g4yEGGNxVfPUWI+3MIi9IV9k\nVlF4WVK7l/bkA0184QBumCA8VfOgiz2m77fhs0vNq3+W36p6BOBum8B/VSHTPBkwvwI8DIJwCgTg\nkCHTXGV9zNLf2YfYJy+hSgiH2sld7eVqZZCYXvlT/pLG4iyq51W8IKdOhRo4hYMnZa+hyOKjpPtq\nfqAAACAASURBVB3d0X57AFplaV0TPsJwFgVFkV8l0w1StA368DwGqN/GJdW1PHRU5BjPCflcDLRq\nu6ffTSLwFaEQ2D9Rm97vqK07KFQNSnCkjFlrQO/OQvqsoprni4KIr+n3I/qqyBo9l0YxERXRYVm+\n3YeoqQGHWRoOsIffrv3lm79LnGLVQ/3uQVUvBuUbQpCUYhq7efg7IiBdMhu6zzJIvgb72/t/ABKw\nrL3T4iaor7V1MzNbeghEDYjB0j09597Lmp897GUWltV3RRRyFyK6voZqYQiePLbP9qYnta4Wirq+\nVilTDo3dZ7+gUwvpEOsMY271MaEyaiCKyhXN473u6+MwS2X1PtbNgyhPq/17nMboTZmj4Pq5/Dbt\nsZ54/D8wM7NnnhN/ScTxTVRPvSDuR35OUbAetCcgOFFGC0dfCwGEEhmrHm7bTmnHzMxOTuGx+dSv\n67cF9n/c00BOWxqeNE5w9Pyqy1JBffbm9wnVc+858X7euaXTBPG8kC53dzW/pdu6z8YKexaUCv0o\nYA1nGkM9+I1uHavNT39Rv/8Hn/ucmZl99mP/wszMqnsa55FvU5tFUIUa8w4UAz12ClI64ewlrmh+\nC4Mya5X0nJZX9QrzXhBAfdMTlk+MOVXigztmEySPJ6d28cSYoA/l49/IXKSMa6655pprrrnmmmuu\nueaaa6655tobYG8oUuYsqsjX8T2UGRZRniijXhLjvGQZjoWxoq5LHWWxOvdhZ55XBMwPG/Oozfnu\ntiJT3Ynuk20oglU6QIXljCxcTtHF45LKUYvqTHDghAhbUlHWUk/38/kViR+R4Q1ylm6nqSzTaPEr\nquBXFaW+H5QCT6+o6HDVT6aooPp4N5BCKul+w2PV986yInE5MhqRoZ5/nNbzL8DP0Z7pvsc1ZeOC\nBbVfhHOZvq1vsy+TnUiOxGMz+rLK6nmzIs9RIuwXTZHw+rIYtVtVRXIzY7IgD+szdl1tVkupDy/X\nVNdtst35uvpo1lFU8MzP+eaurjuvTfvq0wpp8gmZUE9TfTUY6/l9lA4e+U/ea2ZmK5wJPXlREfy9\nQ/gjAnCVUIxUTlmpAOiI6Bl9DfKldE+fe6CsMjH9Pr+gvrvyuKKhYZ985XBb56dncK30J/ABcRa4\nVgG9EVGGO7ok350nQ7nB2eGDuCL204DqEejq+sRFtWOtBoKor35de0T99Mh3iTto75bOmW/dFVdM\nz0emJqPrIiiFtckg+EFCLdG+llFUvN3gHDdndEstuHrI1iUKyiY1Ydl/8IzGVKtEO5iTIdeYm4CC\neO63/7WZmXlJp4VRDwgH5UcOF9B5bOpTZ/pqcC4R0bapw/WiunjImAU89Eke5QL4iKL4mBelrH5B\n88vYp8zAFJ9oDZg3UqiB5IUmCsOndHBdY2zOS11Guo8fRYQ8nz3O+HscNncPfZrU/z2cU47CVeNB\nwSAXUH1ioBPG8EvUm/rsw/dxcB91o4Yi/f2eYvAFzn87fWweUAYoIJRe1NhdAXW29Og11ZcM984W\n3Dc1sjA5lGjITPpRwwoNUIjIo7gACqQAQmkcUPlmI7W3g+hpDnX/HkiixfW/amZmI49+XzmQz/a9\nr081pbius9DLad03GoTLBi6iIOfh64yNcVzlbe2D4gDxNCUTPCW16iW76QcdByWNRYvq//Q6XAtN\nzTE51GjKL5Nprqu/xtOO+SFMmHQ193eqqLYdav4ZwgcU6Klsyxsa93nU1xbX5YtDMqUV0JhxVOt8\nKM9MyE6nllS2dAaUFepooY583ANXWMirulU6mnezTwrl0IPLJnoTZcKgnjPnAymDT8QW1vX9kj7N\nozYojTRWJycooOQoX03zo5+s2xR+igEorVYJxElPz/UOQEXAgTDoq/z9+de33qRQWite1Nn9owXO\ng3P2vgKSpncmFQ4fSM18FP6giLJsBRCXvb76JRt1OB5kmXl8Zh44QQrUVhsusrtqj1YdZNSexgbU\nYJYjm5ddV/nC2dcUHaazifXO1P8zc9AAmn8Dm6DeQK/NzvB5EJp9EKUlUGqjF0CV+EEeUb4hShxt\nELUT4IcJzt9HVuVX2YtzFuDsfTzB/IwaXW1HGdIzeJAcPEP5RNnv4T1QPCBJQsznTvZ/A86UcU+o\nnkBcbVgta/46BX3pmeLbKHzlExojwTUQfyjQnNf8bdWjjtJLFwWVOfYQa9e0hkfVBDZN6P6BNG0+\np31cAJRUBQ7FGnumedb8OJwLkwl8HbfYi1Q0NlIXWMuLKOew/207z4uoXedRFAsuslfpaG4po07V\ngU+jdUfPD/g0Zgvzat/8JqhXVLAmc/p/cRXVOocX5CX4L0DH+jpC6Tr8V8mk+m2wAq8JS3yIuWfI\n+jZiHZ6x7vrYQ/UOdN8JYzqXXTczs9i79Bk8Vjsd3VF/TI619wkck3v+ATOvJSwWBQ0ekn8EFlFb\niqg/W6b1ZTmt+07g4xiPHJaNb21h0FMNv3y5zbtF3qc+mIvLOYIXxLcRy6tvZ6yxaZB3VcbI7h/q\nHeYYNaT1h7WWXXmPOP887JfKjKU0qKQAKLDdAO9SKHZ1y6rLwbajgql5yAcip8QeaIqCZNPkC/Oo\nNIXZRwZOQdbsqn4NuKlSqNGNNuUjQZCLDVBt3VMUC7flc/WbQr5MEvAJdTWm1+DECq0J0WO39bzt\ngXx4wHqYZE0NgtDxhpmH2HdPQLp3fCCX7uOj8NTlF/ScCRwx914WAuX4jsoVTGoOW32rEELrj6rd\nI6ua3/ef1Tw9G6pc57XTuvpl9EBj8Aw+lghjNsqJhJ266v37/+K3zMzsaz8htdjmb2l+Tg451QEX\nZoe9UmcA4gYuynFYY6wDHiMVfI2Xb3EpbzvPP2c/9f4fMzOzYUxtdemi5svEivaBM9qonVddo6Bv\nYwVQtEeqy7178q1uSEpdzhr9H/3XP2pmZu/5DvGU/danftXMzG7euUGZme/ZS5yxF/H55VPpSyD5\nmmr7gy/gSz31WXBTbbeyrr5K5dnnwT86S8JBCYeVofIWRoX53nOaPxx11DR8SuE06DU4afptNnrs\nbx1VVC9KXXfg5SuiTBjwqR6Bzjf3ERcp45prrrnmmmuuueaaa6655pprrrn2BtgbipQZEtG+T3au\n30OlxFHACRCZh6ciuqDfb3NWdrWpSFq8t6P7wcpfI3ufPFIUcYtznCtR/d1LKBIeHIiroEIkzr+s\nTMN6HdWkkH738pay/pfnyJS3yPKhFLFQUySsdqAI2LSpyOFu456ZmWUqes79u0KNLD9FtvMRZVQW\nU99hZmaDddXvtKffv/Nrz5qZ2SgqpZqtE6EfgrDpj5qKhp4S6StcVDS4VoT53PtOtdPjHvvPm4qk\ntms63/fcE6CKzoQkib4iVzgrSeN9f0OIixz8O2MfGT8yrvV36fOhoeq6H1VUcC2gvil2Oaetpns1\nwzjlWN15bTQhm4ynJpJoxRM1bXH286CqSHX6ps4tRtLKDPYbaqPxEFWpGoz7fvVd8ZIi0zPUkgY9\n1bO4rMj5hcvKRG+/ILTTDsoKE856xmGfz69wRpjzmAecf7aI/r+0ob6e8dzKriL1NdSOGtDObzyk\naHSwqN+tPK4M7OWH9Dl/WRmSZ//gj83MbP8FXb99T9Hpye9w7j6g8o2TRIn5jKOc46U/J37UVlAa\nS5LJDqblY+VjUCMt+YGnT9YMFv+wV/UaNskaNnW/MCiCwgpZzbcrs94cakwdflljslaRg0xDiloP\nEJlKpc/PFxLkfLQ52SGy+oWwc0i8yP81TqZjlb07IgNG9r2B+NC4pzq078tnfUWUXBL4XlxZhyQs\n7cEwHAID1a3r1f1X1+BCGTG/oPLgK6CKVlHbjkMqV61FBqKhvuy0lKXpomTVH6pNYhN8GYb+SZSs\nEMCXuFfzX4++SgbhuyCblEqp3o0R80SQDAScNPuck957UT5afJvmt+Cirt/jrO7agubJCopAB/so\nxcDHFAmThZupvglQYEsoGoQ4Bz7ZVXvX67rPoKN5mqO7FseHHuzgOxX5eBQ1p/OaB16niqm/6hXN\nDV2yUWEmmUgILh04ItZX11X/kcoxiaCksco5cDLIjShKNJyjz0dVvynZuchUz22D9Gn0lUlO0x+Z\nlYtmcHzFUBjMeXRGfp5MXuNY9ziEz2iCT4xqZFob+rtXUZv6mkI8BMi+N+mbDmWdPtC4btxT34/7\nZIn25bOdiuaxGBwnZTJtmzn5tg/UmAdeIl9IfdLi3Hkb9aAxHFOHA1AQpnLk4KIK5YQYXE7qs1bV\nnmAlp/kuCcrK74ejbE1n+qdT9VkVJZUQShA1+C0Mpa7zmmeo9eb0VO3WOQWh1EDpBXWPYVGDLX0G\nivdFZeWPQVHV6ac286evqfvmknCMhbXuFDZBGiVAsoD49M6jPPEQexky6T04XTy0e3lP83/wNPBq\nHbyBoG08Kp6+Gfc7OlE/nB4oMzvc1hxTPdR9mvDjpUFS+db0mbukfcPqBa2D8wH553TA3uxE5Wxs\nqb+HcFP4NzU3pVZiNglqfmuiclS9r749e575cldt3EN9I/ew2mbxMaFPswUUUJqU7QTE3FD3m3a1\nB/CDVNnclA9FVuSjwZhDRqXrmkcoCbJOxDuOxMz5zNOCU2amNu+MtE7cuyvf3lzSWrf0xLoeCy9S\nz6++WL6sMd2vkum9DQriOkgVEH3mKKkkVG8viEdnrNuA9lgCHZBQO82BDO179bsjVEKLx6gYHcFH\n5CC9UReqoZbX9ag+cxeF6lhIs7bDMdPpaO6Ie9jrMTZHMaE6Wlvqj+59PT/icAnB95GGSyIY0PM8\n8JwERvL10q58McBcMkmAtIETp8lCV0M1KgufVKKouaSxAxLopsozPHhN7WS0s2NR3i+mm2qvwjJI\nJPpnCIdEB+4zvw9OCHi4zmPhOXh/ohoHx7c1n/T2KduCnhFF9SjBWjFK6llx+HpqEcrWhLPQq76I\ngXINZdX2npDmlVX2PAF4LQMg+XqM82lQfdNgj+NFnXOAap1NVe4QHCojlB+jvCqevaT99WlPvjPq\nqT4OssN3OUz9QTehmFM+0nO9ffmiL6O9QwcESDSveSUMB1g4qvtXK/LFdBBfAGW8sSr0xgxEXvRN\n2lsEQIY6XJGNY/japmq3ZEblHKGUtneq74N5R92U+mbVfsVH2eMhARQuqp2nKH5mUQy+BC+RTV6b\nh89jY/ipBiBGA6DDxkD5h3G1ywYqfm24wNpltUsgpufPX1J7dVn/t+7o3dPLehZx1F8f0tw6BoVS\nYV9vZpZdjtrElqyYgocorjl+NSZ0ZTsgnxnzrhT3ybdHrG3JAHxoi+r7ExTF9p6WetwI/rUr73nK\nzMxKe/Dw/BMUgMf4aka+OGI+mENls9FS20aSaqvQRfVJYUl8osega8PwH2Un8Jx1Vb4G+7JJQ22a\n491n7IMDdqz92I0/1kmXfEZtdeWyPtMNfU4WQFLHQLr35Esp1n4fCOuIH2TjLohBDyhk3zfnuXOR\nMq655pprrrnmmmuuueaaa6655pprb4CdCylz7949+5Ef+RH7oR/6IfvABz5gx8fH9qEPfcgmk4nl\n83n76Ec/asFg0H77t3/bPvOZz5jX67Xv+77vs+/93u/9pvc9aiiKOkwpilyZKdJ0oUV0lIj97qoi\nW4EdIuIRMg9FZfH6kBmfLhClva4vTuHLOO0rsnUAn8iVZUU/vUX4NIgqr8cUITxJc27yZf0+vKGI\n3P4D3ff+LRiuUV3qxzmPmVGkfmVVEUDfRPwsRsTPG9b1Zc7ZB7aVITmC0+HxMsiZsM7WzRaFjpgk\nhZC5zLnwXTIVBx3O/h4rI9Cbcv5yR1HbyEXVe9RNWXdeUb3QnL7b3BMPTTRP9gREx1FHkedAQG3f\nOkIR4YKy9r0Hyi60364sTwU+jCUynocoJgz96lNPUxnNDXgb7uwrmnleC2cVVYxOVH5/TFHaLucd\nEzk07U8V9dx5XucLUxllycJkTqemch13UZnKqa3mHlJWKwQD91Gfs/ikd1bfpKxVAnb2tgflhCNF\nP29/XUOoMVEf+snGR/GJ4AW10zocDCHS/w9C6uOTlzjDS2a78aLOiiZR5BmTZTuFX+PBH4q5vMFZ\n3KFH/z95Rf11XFb5Lz8sX7ryhDKcg00y6vRDiPaaoCgWg6xgjnPqyXn5QbejMXK0rXYLZciSraKU\n8Liykq1d1TsE2sAPeiuE+koStanVos5Qp8Lyo+tE0T1ktttkM33hbx5N/rM26qmtvCBCyn34EI5V\n10FLde1MUTuakT3n/PSY8Rky/Q1VjAXTmg/yqJrVQaz4UBILFLie+SUY0/2zObhUHM4Srpv5FEFP\n0NalhNrQB0dAB+TKeAQXDtw3uSRZInzKA+IiPNRzenDLePj9OCSfz6+o7RMo4QTJJM/Gmrd6d/WZ\nRTEmCB9EAQRg6UAopmRbWZZEClRUV7/rR0FXgXJKkwldj6IEMZZP9Pvwa/Tkm3tk7Q3UgZ+zxgmD\nMAP1qSA+1PCovsEC3Dqw8jcHry+ncHgIFxlIGw9ZxbRXHd4hYxyCD2V7X+U9gw8gOFC9piAu45wt\nDkZRbGPseceqXxOUSpD6Bsjohr0gQvGLRhjUQrtikxCZM/gzQqi7HZK9CqNw0CSzGaiQLY/Ax3ZX\nqINBhHuTJa7cEQfKKILqzhWN2z48Rs6Z/CHj3BNQmyyjXhFa0hocRV1njj6vdFTOZER176IGtMRZ\n/cREPpjddFToNB/6fSAuxyiPoYSw/aIyfN1DZZWGQ7Xt5L7qMfTpOfFb6oORj3l2Cu8T6lAexpKj\n3HBea5D5nYGi2jkQqiLB/bNLet76JY2J2LLW5I6ffoPrLAwPxczkIzXOl/fIsE63hXDZqytLOIrq\nuaE6/QOyyQ9XQCaKegk+64WjbRjTGJv9mWqWdqp2sCME7Lij//tALqbgvUrMwQMQ0LodLWi+j82p\nXyPLKNvMUY4MqA04IWolUCd35dvHDpcaSCZvA/6l+30bvqrwpXGXm4HCycNJEtVnBiW/1EVdm0gz\n34BI6TN/1EEftY/0zFpNbZ5qo5ZRB7V1Kh8Zs8vt4xsDeOOGHfloeu71wXcdFOikr+sXV7RH8MGv\n5/GBcuiAdltE6cyneozqKv8wBNrAB8oV3zguyScKICH9TfVhzlH8gsNlBF9bKgsPySX6alF9uX9b\n+812Ve2+g1LbuKPnZsbwMPmZb9dZq8fyxXhU3w9BtsxA/E1Rk+qdwFVGu0/aoDbgthn4mP9RtvQg\n5ZO/oPbw55i/4VwbgFJodDRvOnxHiXn5ZGoVHqVNPa/MWLt1Q+iN9Ey+F2nC1zRQfc4caTkz6we9\nNmWs+VB49K2pPy/G1Y8ncyCgKqCqK8wlKNacxzKMmxnz36CiZ8xmavseSn0Gl1MdPqQACovdHkhz\nuB7XnhRaPgh1VHBV884rzCND3k0GZ2qTJHwYM7gCo2GUateYt0K6/6QFOqqrseSJqrwb14REcRQW\nW1WN872v611kWmWeA3my/JjKd+Xt4vHweVWvKsjyKmi2cFz78gsPr6t679TYr7LuVB5o3q+cgWaG\n76mxi9LNVL7R7sunV67J1+c3UCCDM2ePMX62r/vMgyia5EEro7TZOwBNtq0xmQQNnX+39jJveeJd\nqi/dtXtD72y7d/WeMR3IN5c2eG8KvT5+qvlV+VyMd9qKo9BTQhHTp3fcaB6eKYSP0mPWE9RKz7qs\nN0fa4zz+hN43BnOaQx88rfeGXU59xDc1Jv2B15A9hweH5gmFLYlqUHGKkqoHPsquxm8YH613dW2Q\nffcI5Jo/p7bdzKsMtajeTzu76uOn/77UnH5vDB8c6pcJuAsTHfVVP6s+50CI5VFebAw5KQIV6wSl\nRg88Ta0GCMoJYwCysgEqarkY72wgL0MxPWcDNcAnv0snTLKFdTMz++Nf1+mR3T2tqemgvnd8KBzV\n2HX27Z04aNqB2nFlXWNlxB5gNGKf+w3sW+5qu92u/fRP/7S9/e1vf/W7j3/84/YDP/AD9uu//uu2\ntrZmv/mbv2ndbtd+5Vd+xT796U/bZz/7WfvMZz5j9frrewF3zTXXXHPNNddcc80111xzzTXXXPv/\ni31LpEwwGLRPfvKT9slPfvLV75599ln7yEc+YmZm733ve+1Tn/qUbWxs2KOPPmqJhKL7TzzxhL3w\nwgv2vve97xvee+3bQZbkFQHPxxXdTBGhPwwIKRKJKSSWX1KY8CCi0FnxVCiAipLvthBBT3xR0cFs\nV1HIq6eKkL0CJ0zgQJGrklfP9wcUAayjAtW5yNmwtyo6aWWyU3mVJ5dSxKx3j2gz2b92V1Hall9n\n3N6xAudLH96RyRNmZrYXl7JRcktR1ZfKihh+Yayo6FJKUdqhD3RCUVHrObgfipxh668oQtfsFmm/\n58zM7DhKZmoLFatRytoHilYeZpRNyME5Es8ouplAG94zQilkV+fnljYUub5+ojZNv0PPTkZVtyBt\nOImr7Qo1RQE7SbVVhmx4P042goj2eS3iRJ5Dur5PVj+R4vz4NUXmOyUFAG/+vpAmdaKyKTLMi2jF\nzz+uyHf2KflGNqpI94OvK/J9UOO8+x1FT7uEWS8+pMxy/rKcLZ1Vn9fJRNbO1PfRGdFiOFmmPTgH\nTuCAmIDyQh2E5rMgSjVTzlmPJkSJG/KJ/S+qXAOi0cVVznNvqp2TtPPBjhA8By+rv5d6qt/CZfnI\nqCpf34NBvUcGo41CQvtpZQI236G/l69e4rkaQ924Pi9++yNmZrYOIudoovLduQtPCrwoVle2snyk\nDH5iTRWeQ33F4X2ZZdS+Ifo3kECV5Bzm98v32j1UlLrqs2nIUUlSZq4YRDEAtJB3nvEU1bP8IZUh\n5oPZnzYqt5Rd6N1QNqpeViYzfkFltRRnSH36vXMmdxzlHDgqS17OYXfn1IZBVOUmICdCyPZsXNYY\nDAc5u+rV9ZWG2nY0JlPaUv3GZJNaLc0jwzEZhbHG6GqTjChqbVEyyTPQGAFHfQSG/kWyX7XDHTMz\nO9qVD77pr79b5QKR2KmAJFyFywBVJ0dBqDsBUdgmu1XG5waoH01UnjTn7jOM6RFKNzO5jFXuyKdX\n3vo2tdOafjeGy+HcxnnvLuf2R6g91dvKrARRsTriHPbUq/rUjzVGEqBWBmH8ylHjiMs/QowN71jt\nM3YQSJwttr6eXwY5M+Y+BhrOgnvWR00iCPRhhHKMVeBi8cCldaw6xPqsAajihDPqq3hKPhwLqw9G\nqE8MCyDYkvg2SjU5dIF2mf+6LfXJyam+7z2Pol9OddgF3TVp6+/qgZ6bIpV33ENpAATHoATHSldt\nEvaqD7Oc/zb4gQKU12KUt4bv+EDoRbQ2tsgYNqZqF28PRQZAcKEpKLC0o+lzPkvGNT85XFhJuA+M\nPUKQdhrBAVAG1eDl7H8I1G18BU4F5oSEB04F1FDiS7qfbWiszeU0N/ThWGjCi9F4RfN4/ZZ87Ljr\n8J+A6kMhJ47aiZnZdOyxOCop+VX5cCKo3w1Al7Wqur93qPatwclzONT9+2cafOEi625A7Z9yFN/K\nKr8XSoJWRf/PsLyHyMwnH1qx/AZ8OSBBbKi9R/857fdOQEZ42irTzm3UgA417ifwRMzYrqZGqOml\n1WZzoJL6oGkTYfoKFQ+LgIRGtcN/UehdZ80Lnh8AYWZmJXguLKw+mMuqra+8GX4LEIr3vixUgU3V\nFlH4IF7+utbYKBwo3r7KtVJQuTpHatRX7sP3B0fBEr65CKKo4lE9y6hMpR3EDOtGPQlP257K2W+w\nrpXU3rukoEOg5RIR+WoQ9HEPXrc4Cm2JvMrZQX3v9FA+2ajD+QCidGNde6RiVnuD47tCspSr+n0w\nrfss57VuzOB6iMVUruo93acCKiu7rvYbgK6Lz+m6C7Tzjef+xMzMmkfy3dp95pgaCBtQYGZmqxfn\nrQJiyecDTYiyZTIF4sovfz0ry//aO9rDTOfOj4JooADrm2oenCX1zDx1DSTUlx24QTp7GuelO8zf\nINXmQPHMg2KKP6wB5jG1ySv/RlxWuzf0TjEqaS2LwEWTyGvvk9tUnaIFvWutZtVHfVPd9o/gUoFz\nzEIoSyZAgINgHnIaoNmBfw2FSPOhLIbyZQgOFi/orpWSxrwHdSk/yMw4aGQPanVTkEWzV+BdA+2W\nQb2u0gGFZRojsx35the+uzCKkdlH9NwEwJMIpxGCGdU/Dhr2mDfgSkXPa3pVz8UQeyRQFcbcVD/U\n3HT4jPaCfZDvXo/6dw7FxfOahz3aDFXSSQfVKxBSybrm9WAUdCBI1IEHDji2Ds57xSCh/v7Ov/2f\nqR5wPn7qf/37Zma2eyL/mpj8MDQbvlqW8DBmgaHH/El9V+qyJsMT1gno3l6/5okka8YgDao/Bq/Y\nQG3k4aRLAE6+CM9s7dB3KNR636J9d9TZK4CUTlZAPLL2TNmPx0GLORy0vqB8fQ6+oeii3pdDnP4o\nn6HuyTvqAP600hnIn6TKcfl7pAb1rofE8eq0zO2Pf9bMzK4/p/k8cgElXNSaZnCmdan/2Kt9vAck\nfi9GxUDWTF+juPp3mmc2m51rpvnEJz5hmUzGPvCBD9jb3/52e/rpp83MbG9vzz70oQ/ZD/7gD9r1\n69ftJ37iJ8zM7Jd/+ZdtYWHBvv/7v/8b3vOkfGrzkD665pprrrnmmmuuueaaa6655pprrv37Zh/8\ne//UfuF//pv/zv/9pdWXvlFM5zyxnn/8v/8T+8iHf9I+9smfNTOzQRduBoKv0aCik7WKorP9MOgO\nlAbqOUXG102ZECNC5V9W5CrggeuA66pVRRMbdxWVbKGu1EgQSRsrmrx0onJki8qCdeOKvPUeUp3y\nu0RdLyjqGyKrdZolYlhFb31P5dyA2+XsvsoXgIMgCh9LB86GLY+i3msoBDU2dcZtEX6XE7JQy37V\nt+9TZqHVEWqhu0dWLqZz+aegVuy4ZBfGikb2UorMZpIK13WDqpsvqAh7eF7R0NIlRf0WT+Vf5QAA\nIABJREFUZ2Q+jxQBrvfgyxnr+tSeop/1ebgN9ESbEiX1NdUHySXa+jkF4T7y4f/SzmM//ZG/a2Zm\ntaayLKMAqj6ret6173yvmZmFIorMf/3//IJ+v63MQ9RLX6F+lH5EkfIQXDonN5Qp3n9BGeIIzPwD\nIzue1HWpNfVtl/PPiTBopJgQRaG2fl/aQ4nnjPPsIGdIoFoXFvhIQFHTlE+RcD/8IheeEvJlGjT7\noXd/v/0vP/Pjuq7JfVFbKWyum5nZQk791eB8eHVbPnu8rYi4B0bw9SvKFk0i+l35vvrRm0C1xFBX\nOUR5Ia8Uw0PvEborwHV1FDQii+r3yAx1ARTUSjeFApi1qGda9RvA19GHwyaN4pAvi9oMikalBsoQ\nHKz8uZ/5KftW9nM/qyzAwEvaIKy6pMnG+ELygYjDd4Aam7emzxbnk3sN+IpAEw1hps+CLhiRlth5\noPGVnEep691SKvODNDl9GjUR+IwiPcYhWet4GIWcAYz79OmA88EJ+I9GUZXHCzeLP6z/j30aA9k0\nB53DasMZbRmED2k00vzQ3VPbNzrK/A1RlYiPNBbSfhAk2/KFSEpzxYOvSWXpdkTz0n/6c/+DmZnt\n7YoHqLRF5gEUVXNHz8ujupRMyjfCWT0nwTl7z0ztMO0xR5CpDpIt66BetfW1L5uZWQvFsO/6L/5j\nMzP7yh9/1T7+337U/kcSAL/0s1o/vpV94jeU8TCf2q2DakB/TEbHybyQSY1swJ8Fj4t1gGHENfcF\nyeSGgrq+hyKb30HBpckYx7WutOCyabZU4RBZ1DDIxmnWZ1OyLp4ufQ8iI2QoVVXUtt0hmbw2KIKG\nfCLBuWuvX/PPBO6Z06l8ObCo+aB4TWvGAfPKUlbjef8rmmfzbA16h2R7AqC6OD89SztKVBoD+9fF\nHZBjbfPAKbOAYosXThRHuSHohbctAO9SWPXbrchHs0mUGFAuC4ZAm61orUwtrJuZWQeUwZTz4tM6\nigsjrTfWV/0+9KEfs/PYx37pY7qs78yHKs8UhKJvor6fog7iRXXKs6jyZcdwj+Fb5Zc1ppplkJtw\npEUe1bw995DaIZaXj/ng1RvvyUcqL8rHKtsaWxMUcxIXVb4CaL9QQdd/8O/8HfuH/+rTFk3qd42O\nxn51V/3TZl0sHaldR/CVJKe6T3IVjhl4UFKXNRckM5y/BynTA2XRQdGnt4fCGIjY0CqZ8ocXLYCK\n5tmhsvkNB/VzU2vU2S2tWRlU6eZRX4pd09o7Dw9GEJTvBM5Bh2eoU4YfrauypUDQhFEyGzMfNgcO\nbxnz/0i+OmPe/qmf+J/sPPahv/3fq44hXdemzmnQtNdQjbr+RaF2AVdZgL3Lgy99yczMkgnVc/Mx\n8fsFQD2VnlU7Pf8FIZ8TBfXFFTgXQqiYdOhj31A+EoUnbxbUpxeuhRZKj/Uy6iTMIUfwNmVoJw++\nOQvIt8IL7DXeLOR3vqg9RG1P61vnZd2vj0804dmLOco9oJzbR6iSAoIrrqjekTVQY/BcdfD9FupH\no6rKvXBRz61PQIij8rKIatLJdfEdTnfUnzt3tAcZgihdeUw8Jr/4D/+effRXP2HhFdQPy/pdve3M\nGfp9wi9fr+zLT6v34NRAjebjn37t1MA3sp/96Q+r7l44CFEoXJ4X90phUWviBN6aBy9pfB6VQdGj\n/llA1XMaBzmzonl6AOqy9ECoqz7qTF14juYcpSiQHG1UiIJxjfv5DZQb/errYU/lm1TlrO0WakxR\nlWPhSaG4ckn1bekV7ZtrO/K9+kDrzRxr/NwFrXkjuGU6+GD1RH3Uqna5vcp5+alvo9x6XuXWjpmZ\nnbR1/zD7Qwcl3ENxt9aSD/rn9dyFJEjHTflYC2DheAs0XkrzbeGC2nFYle/u39ZYaByrz1MXmZ+L\n8sky72pn99VPZ6+ovh6QKZsXhCgv4lsf+ls/auexf/BLv2BmZm32eoERiMYqYyumeo1BNs5SqGix\nDvQD7NmONIagZbKn3q/3us6O/n76d6QoFF2Rb6fYo01B4n70F/43+7s/+Y+tvtC0aF0+0Uup7wJD\n1N1ACp/ckxKtldi/wqu2vK4+bDt8ojWV1ZcCsXjMfnVV97u4CbcrREm7N7SvbsGD1wbJvZjSc2u8\nXPriaotCT/uzzljz1PgQ9c9XlbbUlpFljaHjDrxETZWjyfgvOGgtkO0Hd1F/g1sxOydfKgU0hrIb\nDgcZSDxU64y+mNK2vQkIPTjPoqjITWxqoW8i0vUXUl+KRqPWR8rr9PTUCoWCFQoFK3MMx8zs7OzM\nCoXCX+T2rrnmmmuuueaaa6655pprrrnmmmv/3ttfCCnzjne8wz7/+c/bd3/3d9vv//7v27vf/W57\n7LHH7MMf/rA1m03z+Xz2wgsvvHqU6RvZNElmkbOwniKsyx5F4AZE6OZWQQH4FLX0JBRVXCJ75usr\nsj4MOMzmiupGvcrEXI/rurgXRYHLnHfnXHqgIa6E2IaySKGInntiykxEYdW/tKNyjVYUoet1df/d\nmCJ1jw4Ukds/E9rBl1HM694dlGmioFPqur6cRL0liUJPRxmWmU9ZvtkRQS5QFQugEirz+r4wcqLh\niqpOrxCRu61unZso4jdb9dn4JUUJ+4twD8wU1WtNlQUPzykb1UVpJNfTvcuo7HhzKFfdV9m7QBnO\nyO7Uw7ouAyP+1OEwOFZbppr0XeQ1JvzzWBfm/EHXYbhWG94uKVLfrKnt8yG4A4jmZlcUKW4RDa3C\nOl6qkfUgo1s+BSHkz1JP1SsCl0wYzhkv3DGlPbXpGe2XWZUPZ2D+7kNq0CT74g3qPumifCNh+rvV\nUnawOUHZhTP4iUviTEiSrfKgwjHtKmNQHauvg8c4r0++nHDOtCb1nNSSsvRb+8qklO7LtxOrum8M\npNDGOx83M7NoQNHg238klNeopKjxzS+Jaye/rjHa4Gzt/h/odw4fyXJMWUID5RGAK2bhCvAuL+pe\nWzon7yBucvj21OEjqcEL1SZTcw6btFVWP+eJp/BazRqKWA+ds+Pw81Rq8CaQrenBxzGoq4wxEBtR\nkDZJkA5JeHwCdWUEH8DzsUnkPhzWmDlCTaMQU9akzTnoMc/xg3qIkELtqwks3ISB3xy0EOeiQeBl\nU2ojB7X0qpIDZ3wnXc0bZdjsHYIN/5B5AT6JGYjCaBwuhvaUT5VnYVl9l5tTn5dvy3e8HfWZ5XX9\naJtsEfImqawqMqzrfnfOlH0aP9jR76byjWI4x/0dpI7qMYHToAhnTWtZ2aczMjPdQ42BBfolknx9\nOYUhKiRd0BtJ+E+SeT3PUSIYtkAwkhnxBEAx+OHx8KhffWSWPbMS9dacNEZxxzmL3SIb1eOMcZjM\nvSemudVR5pm1JubPqi2CcBBkOKsfmJAxC+MzZJ18Pny9oLrkF1SmTl+/HyY1noKgKFsN3S9V47w2\nKmfDKihOOA8M1SL/RL9fhIenHYQn6KL6MAhHwGTCc4JwjE1VztaZfGYMktDnSdMGekx0XutOck1j\nZ6Bp2rpkliNk+ytjRwkFFGgHLpepbjSDwsqfAIEIt8FkRHr+nDaAn8NRbOsfqxyzCfxJtEM2SwYZ\nri5fCq6fMuvskHUFn/ZwHj8M2s0H504HrrF6Xb+rw7MUOtDvEBqzKBnYhbTaK76i+vkicA85mxkz\nqx5W7GCbcpc0JwRA8GQSmo833iz/GY/V745S3BQuCU9SvtvsqVztjnzcULXywTcwRU3x7D6oL/YD\nMVBjk0HLZin13bjFuKPz41eFwFhf1GeatTZYgPsLLpFhUvNUrSqERmVf42y6pbbrQPHSPVQZ4igz\njhg7E6/jbLQpCpTJgPosEj+/0p+ZWf4KRHAoCsYMpDSKVDuvaH2YgVrwlEElxTQGYlGtJ03U3OrH\nqkACpMgMpN7qJbXLlP3uaV17mYV17W3Wr6octYba/PABqiMnWmMzafYOKP20dlW+MXuNdFa+m72o\n+wTgRqsxTw6DKKQdaax56mrPLupX9Zp8awEkZKOm9t07Ft/G4qNCeseuoKrlVT3G8GW0mcvqcKV5\nPPLFpUtCtnQbIEs3dP0ZSl+nd1Bm29Lvm4zVuZjqc+ktQgG2e6js/Zk9Z280srmI6tGL8t4Bb9YA\nrrjxEA6ggtaZzKbaoeUf23lt6Ky9bXgnQKLs3ha/Tn1La+oEnqBEQmVZXVTZp375TB/EoVHHm1/F\nt+ClyC0IbZADcZdIqMzLKCWeHGtePj7VvHm8B7q1o+/TjtoaSDtnbaxzqmAED9HaVGuxF46ZeEZj\np70LFwsImE5be6wp9c+BMB/Rpt1D+eghyo75Dfl6g3k2NA/fG++AHvaHY94nCpfUx5mCxsCtG0Lt\nHqEKdXcgJMvJqdBnfnjiWrsg+3MqbywgZdwEe4m5HPtPk9Xuqh61M12fhK9k7oLm34efFIK8z7Tb\nA3EzbL4+nrtduD6HrB9heOoGnDTpoyKVmGnO6zfgDgN8UijiX/AUTo71+9/9Z5qXa31dt3pVc9V3\n/NW/ZmZmt76kPdUrhwevlqXeObLMIGejqK5NgOQepzRfHr+g34ZR2k09rLIcbOkdo5re5v+sKSg0\nRthzVOFuWYNoLjyneSkGJ0yTuoSBkZSua75ve7VmTXhnSaLG1+zqubd5x0t49LtGTz7Qaqk316Pr\nZmbmhycoVuTdaqh6jIK6b6UFihc110YUpKBPv18tygfOeryPg9jswVGZADVb3pOPB2L6fR6+I38b\nFLOj/voN7FsGZW7cuGE///M/b4eHh+b3++3zn/+8fexjH7Mf//Eft8997nO2uLho3/M932OBQMA+\n+MEP2g//8A+bx+OxH/3RH32V9Nc111xzzTXXXHPNNddcc80111xzzbU/b98yKHPt2jX77Gc/+299\n/2u/9mv/1nfvf//77f3vf/+5Hx71KZob7StKWgYNEUdt6YSorweW5jCKCkHnLO0dRep2UW7gaJpV\nU9Jkv8K5y9GBInJxzvDvkSlpjISoSTcUXQw14X7xKxrqjSoS153BkF0jeulTZC57HYbzBSFXnk7q\nPOhaGuWBpiJx4YCioeO+opV9h6uipN/15snM+hXpGy3Bxo9qU6mm54Xv7ZiZ2X4TFAjU4f01oV28\nW0Lo9MKKdBY5X1nrlc07r6hfFe35MYoGkyRKJlvKbgw7Ohe4f0VIiMHTuuclsvl3JpyjaylyHZ0q\n6nc1r8+Xq0JoDKYwcPsUTSw3iMzvQa5yTotyJr6BwlWGc4KFoHwjFVRk/ei++sAHT0WELJEXboIA\n2RnPWBm/+ikM4o46h4+ML6gGr0/Xp51M8EztFZ+icT9QBuHgtj59OX0GyfakOX9dhANh/f1qlyjt\nfe+Zr+rza8+amdnJPUVXv/iv5KsXFtbsO/7Gmwy6EfOEYHUfwc5OVmthXc/pwm5fIYuVjGpsZEF1\njVuoOfnVnum8snXzDwsp4wdhFL2l89nVvny92dL9EifKxIxBl8Rqar8YZ3SDnIl1VJd8KDikNlW+\n7LzK3wuh2vJAWaz4EsoLoNNCa0LsxM/Oj5QZw2vRHoGm2tN4aXbJOk9RxOJs61JGz/Qldb57CpIu\nAYIkSMZygEJZvSrfOjnd0e+WNAa2XlQWolxSJ607KIWB2iKb1/P8nPMNNMkmkeUIkGbx+WHepy3n\n4O/odTQv7dzS59099UUjoDYcwkYfHajtJkT8xxHdL8x9YmT1k3DOLKU0pkNw05TqcJyEycpF1VcB\n5svEkKwVPECjJll6VJKy62rPhZzmjikqTxPUjYZlFLhONTa7d/X/2hbPXVZ5k2RYIiCEQp5DysUB\n3C78FQM9NwYy8rx2wvzpZFD3QL/5HXWkCGi+oOZpH+ftEwG1x9m+/MDh08iSSRlmdH0URI2jekV1\nLDyvfjq8qbHlha8kkETxAqROu1+3LoiS/hCFKpS3fKBrMqhdDMmYTU9pAxQK8owzJ6nbD5H1dkR7\nvPwjqT455NB9wFGA4r6RMue04d8YB+HJWYNvoqoxFt9UnXfhFEh3NQbWF0EaBuVr1mFthdfi+BR+\nD85Zew+VpX7lttbcJCiCbAilLyQLQgsciUalKgYi5j7qd97bGiO1KL4EV815LQIycW5V7exF2cfh\nc8okmEuKoNbSGltTVDu8XtYnuBVyj+n60Sq8RTNQVBfVbslHQSTlVK8hCjbNbdW3iQrJ8B6qeTvK\nHlYPVM9YBo6zzGvqS62zM/N5NWaizPMxUGoekEAnJ5rbHATmyFFdgW+pxnzsIJr8qGHF8MdBHR6+\nHfXj4b7+znk0f1dQYPN4IhaESyUS5lrm12mb8QyXUwc+h2kZDoMuaBv2LJ6QyugfqixB1m6S4caw\ntYRH948tqu6RefVROqffz+CxMFBgrdep4jZlLxAE4TyG3yGyo33e/S3tx5IoqHVRuIoy7tOPaN9b\nGOi5e7d39HcV1AF7rey81oMJXArNidprQkY3AAIvDpo4ArrgrKa+6J9pLsnk1SeDAfPtBB6OBCqF\nUV0fQgFsaUXIlzoI7NmJo0an/kj7yZCjInd6qL2jF0bBWl1jMzvVniMPIsdC+nsOdT9vWu2x8yU9\nZ9TTHNDywpEG4qlTVQfPehpj0yP5wdkJ6DyAMOM3qV8Dq2SyN4XuGI5e20skQn4zEE39DoiZE/XD\n8QOVI+BR+ddBhHrXNJZT1fOrL83CDmeL+iIDwq51QhYeXrEgHHsdeH3iEGr6o3Ah8q7TOdHY6ID4\nPj3VfHx2AFfVmfp4/Qmh7RMe1aUNR8zukfpqijLO4iX5YHyOsQb0wjvW73oztVkyoLV954582ncL\nlMKBfNrLPtGHMpZT7imcgvUTzWMeVEVTIF0efWjdzMwiEd2/29BzbzAWRmXmU3zTlwJtdQEUHfNs\nGkWbEii4MqizaViIooWCkOcZnuuBN6gMQuTsQD4XwScDcc0VgYSu70LJ0S7o+8Wkfrf6Lp2uGIFo\nuff/iieqS7+c13IFvR/sXtf7wD4ck5cu6bOZVX3DRfVXMqB3uv0dIZ96e1qHwkuM5ZzKs+RV+2fC\n8otve0q8h5ffoj1axQ832J++FgKYL6Zs4GtboAtPKNww8S0UplIaD//dz3xIbWEq4yf/6SfMzKy0\nrzbz4DPlnvYECdb4JPx25YrK9uAfPWNmZtsP9JwQpzKefO87df817c+HDa0xRfbvHvZj9bHG1Lf/\nh+qLb3+nUEDbL+j9//f+0W+amVntSPOHJw4vH0pWMeafOkiXZTZs3bfqvgWP6l0Pa4zl8J0MiOcx\ne4sOXDaesq6LbqybmVmE94oy714DlBWXl1Fj+gb2F+KUcc0111xzzTXXXHPNNddcc80111xz7S9n\nf2n1pb+MJY+UFfMcKXI1KYuXoulFASBANJCo6L5HUcXAUNdlQZzUYHNe3FbEK9VWVPEVFIYS84pM\n7Udhf0ZrPtLjPOGyoqanL+k6Txz25pTu124qwhccg+DR4y0YUFTysIkKy9Mo7VD+XlIRwHRa50RL\nfWW5ugYnDaiP+S1FV+cCOgs3iipCuNtVpDEYBpXh5fz25//EzMzunSo6uppUdJhq2/xFtdN0Tdev\nd1N2jHLMhZ6yz6WWsgrTEsiRnK5ZONR55NO+EBHVXT07YooGptcUCQ91Fc30LylLcnxf2ZuHBvrd\n0boi+okDla3aXVfbFXTu8LwW46znKhlJb1AuG4b7IB+Bu6altj9CVahbgjeIs/yrj6l+k7gi57s3\ndLa3f6byzUawwW8osvzwtbeYmVn7TPWo3JQPeMOwncf1/NVLipwv5nV/P1wO9XvKeo1RIDi+qcyI\n36P6d+BBySwoKzWa6jknLyqbPt6pm/0Ns5nJF2PwZ6yllXkuoNK0/mYhXb7+O1JqaJwq8t+AZf/q\nW5UtmgY1BrZeuGlmZp6AMijN+o7q39LYaBD1HcPlcAFFificEC+eB5xBDYIkSmnsDUL6fR+OmRDo\njAD8LC34NqwtH/aillXvyb/OavLDUENRbV/g/Ecf/aaofxTkyWkfBZiy0EdHI8b9rgauD0REMKK6\nzIfVB30yn05W30DsteB/mM2pbgtrQrR55+RDp3DMrG9e5P6cqQUBGEhzRral+ywM1fZdyjULOefG\n5RN1svLTEWfiya47PBapCEiOpOoRgSvGnIwymb5BRpH7vk8R+mgI/g2P7l/dU18M4JRZKMiXo6DA\nWhN9JlfV92EjhcvY8vvVTtUd+bqjFBMtaI7IZDW/zmfIDK9oLE8uqpyNm3D9oNo086m9+hk4xCqc\nA19SxnuyqOv62xorXRA557V5zm13OOvrn9ec0RjpeaMximuoXY2D+r6IAtsUJaCoo25iKm+L9g37\nNBdV4fQJw5VmEf3e76DKQFJ6QPWNUD7zBwMGBZXNLei3nol8YBQmGx4BPQoaoI0qkE3lI3UyZJ6J\n2rZ9ouu9oJqaIdVhwNrhpSydCQgc0Ald2szL+W4PHDMRVN7qEd3HUSZo3AEtBAph70S/Cw9BzsFZ\n0uc+DcAKS9e0Fh401BYeED9dEJhD2mgy0LyWjPX4Xm0en9dYnF+m4UBPhFF0CQ5f3xZnMIUkYMTY\naGoOaR2rRQ7wOf+e5oKhD6SSc14dpOQMLgkra0zsPA86FuWcRAulG9C5nRjI1SmIUJQjkxV4UUCZ\nhMlEP4RyT+Sq/CSUC79ah0ff8VYbR1XvCZnjzpHG6DFcDo27KtewqzGeWNV6lt7QWMst6f6FDa0z\n6YzKVT3UPF7Z19w5hEcvllQ/xlHxSm2AUH1qzgp5rSHdpq5toQC1va02Kb0slbcx6Jr0o3p2aqbr\nio9qP+UoQ1kfvqIdrRndnHxltk9f1x2iB/gx2BMcgrgYTljLQcGGI68PcWdwLUxBkUXiur4W5Hmn\net4U7hhHiLQJt8lTFzQfZOJam9tdoRCqD+TjYfaT3mX5eAzlyGiZPQVqbYcvg16IauxG4RgrRsTJ\n0ulAtFSS7zp8IyGU0DyoxpWYr4Jwpyyso8bUUTnubynz3KiqPMkQfc4y2R3rflkUcFZQn7MQKoMg\nhbyoBE5ALSfgCwkwL3tBd3mYww6PNKcUqvBmsM7lYqpvE06KcV2/G3tUzwBIn+gC83TtNQ6Hfrtr\ntbLm+QjoYINHKYMKYbWrcnc8et58jHXDW7Pz2qBBm6OclY6pLTevqkxdsu1NuPtqcKrUa3pH8HuS\nXAe/zZJ8PwP6dByWr/hR4Qvhgx2UFe+d6V1icKK+mDh7ItR8YiC4F1Eh6pzKV073VOcUexgvymIB\n0FJHu8wfKOQU3yQfv/xuITCC7FmODzXGe3BshZfUDpeu6XRCIiufPqaP7/+u3mkqtzWmR/CyhfLq\nm5UCKGRQTWdt9vn1GvfX/LOyoHYrLMsH5lfhwhmpXnVQx7sv6z3HA+pt1FY75q+gTrTxNjMzO7wj\nzppqRc/bu6e5ag7FnigcX45a6NT3+uaSdEoXPgBZvlaA82te5X9iUfP71XcKARUYqP//2adB7e7D\nU8ocM56o30JZ9XsXdcaXvyIkTg0OzVfgzEmNX+NcOxhXzV/xWAE+sSDvsY2MfLOxJR+583Xd6ygp\npMsrH9apGS/7x6W0xlsVhIp/BW4rOBcjId2vHWM/OEBxMSrfyHi13yw8Ih/YO1KbN8qa9yu3xXMZ\nXlD5HuadzcGKlumjQ5CCyTWVZwFFs9GI+QZuFx/Tg99R3YxxMoaxlm9qjEwotyemcg1BxNcH8p2J\nX237ne/Uu3HxojjBvvB7f2hmZve+pnflwfCb89y5SBnXXHPNNddcc80111xzzTXXXHPNtTfA3lCk\nTOmWoqgv/6kiUqOwkDE5zjnfTypqGOJs6rSvqOXZnKK+DXTCk2Raa7d1n+2kInNXG4pMHb6gDLaH\nc4fJNTKVZUV9v3pDUdaiT9Haw21FP2NEoyNwSLy0o0jhZlJRzQcF1EzaigCO04qY7aWFdih4lWUa\nnSkSWPUpclZcElpicKZoZTWs6OzdujJD0bu/Z2ZmE7Tqm2tEPRFAiBRU//FE3zeqilCmDkD09F8w\nM7NyVc9LzsyGqOfcf0Vt2u46yA0nc6bIduNUUcHGRT0s/7IisX8KMmUVJZY+fBvTVd33IvwZL3pV\npshdIVIKGWXHsiE9x98kRXpOa4DYiJHNHvTksoM2bOQO2sDh7eAcYBAERxj+oPXHxZa+9LD69vn/\nR/fb+SP5VGheffDYX3mfmZnF8/KJF+6g9IBSzuJDiuZuvO+qmZlNMvKp3Wd2zMys/SycLDuKmvpQ\nFPPdkQ+cjeXLuaLaqwAzd/oy2S0yJ304EgItEDxwHUyK8CQ1NUZu/M4fmZlZ7QW174zMcIZz+9ee\nEOJnFNB97nxRHDbtLf19HW6XqcfJtMq3Vi+ofg+/WxH6I1Sc+i+A/kqpHwtvFcv90oaizzee0Riu\n3he/0pc+p/ZowQOSSKu9PCn5jX9ERoZzo6cgZXIobpzHBjNdEwRNEIcrwA9yJROHd6Gnvmtypr7b\nka+elNU3wx217SygNkiRVXIUq6JZPvPq0yJoqZM7apvRVXyfrFhrLN9LwYXiHcORYGQ2I4qYt+CG\n6XTUBhGP7uugDuY5D11ApWgcYyyQjevCQzGpgH4aw+nSBSkIsiNC5rIPKqnO/DKfVKZh5lXWq9rU\ndSOydauPax7zwNkzRSFrMvTwvdqtzn1rZOf2h/KFZ0CSZPvMszn5TDElnw9N4SIgweqr6j6lsuq3\n8lYhDYNkp+7ty6deRYmc03xpzZMLZJTDOTLDZJZDPifzqnm91yN7RrYtDXIn0FV9Y1HVaxgA5TFG\nweZQ83vqouZAD/U0lHXGzL3RLCi+Fd2/1y5bGWRGLqWyJedUlmkCFQifskM7t3WPTkx94vB2eBdQ\nAvCpbYZHoAlIpU1RZ0tc0DowJds9qeNLdfgm4M2JoVzTAvU1gp+hQjasjipPsyvfTaH4d3YCGrWt\ncnXhs4gm5ANe1Na6jJUEiMJGHlUj+C4CXTmFByWHKFxhjZrqnQzp/uMH+l2tjuLwmSYfAAAgAElE\nQVQgyJ/g/OtT1ul1NN9391W/nT39nUIxInlRYzO+ob5buqi+Daa0dvvKap8mCNPDF9WPq6C/Qgnd\nxwuSJQ1qIbCgz0lCvtXdZY8DR9fZHVCzQ3ioLpLtI+kW8xVerUOj17c+XBKdU/ns5FT+EEWlL7Ki\nMT2XYX0qqDwj1ktfFK6GttaVs135ZRPUcIy5wUDoBD3MSaDNTo/g57jZtvqm9jkBuK8GPZUtk5Nv\nxd7yZjMzS6B2EwZBHKJKgZjaYtBAEasOyuCEbDFooBp1naF2NB2BBsuSdYcjKg1/hKE8kxm9vtxk\nD5W8ek1rXDwCRwrzgg+urnxBz0PI0sJw5xweqC+nWQcVpd8PyRz35TrWBpGTAB08Yc8wY57sN1EP\nrOuLNK7ui8I3cqR2jzC28qviIow+CTKP9el4zFwxYE8HQikThZ9vpDmlsqO+bVdQvkRxJgECMuFV\nO8TfoSx/E+Uzh19uBJKoxjza2NOckUax0QMaZNDA928L1VCt7Oj+OfyjqOes5EGbxTWn9AHXBiBx\nC4bhjEm+tuec1lu2xx4lFtJcM3dJ61/i6rrKy9yZTqH8A5fGpHX+9cYZP0G4sWp9+ODgWAmCNI5z\n79kF1W0IT2TpWL7lRXVp+Zr67sLbNG4Xe1oz/HBDekFKllDf6ZS1RnvgMFx5j9D3ERCUPurS2NE+\ncxCHI3JRbRoas06A2g1N9LcvAffgiuZBB0l39SntE6tNIX3K5T3KIR/xs7ifgdwcd0PUFzUoiJNS\n63p+bkXKt/kLmgR8qDlVQfZff1GclzMQ4ItvUR/m1rVXcJQze1Xm4etak7v7ep4f5KZN2IeCgPSM\n1G/5IjxIA6E2Wqe6T/lQ7fqVP/yymZnFQAF62rpfBrTFeW1nh/cL1q1WV/15k7muc0P1vvF1qSUl\n2aef3eckAgqZeeaIEXuQfkL+FWXsTkqaK7efFbq7F0WFkfccM7NEc2anI6+dncLPWZAvbUa0VzgC\n2faVXxVXy9Gh5oNqSW1ybUVlb4d1z8Uwqqhw/3nh7prC4bIICj/J+3U8oHF991C+k4KLpX2g+wwa\n8tGtstrGv63f/R9lTl/84AfNzOz4n/+GmZkVF/WuN7cJmom+nfZBoMO5mEGBcOggWChHMgVyu64+\nDcJdNkZZMGyot6ESeHRP5f3Cv/yimZldubSjesM9s35F+0Ff+purL7lIGddcc80111xzzTXXXHPN\nNddcc821N8DeUKTMTkiRqcyGosiBIKmRtqKyy3OKBiZriob2u5yrjBOhCysKm99Ttur0bYpwPXV3\nx8zMGjFlymcTFGROFX3+6u+ilOMF/ZFTbOrFeYcXRBG91grqGHVFHx9eUGRva1uRrmucx+7+f+y9\nyY9k2ZXmd22e59HnITwiIzIjI5PJochmk1XVNQGtkiBI3RsJggTUTtBfoX9A0Eo7oaGF0EC1Guhu\nQUJ3lUhWsThkMZnMjIyMOTx8Nrd5np6990yL7/cySwuyPVahxbsbg7m/4Q7nnnvtnO9+n6tI2XlI\n0c6NgSKBiwj8IVHVI7OhCNv6AmbxlKK7py4InqQi+OOCMvqDAv3iqt4f7gi9YDJ67/qO6jseKOKX\nPtf7Ltbqx+ZL1edkHDcPpkL9BMjuN+IK++18rkhw/xaa8KgmhckmT/5AWe0HM5SeyMqEu/DncMz7\n7EzZiP2SIu+zbWXWkmO07seKYKdvaUxvWpYoCaymilZGUAGJ2DBbh8hehzSGSVjS4ylFMaecwXz0\nG3GudD7W8+wm/BuQOLgwZ599qgh8eKSIcuOZ+iW1UnubWdVjb8r98H1c/lxcLeMvdX0mLVvcruvs\n7Oha7w11FYW247KhMZnoXE02UTtQlHk515haHfX7PCKbjy9536VsaQ4XQ8zRmMfJwHTJdJ+/lE0E\n4IJYXilTEq0rrbRQMNzM56pXCgmzeV7vs2Z6/rwHm35Lthd0OBuNCkcyo/E9uKf7bOwksgRtkoMb\nJ652jVDxSMKDYuKaw6WysqjO7HczlP/DEluC8omojYVNUmZkFQIpItNBfd+JKzK+IktfGKnNUdSH\n5rCse9n/6VidtEYJbMrZ9sqWsk+XP/q1rn9CFrksP9F7KluIJfQ9U4fLJKg2DuHFiME50kPlqZRR\n5qCEasiMbE/LYSwMqktww6xB0ATKur6CaltpGxULMq89zpV3z4V2cyyyYmnODk/gy5jhn1CQ2T3g\nDH8D1ST4QqKWvlfKmvsP3pefW+APXbhpbLL7ERR9TI9MbUT9ugiQzR+o/65BfbioSJX2yHQuVd+z\nM9mwM4Yz4YblqoFyzbV8YSigdk5QX7LnqlcRNIMThNvCU3TokTmBJyQPR48blZ8NkJHvw42xhIMn\nU6e+Q1AtQ91vhuqfUzI0oXXUDK+V3R4YlE/iZG/I7G3XhX40zNspXDHromysiAJKLKrPxIdqQ2qk\nd/XI1ocNSiYgNkIdjeUGCIoVtmlAaqTwc3MQk++/K79mJeCjsDW2W66yQaMN9Uk2CYqKtTKEH3/W\n1Frn9tXeFKojBaZyGj4fE9IfiqjjBVPyE/UMfB6gCxKsvUX7Fu/x+u3NMpfxpPx2Iq377pZRo0IF\nKgLHAsI65gK0nduEC6wrWxqdaMztIbCGFNk2eDdSKa2LKTh5Eu9oDqbgjmmDzAxfMl5k3EcXoGen\ncO00df04OvmqDSdnj0xvLj8cuFZFI2uNb7rHls9VPecgnSIjUCVd2W4op/ss1tsYCB4vs+924cA4\n1dx9+aU4GgoJ1EDe1XqUm4zN6BiVSWvGvapbqMu8gNuv8SvNywi2Gd9TneysbCyQhlfHAaGXABEZ\nVZ1LadUtgI1mUNlL1uQXkzE9b16FtyyouoZWtnmTspzo+iGcBdM4+8swyG1gu8Gw+nwLdG0wpPte\ngr6d/0J9loTbwEZRLJ7QXFinUQmKwFG1qb1B0ug5V49ADqH6FLlQez1eJk9Rx3Lh4MnAlYVqSe1Q\nzyuBaJk09Lz2sZ4XA5UcgYMh68DhCCfLCvW6HHOwDbdhvECWPqLxKL8Prx38Fc2P1e72l+I9ycCr\nV0M9qn0lW94Oye9fLeXsWq91/e0Ce9F35QtSoLVi+LLx6xNjzNfqf+EV+4E/NSYU3jThrPagI9S/\nkiBNy3u6v2ZkuxcT1olXmiPz4M19SS5OHdd6R+Op+nRwCu8N/nn7fe2v995jz7+p+R27QE1ogKoc\nyjBb3xJqYQPupn5P87PxXL8ROs80Rk0UZXceaL14h/vmrGGXX3yuPnjMWoZCVu1QiJzcDjyeIG4u\nUbRMZVTvg01dF4vC9fIa/8M6EUrKn7ns+67hZlwf63fBaVFjt8Fvqlvvq56hjGyzDErYge/JRfVz\nCJJzcKW9UhQOGQcuMAelxg78TI//WnxILz7VqYndnX1jjDG3bwtB7nHxjNnzeGiJ9rnqu5ir/mtQ\ntEmUxyLsUebn+ADQxYm6/PlNSxQuzzvbum/KVnU5gDuoJxT260dwvQ3Uf1sFzZniuyj6rlkn0qhf\nhUFzZ1T/SUjj1U7q+1FQL3KsxFd1WWQLZiNjm36P/U9DfTivyF9t1mRzYdA3tzfgWknrFEKE+WvD\nKbXkt0QKNbbQV7/J8NvwkcXwx+txhL9rbC22SX1+Hz/4M+230w0QhY9P1Cf0mbvSc2/dB5mc3Vf9\n8DvzuWwnk/dIvvAXoEeD+M2UrbkTdTzuQN3XA4FnuaCHQdxn0lq/bm1pTKyF5vxnv9FvwiBI6d0j\n+KE4GfPbio+U8Ytf/OIXv/jFL37xi1/84he/+MUvfnkL5a0iZb7xh4re7d5RdmvYJEOwSaaXDPIc\nZYUy2fvVx4q8J0NwONxXFPdgxrnuP1RUOUWW6U5V73lcVLT1v76lv79IcA4/rMjYPSX5TOmHf2aM\nMaYVPDHGGDM61fujtxSNPvpAUdPRterbJBpe7SlD0JgrgmglFdWcWbov/FNF7PKW2neWVZZwB9RK\nvKSoaWxXUdfNmpAxWTIJC8MZX6QrQoazzUcodSQf6H0ZZSELI/VH+fnCnDQVrVtFlS0+2lVkfuuf\nCilT/4a03muNAH2jule+VNsWm2RxCjr/nSOi/BREx60Q0cSysgzzERwBZELjRWVHzBXnuW9YbFjY\nPaWAoCWbmLpdnq96VA8Vdd36hsZ62tH1jS9QI3qm6Os0rfaXdhXdTKAc0CDyviBbNIH/IYmNRFHm\nuXh0Yowx5uccST060PuyUWUGFqChYhmNUTxHBrKiKGmXzKQhsxwmUh3qo0jD/1fwfcyuFKVeVWQz\nxduKFq97hIcnsq04Z0qD9NcK5YXPOd8YRYknCQP6ZkGZkdRemXpw9rmnudS6IgP6id4fITtZLKud\ns6n+f/oJ/dzUOIfVfFMFPXH0w39kjDHGIfvZPFX7phfKANhkL29/U3Pa4ezwqHVzFESATGI4SzYd\nRa4wahMBkCUrlGXmoAAcVBlaVNoCxOV6HFYT2NmLGqs+AXa3LT9UzgstEIqKk6Z7qT7JRnK0Qe/Z\nuKOx30YtaUKmMQznS5TIfYoMbzSs9w1aylKdP9VnfMn7Yy7tlv/JoOrhRtReEpfGdfX/JWoj43PN\nhR7tr3n1JzPYPJXfqNVBgYEwinLddKixS4DeCIbgBeG89TFcDqEEMAKy60m4aIYr0GGcv0404U+C\nGysHT1HbU1QAbbbARiKOnjtDLSQwli+4ackX5SOWoN4slGzSoAiWsOkHQFxZZMNSKKtNUORZTzl/\nHgJ15qkxkXXbyqBgEVf/rEC3leiXdU7jHII7aAaKLeLOTMrVGoKwlRmGVdcYKmaprzgK9MzWU41p\n4QDkS0f/P1toHpuwxsZyyAQG9fxoUWNeIlN38WuU/yYaiwJoAAvOlqB3Vp61yjVam5agDWav4JrJ\nyC8n4DgwZI1SHv8QtlvOyTarGY3xEGWZY9QuugEQjCPuB/ESzp+oPwwQzRXZ/DX9BhogYpEx/AcI\nkpsUpqgJZjUAq2P1+wjVDzdEf6LgZmfhmciqvhlUkzbrrC/YsA0aNwS3Vyyp5w/GWmfbv9C61MRH\nmSsPZYaaERCig6rW8ThcEdkyfHx5T3vCmA8++JYJF1WP+RBlsUtPIU1zq/9U63FvhDqWh7hMegps\nqm88r88YPH1TEJizKXwmIHq2UHPJVWVX+QO1P3erZjJk3SOonhl4iYYPVaerl3CHTLWGrBfs3yx9\n5nIa6/I7apMN8GE9Yq3b0RitevKjqxNUneAe6J9qDbNQWwrQl+kCNs18vGnJoIizAu06pz0JeKCC\nRWW9F2VQaAHZSLmsvdYMToJWT+2doR4YK2lMU6B9raD8o9NDaSamPk+xhsdAxbYu9P/GVKoku7va\nyO7cR/0pQ7+g2rQi85svqD7FjFAUpyjh9D6GAwjlljkohDB7nHBR3ze3sD2QK9kN+oNuXYFAKjTk\ni1zmagj/bRzNmUVD7718rT3Y9Yn65/Z7qv9uSnusZlDtX6MQlmB9Sd2VXVRRJXzyjOcda0455yji\n/PfGDE+uzA777HFWdpfMwVsVRYH0fe2bVw9lX00Q6LEZ6ow3KDNHfRTE5PNZ5tWe5nU4A68Ze4ru\npfyAM6eN+Icl6NZmW3uM9RN4zjbguRnCJzfS+2aswQFQwQHQQzbyQL224Aft53reZOChXuHf2ZZ/\nqYACjaz0OeoLQT665HsS5KMrW31qy39E0vBFvas5kGcNbFpw3YxQWLNA8gVlqyVsf9DTc143hGwJ\nBTTZ8/i3ze0a7dZvogkES8tzkNwJFLIGILZBiW3BL3j4kVAd1bps32EvtgCNNWipHxbYmoEjzFuf\nqnf03nvf/7YxxpjZSDb++Y/VP9b6zZCZLlxuHphrBsou7KrftvJCUoW2UEq70hycJlXvOWjcfADE\nTlFzKgu312wCZw5qiZmW+mla1numsa/5TWLJgRmvCl/tf2JHepfTAKk30r38vDVz1MuCM5AtYerS\n13fXZT8Xhi9oqjqtK7LhDvuwLAjqILB9BzW54IX8UIjrklXNyz/7p79vjDHm4b/8K2OMMb95rj1D\nKaK+t0BMGn5LOOzvsgH2i024sfLY8rX2teG1fgD89GOtF4e7qORl9Vs5d1f1ssegcOGW9TjGSuwv\nLRuuQn5DLkf6Pr1G9c+Vv/5txUfK+MUvfvGLX/ziF7/4xS9+8Ytf/OIXv7yF8laRMtaUM10padzn\nS/reQOkgN1E0NrCnbOACtEf6AZluzsLGT2Ff31H23R2TqfgG2Rr4Ke6UFNlKtBVNPMwrijq3YXcm\nC3mVUqRsG86bClHMBhmBzIYi6suYzolujhShW6RQ4TCKik9g9Xdew/2woWj4VVwPLKHKkthQJG0N\nV04FfpGufaL2kTWtXSjydhIWsigXFiP3mgPu+ft6znd6inA2SPsVNi3zeoYaQ0xIi0xQCItWVXU4\nnCta6dSUHfggoGedvqM27DTUl5M26gwVRdqrMf09OlUUc1hRxjVZhp+hJPTO4IWy8BGO2N+0lLeI\njLuoMEXhyVgo0hsfKcpZJ3uyVVXW5+GlIu1OG7Z5FAbWfdVrsITHIQdvUFZju4PSjMXzr57IpqIJ\nRVVLKaEGrj/X2Icn6tdyQpH3WlB9f32pjEQgp3p/9Iff03OysoUXn6n/J3AtLIjs98e6r7AhG979\njjLSlXtCktT36WeyY08tjdt8oCjzcq4O3uGMagT0SAJ+lcSWnj/ukPHlfGQa9vtQmlQxGZsuykLJ\nTbgPQPxAy2JcotFDosDLpmz0Cv6ROaov9bjsxF7MeK/uL3FetI8qQciBL8n5+qzrf6xYnCW1Wnro\nhIi3tTrmmfBPoI42Q9HLWqqOLhnWYEDfQ6gyFAqqc8ZDsPXkh64uNI/3jjQWd7HROUoJgbDqvoLP\naEpWKBmEswqOhNVYc6uKAkrfVYZhYlDtmOi+YIqMJOfKw6hVRMmkGlRNnLnqN+qjrIA60AoUlDPV\n/dWsbLxeVgZy8Fw2PGmr7+s11XM6QFEH21+syOLBV2GDlAnEUKGbwTkD30UItNMVvBsxS+2MReRj\npmVlevM5+csYZ46XT+GjSuv/kzMQLGU9p1ZTveORm9uIMcYk8f/bqLw4QdKUnMcewtsSwzdcdkEo\noUgxGaEmsJKvCQTUH8ugfNBkqoywDaSqZeBzGlNPzq2nHVAdBdlPYoPMtxMy6Yj8m0vmMpsGlYMv\nL1U1Ni5ItUhQn8kZmc0USi1BuGYs1Xk9B8ES5Qz6scamCo9arCobDoRBY3KWP4rkwIJsUy+iNoTH\n6qsUqkw2ah1jVOcWZJPani2A+HFDmoN2mazWle73VJYOSspEZnEwi4Ten4jIdrzz3+O+3m9h685S\nc95BXSTJ1iZbubmKmzHGNEGORE41llcvtBcIs/5kNlBC2wdh+qHGMFbX30PUZwrn1+Az2cDZGZwS\nfT03hmpG6T5IzB09b3NbtpXaVYY0xjl7C1WVJpxl42eP9T78sZNik/DP/8L8zc//g1llUfUj4Rtb\nkMGdoL6U03sTEfV3HHRycIt1oqa5UtzScwzjNYJPKZKFo6yA79Cwm8BcvmDAenBmPTZLFP5ied4N\n1CVBhjRgqW83tlBBC4MEhlMmDI+PE1VjgpAIjOA7W6FCNwbpMQddtWiRsQX1s0aFKLsC0YLyVQ4l\nkpuWiaW2heANSYOSCu9p7MpVzYWLvsb++CncgmcgvQFvkW81AfYaZVANxXvqnzbcXKOm/HoQJRY7\nhs1b8PtNNBbppWwggB9e4VcyeyAW4/wdVNSwAycMHBAG1MMKFavhlfyfm5P/q+c156r7IHmSuq58\nV/4s9g1llMsL1ePJp1J6vHqoBjugyCqoD4ZBjVkT0B6orXTgcqnOUXN6oNT8TkI+YQR6pENHRs/g\n90jq/+mwh7pAneu1Mu7GGNNvXJuN39NcK+Vlb+MpHEH4oD4cMg68G9GBnj8Y35wPcdkH1VRQ2/aA\n4ee3ZButY73z5NWJMcaY2WPtj2N1zcPyJqpoSe27GnARNl+oLfNL2XShqv8nDacJtvFLFY350XfF\n1ZLf1d+HDfiCttVH6ZxsIIF01xKk9uVr1TuAwmENhEqgC6LG88MvqdeFbDwBgHHrO/KLG7viGsyy\nll+XUPuEx2851vfjuWzy6lfqh1lXfjhbl38K3dXvljpcVeEfftcYY0z/hbi8WqgWzh+x1wK599Gf\n/5HqAcrCU6hss+dboww0HqMsyZ5n5WjuVPZlq3fy2jOVQaFtvKN+beNzakeyWdN+M34qC36o8BIF\nNpQonSy2CCI2OdVntIqaEr+78hCvzEMazz1+d7HcmlPPR6BeG4CDZ2Kpvflg7Ku6uIuSKcZ6JlvZ\nN8YYs55rfl/B5TWO6KEB0FNR0LAzPksgfkMJ9X0RGFhjCjoLzq2dM/09XwTBB4prjCrREoXaGSp8\nfXjLHv31v1G9mlL6Gl6pbVlbbVhVsVlUolZB+YnqUs/pRfX8xRIk5qnmQq6IGuo7stU/29TYdlGB\nmk6JQ5yB2j3UGNn0QyaL4iBI7gjwOMtBjQ+V1YEF2jcGGva3FB8p4xe/+MUvfvGLX/ziF7/4xS9+\n8Ytf/PIWyltFykw4q29zBqudUhS4slbUr2srsmRfE2UunhhjjGmuFdmqXShidlxWpGq0UDT4TkDN\nqlwrktW+o2hmlMNwrYyiqlWinOukImBhzhFGXivyN9xRRK2yoWjmwUzR0mv4TEqcuXNHij4GXUWT\nbUcZ+hJngMs/VL3MAmZuzua5+4qsxdZ6/usO58zJsG4FyDqeo6NO1jR7Lkbx/m218+6p2vGiqPp8\nW0k2Ew+S5XLS5n6JDNbf6p6ZEdIl84Xq+hwkxb206tKCHZ2klTneU3TvCGb77krZ6k2y8eMPxOb+\nQVPIjpdrMgKbQoTcjn9fdcwI3WMkJf8fLUuyFyv4HWJhzjd7HClklC/PFNVsNzg/ztn86l1lW0KO\nrps1NCYLkEOhPkovVX0mD2VrSTKj3Y6yI3NUS2JljVE8SNbmFZw5+7KhFUiYJapEx6+UbXrwR980\nxhhz73v3dd1Y9Tv+RP0zpp2ZijIB73+gfszfFjLHQ8L88kdCrmRAJ6RRGtr6SHOpUCULv1L9+o7a\nOXuhDMhwKltJpDQ+Ns89ayvSvwxzTrsIh4CXvUJdZJv67H9LWbEVyJfEc5QiiNyvYCqfcn7zucMZ\nYqPnxUA8uaDjRl3ZevdK94djN0dBACAxi7nm7QT1tBDor/5Kf1/31Aehgt5dBBVUviNbL29qnqbI\noAZnGvMBXCrtlsbIXmkeLjhPXAEp07tAcQpVIg/RMnxG9p3sfy7O2duCbDOaIJtPZD0CasqF8T+R\n0HV9I5uZoIS1JgviTFD0ipHtAQFiYfMRsug727LtchF/tILjpq/2zRZqdwDekfFMthFKyGZD8Ims\npiH6ifPrnOUtwKNRi6nedlo2mSL2HwzB1QI6K0HmIAAbfWSsdrReoy7F9bNnymgk4WbZKwsNl86/\nGadMhAz7JKx6Tyfqzx4IyWRQ7ZuhlGPwLaGy3ttbwPcU0P1jh0w8meakhx7gLHEItEoO7ocQyg1h\nlIFGHdl881zPte2kCaIUuA6jNFPQtZsbesYSZEMwSrYKxcJKVn8Pb5D9h5QmkoG3hnkcCWmMeqh2\n5OCvGF5ozszILi3gIUpONNarkWzSQelmoteZ7kT+zSJbP+vqOeWM6psgyx5zUHUjixWDVyONrQ3X\nuq+EjRbhohkwBzJZLURbKIJZCz1nOgWhA7rJdVBO6KtvrbWHR7hZiSTUX7GMbGE7ofamxij11DWH\nE/iIHgpC05aUFub4u9Fr5vAFn7bm5gZcXuVD1T8HGiR0T341V9P/B9cah1cn4n4ZPZF/nl6C3Amh\nFFPX/dXdyldt+Ma3vm1WC8ZpDO/RJb6BuelOUVdCncPBnhKoGq5t/b/H/fZMPmwIAnLFOM/gnOuf\nqb8jFjwDm7KzejlhchVtSOySbKD3Um0Yd+GFQ91ydYktMfaRR2pbCZRYsCwbc1EYCWKLUZtPA+oV\n/75xoD4Nu/jzEBlOeBeiRRA0zpuhqZagbm24vKIh1twQY7xNFhtOwJO/0d6o9Vp7iThZ7yxjOAEJ\nOYcjcMX+9WBfk6wJ59b1Y+1xlnAgzqe8NwfHl4fYLsD/VoMTC9/hrXPXKNO0vpBfHaP6FEO5LRvT\nnuKyh/qph17dhqxsEzWTmKdCAlcPNp5P6rqNld47eAX/0EzjPmV9nFzI7yXvwBFzJL++BVdMEL+b\nrGg8C/eFloj35CMHjzW3BnBAXI9kPyXQBpElaoebX/MtpXaTJlfQXIk/0LqammocW6glvkThJgWK\nl62WiXnScDcogQDoIHjdpq6y/Raqn5MhHIagvSp79Nm7EFuyR0hPtL9MnAjpsejjZ1Hds7oao2Aa\nLpG83hcC3r9ee1wzILvhtjl4V3PSU0QLx1HthEvw8lI8HZUQXDg76rPSHf2GCaDg1cnDebjWc+J1\n+DFBboRZoyuHcJes1a7xijUUXj0XddeIh3YCbRpAsazRQelmpOdVb2k9sMOy6e4vtZ6MhuqvFQiU\nzW3586XDqYy++qv5G9nemv2rCxejg4prmEHPoHKVjavdY1SgPv43f63+g4cuF0JJaBMI+A3L5pZs\nDMC7KcBl9qyB2ir+OB4FNT1Xv9sjuBxBv8VmmhN/f3JijDEmCip3klG96lC8hVD721honRkt+1/V\nZWkCJprdMWNsM7gAXZNErQ4OmTVrdzCluuct+NVASU5QTlyENK+2MrKdq7XmVQ8lr1hStp6OasyD\nXZ6/TtBm9e0t1JlOnoISe/hzvQduq0pN/sOa6j0hVPmK2NgSpGVprfr1UT+1QFBmUIj8k//qL4wx\nxtzlt/DTc/3W+l//x/9Zz3VQHgT5nIXj1U6C7FzCI4VyscN+eggXbg5uxWDgd/MO+UgZv/jFL37x\ni1/84he/+MUvfvGLX/zil7dQ3ipSxv31uTH/jTGdCxjJS6AeHCLeAUWcIqUdTO0AACAASURBVG0i\nT3AjhMOKuPX3FD0tDZRRiJJ1e5ZUpG8zzFmzJ4oaXyc+NcYYUwPZ0g0p4tWC3bmMokArQ6T9Ed0T\ngXPmSFHJ6CtF0toEtSM5IVtyQ0WzI5uK7BXnuiAK98L6rqKzjYW+JwaK8HXjitAn9kEpDIQqsXqK\nVvcCatfijDN7VdWzfsrZXThoNkqKJP56oeceEKFrX6VN7kz3BFzF4WZrcb0UQkJArOdq6xdJFAEi\nQtLkV8peJFADam2ghGDE9L9awgZeUOQ931UbD4q6fokSzQlZra31m5ncApWnWZOoZxam7CDnEBsg\nVOAuIFhrKqgKvQ9LOolU03uM6s8EzoO5xT9AjPxGSJ6YxyeCks8UZvAoZ2+//YFUhS4uYB5fcg56\nQ5H1o490LvFipbE9OUeJCw6FUAc0BXwnS6LK1QNQYpznfPVQ3AFzvs+4L0BkP4oSxJ2o3leo6P5P\nHqodY9AhEVjXDdlCk9X96SPNhfh7ame3L1svwD0RRKEGsQBz+/tCp9U+FJv99U+VybWXD40xxixc\n9Wt5m/PgnHm+Bu2wAJkUiss2IxZnXFGoWDuaO8nEzePFNpHtADZ2VBX/ThjlmEAOjpicdxZW981R\nf7Ad+C5AN/WfyR+NyOLMunAChMheFcn2OLLxVFpzIJiDv4iIeqmiPpw+BZHxCKZ9UFW1ff0/kFUf\nB1AyWTkoniQ174t1Mp1p9XkuD7dVmLP5KOwsQtSXbM4oIn+6BMkSAokXtDVGHTLWIzIYCc67r5lb\nVwO1L0Z2fQ5XzhSumzIKW4OG/PWjgfqpx5xKpkBn8P40CjqxrOZICnWsw7L8t6cYkcrr70n88/kV\n2cKU+nlzb4fvb5bhngQZf7J1lbLs4jCudjtkwC2ynJ2Cnv8u/CHmXfW/h7Kr5kEQocKU3AYJAFJr\nzTn1Ncin8QnjZKvfUiAZA03sYh4zBm4Ae6SxXOJ3xox1HMTeArUNBz4xC/RSNOJJdKlNoajqlIaT\nZYHyX/lIKKYEqKlgVH7M4weKgN6ymBML0D42KKAI2aV1WuvDJrwa5z+TCoULJ9WI7PkC+iOPT8Te\nlE11rtU3Q9Ti1i313QVZ7wz3Re9ozFcdrW0L6rGCxMDx+KBCKJntqb7Z1ZvlnfLwZsSNMonjPioX\nc7hzuqpQZyAbDsKfEQaJWkVtqfAOyjc1EEZwayXJ4Lr41bnN+H6hdfj4GWgCT8mM9aLI3NzZE+Iy\nhZ+MJ0Ecgo4wxphIPG2ijNcKxbDhGvWlgdaj2Rnn5OFySDKeaRQnAi09b5BVvdMF/T2BL4hhjy7o\nvNha62KmqHblQWDFclWTKcs20qxVO++qb1cHrEldzbv5GAWVS9Vpgf+1YV/Jl1mrdjV/cvt6rscL\nsbhmfnVAgjymzRdqs71WXwai+HH4IpLw59y0FHOaO/EiCl1k17so0Jz0tMcoJNQnFv587KGL4rKd\njT3NvYyBEwfVvw7+IzFi79GW3xoO1E77WtfvyP2Y9JbqswiAVg0z15kTNv6nQuY7MeM5bY3l6Qvt\nMdKop5RLqnf5SO9dh5SxDu7r/9U72uuVi6rv2WvUoX7CXrKicQt2QRezKUuBVphPUQP0eJDWsqH0\nEetZUXNoHQDxyZxJgAxa4PZzcKp1T/We9rMTvQ+10tQOHDkbX8+NdTluxkXUssKaox5a8PS19jKz\nh3C7oRaVhQsHQOeNSoQ9/wpureuh5qHbAe0EjVGuKP/5zkcazGgOVGZHaIJJX30TBjG4f19tsyOq\nc/Ox1lwblbUkaLQAa8/LH4ujZYUt1Fh789h8FBRVBgSlAzq1i+rnyNFYhvvMERS3QhBdbrAWp/gO\nSMBMPDToT/Q7YR4AVQCPXrKg/skXhHRJgRDZ+LbGZNyFk+tE9WiAau231X/RpK4zCzgdmYtzflvZ\nI/39yx/9Wu2ytB+2OijyoCaYLXrcl3CChVnn2I8PJ1r/QqwjF8/0u+jlI1RJE7r+3QcfGGOMSWy/\nmS95/Kn2zS+faO7U78q/b1RZXyy9d0U9o5wU8LAWDnukAaqGE9QYm6Cn/+A/+y+NMcbEdmQ/zz9B\nCS3AOK6+3kMV4yHT++LK/OqJ5sEea8G9e+Jasefaw9di8jdXc/WNw2/KDAqwG2kQ37dA9cJzF3qo\nvnk6RYkLrq39Xf1uLm3IFoIzuLcCeu4io/u37wgpZzmeQiRo/Ln6JhaAXw/Ec8RTJAQN1GZss6xd\nZyv56cVIttP6a/3ePv13/1a3/UbxAg+1v0qrPp5W34S9WnKCMuYazi9OC0wT7HdXmhQuvwuC7u/e\nk/hIGb/4xS9+8Ytf/OIXv/jFL37xi1/84pe3UN4qUmb8StHG85/+0hhjTDKl6GcmQ8SfDPhVUVHc\nHVj2J2lF1tbPFf0LbHC2d6EI251NReJePFFUdSNB9nC+b4wx5pWN8gBZyNS+npvuKYp4GlAmJpqR\ngs/4RO93zxTZ2yVDMWoq4pYPK7I/yyvyVrtStPYMXo1QTtFQi2jrTkLvv56Jz2Wzpfsvi0I1BKY6\n95ioKCZ331Ym++EenDd9RfaGnGlLTFSPIdwGdlz9M/456gT7F+bVcz0rnkcBZQ+1njJnwCeKKlYG\nqnvwld55HtB1uzX18asxWuwJvbMwUdS0jErRsxpcNCeKLoZ3lTmdLpVVsZ9DRnDDEkY9wgloDB14\nIYYzEBzbRPonikKuJpzRLai9CSLM4ZkedLxSxD3mqTnB+N1eqr7XqESZGFFOsmphj39kQ9dt/UDR\n4wpqFI8+1nMvL/S9x1ldg6LM6SOdK//0peq3V1ZkPlcna1bXmGUPZWsvfimumctXT4wxxtR3dH3+\nO0KBmKH64/hYUe3jtvp/FIWr5kRR37Kt8Z6QpYwPFUXuDlv0k9px708U6W9dyPYu/l6fLhH4BWiS\n1msyOETsJ+eKnnfI7K9Q5qmSOS2heGOR6W2nFFUOggqZRblvyjlQFCOCod997vIfFnuOkhQR+tiM\nc8E2mTKQD9dNZdYsFAVmE31vka2fd0HvDDWGCY6QR2tE8lEgiXJWf0VkfAXfQob5PcfGEmXdF1Iy\nySxamkuNx/J7pQq8QXBXBUAbLBp6XjCq752Jvs/gknkFh5QDGiHkqQCFQCl5Z1wrGoNohWx+Ug2a\nncO9Qz8sNzWXNkvyQ72VsizjhvrNJcOQtmSb8z7KAHGNXQo1pM0PyBLRT8ZFFSqgfs3AczGDn8Qa\n6TnHI/VLmeVoc18Iw9mp2m1dYjO31M7cGk4ID751w9J8Kn+7QtWv61H5wHGQxOaCHmfFrtrb+DvO\n518LseOcqN2DmsZtEgY5hCpTMIdqFD7H4zrKoABRu6X2xchOzljXZr2IWQ00hsUkmcW10DnRLNwd\n+L31VHWeDvXsKxAXhjUzaWn+joyy2PMRvBtFVH+c92ir3jdFbalyW8iTKNmcRPwWdUVJYa22z8l6\nD1ZktYzmwhUKDZsp5l4DjqgUvE6ecgocAsPHyjzOXVCvKOeExjyXNXRyAY8GSM4z0AJLzmmP47Kl\nVFztyJCJ3Ui/Ge9Q91hza0GG+Oqx/GuQ9rmXGrNYXfVLxzTWubjWQacEt0MMlUIUdWzQH42W/Of0\nQu2wHLhwKt56pf7ZQGWveCRkoouNzo/xz8dw5kzkfx0P1fvfGvPxv/0rE0nI3wZAaaRAv5Vystm9\nB6gaDuD3WKl+BpRaalv+/eBI600qT7YQriIHHqQhWciNGAgm1LVCrEPLRtecwU3iulp7LGwttUaN\ngmz3uI0qHlnxAHwN+RqcTCkPEYkCDGiiQRi+DtTvVqALFtiGQZErHlDbqkd6XorMbARVvpuWWFT+\nIwRvhgMvRO6cOfq5xtiJqY+WZ+pbl3XGzmss8vviZcvDfdOC921yrutOn2rfuJ6onVF4NQbja9qr\n+zbf13McuLB6qORlcvp+BXfiy19oPxudqR+j8JL023r+bCWbWmc15pUH6p91WvV3QLMuEprLG3X5\nfaej+r54RD1fyCZbx/AtNfTcw3eU6Y6+rz3gLXxHA4RpHLRE4bbee/EaX9OUD2kstJeco6jp9uBV\nAY3n2tgyvqQAsnPviAXYGFPaqpgBCmkxCx5CbDp0jeorOIQFijXtufq7GLr5ehNiHsSS8NKw9rXY\nM1g9TgdUWeNYCztNVIge/8IYY8zJM/mJGGpMEfgxtnY035Y1rfXdF/ptMgFNFWANa7I/a59qDj5N\naW5t5IVg3v89oZ6S72jt32P/vtyGkwSuqO4STsDn8ADl2YNMWG9Y8wLULzKTX3/4+a/0fvxVgX35\n5rfk1zbY/+YqoEYteDviKIyxjiThqhqB3h12tE/3FChtfEn+HjxB8BoNTrWXOUctNYPSzjvvau9V\n3NP6Nm+r3/so7sxAlwU4rVEEIZ9Jg9ZLgiJ2NJ5jlBojxa9RWTcplbjmglOB3zTiIYm4AIXeMLxX\nY1c2GYdny12CPsyxd/yW+qGIWtef/w//3BhjjAVaI97/d8YYY/Jltef8Zw+/qsvzZ89MNJk0D45k\nAx/+mVSR09jY4q80vy4mmn+VAmtfFj8DWveqw+mGvn67eGqZoUPV8U/f/2fGGGNGZ7KRR8+Ephpc\na40Pbmveujwvn4ELxtb6kafNVokTLczzEKpKwbXmUhA+zXhMY5ZnDMNr3Vdao9q80t///f/+L4wx\nxvzrf6E++ug//YExxpjD7+zzHLV3BnrXBg1mw7EVh49uC5W4eFH+bgHqeOCp2YV9Thm/+MUvfvGL\nX/ziF7/4xS9+8Ytf/OKX/9+Vt4qUWd0lo13VucqAUbZ/5uqsbdLA7I3++RPOv9VWPzPGGJO5RKmg\nq8iYW1VW8TNLUdGjhTIq7Y4ibMcrKSQk0Uu3OWcXayuqeLW9b4wxZjegjGqfc9aDTRRmdMTMHH+u\nKPg2WajOA0VL42SQJ1WyWjYKFwNFCBNNRamf2YqY1bcUte2eKIq5HoH2WJK5bXFGGsUfZ6yo7o7H\nGK7mm14HPoAQCgg/UxT315y9rn9aNiWig5O6EBgeYmUvp7+7LmdCNxRBv+Rsa/5X6vtRQBHyYFHZ\ni4KlSP1pXFmEbIazr22djYyu1CdhUEYL1DAabyaGYVZ51S+B4lYQ5uwaiJ/3vitul8uXygQ8+yud\nHXVPUXj4W9U/SjauxRnVNaocB+8qK3T0njKd7Zb+PpwrHDrgM0V2fXyt9jz5ROiuWYsszmeoZLiK\nuAcvOH9YV9S56BJVJnM6a+o9Tko2Uq0oM1q9p8zFcKj3lmrANTbV3/uHGjdrrfGZzTt86runVrXB\nXEiixBOAg2COusrUgHwZaVyCZLcWrxStHgxPdP2Vnrdwdd/rHnOIs7VBzn2uR6pvEgSVzXvPzpXp\nMXD4rMmCxohyp24rujzivc0r9V8+eHOlg7WXEe0ydqBwzkEDzVFImbs6b7uirwJh1T0e0kTKouxS\n3NeY5b/iDEAFAvWh6UBzwImpb0zU47ySzS9QaYrhB6ooyvRcZV+aj1F1aqhvdn9fWZvytfzN2TW8\nQwGhFiYN+IzmmoOLgPq4tKH6pTlfXSqjxgGXgQ3HzBwllwlKD841VP9L2WIRDoHiFsz/X6CQxd8d\nsmTX1y2u1xyIRDxuGNW7UoQ7K6v/JzhjvFx7qkQgZlChskOy3eGF/JVJc3Y/DK/SRONlUAXJgPpa\nkxldBVF0uGGJrVGaQZltwZnkDAjDEdwVsbza5XH8kEQzowlovRP4PoZ6TiGr8XAMyCtX7Vric2xP\nHizLWWd8zOVYc2nSUbuHq4Vxu/In8QDpmIjWCg/1FKdPjYtf2dWYuwnUKAKsBVldv+QMfYq1ottR\nY9LwKl0/Vx8/J7t/hZ8P8F47iq2Q6Y1tkQUis+l6iMKMslWbd8lKOSA1shrLSJS+x3bLm6rvHEUE\np8+8Z+2zpvr/6kq2H9lRe7brstHMVH0bjdJOS3M0GNOYrEDaOPM32+LEQUKW4PupoEriwOG1DuIL\nUNlzK3wW8AEj/f/k+YkxxpjxpfYSywFoAJCeiazW2aOPNHfr2/qeyKnfeqhnXF3KR7Sea45Mr5gT\nlgawBldQpL71VRtuH31gipvaU2XjHnoPNBZcMtNr1o2JxjeGAkZ6k0/meDih95xfqx3Xp3CjPYdL\nranxCUywQ6ZkNANnWT1tkiDOittq2zLl+RWNufUaTpke2XdQBFMynXMys+OOxtY5Vp3mzKfwprdH\nkG1EQbXW6zL6YH5fn0zDJWf9o3k9B+GYG5dQWg9apmXLmYTaN4DTrNsWj0X/Wn2wVYNf7b7G+pI5\n2pxovxvEz0e3QJddyXYXoAPyqEdFttSuAnxEy5i+D0YgY1AVqm6o3UUQSbMnUuucnJGJhnMG+hBT\nZX8ZMagcVVCNI7PtpNTeLqjgKQqXlyi6ua80Z7dWKfohTUdp/UkU4L0q8R0uscgtuHmuQP7ENP65\nkvZke/iuZl/t7Hyu9y6bqHDBNVPYRBGIdW8ZgY+ryv77Dpxgxpj9H3xgnv9CiJvza/k40wN5xbqY\nCTP3d/m9wT5hZU3NTYtj1CeVDb07HNTYhvDLjYcneifzr3mu71fw2pyfa76tk6pbOamxnbVQR52i\nBAhPUBDuQxvlmkxKf9878Pg2mf9DePZQXQuAwnK93xppuK+qPA9urXlTfdqHX28Ol9XI1diUtP02\nMWwvE1c9tosam/UUDpMMvEGgHWz24dPXas/5M43N2alsIrxSfXJbmjtZ/K0NKc9QrsOwxTDFtGxv\nG3Wp8qbmUjiudsdnGoeNrU2ep/pcsMcZ/lr16A9lGyuUyPbeU7t2v/tDY4wx9Xvyx5cvLv4/7QiO\nbq4aaowx9W/p2EXp2/ptNwKd3Gc9jNnw+aGAVICXr41SUQHFuTHrXigj+4pM1H8//l/+N2OMMdeo\nva5QQfwv/ug7xhhjmq8ff1WX1ahjdn7wR2bxUn3wyf/9t3oHyoBh1DKjqExugjR8+In2MYO2x38k\n//bwN3r2YV5r+Z3/5Huq2/fV99VDjZH1Y/1m6xdliwcB7b+cGEiUqfo0kgGVZKHsuGKfCjLOU9e7\n7IDq/dnfqT7YxAd/rNMAk4B+ayVB0KRSun40E6Ln+38qhMw3v/sHxhhjAvxWseCFskHkj8cakw77\nwWJea3Myq7naGQop9OpSfjfNb7bqHVTsfkvxkTJ+8Ytf/OIXv/jFL37xi1/84he/+MUvb6G8VaTM\n+0VFlA7e4dx34BvGGGMmQZ1z69iKkJWvFSGPzeFouYCLwFI08AL4Rer/UmRq40Ndd1VUhO8irueX\nMoqsBY2im9svQS9wJqw1ViRunlR0tz5XxDx7qKiuU9d1cxjP40QtFygT7cC0/uxU921zVNmuKfr9\n+ktFQ7fjijR+9rEiiztB1Xt6hwhkR/WdRnRWuEE0+gD1kGEBlZOniihyTNLE2zrD1rqjqPbOc0XD\nN+tn5kVUmbNUWxcXSWYE+oruNR7o//m+3p3nrLt1R225bnO+76Xa8qOVznQWLtWmZQ6W9oayQvN7\nnL+D/+KgpGjpZoaQ+g1L2lGbAwk+yUBkdhXV3NnbVz3bGtt2QJ2+RFFr1fK4FkjhjfX3RJqMQl2Z\nhGpBUdPMNucOk/y/pM/OiZ5z8XP1/fn/o+iwy5nPBEo5lZoi6jbnuUOgqcqk6QI1jdnglWywB8v8\nqy+UgYxV1D9FzqsXD3X2tkRmOoYEgAPiBACUsTxOl6nqv1XT52Sm6KwNR0I+zXNQExmd6++tL/69\n+g20wGZe9lDj/H0X9EdkJFuPcG7fLivynt1X1iuX0vXzsFzLBIWfsaX2jYgu7xE9/+h9ta+X1P97\nDWX1XPvmKIhgVu9KzzVPeiDr0jF1Tvy2+v4wqmyLm4StneyDG9SYrB3O6YIKmjtk76P6vzsnczvQ\nnEkxxoEAfbkg6wyCZbOsuTYjKz0g0h6p6D19j/sARRwL1bcFHDWJnv5/eCQbLRT21d66bDXp8Swt\nUUqBa6B5BSv+QHNvBGeAjeJDCLWPTFZjlsH2l67uC3BO+967mtvXJ0JRXZ0KBXdwR3wk6zm28UpZ\nvS9+QtYFLghE40yBM8ch1DYiOZA5IGxiaTjBMqhDkQUbzMlApFB6AUXQaav/w0PN+ZuW3fvKwLpL\njVdkSU6CbOGMzP1kCuqirnrmUEIwj5VNu7C0PrkvVM/ZoeytgrJFmEx6qw2iCvu4Zs4fbOk+l/Re\nkv5JJjImcsTZ9aiXVVZWx61xtj2l7NRVD8QZ2fA4qKXYtvxiAmRKl8yrbYNKDWqsyvta42JkwWOg\nPGvYvjWXzeXITgVi+vs6A1qprrU7gXJCjvPa06TGptQAXkSmz0ThMEERzT3Q/ds7ypoth/Kv1ish\n8ELwCFWyql/lnt5jyATOL+VXmsyVhaXs3rTLOXIyvomFdzj/ZsUl228y6o/rBWoVoG2DnGuPVFX/\nAqivTAikClnEbVT0JmnZ3HKg5znULwEXwexany8bJ7oO7p0p3DuxJXOjonX1qKz+WkfwXWMQOv9g\nJxed2qbbV6a3Td5tPgM1+BxOsCt80gvZWQRFt/RI4xQpsF5l8KV19ctGXj608Kf7xhhjQh3Z7qQl\ne5xfgrgEQZm/kzDxDSEFsxsauxB+wXLUhxYo2/KOPkMg8uw2vGX0VS4P1KWOMuIdPSi5i99mrZs2\ntIb2HquNnSvNgcZLOLgioK3wo7Xym9mIjXrdeqC+XIGYi6M659Knk6Xak4cnrfQRCloRjWU4jv/v\nqr2Tp+q70TPVP7DW9auabCmK8k3hHS/TrM+FBdqCtTkFoiMWhc+toXXl7LE4ZYKW9jQ7H6n/kwd6\nTpRs+7SisUtvqF/y8MK1B3qPfQZqa6n14vIz9UMgiI86gDvrrvbfoQS2AZLIjYOiqqDcA9ruYqDr\ngqBwZxfyt2bCOgEKpN9hfFmHHfzn3kfyacGI6tsDRdKcaDyMMabZ7Rsb9ZZEU/3fQxVvhLLakj1g\nPY4y0B5qYaAMb1KiEdV1DldMMIJaJvvKLRAs8wXcKax9mW3Nr+20+noHJMUOilLXV7Lh079XHzlD\n1PDSur9e0/PzOXg3dkD+vQ+yEY6WEBxZi2fqwxe/FLrLgkjv4H3QEUfq0x68ddNTkDYpxnqm9x+f\nyIazA/md2rvqu71vCgVc/8egItinI8Blhi3ddwFaqUl9li3NhTg8o7e+IT9afl/1sXB4oTPtw3uo\n5LlzEPpR0LXw9M26jPGJ1okB3DTVLdlqJocqFX7OYvxijNsAZGbClo0kyiDh+T01tWUzARfU9g1L\n+6XQcnFc0ILfuFPmSiHjPV+2PANBmWI5XLAHXMPRlg3p+mxONvvzj/V75Zd/KZ6UO+9JpfXeA+0T\nxuHkV3U5+OB75vvff998OtL+5jXKrzOUX0sH8uO7a611XXgsr+Eg/PafCEX0x//snxhjjPn0xz83\nxhjzxd/oiEn7WGOQiAsN1QMV3wHpV6nLNkeseRHQVtmY5kLUpq4JjyNRfjTK2OQ+lM29B1zz0wlq\nmg77zpWes0Ldbg4fmoF/LlmWzXzvj3X6Iox6W6+jfdsIxaoi6NlaEe4ckD1B1AKv1yjJLuGginFi\nZ6zPavd3QzN9pIxf/OIXv/jFL37xi1/84he/+MUvfvHLWyhvFSkThl/kflWRtt+gF14to0AxUCTe\nDcCSTwRsXeesJ1QEOc5Nrz5UFDM2V5TXgXPgu/f0/BYojkBN0c+Ukm1mZSsKXTKoMcWIunbh70Dw\n5sOcor2tsiJ2nzX0/PsvyUpViJKuFG1+OtYL8l+qfhbZxuev4DKAj2VCxrzVVWQtElDkrjNVA9f7\nPLaoaGm9pIhlZqoofLKg9l3UYRbvQCDwTUUmJxdZY0EicBCCu2OK8grqFAGijZdx3XP0JVnw22Ij\ndwqcoTzTs8tn/D+sSHe8S6SfTOviHObtiiofb0kNaKEA7Y1LJKm+m3B+MIiKyPJzceP8Gnb1cdvT\npoeJGx6HIGiJGNnvXEVjVtshNB3UFHj6RBF6C+RQdB/lq/JHxhhjilVlk57OpaIUQv0kBTInWdWY\n1R4I3dTvamy7l0oJDC31dykuG83skUk91Rh2nyjz8aNTZbJr+ZQx//lfmMFzRWmvQJzkEopOJ2Jw\nPAz1/jjogtQCtBfn8104DPooU+x/WwNQKCnUfvFLIZ7GoCfCY/VbpAibPcpn9lDPGaxBwsDLsbtS\nO6qgKqDpMMm25m6F86hDMrDNrvo3gDLSlGzoKqL31jdQVrPga7lBicEsb6VUx42EIvmroNoQ8VQj\n1rLxAPwKk4DenUFZCpCPcVEUCKaUSXQcFKgIrHu8GBP8Ux7+iXhBz8nV4NPg/Y2+xvASdbj7d5St\naNknxhhjZi1F7kNX8nuZmuofBgXhkNU6eaGM7/WvOR88gc8BHgvAZCYUB4nikJEErWWBlkhwBj+V\nhg8IJYE+yhBBztDeuqcMb/uhbO8aROKdw31jjDEDOAOCE113+0D+1QThaOnDVzWFZ2ms901BnQ1Q\n8chv6+9jskOZiK7vzXVdZkNzqkB26Boei1bv5mf8jfk60+HC9TUZch7f0lwJohw0grelihLOCkWJ\nc1ftTaaVvQvVUJGC2+ByIXuYnMJZw5noSBwoI+ivJJwQHhfYlM/RcGaCC3jOErLR7C1UeV5zxn+H\nc9UT9VUA3rRIWPetUCZJZPT3MBm0BJnOSElrmnfmfzkiw8Z553xBbVsn1dZoCD4muLW6tmyldSo/\n1P17/A5oq+Sl/HSctSy5gn/HBVWEeoX1QnNsHvWUutTXtZX8WWDiKaGpL9MjZTgr2/Ij56j/JMuy\nvf2UEHfhI1Sm8I9r/MtNy5zs/2QMZ9cJKktwZC1Ifq2n8u9nr+W3ZvDYhRjzUEn+bQtOhUSZvQfo\nu9G5+u/qmdbXEFxg8V3tdar7Qipufai1PrGpcR+dyYf1j1n3nsh/T4Nf+8vB67kJkiU0+ERP6Sh3\npPGNbcoOIh+pv3uoQY0YLyuldqQr6t/cba1/sQgIyAvZRedY9Z+e6LJ5TwAAIABJREFUyl6mpMBz\nJVAer5Im2NEe4dFz1cUGRRP2MooJ9VV2pHmRI7O5YHs6vOLZl0PerbrG+3LYkZca4wDXe2ikLupt\nwYbuS6OuFqnCGYISTChXMm9SLOaMAQVxGcPmI/Bp7KOYhs26CfZhZE7Lda2JEbhLIh31x2AsG+qd\ngcRxZIupbe07o/D+eApoKWypCFo4eCo/dPFEtrlgDU2inLZZ19jPQNQkUROJ35VtBqOy+U4PG23r\nunocf8ecmLzU87IR1if2AqOexrm+Dxq3IL+X3Echk7negi9jYHl7ARCnIFscOCGCrzVul8/UD8U7\nmku1O6pPYAS3GHtWF5WT8JZ8m6dWNQJ9Z4wx7S+axgaBGge9XIK3MIfS5BwuSYOqSyIoW14nV+am\nxUVFrtvXPLHwo2UUxCIgY7KeSijoHKuqOnWa+h6DK2YdVl+H8cNB5o4dgs+SKofgjrnuw4+GwmKW\nMclusZ9Tl5rPBkIx/OZjqSTl9kDfw695eKDvmbr65jqusa6jRDUJqY926ZrBlDmKguUyqjHbAXlz\nBYfZ9JHGZNTRjdW6bDABynQ9kP8roIyW9HiBYuzvG/LLQbYAYTgsZz21v32s98xacOHAWzfpaU6m\n+am2nmjsnQ3NlXxN9SzWZGN9kDE9OG+OH8v3uCP1Rx7kUTinz0wQpOUNy2isfhrAG5Xb1nPiI/19\n1FP9AgnVP17AV/R1fRjOtwXcatOF6lkHifWNoq67j4LoHH6V+XPtoWaDs6/qYo1X5tNfvzA5kGyH\nexqDcBblJxCGgxB9eQZqKqg6lPb1vZRUG9491Zr8yx/rt18YLtUr5p+N0tS3P9R7Qsl9Y4wxidCI\n56oeF94YTVgrL1SPOWt8mZM2RQeeJPhHS/flh11X+9fRlZ5ncdoiAgfV0FJ9LOIFs7Hur3dlO2Wj\n5x/swT90rnrMbfxvAuXBomzUtT01OeZeTvv9CIhP05Wf/23FR8r4xS9+8Ytf/OIXv/jFL37xi1/8\n4he/vIXyVpEynzUUWX95qsjTYRkW9IGipT3Oz2/Fdd21o8jXxoeopyw4u1ogs5D7x8YYY1bQlgT7\ninRdtYWqWHDO+8ELRd4arsKsmYn+3yHr/yXqI+2wInwJzg4PB4qi7u2Ku2WbjPqoilIMLPH1iO6f\nLTiXbws1csz50WgJbom4MvH5EpmcpTI2Z0NFY5tZFCu+PFE9rhUl/smKc/v3FaFMz+E+SOq+50Wh\nIW4TbY0nD0w1rCjlrK9nzqBJiKzUR4ufE8Hn/PcJWehxV38vgs6JRnR/8bay+ZOixmTJu2dk2/dC\n+nvrGYowOTK6g5sjIIwxpoO60ZizqHnQB+ZMz3tho0yzgq08L5tI7ypCHA3oc7Uhmzk60hjW76mP\nzj/Rucmzn+lsqoXig/GioWQ6tpKyxaCj9wfhSpgF9JmNk2GIwVtC9mzWJtLeVmbg2lUc9Oib4uU4\nui8UQLpJ9Pncg2+BGttWe9qw4y8b6o8ZfEu5tNq3DYeMndfzeyec9zxXvyRLIFFu673lkjIdvScD\n3q/nO5x/NKiNJHaV6XhwoGh2+5nsqPMapa+w+qPZg8/khf6+Qm3k7odC0Nx+T++9H/+uMcaYi1dC\nHH3ylz8xxhgTcjgDnFE9w6GsuWkZLckmEGP2skXhQpy/w7tB5iudAiVgkZEdESEHqRcFfdAfw7Z+\nqawMyWyTQwHGCaL2kNA8zKMysp4ri3LWFAdLp6msdhbFg+1vyZZGIFAax3JYDXg0Du/uG2OMmfb1\n/pMT3e80QUcZbANiqEBY7bfHGotVU/UZkcEMOuqPHFn4fEz90Z9xxh9unYDR/UVNdRPCthpzze0g\n6LAQqiBrCI22q/BQwD1g89ydMBwEoBXWQ87wz0FfRFCQQJVqOtP3FueiByHNnd37+JCY6tOE5d/p\nogx0wxIlnTg0ysqVQ3AogNKyycyEUSqwD3UePlaQX05d6r0bR+q/IJnZGBmWWEn9ctYhsw96wV3r\nc8WZ6vAO48c5dlcAKFNyZiacVN8EXXhteqikjU907Vh9cvYaFKWrOkTgjzApuDxintoE0I4AaChU\nJiJkXDf2D3kP8/dC8zcaVBvclfyNRTbMSWleVjZV9w3UlUxKfTRjPQlN1Y4Sqkx9+IGyRV3XgXOq\neKDv3WO918ro71EQPquA/FcJPqgoqLQAmWfnWrb1nEU/eKK5Wwpo7keTbyb3l6F9uV240VBLSYN0\nbHXIsmVAecRAiG6SrbsDyi1NJvkCxRoUhRYDXZ/akd8vgfoNogAWLapfoygUTddqz+S5+nV44fFT\nocAIf9Ny9jUH17jTM3NsLxFV/2bKnNMnwx0A3dUE0WjDzZNMay5vHum+/H21JwSXmTVChXCterhx\nngePRyEL0ompGXQCJmrrWdvbGtMYbQvUIN2jLuEOKhcXauvgRPuy8Ut9t2qgiHZlCylsfQGyYRVQ\nX8UDcDQxr5N1OTQ3gc3FUCrD1tbRN0NTrdk1W2Q+G59qD4JwpcmjFOOgYhSGhymR9Ph3tH8bgO5N\nWxrzJKjd8h6QQI/jq6J+2f0mqKuJ9o39V6B7p3r/mv3oEJUlB26dzC3VJ17TfesdFCChQdrZlc1H\nKvrD+GPQV2dan568lj+cgUyJzNTPds1T+NF9ox3N1cgGSJcN9o7vaC7Z2F7/N5qTgX6Y94Boearx\nTpU0N9yh/P6io3b2w1ofqj/Q/289+JbuB3IfL3loab2vONL7nje1tzPGmOEvr8yyq/4pZlC92oRP\n6bZ8YTKqubWCW60z07i5cAbdpCzwd2Pm6RoFxx6cVEXUJZegAuxT1jRQmfOZ6vjqJyjTsKaXIpo7\nm7e1NqUOZeMuHIpXF9qfLVbqE8C2pt3G73+J4lcW9CwcLLduq8+Sm+xHU3pejzV7AV+m09f878Y1\nxrU9vb/6x9rXnT6Bc/FMn+MT7aP7Sdp/obFswwvqws+Urmusb93SGFighxdtfq/AGTOhvtOefMKs\nx97Bs02Qlc9Ag0VBsux9X8o7GYc9Cvv3Nbx086XGet5WfQtwplUqmptNC661Zyeqv4dELIBwRCEy\nkb25jRhjTCwJ2gv+v3FV9YuMNGfz9EvaQ2OgzpjfxNfNdf1qIbvpoKp6din/nGAdjL3L/gAbbjTY\nP/QjX9Wl1++Y0b96aIIoOlYrWgtGYdTYQAdZ3j4RBM20qTX+R//6PxhjjPnxf/d/GGOMcf8nTlWA\nTHYOjqgzioVB+H1AFyUj8lfTrO5bg3R79AuhuUqo05Xh0nJATD/+sX5LfPGFThnUN1S/BL+hoiHZ\n+iip96bYM7n81ssMZfvrIpyRKfVdn/XIgOzptHXdcKp9vWtzIqUEWtjSXF9AELRYqP5ZB+4rftvk\n4Kj8bcVHyvjFL37xi1/84he/+MUvfvGLX/ziF7+8hfJWkTK1kiJZnZrOXM0LnOFKKpNRMYoeDvKK\nnu56ovRJRabKKPN0VooOVzmP3ywrspVqCqmymYAbxj3R9bf1nEpDEcGLBLroS9VnF1RF+gSelRaZ\ngSZM44/1nMoHysAMooqg1Xu6bwRHzWpLbPfTgM4ExzmPny0IPdAtKkobIStIoM1sHopxffcSBvUN\nXX9yIlbsOhw0I8552xeKSgd6irElO4oINreU6VinCiaUA6XTV7YpzVlw76WpM0Wg2yf/p/4M90DR\nUnTTier+Gao5qQqEPjG4DELqiyDogRlqHveOyLDCH7E8fTPFlDRs9TZqIhEymQ6M3NtVRVndqdp1\n2UEZa6G+G2NDzjHZmQPVqzRW+8YwgM85f12r6PnhvKKt9jkoipTaWzCKgl7NFP0MwTUwO5MNPg3T\nT9dkf1bKADtBos2Hen71gSLfUxi5w104fuCbSFTQtP9ACJXstf5/+hux5DtkDByuz9Vkg6Vbyqa1\n4T0qVJUBj+fJCjFHLp7KNlagQdJkPGdhjU9vpn47jJBFI4Jvnep5DmpW12SCbEvfV0vOqo7Urw8/\nUb9vnOs9HifEsEn27UzR8nCGs65z9Vc697ujyf+wROFScVDRGZE5nDRA3cBVEoVJ3w6RleIsqRsA\nbTBSXXtXzDuyI3GjvtuqkSGAU6RnaQ6l4EBIc168faFM4/xEfRPNqm/yh3ADkGUPkC0zTf2/xVnT\ndwNkLGMayxy8SmHO7DrwGK2mnNteq29noBkCcAPk4NapbQgdtoZfaQACZxEmU8CZWbMJAgTRiyWK\nXdtRze1fXP9C/TJQvyRRhDl/pkxk94UyFVHHO/eu54Wien7FyDcUsMUKPE2LqeZsB06Ffkg2sQzg\n1+/Cc8IZ5BEZ4FnQQ3XdrIRQbIjBwj+vyKYXcDP04QG4nuj5t1byu2kSJh3UVBJr3e/xdASr6u8k\n3Bi1exrXy7meO+6rP4pwk5VQKktanNVeC4nkTNMmDGpr5KgPgnF9PyTbnq6CGkJ9x57D+RHWZ9DA\npxDD38dZW0L0fUJ1LuwoG1+F6yS2pevdidqyC2o1giKBHZdRnIO0XEPAdGzJRt6Bq2TM+/sjIQOz\nLigkEItJ1JQ8BEppT53SQ/mkgOrc2VDZsVVfc/lWUn3auNQc7T4BGZmUfxrBLVBy1S/nEfmp7ObN\nEXfGGONaem4LFEPziTLLqx78QnCmFEpaB3L7ate8h1rTZ1oXhnC29T3kEOjfsINSTxd0H6iDGRxB\nlYrH9aZ2u3DBOUm9P4eP2Uf9yTmQjxg1ul+1oXS7ZApb8p81VK4MaN7ulebU6LHGZw6/k9X3fKH3\nf9X7xbXm5iwMSg5QSRaUb4VxCT2QPSVm8PGhLGZHoiYAl0ja4yfbYM3mbP+yK3/U6GhNmrAmryN6\n9taR1vbYLopXW/qM85xgHf44Az8ZKIXRC/mTyZme1xzr82yhTGcIdGkhlzBvUiJjvcdl/xmBe6oz\nVf2rBfglsBEXP5+/rT5aHYOA/FIoiMml/E0WpGE+A4KR5xiQjOOpbH+b/eCTS9oJz0Ue/pESSjBP\nQIgEocypf19+PF0CqQkvk5c1r8DFkIU7YtSW7zl+dGKMMSbBniCLulI+pXXFvSM/X8Amgobs/5p+\n7+EnsZ31QP8PRtWePNw60H6YZ6yf798VaqPyHe3VHEvXL/F9E1RMHdT7OuwpygaVlr76Mb6ALM4Y\nY437xu3iQ+ZavzfhVyrskvnOo5YCesWF6+ZNrGSd0vxOw9GVR9Vo7mrMlh3ts06HGoMEyoQ772q/\nXcrKL7dP5E8mbdlymP3lO+/o+iLqdTNQ8e0rPS+K+lAYVEL7tdp6xZ6lBtff3gPQ/KjxOMy5WUs2\nbZ9oTT+H0zC6BBV8C/64az1/a1P3xWlHEcR2x0OKP9RpgcFT2Xq3Bf8fimyOpT6eDuQ/BqC0rn59\nYowxZgy/UeWObNhDX6UDmiMzSGIWoBqWrKNRFu/9H4jfZBsb7TxVu4YXWu9CC9Vj0NJ723B9dUt6\nztYO/fQn3zHGGDPBVt2x6tu5hEPIvjnvkDHGlHLq97WnyEh7UqCVr1lHbFRS+w355+aX6q+NEnxN\nZdlunm1zG1U8C37W9II5COJpEYWrZ+tr5blUsWAi4ZgJ8VttuNI9UVt9bUXwe2Hta2f8tioVdXIk\nNFKfPWOvX0e1KXNHqK4l/n62BjGc0NqcnqvSgYnW7AQIQSeivvjeD79tjDHm+3/yA2PM17+JPv1X\nQub86C/54QzfZdGWTa7Y75skNhmULQzX+h5bo3AYZs0a6/5QSmMdneIfGdPFYyH58ndQ7K1rHxed\nq72uzW8luMaWZXiJUN+s8BvWLv5uNJWPlPGLX/ziF7/4xS9+8Ytf/OIXv/jFL355C+WtImV2yL7f\nAu0w4/z57EoRrWxRUcoKabAz+ELil4qU9TYVPT4YKcp4hfJDIK+orVtX1r1HKj2xQvnhUtc30KhP\nlxTRG5GtGl4o0v7OoepR4vzj+S4cDZ8p0jV9pMzxyFFE7PV7ilpvOYo+hsqKehffUQRwL/ihMcaY\nOXwlsYqee3Gt6w62QJNk4aDY1PtXYfXT/p9/U+2knrFPFam0/1hRYPNS9XptOF/vKAv25Fd/ZW5f\nKEL6sqM6FnP633TAO0A+FODNGYX1aUcUUb4cKyp4a+lxrej/5arun7moLeQUaS609J7rtMZgjmJN\nYfFmSgeRnPp2g0zDcoDyTECmm9tWSPn+XWWPPv1cUdB2VxFld6g+bhBhbp0oQxhG6WaOnMbuLdlC\nmXPG04X6cr5WFLZlo170LkijI0WPJxdk7cOKljoGDoMN1SNfVf2LVUVXt74Bu3tZ33/yL39kjDGm\n/wx1KldR2XBR7UmSzaugEDA8lm05RaLAaUWZexCezJqytcqm2lEqkxWbKMPx5S8fGWOMGcBTEjEg\nVgjPemitVFbtuH6i8W98qn9cHStabNNvYZRqMnmN771v6pz3aMUZ4keao6MreEQGsg8no/Yk0yhi\nxJmzK+xxcXMUxJrYcjgL8z2cJWuy3v0G6hc2thNSH8dQJwomdZ+nouRlgcp12UTY9rIJyhQsOStq\nrTgTD2dLFhWfMc8PZcjccq67tKnnjkmmjGH2z8Labr/QGA1eaSxzKLgsi7ovlVFfLUlXR8PKkmfC\nmrse8iYCIsXh3PNsoT5d9mSro7UyA2sygC71zibJMMbIql/ruuge55J/qvdcDOU73jlQhqSDv72f\nI6OdRGVlDXcEKImCBQdEn3a25EsuybBEN1FnAn0VRIEoUSfrw7ly10IRJ/FmOYWXZOumQ43fEsTR\nOqW5HiyqvyNB/d1qkCnBFBvHKEagUJNF+SKC2a1ysgcbCbIpSnfLnKcKA7oNhEyxo+fYZLwtN/SV\nktZGHn4bbDBSRTEMDpGrmfxqzCVDOJB/ykVlq8MIiiYN9bWFyoOb8ZS49LwpKm2ztvxjKqK1stnS\n/B9O9L4MSgcB5q0Fx0oW406s5IdaKA6uId6Io94TCqIwRRZ93Fffxp/rOi8Tat7FD4N+GGdAbHK2\n32tHMIciwxz/A6otlCLjCCIw+oaZy1heNpAgm7aoMJdAHJmO+nPpaMwGrxk7OLRCNc69b6jd9bL8\neHgFrxJ+2DqVbQzP1Z75hXzTwJa/TG7JqLJHWnfLH2qPUCOT2gXdcP1EqI/+2fVXbRi9PDdD5kgH\nRTD7ueeb1E8J/OsSla4pRj6EMyxeB62MUtutI60nblp+3kMbdK7guzrTHLbO1a45XA3xVMwEQLu6\nr2STc1RsoHwx4YxsKFvQHw7gsUmMtKeYvVQbLs5Vt+u2bCd2pesXafXpOgKiecLZfnh8HFC7UVST\nEqBJt1AMcys3R2UaY8zQQQkFRPdGTHuQCchCA9dCrsScONWcGL9WP2RnmgPlsGzr6WuN4SKuftm6\nLYRI5IGuX5Hd9viMEqB0XfiFTj75whhjTAGlr40N9d/29/f1PsBiTk02dfSB/HaTsWz8QrazfK16\nQX9i8ktPdUjtncbJMFfU76OI6lWGQyd1CGqrpXEyqBMuQfmG6Z4ZHGvzj3VdEuWdakLrYGul/mrB\n+VjY1/9XIGOSR+qX4p7qd3kGKm3koTK0l8qHtNdKsz4bY0wulDGRW+qHfg7ioyzrONxf9ZTmWnJf\nc2j0SvVZzm7OTxVmLS3XZCMx3pEeoVralQ2bCWpvc82NcQebeqA6vLcpLpREVXPEbnEbthJuqs6e\n3949EmJixtoeoc5uGBTTULa58+G+McaY+/9I6N0V68oFyJQpHINXcMMs2VNlanp+PQvqi73I8Sv5\nLWus6wIgr5N52XjGozbbl3HNjRoScvGLcGpdP0Kp8jFKZK9BDMLdWJ7IiOLwMFVv67dgeqZ6tVAA\nG6Pwlchpb7KAf+kVv41O/0ZoLJd1qv6e0Bz7BdnMo0+ESB89fE391N/3fv/3jDHGHP0eCM9LvW/5\nc543ezOeuwXqR2Ps4uBb7OmYC1cfC0138VSnLmJFuNJYx0dw6wxQhtyZ6L5oGYQs6+MaBLyHVsvC\n6daGX8UYY1YrYw6/fctkw5rnMxf/ci0bja5k0yE4Ztb8BouEUHAsyO/cwYFsRTXPJuwdRqBCE6iy\nOXAOzld6TyGn+dyHVjOUYk0bybafoGI6OkEFaQo3323Z9pJwxiopf7GIMDds1XvFnifJWm2z3wyB\nRI/01K4x+/YQandZeJU2szrRc/cP+Y0DX93l38tWbUv1ilqay7OV/EdmBfLOQ+6tfjeHmY+U8Ytf\n/OIXv/jFL37xi1/84he/+MUvfnkL5a0iZVp5RSUvLbJtHWXhc11lHl4U4EbgnLs9JiuIMkT8C0WV\nTw4VMVvGdX8srGhieAXaYQHDeF6RO/tAUckeGfRIzqPTV/Q1t+mRVCiSX9vX13BP9XL+0FOg0T84\nKmZStqKZ6anOCY44l+5c6X3NLc4B3lZEcNDX87bgeihNFJV16qAQ7ipS15qp3g4R/webitA9z6vd\nB2QeZvuKXm/NFNUdoDefr1yY079D/SEvtaGTobIlD7hmBdeHVVVU7xtkvC5SQvfsjHU+2R3q+td3\ndV33S2Uy6yVFJcOcq2vYyiovbHXOO2RsL+yvM3o3KQ5Z8zHnk+NTtObhHmm11VeNHUXkXc5DZ2Jw\nlBB93SV7ZaFSYZfg30FxJ06WKZSGE+dSke9rslzhhMYiv6f+qN9XZP3VT8Xz0xyrvQfb+8YYY4ZJ\njfXVp+JGeHGhse1NlM3ZO9AYleuoQ72rfuw+hwMGBS8H3o8mvCM9Q8YirqhsMa56XbWFaHn1C0Xe\nXWx6pwyRBepGfdjxja32p/ZQ5NniLDHn+2eoWTUeKgvXmao9paDeF+XM8HJFxp05vCCLtgEyyuZ8\nad8GmZPSc6u3pMZkWxqfxVJ/D5Id9dAHNympOJwwa7JCxX1jjDGFtGwgi2LXIgGChbFPJ1BRQuEk\nPiKiDlppcCKb7TdX/B+ejQ1dl56g4jRBkeALjZ3rIWO+KT8w4Ux+DEWURVcRfy+Ln7I1tjtw1XTw\nS1FLn1P4Njpk1WZRMpqohiSz6utMXHM4t4blneyYs1A9UyjyBELycx7P1DBC3xvN+cqennOBckLK\n1vWVHc4Wo4TWX6heFhmGq5GyUSaIrwmoHk5b7Z4OUGoZeJwxso3coZ57gILZi578a9ZWu+YtXRdw\nZRQ1MjAFg6LADUuxrn4IcMY4BkrMIVu0AFm15Cz0ZVzvPYx9zxhjzO4W2T8Uf/I5eJZQpJvDnTFK\nqH1J6mvgfeoP1V9JciGBuOozBV03Xy5MaCkb+wybMp+jhnQbXo6E3jlawo0FOmziyDa6qFGk4L1Y\novYWXGp+pyKqi+fXghsoi11BJIQYQ2bMHCGb3IjKRucZ1tY06kdV0AwLtSG8UpuqZRQW4H9Io0a0\ns6nM5gFIECclZE8MdFJgAY8DCTw3Aoo1qDkT2YQ3w8hWMnG9f+7C/0SWr4Yi4dx6s8xlb4CSS4Lz\n5jnZZigGfwjcajHmYCAsG49U1HHhDWAJZDTD+AKLPcgkOOW5GuckXC7Bot4bzDJONe2NcgX2LMz9\nz89AHp6rP9ZtEIj21yoaU8syoSv123oNYnRf9SrAVZFLyo7qOY17KEd+Dk6JSAGkVY69CGiXBEig\nRUL1js+9uQ/HUZdx95BBuZQpFvWuVFVjVjjUZ2RP/imGcslkjVLVOeqXL7RmXr5SW13WrCRn+vPw\nKyW2lKHNbaNsNdV1Fyfyx1N4NlwEqmJk73Oo5TmRmHmTYoF2CsTkL0IgOZIO/A8u/hsuwzjIw86n\noA5Yd0ox3bd/GwQjRp/KqG+rGa0f3bzG8pp1ZNRlXxwG1QVKYggqqgDv3jaoMxK3pnUGD15Gex3o\nScwaDoTuI/V3Jq91KF1VP5bvKkOcXMpGsxt63xiFNdeoY5OuxzelF16jNuegGBMOsj4tNf5fXgqN\n8P+y9yY/kmxZet81czM3n2f3mCMj5+G9qjfUiCr23JQoCIQEosGNKC0ESOJC0ELQv6D/QAtBgAAC\nkkAKkNQAgQa7W6wmq4tVXUO/qjdUvvcyMzIy5snn2dzNzV2L72eVzYaqOnKVG7sbT89wv3bvuecO\nfs53v692Dk8JSPNaCZUWOCeZ0sbKgUobcgYEqZqjP72x+jfdj+RXUYH6G9xjYTFpao/o/4rxSsne\nfSCs6aH8ze+r/6O++h0MXiNu/q4SiVi2T2WDLPM6JHufQIlq+5H6umKdGkSIlSP1ZR107df/8HeN\nMcaMz+F+BNF2+UK/eVwQ6/U12TYLb120t+V2ZduUq7GtokA2PtPY9CMFLNChHmeKvXeEwrdARhaZ\na9WantMEoTdHZW4AGteD56fEergNMme7KJ/c/LF+K10fgogBBWsvI84z+bZXlp1cFHRs9swJfG1Q\nrpkkc6DGGQqwshmBAH31KkJNq71HX6iddfpT59zubqueW7dA+vOA6EzQeY4yWV/r2whFysyCDQuF\nnZuWsbpvznwh2McRyrug87w7Ur2b39Yc/L3/8o+MMcasV/X748d/8i+NMcb84F/8qTHGmElSdrRa\nIKkiNdMUNxTaIDw5Ayf/xv6YrxSMn1+Y5qc6czigmDY9jWFnJBuO4b5yWY8noWxa9TRmu/+JuF8G\nX2iM5wcagzrcrfOu9jQ3oedM0toHFvzOt1GwSp7r/UefyzZXL/Vb5OSr+u3Qh4eoMgWBs8ctB7hg\nQht1S0gScyhRzddAD8FfNK/IZwLOw0t83QOhaFCBvuA3nvNMak9FkOD9AejYrNaRFb/LyyhdNRPs\nnSEcWKvfvI7ESJm4xCUucYlLXOISl7jEJS5xiUtc4hKXt1DeKlLGoNbhvlBkahAoszDhjr/7fUXK\nCrcViTtQotGs9bhrqyCnGfwFWvRr+o+joiJw8wksyWTtf/ZzZameoETR3eUu3Bd6zZC1y4A06WcV\ncauiEZ/oEUEDjbH7vlSSzuCscU7V7ssi0euxGvzFmMw1SgZWU5G3wtcUXQ5SivSd2ooiT8gE1I/g\nFeCefHoLVAScNEmylM2EIoB2Ss875XN7ZH69xjfNdz/Qs47f189TAAAgAElEQVRQZloRPcyPFQke\nlvRauyZyv83lVThchkNFJ+cgNcJf6PtXZY3N9Avuc4eKvBb3iBZeqg1ncBOkK2rHTUu4INOwghcD\nVZGADOnkWpHfL/7tz9S+BNwEoAXS8ERsfVPZ7o26IuD7/073uA9PFIVNoGH/5OtCljjb3C+0ZdNZ\nV/2ZknU5O4XN/qXuLx9cKRp80VeWpbyuMW7ClTDnbm/vOUozn8v3v/rd7xhjjHn3O4oul++oXWas\n5xy/UEb76tPoe0RrH+kucLiuzxUiFnoUEi47yrQM8vp+JlBWMVNCvQrm8fwemYFvKBIfpRh6PPfi\nS42vQ4TdwGuSy6A0doq6CKobKyfyWe5Vcvc54B6nhc/e/Q6s8yhiNPf1OrBlxznqWTcp4xFcI0Zj\nmDNqqxso5tzlQrMbIWYu8N2h0DskNk041RgthiBKINpJ2qCoypqfqzN9fwGPhTtRW0/mWi/K7+t7\nm18XKqDHXdb9Vxq7nRR978CtsClfzVT1+WAOXwjqPtmHev5OWlwDi2yEANRc83lucKn/H1zJd68H\n6pgHeq22qX4ld7Ue1uta1y7gMUkEzNEoA9JTe4OaMhC3vilOq/2fKqNa3lcWrw1qbYHSwnQBMgal\nGc/SeptNa31dX1d78jtCClb35LtTS3PHhrvAySq78/Izoft+68M/UH15fd5230zJbaeitW17A46X\naJ1HLWqVUX0rVyiFBH5TB13w/IS7w/A7bZL5r9xVBthFySBAMaE30NzpXapf5yu1++99R2oC/kzj\ndZzRfjGYWibrw6vDPezybdlgUlLbMis4WQZ6LVTkO5u31Lei0ZhGKNFFS/Oqc8U8gzQqtau2pFAH\nmc50d33OPe1pGRU1W32Z8txkoNcOyiSuXsxooCxWeK6+GNTkkqiwWWT/kx3ZIt3WuuNVNBeqrDuh\n0fM3UA1KguraI4s+YP/KpMlcTtkrI2UXW/3zqqo/HLwZUmYBJ0AC1NOkr/VodsV6R0bXIaO9SGru\nr6r6fALekCW8KQHKDt5CPpdw1T7X1biuoYrkwWORt7QGDeG3aJ2gQHmouZQs6/PlXa1FGb0Yq//6\nKLd3/7HJV+Gd2kLN4x735iuai60zjW/nJ5q7zXPV32lrTfRB9lRROLLg/0uCeJpZ7AMgr5JkSbN3\n1a89S/0fBaGxUPFYwkFw1mVdSKiPli0fGV2p74Mjtck+VB/yHuio+/CxPYTr656e6QBOumJsXj59\nYYwx5vQA3qL+graTTQe91cOXkkXzRsWfgnRzUDbJyWe36nvGGGOOOurfaKr2lFDnvJrI9/f/QuvZ\n7Yfy/Ye/9YExxpguZ51ZCfXMkeyQQclq/lL9eYZiVqOi524+0P4wCeFOQ23w3n2dh1NlkCQ/EAfi\nGLSsxZlmcq7vTS9RTQr0nOyu1ufMHgglDOU29L0FHDfjsXzm7EuUb+ArWoAUb71QexOBnlOAT+/O\nts6UFgjw8o7qTYBOc4ryD29D7W8NVU/zheakf31ojDEmBN7nyI1MDsSoi+JMmHzNmzFeXRt7T/vs\nVgG1lbL6d/lK7bv6TGezXAIkF5wZrheam5YBWXF7ovNu70y2yaAcW27IlhE3YQokcwhKtIP6UJ+9\n4yvfkuqPB6jr+EwohPZT2cS5RJXvfX2uvqn52vJllAn8Sh59PQRpc/Ynqsc/0ntvQ+fWO9/5tjHG\nmN2vihMr0Uddk7nbueSWAZwlKeboAIRlOwRx2IvWMe2FOc5W+ZraF4zkCxeH6m8CdcAnv6U9srGl\n9hz/XHP6+GOhFC4uUYkbyDfWWQ9DEJ1j+PSO4aTxQNo0tjX2994TV0841JowYJ1fgATPN7SO7dzW\nnr7q6u/DS/nq009/oO+Boq432IffUf03LcUPtK8V+vLZ7gJ/4fdSONVcvP5E9tz96CfGGGO2Dcpk\nu6js1TXXCztqb+tcPuxN1D+bmwIzlICKNmeoxmsUWX49b4KjA/Mv/1ehbnYYi//4f/inxhhjSjm1\nYYUKWhghrwf6XP2hfOAr78tnPnnF3pUB2Q3X4HDK+pWlDahZTjn7WBW1KbEp3ylfwk8JN4sFH2Yu\nDULvrmyezYDuhNM1KIIknMHrWVQ7Ntb3jDHGfP7X8qUl5+b0psbyykZZNs3vCZdbDahrHn0Cgpzf\noqU78uE8v+OfH8k+XkHrmR2ipncVEfpA2vVrSoyUiUtc4hKXuMQlLnGJS1ziEpe4xCUucXkL5a0i\nZY4N7OgXyupnQ0XmD0dk1bgXOfmRIlnZNZiwm4o0LYmGLkqKeg6hmb9zqHr9tup9lVEU9i5cBJ9N\nFZl7gMrJvKjI20sy2O9Zh8YYYwqXiuZ2toWmMI09Y4wxkO4b/0JRxwJ8KoUPlcXKzfT80aGil2tk\nTs+2uB//nGzhXyiSlryvdiVWykxbLaEgku8oozI7VBT1C7J4Je5zu0eq56rLMJJBdlxFpa0R992H\n16Z1S1HE7R09yyPqmCA62QV9lCZS64OEqCwUibZIQ4zIwHoN9fEkJ0WTPFwGni2ummPUQDZKilo6\nd/U+CN+ALMQYs4SPwYEnyEf9wvK5N8g954sr7tCT4cxnULOwFJV1e/KNIooD/V6kiAAyAy6EPVAK\nySJjgqJDrqIxbJ/o7/2mfKJ5JLuQ3DJj2mcsMgN12a9MvydwAFxwF/ezHyjyfeehUFfp7UjlQgib\n/sGhMcaY1tEx9SkjkOZeegAyJoSXxIIO6dYt3Tnd/ZrGo3sK4/inqsfvKmp78VJZs/FS/YjuJIed\niAtCmZwSUfAMmdqzZ7pb27a4P7/gvvknsmtzJTuNpqTSua85ceVvR8dwFCXgcenAYfRCaIRU+ubp\nyySdtsgCjMk6WZd67ytpYGZj2bQDU33aMAdQX1oj5eqllHUqolZRsIWe6p6SLbnW2E2SGoP6Ougg\n7u63x7LFe7dUz+OzPWOMMX/yfSlt1bLMwTycBgtQayg0zIfwbKzDPcDnLLL/ySx8PlkyvRPV72+r\nHaszjV2/Kdu3USDrjmTjHa7KrjJwMgTwTgxln2lT7Zie63v5e2pvZV2+/G//xZ+p33UQNDuozH2A\nmgn8FLWcvjeP+IZAi03nZFrhzFla8s2jp6ynG8o8bJTU38O/0rpY/Cps+xtq92j2ZtvXGORi0EG9\nLiCbhwJYAnWWEOWClBO9yq47qGH1ua89ONf+0gZdMM7q8+0z+fBaXnNpOpbdk2RJB6gZDPrq7wDO\nnZK3bXoJFKdYf6waPAv4WB7+pPaRvutYmreu3poeyjBl7k8Hrr6XA/EwBVXmvKNNrJTSmJ6caL7V\ncvK1FHfQEygIzCLVHgiTqiPVPwJJk4H7xHK15y2zGrPEXDaZOfr+PNT/Xx5o3tsvZYuDBBwtA71f\n9eG/QHXkxYnWMwvFqzG8IcFKzy06zI2E7JMqwIXC8nPTsr4FV02FfQs02mSpMbJtMo9DMsdwHFTL\nZPdr/B31qOw69+/JmjkJ1Tfa15zrf6TF6WRfPjPqRJwOGo/UXfXjzkNxO2Te0/qfBFHU/QQ1kdOX\nv+rDxx/92KRAgyQfqz8OqJMJaML8DI411FigkDFlR+NXrstX8w/0PAuBoqASIUb5fguFNpBRk67m\nwvlztcufTEzSky2Xe8ynnOZRbsI6XQLBt9Qz13d1trA9kBYHesZJExUmX88IjjUGczgIIjW9sqv6\n31nnfAlHYEhGNogkSEBUJvpvlpssl0FeoDjogvIKEsrIJodq7/GR9sjNsuawNwGpybLVn2j9m9ic\nZ3OcH+HDS4YRf54+nw7Ur3EfFTgrstdXjTHGFBs6P7cD7U+X+yBQbqFiNFF7e+wPXgKkT5RRfl/P\n78BxNYNrrJLQWpC6rfZ49egArPfX8J8MAj0ng2+EcEcsLvX365bOBGlLc2Xnieq5gJutwwaa97RO\n2xPVvwf3UO6Cs95PZd/ehdrXu9b4VRqRbJTGoVZh/UXl1Bhjsnt5Y9iHIu4bG8XNIuv9Ifx8kyFK\nZDn9v526uZ8UmOc+nC6DNmhSOPQyzKfSjD0bTpRsqDa9vNb8WYJ0+ZL57jBWIdwrWXzcwP8xHmj9\nX9vTnCuCkhpcCMk4I1ufK8h3PLhtVjXVW0DVLsW5etzSWWkKJ+TZL3TeT07g/ShrDAsNjenmB0K2\nLJhb84Xac/Yclc+BfrNUN1hX4DpbrWTbBYhMA8fYknPq+DRS3pFdorlTKGuuDBey0xIeD3ek9q+t\n6e81kCSPf0fKOdWSzhinn6vez76nc3jvTHNn813ZrV6WXZKgq6YgV6wv1a/hAP440NSr7pttOC43\nDwab8ln7UuPaQMGohy9vzg6NMcb86P9SO3/6XwjlMfynOm/7WfnPb218qPbVZb+X+9oX3uF3lIG/\ntFGUnfqT1+0Nr45NynPNo29y3u2pj4uhxn7/VLaJfgPUjcbweqE6vvf/6PfqX/7Z940xxjQP5PMf\nfqhbCpEE1zrn7RXrZMBeZK3x+31TPvTgO981xhjzzf9Gzzn7mW4lXPxStwmG8O5F63rrAiVJkHeb\nBRDY/Eb6v/9Pzq3s2W3QoM5KvvmNb6mdzo7WyQxqUcs0CGoUhu+syVeP8e32mWzZgX/vK0/EO/rw\n7wtZ3r7QHNr/d0Ijuygn/roSI2XiEpe4xCUucYlLXOISl7jEJS5xiUtc3kJ5q0iZSlM8IB85qGug\nhLOVUTZ/3FSU8JN7ZI5bikpOxop0bc6UMTl6rgjd0z9XJOs7dUXiellFwK7GkSKQImbDKln6UyLo\n3JlNEp38YU4RvFu3iMD9XBmIx4/UrrNnik6X31HkMLHQ+/mB6quRwV4HHXG+o2jsB0NF4F6tK0L3\nk1ewNf+Zor9DMj6JS1ipf0LEb6JoaNbS59rryhom1hXBa9xTNDh8oeiw29H3LtdkJz9omIeger5E\nGSUDt0odhutZjQxYUX3sd2X7rBtFE/UMGwmD8z/g2RMyru8K3dM+1nO+ktX3m0Z9LIbKHA6nh+ZN\nigUC4xxugmlbUUeSSqZ4SxHwGco4K/h43Jyirz0QPC9/oEyB31DWutuU7xSI+i5D2epsX39PcX9y\n0SO7F6r+EDWQ1VTZsUpJKY9STT42z8gHhty9Dcg0D9Iak51dRYHLJdnz7Lk4GJ5+LORN9Uj1LDIL\nY/7ImOBSzysXFYnf3ROay5Axvz6Tr6TSan+KKPTuB7pz+vjr8pWnl/L5NpllOw0rf1XjeXKgdhz/\nXONashSdnuW4n14RkqdxR6it8u/rzu/OV8VFMwPtNtjXeI9AArko3WyRCfAXmlMvfyo/K8A9YHGX\nN03EP7N6rSbydxUbxMPEIYt+ikqbq/+3lhZ1a/5t1tSHuoevuNzZh/NjRhvboJ7OTxXhHoB4y+Ir\ntZq+byXU1upK68BFU9mkEfeo62sai7n9r4wxxpyS4dsg02oTgbdg+vdmsMK31f7PnssHFjPUjlBx\nWhr5bsHT892y2rVe0NiV7+pu746PihEKV4uR1tvegcZsiBpU4V2ts9MhfCSRqsYaKk/M6bCi9S1Y\naE4EcPdw1dgY+D7O+zxvIZ/LOazjZGgTc1B6fc25eRNfv68s1jCQXWYgC5st9d9BYcH13mz7On6m\nDPPqEtTDVL6+gL9lmePuMz6fLMiexYY+19snc0SGZjMnPzIl7rWXyYKCuPFA7Y1HWgvSZAEXV+qv\nP4C7ZzSh/yem10QBAPWiKnwPkzwZQDKZ/pe6Y2/3eL+m783hjDmbsp4HIFmQCOx39X4DnqLACJER\nLsmqo8qTzDMPUSZwuVc9u4aPoyifiNal+yi9hEcaowF8D14CjpK0bB6EPG8EegppmBEqIEUQM7Me\nKkMz2bywiXLDGEgQaIfuGCQLGb95xHFDFs7O33wdMcYYfyIfNGS6HZR6NkBB9MvwD0FnFCV2hygI\nmRncLy3ZM0jr8y4ZcL/LGeRQ7evDOWaWel9dlx3X1yOE4p6qhfNt8Kl85+RK9gmOo8zwa26A+tod\nky2r/Xn2mWlF9lorg8CBhy45wldRNRyfoBB3gjJZB3WolL5XeEdrHBQzZlRUP5tDMurYfZkmm5pa\nN04D7j6UTioPQCCCREzk9bpEqbF/IV+YRZxfVfWlAjJjsq4+bdwDzXVHe0cKfh8DZ0HvIyEdTj/R\nvG+DwHZBVKyvtM4k1t5sHcnVOVtwNhl04eKqyUYl+On85yv6AxK8IkTGk8fsG2ThA3gweinZMtdW\nf5ssqEm4UbKoWFkgR4Zp0HNbcIa9p7OBfaj2tb6U/RYvdG5uHoBWbmps7S14TaqyZ+4Rqnx92cmr\naX1q5dQeGxWiQiB7jyzqw4WvfwnXIco3bl3tKq3rOeWM1v9EQ/2ZVjXutVuyQ/EuSJ6m9s3mS7X/\nxc91dkn04F8CXRF2sQ9cYMFSa9YqQwa+Kv/Y/m0hiYwx5vF3v2GarC29a9b7M5TPmMu5mfrdseSH\ni4HaXUncPIdtwTsZKbs2doW0yLCuWOwhnWcgSgD5LEAeOx4TbBGhu2SzO4809nfu6DdJHy6o5uco\nT8Hb07nUOlOEr21jQ59vwnPWgMfuwe8K5TrgfDsE9XTVwra/FNJi0la9w5b2Yo+9q5CCrw/lxJ0P\ndGthhRLmyYF+mx091W+YcVfnVR/F2i18pAbU3EdR6+DfCG3x5VJ2iJSy0nd1fq5wBqlyzh+22Cfh\nBUxvqN/VLXj44L46u5Zd2i/Uji5zIoGanj/Q9y+/0K2MySJSdpMP5/HZjW/p907mSn9PcDZMrN5M\nfelqrHbn+CnuOlr/PVS6CvhD4YF82UNp6PRj7f+FJ/Cp1jSOpqb9uAD6o9KS/ZoGdBwXFZZZONuC\n17x87fO5ee/3f8/8j//tf6/3nCX6n2oMf/4//VBtRLVo/BAesV3U7C603gasX7c2tb7WHutZE/hL\nM5y3J6Bn+09leweU0tN9IQxnRkiTvQY8mUcgAA/hO42Q41ruzaQEN82pxuI60OcKcL3s3Natga/9\n5+LwerShOfn//vMfGWOM8a/0+Smqrfk0yGnO+5Ea6qjI7wlLv6FXB1pPxuxbV6idrt3WXpnKwFPH\nNhOCdvt1JUbKxCUucYlLXOISl7jEJS5xiUtc4hKXuLyF8laRMi/OFSWtkO3p5bhrD++Jz92tCln9\nPHdzo8zr+AzOhpUysgdZRRfPLoQ62AsUGas3FKk6nCjStpijKARfyOqFInUned05e2T0nJOF6k+V\nFRlMgETJbykSNwTVUG4qE+M/VnYruFZUeOrpfdYni9aiH2Q8PiTptw9CpoQKyskTtfO+gETm1Zae\nW2ySQe8pYvfQwBQ+VoTPqql+N69MwmdELAvjc3NA9LCe3jPGGNP+RFmIaUJtTJSElJiRhShzJzTt\nKQy5n1Rkurbr0VZFL9NP9Pkh/BNbW7Kpg9rHEibrcaB6yr03kzoYkGVeET/cgl3cI1Owt6v+ZOtk\npYewvT9T1mb140P1a6HMRYZXDzRBqyv0kZNEQ54s9uAQxMeVbG4yev6UjKTHvfVFAJ8E/EaZinym\n4Oj95RV3YPGBjd9R1qZQRL2DC+NeW/b0ibYO0bJfkYF9sCfEy8a35dPDltp5/IXGbX4hH3CqGs/F\nsdJXn5/r7unpl4r8WyGM4USxH/6H4irY+UT3NA9QurHHWhqWY/nm/l8JLXL8XHPr3qM9vf621KNm\n3Gc/7slpZ6BBunDdzCbqTxZliOVQ7RjzvpKUL5e3QauErzO/f1cZwvnhBbKVV2Zez1D9AK0VIUx8\nlBGCK82PkAztMlIbQknKJyOYGMvnt+uyWWlN70dkziYGNRHSx3ZHr89+ogh6/g90R7eS0th0evKZ\nnU1lEFyyOOFM7VuAtGvjezN8ekLm1EX1Y86yMvH1uXQLFagC/ByfK0NquDufySqLkmT9Ww7lm26D\nTOAcn77QWDmMieeq3X3umW/XlWGwLNnx7Eh38I/O5XMpj+95mmu5pXzpEu6fxErjY4OScrmzn10H\nxZWUXXpt9aOcRYHhpezpLlX/MvVm/FQZ+JJmJVT0Zlq/xzPNndVM7bUcGXYJ940HgtPDT8xU/Wih\nUhXCGePfkz1mCf19DofPsg9qwubePJw2q4HqK8xReFiGxqDqk0ItDZoNU0aNzCY7n1hpj3JBg5Vz\n8s1ozLZAiAzhkmox5uOZxqo+h2+hB9oTiEnrHDRqV/+fJJsV0qdiUjYLfPnEGA6c2anmu99VpnV1\npYxqKq3/X6XUrrUdZfxsMsHpkurxkupvNuLRgNOlDnJm64HWl2vuh5+cYhfWlyXfW8JTkoF3LTF+\nM4WuOSiB4QgOnF6khqG/uyiahQuNh7PUGjJjXU3mUVLLqZ/WUOMzSoGCdfW9UlXtvP1toRvyI7U/\nGOA7Czi/DpXJnaDalGEfqtdkD6ei56cWr49y21+5ZRajSFFM9llHdam4jVIP9+nPX2mfvIzQJC/U\nX49+bXBeKELOc/5DzlDwaY1BT2TgRSnvqt+794TSG02nZuWThQY5t/9c69/8QH1cJdW3JZwkQQ90\n7ik+ewy/zW1QqawvKy0TZjbT9w/OPlLffomSykvWy5aek4g4uEL53Jy9x1mlzZuUeQHeHXx6Otfz\nwi7ch75sMzgHwQmnSu0+fFFbmqt2QXM0+UDr7k5ayLuIP27yfY19D660Aup1uV19P5VXfd0hXC5D\n1Jps1jnsneaYn7HUrmsj+/enmnMuXCqFTbVj+4HsMgzIaPdVbxvuFstVfyJwWH6Oask1Coxz9vJ1\n1rsdrVVhQu3MsS/bc3xtnXFFzW7qwq32idb7g+/LN91WxH+heovrIG9AfWXgdZpmtQ9NsjqHL8y6\niUq6kDepc7XPv9Zzrl+yBvqa2+WGHCsfao0KZ3Bcpm+uCBlO8eGsbHz7MedWOD2OTtS27jPZsgX0\nzs2AMLsjZN7cqC3lXXhytrReLDhPzuC3C1GcXYJgmfb03n2RpB6QjZV/n2cpV0LZdaz6piBGzLV8\nMECtqf5E682t2zo3d1HL9FFZmsBBOMMXk2l42zw9lyOOycHzU7undmTLet+/hBvlmXz++JnG3smg\n1vkNIVMevCtkdimPHS+E5GmzjgGKNhlXPpdnPe6j8nn+M52XL1/I7il+D2S3tG5FPERmxrp7oXZM\nQdyvgWC8c1cIHPsrem0daEOaX/9mvpC/XTYdlICb7Bub8B5OUJ7jkDfjzDoDYfX4a7JDUEnxObiG\nukJpB6hlbTrqTydSwKMfJx2dAxJO/1dt6faa5uTpT8xzzrfLvPz/6Ef67TAfsI4+0XnMwJOW5xy3\nvKt55ubgC+Kc1+yA7EaVzYnQTT347ixurDRQ7kKxt/vHQuZ8we/xcH6oemoagyJxgSSookyg/+/V\nZYvTc43JItS6/PV/+IfGGGP+yd//T40xhlO7MZ/+s//NGGPMsyOdfQrw7s1TEaegbBeAoDYoDDuc\na4tf0VgsrjQXLzpq5xf/+z8zxhhThUPNYm4lC3By/ZoSI2XiEpe4xCUucYlLXOISl7jEJS5xiUtc\n3kJ5q0iZr/9jRfG++V/9vjHGmBH34ycLZR66cMKkmoqSrpcU3XvhKRL35H1F3uZDRY8fXnHnOCs0\nQfUErXqiqu+v6d5duqRImHuqzIQ3VPSxC6fBwVQZiElREcIi2cu/XCoqXEO1yUqg7LNDRuEv9fnw\nFvwknp5TPlM/7YGioYMqGVIii3cLigTaK7V/I1BELfVf6/vvz9TPV76eV7xGuYF79KcoKKVPlHmw\nFXQ2d+4qk3wyapjLz/XML4r/Rm2fKRrah0vA+ZEi+Ru3FG20lqB87moMHs2VnfEnimJ6Ddk4R70X\nd2SjHRRJXnmK4FYTij4eEyVs7b8ZO3ltQ+0wodqLMI6Z0I6nL8TIfdcRGqGxqci1OVd7DlaKpM/h\no2ga1DLqcCZwR3Qescn7GqtVijv524oWZ4v6/2Jeke1hU89vDtWuzftku95TO8Yv4Z4ZkWn4pnzv\n3fd1n/EYVvSxkX1yRGFLj+QLjxvy8UZZvt1sKbuVO9TYF8jm7Jb2jDHGvGoR+b7Q557N4UkBCTTv\nkEGucje2rnG3DffVi8pcpANlHOY5+WLVVVR3BCpisi/netoSsuboFffgk7Ln8ppsJ9mwzZp8PnlP\n/pPNyV5FuAd8EEY+c9C6lj1Wb4CCSMAlkLbI2oJESxTlO0sUWcZTZY+GZ7LRCKWxBbwUhQqR97rG\numHLxhVPY2JCLZcj5uFyru+5ee4DwyuUhI/p8gvNhf67ek6WjOHFvmzn1fW9CZnQwCLrjeLVdg0F\nGMaI5JPxPeATsN5PO/L1ESiC/qVsO5zrNWyDROmRfXFUkevDEUCmsjcGLZaS/UqZNP3TpOueqx/l\nkjIk/gzECbvIFC6F8ZRs2bBDu0Bd+XDnsBYU4XLwQGEUHsg+Vlo+0/PJMO8oM3N+qDlahYPCge/q\npmX7iRA+kcKDDboiWRYKLQSdMEPBIeQOdDiWvTuvQOMFcEikuMcOGuLqp4d6UFX2TQzlyynuJmd6\nquewQyaccYtQZX57bIY9fXd9oPlvFty5R4Wo1YzGVBk1P5Dv91CB8PChqzzqPGfyieVK34t4IE5A\nHXlL+oqa07Iqm2yiAOMu9D5SOPB6ZLkt/f8lKKBIrWfYR3FlgaLKFfw9Ppw38EUct5X9NhGqKlQ/\nGqgojaf6e2VLz3OM5tSrseobk3Vb9Mkw5jV2KdBr2UguCEXGGxfuu6fgNsiAEivC5eNsgWpiTXHH\nKPDU1P4EKeElSi0009xFsScPv0YEbGl9rnF4eSKf6H2m9Xp8pfFdZfT8Kvf3S++/Y4wxpnJHa5Pf\nVnsHr05/1YUXP/6luWgdGmOMqUVcCD1URL7UnFrQH68P/12EPIUnacn+vSSruYKjIAV6cGHJb8qs\nEbOhxr0DZ8OzQ5C3475JWPrOBhwAHln66l2NUfa+npmGN2J2pdfuUuvsagoPTwuem1/qnHU9ArGx\nJx/ZqGss6u9pjJJbrA/H8HKgypero3QCr8YSLsGblrhQzuIAACAASURBVJSjuRQpE9oLjUXnFxqD\nIb5TgzOsC39Sl72uUNK6cQk6F4FIUyyr3VVs3HNAdvr6XIGzTwnE0BJVq9ax5v7+D2XzwhwkeR9e\npYWeu06GOZVHmWtL7fQ9EIAom6W25CtLkCn+FR1v6jkXQ9mxhHJPeKnXXBLOsQJo2IScvwEHUOjJ\nTos66AqUuyYnIKdaEYeDHuct9T2/Ax8JXIkOPFirEsj1murd+W3ZZWijCgOC8+qV5pj5ljHtV0cm\naKr9AepVU9bS8Er7VZI1qLSHCktF9uj1sdMNypg9JotCy5Q90CnL14qgSCdZzbMIP954d0/vtxlD\nENHN51o3f/wZ6pl91mX2ogwcIVW4whx8/ewLfW92rld7R9/zJ+rTc/jqAlSOkhN47UDXJvKqb/Oh\n9uZqCV/flFOcfaJ6e3Ab/tWfig+k6MqHnTp7YUrPzYBuuvUVjZGND88Hake4jaIYakE269MKhZ7Z\nGDRWA8VNfivZDoignnzk9GdCjHTwgQCutDkqTjPO5euPZef19/jNuKnnzTjHXrCuts/lQ10QqHX4\n4jw4HMOO2t2bRMpuNyu/QsS6mlvZkhSASpt6/tkZHF0gn1ZwR4bbKKLB/3dlQD0DjnYd9TdCkedA\n5Ptw1U36WoOqQfJXbUnWCubzL67M6eE/N8YYEwSolLb13fq6fMbz4PJCgXG+kI9a7PmOgVduyt4T\nKeCiwnmOap6FMtneQyFN+mlsm0fV6Jz5zh5TLmuPCkBBpUH4XSXgmEnIVqmk1oHdiZ5/2DtUPf9a\nPEX/8//yfxhjjFkY2ebT7+uGTN7mnF/3qF9vHZDqLpyTvXSklqn2WayHmxYcYRV+B8CHF66Y+wm1\nK516rQb3/1dipExc4hKXuMQlLnGJS1ziEpe4xCUucYnLWyhvFSkz4q7WcVrhvek1WbOS3m+N9P7a\nIRrLHbXyVBGoHHf/W0syKx+Q3T/XfebzJ4rQZUaKXra4f58PFKlqlPT3fJK7cP9AGUu3qYjZ6FDR\nxg7ogJqv/2+upOTTmXGPGv6SzZEieS+J6O/O9L0hmZx6Xf3JjZSx6Fa5Vw87s8O9/y0yPh5qA2cF\nfe+DGkoVKCbc+UwZhi9AaVyfccevw51qEDPV1CuzBePzsVFWuJ9R3x+6ijQfwyHSPzs0xhhTaIBo\n+bmyH79YKWrq3pMNdy7/Qs9EyWDvY71+AT9FfQXfAnG/B66y3cHuze/lGmPMBK14a6b2tnk/b6k9\nQ+4rjv9aEe3dh7JJao6vWPKR4wl3PY/lCzt1qQnd+YZeL69ks8m+XlNwxux+Vyit0i3Z4ewXygS0\n9uWjc2w9bStiPkPZ5eRUkesJKIxFVz5x/Lk4WV78tSL4/WMyxtwvv//Bt4wxxjx5R+1aFWSv80+4\nC0u99z4UN03pru63f31Ddh+DQBnA0p4A6TKvy17dC41r56myjJ+74orxiHJbK/lQ0le7MxX5RZl7\n982x+uHzd/uQ+6JFRd7tKdlHotDJgjIr7z5Rf9yG2nX8M7HHXx2RXcQ+U+4ep+FJuUkJF5q3AQiS\nGdmKDDZIw99QT2pM197RWKZz9DWjiHo6qb7MUEkLfdqEksrZsyv6yN1Qh2xyjTvw3P/NVPTcl6ey\nyYBAfj6l50cZTyeCfZHtiFR4LJAx9XUyEaHm0Ixsx6SHMlgGZRcyDCVP/ag+FFqrlNDz7J7G7vxc\nPtR+JduHPRR6xnC3pFG4yaodebJkngEp8vmn2EXtTcNTscY97Hs76k8yy5xlfU509f+eTYYSxv9B\nyJybaC4lK3ADhSg9sB7ezwtl9cmh1t0KihbJwpvxU5035fNNVK0mC5SB4IoppyKVE63P9R1l8KsP\nNMfugx7xJyg/wN8021BmZIUaSmfEffzTV/R3QD/pF5Anx4PjIqG1o1wfm0rAPIzUf9ZQKiGrO7BV\nVwhKaoGPL0nQrVAaMKra+CBa8gmtAytPY1VYwWPEnfZUVutRyPoyZ96PbVRExmrH0aEyhhWUwq7k\nKgaaCzOAC8vqaB2Yd1RfAx6NYpH74aSD3B5KXilQFKCOLlH7yDU0V6fXqrd3pDGzyJZ1yewuh/p+\nd6S/T+BCM9jrpiWDQpgD0ihwURlJyEd8uGT653o/WMp3x6covenxpmdpbmZRfKtsg6pATW/OGcSb\n6rXK56ofajwckENeEjWshnwsATdEFzRcAq6uVP51xvP2OxtmA5RfEq4XJy87JeDySZa45w5nxHIA\nB9FcZ602mfWiLXtk78EF8RCFHvzIf6V9tZvWIreYyW/u7kD4ktwzRbLeLoopuZL6FqDakQZFNGYe\n+l3NG8PyWN7UOrQVKZKVUabZADH3WH23QQeM4VdroyrXB71jcQSw+7J5eUQby292DO4ey+bhDCQc\n68J5R+tVFgWYBw+Fjg1B9GVBRnogpDdZHwdwEo6fqZ2FpcakcUtzJokKSsbScxIp9bdRYm501LHB\njzVn/KR8zBnIXgsy18MHGsvShs7HNvvlsqd+dEeg2p5p7lyhbpRZkPGGJ+/wqVAIg2XE7SI7bt+H\nM22pelYFfb6fkc9usg8XtoWSuAJRdPRCzxuOhCDNpNl/p6rfhiNx08JvQKWNLP09WJPfZCIUbla+\n7Xf0Or98zSt18ekrs7hWO4oprYk5VMA6ICdDD062lPqVwM656c35QqxZhOJHCcaSL/oj1tu8nlWo\na48pgsDY3taziptq0zPWwd651ucW8z5kbCsg7wobmo9lzvkFftp1HY1tCy6S1CEIQ9BMlYp8ERCD\naYLYC5soUiVQKzrVay5CTo709xRcUwO4troDVPbqep/PwhkGQj0cyXdbF9jS0YLJMmve+10p7qRR\nsHnFOXF//0tjjDH9a7hbJtqTPfpRa6jfXRDiI3zLBd3RyMpO7S5nDAtUBetqg/NzFi6frtE5f3UJ\nyg4X8s+0n7w08lXAYqb7UvtcKvdmOIdfPP+5McaYz57+2BhjzPu/pwfVH+gMt4Br8mxfZ7csa95O\nUv23qpwhOvKzABK6Fag3N4AvkblhL+T7aRSKF9PX5+xyecNU/ZYZMF/zHRQDtzlvbWhe1vb0eRcE\n3TANX2eIL7iqu5gBWW7LptYSLqtrzfe1Xc42m0Iwj8/kqwsbZPe21rvozNPTEBmvq/XyGO6qUgAq\ntqTP2fDAJUH8baS0Dvf4jffqz/5Y7Ufh1XM1z9e/Ktu5/E4fHrOHw/PW9UA68veQfWx+qe+liqCa\nuFmTt+Rzc3j5qh7Kuux3v67ESJm4xCUucYlLXOISl7jEJS5xiUtc4hKXt1DeKlKm+5O5Mf+ZMZMT\nZUZ2zhS56pKl+9JVlPTxlXg1DsrK3ji+InHdiaKwj1AlOSRTMqwqmlr2FDmrnBHJQu3i4jZM3El9\nbuIp6lk84B7nUs9JBYp07T0AJUB0OIoAzg4Vad931I6juepNwNcyNmjLk8V7taUI3uNjUkArZR2z\nLRQpNhRlvoRZPbVJtrTH3TnuC26Spex/qOeUZ6p/YwsVgCKoiTSqMF7dJA8Uka8XUHZK65ndgqKI\nTz5QFHB1LhvkyDaNbx0aY4xZt+Gv+VJRxWEOGM5Iz7qo6v+9VQcbKivt+crKtOCN8NZf332/SVl2\nFDlGDMLkjP6xtBV1zDVky+BYn7v6obLpHvfG17eEXqptKDvTAwAUwD1wTfR0Qbap2YlY8RX1bLZl\nh513ZL/mc7W/2yRblpNv9bl3+PGf/0R/5w5oApTBZcT/84woaU9jk7BQ7EFRZ9yU/c5eHRnz7tdM\nkru+a2vyRb8nH758LpWkCWNdKihavGBK54Bj7H4I2mtERvljcfB0W/LV44+Vgajk9PkV96bnLtwS\nj3XXNjGVf/TO1a8ZjOt50Ap+fo5d1Y80PBypGffnr/CXZ7Lbs8/13NGJ/CRLRryOAkSYvvk9/4hi\nxR/IN1rw/UyDQ/WFbEGlSFZqTTazUeyaoypkuK/skcYPBihpkQnI8TqFXyfiNClx13RENmw10ecW\nfZTDApy3DB8HPBGhA0oAhavxmebm2TXcWZ+pXdmcIvLJmtq/Xle7qnmti1nuNc/J8PUm8qFDlLzm\nZ7L5gnRY1VM9ww3Zx5+qfRMflQ+QRu62MrWXx6rnSxS8GreUpdkkOzW7Rinmldo/tuBcWUZqHBEH\njp5jzckY1zTGpZza78KHMkFpwINXaMkd3EEXRYTU1/V3OGxuWtIp+erGtuxpJdW/EdwVAXO0R+Y4\neAHCEiWzwaGyYcmSsost7lxbqKJk4XfxHZQ0uD9fIUu40VBGKIkCRtpnH/lM+8BovDB5sk0R+vPW\nO3rWKiGfKl9qPlt9rd8+qhdOjqwWakgVBxvCA7FAdaHbV/bngkxhMqXnIP5j0hHaZ4DvgchJck97\nZ1evKaOx7zdBytmsY/AADSfylRO4Y8KkfKsXwCOxRIGAvbOIQs8Y3rbJBaiDW7LRAnWoGXtjYqLn\nzOBJ6nbkCx4or8mSe+vpN/ORIUo5IzLdo6HGeOHAqWKrvmxD45KtgWxhbgUgOsMuXBHwUAWX+v8J\nyKEl7UMsygQp6g1ZI+BMW6JEMT9Q5tZHzXDG95egESqZ0q/6sCwsjLMkMzrW91Mlzfn8Gup8SfWv\n+7HG5+wzta/fUvs8lww8qIYcXDnBqcahOdOZaYxSkjeN5jJcRBllEyfjmWn6HFzOQIgN8amR+rqw\n1YcpqCEvKd9w4N1IJvXsa9TdBvCrOQGcJiiNBCANe6x7qZbqm/ZBWKCik2PvTrggDBNvhrjz4Djw\nL+QbUxdeDlQ7el3Z/PoduAQ3ZJtEQ/2oweEVuqrH7qlfx0faI9tDzelGTbbf4uwyAolz8ULn4pFR\nPxE1MqGJDjfwZNzSWDTZZwqsl+WvCWW2Yp8bPNecW47VzotP5APtgXxia0vPT8yY+ygKLeAASsFB\nFtzTeK3BJzKGdyhg7p/NUNvqw1fS1dyI0GPNDogelM8SoHbZPU3ykXy3dle+3ubcbyytt+eXsocB\n/W04g3id19xj1lXKXO3Lfs2q2nXnjuZG9kOt136BM50HZxx8WGF6bG5aPDhOJqCcXFTz2vAK1UBE\nJrJwVC3U9/Mj2ehqAN8canbpNbXxVk17r70ETe/Jlus5+DDwwS759tKm2pFO6pxvg5BMo1BZgAdv\nCzToS+bcl09loy5cKgvOCIM1VNdQJy0tVE8O1Oz73xCn49qW6m2xTrXhMJvDC9Wf6/0KJHsS9Gvz\nVHMgxTrY76CGeoXqHefS8qHWlBocOgl46MpV9sk1zfkHX4EvztKcSC2lRnryOQigfa2rHwcap8a1\nfq/MjjUHfBTUFuxLWTc6rxu9cj7voXRWt16vwzcp1fs6E9yz8Xkf/sCm7DvBT2pVfQ6Aldn/KyHu\n56CmHVvjkH2gcfCG3EgABTido2rIUlfnzNvxXq999nhsUmslY1ayTRJkng/vkQfKcvSFfgNch/DJ\n8awUNne78r0x4M1VyB4K+vOdb8nGaxvy6auAecpe2wjli2cFEC+sAzUQMcUtjWUB208TrMNwRTkZ\nuMlQH07Aj3Trln4L5laghOBGTIBGLaTlsyn4h0Ju5rSKWp/TbdShDlDiuiPfCwxj1+f2APxJA3ju\nvLnqPTEo0ML9+utKjJSJS1ziEpe4xCUucYlLXOISl7jEJS5xeQvlrSJlSmlFkha+osXTkaKog58r\n4lSt67U/0R1W50oxpD4X/DJwO3QrRMTacDpcK3KVshWRI9hokjMUX4h4pVBfahX0+a7DvehNRdZM\ng0j9FFb4HOgLGLA7X9Pz/8FA0dGTqiJ2NpIL7ZHatbnijvOZMtv7ZUVVG64iZ5dk+9YOhTZJFYn8\nZZV5r/cVJZ25ii43p4r0+XBkLC4VmVs47xtjjCmnFOVOZxQ9v7QrJpFRW2uPsOmlIshZV1G7LcKa\nxT19bt9RFnltpqjl5VhZ8PwT2Tjb1DOHRHjDABWdfdVT4t5cP1Sba5sw+38iG960ZLgfnEYTfsbd\n2Lmr94UCoeO56vU7iqBPuNe9JM/irevvDXzgkqz39VNFQZNkNhoVfS7D3curc0Xup0uNSTJDNggS\nhfxdlAAGstsVbO1OXpH7PBH8YgnGclAIU/golgGcBDZ3Xjv6/qA5NOYf/iOzILOc3UHZAK4Cn9cp\nWcfxQO1MGjLfASQTKY1znbuz9cfKZGTImDev9BrCTTF29X5zQ+3dIVN/cqLxT8tsJgmKbFnW8yIl\nm3lH7blsk+FA4WgDbp0AxYlJT8+J2PwL9/Xa2L1D+1/fA/+7igUCIk3W+N662myhDjQFZtU8VYb1\nxZHu504/k61pksklFCFfWGTdXa0PY0/zbXNLz0mACiitKZNg2epj8xjepSyxbjizfO77Vh3V0y/o\n+35f7Vm6yuhu39F6tZ0lgs8yFKZArgzJnqGytD94aowx5uqce+aBbJ6AE2dBpqIwle+kQNqkyhXs\no7EaBporQ1BablHPq6Mid/2ZkDvWWP27dRt+oIR8argS2syFkydt4JCAp8hzI3UqNSjrar1PgK6a\nzzQOV02930EBaP225kjzQHYKQWs1GurfePmaR+MmZXGh5zTx9ZWntSlCQnlkSDZ3lVHxkmSoffW7\nA4rC9bWeX13p/n2qC9cX9+37ATwuKBJdM5AJ+p9nzS2jPjAfcBfZSZn5TD6SSDImI43pFOTDEL6G\nUgmeihz3qvOydRJ05jzU91fcw3ZD9WUbxbD0LflABqTfqSfkWjKp50eoH5tsc7hSfV0ycxbrWClH\nNoh753VU6jKu0ECVW1q/UxuaOz2UwBYgQDoD7YFzOADKJfXTKUdKYHpe35UdvJXWy9EKbhTW/zx7\nLsk4k0U6YTz9zUoHf7ssQWkUSyD9KiiDleGrqKp/Dtm3AWiJ9lhjuoKDp7jGus/6b8MjtIAPpVjW\n/5uK6rGG7AtNlNia8jGf9ocgV6J9xHtAvWtq34CMvDHGmHLSjE7lq8um+jEhE98FsTMny7kY4JNb\n8JgUtf4OXTgxklqHn57K7vZS9o4yxUuQS1PQicMxHDWgildmaRKgcgqMqQMn05TseBEeja2MeOfm\noDBbT9X3l6+EuhqgMLa2KacuXmvPKOc4IzzWWeXBI+pHEWZ0gdomKIGMIxsmG2SJnTdTTEkbuAQc\nzcEF87u6xp7sqT6WR+NGqDIDpxRjO0vjrHAbFC3WU1QCcyA+VqgLJtKyqX+oeppX+lxxTXbLV3Qm\n8bL6u1NGRWjJ2QS1UPta7akUZCdrAmLpEN65nvb60SGqcqxr2wWNV76muZ2BCMRPyg4r+uGAPPHY\nV0IflbprrT3nTbWjMIDDwaCahU/2liCYUICcwFM1xRcrt/aMMcaswV0xOdPZ5/JMc4eZZVJMiUX7\nde55lcuZ+hpKoqgPzkBJZMv6/yrokQHI2QB/DIeuuXEpgnYqgaQDZdRlXe6CDvJRr8uXQdbAn2ED\nf0rYqmd9Qzavfw2UJZyHJ8/gSftUiLcJKqIO+8Lefa37xQdSuJlG/EGck89Afgfb6qNBNa5c0Ryx\njGxRYq7m4ChcOjpDjQAlVVCcufU17Z0V5vT4Z0LULeDQCkBD2DX9NlkYEESH8rlL1KASU9BdRc5e\nH2hd8kB2RsjJ/gnrEvx8IdJd3hIekMsIfafP5/GZygZ8Jef0G2XJg5d6jVDX+ZrqqT+Q3aube8YY\nY2rwisxQXVrg49PEm51JdtI6q+58S/YYdzV+nVWEOOe36jr8UAmtBaUWP2pr8AxyXsijgjdG1dAe\n6vsr5upGjv6wbzf+hspper1kwnbbFAOtr5O61rPKgDWfwV7Ab9d8JV8dGfngvYx8bAbPTZ49bQ5S\npLfQWJWXej9r0LcXsnmbsQ1nKLpGe42rz0/hWD1+IR7MOT8RiuvqU66k8+IYVJQLemg1l88OQbFm\nH7N+jdS/GUibPoSWh890C2HVgR8V1NcA1WYD1+HlK825LGjfEF9NT9XvKmeBJUj9mq31Y4Yq7K8r\nMVImLnGJS1ziEpe4xCUucYlLXOISl7jE5S2Ut4qUGaMfXv6esnTnDUX8PVsZzAkqShmDMkSoSFXp\nVBmRFPrnzw4U0dqA8TsFy/s0KX6RcRPlB7hg3CHM1LYync5EEbgud8Fqnyky5iUV4TppKCNjDRR9\nPCSW9QGs9KO56nsHToYVqIADQ5S6D8v/ZpQh0NtPk4oqb6wUJe4P1J7yCZn0gaLrz1AneQTL/GwJ\nWmKqyFsBFZlOWhmDHPdCW9x7L5wkzWBTUcjyNbwa0f03SxHa/Ex9GvrKSuXuKXrYOlfU854Hj4Ka\naoZV1bd5Ltu+WNPn7z8jw9pXBD7i1Xl+pjGccH/wpmXuqJ3Dlvpsw21TKspXMtwhHY4VMbYGilKm\nYLN3ihqjKapEZyfyrQFIjTSRdZsIdMBYVkCUZAt6/ryj/p2fql+pR7LHw4eK4B9+rozAJepEblL2\nzNwFEdNUPd0ZvB2gJVIL7gYXZeerlqLO/Uvu9LY19lnQDricKTC29U35SPuZ2jfg3v0Q/o3TA9k9\nZXFXFt6jgMx0FrWWFXZNc4/0zje+YYx5ze0ybKtdqzSZCu4CO6AC1jYVfU6ty6fHV/p8JwSZ5Wt8\nEtyF3rsrrhqbOTa8Ftriy2tF/MtwE9yk2AlUJCwyfmT7Sxsa00KCvqGSc6svn52W3jHGGOMG6ssq\nBZfTSp9bgkgLX8pXIq6RtaLWAYuMHoIvZkZmrVLTmORBjw2nGovaLjbKqt4A5RibO7u2gRsBZav2\nXM/rkc3xr+Q7PoorTl7rXXSvPJVH5SjD3d6CfCRJls62lV2LIveup7lZ9eQzHVevbbLpWyhHpItq\nV7mAgsICLgIyGkUUDkpk8+y87JfFPi7cAwjHmA4orgnoghHZdjNU5ne+o3at1VTvLz/SupZFAWzh\ny/7OgnpvWFYLtauKTwZw18wu4PTpCwYWNDQ3EntkMUNUOpKafFlbPlpfF4IxW0IVBVTD4b7WmD6K\nFSs4FabwKfXI/LSAcGYWaofveCYFU3+YBAk4IPtS1zq3/5w9Cz6GcKCxyIEwqaPGsUzre1aC9ZCs\nUcAel/DktKWMfOMCQMmiq7Yn+xoTBHGMB/+GRVtzZPUHSbXrhL08IMs/mGn+JxxV7MDnlixpry7v\naZ1Yt0FW9G3aCzogr7F37+n/8yBMvBo+PtNzB2HAe+7Osw9E+gZZhBluWqoReoEyduBBQU2wyxrQ\npz9FMssR/4ebkm91UC9pX6MGmECNjnvqY9B03oJ9ioz4iPGfgzS5vJYd56iwFNa1duVQ3yigKuKV\nX3PnZEtZE1yA5rVQy7sGETqEq6eufanMHMvANzJjbmfYdxdF1bOD8oYDN9wAxNTwAG4fMtBZ1BGX\nZIwr2dC4ZO0tFKIyKdk4j2qdvQOHVyBbNF/C8QTadW1HdT9xZGNvjUxnpORYQkUDX2vBvTJnPlq0\neQ5isbOCx2wCGqFaMG9S/HN9bxyALIRPY3NLY+KDmHHhe8tm1c8VmdjmS9bfFehh0GgRn5P3QGey\npAX6bRnlTpnDqPwNJtpvrLF8rFwDEQlnWu4OPgLf3OnH+tzV55wRLI0H4DmTmOs5aTK/vqe5bJEp\nN2sg2EF/LEEELdm3kkl9LgeHTYN98PJCe/twX2eRJkh2i3oyC32fxLqp7qie4q7OeOFM/pPw2P/g\nw9iuaV2+QpbFO+SMOFE/L1/Cy9R5jSKbt2emfJt6bVSfUFXJObKLU2f/ZlwGEULgDfabaDamUpGC\nlMayCKq9B4fhInr2bXx6JZ/tggCZjLX3rUAjpFvyjfIjlA5BRr+Aq6qHKujalvo43ND5tHSHsww+\n2/4UxAznw/GmfGkdNc8syrAuqN3aHihblGBzeWzzqWw9AoF+/rF+P1ygWNtu6wdDpNLW5xfnNgpi\nDuv6aKixWw7g7krCw/b+njHGmN37QnyP+3pOf1+/7c4G8EvN5GM9fst5B3DzfKm/r0DJ5TIRslP2\ne/QN2XNygZrqPnyiKOBuvCs77tzV+bnL/nLyAhWoEPQvyKJsxOt0w3LU0fOsIcjEEMVMVJy8XdU3\nZ+1wUADLbGgcpnB6VqJzeRuURlZ2HLJWlALV2wPR+MsfSPVpZ1P9Mv/EmMxsaXynambcLljNOafm\n9RpxMy1Z1779COQ35zwnr2fm2MvnNmeFPbW11dS8+sVP/1p9+FjrwN1HHxhjjEmC0vQ5A6RA8Qbc\nVAmWqJRC7ZRdgdzzQeqBZAtT/LbJyla2pbnxK365Fes3Z5fsUufkCTdbwhbqSRmtG0tQaZuc26cp\n9SMYqX63grIh7VnxmDkIUY/fJQPUojLN38yrGiNl4hKXuMQlLnGJS1ziEpe4xCUucYlLXN5CeatI\nmfOVMh9jMrZpG2UCsn4LeEzaZTgi2tyjh81/FCjamU0qwnVpK3PSvSbDuw6iJuKe4c5rPtKwR7Yl\nCT9KPoGKUoFs/USRseSEe5HlJ/p/otm9JhwSt/S5pgPvB9muOhG9Jc+pzRQNX1UVnS4dgiKAO6dx\nqYjcF9s+f1d0PJmTfV49j9RLZI+MRybIU/R7CUN7og379A7R82LJ3Hb1fy/JTGZcZVwzZBg/vpKt\n8l9Rm6e/vG+MMeZ2VffrnqUU5duBWX8KP8K+r4h2+USvx49Vb57sSgAHzDZKA6P2m7lceqZ6/KFs\n4pVko+1vqr1rWdnmpyc/MsYY01wquvnwobLYhfuy1dlnuv+3gKMh5H507aEQMSsizKfPxdNRLclO\n3/yd7xpjjLkYKuJ+dqC7tLOO3l+DoIm4XYa+/v/dryqyf+fvKfrbIgK//6+4i9tRFqr+rnzm/d/9\npjHGmK2Z7P70e2qH75ABHioTUCL79e0/+o4MZOnv/uIjPqeMwxq+vH0bZQHQDBefcf96oCjvBqgE\nE5IttNSPZ2fwZQiwYzogi+Ztsv2oemzd0/dLZGzCouZYfVP2r4y5z/4S5Az8J5OU/CJfJbs4BClE\nxmIy+M0M5X+zhAPNgxUR/k5fbX8Vat5Z3J9dzdAiTQAAIABJREFUJ5tdXFOkO1dQxH9GJiy10ITt\nHKkN055sNRvCyu7o1QVxNx5pTMaX8q1MVvO+UNfnHHgtekf6+/ZdcbE43OW3L8jnT7WuPZ8pyxSi\n2gQli7Ehh0nAP7G1DWIE1Z90Sc8pzeA3ghtlidLDZKz2rFCEWYQoxfjygXxZY1hh3foYRYLdOXdo\nG/r7ApWk6UpzKAOvyIg7xufXIBwvWnyO+9yonxiyQDkyrEnuSVfrpEiXqMZNYOFH9SPtyeeu4TtK\nwgHgLd+MLySEsyBNPyugLZZ5lONg7Z+SaZmMybykQXtMaQdZzh34pXKOxmNZ0uv9O/J91wFtQibZ\nQjVrirJOeKn/H59rbgStuVkyNhG3QBLblkFTrSXVpgyIjrAEKgy0UYSiilA6I0tthbrKZOC5CU64\nS76pTGCBfcDylDnMbOFbZO9XICkSoMoSM7V9LQNS5I72tuVK7R4PtPdM4ZSy2ANXU/niPCtbWagw\n2QPZfsn6Em6qwbdB1FgoZg1RLli01N51G16ePJwvRX0uzRzwuaN/09LhzNFsyn6LmfqThUfO2VH9\nVfbaYhWOl6X2xU5Pvt8B2Tk5Q40qrfakydj6rL9jhyw+HC7QR5kMwjKlMrxxGTKxm9hrpQ8O4bEa\nXZGh/UNjrl4NTB6ljO0nsne5oH3O2CjPLbX+XrAeH36ktWcSqF2pqtaS2ib335kzS8bNtBgHsoOV\nJWtLDdQLyjuTiW8GIBim1O3AoeWm1beg+u+jg0LU2lyyu6W02tJBLWgGb9vqCsRbWm0JQXtmIRay\n8Q3/BD6dvurPuSgV7nJ2eQP+MmOMmbgoYqE81oObJITXwgZdlPPIuN7TnHK7at+L5zpPGtCjIYiM\nwhLkSEPtu0a5bLSvs8JWBWWZTXzR1fpowUcSelqXfZQ1yxX1vwhiZVjVfjV4qf52z+Cygg/OjhQV\nN3VmqlY1py9P1L+jvsavtIbCW0HrZhEuh4AzwTX8IMk1+aBBBcWAxp6zPzR7nF85Gw7goKmSaQ84\noz26pbPUWVftHT7XnDqEFy/say3LrzibDsjoU38rUlc0xtipllnC9ZbfAHUCWnhk9PnZAs6eNmce\n1pzV4uY57MWc7PhKfZ/ONTYLVDDX4PQq76FEwzktUgJ04GA5bcONAvfW8KlQBl04/gxKr1XWhWJG\n50kvWl9B7178Uge5zrF84PwFZxZQxvVd2a5xVz41HGksW6jwTdj78uwDDrZbooAzQ13p9COpGy1Q\nC/Us1VvgDJGOuEze3TPGGJOsaexsS885DVGLW8Gj5LHuG/axSKELFLLNWuEk4PDiuQZ10ea17Gn1\nUHEto8B4S+vh+m35cC/BmQhlyMK62tt4D7SZI18++Z7s9vlHut0BSNnc+o5Q1/msPn/TkqvIDzyQ\nmB3228yQfRBVv5AzRho+wx77dYlrF6u+/u6us4/6WlNXKfVvgHqgD5I+Qr4ua4NftWU6H5lKPmmu\n4GAquNwSAJHnRjw6/H5e5uAvclGO7YNo47eiM1FbAlCe90D3bP9HOgcPnoI65XyVLmuvsuClDAac\nFZJaLzZS8s0n/+i39f+gUve5peAP5BvFhcZuNSaOUJWP2PDtsIMZDwTzPKPn5zz1+07tPWOMMVn2\n9pOR9huf9XsJYtspaH2djOVTeZCPCZQUHW5ZJGyNqQM/aMv8ZhW3GCkTl7jEJS5xiUtc4hKXuMQl\nLnGJS1zi8hbKW0XKfFhTBGvvlqKhnSxZ9ZkyJMmArBCRuizcKf42GYUvFQUMHxL9ayujkPEVqVpd\nKvuzSMDmP1FEv0ok8OgxygNpRTdzI0XuSByY50llymufK5pZ8sX6fFpXtskKFHkbBhGrtCJ1TuKe\nMcaY6zVF2Gdk0TZm3Gcco37C3dY7x0Q1a2rnzoS7adD3h9zlc3u8T6OIQJh2k6ho/jNF5j7d1v83\nzsleeb55WlUb81NF5FcDRVyfcR+vUSQS/+fcI1xXBu5VIJsVPY1NqyBbJ1BaeYe7ofNtVITgJHEn\nskHxNnfZD1Xv8p5sdNMyWKlvdoHsSVXtGLTlE7M2mUIyAmMYu8dd2TJBFnragp+DbHl2XWPw6Ltf\nNcYY029xD7mjz49QWGniExYKLcVdWO9BR3T+XM9fQ0WoiMrRKg0r+5DMMtwNjTX9/fJIaI7wRPbf\n525vvSH73b0j38jWZP/+sTIjCe6Vt07JVA6iSDlRWbgL7Ep071vP7b1SP65AbQQoR3h1ZQxubynz\n8exHmjOnP1L0OZ+WL9lEm4dwFNh5+WiSO9Mnrw5VP9mrnV3Nqfq6/M0qqN+LtjLoh2eaC+831L9d\n1KyS3C+fEF2+SZmhYmM53EWHIyDFfFvSh1Eb1vQX3HH3X6pNICOcpdpSSirb5HC3fmtP8z0DF8hl\nU98LUdGwUWnLlEEX1BVJXyc79PmZ1OPec/8DY4wxWf6/19SYFrnrend7l+/r+Xmj/lhwJsxd2WbK\nGC9Bitg9zTGWSbMa6v0slC85C9SLQrJbAFfmXJGHrN6sRqClJmSkUbNY+64yFLW7al/rmex3a03t\nvDqUHQKye0nQHBvwZQQbeoADF4zHvesp/BoLS/2ZpdW/AuomyRw8Itzxdw+07oUgZRaTN1NNGQ65\nTw+/hk02yufOr4HTokyGd4miRAYFnhAuBA+0iHut9l8ulCVcgMgMQQ8WM+rvELSLB5ouD2okV1I9\na2llgu17tgm5W+4nNJhz+BUKRZT5CmpzIwMaKwdyZoLmCHxqhszfLEJrLvS9ACWWGaiCXFq2Pe8o\no3h6oPmfcLROODO4x0CHrcgSuWSN83nm/5kQgP5U7XVRTEmwbyRR71jM5TsjkC4d0KhZ1O/W4Btp\no0ryUU9IzVQdlbk26z9qSzP44fIWmVW4eMpVzcXl6s3yTvOl5kytFLVLaAGzLvuWUYQZw81zdiCf\nGp8L2Ri2NKlS7OFlOLbcisbPqaqduXW1a7tEJpn9LZzBL0KmetZRPYNTUAK+fH4MAsofWnz+9b7q\nhEMzBWWSgM9pcK21JpjKV4dXKFH6sqcH8mq7jupKEgU3o3G4OmCfhWMnB4rMwJ/XGWruz19Einea\nK4n0wpQ8+ep6Tuupw3qQBlloO7T1rnw3OUeJ5lxjewGqtP9Ce8dkojbXH2nPaNT3jDHGVHZRwUBp\nZIL6UpAS8mMTlFLSks8nQBimrTfzkVQGbqnbZPlRSvF24LZJaY404fmwD/X5AL6LvC0fG17Cx3EF\nck7NNAWQe+kR6KtAZ4V+SutvLsf+hrLa7pa+eA2aYQpP3umXqE/VQN+1NFZLlCL9VcTZoHEI8IEd\n5nqipL27hGpTYMtnUiCB5jlUBStq5xilmrMfC0Ww7Kp/eRCceXj7QtZFx9bn7ZzGo3g7ysSzf6F4\n6aGIuZHV+J6AYJ2ew9N3dqj2HMkHixGa+j3ZeTOCnBpjsvWMsfDh5Rp+yFmmjUpXpid7RbxKPvuu\nk7k5H2LCwtagYOesvxFXnlMEReTr/8+e6fy3zMhHSpugBuri3htf6Fzai1Qzu7LBelVjdP9dKa+m\nk7JhD2R370q2HJ2jejRH6fW2lHIaDzTXNh/CswMabXTEb6ZTFGnn8sHh3gbP1VgkmcsFFB9XqPvY\nqDTlQKZ43GLw8qjq9SJ+II1ZijlR2gHddqk5db2/Tz/098kxyocd7SN5D8Tk14VO3a0KmT7Z1hhm\ni7JT55X6v6jouUlQEdfnmqPzM9kpzMPrx/lzAUL/6Fz74smBznIeCpg51ELzBflc0Xoz9aWI52rG\nvh6MQHnA2ZaM2gEyaJTnPDCX3YbwJ6ayIH1Ye+yE2jOfyk65UGvK3fd1Bnzy3/1jfX/2eu3rWEsz\nmU9NJccNFlCty4rWhyx7hlsp83kQ35bGtMxvpJHNOlTnXH3OedJWG377t79ujDHm+JbOGEefCV1l\nrjVG6QY3XDjHdiEiQgjYTFC8KnFedkAIJrBJ4KpdaTs6r4FIZJ0P4L4yIHrG/AaeJdTuLdaFFeqe\nIcjLOTx3WUfr9YAF203AHYgK4AwUsTXS9yZl1VfkbFJ0fzMyM0bKxCUucYlLXOISl7jEJS5xiUtc\n4hKXuLyF8laRMkkiadP3FOXt9cRlUG0qgrXKKgJ2PFEUNhEoQlU8UdQ0V1cWzTpSbKlC5mR+yB0u\nT9Hl/QkRtbb+/zn1JHqK/DWvFZ38SgE1klARuvpY31uEioQlFmqvt1K09rrDve6OUCE+WTR7onZ5\n3PNOJBXNfnWG/jucOenNT9U+lDLSqERtlxXZO1Iw2+yMFEF8mZAdkp/r9etpeFJeKtNwvK33K18R\nvmCs6HbHX5kKahFt7ssW68rqbK8psvoC7pL7IE1eVPS6dSZb9XJqg+OSkbxG9chXfT78NiE8P5mF\n7uEtr0Ar5JXtqC1e32G8UQm5x0dU1h2rnc//SqilyULPraP44mUVpTzuHBpjjKmQMRxH/BbwF5UK\nqDINyAAew6RNENXvqd2/+NOfGGOMKe+RGbBl60oquqes+isVjXGkVtJ6Tnbv4F8bY4zJ1xRVTaG6\n9PixGMfnWT2n86l89diSPddt+cRGpCyxUv2DS/nsF3/8Q/UfNauSy1xCIaBMNj7qz1Wk2JPE99Kw\n9/soBEX32skG+WTX8lXNxeh+frJBu2Btb+zIjk9/cmiMMWb5SplYH/6MyUR+MlvgNy48HC5IJ+Aa\nNnPAI3O88m+OlEmARMiRIQ0LIF7wiflCYxWpcWxzZz9ZeESbyPqSrV+A/vLILthNmPxREugek8VG\nDeIuKKA+d2yHJEsseCeaP9R60DxS1qZq1NfeClRBhsg6yJhWW+teD5WkxSl38VOaCxbIv0SUwSMD\nbE256zqBUwGFLC+h/k1rcO9w3zoXKcLg00OjOTvke/2x5kSWu/67daUqvvc9rVvJlca4jjJLsaZs\nVQPkzwy1pwRcEcsZ9RqNfWEoXx+GskuI2tN8Eo09qA9Y7F360UWNLpy8mdJBjUx6saGFdQkyx+kq\nq9kiE+z58DSR2bAScFeQrYrUq8aGfaGt8cyR8W82Qe3h2yFcM/4Q7gyee87cdcbR2hOYNPNgQSav\nUJHN52QElzNUdebsNVPWc+4pj1FrsnwQf6gvOSAsUmRoVzaooyyosCXorg3ZyA5B+LVApKBy5KKc\nZbHQrZLcoz7V2KTJECe4Pz0KNfYB/BbZBShY5mYdX5uAgBnynBz30UuoYOQS2hsne7LLvYhrzObe\nus06RQZzMUVBIrj5OmKMMWV4LAxoL5/1Mcc+NJ2DkoXHbq0G8tSFz22LzzHW/gR7wCu0IKuYIZuX\nT8F9Q78NiJf+uV6vXwqJMz1R5nvG/rG2IQTO7YfwYuy+Vl968u3vmM6R1pDmM+1DM/hUDOO8s6l6\nbLKeGSta+9S+LHMtqKreUkOfH7JGTa9Axp6pnSnu2ztbcCKgVJErpI3zt4bABw3pwHMXwH+TRK1j\nmWRPwkdtlKlKO+rrRgV1HxAlc1BGS3zWtVV/GrU0q0oDWvLJKevOdKbnVMpvdgxeLGXLVRbVO1AB\n5V3OFo7Wxe6R9oura2XXLbhSIjUqe0vtz7BeRvtViEJidkPr8pqj59lF1TtLke0nM1u6BWTmQt8f\nXWg9edVEkeZIn68a1RdGZymUdbZZn/ogU/rwBHmRuhTmqZZUv12X743gELuG07CQZb0nMz1vsp7D\nrZUpaC3Jg3zpMs7losZ38+427ZAdWyc6swwOZI8pyMbZJcpeDvwhI/XvHHTIgnU7DQLe2VK7jDGm\nWMiaKcgYe6l6+1oqTTfiWWFfT3JGvlVVewfOzf1kHqmMsj6VQtZ1kORhT3+/uj40xhgzRGUzkZGt\ndj/UebHI/Exuyeah0XxOd2XjKaiE4Uz/7/uqPxhpLrnspUkUB6FeMWvwbeZy6tPwUPVctuQzF4eg\nSUHuJQucIc401n3mQBrOlypch0VQrgEIkMkInh7UmkI4BvvHWp8GoXyulGLfArZro55qgZqb91XP\nmHUYYKTx2M9s+DyGY1ScOK9mQS9nQK7PEsjxwSN4/gIevLb6nYIPZIHi5PBcdk3BN1RE4bLyVSEo\nHZDvqzk3CeZvht4twCW25BZHfgt0LWiQlSc7W0zC/ED2WIHiKi3haAQVnRmgIAqf1Wqp9s1ACV+n\nQJGdREqaQmiZJ++a0jxjjBWaWZG9KwTpZmmdmoB0rNbUx/q2OFYt0FjHv5QtI16cEufydBJFqQXc\nr7/Q7/z5AuUplL7GF/p7eirf6aOOmQRNH3IO3d+X79wFfeWihjRbqY8B6M55DWR2E24tEHIue+10\nIht4SflI0FZ/JwvZ9HQIbxMsNAUUu/qoQZXp5xy0W2KqdWPmozqKslgSLts0v/WmAZDIX1NipExc\n4hKXuMQlLnGJS1ziEpe4xCUucYnLWyhvFSnz4oUi3eNPf2yMMWbtCffjBooVDWDnfwDbfIuMd+dc\nUckL9MO3C4qYpT5VBuSoof/f2ZSizW0Ufzbqika/yimrVRgrMzxJKtLWRYUpl1dUNEum5roq3o2d\nhO43bvuw93M3uTjjfuFMkbQemfNg6dFu7nvvKBK4XVZE/oL7fHmi5nNX6INOFtb9QEo807aio3dR\nQrC+pvpagaLn10r4m28dKMK3KijzfAIbdjqsmuHy0Bjz+l7dqK2/LS9l2+2H+q5T0rOeuNwlL4vv\nwLr7S2OMMYMzss0WCjBl7qheCVVk9lTPCYz/mygkXBmhdtaey0Y3LRYZPCuBGg+R85AsdLkqn1mD\n72JFhnHxSlHPIZw00BGZBBnoaVu+9PO/UL+WZIkKZCJt2M5n3NOecD/bA7mSzevepQd/SQjD/5jM\nyBJUlU9GYz4lC7OmMSui1OAkiequ9PxVT1Hd4Uw+3jxBqYKMRglOh8FKHSrA7eOGKMW0uR+ejDK2\nygCsQFcUyHi6ZDi6LUW5W8dkNJqgQMhmpkvwfSCg0IS3KRvRzqdld9fS9wulKFOv79td7nEaFMKW\nep9AgahHZn12qbu94zGcNWRcblKyKD8tbFjPIdK4gmslQI3BKjHPkrJdEpTBXK5iVnDTJOABmo8/\nM8YYM0ARZ0W22eOKemN7zxhjTLmuOVEA2ZeGp6NKtqJURz1uoL4WNmWj9QxoInznCiUVK4FKSeTr\nKCS4AEN8WOedPKpRRmOxSCujkQA9VuD7I1fPWZIhdjwQKGSQB2Rm+9zhvb+n9mcbygYlUEJo7KDQ\nVtZ6nXfVj0SSO8Mom32ubhhnrvVy6uMTS60VRdACDkifRBbVKFAXmYTs5S2UwdioKVNp3yHzDenX\ngnG/cRnJjs2c7D3jDnIJbpc0ygtj7hx7ZcYHXpbiFuMzr9FvOMLIpIT2ivbrfZtMcNKOUBKy06qv\n5zkrkEKohzmjmQlYd93/j703C7Yky860lh/3c/zM87lj3IgbQ06VWVGZWZKqSiWV1BpKQjKB6H7C\nGjMMM3jHjG5AaqkbayEaax6wBszAeKCNtuYBDOsGM5pu0NAaSqoqlVJZWZVzTDfuPJ55dD/uh4f/\n80wJVFU3XogHfL3ciHP8uO+99tprb1/r3/9CF+dwYBU7WrOsq7E/v1AfspTpicnwRczXAERhQEWx\nJRlGF4RJBqRHtiN/6aw4L24gLpinPnPGY+01+NqWICYyMd8nHApkswK4XJxA60zQI/NHpjagqkcT\n7pKwkCBsZGtj0EpuF9sayO/0QXIEoJti+IAqoLI8slw5svrZ+NkylwFcOOG59J8Ubxpja36Bc+91\nqhhBw+SG+GWqDWaHZDD3dZ8u6LBGnf5SkaxbVb9c4CQOHAtZ/GeMTbllPW+9QsWwgtp5eaU5O4A/\ny75stvedD2xOpcqkCkclOd/vay5GcAKNBpr746n885xqLpnEx8w0B7o9KmuwrsVD2dUAtHEB88hQ\nJawP5093cWE2BcHC2GAilqea26pEVTQQaVPm6ZTqebmpxngFT82CSmIHI1ADE/V9ThUQ5xJEIHwM\nzlT3SVCkM1CYHZAdw2Qtu6Ysc1RVo3qS68H38JS5sQUqlYpds0Oqfx4KktHcFRKkQ6Ucp8qk2JA+\nAvYwFSpANuD5yXd0/4s+yD3818m+9DpkkY75fHkmf+wzB2f4q5DKW/Wb8inrW/L38y56GOu5BdbJ\nAtyPYVntLWZ1n3Pm8GysBTSkcqPPnOv1ZJsrbCnhr8rAg9VgT1FYl425IIZqUcKHp/Vj+ISKQefa\nIyzh4atqe2w1EEXxEr/t43e34DOpfjq+YS1vBWAWPnY2woYjqjUN8Y1rK/2+H1FtMKzadcUH3bUE\nheviD2P2o/ESJAtvYAXWUh/UUDzX9cspiEZQAzU4qYYJXxt7hxOqi2bgZqlQOaaQIE5m2CxV1BLU\ncBeOwkWo+Rz31NdOCZvsSAculRKLkdrT7XHaYAIiBmR3ztHYXPXlJydzUEfw1ZWL6kch4ZUbwG9E\nRZ8apwg6Ve2vY/a1g1Bzouprj9PKC1WV9xjDExA8gfj+nJBqgWU4vECvZbG9KK+/5YpsJwhAv4G4\nySZre1H6KpRBLoGkHMMbMu+pf1dw8CxLz4beTbiH5gvZ4JITDWXen/yF+jvpCrWRpertBERlFMMf\nChfRlOpeAbxRnTX1/6JOpczDPTMz++ZvyV4K+Oa/+jM/Z+O+Z8Vm3tZqIOkCvVhWXPU5mss23vmX\n4oxqvKZnbFTl51rw3+U4QbJqa81qUhmye6z37d9+rNMH62vq287LQi7XKFc8WYAqA21fBDE9u9Q7\nZO9I97lo4R/h6wzQQYKc79R0nx4I5v6pdBjR3sqMeEOFd8ZTjUWftTh5p/FAUDdj2UAFm4n70seA\nfWyHfZ/LKYzxGWMUUlmrypjAafi9JEXKpJJKKqmkkkoqqaSSSiqppJJKKqk8B3muSBnfiP7uKLNw\n8Aikyq4iT9GQ838hVZDGingVqNZxTB3187EyEK6vCN/WQPc9mCkrtXVDESuAL5YbK0NQI5paqylq\n+GBdkbBJcmZ1oEhak+ycR0WbypV+N4c9Oj9UyD7TSzLXMIi3lEG4Aw9A0KES0InaVagRffWV8ZlN\nVcHhbKwI4lpX5/0ynKu/ulCEMAM6pbogCu+LAXx0X/28mglxU92UntqXgXkeZ/Lhd7hY48xlAPfJ\nQm3J3dAzl54i7bmOri+GOj949xW14THcB41z0E5kGG2IST1Um6ceqCNfkfUP7yj7cV2pku0KqThg\nniL4nW1lbbIFkBecr27CTr64of5lSMuFmYSBnwh/qPs4OaqJwGJeBkTgVxLUhO67NFKmXpJ5hQeI\nyPqSM/iVpD0ZKrhUOD8O8obb2ooM+KRPtp+U6w5Zo/GIrDyR92AJPwiImU2P8+PYVsFks/VtzuSS\nGU+oCgrAO4qwskdUJKpw7n7mgQjKJFkz2UVMBqNC9sn1ZJs2UXv6B4oWG3whbSoLRdhmpsScBllV\nop1RkXOW+IA+rP8+nAeR+ylHwg+SgOxvkiUfJ892yMaTfVkSybYQhv0uWRqQI5lpkmnkjCj8GT5n\nYSs1tdErS2dJlY8e53WN89PziVK5wz1l9tbIjo+PlQk4mskPhGR/AhBzVbJShbx06JEtd+K/2J8p\nNhutdL8iZ2Un86QCF5kNbNEjU5khU7xgirpGpYa+MggrMpeZEufYQW2dvqN+WFER/qan7AvHmi0X\nUzELlvwVc26eIdNK5tEPZNvLKtk/5lBIhZikss/0Uv06AF3XS5BMzN1olXBmofdryhy+qRI8J7lV\nMpfVvgC+JRfEVIGk1xIW/5g5VK0yiQtUQGIZzcCzEt+g2h7nyyNQDRWqSS1AVSxBT2RBFUyiwJwl\n6ABSqDkqocyo3DSCV6xRxnbg44ipJNMsJRVN1IbQBV0ZAfcBZeR5Jdqkv2cn+t6jslWS7wuzSfYZ\nxAs8RD4VqbLYnl+FLw2OsfBKNp53NVYlUFlBjP/JgjII4IMCfeBh415NzyNZb8UETQBf2ignXfMz\n8wIywHDBzCI4q+bPhoJYkT3PwNPU8KkilKwf8HAsqXATw8UVTeWvs/wegMonldPW8LsulR0c0Abl\nBCEDJ065RsVEeJTyzl/k7glAj8xn0nvuRM9d/DnelmV3Ziv2Nh52lIeDaIqtz7DN7Fx2NAMRU2pS\nLYuKST4VzmYuFjHGxhOuHDjmYsYxgIPCISNf7LsWg4BJ+A2qVJlcsebl4eJaMLa5KhnPKbwIVAqb\nkHFcUC2oAAItw9iU2ZNk4LgKx9zHgx8DxGNzI6luCYqATOd1xcefRhP2JEkVuxP8E37bpdpfpkzm\ntgGnC25nCYK6gE0FrIEjn7XfYe7Ch+GO1d4afD0zKthcfKz9sYffT5As6zlQS+wdKj7rGFU9i2wO\nRmT7PRCOqwI8Rkv82wLkN3x3I/bXMXuzChXCJr4cdZbM+PqW9pTTke4fsU5Xy9wH3hEHzraAPcjK\nA9EJ/eAYffssXF4VxM9C1+dBM5RAPMZFEKJTxmP6KerWHU4sYH2a+jiXhX7fhBsox5yMTO1YZXXf\nKDux64qDH4pj5hvzIgOkLGIeJ1xN5Y7m/5y1wKXKZY9qfB5GM4Obz6f6W2ai3w3ikOvUxoD5HzE3\n4gI2D//FaAWvHGOXK6iPi5r21QXcrc8+MY+uhhPtUcpwtoSu/Ph4ANKDuRDNdf8Ca122BGIzYO8A\nH1TDxR+G6Jr1aTLjnQ2EURHulTlIFW/Fng4OsSyIpBCE9xJfsYSnzqvIBwQQ/uGSLMu61moKFRyx\nh7Riwscnv70CdWwJyjhgDxPAj8W65dqzrTcj9kjGnqQEqrvg67lOHtR0qAbnsY9lRXPrciEelzJ7\nxACepKFRuayv8ao1QFHzThqCDitVap+0pV2Y2igXmtuVLvLTE/rIHgN/sc5+aLavd8HCDV3fm4CS\nXcAFdqoxGlGBy2Pt37hF1T24n3KsocM5VUQX2jt08rpvAB9Slg3q+mf0uc8YJcUzJ478VsGhvVSX\ny4X4016CygJRuQ2yBQS8A8JxjXe2ExCdDY62AAAgAElEQVR1S9D+5/D3FGK990+wudIxlXBBzC8i\nqqIyNxzQbFnejUcNNgffQ1KkTCqppJJKKqmkkkoqqaSSSiqppJLKcxBntSKc9Dwe7ji2Wq3McZ6t\nQkIqqfz/QdK5kUoqf7mkcyOVVP7fks6LVFL5yyWdG6mk8pdLOjf+v5fvFXpJkTKppJJKKqmkkkoq\nqaSSSiqppJJKKs9B0qBMKqmkkkoqqaSSSiqppJJKKqmkkspzkDQok0oqqaSSSiqppJJKKqmkkkoq\nqaTyHCQNyqSSSiqppJJKKqmkkkoqqaSSSiqpPAdJgzKppJJKKqmkkkoqqaSSSiqppJJKKs9B0qBM\nKqmkkkoqqaSSSiqppJJKKqmkkspzkDQok0oqqaSSSiqppJJKKqmkkkoqqaTyHCQNyqSSSiqppJJK\nKqmkkkoqqaSSSiqpPAfxnufD/5vf/E0zM/vrP/dVMzO78+VdMzNr3XHMzOw7bz02M7OdzqtmZuYV\nXzQzs49PR2ZmdnvrFTMza1YXZmb2p1//H83M7IWX8mZmtnavZGZm73/9yszMtjffNDOz+dEtMzN7\nenRsZmYdT2rYuFnQdbdCMzP7xp/8czMz+9beH5iZ2Zf+zX9F7dteNzOz8TdjMzML9tWfeuELZmZ2\n8ujSzMxyn22qfRtTMzMb5o7MzOyVF9Wu3/+v/ze151j/f+MzP21mZlF9w8zMFouumZkdTb5jZma7\nP9/Rfdu6X3+8NDOzwsd1MzM7fnemdtTVDrdY1f37Q1v5evbnvlgzM7P3vvXbZmb20Z/+jpmZ/eQv\n/qv6besz6sNgbmZm8Uh9GCz0zCPXNzOz9ms5MzMr1qWzkz/Rfbz9QzMze+HlXenoRNeffzw0M7OX\nv/xDZmb27/0Hv2rXkb/xa78hneTHZmaWXS+bmdnM1ZjFcU/f97L6wXKi/8/Uvslczw1L0k3nltpV\niRSPPDuSbVR918zM/Oq22h3o86vewMzMgp7uc3Nn08zMnErFzMy63TMzM6tl1a4VOn/vTz8wM7PN\nNdnizg3ZblCRrXpL2fDSW5mZ2cWR7j8+kZ7v3N4xM7O/+d/+fTMzuzyTXlv3tvS75ZR+6n4FV+P0\n6O0Hus9C43f7/ku63vScWkPjNV/KtiyOdJ9j6Xf/UPrs3FR7Y0c2tru2pvvE0m82p+dbTv09Orkw\nM7PphfR288aumZktCrLtclb6n4YR7eXxpn9ES/UjOtHn2VCf/2e/8R/bD5J//+/LRoKR2lbyNR+c\nQPcMloGefaU+F6sau3ld89ftMSaOxqrMmJQKus95v29mZpWc2jSv6XeXM/mJvFRks5l02G7e4H6y\nSWel+y9n6rub0d/BQH7CNdpRr9D3lpmZLZa6f8zci9U8a7fVjmChv+MVNj8pmplZYUPPjceaA4Op\n2lVyZfNNX/ePuxqTKKD9np4XOnpeZkNzNxvp7yiSTZVX0o+b0xxcjvS5V9RzvbGuHwzRW1NzI9tR\ne6Zj+feJqV2OJwU2V2p/nnbPY+klnEpfFZma9eZq36/8XfmQv/e3/1O7jvzqf/grZmY2nqldjZua\nY4Gv8anx/MCVHq4OtD6sVppblbK+z6ypfc5Meg9nmjOLY+khyknPG/e0TjhL9f/8UOOdL0lP4Zl+\nn2nqfq1azoKqdDoZMM9C+evhkfyM72s+WQ4bupQutl+9q8+x3bCv3wf9UzMza7+kNSVY6vv3v6NF\nq7KmPrW3tCb293V9syRjG+ypzZmG2rx157b6OtTYLTP4zaL6eHq2p/Yey585a2pvpyRdZLG52FH7\nqm35owlzqXJL/m3QP1c/Qv0+N5eR9gb66w3lZzq3NdcyJQe9yGYmQz2/EMto/tav/LpdR/6L/0TX\njSf6vVeR37OF/j9fYCvthpmZlWL1f3Iofz511Y5cS89dDQbcR/rz8/p8wvriTaTHenlXeglkQ+MP\nx/RHeircUT+jmZ4zW2lcquvSa1RyP+nD3/v1v2mrgcbDnck+Stua83XG6epK4zxhjrXXNGevumpX\nhesKRdnjsCe78Rf4lBP9fndTc6jPujvOah2otNXemZ8xL6M+TffVlupEYz6K9JtmS7bZxw9mfNlC\nztUzpyP57TAj28niv70N6bKPH43nut+NluZCBj8zeKrPZ9hM8472UQPWdqeq9vzq37meH/k7/+V/\nZ2Zmy57m/WWk9kRl6aqUVfudWH4g2RMspz2+l01la/J7oSfdO30tfm5O+nDQ22AccJ2eH/Skh0JV\n61MQMsa+fELGk020srLZ475syZurnYU861hJehmN1V431gNW2ODxmcayzB6vWJLN26X6UbmpvdLy\nSs+dlnSfeklztjJV/4OM9Dydqp9xSf3JF7SXGo/kjwcjtbfkadzqDfmgzEy/W47lAyeR2p9r6/ss\nz5/V2npuQfrozTXn5j31x8zs3/m7/8C26vIx+Uqyjuq5S0fjdEW/RwHrRKjnVHPS+2/+xn9kP0h+\n89f/tpmZRfh6Bz8Zncl/nC/0jGxWut28LZstl6SzxVI6npzjD0ay3UzIPneCLh31vf6KbKbiy5/P\nppozS/a5E/avmaL64tU1j3MT2WB/pLFbTqW7ekn3Lzd459iVbq8O1I7eodq/WskfFTJaIxs73L8g\nf7Niv3j+QGPnOurPjD2Hzz49t6N+VR3a78sWHXyBX5ZNXT1gn/xU9zNNAWsWZfOVDf1umtf9WC1t\ngo1Fcik2wl8vBhrTak3j03xJ7z8RvmjWVz8DU79i9h45X/oplvWcSU+fFwr6/Nd+7Xrrza/8xn9u\nZmYnGf2uuaNxnPfVnoyj/ra3tO4O9/QecDHWuMdspDcb+ltUs+3kqXzJiz/6uvrL+vr4gd6py9U8\n7e980pZ/9x/8QyvnWlZsq0+nZ9JZ5oR3oIpu3mL+BBN9P8Sv3HuV/VRezzp872M9I5l+vmzNq8mP\nTAKfvkp3zZbGvr6lv/1HGuPuTLbs13V/19Ecqtfwq7HG8GRPttaosGeoy/bLS/2d8T4QBdJVZZN9\n2FS/6z3C/7J2V+vy05en7Ovwmy+yfnQfyDYGl1p/6hvs2/Gfqxz+sKH7DLq63ncG9v0kRcqkkkoq\nqaSSSiqppJJKKqmkkkoqqTwHea5ImcuxIvh/+ju/ZWZmNz7zWTMza+4qux9885GZmT0eKaL28uZP\nmZnZyUcHZmaWJSK2D4rgf/rvhTz5pX9L9//Z+z9mZmYDT9HdO1u/YGZmp/uKxL/3W4qQ/diPKvK3\nAQIm7v++mZm98y/Uro9o78slIWcKr/ysmZk5jxXRe++3lXX83J0fNjOzg0u1a2dAtPjzigzWWk/N\nzOzw+GtmZvaNP3jbzMxeKoBouS20ShJIOybT8zQSyuWFHUXodj6v+6++8Z6Zmf3ZB0Ly/NP/Qdf9\nzI8IWXT/Temz6l7Y6eSJmZlVFGy00R8JffO1ryvKeOf1f6Iv6qCMfN1jEYH8eKrI8mPaMv9p3Xtj\nXbr/2n/1v5iZ2WfQ1Zd/XH0+fEff/9HvfNfMzDyQNteVLAiLrikq6xXUvtINRTmnZKkuPdlS4UqR\n9wXwhb33lNGLyPZvfUbt8jKKzro5heyjgIyjJ5uwksZuGirqeXapz9fXpY/8FrCFB/r9mOz4koTl\nx13paVZShmGzre+LNbX3aqJId6mpdg7P9JwnhxqnQkeZxhWh/hCES/62Mucjor/TY/2tZpQCmINm\n+OhMUd/NosbRQCPkNnSfxVy2VSTbtj+Tnp9+qPGKRnpOYV1/vfvqd3im65ZkmcobamD1u7KPj55I\nr965jDjTUXQ6d49MTl76CnKgJfpktPuKJg+zD83MrG3Xt5NgTkYV9FGCBPFW0rU/JlMKmipqqM3F\npcZgr6es/K265nMx0ph5ZMFLI903Lkt35up3Q5AeK7JV86l037ihLHPFk60tBtLJxUJ+KEFqxD3+\n7+g5a47a21jX39mpntc92VP/fGUM8iBxHI9MBWiJ1YpMbUHfX600VpNTIvl53bc+13XjrvSxIkMZ\nkJmdr2FrrvQUR4r4RzPSMGR+GwX18/BKNjs+VDuKRelx9Uj/929JD+1NteukoX53p2SpVppLC48M\n6DEZjafKLETMldnNdfSg72efJkCvJeGUybnUXMiSlVzmpY9MTf+Pr9TPRw80h7Og9G5/Vlmn7VvK\nEBc86e3ibWU19yZar4qB5tQit2tmZmsbN83M7KArPZbnes5RT+tYIyuflbnRMSdLBm5N91jG+n//\nWDbYqDEvphqjBPFwM8AfBWp71sgoulJSrqZntJuaz98+EpJvBJKtSaZwkWV+zjS2gQMypac254p6\n7nKlMRlFoLBu6z6Ducbmg2/vmZnZZllr62uf09o4OtHnwQn3xZ8Hc81BtyM/MAnIMC/V7iyotcWZ\nbG0A6q32qrLtxVbiL6TjuaP2FrrY7DUl8d8nc+n71h3Z7nhCRhREYWWFLzDZ+sVA47Caya81yWjP\nQDSt1aV3P6//L8lMn1/KT5ab0lt4qc97T6UPDyTL+m2ek9HcGfTk0+qfJyOc/TTjmZ1XPsnczi9B\nTNb0ex9UxuG+bLagKWWRKz0uK2r/qqDxWebkM9wZmfFz9X/2gLm+qQz5tK/xiF1dl1vT5365bDlf\nOuy/DTrnBNscStkbX9AYb9Tx46CiEjRYQFY6yZh6oFTb9zQGwQP1ZUzGcrspm4syeq7L+jC61Pxs\nsub5RfkBJ3pGGwGl9O4TIenGObV/3BTarEA2vZ/R/ZcXyk7X8DM3Pw9SYwXChbX4tC+dra+DJuhL\nD5Mr6WtRUD+O59LH2ek70scjXV/a1Oev7+p+Z4y5+bKRANSEO2SPM8C/k2WfL+SPE5s57Ekv1YXa\nUQJNPMroPvensrlJVTacrEOZsnzH0UKZ7lYWdG9dvz8FXezOpcfRhZ4TzzWer/2IUCOuK1sDNGCN\nivYQtXXGPVS7Lld6vluUvRwPNL5Hp5pDf/pt+Qwzs3/0v/6h/cLP/pKZmd0BxbzKgk4ItZ6e5XR/\nd6Y5G2Q0J/t2ZdeVuKq2FFcak1xduj4aS0eLI8bEUd+XHeneaUh3Hki1Ul5t7L3DvMrq+gVr2Bx0\nbqMn2/FeAW3LXiKcgiID4ecUZKuVFahV/nomm5gmqIGVbGie0+9fyEqnE9Cqefbj1sN/N0GNYhsZ\n9ndWYqwu9fzs4V98Xo7n5+fScdDSdSWQf0NQUWstrQvOXNf3P/4IPWqMqp/V3FgwlQuenuttghjc\n133nA7XbyTIOIFKlfTPPQG1s6EXpwVD76ChmHWW83Ii95EJz2i9L33EQ2bNIAOJ/NJUt51ztXY9D\n+TTrgtruyH6esh/ogh50Zsxdj/e2osbpYqlx21hJPxNjrvSl52HIurn6FGH5YH9pL7yYt/L2Pd3z\n8Z+amVkPP70c6R6ZimxtzP8PTuXXi5+9Y2ZmLVfz6XAgv5cZcnKENbDeUhtP8Gune+rL59jXbqy9\nLN0c6P3244/1+yLzPZ7L5l96VYvX5UBz4emB7rN9Uzra3ZQfGYz1nJMLrem1or73QCFPR7KNQ1C8\ni0ifN9nHHk005h1HY+BtaR84+OgbZmb2wYM9MzO7W9qV3hYai9FEc7YDUvqsN+a6779xTZEyqaSS\nSiqppJJKKqmkkkoqqaSSSirPQZ4rUqa5VDTVLyVnOxVhqlSUifz8VxQlfPdbih2FRPniqZpd8BRV\nfPELilwd/LJQAZ/7iu7buKHo6tY9zoTWdd9GURH+jU1F2Bpb+txCRcIPzhSFffWv6OPP/6T+Ft5U\nJuTFTSF5Glf6//4fCfGSJ5OebSpSOPEVcQvh7cicKFI32Bfvx8/8NUXifuHn/5aZmZ3vKUJ58E3p\n48ZttT/nKGparKKvWJHDkKivS5b0zS+Km+crvywkz2FP95mdHVmuRRZ+Q9HIH//rX6FT/1i66JCJ\nnCk73CTLGzaUbcrm4c+ZJueGyeg6ilxvvqD//+g96eTH/403zMzszl2NSZYzrJ0W55IB5vxAIcPQ\n5vnRlv5fkIotT1Rztq92l8mS3Xz1NT2XbNE0hPiDLJZXlE1tbmvss2Svrx4ratp5WWiJG5yZfx+E\nj19WO/w80VZfUdA8idPmDY3hD/8VzkejH4OjwXcULc0EispuNPT8zItE2i9k81FV7RnCDdEb6H4d\nuBJIBJs7VXv9u1LIZ3/qR83MrMFZ2Bd2pY8TkDt5zkl3A7UjV5T+tl9WVDnvqCOrmfQcZbj/Eu4H\nzp0verLFSln3KTdkV/ffUH/DcXK9fn91oSh2g/OiC6LWPhmHHGeHl0POoVuSif7BUi3pnl5Wumzm\n5Rduuepb91iZuV14d8pbisSPypxx5Sz5Gvw45SO1JbsPugAEx2wNLhZsr+VqrH2yQaffEcqn0dd9\nxidkJkP5m1vwcpySeSt19LtZYoubQp+1HGUxLk/JJi1BtJAlv7nU2JwPOVfM2flSlcwe/w/OpPNM\nKJuqumpXglhpj2WDo1D6K2U0lkP0afD6nI2Vcaxy3csF2VSJfsdw9oxnylh+Ji9bWq6USR58lwwq\nZ/cXHY19Cc6AfE16vWmaA8FQtuo+lp5u0t4yNn5Ce5qgFK4rW6DcTsbqlwcKI0OmfHxBNg+UnK2k\nx6Gaa6M5fCUDtau6refXdpSxKR4ICell1K9uCAqMDHe1quctR/IZGTL4Plmu3tA1Z002WXlRbSiO\n9cxcj7P9QOeGU103YgmfcUh/Alps56Z01fbVhu6pMn4FV22+94L8Wu72C2ZmNu0qezNyNVYb2Ipr\n+htn8UcD/BO8Q1aQjjIePBE1tbNQ11xwOL/tcPY+s9B9IhA9K5NO3Jy+z4Kq6NzR7/qPmaMkZoMr\n6X4A6mjShVdtDZtPOBPgIzHn2TKXV3DSDBsgSorMfU/t7u3J762VQCyS4cwyLll4RGZ9XXcFz4hT\nlh5zZbiA4HI4gjNgA9RW1Ia7ax30ABnrUUk2M/U0fpdkWLOg8wrN8Sd9GBbnNjqHU+hIihtv6bkh\nvmEI0jIEldv24SIiM3+W0303y/r/ybHam4cHwIPXJbnP1UrXX/ThUVmE/A2sbVpLJ5HGdhnou9G5\n/FP/RM+u+JpHkzmIjFAZ2HoHtNJK+6AynCNuAQ6UDRAxB2ojtBi2OGTPkFMfwpXGYJjT87I5jeEC\nHqDrSo993GJNz2+0tOe5CefYJC//WAHpPA3kz/b2ta/s/raQzeFM69LOXXEj3nlBc/6lN75sZmZs\nSWwCImcE/1BpT/5vdA4nWFFj/cau/O72G7pfHt635UK2OR/tmZnZ2yC7x+ihHMu/3oH7a/uvaT/d\nLkqvZ/iph28JmTN9V+14dCj0c1ySnjeqQgRuw+eR/WGtZzX4ni4d2U7hCaiRB0KwPH7nW2Zmtn8s\n/QwG4h28/ar2jm14thwy+DmQkmc96S9a6P5HXbXr6lz3zWdBKTcTHITZy5sdu3ePPQro4r0D6cUF\nrdEDfeDCpePt44MbC7uuLAK12fX17FIDFJQrvzsevGtmZrMD0JaPpfuQudG+r/lVYv/rb4F86fLu\nwzZ6BMfUEcjoDPO1ek/7efdCc6Kb03UBffT78gc+/imEe6tWUB8HoWwso22kTSbiNClX4d2pse++\n1H0zoKuG+D//pub2Jjwb7ZuaI6MlyPUD0LF5PW+FvgrsdfwY7hz4RgZNtWftNe3rE46Y7vt7av+J\n+jXF7S8zmhNlkCIbt9WOYCYfM2NdbGU0Nw8/ki0dPtJz3tjVXnKTd7CLBwnvELxWZfZ2oJwz7Iud\n5ae2di0ZyXbLUDy2NuSQY3xMH16+LBxD9SzvkglnDnuS5cfS6+1dzbFOSfZWYJ/tmPTc5H3E8UAx\nJ87SzGrzoVWzgbXhMDxz9dt8pDZdgUgpXMooGiBeQvb27kPtT0M4Xds+bQMdPznT/siBQ6/haLBO\nYvxUpL7VIDnssG+97crYw3MQ4ew9sgnX4rn6Xsmyf1vQbvYGxnrRWuJ/QB8tY8hgcf/NjHR6GYEi\nPeedOeQdh1MIyyP9rj3Rc7Zd0K5T2VKBvc0E5I2VdL/5pWxo+gP2JClSJpVUUkkllVRSSSWVVFJJ\nJZVUUknlOchzRcpEVUXAPv/TQnjUG4piPvpAEanKVBntDJUK+sdCmNwmK59bwdpOtPb1z/24mZn5\nrq4/+lCf5y6pTjRWRG1GtLB8WxE9p6CI1qMnOmcfhoqQ774qDpv2rrJ/b39DkbAn/wdnWD/0aTdR\nbM5beh3Ox3MOcfaI6ijwnHihopgvfVUZjTHnuB8d6Myzw/nwKdm5docM/RPd7/RjOBXe1/Dd2tRZ\nvpe+rOpQBdAc3Y+Ueag2JtauKJL87rf/zMzMhvBs3H5DOluoyZadUdEgqbgCl8FmGZrzlnRWf6ho\nY2xq02dLXzIzs3Wy6O+8o+hpwm5evKcxMzKj1xWHKkMZqork4CGKTnWfLbhW3JoyEIuxrsvDuP+5\nBpWsOL89OFN/XM6GrrWFSsjD5B8+VBS0eEpEvKkx2C5LH0nFlGKs57TgGsAUrUSG8Ytbql7kwDWT\nBw0RLhQlbVCxZXWq+2z4sqH8l4R0CQNd34CTJiCzmrsEWeLKBmIq9FTI2BYrnEXmPH0lQwS/QGWZ\nHkgnh4oyT9SeMmd3b9y9b2Zm+59knWTzVwfKPtVAfeWaakf/IfoIqcoFz8iKqiXHB8qYe139bgUK\ngwSNRcSF86aMRmcTrp359bOXS7LFUZeKBVSkCi7VluihIvsOVP2BYewdNaKShYUdav7TP1KfG0eg\nwSqwxFNhxCvJ9i6oVpQj3Tx/V3+fnFItaK5syxqVBMqvKFuUL8Jps6MxnZBdSaoPjd4FRfQuFW9i\n6aZ2X+1fr0hnHhmFGvwRwwVVl071/5AqdfmZbHtZVqQ+B5dLg3PmeWxi8qJsJtdW+4+oFuLgK7xY\n/R7tyb8GcMxUTM99oSN03P1N+YCrD+RLDj7Q2duTLJUaQKY4pChWZMwDMh1+X/drRbKhm54ysIse\n5+2zQgr6z8hPtSSrXyzqudWq5pYPouXjC60vu3AXrL8sFMmSihlFOBnGT/T8qynn97OaSzt3tV75\nDbgfSNT0DlSFIIrV/ho8Lhfn0nsGJORuo2YhWd8yWeUZZ/O3d6TL7oHG9vHH4qMZnWhsrm5rvlbJ\n4K2DjBysZHO9fXh/IsbO0xjUqDyTw5YuyBYtXdnMcCzHtjxhTc5RCeGmvm+1qYwyUZ9263CT3PkR\nMzNbUfnr5K1j7qP7LeBvKF3q+VFW/mcFN1g+yxwpc+b/UjoNqGISZMm0TtTu2RAeo5jqR77+xvnr\nI+7MzBw4v5xd3e98DdTrBRUVGhqrPjxLLaoSVeHO4di7nfbgQ6KixASE6fyOfEEXXpQp6LyLptrr\nwCPi35RtZkBADZmLAxCU86b0/riKP++OPunDWb5sJXipMkOqFPZBSwRkGWM4ixyNZ9eXnnz4sAYZ\nPa9ZoRLaGesfe5DIp5Ib2cqLCJ6Wl7AH1qFH55c2q7N/qcFnZprXxarmzTwj/5adM2HI2gdUP5vX\nZZOFjvxpCFfWk4/giWCtdLLwwpFZHePnwljPydwUciPr6XeLGL6IzLNtg2+8qvt/dk3+rra7q76e\nklF+IJ1OQZGewNvz+ko2Mof/KBdKR6/dBwGyKb00qwlKCltJuK968sv5le57rw4aYkt7n50Xpbeb\nCSoNv9QP1E9norEsdED7gmB6cV02GrXxZ+dCDZxSreqEfXcMEtI3taN9Q/vUTTjWcmX453zN7fBI\nc/doob/dgdq9t0dVFcBdm+ybswWhMbZAkOZm8rM91q9g/4/1/xZIeFC204LafYvJt/aK7C0TUVV1\nTXsxM7NXdm/Z8lL9SirabL7KXAP1Nx9ITwcj2V/3RP67RsW468gy2fsH7FtBqDTpW6etZ56N2O+A\nNIuW+nt1obZsv6l5uw4Cfe+7GotKRMU+OJ+6p7wjZfh+TYiS4suygSJ7lOEDXTej0qSP/66xFndb\nVJTsqZ3DrsYyqeZz67VdMzO7sQ1P2rm4KcML/Ay8Gauq5vIYzsfmXY3JHBuanIJGhs/DC+EzYgzd\nHVAY2P7JOXuRgvZmOd6JrKXnxedwdVG5ManKND5Wf6NI9/fY90foO4RvqeLp79FjvTNdvSRfU7sN\nggkuzt6HVOEDaV5pgCQFKeODNLyu1KlO5bCedPZlcz68WgX25XXW0QyIVS/WHPISvqcrUHP4jLUq\ne4yP9D4zh5+rnNX3eU/j0Is+5TfJ5XoWH3xo8xAuqH3tkx04sypwMJYn+m2Ryooj5vfxx5qfa2P5\nxyrVKh2IfoacRFlh2611IfvugwIrPNkzM7OnR8CzjvX3HhVbA/zECO6oMvxMhQkISvg5Gy4I8K44\naUJOJewWtZYDNrKn78iWOuuMXQfuxKX6F4JCqt3Uu2tjCaL5vT80M7N5T3Njgz1Ukb3IOetABpvL\nTKWnOnuuClxm30tSpEwqqaSSSiqppJJKKqmkkkoqqaSSynOQ54qUCW8owvSjv/CvmZmZk1Hk6fhE\nEbJipMjU3RvKWK6KysLdCBSJ63HY//Brim5uwyGTewRzeHI+EW4XD7SEX4GB+z5nkZeK4C08hdB2\najrTWigr8jXgnGHmAVVXYCh/tKbo8e5tccys8ooM3qX6y2ygSFxI5qQGJ0Xj5hf0/4XCuedvEVGD\nIyHaouLEQhG3JOMT/d4F7VV0ubWuDIt3V5mAMKv7nxx8aGZm7Y6irFvtpg26yjoc/Z4i6V6bKkI7\nQtlUQDg4DpVZjjkX51AxpKmxuJ+XjoNHRBPJAG53VOkqprLL+/9Mzxk+VUZ3UCI6Wrw+g72ZmQPL\nfBHOkehKz81TgSC4IlNJhjReMWbvK0qa8akuQtUhn+hnBsTHijOli4GiqPWarl+cqArRaqkxWoML\nJ2fSw7ivMWmt9Pwh3C7BAzGOF+DQiSpMMc6OVutEuuF2mDyiyoWv9jR9Pe8y4gww7PBtqp7kyTRE\nZLQ7VK7JgBYLV5yrBP3gwr/UBlW5P+MAACAASURBVK0xYzwbHHdcDHR9j7Orm/CIdMhI13nu4kDt\nXBWouoEdLGdwPFwoWh1xTnQZaNz6H+6ZmdnegebK3ftKObTgvHA5v+3DD+C5GdpFyvk6QqWUTAii\noQujPPwJFRjx86ABnn6k+RGMpOvoBhFsbMeH46SSVE6gasaMyHdvSPYaFNGcLEZ+qDEvkqWvTRJ+\nCbJgVKbK7WpMF1M4TUK1/4QqIpd/RsR/qEze9g5VnEb6/fipfu/mQLCAImtsqD81UAd5skXRSnO7\nRUazBC9IOOF8eVHt2HlV/uSsA7/IU/Uz5Nx6nkoL87kyKQuqFHk5+DTa0tvp28osFuBAWIOvqkxm\ndeNlXf/hXOiNYAwKo6jf776mrGAWm5zt6yzyR3vyYQfrak/v9FN0wHVkfKH29PrKRpVzylbWd2XL\npanaU2Q8b9Wl9xWInJi5G11Ij5NYc7FWlJ01WvKpxR1lJ5dd+ZDzb2pcXTI7FZCXBSpVRKxz8zg2\nZ6yx79HXFRXAKmWq66xrHq29IB2urWse5cgKB+fK5B0fqm0etmVUIkvOT08OOHNPZq7e0tq6uSkb\naFNpYHCiNn/wnq5bwbm1W9GaVwZJkaAPsjm14y66Oz6lqgTVH7JlPWfyPtkwOKuKt6W7BWv/HL+b\nhfenuiEb9kdwZJXgVKnpdz79Oznc033gNNmqQL5wTXGKcEHAN5GHO6zF2r26S4U2KoJNqELS4Yw/\n1DifVJjw4V45Y666cN402av4TdY1MtO5TVBuVJyMQfEtQEqeV6XH+i1l7y5i7S1Oxp+eU3fDmeVe\n1vMLcFiwPFpMFb61tr4/SI7dU0UkVyfzSwY1IJOcVXMt3AHRGcg+umwhAzh1IqqDVfCh7jKyLBwC\n4UDfJZwCTbLo0wtQYX2y7OxvLof4JyAVSRb6qq9GByPty4ILqhiBNs11QECDKCywljTgt4hKmhPZ\nhWzDD0N7FnHGau+qJR0dXWqeL54I6XzxUHNwdcU+k0oq6y9RDWSowRhMZeuPTpXN3jzeMzOzJ9+h\nYg2Vw5ZZ9bdMf7Y60t8V3AY1F965x+x1ilTa9Lnuqe47AT285cGt46p9fRA0xhpecpJKOvBTZQT1\n8V7VPvOH3pQvmnHdwQP5+4P3tPepUt2k41IpKKs5k4Mv5T7V/byflp+vRELnvv+B1pUmXF3uEHTa\nSs8peEkGniqDcOCUWO/8ivz5vKj2jvaE0t37VlI/1aw/2LdpwHo8130376o/YzjTpofao44i6ac3\nlJ21qUZ4HSkmvGJjkIUgvOdVTaR6BzTpgXQ8Bt1q7AuLgZ55jp9rv6rrm+gkgGfIBXVVh8ulh79e\nfvy+mZm93BSa68Vb2ucHIEcW8DNNu6zNcKg04KEcUr1nQVXO/p7WnQZ+cO2O/k66uu/lXHuqcML+\n74i9w3t6XuOr8lfN+0KTWqzrJx+pvVFP1y9AP2W7Wr8aOxrTahkuFFDFFca8C/LlZK6xWgPZ71N9\nasr+1U3QVRWtPwuHubmAW3EbHr/31e8nX0d/ea1zrXW1f3Sp8Rzva+5ehtJ7BQ6blX99GzEzay00\nfmtD+sV6nYXjK1lHXPbZxYSzBo64Xaqg1lrSz2qInYF8zMAxV4JPbwJSP8f73i33U1xG01taLtiz\n+FzPrrGPrTt6fz4C0Ts91H6s2sSvgopq1GXbn+zhI+ly5qgN7Tr8Z57uk13o5EoVTsI8pzNuFNT2\ncll9dXkHmvKucBFgW231ucY7XCZDRdmbWj/23tEcybEX2f2RL+o+35Xuzof63rsJQhEk97kvm11O\n1N51eJ3WQcTsv63++21OL4D0DLKas/kr3ads6OWGfEHO4aQM1Zi+l6RImVRSSSWVVFJJJZVUUkkl\nlVRSSSWV5yDPFSmzmikS9WRPGYZorgjXpMs5Z7JLOy8rGjsjs5BUkvBWilxVaootrW0qa+hztnga\nwDEBiuDooSLmKzILjYaizyMi/guYu6cJD8cM3oyRMp83CzpHGdUVkQtn8ISEnJk9UT/yZM1qFbJF\nbf3eIyHhnakf7z/l/OBM37dvKyq8IPPqzvSDeKEorkMmPqSaQLEAR8ZMEcbLrp4/PdXvI7Jsx/uO\nVYn+bb3yOTMzy1ItI6BCwJzzvldUdBqRvS61OccNJ4nX19icwVgfU+WiBZppCZ+HT6Wo+ucUac5x\ndtT5c2zf15HOpiLeKzgExkvOdJI9KxT0nKTCjBEVLXN2/oJqS5UxZ15X0pkXcwZ3oOhrNinvAW9E\nuamxOOEsfwEOmRmVrlyyQbU2lVSI2C85Ezt34AgY6H79IpXDOMKZcMYUfLWvP9L/Y3iEIPQ2P6No\n8YTrrzhn6UW6/51d9WdGNRbPB22FXvpL6SkLX8rMqAYAr0kGRMtqxf1HsuUl+lslLiJW/0K+Hz9W\nlDsHD1TOgxekK73k27pfq6Eo9FlXWTAfvbQ4nj0nks/wWInKQqvc9Tll8vD2rNr0CZ6gckiW5Q3Z\n5vicSL3JhqKibLJCZtVljCtwRLXnmm8TUAClErbTks0UN6ksAzooc67/N2bwUkAyNX7M2fQ52adL\n+DRIq3sw+gdwwswaymbU22rnGbwaw5nus3eg33tE6mMgMYWBdOyuK3LvdORXGlRKy16qH8t96dwj\nA7FIEIGX+v1JJJsZwSWTryVoM/2tDDWms03OOZN5nZrue9YHzbEtfZTv6fv5y/hLOLwAdVl2HU4f\nkIrzmp6b+bz6lTujWkoy53Og7dxnQ8rMmQPDc+nt8KEyu57P+e289DUDeTQdaA6Um6AQhqAXcDWl\nseZafwLqJKs57k3UP59qL3EZ38J5e9/Vda+8DiKITIs3c2ziah55T0EzgSDLF2SjE7hmaltq69od\nISEe/ZH40KpN+b+IjOGc89/ZpCoRZ9Q3m8oOx8fY3kq25icIQniC1jY1BvmvkOEEUVEtqG8hFRRn\nPC9L5naa4Xx1lwoJGenqBar5PWAs1zfUd39KVSK4ylY3QKnBsbPiHPb2K1qzM3vSYYh/XMGxVaI6\n0NUDMpnNTxEk15HVvvxaiYpYQVf/D0HbFkHjubH6UyCb6MwT1BhIwqb0tsrD3zSWflbn+FHWCedM\n7XPJdFYK+n5WgzNsBAIF/qpaTs/duK11uTyhmt3iUwRqZrWwUpbKOnAhZEE+2kzrVR+uIDcjvQ56\nsrshvqWXka/K1eRz4hw+pANnz0h2MITvz/DXEcgujt/bxk7eSqCNsgv5xdGp/MxkIRuOyFBOQZZE\ntMmFn21JVbYBVT+KRZCBIJMj+BMK8CW4qyQrru8v2DMU4PdxONt/MVfGM+99/8zl/1OWkWziCp60\nQlftatfkF7e/pKz6yUTtyE/RdUX9/b9+95+ZmdnBn6h60S4VB0fM9XV4KtZuql2bN4VQcatq/8l7\nQsKc4L/jhq7LjoScOXhPexbPhcNKpmt1uAcvI9CxHwnhsmB9ud3WWv7CG9qzNT2to15J1x9eyGbf\nf0+Vg96Df+/hW9p3rnm6z/a/rrKlTThytm/Kd1Ra0tfVlWxk/0q29bV/9E/NzOwb3xHf4Z1dPf8m\n1aReeEn77qSCTw708dn7QlvUqKBZvIAbraBxnRzq/44HytDMbr95z2wEt06NvRWcbKsFPB3M8foc\nFN66np9jXbiOZE02Vozxh6CQ8m3ZQgHbrIHu6seyocqAvQj8NlcPQajcgBumgl+qwLvEvC+76pOP\nv5s90fPObyp7/+KXQDY+0hhfwi2zyGiO1UDGrUCU+HAOtpnPV6xxSTWgzlRG1bqrdqyGIEm60l00\n0/UXp7q+ti80WbYmm6o09G60TPidQHD7IH4G7EuHj3jXa0pPxS19X11XP7bfADG4r7Hr9/W8cl3t\nm1TV/hwojMkUdB2VFV0Q6ganV2Nd7Rtf6X4HB7KdO3f0vA4o2Okx+184L7O8n4yu5DevK3EWNFle\n+sq6CdRSNr5kb3J+tKfPM3peDSRiGZ/gwUkzitS/U/gC11/VqY+oqetOn2jOX7K3aXqfVovygtii\nsGwVKrDG8GBOlqxtvE8WePeJQCNR5NQqLeCUM3R6LJvKwPGS39pVm+Hzma5AYDdBX3FSZPuedGxU\nfQrhICyAkDu9ZB+IH4upzjZm71Qp8x5wWzZUysGvCQXhDCxKswxSGnTsWUKvA8J8uEr2m/D1FUD7\n8s5VAY00HfBcqrt6L0gvS06RODXZxop37ITD9ntJipRJJZVUUkkllVRSSSWVVFJJJZVUUnkO8lyR\nMqU8Ge6zPTMzKxNZr68TqYP7wAvgUjFF/gNT9LRQhBWZSgOTsaK/Y5jOHTfJfCuydSOraPLAUUgs\nR6WH6YjzfPCDXIz1vHMidMkZsPqWInoFMjnnVLIILxTlDJaK0q5i+Ek4AxyPdP2iovs3W8r2lXpU\nKuD84NmpIm5RRv2rgLSJyTpWSmqPW9zVdURXJ0Sjy0ktejILjimDcHlwZHnOY+fo4yXnixNulIiM\nZ3ZNkeG1TenKyykMuuBc7T4Zuzr8ENVtRZBdUAF7nI/2q8rKvPA5VTxY1Ym4vye29uvKFZnWoUO0\nspJw3yj6+fCMigAJSzmIkn4EyuApCI4GfEIluHSw/BUs6pO5oqsciTXX55w7FQLiIqzwcCNkyMi6\na5yf5Nzh/BLulSvGhuhyacLZ14Bo85DsDNVB5kSTs9jaMq/xKFTVXo+MxfxQEfpopCjzgDOzQxjQ\n3Qps7ESLB7H00CRTPSVaG5HxbFCBpuzJ5gNQZTMQO95AUe/RSnosE0X/+IkyHztwLDRqandcQWFw\nCL3xczovfvtSczsPuixIotAo3PX1+wu4jwqL62elJjmQIvBZuFQ0OQAVdJvqDEsqxkQw9VuOLDFt\ncZjv65uaGxcT6XwC8mHgk7mlkkmCfKsm3C3Mz4CMWgmm/BWVBSpewjnDeV9f8zXM6znuFn7mBbJl\n8IRMXM6JD5I5KZ0bVTZ6IFqewDkTTZTlydQ0R2qw18dHoN9Oed4H+tzLqP9JxZ++pq45m/BckDFZ\nZvX9RZ6KN2eyraqr+zqc6a805f+8au0v9C8KQNIwN1aBbCqG0+Y8gH/qkWy8U5V/34A/Zb0Mj1GP\nLCNIoOvKFiiLjqt+jan2NIRbp9RWv1qb8mn9lTK5l4caz95DZajLOfWvsAmXDr+fL1i3xrpPdZ1s\n4y0q11Q0x5Zk7uOEnR/uo+nl+JN5OeGseMJd0gM5kV2XjdzuUCnkUrqbcZ76Xk1tu4Tv6PBb4vba\nelGQiTs3lAncoHrFxZX65HZBI7UTbpo9MzPbP5Lff6GqLPWyyJl1OKJcSGpmcCFQbMSqcNQ0Pkdm\nLyedVutam7buaCwzJaqHPBb/w8Fcz3uz8WXdqATCcKI1zqcyTZnsVhd+kaWj5/tboA1AXdnlsyEz\ns5H0Ul+AwgLZN2H9w5StDDo36+CXWR9WoBOS6hZjOBoC1tsMexTnhp4znGkO5C9kOydXoMX2NAda\nTaEFXJBCZdpTAbHortgTNLc/6YNfypnrM8fIqJ4dqP0efvX0UOt031f7CmTGi2RUKyA7Vxkq7WTg\nZmBfEIH2alJlL6QKSK4AMrOk8To9PbISvA15MpYjOGNKbdC5nL0PQS4mCMJ2ncqJNemuVSPrDWIx\nWqkNM87+Zzy18epItm+Brk+4uI6pnDiHu2Z0IRuut5+Nd6jZopJkzJ8y6wiVakYz0Lt12cLQ0Xq0\n/5EQJQ/eFsKjDx/FXdBlOw3NsVuv6nfluvyVy/6weya//i9+71+amdnhu/KXOVAELhW7cnDOlHlu\nDFIyk1eDP/7at8zM7C1499407dEutkE9wzOSy2stPj2T7Zzsy2aGl7LtpNrSrS+rimgh4U8psg6C\nzBw35EdHY/jyQFs/+kMhY84OhOp47bYqBm39sHyVl1W/AFPY3pV82Uf/5NvoU1n/L7wh3pQ6yHe2\nOpYrUk1q69Pcc3Wjal32Xg/ekc/JsJ42CtJbfgtEJPuBzbsJmvzTSjU/SGL2a3kQyyP88/hQOq1s\nyoba92XjJ0f4U94VKmTXcx7ciV04RdivZT+rvi3eZd+5osLWmDUbhPTZA9nMvVc/Y2ZmrRt6bo99\n8/RcYzrOgcwE9eoEcBd24c1gDxRlNVb78Kxl4JBagEjPMicD1gUXrpSzh/BqUl3T8eDh2JI+wr50\nnQVBWJ+oHyEIT0N/IRVvQlByO3fFu7f4If3u3a/9iZmZDQZwYW6o/XW4fEYOz7viHTEGmQKXZgUO\nm+keqK73ZbtrO0Krdbb13nMMQjzsJ5w08rPV6Nmq/U1i9uOg5FZF+KiK8kkzR/0a42OKcK3VtqSP\nKX74+FztjNgXjMe8C77GepSHY+djkFrs82v19idtuZ3fsXK0st4ITkHQN0ve0xc16cR/WX3cgBft\n0Z/x7DON1TbV81YjKiaCwi90qIaHfzo7AkHIfn1R0f0XXSEIBwMh3l4GdeplQSDCMdgItGYVWrKd\n8ZXW1pj1pgZqOD7S/9/5/bfUrm+yHoFwrzBnhjm1p+loLHNNzeHRsWy3dPdVMzO7dUvoo4v3mTvn\n+P2BbMulenJcUH8unlD5krnhVL4/71CKlEkllVRSSSWVVFJJJZVUUkkllVRSeQ7yXJEyj9/62Ozf\nNvvWO79vZmY/u/HzZmZWXVf0c0gFmnlNEa3NPGfvi5xJIykfnilKu5hSWYezyA7ZLIOl3+dMb91V\nBKx/qsgaZM/WbitFvJgoMnZFBZs8/B39kaKW/Z6yWH6BM2sbivw1SqpckYVlfjiBxb1LJoeg7MBV\nJK1ERaOpHmcL0AjZiNR7koEeqF9XDt8TfQ5gn1+SmY/JiOdPFLnMVKWXhuNZlkj4PlU5gpX64GUV\nqU+iegWQMT5Qkj7ZpAE8HNU8aJ87jEWoCOzTx7rv0Z50NYx1/xPOzFc5z90pPENVHTN7+h1lgx6f\nCpmx/frrZma2vqtsyrSv566IBC9qGszlUhH84sv6fHwlYwlhH59AYuJSocv19P9zzsI2KkScOcfo\nR+qvm9EYFDkvGJyApmjB7xHq75QobBRwXjEnW871FcFuh0lmQP2M4BJYrThvyHjEkcYwX9Jzbt9T\nxH7IufjSSH+PL6Unt0Q5DRA2Rx8Svd2mYkQsWx2ek4GGM2fIOc9aifOYU/1/Vlc/Jn3149vffcfM\nzN7+gz82M7Of+flfNDOz178sREwuQ5YpOatKJqD1ElkvkE/nD6XnWUh1FRACfoBNg0K5jmQysoFz\n+Hu6nEcuRJyDxna7E+liMCc7Tba60QEJAuKhC69GwlzfZQwXMODPHI1hgYzubJpUD9HztirK2M0y\n8F40QKhsaA6sOEccc1bXxTFMOJtbBD015VzwpdzXJxW9wgVImrae2/CUsYiohuQYyA3Qb6NTjbHP\neeXybWVkY7JJE/zUCnTWOZxd0CRZr8EyQSbRh1/IATHTJbPiT6mClaM6nKldVRCO3RHjwBncLsi+\nErwcSQW1KSz/k55s6GiV8D4xt4Ar9Ka633VlSuYmg/9fevCCQPQU58nYwAtSaGtAIjgwnn4sTrJa\nVt9vc67db8BVQSZkcJpkFVk/EgRATOaW7OnaRPYX7FPh6O3vWv01IUzuvCYepBmIjSoV+DILqlCU\ntZaNuHeB6kSjGlmjIz3j9FK6vHFr18zMwgEZORB0Efwb80Vyfhpk3ppsq70JLwYVYDJjPWevLw6b\nYl5rmXMXVAKVEYYc4C5tKVuVZ6uxyEvXxW1lvXwQid0hFVeolOahO6iyzPHU3gD0WBf0rLdM/JX0\nVMiq/eWm+pupqv/XlTJo2pGWUIvJAGeSucpUcNtUhMjht0FlLOG4OT+WTyoxl2OIiIIxVaFuUr1o\nqn6PjfPz59JfxNy8x95iyRxaBKD23lX/j2bK0t0mA25mllkFlgWV4jBXp47QI1l8R0glCHcEUga7\nyVKNL7uHL61I7xnQJLMzrTPNrHzcnRepSgWk9BDkz0lXCpyPj+xwqr7ewi+6LdZikHdZ0LcFqm0k\n6FAH5GFsVCbc0u/zRbX57LH8VhTqfh48PwP2BDm4RIqgi0bnVPpawb8WU/HlGVOTh+8LsXEZa0+S\niRmbZI9QU/Z5E2PJxurXciEOq62XpcvXmtrn3qaCWp61ftrVGMWudHj2vvr/8MHX9Rw4bF75ovZA\nL34GdBdop/WO0Ggh+9b5gcb+g64qyjx6K0G5wckzguvnUnp5FMrPDZtkvGNQB6Z2FuFI3N7Q+PUe\nS//fASV9/LFsppGVfk/JNNe32ADnNCcSdO39+9JDtAYnwxpInxD0Lajo4KnaNbuUD2nfUHvWXtQ4\n10Am3XtF/CkjuOa6e5/yfFRGnj15KKTSxZHG794PKQPe3BTarNbW/TxQGzGV3AqsD9eRJTYbwWVS\nziX7QrW9xxqysSObqW+oj93HWmtCEHM++9iLD9XWOf6kA6q2T4WrMUhHAyGTG+NPQHQ/fVtjU7mF\nra3reedH2qe7IGHarCMRqLMZPDtL3q1ikOCNm/rbKclWT9kv9y9lW1MqFDpULFydwL1YUX9vvqG9\nAdtKu7yUji8+2NMHWdDIS9Zm9jL5ot6NzrrqT5G1t/yCxib7kKp/DzXma3y/vqH2JuuCx56vO+K0\nwxP4rOCrajXUzidw6Dx5KHRGef1NMzPbhGPm8R9rLk6G0neh+mzVl1xOT0xBxIS8jIZ+0h6QQvBy\nba2r/ZdDrWsP3xeqpMAebeeekJWPvykf5cO75BWl/+TUyRro8ebyU8616OjEMtUbNmUfk8BCr/Jq\ny7Ktz7/wVb3n7q7J/xzt6fTD7pVsoOlpHl881Ri52MgkkP+tdTRWD+FDyhT0+Ss/8aPq+0S/u+gx\nNkWNxXJE9T32+WugVN1Y83U0lt8Nv8s+DyhjKdKYvFLS3srfAEHI/F+cJ4hleKAc9tfneu74TH44\nuyVdZTnV4PNutT7U3I5mes4Mjtmmy7sn/K1LkJE+e6nvJSlSJpVUUkkllVRSSSWVVFJJJZVUUknl\nOchzRcq8sKvI9Fd+WBGyz97X2dQeGc3RWCnieV8RuoeOonyNNWUGMlRJmoAicIjoFzuKBjvwf4yO\nFb2NyIB6ZNsycAoYVTKmRMRm3NcjohUVi7SHc+QwnXsgWsK5Iom5pSJ752TNjD+1jiJuK86Zjk+V\nSVjw/RxEz7KsiJ9P9NQhQh/VyW5dEHmbEzWGZ6BBNDi7UjR0/4H6USXiZ62sufBZlJb0KaPMWtZX\nXwtkkwawlwdwf1RBA1Q59+zS97OBIrXhvqKGHhncl2DOX1YU8T0/UJZk/38XGsreUJT1ulKHdb5B\nlLVClqw/VGb04wu4TdbVjnf/udo/X6l9n//Jr5iZWRmeiADenhjyg5CqFAecsf+d3/tdMzNbK0k/\nm68oY13/os7kxhdkjImkh7HaVZ5Lj09XnIsE5RAaFcb+RBHrJRVqfui1HzEzswJn8BPbneaIUnM+\n2wFNEE01HvkyZ3lBR4143gyOhf4J3DCc4f2D/1OVDT7/4z9hZmavU/HFhXcJMIS1XTLkZTLWPnwZ\nC/XX+QzZvQKcMKAabr8u/cTJuVPO5jYqZGjnZLT7ss0ka5kprdMv6T28Ur98znG7EVm1a8gkhFsl\npjIAZ8lzMzJsIUi6C7LL8Dpsb4OuCskqMx9DbCyp+OWTsV1SbacF4iFHNr8AKmrtppB2rboi8iHn\nrr1YEfzYNCa9nmzzAkSIiy57VBArgjKaxMxfyhQt4Sq4YkwMpv9M3KQfVEOC26UQ6boxtrVVgS9q\nY1fPLWmOLuAMuPLUnmIG/wTnTbmhuZ1g3BwQKznY5kvr+Euq6UXwS4zGak+fqlADlptCQ3opkImN\nenAQZGXLjbL894zqJi7oMSeAOwGETrnwbFVTesfq55gqL/WW9DShCoDXpirJpWw5R7WpzF3N9eoa\nGV4yI1l8kgMnzgR02QR0S9aXXS7gQSmSCV4N9PsApOVyQ3o5ujqx5RM94+5d3XMFisjFFuacw+7h\nNyotrUHte9KNgei4+aayzy5V70otzfvuoWxwFSibs/FZ2fRwRpUhKo5tviZbXmbgxXgXxN2FbOP8\nLfmzRVMZxJc2flw6pGqE16SaB4vg5Inm3mwI3wcIxVJbNr/7htrrdfk9a5kHWi2Ys3ZeaO7ufVPZ\nOb+kbN3dG0IQrhwQhgXN+fDZCnTZxUPZSPeB+lXcVubRr2tcRpzt77igZqlUloPrZ4jNWomKEHAj\njOegp6hStBpSReVA17W3lDlu7bLXyGguxqAdArgdEv988JSMOlnNhZt4crN4ubAIpKWf2OYJnAmg\nEHyjohocFRmq9mVjXTcYyR7aWdnXVkF6Pl9qHDx4YRI+vcup9lhj1rsz0BHlhmNnrAGNDfn8Bfw/\nWVCodfZrlx8KSZI3+YWuUfmJe06H+EGWBpYsq+EHokvpeAq/XCXhNrkJNx9t9UFC7MBdOPefLTfZ\nHykrDgDGSre0j30Jfou1Xfn/YKExfPBtcZck1TlevEmFsyw2w3o0BzW2nsPWqVA2H0h/Gyu1u/4C\nVeKassHLU9lsCEJy2Nf9fMY0E2ruTuayoU2qfL7KvrYMOsCpgkBhPHwq15Qz+r97C66EI1DRl+Kk\nefDx22Zm9v5bQlH5P6FxLYG2bq9rj9DeFNIpWurzcF3t9Ng7zeGrylGNrgkP4hBEZICeOjfV3vXb\nQk3XtmQIzarsK5+hUs8U7rPBp2iA48sz2x/Itjc35DPW7+6amVkVXqzlVHbSC6kIRMXNTPXTOfaD\nZATKk6ZYjqqeWThjDGRi5aZs5+aPqO0OiL8QRLVDZdVcn80J6PfxmD0ISJQ5lWWaIf7WTbhedJ/H\nD4SceGNNut25q/3t5RP8cTIGIfxtbc17h/vMnoDQm2uML3qsE/flH+9S8fGRJ39VrIJePqK6JjaT\nVGUrvwjH2A2OKQSykeGFbPWcubqVhUdqltgqpw7g5euzHtR2pMc7d7XOffhIvEnjd4WuOgI1ndmG\n0+cW1avg2YtB9wYrEDrb6DO0SwAAIABJREFUVHQDHT18Il/Uu6O5vf2C0GinB3r/uMDf3bBngHib\n2RTOrjl7zBzVleIS/Kmuvj98oH3y2jqEf/Ca9kBGOWXNLR8eu4iKmQcnWiduw6u0uyY97VDJdwjC\n3sysOBvaLB7YMq/vsq/gV3nHMV9jeBKI0ykPGsvJUX2uxbvdW9LFEt6aMiiemAqzU/xiwkN2Ah/S\nTlG2SMFFm1Ad7Qxu2IgX5lyZasTdDKrQ/dcCfR7Hen6zmJBLJRxd0kkjOb3whJMoV/B7uuz7+up/\nrQkPJqiizQstPEtsOnNIBck2VZMraviCuTtAbwGnB9p5Pb/9A6IuKVImlVRSSSWVVFJJJZVUUkkl\nlVRSSeU5yHNFytx6ReiD3btfNDOzQaDIVK9L1q6lyHyWqiBnHyiqtyTbVIeVOeCc9ZRM7ZKqIFnO\n4ZWo2uFk1d0enBFVMuorzisOQCfEVOeo1ZVhWXK21E+4KqgUsyoogjd2FNuKrjjLlhydbXJGdq7v\ne/B3kLi3Chw3Bc6+5kBR9KaKsM2Jchc5/13ZSHhcyLaRQegxjC5ZsxaVGAKQQbN4YceXVGjy4fbw\nhQ6IPDKWkdq+XMBhkqHyFdUYVoxBBHLD4ex7KeIsJJT3bk1tWicCXjtWJPt33xJiYx5qrK8rrV3Z\nQOFFkBy0/+JQ961WpbtGS31+8F1xHYyoMuSCPnApsBBkZSNr2NaIs/zNqaKw7Y50+SKVthJG7hII\nkUmNsWhIb1dTOAfWNSYdsl+jkfRx1dWYz+CamV/KxiY3NVZujox4woEDf9Cox7isNObD5HxznUpe\nE0X+s2QyWh2lILJkKtbuKbMZLjTH7nBWuElGN6SiTFTW78olsomAD0Iy1C7VQ3buKBLvbCgTkSX7\n2MS2Z5zjT6qVzPNS+BxEUo1qUVNXc7a41OcrMrNPrqSn/p7GdT2v+19HKutUT5jrmTccnkG2fXEu\nm9z4vObb5lK6K1PV53yg7ydjqgSBRMmCLgvXONve1Jhk4eGIlxqT6RP6dsFcAG1WDNW38o7GYgjf\nxiRBhpThoaiDEipTSQf/s3T1HCfmbCtVnLKgHAYg94YghJZUkWuSIa4xV7Y4t76xoNpbKB1PJprL\nE+aEtfS3UqW6UUm/O/eoRhUokzE41PPyRbWjBeKm5Ov6DKiCHPwcM/xmnCCQWkzGKlmopbI50wnc\nMm2ygJxrb5Nhdsg4GGi/cun6Z/zNzNbgm5qMNV5XAzLUe+rPnRvKdC+pNDMaqD0lqqC8+ItfMjMz\n/yGZVziDKF5lixPWHarujduceTbZentb9hDhM7tUnVljTr72Ez9pTkWf5csgzxZk0Kqap4t9ZZV6\nj0FZvaI2Z5rK1gRUuCrWyRrP9Xf+nvp69ceqBBByznnnM6q8MkeXSypHXWIbK7LoAZwI9RYZvKrG\nNjm3nYeLawC3Qb6jNbcCMdGCjODZga7baWmMyyAxrKX+jRgbg+MrWLH++GoXy5DNfWxqIZRAFN3j\nOvmhLH7LfbbiS2Zk5VZZuHDgvciin4Dz9U4FlN1UtlupyUZ9fp/QHWX5fy0jfxY25HNCUFULuGay\ncAeMAtBrUz3n6F0y2SBX27u7ZmY2PqG5m+wdFp9u5VZT7xOiPI91ztpqZ5+qKDk4ZyLTnO3Dh1WE\nw6GU0XpaZV9Q2wfBc6l+x4xr3+/RfrKLK7gqyF6WNm9aP1Rj9+DS2lqDr42c4E5Juhs/AtERqQ2n\nT6iK5oNYoLLgEZnNCM6W6j34isikRg0yuNuaEy4EZaePldGNl3puraWxyIXXR0CYmdVugXyEM6D9\nGWXNyyCdc8yNwZ/JH7tUeNmhutv5iHUJxPN6Qzre2BB6oQbi0p4oyx+uQHav67590KRzeEBiUEtJ\n3ZdlXfrZzCZ8RIz1uuZauQhqYcw6FuNz4MTJ5TWm44FsMFuAT2hPe5fxucbp5BCUdKD23NnVdS/A\nCTQrq0UV+E/KHentEkS6R6Y6KIDaqsnG6lv4hAFzmGpNTk2Z8ArlDrOevr+80mS7OtF1R5FsPVuT\n3r35p7xSteLU3gQFmG3LxntUaFv0Qe2yl821ZCfNqlAc0/z1YXdOCUTxWPd2uGceTsXwUovGSVM2\nWWxLV9Vb8gMD9kVz9ttz3l3KnArIr0nXrbtCquTgtRsfaGyaESiHPu8I2Fp/oHl++3XtC+uPhAjs\nfgjyDnRrK6lclaM6T1M6dC61nkxAm3aPtZ40tqRLFxiANwfhzlraGoL+AvE4eiK/PUq2AlTOKm1r\njMdH2scPR5pTFSCPBxf6m+fdb1XTfYIQJP1dThvckk25j5d/oV+FEJQu0KJJXXNhcqZxCEFJbVSp\noIvtjkDUnHwkZMzGLelnByTld54INdZbPduCUzTZaAbES5Dn/yvprUAlIB+UWDXLKYlXdKpkepW8\nX0gv+9/VeK6XNPdz8EZV2IO4se57yHtPNPvUpqedghVXga3Y/5Z4J2hwAmSvK10/+UOtSW5Tv40Z\n26u+bK/b13W5Nvsg3gnGYyqrrrRn+dx92fqffaT3/bN3hH4N4f/sP5V/KXUYW97pGrep4ueA9udE\nSYb9ZGbIJqEKghxO2W89UmWujQkIeDZufgM421ifL0HWRTniBOyjrw7gDeqr335On89BlAdUCA44\n6QL42Ba8h6zgdJxF33+9SZEyqaSSSiqppJJKKqmkkkoqqaSSSirPQZ4rUubr//Mf21d/8a/aP/wb\n/9jMzH7sl75qZmbDjqJ73g1FT1sdRcbWbnMWlTPKw3PKknD+rrOuTMOS7NSYqiMRqAbngsh+cm6z\nTBQyQ7aPKGKmwNkxWBT6VBZwQkXic5wx82PFtFp5RZOHFd1/QdYpIGOeDXRdkcoWPpVwZkmm+pRo\nZY0sFnXdpyv1YzhWlLYKJ02ZyN5lDrZnkABuFtbnljLzHpnpUb//SVTP4AiwQJHUmOjjAbw4JV+f\nF4rKdGbJiIVDatfP4X2AO2B7R1mHMWcvczO1ZXq5Z2ZmR2c6b9zOqo/3XoMlXkV8fqBkqArkkxXJ\nN6iy4agfhRtCbtzfUfS1VlY2e0zVkds31c6rmaKcJLGteUtjXZ8TGScb1Hzxl83M7As/LM6Xdz5U\nxYIWxyoD+IKKFbhtztQeZyqbqZWk505ZY1Oqakxv7f60mZmNTjjbOksY/RlDKth88JEyBAHVoZZT\nOBJA5CyxWcjurUIFr/Vd3efsu4py33td2bsbWz9nZmZPjjVn8mQuslWNUzgBtdHQ/2Mi9D7VnWYe\nWckuCB9QZjUqNUyxbYeqKTFnWU+oOFZ2+f8ZCB+HSH5B/YjIlJfhbzoDxTFqfH+G8j8vcZ95R2aP\npINlOLc9JSNXelVt2b4Hh0FPbe4O4MuAC6QHV0ztBmfyyYoPuX9A5jMzgsMFGqAGGcujb5K958xr\nG+6nbkN/M1SqKTaUdUrOM485w/40UogdMndrwOjPUHxyarlyRzZbgR8ow9nWQo4KO+dUXRqo/4Wy\n/M+EzGGXc9ZlKrwkmeOwRuYQmEF2rrlTpt/DFqg1jPCqIP33RrreP6Hywkq2WS+DSFyD/4gKbn24\nbhagESr4lN4AxOEF/taVnioJXxOcEdEYX3JNWYEAyp+qn4su1bUGzC0qAFWG6teqRCbXpKcalStW\nVLyZPlX7OjVl5w4/emRmZudU3HiZTGy4ITuZcNa41VJGelZTxngYSQ/tNzesOKGSHpxc3gJ/3ae6\nxb6effqR+Df8gnRcfFU6yjbUllUd/1LV787Iqp/BdVUM1bdwobFZOrqvB5fU2WNsgzWnQiWqQlvP\ne+2nvqzrqeY2BzUWg/SLqEC1JFufVPY6OATtSqWEVlPtzlAlKAP31JIse4ZKBmOSS236eXslPomL\n95S1611xjnxJNSOyZ+782c74b8Bz1yhgYyAmx5HmgAenV1TQHAjR/wC07hh9TZjTcRHEH5N3847G\nZ5nH1mLmGJWI4p7GYdiTzZA4tbZpL1Qs64MNV/prYtNJ1Tozs7xTNX+icZ1sqz3xBvxGrvSy/hO7\nunZP9jb4HaA3JbUv42muTR/qdydX8svDC1CAu3XuJzsaBlT5ekntrG4JuZS/tW2FM9nU5f/N3pv8\nSJalV36fDc/meXDzOTwiI3LOqsyqrIFFsslmU90tNqQm0AIEqCFQgLSQVvoLtO6NdlpIS0GEBGih\nCZAgqNUS2WxxqCrWnJVDjO7hs82zPbP37D0tzu9lkAtWea5i8+7Gw8PNnt3hu4Pdc75zMoqRDvNl\n/FOhzp/B8cjCplrN9RlrV3tSpgyLc6i2emhsebSp/IbQ9fyben3v+4qZGY4mS3SVxr7+XlrhFIYr\nT6MacUzuVrxLtF6S7Kl7EeNG9R/3YAri7lYgxieg2QGspqyjPnPzqv8aXbabLi5DQ9jIB0J8M0nF\n8nyKO1ygMXFSsF8RRXv35G19bou5AKuhiJ5e1lF/LsvovRWgK0BDe/5E+1dqyd/3cKnjCLmF8VmJ\n9EHe1lmjfIX2l6+1ItIvhHBqa87r4UutXc4BZ5eaPr8C6zfAMShyN+0WNNc6bf2+mqu/Lwdab2sL\n9W86q0UiX0QHkXXVw3XFzKxR2TeXc3rvk1O1BwQ7+h6Q7Whu7RaYM1XONjBN71KKCdUR0yJLMU/m\n7IlOXzGaLsGeR18tUQFVT2us3NsFn629Yj3XvCun1IeFSP8Dpo1/wwEXMmelCosMHbMRGo/3caxt\n7mi+dp/CFOmiDVVQzHluxLZHB432zWHl9s8VW41H6mOfNIExlrJF9pkhHZGFFbWFdbFYKqiq34Gp\n/ntigNyMVB9/ghZXSv2WQ98oB8vYQdsxGTlXwiA6flffBc/mihGH9TlytWv+DkzvtD7/GrdAFydE\n39Ucr8JUdzC3W3BOv2Xt2Ocs2XqucfG9r+YImYFFHM7QcIRJtHb53nOg557c0/ebdRc3K9bj5oJ6\nT9DxWyhO9t6GSXRfcfX8seIsT5pGJkXGw9/QSVodpK14m7MQzdPgsfa8Pc7BjSO5lC1ZLtNJjUkZ\nl6bzJCywiFFuOL6iN+Yt9PfGS7QO0UhMv0T3rq335XLq7MYxzO+XCuaba8V8C3ZYtqC/n+FGl8Fh\neMxcW2bUR/5GMVpFy/CdD8QSG/8S/bQ1TmXseZldxb7r6Rx+eQaDHC20r+P2Fm7Vt5ONzjQhGlzD\nudpzC2u5jLNhGgag82uWkZgpE5e4xCUucYlLXOISl7jEJS5xiUtc4vIaymtlyiwgiExRvJ6GYl3k\nUU0OFiCpuCRl8rqRn3HrWsRpIdzoJquf0C1hO6MbqRRe9D6shJzDTRyoX4DeyCbP80C1ZjgrrGEH\n5HEeqqBc7o70eSs0bEKQ+gi1zOR0271AuyIN6pYpRKif6rPaqv4F8rbXW11BFkowZsowhop6/mqt\n189GusHLgshWS7jDlMkPn+um0x/q8/xMyXbwZp+75LXhVID5kNVw8SgW9BkbkK8RugoOY5TFDWSL\nnsWtnZqZWQdGxAJF7puuFLpr91XHP/oX/0yvO/qWmZn9l//9/2x3KZWq+rTahq2AZsB6qBvf9jbK\nm1Z9OzgTVMndn5PcXwZpXuP4kAeZdbBwGNHH5THoOMyh40jHB82ZzZL8a2KniXPDBPX1yGklUQEN\nIzYz5J8n9nFa+ZluV0s13fomQJRHE8X6Gn2hnz4WapYhJ/RhG30N2FT+EFbHMUyflHJ8UyDM1YZi\n8TjSO0GnJMzpOZu5+s0fgaDD7FnjAJHaqJ8XZ+r3HI4KSdq37i54nj7nyRdCrn/8c9XjH/7hP1X9\noxg+A0nu4I7CCpQ/0Dg8zCp/u+DfnSljrto2eMpYByCXLzTmqWv9HSDMBit99rDD20GDMrvqwyxz\nIN3R72sHRkY0d3CgyTAnTt4Tq+yooLpv0EDo/UR52mnWHw/dodoR2gCwvtZoqkx9va4705jM0Afa\nZNV3eRiAZZDHosFAQW+jBdurlAAJ/EzPX7noeiQUox5oVhK1+NYDUDpYUEEWrZsk7ADyrLdttbeK\nDtI0coXDhSgF68wpqT7pSBsHxNbPqd9ucQNZrlWfLWyLooNr1QoGYV/1KaFzsbrVnBzgeHNz9Uor\n4C6lUiWmcVBwSwqAFQ4PmDDZ8AwHhD1YK6BXrUPVM7Wjfr/A6SyVAHUCQSqhi5KzSKdL7z/j9Rk0\nyKo4kPkwnZbDriXYQ8INY5SBMfIlk0S/5za4Mo3QFIEeNkKraYJuxaLOGH8sBkh+qzFMOBqLXALd\nn8cwEI9xxgGV3zBBwxTsrjROgm3FRooxGp9pLGr7QJYwZ5LoTYRosjTJ+c8AKC5wz4gcteZT8ryX\nqn8mcjoEhct0VP97La2b1zjUDAfEIBo8mxFrQREHhjuWMGLItHAvwW1ogyNkMo8mgaNxaIDgJtGF\nW6/0ujq6IlUQ3TlzMmA9roK8Thpqz+RUDEInp/47hJU1GeGWiLbOequflSL70EpxMvnFxZdtWJx2\nLUhqLnZxRRxHbC2w7mKL9Ry24LaoGCzjBOe5al8KVsfqHK25K/2egIVbg4k1DtTf2w1uYEntL5Yo\nWHZHY55GK+bkra+bmdntlAnzJHLxQHuEtrVgwqQjtztiu5RTLLk1EF2cRTawNBeP1cbRuc6DmYWe\nW6/BlAtUx6xp7CqZlX2VUj/BbWPJ/Eaf4nlXjmT1icYwdYx+HwzsEH25RFfr/bqmdjg485w+FUt2\nDdPmvQ9Vz8quWEc+jpP9KxiXQzaCHEw7HGjSkR5VF7bWVOutw5zaNjTmSdZbH4Zm9wyGZldnk52K\n2pGAVT1wmasg5I177Ic48Wz20VmCoVKuoynRgym6UAzOOVNkYeYkporVGxx7dvKcuXA/aYFwr/N6\n7nCgM1HvWvUN0MtrFtATQXsnRD8kG76CpreJsa1+qXX4Bc4895owh2AjHHOW7KPrUr2G9VvY2F1L\nEk2nL5lvUP1KLc7PsPtXG/ZY2ED5BvON+bhlXfQWmhMpWEobGJWX/cdmZpZDA8Vpwf79GXssrLIk\nGoWjpVyYnv4EzZEH6FqiC9f7/NTMzMptxVoRx8DEFVpd7DuR883FOVon2sqt+baYN5Nbff7k8+g7\nmt4/vlL9y7DmnDbMkKn6p/2O9sT2d+TievsXal+Bdbi1p7nn4QpbxbFxxbqYgb2VOlZspz/XeXR4\njqbKjWJ7+BRHxWNlFYSe2pMyjUsR58QhLq55shy8Ja5Sz9XgKvp47T3F/lX/7jFiZpZYapzriYjh\npFg9x7kos8uZJa16nf5Q9S/AoK9n1a4HUKP6aBCFkWNRXuNV4rvwBfovOVz87uEsaWaWLu9Youdb\niTFOfs5ePKFvHqHNWtJ8cGFf9brEKvpJWTRfE7BxPJe64KqX8znD4HJZ9qr8jjYkDJoljOkymlHr\nLVouRcVcgrniZWDnMmbdKedC9tz8fdhFZAHM63p9v616L87QhGHoGjAcXbIzGgdan3IhzrBHmmve\nUAygx59pPcmzbiXQmHFgkoc70XO0P7Urv1oLMWbKxCUucYlLXOISl7jEJS5xiUtc4hKXuLyG8lqZ\nMr/7R/+OmZn9s//8PzYzszIe7KstiuFzIQqLtG60wqRuoHLkICfSC56E889aN+ezJKr8oFdLnCNW\nHqyLov6+RB8FoNLmuGFsyf1PJnTTVSDX1UnppgzgxVb4rvu4k7S4vY1cSCLNmZGH6v8sutnTjWId\nx5ykH3nGqz0r9EPSaTQimrTX9P+bFehmTT+bsELWIFG9G93mZrfc2IVpG92qjzY93SIGuAnlubWr\nlHk2jidLdGy23ND7IGONyiFtV18Pn+tGPHtf77/pa8zyjur04Gu68fbK6uTbiB51xzIaaoyKBfVh\nuNIYlMnNTQJyec/R7yGvcMvtbgJV9lJSv1dA/jbk6ibq3MA70qZJ5VT/yc90w55uC0VJwATKoWUz\nJz99hcPXukvO6ppbZG6NM6BBs5ReX28LzVmUdMOexP0qw432d3/7t8zMrHqizzmA+TNDo6EEkrnE\nKSgBqyNP3vwGh4PNQP1VLuv3AShh0QNZTUcxrfHo4aTQqar9pR0hDQ7sreVAf/dAOEogvikYOzcL\nxcHVZ0I2Hv/FvzEzs/vHb+pzYWU4aFq4C/RLYFnkgDiaINvzkZ53l+KS3+wlXOqstj14W5+9rmqs\n3bpeNwjURqMPW1XYUqH+voF5M7kU0rpl/UmD2ucip5QFMd/VfDveQ5sKVxDvFveNAg5ZsJCyZY39\nEoTTQddjFehzI8X/LAigi55FZYl+BDEICcKmIKBN9J8KSRxSYC9lWDerBXLxT2m/D5MoEANx4Orm\nfzbB4cdXDK0jtgaq/CN0ngLyoVNo6aQj5mIBF4+QGF0r9iPENMxqrnqw3wrogBQdGDVp5mqGvHTm\nGMYRVh2T7/0VMYUZedchDMfSfaF6+0WtaRNcA9YgJpFbyGaqekzRsNnDHcqHvZHIqd3f+vvSs7q9\nUEUR77cx7/MY76EjpMcr4qQAK+xq1LPRM7Xp0TEsAvKUN7jitR9pj0yiM5THIaR7g+MITI1BC/ZO\nqPWjhDNK5BS1YP2boMXy+N/82MzMWm8IDTv4J98wM7MgxCVpR2Oz09F6OHQV293nvzAzs5/8SNph\n7+fl5rTX1+sWZfbGnNCld7/3HTMzC5+c6u89xXaA7pGh77Bc8DtOBgaDZXKNFgEMlQDtlSTrU35H\n63gFdGq5fJUzf5cyvdTY3LwkxmEzGM5fBc4UMxzIkhPQfmJ2+UJIZpL6td9Q/wewbZMJzYUL5lrj\nUP39KftHFXacg8aEfwk7hP13wf5dgJbVPyXv/fzzL9tQvPUsv6/POwBhTTbIg59pX0skcRaLGD4n\n6nfvCvZHpH+FRtASB40lQV2eonHh4HC0jRBYzf0NekzeYGHFIizbF1rTR6Y6py4V073PxPIptjQP\n2yUxRDpVEFTOOwEMvXu4xZ2iPbOEEePgOFOswlLymDs9xW7nPudEWAPpFRoC+a+mO9SEMT0casyu\nnmnPG0w05incpCKdh3KSWOKsUYcd6zf0e/IFmgkYGKYi4bsSjl6g4WPOkVu00py61pP2juZWkxhc\nwH7lZba7L/ZB7SEugiPYzJydXj4XS+vsE7Gb8znN+Tfuw2BHFKZeU30Psif6nBRaiyG6HcmIlcY+\nXID10dd4Pz7T+JdhNxfRWsg+VCzX29qHqlWtHfmKfrrsR/2pfi6mqteAdbaY1Zy66WltWJ5rDTg+\n1ni4OAmZmS2vljadKW46TTTCKur/KQyhs0i3Az2OXOaYdibsrqWEFkjUI0+v9ewpMbODjtoW/YkC\nOnCZj3RmCWCPrgPpaCSvYNvichcsYNFfqY2Hu7D531XbF8/VF3kY0nmcZJeMkY/exW5GMfbmb0gv\nZHgqB6rZJS5DDcV6CQbfVGQsy7IezM4VO4Mfa/1p/bvSYjz6zW+amVl3rf9PoAc17ikGZjcwKWF/\nLTM/MjOz4lb7Tg1HQhcNxec/EsNnfKGxTlZxuKnjmNOkp2GcFNgv9t4XE2awpl2ssy+fKyaPa1q/\nsjjkjGZaS5Z8d4JwbsmOYnWHLIubhebi+FT9VEYfsFq4u+6QmZkLazk/w1GSM4c71RwdjrSvF/a0\nNibVHGtea+5lYPnm0cVz0ILMmOLlZqDxSVHvBlptQ9aAl5ev6vLsybm9senY/ZbO/tkFmqQwrWfX\nfP+dco5rqs4Z1utlgu+Q6EtGWQX1BjpsMAqn16rb0T19zrtHarM/gj3f01wpT7SOhbCXmrtkG6Q0\nhi+GisFm5HaJptR6BFMS/bsGTrShQsD+9K+0zjkr9clOHaYfjrbPB9GYkslS5LtSWevOzQ2ueDO9\nvsO+FbL3TdFl2nmHjB1YaKdDxZb/a84kMVMmLnGJS1ziEpe4xCUucYlLXOISl7jE5TWU18qU+ezy\n5/YH9jt20ddt6lFLN2gzXE66fdTl1zBBErodPSCv3ItkJwq6eWrMQefQYHDnuJJwa5pET8SfRvoa\n+Jy7sEjQZsgVdFeVTQtdckGXJiA75Ugv5Fi3o1vU4scj6o9fe76Mfgk5uHMQ42IW7QqQjU1CN/LV\nqv6+ADExtCmmK5xrVnpeGjaIjfXCM9T4S+ibFEBu67u6IdyuXPNc2EI7uN7AuMjSiTO84aOr4QQo\nVYacUn+GGwPuC82Gbi1zD3Xb2W5F0vzo9xzp/R7K3TPcf8L0V3NMyaMRMCC/MIEez9wFtXBBY9AU\ncHZ08+yiFj/FmWqJ/kUdNsEMNKkBcpDGYScV6tZ2hck8At62zqivV4jwbK70/KQDUt1XvT75XLZS\nzZJQmJNvyQnBof/bO6rv4fEODVQsjF4KCQjImd19oL9nQcEysAZWKJhjxGMLck8DUK8o33ti3LQP\nuny+boMn6CdFN+wFHLwmKI0vpnr/kv5ZEoMOGjqza9UjFYFGOBXlinre9/7pd83MbOe+0MD9fbVn\nNtTz9x/iOoKryfSlbo93SuSlpnB6qLTsrsUpqG2tPfXVnkOeLAyRDbnoM5xOplt6r4iWUxGEE6bZ\nsqCfg6lip79Vm/dx0Whmyd031NbHp2Zm9gKNhDRq7d2pxjQDypSZqZ7JZ3r9us1cyComIkezYk3z\n1uf/+2eqRydUTBSxZerjcHX5I8XcNKN1aAdtqTyoSbmiG/sV2gETcuSH6CDNLnE1gnVVONTfk4b9\n06HqUciCYKO55RQVux7q9RuQzx1Xc2KLjlMAuufgduSjgRUhFCG5usEVbLcbzZUySGu+pn4KcTdx\nOhqHxD6CWHcsW5B1F/GYpKdYq4Ie9X6s/38x1nr/3ht/X5+LK8otmjC1ttbr1i6oVkb92oBVdoq7\nyOmfS1cpS95+CVQyY+wrBX1eCeuIbekLu8T5pIV2SSel9TVgnSgewhBkb+l1n+pZsLaKNc0BX001\nx9FYZdt6faS/kV1B91ygLwFDMgDVScNK2KJVM4EVNfdwOsnBQGzqOXsn+twKsTnHmSxfVcyG6FjU\nQDKff4Lu0Rfa+3fjT8XfAAAgAElEQVSZIy6Ir601NiX2+hzIX+9CfVao6nW1fc3FSLPAaug2bXHX\n2PtquFMSVkMi8bd1oxxYZtk5rii4gthY9amWFRPlHqwu0PdRX/Vy0dTqos/xw8/EJPzwH4kZWXhT\n9R6h3VXl7FG5j44RulQD4iPpq7/z6OTtl9pftmHv6P6XVjlX6Ilk0Zg4REer9IU+bzVUO7Mb4imn\nwKlnQdSP6G8XZtZSa0A+i6Md7Ild2MRJdqYVWg43ny5s9zffNzOz5ZR59K9+rr5CQ6YMI7kCy8tB\nh2h7IcTx4rHWj8P3TvQZuPZE7nqzP1XbkntoxSzUlhxtKONiebgLiyAtJHbwiebzYvvV0O3P/1qs\nsu9///tmZuajbbBXEkvMa6HXFCo2c2hRPWxGbCWYMTjXDG60T2zWIK9v4nK3RBfEWLemuBmVNCZ7\nFmnIwPTAVSoJ+60CG7deRAOBvfwpZ6ghbIGb7i/NzCyDluNbu5qzqUDrFaZ81migW0Ispy+0Bvhj\ntBRxzyqhpbDiXD3k7BPArvOjNWhX/bGPbl8WXb08rGoP15Y+3wPmt2hH3mpdjRjql9diExxFz2mr\nH1ORdpr/Sudj7eftoIO+IsyldKA4mm4UJxmYQuUlDkp13Ka+ZAL9+rKOTHhwx8wO9KzhrdqyA7t3\nAWv/mr2xA6ugDKO6Vya2sxor+INWWGmddtOK4f5Qrz9A96Nxolifu1pfk5GOD/N1ynn8aV5jtv/O\nR2Zm1j7Uc0bPVZ95H+eapva6jCmmWrj0JZCO6qJJ2H4uOkKDWM9EbDCWyypuSWkfpy1cjwK+4wxg\nbWU7uBq9izPZFedctFR2E5Fup8YsmsGDS/VXoY4DWk71LZRxuJzizIum5nqhgWq9ITbUdKp1a/k5\nWop8XmSx6aGpmcmg8RUR/0OdY7Ps03ctWZiRY8aBI5zl+P41DzSX9xpiyC7HfA9boxNFVkmP734z\nMgKKaMGNXmg/efRbYiCFO/q8TwOtgYnN/FVltnMLM1Wb4+i3QCsGQ14rJWB/JXE9zmszqdzTWFy+\nwLmKdSByK42Yb7MljG3WgQQajS9uFYulDcw39pIyTmPpHXRES+go4XB1g4vyu+/ICTKAid0i1tJ8\n3g5aNmX0z4aTUzMzq7XVx7tvqR23nD/dc60v6S2aMGTI5GGXbVmHxjDNi+jkJdCPu4ZFm7mAzVUm\ntidapzonCB/9HSVmysQlLnGJS1ziEpe4xCUucYlLXOISl7i8hvJ63ZfOhfBuvD81M7O0cb0MMtmp\ncXtYRHGcO6SUR25sCBK71NXYZKObqioITIBGg+vpJ+YiliVdPwWy4IGkJNGqyaIdkQUp9lCdz5Nf\nvgRRLyDy7OKelHUjjQEcHDzdSlZx1MjVdPO3GOp5/R5uJ0mcIkKcCyq67eZxttmSg5bndjaBVkNV\nN3KJCUg1N/7Fit6YCoU0DJYD88d6RmdPN6bXoDVG3XOYpy/I10vBrMjgApTIqa+3/P8ANlA2r76Y\n02c3VHUL82N6Chp0q1vCB7gv3bUscSbYXql+pTr52jhjBaBqEXMkGKqeNTRPtgn1Rf9a7Qjf0M37\nijGYj/X3Rgo0H32feVFj4c9wtoJFUA00BqHBxkKjJokmTOQY482Vl/goI5TQdxQsG/LCPVf9dr8N\n8nhft7UXE3KPLzNm75uVQ3QwQIDnl7A5IkcaX58/RI8oW1jSHlAi2AXDXOQqlecnKD1zwwfBjhTS\nX56Rywoi/dG3PzYzs8szIfP2Jaql2+g8LJQWua9F3Lwi3ZYSGgsV0KzOnp7rz/X/K+ZgYaj+8ddM\n0juURot52wblRwdjcq75MAg0FhtyQ4s1Yh2HAwcEcQUDrbCjvuijOVC4xqFkE2lN6WeTvGZ3BbIw\nV0ztvqkYfT9LX+wKKbgJhDBM6KvIUSFyYduiUVXwNTZD8qeLsLBKuAElMVoJLjXGzlAxnacfAjSp\nSjiuuTmtY5Wt+uXBW0LFHjb1uweKZqDf2abaN/KFWr1cgeqNyfFlHUoOYNjg8pGBRZbwmDPMhSL9\nOt/ofbuRax1OACEMnhTIRhJWVqlzYmZmHdh9i6TWnDVOA6ksa9gdS+VAKFYChpODq1YRZGee0PMv\nB0L77g1x/IHRM5hozXlYV/2P35UmzfJc66yP48EOGjyjiQZq0cV9b0/jEbAvRNo/FTSE3vrwQ3u2\nEctm5uHuU9JrslXN8xQxHIJCPfsTabn0l5o3D50/1Osesa7T9jGaU0bueqUI0xGC44e/ofm9Yf1I\n427nNdAxmqrNo7nqtxlozynhXPLN3/tQbR2jn4MmTJkK5NGyIhStwPxfrDRHL0eKseOiWGJZ0KUU\n7n/5Mk5eGa1zFbS48o+EqPbZx9yZ5tiTa8VuAYbLXUtqR2NRKKEfBTpeDGAFDGFpXKq/i45iqjNX\nLDhoFHRhNG5hclbKirHO21r/+hFT81DtdUGQg43GtcYhJRfo+fku+fowhkZrIbOtExxq0ve/bIO7\nzlqlp9dvf65+HS0Ui523hOotT/T7kjz+2hswnRz1bxP3KY/8f6+scUqNcTVhjXJwutvAuArPYB08\ngWlZdq0MqzTSM5uhz1PNofHC/E7htmmwWde3uBZ10dFBEya4VB/NhxrrIKfndz7U2OTZu6t76rtT\n9vplRnUrRFpXNdXdDb8aU8bBTa3YRsMLhubusdqxV9SYVHKKoRpnBo8D3TXaKsM5TJWekNnnfQ6U\nnsZofcL6j4tdBk2DSl37irfJ85N+6L2kXjAyYc0OPP19jJ5G7xefmJmZP4bh56i/kvcUqzc5tatu\n6rcsLn8JGCv9lzi6OH+blfCggpsd7n3TW62XGdz2PM6WJVfr4GyF9sNA4+cEkWuo+iGFA93iXGvN\ndag57UaaNSwuO020dzqqRwc9Jg+Iv7Z9pRlU2PNt5mqOVnFRdZf6WY3cU5r6HSD8SyaXH97dWWfD\nd5I9HKm8HX3m8kzzboXrXMh3jNUnGrsL1o0q631un+8c7L3+heq2gD2VxBVovcQxFs2+zltv8nka\n+0j/zHDfa6INtoLVVIXg8eC7YmT84MUPzcxscKXzaAX2QoDbUUBMlpKK9e1M58Xb56xrbfR6oFl1\nEUxKc+bJcy73YRqmA9XHKfBdpsP6g3De9hB9vHO1Zxrp0BUjnVAY3hH5OKOxrN9TPddjxVZlELmG\noi94pXrv/a7O6btZaeu88KSTVHzOeDiqR4CrXgaHuAyZAT3YwPn13WPEzGwDg3/iqp+b6PGVYKqu\n+vqc209PzczMfanzd5m108cFMOAMk4BdnDL0SGt6/z5OZufotKyfKn4Kziu2cavdsHEwtzz6POsJ\n3/EyWo/evsf/D8TQ8ziv9b/QmSCxUR/vFzRWIXWprYgdnFo//r3fNjOzvQdic90+/p9UAb5jFio6\nB09xVpwl9LNRg8G2i5ZqX7Ffr6G5OuM8CX3L78MO+0xjXK2o3jvosVWh+09x9Vyjh1rgq0cxOmvN\nyaBZqH6tezorOQvWb3ToqvuaRGU0Ireccw+O2A/Kiq1K4Vd/t4mZMnGJS1ziEpe4xCUucYlLXOIS\nl7jEJS6vobxWpsy9f+sdMzP7+h88MjOzGuhM8Sm3kifkCKMlc3GqfL/FTH93S0JtEjBkAlCkGfmK\n5Sq3qUsEMLipn8256U9wq1jVzVYaf3ZvQX43ytdrWAqR408OjZosOXFFbtg908+FqxvB6UY3aJkN\neelV3Sxm0WLIp2DqkKuWIL8w5FZ7tNKt8Yi8yUzixMzMNugN5FAMr6GFUyM/M5/CLWStW9Vl/tL8\nNeriQ9WxUlCfpyLUvqHPboDirrj5XTo4GmzVV4ukbl5dT3Wejchffqib2aO2EMMrmBqrldr8V/9a\nLh2DW9CwO5bnPxWC0B3r5vqN70qzJA0DJMrh7F/pBv0nP/trMzO7//DrZmaWWOjzb14IHfpeGyVt\nUKwNbKoV7Z7DDBqC8i/Qn9iimj8lTzsxxwGGG+t77yiWS/vSUnHJ1X/wjpDQIUjwAcjzJTE5Qn2/\njCbPLnnMm1vdaEPqMCcH+nMLEgnatwC1ewqD5fmPlR/+8dfU/q99XZ+/gpVQ7OjzlwgXJdJo6qCy\nf/pYc+z/+Zd/amZmAQyX+juKl3pZaFi5AOKBTsZ5X+9rgkol0New6Fa6Si7sMnLsETJSP0Ev6kz9\nMAnVvm3m7nEyAZXKmmI2t8E9CdCi2BLy13pHsbkGhT91UUPHXWeJw4mPJlMShkTmSMhka6wxCMk9\nT4FSNAPQ9TyIMDpINXJHVxX9fw39pjnrlZGvHE6Z9yXNxeoNmlMOzymq3iVPN+5X5PLnYPC81/p7\nZmbWOWYdDHAjgd0VwHSJdJhKC8XacV039+5Q/bb2NYYrHAhyrFO75E8HebXTL6ldC+yQliNYWrDl\nli6OAGgJlImROs4CSZgmS9a7xURzd7NUf1Zy6t8jcps3W8XEZq3XzXzQs/Bv5EPfoUxxCJvhKlUA\nEd0UxTI4+lgo4bqotSvr4/hzpc8JcVZbwVoIqpEulGJ5fgVjCEedg2htQTMsD4OyyrgNYSadneMa\nuOhbAEKaLantGTQAhjBVUjg1OSBp7V3VfdPVM9tt4Swve+rDBjnkttJ6NH6GThsaWgZStgvjZIzr\n3sTV651Ii4A9coBmwJI51jhRn9WaJ2Zmdv1L/d0PcCIb6P0uTgWzvOZ7zYG19VBoWTat/2/vqx7d\nAc46p2Ihle8pdhZV3AB9zdk6ufe1N7Qu3XyGw8+pUHW/gejBHUsGzbNcljHG+SuEnesM1J8bnByT\nuPIFuP31X6DxgF5dsUyMKERsHGmRETPeCGZRV/01f6oYv0FjoVHHRRDU/hAWQLGhudnE+eIKtz0z\ns/lgZektqB3aPvsb9UPVwb4D3aYZrl4RqthLnJqZWfsj1XuNWNmE8bsH2wuQ0Az3vd6nMIeOtVZm\nm5zpSiNbw3yJGMpJ2KklmBzbI7Vh/oKc/h5sLvaOyIWyeKm+vyoxP9EQTD1UH+760oVwcb3MONC0\nUnre5VOxd3MwVxK4hOQTkQDI3Urxnvrwo8bvm5mZh8NWgrPNANbANlCMz9E4CGponeF4CDnZqvRZ\ng3VtEjHAQcn9Kk6ZK/XPBJeRLGyDTSQ0klQ/ltcwsrPoQZ3q5+IagTzqkcXpMJHU2M9Yh7boU4XQ\n2kZltGACvb8Cwy9MRWITMExyrOfM3cRS/bqB7ZzhLDhvwnR09XtvETlnqj1H6DjdwvhcZjUnEugK\ndkp6nlMQ8p3FXdXhjOpBOKpz/verr9gAHb9jIYxyb1cdl7nArTANkwotnS3s4VQG7ZnJ3c8kLlof\nyy2ukui69Zual71bte3A1KZlS5+VIxQzsJ3yaCQmz/T+THbC+zUmFVhnmR3Nz9unuOThOJXd03ek\nSH8yj6tTKnJ7Yu/uv1BM7rTV9qN3NKbdn2lsZugkzZa4l7KueMz/Nefs8IL96hgdqLce0iPoasx1\njl+gPebMYJBTr9KuPr+DY1iBWC3DZvuMmFq/RPtyiG5oKXJsjFxXOZ/iTFs6hHG00Lo2fCJ2x+pU\nP4+7OgvlW+hA5dVfk8IL6qf1v4TLXCoBKw8mU7UH42fLZL9jycE2SbNfRtqTVU/tXaErmJvr/3MO\nZ6kmrBCX78Yj7bvZouqfz6NL9YXq9bP/61/r7+iq5FzNqUykbWlmi52pTcZTqxEzXVhZh2XNy5u5\n+nyBY1aK74jrmfbiwyOt12W0qcoVtWkPXZ+f/1R78vJT9fn5qc6ZvQvV5a3v6CzjwzTupvT6iNk8\ngUGzwRlwDlP6BpfUiJnd4vt2nvd1nqAz11A73k3CWkMLa0B70mRd+Hk0HolJW6JTOtQYtN7HPTWp\n9vdewMRnkz6o6LzuwcLK3vBdje/ns/mvZlPFTJm4xCUucYlLXOISl7jEJS5xiUtc4hKX11BeK1Nm\nhQvIp18on+57OEBsfd1gpclTNvLJM2izDNHxyJPPl0bLIODWOAUC7S10m4sgtW0KaK2kuVlv65Zw\nM9cNV7eHPgiuJT43W3sP9LnhWKhdkAb1v9DPyVD/X2sKqfHX+v8yua4jmC9JkI4UTJx0Ru2vo1Wz\nqejvm4Vuj0tvCZEphkIjhyPq0cM9ZSzkYuqTNzrT5+wfgSQ1dLv+mx+/YUtP//70f9N71qiQp1Bj\nyVyQy3mszgrTuiX0QAeWOEuVs7ox3kUdfp0VshlM1XcX10Jb5jAjOh8rt/V7VWkd7Ix1A/5n/+Nn\ndpfSOtSto1XV5p2ObjnHMyFzM7RVzoe6lez9XDfbnbZueztviLmyvYIRAtvJHNgVIMNJkOghKvgN\nPjc11i3oRVd93AGZdWEh9IkJB7ePvT0cc2B3uSCYJfox1dT/53N63XQBmwonBSel/48YPqvIvaMi\n5KPq6HM2OCgkmrC4JorV9UT1Wc+Fvm2mivFI5yPtKw5K6BJlycc8TMKU+rbG8wYkxF3hjLNFmweW\nSIJb4QhFyoCajamH4X6VAgHwYRQFuEF1obE00W5YF/Tc6gLNg1RkQfbrSwpdnAVq7DPemsatYklf\nhawf7g4571u9vu9rDjigMgnqBFhlCcZqDXKZvOR9IJQnITA4fTweaUxdtGcSA92oRznu2xCVeRxS\najBIIl2fLAhA6Op53lBIwBh2VHUGEtBRbB/BUkg3hCK9PNUcnE70vgBUzIPt1T/vUw/G0lvSTtgJ\nuF4kWsyNNporU8XEmDFfgZrV9xRj949Vj8yN+qf7UgNRiLS5pmo3xB3zCvrHdoWjAfnwlY36I2vR\nHCLHn+0q3KBt4381TGEFg3EDqSAAwQ9yoJYdNL3uae14/HM0uW5QzW+hF3Kj19drINawwxY43cxw\nfKvDsKqUyN9HR2BxrfYWd7WW3qLPMg0dK4GYZpmfM/o8chKZu6D7oNwf/NvScmldgSjWNH+egx6t\nPFBf2Fv9seqexOmmeqD5PwOJ29DXhQr6RWu1rQCLdLAWKjZEX6m1PjEzswQaYylc/VJ5PTeae0nG\nNgHatQQ139T0/N2W+rxZVx/P0RGZn+q5BnqVSaidS56ThTFZuad2tpfagz30OMrZr6Yps2FvLzeY\n07AX3Jna0axor56mYAN4iuGIhDCa6R8zdJKOAjFGElm19+IToYSGds81qL7D8/0fqd6XSbTSQrQj\nDk/MzCzfxM0FXaflDMfGbGQDYpZ0PEvD2vPTWmMy6B1FuhnrlMY5nUN7rQDqmdd4lN8hf38fl5el\nUMs07oTZtfrfhaE1D2C5Ue8N5l6D0Lcs62EImp1pwKhjLzw4wEVorRjvzTVB3RqMiI4e1jVcPxoR\now7HqWSkj6e2+Uv12QrGzRT9PG+geiRDxXARol2q/dVc3HI4mm1K6sNtl7PIlPUDnbhSEl2iksa+\nDguhv9XP5ERjN918oXb2cRpjTKddPd9rs54ca2/uUO+wiq4S5zwH5vWM/SV5rdhc4Za3V8e9b0f9\nvZzruVdDrT87dT1nNkMHqck5G0ZRgHPYqq7+9VawEtCpcmAQZSJaFw5xKZzRFo5+7xTR4sHRJo+O\n0RZ9ohl6e2uXcQLBnuF6ui4pBhszxfyG9+XnfF4N/UDYBok0wWhm2f2tVbvMafaBkYdzZ1ZzO52O\nGPD8hC24SNzdObSMTpy/VN2LHcVm66HWJ1t8amZmS099WJ3DgEurzs2C9g4nwbnxSAtFL+C70Qvt\nTTc4KKbaZeqsto7ZGgP2i6szfcdqbPU52b7qNaGNLXus52bfMjOze2+KaT364v/V516KiVHnXFzt\niC2wjfYFH5fUK63Xzz87NTOzsCn2w/7bYsxkx7BcT1VvL4n76FBj8OyXYnwPmmi5wG7OVxV79X3t\nE4MbsXrHPX1exHgPr9X+5IH6K0H/OXwn3EEzbLPQeFydaz1+8iO5VH3jO5qbjROtr4NzPfdqAHN9\nypxTyJrHmSKRQ9/Jj2xJ71YK6BSlyIYoLZncsP2KS7U7jbOcAysth6blCtbXsq/3V05wJayqn77x\nW1ojV319j1mHmou7xzBZ6Sczs3x5YsON2QYnKGuhrwlr3TvTHlCFgdJqR+uJ2u7AMh29hOHS1Rjf\n/6bOqcGx2hA8PVWbdzT2H57AKMRF+fRCbKoJDOk2Z4KAc37EUr13X3Np9EOccplzRViijun9WVf1\n7/9U2RJFXKTSnD1CMmbmaGxl6fsAHc4ykosbWGXdG82F1Y0WkAquUImt9pc9nNFmZENMOI+nyEYI\n2Q/+rhIzZeISl7jEJS5xiUtc4hKXuMQlLnGJS1xeQ3mtTJnv/99/af/pPzf7X/7FX6gy/4lucVN5\n3YwVqroRO0wKtaoe4vAQ6pY0OSPHHwS6glPCtow2DNozHu5GDR83Ev5uXbQnbnTrnE3pdtpg3pTu\n6QY+tRu5keA/XkQ7YKLbyvCW2+2sbu5uydNPNcjb38KAQam8XNPV2wjkplJROzMFIbLTJE4ab+mW\n+BZnneVT1PAd3YLeQxU7hyp170K6LQE3dSNyp3/yhW+5ktp+xq3/Hvm2wUIh4PpqSwHnGneJPsda\nr3PyMDNMbfcCtXkz1O3m5RKFf1w7khsxYkqhcjW//bZcn/Y8fd5/bf+N3aWcgA7dK6nvkqiebx21\nx+GG/rvfkaZLs6M+yXBz/nZJN+O5D4UAVBVa5pGT6+zoljMEkX5581MzM2v7uIJ0dSv6/T+XU1h+\nrfe9cSxUaAyqktyiU0G+dRW2V5Gc/RFI9PCWW9IQ7ZUBscWNdx5kcwHraT5FA0dvtxRaDmmuUwu+\nbrp/67fV/g9ONFdaaA6MrqGN+CDKHVgLC1gY5HuHzKHdtt73+//8d8zMbIWGQgI2gD/C6QE9jM0a\nBfMpLkx59UOCvPj1RuMdFPT7Bh2WZZ+81InGZ0Di/Rptg3wySpT/9cXJKNaKjmKknVcMBNxcP/mB\nUKneBJX4t9VGb0d9UQTVjxhykAlsRp5wDk2CxQ039ee8ACTO7ulnAeeqdJn3Zcjf1X/bwX2tLy9g\nzvRutS7lYM6N07i3kePqXoDAXuOqRhB0tkKfaiAY257WjflYLLHt8Bn1gF2ARs4IDZct2lvXa/VL\nE8ZOhrnQfqgYWpfRSECx33CGyJDbz2Ntp6G5cDTTOIRpjUPaPzUzs+kztWcaKnZcmDupPa2TuSy6\nHzx3cAuy/lixm8Q2zy/xs6b3O4nIW+huxQHlT4Uwifqga7hi7R0obhq7WnM+/6XQpWZba2ANlp4x\nB91bPScBwppvK57mi6i/QGA93GLQ4/JA8sus4+0Oef+rjaWyGqPLl3r2rodj1a5iZ42rkQMDJXOi\nvsujI9EfaS8rgQ6lQ9hOddVx/x1cLsgHr+ygFfNEqNbnP5Am1f3vaL1MFRWjGVCu/JtCvZzPFGNJ\n0K1L3HacG8Xq3gPVt898TuDu0awwBk1YYwmcGbJqp0v7ZzD1Tn8mFsHuRvVt/75cMgLQss0E7S80\nAAIcyJq/I2Q2mL9yXrlLyWdVn20k5pVhPf5UcyzSmEnjHhU5IebbGtvDe9LISXRxpqloHCZdtHyY\n2/feE/t1hAaNh1NDCf2UJrGdQNMFQzIrRDIeFbVzONL45Hdf4Wvlr7ctQV59Oqd6O6bY9lJ6ne8r\nhvOsTfV7igs3BfsXtkUKdsMc/aZnQ82JAhoLVbQNKrBz10U+N0STqJCxzZv6kCSOMZ6rvrsaqI98\nVw5iIVoE6xRnCJz9Gu/R1jEMxiNex9zIZvS6GczpAJbSFFcd4yywYH3PwTZd5dW3kavRXUud/WY6\nPtVz+7iO7GjdiDS0tlV9Xrmuc1z7fc5WX+Aq8rnaOcaxKh+qr9MNrQf7B+qnHRy9vDpsV/Q4vFJE\nAddz5i6xMtHaMUkJmW06ev96h7Mc5+FpWvVPMeYZHHVaTfSQEhH7FbbaTD+TI+ZqXf142NJ673fU\nvplpLs5w4nneQ5cEVvP8eaRjGGlDqH77a/SgGmp3MoWLSQNGOWtepQeLmON1ljOlEzBJou8BOAZV\n/8YS4KYcm+OMmd3ioINeVAG9rgDNotISRihxs90W7K7F5zvEHJc1p6V1rflAsTN5qjEa9BCRQf9o\n9YnWiZuB5m15n1jluZmynltHe8W70Lo9uEQjECZd+aHOgy32/BfPxBKYoZOZLui5Hb5jpTPRWLM+\nddQHO48UQzefc6YJ1UcRQzGbwwGLsYd8/CXj8uYJ589DHAxx/UwwV0O0ZsI03z/mjOGZzjKYi1q4\nr/0kU0dra1+f65/q9Wk0IRc5+mGN/icudEm0V1xipNrUmjReMzeenJqZWe8EfSe0zZK7+vvqufbV\nPOPYSOv9W47zBRjh4/ndGd5mZguchUo5zhQ++zbr8hYGzWykuRHC/MmSxVGC0ZpHOy0z0rh99mff\nNzOzo3eUqeDD4p0uxAgKOlrf/cErZs920bfj3X2bEVObrNaXHfTPXq70XoMh174vxl2CvWuCA2QF\nxsqM78kursonx4qRS09MmiRZGe0DfW+ewcp3cNOrlrRuBpyjB080Z2qwyL72PZ0FPj2DEX9G5kiK\n7+cLxUCryjrPJEpnIqcqvW7KvlRuwsxkzrhr1TuL+3PpHjpyaMksYVwe3MO9LmI14zic3nIOnGvd\nOHyDdbL5q3XuYqZMXOISl7jEJS5xiUtc4hKXuMQlLnGJy2sor5Up87v/+D8zM7M//Ef/oZmZHTW+\nY2ZmIxDGaVc3T49BAPZA0SpN3WzPfN1kFXFV8rlpC9GvyJIvmfaEAKwKaLmQx9lD12JFLnMZzYC1\nq5uukPw783QTmMBNqdHQTduqBnJb0C3qaK0bvEJS9VsZObg+yDc5xsU22hY98uuvUX/GB34no9vp\n7bna5Z7JNaC21g2bizNGcICyewk1fPReNiPYFaCPg1vPknW1PRkIoVtGaEKgECg5aMSQg5rG2WkL\nHB6Sr51KgHyOcctBPydJfner+baZmeV3T/Scc33usx/8yMzMbtFhuGuZzU7V1ggNQQA/EbmG4JiT\nPNTnt0Fun7oIMUgAACAASURBVF+pT/OgHu+kdfNdAK0eVfX3g7r6btnR2HQudft7cCC0ygFJuP1E\nYxDpAvk5/T010+flE9w4R848RfKw0VgJE+rPaV9jvtjC0CnoltUmOCBw9R5sUfwm73wOMhmAUJRq\n5EUaqBL1qO9rnE4O0dDBWWi91hwIYTs4sDwKjurtcEM/PwNF4qY+vdYc8EE3UyUsNHB9Wq/VH8aw\n9ohlD/X7hKN+dRa8DxbBFlQ05HMDcq9TICfL6a9WKP+bJYcbmYfOQbmhG+lMT/PFL4Ja4WwT3eD3\nR+Ts0ycGg2N1g74DN+h+A8epSO+nLNj/sCSGiBeqLWP0iFKwzx6dMIdglADQ2fxTdDbQICjsc9OO\nqnxQhhlzQG7+jmIgxDUuiTNLMNEDb4gZF22pZFPrRu0YlzdyflOsd2tQluUY1hluVMkqz9/T+1qH\n5GePFANbtAMGT2DLXelzFv9SDKTTjMa2gP5Uush6XcfB7VhrQxoNidusUDvMsyxTUbuDARoQrEVR\ngnxlpTk399DRAMC9aymjoePUNJ45dIxc4qZ3g54K2jqZAm6A2MaUy7h5AG6u0E9Z44JSq6qdjQOt\nNRc/EnMxHJOD/e671AQ3KdwJavTz9KxlSdDa25dCNntjxUAlLTQpizNBAnefFGiwX9Mzrn4sZt/F\nQvO+mdNnvPt1aQRUcIMbfyKW1Aq9iEoIqxRWZjiAFZbD9QMUf+cjoVPnI431BJ2i68+kBZBi7nT2\ncFUq4cYBw8efaA/tvKEYCPapPzn/K9D0Zl3tHu8qFiPNqix6cvOXsMp2IgaefmfZtDAHGkV/3rXc\nwkrr435XxkHtPKt2Ncog3zBHj3h+saD2ltgPCz9DewdtnFWgn0vmahuG4Yi88wIxstfRc2Y9jUOw\n4ewCU2h2ypmFs0SqFelOvWKNjepTyxlnnR3tiz5CTgvT+wfXaI+h7ZM7wp0RVuCL//OvzMxspyqU\ndMHcD54ovnZhmxQqWmvDAvogsO1sq8/PHdat/aZi7iV7XwbXtmv0GtKmdWD3QOym0SOYHM/Uh859\nMQMdKIxzGIBrNAmHOBKWcDY0j3UETa/SO4qh9aU+v4Q+WxO9hu38q2GTW5g5F49hyu0r1mot3EJB\nXDPQkIqcJSaM6XOYmxc4RubWuNShG1FAY6wFazbk/Bgw1yGX2Za9MhmqPtc99ZePk1f9kLkE8pvm\nXG0VtTvSnei4GochTBRz1I8r2AubK8Wul1D98zmdcw/QpgkP9Hz/Qgty91wxcv2ZGO0BaD9T1FYl\n7ScpT+twDV2SApo2rSP0DHs45nAO92DGz0C+E3MYnmvqBaKf4SyWQevBm7EomFk4OLPcBvZaDucg\ndKEqfG8w4mZTYc1a6nOS67uvJTOYiJsN6xj6PXuwLXcONM9H12IcbmF6rNFRyrdhNKJhlYblZKzP\nOZxhEuhuzqGUrImB5ECf1/yu1usTGDmDP9G+st7gLMV3lOoKNx+0r9Y7io3db2nPXg5/qJ/XGtMc\nTpFb9NJydHGO72iryBH3BWNzXwzLvbf0vMukGJCFG/Qvt2J/bR3VfzXU2BX2qN8OeqIuZ6qexixY\n4CqKU5uVOUdWdA5udGDp4Zi77Kr+ozNYaFWxMWZjzcXBM9YiWM0ffKQ16afod66eqT2jjJ5bRt+q\nDHs3RK/krmUJG2Xjq10ZJ9LAgRGLAyZT0uZkaywDsVLqh2QSNNSvlVu1s/up1ozMVnOniU5hDjeq\nSONsbvkv61IIHCsuOl86x3qwbVcdzdNsg75f69kXM+kQLVKa9+kMLpzf1meU1+j2LDXWZfSSEvsw\nG+fqax/W/rKr9w84D0bnXwednkxK9dgvakwy7Jn+LawfdDG9stq6cfRzzPqXecTZiXX/yz0Q5nip\nrr7c4Jy2iFxROZd3OLe2PtDYz5qaIxm+wyzJJgjK3BvgMNmu6HVbR7ER7cV/V4mZMnGJS1ziEpe4\nxCUucYlLXOISl7jEJS6vobxWpsy7j6Q3stP52MzMAk+3k6utbmE7Hd1s9ee6PT29FFuh4aBSn9VN\n2RZHncUClgJe8kkUz0OYI4a6sscNWi6hG6/KgW4AJ3Nuf2HYlGcgK21d8WebqNMPVY9sTs8vNLjl\ndWEBwA5Imz6nnlX9phPdtK9B0us13R5HGgP5oeq3ifJLuQG0c72+0URXhRy7kBv9+YVuLv0cKtYO\nCHeo5xVyWUuRO7lMq2/cMarw5Ipv0ZjJb0AHRpEiPQr0OT1rhivTGFeI5Up1O6hq7EYTXHnQQvEv\n9ZzFC/L48q9cIu5SAm64a4cgpOQzGloqqZVuklO3jC15hHvkwudR1s6RNp6tEwvPcZUA0auSY/vG\nI/VHBheTzkPdpBdrem7JJV+RvPEU/TBHb2S5g7MKmjH9JejeRrejV1diN3x6qZ8f/6a0WzKwMBw0\naOrk5rvU//lj5WHewsb46BtilT3a1e1x0oHVAeIS9MmLboJkTEAKcHoxGEZc7loRDYMU+ZjFFQyo\nhGJqyNxYkt2cK2quzSO2QkL12oY4Fdzo742mbp+dPcXbKkQDYiJkIl/VnKqgTZCMEB/n7kvTi5eg\nH4+FZiRgvDRBDaq+xqre0c/Pl3Kmmcw11mm0SnIeekAuMVEWQts5FEshQPOki5NNiFuSCwJ6+lhj\n6gTqixKstM1CsbmeaAwv/lJjsFdFf+KEuVXXc0pvorzvaAwXKVhtCPNnIt2HrNpbAk1r7itWw5RQ\nlExLsT7OgboD9GX3cU4gPzuCXtdoAbhXaucK1zh3AVsDNpyDW0YGTQfvcyhAV1oXfdbjwrta30o5\nxegYVC5bgnFyyVgHEXuL9XZX7XiQ1/u2O2gtoNM0LGo/aNTRYrljWYzpt5nWjsqRxjWTRQOB9TSD\n9liIS9dqqI7vfiZkpxaxBKrqxyJUqC3MxPKufs6uFGeXn+j5945Z79FXcom/mgsqml+aP9La7TPm\n/WdCc852NNF2WhqDI1g7Lky2Wh69CWJ51dX70mOhOyVEqJIBTmCRO9xUfZEvan+4960PVJei6pFK\n63MmsBRKoEKlltq+gr11da6YXz5Vfd78EAYeIijNkurnXmvspjBetuhKLJn3Cfas6nvqk5OUtBEy\neT0vD6L44lTufbtJjWGiqjFbrfR8Q0ss63413CkLQtkfa6xXsC+8e9ovsqBl21OxAa4+YR8MNbe3\nN2rndKX+OGmx8YAE12BuHh6QLz+GScO+YehW+Fe3VEjjFCHCszX6d77OHrVD1ev56OzLNlz0n9n+\nA60ttYTm0BBdkIyv13ceib0S6awUcpGLn8b16rE+J/xA7d2BBTYtsraEOG5Q7wjpzndgaKL1s96s\nLbVQXxTQddgsicUFLMy62jLrS0fCCqD8H8FUe19j2welDp+DWnu4uaHj0K6qTQkWuk0NZ5lHQlbn\neVgCN2K4BMR49u6kTD23rxgrw7wst9XHXl3tWsFIybu4QY3EJHx2Lr2m8RDnQdD84oEcujDC+vLs\ntYIhXj/QvpTm3DcbaU6V0HJ42VX/Zl30M7CGCXC2mbG+FiC1znAzKuN6t4QpmcPdyECupzdqzwCG\neDPLuscZau1hOXaFy9UFzKexPqiDa4qzGznerGm33l8ualzraCzUStGer/9PoJeRGHBmraI/MlR/\neJy3E7Do5nn1Rw6n0QAGfC7/ilK5mGdsuUQPkbNWtsTZDRZZCR0qL40bq8P5unh3faoE2k2WUB2D\nCXtdjTPHLiwo1u1uXzHZSaPFGLF+HfXNtKg+XcAKW+H+5lQ1D/Pjv71X99B2TM3RGNuDEQ7zcHaL\nM+JLtKPewqVzjVYZ631xV3vs9OuaQ4NnrFcw5Q+ZA4GLPhx6IOFCfeXitnl9pfrufU3rXh0m0Wwu\nV6hgjiMlDBsf5vh1V2eLnby+Kz54V/W/uILxh97dkDNYdaO/l2DFjnE9bRBaedPfXdatJN9TsrjG\nRTp+5y+0vhc6WlMKzHH/XOvsekbGALqkm6ReF7Gy71oCR2vAvKb6p2EkelvOgnt6flBTHKTRZ9nC\n6nox1dn3AKp6ZaC5dpBFW/MSJiVusVsY96u8xi85q35ZF+eiavvHFZvDXEv2FJO5Em6XLc2DyGkr\nwC14mFVM1tGNa/++Yqb3C62TT3+kMWyVVacm+mXbkd7n+XzXhJ1fJXuhinNib6oYctBw9V/q99MR\nrPwbvvvAKgqzql8P3bRtUYOfhV1cDnHJ7MBOc/l+XYWF2kNTBtbaJq96LLc6z80H+v9rmIErXOBK\naJPVm+rTjGku9vuq3xbXt0TzVzPuYqZMXOISl7jEJS5xiUtc4hKXuMQlLnGJy2sor5Up83/8V39s\n3/pv/wv74//ufzAzs//gH/+RmZmVv6ZbyQQ3X21uT5cZ8uiqKP2DwCwyqKhXdTvq4xxgPd0KhumI\n9QEDBTeMgBzZDGnQIfl9VdggPrl150v93D0mvzPANaOg28vW94R0XJ3pJm5ITm9igesTiEUadsIE\n16VMCmiEYQiW5HOCFk7RZsg5OFSQj+5xywlQZKmF+iXLrXatqNfPUZdP9V3zuVmvkG+bSurmNE+f\nbegEb0U+toNuDQySBYwNn3ztFJoorR3dCqbzauMGJsgQNGk55NZxqlvOg/ZXy7nMw/oJ0L7Joyex\nwllrEEbOBbq5dkB2s9xYb0fq6yE5lcdVUCdQj1EX7RNoCLmUEAO3C/NmxU17EXQGFlSzjfNVT793\nh7q9zZDja7mIlqCYysHaOv+F0LpP/uTPzcysQ+5uCcexN/aFfGy51fVTMExQ8e8/Vf/egvI3azgl\nJPX8dhOUHteONBoNq030/xq3rAvqtmC80WYw9EqWSyEpVZwmwqned9PT5+/vn5iZ2ZS5lclrbvVh\ni/yrP/7f1Z4P5Jj29X/ybTMza9EffhL2CIhLcU/9UDwANXV/dd7l3yy5svpsb09jUiE2irCm2m/p\n/xO7enbFU9uO0EuYQ54yD4TT1NZaS208yim2L4e6Ge/kQNJm6AWhk1GIWGXoQORLsKuQe3BBJnNv\nkItKjuxoqvfPZjhXwZIK2iDDpgdUdtH1Ser3ECafFTXGLgjBHN0hf62xgKz1pdZNMq9Y2OT0viX1\n8np6v98XGpR/qZgvkM8deAgH9RWLuZT6JXL02SWWyzlYGLAkxlu0Bj5T+3pP0Znanup9oPGtpphJ\nbVC3BAhF8lJz3h2jep9WzK43XxHiLvC8id6fYJwz9EeQV+yn63quB2tsQq7zy58qh/qoc6J6wzga\nQ4YohOhYlRVnrfc1R8fTJzwXlgksuiHuWx6uT/48bxvW6b2mkMmd3xVT5P6ekLjVTO9Zh8yj51pn\nC7iuvfWRXu+hFdUqaz1bXZF3zTqSXKmN0R5z+IYYbScF7WVLdBoWIVokMDXsCQycSAejIORz/2vS\ny/FL6tsCLkUTtFOKacXaFM2pIEDLBBaVH+jv2xrMi7z6sA47YPm5+mVwJtbB9Rfq0wJzpXCsMSyZ\nfnc8UDJjk7xjacI8PCb33lo4Mjpoh1UjJpPOAiPTXCnC/AmY7FleF9loJMhTn6BBc8T+mYI1Vk5q\nPEcXoIfkwe/twTQExUvz/jzssTlzOPfWqzaUv9m0/Yfk3Z9pres/xUUryf6CS9ZkrLmZAGHOw2R0\nT2HMot8y/VLHCSZTG0ZWD+YjboFt5ijSara5ntgVDlxJmCurBcjmjGdM0Ya5USxnjtXXTXQoso9g\ne8KafX4pxLKBo1gl0HNrMJnHsBIsoefvsOdccSaImJQ59I4K9tXQ7Qms13xB87ae0xwLYH8aeh3b\nEu0CrS6gy5Q7Vow5MB636MG96Cq2yyDV6T29LnOk9XG3xhniidgF7inoOqyMdFrn0Qtcg6ynMR54\nYl1tU1qf8xk9L49TWYX1KkQbbYo22OCF9o8tenCVe5G+E3ofGxgqKbQf8uxHNY0Xy6Htwm7O8nlZ\nNB5DWGxjNGtczqA5F001GIcp5lRtAGvXxYUUt8JFElYuZ5oQrS4P57ns6NXXnKV5lgzQaMNpbcP+\nt8aBKMnZZEs/1pgzyEXdqVSdv+3kuA3QxVnD8EaP4uG7mqef/ETONpNn53+r7hsXjZNdHBERYEsR\n8/5GnTz2cLTqw7R4gk7PgfqwWtF61mfOJG/0+rMXWs8nnPsSSHEt0L1ovse6cF/vy9wQGxd8n3gJ\n+/UEthjZABW+s7xEl+Pikx+bmVk6JxfWbEnn3eohfb0+1c8CDLwzff7tuWLw87+Qm9DeN8WYScI0\nyrI3X3alzTNkvSs9V8w03lC/+Q/0+xqXz8SaMwTsMS+DxiJah5ktc5V9qYnj2+ix+tGfw5CfcgZI\n6GzjZ7+aZuZqgy4UMRxUtabMYf4kV7CzXdwOSxrvDvv1aqQ18+Vz7UPVrfbjPVht/rXW9wXn+4yn\n+t8MFdte7lVQz5ZJW60Dq5UUBIul5lnAGR8Svl2txaApb9RnQzQQV4daRz6sSccoPVad3CdMArIP\nHFyVun2xXdmqzcNls7jQ63OwRgsbzr9858kT+1uyE4ol/X8BPSE3VNsWaNy4nI+7N8Q07Th5pLPO\ngGyOkLk1Zq6ePJJOz4z14sWVdJVKMKQf/IHef/GZxsCDYd4jNlwYoVMYgsVd/b2T+dUubjFTJi5x\niUtc4hKXuMQlLnGJS1ziEpe4xOU1lNfKlAlXunX9+p5QpQ/+nvKge75uzJ48/5mZmWUqqBunuLnj\npj26UsqjnpxP4Z6EivxmCpJQRdcElkABVCtf0Q2cA2PFJ1dshWL6Zo76NHmLezgNRJ97iptA4Aq5\nMUe3xZWibuwWgHT9jXKlEyQNF0FuClwRIlFgkwnqzbBSSodCfvJIm4914Wc5L0LQ1R+LJIgPHzh2\ndZs6W+hKcOutzKa6yU3WQBQbenYCxNIb4a6AjkS2DMuIXH/b4gTF7aWTJhcxCaPB1Y12BeeBFnm7\ns7zQoxF5g97d03LNzOzsl8rtLOItXzxQvesgrF1y8jfoUaRwTCmB1G5hF80n6rwBN/EeCYw+zg/D\nAYIdefSFYBDl0ODxtzl+52V8jt/U83ZwEnDJlZ2ncB1BX2SHsf/2t8QcabaEfH/wlhDm7qWQkp0a\nGjmAXQ2ceT4oCgrdf0NI+AF6JCGo3Wilfq63xDbw0D0JEI1JwgIw8slf4qLRm+km/Z1v6rm1mhAI\nf65+8zPc/Bf0/31yhFdJjff4Vr/vvKvb75P7ul3efV+sgupDIc1OoP7b4HxQLan/F+R9z681jgYL\nZeHenQVRrHLrv9Yzc7DBEvs4qNQjRoxiIAOTJOdojCs42sz6+v3qZ8r9n/y10IlZU+vKFIZIa099\nXMOVaYlWSmtHn+/gJLUpKRYSIKTpvF5X2RMS4fD57qXqny3AxCPXNYPrT6mt2NlrChHY4KRlvxDK\ndYNLyYrc9xSucBsYdysU/RcwAHOw5NKgWXl0gtJ51WfhKFYcF/bCAFaTAzsDpLnQAKHeR7ekqr8n\n0ETY4PbkEXsFixzFtF56IKI+yMiyTDsyirXJS82J9AWIB+yBRU8xu42Q6TuWGe+bn+Ggg9NMCOsh\n3dS4XaV4bkMx2/o2elnPVe8kTmSRLkoOVLNMfrqL/smjj6T7VDT1z3iFNpAPWpfEYaGvtbmdCaw3\n0tgGARolxMDcxRlgM6EOxCzoTgFWQK6qdXn/HfSMNoqdAfnXm4gpg6NW5DR28saJ6lSA8TFiH6jB\n0hygSYKWViEH4oq+0P43hfgmT9B1wr6tMhGqNnlC/vlLrTuNhOpnoOurdsTA0Pu2uFiU3tbnzUdC\nq6J1+hCdigDnxRCmohflj+P4FbBu3bW4MFEaPntxwJihIeB/Bvy/1diVMmhiwbaadTWHphO1t4sz\n3JY5NsXF6Wqr9fM6of7a6yhGUmj9pFaw8Fqqx3Km/y/hHLZF22fBGWJeeYXQni4uLHih3++N0DVB\n58nZ6n3dl+rHHnMrm9IaWdxXnP3GIRoz6AA8+VTuWvWM1qoGeizXL9DeudXcqPoazyYOZKurhE2u\n9FkHH52ogjh+1WFo5Ntq23UPJgVMjJsLxeo0IZS9uqM9ZlHX349hD5TRDtuyfidhHfmXivHTPxOr\nKpVnPWITz4C4ep59pRKg29FCH8gbnpqZ2XlffVxmDmZC6T0YZ45oL98u9b7rperz/Ex75ehUMfHN\n98UQquIKtD1XLD3/VLEyuIbFjB7JNqPPHaCVdvFc7k6HFfVPtilEt3So1xVhN1ciRJw9ecVZ4OZC\n9TlfaO4e1FkT0B/y0O+b4IJkA87TME3yTLkKZLEVYhMeek9XsJf9jX7PJhXTq6LqV98BKSfWPCzV\nNhnOoGnNQcgFVh3jvojEWCFU/6RC2M3Bq7OEs53aGOfRQqD9M9Jsa8yYU+xzZfbj7VT1yNsrF6df\nWzLR+Uu/uhEzmb208EBtKT+AVQkr1UEPKccevFni6Pe2zhw7aPv1Epp3DtopKfZGSP1m6HX4F+gv\nfcDcauJoVVjw+eg2cc4Pwuicrz28F+1NOPCU7iumBr9U3w3G+sDcE5iJa/1Msm9lSxr7YKR6D6/E\nBHpwT88z9IV6CZxpYV8ZbrGNgPP5i1MzM0tXI2ddno+70l5b/YjEmiXQFXUitlRB65HhAjgZoY0I\npW99zXenCmenn8Ky+zZuWM027VG7N0MczIhRP7KfQmPyriXJ94WUE32vUtzkYMhH2R3JRaSDqtc9\nekf77RBGU/clc4rvKf2k+tsd4jDKGXmBI9mc/azZfqXLlwwcK1pgmSaOWFc4wt6QUcKev5PVebiG\nrpxTJrbRv/vLX2i9df8/fXYwgDle1fsMiaclTJsiba+VVJdhD7fjKbpJI9V5F6cro15dYruwB9V9\nT/WbokHb5TtpCyZ3uqx1Y4ibWieFhgz6pJlUxEDnvgAdpMQO2RIpxUDId8JI8yrgOYsCrCfOeQXO\nIJmE3h+ioRVsYA79HSVmysQlLnGJS1ziEpe4xCUucYlLXOISl7i8hvJamTInv/N1MzP7h//R75uZ\nmdMkt/SXQkhzrm68Dj+UI8RmodvQ6zmsDEc3destOap4sudxynE2aLQUdcsI8Gkj/j8kl7iA+8Y2\nIDcXVkexJmQjlwDN51a1yOfOQm6hAc+y+yAF3JoGOBZt0Zhw1roBjPRXbMVzR1FeJbfj3FIHsFNm\nAcg/t+gJ8vQjuf427AYX//jlFCSBG/9Os20B+WwJHEZc2rgAvUiF3NAWULBGEyUx0bPmHrenZVg+\n6NVcf6axcLMau0hxv3IgFOb9im50Ex/qpn/sfTUdCIA3O7/SjX0loZzIvSPy91CPv7gQAptrqE+O\nP1ReYzHAGQvl7uuUxiDFTbS3VDu2MH625Lm7sK1S6JAkuVnP7KPq/lLtToCKp2EW5ZKg7zgjZObq\nv/5A7a5mNeV+4x9IY6XpwmCZ6Dn1PK4VIC1vkjs6Xuj2NfcSZCLH7eytbnNTOAb1qVeOPO5xCAMq\n1G3yAqT0i6fqrz//ofIkk+SlH9wTYuuAeKTINZ7jMHP4ptganbf188lf/MjMzLLkXVe+LlbBv7fz\n75uZWR607uJUSPa0j1NEWXNrntDcc0CjVrC8Cpm7x4lPXvGiizPAQOhKmlzxy6e6we/11Pe36DPk\n0ErxN7rBPiSnvgI6nALdKcAamPaZ357el3dBvfr6e7iPzga6Qxu0Ztag2EgNWKZF7DLfg2Ny4cv6\nvMDFIQck13qKvV8+g1m30twKTyNdKLGu9o/QhqmBnnhCLAzmnYe7RRYkcz1UTKRBllMwdA4ran8S\n1N+oTxb0K11jvSWve2Cq9woXjKUnloeHRk8FtoXxs+WJcZj1QY4bUABHGrdBAGNmgMuSA1IJ42kF\nOhXUvhrtrgViu0HfY4lricEQ6ryndo+W+v8MjKY8TmAXfG4RrZvhpca3DFuutAs77lTPj8xECuhP\nzS6FPBs5zxVYYtPngo7Cw7TVH2i+J3GHmD4FFUJDJcM64EOlm6OflENLIIF2QJ75FV6DDMI+KJZg\nwlXRD5rAdDAYhWgGuLf6/3xRfVBGHyixUSx0yA8fMsZuRvO7Cjq0Qh8iOQLFx0nQG6IvMVfb8zgf\neLhkTHmfG2gdK6K1VSzrZ2cHRBbtrHmo9mbJO99yBhiiG+VEIgl3LAvW1+GFWAfpJ+q/Gc4QLrok\nnYewchOwYul3H62CACee3L4+38dRsvZQ4xV+jKsJ+2cpE7kgcXaYgMwSQ0EOfapdxZpf4WyzrxdU\ni5E+nZlvZcNIzbKM0+4e+9KAfSyp8bjf1HpdXTHnb1S/9/+e9qewqnqvB9I7SSTR4YDttQIlLFZh\njsLYmkbI+NOVbYbo7DT108VdMneEZl4yYhvhsFVXXc6eSXPgU0991Im0SCL2q8c8hek25lzXwlWz\ne6Pfn32h9ejg4xO1gfXqNnKmedV1dyosp7Zkz93iBrr/NghyM7J61Fwus/xtpjip9WGbupF+D9ot\nHCQ9kFiOJpZ7ARObWG/CCqi2VJHuQPXogZaXOvrckPXSwQlrjO7e+lZMmCXnxxROP92hGN03XdxU\nmItV9gMHZmCyof6toSWROtbnZdfsew77GAjx+kYNGaFrFWlplXDqqrT13BpONGXYAFn0SLpZnXFC\ntNcM5H0dohUJc3Nj6KikcBrCkaYYvMKeN6uEZZOc9+nPNI6jAz6/s8bNFaZpBY3GbXB3vZAFzoRF\nnhHOI6cZNBZh+tUqxEgLtsEZbnRD/cwW0KW41t5RR8etzPrncg6PWK/lgtbvyVh90mfdffN7is3j\nb+v/h7g9FW9x3cyoXqWWXldnb11z/lujG/TOd79pZmZ+T2M4fqK+LPOdK5fS+TFTw7GG9p7Cmt2g\nczTd0bpYQdfPC7W/3cKezeIGugnJLpiqHj5aOLVvsC/VYShea46XQ9ZXXKQ26PG1qmLmzNgOvATn\n2ykM/JzmXAbW3CpBzL7UnNh/800zM7v3ltbtJzjlLnldHYfNMPfVeA6VFO5PaHXmYfuFuBqm64r1\nGszT7HmuygAAIABJREFUBPouiR5aQmi/+Xyl3BR0Zrp8gYNSNEfR2ryBSjRhre3UX2l8Vvaa5hZm\ndhRw3sIlsov+XBLdSv9KYz+Dzb7PHncKC//sEkeoomK71VHMOH319S3n9KSjvgwRPczgitxaoxOH\n1pZxNsiIZGX5EzEmV3UYdLglZ3ACzi/1XbGaVuyUYYmuYa02cdCNWMM+Wmb3T6R31EoSQ2d6fW4L\nIxH9uqtf6mz07LNTvZ+D/U5G9domcdKdweBcsm/hMmcpGD9/R4mZMnGJS1ziEpe4xCUucYlLXOIS\nl7jEJS6vobxWpsw6L4RwMBMKs3omhkxvLBQmCfqU3aKHgoZBnpv0DeroCTzmQ27AvLluFVNFUKs0\njjIQTKoV3UWtp7ohM24Rt6i8p5bk8TmRyj6qzku9fsFNejmBMjmIewrmzXjNc3H0qaPyv0qAUnIz\n6IYodvu60SvUotxcbgC5oUzjiDQLcZ1Kq14VTzeXXj7KkdbHumjMhFlU5VMbC7eg7NwQY3BiSRgU\n2ciBhveuZrhekNecIlLSM/VlE3ZOpHGyQt/G7emW9NM//YGZmbXaILf3Vddm/Wv2Vcp77+mW9eae\nnl/BlWMRSaQkdds5SpDrvtXnkaJqLgyXs4nq9Y1jfb4/QsNkC0sgrTF8+tc/UTfsCx06enhiZmZd\nbpgrt3rw1DTGtaR+L5f0nAVsqCR52GFZsbUCVYs0YEqo5QdLtALKusnP18j5XQtNm6P+7pCbW4Lh\nk0IhfJaDHeHr/9MDzYEpWgoVkOsxDhgF2A7vf/wt9VND/VVs6fNTHiyELXSKPX1uFjbXHBZBCWTh\njfeU/14ASV8/1pyeEUcpdJtKRRhHngIt6atfIpTqakge6IXqebRP/ukdSr0Me4qc9FoH5X1YVEtY\nQy7OBwlYQFlutAuwDlpVtWH3ROhx554YHRl1qS3PNXbVGk44oCrXTRK5q5qnyRbMmK0QzgAUZJFW\nPTIH1I/ld0se89qFgXGOiw+5rStYRNc/EXKcPGVsk2Khte8Lnap9iENDRp/7AiTYb6LJgnvJGrbU\nZiMEMs162oEBU9wRwlFEi2vUZ/LjyLaN9JuqoO+sM+Oh2jmCJZYjt38II6eQUAykWjARqyCeQM8r\nDz0PEJf9j6WFAFBhAVM2gHXgguLduaBtkyU3OeBzPJ99ZSjUaIqrUyGHNgGvu//+idrlKi4+fyy0\ncQ2CX0ObYA2CXwWFC0AJDZ2nLa5POfLpQ7CRqSWtQO53Gj2D2ROhMmff17q0k1DsvbXzkdoSoPnC\nXuhfgipH2gGO1olID2j/nrSoyt9Qm0//1780M7MiOevdl5qHn/3gF2Zm9k4ot4vMAxwD0Opq4qLn\nrTTfJz19/ibUINU2jHVbfV57pPWleV/oWLWk9z95rpiZNxQTmNTZArRqiwtFuQGSmVTsR/pP6572\n0NJG6/UUXYv+j4VwHnVge92xJNGhyHo4Jq40FyquYm6eU3/mkChYol2QALFugngnEqpPGnRuCFtu\nlI32csXOeQrk+KX6+/5Sa89mBhNlqvrUO6wVN1o7nj0Rshy6mvON7z76sg0HOyfmXMNYgY1RAvXE\nrMUy5N/vU89SKBSv39W+s+2pvYu03p9CPwVTElvBxs3u6e/Zjeqdc/S69Eg/G7WG5TiPJUAMMx2N\n0TbSAoQBHKCx1T3HjQ4WlTPRfCufaC9z9tUnRVg9CzRWXBxb5ujP5YZaTz10mkL2nhR6cp7XozFf\nTXeogG6Rn4ViA6sgTKOxVRNiWoDlkJjp770tGocwdVI4Fq6Jod0T6SzlKpF+Hdo7D+hbdNhyaBsO\nYCNNrxULASzgwz21B/KqBegPZWGMbHABDViHCugc5XGTO+rAFGXfCmCQurgl7e7C+sjrdW2Whnyd\ns9n/z96bPEmypdd9n08xz0POWZU1vHpz90MPQDcaA0mQICUIMi1EM630r0hm1FoL7WRcyLiR0Sgz\naQOTSA0kwIbQQE9A95vfqyGrKqeIjIzZY/AIj9Di/PyVNQ1s5FuVFn43aZkZ4X7v9e8Ofs/5zoFB\nOu/gkDkQE2h8rXmwhBZDiz1BgT3UFMciF7pCDMvE7Sb7Z/XLKqPn7bPHwNjN/CgJTrQdYPdO56+w\nZ8cKX63nIY5i0TzRwtH9Juh1VWCFxTnaH97eEbLEmrE0mHIwy8IlrMgrxU7+ffX57l0xj1efa5+6\nPIcBwTvC9ks0EO+xt2eDm8kmTGhebkyfWwZoiQy0HsyutBdovI9e0SGOiD2xprKQOOeXiqn9Ie9A\nB7CPsjjiNtQn7W8qyyHuSPdzCosoh6vpMmH7o8u5w1h5fqX5cwvjcY89lvuemO3dL/UuOLthfuGd\nJwvbweaqX4k9SHNP/Ttr6fpPu+qvDbJwG7IbJlM1sLavsTlusyZPFJvlAnoi9KvLy1SE1uYajZbC\nrtatoCW9wWVH/w+36KZkvh7tro2+YQYmf5DTnDUaoykDI8fbVz8960pf68//rZjumRl7rZbGUoTj\nT+9Cz7eILmmMTut0zXpVRmNmc/1VXcb5FxaP+5ZF//EABmDrBftT3lXurtTnnU/ZmM007k5gfbkw\nVg5P2L+h8Rj2mf94v87mYEn10OpjnDV5B/HQ7nt3rXF6g5NUHzGpPoJNmykOwugthWNdv5pHJ413\nl4SR48M6ra3Yh+1oviwnzMdQ7ctNeacdKhaLWSa6O/re/o7q1+OdqgorjAQXi56r3uMp76RoYWXq\nv16bKmXKpCUtaUlLWtKSlrSkJS1pSUta0pKWtLyG8lqZMg4n3r2aTnP3YTcU75KPWdXpYG+oU16v\np5OvnQKuJ5xwTxKV+sS1yHR6OF+C3s3Iz8TVYwPatsIjfgqqY6D2pPnZqqnPhQliPdf1SgGIOEin\nwynwaIJaNDoiS5CJFVoEXlbXGeIk4aHMnkWLoMRp9xzNgQIfmMHCaGVAOoZJbjX57le4kZTJsW2i\n+sz1R1ehbT3dc2ugTLALNoigL+eoxY/J/YQJETjALTwb5B1sNhEiGibuS+SoV5O2HOkZDq90Qv34\nz/5Gbf12cqJ/u/L0pU6kO6c6QS/vC2n1dtWOO2jVJFoMC1TFHU7IXz4RAvmio5zTN/fV4JDc/yZu\nIxdP1T9/8ad/YWZm9+8p9j7FNQOg2faOddJegUVFCNk60YYBzSnkyA0N9XtmQ4zMhHxvb1TPEY45\niXONSz65d8Mp9BlMpar6rYn2S8hzcNaclIOUP/1Q7fyYfPzv/eHv6ns7QmQWMKYab5+YmdlvHYsx\n43Lq7JKnXcQtoAp7JINWj/WExNz0r7k/WkWw2jzYYWvGwALEBZKItdpoYWxgVUyJO/SXbIMzzfb2\nCLeTKVB3FPxh7dQdMUgKhNx2AroAIheidO+CiOUCkFyC3CX/eXUFoobuT+c5zBNYSKUTUHHYUWGg\nZ3wRoXED6u0WVM/xXPPEAmbIkr6v+Pr+dK77zcmJvcOz2z0ip9/TGCiE6FpEIAhPQPNrODPguuTi\nSteAUXhj6I8U9KwTh7IJulHmM4Z4FusaObi40l2Odf34U903mqn+hYrG5MMdjZ1mQ0ye3hXuToyZ\nPstOCAVmQl50dqxYvgLtcRN3PNTs80XFRNMTclzGReS25SvtnBZaAkluLyyHUU8o3hqmjw8jZ8OY\ne/u7ak/CIvzsWnPTKoABOdbfi1n0XIr6/tlnGpPTD9Vvx3d1/8pbuI6wXvmzhcUz9UUuD7pdwFUC\n3ZppiHMU2lNlkK+bvubZBU4kLRgLjpGfTcwFTZgTIHrrouaDQYHxz+LnjmBwoIXQ3qhNPnpJozEu\nHSCZTdaH3qnq726FQB7tKlaP39f3PZ795eda0z/7oeapVR1WKo487SPqjzbMeqvr7D0SmyDPvNnp\nan4fgvq3Y+YntMR6oFy3La0Kmg2HGjPzQGN7jfbaBm2eNciwA5q4QsRlhA5UHbeSFe31mAP6Q42Z\n2UrXGz1VbGTQnXN8NCYWiYabxsBxXn8f4eq0xpEiPwbdZ/2ye2b+ddnOPtF6eTNXP7d3tXcqufq5\n/1DrWHQNC/gCjbKh0MEOKN/WxZEGrbUxblFFGKAuCPUGDYRlqOvNW+zJLjfmFRf0mcZZm/Gx9Ih1\nYvEeGk5Pnmue3sHxpLmLRkuovtzF6WrdF0Nk1ElcORWEXfQnCrCeGnWcbWAFN8rqg3VZdfbir4lN\nFtB2gUE9n+j3Ly7FztqeoMkA8yebpy98zYv1Y9VnfAn7dwd9EZiKGR+mRoExE+l6ZWw6p0vNx51T\nxf6UGKrRjIO6xkqJOWTRQOuGseHHbHDzuk431E8fBmnvmWLzk2efm5lZgCvJXbRsnuDouNcQHaHz\nUs9pU080ttQfg41iNYKpE6CDFKBTlXc0P7ol2HeMLaTJbEM7I9at5QJGC/omC/ZKhpNQZstm1kcL\nBibsmv23mfYhN7DXliHsYPSQInQUtzA6I5xsgpnu28ze3n0pYt7MVvSdEszC5RimSKj90wgWWB0W\n2PQ3tMZMfyoHrfECdz0YjD5sqSZaI5dTja3pSH1Qmes6DiyjGEeps5+cmplZsa77HbBnWXZhncaa\nl7K49SwHCRuMfZmrZ/thSTGyiyOke6ifk78W4yaE8Rxk1IcOLlKVshieWZ7F06cSCKnf0VpeOlbM\nLmGOZBeav1ahxooPM311qX49e6y1dwMjqP6+5rMmTPVhX+vkDfPaJ3+u/nzr7+uZ7uBE2eFd6xJm\nTs5RPxRwpy3vsxdET6WNDtIbh2Kcnl2rnt2h2B5F7/YMbzMzgyVHyFoLbZ8r9ibdiebh1jt6z3Fh\nyq62zDV31P8VNEGvyAAImrz7wg6M2Gf79NcGB7JV8dXcV3pUsjsW2C4aVJlniqkRdczBego2MEl4\nV1iyb2yWT9SkpuapZK3vogeaRSdpaTiyXsPihekycdgHslbW0C8tbWDgrfRs1ll9jqQIm7rJOxas\nIJjgPgz4LKzaBW7PRcT+tofqkzIudB0cBC2Zb/l+MGQerupZrOYag1PerxtovG55PyhM0L2j39wy\nGpI4ZWYKv97uL2XKpCUtaUlLWtKSlrSkJS1pSUta0pKWtLyG8lqZMvmWTkHzoGS1GnmLsVAhPyPU\nqnumE62XVzpxK1c4kWrrRK4wSnI/ySn2QZFARmIUuDeOzqA2iZZEkfvlyHEGMZ6bjsC25ABXirgn\nYYWQAw0bgh7FKJknbArL064iLAcSsSMQhlKb+nC6uZmh5O2SI4c2Th8Ew8hVbqBFsSnotNsDaR+t\n0I7gdLsNspuHteHueuaim7BAjGUFy2bZVdty5FAOOakukINYRJ8DoW3bcvrXwenJm+jEu/GWWAn+\nEYr3+zoN7fxEqNf/8i8+MjOzs/XXQy4Hp/r+9ObUzMwqFRgbq0RpX32cIyYmG9TZQewaiVtQSTHh\n46SymXL6C3tqF6bKH/ynv2VmZjsnas8Xz3Tf+4+EYBQyQhhGW6He1VCnqDeg/cUSJ9Cmv0/o51aR\nnHwPVfql6hOP0JOAReDgZjGNFCvDSxDaLowYdFO25Hm7CfJCDM9hVd1cKCaiUGhVY1dIwuUFeeqg\nPp4LOnYlBKIMCrXMcEo+0H2ruJ+0K+iScDp81ROC4oe6fxV9kia6SJkpiMsGx6NaMvZAve7oOWWO\nhJS8KKu+hdzt3ZccYjrJax4x3hYJuo0rw5RcUogYNifnfDUS4hfS13XmgcFQH+zjCpQ4moQwa2ol\nxXgBklR8o5P0zkKfX2l6siXPzAcFGXnkc6NdsonQtEJhfwbTLdeHsbIrVKaw0Il+4RgtK3Qjnn95\nqnp+hmYO+dLLB+Q5M49ce7CXHJiEYaI5pfsHxMKCmLoBOTUQTMPlboNDzHWf/PguuhM4r9TvKG89\n66uelaXmiMjDzQ60bTtQvw9xd3JAbhewywx1/AzaN6UlOkRlXJTcr4cpxHyv8ZC88BVuAZ8J5Vth\n7tEqMUavFQ+FQxATnMx6K9Wnjj7KJnFRQSfERYArW9Q8PU40dkqwyLZoWgx1HSuRxz4zW5JbPl2o\nbvvv6NmX/hHz90fSHHADdHyY50afam0s3NOa5ibaISC1NxuQ1Rcgo4eg0ndgg65UxxLuQMVvaQ2u\nVdVXDkzAyUCxn0fnbYoOQwXXvbyvmHDXus8WBpyzVp8kG45MXvXZZy0cwjpwQMfXIUhsTJ42LKkO\nSCxLnLXJtZ+BuhXe1bN7uJVbxmiEENEty2Ksdp1/ofpk0YfyQeVyINAJ8liosgeApRGFiu2db8GC\nImV/+lzz8UkV55qaYtFxYGyudIMaexPD4asS8rke7JCOxlIL15ItIbT6CBGFPzArXYTWfQ6yDpvP\nY68y8hQ/CRNohYtKfyGUcFLU9xbowFRWio9SVbE+AMWMYXWU9tEs+wL2L3usSob6HfhWOWZNXCb2\ncwrOEAadZVX3dvYt9WGX/UtLz74Wqe4T9MYa99GawVFlzdoZwKjJwPqNPOdX+tSvwoRmfcixT/Si\n2zMgzMzyMCc+/EIMle6FYmITq+9ysKeKBfXRnX2h2+031Of9C00010PtbVzYq/UK+0xTTDiw4K5A\n8W/W6EUltOUBMYh2QhkbqXJJf59l0W6AkRihMZbx1W8jHMV8ENwxTMFhnDivoXfH/tODXVA1NGdA\nkmPYrztlrU8uDKEhrL2E9ZqHbWDMox7M0BIudDHrs4O7YYyjjQeTcCejel7nGJOs+0X2Qg774TLX\n3WRV35X/yjVpNVtZiLZRolljuCAu5rpvEa2fGZppJRhGs9nt55KQvXeMLqSzRM8icS8bqM8GXfX1\nmvFV2Gev0FZfVs81gcyv9eyrYzEQg3e+b2Zm+xu19dOXv1Qdt+gAoTWT4V1lzH5w8HOxy4qwmSoJ\n2XSk3yfA//MJjEe6bs2amDvV/B7iirR3X/WcPMNFr6v21vYTrTPmM/YWiYvQuKN2fP7XPzUzs7vf\nkfMNZAnrXLNuoGEYwbrKo2mTY6/2lLmhidurX8Sl9BC2x1Zzyw2aijfPxLDJPJJWWgnnoOsnmhc9\n3n9i9JkmaNf0NmKNObsay9uWvle/r5jw0bfK+l9P525BB2/KzIVaziybOAWvdP2Y9SGP01iWfbbH\nO+54CCtuhAblTHNN1XjA3MdnD7vN6HPPvrz6qi7dydAqe68cHt0MmncwSxbE7nbK+M3DvCMjZLpI\nHMZUl+ewc0sZjbdsFVc02Fuhj/snrKRcA42sNY5Rbf0/wAHwAhZXAdZnAOM7RKdoDUN+izbjaq3/\nj2EX58g08XcS3VHVfw4jZ0nMlXd138uQ8wL2e/lycn6gn2ve3RzYX/ECRigs5pA9mk/WxMZDnyj+\n9a6hKVMmLWlJS1rSkpa0pCUtaUlLWtKSlrSk5TWU18qU+elf/pX91//Y7H/+H//EzMy+95tCWI/v\nf2BmZodl/d7Y08l+1tGJWmeVaBmQM4YavqF+vJqCypOrW8+emJnZxUudeI0jfa4KkuImSAqIp4fT\nziTUid1yD3XmDMjoVse5GwfNBVgluRqIKjolS4Q/rsj7dEDKc2WQHlycljg7cMBo+ZxOOVttnbCt\nZqi/c8q5BNXMcCjbrgrVnAe4Uo04XQd1LOSz5sPwKFZU59FUF/PQz/A3KOKTs7qJQDrRDvDIKw43\nSd4vujz7qmvlWHV4ORF6dPaLx2ZmNluoz5syC7Hg27hE/O+ndpvywbfeMTOzbFEn2w7aBy9udFLe\nPFD9V0t0OUC/HU5h93AuODpR/QY9nbwnji5rciuDlq7znd/6B2ZmdtDW9+Y//KGZmd0/EPK67JGT\nCTJqoEWLISfr1CMg53fQw4nAT5zAdOMaJ9fXOGsFPPwlJ91DkJR1WQyXGNZATE5tlpxeD3Sp2FJ7\nf//e75iZ2eGbJ2Zm1iiCHqIFkWGsHDUVG9uN/u5xEp8p6rrzcyErwSJBOnAKS8gTXDdHezKwUiZz\n8uJxHAtXXf6PQxgoouEsEfC9RnLK3RSyM0df5DblbC7kcYbLzWCpGC4l6uywfwwtGb+uvlrlOfHe\nJCyrJNbJfb8rlHrnPbGk1gWhIzXyxSdzXXew0P2jxDUi0aZpq00BOes9EMIpY2kGYnwTC2Vew47K\n4ipRzKq+PdTnPRwcRsDjjSPFRmBocOXRsmqAFlXRvwj0+XiOhgLzXj7nch/d1wnUX1Gs7zVcWBdl\n1WM8Vb800aPyr3F7Kqr9d7eaC1wYRjd/KTe9zkvlXdd/V6y1OWr8A5BP21N/uTBpSkeKwQVaPgmL\nwEyfW5Bn7y1u74ZhZta7JIcZxtAdcqBfhKp//InmvN3fE2o3DZlncTiaX+t+52dCuOu46cUltGmg\nb4yy6sdDHCbu/+BNMzMr9/S8up8JlTt/oXpUYB04d7JWnCWsL5gXMAET16LeCP0f0CYHJsiCPi3j\nkpN0zZxnXUUvYTBW7C5i9UW9LY2WJeOt/Ru6zwmub/mQ2I1038wA5BIHm/FQa2EjYGyg1zFDh80z\n/R9ioC3RS8qjv/TWb7+v9qxhRVFfj3q6O7pexFp29Zi8bzQUmjuKmQFoeozLUOsumjkCZG9dBtQ7\nHAnBTgx2tlk96/Z99Nwq6s+4gs6To37qegmKxlwAk6mAm8Y93E8c9gDDqdpzgpNN2VF7ezcas848\ncVFS/4xvmIeXul+lorF+vRx+1YZCuLWKqR/KOEKWSqrv857m2/ESVlcNZ4wjHCZcPdfAU3sXxHK+\nAHMK3bosc8DeQ9XbXYvB4wz1f5c5aVR49lVMeGOoaAkJUkuMja7YT430sCLclMrsbzZrmAqnGjcT\nNKx2QKtbMAeXIJebmv7vE8PlIvoKOE8Oh6ylA1XARVPgtmXK2FleqN4FUHXnQH10dO9E96/jEHNH\nbLcA3aMXT6WvdzpUO0tFPctSHYfFNfNxTcF31MC5kBhcPdEeqwP79hpWaRP3kAF7kiM0dVY4ptVh\nY+RgqG+JsZFHe8BoW0XtfVrVREeKz8Oe9bKsT7Awsmtdf4or6ApNimUetgXrZD5xu4MAHu9oDPTK\n+n8FF9QS2kMTXKIKDlpoW9WvAGssKKnfFwkjKtGhg8mZhyG7jl9pOIwzBbOhYjfRhMzSjg3rdKLv\nYWgdVR2Q9dztMWwPlkHEmlVCJyjLvFnYQ/ciWTvQZiohDNS6SJwR0V9bwqZnbKxxgjr6lpgbNzew\nTs9gGuNgE0DfL9NGFxZC5Op+fqKjk2edKKFhFms+2OJQk52w768oJjZJrDyAkUjsPf132i9HzFvl\nKowhh2cMQ3I9FSUk6ur+fkdrb/mB5pP+U2mmLHAAqwWMAbQL8+yhFjDfF8zbuQbz1g73H2tMeX2c\nwDpo0GhJttp9abXsnGoe7j7RzwL7/PpdXATRHZ3A5C7i9rpYJVkQmttyxa83lwxLul4GlklwD224\nufZe0QtdNzyDnYJ2Zy7Hfa9gReMslFvh4jpN9tvE9iXvysTlYq3+OoCdZ2ZW2tbt5mpjEJctx/t2\nXGMNQ59mO0vc2hQTIXqlA9yMgxp6QmXuRfZCHNOHvIP6sO3jMi5FW8Wc04YhhyNWDzfLJSwwH7FU\nl+tmVuqzKpo3dedEfQPLKpdTfaYtGJcw/0KOP9a4Yjroyc0QyJtd4daJBJdbSsYI7NAC7C/G9Abn\nxw16pVtYvhhImpHFsM7/+iyAlCmTlrSkJS1pSUta0pKWtKQlLWlJS1rS8hrKa2XKvPGWULI/+CPp\neHz/7d8zM7MZWgfhgpNyTmGLDZS8u+Sekrsf4rSTRaNliVH4mtPTeAxijbaDl9X1FpyGZmY6ZS7U\ndDJYqONvDoIxIufVzeo+8yUnYuQkl/dgC8Ba2KBGvSW/ul5N6qHPL8mV3YAIVEGqFwkiQQ5rRHu2\nIOyjS50IJvocqyxqzjhNHNTQKgh0ej7Dt30eT6wfCd1NzJSKhUS3ATYBCtalBno65A8n6t9rTobz\nKN5vcbwJakJfzlDWfv5MqMsch4TS95X7+od/74/NzOxOVXnj/+qf/V92m+IXcAPBAcZHeyAPU6WI\ndkmfk/l8TiftExxkliCsMcwVF6qH2ydfccYzJX97hp3SNaje7olQoy25qltO9lcggX2Q0RXPeky+\ncpHzznkeJyzgoSkoUp7T2Dx5jZNQp7o/++mPzMzsFx+e2//wz/4b+9FPlMv61j00exKdDZKBM5w+\nzzzdp7mnGN7FuWczV8zM0Hwpgqptpzqhv0lMjnCgKYFIJIwex4NSRB5kvEL/o6+f5USL6IXG0NmZ\nnv+jN/Scq3uwDMjbno31vRYaPjEo23KqOKvEqv/aXuWB/10lB5ztHeiauSWOADNyQZFp9xowz3bU\n51tX4z8ETXZx2wlRpI8KsMf2iR3YCJfDPnVWX2LuZnkIOUXYSDPaMN+C0MLUGToa/y9Luh/kCMtv\nFAPtQGNxTj7wBker2g45+7De9opipizaaNV0NR9kGcNzEIhzEAMnw8Muap4pQF9wcGkazkH3YQ7l\nmqpYrab5sA2bbAGLowQCmYdh43dAAJ6hT4SDy2Ks6+2jfbDaKkYckOygqXaudhL6Gv2GZoIx94wZ\ny+OJ0KxwKcbkbUsAYm5dxVz1jvpvHxbc+eOf6XNt/T0ba+xkydsO0BpafqZYX/qaI4K65ojiMc5r\nmhps5bAuPVT8rdGyuLxW/n8dNDP3ge4/u1mYwd7a3KWvpyCdIGOzRNMEh5DKA831/cfSxdkwLg0G\nSTAkv5m1bIVOUbGFTtk3hOJ3nonZGIGy7xwr1sYdtfnyx2I7WaSxdfwNUDPQf8/l5wG6Fl/qvt2B\n+uiAdWeY2LAtYPrQWW3c6TDOsaWr2MkSk4Uaz8BT/T/6Us4z33a0h8jCTo1ofx4mR6V8e20qM7OD\nI7G5fBweG6ypCbM029LvbqB5eAjbYc0YmHYUGz/9WP/fK8L0CfW52XNc6yK1JwMyXWwJOd7AtCyA\nMoYbPY85jjiXT3CMcNUPhWPVx+u82soVe1t751DrxQq2YMIpy8As3ZShqcAmXgUgsMxx20ixvMKX\nem6BAAAgAElEQVQZwzX0qGA9OLDp1l09v8ZE9f3ymfYZ1SpzblAyg1m8HhCLuNpNnurZeFnmW199\ntJxo3OVwsHJn+nsRzZBEn2idQLowDAMYMgUEGaasfXOcTCqgxldoZo1wQCysv942OA513WEkNlX7\nRGyzXcaS6ylmV0O0WLJojfU1FpbX+v5Omb1BWwybXMTYKCfaKqw7aIwVx+rjJzClz7esX2jwuAVd\nd3+oOWGzo/7Koc1Y20FHCL2qsA9rAuZnsar7zGBWlieql4uelI82o+Ga1UeLJ2CfXj+nPxPkeK3P\nd2GwbFiPjL2Tgw5G3YXV1UQvCrZubqrPTdHcqbCOrUCko4XWsTlsjk1O98/DrLqKVM/w6hXrdjmY\nm1tE1+kILYkS7AKXfT2aGe5acTKF6V6YL+22Je+iP4bO3DzR9MDZZT7n3QI9jMZQn28xbkO0FxeX\nmk/WG7S2YGZUnqKNAouhdoJjFForTuIOBzss2c+v2Jce76HLtqc+znqK5UmdeeBU89H1ue4fwYiM\nEp0MmIkXedXnzj3Nc8+f6GfnUxgnVTEDV7Aa5skYbvHuhvZVd6DYbb6lsdT4ppjxj3/yC/VnHyfJ\nOWwD9EayvJuVjxXbZdhk20isug3vJVv2OhFj/uZCe4f298WUab4hNvSLJ2Lr+QONiZsysc28n+EF\nqtpU/0z7YvTM+5p71pOEFnG7EqCjMp+jfaOt3VdjvwKLo8lY2/b0nEtr3i+maPewnpTaakcE69tf\n8C4JeyPGTW/LnOhnXulp5YsP7WYd2gr90cDnnYX9VyEHi/JA16qwb7QS77NLteHo+3p2j9r6/I/+\nrRwWp4fsQ4nNpaOx0V1qrTw+wRm4p7bcwALKwvpsvqHrzhMtsJfotO1pr+J19LmDLYwY1qQZunYe\nTJ8J+k4bMmZyde2V+hX16fBL3IxhqB/dSeazxCUK50Sa7+zpmcxHsJxhsVWqiskO7/mDpa6338Al\n7j9SUqZMWtKSlrSkJS1pSUta0pKWtKQlLWlJy2sor5Up88E73zYzs3sPxJTJ5nRKfHF6amZmG1Sg\nZ6jOTyPyJlHcLrdQdd/ohM1QpN7D/WgJ8p2cEhYCckaLIBnoeNxEyodutvg7uil5cuoWXZ1wTUE+\nfPKwt01U/FHO7g3EaoguUIv3hVjkyOMbgzznyKvPbXUdZ6uTPmcudOkaNxh/q1PnfAM3gganp/d0\nAreM0IUZkxt89tf6f6xT3IOiToGHRdccmDAzdCcWaLMUcwlaQj7yDQwITobzVd1zNtHp5hq0JOCk\n1sWJoPtSCGC1IbTojW/o+4uy+vDJL1W3cKWT79uW/o36toReRw0HFogWdvNCbd+AurtZxVAW/Z4r\n0KniAtQJV6TCPojhNSfcsBEyiJGvON3M0s4lOb1Jonv2BsXxDcrfMEEe/1hMl59+KMTw7gfSxPn7\nP/hNfZ+8yaij/+dhCcQgzoNY7RkM1Z835AAneeEGi2OLM4KLRst2qFif4H5S5HPXXX2uCkq1cdDr\nAN0KIvVvuIUtgm3LBCew8lbXrVT0XKegUnO0iKah2u8Wk3aoA5colC85jfZdWAac1HshJ/Uok0/H\n6CzhVhDfnihjbgCyhQNVASYIJCUr1HDBQSsmQsNlBvMiD2pjTVAWkM7FWP8/R+vARZNlBGsoB3PE\nh0mxJge+h43P4BwLnDFjBRaBWwcVy6KFgKJ+G/ZW9lJ9jrGLOTgsLDhDr6DzNANVXyRODziTBRV0\nj0C7t7AOKrhSzNG8icltjRLGDNYH0zGIZgQ6Rd42xA9bn+HS1E8cV1DDh722Ib+6xCA92T3R/eua\nE05x7qlkFDM+avoYzZhdJ8xCxfKAWEry2n3YVdmEknLLkl3oeXz+TJoMedCuRkXIRR+Hsi0OEcWd\nI9oNErRGpwQHmksc0XbeUsXbRzjO0G99nM983LW8Cmw/8t5bFcFibZx4no5f2nyoOmYrqtuoKgRz\n/4GYZ3cnWlPqsEM9UK3sZ3qmncditNRwHii9qzZVmbdzoF+zCN2jxMXO1TwSTYQCRSCzGY91Ageu\nPGyjnRJsIhy3XNauIk4Lnw2F5HY+k37G+jta6ytltSt2EpgJF7oMzB6DhRbyd+b1bUF9u/em2t/p\noq2yz1qPBoNFQt0mOIc50ddjyoxdxe4GZuMKF6gQ3ZDGlnqiuXJ9iRtKW7/Xl2r/HHZu867W9q2n\nZ9zvCt1bonu1xs3wBc43TfLdt4yVFYzNGBeoLHojXg2NMJiq/vpVOz2vbMWmYutqpn7KwNbbPWEu\nzJP3HsBWu6N6Vlqa56Mz9jw/1d5ow5xTxMXJgVGzGsvNJQKd3JDXn7uneHizuvOV86NdK5YXsEpj\nRzEawLZcoiniBLA+C+rrCHZV6URtPmqLzbQCMb25ESpu6N94NWICxs14hfNNBm0qpg2AXytWPfs6\nxS3o+u+8qbW9DOMugEGYsHNzS8XyC1gT4zO0zxp6BhX2q6OSPj9CJ6rMniy/xNHmieaEj58p1l68\nQFtno+t1zhXzhTxsjA9wM5qi+wOrtgdDZ3IuFsMCVnAWvTmH59CM1R5rwCpGd2/K+hfCMJ/jftJm\nzV7sJoxSmI4411TRkFhMWCciGIY5jYkxWjQ+jO8qzKc5/bCF8TpjH+0N0DXJqt15XJ8M7cU+DnbL\nhLFeSxYWs/a7b1lQ0INP2LmXvxTr7nSosRkP0MGqa86sL9R/b+7dXi9kixBFPYs7J7p32S2sLsOZ\nCuZxEKlPK220Zw6+aWZm3Su9U4w67HPpq8VTxcqkrHeFbFOsJgdnw14Hx5kFTO4x49L09/5dxXAF\nDUlrw7RhjXUKikmHvVXvDJc4X/NNwHvB8Ckstn2tM/ffFlPj00/+0szMnvcUa21fz97J45BV1z49\nc6Dfrx4z/z1QbOcONH9V6+rz/nOta5ChrEisb9Gs8ecwkJbElsGauqP+D8ew5iYaS91L7QFqXbW7\nhdblPu8/L//857puj41oTv1c5/4rnN/ab+xzXc2zizihnt+uxB7aQ2iDZRiTy2HifgU7jfXbXScu\nS7ib8h4Ur1Ufr8/+fQBLFx2oyoHaOZiqHfMb9fcgeFXfl79Y2jobW35P82s/wC0Sxki+rPm1R6bH\nFs3C3TfQ0vulrn1+oXeg7OJE1x1KW/BgTzHgVtWn00uxc1d1xba7q/n0nDbs58QgXiy0HjhLzQ/x\nSM+4j47nW7uMZ/REry9Pdd0YnaaynlGXvUqX84M3H2qMVe+oXtefKMbWRc0DmNJZVMal9FrPuIR2\n7fYE9+dvaL48/7HasaiQQYP+UoaxVF3qc7nWr+fCpEyZtKQlLWlJS1rSkpa0pCUtaUlLWtKSltdQ\nXitT5n/7n/7Ufve//yP7v/+7f2NmZr/7h/+5mZmt0TtZw2ypbHSKeHCsE6/iQqeeI/L+5iDfFuMY\nwQl8kf/75LU3jkCrVjoCyx3qJ6m9Fs8/5Kfun83rNLdQ1ynw8AztmV2hSXlPJ2OrXIL64Qqwi2f9\nItFo0OlnE4Vzx8VFZakTuclL5SVWTn5gZmalGCgHtNKtql0zT6fczSZOCQVOTZ+rP66fCdWyToIs\n6D7V+/tW2wPpUlPsrKPvlFrqk0wXnQfy7WLQrCKnjZbXKeVmAioC62BjuHkMdc8jcjN9HFg2p7CH\nPtaJ+bbwCrW4TdnAdJnCcPH2Qdm2qk9IfvQUBG9NfuNyjj4IJ9ijrNCprCeGSgQa7pCHDkHE5iC0\nSNLYPNE16qJRk+fkGn2QHFo0bkN/rxxx4v2hUP49NHByMFf2QTCnM/V3hI7I8b0TMzP745ZOtN/7\nnv7/XdxJToJE8VvX322CIKw4tb5QO2c4eZUc9bMD02fSifk/DmQV3KNgY2yXsLFc3d8YUvOc7rtF\nP2TV0PfKEY4YOJAledoH6LcgrG4TTuS3OEl4xOYZiFHTYLWAmA9xGArnt6fKrMg5j6ZCBUZbHFFg\ngHgx+boTjZ8tcMsQR5IGGlJTHGacZFYEdVrDSijjKLXBscD1hE40K0ItEt2I3oD5i2dbYT7bUK8C\nTlTFxOmMnP35tZDV9RUuQOSkuozB3qeKqcdfoksxFQKx29S8mNlXX+f2yLO+q2dRW6E+T370yFO7\nQnQwFrg8ZdHgCtDcWmFDMUbZPx7hwnSj+Wh6qfrcwc1qgw7HBbnFwQrXJzR7Nh+qf17kiNVDXT/z\nEfnbzCnbJ7puc6rYqB0olnPEXg6GT73CZHbLEm3RzXLU74Oe4mFKewxENYpUbw8WmZvR9yI0xUoP\nhEoe5BRvbRhWK1gupEhb0EQbwtdce7ijdWP320KA6ow9DybQ4MMn1kcv7WBfaJXH/IWEl/VgW25h\nYxZicBVibdhHD6IFSxNdo3GMQ+AWPSUYji++AJkkn3oBY2YDK7UBe+jeI+b9p7jMwVTx9xR7wyiZ\nl4mlkv4+3iiffJXkuO9r3kKyyi6/0Jo1vREL4PiR2h0bzJ1QY2WygDHDYl3//ok+X5MGwfMbrd0h\nmgGLHg5lvtaN25YwROeJ9SN/gKtFSN44OkejaxDplxorDVyqquhd5Mibb4doRHjqz1M0WLJ1EPM5\nrkhd7QGW6NodoKFjOEZYS9+7867YW92e+n/iqH6BX/mqDSMntHxdY7GAFswspzG4+1Ds2WJZ6+Av\nXnysepYUmw7uL/GnOOBMNSe1Spojd8jvj/r6nIO71u4e9y8oXqIb1uXVzFq4TjgFtPwgYuRgG3k7\nsAYSNxzc7Apv6IPeUrFzfYaWCWwcn/E2gBVQraiO9RaM4xno/5x56JHqmN3VOK+OYJGtEjT6dsXB\nUWdSVt8sLmEL4c7nRXqGO+ga1WsgzsR+CTcRj3UiuhRCu8J1szrk7+wvn3VgLY1h0bElW8DK2uLQ\nVskRW676OfJ1vW2irzfQ58foYhR9XW89SXTwYE0heVBgz9Shv4Mp8zYMpSzuTe5Jg/+zXhD7xjzt\nwmTP5hXL8UqfHwU4aIa4CCbaZg7sD9gdM1h6Li58s8Q5cqx+XsFk/+KZ9tMRLi01xsoRLohmZp5v\nFvb0//G12BKO6XrHaKdN+JmLcZUqaCwsotszqnwXLcSGftauE3002PIb9Xmjpf3gEkeZEQ6xqxL7\nxhM9w5C9vNtB83ACcwaG8aN3E50etXn9VGMog1ZgGb3L+bX69OKvpGvWhUWcT1B99jbN+/o9j77R\nzY/EfJxQvxaxjASYrUdq5xvvfcfMzC4/RrfpsdhxhTfQeYLpt4G9VmLv0GZ9uMIF6a23NVbvHp+Y\nmdmTz3Sd/rXGepY9UhXWaeLu2e/0qZBiL4++UXEvcZtSP61Z8jufq10t9hj19zQ/9j5SPXyEQ0ow\nS6foylWYUyowjKrsk2OY97ctG/a/azSGVmvF3px+ikYJa0z9l8e6roz22wpmjg+becyezinCuMGB\nLKjDCkcncQL7sI1+nplZ8+jAtvHEGmRkbDrah/WTtRs3TieAYQZj7s4HJ2Zm9u533zYzs6cwzmyg\nea2Y0ecO2UsscFx1eOfayaIdhkNUjIPYwXe0z7Ke6vP0Z/pevoRLKc5RMTbEhTq6n7gaRzewSWEJ\nFRkLia7bYjn5leuPnp+amVmFR1ipsLabrhMSA2tfz2APhvp+RfU8z6q9mZWe6fRGMRstdf999omV\n4NfPIylTJi1pSUta0pKWtKQlLWlJS1rSkpa0pOU1lNfKlKmg/fLoje+ZmVnt4W+Ymdl8DurHqej5\nE53UTdG98NFyWQQ4U4BObXHtcHEcKJCjHKLjMdugIA4N4PADKYPfbeiU9PGPfmxmZuPnOtnLHeo+\nx+/phG8CKyQa6dRxsdaJfpHc2S2o0tpDtwRbljl5+7sHiWOR0KbBqerZGes6XizU0if3bt7XiVwA\nWtjeIZctyUEeoZi+1olm+UintQeHOsU+f6y/T0eR3UQ6WW6gk1DmZDWfpBSi2TKC3VPwQMQAGVYo\n9HtrnRbmyVPOkQNbBH1pU9dPfyTtmJhzvz94R8+2jNPAP7d/brcpMzQB4qFO/rdrVOjJod2MFRNd\nckXzOWIgDyvqCyGwxYL6eJHkJaO/kYX94IF+DW54pgEozwIGB+0rbNFm8dBKIY+xQV7jf/JP/56Z\nmZ28/w19vqpnsQLx3tlTzLXBGDovyD8nt7NRJ2+SGM70FRMz3FSKIDCbuZ59OYcKe0Ex64D6bxIX\nrYXGzhBtCB9UbIijWeEADQF0Uzo4KLicAq/WCRMJ6sscZ7Ndjd3ZUH/fRPrcilPrKQ4GBR8Eua94\nmuBitcJVZoDORwnm0hTdEy9/e6bMTkV9PEd/pwDKXoPBEm8U092EFYSDQR3Nk8UU5poLwwOXnFmR\nOmSpMy4dLjn0K0fz06iHngI57MUqSGlVbSrAJprCago75KyPqC/50E3ylwNQ992crtMqqD0XjNHc\nGEeFDVomaF3NTfebgxQa6MgctGQLa8pHD2JJ3rtD7OX29ExzsJ0KM30uhsnh4vqRWeh++2WxAJp3\nj/g/ec8gDMUHQgHzIANDX9/3YHHlQC4m58y3PJ/CWM/zZA83k0td7xp2QOI+d3OlmL1taezrOea3\nqtcWN5b+ma6zcyTEZnWNSx6ObmvYA3ni5RA0rV/TXFAvCW0MYWdcX2iuuovWziiLY9ue2tFC12OJ\nJs8GXabu5MJWiUHJXPPEdqtnEoIGz3oaL42G5t8yzL7aIzFTHswTpwQYFCHOKaDbma+soRQbP/4L\nOU4139SzfOvtE7WZ+5b30TYZ4Nb2mVg//R8JDWv/Pp9rs9birnbwTfVRtqG1PWEGxlv1YYF89A3M\nlqf/7ydmZlZECKr2rhgzE+af4RgNAbS7CjX1T9BU/cZJH3fYOzxG2+pQ9bhtKVUTxgfIJfoYlzON\n9TJr+Y6H3kRRY7ReQKvrc/Vrh3WngavIbKl+meAIVKoqBryS5uPyLu4ZDRDqxEGtou/Fa76PI9sl\nWjGGa9UNTotmZh8+e2ZuA4YjeiFbtHam7ANu0Bq7Gap9k632CuEZSDA6WYlLVBUXKGNsTJ/p/h6s\nDO/brLtFjc1rNNHG44FtGoot20P3AeR1mzhBHhBjjI8h+nYvPPR3FmgZvEBL4BeJs5WuG6MflEPz\noA+7aJtRbI4Dtckr64Yt9HWWYxh/uM3dthTQeqnMFMveGvZXU/Nm7kjz4cEhTCDcpcIzNGN6GsuD\nNdouE9hY12rfah8WcgsWaREtnLrGhKH1kGUPkVvDTl2qPdEUhyy00a5gdU2v1J8FNMWWOe4Dm2yV\nh5kOcSiXaGEZGjYwyMsLdORqQtlnMM9XrvplE2sM7vrql1yV/ibmJp6+bzBAx+iWeLD+VqyvPs6Y\niQMnzbMtWmoxjM4I1t8KhnkJt6rDd6Tj13ReYc+FfMZKMJL2kzkLFl4PZm19hBYQc1lxqP522fPe\npmTrjCtYk0t0Jx3WuhEMjALuSIZ+5LaiZ5nJ8s6yr7b5C72DzJeIHjKvT5+qrpvfVt2/8V3pZPhn\nGn/XH6ERyX7fberZr2DHlqrq23xbfXYNe3QBC99HR2izo5hafqw90vNfJA6NGtODOSzdQPPyQcI4\neSo2UqeLpg7sYJd3o5iYCbCuHMJWGJcUk02yG1r39cy6PbW3/4K1k/k3gy5Uo6G1PUv7kutHIVkT\nFTRycMLt3mje24WlXM4Rs+/qWS/+UozC4QWMGQiMN4/ROcE5rHYoZuo6hiVyy7KEie9M1c7EzW6z\n1vP2YRmbl7goqV0d9J8cGFYxlPdMBaYqbMEljJprWNBzR89p2Fcc3n3/7ld1OcwU7Hq0MoMhVoK5\nFrG3d2E3tWPNS/2uYuXmY/axu9QBAkr1LTJKfP2c/QI3MxzJ8mPNJzVYnkvWmNyETJUs+3ocYGe8\nw9X3tE+b4pr2uKP56QQXpKzPu9xQ82uzo99ru+qTgGOPKVpdxR1082Bi7u9oLC677PO7uk6LbIh1\nhGYZ5wQv/+zUzMw2X+j3VuJ0ifZgzDvODP24qPjKDe5vKylTJi1pSUta0pKWtKQlLWlJS1rSkpa0\npOU1lNfKlNlrKAdt94GcGQoO6sRtoUjbkk5XL18o33qBen0L5KCx1udWLtoya474cY7JgHQ7Ozp9\njHHt8OY4E/yN0L8Ih4dBT5/LVYQ6rhdiYzxD5bmIZswgQR0jTp9nMHO2QjJya1yjSokuC0rpPX3e\nr+tUdPct1T/T1omj44CI8FiK6HxMYp3izha4qTzRKfV4xanzAAcOTsHjRCEdxfFZsWAxuZDrFUgj\nqt+knNtyQP7dStfIccI8csldnJLHC9OhVNVJcTTQs/FBSwJQjW/ckZL2nPzdylB1yjWa9nVK5QgH\nBtgGmxlsgz65pa7q27sglxTkNXGSeXGuk+7+41MzM2uhWfDNb/+2mZldU799GC0JY8Un1z8a6FTX\noX1xkp8IiWKzJasWVfQQ5Lp1AiKMC0r/BjQvQOeH/luPVM8mLINL1Nd3URo/ABnNwQiKXDQdfMVc\nwOlr1SePEbekJM8+QKdjzvX+6s/EBvvzj6X184/+q3+q7++rPg9A17ZQpLyJ6rcaoYHj4LqELsmK\n0+0tmkITEAnjhP8JSM5iorF79BCV+2Pdbwk7xUfRPMaBwqvcHr1c02eGrlAG5K1U0vgNcW+r5dWX\ns4zQkdUKBgzuOgVcJsKinsUyVtsdxgBkKsuANBYXivVZF2eptQbTTqS+zuZh0HGf+QA0iVgq4b50\n2NDYcMjz9S7UJy7od+K+tAeDJ6YPWzOcxgLYFFWU9dtqX5QwgSY66d9wnRsQ2WVEnrWb9KPqk01Y\nYNwvgEm0pV15dJsSe6taoDG6hQUByGUNkOqYmA1M1zmA4TgnB7iKpo6H/skeGjzludaDa1B5pIHM\nS5DXq6+HcC9DmDpVECCYQxW0LALiZwxC71KfZD3ZApQWQNzHBTQMcpojLq7V76c//Ej1/y/0XC1Q\nO/rPVe+mT149LgCtE6Fiv/n937fHOKn4uGa0Ssyzl/pu93PpV+TfkJZKqypkcuchrEpQ/O61nnne\nx90DdlgGh5geLmqPP0HDIK+/37+rMZPZQUMFTYFlW89+tNaz2GbRSwvVZuspduboYAQwNeqg6Tcg\nsFv03YYh6NsO605F35/AdqvBxnI3IJzMn24eHSLQsF4RR6ua6ltBzGqeUT2X7isGya0K7noxrnFT\ndDAi5qU4gD0AE7Ppg+5ttH6EQzFkKjNcps7YC6DfUfSZGxwc22AwHoP4erA9vGN9zluofZOOEOdZ\nRxo8TpV5Gac5q71iFubbkfl19FsShLiMY+Nz/b509flHFa3TsxBGzYy/35U23HytGI5wOfRhDq0u\n2T/kcPt4AfL+LT2HEEapl3FtBHOiWlEdFtfq4yJ7iQGsgsP3hXzOmJ++iMQG3WU+SFzxDEZFhRgo\njfW9qqs+7KCTdP0Ah8SFYmcCGp44UU6v9awOVjv2dcoyYTeB5PoBrIEd2GGwhzpoFuQv9AynuALF\nEVouMEGaMD0DYtgt4ZTGzzzOkbUT2FIQTaZztW+NVtkKDbRtiH5cTRPmbKB+a1TZSwTJ/lXtjmCt\nZYIETddzWaKvNB8qxmtot53XYBwmTj1Ztcvr6fvlgq67ruPUuNVYZsjbcKN9ax09onys/88m7LlC\ntN1ggvoIgMxgNmZq6q9aVrHfg3nz3gM0L/Iw0mHUXM0T5ROzaLg1b6O5MS463Ff12GzQaRnBWh7r\nOhFakFnv9nohGRbVajFxycP9tMGahXPfesI7RKB7ZxytBXEF5vC12laFbVpA+yVxzxkNVKdf/lD7\n8Dd/oHeq1htvmpnZ8lraMZjuWAbnyIqjvgwymqcrVdgB6HPGsFiDA9X7aKB6nQ/QakHLsYA7kAfr\nt/vpqZmZNU5OzMxs/57etSYwZoq8V8TYBk0GzIM1XERhyV2efqHrOlrnyvuqX4NnPD09p3/QPuvg\nlIv+z2CmZ1zCFTSD9sqId7ksLNgF97tAj/P+O+qfVkvXe1qGkfhM98vvqB9KTVh7aLu5sMzWwdfb\nk5Sn6BaNFOsFNhkLXEm3rEML9qxRom9E1kce5uu6qTFYIO6aTf2MOuiYwvA8LJ2Ymdkmi9bmi/5X\ndTn9m46Noxt7MNe1PZxvj3lWMWuwM0WfLKfx1+jq9xlM70Wyj8OleEk2wPwzxdajPPuiLe/vnyiW\ny4cwJskSWMGAmWKsGMMwWaJvN4M1tYKB3UUDsMb8PEO0pjbRfZsPdP33kr7p42SGiOT+NmFSqj1r\n5oExLKldX/P7jPf+KfNo+RJ2aVnvlkWeXe+51i8X5945+m/eLNWUSUta0pKWtKQlLWlJS1rSkpa0\npCUtafn/XXmtTJkwp9PVrenEq9cRCjglT7zBqfDRG0KEp6hBb0DGI06PYxDcINAJX4jPOYY15oOE\nzjiVnpOH1/m5TsrmMF9220KHStsS99P/e7BBmm3Vp1zFYcfB9YQT/PGMXLG8TtyyGf2c9/GEH+rk\nj3R+yw858S/p5yAkvzQEeeAU1E/82XEAGr/Uydu6Wed2Oj0OZ/p8H3QwquvUteQEls/pxDkENUlO\npNe43QRGHh8ny8sNehwTTsRrsHJWoDCnOimeDdGzIadzS45kBjedaKqfH3/+7/T9l8q9vG1ZL3D7\ngaXgg6r5oERuWc/k7lugRDyzQUco9sN38Kj39PmgotPdgBgIlmrnhvpec3oaPhOK9uRDaeNkyIv/\n3snvqF4xp8CwLFacIpdWYidNZ+rPoKnr10EkLi/JxZ/BOuBkfTxXUEQhTJGyvuc11f4x39sUFcON\nLfn3oGhZH7YUrK852hIxCHgWh4EsbgABblBBE9V+TthjD6cdV8fTcx8HGbSGeuSmbhljb7wlJKSP\ndk0Ba4gG/Xz9/LGZmZ1+LKQkg2J6HX2PMafYa7QiTs+FcBy3X+W6/l0lIme810fzCSR1sUhOwtVX\nmTuqk4MifzwnV5yTbc9U913Q7JmBQsAKCEAMN8PEpUnXc3GtqOQ1jg3k0pvACCEHf40uR0dJoqgA\nACAASURBVLag69ytSHugBVNmkLgWwY6qOYnLkVgGxYXq08Tlo1hM3IKIQXQheuR3+8Tgpqr233Bi\nPxmqX2YhGlslXDvQnpkQg2P6M9EgyKN34hb0zPeZXzI8uzGuSQ4uGRGuTeEat6uN/j9kLObJWd5k\nyS0mP9twHAimav+bVY291T2hVL0sub/H9PctS4wLgIN6fy1xIgK5PX+qBg4/1Hp0710hI84I9oSv\n2CwWhfjXdzWnHu7r9zz1fvqXWi+yOGxM0U+6JM+//gg0FB0Uy4DUPLhv5xsx2MZneuYtV8/4BqeT\n059qXnLRaNr/Pu4T9Gn9IToNuJtNQVKRRbIBMXWwq7Xug+/rus1DPcsRKJEzwtHG0XXigu63+ztC\nYivoqEWg5Xn0OZJs6SWOOXnc6nbqzLtoG1zj5FIo6n7v/raQ3dqenuk20aAB0cygZbZk3povFZtN\nWFu7R4rJDOyrNeiZE389Z515AQS1oH4pscZuQeedRF8C15Dpp7jvMb+uYKwE9xKtBt0/cZxxQeUK\naK9FWdZ85s0SLOBCM9Hz0P9f4kQzKqMRwbzenwiNy9ZeuS8F931zcE5zcVMsoHf15S9xu5orlqvf\n+C19CebjZg6TiXz9yDRm4zUaQLAwwjIuX2XYHUUYRXXYfhU9j6hzYQ4s10pNz/DgTeZ2BxZspHE3\nwsFrMsKVEqfAQowjF2tUpaa6lVzWxiHaBp+pDc9CoezrjZDYDY6IC1haxZbmXa8Ea2n+63P8/8Oy\nHuOEg86c0xSKP4iYr/t6Jr1P1I4q600FjbMGmjM1dN2Cjdp1g15EEc2biH1uvoGrSEHzTDnSPnLk\n6f+XWdzi0IJw0B4shrpvjhhsMNYWXqKRps9VZ7DSfFjBrFuTqZ59Fc2dMTFehzk4S3Q7YLZky+qH\niPWvvNT9+qD0DkzzIpqQEWNzxr51jX5UnFM7ijBUp2vFWMDeJ4eOXhfm4xXuo1+Gcj/xcOb0qVcb\nzTMzs5effGJVYvaAfqmgkZE40ywr+t6gqecwmiO8iHbRbcoSLcQgi84O7FAPxuIWfbgxjJfVGEfH\nhp5tG/bpEh2P/hRKu6e2rWEJZWGfOpfqi/6HuC7tKDYj2KyTpcZ7tqP7zQbsca51v4OJ1rzYgz2L\nLlORdWXxkDW5z/ryIe9YaJlUfM2TU/ZGlRpr2ne0XoyWuv50Cjt0kbgF6RlXYOfaA13HZf6bsqJ4\n2PVV0L7Z3qj+U9jMS1xad++J6dl9xp5wwjqBw1slg8Zjot/Ho/XQhpzBwC9/UwzU+zDPT2FlLFjn\nikuNLb9B/WG/XqJJedvioZflMRZiGEgNGE3XGcVRJmauaakdCbM8xIl3vNF9JziF7r35rpmZbUIY\nPS81RtyixkIwZz2bJqKiZs1G094pHdior7YuZ/qZiXgXwTVustYzimHOzRiXu2+IwZ0lttZfMn/P\n0HCsaB9XY96c9BNXOVyG0UpdVckoYd++ranPGzgQ7pxobemxhg3YX1cCtalZ0efbddW7kLC/find\nOm8Kw7kN5XCidSLRBx2d8wyZ56uwWhewZdcZ9Yvr6Rm9ZB6qk2XCdtZmuEG7iHTVec+PgySb4G8v\nKVMmLWlJS1rSkpa0pCUtaUlLWtKSlrSk5TWU18qUeRd3jsNdnQpfRWginAvN6Vxzkr3L6WgexfFL\nTrJqOqnKVdEuINfLKyZ6FTr5Kud0EjYhZzY71Ule5QEaLoF+upxSTnEqWGdAGHYTRDb7K/Xvkevq\n4WjguyXqz6klyG8efQ2/hBo17gMhLk79SaLjoZPBUk4ngnU0GQLYComey2xOO11ylJf63AKXqZBc\n3dIK9krRsTyaMkkOaoTXehEEMkuecA7UpgeLyZmTa+6QF8eJbrFMDnlNJ9N7x6r71WOhxJMObk/H\n+r8L4jpzQ/s6ZdwR6nSV0TMplVEhX+m0co/c2OM7QtO8uq7faOqU9t1vyvXp6QOhPrNL9Vkuh1MM\n4Lyh/h7gevHoHbknJUyTGNenEDX6WajT1xY6JZYnD7GnGIlc9ZeD1kxcFLo36H+mz+NqVcQ5wXiW\nS1CZElotHtoKYYJgJ5o6BfVrouWT5MnHnMYWq+r/2SrRMdLP3/5jtevkd75lZmbtQ11n0tNz2yuh\nfwF7rYKGwAXo2I//zZ+amdl0rvZXy/8l/aa4yYIQVYj1t78h9Oze/u+p2W1YEg5aEAc6dU/cuyIU\ny5vBr461X1dmuJ5NLnXy3UQbpoDmQJuj60KAGw4n8AljI1yh9VLQQ3H4uwt6s0DbKc/YCEG1gkB9\n0KiK6XJnl3zjDnnW5ORHnsbnc9gGk5Vic/RUKMb1J2INhB39Xs2B9DEPjHpo4Li4eVT0zIKMrr/Z\nKmb6A8X+aCxWkpvka8NOyKJif/cOSAexO16rHTXcltY4bZWZd+7VhRqtQVL9APYAOkizaZIrq2dX\nrqifdsgDd3By2QVhebpV+2eBvpftJ+wsUMQnaD/M9f3sjsZ8rYBmljPl5+1jxMwsKINW4sq3dTVf\neuienJ+Jqdn5XPP3XXQ1ppAQconLHgh/daF6LAZir/gt3Pq+S5zNdP3OldhiGZzf/PIjte9Cv589\nw8Up51kVxmGWtaZAX5pCw6oVXTsGwQuYv8O5fq+stAblYI9aDn2ghFUwhbXlq433d9A+KcKMxFEm\n0Qfq5UHLGP/BW+oM70zP+uWPFWsl0OvSI8XUiutE9IFtmW8PND+1d9XnmzOhXaGp/hnQt+dfCM1y\nlrjevY+2AGtuuMG9Y6DYX+/ofhugz90HYjkF01+fv/0fltlCY/HpWPU+ucveAOYhIW8lEN5lWz8n\nFzBrHoLq51TvbbJHwLUu3yfvHkYjBmg2naKT9BnsMZiSC1gPm0DPqfoGDKmSUMezz3F5Qj/LzKz9\n1p65iY7HGU49OEYsPk7mSvX3sa+f3Uh/j2DrzcowlmBvrJgjsweqcD2nOCvChFrhuhRqiFuA7lMU\nbC3nap8X4hgVXjDH40bpXKFrsIe2DG2Z4dRy5Ov7Q9wkC+hzTGAteczL1TXMxbVifSej6+82tPZO\nYOw0mNemGfqM/dhti59Dg6Sg+y5hC3/02YdmZpaY37Xe1rpQagudPmatWzRhn8J4HqAZuEm0VcZo\nWMUwDWuKxUoOpBaENrhWDO2gdbLGtc+yaN7Qfx56FwN0jYKF6p+BHW0F3WeBPt+CNTy31H26AVoO\nReZfWF7bdeLspueWR0vChUV8M4aFvOJ6XH/OvLnBhW+MPkaiZxRvNba7Y2IXd64dXFqmbNpW6Df1\n14lWG46Q6BmV0dBpFF+xyA4OWpZta+xk0HtZj5hzYYEP3IQVRvuYQ+rNV6yCv6sk7F0fXck6bPxL\n1rot+8gy2mFhsl8csm/+/onqiKbV86tP9b11onGo+4xgvJfn2h9PyArYbeCCdF/7sF98oX0n5Ac7\nvA8bl7U57OCA2NQziDrqs8uKbrR/pFiuvQUb7CPNzzcv0GTEwbaO/lOE1eW9+zAzenKFevxE7YjX\nOFXCDNwmuna4/jXRKymiNTZNdPgmOInBqHQu9HvvUrHwMCeNrOwh7kqw7rI51b/qwhyJYd6gnTNH\n22V8yZ4gq3bWTtSPmT3tDW7OFZu1IZqLuPUFNfSfsl9Pw2zGO1p1mKRPqCMcF529Ie90yF7xKVsx\nZgLcSvOwNXzY3m8+fEv/H0lT8+av1e4QBu2IsbXCnc/MzL3ZmF/JmB/pf9MxLPaS9rVjNFGy2WRf\nm7wva/xlYGOuYXdGuAdvK4kToGp/TuaIe0kwtmCfUndMPs1l/G55NtGl2tK7RCMRx916jncvMmUC\n9smGM9jqUu+QPlqRHszxo2N1aq6t9l1cik3kMP9uMjDiA3T10Ixcsva9/bbYSJNAf//sR4qR8Evm\nLb63RQfvZoVeYOZVn/9tJWXKpCUtaUlLWtKSlrSkJS1pSUta0pKWtLyG8lqZMp//6E/tn/yT/8z+\n13/135qZ2cNv65Tz5B1cjHakP1IKkmrqBOyipJ/rLhox5Kzmy/p7tQZyAII7uRFCk4PlkeS2ro1T\n2iEnd9wnyCY5bHjHk+9toPhTkPKIHLQJOW1FkNxSUchOFoS9uQMKiciNs9IJ5AKV6SYaB0l+46yL\ntsGN8j1zFXJuQYYTrRrjlHMU4iIFm6Nc0v1qTfXHOJrbZkB+Hnl7xThxfyCH0ycv+wb9BNyWGlRq\niu6CJa4/LsybAigFyvq9SCyn8j/QCf37f/D7Zmb24b+XCnxwjjDFLUvzULFwVNVp5jwLSnKhZzoj\nZ/QATZZ1nhPuHHnSMFD2GjpZ76B1sHU5kY7VnhzIxs6BYmL/u7rvGgbRNXnLRm7nlv6Ja7rPfKFY\n++jH0oSYXate7beUZ/nd73zXzMwWc9gSl3oe19y/kNPPOTm9I07Il7ivVHx9/jmK3hNHz2vYAyEv\n6/875Jwm2gVZGEp1INkheikYf9n0XKfVPshN6wONEf+p2ukDvr17ILRx/D0xbV5c6OR9Z0f9WiBP\ncgOjp4VWgv+GEPHqe0L4r14IscmhX7JF5+RkH9eXR7De/Ns7HXjk9x6DtO5e6xqlAbn8oLn9T1Xn\nxQ4IQEU/OeC3IKZPybONQf7qbVw2irjmZEHf0UwpldGVuNBYWH6sZ5Q7Vdvye+qD+ziJfU6e+fhK\nJ//jKUghDJ1qjvtwoO420MyC8edm1HceDjfFLO4QHdzcmA+QLbLlWPVcZxP3IRoMUyQHQybRDcqi\nQ7GPA0E1r/4IcRoY3Kje6zmoP4zEJhopcyp+3dfnCoyR7VHiugGDr4fuFN9fbZhEchpb1z2Npe2l\n0K5hR98bNHSf5UL9fNsy6+LGBzJcRbusBnsjcSC7PsMpB6bkEnzK66kdA/SRgl1YdCOu21T/vP8D\nsTReXiieGrDw8jHuMz1df4sGWcIijGxg+TloDjoShrvPzh2hRu/lxbKZ+bgwFHSNm2egMEt9/wZN\nrRpMwvqh5qEx6O8aV6MVmmH9J6xh5Oy7O2i5NNE2KMJAdEHNTGvTy6dCKAu+rne/IoSuzJgZs06s\nYdatYfgc3tHa3geVH3SkA1IJ0f/o6tmPrlT/yh20DgLNQ/mt6r3E8SXb1joWosexxvEnl/l6mjK5\nQPNQ4wAkFyuxkHr6M/XD3FF/FWCOhBv1d1AG8YYNsAT937I3mJ4rdjYJI3Kr6/dghPbR9DqEpTff\ng+nI8hvhhrRyFA8DXDTa6EKZmeXeeGgFhYMtZr/qINaqonUz03NsQNkszbRnieuKtztZTR4QNa3X\nRnOBdSh7X/9fgdAucOg4bum6dk/1eflJ1/JorThok4yuFQt7oPAO1zhyNH+d3FVdLnqaPxp1PZPL\nN/T91S/Zdw1Yu0AkGwfqq2qH+RoGcR7NlIIp9mfX6uMye5vN7QkQZmYWb9R2ByT18jMht88/Ugyf\nvPcBfaF25NEQG7IXqY8Tmix0h7liu2WqyA0MmTHOjDn2exH/X18nToe4Eq0SrRrW7LLuO0N3wpuj\n9TXm2aObtJon6xnMa9a1PGtyD6eXTaTgy7PXwkzUpsx7fkv/H3q6f2ar/vd89U/J1byXmCDFsCnC\nfsI0x2EOba2Y9eBOi/qVNLYd1qFED3D3keaQk3fFhl5u1G/PnmgPGqOTdFzE7cXMHLdgXlX3Hyx0\n/wgNxniq/cF0rXrM0PuotPK/Uq/bFAdmjIc7WpF3lgJ9Zl+xh4hp/n7zXEy18anG0c43xOoJceWb\ndhXzAXpCyKTZBh2eKTpwefSI3vz9983MrA+T8uL/+PdmZuZDR8ig/bTCRSme4VBbg8U1wcVzpL83\n3pX21/Sl7nPxQ81nP/255uv6I437M+bJQ/ZgLvNTLqd5q/dY7cjXcK5MNGYGWlfOzxUTR7DNygXc\nRT3FaPNI+/MK7NqbMz3zObqj+TusPy/FXohXYoKXPe1D3YXmoKs+6wcOXtM1THP0SFrvShOn9B3t\ne7sDuZd2L6RfVK+pHjtoTiYuTLctZRiNGY94wYnyZk12xUyxv1/V3NjrqZ2joepfzKs99bX6ed3T\n98Jfqt2r5zi94UiWZ6/q41SX6b16H5udfWEvZw1zPH1n6qovSriUrUL10RydzC3M8rCntS+cKiYO\ncW4M0GyaDzR+1swzOWheiW5ptsyeA8bJHPZmH+aai15a76eaP6Op5tk8WjPZQ9Vz/pzvzbRutPN6\nJvm3dJ8SrLMe2lUjtLjGA9XrZV/z+B7PonSovi/haDmG2e6MyWj5gHdRWLR1WE4B9Z0Tq2dL5mkX\nRvTfkQWQMmXSkpa0pCUtaUlLWtKSlrSkJS1pSUtaXkN5rUyZwec6zVvgLPGP/6FORf03lT/+/Eyn\nxucvdYLFQbuVTXmKIRoryKNYf6mTvBLuHyNU9R3cSI53hLjkyaPsP/8bMzN7ST57DWTDXH3/+vTU\nzMwaNU4fx5x2JwgPThB3ye+ezHC6WOmUuAiCc56cVsZPzMxsldcJXA03gRCXmAyn35NIrAwPh6El\niMMGzRyD5bKLJVGhqpM9l89X0EvZJhoQ3cjGa07mt2pjrg6KAloQgtrm0SDIgppE5B2XYeEY2gRd\ntAnGXT3D4qFyL3feJwcUtPtf/J//0szM/vW//NdmZvbNO8rDu20podS/BAH1yyhhV4WY9kEOciDA\n7QroO844Cxy3FjjE1Gv6+wbYZjsTEpBFpX7q6pS321V/bEAycneEXHgT9cc40rOu7ag/F1PQvwc6\nOQ9bsJd4tlPQQgg1liEfc/4V2oVCeV7362x1/Sk5xFuUz1eB6h2C2r98IaT0zkPF7AGxv0yYMkmO\nKshnYav61AqqZ/EAdkgGdsBWMbUy7svYaqFD8rt/JPepM/RbKkm/jVTfBnnaK/ROdkAJKziWRQPy\nRHHzyCUo6kg/myC6Eey325SDhzr131koBu8OdVJd/rliZULOf7+vcTUyPRuHce7UQWtwUfNhW01A\nJh0QzRJaBRlP/080UMIb2Fef6z7hnwjNOJnifvYQNlNVbIWTI12ncJhoQSXjHwYOec4rmChZtGXW\nwNaXZ2InnOPEk8nqGa+O0PVpwKSr4BA21f3yc3JwI9XLg9Hiw6Kq4dgwniumigmKd4VLE44FHhpY\nLqh6Be2CCQ4LtsJliRiKT9GaWQjtGRcUMzM0HnKo0wd5WAWM3cDFnQ80aeYIqdjEei5zQz3/liWC\n7TCHVZcrCmVaog2xC0PTzSnW+0XcT3ABmY1U382natdRTkitk1f/rGFWNXELvET75s27aKb9Qv3z\n4sdClo7vivWSg5UxmyzNIz97PYHRAtqd30M7AH2FNi5Drgezrah7XUPo++wn0rG5+4Y+33okBksB\nhtr9e1prXzxWn57+TGuhH6pNAZo28RF6arjuxDyrYlFr6c4jrdXBnPGNBtWKZ1TMgKI76qPzKWOl\njwsQzM2gpWdQqGfoQz2L0q7qUSJ3PgfaFg4Vg8/7QmrfQ3coA1I5j3S/1fTrxUgNymeyDjgL5ogZ\nzJcb/f/lUs+wnVd9+rh/zFv6fBWdu+Vjza8rHNKu0cuo1llHYAesYEQ16lrX6m0QZuagDU5wC9bh\nTV9jdXOu9i69V1u5zKZhGbTMmuhnzGDmFI/03JJ1JosmUQ5mjofuUZi4PVVxW5op5iMYmvm9E/0d\n/akSui7jsWI8e447yJPY1m1YmJHavOanc6N5tMw8k1njfPUSpnBX7KH8XH1RgFU6czWOnR20wjJ6\nVokGYPFQbcjhDpQBDO4M9Ax7l0LNd3GIKZe/notbrYSbJ9ojq6ru8+Bb0s344De/o78zv4xCzbsb\nWMIRjI4M86ePluE1TO61r1ha9tAIY4zPr/VMfDRkPPaDO22te4nLh9dVjMwdHICYx3wQ2m1CfyqA\nWBODmwjdvIzqFQzReIBV18sw7+KImYd52Tf2obE+v47QrnETPSTYwPQb3WFBCQQa1sLoSrHVP1MM\n/fkQNkdW93//vjS+qo9wHdxoXvXYM/SZY26eaf05hF23LSZKHGZevWQnsCiuP9M6N+qd6nf0rDaw\nEDL0C4QbyzEn3KZMu8wHrM3BQ823ja7G33gppsUmYg3FnSmL29DNuRgjFbRfqsfaZ05xB010NMsP\n9EwGuO4YLKgh++IObkkHH8A2+0jzy4sLxeAd1ujqse7j457mH9yhIdpjrEONxZhsgvZdrRMjWFv+\n5ZLb65mUYrVrzD6x8RCdv5zGcrgRm2Hj6PfiQvX3cfBKdD9WaO6sWFcmzLNdtBWDK5x0Yd1+/JEW\nwO88OtH9YCqNT9WOYDfRp1MMVHi2AevMEMbfZg5T6Fox1X6k/uj/8tTMzGYd3aeMK9YSxzLPuz3D\n28yssGIvdQOr2lX7p+g4jdCAKW50/0usezM4jFZ6akeObBCITfbyT9BbQs+kCnt61cK1qwqrzl7p\naS0LS8vkFrZmzd5lf7rc6hmO0PVcsQeJC7pn9QR2FXTO0FfMeVMyRBI9pU/0fecq2V+yr4bRHfGO\nuhqyJsK2OnqoDJrw4D0zMwtgYFuiS0SWQa+gNg+6qk9mRwy9lxvFTGmHvsUV7moG0xrtx5h50mqa\nX7pd2MMwhtpZxXx2pu9f/8lPzMysn9P3Gk32SHVYu2h+5dCQdBt6h8zXyLz5j5SUKZOWtKQlLWlJ\nS1rSkpa0pCUtaUlLWtLyGsprZcpsdnQK2HgP1Ijc1MFnyhk7fyE0KufplNnl9NWr6AQvKpCDihZD\nKdSpX5DVde/hLDHH872MZkTY1+nm7rdbfE4nYICGX9EDFvzMFciThgmTw8kgAzJRquLCEeqkblNS\nPUugmUWceaKBfq/i9mQNnHzOyVUr6cTt7W+qPpOQ64445UT9eWvqjy2oWYCOR3Kk3x/oOm6izL7d\nWAtdg3kel4evtAU4lQQ8SVCrNTmwgDoWJorUnFyXy2iV3BVKs8fp38WZUIqLEbmx5H23UOC+v6O6\n/z92u9J7qbY/J2+x2UCj5Ainm2P9nKH0PUq6ghP51TjRb0D3A3aT46v+8yU5pR2dHAcOCv7kN24i\nkAOYJrFPfiIMkD4uSbm12veNf/gDXZdT3idfChFeETshqL+DntAnH8qxIRuovg9/R2gbRly2IKZj\n8jrLaOwMQW5HT9Q/112dPu+Qy1/nuS1BaB1QQX8MiyLW93LkS+ZnOg0enCfq86rfMlSMXz3T81zn\nQDQ4z40Huk4edxEH9peFxNtSp9YbtHzKnp5fhL5AFgS+M0niBeZM7vao1AKNgB7x375Rm9ZDPQMv\n0r0rTaFNe/fVR9N9WFhYEqxA9CawjKY5nZQvYCvkQKN8NGrcufqyhkOXgYK7NbW52eBkHaey8Vjj\n/AqXpBnMkChxzqIPZ4lTC88uu8F1DTZbDLttQ19hMmK5jcZWbk+IwDBQvSuxEIE1LKrZWYLUwvaC\nfVYkn3mBY0wefRK6xSAKWQV9E+++7tfDfS6JhQiktYi7xsLRfeceKvq4w8UuefC4d1QT7YAi/VIE\nCSWfem+lGA1x9CnnX2kF3KZkQIWGHVh+VZAQGDQ1HBR2fk/91+uong5aN9Ofaf24+BQWCq5N05y+\nn63ATsM1IL+Hy1NfHfj0Y7EKBx+rHtU9zV2ZldpZy1cs7KoPEwcBpmcbnGteDWABRE1pdk1h3OXv\nKLYzDk4tj1iz0JrKVkCtYI9OuvpclnnwYF+snQDmxwStmTyI5GSC1hOxF6wU+8ffkWbBBlc/x8dd\nD/e+JWy0NfoM0w/FbPnyRNc73gUBhqExXel7JVhbe3X9v7hTpL24fzAfhQPy0GEVeE3W3ADtryDh\n196udD/SXHA21Fit1LSmD9l71NF3ckPcrEDCNzsgnsdaB+79plhxj38sVsbiS7F982h6tQPcQyIc\nK+aKpUIiJRSz3qCnNI5BTkNQxkdadyusK9PL6VdtWPz8mX3c0e/H7EGm6E5l0KuKi7ALuvo7y8tX\n+nrxc+Lm2+goMUf01hrrTZztMmjNuOiNDD6HZYA7l/tlaDZRWyPckl78RONgQ05/tg2DDn2JAZoG\noZPo4eBEghbABl2cDGt5nGiAMI8EU3SQYBSPh+qzIVo2nTON45g1/+6br9x5blNyj8TYmF9/bGZm\nLY8+fqi1ecA8Gj79me6LvlAeFL3sa96qB4xRnKtcxlbvpfpu7rDewJTM4xpVyySaMMyra8XsCFbY\nPFkPJ/r9Lmy3GBbAEiZ1oraUnxF0rBfzLWMctH7DJLSeog2xVv0+u1J/76OR6OCYM89q/izBul7D\n6AnHCatAz+VmpvptQ5iqLdVjB5cUH+Z7Dh2QXfRFdkvoKsF88nEyc3MaQ7W3YDaWdL+F+4q94OfX\nNmAdvRloTMYwP5PXoSz6gpHRzyDrln01xv6ukqXPxs9O9ZPObvNO0thXW8dnMKVZc6MRWoMfa97J\n31csV2p6hll0jIZdzX/LDuOf+dqHAeEOdMPTuq57cl/z0cG7yjK4uJG2X4csAu8Za9w1DBUY2Mk8\nvGGe66LHli3puole3BBtFg9GdyGQrlpukzD2cCJD7yjHmB120EcKYAvjiuTCUKwhYHTwpnSaMnvq\nj/MfScMm0T4rubBboWGFE1135x3pDQ1O1V9nT/WzdqSYMvTzls9g+uGEts3o/iUY7PeP1W+tR3p+\nj3u6jnOufqgWxZyJ/dszvM3MYth/EXNbnj1RNdZ9z3FK630p5tT2Su1rwkbJr2BzU88C74TFQP22\n90j1fsG61ekpW6O71JjNZpPYN1u255bPlWzCvWdL3ks9xUKcGBl66tsl7mvZ/RMzM/MX+sBf/0Tz\n4u5dsWj3DlQH+1TzrgfjrIbGVmGF1hds+qqPdsyp+jRs6R0qSzbCnDbnx4rdy19CD0b/s3qgGMnV\nNWZOP9E4d5tqa/kQfcsLxe7/x957/EqSZll+18zNtZZPi1CZGZlZKkt0VXVPdbXiAD0czmIwHJAE\nB+SCAPnncMUd1wRBgARJYDgz3ezp6mpRVV2VlVqEelq61u7mbsbF+VnGFDDd/WIVZc6NtwAAIABJ\nREFUXNjdeDwPc7NPf5/de+45Tfjt3CFIwSPdt3OjsbGJCnIOdH8C5OUmWQKtksp/A1itfQVv3BwE\nEajUDIhr1//7FbpipExsscUWW2yxxRZbbLHFFltsscUW22uw14qU+f4f/pdmZvZH//h/MDOz/FrR\nn+Pex2ZmlinK8314cGhmZk+fKFo46MnTFDbkqUoTSXEL8sAFA3nO/DSs8SU88SP9Pgjk5Ww8VH7l\niGjSVVd59cuh7ps7kLe5kVY5rnvyHKZ7UV6fvKSLRRTdlCc9WZZH7qQjD98CNvrCAbnGqJw0EkSQ\ncirPfIjXfKJyeiBgygXVt+PIa10iD7Q3UH39DmgPGMMj/o4pbPIrN29FOGSMCGefPLs1ilIGe/sC\nr18S8hMfRI0LD04IwsHLo/ID6uf6iTz78w4KMkSPdrfFWv7t+0Rf1rrPXe3mVl7OL/7qZ2ZmtqRu\n3/zh7+t+eCt9uGESZXllW7h1+1G+IPnUKbgGkqhhZMjtn4FKmtK3Ad7RNHnGBpt9EoTMqqoxkSKn\nfjllDCzUB4u17tOC9yekPd0Fed4obvVG8swX8PJGShSVNOpOjJXpJbm7dbX3TkNjt/X7QuZE6iCV\nECUd8jV9/p4SDZo5Kkef0E0+pe/XRZX7eqh2zLM0pCyKGul3wRy+IhRpluSfJlKwxs80rsrcz2O8\nRWiU0I0kxuAFIJrmocBgvvopSfTwLjadw9nUUR8+G0fKBPrM18iB/6barHKgMdiDo+SWXP3Q9Mxx\nCRWHY5QOlpqPPtGeN8gtDXO0Leip5luHZmaWayhiWkH948JRpKG30n2GtFGvD+oBJIbLOuVEahgV\n9XWKMZVG/SGZkaffU0DAHHiLluSTL0AtDEM95+KpPPdVEDRNB3W450TLrxXNj1Bf6wAuGFRPmoyl\nfFkPzO9o7N+6RBwniuL0yYev1nTdIA9iEA6bHjm8I/grfMZCFBDPwIsRZjWHowjmNUinKdQAHnNx\n7L2M8tzFUqA2UuRxeze0VwNuhZLGeu1djZPzpXKXI4Wf7kD/f32icXF7zVy+p/GVGRClHEXcO7re\nLWmd372PglxXkRgf1YFIYWmyXlg/kiiBZ227pbIMluS8z+DWOtVYSsCjMZ/r2XnymR/99rfNzGy1\n0n1Cpl3K1zNPPjjSfclRr2Q1Jiqgd677Wnfn3Wg9hLcMpN/E0fNzrG9LIm7OBXNJW5pVykSRiDan\ngXX5cEYtGxqTaRQXVtegJW7U552FULO7rvLKvSI8TXW16V6RvW6odkmhSJhm7jtwZN3ViqC66nA9\nZFAlymXgfmC9uxppbFSLWnOuWB+7l8e/8dxuQ/+fCLUWZMoozfThiTqO1AvVvvMrfdZACbggV/wb\nnWma26p//lb9UOc+udxLlanZ9cLax0JzVQ+E6rCG5tYgBPk00z6YDSLeOhBA3CePemG6pPHX2IJf\noKO1IppLPhHpFfXrgi57gNpeNXFrPlxMDkiL3JV+m8hqHfUqINOOtO50i6pzAG/CJAsCD5W4BZwy\nLujSASpymxnQoHk9ZzLQ/UZcX4DzIG1wHjDVnOGrrSPTXyna/O9/8mcqTxbFxse64SWI6CQqHgdN\nVDnhFaknxe+UrmmduICf4vYSBS7OmWX4kSYgX4K61p0IfZrjKJWbg3BBOXO40Nytg66YgtSuo+xo\nnDsjxZlFSu0ToiJSGKK4aaAgQPCEcLZMJmqvFGjdixDek4bau3Su686+hMsBNZIman4Z+KPeKQhl\nl0M1MXQjrkf9bjCEq2uq8TMCAZsYqJ2S7MfN+9ovUq6u7/5C5Zgeg85tvVRNGvUubTmFGyc62oFE\nitDjPdAJCx90XJ39FfT4XSxhUZQcBT/mwKQBkpC90gWNFC5QfAw4V6Po2n6mdbb6R6pjcE9Ijf5T\n9XEpgH8NZLMDt5/vgHJ6AqK6wPWHWs8uP9L6NT3W/ed59VE0Zj3OxznOzUGRvbOVpk0OdT/GUvez\nvzQzsxs4XvJZzuO7KA5eR7wd+vQOGItL9aXbge9tgborCPYeryeJN470PdxiBdCoGZCR5YouvLzS\nXLq81Bh4601Nkr3v6j3k2b/+Kz0v0PMLoFsvTtXeRZCbJBZYMNfaM0ugHPk26NZPVJ4M+/UItEcK\nddi72ph13ylmfuM+00hBN0IDl9Sf+bTmkDuGo3Kss1cZTppk9L5Bw7U5a9wM1c/nvvq9UQBt4r5E\nCVarnmXTdVu90L1vRuqb3V3tAbU31JfTrNr2158K8fjmnspYRqWsY/pdkXfKzTTvnFHfosjo8+61\nQEHQbaKe3IXzhbGR+VzPWXW0/lU48+R410yjzDXiDLAE6ROCWiokVb7Nx+IzbbAOHT//v3UdWQZT\nzs2pmebM7rbmWqUgVLIXcR9WeXfB3+AnQemS0RKAKm22VC43AcftWuVxR3//fhMjZWKLLbbYYost\ntthiiy222GKLLbbYXoO9VqTMiy/lvfvV38gDtjGSZ2rVh2UdvfNwKQWBpC+24wHqHqmEPHDZArwf\nA3mwpvCHJMmnXMMh4xMJbzzU/X3ywm/68h6OR/JOZvHCFpfycEGjYuEMtn7yNucdeYNnHZWn9l00\n7pP6vn2p7xubKv/Ggby6kxvUNp7Ls1YiKjcnofzmiSIFrV34R4iuVWE+HxGhXcz0+wRInNQM73yO\nyDvM3W7ZtXGXyCTqCRUXpvz8byrKuESnpiMUV+DPqabJOw5RCKBNV8dHZmbmod5Tz6jNvJo8+2U8\nsfm0PMyXExLy7mhv7Cgv0f19cvfJK8zXiJqgWNDrqvwWebbJmJ5FahVteaAHRHTXsJLPe0R4HZQf\nUM5KRIozKOx4GTzRXRQX8H7WYXO3FFwNQ3l30yn1we6OvLJtFCU26urr7TeV4+sWiKLl1A/9K4WY\n3bGekwI587M/lYffiJ796J/+ke73QF7czpme60SKY0lQW6AwRh1yZ6e0I4oV46zqPcN7m/Tp/yL1\nHILwgawnS8Sk04a/CeTQRpMxfRvxtOi+5RSKNeTM+lX4lFzdN1uIolRR/rzGpxfxLt3BUnjkB1lC\nn+QJV95WHdsojyRCrTMr0E29AA89OZ+VB+LVSIdEBB3NkYjXx5vpb5fI2oT84zEImHQO5a+W+uCq\nJz6IKZT4sw2UBLJcVwNtBNfAnOhZq6wxNRuRL51SeebkWxtqSusCnDM5IgRwAkT3yabhIGhq7u1u\nKM87uNT/rz4lokgyrFNTe9XoE1v+pordBDWhAe19lYebBfSXA1v/BNWnLiiNJcpnA2Ty6lX93oki\nvOT4n60idBWKaPAP5UP4NfrkMhPdTyxfDQVRZm2aO6q3S72WIA3DOkpzRCudChFkl+c9VvtsthXh\ndXKK8BfDaF0mV/gTcp9RFssV1I/3vv+emZmVWormOXAXzEz9mZynrP1EdR8OFAHLlVXmfIk9Ag6B\nUQ6urpb61AVutIZvY+/r2ktffKw2m6DEEiEDn3wsBMrJR1pv3voeqNCHIGfgZHGIlqU91om61jMf\n2YoQpN3kE9X19DOhCJqoXuy9p7YqwvMWKdIUmXMluLrCmuqxWtL3Ld1/TdR8jCKKB59F+YHqVwLN\n1WMP90E89s/0d67waso6aVCxpRXqTR0QI3DFzC9RNyGals6qnWp7apdr+O1mC32OUKSpgx6rlzS3\nlx+pXn6g+j/Y0fdnp1oz/BHIHxRwdodqt2guZ0C6TFEsapVTX9UhU/KteKC/J/tw9KDgkyT67yYi\nBSM9v5WHr4n7uiWihjVQd0T+8yBE/SFzGhSFRzv47G8Bkd50I2EbIPM80LZ7b+n/coEisPMVe8uU\nPRsVtzHrojODm8SnrruKfM743bKgthyydyyuQfDBm5QBqVGr60yyB6osu9ZYKpRfjXfoqC0EdPtE\nc+dgX+fJosFReKByVbZVvw0iqkk4Xc4X6pPRF6rnRU/70NHJr1RP1putrTfNzKyMAmXChCxqgC7z\nUXtbrFWOhEMEOSukpgePVCuHkhecBpkkZ6KZyjVlfwv6IBnh8Yg4EDaLqscCNMaDXVBVcIT14Vro\nnaj9x3B+ZVEQe7yh/ormSoSyzYOmDWcq92TN/nKBcsyF6nULaizk7LLaUHmynM1Wgfbfq+f63ZMP\nFFmvMcY9VJvMzNZeyhqgQC7gPwlAms6nuo8D8j6MOCwd0MdBwu5qs0grFkRGCSVWQKK2QnLGIerf\nYu8eobrXg6Owe6v1YD0RUvDwETxEx5qnadBR9QBEMupEIed6g39jPVdb7LwttEDiDzR2zn7yoYoJ\nkrFY03parqut27w3+Ka+mTwlOwAE98a7Ks+D39LZ6Ys/EVdN+7nG0gQlrgCeohzvZAXW72VT9Zwx\nZ3nFMYd1xXE0xgxOtXVLc3i+Yqyg2JUMVd7USPU4+gAESROFsgd6Bzvd1Trca+t++V3tO3tbzJGm\n/j+AG20Q8i4Fp2Yj4kK7p7l+9an21wrvS/PEq71Sz7K/qTzXSYDObqofvIb+f9jW/hehwnJJndHa\nv9D4mKzh2QM1cnal+i1Akefe1hx8b1PvHQn4SbtH/a/KMvnozOrbJSsm1FbrDFkF1Gl1CVoWLr10\nW/cYf8Q7zdtal+pZvbM5cLNcP9GZwCGbobqrsqdAx/YGek5uFXG1omAIz1LtUH1Sy2qPCp5rby8s\nNOanAesHZ5HnbfYPVFQDwGnFjsZaHwRl5oIx31C9ioyhAci6DCqgn0w0pvdTGrOLJlkNoGcHba07\nixJjFfXOHujiSDV0seB9PPkSufcfsxgpE1tsscUWW2yxxRZbbLHFFltsscX2Guy1ImWOL+ShHszl\nmWsM5WG76SuSeNWOUA3yLFWr8vI5JXKGR/BukDCfWOszbEboD9AARGrXKTx+CXnevnghF1oPxvNG\nHVWjmf5/PZF3uR3I45fN6Hlz8i6thgrLUJ57nI82uYJjwlOUsOwpchFe4g0/lsdwyf2TcEc0YTjv\ng+poD1XvIvnpDvXrdoncOqh8gJ5I8//9PpFwypsJ1tZDhSKYEQVZkV9N3p2H6lKAx7aSqnNvGP7b\nICfgLqnisc6BqAgzoAlIxiyRaxm8kFdzDrfL/jtiQ7+rFffUxj/6miIF7Yi5mij+kIiiM0Z9ZBnx\ng8gcvK0L6j/2NTZKoAG6RUVj0is4Gfj/4Y1ycKe3uv/XvgOLe0hOLIoKAXnuS5yfRaJAAXnqSVBL\nJVRNXLyviQW8Rg0973BHnvGTpbyqs4HuUyVK9faDx6p/H0Uyojdrn3z5HNHHFRwEBHWSEz3fQSHn\naqDn99PkZybl/U1W9IP2idqrSH5+CqWGwUjRPKuo34emOXr+/gdmZvZb33vXzMxGSY3N5BRVkQBl\nGhdEDBwJrkfubMQvgkd/Gqk3odRwF+vCa3De1r13UehK1Um6HxMVmKlNS36kpKX/r9U0WpJleeIv\nQTWVUvr/pqe+KaFU467wiIMKGszI+adOIfO6lJRnPgk3lVfV9bfM91xav1s6Kv9wgEpHAfUQlFem\n8FxUgyiSQARwU22Vz6t8PnnZtygzuDWN6TLs8hnK483UFx3GxlZO0bPDH2i9WhU1dk9Pnqt8ofre\nd9SnPpHrNWO68FDRsomKYWFaY2l0o/5wVrpfYhM+onLER0F0q6v29EYq11PWx60pXAOJCLWh544H\noNvCV1M6GI7ZL1jDvJTaOzWnXm09r3OlNctjDVsxjmrfRAUQFJyB2PE8lMtewPlAdLL1tvpxjNJB\n9T6IRlf94aB0FkYqXOuk9cpEX86Igi+I9qfVuLMeKJwT1NNyQsoFKbWRx/xKHoIGIMo+RNGmUAdp\nscXY7hC5ZE9cX0V1Qmkkq89IeSuJGkfEWxaistb7QuvB7KmiYqNtRacTS1BJIC0cUGs+e9TJufo6\ny55agreieE9jNYpW9eB9mg3I3XejM4H2wBvW7YCFeIxs4KoDKcEdbYiK0xLeuqGrfaW11Do8XWou\nVIpaNzOgwjJEpn0UW5xL1D3gc+qwvlXgixodgzQCGTMH4VQO1Q+plfqhiWLcZKV6ltJql86V0Bqp\nMkiW3ksE6ty/NVMA2BYJlM6IyB5UtX4niYxXpvAhgWRagh5b1+EOgstsfKXIs1NV/w/hnerApfbG\nD/+RygNaxGFt6dvEig3dK4Xq3NyNEBUcP0PQXS3VrTxTW1fhi9hqqU1enKut+iAxzuAGTLwJOrcJ\nSgfqD2estqm76ivPBZkBF1cxUB8lqi+jxXexfEPz9x/9y//EzMwqKOqU4MaZg4hJMUfa8MYlQU9N\nVH2bhRqbYVfPX8/hSSIKn2bvzcHt4jbh66uoL8NQ97/ssYdCZ1FiH0qAnkhMGRtV/T6kb0acpXy4\nx6agv5bwMgWGUk6AwiLIax9VK5fz9xh0bQmSnvybWqv2azrXV0FdfPSx1oago/ImJzpjddgfVkTS\np/DxleHZqwca+7eguDxUS5M91eMZ6JDzL4T+q4Pqq78tpNHWN8SvZWa2f3jPOl0i6Xz6Q1RgStH+\nrvsnIG0DGGvp8d25h2ac3adJtV2qqvP27jZKUgl4M17Aj4PyapI9trpk7wAZPvgEDqvfFh9R5YH6\ntt09MjOzEHSnD5I9PVJdcmnW23N93u6CEiiqPAsQbatrzanRhfaPQQ3Oq0SEDgLFCnJvwPm04keI\ncU26wqH2lRVjYxWw53IO9Fz2D1C5oat3o0iBtgci0hwUzED/lxYgBkHZJt7SHHz2V+K4SvIe4FGv\nYoJ3S7IKNh+r3Q++IxWnj37yUzMzG54L5ZAqaF8cPNMYsjUcOPDBBVnVowCycectnQVGXe0HQ7jA\nssm78w6ZmWXgkukGrK9l1F23tQYMmBMvQNGNKxqDzQilBjVPfsVcaej5jQj5j7JdwDtwMEHJDQ6j\nOpydZmYPLWe5m7W51P2wpb6JRsBnX0rxavs7Uoj91j7vhqicdn+mOiRYd70BfEmu5tlunXelHAqK\ncMyMCqBCD+AxqoEUP1Y5Jkfqo8wxiMoPUaKMzjxwSWU8sjOYv+sl7+fM2+4xamxz0GecP9OsJz04\nYdeopd5kNTdvPNDCKM+uE2oXZxohHTlHsn5MQIifdPW72luaEzmyIqwXvZ3+xy1GysQWW2yxxRZb\nbLHFFltsscUWW2yxvQZ7rUiZd7+tyOwf/vN/bGZmAVrzuY9hop6gF34pb2SQlecss4PXljz59QyP\nG4zdmZK8zDOi/T6s86VA3s2zjryxiy6eNtQ4opzRZAo0xkQetAGoBqdEpJm8PSdCI1TIA32h8hr1\n2GrIS7me63dDok4rvMBrFAwyeI+N3L10K1JPgg8AlZAZXDlpVDty5OgGS/nWOnj8nbzu32oq4jTM\n9K3sy/uXdhRZ9S/wZC9hwoYHZ+bL6+dm9OmF8tguHLVpOSNv4LwvL+EADft7+4qKhKj7tJ/IS9j+\n8JdmZvbnf/pzMzP73n/2n9qrWHes5xSLatNqRm0/jTTjyTMvEZ1akhc4uZT6RB8ukxSIjL/8d1L2\ncpvygB+8IwSKWyJ3lOD7xSeK6rSvFZHc2kUhgkhvnTzpPjwX11fy5ja+dah2WMKrQa5sFvb2Mrn/\nYSRVD4JoSmS6Qk6vEbVqbcsjvr39IzMzO2+DWiirHea3uq5chOk7Bft+T/05h4V9DjLq9OMjMzP7\nv/7iX6v+31Lk4Pf+4Mf6PRGGLHnok2fyKv/Vn/xE7fBbiojXWqqnERHxiKgE8GQcf05eOKzv73xX\nSKMUKItUnqgfykjLlqJye/AE9K6J1N/B1kmNje09jdUybO8e6B//FiWuS83jkaPr54QsnSKcMr7m\nXQOeojXqFQXG3DqK4ozg2SFP20N9KZPRc6sVzft8kag4yInJJqiytdqwn9TvJwGRTaIkCU/XrQqw\nyKMWsQShMSDqna2BJCxzPWpHM8ao60Z8PopCHZ0qovAYFNxBjXXM09+lCrm5Sf0uA+JlMVd7JWCZ\n91iunByIPdSD5nACLC513RB+jyTIn2QV7oH1mvbU/28YCEXU5/rnRBgCXTdNg0y6UH8NQq2zk6tX\n46fKs3aF8JDkU1HkBnW+W5QKNORtmoJ/I1Q5qu+gqgX/0/BvGaNdfX7wU61x+br66btv/qGZmSWS\nus8YhZ4oyfmGfaiwp3FX2UzZxrekErH1SGM5d0/z8MUnilK5qDVEacnlucoyIue/1weBRhQ+VVLf\nTX2NAbeg7zceK9KYqypCmJurjN0LRc4y5EFnH4A2W8P11IeHqaTfJat6/gZqGtOvCaKRYZCMkkT5\nKbAPf9DiUm3uelofehvq4xljdgt+Ir+rNnKuQNyR4z+5JRrXgCMtq+tnGUXDyvdRrbh9NWWdcoV1\nlHbJp/SZjsqdoL4F3T8F2mBI9H+TOXv9Z4rg9l/0+R4uGVAMwwvtK/3PUKXb1VxqNeCz2yL3H0K7\n9YXa4exL9U9qV8+rNegf/yUvytbhoc331b5npypHAS6edlvRzOWVylWc6DxgKKwlQJPVQAmedRWh\nH7zQ+Gt+Q6i6NPvDmEhvtl6gfdQvOZCc2duM+SABQ/jNersqaw3UUBken6IXHago0lLzItPTdVXU\nNHtwhiVqeubWfdUhvan75oz155z1axnx0em+GZDHA1BPq5u7K/2ZmWVAH4VDtdWkzx47U5R9iPJk\n/lTl2c6q3BltcbYN58AAzrJ+TutjFcROsaqzVDaaW1mtzxEKdblQeyzpqyVR8QTIowxR9iZnhEhB\nawHvRNdBmdEhYgs6DnCHJVcqX3mb9i/rfll4hK4Gard+B/49VD4N5bfwXO35Zy8+NTOz9s/1eXR+\nZGZm335PKqSz94SmK+VU7oiSoVbVOrtC6XOyUPvuJ9QO6wmqeSCufPhBtnZZnzdU3ga8HNnw5dx4\n/tcf2JD927JwQ5TVMYWl5mKac/gEtJ3NdJ8gPbe7WooxMIT3sf1Edc9vRmNZfRKOhEa9Ye9zQTKM\nOFct6fPPf6X1In2gulWYn6eOzlkB6Kv5DaihGZx/E7ikeoXfqMPmN9RWD9+R4u3RUuWL1isPtEMW\nDqkE+4OhvuQwv6N3lOAQ1NkzjblwCMISNEIIN+EEjsfRkf6/eh8ltK8JfTHr/7WZmS16oP1B9j/9\nXOveEvWhtx9rjow3VL82cyEBH1MKDsz2C/j+NtTOGw+Eptg80tg7/0zrYQN+oUht1EGNLs3c8o/U\nwDdZ3adc1JrT3FA52l31j7+IDvZ3M6cIYjLQGuGBqg3GOoQ0NtQ/g9/WfuCjNPfBU601lTB6xwWp\nNAaNDM9KEYTR84915sw4GuMec6cxfDk3dudmq+zQLplfzZbOvwvU7GZ6pTJAQxZmtVed/0ptEmzr\nWfe21SYufJVj0KsAV2wO36WfB00Gx1cZzpjD93QGWgy1blx+ob2n1Fff5+A0bIBKGoJo9rqcx+Fa\nTHA2irgVU2OyBnjH2imDRl6qPOECDpoK51Y4r9IgFxvbOtt4Qz3XY33vwgPaTLOA5vX8JUqHqa/p\nrNVEOXLwlMn6d1iMlIkttthiiy222GKLLbbYYosttthiew32WpEy4Vje3NGpUAnhkPxnUAYb9+QN\nviav8qYrb2mE+igQnfPwnFVgQ24PieqhYJM0eaiuTF5dF0CLoUSRRumlgH76ao3yS0WeviJ5k06A\nwsRYXtEQ/pVmWZ5Bb1+evnAkb2ZnjReSiG6ka15DacEmRNXIOZ505OVO4oHMpFEzcdROUY5xpgAr\nPJ69JUzvCUfP9cjtjbh2pldz8z3V7RC28zkcKx7ey9DFY4sGffIrpIzKMic31F/By3NDpC+rNnWq\n8gYu8Gw/gVk7+7uHZmbmjuXtvN3GzXpX66uNL9bw76Th64D/w/d1v2wm4jBR+deohyTp7M1t5eJm\nTcidwYU86M3vkgPKTNhD8Sq9Foprd6T6lw/kpX3y+ZGZmdXK8rZOUQ7ogVJqdzWGN0LY5UF7XYAa\naDjq+yFqTWvy7Nt4+Kspefj9LFwufsTxAmdMjZxdOBRGvp7rLyI1E5QZQLwkQWnkc5oju2/p//c/\nK1NfjYdKC/TZVO1WZw6kd/Sc2haqJBXNvXfx/v5qoEjNnMh6tazyZQhUzxaqXzMH+iSr6xIFUAt5\nOBl6RCtLKle6cnd/8UZFfeNSx2wKFTRc82vaug+yLNVXXa+JFl+D7opy3fPkETdhmS+jYrFgrLV7\nmmfuVGO9EPFtoHo0iNTaehGHASg12OWXUSiYHxZBGeUI6mfgj0gWVZ8iyLrBRBe0Ia8a3OozPyNS\nOYdPw4W1Pql1KfBAKaBQMwwV5Ums1TfBhdjlLxibTpUIJSimBBwGa6Jc00h1jsh3jvU4wVhrEsEo\nglRKwqYfrV83t0LCrNZqhySRlAXR/haogpyLYg3og3Wo7wsZ+ERUvTvbilzl9QoVLqL8aSLMZ/Ch\nNNIqV+0dFGWW+v8snF9RfSYFjZ8cSKvqG0Skfd2/CkLmFLRYgYGRy6h/nxIJSvf19ySXNfeRrnmw\n/32Vtae2mv+t1q1HDUX4Oks9++LLIzMz221pwkWKLNenmpe7DxUZnOW1Hg3hbkm1NLbrIFkcojer\nAXvXjepwQGQ3RzR7EWhurM9AZRbhJAHptvsjCBjIM896um7FvD59LuRG+4U+8zPxyDVAPZThR9u6\np76/OO5TL5Wn1dC6u2I/GJyobT3UkVYOaLci6IjEqynr2AEcYKDTnDrr+gXITJCKa9AG/Q5Rvy4I\nkzcU2by/RmECPo4NJ1KcgHfKNEfyb6FiwvqYIjq3rmvfuwa91ab+ltXfpaX6rxaonW4Wna+qsLV9\nYB2U6BIjzfko8jt/rvJe/UIR4mCl64qQ0Cx4Tjav9oxUs0Jfz9uBb68H74cLiuH2ie73YiA1l/s/\n1P6wPjCbcx7L5jRGG/DYFQaaj8k8aCrQr+vPaaMj8fF8RXuwqzG25NyTToOMPgdRdwn33wSuLfaw\n0+ea13UHvhsXDiui/OMIoXNHm8w1tsdr1HoStMWN2mrnge5Xg1Pl0ffFbZKqwb8gAAAgAElEQVSA\ny+rjXysK3mP/eM76u+A8mT1izg/gxViq3umGfl9Lq6+qrF8ue/+izPrE+TAk4u07GgM9kN85EDKR\ndt3TQOUYdjT2K0WNpQERYB8EZBU+ua/d0xq0+QYqWEBsrkF//c3PFDk//Vih9Y+f6O9t9tGddxX1\nL8ODUgbRk0HJMfBYQ1AbjJTGFvTnCh6jG1T6qqjzFeEpcUHhprsq/1H3pdrJ+HZlXgVEEUj1BIqj\nfoT04QyUhvsiOdK4WkYKpHewCITUSGnMrVGQ6n+m82ntu1qPy5uono31/6kl6FbUmYqook5A3Iye\nwGn1Hakd7b8lJF9vpvmXBgWc9TkHoiRlqIeOzrS+l+pqu7DBHNwDfRDqd1N43VYgM2xN20ZKthn4\nL3ug3kDKNRj7L57qedlpxGlDPSvweH6uMVmDo6W2qecWtlWfFWiw+ijiRAPNegIP0UNUSx/pd2ef\nMVZRvLTdQzN7iVaenIPUyaidd76hOfTiTHN4DKI9l2OOoB6YAM0XKV+mUOjNFDgDsk6GqIpGKOe7\nmuPyjsmZMeA9YHit/j5o6e/H98WpORzyflNV++7AdTYHId+9UjmzcPjUNlSufZBVU7JBWineA19S\nylg775rruRYwVrq8MzoRp1UuykbQs9JwA5Z2NDZyoEg9T2Np2NFYbcOVmNiBS4ZzcHNDe/ka9O3p\nF/r/xht6TrfLHubzTrCl9bTAO+TNtfpygRrpCp7M6B21UtN9rkFpnZ18pnpcgS6KEO+o72VAmg/H\nmhMjFGabOxqTflv3+/Sn4tF8XNVenyeDJXrXSaG6V+V8P/yCPmuAwrr9+9+BY6RMbLHFFltsscUW\nW2yxxRZbbLHFFttrsNeKlHn6/s/M7I/tl//b/2xmZo09eY/r78gz5XjyjD14SCTR0d+za3meJjBu\nRwpCPhwBeRAz/hgvMRHOBmzNq/sgUXzdJwF7fAg3RORtXcMhU22gh04kI4MSESAJG/rk1q7lGStE\nyJkl3kuiVRPYmMsgWspFRZ0ibgafnLeEwRJNJKQGC/wcpM8QRYk0eZ1FFBnm5P6myalbTEAI3A7N\nkrCvwz2wGoMu2oBEBe6Y6UKuU49ohUtkNUmgbrlQGWYgSlqbioidXBFhhQn/OVwwb/34h2Zm9q1/\n9F0zMztIyGNu/9O/tbtYxImyXKhOXhFvJqzsLiio3Ja+T6GiVG2ozTo3iiDsbCja9Nv/hThtUg31\nUS0jr+jxU7Gbl1qKAjUeytt5e6vPckje8QWqJ2V56J1ttcO3Nn5sZmaTAcphRCBX+D1nc7XHzVLl\n63c1VvKe2r1/RX56RmPSBxG0cPHC9lHqCVCygCF8DoImM0eZZq77pEB5OHAGzRaKfLzznqJU6Y1/\nZWZmyZL6d3dL97k5Rt2EXNev7+v62pbG8mSoz528lg7nXbVXHVRAn6DjA3KWSyCz0vBpdFDOSIIE\nqgQaZ33yQqPEf3d+d2Wdbk/RjjWR0mpO60d5pshei+jRBtwm1lKdb2qqw9Wt+ixIqUylsfpsBbnI\neoCSSEJ1SBfVR0WUSIr7GhvzG/1uDHdNSL7vipz948yRmZmdjlVe97HmQrKIGhPqHN5UkYM0CL0Z\nbTEA2eI3VJ4hY2sOIi8g6pJboFoEQqiWU/0XRDQKCRA8oNpGY42NSaByhUv+P1TfuVmUeeCbWk5B\nZ92qnJ0hahVrVKNQfVumdf9goLG0hNvHH6BGZPBREOUJErp++6HQE3nAU2lH9Zgzludl/W7uvNr2\ntYDDpUN0LPe21q7AU7usJvr+8kz1fNASWi5JZDXN78M+Cm5ltU8KDqGv/Y5UPs67igyvmOuTZ2qn\n7Fr32djSmlOBB8uPFMl2WrZiS56w3uVcoj6bWodyVbXhycdah46PFP3Z+uM/NjOzGooss2uNlVkJ\nlbVNrQcdQJoOPERQpdgcxN2IdeboEyFZMgda53J5/d4do4QFb9NyFSEsiaZtsSmC7pouUWQB7QQ9\nk3UZc9mRED3eQHnkToUIKDwb5aiN5vAnkSd+/r7QBWfwLL33L36g5xAUX60K/E7tcFdbRepNBdBO\nKD3mQOsublCH8kHdwaF1C+IxMYkS7kEQ5VD1S0RKaxrr5YbaZWdLY8fJaK5fLlEDzLLuN1Xv9DdA\nnc20rqZHGqOOr7lHkNDMzDq/atu8oOf0P1f/tJrwbKESlXS05qWIambHkZKFxlmWsVutH+pvFNsW\n58TxQGeUq/o++FD7rO9q/5+cqV698cjWa/WFA0KtWQVGmQSJYKjh3bLXz3VO6h/r79qBBm1pqDEU\nDEHYZVlv39f86vWE1KjvKApeCiNE8ew3npdD6WaR4XwH2uuutgVnyWwXBSsXxEhBYyRXOaSeqpe7\n1HPacGKte2qHTkd9XYa7aorCWiKCTE60rzRAb1Va4r+r1UEdDOBU4ey1GGuMbRT1/1fws22zJuy+\noXKvGDuXt6ALQFweHx3pM6853AC1tY/KXJp9KERJaHYdIUe1FvUv1PdeQuV677eEEKrXQVm4ICCT\nKFGyJnjsy5ug+Vwi3TcTla+Y0P51W9KY7oGqXUzZjxlPLvtiHu4hj7NRpfdSybF4kDUnrX5JeZQj\n4DzNPpScRso92g8S7A8l1LvuYg4IldQcPjlQ8g5qevMpPGWHaqPb7t/q+yGIuQLcKHP1XYT8nnwO\nUu8BY/dQ59ibE71jTEGKJ2ecT+GGScNxE07Vdn1U7EqoLBV2NWa6K7V5BrSAg6RXYcE6D3IkaMEd\nw/kx0dT3j3JS4exegGT8hd4nrpfa42qpIp9qD7/Hu0oVpHsTVaiB2n7FubAEusKBMzIa6w/fESei\n01G7PvtT7Qujnp67QHE3eal1bp3lvAta6z7cNBfwIkVIxiVjbMQ7V4Z2mnZRK9zSXK2Dkl3nyNpI\nvdqZZM26naefaqhHXXIm6H6ps0SIws8SNHGd94Ap+6/X1yevkLZOqJ3cDRD5Rfhd4Ma5cDR3k95L\ndcLL5NJaZdemcDBNUXLN39eYrM5B+ZvGWn6teZfdRukRLqnpL4/MzGzBGNv7ms5ztyPebeYg05sa\noy68mksPpAuqm4Ut+EsHWsduVhoTQ95rDRRsagdu1ZXu059oL06mNCY24U4MQOqlOJf3M6jeDXR9\nn1eOIFQ9unqcPQS91YRv7sWL9/U3bV3P6v/bqLYCALQiiPEn72tOldJqz22yDv4ui5EyscUWW2yx\nxRZbbLHFFltsscUWW2yvwV4rUmb/DXmSDr8tL+3bP1CEY0QEo08e5mSIAg88IoWSvJbzUyKoOXk/\na5EaSBIuCVjUl3MUcFA58siH7g/gFgjkUYtUTqAYsOxQz7kgVywwOCTIgW1m5OEf9eS9vu0RyYUr\nJiTHrlCXJ+1eRR7/5QJt+2t5Z/N4xZOH8IWMiOSABFqU5N10QfSsQ5XXSeAhhAvHSHl1yb0Nerr/\nZr5kw0BeyQW578kk0Zspntd8FH0S98q8J8/qkkigh1zQHNX6PIoALpG256j0+Cv9nXsktZ1zoi1z\n8o6X01dTTMnc05gokC89nsCPgRd2RbRsSRRmRdRjhdqHA//D2Vxe0SxM4rUNvLsggYpoyKfSGmMu\nygyZuX4f1vX/29vkQYJISYaqX/4+bPqfEnF2Im4euF9Q7Dr+RO30079WZOTR15Ur+s3fVntN+/Lw\np4lMLlGNMhR31uTaTmZwJoDeujpHJWMuj/rePXmnc6AwblAocyu6746RYwo/SZ6o4g58KgH9vIRH\npAiqaxbKfTybyvtb3VR/71eFSlk8U/lDon+tuuq9GtH/oMeWoNhmc7VXhejYFNb+SeruSJmxr8jq\n6AS+hbzqmCZr3oPLI28qa2pJHvWW6lrZRzkEjoLUqcq8eIJywo2i+Qfvqs38IiiyHbVtoym00IR5\naWO1VSqHUgxIlhT8SMECNNCNxl4A/0R6qnVmArKkxNhJo+oUVjTnJnBoDT3WP4OzZKF61Tf0/AJt\nmGSZzxLFWc1VnsIBUat3NXZT8AFN06rHZQceKVdz30G1pE7UvQFPRpu5NRmpL6dt9X0hCbohQsKM\nVB4nCfdDDVZ/eDpsRi7/HmpTC9BTfbXjKk27LRLU59WUda5Yx3tL0H8d3efwTfXjzhuKWk46tGch\nUp8CPXGidTjvg/Ap6j59EJc+Cm6N5EPqo/JdP0NF8IV+X/gx/ZQFQRCtqaORtXsoEsxAaZG3nW6i\nNgE/UHZfkcYKkcZGVlHmFfwLFwPallz75DYopVBjpwDfhQP/2QQehtI3NcaycL34IGTWK9bBFyhn\nNUBqwOdU1OPNUEx58rFQCxOiVo8LaquDfdRDar9lZmbzFFFrwkO5M10/giPFJRpV2tEYLcJ39De/\nODIzs2v2JxdFrym5/2X2s6x/93XEzOxqqPt+8bcq/8YDIVO2ieymQNOuhnC4oBZVAjnigaJ1URxq\nobxTa+n3M+bS2Ff/ulUQiHCf3X75RN/Dx1SD927o6TqDj+kaVancWmvYfFH8qg6Tk67l7unvByn1\n45h1tr5m7u7q+wS/C0AzlEIQl6Dscq7muAe3w81zIWx80MeFPfX/GWvwFtw+rVsi8LVNK24ponrM\nWLy+EFeMN4Ujr6ZnXo/hDgFllEa9Mo16ZneAWhoCJyVfz/Y4q4xYJ8I9OABBOW0+ZCw4sKgsWTfS\nWteX3t0REGZmM0dzaHSu8p46R7rdCq6bjtatc86jFRSzXDjH+l/xy6k8a+b2tsGLBLdBhrPLFufC\nVknXdcfqg/FU9zm/4axiGnvjhdolDy9gMac5vULhZ46S17ijMRqtsw82OPsw9pob2tN3auJO2NzS\nfSegLVbXUrIcAbdbg16oMaenqKDubanf+m34SOB0C+A+a8K5+CzH+gq6zGUcDIYgodiPf/3Fr/V8\ngvx78P1ly/os0W4L2judfNm/xXLePM6GkQLmEkSNR6j8BrXVLvKqtYzqWynffS3xfJAWKLsuUAfK\ncp4b91XX+rbWhx3U9k7OxMPjwou0Yo/IUNcZ9+3BAZb9A9W58u6hmZn1/0SqPBlPbTqc8s7AO1C6\ngWoSnGGH77Jwb+jc76IIdv5CCMxsD/QBXIUVEIvROr8eqa2XZ6gfval1eg8lnvy9JvVmby9HyEFQ\ntZ7uV4r4QkC4F+Fx68KVM+P8WEBNdX0GqmJf605+Q+Urk1VRBknvR2sJaqsOYyEJUmn7a+LmmV2L\n83J6rbXJraMEjJJuCFpsPlA913yW2Z9vQcx3r14NmZkdsM6OdObIuBoH+yu9Z1zAaTmNePvgfEvB\nPenANxrA+7KC565vGifBPaGBz4/Ujpcrja9HnPP7jZf8JrfFjCWLGRuM1SedkebB7+yinFpQn3/6\nobjwmpTFBz3vrtT36ZHK0OAdpUEfJBa6rs26lb6FTxJECYJRlvRBbEO0MwRVOkd5MXujMbnmnbDC\n+3/03jsHrdm+RVlrV+vYijPC5bHWzyzruA+HbQA3az7U+/o2e25xqnplOEcfJsTJWLpR3wQn6oNw\noXpOb0CPol7amsJ9xjqfxr/xd1mMlIkttthiiy222GKLLbbYYosttthiew32WpEytW/KK5j4ujxL\n2R0iIj15uJJrecTOz4g09uXVbSbl1U1X5akKYY+fdWBTJiKcRsmBtEebj2DNP1LeYX1XXtthKE9W\nkJKX9gDm7mFbnrmbS/2ulCMffKXnTcby4IfkXTYr8pS1Yc2PkC1JOBn8WaQiAgdESZ7IGY78DBwx\nhTJ65kRgF3gcS3gGaxvy5CVQ/OmTE2cjvPI53T9NbnE6n7Qa3ASzkbx3Tlfeyh7IhIUL6zg5nfOZ\nPK3DFd+jzlTIwjKewivYhuGfvO1mS57Zwj21YQ8kxtHzT8zM7Kqt593VJgP6FMbvCYotKdBBi4X+\nHs+IBPt4NyPvLFwwGZRrpvD/DK/kTQ1hjc9n5a2dXuKlTWjsrHryZGcScuPWK/BQ9NQ3fdQxulFI\nl4hkNkN7T9RuWTgclqd6/tWpoj0e7Orv3Bzq+rHaJwXqYvFcYyRRh3uAfPAMHA6hgyJBSs8tMBZ9\nEECJHFwP9NcCz3yqCA8RLPn9KJJSIg8ftFZnhooTXAktuIcGcAelQR0ETLIlSKk54yrpqt1mKE+k\nAxSIJrrvNV5xj6jjEjRFdlcRirvYNiidCRwlOdjQu58rQsm0txRRK+eSeX+BSlkjijKoz4q9iNtJ\nZWyA0MsTrW8XyMtuwxEAL8bFx1q3ptcagwePFY0uPdIYfKNOlCanvgzKek4Aom55pOiPM1Hf1/ZU\nr0oJJS/WjU5WFZpOFG2fgmIoulo38iBpHNaDJZGLKMiVuobjhKjVDH4pP6l6nZGrP4RDJpXifkRl\nfPp0k0jo1oEi4eeodayI8vkoJkxA4y3Itd2LVK3gFphOUcur6X7VApGTW6I9Lko+5KOvnAiB82pI\nmVJTzy0yZ+b0r5cWGiJSzpn9khzjc8Y+9ViBUpnAJ+ItVR63RRhzEimVoYrS8akn3GEoaczgUWrs\nKho2aqvdBk+n5sI50iUSVzzQPdw9tWkZpF7xgfaAI19cWFH0fTTRPOw9OzIzs5tL9fV730N5Kku0\nHL6GkLa2t0B/3aptNsj7noA2XR+pTdy1+qqWg9uENnSIsjc2QeZtaGyWQbIsmNcXIEzWrMN1FLGS\n7LUBCiqjG1Bec9YzFMyKD9SHD3/nHTMzS53BB8WcX5vq1SfaV8vcXTHFzCyD8lYOjoOUz6BdoFgD\naq0KyqMDorLR1FxNwXnWnYPaBclZPwSxAqfbbV8RXvM0ZtYleJdaEXJFv7txdN16zn6U0O8rzL1E\nBbXA/4BTpnsZ2BjFnBCejfmt2nteo52IQrqoqKzSGncLopWJCEUA6qN9pX3u5DkIol1FC29AuY1A\njuZL9PcT9tGGa3mQE+6JynD5GWs+qEl7DHo14sQr6TPHunz9VOtr74U+7Z7GyLpLmduck8rs+SA5\nRkRGeyuVcQaqqJjUdX3GZMnv26vYCdwrf/F/ihfPS+o+j773h2ZmtvuG7r+xrTYy1HumcB4Eae0j\nyby+byY4e6Tgf1pr76tWIxk/3f/5tVSk2sdw0oBQvAYRvYBn4h4oJy+vvnu+Eoo2HBMR5lwacaLt\ncs4ewZlQyoMEgtfIUOB50tZzE6Bcq0nNrVIdLkf2ye2a9rsx+9ATuNmuQTEHITxSfdASS5V/vIJP\nBai6k4DbAQqJPoo0uVDtk2xo39naUzmSCbgaQEEUUTJyt+GSM7P6RslCOCsiVZlL0II+arD+JSoy\nZeZQTmtUYC/5N/4hy9dVlhRcLOeXOotMUSUdfiZES3UHBcCHqkvpWm18+tc6S1SI5oegdLKRihr3\nc25Vtvv72rvON4X0mMNZuLGr37kreJNAEU8u9PujX6CM9a4QI/UG68+exuiFr+tyM5XrFnUg/xO1\n2SqN8lZH5RyDNliEnCtDzc0pPG7hC5XjEn6PDFyGDvtM8U21R4iS5hgUW4Qsmt7qcwGhZxKkfmab\nfYNz+HqmOZ8imwGqQitn9fwr3ls2D7SP1r6v9bn3JyD5Ueido/RW7ut5q6pu1PlS/Re8oTm+CWJ0\ndP5q6rK5lNrLMZBGKLLN4IDJRBJp8KCEzW0KBr8giqCzEofcJWelhvaNyjtCpBZR0Lw23gNAHy56\nL9Wixum5DTczNjkDwQLSO1FGfZRXnABOmTbvNtWxxu59+EmboKJGT1SG5Rl7d9bjerib5uqj3U2d\nb8988dh9/Om/MTOzKaj/QVl12t+AP4isgyGZNKNTrS97KGple9qL55wrkzXVsYBy4NFAzxnzzlSG\n9zK4oQkZw+mG2ur5+0dmZnbZA93Ge0awiPiNdF0ZhbLOCbxRKNqW4GVbo94WZcD8XRYjZWKLLbbY\nYosttthiiy222GKLLbbYXoO9VqTM+3/6Z/bPf/+/sf/9//hfzMws+Gc/NjOzGnmFmZYYsr+1dWhm\nZs+f4H0FvdCsIyVBnnTE6TCGbb2RkFc5X4XV/UK5cP1Q+YM7e1J8mMABM+7J03d8KQ9aZo5KAIoM\nJTTsg7a82AHM4LkWER7yssdzUCUZIj6w4D//tTx0e2+C4KH404E8eSdHQpN4ZXltM+SjRwzko668\n1kUiSNkKee5EopxAnsMEEdxBIE9lqudahnzbCHECIb/V84o6ZECg+KAJEniyN4j4rRIgYoj2LkG8\ndEbkAc8VJcnAITN5Lk/yAjRB2FebRyzwdzUPZu5eII9wrkp0miiHE+Axpg2zborvVc4A5IlbU1/m\nYCv3R7Dio3ISeSdXeGfXeGM9V33VBhmSgf8hJC8wE/FpnOn/q1E031c5fJS2Mii1fO9H4pDJ1P9r\nMzMrbar9N+EBuYVd/z6KBP4ShQcS6ftr/T2H5yJdRJ3lEcpkt4SVInRCljGagcMFNascCmVeQfcZ\nkfO8hIMhGtvZrMrfBx2Wxl2eD4g2EvnJHC+4H7wlRKPGXkh7ERFAkcLDY++dqv3O4BNYEvHed5Uj\nfBdLoASThQF/Df9BxPnSKmhs+legc4icTkAF9SuqQzYJf0crypElspfU6HByKAo4un5AG1+fKXIw\newF3AOvJgj4vEklcZNVGadBUHgi4JYo3a/J+C8zFWl1tl0O5oDvQ5yKt37c8/b4Lh1YedYgA5v42\nfR0uNYY3iECHeY3xGxaBNOvlNeU/RdWjQkT64B7IPDi1hkdErlEYS2/D2cOYyKBsltsA4YM6xwge\nqERefw/gbkmhlLOVVXRu9Vz3e/ETRfFyRL9SRNWGKZCT56+GuksF6tcEijHekvYD7eaC6rg8F/oi\ncS1UwN53pHqyvSOU3NnHaqeLE5X/YUbrdZhT+waod63hHrr3Xak4zdpwiOXhsQK1sLoiuted2QAV\nnxQo0OUW+dLk4HdRPaujIJKoa55cz+AsQB1jWVCfB0TS8g4Khl1FPAehPnOO7t9EaXA201jYelvR\n7vVz9fkVCoJJFA/qE7hlQKmG1/A6we2VympOblQ1FoYgHkdPj1ReVCDW76rNmk3qw7qTSoMMGUdR\nKbXLLXnlh9+XysfkmcbcJME+0NEcffGp0LCbe0IW3dXqBfbetxRt85ZaOzovNCZKK/gr0prTFdbj\nNGvPiDmQWsApNlF7nIOGCtl/JqgGLkAQLlE8y31H+0OaCPrFidbzaO4VkuqXaP+eghSdp15GaK9e\nXJmxP+wz5xPw1s1T8CkhUxXl6VtF/V4l2tdfKfq4Al0SHqDIk0Rxo8GautAcqDZU/wZKFTnW+ZP+\nuZ39jcZaBkXHGkqIziLaU/SZ5DzkoqZpIJ990AZLkIYPI2XESTRX4I6pq+1Xe5znyOXvdnW/7pc6\ng9SJrg9O1Kf7O1v2KpZhDjS24X/4ne+YmdnhfY3JOVxSn36m817O17punp7T3NT6lwKdFOTVx/U2\nZ46G+ig1AtW2AGED/0YyZA8n2u2BoFyidLaIzmpwXuWYo/mW1op8Se23BmnpgNReg6J2I/6TCA0N\n8sY5Ri2rgfJlU5819olKXfcdXmpMdeFi++IEDiHWnnGkarqHsllT4+Gt+4dmZlbe0dh6/9dHZmbW\n/6XacQoSPQl8oAk35BJVLs/VcxKsPflDzeGt7ZdqJzuFgo1QnOkDoY34X+ZrfZ+q6O8kDROC8Jm9\nAj/VNADhXUFBdaV1cMFeGyb17OMv9PchSMPiW0KsrD/SehrtTTug7c0DHVBWGY+eaV15/H0hF+/B\ngXXR0d65RvnLH6o80xl9CLLt4nOUKwFMFO8d6h810ANHzJ0LlbMCN1a5xp5f1fq6gOOknlZ9fdSJ\n2p9RjiRcKD6ITNBO66na+Og56F1H9dzgbOOAXIyQHskpylrLiG9IY632pvp4b1Pt8cmXGns+iPoS\nPEuX11FagsZ+/0Kfu2++p/vsao4MFhqr6T6Ib1BjLijbNChfA11c4P2iNXup9HUXg8bUvARqe1XN\n1QGIpmCoOX3JfvLuI51FPHjtzj/XO2O+wv6wo3I9Xasdbp7oPWwJ3GzOHO7mUfFqv0RtpELXciuz\nZE51HIGwPv3JB2ZmtsqDWKlojffhTXPgQpxP4Zsk6yIs6vtBoOuqLdTYeKfpsD5kWdc3UAWdw8VS\nRlnsMkBZF/SVCy9orqIx1r18RluCCkP1MySrIMF5rPlI59HNY60LLuqdeztafz7siyNrMtMcy/nw\n7kV774bGbJ0xeQPn4jqt+gEQsgXrS4p31X6oNg/hnPX/AbdLjJSJLbbYYosttthiiy222GKLLbbY\nYnsN9lqRMglyrt7ek5d4a1fexsVcXkEXT767iwLCjryYQzxPk4GuC4kKVuu6LlVEKQiVjiGR6NtA\nnrzWe/Kw5b+l5w4/UGTB68s7+eyJrt/civK3aaYNVD/wXi7ncN/g1V2bvLi5osqTHIIyICK8nZGn\nrELe+QLlnDIKNXVPOXOXcFq4I7WHV5BXOF8geopyw2yg3+dBI6yqqv8aj2UOroh5amIzcviTcK5k\nsyhUwT+TgNV8vMSTDmIhJIe0Sh52pDwwIW93ZyUvY5Noeq8vL2H6Qp7aOkoC2/f1/2n3ZX7vXezi\nXHVtX35kZmYbD6Vs0jqUx9iFyXtK5Dcg979yqOeFRN0m/Yj/R+UZEXmFmsX8qcq9JCofZtR3OVSB\nIgWZAX7MUkte1GQAcoToUIa+TzfJb0cBaLFE2QeugB//4Bu6H7wfTdjeM0QBNzx5dcsNjcmcBxos\np/s4c5VvTZ5jOaco/jqn9li14cEgxzRdzPK96ju7jiK58pTPxrrf0tMcO+koUlOLIsJG5GOg6GLE\n5bPCq/20qyhkaVMRi/ZMcyi1QoWDqFvoElmGmyh4qOftbqn88xuVI0uE6S7WHQmBMLjSM3cq8oRn\n7oGOQsXj7Ege9eEViJpDzacCfD8Ri/wYFYtiC3SZr7/nREWyRKmzoA+cXZU1QWQuewrHAWgtQ50t\nAQLDiPyWvylurDLRZUuq7TYGIOGuQXVN4KDyyScnKp7a1lhrsowHcP9HmFUAACAASURBVApMPY/r\nVO40XAEeaiQhiBV/or6YkOs76vP9Vy5/jclUmb7o6/mT5yh9PRWS5F7z0MzMrkD01LZAQX1bzx13\nQRqC4ghQqum1Nfa3iBK2UHjwye3d7aAgtgPqIwvKr6rnViuvhrqbXCiiEfVnoaC5NiIvvlLV37Uf\nKg97cSa0RQq1v9IG6l0fqf0H5xpPxtq2nOj+Y1SvPNADlYba0ylprbxmHwqJtqXYB7sfPbfLDzRW\nWt8QR8DGWJFTW6ut2kQUwwJ8Pzv0KcoqGU9lefv3FLW/PCeP+Vbr6A38G3k1rYVEvbfeVNm6ITw+\nROcHIWgEUAwl0Ewe0aMEiBYPhIjf0+8TKBqsligtFDSG9r+tei1K7BNEWK9v1HYR2sqtg9TL05Zp\ntWUWdFa2rrlZy4JSZX3u0/ZrVJjGg1dDU/mgL6Yjlaucg4eqp77KsBfPQK314DjIRwjMFmokfZQc\nV3p+DYTq7YwxWEY9ME8e+ppoWwX+pofiKvCmXA/HwuaG2n/xBRwPR6yzkZSMmc1WUzPQDm5Jc6qe\nU33CgMhrV2tRMa1yh3DvuDn104Q1J4OCT3Ub3r83D1XuiLelq36sFeDJGnB2QZ0lu6zbmChvbl9j\nde9A1w4drdvBWOtEF26X4El0RoFvaFtlankg8BoohKGKAwWXnReJxqM4s6iqLL2+2ipSq8t7avOd\nbZ2XitVXi03eeyQ009ah5kz1gcr1yV9J2eSLM9VjAzTvAs6CnRocDfdRdgHhnQdJOEQpMXWtMTUp\nq/4J1m0PVEGWs8UKnrcMZ4eyof4GX1AezoMUc6UCX0gJBbYLEOAO/HFpl3NtGf49R88Zf3JkZi95\nrt5GKWeCMqXPmLo40xi8+VLXf3Qk5Mp4IGThDpwzzXv6XS1k3wVdccrCP/yV+vH2WlH+6ZoOZo0L\nCO4fwZtUG2o/MF/1cx4KYV9AlSsovUSRBY5vA/a9cM2NQMS6qDCl4Sq7nXG2gyNy8Aoobxe0ThCC\nvKaN1iCI04HGToC60eRYz9x5S+eg/W8JVfDsp9qDBj4qPSl+P9f9b34uJEqtqTlRJTp/kwexAvJ7\nBFfZGmRJgmh/ij5d3jKP3wZN+obOMlHTt9dCZERoLG+l50+Z78siY+YCxde3NEf2f6QzTvsn2vOy\nHc7VnJMX8BIlUXNLwK1Sf6xzfgjn2Pmv2F+eogTpo/QIMnyDMXz/e9/je5D8z3ke59QKKItUS2MR\nwRxzGEv1Nw7NzCyThdeTTIEBi0xxqd9fw+fZBKmfua928Bw2yjvaJEm/bqrfLuiXqakdCyA9k1cR\nwoj1+hTV1BfMoXuq3xYoxBt4kY7/gjMKa+kWKo2bAQpA0RnVzEqjnNnF0ool+DM3QbnCP+SDRMw2\nVZZ8pIQFMuV6qDPGJUjB5jZ7laeyRnyVqbraPse7psee7oBqSiVA3q3UJv6l7vfsUufOzJJMmAqK\nWh7oVXjTorHtgoSeXETZCrQRHGBtOLL67AtFEJtOlIED3d4yhMeoqu8HAefYvsZ08k3mQISk491y\n4qpvzuFwjPwE+4/+fmRmjJSJLbbYYosttthiiy222GKLLbbYYnsN9lqRMr/7T/6JmZn95//df2tm\nZtlAHvSnP/+ZmZkN8JyPuvBhrOUF9Dx5cQsp+EuIRlkabzTR+SF5k1NX3tXSlrzJrUNFFgZ4bXtE\nGMKcvJKZqryRHbzL8zS5aeSwFh8S+azCHbGSZywYyvO2GsjX5aGbXs3r7/vv6v5OUpGj43MhbdpD\n8iuJJE9CeRgRX7JEX+XbfIS6hwdzNuW/wavqOnht8RRmt3RdKWjacki0PoNiwUrRmeWpPL5DEC3u\ngIganAV52MtXMPyv12rjMmzpW+8qopcj13KEAksjCRP/faLBsJPn6+q7u1oBz/Yt0ZQC5SxV1Bed\ncRT9lnd1iGpI/Vp9liX644ZqiyXey3RSn2tY5SHeNy+PN5RoVfoBUXqcoEEHtZGOvMI1ovyLma5L\nOOSYolDjwvszG+p+CdBYZVBXs5U62SFas0GkNEv0vJxU32eJKpXwxE/JL2+DTEpeK/I5IX88DSKl\n20U5DKWLiHfEhwE9QTukMhpb56gw/fTfSB0qRKHnD//FH+k68kGzRO/WRLZPj9UPD+t49OFaoNi2\nzhPdI0fa8DYnUNJpFTU+ZkRQgjnKHHcwNwqEMf8NhMj1TGNggopPz9fYuC6iIJNCxYMc2vUtbPHk\nyCaJ4g+JmCVQrlnSdmn4g2oFOAYeaiykAJp0UPhKDNQ2K9Bn95qKVuyhwmEohS14rgu3y5h871VZ\nbdLPqK/bNXg98ooIppnTt0tURFAJ2iTSkSHC1x1HkWKQd7saCwUQKh5R+NJE17lE90Z9XVe9VJ+1\nFprzzZxQD1uu1jX/WtG0iyeKXE6+1H06N6pH7etwx+xHsQCN/QSovfGl1sPuz4gCXatc+xV4Nlhv\nnbLaPV95NS6IInN/CVdAgsjF+EhzJwdL/u6h2vUSBYSgonbvki+eb6ofd94S23+ircVh2NN9qg80\nrtI9lCOIcgZZFpGk2jVM6H4J0HClZsbacHmVHJTEWM9uQL4t4TdYofAUlFGwQklmd1N9m95HTWKl\nsX7xkcaUB9dBAd6GNNxgybLKmIWfYgqvxSoHAmOldadU1V51diRUQOmEuryFogzlKRP1n9Nm7i58\nQ021zR7Il+MT1at9rLnyzZbKvegTwSNKXWzB2dLVXF6ttG7n8/BnoLRYJtpd76o8LffV0FRrUF2r\nqfZLf6UxtmbdRYjGJihrzS9Ab6VQx2LMdG5BsIxAMySFyvBQyXIoV+7dSJFRY3oO0qgwhzsMbq3j\nz8i/Zx1NDVhPjXbIFL+qQ+NeztI1LUKugXhKROpVRBVp3lJJv9tBRaSyAj0MB840ofU629KaVQSt\ndnIKQgiUXb6q8Xj9t5oDS7jK1qmsFavwFY1BE2lZsiW8CBnQWMmu7vVirIhogkhmOa8fpODkGqJm\n5EYKiwj1FfZAmrzL+QsU13Kk78NtzixZocnqiLflEvZK5sFbNClo/br8fzUXPv1EZ4LiQ92/xPqe\nSMKDB39TuQ8HCnvlLSi4EfvPdA76dQp3YlVjoNLSWDy70HUhCiybnJGmqCr57H8h/HqZfKTco+va\nXZXbv1I9Mit4QqBemU/Vbsdj9eXJsVDKS37vj3VhFe6EwZn6d7hA1eQW5SA2/90NoR4K8JR4AxCa\nVeYsZ6MAPsPjEeVmzatxNlmCRC+s1C59kD7XcEBuRUproKMTHmpfpy87+ProymYD1AbXcOU4WsPm\nIRxzN6C9Qq1JQwPJ33mpVPMPWRHEWZBCzfISFCWoseAYNcqmrjs7EaLBdyI1O1BhBfV1r8OY73I+\nh0swTZt2TlCG+ZbWmfqb+vv2Y/XJo23VYQrCzXPhe2MsX3R1/fmN2uTxW7p+420hd3y4zrJwVa2Q\ncoy4DcOZ1oWpB1KSc3AN5PfyCTxwQ90nHKH+Bu/aCpRCgNrbhD7OMUcyzO3hmdbPOTJxCc40w3O1\na7Whs0gTldTzxIe6D2vBBPWl1ArOGhDc0fuRNbSY3Ht4aGZmvxro+9X77GOczxMgMbsz1EfPQFNM\n7z5GzMymIFX9BDwoyYgHS/ffe6CzSB6umeFzPacKkrO5RMERzhgPfqWmIyR+MNcZJcdaOTNQ2pyv\nV4OXHDj7YdZyk8Cmvvrq8MdCDL+41fp19ZnWgeE1ZaGsLoqvLc4xfp++BcG3JBvgdqj7jkGwVIsg\nYXgX6IB0KQ41fzsQHbme+rrqo7bGnhWyjkRAx1VXc6xShGcOfjv/QvtI8Z7aqGSaMzddrVOrWaQs\niRpfjfUFrq/rG62DyUPaMKtydZ9x3oMTa8K5eQkfkVtQe2zm4ZZh/bd6zCkTW2yxxRZbbLHFFlts\nscUWW2yxxfb/O3utSJnLP3lm9tDs3/2PPzczszfIBXVBehSK8gJmiYJddeB+IX86QKEmuZIXtXMt\nz/aKHDWcg+ZlFAnIEs26he+k2we9MIHpGvTF5j2hOWawTy+IxPtTkDXkaZYaiuohimQ+ihShq4hC\nAcWDKl7aPhw5T8//0szMduG0SM5U/va5vLIbBalC9WAY94DMpMfyOI5NDyzAe7K3g2LChPxCT+Vb\nrlTwefvU5gt58TYTatPSfbXd0uS9TML2PcX7OBrgueVecxdEylplqeGRXvgqy+wC/p4XRL2IGP7s\nf5Wn+uwz9fF3/9U/tVexd34o5ZJdR7mpLgo4UcQxi/JMqYXi1Kn6vgPCJGyT70fEt0Fe4xxOhBkc\nMw5cBJ+/L2/wv/9//q2Zmf3eP/tdMzO79wONzUyGPEWiWx5cAqEHMqVNPiEe9vwW6hcL9XE/oTFa\nCRSZTDIm53C6pCI1qILu5zNDfdjZlzOUKOD0cUACjYhARHnm601FKLJL+nmsMV/wmtQDD/9X+Zxq\nx5Ak4iXe4M61+jcxiRQg9FxSi20yUCTnySdqtyjP9JdfKvKzf1/1fOM9cWOkYUjPkG8fBOrH3owc\nWjz4oQfZzx1syXpRSiqimIatffpEEVenKM/4wUNFTxIg6ebkwqaY5x0is62CPOwh/EuZqeoeDslr\nZv7P4IQ6B6HWLWl+N0D/5HLk7JM3nQ0jvgv9/8lHin4PJyDsyD1trLReNGCx91xdXwN9MMrBa0SU\nOlGk726Ys5GcBhHALui1yUzrnVtkbKA2lYc3KAGibzgh0kEf+89VzvFY933Q0u93D7X+bddQYmmp\nvsE56LhyNHhBDMKhEgAlavG8NM8f3qh8Q3g6givV59JVJHpe0v0vvc/N7F9a+1LtdlebwzHQHqg9\nDtKKRroJkDptUIRpODB2FPFuZbR2DlCwcNNab+8faDx8+UtFXC4/U7lbVSk5hJ4asH2pObl9X9fP\n4QBrj3S/g0NFs77+oz1rVI7MzGx6pt8+eSLOAA/ejWkVNYldFKkScJDkhEaagjpIhypjHm6mcKA5\nUKhobB+glHIKorDbU1u2TzWGs0RqN+4rojq91XMb8L5dnqhPrlCwCVmvNpK6fpVU3y2ZA9twHYzm\nKuflWmPq9FKR3O5IEeJvPtZ6nyUKt4YXo3dDn3TUhsG+5vqasbVKqb02N9VnSaJxi9mrRS6rDXgy\niJqVUSecEs0fTFSf2RJFlioIIzgVBpHSzwu1Y9UFvXGosZ8kXz7jRSgRtUt2AVTzGm40FNKqrtbr\nJQo4xZnu7xio2Ln+rqJeZWa2sV8zt4CKXp3fsUbl6qAB7jEXHe3//a7W8YgzZxLx+sFTtWwRCYZL\nYsCaGTB3G4mIz0plWA5Uj0q5aGkinyN4hALOKw4KhcMjrXtejkhkFCUHOZ3J6nfzJWN5obYpFkBe\nFDhv3dOZZLXDnsoBMNfS+tu7hK8JnrfURHVaJV5yjtzFBkv1beIztZ0DIuTr39DYLRFlX4PiXYBi\nGLkqbzqvsVJm/dvIg6YCEROdvYYoY82P4Ceqq/yDcaR2wlhwIvU6lc9da03IlbQul2caY9eMGf+S\nAysImv23VF4XBOLZE83JzAhuNJTCSnkUEUOtIcMI+TQXd8wC1dGA/Q7xQUsW6T/2yzVoiixnpzHo\nP/8S1dVIqbGm5ybgUUnxvAvaMXGtdfx4zH6xyeDL67pLFM28xEs0wGixtCDit4MDYswaE3Y0ZlMe\nnD6g9EaobZULL1Wc/iFz4FeL+DOS+1o3B2Ot+d0buFcW8N+BRr2YaS/ZfxNOqcegQf9Cv6MrDcCG\nJUMQy9G590B1LR0IxfoMpcB0T2MqQrpPVmo7dw1/Bnvj6JdPdB94Qyac5zqgcNdHqPbxu0QTpcu2\nyt9HjfTyWPuDV9d6XH2senZBpQ7hNkvDsZPkzMPQsPFHoBPeUJtvvqnz4+JIF1yRZYCIkH3xs8/M\nzKyMSpWzp7Ne4dMj3Q+0cpLz9Sypvp2kyHaIlMs2Qaj/QGPs3iO9d3wBEmaCgqPH+TkFN0slW6ed\n1K93NcC7tojGeE7752iocg9BxM9AOPU4MxbXWutSKZTQhrwbfshaAd4iyZmrB8ejixLwrKf+r01f\ncq49zHjWWY/sxZHWt4PFd3VNUXV7Co9RHvW0Inv0eIUqKO9ii3t6dhaOvutn8CDBYzkL9buNyqGZ\nmSEmZ42SxnwD5HSP9+l8GhU4Q7WujVoqaKcIjo9QlgWggbKO9u407yjjzzVGoIyye7znFzdVn6dP\njszM7EVbg2o+BtlchFezpTbfQEHsrK+zWZ39rMIe+5xj6WZJ5ctt7VIOUK3se3+XxUiZ2GKLLbbY\nYosttthiiy222GKLLbbXYK8VKfPBn39u/9V/b/YT+Ct28vKGeveFSsjC9eJtyFt5jzzNi568wQOY\nv1NEyVyfaF5LHrJ5iAd8DOsznnN3LC/vffL3J468sT1y2oa+vMWOizoLEeXlSh6022O8jnA7FFPy\nhLVrRIRneu7SUDJYwv/Rfsb3iiyUHytn7+qMSDa5sdkhkYqk6lGsEhFJ6PnDrvTUyw9hLt+G8+Bj\ntUutdki95ZnrtYd2uCWPe4Eo7xRllzke1GWL3Mqi2sJfkhfnE/3YIIe1STTe5H08+pk88akFSJaS\nPL2pJrmSJ4qMPr3UZ+nnqttd7epKHmoPFYwFKhgUyxKB2mhGiG4EF0Od6E7QAk3gE7lDuSFhkUte\nnudyVl7QSRVPOxr2PgpeBlLFwVsMZYuNULKpgCoob4FauiTSuCJiWSCie6t2aLflUc+DqlrPFB0c\nkV9p5MquF/LihhEqIpqya3gwiFo9eaox++s/FzJp/xuKvn/r+z8wM7PpUN7knfu6fkLkNQ0KxClo\nLrzzSKpWtQaRDdAIzWKNekkNYPuhcpfnoDSWP5ZaQHmh9r09+hvdB1SGF9ULNa90DXTGRO01+lKR\nlXPy3AvVu7PYtwrk6Gc0dnfhD7q9QU3oSB727lrz7mqueZSCj2JVI2oNH0+hAGdKEk4QIpnZKOf8\nufoySSQzBXeAkyV6TeS2vINC1VJzYZUAodeBgwqeh9KuypuCrf5wmzEKMuP6SFGhXFFj/fGeouel\nMrmsXoTQgx+KSOACTq3xAk4beCqmCY3NFMoPXfK4Q5B2OWNdIeI6CskFHoLSKJM3DvKm3VNfLRpE\n47N6Tn5HYb1gE8RRRd+Pya1dEbVLwrmQ3kWp7Y819krnaschnDRtFNReLDVW+p2XEdC7mA9rfwd0\nRhMkTLGkcRPQXkMIpnKgJQxETCJBzvE2nDZw8eRP1T6bV6AOQa8kQGuMjsWx04ZPK8lcmtOekzb7\nlzu1AP4Zn6jKEjWKqoHggB9p1UHJL6cxMaYNT55oHZgXVLcGylgLFAsd9sSsqzq37sHTAPrqyYXG\n2nVXY2ProdBQ6Rzzl3XRW8BTBP9CaQvVPuZ3iij48pqo97bapkjkrwZXwAgFm2AJEiOv56Y3tC6E\nHd3/+a+0TgcgAh/XQZywDo8H5IU/Ur1Ke6Dhzl+qS9zF1hk4vEAKEpS3xAieDiKqgUNE2mXsEll2\nFmqfjX3N5U24ZFJd3WjSPdLfFbXPzYfaR/vUHyCntQdSs2tuat9OnKpcg3O4zuDTy8J75RVeoj2y\nVbP6LiiwDY3dD0dat5+9EHrQIwrp0E89FHIW7EdeVvVKzPX7PhwHyxK8VVUVdIV6X2/N2WUTFZVr\ntUOpVrGAdRbRSWvtax44DmN8pvntoUaUrmlebZaIxgeUiXWosaExWT/UnHh+pRDp6efaE9cXGgsV\nEH2zLxX5dTrEIBGAXEdzbf1Sueou5hA5zsDl9XVU95Jbuv8NiihdeC6yaVCpRE7TOVR+QHDOHJUz\nU1Q5RytQbXzOknpO71R9t0AhbASHTEHLiS1zoDI4+8yJXK9Xev7gUnOohPpfuqHnruBKdEADtG+1\nXjmoLz0C+WOgen0QRgisfcWxkMlp7jXZ/5agqoJTuLlA8RlKZAN4DbNjxgx8gZtNoRwWRNRtonYc\nZVSf1RSOCtbCPGiLMupUfRCI1QHokhQNZGa29C1kHzTQ4QWg8Dm4j6CtsuFY9XfgaEuGf3+E+z+0\nfqSwSF9lUNHZGOlzBiehA6dHC77L8Qb8QRtCutRQszxGyfXyQ50hFim1hcOZZMb5cX2uc+U7oJ42\ndzQ2bz/UO0OuCc/RHK4uV+VbZFXHm2v1SeMT1FO/r7nWOlCfXMCNswYN4E9RzHH1/BBUUecFe6in\n+2RRcEyDvFzCoZOOzunwCK0T6rP+c/2/4+nv5lvaJ5wWyPgJHF9sS3NU4J5+pnbdR+EtsdBe3OP8\nv41aoTn6/wpKY8uB+uv4mdrjuK59cOdNVBAf6/nDJ6r/DFRyva7rZ5zTvSwbxh3NN87BIIW2QWkf\n8f0V52LolqzAmpFmroVtlXMOP5ILqjflMMbX7PdwZdbgP132QdhkX/It+cWE1bJlK5IV0Yf/qAOK\n1eVck5po3XWy8HGm1UcRX9wz+C0XrF/VA+1h5aTG3tW51rEAfsk56NNtFAeXjuo+fy5kS2VLe2h+\nqXVmfKLyeKBw3S32ZhRpJyAA93iXXdbJUkAteQrCJpdqUD+UbOGeTYOcy4NMz4JsX56oPaaokxY8\nnb3qWbhu6Zv1tfazqzN9Br7K6YN8T/4DR5IYKRNbbLHFFltsscUWW2yxxRZbbLHF9hrstSJlqg+V\ns/beN8Qz0nz0fTMzu0VNaIgCw/wLefemc/gzHHLS6qii+ER6TV6/BYoTWUIijqf7LeCEmZ7j5QTp\nUiDJbI5+edmBWwF0Rub/Y+9NYizJ0iu9/5k9e/Ps/nyOCI+IjJwzKytrYg1kdVWRhChBDbLFQSIh\noKWFCGnTu4JArbiQFiRAsNFgbyQUQEGAUK1qQU0JUndzak5drHnIyjEiIzw83MPHN4/2bNLifJbB\nIlhFz1UCkt2Nw93fM7N7738Hu+f856Ak3oRlkixB0Mn7dzydsOVx2kkKKQJCHicn+WVO7iaRTgQB\nrSzs6/T32vNSqXcfCvmZoJsSkwc5mwjNqqMTsLsnVkO/qBPLclnPU+D55yWhpZWdhnkVIWc5vOEd\nX2jFlJP2QId61ojRSIHZMcMRZo22bVV12jmmL8amSnBway6uS8vn9s3M7NOf+bCZmXU/j1YAaLP9\nyR/bVcoIFH8N3Yd8Xn3vTXVaOYStMDlVvb7+52JdtXZU31d/6qO6zoXasLWptunAjlgKuLDN1IXi\nhZ8yM7P1m2o7B+RiRh52hRzOFc40M05nJzGuSbAUXuvpVNaZ6OT+xV0xSeacXLunuGJ0OeUFVSrS\nrsNj9c+DhyCjHu3PafSQfGhvgWp9yFDGJsqfg6A2VI+I/PA5WgGtiuo7wImogpNBxFja7eg56231\np4MeyvZC9y/gILN+TR1/88UX1A64wPzc8gtmZra5o/s314lJ1P69sU7jN7fQkQLJb/mcWuevnuef\nwy2iDOunALtpZ6Y29QOdrJ+hWdJAiynYElqyBntgQd820QJZxeqbDnnE1U2d+JcYE+MLjc8pzL3U\n+av7nK4zBr1P0GEKi3qecEfX9TmB91owLzqarwZN2uqxfj460PVTxfz4bbSi/lDIZ95DQ4rr5jaF\niuQaMFs6JKDj6FVM88rRMXLRKFhFaN+0eU6YPM0Y5HVffRagi/T4VIjIYoTyP0jBcFMxsCii67Sv\n+/aLqk+My8jA0JBB76pZJH/8hsbm9gvk/I5Ub++M6/m4PqX1umLZe17z7kVPz79gHdlY19gZLZhb\nzhWj42Py40M9fxU2SXCNMVHT/bc/JRTxlFzn3mPmREf/Pz8WWti9o7mknhPyk6P+c2LeLh1bFXVv\nv0gM06bXYI/mQLEXjKMlzl+Oqxi697YQ0X5NbfaRz4rBmMS6dxiBgs10z2KKlFUVe3nciy4naqP1\nS7W1g67biNhv39bYqRFLTCfm+8QYOmrFFX39Ay0wCYzL/bLWl/ozYvQ1YB8UF+hLlDd4bj3HZEau\n/lxjaZnqt+FoFU4V+3nG3GKh5/BxsrlqOeuJjTUoq32mOFGsNASs0VJ/hAXdfw9Eso5mTj5S/cI+\naCIuIQeH7BFgctaKINinYrDsdTRmq7DfIvSsysfoW71LzN7VWC/taC6qXoe5OX+iwZW78Gx1U/cv\nbqMVB0v45Fjtc+emEPDSsfrp8ESIbK4vFtkAV79infsnaOLsqZ92f0br2fJQ8RjcA01FP2brWbVH\n2ytab6q1c4UuxcO3xeaa4DQzGeCi0cDJaVu/R+yXDPbRBHZY6gCV5EFuccfJ92H3zmD1AqMvx2rz\nMrFV3kx1eXAIDN+fQ1feg+FThWHZZd4baj5/fA89jTHXr2vequTUV6VNtc1OU3uFB7iLTkBSY+bh\nKRowF3fF8Bz2pGHglXADKgipzRdg7LFHKpdhEcCCmPRZH5jnozXdZw4DxYNlcYoTZAmXo52Wrn9c\n19gdP9bYcJYaa60mOnddPs9eI2BO8nEnGVR13fwlexV0VrrooazQEup0ieGWfrZwyhmewngltuKe\nYtTFdrG5h7MnznPeCnfULnsYmC5mZsu4aBu3Yfeyd1yc6joTX2N0jnuMu4l7Clpy3tVl7syDZTm5\nJObymk+6t3TNRU8bz9GB2nY6hN3/DuxVT/N4YQdaF/Pt8HWt+dFI89J2oFiqlNHL/JocEA/R/Vi7\nqdg4fhN9nXPeIRqaP2L2JOtdHGIeoNPzjmKu/rL6dPvT2k9PThX7E5wGG+h1FhO1adXT9VyYzgWW\nthouTPsfVf3vvqV5YzSBGQ2rNOCdr4Irk51o/i6xdm7vq14PcNrJu7iI5mD2sS9H9sMKN/V8vR/A\nKDnRWChs8T4BG7ixpvYpXep+w7tiaWyuqZ/Wr2sd9S/192ig2BlGvC9NYKIG7yNIzKzCO6p/dmBm\nZnPYJ7tVPXeA65IdoreFNuakqzG1Qs8lRCcvdeFrsjca4HA5n6u9Si2tL/VN9dPyYfjes9ydPrRG\na9OCp9XGhxeKpbO7uudWTt9NnQH9oe7dwBFw6xoaewO19Yx990NVawAAIABJREFU03P7Gu+DA42z\n7Yn+voX73qNA+6V6orYY4mx40tfYaO6jFzpUX1euoVEDs27RVJstcMlcwbzp5/X9UoN9M25MzRJM\n+iPVyz9UPRL2d4bGWCVlPKdaWO+qj2u4ll7vakzEhwfUF501MmNSfc3WttZivwErqqZ6/6iSMWWy\nkpWsZCUrWclKVrKSlaxkJStZyUpWPoDygTJlYlDAykeF2pyAFLQrOlVtPKPT46MTTtwvyJusgESj\nh1IF8SjiCFTCvWMOqlbAGacG0l2vCjHo9XSSNiBnroybk4vWTBOnm3HqP468fZ1T3BjNlmGIKwvo\nUoKa/AyV5SaJ7/k1oY7NQPUK7uHQ0xUitInTwqOSULH8ElYLuazFLXLXCnrO+2c6gZunytoXKQKC\nuwA52ZVK3ZYLnEVIn17hbuMGOgnPRbjgDEF1yqp7hFe8f6aT26NViq6TZ1vSaWGzLbT4TbQQesc4\nmvhCQueJTrprE/XlVcv2DnnK22qz3kAn/SOQyhy6QhNycx8e6sR4BGL68kef13OWdfrpuuQ1oxHT\nqapNHfIoY1ySnnoOhkysvn50oaECEGoh+c7JVPVcIKPu4K6xsau+PkXRf+yC2kX6fBDqeauPcROp\n63eAlfd0SRJQpAQHngDHhU2PfMkdnat++jmd5D/z+Y/oefp6nmu3VQ8HJMEHgZ2TD+/19fcIrYYi\nOb0zGDMlmqvYJQbRO8lVOPVdpFo3ul8aZy++qDG8Wuq5XVgJ3Zb6a06OtOsq7jbRb5o8hVr86upa\nECHjdDHTvfqwjdoj0HNQke0NEDTcgnIgemle9gqHlwfHB2ZmFpwK5Y9zmm+2xnrWEHQ8ATFcwBrq\np9oEA/QyqsTUQH2Ua+j6Ce4f40WKPMLgmeh+tTXGCvodlRsaYytYSJUD/X32utCskJP8yoehK3TJ\nyYU1VW/BmkKXyAchLcEQLKyJQVJDm6bEGJiPyflF06qKxoBXAYYS4cPaMPkge1mplsYI6NuCdujD\nOLqjeTi31HUuz2BH+WqP2Oh7tCQCYjHsKHY6zJPF6t/QCrhCKcFyeP5jmqvmsNrqaDwMx8zrfdV7\nRr90L1SfVaoRxNjPJ5qnyxuKh9IuLgGXoGbM++tjWB9jYvvowMzMHPSuVhMYSeubVjIxKGanQsXL\nebXhFPeFBD2aqinWpkPYUNSl09TasAgUmzNYBnkH1zSQPBcnkzFjp808c+1VzdfhsebpEq52/XeI\nTWLJZQ2q7mtszGJYaoDSsalPHdD5i6HaqlNX389gJyRF9W0X57QKrhY+80PcURtufELP5UGY8dA6\nGc0033ug/wt0pPIVTaQl5/1tcaI6rDl0QGZNtddkW7FTBi5fzMWADC70fOdLHBFTjSwchCLy7ado\nQDRval1osK5FfaGKnY7myyLsgMf3cENCh2k9lN6eV1P7QYYzB32O1eUTfaXetGcr1pVLUMxj4uAI\n96b9BU5gAKVtxvwZ/TV9qOs9/aLGyiphjmNPtVZTR/s31f+XWE4UQY59Pm9Fs2ao+PdXsIEu1ZZv\nHKruLqyua7e1D2y+ovkuPMMtiDUvyemeg1TXYsI+7tEx91IdczcUs86CYOzByOkxv0+FzIbH0q2o\n7W3Z+ynFRH0QjDX/LocwgN6A9XBXQeruqb7dtuYrD92fJbHxztsHZmY2B51PnRyDuf4/HOO2hD6J\nw/y7i5ZBzNrfbrKWN3FiW6brGu5NoPgXIbp8Y8Xwust6Sb0auJyssU+esJ7Fd1WvXI71Ae2VcEvX\nv4ZeSLmFDsYhe4yl5tEq/VSr6/rr1dTdUPfF+NIGjKUYN8LJEgYnDjXjGAcdEPb1guKq0kk123je\nItpmAYzR8hPseb2Ts2ZOc8/pGMZToP4aFtFBaeh6LdjHqUFRWCrbVcscHZ8QdPx8qjZcW9d+u7Ou\neeLkbcVikX1rqaX5/XGi8ZfHUubaLfX5zo7qPn6oWEb6y4pFnLZA4cen+v/2be0Lr70kpuXFd8X0\nSPvKZd9nMKI3jL5/pPl/hK7H7rayGq7d1vr0zbc13wVn6uu1BvMlLGMv0nVzXRwfeSe58xGx+5dv\niml38pZYT+0ijj4Ja+UmsYxGSj2vTth4SWNpOlG7nLyOEw9raQjjeh3W7cZ1GEjHmk/DYqqpxnuO\ng5YNWlrtumL26KE+f1R6w8zMbn1Kjorbd1T/d3HqZPmx9Tx7vML7c/trwNJ24UcU0fq8ZMy2ea8Y\nOHquoESMr2v9DXAKW6IT2DPNGd3rWi9LMGTuf+8d6q92c3ZhaoVPWGSjxty8Ts+spbWgwjhZY39y\nK8DtOH0fxnFra67x02Cefr6hNgrb6sNaXn0zH4vlVRurrXdwhnJxOeqsYODU1bbrO+gNsV9f9A7M\nzCzCbXVS1Ni5iPRzd1N1juY4NrK2zhaw/3ep1zWx+hMf1i+6bLlI1+2hYehVyVpAT20Nbclbz6rt\nzmA1n72j+zSKMDljWFst2F9F3XdUJiMn+PFZABlTJitZyUpWspKVrGQlK1nJSlaykpWsZOUDKB8s\nU6aKbzdaCFbV6fAQ3/EFrhazS51cdfbIt+ZUNR6CxpBn53EqOEIl3lCtD3Hm6U1BiBPQPvLoHV/3\nW5Hjb5f6/LSgk7RqFecLFL45hLYYTYHCOirtMH3G5/pevoCqPbnPOUcnbGVOZUe4QF2igbN4oBO3\neI66dBdkH5X8CjnYc9Tlx9+HzVLEs77EfWb63HSGM1D1PdDZvJLqkp7HlWm7BXo5DQd3j0QnzKVU\nXwPv9jluGsbpYndXSFrVdDoYkJt+CfozPxAaNTjCxWcLeOSKZR4oJpYweGLYAm3autBVG1f3hAT8\nhxv6uwODhVCx1UhtHeBCNEVtPXVl8nHReM/hCpZBC1ZUB2aN56ttU2eCIXns3/nmn6meaBnc/IyQ\nhUf3dJS+A7vCBRbyQcUanKwfkyt81hNCcecnpYXjgXwsBzhKoB+0zCt210A8PE5ln62rP95690D1\nGAvR7VRB16BK1XBuOB0SzLQrkgcWwD4LcSMJLoAEYCe4E/C1bSESPiyIHKyHPPn2i7nqk0cTJ1nT\n3yvIyU8fcx0QXAddlyi1t7pKWeKu1ANVidHHKanOqe2Hc43Yj0GBcJ2IiYUx0F0HJsgCZkUS42ZU\n0+fyqf7OddTZadsdT9+boU2Vu4SxUtFzVUEGknW1QWdNfTgBFQlQnZ9P1daVjlC1xq6uWyKXt9nQ\n97ZCHL1mmif9G6nTF4yMuvpkhpJ/PgaJKKZtixMbY6kM42UYc72KPlfOM2aInbOp0JYGKE7s4mrn\na4zlQdFXICjDx4qJckFjpxepXZfE0JLpugyiEp3iUkVsVkH5q4aWVwv3DhxfrloWYXo/5kkczqyj\n6xfQ4LmcKT4e3xUamAMB2d8RAlTBleN0oPt3G6jxPytNsApITW2g9qnh6PYIFuEAN612R4yAEg4V\no1rJdnZgFRwzX8x17cO/+I6ZmXldrYGll3CwSTVT9jQud39WCOTFffVh6iR1+ZrusZiqD298DlQJ\nbYIELbCdF/VMZ+hZLAL19ekxazB94YPeIz1lThX0ymVdQWOgtMGaff9AbeMp5iLWsDP0e6ohLoCs\nyQt9zdqwV3eeY35+pBjtHSm24qn6pg+rq0T+tqHzFize33rTwfmngKPi/CXmsa5+xugGpc6KPmN9\nisbACq2eJXuP7XXNj25Nz+FswHRq6jnX0ZIJYf8OjxUjD946MDOzU9o/P8TR7bqQ7HEP/aghCLA3\neq8O4TCwxQlsiwUMyJswodj75EbMFVjNdJu4bE00l7rX9Lyb64oHv6HrzRfSgxl/Rwh3iO1graXr\nl24qfuP7ILcnI5s+Zg/BOApz+r2Mk2IfxPFtXNX2a7rn6LHaenCsNRmin5XZV/VhRaUMwtYN+g7X\noSH6OZMB2oSwe9s4mq2YeCrO+9OByLM3CIHJv/p/C6k9hjWwva3greC2VoVumnP19/IU5iBsr46n\ntp6wRyjihLhexuUJdm9cwY2qothZY6wVChobJWi8UYA2ygStmpH2APO+5oqNDcXkrKbrbiMIWN7R\n8wFYv+cg6eKs08aFtNkE4V7hPMZrRMhYDnG0rEBxCdAXSdctN6f6BQkOZOjVmavnO+qrPXJoABWX\nuFGxfkTrrLsubIEVOlAjPUeJdSJmH+DBADUz8xclm1Dv5bHm9zl7jQ2WgykOOhF735T8UM5dnQWx\nyqtuZWIsQAcyhz5d8Rqs/ZbWmrRvHHSGNmATpfOph9vczX/wITMze+NfymWzRBuWU+YcfemEinEf\n7b4Nxsblga6Ty8GGLeu+HYbA9qbqPmHdGb2ltr1xR23fuKnn3r2h+eL0u3KJW9R4TrIASiXdPxiq\nbY9f13zRrKNJ+CGc0Q7UB6e4tE5grUYn7F3Q9az2Nd9f+wntizc29f3zA2lyOTgYngx1HTf4upmZ\n7ezqOVdo7ywvNZ9214hZmNzFFkycGxoDy75i5OxMc1LzQu21eV3r642h1s97Q91/iK5gY+v96VMZ\nOk5Wx/kSa57KBY5GrG9b6C/10Xzrz2Hl4e61/SzaoI9Zj2Csu0XVr8LYvvaC3g8wErbz4InmWnut\na/58YX1cgisbioVNYqPQkw5Q5Ux9dtvTmvUQDRW7p/8XcfIqwJ4P0Dxs8+64RhZGIVab1T0cwHAd\ndtDgardhXcIK5na2YB9eShRLKYNwldJ0YYF6DfWZi06Pd0cxUGirzXMPNC8mZKKU63qPzj+m7Qro\nshVU3x5uo+crxfjDmea5YoBmFutCgSyUR+/i1PWIjJo9GHjrWiN/VMmYMlnJSlaykpWsZCUrWclK\nVrKSlaxkJSsfQPlAmTK7L+jU9ZWfJF8al6MHfy5UcIBSdriC9bCjk7sqZ0kOLI8p6J8/QTdkV2hU\ny/T5KSfhEYrdo5xOXSvkd67ja95DdTkO9f9qrO87IMsrXAKWHqfTTZ3WeoabSaSTtDrIa3pmOoGJ\nM3moE0gf9ecauiHFRNeZVYV6pafJURX0baITuUGodkhwUnBNJ28VmDy1Drm+A1ybIp3CT3tLc0Br\nGziquCtYN7CKInLSHXQmEtPPOZoqXlPPtA1zJPVcD0GFJ7CM9rfJp2vrNLCBrkTuBZ1KOi7UlS/Z\nlUqAh/xojh4Fp6FJCe94GB1bXVTc22rLEX0VwrApualuiNqmVVXbOUUhCKMx+kSokhfTPlsqJkow\ng8IZiAb3b5P7+kxDp6d380Is72zhwPW2Tn/L6JK0OCRNpugc4erx5mvq4xP0k+onOtG2szSmFNNB\nTqfKBZxzChUYMDh9uRU9dzNRTDgchAcxGgcwedLT5nyRKMVF6ug15RD35orpF39ayExMrLnklQ/R\nU6mn+iO+4mEIclwPFRd+AYV02FsVYndF/mkbNGqG1kUDR6KCf/WpaZikMYsyfQO3IPKLa7vknIOY\nXY50zyUQ2LCltsihI5EUcCqY4JazQo8JlGKGy9OMsVIqoAmA8v30XDBEj5zUOjHbq/A7yKilau81\n3feIvOfVhU7e6zBJtnEh2Yjpu0R/b+yoXnnyo6NiGrN6nrNQsT6EUZLHLSOHA1qB6T9Q9W0J+l8p\noSGDS0iCe0U/XS7Gmh+PmZfDHmh8GoMwl+boAjGUrFhG8wb0PtnAOSid15ZoIIQaw+toQuRruJG4\nOLygRVMmHf6qZcEcUiCP2o+IZV/tVXB03eaOULPVRHNmhZzgPI5vCxwecjgjTC5VQbcDErOmz81x\n/Qommgve+cZXzczMu67v77D+rXzq6QS2dk33Hj2P68ZbaE1970C/byk2mpuaSPKwNMu45YW4nBXP\n0UuYgZyBAp98W/PR/Oa+mZklaAG4uO7V1hv81HUdWJ+DQPoZqwUuSbColkc4IeBkOC+gKcAaWNoB\nfZqjkYLOzngFq/T70s4ZwTIrXoeRiPZWSKxGHdWvBApmZ+TiN1mPZkIOZ+hxRMxHTvL+cKfkXPN3\nP4Ht6sC2wxkoDwJcXJInj8tKB5eiYgWEdw7rrKMxWGS+L8CaGDrMe6CI+T4sOnQ9Ojc1BlIE+NIX\nK2OXNb6CG9LRia6HXIeZmZXaXWvsiaXxeKD5/OXmvv53LWV74c5xcGBmZt1UxyqAUjtTXIwPFX8h\njnXjKpoEnvrdwQFj9kCfb6NtlGodXbwxs/hQfXByqRi4nkiMav1Z1bGL/tAjdGmSXZyn0AIYjzTf\ntjc1r9dj7duWOHIFMBebRf29Dm3gcKZY331KdfemarM27k2X0ELDwtW1QszMTua67v3vaa2esW+9\nicPiJuzhcB1dkQXzdKJ1wb9kfvFxDYVpZ6tUP0O/5gP1dZF2GDGvV2CSe6nTDftTSGU2WcCiMtUz\ngDnSrOh6Abp3Lk6QKSt1mZLKcGh0F+qXHDpKqRaLx/fKMHim6Nst2KvNY10ojxtUFwcyS3XxcENx\ncdUrzRUrAxxBc7A72HJYyLzsoemyDlNoXgDxPlN9q0V9P4+OUsBctAZT1Mys0Y5siRvYnL1wAe0d\nl/q1qjA1I+250r1bMbm6zp1/xloIgySBjXWBq+RT1xWrNz4pVtjhv1NdyujNhWjsFWE7LS9Ut9Y1\njdPmU5r/52+pLg7OZCHueDlYmm+EMBy3db85jJMD3oXadfXNJayFzpbuuwWL9+JELLATmHudp3T/\nDVyNVn3YtqkzGvO+x5hMtW4mhzDQb8Ca4N2rsaexdPZADLx8n6yDnK7bJobH93FF2tBzrD0nVmqu\nggurqT7rMDZT/dGNNX0/fYc7/K7Wm1YJLceW+raKzlOd9qjhVDnFnejyu2K3liuq//rTaL8xPx4f\nqx6l4dVjxMxslmiPsOXpOiXYc7uwyZxj/X2AFgwmWTZN96CGnsmm2qPvKx7yc/Wbs4Clhm5iDj2p\nVNeqEz9xsKyHnk3roRlMvkVPa37F0z6lkGpEuWLEbPCOMXTQcBkxT5TURqdzfX50T2sQpsDWpM9m\nM+ZFtLBOcZCa8k43r8E0f0e6PjHudbUl2QE0xo265t0VKSxjGJjbd6TfNsG16fK+2sZ9XutMANPF\nWBeKKxh47IfdAWzRGsxu9O4KXfQ20SgL2ad65xozqwvc45ZoZ3V1/Z3GGhe2H1sypkxWspKVrGQl\nK1nJSlaykpWsZCUrWcnKB1A+UKbM5any8b7x7/5nMzP70IekC7K1rbOivQ0hKktyhsdLnfpegIqt\no/WwXlK+3DjUKbGHe8ccBDmHLYgL0lKFBTIjj/0hTj2VKgraoD8OOWUJ+fHJJifrK53sTVDg7qX3\nbejUc31NSElxpevFOBYMYrzlOQUttnFFAYnI9/V7hfzTJS4fwxOdIAY5ncSV18jbRLcjROPh4lLI\nTQO2QhXkPMjX31O6v8C9KFfnhJh8vCIuE9EEnQiu6YKS59F7iJvkyMMgOXusE1nfU92f2ZKydf06\nLhInr5mZ2YNHyj3d3tEJ+VVLCbhkijZCY1d9GZfVVg5sAn+uvq0E5FWjyzM1PX9oOv5866++ree+\ngTbKTG347W/p75/8jz6r6+CYkMfxodbC0WGTPEX0OUoVff/aP9L3Xiipz289rXZYotlw6476rkD+\n/GWgGG6BwL76uZ8yM7MPk4P89vdfNzOzuw+kmv7pmjRqyms6tR2PhHiUcOiZovGwONf36+QiX/Az\nf6n+moBCjYdqv/aGTnNnU/X7698UkvDaQ538V9BxKnNqXeLUeDFH/f6xrpeDoeOgpD51QFjnnMxH\njBlyflcJp+R7eo4R11uY4ibPWLlKaaIWH6ypTyNy8UPYOFO0Us7Jw/WhD0W0fakj1Gma1zP3QMQS\nNKMWaLkEY30/yaUsLcVeDtSlkVMdfJy+vBANl6c0ZhKYHj1itlNA5ygkIRyHKtti/uEE38E9bpFX\nrBXQinIZw7Gr3wNPz7FAMyVm/vBB7YMKiABoy/AMlyD6IgHlCl1dZ7ZAvZ55pNxhHqySD8/c4K+h\ni0FefFSmvdDBqBb1vRlIQ7TGfIejlwuDJRqQw9zVWPaxIovHaX40yCWOMzm0ea5aIkLKmYEQl9Tv\n4zP9Y/MF3f/Oi/tmZtZBm8eBIbXoExcDjelGjFNEmlMMy2Ed7ZlT2BEJjjaFEuyKKSwJ1rVqDT2u\n6dAuD8Qo9MppW6uNG+2UaYHWzIqcc1hINbQKQlyWjhvEHhN/vam6DXERmpMHXssrNsewncK7umCL\n64ab6C3cwC2ppD4pJJoXjh78QH9/pBjae0519yewWX1gIcS9lhFucrBLY9C30UBt+OzzatNohS7S\nhcZcHWerwobGenyQIq6Kld4xyC4aX+UQVlpHsXrVskA6y+uBln9ba2qxhWPErX09P4wdFze7xm2Y\nPuhYDQeaRyMPxx3y2ofk+lcu1B4znnfs6ecmDKji01BfYN5cf0aI+uZ6h+/B7ET7oV5+Mhba7po1\nItgXaDqEj3C+uK7rGA6Vk3PVr8VcVVnqeynb4uKB2L0FVdvWYOVuruTYlrC+3r+QxkWIU1wJ1l0w\nG1nJY+2EzbpdUx2K9GlvqL+vgYA2ECryGRdOoptXWfM7QK7zpWJ3OYDpeKH5e7Gu8VrB7WIBUjqZ\nas1Mpmp7lybyk6m9nwJZ1CqMjW5Oz1F/RaywBXuqkLV8aTAfD/Vz2VBsFlnL26wzpVjXYUm3AfP8\nOe3TN5BqT/vL1EmywX7RLev7tQ2tyasJ7GLmyRXzUaWo/4cebAv0jBowkkKcLX1H7VJxcDFiXfGr\nrJs5GD/ULxwqpnLUu5TqxsGyrjP/VXBcm+TVTpOVvh/BNA9Su6Um2hI45PgNMavSdSc81+cucSpq\nwO5YX6VaaMzfW0/ctXKLvM17uk/InBk5aMggrOJ5us+1WPUI2VtNYN5fpbhF3OBSh9iJnmmIo+oE\nJkbzuubLVVH7rd6x2All2Fwuzo4XuAYVI+1t1vZxeHwb9uhC10/XkjLON2Fbv7fXtO+OXlJbP/7m\ngZmZUTWLSuy/0MOob6kt+0sYlwPNw0scd0q8szgVmOtj6gULydgH5tiTBB39fvSG5sWdT+nd7tmf\n/IS+j35c/hx27SXvbAyGddZWDwZfp6t59kM/rX1x73VdN4A9G4x1v1pLsbdf1X6894j3H5g8Vdhj\n9QZjaEvXvbGN4w/vORFM79F99c/GbV239bzaNVzq/wvc565aSsxlCyaVdTR+9mAchidqhxLs5Rx6\nVY8JxdxUse3xXlGL0Y2Cudmlg3uXMEtX2l+kOlA1v/nkYcaJ1UuObaJf5PIeXDHFhse+uAzzMRcp\nNqu4D6/QNI1g26YZIvOW2rDFHmaAztuC/U+Z9/NpHhYmhJI22o4TGHhrEa6bdHLxvtp8yb7/jGm8\nCZMwdwGbE/ckDxZ+mfVgfw9NR7Qf8yvd7zbnBhdooeVvpO+UatsHb2rPM+C69VBj7JLYrKZ7J+ax\nJkzCdP5IVk8cr/6ukjFlspKVrGQlK1nJSlaykpWsZCUrWclKVj6A8oEyZR798TfN/lOzP/lnf2xm\nZs1fxJVi72UzM2ug6F9u6DQyGOvErQKK48OKyNdR898AnekJUZiill7gZKqAJoMDiphLXY7Irysk\n5IBxcjfpwcJA9r+Gj/kKhfQqJ2rlCfokaEeMpsqdjlGR9+o6Idt96nkzM7sc4oyBo4WH2vQETZz6\nClXqrp6n2hXa51LvAklvZdCoXjD6oXovmugC0H61Ytt8n88s0HwBnXZgPhQ9nc9NQR3SJPWClyrh\n656DkZgxIW1R2+ZUcqJTxuEUdB2U+903/8rMzL7/1r/X318WI+Sq5eQ1ney++/Z3zczsuU+8aGZm\nbfLEo1RxH0Q5HCsWfJC/Tk1tMQU59Yo6HS3ldRo8ghE0ASWa0GcRSEUUkc9OHzg4IKzOcL2ooh8B\ns2M5hz0wV3vdeVqIQK3JyTtaBU3TcfAKVfXNjfTEXP0z/hrK4z0999lEKN8N2BEb6Br5Y903ANXx\nfZwpyE018t0nEewFNF0uBkJIV2PYXSADH/7Cq3qegXJUS4Y2ja+4WAHNT4dCFEJOs1P0aQPniDmn\nxi75pimD6evfUO7wvVPV57M/9xn9n1gHWLHAIUH+CqW8JsTPqcEoQU9islRbB1ViuJNqTHHyD0Fl\n3hZy+BC0poKOhUsOuzuHlcU84uyq79wqbYv+ToQODmYYNkqdaJroKyxVZ3eBMwFaJaWC5p9wD9ee\nhmJteUJbRIrVxQVaLTB/IP695/40goERkYMfldAUQOMkV1YfJkVQNNheTazZohYaKeTS9qlvjhx9\nH7EDnzz1+VB9ndRBhN3UYQyGDDFaKuh7F4HYBxGsjTnJtQ7MxRu7ao/cSM939q7uU8Udy9CxCHAc\n6E3eX/72mHhIHim//dqzQs9m6dwwYey2YWvBBinjOnX5EDQxgqWxKZRqCcISoe9RqaufrUTu8ZrG\nwvYnNLZiWCIRWmhxkqJiBTvH2aAJi6qG48krP/WSng2akwcSe34OY+ax2nZY1+e7jMterPFd29Oz\nNvL6fpOfDvpFU5fYQG+nuIaOA7FyY0/52Rs3dJ3OVDH3nX/xDdUFpsv2c2qz+TxdC4H0HM0vqY6P\nC+L33Kc+bGZmj9FT2kL77PEDteHjS9WrQBsloOtl9I48RLk2AsXSEVpbeVhO7SKD/IplrZ1qOcCE\nRP9o+RitA1gF3bzmgLnpOUc4MxZh26aCcl4Ht6hjYmes2Au3xXYoozHWRweufkvtvMCdykHfowID\n00fTxZvCRmirXWtb9ffqME6WNnxT63QMq3gKOzAsaM8wP9bvHgymwQluVUPtedpVPV+rm+pKMYdG\nsIdXaJJV1C51V+2RC2B9lOmvtZnVb8KAW4kJXdqEtdlj/zPCZQ3U2IN56LGfijfQzpvDtJvBlCPG\nOiCQ+aG+vyJ2Stvqw0lO8+blqda80paQyxj0uZwyM65YmjgfTpx9MzPr3kDfKVCn+1P0hJin7VR9\nsQRJ7hbRgYvVlgVXv6+j5xFC6Rv4+t6QvVcRhnYUa0yEhtRdAAAgAElEQVT4aHrN7qnv3Ib2Xkvm\n0xV9UApTZgsUH/Y+LZDpAnu3BbpNq7HGoreCmYhW2zxl7aFrF6JTEcNQyuH4k2eMB2i2ldBAW8Qa\n860BTE9YCGXWGRe27gLmisM8WcRNq1bRfecXqt+AdbQZtWlHdLAaMFxwiozmT9gLk+Wp+eewwmGY\nrsPiCF2c22BlhCDjBruv7Ph21VJFp2cI89xYAxPYO8c4W928rbX+1k9o3L/+FTG2k/uK2c5Lmm9z\nQ80vM1yBGlsan/m61ov+PcVKl7XX7ejnGMfZMNBa2cBNbdlkHk71dHBSPD7X2Nms67lKuOH1YeEn\nsKjyvEsZfW4jdCz5ez7tC/Ti8sTg8m216cMNsQ1ar2hOcHbRV+NdpuHoe16o+6WuoQu0ZY6+piyL\nJtpb6XtLDlbZKq8Y6k00xzTZ99e2FBOjKHVfZa+HRuLsVPePqjjnQmoYDoY8v56r4am98zlYd2uw\npaO/Ie51hTJjDFWYOwxWcA2mT32pdj1Ec3FFOyawwB2YMAlzRGNT7dONtXksHcL8ifbNzMw/VP+e\nN9QO9bUnTJmCX7CjwUNzn1OsDJbSgon6WgMi9OkiYiadX87YC/Qu+XtTbdirM4/UYBF1tUY8/gGu\ny6a+K+PgN1+pLTtN6haoDzo1Xe8G++tmn/GNq94Cd1BbKeYHda4703N1ChpDNfSJvJFixYdpV+a9\n2/PZXy9wSMzBDPJh3nOecHZ/ynOx5qJFFYcwjEbso/voEt1Fw9bT9/t/j9lfxpTJSlaykpWsZCUr\nWclKVrKSlaxkJStZ+QDKB8qU+dgnnzUzs1/5Tz5pZmbPvCwV5Ufkwo4GQga81MO9LW/4apUTsqFO\njRdjnXxV0C4YoT1QWYCkoh2x5KQ7RNzdwfGhsKPv5dAciMk9i3EmKsWwMEr6QMsBPUI7oVQVGjeH\n9bCCJRLBXnBdTmFp7Zqn703zup6HOn4NFsTE43R4qucql3B28NPTYHJvi6pfqwWro8hps0teJnnv\nwXJlSUl1qIBGBxOdrM59GB7knntlNAVwMDDyn5e4c0RjnZh75Kx30E+okvN69Ja0UPI4Wd34yC3V\n4UM6qd5siYFh//xP7EqlpVPTZIM2b+s0tUB+82KhU8hpL1V7R8uA3H3S1G0NtGX1EcVQ97Zy4mc6\ntLXuJ/Rc5UqKVoH2nPGTfEqf2CQd2aowUPI4Zs0GOh0+PhEiarAhZmmeNW4g0zIIch/dj4LaJyZP\n/LmPC1X/yGc/ZWZmXgF2FNosAewqZwoyQE5rQF7lEscAcxR0LmyvEk423SoOF7HaxU/doXaF+nVf\nEovg7OFj2gnEF9Tx3rvKrd0i1/bo6MDMzGqffUXtR+xHeSEcRaDj/J76cXWqHOogj1vKHPbGe04I\noFZXKH1yTseHaos2DLFGQchcH2epAvnJTUOXoaTYiWFc5NBeKTSEJlXKOCcM0Ouoqa3W6wqqOX0f\njzQey5yAl3O6b1DSCb9D28UhiB3MvNWlfs6WGlN50P8J2jYBiGJ/pjaZXwr1yY9hITVS8QGcu85U\nn8hFU+Y6ufIujMJmqhdFm4MSOSCaK5g2MW5NlQ4I9QY6HzAE50eKiWCh7xdxMUk1ueYTUHm0eKKY\nGIhglPhqqPt9xVBCbm5zF4TjFNbHoX5WGPM5NAy8kPpHf4+M/d8qFUC9t9/lumvkKDdwr2KMVGCX\n9UL138QHEcKp5gRWx25T820VN5EQJ7HkVGM41RMpdIXUbMNuiXv6uZqBvl3wvSAyP80x7+qaiwU6\nRk3FUBW0aTGBBUZe9Rh2l9OBAXldnyujQRNU0V3YVF3e/p6QxhhmTBfmTCFlbzX0uT4IbdXluqBS\nToLDwFNCo6YguyXmkRBWq3+uuhnfH41Av5q6X3VX68eCGB8T84evC/U/ha26BtPm+icUixX0M5Yw\nQAsNGH0wCo8e0G6N95fjP17gADRDO6GFSwjuewnue/46rC2YgE4fhJU+dWAUxjjQlEHjIyxyYhgm\nqw2cxTxdN95S++08Rbvg1BicqV0wVDMMcKy4rXW4nHuid5FfJnbQ0xhd4P5SArmOWBAnIPlb64rh\ni4Vi+mKIi8nLYnjmYSHGgeaozrq+N6K/1rrENI4aDtptY3SovFsVa8FWXeE+tMQFb8g8VIKh4DRg\nLDBfrJiP58zvLppaEW5Gp480jsvoD7Wbmrfnc31+HafIgg97p4nbXF73q+LUUp9fnQFhZpZjI7fV\nZa3sqK966H/0z6QD9/hduZQY7IhnOxqTAW1VQY8nmWkP1p/BBmA9CtEjSZnRDtfPozFmaBZO2fdW\nQc2XBY2NfBM9kDFME9wCTUPaAhjc6d7QnSm4mM7MRwuxD1uvE+m5HF4bpgbjs898BkU0QdcihnFe\nYT/rpbojW2i9wVbwI/bl1ZQdgTYDDM4KWjRMhTZNseTVjHbRuhHhihKxR4phQM4djU0zs94stph1\nuRo3+RzOnGjF5XED88e0czPV47j6XFJAN8lglfoheju0paHpt7zUPLf5rBxoz15RTJ+9IaaD+5h5\nFpfQAe5ym7Bcb39OTMO3LjS2Zj3Nfx4akUWcI5dNxhBjzWefX4KdFNK3kGst5B1i745ie4IGVoF3\noTxahGs4Qz4uq01nMIPaxHiITt4cht4S5uQCZuAa2in7z4kp9MB/mwbEsfI+ekMzXT95qDFxZqrv\nrdyHqI9iagZjx4HhvoDp6fFe0KmpHR+8JabOHCZRH5aa11W7dU1r9sYm9U81NhOYkSPF3NpGh3qq\n3svLJ7F2leKWYC6Gum/AXBEw1lfoADoJ2os93n1xjJx0YB2iu1RBz2oVo+NSg9lUYx3GMSli7xTl\nnjiTTWxhbr1uCe+9CTGQspyKRfX1HJu2cK42cHm2CF3RxE11N/W92RLn1gqMGd496paytLSHcNCK\nefRA81bTUd90yrCBidXCAm1YdNSGXN9PNaBw/+zRBmHapjAS4weKnQXsovWS1sAe60Tew8UYt03f\n1ZodwujrdBWrzbr+P7qrfazXwJ11UqYdYNrxbseWyGp/o83/rpIxZbKSlaxkJStZyUpWspKVrGQl\nK1nJSlY+gPKBMmXmiU7ebFeozCDWz2KaS0zO2YTTzOMfiIUxBxXc2MW1Yk0nZjFOExvk449R6y+C\nZhXJYS2i4VBOXVvIKZ4VydvkpN1r62StmJ54oeHCxywHC2ESox3DyWDcAlXDS36w0P2r5zpRa7R1\n33aHE0JOJuMuqNipnmdEXuHgkjx0kFvkN2xGvmEtL8QmPalL3VYWae5dNLAWJ7EF/O7rqdYK+bkR\naHkcce9jnQgXL9Dv4XSvirsEVvTm5HWduAr6AGNkm9zNjaf0c39NbR5cgtZcsTz9UTFG7nxSWjLF\nJn2GBkxvoPtfgPLXQBB88s2dIifXMC/yOB04U3JG22qjG+S0zs5S3QhoD7U0T1ynqiHOAT6Io48u\nhOPpNDSBZeD3QCYCtce4odPbBG2ABQ4BbmqLBWqURxuhuaV67Wzrun6CXhCOY7mc+jxc4LSQBz08\n1Gnzt7/1dX3/tphKz72wb2ZmG5zsrwKcuRgra56ec+XqPrU6riF1Xa/j4nLS13OOYGVsol+UKrE7\n5GmvkbMcz9EJIdY/8wtfMDOzp15Vf27ganJ5qXaMyB2O3KvrhYQ4icwv1HdboepcAO0/fohzwBG5\np1toQaFPUXD0DHucuDcampcKJ+T3gv5Hvq5fXeCMk1dfb4MuFWC8JWgeODBaChu6z1ak+a1VUOx4\nKfqeJye1AhKBW48/UAzVKrquC1NkkVN9JrhzOLCvEqbz91yWQj13HTYU8hjWCZhfE1ybQJotTN2X\n9DPHF4J76uuAz+cHio1qWX3aCNGUwW3DYyy6rp43wh3FzUNRhJGyMVC9XVP7b4z0sz3X9dY3hUhs\n3RQCHvuo4nu4zOn2Vy5OSfcrt7SurNCqycOiq4S4txT1HAWmgFyNPHEYkaWi1qNclLYbWmYr8upB\ntm2sWPa6apcWrIlFXfd5+D2xEwKYOUXnhoUw4m7hYJDvavxgXmd+AgL4UEjqwX39Yy+H418ZhxLY\nWFViJGxqHlnbV4wND2CJwVYoYEVzAcugMkR7K4190O/knLxr9JJ2XkZbZRMNqAZMPjSlLkfqKwPN\nLzM/u6BSUaQYK8F0KaaaMzT+WrpFgdkZsX64BeZx6pc64bRAr1a4Cs1m708vZBEwJpgHXZDVEJeR\ns0dq/wpMxVJZzzFO1D7FWJ9vXktdMfS8F2Ohf3Vc/5Zr+l6qlVNbqJ7vzsRwGaBbtFXW5y9g0y1O\n1P7NMqw6WFnT5sZ7dQjrvhVxxCh20XTYVuxfojVwiS7IqqE9x7npun5L/Xrmqf6pros/h21xXc8T\nwHoIWI8gLtkC/RE3UH/Wr8WWFDVfrJboIsDQG4D6+imDAzQ3aIMSM78GoN/mNPmh6wx4xhCGRrmj\ncVkkZGboXaxw5/BghKQxmGcNjovvL0ZGaESto3fhh9qfjb6tMXX/UOyH+p7a4Jk9NU6jppgY+biW\ngL6fsZco5VP3H1hYzK8lBzYc2l5L1oMK+9kG+89VDWcy9i75BQzvIKW+gJbjhpVHjy+JFAMV5q0z\nNFcS2G0Gk2UMQ6mesrLYCHuwFMoLzR2pfl0V3YuoxHzYAeUfo1c10vNNU+R4ybpTSF0CYWnDHoxY\nX1eP0UNymKDRS0G6wubMz9WF2i+aPHnNqfuhLcawWExjYJxqGcFUWsIuaOTZ/+PSOvWv/rrkgtIb\nMTaM2B9PcIJqqM/uP8J1CHS+/oKYGctBuufneuhXume67qypZ9q+KbZnb1/aLCcPNH+U57j1oZFV\nRQuxhZtmHkfBw2+KMbli/nE9GC4HaptuXbHSfVrzS7CATZu6AcG8CGAdzy70vXIBrcoCzHOYLjEa\nZ0dv0UddscrqO2gUMn/0VupTr8yeAFfOObp8zQWMTtbmGw0938l13vnYQ6RMULeAdstttGWOcLJF\nw7ELm8HQxNnaxgWvCTMQ59+jd7Rmu6yD67e0p+ve5B12dmDvp0xXzHmxxtZlwosV+nyPGYN+pPm3\nn8Aabuh+9Rp7ljmsFFiFhQD9Fp92QGMnJI5GjvqpnX+iuTYN8xbPKlbFDXSKvs2CZxuwFld4P87R\nJyvex/08bMkC4y51JYYllpzpc+2F9ioBGq559ssNV30X8nkX5nie/VifTJc0ASZGZ2deoA3QrEqd\nxx5PFXN1WFLIY1oQqK9zMGvO07W0j2sb7zRxHmdEsh5maARusNcYoXf34KFi+aVnlH1RxnFyQfZC\nmzEawYpa1cmi+BElY8pkJStZyUpWspKVrGQlK1nJSlaykpWsfADlA2XKBCAfnaryAgsVIaJhTydi\nMYrYK19IQ5HczvWGTuDqXf09KOik6ugNnaLWcBQqt8nXA3FugR4aOatT8v/CgBxm1OeL5HH7uHwk\nLVShOZFb4dKRXOr31MknxOXEKekkrgBbwOkrt3gIMtII0WJYkMuKNk4epCRHTloV9w8fFsuLN0Fo\ndnT/o4dCSZcgtOFE7bHm6pR3AnKSK4+tstCp3uoERylyFqsgkqWccucjTrj9mk7yHbRU6s0051Rt\ndf5Ip5nj8PtmZlZr6/u7e0JqDSeb4WsHZmY2BUUZ+e9PnXwZ61QxVY84B0Eo+kI7Si31sYO+xXxE\n/m+KFMJkcTswhdDzGY118l33dKLcWNfpaopA1EFHRnx+CPKax5UjT37jBajWijzkVBsBqQMrrHSi\n7k1whkCno4ruR4Qi+PxCsdvoptY9+v8ch7AgD/KS1/VrKbMFbQYPVpVnxAJjJ80LzYE6JlXQNPSK\nCrHiobgOUlHUdQuc6jZgEpU3yJNsKLY/FGjMPv9hITSdd4lZAx1jjBVxY3JqnMxv6P6NUM8doj0U\nrPTTXZIPX7h6nv/GpmJvA5el7bJ0g8IjdcLwAX22pWcZVXB1kBSLOaARJRht8etqk+kIxzI0U1qg\n+XOU+POwyqpVGG6wnaaPmBeKuu52UehYCMrkUreUMTOPNF5zh3rOJbmvs5zatIsT1aqt5wphL5TQ\nF9nY1P2HoGh9ct9zgX5enirWc2hvLVzF0M5u6rCg6yRowswuhPQOQV/G6JdEZ4qhFvoUu7gUrUBG\nExxj9tqaA/IwS1YwUCrpfIeOUzXCySdWLPivK3aDmfrxGi5UdVyoCglsvUT90R68v7nELWjOuHkH\nthnuHqM5eeIgIhXmhCoMxhVI8e7HtT5tbGuMVNAHybmw68i1NvL4k0ra32oXv6J4meAGcuarISLY\nZxs7++/l7F/AwtlhnJd2GA8geVFJ9/JxIElwXKnA+mK6tRgXuZAJKYdmVuMO+g994KMa2l1DPfOi\nqmeuos+0mqXsMt0nqGl+v/0x9dHwUL/HMC+XJFBP7uv+u3vMv7gX+QO1eS7VU6uiG1FRLK9dV5tu\nbws59mZqo9mZ2ixFPoMEbQTQ7g7MomVBcwJSClcuSQcdNthlUzRUVoypEboddZzccuwp2szn1Vsw\nHJ8hT32o/w9PtP7mE8XMeSpmlrIcQGR93PAeHSsWL9HwGTH/r7XUbyWs46YwX25s7bxXh2q3ZfMN\n2nVTMX9aE8LbIw8/quo6M+a8ZQMEnf5zYAE7oKAtfl97WmM2mOt6Yxx9fNO8nSy4b6ovMMvbhL1A\nDhe6NRymHm2qc4aJPlt+Dhelm2I6rsESOMwdmJnZAH2i2hbsolfUltdBgZ2K6hLA7ol2YabRN50P\na11wYU+F31Of5Ho/Psf/bxeP+W6U6j4cqs1mK82z3XUhwZvP48qU1/UfjdRXRVgGJ7gntWG91tEU\nDFLNljPtsWYp4znRulM+RxcEquCqAqNSQ9YKLjpzMBTHLv/AYcdlza0V0eFrsM7NWIMR3woH+v8M\n16UqTpyplqIHCyR1QZ2YYjKA5bVw1D4dn30xrACDqT5eEGuwGWLWtRimzIz3gybr7CVjJSrBXPdT\nDRjF8uVlqnOk9pkSBw0PiqiZzXJFi1vqpzEuKTHPUYGd4MA6C3DR8lONNhiRVym19dSlTb+fw3Cb\noP3i+opdt5M6RcKq3ASlZ/yG9/S9KSwDQ5PmsfOumZlVyRJoP6Xx//Ce2PinpxqfXRxkTg1tljhl\nIurBoir70GmqZ8SaFWhM/iC4b2Zmt25JczGHRuAcm0zMmazdRifzbY2pMfXZ2dw3M7MGfZzH0dJH\nb+7srj5X29f8s31Nc8P5SmOlhSbMCsecMuvi5Yn60Pm+2rP7GRg1vPuNprzvsJ7WKjjqrGn+Kt7R\nfn7+JtehP+IS8+8jtWOroLFcv656NC9gKj2UJuJlXXuF2x/WnDXuvr89SYQWTMg6NkQ/aYmTUKHN\nuoi+iQszMWBMLyPiZaExkV+KQZNDI6jJ+jpzFDdl3i/mQ8a6++R5q6W6jZKcDd9h0YQlGsBqHc14\nCyPrIH2HKcJEwxzuPeZaHQZ4COspfM+IjD0IMeBBfamQQZKw1qzY06SxNi3jtoYzsMHwTkzXyxVh\n+MGUybNfT5nlBjs0hotShZm5iPVggwo6SsxvAXuMHm7IziaOlhXtj31Y/V4TDS3m03FesTWIdN+G\ny7sOWmBTNAR/VMmYMlnJSlaykpWsZCUrWclKVrKSlaxkJSsfQPlAmTI3muSW4XM+H+uk6bvflgd8\nDVSnkNeJ/851HANe0Knq+aFOKx1O2FNHoARdjiJ6I/4SFWlQQ3dyoOsWdCqa5t1NFzpl9HE3spZO\n4OogoG6PXN6HOoWuuDpJPEVH5DXyxqdV8st3cGcCoX72KZ3ibqIGnTsSg6Yy18nZm3+qE7azmVA2\np6V6btRAoku6Tm+q02tnJah/SuKpO8QxYwbij25Id3NlCWhHC02UbpcT34VO8R6ccFoIKuzEOmVc\nxzO+i1p7WFbdGn3ybNH7Cd4VOhJt6MR+9M4but81nVCvkTPbXvt7TNr/Vpmeqe9LW2qDGqenTl5I\nK8Y6loBGTdByeetAubINULSPf1wn8EGqbVBOXUTQG1np++4CtH6iPm3itOWiT3J2jCI4f5+BaC5h\nEBW7KHxzbHw51f/X1oW+LKYwYxz13VoTxktB952QJ+5V1Y4FmC4T8hRdEOOwo9zhOS5TNbRvbn9K\nrkml55XfmMP5Kx6onqT3W53T5N4Q56ITIRNOBUSmxGk4iPEQPZUariGFWzCqOH3eQgPHSdX50Urw\nOflf4eRgnKrHuHSEIMmEo03Qppn2SBC/QnHQlCmcpmwbEMBHmg9ebmtct18RmnE/r3nj/PSeno2T\n8uYCFAcmXKOvOlVgpLjkRU8eK/YSTr5bONqscNep5jX+fHJk/dc1rt0RbAKSW12YJAmaBEPygRN4\nYY1NxQZgiJVBDGMYI5W++nS4QNMAlCtCKyV10unM9XwuKPZqiZsHAGJYUewGOdUrdcNoEPPX62K+\nxDBsXHKBqyAT01TTB+X/fU+MkpJLvruBWql5bUl9Z8Rk4OPe8RDE9oR8ctxRZnPNd6M+7iZdnBkO\nQICvWMqgdAaqF4HI2LHaIxjq/qtdEGtYCrWG+mG9rnn5/lhjd5zoe96R1oPzS61ba6xbuRbrBm6B\nMdpmm+T5335VyP34kBzjatESB9bmiZ7lXfqmgH5Fu8I8+MJzZma2RDdtF1bkiLUgB6OwDNNmntN4\n6k/U5ucDdf7JWwe6Nc5im3dgTYGwOSV0PNCTWC7QRmC+zdfRZ0CXY+Xo78upYunkDfVdMZCz4jpj\nKUFPooojmJfT/Rot1a/d1c96jfkUOSIbqj1ysNLmU1Csua6Tg03bAlFulN8fcrnF+nV0Xd9LNnX/\nwyM9QKOjsTDMgcAyT1Vw3zg71x6gf491qqx532mp3k4JfRPcqy7vaw4qIzVx8+PS2jpj7S5OcGRE\nsyYYgnBDyirsw5rYeuJWtyquLIRtdrzQnHOaU79t39Zc2Pyw6pHqbdklWhIwT8PUze9C7Z2yXY5P\nXzMzs3hPc8BkBNssYf2AAbn2ECe8imfLCxgxfV1j/4YqO7utnxFspIdV2ASPpTPRZG0cTlKHSN3r\nBro3NZh+LvPuaDzj7zCFYfl8ta9xubOjeWl3CLsqZWulToVXLFVYuTF7qaCu5wtxC7p+Gx0P9mEX\nb4nVsAjQNtxXbHmO2tDdhf1WVh+eHmvvMkdDqzfDOQ0nm4T5w8e9ZAXbaQozL8Gh5xI2bx6Gypgx\nu4aT5jTSdQJcAQPc8RYrWBOxPt+A2VcBpQ9xNKuBmIe4zNkSxjexsyioPYoJ+n0wgxawmfOx2s2F\n0ZJDL8sijZEC603MQhU+RjsN96zlghhta2/SgjFjaKI10EDz/wb2nESBjdXtNsFJrbwHO7jIejxL\n5+0f1obzU62wK5Q41QnCnWgtYn95hrtpJb0mrE0YKy2cDnPPyI3p7kj76NVYbVVAd9LBQuv8XO8Q\n61tiFLbvKMZPv6t5N4eDrVuHEXekvUjt2X19fk/z0nDMPpuYmqWsIOZxH1e6lM2QmvmsYP82r6Ob\nNNS6c/6mnjfxcJpE87DKu9gUFkVygYbWpeaj/S09V7ofT+6rfiUY166vMT9INSV5h6peaJ6uNXSd\nHmt7Lta850c/3H67t9VOP/gW9+8pFpo4kq1SlyjWlZax/q2pvSbHirnRmcb29KHaqxk/0Wi5SnHR\nb5mxJws9WH2uYnAUoN8CKy+eT6kP7l2MARdH0SimvZf6PzKL5qMhtEL/b4w+qt9LF1azaZyzfK5j\nUx+3Y0vZ/Kxlhi4Nrm895oNS0eXZ0SBEq2U+5Z2liKsm7J18oHkh1ZKpptpc5zC6YV9FZJr0g9Qu\nDmYg+yukCW0Oo+0SZ9wInR0/1vMU18mWgDWWoCHrhjDcyUqIYX0OC1rLggTGDWt9nX0sSRh27UOK\neZ9368Zc7xWpRlnEvq+Cs+F4CRPU+fF6mRlTJitZyUpWspKVrGQlK1nJSlaykpWsZOUDKB8oU+Zr\nf/jn9g//0X9g/9v/8M/MzOzjH/6cmZmVmkKrbu6I3dAPDszMLGjr1HbtFZ2Iv370bTMzy+Mpv/Xh\nz5iZ2fRrIAmgSXn8yPPPvKnrd3W9MKfT091XXzYzs3lH13n9ADSQ/MQiuh7JkU5V8+/o1LiMW0pr\nWyd4G00hw5UX9fPRQoiqg4PNM/9A9XH+7Lu63xlMmUjfX8MP/cZP/kMzM7v3AGQdh4pJqPr3B39h\nZma3f1Kno1sTnV5ffpXT1Ef6uXlbbImV/7ZFsbRfqluqw8N3cKcofNTMzIbBp3WNc5DRBIaDw+ng\nG99RG3RUp+0XdWJcekiO4oFOGTu4b1Q2dKLdxqVnRM6j33iS+36V4oJeByNdP+eBwOFkEoDouiiB\nFxp6no1YfZPqQeRw1ajnUAJHryMm33kMyl3wcMIZk9upX20NV6kpjjRLTn2nnO4evi5079mPKZai\nKijfQ7VX3dHzdnHiyZNP2cC5IJjqRmf31D/IVZg/QBEcBCPI6eg795C/g+YXJqrnPK/vtztCXMop\n8wQGy3yu+kegdm0cMYYgGOVL0CXyyj0PhAcHBxcnhVwO9O2+6o/Bha1C8rT7IKagmsNUefwM5B82\nSxVl9xH1NBg5hSqshiuUGLuNkJz5FSydZkSOZwLiBdrrFfR7BVS/wrM01tQHrbZiN+G6HkyJ2NOJ\n9xGOKivQqlZbbRjjNlSuwpAhd/S0r5P3PCfzDdxD9gs44cA8eRwqVoKOvlcooj4/Udt5OOC4oB7+\nUM+TPIT9VtF9C6YxVq9ojC5LatPSSn/PoWHloOg/e6z/n/rq8409tX0dp7UQPQvkpcxdgvTWYTc4\num/1sdp1fKCxNJynjCKcGtByqYBsj4H7m+gQNTpqj3pTf+/m9Ht4qJhLcAqawwZJWX9XLeM5rLYV\nzw0a17vQHLcAid4d0W6gfBVcXkpt9V8J7YroUu04wOVkiTPQ9ELPG+eZswDi/UTxV97T559ZV5y9\nDtNyNhpaEwRxDLuysKH/LZlXk1C/r6Ph1bqOFh3ranYAACAASURBVNYA/ZszzesJjgPNdeYtOq+A\nLsTu8/p+MsUVDpC6XKTuaKeEE5yjGimbVL9PZsqrLqcOVWhCVZtMmLhpjO+DesMOLZ2QV13FuQXn\nrRGo0jptNmA+mcAGCx5rbO+Qx251HNBWatN5H5YcbkLGc46dVI3sauWI+fERTj35vNby8BqOCpfo\nx11o7JVhh4UxYwA9ocHbOLVtp8iyJvTHBxrjpOnb8qHud3GMU0Sb+11X/wSgdznGXA54sJDgWlXU\nGGknTxhBs4u5Ha1SxyO1w7mDHt6OxsDOIQyqHrHKOpj0FQ8PHyog2iD+MWyJcV79tHOLdfyOvjef\nsq6BWk4SrUPrSdeclupQT93mcD86X2hejGK1Tci+ZYCj1K1ntF/avKn/X8BQyycKDicANcZJMUFv\nbQpafAE17+Ad9k1oNy1xp1uD4fZ09X2i2zCWQ7QQCjiidG9q7LQ8DYpJT2PxMlYMd5ifq56evwkL\nrg3zcQRLN54RO6xL3bLGXsER4szlrVyFCUOIe4HGwgUfaKIjF6Hjl6AHYrAy2rCvliHrhqu+D9HT\nyxVgqqN7lzKSYtPnHTRjVitY2LDxRmimFYug+QzJKojzij1YleusiM3UNSp19izOWbfRkqni3jRF\nO6a2zv4YVkcebbcK/bNI2RKzJ4zKQnH63jra4e2ngnvhCn3AvAfSDVvNYR1wcPm6Sglwrik3YJ6D\nf6/Q8xnjfBWiLRXDTsrlYPnvKotg42kYjoeK1Vwe6gPvDEOYzt6m+ub2J8QGTvq67qynnzWcYUPY\nuDFtcP263nmWME/mZ+i/0afTqb53dq42eBoXv7hD0M30fCvY/O0beucYHmk/3EfzbAf9uT7OXSV0\nh2a4Ph1/9a6ZmTV+AqZIqj22qX3sClfUVEOsvNBzn+KAc/hVMVZe/YL6qIYr0/lS/TBFV2+BQ+3t\nW/uq10fVDr0fkH0wwGGS9S5/Sj1hTDafVv2aZAqMTjW3HL2reXUDxtBVS4H1wiuqXSMYM3O0Xgoh\nLBT2sHFb/VzLE/M4Ai2jH9bFitlXLxuwdgOc23w0v1LNxvqTfXbsFM11HHMi9I6I2TDmHjirxrRt\nDc3BCAaKw77XZV4MmJ/8S3QuyU5oon+ZI7sgjrRGRmiyxLCClujnjQapDhJrVZA6ScEShTXrwcqv\n4jo6q7InoH4++/YiTKBU+6oKs86FqZiHGVct6/PrtdR5V8+bzBRzzUh9v8AdL88eZH2m61xrox/X\n0npWLardxv6PX28ypkxWspKVrGQlK1nJSlaykpWsZCUrWcnKB1CuxJT5rd/6LfvWt75lYRjar//6\nr9tLL71kX/ziFy2KIut2u/bbv/3bVigU7A/+4A/s93//981xHPvlX/5l+6Vf+qUfe90t1NpzppO1\nVzZ1OrzcUH5kpUruWEMncO8M/q2ZmfXm+2Zm1voY2hGJTvu2QiEQ/8fv6dT0+Z2XzMzM29OJ1d4r\nOl2tP6fT4P/nf/lzMzM7/KqYK6/+V9LjiHCgGZOT2lwJ0Sx/Vydl+ccg2agynz7WaevlT+mU9OZ/\nDPvk3oEqStp2Aa2Jd7/1Z2Zm9rFYSNDDnq771ms61f78Z1WPEK2b4qs6eXv24zrz+6N/o+ct3ZDz\njXv5rK7zA/3dPdJJ3zPPiv0Stku2/dNqs64rRO6f/2s5N3WKuuedX/0VMzOr9NT2qXvP7afQnPmW\n2DmXKz37J7/wn6ntaJPT+yCwoAkJjgDf+T//jZmZvX3xupmZPdfQfa5ayrCH0nxjD0ZITN501Bd6\ntoh0Crn+kY/o+X7yFTMz6wV6DkgPtsBFqYN2QWFMbv+p+rBymzx1EIYhLIfKvk7I19D1cNFg2DNc\nK470ubU1PUdrQyfr3koxt7FOrA903dG3hSQ4HfX1xivqywTnrxl56wW0WKqcAl8eqt6DY/Xf9g7o\n2Y60AtI897infq5wOl129Dyp/sqSvMawJSTCvVS7Dg7UXktcmtZ3VT9vTju2dSpcwgVkGQnBcWY6\nnXZ6GpOnr6FQfktjqbWtflzi8uKGQuVK5O4G7+p5R0OckJ6/OsJNurI5MDzyS9wr1tTmC9Dfxyea\nF3xyVStNHLoqqmsdBNG7UJvNDnAqi/R9Z1vjcW1X49yJdVJegHkB2cmmI/R3yLld31b+8nqcWjHg\nunOivr2BzkajRT406dwOOiFT2iTEta3iMAbI+V+WQKJBy1ewIqKTlBWGG5CrvnADVOpPNGYbeXQ7\nYFG4sB2KuGTM57hsDHTfaV9jqIWTT72GPtFA95uiDeMluGNQD4x1LLqj62x20DSASpIf62eDMeDh\n2BDgCDfbJG+7hLXZDnSyKxZHzWCLqb6/CxNz/UjXHcDqK4MQFxN9bjyhvRBkyoFOtfc1dhoNtc+j\nFewPkHf/QHNCqi1TYM5CFsXWQZbKETFfCKzd1Hzw4E2xKHOB2uBGHXQa3YQlbkN5T30X+Gr7yYHq\nEMIG2GPeyi/RvyiB2jRZM1/Y5HuKydSBbAEzsY9m1CaI26Sk//cfpfMqLkKwrhowCtsviEnhwfIa\nwSgc9vV8VVDsBD0JF3bEFFbFehPNk1MhkIO7Wj/KDY2lzY9KeyWP3oifsiaOYbcxRlI9uauWXIDW\n2pmed/MaSPJYnVZmbskjO3dJO6wzDxdK6qfpfc1/NRiZ+ZrqNfuW6t+6rn7ruFpvRgOe+1Bzz0ao\n+iyHir1xoLHeROPARmgJFDRmhidn79VhOTArkPhegwVQbitWu5eaa2asmzV08zaLGmMnuDM6D9Qf\nFdxgQtDTy0N9L3mEXh7PU+3r+YsEd0j+f7ng2oI1toSeQ8lTTHRm+s7odd1rfFdo+RaOh61tBuy5\n6n4KclqDOZEbCsF8/BAG5GaqI6TPtdC7eGGFG+ZA13mqrNjMt1jLg/fHpjIf9zUYgA3c1cKUzRqI\nJTSZKwa2cYtLKSDVEfMzbNsF2gX9kdYZH9S72YTpAjsuWei+ebTCYhxuFi39LKFjl8ftZJmSp0Jc\nr4iFuQ/LlT1MC2R7NoEFC0u6VtJ1I9B1g9GTc3BCQ2uiPMMdBWZqFX2oIlIQpZLad5Kk2jT6/wIE\nPtWtW5bYq6Bv4q6BTJ9zexBtDyYMRCDzm2oPz1UcLdBdKoBsL3EcMjMLL2fWZL0ZVNBRggVc9Zm/\n0dhxcLKLYO2W0Jq5SpmjR1MqpRqNuJmZ+riApkceB5nCAGbfXbIBbmier/IOtGLfNGW8FXC4KbIU\nrk4Vcy0YHXtPax//+Lvo8UzV5gFsptwZGis3FVPXthSbj5a6YHzGWhvCnISp0oO5ubWm+S7VMUpd\nm9a3yR64obVvkbrIzdHTIKZKfN5ggQV9TaiDu3I9qjKW42o6dtSO5ShleMBoZ23uP9JYGx9pvSvA\nKGmxJ5oVYCm8ofYfXtd8ub7Pc/Vh5LDHKXbVvr6Dkxubu8KO+nUL9t4CNlswUz176fx8xTL1iAtY\nci5sigRXvxh31XQsuSnjhc1MuEAfi72Sk8Bu5v8eY3SJ3krC3Gp12j95wsvwliubBitzcIdLWTVx\nmOpvqk8c+mAGg3qV6v2gdxO6ZJjgEOWl1DecYRcVniXCWYu+WgZoTsFtCbh/C82q3ELXjXApjlLn\nRfQvgxzXYd9ZZp/lw6QrzNHBy7HPRbPL9zlnwNkrGWvCSec1j7G89HEgrpK9wVq4BRusS991aePL\nofpu5KROvnqeydqPn0f+3kOZv/7rv7a7d+/al7/8ZRsMBvYLv/AL9slPftJ+9Vd/1X7u537Ofud3\nfse+8pWv2M///M/b7/3e79lXvvIV8zzPfvEXf9F+5md+xlqt97dxzkpWspKVrGQlK1nJSlaykpWs\nZCUrWfn/Q/l7D2U+9rGP2csvSyej0WjYYrGwr33ta/abv/mbZmb2uc99zr70pS/ZzZs37aWXXrJ6\nXadDr776qn3729+2z3/+8z/y2t6eTqQjmDLvPBZS4ox1WurcEkr/0Y8+ZWZm3/gLnQb/q//162Zm\n9iJ/DzdVjXcPpH78p9/7l2ZmtkJZehMXj+ttnXiv7ek08XVML/71/6Sf51v/wszM6je/YGZmJVC5\nRk11OgP5ODv4hpmZtU2nxQ/PdNp495qeY38g5fQliMUmJ3mX70hV/3//H0HsP66TtctLfe7f3tfz\nV7/+J2ZmNubEca0sFsTJQvX/w3+vE8f8U0IPm6jRn14KXQ3OQOEeSnNnOHjHSg2dChZwu/jegeoc\nBmqE5uh7usY9nXCvUJrfvaE26I3EzPirH+iE9aP/hXQjDN2KI199drykUUEo/xqGDGCH3QCFvmpZ\n4E1f6qWOUjrka+ICFZCDO+OkOfeuUPyIE/sOyG4RsKSQ41R0gpvUDA2VU9XXj1X/i0c42qAhk7pu\nVBq6bpkT6+6afvc+plNYpyJk0ePnUy/u6/u4oPRBywc45Fyeq8/bMF1aDSEcLQPFA/2ysq63hcL5\nuzgrTN7QaW0LNXbvjthmLki6gRQU8qrn/IIcYF9oUzVAQ4iT9JM3j/m8fk/zK3uBerD6jMZCG82F\nuo+bEroiyblOgfv3cEaDrVH7GPpG29SLvM5p6g4F+rlACCqeXh2VGgZqE7enWAnIda81cbKJyI2t\ngT7P0KEALKjVyV9Gw6WCPcMJP2v0QeRoPqmDsM27IJggkR4XnJNPvkBdPo9WSljW50/J9y6e6zn6\nCYr+wCEJDBhvTbHguaBJTRAETu7HQzRMcECJckL3Vziirdf1/ZybxiYaKLAWagG6SWidjMag7Rdo\nyuT0/xQN8nOK2SrIYQ6tK8yTrLKtGAhph5qh7cX8e7pQDLlTdJTQhkl1i0aJ2juaaozO0eiJHXSp\nQEJy6CNN0FC4asnjvlRpgoSC8FTW1T/n9/V8k2ONjVIdlI1+cQfkLoPyVW/hGkhevXVwbMBRbDhU\nXGxfwmBKpz5yqiMT4rIEoU2cim3StvmV+np+qL6adNUWjS458iOYKmFqw4MzCfPc/EJtMzzVzwrM\nthqOWZUysYSu0smpYjLH/DgyHATzmv8L+6ort7cJyOD5Qz3Hzg39v1jXeAY8siHOCbMJKBomQa4J\nmdxEk2U0RHvqnp6j9fy+rrvHmAKFWsBSKoGW1RtqlwGs0hzMyDBF01ZYjF2xrMhzL/RVj+SdA/39\nIHVOU6xM0V6ooQWT5NW+yDJZcK65Is865a1groz19w10PkLc9gLax72r+rswTuYD/dzM4QC3gZsK\n7In5mfr/HqidmVm8mFoD54zZUJ/bq6BVwxw5u6s9SGVX61qJvPjldzRvJ30YRjW1b3Gm9uignVO8\nr3ov3tDYjE9VrwC3l2odh7l5YmN04crExoUjx6kERmHhkrb6jjT/yjtaw/Ku9jNjWEE5nBWL1/fN\nzGzAPHvyQPvG3aKYb/V19IaYh1oTXD+mGr9NHHGCAI2Zq5vqmJnZikFWYG9Rpql8GHh50313y5r/\nElw0EzQWGp5i34dhF+MSshHp9w2YRNMxrLMiOiKMVZurjYto9MQO7iEVxcKeq3aKYhwSK9ozlaKU\ndct6h/OLMY8Wcfur0d7RSqy9eQsntrYqWp+DvuO0FcO+q8eK0QK6Qz4MmQgXpQLP04CtUcZpJiio\nvRoO90ETYgkSXqjo813W68hDDxAEPkD7wUOHowSSP+b5KrknbLlaZ81yMEALTXSwcG3N5XGZKaKv\nNMcZE00dn89fpXipTpirazVaMJVhSSU4CSZoisSwdOewv9obMIrRq6wNuF5P7wA+DjJT5v2ax5qO\ny2kFFmqed57TI/2/wfgN39A+t4Q2icd9vNPqD9W14MDgeaB56OxdzU9Mr+aU0QEh9tL5Yu+axuIb\n93+g6810v/V9zTc55v38SmMmDNmLPNLvEfvA9V32RrjVxVW1WxFBoBZaXeN7ivmDQ72XbCQa4wsE\nl1zYw14xZbZoTKUs4fE2eyfYHkf3NW/vbev+XlnrXW2h+3klxdbepp6r90j1W/aesLKuUtL3khIs\nsBW6Sx46K0t0jpI0JmGtxGi+pYJ1BWLa0EtEUsySlJDEO2KALssCZ9Di8onL6dwtWdHLWQ4nwXma\nFYC2UgFmzIL9ZJn5KEKDKs/eolRMdcrS/Vu6x4fJBzMtgKkXspaFOCbmcUX2ebfLcf8ABkqAJlke\nl1RDz6iBs23K2IvJoCkluLvNiKGa5ruINTJmvq5S33ReipkPEtYJms6KsHsTnBdjl+fPwVwka6PI\nO1yBeWRZUWwXVz+s//O3Sy5Jkivzrb785S/bN7/5TfvLv/xL++pXv2pmZoeHh/bFL37Rfu3Xfs1e\ne+01+43f+A0zM/vd3/1d297etl/5lR+drtI/P7cOFnBZyUpWspKVrGQlK1nJSlaykpWsZCUr/18r\n//S/+yf2T/77f/p3/u/K7kt/9Ed/ZF/5ylfsS1/6kv3sz/7se3//UWc6Vznr+YN/+X/ZP/6v/0v7\nb//xf2NmZh96Soyc/gQUyHTy9PJnlT/+vWMdBI17QlQ2n7tpZmYxeezhsU72X/9ToTcfaksjZlLQ\nKejGx3X6efPTOkF77btih3zvq2KBvPoT/7mZmQ3JnV2g6n/T1X3Gf677+v8ve+8ZK0uenve91dVd\nnXOfHG6euDszG0gus0FJAAF6TYKGTIgG/IUGbIi2SYk2TUu74mYuRNqwYEEmTAGmbH+hQcqmAdE2\naJLmrpZhw+xOnpvPvefek/p0zt0V/OH51QwJbjgDCLoGVO+Xvn1uddU/vP9Q7/v8n+dN8YE8e0n8\nJUO4Kd4sKYq8/6NCyjx4qOvXyKg8nVHU9db/9n+Zmdkz+x9UPcn8vn1L0c7N7/k+MzM7gQvD2dD9\nr2yrPV65L0TP89/znJmZlTOKPr/xe+i8D4W6KBd0Hr47/IY991OK7F55Wvf63d/852Zmlu6pTOvP\n/7tmZvaYDNgchMQLH1AkuTsTX83Z8EtmZvb9H/1Rfb8H388XxF7+TFN8OjV4JkZfe83MzCZkTTav\nPmtmZn/zb/8HdhH7lU9/1szMMkNlY6ogULKEgGectZ9y5r9cVD3HRNZTHozcqAUNFuqjMhmCFVwL\nPoz+qaZ8Y96FiT8kG39dPharOMXJq/p6nB3n/rGMCRkKj7OeZVflCmJURXxGd6j2Ll1SP/hzUBjl\nlP1nn/h5+9W/9yndh0xsnEkPT4RqIMluc9RKHM5zz/KcCaYdFkuFeZdzjYEUGdQ0nAIZ+EFO7whp\nlANpUyQ6fQbHQbXFWWfkoSZGfUDilKbyl8f3hJzKo9iQ2+Bssq9+9MgKFkvyn9kQxnU4NFKbKvfP\nfeYX7TvZxz7xCZWB89BuzJ0Sy1IQqU+TbZ/C67MwslKe6pKCSyUNn0aK89rGGfgxEf0qaJ85Z+KX\nZAryKLXMQZCESKy4qFCUY/b6tiLwK1Qhqhv6/wkZBChcLNdUW6+GZHdQgSiBPJnDYTIi++6CbMk6\nyjjkPLJzZAqzcLPMz+XTOcbOmDO2SzICMfIwPs++8MkAL+UTGRQUsisynQW4bsjur1A8yEXqh1lV\n9+uMNT9liqChUKECjGYrOBkqZItCyIJCuBey9OPCCe1jH/uMffKTf9/MzD7xic/ZRezTn/yM7ufH\nymVkJ0HZjQ5R1duVn+RjTpsiZ5HhX5oex+f+Nc/GmZzOmTL75Yl+1x/puiqJhwl8T3nao9BQP3Vu\ng7Zw01aqCSUw4Rn94wPd46rm+NKafMWZxQpi+r6KkTX3VYfTsRBvdZCOdJnVQAflcrrffCnfOX5T\nmcA8WffuGCRdXRnH6r58MZ9VXc/bytjOYxU1eHTWmD99FMWmqFPMuvA1zFBf8kCxtjjLP9f3ISnY\nzetau1aoSPVvC8UEdYxt72jCG8IxtiQzveTcugskJyBr9g9/TevId7JP/befULnhVMvArXUO+izj\n0N7wk2SYv9ercK/Ak3c+lK9f2o2VguRTj89Ujwrz85Q5IPJ1/8pVXe/ACdM7QbkNebtmTfcfxKgt\nOMe6ICD/0T/7VfuVv/uPrM+8PO+rHK2n1I8u8/kxXA+NpsoR5uGxu6fnDTlPv7mhv4cz9c/U09jd\nuKy57pyMvz/V/yPaYmugJqblhS1AqriMIwcuJX+mMqemqGyM1DaXNlCdS4OCgsvDj5VmWINszDjr\naC2sbstn1kp6dnemv89Aw/oIjezV1Kf+OwhA9cEnPv5pu4h96mOaRzZazOPM91m4VroLsv1kag3k\nRzbOvIJCzU3VDkEOjhzWCZ8xuVox1tmjpEN4kkDwleE3WsD1kEXRbIRCWcT+tQKIYQR/RwCfUwH1\nkTTKkGPQZkaG2nVQ6knFZGC6fxGEzor1z5nzO3gsAjLHcxQXWZYsz5jygVZ6sarJSuXPL8h0e2q3\nFHstl73FGG60KnuEMa8v9QJ7G+bApRPvEeHoWer+v/ipz9qvffrvWDTV7336K8XvQ5BDLmqAUSFe\nh+CyoJwf/y+VeP529iusNR6IRIc2HgAhTE/Utp2hxkaROkdyYVvfjRUgQfy1df0ERMYCJInP3iS7\nrTJubGlcTunL3tsaA6ux5uFUzJeGYmShrHUgvck+DG6X5TFKWQsQe135uANcoHUVxAhjNEYrrYNC\nm4HY6P+51qEAtFGFd6U+a7oHanTE2KiVQPg08Qn2jbFipBP70Ejr3LArHx7Dx1SqqR1KmyBo4PvL\nsAdagr4tF+D0YUytBnr+OZyLAYiZ+j57Q9qrVsYXmLOGlGvaVnkifPDz/+TzdhH7/Of+ge6PSuoC\nBblUzDUUo0VQqgxAYfjxkAS9nIGXbsYeyg3Yp8foslj5DDVCB4RtDqWjX/jYZ+2/+cQnzPFCW05A\n8FVYA1Hei1BKnDO+IxduGMZHrNgVcx1GtPkqi6IY80UAZ1VI30Su7p+D63CWY12Yq49iAcU53DIx\n753PxJJxUX+Kua9A5s1B4eeWzP+UN8xrzSxTzxTzoQv6LAAZn+X9YEX5nAyIIHh6PA+FTFQ7vXG8\n71UxVin52mSmNXTSRDFtVTMz/fub2YXUl774xS/ar//6r9tv/MZvWLlctkKhYHOOp5yentr6+rqt\nr6/b+fn5O785Ozuz9QQFk1hiiSWWWGKJJZZYYoklllhiiSX2Te07Hl8ajUb20z/90/abv/mb1mwq\navnxj3/cPvzhD9uP//iP22c+8xl7+umn7aMf/ah99KMftd/5nd8x13XtJ3/yJ+23f/u33+GY+aYP\ndxyLosgc59ufsUossX8TLRkbiSX2zS0ZG4kl9lctGReJJfbNLRkbiSX2zS0ZG//67VuFXr7j8aXf\n+73fs16vZz//8z//zt8+//nP28c+9jH7rd/6Ldve3raf+ImfsEwmY7/wC79gP/MzP2OO49jP/uzP\nftuATGKJJZZYYoklllhiiSWWWGKJJZbYv8n2noh+/5U/PEHKJJbYt7RkbCSW2De3ZGwklthftWRc\nJJbYN7dkbCSW2De3ZGz867dvFXq5EKdMYoklllhiiSWWWGKJJZZYYoklllhi/2otCcokllhiiSWW\nWGKJJZZYYoklllhiiT0BS4IyiSWWWGKJJZZYYoklllhiiSWWWGJPwJKgTGKJJZZYYoklllhiiSWW\nWGKJJZbYE7AkKJNYYoklllhiiSWWWGKJJZZYYokl9gQsCcokllhiiSWWWGKJJZZYYoklllhiiT0B\nS4IyiSWWWGKJJZZYYoklllhiiSWWWGJPwNJP8uGf+cwnzMzsP//kf2VmZsV0yczMVuFAn725mZmV\nq+tmZtbYKpqZ2b0HR2ZmVljqu+dI73tgEzMzu7G/a2Zmxw/Odd1Gw8zMslnfzMxuHZyZmdnVa1fN\nzOz09EDX+VkzM8sXPTMzy4SBmZn1BiqHVQpmZhaGGZVvOjQzs2pZv3NrKv/J8UPdf/+amZmNTlQO\nN5/T9U1d//j1EzMz2722Z2Zm7VFf9eiEKk/ZNTOzUrZsZmZzf2VmZilX9ZgOu2Zm1tpc0+8e6Hu2\n3tLzsqrH/KxthZau8Veq0+mZynR5d8fMzI6OHpmZWbksl6hk1badhe7Z3L6iut1vq23yavO1UtPM\nzB7276vOW5sqy0r/P+uNzMys6Op+s2BhZmaf+PQv20Xslz7+98zMLDdVmzdvbJuZ2XKmPhmed3Rh\nVW006hzreWpi27uqtu31x2ZmdudV9c0GfTMfqC2bO2qzVU0+1Hvjsa57n37vmGNmZm9//RUzM9vZ\nUL1LjtqrUK2Zmdkiozb3OzMzMzu4L1+r7V0yM7NMSn3YX6hddnbyZmaWztXNzOzkwQMzM7u2Lp/9\n+5/8RZWzq+td+nHj/U+Zmdn0QP02G+h53TuqX+sZjYH6nj5HD9WP6amefzJSuXKOylvZrageNbWj\nNVSfwb17ZmbWOVP71cvqh8au7huafn/4msrhLNQvUUp/r+5Uzcxs6xn5xeP7ut/4UM9vXVF9+seq\n30Ze9x2vNBY+9ZnP2neyX/6n/1h1qaotQ1fP9nKKOVdqGneLlMbT4K7u3Srr2fOBxoRfVV9mq/LR\n/vyW7hfSNiXdLxvo/uOUvuefVV8tb2kMnL6mtt7a15hxgqXuX9ZnuaDnLrqnqsBtjXfvknwwXVI9\nOgPdv7PQWK3s6nu5ua/fHclHz++oLW/kNU9aVvcb91Sf1nXdN/L199OHqle2pTGZX6dv+hpLzkDz\nWmGDdiyrT2YrPafaUH1HtzV2TijHjQ3dJ3D0+25RvrJ+WT4VDDWGpm/KV7NrKl8dX3t0+y2VJ5Cv\nVbY1n0Yz+lW1s1F3amZm/+if/LqZmf3c3/6P7SL285+TL6VCPTflaY4qLvXpBRr7pbTm+RXzvxXU\nTr6j7+Nz9UeupHbIzVRPf6ixVczSPsyd84B2K6seQUl+mNHPzAv1fXi8MqejsjQrarNlTX2ejtQ3\n4WLBj1SHqKi2W/lqk0nA2lRQGSKftYK1z0upTf25+sjS6otmU3294P5pfDy94PesxVFNvutOtEYP\nWavS7CQyRd2/rGpYrqLypDzdZzTT7/IpIfNn4gAAIABJREFUjalUTm07eqDxXwhUX9dUjrOV1pvq\npub9XFH3Wc7VFwXWs1JGvlUa6bOQUwHazEM//amP20Xss//1r6p8ed1nNNeYXczUXvGc4s3kI1GO\n53vq21WOdpro9wvKl5upnXpzfWYnKlfkqp9Xvp7TXeo5y6l8sZrV3FVc0/9n8/hQU8/3F2rPVrr+\nTh3+4X/3WUuxZZkc98zMzMV3h6ZPZyRfXeTV/sFEY660poWzXNf6FmT1vIKa3YKCyjObaQ7NO/Kz\nyVAPnE7kT7mSrssNZ3Y+YD8XqU4Ba1CGe+fr8hlLy4e9rHymtLdlZmZz+iC9Ups6XL6c4CtL2pi+\nnq9oI8ZfyLy/ohyj1Yyy6/e5iq7/9Gc/Zxexj//dX9Lz2RcWWuqLUlV1nuALmYLK4071vCCleoRq\nalsM5PP+WL7a7zN/0HlOgT5w9HefCWOjlaYd5DvpInst0++yA42deL4aDXR9OGJsM79VGJvTLHuY\niOdW9fdMJF+Y9VT+BdOh6avNWaOdPutNJCcpUU6Hsd3YVbu4aypvaqp2mLP3iKYj6qn+TXUY4yP5\nS5RV/aK52iFy2TOlVV5vQ99TJfbnPnNjCn+Z0+Bm9qu/9isWzNXv83P5x7QrvzD2cs6m9ixuXn6T\n9nS9k1E9Pvlf/JJ9J/vcZz9lZmbtMWtpRvde39W9V/T5kHG/tq2+vvlV7SFS7PUv3biutkjrPumF\n6jSZqi+XAT6TUx9c+d4XzMzs0et3zMys87b2g15GbTQdaIyNArXx09/7XWZmFqZVx+FIbdrw1Nkr\n1o+3vv5VMzNrVrTeZJoqr8M6VGUNm63UpqW8rhtOVL/rH3rJzMzOH2mf+Oiu1tByVX2WdVWfYVu/\nz2xokF/54ItmZvbgK9p3tx+qHWobWodKu5oj3JA+XbDHasl3T+/qeeNDrZ+7OyqXU9X6Y2n5qtdQ\n3775pW+YmVklL1/NlTW/OcxZ/anm0/KW7lPNqz+DEWO8ov755b/zSbuI/crnPm1mZlOf36/UjwHv\nB8vAoTysq7usg3U9t3eg9XF+qn7OpNk38J6Vbei6elN/D7n/YUd+tuq775Tll37uPzXXS5kfMR/w\nHlxvbJiZWWlT+8igr/HyYKxnjw7UlxP6+sbTN8zMrPiM2vj0bd4Nhvr/TIE9Sk9lnLK/qrtsiHi/\ndqrsy5kHphMWtTPdZ0SbFXn3qjZ0n7Vd+WamqXe3hw+03+115APBjH1fSs9v7Wh/Oy/o/guek+rp\n+dOx2sMry1fXcvhQnb+zPo0p52IlX7GC+i5TZb/nqD0cjz3ct7AEKZNYYoklllhiiSWWWGKJJZZY\nYokl9gTsiSJlIrI+XqTPrUuK5g1OyRqdkS1aU+wo8hSxc5eKVmbXFRmLiPpmT8gmpRTROnqgaPHl\nzfeZmdmY7Fp3omjrB9b13FdeUSbz2oZQI7OxMgBBpPv3yP7sXFKGOhyq2c4IiK3IgG6uKSr5+JXX\nzMzM31LErzPR/UZdlftq6XkzM3v7QJnh5lOKQMYRunFbz4uWivjlFAy20VCRyUpZf58T9Y721G53\nOm+oXvsqx3ysaOvZowd2qaVMmk+bt+eKdm5Xlc0fg7JJg1Yqk+p8eKgoZ4Es+HiuOoRkOVr8/e4X\nbpqZWaOsbP3K1DjnPUUns9fUJ878vbmcNyf7RBaoqSCljcfqyxNQVddK6qvz2+rLynVFlDMtUFJk\nLIMpGYpTsjFkxzdAGeQ99cWbq9tmZrYTR9RzyrY4ZCa9QJH4cZy1IYMbyQXN8fTc47bus3ZJvpup\nq92Gj+Qj5Zzqt1lWVHWYEgrMUuqv0YjoLj4euCBs6qrv8pysfl8+M1ypnfZael61Jl/onAhBRPDW\n5ke6LgTtUSODPgIR1NhRJiJoH+j6Y9U7iMgaVeSULV/tejBTf4dkurM5PXdMZjZbUn1yoL/ORqpn\nJad+Ol6o/P6G/r+wfDfz+53Mr6qtezX5VpqM7Mgnm7RUJD+fka8PHTlRaaRxM8EHaiBsKs/IB07u\nav4Iu0Iv5Tt6zgFZ+XlTz3vfmuaF8W3QCa7G++KR6jRpqG1cMsHb77+stkip75eP9PzBAyFOvBu6\nn7OjPjl/oN8fT/T7nX2PT80vucf6fZ/serGt/3d89UVpQcbVVR8uCcVPIj2vlVVfFTf1nMezCf9P\nVioPui6j62xdvuWTPZqeKhPxAOTe0oQACnIaIzUy4hFjeU62JnOm+61tPaP7bGiMzW5/Wc95hM+b\nytFzyPZ1VJ6zQHPRRW3manB2QKvls/KD9VD9We6pfR911X/VCu24BfphQWZ3iY+SSfU8jcX2OegB\nN86IM+cMmDMrql+GuSMFMjNXka9Hs7nNWCOKIF0aPRAtZK2WGd07RWZzHLC2pHWvyNPnaqa2O5/q\nmbmGxllQ1u+mEci7CfNWX33ugaZyyFqlyKpHVdXRZfomKWY9styX6lo7U/Sxk9a8NZ+oDTJkkfyl\nyhOs04aMuTBingByE3X0/ylQbM2mHhiRR3J6LL4gNqugsLKPD8zMLJ49Vlstey/mgEqYsDXK18ja\nMX+tgaabsdeYGusIme3sROXxQWe06NtFAEJlyN4FpNCKTPMxSKfxDPQdv88wxzigL8p7IHPy+n0X\nX/TCd/Nr5XzG+qwDXg6UBAjGwljXn1PPtTXmmLzmSoeMbPWS5v/JUv3mGn935V/trMqRLzCvFzW3\nOA/lPy6+fT4+tRXIsgVQt/Ka/tGoqw4R6NzVDIRHjCxMgwJqar4J0zECEIQMvpr11PdhVn3tjeST\naZ+9w5y18XxEC+n+XoxCs3ezxRexARnezJi+Z92ZUh4r6f+Dov4+YC+UnzEvhPrdBPQpoCoLWAON\n/XA2t+D3jCFX9RmzJSmC3Cw/rXWsONPvx6Bzl+e6cQ5U3GigsdZY12eqqPsVVpSXPUi4Yo5w5TM+\nKLeZXNS8herj4OsOvpdnvfEyZOvrKvfAUXmiQPcrVeVLxbLKMT1VOVLsk7sgkOZn+l02rbkQEIA5\nEWO/xtyRAsLDHiwPYsa4btElA29mA2duTlv9dHZb69ScPUtrnTk01O/SC1W4UJb/rd7Ban5nA4Bh\ny5nmwQqFH471HxPm9TT78nRJdTnvH6hOzMubz25R1geUlbLl9JkL1Qdd3nme2cA5DviYad931dP8\nPOGdoT/TmFyC9h+ClpouQY5fYa0/13O6Y/VFMa2+yraYr3q63sXXJ4ytCvvcJSil6pbqeXamMX34\nSMibnUjPScfwsXj+jEBm1z9iZmZvsOBMWUsLoLBOV3o/qfEuOK+oPI2CkPBH9/ReMjxWX2cb7zcz\ns9QShP2WfOv6vv5+/geMhbnmvWugxg6n2tu4HmMnC8rDBwXI+0cddNZFLZqyjg9VXy+r72Fac8A8\nUn37A96F8c296tOqN6dHbp2p/5us29FY/TM4Zi9a1tzQWNc+oMQY7czO3inL2fiBpacLi2bM8SAQ\n32KvcXlbbbR5Ve989Yo+01uaP4//7OtmZvaNSM/8ax/5MZUZtH735FAPYs3qZGjDI11vnPBIs/bm\nMiBlWKuW7Oe7PuP2VL774FDvvWXW1PXnVa7nPqJ5Zu/ac2Zm5rgaQ8d33tR9YtTT02qTcl1tt2Q+\nmYDc6/l6V1ndZR0J1ebrFZ1+8EDLGqdDUmlQY2MQPX3iE57Wnxwo6G9lCVImscQSSyyxxBJLLLHE\nEkssscQSS+wJ2BNFysQRoSVoAGelaOo4hB9jpShk2VPU8/z4wMzMXrutzOz3N/8tMzPzHTIPJUXY\nR6RklmSxWlvK+jw8UrSx2VBELdNUpMshyvnsCx8wM7N7ryvyNiUyPiOaPCUb1h8rqjkYKWJX9xVp\na58q8tb19f/P1RU5WwfNsPAVlbx8TfW8+aqaP0O022kqapvn8K6TU6TuynPP6v5fgPeFc52LPJnw\noqKq1awidPtw6hw+vKt2yBetsEnbnsPFAl/C7hU4Rw6F3NjZVRnW6/r7/UeKbtYu63zecKw2eNBW\n3XefVwS+8AYRWLLLMbponiJ6SBIoJPtwUUvFUcuVIvvzlVAEuTpnSE/1/yEQkAXnEBd+j7rreTNT\nn+TrnEUtKELfn6m87UAZgDJRTpco7Til6GYVLoFRXvdNpfV7H06GsqMo7+FY39c9PSdj8rVRoPI3\nXWU++vAMXbmm9p7COxGfJXbI+qSKnKcvkBkF7ZUN1Y9BRvWbB/LVEORNL+LcfAYugyHcPnWdUS66\nen6qoP5ZgoDpdpQR2M7o7z3GokM/OJz3TJMh8Kvq/8DR/Ss5UBQZ3a8HgmZAewZkGpwCGX04K7yK\nylkkybVaXTzjUIF/YkUWaQVCrBnp7z3OhC6rOnfbWGn8+B2yQZyhDemD/KnKsuaTRYLPJz3R3zdJ\nrD6mLXqPOLd9TDZiDqFRV3VuwVvkFOFUCF41M7Ms2Smf8Z8h03h8ChdWSFYm7VAvPX9+X/PlxNXz\n6pQngithAkdKuqfP469qHogaKledvm5zJvewr/ku2tTzCjO4CDj6uloqkxGm9Py+qXyZicZ86Gke\nndFOU3zQPVZ7PprALxFoDqofeZRTvnta1v1zcMfMzuFJ8cigwLtRAdXV72osjx4LOXhR60RqqDYp\n32pe9d/mTHKObGaQImNChnrKUeZgSmbcIUPPulODvyQElbB0Vc4CKLt8Ve0DTYctyZQPyOAX+Mzu\nNKyU0kX1Otlm+jLlqy0KjI+ZqQ4LVz4cwVViFbgA4K9YeHCAwEPmcUY+4Bz0cqI+ysA54FTI5vsg\n6Rbwe5B9zniciwZ5GIFwKV5Xdiqagfg7UJ0ybswDQdYrr+8jzv7HmeSJr3o2yBDWtlTuBvO0ldVH\nS+atdEwJgE+sTpnfOiB+HDlvqkGjX9D6E1B1ID1sJZ8pNql3xBicyQeXIIUiECbRUr4949w4YCkL\nAvXXlOXv9EgoPL+g33nwcKxdhsMlpf7PrmmezaUZjPhmbwGalzE5H7+7rj48OLHoiHKBcgjzqo8P\n7VStqrFY2NN8vbbQcwcH7HXI1I+n9C8orxCE1KIPCpEx78Hl0+lp/ZicaJ30LLBsSc/eAW2V24Rz\nJeYKgcsjBV+aMQ9Gpt955ZjHhswjXCDeBD6Hku4zOYRfAcRgOQviBo4qg/uvlQW1W2RNiklqLmi5\nNLwV+2rMdE1r/xIkYsxn4W7KZ7MHcMdMQIK34bmA86VA/f0GXIAgiAp8ej4cL5vMMyC8w5baabGh\nz8ld5gTmKy9UO5zDxbIKVY4R/Hwxx0y8zywx9iYsKFlXn/4AzjPWmdE5fFJH6uMqfCglECUbV0Gw\nb4FEzau+EzgOQ/pzdIbvxuWagNboqx+PHmos7m7oPo119VM2x1hjf52psC44qnjepR3Ya7iDd19z\n0payAE4bt6gK7cDNU2YszNhH5xmLrT32aI8Du6hNJmrbyOh70KI+qNxlQf9fqcBvwXjMZdR2izT7\nQJDLI/azWy24Cevcj3ng0dvip+zDFVkqy5cqoEvrW/LV+fwvt8kUZKLvsrDkVb7ZUG3aaOh3rXLM\nS8eaVdT7gN/X+uFGoLUs3n+rL9q0dXul+WRVAYlf1VivwJu0DHgHzKm92l1QXwuVJ11Uuxh8doU1\nja0OfE3pku47Za+S25CPZ1k/9q+qnqUGCNApaOc56CrKsXZZe5rBA733lDKMYdDDaXijUgFcWhlQ\ntcxlC94nLmoZ3leqLlw9Rbhf2Nd7IGA7h2qXHutlmfn3qW0hZvJpeEt7au8q6PEz0CCLu/Db5dSf\nW88JPbJ16fo7Zfnhv/XXbXoemMHXySuX9Y/0jw5z+sO39IzWs3p263lxs+55aqPX/vCPzMzs3pvi\nj7wKv2XEmuY46oOAvUJnpOuWfbVFqgY6lz3GzqZ+X3lRZa/ldJ9pqDodnGh/+/BrWlMP6bvu4GUz\nM/u+7xdv0vaO+njYhcMQ9NMixGfgiukxj69dvmxmZutr8KvW4I65r/Xk6EjPDZcg1uGMNSfm+FJ7\nrLLsn9O8u9W/PXo3QcokllhiiSWWWGKJJZZYYoklllhiiT0Be6JIGYvIqs05F8m5ummXzDfJob11\nRci6bUWDG1cVmctdVQTtjS99zczMmiVFPX2UDvaf4SzZStW8fVccLl5DaIs33nzdzMy+fkd/f/5p\nRX9ffu3PzMzsB37wR8zMLLyhs3SNDOUgg1vIErmrCS3QPT8wM7NN0v0e6II8Z84yHaKfSBlcWlM0\nczjm3Om2uBXCviKSX76tDPb2NUUzX31D6JTmjr77REvvPdJ1M85z3nmoc5Qnt3SetHntsp0uFVGO\nlatmnH086irSfY+z+Cm4BmY7XH+IWtGpoorHcAI8fKRoYp/z3V6EWgdZ8iwZvEJF0UKnpChkyn1v\nZy6zKAREhygDcNbTrep5RVffC5SrzBn4KKcMQYkI9slYz/VBU8w7Y8oJw/4gVsjhrD/KMYAKzCf7\n7b1zVp//gL+kUIWZ/ExR3znlqKEs46O0UHxGqK8i7OgFsnYZR76xV1PGZIUyT2bM+XWUYgqogOSo\nn0P233H19zzM5qMlqk95oawc+D3S8Ge4gbJCaVADJdBlp3kQOAV998m0Z2MuB1/1yKRjpSBdt0CS\nIYi5dtKoenCM3+nDKwISyOPs8/GRfL9aQrmHck5Bi1zEcrCxZxecR+Yccz5HVoesr3METwUKNeGJ\nfDo1ITKf1fWVBipuZHgPUCNKn6kyqVDzx+gMTgKyw0VUHbzH8EG09bsWKh/TZlwesvjwOJQyaotl\nT32zjNPpkdo+nVH5iyVQDB1lEgMyygXQFBFZkpKpfKshKIehskiLFdnrS2Rg5/KRh2OVv0pW6ayv\nerbIGEYz2OZBL7XfUvmaGTIqE9juh/CTpPX7fKj7ZUEwllF4SY2VJXPIUg3vk3GFm6sEVUzsOz5c\nCel1ZUgygcqfXlycd8jMLIQPpAeqbglKbCdHFsxHtQWlmRGZjUJd9d+6TjYMnizfUXufTjm3DXfD\neKR6jkEuXdvlvqYxsUrBG1OKuTTkZ8vxwJyQcc1aF4JkyaGe5C7ICvPb1FJtOwOhuKDP+mQSu8xz\nAZnQHEi7FNn5DPP1EuRKOEOh7Fx18alDea7xvk5WvkdWujsBOXgi9GrFVd8OWYuiMJ6f4SlydH0E\nf8b+tuanJsg5j+tSofq2XJRvLVb6+5g1r7wBd5mDMkwZhMvTccZZa6vnvje+kArzah7VozmKNNMD\n9TFgNcvArZJLgRDSEDKfTPIKdEMeBOAq3mqBsHFASaSLIIoqcPagsJYJUYKEbyVep2KoSnGi9hhC\nEDV+uHynDqt21/qgJVbMPa2KxkyOz0xLY6C4L+Rmfq49TKcrDrRDOOZaqDC6KZChoMWGj1lnDg/M\nzCxAIS4NlCuHskVlvWXlHY2bLNwAK+axc5RkXMZRpaQ1qRipjCEqaR34e5wlqiAgW87gsJq8AqoL\nfoQc/BUByf9KBX6fEll8kJEZ1tpKDC25oIVztUm/iLof82B5Xb4aocASMX+MMyBnQH7PBvr/gD1B\nuMV+lj1GSBa/Dz+UW5bPLMjOp1H3CFEDWgTMI+zdSiBAwhnKXgFjmbU5VsB08alyGpW9bbX77ro+\nB/DnBXPGQAfUxinch6gW1TY1BgB92VmguSsfgLJFnaqwIR8qN/T93LQ/TaMA8w66LQ3nW1pzRbqm\n/1/6KlcRPpUoVsDZUz+6Nf29sQZH44NYtYXBaWYZ3zU/RhczNwQoI7XhMkqjvJaG7GcKB0a6cHGk\nTKYFIvix+jRVBJkxiTlhNH4GA32vwyfZpC1f/4bQtPM2+zOQDyXQ8V2UuvJk93NF9X3/sa5fa6nv\nfZAWK/joYv6LGkiYQVe+EdSYF6jzOe8oHvNctoVC7E3xcmz1QVg7Ggu1GMUKstIDLVyAc/G4o76t\nr2v/uyyrfrFiTQjaNM/YX45ULqgvzQWhuRxq7R2x3s3hdnFY13Igxj0UEZcZuMvYwyzO9JwK6nAj\nOCYnqAJeuaT2/8pXVc8p83Hsmx58hDHi30fpLYMy75J2uagFQxCZzOMr3leWHryi8KRU9+A3eVM+\nevvLB2Zmtv9jeje9tCG+xEePhBZpUu8mSP1D1vfxbfEIduFzSWfefR+71e+ZuaHlpyDF4LZq1KT0\nmmUe6TMvH6O61PE1/rbfL67UR+dSdrp7W0iSLGj9AF91ebdqXNK8xxbCjl/WfLALmisFKvXRTfV5\n6kyfjSbvFptqOweV0I2P6P3ZLWkP0rmnG7/1Z3o/3vsBlW+jonXmPFBbddmLbKzxDtJX/Uam9WS+\nVBs2OW1SY34KKiAl8YVVhzHIu1y9oeuzVy6bmVkZBGL/9NtzISZImcQSSyyxxBJLLLHEEkssscQS\nSyyxJ2BPFCnjoG1fbSlqubavSFUcVT7tC9VxRiitjdZ8c11RYz8+x9xVhG2nKeTMnYfSmi96ylw8\neKDIfQCC5ql9RX3nsMtf3xOiZmdbEcGv5f6lmZktCNN22nruA5iss7F6C2djDQ6Z5bnOslWK+v9Z\nD44ZlC2GZBw6j3WfKYpCb39ZiJ2XflDln6DykfMUUdyA5frSi8pm1YnKZuFa6OdUr+++IgTN6pgz\n11m1zwtXrtsBEeKSqzJtviBFqgb3KOcUXWzeUCS7RqT8MhnJQlG/3yjoummdSG42zuLo+83XlGkr\n10F8zOH1oExuRdHXi5qHuk/kkBXifsWy0jIu6iCOT1Yf7oIMzPs+mvQuKhctEDsrlK0yRZVzmVUf\n5VEgyBEtXo30WQKx41OOeZxtok8HRtYoo/s95AzoXlPP6Tjqc2+k6+awy2dG6o/BGegH7h+hyOPw\nvWBqtyX1syEZlhRqTmTfXKLLJbI7iyhGGCn+2unqOYMuZ3jdmM9IYyJCZWMRwEsCVGgJB5G7xOcL\n9ONK3zO0/wKkS4rIf66gqHaWqWbGufF6Rs97NEaBDPWWRUd+txhdXOnAh7Bom2zJFF/Mk51Jo+ow\nRGVhGXO+cFZ+xZnQKqpsg7c0X1SuK7uwQRufMIYWpxrnxYqyEzWQOBmyUhlURKoe9wf558HPE4G2\nOifLnwaxEU3lm9Gp+r4zVSS/+Kwyf+GKcT0Seq2MoksRDpbhTPPiEvRWu63r231dn4VLoIqCwmAb\n7q5T9UEPBEsVXozMUH3sxtQ7KKfVj8kgXtHY26LeE1BwRZ/sF4pdzgT0hc8cQP1HnAPPTjVmusAN\nspyjL8KV9fBM5S8yhptXdO57YxeCjAtaCjWWbFP1K7dUsRms/sevivvg8Gvi1wpRkvvwrjIw6ShW\nsQIBVCDLyBzlgORJ1VHwOdJ9hwUQPguV3+Ucf4nsXQrUie9mLGBNOhuCpICjai2vMvv0uZHhG2wy\nL5GlXsDZsoC/KIOC4Lyv7E2NC4uMmd5cfXgMZ0ETTq1NzlNnyNYHPY2hCERiCU6D7Fz3m5NJjMi8\n5VrwXsALEprawA31vIAx6eX1vQb/TvsxnGes/T6osu6xMnwhqIptlMs8VEsaRbgG9tWm5TxIx9nF\n5xEzMwdUwyoLqmNA5nOJTzL9uTXGCtAZBBbs0V3NHffua/4vk/ku7qt+FZQe1kL4KyryoRJqJR4Z\ndmYoy3YYiym1ex+ejfsgV72B6p2pvqvokGpcsS2UHyPGjLMJUhRutx7r4uSe5rJr+0LXbcCPAm2I\nhexFHr6GgtJtZUEn8JGk82TUtzUmrl0X8iYqq3387MLSQN58lLaWrGVV5pV5QX8fMB8XQ5DSfVBF\nA3ggyP4biGpnBC8RSn6zpb43avL54iYoozqQGfgayvEeAQVJOyvae7H+Ah4d1JyyObWZU1VbVIbw\nuo3gNnl08pfqMQEFcHSktfhqUW11Dk+dZYfcnz2Go/JXixqjscpRLg0vEOta3uQLsz4IojPQEezx\nms+Q5WdfmAXNFuYYk3BlpeaaA6YovkRdOBqn+iwzn+VBERQ2QQDSPnP6ZwIKzA7k+60N9loo6QSh\n7uOVVO98UXPCEuXPmAclnhvqcDvk6/Ajecy78NVlQP2O+zgvKlEp+EDMzGahaxF+6OAvxvcYIeDD\np3cwl6+vz9RPGb9gF7X0kv0ayEcDjZsHNVqsaZz48GYUUCR8ak/IwduvaQ2K4L3IMo1NOFWQj1WY\nFnC08LzBHbgeN26Ymdml7Ru0hZ5bAcG8yMFzMZdPFlLs0zbwhZTarAICfnNT89XgTSFIUsiMltif\nptgn5hxQbkD1HPZOBy9rntn+d/R+UYfbcPFACMsY/ep5um8GtMKjByrn2obmp8OU9q0uiCMP3r0I\nTrIl75Qx6qzGXJAGDRGx95uBjiqyFg/gG91s6h0wygpdsRjwjmp6N0PM0ArMJW5Zv8uN2Su57/ra\nhYz3Bw9f9kBIZkraa6xKKKLlNcdkXHEKvfGneme8iZ984EW9w/Zuq53DBQh61rO6us/OBhobEYhY\nL3oXKeOlCpYaLSwXKyKivjRcaj5y6OM5c/8Mpa5uqLW5fuWymZntPSX0jnOMcuwIFBDI7MGSvUJT\ne/7r36u2HR7B4Xisz+KW3hEyzDs53pfnfLqg+EPeWVze+eL53kMFb5Xh7/AbDVbyqZkHOg0lKn8C\nAgek+nyl7z57HxcePsdizkAQfCD9is+j0Lij+mdRmOzCIxUcoqw7iWfKb24JUiaxxBJLLLHEEkss\nscQSSyyxxBJL7AnYE0XKuESwRo8VUTsq6wya7xBZGik7s446hoXSQc9lFFn3looKbxENffH9L5mZ\n2dd7irTtPa/oagr5jIcErTfWFGG7/dZ9vpNmhI1/DbbnjWcVNZ1llEEd9InAFcg0g9C5c4ByzlQP\n2CCTOyJTsrariGDkkQnn3P21qx9ROyw5p7mn6GgRVMp4rizbmEyQy1m+g3OVpwEvwJ07ijZv7Kh8\nhwNxyjwm27jRvWWvf13RzBXM14Wxonj34D8og7DIwz2wBLGQJYo4JzO7RCmkiLrHikzki1cUwe3A\nxv7c85dV1lP1zdGByrIdM1Rf0EbWFIrIAAAgAElEQVQgOWpkewIUbTIQP1SrOpcYn+UPQYykdxTt\nHY3ITFC/x6CeemSgK3n1YTTWc7avvGhmZm7M50EEewXNR8ZQaSISnQ3VZ3nOu2d21Gf33vqKyhOS\nQSCb5KNG1eI6I0u1vaEMwgqOmPOu+tTGsOaTOg2XaoeI9vc8MqAwkW84ypbN4d5Jow7S2tLzy335\nYCXOCtHfC/oxLHA+fRL7A1PEFC4eMrBpfG+OvEgEH4k/oB+4n9fS9WPQbhlXYy2XUvR5HisbvQ9e\nGBd0CRmJi1huJl84g9ulQbZiuVTfpjjnHMW+Da/DoqfPdJqsNWfyO3eVTTgJ3jQzsyDLOenLasPw\nWL7VeQNFsBMypFugAgr6e78KIgSumsGJxsCVME4Rw+9RgnOELFgK3p+IDOCU89oFOACise4T3gKJ\nh/JBqaH5au9psc2X4FC5e1votQGcJ+l13fe7fvKvqRyPNB+d/D+qr0/GIg0PVf4AFBT8JgvGIHQm\nNtpXRiJbUftnPPqBTIF3Rnlvqt6dKSpFWV23fF5jYTBVRnK6/KqZmV3y1F+zjObp4bl8JEc2bzV+\nb1mpCWeiD0BYuiia7cYqHZtkLUEruFV4APDFw8dan2ZDlbP1HMgZErNdEFHvf14oxI0djWmXv6c9\nXZhm/p+isGFnjKFcyqpkyGJ1jSw8Ej6ZQB9+iTncIjE3TIxQgYbtHQWRTCTfLbMW5VIxukc+m4vn\nD9A/qYrul0OloQL3yBQEj4/Kzy7KM0Oy7m+/KTRT1FdfFcmqxVxczTXVZ6+p+XqGyttyqhK3UUyL\n54852bEaijRVlK6GIRxWfC+U4RXKqD0eHbJW59SOvfR7yzv5EfwnbZU3PY3V/+hDVDJSB7R7AIIo\nVpbIy5dLsdoRXAkrsnj5JojDMsgYMuRleEDycNEMUKCZdVAc4jz92ZHabYpCXLpAprbwrspU49J1\ny6KIM4GjZ0yWMova3Yps5+hYY/PhSGOqBXohBb/V4emB6oHyxhKEZmVbflnejFEsIC5LcL5tgoIb\nL2yeBzVFVr1YAym2qX1RxtH8e/SG5uvJkcZJ6hTUJL4xPcCHG2rDEgpcuRfU5lMGYhbumHQmHlfw\nSmyrji7lyHZ0g2Hh1N6LpeAaS6FstUK9KI0C2ioD6hYllnSksTVHQS0Fp00BFZEMvBtV0KfpNdC/\nZHanBmfVRG3qgJqzm2qvOfP6bKwxOjlA+QuFzBBE0Pae0BlZeOyGWbXnEp6g6LHabwwnQgoEYbBC\n/QkFSxdOGCdU+20X9enCdzJlrzNG8XFGZnt8Rz48Y+8Ut1dwouf4Z6iygN6wOdxAbc0JnRHrOfvc\nMhxni5Tun0OFyevo+tFQ6/Ds7F3OoMmDjvXuwI9450Dl+PAHzcxs54qet4kCz86e1GU21tXfg28c\n2kUtz3guVBiXeThbQBfMTlEORJHq6DHvOkj05dPM+3C/VODJyKZU91Qa6AyKgU14ibohfRojxGso\nztwTWqsGd5XvwO/WYS0lm28oi/lF+NFYRxr7Gqs+aNhuG1W3+F3lTD7qM38sqdd2ZZu/w202VF/v\nPK9y3T3R/RqxEiXohJQr3xmgNFmhb6pwPsbqqdmi7ltAla4MT9WcNX2f9ebhLSFLNnfUjvMVey1Q\nylM4fUrXVN7altadDmi9BgpdIaqHfqyOxV5mDjp2Gb039aVpXs+v5jUHeqhDZeC8ceDhG4HM39lC\n8fJDQu+e3BSaOmxf1vXMrSNQbpkK6+MKRGz7wMzMbvyIEFRR+d2TC16UstFkYVGXNaartjw+BLkH\nwjGC32jnWb3zNa/r+2oJpwrvSstYEZd3M3cEPx2cju3bvJ++pDJe/y61+ev/59tmZjZuo7oGh4u/\n1HXziZ6z1eIdpqax8NqXxOfZu4VyFgjGxrrarAca+LCneTHbkg/G6lCLscak14/7BO5BlMpihLsH\nv+f4nD3ZhuaHp35ACBnf5APHd7UXOj9TfU66en49lagvJZZYYoklllhiiSWWWGKJJZZYYon9/86e\nKFLGB/mxvknWpQarMefNq3DLtMqwxHNWbJvz0ys02wNURQYdIU4WKBNkOcsc85rUCGI6E0XEzm5J\ntam0rejpra98wczMHt4VyuG5ly6bmdl4pii2l1Vk7bkbihrffkVRzJDs3fplMjYDRRoPu6rH1euK\n1h7NVd75a4rUbcBtsyBjfve+snxLMqujsa47P1VEsQFfQA70xfYHFe28dSgOnTrnx4uw5zc47/3h\nDz1noyPOC+dUxgrZ+RF8EwOyLwO4TOYd1TkkIu629feywzk6MpWjA0UDS6hMtI+VkRsOFcENjuNs\nC+FTeDUuaukFnAgAbIIOt6mqDbJZ1WM2RO0jrWyQC/+DwznAYkvRUs/UN7uefh/BeRJ6Kh/E4OYS\nQQ8GqmeJqG8d/ozjU/VF87Ii3MMF7O8ge2b49oTz8dmYz2IunyivdN/psbI/vqvyZcbyqe4YrhZH\n9QhhU48zJAFqUh6qSeUF6koggtIjIu4oReRB+AxQdXHIgMSZk4CjpcM0UWK4X5Yo+9wxxmAP1ZeA\ns7ZztVuebs36+l5AkWxGucsgrQzlhOAcxSJUniYo/hSayoBkvItzQaRLcJag0rPgDGzFdI/eSk4T\n4rvTivrgGBRUeKgyt3bU1vWr6oP2tn4/a3DW/a4+7QPKEMQKXTMUFDKgwDIf0nzyXf/hv63ymea1\n3/2j/97MzB5+iTFzTJ+c6PmTAhk+svtHS9jmB2SPyFRWmrQN2aTVRPPh2QT+jxPNG48nnOeGDygC\nTXD74YHapa/7TjeUATgscZa3oudGU5AkOTIF3D8D58EyS7tWQTd8kLO+l/R9+KrQeWXUsYp1ZSSK\n+Mx95unJka5/9iPKhPgAiZymznUfB0L6dA+EVNli7J2Fyoxc1Nw8fFLMcV2UJ84AYl6CB+PFnxQK\nJIhQ8hlwhhqkTYAixSb3G0ValybHKs856nkbafnH2QgE0bH6q0KixPXIfKPKNJ0MrOto3i2AmJug\naAWwz9w54/4dhRey9qbrlvBPZIOYA4oschEOKlQpZmHMq0PWnOc9OtB8dOKoLs9dUh3TnL/Ocr/F\nMFZ1gteIzJ57rrp0+vjSGioZIOpsW+Wsr2l+ODvQOlEJdL8ZqLbFUG04J/u9viPfycB1MJyCPuO8\n96ar509XIBNDtfUydXEeCDOzfAh3WQkEIWgIb6U9Smqoet18Wb6ZdtT+zX04Dlrq0xZoK4OjLEIZ\nptJCkWFN8+H5XXhHmPcHcNg4p6jZxbwerPlhVuXYA102pr6r6ru8KP3QbB+U3HIE4vOMrB8ohRzz\n+fKR2nt4R3NSnn6ZHYOWmKvcG3Xdv/CMnDcHSmXFOjpyNBesQBvnQQnmK4WYcs9GoHLDx2T74Wvw\nQdbNUfxajdWmC1BTD1/WmhWjQa99t9bK/FNqiy14bHqPQFEFlB3kYgpei3QA/0XMzwG3i39s78kq\nDbXtdk1IuBCOE0OpLFZDWoJKS/N8I+MLHZFl4vEPkshjHl2jD8rcdw7KajEVkiVkjY9Ab2WmILgD\n1Os25TMlOCFO6MPRufa9IVyI2U31ZaqGaimqVsW0PseoyrmmsRSNUdi5p32qw7qSDy6bmVkL38/B\nL9QAMZ7D11czFD9BiSzhzRr2VI8QpGg40Nh3UPAawmvkMMf5D5h74CpLgf6ej+SUkcFpBrognXoX\nne24gWXggiiQ8Q/h+jo+09x7DrJ1De6eaKU93jL/7bkg/qKdw6kyg5dywTuBx5qxvQcHSUl7Cavh\nqw3x1KXz8mnAQLZIqYxdVDlZciwdr0kBvHPzGDUMKuGqEBWxQtYS9TrrgWhDTdNlXqiCQl3bENqz\nvgGP27bmrQNOD6SYrzY2hCYaML9v7KrPo5nuG6Ophg+1dn/jj/VutfeMrmtuaV6PxurzMko9UVk+\nFMJUlEKNqArqbRSA5oCrchbK99L4zIx2yrKnCyAD68MvNJ7BRxSiygRSaPyc5o6XPvK9ZmZ278tC\nD+fZl0YRPE+8J6Q9EOjs/aLsxRW6zMyaV+SDm3DmDECU917Wu+xRR+9np6eqT/mq3vmugTJcsJlw\nW6DvOoxdUCuZMmg7kJKpunw6fve8+frb75Tl0R9+xZZzz1LwzGSW8skS6sdPfUSnCNbX9H1ZgGMG\nnsoeSOoGio55eEpHIFt8FPyyIPfu39NpgG5Lv99/6gW1wSu815+q7F1U+zKglPIg10ugMW++9YqZ\nmXUeqy7VLbXltXWUEeFLiheiHVCeWTgAx6Ckzl5V+TM9lArLKM7yThTAhZMB6Thi/129LH6kTFVj\n57Xf/0MzMzsfaD5xmK8b8KwWFt9eETJByiSWWGKJJZZYYoklllhiiSWWWGKJPQF7okiZWEkhSCki\nl4VRfEyG18/ps/tIGdf+kbI52R2iwoAv1jnjGqGi0txWJKp3T78bzhTxr8Fk3dhQLKqM3vkP/OCH\ndV9QDaO2os9bRLUfDBS1fHAirpbmrqKv7aHuWykqEubk9PzlkPPiZMjzNUUlc2cqV3ukSOB+Jmad\n1/0GDxQxvHRNyJoS6iAblxW5c95UFPZeV+W50Ve0tHuqVM8i0ucgVCbj628qcnj9xRft1Zvi4/m+\nj/yoroF9YMIZzObWZT2zwpl5VHXCuiL26QqcAx09oxKrVJB2moMWSjsq45g6Gmcmr9TVBnGU86IW\ngfYpol0fZ0gbJC3SnGOecYY2x7nsCfwd1S3Oa9c4476m6Oj1vNrYJcN7Mlc2LgQRtOHRN3AMDDin\nnI7kezPQVzaHZX8MXxDoidJYv5+A+CiBUugsVfAY2dPL63mtmD3eV/kWQ7Xf48dqz0ZNz0txhn+B\n6hR0KuaTSZ3DMRDAyeATZc6hhnSAIk4Ax8SRo/7celoZGjPOf4KU8sn4VECrhWSh0jG0hqxbBDpl\n0taU0u7LB2PeqLVL8tUsXAttR1HmWElsjlJE5hLZwdHF48X+dTKFVVBLI7XZIKVnHzGe5/DwPP3d\n4p5qXldbP/xnOm+8yqhtXnOVfdn5KUXUA9Qm/vx//Re67p7G6dpQWaPWXFmf8wfyucOsfOlBHzQX\nqdGDgtpkuNS89GxGf197SW3zwg9/j34HD8XRH+l552R9RqHOyjZJ0/TJkjTHavN8SpH4Y/h8AA6Z\nA2dB0FQbT+Fnunn0Ju3GmNwhA8BZ/809zvDeVrsMz/SpnjMbhvo+I/O49mOap34x/R+ZmVlkuv8f\n/cb/pOu+QqY8o/KUJ/Kh+2TRKi+R0U5prhp71PeanDxdIgN9pvZwR+8tKxWShRvD/5Eji/f4LfXH\nZlb1qX6vlAyOZ/reO9MY2X1emfENVD3aqHB5ZOA9UGeLB2qhExd1D1B2XqDvE86/F9IqfxVlt2hU\nM3eh8TVdkF0eyhcHM43DOpI1fUfP8siix6RTOXg0DDUIB4DaiizROZnE9BbICRS57r8l33h0X3XN\nOvLdvQaKAhXmz6ru2+2A+lTxbOfaZTMzm1XgGniocrVAcMxrqNnFXF4VtX0e9aVpD44yMoUnj0Fw\njtTntZeUkS3UlP2aoXhmXfgmQFGU2mThCxq79TUgHRe0MWooZdp/sQCVG6l9zu7oeUu4sLxYeYb5\n3dsnswzKN4NCRIDKkuXkuwGcbYWZ2nlyD96kmM8JPqXcpuZln0x5DYTr1lNSaTlZ6P7tN3vv1GF4\nMLUzFCZcsvtFkJnjYczXAnL2sfzi9I7mrMxVlC5QKGvuoUxTVjukG3DckEV1W7q+Giu1gU6eUK/y\npbJdfVpr7at/ov1TjAycDshMsnauHN2jwJ6iM5Qv5vdRAnSUoc3tqW1Cnp3fQ72O8deDE6zobXJf\nlSWAJ23SVp2HKGSlfXtPFgxBOYUaAxtpZfuz23AYoBY06qp+U5DWhSzqISn9f1CDr64Atxh8PZ3l\nga6boigGr1JrDw4e0FYhKIzJAVn+M336KIcVt9Xum4Gev+yo3mPGYI05JbsmXy08L19br6mv79wG\nwflI/1+psycEhTW7BYdEBu4aOMgKcOcEOyCWIpCHZJ538yr/OYqXM7jgHt8SOq99H66Jda3nu89o\nD+rB3VAswG+XYT2Bf6t+Xf3dKMufTu7qvs5fIKjLr69ZiO96ak5LbwE7qYIudDVHnhyBFiexnY4u\nrtJV2wWhXBXiJBa5yYOyTIEYX8LxNGYNX3u/6hzAc3n0UPPZFmggW9f8//TeZTMzW2RUdh8UVjgC\nWYKKzxL10BD07QgOrGIBhB+qSgVPPplGEdIfa+y9+ufqi/UXtfat72nP8qd/IIRjfQ2EB8icAacD\nxj35Zhc0mgvSpDSXb1VuyNfKnDroP9B1iwnoBNToljEHD+vCCBW6Mgpd8bpTKusdKsXeqVTivQUF\nx/twOA55N0OA0ho3hHIIeG+ZwbVYboIGcV42M7N750JGhrEaayz8yFruVdQOXhTr5l3MHF9joX+u\nPcjX//hPzMzs8evwojR1v8YmqNy5xtrNV1FRXcUIIt5Psvgo6A4nA1KV9bK2ofIH/P/43hvvlCV0\nA9ta8yxy4YgJNT889UEhWJwS7xBva798eg/VzlNOqizU53lOC0TwyWXgQgw9+eYUJcMISbHoKZXt\naCLkzIz/rzTkm85IPhVzImZRZSul5bP33zrQ92I8NuRTHkjETBaeNJQio4raagw6anAA1x/8QE5O\nvtAdx6cadN8C8Yg56LIZ9btCPOIA7sR2R2tpHW6wGWOxgkqe73179G6ClEksscQSSyyxxBJLLLHE\nEkssscQSewL2RJEyaRiw4+xQuabw5WRMFonMSHzm9vKWoqE5FBD8AszYS0X2xqTtLj2js28RKiF9\nOFduPKvzeO1TZTC6HX32QFWMQAUMOdu8RCHh6Q8ocxq+rkx3PlDELcU5+P4pygllWOY5Y+fAjD6F\nIyfP+fIAlaYZPBut64rsOXc5h11TBHB6qmj0wRtk15ZxJlm/z5QUZa1vKSpc21HUNzXQfdbXFdEr\np/NWh0Mk3+RM5k21VfucbPSH1WYd1BraPUU/d/YVAT56wFlWIuIlWMyN7FPoK9p46QVFVatlRWzv\n39V9VhMUW94jp0yO7MSCbEcWZusVTN6lisrRyavNm0Vdf3IL9BBqTFGsS4Kyw+NIPBVTECruU4p2\nejCPDxbygfWqfHA2U+Z2kUWpYKgs0Ay0VmUP9njQXrM0fRnAug8CJoPPpstwEGRQO2nJh/swfDso\nMxjs6GGspgIPik/2LSTL5zbg/qE+U86T512104TnlLZVnpar7N5opXrW12J+FPVnJh0rAHk8F0QM\nUjQOHAnhAg4ZkFN2WT7ZMs4Sr+A5aul5+bTG2vFDlTcDS//YIYO7gAMjvLhKVxpm+eIaWYAmbR3I\n95rfI2TMG6fq2xP4k+pE0qN11XkIcm8EYuR64d83M7MP2I+Zmdn5v/cPzMzszX8sdaAAhZIJmbsK\nbOy7qFxMU3pex5RR7aNcM4Rv42Sm+cxDuaS9qe87dfXF+5Y6D97r67vbVTmn8HlkaPO3e8AhiNSn\nYMmfRfFZftQuHP3eRX2pfYt5MBcrlGm+uPRBodp+5Id+yszMnBNF/v/vz/5Ltc9rmgdv9+N5lLP+\nv6t57kOmvn7K5NO9bbXHKFYIIhObI+Nbn6p9hvcOzMzsq/Bb7GhKMoTQrArnwKNjzYsj0G0XtTHq\nHiXWk6cqOs9f8Dl3DX9HOFWuogd668GR2rUGR0IaNZF2W/1bK3PfgurTJUO+9HW/IqiyFBmYNTL6\ny4XG5ornu17e/D6qSL5+U97QMzf57YDz2mmyUUPU3FJkXHPwJ2SMeSAP8sHR/c5BjbpwoTgoUDnr\n8vnyao82AuUDj9pk9pfb2ok5TlJxxpf5D3Iph6x4bl997TJfLeHBGIUoOVAPKMqsBiptvq55vdpQ\nuUPOY4/h6UDsztKoVZRIRdc6um6PdeC89t4yl4Yq4ZyxNgGNAFWPORX9//azWher23DprMPn8RTn\n0eETmvWUAZ1T7w5oWJdz7HlUQiYpVLBQY6puqf7r++r/Pv7gglwqgJQpvU1mOtN5pwreeGzdQ/WX\nB5/IOpl3p4uKFvN4HQTMAlUTn3m4DD9dqqX6+S0UckBGbm2DDAV1NjwSejfmPso80tjphHNrPa19\nSQMFmsUE3zxQGSbHB/p7SX22s6PMZHpTjX59V2twCqSc68k3zyeqY7aMUtjaZd1njDLZEKVA4KT9\nrvqiDaLEmcHD9u2P+P8Vm/XU1iPQRcsbqk8TJ2lkleE1H1+l76FbszM4EBdt1ug1+Iqyum7a09jp\nnGvPUa3DVRWq73ezoC9AGg7h5gpQX2rf1+/O77C3g7cjA/ppCodhhCppfsV6iKrcgPktGIAkmqke\nw5natQ4SqPE+3Xd+Cmqur/+fgcpaLZSF97qaz+twRi4NtSrQcXOuD1B7qqB6l67Id3szrTfrM9Sj\narTzU0I/+Ci7sczZLIgRlKrXzHtXEScIXYvwbR+lmgoKk+kyvBy7amevrnp6sRJS/+JqfwM4WwJ4\naULU8voD+bzfYc1FVekYnsz9lep89UPaR/cCteEaPBg50DwhfHkDkIKjCTyW9+RbE9ZKb13PjdeD\nWkU+X61qXh911OevvPUlMzNbwqtT3lKbFTfUZ1vPqU2e+oEPmJnZrW8I3drh+fE+2Ad5X6yD7gKJ\nk70EwvOhxkz7UPPFMisfC8/ZV9ZB/YIAiVADLa+pnVr0SaEJihlOxceP5aPTc9Y3D/49+I0uvU9I\nSy+jueLopsbIEH6jGXuZR3dfMzOzzRt6ThWOLK+J+lMRZUZ4jvpL1BBpAC//HnEOI7XHrd+Xj5+f\n6L3lymXt/fZe0NzpgLYNUCcdtjVP75ZRolvX2EihIusw186ZG6YgmHYYs7bSc0er7jtFaeSqtnRy\nFoF2TF/S+CruqU5f/TO9R4/uabynJ5pf1xt69k5Ra9WUPcYqRtWjrLWCLHCtoTXkhe/TPFYGOf2N\nLwpJ6YI2yrF097Nau6ZL3XcrzemEle6f6sjnt59mw8g8cHhTyJs8KLAMakrFZdy3ILbjvcZVjcFZ\nfPqhB+L5lYfUi31cHlVR+Oaq8B89fF1jCPCUZVxO/KxiZJ/G0hqcXd/KEqRMYoklllhiiSWWWGKJ\nJZZYYoklltgTsCeKlFmQXcsXFaHavKxzi/dRXojGRPt6nI90yUSibpEBRTApKmJ18FVFxnaeVcR9\nkzOpI843p0BdPHxd5wR3W8qUemllB2coEaU8Rf7u/oki/GMYwNPpWL5J0cr3vaSocfuOMhkbeUXA\nOvu67/C2In/9x3p+bVfnKM8fq/wvv6nI2kuXdf20T0b9SL9bLhSpm/sqd6Oh6LaPesDB66rviMzQ\n4WNFPZG2t0JZ7TkNGpYnC58malhqoZQyUvSu3lRbvfaVP9dvOorE7jwv3ozREZwtnG/ehv378O5N\nnqmIbbCuKOLhISoeD4nQ7sLafn5xVR0zswBlnVWPc9cgVYau7tvKK8oZkeW3HFwuTszAH6shwTa/\nzjlHUzhzglrUZkmZz9Qmmcv7un8qRVbJRVkALpk4wxn5+v9CET6Ornw14nx10NRzfHy1gVpFsFD2\n3c0qapxz4WJoKxq76pNFm+v3K5A1eZeMKRnVLFFYh/o4c/VrxJgI8NlhFpb6Iez0ZN5HnKO89JKi\n3IGrzMEcbguXTIDLmdt5GTUt4As+qlMTqBvyKE1MpvqM+yvFOe0Z6I4pHER5uDFC2nkYq8yA1LmI\nHX1ZyIkOKjdlkC9TstqFa/L9e0TaX/sfft/MzL4v/0EzM1tvx2c8OfP6dWWLbsKJ4pt8I22ov5U0\njgvwJcX8QME85u9R21zvKCsT92Xx/1U25RTEyLapzUdn+v8//V/+uZmZRahYjLpwloBGSvNZ39Lz\nr33oeTMzC7dVjtt/SPZnrKzR2kJjukfG1kHVYgoaawV6wjH9PfWsMiO5So7W4CzspuaRS/8jfBEo\ni12C12i/Jd+7dap59X/+p/+HmZntgrJqfRFOG9SMlmR8OdZsG3tkipmP//pV9deH/pYQiu2x+vPW\nH2usDm5rXvYm6peLmpOHIwGU26ioeb5VU/mzJ/LFwV0U0yrqn8vXOKcN2u9kwDl5zoNv1NTPc7Jn\nuRz8SgO4gNqaC5v7cAC5arcg5neBjb+Q8awPcm2CQlT98l9Wj/AXGo8rskthDhU3zikvUanoeyia\noM604PrzlDJkAYiIS6hTvP994p9YgXAY3CPLleb8NWtWCsRffeey/n+m+eLkQL6XdkC6gUJLj/T/\nATw8wVz3O3mksTi6B5eJ6fprKBU+va6xOQ11XQhyJc6yu2QkY4WI1Ry1qo7m1W4bVbn3SBhy9gZK\nP2oey8KfUctpLFWuq4/XGhorg7TaJQ8vUDoH9ww8RMNHul8KhE9/QOZ6BFLoku67iRJOGz6OOWiy\nUVG+VWUstVEyO/yq+OKWnHvPTt5FoBaXYwsH8D3NhQ45PZd/uKB1Q0/tVthQ+1RaKkeMnOk58p8G\nqLrypsqbqqufwgyZ7Ck+DBpsBpI2XqfO3grMhmqDqrEHAbS66Gt+O76PUlcNxZDnVJa9y6BXyU77\n8PLMyVhC/WXjQ1Tx6KsCiMUlaiDjU9CYZJG31jV/Zspqk9HyzN6LpUA/OGTrPVAQCzjE7t4RiqC+\nrv+fAANzU7G6kK4fdDWWi6AJ1jZU3zxIvjHsXcMsylwprUvZzoGZmQUgjty56r0AheyCVujBiZUN\n1O77sfodiogZlGKmBRDeff2+h6rRKt5LrPT99teVzS+W1J7PvvgRfW/CNwX/36AKJxmqLWl4+/Ks\nN6MzkDQ5la/C7zLPaewXXBDfIF7mXbi94BWZgqxfI2OeB1G/Yg92FsR7H/3+L7IYupa1TITqFsjz\nEF6/yOARZK4sgnxKwX81aF8c5Y1YnZ2O1WbziZzegy/TK2rfXWmqT9o9zReHcAlW4LP8xsld6qAy\n5881v7C9tEVd17kTtXHvSDggS44AACAASURBVGvO3hUh6XaeUt80NuBrApkckeXv3QaO8LL2/ddu\nwCG2p3ei1HrMtQJ3GevNpZc0hu6+qYLk6owFlM+yxVgeivXqDN6Rrj7TyKheffay6vVD2svU6EOA\nLnYyBfXEPvP27QMzM3Meql2Pbup+AfyeWwWNpbARcz/KFwuXNOZqnH545U//wMzMisAatrY079VY\nR3fqnMrYBYl/XzwqC04h9OFMDHin9NK8o23Jhy9qXRDjY979blyR729+UEiZVR703AyeKDjYytq6\nWKGh8s1pp85A6+2QUxhz9sQuvpxH6Xh6X2MqE8OQzcxc11K+awZSO8d8unJB2/De3Yw5nPY07nwQ\n2ZV1febLejd02bMMV3DGwqWVg5sFwIndeu1NyqR5uAw/UJBGdSkHwgXF2Rnz3BTgWqzqxLT2Dm9p\nClTxdKl58+RlTm1Eeo7vp7k/72YZlXvrhva7L32/0GopTh/c/YbeM3JLePB2QMOuYsVIlbeEmqYz\n4B2I/T5Cweauvn3YJUHKJJZYYoklllhiiSWWWGKJJZZYYok9AXuiSBkXdRSS5dYfkRG9p6hwoaXo\nZZvo8LRDROoULhnUQbY2L5uZ2RFnUK2mDOejrqKjbx0oU/O+ZxR9PB8oOvn0JUWTz04UZT0+1u+v\nffiHzMwsRPlidAB3wIYicl/4gqLKT7/v/WZmdjKIWfWFXLn+oqK+Meu8oWS0u6bf++uKih49UnR8\nhwzJAmZvd6Hnba6hHkBEf0SkstVSJK//QJG7yxs6S5c3RYkf3RFfip9TRO/hK49svFTE/BwehDRq\nGlNUJQLY2S+tCdFyEOrM5/q2stG3XtWz2kOFJx8Rib5zoohxo8g5vT7R1ZGevbutPtreVUbg+FxZ\n7otaCjWMLGl1kkI2C0mzh/KFqABSpAHnTIYwKmzzM86+e+vqixJqJcW+6pGqyldCT74z49zxaEFG\nFvRA6IFkSSlCHRoIHiLsGZAh86Lu1yBLlq0vKScqI1l9lskqFXMgiFAUGIP0ieuRhik89kEHVMYQ\nNvbGnsp3jq9Hge634kxsBvb+FdwLvqv+6i10/dmh7hfB8zSbk82iXn5P0WYr6PkDMhNlRxmVIEJJ\nIla4ONb1DhxGJ/AubT2ndluitDEbonS2If84J7O+m+Fc/gWszLOLc5RM4EPqjNU2xZ4QFz/8Axrv\nhUNlH1pf1e82QRNABm/hUmV861fFoXLzb4BIe01tVL6LWg7ZiEsFFFbquu/tfyHOmVtf+LLuh1rI\nPgz66yvVtUCG1YOvp1mX7w2CAffXc4ZwXe23LpuZWbWmMemTvb/xN7/fzMwqLyjz/PJvKKsTdNUe\n+ygmBJzXvvFhcWuNUpp/vvbn+t3yrtrrBOWZ//23f0e/T2m+OfiiUAiPbypT0c3oumKGzERVY30y\nAD2V0RzzzL7Kt4QrYXIfxCKKZgFoswxIlOoPCYH4TPk/MTOz58h1Dv5Q2a375T82M7PQeY/LF+ex\nPZBB8+GB/r7U3FAmu9eFA8yrKh1VAsXgA59YzJTBTqFo5nP+PYQnxJnRHkxWxYqyU2u76i83gvMo\nVqyDv8XpD61c0f9V4ewYjPR/uUjPyJApc0CuGYpiU7IvcwgyZqCZuqyxuV0UFdLyheKcrDt8Ec19\n/a6POp2hbNU7IVPnoxi10PclSJhynkxbzBmTJusM2dXMZ02boMQC11UtIItUhz9kKd8pFrRm5uEk\ni1EF5z31SY5BmvJUzgHtkp1qXfN8zSsrVDs63feGlKmTqR3AwVBBBcRroRpVUvsXrrAesLbPOLMf\n8zSdtTWmsqCgfPg5sjH3Vkr3yYb6XH9BPl/c1X3e+ipZOd3GVq7us7wLJ4OjPcRmrCyRfTe/likO\nbeXoPoWZ+mMZqn/crNBoKXi1AopTBa22TqZ2dap1ujPU+r5asj6CphifkNUsamzsbVxWPRegwFDk\ncEZZ6/6p5vQJyIUFHEohWfvrH2GfBE1d5f2oaW4xjkDB1j09K+iq7pkUvBhvy4c7IAJ9eNH8iZ6T\nduBAYV+YZQylUErMty/OFWJmll7X2Gw14bdYl++ucqDbaJMaiEeXvovgjHHhYkjNhLDOs5YOUfGs\nsjfbuqb93+aafLGLSmcWToLohP0zqKYRewJ3Q/PWFcZg+ZJ+R4LXCi2NkSyIl0kAwibU72NevCwS\nNeOK2jFW3HTI2q+4Poj5Ljb1fcL1fkrtkVnXWC67apdcrMpSQWkoo7nBPZeP9lAQ8kaqV21fqIwW\nZBGDhdqrM5ZfLG8LpZe/DPdLkfYGgep2ITwxs2H3sZ0dyTeHxxpLWyGIrBp8f5R7vq/77TbV317u\n4vxUqzwcfmll3+twbNWzcO2hLtkewCvGq0vV1z8aMTcfXDProT4nKNm47Bd3QVm5zEvtjsZALlYT\nPZavPboJ6gn+uNj3r35QXCsbH0LV7kB9cD6BC+sIxDKckn5az127Ih+7d0coBxcUcb4QI9FVjmiK\n76DQ2EfRZw64zQE91j8/UPlvqe0XIMo9FCpT8Hy88rL2YleuC0lZZH+6/oz2KPmyxobH+8yQ94YZ\nSMKda/r/jX19VkGY1ODOmcDXN+jBoRaB/L8FOhe1O6eCoiLcYQEo5rMuKnsXtLkLYgV1qrXL8hfA\nacZW0ErsTWYc1pgc834wh/uN960I3qcAnqgq6I8MY7O4AIUNwnIjv/1OWZysa/PZ3FIQtmXhRcp5\nGr8F3l87Z1oTpg/hJWMvcASayi1rnKyxf4paf3ne6I5VqfNbaquzr+pdMwd6LMceZJaLIZX41Dan\nEECkLOCzazIPj1ib1ta0v75yRe/7OVCb15/H90DrTg7l06uR6tGFa+zWn0kBK3733HtW79eFEtwx\nR9prrD2tMTMHvTthr9aK1B4BvE9p0Lw++8OBR6d+C0uQMoklllhiiSWWWGKJJZZYYoklllhiT8Ce\nKFJmMtHj4wjTlABSqsQZ2MvK6MbRymsf4tzkPWV4+6ZoX0QU+SHqGVfgO5nBi3L1Q0S69hRxX736\nqpm9q0TTfgRbP9mjDM1y70iRrZGriNn+FZUnQEN+vaxIuoPK0f07ypBf4Vymz8HPm19T5G1GBn+Y\njTOoim6GKPWscZ57Cuu+C1pjcKKMx5tvKeP0wt9QVLjDmeK9fRQyUBpyUDHYuK5IoWOh7dWVjTqB\nZfx6SRkxIwP68L4054umNj47URZnyNnJXJVM60h13XlObXz/sf7+oe/7Hl2PRnthAo8PdegOlWUf\n9+F+uaDlSmTJZ3AKECV1ya7PyIY5cKjkVRxbumRtOI+dB6GSqipq2e7p78MU/29CCI3JCAYoOnRI\nsmzjk0uUcDxHbZ91PD4VHY3P8FfIBHumqGoWrhWPTEUp4u9NFGlQN8lzxvMKHD9bLUVnx75+l8lz\nfrKoKHL3nvrnqXUhVs5hGI/I3uc5zxiiuDCOVTcoT7OlaO8Yv4Cs3U6K9NNM1y/Has+1DT2njUJa\nEWRS2IZrJn3Mz/T3MnwAPZSKmqHa0YVXoz3WmNi7ooxIlzPHwbWLS2J4JbW93/n/2HuTJ1mu68zz\nunvM85hz5st8I0A8gCBAkBRVKopVUpv1aG3Wf1uve9HWqzarbrPqwaqrrLpFkaJACiRAAm8ecp5i\nnj3Cp158P8eTZBKUb/U2fjeRkRHhfsdzr5/zne9T39doq0WUfv6l5nZ7V574n364b4wx5uRv9P8U\nYxb7qDcuNQYjeHUm9ME6HCq5nsbGI7y139Cka/5Aa+B2qLUVBPD4kL+dARGXc+GGgosmDXLPz+n+\nu2XVr+8oOjQuy55USqjMHWktnHwjDpdmTdfb35ede1bV/zsz2OFBAhmQGbtwHZg93Wd0rvYdPVMU\nKnemNTvNaG4dwi1QtFX/9+4LeXRG+xdEPm6viU0/fVdzIQf3Q+OBonEnz7SYHn8uhYNZX3YqN4CH\nBBWrlKP6/Lv/5X83xhiT39JaPPuF1kh5iAJRDojlDcsqh+pLVfeZ5BQpyW+rf7djBRq4YeL4+byv\n6GGTiHcGOz3r6fcL1PpMTv2TJXLebpFDnVW7c4znYgbiyte8HcfRMjtlivAkOFu6Vx0khftt+ATF\nEvaMKBYaIRo0AL3kRfrBFVGbMpwrqxo8DFMio/CRjV4JmRGhSBOCiJmjGFYjirUs6vrnr1DIytZp\ns8YoJOo+J5e9HqkvXbhuItBTez9RhM5C7Wj0mLVCvvi4R+/DoRPBdTVCnaoKR1UFBGO9qujYe//d\nA9qrfpuB4LlpaTxQvarkr7vks6eyel1V4RSYCa3R64nzIUD9agZnFyAEkwGVMeb32RxKifBXDDkD\ndXv6fPNDIWZKr4mEDuCJ+0btmB7pfXEDu35H4xUrexljTNobG7/IhCmC4gBtliIP3jQ0hwNfc7YE\n+i6IkVoo2nXPlrRL/d9Y1/UQ6DBxenwqq7VYyqIGQ39kLqfm+In6KoDTaXMTBZj31AfN7R3qAtoK\nlKaP8tUSPokpSiUGLoASaNI5czsLSiyPolhElD3HVrIKNIe7cEpNX2qvKlbeTn4pC2dLEIAKjtSn\naVBL2RJrMECNKOaBWnK2yEEIgopQBkTzciz7fHWsOWXx/zz8IjlQAEXm/PRSdmeKXXI5Jwehxsxu\nsJZ9ItVT1cMG3RaW9f0S+0p+U69Z1AGDK/W/A/LRu6O1EQbwVcGTNMuilgJCpb0lNJa3r99tgfg2\nlxqvAfxUFupz8fk/YJy7T3RW9CYxYgeVvD3OLJxl3Yrm+ALVpPd+KiSsBXpiWFQ/DiUaozaGnqkX\nUCEsaH7kS6pfAZWs/nPdf3gsmzi/0H4frfLmpiWco0q6ggcDRb/+5RV9oFerAPfWltpw+UxcUZWl\n7MTGtj53JxqLcMFeyRgshrr+Wk12b7ulPnr9/AntBfltOMOACFlGcIShzrd/R2vwi8ey60U4r2qc\nb3ksMDPs9MGf67y8TrbCBCUtmzkfM/lUYy4bW/dpUL/OS6lKzZ9qzgx4+HNA9RY6uu7iQO178FBn\nm+UvhF4OfFWoioKWC8fi+KXGbIyKZ2NNc3MIgcmnf4oy5H2dY4+/0rNgNJTNKHIeHT9V/27/QM9a\nbVSywnUQ9yi6+Xm9n2JTHMblpgUAlVmBRkmlY05J2ZAlyNA8KOcW/KuhrfN67xAOmYHQJnak8QaM\naxZUJ+dpHOYL1BpBDceIemOMcVZls1m2zJhsiK6va09XatvDP9P57tF/1LrtgmzLuqp7jZSXAXv0\nxZWeIZ2p6rRWVp/PeE4POtoXqk193ob/cgK6Kl1CsZdnHQ814wA0brwXVgtkmnAeHZ+DiIb/KMUz\nSLWlZ9adNnv5A/wBIN4HA83BZ9/oHPzV1zIcKZSsyiCFxkfq642aOGcmfRTEUIGOQHnZqLWVGiAd\n+V6+9N12JEHKJCUpSUlKUpKSlKQkJSlJSUpSkpKUpLyD8k6RMsWInFFyXstEDrJE45bknn7xq782\nxhjzw09+pP9DJ5LFg9XCi1lEsSUiR/jp118ZY4zZIjd0cC0EysyV58/7FgygP4bQOU890At4LctZ\nVEmISEAebeZdovy7RM6X8tjNLXn6vvfxHvcjr79BZHip18tjeaV/8R+kwrRBep81wYu9VL88/LG8\nxJc+XnTyGF1XnsxorPufL9S+OLd4nyhrr3dmNjfkeZ9eo+hCRPUWSAkfhZON92JvpqLkv/9SfVh0\n5CX0SuQTk8t4fXmouvXkdXzyi98aY4zJQzVdub1vjDEmfSVUU8X5e2zfNyhRVh7veoGIcU73r+Nx\nT9GO8qbmQBY29MCRh3w2kbd0c11jXiSHdYmCFpQLxiYn1ibfPRXnvXuaEzYKXpEDigD+ixR544Ol\nokahRe4s0e98UfVIodSzQlnMgrOgTNTdu4IDwZX3d+WCkBkKxTGJ5FV2bEU68lW1fz7XfWMeEneO\n8gC/X4aq94qE8hwR2i68GLfe0xzNoMhT2oTfpA2nTodIelfvU476N5qTa1yOORfU/9ZM/bG9r3Zn\ndmNkDyz48Ah45FtaRGICFC3KKaKPy5ubpuWUqHWoyKc1lAc/rKtvzr5Q30yISv3JZ//GGGPMYk9r\nIn0Nd9RcfeKt8OQvdZ1UX2MUkR8+mei6i64iasd49sMW0XB83YXbil710/BhEC2yiabMiO5MT1W/\n82OtXwP/T3tHY51ugEJYER0D5dU70v0//1+1RgcfEoUbntMxmqPH8EmdHAoZdDqSHfnoLz4zxhiz\nu0veO6pIF0dqtzeIeUxk15xQY1pry1BlHM1hn4hl9a5el2NFcTxycsOZ+rVk6fMsERAXng1Sko0N\nJ5i10Nj/+t9JJSsNm30Jjq5SPVY8uHnk0hhjcqAHYgWaRV5zPlNUf2bGIKzgKQleqz9fvVK/+fdk\nK2/fl63LOaiuEDnPrXS9ZlNrKiwQgb86NMYYM4DDIA2fVKaqca6gyDFwVyaCIyaO+qSw4TnyslNL\nokAgYGZEvFLgeirw4wzJpc+Rdx0jUoqMYQNeiVRfc7/b0V7SAvniwe8WzFHpI0Jos15Pv9A+cuJr\nzrbvCR2WSrGpggZtgry4hGssn4PPx9fay2CPZ1XU5ljLU5CQKRCPhYrsSM4jkolKVYF+Gnmas88P\n1S/7MRoseLu4U6pC1H8Hri/Qdj4qIoNrze2zP6ge11eaIwFIoB1UrApNzdUCKLawq+s0A62lgoPy\n2oX2pc5T7bfOWHPJPtX1l9e6/nKi71moO6UbMZeP9oeQfH1jjBlWVqYN6msJj1UlI1u0RCUk4nUx\nVX/14Raa/VHtrKCYs9VUfa8v9P+Yy8wBlWKhIHRiDnVzF7TxQve9mrlmEqIcw/rPH2iOlR6CzNAt\nzKCHhJ8XqwahLhRqTvWOZN/zAE0WbfVtHrueDTWnmw3OOtjL/omuN0QR6/pa9nHFnpM5eLtjsIuS\n2ATetEpOa7aQVX3qW/AagcyL4HyxQ/VZB1Tp5QvVI71JZLUQR4p1n2UaBF4PtZBbzEkbBayp6l2N\nua1mcBsQQT66UKR6twm6YgNeOdBs5QCk4brOj9Zc/Z8vMifYB2PuK6eGShyqfF42VprU9xZTUFec\nX82YyPY6B/YudpW51juFiwuOoFmg+tXbQsaYLc4EIGHKBebNHVANzX1jjDGDMoqRXfZhxmdmQH2t\nvxnf9ffumBb1uChqbZXgjKmwZrKgFKegBTlKmmDSMzctS/aSs5MubUOlE+RCe197RGFHdi3raIwW\nfVBI6+qjjR3NpcHXuk6tQJ+Dfp2FmiwhaqS3P9J1X3wtXrkyHIcZkJRFkJIWEMseHI+33xNCr/kb\nqanaAepvPCJWxxqLuUPfHanPN3dRVAPdGsLxWIePyGVu+KD379/V2A5e6AziomwTVlCBBc22bIBa\nBT1WQplx7b54PGMlxOO+rt/knO6zn6w14Qlsqh7DFWqwZ9q3qtvMoedwQfLM5hdlk5Zw4oQOym9p\ntTMNamzK+TVEfc4BMbOKYqTQzYoFd1oGNK1dg2uNZ9EQZbmnZ0Jn7H0ipM/d78ue7+zvq13Xmpv+\nNWcwzkwRXDMxGDDN2XT3jp4pj5ZvVE7n474J7WwMijLLS13zq//8a2OMMT/5+Z8bY4x57y/+rTHG\nmNNf6tx5/LnQSY6jutVr6vsLlotzEfNe6pxpg+iD2sU006Ba4VOyeO5v8tydzsAVBo/PAtR+v6u+\nKUZaQxl4nExf3xuDUBzGz/uuzirWGmjWBoqzJVD/dY3hnZ+AuEPhcb7Q791vQWCyUxtwQS7hIcrA\nHZMOQaXybDoma2HZAZ2U+m7eoQQpk5SkJCUpSUlKUpKSlKQkJSlJSUpSkvIOyjtFyrgoRAQr8gF7\n8mJewW/xaU5e0VegGjbq8mgtQRt0L+X5ioj2rcFLkS2DhugqQtK63+L6eJvL8nyVYfe/upAnq1gi\nUkDUaz6QBzCT0f+f/1o5qmW4bI6fKy8yXyE/nkjI8R8Uoaj+kEgOEYZ8WhGcsSXP2p0fiEH8HC6H\nH/xrvT/5Qh7Ir3+jfEd3Sv75pdoz3SLXmsh7syivqBuADICiuxuond+8eGY+hs/AJV84Zt+urxP5\nPNI9AzzkH32q/MGvPpfH/cPPxCPxxTON0eLsUH1TZmwa8k6ewhJ+8GPl2zUyuv6rI0UCytbb+QFd\n8v0WEZGEFcRDV2rPlaMx2qkI4bMsEbWO1Pce0aTFAAbsiMgyzOKk7JsdcmyzZTz8KN6Ut/DAw40T\nR02Mq3pVc2jdE6kckl9urTTWSyIMy4CIAqQtnSmogaW8wUuiatNL3beKA3s6jTkAyPu2FEmY4qEv\nVhXlqs01B8fk9M/y8JGQ3+mRL52Po3ch+Y5wHYyWitqlfLgUXJQlQEW0iLTYvsa32tKaIrXWbDXl\nJXe2NBdXcCSUUfdydkDSFNVPJeBuKyI/U0drMw/6bTy+eVSqStRp657m2hgEhu8puhC4oJ2uNPYx\nNUEeTievqTqt7dC2DxTtfv89cv7rej37o+p09jmTZlv3q22y/pkjA1TSrp/EymbwZPC6FitaGbXV\n2tJ11i/Uh9OV7uOBeioE8FXgoS+m9bsPPlQ9PZdI8teK4uTIY1/uaw5uYh+aoJsCR/1x/FztyFEv\nl0hro6SoVHNdY+NkURiAA2cG8ie81lz1A9mzq9/BkXKl6H1uAULpUnM0n9acvHsge+auo4SW1WtE\nGNGiftug0ELQaaGt7+UXsqe1zbdD3eUj3X+XNZNN019wB11daL6453AcELMoEwnPAL6wQ41vvkqE\nnnbNu+qvc1f2/5bRePo5fZ4po5DQox/pt4gc41QqeIMuAuXkkQvvETFcgryzCiBgUCRZxWpGoX63\nSSQxIHI4JWqUJSfdipFpcLxMmUOxVpHDnpsHNZrKac6lhyAl6PrVAkTFltb3iGj3lO8tWN/Vqubg\n6Fpr4ukTRWg3yvBlwLXlgY4ogDgsgJRJFfS9Oe2ZgwZLY5eWyHmcvlBE1JlojEOUaG5aChVd3wK1\n4IG09OFCC0CGzGYgIdkvvLT6KxuisGipn7cK4nWrtUD0dDibgLx04NnoPNG+2k9LzSRXhysCdT4H\n3qyAKKIVczwY2c2g8YZfKXevZAJ4V/ySEDs7d7V/9yaaN9eninSvjkE1DLT2pvRv5oD9jftOypyt\npkS24SyyUPvwUUDyJnAsYFNq5bKx7suerN/nfAWHUxSrJfVpI+pM8zEKMUTz86BJ83nZq/QCtTYm\nq+3yCrK5j/LWsCc72r0k0jkjio9STQYERbYWmbcpEWvMmYGcjlVHXPXh6AqET8SZgbGYwbOTCqgw\naNDUSHMtV4mVXXTddFX1LDVAiuxqn2uva0xP4D6xT9WPrq01EGCPaqDm0nA9FEBruJwPJ1PONsGh\nMcYYD1Rcq6S9PUZTzEGv5m2NeS6v8VvCeZMe6f7Lntbe8Rj1oxecFZ9pP8i6qk8tUDtz2LLxqfot\njTJPsw3aKs3jiafxG1wJTebCv9EDsQNlm+kudT+f8TEjFNwu3qABRmdXZgS32flLUH73QZlt6EIt\n9sv2rupbBGm/fF4xNy3rqOlkUNJyUMOJ98AlaNnBEA6+mDsLVNAIjqaN20JlPvtSyJIN1I1WGAAn\nDXdYT+v44BOhEWK0z8SCi3ClMTo6VV+sb2gMx0e67/I2fb6hM8XpM6FDW2NUf1gzZZS03HPZv1JT\n7dkCue4F6qsJay1GVU1AcjfvyB6u2rInl57sx05D9x31WFPYs9OB5njxkRA8e++BROzJHnf/Sv9v\n7uj8b7MfmirPCQX43JgjM54tyyBM8pvM5T6o4EC/t+Hq8XimixEts5XmSr6iubBgfzRwNBYYx5uW\nkDVWjlVdWQNd+EdtuB29rtbqL/9PKVC2vlT/ffIzPTPuv69n5QXjPj9Xe/ycfj8dgvp4rflWKqnd\nn372Z9/W5fs//Qtz+eiPJgSF1bTV5qd/1HOoZ8QF+OHHQpJsPxS6agknq3cGmr8q+9Es6yzwGBRu\nrS87sLMrlM/57/TeW6mOabhXMhnVbcoz6knvUNeFU6sac3ZF8R6Nqt8cVbYBcwi+0Sy/S5Gd4MzI\niqhpUozhthpeqp73d9WXzTtkoPxC98+mZHfvoBQbjnX/6UDtrjNXcvTf3NVcG1zp8wz9kc1+tx1J\nkDJJSUpSkpKUpCQlKUlJSlKSkpSkJCUp76C8U6RMBlblCpHSHMo4u+vyMm/BqVDdlseuCFX1Fuz9\n9R7M2qiM3AH5UiCXf+uOvLb724pkz4/l/Z3lyE8nZ8wBXbBOZLZJdLKMR+uTPxXqY3omL+Ptv1T+\n/B9+I5WTzU1F4y5BcWTI+z/q6/1vnyty+tG+PIi/+o1Umn7+0780xhjzu2+eG2OMKW3DuN6S13fz\nAfrsoFeq2/Kar5Ff6Y8/N8YYExGJNZa8pxt3NKz7ePwWpyOzTp9en+tesee1WpeX0b7SWDz7q/9g\njDFm76F+e/z898YYYw7gHkn7cKLgRX1AtH4LJERYgpcHLhSDcszlsfqgskO+8A1LQNQri0c6T/5f\ng1zZLpHHsi0vpg2beFQlr3tOxBAm//xS/TCpwaFCXmJgoxyQ1lysraGYQMQzDzIFsnrjR/Kq5s2+\nMcaY1UAfzM/wbA+IHNrkX8MpkCYP0SWX3/02YVn/9wPlX4ZteCm4v6HfoyoKXR3uM9HvRw3QDGnN\nsV04XtbJ8xxlQDXQH3ZO9UuVUGkisjF6LbRAD4UfG2RTUFd/Dlfqrz2in5cvQV6RX18EReaeavxx\nWpvdutpjFXZpLoggIjCTkX7X2pJ32ndvrtLlgTyZVzTX0iBK+q481OEr2ZGTM93j+lLRlVIH1AFq\nPJkt9W3zfdSRqprLQ6JZ2VRsp0D/EDmsxegqFFCyvn6/LKhP0iGeehe0QwB6oAALvE3kdgtUlKu+\nLjdUrxB+jSZKZGFaHnqAH8ZGdW2x0Fg68A21UTPKZ+G0KqrvLaL6o5gLgOh/OkBJpwnPR6jrOhOi\nbaAS8qAZOgtFAnJsXmvqugAAIABJREFUI5Wq1oSDAliaXOEVqlUBEW47T71iFQz4l1Zcp0b7gl2i\n/wjxhJ7q6RAateFBummxUXUpzzUe623Gi0jwlIjs7FJrbXtf/bH/X4qDaHNf49o9PNT3mLMbIGDC\nDP1CZGQ0Yc0jxePR/kwdtZYhimUWKiPFkkmhJDO0yXsm6hTBl2aDeJvRV36oe6bgGYu5oUKi8FtE\n5XuO5nZlQN52AGoHFFaBiG4JRagUSDrL1n0zqN/lyLve3ZMSYYQyYQteigm0SNmV/ljAj5Qr6vN5\nWtd1uurreZboWBHUgKXrRSs4VVJEmlFAM03NCSut6zk5Xa+ckT3aA1lShNPszHm7uNOoLxid31c/\nLWfwPsEjFXLd2qbWkqmofTPaGaVl56IJ/E8t9bMhf947ll286uo+/VegXjuHxhhj6nC5bB/IZtk1\n1d9lzsdqessK7w3fu73zbRtuPfjAjKbqx8mJvn/1TP100VFFRmdau+kuqBOQQRlMUBCrqRzozPGA\ndh691j6emRMRP1V9ey815ycgloproODu7ptbO6CWGiBM4M+Y9dhji3A5wR2TvlZd+zPZz9ufSgFl\n74H2+NUxv2cPtY3aeHlF7v5XquMcXqUidrNYg9+sqd95EQpX/hvlqpuUIpwr9TX43bb06hbhFMvr\nfmdHQoMVsPtOPyYliHnX4JRC2dECtVzehMOMw8YEVFwAenfQRkWpwNpqEJlm36jc1dy9RuEwx/4Y\nrKHw9Z7GpoCd7sAH4g41F69GmrsZUL59uLC6x/q8bGlc9r6vNZdDHS/ifs06+01M+QWPSmiYY5wp\nthmXVBt0wAt9sdvVfhu29HkJiS+ffSfdxW4OZAu27sFlcwCvByjACWiD4Wxo4jLrD8yEcZiACyRg\nbq7gHem81HWzHc6sI+0DeVDCNykDT/ccoTDjZDRHzkD12xBUeCDm6vD9pOAm9F+CQP9LIRk2b2uO\nmHGM3gTBgV2/RtmrwHHx3h0hsDuvhR76mPP8dIVSDojmaQcVqJX69v6fi7czl+c8DwqqjWLXBKT3\neMJ5cSY7ssrofQBKybd5BtlSPbKe+rCJeudn/9Wnxhhj/vp/kjKtzViNejpDVFv7qifqTd5C/baz\npn6qtWVTnv+SvdNC3S/yqSf2GtWhPBxnffj46rG64YHu0/c5KwKaG/P78Qqlx6IQSB1g1ktUUheg\n+rIlJnn0do/UZZ7L8uzvM871K3iXMmW18+4DkKMDtf/5U6FW/o//Wdkb7YLqV13X/lPPgFwFserC\nCda/Vv2f/+ILY4wx1z//oTHGmD//4Z8YfxiZqLBr/Dnnn7taV3bhJ8YYY666GusXv0Z58fuqU6uu\nvefwVHZhDrdeakN9X2UvenKkrIb9Wzo7tG6BwnyutpbZ69OlWMlVg1Hy9P/RXOvzBVyHGRDwYxDe\nOUdzbX1Ne9b2LSFy8iAVV/GzyRL+HRR0fZ7VlhX1fS7Fmaigdoxje2e0BjcqnFWQtqq6Os8vUVqc\njLXHnx1rLpe3dZ8Kz/clED7/XEmQMklJSlKSkpSkJCUpSUlKUpKSlKQkJSnvoLxTpIzvk39O7ldA\nXt5sIg/Y734vb96or1zSK6L3l3157H7wibx8mZE8Wq/QFw+eyFPlk+PbeS0PnT/EG0oS8vhM3tdX\nXwpBs/aekDH9lKJ8R+fiU/lhXx6y3/zu3xtjjMmGf6L3v/p/jDHGNB4qkjOZqF4ffqg8P598yeqO\nPIk/++//a2OMMX9D/vjBR/IWvzjS+4unQil4B7pftSTP2stT5VUenald3/uRfncxV/0HeFVffqXr\ndKb6f8pT//bcM3MvJw9quQ6/A57xDNH+Bz/5QG0ryrt3cEcImC6KMFUQHzEnyQK279FIffsUZvxo\npTYP+/Km7q/Le1nKwz5fweN/w2KlYNK38BzDNWCBNliG8n6miSD6vuZI1ZeX1g40l1KWvK1FcuSz\nr8lTXmrM3rNALaRBDeDxD0HEpInaZOAfsWE3z+4oNFEmt3YCX0SrIC9zigjwLOJ3pC+HeH9NDsQM\n/CEzEEGlHl5cP5amAV0AWmEU6D4xustFcez4hdaKvQQd5h7qd0TGc0QpAxRolvB+OEQSckQmLHKR\nfTh5Kqi9vEDt5Tb9nyEP1CXY2PBgMs/pc7umD4qgHxYB6IoCfFK+vj+aazwqeKFnwc2VdV6/Eppr\nNNFYxYiIIgiRWaBruofklHLpRS7mx4DvIlav+P2hMcaYOUplZ32UBra1hmyC9v5MfXQxVLQp01Yf\nZYj4Zme60QJenSL8GiVL9VmidpExIDTgiIpzTwMii4tI9aqhkDYt6vtZwjolIrPpUswhoPuEE93n\n8kJzI7IUaUgR0U1FMSKQsQx1PwvFgQkRCYuIdVTUfRy4tzZRqjHUb4naRYY86XRZc7SCAlgEh8Ay\nh+oJubwmDRJyrHaNfL2miIxGPiogKKTNmWtvq3RgwzHgw//kX6s9S5R60iu9zsm/v2R7zMxV39GR\n6jvooRqCgk24VH+VUJVqgAxaoSaQIlKUg3+qHasz1TSv5ldE2wJjFvSNBSfULP0Pc9td0FpxlChH\n3wdEClPpWJUO7iai1wY1ORvuGe9a637O2Beo24joj5VH7WmLvGtLEbZURnYlB5/SGATLUUd7U+9E\nkbtMCa6tQPU4j/k2LrGvu1zf0xjb8FxkQWctjL53iYJiKqO5tf6h8tira4oM+r7qVQxjJR710ya8\nQ8Pgu5UO/nEZoII0QXkFKhWTLWo8AlRB0pva1ywL7i34RTK23kfXqv/rz7WnZ0BNmZ76PeYh2YDs\nIHhfv3PgJPBa7M+gDrIp9U9YZR7kZAs8It/tXPnbNsyjsgmIuC6uQDwdo+6BYlh6rv26EKk+Rc5E\nlThUXICHhPGIsMfpCcoWZ4qmXoDAGb7W6+bevtoBmrnxsGmqKEW5PkgYkM2GveTyWGNYceJ1pboU\nUHUrVYUy2GxrzK97Og/NjmR3n77QWWTwEjsBqnPzR0IHlBuxcqPW4SpGm3VRdrTfDimTgovKgZPM\nYc0iMGOa8DXMUf8zU/b2MUhqFLSsiX7n5bG7adVnzlnBs+GDm6ufhqDIyj3dyEGFxEVZLVjq99M5\nHGG+7HYJtHKIeujVJXapFaML1F9reSFeJijRGPatKrxTY1v7RzDSHJ28wp4HqOKtq15VkON1gQDM\n6lr3Hb8CiXJ1RH+w36FW4i5U385r2cXslfqleg8unTsoShp9fwGquDcTomXyQp8XQD4a+ieTjokA\njbHzVVPc0xzfYsCy9VhZUmuotadxmW2CnN+gIRc3R2Y2q/rN4bXqVmbKl2vs1ZDxRZuaQ/kse0Sk\n9xfX6osR9qJ6sG+MMWb+WHM/AnkzmaA4ZYPe9TW37/78Z8YYY05f/m/GGGMGoGFfHOpcvnoEx80G\n0mdP9f96WfW2QHO+/IPO/0wZM4HPs7Gueq7d0tgcbN03xhhThIfOjvscFPDJUz2bPT3Wmaq5KRTD\nvCxlnwNUprZQV4qQZGzc1n6zAqHjwquZuy9bcP8+arFLzrFwsmWLcK3FKDxQu6mB3vdRKHPYq23W\noM2am8zV/klH47CGiuxsDIoLZGGtyH7Mc0o+JmW7YXE493fguDzvqH9yXD8HIsoFnbff1jPvxo7a\nf/S19l17RlbFpdrX8XSdIijdzY+V3fFRXs+Ox38QWvzV551v63LxqGfa+1XTGcmeXl2CPATFU0Nd\nLsfZPhpzNpijdsoeZGVieWR9Xn9fyJiLr4XueX2hZ4A2HFnjY9XFAlHoZlBLQi3z4c9Q3MrpudqA\nIs5wjs2VZW+KS62J1VBrYvxCz4YDuG6GrN8VcyTvxwhw3W8IOthr6r5TeJMszn/Nu3CEYQ/DK62F\nMFR9XPaj4UyvDuqaaw80ViVQs97ld59bE6RMUpKSlKQkJSlJSUpSkpKUpCQlKUlJyjso7xQpUwIZ\nY8ipzxGd2Sb/vFUDbXAgL18ZnpCnh0JnDHrySEWxOtGFPGMP/0RKAy4qJB0YvFsVIVZagTxqd/aU\ne/a4pvvd/0QeuRkqTSkiuPkqKikow9Q39Pt7n4hJ/N6afv/lr/7WGGPMmLzI5ZA8xjPd/+Wh/n98\nJi/m4Qv9fwNvsDPS5wuQQHufCYGzM0MZIRVzS8hjuV3Sffdu6fdTPH/v2eqvGhGmZ4//YDp9efWe\nP/rSGGPM93b0nQWcAsWivJu9geow9aQCsYRrpTOQN7GkFxOUFVXes9SnBZQD9u7JY37ZlQe32FYU\nxSMaE/Ne3LSUyWWdokaSMkSpUkQK6ZMxqCQDR0mqRdTnmdoTEn0KCyidxMItIQzdRTzTcNbkWvCH\nEKk2IECyRK1cuGtsFAuye+rrQknv17+n/m3vqh6Ziryu5ycxJw/550SJTFbXC+MoYmZFPXS94Vxe\n3LyDCgnKFXk4amzQZhtlzYX2pubG5RVRNxK7hyCk1mCpT8HO7jDOI3KB16tE82car+mY3N4uuboo\nIzg2Ubi0ol8FIhwr8vUdVLOKZZQWukRwQxBN8LHkrvX/kIjMlEjyTUqTdV3NqS8v+7IDq36MjCOK\nkFNdd26rb9IrjbkP94yDolYKpEcOpat6Rd9rMmmctu7TyaEGZKvvi6AMfKL1BC5NuQBnwFJttEBY\n5EG8jBcgeFBSSBMpCCaguyz15QjlMBOApgh1nWFJ96uu4P/JoCBQJqIAZ0KeXFafiHEmiFXbdNkZ\n6KjcCO4XWOTDhurvYl9s1kIBRR63QM7sHJRcDuQIXA8T1myBKJSD2p7rw52QVX1LMa8IUfkMazYC\nfTADFVIGFZJjzdy0zBg/gE9mDtotjpTvxapT94nyoSS3iNS+r78WiuL6QlG2Ow9QCkNNL567LdRi\nLGzFgojtjAhNrSRbEK40H8tZlIdmSxMy1m6kui1sVCSIn/g1+GtAzjigpIoOfEOo4dggZdKoIVmg\nsFZjlAaYI9EERN665tqyrL3HQ6mlsaU6LogKjV3tWaXtffXVinU90J7moOZWQ7GQpWGsCXM6p8+3\n7gqZucCeDMk3v9tW5NMHXXD0GvWNutZiA2ROsAC5CT/HEhTC8e8OjTHGjLCH0wcH5m3KAp4O21N7\n/YzsYHZD41He0J6cW1d9OIIYz2PwUXycdZnjqBzNUDeqt7AFbY1DE1UqQ3T/mvZFGRYlyJhMU/2Z\nu6OoWxH1J3eo6/RO39jL41+emiuU1ULsvw3nw/3PNMe3bsO/AXeXM1d/YqaNP1X/DR4JRTxxNf/s\nAWv+XBHjOVwWDSKxjfvqr+Iu+6MfmN5AUXhnrLl9ierYaqIzQplzVnNTZ4oMKLG0a9EGtfXwsdrS\n7+p8NgVpkS0KzrT9EQqMrAUXREu1ht1DjdLA55Gt6HXhv0FS3KSM6fPJtVRJ7F3Vt7WvsUn58MOh\nxOhNNBYFo/pP4Rs67On/LY7h2XyswgTn1ZrmSvZAe7oHgmW61O/GzHnvgsgwyo1jVIVGKG36oAHq\n2ACbuTaDTyizCTIElaY6yBoXQjgLlPDDhrglsgZEIYZ0MNT9piAXLy2h5RqgMKyZbAzAVTMaah50\nj1BcBP0bmhg1ovFA9M/MQYWV4YrLcKas7QmtNvLVD7V9kERp/X98Fasuvhnf3MamyaFwY/mgoEGB\nZ0soqxHxj0AcxbbWi26u0lXdAkkyURQ/N5I9SbM3DCLNgSbo1DlcM6mCzjIpzrNnhzrLNBuaW90Y\nTYS9rO6oj8tGc+7lH7VHPfxYiMIMClnXx2pbFdWj6obqtX6gZ5j+SvW5vpL9X9/Q/drbWtcp+EJa\n++rbtU3VM1vS3LmcY5e/lkGcwn2zAMXvo7SbX+h17aeyox/9SHyd9hXoUvhIvIXG5uK3h8YYYxz4\nRx2UcUvr2h82f6x2nH+usQ7K8DIxh6ZwwxjOFgvOy00PRBDqsYXbuo4D52K1DlITHsL9B/A/NfS7\nAH6hBWvANXD6rL1dJsDxazIOztW/OdAhazta8ynUuq7OZafHcLLFz8brNbVzhh0PZnqtr+nzu5+B\nFqxobZ+caJ4FnN/X999wka0d1MxouTLnZJDwuGtqd7VnFOG8SnGOPD0UwvHl34kjNX4+L+dVdxeO\nvhyyla2a5v7Vcz0r1O5jbw7gpEJp1yX7YfKK52iyGXzQV7V97b1F5rxltLY8fp+ZYd/YP5rbOu9n\nXNnVBZt21oaf04Vnk4MwgBmTm8PRBZo/4Dx3fqoMmmvQqP4o5qCBzw4uxHs/39d9HqiPB0+0Zkfu\ndyt0JUiZpCQlKUlJSlKSkpSkJCUpSUlKUpKSlHdQ3ilSZonnOYjk/fSm8oiNlnKpb+HpGhLpvY23\neLuu6NdoguecvPnWHSFkinj/ht/I4xcH3bNEmr96pfzGGq7Aq4VcYx8RMX19qvo8/BRvc5Uc2U15\nDAsted5SqJl08aD1r4lEEEGuooizv0O+Jblpn76nvL4UHrhoIY/i/vtq3+9+JYWkJSzYi0CvedAS\nL5+KsTwsyVPXw8t+8UQomK178n5fjfBut7Lm7vuKYL18LC/j1qeKVF535LV8eaS8vjromtFJDIlR\nW5bkrk6JGixhMd9owUpOntyCXP7Jtd53BvJ6VkFuBLO3Q8oES7TfUROZhfJuemjNW0vyxa+I7Dbk\nDc2junE9hiPBlbc2KMCavooZtIlq4ekeufAaDTWWgUc0Do37Vcj9+rrufKLPfVQpnjyRF9VFIcCx\nlDu79an6tUyEOgenS4rIcg42+yJrgcCwqYAOGBBNt8lHz4HwMbRn+FprZ0a+vEM0rHkHvpTn+twB\nreFHipjk4AdxQiKvX+h7x8eKUNsgWprbWgsFTMYKbqEMiKWYd8NswH0wIgJP/Ytw7HT6qn8IeqAI\nIufcQnlhAJ9A4bsZyv9+qaLeNk0pirNJhHIB8m4yxJN9TxHA2rrsQ5rI4/UxiAxUKPJYxchSVGQH\nT78PqilF/ncBXo+YK2W2JNoMV8KcvllN4UZhTpbhDjBjOGZCn++DJJmh2JUhtzWDmhFRnChGsFhw\n1YB2GIL+CgaoOYH6gk7JmJBJlVL0KFqiTgKnjherOsW0EuQSx98zvvrDASU2Y67mLP1uCsLIyZHn\nDt+FnUfdI1YuI5IN5YyZghRyyUW2ibC48BgViGwWyVF24MoK3JurYRhjzGgpW3QFN0+h7FBPRbcy\nG7ItNlw5F11Fair099LBVoAYigIIR0CVzI7Vr725XvduKcpYYdxnRLgn3Xjb1ZqbplFpSgcmACnn\nVdUXIXxIaXLzI9ZJJoMiiQ/vD31fJLwcggLyUEfKxH3N3pomchnCaTJDHmiJEpnrEC5qa82MUnp/\neiJEzJ266rNX09qIDtXGClxTwQq0FeivIuiwHEpkxZyiY0vu270kL3sb5GFbc639vY+NMcbsNvT9\nNPnjozN4nFDRWKtpLOYOEWQku2JlnpuWxiYcC6ATMmXVewkfxxJkpH+m6/unmtuDEWi6MYcNonHh\npV5ZuqYMAqawBpKoQAR7Ex6SnqJzK2xTmjVnsXbroBlORpo7ULqZVTdGVBnTfToxwRE8Tpgau4mK\nFvMktQ5SMiVbaHex9+zzFiow519rfMYgUtd3940xxnhwxbXaatjGe4p8O3D4rDg+eM7Y9E+EqlkD\nsFBCeS9H1L0F4jfFXtoBGWPOQWmiAJMpqC9KGfVB1FIfljZ04QW8RIsQdY0lHFUojvlt0E5lvQ/G\ncICBErhpGXmodBjdt8VSGXV0nZWtvnQyao9VZE6gaLXMg9SAM6vAGSDArixQn7rMy17V4BZLt+Cg\nAe3mMwcyICYLaRCXBXjz8ppTa0TTU3CoOPt6bcDrVtoDVXym/kpzHvUqqpc1BmXA2S0HwrOEOl2K\ns8bEVr2LIEkbFZAy8FmFoLF34Kkqc/aYoHYXo/7addU/KOu6rZzWtu2DLobXyF+BEN3kvL2udszg\n0YjONR6TzhteKa8/Mj0i8P0roUrufCobU4AvqgnaIab9q+7rj577RsXpXypjzsNluPoG2PMSfBM1\nIGlV9kIvxdx24MFBiWYE90ltV2tlA3T++hVo+AOdv0N4Oo4nss8Z7PB9+CePv+JZoI6d4fz1q19J\nwTVgr43KGttGVc86dz/eN8YY8yhGuNPnr64OdZ1DkNOgV9Mp1I4CjX2xwDkTBTYPhPh8ClII5OH1\nhZ4/Ll/r/Nzc1FiWmfs1+DiiguzgDJTZnfvv63e1l9RHa2KQQoELTsYciCQDyuMa3riIc3oObsQM\nimq1huz/1bmej4bwgM4t1JEs3SdCwXI5VH2G9tuh7hxLNmLvruxweVfjk4ET8wrkS3lD/VGIafh8\nUM6oA3ZeC61W3NXcffjT7+s9iP/Hnyvz4RDlyBT98mB//9u6eH7avPz6t8aU1Bebf6a5EyNmOs+F\nbDx+omedZ8+1+ZSamrsf/Ws969ThSZqCPI/mGvMWPGwuHHrXr7X+LM7v65tqU++Csw12MrfQ/7vw\n+5zCt7QK1RmxklnaqO/qGfoQpLOPHaqBbD79/3gegJvGAoHjwctjwQEYsueuQHK6IcqL27rO2j3V\nu4ryVZl253Y0JmOQ6v0rPc+fj7RGyyDU/7mSIGWSkpSkJCUpSUlKUpKSlKQkJSlJSUpS3kF5t+pL\n5E8XUVZIVchXfiSv57Qtb+XlN/JsT2ryEpscLOtGnqyzS/Kis7rOo7+TV/MUJZr39oh0o6eei+Tx\nyzny3t6+/ZkxxphDol6//FyKD99Dw/0//b96/5icsNaavNRPH8lj16zod+UNIWfy5DifHcl7aS3l\nlTy9hnfDwpM4kLf15FzInQ93VI8MkXS/K49kDmbvrW15AJ2xvO0/uSfPZDuPzjooiIMNXX/UU4Rq\ntZEx1kqe3H5P333exbOaJp8PVZ6P/82fGWOMefW3Ur5Kt9XH1668kuslIRuOvnli1Bh5njtXutf7\n7wsVNMvLSzjAE10oyVs5Gqjvb1o8InshCJZ5hOe4SOT1Em6EpcbCAS0xJKixgo3+qqs+20JOI3L0\n+z5IkCUwg1ZL3tANFGx8ci+tGagsUBN2XvmUHtGfbAvmfqJZZ1DDTByUtS6Jkg9fUc84hEnUjgh2\nVFJ9F0RlAjzzaQfOFVAaTls3CGP1FXhPViB4vLTa1YIrJrT0/WtDlL+E4llerxFokpBxq8JN04FR\n3KadOdAZZSRwluTq2tTLDtSPE6KIqQz3q2pOjg91nwVoB9uWZz9MKbrpdlHxeG/f3LRcnmgsljnN\n0YwH1wuoJkAGplomapLTPXpENhv5WJVDY78kb9lBScwh0ugTfZ8SYc1zYTvmPqjA7j4GCVIlUppC\nDYMc1umKXPVSrCoke2Z7WpsTFBiKKdUvRC4qEyuwoEbkYu+8on5XxM4sY8EduFksL1a5ILIaB41A\nVSxZAxnUgmIBAZu/PHJ3IyKhCxAj36pI0U8ZlALmRHmCmFeIiHCAsphNnnsYjxcouEzc/wEREJCL\ntk+FUfKZZ2I1l5urYRhjzAqVJONqXyiU4GOCk6e0BmLlTP8/B4Uy6hKRrYFuuy2kZpGOnIAKM27M\nd6K30wBFG/LCW0T5fJBNK6JcISg9y8oatxijtkB4ANvy4CAA4GIC1n1oaQ44nuxFrAiWYYwCSF1C\nUFhpVPLMCl6PpepWIjpmE4EbgcgLarpvsawxu2SdLuDR6SxQu8ijoIVqh3sWk0Pp+8GV5mgXZZWL\n36HqR/tqRe0PLmg0e0d2er8pO9SgngHqQFEaZCa8Il3svDOHJyJLfjsKYzctqW3dt4gSjetpzSy6\nrBV4gSr0MyJ4ZvGV9r8TovKtmJtsTf3W3qZdTdUzW9Vr1ICr7L7W7maoPf3qua63WIEmgNtgfKT2\nX3RQmkNNxJu8kf0ozDxTOBCiKAXRUa3M2gINmGV/2N6R/Z0XtG+d/EFnlMlr7VfXcKBdEyXMbGju\nZ29pH8zWQK1Udf8p45yLxQWNb1ZT1JLGqnvjQ/Xt3rbG1oAUG6DoGPPyLFCv8+HnCVH9WO7q3pWm\n5vjIxR6gOumBrLOZSwOQH0U4Bku3dEao3dL1x2ffneP/j0sVdFitqNc8nDKplNpnxcqGIGWWAcqO\noIwtENKNNnZhW9dZFVTP/hSOqpfqS28o1RLnjtZuY1dzpLauNTO21e50lrFY6H5dzhQxysvA1xF1\nVK9rVPZWILH7cNFYKfVbi3Osmeh3Z1/rXH5iq9712xrk0j3WzF1QEaDaPGzSeCqDmJ/odcH+lDH0\nG2qrsdJmPq/9cMUZbNBDLQpuGsuCYwJ+vOhS7T3xdA7IY8MGfWzh3wNn90ddMxtqPi5B280OtJaC\nvNqTglvNvqv+3hrqOSFa3ZznbsU10jWUreZ6Nsg01CdT+C8HPVCkPAscg/byarHqpuxEi/XtlNS3\n44HG/PBXQkBEnB2WIJEfgRhsb0r55imd8MVvDo0xxtSL6mOXfWGT9Vyry24MxurLHM80MXL5+goE\nIOe7SlZ7WlDS9bZQHnNBQWVASC5cEIAoel08hnfoluZwA56Qo29khxqgnUagdScg3g0cNVP6ZWND\n9mt3V4iZlyCF1rbJCIAvygcFcQmHWQo0r5MFgYKaXyavtVH/vtoxPhYf1ghOndwa3Dis7RxrUJ8a\n4/o3R1MZY0waNHRYQT2PuTteqt1VOIgcztcDF75AkIuDK82DGfvcpz9GkZiMhz/+WkiowYnQGtW8\n/r/djpGgb+ry4tUjM150zGc//bExxpgy9uHRL39pjDHm+EjnpjmkKw9+rOfgz/7bf6Vrw1vTOQNJ\n6MB5BYfgVmPfGGPMEgT5osP5baU+K5Q1Fv1T2SGPPT2/hXoR+4cPojsH90wG1bQADtcVsNRTVPos\n+PJ297UWolasGqW5YaHCGo1BF5+BamPKbe9rz1sH3bvK6/ManJM25/tzuLLmPdlTN6/298eyLzHt\nXCH13WeSBCmTlKQkJSlJSUpSkpKUpCQlKUlJSlKS8g7KO0XKpMj7C+EsaKKeYqE/vgcy5NEjPFhj\nvMsoGZT25CXm808VAAAgAElEQVTtdOQVrt3Go4aeerkkj1xlX97f2ZUiMbFqyBePFIHYvC8umlRW\nEZTqvtAg3/vhj4wxxly8ELphvywP2/s/FL9GB5bqUkle4K0N5WGmevKEjVGsOLgvj+IYfpR8Te3c\nfaD2Dc7Rfc/Li7yDZ9CQp1lAbalGnv3Lv5Un8eBDRSauz+SJa5EzvQ6b9dNv5CWNQmNeHSsCtkZk\nrHOCms++PKaPnn1jjDHm1le3jTHG/M0XQu98/IG4Z1721PeNh4rShORcrqEmcflYnvUiCjfZltp+\ngYf5AWpEfl9e1JuWwGZORKj0DDX2AaiBFTwTE9AALdRG8kRg15sa0wwKPCmjsQ8LirYsfBRr8kQa\nUYhZgLLIeUS1yXd3UWOKyHV1yVGtB+rPFUiUTEMRhQ9++ImuTw7tC/q9YqGeQjR+RUQhE8ReVEVQ\nSnXq4+q6p9fyePeR9kmRk5qC82HqaA7ZObVrMNOcjzy9xpw2KdQAMlmNyzQjr+58qvbc3WFuVshr\nJ1ISKxyt8EJns1pbFkpqDJcpLMl7h5E8juzHeeD2Uu0aRmpns0oEyNP7OQpANykROfTWQOvIja8B\nsiON2toQ7o/I19hnQr2fg6BwauTUwwGSIj86xHedA3mC6JJZpMlJJYocLtXWPG32RnxObn7K1fUz\nqBG5C9U7XBEtB00UQeri+uqrAnbDEJ0x5EfnYgUylFGsDB5/S+8LwCrm5LUvlzHSRpexYvUiEB0L\nkDZp5pRVINoHx4tBBcOgEITwioEKxizIU66g8mHIr3ZRBHLgw8g5qoDN75gaJoB/JAMSZgaiJACB\n5MdiS3P6McNku2HZoX+O13T9HXKZi6A5DGs6jpxU4VUpwhmRr2scihvqTwLapsl+lX2o/PjqNSiK\nDlFQbJRHdC5HpCfmt/LJjQ6jwCxBCxUY25A56MDhErBupjPsA9e0Tcz3w9jEOzv2xA7Vty3WQAel\ngjz2bkUedcBgbs01ViuLNYLiSX4XJcCJ9hwHLoL7FdnZUkFjfpUW0mMAyqgTyO5n6NvhQPaxkZf9\nKG3pOuMpXDA+UfGVxnhUlH1KB9pvqiDyjCM7NoC7pVHT5z6J8LN48G5YUig3jJjD4RzFiZHeT4mC\njVF9WkfZ5nooBGgG3rf699QfOSLlVhNEYgP0RKT2fBuVb6q/q47qHZyoH0cXKDKCBu4/ke3qwfNR\nriqKX6q9UYZJtaumval+mIGImvkaj3W4vVz2hd5Qn08uUTQawBFR13xZ9WNUIEgbm/qi/tG6pXpb\nE5CTcJothnq/tpM19TIcX3P1UYAazrgCMqLGOgDJkk+pTXPQW9m8IqHjmHvrifok/xO4+kBphU1U\n83rYs7LWVaOtMdxYU1tqTezhEDU8/+3OJCkQHUvsWmGqvdLbQ1lsTeeyTqixymN359uqT8Q+MgMF\nu7RAHm5ozjRBm8WI6TGqdpkCaDdQA1jlb3nfViB++hegm1D93PtgX98HfZA6A7kJOnox0tktA/Iy\nhwKZlcJuczZa/0T2LSJqPwfxM2SfzYz0WgJ5Wlqg7AkaIEqpnwoOqDzmvgXqYoGqYDbPmYwpbcGp\nZjh75OrsexBsOGsa/xo8WhlQB40MXG/j2L4bs3twYHzUVroOHHCs4eWF1uT1SPWaPhWao7MvhICT\nu3kMOxyobnMHhCOQugwEl72x1tn6mpAo7Yb6tgziOaqAzkGxK4Dg5vUzrSEPRFrvTM8CG7bmXKWo\n750/QfFrb1/tvv/QGGPM87/Tub7B9TcrOscvlpozpbFm1aLHZruu626CiugNNVem8B6tber3aR8e\nOJCZs2tdrxOA5ABt5TTU15OB5kYesaIGz1z5tlAZF8c6d6ZQI1rC+7R2V/1VA7UQ+SBiPlY9L1A2\nG4DKunpxRHu61JdnxLIQJRaIJAsOniOUgfY4I4S+1tRxV/bzo1viaumSrWBYCxXQX5NYBfaGpYBK\nUruh+ofsW6vneubs91XvAc83IWeFnbraMQORefC+kE7rVb2+/kbPc+5r1bteAeEPD9ccfr3+0eDb\nunSGp2bng11T39fc+OOXv9F3QGUebOrZsPRjreO9+9gD7MAfP9fzZmyf05wzFzyTFUHGmUCdlQYJ\nN86qj++wpfsgl+edmKNQdfbgWC2ilJt39bzt8cyztGP0k15TqMd1emSQYFeiIufLHjx8PlyTMap/\nCVKRQ1Quq/v15xqLZQ+EdJwt0UchES7JAefbHNxlaZCHBRCTfiGW/v2nS4KUSUpSkpKUpCQlKUlJ\nSlKSkpSkJCUpSXkH5Z0iZdJwEsx8eR37PfmIbPLpcnBAbBzIk1WCAyCNF7fZxtNd0vc8OGp21uXB\ne5ySV3h5Ja/g6Uhe0B9+LK/xN4+krx4RkfAKcCagntHpySvduZY3ekYUctAlOgfjdmcir61NzvMx\nqJTZTB68CKWaxaG+74Ywf/N9L/as4UEM8CweHun+9Q0iAyg7XFzr/+sTeRC78MSUifyOzuTRi0Jd\n/8OP75qTie5973uKLn3xVNe4d0ee7idV9XE7rTrc3lHUZvuWkDFfnf7aGGPM1bn62J8pqtAofEDf\nqG4evAqZvOqyvNZ9V/Bo+Nmb5+UaY0wKBMaMfG0HL2kGD3rOUxvTIE7KDpFjktotVI3iiIUNisEQ\nlY9RAXGE2QYRUilqTNwuEVsUEgqO+ukipzkVR6lc4BMh3uAx0ToC38aLUQv0Q5Alb3oCemAlb+7C\nI2Ka1tzJgxByiXRnUBPJkhMa9uF8sXW9xQx1Fjz/VkB0kYi4DYfMKm43nDkEOE0OT38aL7N7QRRu\nhzxLUCmdrrzEjXV54A2cQ10iOPkcfCcgiyax6hbqMXn4OKZ9omtNRUD6r3R/f/bGg/8vFYsIa7aF\nUg2qRsul+s5Ka86tZigbZNWWVIo5Sn5ytNBgpYngOQX4eYzWxCyjMcpGGqM0qnA+Y5o16rOAPs3A\nLWAxposQxAxRpSK8Qj4edkSNTJbfz6m/W2auEjF1C/CJzFHeQUUocuEFQrEnyoIUcmVP0qjPzXMo\nYqEkM0WFw4bPJA0pypJ2x5wPToxksWI+JNSdIAnIMGctUAwj0GA26Igca9QllzcEtRUjbXxCoy5r\nqkCENlwRpQfZVKQ+mbeMSjlAcw7ampubgLHsM9nCaYQdZd+5u64wXrao/vOJnPgmrpfs7NPH+n21\nTAQp5gMA6bhEKS0LL1YEWmVeBEnFfufnbGMikH/ES1bYpdxUfbxi3axW6uMuEa8K6yoA6dFsgv5y\nZacDEH+posauRZR4DidMeqj75XNwhGHHwhxzg/tlskgxwD1VgScjTYRygRJXta39o7Kh60RwKLRv\ng9DBPq28Pt+HX6KruTLFHs7h65ljh/d2UZoBtWTnFWHcuqvo3kc7soNr8Il8/vrmdsQYY/wu9rHH\nXHbVLj/S2C6eoXoUwVF2RxHL732k9s5noPC2NV6NLc21RVn7kFPS/6FzMguib4MvFdHMOLKn4yN4\nr16oPkeP9fvpOUhMom2b27q/03gTfavd3TL1A923yH58dora1kKogRTqTocvUN2Dky0T8bs1lHti\nWwS/QAkeFTNCRa+ncXQm+n0J9OCUCH8YLMwB0e1eT42OI5TeqZAcm0NFyWuoZMxYZw68GWUUwHon\nusez5+J5uCLyufNQXAFN1rXX0HqqsZ6bjEUuUpt7T3We8yegQ+dvp+K2CmLEBohK0GpllLrsJjwQ\n8HK4oM3SBc3ZRYzigoOgNwd1OhEio92W/bBRSSraQgN4oAUuUIRZwAOXhrMhAHm+AuUVWbpPjmO+\ng5qRSz0s2mEi/W79geZSClsyfYHKyVxzqIa6UY7xcJrYZaL1geG+cNesJkS0UfqZwlm2PCdKf621\n0kFJx19wCAE9Ut9RfXbu6X2O+kdN1Xt+mzPZDvs9/IO9P2h8V6AAJkT6jTFmdPrajKayLS790kqp\nnwrbqKI01f/NtOa6U6H/BzdX6Zpx3iuWUc4CCZ0HZbmZ1bl6va4533uuOj4+11xw/0725bqj9Zou\nqy4e9vT+LT3j5AsozExA+VqoG/U19y/+eGiMMeb2n4qvsvVA6ILOazjIQButj+BOhKukxjNVjKK6\n9ZGeG6I/+8gYY8xv/6//bIwxZgo3YNVTPRagGUZD1kRd1y1sqv5VFLuKoM1KcJXl4WJ8/2c/M8YY\n8/wXet5Yu6X7FTkj5de0tiagvT7/q98aY4zZeSUUx9W55lQW9HKxoNeGrXYbUHWXf/iDMcaYR9ig\nPGNuF1FD+li8Kmsgxq9ewjuEWqBj4rWH/YxVnpybq4YaY0wOexoWVc+XX/5O9Xut8W/HCnMo+fgg\n+8vM+bUB6oagOeZTnUUGPIPm4O8rlvS9/gj+Fs5ehXT127o0G3mze/+2mS9oE0p8bdBFFexbNNAc\ne/V7ZZocv1CmyuycszxH/RBkSNWG67Co6+VB7NWr2jMNPEr9LgqBqDUt4QoLacMG9iCH+p4/4tx0\nDAqNZ6QQO5gD6T1ZwunCGSaLWvNyiTIlz5I2z8CTGecznnHyIOkskN7ZJs9EKPSGIGIAyptMKj73\n4q+A7ymy9L2Y4/GfK+82falJ5yEp29jQBBx8oc3pb38vgt0jFtqdXT2IHne1WdwBQl1vaFCeHev9\n/fdkQHZ4SGshk3yEdHQzllD8g2bP2aGgYhv78UOJrlOby3hPVjEZF1DfuSa2k40dAhx42XwDpE5v\n72nCb7Q1OBcnMrBZHmZmFzIInXMdyJ4faiHF0McCZIM7uzJMl9ca3Lvv6xDSbnyo+lxJRs4CotYd\nQoCGtODSFM2L50p7+S/+rWB70/9bDqn0TzWxN28x4XkwK2wiBzaXcXj/jjbGEKnMLnKC85UmbtbS\n6yvth6bdYiPNAC0ba8EG4c3TUowxZgWJaGjHpKOQxqWRPcPh5fEgF/ixU0BGbEYKQiyXWSxBBgXk\nrdDWGAduDI/XHIwgN82k9Ploqus2YmasKVBZCCVTo1iWDegtvqd6UQ92Lg+6YY+NP63NeDLjoEYa\nQJ4DXYqHooXNXCCFxYvJ7iB+mwxIuUhzEHQ0LpGteqfqPAADhx/6an+FB+7FBIPkAREsKJ1gtQRE\n12cuZeK0L/379JHmarutw0UO+bkAZ103wEFaV/uXwDCNr7WV46HJW2gtbd/WnO7gyByMv1s27u8X\ni7mR4aF/Btzdh1TOYIzTkKfapL34OCDrHBYXPOg4pA9ZSFynmXMpDh62icmlIeXD0ejFfidSNWLf\nxaoQkyrjAEPSc4GzyAkgKoNAzeCIzJEmtKCvIuR0Y1ion2EwAkhOeYAK4lQy5kwIrHMFuacTQnAL\nCXSEE6fEA5yf5cGRw/SKBy2fB3l7AbyddM6QdsQre0k/x3Yxn9b3pyyKog1E2kWSNgVcFPtpsyv5\nSx4agLdmfchrc6ShVd7OKVMt6ndD1mgDW9e4pXYVTzQO+TzEv5Hsd1TS/+dDra0+TnmbOZ7Fie8A\nw7eRpSxUcBIy/wLSL6aQrxr6kbOH8SzLmCrOCnK1yKQzk5XuuVhRJw+yZ21pZsmDWHqm9VXNyFnh\n49SNXM3JPProoctYYJecir43mPEgCAHkcKR1P05rXTvrev+AvTrfg3CXvctjzvUIPNiQHMdSnzvb\nIuvPzSF3PVefuqzdFMSG7il7LGlWQV3XGRhddwHhZNbgLIb4vY/DK8NDkQX5601LjhSOWMZ+itR1\nOMJJdArsPqs5PNnRuGw+JH1sqtehq8NxoSGSQLulcc26ODFwKHYvkXGGwHLR01pL9bWGpvRvpaj+\nq/xAc6bGgS93gCM5fJOmVSiPjE8aw9YDHXx90ieOHonAP3yJLCgyymkCODnkgPNNiSI4ZdbwFOcc\nD0cL7PaYhweHfb5F+rJLoGk5HRrrLvK2nhxnDumHLrLBJ5b2hlpbfVXnQXNkIyduk4KV0WuBz5ek\npYxwWH7wZ3+itjIHA1JgM0v16YgAxmyk+4VIbVvO32O7vEHJM+caGZ2R0iUCDxC+50YEotgPXFK7\nVlecJ1+p/ZfnOpMVyrqOIbBy6ej3eZxI4TbBAFv9eP+e1lAfYQf/QjfyuhqTUhCneMgWrAhEOSvs\n3h3t8VWc4B6pK9FUr1Y63h81tzzs1jUpKbkhZyWc641bGtf6ul5jAvPp7JJ2qh7zU9IDyPtcTHkw\nZD+2eQ5YEmTs8JSTQiwidRCn+ROYuyCFnPQAx+D0O9e8iPs/nL4h1lx4jkl5OKWw21c9RC82ZDPb\nFbW7clf9VFxHEvfxzW1JLiZkZ+928jjV+0gYsxcePRNRr03e9/EXh8YYYwrMhRRkomXIk5c4UQJD\nn+CImkGW3OS85xAMOz3T9SpXckr85E9FiPvc6JkhGCBWcl+O0XQBYQ3OBqsT2fWzLVLzPtbc2n2s\n9gyPNcaVdV13RSp287bsQBXC2V7spL3U968h4744I+jQ1bPLx+9rbn/+C+zOtZ7NjiEKnv61Umqc\ngvonFlWpvK/nl+JD2a80zp6YGuP0C0lup1iD0VzPlHeRGm++r7mbT6u+zV3Z13pdaVvzuZ7R+ocK\n9Beh1sBPaizsXdp+u0fqAgGc80d6Frz8+lD3J11464FeRwMcDB3ZsAh7Xm3zzIwwyBUkuQ3SWaeR\n5tWYs0oVYnaXgF7Avm6MMfmdsjHVlBle6B7BSL+p3NFeEC3iZzHZL591e2tdn9du69ozHHVT1vHo\ntcZ4BmXCdKK+X5KCmyXF15kiLoAISy4WJSBoZSEWM4YConOkvvJ5JnLyyJEjTpDZ0tjOTjTXpzyb\nVHGy9uaa2wEOqzgFMJhqjZYRIckjK77A7zC61HUmsXAGjj97FfsDZJcGyN1n8RMEE54TanHi6T9d\nkvSlpCQlKUlJSlKSkpSkJCUpSUlKUpKSlHdQ3ilSxp0D/wF6lanK21m/J6/rxj15d1+P5KXMZ/S5\nTUrGKiYIboDyQFJxisT0fCCYq9uCOGgqT9e8A+SbiHa7KY/YXaDGXaBhrS2IgYYQPJJyUgJeW4I8\ntlkjvWEsL+VlX57AvfflQbw+VP0LS3nItoFh1Yk2vv+vhHi5d0de4lPSpc4eKdo2W8l7fXEib2of\nyLkpyKP5eiiv52YWHxsRfCvQ/YNp+1tYe0QEcDhWHa+OBT0bHT7WPWtAr4BuPT6Sh/ngAyFscpBh\nDrrqo+qGvv+vfy5ZtEVX193cldfR9tTHjRJexMnbTbkY6jYDvr4ycRoU6UbICkdLIsd+HAFUvWaB\n+qhFOtUU5EwV0tQMxIVeWV7cNOikEHJOF0LdrCfvagR6IRzreuMrUkmI8uSIPuVhQZ2sQKREsaS3\n0F5Zn8gJkqdLoocNIiYh3uGYrHUQESVCVrcCmXUISmLcl1c7ciEdnBOhAX5pyiBmIA5dgHxxSekJ\nkNAtI5WYikDGkLJiWHPOGvU9lIffRbIwtaNIx+SJ5qhBJq66oesFltbcxNUarK8pMtMZE33D6+7Q\nnpT93d7kf1CIOoU+dSFNxcG8+ciBZ4ASL0EqFKFKHBIdskFlZYEf+kSbUkQEZ8C+Y2KzOLWuyJpY\nIW/uIHHsQgyY5v8+ZKqVGA2BnG9YYw4SRbcJv1gga2wPRKGj69iMDdkwpgL56yTU78qkC8199X0a\ndJgV4ytJM5pDGFyKpa9j6VT6cUmUPAM0NyCVwyYyGUO0szERMrK60bdEvBD9QhiJkqCZQj6bzrrU\nU9/Lkw7mQUwcEaF1kHtcYN+sMNY4JU3ohsXzQDmQyhiU1T/FOhKurmzekyeS1TQhUcQ7Ze4GggZC\nykIJctsPFWUrxNLd7AvTGQSV2IwUqLcQxI+Tlm1cxWs7HxifqEoxljMnBWw8xu6RCmWDKGmRAucx\nd9Oh7MIY5GATqdIyCIc4ZpxHGnkFyeiEKHoeZGA/1+J+pL7Zsb0g6u+CGruSvbddSPXZC13kK8/O\n1KezBemlBfWZtQWS5xTUAxDfGAWWAvWVz0GCTarvWlr1HTZ0nRTpqeNL1SNOJbseqz/mGzvmbUoH\nFJS1AKmHrK5P/zd2VZ/2OpLTeyAZ76l+7apQus+egaSB8Dx/pp5fQgS8ZD9ePlU9B091dnEKmksW\niJ10XvVv7LPGiMS6oIBDcv+swhu0x8S2Tf9aEfh0VWkOOVXX1L7mfqCGV0F81hH8PwdStJBXPQxz\nc+5pTQw7IGmxTamVrpMiNXJYUPTQzpEC2mqbO6Agr3IgMiCpXmnIv0VFnUPW3CP1btJVH3rMST+n\nPlz/ma4XIyvSQPuDpepigXSzOrrfZV+v3pUQGwXSXadT1mf6LfYaY4wHeullR/D9ckdz2dmBwH1O\nZ5dZc8io57C/ZBJ+K2l9q6kxmtVBKUBsniKVcQnhuxfJHpVBQDucLeyp+s8D9bpAKvZqoLlWjhGO\nRG5dZM6bIHxiGP8LEOOFFWc0SKGzBa2FCoTmU19jbCF0cXFJis0GErSk60ageQP/HxK4u0TxCVCb\nVFpzzif9Kcec5khnJpCCzx3mHJBUj/s0QbCu7whp1XqouZwdgbRsvEEDHHzvrvE3VN8XpCWsIMr3\nICoePhOCaXUNqep9rYVy7+bo3U5Hbe8PkEjOIqwwJf0QexaBbHn/Az3rzEHnX75EVhi05QryUWsK\nOWpe19sjpSu9SboqaYV55jTgVzN9pnN8+UBz9c7H2hcefal1fX0lYljf1aKskm5U39E5LYc8cfuW\nxvCjPxdtwX/8H/+97r8tOzUPVa8uFBOxBPYZKLUyCKAyzxlNCOJnvvqlAvHtrV31x7MvhHKogyyv\nFUhX3df9FwXtdz1fa/KalJsS6fJtizEGMbmAoHfGvtasgCg51trq5/XsNWAt3YLq4tZD1efR74U0\nzBnd12PtRClS1u3vljv+x2XFGeHihcYhLKle6x/JxlkrSHNB9mdBXYecvWoHqkdqAUFwn/Razg3T\nC10XQKxZ0S9Fzq5T/w0uY9XzTTh1zK33hA46OVKfnZ+QWptjvXHey1qaXHaKFF3sUYp0+3trSFB/\nqDZ2L/X9qz9qTSym8TrWWjkhk8R4qtsee9BOReu6OxCq9tUvlXo2xe41dvW9LHLfESIJtQ3V54jj\nXO+clDCEeYaZOMOFV551cghlzEETXyLf/mIkf0KWc/0Ga7a9qT0/SCOOcEUaF2cil3PfGASl98Yc\n/ZMlQcokJSlJSUpSkpKUpCQlKUlJSlKSkpSkvIPyTpEyM7zCI3gkXp/IQ/3k+NAYY8z3P/tLY4wx\nno0Hijzp1oY84S5cECsiyLdvK0KRtuWZ29iQ13ENia+9LpJeDYjasvK+liu6/gBETr8rj5x3JBRJ\nnKs7hxg0zq3zyTHrbULUhhRvyRA9CiAOOlIU7xI0g4EA9JB8ze5U94P6wbQhrDs8k2du++Gnxhhj\nipbq6xn1W60tL3b9nOgXZLgTItEDT97nsjc1mbw80sOxPK8//kSy3g/fA51zrsja7Q/Uh95MHu3f\n/JWIpxyIbnsDuR29kSKSz778G9UZj/6vf/vXxhhjfopM4vlrte0K9FDVebvodgT9QgjpZ3ZMNJ4c\n+tqexuSQPMgCUZQluZQzkDnbe/qdS950BonVXIO8ZiIYwVhzoIJrOVcmlxVJVB/p2TKymg7ksBlI\nmP0l3uKYYMuHD4Sht2yIykBfzGegN1gLUVYRh/pA/WvBxdOoqf8Hx/p/Kq9+zBLhDonA1iAa8xda\nU9VFjLQhGgTKo4VXNzVXRKSA3PHQ1fzoBXBCRDHCRu0pQ/TrF56oHXil8+vITH4DmVWMEthT/2Yh\n4XK/UT+vI+95OND3t/Ka20vyOdPLm8+TDN7+KA1aKQVnCR73dAVZRZeoRh6EClFiA3eJQz70kHVe\noA/nRBWyUXxdSPuQWB6ltf6sWMYYFFQeT7vx4BqISVoN6K488uJwi+QgXw65X2zfLBt0AtKiIZOp\njL3widKkcpqLcZ5zNkbWEImYZzUW+ZC8YojWgwL8SlPmCJwwMVH4ykXKmd3Cg+vAwL1jQEuF8BBZ\nKTi7IDaLUWEOedDZbExaR3QJgMmU6I+zigl1ibYDDMwEsWw9Ed8xc+yGZQFi5QKJ1UxbNmBqa3+Y\nfa01eIjdr1QUfdoIhBKsgo6Y5RTRCUFc1TFSNlw3k2ksAQ4hMUikYB6TbyMfzHyxiNh4UcYsIfLO\nNUCDIqPuMRcy8BEF8ZwqKVK2ViViCifJBNL7GQTcJZB/FtxXHvKyEXxMWcL3fhw1itT3JdBUFsiY\n0Aj5MnyhvsyC/swGMbpLc2vsIRsOMjEHmWZ3oL1yfqLf9c5kt2vwejTgsSjEPBgQHc+vZZddH3u4\np718tanrNl7xu5LqUejpul7z7fabDnvygih9A0RftqXrt1pCOlo51X8KCqI7AfaxA7quTPSftTeF\nIyaNfVuB/BwI1Gue/51+f+uOzgzrn+j3abh0nDVIxyH5tiCX9UMIhOtv5OELmaXp9mXHB69VvxZn\ngtqmontpCOavTnS2GYD+aIFmmJ7AXVDWfrSAADQN95rHnE83QOFxpvFbcBUwHxrrkZkiOT3tgWa9\nAvU1Qh73kT7vgqaqHMApgEx4ald90N6GTLMKKedYc9QFVTl9oj2JKWvmC/jVQK1m6bv8mtZh09Oe\nM43ezo4EyOA6IOKsGBXEebIE/8Z8hgw6SGcPhF0I/44Ty9BXNAZLuFwKEP2WiqDF9kDbwvE1gfDd\nGskOLdjXHJAmC/hG+iBl0jFyCLu3mmpslxXdr1XVmeagIb6Q8YJ9gKh/iX3DXtNZYRsej3ifiKW6\nUxDZL7sgfCDvbjFOMY+IfaVz8/XFMdcFcb61b4wxptbWfUqcsz0izoMK/H8gqSI2jnjft4cQCjOP\nVqAmwvkbgt7+qmvmoEmsSNcr7ag9BZBD2ftaA6myxrNZR04YeeSblPhsUAGNGdpwSoHQLjOHV0Wd\nR/NwTrW2hdo8PZadLEw5H7JnZqfxngs6AfRoDmRhN6N1b9uaM3u31IbAgE67VttvP0Qaui6J5xV9\nUmLPttipnBMAACAASURBVEHzlpFp70BAfPobIWpureu5oXlLyJEATrMy7Q0c1WP7tuoxRnW+BfLd\ngrMxZoUb9VS/ows9Jzz4kerV+532m7s7HxtjjPE59ExAsvSG8BV1VN8S9ExeS+22dtXPtQ/V3mFN\n9/GeaA46K/gHLa2JekH2cQnydAAf0sE9oUfMYxBF7LNTsjwK2JglJN43LeOOzvNDng0P7mm/gRLH\nDE9AX7OvxpLYfbI+qhDzr+2q4YUfav74VbjQhrruxUuttRd/qw1nNeGsmX6D/nI71+bZE8vcuv/f\nGGOMee8jPSOePVcWxbSvsehdaQ5WEJjgkcdY7A0WPJurtvouu6bzVeO++rYJkbcFX9z8Qm0c8AwT\nQd3U3NdeG3GWePGfxIN6xNq49bH4LNfuaP3OQOhkSpxh4EZcxcj1a8RJdslUqTP2oH87X+kZ+Bhx\nmghIi7she3brvurz0f+g82Cmpessz3kueE3WQTMWgkBY45Q52pX9q69/95kkQcokJSlJSUpSkpKU\npCQlKUlJSlKSkpSkvIPyTpEyK9RDmi150EqwImfg5fBB0Fw+VeTyeEfevjAlb+wykDfwEvmvBx8q\n/y+yyAtHuitDhHYwkMfqAu/nCJWjJtErf6L3W1l5xjMx2iKW2hrgWd8nwkuEwfigJVCs6KGmkkaJ\nYOeBXlMo7bSb5Op2iCLiXe1MUKL5UGpLnv17Y4wxRSL3aVjz51/J42d5+n5qDeUbIlJ37un65jFS\ngP2F+ewT5b11uuorC62Up6fKix5O5aF+/UpopY095fFlW2pjBsWD1EBtXEN2PA/7u0O0aWtTkdvb\nH4gXqEuUOBXEHum3m3IBFPohygax+sNoTD4hEtYpIpsLovdBzMiPPNoCGbQoA78IaIQM0fgV+ZGr\noryhzo7G1H+u39eYqy7Xex+W+JjjxRAZKNVAlhAtmpGfOCSaFSDTls3g0SYXP7VSvQtEPuYo0czH\nREjWFbE4IkfUh2ckC/LFHaEChZs5CPQ6zYKKQLVkAkdCDgWx2fxLY4wxOw/kofeRfRu66lDLwgvs\ng/4CLhF48gq7qHA4RKvScP14fO6xdgJQHBFKZl4ahSGk+ULUsoogoqxlzBvyLxcPviAbLhMToGRF\nDnw4hQuFaI630txY5kBDIXHjpZhLIZE0OFKgnjJZ5ngWnosVOe4Gbqt0NkamwD1DX0Xkdwdwv2Tn\nWguhw/3hnAnDiHqinsRcWyIznF7FsDGkR0EQZuFs8WCtt5CKNZVYWUX3LZpYmUH1qaFW4aLb7oKW\nskCFrUAcFUtw1CxQNeG9gQ8pVhZLE11KxRKscNssTKz2pPsFvC+hWBBzLBSRRA1BfRTglmEJmDRo\nj1hFpPh2SrZmCkLqa6Ss5yMQT5GiVfdvgbaYy7ZZ9G/1DvxJc9RcUEaygDZG2KQlkZ+Yt6tAVCsE\nvRYrz6XzMbIRHgD62Q9zJoU0Zs8jmo5OemNHdiY412RcwCuWQjJzfK3o0ewVPBKgsLIoO0XY7/Qa\ncwIuKUO+8yAeM+xJPBZ+logaKK45OfQd7OYt6hsjLXo92YMiEq5rbV1no6n7V9GC7j7WXn7y1/8/\ne+/1I0mWnXleM3Mz11qEjoxIVbqqu6olxbB3uOBiBuBi+B/M2/5vK7AzuwABYsgZitbd1d2ls1JG\nZugI19rd1D58P6sECbAY+ZT7YPfF0zPczK4899o53/k+ReFi9u7dA0WfGvBYDBmb6xcgX86191WR\nAs8kkUlQC+Ud2e9Vws2VubmMrTHGZOHdsBPOsW311+YWKkdZUB7kzxdrRCT5fZ/89RXovcyFPsdP\nZX/nT4RuqFUPjDHGVLa0V2/cBw3ytqKKmRaoOqJuGeZYc0/tLaJodAHnmzl+GcUPTy9NEaRK1NO+\nPgYtUUahIrer62fXCe+V5vgUxaIpKosVlCxKrIXJof5egLcEU2cO3kZtkf647AvZNDpdmutPNcaj\nB9iTFUgLZHN7J5qz00SFE8nT6l3NofwB/ElvEBHtKoLZR1oZAUYzAR00Gmt9V1gzjZz6LAPCJbup\n82YGtFnQfTVOmRKyvHV42dy7OvNka5o7CYp1cKk57oGwnNGnC1AJ8xMQK9wvlyA1OFMlyMecQWp7\njzUN/9oMlaMC9n3Imq14iaKm/l7aYU6B3FvVVG9rqPokiJJVByR6S+2JkYqdg0hxQIpcJep1dVBq\nLQ3Aoss4gmjs9TQHVqhDBXCmTVEam6FomUHWfr2WbetdwiGGrbFBY9U24O7RUcVkkORuVpAtfsT9\nZjqrjM5R5IR7whhjesdXpvdI9Vqj/vV2RzbDQ2Uvl0OhjrOaIQIfwhNzk7IAHdTr6V2kA1chxz1j\nl4B/wlXVe3ZkjDFm83218Y2+fn/+QPauBTIFVWJjw3sXF1Wn/TvwagxAfo/1eY2ktYt6msmiRHsC\nhwl2NAEN52rqi5Do/gP4NOIunIXwYDb+XPW5dUcIklEPVC88ffMF+0syd4HEzDEYHmcjF965ktH5\ndvFM/bX7prIDVhVJY3dB5q+P2H9s5I1b6ideHU0G9IMLMmjJ4aKBGtRGR8i/314IMRLE+n0R+zfx\nZS8rOdVnNMdel2QzNj942xhjjP9cNsafwIFIpkDeSdp9sxJeqr/qvF80QDZFKFdaKLNFcArlyFjg\nKGtWIE8fTlTP3HPOXCX1zwa26eAt7a87KBg//hUy0c9Pv6mLFxXM41+9MJ9khAY6+K6QKNW3NP+7\nF+qT8bH67nqg9ZZDGdJG2cnm7J8gSKIa79NkI4we6Jk2drKCQutODr7Ne3AhYkd+9dc/NcYY8yUy\n5oc/1rvszg81lpM5SOQJCpMt9aU/R+mVs9KC7Io17wP1JpkvRfbwquZ27b7Of6W2xrT8DnPsQGtz\niurSo19oX1t8JXtiUG+q8U4z6us554+1Rzs1tauG0vG/VlKkTFrSkpa0pCUtaUlLWtKSlrSkJS1p\nSctrKK8VKVP6JsIoz1pMTu0urO8tUBDv3ZF3suTKA5aFDf12UZ+ffCzek5178ridvxDa4/EzcbLc\n2pFrfbWQ9zELEiZGtalclxf0aqrIRtwkj5p8/cqOnjslWne5JooJd8IERQyPiGgcy2N48kKeuyV5\n/ccDeTMDUCb2tpAvG1vyhp59Ka/1Zk3tqpMXmfAJXF8rR3qEssTDp/IcFlHYuPxMiKLb+6q/M5Nn\n8tHVQ1OFrfzogbx7iVY70u1ma0NM2f0ZkbEu+bkT8rWH+rwCvVSAl6dxR97U2D8yxhiTJT93StRj\ndKW6bt6Tp7owIvpww+KjopQnYhskyldFvK9l3Xe+0POihcZsNkZDPgMrPFGOUiTP+LQq724AKmFO\nFMuBJ8JfKQozGskTvSCP+/pYHvLFLbUjttRfXhFulRpoiQ752L7GfAn6Ik/OrucQ6Z2rHoOxvMe7\nG4o49k81Z04D/f277QNjjDHvOJqrrffV72vy1SdP5Y394veao4Gl526W9bs+EYntKvnam5qDhSLK\nEDn1W7kCKgLuoTUe+1yiWITqRhmkVdMlT3yWcP0QJcyo3g6s+f5cERtnqb+PUeAoEp0bJzwDVaKo\n1s39xVn4Epbk3Tpwmyypc4CKhQ3ywoM3IwJxYqG+EJPznyWKEzDmNsphAapmgQ+fA8g4i76NV3CG\noOhlrVHJQP3CRzklUTlyUEWCisTM+F1I/nlhBW+DBV8E9bashJtG9XXihLsFzgbGJrtMVKFADCJ/\nNCfXtQgXQwk1kpiQ86qE2hzotiX58UVQDguQiGvsUKaQcBCA2FsSUVzBCZGFn2ityISVIHsWRGDh\ntFkQxbORZUlUMcoWPBrkFs+KIIteMSp15hJeAunydEGOb1/12SfKVthg7RNBn49kS4Iz2dcMXDY1\nIkNhEtVCQSKCAyiT8GehMpglgj1bqB88V7ZjRTTRKcVmVSDqDHoqBB1Vfofo0QZ7zGcosbDnnM9V\nx2enimK9tX9gjDEmV2IvGBFhqxP1haslM1Sf1mPV5TpCGauj9bmRIN1A0FWIMplEEYYxnzLnByAC\n9w+JhKISNRrAURMnyoEopKE21QBBGcCFM54liDnWroPyYVvXB23ZFceGywZ0Vx4OlkZb/XIMGuCm\npb0p+zOEQ8Xb0BxYk+S/LjHGKLWs5uqHOvUz8EhZ5Mk//pUir7NnqmcMF4HzY91v857OANU9+OBA\nVayrzG24YzJtbBZKbTFryqPfVl7CziD1s4j+npxqnqyZi9G+9o88fB81lC5XcA8M4R7j6GCyCR/H\nhsahAheRG+v6cY/9MbE5ruqdmRCx/XpiVmeoIw0SHgnUhUCZNt7WWG6iFNh6X30yXiUIQxQTn6OC\nN9c5bTHVHhXCWxRlUV6BO6ayAcI5q+fkC6jZLTQn51fswYmM3Q3LmjE+W6odbdQ2RtjvHOi0wE/g\nu+wPttoXJX/PY6/hosmDWBmitNKfsmf2tTcXG7pPEll2UMKK4IDJxPAvwY1mw/8WgdDz8mpnpQ06\nocI52EnOPCim9XVuzvTZXzrqP3tT/eaBmnWmoDHojxBEzAQ+qhguMkAdJnRVj2pN/eDCv7Sqg1iC\ngydja80kinDjrv6/jtJXFV6/0kB/v7auuV7f7TmoQM4yGeslz0etXDPulv5/zPiEKNgB3DGzp7SP\ncfC3hBAwcF7cpGSqqNnBOeXU9YwCHIKLmeaezd7WRSm2AVfM/odCql8+FlLFm6hOT14oKm8lXDJt\n9rQ8qHjQsNUaSI8v9P8bnVtUDNQA50sbbhuL89jJQ5Dz56jHLTSXtjqqzxI01vSZ6pHM6VJFZ4Js\nRu9UM5Adfqh9Y+u2zpu9Cf3haM6fDbgugntmDQLzDY35xvuyT+svWevsX1twPbogFOccF6OBnruw\nOf+jcrdG/fTgfaEeNp8JlXH2mc7dh/vKTgixmy0Qfz1Qtd0hPJ4t1E0H+vvVlcZnlCDh4R67aZmi\nVuUxX4qx+mGEOq6ToOI4612cqx6bKI4O83ru+FLtHaOMZpNZ8HlFfy+Dfrv/lvhQErE+9/ZLdcI7\nH75h1p8fmclj1elZfGSMMebWPfVVax8OVuzB7NdSxpqBuvcKoIbgmrmED/M93k8d3u+fnCpbY5uM\nl2VO118nqp+PNWYLeIwef6Z6HKJ2dO9DvauGAYh2S32CCJuxUS4cn6sv6iBUWq7GftQjm4B3jIqn\n57Uaeu+OsbM+dnpxIsNwCRr5Ap7UOe8sO1mus5OxUH2uOTe6De1nb77HO1fj23mHUqRMWtKSlrSk\nJS1pSUta0pKWtKQlLWlJy2sorxUpk5/DxH0hr6vtysOVgcX56kt54vJEulenilR+Rq5u4U+UdxgS\nnXn/e0IFVDb0vd2SR6/zrjxUy1/Lq+k78hrOu7r/cQu9dU+RgxXM1me/1/PydXmdQ2j9R0RWclvy\nIPavVJ/WtlAOpXuKthk8/7fvKZ9vfaR2ReT3n1/IS9sIheQ5fyaUw9cP5ZGLcqr/ckDElpze//iX\navcc1Y4iLr2jx2rPJgoeSzl1TSPfMbc39IyriryUnR21ySaPLgd3yHxIfl4gr+gC7fc8/DnhGWOD\nIlWjob56+lR91UHt4sUTta17JY9vuwmTdnTzvFxjjCnBpD8lmjxeJioQ8pC3aigV5OGCWao94VR9\n4DgN7oTyDlGbKFCfOaAS7HmirKWxLRJ9C1BSKcE1MI+EQFkb9cskUP0yE3nYvWkyl/UciL3NPIli\nreSl7V+o35bkQxayGsvpodbAGr4RaCrMjGjO6aWe75881XNAUXWviepMyO808oCHJdQyQBwNQJHY\nRARmodrdzqh/yySrrolAE2T7JprmoBzkxqp/dA3CKE/74YbJdXXfFZFWfwEaA+TMVU83Lt7SuPVA\nn2USNEjh5qZp6oK6IUpkinB7JBFEPOcr1BZ8XOoZ2higQBPBORAvEgQMqhxEkSDqNzFmszpJkBvM\nHRRjfOxEEKlvQqP6lOC9CEEIGiKNUaJ4Q15xlghqSMg100dljrFZljQ3vCWqPUlCeBIhdXRdFKIK\nQo7rLOEJ4vdrkD3fcA2sQNTAZ5Qgbqwl1zMHPFdzP0ckMqB/bBLmVwUmP2Q8gKlMlOd6JtWKtYjp\nMZkEYcJ4BURak3Z7RDYIiJtp9Gp8IfkY5EqYcAHRfuy520dp7QUIqizcOyCNlq72jdI2qD2mRwa0\nmsf8y7OmVkvU+IhOruG5svjMJNOLeTcxRWN81h88C4MyedGJchUop9Op1nW2mKjEaR3d/ZHaeP/w\nwBhjDAA9MzqX3cnCdbV0GBTGPKZLMvAAeQkNA0Hi2hw+DEO+OHZzRHR9AZJm6RJeAiVVAAUbHKG6\nBKCk2tBc/3f/UZG7Wkt79OSR7Nv1UPUdg9CsdbDLbytKVqIPl+Sdhwvd/9lDoUdjo35YVV5NDcOu\nqz21YjIH9FmBW8YyqsdkiPLOhcbn7A/aux2jdg2vVK/cFD6TLbgetlHJQG0qZM77KEU2qxrHRaho\n3BJbsWCyTB5qjy9fKTqH2NQ3vFnGGOOfTc35V0fGGGPcmepd3tK41PIYsZyidw58WdMyHGwgpXJb\nzHkvUdXSfDu8fWCMMSZ/qP0l+wk8ARc6A13+EuWfC93YO7dNdMW9UAeaN9Xme2/C6fSR+CmyjFWI\nPfa6Qg8M4EnKtDUnCihNlRrwwjmow6F4la+jflfSep690BycPddzZzOdSS4fqM6Vatm8UoEbJVdT\nn85Bk3kJp9ZEY5yta69bsnbzntpR9EG9gbC0QVB6TdW/3sYwZlEpgUsrhrNsCq/UjHOhdcp30Eln\nz4WwCTk83L6tuTIF+RE/Ur/N2N8S5Zwcc8xrqT3Tme47X2huZ57BewQCx0IdKkAVqlZAbQnV0SGc\nOEu4e1ZrVOvYl/N7oHNRE5xbXF+FS6cMTwrI1ZHPGkOxMWR/sOB68wx8JdSjDCRp6r20AYVmyzgB\niFZnyvWqbxUutiLzJtrQeNWLMoJ+9JKb5t8qZZSqxiOdk4KJnrUC/bXmLLCDossYDqqor9+XiK5n\nNpljQ62rdi3hBtMc2trQc9ah6mblNJc7O+rbZ1X4KEEQxiDhEtTmmvPr6ExtHZxpjeUskHyoz7lt\n7UcW0PreXO3Jwg04hL8zC4r1+opzoIvyLCim5080N/c24c2r6roN7OICNNcMTpr2gdbQeV9z54w1\n28ioXtNrzdEiqOOIOVkDjVDbh/duoHYV87Jb9z76gTHGmKPf/F+6z1h/T3j9uqgiOS3ZqCnvAUmG\nQeldoS6mC62d3pX6o4Ba6U1Lpak5XigmCHrZNg/10hxnqQJcYvFa43zyQkpzIWe1akHj3dyUzchU\nND/mIIQWVz3aS6YEfFEV83JtPO8+NzXXNdkaXFJwrx7PQIihrHXnB5qbh9/V7z75xd+pLpxdEq7A\nwEFZjDE18IOaCefQltZV7CdnEez0JXyXU/1u9wOQJt/T3u+yN3c5p6/gwbMSxDLn1ZAzjs/WOB1z\nTk24DEHjXhZQBzwFIZcH7eQlaqioNyXIbt67N43WRHJOHYPoXE40ZvUt9dfBG3DmdrQWJ0ffjt5N\nkTJpSUta0pKWtKQlLWlJS1rSkpa0pCUtr6G8VqTMKvHMw/WwWZHn6gzETJlc1b2WvMEFS17IvYo+\n39lXdO35LakU9Z4pn/6zn/+9McaYCVH65r4iMUO8vHFF3unSppjDr0Et3H9TeZMrSx6wkEhsEQ/h\nivzHc5jJ7+7LO/miByt9Wx63TqT2/I9fqF4fluTpm6F6sgGz9xOibB9u3DbGGNN/X569PLwcrY7y\nM1206O2RPHLnI0UM/umnf2OMMeZ7P/yR+gfG7SBEheBYXunFemYyBXkPz7pCWOQyeM5R94iWRD0s\n1JZg6Z5+CcN0AFKmCAporb5sH8oz+9UDqfgc7CgHdEGI9t0PNVZlvKLdZ8hT3LCsbNAAeIhjnhvO\nyJnt6zkuHt/zM3ljV+Tuupb6ZGF0/ZRIri+nqMmRf75Aeev0TB7yYiyPeqFN9CunsdgkqnXrHX3P\n7crTve4qsvnsl+SooohV7KDUM1P/vfWu+JG87+j+TfK6exONaa2muX8CX1G1jIIQwbPB1ZExxpj2\nhst91R+ZAhwvAIPWWbzEoClsi2gdUS4nxw/HQHECFIpQTYnI28/a6reAfPCS0fP2moou5auaPy6o\nDxtVKCeLktGICEABdSbgBV0i4Pt/rEjIGmWbyUT3r7VuLq1TXtIXFRAIoKQsVBOsFUiLgHUEKsd4\nICdQUbJBAYWsI48IqF1JFLJQJkkivkUGhWhTGCdqGKpHEaUTC/6FuZsw51OfIlFoIndQUxkLFFOC\nXohAJZRcRW0i1H28gsZmDaIlQNUpQyRg4eq5DmgCe6a/W04SSSA6Z6ESRNQlIM89+IYngkgECKMI\n7powIHpTJ+JLVD5A6cEhVzdECSYG5baiH8pwxMzLRDxRSljN4ZxALcmFo8v3QQiBpCkFr5a/7SZk\nDjyndU5UsQS/CVwxy7nseKOsNToaqx62iyoUUcOICEl4ReQDfqkM/WvVteZ99hECSSaTKAIFCWKL\neZa1zRVBpQV74lkPjg9H19yhLwqgm+bXqoPLGJkQzgC4TsrMhTrRZz+JXq3gm2iT92xpL1vP1JYR\ny89KaBTgGyry3AD1C4PiV0y0vQDSMoCXxxDN90HoTeCucUrs6UTRsvAW9VHeiokMr1E6m8ETET+F\n24w5W2iqj8uoWIx+J365SgM01xt3zauUYgf+DzgFPLgbLKL5U1Th8uTsD0/VX70/6AxhRbq+1dFz\na6gkOeUW7QChiLpWAkWMsc/2geyqF6DWAkohx753wvP8U7hrGvqd17W+acNi7pvtOzrL5COt0SmI\nn5Wv+nXhjCvAWZCHZ8+Hk8ABbWK5WgvrhA8pECKpcEnkfIga4teKxF78Tr8vWFpb9qJiok2Nxe1t\nXZNw64UJnwVzc5lHYSRRofOqfOocc9VT3W511OY8v7cJ9jqsES+r52T6alswRbHshf7eG2oNnB3T\nNv9l392kZJr6fQGUcbWt58RF+rKquVO21KcjzmtL9p9RTnOqmkW9if1nwV5ZqqButKnry5wB4rZ+\nH4xV78tjnTmu2OOtuQ41G9mEUw27gk3wh5q7axTEsqiBuqCkLFDHBZDetabW9hqyFZuIeR5V0oTq\nbHKqOTBd6vk+9VvPExUW/f0a/iGPfWzjrs7FXlnPzVLviDOp5WuccmXmeImzAujdYgM+E1fXBShL\nJuhln7XmLl6qa1njgfFHKJVxn7DMvlIHxbapeZfdkE1sgfK+tF6Ym5YsSL4y5zIbedCCp3WxlcHA\nwueW2OMZfdnh/PjuR/9ObfpC5+Z8Xah7C7XQ2Up2JwSp4jfhsQTRt/2+uFJG8E0++1zoM6etNgYg\nJbPs1ZtNIVDWIKvLnubC2aXGbjrHDuS1hlvwi0QgLxxQSm++LTR/857ebTZAfhQ9ztG3hR6IZnDb\nwG+3BOl99Km4bWr3NUfufaB2v/hCfKFWRrZgAzXBGK7EWrIGOW/mQI/14PX8+td6Rzw8PFD9Ob+H\nrM16EzUm+K6at9gnObeenWktb/AOmc2CeguECPJqLzlablKyHPrigeZHf6b3syX7w/lU/drMqD57\n779njDHGuYda3hPZgAYIqpgskNEpZ0tP7a6UUbfy4RjjTDyqvVQ5rdyum8MfvGHqod7pBkdaP1fX\nGvvjCxQQ/0nrYP/H2uPqO1qXJ2camzqoTJNJEIzaw6+eg9Z1OFfCHXgxUJ2y36iDau7du3ug698u\nJ52l36NeVwWJNwTANphqTm5sa2ya27yjLVGI7KPO5CUKvXDHgF67yKh+cV/Pr+SoTx6ENJxhS3hR\n55Hu5yBxWYEL9zYqTdm61tQS3tLuI80Rf/DtXIgpUiYtaUlLWtKSlrSkJS1pSUta0pKWtKTlNZTX\nipQpEh1y8Uh10RmP0FwfLYgW8fs1zuUYlY7H8Jg8e6LPXRA0uzsHxhhjFkSec3Aq2ESGu8dHxhhj\n8h154K6f4AEnHfDWbXldj8/0Owu2+ntGXuQjFHg2tuTt3e6Qhwmq473vK0/+gojB7Qo5vXAMLFCU\nmF7putVc7Z2P5LV8EsmjVrTx8M30u8N75KaRQ1vy5KG7e1de5MWZkDkLlIYaHXn44kXFFObqsw8/\n/CNdS/72Fw/kaQ3G5PPhYb84U53Oj+Whv/+enuGiDjEmH9qCP2NN9H891d+fXeq6TKy+zKAGFJtX\nU0xZkyccEBXPWUQKiTD2iWoTbDGLGXOHiK0h8jf3iQyiqLNA1SIbalKVimrP6lhzpPOO/j+w5Qkf\ndWGnP0VVqKG+3QzUf76j56yJ1sUF9e8kUD2jlep59RjOmQxcMK7mUm0XFIejdq5QZilWFVVyaX+2\nqTHvVLQ2Zp7+f10gYvuUiDZzago3jVdRB4WBkDwRihFT0CRjIiBVcnxNER4VQ0FdZQEKpFCBewBv\ncwACabctL3u1rvnQ3FSkYwi/SUT+toPCQgxKxGH+5IlCZsgLvUnx6csiaj19l+hJpL6p2OqDmFzR\nRYVILLxEBm6ZPNfPfLhesiAcYrVtib0qwyK/IMJZRM0nyBLRTBA1cD1VyEkt0kY3AdjAI5RB8YwU\nVuMXUSpb8xwUB5ZE6atlVJQCotX0QzbhHuA+WRAya5eIBWoWEeonESpOLrm+MUiSBZw1Nu3OTFBP\n4UE56u1bsks2CgsGdaMiXDMWPEIzB36nhLsAtMWIiG0eVSY/RNmNORX7tCej560LrGn6dxa8VJy5\nSakM1d42XAtNlNhu54iMdrU2XNrdainiMiJSPPrySI+/AO0B71E8lU0ooYTj1FDXgm+lkOQyo161\nAjkV8913QBj5tskTURwy/xd8VgdwwWRRo3O0/nNwYy26quPp14oE+l1Fte42lYcdlBOVJVBR5GU3\nMhCPYcdX8Bo1sQdTV3Yii8JXFXWQFVHmcYLkI986GoK8OUGdiDkfl2UvO6AmyiUQcw9PaK/6vlpR\njmLp2wAAIABJREFUpLFyS/tGw9XemSNnfgS69PJMdtOBVOXWltbC1rv39Rnp+iHcMjctuUTRDMTL\negyXDsoyU/Ldj57r/y3mVLmAatwAtY8i/CioNtm1BI2g57iMoz/UfjDGJrRtVK62dN/lGSjALkhG\nlB2efixumfGBIqCHt+5/04atzabJeeq3FYiiNZwOJzH1JoIftW7TcFB0IEGblYRHCdWsgcbp+hNx\n0p0/+40xxpjgRPc/4yyTGavfO3dA+TbrpgPX3tZ95toZ6jrMLWsJ1wncVFnmoFNERSkD2gi1jXxD\n6zUDQmJ6DvIB/rn+KXwQqDV14SfKeHC9lNRne6h4msyrxSYHoLLm1/A6XKvN1gEcVRnQx6A/x8xV\nOwHIDfX9BG6Y6pbOlR68cU9+qc+vPhdaoAPqLPOG6rsFwsjNq392G4rQjgrq39yG+qvLXM3A0TM1\n8FUgh+SAbrA5Z05D2bHLT9S+9rsoNh6ofZs5Ic5jlOEmj3XfyYbGMwDhuehyZgOROoRPzyPS7MLt\nNQGxEuXZV/O0A4XPJ6icODmhO0oo7tRAh1kR+5if8JDoPhP2Nx/FovXi5ZmzN1+YIap7axDyubHq\nMx/rzJQD0VM7g0vtDhyPVzefJ1V45rrs5dlIdrHAXrwEvTToqc9dUABLmQNzlNc7yb37HxpjjPn5\nZ6j8PNKcmIImGmGfatibPPxNn/U+McYY8/YPhVhZ3tLkGzCnfnRL5/kxZ6BcnXqyPzw70vNWI/Ze\nUFyVXRCOqJ7u7cl+ZHnHMqBHI9Bw59ey1xOUvJ58+aUxxpjrMzV0NknedXRdCyVaq6q55WB37//w\nAz3nf+gxhvcAt6k5Y68017OYAoTZzKnhfA3/U34kW1QB4fmDv/oP6pcvdT9oScz0Wvf77T/pnWqN\namC5AiLlnuZcta258+QT1X80eDW1v4B2r0CSOgmPISi8rNG4nZP1ELVV77e+/0NjjDFXm0JEPv7N\nb40xxnjXnKtBoy1Zi/VtbCUot9v3tIaat7e+qct7b/7AnH55bp787r8bY4zpojpkl3g3Aa7/5YnO\nFs13tVdboHQC5so8BsmNvTG8MyTn0hkcYB4KgHs5tcGBQ9EGMbfgXXORoGZxV7gg4iPslgs5YR60\n2MWXKNb+sezV1n8SWgwguFkvdb95yJ4ObxuPM71jrdVj1J9mTzWZhguyEiZkAWxq7Dc72k9KZdRT\nUSw+ew6SnXP7dJnMdYj1/pWSImXSkpa0pCUtaUlLWtKSlrSkJS1pSUtaXkN5rUiZKaoj84y8ojVI\nFOwdlAV25M37xc8VlSnWklwxfZ5eyuP19j1xqjTfEceM15Wn6ndffWyMMabg6H7tlqJJj4lO/cl7\nUmt6/ukvjTHGjB7JuzyFsfz4qXLksiBseni4zgbyFJ6eyCM3hXX5/DNFKT3QCVdzeda2pvK4nX0l\nfpbt78m7e7CHOhQRoSrRyPxa7WrB6/I3//t/McYY86d/9X1jjDFjOBpKnQP1F1HIsaXro668qhUi\nMEHh2nzx9RfGGGO++wNxmvRAUmQsRQ3ufFfexNOp6r5BtLhdlGfZg4tkNlakrIu3dPKGvIhFFEzK\ndfV1E1WeIVGPbEB0JOEwuWFJ8rSDruoZgmjxiLq7RONbRL2meOQtFFNGOJ7LIHjiiryXpUt5a7tE\nVeyVPNNz7utUyK111I5iLskBRp2DaFPCI+LBp+HCk7SCdyO/0OcMnqHVKGHhh9/I0md14x1jjDHL\nEWzpPfg4cpoDS6I7FVsRzQlRoRVcBxnWkJ2Hp4NId26l+4WoXiVqTU5L19czqFAtNJfjHcZ5AbKG\nfMgl7Z7MyQ8fg1qYql6DUyGjhksUw4ZEWhtaa1tt/X8Az1MjC9JqgWoA4+xhkqLgZa7rv1UClAKg\ntTE2yINEuson+jsH0VIEaRb4CV+E+mQEZ1XiqXfhWYqxU0V4mCIQcRlQChbKUy5tmpICWyMv2CdK\nTbDFLOEuiUCc2EiCOUv1aZ6xDkCGeBONVUJ9MAX14GbgslmDBCTKEsELlSWi6aHM4H+DpFFFHJAm\ndgS3Cbn1iFmZWS5RDYL7a6nI7hCepgrcMzGRhyW5w5EDyUMJHiIUxtZJwBKkS7kMQmZFJAVkT4Sa\nnk1EdeomymaK/oRJrjKBmJuWJlxAu6h5NGD3z9uK/jlwW5SIptnkxxeWen43r361wCZlQRAF1MNG\nZaUAp1GYjCPkBRknmS9qZ8IxFIOwKZjILOALaobYctBLTdBEXiy7beYw/XOP2ob6xpvKXuRpowc/\nhUNUKIIbZo3i4XP2MB9ESRHkRcLnkQWnuoTLZkWENwAc5XC/BciPCGQMU8PY7OkL7JKV097XOtSc\ny0V6zuCrr3X/mezIdKH7ZTuy6xtNEIF9OGw81OsuUBjb0f/v7mmPb52oXj3s+01LwFqMUTOaDNXP\n4572gdlzfXcG8EbtKMpXuyX71oMbYA2ycAnaa4VanQ1nQQHkYtxE2aWn8Zhca3zHtNM+RbXqEm6g\npfpthlqgd6Y5FxwUv2lDYe+e8bHPQ5Ca3m3QFguQVcDylnX4tyLVexPVkhyKl9a5bMcKfgHnBPW/\nbsIPoHbcrSpi7mzqzGa3UKbIhKZyl70yUdDCPPugT5dr+BTgfQiNzi8Ffl/IgzYCXZXY51Ze63Sx\nIup+rjqOn2lPvfxa93HhWWi+J6RxbVN1a4Lgm4dT8yrFZ11njOz7oKB6NlDdGLkoMnL/IvxEM7gI\nTIKGZc8N4bNzQCFUd9S+hIsh4SfJZpkTcBwMQZY7OdbcQN+7RHQv4bIpNTTHnELC36Q5UKzLVhQq\nnN1W8GNksPNHQhxNEmQT/FOW0RhHC9Bb8F/ZDvxOcC1mLkCBzBMlM93XwhYEPihmzkgxCpBeS/Xb\nah3oehTAYtRSDKiIJWuyN4IvCXUql/51m3qOv3gZe3bKxuRQBpoyHkX2K7eD3YYL5xq1xlWijrjM\nmZuWBeifFXvo5EJzZcX/e6Bx3RCOmS29uwSgtoZnKEp+pDPF/rs6Hz5CPYcjhyncYm1w/q6CLD+C\nC/LgbdnPN9/RWnnwW63THEiMBWPgNdS2/pXabIOci13dv7GpsWnWtIauQ82Jr0BmzkcakyJnhADV\nn7jIO04HXs0FXDSgfV34PToVjVm1BQ8eyCG7onqV+P/v/MV3jTHGPP97IVjm19ovEp4+KBZNdUe/\nbzLHD++gRgoPyVcfH6ndLbXz7Ep29uu/+3tjjDGbqBm6cNNsvQmCE4T8DMRo547eE2onsofLq1fb\nbxJ0cnYHNDH7T3cGhyY8hyOQ/o//358ZY4w5H2lt/fAv/r0xxpg6ir3HjzQeByjK2XlQ46B1W/f1\n/7tviw9mNHyJ7Pn1X/+jefHJc1Nhb8vleWdDrTKXA9kMl1MA75jb1T2XY5B3nEVc+IHmZIi4nJcj\nEOA5eMzyKGf5ZMyUEsUw+D5HsdbMFNRVj3NrtFLdlzHIShQgJ/D+fPJ/qk9evAk3VB5EY031D0ug\nkUFR1QHVbn+gsW69pTVzfkjf/kx9+/hY79L77+mduXhfdq8P7xLVNe4ksUcgInmHXqy/XYE4Rcqk\nJS1pSUta0pKWtKQlLWlJS1rSkpa0vIbyWpEyPpHhcCqvat+TV/nkQl7YN3/wx8YYY+rkvcU5RTiK\n+/r8xd8rP/I7h/IG//4X8ppuwGj9xSfyXm7dl6dqq6HfdeF6ycHY3dmS97S1L4/f5rY8Z8OJPGwf\n/bkY0P/wheo1REXEQimnsy1vcH1bXtwF0bUsKhsb95VfbX/8j8YYY6pttXubAM3D5yj+oLc+s3X9\n7UO1s3NHHru3DuWlfvFUUcUJ0dIXj5RzG1ryfp+GRD4qGt7BVWSu4EsYzXWPBz+TSkWzI49wtFJl\n+sdi/z64I+9jlShFgSj2QU1tMaH6sJJXny5X6vNnj1UXC3WOBeiEpVFfRaj53LQUUCYZEo3Ow0Hi\nUp95gfpVNQaPHwjtVGuoXTH8IW5R9avijb0mn9oiGh4kaiZrlHb68nJmUK8gtdMYo+cmfB8h8IeI\nfHDHUb9N5vLWRjkUE4jYBnn1w96mxnRJPrRHPvWqnyBEVD8v5pPv+QAFAhBIbpM89hXKW0QoVkTf\nYjzsdKOJiIAu8cDXQXUsQZMUDRFyok4+aBI3JLJj9Px8Xfdvg+S5QAUmy1oOYaV3UBkoF/Q9XuKZ\nb6K4gPc9BF3munBSeDc3TTnq7oE8CSC8WDJ00RwmftTPogVzAmWamZugr8hjnqrtYQl0VginS6gx\nd8kpXcE5s4R5J/ZBzMADMgbdEBUIDRM5LYCUiEZ6bp6x8Ar6/QxkSUQ9Fgl/Dwi58FRr1Ud2xKnA\nBo/CV9nW2swQQY3XcHeBdghhi8+ChvPJd2cJm4jJ4s6Y08x1H06dIsm36yzKEjnVbz3J8TxFNDyQ\nJWO4bErcNyTy6xNBzXuqbxyCzsJ+W5b+XvbhCmAOeqCqluTV37Ss4B7KgSLLMm9iOCCaqGyUiFb2\nT2WrcnBXHILCyBc1Pi450/FK7Y3WcBWM6H/mV4V5s4K7xypo0eWY43n+fxR4pkF+8xV8DFUQblVQ\nRzX4eyJgR/5akccJfRrdQylgpb+fncueh9jNnQ48QeTU5+COSngZfHhwsvTxPEFfJgpeRJdy2KXV\nRHO3BRdKCFIyBFm3RLVtCQLoEg4E50xt37Y05v4eKnaXcJvN1adHn8uOrk4UhVovdN0WPBoZeKLC\nofr8szPOAETDL0uvximzQCEiYA1eP1f/TPogUshjb21pH3TgI8rflj2vnaveF0Qg5yVsBrYiVyIi\n/JbOHiWQKwZUx/BnqJxcCJGaA2XlVLS/7ZZ1Fmr+RGeD0Yxo/vzlWojstQn3sdMLkI0+Z5YD9UcF\nVEOBCPMpfBolEDBnT+Hs6eqs4YDKyIImLKKEU0Stb45CTqmpfmHKG99fm+4suTeoG/bCZaJMw57b\ngm+nDF9Fua6/zwe6bn6kPlw8S1BicH4dqc4DkDIegchKSX2U3wJ5jWpaiCpG0qe5yatFt2sgX0qc\nJ4sb+owKSJXBrZWFC2u1oK+x48UtkCWBotWZgLMIEeV1AWQMSmRr7O0AJNEGCj4udjJZWxGcXMNz\nVE3gBUxsQWtLY/YEroMyCj65fUX7OyB1dtoay3JZZ8UY3rkMnD/zgdo/RfHt6gQlINbgYsR+8pg5\nQz8Xibx7IWhjFMkmedV3OtOcm4Ouu/s+/FAo9fQfodBzze8SpA79XQIxXt0GTYeaVH7yEg1Qr7hm\nXUK9rwbPS17ty3ZUnzpo4TzzpFpE5eXFzflCYkvXvPWeeC28dzXWa5DS62vN7QLnzyOUxUxPbXl6\nivplUSgnq4o9TTgWfdVlI9CYdeGdNMl5Dfv88GfiPWr+lX5X2dF5bAxPxwKCuxLR+3IDRAn8Sydf\nH+nvIBcvL/V9NdXzOjXQTTmUY9uolnqgg6t63vZttWP/TVBaU1CleyA02VMdO1G0UXu7RxrrB9iM\nwwPZl/X3UKz9nf6+twtaAu6xYj05P8uWXD0G2Y9a1Qqbs18Tt84770o19uQT8ZPGebWrc1vjdnWt\n9l6jGjpekWlQUj9ttNW+3kzPuWm5Zp9bJmdO0HdlkJSFuu5b35IN6YDE+eRT7Q8HdzUPSkWtYbuv\n/w8LnPsTJbMN9eetbWWHDC/Uno//n38wxhjzv/3kP5tHf/uxyefaJruLolYeIw73VwDSrsP7dnaF\nehFnERee0SLracgZYn2hvqp3NGY2vDYPySzZLrP3AzHpwQnpHtIHt9jzbun6NWguf621VGpwnqto\n/UY9lMjOxUl1+tfKeHmBvUy4FGeoPYcNOGISjshd2YfmHc2J0oHsYfEj3nU+/9QYY0zLS1Tx1E3T\nF3Bxkc0wy7DnVvR9HYJKy367amiKlElLWtKSlrSkJS1pSUta0pKWtKQlLWl5DeW1ImXchjxrhU15\nAbcPlZ/90//+t8YYY86I3gzRaj8dKpp0+K6Ypyub+nthX56sx79QVPAnf/G/GGOMmcLK7MEBEZNf\nH4GU+fw3fzDGGHN+rty3GnnZWbyXn33134wxxux8Rwzmv/mlUBiFqhQtEm/w50QL//zPxJR+eaZ8\nzuWv5ZnbxDvt1lWfZl6fT7t67mIh7+32gbyYTx8I1fJxUYzaazhmHh0pigaFg6k2FZ1zycWt3pGG\n/fUXqEkV5YEsF2bm7bfFJfMX/0HqS+uuvIeH95XL+oyo8ItP1cb37+peVqyHXTw5MsYYU9lQW1bP\niczB1r5xoLrM1klURm2xxuqL9ZzouvvtXsJ/WSw07QNY6z1yUOdEQhPW9zoqID55wpkizNegAOYx\nOZ+hxjbJm44dmLuJQHfnas8ctFGxrLm5IupURfFmGCZs7/K2bqHQNQedMAFlYDJwKcCFM4aHwiIv\nspRJlGdAliTqRqAWyuSuXl5q7vvkhk6JEuV99We5TRSOHN5hV6iuDIglDzSGWwbZs4ZtnvaGeKcd\nkDJ5OHPKIIPmPf29UVHFxuQQZzdUvwT1ZuAnsUABLEGtlOEemC5BIDGvckX9frTUGohgbl+h1HCT\n4vMMB099THQ/B8rAEK3OWIqiOImaEciTpK9jGPDNJnVbqs45+BcWcM8EDvw3sMgHgfrAmakvVyBC\n4iyIDyNEi1dOoljM5RBVJ547QbnARgbOzSQRUJAoRJaDrPosBPFRQeVpTe77CO6UxjhRpwDVlahQ\ncT8f3gwP5Ya1leT8w0NC1GqVePhnePzzRHXg5skuVd8K0bxVESUeuAKypUQ1SfVeoMTlgkCagTix\nC5rb4ZLxIv9+Apqg7KFGRT2jVySVqRjN+T6qJQvkUHooqnWwl05G3wfwm1y8UL0sWPVpvnnjLe07\nmawiNFYusT0gFeHRWllqp79IVLP0/xEou5VD/r3jm2AGRxXIlBJ8NwWQMEVy3PsrjcVzlANjEGrf\nRaViC7vll2XnLx/BRYM9ijuo/BQU/QlWsiPQF5k59jqDalBEND/ydV1Q0xisUXnIgkIqE4XeZEwz\naz1vmFF9us9VjwglginqcSXmQqYJhxjR/7wPGm2siiVcA1lQrjkiixMf7qptnSEaB6DVet+ev/0v\nS5eI9eIaNUGInAo51m5ZkdrCtubKMNaYN1Ecq7VkY55/Ap+JB49HnYhyTb/vP1ZEdoSdPn+Iff9a\n7YhGmhsbe4r01pljzg78UWO4XwoomU2+gXKaZ33f1EDnLVz4PTw9t1rS98QW2QT/c48052fwJxX6\nIH6eSoWlzhwuwkXggD6xsFVNVGaKmxoX31F/XF6NzGKivWJItDkLIjBKkImsexfumM0DkCCQW8Xw\n6AQg0ZZPdD46GqqO1+zBjbsam2Je6zILotndUl/FWVREAtbbMuEWM69U1kR6PY8xYK/zaurbfAtu\nMe4fDbS3WZwpVgm5FufShMfIhb+tlFVf5uHFW9ZkRzMByoSonYRwlVXr8B2NdV17S/fLEBlecHay\nbdW7DSRpyZ4ePFI/noNkcq71nM4d3afQUb+2aorGWz7ITlSvYpAvfqKe+kjtvXqgubwLH4pXUn0r\n8ITYcCluo6CzZH+doZo0u9AafO4LfbA81f9XUIrbeEtnV5MgL1FjGqDoE8OHNFm/jD1nrJzZacsW\nTV3sc6KQOZAtmTY1n3IR+0GZebN78zPJ8Gu9izz3QKmCGH/2pZBnNuehex3N1efH6tOtTbVpC1RA\nyNyugRZ45091zv5v/8d/NcYYU/QSCDSoWJ7fgH/z8kRj8OyR+qJa1/pMJCDLnHuvQV5v3NPcyFzq\nd78+/rUxxpj9Td1vBZzWyYCUq4NUjGU/itjnFZwoIcpbPmvmDdTxnv70n1SfGfsJ+94UxM7a0u9r\nNY3Btae51kZ5Z695YIwxZuLpudc9/b2MAtiLr0AZo5y4mul7HY6Zxp6ee3mt+t2Ce2fjnpBNp3/Q\nu2EJxND0Gk6WW9g5eFAWKKsVSoki2qu9Uh++oXFu7siWFJoaZw/On0veTS8Gsnltzox1+FWmF8wv\nbEemCuKVc/Qyo3rXt4S4yZY0hz/9W7UvPn+5b7z9vfdNs1UzIethDkfL3i5nD9Cphjb2UUmewsHU\nLur3o25CnqhnnT9XH7Wa2jvee+8Hxhhjjn6rd8OIvaKMfZyAEh4/0vnrCqXYGnMzAnkS8+43v3Ko\nj8a+BTKv4mmttIqyXyOj82+JfSDmPTx5lxvD/bKEc/GSPdpA17aDimDcVvunoGEdVF6zff1/Bm7B\neAVH1QT1TdQB3ca3K8umSJm0pCUtaUlLWtKSlrSkJS1pSUta0pKW11BeK1JmBSrg9FR5cHv78kKW\n8ExX8GRvbMi7+eBX8to+f6g8yfOxPGnvx8o5nRBNG8zJz86ABvjsyBhjTBEG8FKNPMBDeb4ysKxX\nbXLfyHGrFOTV7VTa1Eseulsgc3oDeTE/+0epN93bk3f5+lzRtvMTeTd//4miTSfUu3vvx8YYY2xU\nRpob8o7X39HzmngGy3hpf/AjceuML3W/+pb6KYfsx8mJ+sFtCp1ydaV2XJM3OjmdmP5MXC+//Km4\nZB4+ekAfyDPcqikX9M2PlEf31kf6/4trPXM6EkqndEuM08NrRWAfHqkvqjV5Yh98Ip6fvT2iRERz\nBqCBKqhU3LQEeE1d+Dosjygz6kYxHCqRr+hRhLLLJNLzS0RRBjD3J5wrZqLfxQngx1pxX1AJeJ5d\nxuB6rShNkfzB5ULXV0FBZXN4qCN5qMMQrpo5KIU19ws1dhkUV4Iy3D0FuWPPegnKCS6WXXnM8z04\nElixJXJnp0QCQjzktbZ+v7wiz3v+z/M9S+RZV3O63sAtUYXrpuDTIURy7IY+g2WS84siRgmED1wX\nBgWLoISSAagPB7WlLPwjCUdQBsWyHJH7MXIty6XGu1i/ef52rqwxsxJ1iYhIJMiMOQooiWTBZKTf\nV0BM5EBfTav67q6I/jdBMtjwaBBx87wkGqSxtEpq48pJEBD6e4T6UaK0tTjV9QAmTA5m/CrcVFW6\nckLe+JLrVnbiwdecatSYBLQ3OsYTzxrxsGc+CDoXkoW1p/oUhigVoCgWWnpwDtWKmIhsBN9PbSW7\nNqqBUpiD/IB/ZJ0HdZaod+R0/YyxLcGLMQVJYk21pvJVkEULPddnbuQiuCKoh4ea1oxxsOaMz+TV\nUBBT9pUZrP71rD4nIGWOibw3O1rkrUONb5Z+7J9qX8lcoihHJMjkiRyjOJQjArOcqd+K9OMC5NQ6\n4ZcCTZIHuTRZZ8xoqrH0UKNoN9WnUaA+GTt6lkXOfR/uEw/1DehpzMLT+nFnWo/lJsi8gvq+DIrA\nLxDhRBkqUbFIUGFz+JEyCcCRyFse1FbI2Ic1lKr6IEwY0+GV6nvK3tV7rj6+5SpCWIAHo8scb6CM\nU6pqP4kPNAabNfXl8nzCdSiSJSp2IPDu/EiI0A3yurvPsKc3LG6kNZxJbAHKPTkitCOjfp4zhhNf\n+8Jwqefd+4728DugucbX5PZDHTP4EvXCC+3Z5lj7aoC9rMH3tPeu+qec7JfwHq1QPotajB+R5vpm\n5Zs2tAol4xJxrbRV72dPdAa5eqBPC96OHIoZAXO7irJQFuTlwbbGw9nRc1t32ADbOiNlsnpOb6B5\nOJgpMu97qle+FJoA+2uDOsrByVLAjgbsdRb2ondypO8XauN4pDnTf6DJPXsmJEQNJRRvU321dV+f\nCyK2PrxqAWMa50DrErFssXdlkjPBDUsGtajjC/VlYwXnQbLHV0DqgAgZwjE1n2ksps/1vU+U/f4b\nQneV9nQfU9CY1O/zvaX+G4OE9EGRBgHotxFqTiBEFoldhCfPAy3lwu9W7IDSONC5cxaoX0KUIKeO\nbMIam1NGmcuLNBdjEClRRXOuhZqgV9F9rkCE77Y5I+VAtSVqg0SevTb/D0qghp1dhKiqgKo7/kKf\nvSMhZpo7cD6Md+lHlB+JcC9YG2WQ8Y3cyzNnWMiZBSpVUxTpDGjjUhsVx5HGZTJPUNao80VNc9OS\noPvDueylU1af3z8Uh0mFORJCvlRcaS7lQTheg/J58cWXxhhjNlAqe/O74q08vK85k+O86iVnAV9j\nlwGRXgCRPAfpUYTTajCGDw2kXSH65zxr5Zbsb8uDl4kjRwAiMgufULzmrMDZYomqX8ILF9OeMUpc\nOx+AMOzLri++1lhnaIfDOXjjUOgGt6413egw50GOGpTIdr4nRdrHv5BC7/UL2dMsZxtvQ8/fAUUX\nwflYAGU7H7CGsL/vvqsMgSf/CIqjBPdaLeEmY19wUQlFbSoDp6Wd+XYUxL8s29tCn5m25vTpA72X\nHf9B72vXICkv55zteM8J4UEsvK3xnSE7ZeVYQ1mt2SGqs7f3eF8Yi2dlfar9+Nb+3jd1Ke/WTZwv\nGxuetvtkRTh1FBJBrA3h9sr5avvhrSp10tw0ZLjMQLCEY5RkF/r93fe0Bq5faM/5BgGJymerLbsZ\n8s4291Xn3lPNleamxrJ+V36B/Q/UhzPuE52gIAZS0Surb/I91vda33Pww21sKfMlC9/prCe70EPF\nrt/V/rO3pbNFDTsaxihCzlBs5P0gBHXs806ZoNgycJqZfIqUSUta0pKWtKQlLWlJS1rSkpa0pCUt\nafn/XXmtSJkCnvwsCjErHNflIko0XXnI9g7kCfu+o9zUd8hrvuwp52unLO9gqwzXQVceqjoRBYfI\naK0lb/LnH8ubWtmCpR1elN/8Ql7p9k/+TM+9JU98Dg6HLCiMShMPIJHcD3+oer3/jj4/Xip69v2/\n/F+NMcYc7sijd/e+uGna9+Ul/uVv5SlsW/KgPfrVr4wxxlwRbVq+kOfuw/eFWvn6QvXb3fiOMcaY\n6RBVgpnadf+2vLWdhu632VD7an7LbA3kWe/s6tl7+/JWdsmpdJry5n3+WF7Bws9/ZowxxmTgECnI\n4/r+j3SfoxONiQtnS5u84J++kIf36pmiFzHqTT55083sqyFlfDTobfhAQljKZ+RH1xzdrzvx6/Em\nAAAgAElEQVSB9wKVn8mVojJ1POr2GN6RJI8b3g03AmVAZCAgqhWRH11y8Ap7ur/DkplM5fm/BVpg\nmYV7gahLLlFJGcCNQKSzgIzTcqB2VBr6f6eEUoGfoATgviEisWJu1/Oa01v31f8hSKKIvPYREWmH\n6Pz4VJ72aln9FNry+E+6RDha5KTCixQlChhE5dZGXusCkQQDL4eVn9Mfiir53/C4wA8yUjtKrJXF\nNYo1hIxX8KgsE7QBEYBMAFpj9gqmicBgwg3Tm6vuBSJuMbwHE3L5HRBq1zNy7UElGPKqQyKNY3gu\n3Bx9s1Y0Y4HySLYw4TLsjJcodqHYAnIiyioSWLWJHoGEWRPFWq+IGDO2boG+grOgP9bvo3PZlS58\nG/UFfD7YpypzxUFVaeprDji0y5rrPl3y2/2l+rhJnvgCZI+J+D0KZT45vNYl0Xnuu2owliA+SkTH\nnDXRN1AcE1AH0dyjnqgULVGBAv3hk8s8Q/2ogCLQktzhfJQomKEQVL55jr8xxkyLoEuAJLkoz23R\n7z5IxhV8T7Wa7Gi7pIj13Y4QmQHKDUX4TFaoRAVL2YgQpYoiKltBQCQI5SCoM77hnBjDh2VbtolZ\nx2ugKauEo2oBzwHRpsBTpLVWVdQoW9I91teqw9c/kx3IotBXb+t+PdACM+yfBa/Haqx1HBJhDZh7\npF+b5RzlLRRJkuvdNkolJf398kxzf5u55hFNHz9Vn19cqX5vsSaWhIVWp1qr7T34marMZXgosiHP\nTfiRUDaIA5CJ8Fy8+ExjGBBvWoxfLXI5RenGLHR96y42oKL9wU7GkshlmajedV/7XruP0tgO3Awz\ncUtcHKPG9PAJ7VE0sVlFkWYPlNkAowHsaga3jI1yW7AHj0hB+/hkrXFbZxM2CWMWTsn4oGTzKKBF\n8ISsPlW0c82+YRzady5EUdTUfZoV7fPBvuZ8DuSMbasfRqg5VeE38QZq38OnIEqz+m5HsWHqmBJ7\nb4FocwiCxYl0jomJpo9RD4qu4cAi6o0IjvHeUHS3WRIqaU00fIraXXlX0Xi7oQdfnGpsclPOe6i5\nDeHRK5pXQ9xFLT2nGaNSBL9EkNeY+wk3GepGs67a7U3Z4+GKyYMwGU9AahLl9y81dk+PhEauHII+\nhc+iWkTJEs6uKEQFhKh+jLrSKf24f1v948FHtZzp99MI1c892Tm7qX5rVkCYzjWW82vNmSdXOpME\nKLlF2Pd4AQ+Uy1mB87ZzB9VREIJzFML6qDQVUEMs0m/1muxsDYS8z1mpAvebVWResN+cP1X9g7Ha\nW0NdahcFoMU+PBvBS2Wy2PfNAr6sbBceliJI+SoKYqhfLbHrBSLii/HM3LQUXN3DQsGqAsjGxo5l\nQJLZnDGaqB7FtHl+JjvZ6aC+BG/c2bXOcy3Q/HGgd4iLrurWrvFuAieZZWssT1mXXg27jmpcBpW8\nBNUaHqsv79/W/RMKmpg1WkHNJxE+HIdas1nQZ+sie/Wm5mgepPVFV3OocU/n1r33xAv6i0//izHG\nmLdRro3qoI1BHxxNtSaGT2Rvcyu9A4WoI33/B3o3KtY1dqePZW/fBY0RLuClI4titEhQEpyp6K+j\nger3wX29W5WZS2MQ4jXQfGvOjEn/+czNFbyfpcKr4Ry+/LUyC66PhKC8eKJ3vzoowEpDa6O6q/au\nmIM+7zVl9o/jR1IyKm3ASRlp4J4PZNcLnr6Ph+rP+VzzqXLw8n0sWs/MdGIZO4eS4Ujr5ORa916e\nwYmS7L3wyVULunecS+YecwBU/Rxk4ehnel9/9w2tp3pBY7b0tYcFKPvNQJhkc3rOCLt+caV3yq+O\nNAfs36ntO2WtnYQvqFDXHG8mc7wiu1LljDJ4AgIdblkblGk8BIkIz2aD82UEOnU50VwvwGnVxM47\njIlDPSd+ooyp+21s6vkuKk8rg+zyv1JSpExa0pKWtKQlLWlJS1rSkpa0pCUtaUnLayivFSmTJS+8\n1JBHaxduhXZVnrbLM3kNq+TFHb9Q5OCgKC+iRQRkfCZPXoFovYukQBDIO3yQcMCg3mST51mHdj9w\n5RXeLMIxkwdN8EQes/Pa58YYY65fiDn9vbtC6ozIhy8TdTp5Ki/kJ//0e2OMMT/+YylhfAJ/SwTX\nhUfeX7Ulb+zhPXnDT4h8/NG+OGQeESmx4dmIV/IgFvEgZmpEYGwiyOQVxmN5R6fP5TkcD67MFI/x\nwQheiW314clX8hC/XVZdO6CSyln1WWDLJT54KD6fzx5KEcrD2zfsyXv4Q1Q/7vypPqv7uv9WVXV4\nAtO2Fdw82mCMMQZWdUSSjONrrizIW8y8pb4bdImgoowTgJbI10FuwIPhkjMLUbaZzfWPKu10fJAd\nqINkXI3R0EWhi8jDaiXv7tgmCsXYLMlnD+FsmBKVc4kmjVGQyUSao3WUKBZZjZ1fFTosNppLltH3\nIFak4uQrzfnuCPUScnr36nAfwNpehj9pdKF+KmcP9FyQLX0YwasO+aBwHpA+aTyiRtOHqofXVsQg\niQzEqCyFCZFGOVHDQlHHhkMGTowBPCtzIhrBQg9aePpdHoTMClWooqt5c5OysvDgw7lSIcJlW+QB\nL1ExQuVjSvQ8KOv/y0kUucXYR+qMfIHoDMiT0Ndc8ceq49CGoyAkkguCxcqCXsqhTGCrrSOiYwXW\nsxnjWbdR5+B7WEyeD+cI0fsQlaRyEgWnnjbKWT4oMgNHQFyE34N22KAivClrJFB/DIBuxEQES6Cd\n5uTeQhdiVlu6//QY9aIhCmMr9UuWObLOKsJQBFkYEVGwiDrNyfW3WXMrOHwyoe4fE7kOHY1rcal2\nI/xjXBA249VLdMBNih2qPgMiy61KiXoS5corEh1earxOnqt/LrtCN+zVtD9UULCZw3XhwgNSQrXK\nA0W3QhEnJjJuVYlAozaw9LFJa/XXwvWMXfznSiw2ahRRX+t/lKC5mnpGY1vrqYJahX+p9T6CJycL\nz1ARCQHrFogHuLbq5MbbOdBVPd0/h8RUHyTKKslVhyMrrsO3VCVyCo/QZKY99hweom3Uiqyc2phF\naTFf02fxGv4IB/QRfbgGqRIMiVrPtJfbC6LlC6JkdUX55w3tK1dfa69eQtkSH9zcjhhjjIc9nKBO\nNGDNWOSlW3DtZCoa21pNc2YFcuTqsdZyfSj7fPFEZ5MJqiC2o/sUUMHI39Zc6mTUjp5DPj5KMAW4\nJwJ4r/Io4Wxvi2uhn9Fevx52v2lDfzgz8+fY0VM9LwAJ6YYoqvU0TglZRPOO+nPrO3pe4x72H2W7\ni4sEVaL7DoYouK1R4OEomWUtZODUWMehqRChLOdBu8IxFWJHB3DunX0B6hJ1utvbKD3l1TeVD1Df\nYO+BMsaEcJGM4AQIQ435BlH3KxAafogaHGizSxRNLOzBTUsRHrZmA36KKvwYWVBsqPI58MsV4ftw\nQLtZID1GJewue6UBIVKC/80ugj7owZUGf11zR2M/RVls1EU1qCd7dNbTmW7Sh1fqDV23BGnowUP3\n+ARb8lj3yW9ie97W2m2zL+SYowZ77pypv+ao102ILNsotOXhHpuBZnAtkObMHd/S82ZL1XMMr9K8\nDxK0DAfODPsO6ip7gPIZZ4lwnOwX6n8zVb8N4KhcRXqf6Gy+RAMUS1UTY9smIBlXs2vqg5LmLb0P\nZDc1l2sg8S8fH5ubFhe+mmGPNsP9xLHQlDk/l+FKyYFqL8N5csI50KDamcky1g9QhLml323v6JxX\nQMk2D8JyMoR7jHedTqRz8saheIR6iQIiZ4U1KnKj3pDn6TFvfCDEycPPdH6v1kDLVuE94l2pBFrC\ntdTnk7He3a6fD/5ZfR604QG9L/5Lt676T0GST57Kbl7B65HYY++OzgAV5kAWZKC3rfbetWQrPv2H\nv1P9QHnMk/M8cy5fkC2J4eWrG82NMQjO9Yf6fvin4pZ59HdCZZR4D3B4t3SzINqtBIUF11rx1RQh\nR8eaezn25x/+6EdqV1b1XLIf9Cbwj94F/ZUgigKU7S61htpb9Kej8RwvQalwbsg7sut1UMDjxUsU\n2WLqmLixMhn4IWeg7K2x2tqpgxzhHSh5n52MtG7XE3gpQU9WQDjvVoW6nHH+uh6zfuE1G4M0aWyD\n+Iv0HK+sOt6Bv7Lzkeye1dNzh6Cvple8ox5rbq2f845GZkx5R22+e1vIynaMMtmX+n0fdSjbj2mn\n2hEkKF6OudaJ+qUAUrGeA8F4AcIdSKgPP9LmPdmx+q7mVA9e1+4LzbV/raRImbSkJS1pSUta0pKW\ntKQlLWlJS1rSkpbXUF4rUsZPPOFX8oqekFc3Im9y/wOxIu+C2rjuysO0UyPHrH1gjDFmgTLOwaFy\ny5ob8jpOyWGLN4X+SNjbb7V1vxyR0cFE0Sw3Rz54Xl7fjaa8kfu78jL/8U/E9J1vgnqAHd6JiYTO\n5LVsoue+sa36nD/4Qu0kGnj5pbyvjiMvaTSVp+7pQ9Xjf/ozeRYtODByeKM3O7pfNtKwWeTAtYnU\nBCvVp1Ent5poX94umejkn3tUOyARxvswUpOw3U54Eyx5Ga287rV/KC/lJnnJ299RLuff/N//1Rhj\nzNmZInb9C6GCPrmWp/+jH6vPLq/UB5Wqvt+0xPRBQHTNAj2Ac9YUSdbtk1O7WpKjD2+Fs6n2ueTy\n2mjSF4l+ZPCg17PyfvZLmotPjzUHD7eIAIJIySbfj9W3EQoucaDr46Guz9Bvs6m8pw3UkgpE5S3m\nTBa29nJGYznPaY4vfUXxCjX4PeC9eFLR70soWvhwDlxeaC6V3tPvNrY1Z7/4A/0O34UNimGW0fcK\nSmQ9koQn5PHvgdboz8hVDonk9smxbcPDQT78aoj3t6Q1NhtpnPqJetZa3725xuOcKGfWKBIyyiS8\nHKAqXsE0FUHIBEQW7RnKUKCiZmVFa9wxY16AT2OeIEWIKsMZY+Ccma+IpAWqcx5OhDCr+zp5RW1a\nse7TA5XgkK8bL+FEgEOmHKGKBF9PFu4UDx6PqAfaC14jwEMmzIHso10BHCxrUF4NVJMyVdmtaaL6\nZIgcwINhgUhJkChz8sBzzMEI3qfYIyIAAsfCDjYLisIERmM9gwcka2mOz2CZr/bhjIHDpcTaSYS9\nfCKSGQv0BmipVU71ro7V36OEe6GQsPDDY5Il4usSdrxhWY/Iyx6BgIJFf0WKb64rG1Yi1/nTF9o/\njr+Usal+X+3faKqfbR9E1AyeJWIcGdBwxRlqMfB2+Ase5GierUDx9QvwUuUnJgpAd4FQ8FG7cIi2\nPz+ijqGu2d8hGgNX02Cpud7c61BX1NZApjgBSln03TBDX1iK+gRwSK1AsUaBvnuxxmBJ3niZqNdk\nAkLHT1BdqLwRgY0szdXtpsbysKN9o00UbQjisZAFeQGX1JL88jJoLxe+igUIw/650BULX1Ht3SqK\nXKh3xA31edwEXnXDkkS1AtB1Ie1dggoI4RaotagfdnObNX/xCBTdU6J4T7SPeNicchMU3DY8TQXd\nb8aZoswavnqkfquyJg3Rwym8K5ceke4VPCHj6jdtiKeWmY401/y+9oUiyjIF0GEtVFHK+zpT2KAH\nfPhALFQByx24iC7U/u41XBnwBsy62LQRykrsowXGy573jZlgX0CI+X3VbTnQuWd5CWqTPScq6PxU\n2NCczKD+YYEsbnC+uiaS64GYGI2IIsdar+WlfhehUplnztue5qa9AiETvBqnzAS+vP4ZaiD7qqfd\n4flwdcWoS01G+p0H1+H5meb8pC87mvCu+aDNmruqd7Wl/SVTUv2vzjWnLpdCgy1OUXWD38jAcVWD\nYywC1QAu07hdOB6K+v0eqk9hUWvdKoJ6AuGZR3Grho0xffX3vAf311TtseeoS3EGGxyDzmK/3HsT\nJbGGziR1VJmGoA68RnJOVbvjhDcKfpX+C/Xj+ERn1xAUhXsFchyVq9kh3G45VPMqoB96L5FQwXpk\nnCn7/0z9cEGkfMB+749lA5q3ZDvW2+x7k7m5acnAhbjE3hbLKL2gSueAfItB9/ucFWw4uhq31OcX\nXyu63mHOtxu6fhvlmRIckeOu5tAUZPSihxIX9vj4RCj/zz4TgqVLFgGCN6YKl1QlOWc+1hhs8H7g\nPAIJwv2aqDglXGMnvFcMWNszeOmyOb1P7O3q/BiAdA/z2p/23xQP5/ypxuDFkdbW1o6QL7ktjUW2\nhAroVO2bL3T/4QvV+8139I63zb7XHat9W3fIfgCg71b0/OFY159nQXuc6ge9C9Vj544Q/ycfq/9t\n3j9qqCxN4XzMxaB4Z7LLUfOlmtFNSmFD7cq5cD4W1K9Xxzr/z0EcxVX1X6as9iWI0etHyqaosl82\n2pqzAYjF3YHq47+Az6omm7Kxp/8PRy/PUMv52nh2zrjUweFcevs+fGp7qqsLSjVX4BwMcsbGzoYg\nRWLOu8sQlCzKjMGF+nq5Ut9bwLLKIORWOd6RCqxz2tSB/yeHsu/OXHOLVzozPtfcWMJ/eXGpsXSy\nmpMhKpkRXFaJmpQDR2CzgppbrDk1eqC5GIBwrryJanNRY5BhX+vNdSabgJC8e09rM39Pe+GzZ1p7\nx88/NcYYU7S/Hb2bImXSkpa0pCUtaUlLWtKSlrSkJS1pSUtaXkN5rUgZi2hfooJkxfLkF8kl27ml\nHLDhsVAXefLSRz15vEoVebimsyRiIO/oEez+66Kat72n/MXnY3nMbm3I8/f8Sl7IKXnX4Uweuqtz\nVADgsnlxLQ9cAGP3o0eKVBTIZf7ge0L0+KiLFImk+uTrLfnd7V15Jy0iyvma6tHYlIdw/EvVo4d3\nvHuiz4coSyxmqscJvAPHcM7cffePdD1cCB6s0wmHwjTjmn3y6p4+VPS304FLBe/k49+rTS9eyEO7\ntXdgjDGmXdXvarba8PUDoXm2N+WhnxNBrcKgf+9A7OUnPY1Zo6U2F3fU1nzp1fyAOGuNQakkBOkR\noqwVog61IJdz6RIhBLUQzeDPIJ96liVaxv1slHLWqIFswoUTtOTl3N9Sva965GzCh7EmgppxySes\nkvddVUQjQfYML/Tc/C206/Eql1F4WeeIqhm4ClA28DyUeuBLyTlEUHL6POwoN3gTboKvn6i/nbWu\nqyeR8Uj1naP8s7WheTBCLaOwgWLEHPUqcoWdBG2FokO2rfstV1obVpbxL+Mtd4iwo6jWvxRnQYHI\nbwkZlznjuR7goc8TcVlpLTqovbjBzfP8HTz7LRAKiw04ZQKNaQ3kw7Ajl7rFrUPyr4tE14cT9Uku\nkB3wJlQGPqZVCdQWufa1PdqQUd9UQE+F20RMQ7hi6Nt1yP3WsLBDihD29bxGoLFYwYtUhL9nSl60\nhZpUoa/rfZQE5kPkTW7pe/kDRUPe3jkwxhhzciqOqzlR7hnopmJJ/TSEt6lsaOcEjip4Q8xSY2MR\nwfSwr5kkzMaSzrkgRUDAeETdffothh/FTHXfJGfXBkES5xPVDf0+D1oj9hM1LdbsEvWR6avlb6+v\nidD3dL9Fglwaqd9Gl+rXjdsa352M1phzV+Py1r23jTHGNPe1P3Unmk8B/Cc+ay+cyoZmCqgBggop\nFlTvOWt7ZvS8ADRI4NnGsXWv1VJjPcPeOdjy2TdzEwQbClI+ZAWLmaI7LaLtTZAOeezH8lLXzUdE\n9pg6K1+RVR/+oohc/hjVtzXIySxopxmf60tU2Moai526IpYLVJ+sF3pOBv6fgw8UNe94Sa4/cxGE\nULhG0QylsbHR9XXaWdmC6wRgyLqnNZboGVS2ZW8congx+e03LRHt90GEeg4qUBW1r7MJb9JUn8Mv\ntR/2UVcqLdRPeaN2OYdCI2SLGrcI9IAPSVqSr+5B6rV3W/tnhGrTcp5wpOm+V2M4Gi4UffOKqA9e\nv8xTP3n22HRPFb0rwrVz/5b6r7Wnz0ZL9cph5yd9+n2pz6cPNbcP7+j5TpZINdwQTH2zBpmVA9Ha\nuScOisaGvp98OjBzR/e8OCXKHWov3WzLPje+I7RT29PneQL8oG0B56cMe1+YUZ3bZfgT4KBZn+ps\nMyJnP9OBR4G+z8GnE4LGyoGUWLmvxiljlVSvPCo+bgyCB/WgQkd7Y28JP9w1Ci3s+cUOEV9Pv4tR\n+XAjuBSPhRgfD2QvstuyNznOfTYcLiHIwhKo2zlKLeYWY/QHtW/6XDahvteg/Zq79rb6cXMPXr4B\nNgDk0GSEyt5U59BVT+O3JuJtenBkcW6eTfk95/M5SnKrJXx7vtZIGVTfFgplzTuakwtUCPtPgEHn\nE44a1I+4//JMk89GHTDblE1wUBByOVMlCCI7hCjPGLO4GpjAI9JfZZ+tosi51v3nIAEyoE6WcKdZ\nqIXdpNic7e0LzbkByjU+SlQJj1gWPs1MpD4rNDTG9/8EHo6exm5nF14e0JVPH35sjDFm9HP1VWx0\nfb6tPm2xttxrPX98oj3J99VXOyiWtW7Dh4ZhL6OytoCfqdTQHN061O/Pj3UWKMAFtmAuOCQ9tPdR\nKqwe6HdkHcQZ1Wc40Fw4+t2RMcaYg3ekujTeUF9fHmnNdLZAy2JXJldwGzLmDZd3P9Cs7gdCOWz/\nUDbk+B9k/6wQpEgXBCPn3sUC5GBLc6uzq31rTJbGm++IU6Z5X9dPHuv5OXiKFnN44QLZP4+sj5rz\napyZtY76J1GinMEH1Xuh83NmW/Pkzne1RiJsyIuexnXBfm7y2v9Pzz4xxhhD9YyBC+7z3+pdcaug\nfm6h7pQrvURYFrMlc351Ydr3NUfa90GigJhegU5aDHjf5t0qgo/OycCDl+wNnKtmoKcG2JMrkNQe\nqkbbDRQXPVCkIKdd0EEF0FlffyI+08Gl5nwO1dOshwJgW2OV453UQaFqews1NibpQ/bsxZXGbvue\n3t+3b+v64URnCvfWgfoKFblsTvW5y3nfBx3bAvVW7oA2rmiMvvxc5+7Pv/yp2gUnZGfv28+tKVIm\nLWlJS1rSkpa0pCUtaUlLWtKSlrSk5TWU14qUWcDhksnJM7cO5CHrEzVajvT3j3+tqNFmW97CKRFi\nA9tzeZMcf/hBIryWW4disj4Zy/v49Ct5nTtleUWnF/Ka3n9DeY0TVDMyFaKTdXLMlnL9bcI+/fBz\n1WfvQAic0zN57k4eyWvrtFT/Hh7CEOUfuy3v5MygttGHYf19edDev/cT1X9Dv/uw+pe6rn9kjDEm\n3pMXerukdl825NXdIpJy9HvxuVTJazxHbap/emne/J8/Msa8VEsaHMnz+/6/f8sYY8x8oDaUKurj\nMjn6ti3vZnBGDuZz9eUbb/zAGGNMu66I3ZyxDOtEfy5QgiIq0cBLmLFvHm0wxpgQhZlCGVWHBRFI\nVx73NSgH0ydiNwHpQSTWRu2pTJ5gBW6T/lRjuoDVPrTIg0ax55Ic2tpM37OuvLGJCsYsRo0DVZA4\np79beXnwNyPNMYLzpkQUyFlryc1z8qba9HOItv2QCHgxo+jbLMnVR6Wp6LW5L7wnrJUAD/p4ST2I\ncG8kSghEEcs7imQuQfJ4BaJ4IIlynsbJWqieHjnGE6Jr/oKIaBIBmVM/V97jTZAxuQ81Dw7f19qy\nyeefo5J1OSb65KuDKkBkAhBIk2wSLv23SwxXwQTkS+8KThRbUZ2gqL7MgvY6Zz1FIEOCDUUdcm31\n7SFRk3yAEsvPpTyw8hVl6J8oCnPUQz2nQu453Cy7cyK7qDstB6iuYW6rHt+rWs9r+ENCeCOKizNa\nRiQW5EwJ1Ykp6DBnrfbGRFj7F3qefaj2R02UYcg3HqF2UiqofVmiKPOJomh5+mNBbn2BvPgVoet5\nTnNo7as/XWzDirlUJZIQO6DV1kS2gSZlGOOYCIkH31BUkT3LhAm3CsoLIHFWszz9x1qtas5mXhF1\nl41Vn0S1yh1TX7gWnKXspePrd05F7W6AcLm6Uj8NnsjOTq5U/2ZZv4+bcBCB2AoSRSRypm34WgL4\nrSy4ZAw2xb1dNQW4PMLfy7Yne2IRRF5nV+urOFSdXDAiuQRB2EnsHhwgXbWhAOrIg3/JWxPtARkx\nWaJyB9opyydCXMYB4bE02JOx2myhKpTb0v1yri5wUdypZjQH8z4kUteyl32XeqLMEsKDNIbTyoHv\n6RROlItj2etdOAg2b2nsojp8T/AwbR4owtw0+v9HT1EZumFx6qrXHnvsEq6rAmiEAITfDO6B/m90\nFvCvNF4xe29nV9G33Lbs6dRVuwZDtaOShSeFM841c35rG+60hqKUZqHnJPwc9lKR8Am2yIt1nTWe\nfNMGq7wwt97Q2q7U9Nm+ByphA4U6uGXmYz1/CZqvsNL/n5/quWfwUNkL1ihm2fWwEWOtncuuxqsE\np1gRxOfKvzSzlfY0hzNCdUNz4vZ9nT3iHfVFI6e5PfyN7HZEhNQiUtsdJXxrcA7ACeUyV8twV81R\nipozp5ohZxMLjgGQN81D9cUM3qSblgr8ThXQW+Ud7Cxr1V8xJtjnLGcfB5StG8EfUVM9V9g/21H9\nXeZGHLE3xxrbPFwvLmpUBVT+QqLkHqjfCJXAzi6RbQu0XBUECGpPpxdC5JxeHhljjCmCkCndJnrO\nuTUuqV6FNRw99OvCwg7nGb8t9eMGCKfpGnQHHIj2TP02/f/Ye7MfSbL0yu+auZm7me9reOwZGblV\n1l7VXd1NDsnhcEYYAVogQe961Z8l6FkvA4jQYASI5JC9kV1dXd1VWZV7xh7h7uH77m5urofzs0yS\nQJGRT6kHuy+BiHA3u+tn175z7jlowtg8bwZpxYQQfSpzyfONX12eC9s4hno4OELQee34k6qjaZMm\ndvkwQGGtGGNMfqNibBwigwrORgXtiSZrfd/G8ShIR0wc9p6thLlpiXSALBwXAzSYfAdnqTJOXLAG\nZux3GteKI4eHih9FtKcuB2IrhRf63pp9U21LzJCdhzpVsEBzsEb8mjTUd41T7Y/9Ofpzt9SmBe9S\nPfbTsx4shZbmTr+qdhw8FFsgYpvu39bv4wPdJ4PWSm8Ag7CpuHvy4sgYY8zpieJViZj0yg8AACAA\nSURBVLW/JB7OAtX7AIcvjDFNn/38OtqXJmC3ebp+psLnl7gS9hR3Hn4uLZrBt5rbkb6Um1G7dnN6\nPhRwMEtlVZ9OiFYXcb2UU1y//0DvgM+aMNFh5eV5DlpotwS48k15r7hpKbNWTvvqn+Zz3Sdk73jv\ngwPdl+fq+YX+nyaW3v6p5m4RRpNxtccz6ClazLcp74LXGIhNWGNB7s0+O5nImOHVwtRu69q1L/R+\n2/zmG2OMMe0rYjwunWG0Z0CjbzRV2wfX6sM+7wwJ9n8pTkt89MnHxhhj9g7FRK7QB2ak67Qutf9d\n9zUnjy+li3l1qTWwVdPc80qKR6vo2Yjj1HAG87DI+oXZfPFLable4vB1B43WzT3NhXGauDPW9wu3\ncOdE62sw1BxLogu1Wf6n+/bL77U/fnou7Zgnp/q98qmuc+t9tdcf63nwQyVmysQlLnGJS1ziEpe4\nxCUucYlLXOISl7i8g/JOmTJzso2NBkg1TjB9DrpPjTJMebzsa4fKgvYWODAMlamzs2SeskJavuIs\n6O1tXe/RS869l9EI2Bea1XkuBLzZUyatcS0kNFFXRj9bQ7sBFkP5QMhO/lzskM//WKjdy+9RceYc\n+/6esr9DtG4CspxtnGyKm6BdV8qJPfoWzRqy2y++hcXyo8+NMcb8/SOdE9wEMS7fVnb2fKAM4W3O\nuIUzoIWUMpJ5X/163r80CxC5NGyAPmcsh5EKeUMp1IM9qY6PFurbzqUyrDUcZ9I4Vvlr9XW3T52P\n1LbLC84P4qh1/kJ9c9lSXQtom9y0dFH8n+FUswsqkwM9KwSwJAw6GGgCJNBtWMH8mJG1Xbuq53im\nPvfnatcKvYtWQ/X9+lc6g9ndUT8lHP299Dnnstc4P5SEaF6eH6keF+rz6j1cNU6F9A7qqr9nhJwM\nR6p/yees7URZ5nGo9uRLus/lmdbI/n3QK1T8509xuHGUlU7huODOVd9VQv2Q3xL0cPacOToA0UVD\nIsFZ42mLcb6jtbbkHHgW55gUh1QXINwR8pNewVTCceL6DMbRXP3Qq6LrEp2dxvEnQhrWeWWb18xl\nfwnzJtJzuUEJiBcLzqwuYZJMJsAuJ2r7sAYiiWbJHIZKxF5K4CIxBtHLdWHOcUY1tdb6GsHsK6b1\n/ZKrPmgn1Ha3f6TrzTRGzhi9IFxCZpFbUoqc+AoUGtenZFXr96ygNdnsi5mRA0lNwsRZwx7LjDVm\na1w+Xv5ec7vY5bxxImKIaI44Q12nWFY7Fzg6WBecHebcdYhLSRoHn0xCccuyNXariX7mOfcdMX7W\nKzRkPKFUeRDXiQOjBE0amv3aBSsTuWX5uFMRzybMlQUCU8EarYDl253fdi3VI+OD4ET6RTmuDysu\nYr1VQGQGLaFuF0c4MTCuRVsoZcqJ3EJUv1Wo9nVXoIG4SK1YMzNYbBjFmS6EmYyZmCyochPRlsVI\nfXNwR2hOFd2N89+JTTC90By1Qem7A83BOmfGU8zd133VQ+ch0o5h7dgwGlNop0QocaRJZYGKe7CM\n7Bn1w+EvchRzu+gwNLWWbt/XM3eVVGef/UHP3DUMvzpaXH0YghGjcGHzzMRhxRkzZ+tozVBPC42G\nEJZr4yVrCjfBFc4KNy02riJ59OgS6MoZnuW9F4rTfqh+rtiKbwMsIBK47U18+mtbca+Ee0j/FKed\nle5T2NLz1GZudC5hdbRw1TvT/ScN0EhYDf0Rri67qmdu9412zr2PiiaPq0cerQgX16hxS8+L9QQ3\nkYhFwGIcoPdkc79hh9jFOfkVugE5B20F/5ru0Xx8eYlGG+wTt5Qwt+7gNJVRX6QLmpNJnAuboPOb\naDdZBzBejtRGG/YrhoOmBesrx5wrebr+Lq47DUdzJGhpvfbm+nxKBEGDyYYpZLW+a285R4ZIbU2Y\nc1N041Zow1R9UGjioYvrpo1u3RQW2ZK9QKSBkN1SOzyYnRafi5y3bFh0PiwMu6E5yRCZFU4+1orn\nVcRazqg/s7CmEmn6eYWWVl/fc3Ow13zVIwvDL4ChuYpYedw/uQSFh2W9hDFpw0oowWScN/X/OSzl\n6TDgJ2uVvWN990D3g/U7ajLuOIkFOFcGEYXG6OccRuPcgg1W0dryDjS3bxUPTFT8zU1zhfZiiBbb\nCIGkJO4yYU1rKuvyHoBmXT+agDcoSUt12jjQGJw+JT51xMBIwFArbeb5qbpWYNn7MDD27yp+fv/r\nXxpjjJk8R/PkM7EYJrATzs41Rkv23ZOc+mJ7Q5/L72osu4+PjDHGFGCJejhcTXCRy6/ZW6BLOYVZ\nn8porHstmOfRMxP2Vwf3zUxRc/erv9Q7Uiqp37eLvDfk+JlHc4e+T5f0bvfpv9c7VvtL7Xl89lyZ\nOnMe99UUDPBEA+c1nHbyaIilttS+zLb2ahsHaLLw3Lk41Z7w6Examqul3rkKaEk2sWu6+1A6clkY\nOosurktl9PLYA/mwKWaRo/ANyxIW8+il2NfRKZC77+s9LAmTfmFP+L/6qxbiHDxWvcc9mDzsCSf0\nWz7U/t6Dwb61o/7psgedtN4wZVw/Z9zU6vXe3+N0wJj1H/JOuEYLb4FOXOQ6GaDN5d3XvT66p7mb\ngUWbJa5MYV/2jrXPvDiCDdpF85F3sTWulu1TacDUK9rn7u4rkHeIW4sle5QQ5jf7w/o93OV49335\nlRg/Pqzi2m3NzVxBfdbA2Wv8WotK7eu9JF5xKsAZqf2n6N+t2XO10YjMbOn6934kFtOH//5A14EV\nN2hp7v1QiZkycYlLXOISl7jEJS5xiUtc4hKXuMQlLu+gvFOmjB8oW2f7aDHcEhrYQIslkVYma4kv\neHS+u7xUZmtdU0Zu7kUIAq5DnDGr7CtTdfqNznbVNzlHHyqjdYvMfL6szFZ7BPofoUBpZe6eXAix\nrjeFmD773T8YY4x5cF/1PeX8Y7qgbPIyr/sc4e50CwZQ+4hM4GaOz4NSgYQAOJvfnel+ex/r7F0f\nZ4XNuvrjAjeY3qUybuupvt8i2+0A7nkgB0s3MEcvlUn11rByAhTn0ZlYNPTzzFIbo7P+1gTHgIIy\nzRlXfX/8RJndGWcsE0tlbqtp9WHqY7XNKQrZdVK67vg1ynGzUqzDTJmKybEC0TUlnE1czsKDYuRg\ndqxB2cucN7/IqH5ZRyypYKXrjQMcbZg7d6NzhA4K5OgYPT3T2JVBsRawIuqgMi96yva2QVQ/wSVk\n+tsXuh8OLRYIb+MCdA4VfOtKmfn1NWyDsjL9FuecFxMOUKOLMrBguixBHBzO1oKgugmNn8fZ4ekL\nfX5oK9tc3cF5aJcsdxPF8ZbGq3EpRGAB2m9NIicEjXd6hg4HczYR6TB1NflSMJu86Pz/WH+3Xc2/\nTAKWyhwkFtemBOdVlx4aFDcoE/QzbA93IUDjDG5pAXoQybHW6TJQ3ZMgejZOXck+miB99dWorfWT\nmev607muk5jqdzfU59sgsWkX5K2v+1Z83N9AREN0dGZTWE5o3gzXOH5l+d4BjLtPNFYZ9DEWL4U4\ntr5X37gNxtYhQ7/E6WpGPY7QtALlKdHni7Xuc82Z3SxucBZzK7OFY8EWTjFBj3oyZ0EifBiK87zm\nXAltlC5okTfHNYqv+QnmcAqUBsESB5eOEYgHx7PNGKTSgwVnw9YI+d7kLSGFGS4cY3SgrIhBhOOY\naXEu3FE/ebuo6WfQCeF5tcZ5pw6zMSKL2Wjk0L1mjZugT2yK1P/NFMQ4i2ZPGvbabGB66Do4AcyM\nc63/kcKOyaFR5U5AmR7rWbHC7WiJNkA9pzY4Wa1nG6cAA0unlNXcMinQpgWoNnNzzZwOU5HDFnMQ\nnaMF8XJEPE+Eut8Fa2DFc+NqICQvRzyMHLmmoO5WCTcgR/F0BMNmioNKNot+UQ1tMZzUZn3YBz7t\nwd1jDZK8SuDcBcJ702Jf81wJQe/aPLNhlK5xHUmDCCcOtOYCtlIJ2AVt2FRpxikL0ykPg6R9wnUi\nFkhPc2X6HDcpdKJmMFdaIyHPy1Dtq6BVU/lE99/Yf9POjc9KJmWicdB9ImfLFL8vYAlcdTi/j5jD\n6pL+nGt+NNBnWeMeaJZof9laQ1NiZxF2sdnRz7Cidu19fmDKd/Xs7eMIdfkMlhYubd2e1uV5Xs+8\nal592wnQyYFZsYLdEwxU9z6714RzpP8vYIPVcCcibiR3YGXdY3+I/oKNTtvqeGLeplg8s+Y82yYw\nR4po4jiwAdKwcm2YmH2eI6uR4v7pd0Kxi7AkDHuXsKx6FXBn8nG+Cleg2lON1QKnNjtg30d3dZta\nS1enGtsNXJeGfC69pTVYRu8khVtoHifEReT8COMnwd9D3O/mOL8EaKOtYCxdnOl+C1hfu5GrnA+z\nBo2wSpI1EznNecTFSIdlqHHy0YiYzdFdOkIXpawYUN3iOsyTFO5MkwFUpivNxUsYQeaOMcP+0ng4\nb45xHZzPNP4lX9fN5BQzs3nFvAJx2nHeuDj9a6WDrsY1sT9dwjWvpD3FXkVo/wZtHs21nhqP1can\nf/h7Y4wx+3elLXP/nuLHz7/8jjaLwbGMtKnQ4ygUcb/D8cva1ti99957xhhj/u67vzHGGBPiPBYe\naA646D7N2StMYHL3jhRvSj+G9YC70hJ2PiaBZgYzY+dnclPa/ljf673UHM/yHjCbqn0VtLt6fbW7\nf6H3g+oh+kzXaF6daw7u53S/E97FFg2cwHiGJ1a4mlbV/rs/5h3xWO36zV+LaTTowSSh4pt7sKsO\nFXuyvuq5WCjupYzmVP1j3Gt/I9aGWcFeQ59ohZWknbw5m8oYY/pXeofrwCar4Y5X3Va7xinVPwkT\nB1KuGSz1+W1OeTTHLH72+XN0/V62YAXjVuU6am8Uo0qJ7dd1mXiB8Tzf9GfouuFmZqNFtRjzjMhq\nbiTZ2K1g9LnsCXb22BDxDOgHmmvNJ3rnQg7NJAfMfd6ZUg3YXjAhhwv2ybhtfvqRWFQzuCSXuBPX\nYAGN2V/5dVz9NtQ3J7ggNV+pT+6jX2TzPj2cq88s9hSWx/4eVycvr36oo8MWcBphCdV5UtLPDZxq\nc3We3ZGrG9pozZfKQ6yWsftSXOISl7jEJS5xiUtc4hKXuMQlLnGJy//vyjtlygRQOqKsbJfs8qNv\npV7sgRBcNJVhSnpCLCdk0nodIQ5bWz81xhjTOVMW9rihv+/MxJQ56ym76pWESPz2r6Tm/PED/b/T\nUdZxNVFWcTAga32uzFqdjNnutrKwhw+lJVPLKuP2aq37TQJl5AsBuiZTff/wUJ73s5aQhCSMlkRO\n7aiDyFZsZRqfogWx8b7Og5b+8CtjjDEPfyz9ktE1+iZ3lb3Nb4JeoevhLtFB4SxteXPHbB8qw20P\n6TvQ9Q+/0FnOKxS0vZTuUSiq7zs9ZfU8V/8fc+YxYjNt13SPPOedT8bKjK8GakOwVh2zKfQqUOy+\naVnBxFnOYJqAIJdB260Fuj8e545B2ReRqxL6GyEo/xINBQPbyrHQqIHddH4BMwUm0bADCwOEs7Sh\n6xRAj1agPSGaKw7omEFHYk02ud3T39Mgv56nrLFPXnTsRc43+voG6NNsFbVHc+TOgbK/kw4OYwUd\nkG+gCdOZq/8nIB5OyJllGz2Vqf6+gcPQzl2tqRlaCNslncP0Cxr3WU9zdrrU/UZLZYEdXJkMeh/u\nQtdfdkDRSvr8BA2DLE4RSZwbHLLR9gCEGY0Lx4pCEho6NygWWX+vqrFOgj7YKf09yTno6Pyvxdn3\nDHNpATruoSeRTuBsM9P1iiNl4jHmMgUctqLzvt427kis50kD55wWyBprJc1Yz9F2WeOEYGBmTOda\nY18+0RiWcfW482cak4TRWN17qvb0/lpj2fhOa3IIO8CNgEe0XWxcPEZTGEPWP3UJmZVxr1vpuk6O\nc9wZ/X7UBRG+FtKdgpnoWoqnSZy3ojXmwxaY4zZkwSiaT9ENodlZ1sjCQdXf1dgvR6xN/j9NMNdw\n1/PQHHBY6zct2ZrqV/XQM9pHMwgXP3uiuG84++zBDpmCmO7ekQZFONY4Doca5xxssiVzm9BjrAC9\nKs5gRwDJGi0EOwGKNYfx1B+bOewgEzm0wL5J4BRoMvpscUNzz4IBM9uGeQF6v4YFYKXUt0PcK5Id\n5gpocbmiti2H6uNlEvcfUG3jEEd4Zs04jx0a2FC4PYzQICgUdJ8B8eT5lbQB9tBLmjMnex3Fq2oW\np4QCaxXnhDmBfOcz9cPOnpBeA1p3/OQ3xpg3z52NtO6fmkqzZnZNXLqDs8MNywqm0bituToDaV02\nFQcHS103Ot+eKvFcyGhu9Bj7JY45M/YCga/xKu3qe5MT7XFmHRiDsGEbj3WfGayw9IHut3WXeeFo\nzW2AWOfRWlh5b/A1P583y5b2JLMxGkBcL9nXWg9HxN8lGgPo3YVn+nsTF5JXaEVs0i9L5kvxFszI\nQ11/J8X5/bU+V6kyX7ykWc94Jk5AGtHfWcAaTTb0s/U77dPce3pm1ato/bUjJFXr8xhdjHQO7YFD\nrdcSC293V8/YOQy8wobmRmKXBbiiHjAjR7O32wZ7PBurBY15fgsmRUZ/X6MVNsYhMXqIJ3DYiRji\nyTxOhWgxLEfqp1WotYUhi+lntcZmoPapgtZWsQxTkTXromnjEUdtXKdC9jJTWLTdJ2r3Ka4oFfTy\nOrjIZdFey26zNrdgLLray9kl/f/qkeZYH22JDM9uGyZ6qSCWh8sSzOKYEz0/wjwxAafMAvp6Vy7u\nWzAng5b6dYGDm2vQZizi5gSj3nmt1QPDBlbF5BimzE+MWZ6NjEP9suwbRsTty8ea80WeAzNi2mpH\nbILV4o3D2b9WyhX2EKnInVJjnsNFr/XqyBhjzLMvxWCfDXXPzVvqo4RRX7h5fb9+W0yV0s/V1kiX\nwq4pHkwXxGUfHTj2AGP24Zl9teHgC43J6Vdi3tVnuk/Y0fei0wIe7Ii9A8Xd7bp+Brf1//6U9U08\nfnUubZa9hfY823+keHAGOyBjazLbaLWEPZ75ddX74pWeB7d+pnrWt8UM+sWX/0X36RHPc+qP/Kbe\nU2qHus+0o7nwzd/ofnbk+LPWnGz3tUZqMC73WLtZ5t4QZmN3rrm3tDUXrhqK25vbul//tsbp4rH2\nQqUNXI7WOKst3o51N2xqHENiyuYn2pfbuC+FMFiLe6xJ9rjPfqP+XmQUS3d4F12nFVP8HO6osARb\nY/X3eKD4nEebM5t8o4GT8l1j5VOm30UT6wJtKE91upyrb0dozhRxWyuhzdKHxdka8yz7SnVsn+nv\nNnPGhfntWZp7BQdtPk5ZJHCLmxP3i3f0juOU9czrHut6GRjwnRD2PXo6iV3N3elU6/XyWzFq8lX1\n5ea+xjKfjBwpcZj1tB8cobMZwPZd897gollWyqneOfaJGxvQmJOq73Cgn+uCPjfGeayNbt5hWvv4\nHyoxUyYucYlLXOISl7jEJS5xiUtc4hKXuMTlHZR3ypTJooRdKSv7l+dM7UefKUv6k5/KxShHJuz+\nZ8owXb+STkcDVP7BXWVXH3WlbP7hQ2XWqmTEdzjH+TMUy//yP+m8Zt5V9rB5oezoRkkZuwpnSzsl\nZbYKRf1+eqLP+zB2prgh7W4qi/z4FOQ0r4za1SuQnbycfJZGiMf5pVCy3lP9/ZysZggynwjR82gL\nNTtq4fbUEHJ0fanvZUErLfRNbJwQbLKgl3jRP3/8O7O3BQqDS9B3336tPr2vtrx6LmXqbBktAfzt\nH3+lvrp3R5/LlMmkR+eEk8oWXo903SLneb8/0hnRzz9QltVBKyGRuDnaYIwxa85quh6oCGhPkjZG\nTJpVS3+3KqpXqASyWXA234rcJZpCRSKXH2OrvpF2wnKuTPcSN5M5DBcb16DpQmOVKWjML16h6wPj\nBlDdeFky8vuaw56r605hJGVQrZ/g+JUcqH+KJXQrQLuynNW1BmrQiDPEV7hlrdEviVgIyayywNYU\nPaEl7Umr/efMqWJFc6mFFsVorPaOcMZIc868BPp3BTvriv6xEyid4wi0MCCnOH4d3tb1lzgwBGjO\nDASImCCl+sxROl/BHrFgXSynN3fE8HzOuoNChSBxCdwaaqBW6ftCR9ZG66Tb0OcuRlq3XfQTkpwD\nD3AFsnFXCnHqGuMgdgoSmS3j1lNX35e2dZ80rKdgqIy5jaNCADOkhX6H64Ac5jTH0hm0TM7JsH+t\nMR4TH92GxnYNMpz0dN0kqvXuTO1Y5pkTuJvkYWn1e2hnjUF5cIpZE0+aXfVPyBn9RUqf9ycRYqqx\ndYsg1egBrdGSWeF84w1xT3E46xsxY+hfO8TtKBM5cOl7Mxg3aQgyAWwzD9bYGOaJ5UJdumGxi+go\nPVA8T6OZs+oqJhRARC67Orf/+JHq2z7WpC1lhModgpot55H2gr5XxEnBXioeLzl3Hum2GFh9Fo5j\nORD6PAhPZzA3yZmeGf5Yc24OzJxEd8HGpSzhgCqhDZXNM0awbwIcv5KB+sgFRQ5BoYYwZtawoMYT\nUH7DdVm3KeamDdvJTmhOeEn1TYbz1p66xgwimKettq5BahN2wH0091+BntXLelZv3FE9k6wpF9ZA\nhPSOWAvJnK47GaJ9whxM4XAzuFY7q8e6T3IDusENS+TGF8JUWrvM8SysVOLdeIHuUKB+WxYVY/y0\n7j9gb9Bpg9g+UtyNxno54Dz6pZDy9ZHiar+nuebu4Sx0SByG/dGba9ycFa5bI9UrckIzxpjkxfK1\nm9LsVGu5DxqY6xKPYZD6sLYsWG3zIhoJU+bohsYnAWtltanxKO+iEbSp+6aYj8srmJVt/T46+cbM\nYTy7xMWCDfOwDfs1pd/bx2pTYoneUMh66eE8MiOeLLRG6lU9K2rb7JsOcc460JydNNFuQufB66B1\nMFd87OJCZ8Mau2lxfJ5VBfVREq3DxZI4y7oPQOsnkVbMHKYOTL1iTf+PXOE83Jo6Q3SbhtpDuVnN\nxRqM6HVO7ehEukHsccIkLK4P0CKras6sB+rXNqzW8ArtFbRW0r4+l0QvMHKyCW19brzUmiijxbNC\nszHgAefyHAqSINxoQZz3dZ1tRLcmsOoGSRx8YNtmYGXPbXROBmrnPKW1myJ2rVwYjbA6LtB78hmP\nvK/vFW9rnllrnrfEOmOM8SopM4XNkKYdhSUsX/NPHcemCdV/ANPLd97CERIdDR+trU5b7ybPXqpN\nc1zzSvuq++1tMV489HJCHLSueafI4na68yO9wzRf6TolT31XZq3YIQxyS783+X6J+Hvwofaj3/9C\n7yDFtq6zKml91wq4Fnn6uRiqHf/XX/4/ut6zFzQQtz5YtquV2vn4D3qP+NEX0sM8r6o+45X6Mgkr\ndMGeI88+ctTXGLeb6PPtKe5s70hH5NaeHjDVqt71ZjiNnV6pfX103pbo421uqn6772ufvvEU3RC0\nGVOctrjGhdVCf7CYRwcOhnnr5ZExxphyTWv3Lu+W3UutzZB4nM6hITl/u1fqCXvXvfdg7qCnNVpo\nfgS0c06c/vA//sQYY4yXUfue/fwrY4wx7lDt8i31b5eTCS5rNo1+Sr6iWNKbqJ4dmJrGGNPutE2p\nUDFT3De75zxjcEisoq/Zfin262iqv9e22O8Oda/Bid5pCjl9vrATPaN4B+pqjEbE/2uDJhTaizn0\nigKYM5Xbus4SXTemjlnjlHVxqrWVg01Ur2iNtJ/qHcnGQfHuNi6luKAO2SNs3tJ7/94DsdH8qvp2\n0OYETBf90XON+Tc4E3q4PSXRtKln0VFlX1rh70PWvMFt2b7Lc+gHSsyUiUtc4hKXuMQlLnGJS1zi\nEpe4xCUucXkH5Z0yZUYWKNpMGbnGXBmzGshpp6mM3ONXPzfGGLNzT9ox6yXZ0S4OQGjGHL36vTHG\nmAfvS8MlQgNngyNjjDH1TWnB7O4qw3f4hRg5bZDhFGeBz57r7Nygq++XHGW2XnwtLZoATYZHFh7w\nnE1tj3G+qIpl8vB9ZRC3MkIEymSfK6jhJ7HpyGRA4NP6uYtOSQaHoA0Q5v27yt5asDwWU7QwbGUe\nt3Fv+eDHylJ3r4Qohc2Cub9PhheUYmeprOFGDfRqTxnw+5uqe2FTfz95obrvg9hZaBq0zsTeKSRU\np7O+spF3Dj81xhizNsoyVgsghjllaMP5m8zsTUoKLYQ+6Ph4FqnYKxOcSqsPRgCFKU/tsmr6e0BG\nuW4OjDHGrFDyH5Eh7uE9HyHExlc992FydGGSGNyEOiC0ebKizeMjY4wxu2n0j3BaGB9rTi5DmCU4\n0Uw9ZaFrZKwTSbWnM1N/rXFYSPeVGfdDXW+C2EwOpDwLsj2BzTDCocLewLXlUj8jtxMHnZQ2yIiP\ng9eoBWoIA2n5e2kyDJtaY+UCyDmMmTl53JaPeIIbOQCh04GuSaRfkqjqZzaH4nlGSOoKrZ6eDRrK\nnLZgHSSsmzNl+s3IcYpzuKD/c1CT3gwXCKP17HusR7QIqnmtjWVbmfDWt7gScaZ9CWWjA+rV4Bxy\n09bYnnB21T0Vw60Ou6s6AJ1mDk6oxwANmSsmbY84lmHuGFCyHE4FV2T683PYXnMQz57WnjOESYIe\nyQKWVwAadEGczRu1y/E1Fm3i4+hI9927q7VT3NRPwC8zw8FstYY1sOZsPwjoCMahB1vKi9ywELeJ\n3IgGuNpl0FqwE+h1MFdWaM0kYUlNQJZ9XKMc5KCSuIJYbwdwG7ug+k3RIRmtFNMSed1vzg1szgQ7\nOAshz2SSnirogw46aEPkFnp+jBecgcahZp5lnHBbWoKQW+hFzXG7KsFCmc5sM2TurEH3szaaMbOI\n1alnzqivubb7QBoBPujSeI2OEQ4xNo5TBZh8CVCviqU5sOgpHoWRIQBMvwCdiyEaXDZodGhrbMtL\nnt1epGuh+01guPhFmD1j+mKh68xgALowHV1X3zdomtgpGJjEzcYxqN3pl8YYY27VhZxmylpTDqjZ\n077WbgnEOAO6NiziMnXDcnms+OTBGrOpb6YuNG1qqT5j3P16hvgK8zFT1H1rXfE9bwAAIABJREFU\n6GMERs/gwff66bja00y/1zh2XoiBmEcXZOs2uk8PYeY8UHtK97THMFeaQ/3v0Z7B8THzj/SVRtdd\nk3AU01iyZs1e5tFvQcYb2ltkOF+fRtfOKei55IE076G1loQVMmJNZxlfq6L61XHcOYX5mJhoLdgX\ntlkR07dYdxOYd13iYwbGdIDG1uV3R8YYY0IcUuy5PpfN6prv/7HGIn9L8SS1jf4O2jEF4vpirvi5\nOoMtinbIEJaQmRD/enPzNmXOmpleo13CXMwfwFIY4Ibkqr1pD6eqaqRrp/Z6MGucsQZpSFxIwFrK\nlTQm6RKLs8acx+kqexeHSVjLPdjCYUfXy7Ofncw1pqmWYkgXF6F6GsajX6ZesJgJ/Ev2Jkmg6QAW\nRsjcxzTFrIgFqazm7qyj/w9hh51kmNMdtF9wJ2lcwzzJaHw2Ye8mMiDmEfMmC+vhUN9LotGzGsOg\nuUB/j9g03o9c77Q2RuM37OxwPDazlr7XfKU91xR9u+0PxKrYh63s8x6SxCGz2+yam5ZeT+us1RcT\nLkOfRXv1+kdinmez6EHyMGu2tO/K4xZqYHyf2ujM3dZ6PX6hf4wvcSUN0AS70n3yNdV5e0v71CWM\nlYfvyx3p61+IbX97V8yZYKk+7sEOiPbzYag1koONm9iUDmeWfeESDZoKa6v1reqZOJRW5cFniofW\nia5T4z1gBmtiQpydBTAvx6pHbkNjV374uT7HXuxvfy4W6xSmyhDWWHGLOFjUe0sXfdBxUWuotqN+\naHzzW7UXBzCfzUkKd6JkxEyB3TqDndHBFe/en+j9ZuuB1tBLNIFcbJGKOFLetJTYS7jExs4AR84L\nrdUFE+Dqsd637vzpF8YYY370b3+sdrGvbn6p9zc/VOzrYcXWGmrOzk+OjDHGWDBlFyP0+1aD13U5\nvToxW7VbJsP77tWZ2rw101yN3OCmMECenehdYXehunis88u5vr/HyZNECW09dOoc2KMN9rl99jQL\nGNyTUG13q5pzeXTYBtdq03iMZuoODPYWzx40/u5vaE0NjrTOfbS3XBiaIac5ZgOt0TOut3FbbKy9\nO3r2rt8XcyZVhumIZtZ1X3P5+FhaNbMnGqN5wPt5Gmda1tC4qet7aIVFpyh+qMRMmbjEJS5xiUtc\n4hKXuMQlLnGJS1ziEpd3UN4pUyaNejqAgpmeKuuY3MSBAaSjwBndzW2hPxdDZSk/fKjM+m6ZzNi1\nzpalUsrmpnETmR8rE3f+SOcdf/cPf2WMMeYOyMo3v/m1McaYP/p3/4MxxpgZSOkGvut7+8r4zUFw\nd7eVUWuNhZTUcGB48qsj/eSc3xpk/JJz4tevpEb9pzUxebyisrGNa86+oUJdQgXf4KSxfV9Z3jyu\nKPOp+slylembwTT68sv/aowxpn6obPHFJee7Ry3TIruXoE75JJosMDMiDYLnaM7cKyjjWkC9/KSr\nOu6AZF6fKktY/VRnHO1z9dkAPYsQVP7kOyGDfVCGdIrBvmGZ0OcptAw6vlAny1ZfWZZ+Xl8qUxye\n6j6nIA6TLbXD2dd1MmS0ryJVerQAhm1d9xF6RUUL9sQVrkGcm8aEyHge56RbKG7fQVckq8+9fCYE\n9OxSc6/OmeAGbIzNP1L21wWGH001VvO5fp5zbrp7rgy5CwPl2uYM8b7Gr31JFpazrH1QJGukcfD8\n6Bw0Dj/odayAxu282l8GfUuQPTYTkBpYIc4KtDEFYooblQ9TZobDTyqp34eB2h885azzIfodFufC\nfdV3dqR555L1TszJZnO++yZlhGaJBQplIT7igkgmGpGKusb42lLdxlPVYeOnyohfoxp/7GnMqnk0\nSNpCexYwcYaW6tZjLYzWuGssNBZWX7nuNGOeBu2aFdXG7dtisoWwvYKvdb4710EbAMeqTALEb6p6\nuEWhTLlAYz9HT2gJMrtADX69o3Z8/h+FMnVxRPnmrxT/hmMYPNw/CWJriMf1QyEjXdTvMzNd7zop\nFKdg0NtAryic6HoLWAMubAWDuv10pH5KwJgxa435irnpos8RBjBLMjB6cA0JOB8fQQhOGLEpYLHd\nsAyHEVtM7UpswlBZa035XZxlWEPVA6F9C5zDXFxblrhAuRESgqZDagVTa4X2Tqh5svBBXNGO6Eds\nGOqfICZV0gnTPVOfZdBgWm7DIAPstdDAckAu0xWhOvWq1msw1dyInAB9zkP3YL55zPGrDhpjOIPt\n1m5zX8XTHnFmBhVlnkQjAU2AYQmG21rxdnmteuZgFjqwg5JTPbv6OIsl2hrjDx+gtVVUOyc4IHpF\nHLxg9uXRqGo+4Xx7Rb/v4Piw6movMBmqHTWelVm0ahb5t3vejEcglKzp7CZrn2fvyiIuHqD1k0W3\nJNB9UjP1m80YD5/CMmhorsyz6DfBYLn1AXEY3bssGjZBRf3YGut7pbz+XwEJvn7BOfyIBeK8wdeW\nZ0szChWLljON06qvdjgLHGnQtikRz1MFUMx7ijUOyO04qzm9wK0phbbBcAQC+3eaX2vcP0K0HQLY\neslkwtg9zenuqfo25WuO5WDTTC50796Znn1XMHwTZcXnnQ80R0p7GvMsrhZhTXWaharL1FPcTODm\nGRKH+qDFa9ihyWkUf9SnmfUbtPgmZY6DoUEbLAGzZNbQ3y94dAWsnSUONSGaX8mV+jCd05hBfjUp\nUP+0g/aBrXbPXlME0c1bR252MFPQnLGXMHdg81qstXkQ/V31WA1hq8HGyINw2yv167Km/lig0zQv\na060cT/KwBj1YDwFFY1LChZV9T099zoFNBhH6PPh5GbjuuSgR5Wrqd1ZHH/mbc3pAf1m4+4UuUtt\n7cBc4bGV8XC8gVDUeal+TyS1TzajN46fveG1ucZBtN09UjtXan+hBBMA170qsRVJJJPr5cxNSypL\nPLjWGJeZs3PYnT5gebertjlp9qfoUThoefUt5va5rpOzcV3bUh9vb4rtH6DP5hdxb8qhcVhEr6yp\ndX91RNzIqW8fPdNep4lDzTBiOHtqaxFnseInej6kkzjI4pLXxu2z6MC0W+g5M+9pH73DKYBz/v70\nSPcJecdK3FK8TuCU6aJPd/KV7vPbv/+lMcaYdR/mJ4yjvVtqd4n9Pa8xxoHd1OR5MELXaOcj9dc1\nOlNmgjZlmnHC/XTCheyBfk856r/GhfbF2Wv9vPMxe6uG5lr7FKZ5OqKc3qx4efVbBqfGizPcmFow\nWHHJhURifvuf1R+RluXdW9JPKcDkXKCZ4+XFqNqsqd2TkdoVnXRIVzQ/qoXq67r89H/8C5O1c+b6\nKxxcm3oGXfFO4G3icpeTTmjwSmPZfar/732ge2UN++su+8E57ExcNEP2S9kMz/if6ATLesK+nf1h\nAofdBBpVE1j+Q+JtCZfPIpqOZye6r2NgO7H/ctEQm3mKk64TfV9rZcyz7fjpkTHGGH8M47KitTeu\n6T75Cnqq+4oLH239W2OMMb1D1av5RPc3MAUbHY1hn9992MrBv6JhFjNl4hKXuMQlLnGJS1ziEpe4\nxCUucYlLXN5BeadMmYwNsotrRaaEvklemfONLWXxLg+V8Z5PcAd5DvME1oftK0tcqimDF1r6fmFb\nGaqdA2VV794XQv0X/+G/McYY8+lf/Lkxxpjn58pw7W8qG9wZiZ2wbCuj3iJLe3GMhs1cCMzLY33v\nJ//mZ8YYYyp3saDgjK2f5RznoRg9f3suTZreuTJoa84f5jmvbXM+cDgUUvT4kc7sJdFgeMJZ6/4r\n1StbUXb57oHu+/mf/ZExxpgPPxATp4JrVDu3Ya5PxdCI7DFaz4Uwdj9XJrZSUxZxTio/SYY7W+c8\nMirjhxvKEF+XlR2scvbz5OWMuuHus3mg6zn6+8aG6mIn3m7KpUDqOHpq0oAiK3QtUiCYBbKwDq5B\nm3Vl4NPbyqIGWfV5Lg97YqmxK2xpbExS9dpCU8cGkbjqaMw6aCs8xAlgjZ6E2dD3FhNl5GvoGSVh\nkoRZ/f+weGCMMWb6pbKyGQfXksjzHkTjzoZYG1ZLqNKdT3WGdcH56LCieuUKsDSmGlcPnSILVf8B\neiXlW6CGrLW8oznjLEEHQRhy1TTf0/eLVa3FhK+51wWtWi3ElkjQrglncJc4QbgBqB4uJSxNc/5M\na7izgEWCrkkLRs/7tsbrLOR7yZsj3B99IdR9XkLj5Knig/Od5rjnoOtD/Ahz6oswg75QQX/PfCHW\n158bVbrzC80R6x809ztXQkOmvuZekMKdiTqXoFG5C61/60RjPVzre5MrtAP2YAfAUrpcqg9SZPbL\nuEIkG8Q30Jn5Ji5MIUjjUGvKZQxGa/Qr+hqjRshcuq2+NjV9vz/AxYTz7LMe2jmO5kSvp//3lyDW\n7ciBLDpbC0SJJoq7gqEEC2AMsyU9i5zaODe/wtWC8/ORk9AaLZpsXn8POe+8ykRsC90uyIF4jqNz\n+P/y2dx/XiZNWF6cb081tWZSZdw32qrH8wtpit1Dnyp/KN2WNW5/vZbGKZuI3E/UL0nOay9dYhMM\npiUxCjMQk4StZoHK9bswdpIrs0ZXIgRl34RBFqB7kQdHscag5BMc9l6gs4Ybxc4Ga2Gp+JIALbJh\nSC5wd5gvQM9fz6E134MNhBtSAMPNx8VjiaAEZE0zxz1uNtffw5T6ciMPU+ZS9eqhr1HaUdzdS6vP\nTtFFGvH8yOBgmE3hyMI5cQ/WVxaS1DADqr1Wu7ZWoNsgrwscGG9aUlX1m4cGmLOh9juMcQJHm/J7\nYuL0BhqHPjGni0vd+DEOii+0Zwhwxyi+J8bKzm2YJ4yTt6n6jtAnsji/vkarawBqebeiZ329Skxp\n6D5B+AZ9u3wxN2M036bE/TufKhZs/TkIsyMWmDNFk2KHtbqrcavc0bgNm+r/0VTtCGH89HDx6z0T\nWurdR0snrT2Ya9BW8FdmwR5g2iFu2oozR081F1qvdM0VbnFb99UntS80lrl9nP2i9Yb+kE8fhRnm\nbEvXabI+K2mcEnGKGTV032vchcahfm7g4nTTkkBjLAdDJYEGSQIGyRqmn0EvLQSJtXGPGoAI2zge\nuknFh9kCFBvdv9Sh6pVNaa0E6Qg9V3wfwTaYOTitge4nJjhpwVxZ9XWfcU/xsw+DuttWDCjDsqvv\nEg/ZN9f3FPeS2yDcPrFIU8EEsITnFi5NKd1/caKgMJqovqUdrZXsDg5rIM8G3T8XtkISlsH8FJcV\nmFTjK7TVcFsyRdU3SdwmdLzWUluONa/SaWJf+s3aWIeuyaNtsdo5MMYY48BUXBFzxrDKl4/F8p70\n1C/rt9i7VkHlj4kbDaqed9BYxG3IgNo7rBcPpseSOVJlv+ZvEf9gLu/va/16NTEkzi8UB66ONLaL\n9hPqrLUwwAkx+OJ9fQ9NxOW1+iqDW9vmluLDEhfTtYWrT059dtXBecbT73kYGKmS5moRLZdr4mER\nd6kAjbTqntZ0Jcs+tKw5NozYFEn1wwSGoLfQ93fuaw5ZsCMysKIbMF4CnmPJHrodOLiNnulZvvmF\nvr+5h8PYMacy2KAO0GScLdSuKo5gtQP103qlerT+oHaV/43i3e3PtWdspLUPnxH/b1om1xqv4yc4\ngrImPdywyvu6zwe39HPQ0Tj3jtRfyyTM13ON49VQE+3B55p/1Q8+McYY48NAcuxIsw5nuMs39W0/\nPzLHJ4Hpwr5PsY/Lwqh2cNr1YH1VK9pXds4Vjw4ODnQhNKysgeoW7TFG7A38utq2+ZGeZRu7vHuw\nXwpweA3oi9krHvZr2L2cwkAe1GTQdB3BwhqjnbWHFs3FFS5rgdrTONJ1L/l+CsafnUL/rqd6n6+0\n3p1z3e+aZ+w8pxM5iYi5jsaO1eNdCLO3CcxJnz1dJsHzAgb4D5WYKROXuMQlLnGJS1ziEpe4xCUu\ncYlLXOLyDso7ZcqM2+h+9JVtXYO4vnykbOTHoO2Nx8rEXeAskyorS2zho35xrL8XOJ837SlrCGBt\nFpzJfdZUdvHrp8pOVh9yzvFM2cW7t3WWzufA59BSxi3r6fq7Dw+MMcYUN5U9ffJSCuY+9X64p2zm\n46diV4Q4Axlfn9/cVhaaHLmZzJQxa+PAkAEhKqWV1b0+PTLGGHNwX+cGI1eSbF3Zz85M7fzyl8oG\nd9EJ+NUvlOE3ru6/GA5NuSKdiB99KlZBq6O2mwQK1xllL1/iUe9wtnSJfsVgor7uDJTRPYKtlN4E\niSRzPQf1qdWVET/9ThnkOuenOzge3LQEIJbrGewAHFMcsqohqFmionYkQSacenRmXj+XOBVkNkFz\nbP10XBBLpALe/1R9m+O84Uv+/+ibXxljjKmgM9IJ1H9p0pqRHkkdx5shbKrekb4/+ED1rXAecYYe\nRxC1MxWp3+s6Fv0/BX1rjZQhr3mqV66EDsovdcZ0LwtKxzntNE4KC5wr8vTLDDeXBYrlybuosC85\nm9vT3HHXIBJp1X8FU+gMFXzH0pp0UGT3i6B+czQx0qrn7T/V3O290lp6/o2uX+TM8wlrNVVEFZ4s\nuO/fXMX+9Fjr0EZXZwEzpcZcDDvoKgxhoACcPWYuT5rMra7i0LikM67OFC2RsdqczWsNffS+0OBy\nRXV/+ZU0pPLoaBSanGkHcUhzFj+1hTsRZ+Dv3RMLylppjRz9J7nHlYgnGVCqDK5BoyGaNcS1EXOv\nlFIGPmAypRNCHnxP7c7hztGsaUysS9ySQDjLka5HO/q7UCR/HFm3gHbhRGM89deafrTm6IjAeFwT\nN03AQWgXzYXIuQW2m2UT90ELQ9gfgaN6pzjrP8FFC9KEWbIm7IAL3bA4fRCKhOJ05VqxZMEZ5XCg\nOdh8pfmzeQt0b19z+ryp+dIGlRyjSVHKqB+baGdkEwwMbk0OiEto6f/hWmsNsz7TB2EejC1TsUBt\nS+gXFHStacC57gyOAuhHGK7ZO1ednz3SWf7gA83R/T0colw9U3IldBk4yz/Ghc4FwV0x50tog0zQ\nHhjgiJBgDqyJA5EgRjINS6yPDhP6DGscAQ2aKSEub1OexYNNnE4CnHHQ+zHMqcK+4sd7txWXuz3q\nhSvGIqF6zbo4oT35hf4PshnUFG9vWtJFIc8ugT2M3KjQd0oZzcV2V/0+h0kyPYM91tSzfIHrSgo9\nj9Se2ucfwlKDHWDQycg8VD/02hr3+bn2JOm+Pjf8nfrj5bZoChYaPitbjMYBexpjjLn49ZlJe+iF\n3NH1XJxs1iXmKI4Sl7AtalXi/1pxfXKq9kya6L609FwanOrnmv5PQ/9KEfsSGfWPC4suX6q9ZgW0\nzrVukjBIgsjlzMMN6DONdeUWcWab+PS+5qqPZtP519rvtFvq0xRaVt4kYhdpYU1h5q2BVOewV5es\nRy/SdDI31woxxphkpMECy9UCUXbo0xKs1dFAY2iN19RHa2ARsalgTPsb+vsKV7nlFY5na8Wb3RqO\nhDvq41JGz6EtYkHugRDhV0OxI/pN3XfZgUEEo9yghTOG5ZaAqZNnL3QdkTdYY50uLIq++r9UZ2+D\nu9N8xB6Fdsym+jlC76KBu1ECppKPzpXLc9hCJ2WMVttuXntQi+f4FKfNCayRGayO5/zc+VDvAZWc\n2GulmsYxxx5oGjEXO+pHY4xJJFZmBTutisPclDVdZo/q7h2oH5gWRdgUXRzvblLS1Q2+q/W5uNZc\nm+J+5+FqluEZl8ypDjM0oDwozPm6xra7iNaQ9p3NseqSfqZ1//ix9ud+VvfNuDDeYLrfusf9IpB+\nB1c69OXOs7qe76H7hIbgEFbsjIdVCY2Z12RZ1pSdgdGIm1Fjojh1sPHH9AOsNXT1Og3YuG2xDp4d\n6363HmqPkkVbbIVQUA6GR6t5ZIwxZhTtQyPtNULGEgfbDGvuGi2d/Znuf/+unoO/voL5h6tg9Kp2\ncEfPzWySevbVH+foXC3RL1z/A46ZdcXZ3Kbm7msW8Q1L+wjdU1zrdg7EZLp1V/WYoYk27+rddIW+\naq2qNTng/ed5S/XZxtXr4KdaG3MYR40LfW5xpNjQph873+h7/9v/8r+ap//nr8zS90w1pb7ycCNK\n4rQasA6XRa3zLU5qtAbqo+GMfTKag5MeLBx0Jm32FLt/xBjD3nn5TCdCZi3VMWCf1WWfa6NHGtg4\nmKFxZXhnsT1YXaydNvFnwRz45jd658gGrPskDsN3cHnDLTmxRp8t0P2nxEF3gz0Z+1Mz5P9DxbcV\ntqErTrREjJkcmlxBAka5TQzoQZv7gRIzZeISl7jEJS5xiUtc4hKXuMQlLnGJS1zeQXmnTJkOUGsO\nPROH8+8nV5wvXKAgvikEZUhmLb8tbZhVX4yU36PtUt8Ve6AN88Ya6fMZtGbaIJkr+0D3M5zv3tP1\n+3jXJwNltGYpIdiNtlCv02Nldx/8SLoqt7eUBW/2lO31iyisd4TcZ8n8XzRQs14po5griDFzsKEM\n//kl+gC4xKx2lCvD0MiUJ8oADtGeCLogMw4ZfDJ6dReEH0QmxbnQUWNtznF0OfxI6PzlFG/3c90z\nSAkhHEx0jw7JPBvXB/9Kbbm60Oe9gtS9s2llbNspphIq8mOU87s9sqoljcF6/C+fp/vnxU4qM9wf\nKxs5XsAWysGs4NxxifPIJ+2nxhhjpm1lKztkK6sgCLsbyu6uQOk9MsnWTD/PT3Qu0e8pg3zxRMhz\nBvZCwiWbCurkkjl3ObNrcGXKLRGQ4JxzEz2KBfeb+JoLHdgZXl9Z39MzzX0XJPzoDO2AMcwfDZMZ\n2crcF7KaO5GCeN1XPesFzmm7kaON1lLP0nhEbiW2rTlo9dE7QQdlDNKBCYvJ19QOprhZolFRSKg/\ni0kQ/ZHq1e+iH9LV/BmOmNsOaJkLIrPQdXzOCpvofHh0UPwGJZiB/qKFso+bTpXzyhYo9YSzrUfX\noBwXanO7FrkIKfM9/r9Vt8q3nJOe4rQyFzsskxXK9N/+2f+s6z3V/0f/VS5u3lj3z2/pZxpy2Ama\nNuNv1UfBj1TfLz7+Qtc909xb/0ZuTIkIpcLpoI8ezzVrN0G8PPW0FvNo4yzRLDn/6rfGGGPsV0IC\nFheRA4/mxgxntQxnhZOwq0ZdmIesqcjJJTsjTgdoJEQuRI76aYymjpVCK8DAkqDfOcpvAq4bogu1\nANH2AhAPo7+vYG9EyMEC96LoaL9lMuZtihdJGcCYKaPltQBtSsFc2TgUm3D3UEiRhSPGCA2YeR8h\nFcYn6Sm2lHLExgXMLLRlrCRnsmGrrU2kG6OGjBbq1/6kaXKwa1aguBVf1w5AMkcgqBbnq9cGBA+H\nkQ4ONps1PdtSOJWYmZ6R/SP9ugLVX6KL1LoCtcexJkjg1jZUfdJFtFNAdkPcheZoPzmg4AFOXqvI\naot4WOcceQqXthmMSedCfZGINFzWaFPhilevaU6U0U6wLogrzNV0CCJMHPQqak/+Ep2ef6QncZOS\nr8IkpN4G6a0ezjkZ2K3L73ERga62xL1vvRSqt+Ph6vE5bCkNhzm4p3gbkbauk2gAJYXglqto6wxV\n7wV7luBK/dN6ib5UD+0eHMUgHKoUtk0FNp/Z1/3nW6q/tafP7z7Qc9t6qfEaLBX7TEO/t6/EurCp\nR8ReqC5B8lPa+zgwN31PeyeXLeWc53yr3TDP0Y6ZoPmSvq8xtT7Rd4sF1bF0S+ssxTOiCzNwiZ5N\nZkNzKJuHlcNcsNC5mIPmd9DI6uEaZ6NBEsCI2diDBZVlv+dGDoU3K9OO+mQ0Up9lcP9IZ7RWsyDG\nFqxRF8Z3uFJ9kpY+P4JtO0W/yRtqTKfRHPtGf++F2n9u34OlsIfWzKHixlZRc2MDZ8uUrfsdh9p3\nhjg5Jlx9bhd3PQsGZB3mzzTSCMNdMHGp77VhfU13cTyLHNbmPKNZYrOZ/h4SA6pV9PJggSBLZ6wZ\n9YQtsrMBE5Ln9qyLy9QQlm+B53DlPd2fOG4v0UGKtp6+bpDOwEiCSWml32DP2Z26mbGH7U7UriBQ\nA67ROsricFfaAZHPq1656Hl2gzJFy6qwoXjSgq20gM7q2rhP8k4whXGys6M5OmJflcT5dfkHvWO8\nfIoDIvp5TlY/y+jFVbLoD8HHd2DpdmGad9Yw9xjDOvc7Ze/goBnm+cRTmCgLtFYyOFvOYE0MXFyK\ncH8awdJNo4G27vIug7bL5Bo9D9jEtaICY5rnxRqdu8pt7d2cvxITfI52l4UO4AbvG3MY7uUQjcOh\n4qMFa9egwXL+6++MMca8/5Hi4r27D3Uf+jfE3mg81hx4/PjIGGPMs0d6nvqcKMjASmv19bkW7w1b\nMFCRYLxxWc00/vUDXbd+T3uOBVpugw7uhrgkumgOpdF0fHWid9R1Uv//+DO1K+WoPb/8W+1J+zCp\n1gMYTQscjWHcGGPMe59+ZIqlsrEivcqhfo5xFZ2x7wth9RRwJhweiY00P8FBEWZIB7bWDN3IYqQj\nt6c+f3mh9+TnsP0XsLMWBApnqD7wiZd2Gi3IiLETMcM5ZbDtazIc/VJ94sPO3UGHc+eW+tblvdnw\nTndxpDgQoiVVPsCFLsG7GozMefSewfWyefVx1VN8asLoWaKNuOQ5NCIW+FF9febmD5SYKROXuMQl\nLnGJS1ziEpe4xCUucYlLXOLyDso7Zcokpihhc3YsuVAmrpBV5skhQ129IwbMOT7k9h2cYTxl/Luc\n4dr5SJm4y7ZQrHIOByE0YFxbGbDd2wfGGGPaFhkzVxm/Oec+A59M/4Yya/cf6v9//1f/h+p7pIz9\nAgbMKWfhfvJTMWgcHBweHAjB7rXFUhn0dN35RIj7bK1MfLGsDN81qtNpUEKvpPo1r9Qvt2/jiDBX\n/6xGun+5rPotA9BQsqgbu7r/OAjN40ecuT9TXaNzyV3cGw7uqe7pgrJ9J32YGDZ1vEcfoYVSQR9n\nRVbz6ffKeu4dHhhjjLnqKftooWyfrVLHicbmxgUQy+L8dgIdEDPlvHjkxsTZ/SVoTXkTpgjnDZNo\nG8zJQOcj5gvouAebwb9GXwTWlNdSBewiStxddD4SEeKrvw+MMtXWKjpW9hNOAAAgAElEQVTrj2tJ\noP+nqLZbwaueQ7DLC2WRExmtBSeldm7UlU32HNUjoL7XUEkqgFQJkOJgobnQHYFAp0FGL/TB/brW\nUIAzwQQUzx7hqGCrIwuHOotaBO1zXNWvsTxSu7nvBG2BvQ/1ewqmjc33crDgQhARZ6TrZ221JzEh\nGw/bIuhwZhkXqlni5vniW6AlGRdUGLmkZFNz0JtpHQRRxht3ny7uHeaEc8kd3XOT88q3YLzklkJA\newtdOHisuebgMrEPY+MiVNvSoZADc4yTSg8kMKf41JsJ7Tr+3/9fY4wxGz8TepMgPqX39bmFD0qz\npXpvumII5ji2fPI3ZPJnsJZS9CXssuvnav96dKT7u1rzrgPqv4ocHXS96VRrJmfUj1PYEtkZ7A2u\n7+DUEDInZ46QgAyaMSFrjCPAZuZoTWIcYaYgnHYI4yeEIYNeSZrPRYwZk8ahYon2DcyTVfh257cT\nS43XGhRwzvn+BCigE6g9+YnaN0D3JAc1584e8ZzxnuIqU+DceyqN68AU1gh6IBbuKBaIeQIk1gLi\nDUzk5pUxc0/3Tpyw3kGl3EWkq6E40wNNr8AeTdxSW25PxbjY2uJeIKPDpurkgZwOImeSJYgo681e\ngxYjpmIjwDQkzmdsWFIBawa9DnuQpj64CfXQ25jq823Q9yaucrkFTIqM2uOv9fcyKNQcBsopSGW7\noOskRzBPbCYJrlEJ5kSygnZODliqhrveDUsGRzQHlC2AsTS5wsXkQnH26kho/q1NHHNS9GPkqLhP\nveZq3wL3krmHFhCaQeNLfe75S517L6fQwOkwd9oZ7q+52ICB2IdNUCT4lW/vvm7Dx//9p2Zha5yH\nZX1unoNFwHNhCbEzRE/EhqXbwYmy/weeIzCn7rwvBDasqR1upOmwVIy0YbW5CRZ9qH3EafvctC90\nzVUGmmVS/6t8pj1Eahu9s2t0E3xYUw46dE1VNkJ5/aXaPMdtaHGs+HL1HJ2iEWOyIyZOGQ2CNXuC\nbE31WOAUswZdv2lJRgxBj72ELwZJHsaKR5+uomfoDCYK6LSPo5aL1sJqqTFd0dd7m+qX9Cfq27BL\nfCR+JdFfmp4o7n/Tg1kJEyW1ofbtuWIb9Md6HnVgqxbRf3Lqmls28SwXaX3hRLmGoZKrM7dv44gW\naC83g8U7Iw57odaM+6F+H3YiPTrYxDBNPNgdiazatVHRXmcBa3gGe88tsvcyuq/7WidQ/dgdETeJ\n392xvjef45oIW2DFXsMYYwaXPdN5gfPoIz2H8+icZFOaL9Op2rV8yRqC9ZGY3ZwGMbxWW9Jc00MX\nqH+tnxPc1ILIQDATaWppbg0sfW77tj6wcUfszb9FH8PwrHJ4hq5gt65wFJvBlkpXcQbjGbWZ5YYp\njVENbb/yJg5gaI2EuIuGKxiDa6jzPvGV/WrGUbwO56p3fyRm+dW1niNeQgyfdk9zsFTS3Nk/gJGZ\n1/VCWG6tE33+7vuKg9X31X9dHHNKULXXoerT76NjAgtswnNlt6T6BQgD9V/p/oU/ESt5wnPp+pn+\nftzQ2uoeo6mZUr8cvqf9cAnW9ZjnX+QEvCaeztn/Lt9ijhhjzMZ9Xb9+R8+pDAyf6yNc8RBG9YmJ\na/ZqbdbWcKK5vP+xrpO6pXp//dvfGGOMGT3XWsi56B1m1f9WDoe78hsHy9Sub4LEyri4wBUrsK9w\nRc5n0YBawPpHH+4ap7EedSqWI1dl4jf6a4d/DCtpU3309K+loRga9X2euLziFEJyU/fNuOiFwkhx\noFx3r3W/HO/J5eidCR3RBw/1cpJ09fcsTOXeKYw+ntluRX8/Gn+j9rU011I1mJQrGOSe+mMTnbYW\npwXGOICNF+prf6TnwaCnUxs9HI8rH2uuVw9xQ/2BEjNl4hKXuMQlLnGJS1ziEpe4xCUucYlLXN5B\neadMmXQZX/C5Mk0uTJkMZ0AbDZ0lHuFictkQyl/a0c92oIxWEZeVXkNIdqeljNXhrpDlyxe6zhzW\nQaSo7eLq5JBFnsxQPOfcZ2Ktz6WTQrLzBWXIdnaFZJzdV3b6IecJd3EJeHSiM3JjsteTgdr14d3P\n9HcYMW0cDWolZYXPLkDVdlFkJ9N48kQslMKOGDoW/XXV0HUefMRZZPRgzp/pPHjQVrY1mS6ZWkXZ\nRDfD+bsvlDH+/tfKVvpbquNOUW09aeLFDspbzSi79/yZUJlUWpnWFOeYM2VlI+/9RJo159/gAgLK\n3AN9mFhv55gS4nyTwDEhAFUPYDmM0TKZWRrbdQmXEuZWAo94RNlNknPmrsW5QVCiyRCmDU42m6B6\nF36kD4EzAhnnNCyKDqyDFW5LPgjuEKaIi2NEY6j7boLAVhCwuGiqP/Yfqv4cjTUzdDhGoEEmobk3\nwe1j90BZ4xAkO8/5a5e5lMJBrNsWEtBNKutsYAkkxvQj56iT0Tl92BFzkJQ6rhxFT3Ov7WntDWEI\nTcbqlyTuHguEO5bRODm4rqzUjmQJbZsrZastUK4RrlUhDKJcMvKl+tdL6xRNgTzr9ql+P7vCgWSs\n3ycZ9UEOhkKpJJRnPVEfrfoge5yJHy2FOmWJCxnMF44vNLd/TnyqljVXkrC3VjOcvtDtyKC3YHC0\n8pjL7X/Qeu/3pD5frELbSgOHbCnjnoEZ6B2K7ZReK870198aY4yZfomjzVzxsIA+j5/RmC1B7edT\n3CVCjZUF22KKcFAS15IljI6sFTFkdH0PpHdh0EZgjqVgT4WRCr1+NQF6Tknmwgh2Vh5GTOSi5KD7\nMQF9WhFzbJwc7Kn+HoQRO4J24Phw0+Lsay7aEVMxjXaZqxiwxRqwjGJa86mYRleX+vzhHcX90qb6\na9VQOxod2CULTZAJ86C4ARPJ5Zw9DKKIHebN9XcPd6yktzY+2h2zscZyPFcf5Ti/vAjQVkFTxefZ\nc+uhWJ2bVcXvBdYFNv5utW210Rqh+WLj+qMpZuY4lthnzD1cldYwLnLoP/SA45cMejpY83FdLx05\nbcFCcIe40I04l05b0zimzHhmzWnnRkl/76B5Ne9zHp25mKc9w3HkJKO5uFhr7m4ZWEnWDvd7Ow2z\ndhM2GBpdC4zEQh5brVeKf5df6hlb+5nus/kZqBoucu6m+iMEOXVZkxPO5XvY/e1WNKd6x5o7DbTf\nTEv9cfWVxjFCdq00LiZ1/SxvK/ZUD96gb7Wf7pn2UIj6EoedGVo+IxDh/iUsiQ7OX8TjWUPj48Og\nNMSCoqdxcTbUjkEDl6aW5kc2C4NrgE4S2gzDlG02/53aGGR4Jpc4i38bBsYDobzHjzXWs5bqWEgQ\nB56j/QWTomijEdbD+QrtgQU6bg5sy/JttFNwSPGr6P/4eqZlHO0TJ+g43bQkQeE9WGpWmt/X6rsF\nLIEeLKklLnQu7RnampN+Xn28KsDCTen7V12xwzz6ModrXga9jTV6R0FFkxLSghnDZhujL2WhbbWu\nsndiDzaGBeHBcsuh5ZXehYXG3ie9p7kxw9UoYklZ0fMRdnHQJ1ZNNYfXMLv7bcWIDfSNor3TAOZk\n/7pJ/+jzFVf3La/Z2+A+2GmLQTUDIV/u6Pm3g8OnzR5zUhTbII1GTA/3q27/DXthMbSNzVpMwqDa\nuq36JZknmT39f46OSHGbeH96c+fQNU5U7USkf6E6WrDwM2Xdo5BDkwmmh8V6tSaKA6++1Tq7/ydy\nn6vd1udnL2A259CD24KZw5wcsi9NWTgFDtQHl+h82BPiEGyvrfd0nVlFY1DCoWoGG8ItaS2VMuyz\nVxrLOczAAZonJq2+3KqyF+N9oxKIaVJIa2znPgxOHHoix9vOFHbSVP+/D7vgd5diHaRh2TqwNsop\n2Gho6aSHOLJF7Ksz9IK66sfvv9Z7zckj/VzgJJlGg+3Wj/WONk+g43etdr18Lp2SAe8JqU3WZuTw\nVdWzPEy8nYZZpYZjJVpq5xeqZ/OUvUlO/ZLARStb0X3PXzubaRwO72tv2DvR36+fHBljjNkqq/8i\naTULhqvLC9E8/WZtDLodEwQdE+CqFhBPAjfa0/PMZw/AcjUWWlBz9nML9IXm6IAGoeZC4cNIg1Vz\ne3it/VUF1mia9VfBuTXF5mTQx8VoxPdgeQ55D87D6t3exFEM0akRrKfZWH0xZ/naM9jIkUPZbc3p\nSCPn9PnXxhhjkjBgKu+pD+s1NK88/Ww9FbOm4CgOLWaKgzZ7kAXvpp/8d3q+7T8U223W1ed+qMRM\nmbjEJS5xiUtc4hKXuMQlLnGJS1ziEpd3UN4pU2ZNxi1EBwQpBOOHqOUPQGjzyvhn9nVGrLapzFTn\npRDr3c/kOmRdKku4VUCDYV9Zxu9/r6zo/S+kCZB6pfsVEchYr/W5IUDsmLO3jSZnnP8LmhAlZdTO\njoSWff1bMWJ+9Jmyq91fKZs6w+Wk+BBEYw2SYDiDCyBuQAlXBWV5u23V8wFn0g628HPH1/xBXZnG\ns2tljedzIfxL60fGGGNssr4f/0iZvQxZ6f7INhYUjO9++Xe61geqczmptl09PzLGGHPvA2X1qjAh\nelcoWe+jwdJRtvLWru4xJyPfbytreH2sbOWLl2L33L2nNvS7+p4fvjnfe5PiJJU5d5YakwzMkMkK\nIaIpmi0gEAHK3EOQxjSIxDxyCLBzfA6HBA5pjkGpcnuq/wRkNMH9ll3NVZuscMKBMRKdlwZtW3Lm\nNIzQLM43ZnCNKqNyP0Ad3ww0x+o5IRHNGa4a6FHMcWvKu1oTISwrLw9CgP7QtCs034apU93DfSOn\n9lsg21lYGJ2y7j/kfPoGZ3VPLpW9dq/Vf09sZeyXoEfZu1oDRc4iL86FJIRcd46TjAM7xaa/+4tr\nqqP/TyzQL7rBw7HHhEpnW+gG3KSUuEcVN5wApNQ3WldLGHJLzoafJtVXV77aNsupLz0cw/wOSOY6\ncuVBcwRU5h5OKctz3a/b0BrprTm/CzsrA+LoorVy3VYcWMzR80ADx7uAFTVEzwkWRLKgvj1dq75b\nS5xWCCCzLvo8C3XiNK05U02oj1ew2HwcuBJoFiRAbkcwZSKjnATWAQnm6hRWRYTM2kn9ngIRHkzV\nLykLx5o0bhdDxYS0rzkyS2hOpzjvHaRw93AithpsM5zDLBCWJEipHRlxoQ8VouUShG/nvuRUce/L\ngWqx1tI4TliwAHbWOFigU9Vron2G440FIu956CiBXvVbOF7k0SBYoasSEnxAmrIRGw0npWoSl0HL\nGGQ0TAFW0rgBq2YJspnUGAXMrVEfh5e55nKrq59ZxsYD1U/CbLTXukEb3RsTkbNAjwPYm9dnjFlB\nz6Il7m0p5s5ihTsTc8fxGasZZ/4HkT6E5lzYR/9ooDl9+KGQ0ymMOBv9hnEJnYlNrbEZv9stNANA\nodwc8Tqrub6Bi0jkDlSCuXhuvx1yuerAbr1CVwNHMRedjR2Yg95n+pndVH+u0Dgwu8TTAz1He2ds\nsYZq/wiXj+lSsSVhq56LU5y7RjU+jgYFbFfDHNn/WIwoD926EXpO/X+EeM4yQ+NkcMWDFXx9zbn4\np5ofCa7v+HpOlEHM16CWyZRQw15Le5kmbIjb7+s5tZlWPQZzMW1nDc2b1rn2YNOM2pn+6Z5J3oKO\nxZn+YV9x8uK59giHW4pjO4Z1Fjl46VFk5i19r3sEayiLKw+szOqemBNJWGLRvrKbjLRbcDgk/qR9\nmDU1dHuaN2dlGmOMS9xOwM6KdJ4C1rtt0Nl5rS0Dq6vPs7inPp0wp2roGAUVjb0zVDuvsdRyxoxV\nXug/S9g4rK3MntbAAJfQMeylATpS6xPVr811kwPYUNcwhHzV20tpTs0ZyxyaOJGWzWRE3IUR6Uaa\nLn39XE80fg00W65hwuQq2gMmcVLbvK/67pfRDdkBgX6u8engglJCX8upaC73ccm7QtdpUkJTYkv1\n9kHM5zjDrQhOucQbRmWhuDJpNGa8uvZ61lrzLWI2pedqn7+n9uSrvG8Mbh5LHPTKsri2LXlU1dDJ\nyTg4IF4pLjRwKV3AsCnB/rkeikX74M/0jnP/rpxiv3v1N8YYY0a4vXVgETjofSzRUOw7moP1Da2x\nXfQrLTTFDj9UnDo6Ud+fPOW6PINfMwWvFIcsNMh617ggfSb033Iq/F31z/lak81z/Z6CHTrhmbtm\nX22h+5nz1Ncu++eL8yNjjDFbML+30cJZse/PoD8SzGGAwq4do9cW8HybzdDFg4E560S6bmiw7es9\nKMjovhM0XcYRQz2pz02nejfLprRGiznWOKwHCCsmsX67PckU58nkGWurjfYb7LfpENZZEr3RA/Wr\nAx85kUU7EwZTm3Hy0QsMcjw3YYv56En1ExrYAW6NxhgzDp+ZlWXMIqtrT+i7Je9SScZ+iaFjeq4+\nTaJNlYN96y7UliRx0UEE0YNNf/oYh9kFOjfoqI0veSepwsSDdVst6rpDmH/toeqc5fRApP9DuDUB\na6k3VvxJEZd82J4Z4t045PQD7yrvPfzIGGNMIqu5+up3vzPGGHP8VDqod977sa4HC7bzC82Rcp05\nVtB1szDPN2vKN+zCFJxB1bk4QfTyB0rMlIlLXOISl7jEJS5xiUtc4hKXuMQlLnF5B+WdMmWciTJN\nxUhVGciWo5wmi67G5UjZ0QKZuNYTIQi9F8pepj/QmeX2MNJQUbNWl8pijsiYbYOgX01R2m4pQ5a1\nlHGzOev7+afKnjb6YqYMXinzdu+W/j6Z6foZzr5V7itbvGqKubNZUeYvkQDZ6YB8gHbe21C223Fx\noqDdd4pCEGp7ysZ2XgkRWOOss5gp4+aAaJc5g7dRVr0ffa2MXimHE0OfrHGzYXaqOnM45OxnDqZG\nvSrk6+lTsW+8j4UeZAJl9d7/sTL0u/eF0lwd66z6IaroVw21rY7qdwY3jCAUWnLvvvrs2dfKOq6c\nf1l5+p+XyNO9S8o+ReZ3ytnRgLOYKRtUHiQ1N0YXY0so0wi0qQxiEDFYluhWDHF2qcAu6EHhWIPi\n9TtiQ8zTGsMBZ4BdPt9Cg2UO4uzAHpjDkvITaK8UVc8s6H8D5lGwwlmhinsHaE4izTlvXFR6oOwe\nZ1dzRbX3DKZQOqPvddeRdgGZ8SsQ6QLnNZmLAUiqDYLiwgapbHL2OS3EtJPC2WIplHNnQwjLYxyO\nSrhrrdechbW3uT/IOVl3fxsHhnPVf+3q82OjNWaBgiZSN9cLmYB6nOOcZWYo/4/V9oVPCv2OxuS9\n/+nPdM+l1tWr3/xnY4wxBTRPnKbQXn+hjHfdFyq8Udb6m6Da3qKvtj/5qTHGmKylsXz6c7HRJkbX\nyeD6cUSTlrAdCrAHivTxeohb3MGBMcaYvi0m3OAFrIQr1vNKc8q7AiWCWZha4JrEGd7BK63BHA4B\nNm5zixQIA45YAdo3Hk5rC6BYF9ejZUi/LkC5Ij0SWAiJlRq2eq3fpDEeo8UTwkJb5kCWYfw4aAnM\nifcu+iQGp5gpLLaQ++cDjWtgofO0ejung/kQfQ3On9/a1ris2pqDwTGOMVP9DGHCZAlZL75+ZIwx\nZthj3Mv6fr6g2Fjd0Tj6aBq46GwsIs0Lj/4DiQ2JFXV0niYmYRzYNINBZHMGyg27Jw9LKURb5PIE\nhsJQ69DnLLzr6fPGgmEYaUPtgfLjKjcfIZS0YC6ASBaykf6GrpdagSTi0mSBxKVsxh7Hm4SLBtgc\nfSX6sj9GL+QahmFF309HY4kuRxbnLy+nnynmSnOkMbKJZ0sQTC+r+5RqGoNSR+0ZsEdIgbLdtKw6\n6ocIKV3Piefo3GXqmttb9xQTfPQ6prDkbHSZshXVezjF7a6DrkdP1+9cwl67VL88+b32LsWq5sKD\n23pezz6X61FuQ2u3+IHQt4mDnsgA1DEZ0cmMaRw/MW5Fc7fo6e8eSOnwpebJ5WPVc/Ou+jlyuFyh\n91JibaRxteot1I5+B5ZDRbGni+bQFIGRoKb5loa9UbpbNUt0dizYnWFDC2r+lfZl7S/FBkhBE/Mu\nYJMeqW+un2lMr15qLVTuo79xV8+g7J7Gvmij1TVQX0aOWD6GVhMeumvmqIP2ShBG1OWblVWGeJrW\nGEcOkU1Q8w100yq4DK066hubvuzg0Di/0OfbPvp8lupTf6j922HlQH+HQWQKYKjsU1cwKx0YjIWk\nngOJsmKEe0ufb8LwWLfU/lUXHSd0oBbEiOBSDVnmGJcOcRAGTYXPh2iKGbTJXF9zZV2ImCuKgyva\nG3QVt8dpWMDsyw2MI6sn1lwCZH081nP04kSfy28rXvs4ec7O9FztoTUxm4Lk43434vfQQd3sH0k4\nNNtTM7sUm6Tb0vM/iy6KO9C4TdCqtHrMw4kmUDC8OYadsdEAqbKfgYlx/P2RMeYN22cEMyKT4dlP\nnM4QP4IljMOe2AEHD1XH9pHeTcJAY1kvoJ/HZM/CMMzWYWu6PGthfF9e6F0hYhxOrtTn7Sv1beDo\nPsWi7rOYwq6y9Xv5DvXl2eff0hhdPFM9o31lKnL5JH7mcDGNXO6WGfqH/29O9HsORmX1turfuqX3\nlMtv9R7RewmzKNpXI3Dy/7H3Zj+SZNmZ37XN99099oiMyMzKyqylq7ureiHZZBMjSiNIxAADAhIw\n/4KgR/0zehOgBw0kCJAwowUS2eKQ7Olm71VdW1ZukRkZu++7uZmb6eH7WSUJkc1IQFA+6J4XR3iY\nm939XjvnO9+3zlEe2t/f1pi+tSV12Ze/0XtOtwcKbROOsE+1fqdNUB8gwR8c6n3o8hwlNDhbkhiU\nFcgdFzW6JHg9RUgXHj2D2tYKDs1MxClbM4Z90NIr+KV2tA8kIBjDLlxovPPVfc3BBXNpHer+ka/7\nzdmPG/CgGmPMN//sPzH1VtU48BJFKCCGQ9VxwPu619Xes0yZ37xb9a/h5Fuq7zx4PzstOBHhy8uB\n0K4XyKKY6vcsIyYcgpZfcf58R+tDcKSxPeC9fwMuWAe+utlc61wZ7sRmjAoU57j5WH13dvVY1/OO\nZJ5qDF3njowxxrx9j/d5UFe/+vhvjDHGnJABc+s9IWoSzkZLVKcqFbIllqpPGKrdJj9lzF6pDwvu\n70ZTWaSMNWvWrFmzZs2aNWvWrFmzZs3aG7A3ipRZ4aUNyPm8xlubh3F6c1OetMtnQqAEoCIS8tXf\n+32pK+2gQPH0M0VU3sLlNh1IHeVgA71zco1dUBfbu/Kqzq7k0fr0F+KIqRXkIRsTSf7ssby/32zL\nE/YUTpr8oTxqqwUEJAHRuyPy4fFyH31LyJjup8qh7uzJq/3spTxqXXKsPU8efGcsT97ZJz8zxhhT\nasgrO1nK0/f4E/G3BLfgByHSm4z0uV1Qufp45tbT0FTvyHNs4M9Y+eTMp3qmX1WbVAK5aP/tF//O\nGGNMmMhL+ekTeVbHn0vxZXNbdev1UAPq6LrOPUVwC1+pTTab6sPPQl0XVF4vf9uhPOVI9ysSAb5+\nSW4p0fo44zaI0aAP9L1bVL0nYcZVouf3TcavobHWvNTYeGKETph1VV5nrL9TovgrWOuTVPeb5YiC\nEeGNQLIUiaY1QSGE8HPk6/LqJiB9CrHafQ13zBas99Oeyt8iH3uFp3sFt06cUz3XdVU8R1RoQPk6\nRLP8LXn8J0RkA1Q/5gVdNwtQz2Ds+mv4RNYonZEX6QJnmEYaLxUi3evPVR+3CFN6johCqvovruEy\ngD9jC3RYvCb3mHEYT6+4LwgmOBBuYgvU2Zws6BBpvszKaqtpqHuPfZXtg1tSCPvIKPpyiqJY4KmN\nkjG58COi4F1Fcs8vFN2KV4oKXaDW8+4/0/rittRX0XM9Jz0kCv095aL6PfX1x/+r5nXvBLWQtfoq\nX9PY/v6/+oExxpj+qb7/v/5HIXlW5O4nqAMNiPjt7qselWqWZ6znbjHGIwd1HzhaCpnKElHxIAZl\nxvc50AgZ91UKGmLGdgEYwxRg2x9z/yJKYzPyx13W8QDFgjRVuVJQUfFaz3XgAkoZew4ovtTofj5c\nP2tykoso9aQhk/6GthhTcPi1HJCS5Vj9NT/WftE91j5S2tDacfCR+ncvYl2/ULu7G5qrKYvPnChZ\nAndPnfoaOIJS+K8yNELWzhHIJt+dmtzXCBTWW4eoNqii1Nf/t3aF2urcIc/6XHtnG3UFg6LLuqsx\ne9rVejHtgRpjLHhEtUxPZSoXtT5E39SnD99CDLHPmmjWOiVKDdJlHrAnwmWQqQ7NUPXZLMHLBrqz\nQw5+MYSXgnXcKbBPoLKxBBHogsB04crJ1JaWE61Ti0jr9BAkTvpIe6VzpH3ppnZ5rrk/ylTxUF7I\nFVGPO0LZZ1P1SMu6LpioXDOQNj3UB9eM0fUQVAJIVedM1w96qG2BCg7hxJmBfNl4oDUlgS8qDhQZ\njXJEMxv6rPzdCO1sbJagHBx45YJY993rCOGT1lApjEE5oPpiUIwoUD+XfvbhghieCjE6O9baNLzS\nXGmABty5o7NH0qF9CoGJkcuoTDTPKmO14TV7TvJE558l8zNBqXCGAlaOOhz+ARHTTc4yqZ45g1sl\nd0uR0SlR9Azpl6tmyo3we8xUhwHImzx76k2tlMDTRCR4PAeFNELJEH41l6i0E8ORQx9VUKRJd+A+\nmYIsXKstnx1rLl/0GTslTZbdc60n2yiXJXD0XMMBMwMRCV2EcZlDtbLay9vNlA6Z69vax/LbWsdy\nKFaW9xhTtzT28x+oXR3G6JD1MeOQmYAsMaigblOvWl7rZsYVFnj6/2yKOglzdP1S7d+EA87A8fDy\nS6Ea2igAPfgj7dsOZ56BA28d928esSY2NS4WnNuHBr4nI3WeGXMw5QzpvqfflQJ4S9gHx/CxFOB9\nKS1vzod40dUYW12pbBkqcnameeeD6to+0jvI/q6eHWc8m+yFPtH6L375E2OMMTsoiu3dhUvwixnX\nwfcBOndwoTb64pHeJZyl2sCDvyNX1liaXmjs7D+QutMEHqIT0GmFWOd5B35P0+JcB8JjdCrk3b23\nhMy497768NmPpU7nwQ9yaxNlnBw8S5wdFpx9wq6+dzKuMviWrl4J9N8AACAASURBVB6r3M2GxuKo\no7F2666eF7TV13kXpAwIeGeh9u6GKm9rT7//8ouHPA8eOxRs3TRDGqm+k0T7yJQ9+p1vHRljjPnV\niz/XdV3dv3kAtxvvJxXv9dT+1tzfXGlOdHugvEG8V9r6PAPF+xIlYS+neu8dgJhiDRoj3vc1nyEb\n9srROFkYXdCAJ2n/rb1XhSm65qtPPzMuSN8QRK8LUjlGGbXAOpqUM85C1IwizbcunIQ5OAADziJX\nn+v9txBp/WuCPB9daAzl8yC9mRvhBI6ZM73H3kJhqgyP3PCUvhvo9+NLzllL1jl4NjPuqyUZJkFZ\nY7T9QHMvYOx0X+o+IdyvB3c01w76Kuc5ilbOn6p8+zWVZ/BEc27D09gZgjQvoJQ7YO6tBmqPWuN3\nryMWKWPNmjVr1qxZs2bNmjVr1qxZs/YG7I0iZSowVfvwbAQjOAnQP69voCBATvJ3/vifGWOM+cnP\nxNnQactjdvyx8iND8po3vyM1ouef/cIY8wpl8PmvP9f1jxQN2z5QnuH2fd3nzkKRmBpRHgKyZmNb\nkQk3hyc/L89bc1OewocPpWt+i8jwdKn7X0/lUfzwPZAyF1IqOC7KCz1bKEK0vpZnvv1A3kuffHoH\nDfs/+pd/rPuiG//wM6FV7n/ju8YYYy768vBdDsjrJkc2PEPxpl03o7G8iityEFenarMxfD2NvSOV\n4a4iaXW4Zv7oh79vjDHmy18LTfDtf6k2ymdcKpdC7fT7igBsnCoye3Is7+Fopk8XpYRccnOuEGOM\ncfDWxqgKZdHxUhb0RtWiUvz7Ufw1HCyFusbYhHzl5Upe1EYRVAP5jaYmL2oF2vPdI8bWVF7O8oX6\nahaDJPH0WUp03RXM/R55ltfHoJcYA/MFfCWZckNFfROm8oxnnvbFUhV49qna8fxS98mD+PGISE+u\nQeKAfBo65FP6IGqI2JZ4ngvHTRnOiGKXiDNs9KtDOAk8tUME7GRMhNQlClciyrb0QXmg/rS6VP13\na7Q3+fLLmb4venDpgCi6rMCNca6xv15mzyfnNb15xKFQURlCov7DS3nIY+6xctTXU6Ikf/k/q+29\nd+Wxn7J+3EU9Y/feA2OMMbVLUEBDOD9QUggnGguneMLNX8mTPrtN/m+qMVMiF//WbfFC+CBANv97\n9eliRX7yywwdodvVakInpRHrVB1ECdGR9AL2+Jb6on2IilGs+1fpIwdFFR+FrdCB7yPVXCmCGDGx\nxkpIBGTt6H5lByUHRCdCIhn5GXwhzLEAdbwUwYIAhEhEpDsiL7rG89fwN8U+kWpY+H2UDxZTricP\nH6ocExNxzv72vNfjlEmImExeqn1OY63z70MNsb+GC6wJisEjglxR3nUDeMcYJFK7pH0hXKCccEWe\nu4vSEPwwyZL+LYPwmXM9a9USRbVw4Zk1ana5lvoAqigTZ0pUoJEclFDmgW5ydQradKx5t7OP4klB\nfVwiqpUneh+D9AtczeMFf09drS8pbZ+DWyCL4KY838+B2EDJZsZYikD+leHA6fhat1L4ivZcXV9n\nvY4DRSSLKK54KNQsJ/D8gKTb2MrQBypvSkTz+lx99eSJ9sAjFGt24DVaO6+4Vm5iAeWq7NIPgDKC\nW6rPxvuKuFa29NyLp5ojQXY2YE8ffpq1D6hdOFzOHirSuSbS2npHvCj3PxTqtwJ6ofyWHrwANbKG\nmyxo6fs2XAzxFL6QxSs0QPjwzAyfw4EGf1QHVHBzS9E95yMUIXqgfP1MDUX9XYQvyfNAhj4k8nwq\nXqUz8vh3D3Xf6j3x+m2izjQu6H6Xj8/MgmcEIOJWF6CmRswDlMaWqON51K3W0L1Ld1HVKWs+Jqhl\nzkCqLEp61lZDY2J2BxW4qcZCgora5BL+tlPQVXxWMtKoG9qKSPKC/caBX652C/Ia+DBGRK/XZ/Ao\nwZcRsB7u1hWlvoLvwwdt6hiNocVa67kHYvLlSGMyPQTpAoJmQWw1n8vWb/gtBiAOUX/KJGLKO0Sq\nQXrmdzU3y6wNI9ajCCWyjR5KQShNJj3WMfbXCM6a6UuNiZe/PVZ9UQK6BeejD1dYJZ8pWcLptdB4\nmMHB2IAj7m04g5LsXA0Csw2Kaw8U8ojzcwTCxU9Ys1BXCRev0NlLd248+P/qoAQOQESmO/CvvAd/\nE+qHlYyr5sW1uanlWfNTEILNAD6cNiikjKsLdM4SpPRkBfcLyOJiG5WfFZwsnLs3ifJfTOEVok96\nM1R3ZiDYMp6hzSNjjDGlvOanl53v4JiZDuEea+v8P/wbnYnqKFkFBXjv1ipPEGjureBUma3gvLkH\nB9gZ3I5Xum/vSuve9QWKPCC9l7wX5Ktq405NnxHn5t6l6rFZ09xOIrXn9bHqXZpzXU9zJtsn1+xb\nISi4Nnyi+weao4vHmpNX8Pql8FmNQJo4gb6/5iz53rf1Drf/bY2Zi6eqT2UKX0qRM1d2WLqhRSCp\nHj/ReT8CAbqxp/vmN9WeddbOy1M4e9h3D9/756rvKtsPtA/ELkqaoNdiDhvFpdq3TNbHLFv/jTFf\n/vmXZjUdGo9zT7zSvWqbmRqyrj1nPao2s3cKUEa8r29xpkg5cxjWt4w7po4C7e5HOmePf4H62QAO\nRPaeCCXWHpkoO5xrG23N0wkqqdWOUFidLc5jqGPWykJtBm34U+9rDLf3dL4O12rDBUqEl2dwl/1G\n7wlz3pVzVY2ZCWNlCsKu2GG/eQgPXcj5nOyDeaw5Eqw0FnMl3r3/iSFikTLWrFmzZs2aNWvWrFmz\nZs2aNWtvwN4sp8xMHqVLourVHHnisC4PLo6NMcZ8+lTIkG9+50+MMcb89Y9/aYwx5k/+Y3n0rkDI\nlGry8laaR8YYYyYLebzu3pWCUIAXdrOn5+Txnp6TsxYQ8ahWQQuQQ5uDFyVdkoOKZvxuS563r17I\nt3XrI0XE+8fymH3yTOiSKkzjW+RFBkTDbrny2L1cKl90q637xTynN5I396sT5YW++ESR8wtCxT/Y\nlNd7ANfE9773p8YYY9o13f9nZ2qnD9//vgFwYoqUpbUr711EtOPpSJ7az54KTXQdqk8WcLi8GMmL\nuHEo5uk+uf61vfd1nwUKKQfyKN96+/f0+7m8mu2qos0L83rs5HEWlSe3dQnHwSzjyyjKExzCOl5O\nVb8gIeK7VLSmmagvx+dEe2DAHpOvfLjU78Zz2OIz1nrQAm6VyCZKBedE+aA6MLkMubMgerTO8gYV\nWViE8JEQ4fUWcsmPYSRfz/TpEpqNUzGML4nuBzCJr/K6n+MTOcWrHbryoNdRoTohRzfLUT3/jFzV\njvorR16mUySiA+phGcEx48o7PB+rHSsoiuVAnc0uNDY7oCKe98Tp0KnLa92CGyFAMcED6bQk8uKH\n5ADHKncC43sJ1ME6g0LdwHbfUdRoABopXCqKMQ1RTAFdVTSq8/pLzd8a/Am3V0fGGGN6M60jnz8X\nh8wxUfc7bXJPB1oHJkT4kjkopaealxN4iSJXfdMHCXIyEvv6iEhl8r/pOUXKVUbp6/qJolOf/+Sv\njDHG+ETTqnW1camgeZ1mqkgw9VeJkC6IEg0z5a4CfR6idgQLfYZGArRg5kS9inARhAXyx0EleHDC\nFPPkEtf0+xw5xlPmfi7Rc1NUhspEPFeJ6jEmEpqNhTJjJHaJ5oA+izNeqGWmxKWCpkQPczO1v2Nu\nnuNvjDG5PjxIF1q7MnBWn8h7pXNkjDEmqCji8vKZ5uC//wut4+uZxmoTXqTkjtbvEmp/keGGREwS\noogxnGmZQE5S0ByeEMntglSarD1TDvTbBopVhTbzZUD0yddY6MJv5D/ROvL4U/EvTFBV+E5DimCb\nddTPIiKaY9BUDZWhvA0f0Er3n2cKZIDAZrR5xHrr0Edr+IsmQHkW8KcVacsJyL+tnNaNkas2u34J\nV0FBbbwOVI4S/A0OnGPLMQgNzgIT0A4N9iOoq0y1CjcYChBhqjlSvSskyKVPtO6GVr2rcm2iehej\nCpVr00fTLvWD6+ZUk2aOok7+BKQga1HG7zEeMrZnWh+LHXg2bmk/qLO/TDuaG/maxlR1X3P38W+O\nVb9L9W+9AscM5Yknr1Bj3mJhSnA2JETOJwv4XGKNh0qH/bEAkhIUn4Oyz3kPVEBXc2CGOuC6jPrU\nvs4y7buqTwoq8OKlyuPC9VDMt81iod904a/wX2p96H+m6HZSUVn37ujskEdZK9hk/mfcKxO4qkAX\nFFlPl3Otc92F9qA28/ESpEjvqeoSP9f8deGoKqFAaCqveSYJ1EYee30erpQme/cKRNz0SuvognNk\ngurnYq4xugZ92qQPwnrGG6T7tjf0/dEfqV3mX2k/ik7UjglIyOZ7rF9EtC+PdZ6twGM3vtD+lMJ5\n49d0RhijqLb+XKiqBgjxGoCfNWfD7l8LhbaGx2jdZ926BA0L54o3A7HCUKzANRb4GsOZ+soMxGOb\nMezwnDL7RAPkZ77JWQg+pEzF9Am8Ue19XZepKy5B3XZT/T9mfw7iV2tAJdj4+vw9Wuj6BRxBKWtN\nlY2hA0L+YAfln2HF3NRCtiaPebjehqMJdaM+HF/1ktp0irpcvZwhUzhfV/TMMZwgL4Y627xfFeIt\nYQ9eljPeJt2vD3egKYH6R8FrdcVYYL4Wc3rOFee63bt6h6kdai7Fa3h2SBvow3FWB/kY1TSGr641\nx9rfFDrh1nvsoX2dpYqsOw34NDb3hIIKOryHkB6RW2doMvhLUKW6dVfrzVcoIL74WGOyzhiZ0W7F\nsp5bP9RZrYpCWgzqbPdQ97nagYekr/bobKMytdJ1nf1MdVXrWTRR+T54T+9oS3hMUk/1L8JXuFi9\nHmfm5bnGaggK5f3/UOiRBoieHmevew/Yz0AR/uznf2uMMebsU7VHeZdJG8GLOFE7xKDTqkV4X0DO\n+EsQrqD6jDHGWa5NyfXMhPfjXEtjY3tXSLfnrs4czrXG4gXreZHMD78AmhXkM4Bgk+ccHsBPNtpQ\nWb/zp6rTARysD5/Bw5RxIIJEGaNiFBk4ZIIMgaO+qxdA8WboXN6xki3ONlnTkDXx9IX8Ahfn7Gls\ndcsV7/0L+OMWGuNVFrQO51SfM1aRd61grnbxOAs1eD8fTOFK47xdqqtPcuXfnQVgkTLWrFmzZs2a\nNWvWrFmzZs2aNWtvwN4oUqbQkMeoRW5aY0ce7C8fy/t3d1ORyCoKMPUDeaybHUWuD94TGiOOdf1n\nj4UoefRCHvyfHMtT9R/cE7pjwd/HIHM2WzCVk8/upPKIjchjfAFz+eYdefTmRIQDtN9LAXrmA7Ti\n4f8IyM8uufLinnb1/95C3uwQVujDtur7m64iOMVrtUOS6PqNuurdbghl8szIq9k+FCLo4ydyRf7q\nL+WN/i55j+d4Mscz2KtnA4Mj3qSJvIA+bPDrCl5MvJulNcot22qzXlffT6/0efIVSAZyFit59cWT\nR0LY7Nwm6gQ/x9OnamMfFvB0+cozexNLyvKupnjsZ3iOkxTUAUpZ0Vx9mylnQaFiWjV4NGDGjonG\nTAoqXwL3QI7olBOqXkW8vFC+mEaBvkeppY3neUF75uA+8Mg3b6couuTkTV3PVKAq+YX9SBGMSqS+\nDVfyMm8fKVLhfaT737+tMT7OvNeBxooBJbGzo/t+TKS2dUtj6t4WijybGitf5BT5GE0yJRuUu2Ya\nK0EiL7LrqJ3a+GvPUVHZpv8uEv3fZ7y0aopI9H31c7uuhittKKJQ3pR3eARyKYDLZ1lUf0VD0Bjk\nYI8WIAPyN/cXOxX1we1d3bteIcf9BbxGv9F8zZHn7KspjP8i4yxQW28QnXnnP/3PjTHGjJeKEn/x\nvwspkSd6tRGrbi2ixusnen7tHY2tOfm6A1QfPvm3UnU7eazybL7UGPCmWh+KjIlKpLlx9hM9t9JR\nG8QDlSvJoxpRRmEAD/x4muUjgwwCpeBF5OyD/PNQEAvJ+V2Tv1yeEdnIod6UqQaB2PMNkV6QHj7q\nGbGGjCkmGTIHJTSicjFzdcU2E8CvkcDzkSQoj3m6/4rIbaaplKXeplMi5cAjckQFl/nX46eKctmk\n1nMC+KHW5ArPWnDKwJEz9xWVTEGHbKIWECeou6ASUI40J1Y1tZcTquReRAQHbgmfNcKdal3OEEpX\nCpaZuOqbElH3CBSQD5dA1tYBKkwJKNMZgLKN+5r3ha4uzG+qrWqgrVbXquPJiQZ/c6Qx1yQPPCiy\n/nm67zrLkSfKb8pZn6kuU9BOiSECR/73ukAOPAi8AiRfw+ea79cvQRvV9dwy3FJLVDfqIP9G7BPz\nCEWbldqqF9L219ojG0RKs0jnNog7H24YJ3q9MbJ7pLG/8uETYu5MQQqFXW2kKVwuDdbB0bHG5Gqa\n8SvRXq7qX8mrf2ofMrdqtB/584sOfBgrrVUjVFfe3tPY2niu5wzPFE2cECFPhig7hK/qOc/PTPlA\nYzWhPb2G1uH8Edw3sdbK5pHGwWKkM8nLFzrzXDyF6yen7/NFXbf1nuZI8baipxnvyQzelAj+LXOs\n8dQs75romc5Ty+NsHaKPQIOFWYS1qbGTuwvqCKWuuABPWqYUCJdUQB8A8jHTL1TWIbwczlx95fXU\nN9ArGY4sxo219zru66GpKsy5WcbDs1BfhXP1Re8K7rEh6k+Z6hAKOS7r1qIOT0edhbWpigRRpoyp\nsbJGGa0CcjDdgTuhyhhswe+2rfbrngtxOW+iNtVTuz1++aUxxpg9UAqbKE/2Wa9GcEgkiZ5bQLkx\nT3ldh8hxS/0ynald4yJnk0T32X2gOVnLlNy21L4F1sstztM+vFV9ULfhSPU/BdHUQ020Apeag2pV\nGdTdkLlYuQ/C5xDVRdDFZc4W8wCiEGOMu101i6HWwFP4nVYttYefooCW6r4X1yic3VH9vfHNURDZ\nGb630rp4hOLL8i7vBPNjY4wxVVAD7W3Oa7uol+ZRr4OrMBlpjEQv4GJpaj3f2ANR0dU+4YI4nHyq\nNs3US2PD+Y5zcKtJ1B6E3tmJ1uc8SjoOc6w3Vz0qTZV/o62+q28yFqoaAzOUbXz4iLY7Qj88Wwkl\nXAKZUS3pPuESjpQTtfV4Db8eSMtSxp/HmaRY06Tduo+y7ACUW1313+FskbJORUhHdhmjp1da1w7f\n1jvV4YdHxhhjfvnnx8YYYwpzjaGrMftLHs4a1v1r9q/Dt2kH0B2XcMGsQEQVWG9vakuQ951v6t1t\n8wNxi/WeCPl6Rflrqfppk/W78zxD1NM/dZ3zC/soF03VP3XWWgelNoBAX6MOp8mrMR24jhlcGZP4\nGmMHd1SWTL1zATKmnWURwA11RRbFEhRnvAY5zZm+4qjvcqz3y3O11Rl8PW3eFeaMkdxadWiCrJnA\nxzTlLFCG2y96oT4fZQq2ffX5FetYD2RhAz64tIry7iP1ZbZvlJaQ2MJ9E4BOm7go1ILSrYAUHDP2\nytf0OftTtufPHZXnoqvybu7o+dUme3Htd2cBWKSMNWvWrFmzZs2aNWvWrFmzZs3aG7A3ipSZoBAz\nCOSyKq7k4T5/Ij3zFO/h9hZojM/k7ZwR1e9fw3IMN8G6LW9z673vGWOMiX6kvLtSXd7d01Nx0+zt\nHum6d+UJzJ0JaeOQC3b0AV7QviLWZbhosvzBBLb5JhwLJfJC+zCCJ+S4lkAd5Mnj220rD3SKakAQ\nyavb2VPU6d774vv48m+lGtXelcduiJf7ikjF2++JIyfx5Kk7ui8VqXZV16/G8mDu3RHapdTuGG+l\n/Ls5UezRUp7p6WNFDYqwfBs8vtsw0sfwJDz45reNMca4cA5MYOqvk3frnej3l2N5drc7ilxe9xSl\nuHv/yBhjzPjlK5WIm9h8QZ41PD5lyFsuKEeVfOEIlvXxXN7chqPrX34KhwzRnVxX5czPicYNUWZg\nLLrkUZYdja10rfp4qItMxyj3hGrHLBK8k1PfVEJy+OEBiYiyu3AQxDB+Rx5qKCCKFtdw5+xqrDx/\nrudfkz8dOerboq+5ML7Ew76DWgaKC7mJnncaqr93M7REEWUGgEplWP3TGZwRcL3Ml2qH0RQkEJI6\n01u6fpnCqfNCEY6IXOMpqi+fvDxWOUAB5FFfWc30/M62Ih3FiLxucnPXzOkIHo5q+eb+4o9/LCRL\nC9WKnNE9yku15d2J7lWAlyc5U5+ePaaPn6sPvqqorf/Vfylupo75oTHGmH/9b/4bY4wxMdHr8Jco\nFsDVcnlKW7fV9nf+RIplf/afCfXkwO7+1//6f9LzLtQnFZSxOofqw26CsgF5yUkXdBVghXms8haz\n6EaOCCmotxi0QeJl/Bp49EGiLBa6PoozJS1y6mv6LIG+WhFCWGX55BV4RuCqiTJkzEyRgAiEjAOy\nxgSaAz5qTWXQC7FLtG9GxBh+K28CNwMRkQj0RFbOBZHYYoxyGREU1309pYNyGy4I5nbDE1qgBOHW\nYK5xkTDGAzjHSmVF1I/eQbHmQvuQu8y4b3TfCfwrBda8LAqZ5j2uJ/IKkmrNvlVslvh9YBq+5kXx\nWvNrCDpzBxTBgj6eTlSHgz0Qad/XntB9ojFcpm0mRI3nc32GRHP6E11XoGw5uKpCEHQFo+e6jB0X\nmqFRxmk1QCmLaP1qzR4JomVO3nQDqGF+rb58Gx6e/X2VOwJ1dZ4HfQoPxAJUV/dC9d2njba29LtV\nBJeNr4L1TvT7xak+l6hpTInw3tSSVOtfwvqc5ZkXEpCFl+rjZqL9BICQufw1cCd4TFw4ASq3QGMU\nNKYdlHNyKFPMIq1ZRaJ1DnwowzPtyz0ixU6ghTsca/8cPdeDa3A0pLlX62W9tWuKm9onHKP9ueTp\n76+RPL7Gw+haqIqrsVAD876ilw4IofYhiM4tnWWKzIk5aLd5D5THnPY6I19+qPKNAmMizmk+kcaN\nt9U2ATn5I/h3YniK1vD4eA3VaUAUvtVAmQXlwLAHchCOKZ+96tlPn6isnvpkHx4IH66TQoO9F/65\nYfH1eCBikBoleDVi+DgW7F3LufaDAXO40tAYbNd1Po1B7E0i/T/HHj0fhfwfROalyv8SDp7gXO1x\ntKd2CFHQ6T3Vc6djFNQmrNfsqRUUGguu+nLNWuDf19g8SEENl9jXaoSQC6C5QMNmZyYo0EyrqXYN\nODvM4O5Zg+i+NpqbG57+76AE5mToP84EGdfEOOO9CtUujsf6W1B98/czHjyNk67RWC1uwye4y5w6\n1xwawXmzHrEvGWMW10MzG2sglOm3KupdQZ2zX1Xt1Ftqrr08ERqi9Oo2/6TlC7qHf45qJxwz9brm\n0aXRu0URtNWIvuuj2unCq5Ypx1bK+l0PbqfdvtreLWs+l1pwa+XUp8GJ+qAEp19z41vGGGNSFLcm\ndCLiRSYAsXH3I72jxDM958XnWk/3WzrPn1xrTD76za+MMcZEkI/lm9oPRi90//c+1LvM7ft6B4ke\nqQ0LcAUOR2rbcZSNMXjvAvVxDlRU4KKoudLYah2hUPZjlNdO9P0C5bVwrPaegNaob6s9Nlta/3y4\na3a2NCe/+PN/Z4x5hdTcAJ1XQ9lsdxsOsAOVK+Bs9O1vqz0v4S+9vCQLYshGeUNrvaVy73XgcAQ1\ndvqVEJGVBoc/MgOiQOU+2tH1A9BkZ//Hj/R7FC9zvFuW4IZsV0BjM8br3K/gZ7hkY5ZJbEarkdl7\nS79xOvBsDtR30wWKXjvawx+8q/PQ93Z09jDw/3gV1anEu+aSd6sCyornj9Wn0QXIGs44VbinUlBO\nIcq2OVdtkpKFkO25A9aXKe/da5A4LutRqaU6b3ZU3uenyubwUfmrwglbammsxfgffNbLmHKUWB9q\ndc2NMiij+YCsAHjzor7OOoNL+u6+nr/7Q73zFNqcWZ7+7jFikTLWrFmzZs2aNWvWrFmzZs2aNWtv\nwN4oUiZIM6+dirGPfnjOz5ii8YrC+vycPLtvEWWbDuUlvEJPfJLKq5uQezZ3iGh05EUuk9tbPNT9\nZ1OhRXrn5MQRddu9Bn2BoLiP17TiwPTdPVa5iFS8dXBkjDFmRU5aE13zJazMF8coThCqefoMTxmR\n2yrRyosL1eP8VOV654HyBKfH8hQu8MYOT1CsIY8yR2R6WQXN8QLlnpnu523vm/QrFKdCfXZgPZ9s\n6e+tu6rD5SX52qhxPP5M3sVbe/IYj/rybk5zaLU35AV88K7QRf1LeRu3KqhwkAddJV936t9cVccY\nY8KpvKwRz5sV5dWcMWZS8p198pXX5AHu7EO53UZlCXTTED6fqK8+HZOH6G6CfmoRxaZPHAcUAooB\nKSpOV+SPD2GdXzkak8m18rYrKIGtxxqjia+xOFjD94E318W7O5uqHj3ut+zp7+tH6sO0rnat3yNi\nMlYk9Z6j+gU5uBjgWjgHgTI4gTcDOQAYacx7e4p8jGNF9fpLPddraCyZsq6vzjROXFSuduAjGcGI\nnl/DC3VXkYj1S1SqDvG2o7jw4gsY2uF6yPhZAhjNp+RMJ1X1xwrFhZvYZht+BKLj3lx9bMawvROp\nmy3I877S+rAGXVR6B76iayEg/pf/9n8wxhiz/ftHxhhjLv5PlBFyarMsb7lKRHDgqU7PzxWh3fi1\nxsb2Hyrq4mV53eTql+tqoxrRf7edqbHBy0FuLenNJiloLFRBjc3z+r1DZNFFLSLjA1kV4AJAjWkB\nwiVBWcXwvckQLitQD6iB5FFL8RwQLaArltTDZW54KIslKN84aZZXzVyHdT8iEl0EheB6oDJQn0pB\nFgY8x8vUNOBZKhm12wJlMOOiJDODn+OGlgPptHVb/bULH4mZoCZwrAhHyVP7pWuV73qq9Xcv1f7k\ntxTxTp+KxX8FIqmOOEdIJHu9Un0KAZHgMdFMEDM5+FcMc3jTFE0Ak858zrrHnhDvay904SlKVUSz\ngD9pkzE1qOnv8aXGUpYHXiZXv4xKxAo0kokzRJz+X0Mlw3F5PvJyE6M+zPXV5sO8rs94Jmo1kBML\nrSfBKUovcFzlayD9OiBt2ozhRUz5NFfmRd1vjMLBaKr7sj21fwAAIABJREFUlY2u36Xv6q2A36GY\nCAoios2dkeZm3nvNuBN7fjFQ+adXoFqJ2CaPVK4F6NdOXX3d8Igqwm/lNlkjbqF0Q1e3bql9N+D/\nuHiu+03O1U/eNegPuGUuHuksEMLdkKFho0DjotCAw2fzztdV6Ny9b7yK1sR5T+3WY245Mfx5IGUH\nKE/OQYm1D3S/6oHqXWuzNoKgWnaJJi5QUhqgCvgC1PMXilSffqn7dg5um70DlaV2qLFQJ/o75LzU\nBiE4RkVuCnIiZv0JL+D0QHnEJ6I5fcz574meXd0E5QXXVwAyw4fXzTRQQ4OHIs1p0DSuq+Z1zAF9\nsIb3aU0k1UEp0p+Dxt2Fn44xHcPHVMxpDEQreIjgsau34P1osl+AKHReqq1T+KRGC1C3bOYTzrlB\nQ3OojuLOaggMAh6K+yACs3O3RyTbp4+LqC81tc0ZH5R0fk9rT/RSY677Qg/2OBP5ICFrO7r/xTON\nrXPOuYtYv2+WOaOAAluAxKmX1R4H+zpjJvd0dhpfqV8DUIEpryv1XV3fRN2vC5LTo76Z6tQaBcx+\n+Oos4Xp5U0Ohp/09naU6O/C4NGifI5XzDvx++Zb6c/qzh+amtgZVnyFdfHglqyBo7rylPSQBAd2H\n66sN90zIec1nXS2hAHv1sdr25UpnjRXn4BxD+PCB6tbaUl1GIKc/+0TIlsFMZ4DlTG17+DaIuprW\nndnw2BhjjFuEg+zxz1UeR9kEl6eqRxl1ov0jDZZaEzVU9uwiCjl33hdS5sefq7zjL/U+Ua+qnl4z\nQw5ynqf9JpzVNpgTFyDg33tX6kSH39Nzn/0VSP+exsCiovbdAVHZ2ufsE2osPv1E61LzQ913+/fE\n2dhOMuUg9k/67xTCt+hM5R+idLt9qHW/VRMSZ+uOyjO9fA04lTGmswVfKWO2/0j1iUAPBvCnDvn/\ninfhiLWxUMneUVXeu/eVXVJpiiepwnvc9Dkcbdd6L5i0QS/7yddlCecrk6QLc+utfdoAlFJXKMo6\nZ4aQd4xrlJ3SGohuzi79Pu+rA+0Fa86TTl97ce8Z51bUjgPOLoaxnnF8rUFvtfAHTOFXKvLee+ee\n6hrsg9bKZap2INFL6qMzVPle/Fqfe1vqq1ZDc2oKci4s63kF+Din1LsHEqfGO1j3qeo1P9Pe7XD+\n9tgXDr+r3x/9C5WvzDvo55/+1hhjTALX6z9mFiljzZo1a9asWbNmzZo1a9asWbP2BuyNImVclHCu\nL2Ep3obJe6TPyy/kqYrhKSkF8pC/c18Ry/NQnqp3N+DvOCOHrasoUyMvb+98qGjbw8+Vd/fOt8TB\ncvFSHr1NPPVtIigTFBXMTN7JR09Vju2aPGA9eEgenciD5qCyMcf7vH9bnsarE7yZqTyDtVvy0O0R\nzavm5f0t4OZenMkDB5m+KbXljZ6CntjbVnsFIIQSlCXGPeWFdw7fNcYYM6zSDheqt9ufmhPQNy58\nNss5dTuT9z8oy8P8MYpTH37ju8YYYz7/XNHjAORJZ4Nc/a8ULXn265+qsAU98+TLX6oO3/8jlfFK\n3snHqcoa5InS39BKJSK7sIjnQVZ4a/XdmmhbqQlDuFGdhw1Fx/aP5A0tLuQ19T1d36rIA332pTzP\nLrmWpkHEt0q0bktezYhc/mZHubKzserjLNR3h7d1/5f4+rfJ3TU5/b5SJOoEx8KKKJ0Di34I+qFY\nVz3ffkdRo8Y+UXfQEq2KPq8y5Ql4NwomU+7SXNh5oPpVt4+MMcZcn+Kdfab+cOAj6sBLsoZ9vwHC\nKchyjkEBLOHWad7RfaNr3WfQ1e/2DjTme0RS6kRwU8a66+s+6zy50iBy0qqes6Zdqi7IH3g/bmLv\nfF8RrQ6KJqfPxEnluGqrc+Zl2NK6MLmT5S2rrudtIqyb8mx3v9J8WpKv619rLM3OUSMiqlM80FzY\n2FZUZhdOhBCulYv/Tp5x14DGuqItUP6KQBsUU60DVyP9XSlpbERwKeRBCWSoiBqKWEuQPuOC2jAX\nZzxFRCjXf59rIWHu1InwrohqxR6Ri5X6LC6hsAaHQMDYKoJ8ieHzWDGXANwYB8Re7Op+BRRsfOZ+\nvAbB4xLpTjJ2fpBMHhFxur4IsnAFh0MBHisXFMk8f/MxYowxPdp1uKFyT27p94dw+MRd1mNUrDZQ\n8zh9rrXmi58LqbkO4Q47QSVrS/V8/z3NgQrKRQH55SU4CryRxsUlUbAIpYy0B/9LLTItlJrKNaLu\nOe0BZaLKS+ZrZYhK0JXK8hQkRCGPkgxR9jUcYfltlWH324o0hkShYxBvyyvN4xCFqGCKwhW8Ryno\nrVOjOgxBiXrbqnuhDqoVjpkIRZp1xLxf6Xch+dh9FA9PzlFXWqpeuxuKHO6+pfIWjSJ+OTjDhpda\nr9M+9a3pukJHc7BZVXmKTzR3R6Bjb2oRKnbRXPdZwRuUjlkPh5qLCXNq7StS2vrwm8YYY6prOHxQ\nWvwaRZFTfbuJ2r0I904BROJ8qf108VJ7vblSRPNqDDIFZblbfyIePLehdgrhKivsv+LOWeQaZnoF\nCgNFDAckZlCiv3IgHO/pvpUwi/YRNWT89Jl7RRBH4SXjCkUOp0c/94nYgwJrodCxu9U05UO1WWkH\nfpwN9vI5XICpnlHlOHq1YE8/o62QGHMGaovFKYjAPuvQWNHv8Vxj9eA91akAUsWp6vomfBHpKkNU\nwhPEOfGm5kWcDVz4g1gAS5wFpiWQOyi6rB3NyXJFv2t3NFeCldpoyVgyILILnPs6G6BV39XfKRwG\nc5AzDijVYoZgnICymzDnUF2KGLtOoDkWJvpdQEg2JgI9z5A+SxA7eSLXcNM0NtQ/q77OZFMi5uEQ\nojr4QVo7OicXGow5+PYKGb9eSe2eK6n/gmwfQ8mySXsV4FdyM2TRAgQ8XBR5kD3esR5/1tNZNYXP\nzoXDIgxfRaZX3cSYvJ7fQJkzQ9eZlHqAzOlfq/ybnBPS2s0RVQFrfJ21/3qkNvcHjGkQMgl7z7Sn\n/+9vaj1J2ijNMO/SUG0yBMm+u8kZhnWhAOFNvqnrt76hddM81Fg5/s1PVJe2kO0eqp1bu2qLGfP+\n5efi5zvY0V62f8B+M9XndvlIz4FLMsoopPqgIWqq36e/0lnr/ffEw9F6S+9sV890JmqjKpeNgQwp\nbjjb+KC/ZnBDrlYoym7zrvZA6/31b+HegkOnWdRzZmPt2d2P47/3nAJcZ08fw2G2oT3+7KH2ld/8\nhRBFh7fo6wJ8SJ7aaYMMgz7KXJNTPb+8o/9Xi6+XCVBE1fXpsc6cK0gfS6i7hnO1S51zea0Al5CK\nbUqb6uf6hubcAp7ApapjYlS58kegBnnHHfA+6JB5YIwx7nJpnCA2jfu61/OfayysM65C+IvWKO5N\nT9gDnwv9dLrk3ZKzQWkNtyCItgnvzREqa2/93kcqI/NviTRUYzNTElO5/LLqHD7SnOh7WncevKO+\ndh3QmqzrM7hdruH4evGZ3gcKIGh24MIZof7k8e4VgD4qe6Bl31Lb5ufq48lKYzFFebLzDc2RA94l\nt+/AB8h5cAoR31//7V/qeU/1br3NO+Q/ZhYpY82aNWvWrFmzZs2aNWvWrFmz9gbszSJlyNV0UfOo\nBPL67u0pmldrkBeIZ62/UDRpBk9H94Uil+/fVfRovyEPV7qUJ+0b94VMuXMAKuJtRcJ/8JEQJb/6\nXHmSu7DLn54qOtVGWaF5JIbtXk/32/8DIWyqD1FaKOq688fyOo5n5zxPHrM55bhAL/09op5FFB0y\njfmjI3mvf/7vpbq0dSRPpcHb2zvT5zvfEMt1jApJHi9uOoSVuiAPYQUFoaCk9t28XTPPX6isGzvy\n4uXhg6jBbL9zT2XYIxe/s3Wke/5anuM10f8qedqlCvwYRB2O3lJOe/eJ+uid22rT6loe9asuakn5\n1+OB8DMeimWWNyiPcQsVIwNHTgxCpZRHRYho0Qp1oP5ECJqTMyKR5M6P86rX+Epe1cNb8r6mviIM\nFTTlu9e63xhFn5whx54ol0Nbu3Ny/YkGJUQa63LwG9dX+3oVfVbhrAlj/Z2LUc7xVR5niRpGWd+n\nHbWfeyVP/ywVSqTSUjv3z1TPbZTEciqOicmpDRyilUStCjCPd08UZdok0jJ+oft4eMkJWpkwi2Lm\n9cXLGXmeS83J1NEDl6DYMjWvGC6dsquxX0FdIAs+rZeqj+OiyrK4OaLq08+OjTHGVIsaI0uiToZc\n8upthRWG9Xuq09sai8c5tcn1kebXV2ea//NHQg0cXmnduA//Q5k+PXhL60qGNCmtQQEYjZ3JVL8v\nEXib5dX5dVBq5comv8t4PYgYMn/XM6LoWSQTxv80Vb0W8HhkKkiFJdFyrlujBpfje2g3TCHQc+ao\nMMX5TGmM9YM5tGR9KWbqR3nUkYgQGJQNUtQxIMU360h97MPoH5VZh6hntEBBhhCIzxifEZnwaB+H\nEK6zyu6vsRo4IG5QYEuJqN7UHCK2w4nKf7lQve6Th97qEH0kD38OV1lABDidaO3Y2da4CDdoP8bR\nugvipo4aCvn7mbiLj+KOO/P+3vXhQtdPnrgmv4dyXp2+3WSMwLORB+GwCTLimojfqs8YQWUiyZQQ\nJoyFBepLS+YzPD1D1i9vQU59pj6EKhy0EiZHtKsCSmDqsvfo3yZGta1a1P1iFoz5tZ5XZL30DXVH\neSUGKRPFrMNPFImcw8PTBIWWp++TPtE20G8R3ANFom3vUP/CPT1nNM9KeDMbPIb/DYRNyPo2Roks\ndVDLg0dpOVI97n+Iws+h+viTX+hskbLeV1DDiuHaeXml6OKGBxpuRf5+XyHOVgEuszzrdZE5wfqd\nvwsqi3YMV68QQdPBwqw1LMxirLEVXsClAEKyuKc1beeu9mkPhbHuC9V/PGQ8Teifpcbb7IX+7nJW\nqpS073TIw9//QPvRbVAkaW5p1jntBf1EZTmoav2sbunZi67qnPGoeVNQORcqyxBFrhLnnBzrQ7OC\nAuSHWnezKPOqlnFXgWCB86BchRNwzHWgv9Lp60W3J6xHBuRKCkeXD7/dGvToRVf13QWldjHQmJz1\n1B6FDkjoWG2Vn6EcBvdUcAvlrAgUUqLrmnCfrNogaajf8xPxXixQtlmgChe91N788hoeIMZu7QU8\nettwIO6qHkkfnop9uBmGivBeLPW3M9MZ0rB+zbq6/xokZon9orKm3HmN8RJKjGXOoGmd+y3UbgOQ\n518+11kkAfm0t6k1Ycq+4w1Bj51mZ0I4zqCOWTAnFwPt69DlGWOMGc97JnwGMhUOi61tlCgj5gJH\nj/kLzdHR4Fj/n978dak7BPHBupqe6e8ZPHQeZ5J2lXWG9aELuj3jDFnU9bsOfTRB7fPlU83DDCHt\nw/8xRcGrWlPb1m+Dnu1o3SqwRzsoHV6Azm+31BZDkO1HByrfwZH4fbqfKltgNEUpF5TaxVC/y22q\nDQt5xjQqeC9Q+dx/X+9ej3+qsbRgz8uzJ8cruCE3Nebz8C+VOKPErLs90A3397WGxL+v9ebiXAj9\n2VSdHaNal0Sq5xYcZMVmkXZS+21BBFfZ0PqWSxiTK6Ep2ltaI/rsA2FOY8SFG3F2qXe+8kpjKjHw\n1N3Q5gON+Qx5H6C069dBLrIPXY/UTw7vax4cbMsnmuvHj4TaXYCgX1+jxppx/FRB3G5oLgVV1fNr\nJU9jTCXyzWWc//odr848zfaQ2UznnIj1o0Q2gpnrs1yD22qJSmYuU1nTmAxAsBXvaa8p8u4xuiCL\ng7q6cMggeGs47poS6PrhidabX/yV3k1bRnMjYX0MA7VBCwVEnyyOlHe0HOfWBVyCm/AvZRyI5y+0\nH23d0xg4+r4QPVAdmsWSOZ1lN6BktZpqDDz6QqinwRS07pCx7qMGxRz5x8wiZaxZs2bNmjVr1qxZ\ns2bNmjVr1t6AvVGkTAI3SkzktHclL/Hxc3gq3pJnrhaAJiDyuLErD9vL5/KmXsDmnhIpCWFNvnos\nJM1JRd7F4xcgY76Ul/HyRN7cjXcU5Tk+1nNru0cqF1wPP3koj/nuB98xxhjzKfl/3/rwB8YYY5r3\nFIGvkOvc2FIu2gM898+fql5FcpfDMdGoiSIb/h8IkbPGa3m4KQ9f90LXTy6J3n2gdvrRT8WNc9DS\nc8OV2tEM5O1d9FWP5VT1O+0PzKdP9KxvNZT7PpoI0dKbqsznx/JWPn6oz82WPqsgKtI5vBjwV2yj\nlDWfoGB1iSpQV/f9/Cd/o+thT5/N5Zm+c0se85vaOkfUBtQBAVTj+2pcB74htwgRzzpThIGXw8g7\nWacej1bygo7JO/SMPMZJqj6qIONRIsc+xftag43dIwLoFPV8hBPMkihRJUbVaaIoTatCNIkIpbtU\neX3yznPkNQ+HKk8QEPkk4uzBap+DsbuOmtWYiPeaqH+uonr7M9WjRJ5lDk6D8jXtMpVn3Svq+wbe\n6aegGPyaIhUxycLlJOPg0d+XoELcGA6IosbqCHb4hDx3xALM7IrIEPwf/hIeklIWmVc7Z0pnOXhZ\n4unNI9wXTz41xhhzHKnNN/Kqw4hoTmGq+f3VscryOYou3/6v/iNjjDH/4s/+C2OMMQ+NlAZ+9rP/\nWmX9GTmkV0Qm4cf49ZfKi559QQQYZYD7h4qWmzu6fgA/SIOoR4iH3suUGYggTEFmlIgQhChQreNM\n7UhtlZ/Q57mMp0fRlRWKYAFzJeM8WMAdkBBJdFATKnogWlBlmqHYU5rKo1/yCE3AKeDGmVpHFonQ\nfUpEiCdERmr8bMkYMESXltmcLer7HNCdlAj41Of+scb2Ck6adZwhZOBAIOrllohwEzm9qU3gzFkx\n5vtd1Ll6GtMbYyLy9FM/RgntCg4fAJKdDeXJv3VfUcT5tSK7JlYULyWSXIRL53pNZJwc6yq8LX6Z\nBmNtWzjXpuYpQunDQZVFJGdF5idNW05ROSPa3GW9KjCfCigLrHnW5FRl6P3qN7pvQetBHg4nl/Dw\nCgWFgPXBzRMVb2sPrTMHBqjHkUZu+gOQdXDJePTV4Epzo9lU2xeJ6rc6oLhK2g+mqMyNr4kusf4U\ndzWXN29pbq1SjcE4UVuXUELzL7TXdadSv9tBbS9lbN/UkoQxCddDQn3CAYMYvrYmnAjTQOUZeBoc\n29SzeQv1Ob6P4SlagXCMX2jMxLUa9Uiop6Jz222NjTCn9p5xVHtxon4sg5JoFVWO1eTVUS7pRyYf\n6XkVeKt6cN2sQNut4AXI0GYxqnq1jAsM3qYBnBQZWiCawjnD9e2yxlkAN05pm0MPzx/Xk69z8DNU\n09dRaqLdk2t4ekK4ZdjTL0ADdL/S3xUit/sHirQG8C4FZY1lr4mCV6g2z2frLrxu15dq+8UVaK4w\nQ8jcXOnPGGMqIN1mcK1ECeswSpEpbZSMVI4ADpk2698cJGIuVbm3jjjfct6MQFKvUOZ6uNJ5zoMH\nqrKrNaK0Vt9Ha/XZOgQtTJ8u4WEyjIE26nsOiitVcG451vl6XSiz9BD+E3iiFixQ8UD9k16rXP4C\nNB/IpSuU4q44W7XehluGdXNW0VjuPYXrx1W9qiiYBR4oAcbJ5bnOlp6BT6+JoibI0wJzJ1Mgc9lX\ny0WVbwBnmTPhfGyMWYUz02O/3mX9dVGrKqFI4zVBfbRUr9qextuqd3NlHQd+i1Wkuo6ZAwXW4ylo\nnyrqRU14hIZT9UVrB4WwlfagHFxZu0c68z/9Uki1bwzUdiUQIHGkOg/ghHoHzqu3mTNf/lJIldt1\nIe0KlMtBUXHNGO7Rl9vwqjkXGktfgcYqgi7Y3NDzpsAZfDjIHNaZOSiB1pb2yvo90MSf6BxermS8\nd3DjjDK+PPiLOCO58OlFKN+cFvTcvXtqp/0j7QPXx3r/KAeqX5U+7aEe2MwQ2OyjI5TdOiCCSu+o\nXU+e6dNpaa/3C2r/ZZdzO1xqCWsPFELGcUCI39CuhypPxeWsA7IoNpwd6ZfZQO0x+Fj199usiU0Q\nlaydBbh/Ch3UESMyAkKQpfAs5UL+n391zk6L26bUG5uzT/WMg33N35P7KsNc1CzmDA7T+rXKvN1R\nW0dwEC55Z1qPOX9GGkt72xrrubrm2zBDprMeb5Q0B7LzXtRHcRaETLnDXIFj5vSxfp/01IYOZ5rs\nfNuf6LN1i/0BXqEBe2GGpPRi1h0DmngMD9PPvjDGGNOuaEzVW8omCVD5mz3Sung2AZmYvVsxNsus\n96ui1qkp6LAZyoX/mFmkjDVr1qxZs2bNmjVr1qxZs2bN2huwN4qUmRJmK5NX6ZEvV/LxLOEBW4Dq\n6OLBWhJJ8R158HxULHY35dlzU3m+Nrfl5S025JnbvyuvZwKHwwKPWQWW+4j87DUer3JF3uVClXz6\nuu6XTFWu84E88ONzRQmvf0s+eEWInAUs0S+Pj40xxtwCUXMA58xvUVoI8HIOyTW+QglnFWYKD2qv\nhLz5vCuP4v6h6tu/JkcazogxPCCFpjyK9eKOcSNyTPMwWS8UaSw35WHeaqPeMMryBhVVuveOkDXd\nx0Ij9FB1KMNa/vAXimZ8+D1FVT744HuqC+oabxEFOXusthoOX0UtbmTkykdEHL2lxkYepMZqoP/X\nTOYZVmMl8HLkUHoZoQphInJwM2obgu0+4fzxFUiODvmCOVjhZ/rBBE+7DzrBSfG2ZkGUGC4HIDQx\nCBJDFCgFFbGAW8eFXX/RR2EHdQ6zzDgEUNIyegBp1iYmB3kOp06JMT8i0m2mzClSXH3GhAubfZrq\n7xSAUZYXn+V9euT4ToOU56GgwRwZ4e1tVVWg3pXmaIaCWIw0riLmWGGu78dLkDaVPOWCH2QCNw25\nvL34Va7rP2WdO/Kgh1Pd26dNyl087nPmM8iTUlVlSVr6u2dg8DfPqbPu2ygoyuCUdV8z1Byq4Qmv\n30IlI1Jd3S34OxIQMYRj4hAlmYp+N4dfJ8m4VYgqrVEHKpJPbQIioCAtQtBY/kr184CNJT4qJCBa\nghzqFURAF6hPBETvohLRLBcliBiFM8aek6kpZWMbbpjpNENrgRoA5VUlkjmdg86CpyQtMFhRTsiB\nSgvhZfJQjCjDjbMEIeMT4cxQaf5C7ZSpFUXZpHVeDymTgEgxKP2Uyho35y+0TvtDPfcBUblSW2tc\n7R6cCZ9ozGf8Uy981hyUIvIgj/ym+idEiWFJxN5HZSkGLTaeoGaA4lspv2Umu4pWN1ESG59qL0jm\natN8qvUvhINlBaIkh+LTAumqhaPKtnZRyUHgxXFow0hlnmdoKFBQSxekWoEFraF9wNvJbqB9YtVl\nH2BdWNK2y5HKl6mphZHWpbXHXKDPArhiCEKbiwyZgopHDH9PCiHPEiRJF+ReGqKQALJudoHi2aeK\n4nnwV6wWr9QlbmIhc8Qh6pcWVd/6XVSLNlRuhzPBqqt9aRChcNZVOfINuGie0R8DrY/9F4o0B/Bo\n7KAeVUFZ0od/JN8hco1CpYcKR8w+NjiHv2QFtxh5/sYYk79amjX9mc+r/bbeBiUGOqSIquDVE9Sl\navpMQLjE8IVMpnyiHrO7pTPUVkX7vUfEfAn3Q34TDgsQVaXC0uQzGY265stkqL4d/JK94Ep1CUF9\nrlCtTBZqcy+ndWmnrvUWegnjobq5KKhsVdCXFVABa5Ahec5ZfdBUZdbRFHRRpjB4U0sTeBtQx3NA\nkAxmKLTsgqApq60KFfgdvkaeaEw8G2pub4O+6oAGc1nP89QnPEatLuS86GpsR33NwZOJ6hWABg4h\nggpyrEtE332Qeg0XlBzlWrIwrlgLZqDgGqC+KpxFPPbLJUpA8TpbO0CreRAZwXuUKaYlDkhPkCwx\nfBweZ4U4U9yp6v+tHRTNDtVeCYiiPDwoDvwgeSgtVnDyzKZax+Mx/ZKyP+ReqfTVgqIpHqidSyCY\nKiA1kzzcYkcqXwzS5/aRrnv6y+fmptZugc4/BkLB2h/C9eJyFmmx1+2gXnn+W60TBj64BP6i8VR9\ndAQf5gK+pT57cuKh8AWiMgKZ16UNDr4rROIxXIET1NK8DujTC1BUda0Pg8cgtd8VgmXjmxrLX15o\nfR334QRE/ceAhI7OgUVtqQ+Hl/p+f1fXf+eHPzTGGPOXZ/9G5WDdD5oZB5jmYg0+wHymXAiXjrvS\nmB9+ob7eqahc936o947u1V8YY4yZutqrN3MgzTmL+SCUIhD8Y5BIO8gZffM74u382zO91ySh9n6v\nKkSO56p9A8a2y1nPZ13OODBvah71jTO0H1yN3kJrW7WuOViFE+bkSyGdzsgqWaG22miCNoO3bj5R\n/xfgLHMzBBMqtgkqg2b8iuMzCPKm4OXM8Wfaow7mmic7uzontX6oCRejLHvyY70TNko1fq82qlCG\nbH08AW2ZvtDnwQPVaauiNr+EhzJGsfAC5HLc01h6eaK+uHVLSJXDD9Tn9x/o3fT0qeblNfM/YP1a\njfSO624JndV4AEoIFdR+nO2h6oNOQfO82dKYu7rQe8GLTyGlSuFl6+h+WxviUa0W9bsiHDvrlD2Z\nrIaAPgjg+QzWvxuZaZEy1qxZs2bNmjVr1qxZs2bNmjVrb8DeKFImj2Y8gVKzIAq2fSQv6/YtfS5w\nwBeItESoNHlullOq60J4RoZosJcDebCGeCO3ic4loCxCvNQ5T9ftP5DXdzSSt3MTr3ELhYGKUQTg\n3XvykN0nD3RQltd0Iy8kTAsG8VxL/++/lAdwBjJoFWT5//KOTuBoOMITmKKM0bqj53xIHml/rufX\n9xVNLVVVvkdfqX7tPXl/HepdjNVw4XBl2hv6rk4e7hOiNBHKKAXyaGt35LEPXd1zv6W2fgJ/xa1b\n8lJuHspbeEWedr6i62pF3e+Lc3kZP9iQB7t5RCR2+iqidxNboV7kov4ReSBhQCv0yBdut+SlLBRV\nD2dIlAw29ZRoWAUkSQRyI0DhpUykOZjrfoUIniACHWNUQyooNUQLlcspZOEauBvgRmkYeVsnKEbk\nie6sGKP5Je2xIjeVCLWLWkmBCGkuQ0Ws4PHogvjfDm+WAAAgAElEQVQhyuctMw4akDfMpTV57qNz\n/d8HIZTMiH45IHQWmdIOTOvUK1/Q2F3CT+SDzPEbesD8uca0UyUXGA6bgYGvBH6kcax2yDgxxn14\nAzZRSQGJM43IiYafxPd0/5tYDp6jHjw+jSF9MwRhASeIO9W9tw55Bsz1v36q6Mr5w39vjDEm/ZGi\nEIVzXVdwNSe2Oxr7KRwvu3+gCMKcaNCwq7ngV1WO0GhdcleZ/I7avGjgMmBsD+v6rCwzHiTGMHnG\na2SYHOZAwO8c0FoR0TAXDpYFUZuA6FAx42BhLsRE6VI4CDKE3RpuAL+k9iywPi4zNSi4GSLKBSDJ\nlDPZC4IvfilTDkAtKlMvIoLrVjRG5qh55InU5kFpzZkjUUSkIVNSIPJbhC8qE4O6qVVZA3bXcL6M\nQPTAVbZY6IbHKP0UiMg37qn/aw2huNIx+1AWYadfYpTUciCf+m21l7cN+qQBMnScKXLALcHcD/2K\nOeujRIASSM0BVQTvRQEuj75RNGkKZ4GPSlwJZNzGHmhQ2soHDZorsAdm6yg8PkkdVQmX6FFVUa0u\nPGgllFlKAz23Rxvto8I0HZN3DjCw6Wu/8ataFwJfc+JqpjmXQ8HA1FA+AblRBZ21KIGkQ57trKc5\nGRoUYkr6bKDE5exovZqf6f7rLMq/D8/TDa1E34Vl0Ars8c0NRc2XzJHeUP1U6IBsgSusj1phg/z2\ndM4enKhc29vsR55+V9/SOpjLeJjSjJiJqKRDlHEB2o58+TVcQD3W53D0iu9iHc5MWmetOdL9PXgz\nQrhiYlRY+tcgY880Bx2UyNIQdUU4gBp1/V2/C1cOaOEJHD/lOnwmNaKFPCdIAzODv8YFJXqFYktC\nX9Xo40kWNYa/YWeDObDHHptHWQbxipQyFUFT+XCLZAjFi+c6gyxAv/ohiBEQETGoMS+9OVeIMcZM\n87q+wDo74+fjgSKpNbjByhtE41F5q7Eebh9q36jAc2HgChuj8lmC185JuA/8S3n2k4D1NjujubSX\nBzotjUFeZsFwENinTxVl3yqr/pvf/4YxxphW+0j3Y5/IuHhceCymE+ZmhvSLQdWy/MWcXyugI4oo\nWiY11AmJnDvFjKumRv1VzzVrgEE1aY2ongfiZgV6wGX/WOY0J/KgkrN9LmbxWYLmzVDf4eQVUiZN\n16a2w8ZRYq6jdFaYo/IqwLtJXHFWXKBoE7y8OaIqYP3yylqQ12xWPu8eAYju60utawdbWqfmqCHl\n2JNTFF6nKGo1NzT/2rd1/p690DqUZ6/MLTRXUub35Vf6/9b77xtjjNn9tngxr38hXjxnhPwl5/xM\ndW6Cmt/qqep88JH69vYf6vef/einxhhj4oHmWH5L7y6FgL1txZmC+11eqvy3vw366LtS2D3+uVAZ\nBj7QFvwbRdBdDtwnC/juDO887qWu/+IrqQ594yNxwhz+gZAuZz8nW2GkwZTbEuIxRL2wzPk3TDVG\nRqyje3e0Xt59T/e7fKrydUCH5HKcUTiLNOiniH6dxa/HT5XjrDMNUWzswfeUaA4NX6icO7wTv0M/\nlB4+NMYY8+ypeFMTxnrAOTvN1KFQUWyVQeLz/uWgEuXEr9a+WrBh5o2JmT7SXn1BmVZXGlP776vv\n3v1AaK3SUHXvfqw9rranNs6napsaSLQDVImefaz1Z4rS1J37nMf3QUCiCLWxDZfqWGNw8RWZMr8W\nV2x4qv/fuicu1mpNiJsY9O8Ylb8pnFdz+JEOUTyro2T27DciyXk5Efrr7u09GkLl2H9P99/d0zvh\n9ReaC5eg1EYXavs6aqqtLc4ivOJ6m3BRruACAykz8X83wtsiZaxZs2bNmjVr1qxZs2bNmjVr1t6A\nvVGkTAqhRRHKhjgmSkh0b7mUh6o3I08RSM1oIq/g0oP1npDA4EoerElX3+/elrfzyWdST8oR9bq9\nLw+eQVnh7EQes4qTqawo4rEg8lCd6n4Xj6XOUiNCOr2Q588UiTCTw9wDLdAaysPoEOVcxPIY9uAu\nSCFvmE70u9aeIvEnZ6rHBpwP+bK87KePlMNXystbenmh9pnAcO7OYcfPPkF1XI6GJorUZmOY58up\nPKXptbyPF0+UlxfMiJTCfH3dkCffhPq+TKRwAefMYqWyn690fYk84Sm8P9dd9WUejoMInowbG0oH\nBhTAEu9tPkMbEO2fT8hNxc+4RmHAISpdhPfC5GDaHqg8i4LKtwDFtBjCV9TTfVyXyCbe1wERTYd2\nqsMVM5vBxwF6oUz0aA06Yo3KVTTQ7wstPS+daYyU1rrfOIKcgTx8aJPMiqhad0j+pQ/XAkinAFWk\nwKP94a3IUBHTif7OwUUxg6W9BI/HHAf/CE/9apWpdIBgSbNID5wGsPtH9HNIfqbx1L8RY69Cf+RQ\ntJmj8pTvgrrgfhXmULdLtDG4uWrKAu6pcKB7XkSa10Wi+VeXGvPzPn1JTv30hAjuj8it/63WmeJY\n99sh2p/CLbPq6H4OkbjjrxRSS43aYID6U7uvdSaF7X1R0u88VI3yGboJj7lDHy6IHObhHPBQzViD\naihmdEN1eI8mioKkIFhSVJZqX/MYkY/O7wieGATCTBmeqSlIjTpRnuVCPxi7oCy4j4eqR+RrDDko\nAE0Zo06g3y3X5FkTHXRBGC6Yw3GGrCHKnimBreD6ykhtakXWWdBbPpHQaRklH8bwTe0Wn4s5nAtE\nyL05axPcFM+6ipCupxoXb9+CD6AErwiRoOtzIrYVIrY+6C7+XwIR6RHRXfpE7EtZvrzGRcarVBpd\nm+cn8Ntss6YTafXXoKOIQjst2gQeoBgkRlxWm8SgPD3W5RFtnWuoDvMeufkQlpXhGokazIkdDZIy\nUfXVSnW94j5mTg58HWQfnCoLuKFmoLuqGxqj3YnKPVkpKrVARWjrUHtZDsUFt6X7uuOsKdVG85Xu\nmyz0jxJohz5zpoLSwqqqvroA0VcADXFTq7YJ07NuVTc1l3O7RB5REcytmHOg1i7P2A8vFTl2URYq\nt9Sue77QVkFDawDCXMZPdf8QXiKH/WIFt80abokBefaLPsilpiK6lUTtm/s7sLFadcN4m4y9Kigw\n0GjrHmO3y/4AH4kLiqRYUbSz2FC56kcqb4Wxb+ARWRVQheFs48DDFA91v95UZ5Ny3TOrC50hLgfq\nq+tj/a8Ej04N1FDT1Xqb39WeWN3S53KuOeHAu5Brso4XNYY9OK7moHO6l3BAwefjFOACazCXMlQB\n56p87hWvwk2sNAd1yjqaKaDMZ1k0WnOiCtQuarHHEkJdzFg3+J3XQK2J9S9D3AUgQzKlnulEg6a6\no/YqczYpg0xcMid9zhAO3DfFOnt3dk7mbFCBizAHUqQGJ0JG2RUUNFZyHA5CeN5WcNksLuH5a6gc\nxQJo4QrcauwPQZ71Gt6QHPtBUFADJku432L189mZxno01t/V2zoX50BUZVxpKVwNMWce6DdMkbPc\nhHXW+zvKZJNkYpwenBc5eF1AS0c12n+AmstY9bt8ivKdH5ib2oq2yrdQhhrCCYWqpFPQ3y4KgEv4\nLFooa6Xwa6QZUhLUkMfZ4N439W7zVabmSacNQY6XKesMvo6LmZAg978hhI2HWmn/K+11UYauOgcF\nVUE16jnoY9a/93/vI/0exObLT4UWKHD+XYUgfNizC1sg2s9RXLstVMHbfyiUlpsDmfMMpS3OPKOx\nfj9dqfwFUHYZZ2Qjp7k8hCPn/ODIGGPMW38sRFARTq2rh3q/8TmbOZmSJGiGfIWz2ljt4yT6+6Mf\nCA3y2VrPd0H8rEECleDsyRQUc3BITqObq4Ya80qpKCvPArTdzGi9LU/5+xpFs0PN/YMD9aPP2WmA\n0tuMfcmnfJOFxkvAmuUnGi8JWSmX6at9Y7wYmJJbMQa0zWJIXzwXWujyCykb3vtDoZFaqATPqqBT\nQXrPyIDZoq22v6FsiQI8b88eS9Xo0a8/NsYYc/qCzJBNOAk5+kfw4FTaek69An/lE/XJl5/8Qs+5\ne6Tr2Q8MSG4P6PbkVGOg/1xt+u1//qExxpjw++8YY4y5+LHqdcF6yPHWVOCezPwGjXc1tmvn2iMv\nQXr2x0LyhHM4Irc0VjpG5S5nkpksr9Xkd59bLVLGmjVr1qxZs2bNmjVr1qxZs2btDdib5ZQpEGXL\nokd4uMqbFAv0g1mAduhkCjrk0tbkeYvxtrpEikuH8kRVN/X/1oQIQkWuqnCh59xDQSjCu1spgwKZ\nw/MBgmXzgLxsX9/vkSu8Xup3ThZaIPqVXKGM0SKvG2ZsD9TGZhsOiVR5pGvywTOURZanmC7x0sKT\n0szrPsVdfZbzun/rkPxz8uEztv8A5YhKUjTtMjmVRM1zm2qjg0h5gsWS/nFwwDNQx8nDl1DeVaRv\nhVrQ9JqIXVHezRqM0il1uHskfp6CM6SNMk4EouE3tGStvi5mEQOUSryAXNEOCgwgTQJyTksgWPrk\nJQbwjjRR+ipRjlym2JCHQwXFl9DBo0yf17eIzmQqFxkbfIOxRX5yw0WNApWmBtG+KJtqjNUh+Zir\nur4vreEm8HXfEPWPQhOvKnMkAl1R9ClvT1G3KgoOhab6qV5VlM7Jqz8KOJHHAQpn4Yhyqz6bMIiX\nqP94xJxEvWNCtM7fULsfbqpeeRSFrs7gP4HUZhwmFFvtt0EULp/o+ZkK1OaOvk8yzhvUspYZEuoG\n1ippHpdLf6I6r7KcTdSWQJwheGLmeZBprjzZQ6IJ2+QNNzLuDyKsKYoyPoz7i6+jISBr4HfolLM8\naFBbvu67QnXIGWueL4hw5nz6nihYVCYKjZKWA++Qt1Y9vDqKMAn/z5RymFsJbZ4LVFEChqZEHrQD\ngsODlyNCscwH/TDBo19OQRmQ75zA9ZDA6bBGvcghpFGCMyeKQMCwLi1Qj6uimpGAalvnVM4ikco5\nii8VOGUyVJuTgFbL1Dpm2XqLYox5PashEfQ25Y2Zo3XWzXqg/pvBE+KCYCnzmUS0KxH5XdRCAjgj\nXNrLh4/DgAxYglIrBNwHzrLCTO1zt4JSUKdimiivtOCqSufcA/RXCgqzXQPBtiukyZRIWScE2QGv\n0pg+KYDSyVGWBUi8MggVn3XWm8BPcaq61kDCLEdEy0FwZNGfHPnhNbihiuzpNXggADWYMXOpGKu8\nbRA7G1neN0iR3Br1H09jqwzCI8f6GdaJIIIeC1EH8lH/cdrgoeiCofOa+w3ojQpKMS4R0HVfe3E4\nQI0KVNk6UKTWZQw16eM6qDCD6t0SNMKKvg+Bq7kxiBMinCtQBy5noT6Ra3dGxBhliWqisRNusL+V\nXq2Xbiky8Qh+DNaOBUillEhzxvdk4NOrsQ9VWZPWRT0vmaEUhopeCELUTUEuNeC1Qq3JIWJu4JRY\nLVwzY+8pZIhg5kmQB20FP5xfYf0pgcJEBXPJ2K76Fb5X3bonqlMRfocJY8mBK2qN8koLpCPLnklA\nKcTwMZnw5kp/xhiTg58h5XcJ+0Z7V+e5ZajyRvBXbHmcAXjuGGRPYcZYR1WzkmOfYd2e0dYe6k5f\n80BB5rUqg+5FaSWir1LQTMVihlJVee/9QCiCjO8jQyh6DkppcK4FoIxXCGWGcN64IGzyoF6TTe27\nLvtsrgSaIOM04z5rIthLOMp82mMN78l6pv6cgkbocGZZtIQ2y9QJ2UZMQrvl4J9agwpYwWsVUh7A\neiYqaZ83xpitzUPjetSHs4pT5azmgWzS8m+cSGtJmbmynN2c5y6bRzEcizN+G6E+t1nSWI5ZzyoF\n0EFV/e6C9bmIItk64LMHen5Df3d4F5lP2VO4vrgpjpgAZakQNHF/pbG5wbvJsoWCIOt9yNkhl0dd\njT1+8IUQNTXGfruhvlmWVO4lyB4nO0PxHlAC8TFmOez/Ssga90NxNm6CJArJfgiz9Y6zQhMEYLAH\nXxT8VCno1DLqrOG50ApFxnqro/INIXwKr/VZggMtRRGsARJ8xllgfsaZjnfD1h29Nw0vsnO26pHx\nXrlL1kVQaLnXPJUUt+GN4vdBB/5A+O0iVAbXC1AZcAutUL4sb4O039K+H4GoXbPY1a5RPwUNtlhl\nyBw4w5JXa5/XjE2wdEw+5oze1nzYgId0ONOC4HRBIKLcWy5q3VtxRvF7+jwNhYqt7+n9uY7q8AP4\n78KB7jNBkZXjtfGzvmXP91H/3IOzaqOs507Japjn9bwyvJb5PHsiKKbaAIXG50IdHf9MCJ1KTfcr\n7zOm4H5JOONMUaCtn7EvtVQP9zZnm3saA5OR3rlmvIvFZCOY7H7wxAW8+4XR7+ZVtUgZa9asWbNm\nzZo1a9asWbNmzZq1N2BOmqavG3D8f+/hjmPSNDWOc3P+CGvW/v9idm5Ys/YPm50b1qz9P83OC2vW\n/mGzc8OatX/Y7Nz4/97+MdeLRcpYs2bNmjVr1qxZs2bNmjVr1qy9AbNOGWvWrFmzZs2aNWvWrFmz\nZs2atTdg1iljzZo1a9asWbNmzZo1a9asWbP2Bsw6ZaxZs2bNmjVr1qxZs2bNmjVr1t6AWaeMNWvW\nrFmzZs2aNWvWrFmzZs3aGzDrlLFmzZo1a9asWbNmzZo1a9asWXsDZp0y1qxZs2bNmjVr1qxZs2bN\nmjVrb8CsU8aaNWvWrFmzZs3a/83emwRZdmRneufN8xQv5jlynjHPQ4FVLHZxULOLVEsLrbSRyaSd\nzGRqiS12s40UJbXMmlpqWMhkajOZjBTH6ipWESgUiEIhgQSQQAI5Z2RExhzx5nm672rxfxcQaWQx\nsMrN9c2LeO/e6+7Hjx/3e87v//GLX/ziF7/4xS+PofhOGb/4xS9+8Ytf/OIXv/jFL37xi1/84pfH\nUMKPs/Lf+pe/Y2Zm/+1v/3dmZpaKR83MrDkam5lZfMLVhYcDMzM7aOv7zEzSzMycalu/Z/X/7NSc\nmZkFevtmZrZ788DMzJL5vJmZTS0X9f1+1czM3HbTzMymF/V7JJoyM7NKXfdXHnXNzKywPKnfC7pu\n+/4D1ZeY5rn6vba9bWZmpVpP38/qedGsfq+X1Z5SSc+dyMfU7xk9J9Z0zMysPTyUHEodMzNLT05J\nHpkJtetg18zMRr26mZnNTM2qPxN63vCwZmZmnQP1L5qP2NzyKTMz641b6sOenjHu9iWzqNqYSiRU\n13BoZmY7+y36bmZmtnJqQc/pSfalfdUVCg25T2M4HobMzCxZyFIv9XT1/W//7n9lxym/87v/Sn3I\n6L7RMGNmZvWdHT0/FzEzs8nUvPocUZ+PKmUzM8tkNObOQLoT08/WCaq9maj8kqGixjY7mVO/ahUz\nMyvwfTIhHdu6s2lmZq0tjdHI4mZmFkRV3ZzGYKqg5zpRtc9tqL52S5/NtsZuirFtdFz6I/klXenQ\n7//+7+rBIT1n1NRz89Nq57iogRke6Xmtge7LhTW1x0HNnU4gIDnlJQ93rN/399XPSdpdq5TUvi31\nc+yq325W8s+mZszMLBUYmZlZP67fo2PpQ2R2iuYGkJvuqxxJT7r70v1uR3oVy04hP7UzZmq/J9B/\n9lu/Zf9Q+df/6vfNzKyXoE0aauu3VFc4pHmYyWE3QmrrOKr51O7ruvSh5l80zXX0KdDU75FJ6ZhN\naowaNdU3rjbMzKzp6PpwRn0bJqQbxSnJLMFzhpv6bA91fyAmWQWSanhy7oSZmbl9fd/tIqug7EG/\nM+b52Ie4ZDxOSScGXelYoKdPZ6CxbTc01sGerp/Mqj9uSDrlDvV7Kqv/gy19tmOq3+269FNzK782\nw30as+ZQOpoM6jM2li0ZlnTfQVk2IJjWZyEi2zAYqx/5jGyQ46p9Tkffp+Iav0CI8e2p/n/xe//a\nzMx+57f+SztO+e3/+p+bmdkoLiMw0ZHOBcJqp2ebhkH9P3Yk/3BC7TX+d1MaZ6el9rfR9RjytrA+\n03k9PzHqUY/k0uY5nbD61emoXhsPLTeSrJyovguY/ncj+j+EXXZdtSnLfImOsC99ze+Wq/ndc9SX\nQRJdcTWm4bzmYybIfAurnn5L9s7pq21N4jahsXeZrkv1ZW9Scd0/6uj6dlY67zqaIyPGejTW9/TU\nQmPNgdhYMonEJau+K13tsY5UsVuxPmOFjMNj/Z51BjxPutEZq4ZuT9+HsWu//W/+RztO+b3/5X9T\nv7ERTw6+MDOzv/p02czMkqyjFxfuq7/h82Zm9unV75mZ2S+d0pxwbqbNzOz2af0+Hfq+mZkdvi97\nd2asOf7JP33LzMz2B/++mZk9s7WlhpzWda3uO2ZmNvP9F83MbG/+kfp5XvI8u6t18Hon8WUf/pN/\n8Z9bbUPt/4arvcGYPUglI3kv5jV+O3HVF2E9+fx9PTd9Re1//gtdF15YNTOzv1xVfVf+4qGZmZ16\n+rLq35SeXAxIr+6uSU8W3zmw9cklMzM7Gmt/5HxDuvjsbbXtwbTsbeBIY+ikZU/3b2h+nVtQndvt\nXzMzs390Ttf9rPGZ6vhMsox+Q7qRekufX5zWGIW3tGfZeVU68+quxmh3UWvd1LsfmpnZf/a//1s7\nTvnnv/s/m5lZrCsdayXVngj2ODlQu/tTxDyzmovZHV13UNLeIRzTvi+clT1qqzkWDqj/gZhkGA2p\nveGIxmIU1diE23pevKgx3QtpTiXL3D/Q+hZIa0wTMbWn3lR7kim1Y9DT/b0J7HKZvVZUtiDAPrIU\n1e+TGT1vNK31oxCXrpWPtH70mzIWkY5sUYC9YSimDjbiakdspLmdTksPBi31b1BVe6bSsi2DlPRj\nt6z+9qJ6XpJ1O8M64ySY8yGNcyar54bDntUx+63/699Yiz1IjveJSl6f0ZTeC1LYuH5dzwnUJYdC\nUP3+Z7/zX9g/VH7n9/8b/TFS24PsKYI16Uigqb73BuqzE9T8S+Q0thX2g/225lk0rT7Ozkm3YkHJ\notLTc3Jx6UinqbEKsk/cbutdZWle9sQKkkWup99rAz23xH560Nf+Op6VTPJzGsOoy7tWg73QkmTR\n29QYHbW1R4gGNHbpkXRvnGG9SWFHWAMzk9q3Bnqyz9sHur9b2VP9ObUzQb/7tMtl35mMSxfDrsao\nhjz7DfW/yzvUwvIZ1WOMpaq3/rZ0sTTU9ZGx7s8uaB2LJHRhoKv2BQMalyD71q71uY69V03/VxyN\n7x/8wf9kxyn/8r/XdRn20RFMRgdjMGSvF8UWOCnZ8dKm3t8yS9KHTJq9bF06HDbdFwxqrveH+oyF\n9OmE9LxAbvxlW37vD/4HiwwiNghorNNxyXyIbIa88+XSqrNWwc4MpRPRiGTVrOn9uXBa8y8Ukw6N\nm+wT2+wDh7o+HJcutcba183mNBf6A83zWln1hsLoUkB9iLJXCqTUvu3DIzMzO7uyKBmNsas77HWw\nW6Ec70zskQIjjVlkoOf14vpMjKQDzaHam0irvU5F7wmtttq1eErP64zV3nFdz3V5f4hFpMOVPnbP\nkQ79fcVHyvjFL37xi1/84he/+MUvfvGLX/ziF788hvJYkTKJuDxu8Zy8n4OmPN21Q3nM1pKrZmYW\nmCciu3XTzMwc0BIdIpqjHSFQJubkyZpfVuSkXgY1sS+v4sSSnhNMyBO3tyVvZMt0/4kTioJliopg\nVEuK7DS68rStririM4jIa/r5njyCzywIoRMm6u/Wb+v5O/JanloGCVNQxKZT0++H6/LQncb7OTur\n9kf3JBdnoN8HdXkYFy+q/T0i45sfqH8DR7+fLOq+RFKfhy15iysHG5aYlddy5aT6YCBYNm7cNTOz\nPgiJ4ITampvVZxcZldZB5YCEyF1Un7tj1d0/UlsTY43NXktty80pytCqyv836AFVOWaJEBHoqitW\nfqjIXrkur2hkJK9l+aK8lNlZ1V/aAvWwIi+uO5Ru7WzLe5kgyvRwqDGaWpSneWLtrPoTkvcVJ6cd\nPFQU6P5V6WCgqTEoEjEYRlTviEiChaVj0ymQIiBX6hXpWnlHz4t15SFf31J/irO6PsrM3L2n67og\nYA6rGodLLylyms/owgefb5iZWbul6+NDybsx0vXDoOQxuXxan0kQOiNdPygpQnCwe08VD+UtzhFZ\n6e1KXtEF6X6zrPHuhoSoKT3SAKVXpMsTSyvqHwinjWuK8PbLknc6Jf1LxhmfoBeZ0TgkU4Q0jlEG\nLkgVDbHFXPXF8kQ/QKBEp0A27OnCHiiEHn21pK53XKIxA31OLcoTPsDDb3Vd3+1KxsOBxiBR0Fh2\n86rfTcg+dPq6bxAGDRRJ0U59HypKhzoJPTec1PPKRLOcPmirOO1Lg0LKKPozUdRY1hqqr5EiopDW\n7wdHmnPJefUjm1bUv79NZHkEmoLujUC+uAWNcQbETC+r7wuu7FA6qXYfNST/yATojpEe1GupH02Q\nJMMkUadJ1ReaIJrW0PWtsNrrtIjsDtC9SJznqv4YkY5U+ustX25E9ST7Le7X+CZ6mgNuVPrh1lmP\noqDgiD6OY5JHJ+DZMH2muurHkIh0LkbEmch1ISEbGovK9hx0ieQArBn06PegZiGiM/m0ZN4FIdM3\n3RsnWjuZ1ZqU67MGuKCUQJz1m7LfDQMhA6rHQHEVTPOwWNBaG3BALcWIulf0mRtLV6sNolVB+pYh\n+kR94aw+6xnNgQ7PayQ11hkPkUkcKAMSJRRC15BFxTzUqq6PhbCrET03r+5btqv7EmG1I9nRmLXL\navfDHnsDEDjHLXMPtOaPQrKTQUdz8uWg1snowTl99jVm16bU8LmQ2ve9h9pDPP+C5F64+0dmZrZ9\n5VfMzGwQetvMzKqhC2ZmtvAD6fCFNOjc5MdmZjb/019Uf09onO7Mq54culbLvWtmZm7kW2ZmVrxe\n+rIPtWjbXnhRcrx5R5/DJzRH595T+z56pOhlOiA7PTz7iZmZPdM5aWZm2VtaL1ILsutfoNuvXdW6\n33hJCKDB53+u9j7zy2Zm9vYPNJe+EbxoZmbt6bOWPPWXunb0TTMz+6V3tIb/eEFtfiWufdEQ+/vT\nmsZ0fAadn/mGmZk105Ll9x31+fJDrUWBZ7f1y7UAACAASURBVISIGbU1NgevgfaxN8zMbGdBY/fa\n6CP15Y7GIlWT3dyaP29fp4yTalcrpbFrRUARsJ0etjTHxkN9P+tqLvZnpZOJpGTYPNJewN3THOzm\npdP1qHQ2C+LEQEraNAiZBpHcadmGQUzXj9GRWkrXD27runFVupoAWZJgfXkUBEEa0/fNqPYK5XnV\nk6lp7KN53c9yYAcg0fs1rf17KdBrfa39mTyoj6Bs02FKn25InwHmjstcHgal49lpjUd3VnJ4eCT9\nGFVBcSzohhR7y0iHvWxO9Q+Sqt9DEe52Ne69CemVmVmzUrKcqX8t0BZ9EK6HQ43HIKDvixXNkS42\ntDGcs+OWbFHX1lnzR5Uov4BoBAVQmNC+PNjVWPQT+gzFVafTlf3Lg2QMDjQvxyBG0rxDDQfqY7mp\nerodzfd0SGMRmdRzghn1zS2rntRYz20H1N75ZdmxXpI9S0j1GUiU8Kx0MpXWWFVB2oVvgoYKyz71\nWftqoIMDU2pPkL3ObBRkjaP2JUGydEbIwfR9jL1BPMKerCXdCCY1ho2enpsD7bqVAKnfRVdm2Nu4\n6n9zTzpVBoXb7Oj//IT63W9oj+Iha7ogMyMVzYVHvCdNsk4m53VfOKP2zHe+QmUdpwwG0v39thBC\nIxAtqbDawVS1NnvREGi8++UNMzNbycl2tTpqXwGkqet6e0a1v8tJhWFf91f6audqvPBVW9pJcyJD\nC4NSbXCqwtiHNTuyy72R5ssR79dJTqqkXenG5xtCd53LSjdTabVh1FBnguwDAexZ2tVzmpxuyEX0\nQ62htsYdPd9GIFXYf7XZGzl70ombNz81M7P8inSwjn0NNEGw8F4/4t3PQbddZG6cmhg0NGcjINPH\nQ103zHonVvT7o12tO0VXutqq6boJ3mm6mO8R7xNhR88fDzxb8HcXHynjF7/4xS9+8Ytf/OIXv/jF\nL37xi1/88hjKY0XK4BD7MnI8npcHarDDeed1nec+8/xLZma2kJcnvDmUC2oS7+SDiqLw65+tm5nZ\n3K8qkltYkmdr/5E8+iPOwc/OyStc63I27qHu28TbfPkpeR9ToBx2ac+JF+SpW7msaNP7f6poVXlb\n5zbPn9QZW6csL+3mXXkMD+/IQ7f8TUXHBi8qCnf9hzrLvHv/htpr+j09qXpLcE9sroMEWlMUa/6S\n6u935LHc+0zohvKG2r9wUpHYpdOS186P1+2TdxWtiiVflYxOramOtto26MpLWeKc4MK86lpZk6w+\n+UhtuHVLsn72vNBIhXn9vltWW70ocrSr51hPkYAkiInA4KuoxXFKj3O9Zfgf4kBI5mYk61RYsq63\n4VKJEC2Zko7kJhXt6BypPXk4D7J5ok0tOAw68nI2jkAXleUR34YLYWlV9WUczmPPKgI5mZAOtgF2\n9OD9CbflZQ3Pg2aA4yBCND44o+vy05LfNGLJRnV9FH6UAlGeOVf9GoDOSPT1+6iiyOThtjztWc4k\nT+aIqMfkZa6XJZ8x3C6HWfU/W5CnPA+XjdMG6VJQhKELz0Y0JflMxeE1CnmcPLrfmeZ8KFE3B296\njDmWwFu8MI8+ONK7FlwRfSI4rZ4iByEi9McpR5x1JUhiTkxtDQdAnJlkGDxU26pNtcWSeNK9M+lJ\nDWKKM/LJhOxHfkk6dHRb19e3iPiFOQcMv0UTHqAQ/B5xOEOcruxHEo+94xJ9WpSHfWkO5B7oo94j\nuAOg+xi18bBjF4IN3d8DgeLxJzWr+gzR305RY5mY0f8nnxD/w2xa9uPz/0OR42ZFchmDsAt31b9e\nXWPSzuj+IgjBVCyBHEHXBZjbLc2xOjrjnXsfZ9S/ibzk6xQ4nx0DOeOoP6Nd5Mr4OMz1cM/jG+Gc\nNEibYP+r89DHKYGQ+jPN+e18XnNnxotmYgOqoAKcEVw7RK3G8BylcrquyfIJTYAFQHsNQLtE4W1J\no8qhPrYnpf41epLD9LK+H1QiluiDOoqrziyoKCcCVwmR1mRC1yV7igDGAkT0ApLNREqVxkcg+Tj7\nXoQPqRgGhUBUeRiRDLpt7Cz2ulOnPpBrKYMLpqDnpLg/QXS5S1RrAK9ONMz5cVBVLlFnhtICYZQc\nHQp3JZthm/+TQfrlcD12kSh3grBSit8LCdmjfkXtaIW+3nrzpgkJ+YuHatcfzam+Z4tXzMwsBLr1\ngwp8cA//nZmZjX+Ns/r7f21mZsWrcOK89Jx+/8nPzMysflJIzNldraNV99fNzOzGvFAgS+V/z8zM\nPkrrOUsfvWFmZsszV83MbHpKCMkLDaFOPiBK1770VR9+NTuyq9fU7ifgUSnfEiLmkwvXzcwsc1VI\nltKvKtr3QlC2olOCe2C0YWZmt9d137bdMTOzc0QPf/YjoSVS35G+pdJvmplZ5LnXJYeQED8flhP2\nzEj7t+HHshd/zdn956/o/3c+IrpOYDYz/ZqZmYUeCb0TP6lBvnxDfV+Ff+LWBa3BUZCAn5sQFbNN\ndO6UhLJwCDpgVoib6K9I+aa/r/1l6fU9+zqlFwDViW43Ox7ygz1QXt+PU5LVA0d7iuWckDwzc3Bu\nwSlTqYE0ict+R6NEZrFTOTgMGqBws6AnQruyAZ1V3ReHsyCal12pnQeheKi5PoG9rA2kM7mI+t0N\nwwkx9rga4OVgL5Hd15zqYbcCU3rugHUhxp5uqsik3gWJ6oBedjVeuzPY04xQwdE6HFsDkEFw3kzn\nVvX7lORa35cetFraZydYfwazcEMi/xzInP6S+lcMYPtAVZuZOfmhuVXprptQfyMZ0HEp9pCgEIPY\n4JPwLQ6qx0fdjT37RxS+zX7S6WCn4WqslzXGo9CA60AUj5FVX23vwMZV9+xklP0biIgMa1ae/Z4L\nymgwLdn0ePcxUMUex8i+qrNIS9ft8XsdpPXMJEgXuL3CbHT7QNebd9S+Eb9HA7ovENcYLE6DWLmk\nvdSQMYrk9H8TPpIHj9SQXhk7Do/Jzp7HBwISPwCCpO3twThNMKk9zQCeDzeqOdKjny6nJYpwQKYz\nen+ZOKt3sQFzdDiNjoOQLHaYS3CnnZ7Q9el5EIgBeJzglHHYAx63BOFhSUXgvGRPFIZLJuTJ0/R9\nblL759UzWkdOr6gfTZD3YSCnDvuBEPyC0Sjj15d+xNsgl7pftSXsjG3kOhYPqk6o94wlxpyk9iBD\nuAMzi8y7sGS9tqLf96qSZWxCso6nJKsaewnHAc3T4xREDk7FmK4vzOldq+7qvXyA3XJprNeHAO9I\nlte+daand6krT+vddmtX7Wo8kk5ks7IbtQONURiZOD24EnlnycBp60TpOKcTenF9RiaENE+lpMPh\nnofklj1qg/Zyh+hmAD4jlzkS//n7Vh8p4xe/+MUvfvGLX/ziF7/4xS9+8Ytf/PIYymNFyjTJcDPo\nyMu4ADdCf0ae6c1bYtc/3FAkpXBKHqoRZ1Kdvjxv05xhLT0EmfLpLTMzi6XlocundP9+W17YmdOc\naySl0Lgmz10VxExlWt975/cHTUVgDrcVkVh9Ul7KpfNCpBztKuIwX5QnbrIo72qVc4etW5/r/hPy\nAM6BxOnsyVt+/5oiNhuPFAm4klIUKwtXzfYd1f/RO++ZmdmLBUXuV8+KWXx8IM9/tcyZvCnO8Z9R\nfWc6Z+3etffNzOz9v/6pmZm95CCDJKzwa9PUhQwb8lCn4JApLsv7uHdXbdy+IRmvXJYskjMw+d9W\nG0ZwCDRAzEzAqO3gPT1uaeOJTnNUMwCLfTggb+cwKm9pDM6YBuzoLuHpOl7KIeiECOePxx7/iJHZ\nBW6aMBlzprPSgaMGPBohZHpW8vCQN5YgWkRANkRUfWCqAHoOc/B0u6R/8vgy+gMycYFSGCS5AZRA\nFPhHNKl2pkFHhbLSrSAZIDIRXXdqUd7hQVhe3SC8JJMzIFrI6lItkbUFhEo6K50tIU8DPeAkyfpC\naHuMd7mdILoHI3p+kmxPyLPnwJ5fTPKp7+fhAymRsSjHHBmFvWxVuj40Pn5UKkKUKEIE00lwVhTO\nj35Vsh/1ycYWgceiJPvQzYGAIMvQgAjbeKR57TY83gsyvfTgwfEy3zBGIThRwmSWCR6qPU3O8fbI\nUBNhjCHUt91dzZm+d+aWaFQMD3xqBBcO57PTjHWBM7W1h4p2pxNe5gD111rwcsRBomwq2n2f6NtR\nSdGjyRCIIpAi23WQPCmN0XSb89heNGzMufY2HCpwIPTJlhehvg5nbCMuPEcTal+NDAEDzi6HBmT/\ngPcoRJasCO0Zojs50Ba5ZZ47Izt43JJypXvJuGxbgnP6AY4su6BFXDICjeCyceJaj8KO2j0iIu3O\n0C4yWAx4UBRUmDNWVKvdI+OGERkes+6APAoQIQ4UIxYkO1u3QZSbLAptkCt5kDDDlp5ViXrhLDIJ\nJInKgNapgJDrwEnV70p2g6T6PjOhtrhexqsASMMgaKYsfBSgG+IgE9su0TBUbUi2pUBY9xscK8mA\nZNokwjmFzsZi2Jkq3C8x7/y2/u+RtcOB6KjBWp8fEGGOaSzik2S2cqSjNfg8glrOLNA9PjeVmdkb\ni0KIBvZkK35pW+vWne9IvtuL0p2nElpba1dlZ92fiSfuzILk+96sIpiT72rOnbzwtJmZnZ6T3Lp3\ntGanLylKP50XIuXunDhaej/SHuEwJ5TARFQdmjihvcSfRF4xM7NzQ6F1cz8mu8p/bBZL/5pduKK5\nfa2v+k/B+fYbrBt//E0hd155T/V8NiluiNHCD83M7MrSt83MbOcqXDqsGz+Fm+5l9hjlivr57lhz\nfCoi+Txoqf5CI27XQIu+kZCs1l9b1bPfko7lvqt9XbS+YWZmpU+x41f0rN2m9mXlvHT1FjwSr5JZ\n5OMH2ofNJLQ/qjypMQwOf2JmZmsZIVQG6M7cm2QS/AU4xz5RlP24ZZLMK0dE3UNwpcSz0pm4K90c\ngrzoY68fNoR2OjHWvm15Rnun6XOaG7cbsieDDrpBtjonoQj0hMdJAAq3CJKv3tFnOaj1KpHX77mg\n9r2xvuQTLcF5liLiTGS5PKGxG2dAdIJeK+5i7+HE6bH2pz0ETI1oPgj3clvrWIG9S5DXi86c5BGL\ngASCL2vM3iTc0fPLIMujaq7NnFw1M7PMi/q8dSD0R02qZZE9+EbIwtJgro+OVF8GfsHgzFdcMJnY\nyCJkAAqFyaQDwjY+ped34NKI5sjWWpV85r/GnqQDOunoQG2JsGbMpchIs+BlwNIepAdiOcyYuS3J\nelSQTiQh05oEAdkIsuFs6zl722RjKvOucqQ+LEyrDxNZ6djumDF2QSwONMcqIAyj7HuXQWzHVkFl\nVVXfbEpz1prqX5G9V3pKcygO99cAHiJLSqbhPdXX6pKBcpbMPduyh/2e2lGARzSUk86fW9R6soIc\n3LTak56AP2lX9+/z7jOqaw4EFkBo827YbrCO1bT32eCd7eE2fEYret7imuxZDCRP+xCuloaeE4TX\naAiCM1fS534ITi+Pd/CYJUEmoSCorTFZYg0klDtinRx75DIa1xE8hvWm5Njl5yQI+gTrZQe+xB7v\nGQnmSgsUdL/9/8NlxB2L9oNmvCc7oGtboPNHZD3rJrxjAXC3gM6pOXBRFeAKhGoryLsDNJxfIvq6\nIAIzPZDfHbWx32W/xH5zjAzGMd7l4Ij0EOcZ0LCFJRmOMqc2aofsO3l3K0E66cBNQ7Ini4DAyQ7h\nFWKfP2T/PKKd9SP27VMS9ggUUx177GKPw3DG9HkfCbN36kQ8xPfP5x3ykTJ+8Ytf/OIXv/jFL37x\ni1/84he/+MUvj6E8VqSMx71Q2pP3NjsjL+jSGUWNagfynB/dVLQmkdXvKbzKPaL/OTxqfbye1S15\nrrKcgy/X9HzvvF1xoCjX1NqqnlPzPGFCkVQ4gzoNW/PYlafr1vs6b56YUftOntH5wq266uuD+Ml6\n5yjJPLT7mSIoznVFSrJFeepOv/KMmZmNiDzsvq+I91GR6BmRgtIZfd76TOcur/1E581f+1WdvZ44\nr0hT72NFxR4+EIfOuZzat/bicxYFkbB+X33Y/FgyjS/LIxwgypvJEenknHGQHPPLl9UGtyfZVPbU\nluUT8mjn8opGHKXgJiC7h/tIHuTEadjKo19P5RIZyarLZxrvY7/toQWIUnNOsUfoNj+tdiXJenQA\n230mw5nTXdAAIGtieDNbISK5BT2nSMS3g4c6MUkEOSwPdTyu/x0i2XH4I5odojRReVen05Jrq4oH\nGzSDA09FPKDnDECuRDhjGiWzQpSzs7mC/KhZspwcHmg8Jmc5MzpFvZw/D3COe0Amr9RA4zksELEI\nqP40ujrRlzzzaUUGMnBFDIjyJzgDm2ty9tVDuIByCMY8Pg3JoUCEozEL5wKZeaIhEE5w3/Q5zxmF\nVX/YZ3yOUaZAT3lZE3qcEU1xFnXowpnCmc5QVW0ZhMhQIFW1FBmhciBh+jDXH5KBrLpHRHSozgXI\nymYR6f4kUf02bY8OiXIM1SfvjG06AjIiSLYNzk27Fc4/Z8hAA0/GcKjnpshEs7yqaNsUHvu7u5xr\nhjOlA1t8DCRIGNRE38sss6VoWt7L6sTcd+F8CUL2tbj6hNoLr1FrR2PUP+CMrUcCwfnlAFmmevCS\ntMaS7xScPEVQU+F1Xd9qgiAC5eEOiIYRYun24DMiMhKA5b8FUqfS+nrnt0MO2f2anJlO6Hk1Mj3U\nWhqvVkpzoNPV9/1D+gmPUiyo/jg9smSVJed6W1G1hVllk7GsrquRMScECsRDvzTgCWgfwZvi9M2Z\nIhMN0Zmol3UhINm046rT47WImGTsNMiQMFIfg2Q9GjL/HJALAyJl1SEZA0DSZKJqYxzkzIhsS0wl\nq3NWPgv/W8YU7e+CqAu0yUgGcsYBORNOYJ+JKN5uousD6VB6VTIakIUu45B9hHPiFdbuzr7kkFpS\n+4bINhjQ5G0GQbE58A0ZPFHwRR231Pc5b35Run+jKETowgO1Z2pNiNMEY/mIiPB0R/Y9kNNa/NyC\nfndBHqUKG/r9L2UD3npZKImXk9rjbH2oz6deEldM6hxIoLPiRbnzlsanfEZIlqfJfLO/rva+sPLF\nl33Y6Gxb6a7+f63xspmZRefV7uaCnvfShgYq1PnAzMwypzR+L0WV0WbzUCjlfwwq7YOxnnMZG+Oh\nBdNfaE78k/OyHR+RyXIjIQ6elewD67wjFNGPviu79vK74tJ76xXJ4NkfCx1UC+meVlq6unyoDFSz\n6b8wM7M2uvA6iLUflfW8hV/RWp84esPMzF4BRfbeQHucGBHWxp76uAr666MDyaJCBsHjliFrl6WQ\nRV7rQm3AHgWVC4JGq2Jn50k3crSh9aRLdrylF/W5uqQofakve9vs6dP11sodPacAT0YlBJIvKPuU\npP4eHDWDJujUI+yNQ2ZDR8+pOhrDFTKq1cnaFAVN54awBWShK7JPbsJbEpzZp99wqbnwhpANNE+0\nfkAWI1shUxtohWFU+/DELnudltbRw/tk0yLraBaevnPzuv7+UPXG6GcFDrXoAXsRsio2G9KXxEXQ\nHWZWnCzYAP5BL/NQiOxQNQiq6ukJ7pceDo/0HpA/iNlxS559afaCZFIgO1zvEH4giMgaIJGjoBEa\nZLJqEn3vVYQSy2f0vNtwvaRHui8SAulNlqURyIgROhGfVd87Lsjphodg1pyZPq13mcs5yb5PZpxu\nWmOVg68vGqxQD1mS2pqDtUO1c5TUnqLaVP+6Y7hjiqrXs8OFPNyEUx6Xo543m5CM0wtqTxwU3LAI\nN1eAdY59YveBnttyashTcgif0HNmzmhuJ/LYuQ3N8QDyOTUnuxzPab11yQ7lZMjseygkzd512ZBa\nk8w7EoPFQ2RiLLGvZg+amzi+jpiZ9XlOAjRIBF2OwPUS/HKvqHYPQbyE0eFuG8Q6c67LfsHh3ToK\neiwFwqlDxqFGRfUepStftmXsBGzo9C0BN9YIMFaKPUeDd4Ax5i/iceiBdOnXBD3JhmSXy03N82BI\nsg5xasIhs1UALsYg7zYR7IgzAoneJ+NYOPQ32tOE1zOIjgS7bFJAy1YP1KdQnf0/73QdeOoyIFU8\nhFzfe9dgjhr1p1OcOhjJfm20xd26FhK6NJrRnqBPw2JkD+yxdxoHOSnD6Qkv3VToy2x9f3fxkTJ+\n8Ytf/OIXv/jFL37xi1/84he/+MUvj6E8VqSMQ4S2VuZc4AN5sK48q2jTykV5pL74qaI2u/fkIZ96\nhvOCwBKiRTzjnHOO4/nKZIgwkEFn+76iOKGY8pnHflnRsOUVeVc7dxQlGnXlaYvN6oza+cv6vHlf\nEY77X+hcdxa26BRoigHe4UFMnsH5efXjgLNppYfy7g7f0/3nXpf4z5yQl7qzIzmUthXRznnnKp8T\nx0yrJq/w0Z4iT3dvSA7TK2rfMCNvrkMmnvs35b0+serY4rw80GGyZwRa8py6tH37UM9uNuXtnBhK\nFhxltbl5eQv7S+pT6YHOoO/ekwd65ZRQOclLanO3pLp7dfW5ckCUpnB8BISZmQsKKjmSN9WJk/WD\n4Ec7gNdxzHlpIohRov7urNpd3dP3Kc5ihgsgNLxsJgvy7oZa8lO28OxnJt2/cd3knOoZknmnwTnj\nHhwyeZeoeJzINR7p/DSIm4wiDK0jWOvDoChAkgzJRJCYAXFyVt7a+FhyjSU1B+JkZXE5P5maAxmU\nkXe4Q5TOQ/K062SbmvMyOqh/m1XpWg++Epy5FiIC3YPNPpCXboX6+r8OeiPr8W+gJ2MjIgR7fjvN\nAycUyYnkVX/6UHoRikiu6ar6GQHZVAsdP7PO4bZ0sUs0PxpW3XU82JmYxsQ4Ax+Oc0aWzE+BguZr\nlEhA1zjj2oL7ZEv/JzkTOjOj+XZ6Wp/5SUXwto+Q5S3d10FXw6CIxjVFCtpEPrNp0FEgP5y65mCI\naNjIs2fwHHnZg/ZvC6W2dVdj2t5TfQmiKcFFMhgEPA4CMnXBKu9x5IQCknkrJJ0akEWjRGaDcZnz\nyehKmEh1Gn6Qgutl1FE/ekTPEwW1c2lZdm3+hORUWwdBM1AkNEN9sZh0YEjkJVnUXAwTyRxn4Uzo\nyKaEHui6VuXrZU1xQMbUQcQkGrKJibja1SEzWr0kXd0hy1VxTutDaKDfy7Dqd1hnbj5QO8ol2c52\nQO1fjuu+6YI++yHJvQLiKBCVHLeasvsH+3VbI0o+M0VWvDgoJ6K/LTJ/RUFjZnJCrMRSGpsB0JYu\nZ8XLbX3fd9T2EG1xcvAx1HVdhXPU7XuKsDZ6+j0AuujoSG1uYucuXRGHQGwAEiSq68PwKlVKqrdL\nNo0AY1zf1vN3ynrehajWkwFZItyO5kAJHqJKpY0c4GtbU721qr4PF7Ab6PgghL2Dm6fd+flRqb9d\nbqVkRyMf675X1qTT399SPfP31M9qWnuIxTWyGp3U9c9cV0azI7KirNaF/viLuNafZ2KKzI7vrpqZ\n2f0FsuK9IFRC4hPW2VfF+RIKaB2+eV6IliVXiJXij6WDs+fJBlVWVsX/0MwexRt2BK/K8C0y3cB/\nMjaQlOvXzMzsUkz1TvxY/XfIMHl3Vro8cwM9bJDl76IyRd4hi0x0QeO8XZHeXXlW/XunIZt4Zapg\nFzLSgRt/ztr5j6RDF1whkz97lrZ+Jnvxa9tq62evat/3sKaxb6xK13/whfp8si5+u8w1OLMuyj58\nABfCs9NwNv0/GptPvqN1IDPU/7l12tzSPvJ/teOVcUQ6G6hoLnpo0i5cYS6bk2FDOpAdSuZ1ENEz\nJjkcVbRePPpL1b+ywp5lQf1Mp5k7j1hT4Weqgx6wOpyHLtyJ7OEOiurn5I7sWNNVe6IgBKGdssAC\nc6bsoaThygJZGYLragIumFJSCM24K1vSgVYvmgUN3AWxYrquCbdNYKR9d+6h2tOd0BqfAHnigm7r\ngHZLDySvvUdal+6SVXXxopBV0ZD2IhMeKmTAvruvfve8TKJkQApfJ5L+C2atQ8fm5qTztZaua5Be\nJntXc61loEO6sgVLZLqZgF/lOGW9umFmZsNttWFEVrooa2TPy3KaXvgbfd8swe0E8mHogXHhRkyC\naI7nQLyAWtrdAFkJx8sECL2VKfUpRdbRXIg1E5Rqf0t93W6qvj0QGEGyaLoJ/b8AamuUJXPVF5L5\nIRkXKyA2IvDGJeH/nAPhXjyhds+wDx6PQP4EtZcJfUomsIDHbVZDXtKVqis7loNXqRHS//227GU3\nrrnfgbgkXIKHaghSu6/2TsIB2drX2Hc7zCH2rVMgyHsdtfuA7EvFFPwmAY/3Tt/nyWI7n/TQbV8P\n5xDvUn8IfjsQpy7Zt+JVMvjAueZlBGqyLgdZB5N56oWHL0OGpHpX76wt0HKhZXjueJ9qhb9aH3Pz\ns1bauGHRsOZ3k/kzhLNqlAHJ3JVODODKCiGTDrowZv+dhFslWvP2m8xXkCIjEHk9sp62QR1BF2qh\nBm3OkqUJIEsC+2To1hhEXTwOEqcG6quv70cu13Wkc60I2fhADQ8bIOu9bFG0qxGU7PZB5O0cyl4/\nEfX2JKDaatrTZMIF+ql295BLjFMcQbLQOex1/r7iI2X84he/+MUvfvGLX/ziF7/4xS9+8YtfHkN5\nrEiZGBlnYlF5dR+S+WdiQd7U2dPyUKfgJTnYgKfkvryis3F5SVOwPS8vyUO2vyXva5TI9pnL8tq2\nrstT9fALRXtGIfmknn/pgpmZrZ0k08JnRN535eGfWRIKJDSp55eqctkN4RmpduU5S5HhIBGT13fp\nnCLET+TUvhsfKbpW21D9+3jUlp7U8xfyuq5akpe43FS/z68pe8CVbz9nZmZX31I0rnUor3VyichB\nTlGtR5uKvI524VCINSy9Ik/1EE9uz5FX8dysPOkeUuTmNfWlva+xeDSQTNKcAzw9D6cKDNr7IGX6\nsH5felJnOWefULRn+wP9HuSM4whej+OW/Lz6liDKPCYCGSU60o2r3iQRwH5fKp1aVQTiyZcUqXyT\nCEQ8J29pqgFfCAzefXiDekW1LzAC8TLNxQAAIABJREFUuQLiJdxT/T0y7oQ4lz4VBxlEmqXZOY3l\nwCWqVZd3tTizamZmGbhg6g81dkcVeW1nOC9d40zpAC6ZJufjy0TTp9LwBxHVb4FUmc3TfyIcBjeQ\n57Wd4rkd+CwczrMHif5PntT9CVdRyziZKvpE/YoZ6cn+vuSU2ezSHyI3McnRizJNFvT9KpHk2r76\n22lyDt+7nrPRHvVDKAX3DGeVj1MAA1gaj3syTESLw/2hCAgYsjJNgGAoLmksFgua11vrG2ZmFoRT\nKgAXQRRUVRLkTR1+oggHf+v7mqfNW7IXbkOe8SS65EZBOwxlv4JV6crRCP4Koj+WZa5hhzKgDkoR\ntTveg5+D7CPOlp6fItjhTiqSkUoBWwrCt3HA2X4yckVjZLxpgaghOrTwSy/o+wgZCx5KDtsf6Wx9\np6n2RFJwofSkG2MyLMSIznR6XOeCJgMh+OCGeC48hEk0CwKFfhZXpLOFaXSg7um+upMi8hJCnoXY\n8SOXZmYNEDIBItV7juZC90jPGaI390EaHoJgenZO9tcFJdJoKMoWiKn9uUXpj5OVzh9go1obZDVJ\nwU1G8o6juuQdX1V/u6AHN29tWpB52oQvYn5O82dvX2venVsb6nt11czMUtOaJzPIMJlijRpr7D/8\nSGfik3GyJl3SmjkNT0SEqJaBEDwkU9jEvNaiTgDumZbWg80NnasOrMseza3JLrhk85su6Pryjgat\nAc/SUlx2fLwEb1EM7hgyHbp17PFQsulyTr2TYm1jjW8l9Hy3retiHHCPx4hekdErCOfMIEyKhWOW\n9HDVzMxemXzTzMw+PqvnfMdVf+oHv25mZutV8bdNwS2WC4oLppB/S/1sai5V4kKDrA0kp3vIYfC8\n9ih7PxHy5dSW5Bl5FY6X+7LDd+JaF75bl846D9XvPw9KDomk5DIbPvqyD5fC+9a9CocZ6+PFDaFt\nN1e0d7h3Fu401oPeUP0IXRVP3fK3ZMv+ak/jdPFFje8oJp1+cekNMzP72Qcfm5nZ00/rvnFce5zX\nXa2Lt4JlOwu/0bmnpEP7P4XvaEn7Gce0NrsLGru3T6uOpxzt/zIpkDbrsh9ze9LZ3G8oQ1ToHen4\nBw8lsyd7sr/9afHn3XsRDqgfa+26/7zGLjTQvA6dadnXKX3mylResq12pcPpkMYmuguyhbkQOiRD\nGEiaAdH3ZZCUB3Ch3D1Sv7PrGotiQWt9ZBIkzBF7qIbaG2F9cmtwW01wPRnIhmTqSdfJaAYabucQ\nRAoZJ6Mrqr8Gz10KpGZ3gK5ixxOg9dw+GRnZG3q8dHc3sa+HWi/mJvScRHDVzMwak9oLOruyUb0m\nqFn4pFwyNnZAskYHes5oU3b58FA2MLYgdEITVG2S7IBOmEh+AhQB60c98hU6u3f/0NZXdN/8tObE\nmqv99vCc7lsmI2keVGGwx7r246odtxQZe8tL9m1H9ildl4yboA6yJ7VP7Wc1Dy95+zp4NCaBNSVW\n4VoBSRLvgKDoqG3NLnyUoJrSWfX5gMyOo7J0KrotO9aGf/POgea5hfR8Z1btKEzL7mRjQNKX1I8F\n7OvdjOo/jayyF8mauSCZuWTwsoh0YucIZEpV60Hrnsb23qfM0TvaJ09eku4G2NR5+0pLq12nl1iP\n+nDalMkWewgnC2jYwYLk2ixrbzI+ko24y3oUrEoOzazknSQT2eAQZDpckPksPCTLQmjmljQXs3BH\nBkEQ9eCTi+wDbTpm8TjbrI49hkNmCC9gMAgqjfcOj4dl1FG9NfigsmT2dKuSc4fsXAU+hxN6fhqb\nUD4Cbd148GVbhsM9a/QPrBgFpTMmUy1ci1H2r14mqDFcLiEy80XZl0Z5p0nwzhdin9txPP5O9nu0\naUjGqoCHvoyAkCZD2JhsScGEvndyoLbQ6RTYkihI+Ik09q/D6QC4XZwA2VjJcpqaVL8CZMkr7Xuy\n0HPzk9KFy89obiyGxPl1+bxO8GSw31vwDjkg7/pjEPledr6BnrffVbvSXmayv6f4SBm/+MUvfvGL\nX/ziF7/4xS9+8Ytf/OKXx1AeK1ImnoXzYVZRFYfE4Y82FfUpXpB3cuUVnZfe7Ong88MdedDaI3m2\nklfk4S4swdFwqG5tNBSdX1pUJOPS0/KMP7grD13ltjz365wxOz+j83YrRV1fhbG7iactOaXo0xrZ\nocowYY/q8joe7cCq/xO1qwra4sLzQk88N6/o2a33YCg/1LnH6k0i744iOhEYzt0jeV/rDThqlvR5\n4YoQOI/uqb7ehuSWynDmNyAPYLunyEuvPLDuGqiAOUU/bn3ynpmZba/Lw3zulVfMzCz/iy+Zmdnd\nq/JgV27JC7gzljfx4lNCwMzMcm6vs2FmZps3xHOThFxk4ow81TMCIVl7Rx75gfPzvYR/uwxq8s7u\ntOSBnp7xoih4tJuKQDSIAm1dl0y3qn+pfv6i+lXZVJRllTO5NoX3l6wjSc5pD+HHuEOGmokF0FxN\n3dcKl+i/ojVHZenq59eEfuq+r2wdHRi497YUEVh/KHnOTBDZ5OztzpZ0tDzUWM8saC7kn5R8py9I\n3m5XXt7Z4mUzM/viuniJDGSQuwrnyzxZoXKqf3ddz89Mazxyec2p0a50o1TR54dXFQGv3BPXwBFc\nM0GQPecvSI5DooI3P5aclxb0fySu63od9TdA9pEY2arOnpYitMiI1AL+MDMJr9SB+t8jO1N29vgs\n9llY14MHmge9rHQlMCJLUAZuFSKLRz0yC+QVWe0T9dgvSde6Nc2JXBbmeljWjTOocTISuHCuHMG1\nUnqk+otZydohctAgy0WjJd2ZymhsIw6cAVOSwcRp2OThxejsU08NHouAnp+o6nePRX5oGvtoUP9D\nF2JHnAWODslOF1OUKUkGr/gpkCYpeJBAFuYzZCx7JDl2jOxPnFOvtySHSgK7Ay9SdgIUxEgRgZrM\nomUczgq3ZRsKM2pndUhWvJTk2B6AWvtcz611iHjC0TLqS9fiZAMw0BnHLSEQPj3meIQo06O6dLYF\nZ8+dknTzYE/jlY2RlWsGrogukaE0CCwiH9Gs7K9Tkq07IrPbUl9yrOxprnWJrkWIhiWz6tfM+QsW\nIdq+uc7Z/4h0w8jukMqpjghr0daR5uF6RXW88pqe1Wwg8zRcWTl9upjf+2Q4ObEsO5aG+6l9AM+S\nd6YdUS+ugDYAPdQmE5XlyI5B1qLKF1ov6nugRScksxCcVGkviwR8RgGyhCQSZKIB6XM4JvsfmbeS\nebKNeAfLkxorhznAUXyLgn7tkqUjNv6aaKo92b2tefXzXE9rdqOjejbWNIavn9TYvwUCKTrQ74Vp\n0A8xoT/2d3XdUlnjs7EoO1h8QCazi39mZmYzZKy4D7rNAk+ZmdlUW7wq4QU9331Te4nFX1Y7E++R\n6evJr7Zygy8WbRPbVIEjZ/8prU/DCen00seyr9cKyG8sHf+TF5Wl6dU7Ql2ciWr8ditqR/mUkLC3\nOb8f+Vh7ke9X31U/QDy5IEeroZGtnlSf6ofKNnn/9Ibavqe6noJjpJYRymahLR3/YE72KlZV9P2b\nSf3/pxHJaupjPad+9In6fUJKEJlU238IwuHbBEDfLl7XdfTpuStac6IfnravUxIp7Q0cECQ9stxN\n1JAl2XsicCK4ZN/I1KQb7agWnIM4UftF9esk5uzgkexPZai57bY0R3Me/0/ey4CjsQylQbCM2Dcm\n9aAeGcJmie6vzOr+EpHbw1vaQ3T2pdMjMvz0QMeG4LeqkvUvCG9VYIC9Wta4zawJ8RR5QbpW+Vi2\n5dae9jzOgcY/0Jaupsg000xKDkH47Fzm9KCscYvPyGbMsvcckPUu4gW0i7quBr/eOEQWKlLAjeHw\n6Qe+yr7UjmQtfF/t2YOHpQD6IvlQcqinNFfvbUqv7oOAnUTvjlNi84qqe2thHl6hzlB2MZUj+h8m\n4187zafeOY42tXj+FKRJ8kNlLAuT0Wo8gh/Ixd7tSZeHXY1JbhFekI50ME+WokhbY1zMCYV2cRVe\nvOlVMzNrzwkhk1/2eItU/2xK/+9+AtdXXbJJZvT9rU24S2pCrhyQaScLJ1iyoOsWyCjbCqidAdDM\nly48q/a8rne0UULtzk6ACiaBVwLk38ZtyXG6pOecIHNjFG7FRZA77QecrjgteQe8jJjwjCby2l+H\nToDEHKg9d2/JNvXJuDmEp2jjhuqNg/poD5m0TelIMiadPW4JtJjLUCh2yI6VBMnfAxnVhLMtgU53\nQZwHWZeCUWC4cEnmQcFVamrv+iPpU+yS5vDsOckrkpn8si0XLj5tmWjTQlX2i6Bmh9QFHacNBqDt\n4Z3LJcjA1ZfMk6CRXLJwuqCqZkHc7HX0zhSHZ6nZ1FqWiXMaYUMTPHoknZp4RojGDdCxUThgxnDb\nhCNkVYXvMhDUnAiVJINBX30P5rWu9OugasPeO5Vk6CVhOjtFduYVjWUfTq5ORbK7/lNlP8bc2tQU\niMi+PgNVXTcG8deAr6m2JR3Kx6Sjf1/xkTJ+8Ytf/OIXv/jFL37xi1/84he/+MUvj6E8VqQMTlgr\nFPAS9+W1re8oynSwKe/j0usvmpnZ2aA8TutvyhPfIhp25xP9/9QFuVNzp+X9q1yVZ2p/U97b5VPy\nimaeUcTm1hdCNdTJBHMEm3uRc56hsryru7SnRd712fPyei8tyhte6MnTtjmU9/Tgjjp29z2hDxzO\nx7/wTUU8nnhWUbDd+4oqEuS0DJHaEUzcO9vwakwrMpMGdTBxWh6/YZOMGVGyDzi6f8jZuzGM24f1\niuX3ydR0XvfO1NSW/TvyIt5JSRYzTyrqceENyfwGZ/Zr1xXF2iETSvKyUAaTEX1Wazqn/fkNRdSu\nhOFumZQH2nNQB2HEPm7pHcpTfrSvSECTbB4pctiPySmfgGU9OFA0I9iUUMefasxCcY3l3i1FInau\nqUFj2pk7oejaM9/ROfVWnMw0jqLoDTLzrGUV6Yzhz7z9lrgHOjvqV6oIHwhR9VNTq2ZmFk2QoaFO\nyoKE2jmG1+PounTli481DouPZu0/ffKfWouMPFMJyfHD74lz4M0//CszM8tHiG6Bakhd1ji/+h88\nbWZms7OKAtZuEX3b0pz6+EdXzcysCrrk1JT6G4Odfm0Brog6Hvf7kuMcSKvpvPqZJ7vTCNTYgDOv\nHeT85+9JL554WXMuTxam8kPp9COyBxzsyKPvRbpXL2quHqcEifYaWTSC8AAFExrjiQhoKNBRHqeJ\n7ej3+ztqYw10QnROdsjNaf5sNPR9uKQ+TidkNiOw1OfgIikRFQuRzWdktIdMVk+9Lv6IuTVFGm//\nTNHr+oZk2yHyWKO+BlnpigVQBsi60pO9ckrSuURY/QuSUc1pceYWu+NlHhi29fzYLNk4EmpfgvPZ\n938oO2o9MjpsqT8p73x8jDlY4lw7cohxTrkIP0iJc+rdKlwNcM0M22P6pfaEiKAsTgl52IP/aEjE\nY8rlnDS2oxXTH+GEx5b/9WIKY0IboSnawzl/j+0/ldbz5s4qMt+qku0ONNmZy4qgdDjv7yF5+nA8\nFGYYb9obSXHOPiE9cVxsFVCmQ7gXOmT7Go5cy+TIFpdQ9CjkEAUaStZTk+pDZlZ1dUbSvTvrsh/b\nW2TiIjva/MocdWpNjPfVhq227FC3prHILqtv0RBR511dt090fBLETXZKfR4ckjkLdFOoQ+ZAsi6d\nQmeLi2pvAU6wEOfMJ2akKw2yJnm6NCJz13RSz3UPQU+RrS6ShEciQjapINnnkMMYrpw2PHQBkEfH\nLWcmhSyMXVD7Pnnw/5qZ2cGhdHQqpXH50/vSwW/1FPVa31A07/0XpVsvkq0j1/sVMzP79MxPzMxs\nafw9MzO7mAB9sAf3TIBI7S3Zf7ckncusae51PtRe44ff0fcrH2kcTsSlQ07njS/74LpnrZr4UzMz\nO/WqbMluQuv0uX0hHkOukK3ZutrZnSK7x3taL6LYtA8yand2IJv44ttCWn7gipvmYULrxGsJta+8\n97aZmY20fbDL76YstCjdvBbXtUsl1X3KpFMfL2jer+1prHaS2q+d+aHQN82L2i+1IpqPv/6adOzO\nZ5p3pV/Xc2M/1Jx4+0nptntXe51gaMPMzL6Z01r3blKyi94UD9Du6OtlhIxukjUNfp0sdigAh8H0\nQP93yJhjrEM9Mp3EyDpqZDEaONKZwZH+zxewk/fYo3Thn1vWHPK4tEZBjUmZ7EajKKiIQ7Uvyqbr\nEJ4Jl+xBa+e1h7n4TaETPr8hXqBaV5w99R34TkBvFcgI2QWB3ohIvuvXpTMfPVS/XlyULj35Lcn1\nSlCo65tva/wfbQiFO4CrYqGGLQGJWoiTpTAJqoS9Yi+j/8MsBA5zfASCJuro+yCIpB6ZdFx4+cYh\nj7jDLNI1a8Hn0u1Kn3qboIJBc3RAjztJrZNPvyTbCBDV7P+0f7C04U/bhaspWCEDIkiHAJljZ+Bo\n2R8LHdAFpblPpsQUKNpsTnZgGnTRRFb2vHkoHdw07QPH8GwsAFFPgURZymg/GMb+9kHqBbKr+lyS\nTNMRza32usZyr8H/PdW7v673hRrvLuMTeo+owLNmIKZn58jcxTvXyXPLtFs6+/FPtPeJsJbalJ7f\njMrOB+nHXpD1Dl6RLnwflR3tLwdt3VevwIXT1vpXIiuTU9XzZsjM6aJDrar62w29bWZmsc8lr3Ja\n9ZRuq55p5tQYPsFCjjV9DJ8SiPLhQPY7ylp/3NLh/SVChh6LkGkzr+d8yesCIrQAWvAeaO0yKNwb\nZPbJgWpJzaj/bBvswrc1/mvf/AVVw3r+6PqjL9vycP+u1Y/KlvD2x+xLIimN5QDuJoOjMAU/57gD\nwjsi2Q+bcPW14FqdkMw8c3jtujILrvKeXZjTPFs7qTX2ztt612yPpdvfTmgxCa+zB4AHLxolyxNo\noS774jEoqKmMvq97QoCLsMaphDMZ6gdJOA5p7s2dlY4e7am+XU5rhMKac0GXfvUkj15Yv0fIFhrj\nPTw8Vr/Sc7ruNLxI6fxXyL2/q/hIGb/4xS9+8Ytf/OIXv/jFL37xi1/84pfHUB4rUibFsfQobOlT\neMjLIXkNq59umJlZYUbewZVpeWWH5+UB87JbDEqKit2/KY/VmcvydE3Az/GAjBVjzvtNPaGo1qnn\nhQrZvSWv9r0jRe+XsvJ6zp0Wy3Iop2jTR58RUf9IKIMnA3BOcCZ4usT57ojEWi/Ddn9HkY6r5Jqf\ny8uLmZ1X1GnsnQkm8joRU//KXXnPG+tqVyUNF0JMnsBYUB7I+BAuCc7AeYze9/Ykj2zctX3YxlNV\nrk3hDZyWV29/Q57klilSt3BeMlp7+knJ8JFkeO8LeQ9PeYzcF+XdXHhCkbLq+0LKrBN9Of2cIoEZ\nOBHawa8XlRq7kmURuvNkQboRJtOVk9QYj9vyL+Zzum5IlguHMHguxFhlYcQOEuWGO+Gzv9b55xYe\n69PPyMM/WVTUPFkkk8yevLEf/bU4ebobasdZMmgFQUm0PZb3osdMTjQNkoYIiJRiUp+TE4pkTjm6\n/2BD0a/SR4oabh0KxfDpT9TOqbHaNZtR/2tcf+euvNBOTdcXFjTOt25Kx3tboAWGZCyb1Tjn1uT1\ndjvynEeycD+AxBmPiC4SzSpMSuf7jEeMs8OZgu5bnJFuB+5ozuSIah0RodmDBynsSJ6hKHwAKcmt\nc3j8rCmtfUUbakM9+0JOfY5NqM7+SFGPEvPLDkGkxTm3i0c/lvRY3qVDlQ6ZC4iSdIpELvF81zjT\nP0kGk0POQU/MScdSCcmuD4/O5CXJ2sqqr1WGI6Yp3RyTjaJQ13ODHD1NwMsxDoEkIRPXxDJ2bEq6\nd0BGr0OQHYecbR0QAciRwWbIGdfcjgdVVL2ToCfaXbhlYvB5BCWXVkTymjvFGVrmRPmR7EzjE9AX\nAGTynBufSstWhOc1LktnJZfp02QYmlZH7/1QEZID0BbjpOZMGI6EdIKsJyB9UrmveX6bs89GdhKn\noXGdBi0XgEMhC6eOzSnSXoMLqFWR7Rv3OABukkcGnpXpvP7v1MhsRCalWEfjPTGt74dksToge16E\n9WIplrW5SfUxSBa0aVBgQ3R34CFNAhq7fdA+JyckwyV4cwLYuzTnthMB0Ftws6w1hQQJg1TpwdmV\nIDIbc5kLY+wUmRaioJcSRPOj2Nc4EeACyMrl06CxOHce68EhBX9TANmFokQCsbvhiNrnEEnODKRb\nIyLNDtndxsSTJuCnCBAhbLdJ1VXTHAmkfn5U6m+XxbOaO1tfaI2+8FAojNrzak/+039iZmavnxJ6\n9tETQqpcnHzHzMzevC5E4A8u/8DMzBZOCqlU/cMnzMxs5RtaX2MVcSd8NsOcuqusTSfD4no4WNV4\ndfqK4N5ljzDdUGR2YU7oEZsU+mCn8TY9+I/scHXTBi3JMfH2L+nr16T7uzFdf/iU9hTfvfqbZma2\nHf+RmZnFQ3p+tqh6I2vwSP0YfoCn/8TMzK6gF8/WZee/f08Izpe/q34dvq859rn7mZXXhTRYBMHi\ncbHEr5LB8AeyD5/nJdNTJdm1XVBbZ5tE7TdXzczsxJLG4sFljXH+r4jUkjXkPJ/ON2VHfvyO7ns2\nqOueektr3Lu/qsxYL77/pH2dUmKNiwSwGyCWR/A6NHIeB4P6FSGCG1vQugE9hdVAUWRKmkuLa2Sj\nO/u8nntR9927qv1nuaI1/gEosvm8xmqiLzn24NXA/FiKOZxvyH5df1N7g60b2hssX1G/zz6lKPr6\njupP78kuNY80l2qk96v0NCe69Q0zM6vS78DPxE3zZ7UfmpnZO/9OCJw3npQOLTyn8WyZ+PCOtsXt\nY2RxKmE/gw9AESdli0Itsg1OYGvI1pIqsp7C2XMY1XoUr7BnITtLjP12rMM6Z2aBlJnblH64IGEs\nzLqQhPOBLKvZZe3nFyL6bPePz2Hmsi87FQP9T0aYNmtuAlRmPiyZjyLoBujcyaHGbm4WdO6i7IIL\nKn4IgiW4oTGaJvvmGGR2Am6YIGjMAVx9/UfSpZ2b0olKWn2q78rOVtlvR3g5izvS4Vn2VM4AbsbL\nsgt5ZPQCe5v4IqivpvrZB5mZQEe7VenSaBNulj57gQw6sKt+DUFJjUDg7IIYLTfVn7imvhXiklew\nrN8XYmrXRFRjOGafundfdrd0W3KIBDWXggW9UyZAxATJEtoCNR3LYUeD0pEmGX7y7I8DLVAZq5JT\nBr6l45ZwSs9pHajeXkPyc9kXB+ElLIEInc6qHe9/KATji99+XZ+v6jNv+j2fh0uupf6myUC8DUfN\njZviqwrslr5sy+HWgaWHGQvCW9Rpkf2IfZaXBenhI73jzczq+8hYY9plbZ4HTRSAb219R/Z2+oLs\n09pLsm+//JviijVX1505DWcUduvaVb1DHvEuNXLIpsqYVja8/ZhkFSFrUzwNt1db7b9Bpqnooa4/\nCkiWU4z91i3Zw+33tYYV0lrzB3DYBMfw8Y30PJLdWQ5k5MADOQ3Y35Epawyvn8fV6MIDNWj9/AzE\nPlLGL37xi1/84he/+MUvfvGLX/ziF7/45TGUx4qUCXE2Kwrfx9QZsncQGakdyot3+LHOpOZX5QGb\nyqnZITLjDGD6L+8IVVCFzyNVFNph6Mgr+sEXOst8mrNwJ17g3GVEiBhHBOe2VZHXMtFWuxaeUZSr\nN1L7vvipnvNFW9GxCy+8ZmZmSaJ7w6Ai0oU1j65aHsUA2VM27sljl8rBEp2RtzzF/VNT8uAN8MJW\nD1VfbU/3Zxby/K7/G476n14B/XBOXnKnQzaow5rl8nrWOAcvAuzhgZE85L0UjP0HnH0NyyO+uCqv\nYX5ZnvryTZ0l37yjqNaFGXnKly4LKTPuysu6fU3RkOq20D7pVUXUkkRwj1tCcRAuaTIxRDUmThH+\nBs6kEnyzelNjO7WkyEGFsUxP6wKHDAhBojFFsk48dUbP7RMx+OCmIpdDvLTnX5Euxepk3CKq88Z5\nyaUTlvwaPfU/TcavsOG9TXrcCGpnYlIe9wjs6y0FaC2ZUj+XGdMUqI0AUbVzxVUzM8sXJO8ekegi\n56FPkt2qtq5+FJDfqqNxdMh8k11Quw+r0pEw5+qTM5JHjwh4Mqb7C3iL43myKjUkPwfEUWSS6NQY\nPpe82hsjupSZ1Bzo4m2+eEqRjCCcOv0ELP0OaBAD1XKMklvknO+I7Dphst2AiGmSIasId0kElMHE\nDPwTRNT2xxqzgaMoyf2RolDFOXnwn3pdyLrTcFbd/kMh5mp1XbfyHUWLCqdkV/bJ4FXfkCxuvC/W\n9v1P5ZmPwJcxm1dUrf5Qc6oDK3w+6qEbIJ2KyK7FyBZx8Ref4X64Bf7tPhLRWMym9dwokY65GdkV\nL7LbaMku9u5zth5OnBjnlyeKqi83S8awsO5LIcf9htrpZmXnEknJqRjVeAQP1L9STLo0mfeyUmlO\nrH+ucdnrSE6tB2p/KgR3AVwA/f6GuuUqMlzdemRm37Utsnsct8RAexWjcOJEQO1hQyoB/Z+AW6wG\nP9S4o8k5bGjuxxLq32pSn/2E+peFdMDjvOkf6PpeCU4E1q1SQ/3tYs9niWJNTMYtWlcbZ10icRXO\nTTOvFkKaf+FdyX6iJXuzOindnQoCRRnoeycEr0JHcyEJGjU3rzHt1qX74Q2N/VwBBCSIm4GROQYk\njEuUpwWXTMRVvbNL8OwQHQt1ZTcSzKFci2h1noxV3v1h2asIfEJHIDmToEWLZLKJux4qSTIM19Xe\nakdzqxDWZ47o+QCURd89vh0xM/tpBXTDrD77ok6w5AeK0Faf1vr5V+vaayxMyyaUrst+Na8oK0mM\npX/cJRNPUdkAT0+q33/8E639r8U52z9Q9PDBBdmetXe1XvbGshnus7L3zidCnn4Iqu25tPoX/rz4\nZR+cXNHc3hUzMwucFqJz6kPZpBnQF9Wi0AydC0I3fPDgO2ZmNjr9h2ZmtpmTLbs8IdvyxXeVjeSH\nI+2Fqu+o3W8Exan29DNaXxqxXtzAAAAgAElEQVS74opwVzXew9Qb1pnVWC7dl2zWy2T8S/2GmZnN\nf+uPJaOukGkLN2WnVnvsf8hYGL4rod5NC9VT3Bea7PKr0tGb8DPc7suOXrqtNebb58U/8faPNUbP\nXBHKKGMbZmYWTN+xr1PSIdkFJygdaBPlz5GBq5wDqhxUvVPwtY2r6ncnKV0+Sda72dfEvZJF10M7\nIBTXJI/LyxrLW/DBDa9rP3hItiGDwyBJBDg4hOeNSHGvq/9nTsK/8ana+8Ed8dLdW5ccnzsp3U5e\nkp12P1c7948kn/6IfStcMxM5Pb/ypDgf0kSuqzcll3fLmjO5B4I1XLgoO7eQFTKnMdDeY22szyGZ\ncyoAV/JwlEWy6l8dFMeYrKKlSbJLEdFvzoLw7IP+hsMhig0yMxuPB5b1eKei7H3hU6qlua6v9u9c\nA12+IVuwGHvejlsCKckoXIVHAjscndTeYaag+TqCLydT1diWd7UmBDoay42SZBfZhl8HxGIhpD50\n2FsM2EdZQm0vw8tmLdUb4vfUIzLSwL0yA8ff4ulVMzNrwxnmFqULEVf2YnqTzJVQkHi8R8Z7wmGV\nLKAH8HsENfaxqOxCnPRCkyHNiSQInyAo5N0yxG4Z3ZfK8S6Y07vRKpxoCZBFVeZStys7WmQtTyQ1\nZzpN+APhnjm4L3tUBH7ssDda4HSBwdXSYT++ktU4zJ+UDibheAkEaDf7+IGR3emAd1Jvr3bMkoRz\n0/KqJ92X/KdB/Hh7sjOz0qcTLwkRs1HVOnH6Za0HkyAaa+tCwDRBAzcrel7sE40TiR+tc6S5nU99\nlX2pexg3d5yw7FC/NcjEaF3pUmFeMjpiXz15CvtFRsgq+zGA4LbTlO7ssx+/+KRQlP1n9PxSXH3e\neVf76FadbGucrrgyq7XHQA9VB3D3bagTqQDIminZ+d117atvOhqj9JpkNk+GrelLqj/Bu+MiWZQP\nrklmow57koyeW6rCQ0T2ZZesUzbQ/y2Pqopsb3W4LOOgfkdugv9BO8P7Exn+fJ47HynjF7/4xS9+\n8Ytf/OIXv/jFL37xi1/88hjKY0XKlInSHeHNXLwoboSpJ+QhC11VmKrLeffGbXnsY2QDyaRhQ+Zc\nY7Mv7+a9DXmXX/wFPW/6ZUVGHr4pZMu1q0J7BKbl/Vybkfc1cloRg85n8jZ/fgNOiXl5e0+8oTNw\nXZjOH5GvfPe62llYUXTLGahf2wSuJ/G2zp7Q7820kD8PPlW/4ymPP0OeuYsvqH8zLyuyYO/JG9sk\nOlYkM0I2L49h6YYquveOzsQt/2NlEIqekrf74V7T+gdyX554gWhMUW16tKF7+6CNjHPQNaL41pUs\nlqZ132J51czMdrbleb13S+cLL+Ul46Vz8j6OD+X5r8NOPqhprJL5r6dycc6BN4kch6NEgqPwe+Ct\nTI3hPiEiEcjxe1z9abnqT4wxd0n91W3r+nja4VPtP5NU+3c3JftJvKOjLqiICUUqwkTBaiPpaGEF\n1nPOqAaImg3JcuIuELGYVXsTFXlR0yCVqhw4D0T1exq0QJnMXhk4XALwpdghnArwmsQ4+xvnXGiA\nDAyRWby5+0T1IqDTFuRlHkXJEkB0KhZSSCQM30kzzNnUuNrTDOA9z8IpQ8TDjRAhHej33BwIpLS8\nwwFHcvLGI0X/wvCVdGC/j/aOj6gaD6Qj8a5kUq/D0eKoTyHv7H8PHg4y04TL0u095oY7qbpDU/L8\nP3VG0eKlS5f0e05j2IVPYRc+jFBWfemCmHBMUZxKm2xoRATcpCIB8SRoq4AihI2RZOCk1M7n3lB9\nvaF0b72q6FEyAMcKY33zoThYrpXFFXDzp5r/WQ9VBsoh0ZFuFUC9dcjqNALpEoQPKAripQ9qIVtQ\ne0au2lm+Kd3sRDWnS44XnZL9DBSl+32ic1D82HjAc+IgILsKM8VBU3SIjEY7oCtAVTlZySlMtD59\ngugjNqE48/ViClnkF+MMchHOmsEIm8SZ5fpA43FyWp9BMvvkPC6MgMY9RmA1S3aCFHNxBq6CHrq/\ns6v+Htb1/DKZJaC/soUF6Udi2LcQGQZjZHFoNyXjDLwHI5Ak0bB0Isq55wCo0UmyoIX6shdRLwMJ\nnCRdzsQXsmrLQVh9XyebRiyiRk0WJ2gHWZHi0mWPlidSkW6WQa5ML2psEkSVCmRGmCFTTCjInCBz\nwyjicUnpukBAcy6eVP+H2C+X7BvDOJFi5kqWfofhpkkavENSRcvmJI8duMeOWxZuCfkyMaXMP+uv\nag19uq059WZUEcrvxjRH3wtpbuS+Q4S3obGdO/h1MzNbC4tvo7amjDR37ghxsnZeyvOTI9nD3wSx\nuvs9rZPrKbU71RVqpLmvvUDoLPa8IW4YtyeeDjv1FW9G7XsRi8+vmpnZ7ap09tJJ2fPspOR2oaKo\n5ufT0ofnXOno50FxzIRd6fSD60Kd5A/V38sv67k/gN9p/eAbZma231Y/U3DhnHhf62jivNnLWSEy\nrmWF9jkDuupq84/MzOzw/9Y8KX5Dul5OS8YTDc2jwKJQt7dfJmr+iRALe6C+gm3xpQWxF5On9f3R\ndenEbl97leisxuAwyby+CxoL/rPjlnAIXrYEpIguXIhLj/getOcyyJGa6h9mVc/pttbc6Zjs8eYn\nGos/uypUsXNbn332oyem9Dl/RXKKnJBc3G19ZrDHrRZIz6R0KwJqzrOjbbithml976EXtj/WHi5E\nFqU59nCrcNzEFxRhPrq9oXrIBtXvaO6G4deIXzzJfbIdA7i3anBE3lmXrk94vCmso8GI6hmvyHZk\nyKayC5ITyjfLFjS34gbykOwwvRUygtKfOv0sDPX9KP0Vh0M7FbcQWQAHGOARqHEnredX4RibnRKa\nonuX57a27Lgl3YcLZASKf5NsoQHtOToBsto1tNa1W6yJIJ9z2M1CXrqySoaYYFlt6dfIIlTT2Pfh\napzJy150p6Qbg6BkvpCQ/WhMCU2QYI8UPYHsi5JVwsu0yF6m35B9rwS0PkSjkkGzyZhndF99G5Qo\ncysxkmznJkEZIIcWMKjWCHvNenFxCYTmvGQenNP/h3DTxMKqJ3qg52Tg64ykQE+B0o2AmgqwX97u\nS/fcvvpV4/3DRXdCFZA2pusbJd3fBuUayv9/7L3Xj2XZdea5rvf+xr3hMzIivSmb5Vk0RW8kUi2R\n3SOoMYAAvmhmXgX9DSNADwNogAFG6FH3ADPdQ7ElSiSLZLGKZBXLV2ZlVnoXkeHN9d7fefh+t6ol\niGTUUw0wZ79cxI17ztl77bXNWevb3xehnupPX1i+XauBBApNkJ4y29D/8TjMxl4QK6iZRgw1qojq\nnYNnsMl7RnxRY/zEF4QmmQiLFSryn2ZR9U+HZI8A/dBHgSgQYz/eUXvXP4R7mDUHXhu1WjZ2g+IP\nYLO4PlPLWgt/fUn7zCv3NU996fel6Nerc5Ijp99nl1SH5HGpjvrgV1t7SWvgRJUu6tXvN9fk+1s+\nfJr9YAKUUp41bXtT80KgrTbdeU/rwy/f+4WZmf3J//xdMzM7+bDQoMMJNw4o3WpBtrr0hsZgilMO\nJ58Sx1YLjpt7e7pulvZ3uro+6MHXJ8gaTiP04FAssncJwnfXAuFeG8M1FvrI5v9acZAyTnGKU5zi\nFKc4xSlOcYpTnOIUpzjFKZ9A+USRMhP+id37ijrGworQLRxVRM17UtmzKuf91u4pwrWxBUdETtHS\nVE5R4HxCiJk7GzrXvH1X9z3+vFAcbrciYG+/rnPU918WiUz8OWVepnJ6bva4Ilk3YY1+72digQ7z\nu3MPiYOmv0PWv6Rs2WiPaO20opltso8b8K/Mw32xeFx8HqOmnlMoKwq7BSojeFURuFOoRMVnlmSw\nVd2vx6G9dET2qc0r6nl7XXYZv6vM0YmnxTnROZGy7beEzrl6T1mRpz6lc8pLJ3Tva7cUffSgXDBB\nqBR3FbV0E7nPz2b4nWxfqSj6d7Cq3x07KXSS94KyQjdel+0qdf3fE1CdD1v6AUV2U1F4K7KcFYVl\nvAebu9dNvX2KXKfzqu8gxbnADhwpZIZ7Pvh84C4YkQl1tRUhT2b0nPoEiQNL/ZiznhPWepepT+MB\nOFkCyrJstdQnJ08ry19pyRdbqEQFI7puBJ9FMq96dZqyz2DCY9ElAwqnQ4Ss+pAzxSHOuA7pNzcI\noTjqKhWyQNMJ9Vs5LB9xwWmTXSBbd0tjJhkje8W58Q6cDEdWNIYyddm1sKWoeM6rzEEjrX7wYQ+D\nCd36es4UymGeOTIXEX0/6qj9A9o3Zeq/ZuW3n7v8ZwWlEY9bfRbtc5YeBv5AWONz+pTGXWCHc9ou\ntXVqhmmQLHvVo750wUvRRHHrrf9L/AyRMlxOsM0HM2SxQG/V9lGqackWPfhxDvDVUVRtDD4tfobl\nR1WvuFvXz59SX91+Veog3g4oLniK3A3NF33uF6zItxef1Jg7eUH3Le7Dc3FX2bExCJsNkIA+siS+\nABnpEdkW0FClgua3oFs+XYLJ/9znP29mZlnq0WIOCJHVaqxxzpqQ/7ApO+y5QQSB3mr6dH10JJ/o\n4DshFL/yqO75F0B/zZH55WyxK/Dxlq+JEpsbzp4hZ32DnNMfD+HdQqmiw/IY4Fy2K6l2LXJu3dPT\nnDnbBqWH0kSLc+GboNKKjJX0WWUB8/M4GmpacY/s4K0WLDrkjLdX94qyRoZRr4t4NE56IP0SnCUf\ngDTzT5AbUbXVG1If9oZkecjMeVCdy6VVl9ljarOLeT8SRjUJbigDuDYCpbnoRtVtX/8fYLNeE9Wj\nmOqdBU0Vdsl3s0dBS/X1eQ90Ww8OBRfoJTfZqxJjr3Ug3wyRuXSpGpb1MQ+CMOr6Ue7C97qe3650\n8C/LoCqUxvB57SWeuKzr148LQeO5Kl95vS7UbSwuFEHsn3Td4Fuag05ehl9kTfb8dE7n5r/v1V7l\n9/1CltwZyv7/GNGccPqzGrPuqlC0mbHOw+9Sr9o1oYXLs3rur8YaI/828N6HbXjhm++b+yKkB6d/\n38zMXi5qnq5/IN/8alBz48WA7ncM9EF0Q756NSWk0GhTHf/Y76tdty7r/194BgTrRd13HNX6cOqi\n0HtvFtT+I6++aP/ZozZnl4SkcOekHNJDmTDwJaGK8rd171/H1ZbnllnDXhUfTtLky+7HX9H9BtrD\nbGTWzMws/bLuMw2ieuphOcHx6+L8Ky7IV66uaQ/0qEvj+YMbL9vHK6gDBdV3Hf4O+lkz41rro0WN\n0XFW82t8oP8XO/p74zXVY21N+8zgPnuX46e4r35XAqHRQ60qFVffueZBILbhr3Npjsig3NIbM6/3\n1OdtkHo+3wStK9+KmObDAxR9Gne0Ly629ZyTWWWQw2S+b99hffSDxgNxWY3A8zRYUnuYg1J93Xey\nZ6mAWA105FNVv35XX5Ud3PBPtWNqVyaMul8FlBx7wW5b9sg1dZ9wFvXTnOagjXug1wYaO2ZmoZDL\nAl7dL8Lc1IPrqz8l+yz4NC93bun+M9oiWbi+ZIctfvatromyLGjaCKqgmXnZsg7UO7APoruvcTug\nDoUJp1hENkmN9Vkdg3KFkyaHEmwXvrQ9bBliPm+41Tdb8Ex6JtAOt/pmTF9srAn9EIOvo1aRb4dX\nNR/F2EPU4AFNsR9PptRXqSA+19LnRGFsAHfjEBXVRA5VowOtG+WaPmvwbvg311Q/lG2CM/LBDjx0\n7abq7w9NfBqEKftv9wyKkvCPBE+hKoUS5tgPKjep9dOLPUIj0G5TGtvpHGs9AKJxUb7ThbPF19B9\nfFn1Y6ej/x+2TBSDerx3NBirwbrsVuro78KDNd2/qfXBA9KpVhBqLbUk3x+wztZQWxzBudMeTDgb\ntQep1+U/9a3mR5Wpeq1Va1syCaceHF2Vmmz73Ekp+f3e/yQusPtwuCw9LQRNMiCU1gTd1QNBPIyp\nL6obss0IPpvAPHyS+NSEm6WNAm0PxdoQ81IEBPUxuKX6Ho2F8khtf+Gc1rpvf/d/NDOzKxeFoNm+\nr7XWD2I94sLHQPKV4dsrwwm2kJPvZrOcemDMheCCiTd5h+yqXpU2+/NpOck4IB9vsu9PQhvUhWPR\nO56od/7rxUHKOMUpTnGKU5ziFKc4xSlOcYpTnOIUp3wC5RNFyvhAI3g5h7d1Q1G/JiQDoZAi69l5\nRStHOUX51v5vZZArO0J/PHqGLOC8IlSpfc4SFxXJC9YUTT56XhE9l0fcMFvv6Czv7lVld0JHYVtf\nUWZnAZWW3TvKvFx/W5G30xcUmTuyqEjaah09crciblOzOjttHkUhb18VwuXaL3UO/PGHdA48HuHc\n5RznxUewV2+TaZ1VVDgBW3yrC4qhrgxAiAz/wlllVvZ7YpHeWdMZ5ghnZo8sL9v4gHPAd9WWQlR1\n94NOikTgIBmB5pmRrRph2eDuJUUbx0lle6YSqnOfLMYOjNw2kM2PwF8xd1IR7q27irQ3m789Svgv\nS9+n6OTBlto8B8Jielr17ySVzRjBT1FeVaTfjUJKbDxB/MgmNqe+G02y9vBmjEExuUryAa8LXo62\noqFdEDiROCiHofq250K9JKY+MrJT8/OKFs+A1nhAxqFlas/srNAM1W3ZfX9f7XNH5ashUB8lotU+\nlHBcKbWzjzrTmPPtgRQoDDgYPGReJ0dGk1HdzwNtvJts/mxWY6uL0tmRPOirnvprf5tMCbwa7/5S\nWbRf/kSZ33kUE2ZmZMfUIpkLuGGGhH1bcOsUUVpwVWSvYRBOiKH6qRJGTSv4EUfC7yqlhu7ZuEcG\nMw9fTly+OoC53u/SvSeKLy3ODceW1Nc+fu9DuaC5Kd8ur2vcZUH1hEJCtkQ4g+4OoVYUUXalTxY/\n1Nf429uBfASuKS8qGy5sF5lBzeiGxs7ei0KXbV4VomVIlmvgp95kV2JV+WYVrpQsmeWTn1IG9M57\nGut1zuh3yNoFidwPOOsfw+YD1EBSp5Q9Sk6DWiAjef0Gimwr8EPt6fube3rOcCg7jchA+1ESG3PO\n3NdVHzfhf+rCR5InyzaxZySuvwcjtbt6Sdmr+hVlQFv9rv3h8f/O9m7LRw9bXBna61PGJeHXWIjV\nNJdUyEo2QaFEG2p/DN6SKBxF2ZjanyJrlSkztidqVKC+fKhYhXLKkCytCMnUB60SwR/CHZAynqYZ\n/EgNPgcg6UZkdWooDO48UNsjx7XWzB8VmqDD+Or4UJeDy4XEpgXa8vHtquaP4IhMaUR9lAyicJBW\nneJxeB3GzCdcH+PMep6x5g3Lt5pwkmVa8gGfl0wcqmsjVDGGYdmwzxn6/VX17QHcAz1THxRQ80vD\ndeDJgqbCd4Zk64tezsGP5cN9GuxO/vbz2/+yjEJa9+4Ctbn+KPPsNWXbv3RGc8atTa1/90HBTn9F\nqI1jPfnQi49rb/Ktn2tNvhmSutFXHmis/GwoFKuHdWyi4JOPyF7lgPY49y/KXudX5FuebV23k9N6\nHA1rrrixN/thG364esyOnxNidesl9f8TJ/XZDWpueK0sHqqH7n5O7RUNnXV9el7qingA5r8l9Mr2\ni1JOOt4St8zqabUrMdBcGIU/69XukpmZLX1avAOBjRMW5LfBN/WbnV31yR+eBXGxKmWq9Zb2RefH\nUvMZxdS23fybtEE++e5t8d6cu6u+f0LTqLmzauO7i/KlqU2pGl0+Ix+bn9Me6NlV1ecXfiGeIw9r\nzNh/skMVP2Ns1NJ87/GqD9smHwkWNb944UIY3tfnaFdrd+G6UMMB0EQP52Vr90NqiKupsVsua2yG\nOqwrcJh13bo+uaWx2IYnL9Sf8OhpAQrsyxfLrBvRGTjPSiBwvLITtFOWzDGWBxpDrVU970pZyKX8\nERR5QEuPQBjWWBfTNZQfUbkz5sexG+XGsNqfHYNC7sun+6AChqY5AborG0yU45r6PhFR/1W31M+h\ntNbXfdRa50O6z8qj8vFjC0tmZnYDFLCZmavksYRfe8Au6q9e0xy38IGua4fKfK85Jn5W36+s5+2w\npTERakEdzzXW/BdgnqwdTLj6VOf1staig4JsMpsACYLaXh/VoSo8Gts3Ne9sbMkXXHCuDNnXdyP6\nPAJipMF8VpsgtVHY6e/CYZjSfiziY36fkW0jLfVVGXRpCMT1EHTuCDTw+j3Z7LpX9Rm0QJlC8rW4\nCJfjA80BG3CS+VCBiiVBELlAPrLHiGeFvoAu1G6BoPbyHuGPwbUGvmAK9G2H9fL+uubJJkjLYQAO\nxpjqM3sS9GoV9BUnA1ogb0ogTEqr+jsHH0g1onq7QJ6E/bo+Gv54OIcmKAvDP7osV72W/CQKOiPP\ne9lgW/bLZ2XX7Q3Nga27mpNinAQYVHmvY33tVnWdD9WsYznZ+979j3iSYqOieYJu6+6zj2END8bY\nP4fVCV//H75sZmaNuk6OLPj1zrC3qnHmG2te6a7rmYU+aF+PbDMblk8PkZztVtT2RARuFl4a0MWy\ncpU9BPyfAfYIqbh+8dzX9Y5ZgUOqsK61d+ON9/g9nH/wZvbhZvXwDhiCQ6q5j2ornDJ+xsgEOV1G\ncTGZVnvTvL+3uqwfKCH2ipq3N0ogifzaK+zxjrUUXbLfVhykjFOc4hSnOMUpTnGKU5ziFKc4xSlO\ncconUD5RpEwY5uzkUaEqhnVFkgrr+uwTcWunFZ098+nH9PfnFNl+/xfKpOyVlUldSek+WdAGlSIZ\nzPeFnsg+rkjcqWllChLnOdd5wLlxooZzYRQlQBGMDnR+vgfjduuBnj9RnhmNFFksrymS6Efp5uQZ\nRdgJNFqDc54lVFPaZBqOndD58MUFoSpGNWVc3GXOkZ4hkz+ryODtXylLWtxS9upoRNr1Rx/SfVzr\n+v/Bnuo5l0jbiXnZ5u5t2bR4U6id7LIyalGyvKWS2tCcUrwuf1r/b8Lu/uCSskwtzvWmosqeZNOq\n68462Qy3+jCT5Kx6VmiAduPjqWH44eup3JVNqpyt3IZvKAPKYAEU1QLZ+XNZoYf6PkVZLxcVKZ85\nqus2YSGvrIIqMvlAO62IdJhMQwfekEpc3+fPyxf2L8le8Qn/RU7f797Wc65dvKHPLvxGrwsFNYKt\nPklGcfqo7Lc0zfUj2a9SFLoKUId50igDwR4fRZ2oSjapi88OQBb5QijAoD7S9Cnau7SsTGcP9MPl\n/0NZyjev6Jx+bkbO2huTQa+h2PCM/i5fUX+cCytDH06rHf2O2l2DXd+DSkDklP7/yIVvmZlZMCm+\no3JVUfiwV34TDHIOsyH/6zTIIByiRMnae5Y4rzwlH5jNKduyXVGdV99dMzOzbgm+DReZ2pFs4R6D\nRCMyHiEb36vL9/xE/IMezg0HQaDA5B/N63P/nvqgXNBY69MUD+iheoi+u6Vx2qnJVoO78sUWZ+Hd\nnMdOnYKPB96HKZQCmlXd2D1RKOsrkv/GP/4XMzO7flHjv1OVr5IgtPYIdnjOX5e8qk/6lMbG7AlU\niMhg+j5UFFB7S/fV13s7ms8ae7JPaLrF/fXrECg7xKDM79NzhlW4Dwyk4Gm4JoZwE4xkh04BlZSO\nfu9nHZjGjhnvin2c4q9xhjkJ9w+KaiPO2Xe8QuiMEqgtxTUmfVPwWDXhRkANq7srO/hN/pJFXco7\no0xLj+yfwZkQicD1UNDfs6Dg0iCz4j6vlUBXdlBI6cD874fRvzc5Tz3WOG20lW2qgCiJgXTzuOHU\nCsu3/fAnJcg/DVHY2j6QTfyhCdcVKiEh1W2EGlIMHoguakmdpnzEW51w1KjNCwl9P8t8muiR7R+h\ntMiZ/s6BfCnmQ5GB+SkIN4KBqsokdb/4DH0D11XbN5nX1D4v82AtoHr44DCoDQ6PuDMzG2XwuZc1\nTz09lL1eXVA/eFNrum9Mdk/+QCoYl+ZR0aiwp9lRPd/0af4vmtbq3hRogafg13hHyJmn3hI64cGi\nfLH5jFBVoaLsuOFnzV/RnuZcVGPl3V+qn5/+au7DNmSuDq28pfs+ckp2+NWC1pWH10FNcH5+Oidu\nnHZVfAHJ4U0zM5t7Ts9JfB/OmHNC+rTdQkie+Kn67bXPqn+P12WX2NO6/7VrQrO4Szt2elcZw+mQ\n0EQ/qmpt/H5S4/qrMc2ng+f0u9Vf6t7zU1obPyPqFbu6ryy2dcV3M/yy2nDlHzVOAxnNf0+a1v6X\n9n9uZmbhsWzp3pPtf3VWmUs3qhl19yQne7jSZK0agdCIepkXDjRPhlEYrG/IZ/0omrX25Ft5n2y6\nH0Thal1jLbGmvdUI1G0Qvjvzwx3mYmwG5Fst+JLGZH4HtCfqBhZ3VmuphzFaYSy2luQ7iX3VzzWi\nvj3QDD2QfEuqX78PxxjI85BXz/e48XkUaDoteK5QY+pQ/5wHFUJ4OzxwgvnCDdoDvx3ra6+JgswY\n9HMKdG0N5CH8dE0QhkEWnLX3yMyD0Jk7p/XhyRmpsJiZHZtPWxGElXtK9Q6Fl8zMzMs8Pu8VYitw\nVn41b/LD7XDRDlsaO1oTG/BShqbkAwclVDoToHJRxUnHURPKqU75pPZXi0vyzWxcbW7c0X1j7AlO\nLEn5xjXP/u+MFvm0AYfNaP6MPNBa1brP2jSvvdHcI0K6JeCjKzdBRu7JR/YM5UeQGXGffufKyFZt\nNjfhuHwnnZCtIhOuL5QIu6htltgnToHw9i0LCZNlXx1GgSseln3qPfny/r7mr+Xzeh+ZmZ+gpzSH\nuGfkiykP6nUVzQXxLEo5i3pOMAsvU16+mPPKvl0Ufqf6qm9oSveZKAn5QBt78VUvfHFh+IgmnJOB\nzsd8v0FFyg2HUAQuGHcfhBNqg74RSpXbun8O309O5GfhMOoiVeaG98QPP6AHxM/GuzrtceSY3hX3\na7sf1uXF7/2fduapExb2yleXz6vPzz+hcdTclk234ReKgBBvxvV9F9SoOwJUnDZMsTdws8/2s99x\no14UHOp7tt3maoFO5Z0mNVbbAHRb0q2+q7b1vFgLHj4QNzd+wn4UQqJetYQNmFfhWnQzf1YbEz47\n+VDntnx+kFCFHj+rdythym4AACAASURBVKaDA+1LvT3dr9iHc/aa1rMzc0J4JkDAJxJCLz/xKX2/\nt6H3AXcdJOFvKA5SxilOcYpTnOIUpzjFKU5xilOc4hSnOOUTKJ8oUqYJO32Qc5PBvNAcYaKr9+8p\nW3X9ZameZGDaXjkidMT4jKKb7SJn/j00h+hliUh7dV+RrfJ1RfrTRKPdKPAcPb9kZmauTVjbb6yZ\nmdnCaZi8A4qoDVBJ6kT0dzyliODSkjIvr66pnr03xLvhJkN6fAUk0AJni9eU8bn6S9Vna6hP/9Jx\nnie7HOwpgxSdUtR7+YyyoK6S6nvjDZ0733hf2bhjT+q8+eyM6rP/QGfravu7tnxc91joKTLc2lW0\ncLANj4NPUcW9vqKEW2/p2UnUhpbO6d7utqKH2wecBw4oOnkspDpNLSjKenddmbrG9kQhi3PFcNIc\ntoTSilQ/+rCitV0/qj1l1aNxSyioV38q9FHppiL9VxaV0Qu6YaP3qp7nOHPpg5tgelE2HfpV73FP\nPrFPBrqrpIqNZ4miwsORnlcmY3tDz7v1ip6/Co9HGpWpUVA+FI7IB9xknF/9X3+hG0/Llz7zBzrU\nH4CVvtUkWwUKYpSXz5bgsglDIeAh2jzmHGSUzHoRLpxAlvou6oLC+/r+1ks6a+s+UD9Pp+UXeRA2\ngbrssUtGONbR3/4sZ3LJjBiKZgMUEDJetXu3rKzf7b8Xmq2wpf6ql2TQGPwm4XkUKQqKbvf24brB\nbocpsQWQDR7VfWFe2ZxhC66OXdmyDbooGIArBC6WHpmBdAN+InylPJCPj8rKNnQ5Az+OKJObgE9j\nJkxmAAKfRo0zpkT2Uy5UMsgshsiqzPrlgwkyp0V4gFpREDvYdiov2wbcal8dxIehRpHguhBjNRWQ\nry0fhSsGH0554dSahg8JHogq7PKTTOGt23rurbd0Jvfx40IoulEw27+rbHqtyHl05qsBYzMxr08X\nSl5j2Ptbbvlaoat+KEVlx93L4owYbMlui6eU1XK3OVcfRuFsCGoEpMzk87ClyVjy9GRHP9m7MgoW\nBnLG29Hf3aH8oFTj3Dr26sOPEk1pLDF12Jj1ZJiEFykhO4S68MKQIZ7xyceXm3AxgB4ZlTrmQpFp\nAyTKTlFZqDYZtclx5NST4sPYXJPNDva1dqV6ytJ442TudiYoH41j82i+GnVlUw+qTROenWZGNmi3\nhUpqlFSP6EC2GhrzN4iWIFxVI2xT2VY9dlFBCsS1RltYfdmF64vkl8XJAGfLIGHgn+j4ZeNaEXQT\n6KvCUD6UB6FYIzM54ScKeNQZA1BlPs/Hy1zeO2BP8qzmkF/DJzf3kJ77+kXN+6UnVK9vfl32vLSv\nbFlyX2P53nnVb9mr8+6LDy+ZmVm0qnnx3i2hPT6fEZr2Z2dkn+PrQpO03vmx7vco6oZT31G9Kj8y\nM7O9HbX3QkAogL210odtaD52w/Jrys7dJLn/RRA3QzKugc9rD7X+trJ/+5X/x8zMquuy/8q02ndj\nxPqfl5+89mvNBZGvq14j/OqDu1JfSswoE3tuTvfbn/2aXTLVMfKk+v6bL+kZLrineimpZmz+1++b\nmVlK4h5W6MnW/3RGa9W5Elx/Ff39oCkfX/HB7wBn4I9Ha2ZmNocqyOMurS1vwP03tYUvL2qsvPBL\nOeN/tsOVzh4+glJKMyufc+9ofNf6mteSIc17NQhG8nAp2AoZ43V4jzrKuG6D8PBC+pWGn2nCbeKC\nj2Tgm3Av6P5RUGn+kf5ut2WPdE717E342YZaLwZ1ZYYHMThqRktmZjZTV1824TDs1GWnPvUOj+GF\nAzUdAAlp+2p/KKz7Disg0ZlWxzXQdWl4oOAK67jUvkSHbL9bztoHldxooYoHv98Qno/J3OAGRhxp\nwV3TZX381ZqZmd24prnz4IKQU1+5YBZejBt0KHZQYu/EnqTr0fMrTV3XeZn1AHXAE7MTxOjvLlPs\na6ayvEMs6No8a39iXm1vsk8rrgpBssv49MFNNYSTa7uCihBraNev6/1B2WA/qN/VVoV8eGMoZHb8\ngTrBc1vrhJsxcDypNg166rO3X9XvO239bszexA0azL+nPngQQeF1Uz4dnhIyJ5IBWeLW/s/rUd/V\nxyhdgaAuwXsUycHjAcghEpAv1lc5tQA/lAelzOKuPsvsxW5U1UcjlHTScc1HyyfU1z1cMwi35QII\nl9Gy2u2DTyTsZW+yq35wgSyJJHWdl37LBrT3q0x8ZYN9eFft7QdU39omm61DlhHqqN4+XJEu7Vld\nE6VOFCb7A9XfA6q6DWJ10JTPjiuoyaLYNoRfqQ9/X78Paq4vOx17bMnMzPyZz3xYl6//95+15ZVZ\n64NsmVnmXQJjtg7UBxEQ2uM2+xy//vaBvHY1UPYCzePugfCbqLXBDRNi391iTXezT4rBMdioy5eD\nkcA/u3/Xq+fFQMh5UXgNBuSzNdRXvZw02YJ7MLWseTnYUV8G4GHqw7mVSAgZ9MEu78DvCt2ayMGD\ndF/v99m8UF0zjwhR9xSKw+e/ohMrTZCLlU3dp4e6lDfB/tDgH/0NxUHKOMUpTnGKU5ziFKc4xSlO\ncYpTnOIUp3wC5RNFygwnCjYlRZbCJxUhy5PVH6PAsHFfGdu1i8qQzJxUdDaGTrn5FUmLzJCR9CiS\nlb1BVLFMZJ7zdg23PnfvkUk/r3Dt8WPKWlWaum8HFQ0PijY90nuF62tmZpZJK1odPi4Ux7mGoq6X\nr4gPZO0yZ+y6ut8C3DnxM4qsLcGZsLWlbFugqXq6yHxX+X735pDnKbs1+xzKPfy+uqMo74MtRTIX\nYItvorNe2duzIlwkmayihY1dMrB92SI2Ddt5Q9HR/S3V/dI7Qpycn1IUMPWoziLW3wIJUyUzCrv3\n7FFls2aIhh5sCK0T2tbzQ9OHzzaYmVULui4YRs2H88ZVIu6hnmw1m5DvHF3hbCqRehtxUBFm/8q7\nQilttVXvdE7XBRaV2SjvKuLdIJ3SJgN87RaIopcU3T17TMihHvbrbJHBBRGUnlOWr1vUfTwt+WJy\nVtm5XFcZiq0qXAHwDS0E1WdJzsZGompPFxb2NEzhUVSe2n3VtxWEDd9NVmmo72c5GxvyyY7r9+Sb\nHtBfs6fkk358bsR1oRW1M9YhYwNlQayh53fGikongQnsg6CJ5pSZCTfUzlCHc+y3lGGZqMjU/fp9\no0DEn4xBIqZ2uf2H95MKWZRiVZHpEiznI2xf6ClLsJBUNncMAia1rGx47qQat78hxFp1B2Uu5p8W\nmbKFs5qXTjIGDjZ0332UzUqcw/ZV1GYv2aYOrPIjrzKgSQ+8PwPOCZMpGHAm340KRiSvcTzhJFm7\nqXYN1+WLPa9sFj8BF8AArhV4LVJu1bdFRtoNB5bbo75ZvCDfis+r/fnTKJOBWOmuqc98KACFQLlV\n7gr94M1NuGHIaA7h2AlovkqSMehwBrdV0VjyBDUHTaHUNUZRosG8m27ILhVI9+stPa9Q0+/CtK82\n1vx82OIeyMf7LtmhDC+LC36SBjwmdY/qXb0pu5UqnIMHwdSKMQZS6s9OSP3e9Kn9dXit+tij71bu\nw+vWWHG5mFvI8FqbfjG/DUaq0z6Zze3JmfIMnAFtOFNQvQgfWVKd9nWPB1v6fQCAih9ESTyhvi42\nWPNY08Zj1W2ro76ZLpP1jsh3wigaHMCbNiJjN6rrelcKniQShB7UM9IzIOmGIGNG8nm3S/PDqK/r\nmii31OE9GqPGNqzruiA8Pe2O1pNWUe1zHVW7JpwFSUPZBjWLg00hUvwTjppDlm/21dfdkdaxQFgo\ni/aO5g7PUMjM+qqeswkS8xzKbS93xfHw7K9R2MHnfgZ64WsRXe+/qz3A9md03eJLysrlPq2xueL5\nhpmZ3SpyPv6SxsZ+5QtmZrbn17p8JPWqmZmlg8c+bMMz78Ysktf//76u9r/4aSFwAh/o+8f3xCGT\nYW5L7clh3n8MBYkS/H2fVj92XmMP9II4yB4t6Xm3vfocn9R9xjXNie/vybdX6r+2E/taK11fk62q\nCaG8tm3NzMy8vpfMzKzpEe/YZ74vW919Vn24ujdBAL9sZmavdEBUb8lXT/u1F3nnDa2dZ2NC8lUX\nhQIaNuT74xnNOzm/1olgXfP01S+zj/zf7VAlDC/cuCmfbnU1nv0p+W78APU+5vcgKNYCj+msonQz\nD2oiJF9Lr6sPNqvwGqW1/wtFtYb7TH3TrzMG03CDTcZoSN+7GVuegurnWYRLoQuHV0z3rfble/0D\n+eqQsR0ks+uDr2M81n38oOomWf0uyMJIQHZshzUmQj19Tviuosw1rk2h8fpx1cMH+qADt0MItdMu\n6isxN+svCJ84yNMRvFpuFGl6Q80BY7hrwuxd9obwBr4utK79odn9q3uWiAvdkAdFV/Vp79VqwPXQ\nUnvrDY3VzrraE1k/PIfZIDBR4wSNW4UrrwDa8oHa3gU1+uD2mpmZ+elLV0rzwM4dULZ++UawrLpU\nu/osbMrXQtMap1UUbZNLKCgmUVFKosS1rrFxfQMlyi1xSu168ZUU71ZNzdONunwjVmYP49NEvzwv\nlEANpZk+e7BL20LKebtqXxbFQ28cREpXPlFC+aoBn2exrHmuPFln1nhfKMJXBO9HBCRRDhhW9CTo\nBxAt3o4+99b03tHhtMEt9nztS9qrZUGee90oaq2jTDZSfW6W1V+Dt0AEBeUbexXdbwYUmItX6GFd\na36k8/HWmwkEtOeRHROm95EeKrO+iT/gR13UXitr2Pe45rZOg70a++oh70cbDdQBeS+agRtox2SH\nslU/rMpD3/qsebtml98RImS4pWeWyiDT2N98+Go1UeDyy0fbqCnVdvTsvg8eIhDUXpDoPVBLDRDH\n/gkvDidQdksaj372CiF4Pru8R/eR4hoxT1RrIBczaiP0deaCe2qi5NpaVf0C7Lfr7K3WQRz62U8+\nGOv5+af1nv3cV8WnVrigNTTvnyjEqq/WmC929rRn23ug94gIe6JNUE9jEIpu329XhHSQMk5xilOc\n4hSnOMUpTnGKU5ziFKc4xSmfQPlEkTLtJhH1gqLAPc6KJZ5RJuXIo0KGNL1kz7b0O09Jkbb9bSJn\nNYWkinPKlGQeUvS0N1CkrHdTnCv7ZDDCQWUmQh5Fzq68IQTOsccU5UwcU5R57Od8fkTZxcSaIoIt\nzqJuU598Qp/h46pvZqxImhs0RBlFmdol/b3yiLJk6XP6/SRD3Jxw1YQU8dvb1X1Xbymzw3F5e/Ix\ncS6sPK7s3fU74t5pYgeSnhZfQGnoXsE2PxBCIsr52lBeUci9O4q4puGvyM5OYzvdo7YLWueGzswf\nPau+OXZBWYNrP5MNC2u3qLuuy6CcECCLVIMBu1/9eNntsJeoap00yUCfEZf6ZjgGDUUke7yg//vJ\n5LZQEUr5UCPJE4Hf4Pwz5xVzcUV1BwVl10JT+n0kRZ9zznL/nqKssYh8oAmSxJ9X53B80sZ+1ccb\nU9g2Au9GvyNf6KE8MVGnKtT1/dRI9m+D8GnD1O2fUTuHoA1KI7UzTjYrn9Z1yyeE0Ll1V/WJu+BX\negAaY1sR8tycMh0eVFnqoC5CUcVp3TEy0kXd35Ui67dCJr6r63ojsmER1XPCD1WoKcu0sDxB4mgs\n9jnn2QctEESRwRXDX2Y0huPj3x5N/m9LKqG+Gbb07CFIDc+HWQPV3ZNV29pd+UZjBBfKPWWD6g/U\nlmpPY2JqRfNEJoGtmV/mJ3xCN1FJuiPbhVFFcvv1vIOefCk1Jd/yoCQzqjMm4HApbCurU+f8tmda\nvzvykCL14YLmo/5l+cCYMZBNK6t19IgykKUe54iVNLE6KDY3584LPZA2Pfg/oqp/baQxUkepZrSt\nG1TI9I5BMpKotXJV2Zf0jOrlTeD7KKTF08oghKC+CYBkDCzp+zCcPuZDwQY0g4cMyl5Vduxzdjk8\npXkyPqd2J9PyjWRGvnXYMmZe9LKe1MnEukHqjAKMWTh+AhnVcyqp/kvQLx2X7LWXBKEVkG9HW/p9\nGTWBnqHgBgLKB6dNuc35cdS7yl2Uztoea9ZVt3vwU+SfUHYmS/Z3t6P5eJ/PQUeZUQ8KLxv7Qt7t\n39V8kj2meeHMp4S6CsbJbg903V4XVY6GxtB2E14gH4pfZKP6LdV97JIRh3Br7d/QOF+7rAxsDoRM\nNKl14vgUGV/W+D6qHCMQgUYGNAtvmjekjGOFTGsDlShoQ6xfkc3HJXyV9Hl3gJpbZzJPyqbdEIvm\nIUvtlOa79IbsUgjJ90K7miOKWY2ZlfILZmY2H5PP/2BLPjJBL4xmNM8WyLIv3BGi5LUD+eyZiPrj\n5k81R5x+Vhwwl15Wli48q/V296zscnZO8+On76g/3qxqDnmxBjpu99SHbfjxQ1v27Ptq90pG8/za\nL9Rvn08L8br5xttmZjbzZY3JAwForFvSerRzR9m+Cwuf0j3PCVn7lZ/rvq8+rL3Ul7el4jj0qN9e\nHq/p+wU998dnt+y5A42HV3/+T2ZmVvq8+v6ZDXHN3AvKxp8dCi105Uvq49KOeNYunJJNP/B928zM\n0hlx6Z15SfNl4LQQNost2eJySo2Zjuv+L6Le9o20fPTgp/LNQlZ907tbs49TxlH5dK8ln/BF1T4P\n+8kmwjd+eJXGfdnYUGwZw2nQ21a9Bl61P3F0yczM3DUmcJAoBS8qeG79PuDS9RHWyDrz5wzI6+oM\n6nyoFflvoAq3AMdVW4o7qTmN6diMxnoJFb3qjtrhAjXrgbvFB/cC+D5LDuCkgSfKDwqkbRrTQdRT\n9lnrJ8o1Cbi6DERPsAIi3TSGfKig+AMgxz3yyb5Hvp/uax6ud6h/QvXsoJBTawkBFImCAgBNaGZW\n3Nkzfx3EZl7vCeGx+sedZH0HEbDg030GoFXc5cPvXQdwU3Vami98oHrqAZArIB98bq058TYIiRmN\n8+V5re0teIQ8+EgS6qgmRHFnZpHnnNU7QyElWwdcIJ+h9zhAtTTumiC9WVOX5Mv1sObtfk3z6PpN\n2S4MT1o0wf7Oi8rpop63CRLeH5Stji/quZmzescJ5eGO2ULldG1Sf1UsGZDPHv203mnCKCy6verz\nzqqeOxrBrzlEPSqivmgF9Lx0RPbzuPH9jto3gr/jqF99HTgqBGCY95/xXfXPlYLG3GJOPrh8RO9W\ng2nVb8IlUwFp3g+CBAWpH4+x55z9eEiZISjaFiJIxZDW7eEEEVXRejCFrx6gTPTGS0IsfvuP/72u\n6/JuPBEbjII65iRAKI1iGmi0FqcwxpWP5r79g4YFBj3zorY2bupZvaHq4jV8mPfaLgiQWIz3bZPP\nHtTWzMwsCyKuiUpTq63f5+EC7FdBZYIYbIK+L23IydNn4PYb6fmjIlyNQ5SlQEt1G0BSQHG5WfOn\nQSy/XlAf376pNfXJz4rnLc8YWxyAujotlaWoR2v1uSflKxMOL38T3ifeRYcg8ruYsGPqAz+qU+Mo\nSHgmzCBInFrZUV9yilOc4hSnOMUpTnGKU5ziFKc4xSlO+f9c+USRMhkYwMewxh/cUobEyxmwc196\n0szMls8qMvVgIIbwPufHp1CMuV9SBOvaLUVjj6JoED+jaG4AbojR24pyliv6O4NKy3ZP971++xoV\nU6rj2DEyoBFFRYOnFUW939BzJqztnQmjuF9RXk9Cn9622hXOw7UAC/T660LuJEERuEIo2HQVI8vN\nq1tOD8Vd8e7GG2r/m8pKJomlLT5GO48q81O/r8zNDgzbJ48qy1qt9G3nl1KE8m0qS7GyqMxaKas2\nb6JUk4AdfvqIooh9zvIP72J70AcLjyiqGH5WkfNLb6ltu29dMTOzwCkhaaJkV1xxZQAGPcgODlka\nAflIl+x0LMQ56Jps0AQFEO2gFAAzfz9JprcB4zWoiAAZAV9YkXcP98/Ct1GPQp4ShI29TSaDTOBw\ngtjhPLIXRvBIFnUk7JgNk+kFedIEDTVCRSQAt8MoSda8of/P4HttnjuAPX0uK9REJK127h3Ijj63\nfH9/TVmun/xE/Evv/ErZxOwRoT2ee1r9PfuQ+q2PutMwrnrG4HAZJNVOX5KztETuwynOvroURa/V\nVL90GkQRaJAYkfjwddkpkJSdQnA91MlyRQPYEUhWh8y3OwCbfPTwGe7Ysp49zoNaSmleGJIoGxRU\nh/AJZU+CO7Ld7prGZ6QhG9Sak5C22jThlgp2OGt6Xdnl0gc7/F+Rch+opVAIbheyV48cla8eu3DG\nzMwuXVozM7MGilduMg9LnPnvLIAaCuu6blvzy/q6riMxadNkTXJn1O5AknPr90G+FOFEAW0Vism3\nO2O1e2pePjaiLwpX5EMhkId7qFbEOO8cmaC5yPCmTwp9wdC26o6ub5TUd2fzqlcjLPv04ZtKZWQH\nt5sxuqEO2uzDKVOT/QMDzSkpkz17nD9vFTRWdjnDu1XUPHzY4o2SYXWrXTFUPootVFT25A+bcI8V\nD1S/TEJz4Ziz0U34nZotjZkIaLk9FH8mZejT/Q84az3JgFS9qG+BFmkMhDiqlmq2vyPb3CcjlmRe\n2EZxyxNhXKGC5AG+1Onr93PLqmsVtE6Ztmysqi8SMV3fJtHX6qhW8Yz6tFxTXe/cUupuZp5sMhnH\nHrxpbppaMj0neVrzSw7um522fCVnXD+F6l+HNROkxwEoACOz23Kj2gQXSzDDOXZQAuEIyJqcGjDX\nQaUirPsG4aQKg2ZofcwtzuCqOBZ++Jz69GspzZf/9SX53vJDyp5NXdQ8eZ1+8cV+aWZmT9zWWrw3\no7HWOid1i/WZH5qZ2aMhGe7yMY2VF+B0sR+L9yKe15rvI5vY+YnG0uUXxNUQuaa5J3vsKTMzK6CW\nN9rf/bANT9z9ipW+IzuWd5XJHqSFjth+V9e3vqD6rZX0nIOHxGHzlata51+Paq48WHzRzMwWfiW7\nrz+l8/XTV7VX+4ej6ucjt+Ax+dKSmZm98rrWic+fr9ibs6BoL8pHnvkJ+xVQrP3jqsuP4MHw3IFH\nKSdEXuuq9iiFU+qTZ15RVv31Y5pPwnt/Z2ZmD2+rDd888U0zM6v2XzEzs/1pZb1f2ZEPH8spYzo1\n87yZmbnWL9rHKQG4u7yLykL7vJove0m4vnwsPA0UJ5vKdrvGavdiXu10gW4b7cJ9gCqnb6Tva+xl\nYkPN170uKKyJ2p/JhyY8gCM4WsZlzXMxlCatLXsG76Au5AHZA8Kxldf8vPCQfPXJrzHnvC2fulTX\nvnMA0tIf1/XDEvtaOMdiKD2GE6qvH+6HqZbqexDU9b0HzBnMp5W0fj8ARZsytbPqR1EmKLtGJ8py\noLHdGflNZTJXxEHWuDQn+EEBd3sfoQFCyag12Iu44WuyWdAoC7qfCzRLmr3Y4gX1Y+EWN/lf7HeW\n5lDjpcZ+MTIGFdDQvYMoybpQzhqAzukNUdYCad5qaK+wxF7BeGeqvr9Bg/TR2kIJkFMEbfh/ZkB0\ntFos1n09x8s2vHJHPrcPqqnPO431dP2cybc8INIzSd2nW0NZx4OiDipTLWABg7SeE+xrjTvYEfLO\n49Ka7e2r3amnNBaOndX8tAkvZrAE71pR89c6aq9+eIt6k/a4ZIednNYXX1fPG2zRDlBynrj6o3Gf\nvQfIpQMNTQvu886WUXs3QAhVr6q+tfrkVIf68SiqqT720SO/fMRd+XiouxiIo0JXvtjsgaxfATFu\nWpdPvSD7PBdW/e5WxLdVA5k0E9T/22x64xn5Ty6tOa/UUj33D/Sc6cn7UeQjNdzyQdkS0aiNvEtm\nZra3K98bo/RVb6O8CrKkWUTxa1q26vTkm29elM1OnNe952Og/1NwAdJ3XfgmXTX6kneh1bb2k+GG\n1qAh76ARnutmySwV2K9zwqTb5RQB70YLT2l+/r3vSrkwzXWnHxaKq1iUj9y+yljKqL6NB5r3Kttw\nfK3p/0G4vNIodw3ccAyCcPfF2b/DnTMEGRRBJaoF4qY/gRr+huIgZZziFKc4xSlOcYpTnOIUpzjF\nKU5xilM+gfKJImXGYdRI5hXVa2yoOjcuKzo6mlPW79hJIUoCs6h4bCuKGsopajjlVzTwwbuKHu79\nWqiQc15lteamFBnrZhQlrO8ogp/OC0VwElbl+w+Uad64B0N5S5G0hx8RIiVNNDaN0k+PbGanrM/4\nEiiABAoQNWUGjoQVxeytqJ7lK7r/+jv6jHOOtOVRNLheUjQ9f3zJzMyOg5i585bOXN+9pnaGFlSf\nUEx29KUVgittch5+RfXKzazYblLXbN6VbefnlIGbRXGqcF3onQqZ0kXO251AnadxV7w7q1deUxuD\nikpmV/S7xy4oI3rtbUXEa3eUVvBPKRKcycG3gKrGYUvYD7dIU7bzkCXqk1kYuWUzD+pSLbL7nrDq\n5+asZ4vzy6FZffrboJoCZFXgPvAXlDmI+tSeLuiCMZmKKJr1Mb98z/ycq+T8ZGtNPuNFlSTkUYS6\nTaTdG4G/AsWaCQlNgHPZ1QP9/upP3zP7c7NX/qOUKcKLOic/m9B9E3Oqr4fzlvu31szMrEOk/cJR\n+Yx5ydBU4daZUbR2HbTI9IKiwx0UF0YdZSq2UY7pwZOyiKpSzOPjtoR7YSLvNnRGtbauMTQ/jXpT\nUmOlsCm/SuRRrJlkFOjPGNHnflv1b4U/iuD/rvLBuny3eKCMZQT0zrgj32t7QcpUsPE+2Z2axmsg\npDp5WvRFUDaNkb0fw1c0nZGvJ8dqW72sTEIzLBvkMrr/EAiJP6jfDat6TuOG5p+hS88bw+PTR52j\n64Vp34XPFGSjnT24S0qy+U5evrdYE7eN/wrnkq/J9haY8CHpzxH1ScXl0/MrGvMtuGEAGpoHJYhe\nX1kUPxwrG3WUsxZkn5PnNZ91yLYdzWseyqXV3sWEMtm3rmseXr2lzHQyoPu3Qa25/XAPdCas9CBY\nJrxGZMV8sOTHOQcepWE+UHKHLdu7oNfG8lVPQc8ZgYSqe3TfHdSe7lyVP4Wzqt/zR5XpD6OMUQX1\n1icTYmPQeqj0r1trawAAIABJREFUjUAxbPb13HADLpptzaV+jkjP5DT/R1LTljmFMsgDZRBbZDBt\nV9mnzDJoLHylTV6lW8Z3ErLxMRTFNuq0max7JKZ5rwWCpoqCjD+t5+yy5l25q+y4O4xPk5zfeE+o\nggn32FE4AxLw/uTokyrzwA4KDem47u+KgcTLyOaJuq7vwQVQJeO7VWBsHGhspUDAzLPmh0FVjZGZ\nmnKBFmvDhTBSXw7Iih+2vDYjDpUz+0Knvvi66jF6VOvn0b7UlV5GNSr0mBCJn/KKE+ZV1AqfnkWZ\noa/5O9PXHiPS1bqYeFlj8AfPqd7LIFM7PfXPnaza+QdPqN88Q80BGyE4YbwaU7mafHTpkec+bEO9\nu2ntlzTGTn9a113uSMHoBnx4X35TqI2/b+o5v3dM/XHxKe2N5tdUf/+G+ufMWc1FP9+7bGZm0ZjG\n+oUrQqtkf19z2CsDrf8PP6psY9F90l54X21ofk3j5u4/CM2Z9cvv76IemXTJtyN+kHY53SN+V3V7\nxC+0KLQTNkgKCfPomc+Zmdnaz2XLS6CDzmHD6be0Z3F9Ft4dlCZDLfly3/UZLPcf7DBlCBIjxBpY\ni+s5eym1M+3W/NKFQ8Udlq0CcHlto243LCtNX76p++QGqArNLJmZmScnnw8caP7zxnS9C0WtADx3\nDVBiAVAYLjK4fZRbYqA2qn2thwOQ1De2UWK8KPuPstqPHlsRsujhs+qHk2Ptk+/ekS/Felr3WnA2\neDusm3BPDMvaQw1QTeks6XOqp3YNWO8qVdkp3NRc0Y3L55oN9jgN3bcxDR9eT8/vp2SXuA8uNWAf\njRB7uRQZ/oH+breABZqZ3901jwdVPJfqW+vB8TDQejgIo3BzX/V8b10Ot7R1ePSuZyDbH1mSj6cj\nqHGCqrQBPBqgcxNjtSUDh2Ec1brmquq0FQV5ckfjfWNP+6kgKAI37yb1Rc23C0fk42Ge4++Brk/L\nd9z4bsjP7yDGaKNkVWZfOh7pd3GULIesRzGv6tVryYZ+6lHF5t66+rLq1p7nwFTvbJzBi1JWCjXP\n3bc0r2zz7mJt0E/7qte4J1+Z4n2lFQXdlJJPnz73hJ4HCvnumn6foC+HcNjMpNXe0b58Yhs0SG8I\nkn2oemcb8Ju0tFebastHXV71p491pQHvShLJnyLo5sOWNrCImSNwKi6qXtlZjbl2W749YE+UOi0/\nevbf/Vv9DlR4LAZP4p6e7/NqTN8tqn0j3lUDHS3kQxTehp2PuBvHhaE1Gy6zAXw2PfgkGR5jEM/B\niO7RKssn9x5oXCZmNF8ET4A6WtLvtvvsj7rwEqU1bwxGamscrj43+6/tHc33x6bhsUupbYM97YHm\n2FcjxmQeUP4dv34fYW/Ur6EoBodhEwWz96/Ag9bknQNEXgCOR2NPUtvSWpgEuThClXM0ZH4FfeQD\n7T8C1ezvTpDpzNse0FplkPX+374ncZAyTnGKU5ziFKc4xSlOcYpTnOIUpzjFKZ9A+USRMkPOv2Xh\nhPAnFPUrvEG27A2do44T6E6mFRWtb+rccxtFh/QxZUBOc+789Td0Bvnmj5Sp9XMeL3dE19/eI4t3\nQ1md6aeVGXjkaaFCmi1F9krrivJueTj/uKjs0nxev1u9p0xHbVsRsOwpuGqmlszMrLqjaG2ZTNBD\nTyhTVPAoq3jlXdWvchtVFbKIpZIicBEy0Mc/pSxbeKDfrd1Spmn/mrKZM88LVbAwpSjwxS1ligpr\niiwem561qWlFXldfV8T67kVl7M4+qwzbdFL8Oju7ypYUa3rWKdA6SRAmvV/pbPzd18Qdk+sr+pld\nko3nFMi16gNlS3bL4poJx2R7H5wIhy3DDuefQ4r0jkOK9I98+j6GCpAni0JOW9HRUE7RTi/n/Xol\nfZ+EM6fCeeNOkwg05xl3uK8X7frRHHxCKKYgnGPDsO4zRi0lOqNoaqlGFBigR3CsKK4lQdAQNB6F\nUT2inWG/ospbMI+727L38lFlIr0TKRuyXxEi/+ZD7YT0YTYun/GAQqvDel8iMz6LbyY7oLxA7PSG\n+jz+mHwtHVF77l6Xj8VQJrhzTX5z5w2NwaBXv2t0yCQU5OuLTyqjsZwXSq1W0RjxDuUvCS9ZMTIy\nrhwKPvCmhEa/naH8vy0JzscmfHK+wIxs6eWs/c5YVu6A5ukVQA9MyNxh3D/wKRIey6lv2yhD+VCx\nOJkRT9KoqLqF3Iqs++DAmigebGwqc3Cwr/ll42XdZwcFhJNPq2+6ICqGcF6FXWpHnXPdoSnZZPlR\njZ2n/73QT3N5zXfF15Qtv/LzyzxfThfjvLp5yTwTe/ei+GBl0Eh7cPAUQTfA9+EhY+vP6vmzIEMi\nT8kHYsAm3nv1Z2Zm1tzi/Py85sW1gXg57n8g1ECvITvFz+p+lXX4kOjjNvxBM6AFQhPlH5SAmmPU\njFDbaJEJHu8xmA5Zhp5Jykd+ESJJNKH18ISFJHLn9LwaqkwH2xpDqxvKOk3Dw5KBe6gDR455QUCF\ndf3OB1ofSj2NjUBG988mZM9GV9ftkYHxNUcWBHUVParPKVTxOlmtbV7OTTdM80Gnpjo2yd7v7qgv\nBswnUdA6nZJ8vhthvLk1n/ngivGNdJ2rTV1ANY1SnJMm0+Zivo9GZPuZefnYqAOiA/WjGHwb5Tpo\nsqLqHU3r/364cIaoV4yZzkJp+e4UW5PdMZk/EIF+1mLomywykF18bbgbJhnPnv4uwF1w2HIyo+fc\nWNa6+I3yL8zM7PUPUBq7J/RG8in43d5UhvMqfBreGbXz2ivKsp17WhnN2l1xs9QPtE4uf04T3VOv\nq77tgNbL/vaSmZntDDSP/+KI7PDF6xPlMo35cQeFnOekSHTljY94UfKeWUujCGRdTXKNHykD/UT8\ndTMze62o+fkZHyiFDWW+Lww+b2Zmg6HmyqsPVL/HnpWffD4mO7jz6oDLL+m+l95UvZ9Htc+Ye7vz\n+1Z9BB6junh3bnxTz8i8pnng3LzqsJnS756IChF8UAUJ2BV6afaa5hXXs/By3FLfHvhl89zRX5iZ\nWXmHta9M9n9Wdd19WWinwUn2X/vyxbm9N+zjlEBT9a4lyT6jfBKBw6sFWixFJrnbRRmmSdZ6T/Wp\nVfX/lZNL+n1Ce7RuVWO5ztgZzMhXGhMum4xs3vWr/aOaxngwxv2Dsr0LhEwL7pY+SL19MsJB9lKd\nrn7f2dF+9+quEDS7Ba03J89LSWs+p/l5DzSDi7HVj8GZACdXGfWWoV/2nroh3+6iEBRcEU9T/D5q\nTdugzhrwc/hA8bGMNTqqX98DQn5PPl1CZSoCv0eDLVKRTP8oqe+HoD/MzGpur2XgcWmxXg+7oH5Z\nCFpVta96X2PPtyq7FMaP2GFLelbzgsvkq304Xtr7emZ/oLVht6l5sLIlX23U4NiDR6jSVltX4DoJ\nZrUGPzSC75L9ue8oa2KMed0Hh8oDfGl/TW3qyvdi09rzlHqap7rsEfZrGvejbZTEQIIMQGKkDnTd\n2kQRrINqXwIusKMgIVdkyzSoikFZ842npXXInWc+B/UUA62cSwqB6YHTsGGqz4wHtVXQtAebmocj\ncK7sVGWn+3dUr3JdPucaqB+8INpHIEtcm2pXdCwn803BNTmn+/lSoCNWWcPva09ncKjtTqG+2gS9\nNdZzPKDZDlv6oK0naq/Dseq1zWkND8ibHVRr9+6A8gX5tP5Avpnxsw4iU+gFjT064H2CMRlCfbHD\n2O22PkJtjFtja7rqNoJPxzcAgcYphSx8nruMh0u8v37m4WfNzGzpKe2Pj32BvnaBlLklZPDOLT27\nCerXi7rnoC6fiZ1ATWlbNr/v1/v/hU9p3AXhtgkC3RlFUDGFf6jSkG+cfFTzlj+q+tb24PTiXW/s\nl03iQXjnUGNLoMYZM9Yr7pvIah6o025/EqVI9smjAmNoCuRgY4K4V9+1x7pvvSrf9IMI/E3FQco4\nxSlOcYpTnOIUpzjFKU5xilOc4hSnfALlk0XKdNGUryiKuXhMmcSGX4iU2+8rA7z5ljLOpx5dMjOz\nyAyqS5f1f09OUdmFY+IyeIZo4+2L4prYfkMRtKknlMldyBJd3VY0so/iwLGTysic/4Yif9d/8Krq\n90D1LEaU0YlnFNFLVRW526+jcLGjCODssuoRJPO6ekeZh/y0Io5Lp5VxGHUUQbv2qrJc/pa6Y6IG\n4rohxM+ZsDIVx59WBDJI5n+/pGhxaxu26iPKAAVQS2lcWzMzs72+22YXyZ5sKNK+taosRv64su6J\nvGxSIFK+t6nPAJnDC48KseEio/r63ylLXkZ1qTOJwE+hzALzf/VdRUlbFUUnfaCdDlumZmBJLyuy\nG/PB1RLU3+We7utpwTNBBrc/hHMAjpXUtGyeCSv7VvLBa9FRlDQSElLo2DnFKW++qz6JlsnSo1jg\nnXDcgETJksGodJUpqHgUqU6nFDnvNkEfoPhC4sQ6Zc4/BsmMx1GAKci+8Sm1Mz+vzzaR8fpI0VYX\nXA9e+JT8nBX2B9QPlRZndk8rGuwL6O8yCJtmQM/PRWW3aE3/H5f1vJf+00/MzOz6RaEdHn7hq7oP\n6BF/R7+LwyMS9ykD7PKj8NAmuzchHgHu1ucQbdcNJAb+ljH9liRwP4Dn4zAlS180gyiRcEZ0wBl3\nD2f5Bx4QDk+qrrGmfl/jUSdQjvnUn4hjYAduq3f/y5tmZtauyNZb91D96aqv8igUlH3yjdSUMp7Z\nrMaWqykfHSMbEWiA0kJlog0PUsej7I4HRZdydXKGXn00n1O98ytqx+rfyNf6ZPqiIc2Lo67qiYiE\njQcTJS3NCzsf6PeFitoR8MqXxj7OaYPcsbHmiiBqIbmgxvaka1amNU/3PLL/xhrcMDXN17ERiJu8\n6h8Zwrnl0bzVhTMhDmJmgmRqDvR3GKWIISollZLuG/CMzOzL1tz5eEpuSVRDsgPVwwNarcJZ6QGK\nYqGG6r0yqznDXdb3XngCeqgOjOGL6rrxN7eydRMRr1+9IWSAB4TSzDc09+XhSIufQEkCBaGDcsla\nEbLYI80nXngTsgGy4kHVfUCmdLgY4veoRRQ1/kaow8XgYtllvMaGcLnEdF0JxYTStnwtSibwkXOa\nv+JB9d0EKTOLylKGM/BRQ2lmrL6PRDUGWqjShb2cP0/rdz1Ul5pN/e0x3X/I2PV79fwE81mkD1cC\nkgUVl673NWUnPwpXE36iJHwb7ToZ597hEXdmZvMLWnPPva92/qgotaEnPy3+kvdRKHs+pD78aRto\naFb/P56FH6TwgpmZrW2umZnZQ0ntBX69rbHiuqw12/OwxlDjrtb00EOaKx4Babq5ocx0L6r/b7e1\nF5gOo/x1H+W42Y/Ul66cXLczc7reLkml6cLXtW68FVC98+uyewPljF+/qbH9b+CM+NFd7SWeH8n+\nbx/Inx66qTE5PiolulSb+R+ugp89pXrlfyh/Op78tr33D98zM7PPpNTWr54UD08PHrVtUFzPR+9j\nM/lkc1VtuPwZjfNuX6pKX2oKddQjCz9b1T7uZwHtu/yPqC1XI9r/2UvwEj31WTMzaw+FxFmZlvrS\n9vU2lvvf7DCliPpabFXzYm1ZPp9V9a2VBTkJWmiASpEXVFo8rYzyQ+fVB303qIX7qByRsXWhVmJw\nbvkScNTA49YDvRtnHmqxR4lN0Kcu9mBd/e1BuSxZ0djcr6s+0ZHmrcCKfHRYmCjmaL8bBAm4OIN6\nIXxCDTjYIih6NsKqXxDlyRpcN234/Fq3NX/HUWgcejS/DtKgFoq6vspc50KNNBnU/csoEzVBO0dR\nP+zuyUfHWd0nNgBV8kDXtQcf8WZ4+i4bNHSfoBdOs5bsMURNLw+v1Kf/nXiYlgLiMmqvacz+x7/6\nS/tdpbQn313f0f44WFRfd1vMy6qCueGb6ER17yDchX1QoclZtTWF6uYQxHG9AgpqB5UibDPhOOzl\ndJ/AHTlloaO1fnoOCDd9NHbLVg3mz1FK95md1X54KinfnDsh30h0Va8J+r8X1HWb8OMVk3puaFo+\nur2qPq1taP6pFNWOLO9sJY/at9sFgo6CYx00s5uxUGvq7ygqT+2+7HiCvcloW/frb2osZLra90bh\nj4rC0RNDbfVOXc8pteCzQjHMvS2fv7Or/tu7rXdAT1HtTpxUfeeDWssbc3onWzmuPV8fTs7DljBc\nlG7WdT97ylITHkRUr1b8jLm6vnehsuVGDTU8mvCRyo7+uPxkCp6VtTXtFaO9CaKG/u59hJTxjL1W\n2a5Yhv2mC4nFzT0hRMZePWt3V+P47Kc0H3zxO19TnYt6z31wq8u95YuZhHxoiXeRxprG99Zbejd8\n647Wg2+e/zMzM3vqK3r/Xr+oEyGFLdkmj5rxWlljJZNXH4x9auMs+7UQJ252N9bULt6dorzzeFGD\nqzfhlALJHY7Jd8IJzQMtOGy8GZDiE1VXeC+NMVfmNEesob1GA05IA/EYnqBW4c0MByfrzb9eHKSM\nU5ziFKc4xSlOcYpTnOIUpzjFKU5xyidQPlGkTB/Flw7n3iqolzx8QlHayIjzdFeVBdq/rujl6QVF\n8uteeD5Q+kmHFBU9QqZkVNV973+gc9gHUUXEpkDKLMQVWbv1QGfOwu/qXPXxLylS1/2MIlu3fiH2\n/kpVEbKpmLL+3tOKnO1dVDS3BB9IYl4ZmzT8HfV7ijS+82uxPvs9ynYtPKJIXwlW5vqmInfRgSJt\n1Q21exVljOUFZeWmjyuq278NLwhn1Th+bo+eVGTvnVeU9Su8f9EinHGdnZONmrTlYE22mX9M7OW5\nZdX55hVF2K/9QtHCqXlFgo8/o7P2i/eUCVu7Kdut3hRXjWKiZotp2SAzy7m/hu6Tak9YVA5XxnXY\n10nP+0b6TM3LFumQsk5e1Jdsck54BgUcOBmGu+rLrTfU3tuvKlvWBRH04s6amZk99kVlSWamdV9f\nX31SIUIdhIk7E1X78ilFXQ/WZOsq57lDoAd6HkXkvfBgRIIgRlJN6q+MQqWrdgVSiqLOHIUTBx6M\nSAzVKBBIbcSf0pxj7BQ1drLwkPT7GhuukK7bIdp9fEaZkvPP6Nzl+geKeq++oyxd/++VXWyuy5eX\nYrJDoAqXzZLsPjpKlg/unW6QLJkbNRfOHPciqGYRRTaY0t1w5LjgyOnA/m991d8zPrxqShmeh1qj\nTptBQRGQHkfC1EU2no5MOJza1F2+0SaJtNmXT9yvKCK/XdD9PR7VvQd3gBeuk3Zf2Zb2dfgmFqZ5\njsbasC8bhWlbBy6t5oQry01kHh6Q9IJ85xyIwCacNWu/1Bnbrb8RQnD/XdWvzvO3yTIFZuUT82OU\neuogZWpwK+xo7I4O1P42yjipodrTQW0q4FKfuMmS37mqTEjfLZ9tNCe+iPoHPCV9t+r/1Je/qPuR\n2ajemqSS5ZOZKT2vTmrAT/91UCs6qMMdEdPYyWfle0HO5M6c+nioOx9s+HE/KBSX2hUi8zuAr2SP\nREgcTh7fvLKEPs5tu0FGBsgqxuBj2gfNEXSrXSvwb4QhQInC8dC/q9/50ihMoNQ2jLotA59CLM08\n19e4bYxRPRuBVOD8tKutex9UVIfNnTUzM5sCNRU5JV94Mk2WnvPQtZLG94Nbmr8DOTn/XIrz0h7d\nr1NQhs0DmiGKj06TBQsOyTLFVZ8ySmdekkWdEKpQoJ1cWdUjtAeHFJQvI1BK4+5EBUP/KI1RbPCo\nncmEnh/yy+fCIPcMH6/DmVPgXHc49fE4zN7yKft3fku++sXPqW/er33WzMzOljUvvetVlu9rc6pf\nC+6bn70FovEz8OGVtJf5+1V9/3tN9cuLQ43V+A4cbtuy79EV+fYjoOxWbwiR8sOe0HvRWV03vA4n\nj1vn+l2dL3zYBm/owN77hfYwT+X/yczMFl7V9dnMBbVzUetxfUf2jqIU1HpfmeGVgLjFSlPa+5y/\nJ/v/8IgQs8dius8p1r+t5Jra9yOh+XZcQrfciN2x3gWhhl4Z6d7psnYJnSm4RIYax/uvCElz97Tq\nlBpov3TsAETL21pjN/6NxsLpn8tmLwaFBhqc1/h6oaG6DEDxbE2rrfduCN073tdzT2S175qs4Yct\nUxDD1YNwDpRVnxaqdwHQRYOyBkHIrXlysAN0Maqxd+u6PjfvqZ3RA7gS5oRmWpnT2HWDoh0MQKOB\nZKzAF1Xza72K+EER9FCAYQ8Sd2ustlBccaN0NhPX7ystjUnbUX3CY81b4yAKNFuav30uFH9C6r9I\nVPdttsgUg6ZrBPSctMGdAxK+D7fCqA6/RRo1pwpqhuwh6nA1REPwg5jqmWZf3IW/ys98bBX5QRrE\nUQHeq3aC9Tn4EVImUnPbTkT9lZkI/Uxj31sao43r8pc739d67o8JNf1wdsoOW5KobOaeF8omaPCP\n7Wv+CIA+2j6QD8bhI4ucUhsSoBW8oEW9IAx3h5qPi329C433QVaO4e9gzU4HUe+bQU3omGwcegw0\nwbJ8LAT/UQ7+tNpI43bYl0/UUBnqwknYB31Q3ZbPtUCblqPw1PVV/10AI7UJqnhV9U7BDdZw632i\nyJocRCXJ1ZBPp8NLZmY2GulGgRzoNPjcPNN6nzkyq3loTP29M2qfL8oey9SeDutK5R6KXAXN33VQ\n1G3QrW6Q3ekjGnsrD2seno6i+hqUXaZwhVZBvlSEv6pxwI0OWXo83wv6bszpiVRAvu6B82WyG26D\n7vDwRRx+vzH77STqqLYNL2lG61ekP1Fp5HdTWu8PUJ8yM2vWatY56FiLtbwzkm/c2dU708lzmvsf\nfk6qxvPL8tkoSOe3L2ktW4B/EvpIq6yizsTeZjGiZ/uWQYmV1YbzD2mfderxPzEzsw9eQj0VjsXm\nA9CgoGmPPK36PNiC64V32y5o32ZTtkjGQTg3dJ86aP1IZIIg198l5l9vCmU0kO+7eyjujjQGS/D7\neEGv7e5oLK7t6vvFo9qnNkDm91tas2tDjXX/WHuM31R+Z1Cm3W7bX/zFX1ixWLRut2t/9md/ZqdO\nnbI///M/t+FwaFNTU/aXf/mX5vf77Qc/+IH97d/+rbndbvvOd75j3/72t3/X7Z3iFKc4xSlOcYpT\nnOIUpzjFKU5xilP+f1l+Z1DmlVdesXPnztl3v/td29rasj/90z+1xx57zP74j//YvvrVr9pf/dVf\n2fe+9z371re+ZX/9139t3/ve98zn89kf/dEf2Re/+EVLJpO/8d5+jyJbbXguDq4JqeIZKzK1cErR\n0ERYkbTbF8XtUAwpMp4MKbJV21d0c3ddkbpjQbG7L39WmRfroACxRia7retS84pYTZHdu71KJvim\nIoBzeX0unVRUt3RNEbEHKPkcXVZUdvakIn4Xbyt6PPxAz8kTtc2C6ti9pUjdr3+sTPeTzwgxk5lV\nhHDMWbMgTNmbqLg0N/RZJBOdzyjqHUgrCloBKbC+oQhf5rgimQ89rQzDxrvv2tqqbLN8ZEl1XlGU\ncbumM5S7q4poZ5elljN7RNHGD95WJu6dF6W25P6CmLDDS7JtqEIUcixX2t7nrCpnWONJuF6IXnZG\nH48HYr2o6GLhjs7m3i6Q3R4pg+iJy/ZHn1J9jj4mn6mvqo9X7ylj+eCaMsItzjuGSurbtF+2X/+J\nosH7u+qjFZS4XPBx3KUvihuw2f/NT2WHGWWDpnMgRRKyQ3ZK0WIXCjs9kDLegKKrYQLaNZAyYyLm\nSbI2HhRh+kn5bhKkU60oe5fryiCceVgZzfI9IV1CKbUnOpad6gPdf2lF9Zle0RnYO5f1+599T9nL\n6YF8KhIRymrpjPwg4FO91m8p2ptjTHiWQAIVNSbmErJDA+b2foes3STajFKEC+4JQCo2QJXAm52o\nvOi6XuPwnDJ+r/z+KAm/YZiMHFmZHhHxBmdKW4yz8p7mG3ccNSTUMN74O/Xt6IGyLdB3mGsOHouW\n5q1iS+P98Ud19nxItnz0QGOgWlI9qjc0xgpj9WUuDB8PiJ5GV305xHZ7tL1UkO/PwTvhu4+aCFmf\nHEoHniWNremU5tqn/liKL7al+v7qP/zAzMwCUTldeo4ztXAQlOogfeA8yKU1pmaSqqcbjpVaQX3t\n5myxn7O68XmySHDmlOAMqKKsUwQZUmT+Q3zIavtkb0z9MXte8+SAueQESMhmmLFI5mGMss5wkhU6\nZEniD7EQij6w+A9duk8DnqlBAsWjhuzdRa1vNJQfpfIgeNzqTzfIn1RN7Zg6qjGWvyA0XZ31JjgG\n7RfW9UPmggjcELGRz2IoY4XIPIbgi/AO6Qsf/EUMjzqSIx6IkWZ8sk0mrrrHC8ruZLgu49fvDm4p\nTZxm3plBfcKVBrGCOluWvo/6NUbCZJ09IPtioE9dfs7+cyI6BO/DoCsfWCXDegQlnAEqd72W+qLv\ngueH6xtk/X2gQIseuMNQDKvWVf+NuublHEjC4ABOLZB5UXjdDlumb6t9NxdB5lxRu7afF7Ky3BfC\nMFfXfTciWjfiIc3P35hVnzffls//9Lg+XSdQlFnSehrCB86+KZ+vPST7Lv5Mdv9HMsfBGa3lJ1fk\ng9kUe4KukC+L6z83M7NR/uaHbZhbiNvKphCPV0OaC1yf1nVl0MaV14TOePoPf8/MzI6X1B9vz8uu\nxce1bj7/ilAuL/a1fnzrtNQX/+lHssO5M/KrzTNCB9buyR7h54U4Tb73hs2eFdLl1rTa+tB9ZZ87\nD+T3vaRs4r6gzy/mVNetiHygCaIv+Qeqw/HLmufufF51nbuqPcXDO6rLFfgytsvqo3Ree5H5svY8\n4yc177+P4snszXft45RxVBncbkf1ZPibjwzuqAJHShQVDxByDb98sjBR24TvLkSmOA66IQJipGOa\nXwLMs34UEUd9/T8RUPtbQ9kjVIBvbgZ+DOBq6QWl9fNN+fLqnlDNxev4TE4TctCtz1EDJEpW/ePp\nCe01Lmq966PgkhjCOQayss6YjbJgHtyEt8KvPWAiJh/JsE54UEwrBmmXW/YMd9L/7P/ZMNxrSLT5\nB/CzsHclhQlcAAAgAElEQVQIwJsxLLAPWEBJsww3Guu0mVlrULf8SGN8wN6mv4O952V/P6jq8a44\n5favCzV3/9jh+am2h+qL0eZEDU7jLg3SOcUammbebbnw2T3tc/c7qKxty5ZTHVBWVXiEOFWQmNP/\nM0/oXeL0SdkGk1jtutp+nXm2MQbCwjvMalVt39jS/NJC4atfh9dtVuvLEmty6z5oLnjf6uy1BlmN\ntdRptSsX1liLt4ScicKD6Ye/LpORT3qDekfyz8g3gk2NoRZ7knFBPlEagEBh/ktOTfiaeFc6UDv3\nPxBqYoDan9cHZ8yKxkglqP834dfL875w/lm9Mw5TqkcSrsnr74nX5M6eEOW5np67taYx2Y5MFNjg\nRpsoMR6yBEGtDVBbHeGbIVS4hvCoeEB9xVDranRQ+AGlWy2qPydzzrChuWPM2QX/AXMVSP2wS5/u\n6kfInkxg3g56V+z+tnx1+oh86/E/1Fz+uc+DfO6oDhtrcLq+r/fmIGt6vy3bDQdqgw9eoF4PjquR\n7u+Dd+jRx4V22qOOBw80PwfTGo+ZRbin4D3N4fNh5svbJY21EkjsCNyQwzR7Beazrgu+I9C9/y97\nbx4s6XWe972973v33ffZZ4DBYCdAkARBkKK42LQVWbQUKXEpqthRJUpZtliWLEWJrUhZFCauVKRK\nZDNlJykrtmMqFi1uIAkQEBYOZoDZtztz5+5L7/ve+eP5NWjZEXBRlRSS0nf+6du3u7/vLO95z/ne\n9znPU4FvrtEAqQwi29yy+TTPQgGeMYddtSM0RrSznq1dle29cl7cODMP6xl5Z1PPWAlU5LqgwnKB\nd9+3vienzGc+8xn7uZ/7Od1kZ8cmJyft9ddft098QrKGH//4x+3VV1+1t99+2x588EGLxWIWDAbt\nkUcesQsXLrzbpZ3iFKc4xSlOcYpTnOIUpzjFKU5xilP+zJZDc8p88YtftN3dXfvd3/1d+yt/5a+Y\n36+oWCaTsYODA8vn85ZOp9/5fjqdtoODg3e9po+zaLGEIlWjriLf61cU8cp1FN1cOKJzyu19RXN7\ncDQ0W7DMo1ZUvQ0HS0ARtBNnhXDxP67IVTGryHfxniJbrQ1db+IECgr7ii6WzytK3ZlSlDGXVjQ1\nlIVfZEeRvH0UcHIPqX4zZOzvbcARU1N7jiyN2acVzV6/KJTHnVuK2kZDirL2OdqcnlBmOBVQRLC2\nq++VqooIRsggxXOKIBbJiF9/RdHcXEERvZklRX+PP3nWbtKmvTxtnodR2qW+Wt1QNqlLZjFF1uDY\ngrIk1V3x9mxfUZQzOKE6uCc1Rt6Coowp2NGLm3mupyhlNqWsSpfzyocueUVyJ8myeFAkiFR1n72a\nxuzeW4pKultq+96mMg5370hZ64FJ9UWQM7aduGzOG1Snh8n61Mmytckweyd1nwgcDvGsxmZgam9w\npDF3deH3aGis9q6pn898WCiKyn3ZXBYepX6cc5fMwGFKEXO3nywa2fvcIko6HrgRUpp3KR8qHqDA\nrl3UnCkdEOWNKqIfQ4nr/oFs9vxrsr1OV9f1wfY/dwaloCIqTKZ+73OeOzSFChQIlzOgI+72ZaN1\nVFd8yEu1In36CxWXusbDGwR9tqxMSeFANu3jUG8DDgl/CbWqQxRPU98t5jn7HkKpZhK1pWXNkweP\nfUh1Qwnrbc53D4hgJ+Pw+3DmtAXqaSas+RuMyna9M6gsnVZW/MNPSxXk+n3NsUu/8/v6fEj2GIWD\nbkv1qiZgpy9qbgxQ1Tj30BlapPfXvq/r5Zua19U1ZX0SUZA/CdU3ApFT9kn9kQSlsHVJc3UIOqnQ\nV0a5Zfpdf6yQMyTrhqrciExC8a7msLuvuRDsam4E0/Kru/0Bn6tdvt6Yg0Zz4PoPNKbFNcbYPeZQ\nkQ202ti8wTGTkK1sbQnVtguyJdLX9QqgxAbdTTP7tB1sXbf3U9xjday+5pYb/pEhPsQiIKbw28Me\nHESoxKQmOWd+XFmmoVv2FjhQfzVdGhefV+MU8mgO9Pzqxz7ZuWBI38+3IRUKwyPjnbGIV5nM+BCF\nkLC+a6ij+SOabykyZI0e/hCumKMTstGgX22K7cqvh5oau8At2cYU2fu5I8r6R8g+5ZvyEwFfmzbA\nyRVAFa4BUga0Vx/02dClsUqCBmgNUN/gPPj6W7puZ03o1MwKWfO4+tTLHmCIckEWnqNaT/XaK+r3\nVRAySe4/EVOfRhMaIw8og7HiWaWH8sEhy2JM/TFbEX/JZkx+MbiqsXz67qtmZvbiOnMZdNWTAd1n\nD6WY2Yrq9+dfxNecUf9894Tm3DN9rUsbzzG339AepPyIsoWfj2sc73h1n+N7Wj9evg06oaK5XEX9\nb2l57DvMSt/atO98UvZwZl1+N/RNIX3ePKJk2iefZJ2+Cw/VOY1TsqT3ZwOgOk7re5+tSI3vD1fV\n3599Qgm3PdRZFk2Z8fqnUVy7Jc6GEwsn7FsXZDOzJ+U3Lg60Nnqe1pq1sKbfvprT/uz5q1ozpzeV\niUW4xqrfkS2+8jHZxNT3tCc5F9D8+ca85tnn1nWfPiieYUxj49tQn9yBn2gT9NlDe8ft/ZQA3FFx\neCX2oxrbVkRjl2HtHsD9EvExx46jInJJ9713U9+f9KqByTmtnaUafhg+jX5I9Y/XNac6MY3VCDU4\nH3uWEmjX+L01MzNrRMkUo8a38Anxw33yWSkplm7Kxs//C/jkkvD9ZVWfEQpmkTAqfwkQfg3ZdKeJ\nalNCe0Y3/E4JeFDmHpFNB1CAa8P7UduSjZXcrBc8hoS92kv22/KfUZQpd9kTheEy83jhjhuA7MHX\nRQfkmF26zvyi2tE9AMpkZt1yx+rMqaRfdpCD62Kvon4dgKxd/hHxwYxushdphu2wJYPCny8C8hDU\np8FZkt9QG3Yamp9u+CY62R5tkQ2nx34Rv++xfdoOmpPPqwPVffe+fj9A9TN/UWNbvas+jZHFHxTU\n94EySEw4R6aTstXEsq67eFbPNgH2VvWY5qzLLz8UmoJHaQGeqKxsNVrS9Vbhw6y8pTEKJdT3A4OL\nLK3rurflNwvXQaeOTwds6Zmuzx4pMAO6bEvXb0Q0CZv3NAebe5ozftRZw0HV00CAhlArantRUIzK\npu+s00/3NSeioKZ3LwlVlkrAlxfT7+ptjUfrQNdLZLReJoOHtxEzs24HZBLIlyjrbKenuRfm/x24\nNHus94VNje/EEfV7zDNWbUSZzaXrBMbPFzF9bw+1vuSc5shu/YcIyyuXLtnVnSv29Bd+xMzM5p5B\ncbfKGr6msa+VtBb3ttl3h0ECZ9XX1X3N7xGoIQ8KiX5QtzUQNNG06hrzoWJ0lWensmwgA5p0FJDt\nNPc5NVFAvTMIooa5Vcc/7JX0/Zmw/MMYERMCwdMfn0KAx8eNItcoDHJ8H86/luZMoK3r+uHMGrZl\nW92mbOPBp9RPuef0eu6Mnpknb2n9OXZMfrBWBJVUe3eFLtdoNBq96zf+lXL9+nX7pV/6JTs4OLDX\nXtNRovv379uXvvQl+6mf+im7fPmy/fIv/7KZmX35y1+2mZkZ+4mf+Ik/9XoH+weWmzg8eZZTnOIU\npzjFKU5xilOc4hSnOMUpTnHK/5/K//SPfs9+7qf/vf/bz94TKXPlyhXLZDI2PT1tp06dssFgYJFI\nxNrttgWDQdvb27OJiQmbmJiwPBwIZmb7+/t27ty5d732f/+V37X/9Eu/av/Z3/kvzMwsMqfocv6O\noqdb5TUzM3vwjHgzQijJuDnz1dpRRGz1iqJ9xQLcCscVIZs6owxIGMRJKK5IV29DEbl11JaCc/o8\nuqyIP8ISdh/m8MUVtO4Ditzt3VN0O99UpO3IGUXIUkvi4bi3rd9duaBMzoxL1186IZRFv6pIX7um\niGKzqXZUYMGfPacMfCADu/6GvtfbUYYpBU/P0oMwmNfUrluv6/N7nC8cK/M8evqYWU/3ONhWNiqV\nVUQ8mNZ3bl0nG40cxtwJ9V2gCnpoVVHSqQXOsD6kOpbvqQ/X7iqTt/iwzsBbWbawdUHZ7Bh9myWy\n/Tf/1t+ww5Rf/qVfNDOzPqiqkYE6gDMg4la2o8T57pWjilIe3FYGstZV/Y8vKFpZ4nx6vTTOoCra\n640qetviDOfE42rfidO63stf19n9UVF9H/TDh9EiM4ASQ50zrK2AItKf+KTUqraJ3jZhTx+RIba2\nosJhOCR8KBeMAj37jz7zd+zL/0RBzjoZjcgkCjSosVx6Uec577yss69HUKjx8HmGDPhBXfW7vyX0\nxJPP6nxotQp3gZ/7dhXF9flli1Gf5lyFOXfjtu735F/+lJmZxen/nkvjH3RxnhO+ksVZ2ej/+Xv/\nxMzM8pzzfuRHpA4yGHH+HrWXAImGHhmPX/irv2TvVf7rv/0lMzMrg+6Jkv0IwkFSDsCrgapF5Z76\nfO0GrO1TGosISl01IvWlIEoJZOVTMRBtcX0vElDbsw+pz698Q2Ow8T3NlSMgSgZt2djMtMZi/pz8\nkw//kR8KGZI9iepFS5mJtdeUbe534csI6zoeMo/mVf2KWc4HwwHTqOm6jQuywfhINptMCKWwybn1\nDfzKfFb1mR7zEYU0hu6m/HCf88nuOqiNOfmIDgnEITYwCikTPWrKpkaoT7lBeQ0n9bszZ8SR4+qp\nndUtoQYmkDRYv6z3BTI0mazqX0nQjtHI/uN/96/bb3z5N83M7G//dc2R9yr/3a/+qpmZTQ40l+Ie\n+ah2TOPZCui1AHyttCFjHGdUEknZbmwO3ieyU1M9fa9TlL2R2DeAnOYGPTHCJxS9yi7WXcpeeXzq\n/3Z/aKNt9XU2pnv4QBo24HhpF1W3/JbasAlyLZvT2E3kZAOzLq0x8/gjD1w1pYbuve7Sqy+ldWCU\nI3PoVyY3Arqq19CaPGiC3CETV+RctD8DPw9zpDNW6xiqbdtwz9y9oTVxAFoskoZ/gixVkInvhSfO\nfLKdXVSirl2U3zl7Un55blpzPDEk245aRdCtTi+gVtKu67q//pu/YYcpX/kb/42ZmZ1/TP7LVVUG\n9aAvW/k864Z/S3P+1Y+o/1Lf+rqZmeXP/TnVk/X0eo72nNI6mHpN/ConQL26p8Td0llHgei0JlUL\nZRyfX+O2eROlC6/WW98aCjon9P3uvhAwP/+7P2N/99d+y6yJAsQUPEpw3FQ/Lv6Umduag8mC3p9/\nQHPYfwdEKlKODXhJshdV38ZR9f98Dl6Runxe6I7sZnRO9d5OoYh0P2gr1zV2f/Ax+Z90EF6cHfiD\nQOSd6svfdKc0hg8Eda/2gubdD0aaWUcK8pcV1uLow8pYvv1t+cWnJrW2jNWD3lqSLT/9pr5Xdalv\nXDH51wm4U37q5+VP3qv8+n/1n6veCdW3E1ffDiJwugTgiYB/KdAGLRpWJjnZ0Xz331RfddZBvVVR\nhRup3rht66AK55vTWA9YY0dF7fe8ZIBdA82JagB0wUBjUuvLp8Szus8zP/tZMzN7Li7Frl3Tdd74\nA+2j1+Faq7fU38WI1onkARxmSdC0oOOCcC34ULFrQ5iXBbVcLqNSsgn6tql6RFh3J+qsq3Dm+Lyq\n9wbAlynQsy18USAOB1tbHTRIj+gXeK7SWkeee16Iq/SE7O7kKGX/fO0N+8HX/7Gudx+kPTwotR5I\nW5Q8vWsgTnfV71HQif/wy3/f3qv85ld+y8zMEpADNuAVa4P+DNMnYxRB0XTvNhyA2dNqW2wk22lz\n6qC1iqrQvvZbHvzoEFRSYSA/6/PBzQePWxBE8sRZIf+SXZRkPBqDelHXD+Y059yz6oN0RmO58V3N\nleimrtMLqa9dKAu2l1XfJnuohZb81c23QAJtgzgJ63vDJFyUPG8Uub8nrOsl4KzxgMZ1qRusGlW9\n4vw+tah1L7al9vRXQbiDkqB5NkqiNluVr7myh5Lvw/KDw5S+2EDt1QdatgOXZBp+o+DRMdekruue\n1JyeYJyL7Ft/8T883PPNf/J3fl31c9NeNlUhkDojF6dCopxMSWh8vvGtP1b9F/V8EvThc/og/VHX\nTUyqP6/fU/+++O3Xzczsx37yp3V9n+77P/zOb9hf/fd/wXyRrj3/0z9lZma3DvSsOLjHcz1rqhfk\nnnegsbl3RTY3sai1wzjN0OS0QSiittQO9D7O5wlOW7RQnOqBYuq0df0knC5VUF1BuCA9KDP2+6gp\nwVHVLcAvVJCfWVrRvB8E+T3PHoEhSmKmMW6D1HF5tCfazXMfuGCg/rMIz2bJ4XisNQcXHl3SfTgN\ngnictfdAK8Nx0+qg2gmy/E8r78kpc/78efsH/+AfmJlZPp+3ZrNpTz/9tH3jG4KzfvOb37SPfOQj\n9tBDD9nly5etWq1ao9GwCxcu2GOPPfZel3eKU5ziFKc4xSlOcYpTnOIUpzjFKU75M1neEynzxS9+\n0X7lV37FfvInf9La7bb92q/9mj3wwAP2pS99yX7/93/fZmZm7Atf+IL5fD77xV/8RfvZn/1Zc7lc\n9vM///MW47z3n1Zc8HRUyorExxeENMk8oAxz/mVFKa++CcfMkrJnizlF1rMn9P0WXC6lt4VMub1O\n5iKh15Bfoa7coiLxOZSHEiVF7tb3dH/3PgiTk4q+Jsk476wpqrowqXDt8hJKM1eUDdu5LAWbYE5R\n7/kV/X5QUf3vvKEMRAQG9OmT6pfEsqKu5T207m8pIlm6w/2SnFWDOXyX6+2u6nx4hExMDsWHWdAr\nw1vKlBzk9Xr7Xs+WsxBPNDXknZayI3OTqmsjrvPGzTeU1fI3lY3yuXVvj0sR+vUrinhnYNqfnNNY\nlLYUNRxWFTWdP71kZmbtXdWhWOT8Mailw5YY5xRrKHIF2uq7UkDRz25XfR4ccf5wgAICmdc+54Nr\nEUXCi42xuok+b7jhaiCkXi1ia8a55YB+70aFKZEiS+SXLQ4GsiEXZ06DZKC7IG66NUVV23nZYCaj\nyPaYw6W0rUxsoUEm0jvmdIDrZlLR4uy8+iE+r8j+9//Z9/R90A6PPilETpbMRn1T9UzD8RPgfLUn\nrXbEUJjptMmqEf0eo0xccEL0fXBFjPR+JqMMSA7FGK9X0ee186h2DGQH/bqyXQcR2dfe60IuuTkL\nfVBXhjY/kK1HUygywPmTCR3+WGN+qLa6OTvaclF3t8agU9Y8Ke0IgVEyvY9lNeb+DLxA+roFqopk\nnyDL0J/QHEhEiIRzzrd5B1W3rsYsjIrGqSPiL3LDZdCpkOk8gmIAZ/x71K+xodcCttBHlSMKwi5L\nlqQNisDX57xwFrRAmmyVR2Pb3JXt7rnUL3EQNB0PZ3xz8gFLH5L/PDP9sJmZrX5Pc78DN1cblNzA\nZJvtICiKvPxY7qjamfaBlmor81Ame+Yik9LCRnw9/b+Y13XqO3ptwEdVuK7xGXPaxP2qt8cN0hDF\niSjyTSGyhIct/tQ4bYYyQ0Dj5YULZsS42gh0Aaz7FpXfDwSVBRt5UGMis4NQggWT4wyO6u33gLRC\n9aoPD9v4vHAfvpMCc6W627Y8qIHppNq2eEp1dOM3x9nzdhOVhY7GZhtk4jgT6wpprANJjUkOdbRh\nRmtrvI/CF7bkKpClz6kveiAHxxxdQ59sbYMsVg+ls3ZC2bEo2ewefEVVzsR78BN+uKQCoJKCcbgF\nhnptojxmrMlDeEIq1MsX0efuoK7XJGsXCKJM01G7K3BbRUBpdcaw10OWwpQ6eOrrcJJ9TAiWx4qy\nnT/KqD6GTzj6XY11+nnNqdVt7UG+V6Sfw8owf+yu/P7rnL8vnpKt38tqfB/Y1HilrsuPzsxoHG67\ntQdwn9T4nuFc+st5+dWDtPpj2n/rnTbsPnjwzrn12DfVT5Xlp8zM7Fhe6IjhvNY57/bndP+c1vVu\nE06wLfk6d0uKEpGAUAfBrup7dUb98CGJMtqVh/6SmZmVd+X/H++p/1937dvbP6Kx+UhZffHigfom\nuKD59cRRfX65oDXx9CacLD710eXbWhOCU6rjnE+cB8O0bn7jBX3/+Y89bmZmL2yq7555a03XD6lv\nXi7LVkPhMeeTxnh69P78SA2UbtvURs+QOQQKbZSSTXqZW56y/GgXtR9Lai7GgqrPWlv+pM4cDgZR\nBSWDHJzA78Pl4snpvr4ljVEBvo8SqOAUimf1IUhO1EXX8S3/6Nd+z8zMrv2OFLrmPySUVQJ+OC9r\ntGdXviXbBUkSo12g3WJwOAz5XbPCXK1oXNdq8mtN9lKRqPrZC3dYvwvyHFW6sKfA9zTeyw1dr46K\nX2cKLh0UcNwR9a+3p35tZdjLFrXf/t++qkz/4+e1vp20n7CV5aBNlyVccvkNobw2S+oHD3usxr72\nsHdHOPa0xvWoC9nAQ5Qu4IKtofbs9e2x4p/8xB7qeW24r+qsDbWW+vyYG0RIRPOpcJU1B9SOuw6P\nUIW9QAglW9acRFJjtnNbNrEAP6f7jsZwIymb8jZVkRIIkSlQUd7LanuBNbj66pruX1V9e6xPw5Da\nF6iDlOny/0X2YLfFC9UEaTlxSjbpDWnsk0f0enJ2yczM5unre+u6Xx9kThmVP++S+uWxZ6UI5Gur\nPfvflG/oLOp7CTgaB/B+lmOqX+CO+uXojNo/c0pzLQTPXGiMyoU39KDLvpk13YcqlS+ifm4UtWe7\nMdT4BXiGPGxxN1XfzpDnF1BnPXgPBxXVZ6usPVnimNbRzRJobr982OlzqFx11N7ZB/QsGFnRXFuA\nK9R1VO2dPK7nvcXH5t6py4d//GPWGNWt35ENbF+Sv14BtdoEMTIEPeSBC9U3kH8proK8PqU1q1bW\n3r5YYccDx1ULTtRekz0AlH5en9paA0kXhKNqyBh2mOcIl5mrQ/iipopF4b+L0jcNuAkXFzRvWz3V\nb6yCGcX2e3DJtNgHDvfkd3LT6rueR+0d8x4h4mRhOAWDbvW1VTQnD0BWh3xjzkKt2UEQPK7guz8D\nv2dQJhgM2m//9m//G///yle+8m/879Of/rR9+tOffq9LOsUpTnGKU5ziFKc4xSlOcYpTnOIUp/yZ\nL4dWX/p/o7jhq2iT0d0CITL/gBi/c8uKuO3f1v830QNvzypiNQ0j+dxjypBUY4roXXhF0dnNHUWm\n5kAH1O8pkhUis56ZUbSw1YdPo8pZMyJa8yjObMGwXdtH3WhKmZ5TJxW1vH5BEbnV70iZYRGG8+OL\nur4PlZf9q0K4xPr6XfacopaJlSUzM+u3FWHb3VIE7oDM+SNPKUs18ajq/fYtnU8vXBLZcphzqOmM\nVGaaU4pEujrqn7SZDVtC9YQbKLCUda/aFJm5BUVSi1PjyDB8CSm03VdgkH5L0catVd37aFx8P+Gg\nopSVVY3ViePKwq88qbY1XteYtFB3OGxxo3zSgbV+FFJf9lNqc6CpyLIrhIoHEWzjnHGWc9Yhzjm7\nOJM6PvfshqXeE9fvvNhkqaVUx+3L1NuUcZyeVnarqWCsebCRsbKLh8xsckKR63xJ71/8py+bmdnA\nJ9WKs4+JWyARUr+lV0A9jBTVdccUJR5zR3h9ipTvrKrdb/6h+n9lRTbm4jz2Zl4Zg+y83le8ap9V\nOCcdUmahl9UcCsO74jU4JmJqWB+eIh/s/q4DMtJkcC59U1mmCmiRKhmUB04ouuyF9yRFZugMaK5E\nXP3S8nL9vriL3CgqDLfV7vbCuzOU/6tlVCXCzVnTOkgHxHUsFiFbP5StjBEKTc6WTriZNwl9HoIf\nI72ssWhwTjcNCqCHWs9wB06BMn5loLnjBz3QJqufgu+ivac5d9eluTjrhlfDLX8QAunSGun6HNm3\nLmiF3oH8n3dGGYUeaIfQLhlWbKmEapB/BG8SCL1BVtfPLqufjv6ksudHTCoT9/6esvyd+3Cp+Omf\nZ5Tlj8yCVigoizQ/L/9VuEU2Dx6NDipV5gd1lYOfA06Agxuqb3MfjhbUOkY+oaO8ftXXj3JDF1W+\nLTiA+tGK/VsfMRscgFo4ZBnAibNXUX134ZZpuUB5cO5/q4aPQG0jRbYpvaRxCrtlw3HUPnopzrPX\n9HnXVH8XfBxuyGV6+P0xKq03BKHl1vebw4B1+c06SiuFDX02h/LTiHkee0DX8uR07wFt8cNnMSTb\ndRdumI2Gxjw0TcbPq6zwOAPYJivv4To7VfWFG0GWOkCWHjbdy8lf5Cvq0wOy8Atx2b7XJf/S7qod\nByVlmzqoFM1lNNY5bGREpnIQQJEspPrkQPT53RoDF0hEd4g1OYRqEHN9yBn5BvwS7dD7Q0F0+rpf\n3K89yPPrXzMzs9Ub+v+DHikodl1CkISOyo+/eF3r45mdJTMzi/w5ZdvbXs2xjRfkL7dm1V/LL6mf\nXB8W8nH36Hf1uitOmtDCt9W+62rY6Z7aUedc+kdOkcWP6369u4N32vBsZcVe3dUcTT+l+nVu6f62\nq3p+F76Vj35evubFb2IXWfm0kwOtV/c8mgu+p1FLuaD16ySZ3dI0ykJryuQ/tKHsahGFuQdSM7b6\nkvZDiR9VX6ZRrnrsjv5fduFX1tSmiydQemw/YWZmH16QEb4al7/xfvt/NzOzWThFNj+lOtxuJamD\nkBKvP42Kzu1nzcxscEY8DE+7ULpZ0/H6fGacLf6HdpjSc4MSbYGcAwESh5+t3GYth1ejCf9Fp6o1\ncYgKyc2a9o3bq1rbI0Y236s52yyA4iULX0fc1BsVyml5WfWIzsHLdIk1v496CcCcba/6bXpBfvmA\nffHaC0IQrb6odhx5GD66DGgBeKMyVdlgCM42H5wKdVTkwj79vkY3urraq6XHipx+VOfqmvM1+DJq\nBXigxglv9hyeBnvPWdDLZOID+Mswyoy9OdVnG/6URlf8TJ6qFHQqgMfe+qrs7t/52k/Yl//mf2sf\nekN8R1EQ9+EV7U36A+2dwgva0z7yafmABZ/2B6N7qu9/+bfsPUuhozEdgm4y+IR6oKxSUQ2mDw6s\nEeijOAqQ01PaP7t88uMeFKiGIdmGb1r7pocehFPlo0tmZnYAMtGzD8ppKD+05JYNxkCYV1njDuDT\nyCt51M0AACAASURBVHngimRt67IGhyqqby0p2wpHNfYrC9p3dlZUr8mc6ltp6PMBSlbFBfVtSkNo\n7mUhZWpjDsWWbLl8X2O7dke/27ysZ60gak5z9F/A4PnZEUKkcldzqHpd73MB+dVGTdepoB5aG7Lm\n1+RL3F7G5S2NaWMf6FIBfs8t7TUGKLRNTchfdmOqh29L4+QOa/zi8BANUuqnw5aGj315Ub6vgQ9p\ngLD3jpH49H+J8Vg6rjm99IDG4cGnOemwo7nowr+XenqfYb18+LNC1HfzsqvqumzeHnvWNq9eMldk\nZN6EJnIM1E2rgxIUiMAQfES9kWxp3qcxefW6xmKKky6tMMpb97VPm0lpDR+AhLGe2lLH/8dRUW1U\neDaL6dVXH6utgUbiWcwH958bZPjAjyIiKsrdOvx1i3DTcBohN9L/S23df4h6czAOGpmx77IXCvGM\nFI3CWcUz5ghumAz3XUcR0c9+P4CKaw8UsfGMXGq9+zPwe3LKOMUpTnGKU5ziFKc4xSlOcYpTnOIU\npzjl//nygSJlkglFqqNhRcTLqCltJhRxm4dF3bekCFtV/7bqmiJZ98fn4VFlOvOMItwjOA62Lihr\nUydT6ekoouXxK3IXDep3Q6LIhvqGG7UUV1QR/gBnZ2twzzR3lUlYfkTRyqYLngyyhWtXdZY1u6L7\nzh7lDCyKCKV1RfIDVxVBy2TVzpkVZeH2K0Jn7Kxy3vSYsoynnhByyHugKPz5771hZmbrdxVtTo+V\nLDpEHlEzCbndlggr+zDkTObmTdWheFPphHRKbU2TZd/fI+tDZH3Mp9P50BkzM7t/SZHsApHlcFiR\n/937iljfeUufP/iY+mhmTpHcPFHNw5ZYRmPmJlMa8KNYUoMLhYOObrTnWwl9P9hkbOEbcqNU408q\n+ou4kHU5h+gm+pnqoNyTBlVBVDaS5Afwe3S5HsII5vIqyjqO6sZyijZ3UXtKRzUWCTe2fk2ZxX3O\nNXqu6nUQK9PuttmzP2PXvqqMZSiqjMhkCjRHXzY+DWdLGJ6QMOcVI/MgjIi0RzmHHiczE5+FaZwo\neGio8W52vfSP5kgspfu0UFUJwBXR5IzyzLw+XwTtEVnQ++5YxSlHRh5Qg5tzoMO+bDSQHZ/VHSOg\nOEfaU5T8MCUUZ8xa6tsBGTw3yId+D84WMnAAat5hefeAJuhwXvugLEezd0e8N2X67MwJzb90X22a\nok87ZDLLdY1hhQzozq78hR9OFMjebQq0kCeqCH4lL5upo8bUxdT6bmV34iFQE01d75lJcS/0Y8oG\nbeBvEmT+fA21N+nXezf9EUM1qgJiaO11Ifdu7Ql5l39BWbVQEN4ml7JMM6CxukOyU9iKm7PF5ZvK\nTPvwoykUFCphtSeTVfZqiApI9a46oqDL2TCu+0USIEpSsqUg587jAWzGyzl4lBAyEWVkDlsKfRkh\nNCY2Ayu+a6B2NuGcyeHPC7f1/XyFs8B5lss0SkFhfgdScZAgmzbmEALJNOiALumgIEcGe6uBmt6M\n7CC9mLWuXx82yLDWUGS5UFZnjc9VR1kzfG6QM/AGzaHYV/fLX8YGKD6Vdb39WyjQdDVWDx7Tmun2\nyFZCqMjFfLLxyljN6Kb80hYqUN6AbH8NdOu9W7IB94r6LjGl+iUXVD8vWfAma2ipDtJjoPepuPyJ\nK4ASSwE1DlR+LKTXA3jVEiE40ujjIVmzMZ+Pe8Rr4/2d8Y9U1E+ZkPr79jpKEzPKmk8/LJ+w8YLW\nwbuLav/Zodaj/FGUc9aUOQ62NIe3lpVtzx1oDhQjqt/pN4WQ2ZyUml1zRSpOR3bUP6m2xvNfeNTe\nlak1MzO7tao5+ePn1e8vPKV++7fNrJfo2jEy7D72JMHnaryXb0pnQBm8LNTA2ROqzwzj3DMdQ/8x\nl9C6t/JC2uQmxSPV/pfyOeGBUMrD0+LVq9fI8JP5zewsW+bZf662vSzemafaQgG99Lzq9GxRfdMP\niyPGe58sfkz7m+07aksW9ZvLH5UtBF5Sn0xuyKYTLY1J4KjGrndTKKWZcxqb8jeWVHfW5mjhD83M\n7PwWEJRDlkwXxcc4/qjAXgC1vtma5n8NCEhkHVUhVAD7Pd2vUtb8z8DNkI3IdvJtjUXAo981WAdy\nddRGoEm6fVF+eOGYbGRiSf6rjaqVK6z6ZMuak10UXjIL2pNlprQfzbMvPrivOTfoaFyyIfnXKutA\nmAxz103GuApiKAZfHgpBZfZIjSS8ePtqT/6+fFdhBIfXFDx2Re0xhw31S9Gn/b17J0N9df29HnM6\niAPt6v6xgGyxO9Q+uDEjO5nxqf4nQTebmQ3Xt+3KH7yoeoGE9UzDaZaQnaXhz7r/fdn+Wl71iHaT\ndtiSiYE2mNGYuuH3cTU1NiEXyIcD9uVerb0VOAAHc/rcDcdWDeRKNoHiVQjUFfxrjauy8bWibMV4\nlqq+rb4sjdU+R/KfUZ/WrAYo1CYo4BRcVl7W8EZF/mXU1jrUhrevOII7cBc0REB+Js3+uYbCbX5T\niL3QhOrbR20p59d1ukn9P5fQehEo6v5J0BIunlu23OxPAXa0/RrzddRH+/jtPda5dFrtiaRkMyO/\n2p+eYd85CU/QlNB6jSH8eajVBRbU70Gkdxo8FzU6qOCxb506qfq72VPsvvVDxOJhiqfGXAAFlkzC\nf4Lv6LNOugOsI2tCER59Uj5z6REhkTYOZD9jReIUe6g9nkcOdrXXi/rVL8197c/DIHDNzHyNgdW7\nPWu79JtkFDXSDRByHTgUUUwdFEAEw823BYL60ZDej1Uz9/dAkPjZUxxoDcqM+T4haWnpa9Zj/xow\n/DwKwd28rj9+VvMApm+hoJtM6X6ppGy1U2ENBEkXgMM2kOH5OICfLrEP9MhPuHv6fbek+0wdUf12\nt9bMzKy8Kz83mtAeq4UybWUIqgk/UeM6Xjguwyhi9fuQ0vwpxUHKOMUpTnGKU5ziFKc4xSlOcYpT\nnOIUp3wA5QNFyjRRH8lmUDmpKGK+T9YtPqWIXe6YooFhzsHHJxW13Ly9ZmZmqy/qrHAYFuXjpxTB\n8sClUOa8cxB2ZTfKMkOyd1UyBD7OvoZQZRmrb/iSuu/+faKytxWuTR9fMjOz1KLq10Aao35X0eid\nq4peBhf1+3m4CQYDhQTX8ygW3VOEP/uosk7Tp5SNeuvSD/T6mlAnPjLh0+f0vRUy++u7ul4ZtvsS\nGd0wGebwcsp8QZRmoorsuuCW2YcV3dOAWyTB+dyrygDuVRSpTTwKa/eK+G1yAbWpSro7wHm/IOo8\ne5uKlEezaNLHyNpzbvCwpbKl6OzupsYoM616p2ZVn0ZUNuI3zl+PuUomFOVtwyPRTYyVXDgPGFX0\nt+/RGCdRV+rG9P0I2Z4655lTAqRYk98Pw4qyen30J2dB/dPqvwjfu7MnWwlOqh9iSWX3mmU4E4Ds\nNAdExL0oQ/gUMZ/BFsecLyFTvaaIIld2NE7BlCLnkSXOBDdgSOcc5H5btlYCuXOM77nGIf4MqDVQ\nGukY0Wt4lvb2OWcJzMCd40wtVOitOrwhVTLpZHzC82pHxvS7Ee0Y9XTdCFH5flgZliHX6w0Pr5pS\nuqf53WioDmFswOCI8Q11zdRJzb+lGWVHSnCxDGtqdMivPsvNqC9GqP0sgK6aCgsdUL0hv1IlCx5A\niSxG5m3tnvqqOa+2LZ/W+e/aDc77osRV3JWtVfaZO6jVeaZ0H1dc6mwLU7KBZWz8xPPyDxtvKDvd\nL8h/DOAjsYZe+wHZ0vQkXAzwLnXhUDHq0yurPVH4I/wr8seZjNp1+nll06+/AKInT+YV/o9RGwW0\nqNoVX1Z/Jzwo7pARLa6rPg0gQzFUSlopve8O1P44ah+eItkyn2yh6yVTG5DtleqM8yHLyKt65hZQ\nhkABqFsG/QbSJzAEuXOMrCVnoA/gT+mTMSqjzLaxp3UrkiFDFFU/+zz6XQf1Ah+Izu0NUBiXlYld\nflTfnzhStvpI/iQU4F6o4vnb8n+ukmzWA3Ikgz9HfM6G8DmM53XHo76NgAKKL+n/91/UmrIzh2IK\nXCWtA5CBcMb0UKbZLui+51G0mTjo0pdwDcRlk3HOsldQ1pqfRkFslqw0a3AaE+y5QdaBJmqV1Lf7\n97V2zgU0dxIB9WUFm/NwbjuNDJQXFMUIdFZnpP+Pxue5D1kmTuu6tY7W9DQojDAKZP6XPmtmZptB\n8VQ8n1f9rm9o7X8kKsWg9Q215+iCfMqVo0LZRTvaQ6w8Lpu79MIjZmZW2NH3Hg8/Z2ZmA3vJzMwO\n2hq3MzeE6hjGxBHzbFEokt6ifFzl9R8qOly6edkCG5qLzU/o91t/gLrKhzSuz3nFLdD/hMbdkxda\nrvsREFlvyTa//qFnzczsHAib/X2N311QYon8d3T9q7re/KPK2Dc35Lt8uYuWvQu31VHVIR/R/PNt\na8xeekV1bX9SY3vKL8TLJmu2lwzsNPvB+pvyuxNH9XptWWivdFdonvt91syibOhGS2udN62xLJ4S\ngjpwXWN0bu/92UgK9FYX9ZARe6fAaIywJtuO7Xniar8bLho3fE2pgerlm+X+KOeE1rhOmEw0KkWt\nsRoJvCSRmObu1jXNmbGqnh9lyf5AaI1BSn4+BMdNxIVfTstm5+GlaqEGOrqnfm2i+BJNUU/2LH6Q\nlNGAPq+iCugC9RBDuc21jqLiAAK+gO6bwr8PihrvFoqPffYECXjo+m3NiXxT63Gafu/BQzVE4ijS\nUj8FpmRXxXqTemldNP+SjUsqe8RCQ9B3qL74/WqHH4RkaVu+sf0WaPEN7S+OzKfssGVxUXuNsfBM\nsKix2me/md9TH7vz1LWgfVwSFNagpjW7tq11oFyS/2+BVMmgctl4XdevTaC62YBPj/1TB/Rpjv1c\nhLXTh6LNDFOzD0LRN6ffl3fUp2ubarsNdD3vBCqkU3DT9GQL00PNzcZAv9ty6fMZFHPdx2UbQfZU\nPRcKuRFQWnDO5Lc05pWirhND8SoJ79PUSSHx5pd1nQAqcWm4ElNd2ap7AsQlA7DbWNN9fKyH0/IR\nw2lOKQxAmMNBWWzpGfQgD7qV/Xw6ofYE4O2sb6r+uwXt+Q7W6a9DFhf8hYWCUB1tkP+bN+WHQ6yf\nM0G1J9JXvx05Kp6/Zl7fG8A9l+VURwtuy3gdBSA4b+IoZI4gLOyiimtm1g6b9XdDtsOzTDgNJ+BQ\nY1kE8Z0O84wBT025JP9SAOOx1pQtBEAQV+mbDoqIsymerXi2cHdl2wGQ3Q2Q2Ae7PLOhohxwy6+0\nQZu6XGMZJvmv1Zvy61fekJ+vma57diBk+SYo4BpcNu2i9grre5pjM0nZxA/gKyrvqd5fPKY1vw1K\nzZvR3uChJ/QcMYQLrInyYDCLsm1X/eYbqe9rAZD7Y6j0n1IcpIxTnOIUpzjFKU5xilOc4hSnOMUp\nTnHKB1A+UKRMH9WjFHwbXRQFSi8rErZ6VdHKU0lFgaemFGl3exRFjocVU7p3SxGtnfM67z31oCJY\nSXgzRltqZgO1Dj9nXTOoNQUynMdcU3avcVcRu+NzOnObPIsiQ1mRr7W3xPIeh8th7oxUAsITinKH\nmvp+GZTHxqaika6HlYlIHpPaSaFPZO+GMkHHZxQFzp1UJG6yqche6Zruc+W74oFxnZNiQ/Sk6hdx\nK7Ln49xkifPtd4iedsMhO3qa7AhnRadgXb95VdmETpkI+7zq6J1UdPLWeZSemmrL8U8KKXP0nDKE\nnR31VX5DUckUWakeBwTLnFEfzXBG1qO+P2xpw9C/dVd9sLPK+eoljWWYSHMkoahsElb7PtwqvY7u\nn4MzIZnlPPdQ/0+CzBgWOaeYU/+4OcPra8EnEebM6zibBTIoHNFrDfWg3KzOJRZ3lflwRUDajNWN\nxpw3RE/dSARNkGWrNnX/cGrcLtnomCumRbZ+Ho6CNlHswq4ymQvTgvT4J1XflTPKOq6tysbiC6rv\nww8r43o7pHP8nrzqsb4v264VVL/ekHOfOzCvZ2UfbrJ2fVBnLUO9ZULj3AOl0gV6s8058CgZh0BN\nn9cGqHuFZOtDVGDC3h9mft+rDOgrf0x1jHpUJ9dINt4JKquRnlDflMqynQq8ST24Wtou6hwD7ZPh\nbH+Us6NF2eLGlrLdwzXZSJDIfyApW8ku634f/xlxKJxISeXjH/+Pv6fr7HLWFGb/DhwvRZCCfpj3\nZ4/Do5RTn5dQULv+A2UCGqtjVIT84BD+o5JpjiRAcbXJHmV8KCps6vUAFbp2R78bgVYYxpSdGuIj\n7rwpv1O+o/v35F5sy6v6tqZ0vQZzsdGSLUZQb/LUdf862RsPGZZhSnMlNaFs18w4AwNvyc59zaFR\nXuMZSoPogcV+2EZZ7JAljOtxYYMDl2zYBQJpwLn/7brsqLgtvz2C6yGIalLLjXpXX/Xc2FF7F+Py\n323O72/ehyMIxYco/EvB6SUzM/PB1h8j8+xuhs2G8qN9L2sX6nNUyRA5syOom/knUDjxojIXlC1F\ngvA0DPTDFmpES/ix2imN8VH8iw90T6++w/00VjGy4yfT+v7oiMYuFpONz3tAGR1RJrOHUtiorjWp\nvQOyL6e5l1vAf8BjUa2iUEV2OwA/hw/oj492DaO6rw/Fg86BOqIJGsHn476oAvnbYwTe+1Nfetsv\nfxgLysgH13S/i7OqV8L3TTMzC1+Xf/waSmantjSWL87KBk4G1szM7JVTWndmvy5kzVJIWbuvDbWG\nnzwuxcbjTVQRWx8zM7PNoMapH5Tt53Z/1MzMFvZBv86qP/5FXAicj35+/Z02xFez1g2rX+a/pfYU\n/pzm8n6ebOSueDXW9sW74mZdCh3RnLzyYezwhsbvBwWtIwtwWXyKuXRxGd9XYC78QPX7kc+TFRyc\nsev3NLZPTsqWL7+kLO+PgyZYz8i/ZFzMu45sMPi69hrJqPzCpeU1MzM7Nyv02Lea2rtM7Wrs3zov\nPzL9OH7vhGywHlOb4ke1h3n7tc+ZmdntgZDIn1p5f9tgb1hjshzSnKidUb0KbvghRmpvrIM/O0A9\nr6aMajGpvqm8oz6nPvS3yaBmZGslFMj8KI6NmGvpnu7TaaAEk4CMAWRL288+dF/9EGb980/hS7pk\nqkuyGReIxqmUvh9/VtfdW5NvqIHSsGmNcaOr+oVT8r+9NHuaMsigjvrHWkIN9MuyvXYXvpKcfEu7\nKJ/jKel30ajWsT78JgOQ7wPAB5EuGe0p1c8dETrvfhmepk35hFRqjALW9Ua9H6KzR4mg9Trqj0wQ\ndCDAmUhde6T2vD5fPCY7m0CxLL92eEXI1StrZmZW7wMBQa5znCQfoGaZAvEYSmtNO/K46u5Pqs47\nGxrbxAgFSJ/6ZEhWf2ERlO2K+HNcIJLvw3uRQOnFBcIZMTyLhHTdAiijOhxUkyBGglnWi9PsP116\nJsktsY9fAfHSR+k1Anr2DU4fdNT+vFvtTtzR6x57r/YY7VSB/86n9cF9VWMy9On/Yb/G9tYdzYWj\nWfm9ayB3iuzbvazlPcgLR5vyJXsDvW/BcdV0C4kzrIMELWtM12/rPoWK3nfX1B+VBkj4eXXcVLdJ\nv8kovT19Xrsn24ml3h8/1Qh1VBftHWbhMUlpPf3wM/KBrhSo3X1U9UCKHsAJOmGqx5gbqMueydWG\nQzIGauUdnhPQx23PO3XxFXvWtZbtV+CSAW07OSt/vXtNynvX1uR3E2n8Vlx+/NxPftzMzB7+iJ6H\nGx21LRGSfy3duqw6boLWQrVuMSZbqHOKoptfUxvnOKnCXmOGueIO6nuRoPxpAz6h0lXt145jm54e\n/EUPPqzPUclMwb3qrem6PlSYHvmcEDGhOT2fv3ZVCotn/7IUEUc9tSuAumYIBPQlVKfWeIaadOlz\n90g21nZprnVLmsOR91DocpAyTnGKU5ziFKc4xSlOcYpTnOIUpzjFKR9A+UCRMm207Ldh9l5cFgLG\n85iimue/LuWZm6/prHD0KSkgLD2lbFtkXtHbcpXzjQe6Xum2Mi2Jo4q+hlKKrBd2FWUM5pVJ8KEQ\nkc7pund2hLTZvKUoaHhSUeulBxWFXnpc6kjNruq7dovIeUbfj4eVOWnAYRECudIiU9rk/OjUGdX7\nTFyRu8uv6xz6rWs6x92G/2VmWWiUQE+Rxfx9oUUu9oSwmc0tqR0ZtW/oUeQudlrtGr6o9qzeXrNo\ninO6k3ChwIYeXCcrsq/I8vys/j8FCqdLJnPvhqKjr3xb0c4OfDszCygZ0OYDtOC9Hc6ojs9MwmXS\nDr37ebp/vQRHihueOaGz95G26t/mbOyQrHdkAJ+PW9dfQvHKrvmpl7JIvgQcLpxrjqHa5EqQpelz\n3htuHN9A//d49EVXR1HZonGesanobCAF0macBbu6pvdD9Z8XZZZRQLYQzKD6NNJ1oin1V5f+i+TI\n8Kb16iUD3oaTwQ/yJI7qUXfEef37sn0DOeTuCW320h9pLvUD6pcb3xTaYpWodzwAl1BN9Z6c1hx5\n5Allo1qzet9xqx1NkDKDNuiUCNm4lNrlIjqeg08lMKv77t0W+sETJuqNutewzBlhOH1G7sPbycKK\nbLDe0rXGmUEXkfoKfEF728oeuVHVGZEx9LkV0R4k9bskSJH9Xc7KrqtPEqgEDbEB7xxooWldJw4H\nwm5Tfqayr76/fFv+Yet3dFY9i8rEkMxqPC0be+esPKzwTZQI3tjUnBscyFaSbVjlUerpNdW3I5Sx\nHvrxj5qZ2TxIwZsvK1teBQ1XrcIef4C604L8ZHYZTpskZ/7LnPf+nhj/xypS6Th+N61+fObTnzQz\ns4UVUHPf10H3DTi/qgfKTrXLY74PjXWxpnbtt9R/W1n5Lz8Z1BCKOjG4AgLLytZnUFYITqPAc8gy\ngtOhkhiflQYpBP+IO6z6D4rKIt1jXZkKjp0EZ6Dh5knGYfVHMQHQmkWY65UoSKM8CkNwQSTJ+GSn\nltQOxn/U7VgL5JkXPjAb6LvNJoz9qDIE/fIr/jLIELlx86La5KHvchHmUwfeHtTovCBNru8pG5Q7\ngpoTGVkvr8O+7h9FCesUamqBoPxeAi4pD6oOI+a1P0fmtK62jxUMx8g7F/WJc4bey+djLqok/iMA\n/0gPhMwMqLhgS/5oWNT1k175/37fz/fVHz7ae9jSqqufF+EouFvSXD3nFdpiIq96XJtX/zW+prmS\nXdbaPu/XWr549C/o+9c0x25+WMjG/DVd97Mz/4eZmdWuK7vYX9Lv//iasm4/eox+8WgurZ8Rr9M3\nbv6BmZk91ZdfnQZ9cLXxQ9WP1Q8N7dkLakfhE/iKy3r/ybPwdJChPjEvBM/dvnhZXD1lPZ97GaTn\nU+KMWd17RvXNy57+pRK49pnzuu/ZPaFS3lwWUmjNp/sd+3rf3J9RHe7/QH33BfZPL4HGbJyTX3i4\non3d4rrm9dRJZRi/l/ue6vrms2Zmlp2Q7fzoSBnN+1kpWM2GtFZFt9lHwVl17Lu6/kFOfD0fimj/\nVHRpj3NjfsveT6mzBqcSms+1pNo3jCrbHgA129hQH3sWl8zMLI5q52xWfVOFi2bjTe1v7wzVH2fY\ny8wY3wNt63KBrBxz1URYxzqoDsI352E/nU9rrAKggus3WbPhnQp7UI9D2WbQ1frULan/g3Bvldys\np15dLwwX5Da+aCYKL0VW7UzaGE2r31WMTHFrTf2ypnUmiGqTaw7/B3+Hn3Z2UZZzx+R3C3zuRZ31\noY9r/FaSQpe9cBn0N9wS803t2/vTP0RnD8xnqZjut0uG3oVajOus9kLdpvqvDufbzTuMa+fwKIgh\n2fThQL8NuuBsBMnQwl+72iwaqMXd3Nc8cqEA2YHvkkcRa5VRcsWtlUeyvd0L+l7brb1HPq/7p2L6\nYgwukX5f+2A3a2AQFGhoWacLgm5d594djVkxL39R6+g+kTUUby/odaOl38eY72POwHAFBB0qm81Z\nkHhxlMaWl/SetfN4T99rR1kfUM3rTaLe19Pr7DHZ1gF7mNZdePmqevWBYmMraKFZ1aNdh7tsWvdZ\nBFHeasn294ugo7ugM6CrC02CjgW5WEPNaIhCVzg6Rf/xzMfe6bBlelbrwtRxXW8ZxFMFdx4c6Y/1\nG1pXKm3t7+Ml0MPjOZFSO4Z7+n88KFstwfUT6Or9oKTxDDXhgfK73qlLu1Ox9jBiE3599+Z1rV3+\nx9R2A2V75BHVcfkR2YyB2q0ZyrqgczstvT97VmtCHvR8c0N12N+Qn25sqc9u7Or/i08IkXL8MaFK\nd+5pH90PyTZ8VV233YPTEFT9kYc0SR748GfMzGwVbpiSaT573Jp0nZD8khu+pQDo0W5fc2b6KcUh\nziZRi+vL9ssoC/tB87tRIAsm9Pxx4ozqe/Oi/Eg0KT8eBbEfBA0XSbz7KQAHKeMUpzjFKU5xilOc\n4hSnOMUpTnGKU5zyAZQPFCkzIHO7N47IcdZr6pzOgJ1C9eLmD6SudPWizh77YKSePaszn6lFRaqa\nbynjUVpXNNEbUfPSk4qMFe+gArImnpQt0AizK4pWng6I++Ht1/T5xj2hCXywLj/wAFn/xxX5uvW6\nslgtOBo88Hj4iRq3hnBXkC0M7igqmVlUlHfmIWV+y/CSrF3W/zevK9I2c0IRyYV5RQDvkWGqw6uy\nV1T9xopJoTnVax4uHPfH1Y/Xv/+GVdcVvQyTzUlElBFzg3C5v66ziRGCeNPHhR4686Reg0T3Vg/u\n0Uev6fcjIVhScBKkvYrU1kyR2HAaNvm66taAS+SwpR2B/bzMeUOijtU63COgILbrQhH172qskmn1\n2cmHdWb+zoZs5+gZ9ckB57c7tzU2tRGZX3iGoK2wezWN7SKoqhBZrw4ZzeWzZ7if2n2Nc5fFHc7o\ncr45DLdBNKMxbZMx2cujAJQjy9UiEwyHTGaOM8YDFBI8KNaUQD6RUe9xLj3o58wx6lDlm5xlvqX2\npjhXbmSqT4IKCYyRPFHOr5OJH5DB8WKjFlR0Groji4CgSTHeZdAo197Qef1LPxDK4lOf+bSZGDfl\nvAAAIABJREFUmdWqnEPfki13vXBCkPkexMbcDYfnlLkPImN/QzYQnlUWZHJK2YcYvBTdLmfOieyP\nDmQ7wx6KXKCfYnPyB8MyCLV7apOnqz6NRdRnkZhsMb6kzEISxa9QSderv6b63Liq+3o3FeFPzGvu\nNTifHKJvjyzqvlE4VrZQwulsqK+yZOpqqBflAthkTL9zHWP+Py2kzKiurFi3JZ6gUEf1iIZAUaGI\nM/2gMgNBj65X2td9B4Ux1wwoMtJzrnndJ5DWfQML8hGdgeq1dkf3qd9QveNp9bfHr+uMeZwm8KeJ\nOWW/Nq7IVt1+1JtAZXljqlfqmObmIIAKR+L9ZaWaI7gPXCCkjHPaYeYWimZVzhj7W2RSGO9YXD60\neQA3DlnGCdBhOzuayznQGz3OPqfSGk9/CMUx1LGa2D6CQxb2+cxPHYJxZVnKZAwD+NXlh+S/Ei59\nbnlsM6/vxTl7HkWlwduFs2Cgthcr+v8Kfqmwo/dBVCqyOc2VsZqTO626DkEMzqJaZ2TaYh74IEjv\ntEEBBEGh7RX/pEICgE1LJ+SP3CFdPwwnQLMOOgvygwrIwV3UOBoB+f2VtOqxNMn14qrw+h1d9/J1\nZeG6CfmVw5YHm8p8vu5WpviJJWX5LpJhbtTE4XI0CyrO/z0zMytvf8jMzOoR+f/ht7+q9qyQKa4J\nTRYbIxrx4+1jspG3doWWWHxa43Kf/o9fFPfMwgmpLZWiT5uZ2cab6ofNuGzrkZs/zHh+qhS11SfV\n7hZqJh/e0d7mj24LNffwQ5qzN36wZGZmd5/7p2Zm5u7LrpZAGeZRlkt/TPVu/6EG8PMtfe86nDnu\nBaETNjOa88vXpBDpmr1unbc+obb5v62+eBK/VZH/Ows31tun1IfRWe3f7qHadGpT/mHSI1TXd9wa\n9Gfguzl+8KyZmb0A4dITD6tPilual9dyWnNXzmpN2ryjuXJ1SXOn+fYxez+lsCtbrqDOUYWrqxjQ\n9cIDkJSoIKVQW9sl6x0eye+deVi2NDEjv5a4qH3nTlH9MT1WI/Jpb1X3ybZbIDv9VVAKMfmb0lA2\nOUzKtgDS2KAjY0p1NdeqXu2bfQF48zpkzUFdbSQ01skdeJmq8En5NJcLGdlUwK/Pb7f1uymy8IGc\n9p/nPoqaU1i2X76huXHhn6+ZmVkTlLEV8cs+jVt9wHoMz4kHvgzAF+a6ovG754Vz8qeFlPn888rc\nn7gvVPDFb+t+wT1IY8xsOpazoQf/3YB/Y1qvbRBBjazscm8VlJ9Lc3ImfnikjBfeiPkk6PWa7lnq\ngzZqaB5FC/q8gUJVDv8dmNf/8y59/2AdhZoiPEmo9AVBfo/RtrFZId4yexqLhZTGLg7YM7OCw8TP\n99xafAamZ6j2ge4XW39b9wFpODtQ26M5ED9Z9dmxSaFmk5PMuV3WC/q8DyIvCPdWZJp95gzclT2N\npfcmCjUFjdnOLojOjmykC5dhvSm/V9hibLy6TxI1pmn499pFGUu5jYJWBAVe1sMRqqx+EClJUFnT\nizwrokTp7eh+wROgHCZ1/RCKnN6G5kD+Cqiv1vt7pHbXZRd1r+5zY4weuQ8CH4T+mDMt3WWOF2Qv\nAZ/u24AXsMO62R2vVxzmGIBcbTc0Dn72B0OuZ2ZWyTctmE7bVk02cWFNYxE5prVk4oT2rTNwHfaH\n8ht7N+S3yjxTleGANRS87iVV9wD7v5kM6nhe2dxaHfTmSG343Ef0zNZuqQ9qu5xc6WrNGfl0315D\n/qjN/n0LFdGJ+TW939T+291QW1M8U7Tq6jsX6piDrup16Rt6nq+DVh4rN5ZdKOvWQB76dZ0u/Hc1\nr/orHtdzRyQt/7yU05wZgVbrNzj9AHfan1YcpIxTnOIUpzjFKU5xilOc4hSnOMUpTnHKB1A+UKSM\n16coXbugCNe1S0KIhAKKzC0/piyRlzOsm5eFdli7qgxFIKjobJgzYj7UMUoluCV29BpfVhQ0M6/I\nVRkG696q0A5VBf5saV4R/grnBiu3FZ3eu7ZmZmaJoepx7PiSmZm5HlUGZveWUhIuMtMTSd2nBy9H\nc1uxr8GWrnP/jzkHDy/L0hFVIM65+qtvozpyT1HnzhKIGfhbdvqqX/mSIogezqoNxmokaUUUjzw4\njhrfs9qmUEQeznH7yTSOs/z+20LA3Hrjor4HTfwsZxwXyKb78xqz2qbquH1dSIj4siLmnb6ih5UD\nRTnHvDqJjOo0Po982DLqg2owMg0AKLwt1a/uIXvf0312bit7Mvwn31c9n1AW7NXXFPXtFZXZi6QU\nzcyvqQ9DblQt5hTtTHLd2RgZ5JTGyF/Vfe5t6/5rPmUuPH39/tVvfs/MzOJujf3BSFHi1k31V2RR\nUdLJqMZyMqF65Ob1vsXZ3TJohuiU/n/jdWVSvWki+HO6fgRuHK9H0elwfayion7a3xQCanJS45ib\nUjtcZL4bHlj5ycp5QXmFYLHvVeHRCJIZ4Bx5CHWqNAiq/BXZvqujqHKW7NaN15QdvZ0DQVXUdd2c\neR6rywSgkOlzrj6wwqQ8RAl7lXmdnFBdkxmNoQseniaImAFZjx5n/mukSSbn1Gd+MpydtjKVHZj9\nO2RX+mSRSSxaqwwiwgtTf0Xztd2AL8fUF0GQIdmYfl/jTH8TThN3AHRSQWPl9sgPectqTw9umUaP\nc9QexmJRWX1fWNff3BUnwOtf+ZaZmRW+rLngQ1Eg7CPT4NUc7LpU76282pmZkG2WS2rHqCl/2i+o\nwY149k/0Q4tMyEt/X3MtUtL7wS4Zi1Gc62CbcWwNVIML252CRb80lD/uDyK8kpktyd+vXkTFbjS0\nn338Kbv7tubeYUucTKgP39EBNdJrqX11lBqq+3pteGQvA4PfgwxKNqPxCgRRFsqSdcT22yjVJTnD\nHAio/0dDlNtA+rSrag+3scjcivkBsvVqKLmwFrX2dc2+G4XChmyhizHGpuBhANnW92keeVCHqKAA\n0wDtZXCwZODeqrlVlzronngSNQs4tnp1EC8h/Cd+OBjUWmoD1bNT1+f90JKZmU0uqq9a8CcFmiho\nRTWmuRhzoU+9UZoJlzSnK0P5qSzZ/xRcYtNwy0xzX/eu/E8CLp0oSMA8qKTDlvIbQnx8gnWqGtD6\n9kxV58V7H3vBzMz+uCbEyqfC+v+3NrVu2pvKqq8uCo0wepB+vKB2zoU0J76+Lb/+1K7aeXJCfHWN\nW5qzBtLT/Zx8wiu7us9TdWUlOx5QDGfk6259b/+dNnTnZ637uvphN6J+W43IBhc/qdcgKi1xz5KZ\nmX2yJpTBeTKui8/JLuZG8gm33No/BJ8SmmV4E+W6ea1rTTjY/uIlfa9Qkm/54/q6uY7qfy6fuALu\ntZUNdq/B7XdOe4fA17RWuP+C5tXspObJ1QufMjOzi/Oy0afJzH6N9p6qy6b6S/rdNwaq2wM7GvtL\nj7Mve5tMqVconqM+8fr4QQf8L3a44kJZxu+G+2pdbY911ecu1sZQRZ+Hy8ydLdnuVgiFw2m17/RR\nIWc+OitEyZXvaMxrqO3laU/Q3+Y+aqfbr7Gp4oeibd2/bJobA4gxujXU6pJs91uoO4GGHY3X/KHq\n50EZsgkSxwOa2uBSCO1q3an4WedQW6puyVfs1oWivpNV/R/+qGzh9HHZ2Ic+J5u/eEE8Gf1N+baq\nkUFmHx+DR2QP5EzWK/9dA91x/mvqp1t7sqcTl5Vhf2ROhEee57Re7b6q5wozM2+0ZKWurhsBhR1u\ngBaoLen2Ka2/D3xRdjIX0B5yYwvOjL/7G/ZeZTILZwncMp2B2hyjL6vwVFQHOP+UXjOgRm0evqVd\n2WwqAbfXlF6fOK61pRWQn0iekQ0iIGl3XlCf1OHG2r7LaYQbsr2mG3/NPrPZ0xxN0CfFa6xNoGeP\nHBUiPH5ONh2flZ/vheRHGuwZwhVd9+Ceft+uyi8NTN8vNbnfppB/gSJ9uqZ+6V2Wf8qE5T9DfY1h\nFw5Mq2iP0Iab0AdSpMke64BTBGsN1uKB/O4BKkuJY9hqhFMNJfYAoMbWdzlNUZGN9aL6/eJI9ami\n5pqsaf3dWdc4DmqgfD0/RGUdphRROIpU1Y5hVXuPIJxqXfy0G3RcH3SHqySfVUXxp0n7QovypYPm\nWG1Jc9Dv1txzoVq1ek2/f+Dkwjt1ySQmbH27YG0UDJ/7rDi4fuyv/biZmd29rLWwt6dnpvIWKkM+\nENBduFrgHevAkdjclw10OQnT66qvYnNLamsFbq5bul54TrZy/RXZcBAlyjp7H1dD33cjp+lBQWrY\n4hQBzzZxOLZ6cED2YyCk92RzPZ4Pgviv/misiMYzJc8DcdBMrRbPrlV4PQOsJ9soDI9P8CS5L0jA\nPKp4LdC+yaSjvuQUpzjFKU5xilOc4hSnOMUpTnGKU5zy/7nygSJlEhzRjBBBKxYUwbqzqgj68aQi\n1ek5ZYk6ZO0HKAW1DlCKmFXUM7KkiFUPPo9b14SsSXOeLpNDHYSga6+mLF9rQ/9PPKjo6tGHxZVw\nl8xoeUdn03bJDoX5fyanqHF1WVHO/ZucW0QffemUIu6BjqKX9X1Fee/fWTMzsyvfUcRv5aM6BxoH\nOTQdV30ru7pfbXWN6ylaG4Br5v4+qIptRXXrnEt1X1WszT2vyOXKiXnbILLb3FCWKQ5PzvFZoZFs\nUde8QiS9taosRJU0boDs9hTn4xILQs70yupDb40MW4IIvkt9Vt3RGMSjamMk9P5MbhRUPQdREBQ1\nuFfGkeMunAZkezKzoIY4d+jmPHTtgqKUb2wq0zlW6fD1la3zzMkoph9W5Dm8rjG89bYQKp6y+rSy\nrYxAaU8R7ZmzR83M7OzjyiQsxtXO8Iz6K0pmujqF0kuHDEhZyKRhXfcFJGWjIgiZrmzy9FHOV27L\n5od+MujwnxxUFIX2k4ENwAFQ2ZBtuOBqySZgl+dwcb/BWV/7k+Mb5dx6kHP7yayyYltFRdxD8BcF\n4WVJ1NUPNZA16ZjGf+Zpzcnotvp5ZVLXKUTVPl9WmfqxSkobV+SvMW7DH3IkvFcZuDUmwQnZZG5B\ndS+sokjQJVJP9nu/qfdznK/2PaQ27ZPl7W2rb9fvKOtSJwLvS6rudRARC3H4gjwak/KqbMyPKseo\nov+HBxpLF2ghL+eRI5w3nzmqrPmtNzU3N28o694cyUGGiJ2P4vI3k5xZNfia2pxHDrVVn+79MeO+\nPo/HhTrar2uuRlK6P4IQFsiC/IBIJNAUAmXIWX+3H1QW6IQWc9HX0Fxr7WCbNVBxCWVl+iH541BI\nfmn6EfFY+OCFunFD59bvXBZXxEFb2Z6JtPrDE1YF/SChZnKqx9gygrn3p7402NV49j2ql4fz1TGU\nH7wZMhxkOb10UODggAtoHOOgSXxurUejhL4/H1f9inAAeTwgNRm/OOpV5Z78dZds4iCifps+2rE2\nmbvChvoiAn9Q1t/lWppHDdQngqhAjFFT3abaVkMVaQDSoY+62shP5lFNsEACf9LS72su2UgfDpqp\nuDK3vYDu00aVqY3DGkxorLzwp7lSamNgqL5ogLLywI3gDcIhBbLQi6pSEFWmMToqH9b3gpbj96hy\nhMiMkvHrttSXLre+Hwpp7V4AZTsYvvv57X+9hFzqv/Mutbvb1ZrbSCvbdQ7FmjpoOoMTJlRVux+u\nqr7XHlZ7H/mObH3plObyhSnxXTz7unif1j4hZEyhpnoff1tzMVET6s325McXKvKr52fE4Tb14JqZ\nmZ25KZ+3Gll+pw1XR9+3IJld72Pi25irjTPRWt8jFaEzsgGh6rouKRmFE0IKvVp63szMPtyGq2dZ\nSo4p1FHWjmvu3iiKF+Xsq6zTPyIFpJdv6Hz+mWM/ZiteqSOtldX2mbg4ZkL4yZ031LePhb+g335H\n9zhVlY088qj2g6Mb6qPerPaFz02JI+atM/LrH7+oNeUP4Axsf0x+7swrkJHAK5F7AEWar8t2fd23\n7H2VMecJc3NUZQ/hlX/MNGQL1REoMR9cVCju9HbUp61757m/bCSd0e+8cfmFfl22FuM+/rx+V0rq\nPsk4SA9QZiU4s1xtjbWvBjIzpv/79lAECqi/EiP1c4X9LKIp5kLtyfDTw55efSBXOvi9BOPTY08y\nxF97i+qPtYtS19u4ov59O6fX5Udkm7P47z0QkyMQS21Q0R3Qy3Ey8ZW65nokAJfOcc2pO3e0bl/6\ne/+rmZldPCZU9Bn4t0IZ1GPMbBAIWRskULSk/it4US98S/28eV/13B3KXgJf1fo5+cpJO2zZ4Vmg\n1NP8HVVR/SyDFG5pzfaw5vZquvfVRY19C7R/fm3NzMyOgs70DGUje1VQUhVxRG0daG2qw1O387L8\nynRWc6YNkG4UVp+14ZSciKntfUgUo3CYtL3av/vbGouNAvvJl7QPdDHmTRSqBn21x59U/er3NUcO\nClrHcm6NceOK0BbG6YUFF3uckq63W0UdNq77lJq6/nAfdaG2+qfZlc/wYiu9/ATvGdu41rPlBbV/\nJa37pB8ViipzVDZVeFP12++CjCmBSuvzvAQCpcmcKlxmL+nTnMgXyrQPrpewfMphi599+DCtcWij\nADRqoaoKOq4L8sfDs3IE2dgeHD87m+r/3IZe724JSXRhXc8ZMw9o7xVb0H2ufU39d3tXdvbzZnar\n3LLtet+OPap98anH1Xe1bV1j67LQTYmg2p5gXrZG2NCQ0wxIR7m8GosOe49OF3RPS99z1TQXygMU\nrjg1sFqGWxVk2lRPtumH36jflO1nOnC38nmtrv1dGyWteg0lSPicQiCYh16NaexA9Spgy6287hdl\nH5icBMHOsYMg/tILKss7Vu8ESe2H/ygQ1VgBVjb/GP07xXNA/92fgR2kjFOc4hSnOMUpTnGKU5zi\nFKc4xSlOccoHUD5QpIyb84xTU4okDfKK2nnynFfeU2QrgDJNgjNkVVQuCncUTY0QoZsjcz18WBGw\nK3+srM/9jTUzM3vsMWV1piaUQdjdVtTTBVdDoMwZ4NySrndE0dZAXfWp7Ct6vHdD0d6QX0iY6Szn\n30EzbN1V5N4fUcZgbpko7Ul9Lw5y58ZtZRISr6kf5uBvCXGEd+QjgldUP5Q5yze/pAhm8Bm15+oL\nOsNb3SVD70W/fV1R3PSU17pkF+pwE1Ru6TN3QBHV3ISiirNk+qyraKPfp2vVMZXqGtrsnPs1IvaD\nlKKM4TllYrMoCuxd1/UrcNDkjvwwo3eY4uqqr3p91cMNg3cHlZ4Q5/s6rnHGkv/DOt8i2xObUOYz\nB9dBq4dKCVmT/Y5swbONIlhL9d27pn46uqjsfyiu6Oh8TpnY8j4Z3pLqmc5qDA+2ZZtdZEl8IIz8\nzR7XUT8367r+rW8oO5O/o4zEQatuv/Af/Iz9z7/1D/V+U+cr508rEn/8GSFyFmGd9xC9btxnvFCG\niDPuQ+6fjqm+xRBRX6LTWb63u6fx9aT1vgsKo1fQOCcAJ7hNmY4KHBGxtMa7A7rCRUY9FtB96y5F\npxtD5hqcPYO+bD9I/UcjGX+/Cy3+IUoRvoxaT/e8d1V92h1h/0c0D1fOKnPmAR3w8b/0jOpomvdf\n+/LvmJlZCOTE5IoaG4LVPbioNi8mNO8fOabsQwvU1IW8MsKYknVgk2+ONObemN5PkuUYuOCFgEm/\n3YKLoDVmxNd1h0nZyiiq7/nJiLbJ9EFdY2EISVo1Xbc7lN9BoMD8S7Kd5/+isud7RY2Jp63rFq4p\n67Zb5Nw2ygkxlBLcZDSCHK0NRFTPagNlnILeexZAJqJONIC3qHBDtpUG4ZNp63vFgO4/gfKZm4zI\ngNTtRAyUBQgfH8o18akfKgccpgSHzL0WqLopUA+oRlV6skX/DGeNMXYoaMwGcABxcN9LZjxMhsTv\nVf80aqpf1AOfwJayUh0y4S7O2Td3NRdcE/qeqz9hAxRMVqKy/2kQMP0WnCwRZVtu7qnPmn29RkdC\n7DVReOqDFCzDbxSPyHb3t/T55TdR+DslvoTpo/hLECh1VJmacNaE4W8zr8au1NBa1CqAskqh9lNV\nn4zg78mX6FNU4mZSsuV8W/51fB58rKpXH2guNjif3g7Idjod1JlA3gQYy304qFKo2+2P+TDovyD+\n5bAl+jn1xxP/VGP1yo8JMfpYf8nMzF7aU/0fmlUm+p9tqr6ff0w2+9pp+e8zNSEnv0mKevq6Jmm/\nrNcUaIXhnq7j3dPvLz+q+yzXhaKovUjGl/6JhoUCeK36YTMzm5jUnFrMX6IFf80eevkBWx1qrj/a\nknJl5b7Wi+st8QQMz71oZmarX5dd3fvz2tMk7sg3dMpCr73l037ho69o3W7hl+dAvUWD2hN9/5Na\n9wJ/JJ9zdqT3ySdescGa5seb9mNmZuZ/Q/PoZEB9dYJs9vCO2vA0/EWDnH63AdK4GFBbz50W+rb7\nVSFuqtBSlPtCGC4e1Zivgd75bEe2XYcbYHNfNnS5qz4643l/fqTX0Rz0wF/Un1UfZuBG7EdRxOnp\n/7WO3o9AXPpB1HWSmlNXN9X3nsvyK9N9OE/issE+aiZ5/NTAD5cZ/E1TSVBiqBc1QWEUQ/KfKVCn\n3YD2vQEyvk2y++MMcMwt/zscka0fokaEgk0DBLi/qTnvjZL5PtB1ffBj+ILq54UnhIgZ3pL/K420\nJ6nfQAHUrz1VDARqCPRBp6n79lJqbxc07SgFp9sOslLsWY5Na66VhrIPu6rrX2rIxueyQoHZp8xC\n0Zj52xqHGspxEZRuaqA5hrdlw/t3hVbLm+Zc9hgoj0OUlqlPIz7Znt8Xp41wRbk1NkHaXgjLiB98\nRPO0AL/ZaFffc4OA3NzRs8VoDaUveDayk+yj/Ix1WnsUH/f3pZi3s1onLMxalIGTpKe9QEdDZfXx\ns8T/xd57fFl2Xll+53nvI94Lk+EyMiMtkJnwhjAk6Flksbqq1NJatbR6pon+gB72TCNNeknqYUtL\nUlepSuVYFD0JEAAJgEggkd5GZESGj3je+6fB/j1kda8uMjDKyf0mbz1372fOZ+45++yNms+FCf1v\nyFnCG9deV4+CBDLa19B9bpaEMB+vv3OTmmuj06rPypJsrY0NHryjvo1wnvUlQMcu6/89BNLKfc2l\nKRd8gCakYCyhNaJX0/+bqMdtN9WgvR0hQLuc6yN3tG8a6Khmi+t69f+xipEfRdtjp2TLS8+qXl7Q\nwju3ZdMTQ7Wr2Dq6aqiZWXMMV4bTcdTS3OphP274oEaILfZQL62BQgnAS3pYk318AC9rdE7o3W/8\nm//ezMxWXtXzytKi+ssTVf//v//LX31el348YCfOnrbTqBofHsjWBrt6jg7DORUucz6DL7Neka12\nUNbdZ8+PRFGlc2udiKP2Od6rd1CxnF+Srf63L2gMp45pb6ksy7Y2PtI8zAW5f0mdscZ5PxRGjZOz\nRLmt+e8OgDAHZezqa55nW5pTjQrrNUi9MAe95kj1y4bJhAEtFYfXadCHpw7kYBK08oBMniGoMRfn\n/M9R/17ZbM81PlD+14uDlHGKU5ziFKc4xSlOcYpTnOIUpzjFKU55AuWJImUI5lnwuDz+YXLtt4sw\nXBNRXJyS5849LW9tuyUP2hBkzd5leajax+UBm87J41Z7RkiS1oZy4grk701c0HXK5KH3y/Js5dfR\nfvfI457LKe9ytES+fU2fF1F18vgVJcq9KEWC7Kx+/2BD9VlflWfOUCTKnVJE6ORbr+n/RJq38cgH\nqvLIeVEjGXTkCayiEmIPUAHJyUt95oRyXN0DefDuv6NIUakLNw/KQqczx23iuDyjdVBG3SpIjh15\n+fxZeYATRAtaeA17Vb2fnEXRJgTj9Ia8o8V9RVEGRACTKGHNn5a3s0Gf10H7hIvwYRyxDIgo+CIy\n1QgIjk5DbfQEVX8PUe4B3tzEjLyyTfiFIhH1mX+cu1mXP7IfktfT1yave1me5NpttX9qFuWcKf0v\n31R73HFd311TH/cCan92UZ/3URKIZmQTDXhM+hMawxhKLKOavKhJXd4mLsmjPbenMZ/Iqz2jLnwU\nV2XLH9xXBMA3SQSEuTERJG8RhZdgSv02CMIpMMX9QCC13ZprbbzAEyHV98QFRZc8MJ0frOl3Pi8R\nUFQ9+uT4ZuBHqcNB5MO175/QOGUT+p8Lb3FgIDvpwgnU65CHCoLGjk4pY5EJtS0xIJIW1LWHA6L3\nUfg0wthOWn16fU0R1yaogCv/Se+n/OQFE8Vq0jezqAd5oygogFjZXFVEYfcWSlVx2VRriAKAV303\nn1T9vD710XBPtnTnOipqFTgEPOqLFrmrI7eiPK6Ovu8nUFFaBxFUBykUZ+42ybOG62aUQklsUnN4\nfVu2ff83cCl04EwhUhlhrci9CsJoSTaxcV82XVwTaqvR15ze3NK6GPKpfpmOxjoG8sVFNKi4J66a\n3i3y6seR1QyoKBdzC8WdQFRzKdBXex7dEoeEb+Ax++rXrLUlRM9Ry+QUUcstrX2Dfa235tZrmWhZ\nvQtiB56QJNwHUVj9XQPZfLyn/m8RGUr59fslEEmpkCb1GtwxwYbGKfyUvp8lavWwpf0k1PPYHH02\n6dG6FWW96RX1HjENy49U50JDfbmzpXXBPwW/kIsIGxxShz2N+RbRoUc7REZtXb9HwS9F3rPfrddH\nt2Tb/QEKNiviIvG0ZYMHKJuFSiim+Ij8QrmyeajIZGqs/OXR3JiMyhbvelmvUPoyuL7aIENaPqLX\nIGAM3rQh+1ULJYcBKKYh7W2CuBuBijpq+ek72otnZ4RE6V7V9dbOKJ/+wiprSUz72FsnQFkVhMJL\n/Y5+fU0IlQvwgay++KaZmRXzOksc7mpueS/q+i5QBzO/UL2Ls/DM/an6o/mDfzIzs+RQvCtvucTZ\nEr+puVvrXvq8De7uLTsx0Of3ONssxXU2aJ+VTdbf1nW6f/4PZmZWXX/OzMxeD4GWu6E5fPDNF83M\nbC74ga53DT6lz3SWcfkU4X69AGr3O9JEmq6K++Z3mUmLVTR/XllRH85eVx/cXdO6toHKd0ngAAAg\nAElEQVQK3AJKfvsD2fJNVPS+ghJL5Lj2il9WZFPL31DfPp3QdS9vgOq8JxtdaescePC1n+k+Hyoi\nG8wL/TRCDeiDeRAQf2lHKlHUNSplUGicU12TWs8GdZRTAhrLDKpFNR97Luu8G7RUcsA6l0ERp63v\nQ/Aq1fZkK2nWSWg+rOLVujsCuRJnf8plFlUfUHQeznw+uLAG7EctDxxZfbgRRuxfh+x7IHNSKFu6\nfVoDyuOzBO2MxFkDWqp/MaT6uHf1u9gpjX+8rH7rjnT90kD95t1ivY+p3d4kqlxN0CYe1avBvtA8\njnJkmzMdfCSurMZ7coo5eaD/7R5ovTcza+41LTsF2rqi/x/6tTYNTXY1jUpi8xlxF0111M/d1tE5\nzI7FdY3+hFCmoaZsoLIqW/caCAcfvGJ+1WV3Q/eqPJKN1veEfIi14b2Mad5NTHJWAD3Qnta+0XsI\n4oLsgQGcNPugCEpkIfQ98FxE1HcelGZaIDKbKMrOwV9ZTUNCVlf963UUEuvsfSGdBQ52QdiXZYuZ\nBfVZbgaVzrDGpg6isrits0R1lbOBh+eIaa0RwxPqv9ycxixd0VzdD6D+lBeqqQNnVomzkIuzVSAm\nG52Gg7LJs1EXPpJJFHlrVfbmPd2nVND66QeJVN1HVa6gfg2Alt25KtsqB9Q/6czvV9b5L4sP9SoP\nEKQ6ZzaDJ7EOb4vxnBAFdVFAke1URjb/+p9808zMFuFPmePZN5tWP155510zM9vbWzczs5Xzenb8\n8r/53ud1eePb37TdUtOGqNbVDtXmHM+jQVA5ezd1Xu26QIKgsDvBQ0yP5/Ig/Dp1k200Szw/w8k4\n5BkoMQOPUUNjtHVP5/DpY/BZojK8dUPz8wRtmo9ofyh1dP0OfHw10GUGWj/IM4a3O5ZNlW10UGac\nSuk6V8hacHfgG4XbNRiQjYR5Fu3sgwBH9a5Zh6+TfhjzK/l68AGNWMfJqvDFf79Cl4OUcYpTnOIU\npzjFKU5xilOc4hSnOMUpTnkC5YkiZap42pIotgQvyDO1DUfKvdvrZmYWxSsaDsuzNhEXKqCXlqer\nvSUv6/o1vXZWiNjm5Lkq1uVtHRbkwUqc1PvZSXm+DsrykA3xpD36DE6YM/LuxqfkKVyuy/N30BRC\nprAtr3FgUxGE2KI8bomMPHmtljyDW4fyqFVNXm93UJGfxDlFamo1RS/zJbVvfpmIQlb138LzV3wo\n723Lo/exsRd+iUhEXt7PBl7e0jhauVay6YyiMZE0uakH5PTX5LVMzKCKk4QLAGRHh0js0AfCA86U\nCDwPxbK8lFu35NkPPpBJnX7qKTMzSx1fVFtMHuV2D8KcIxZXTF7JWk996UIxxR2C2ALPccBNZDgL\nn8VJeawPS/LEh07LxnxutSNSH3OeaGzbRdmGGxvokK8YnoDxG3RFsEG0KQbHCqpH1bK8wxNhjUXN\nrfd9UEweZloPFvcBKiS1cIt2ysY7Vby6x/GmZrkv6kgJIiM+cma7IIM2rirvs7cs9YsgyKIGaDAf\n7fKgmGP0U8qt+k/Bzt7Pqz8//KHyqO9+KHRCflP9sfg12fyb3xfaawSXxCZcDyHUssp9+DryRNsY\njz73zx8qopxEUagT0vcjEExez9GXpiRtqLpU94kIaCyUqKo+zaf+QLbUuK02fPSxolRp2OCTCXgS\nUOIahtu0SXX2mtp4567UPQ7WdZ3WLWwRlNhYCasT1uuLX1NfLZ2GG+GuIgH7O1pnQmXU5LxEt0Dg\nGNGXAFxaCaLz8yn1VR2b3YSl3uPSdcLwFbXiul6K6M1gV+vt7roi1JU1ojs5rVvNEOzzWfXTylcW\nzczsNIov+3/7U10HpI+PfPELX9e6k0gJUeMl19jDXGkRqHS3VK/qULbrMfVfvw5aLYCtZ1VPf1jX\n6cJWn2H8/Fm1ZyKq/j1qqZeIGDe0liRizM2EbHBqWuP3YBfliLJ+NxuV/UwuKmIyPCSfO6b6pTxa\nC12gNYJebBiFtdxo3czMphmXPnAXD5wRtbzeh61hEwtqU4687WkUClqoreU76qtF1MzGHC+AqKxX\nU91rIOVsAOFGFW6tnNani29qvWkgw1TaAXVFRDGZVFv9SY3VAxAz8+dQTZqCwwZUQ7mj67szKJmE\nNZYukHM1VNVuHar+xxPaS90N9VmLaJPb1aOdsuUy3DK7N7XnDolynTwlG5jG5tPw+xgKMD2i+6WB\n6n/UMn1Ga8DEh+yP31T9DlY1HpMvKyIZKIrz5dOu+uWCW3PgDv014100M7OlRVC5PxVyZial/lh/\nQciVCUAa6zX9//y8eKnu39XcWDz8IzMza3z9y2ZmttPUHMw91N7/flzjNX2x/Xkb/mHmhP3phNAi\nu5/qepEXtN7WXagyuYUyq90SMvO19ntmZvaPBfG0fOsl9feVsULanGz30ndkX9v/pOttZL9tZmap\nkc4Rb4SEwPnoptApmXLWzqbhQbitvvindf33pVdA/l3WvHwU0dnCjWLgq08JAdPk++4l2eoz78qW\n1t9QX6bf1h6+9JqQZ/mMxuTwd7LpvZqixue9OgO9A9/NElvhcyZb/092tOIPglyJ69xXzI2/gKcC\n3qdwn7NCXfULofLRDsNhADKxMkR1bpJ1e4Aizz7orxiKZ6B5x+pMCReIjl34P3o66/QDQk2kwzrz\nVCNE43vwUMHFMjVWqoHvyQ1HV4x67Oxq/WveF+9RK4FqVQX0bETvPfChDBq6TtInW8xPq70NN3Ny\nCKrZtJ7m6J8ayBsf59U6fHdhkEc+1JzcPs0JTx+EEvVvwN0QAgVS94P4mWSNBGlpZlYati22q/5J\nJuCzAvFYRx2vAsIoFpNdVNdlpxPDx9f5Q2UIuta1LeRd5YB1GU7HIPHwUFh9GIHTMY4SVqejsU25\nNBYxn+ri1t+tBX/ZHqqY8Zr6qFdFuYv7jZUbzy4smplZdF59Ep/W9Stwlxho14NP9QxlExrjRBbU\nLlkMbrfGMAeCoxvX95NBrUObB7pOYEE2wc9ttab1tJxXfYteNizQxP2kbCAJT2cZlc44HCpbv9H9\nd0BZdHtqZwg+v+JQY1oqqj7FtvaRBMo/k1+C6+qc5n6WZ7UNHZst9BnKjAFUDkFLnXxO+2X6FCiQ\ne3qGq4EGSbvVf8dyum7F9cVwDs3eWIWQjIOB7MEHisTPWcHfYX+DZzTaVP/sH2i8ImRdzMyhwMm5\ne/W+EI4ZpIA8B/RnQ+d6D2dMM7N+t2bl9YfmijA/uihUoQjlPtC8joRBlhVR3Qxp/TosqE7/x9/8\nezMze+aMFAZPfIOzAmM2u6Jz8PFjekYMgQxf39MzZ/GTdX2OzV66qL3x3r6+P9zS3vQIZPUBWRiR\nZS3EURQC82SY+Dhv7rhlk00UvXwohX22Ltv8ybviUXv2z4QeiqNwufeJEOUz86pP0i9bdbv0/x78\nPhWQhS5UpioVfT+qqp4tzoXh6u9/BnaQMk5xilOc4hSnOMUpTnGKU5ziFKc4xSlPoDxRpMywJq/p\nYUuersWziu4sk6d+7YY8YhvbyimLjfPrOvp+eo5o2SXlU5eI6t/Zlvd0mtzVYQdFiYY8e32XIgiZ\nU/Ia+w/kda7V4Hh5INTHg9/IG3r8FDwbK4pOeWBt372j+h3uKNwVyylCMj0jr/XugTxm4Q7KRXm1\nc/XTdTMzW1mRZ28UkRe29Ugexybe8olF+Ejgxli/o6jk7hocBB/eMjOzMyBuugF5ScdcNX3QEZWS\n3xIgPdxPKRLo/62usQtSJtpEAeWsPMgHcMTs7ymK0F+Vhzh3nPxBlKnmGi+YmdktlAfu3VbfR6dR\nBYmojaEMDNiDx57Zo5Qs/CDhmO43Pas+7vqJDLaJwpGjauTmhjL63wAuhcQkkVwQLsGS6unxa2xi\nKBy0UAlywTWTASXVDup/vRnZYMyn9nlTalehpu8XF19WfYPiBBgGFemol2TD9RY5xAH1o2ekekAg\nbsMJjVOtQpTomN579omuE3XyRPV9lrzNdljoBzcoiwZTpb2t8RuA8giDCvFsw2mDQpgH1NqVdxXZ\nufmPUgabjun6c7NE9R/KW12qaxyPPyUUyPoHmgPZKApooCj2Roomnjr9ij4/rn659jERXO476Oj6\njR7oicHRSWXKPTzsd9fNzKy+JBuJTMiWh+TENnZBRjT1miloHRilZFsZ1JBa5POmM7KliWW4pYr0\n/aZsLkDdO3PkYRcUYYijmDN5DHUlOGD2C5pTD4kEhOuMVRf1IniIPOR5p+Cyis0sqh5+RVGa92Uz\nVRB0UM9Yn5z71IKiQrPTit7Uya2v7us+LaJPgbD6CbJ6MxBByQhIP8Zwc1c2sf0f1c8NFNc6Df4I\nQiaTnqVe+t3+I82R1jpIJB+KCyh6zc8qgp18FhQbalnDJtEu1Pd6qDv5gnAbwO0S8nwxZZ0qSj6p\nlGy0ntXcd8EH1XHDR7Ws8fIQbfNXdL8BOcgDt+ZyiMh4jBzhWF/RwiFqVhny1ldOgfyJq31rO+wL\n1GOSPPJWo20W0TxNDvTbjFfrkRuuqH5b86kSQMmPa1RBJzVZLwdl2cjhHmgjeGsA2lhmRmMcJEo1\nbGre3QeNmV4E6UKbRihibR6CBoCLagjycNgA5XUIl4tLfesDAecGPba5qqi7Zwvk35z62o0KRw9V\nJYuMI8uaQ2t7Y3ST+rTN8l+FL6rTGEu0jBVg9L7T/mKcMnOgTLdeAG17Q+28OPctMzNrPVI71x4K\nlTD//NfMzGzvbbXrz49rXH65pvfX3DozLJ0WQuXcHdAPoBV+k9a6nbj9CzMzC56SLb78khCPk37t\n8YmurvPupjhedh7qd68tCrHz8+b8523wXVy3t38r1MiJV+BSYC6uBoSQ+VO3+j0Nr8nArbn750mi\neo9Uz5WO2vPu7rqZmRVr+t0gi7LOsvaJBvtW/u/hy4rrLBcZFi2eUCRy95wipP4LcH8cqK//vynZ\nxteamu8/uqT15Lu/WjQzs5+8rPPNUMAZu7T8d2ZmlvyBeBIunwfds666v5PQuv/iaSnAvOvR59f2\ntH782bzq/ruyxnjt2DH7IiUK4VlhaazgqLHwT3LeCmpMew21K1rVXCiy18Z7+l23pfbP54RWCqK8\nMgQ5U+HcGEMFqcfYDIpa3/sTqCuBitsFUegGoe1Gha+dht9krAgEEqnU15wv8RgQS+k601H1/7f+\nRDZ0b11je/ljjXX5pM4wyQP2es5Y1RnVa9TlTNPVdTptUMmonGROaC2Lwhk2A0lOHZU6FzxarhHr\nPYj2OEhJN4pm1gMh00MNDw6fgUv7TKMGhyRcNeoDtw1ZY6pwsI149fXV736QjWu3tAb5NtUv/YXH\nvE1/qGx+pvnfQ22zUwcdCm+GP4yClB9OlrTmmbuiPuzWQcA0dC7ytGRzQ85FnR6qQFPi/otltYfm\nh5yDUTQcRdQ3jR7oz0Od08JejU2tqL6cBMnYGwllll7Rnpc9q+tGF9SHZRdqnazXNaQm++tqT9At\n2xtze0VOwnd0BqTd0qKZmbVBbozYb+oZ/a93qN+VQVvVKhr7wg09+xQbenWDsI75ZcuLIdRVV/S5\ni6wIy2hu+lAG2oXPbnhv3czMWluaE7v3ZYPBKnxIcRBLVRR5ttR/4RY8TAHW1bFCI+jZrgce0SOW\nRA90BTbs8sNDyJwfH+RdY769kn4/4Yc7jfO8GwRpMKz+c3XVr56a2ucHFZYCfZw/4Pkm9ljl1Ftr\n2aBm5hrB04ZCrXVY09lbXah8rpZQZXJpvX3lRSFinvqRxuSpl3XGeOZNnfn34PILLWjet8vai/Jw\nsHpMtp7xaQy7W7KtAJyI4Yz6Yg7ezVoTNb6R3ude0FwYzOr/8U3a1ZJtjFAwK450nuW4bZ/cEfJ9\ntKg99F/92/9B13+gfWs01BzIori1f1ftaIAKC02y7sEVVhrx3BCB29KFcjBnpfYfQFM5SBmnOMUp\nTnGKU5ziFKc4xSlOcYpTnOKUJ1CeLFLGq2jZ5pry4vxwJkTnydktoggUkQet75N3r7glD1ahKK/n\n01+Wp+7kK2JLv7YqpMuwKO9h2C9PXxvFiSr57tElFBBQDZlfVhSo71G9br/9vpmZ3X1XLrdYVZ62\n3HndL5VSpPfuqjxtjYJ+Fx3JmzoL/4cXDogWEd7aoTxs23iTwy559vbaak8dpI/7Ip7DZV2vNpTX\ntrYlT2WxBOM5jOADP9dHF76N99vV6tm+S21dWoHbA+WP6m15K1tF9c3UGfFHTF/StfKfCA2UX5fX\nsjfU70cueQMzqA3NXnrWzMwKl8VFslnUvbN4aAcw8tep01HL/o6iJ4X2Pu913zR9l53VddNhtWvo\nVZ+lcooOJefG/Ba6notIdCKkSEOtDzcM4h+VlvohvIhyAGPXLxR4r74f9RT5aLbIBU7o96vrysH/\nx//z5/p9SPWITeg1AwfLyRcVqQjMystaJyLsT8CyHkblA94khIMsFtD/2/y+HVU9vH3ZyEFFNpFi\nztiiokZROCk6I/0+RIcMTeOzfVeR3/ojIaKeOa5oYnBO9RzzetQK4kK49rbG+bVvCgHTgJPi07z+\nv4nKwMY92cvly4panjpzTv3ZkY1OwNexT75pb0f/8/+z6NYfKgBLLHhMfTC/rChtPaYvOvD69MlH\n7mzB4VJDoaqjPg8ta6zjXvh6YLJvrGk++prk1I8Be6iGVOCCKXpBkDDvg01ycn8lmwjTpirKAOGw\nbNgHa70rA1fJaY1dmDHbf6g+Hw7ksS9sqB2VQ3neM1GtW27QVqWG+txdBEXButfbAtnh1f2aedAJ\nSdBfVdlaYRVEzKbafZtoWgDkXSymyMOY96gQ0HVaLkUQCof6X5NIZQBVlUac7aYtm29F9f9QV/31\ncE336ZZl2yMUFWZi+n+bKE+0zlpUOHqOv5lZm+heOaPxjtPuxkD92IOroNcCJRJRf2zApxIwjf/8\nM1rz0uTTBzJE3xr8rwBSEWRMBNSdNwxChiWw0VY9pv1EOd1d84N4GaX0Xy/IsR7RdV+HqIxPC4KL\nKHWdeZM8h0JhDh6kyrqZmZWGWje2d7R3tlFJWjmp6NCQyGW7KBupNNX36Xnyolu671ZB37dZ/xZQ\nuRvABdMCCVkpb9Fm1cOd0Dp0b0/1LDTU1+eIPg1R8WvCV5TIycZ8aY3R1IrWocWc7pdy639B1u/Y\nLLxRTdnOkD3VN3jMtXKUMlPWvvhgU3t6/JLq/T4cDe5JVJVeEOI09bb2/P/n24oKPvhU/3/rBY3L\n/j2N8cFZ5avfOQE675rmbNiHUtD3FL3rrH+X/tB6PCxoTiVeUXuePic+qsOe/t+bp/9qa5+34bs3\nv2Efr6i+H32kfTnytOwpu6Mz0uA1VE9qWpOu/VJ2c+6ZH5uZ2a1zGv/Xh2rny1HtX9cui++vM6F9\n93RHdnRmVv1+E9WZBOoyOXfffpDTGJ5oa4wXP1Hf/nSoPSZ7Qv/9zYb+cyapveIDzm3nXEJAb4Z0\n3rpy80/MzGzpG5CQFLR3tLa03j29rvNfaEF8N1/N6Rz3y0samx8VF83MbKohGz0TC9oXKe1ptTnG\nOdHmZNP5LEi6CAjuLfiRUBJzbcomumwgUdSlkvDhrcEf1a8pyj3qqz3j/a3W0nXDrCMtVEIicJ1M\nEFWvJmVjbdTkPHn4olB4HLF+tr0aw25LtlP4UPU9uLVFS0+amdmxL8sGivCXPLojpGDFh+JbXef0\nMGcSLxxdpZLqmfSr3slJzd0YZ8etRzrbReB8aSVV3wBIzhrcifMlPp9CKRSul92ddbXHozNPvwUq\nex5ekDz7HJFqMzOXO2qeIfs2SPrIEsgcHU0s61Lk/cQbssfEtuaoa0f99R/tD5fojMYgHhnzT6Ag\nC39cOK2zSgUOkegsKmw8s4RA5Q7hyBrBjxeNqa/TIV2/N1BbqweaK/twUVXYwz0L6rNYSPfNxoRS\nS3EOrbIHjhUJ40PU7lQ9G4a19+0XZRt7FfXBdpUxq2mMQ37d1zw8Y4Fc7Bnvb2udvPxQ9W3C11Fa\n1ViPuQfDPs2JbEb9leOZbOa4nktWZqQSF0O1zwsiMlDS+tuD92QPpTAvz0w5FDMDQa3HixPaTw7r\nqk80LhsZ86LEUEoL3tPc3d7nuaesfn20CbIIFG8cxOexxNEVuszM+uxPoaomeZ8zjov91wf6ywNf\nSZB9011XfUNe/a8Kp1qc80B5zKXGGtovjJFSqMLCU1gEQWRmVq92LBnxWBF1zkAURF+Fc3NHdZme\nBf0FF9WzX9P8eOW7X1WdUOoKBjj3wYPTQXk1si2bahXgdoFjyl3X9ZuoDvvgDHTzDBjx6r7f+Atx\n1WwXNBYH9+U/KIEuy9/XawnbjMJrl+SMkz6BMtWs+Iv6oI09JzXvA1mtIzc/FtotcUx9FWI9zq1o\n/Wkeah0stHT9cgeEoEftLm6hGortTM9qPUlN8Gz2LxQHKeMUpzjFKU5xilOc4hSnOMUpTnGKU5zy\nBMoTRcrEkniiXfKQFR+QPz8jL+iwjTLESB6vxQVFrQLH5O27+qkiLrc/Vd71U19SHvbiJXlVbVPe\n2dYejOcBvVZBPRCUs110zluopSy8pIjKYCDP18aHH5mZ2Z2biuB0PYriHX9GrvUZ/ynuI89Ym4iC\nC09iBH6TNHn5D/Fql++SQ5sj19hP/uSe7hsvyUMXnFS7YwvoxZOzVt+Vt7lbJw907Plzy9OXb+jz\n0nbdCjtCmniDqnt2Sh5z70N5JdfJ2UyuyBt4+nX1pYvcyocfKJLX24XXZiSv5agtz/ZcWh759oI8\n+P1D0AA59YF/CsRFSciboxYk3w1qBRtW4EjwK/pzAyWZ6q484MWuPv+jv1DEMZ1Wn7iz+l+lLu+m\nlwBqHJZ8w4Ne3tAYzM6pf/pDvKwh9UMbVSBXWt7OibZss48iQxdFnDQR4LmcrtPyq78Oi4pCJR7p\netPPaTxaHtlGdaD7R9KgxcIa64Mm7OljniRUNwJx/S4CSqONGolN6nqufdlkifxyD/XykYvbdxNB\nAc1QmtU4TRDZ3iESEI6iBrOoCMbBqnKTNz5W/QoHmlMNUAKZpObw1AuKdLThIWk81EDWULZpotbS\nb6l/PGOOC/fRVbomp9WH4aBsMcw8q26T3zyscU/dow+nTHcflQfykQNBtXnQBPkAkqZOH/bysn0j\n17YN+iuzor48feZVMzNLTytqs/Gxcm4fbur/LjgC/CGhE/r4xAfPqR4vf0/R6otT8uSv7okz4YP/\n7Uf6n5/IapJoB8pjuafUx5GhxnBtR3OiUCaCAAquTzu88HIMQYel4pqzEVQ6ejD7h1F3S6GcVi+h\nSBbR7yt9TaJ2Xp93ilqHOx2hKfaI8sSzrDnHFOUboTDmi6AgcFtztrWvevmI3vtjqm/HFeR73a+X\nk43VPV8spuBH/aPLXCuCPokGQHkYiCry8luMl8tPNBKugy6qIYf8Ltwl0u5V/b3wVAX6A/pB9jEE\nxVEd5+O7QOagEBGPpazXRqWCOm6xR3brrPlEymqgvoplfX7jmtbVEDnmx0/Iltwx1geUUvzwCzUP\niPSliUpBTOTxgFaN6rUHR40XlYheH2ROTzbohtehGVJb40H9rjMg4lrX/SJR2cwM6k8xP2H7purv\nDeh3B1uKKjVZdzvUq2codMHL0SPa70UVcNQmqodJ+FjgPa4vpvZ3PaX7NGfFlTVVgZtnU+MyM4QH\n6a7ac23hmpmZ/eugzgj5gZQa1vtSaTpxXv+78ouvmJnZyqtC2tQvaI6Wrqv/r/veNDOzlkscMc9e\nVD/fAVH4oKA5/qURSj5P676/uClbPNl76vM2vHN/aEF4Tv7MhCK5vSqus4XXZCcHFfV74rcah2xc\nhC0PyuJneaEEf1Zm3czMfndF6/75F7SmLl3RmnJzX3PqgxX118UtoVRWX9Pvw426Pf+P2lP6S4zt\nJZ1b3npPNlm7rDa965NSSDT+dTMzu4TiS+ue7nU8pTqtnlffhbuLZmaWmdQ9/Q+1/rhQb/t4Rn1f\nvaV17ZszOg/93QGcI19SJPRH979YdNufhwcDHoct+EKaA5B8RL8LUfVtbqzEM1R7D+ED6jfUL5/V\n1/X+lvaXsF/rZCituVRPaK4lUXoxr9bXAPtcG+6vcIt1c6Dre031iI2IWKOWUg9q7INtkEYB2Za5\nZOuNqvr97/9S+8/SzzVup+GOmF3SHJnuqr2lAAo9+3Ajwn+RGKGCCCdDE/7CnY7OYNDyWRvuBfcu\naDfWUYMrbq8m+4gTeY+tyLZeWlK976+q3m0QU8F6metq7kc6j3kMh8G+DRrwXPVUnzzovcgEvCig\nHWamxJd4xoQG3vy0bEctgSBIRqL/9ToIFlDyART3govqo6xPzxw1r+oUz8pGw03UPNmrRkXZ0gZz\nw+WXbXtRmByhCNib01gkx+dvnkGCM6rPVhl+OaL49U2d5/oDjc0AxE5+XyjdVkv1iAY1txJwIqZB\nXLhQ++w24SsKam7FeygkcuaIzatdmbw+XwYd3GN/m/Jr3/ItzvG5bG3nts4yvXWUbXpwNBoqRRU9\nS1VXNccLoH6np9TefocxX1Y9xmeXhwdqf/EaCNA+vEVTOsN54P+Yiqv/tuH2yszJ1kYonJ1I6Tmj\nF8Ooj1gCY45Nzgo8ZliAs1OpS/tAlxn7rxc+PfdwDKOTfYypaPogjypw1syD1B/U1J42U3NQeewC\naDWLNhwErGVa3yJdxprzYQGbWz/UvAzCbxlHVfL6O9q7Du6i4BVSncOmZ4FY30WdxiSIKMmiSNvk\nfFWFeyoGX1wPrj+L6n73H+n6D65q3Y+hvtow+qYH5yDrYXeIcteYt4ezgquHjVc0N8+A5P7478Xv\n1tmULXlAZe02ZNOxaWBkCT1n10Aj1+F98syr30o1reeZk+qfieM69wdavx+96yBlnOIUpzjFKU5x\nilOc4hSnOMUpTnGKU55AeaJImR7a7KEI+YFo1Xtq8u5FevLYlUGW9HL6PrcitrE9gWwAACAASURB\nVPwTcD48vCGPWR/i8cUXxdYfPye29M4x5czuvyMvdXePXNeU/uAhJ+zub4SEOeMi1x90R/w55WEf\n3pPnbOPGuq6LW3JyRV7S5LS8x+steFDInQsE5fuafVH53cOUctKu/1JcE+4dkDXkwTf7+n95E04C\nv7ycU155yX2L8lzeJ6JxuCXPYcetdsSTiiSETsrr3Ivv243LysveuibPa/Z1eayXzspDf+1HusZH\nP1IfvJ7VmBw7KaSH4VnPP9CYucqq24goySG8Eh74Gdpj5EkNrpoEUfKM7nvUEqTNNgnHgIdo/lD1\nSMDsH0rJlAf78s5++hNFBEdR1ev176jvwwlFl/ZuyEMeT6o+wZHGqNeFcdsPUgbkyiCssQnE5WVt\nozXfpD5BD3wcVY15NqcojjeKVxTW/Gk81oVV2WJsQv08wnZdDRj/yXPvT8vDH0CxZjKEJ39P1xvg\nae+QNxmP4lkn4jKE5T9C9N4N0mcETMyDIkMD3o5wTv1Zj2uOTMK31CaykPYTeeD39ZFsMLJEvjuR\n634bThyiYK6m6jOZ1vi0R6pHGC6KIAzm3qwiMgHPY1b4P1QOxjnzRMrik+rjThkuFbg/LIDnPuL/\nz+45Pa++nntKY7H+qfgWBlX1hQtVonaVCCDRrTyRPBfRjAh5yfV15u8WyL/dcZ6vbKdPnyZQ8koF\n1XeHRM9ut2VDj36u9a9NtKmR1Jh3R9gkXDnWkUfeg+e+A9/HYKSxymbUH10/Y0wUxkJEctMo9hB1\n6RHR8KNc0yoShVMzrNcgKkO7Z1GQGKO2mqA7snGN5dmvax32o3by6Y/FR9Q5RG0OZQM3Ualegqhb\nX/0ySqHANq3X3KzWtxQqKkctY8WygAtuB2yfAK4NG3DO1BQ5CUa15gSXx/AL/bDrUb8Pi9p/Rj1F\nkHvkTPda6uc8kaQBSB9/Tv1S32ftwL4KcP5YMGeTJxjTsK5ZGkfHWV87xh4BV1UC1E3uzGkzM9sr\nay8pVnTtaBxeCZ9+v7ige5cbiugVsZWcR3WbYb30uOA/eohCC+pxuXlFEMND1c+HrYRDauv+JrwT\na7LhpRXtL6GQxvQU0W3PGMBCTnzcJdu9wPrWIyf+yoZQEZmo+nQuqt974f2Zgh9uAP9Sqg33Fdw8\nPf8XQ8pk2jpLLJ7X/w4OVJ/9b2m/KNxV3rlr4WdmZvZS7Q0zM8v/VsjSd1vvmZnZROUd/e8jjcsb\nOY3r+9eFpls6VNTtxZ7+ZzNaR4cn1H/BtvrNdZ3+RiEyvKjf5eE7unBG9rDzYPLzNuQ8P7T5thAv\nP1nUfYb7Gsdbh/r/iY/hEFqWHSSiWlOmUBH0zui80PiZ6v9Hl7TGFm6g7HNcyJidoJBBF2NaM68T\n+T75A62R7zzzjn05q/PYD0GKvfFb7a2/vaT3U3mdPb6/LE6Cdz4EyXyRXP+85seVvO7dOqbvOx/L\nlhZOL6quJX1+vSsumXMzmp+Be7LpgxXt7W88S1sO1YfHJtV3f2VHK3kQh004DvtwSfnX9X0UnrlS\nSu1zdzWGx1DZXEJ17sP3dda6e13tWkjqvLmS0bnNNQlaracxysMHl2miOhTX3HP7te40uswNECoJ\nkOFFIsieHuopHa0F1bEwWU/1TIC6CIxU367p7PDwPc39MQfELMAan1trRAsOijhz2Xcw5gAD2QIi\npwQ3jK+vfghlVe9BWf3ljes+/TyKbyCMiqgztS9rDj6qa188uyzOm7Ps92t+2UlrQ/cZgBqx/mMF\ntlivZSE4vYLboIk76s/N+2rHvfoPzczsF38hLqJw/y/NzOzi//2CHbVMhnWuLLrhz2jB+bEkW8vw\n7NDhHHR4qL2lkVflGiglFg717NLa4fzIHmbwEEWeVh+4eJbprMK/GdF9y6BDA59vYeqjfEGvI3g5\nd0BBpEJah+df1l7+/LKi++Gn1HYXCEnXntaj5hrcMvBqdrKag56hshVOXdI6lHtVRlPg2a5ONkF7\nT7bXhKtsrGCT6Ov6OwXVbxJkyAC0w4B9ImYa+8lJ6gPCaIFsCP9x/W4Qgb8kgcIm5+yDXdC/Mdna\nKAUnZRJV0CRnhehYMQy1vBGITfZ2D8+MtT+AgvgvywBUWB3FtMGA+7K2jBGx4SD8T/BOZXMJfi97\n+eCuzoBf+5KyNio+XWf1mtbl1HPYQROEa5Nzhesxn1ar1LVELmguUJQPbusZamJC71umvmok4MV8\nWuuYFzfCww2tr8GEns9d8PXUQyi3co70wFvUaGldKK/rNY1q3jAAom/IXjR+9ljQdXtFjUkPPkxv\nFG6v0vhsg7IZ83zMhZPjTGM8q/Xg5QmaPk+BEO+j7tZMgC5DjdXVxkYOyHCBI/Lc05rTXRS5fGH1\nR3lOfXvpGY1Ju6P2bF5D/elfKA5SxilOcYpTnOIUpzjFKU5xilOc4hSnOOUJlCeKlKmizuFqy2sb\n6MnLGTkmz9cE7OmVB4raPLoub2r4ZeVPn31K0SQ33r/NNUXK7/bF5XDuNUVo585JJ93Tkafr3j+9\nbWZmu7vkwWfl6Ro81PWvXZGnLBSVF3MiLg/d9DOKrEfz8pAV0FcvDhRdO3dOEaHILMgfOF/u3VxX\ngyfVnpPPv6j2k69eujpW99BwVA/lUcyjaBOMjyOp+jw6L4/c8RN63blH3vtNvNWT8uzNnZWHLvj0\nopWr8hyv4VGN39P7cy+JOXvhy7rGrffU17d+p1zSZ59Xm6ZiGhNvWB58RC8sBHt8ByTIgNzHZoG8\n67G3EibvMXLiqMVPrmoDL2sEiZnhSNdpDvR5DERNalJ9Hx7q/a2PhUb6kLzEN7+s/OCVkxrLCZi3\n1+5oDHpded7TEUUIWn2147Au7+Y439sNamsUkOc+lpetdFCJCk3LUz1EtSjSQsEnAN/PUNdzw2/i\ndem+frfG9NSMOABOJMU2//GVX5qZ2XaSyEQZ3iFQCRMgkYKT8oAXH+l7l0s2nkZxpxjR+yQ8GA2v\n+jGTgROoTv924HRwy5vcg/09RkQ9k9TvB3BNLC2pP7d95GvinW7UFIGJhsi3jzHn8GoHRvBGtWRX\n0YL+H0o9jm79oUIwwUY12cIA/hs/6IJQAg826JvwCUUkYxGNfX9ARHFXkbj8Lsz9eOLdcAR4iab4\nM7r+CZAgrYHmafH962ZmtrtBtOiRbDEEv4Y3DJIFD3oW1aWhlhu78ddaRzbGkYCR5moCdNUBaLW+\nqcETp9X3O6gqVQr63j/SXCQYZKEZ/X82R8Sjonb1/Pp9EcTG+qbaHw7Ilgr7RC6JasV8an8jA1cB\nvEV9kDeumNrjGYcoYlokig91ne6eYgC7qyB7gkRsXbLpYHeMYNLYLy4qCpg7q9c8EZMaCkH7a5qb\nRy4duGxQtIjDfdBFuaCPakrbp3Z0RqpHgf59RPQymllUe+FPqWDrXjh9GiyO3R5II3hQQmW9B7Bk\nXf9YeYhoXKdn90EiVibgIcsKmVFHuWbYgJeiO1ae0iB7YPa3A9Wltq++CXmFJvKj+LI4qWhUH2Sh\nq4M6EmPmgZSlfku2WK+rLWnWl5NzsvkuueijjtaFVE99FoHHwbCtbFT/i7A/IHRm8Q48FOSRj1CU\niUZQBBuABOop+nZsAr4oIIV+ty6UgBPL11N/jHmaPCCKeiAZj1oSqPv95q7WjE5ZPCdPeYSWTbs1\nx6/4xRnzC4/efytElK+pyHB0SvUKJLQn/w7OgG+O8+R/rn5qf0vR+Pz1L5mZ2aNVRR97MxrPt+DB\nan4PNMYVjev0PSFsDrFlF7wYZmadr0RsH26Xc3d0BmrAw7e3LpTt08/rrLV5Xai19ddRRbmhcbgE\nH17lgvq/W9fcuJb4jpmZvbYmDpoXiRgn9vWaeySUxZ0/VoT/zI+XbS2mBW4F2/11Un0V+bWQaGsB\nzk0n1Neucxrj31TU1kAIxZkSnASbWldfDrG3B1X35W/Ck9RSXxduiyfj+rdli75b2vuXY782M7Ml\n3wUzM/vtTw/si5Q2wfDggHMjHCmuvNrVRVUtUacP4UvzTeo+udNCCnXhZHnqrPrsuTd1Tm2hcHMA\nqimU1x6ZzXIuhG/K7dO5MF5DeRKkebSv+9SwtUBb3/fC+v2QuZdBlagIciaIClI+Klubc8tWPF3U\nQz9mHfxQ9W4kVa9jILR7LZ03I0SQB6wNhy79LulnDYODojvQWcnjAsXbhJNmDv47EOzBMS8IZ7ju\nhtBf76OyOg0iPD0Ndxc8WB64zQaef8abUcmYK6Kz0QiumRocZhk4JYMuoULa7F+j+6p3IfhY4ewP\nlcOqEAo7edle0C3b3Ifn7hF1dHU0D6sPZVRNzkUGl0rMr3Vg9jjrKGqmnaw2EQ/PAkUQJw9KmhPd\nMV9HXHv3pBuFLLf2g+RT6rPFOMiS/LqZmSUgNQHcZV1QpYU92c7WZ/Dq1UFINthvNtQuf4s4P3x3\nTWz8s1+JA+vwPiiDgmzbvcX92EM7aY1Z71D99ei+zslBbMlCIK4zWgPaOY3lFiQpjx7qGbAKkv9C\nWO3tzum6C3C/dECK++EpDWdBl6EUFHtaZzVPmv0GtO72Dc2tAWeCWgFUdQzuRDeqR0cs/nE/hXUm\n5Thtfrh7hh549EDEdNOcmTj3+0x2kNMxwVbekjJR7FDtrxfJRumpXcOePg/0sI/BYzXcXmHTXPEV\nC7Au9FvwFnnhHET5a+U52U7omNax3R2eSVoaQ79PderxLOFh7+/WtO6Uuigm9vTM0EdergTH072H\nsrGTT+u5OwSifeRFybAKp1YXtCeoXx/PnkHOs3m4FBOgjtpwATbgip1q6yyT5SwUdMOvB8dNuKU9\n1dUC1Q+tz2j8PHCose4BNur1Oeceylb6cNXc+0z1a9Y4v9d+PxbmiTpl3ECMi6QT1QZ6KFiZ0QQ5\neU6bXGNd7/vbOiC4dzSRPIs8HF2UkXQeaALvI3l75T0dmIIebb6z52VEe3fW9btNpF5dWoF8p+Tk\naVTV++sQzHXTyNrN8+B/XJvnKK3B3d7WfR/c0KCkFjVBY8cF/S1e0QHm5m90SAh4tPlMMBFbMzLW\nBHD60Rj+tKV6Vh9yaJhC0iugiTSJVJdh3LXPtEDsXtOm5YEwaeGtC3b2dT3c1yGmLR7owFOtyPAz\np+ScOcam0SowUe7LsNykYPVH48nNwzYPIoGkFgsfa1KljFwsD/X1Q753a9E8anEj/RoKamIFwlqM\n3VX6jIeRxp4M34Us5CAiG8kmdFCo39V9367p4Le3LluKIa16yERrNTkINFXfS99T2lMPOOBhU/1R\nb6r9SaDPwyGSgR19P43zpQphpYd29H1lXmXblaHuf+tvRaq3x6Y1tfLQvvl3/5P99b/7383MbHNX\nNra4rINsiFySPRx1GQ5sU8/JlpOQIo5KkOf1Vd9wU7ZiLPZDNk1fQu3zQmjW85EWhpR6COj5yIXN\nFSGwK8qZ1Ycs0D3BwyJrfWpK/VjHATlw6YswUt/egQ58EezE52OTahx9c4vHSImqa155ISttAXUN\nQSx7iO3Od9ksoqrD1v0xvBpniqkvAsire1nEvYkM1+UQ2VcdR5Bv+rf1fhYiwSIpYIMhaTkT+n5+\nSg6/0Ngpcx+i3F1dZ0xCPUhr4yzDiDiA4PbCN2WT35sTIebd3XfMzOzq3+iQWtjVHK6OnTU4n1fH\nLKhAhZdfUupFY0frS7/NnM1yqN3TGIfczF02nwSSp2PC4BYHt3AZJ4NL9Uztk165r4PhAJh7ktyV\nZBp5+bgafOBV/2cTpHF1tF4eQira3NH4tXt9sz/+ju2uHv2QbGYWGEFMXNY66TXZRzOvcd7qy5Zr\nHs3pDUP+877us1vR9wmcURHS2iJjIjpSadw4p5rIcH58XXN3UJYdnkT6dSqmNSCzhCx1z23bwMrv\nN9QXxyDC7dKntbrWreIjjZl/UnvIsYzq3Dum+V0nlWHUxlHHQ4E7oHtPkBYV6MsWOqQm1DiIHZB+\nFAUmPgP83D/CaRogNQPbDgI1hm/SgkB/U7yOkO3tdJv0nfrcB4HvGPXtJlDTRso0jWN0erw+QHSc\nDut/uW6H9qkdw6DqOWipfWNS5qOWy1Htg5E1jdm3F3Ta/eE7wPufU73L82rPhV9qvH47p34/8XBd\n9fwbSVdvfktnjun76s/LIe27BydfMjOzF0gn3k/rrDI/qUN1sq80qEentG99dldz4SttOWNCK9pf\nhiW171T/1udtuPCjKRs9J3u58n2lyCyQMvTwhOp3pSYn05k31H/TNzTO9yBT/F1PZxc/ab7eNyA9\nX9O4/y6gdbqPKIPfxfkh/3f6/GM92O6kzC5yFth5DcdgSGTH3TLO0J7+m3mgvl2fw2GflzN27pr2\n7M0XlN6U/ABH5Bnt8YmC6vLRA+31gWUckodatz0/5qH+FZ3PTn2gNrw9J4fZV3Ka5//BjlZ8nAV6\npJ6086RZJXDakpI7gvgxgGOwBpmp+6bG8uQpCDBTsrFaTba+eUdpA70BZxpI7zsQi6fiPGQ0ccaE\nIEQekULshdS0q98NSd8dk3WHvKSMEFCLpDV3d3H25A5lE+OU9CiE51MrWmPm5rX/XPiKgqMRnOnv\nfSCizxu3ZfuuMek/TpFaEvg/5N/BEc5vUh8DAVJqDCcQRM2dqvopMKHPfUh9Tz/QeOb3IKflQXvC\nozOLNzYmcH9cXMGRDXjsCUb0v0lSOSqMk5tA4KllUgPdOiO3G0cn+q1vEViBTNQdkC12Euqrcbpm\nJqO6Jo/rHuEJvXdxqxjrajMPSWkQJ09OcyWKtLWPwMb0ac2lU+d0Tkyf1LyeXNJc2dpUn+z/SuvC\n9R3Z2uYdrTNRn2xpYk77Sp200wTO9m4Bxx9B0RABoDZBUz8p4jYOfHRUv9EBcyMhcRRPQza4N9IY\nREg/DXK2yHGmOuSsECPYF86p35LTsoH9umym7iOFxa85kyIV3U7hOB0/SBPw2W8qZbJYUXtrpN5l\neqR639G6t9PXuPlJBysV1U/eKmuAR/ddSWl/iva/2CN1jSDDXkVnjPW7as/EWTmPKiG1v3BX4xTP\nIaBBMCIKzUGQdfijdzUHb9/TM+AxPAmNBtLlHdlJGEdDv/84vTcSDliztGf7eZ0t3vy+wAMXX1eA\n+OZD1bHMelB8pL7wFGWs3j5UBzg16jwERLwIaHDucW2rz9tQMmysywaaW+rjqbe0rjz1FaX6Vhta\nBwYVnKgQBffDaku1C60Azt1oQmPYP1CqmW+k9Y9l2ZoEgP1ntSf6sPFiXTYR5Jlq7GDs+sjbx+b9\nRdmuRbWeBUu63k5jPCaqp5s09zDiL24C3W2c3P9ScdKXnOIUpzjFKU5xilOc4hSnOMUpTnGKU55A\neaJImUBIHiNPmPSjW4oOjhryOp5//ctmZvb0lwQ7vfqO0o7KeMDCRKeSSaEDxiiCHmiMEpC+T98V\nXPX5rwgmewxJveamPFy7e5CuAoN0xRSxqBNpKePZ95He5DbdL3cGQl1kR9dA6lT3VL+5pOozjWTv\n1o48gZuf3qS+iuz0kehqxTQcy08L2bMZlxe1gTe7uwrBZkf1PhYCkYP8Xa6i9yW8rru3RcLX8rns\n9KvyPl58TgRct67Lk3rjpjzC5y/Jaxid1Wu1qD7pIMEcxMvngkCytC5vahc512k80LEJZLyRfh5B\nbhQFbt72PIbLHaV08YD38KqGkd4+REK12ZD7M4pseDJMuk0JUmSI0VJeRaUT+CFdIG7CSY3dsbY+\nP4Sg+OrP5XFutVT/Z4gKLc4pgpgak6N65JXdRP44OyMv6fljsqVySV5hc6l/1lvqb4+RbgCkLwkM\nMb4i+HoCpE0GkufEpCIMY5hlDK9wG+ROm2jPaAuvLFH7MLKYrqj6JzejqHwPicYRqTK5eUVGyqA/\nipBveadVv1pT/TIFJHqSuesFVXL8GdU7BcDl4UdIKRLJjiY1V7vIdY6Av/aJgERg6fZANuvuQ3h6\nhFKH8LpSgkgX9M/hQBHTiWWNdaOl7yt7SJhCCrq/rTHuF/Tqiarvez2tI+2g+vD8cdnQXkFzIw+R\n7xS/9zXV1lYbj/5QfTgIY/stRcMqDa0TUZeQN1Ugpu6xqUwirefXOtMH9ZWEGLhOpPCTqtaR+/+4\nbmZmZRAwXtaR9PP6/4lnZbub1wULrT3UmD71omxh7bKb/2sudch7cpNylvBpjoSPqf1RiN+MFLo+\nNj6MgwoLkRq3p/4Pp0E/DYHNY/sNyKg9WV3/Jdbn0zOaY5/9g+ZgYQ10Bik4GbdsKXvyi5GG9/zA\n6Ik4e/2qZzdIKiJpAx2v7hMZqB+nLyhq5d4C7RbWa4CISom54QF96A9qve+StlZY15qZo529gOb0\nrQeKzMxXiDglUxafQxp1T/feYj5Psb72Ror81SHJ8+zLFnNTpMoxj92bij4ZRLcdSD7TtNVPynC4\nor6N+3WfU0HSUGZ1//x4HfHptY1EcyiqNgVJXXPXdP1QXX1X843vA7FgX9dPQQodriK7CRen20UU\nKQNJKKSj7qHalSa1zBfUGKZIPfD2WT+IzLZBx3UeqE/rrqOvI2ZmL1/UWNeIdHcCQlM0vg+8/DON\n7WJXe/n+Wc25LJHSGxmNU7Io2zxe1ty7/bQi094fy3Z9oF5vtNSPgTt6nTghmP9toouFR7pvYErj\n7brEnCn8RNcDheJOvvx5G67N37XlhX9lZmaRv1c/RnpCnZxpy2Y3TmquP7z7LTMzO3daZ6ugHzRG\nRWiW2Zk/NjOz5a0PVe/n1N6fPlD9ns2tm5nZ5iZnlPofqb+OSyK8H16ya2X12TAsFE2GMeoV9Ppg\ni9jga6pT3K058FRP12w/I2TykIjqelKooPWc0D6T74IU9mpvtajWvc9AJM/EdB46y+a0cUZj+0JX\nqWY/8HwxGdsQqcuFqmxsok3aTZvouW9Mlg1KAsRdH3i+26sxqKX0WmgRgb6nOdHjjJJsaq9tZJjD\nIFIaEFWOUWtt7ucDPdscH7FAeEeIFPtJfaiBKktscV3SdKKkNA/GROshUK+kP3WQ9L6PHPHej7V+\nxdzaFwKQrc4ENN6P4ghrlEh1JKU8ACF6i70+4NM+0oO8ehhlbSOVO3pM/eKtghIht2b0jGw6CYn1\nqAwh8BznANb5cPsxmWk0PrARJLluzoBdIv3dOc4kTV3nEWtTs6NxTPaP21FL7iWd15ZAxpgXuV43\nghEsfBwvrdTTWaDY0L1KdfXxGDUV8SPzG2WPH6qPS03Z/N4mfc3eulXU+X73A90nsKV13UM6ZOeA\ndJiGxiBN+qfHpTOKP6Y5NUN9oy71VbWvc32gDYq3zDrIGWaBVJBRQL9vNTVH9hs6I/Q3NVa9vGyg\nU1N7on3ta0m3/ldm3/KV1G73SdlCA4lvV4b6hzXGc6TMlcbiBx5oEkAWuU1jW6+o/lvbum+V9wGQ\n7oce2Voc1Jp/CWJhJMAXsqBhZ7VPhaB1iIQ0ft76F0uXbYJw6iAtnlnW9RZf1VkolNWcbZzV+Xr+\nhGzfXRWivseZdQBavArC3JdHpCKrcXQhBNLtM8cRVWj+MxxZqNu3YdBjjRJ7DSIkmzuyxcoDPdd2\nguP1Rt/3SBtyI9zT45ktxLpT29HYx9Lqw30f520IyDce6Tm1CaHuv/7T/05t6UJ2jWCOm3OZ1wPp\nfVe2PmQPbQ90pkkh5lKAGP3yLyRxnVpW3y2f0/N1ZknP752K/lcF8RJkHRpANt0uy1bGqdk1qBy8\nZFV4R7K5CHlMHGUsXyH9MQMJdxMk+gjIzr9QHKSMU5ziFKc4xSlOcYpTnOIUpzjFKU5xyhMoTxQp\nEybanplVHuSwK6/v7fvyXrpM0ZlLX5X84uzT8mzlIbWrFvAyTowlYOWxmoW8NeaVN3F3Q68bHykK\ntXRCXsfoSXk7N+6Tn48k6lxWXu4RObTtDTgnduDVGMqzHyT/OokXc6av3z26Ke9wE2KzaFYevekq\nOcB45KoQEnlA4qznycvHSz39ojx61QPV4+FPFb0arKk9fcia0kiEx7OKWKQh+h3W5eHrbz60B+8h\n//gl5S8fP6/XrbuKtu8i4+sh79jLtUc+iGqnhAZowty7uwafw22NWcQPSfOivKEpPMv7yBdmIVEK\nQjh71DJJfu96DW8ovBenptTWNtGkEpwnTbhbBujcuiAAHk0QwYUkNUpkeQivUcurdqVj8qZ6O6CO\n1tW+X/2VbCR5Ao94Vl7RXkXe03s/Ud67F7K4+jxkeyPI+CY19vWu7pOaV9TFh1vUE0TidRJyPbyw\ngTRu17Q86W5IG+puItYpRVL7XuQgByBTfLKZDiSBMXJdOzuaO9tbkKZW9HppT7+bhoOn4VE/+Yca\n9/Mn4ICAGPTwsjgQ9iBS/gB0xdnvCt0WhRQs7FK7xoTDJTiL/HiP++QS18kT9eLB99Z/vzf5n5cq\nCBUX0Y7IhOqYTCiatPSS5lGrqHlXARlTgzPKjYy7G9KUMCSrMZ/GKIUU89yy0E+2oUhtaQfOGrhq\navAT9SOad7EJjfXCC5prh/tEJ5j/9THfj0u/b6TIQQ3ptQKp8pjXIzSUbR38SuvjYQ9uFOQfLaC+\nDsVlK4Ezus7yq+KhSG1qjt59D+4ZSFx3yxD6IqFdArJTLMmGp5hT8YPxGBE53SzxnmgWssUDJGxL\n+2r/lH8sGw/XAeth2MX9ulo3q3cVEbl2WevnwceQAsIO2ydqVw/LZgPeL0Ya3gbNESC6FgozzjMa\nh1wKNNem7GkTNNn0Sc2J2BRE6+Q2t2p69UC6u35T4xKpIg3rlT1lmAMnV3SdDOS8PSJFfghQ93d2\nLIl8ZOm+otDrjzRfnruoPSk0q7GdWdIe19um7/bUd5kokc1ji2ZmliRqFeiAamoj9+2RDU7Pat2c\nRJZ9TPgb8atvHsEH0R5zyWDbkZBe42OCXvc4Oq3I3hig4kZevBJq8zt9voDsZRqyPu9AfXj/EBl4\n5Ctbbc3pRhmEDUTvfaLtiYDq3S1AGFnR70s1UAR+ItVHLL++osj0185o9XSFpgAAIABJREFULOt3\nFI3/b+7o/Y9fgpfutu4zAafO0rT2idKXFs3MbP8fdKY5/AhOhGXtl6cXtD4GQO19lhcqJAPC5kdw\nlb0W0Z6+PCnE4YdprWH1hhA3NzLf1f+SGoebH33weRsmDr9lo4FscGJZCM7DvPp/74zqOQuZd+tT\n2dn9A611/i8hW33jK2Zm9k8v/NjMzOZv6nqDB7LVc9c1Pm/3yLNfVnu8qZ+amdnTSclSz9+r2U8L\nWkeeOqO2Xv+1+i4Dd8xXn9N69NmmznlW157y9zWtrycH6vvmkmzmsKw9ciEmUYJrS7KBZxdle3ev\nyiaPQazbPKGzwt0fCyn4TED8ej/zy9bOZz+2L1Jcfs29QJh6uWTjw0nZsJczk7um+vRCWs+SI/ie\n6ki5widXHiM9iO6PCSWDcMS4SkiyxnX9QQBxAEhFG124X3gdRpBXXgWJPg8TPhxYs5NCb3Wj62Zm\ntrUJT9NYaAK0ccyNaANog1ZFv1/7Hbx68F8lwhqPs+eFPEpNQQzqlk1XknCF1TUubdaeIWtdwIXM\nexyuMvg6fGlQFSCEQlGtn/E5ndE8fJ4O6j47cKMNd2XrkTg8iIExKbrZqFSzaE6275qSzXtOiOMn\nD9JpCJq3yZoUYhwyvqYdtbRAruys6j8lkCQNoDG+6BiVOiY7VZ/Eh2pTBz4LLxyQ8RxcjinZzrFF\n7QMhzlmdQ9W1AJre14J8FS7IIPK/Y7njFOcuHxwwvpBsekyqGonBpwchsRvS5dTemGeDdXZX9UsN\nxzLGnG/Zo/NtkIFwmXRA3fZAUrrj+r4TgTsthcz8HiIBXc4YIALrnJGikDNH4qrndkG8dQ94xktM\n66wTyqpdyWX1UwDEfwIkTH2gtSE7o3U9Bgpk/hm9dy8yl5Fl767pPgdkAHT2QX4j81zjeeKoJZvW\nOn9sRTbmT2ruuHKy6V3Q2EEEMpp7Wr87dZ2N3BDij7aQdwaFm5vUdQ+2EIuI6boj6FB2Qaq6o49R\nZHtNl03Opc2T1LUCbvXt3o7Wr6EHnh7WrRZZCgMQMQP2NKaj+eBoGoR0Uz9k9xO07dW33jQzs+ff\nAr0P7+XLrwoZ+cP/8Ndm9pi3dNRHwGI8DSM6+4QD+r6S1xknNqdz/7f/R/G2nfy2skMWT+o5vQHX\n19p99WWvyPpap4+b8DrxzNIHPdwayPY7cA5WNmQL/mOymZ197aWTs3p2dEE476mj7ACBctf/mMfn\nv1YcpIxTnOIUpzjFKU5xilOc4hSnOMUpTnHKEyhPFCnTyivK44Etfo7c4b5PXtDbcLBE7yuSkkAi\ntQ6bcQRPe8iNWgoe/SpezHRIn7f39Vq/L8+WEcm4APrDR87YHuzPVZjRTy2Sc0ru7/5QHsP+gX6X\nvyIPu5d6RDLyUkZjeDHJ10uH5bUNTsF9sY1Hz3S9EHl/jx7Iu371rqJbJ5LKmX7+BUV2fHl5Iu+9\n93MzM+s8wusO50V0Wt7zJJK9PcKSsYmYrSFZt/2JvHfnXhZPz6CutrYr5OJ35NWswh3TWde1gxP6\nXfRVeR1n4Ah49L7quoVk3iJ9Fp2SN3HzQG0sluRRT2RQ7zli2d3TmK1eVW7/elcRwfSMPL+z0/Ky\nziwRcYRi+9Mt9XUCTpQIkcMuEYKAHOTmIV+409cYDNqqbwClgOW4ojJjFIaF1bc7V+UVdcEOf2pJ\nUZcw+eITQGC8IFR83L9myLbhTY6jhlKM63t/Sv06HEv2kcfo8SKPGZUHvMt9uii/BPFie8hhHqEc\nVG2o/wobKPEcykvsA3m0cyBb/PcfaByXL+n6sbi8w9sooq371D+9+8i+7ei6eSIlN3/zKzMzW72n\n6OGwpzmXm1b069zrivTuM7f95MUPfBqfECiysTxm13X0pWkSyWhvFMnruPrssILqB2inxiPu1YW3\nwqW6+cljDizqf/EJzdels7LhPOvUJ1clHzs4UETOyxgU0Ej1gF4KI1V/9puK/M4vyDYu/1IR2Udb\n5MzvaL3K76nPNvc0FtPPqq/8GdWjv4dyDnnd3g3dJ4CUqYvPa1Fdr9PX2PZQ6Fm9+xszM6vfRFVj\nQ7bbuKrvt5BPH2Y0p4KsZ2eeFTrjmYua82tjnqVbssVRVXOkBd+TPwhyKISs+xmtGdmFRTMzK5O7\nv4eqSN0LH5RL9xvuqB+LSHC7QJzEMrpOK0C7kSZ3se4dtQwixCB8Qpe1ie7VkKUfjuWTg7pPHQUi\n14b6JT0l200gre7uUY+xTS+AfEEpaeNA4+pDgjbAGuhBuca8svFkDrWmQtlc8FSk68h1g1Iao6eS\nCAEkEuqTA5CAbiSwB/RxC5UjN/9LTGn+punDlQl9fzyq/w0rSHweqO4DU4RxuA9XjBteihly2Aca\nozhR9UBY33dRm8vOCynSpY3h6FjFjRx/EDvhsvbKGtwGDfhGuss6CwRiYx4M6gHCrryusbk3gJ8E\nTrDOcDyWRHxRpTpqWZpU/3cntK/cPIkCGGp87csgPc+ovXOruv8Pfyebmt0XX9S5Rf1vKq+5WT8G\nJ81l5eUHX9Ecvcj47MMRlHlO43F/UzZVn5EdnECNZfS+ECyL39YcLP1KaOLnzz/mMpj5+kfW+LXW\n8Y/hPjuTEVqun1W/ffa3uuDCAlFA9o+JntaoAZHZ9KdSPPoZ+9n5NSEk7U+0Xk//nep3WNIZJfsc\nqA97x8zMOoUZu4St9X6uvSPxhvps7reyjU+2dM5xnxGvTQa+mpMXtLcdbOoeqZuKXm/MyWaafdVt\noqDzUHFf69SzM0L3eEuaIw8/0B6+41YbhscV9Z5LaV7fvnnCvkjJndae7QGF1m4hIcvZo0kUHxoH\nm0Y2vAZCrh8HIQkHwjQ8cUX2k0oTVSEkYN0eENmgw4bwKQ07nDtDzJ2g5rA/wLoKGqP9EBTbDtH0\n0/CIrAgxMxeQze3flm2EOf82u/q8jhppq661aGqRMwe8eW3WoP1DReVHbhAmIdU32ND/Dj3jfUz9\nHkXprc96Hqih9gfngvtA91mIgFqY1Nxr13WfwzJrmh9bnVS9D3dkHy0i+r7+Y9RtN+yxgz3tf9GQ\n5uTCrCLrs/B17HJu74IgcvNcUS4cHeXdbcNpmAflCvdVoK+DZzjAGCBtHfTq2aYDz03zltaRWhtZ\nePZYF5wxYy6S6oaejYY77DUNzZ2JeUXrIwtax6dBiu/d1Lq9vw6PUkXXKYIw9MFR5kYOOBJZ4Hcg\nD0FwH0ORMQk3jg9p7fG5P8SUSoM+7WTVx52W5kZxR+3aLYyVLXV9D/uUP6t6nFpSf83C0ZNcgLMG\n9cDSuuq5+6na9eyr+t3p8xrLSJRsh2nO0UhxTwb1v4llrfPBjGxhBPq2zb7bu6zrlvdlU8Oa1u+d\nktbvVF824V4EgdRAifGIZQQPVBcVvfwhZ7dV0BRkX2RGINXJAIiiehXswQ1WBZ0cU/siSXgUQYoe\nVNXPEyCTBmNUd/0x+qs6aJmr6LJ7nJtPonzYRU00xN7eb+mePfgkx5yow776LAhyvM1e7+MZpY6K\nUbOivtzaZT1GljuP+tHt99/XfUH3ToIU362C4IvofanKeY51cXNNNhWFl2+jq/Ptfovne54DXKhH\n7T5YNzOzKZ/GMDzQOlwta78ZkZXQhkOmCXfXAFT/J1eFqn0jJRvKxHTfQUlzKs/YBOCT2gatOjn1\n+59tHKSMU5ziFKc4xSlOcYpTnOIUpzjFKU5xyhMoTxQpU2rI43RnVV7hhRNyry6/Jn304WeKTK/t\nyxO2FJfHqRGSl7C0BQ/IU4pEDGDYrqElH5mWR23+9KKZmT28+p6Zmd37RF7Si88oUjA1gxpTT97m\n/LbyEj2wrZ/F+xoL637b7+i1lpfHb3BP3mo3yjbhAR7GA3kKvVMo15yS13ZEVKxak3dzMqXPTy0r\nunX1mryda++Lu+JYQJGF+EX1z1xFEY1V7lvaV71jU2MODJQ77sirm8rO2wnYvW9dFyJi/TNFe7JE\n8GIutWlAfl5pD+4QkBFXTF7Mc2+qL7IvP6s+gMV9f091TsKzkEurTfG4+mivrb4Yjb4Yp0x7X321\nOCWPf5A83w7RmP27yrHvdFS/qYzGtG/ykroD8pj7sZm+S9cLReVJLhJFycYV2TgkqhRHuWAUJdyF\nisgs0ZgCubUB1KemUOYpMxa+KFwC8G8MQG8kiTRU2qpfIqUxDydAaYTVf01UShLz8s6W2qiThFFU\nIMLSbcFGDxInOEnEeBsvMV7brCmyEQQN4CFf9OlZ2VSLqFiIaJ27o+vcAUFzCR4mN2QRqbTae2Za\ntrkHL0o4pojJ5obm2IOSbHDivCLnQfq905QX3NXVfRqsRH4fEYDW0Vnso9Oo6ZBH7QbpMBXQ5/6K\n6lza1xj68dy3SqpDOKU6+LzwEZHbWplQH+3CJ1HZ1XyNka/sCuk+GfKC+0Szaj2tZ5/+SuvNh//r\nO2ZmdvB/KcI3FxbHTAAlsfgpzbXzb2ouvv4dKaLkH8hWb/183czMRpuoRGygljSEVyip/4+5ZKaP\ng7BpyQban+p3pUOti96afu/LaN3MgnLoo57hZq6MeJ9c0RxqvUO+u1FvvVhvpP5quIkwdjUnfGNV\nuatSgqjALZOK6jrlOkpbHb3voUQW7IJ8issohqzrI9AStZbmQJ58+6MWHyg1wBTWJFo0iiBX0tD1\n0jGtNUugQoyoVBIFtbh/rPwme8jAqTMNT5V7pPYH3VorYkQ7U6a10J/U+LihAvL29H0u7LE28ysJ\nH0I8qvcToB5b5M4HiBqfjMOrk0Q1qAAfzqqiOP0y69Cs6jaVhe8hCv+NRxFJT5Ko/2CGz2VLYxTp\niHVrNqmxafa1B8Ww+VQS7pmh6rNLrv2VT8V7lAZBGUhgi/BTeGfghokqknp8QhHew7Dm1OqnqGWQ\nMz+RU/0H0yBXiGJ1B7LpDvwbh3CM+d1H54EwMwsmNcc2PtS6eDwPZ8J3dCZZX5CSw/NlVIpKinCf\nnZZNvHdJtpO7Itt+5wX4Og7V/hW+/zX8Rl+b0frYH3Nw/Uz3z7+les/96utmZtby63c3QLqcQbGo\n/BX4NgaLn7fhqmtkK2H4THaE1jv2Rz80M7PrrKt/+oLG6eqc/r/cF+fNrU+ENnnYZVye0xryrRvq\nh91XVP+8YW/MkcR5nZkODmTbwxuyo8lXPPbrfXL8T+k/jz6QbTUvghT+rRB4w7Q4Q46DVPwEFGaR\nveH4V/X74yiLXP1MZ5NvndMP7twRIvCje1JvO/592d7yzxShvDnzhpmZrYJYu9USuvO5qa/aFymj\nrmwsBjfCIKmxD+zCpwdqq5QGnVDQ3EpDbTIMa041m0SQtUxYZqDfBSPaK9sdjUm3pPu44TrxobTS\nBc0ULIO6AAFebqA0QwTZ39Y+1mxov2u9rfW4d6j1a+GEkCi+qCK920Xd189+mITXA7o88+QVbW+M\nNI6TfuY0SEQfPHV1v/7fAsE6VdVaUR7954iYNvvFsM+a0xqjkrUGdBCSewg6eb+oD0IxzQlbkr14\nPLKviRzo4y14Ed2P0QvtRseC8FTtfKx9evUWa9uy+nHmZT0PTAW0Bkx+Sbbcuar7/s/2h8uorDFo\ngcaMwbkYnhm3Va8BkA9NzhwB9vLWtt532GvGoNBeECOq6Hv3PujMItDrnj4fdFTnyjWtn3sBOAfh\n40yw97g8KMcEWPczY2VZjfEkSJnqLsichyhKoizW3tVYtkd83odbZk19eSsiWysf6vNmQXvtHnxR\ngZbGZn4RhcmAbLhQFdJwC3WmGx3N/VZc7XChuONrg6C8gXpUXOvsPs8znZx+n70HX0geBbfb8DPV\n9VyShveoBGemJ6v6dHzs8ayngKYs0NG45ea0X/V8cPD4vpi67LBPP3J+H/De68F2efzoBeBN5fmn\nu6v7t0CfxEAk1VBOGnBumFoQ4vSDXwt90uqoP9s1zYH1h+uf1+UgFLD0meOW5+xw0NRYBE33HIIM\ndsMf6fPDXXoA3w9qSX1UKwOecVtoAxkuJ2dQhILfxgsyJW1aPweow7F8WhFUkmukDypl2VJvwLrW\nh9PQo2eSXGrM+6azTXtrjEzWe1du0czMogPZ+t4QBAsoXcBjlovJtpt1lK2Sej99Ts++qz+QAuLo\ninhZx5yDQc6pHp61fGfgqIHQJ5z8/dkiDlLGKU5xilOc4hSnOMUpTnGKU5ziFKc45QmUJ4qUSSbk\n6XLjKVu9gTpSQt69xQtCPezk5RH34cVN7cqT9gC1Dk8Ej/0syjmoXRxsyfu5claRhxOjF8zMbP19\nRUg++628hyuvKVIye0be0dY1oo331s3MLHMKVMA5eeC85JRtfyQPYbEu73S8Lg+gkZd4cCDPvv+B\nPHDnnpPX+fhrQpts3VTkfHNfiJeplCI8yycVMVm9ohy4G28r4n7qhf+fvfcIlvQ60/S+9N6b6135\nKlQVquAIQ4CgZzfZ3TOcHvVGmg4pQjGrGYXW2im0mQgttNBCWmilUYymp70hOSQIAoQjXBWAKpQ3\nt67Pm977TC3eJ4EeRTf7YlWb/2zyZt4///+Y73zn5Pe9533VH/ETyigl4QEoHCiKHD5UxvXYkrJu\nNfhPar26zZ1U9L/Q4Cz6lp4dHilCi+iSJZJq6/JJZSnufK7rD7c0BtP31bYzX1MbciAoSkVpzR/c\nUWYt+w31Zf6M0EPj62rL4CuGAT0gQ7xkZD0jjW3Up4xpNq6MZbHBeWs4ZKJe0BMxzl+jWODv6fu+\nJVVkboBSDdwHA3guXKvqu5gbVnWiw8EQWfCg7ptPwZXAOcEeEe6Jn4ZONEaJrGwjM9DrHmc5MyCY\n6iFdz7FGc89AANEZ+72uR7Dsi7Oh+17ZeCysKHOALFoB2/WRLQulOfvaYbyJx7qJPgdQubKY+s0i\natex07K5Y1+7ZGZmLc5hDjlj7ArAI0J0vM35zOwF2aCb892jsqLE0TwN6Cgc7UvpfYTvjf3ws9jE\njlr8Yxdt4gx+h0wd2YdwR36i3tb8ICFnbY/e50CLJRJkWUC4jW7Cr3QXHgwP2ecSTSBtwhF+c8PJ\nEnUrYxdLy+aGKNS4s6qfl2xYAJmNbFDf852U/xp39YCte+JR8pTVxx0yFY0xCI6R7jtOoPKzDKdV\nS9eX9uE+IKMRRK0izPlyf0T1mcDPtPCKxtqfUj988B/E1fDv/7f/Q/UBtXDCLx/RxVjrbs4r++DO\ngjdqLSMfsvNAPmFQVWZyElBq2N9HRQQVqC7Zsy4qWP6q3jfwUa4NfW9pRbaVJlN91DL2w1dCZiXM\nnJ8EUIGaqQqY6hXyqh29ffp7oizbNCGbXYupX3NkhHq1KtepP/0pOHAe6v71huxw/Rjs/RHOZJNd\ndHfctoKaWwcVihCcI3M52WoNFFgVHqM+qKEQIgrzcdmAmzFokvWJx3XBGJSmgcTrR8gyB0B/MofK\n+N0J/nV3a1P3X5ZtJ9IaCy+cUDPOsMod+albjzR3Pr+lMT+VlG1dflmviTr1ycg/lid67h7KaJWO\n7rMHR87H15Rx9fC8Exuqf48xzGTg9wG5l0zKn7SLXw1N1avqe+lF8Zs0R0KG3H5TY3tx9bKZmaXa\nQnd8Qnb9Xkdz9yzcPvHn1Z71z8QP1T4j1OvHBdajqsbnJnuVek6+pPKS/KzrNT13bfx3ZmYWXVR/\nHWbEKTNEaSZ0V7Z8s4/f/mOzuRtx++UJPf/peaFHft7Vc8/u/r6Zmf1qSRng0afq3/yu9io7P1I/\nPrHJ+nqgPc8WKl3lqOzuuS0Zlutp+JO8Wi8+WtI+YARS4BdVnz1/ExTuedm955vqo8262pr+GpnX\na8znVaFfW++rbwJr2r/d3VYfhXvKTl+aqo/eQamlu6L36224tW6tm5nZVZ/eZx6gPHZB6M8/8P9I\ndYyrj45aPmMN7LD/7C/BfeCRf40NZUO+JsqPKE92QyD1mn6u1+ftW5rrXnjs5hPqy35GfT8FDdb0\n6jlD7ht04S/T2ke3QQ6GOrKJoZ+MNXuV4Qhlx6me/+AmaIsWnDXM7UBECBFfUTbRiKI21VH/1SKg\n83CLDTLAvoF8SQ+UXwQUsq+p/uiH2YPRjkpH64h7Agquhc9hrzZhn32/hLoV0MKlPOgEU/v374Ju\nnt80M7PEROtXOANKrv/3FXFq1oFTLgDUM9liffq1rvjk9Q/0PiX+pIUV7Z1jdnR+qsy82pyHn61P\nW3pl9pEpuEFQYDTWvMCEPu7DecJ+NJYEZc+eIcD+rTxS3YcoCsZAJeQW183MrM190k1sYkVtTh3T\na2UfFacs/hLl10BC1xfYFm490v6/sb2p/4Niq/tlQ0NsbMZBOWEfeWyVfljUuhQ+LRtZ0rbQvFFd\ntwhSHaoYK8InlJnT9YlVEODslaYVkDWgwnZQ4gmBtm2wh/M04NGDEwvhL0uDcB/B0RNc0pzLTXX/\nxSdlm61ii/rpPrVbsrUhHEGZrPaO2yWQK6Gvpr7UHGou+OFnMeZ0CB6XCsin+ETjH/SrHysotvnY\nY7a62pt9dEMIo1XQ2LE57cF8cxrn7FnVd2FJ7b5cufRFXf75v/5Xljlx3q5dE6IkBKeMG6RdwOAe\nRFXS1YHTFIRcb6aImINDC87EEKil2lTvhzG4WtnXTUczNUq1pYP/7NX0PDecfJmo2r5ZBmEZ0xgV\nQX952d+NQWJX7mqdiYEm3i2qHtFDVPKSuq9twd8HwiWGOlKxxp5mgkorqs5nvyc06X8d/h/NzCwN\ngnGmVOxGUdINmiweh6dzQWPohZ/vHysOUsYpTnGKU5ziFKc4xSlOcYpTnOIUpzjlMZTHipQJ5BSB\nWz0Nq/51oTfu/UoKO8cvKysV9ytyFk0ruuc9KyWBCtHQzq6iuAG07tNkGq6DNImOdUbu+NfPch+d\nLX77F8oEf/5I2bwTyzo3nuLsc+NDZX2uv3dV3wsr6xXKKdqYPK0s3/Yumu9EeQMJRSX9ZE5uXxUS\nZgAL89deVXTy5PeUbaz9SvcvkElN54WYGZ5V1La6qUjdwyvqn7NP6ox2+jiZFFiuG5uKcB4EOZsc\nVvbO3e7bwKvo38lT6rubRfH11FBN6s8iyQTxFuYUlfQ8oSzBzu1NXUek/BDFgBNk2WsLirD3yLg1\nbysqmD2msajMKTo67ZJeOWIJ+FCc8ZPtySki3iHqah6QKygfDCfwVJCVcbnU7kEQFEVU9fbCJ9EA\niZKG38Pb5gyvl0wECJlYVFHjTlT/b6Pk0J2xz5Oi8E9lo4FVPcfTVnS2AyeDi4OUwyKs98zAHpls\nI9s1t6H+XJiHL8kDkqdLVhHUxrHj6v9wWt+/c+VdMzPb29lUu8iwzBRlXBlQE+4Q9UERZiJb9QfU\nD62OotETlGG6IbWj6FM7l9c0d0cTkDZ+2Px7nD8NKvIfAU1Ad1uU5w7op8hQz6s1OGfPOfPM5OhI\nmb1NzYvalPmTUt9HfeqjKRmu6LzqNL8i2zizLAWys/iFg3vKSuz+uRRNdh+hZFNFKYY2TcOqew7F\ngRj8OoO+6l4fKEIeIoPp5oy83wXqCS6tWkDXjVugunaU9bpxR+0pfChkRj4Ej5HJ5nuYSggUg5sx\ndMNlcIjyWBO1jTAH0sNcXxsxtlmUyVC/KG2Jg2F9JKRiOq327e7Kryycld/xBGSTPVShjj+hzOrZ\nU6g0fSYf0AKlMEUtJEL2fOhTfVwluGx88C3Bsj+ZoB4HeiyzqgzF/Bn53SB8VREU4Y5a/KgCRAOy\nYS/nt/tjPddHRjUCOq4fUvvnQZ9FAnA6TOFpAgmzAGIqmCZTgypA3aO5OTukPAapNWzBhYACmdfH\n2exJyDyocsTT+izdl38OkPGcT8qm/GH4cMg2jfog18qqa2I5wvdQFEA9zueFF60pm+3DtwBYx5pw\nTXUnmvdN1qzPUFUbuXWf+JzauhhVPfrM42FDNp5ZUDY7/xTqSfBflJkbZfouiz9xse408PNloILr\nL1ygL/W5l7Pyk6naMQC2tgdvhz+GzcNt1Z0RCB2x+KI6L+69IV9yvKc9yN5TaueVltSJPmrKd/zw\nRfFvFN5SVu8MfE2u1AtmZlaMKOsea76iesON431S/RR5KNtIrerzw7/T9e6Q/P/bXdnmNyea09m2\n9grT51SvZ2+r/3aaX/JmfHS/bN/yaI48mKoeP2rK9j7Fnl68LrTIT+fU3m5Qe5TvvaH16bUVzfmX\nNnWfO6FPzczs0oHG5fWi6vPy1nfNzGyrLLt54RXtnd67JITs77z+uVVRj3xzIvRR547mxw/yQgIG\nSvIbt5Jqe3Xr22Zm9p2hrv/rhNaGl5fVR2+8If+00BK/T/q575uZWfEzIYrzY9nEYX1dbTuuNnwT\nJRULCW30+ieqx8u/q33f/2X/ux2pHIB2SMgfhg7Udk9HY1pDXS0wAuULT18fBIsH3on+RPdpQxxR\nrWtsbZf9JfvYaEJjG/erb0dT2VrZsDW2QkG4rUIgtW0Kp1gEtCxKkB7U4lwB+Yb9jurTbmrMk3Bq\njdKqx6Qi2/GgyjQG4VOBLyUF/5wnDJdYBHU9OGeS7MFc+NUWSjKLfrWjOYZnMAFKuat2DVpwLrJ+\n9lHmqbdBjkZAJbNHnLblI/uMvy+idvT6wAXNbDDIWQqelglIzJAPzrRlwTcibfYN8KXcvyNEfRSV\nw6OUFuj57TvyIz38plG30EP56Tioo3FabYtDrlfvaO/hBlXrIeveR800PtTa0oXzqltizUzI37UL\nrClk79tj9UV8DF9ltUKHqC+2bslWxlnZ3KMdjaEbxHRtT/VZCep9/DnZQiqhtT88r76KLoMSAH18\n4qTqWYAPr7klY3WN4ftAGWdnVza0FEWF1K9+WQyCuD8mtFwL22tMUYkqagyT8M9FlzX35p6Vj5gH\nlTGty4/euyX+j0Zrhn6A6yymegYY4qwbxJBf9a6CmCnCV+qRCVutCZqD+80Q90ctfihoxqCZYw14\n+Ph8ticpwK2zkGQP51O9RiP6s4ta7PP6Tfi1H8kvd1AiPn923cziM5nPAAAgAElEQVTMwjN11q58\n4cDzJZK0cP0Da9T6FgWtVb8nv5GES3XAJiFak600OYkxHKpvr97Ub4/LKzp58uCRfj8nUBd+6ox+\n17qnqmutxqI/gkcJFSYPfGtu/EfhQPthPxwtLvaF7rLmVgikipv9oB8/0IUDMj+S/0/wm6JXAvk+\nUV92i7o+NeMI63M6oggy/CnZuHtJe6a9q0LJukEde1GEnBCPYHtrTdeMk0b76ha/7fzDL9Xg/qHi\nIGWc4hSnOMUpTnGKU5ziFKc4xSlOcYpTHkN5rEiZ3qEib/kVhR1T80Jl3HtHWZnmHZ3D9kUVnU2l\nUH4JKZy5sqZsXO2armvuw61yQpHvhayin5/ChdAPKBL25O8oM3NypKjh5ifKGh3sqT7ry4o2NpaV\nCSk/Usb6xnVFF0+tK/Lm8+o5U7J9FSJv4YD+v3CBqOaHiozd+Ujn4qNE0J75AykrnLygdt/+YNPM\nzEYdRUWX53SfDipNO7vKLMXJTubOqp52Ue+rnyjbtcfZ6SwokK4/bO6WwneJrO6ZO6HX1h21aXKo\nKGKhrjom/OKMmVvO0kYynFvq4/oNjVFwURnDU0+qrx/Ao1Pb1v+z8edpi+5T3CVCf8TiBehRJUoa\nIirrJbI8dMPzEdX7KnClJpwISVjJPSM4TEZksUABzGVlA66horXtlrIlvgy8Fln1bZwsSX8KCgle\nCW9EGYH8/LqZmR0EGYuaorj+sK5bPqtI/7SlMZn61E+xiOpfAh1QqGnshpy7vn1b0ebdm7KJelHt\nujoUmswVV3svXhYC6rAhW53UNK6JRfEYueFR8cG2byjluMiQD/1kZIKcieVMb3gZ5M+S+itD1mkM\nl0x1RMahoX5MkaEvo7YVmGhuL2Fv7o6ub9yQnRXg9+hMQQDxfoJKzFFKOwDreVKR8sQ8fBcDVHtc\nmocbQc3XAciE0bqyRpt7QsoVQKp4YXf3+XWfXFZjn4FdPTynvomhmlYnAl7dkh/pw/OzP+VMe13Z\nnd4AZZ2QMoMxEppuP4gXeELCI/V5m/8PQR9FUfRafl5IuxPH5TcebqFKcUvPC5CNdw/V/j4R/CEK\nOU2yP8v4h0xS7frwddnUIKv6T0Fl+VkmusyxVlYZjeVTZHRP4Q9H+LuC0AMPP4dfAxu1DmgGMhYe\nznV7Jqg5DeFSCNP/MfU/Qmu2/57aaYP7Zv/NRSt/CuLkiMXrUb1bKPP4mmpnpa3212eqJXuaQ40a\nyhBPC0mVgqvLA5lCyItqQGhT74cglaqzM8OcqwctGDqUD3CjGBEEfdfFfkPBuAUqnFUfkAWHN8EP\nx1ITmw7NMqc+lFl8nC0Pcba9RHYe9aEhZ+s9IBonI/kTV038ZAMgki236tzCJr2rZLWxOR+ZXW9M\ng9LFb/Qnss0GighuFAay+L82WfUSyithrqvPAILwCRlcMF1U/SY+kCSg0wJx3WfGy7QMJ9cIpIgL\nZGJrrP4J9L7aFieW+6WZmX3qlapS7EnZvOeaUBhueDLWX5Qt9q6SOT6n/vrwc6E9Uqfl32JrUj9a\ne1+oXd9Fte9OXeNyE56lHxV0n+B3tZ7WS+qnoV8o35+sKvOZPFSWLvInsuGr31YW8Ynm+S/a8KON\ndXsHNatM6U/1fdQUE5fUrmBFqN9X95VxfusJ7YkiZHrnF0Ww4duWncztoUD2L2bqh7IbG2l9mp8+\na2ZmTRBdXlAcV31Ra3s1T49tin+uh8LJ1ayy9+27spEfnNRYlo+LW3BvX3uHb9zTWvAhHAORC0Ir\n3Q6oLaWO5mt0IDTS6JSet+sXv4KrIr+/86T6/sMh6j2oWn5+v2BfpaSaGqvOGAUdeJiKZLHzdfnb\nmeJjndunM+q7GZKmH5B/jCAzMqqB4kVVr3Ko9jbgCPOmNebpqcY2lwcFQWbYNYSPqSUbTYAUbTMX\nvG7UAUOa69mU1mJvXc91lVELnchHTLPyKcsBPW+zKpvug7ScodaC8NF5yepPPVovg3CgTedlQxN4\no5IN9V87CLoPZUqD7sqbpMMOUNA8o/u6e6yToHbjDfmQMepPnpjqMWQv0UaZxtJfom5dkZG18EED\nON5aZdUvkCZDvwDXxRlVKHBfz0lD/2I/sX+yND3YWBKVHjgR3QmtIXnUfMIgyOv43c597UlWLmsM\njoE+za/LdodwJHYrasP2cNPMzBbYLMQjKM4ekz8YhUDXFnTdbhm/cgCHS0xtb6Lut/C0flN4QnBa\nRUAtwUHSRv3HCzDa09QY7YESHoA2nvbkt+pF7Rsffa7n9zdV/xpcg4twk2Wiaq8vpP4ZbmsOb4GI\n2f65ngN4wVxj9We0o0EpooR75pLW6r0bmltboGFdbb1W7+oGY7gVw8fZDx+q/tMWv+X2UGMq6Lm+\nlhrcHek52Sbo5bJ+c3Vz8iWrXwFNZWY2qGlOe72s33A8Tlhnwqa5Uq7Jns6uCzm6nWZPm0fx7Ty/\nWSGX84ImOfhc68s8xjso4EPZDwQDX+6zR5t1S7h37Ny8ECH1Az1z2IMrxouCLvufcFB+o8Lv4/KW\n+uL7/9X/ZGZm11ZlM5Wr8hsRbL5TPKRtoOjZ9/VQeypWUMTNCG3pga/Oz5rig8OqeLipvoJTMdJV\nfdrse1N+9WmvreuDwI8abdloDp7Vyq5saVLRXO319dstYXp/8knNhf0a6LMDuGpASU1H7LUquq8X\nRH2oQ/tcqJb28S+/nVLGQco4xSlOcYpTnOIUpzjFKU5xilOc4hSnPI7yWJEy7ZailpUDRbLOP6to\nn4sI1d51Rd5GbV1XuK2IVBwlijiRsxHRwUFNkf9ES5mX/JJYj0u7uv+NT5SByW8oOrh2Rmd0a0S0\n2kTURmSEQ4uKerpRyumX9P/bY87oovoy6iiSN4I92sW5di+KN8vnlNE5vKFo7bUbisLGTymaHF7k\n7HBayJ8pHASuRUXwVlob9JPOHN+8ouinOwe3BQiBkJJfVr6rKHNzxkReb9rQT4ZxUXWIZhQl9Gyg\n0vGhzlr2yurDYm7TzMwWMmrbPNwis3PON95UXR7wvTMXhcjwwXdz/1OhlzZBO62sKkuWCB0dAWFm\nZhNlAKCbsBioheIAzgTOQ3tmijZws0z7cJ74YVefcbeMNEb9R6gnLSrbb6ApFpY4X5iCK6ekCPns\nnGHtUAiU1ra+X9oXKmDKGdjlp5QNX3Kv6/OeoqlQ09jHf6tM7N1bii5felXPm6krhcmI9wfYVFff\nz4NqSBLZjpVle3cOFYWeEtFfiGucCnOkMvy6rwc1qHYMmyVrlkuTTQNNEY/r/nsNUBFlzTVLKDO6\nn1U0OOpFQYIzv62KbHY4kJ31+V7mCfVHDGTTx28pe9lratySYX0/zFnoAOdKeyCajlKSZFumKJi4\nU7KBOqoS6bHq2gir7h2eHdjV9YWC5kuvqLnRJIM3RBXuMERmDXWl/r7GKAhqLODX/ccg4DJzOoPa\n7KoPGlVdnwF9lZrXnGtN4COCY2aMEovNBBkCsslSgIwmXATjilQhDrsoH+yQDWqCQIGj5lhefTuC\nJyS9rOcvXZY/OvGM/OMYVY1CXO0Z9fQctwfURFL1rEf4fF5jVenLhjffECrubFD3q5ts16e3ZmFs\ndoDyGdwAc1MUgFDJ8rTJRLRRWwrL3xrotNGMEwEFtgQZiqOW0FTfT8VmPFCqRwjlNl9NGRFPn/Vn\nUxmTOzfVvtS80IPZlPrbF6V+QezNr/u4QVKN6+qHnmmO9afKvE7hUJhxAc0k6eqDrkWY/8OxMoZJ\nD46PY8gufD40YtZtoeZDdhhAoYUTWktGbZQRUMgajeQ/D/p67xkyVqgxNVjrHm4L2eHOC2WQzqs+\nA/iJmkPdp0XFonAXtJgrzYeyKShuLAJKa2Gq+7SDes4AP+Puy0Zc2G6wj9oFvA9heDl8AGomBf1/\nMie/GCZzGkThJkK/jCJfTX2p4RE64/Qp7RUWK8rW3fyebOWFHdnI3l3N4befU3tfOhTKLD2W0be8\nmrOf7Kg9mzUpCoU/0Jx8/vv63lZJvuIXEyFxkiCK5u5oMT/OujJ1C5lz/nP1w/4PhZr94G3ZkvfE\nTEHoj+1X7XULP6k9Qrmq9e3sIdnJ32jcfr6m+zYP1I4n/DKcbfrr9FD/vxaAw+KUvnelLMTUd+7o\nnHzxCbVv/JqQNbfC8sWXW7KfwIvbdu2qOAYiQWWZ769qPmQG4u46xxL8i5PyS19/W33/9nG17dhd\n7SE2ghqDzz5TJjfrlc20z2tNWYGzZCOh/eLmIn6lqc+DP9N8fvl5xi73hvoOlaajlgTcUm783ARF\nsNAUZMwURAdoswX4+kbsG7sZeOVA2tUjWjszPtACqNINybjOkIXukvzvdkL9uIry2kZO+8O6S98b\nN+WX+9uqX9wHl1cG3riY1qXSGD8aZq7MwGpt7WkiLvm7bl7XLx3Tc84ta68XS+m1ybp5eF3927gt\n25+mWNfw3wHUAofsj0Mx9UvQQMV9A+QmqOPyHdXr0wN4lnBu05H2rn4Q5J46/rXPXo/1zjND0ATZ\nC5mZN1GzCL7Ci6+dbqCcubypfgAhamk4014Q59BCDejq/2z/ZMnGtU8eoLySMPWhK4c/S8rv7baF\nBAmXZZM1OEA8XbW1NoLT5A4OH1W66S6KNvuykQBcLADeLVbSfUsFIelGZPFrLvnlKGpHqTXVr99X\nHx17RvO8PNH9qzvq4324JPuovgXgIutO1cdN0J+ThOqbaGj9eQRfUqCq9WZ1Xr8PtqfqjzV47qZu\n0A7ss2dz6+KckELxM/KTdxKy7TYoqeodvQ8uyJZSGV1Xd+v+CdBTvan80qABDyl8T5MaSpSoHrmH\ncEZioznmTOCY/Ha/xh7Er/FNLwJBT8lXBWdqWkcskzHqiXCmTZDBnaGjKwWN42ET9N8xjddb//kv\nzczs6afELfbS14QQ6uyr3pVDrQ/R2fIHMiYKB+QEFLe7+SXnmq96YNVtlwW8mk8BTh0EUUfzguHo\nwXc0P1NshRvxzDn5g8VjGvvGXY25a1tryLSlsQqw33KhfNXq4Q+8UaoKYgW10Dvvar/b72lNOf6M\nflPkz6sv1s/qt8nnvxFSvU3coNdVm71jeC+Hag8AQPMy1956+2/NzOzr39Paf3wdfwXKdwxauVsB\n/Q9B5gBuGH8JxTFQulPmbrUpf5hKaoEbgFKbxn/7nsRByjjFKU5xilOc4hSnOMUpTnGKU5ziFKc8\nhvJYkTJej6Kt+7eFGEmeVGTq/CuK+gXI6t95c9PMzIL9mUqFoqvtPuclybAeNBUVDpKeS64oknby\nsqKnn32s6OPmFZjGXYpuZvxowlc51FoGHZLU531YpiNBZWYGZD66rVlUkig2mQ8vEb/oWdXTFVg3\nM7MRmdryltpz/4YyOieHqChx7nTsViYl0uec+QVFl+fgQLj3uTIlt95XNqz5rCKFc3lF5LJn1P5m\nSfVr7W1/cZayC3pmaV0Zv9Sqsk7ukiLptz4CZUN00wffRGSBM6vzioIuXBDK6PC+kCM7O7rv2pqi\npfNwihThldhzK/sSmictdsTSbinaWtpX3/pP6fnzcAw0yAwHgrS5QaZhlhVHKauyJ0TJ4Tuykd/c\nF8In+n+TuSXpvrAhm7n4tCLgD24pC+ftcl4a1aTIVP035Kzpxz9938zMCo8U1Y2uyVaGD9SfO9vq\nj8pD9Ud+Uc/JuXVd6DQKABVlRP1B9efCSbW37VeUtYrijXemXObV+I28cAaAFMqCJJqdM/f5VN/1\nVZBGDc7+gyLxohzhRrlrfUWfPyrIhlcXNN5JMvU7JfVj+a6i1zG4HbJzykgEs3p/8oLOwH7+ptS+\n6g9kLxvrmpMB1GOqfcYXdZmvgpRJ5DSP6174K1ByGtZl09WoIv8xkBaumeJLlyyJR9e3UeXphTX/\n6zm1feU52fSP/9kfmZnZwz+T7dx+Qxk870B9559bNzMzn1d1Dw81j/1+PT+RUCZ0gLLBGMWqcYDI\nO2fgjyc1VglY35fgQMmiYtJCOeHXP1NGYAqHQa+uvouB+hpwPnsET08pID+Z7ei6279R5mJQgHNr\nE9RZHAQL3DGZhO537scvmZnZkzH5myt7svXbN6WCMgii5JPTmO6iNJFDSSjqRalhwrntmlIW3YIy\nChNUmoIJ1TcKb0ptlpGeQz2JuT8kE3vU4mrLH9Ya8ikhUB4uzvN7AaUkyB6uw41Qa6odLhTUvFmN\nd53z3hwDNzecOl34ofou9f+BHmfbD/VHF56BzEC+yReT3faGIxv7NG9IbluDsQqAKnLvgnQDHTql\nj8zkL2ozxRcyprceao24iyreS98Vx4kHfqNRS/5sNOOUKauNd/Y1Jj78zfC8bDjCee90nmzajA4C\nvocQ2frWPLVCdaNNtq1BNikK4s9Ftn+mOleDhikIusg1Q9qA2goxxz1wG7RAlYZmg8DZ/A4Io8n4\n6CpuZmYFr+bCC6CZ3oRL7WvvKVv+6fgvzMzs4uIfmpnZdCj/PrwnBaDXqrrec1t+LgU6oERDGpfw\n42QRWxtCTs7DZ3Hxl0KLDDe0Xv51S3PtRw/ly+4/JZ9x5R35jH8W1//f2fyyDc9O/86ih1IY+utb\n8OA9oQHZh6fjFBnZlajuOwnIl1z7RHM0fk7rzvF9vX62IiTQ1zZl+z9P6/oLXc2V0R9ofNIoxu0/\nD9J08kMLXPq5mZndaAnh8PKiKnvvUJnJTFd9lvlT1eWTsPp+7hu6x1YL1Tf2h78Pt8FN0GF/CGp0\n9xnZ1tZfiFvmROJNMzNbgmPs3ndQhimJl8ezAydhdM++SqmvyzYHXc2Rdgx1oYpsMAkaYgCfR8uj\nz8coHGZScJhk4X5hChQP2GPAwRUda+4EK3DXpOBK8WoMd0i4+pgLKfa5G30Uw0JaJ+qgFFop+YAQ\nvEGRierXhA8qU9NrG96oFvx6CZQk05dV3zHIoK17WtPHQ7VrPqF97OBrGo92TX4zhsrKYMadBmqv\n0FS9/XBxeWuas2vnpJxz4bs/MDOzFRNK4fX/LARVv6Pvx7r63I+zDIJUNNC2kwh7H/tynYj43TYG\nJWyowEwCsruxyd5Sp9TePLRJcdP6P/rknyCD+HtlCOq12VGfV4E2ehr46+FMLVRv9z1aCwqPtK/y\nVNSmu6AG4nx/6IdHp4SiIcoy/rrmhg9FvxI8GXcfYNs+9VkmDOeYD8d6AFch+/yda0Jm7JTV15Gt\nGceK7rPGHiowr7FOpvS9RVBF9XntE88/Lz/mKuv71bHaFXgoG/AMNfdifo2hK6r6H8AfMuQUgj+g\nubaDouQWfJnTqubeGL4lD78lW3X9v+ZROxIL2n9WQch0UfqZW4aLZV7t8Sd0n9SyfIULNdYY8kh1\nlCkrIfZYVdlUAZWtGOjiUvNLpa+jlFFPz91mvQ2C5J8yVzoptev0S+Ls+sHv/9DMzO5+LkWwxIr2\n/344aEagniMeta8DGndQhReQ/cKAfXd4MPiiLn133KzStxYKsbO+rxzIhoMo2gZBuDVQHyqN9YyT\na+rrB+8KWbzzrtZGDwjyCYhw35DfMHA7zdSbKnUUWEPq+wWf9lezkyRnTmj/+b1/IUVB7+y3X2Zd\nbW+ojdtbIAUraodrrHp7gdleP9Qaf5oxfvpHQn/+d//2j9U+/Nv+XbV7v6oxoNpWa82QMXA9Lui5\nExTKJjn2cPj7Lqcgmofyx0niDv9YcZAyTnGKU5ziFKc4xSlOcYpTnOIUpzjFKY+hPFakTDCtyHSj\nqyjmx7/SGWNPUBnhTF5RV/8CrPVwvsy5FVVOL+m89xSW98JbygoeXFOEPx5TFDk7r4zn4mllEjpD\nzvaTSQ+79f0y5yRrcDW4OorkBThjGoqpnnnO1tYPFQErbykC1mnqfYnsYjivM7npeUUcfceU8fGi\nWDMiGtyqKYLn4jxj6xEM5mNFS9dD+v46HDg9tOzdZPybB2q3t0KGCab0zGm1O5od2ybKUc1tRRHr\nA7hGnlc6IIeO/d6+UEttxiS4T4TVi3pRDL4d+t5XU11Ld0HWcFY1cVxtHdDGMhwAw76uP2rJJZf4\ni+yIT9HNFOpJ0bD6ckyKteNWFPPYk2Kfj5JB/ezDTTMz824LqXI2qkj+xAPjd5ksVFvtqCwqcp0M\nzMhodJ9pZiaJo/bMxYVqyFUV5W2RKXXDvdDelM3GyEwuXFAWawBXzs6e2rWW0FjNL+m85M6hMgvD\npp7ro93pBEzfoMSGZNJDnIkdNciA91J8n8y6B+Z0JH9G1L/GWda5NVRZiDbX7spOCvd1NvVnDbXj\n+Muas8dBRO2CppiDN8Rvus+jmxrnR4dClZRvKmqeW4PnJCEb7TfVbxH4lGanLX3eo3NB7O4qO9Bp\noL6GQkHcg0KWyXarKFf5J2Qz4MVxw6tz8ozqFvwj2UYorz789IH6YP+RMgBb8Ai1GrqfR1+3yY5s\nptQu0gY9Z/Gk/I57pL4v1uR/oiEi8JyVj3v1vMpAc6yySZZrFjq/q+y0J6BIfBxEi5n6LgFyJIzS\nWSip7Hj7UP3SOZAN7A7lH6fwMflQKPANZMvhMSpNKOT4QQR276pddwvKNh1eUT/E4crxRVTvRo32\nv6jvZy/pXHjhLfkguwkcggynB94jd5rP8dtDrzKdcThXxml9HkipfVn3V+OU6bQ4r96H8wXW/g4c\nDhX4n2YELl64iVwgewpkmUJQFAwGsuFmn/PkZGB7brJUcA01OXffAEnVw8/7O/DAhHVdLLNkYxAj\nhyVdEwBh4fbAm1bR/wNZjMKneTc1zc8uGcEevGzlDmsMGblWU22Ix5R9Mp49wr9FUCqZY00c4v+y\nGRCFA1BoZNOjZDoNxEuDPoyDQuvjB1ucZW/ukaWGwyQdhqsGhYfJiHoX5ddv3ZMt9SZq35kL8utL\nzDmvaWwG8C114DYYwsPxBT/EEctCSWN6hbV89Sn5s3Jb/mvuI2Xvf1nUXI88lI+5//RPzczsuedR\nw5po7a8UsI05ZfnceWVwOzfVby+Y5vLfjDQ34i8pO3fjur7ve1brwGZRz194qDnxZE79+tfnUR15\n/UvVj+u1vOUq4ph5BV/4dlrP+WZPyM96Suv3u/eUNfQUtad5cVXj/tkZ+Z6FImqM+0+rPb8nZEym\nRmb+bpD6ql2/t6H27/b1/niobXvz4pPzuuX36n+mwTt4WSihHkiY/lPKBmdQDpvcko1eRrGw/7EQ\nIm9+S3VbvCn/82lVexiEx+z6v1Qbf8ia/P6m5HIuf6h9ZeCy/FHvu1o3zv1maF+lLMyp7ffGoGFR\n60ivofiFn4mgxNJJyXajEZDPTfXR50310bCiMU2BbAyheNNrodoBqGEAR0oAlINvTz7i85ZsJFXQ\nc1afFh/RxkVl0cfX9LyQS3NhZ6Jx6AVAikKN5WKvNGjo+mlIa3j9tub0rTubZmZ2f0evsR3ZViql\ndeP0CfbJS5ozsbFsboD61gB1pmqNvUgKXhSQNN6/Eur215/LJqcHQlI9Of+7ZmaWeEJIq49uC7W1\ndyDfFAPhimuyfhjfM9D/E4kvFT8bvYDlJ6pvi31AeKBxiuCnp3Ca7b0pX3KwJ2RV7e2jK+v4UdSz\nEkiMpGxlRLY9HFMf+9z6YA0uplZdz17cgF/nrObdeh6lsqJstdPWXPDsomY0lC2NllO0GfXMnOar\nKylbmKFFt3fU18MEKj8+3ccLKjb9AFUk+J+y1H9uqnZ1hpqjXfx2+UD3K7OvrdzkdwOcNK37KNVo\nytlkRzY/7KKEmAf5jkpSIyg/dDiWrdRmPJsghyYRzZUp60IqqDHPr6g+ix6tE5GU6lMtaQ+0fk71\ndvng94OTrJ/m90kHlVkmxQEqqoUbeu3uyjZjSdC6M36448wZbPyoJQwqdyYSGM9oXUjAdRlMaA65\nV6hnTPW/9P1vmpmZtw2vKsjXNrwlPvbXU8any1xwgdJwoxh3UKx9UZeD7ZJ5AwvWZn944TnZXmOX\n+Ytyaw/kWa/IbxtQ/4mL8vN9fpOMZ4qsSc3bwwfyyz5Q/dM6+yU4XTvdCe+1FrZPyF8+8QfyZ5ef\nmqn3aSwLDzbNzMz/EOTxovxOYEX73vdLsr1rN4Xom0c90zcv//3kj76h+7rVzh2QLIdb+j0dos+m\n8AeFE7MTNbLFR/d1fQSItYc9TWlf/VWoyNhzC8xBLbmWSLL3+keKg5RxilOc4hSnOMUpTnGKU5zi\nFKc4xSlOeQzlsSJlAnFFY9MnhA4o3Fc08rO3lZ25/BQRfvgztskw93cVocosKXK1ceqMmZmNhwqV\nP/xAbP2eTUX8ThFlnjuhSNvNh1JC2CspCrt6HCQNkbEgKBFXQJGvRl3R0V2iu09wtm5lQxG54NOK\nrl5/X+cOR4ectbuOgoUCgzaPok87Bx8JighelCjic6pHcxflhNtCGcThsMmvK4raJZvZQ/HCizRR\nv6DnbjfUP6unFRlcX162IWcuH7yre965rwj9E6B4Vs4r23T8m8pWbb6HugKR/VRdkdpddallGJMg\nigjVwabq9rmiiKc3dN9UXlHCdl996B58NTWMsKlvgx3dd+cNRVHLE0WAI8uKOs5nFY09syFUQjSt\nPn7jz/7czMwG97GFBWUMQqAWSkgOnCDyvUNkPKihtsSKMohdv6Kz/p6+N+jAXUO2HLEly0wZ7IBs\ns0NG2TeFk2ekfimWZmooGvt9l2xuY1XZvLPrOueYO6UocXlTY9oeaOwHprGdKQSYX7YzicpmUyFl\nPMJwMFhCthfP6/P4CZ3LrO8q29i8o/Y9/EgM5jNWe/WiWe0X4sx5/aqi5K9+/3uqPwid127qDHJr\nW1Hv7qGybGvLGhd3WuOVPqZwsTepiH11Cq9KSN+bzhLb3qNnL4NwQHlR3IoTiR6GyP6g5OKBHyJE\nRnIAn04YLpMWSl29FhlMVCEarylT9mFPKLJgARWLka73krlsc954PqXsRm8A0z9jvT3V+zb1nczD\nhO/WmEVXNFbdbdAIJV2XOCabqT4ga7OvCHwLlEA0I9SSZdodyrYAACAASURBVOSP/JzBLW4y58hI\nGOfNm6RlIiDuuvCQTEfKfHjj62ZmlgzIlj3YbvsTtWPzdfnnnVugyeZRcFhGQeyC5swrP1aGc9lU\nr7/9T//RzMz28RVzY/mO3iIqJSsovM2p/qMSSBa4FlLMWRuBjBp/qapxlNIk6xRrM4dTM9QbyMP+\n7Awwymo99dcA6TYPagPj1Iw7RuPfBl3WB1E0gKuggAnXPerf9Kl1tYPs1V5RqIgYPAPVWsU6bvm5\n7evKtiTWhII6e0JogkOX/EAXHrMM6KJ+SzbkBZnY4Tx44DRoMVBHVWyhDVIyP+sDj8a+Op0pXMH5\nAtdTD2XBBln9GsjCwTH5nWBEttwaqQ8HLtBWI9lMcEmZvxFcUdtbuk8ji+23hv/F9yarKDjsa40c\nzXgpQAjWyBDG4bgagpCJsha2TGP0VZGZXXhBdlybqufbQqwkX5DNHVY1x9dWtNaufEP1raAElnhD\nGcyPT8mvdtOqb6j7rpmZ+Xa+bmZmW4viO/E/8aKZmb0EL1XotpBBKy8ou/fauyAO11lHqqhh/UB7\nnmOva49x2/2lqmH5Ozk71VK99tqq98Uy6/c95sBLQhuchCuuRzZ0ktPca/wlKOPvqL4Xd/5K3/tb\n+ZqDi1of3gvoey8OtYfbg9cjP69xOCjFzNeRP/UO4PxLa40+kZEq08a8bLIfFhLwcF+vawX5t4NV\nIRfdqKY909A+rrSovuruy3bKoI0i+0A/kt82M7PTF3Wf164K8eiGl2PpJyitfO2MfZVSr8IFcwau\nFRb/bl222mAdSINWSxZBZvjYV070/+fXxO+UvyguhuGh2rd1KL/aGmmOFMhqh+vq0y4KNb55kIzw\nZOzelW9o3JOtDZ6SH85mtecBlGrxqmxlwiYnPlV/Tfsaux4qUZ625nK5C7oLZOiGW/5+GNbz26iM\nvPWauINOX0JxkQx6AwTosKc9RgJ1qt2m+jHDnKpH9NzmVdnWf7z6H8zM7N7/iQpST1wzxxpCQQQz\nGv9pWbZeX5Utrww1ZzysK9GYfKeZ2Yl83MYP1BFZ1FuLdc354b76v8i+/MOr4kwbgHx9/tQTdtRS\nABmyDyI5yBrmiaitXvgyp3751QNU57wdvfcvy/+FUch6sKP71d/THmQb5F4KLpa+T/7owmlUeAby\n2/0wXGPwqNWq+t6MMyW/pDblTmlfthjW3CyfgWOwpOvqO/JHxQEoCVSg3FG4sqaaC5G4/HyvrD69\n97bmcnd3xuckWwmEdF0JTpNsEu6yiWwif0x+5/iF53Q/OCoPY5xKQLXIzf490dEYDeA0CyRlQ8U+\n/VPRXqi1D+dZWvWr3YYXFM5GPziFURiVWn6zVVGRSoMKTuSEeG+NdV1iXnOsiJLwUUsEtdNEDrTz\nnOygihrWHjyi9oF8VfGexrkLb2qXddEXBdWb1DjU6Rf3bN2GW7LG6Y8oPFIe+A7NzELxsA0mPnt4\nB1T7otaazwv6LZgCUTyf0nyKn9fJjVhWY9kC9TncgwuQkycztG8gBdq2oN9iNX7zTP1q+0FLz83O\n86tjXmtRpKH92PYjrXUd+DBTcI/1UT/eOpANxBKy5flL8hOLL8q/X3xStn3t0SdmZjbywPf2iP10\nWa8L8NG5AqCsUJebZPS8RdRT3/6JuBQ7TfmblVXZTjanub1xXnPx4tNCyTa6oHnLMx7Af7g4SBmn\nOMUpTnGKU5ziFKc4xSlOcYpTnOKUx1AeK1Jm0Ff0L7mKCgUR+nIBpu17ior65pVRDcY4mw98o9AR\nIsZcikitnFPkzofiwc6WosO7dUUXs2jdJyd6rd7UGTf/DaKtcDT4PXqfzCqqned1e0eZngdXdF77\nyXlFceeziuh1TimLVC7Crk/Ut3Jz08zM0k/qPqlFRQIHRUXm9g7U3vm02rmxrszJVlkZ+voOfC2o\ns/ihknDDap3MKNraI7O9fVf9cvCxIpI+79ROratugYba9u6buubGJ0JG+FPKZhyfV1Sxf04P2Xqk\nezTHaksQHorGLBML87UXNECRs6oRo+8uzVjaUYApKpp51PLgocZuuIlCS5UsDiimyqEi0zVTX3rI\nKOaWFM3dv6as/hOwlCcj6qt+SZHjJPwZQfhHumFFqssVjck6SJnJRPfvD1X/KGpDY4+inh0i/pEZ\nfxBoq56fM8JwL7TIVGfcqo8noe/fv6Es3xXvh7rPyoLZ98xCYc2NKOfBy11dFyAjXeG+uQhZ+139\nv17W3JlwiPmgpP5qBjRO3/hvpRbiactWb/5SSJgg3BIZosVJEDbt9LqZmZWKykC0iqA9gpwL/1zZ\npXRYWczckvrNBSeFCwWbnS29LqfU30m4ZIaMQxgpCm9X43CUEgO51hypjzr7atMoQCSeOoxRWctt\naP6Nx5ovLTKroX2yMQWN9ZAsSZxIv3+svnHnFTEfTWHcH8gm2jH5s8vPKULfLckWH17RmAT9spmV\nS8oYjOkDV1tj4p1o/lfgzkouCGX04ndf1f3L8j/v/VTM+xE3WXqUwcJNzdUKvBO9PfVDuAuqCsb9\nGeqg7yM7FJRt5FxwdYEma4MWcw1Ufy9Jm1gRpOBE103gdvEF1d5kTP36cFMZlupYvqb//8o3eNLq\nz4OK6tcDzdAbqX/CyBV1Hql+ee+63neVSfHWVd8qXEJHLpx3L6JIkINLh2PsNkbhqOpF3c+vDgjA\n4dPzyM8/ol88KFeEyDoa6k239jT3CpU67dTrynnd/xTnxQd76qcSPC8Da1gI9OhMDa5d1ryac2tN\nOERl6XAbXqMRnFsD2V4Zbq0oyl5rT8qfZ8ayATf8ayMyqcMgbSuqDQOQJmMIOraqmu+xgbJPDbf6\nsICqR5e1Mp9XPUZulBZmQij4j8zxdX1vX3PlyvviZ8rAuxROyCaya6rfAmitKRnM1Amt7V744R4d\nwLk1lS2EUDNJsM5MBnCEkSk9ahkta71IvqP+Tl74lZmZ1Tvysz9Y1vsbF4VovPonspVXfqzn758U\nWuBERXPt/alQBr4npN508qfKdJe/rfqNH7xhZmbbZf1/4XlQcSCifCtq7wsu+dXXPZpTPwAh446Q\n+W18/EUbXv3V0AoXVK97edX7G++pf3e/rfFep78qFfmw0QUhZW9yvv/FY9ojvbmpTPdLc/Lnv9mT\nDefjGv+T9qqZmfUzave12/Ktp25oXOZe3LJ3djR24W3VxfMDIRDsF6jafEN92rn/e3p9VbYb3wZt\nexKOll0hXd5Maf70P1I2/YwJddQ7L0TN6fdkix/AubeR+IWZmWXb2q91UY1bXZH/vLL12zOX//9C\n0t3CY/nFGuvLohcuqaDmxLAjf+4yzRkPfA4X1pSBToKQccH19XFZfrLzQHNvtr4sQomyHdBYh+CE\nacPHsRqGj25dvqMPAu/RZ1oPSkvyd8tj/d8f1vdzh+qfklf1TLiQAgJZOhjBSxJSveOsf7WW/GBg\nBFeZa93MzFJ+tbtyV37ZzdyLshdz4+dq8OvNMu9NeAGTQ433BJ9R7co33Phb+brRrmxuxJ4zy/73\nAXuq7l3NtYc17WkjqPTlnpUt20tm8dRFa62q/QN+X4Rpb4fMvT/GnPuuUOPZOipPnhl696f2T5UZ\nZ1cWLsBJVrbu86kvx6yVLlD147baUAbBYGTpHz2SjbkqGos2SrOJBkpfadC/qG4G4HysVGU7rbH8\nRHdPn/uj8gv+nsa8gXpR+T2tUY/qmovlXbhbIOpp3dHrqaj6wovaaRiFmR40Gamk/h8JyV9EVtSn\ny3mQLW3tGeZTeu3GUdvk1evR4trpaWxuHsgf738gWy7C0Tiuax1x+WRrLpRvV56U/4kiTTYcyKaa\nRZAyoG0z7P3aKHOmISlrgmaLrmqO5kG9zVRX3SiNTeACMlDGB/TjePLVTgJUUQgaJWa8h+rIOr8z\n4i69d7M3aSE364OLbbTHHqus+rs7un4CMiaEgpEPdb8aaPEiypcR95fqhD9784pZr2cZlPrmn5LN\nXpTbsJPHhHwL5+GCLeleTZR7t0CcJOPYOOjVAmjNNMi6CSiwRFt+4dOrWrt+9bp++/z3/8v/oLan\n9eB9fssstdQHIdTsmkPU4tj/zmgoa1PNmZma8lpGa94h+8cWqsRbdfnJML91vC7QnW74oGooKaKq\n6SqCOOenyUu/K5W/r/9Qa7c7DIoX1aYO9dt5IP9VAu0VH//2PYmDlHGKU5ziFKc4xSlOcYpTnOIU\npzjFKU55DOWxImV6U860uohEwUTdISrZKila6OdcXDai6Oo0qojVw7uKfD26ftXMzILnlRWMrykC\nl68rmlncVpQ0cUoR841nxNex01HkqnFNWTdfHaZqdMpTc4rU5TmLtnigaG0DduWtG+J+ya8rixWB\n9b0TUWQulAW9UFOUurCrqPXyGV3f3tD9d68pe/bJTWWCzq8pyhxaV4bJ4APokTkYk8IeBTlHOFS/\nZDdghx+oHx/e0X0fvnfThj1F/xZOKiN2AjWOzY8Uab33a0Uro88oy5/b+C9ZwXd39ez9krIRhgrQ\n2oYiseOJsvozpZf7qPaEkooKzq0qejqZHh0BYWYWmiqC70kosh+Fh8MDC3wcdY0q2f9Z1HbuuKKU\nuRVYzGGPn1Y05mHOXhpZ8dJgpkqiSH+5rwx1grOnyRWdZ65+JsROPq5och92+M5YUVl/XP1xuKsx\ninlRT4LxOzBEImIA8zjZ94XTqI/AY/HhX75j9m/+rf3q3/17MzMrGFkcr2x7ifPTU866juCIKHuU\n0UgEODfu1X2Xk4pa76KCtQ9Sam5d90ujtJNa1fdCVV1f59x3JKkodb2r62LwpnTJ3MdTstkUGYdu\niTOr1C+6vG5mZqWO5sAAVakpmYVWj6h7mUxAjH46Qhm71BcRsvseGPGbQ9WNo63W6jB/tzQvoxGN\ndbswU8OBewakXfGeIty9qcbW7WIsIyA0YHk/eVGvGRB/q+s6U3/lr5WhjXnUp898W9n1WE62fOem\nxgAAjDW6srmxF+SLV319+0A219uSH2tynvr4SWUywgHQCSMi9Xu6z7CGuhGImHJBnxtqbpdR6Yii\nOlF6oLndgpdkUObMPjbghe/DA+IkMScf4VuVLfhimkujpvzu7f9H6KtiT+9joDT6fvkt94rm8NJp\ntSPk0hwZw1rf6ivjMQmrPzpl3SfJOfbQ9Mssz1GKdzhDTOn+5ZoMw+WXvUxROIqDPLSh7l/dV6Zm\nb1e+rV1TP9W3NNfOX5TPjK+oHdEkvAAoFt18Rxmg3h2hDgwURwJ+qJmimmtqFljRmuBCGeUAZFkV\nRGALnjR3QHXOZUAstjk7T0aw3NAzFsgeJUFhulD6G+NnJoy1G66pqAeOkZLq5uvpOV64EJa9ynI1\nq7pPMKz7DsjoBeozzhdU7Gry34kSYzrLaqF8NopqLsZ4/phpfwCKtAinjNHeNnM9BiohT6YPyjSL\nMGfK1a/GJTMrJ5qq//2h1sU1fMKmPra3zomLy66Jm+0C59XtfZCFVa3BpZe1Hr56lUzyNZ1j//QF\n2UzlDfmC7iuq51NJ9csn2NgrA33v2XvyLT95TuvpUki+6u3DGTqXjPT8l1u5QHDZgteU8b6wpo7x\nheRfF3+m+316EvjFULxP51Kq/88/V7tOrX6geodk29fhtin4VI+tK+JUWPFpfDZcus8LK/jgjTfM\nzOzNWs4ubf+d2prWs4c31GfNEbY6lP/IDoS2OfauuGa8P3rLzMxuXpFa0rmu+v5YRLZSf0ptnP5c\nfXnOLZ4cXxVVnmc17zwj1W3l0a/NzKzk1v1T0ddV99NfLTcZHWk98D7Q3HGRhW601dfukO4XA3nS\nBvkYrMoPX7upTOpnf/E3ug8KlquhddWfvZIX/ofDgcbaD++Tp4EyG0jJglsIEj9cabk57RtT7Am6\noLa6HjgNuupvT4i90ATUwEw5Ev/smur5A9QBg7N9Or7JDZ9emgxzMAmqGd68dkU2lgCJ4w+APuip\nvn3U98JjrcOTJj4noXquoOhYW4Anqqu5GLkjH1jOgqBCUcjbh3cJhGttW/vfu38Fmc6/Mrv283fs\n+Hmte5l1+YoqHJVhj/rlxJr2yJkN7Y1iGc3F6i34Qv7Xf2f/VImuaCz6E1SGWAMbZa0dYVTxhuxR\nSlWUCVHkC4dAV8F1OEG9biEEYrqi7/sT6pNmQDbURblmMKjSNvaZFfn7aFtrUxWumU4F5DW2Memg\nkjTUehJEqWp+TWO6FtUY7qD21A5zumDM2l6W/9oOsp9twoHm0phE2YtU4AYr0h+uOggRo76mORK8\nqb6f7qBkM8JWUMaMx1FinOPUwDnVo9STLXqamksR1PmCIJVSMWxyQbYehCekDr9fLI6PKch2+nDo\nuNjPT2JqdwbVowAI7w4nCY5avLhtf1C23+f3QRC8RAAEfpWf6j4QRKOA9pou2tMayjYRlLQqdjWa\ngGhtqr4xkK69CFw+p45/UZenvnXe8vML9sx3xYHiz+iZbVA721U9w1XW2I1QKAzC5RicoD435LeC\nizaCmt2rMw9Bt4IJs8CKbHzpKVTcLguVW0cduVeRTY3zOdqqRo7hawqx+LcD7CH47ebGxkPIo7bv\nyNYznGAZ12RT0yhjxt6nhA2n2XN4wrq+PuA0BvvI8JJeGx24Hu9v6j4t/D97kw5KkMGG6t3w/HZF\nSAcp4xSnOMUpTnGKU5ziFKc4xSlOcYpTnPIYymNFynhRC2qQRVtaV6Rsel4R6updZdVbd6Ts4k8p\nSzf3tM7iniMj+QiW9OoNRVcXz+o+oTVFUUfXFVm/d1VnTc8ndbb4+CVlWLbqimaX7yo75oYr4EZe\n9Tp7UpG7haf0vc4HRDWrem0k1I4eKflBS5HEWFrR3zSZncOS6hF7pAhcNKvo8fpJRepuvS+Gcx/s\n/lGXoreJ4+oPr1uRyHJhU/UAReLrKdrcbSpz7U2r3eks5zPLLdv/VH3kn6jP8otErp8ji35Tfb31\nsbLbq11lyJayqqtPt7b711Dx2BYfT8ytiO3GhiLPvoHG5uYvhbypwm+T8EkL3gXb/FFLD44DJOBt\nCGdBjz5ykTUPknEt98kGwRcRQhXEB5pgOqdo6IisvQd1EV+Y7BP9cvihzrI+eqDXxcV1MzOrVxQ1\n7mwritsnUzBDKwQ4a9sne+NakC26YqrHmOsDcY3tgOjrlPPKOS9qUigIzXFGl2PkNjv2PccZ4thI\n9+25NC5posYkEKxe1xdcPkWzswky8RUymmuy9fSy2j0CJTaF1T8I30iAjM3YRbYupIyGr63r/Qt6\nbgRUg39Jnw85V+lLTmgfzOpDzZEuGe1DEAETuHjiJ+DKOEIpg1iog6ybSzOWc6rT2iUpDEzIVg1G\nnJM+0LyZ1DhTjm2VOzMkmr5/6QUppFQHGoTiDmf5nyDb79V1jUdCzhX7GpPqHbUtA8qgB8Kldktj\nvnV3pmqhdsRQ0cimQQX01Gdbv5bfmk7Vrkxa/mDkIXtSVn2GoLbiBj+IoXqCaklmXnO101e25aAh\n5MagqPoO4HhJuxo8D1sdyH/NUA5TsuoR0FvdXTIJLY35fAi1u6Gchr+NKohX7XH7Ve85kEXRVfnX\n1u6mmZmVWij4pEGsMA7BhGwiC8otushh5yMWn1v1zfp032BUc6ADMso7kK2Pypzvvq+MyyfwUmWX\nNC7rJ1WPVFCvfs4gj+HCiXC4Obmk+j0L11hrX/clQW3JOfnMvFv92azVLdZVnUIJ+hyEWvOeMl5T\nlFLO4lfipFWC1GEFtSbPQ9leEJRTGD+ZSMkWdzlzPmzJJkPY3C7nsPsPNR9TY1Qc2nAbgCaNcJY+\nP1OXQwnwoKvnjuBxC2Kzo4JsIJJWW9fXNeYpuMkypPhmCJsItr2xtq7n4Afz8IRk8E8ZsvguP5xm\n8AzVUNsbJiA7OGJ5rSzkSSYvG2tn4e4awvXzayFInlkSn8n7Oa1zlz4Sr90D0x7iuapQcm+/+F0z\nMyv9jeqReFM8FS+fEw/Kx26pNQWvCJV37JLW4Q+2dL/gs2rXH6Y03g882MV3BK+bi8vnrLy58UUb\nhuG0VU6JX6V2FaVHr9bhbEjr85WA2rW+p73VLr7jWcZzDLdFpiHkzOkXtV6e/0T1/FVPc+iltFAv\n0554Nj6YU7+d+c23zMxs4VjA7BkUXTzyz/2I6v4UiI/f7Chb2xxq/3P7gmzhux8I0bITUp9uPSF/\nkuNs/8sdZU7fjaoPbkzUx+Efqa7fHPyOOoQM7aMFtWnvupA7yX+p/d/inx5d6c/MbALKtQ2vXLzP\nXIrKxoOoso36oHxBZNaox7ADZxjrTTAr5EbQy/qD8kpkjLpTUMjsAdVshOBWGJMdr4Hk6Or5Wz71\n3wJIlOEimWX4SII+9ib4BoOrMAEnVhXESZQsfRCUlZ/9bRSJxEmC/a8fVJprxrMBmpY926CrcR8G\n4DVBeXFaAqHq0ue9+Rk3HDZoapcXRP0I/g8X3G3ugdrvQ7VpOFU9u+xx1zZQdanOcvJmw/pt27wL\n8hK+JvPq+imcD1ceSCWw+QlIypp8UW6asqOWR3f0W6RMtn/UAz2JypqByJgPw6E30tjl5oRE8bFG\nj2qyhYMdrUX3ivD4sJeJNGQjS8e0llhdftEHp6OvJTSah74bg1T3+dW3T6S1NsUXUBzsao5FWauH\nDdBfRdWn7tI6NDmUbZ88qb1Il9MJ0XWUEyHeeFTWuhHdk83VKvLLrq76p+uVbXqzQhuk59V+z5r8\n1tJAc6d3XqcB/Ftqtxc0cT+qBTCyDFIHxE8EY47C29drwu0TVv08oGBddbWv55ONuUDUsAxb/5Zs\nYqbgOYeSWcij5xXhaPHcV780v4JqqNmXaBF3m8niY3+NSuGop/dplD6b7AmDYbh0UFDzo9AGWNqi\nceoBEj0Aj0kYdPGY35YsA2ZmdvHyJcuez9i0p7G99iv9xvP0QdmgVtQEaTJtwU/Hs1Io5A5QcYsN\n4WBhPxrHX4zhqvKEVIdv/O4fmZnZ73fheqIPDC6Z+IwTsqa2TlGzZFto3Q62EGAjDQpr/guVVX2v\nzymBCHurmWpTv4+SWIx6o3Y8Gao9HdBrc1DBTL2yEU8QpN0WY1HnNym8pTX8fIzfdG2P6jXo/XYb\ncZAyTnGKU5ziFKc4xSlOcYpTnOIUpzjFKY+hPFakzMhHRnRfEbICqIaTy4qgNcKKll55D3bnBzoj\n7M8p2nzugrI0rq4yLaNNZTTHJUWm1pJqXj2raOzWPZ2Hvs45z2eeF2vyykWdwUWoxnY+VAa5c1tZ\nIQ8s7gtkJ5fP6Prygeo9y4SH0pzXK8xYnvX8zDFFfxstRVUL93T/bEQZpPQJRatXyNg/uKHMkGeg\n6PEyTOyLZ2C/TilaXjtQJG/qVf3cYUVLy/AGtMgixrNxq8O1UjpU1iJCNtofVV+dvKQ+fHBLfVTY\nUgbNHVHGLYU2fT6n6F+zqPuVYbCO+ZRJPE12InCZrA3n7AqHipCHUSc6akmREa3zHrEQm5K16QY4\nBw3TdwBeCj/R1L6brM6CbGvoJpMwkA10m+q7zlTRUr9bfZpf1pgNyPh+eqAMaeWWIuJRN2NBtLce\nQSXEq/v0QBHEfCjfELHvwgsUZmz8nEH1gUqwnv4/H+esKufT837ZXpVsjiuk+mcXlHWqMh7eoLI5\nvgkZ5DFcOSBcXAM9Zwz/UaOu5y1sEPWFDX6YIHJPvWZZuhD96INLqLKpcU4vwE1BBiIYU7umKCRM\nJ7pvfEXfa6DW5XGhSLOkzPkwoDkQ5Hz3UUqQEHZnor4ZRjgTj2pSi4j1EKWRQVvX9aean5G0+joc\ngPcnpaxT6pi+n4Y/qH2gPvd64GMoqVMadWWha6ATqiNlu10g6XqLut/Be8o8tLvqE1eFs6caQuv7\n4UciVh7z6fuJKFmwEnxMcAQUDzbNzGzUlo12o2qXGyWrKmd+LafI/fHz4rpxlUElwEIfiMM+79f9\nG4fKOASZqj0ynTNEo9ezbmZmcfiaYj2N2d5DVIemys5NySI1QG8lUTQIoLQwJGMxgLX/8I78XQyV\nj4QpSxZEDSOWB+UW1/tJ7KshZTxu+I1iGsdgQ/3lg8ugW4CfqYeCUUPjmSaDnQ9qDp5cli+0FrZe\n0f3GZJj6Y+a0KbuZR1UqtwSqrgeiaIQyGSi58MBtLvpixqGy2NZYdV34pbTudRqOrA5n7UMT9WUu\noPkVdKHewJl+twcOrhg2CTrI5yLTRxYqCN9FfrbmnBACI4ASTAt/2q+D0tzSdQNUM0Kg1VJwzczN\nwzuEIlefrFsXlITPNDdTZABj8FWM4KY5v4rCF5nD0L7QX1HOkycmcCCQyXQzhyMp2UZ1dsj+iOXV\nh7LNdyaoJFV1n1ez8vu3T62bmdnHH6mef7ACp01UvHapqXzJO2tChl4AoZr75+qftZ9p3N6D/+oF\n1DP8Q/mMHhwywW9oHPt/pnXnjd8RaqR4SXuLP7yrOfreaY3P8Vd3vmjD9csPLf2W1vET53Tf+wfi\nsds6yzrwkWz96Zj4M2oPZG93Lv/MzMw++1S8AucBq7UK2nPcelFz4Fv3xMt3LSgVra3Tut8pj5A4\nnpN6zla7ZeYW+jaVkb+46ZG/Ci3rmd8eaD/V2VWfbyVla8MF0EALQus8iWrmpx9oX3btAigs0Dm/\ng5rTa0H1+eaC+vJ6X9d/f1vcNA9/LGRNnf1baOG2fZUyAoUQgJevE9X89VHvHvu48Un2Z3XNQX9P\neyNXDq6ZvObIdKh6PGTtXPCzToHsG5PJdU1BxSJt5gKROVMgC8CRNfbhr1PwPtVkS70ceXkUFkda\ncs091BwagZBswbPnbshndEB3REDe9CGJqFKfBD5kXNF4+v2oN81Svvgkt2fmi6jHeV1XAf4bKciv\nh7vw2cVRugT54+/LBvtzzHkXnDkNzblgSvX3wJuyh+8MZL5EZ4dCGauBjh4VQNosbvE83T/GXqV3\nF77EofpjMjj6niSH25mLy7YDMS2mYa/uMfKD9tlXVCbKeQAAIABJREFUGwooynbCWnMCcHaVp6Cb\nwlorsk9oDg1BOqRAHgZXNSYBkMiFh7L5jp/9YwzlSdQ8Ewval8ZSapsXNU+fqc+9ICWrNdngDlyA\ncyGNUWpR7fGktMbV6+rTzQ/gQmnKT99nTxDj9EAUrqyllXUzM1tO635u1vZSjL0RpwAeFjX3gz04\nGit0LEi+NnCJyowbDeRNL6V+G22jQIaKa4598IS91jig+xbkeszlgSeF3559FHz9DdnW/gSkTgMu\nHJfGKQYnzVwXuNkRi9+r+rjZl6e7oLNGqF+h5OYyfAxcmmP46GZKwzHsoetB7Y/+mMDR40E9t92H\nrwpk/+Bw84u6tIp3LbPZti78jqmW2h6Y8WTCSxR0sw8FmTas96kjnIP76vN4Rn5y5FYb2wXZRgpU\nbnki/377pp6TCjHvb8sGsxk9N4SybKUmW/KAjJnOULr8xnHDdThCpQ63ZBP2uQbnDRSKFsLfjsaa\nc1NUSocF0Mqcbpi6ZFMj0MVuP/dhn2pjzWUPe7AJ68IA9FNtZjP8ZvXOiPP+keIgZZziFKc4xSlO\ncYpTnOIUpzjFKU5xilMeQ3msSBk/58Y7HOAb3FWmtOJRhjSzqnPVULnYL3+h/+9+Klb+5SWlcZZT\nus9OWRE1T2NTr2lFqdfOoTxxQ5G+7U/E0XBnpAje8qL4UxbO6foQKIObqJ3sbCo7FQ3pOV4faiNu\nRc6KDUXCjj25bmZm+Q5nqK8oA7PoU8ZmPa3o673PhOh5+A5Zzud1pnjlojLZ7rGiodc+1BnrXbgv\n8stkEnLqn/qWspoj1FuePKWsZH5e7a1sKuJYrpYt6QMFAOqnQnZmDI9DEhbuU2d07/2PdNPW54q4\nxy4qark4pwj5JtmV6qbGpHUFfqCXFCVMnVFEfkDEt8e54S68FUctnbj63G+Kak5DZHpJWvjIqoQS\nikISkLdJhoj1RNHathFRznAwEHWRSRaeDqKklYra4yLrNcfZ1skn+jwwr/eRpMZ0wrnrXkCvYxQL\nZsiXHtwp6ZDSUpEU56VRRgigIhKc6P2Ys7y2qnpOUU1yo2IUHs1Uj3R9Lq9+3iuSiYjr/kMYvucY\n9/YQGBgoDX9w9rnGw5dS+31uzovCoD7l7Oyoo2iyi2xZ1K3o8QEZjUCCc+ggl/qkyRITEECg1rxk\n9Xwgb8YxfT7pkqn3gTZzH109JT+P6gQqCekcZ8kHoIpqMP7vCKHWJdPoKZN9WGIs4aUYdtSG1g3V\n9eqelFMGAY3BsQWQdd1Ztp7z4WTFWpzdd19QvZLwHbVHem5xS9mlHooLQxAhKZB2I1Q3AvB2BKeg\nDJooAbRQrVuULYbnhCYIwiN05jlx6Ozsqv1794Xk8Y9kW3ub8ht3QQKGfPIrOb/8R7EuvzFPds1A\nJbjgAljekE3kQvBtFDU3OrtCE3Rc3G+Ds8Mj3SdE1qYKas51X/533FG9BvtwTszLF7kSsoF6Se24\nh4qdv+Mx+/a3beeWUAZHLT5QDP4OGduR7p8HCZNNoJyTQfUkp36Np/XenUSJDM6HaYfsGxmeIee6\n+24y0SgPLc2ynRGUivwgkXzy/xnmQjg0MUBH5uGsuAcb7iU074PINaQ66uu0H54eznn3p+rDU7Qh\nHNTnA84zj9v6fDmJghX+dNQmqw7ybzUPUs+DIhjoy6CRfkrpPk1sJQFXWCItW83lVH+fW5/7ymor\nIFXrkw8KtjQG0aBsqx7BfzCnIj71Wb0m/xVuyWayKLTk4fPIcO58F66B8pyyVj2y9kctM86W5XX1\ny/amnleDt2qho7X6uEt7iJ+8KZuZi2vuTF/SWv31t2Qb77RUn/NNccvsf1/cK53XxXfiC5LdT8kX\njFK6z85vtN5+6zn5pk5VqdyLn2scf5OXEtFCg3X9p++oAT82W/1N1G6eFg9W/UONx6O4vvf0fc3V\nvYT2Nq+d/6GZmb2y8ydmZnbuMyF8vvaKxuPt+39mZmYRn9b9c4+kQng3LrsogboYBNS+u7/WeGzk\nVa+Lh/vWmGPtA3H48vvPm5nZx5U/NzOz+QWhjMZPfc/MzA67b5iZWeyG9kOpkLhffvYGyoJzqvvk\nlPz8xffUpsEPld1f+0+gYVe0D3uWPnp7QQi374J4qJblF0N7QhEdtYTIuDZR/2mAyAxF1CeDRdnc\naMiaGRDaKuvR+9ZI68IURJ3Rl2n484Z12VQgqHZW0rLtoXumvsSaXIXvr82eYar3Iw+KkQO4vFZA\nsfnImqdACOJ3hijJFNL6PNFTfTpwg/lAUYzhZgnBSWNwsw0D8M3hRwdDVJVwbHUyxRlS1M15fAH9\n4QMl116CE7GMmiE+YpIDtTFT3XPDAZHW5y0y02NQz7Gy7ldG4XHc+NIHtBMp8/jZo61pzrXgApqe\nQt0QdarUKnve60KTeWdQ+iOUblhreaCluraK2k/vUZVGB44vFFr6E9Xh5LF1MzPzrOr/G3XZ7EEX\n7kMQjTOEcQU4wPQBnDCgM/1dzfu1GTImBiIc3o87D7Q2uRr6fhTEdq0LDwbog5ZH++cEHIcukNuD\nhvpu+1NQU/BX9lAjmoCyfZrfaAG/1vT0COUbFBqLrJ1jENt+kD1+UKTu0QwhgrIjfCS+jF5z7Kla\nIOpLLtQJR5pzzZ76PQyn4hTePn+UUwTzWuPX19RPIfbFrkMUKd3aK3lR8omFNcdcUfiU+C1oI1DU\n7a+GlBnAYxcDfdYGwZ8GOTNo6v9NUCnjMCi8tvojAJ+hC34qr7HugowdMLf87CXbbs4cgHKLBDNf\n1MUzdVl04rMunCxW0jNrLRBn8M/14yAUu/QVyLIc0OoSKNoovxVroHq8XcYebsXMGMQNfEkZEOVT\nkMsTP8h31CrD/JZojVWfzq7W2Pxxja0NNeca7O+g/rKA6frQhLUSlP4M+ZLyq55DxmC3pO8vJGQT\n3gDPbaIcieMMoorc5HdEGC6xUkPvQ+kZj5T6uoIKXyjx94h8/oHiIGWc4hSnOMUpTnGKU5ziFKc4\nxSlOcYpTHkN5rEiZaEwRrhQqFGXOpt36aNPMzE5zRmvjsjK/T8KCfO1dccvcu69z02fO6P9Rzq42\nGrAhFxT5TpwQEub403AZELHf21S2sccx/vwFIXPmn1b0tEWkq/BA183OIK8uKiVdQamitq/ndNYV\nddxYV4anAvKnXNB5zOMbiriPBori3vxY/7/3a/G3rIIIyj8BagW0Rem2/l+vK9J27KwyT2fWFbH8\n+OOP1G8ZZVhOff0VPe+irtt6u2n7FbXhJGibZfgd7l+BVX1P/19CCSW+oAzoIaoZbrLh6ePKPmXG\n6ks33DTb27o+cBU2eHh6wgucox5w5n+gOh+1+GbqP14yq5wzdB3CSQCHwMgl24i7FK30RckoV/U6\no2yJoOAViiuDsYdKxxjWdI+fbAsKB94s5yJ5H4twbppMxcCl+weisMjHFN2dgiSZRab9Id0/n01T\nX0WhKyhJeGFXH3iVfXLF1a8usvM+H6zxFYyV5NjymsarWBfqIQrjucf0nCaqKUG3xr1HJnqWaWlW\n9N5Flj9N5qAOr0gWbomaV68Z2O0Tx1DWqcOuX4B5ncz4jP2+01AUfC6n+tSKKFWkOLfpztJutcfr\nB6EzPXq8uFxTxqwAAiVZlc1WaqpbNqY2VVEyiIYUAfdk4bGYn9mQ+nyyj60v63tJVNTqqJ+5iPR3\nm3repKq+mbr1fneo+uSCsvnyTF1nR7ZWK6vtlb7G8kRWfeDhrGkTzpEZ90wDNFq3rednPPCGwHLf\nIAM6rarPHt0XZ0K/i3rTnvxTtEzmo6d+mYMfyAuyIwhvSCTI+XXQFO051S87mxNkbXYPlIVqt2Sj\n8TR8HgkyHqCqOkM9r14i88pcHZVBXcFlM0iCBAxg3PCQBMm0Rsn6uVZ0fX75q/FT+QP4kmGHev5/\n7L3ZkyTXleZ3wiPCY98zcq+qrAVrgVgIkATY3LrZJHqa3WRPj82MHsb0pD9gZCYZR2aj7mGrNaKZ\nNGYy6UUy05v0IBtp1Cs5am5NkABJEHthKQC1ZlXumbHv4e7hevh+DjSlJpkwk6ke5OclMiIj3O89\n99xzr5/z3e9QpatLFq7M2WSP7Jej8XEjjh8QQ8s+Va2KVCICjZKZkq0KZA8dV/pI9vX7JD7ANfWn\nlOC8/QJOhbRnM+bZKOJZ4Cx4yiXbnSTrNJMtLdUYuzk8Caa2t0A1BQnZZGoSZbUjpJx0DQDPhi1s\nlkpdJTJvy1RESPhURinCp3EOLi0ygz62XgGpV6VvCc7eO5zPzoAGSMBTUca/+Sn8VE46azmcJ0/A\nvQVayWXOpjhLn4syh1RtCzOymd4YNAHV4U4r73laB7+2J7/a3ooqz2htv5LUGvz0kvq/c1562/CU\n0c6Gyv4PHhKyJZvQOrj1vubKG88/a2Zmv/W4xuP7M6Fpa7dA191Ufz8V6LovFKWXZ9qae7ca8OSt\nftvMzOoFIWJufeXRD/pwy9uxwkTjNHjitq5P9arBa9LHp05+x8zMfvqU9NQ6o//frAp9tnJVqMJO\n9vNmZlboiaelnAdd94b6078gbpnlvxL69yHO2e+daHzf/lzGfs/Xd166oms/uCH0TedJoX16Y+1v\nPuHLb7W35XdKn9X8/vFzutc/WpJN7T0lHVX+TK+d31O/s23porL4kZmZvXtDuhv/A/3u0b+mgllP\n+6NFqDn0+lfhHPlf7XRSkw7ncJcUG1rjJ9RSWZRlI35C/8/B0zZxtZ7kR7KRRR1/upBtjUArrGBj\n3SZISDaokwJcLWn1J/A1R4oj5jp8IC6o1V6WymNVOAiL8MdR3WgSVbSMKrDhG/rYTrkEMvCa/GOE\nkvCoVJOj4lsmD5cWvE9OQtdPwgOyVmX9qkeV0+ARgXNiNpdPyN2kiiJ+Oss6EfmKVDZCtsAr4oDi\n4K2/p/YP3cjH6bpnvQ+rL6UKnlVANbTYdFTYc9yeSI9OEjT3e/qdd3LbzMxG+w/YaSUBahTwklVy\nVPyD/24OJ0qKtaMDADEA7TsF1Xp8S/Pqzh3aMNfvkvD+VBrsy1grU4H2ZV24uvw99fVkD/8KV+C0\nwH40EyHJ9fvlAkiUrp5RckXZVI/9/n5b87+8Kf9YXWWvcOkJMzOrFVjzd2WjnSONwawlfdy+o7U3\nHW1gQ9lGWNNc8Qb4LSpudXZB0IBuyC9ARc20j5+XpYcy6IpUXn64CnIzKIlnajMH+tjRc0+9rH4u\nClo39jntEO3NPNAS0Toz22e/HHLCgD3KiLnQxOZ2QbOdVpIR0p79d4m95RQOGQ8yxwrPA8egihfM\njQAf47AvGI/YSHtwBIHS7YC0ymdlLwMm/3zxIYpssBfYcMOxKRxKA1BKZdCxrbzuNaTqUp795Syr\nNvvsj996TxUJP56DVzIjP+Zjsx4QljHPDAWqMoUztWkEejfZkm5H4+iZTraRoFzpzet6rs6v63l5\nNpetjkbwchbkZ4IRVZu68PRQ8cyZqR9znoUWIOSPd+UvV6m26XUZc56JimvwX57Q767GYlKO+JB0\n/6Cr37fhtOzPtRfL5WSDv0xipEwsscQSSyyxxBJLLLHEEkssscQSyz2Qe4qUmQzJOHBOfhNuhA6Z\n0ZtXlCFJ55WVWn9Eker+SBGvHvwkPThpSsuKRifaigrfJkNROFCGZvkB/f6+p5RVSr2mM8VH1EO3\nN8Udkbxf37twdsvMzLJEM2cDzudzNq5ZVDR5ekPR4/dfum1mZk9+Rhme848IVbL9srJMB+tUa9pU\n1ag1zgIf3lKE7+ZrOqd+/mOKDJ45r4yz6ysq3KOyxXCqCOAqlTFWx4rsjbaVadrLSw/ntpRZPvPA\nsl17Q9mZWy3p9OEH1fZ1EA8nO7p2vqIopnuG6GNHaKQ9WMiDunSV21QEugy6oHOibNfRiXSf2lYb\nvbyikDnO/C9CsjenlDRnSIOpdOculNHbWOWc34gszZSMQZHsP5lgrwzPA+e3ObprSZfqU5wfTngg\nZajcs3pxS59TWSXhyVbTnAeM2NFTJOujSgMLqg1llzWG02PZaPtIEflmU+1qlDQ23W3OrBIJL+WV\nSRnscVaYiL5NOM9cUj8TeenhpCW9tK8IDeGdoULYGX1vMVMDo7O02SnZuQQZhqKu25uoA+eWokpe\nEdO69OMcyLb6oDW653XfgtGeDOco4cxZGBnqrGy4CK9Au0VFM7JcflSppqHvO/OIMv1Xn7v8u1LO\ncqZU7sMKBV3rYIfsfEo2UGuqDWsF6WgEz0aJCmQ95nmHc7o5qj5k07DKt8ny8L0gi01k9fk+/iZJ\nRL9K9Ys5PEXjjiLl5zaUPX/oM/JDTRAVr7wpf1Tg7GoODoY+83k+EreVe0Ht9TkDm+XMbp45cXhD\nWalgh7P8Gf2+TBbOhUNmTvuTJemjBkqjHGUAAlAIoDTSadlMG38VUJFgwfnnEI6ZGqz4o54y0VPO\n4hdBM8x7ZLtA0PjwKq1XZWvDqu6bItMaUmEhvUyGdgzrPsm200pnQDWUSuSTdN/JkuxjAjLJASXi\ngkiqMUfSY7KA+LTVUP1JFsh8J6IsJ1WnqIrlUznDgecpaVRhIkFfasp+Ks7Q2iPd6/BYtnQcVSWa\nczafqmwAYazqQigGV1MHPqIcGbJxTzacj843AwIaJaTjbkdj5MLdtVqXzdUcjU01AwIlUJt9KjM0\nyvCapajAABdBKqv3k75stVmnCkSXKk34x2Kui06oaJCHM2EgnafS+l4H3ooWlQyaFf3fA60w9jSm\nI/TSM87IgzxMf8S8U/1ZoW5PXpO/uxhqfcxQSWf7SAr8eVZ+7Jm3taD8DL/27FTr4tFXxT3jvKB2\nHxeEZt3cU7u/21K7Pk6GuVXSOtuYsYc50Zo+aXzWzMxeobrJ5UB6a+3LAOpLqs6U/4mqJdl/YHb5\nobs2+am+v9IU0uWvX9Z4PfgU1VUcjffvf1vVlgZnZLvPPMEcuKF+l1v4usJnzMzsWxd13c/cVL8v\nUAln+YbGcefzVD+8qQz/A3c/aT+8o3tsflU29N7wq7rGD4QA2WuIY2ZENvrwD2U73T+XDV4IdK0E\n2fzdG+rra4H8SP1b8P38wbf0vvY1tXlZnz/6A+1ldqjO9/DnpfvrN3S/zz2ndeF/tNOJP9GaVslI\nlxH/mtuTjvOgHKZUVfNDZe8jjjAnZIxHVGXyI84p+dci6Nv6iAUN9FuE9AzgfBmB3MunZZuz9S0z\nM6uyRkcwOH+fSQ9atQDqrbTEvpb1Y3ZDY5fP63qTEWho9iZVMstt0BQpMtAt1oka7U7Dy5Sm8mQy\nqX44Hbh2Ohr33qGue4atQm6hSp8+leYyUxCXoAXSM103t6a54VJJczGP1nnp9Rj0tg+H2VHAps/M\ncr2Eeax3S1QWajFOdRCjC1BxLoifyV35xHxp104r1fMa8zyI4STIkP4JCGv2jx2Qyhmy990RyMKJ\n+pCq6/9LmS0zM3sEW1hQhS8FKrWcBskB79rodfa7jM1mXWOQuBQhwOHhw597AcjCmdo5PIRfL0Kp\nwjXoVjSX1jZ1GiCq1DPrgpKAhzM8km0sjkGwnGiQG6DCXNrvw5dUP6P3B/D9BbuykXqFZ5lVnXbI\nRZUq4XJxQIwsqFjmJ7XfnUTV+dizzVh7++xZRrQ3CefYFDR0FtRzD26cap911Y+qico217Ma35DK\naAsKQTaOT79vNTPLpzR+oxOtw33mTgZ0xYJ9cm9f9nHrrvRbe0jPfgV8oAe3TsS9M2fvmg5kf3sH\n2qNUsOlKXXqN+J7MzLqHXeufBFZgfttM8+vWvn7rUoE3TVXNrqfXHLoNQVpvfV7+vLkspdy4pjZn\nasxvkONtEIB5uGgOQO8EE7hmOCUxAO1aAdFydAgxHVWR7n9Aa+g7r2oNPTnQPG1s8QxIxaoM3Iwe\npy66A+l8BMrpwqbad2YsW1+n0uKNK0KN7lNpuNnX/n0R8dcNsQkeBpPs93pHGsN8iThEXu0pN+jf\nL5EYKRNLLLHEEkssscQSSyyxxBJLLLHEcg/kniJlppy/o1y4TWFPLlKBYDpUJO0Wdctrpshdtako\n4WysiNgUNEOlCPfBBUW8Ordvm5lZ+5A65HA+NFZ1/TMPCxHj8L0F0dzDI30vmVKEbX1VUcWOy/l6\nzoMWNxQZK08Vhd7vKsp9/V1FBjdX9LvCiiJkgwMq8ZxVpHD5nBAzWTIM+8eK6I9PlHVLkKWr1BTZ\nz+TUPq+v/maodPExOGyu+brvDH6YIRn+emPDNh+Qkg+IZHf2yS6tCLERgEgZci66nFKENr8iXQ7a\nyl7t3lF0ccXVtTfOKRrqjJT1b53o3gb3iOtSOYbzx0mqfJxWJvBwdED4HN3W2JRzoBioYb9I6LoL\nsvq9W1S4OdSYpTjrvjtRRatMqP4VK3rNwR0TFqg0QG17j/PH6ZQi6ZWC+jsJqJoBW3yO6lLJkAor\nZINSRH377ynbt/u2+uVOpO+9Y9nM5UeUgXC3dH03q/4kZqA0qOo04nreQJmMV/7qh2Zm9sZzQlmt\nXZJN9h5U9s8JNGeyac7GJkH4EK32Zmr/zhVxIIyvUemhRSbajdjepYdDzleOD4mSE/VNgJbIwrw+\n53ypd6TXt9v6fHCi69VzESs/9yNbNkmqn4W/E8H/deI7cHu48E+AnPGpUnREJnGtFlUE01jduKN5\nNgFN1KLKT57s0jHVesaHoMgcjYnjVuiL/IpP4/vH+t3KJtXe5M7s6EBz7qCj1yyH4BdTtXPvtjLC\nb/1ExrGyKn+xwdn5/SP9f5HR2NWY1wHtOYE7K1WQDQ3bZOXu6Hfl88r0BR24c6j0tXNX/d3clM6D\nDSqQdaWv/WvKSOabspFpXn5oOqRqFDa8xpwYoddrO9LrGC6b8pr0VQBxMgVVcXyk79dWQAaBWDk8\ngDcpoBJBUeMzINOcAzU3mn60Sm6zUAPSHko/CbJy6TzntHntwecyw6b9BDxWrFc+vFgt5mTTOA8P\nK/9oqteWo/tF1bJS+ECnID2MHFAIVBDqJkMbgK7pUNUmrGtMrKp7TDlvPaIyQQZbIEllQyoC9A6p\nAEXFsCyVwqIz6iOQL2N0YlRd2ocLZmqgihzdJwXvT5uM7MmILPOx5vc0K93URqCx4CXqM5ecgsZq\nOJQtHAdUIoAnLstY8HM75v2gR9ZpQMUXqkpMIx4JzqlPWA9m2G4XhNGCbNtpJZipilHt4LfNzGye\nlP7efVDr39mM1uxEXnP/LfSZfWLLzMx+cCC0W/AdjcNvUcXpSkYVhFYy6ncZ1IL/A82xx6jQ0w3F\nMfPaZzQuvzXTeBTz2qs8f1nv61c1DtvwYBx01M7/0Mymr7o22ZK9vEiVrC14qk5eV3vPF9WOl6n8\n9pgrVO+N/03jtfas/r/CXGm9+hfq5w3NRfecxrO89EUzM3vnC7r/7uQ7at+q1p/77iQt2BJaZ/cH\n4gJc/rJeK18S4iXc0xo/BgX11VdErve3n5TfPbwhDpgrnxAad/Cc2vbwF9W37SP5yzs/0D1vrGut\n/cJDqqp0c6E21Wbq+7dBUT34oF6HDfmz08rZNfnR8R1dr93R5KvDk2Y9oaWKS1Qb6cNZhf8dLKKs\nNShWEBohnIo2l/9zbuh7yY8pM7uRlm/Y6aifFbgVJmPNkcmO7p9IsdaX1K5sXWNYPoCrhQqODplw\ndywfkxpL3xM4H5pUV2mtRlVQqKw11/eDmvpVD9HjvsZlRgWY9gmcDe9pfNPY/qICpxhVpu6ACjnD\nXmMNhGg3pCoflX1cxi9JdaZEoDmTuKX2dRPSz3yiOXLYBhEEktXMbNrLWp0KRMmM+rG8kN1N+kIC\nuBMq1Bxpjh3jOzOgFk4j4xaVA+EoMSr17VKZMZWMkNHwT4ACcHpUfoIj5s6JxjAFIrGT1P891pjC\nkGpqUTXLju4bwJ/RoBJlahPEODxIC9N++q6aZX24SjJU2WwfwY+0qjFOFkCPLmRre9vatw4Ges2z\nZg55hkoX9bsg4ixhXzdNsQcAJeGmNIZD0AyDHe1De1R/qleoygf6dPtdXafk6vdj0AfZHBUi4VbZ\n53llPmDPgP69qALjVNddXtX7RE/tHcJ95h1pDuxP4IWiIlFpTe314ThLjanECxrbq37IX3QaAdhq\nPar0BaC2qiA/bcIzKevtHP6VZhOkEevrPNT7AMRrkT1JQMXgbkfryjyt8Z2A1s2Ef2efXcrbPJjb\nZAw/EZWmOu8IIZKA88Utsx/CVgqcthjBj/ToE0LKFKlk9cq2uF/clvzVFJ66zgE2Ck9o2Af1BJo2\nGIKyHcDNSGXaCXw+9Ut67naBDacyVJSCI2rIftEfsBdJUDWzz/9nan92IRvy4aTN56lympF/Xr4k\n/zsGFTYmbOKNdb8BKKQ7IKVLBf0u4tjJwVNq8DkNo83LL5EYKRNLLLHEEkssscQSSyyxxBJLLLHE\ncg/kniJlEmmqU9CMhU9FHdAK5aQiWOOpooijXSJbDUWiqlWyY339vxcoapsuwoq/RLWPriJt4yEM\n3ttE0GuKsDU4lzmlQtBsqKjkjHN+yTpoiuicPgWEJo4ibmX4Q8YelWR6VH9JEoVN6PcBGdadI0UK\ns2RMy8tksr0s11UkMNdTJNGvcp4R5vXePpmUUP0LOR++RBWrPmfZeneFWkmsBJaBib5cprIU7OIT\nWLojnoPhgMh8XjptwG6e9nXtQ7Lh7VvqQ4mMLiq3UZ4xobZ9jrO0U9o+H380dvKEr3ZkOOebJ1Jv\n6Kg/4Jx1AGM3TOEBUVcXfggPVnjXwybgMkmA1OhQmaZCtru9C1s7kew8mYwWWZgUHCwJMgBzItwR\n2/lwrvvnYCj3PHglAAqliIzXy8rWjEC0WHQGdi69hz1dZ0iUOkklASfKLC+URbrvjBBNmara5ZIl\nCqjeMkvTXyrDJDnDnKQfhYAoLiCFLOzvedjgFxmhTC421d4F2bg0rPcDotPWUfvnnNNM5TVXvV2Q\nTE7UDrW7z/d8znu6Kb0P3V997vLvSoqzpVPy4VVaAAAgAElEQVQygsW0bPrBi8oSzYp6n22SJaEy\nVtOnGgZtzNbkXzi6bitww0yzZKfQeSrDGVeqWLjn5aeWtvR5kcosM/zJIqv53VjX/Su1JdpNVR7O\nVa9flI4b0XlrbK5a0e+yhSX6ATqsLz81KqidhRoZP4+zrHUq7IAwTJBJqOeFqElzDru2QVU6siuz\nqfTQWNFcqVOFqVBTu0b4im6JDGxN90njGF34oyYFIRozed03qMM/lNbrEvdbgBxKZaX4RoF1Ac6A\nFP2rwJsywK8mk6e3EV2IyUyFtggRw/JiObJxXaqI2BgETx7/7UXVpMhsu+pHi9JuDsghHz6mzJxx\nRO8hdhpxkh3NNVfqZNmGCcecFLooq22VnMZ0McvSNq1ho7wydrORdORxhjyckMUpw1+TiKotwIdG\nZmzGfK2AiJzC7zYkK+W5+nyREgozCGRr05mu15+rzbmC1oVaijXQBxWQlCMJ8csLdOo5WnPDgvz5\nIql1pFeKbBrInEclrxI2AvoNeiHz0XWHimAB3AWLNJxYZAyT/kfLO82uqr83C1o7z35G+jpZqDLj\nl3a/b2Zmf3NDNp/8HBVibv6tmZmlz3zFzMyGx6oAdFDRHCjta29yxVe7np4pI3z9k9Lf5K581eFU\naJAvD4Uu+cmexvviirKV94OEGj+g6zSv/Kb6u/TtD/rwwlfWbe29LTMzC5fFZ/cONv/FgtAp+YV8\nxOVDjctPW7rP5he0nr4Kd85ZR+fpJ82oUpvG46Xrqpw0kEuy1UD3770i7pnhednn8sf+rT3y7j8x\nM7PHQVa8SDUNz5POikW4Tipq058/LxtcXdXnnXNCvV6+LgTNXzwoZMvuy9Lpo+sgHZ8UMqb/inT4\n8rYQM86aOAfch/S9Z2c/MzOzEsb0V2/u2UeRAaiw/BnZcLMlv9cDOReC/HD2qQBZjNBFUUVI/W5v\nwUYSTsAEe6lUTpnnNJlip8OccGUjGw1QAVR720kPuH6C32m9qZDNr8MfNx7D8xFVjSLjXSgwx9iL\n7LapwpSkmlNH/QlzmvuHffmSsxWtn3VQxK3z8p87VDW1rHzGOZA5JxUhiJZTer/yqF6TAzLyt+FR\nyoKAn2r9cXbZYzR1n3PH8gVpV+1I3If9HDLn8b/nQP9NKx8+5qw3lj5A/AxAIa8AZlmFb6+9sqXP\nQcaUqvB8pD+sVPPrZBKCGGaNr7D/PlPXvMhahM4kOw9XoYe/CqkamvTgbHLVxzT/7/fg4oIkLENV\nogljkdvS/YKIkhB0f0B7PFAExSJVf6a6zqSqMV5Nw5UCeqALl1XB01iVWYOzG0IXBXAWrhZoFxyI\nY6r+FZf1u0qFvRSIFieqvAPy2oHTZams72d4ZjruwC8XTZm05tASnDIhPHY20xeK7LcXPBuFTa0n\nm5xuWK6DuARp6IM62+3we1//n1CBrELF3aDCPp2NfOiAFGcvklyAsjqtAJqogpxMFiKuR7jTxnB4\nlrXenIWXpVaHF3GkOROyVwyHIEvZ6zSZ449/WghPHu8sTXVCS31o02eX6rZIuebwDJM7pz6vzMSP\n5oNuNThZ8qAhC03pdATyZAAy2JtKh6vn9b0UfqSP/0yX9buASrkD+HuSnNrIcMoiu6L/5wvsN7NU\nBivw7LYjnZdL+NkL6qtRyTGogtrv8+zDs06mpH6tb8oGpmwE5y6nJFp6/veSmkt1eDErTRBzbCed\nEG5cX58nQfqUOC2SWJUei5784fjXILxjpEwsscQSSyyxxBJLLLHEEkssscQSyz2QRBiGH+0Q3P+b\nN08kLAxDSyQ+2rnvWGL5/4PEcyOWWP5+iedGLLH8PyWeF7HE8vdLPDdiieXvl3hu/H8vvyz0EiNl\nYoklllhiiSWWWGKJJZZYYokllljugcRBmVhiiSWWWGKJJZZYYoklllhiiSWWeyBxUCaWWGKJJZZY\nYoklllhiiSWWWGKJ5R5IHJSJJZZYYoklllhiiSWWWGKJJZZYYrkHEgdlYoklllhiiSWWWGKJJZZY\nYokllljugcRBmVhiiSWWWGKJJZZYYoklllhiiSWWeyBxUCaWWGKJJZZYYoklllhiiSWWWGKJ5R5I\nHJSJJZZYYoklllhiiSWWWGKJJZZYYrkHEgdlYoklllhiiSWWWGKJJZZYYokllljugaTu5c3/1Tf/\n1MzMvvHNb/LJxMzMMtOkmZlNUwl9nAr1ueOZmdn+zSMzM1vM9Xnz/BkzM0umS2Zm5vG9dHqo10Xe\nzMz6u3v63uqqmZkl0hkzMxu3j83MLDvR/fOlupmZzaczMzMbJab63JO6MgX9rn3QMzOzMFAzw4zu\nv7nV1Af1he7b1nX8ma6fzs7NzMzJ6/vTcV/tvqPXaVb3qeRqaldF7XdmrpmZHVy7q/clfZ7J6/Nq\nVg0p1mn/TPdpJ/pWyVbMzOxob2RmZu5QbRmm1EY3UB9Tyaxe80l0xOtU8bulsnTXmqqtg0ONhVVp\nQ0Gvvls0M7NaXr+bpXzpsqux+cbX/3M7jfzRv/yXun9WtpCfq71TT2MQuHrvTaSzHPeZhnqfdqWT\n1EKfe1nd352oXQlmQLBQv6fEKcOMbCtc6L7ZmV4zofQ2y+p6eZOOfUe/my/Sut9cevMc6SM03XeR\nRR+B2p3g+6a3ljLdx+X7f/THf2xmZk5any9SsiXHV/ssqestFnofeLKJbFIXXGAzSV/XCxK8T6jd\niVC/mxdoH7Zs6CkR6jXjS1HjIEu79bVJqPeLjPSSSqt9i7TPffj9oERz0QvtSodqf6qgCw58vabT\nev3Tr3/Dfp38m//2n6tv5RMzMyu+/lUzMzuYdXTPy7fMzKzdUp8/vV5VG97fMjOzn+cHZmb26Dnp\n+NbuT8zM7ONj6eYvH/99MzPLv6H/++krZmb2xdv6XbCVMzMzZ6i+/VlZv9sInjQzs3OH+2Zmtpdu\nmJlZJ/8jMzN7MqH/b3fbauf8hq5//gEzM3to6baZmb31ju77UGbTzMxeKe6Ymdlnip82M7NF7af6\nfKY5/MCS5vgPHfmBpW9pDEbh42rXF2Vzq3+jMX3rD142M7OnJr9hZmY/erFlZmZnz14zM7PzWw+Z\nmdmLva70+CPp8Q8/XzYzsxsTff9CmbF8XuOwCD+u6y2Z2t+Tvm4+rH5mfrJsZmaTlPSW9tXfzKr8\n9q1D9detP2xmZvnMj83MrNWWD/qP/sU/MzOz/+mb/4udRv6r/0a2NGrLbwemcUv5skUradyKOeZW\nXvcZttS/9rUDMzOrbqrf6aL02919T+301I/ciuzLRtJHNOeyOek9WeT9TJOtzTrnDTqWGGsMy2n5\nT3+s+eQl9d0E/iRTVhum7Tn30Hyzqn6XSun72eyUe8r2JoeyncGu/Pfy2rqZmXUWsgV/Kt1kHOnG\nzek6sxN9nqxqzIqOdBTN16mv75W4fxii077W1klXOsyuFNS+hV69kdoxZ+3O4g8n+Jf8wuMP6XaB\nv6N7VljTujbi/t5Qtp9g7jrsHf7om7/ej5iZffMbf6L2a3mxZEv3dQK9TtLSSyYnvXsh/niBXyuq\nfbm5bLgzKNAOXa800O9mVfnpgum1vKL/t7uMZ6B1dTaWPkp5NSjl6nqmYbUE61UwH3zQh//yj/+1\nzcYe99XvE5hkbi5bmxWkl1xXDes7GofcQP+fcj/X0/uUYYdV2fyC/YIzmtAc2V/OooFRv9JeaGkW\nizFrW2qq7w4c2XA9ZG2e6ze2NKOt6muQVF+mE+lmRF9DR20s5fDLM13PNdma+fq/U9bvx4Fs0wlk\nIw7tmrJ2/8kf/5GdRv7Ff/yvzMzslq++R/uyXl7tH7N3GLIXqZa0DvV9tT+zkG1M9rEp5lq0twqx\n2TRr6Ez/tsRM/QqP9ftEQf2eB7r/JKk5vlaW3hYN9kKBfjcL8XtJzTWab+5celoaM/am+xeWAq4v\nve11NOaJlPpZ9djzzGQ7hSnjgr6tqrk5KcnG5gf6vGi6XpU9xiQ5NjOzVp5X9vXuoWzXqel1M6n7\nzvEF+RON4ySt16av/h97GldcjrkJFGhmX/j6N6yU0PfHS9q7eNhueyK7cx3dJz/UdQqB2vlAQ9f/\n777+dft18qf/9b8xM7MpzxzHPek+lVRfCvQlHaot3al0u9TU59MsE5aHi5RT5L3aEmbZV06lswCd\n5ZLqw5SxtQ59dXSdDP7DZa0u13WdabR/ZP6OMLoE+7nEjH2ez3NCR99LjpjboWwyldbn6VXWqbzG\nfuZoE5BiLQzG7JsTtIt9ZMrUn5Eb7Xc1NsGMfST9SLJW50Zq52SAj+jxjIbP6HfYjy5Yj/K6T6ai\n19I6fpiN78hFv3O1bzFnXZ2zjvJM6NT0bLZweJbLyCaNufiNr/8Xdhr5k//kX+vyCfYcPOekGMc5\ntrzw1Y6Ux7gvy44qBdnJQUd7Myeh36d5Lgn0Yk5GczMxl36yYYLPP2zLf/qf/XObz1zL1GQbYy96\nNmSehOpj08WvJmVkHfxoMI1snGcSnmMbrPX+RH0YhxozX0uJudiEw3O/zdTWlCOdB2n9P5HXHEgP\nWS98fW8wxs/l9Puyjx/OypbMk279kca2gD/K8bs0firHM+URthOY5k5G7s3m+Whtls7rPIv5PKul\nWb9mVeljzpqZ1dSIHvEs6/9qLEyMlIklllhiiSWWWGKJJZZYYoklllhiuQdyT5Eyhamiky5oBCOT\nnKyQKSFImQRdMGgJIbLbVujqTEMRriZIknkUVQUV4INEmc0UMZvlFaFbXiPiVlC00e/r+j4RtKGj\nEHttSYgXd6jvz4gMTuf6fposVPdIUcp0hWwZ0ckILZEla5daU8RwefmimZn1yO4Nj0AA1YjSDrgO\n2aYSUfL+TBno7vEA/RH5W1fIsbC1pvvlFJPrnShDX0g3bGnlgpmZFavq2/4ttTnoK3PabaktYVbX\nTpvasJRWhHvjvDKqEbIjN1AGNJEjwt3Q/5NNkA59jdEY5IaR8XTIRpxWnKyilwUyduZpLLMROimK\nQga6zwdRSy/LFzRmSUftXoAwSRbI+hAxDhdRSFkRcGcGWossS9pVFNgh21dPqR3+lKw3meqA9yHo\nLD+n+3tMtREB8TlR5BkzsBDouhUyqR4ZhGIaxAr9TURR3BJRZCL8/lw2Qq/NG+t9EoRLltSJ6/jc\nXw3xAjKwRNbdnBTqgWDJBWS5UL+TIJNDZnhGti6V1fXH2F4G/SSJUieSum+5o/eLqa4zAgHkTUDO\ngFKIMrSnkf199bVXFLJikto1M7NPf+otMzMbLDTfvHdk21dmZ9WXS+rDsqs+3j3W++rm75qZ2Rs3\nhBT5ZOv7Zmb244fJcvmPcp3nzMzszgX5oa+6T5mZ2ddmb0gnr/2FmZntPv5lMzN7YFkIm5ee2zAz\ns6uB5m3uotppGUXgq9eFyHju7tNmZvax1atmZlacag633tcc+j9zavdv/Jbas/+SdPh0QYiSUoH/\nTxTx99JCdByH0sPoK9LbQ0PQbdv/3szMmmuPmZnZhav63s97Qg5ljtT/P3TV7u+/fsnMzD43f116\nmGjuXPwN6eEv9r9lZmaXH/yEmZn1X75pZmbZ9x7U9x8Tgumxofzazftlc0+/JATQw3qx14ovmpnZ\nZu+ymZmtntH3CvOv6At2OqRMWASFMderyxxfkE7KTmRzA9JH9ZpseUTGY4wfz+1r7hUf4not2XYX\n33SprnUs15D+vTZZOrKQY/z7PKPfZ0Ep5LOuBWTtpwPds90DFUpWuL4uH7/IyC+NyZwVXBB6Llls\nMo3DhPpSJIPnoYPRSOtA71g2ly3pdQjaYJGMJjzZcjxLZk5GjixzKkK8najd3a7ana7iN2ZRplG6\nyY3wU2kQHj5IzA7rzqbQAhkQm46nzyP/OfF1/eOW/HEVv1hfUTtmM7LdZN/8hb53WhkFumB+Jhsf\nglYokoFMeVF2TO0Lwyj7RpYsobHsss6NybrnJhqvaVL9qA/1PrsifR/fkc8aDbRmT8hgOkntGUZ9\n0AwglJK+9jZp0IAeexEzs9F8ZIk6ewsQLdZnDwJyNdnX/U+m8velQNdbZDUeLv7YK0QLLdnKgfQ5\nGYI0jdpT1++CrK7bY53JzSfmgw7Io8NkDpsbSDeTCNXkkB2esuaC4uzOtNeYg3DIm+ZXgvlDct1s\nprb1cxq7Ulp9H4Fm8iYaq6yjsRsz18yLcpink7DEz8Yak0VF/vykrLE9mKhB/RW152xDMKjZRP7O\nQOVOxprbd2+qnWeK583MzF3RHHczoJGqus70WN8f9rU+ZAN8AcjtkWHzZ4BdlYXS6IFy7pvm0tCT\nzWQS2t82a7LBcK52DVvaE4YZ9Wehf9tt9kp+T2NdSYC4LGm8honIFkEg1aX3/LLG+cTR7ws7oLUW\n+t1oSbayv6y50+5oDliX3UxS6LxhQeuLe549C3M7MZS+vaz+P09oPb7m6vMqCCYzs/2ltI0L6tCM\nvW6LDL23pL3uNKsBdq8dqr2Hus4KvzuNTEDGLMYR6kl9bWSls3pRuu0eaYwrIM4yFfrwAVpAY+RX\nk79w/QzPPv5Q1wsn8svJE/nXxRQdDnnGYn+aXuHZKst+voIf8tSOyVT+ZgWk3JC52z0h648fc6aa\ni/0jbBK0b1lbKyubxmyWKNJf9pvsp0cDtScLusHlOSJgH5pk/SvW2TfmpfsEiJ5pQvrx58wNEEO5\nqdrdY905uQby09WY5i/gGzIg+13pcQAi1ZmpHx4+KuXruuMFpyVAbywCXdfNR4hvEOezaK0/nThV\nzYVGTu0rN6WvBLiKk47aE3igwtjHBzzznoCgmYOoqlZZlwP1KwyYk6DIUjxPrDTwnanCB21Z2zhn\n+caqDXnmOhxJx25H1wgH6rvHc3Qav1JJoYsz2n+nstFarzb0p6CiimrrAgRkPq0+HIWa9xn8QxZk\nXCandvissYsD2bTPOlKvaSzrFzRWxar83hCU001OcSwRP3CZQi4wW28HP8gz2DCjdpew8Tk2WdjU\nHMwkNbbzmcYiB4JwmNAY5fqseaDFnCW1K8lepjvBdtva7/4yiZEyscQSSyyxxBJLLLHEEkssscQS\nSyz3QO4pUqYdnY/zFCV0UorEZX3Opa8r4tTZU8TuiGxacVXfX/m4MrXTnr53uK+IVYUzbg6hsX5P\nkSmvwpnjc8ow9EGSDIm+FlBHMAKtAAqgtqEI+qzFuW3Of/aj6Oi62tuoK9ORJsDfviJkT2ukKOx6\nmWwkZ3bnI2UyTgJF2Erwt0zPKUK4UlB0c9ZVNusIzplylUzTMlHfsvrrg0q4+o4y6x0yTJtbBZuR\nvUmFisTn19S3Ktn2ncwdMzMbkb0Zg/TIL8OBQham/Zay3Xd3ldk7d0HRyewKyIyF2tKBK8AhEBse\nkGFcRGmt00k4i86Eqp1QK1h+Jh2FU0wYRE5iCvqJM6c+58r9nLIeWThm/KyinUlPuneS0kuCc4/z\nJJw1IDwSc/gniJgbHDYVEEV+H9siCzfj/9E5c78E2ovzlF24VjiSagkywG6o9jdp52KiaLOTgqcD\nnqRFSvpNRtwtIFcWZDpynF/34TRITeCaAXLjkFnIc4a2OyFTEWr8UmUyEESdk3NlPkLOnTtkGFJw\nOARkvRY5sp1wx2Q5K1skc5weg/7q6b6VjNrXizgqOPvrEdE/jTx1SZxSdzk6fvOIrG5HY7L8pnT2\n2pb6VL/zHfUl9Xv6wRsam2ZXNn33Mf3OH2veB2T6lp4nO31ZHC75Venyyy/qe0PneTMze/k35Zca\n5c+bmdml1//czMwW9/1DMzP77Gff1P2fk26/uyy/5fxIXDi/XRBC5ywor+t3NN/DL//MzMx+5+Ma\n89eu6TozOAFSo+tmZnbl4XNmZlZ+S+//3R8K+XP52/r9qiP/N3CFPLnd0v0/eUb9uf+K5ngAcnFz\nkwxnoDE6VpLNgrn09f2hrtdsy3ZKIGt+9+4XzMwsM942M7N9uTtbeVJ+6TFfUJh+WfedfF82fnKO\njMh7sq35E0JPBNfU7x/0WvZPzWxxDtKAU8rQi7J/pEzWZCd5fEoG1N2E7NIA1EfKkf4zDb1vLfgc\nPpcFWafFQHbUS+pC8xbn8skcj0AAzDyNa5nz6UEErVzOW7YkG6uv4NdyumY7ob4O4XOYwF8zgBtq\nltA8yozJjPVAvpEhbS3LP5czmreNzTP0VfcJ4bUI8S9jeNmCDKgk1ok8/mPmyyYSZCaTS9JlCq6A\neUqvKRAzszb9aKl9+U04DFy1zwehMezCebYgIxhxlJFtysGXkcY/JxNkuafwa0zgNABBmEqqv6eW\ngLHMqZ3plNrvdNATfm8Cuquxofe9htp7pyu/3FnXXiGP/npd9XNpKF+RJ0Pd39Gk2D4Rz1K+ru8X\nL8jmJxFyakfrzmEbdEJB/jsEJeHBH2Jm1t/wrNM45p30UhpGWTqQOjPN7Vpuy8zMZqCW51PpOe2q\nHyn2RKmU7GFGZt84N19eg1dpVeOwZyBvHc3hVODYUk/fyU5lg+Oufpt32LcUlYmckoXOLZT1P/B1\njVmF+cJYz0FhhjPpYjqWzSwqINRIAnvwHXk5/X9QVB8i7poSCOlp5qPtSbIemV5f7dzldR+euhT7\nvGZT7y98CvQXczcNP91RUWM0CLX3yq1J16UN+YAEfiYPD5O3kB5Th7LN7Fz/74J6WnpYenz0Gfn1\nuSN9tIdaT45xMwdt2Wa5o+83VsXZdRlep35Pe7pOQn57Hu2bQbT3E+pXHaRSvqTrrKe0hzrAV5U3\n1N/Kgx9TO65KT14ekgbWHXcNFAOcMjO4cYz+znrq38WzysSvf3zLzMzCmvZ000MhkIKe2tc5Zj/O\nvt6pRvhhM7+cs9ya7KieU/sWu0IezZh7yal+N2PPFp7ABRnB8k4hpTwo2PuFoqrih0voLnEM99VI\nOshnon2kdLC/I125+JVaXf66uqSxaK5qzU2A3Btc01gM4Q1awNGSX5f/dFm7fdD8pQ2NVQ2U0+BE\n/sxJ4GdBVHpw0iRBseVAL5ywNtY2tC9cWZNfc0DKOCCDnHSEIIdzJlIhz05JTh3MefYLQegUV9TO\nkLErsg4mQJR4XZCAprngAp13eA5YihB/51m7SyBaaEAeZGGSfXe6p/uP4RnNs38NkxH6QXOzyDhk\nixG3D/t7CJqS4en3rWZm5XyB38HjcqL+7HXkE7yh7GAVm0+BeGnBRXbwpnxkZ6DxS3CyYT6QTbsp\ntev8Jc2dLH7cAaG0GHzIRXbr5qu2UbjP7t6WjvogY+5/5Andu6q2nK1pvre775iZ2bDFXgEEyWio\n+b87fdfMzA5fVRvzNSG9vZzm5/oD4ioMt+HRa8om1y7Bn4QuBuyT+lXNjUwgXQ2NfTNo0E4X9C3P\nKMf70kmW66V82eDsCC6au7fNzGxrQ2PaZ29SWL/fzMxWl+F8BfXpgEY+3gdJCIdkeYm9AQiZ3V31\nN2SdKzd5VgJZWUp9yHH190mMlIklllhiiSWWWGKJJZZYYoklllhiuQdyT5EykzHZeM6Hp/KKSBUu\ncq5uTPUiWJMTRNjOXxYixUAhbN9RxnjRiSJasDOTjR/X1c1HHlUELJFWxKv3PlFWsn7uCtWYRnp/\n2FUkPkmUOeypPe0x3DKgDdaWFBWvbijqeXRT/bn+jjLJ1TVFAMMO7R0ogz3tK5KXiqp5NHWd1Zqi\n4Lk6581/JsRNGFVMWCJjD9piQNYwdUftHd1WBmbtrNqzWlyy420hYKJqO2l4D4xsR7WpiHeFSPwI\n8pOAw+17t983M7Obb7xqZmbl88oAZFaVVZl2FUUdc1Y0FYLU6MKsHVXHiFjhTymup98FHucYJ5xn\nHnPeuQ/KaqR2D6mo4vbJ7IH4SK7CC5SC/wc2cr9KZhdG7yAVIWxkA+MEVYVAb+UcorWwvucJjAdd\nsmCcl0wwtUL0N8/otRXCLk9mZAGzeJps2wJOmcEwKrmAPqnUElbV7kxRkXCPc94BiJMp6BAnqpJE\nGZN8V5/nQfyEObKDK1T+AbLjkcVLwKofUp5qRMWIJNcdd6MqTHDIwMORIquUKcgGHeytMALBQya9\nNowqj3Gev0YVABA+Y5jOTyOp26pmlLoohMonvqbM2c//7efMzOxMWZwwn7yuDOLSp79gZmZXb4kT\nZn5JmcJb75L1pkrQGVcR/xf/Wpwo929pPmemqsZ0eKD7XBgoI/CzshAqm3+peTx4WH1/biLdV/c1\nP584L3/w48afmZnZs5yZHzxJtY2r4qT58Rfk51Lf01xL9MT10noNrhiyOc9tvWBmZhe/oqzQ8nfE\nUbNfVIb24Rc11gd1VVc6uaVM5eJB2dBJAsRGSxCYc+c1Jq/VdZ2H3hcnzosN+aGVUBmSxhlViZr1\nNNaNuWy0TJJ+B86aN59T1uc3nUfMzGx0Atrugvzchbsav2LwjJmZXTfp81Gy78stcdDs3ie9POnL\nl33uRb3/7+10ktiQ3h5+6pPqf5VqHd8T107Yk57K+Kwk59uzZfnIYpOMvhdxlHE+u6R1JUkGPyCr\n6EaUCKDwMqDoUiAgJ67mfP+69DE9OLAsnBxz+CkcMlurq7KtRANkBEjGBZm+HNxQbpGsswsHAH6s\nfaTszgG8Ze6mvpehWsUUpEkG5AN0HObiL20O+owdQ1RVY0FmMztjTeJ9hMCr3CcbGZZkC4OW5tAU\nZF2Q/MVsUlRtZER/smFUwQpUxQf+i70ClauianBlMoVOVjY+WvwiF8Ovk7Cs6x2A8Mu6eh3XqC41\n0RxIrMI/sQLqATTv3pJsffG4bKaPv1vaod116aFzU7ayeyjbW99C7x/X9zpkAdsgoWo52d78PQ3M\nDlnMzXNwTuQ+9Jc9t2u9NfkaS7OO428LIDX7Pkgg05z3ElQTkUuwVLSOgqAad+Xr5uijeY7z+3Df\n7PhCVdzO3VY/L2odKJjZApRP+lD3Ko/V1ylreADSpZiW/zqmctVsHT62pv6/XQUV2gcJzV5jAR9S\nMaqmBMJwDgdfCj8ZVHWdVMSxMqCyFagv4eIAACAASURBVLwfp5VZjqqbVBuKeI/yrMUrdWyyoPuu\nt3XfkKx+LaGxqNDuyqrmcnFdGVvLgF5l3+m2ZMtZ9rvJDelxdAz6aR9U2ECDcX6XvRYVZjaiQYIv\nrzsgmw6P0PRW+xf64w41lg9fiDhc5K98kDI34LWYbY9pn36XS1PRjYpvD5YEmwhvapw2p6BtU3Cz\nUPVksYCzwld7zwWy6UELhFBS379ckJ+tjaJKjtg2qIjpRNfZwf8aKN6oWqqZ2WPZ0B7e0PWyG7LD\n6+i7c0J1GFB6gO7MYV+fT37ITfPrJMk+0lbh9gAB2OpL18MD+ZHJHnwaORAtWfZTvDabIOMyarMH\n2nNvR8i6EXw3kZ9MUYksYRn6rt+VQYqEZP3dITbGqYAQ5MnUZSy6oNr6VCoDQcL21jJl/D02vFSH\nv9OV7hJjqs/dUTtv3BEiMDviecClOtMF7W2aedlklXUuyzo06MiP3bmp12AmFELGxYawmYSrduQq\nam8b5F/jPng9iuqPC4JoCrrj8Kr8WosqS0dTOcDaBc0xgDBWX9I4rm7CDwXKb8TpjHGLB5v0R+OU\n2d+5bWZmHqccyvCWDLvwQSXka8q2pfbDBzXlfucfVTs/ZkKhhBHC/oS9HVxFiaTm6K33qUDc0X1z\nldIHbZkd3bLjuyXrt0Ge0KUOfEHjd4W4u7PQvitYaC2/76LGbJmKt5kiY1OW8vY/rX1s88x9ZmbW\nAk2ab3LKoq8+jo41FjsD2fQR8YHzZzSGmyWNXWMLJBucqlde53d39eoxaKOu/MIWJ0uiasVnSmpf\n4Uvyt3VKLb7ylpDkZfZ973Li5Ma7el5vwjkVkd3O4YytntW+vEH70kA1iyAf557e331bYxc9S/0y\niZEyscQSSyyxxBJLLLHEEkssscQSSyz3QO4pUsYlKpgk21WrgBAhE7K3rwhVZ6D39YcU2aotKbra\nCRUVrRR0Xs6vK8I/3gWlwTHrtaquG3Lm/9qrf2tmZoNthQJXt5RRLjQ4+1tQBC7V47wmQe8c1TNm\nnNvMwYC++fTjZmY2adHuA7WjurxlZmb3P6Qo5hyW5lffVnZszjnGy5zzT58nO1pQOHp+qPa1jziT\nR4Q/VVeD+kS366RkJ5wPTLtqR62szII392wKi3c4g6NkW5H6dkbXTt6vKOInnlBfAmrL77xAJHms\nSHX1siKzZ+6Tzmdws8xP4FegUlQwonrFWNFUioFYuf7Rzvg7Pmcu+7pAnnN9abhkpj5VR2CJL1Fl\naZDnPLlJh3lY7+egH7yUMsdOMaoOJVsczalcxdlflynio9NuV+8bdWWRAmwquc99OCNKMsmChYww\n9HX9MRmNMCU9RcziHbJ+RSoIFMnahz0yHDCI5zmrO5zB1VIgs4p+x1SKsaQi4Euc1++2qBJFpnMG\nd0yUOZh78DiZMuMAkqwCUifiNhhxtjbBuMzJ+vme4BGZQD/MZHXfKu30JrLNpRQZd7JcUfUrjn9b\nSHawMP3wHPivk4OJuFjuurfNzKx5RVWLvpBQhPx2Shm73YoQFztvfle/e4j5fqyMqvu4/MTH3+W8\n97501PhdRdJfHHBO/G+/Z2Zmn9lSVae/IRv92bkGffCE7nunpizROVfcMoupEBEvHmrOPdtQBvKF\nn0u33vTP0IXm2PL31K7yI6qudL6tKke3Lj6p778t22m+of7d6SuDcYROk1MhhZIXlJnYvCrb2Lso\nJMqln+p3LUf3GZNZnVHZJVtT+9yh+vsHU+l5VlH7nZ+DtnhI+nm7Jx/TyuoM8uvvyQ/evyzunv7n\npY+jky+Zmdkn3lc256/g6XgK7prrVPdoPaPMauPf46Pkcmx0W+3+38sfrbLOhWeEkHl6TYicFv78\nhz8UuiFoK4MRnQ+fk3Wc3qWSBRXaElkyLVT4cTinPgH9ZoOId4nz8syBdElzKUM2K+Po95VlZWBy\ng7SFVN2YO2RZMvJPDtXakkOy1PDilFbg0lpIh24ILwfzsH5e83RcpKrEAUgOuL2cOfdOk6HFH1gZ\nlFBB87hMNQgbD7g/XDZk+KYz/BjVOPpcprUvW4s4BdI+3Faglgpw40zILOfhDkvDQdMdy3aLrmxs\n4sNDQbW6NplbB16eyD8m+X4wOD3izswsgBNrlAJJCcoih99yQZoU8mrvcKJ+7Sa1TjpUgeqUpN95\nSb4kTdWl4jaI0hOtiyX4NKqPy7jfy5P1g1dqAadNCL9dIaM5sXgJfftal4uND7dyfqln7QpQp7r0\ntTjS+FWosDO5A4eFF/G7oF+GGTCJpaiCMp7rek3O3y9K0utBV/Z0nNV+wlnm/P+m+pkZ+9Y/Vtub\noCYXOappgGZNo1NzsTnQqCc1rdX+Bb3vJuFSgVfBN+mwgW4WfarpdNVWl4ovQ+6Xy8HpBCrVj+6b\nPn1VHTOz0pKMbo35nC3LRitZKtecpfIZtuFcUbuHM+05fPYoEffBeFvfOwdfx9olcS10qRR5cke/\ntxOqfMw0OGug6pKXtG6VqKIXvKR989FM+kuy53GYq0twIRicjv0AtJ0HihhE0qVl7bMrOe1Jjtkb\nLCh5OWIPEcCDt0Y1lSkVaCqQ2Exf0zil4Z/yqCDZ8eS/fZBNGebeahveP9ARNYgJy6FsP/FzOHKO\ndN0yvrIXVUdl316GGyxT+hCenZ4emgdKZIWN/X1UwzpmPOYFtTu3ATqNaiwRCvg00qWPRbL9PX47\nYz/pFlg7H+bZp0B1O7aja55sPE9FmUmJqnkgHkO4WHJR+c68xmjGfRMgY/wqvEtwrcw7stXZttbi\nu1SYSlI9s74ltHHyDAhs9sdFECkVEIItKoNFiJkWnIEeVQI7d2WrvZt6PwN2tLzM2nlJ6IomqGGP\n6kh7d9W+HAig0Vj3meHGfZDc+Yau66dAVG6A0ITXKG+g0zj10AcJM719W/1+U+vU/m35jOaaxnrl\nrPZezfu1t8sXdd0y++8T5vQMDp5hD0RmDx4Rqk2dVhZ8P8spkTPnZOMbJa0HYQFkPDykP3xRe8Cj\nPc3hy4+r0mU/o71UGfRvlWpVF+oa/wrrw7yrfpur+2xdvvBBW37vn33V/GzDjo44NUA1Sg9+uHfg\nmXvwovbBHpiOGpxX+9d0mmJ0S21pXNAYV9aFRA/gp9x5U/M3CWfVjP3qnP9TcMsa7AsvNDQ2+z04\nrpinxYzmxpk1jdFGVWNfbUh3bR/0WFq2efeln5uZ2UFG9ymMtE9PN+DxI66wcUFr3EZ/y8zM1gvw\nwK3ofgnWPhcuxzADRyz7xEVOfrK3jU3eJ5vahCt20P4QnfT3SYyUiSWWWGKJJZZYYoklllhiiSWW\nWGK5B3JPkTIhlWx8yl9M08q2X39eSJL9iaLMm59S1HKDaOYUhIxzB/blpqLCRU+ROfcMbPyEnNwC\nTNVUI+nvKcK/3CQC1iACluRcItWMEmRUjPOJA1/R0RHZyOaKIoZuQtHI7btv6/ucMd68rDN0LlHK\nnRtqVyPJefpVRTVDKlqM3iZ7eVeRxLmjzzdWFMFb+pzO5kURyvSeIoftHelt3NdrfhMUh5pnrYNj\n659Q/ehAkd0gybm+C4pGbuQUOfW7inr20W0A+3eDaGICfoUpEf0ufAizA1jNXd20UtVrGY6DEsiS\nlH00dvKhkV3m3HAeTpNRSf2Z0o85aIVsmXPonKWcUsEgQwYzlSSiX9BYZNc15kdUSLl1U+0rU6N+\nnJI+Rgf6/popsj2KKgSg8znnmd1Vzv6WODcYca6UZbtFskx9sutJMqFp+ldJkjmBg6Ye6HqDY90n\nwRnepAvNPUihxUgDMiRzUtvSuJ4cy1b8gym/j85j6z69IufwOQfu5fRaXIlIJdT/xTW9d0a6fg7j\nynFecsq50FxRel6uqv296PzkUPfrkhEaM2eHnB81sn5OnhT74vR2crz2N2Zm9okXfsvMzHappvFm\nWdmg7FTZ52cC6e47OWWDHigp61TuK8L93rF0Ua0qe7B9Sd9b/KXG/quf1hi/tSGejK6jrMUXQERk\nOlQuONa8bLyoPr9eVhb50/dpDvzNrniZ7laF3HmKDOLNDc21/IoQPOWx2p0tfNvMzH4AgqR+UzZ/\n+DWqTfxIY/Lo1j8wM7NXl75lZmaPvC2Uwltr6ud6ThmL/I/U/nFaGY2NkvpfuKUMwHpZvmBUFGrO\n+bRsrwOvVDGrsf/+Z8QF88xPlG07WJWNZ6hM8MAZZWgPXtL1tt9X+1PMyZufFTfN47uqwvTKuvT8\nWPl3zMzsbE/XXczkV/cvSk+HF6S3xmflt+1/sFPJ+Jb8/887Qkreef1/1vWu6Jx1Yq7752dkoEG+\n5OA+SJHRSePD+qDcfKoChrlfnLtORXqiqIyNQdBcf0V629nW+D7wMGeb13KWx2/mqRyYgY/GBVUz\nyUbZHyAiIGaOrstfH3e0doy3Nea5LfmrElWM5qFey3BQTRz4zKje1Otqjdvdka6cvO53FgTgKjxl\n0AeZ50s3GTih7tvUnBmAwDh5X9kpD+4oB6BkmjVvvy9b7t6Rn2hs6vrLOa156YLmQrUoPfThL6I5\nNhnJ7xwNqNbU1HWLA6pxpD7aFmdSg1cCvjY/UGYxnZLvcDOgo0LZcOeW2lOG4yAdVe0AGZQAYdQ8\ngivrmuZakcovWx+HlymQ3vttjdtijXShI59z0tP1z7JXOUjKZheBUBJervpBHzLjha0CmOwdSeFF\n+PVqVF/skBmP/HMOJE+2CLoj0PdPJkIj5JZAcK5L8dfhBmql5NuSFX6PXaWO1YDSoGiZI1AAU3QH\nDHORh/8ClKifg78HTo9pAR61ZelmlgPlCt9GcFfXWXW31FYqjXhUhimBFuA2lgRNNQcOlIRbMBWe\nvqqOmVmY0JikilTzo+9rIC2XMtqHjnc1J6NKYHMf/wji7mhXuts/0pwd1oU6un0FFCscVV5b60KJ\n/XIS7pg06NUl9olTKuUEHRAx8EpNQbS0WTe8HlWnQHYuaF8GroblS9oX96/KFq7/XP7KrZHVxzT3\nB/icO7KFA9AbZy/K36eMKlSod4JfLbEH8YdUepsyNzrqbwWum00y5dmQ7D/V/aZRJbYBexnspJAB\nTbYuPXtL8h3p8EMfUHXMDt6U353dha+D54MGvmK3ReYbnq1sVq+p5Om5hxp13Xt5XTZRzMiGj+9q\nfs8qmk/1inTtFmXLs324QHaphrQHImMEL9wtzYG1NV2/BHLNZ5FJn9N1N5fh74GfyQPBmPA0ryM+\nnkJJOi6zVmUqmr8OSJ4SlREjhKAL5H3tLBVpF7KpFhVpF1QgyzC3ljfV/+Sa2rm+rt9lZ/A8MVf3\nuurXyY5sssq+PACJs7olv1et6ZnKm4CgGUs/Ic8lblpr8aKrfo3ystFRF5QTnD5pUHmbVNatX6aq\n0ib+kqpUQ04fTODymR/qfvO+5uTSJdladol9a3h6hLeZ2TI8ddlaVD1V/Xrvpmw0A0QoTMLfBDLo\n8Yf0LBjxUr36pvac2Qsa17dB1fWPqZLbgEeJcckvyebfelU+5598zeyd97et9d6r9i7PCmfulx+b\n4H+YXrZe1xgsykU+l01l6hrrIdXpEhkhRLZ/flv/h2ywt0NVJJ4JN+4HSVKhWhv73713r5iZ2WFL\ntnH4jl5v9uTnmhuaS1evah7nV7bU7ofYcC1kO+sNqhQ3hECswglz/erL6t9dzQ3HUwfvvK74Qw7e\nowRoqf6u7ueCkB6PuA9Vn4a+2tdsqj9z/wB9yJb8CUjrwa/2IzFSJpZYYoklllhiiSWWWGKJJZZY\nYonlHsg9RcpUmoqAn+Ps2Xyo7M/UU8SpvKLmNZvKmg3bnNN+F5QBmQPHVYQtKCnamCwrstVIK7p6\neKhMxPvbur5H9NjNKrKX3VPEzol4POB4mZHBzricLyfKuERWKntOEb23W8ogb48UraxtbOn+64rU\njbv6/ZTKO/WzapdTJFtJFs3lrPGsraju9jvKdC+fVdQ7s6kIm3NRkbjafYqyRizxnYmi1itZ/b/b\ngkdgGFhiqnsNDxWBTRMJblI9KZtVxHj/O4oSHlBrPlOWTptEuKsXdJ1sVVHSvbyu03Kk2zvvSAet\nfUVgV5Y5mwlnyyQAGXFKcUGUhMCeworGjmPQluHM/jihzycJRTt3A/U9BRIkDSN4VK0k4mzw4XvY\nh7NmQMY44CxvlfPRYzgaelP4OXzZ3jFZpnyZ8/I13bcMp82cs6eWpzIBLPApKhkM4bFYIdrcdDTW\nyYnaVw+oPnUkPVc5t52vyrb2J4r69ke6Tteo0ACj+LEPt05+Dz3o+oVN2ZhP5iBIkkkpCJ3gLsMR\nNAIJZNKfO6OCBlWpMiBgpn3pox5yXnLAmeqE7GhQoRIaXAcD2j3nPLlbV7v9gDO7/uldk9NTVaXk\no7K5N8jSu6/rHvlQXCKvfE6R8a13lZ1++C21bTujefypA2X5X/4MPDrfp2+/Lxb29b+V7rxlVSU6\nrFEJpSZkx6VrypK88LCqIT2x+IyZmfVAEb2xIR2fS8u/NDrS1e1PkDWngtegrPtVXtD33luHl2dJ\nXDL1TXG81F9SxmLpIWUCWpwzfvwFeJW+LBt4OiluqWkJroV/pLF8M5CtP3KDij/Zr5mZ2U/vSo9P\nHEk/z78uvaSeZUzfEdJkfV3te+NzyjKlDuVP37up12eLQtH1PvkTMzM70xO6K/szzeUNT370rXWN\ny0MvyVcswVp/8DH55cTv6Yxw4SXdr/20xmH9jtp1Wtl/Xnrtf/8VMzMbHkkfBSriZDKguPARHhUO\nXI/MrEu20NfrekN6dsj4LOBGCyPUAZwQWdBj61RlSU/kS4vwVzUrsr9cKWMGp1IKpMwiCdKtwxrB\nvAlB8p1QicobKHvvROeyL1CVjupDIWuWewSfB9WSHBByuCsL4RC472OymUqVdWNXyJkJaJ+EK53V\nGtKFB8fUIk+GFPSAdbRGBUX5aW+IP6d6XTFLxnZJv7N8VCUPPpCuslNJOKnu7sEzgb+ob1CZocqe\nAOTQaEalntlHQ2ZyPNycAnwXad0v4lqZwZU2vqO5YUPp/eyDGtPejGqGLbhfyHyG22pflip3D1xU\nJTKb6IajQ/nhIoUlZ/DoTeF5alapgnegrGWSc/WFquyjPv8Q7eEucpZuMd75qDqX3vugFVKU1ihR\nMafBQf7+UO972JVRdWqdc/H9vj5vtbSPyN2n6y+WqNIE317ljvTR8KqWOoAHgjU7D9TChVPPKcMt\nCOLwYA4aChvo9WRbjRTzEoqVPhUKy0voeArvBvx3BU9reAHuKI81MdXXfbKssVb7sDrPaSSq6jmc\n6D5tEBzLzHOvAuqBilxTOEwW+1SCDOGiyYJeuiS/WIX/rQ/6dgQ6rnZBujxXBZ1AtaPgfY1Vf1e2\nOG7rvln4jjyq1wVj2dAQNLCT0OfDAXsGT69nEiBMElSJ82STBp9Qew5iZKE5OsHfHRxrb7G1rP38\nygNUC4R7K8XeKXFD/Z+NqRgEKrAGWmNO9adKXra6SvWm2VBzpjUFEX6g/nbzut48QlZp2bIElRuH\nezKUxuaHHA6JVGCZBvt+UNc3b2kcE9Gco/RcHt6q2Uz2UYXr8TQyBqFw5wQEC/4jyZgGFX0wW5cu\npxP5x27A51REzMODlKZaXQFusSwIm1wZFNoDrCHn4ccMpfPj69LBDBTSZAbXSiFCPrLecGogCwdN\nVEXP4BDMw5eUhbNrMIKjxYmQ6SALsT2ryv9F9apyoNvaffb/PRA8oAbaN3luoOprkgq6Tk/tj3hA\nJsYzWqA5vLql+2yCrGntSO+72KQPN01mDl9nXe3PwcEzBfXgsi8f78m/br9528zMhuhrA6SOA/LR\nxzdlMuwx87Ll2ZSBPqW02ppj0z2Q+4Hs5WQg/3oRRNQip9dHL2uOFopqz11QIxce1h5p44L2UKOr\neuZdhhPOXJDwHqc8zmtu7dx894O2uG3P/DBhW1X2N2d0zQHVhYMTKmHt3tbrj/WsWJzJVqtLPKde\n0P66MJTOO1TMWuZ599wTQmyvlH+xcuAe1Yi7M+nkvZdf1Pc2tb9sLmu/29wECQk6yhoaw62zum73\nUNd7+4oQ6UeOdDliX/bIk/pebm3LzMzqoPpLVNi9e1X9ShdZp2hfb8TehnjFIWikgisba7raMy3D\nNbndkU2nQQ6NQf6lQHP9MomRMrHEEkssscQSSyyxxBJLLLHEEkss90DuKVLGWYJ/IwVjd8h5v/sV\nFdxowmQNw/WA7FQO1vgFZ2hthd/V9Luzj8GeDIt9bUdR4FRTEbB3XlZIfZda7kMYurMO0WjQFpkl\nzvUvqx0O5xDXP6ko5eoZZWqfe15R2YiJvFBT9PpwosjfhGhvPk30uaQoa5DgXOMlZRjWKS/yzvM6\nhz+7qt8Fy4rq3v6ZsobZFtnCS/r+WaLj9z+jKi0JWPivPv+SmZmFOc9ScKx4y4qUVqi5nqNW/GhX\nGbD2+2QrYEMHEGEhGc0Z0cJ0UdmnBmcTl595hr6ozbfeE3rI31aU9PZ7t3W/3K9mnv6/i19QtDKX\nIKMIailJtm3gU4Elw9lc+DAyZK9yGaojweUynSiiP6E6kddSFDPjL9NvRW+HU0WHD8mWZ8gMZF1l\nDJ2I42YZ7gCy4LOG2hMmNUazmSLvHugIt8Z5a86kJkLpq0RFiWSHLF9f7XBv6z5bHcZrQ7Y1AIly\n2NecKNXI/pDZ3u6pPaOE2lPakE304G1Kc9A+wAP0TffNVfV/pyLbTZFNapDFzBbIkEMVExwpau3C\naVN24Xsaq1/zpL5YyOh7Tn6APjTX+pzvrNKeGefL08Hpz/k3MrrWd96VTpafJmtUk/37TSpR7es1\nN5etf+/RZ83MbHVf/mPzLFmYKzrLWvmybPqRuebZ+88SMX/1i2Zm1qJKw+dHt9X2hrI1Y/h3XjgU\nF8znAo3l8XTLzMwuHClyf3L2TTMzu+8Vff+wpgj+jZvSXfN39P3stvrzm3d/aGZmr13+x2ZmVq0r\ny9G4of+/de05MzNzE8qCPO3o9YiKOUdk+fde+r6Zmf3j39B9R/A+3bnx78zMLKgpXR9clV97YEVZ\nl+ldzf1jEIUPPqaM6POvkm3Z1vUf+R3Z3E+/K/2cDz9rZmZnb8r/vbDMufSi0AIHr6m/W1+Q7f3w\nQBmSR48+YWZmGy/pe5MnZazrKVBfd/W900qRLOUC9FgNvpRwqP73uvjlaFWskKWEQyGg8sN8Kjub\ncaS4sKr3oWmu+DPpZwbPVKYMXwtwiygjU32KChspzXFvPLShgbYh+zQbah6myfInljjrP9a8Wqvr\n2vlPaf5TqMDmIAy3r2rN6B7DN5GPuFZ0nxJ+3mcNznjSSaGqsb20pbXnxoH6MoXbwC9KN3t78j/v\nXpMtJ9PScZPz4c6JbKcMsrLsUvHAl21EmePUVlSNTtfNgJRzQdalyHKtw2ETcYgFPn7mmAwtyA4X\nrqvgI/gRM7MOPCHDtQiKyXrY1n0HfflJf8i6VJVvqJEFWxywzrSp7ANixx9KH2dBGLkpvW9fpxIQ\nVfqWJlRRAaiyCnoru0+VvZc0TstNjXuurjke7nY/6EN6v2ZlkEvrS/DjgSLxdqluQtW8WkWv/bn0\n2AOpmETfqxdlUIcgHnfa4ndKV2Xz2caWvj+igt2Y7CftLU2qlgs15iOqaham0kFior65oMLat3SN\nJJxU9TGIMnjuFtu65vGJ+rLh6//TifaRAKWtmFQbZiCrgxC+DPjZIk4rJwGqtGUfSRx4I/yUdLcM\nEiR/CPIZBMscf2FUA2qD8EgEsqm1S8qsXn5Ye4oCc6MAgnKWkO339nS9924K6TeiOlHyUNdLz+RH\nzjbhFwJdl11mrnU0piHcPQWcRGJL16k4ak/jIX1/6T6Nz5wKiJvLVNxiD9kFRVHIq50PXpBeNzbU\nnwxou94N7f0O77AHwv+FzMk0++7xnP0149XKg5atUQkNfrmDLlWcSpojTVAE17eVkd7fAYlzDC8S\nlSPXViK8hll1UbdCVpnufE7t2HlP60mO6mAbG/J9Yx9kVReOyqha1ynk+Ag4F7yY603x1KXOw5/R\noAoayJFbd7Un8OFQzOJ3U2HE3Ud1Ofa5lZLGfMSYBIf0nZKzR5T/XATRWgSijeqfBpIxmZHNrIIW\nnYDc2H77eV1nV7pcvSwetwTPLF2qspUe0PNDfVn9mow5tQBfUfT5nNMJrTHoA3iQFvAKBSA4Usu0\nKy39VGlnvarrVFjvTg6pZMb+86At/sAOyPM0PFEB1V7zvubofEN6DZlTtQA0LgjN7rHaPexS4WdZ\n/du4KFsbTUBleVG1VunDS/N8Nf7Q1k4jGZCxlQtbZmbWYO6UxvLrG2v6/52rWndOeE47WkRVZDWn\nhiXNwRffFM/hvCs9b3xCKHEHH7RIyB7yIIOKxeMP2jIZZW19NW/uWfwk/JK5hN6vrIMGmrM36cjm\nxlRIDPJqe5hi38SJjgeX4YaiitHbb2lf3qI63Kyv+bfzkhDTjz8rRPjKxzkRUqcaaUGv7QN4gxa6\nX4QWvTXQddrw4o2pwPjgGf3uiGc/g7/H4STNHGSglybe0NFc3HxIfiAswaPZku6bZ2Qzo7HiB1n2\nSgmQhIOp5r4P32cIKq5J/4epX12hK0bKxBJLLLHEEkssscQSSyyxxBJLLLHcA7m31Zdg3O5eg3Gc\nM6VnHlAke+0+Re6Ht6jksCuES+cOVUeOFYmvgAzxqc4xfl9R0uMdXW/kKZJnK4rgPfj7cCTMFb32\ntxXxO3hFEa6dI3Eh1BR4s+z9VGmiPrkzV3T5zq7QIMNDvS6vURGHo27TXSJ6sC47oAiyVPRJb3BO\n01HE7+Smor+TE914436ylRd1lu59qroMXlM0++ZPhahJnlXk7fJvqlrKCtVJ1jZhny+FdnWgbHZ1\nSVHDB57QubcFZ1WH7ys62LlN5q5Odgl2dZsr2rlCJardH6tyQKulvi2vKkLdXNHYPf3Jx8zM7PgS\n1TWu6PvTCHpzSkkuFMVMpDU2cGqi9wAAIABJREFUxTzcBEVddzYki2HqxwgW+iF8Dl6RCDHR21xC\n0VE3xRnYqVABI7gAEl3ZUI4KEcN9mP09Kt+scF6cc+XzrsYiY2pHrwlHAkieGRnFKYiQ6GxnYkkR\n6hJZ8jKR/MVdpuQYZBJZvWJa45HsytYHU2WNUnVFvsvLspVCTja1f0C7QJGsM56pkWz14ETjlV2S\n7bucq3fJ4HgLMvO4iAzVudLwHvlkYkIYyGtNfT/fVJy3MyLzmtT3HEBi86L+34MjwyejMnA1nglY\n7p3U6ePF0zc1P7cuqUrE+bc/b2ZmP25Kd4/cUFap+TRZ/oH6cO1VRewna/IHP1iissHulpmZHf8f\nitwvKpoTK19SdadDqcK+2pGfOMjoDO0io9+v7n9Z7XE0Rte+oPk9+Z64TB79A33/ldd15rW8qbk4\n39N9H3lUNtf+ieb1/pOau10yhJ6SITb4ElWIQLQ01xXJX35GGcvv/kTZrseXZRPHZ+Rnv3KiMT38\nrrh42r8NiiGrudF7X4jC6zn1t5SRzRwH6t/kKd3fS4AEDMRFs7n012Zm/xd7b/Js2XWd+a17zu37\n/vWZL1++bJFIJACCIEhCAClKRdGSXCG7VH+Cw+GB6z/wyMMa2AOHJp5UhSPcKEpiiaQEkhJ7gCB6\nEE32r2/vu33fe/D9DjMsh+iHUXpw9iTz3nea3ay99r5rffv7rPgWPEUx2Pg99Y9N3d/pyGY++qFs\n+QZn/lMn6pelgMbz+PNtXfdljd/luFS2kh/3zf7tf29ukkz0OcuEzGxoiNrdNExDUGUBfTEcgboY\nM/dQ3kmA0ijk4HlhLrSYC+GC7guh/jWKwFt1qLke5bkjOGoKU9l8Hc6G0VLGSnmQK32QDjmY+z0e\nDTKVTUfzN95VXVpt2egAhGAP5ZXHH27TFtW9jApTMAp/jgPfBUmkENnh7XsfmZnZ/Y80Zk2PI+yi\n/OWCkQEFHRSBVycc1/MTCT2wiVpEkOv6UfV9b0zGLgaP2pn8X3uqjKcb1Zzp9fFTpj5ahDugj/JM\njMzw2JFtO2P1eSDIniB0fsUUM7M5eapES2M6WtD7hnD5OA31cz4gJ5CFn2IAH8Wkr3ZlQ8oudrGR\nDPx04RF+OIgKBuiBSUTvGVXUzlX4NsbwkjQ+lQHkUKa5vKS53+2ovmdno9+1ITdKmxvRegQFmg13\n1Z4g/bOY1Zwa98mQc47fXDjYVlTf2QSUwqF8mZuA02J5Xf0FF0bAKdBv8L7UGJ9w0mIBUFCmvnPa\nGpsoqhaVlsauO1JbyyXtd+KsPQ0Qw4dnGoO1ida6JVCxlRqcMqzpabgKaqC6AqjoOKCyQvDqOCPQ\nQ6BJz13goomGZfMJ2tep6rkANH6X9U7myPRiK50WazeIucbn8g+dOrxu8DIZaNwAHDRt0HIplF4m\nMdBZu+rzuyjRTBtqTzYmf166qP6KDuHOymmM0xvar4am6v/anvZoBw/IdPfY43gIEfiZBgYvH5w4\n6ZRsdeTKBo9Arkx2QSuAWkhnsKkQz2mhPDkE7cG+OM4esTby0HSyi/gCaiogw/M3hFIbleA9QTms\ndqr7E+xdc2GtJ2Zmk17CAvC8xFf0vE04Hj2+kj7+/AhkfoA92BLtPE+5tKk1fbksfzmHe/AQJEpv\nV/NmCFqzEJUtxdNwn4C2n1bVpoPfitOrsSsbcZMegY5suxgBIVJh/8qYRRc1xikQlmEQ3ZGc3lM9\nUT2OUBlqHQiR0XqIEiGIyDIclBP22cEiKH9PXQl1tgbcj60T0E4o2BgIUIMrZjDUddOQnpN8dl3v\ngSusDLJ8BvfNHN6gnQ9kqyNU9zplkO81/RaMwW2V5XRDDrXPOuqzwz6wuJTqM4HDJXwMdxi/Seke\nS6NiVYczMQKSKb+ITwNJOQdtEcCvn7c4oM2gVbLJXDYbicnntU41Vw/2hVCMgmr2eJYmoFCSbY1X\nxbOPiHzg6da2ruuzzjryNZ+8LR8Uzz05uXDab1o6FbcS6mb3fqn9b6cLZ9bFdTMzm8LVtPGc1qAg\nKpVdD/GI8uHZB7LRU05Z5IPqw0MUgG/d5nf+Vf0OX4fXaPk6qCS4/Rygyzs7ats//UZ9UU5rPl5+\nVn4gCtIwn9P31/n9nIPrpv2RuCCPQbPWKqrn5wdC+a4WGGu4c2pj+dPCsuZUbVvf1x+p7yrwNF26\nJFueYdOxhJ5TQgVu2FR/VuANGsAD9C8VHynjF7/4xS9+8Ytf/OIXv/jFL37xi1/88hTKU0XKVO8r\nYnSwpehdeFExIo/9fdZT9iVYVqRq/aairqOkqp3Z03UuqkZRslHjI5i9ydK3yIQOxnpPBq6a0s1n\nzcwsAidNYMJ5/gf63OH8de1An9dvK/I2nIGo+UCZhRjs/rmyInaLnENsBBXVbScUaaygwtSjXmUi\nauO6vvei6DNY9nNr6/p7AqUJF8ROWxG4eV/ImsREfx9sKRLpKSNEObceqDZtElPbrr6u6KZDaPb+\nL5R2b53qWVOyz1kyphFXY7BI9np0rL4++EzRwhxnE5twgcxgnU+k9O5Yluzyq5wzPv39zNP/vMzn\ncCFgql1XkeogqKVBCo4EsjdeZrWKElViAG8DyI/2GWdeK2pnhoh3eE/Xzxmj/Iqiu6tx3e9AMVAk\nahzBprpEcesuvBIoDrThNuhxrjyEekbN0RhXwqg0maK6zSEIHJSD4hm9v76qTEGA8/iBuPq/wpnc\nkavMgAvKLDyDvZ9zmglY+l3Y70MNnjOWjST6ZCQWUfMADTDe1vOGNb0/HVa7JmGyWET0W7Dir8Ng\nPk2jxuJwfpxxcy5qTsxIJIyKakcbJE/A8Vj+uaB+fpWuC4W/MzOzn5wJ2bHhaF5+81B9tP0d2fa9\nitp22ZUq0pdAfOy+/2szMytGdJb1blJqQc4zQpw8iuhc7p2/lxG8cPvvzcyss/o1MzPbgq9jAGoh\nMX/LzMyqL8pfvXZX/qL7Lc5Dj8Sz8drFb5mZWQhqlPcuqL71BZAicfmPyJHG4iSuPnz1liL+W58o\nM/ADmPlvNoVYeQ9OqnhFz/nI2VZ7e6rf3yb/SO/f+ED9dcp1+M0VVJXWbwhJlGx+1czM8igZVKdS\nl/phR/433tH7mo6QN2+/JJsoTsh8f6T2f/yKbOz6sTIQE1fPe3T9L8zM7MGnsvnUHWXfnitoTtQj\nmltnD+SvL62ovXsv6P3nLUGUvqacq5+DAuiRm/DUqbKL8q+9mjL7xweg/Lqyo8Wg/l7OcB59A/Uq\n1qEefErJoHzHhNR5fQRXRlRzZUJKJLmh5xRXlmxquibAGftOz1NXAw2AMosLIqXRkU0O4DpJLKvP\nPN6IdbJGI7heHEOFx0UZKgSKAD+RJUMbg6KktsP5a0/5JiL/OewoMzkJ6/mLF5WRTYK4C3BePA1i\nBjfxO24YFzWMKcjBbhjkyFhjH2FdaT9UdqwLAuWAfpmD2spzzj0AiiwGX0XH4/uZfzGkTKitsYzP\nhW4IIPXjbIFuasHpkEEmCQ6ewCMyqSAKHc7jR6IgbVx9HqIaEu5jg+wd4iAhUyAuO8fq74NddVwa\nnpSlS8/rvjocXAcH3Pekndl0whCwtJOKMspxEEvlBaECXe63ivo9SUa7ESCDDy9HIKPPgDIsjj31\nQTfM6qhNofbSP1B9o3HdEHEWLFAHWQIf3RjlwRZ8Emn4xbLXtcZEyHZXTuX/jrZkazlXdV8GFTpF\nwcvG6gPjTP8E5Fkmqfk38NR/pqpbpKvv531d5/FXnLeEgqrnUtZDPclWF+EwcNueYqMmUXCm9mdB\nHcziQgINK5rbDz7WejA9gM9tUc8tX5Gfy67qfQlIc+KotS2w39wqyi89/o2QmGNQZAVQcA5IlYSW\nD8snseUN1Ttq4oyp7QuRWQFpk+7CWzSCjwNhmTRKnu4iKk3sLRNVVAu7an8ZHo4EaD9AHXZYhecu\ngjooKGFnjsJcXu2NRlS/8Znmfgglzf6xMvDbZ/DT6bGWon9SSfZSdc3FQOgJh0OuHbMBfFanAd2f\njqm/nabGaYA6VKsj+5uASkiGz8+H6KG8mluyzZqrPtnf0lifVuTXNu+gRLPGPpON5g78FS2y6gGP\n82tN8+piWX2UKctfZvP69+Bj1X3cxIH3WB/YL4ZBoPTH7FnoA6erNk4TzMVLsq3SMpwxK6pfq615\nH89rLhcW5HfrZ3pfbiJ/NxtrsBs9rZ2emmgYbsYhMnfhTZR1WOvnqAU2Uenrfq779z4VKnl7W3Pk\n+h+/YGZmt0FBhJbEH1q6Dv8U6LIR6qq1mZBGQX5LeQiRFKqiQ04xrOGHs6jR9kHofPwDKV4ejLTO\n3nx93czMAiU9r0g9Avw+OW9pTzXOgx2UeeCDyoGWc4v6fvkZ8eqVGYdoFH6nI82Jtqvrv0k/OHC6\nnW5pn759JvRalL3UkJMEz37lq7+ry3Pf+Qur7R1ZKYJS7jXQmCcosLKGbR3pt0NqTX1VC6BOBqpo\n60Dz+8Hnmj+xuPxE+oqQ0MXLQpFF4IoJTPj9biBV7suW3vtQaN0EXLGX7ugkyNKa/OfqimzeQDs9\n/Ez+b4Tq8B6KwYWo6tkZgj6LaOwjY9aZlsb+0rr6euOCTnmsFlS/FAqTezNxNh4/AnWKil2EPVUb\nlaYQqNcTTlFMqV+jrbGYoBr9LxUfKeMXv/jFL37xi1/84he/+MUvfvGLX/zyFMpTRcoMZ8qUeJGj\n8BCVih1FynrHnNUPwEBO8nwaIyJ+SxmTzpki5xUUK9bQWe/AC1InsjfjzFuxr78PdhU9Pf0c5QDO\nd16+ruhwZZHz+x1FfS/e0Rm46YkigC0UhpIrish1j4VOONpWpHBGhiYJIia+ooj9FN6NQUv/3ttS\n/UcNRYcXS7reBTHTJ8M7GcEXsqvrpyjWXFxT5HFyoiht5ZNtvR/QQXs2ttwNMmUvK/o5rhJ5X1RE\ndeXLynJ3O4qkjnuwimdRBuEs5fs/VvSy8gAlqP9CEescEfhRX5H3Tl3ZrXhSGb4MWvfjye8/T/fP\nS3BCFiskm2hz5t01tafpqn6DDlkVB6WHNBF+smVhkBvVvvo46WU4Q4qaFojMJyNqRy6BatMUbgHO\n9k458x8vgRIAvdANgPKC4fukoes56mkx1FAaqp41OaecgGPhYFtR1TjoAyemaPApjObtHufAqVcs\nB8Il5fAe2Vx7rPcuoMISdpXpDVOvTFT1n8Kn4Xg8SahzOAM9d1jBDqrq3+iqMiJtMuOjmPo/9Az8\nSiHVP8H5dBLBhqCNxTlr23A0iXdR3sjn1SEV2O5LzNnpF1A6eHP4bd3zsmwk9EB1bN9Qny0NyMR5\nah0d9ckvzzR/n0/Kth+PQGU9p8h82aGPm0LO7NpXzMws8qnm5/ofaC6sX1afhpzvmJnZHETe5z8F\n0fZtdcL776mv1lCBa6TUZ7mNbTMzWyWDOf6l6v18V3PyvXVli0LeOei3lDG4mlX9D4HanK4KKfRq\nQCpsoSnqF8t63jv01+oVZe/K7ygT8N2wnrt5Wf4tbfIz21VlTq9wxt5guy+tKLsyeIMztzllYT64\nJH9qARCI8FAdvawxfm5P74GSx0bPC6njRnV2Oc1Z5Tcvq7/6ZCoiZMJfbvyJnndLMICX/uEbPOl/\ntfOUUFj9uwN6ILCu90xeQHGtomyc25IPy13W3L4CCmRwgALcicZj6CnBMfd290HUjGRPf/CH62Zm\n1oppLsUROlgoY4egOoZx2ef9R49s9776JFHQNVGQG1OUY/KLKBlk1aeRHIoq5FeSZDpHcKLMUR4b\nd+AuYf7NY6h7ZDUvoz04D7bE6RI11akMEiUBWvW0jjoFGU8vexYzrX2tut4ThktliuoaglfmoCZl\nKZRheiiiRXTBzEV9gkxhH5WhoCPbTDmyoX0yhGMUZQJJEIVkpUIgKEe/Pyn1/yrFDmg29gjBqt5X\nmKPiEdH5d3cg/zk4ANnUQ1HI1XUBFBdmDsoU+NMIaiBB9jpGPwbhepiRxRt9ru/TrmbL4poypZme\nbPgYxZgpKIzU2uLv2hCZx6z9CMVH1o/1C/IlwVMU1HZljDE42TLPqV7ziP6+u4uCBZwPkVX9vQfP\nEqIuliAz3qyjBDTTdStJZUXdUdzmKBBO26xtCc0Xh7UrVKAvg7ru/iP5k15TWeR0Wn5zJScbCKLe\n1N4C0ZGVLffSoARQkArXvDWWseyyZoX0fcdT43C/GJpqhJJN8Ah0ATx3/TaoM1DGxt5hzl5lDIJu\nHEN1ijUxEdV9VdAHGfbDcXgx5iE4FY9Uz+pdoS32U7KtEGofc3g7Fi+qv8JpXR8BfRFEqfK4oX7q\n/kZZfxclzRi24oJWSEbkcwIogQ17GqfTM411tKX1a4Ia04UvyQYLIe25Kif6+/6J6pVOeEhC/Cjc\nEkugbIOg9qYeLxHokFOUe4JQ/4x6cFM0yP6zJxx5ynRwCuUW+Tx5spdww0Gb1eD/w89X4QAL8rvC\nScrnra6o/R7aIgcC5zxl+1PxXpxssR/bEPJkCQ6QtTWtKeVrrAWgfgagmmK8cwDkLwr/zxKcMxHU\n82qg+Q8+15g8+o3WoAkcWAubmjOZS+y/F3T/nLGJuJ4iLMqAZP1TcJ2EsiDyxqqXp87UPdQYtXf0\n3s8//MzMzBIeymtT/iqVQAW0pz5PqkstUQTxsUQfg+pvHMomo6CVxiA6oqASLt+S/73+jPY47Yl8\nxrAK18xd1Osm7NeNUxDLev4i6InABLUkeD46rJdDENvVGmq0KPROBvJVJfzsSlxzbBqBo6et+nZC\nX4xTJlGC84e5e3Iqv3sf3xfcVX/MUVlKhEE8gfg5BN1W21I/rL6gPWoqo3GPJPjdh70tX9dv5scP\ndN+j5hOOzx/8w89tWD+0DGvxFL998bl1MzN7/rZ+O67lNb+iq/LxYX4btTrqu/WbcH5taB8YgMsr\nnVadq6B69/Bjb3+ouhSX5I9XrmquPMNJlhanHII5Pbf0nPziUlZI9p3H4oQJu7LdG6/r93AYfzef\nydY6U/zwVP4gw+/m6KpsNp7X9+222vHru1K7i7LmZbHBzdugskq676zBGJ1oPTjcUbzh3pbmxvVn\ntV/PLXJaoP37eVV9pIxf/OIXv/jFL37xi1/84he/+MUvfvHLUyhPFSmTWldkK3dr3czMJijcBFFL\narcVgUuRbh8Q1Q0XFV1Nw56eu6MzYBfhFTnbV4Tv8c9/YmZmR01FH5+5qehqLsJZ43t6fv9E96U5\n8zvN6PvMIqofVxR9TXJ29s3vKQpef6xsVSSozMdoqM/VqaLhKc5KB2CF91SXNm8qa9UOKZI3LMG+\nP1RUHB0EG7qqd5Ks1HFFGZEpkbsLJUVrE6A9jvYUoTOye0GyjZPkwBbToG7u6ZrDPWWfnQ7ZmYuK\n+k05WzrkXPGEs/8P91THo0P1bWKtSNv1b5Proy4M/0FF6klOm4N6RhRuk/OW/lxR1hjM2rM+qhpw\nxvQ5N+2pgIxaiuKOyca0x6pfMEDE/Vj1XL6sqG0hpOfuwQFwBEu70wC91OU+1D3yZF0KcK809jVG\nIc7EDpP6fsLx4/aUM67YZjgMYgUkSKCreociXMeYHnoR+yj/wk+0AsKnuKR+GILAaddlNbGi+t9l\nbvVQYbKexi1A1HmR/ozPUY7YUX/OAjK2FOoiwaL6MzRXvXbIMDzq6t9lUGIZVDlODhXhX1lXB3hc\nDwBj7DGZoAO4MtwoCmSeAs4cDpovEC6+dltjWnwsbpPxS6+Ymdn+e2r7Itnk7UXZ/NaCIv7Zvub3\nw4eqYzmiiP3hb4VSOvuqsk6vgw74XkHz++YL8j9/95Ha+NW05vMeqmnPKoBvb9X13L0jRfK7tzT3\nGp+LG+F4rOzSN/LKargDZQhiryp743wISiGuPr6TFgnOz54VSm0pImTH6mcaq5VH6tP9rPzNo1dA\n6Ll6/2u/EaotuKbPjW9q7qeP1D/pt8lm3ZBNFMvKCMw4l5xaV//8U0/vf/HrsoleXxmA19Kob8DR\nkAFhuFpWvX4ZQhmiJVWonYT67fA34uD5xiXxdFw90lz6lAzvV36p97yxpuuS352b/RuzyIqn7HC+\n0h+onTlU/b7z7/4HMzP7A/6O97S/+vg/mJnZ9BOhRibHagegPAuCbMmGUBLD1w2OPGUH9WuNjPLO\nB0I0xQPKsnlqBRH4k5wGSJr5xC5cU/YpmNW82HpP2ZpglUUgQGYRLpbmKVlrB+4TzoNPpmR3UfaL\nxvT9PAkvGSjLFlKBTYe6x0GHNtWm7T35jZQDpxQZUxdlmZzHaQOnSXCoPh5FNddC8LQ5IGBKGfmT\nARnFSAAFK3gbRn3N5bNtvf+zHa07+WW1rwx6asIZ+hS8Pg731YFwRNqoe0y/GF/IfAQCso5aR1e2\nnc4q0xjpguSTazCnqXYFQWMEgvL/jqcog991UYmagcoIgHgcHciHJODQGvR4HutCfk3ZwWRQvqDy\nsdalHgpiqSWUZeD6MTNrHNatS3ZytaRsYKIte9q/p4pHAryXdfF0W/cWb+i6i0VxPXzSFootfoLN\ngwBqwcUwqKIsNtM4rK2AtgOJ2XowslldzxyBhIiwRs0X9O6DkZCDB2SJZ0H5m8Xb62ZmVoio7fO6\n+nDvE6AbKL0kQvCeJViD2Ru0WKvy8KxlI2pTG0WrKJw24ULBvkgJT0GBMcdGx7LdNupRLuiAREC2\n4DooDNblX8PMmfCm+mzjebXzNiiseR90LrxK3TZ7jCmoM94fb6pdQdbYKxkQKWlUj+DMmQV03UIQ\n1BxoYkNlJAAXYzaBOhRQxpM3tZ51DjT3Qj34S8p6Tg3fM4Enb+0K6wEKmCOQMB4fVBS+qylzt9/Q\nnuZ0rhdmQNUN8SWpjMY1k5QtpYK6Llwm895Vv8zhMxpk4DILgIyCp6/SgBDQzHrDvs1CoEXgAAs5\nKG0yp0Id9kAgV2MowdmwY+ctA7ijMhc1NgXQkQkQ3GmUYkP8JmjA+TFnn+y6GssYqIT8BXjI4EPr\ndjV2I5QNO2fyf3nQ9eEV1X15XTZfvKP3xtOqz2EXWwJ1FGQuReKa1/GEbGQeARnZgvMFxEYLBZvG\np/JvfQ95w/qyEAfRnsHW4FyMgp7txtXXzSn1b8jGJozBKIx/TKndhZuaG4GS6n/W0th/9mvtZdya\nbDG7qPqvPKs5nbm5bmZmm7d1/+IF3f/he1K+HKPGNGMNn0U153ojjwRNtrKwIb8WW1L9xqA+5kMQ\no6DfPMWy85YZiPrBIpxuG/q32Ne4A86wC4uy+fqefnu2TjW3rga1pxiihHTG+vTT/+O7ZmbWYW+R\n2dSmdOlF7S+SKXEZDQdPNtqxcNEWLq7Zl57XPvSspv2Pg2pS80jz4u4D2d5CQ98fn6ntbz0S8iWz\noX1cFFRRjB9D5ZZsJQbSMBXRfTe+Jp60ckF+obyk+5L8Tv/VA/Ge/uoX2t9/9FDvv3FNe4wFuAHL\noGWvMeaNh9p3NVDWGjE2H38E7+kNIVhmU+ZaX/5rqcx6c6a1rRvkN/EcBUlQaP0ZHIsjrUdnoEVj\nIGJGMY1RM6z7446Q69Pg7+cd8pEyfvGLX/ziF7/4xS9+8Ytf/OIXv/jFL0+hPFWkTAJlntK1dTMz\nc6bKJDRQ+Nn/aNvMzHpNzu7OOO8Ie34vqUjdUprz6VcVzezUxPVQJRq78arON65sKjp4ek8Rre4u\nGWn0yocl1Dg4z5eAmKOQUORwd1+51NBYUdJrd6TW4pL5Ge7DTA7TeYzMcP1QEbMcuutHZBFnqHsk\nh4oklr6kaOeA86Ij2Pm7VUWF3aiiyYUvK/q9cUXtae0qyt5CXSDjKKLXgKPBrgYsO4ZrZV91qdwl\nS0JmMBIj85bn2S8qSx6CT+LBzxRZXn553czM8jk4RsawgJ+pjvm42pgMk6Hl3PSgqzEdNs6fbTAz\nM/psOAdRwTnw031FjsNw1gRgS+9U1Z7BibJW3QRneskwIN5hs6r6qt+RLYw42x9DMSbgqSAF9P5A\nSn+PxDVlZmQYGiHVZ+rqvR6yqLKn7zsw/ScKyrTGOMfcAYkTA0HjRkCBZZQN6rfINKLONA+of50w\nqkYx9XvIJevGeej+TBmLIBnZadhDnakegWPdX8xpXOZHjE+DaG4MWyaKPYEMYr8JqoyM+TCCmkgC\n9v456k9kgOdRjXecLNMxZ3zjBooMbhvvc4Qs6qyn+roj2eN5ygBpl7srsvHxG8oaLcEO7ywrW3wC\n19OfNhSxfkiWqe8I+VHMyBZee06Ikndnsrk3OOuayOvvD/Y5g5oQ23v4M3gsvq3nH/6drr/zFWX1\nH43FfdI6k0rUddBb+bre+4s9IWeKl3Xf8k/VngfOP5mZ2Zc3ZOM/nGrOTg703mu9Pzczsw/rf2tm\nZqd5qUpd+7oyhSdjPe81V+//eE1Z79Yb4uB5LSJFgcwNjU0hLjWpZkXv36loDF9elE/46a6yUq9c\nlt+pZuXH1raFLPoYFNpRXWP4TF42/v6vQAd86XUzM5u/rbF+9IJUr15/Vs87NiFxdurKnCyAPGqi\nQvcn+2r3f8opE/OTRT3/vKUZlY22QaUdGRl3WG524M2a1/9nMzPrPATBuK92JYeybYfz8FOQk4G2\n5tD6unxmPKP+H55pjlb38SkF+fnugd7fh1vDhd0/u7lod56RrR7tyjaO35Zv75r8QRDeNJfz23MQ\nGKGQ/PFikTlAhi811fzrwhUyJknjplhz4JxZWNP57eWb6tv6fWXJ3v2B+rxyKNtPsbbF4ahx8UeJ\nCailBKoRQc7c4x+DZJl7Z7o/SPZtAFoojlpPNKf25RZABIE2LaLUEMqoAScPtbbVeurbZBjUQhM0\nRgr/F/pi640zJotPtjyJimASdNPokb53HY2hQ79Opv9PZa1qFOQOnAveefUkCj29kNqfQnGti8pS\nAAWHUkHjmY3INjv4rl5H7S9lyJxn1E+1qYevNevPQhZD+SsCErJ2JFtOg6BJJOTf557yTU1zdowy\nmocmK4KI6aLmN0TxJ9ge0Y8BAAAgAElEQVQl64mK42JJPsLjLjv4SPY7Gc8sGpL/CsM9UlxWX+x2\nNN/3Q/q3twrnFOigCTZ1uqNnzkB9RkB5LSRApeY01jPW2gmoyyRj4sRUtxkImmFfz0nBqxT3eDXO\nWVxHNhUJeIo1+n7tujK8AdCfYZQRh0dab0Jz9WkURZfpAFRATDYSKamfuqhTjVuag5iiRdiLACoz\nJwjSB9RTY6oxGrXUH4sxuGXgCZyOUc4CHXV2CqcjqdnyDdRM2/p7z7N5lNsyut0yqBKu3NSc9Hg3\n5i5rNjx66RwKQSjUhOC7KoLOK19FDSWIX0VHKYgyUBxul/kIZUe4ZVp1PSe/DPpvoucdoDh0hlJl\nCNR3N/iEC+b46MCCcMOEQZJHC5ojwQCKoeyjW8fw6g1lL+Hg+Qmq8mXNvwtL+k3ShODxZEvz4uG+\nBjUPystAXQbYRwaKendxgf1Rkn3VCNXKHWxkCB8O/rK8gr9CAbY/VFsaj1FzmshvnjQ1ZpuX1/We\nC7r+qIMiFpxiIw+ZM0GBBzqM3hzVtrJs8joIz+KS1i834dmS/h4asB8sy8ZLi/JrsSXVd3tfe4mz\nh/I/1YnqN47q/UP86pwNfNNDb83VD8vr2l8X4e1cfUG/pQIo9Z7e1W+33jG8cfi5ORw60RxqeXCK\n9UB+hzk9EcCXuAXZZGQmP9xz4bShPn33i50EmHm4CH4rzqKay9Wx9nqxtsaj1VO/nd7XOJ7sCV14\n4wXtvYpLQgLl4EuJJLXnS+ZBFgHgefzOx2Zm9mBPe6fy+q3f1WWaKpklxnaIbQxaGrOY6d89kIXz\nFqhcUFArnLJ4Ja59s7uuNaLmqE3xqq4/uq+9zOBEfurSDbVpZZnfPMzvD98XIibSk+0/bsl/Fjc1\npi9clK0twltXAIly+q4Q2G99T2O9+5n4+YooB9/+mvh27BYInquyleoZ+9F9oZJD26rXaKyxvX1Z\n+7rxHHXjU6mf7m7JhqIj+cvldfnbjee1l9q8pb5tzmXjJ5+oXpPu70d4+0gZv/jFL37xi1/84he/\n+MUvfvGLX/zil6dQnipSJk3kPE6Wq91XxCpUJPO4qQjXyTbKBWjPDzizOgMh0k8SKUMNo3qmc9Ol\nZxURu/aSWAPaZD7vf6R/gygMxMh2BcKKYCWjcBtcUQbbnXIGelf1uHRNkTCP26aDaksPDoHjQ/hY\nHikaGc8qenr5kiJn0buKHH7+uc4HBjnTHCPLmVhQPToFGL3rRGPXOPe5qfruD6R2Ut1W9LTHmebB\n1FMIUr2ffeGquY7+f/iO7hnCLh4pINNzyrNvwE3iKMJ6VFFfNmE5D17W9zGYpz0G/UybCG9FdRiP\ndP08CnIlrb4juXzu4hCxT7TIDIT03iia84E0dO7IGrVRsLqSUXSzwDnq7EBjPiHDOIVxf2iqbzBP\n+mnEecc1jUkf5YTOA9nKGSzplpHNzsn+uQnOyKJQMO+qn8Kk0TJ1snEjPae0r/dl4UQI5RVNrVeU\nijg+IJJPv69dhzthRjvqKC7kUSqIkAlJgOxhjkSW1H53BodAQ3aQDCqaHa7puvQZimYXUPFA6mwX\nlFZzqn4yOAxKl9SeQED1iMTIWAd133Si+8agCwKkWJZQbUp56cUj1GPIPLgD1X8eP79rarZ/ZWZm\ns7L8yfLXFLHuvwuvTVcZx1enQoJUX9D8LPf0rvqcNo6V+Xv3B8pCxL+uvlhr66zsjcea96dfUd/t\n/1bzOvqKIvpXIoqg/+yabGHtA9nk2k0QgLtq8/2RIv/uWP5g8fIvzMzsQVmZglAJJZyi6tN+Az6o\nHEoo3S+bmdkvuuKkiYTk39ILOkPrVlS//kMhBn+yofe/vviqmZlNKv9gZmb/+8Yfqv5zZaqHV2XT\nzWNlDG4cCrHyy0tq/9cdfQ7BgzGcK+OxC0fAc6dkEkbK3qwklSX8kan///i7so2dl1SPqCOkzt6p\n2tG49xdmZvbqq7KlH8/x46jY/XhR7fiLJWXSv/qO2vm/2PlKPCZf1+/q+d/7j0LE/DfF/9HMzP7q\n4N+ZmVn6U7gZUB9JrYFyCKJ4NEZRAnRdFDWXwAJEUhPNsWhEPu8r31B7E/gOJ4Eqykzj2kMtZnw8\ns3ceizenSiZvRhZmdU1rUS8pm/O4oTKoy4WS+COW9AqZx/ugdYogGSJp2eA0CDLPAbkX0v0PP9Lc\nuP8L2cDRjtYLB3+biqkPHLLm7lRtDho8FjN4GUDkpCIgejRFzIE3rcc58xmcXYOJvk8G4MLKeCgE\neIrG22ZmFq1oLEJzMpeo84VSalce1ESfv0dGX4x3aNiHQwdVvBSKY22yhmGUtGJN+bUOfjIGOqJf\nBCFzTxnJWUbXF1g3RyCGmqhepL37FvTeGWpSGTKcLlwOrR1dnwWFNU+pXzszeEzcJ8jC2eLU3KbW\nifYQRFNa99EcG6O2FWqq3wsgglo1OBNQvszHlMVsgxztHWsOJqLKrGdyqn/tRHudzgPtH5yZfPCl\n4IpN4QaZg5iogBDcnsm2xi+qbrFroFk9FOqOMrYJFAVLqTLvljH1QRsF2Wt0Uf6beeoaF9gbBHR/\nta5/PZPI5mU7w1jdvkhxQV4E+8xjUKndCvvAgeqTlhuwKZ2eWqGd7GFaPTgF4Sg4ONUaPpt4nAWs\nL2yahqyh/Q6Z7KTmSiYCsgWUw7wBVAU0XL1JfQ2OhAT7WbhXUjPUSOEW85B+6yV9zm7In3dAPWTj\nqKVm8HMF+eHpRHOhTj2nE4+7Bd6RFv0Pp0QWNK73ma2LzeBucDzpRnzKDFtueYo78Au6pufm2CsG\nUI/pgnZYc7EDM9u4dc1mKI51URht7ZH5B1U8sRh/xy+DNllK2rlLJKm+n/Y89U7ZfOdAn+8e6rfL\ndKK2Xbyi/Wrxsup+cV18a/kl+em9PZBn8OQM2S85ruqWLsMRmNZ7J67e45J337mv+XnvV9rbxFCo\nTSTlZ2ot2cbxkdbc6JrWiyzcKbMAax0I+diI3wtZ2XI+z4IwV59tfbit9jEnsjmN6azjIcN1+REK\nZns1UMAdtS+WUmcvoEbXieo5tYp+YwE4tIs3hZ5YAe2EQK3N8VNd1pV2T/edgOhOwNU4CMIZCULF\nXVV93DrrGUh/F0RTkN+qrS3tfY4fa841TtTedOILGImZ9UGFNQ5AVKZBgqIY3DxlXRiB3Gdcvva8\n7MVystm7939qZmYPHqFChVrjM88LMTNPoHDX1TiHXLU/mXmCEty8UrD+WcWq7+ndtZD80RX4Ka/d\n1r5r4QXtA8/gMWphw6tX8AOo4XU+1b4vtiJ/vQHKPrmiPcsCz3XHes5gKFuLBNTXnbD6fpE1snRJ\n+8k4iLaxx4kV03MXb2l/foW17rln5LeO4H5dv6PP9UfaG8XYmzSxmSgI6qjHMcbeYgLPUh5Fx8Sq\nfkcE4GWqHaP+3NBYDd4UuvgI/r0Qv/HirEvh/w9JSB8p4xe/+MUvfvGLX/ziF7/4xS9+8Ytf/PIU\nylNFygyI1nXgqxj2YODOcB5+jbPIJUXS7Mw7a6toYmqZqC3n8R7+TCzNJ2NFQ5/5tiJnHndNK+lF\npRXRm8Pm3qoqMtjnzHGQiPwJLNP1E0X8ejBZLy8qgx2AXT+bUEY9dAMd8hQKCadqz2IYRYaOIm8f\n/kxcCkdbipavf4nIIAgbZ0xGJa52DIv6vAor9NItRfKOHyjiZxswvaOo06woE99X91h1NLPBo3f0\n/88UCU+AWPCAMiEY710UBQ7eFYfM/vvKks8uKKu7dlVRyjJ8OznUeYYlIr2PONf7QO+ptuDTCakP\nAsEvZnIu6hzTDtmmgCLLkQiZx7aXydT1+RP18aqrehEQt3FbY1kuKIOQyOsPk4j6vAOCZRrQg44K\niijPAdD0sopujocgSYg898kynWCTRgZjJaSIdiBMVqimB6UI8Y9z6s9klMOezIVoRP1XIxObhuE7\nh+1227KZyVwR8RJndwN5zhbDct8OKbrba+pz4Fj1HNUUyQ/MlXmfNXXf7FTjFSPK3QMN0G/p/jSs\n9iMyM04QZAzn492Y5sw0JNtLgdxZIeu2B1IoPPCUEeBeqJA9c9VvyaDen/4CSgfz5dfNzCxSk/13\n6m+YmVm3+mdmZhaK/qOZmf0mo756pqLsxt5V9fGVnytL8uvrGvPEV9S2XkJjtHGkyPiJq3n78W8U\neX/5j4hp7+mc8sO/Vh+9/rrU4P7uwU/NzOxfr8kGypU/MTOzo8LPzcxsZ1/3RTc1n29P9J6zf9D7\nv8x57bAjRN3adTJ5P5efufTnOr/9zj/Ktt2M/Fr2npA3z3FO/VFMz/3PoMa++pJY5y/Dy7Frui85\n0Xv6+xr709C2+qeldr2zI/8zDr9pZmZXOQ9eLcrfPcjq+ls/lw95c00InGRP739vQ0ieQE0cMoWE\nbO+Z6XfMzOzHr+j+336o922ApHwvJtRGOa3rfuB8Yv/GzB5eEMLmvMWBayLmqr9THLSuc94+H8bv\nwpPiZWC99NsIRMvAU8ZIgLqLg0IIKcvXwAdkAS9ESAt24EwIkXGew61Q5/vaUcUqd9WmekM2UFrU\nWfHkovpqRF2CUxyei9IJ3AKNU5AOA/njDsjFYglJFepyOiQrf19tmb4lm67XtKacVuSHoqjTLV5W\nPaao4Rl8RdOR5tIxqkeJmerTOtBcSkVBvxb03kZVfbuyoqxbFP/eh0PqtCv/MT/j/LrHpYNCQsoB\nEVSEtwOVjiEKN3OnS/v1/Yzrz1tInFo3DFIkzd6jhgogqiotbDcY9rJhal+lKRuvORqf/FXZWrOE\nQs+J+nc+h/srpuxfhOcO4HAIo1J33Ne4pFAt7IEMrbka11ECrrFo/3dtGJVmdjxS/xcZlwur4gGZ\nbrPXCtCeKIo4DX0OoH4368KlQEZ9XiWdWGCvkZQ9dU+0DvV3PKSk7OQCPC6TccoG7McMtZtaE3Ql\n3DIX03r3EejPAfsmp6W1KkcGs2ugi+IaJGcCXxLImrmn9HgVm0bBsIdyZLer64tZeNPg7ptOvphi\nimHTNkNRBh6iCFwzMxRlRnN4f5gjjZr6Lp6Aj2eCAg9qbQGQdRMXdSEy0AaP06UFIbhLZfV9k7m4\nsoRiDmttEKR0cqx29h+pvlEQPplF7Y0SKT1vhC8YsRcIgxI4I6tebcl2xykQTFXmJCirMPxKACZt\n2gFFMfMQP+r3EX4uPND41Xseqpb+dD0EoT6OArp+DvBnws+VFHvXGMiaKRn1GYiiEGi7ATwm22Ti\nzcwePt62GTyFGfiQYqhPeSpVsZynHIkPGcqXBrrnz2HPQartNNWm2oB9zljvikY0NpOMnpkFRRYF\naZGMgQYYMx+P4e6D9ywLDCuyIP+STKoPgnCs1E897kLQ803ZYDqhtq1ekf/NwGFzWNVYXnxZCo9X\nXhSKt9XQffUt7Q/HR+rLwhV+08AFOKR9zUdw1vyW/TQcjcnkupmZhaay/TFqbm24WLJ5ENjXxA0D\nXZOdwVeUZj8bWJOtRfLYBjbXgGumv6+x2jvRA2oH2ptE2Rfnruj+1KqQfAUUdvPPrfE8+Dgf6r7Z\ngH0t3Ij9A/YA9KeDCmIyBoITFb7zlhk+qsjvmR4L0OZVbPAGHDGs8/06SJiS+qMCum7OevfN1/7Y\nzMyCII3aIPJ77A++tK71ZlDm9xi8LGZmteqBzQ+65hY0fy6U4YSCr7JxpLGzpGywVdPY7jzS/nOa\nEPLxmLXyEI7BF2/rd3h2QX1buqm2hUEtbR/r93VohP8P4D/glIoGZGPVbdngEXPq7B77ySWNZcjV\n/VtwTG1iK+256vfZZ7r+vV/ArdhWewqXtT8tXdW+OHFbfRSCy2vECZh7d9XXWfaBDkq6IXj0Ll6T\nPw0M+K14V/WdeOh/5Dsj899vIz5Sxi9+8Ytf/OIXv/jFL37xi1/84he/+OUplKeKlOnsKpLUeKyo\nZCKD9vtUGZEhZ2sDUUXs2kFFn+MXFAHLrer7x+/pnOSH74lD4cJVRaxifUWmKu+K6wHSfYvD3+EQ\niXOOdV23ryzWNK1MweO7Osd5sKUI2TUUKpyJIl0dlGxCJd2fzSsKHoytm5lZj3OekRB8IZypndC+\n0iWhFWIoH22/r0hevKjnRdcVxc0u6bPHaF5HEalLgsFjME8sETV3FDlMkWmubm9ZFc11L3Jtc/Wd\np0YUhMcnjSDJzvsoPo00Bos5opZ9RTnbnH0f1FDlAOmxviYUUTasyvXGipo2G7yf89/nLfE+HAoD\nLy2ivogTPZ2hFBM5BukzF3ogBGImTXZm4KLuEZYRuEQ7e0PQSSn1S2RF0dY2nw1Oh2CJNNyMjCec\nDp0emWcQJZ5a0UZZke8ErO39fXEM5K9orJMw+be2iLouydacgDIYa2uKdCcKnJMm65OcoTSRgvsH\nTpt+ApRZwEOfkck9grWf85E979DtDmdwH2s8Y00ypQu6vk+GZYSKUjKv/qvBn9SsKWJf9rJNAa9f\nNYfK6+qHTFy22TiRncyJ9Efjyqh64znoq96JtOxwFKC/z1FWjn9qZmb1tBAfuc/Fzv7u1e+Zmdmf\nwXOTLen7nyVko8+OQXgMxMoezAulMN5Rnb7TUAR/8EiR9Pc3dP+VniLp/YrQZwetb5qZ2fKfqg8O\n9zlrH5UaUutIfbsXFIdKcJEz7/B4fMYkfAFOmhc3lWV/FFIfPfpczzm6+7beMxNSpviWnht6Tlnw\nUf77qtdnsNI3lP1593llCu78teZe5y/VTyeXQer9nbLxV16Wza5uam7/6J7mWPKB0AsbSzorexBU\neyePZNMvPiPbc8Pyj5ElzfU1VxwxBrfAu0H5t/xETsbNSL3ut2MhbxZRe1qNyy9+tnzbzMyeeygO\nnHs1/X2D71u3NWfOW+YojBmKCb0A5/2RHxmfoobkgoxB7WSIGkcCVIaL6kuIuTY0jw9J45EPMi6o\nnAT7muMuCmSG2khziM+BC2Ft44JdvYFtnWmedeBTaI08pScUV3JwnpDFioAaqDqq8wtXvmpmZsen\nqMyNmcdBEHRkjyekg1JrsqkkWeILcqPmkJENgCqdgWjhMgsvaY17/csas3xW9fzP/9N/0AUV+b/4\nuvq02pENdEF6BCbK2gfJSkfaKJ6gurEYIwtPJnLeRIUIpZW2l1Wrw1sCGqCByl/O4zo4ZxnBlzGC\nn64fwi/l9fw6Y5x24PaCW6U9Vb1OUMwprOO/cHMP60KcDjKaS9k0aIWB5kKoBZIQ5GoLVcMhHAyp\nLH/AVwRyoGjjamdn4Yn60vGFirH0W+VTEEtdjWNhGS6fLQ9RBX8d60os6HGQyZ722fu4qDCtwg/T\nP9T7z07g54rIp66ntAdxQd6MT/oWS8gmak31pQP3SCmm7DgJToud6T/hnvYvcQd01wglKdbYMWI6\noxTIN1CkE9C886T85+MzuMHm7BkK1An+iECN+d77YoopfXjrXOoTok8TqBXNQMAB7rIxfBSDBugB\nuBPmYfZ1XDcHpex4imVeppY9xLTnKR3qvjT+pwV6IQvXQhqORA+5F7kIUmXInmkIf0hba3EIJbUx\nHDkJ+OF68AoN47KB5Ego4Sh8RsGYx5On90xocJ8MdAfw1gBunBQKOgH4kvKopgSo56SDimGADH1b\nHTBgD+cmUD0EqTQpq75j+Da6E5SD2qxHQw8l9wQJ1RhUbQo6L0mmPoUdTkGJQdFjWWDkM9Nc7oAY\nOk+Zg3bKlj21OvjMIqyp/DYIgpwuwq/Rnmk+f/qulGPCcBq6IBCTrEFlbD20qj5pMJYdUGb9nsa4\n1YI7hN8UhZwc0gA+pf1jjW0f2NFoKqTK9gfyV40qPBkgJ8d0TnlBDqbHvnzC2j1G7S0ImmulJL9Q\nfl4LSjqPnyks8jy1J5jSmE/6WveqZ/KTHRRvgmEUKzMaO4f1YAjX1xljEw7ovQ5KmeEGvEnMmTDP\nSRdUr/yG/o2DWGkc49cb/DDC1txj+KrqzKkYimTwjbjL+J7uF/MlRRBCC/y+OprId9XgK4mm1B+P\n7wlVvf2p9mDPXlL/7VW0B4qHQHnF1W+5a9rjHdSEfq4/lq0vXxMCajhEle8MXMZ/adbf2TdnHLZn\nrsn/RuLq0xCAvdZ91WGXeVZY0juWmM8rl7U/HiZ1v6ea1gZB+PhzIc2HR2qb46D0Bw1PBLRpGuXG\nYknPH4EsqfKDN8BphthV8QmFUa8Mnam+o7b64IT3GMrDmaxs/tk7qDCxT4tz8uUx/vODf9LvgBbP\n2eR3RRhOwBmorSzrmoeu8lQBe/AYha7K7y/D29SsqZ6Tps8p4xe/+MUvfvGLX/ziF7/4xS9+8Ytf\n/PL/u/JUkTLtXUU5A3VVw4WNPVxXrGgSIfIFm3uGbNXFK4r2dXuK3p7AgL1eVBT4+Y1XzMxsLKoY\nOzpQxCs+hQPAy5Rwbnz5OUUpk3cU6esd6XnbP1G0eg4r/aGHNuGMa6ysenbPyBgoMW2jkdpVQTVp\n86bqFb+qCODsGy+bmVkwDMIFtMYZalINFG+8difbig6X+kSDT1ENICMx4gxww1Sx1a9KLz59wTtz\nPbbsMuefE6SZ2qB6vHPLsJ7fe09trnyujGZpXZHz+FBRxShpqvZDsj47MFBzFjJcULQwDOfM6rL6\ntnmkPt/bggfnnMXL2LlEJWNkY2KcI27D7h4DTZXgrG6vjgoUGcMY5/96sNJznNxGfRS7Qpwbhm2+\nn9XnFooNq5fFgzHaVjuPjvX3WBpkUE7tDfWURU+N9Dk1UP28M/vxgcYuSoZzAGLGRbGlx4HqUAqU\nWFVojgbqUEkHrhmyVF3aY6DKZq4yt8EGc2iiSPxiSmztwRDs/Kdku1xdN02SfQp72UfZpJdhSMFP\nYgPZSw/lgsgCakogXRpVouPM7Vme7F4LxBNZ0pSXBUQ1JD2Do2cCN8T4/Of8B/uyhc9N7/i2K8Rc\n+OZf6pkoC2Q/lTH85ZI4Zg4d9dX2s2pLFzWf21d15rT7NqipNUXOl6+qbZ+Tpf/aI0Xck2lxp7w9\nUWb2VkpIjm99U9mmD3+F8lRDfZRra/6vfguW91/o/rtfE8Lv0z2142uOxqoPZ8vthPzH99fEsfKj\nDSFNVh/IhjInGuNMVf/+7Z+qXVfu6f6FMiofIENmP0Zl4k9lI1bVmN9FESGFGkoR9Y1gQipC9Y/E\nidNbfcnMzCq/FIfP6Btqz/2aED9X/vE/mZnZ4z+TP/72Fpw5KfmW0x/Jtzx7Wf3cONbcyIb0+cpc\n/fcu59/DzO1gWO2f/fCJqsZ5SjOiDMtJV3NyAtqvAI+Sx2s07sAt5KHACmRWUbYIcw6/R05jyjiF\n8I0BR/+GRigIkQ2NgIyKz1Aygp+jiRpUYDSyBipzdXgX0kmtebOxbC6TVdZnAlfIlMzqmYesQD3j\nYVFtqqOQ8AgbuFCEfyipOgThGJg5qOv1VacqyiXhE/XZKKjnR0HuGH2RnKpvztry6w6H/LtV1WPe\nhQOgCyoClGrPAaGBW0mSVQukyESiFjhijcuR9a6BtEyALkrSHx24cgJeVrtH1n7wxThlHBCeM49L\nLAxXWBKVpaL+7Q0SvA9E01g2G8Cfxtbl/w+nstVKQWg0J66/R6twBKFeNWUd6INoySTVTqekOXo6\ngWeF5ow5199ek62eFA9/14Z68aFFUdcLnsCbdKL1Os96HMqqv4YnXoZV96YWlWnenWrz1Cbzm17X\nXAjils9qoBHINq6u6n3DOnbY0L4gGItZawY3lnm8Y6yRzL8pPA3x2rrqAjdepIc6B/MFKiazuWw6\njIJY4CLo0ZlsboeM7gQFnFRWthcMgDYCgdFFVSeT/oI8d0HaRoo3MAMJA1fOFPTwNAn6Cf6dDIiM\nCAphE2zaU28zlAq7/OswF2d1tfcULrQZNlZcu8zf2etE1Z8eomMY8tDDqJWCQquDEAwOQQKyJwjD\nM5RJokK6oXqHQBcM4TvqMCU82rcwKI4Qc7LvccOgFDSAW4Zlx2Jd1LBQT8rF2UOe6rp4Q+PXhHMn\nCe9REG6eZpL+mrPnZBzGcIZNh+xRIjx/BeM2szt/fNvG+Jb5DgqXZ/g41+NXUkXrVY3jDCW2aPD8\nOewkSJE4/qS5hRpamH1RF9QWFF1tEGetE41NpSUESyqpMcuAiGmhTJMFHZRlHxwAUR7ugd4Mo0ZX\ngs8iIGRFOiR/UkPxKrah61YCQmjG6urD+oHWiRT+9QIcLOFNeDPhOdo6kN+fpNi/gQ7NosiVgGuw\nh8rQ4XsgpR0hPLy9WXFZalO9ifohDWTw5uvaYzXh2OqCpqvtyxbOjnT/EDXPFKcJ+thOIqtxyBVB\nL+fgf8OEtu5rj3G0vW1mT9Cv5YtwQqLc5Uz1vi79Fk+BznBlWwGkwzpnnpM6X+nWZYO7M2yQdSvq\nKa+lNO7PbYrvpFxWOxbzqt8GKN4CSNN7n+n3W/axxqGQUP2L6/q3i3pjf0vtbZw8qUsmH7el5ZQV\n8ur7vUdC2czb8i/pjPxALKbfPDcvs9/b1trThs/tw/f+xszMmlV4gCJAISsa2y99VYhqT2XuGqgl\nJwsv0QGcVqgajefqg8fwlgVQwVx5WejcBXiNnAvqm+6p/Fkmrvm8lNPv+glcL8kFXZ9B2Wz7QJ/b\ncOY0+W0XZI+0uiw/66CMleB9qTlrPogitwq6aeqhpdSP6ZTmTCSs9jU8Bd9/ofhIGb/4xS9+8Ytf\n/OIXv/jFL37xi1/84penUJ4qUiYCD0kwrIjatI6mfE0RpUhREbNgShG64oYypoEUkbxfKyObiSjz\nkryi73twAZx+sq3nVMhocqbMUrDuA5c4JoT/XHFd7z9T9De4oefdyCFjtK8o9oxz7f0z2OdTitJu\nPVSkcNDQ3y9c1vNcsoLNPUX6jqqKgnv8GZErQtLcuK6IXA2Neu86jtBZ/zMQOC1F8tJER50VzlEm\nFRlMkC085RzhuNq00lVFI2dDvcPlzOuICO28jWpFQ1G+uKO+zq6pDfGonjl/DHdKU/eFCfWHi4qa\ntoj4T9OcU+bMZWcA0RAAACAASURBVICxTqGUdd4yS8BV0lNk2omQdeEMfybLOe64oqTOmAxtT2My\njaNshUJDbFGR7QmInsGJ6jd0FO2MkvUaHXfoD9V7gMrUrO+dC5QteLwRDLFFUBcJnHE+uU5GeS4b\n9s6uTrtksTxkDhnUM7IzQzIPxzONyxLvScGaPq4p89Edq56JuGwgRjS7RsZjTjZqTvbqeK7ocy6l\ncSzwntFcGYfSiuo/mINO6yiUHuTsbnqi/lmAOyAzQZUJ1ZdiXBH9NIobMzglvIxqlHEadWDP78Nd\nRBYxDpeERc+f4T4oi3G+PJFi2LyoZ7ywJ//wm2XVbfNUffnzod7d+UMhU7K/kk29ckm29Lar7Myl\ntrhMOs/o7OqJ85aZmaXgDvjwFfXNlb9eNzOz5FAR8Y/Jdlzo6TnZ56WGVCrp8wPO6l/5qebQaV73\nl0ZC+IzJ5owZo1+SNbrwWH7o9jPiCxmE9NyLl3T9P+0JoTMP/q2ZmT2f1PdTeD/OjoWgcfalUvfM\n1xXp/3hXiJuPVpUZeTGmrNXf17dVr7fFk/F/XVI/rBdBP+3ojPDFBWXF+m/IdpZRzNn+phA22aDe\n86slzeWXH6F+FRH67PGqbPj+Bfmo7zxWPzZf+qGZmf3BL/9rMzN7Z6os29jqZv+VWfSm+u28ZVrU\nuJRf1Nw52kYpbltzopgGhQKK0GLyMQPQYgGQiqM56JUIak1j+caTOfwfmPCQ1TUBz5SLAkSDjE0c\nvpKOA2ys07cTDw5QB5lxUVmiWEh96kbU9y6ZSgeFl3xAn9thZTT7IFzCzM+rG8oqRRflP9JJ+Z3p\nHHRQRTbpcc1Expp/AdQ80ii7hOOa95fvaM062BcS5Gd/9V3V5xQEj6f6xjzuj3+r54OUibFmh+Lw\nYsDPEQHNakPVv3cCAmRdthFhfaqCNAz0QcYENZaRifxghIxwaPL7s1L/vEAXZ2MQP9WQxjxI5tUT\n3nFBAcxAuFhD/ZgvgERhnTtEoWeQBl2xKuPw1JmSQb0w2YP341B+eNxXOwIgUJ0ZthJhzxEBkRJU\nP7ThFDMza+Wqlp7IV5Q3yPTic6pwSJSzqG5soNpCZv1wqL3H4aky2alFtSNbVD12TlW/AAikhQWN\nSwteEEPlY47vGvZ6Ns0Cr9G0tmhD97ZBd6VBXJTpC8CUFqmAjENlKFhFBWhFNpiGT6l+LNWPuzPN\n48gl9XGKidjq6X1dkCxLA7hcQmp78/xCf2ZmFmMNS6AkOPNQwjXZ9DStPpuPQKuS9Z504XEiU+q0\n4HFDZcjgNEA8yAphkIMgJNN5va/dxaZS+nsF5EkSNKoT1p5j3gf9xn44kNN7l+D9cOCJG3ZAW1Cv\nAHuUaBJEDcqXA7L6szP5oMlc34dX4amDaytNOwz0bSmt/q7N1P5mT8/tR/WcXGndzMxcFHwGoGXH\nTbhi8G3JEuPVUz0ScPNkkMgMQx9VR5nOQ9tWak/2nONBw7LY/rBI/4MmTnB9lwx4l+eE8NfBfMHO\nW3p17Q2aKD214AQMduF2WdAgB1D8e/iZ1tiHH+q3R9/0zs07Gvu1kv5dYB+fX1XbDw+1X3RRAY3E\nPRSWp4opG3FRoI2gDnQBFdQIe5UGKIaHH+pUgcfzmVuXLZ1NtQfJz0EXwcszqGoMp6gHeQjr2JI+\nuy3Vp4OKk8fJ8nhPqOLuqervvAI6og6CZ0XPzbPPrZ6Abu1rjM4q8mPeuhjPqj1zDwLT1fNi1+BM\nzICGBcSwX1M7Du6qHs0tobOuv6q9z1JZ7fV81Gkf/+/5MviNwiBk5mO4uACSnrfM2BsEQGmly2pP\ni1MWk6rWvx045SaM54MW/EnMyVXQJu++K1+4tygEEBRGdvN57f1uPat/d8pqV6H5BNlz69ln7d03\nf2F3A/L9zYbWgpWEHHduXfu5CA76hBMow4muvxLUb8YqKsEvXGVfGBAyZoya28ZL4kCsvKP9+cNP\nhZxOlzRGYxS6Hu+o7bmC7o+5mjN7fX4Xn6jPP7qr51xCKTLDb88d1JRHHQ3K0T3tbxMrcFptCB22\n21B7IiHV/1l4hqys+V7lt+bOr0EOdTU3s0nZaLmk96Yj8G229PfJnJMvXY3RAAzM6Pj3/wb2kTJ+\n8Ytf/OIXv/jFL37xi1/84he/+MUvT6E8VaRMcIoKUlXRxxZnU+vHikBlo5wJBVESHChid/aWMqat\nXWWnNi4rg7twQ9ml/W2Ysr3z8UTgM0d6/sA7W3aV84Y5zsXvkDn+jTLuMc6DLt18zszMEhc4r3lP\nzz+sEr1teZwAKGLkFAkrLCkCP+Lc/2+3xR3Rq6BotEwkkVFIcU48dUtoliAojsYR0doPFdU9fl//\nNhb197UI0fSFdTMzG6NNv/WhoqXd05qtk2mMIZuxXCL7QWayeqB3O3FF1FdfVhRx8YbqcsIZ091t\nmKk505kO6N0X4Z9IFeAFiilC3jpCFYjIvYeYOXdxyCpF1Yfe3VNHUdQQ53zHa+r708eKFHcL8OmE\n1e5RSvVf4vx4BZb3usvZzZza20LNaZBQVNhxVO8BCl1RzkEWVvXcMBnZwGN9399RdDbPucOoEgE2\nRIWoA7fM7kj1jICyGnA2tEK0NXeBc9mXlNXqg5hpjEBRjBTtnbb1nqErW3KPZcstzjDHGIdOEXZ9\nkDUOkfJxFDUs6tNPq36xqKK8LaLE1lfUOOboPRkjI/2QOXagfi2uKwruKSEcd9Xv8SKZYBQeAnHZ\nxSCtuehkVB8nwLn0wfnt5Pkz1X3c1nz43tfVVzfbisAPPwSh8g315XXULPI/1XU/WlIfHO2qb7+T\nVZ0//Yq4XxxQRN8ikt7NK5t1F3b38L/VOd5bj+GEOZL/2H/JQ/RJPemTZzW3Sp8K4VJ3xKlSWVH9\nVx4I6fLCRSFQtvZ0/+hAWavQHUX0P4Wv6epIGYTvvy/b/9cgN5qObODxjxXBX50o+9NFdejitjIZ\nD8t6buqeVJS6J6q/zdRvhVd1XeAdZauu12Tjh1+SLfzRfdnS30SUfXkp9xO175VvmJlZ+qd630pc\nc/WjI3HSbJX0uZn9jZmZPf+Zxr6TUT3aKHJdHQp19Y8XhH7rv0dWLiafc2MoxM95y5//d/+tmZn9\nsQk18gnf/29v/Hs1+32y/HD4BMJqpwOicgD/1hn8IYDJLHCmSX54qrl/46r6Ywq32E5T/Zkiowst\nlGVQPCqX183MLL6wYRugOLsopQzICo+qWnNsDHKvB28N55mTBi/ERdlGgExrjSx4MCHbn85U6Tpq\nHV3W3sp9rSlplGLKz8sWA0Pdn4eXoxdGeWasf5eiem7D1d+TCbLLJfVdgoziELWPXhC0Knxqc9R+\nAo78RchD9nmcNnHNvcIAtCtIQeO6CFw0UxBGkxhcV6bP3eAXQ2ZOQH7OkMQJg0xps1dx4dWIQYoV\nAok0A3FYb2q8FsnUFhbULwdRso9TPW8t5ak56b2RHHwgqB+2I3pOIAaHA6pLKTLUDQckKip5qfwT\ntbr0oGDRNuPU0/XRJTgfWvLnDSOzDrLyuCMkU3suu3A3ULsiq3gWAEE5g5MoBRojDz/HlAy74/Ub\nC58bN0MdcphCyWWu+TyDm2Uc1XyOtuAOmYDcYGwjJ/q+B/FNMaO+r7rwMXRA9cBzFCqrriegqRzQ\nWpmZ7mu35MdTEOSEAudX1TEzG8Fr1xjJ1l141toeD8QUGwJAMpvq71NUOtL4Z7egMQ925Kfn7Bnq\noMa6xp7JQ/aAGMmguBiEZ2Oa1lzrzj10qe5LOCj8gNyZ9TUm7Q48fNhuyNt7zNU/fe99KDh6e5wc\nqIQ0qI0ONhEoyEbmIGQqMzLD8EGdwrMxyWjuDJdVn9AKCj6r7KtBiLYfgt5la7KwBkp7RevQlPqN\nUAYdJuBngSsoXAKVDVdlKPUk9xw4GtrxqfwxYG+L48smmMEUBTfEmCwIgmbSPT/qbu6gOhfVGHj8\nZMUFtQEAje1/jCpbT5XJgfzOl7QWL+S1R2jVQDY+Zt8K7+ThwbauR60yVNaYhkHNx5fV9owjGxmM\n8ItwMdZB/3tKuPUjuBW7IDVQrnGH2DZ7DAeU1ATbiq6CIkqIvyOEZE99qLW++6meO0DtJxTQulDY\nVCcvXtK+Mn5Jc3gBtMUc9cDqfbUzU9bcXUC9qXhVn9tn8IuCNLx4R39PgSAfjZjrIAVrh9RjoP66\n+ar2LGXe325oPBrwOBUz8sOFq+JymYIY78E/t406lYdIP2/J5jRuCY+zB0WwKP3ePJU/rlW058wv\nyB5OQF5tPUZBbRO1wkX9/ZXXxCvaRDWqj5rVu2/Lzx8fqF+zhSe8fLWDtrUmM1vgd+vVa9onjc9k\nay3qdnpP6Ng+aM/ZmDoyzz/7RLZ07XnNywQqafsdnvNDrUFHj4ROWhiq75Kbeu/mmuruZmVTxUv6\nPHI1lpP7KBiC4Bmtqe25GFwxIG3aPDed0N8Tz2hfln5ONhqBo3B+oue5Of3mi/PeE1BZ/Uey4RsL\nus8FcZ1n/Woc6e8jONIurOEPI5ojY9DDY9BWoSgbx3+h+EgZv/jFL37xi1/84he/+MUvfvGLX/zi\nl6dQnipSpjeFhX2kCNxwBK/JlPPXEUXGpvw7gCdj90DRS+sqIhUMKgp9sEt01xShunBT6Aenp6jt\nwaGyPFEOhq8tcmY5ogjWo/eVqa3UFPm6+pIytdEVRfwmVS/7pPuWFVS1GrwZ47rqFb+uiN+U84ZH\nB4ooHj/mLOwSmRoyDt2J2l/ZQWkCHfQkLNOZS/p3DSbug4Ki6HOyZ+ax4bepzwPVv/K+/l0qrlpy\nrOjf1MsckgFtDXXzAIZ+Zw1emovqu3kGDpCaoptLy4oUJ8hw9vYU9TtqEclNqa65Ljw3KNVM24oo\nRznbet4yQzVpFPGo/uFU4Kz/MIx6UVQR8D7ZuPmm0FNjI9N8QrQyq+jqyZHqO45DIgDDd+UE1vuQ\n6p8G9VTdU/R3gspHzsuCcb57iuJKiQzvclY22OQc9djTuM9wZhSVJjerKHIQRMt0TkY5CrIlrvt7\nJxqnXk//lkBHzYacD6+q30dkvWJxzY30ojIG+ZgqPC4qy9/PEGFPqb6jA9lKNKr2BBNEmZfUb0PY\n+51D1T/fhq+kofoGmqis9OB16sq+ZmGyoWHd1xvB6h+mvSuaUwOyjhOypLMJJD3nKNWJuEm2l9X2\njZqQJxuBP1UbAvr8WU1ogM4xWeBrqsvVRSFikj8ROuiNW8q8Fg6EMDmu/srMzBIFIV5mPc2/zP3v\n6/N9MpavyjYvFfW8+R6ogy/JrwWCsq3STBH5+ZRsdVucLmcnsrEPXtZ7V+5ort35e43JDCWu1z4W\neu0jEDahb+q697aEYis8I//x4H0yEq8pGzeOaQ7tHgjlVf+l+u1b19UvoRJohZ8qVt/Y0fU/fFm2\nnJ9/yczMFv+z5vz3v6J6hM6EAPz0WNm0ax/JxvbbysrcjH3ZzMy++k0haU5jGuv+UO/vJNVeB24f\n+8q2mZn94C3ZzpW4MjOLaY3vw1uag71HyN2ds3ywLUTTG+vq5zdNPuDk4/9oZmZJsnjRkeZyjAPi\nLbKQQdB3S8bkz8mPDxuy2diO7Gnhhvq311I7uw8119Y3lMUap2T7THkLoOZXP3tolcMp33FGHsWR\nOBwyqQXQpSAc5wEUWkCFxqdwU3HGPWzqs2ZL92fJbA7hOsmDbGhAihXAryZ68te7cIT1O/p3jjpG\n46FsJhrQ/SF4dULwWcziev4BvAyjIzVyCIfCFKUGD3kx0JSzYkn1W0rDnVWW3/F2KtBiWJjs9jjL\nF3DdAEayoMFZE2CNPGcZ4P8GIDDbjvq7FJMfrEM6M2qighdQe0ucZ/e4tR7+VutObln1X41ozk/2\nUZQAtdEHWRTkPH30VLZUO1S9Fxc9JR3174B0fnsXBCJcAsn8kyz+ZmXT2ruaOwCiLFeU7Y1AfrY5\nF993QKE5muuTRRTCLqAORVavs8/6FUb1hUy85UCJPYT7Bnudx+HLK4fNHNXlcKw6T/Nkn6Nqc6iq\nugxnekcEiMlshvpdUmtzaUFGMANtVSfDOccoApuyndqS6tSb6t9+Tm0YTVTnbIW+n2ss0+4TlNF5\nyhiepbFp7Z2B1IiiGjfoyTZ69LEDX12MNbAFWi0K8s5hLhroLDehdgx+JzKkfjs91f0DeDOi7M06\nUZA3KKG5EfiC4NJxxurvFtAQh7kz68GB4PFGpaO0S344DHInHlB/xUHvuTN4iuARaqOI0xirvyOg\nQiaoaFXuiyutPwH9hlLldAGUM7xIHZSGnDU4aUDPHmBLmbL2JB2g5R4P07wNrx7dGG6q/0YogYXt\nCRogOQqbyxwKjeANTIDqxhe6pnU8yN546vFHuT07b3HgncN0be7K1loN7QEO2G8NQdtfWNG+dLKi\nMR2iODabqm4f/FyKkLG8bODCguZIvKzrYqijhcbUGW6r2DLoo1O9t1NjvzpkXwxf2jQD0vmy9r3J\nO6iHFuQ3oquqVz4mf3bWYv8IJ4oDx1SQsaw8hKejr7GbwxmYXVDf9gby15El0A6srVFsZAzqoNeX\n7U6ZDN1d+c82ZCkTEIYeCi2ESmsgI79chzvm7MG26UbGoaf6OUX1YzSvtfyDd7VnaR3Jt0QzsqVL\nGyh6sWj32kJ5HIM87MHJmQ2rn85bRixPJZBSJ6jkBccgDuED3GTdLsHTEjnQ++IRfiPCfzJFKWyM\nauMi4/kQVHO7q/d0zuDZ4r1mZvVR32KZTQsty5YCabVlcAKHCn7h+gtC0SaYN8OCntG6q+s+hQum\nCUq3DWdWsIOCH6CqV1/7Q9U9q+eegijZeohiIX7lnQ+FbKsFtd/rTGUjS+tS/yx6CmRN2dYALq5i\nUUif9EX5mTkIxCFcM1sH2j+/+abG3C3p9/9iWe2rgoAcwYG2tKq5kmGv9ex17V9jIHIaqNl5fE9u\nin32VO1IsydrTX8/iZmPlPGLX/ziF7/4xS9+8Ytf/OIXv/jFL355CuWpImWSK4poXbiiCFhlV9Hc\nLpmHSBFFlokiUfffUgSu+pGipau39HcvszCFFX5ARLuHkkso5p2H5LzmBgo7JEgO31ZkbudzZcpz\nlxW9XY5xnnofZQN4VMKcHXbQMR9wvs/NKbIW5kxen0j99tm2ruN8+tWren6fDMq8o+8DJ5y5juj5\nPc6lDh/o/dMmKImrQrGsX9R79tuK6h49VgTwwZuKqk9qqldgadGCxhnXqaKVR9uK1m09VsTXQ2Ss\ngt4JoehS42BvfFF95yyiglEksr9BBpXzw3U4SAZEmrsVtS2X1HszsS9mclOQE/MZnCSu+sDNKyo5\nQyWkTqr1hPOLuXX1YeWI881R3ReNc4Yzy5l8Ms5hFB7GaNZP8qiSZFBxQrGgkIDnIwTCqKLnpx09\nx4W7oTtVdHdMZjm0qOtPUI9qjdVfec50tpKyhX5fWbEZWfoZKhtBMibBmcY8n1XEvHGg93cCel4Z\nBFM0TPp9SoZ6LFuYOeqn2kTPG8PG73Ius1fUeKVBq3U4S5xDUafBmeJ+Xd+HyJwmYb8fcSa6gk3P\nC+oXh/Oe7bHeM2BOhsdkLmCtT8xRbXFBI5yjvH/5H83MbOVTvSs2F1Lluy1xu/zZ12SzZ9/lvPBz\n31Sb4QkKuvI789uy0W/t3zIzs2lTyI5UWOpOm1vigvnegrhRlrCZ1NeE9IhO5Md2HvzMzMxulnSG\nNfeu/NbjKcpmZWWne5c111Y9pF9N83c1I66YlROpPz36c+Z7C7+xI+TOzZQyAb+tykYqx8+bmVny\ntz8yM7NXL+s5Z2RGK2R2+x3ZTu4FIVz+Pq6xfhG0UzOvfoq/r3qtReQXFwaaOz82zcm/gKvrGL6T\ng28IQfT+P8n2V5a/ZmZm7po+v9tWlu3FlBBHkakyFW/8jf5+6ztC3vzD92RLrzuaa0NQBfcGmjvb\noLgc90mW5zzl5PtCyvyf/17jOGqo33LwMIVAxCRATs6S+jdN9qlHPY7IaDtVzaWkqZ5Nsoadh1qf\nZnWtR9Uz1ATJEmZjoNtGKLGRZbRY0nIJ1SG3LNvq9ryx1bsmZJ+KnJMOwl0SiYJcGKvOxZSumyTV\n5zGy8z3IDMJhtSUHb86ViNSUImSF46jNFWqgerwMHFwAw6D8VRxVu1BQthOIw7USgw8OLgPz1J7K\nKFZNZGOn94VW2u2rz+Z1Pb/r4jdB6DioTowdsnMDECZks+JjVPbMQ/ygmDUDfXXOMkNBq1NANS4s\nW+udai4khigBoc7kdOFiY6+wWta4HOOXK+/Ltyz+K/YEnEM/7mndnTuaWzXUDZcvqd8HNfwxpDMJ\nxvPx6bbejxLFtTJw3VHod21wPwxavgpagbk6Rbkog8LYOKA5e8beqo9C3fyi0A4nMdZXbD3DOjGJ\n068Zjecx5+QHEY1TEq6ZECpb7VDYmiBkAkP2USXGsqh/PRRrAqWs0Ux1yaH+kyQ77S7o+/0GnHpD\nPTcWZ8xLqtsBvD1Tj4+uixINNjtIsi+saD6GQWKft3QHso1UXG0dw0Fy6qjP5yiaTcKeihHvDaie\nSfzLFH41J0Xfj5l78BZFZiD30ijfsHVqwy83Zy/lhD0eNnxCR2M3BTURZZufh49p3mEvMCOT3UNN\nD2XJdJL97djj3YBrq6PPTZBPBtp1BHp4EgTlBxKweB3OtGWQ7SBQ4je156mhOnc4l3+s7QidF8KW\noa+yoaM5FJ9qfY3BPTNDEXLURx2pi1pTTfenQdu2G8wRMzu+37DCivqhvLluZmYD0GPxjurZBr3i\ngsiZoDaTCp0fUTWF02rggg4AwTzF5xdBM80vaE2vtuD1OdNa2A+iClqXDfcO1DfFotbIcBDOFBAU\nLmivUUjvXQB5lwAp0Rro+ROQI2MQ7VPm5GAGQp79WzyqesdBL42O5W8//1x7hjpqSu5lXbeSFrqg\ndayxqKBAmwellGc9GbOHKCyonpEE3FSglkacKnhwX8o/3v7dQ4DnivAKlbDNU9la8pK+n6f1OToG\nnZaQ3x3EQeyDOE0kVK84Pmg6RyFxpv5czKzruSCNSvze6aN2NcVHsaxZIqN1zh1/QbW/ttq7/Q6q\nqwaylDm4mVG7+gV9bh1JpWvEnm+loDnxf7P3Hl+WXeeV5/fu897FC28z0gGZCZMgLAFQoERSRVWJ\nJam6BtVrdc969V/Tox73rAfdLakkUWKJRW9AED7hMpE2vHvee9OD/buAVq8SO3KUNbhnEuu9ePfe\n48+5395n79yayuljfbn/O/WjsSuURH+78dK/MTOzyzfZz7e+ZpKmLjxlxXs7dnJb+9MiTLE2Ojwb\n61qbh7y3V8r6fnDK2sK4+vZf/sDMzJIpabGelTWeqo/Uh6d55bHGu1z3SH2s+Eh9q4721ZUbaKv6\n0I5KSa9y6u4hctqznD3UOvDwtvZ3ERh+S9oeW6ALw+ZQ+S3tykUpxnv0G9/7E11XUF8sdVVO/0Pt\nT1M5tcE8bLS9O3qveK+pffjhfTEB8+jE1SusfTPlJznSPJjKwKycfj0f/beSx5Txkpe85CUveclL\nXvKSl7zkJS95yUteegLpiTJlMpyjnOVAJkE4ohNFnBx0RKoohQ85Z51Y0O8X8op01euK1LnnB/2c\ndx7Bjuhn9f8VlLNXbwrRffQ7uXfcwas+PYVlMdJ9i48UDe2UhSoFYMi4zJzIuiJiyysgGauKVoZA\n0z47eV+/7wkh2Lyic4sx3Agah4reBkeKHKZxcAiAbFf3FS2uc0YvmVR0Nx7Z1POWUN33q37CuEiN\nrkolejTT96Gw3w6P0YtAG2YGyOz3g2guo3NzAXSa88+lHSG0U9ChlJ+IP8yLAMjeZkp58u1+aGZm\n5U/UFi7K3eZMbaCnOjxv6vhh6HRwdeIs6ayraOMwTPSTc9b9jOruICEEtooORbYMawj0J5sApe7p\n90HOA479ipJmJ6pb3yGsrT4uSZy9neDCNAgpqhvEXSkXgsnT2TUzs/pY/3dyuu8IZ5kE5zFraN4M\nekIsgj4QhpHut0nkfoKzxOxE95moa1j4RNHbcE71OreIuxTIaKsnPZHsJZUnsAwDaIATGUhIH8aL\nE8MBoki9g5z7OG9ehTlz6lMHCgeUz8wK59mDnF+n3QewteIZzsODKPcZSyOQ+ywo1BD0LsqYOE9a\nHOtsanFDEfOLi8rDd+6obj/+DZH8uLRbXv9Qdf/bV1U3N26pT3S+C8qLuvuX8T8zM7Ob1//GzMz+\n9ufqAxm/xkThknQi5n2ax350V3X67JEYK9GbKns1qIj/VRCHu7hEvDUvFOvR37xrZma+mZglZ90f\nmpnZYPammZlt3tP4nz6ltvg554p9Xyo/rz2jvv7omtp+9yPd580VtfVv2riYoHtx4XMhBfZ91fHV\nH6vOP9zaNDOzPGdvQz8QsrED+nK2rzb6wXWYhkUhBdOCrkujhzT/Bq54OOzsd4WirY41N7y7p+/f\nyKtefplQO5xNxPD5U8bSl8+JPRF5BzeQgur39btCSLo3ObB/zrQGuyABIj1EjyXg/kVt3wUyxn3m\n4wQORhGVO93DxeVYaNWUOSATxOkMR6M+uin5tOrFKWodqFW0rjVDOGMkNTZT4QVLZVSmHghmD9Qn\nXNCzQ6C5XXQ3slP0zmALBGCSnDJ+qjXVreEIMwGdjoAG99HkKiRBn9H5GJdh4OSF7oxxsOl1cTfq\nUAfUxdD0/zjzn0MlhkG5ergi9XA+jFO+BDoh1wsaMyPQ7yhMv+FYfaE+KFJHuEjFYSOMcaJxwae6\n7j/quXoVwO3nTD5YDeFoi3yzB8DlKJKDsVhGE6yi9mmwrq0uak5Yd1S+h/e1x4ihTXDxptp6Hg2C\nxkhzVKevsdZ10F64gjPEASyMA80BsbjafR2UL4rj4/7HLAg/MAt8GbNkXH3dh1NPC8TZcJeKrajC\nBlN0jxa0x2nF0JqJq5/lAtoXNFOqT3/DZZvACvMp3030BqYwvUbs2fyjujloq0zj6PPgCtQ/xHWn\nClMBfZ4g3zDlRQAAIABJREFUumy+qPLeDmq89Dpqg+OS5mcHNlnimvYgZ6Y6mHDGn6qxWFvz7EIH\ndzn2ArEhzjLp8+uXmZkFoaw0sV8bMrYGsD77sE39uBENHK3pWTDQFq5GCRxhILTYdMA+mM8TGCd9\ntGHCMESGOEf2aFsHLZ4M+nT9NnuWDnsi1+7N3evA1IvASFmGbeVnfWiMlF8fzL+Jj9cE9lLtuvLf\n8cPkCZFv7Io6uESFQmq39StCiv15dOSYE0I4NtbYS/l7jO0WWkA4jGVw0YpNtP8dw8Jo4LTTONTv\nlgNq5x5zQHeosTTuf80GKJWnNs3ApLqvfuRSkPonao9uV8+rM2Qojs1w6zpPmstpjd64or346anG\nU6+rvUOPNhiPlYc286kfpsc6LqmhVZX50hWxarMpofYHd8VmuH2oMTG3pbKm5xnvMCtDeypbvaP5\nKDbAvZM1cEwbphZhSRXQkmEt7x0yT6FTef9YY2xjQetUelV7n4V5rRsdGJytAQyUgdqqQvkiMD7C\nWZUjBGPbmvRVmirFOhaEqTdcVh/KoXWZXtX8m7jE/nNO9X3nU049PGRNTqjxomi9jNm3OsyjEPFt\n1lbbLmzoPuu43rl6UGNODJR20QXdRJcwBKMbrcxg72vG4nnSABcnlxheWFI9Hu+KEdOHUV/a1/xc\nuoszJIz8dlz9p9+DUcRez9VSS7JnqXJ65OBs18zM7tIf+209z/6j2W8/+cRi9ZFNoipDJqcyrTPv\nxHDUGqBFtfeumC1j1uLVvubXMoy1WVz7vd1HPAvtp6e21ZblttiiURh3a0tq2/mgKC6xDHnLMp6n\n6psPcY+7/fbfmZmZM1Uff/ai7ptMs4+DefPpQ73fz+F61wurry3jCNsxlSsQY39YV/7r9JnVdeUj\nmtOYWV9h39nGRfkt7V1W5/X7/Yr62Ml76ovhZfR7hjAjm5xi+FeSx5Txkpe85CUveclLXvKSl7zk\nJS95yUteegLpiTJlJpxlrTcUFbQs6sbrijhVzhTtLNUUUWsOQdU5h1hvCCH2F4ktBTjPx7nBKWyO\neEiRrdglRdLLHUVv2yAJV96UJkQCdsLxjvJV/pWiwqGZIlypeUUde0RvJ7hB+dBrcXCCCICE9jlz\nl7igCFxhU89vtBVJ63KeO9vHVcA4G1xFYfxAyH8mpij4U98Q0u+AWj189z0zMzs6VBQ1u67I5oUX\nFeWdgG6Ozmp2xnndgx3VafMIdfR5nKrWFZ0co0pe76kMThfGAueUi7g0BDmjeDmsiHjT0C7hrGb6\nhiLhqQ4oNEgsQtTnTg4uPgEC0K2hIsG+OowPtwuvg8IklM/KCAV90Jk456XzHdqox7lrzmYG0CLY\nsHX+v2lmZodHu8pHFjQFXZA2EezxqEY+QArV1NYnH4kwZ1ndM62cYR2NVI8R3FFyq+gLARzE0STI\nuKhVV31g2iTaeooTWIvz1+iApJCWKMKSCoAMTB3cPUDUhyimd1w0zlSuASy1KLpGU9A+G6j8R5yV\nboKgrl1Uvto92ByMhfA86vagZ/GsdF1CHbXD0Z7GRr+BrseW+mwXOfow6OJ50vWonr1zR+jRw7tC\nD7auqa88f6Bx8dNXpPUyvac6S+CwUv2Tt/QX55sHaaElz17+v8zM7NF/Vp/45h+htF8kAk+ZprfU\ntteLiow3Q4roh+7ofief6X5rf4X70iPVwd/9ROO88Fdi+oQ/lhaUD72dF/rKd8XEpDn9TOP81YHq\n9pPnVPcfjzVfvozTl/OS2r5zJAeyv8rr+78fvGNmZsUfqK/0f6Izulduqk2Tx6rHfdyD/vJn6tvO\nn0pTp7eg+XYqsXprPQ8adiDmys6pxsB3oyCWB0IoDvc0/976I/W9S5/9VzMz+3BRc8XNCzp7/HlD\n9dRHF2UYEdIyBzCRaKiefr+mee/4Z4/nrNOjSzmMYReZ9hkoJQzIFljFLIq+UQuHigbzOppncfSp\nomhKRGEyLqOfNUrhuoUeSqSPk1EYtkIfpx10TA5Oz2zvQ51P7pS0Ji7jrnHjmtqqDeo9bmvc9HGr\nGJC3Meh9IKNxHA/zF9cOX1fPrOGkEoQl1OvDyJmoLpqcsY8EdV0Pd7405nn9LlpbfpwGQJOdqeax\nzkT3O5tqHm7ug+ix5vfKmn/SM91nhTHnG4FSRZWvRJp5DsQvE1NnaLXV55u40c3QZAmwBxjg+DAL\nPN4Z/xjMmwmuJEN06uKOnjcX4Dw7DkCDgebP6ZnW1xZMw4uLm2ZmNmppDT8+EHI9t6ixMb8CCjiE\n8QMDsVLXOfZEX2M3brAvgjBk0JGL1PT9/qH2KLPS1wzUjcCGTRIa42PqM4DjZOtI638/rvIl13CN\nQsts3Fb7JZuq5yROloE6jmfo5PXSILGL+v4YB81JTP3Rz0IWt5lFWFszzIv+jurSd6TxkKyoTnzL\nIJU91e0MllKXgVsuqw7DKdVZ7iXNOz100mpF1g4MFWOue2VLa0tiqPHZqen6JGyBqOumds40xZ2t\nU9a4HURU9kN0hobUrQ9HxqiPRZlxnoCN1TyBeY3WYTDs2i3xIOanAddVm+wTYdL4WbNHUDkmrowc\nWjYOGgYO7p4uZ2yIfsdkRNu3YcHhCtJGq8tnrhsRfYWxFGQ+CyXRx0MTp0LGfTDcj2C2p+ZxofLB\nsmZPNzjQuplJqH22LmvdaeLc2cThJg17Y2lB/3ddSiMxPT+xQf1OVJ5xS+tWqaH1djKkQ5hZfjlj\nG+ibdKq6fxBkPBREJ8rB9dXo62joxIJ/WAviX6Yq86kfvYvRAOZySeMv5MBUHugZ+VXV6domml3s\nm4v3xDIYwuQ+3dEaXURXs4mbXZK1C/KXDXtoqrAhnEPvzkEbLLksxl5jyIac/V0Y5nynwR6iqXmt\nQ11ceUr7vswNsRqMJfjBF5qHxuxPU+jkDdHdXLuqOi1cQDMMxl0Pt1P3edOWnhPGUSdwXW0edJni\nrMn9muaE5vvozfm09xvAuhqj09aasOeKopFzEdeqMLp51N/gnvpU0fT7U/pQj3fQFvPszqnW5Y2h\n1iv/suaUKPvVlO9rp6/zpCRuh9F1sUyWLqiepqzzi8swyGGaBngHXtyS80+vrfYNwxYp+jXWE1y3\nsqI5cv+R9o7jBu9LMKYW0BAyMws0m5Zf2rZoUtcu5fWbBJpOjQeaFy6uqg9cQ0NwoOFkzkR966OP\n1DeHpjq+dkFr3Yg1+qXnN83MbHdHfSHB+/LimthgA06WnJyqDY44MdKGoR5KqI4WcUbMXtV112+q\nToYl/c7V/ko39bunn4XJM6aPBdUnDhlTp8ef6/oD5WfKu+0e+pgnZ9rfG07CA9PvLl3Wc/3sERbZ\n/w2+cdPMzFYiaFqWYehNPaaMl7zkJS95yUte8pKXvOQlL3nJS17y0n936YkyZQZE5sOcm9+4quhr\nclsRpxTe9XkQgZO0ImhhGCrVI52X942IcOcVoao9wDFgW9Hj9KK0C8Zlff/lR2g4+BRN3VyU20rU\nUeRuDAsiWFYkvUakrnjCufILyl9yxv1BEjodvO0bnHHNKqKXQ8tmQjQ83URbgAB+HIX1JE5AZzU9\nf64Aw2dTkcCuo+87FUWH+/cUERzgNT+KC9HvoxYffUrl3rpx0daJGla+VFTw9gdShm41FYk/OFQE\neL+mOF0SNlAonaGsnLUHPVlaUrR0iivEwUO1Rf/EZaioLFnOmsaSoB+Onn/e5DdF9CNDtW0UN4li\njQj+QHUQW1K4NtgUMuF60rt6EHGuC3GurzBStHTWguXEuffRTNHdRFNterqn8vquKh9J2Bc9FxkO\n6f+xnL6og3SGJ4pM+5dAHrJEvEHvpjgg1LqKBud7QkCTaKoMYALF++iBVJS/wTHofFz1X++rHA5n\nYltT1UvERbOy3BdUvzUVAyfWAQF3FNmfovpeB9EJB1e5HoaToz5YhxXQdjVmcDkJNNTu447uv16g\nHCC93ftiWQzi6gexFvSHBir2fqFlnZH64XR8/njx8V3lLR1V2Uv2P5iZ2X5Pmk4Xrulc96VjRa5/\nvKd5Z3Wgvl9ucX56Xlorr3yEE8FFuSyVQsrzwa+lur53TXV64T0xOYqvC71w/lnzyM2bus8/lcQA\nuRHXdfd++6KZmfnfVN1fuS9E4eLHQnk+HCvi/ur7Gpt+3z+amdnhAsyb2xoDzpLG9XOM++bqbTMz\n+9k9lcu/pvv81SMxgwZ5temf5dQm9T0xA7/8rur4v9wGLcJF6D88QG/ke3pO91dygaqbPvtD6uO9\nLzQ/h3DgWXtRDJaHZTFasvMam+llsTyyZVD3odq4fluf7+wrnxdwMIvElL9Xf6b2LF7T/Hn4nMrx\nvd/KVSpyUWd5z5taDs4JoGjjsMo/BEEPo/FieY3pHOfEA2gO+Gqqv2lD/aaOPsekgiMQOiht5oYA\nLix+WASuS0mUvu0LaJ1Is+7MLYe/clI5OFGfiPTVNuVDzWu9IWfzY6C9MDNCHEqfBrQ2xQq41TnK\ne49zzA6oeAx0O9aESYGWiQ/XuXBQz3VgPEzQZomACE5hXszQ3UmiAdCG0bK5oHkutaq2iy0qP01c\nlR78nz83M7PuQ/XZTFB10xnr8wx3C4d5y9UCOKPPF3G2CuJQkxyD+sM2GPRVj9PHkzCzMGt6jbbO\nltGvK2h+CvZVji5IdHimekjAQOwUtQeIJnBjWtGeZuLqCR0o/3m00nIhMUqDPvRTYAr2i5rXx2gG\nLXGOPQx74nBXYyuAC9724rWvypAcz1n5PjoueeUjheNRa6J14rSoPc1mDK0iXF1q9zXmjOdGcE+J\nwxII4PRYfQRLuMBebVV7k9OW8pVZQnOnHrIEenIztKIiNT2ztQtTAsemFCxYoy+NW7BZcQiJwWxM\nPbepOoJ5cXKqsowmqrM4jmOJntawQB10vAbLtENfYbz3Ao/HuAsMYG/FcEEKq1wjNAH7OJCVffQN\nxG1C7FNzaCPMMugv8bsp2i1jWGajiMo/gpVl7hiB2RHwufXlUmfYB8MWGMKgCfN9KMhcAAvD1aFq\ngtb70aGa+bTeRXHyGaEt44vpusMqLqH01UlX+a27z6eekrhnDdGlG93HwQ3GYJR1d0yXO7wnRN4f\ncR0dVU+ri+y9mDcDE/XpKRoO0bqeX4VNMlhQ38uw9xvC9jIzm+aCZri+RNB5iiTQbwrD8sJ9pRZR\nxhIdkG10YM6TGjjJ1kdacyJJ3bPbUJ6SOIWlttHzQavQYFg3dvXsJKyqah1XoYryPreh+SgJY90l\nNHfq7AO7quurG0LpIcDYDE2xaEJjMthVXQ8D9F00y9pV5b+He09iVfmd38TNCC2qgx3t63Y+09/6\nQ90vf017n6UFlW95Q/vV8o76ThuNFD+MxGQCRudU+WqNYV7D8MzgjDNswFAsaZ04QK/kzkdimEY3\nVd7VN7XncLUe00+pvlw9kLMDvduNSuzDpypvyHWAc5k7MESzedyVEvr99ra0wwbsjyMp9ErKj+f2\n96ip/X/nS7V75EBz2YPPcRTNqs9l53T/dTQ8C9tifbQquj5Qg8mPbkt0iINvW/3Pz16k11X/2JpX\nedJXt7/Ky+LaBRuN2nb0seryJImzYkt7+lZNdXT/5zgT5rTvziyqTzg4YwXRIDT2Jh00mqp1OUK9\n/1MxTo721GdWWUOqQ+1xIjP07TrqYxHm6TBOuK6W4xEOwmM0x376n39kZmalpvbVV/2wv8IwZsrq\nG7tnant/kzVuCSY7jl69kH6XQp+pjcZrOKG6urCgfXwTR7CVqPL19q/k6nkb/SRnReUaLeg5fvRM\nfaM/HHbxmDJe8pKXvOQlL3nJS17ykpe85CUveclLTyA9UaaMv61IWn+qaGlzTxH0M84OhzhXmNkU\n2pRdUMSq9Ui/K0b0u/4jReRLn4qtkUK7pbDymq5vKfZUfqgI3eiBoovr64p8DU6FYvU5I7ZYUBRx\n8fXndN2RImcD9EMGaNG0jlBOr6oaE7iNdMvKTzuqv9E8Yeox7kwp5W+Zc5KdqqLiI9C3YAQVePfM\nLChXf6Do7Yh8dqe6fxeNBF8P96ooZ6ePFTGsHpYtWeCseEoowqU3VKezglgElZrKdPwQFwbXg/6+\n6vQYR5HnrigCnRiinP+OEN3qrn4fzsDswC3EEip7yD3R3Af1OWdy6rgiNWGEUGfzPT2/HFQE3Mq4\nOwWBDJL6fQTENAYqk42gGQCTJsoIiMaWKDfaCkM9JwP7qBuFqTLW/RotnAnQhBklVOeziasaj2bP\nHI4SIM1j/u8Pgc4Dqw9GuCiheWNt9clQG8QavaMhCHYE96gZSO0JZ5SjPhgwMHgi/H44UV+qHqrc\nk4DyXYjibkJU26qce0/hHFEREtFBmdznaijUNTZjMJmGLrOKiLx7PjtJ/e4eqs9mB2qvJqhhOKD2\nCCk71iMbw8j5p6bYVGdBnYZQ+bOsxvsLxxqf928rAn/pz1WG1YtPmZnZD2+pjVYcXBU+xrWjoLx+\n8GO1yXeuKnMLl1T2ZyZipjxY+oaee4uI/J/+zszM3qvp/q9wHvlOX5H1/oIYet96+yUzM/Ovi3Ey\nnonB8+JQ6NC7E2lH1U/l3LKVF+p09h10m/y40L2t65dxXVu8wHnqA/3/l1tCAF4PCXFoHet3rZ5c\nk8afqi2GSbX1a3OwwGAi/uZH+vvWWGP+UQQ0PqXylUBK7Uj11Tn7UzMzu/JNMXxW31c5v5j/hZmZ\nlZEOe324aWZm03WQ1qg0fe4/Uv34B9LsCd7E0etQYy7jqH5/+OKL9j+a2cbjgVI2X1D/aOOs0w+j\nPYYDRA8kfuhqWTTUf2ZaZmyG7scyqvx5kNs2UgP5oMbCKAWTkuXVD13D8fMcn8ZYENeUWUZzU2I+\na0PO7ocvCwnLg4QOY7hnNPWwCAzGCcy2JojjGObcKa4+j36ruqw3Na+/eFltuASD0XWg8jmqkxn6\nOVMsYU5xekkvwQZFLyNW1/dR0Pop6LZVlZ9T9NLuwvDxo4MWQy9p90yo2bSkOnIdYZIxjbk+iG4L\n9NtBG2UU0ljNoU/SDeNEM3G1t9R2cRDSZu/8Lm5mZk6dsYzrXWIKotgW0uun3F00I4IwBwPLQmCD\np+oznabGfmANh6Ce6tvV/hk1Xaql8jdsqtwLnHMf0UecFvM9rljFA5hS6C4t4KLk/Av0bdhum4O7\nX3+m+dtHO2cvCc3sfCmUsrSndl9Ady87035g2NCc0Wur/PE47i7olLR3YDRm1U8WXtCeph6CXdDA\nWajTt1FYbRV3OGtfVt8Is5bGHeXJWKNCMB8GsHP9MGfyK1ozRyCTlWOJW/XYB60vrlIDymPogMWk\nq7oaI7iRTOr5gwZr9ejx6FQjPyg0TpDjIJopeRwpF1XeGO5rqa76Yhj2bWdfdVOD9RB2sVEcCF1d\ntiB7kQCMvjCaDaGI+tSMMTpmDxBBD8nnuA5osOxArkNcH0YvCmKRdWBFTdk7DGFD+6j/KPp007Da\nb4q2TBuhvx7z5xAWgRNTOy2l1XcuL+BkiePYCc4vXfTkztD1q1WgzED7WIDdcHZLY+Y+rO4p7L4Y\ne68wewlDZyuyprG6+pwQ9S7lNDMLRgZWhmVn1EsA9l0vijMmDKVwTv3EF2d/nZrZeVMmpfESW9Df\nfBKdR7SbHObLaUTzxBjn2S77r2ERnTP048ZTWPbLvGvM6b5BNJyicbVNr8qajNaI75R3EfI1gaVk\neqwdobuzuqb8ue8Qftp28xuqwwms/oGrr7GnsRcaq6/GGZPpyxpjW+h3DMYwyI/2zMzs+FQ5GZRV\nD2lYTUne9fywD3LrOBIuoeMZ1Bjo13S/RhmHSDTFkinm3yxaWFnt5yPuBh8dqFINBiEOmE10SwxG\nTGBBfWec0+eNoPZerYb2Zv2K2qfHujwp4wyHo9to9ng8h3xGz8uyp0it4HJn2jtlCqxHM5w8h+qr\n7Y8+NTOzg1u7KjfvWTF37LX0t/yR2OItH/0Jx09raj2ZsP7Yd79jg8qRrSXztvWs9EVnWPTmAtKl\nWWXPcPZAbJ48zowj+lppxrvFsvTQeF21BvusSFWdKM1+E2kny0Vh6Z5po1Vq6Z2ycF352M6pD1bR\nTrx9G+1G9hYpmJG9ijr1ckHv61eu6f3+4JHu2z2BuQirttXSfJJfY4LANTmAm3EI97bQFLaR6fdj\nGHgV5pFhXf9vj1lrccFbX36K7zXGfDCiozh6/WvJY8p4yUte8pKXvOQlL3nJS17ykpe85CUvPYH0\nRJkyLRxoOqBGkbCiuIMzRaAqI0WcMllFsFI4+KTWFGJLbwoZqS0pCjsmarj6jLQGQpx1vfdAZ+Ta\n+4qABSOKzvp6KJb3URonnNxE4yXNOc+FpxVFjoaFtJb7QiFPbut3Tc62tRqK9Fcf4KCwocjYamFT\n1431/SjHuXIcEkKc86uCovk6eu7ac2KzbKEqXakK3Tr4gt8Hle8WGW+W9P1GQJFIh7O3EX/7K5X0\nik8I5Rlq3te3xCZKFFQXsZzidIN9RRN3Z4pajmibr+r8RJ+rOMJkQVmyS4pQhzucI65zFh30+TEI\nEGZmFkQTId1EO6DDefOM7huNgu7j/lSkTVfDqvuM6XO/in4IkftIX9cn++j2hDNcr4pqBVSuyFXV\nZdWniHyrBZuLqPAMdKraUMQ5P8M5DIZLkvPKk4H+lojWjl0ktqD6HIHADsuus4uitB0i6EOfnluC\n6XOa1OdODJSJiPci6vqnrsA37LPttPruYlzlbfYUOY+htTOoqk+mcHvKcP7+bF+fExv6fDGjKHQd\ntfcVNAoGoFVufS+CoExB8ebmYAdEQXqHqtdiSUiFr42+VJiO6v/D0eR/mepojiyE1Le/84EYJh98\nS5Hy4Zeqo89/pfG0GNL/0y2Nq1ZA4/aPB4p4f9b+lvKckO7FJ2uvmplZtazId2dRebxo6iNbOGA9\n+lJtFewJYbsD4vfKG2rTf/5A+fwCvY/rO2qre9dUt9V5oTFruxrn6YLyW2noftH3QPKA/rbXhRT8\neqL5zl+T29Gbqxorr3+ofP22onkgVxb61H7lGTMzK0T+TuX/ybfNzKy2rT7++wdCWQoh3W+M1sM3\n3oKF8UAuTsG8nnMS1ByyGNb32x8I2Th+SZo7yZ+9bGZmK3O07VBozXZN9fXbXc2La2/p/0+j+XOW\nFBMpvyRNnupHMFsuC6VLHYF4njP5J6qPKOr9y8s46ryo/MaymgPipvXhwbHK8+H//Ws9/xP1rx3s\nXTazQpDGGd23MVb+KwO1i8EAneCItDbSdTEckc78nIu/JSSl2R9bmPEdC+gaP+5lvonaJAnTpD/V\nOJpF1beiMB1GAY27K359Tr8CG6euMuY43xyqci4cnYohjI+JozyGYUQ8v6Hrrv+Z2FxFNFM++wex\nrXxVGH0+IX7OHCyHCQ4wNc27x58J2UuhYRAIqM+vzWstD0c0H09cZDOg/OdB6wcxnGRwOPD31FfT\nCeZ3V4MqqvvOOE8eHWMXdc4U6Oi+KRgqc0lYHA09d3oEUwg2RmSmdvENVZ9j9D8CPVDDFnoVOBDF\n0QiKolUzNFdvBJ0VnCNzMxigMIVmJXQwBjieQTgd4fjTHVa+KkM73rFwDtcmNNQe4PqyvKnnRK5p\nTig/VJ/2HyqfKzAkg4z5YEWfE1V3vRLTagj598FDzRHzy1r3rzQ3zezr8/a5WMDSadVRoq6yHbLW\n5IP6PoYO0ayo78ewMWPoI/lhc07p22N08UaMlY2C0OwOZY12YD6CObrMm4CrqzFEpw4XjpG78Ttn\n8qVhitTRDaEvz2AHF+bUdnNjjYn5GNolXVhtfuYH3D1G6CbVmR4nU7Rv4npOHIeuhB/dCeaEpss+\nhkUwwG3UFVKK4v4W7cHUcdgr9F2tFdZkxlDXdS5Deybqwx0K9nMdZ7YArp6JBmOBckdAiHtoQvjR\nx2vta40fl3ESQoNrhp5HqK2GWU5pb5FbUV8axXX9DCQ61lC7JWAFj9Cq6TEnBXwqb4JyJclnOPL1\nXiKbS1gkA2MI5yGXPeFnDPfnVE8FdGCCOCSN6+d3cusN1CatsvZPR59Kx6KPVtbSlvp2t6e8j2i7\nFH2F6esrdlJuS2WNDJl3YqobCORW3Bcb4PBztMcGKtPhjvY2MZwOg0nVxRLM7hDM7VwONzj0hM6C\nYgP3GCPtXbQXqYvASL8PJ1S+dVyDwnmYKrjU+SPoqjmqu8UkfRVnnhGsLkz4bOmyrl9bUbk5BGAH\nn4idMahoL+RHD9Bl4l95QWtxeEn3DTuwztDYOdjRXm2BEwMh+kRjor6Su6wxu7qg9W73lp7XqrNG\n76leO332rwnYVSfKR4k5JMV6dt7k4z1ihH7LoI3uXlrte2EZR6EA74awv31+lbM7D9sPp6RFGKfh\nAnpRt/Su+lRBpz7yV1W+L9AA3XvvwVd5+eidd613bcvWcEtqPlSfPeTd7WwfR8Wy8vA0pwgOHqhu\nvrivOt7YFDO8WFbfy26qr+VXNa4vrGicD8dq6+H+rpmZnRZhylS1JgXm1PjHOBvO9FhL+3Wfzesq\n0zIaM598ik4SOpbu3qhwUfvoKA6GMdP1F7eo+6DmgZNPdbJkxvzS7atvPNoV27hR1jw0bIoJVLqP\nftxTWhPffPWPzMwsvKS+FQnpuQdFGDQz+uSh+vC/ljymjJe85CUveclLXvKSl7zkJS95yUte8tIT\nSE+UKTNqEt0r4MgSUUSt2xX6NigqclWq6G8TFfZ4T4jmgPPSfhyAln4gBHg+J4T87j8J4dz5RFHB\ny7lNPW+NqGpXxR9y/r2BI079QEj1+Aoe9DFFvoZE2sKrLpIs5DsxB+PnS+WnWVbkbfWqkF7/ihCT\n4D3dZ/xAzxvhkBMM4VTEefn2IvddVTlKqPE/IpJYCQgRWHhZ/1/2Ux87qqdyDdYD5y+D6YT1D/TM\nUldRzbmLIHgoRdfbYsQ0i5w3RsH/wlNCCle+J7Q73lBePv5r6TtU3WjhJUUfU6ArfRDKWUnPOxmB\nbnSLhobQAAAgAElEQVQfr8u5wGkYdXOnpzpu1VHmXlA+a6Ac047qProE0mj66yKnDdxCZn19Pmvr\n+jJaLsMAEfCE4pVBFLlLA0VrW5y/ji/qzOxspuhpy9Bk4Oxvyq8oacjEeJn2FX1GZsiqIKOZjKLN\ng5r6nBuNvXxNbdr0KSLeTKMztCzEpO4XWtisQInJ4gIFUjCbgKiYotGOT2Mn0EdzYaLr/CA16Tau\nTTj0rKIdMeU8/jpIbxctnfB91V8krM8LAVc3AyQhS3sk9Tc80f2jODgMk2qnkMMZ45jmgAjOCL3+\n+c9vL9SFTtx99FszM6u8IeS0UFXkPnRVdZrpC9kM9vTMxp+pzZZ+q2f9mnPZazflIvT5R2rLv/xU\nbfOjBaFCyQ+EBBR6aoPMSypz/m1F7uvbaoutsvrSzsc/1u9eV0T/FL2fy+t67t5ETL7LGY212SWN\nmY1Tjdkq7j0rz+rz+++pT61vvmlmZs/fw3EMvZAP30Wz4KYYQTdgL+VA6Scfq34+G0gDZhXG3fyu\nxuidp3Vdau8VfX5L+fQ15ZI0K4sZc+mG8nX8exCUCzBpDlXOxZjQpsIWOkcX1E7JiJwFjmAsvniA\n401J2jV35lrUn/pKo6X5euvP0cVCk6YdEfvivKmyr/ZqgbjXj1QfD44098V/jq7Ggub3BnNbCPbD\nxqLm8YBf5cii63IAKulLgiyn1Y5T2F/ZhH7XOQOdm2oOK+DutLKk/zvDpiWS6OegmRIEbXZZAiHc\n2wIw1UZR/a7HWfYKzLY2R8WjMF5C28pjhCP05aHykBhr3nZdi3xhXC7KuKnBqOxxdn/Sccclzjgg\nws2gxtYUZ5fJEMeXpOa5S/OqOx96FqmUvncmqoM6zIwhQhfhrtqmA3Mz1NPvmzBvWiXNJwt9jYVo\nWvmulTTmEpyt908eT3hogitdhPnZ/Lr/ZF+ffSCZ0ThMIJg7Dm6AabQLHLQQOkOYPmWVO4KWWCyq\n+S7VU347aLYFxmgD5GDooNE1bOp3oZHWs35M83gfFkU7/LVwRmh9Zo0MundcVzS1TwXtoYur6utL\nHa0Ltc80h4yvgIDHtAdhWjfnDE003PaWEkILq0eak3K3VN5JVPleoN/4IkkLoP+wh+NJGCaIb36R\nutQ9emHde8Z4mrEGhOL0+bb6QqfjaoFofMVx+gr30Yqpuy5EoPWwrWIx9H/QHfLhOtTuP577Uoi6\nTtKHMxfUh0NbKk8YTakwmjGRCnsP9CBcN6kmriIz3DiPJ/Q9120EtlwCvbdZQfnu4K7ZZ14aOypX\nC3ZwAL24KWy1cUVzwoT7B2AXjGHiDGEcdWNq7PECfSlAH8eRJw87LVCkHmHUtE+1zk5bsBRcRk9O\n7X52pr8x5r8xLqMWUL0tbep+Yeay5KLu0+6gPwULrtNVuStF+hbzKEPfRlG1tw9nuHpd/WHc/5oJ\nNSlVrefT9132ou6eNcD7xRSttBlz26ihz+Pu+dm7YdiTvrMBZcE5Kqs2LMxpfAVzGs/Vz3Eb6qgu\nC7DypwtoFuLKF4V9OcS1ctxHV4g6iXZhPA5g5KX02dVNShY0/yysoaHIvm4A0z0cV1tFgvq/6+w6\nxik3ABkrRV030ByLLKmcUxgoXRxwhkd63mlZnxuwjS4/pfkjiB5eek2/c9BpOkObqzXS/fptFq4R\n7C9OGSRhlASTGgsV3POqh3pXqt5WH9nZ3TUzs42bmt+2Xlf95m9IQysCK6vFu9uoqr9naIc5aOYs\n4CIYwlHON692Xe2il+Wy186Zcoy9eF7vAUH0qtqHynd1X+vK8amYS/uPdCokNq85L5cT62QeJumE\n9TbB3iK2hAYY63O/DlMIrbWnX37hq7z8x7/4C/Nn/TbAbWzUVRvkFvWsPO/bE3Q6k3k96+lXVYcr\nN8TYDpq+/9kHsPFdV+QD9YF/+lgakKOSPl+e1/9fek3vyx2cel334V//WIzr/SONwwtXVeZ+S33z\nnV/8xMzM6jjoZrfUtvVDfU7BSKzwjjVGRykLm7RKW9eOtJ98/lW9u/l5+VwZaixce15s4fiyTjd8\nmJKuWiau+zQDGoulh7tmZhbN4mLKSZpFdKCmQSib/0rymDJe8pKXvOQlL3nJS17ykpe85CUveclL\nTyA9UaZMJq8IXCQJqgULYYKWTCimiJTPPSfuQ7+iImShZIpwJbYVWbv0jJDWwQNF0Bo9zkvin17l\n/F7/lpgz2YQicYlVXb8WV4Qv6heyEOdcYt/R9300XYKcZ5w5aMJwWLkaB+H9zg0zM7t6XWyKnYeK\nCA6ItNfvKR+7hx9SXiETi0QAc9eVrzLOCJ19PbdzilPNontun6g37kz5lM4fhjlzPTwGRfvizHaL\nQr8Ll1Sny0QTh2OQ0DuKagY58z+LKl6Xe1p1V9hAZ+HHXygPUZVh+Tk9cwyS2ymqTZJziqamOUdX\nL4PehBSlPG8aBmDY5BR1nHF+20U/3PPOIVTqpz49ZwaSXB/rd+0KDI+I6rYQV7laAc4joys0Q4Ig\nkuEsrU+R6nZHbTFKxCiXftfpoAaPHkkB9D9g+t14H8S3wvnwpBCC5oluMAipzU86nG8HpQk7uv7L\nM+V/HNT98+uKbHeRNt+fqD4TjCGjT05BCd1z4e26zpZGBypHgLEQR7slW9D33ZFQJGeovyFctkJo\nWHSqQhTydUXgC2H0nnAfaQ7FOoj4dL86SEski3aM63ATU736/KCMROH7fhB2XF3Ok+7n1YbfKOja\ns0co48+pDIWfqS5+8v1NMzN77p/VZsVH+nsxhC5H73UzMzv9UPe7mFBZOuv6ez0kTZn3LqhOPsGB\n5MUznBRuihnS+P2/MTOzWkFoROXbipC/fBdthNIHZmb20xfEuHlzR33hZwbKzjwzX3rDzMxeYcx8\ndqrzv+E1jbkf2e/NzOzfpnFRCuu+i+iIrP0DzlhhzYvvvKx8V2O6zyZV/Oy3NBZ++DdCYbbCYuAd\nfV9suOie+mZvWdo6/+4DMV3e3xMy8qcIXMx+qfnudxelAdO4pbmmCML72jvS6Il01VdPXlYffuqG\nVPYzpV0zM/soKpTrE99fmpnZdkyuTL7An5iZWWys59VWYTOcMwUYC5ja2RBNgd4nGhuVz6Xqv+cD\ngZ5qjDTPOL/O2CyAzLaC6LJwjtt1boDMYrUd9f1MOsf1et7eb3RmurWEFtKm/p9Lxy0VhRnRw5Wt\nBvsGZM7FfIN+5bGMFkEXvYfaROMuFlKbDfYYx6DUIdx6YgW0qmAdxECnRiHd95OPpBVS/Kn6ROmu\n+kwqTZ3D9nKWWLvRRZviaNIbwBKoKsdB5BiCFKA7Rg8NbSufO97RkplMQYi7GhsBP2zSuPKZAymN\nw64YwfBxIjAWjXVi+njIZRDdIV8fpuGZ8tNGNyqOZll0qv9bQ3uFKeh/Grc9tjJWOt1VPmBmLi4K\nhZuM1a71h2gsnCq/kQyaCvNC50otMViamhIsfVU3dmAS9V3ts0zsqzJM845Ve7rgy5muHz6l60ZB\n6iOtOeXSN2D6oM+xB3p5La96jsa1PvXQALPPWPhu4E44VH7H6IvkEqx/6CuVD2rWbIohMwupDuaf\n0jw6q4Nig1QubmgecA70jOYx2ioV9GlYu+cKYs51QZGnH6nN57Y0/s7QfQiwlgVx94DYYsVj2KXk\nMc7YOm/qGfPdCI2Bjsb57D4Mkz66EOj9DHEYs7iui6Nl1QOtLoVwb4KdnIjBXsD1qMN80oNlkcB9\nyVmCYXiisVeKqrwRUHKnoXo7HKoPBPbRvUuxz/bpxsEwazxOL7kX1bYL9IFRUc+dvY/7yKnKO8Is\nadKCQZNVe2VXtR4l/arw0Tw6SEHXJUnzbQ29k+aZ2qs3UZ9NwRzMb6LlCMs5k0Ln8A4aYzW0Zl7W\nPJpFj6Tnx72qrrE5nPyLOaBWNYe5aWL6/2im8o5xm5lhGRmAZZaCEVQJ2rnT/ofSPavippS/or55\n5arWzHEc1lAHpgR7kCIOfg6M4cyi+kqzC7unzzuM66bDfn0KMy2L0+v8oup+MMaZC8ZMDCa34zLD\nj1UHOzCmw2jaTGFabl7UPLScV1ucfonWium58VWt8XNrLtuTeQ3djFFNfW/vY71zdWDi+2BbFK7D\nLEd3sxfineVI163QBxe2NIbPGrQVLIkI7GYnq3WouadyDB/gsoSOUcJ1DUSjJ0vfz62q73SrrJ9F\nzafhiPZEuZnmFt/TuAPyftAqamzG2+pzHdexa/CH9UL+v2nI+jc+0x7ThwOYD00yZ0V970JM+/6n\nr+jdcoL+XZC9V7Ghcr77w78xM7P5OG5SWeWrsKF+dfix2vvRHZXr+ktfszb2Sp/Z2Rc1G+PEaA3l\n7WWcrea3ND+PGQh9GIcPP9MeYQbbff2imDPba5tmZvbaW9rHHh9qv3x2V++Q4ae0X0xSd4E59DsP\nND+M0WYMoS327Btioo9hi332sXTtcknlq7CoPrKxpM/3T3WfUkfvw0FEu6aMiZW8+szKFbX12EEL\njDW8eCAtGVf/rouT7emx5h22TrYP+zfHliAVQleVMR3DCbHN+/+k7TFlvOQlL3nJS17ykpe85CUv\neclLXvKSl/67S0+UKdPrKtRUfF+onMP5xhg6HBsbimANUvrdwwMhjNWqIlXRi4poXUEtul8Rwvrw\nU0U7c1f1/XJG0enaB0JsHuzpfN7p54rczW3qLOvGN6VJs8yZMVtXRHDk1/POdoToBA51/x6IRqen\nyFtwSb9/9ptCwIecNWt/pudO0I5Jz4OmUfuTI0V3FzOK1AXbiqyN6opUhqmXIWdbXXX+cU756Syo\nvrLzyncI555GVKhXtfTQcglF77ZfEAoe6BNhfUcR7EPYRQGcEDaeU93FgoqSnn2sPB48Up0tbG5S\nd0LSalPYSffQ5ykK9aj5OA/d5Kxm5PHQ7SYiCEO/orcpmBTDDFo4fj2vkhdKNaRu/D684dFymeCe\n1A8qqtlBE6HeVsTbx9n9OTRVxqiht1owaBw9ZyGjiHMPnY8BZ3VHZZhGC7iGcN57wv+dIxgmK4om\nlzjvXAeSiCygHL4MDB8Ikw8cvhzFT6OO6t+CiozPww7JgnY16ZsZtA2SnBWeHBLxR38phGvUBI0B\nt907MH5i6BiF/ZxdDqED0Od8t3sWOY6WAxoVrQE6RhNctzKcj0/DTvGjoeAHBU2p3IjcW3QELDg+\n/zn/uVuqy3/89jfNzOzf/lR9+oPvKPJ+GtO4+v6nnFWf03iPcJZ/2GCcwsi7tqWzpXNvC5X41Zza\nNPwBehJv/qOZmf1x6CX9v655542HKmM1qucX0dVo3JfWyw/XPzYzs9Bt1fngnuaFgE9nVb99b9fM\nzH7zpj6/9Oi/qipgKWW+kK7TYV59KhEVs+eD/k/NzOz679XX4x21Zerfqy6HfyN06517Ko8TU3lu\nFDRPHH4oDZ3gs6q/6pyQyMgH3zczsxeicmmqv602/w3uUfmWEI826Fj0OaE76ZnyUQBtmquor70P\n2v7dt6RJ0++oz9ytCLG4eKh5OfGSmEBnvxBaNulLA+e9679Qvfli9j/bf7LB3cfDFJo9NAFAPiY4\nL8RhnTgT5bcLiyyMM8TChtoxFkUzAZaE42dsjWFonagT77yj+n73Fz8yM7NXX9a68txVEJQ51Y8/\nCTLLGC3f71g5oTwGcdDLj9RGPvQhIqAvgUXd6/Ki7pW5pnk9zXjcuy2dot13xJ7qNHbNzKzPPBKK\nMG8NNW+WuziQ4MYRW1aZ5hIaKw4aJC6SGsbppuXT9T4cD0YOTEtH6NTMNI9MOEedTOr6DG5LkSwO\nNDjGdHzotoFCRdDvyEb0u15HSJ+hZdIvqPwBtA3GsA+mDnpwzvkdU8zM4rAIai3lo9EacR/YFGHl\nf4BuRgBHm4E7JhJaH0ro4ZVL+t36RXRPFlT/O4dC8TrYp6RSMH9AhHswhMYh9SkIkOaHETUMQ/ea\nw9ko9TWMX2k0rdjQnJTJUb84SZ7AKtwF0Q2j67F5Re1chfVRraPZk9XcmcrTjrgqlqoamz6ckQIZ\n9FCSym+lonW72X1oo6jaaG0b7Tt0fs4QqPCHGZeOxk3uIk4xkKcasEVnFdXdQkJ9fXFOf0/2tSZO\nxppPgmiKOH6ttWmobU0sCRtQPLIw2CKpx9sGh3AqC8GYGZ3h1oGLaBPNshls19nQ3UupnH7Yv2n0\n36wJklqB1dRX3xvi8BLE0XGW0O/yL6qtxovae1XZX6Zies4MVlffhz4VTpUBR209nqr+o6a/07ie\nM6Ueajjc+JrodTxSfoNhWMIptUN2Vfnq44wZWVQfSPjQieq5+1W1cxqHmABzmT+vsVFraK7ooDeX\nz6HBFQPtx+orGlO9LD4jppSvovItv7Kp+8OWqLlzGYye4OBrFllioWA+9m6GPtT4K0ch3FlPlb9p\nkHrPsr7BqDlP8qFftIBOXDorhtzpXfXxh3eEwk99qoOtbY37wqrqLrGieSS1jk5RWeN597bGb7Wp\nfVqCeTWGI1iE587YP6YcHKwYn85QfXbvHa21nQkajMxvoSQM8Y766r5fdbkxL0bJhP33Mm5O0Utq\nk3YbzcpT3a9xpDZtD9X2q0/r+vA3Yd6siSXRG8MQ5B1qggaXH22VvYca237yn3D3rTiF+Vwdzr7e\nN7q8MwVgbCY5BXERh85QBv0lWB6dO3pPCMGGnaKnEkGzZQLLoc/+fxouUF/KT3ug8h7vaz6fobl1\n3uRn352AdduoaP8+huHfhYlTbau9HebbMeyMGsygKAwjB8ZpBp3WhQvK5+KKxpY/6DLoOTGxMf9V\nXkKVifmKZi+8qPflzLPouJVVt5/9Rkzi3kBl7bPWtk40nw5CsHR76mN3dtRnz9BG/PQTuVlurmhc\nvfiCNGSKsMLqv1Mc4O6BmNG5JKwoToR84zW5okZ5N+mGxYhZyl8in7BBjTUVHaZZROtE/GnXWVD5\nnPbR6zlTPhOU5+13xUBvn6ic4bjmm9LnMMBxu9vcvkxd6jmpAe9W6NmNfDit4f40Rm/pbP9rp8T/\nVvKYMl7ykpe85CUveclLXvKSl7zkJS95yUtPID1RpkwVB4VeTeiXe04xVlf0cohKfRZHgFSK84No\nvqw/JRTHz3no0g4oPyyIQljXhdAC2PrGppmZrVyQ0vX9d4UQl0/1vAcnQrdinK9MBVDohtmyFte5\n0FPYDbOqfh+OKTL43A2d+0uC1Ow9VDTcl1LEbGVJ10839Tnf1H3rDUXFw/OK5DX2OEB+h3P1A7Ro\ncB5KbaoeVi+rHBHOqDWLIBwjRR6DnFcNz+Us+bQirqO0rt3dU8S+/VBlCbaU5zTsn9xE2iezXdDs\nj8UeCBEpD6Ia3kFtfAE19dSc6nLnjtgCU1Au30xlfMxAssWj6IOE9ZwuyGQkJRSk61Ok2g/KsoT6\nuAMaFAzpunZLXT0MSjUZKV+TKMgrDJt6TPf3x3G3MNVpPA4LAXeQLpHswkj3TYC6zYE+zZqK2C/5\nhAi0ea57HjsX1+98YUVtg4guNBMq70lHfTm0qAj6dgTEY6Jo8sRRvtdW1EdHJ0TK68rPXEjR47V5\njZH2kTQhfKjyh/L0tZb6WhX3k9FE13WjRHtxZJjMdN3Q1bzIqR5qy7go4T5VB/GIzau+ejhH1AL6\nf4P6GYOQT7nfoKl8B2EnzELn15SZJRXBfw2Hr5/i6BLdEapxaSIk8ags1KW0fd3MzLY+VdkGr8AC\n+pXa9J3rQiC3bghN6Oz/UmVC++TGz4Vevb2kSHqxpDr4HWynCSyl9L7qaH0shGDu7C0zM9vbFtPm\n+nMav7/8idr2u6BqBdgKd4L6vRN6X88Z63kvPK++fufHnEu/qut+fKbyvvU9oTz1H/4XXf/N7+n5\nrffJn874/upQfWnlm5q3nFtivny3rfIfhcTsmV1hnn0oROGV18XYGaMnMV0QsvGz3zLP/oUYRA9E\n4LHnCzpfn1hU/iZfCI1yNtXH1k1aM79/QZoxz+7LrSr9mhgzozoudaeqj8pAKF//IojnOZMDW6Da\n1PMDjLU+7IcR680MdlwfBkyevhiPcn7fp/+HsaZpgPb5x7r/tQ3N8/Ov/5GZmS2iIRECESqABKci\n6EohQBKYnJlVcXTJ6m8gjevGUGuFD/0JH5pe4yT6G6dCJvf96sMnv5NeWfuR2sxBg6CVESIbR3Nl\nEgTFdxl96O5s3USfzCUXxdXnekOt2dV9HAtg1vVhGvqTKkvIp7qYsE7MTXEyQb/DRTpnaG/5k/o+\nhm1UN6F89GDEOGhUjZMwiQztrRCaVGilJGB+JNGVKM4eb4szwf1qnNLYbTEPB9DcGcKOMhDdBFpq\nMRwYK2ib7dd2zcwsvgbj8ILGaIm9TbuEc+SqnufPo1kAm6JY0dhsO6qP0DzIaFr1EErinhfXdVXc\nTczMyl88stQ1ja25dY3Re6b8BNDqCcA+Lg1xkMvCRgA5rd8FmXXQZNCUYDM0yZp9dPVwBZxbVzlP\njlQP9QpufvMBW72otb8e1zPPirgw4SDlovq1uvtM9ZVUDmZiW31jxhrXm2h/toyGTHdOfbFe11qW\nhG3anUe7D9eNYVN5y0RUZ/EMujwwJM6bgmhaZcI4YbGnWS9oXM9wR2rjvlTriAETRGtgBqu1MlMd\nOSnQbco5QteiEVR9JWA7IW1iDkzIbF994s2wmHgTn8byw8/RQjiB7TvJknPV92iAvl2OPhzSc7uu\nC9UZbDo0aAYj9KKOYV62XN08dJZY46fseao4Uk5huARS7h5MzwvDtEln1X79nK6/8LTqZyGr9js9\ng8mKe0mzr/yMcsxRsBkW0PQ6BpF32X4T9FOicfT2zCwRLlifeTqQRlvGyVEu3LhgD45asJNnaFra\n+dm7G5eFrqfRLBlXlZe2T3W9hjlonPGz+ZL2iWHqssI4e/DerpmZdUrS7Qiiy5NGe2uUQbMrCEMk\nqIEadBlsaAA2OqqbB7d1v/KZ9hIbMCCHOOQE59W3lleUwQBMZh9rX3ysus7zHjEZq/PvfkHdz9TW\n0YKud6Yw3Rf0++WEWAPDOgwU3PJ+/isxO3tjzY/PPAOTBkbf3EB9YgkWrS/LvhFNtb6KZStL6usD\n1tpaD/epmOqhfE99cx8nuM1NzcsBdIfCCdafNp/Xle9cRvcdoZlZg9VWwsW07Wo0dh9vTzLgXTYc\n0l5w9bL69FoQvas5zZ2f/U4s4RJMeH9T3x891Hvc089Lb+WV735b92FdKe5r71X5XOW+cFVzxYUV\nPacd/PrkQn47axYIWjypsjowAmNo5dXpQ/GUNGOegnEeZ80sMV78MAT7MKUT6AJtbLlOV7hS4pCb\n4IRLZ11j5EXKvHpZ++/mgX4/PdV8eZe9hy+icdzjnbDe0LrQrKvPHu+hxzbRuN64gY5qEffVu9oj\npXCkffUNMV8cHHsLV/X77Rfkclp8pPu1W6qf7DXVSxvH3P6Zxuj+ASdpTPmt5zUms+xVWp0/rHPn\nMWW85CUveclLXvKSl7zkJS95yUte8pKXnkB6okyZhWcVkbr2HSGrVXQvHnwk1OeLW4oOBo4VcV+9\nqN+vg+JFOI9X3EWFvyzUJwb6Nx0o6nm/JAQ4zrn3cVKRqvRN1N0dRSl9aEwUTxT97D5UBMx3Cnsi\nh0o9iMtpR/m6vL1pZmZJIne7vxWSWz2AcYPKcxN2xXCivwNQzvkbut4cmDE4Newdys+98UBR6rVl\nRR7zWf31lVBiJ1JoJUUs+zNFWQecP3cWI3bpW4pStkGD258pwmoxzsKDlmRWFMmegWx+9BNF/xon\nipKuP6fo4aCnuuqjczNDBTzMWdglENfenBC19qmijFY7PwNC+QCFQbsgEOe+Ds4HIKeJrOq03+ac\ndE2oSyJOm4GGNafKbw9NAEtz1jbFGfi0Ite1ifpSdFPXZztCCIo1fd89U9tdgomSB0FIo6Yeqel5\nubGQgFALpMSEBBSWhFhbXohFPc1ZWlhYtZIi+aOaoq7Zp/T7cVf1sAR7qjBVfhsVlX+uo+jtok99\nzocjRHtP9RLbBOldVxS6D0J+WtWYcBI4KYTUzkEYR48auk8/qXJEsqqXGe5NJcDGaBb3lInu22+j\nMcFZ5+O4yyrQdbEJzmYwotpF6nv0hxXK/2W6vSpU6gZuP6NtMS/+pCsXpIcRzpJG1TbPRNRHdzKc\nHb2l/88/g57GO9Jq6U00/2x+XxovS2/rvqczjY2rJeX5elJnVmdVtdkjUPH6vsp8uS6k4JOJNLGW\n+3IfsTtCg7ZAVj/Jq66f+QVK+dsa35WOfrd0QWhS8ZBIfQCG3QpnVG8LBWnua75rPPvnZmb24L4o\nK3/xjNyTxkHdZ/ITja3kO7rfHdN9/vojIRevLan+PjsR06cKgv3HILchGCLvlcUgGvw79dXNhxrj\nTk6Ob7VjIRDxF1U/H9Lmz3wsx4HZZaE7L57q/59cfMXMzHqPhCz4FnTfZF59Pf2B6r0KynbeVIVB\nWdpG/ykNS6OBXhTnxEewPMboepRKzMttPX88hlWQVt/OwgYZci589aL6w0oavaWqytnFrSvGOtHv\n6a+Ps8eJxLzNw8gwNFGquFcM/TArQOl9h2hm7Wnta8EMGdY0L9dgKmQdnEtArVJpXe9nfA1G4DIw\n/tque92e6nzEePfjotauaf4cgpqN4+pD0bjGvY+z/D5g/XhLdVN316Se5rsRKPaMNdGm+l0spfJD\nHLExWgdDfKdSYXQsFkHHZlpjx+gVTdDi6YCGG7p1501TNBCmrCeuC2ENF4tojd85GtuJRbXdGX3C\nD5Oyn1U9bq5qbzFFe6Ba1NgKorXlX3LZdepbBwOVZ9DQ7/OL6JKY6ncQRicD17t+TferwBIxM0tl\n47a6rDnjBP2U8CGONOg/za2jmYPLXh+nyih9c5SDEelXP2ugfdFq6Dl+XEIiF7QuVXABPGppfQxl\n9LzM5Xnzs4b0jtX2gb7KOkFbacazuoY7xQx9OPQRHJxjouhJlGug2KyxKdhfDbRRThY1ZrozdB4/\nYFcAACAASURBVBk4859dVN+KD4TwdqYaK67r0XlT7VDPqTAm/Lh29uswf0LqQ8mc5ueVy9pTLb24\naWZmrTbsKdzmZrBb489rvuseqn5KMdi2F0GM0ffovK82P/mN2Mhza7gk/R6dC/bP8QZ7raKuq6pJ\nDNKu9fs4aRXRn4ONnEODZjRA29Cn+g1N9LsKa30NVhukN0tRjQnc68JJ9mqwKXi8+TCoGUDgmaEv\nN+yqvVowE0MwX5P0kwb9KNNmnzuCtQUbe9LVHOkzmFLYowydr9eJvaNT68JM9I2gAX6lr6d2WAip\nvfxZ1f+A+Xlm52dUjank9gPtn+st3aNeQourrDwl0NaaHmj8jLoa//688uSvK49DXJdyMJAnOMiY\ngwMg+0l/QvvR1qHGUHGqOhmx/U7C9Euh6XLxhvbJXTQXc3NiUCxuq8+NYV4i3Wg1XKAaOE72j/T8\nbhm9TXTXZuzLJ8wPDiykCvmZ1tERqen7AS52iajyl8/r+cOY9rPLa5oHI9TLlFfXnruudDXPRTvs\nT9njJXAFHJ2ovo/viFVdPtX7zzx9LQVTM858vPwN6aqEV2n7ip5TKen3fTS9Mgk0vaKaU2aDx1tv\nWjjFpWEwFpuqn15XDZZvae8wQRbpxe8pX6l5sS82b6v9fDDNBxXt4Q466EN9rvs82hd77k30lR6e\n6Dk12MD/67//X+zs7p6NImE7PtPaf3ikvptDlygIhyOzpDwfjXnvPtS81Slrfk9RF23m89MjlWFh\nTW3q92kv8uX7uv9RUf9fX1KfzuNgW6+yLnRw9NrR/Y/rGvdLOBUOI8pHAmZlZIi7HaaXYXST0g6a\nZosag3NR7YfDfZVv8ZL2bTavfVoQ7cHTXXRLqxr/Jw3lK497axfW6Cr2S+sF5T8Tl5Zku82EO8OZ\n2PnDuqoeU8ZLXvKSl7zkJS95yUte8pKXvOQlL3npCaQnypSJTRXNnKRxeohxrjEjxPdwXZGncUvR\nvjNTRKq7o3NyuZmihBGiyJmgosQzzgzHUOZOOopuVoqcdd1TBC91Q5GxDRyEWkQ5kw8VESuVie7u\nKspa/52Q7mkOjZhvKBK2ECU6/Sn5e8D5StcyAXRv2FbUeW+kfFx8WghzEjX9Dsjvpl/5SqVVP+31\nUypMkb44zhmzhiKLGZx+Wg0UxY/1/OSyEJTYM8sWicGMOJNOhD/kqnirCxzj4V7Fmz6CM0Kiq6je\nhYtybvGnFcc7Rnenc6Iy9v5emjPueekV1L9TqLRv3URPp/Z46LZN1IaTEK4aFZU9mMcRZaK2RdLA\nxkfqKysp1Um8CdPjUHUezsAE4dz5cKKoa7ug8jYTasNqmOjuksKtraKitJOS7rtIhD0ZV/6ad1Tn\nF0Dfg1UYPCZkcRTT8wYwc1IroG2g79OKPmdy+t3mmvp2KgWaiCMXZAHLgpQkOVMb6Om6HE4uqWO1\n07Cov2Mjel1XvXX30IQJoXoPMgFJwPx+9bUqavCNIsyfOd1/uqjPh5yzLKGNs4i+0og+etZUPcxz\npjidUP2MQM86ILQBHCaGUfX5qZ3fNSV8X+jB+y+qDtO/ljbJo5tirIVMfXH2O6HWjx7oLGl8TWru\nZ/Nq8/imGCTbFeV5Cno/X/u16mRTefs0qjHhm1Nl5dqK+C/dkVbNKKk2dy6LIdK88hP9/UII3EFM\nZU5E5M6ztEik/lgMkd/H/1b5Tup5r8AusEXl/70P1Ja5P9OY3d8Xq+mpp4Wgtg7UtuOaGDLRFSET\n1duq091X1Yle/AuNhV20q5INsem+9Zrms3JBTCHb+a7q4RX1peLOb8zMbGOLc+FF9dW5sJ7fTgiV\n2ZrT9y1H5bg3U199Hgex1otCDm7vwubYQiOBec2fxpUDV5OT36iPPMyoj31zWXPK/27nS9f/k84G\n/0+bYhC5nL3/7eD/MDOz2l/vmplZJKT6i+JU4OOcuRPQOlEAEYmgRWMV5a+Ca8nHH/7SzMyqJ5pD\nVuZV/oUCuimMEWSsbAJ7wZlOrFFXnbTQZQiMGOfMN1MQte4xDELczMI4ozAd2npcfX4Cuh5mvA1w\nwnIAb4boJ0wiOEkxkQaGaD8F0V1AQyUWAZlFhyEEg3E4VN9AEsX8UxfRVEql1UcjF2HEcJ58NNE8\nc+tX0jtyQK+nXZUnlUCjIAlrKoEmFvnpDXBMgdFSOWVtZz3oR9wcnC+Vpmig+dVXO5zNn4XVLhV0\nhJZmrLl1GCvMCQ7sgmwChy5+f1LXPDlCsyy4iOtcVHNPA5dB51h9bQGE2YcDTK+Ihgvzcx0GUR+G\nZCL7tW7G3Pa2dUDYaye6b4w+uIS7VLOq8i0OdZ8OzmRxXLXm5/T84a7yc9rWmHYgeM5tas5qJVT/\nxX2tE7NF3WcBDYa0hWwXlLqH40ksrzb3g/52HDQ7QCb9uKJ1seBKRmG3oqMTY62rR2B/xtVGTkRs\ng84QB5iM/ibWxKQMl/XA5oQxw9oUt4Q9TnIdyFYnMDPJXxtWVhdWUQDduu6h8j1AI8bd05SKWjMD\nOL5URmqjiB9mEHpSnY+L1AduRLCeZuh3jCjPCD2jCJIF06Lr3olrUR8dwAiaiFP9cDjEBQ7W3Awj\nLwcEuXqsebg5VZsGuS4bwE0JdlUAnar+hPpooLMRYs82Unm6MfZ0O7CDwYZHI8qB3t4I9xRnovUv\nOFP7+WB1xMMwcAaq5xx7Wh8aRX70606P2DSZWXHQsGxSc08HnRHnGDZKUXNqNc3kyFjJoIEzcs7/\nuuSbuCi/6qrGvquM88rJjtaG9ASWVw3NqJ5Q/1e+o71JYUN9fSUC4w7txPKuWFJdtkkrYf2uVNP9\nT+lbk57mGyeBcyBMwrN97d/f/0h9K4XzVrOteaRVQdezyzrEahnDAevhgda6yRC3oiXN7w46UZEN\nrZUXl9Wna7tq8xbuTGU0CM3R3zjMjzyuf40BfbGPy2lO9XT312K6TBlbmXmNXf9MbdhkLXU1YqJp\nXRdEzHJ7TfV48wXtGR1c/aZj1UeY0xQD2qH+gcp/D729DO56BjN+FlB+/Rk9v1V9PKZMLq+5aWFZ\n62kDFli9rPn+eEftUBkNyN+umZnd/qH2pHX09pby6qsNtG6eu6F307Vr+rt0XeW+9rJOpbTf13vg\nfPRrZ7KVm6s2mAZtLq192ySAs2JQ+8d13tMHNeUlDdNuyn6sXYGpBls2g/7dvc/1vt5rqU4zm9If\nHdfRqwwo7z2cF4866FJyGmDsvmtd1XvxNZ/6UmKJEyMdfS7D7CmPlK/tS5qvInm9Z9dH6hODU+bn\ngp43w63tH374T2Zmtg+77cLTvJdDMcxeQDM2o73ICevaGe+W06dwmOS0wSLzUIJ52kG30xnCDv5X\nkseU8ZKXvOQlL3nJS17ykpe85CUveclLXnoC6cm6L3GWbP+WzsAGXacd/p97iehpUpG7g2NFpJpH\nimruv6tzgWG0ZdaXOC9twDkJzm7VFKHrcyY0dpVz6UuKqO109PwpiuDJiCLpKZTQu2gRtFGnv7D+\nrJmZbT0tZDzIucb9A0XYDHRqiE7LdIKuCtHO2Lzyl9vQc3qcA9z7naLAOc7aJjdwkdkUInOES9TJ\noZD4QA12AUygnQ/0fI702vLzKLoPB3byrtwcmidCDRZyqtP0hh7W2lcZGqeqw2EPLRQ/6EFf0b3A\nqaKBhUubZmY2jwL3/kOxiA52VZeTunsmUmyBzHW1xXj2mJoynHmMOyprIEDv6Or7MW0amgl9G7dh\njhDtHdVREI+j1L+k76shRTP36ypnhKhsZAU1+7Du6wNlqlXVhxZCnDVdBMmcgJSWVb/TkNoqTd+b\nnOn+kwXVqy8ihGHAOeoJ5xH96FHMoro+0ABGbxDJ7uIm1VZ75SI4IcBsypziIOM61QxBo5r6PlpQ\nO/mTas8Obkg+vyL/GVgB3QbnRNF8ScO8iSZgU4Dy+1yXKNTjQ37QsEWVuxdEMT2ocnRmug/BdpsQ\nrY5wsDxsaEww+rt2fpuu7VU964tbGndxUJHTz5SXuYbqeP6y8volSG0n+yszM8v6hSIlfqTx8v53\nFTG//otNMzP74MH3dZ+k7v/6fVzONoQOf+hXn9jraT57I6i6+AJE73cfC6W4UVEdN74rdGRuqvF9\nlhOrIZzUmAl/Ks2ZgwPlqxXX7z/PKoa+FZFWS+I3Yq+NLgpluY0jVvtzXXczofsegnInL+EWV9e8\ndfAzlW9zS8yh9ZD6/N1bmkfut9RnXn7hh2Zmduuhxs5rKq79PyDNN9DJqCyKifLoMyEji2/BINn+\nOzMzK/xK9XB2Q0jJ0RyaELDEbhzo839Bu2sjoDG1E1O9XU4K9VnZVj38EDbAeVMbXQ9GFpiY2bSt\nTjntwbo4YR3CGSwYwZGHLlk51hgZw4IIMzdlyOc2rgH5HIjOvBCdUEvzfKOD5kRCN+wxYQ/D8a/0\nxmJBzkfjOOijrBN0aJJ+9GjSauOv1jbQ62hede/DWSAyBc3uujoL5I3x30frKUStDDNaD1zGm4MO\nw7QCI2Yq9LoLguqepR/MXA0wHM24ro3+Q8RR2RcS6ku1icZSmzXdh+NDq4eWCi5MdZgYATQHgjAh\nA7jkBWe440Vw8JlqDMTGbmufL41x7egU0H1DV6IdgoEzp/ydFXHgoe1zuIN0HZzF0F8ajXGl8yuf\n4wVYADlYZTHVcw1mago9jyooW4CxVasqP0nqLdTQmIGEZgm0HMzMxtOudQ5BM5PK3xT6gwPz1Xes\nubBdVTumJ7p+Lq/7D/dxU+rsmpnZDO2LOZHprLmgdtvvKn+DvD7Pz8QGHI9w9zgY2ASdsDV0jSZ9\n1V0NTTz/lLZNwXTo6vd+1u4aDiyxge6ZWMLVh7WsC/PY1XiJ5dTmQZypJrAUHPR+nB7oOI6Ms9z5\n9cvMzHz0bSdFH4PFlYygUePXvFlFU8E/xrmsiN4SjMEUuk5TNAfqNe3v+mONweSCWAsDdDiiON6s\nLmseDa/hnIYzTq8nRksbYuXRTPvEPnoTvgasMXTuNta1ruQ35LhYfqQ+toJzTruo3/txNSk+AhFm\nCze/qL4ShRk0ha0QRrNx1nX14/Q5AANoUHc/q/wbrMemarHJkPkQLYg+0HFroHqIMKcMmXPGOOCM\nYJIbukwxmPdRdLHMpJeTT7CHDcCQ4t+73N9w0pmx7x+02PtGz49hj7jG5+qTMX9EFvTsrXmh91sb\nuOGhHdVAF3Pej14mbj9zORgZPZdeqTLnYW/2Ycz0WJMLKzCTwxqPR/cY7zjPLBTUd/xojM1t885D\nldRLMPp66gP5PMzzpBq/AatoBDNmYY41E1aDjz7cbMCoO9DeqDXU70PUQ9+Uj/VtPSeZw+YNrcrp\nAfMxWoz7ZbVtBo3CHvPn+jPqy5kFjb1uHW2vXXWqky80x4z7rEfH+v9pUXuVcEwFn79AH7hLPc6p\nHVbSq3xWex0lXZ05tIJYVx17vLlkBhP1GG2dZk/lWc5rrhxt4MqEK2ljoHznA+oXuYuqr4WC8t8q\n4wK7xRwRVf87LGtP9/6u2mFvR+9rF9iLmZkF/GYzf9oGE7XtcKrxXUA3032fLh1+YGZmd3FHS9Al\nu2jMBFjL1q4ob2vP/AczMxuzLy/uonsXFbtqbUl5mIupL5T2pC04S7nuaJr/R0PV8ca68lNBF6jS\nhF30CL0ztMjavEsMD9Xn7+CSdHBPrCcfrmzPXNOill/fNDOz567r88ozGqP3P1YfSS0ov3U0yjaC\nYu5UnlF5Ly8r/6e7ytfgcFf1gprWpIH2FacQ/rXkMWW85CUveclLXvKSl7zkJS95yUte8pKXnkB6\nokyZAKhcjOhrDXX+VliRp0JDMaNuUhGt1Lqih2lYCqcJRZVLdxX923lP0cPBFaE3gSPd97StKKs/\nq2ji8jUhA30cK7oPhRxEQb38nE0+QUek09b95i/r+Zee1fWuOv2X94RAjyu6XwS9kzTsgGpPkTU/\nZ2S3NqWFYLgH7N1X/g1NgoFP9eIM8T8HIdl6Q1o7NtD9ffd2zczs6CNFKIcT/b1wSdoUyUKKctRt\nMgRtAf0Nw+JpT9QFIht4yq8TzXyoMnX3dc/igXQg1m4IxU8lFJFu4SG/QN3NrSm6WAPFiPX0vIPP\nFeEeDTlLes4UQPl7gmbBzFHEPsq5wSquTkHO8KdnQo5DJbRYinp+isj9bCpEIuqAGtVhemQUHY7w\nf/9UUV7/oeqwe6x8BAK6b+URogVJ0C4Ux/uc0S8XiKTD9JnldP8S56CnAdVbBzepIW5GQTQVSkTM\nd0FIs2gGRONic4xwjGk0df9IVPnygRCngLP2mqqfOBH+TkL110TBfBBT/kNRxgJshQ4I60pECEFn\npkj7rKsxgUGGpXK6Twg0quIIkYgRoXd6br1qTGdBQeM1N9/oIwWVjxZnq6dfeTX8/6edtqL+/i2c\nY6aaB67V3zIzs19u6/xt+bbQg5dW1bbueLkVUJ26jmJXLE3hQDhn/2xmZgkR2SzuUx8fLahPV0fP\nmZnZa7ABOh9J1T37psryg7/X79+D4bH2t+oDb7+giPnrt8TYefsZPTey+4aZmS39iR541lF+X/U/\nMDMzZ07zx1lB5fp/2XuTGMmuM9/vi7g35jki57nmKhaL8yBSlESpNXRLar9+/fza8MYGDHjnhTeG\nAQMG7AcbXnjplWHDgPEMG6/9elS3pNdqSd2USEqUSBbJmqfMrJwzMjPm+cYNL/6/S75uQOqsFb24\nZxNVGXHvPec73xnu9/3P/z9MCbkX+bk4cRb+4BtmZlbYkB0WfbX7/ds6h37pNWVTJmm16885B/3d\nL8j3zzdQVIHt/r3uF83MLHFNalXff1cZlBX/VTMzq2akznTu79UPmbOaI+o/ku/2vqv6znxLY8Mh\n9fnCHdWv/oYyMPuO7JlqKf1fXtAYaP5K7Y+U9PtL9/S7b+0KsvN/2+nKoz9+28zM/qsf//eqT1HP\n2fuxVO7mmhpDcbJvaVByXTK/EXiOhin1UzrGPA+nWRKURYR1xlCOGILA6WdBq8Ap4czCyzJG5WQS\ntXQfyQAygS4KJPvHanMf2wUKe9Fg/FdQ8ZjI5+JwnkRH6sM0dUxPq+8SIAo7IF38E913kCFDybyb\n6OnvPtlrn/Pc/hBukrHmz0hBtsuXUE5pMr/C6dWCG6e9rnWoufdzMzOb+LLxGlntwoLmuQJqGBOQ\nkfWW7jNIyFZ51IdOUERopTmnDZLIAxURd55MWWcAb0cXhExtQWM6AVdBDwWYMZw35bTm/d5tjaFj\n7FVaQFWJrP44XqV6ZGpBtbUyoNtQUMuCKvC2NNbv1lBFmYPPI6J69brqj9II1C+IJzMzZz/ymVIG\nCm1d2H0moB96DfnFTBxFx2llByNwkJ3c0Xo/6cPF8A3NCc2S9kb3THui6oyymudAoHpw4gQKQuPj\nWZsfBdwjKAiCGMmDAOnNKfNZwjbdHdmki6JKBTWcLEqISVBejY7aUDvW/ikxD3cY6KhAuWbQou0D\n1qQB6jsgPKL+k/mIiy84qF6OduR7OwF6KaH65eOa3wvw0nk+nAyefNYlk5sBKTIPh8wwKXslUC4c\ngtRzOqgOHci2e6DHIiiGRUEYZkA3tx7wO+zpjOUr2bzGaOKCxlr/hPveU58+fCSfT8XlO5mM+ufC\nFV2fYf4qgPZ9dE/rVLOq+kzjCzNwGkYd+RRbDJtb1P0QaDSnq/s2d9mnp9lTgFLooORZBmUdIBYL\nGfZeA7WX7bj5ZM4Hvh44Px1gIs3mcmVLeur3JopuMfixVmY1xjwQMcE83USZLlk8PTIzV5BtozGN\n0/46fb6qv8d55xkxT9cP5eu7R/BjbGotPdnVPDA/p/k9CsdVsSifmXlB4zfGPOfCbRUgRY5q7DOb\nsm02BwIT9aVsQj7ZYZ92b11Zfh8E3dR5lGzjoJPg6Sle0nNmK7qPO6P6HWxqv9k/1HrVXd8wM7MG\nPJddEB8ufJuxefZaJflMHfXUXbhuWgfasxThMSqeUx9UnpEiZhPeEweunR4qpgHHVR2+t16rSTtU\n743HamfzQHuKc69prU5W9L1zzAYXPqQsXDq4sk0x1tqoVRVANkWCde+UZcQ74NCC9UxjOTUPHwnP\nH7Fv9+AoSp7RvrzMu2zS0/MHEe0BN07U3gj3bx5yiiILgjOGwpr7GSK9vdWyjYM96/MuN+xxKgHO\n0uMs71qcXFmpaD5Px1Etm9caMnH1zP1b8t3kEDTovnzsbdYWD6TKdFsop7lp+dzgSL5ShxPLQ9Gv\nD99bpw4y8q7GyLnnhFiZe1q2WLqs+23Br7PLPvYKfEWrV980M7NSUftyg7MqV2VPFJfvHGzIZjXW\nypOI2rWxDdKxrH11wMvXeACvz6Hmw7W4xs7yl1WvPO9mBxshp0xYwhKWsIQlLGEJS1jCEpawhCUs\nYQnL/+/K54qUyaDM0w/O3DYVtUyuKHJdWVMU+BAG8EFdEabKWNfNw4tSXEbxZZrMggJatnmsyL/v\nK0J38Q1FdTNLZJ1OlKlxibhPiCpv3NXZtPqGvi+m9LxzVxWBc1xFc6tENSdD1KPIACSJVrdaCt0P\nusrklMmc5AaKgu5d5wzxDUWDS/PKTMQ5E+fC1h+PBZF7GN2J4B/2ZZf6GDTEG8ooVVbIdB8o+t49\n2DKPSHeUrEPtnqKMQ1jKZ19Xtr2SVVtHZKlHTdmukJKtz8Di3amj3X5LUc8hkf98QVHWfFxRwek5\n+DvI1B4RsT1t6Y8V2U+01MdjbB3xlaH0u2v6OzYqF5QVqe5w1r0qn0pl4Ci4p0h6jKOrFXwoXQAp\n8lj2yIG8ibdRiuAcvDeS7zRRV0qPZY+pkiL+x2M9twHiplckY5tDHQS7DeBwiEzLTmMQIydk2VpF\nVJOmeB6cAT0y1bUt9U+WzHBpSr5zADIpOGfdqBBpL+v3x3k9t9rR/+MT3deNqZ2llK4rtOg/fDkB\nu3/zSPwkk7R8f2oRZNVY9ujDsJ52ZQ8HJYy5uPprjmzZCdHv+ED1Tszp08Pno4PTT03jhHz3mTTs\n6T/Vs+5fk3rQN8bihPlBSkiJZlPj8ZOoECDZJNnqFdXp8W3V5crz8CuQ/NiuCwHS+bLG7WxfSJHK\nW1Ie67iyQXxVPl4YKnPw2BXC5MWHsmX/S3r+7z6QwsJOUfPG7w2EcNu8Ipt+/GP54pqn7McPvqPx\n/doV/b3wl7r/jZeEVGkMVL+FWxrbAA1t/0jtOHtJ193okb2/okzm+XnVp3FTCJtfxJXl+p2I5sHr\nj98xM7OtDc0F/+w5zaPvvqX/n78g+3/8XbXjXPz/NTOz46Y4b/Z+qjPDc6gzbeTEifNmRn39y/dk\nl5m6xtK3ErL/xldfMjOzS1s6A7z4h/p+7zqqUV9Wlt7+jZ2qLM2DXHkg3xrE1O9LqK+k0/o74A9r\nw1cSOdbz2nDEBEhFFx6oro9qSFt2HZGhqcFBlvb1mSLz2+Ic/zCivw+HPLfvmYcSTQYFgnGKTzhG\nkiU9M0HmbJ+1wDsAaeGCuMsHKE01pjpUtmeJLHEyqb53QYt2yAYP4R6ptzWOU/AtDBqBgor+Pz6r\ndWLmS/K5vX350JBz5gF31YB50yFDmsiAGjjSWuvBXRZJ6H7NI80/E3gvIiAjEyB3ymX1IeJzFmXv\nUPDVnmZE922g1jfqn56byswsCgeE39V1sSjoKAe+DJCQ5ZSeN3qkfmmioldE+bGEStTjlv7eyslw\nqaR+PwbR5AcKQ+xp+vCdtFA3mXE17wZohQGII7Yg1oTHo/LviX6MY4vmHsuOHpnngKqhBzdaPqW5\npATqONPVc7Yfag7sHsl/1p7X2E3D/bC7K0W7RFF7o6mC7DWC66KMyt/4EOKRUdIKvjKF7X2NtyRI\njmgePrMePlfTvDlU020Vvo38gtaSw5Z8a/+u5pGDqObhyhIo0jJcAm1lOscgKwoTfZ9mL9GdoFgV\ncIoMn4znrpgATYTaSB0ejwAF7Pc1zrM55o0TffoJ1DFBO/U7WhsPGqghRVDISaF6giJhH86pNFw0\ngcJXxJMPZZgTPNbscRmkdQZ105Ey1pOc7FyqyBncEUifKopuoCVyE/l+G4Rfp6z6ZT3ms2A/ipJk\nhufNTGt+dlE38hIR6qmx3Ke+A7gRoQqyHEt9uw3S1dN9nUCtKgZvFQqPTpM9JdyN0bjss3xRPt0u\nBu8LIGLgkjAzs+2GDX14BsnwD1kHEnBeOH39vdbR2D2C5yua/kzh7J8qXbi8osx7kQqKMjF4jEBE\ntxsovd5C9bOtNk7n1MZ8Cc69ksZVAZ7JK8+D5I7pvpu39A7RY19XQ31pAJIwD1eUWwoQfCBkdrQu\nHB6qM+7e1fgfNVWfpwvy5dRIa1qUd7ZiUfN4dhYuwCocOlv0EQozHso1ZcbyC1fEMRkgtDt1uFJA\nte1vqa96PV1fQHVq9QJ8VGXV10nIHiurun8/INW5hc8cwVEDIr6DAm6c68q0a+ZF/X1+AS7ER5o7\n7j8UejZiKFmmNOaWXha6ogi6rTviZRMES4S9wWlLD1XVqQXZYQhPXQP/2V3XHqzZ1Lzdaqudh13V\n68KxnpcCgX/S0t9n8oxV1s9rl3XKYhku0F4LVb7iZ/wmqwsr1o/umpcEwQs3lsde/IP3tM+dX9E1\ng7TGWxyuvh59MDunZ8c8VNC2VbcSKJ1nL8PFuqo1FKo9c+ARyoKyL0ThhM2ISzCRgwsLtNceKLRA\n8fWY0yAf/Up7kW4XlBPv7yPaEzXNk15fPn94S/vIXBx07H0hXXIoSw6WNGYuzUh9aTnHKQz2AA8f\na34tgtbKefL16SV4UOGSPazzPn4MedZvKCFSJixhCUtYwhKWsIQlLGEJS1jCEpawhOVzKJ8rUmbQ\nV5RxXFVEOso58bUlInAt0nIPUVQYwiOSUVSxEOd8JMzhJbL9D98WW/LGbUUZr3xF0dbpsiKArbuK\nVJ2QxUqRHXQ6iqx5CvxZfk4RsgIZVjNF8h4eKKPjtBTNHIM+6Q+Dc6LwAKAGkCGrmSfa3vM+JQAA\nIABJREFUO+lz1vkTRbdHXdjetzkrTSZn4QyRSlQJevu63xCETqRJlvCCWKEzC2r/CG6MnXuKemfK\neUvUiOS2FbUcc446RqR0GiTG3rqyGPVjfbpLesali8rKR0H7HN0Q58wAvpw0bQ6yU4vXFC2MkuE8\nrMpmvaMnU8MYoXRgbTIMdZAjzpq+r3HG3pGPJMaq7+GBrruYUd+X4Cqobckmrab6fo4o6GSi3w83\n8TnUT9JFZSSSjtrTJaOYqXFmeKjPekX1OPYVfZ3Nyh4uUd0RkfnHNdnNLZC6hCtmp6l6OWSjIguc\nIZ6Sr3Rq6tPDsb4PFBnGSRApcUWp9zsoQFR0nZtVf3SnVL/GhOxRWj6bLxO19VTPuYHGSIbsXhbf\nHsOH5MKL0Snr+x4qTjEy+h7KQ05c9pyLq36ZOtlR2lfs9nmu7jNBLSrXh62fsXaa8qXHf2ZmZrXb\nv6vPZ4Xmcfrfkk2ONc6+/UVlbH+B4pW7ozZdiur7al5ZnGdvCSlSvyTOljfSQtQ458U6H/9Itn23\npkj67OtkXz7grOgBTP9FFM8iyjZvv6bnvBQXguR7K/LlNXiH3GlF0os3lY3+squx9tEbZHhbsuXR\nWJH97nOysev9vpmZvXxRz3eqymi8e6x6vPINZUzn/m7DzMxuv6T7zN3W9XfP/5GZmS1Oi2PmO/eE\nfPmLi2+YmdnUrOr3z/t/a2Zmdz7W/S7N6f4/uyBfLaL68XFf7c1XNC/Hmn9nZmbXX3lT7fpbXf/B\nrDIarxc1tvw31O7xtto3FdX8PfZ0fvwjiIziqH7MtnSW+LQlCSfDYUNj3yVDb2SZDlrwYEVlxxHn\nuWOcF0+Bfhg78k3vSHNNjUx3uy6/sbHGxArqAw58KSwD5nLOOwIvSRdkpMVcG8PTEP+UU4Xxbqqz\nM6P54g//6//UzMxacMP8/b/+QL/flG9PcrLVVHZNbcqrLgF31smBMp/jI43nyhI8aSARBxsal+fO\nat4/ScjnT1CIefO//E9Uj6Qyh+QL7f/69f9jZmaNO7r/NJnh5jHrDqi0GFmuKBw54xgqSmSvai39\nPd7R74f8zo2gIsIaGYODpUMWLjomK+fAU5d8svUmx7roddTnsW21LNVf0/NT6pfYusZmfwc07ZA5\nAP6KDmocqQw8FLFANUX2S/TUjxnW4wlUa/vrau/cIcjUrPplgopJBDSGS7avBUKlPf4s+1aI5M1Q\nrxsEij9k5ktxMsMVEC7wvdQ+0Vjus8dYWtSeYnFGfnNQFSL208zuK/q+C7p4tAc/isHJltU6kl4f\nW3oCaqCjv42ntMEqdDUu6ig4+R2tAatnNT/kKqrrwz3NA9WDdRqo38XK+j4CqvcIdGn3Lmsb4z0d\n1WcUxFoW1LDD/mmUeDIeCENFaAG1kGxSfRPPCkndT+r+CXgwmqCiWh1UQBnjTdbAgCOljOpJp0rW\nH1RrAUWzJDxvxQqKirQjltbz+6BkU2X54ux55vmFNdWPfeHUjOwbBQlicTK75zUmO6DEelH2twP4\nk0D2RZjfosDVluGOiWX0vCHogiboOhc0LmJLlgB9DY2cxdhbLVCvLpxBw6zmAp/5NtUF4d7VmDw8\nkO9lQOl2K/JdG+l5yYDPqoU9zWxy2DcH9LahohJl7+GghNMBzRYd8X5R097S653eT0aunrkAkqTk\nw5vT1r2H1L17qGdXG5ov7z2Eo+uS+j6dVh2W5mTjhWnV3W8xbkFATkCaxPG9YgYuxrRskWJ+9Ab6\nbDVAgPjYNKvnXL2qzyiI81wODqqIfOE8pwF6rDsP39fYjKEo2G2DUASxsf1YqINxR/WOzDDfwy/S\n7oBabYC0BulZuaSxFAOmnLmid6eNu9rbHb21YWZm85fX9Ny+7FYCEZ+EOyYCWiM6Ld/wGHtJ2hfh\n+YePQXts6D4ZOLuyM/A9vaa94drLejdttuUT8ap88wDls+jgyRQhKylOAiBLWplSuxN51atxE2Rs\nQf349GWhRgy0XhMOsEPeddO0qzwPx8wO3ET7qlerKdT15k3tF+ZB4n/n6/+x7dy+aZFc0TIoOI4C\nVbWY2vjUNa31+bKQ0jP44uEDvW/vb4Cy5MSLy3xeoS1+Wmva8rLGuV8OeIT0btjp8C7A/qyPTubT\nKEml4LbxUPwqLcAV1tLYOXwMp+Ec79kdzRO7oM9GoIOiM1qHHBCUMebXM6tnaad8PJhnD0D15+sB\nQod9KGjiYM+QhcMVcJulQd5cfxfUFUhBd4Sa1W8oIVImLGEJS1jCEpawhCUsYQlLWMISlrCE5XMo\nnytS5gQ0Rhf2+MVrinDFA16QR8qYtrtkeUAdOJz974NscUE9VGFTXz/UGa+lZxVdvPa0zr13dxUR\nizugGXxF9lNEIXucRZ2a0/PGIFpyabKLDdVzyBnTVJ6IPFm8NlHiQVSRxcKiIntnXpVKiNeEpf99\nRQYJVlumqAibzxle70iRwENHz3P6ikjGJ8paVY8UFZ2g/jF1VUieBdpZbyl6Xomg1HE0sS7nrBsT\nuAdGsLjPKauyu64s740PxH8xv6po4sJZnaOb5Uzo3se6z6gn2xRlAvPIkpRnQZAk1FebsMh3yMxm\nyG6dtqTgBIjC8RIdEQFvgC4im+1yTrgfqPmUOC8dheeBLFSfiH8EboDEiL7jbGtiqDBnDo6DdIuz\npvuoNjVQV4Lxf5yG9yehqGqkz3numOzjQ8pwPFKk3uFceWZK92uCMGoSXc6ASKnEqQ+KM62mftcj\nw+ySNXMysKgnAg4b0BYJtaOG5EFvojEyID2VmuWceFks7q0HGovRlnxwljPI45p8beSCWtBxUMum\n1Z4jB7UNR/VJmdpdQPUjCaKn1lN/ZDnLXFhQxmEIuqwN43qL79084eZTlPeX/gMzMzv36MdmZva8\nJwTF4aEUXnxfakixEyE93rghH3n4RfXtiGz34nn1+fdgsreREC1f/hkZ1ytq848uyGZzH6itHzzW\n+Pzimxoj5fuyVX9T153/uuarnfXXzcxs95YyC6mXlQEYbMr2f3ZXz13Uz2z+E+adfWWSn79PNttV\nlvqp76geJ0c/MDOzX+3p7+fIlL4a0f3iv1A9//pb4sBx3lLW7Y0riti///5fmJlZu/+mmZm9+w1x\nuKxt6Per8CAdbn/ZzMwSs983M7PkZSFYVr6n+q0m3jMzs5tfVt9Nky2LXuYs7w/FfTN1Td8/cjRv\nvdeHv2hPPvwMaLK/OStDzHz1l2ZmdvbHQuA8hJOr2vzQnqS4BfXTFBIKvUPVrzfRcy0vP/DHqk8c\n/o4B57wnfY3FRBzFI1AZiSn5TSWtzM5xkJgFpbF7U/ZMZzQ3FGeVkbGhxswoDnokWjCDI8QFqTfN\nuetYQj6UJxtzISbbH5jq7PxPsm1npPEeIRM5RkVosIf6Bspi3VbAc6GqNGqqa21dffnJLaGtUosa\np64L90xW991CHSjAZ9w2ze876/9a9VnnDHxHtvI9OMFYIycBpxUqepbS72Kuvp8BQegn4OcA2Rd3\nVP/IMWfvWWt95pcWa2yioPv6oBVOW6I+So+o8hW7ygqmExrbfXxmdF8tzzhaJ2cKcGL5zPcDoeIS\noHMTqDrVOX9fJqMdO4L/bUPr72oLJZi5p/T9SPftHcEBALeak+ecPIowna3PFIQatY6tJPV9B9W7\nIXusRAEFG9REPLhr+iBepgsakysra7IHftHc0Z5lDsWwgGsu09Z1TTgcosGeCeWeWMIzDySZU6Hu\ncJL4ffmkBwngVFF9W0JJbKcmJN1OW7ZxFkGurYEuYo29n9F8ayAcMmfhYnmgsdEAkTGd0P7SAe3T\nTKIIGCnYk5QE434AWmvE2jyEP6nPtvokCz8Um6RCVmO5gMqSd07zf+RIvhagddvb6pMAseIwb3R9\n1nA4YOKM3RLqpF2QMrW69s29ebiqyHinywGym09H9Z+ANk6gLIkgp43ieo7jKdPcGGnvmEc2qQ2H\nRKAI56MgFIuw53LVnhT2cPvMFkl46lDUHHtq1yY8Ij24vKJAiKKe5p6oz1yRUT2nLuo+kyEZdhTG\neh6cPCDvC/bZXiJbrlgMZGI/QB+CpGr1eA4Z7tiC6jdXUL91/NOj7kr48sxTKL2yFo7uam07OWIf\njdLqAsph7oJ8IldUnaMxOLLq8GW8BTIG1FW6qDaXZjXeBqCYbKy9SmkBlD8cYz77Vxd+pj77zP6h\nbOFjy0wFBDYqmLPTsnUaBbXIQPN9wHE4RMExiapr4RxqoMsaiwk4J33QSSPm69wAX4DrJkB21+Ec\n6/f1uz041qr4wipKWVMg0A9OND929hk7KdkrugjH11ntCV3UUqEpNW/AqYmm7DUAzZDKqZ2uq/v7\nbT13+0Oh9W4/0pqeAHEYiwU8Tk/2Su0UWQ9PUIkCMdobqD92QBGOUABKgDyNpuUvjZbmHqeg/cIq\nSJu1C5qnd0CWNuCmmU/Dkbms689cOPtpXRYWE9bPx60EAuZgXz4yHGttboBUOWjKBns1xl9V83OF\nOixf0p6hAJ9dj3G/uy3f331P1x/wrpCDSzU5FZxaQJWZvm7WNFZub8jmRfYC/Yaeu/aU0LxnUKS6\n/LreWTfX5aOdQ7ivAmXgoWy8txvwq+m9egJy8PBYa53Hu99RVeis/QM99/amfC0SlQ0r85rfV87K\nJ5P4ThqyrAvX2LuY7Ort/naeuxApE5awhCUsYQlLWMISlrCEJSxhCUtYwvI5lM8VKZMicrR0RZnU\nhVlFibtdMgIwWuc5EzoYKCpYGqIY4xDV5Ezp0Q1FtKKcg7z6dWVaYxE9Z/OGztEl0WHPwCXTSCoS\nlyA7n5oh6wZfyFGeyHuOM8BEJ2tN/d3fgRunqxjX1Ioy0HNLiszlxor+3r6jSOG4rajsueeVhYsT\nyfeNjATnIz1Ym13OPR5tKVr68H3dJz6DMkWS86U5nd8skplOX5E923td60FKXldQ0hJwfPgmG2/v\ncPYTBZn5Z1T3IeoeD+G/ObqrCHR5Gc4YUx1IUpmTVaT9qCY+je62zqLniooqOoEMxCnLhHO+kY6y\nagSkzXPJ7oAAmSxxBjRAyKRgukbdwxKckyyhXkHUtzdS+w/W4Q7Iynb5iVAHA/gfvDuwmZfU0LMZ\nlFcyKErk1CfDtELww0V9Px6qHg1UMMYpMg1kxKOcRzwLb0eAQEmkFI1dTMp+ASKonFeGPEKmoddV\n9qbR03O8mMZGbU6+WB+o41ueMgjJrBygn+CMbUIZb8uiMFCQz2eXZJcJTOjxgerpkF3sZuWrccgQ\nIk14maq6foz6VK2j5/fu6PnZKWVg8pzr7qJQE5yvdzgL7YxPzylTisjmky/Jx35uOjd7/gMhaM6v\nSj3oqPt7ZmZWrmgcxW7+yszMEltqU+tInCZfJWu1cVt99XhO15/l3O/Xfq5zvXtflk3e+ERIk014\necZz4rYZfwI51fdVn4+vyfdeOi/EyTeSuv69BY21iS9fe8VX/d59UZ8vPFCGNzKnPrr6tHz5jx+r\nj899pCzQV3xF9vMJjYmNl+QTk4nOxD57IMRQ6rKQJ/s76otqU5H7o+dAj/0Ufg5QU2+hDBPNKFPx\nzQGoObLirdfF7J+Cdf5LbWW4//YeSi0DZS4WfGVw6+8/Z2ZmT5/TWdvh05xFbn/XzMx6D5XZmNnQ\nHFJ9qPmx35WvPnvpFTMzW30RqOEpizMhY5LUGGknyMYdoxwBxUwvr//HUYmZTOSrvWqAypBPZ1Dc\nKeHT2YrGzEXmujaolRhz5LBHBt/RmOqScU6MUORJ+pYCKdeGpSUdUd8nQD999EB9cPC//yszM2vu\n/K+q9KbGVwa1tBTzXYs69lqgDEB55lHziNSi1B3Cmyk9b21NvpkDVXCCckuZLNC9Pxcq6r/4X/4b\n2Wrvv9PlEjgzfwiqFRUktxCoRKDasYxtGeetI3y1P+EzUJHT2rx+pN9VmD8DdbcoXFZJ+H6GKGFN\nHLgR/NPPI2ZmGbhveqAnkrPq+1hVfTtA8CuVVVYuGwM5AndMHzRtAg6J8QnI1AW4WFC2aMFd1nkI\nYtHXGL5aEhRx0lN7Tu5zPh/loBicCR2QL6U0iEkQkWZm3fGuDcj+j0so9YB6GMN/EmXebsCD5C7o\n78tp+UUqqrG1f0PZxvRE9oid0+96e6xfwDWWyWTXDtSe2QIojIVFM3iBPFCRSbhNxuwtMigXxmY0\nPmsN9eFWU1niJLZLz6MwkoW3Igv/3ZR+74/lG9bTWOjFZJsptrnxJAiWIeog7NciM/ZkZYyPsntO\nuHC6tDVfH8PnM0RFKNin9hz50ByZ4bMrsnVvStePaurr9V1QVXu6nwu3zBglFY8MdAblLDcPFwxo\n2xb7xvQeqkVFED3A4loJ5ooA6UI/ROFw8FHnM9RH2qAnsviEgejx4dYxfp9MggBizEXh84g4msti\nBoQQDsUudhyCPBqhlNPnuQlQJC5o4CgQHh9UXXqE3XyQ8wP2eoHSJkpqyWjAeGUWzU2sMZDPB+jp\n7AROGRQyxwPNRYU8ezXQHn739HNJrAXC5T0hxQNlmPExKMyynpWGk28Cqn4WJLSVQUb24WXjHeAE\n7pk2ijYjEO+RuNqYW1Cdl74gpF0eH9uEi6XT0nza64JgZH84jmk+iaMMWJ6C88tjfwnvRm8H1BoI\n9iT7wyEIzhHqfnFU/WYW5eupMmvuFgq3hyDt2ZeORij+5HTfKRCiuYALJ6LfP1fS3qES033beyCO\nDtT+DAiauYvBnglOmkXZAaDip2iyLjxBvsHHBNJ/Dg42h7Hb3JVv1X8pO3ajKLyBCkstaQ5zYwH/\n6OlKnXl02Jdda46ek2VMTC+CxJyVH4z6GlOPH2jPdMIeIhORz7+zpb3mO79Wf0HLZbkp9cdgRv2V\nWBZC5rDW/LQu9w8+Nu8wY1uHuvfhur6LTgk1nyvKhve24YtDhYgPq0TVx1lOKyRjINFRRFxZ1vfn\nUEm7j4JteSZQBtN93D77Mbhtxre1T9wrwiULMnmrrj5/JqVGfnJb68WDEyHkt1FFioJ4KVzVfaGQ\nsq0H8r3nr8q2myB5KvCBevhmjJMqS89o31++pL7JoBi7s6X5AqFG+/U7IKOjsnUqqS/yuQBxxPGS\n31BCpExYwhKWsIQlLGEJS1jCEpawhCUsYQnL51A+V6SMcaZz/4Eib15d0doosaKzM+iBr6IqBHdM\nHQ4GH4WKk7qizbWO7nPxVUW0zpxT9mnnttAGkabu364p4uYSpY7GUEI4r79HZ5QFqywrWjzKkakg\ne1nbU1SzCgP4nUOdQZspCV1R5Px9pKao8T719rvKlDhJ/W7UUpR1l4hcCuWGcknPT8AUPuI8Y6uj\nSGAg5HB2TRwyGfTYb/1MaJfYJ4rOVxYUgUxHJlZ5VqicfEKR3M6W6rxxV204ipAxm5fNGz5ZlBs6\n/xfhOHB+SnWPce7byC5HUfvoE4revKH7TQpysSl4e6IjtfW0JcKZ1mQKfh3UgLIoJgw8zo6WFHXt\nFcnK5BTt9Tln7SXER+GQieihHDDMw2ZP9n+C742J2Be2giy3npPLk8E+r989Gsi3hmOhA/wcqVQI\ntl0y1PkeCgYLoBOOybq0ZY+zy/o+TwbT21Uk/imUDHbJSOYHiva2PdjXycgMg7GzLHTUKCufbnG2\nuFZWPYrzcEzA8TMcooRBNqq4gpKBrzOoXlrtHiZAxhRQQuAsbpKMyXQXZQg4edLHev4AxY1oQZ8G\nZwyUEzaAw6HFOfBcQWNimDw9i33xhpAsG01lmZ/dEJJi+TVxt/zkPc5TX1QEfXFefXjzUOpMZxb0\n7LdvXDczs1pByJVzXfF0nK/KNhuruu/FC39qZmYLm1Inaq59zczMej+Ur99KykblRfngS8M1MzPr\n9/T3m9s/MjOztRVx1nzhrnzzk9c1Jn/af9nMzKI//jeq36u6/sb6hq6H/2m1q75fm1b933Vk+5UX\n1DfbPyT79tqXzMyMY+n28omM//aU+mztrNSbeqm/NjOz6azqtfOqIv4VkC4Z0E+3JvBl/JwxXfue\nmZnFngZB05JPvLknO+5+U767itqRG3lfdvsI9vqfaU5xfY31n5U0z/VMmZnpl2XHUkQKCB3QeL94\n9zNVjdOU9o7GVMtT/weKD4FyWRSVgNFEdvNRH/FAc2WBAzpkpRIxjWUvCmJoXwaOHKCiQma5tCB7\nMsSsOQL9x9jrgKpIumNz4V5Jwd2xfAmlAiYUFw6n45uyUaYGqhTVm2FV43SQ07wyGcv3S30yecH9\nq/pst9W2PkqILm07e14KXIVpJngPBB9n/uOoZETq6ps0/GbzpeBcuOanIdn9yJzWHxclwX5Htkqi\nDmJt+HyY/0aoHJmj6wsdVDSGas9BR/NTJ6rnFMvKhrVBfgaKNf4QiOgpSw80QcpVn+Rq+jx+oL7K\nOsowppmeEiU4CsiiDx3U6BL6/QR0bSqqsRln3WlvaOyWe1p/5s6/ZGZm7kB27Hyk/ijCURPNqF5u\nXz48hK/D4KoogLQ0MytEe9bzNb/H8rpuwF4imhf6AvoM62RAZM4qe+mDXKru6vndCfP8/DTfq95Q\nL1gafo4xiNVIoOpIwj+T8Gw7q76Ng0qNMq5ycC75oKkSoIEOD1THVEy2yoFE64OCcl21uUs2Phth\nHgDx0SLDu5JR36WTypof74BKIFWaAGUUBcl82tIfyTYTOFBaIFnaoLsGeXg+siA5MvDAwe/TgRdo\n6yN4OVijg0xqbEb/b99T5jYake9cvaC1vReVnUplzbeJov7fAoGU8PX8pbOaV7MVkI8j9dGoCj+R\nC0quC8dKGxRUW84d4bMA8sYDGTMBQdiA2ysLR5ehOBSHE2LEmOihyJkkA+7BKzImoz7y4UEpayzl\nQWZ2k/KTfZDwLqpMDmMsyt5wDOKmh9JnGqR9NFDUnHymmvRoZtsScOm4KJF12IsN4bfyR/KvQ9aj\noqf6xP3Pxtg/VSKMiyZchWOUaBLcIsM8eEgb2iDtciwSXZQAq4fytc4tzfcPH2psjPtaOy+NV3ig\nrotkQHaDYh2DhEiA9CvHNW/vjrU+pDOaN3OXtVan4RwJUJyDqip8dE+og8Yx+9UlvVvUyrLZYhG+\nKBAzAD0sjhpR/QO9s208FHr28QO1ozCt95HkJbUjC8/cuWv6f5+1deumULPDPdmrD8/R4XUhQ7pN\nIRLLDjx2WXwlonUzAuJyFFV7i6xLUfjiik/JF9wJfIIGd+Uh3Ds7oM0i6s8L57VnS51n71BBdW//\nt/OF/OOS8NkjLKue+SxqWCDf42Xdb3lRyKEu/H5DlIOLZfVXZlbvusV1jcWNptp7cQ31vik9x+WE\nQQPkaXtj/dO6NLa7dvHVq+a02SNwCiCPOmZvRjZ6BgTI3IruHXBOHVxX3+78jeruwJU32tEznFn5\n6KUXdJ92V/vY/saGmZltvkObebcpgOqcmkVNjneb88+orc40+901cbZuH6hvkigvRs6j+hYJ1kDZ\nqo5C5dyK1hWEbS0Cz+fZy9p/T7raY9T2sR3Iv15d86fHXmQHhE2nj+IVPHqZRY2FwpzqnQbh13zE\nRvw3lBApE5awhCUsYQlLWMISlrCEJSxhCUtYwvI5lM8XKYPyTXRG0d1jWJabm4rizXB2bGZOWZzK\nqpAheVMWcWtL0dPDbUVhpxb0+4vP6He9oSJxgxNFpkqcjeuSXWrvKerYOFKUdQsFhOiiImjFN9Z0\n3xdRtiFTHC9itjOKjK3lFDW9tCRuhZNjZUA+/IUih86OoqnlFWULp1cUDXbmUWBo6/cWV9Q5USTS\nRwag/kBojMMDRctX1lBfuaDPoafI3ajPufdDzlrDP3AylzIPtM30NaFwFl6WjVLndXbyhHPK9ZuK\n+j3aQvngE6ENkglFGZ9OyjZjtOIzZDIrnEE9biqzW1yWzRNRMqcD9XVt/GSZSzdFJjdCNiklX2nA\nkJ+Eub/PGd1JUfV24opypkeckSfquVlXxHnA+eUMmdpRTlHWBiH+4zpnRskEZFfU572KfCRDdirH\nOfJuHp6JNdVvVAR5lCW71FQkPOeqbxugqAZV1SNHlmyMgkC2LfsmtmS/Skef/WPVp0UGYoozrAc5\n2WMUIcsUV383UvL1Y5TJUkXZyeV8exIUV47o8oio8PEE1RJ8MOrA9UIm3WuDjALwk3U5sxvXGBvc\nwZc5t51PKxPst9SPzbbqm5qSffycxkCLLGTSOT1fSCOm7HWrqvF44arG9X2QFJHX5OP5xK/NzOyo\nLhtcaSnLMsorcv/cFRRq4vq8d+53zMys97HG17W/e8vMzD68/A0zM3vxvOq60xVSp/FNPf9leHta\nZLn/NK/7fWlBfXL7adn6e/9WvvilV35iZmarv1JfpL+i67qo0N1Afam0tGZmZpOa+jyGYsoEhZ3c\nBf1u8aE+CzPqs+3rmgcib5Ix3BF3S/5jOA62hdC5PqN6RxvKbCy9q997A52jXk9rvl3IyH6Z1/T8\nF2Niv2/8OeojL0rBLbm5YWZmZ1z5zEnqO6rvj+GYmNb892Dp783MbH5R/XX1e8rAtNQMq8Rlp4cv\n6/fnWkLaHH/hM8WZ05RWU2NuSAZ1kuZcPfwbPhnbaBo1kQnqJ2nQGiBahmQ3S3H9bpTW7+ID0Cgd\neFtAx41c2bnRi3A/kDJZtWcWVMkgEzVLovQEL8Pjj5ShHAU8YyBAsnMa504EZSvWjhE8aRmUoI4e\nCsnSSarOaTKESTKbDeaRKNmvBvNB1DSG2pvYDlWkSAfFKfhBElHZrNvRuD4AhTWG18FPgDz0QY1e\nV5tbj7U2nrtK/R2y4S5KZ6AhhvB+FCpCO/igXaMZrUcp5omRS+aP9SAK55c7frItTt4DlTtC8WYD\n9EJL2a4iKiL9BGhbEDOf9s9YnzE4enIxuNeGmt9OHoMW68g+M7NrZmZWOgJBtK51M9UmU8s8jAiV\n9Yuqn411Pz9QE4QXyczMyafMIzvYhYuh31E/ufB09DzNSZEgo51BgaYpf+lx3+Sfo1asAAAgAElE\nQVS02oGoivXqqn+RjH7nBG6aA/V/Lqe9WbKkObdVb9gAlaUUa3R0DKoJlFOEcdJirRqP1JbMtMZT\nnN/3GHepY/mA56Hw4oFUu6M6zPnylbkpIdQGByhQoTIUiYOKZU0bDD6z3WlKNxbwHsElWNK8cDKU\n7Y54nlcWsq/I3iCP8mGS8d/fQkESLrF+CV68Wd1vFnW+CYiTwgXVtxIBIQPCZxLXfacKavfervY6\nhxuye2sH9ECANIH3Y68p+8dBy+VAR6RQknSZ70aO5ppkVHbqohzmwH/lwZHVgd9uMlZ7onC9ZFCo\n7LK36gQIcOzp5GWPDvNoExBYnD3ZMXuQDiouffZK+SSqeSAeC6iq9OH0maDIOa7sWlD2l7YtYaDe\nBvLhKdDjoxGcNSj+9NtqRwuFt2i0bKctm7yTeKCNEiC746gVZabUpsKy6phiXPtjDbRYm3kVlFCL\n9HkeZHfpnNbE6QXtKxcv0kcV5lfQYocfq+0eqIWFPCqpBdXDT2GjGVBCIBYHj2XLJtyTm4ytPnxE\nySHKjiDRFy5qD7BAvaqgeYd95geQH25Cz3vqac0PqZLGcH5Fto2BOPEOaP+INZkh6gFRjCJxmJ7V\nfbJnNSZKedqDMm4GfqK9eyC+4T8a41ueyddXSkIKdQIlrrt64OBAn9U92bHa1qYkUggU0HS/XE/7\n3knnydT+sosZ2i27Lc+of29+IJR2+0Otk63r4lXp+HruMb7pdrRXWuZVvrLKOsX6kYCbZ+ue+BNv\nbaj+a3DKnL3y+qd1+dI/+yNL5yp2dE8nLvbhzptEGC+mvpnm3cvtsmc/lG0LZeanadkiOqU65l9G\nPTiltd549+g31Uf5jN5jKw7qy/OadwJepiH7soNj1eedH+mddOO+bNO9puc8/FB7pemnhfKdWta7\n7vxFnZzZ39J99rVE2+rTmp8nvItls3rn89mX3UYleQuE9XJNcYL9XX1efErv+xXU2bJZ+WL/guyU\nSYIwZI/lpUBYJ387wjtEyoQlLGEJS1jCEpawhCUsYQlLWMISlrB8DuVzRcoUrykze/UVqYIMiUbu\nmNAaJ3VFOR9/IKWH9B1FX8+W1szMLDWjqO9KRpGnhZcUaSvC9P2LH32sB5F0Xyqh3AAr/0lBMane\nbTKlxO4jUdABTUV3O1VFcxMoMRzWFcFrRhR5O/+iuCwKJT2/8x6a9zXY5InQ1fY/1H27RBav6brS\nGUXY4qg8+Tz/8Ibs8WhbkbpyURHFC88q8jeOKILfgc0+3SPTQDarvU17joe2va7o5j4qF4ULigxP\n06ZL16Tqs5lSxDq1qWxLIiUW99Z9Rf53HioaWdiSLYeLsvWkq/u0jnX/NPwLMbIZ+XllI7LHijKe\ntnicYQ/OK/twjUAtYydyAavMY7sxn3EyfSjcjLp8dhT19ROq935NNtyoq17zZAaHaZAjBzxvAY6E\nAOkzgV8ooeuSZIN6nB+PoEbhjuBW6el+Q85LzoCmSBnR4iDzDAt8hD6NV1ErcfVZI6ueILs4vSr0\nVauJYgUHJMdtspAjRczLSX1fGKm9EzLhwXnLFipR/pEMm57VfaNZ2dHvwq5/pP+3K3AvkI3KkrWL\nw5s0QCkskVI0eg41lGMySOk0Z3FhVO9yDh5KAos5pGZPUeZW9KwzD+FbWBQHylJByJYSamsPH2p8\n2hER/dc1n3zvkSLrr9k3zczszkh/j6Rko4dkDg+mxUEzR8T8h1lx0PQ4R/wHF/T7X/+YPvmKQvJX\nyJ430prnvn1HSJIP/+VfyQa/1Pgvl9XHPx4LGZcxjbHuKxqDl/9E89n6fygVufQdIXluR4RsOXtd\nZ2vf+oJQcOWfi9+oQ0ZwdEdj+odLn3B/2e0dEHeJqnzgoUkdKt4Qguf8GdknUZLPHxzIjosTIXDe\n2tH/X3tB83R19atmZrb7iXyh90Nx+bSX/tLMzL5zThkT91nVa+cTZdmu/5zz1X+ofux+T3PUhW+L\nI+v6TzQmDmvPmP3nZq+9pbEp5p1/uiRLnFEeKRMSKBwNmUePI/KTBHNFJI9aE1PQCLQHQ8gOTf/P\nNeANSQb8K7puBCrOITPUHqKARIY+nkBVj/u5u7s2dDRea6g7tMg6x8k4VlIah2k4RqJJ/T+G0sg4\nH/sH/ycRaPEmCiugFQaRf4iY8Rhvszl4FhIoR5HZrJCB7fdAG7RBB5E178CZYPA1ZFAEdOAt6ueV\n0T2DKtT2UH2XGoEemsArgvJBoMyT8kBkgAqrgpTJTms+SeXJvgVqRInCv99sazuf8UmcpkRBa4xA\nKrr0aSxF++GZcOGZa/tay49A+FkR9ZAzzPtD1v5t2T05QC0qCaJ0or1FD+WdQaCmQf/2WQecJPM1\nKN1BX/ZqtGTHWPSzrdx4Km0+vEUB8qYPN8E0yNPDIZwS0yA243AnwM/igL6Ig5YYmOzbQ6Ey4AGp\nskeKFNWvawF6N6Z67e1s2igtnx7CsTImA5vr6poo/HV+g/0SnCllVIV81sYsvG59VEBi8GXsgPyY\naWuPcWHlC2Zm5oIQOX4AAgeUWBb06pCBnPNPv9aYmXko3fTK8pHKGfnoeF5Z6yTcUg57iDTzQBN1\no14DXwG9lgct0KZ9CeaLs2R646yNiS5Ik6rWkxYcKB5IxNiy1pHpEehnD164FvxPIEAM1HN+yHzF\nXujoRHZMNeFBiaie7ZSek0oGaDwUdgay54Q9XseTPeM59j590LpwurhOoEDJ3MJeqJtG1Y49yjEo\ntFyGsQ0KsFTS+jgpwN0wkB3a6yhD7uBfTEWBCowL8sjMLHl+zqaW1E/Ne1rHW0OtX9M93feEvWwO\nRL3L3DZ083baMmT+qCR1zyjSLF5Kf589J0TDmVf0ufdAaNSDO1qTD/YZl3saZymUocrTmjfS8F84\nQ/39pAkxRl++HIFALlDUKsBzt3MkG2eWtLfIwBk26ms+6PqozoGUc+EkmyyhZpTW3ubci6Aa4I4q\nBiinhmx1stvmPvAM8T4wd1a2jTCPxALyKTi8vJqeW68K8d7ER4vLIGlMvt10hdLIldWuSBZF3Zzu\nly7IPi4nBKp1EIxMk1Og8IpFncKIlFSvDugyryHf8H3VJ83vL6yJz6S0rH7I4BIOCM++82To3Rp8\nqH6d/nkEb8m+9qCzRbXbBU1WQqHu1ek11RME6aMPVe/uNnYL1i9OKBzdkS83W6wLFT13s/rZurG5\n1bBB89AG+3r/TjLvNDlp0t7S33cPG9wbLtYkqNB5+ZR3TX00BElYiYNayujZ278SJ6GbgIOwvaG6\nd+WDa33t+w631MfVmtaY47aevzql8Xv+kmwQQUXOd9WHQ5CF77+t60c/0z51lFIf3uckSZM1rsIa\nm4Tb1Tztm+cXdf+nv6z9bxyVzJub2psFpx5S8GX2AgHLtPrEyaEmuKH79R9y6qP+21XcQqRMWMIS\nlrCEJSxhCUtYwhKWsIQlLGEJy+dQPlekTL6k7FmDrHmDEFHiKWU8FlqKkuZ2FeE6vqdI1rtvi4Mg\nOauI1PIrys6swKxde6zIXqelCNtSXNHQHgoScc6jLy4p6ptI6Hc9smoc/bcu/B35TUV9O7cVqdte\nV+Z2+YIy0heXlOltHSvKHSPj+vQXdeasf0lRyeNHOs9XG+t37fVfqt0nKDBcVbs9+AS2HyrCNiH7\nefYFtXNcUhS4sat6D45kuHpb9c2QqY1Pq17lhbyNOHtfa6DKcUtRxOM2jPxwrNT24WKJKfL77OtS\nnDlahbvlnmzYO+Kc8r4isg9u6BziYAya6ek1MzMrlRRRjhMxH8afTOnAdchyJFEuoI+bvqKVg4b+\nftKa4f6ql7OD0kOKqOVAWZfJQC4fX5XvdZPwRFTUvgRnbQecA+x01d4uUV+fc4GdvPqiv4/2PNml\nwpHOU7YDjXrUiJJo0/ePZY/je3DijMjuPK12eUO1I36g5yVO9Ht3UWdAewP10wkInmFJY6PHecve\nSD6WbSiKPc35awelgXhD/TvmjG8pKZ+LekTkk2Sn4KqAashaI9nBKpyJrsoOG4/lT0vwIC2lURmB\n1b7M+fnZLoo38AV48T7P4/y6p7/HyXTEx6fPcO/llBldv6w6fvXvQRdd+7qZmb2zx7PgrCpcURt2\nH2ncXdxQxP5+UeM7Q6z6zC1lndxLQof9TVM2uXZVffLRIyFrpl78d2Zm9st31RfLXfnA7Idqw+O2\nfGWVM7g9wGLjse738+eEmEt9oL776olsdhdUwksolv25r8649uvnzMzsYUIIlOI51fM6+IDST9S3\n0YnG/xfhmrl5R9/Xq6pf/bKu+11X82Ctq3my/hW1Z+62VJt+tS9fmqxrLoh+Vxw6jyay48yqxvbB\nR6pX5lDcPStXNRZ/0pV9n69qTvm+r99dGeg5vbYyH+XLGpMvPhC66pO0kE6dB+LAeQ1OnPU7ZPVf\nUb+b/W92mpLMqr3DDufJo7LHCZnyGebZJgf4h4+FXmjAuTDyUIvCx2eymm8dMs0+2UIHAg4X7ppE\nDoWEDrwszIV9kDdOWr7fSMUs1kORBNuWOvA0wMMQgXMqBRLvGPW5BFwzzU352J6RjSFxl0XtY1TQ\nH9IpEBbw5vgDzj+DKsvHZJsa58ebZP+Pj0BKjkF+OOpbh/PmmRy2AMFY72ke9CZknbO6boWMaVpL\nlbU2hQ4bebowzZn9QQZ0K/N2OYM6W0f/P+4ITVoogTSMwQdEn06egJvKzGzoap6KxJhPUcNIxlAQ\ngnsLcIbV+5pPXbL/C2vKEo6boK8O5UMJzviX4A5wye514IIZsl5kST17ET1vnNfvEnC+9ID9tg/V\nLxO4c0oX5z5tQzPTsaMHzKclVbRS0Jx1ENMc2HFQEZxV+1rwdfjUM5+XHduo7A2MzHbAR9LSHqYD\nquH88yA5s5qjdu4FSFuzfAGkCD4wB0fTYAhqM0K2HshYoSgfyqIoUx2qLdE+PEqfoH6E6s9MUvPn\n4gXNY8m6xsjmJxoLCdSC8mTDh/iIi8pIz30yH3FAYOQy9BlcMUWQ2yegQgfAPtNJNrZ90KusL35M\n9wEYbdFkmfuj/NjX/QNejR6Z5An7uzTImWpX3ydj7GGyau9MX74WY0/jgSKLsWcowa3Tbuo5O8fi\nDIuWZPfBQM/rgOBxycrHB3C8gA5uDbTujjLsP2chQIJ/KtcFfcZcFOSJ3bzGeK1IpvoiCo4ZlH92\nQM5soyCEEmZ2FeSUD+riGDQv900N1R4XdHVy/BlSZqFy0RJTskvtuuac+qHqudvAz1BViQ5UrzJz\nosVOn8M+C/q9sKB9mwf3Us/T+Jt4GleP3xNCZhN1IR9k9RQIRB8k+wDEZASFQAckyGTIWtagD+9r\nrW8caJNxdhFbTDEPL6kNFy8IhVWAi2Z3HV7Lnp5ziI/X+qwnIBTTcfno3iPZxOFdZd+Vj2ThTytO\ny8ZjUG7JKXhI2P8nptWudgvFNHg7muvyub33NH8MlnSftYH2UMmy5vUm6OMZVImSuUD5BmU20Bz7\nD4WK2L8rTpY5EC65id7dWq76vL/H+wQoaqciX46BAEz21J/JlHwqxj64y/tBk3k8QT+dtuThy0vP\nqV4R9gT9GT33/DX2LHvq141toUw2xiB67qud772nUxhzZ4XqaDXkbxk4ipavaY91eeFNMzMboc5V\nvfnw07rcuF+10da2PXNVvvHMS2tqI9x5R3viWGl19Mw8a1m+rHkhBrIxV5TvPPpQvvOr60Jyz8e0\n391el60Tl8T5lcRHm4y/bXh6jnsgp1nb55d0QuTC80LS7FfhVYvq92/M6/vYjOavhX3t1+7CJVZZ\nU7vmWrrf7Lzq3bun9/nGA9Vrj+smgcJhkndd5u9yHoUx+KIO9+SrPU4peLxr5eEd3eFdruKCjk3+\ndt6hECkTlrCEJSxhCUtYwhKWsIQlLGEJS1jC8jmUzxUp0zxWFmn3I0XSevBRFDlPHUfXO3FZ0eb5\naTTW+T47jXIDKk33AiTKhiJ5WZ/znGuKpPUGul8rpuhmDTb6YUnPjRO9HnM+sOyhGrKlKPDuI0XQ\nZpOKxK1VlImOk9HYvKHfxchyQuZu05dhoS8oQ+2jNOE1FVFsRUC6bMPuvKmIZJJ2XbukyGABLfu9\n64rsHW8oquomFKFMkLHtwS2TgdH9uNq0MRnAXJnz2iXZzuPZ/V+rD2pkR2JzcMbkFP2byurekfOK\njnaiqusO5/NGe7Lp9JLOXE5P6aysN1Ck9ihgoD4BcXHK4sHD4IM4aWdAwsQDZQDOS49AvAwU0Y52\nFZX0Worstyf67IzgMmjKtnucye1znxo07+MU3Ak59WmG1K/LOWeXrFA/JdtHyRBHE7LvuApfURPl\nloqiwr6naG0k4Lghc9CGc6ZwIkWgek3/P0ZRKE22b3SAClNV/VNLcj4+q/slSjgdnAdpMqvpgTIa\n82Q+6/jowgQUCVw4e6Ctxi3ZvT5UuxvBudCU6uOQNersKcPjuRpjKTIJUTItFfiTplRda88SJS/J\n/v287J3uk4n2dP9+4vQs9tNJjfsLi/K5vzgvxMv5x8pCXbqCMthbavP8rd81M7MPv/nHZmY2uKus\nb/yKbNHAti/B5/PTtHxq6Yp8x9kTEuTs4A0zMyvWNS53XpKP3ntHTPf9s+JmOdrVOd8RXAH2qnxz\n/2cav8Xz4oh5/lXOuD9WBP9yRlmP5oE4aBYjmgf3G+KyOe7Jht6C5pXLS2rv9Tvqk3/ufs3MzP5q\nQ33++1OaR/7tGc27/2JTKKn1V4RuO3Ndn3fjoL9gie++/ndmZvb199S+X7W+qOt+ITs8O6sx3X5W\nPrg4FIJo41jz8AXmywcv/JmZmX37Hd33p4+FvCnuaJ5aeU5nf3/qaIyM/T80M7PB9R+bmVnmAv3o\nrtDOz7I8pykjsnabPdAVbyrDnmYs776vjEcM3qYJ68/8WP12Ar9GBc4En9ysN0KBDdTdGJURD2RM\nEg6bMfwf8Zz6bfGSMvvpi2RwzmXt8LHGx/57alunrjp1QcI1m5qfh1ndK8uZ+x4cJckV+fi4q3Hk\ncl46AW9FEZWinqfrkqhUOBM4r2IoI5CBdUAdZM/IJvkzQlO1bqh+4xHzJKoWXVf3TYG0jMDFkkSl\nL+XjsxGQP1EQgznNWwFn1+AIRKUn2w5RPiyUUWaIq327ZCoTTY1VP6r/R+HDSI+fLO/UhTPGSbBe\nlUEUgRTxuhqjDThdxnHZ6exZzQGxpuy3cV9ZvDhqdbNzqp83lr2Hx2pvjGx8hHVkkANJyPowdUb2\njKCaFPhHL6d2Li4qg1xzPpsvd7p7Nirp+nyaPUwWNa06vB4gpgYI2CRbqDglQKGwNQxUuVIunDIT\nuCsYQ/Evq5+qVzQH3ydr6BblZ4srl6y1pzUoAkdHHvRTfAgXC9x3DvxnRfiHJkO4S0B/9fqqcyql\n+aIYF9dWqQiX36Fst3tdqN0Ia1LpLGhZEDEDFL08UGD+5MnQuyUUBaMO6kknanNtl7EURXHHB+UG\nurXfQjEFFNoIniemB8uCVvZ3Vb9mF6QM+9RSJuCrAOETA9mR1e+KGT23h5pUl3YyfX3qsxk4sNwV\n+O9AoVlKn/0JymIllIFQ5Zu9qr1AtwanTR/03Vh2bNPno1UQgkcoKVZByfXgiQId28LuOeq9vIYS\nz5R8vRWF46amerZPUBt8iDJbSteP63BB1DTG4tg9GlM7/G24c8zs+OdVKy+jgHkffi3GogdiaAJq\nLOGiBFQBBQ2P1mlKh/F4eEtrsgvSpMCztx+pLUUL9u5ai8cBByLzYKrE/AP6MlvQ2Bl78LUN5Yv7\nVc0Lj1CQHR5ojY+hhja9oLX/3Hk2YnCVeHsg5UEJ9EDY5EDsJBZRV12RDyQcroupPsebqLvBRbjF\nqYMrcA1OQCulF4J3toAjBRXPCKqhW6g7oQiWKsgXVua1tynP6LoBnGgrU7LXMkq0dZAkVXimRqCf\nErwbrb4gdO4C64cf1Vjd/UTvUtv7HZ6jtTgDV9vBvu7ngJqoxEAoNdV/owmo2JZ83wO1cdpSa/Mu\neoRq1IjTD12QmvCetHb0ftZFHTe5BrccSNBLL2qvePlZoZsfo4jU7qh/JhCeDE7gIWUq8eKfISwX\nLjxv8XMXzEnKB+480DM9FG/LWZS+FrUfPvOSntWi7fduy9ftDopUrHVeVPvWmefkg5lp1Tmxor6s\nPKW6P+aURoM9y9VL8Jc1VNkoe5/qsXx865dCPw0gCvLhtZw6JzXkwpTqmweVegwXbAQF2q17Um9q\ng7R74Vmhp86+oXe1MnGA4ZGe19jVvjqrZcdGrtar6r44GmMe8wU8cu6i7nNpFQXgrPpgfMx89RtK\niJQJS1jCEpawhCUsYQlLWMISlrCEJSxh+RzK54qUqdUUffRbijAtlcmqTXH+mTNsKSLiBz6ZlmcU\nPb30miJRB5xH3H6XM6KwNidgS95CmSaB0kQSVEM8TpaKaG7prCKAJaKrUaKuRx8pUjg6UdZuCd3z\nOKoc628rYheBZ6UwDcqB7FJ3AnIHzoRoAKEh6ZTeUWRy4xfK8Nytqh1f/iNlnHMXFd1OwG6d7Csy\nmWzDtH2gyFtjRxG9fpcoNNnQTr9r03Oc+a8oyzSCXb25Dk/OI7W1+Kyik3NFZXGHZNDGTSL3Q/2/\nMUB1ATWHxIoiruVrimA3yIKMHgtJ0+ZAsfNPnKf7x2UIgsWLKTLskv2JJNUOZzKk7eqbMprxhvqI\nb4pm5lCg2WvwezKTHbgV/DKs59yvklKfeYuKrNc4K+qgvOM34F4Zya7jjrJIdVBQnT35stNTfR04\nB5wqz22RFUSZYkQmfAjzvzstO8UKAdJHzxsn5QMpVDiq+JLvKKob42xtnAyoX1e/+j3ZJzWl7zO+\nxlgUJE4SLoshGZ0uCKXg/PWAZOL+tpw2j8pIZFZnVWMeZ5AHsk80BWN6BxUu09/HE2VwUnnZo3ai\n/zs5+AXSLvU5fVZq9yPZ+sFL4mh6FdKWdRByc22pMa29rHO3N90fmJlZeiDFsdHvSNUoOvp9MzO7\n4slXb7+i67/YE7fJreugg1z14aO8ssXLGUXmc9+Xjc8N9Ol3pa704BVlX15ta57afVvPff4l+CGG\n6ov1TdmsNauJ5aWn5HPFQ6kqnfuCfPEgI5/4wkSoqkZWY+xnP1Jfvj7/bTMze+dQCJOniuJeGa9r\nnlp5QRmLybQQOPW/1thd/6bG2Jk/UR8slHV9Z1/z4l915JOj/vdllxc0nw1MY37ya9n9/orq8+y9\nt83MbOPZb5iZ2WsNIYc+XNT3lx35Zuqa5qC335Hdv/4V+fjJWc1vm+d03+FfCvmz6oLyOnyyrFTa\nV/8tfkOZmf/hjf/sH3z/P95Uu5rfVwbFS2tsp0vqD/eICT+mebXkctYa9BlUDtaesN74KCSBusgh\n1dBM6PqdkexgO+rnGw9bFm3r3/0246ipa6Np9f0UCEFvxHwCx1YC5RMfpNugh6IMCgojzphDYWU5\nEHrdPvPGCLWGBd1/Gd6J2hmtLbOX5XPFBfn+B6hSDE7kK6MTJE9ApvSjcHgx3df5x411rXGHH4sP\n6coSfEvnNAYcpFMyeflkYqD2TUANjFBs8Yb6XRH1jnQyQPgE6ndkBBOQv5yyAHr9VGEnw3w7GWqe\nasPxE6iarM6C6qhq3t7d1trtD2WvqTlNxBGDZ6QtJ5lEQHx63L+rfu4yz5aW1H/dpCpUP9ZeqDeW\nX5SyGnPdWV133K5+2oaj8qZ5oEksAqKH9cFNyDerI/mFAx9KDA4ZZ1/1a9GP6QKcZ/Bs1A9Q91ti\nXV3VfW6khQ48vqA9yPy0EFWHu22bgx8hBwKjsa82zLFI+dlg34eSIyjLfZT6TjqqyzQKKDnW+Ewf\nNcwNzav+Y63ZPqiC8yvYAARKX11oefp2CEo0G3AHnLL47BftCEUzMrsDkNYxDyWXFAo4HmgE1Iti\njr73B/DeBXQe7G16g4CrSr5chHMhBqqiHpVdxqCGS/AcndR1vyx7gkhU9op7KCSCBGmzl5kCuRMo\nQjoZEDQzql8cBHkaJI4Ln0eA+sjCuzEA1TpBySd5SWP/DHPW5B3ZYch8N2mrP2ZAFSThhplsyk6b\n97QexNkrFVCSmWH+Hie0HvmoQkXKeu4kr+dFUP4Z7VG/4894Pvof12zcYM7gb7EsyBlP1ycTmqcj\nzLFus8fvanbasoFSbP2+Pqdm4ZKCh2MXnx3Mqu5PXRP/pMc7Q0NbiE+VbVIruq7JPN26DxpqR+O+\nCb/Q2lNCf2afk60yIPnScLjso1S1/p7WfoRqLc18P+iBvkrrOeUFkC3sv+sHssn2L1H7gdeyvKzr\no+yN3LLeI0qo0C2uaj5oDzR/HNx8X8+jnXV8NzKr6+dmUR7LM28VdJ+4pjsbP9Y8Vh8IIXNwIJTF\niDEVYx+eTslnp+AqdOETPW5o0LXqak8bVdp8QShcP6vnLS1rrBdmtU4V8/KV9VtCTQzpqB6ck7Hx\nk+1JxryHZEHupBd4r4ihKtVWPVOomHZeVj0q/G53V2OlNlZ7NzaEVrm3qb1pLpahnfLh+kcaY8Fq\nMb/61Kd1qY96VrSIRX214dGmUESHG/rMV9SnOw19v+2oT/soXHXgTUrApTJ3UXVeOIuC1rT6cvtI\nfXX7p/LBwk3x1B2CMt3kffjcs6/KBk39v8JavAI3oQvvUiqnvYIHW1UaZOHuQ9ni9i211sXWhYtq\n88ZNtSuGlO9JSe8yUda41JR+X0rwbjTQc/Me74oV9fm1tHy1NK327h3IN10QPGPW0gHKv33eQX9T\nCZEyYQlLWMISlrCEJSxhCUtYwhKWsIQlLJ9D+VyRMt0DRZE7nOdLcfZrVFf0M1JTVLeb0ucREf6L\nX1PmOFuBr+SxIk/zc5xdKyjifRicQe2TRSOj8fixMuOFpKK7K0QfCyuKCltEEbHgTF2Vc9wlBzQI\nSgadO8rkjo8UWUtXOPvage0edv3krJ4zf3lN13WJrm6QOegpStrh/HoprUQwPS4AACAASURBVN/Z\ntCKOD28T0ftYZ9dWZ1Tfc1cV2etMKZt5kpZ9umQVe6Ba8vGJzVxRBDjDGcX1O8qy7+/L1uWkoqAL\neUX9fM4Bd4eK+mVh/G9OFMm3keJ5555XtNR8VCNA1OwdgBaAN2fsccaVs6inL6pX4UhZjy7opxgR\n+bGj+rSO5DtxFBt8Mpr9E7JEKBvEUAqY6cDBQPan4cl244Hu60dl+zjnwwcnuv+gCzt7GYTJECWs\nPflyGo6HyhwqTFX1TQZFhkNfke9JnEw0CJMM3CvZsqK9cfiPaj2iz3H9zi3IvkdNRbwn6X+Y5RrB\npZAlC9UtqH29bdSahiB0UGZwGGOpvCLvs/CInJChiS7BPdRS5P2gxlnVqKLWpZx87GCo7wdV9fOF\nIooUqH8MWnAx5FTfhMxvLdqRIurdRtHGC7KRpyh3rmicvrKjLFF9CjTOB2rr3zPerqGaM/Wy7v0Y\nhv5vp8Ux8/Y7cI1k5COfVGW7tTPiUNk3PafwKmoXqKzFtoRAGX1DvrgOyui5m7r+i6ASflHVuean\nyrL5R79Uxm81rYxB5sXXdN+huFf+5gMhS74NX8gBfA+Vsfp6t/26mZkNd4RIubygeep+kXPl53S/\nj5rioMlu/o6ef6zMQbWl+SOxoD75OCWfLMzB9zOQvc5dUva/tKsMx+TDb5mZWeOCrtt9LDWmF67C\nsbCjedL/A83Ht/5Svjx7UZ9vbCozsndf/fVwRoiiby7p93/3A/nqd6+pnmPU5T40cc4cnFG/BnPW\naUtnrLHXqev+e/w9yFv8z1vKfvX6mtdTcC20WZ/a8GeVS+rnFJnZtMG3BP9SjLEzTul7hA7Mb2ku\nah5ozk1fEGLnmW+Jm+iD7//Uhqj19Ha0djWP9Mz5ec1fPZAPHln1WIosDDxAqQhqQaihTZGt9gsg\nSKqquwNK1Bmozm2HtXYfLpQZbHQP5a7775qZ2coFtXX/LjaKyIdtglKiI98xEoY1OA8S1HN1VfNg\nAvTV4qraFY0x7tv6XaB258GN5fvwXTT09ygIIJvR9yPQBWl4IDpxuLEip59HzMySEdmlCjSwkmQP\nMfqHPB6r8BoNJyAd4Y1ye7L39DxZd4d5uAVipQnCEL47PwnawtU6kUXBYhyoTO2hDFmTHxSKIBwL\noETwj5772Tn1UTZjtqh+exyFl6+jTzcPUvIWyCrUm7IR9dsJnGAl1LhsBC8K3HPQf1glq/btVvUc\nY91x5mU3B8WOSbRvEVBGuZz2Cp1D3fu4AUdfWvOQy1q2f6T5usVeYm5edU5lGO9wPlVPtBYZaN4Y\nPEVrKKyMAljYQPOiA1LF79KmOJwBIFBOW4Y11Jzg8AtsVDB45wKEHTx8Lki7wjnGMGogR3v0OfvN\ndoTrSZXGivAagWp+uK994MwZ0GyXlfEdw0dR/aXm1UaHPVdP61iDbHkUFZOpkurnp1UPD74ml71I\nryNfPkIVKwZf3eBQ6167qs8J2fnevOxX43c5kKr1CNw6MX3uwzFTDMZqKuBwYR49RNmsDSquBbJo\nn0w8sqhOEqUeMuLFs1o3riwI3e1c0PUHj4QuG48+mwNW5mYsMqX1aRHgy8EOfF07Wt+Oh6pvnrlk\nkoEbJ1a005YM83H+ilD1S9fWzMxsbkr7qTzcfL2RKrH3WGOhO9R49hloSVBLERCJ9ZHq0qyCqATp\n5rhBX6oP6vDpTFCIuQ/nS/2BkIq9qp730u++bGZmsxXt53Jl1FJRz+uBJqve1Fjbu6PP6iP18QBU\nxSIcL14b9VBXN3DgejyswZUFNKYDsjKBOlAONOkwwf4ehM+YPvbhuqnu6fPuffn64uVF6s2YizEm\no+rzDGqpQyfgd1I98ijhZK7Ivstw7sSnNMfUG3CzDYNTDapPtSa71e7q+XX2td02HEEzT7Ynmcqh\nNjijdg+YC/bvaF4ddbUnLU2rfcWAJ6Wi9ac3gaNtV35UB6VRwIefvSLe0y7cmRv7sv8cc96F5577\ntC6rqZw5A7PSgp6RcUEjFfW+mbsivtBleNBOmmrr4ZGePYLLqQk3bPwxfT0LPw9rdjqh66+9InXU\nPGvZOmqXfkptPnNGz/XbGq8z8BQdN2T73IJ87drTQqoP2uqjTg9kMu+ky99SvQclzRNx+mi+onbG\ns7rvKmt19Uj7zO5jTt405PNHB6pXbah5pYqaarygMX3xGfnUGNXNHgqI7YzmgvRA79R957djYUKk\nTFjCEpawhCUsYQlLWMISlrCEJSxhCcvnUD5XpIxzDAqACPoxGYhCcL6diL6LYsTVNUUHl0vKuBxt\nKbJtW8p45xaD89n6Xb6gyFwzqghVg6zOwR5ZnQuKcC3PK2JWJ/LV2yb7v6lcaoHnvfKioopjOF0a\nHyvqfMIZtDhImck50A+oamRRrOjBX7J1Fy4BslypsSJpMyg4zF0QC7SzoIje7tvKhPf2FLFrjJXJ\nmF5WFDQLI/rKs8o+VonanjzW7/142ZILilZWH+oM4t5NRTGLc4rYF+Z1Hs7rkGmEvX2IytJJRtHE\nEed7MyiqTD2tOg5GgYKUbDEIMoMlkBtwHDjJ336e7h+XTJ2MnaeIchIUUApVkBScApmC6ldIyxYH\nG0R5D/X8+TK+BfdLNKt6R+FcCXQNomR2C/NqXxfGbods1XRRkfmiI9sfePKtFtnvPMm5Cuet+yXZ\nZeQrK9bjPHvuqq6fI5Lf6in6etRX/8zAsRKb0vMz2Q0zM9ttkYGIcNYU5R0D5NWEvb/RVP8lo6q3\nk9HvJi21K4ayRX+LCP+07BEhQ9315TuJrvotNpad8sH5/0XZqUhG3ntIRthR/2dW5YuBks3upu7X\nJYUeTaLIAaqgC8+GCz+H1z69Isa/nBVHy0Y9hilk04/Pyde+847a8NcFIVoW/koR+K8lNW/cWxNS\n4/kXZZu3bgjBEH1ZY+QHVZ1NPUe25cxPhFDJvKQ+unVHxv9iWfPFT7aV+X1vSuN4fF+2yqVlm78t\n3DczszeeUYbgxm0hWi4dgVr6SD628vtwAjTE7dJ9S9ww26j3vOwK8ffRs0JanLnxN2r/JdmjgoJW\nBCTH9cmfmJnZSwuaJ+d/IrtEXpCPeLeUiZ1LClHzERnTzHtrZmbWO69MwXAiu7z5QD5VuSh73Z/T\nOfFEHiTSkfr8a47auzuWT0S+KETKnlzdXm5p7on3lMn47hvi/vlRST5+4dd6znO/p3m0uCffuJzU\n3HXa4qMYtve+MiD/7Z/+KzMzS2fhgPhE60kG5aGIpzESgytivhKohYC6C0Q9UMIYDeUPXbKVRTJH\nvb583YPnahxT9vBf/N5/ZGZmr3KbH9qR/eL/+D/NzCwL98ASaNAUnB/HG5qPU9QlFZBHeczDVdX5\nxiMhIYcoicxekA2nOH+dzTCPRpV1TqN4EyPzlq7ovjHq7KyTBXsPTi14M4L5JUB+mKsx505QhMnq\n715W9c/Na00sFkA7+XByteRrXk+2S6JwYwnZ1JmBn8LRdfk0qKOm5qvWEAQNSFAPDpVPBWtOWSIg\nbBIOZ++Tql+lp7+nErLzBOSJ/1BZv9ix6pedl4/6ZBMHPlnElvphEqhRZdlDJOHxQHUuntdzT0DG\nRI6Yd2fVf/Gi+mfQkU8lDdRWLvtpG1KFttWzen69pPvl66xrLfmVB4IqAirBh3Mt0wFJBTePD5eM\nE9f1qbTmpjRqgQPUlorRNX3Cz+Jv6PvMoGIuXCZ9npVDecVpaj48GmoiyDOeh2nVucRaE8vpsz/R\nGlrb1fdxFFqmyprPRnCVdOFlSoPWaY3kC8kECi5DZbv9AAmSeTKeu2gMviSUT1pZuHGGAaoIJArZ\n+hh7lD6IkDgqbkWfrD6KjfOMtWaceSIn3zlgT3DY1f+7Ww7tRw1wkzGE4uSSq/WtCQfKCJW4oJ05\n+EOGJju6rMEuSmj1OnwoE9V/MS6fbqI443d1XSRQmtmBZwkewRMQQIkpuA/34GKrg7Qx1b/YB92H\nklqnDn8gezS3z97zvu6TA83cLzAnLanecdAMB6izTIAm7h1r7MRGn+0l+idxi3ia86iODUAWJeDx\nmIAmG51o/YmC2InOFOy0ZW5F7yCFgta8FuP18ScbZmb2/7H3nsG2Zmed37NzzuHkdHPonKSWkDoK\nLDFAY5CpEkXZVfiLYSimhmEEDEwxUB4PxmQwNa4az9j+4AKEkIUQCgi1WqHVufv2vbdvOPeenPY5\nO+fsD//f7h7KqPvcT12uedeXfc4O77vCs5613uf5r/+/VVZb4omJwpbGygvyOnMGfsu5ZTMz274p\nG0jAvZKckx9owwm4B6qnwn415WHdmJW/nTzppU+LuyZ1v34fnVPfXH1Be4khRJknLmjMqwP1aQve\nkGAcpazz+n02KRRCeEX+KbivvVK3rutcWhO62I2a1MwpzdkwHCp9+DrcEdT9AprLbjbSwwO1t3Kg\nObt6hevXsAlUkmJ+2UIPNUBvXtebPaP1zu/R/YoHGvvOHiivFu1jMW9clm3v7Go/nk3JX45QCd0v\na52KgvxMLaif5kEkeu/s8ca2C5wK2ZdtBVhG2y351Q5qsS7UYm/vaC8V35L9TMb77OKymZmdnAN5\n6la7GyWQPD21K7+scerVNZ6rIGDNnrLvPPdl8/oHNrM+WdtBa2V079mcxvrmlvrM7waxx3PqUl7I\n52ROfVOG56f8lvZ75a72jw1U9PKL2ie7PPBkhrUHufAgPDfwAbnZh7ZBvOfgFMvCQVsC+VxZFSJ8\nA35Ufx4+poGue7gN9yqnPw5QAl5c1hi68I+LSdRH4f1MnJDtPJSTWqirq/pvHaleHRB8wzH8fRXN\n5Q3Qb0v3LZuZWWZB+9tR89157hykjFOc4hSnOMUpTnGKU5ziFKc4xSlOccr7UN5XpIwrqKhdPKnI\nXKmgKOf+vqLCISLn0Un0OK2ob+v5dTMz27l2W9/zkklB874Bz8j8NNkrMqQVsldnH1HEauURnUUr\nbygrtf+GMrtJ2OpTMWUeznIetOND7/yWImFDFCWanMffpt7ROOcVTyrC2FxV5uFwlXPcLv1+klkY\nxxVhy8yTeT6pTEehochgHA6bXEsRu4OKoqXbL0ptJgrHTKeMQo8PFv60oq+5+6bNixJIu6Do3QDk\nSHpF2fwaEdfa84okx4hcJxYVxTT07XtDsgqoCa1fV/QzQAYvuayo5PmLyhQM1mGHP1LkubR3Z1kp\nV0BjG+8oqjmGgX/URFVoQVmMqIVoB2frA6hHxPW+P692pCtkh4iutrpwF3CQOziC/wL2+HFF/dbp\nwMlwJFvsdNUPOcYw7AN9ENKYjWH8LwwUqfbOgLjJwOQfVLR0hE0PdpQBCIVlK8Ep2X78pM5P2lDX\nD5NNrMOE4c97uK6+lqjKtlYrsuUZMu5hb45+g2OmQsYVhE+5rfu5UTrru1HGMX3PE5lwv6h9w7Ta\ncYBSUTai9/1e9csASYka3ARVVFWCCfVfw4N6C+83UKlywZ0TIZNynPLnX9E8n1pRn0TK4l6auS7b\n+FJIqKTv74kL5fCMUmQvE7BemlKf5HaEoPCiJPD41zlz2v2y2vrDQrR8ZU99cTKsDEAdxZHAOkpV\nfUX6g2s6m+o9q/PKb3XVRv+M+ubKJY1RfVZZsWiQDG5AWY7h37xsZmZfeFrnvs9kQLIkdP3GOdBe\nY9nWa2eUJZl5RWO9X5JqVIozs4NZ+budK7p+7CEppgy+Ir/TfkyIl8uvq30fnlk2M7Ov5mUL80Eh\ncGrnNdav4H+mTmhMLx6ond/YUnviQ6E1Lg3Vzkd7GodvXRPisEEWLvsh0FU+zYG9S+rnXELXW4CD\n5m/9ytKfmVa7au3j24iZmRf0xN05tfdoUz6t7dIcDcJJ4SZTPeGBcod0H3cY20TtpAYXgTfInGmQ\npQPl1ZmDLwSXNwEzVD26zouXpUD0+bvUzr/+9/+7DW8yj2oTRRjVsRTWGGeTstVgWHUbcjZ/7EZd\niXPRYfjMsvMoY8Hf4ImBEvXJVvrMX29f9+0wH5tj+bs4KnfhedlAs6w5Nm8gLVBXe1vtjWzXOEH2\nqAdKCH9Yq6CQwBp71Fg3M7P2jmwuiZqfy6u55IOzpVwHxepRn7dDus+INdnjhluGNJMLPrVB7M5S\nl1XOg/foPwurf2pDtTNVJetvGo/eWOMxh00ZGdMK6lSlusbFHdd1Ajk4HxjPksEHlwYdDHdNdIJI\nJUvnhuRhBKfQqKRXP+qCieA7vCjevtsM1IYflShvUz7BcwukJnPnTBj+FQRqxi1dp9/R56mo1p1y\nVfdrwXEWRJnnlF/7hwJowOqB+s0Pcqs/TFioDhoHbg/XQGuKOwanSE/+oekFvQUqtwV+9SAOorip\nSrpQt2w1tKfoRlRnX1h9391RHUbYQKIvG+6C+hzBW+FFqSXkvzNOmY5H7aiBWq03NZZd0LveEbxw\nWfoe9R47JIMLsqNVAWmyrfdbZTgX4igQzoD8nNX+Ln9GeypvRGPihUtmE9XNQU1jeXQIZyEos3AW\nNCuI8R5cO0cgqnP4lOkF+EDyPBYsqV/SK3DhwN1YOFC7qrvwnLCfHdXht/CqX0fsnaJp9X/mLvmM\nLhyP/olqS11z6gBOiCiI8nFD9SxWVc/2GDUrfEyMvZcrrPEos6frNeG8Qd60zVw1M+uWiuYt4Svg\nxMnk5CPj50C5cb3dbfbvZPz947Ydt3jdalOpozV9G2Ww9iWNzc669g7LcGpFl3Sv6QtypFMx8eNM\npTVvu3EUYBm7Tfjduqa5kZ9VG7JnQRTCZ1aCOK0Buszd0jyuH4LAhqum0dLatXxCYxXABl37+Bk4\nv/IL8OqclH8IwqFYPtRepwKHzQhOxJuX9EwUYc6mljjNABIyxD536sSy3kdt9XBdY10aq91duMSm\nV2SjeRCXoRQcZ/ileEq/P31O/RfiGah/oOuNmYtd1EibILkTKAbFQOhEo/CTLmgvUz0CZdZHYRdu\nxAgI1noVJHznzqCZqYhseSoPkn2a9aUMqhiV0pPz6vfba5prN25o/NsgG9d39RxWhAdv1BOKo3gF\n9G9avuXCvHgKz41kb6P4RIPM7NzpBQslE9Y/VF8l4KMsmGzg5eekSvnc83CyLorbNQfirtfS2JyO\namyaPIO4CDOcPK35FY5o/+lG6XYbFNSlTdlKLMczKdxfzYLQVhm3xmxpQTbENsqi7JHSYbUpfi9+\nJqf6uOCjq1zXPi8BH+niQ0L2hNv6/2hNzw0vF7UP3Sloz3HmHhSxQOq1GOL4WP42FpGNbaLMGwL5\nk55R+6KoRhWw4Rbxhu9VHKSMU5ziFKc4xSlOcYpTnOIUpzjFKU5xyvtQ3lekzAKZgNkLihKmYoqE\n7XuV/fF5FMEKkO0PdhVd3XhFkTNPXRmG9AeUQTBQDumkYk2ZuH53e0sZFS+Zl+SHdTbOppTNOdpS\nlLFTUaRrs4IeeYqzav1Z7gfShfOaydOKprpSil4mA5yFzSgSGK4q0rcOd4yXDM1MBnREkDOyJUU7\nUzCg92D+rtxUBHIuq4icb1rXn29wTvWEoqGlfdXrVRSVTpzT/U+SoQ+HQ3bzdZ23K9eFjFi+Z9nM\nzJZOqy+O9iYZ03UzM9vehuMENY6gW58v3qWIfB/lma3vSnmlmtLn4XlFfucv6LxgDlb2xdkH9XkC\nHqBjlhEogCHcBJNz0d0IZ1FR6akGNAY7W4rqxhn7mFf16ZK59IxRGeFsaC7N2Xcyoi0i9a6mrtsk\n4zg5/zwie+O9LduYnpPt1Qfqr2haked+XjYV7MqmapPEaw6lBZOt+8jWtQeKFgdPaey900pxtJNC\nRxwU9H80qPFKLajeo4HQYj2QL16vrp8LceY3JXTCeEP9UnpTryEi5f6mPvdAvhAB8TSHClM/QWa9\nSWSe/u8n1K7+gDlIdioZJMtZV0Zh2CdLBQN5k8x1syNb7sJh0feSgYX7xuU6fvYy+Yj6ci62wbXV\nh0WPbPCxDdX5+nnZ6oVviBNm6QdAj4FoefayOFu6DwiZ4Z5X3Qs31Tej73zVzMxmHn/SzMy2/kpn\nTC2jz9c8mhMP55QFqwh4Yqtr6oun14XweMG1bGZmy21lDmajOtf7bdTnfF7Ne99ZzvS+qMzEwgdR\nCHsDpAoKME+QGb60x5g+LCTdQ68qwn+Y1v/nYO7fua5+6o3l/+Yfl43F4Kr5u5H863fPK2PxBHwf\nmwH5jke/IP/1pXPys96/ZY7eL7/40C6In/9aXDfffFFcPoWQbGAeTpoQmRbPkT5PD5W52LpPGZlb\nL8lnrD+Ksllc/b/WFOInENZ9jl0O1Z8dMp5DUA1jMvAd+EQaoCVc8H3sgy6slTSn7yZ7Fga9kAAm\nUoU7YuSXHYTgqinWhT6coByCqHO9+hdfNzOzF37xr83MzPd8x+bhRPGNZAuDuOZTN8oagEKNr63v\njUD4hb3ck0Rm4sOPmZnZxe8Th0BxiMrHd9S3R/uygfAA9EJMbdrZkC0UvyEUT3uoDODUsrL1IThR\nRqSpvKi2xVCrc7NO9A716o56/8H3SxX8yUQ9CuRfLA+PTwgFA7Lt7jZo1KBeGyBzAiB5JmMZI4Ps\nDcNrwXl4Xxc0wjHLJDM5US+JwKEwQr2iByJxsKsMbWyUp76oUKGK0vArS+iFzsIHd8PIpf4smLKC\nnTndp54CQdlh/YEDIbaHcg4o4CE8GGGQm204B5L90dttmC+lzTNBHDY1Lq49ECxl+YBTcZQoGrLh\n2s4u7dR4ZuCc6TXhaovjrztwMGyCQgEVHO9rnfegnOQaqP41i1nILb/Qg2NpgPqQ26e+jmV0jbBf\nbdkdqJG7WfXRIA5P3bJQBWHAsK63dJ3ioWz5ZE426s5qEvQ3QRU1ZQNeEBsjsv/hXJ262h0Vd19j\n1OygctTUdf0e2aCLbPrYM9kvqi/jWbhKqqCn2B8ewovUOJAfTRvoZBAjE36NJbd+Pyyq3yaouPlT\nWsMbG+qPS6sv8nv9n7iodSaTZo7A4TJDVt9XgfcOFMUS/HJN1EubcNmUj1AIQqWpAv9czMuegb2k\nReGLg48oB2q5byAHW3CdoUCUQYpxnFX9cnPqzxg2PDOv8W3hR73sUaogluptXSc6QimT60WyskFP\n4x2kTNifsEiEveQA9C+cQ+7WhF8QtMo8yKq8UBeGithxShkEdqumMWjCBdMOoCiVBXGdUFuWQJC4\n2CddfUN++NK3xdPmw48EQax0UDubAIrTs6DEXOqzMn6oVtN8PMLfThCJpVvq06kZ+a37H9OzwtQc\nyjsolTXDsmGbY81mDa+DPuih3nr5Be15egO1a+FuoWHP36tN0KmLcAzC/Vg+0p5kRF+bT6+tNujh\nGv5oyFjl2SdmWRcDcKxc1fPJzS2hfqdn8VN9+Epxi66qbDIMgsiDOlYaROREMXHX1C8urzp2AOqt\n7dF+NwLXmrHH3FlXf1aK6/r+f8ZfdJziBv2xegtfdUP2Um7ombHBun1lRTa4D6/TuKzxPHVCe9y5\npObssK69a/6c9mj+FY1rNKf2bG9pDu1dlV3F8tNv1yWVGdm5h+62ww2NjY2YRxG1edDipIhbfvjB\nD2j/29lDRbika/dfUx3aHe3bslmNyYlF2VaZ+Vbc0fcbVVBcfhRxp3V9l+l+y3O6fw4V5nACFOpb\net5dK2h/mpkgCxfUplAA5J1La3SENdYz1BqXY91xVdXnvRP6Xeak+vJ8QPeZKMWuXdIz9M1vC1Gf\ny0tZLcaz6TCG/zqvMQkvTZA08mfDgmwpEEA18HsUBynjFKc4xSlOcYpTnOIUpzjFKU5xilOc8j6U\n95dTJqUIUoeznUa2zMO5Zj8s8ZkA5yM3FVnbuC7Vo2hMkbfWy4qqTs0pMp9OKGuzh5rG5o6yg0sP\nKKOwdL8iXG7Ykl2nFIUccn56+6aik51DRUcPdpWaiY/IcLQUDb1RUlSVI2R25ryykmMUZjZvgzbZ\nVDR5UITxewZVKRQwcpzTTKMC1SsqauomgjeoKwLnTihT4UGNIBdXRK4d0Punp3XdqTNwRAT0+7UX\nbtv+pqKXpxakdJIG8VKsq43dge6RPKf3Bwn1eX0HThMXmc2wslH1DkiPKUVk54heVmtqY/E1jZVn\nSf/3QawE23cWB3QReJ7wBIWCGrMxyI2Gm+zLnKKS3kiP9/XDHspe3S7qSBG4XVD4SsfgauGcYalL\n1qShMRjDGh/w6f2wD5WisGwzxlgfdJRZiA302oV7Z+xDSYGz/dEkyi2oSXHs2dpkecrMhZhL9xuG\n9Lshii7eOV3XM9B9ywdq/xDVojiorgb195RRNICDoFPS7wIxskhEgQ9dinaPBso8NEOcB4WkoeMH\nEUOm4DBL1r8iOxj4uF9S/TkRT3HV1E7fit7vNhRVJqFjrTEZIy9SNpxR9tmEU+O9y0fX1IjiMtxM\n35FNDu8SwuTgw6iafUfIkq+R7XniOVVyLbWse0a/aWZmT06BUurr/ZRfr6OWMo4zf6Ws0NWBMoP3\nn/uGmZl9taO2hAPqq5nP/ZiZmUVBdX3zBz5uZmbf71OWovVFIURuVj5iZmYXXpO/CF5U5qC8L0RO\ndvFVMzP725Dm9ak5za2Z59SXL3wUtRKP6rfcFMphnfPO4R0hTjYva4ymUsoIfHlBxnfqknyC63H5\nvcWO/OHCmmzna3uyrXOhT5qZ2c4PaS65S7Ll1r3KHKRQyXgpr/4fV2VTD/dVr+a1CepOr/FFzeER\nimxHX5eNBLv63Q8fqR17DflrV1v3PfLIB72GWsZxSw0lItcIRRmv5o4LRGaUjHkf9EXbPVF2k/0k\n4UlxBdXucUdztA1XRnAIHwe8J6Oo7CzMuXcXSM36QOMSxbcFQCwFF9wWNdmOwaUSINWXyZNpRX2u\n4Z1wPOm3ITimJvQV7aZs5OCG6tCDX6JX0LweNNX23lA2OwvHWD2tNaQ7qaNfY7J4EvWfMHwXbuZ5\nFQ6APdW7XpUttFF8CeFnvGGUCd0opRRRfQtrTEYx3d+PwlkIhZoJYu/z8wAAIABJREFU0mbapexW\nmwzzGE6aUpOMqk9jGpqozcE1EwjdGQyijzKMF5TCwKV+GqCS591Xv3i6sgFPYuK34EBogRqLqV0+\nsm7DAOMxUVU6IRspT8GDl9dcSDWVAR4fwZsCGmKKLdIQxGYfnowBChiRiWyHmYW7acvd4p+a1vcw\n6k5z09oDJUeqf2lNc6oLb18eVa8OqInJap1FnSmQUXs2DoRiGVXUvzky7j04xFotuIeCfmuwXwI8\nZF6UCCPwGiXi+s1+RXU5HMs/jJLwjS3ILzVB6UTjmv9zK7pn9yrZ5ops7DQIjAEI44abxQbFwTAq\nQx42F+5g3e6ktAfMnRZKX0P4PkCHDZiLqRQ/QAkri1pRlf1bFK6X0AXt/w5OkAkGFgEgxILs47oH\nmtxF+nwEEZCfLH/oJCgonxCOPR/KLB/U2FV2NGblddmiq41yWJu5CgKotC0bLaflY8YpuB7hr+hj\nm3Nk4adA6kyl5PdrHY1f67IQl+0SHDzwbgxN7YiD7qv22XtMFBd9Gt/gkjLc3gW1t1uGJwk+utae\nxn3UIaOPGlcfZONeUddNeN9RJqsNSlZaZ46CPouRYe+1QaK2tA534OfooTw2FT7+45IfdbWoT/uf\n9qza4If3Yhq/kJ1BVRR0fxclvwpkMK591NdAxIxO6ftLK+qjWXgoj0AtlfbVNj8I71BQtpYErRQD\nje8OgKjOyK/2apobX/2i0MQx1uQsXCT5C5prbfbbzT0heWpH6sNZbC/CHiXkVzsLR2rH6svi6Qhm\nVZ+EnzmURe3oqtpZBTXmcbG2+1AWAxUVCqgjuqDqGmn166mUULYnVlCbQjGxck1jGRipHRM11IkC\nWXwK1bsZ9Ysf9bhAUu11g25NuNVfYzzi+obWnQkyycueKnqHqDs/imtJeIyGAbV38cKymZnVu0I0\nBlxq79yU6tVkfZ6b5nmtKR9ZRPW2BerOZ7KnzFDtPbwlZcu9HX3fD9+gmdnB1k0L9nz2ymUhxxt1\nfRaY1jycmtI+MRqTvzkoaZHZgxPGuw8vXVljfToLcnsM0rHJHuA2fEZDXT+/pDFbOCmuxCrIu6vP\n6xRAY6g2LKGunI2yJzqjfaUXRa9pVI6PylpoNq7I34VDqNAdaJ4PUHW+/S1QVsiA+lFdW1yA6wz0\nWs6v68+hPpX8uJDa6fSymZnVmrLV4pHuU6vousUN2fTUCmjftvxexP3u6F0HKeMUpzjFKU5xilOc\n4hSnOMUpTnGKU5zyPpT3FSkTCHKmH2bu+k1FNwNLnMGdUfSxCDt9aaSoanYeVmU06usVoqxlRaTK\nLylDXttS9ikMw/nMkiJdg2uKJh7u6Sxav6nIWxS1jdOLXPfcspmZVdYUeRvBdl+HUb02JEq7ouvm\nzypafLC5bmZmIRjYT67A6xFXJLGxBWKmpsha4tTdZmYWWVcEbXtX9QoX1B5Xgv6B0yachusAfpjE\nWUWnL9yrDEmDs81v/v231X+7O+aCj8c4I38I+qdyk7OdPV1jnsh7mgj+EkzYHs5edjl3u31DWf7E\nrCLt0zP63jSqSAPY10cFRQf3jtQnXvedqWF0QGC44YTx+UkFT/h44rIJV5JzgVlFNWtrQviMOXt/\nb0CZhcS8oqEjH2gIL/WJqU/rbWwCTpMJu3obpEytrX7rch68TUZ2kNRrKQnnSl+2UCeb3mmQNgMZ\nUgA1FeRQcHS0rHZUUU4Iy8Z7R9gO56v3+qhCwW0z7JGBIUNRRRGisyGb7XOW2N+F+yCBLWfVj/4g\nof2u+qMAUiaUUCYjnJCLCHDWtw1XTBT1Djdz2AW3hQduiQ622mvTTo+ygdWWrttq63cezov6OWc+\n6On7Lvc7HAnvVf76/OfMzOyZljhMrvyg6njXd1XHF/eUHbj5cfFs+Itkh9dhpidTuH9OdbwR/YCZ\nmaUzOpuffVBIlq+tChETGwhx81RPHDFfYIzOpdR3gV1l7m5GlEmYR3bnYfrw8DrqR5xFPUSFY43z\nw9FNIeA+dPhFMzPrLYsxf2FHY1GYko0+Nq2M587fKCN4IaY52fv+H9T3wqpf2CWkTRmU2tUPqn4X\nvqYsehwbKn8eDq3HNHb98rKZmf3AgmzOW5Pf+8oVZUDvv6jr1L/1YTMzm4ors+E+JSTQpl+Zjw0U\nZLwPwwFRUFbriaD6wwcXly8iZMwLRY3T5lD9+TQ8Q4Wq2rc7/K6ZfdK6i8roHLeEoyARQcgYaI6w\nF4QmmeKRC9QIakx5lGZ8Jl+Xj2o8BzW9P+yh/tFRRojutDSogYF7Ytsgc+ABKR2R1ST76B0O7BDU\nTRKii0FGWR13V/ccRZi3nF3vttRHA4/GKAKS0I+/PFhTRm9AZjIMV0gSBN/Yg0pIW347EVB2KLQE\n2iAh2xySYazsywYaPfmpYE31m01pTiw8LJ4g35TW3Ksvyw+XC7LtWTKT5YkyA1wlPjKfLjhnDrtk\nxeFhG6Pq4YrKFsL4w+BANhiAS2bEWt4je+Ue39kWxx2GDwNumV5I9WmDMGz51H9hlHXcfY1TaQNV\nuhwcZJzxb7i1Ph3UUfmbcEqAEgmWZQNe5kCkAKoKPo6Y6f8m4x2q4hcHWp/ml/T5aOx6uw39DbeN\n9tVfucSymZlll4V+C470/b034DkqqP5z83rfN+HlGGIfgBeOyLjmaX8uBnfYnsYxk9f7GTekRiBw\nh66+BeijPjaZAJ3qhy9pf0t9t9dHveK0rtXKqo6dWfmNGvxCLnjuumF4KhbUttYV9eXmQJnPTEy2\n4mUNG4My67Fm90Hfdo+/1JiZWRT0wRjulLZPa9n2rvZSffZKqSH7VNPnrUP4QMrwgcCb1AcyF4XH\nI+RXfzXZ1/pBq/ogKIqjMjVo6ve1sebWGOK6xJTq10RBs9dUPUsN7g9HTAJuhXBMY+ar8zl7phRK\njAn4QPKmPcJLz8nvHh0Isd4LoYhZki304Azyl1DBAmmyDMKwi7/ru1H83NH3D3tax2KH8hG7ZNhD\nI7hcWprT233NqWJRr9MrshcfqIOJSkpjX78LzL0DXxiHA1bc0vrfy4BCmwc9HJUvO0Spp3YoX9eB\nF8Y3nbPjlh6IuSYIFhcItyH+zJ+W32rhn0pw/o3GoOFNY7Jwnj7Db4TglEmmUTvNg4B4U211FVHC\nYgxGrFEG6mecl02ePKk9RhL+yzrrRDgo1MLMSfxcTH2XWdDaGWe/OEBxbODS/u3MyrKZme3tqR3N\nQ9BttzQX37wqW0ly3bs/IrTBqVnN3R7r3XJM/ZMG0ffWoepVmyBn/BPOQtnUzLR+H0uDPuD54+At\njfHmNe1Vcnn1f8ij/nSDoAyBkm1UZGthv/rdjVLZ/pp80iGorBB7qFEI5A7qRQmvXn2+d/zwcUoQ\nVF9whj0S7YvAI9UqaP3cwT4mnDaTEwlBr+ZMfUv9DCDWekgE1ZryleGHdP17H9Le6qNPqR0peLrM\nzO65+5wlAvPmh9tllAQ1mpCN1ECYQW1lLtZoX1Lfn59lbalqLE5NyfaOmnpmunpZJ1ZW39R+dGlK\nCO5AVLZw82Xtt3tdTnEcqO1hv+6/8boatzvUmNa6Wh9SoHtbqLkdlWQD65e1H03ldb1mVEifFEpl\nPQjaTsNPlD7BHgLVp63XtM++flv15TCFZRe0rgRi7AvZT0Y5TTIEUdjqqH671zV2k2ekieLX9yoO\nUsYpTnGKU5ziFKc4xSlOcYpTnOIUpzjlfSjvK1JmDPpgwt2yPVB0dWmas2JwpHSrinwFH1g2M7MU\nrPGepkJ2KaKa/h1F5G69LM6Hal//L08pk2v7ij4WdpQhL24r+pnIKfpYIlPhmee83pLuF5tWpK7w\npiJ0FZjVM7Oce59WCO020coe0dVeQPdLcA6yVVWkMQjjdjCtKGUyoPuvvviymZntvKTo8PQ5ndkd\nBTVMPs6XV/Z1/UBe982llckY9BS527utCGMUpYz573vQuiAUhiXdu9dShHUIZ0qpo0i2/xaRehjw\nXUFFBTMwYm/cVt/WyMosP6QIege0wRDN9xFnyoeoHfmHZKdHd6iGQZvCnHGNe0HE+IkcezUWZbLP\n3gDIFbJZvgQR8Tx8EnXUI1yKYvpDiqgHyex60Zqvk/0KoDFf68oGRxFlQDtTcNmQPRpF4H5B/sQF\np0yrB9t7V/1YrBPpvqUx9eQ4t5hR5sKzp/OYR/BfbG+jKJEHYUL/NbHBDhmDEwlFq/1tvXrGum7c\nI1SCy12mfsou1SJq/5FX0edxWJ+Hc7LR2LT6fUBGPVpBUQL1JU9Pc69bRQXkUP3T5ExurwEnUV3X\ny5FZKBRR4vDqNdVVZsZNlsxAdAUSx3dNj2BzL4G8mILD4O/IFH5fXPNj/VVde/WUskXZ80JebN6i\nLV7N35MoZqWuK5J/efimmZm57hWi7dFbYmH3+5R1CMJVELm1rFdC3f2W5vFJv+bj5nPKam3fo/fn\ni8ryTEf1A9eP6DpnLnM29WEhf65/TYi3E08+reuCJnqzqfrddb8yl1+Cof+xXfmRUu/7dV2v1H3O\nEOGPdR82M7PhstSMdublD+e+KVu7py2/82c5lF1e01hce0A2N31J3yu8of6r/aDm0NrnnjAzs39y\npHEIvipfsvqkXk96lWmM+4Ug+hoZyNkpjVdqSu37+EgZlZ2QbHf4iLh+oreFYGoHlcFYjt1ZTmHh\nXq0rq2XVp9tSPSuw9Id6amfYpTmcKsumO6g2NQeaK37QFNExKi+c10+B0mt74REga7W9LR/R92kd\nSDLeYdAG/oGuP653LZrUd0I5ZXPiSThcoiDTTqoPfSSPq9so1KCe18TfjgaskWSDRmSRyj1U0uBZ\nmHBf9TgbX/PD0wDfhpes/hA1D+MM+kSdJ4UyYhrenehJIWZiGVBntzSWhQ3U447Ud8GI2pNNae61\n4ZtIhOS3EEixdkd+YoyqnB+usH5E7UkMUEIMkGlmrc1wfnsMx8yxS13XH6RQCgI9O4yhlNOinnXd\nNwbvSb/CGX5Um3pw0HjghfNNUBCcW6+jOBGEK8dTUn0HO7p/pqXsXaqjfu40UQbrTdSQQFe4ZHOb\n126+04YrbcvOiItgakF2NO7DK3IFJOa2rpPNodIBH8cI1Y9wSPVpkaEe9XX/KufhUwH5ktLhut7f\npH0oP1oEhaVKyXwhjUEyTlY2AeqqoT6YKK3Ec/LjwSCZ2QrZ/x31RRQ0VLuiOVFrqi1LZHLHp9X3\nVVBC/QbXzbAnAZnjAsHWQFnFb3emmOJCeSU6BmXLmjj3YfmXHgiYrC9JfdU34wbcLdjwxAa6bc3J\n7UO1J4wSTTCndrtN/TYoM6cbWsd6E1QXBG6Ftvz4kGx9GFvugWZN50EK9uSfjla1Byjckk232V96\nw+xt9nT9uwv6fwk1vtYZXe+lbwuRHtnQfSs5kNwjMs6oLfWLavdaXzbhpX2RvOaQf07fywRki96c\n2tuvyuf0QIH5kqDjUK+bi2vc8wGQLvB/5E5p/ZoDDTJqvqO+NLectnIXjkg/yptLej0coJjWU7/P\n4sPGqMvEI+/wNr1XSbJPDC6iQtZBXW2gazfpg+Ft2fjGuu6xuckY1lWX/btQhEnD2ZhXXRs3OR2w\nK9tp11FsrMnGY/CbrcThOdPQv63YVa6rD2+8or3MFvyXCxl9MXtWY+ELaWxK8Mp1wurLDqjSwJTa\n0W6DXtpWezw1Pkes6EMfFi9c/CwouZRejw44fXCg9aHe0to+n4ejClG7s6eEuu151a97t9bVTzxT\nlQ9Qi9rQ2l7Z4BmMZydvUutUfFZjGj+9rP4Yg64AxRGDj9RNv42rmnNTcJbV2S+74JiZcJf54ITp\nVe/skbrJKRAf411F4ayEylQFTswm5JNev17HNdnBXkPfb+7JpmfPq/7nzqPwO0Z9CR6nW3CLtkHX\neV+QTT/8az9jl772vE3PV20Iemsc1FqeTMjPbVbEI5QAKuNhLTri3oO4+jY7z7xh7JMx/XFqXnVL\ngRaLp7VfLfU0R4YFnntRhJq98KiZmcWyqk/nqmykV9D9p+aEfEkmdf199mmDgfzAzEefUj0a+jwK\nx01mTmvuJmtaryU/1OhqbFuoJM3AOxS6X/UIz/NshWLuACXFLqcWptPwdKZQYRqp/4Zh+I9YBypb\n764a6iBlnOIUpzjFKU5xilOc4hSnOMUpTnGKU96H8r4iZYpris6urStClkBL3X1CkfKdA50Ju1pQ\nFijsUxQ3gzJDOExk3KPIV9HgbMkpUrdySpHy6fMKt976ljLKox3OFIeJ+BHRi8UmmRQ4X7Z1Hq/h\nBwURVpRy+n7df/aiMgdHKE+svYEKSYnz3xGQQFXO4XNGNQgPy8qjivS5e/p+bQM2fZ8icr6Rvjca\nqF19zjV6c2r34qzaNVGYeOural+BaOvsrDI3sZmMLZ0kQn6IGlAf5MxJ9fnlq3CpECV0cz54vKC+\nOlhVJP/GW7rH0kUi+Bndo17RPQM1xfkGnQmPgv6v+0G8RO7M5MLw43i7xA8L6qNxTn0biqgeHc7x\n+f1qz7in70Xyanetp/q5G+rDONw6w4Ai7ZUsyBM4awbwgBQ5c7pzXf2RJMIfJFK+uqeI/AzZdV9D\nNlIroegAH1DSrXr2x7LhnSJqSh1Fj/0gmcYtziBzbtrVoD2cdx5ndd9+miw+Wbv+WHOmxzlxF2eI\n929i03BKpFN8Hwbz5kg2Pg7qel4fHDp1MvBh2PI5UOltKXo8rqB2BWLK19L4hmIoJqTIwE+UHUwR\n+2xe0erNEioDJLEGI10/O8kE2PFLzZbNzOzkmvzFjQpM9mQmrz2iq+39pfzMmaaQHXumup4IaoxO\n7z5uZmavwcVSW1ImcJox/0GDK2WJc8PfErrs/gfVhy/e/UP6/hv/j5mZhZ+Q2tLfobjwFOerm9NC\nwETKmnNlVDJqFY3h/EXNqe+Q9Xo8f5+ZmUVjUkb46ueVAXj4gmx1taj2PxKVTXc8yioNx8+amdnR\ngbLarmX18QkffXxO57b9fy3027MfUHsuumTTH31F/rFW1X0+elNz8a0l+Z0PgWC8XZXNLT2j7730\nlzojXPig/FSmKpvzoCL3RTKUw9fhbFkBLeDXuOyW1O654htmZvbcrhBBTzQ0N84uCUHz+l99wlT+\ngx2ntHrKbHhAATz+0z9uZmZZ0xx88S0hh7ZfVD0iLng9Qmqvv6dxGlU5P+7V524EeFpw0zS6ykKV\nOnp1k0HygO4L+DWX+/SDn0xLYD5pQc6U85W3zx83QGP5toXWLFyS7YzIhi9PK4PYYl4FQaLVR6ii\n9fDrPniM3KorAlEWxm/Gg/J7Log2OmSnxwEUU6Jki1qqZxUFw1t//10zM7v9nz6rtpxALQkUgJsM\n40Q1IpmWLVbqyn6VC6gSRWT7brJNHkAMEbLh/RpzG7UgQ3WijoqTl34acs6777qzM/5D1hs3/q0f\nQFUJxFIWf9aoozBDRjo8r7nb3NL3PfieAVm+yXh0O/Lr/ojak29pPKrwx6X21a5UXlm2Llm8CQ8J\nFD+WDMom65usa5vv8GZMJ+Yss6h1pttUf2yuql5D1vdMQuMzC0KmM1a9JqQEh6AahiPVP+ZSPXw+\nzfliVDYdBDHURTEt3FA/TMO1sNvft9QYRDHcTNZQ3/WPdM9IUNcIon5ZBQkdRblvBhtrgv4KtNT2\n0QDEDEqQ8ZjeD3s1N2pDVHjY16XhXRqC/BiWQdOG7gy9OxhNfq82+5l7p1a0n2uAXOm2NGfC8OiN\nQUP14EYZNUBVoSY0mYuVOvwWUe0ZIvBKeUE5BOAr6UJe5R6T8R3qujHQpokZrTtD1tge9fAO4Y4B\nfbUFcnwc0NgtP6p+jGIbh7dUvw5o1umk5uiTj2r9jLKmu+B8LFyVrW339H9pW68e6pHIgYYFxZAG\nGTOa0ZyLwbEzCsDxxVaq45dNJfFdfRR5DOXLVkvIn65L9Wm0ZfuVJihcMzvoHNnSgj6P4Qt9oLFn\n6uy14KRx43OqCfXHeHT8XUnLp2swpNaHX9LngWcHdaXNEipBLfVRH/6gRETzK8AakTwldOrC/ESB\nRnXZ3ZGtt9hIedlHNXxa6/xIgGWmNFbdktregUNsNKbtd8l2IyjiFvDbhTc5peBHTcqr+8zMgxQM\n67UN+myiaBVNTTjJUDZECS0IinQw4VqsoeLaVV8vxODQQbEyC1rMi+qeq6h6eOBi8U2QLlvas4xB\nZGfuVn/1R/o/PafXEchKt0vtaIH2CATVP0kDyQTaLgLifpBUOxIT3jnohfrcrw8Sddh6B5V1nOKH\ny2sxq/o24B3tumQPCP5YHPh1M6Qb317T+DZ35FNG+DgP9nIwUL1SKLN1Wc+bb+n7E46ghZNLb9fl\n0e9/2rzDiF1DmakKL2WzyMkOHt2SPPscNjTfkpy2gAbH3Lvsu29rr3LlsvZx6SW1McQYnwUZGUaZ\nN99X3YZw1bSL2s/PJrTfiy3LBpo5fX8ePkovCORVl+IJU6GH9Lqifd13V4V0f/Ul7d+jl9bNzGxr\nT/U7S5xgbho+NNT53CA7AdbZENuroq7a3pTNlda0f56dlW1FQNgFFkDKNFjfuhMU27sj7hykjFOc\n4hSnOMUpTnGKU5ziFKc4xSlOccr7UN5XpMwBPBUT9YnkEll2lFhsrIjSyRUhUtw24a8gkoayy06Q\n7GFD0efcPYoOP/wDT5qZWZGzsQ0yra0yaJEbypwfbut+UxcVhU6eUz06R4oQbrYVgRvBip9/YIlX\nFA3WOVNHlnIA6sAFgqYEB4RvRfU/9/C9ag/n5Fe/K3bnAsoKabhoquin791U+5IoO1y4S5nwGBn8\na98VQqdwSRmoPP0YQu3j4NVbNiSK54IJ3wWLemJe0ctHUstmZtZrKBo4KKrPCofKohzcFNdJ9oL6\nduUe8Wv0ybAVyXplkmRNQAn5inrNhTjX7Z4onxyvDPtEskkEDkA3uWpwtQT0uZWJWBdRPGlzxh1l\ngXpV7Ri54CLIqq/LY6Kzpus2iSgPkmQAmorsN/fIRGRBjITgMiCrk4Hfx2MoRXCOOtRTf/nc+v6o\nzf27+j8La7trQ2PnApmSmyZbBRt8DRvq1vX7EVw6frLvAzIzLbJzXdBkkUn7CPdO1DVcqLSEQbpY\nTDbXjer6BZA8s2Trmpwjbe2S+eiDotgBQdSDuwBVAR8cM5FGi/6kXmR+x0eckfUp8h/1qR/DPtmP\nwd1wnLL9qubHaFocKnuziojnD8i8tdbNzOzUnHgWdu5WH998Q+ecR9kXVEe/kBJncmrbq1f1+UM9\nRfrLm4p8r4MaCMdU1+v76rMT6+JyOY/qxheXFaG/EKSNh8pGDcmqhM8p4r9SUn2/uar6vRGAr+NI\n9fkCqlDxbyhjMPDoui+5HjAzs48FdN/XvPJ/q9eE2HE9+EEzM/tI9gtmZhZ5Xbb4POire7Nq5+UT\n8ltP14TsiabVX387rzGZflS20NqQn7p3S/W+nZSvmHqDOX3fl/T5E0LmjHKyga98Xf4284C+99A3\nNWfdAgzZ6iv6XuFJlH5GylA8BqqiiHLF5ExuuaAMxSCiOXPc0jrUXAkuyy4WTD5skc/fjP6N6kUG\neujhnDqZG/dAc8UdgJ+K1dNr8Gy8zT+i9s0uL5uZWWJG439jTf3X3Ne6EmM964PqG1Uj1vaojn2y\nvB7jzD0ZyIOCsv8Hq8oihVAOCHtkq1ZAwRBEi9cHghDul3hY/qxPtrncJusM14wfdQkv574n3ASR\npNrQ6+p6/QC8GQP88UWtSU04RyJj1b+e0eeBhO4fcet6Q1BIropsKNAkI5mD34es2aiOUhUKPh4Q\nmK7B5Ny76huEV8oFXw9u1YatSa76eCWIql5tcoGJUoxXNtqa0tyJ4d+b8OEFJ3wpE5E90BD+Nko9\nZPXDfrhbJtn8gtYlX1V+MZ/U3PF0Jzx0so1UX/3tB00yDCibWWwrW5nJvLOVS0wlrIXiTm0DDoQO\nSjpp3T8ED0s9o8/LNTKvbdlmNKBxC6VlfwNsvAYKwzuAQ8ev7zWM96sgtVA7CTTMeqhUBkDgtbsg\nRsIas1iEvQl7hhhn+91leHlQHQqz/wqBEvI21Oa6G9SoR6iBQFBj1papWxuEs/VV5whr+vBQ1w3c\nofpSkDXc6wEBVFZ9K1vaA7Xp+yoKWt6hbHLMWpiAX8hLFnsuq7HopVG/gysnBCFHLA8Ktqb7+EBZ\nBQ7gTWIu3ANyekQmu+XhdR9fwpwMp3TdlYeVIc7NYssBjcPSjPx7oyfbbB0KadK7pPZaEl66pmxz\nf0P76DmQLh2Q5UH2al5QvjHmauqUbDiaRMkGHiZXW76tvafx8oz0eccN2m4d1CBckYOOxjMc4z7s\nserwZ5iaa9NTup+Z2encrA3GKNvsggR4CxXAOuhl+LUaIO8nim6B7PE5ZUJejVluDr8Lr023girO\nLc2FCCiDiXpZLKsxDKbkHwIh1EdBoG9e1lis1lTnEJxP0Sl+PwN/UFb+Iwxn4f4uXJJwkAzquu65\nZe6X1x7jVkk22EPdp4pKaB5uxgScZ764bKSFItoBapvpi6CQQNBEKqqPjz4/uCW/1QBRuPGG5mxI\npmMXP6HVeHYBXhLU+coHehbauaY139NkfZrS88tMRu0/5Plm5AaFm0OpDHUnP+3aXtV1RgX4SkCn\nFXp61hvDzTbpvwwqRQG4acbsV91wUHbbul6vf2frjQf03/o+XC+gurwgmEbs5ytweravrJuZWXGH\n54sLQiVfeFDPoj74pwrXtD/YqArFkQEBOk7q80ha+/V66511o1ge29DdtWnW+uk5+acivj6dlP37\nw6pzNiX/0thR30VAsBQqoIx6GssTgHH8PNNM8702z4yVsWxhGnRYmGepQx4B/CHm54hntpZsub4H\nah/lxjqnE4p9jeF1eJYKB7L1hYzalUXxKxvnuX+Z/XVQryG/+sgX0RgXi/BvghhPLcsmTp1XPXeB\nEM1OwztUkT88uC0Onq1re/SP+iMdescf/WPFQco4xSlOcYpNGGedAAAgAElEQVRTnOIUpzjFKU5x\nilOc4hSnvA/lfUXKdJvofA8UcTra4nz4NUVFp3PK6iRmiFwlUcXgvHIJtuYaiBRvSlHSqYuKhLWJ\n8NXLiqytwEjtmuUcdVXvH1SIcg5gSN9FqWKkz4dFXSf/oCJcabcibpVrRMQ2FZUME9UNh9FFz8Mq\nDWt0/hTn9WcUgXvju2L8bsPHkllWxiSIooKbfplW8szSZxSpdEcUVl79lvrp8IoigyEUGUIhRSI9\nZBdt98BubUwUDlSHHlmLEGflIwtqU35a3B+euMKUnSNFgmsx1WnmHkVmSexZhc/dLVBBNbVlktWJ\nJNUns4vir+jC13PcAlWJ+VpkQN2KxA84U3q4g8RJQhHzIWdbo0TEU6iCRCaqJCBG6mRqO5wxbXE2\n/qgfol0TzXqybmFFyE8GyUCDvhp1FJ3twAIfgjshG1JkuhbU/YY1IY3aFfXj4pyiposRWNdvKUIe\n7aCs1SBqWyZLnwDxgmJNz02GAZb/MUo/roHqk87JluZRMao0VY9AGLZ3MvK9EGeayZRHUP3wRxZo\nv2y5tEumui87SfVklGM4BKJwyAThUihuyDa9MXgzepzT5Ny5Fz6oGNwPqbj63cP4jYfHT18+eYKM\n5UnOJ9+6R3WJfsXMzLoR1XUb1YvKFV377l2N0dp5qRGdnVe2Yu8riug/dAYepk2pLL12lxA5iVeE\nSnA3NT9PwX8xv6IDwM+9iMJMSBwtVw7kd7qmtoe8f2dmZhtupRCuTuk+6WXQaFe/ZWZmpT1xnpw7\nFDKm/og+j9xUfecrf2VmZm8U5Q9Pkl1fPytkzGNVIUEOvy7kzLOLqmfsUGO9A1fD/Mr9+pwM9Qca\nl2mf3h8NUVMqa069lvi66QKaW8nzstXrW2r/mkvj8VRONtdf0Xi0X1e7bszin659yMzMPhZ9zczM\netdlc1+6jd/l/Pwo8UXd3yNumUdGev8T9+i+/7cdrwwbqC29um5mZv/pf/03ZmYGHZR1/lKIo6Rx\n7h//2WkqUzIeypdlPaDe4MIYkpnvgEJrgfoY15RpLu3o95W6MstpuAq8Azm3RFa+JTgKm4drhkz3\nrvjVl4Go5u3cRXjIPv64XuH+al7TGtD2a4xHPjhoUEtq4BeugbAZlvV+Cv618BRqGab7RYOsNaSb\ntyuofbS0VvpQewqSSUy55QdmVjR3XMzrAX7HjZpdZ6jrhDjzHsnrPsmc+tYf0f2HHZQN4L1IzKNo\nBepiDGJwotw14fEZdvW+C3UTKBaOXUac9050NVdju7p+K0j9+hq7MKiCBpxpsYHahRu0LkRDTTgP\nYj240UCSNm7L37dKKCim4DSAH6+yIVsKgEwazMChAOfLPmpV/jgIUThezMwq7q4NmOMWgf8oDDo4\nRf/h93fb62Zm1u6Ity84sQN4sLqMY68mW3WhPGFk7n0ZbBkupBLrndcHAmfKZYGi5oHHozr2orIV\nDzQ2fp/GfAzaddRhDSip7nmy6JGk/EazpDpVRmR/B/Df+PXandZ1WlOgSMdaU/soIRp8OoEYyoN3\nmN0eetXGEDxroRl49FBzqnjgbgHZMy5p3vdRWesDp/KTzR8M9XloosI2pX7q0r52SXPbQBiN4a5y\n4Zdr67L9gGmd8ZDNH8kkLYBym8cPuox9d6ovG4nBcdjF5zQMRZea6hUcyxaCA/bdVzVwzZH8mpEx\nH7AXyYfwBXAazvt1nfrbQmggYOD8ycLL0YE3sNUExdDRnAuCFuxRP18HtHIHNBd7UQ/Icw/kFpG8\n6uOKNic3No8vZKMOaPAyyEcU4Qy0XQf/X2pOkEggjPDFxynBiK7lZv6PQNZ1GxqUcACuj3nmb0m2\n4ELdyJ9jP1SVTeyjUtTYVp+Xbmj/l9aSaadd8PLAAZVZ0X57FqRO65b61E1nBVdQhRqoryb8ToEC\nCJY1jcURakZt/GzkYRTGuvrdIbxpYfjsplB965d1nU5K9WltaPAbB7peGc6WoQe+Obi6xiX1xxjO\nmWBFc7qxy37eo3aWQZuVyth+Ur9zgxKLJEDSgxbrsE/vwt/U2Mev9uCQhDelwvsn7lpWe1JyPrmk\n9tMBnkkrI43TFqcpuqyP5rkz2N3hPuMC30gopXoHZ9We8pt6dizs69UH2dwRCmRLTaHdbt7U+JUL\n4sPzj7S+dDn5MHtRviEXULvMpTlx+fLrb9fl8vN/b9GFecuc0POzq65536ZPSmmQKBXt7WPMszho\nd+iQzIPqWhSV01hEzzp1bG0Mb+X15+TX1rfFR3ea59/TJ/QM6oX775XnUBOOgDYDRdzh2XIaXtM4\nz997KNJWt2WDgRjIltOyzdy06lWGtyfE2ts90v5+Y182NTlV0BmrzwecZCmGNNYJlA2nZnXfxIxs\n3R3nGbGvvk/lllUPk//sNzjd8T3KsZAynU7Hnn76afvsZz9re3t79lM/9VP2qU99yn7+53/eehyr\n+PznP28/9mM/Zp/85CftL/7iL45zWac4xSlOcYpTnOIUpzjFKU5xilOc4pT/YsuxkDJ/+qd/aomE\nokF/+Id/aJ/61Kfs4x//uP3u7/6ufeYzn7FnnnnG/uRP/sQ+85nPmM/nsx//8R+3j33sY5ZMJt/1\nugnOI4dj8I3scZZzW1G+Rozz42lFrnIrinQFZ2BBRxu+BpO2a4bs0rQ+X91WBvbW64ouTw8VUcsm\ndN3ISUUll8nyVTiffXgDdRbOho0Civzdn9e5eQ8ZmcI3lVHeJSKXA6HSyioyFw8rGp19XFHKs4+I\nG2frlrKVI/g7sud13QoZoM2GouA+snKRgPox2oBZu0a0nDNr/YEimlMZ3SdKyLIG+mMwyFqAa7ma\n6rMoZz7r2yAoWnq/sQB3yBEM+ruKVkYv6NqpE6gHTc7Cc+7ZdQr+hzX1WZfMbCatzGmLM/aV6vG5\nQszM/C5Ftksh+IbaZMHgPhiNNRazQY1tCmTLLrwTrrH6zgUPfqEm9MIQboUx2ZQaCJQ+UV2LKdpZ\nGHH9ednKoEkcEw6XLPwRyZpsNOSX7QZmUXzgLH4b9voYWcMsZ4CjYVRG4CbI59WflZF4gmIo5SRA\nvIS9Gpd4UFHeZJx+2Ne47cF9kCfjHJgCUbOmdvdCmhsRuARaqIG4QTb14Y5xkc2rVMgCFmV70SEI\nmSqKPlu6TyKkcYp3NXc8Adc/eA1mNUd7I10nOJpk8lHJghtn2CC7ae+oibxXeeGmEBrJedXZWxJH\nzHXaGv6CyEtGH1Q2OP6yxv7ZKbV5+qYi9sWx/EspAqoqC//OS5qvJy5qPt8ISAVp5Yl/ou+ROXjt\nNY3VxWkhVEYv6/34Q/rdq0uqz/wNZQK2y8oMHK5oDIJt2dpmVu3Y9iqD8Mwj8o+b39CczQWEAPpm\nWlmSjz+lLEqxKVs/R5b8jTdka7Ep/S4xp7F8YlXX/as9+akfWoc75odAxb2i6447qKTcQi2jpesv\nhDVm8x+VbV+7Ks6dVEZzJhmCv2ntaTMze3rtJTMz++pTun98TzbsLoD+aqrf23AePPkBUHFxzeV7\n9uTfeo+Ik2XtwMzsv7PtbfXDcYuLTHkMhQL3gcZ3tAN6iwSG26f1oQ0fSNYPihCVkAHKEENQHB4P\nmWh8RQrliS48G61VISJ9HdYn0IoBfNIQfpdhp29d+4d+umHwzSzAMUKGLJlF7aEqv9MqqQ1dVCxi\nCTKwrX+oYpSeVls6UfmTqTn59TEcWp2DBt+HOwC/8+CHlRUKkjlc+5oUygq3lClst2SD3iLKMyDj\nJup57YT6KurS3PMy31syOQuBwOi5lUmtT7LpLfVZdk5930ABq92Tn/P4tS4Mh2pgfV+2H4Saquc9\nvh8xMwvDPTBoawz7ICfTU6CmJqqFm+rnIJxmnpH8dgOEElsEi/O+P0yWbF/j1NiHaw1FyXxE/dvZ\nhU+lojXeBy9HPezmPrKHdpr+K5DtS7/D1dYKtN/mCBvCjzSKqaNTeZCgNSnL7Y3lr/v3ai5mQVju\nVDRHvYe6r9/Ur66eOjYUZw8WB9nk0u/7Hq3vE3WvYLxsDfgXxjW9l0JhL8TeoOtDjaygMR1swwcR\n1xoT706UxVCNI+PaRXlrCJLG4lq7+wl9r13U520QLTnQBF7UMPzseXre4yMgzMwGprkROTWxZeoP\nH0+OtdfLHBvDCVMBPdoDGRMAfXW0Lj9bL2vME6AkBhMFG/bJCbhXllCrG8Fn101oTA609bIhXFxD\nbGAw4UqJwDcFT1EXrq7qtuacJyObbKJS5QGxVLglWxjhP1NxtSs3p3ok5lHIYS+zu6nvD1DkOiqg\nggSfycys/L1/oHGugKqI0K8pMs2jiManDb9dH99Sb8HJ45ZNh+vwHfn12gMR2Z1HWfMAFIOZbd+8\nbbEJBw1zyqKagxU3exKQPh72Qr2hfFsApO1xSvdIv9m6rj6tjTQvoqh5GiipBByHowX4KmNT1El1\nqxRRLz2UjZTL8pOHHubSUH6lMMLvNzU2XsZgiznVKGofOH/iA2qLX7Z39ar2ROusH+6x6jeDFFj8\nPo3VWXg4AilQEy31xeyi9jIh+DRiKGZt1eGPAukyBoXrQ1czAzfX9CLciYt635fWfTeva65svCVO\nFHdG33/iqR81M7Ml+Pzq8Ap1AAcEYvCTJvCbHtXHv6p+2+LZaTRRlwPJNIjr+4uz8n9zIPtHKJbd\n2FQ/da/LRpIz6veoR37Pi5pgABs+bvHm1f5IWu3JMKej7OurB7KjE2ntcRfOaG95Hn69FtxvN25q\nz1UH+XPmjNDUYTXHEvjjXlXj4nGx51ucebsu933iCRuO3AbQxa5taG3Yucq8BS1VPJQC78nznKpY\n0NhXXpf/u13U71zw/SRRR9pDtW72pJDT6fNC/S7d94iZmc0lqSMcTgM4yPIh2X76nO6XjsqW6k2N\nQTqBavM6iMcMCPYz2q9WxxrDo1U9U9144dtmZtbt6voL8+y5ahrbBsjGhanJc7v2wx744Pbp68OX\nQdYUtL87fY/mSmVfz+WBtOq3cFqI8H5Vtljtv/sz8HsiZW7dumWrq6v2+OOPm5nZCy+8YE89JUnW\nJ554wp5//nl744037O6777ZYLGbBYNAeeOABe/XVV9/r0k5xilOc4hSnOMUpTnGKU5ziFKc4xSn/\nxZb3RMr81m/9lv3ar/2afe5znzMzs3a7bX4i0plMxg4PD+3o6MjS6fTbv0mn03Z4ePieN5+ZUiTp\nxIoiYOOWIlQJoptdDsV2fCgG1RTN3T5CJ7yjyNvSoiJY2QeVEfdzLvrKLhkA2NS7sLjvDRSpSjT0\nuxSZjDMgcVZrnPdGHWPmnN6fkA9UXlTmvHBd0ehYkKgyGelGGWWLlOqbn1VEsMt596PLigL7OJee\nnVXGOnE30dIm0eg9zgUSwatW1Z7Dq4rQVTn7liaj4gko+j3wql0RFGxcY68FYNQfcrbfRRYk7ULh\ngIzewauKHu5vKbIeSSs6unyPlF5iM7pHleyWL8S53JEitBmf6rI7OWfMed+9A0VPS/vqs+OWuk/3\ni0yIH0JkzW9z/roMSmqIQsGB+txTguNkqAh5k4jxuA0Sxa3oao8xucFZzPYU55oXOf8+YSeHKydy\nqCjtIvw9swmyb9u6r5/MdjwmG6jDBs8RWRvGVd8mEfF2W5HwaK7O58r81o6U9nL79P2RR/VqtxTp\nD/lkGwO4GcJe0BAp2NVdsOhz/dpItjKVUH94g2SU3ap3J0o/wzje2uLMb4UzyGTrsiZEUut17GiT\nDEsK1Q3aNwzo+jU3aIshKiU+2WY9BkfBkLPM2GydFPNopHYdpwySukfxVf32QyD0zkR1jzJooW5B\nY9eLqE+yH9LYv7kj272gZIgtT+t6N8PqsxP3ilul0Vk3M7NwV8b02p76aPZlVNcuKJP4vFecKx9r\n/Zja9qqQKeOHVC+3V/5uCq6DxRld18Ya4zIAkAfu4+ztlvzt7XN8nwj+Y+vitum9oN/ffkDZlNCq\nbG/qLrU7t6wMRnz7Pl0Pv3t/RZ9vPyAEX+3PZKRnXOKN+gQInu/4hYo4fEA+ZBvVt519sm9Tav/a\nDWV9YqZsXBU03o5PWacf5f5/U/+mmZkFz4grp/cF2VTwbtUr/Kbm7t/fpwzEYyG19xubGq8nGccr\nDyF1c8wyGDPH3lYY0vvjnvx8Ex4j1xCUB0iWMRwDt4vwo1RQxAjBlzTh5yJrGQRZmcI3rIKkmQW9\nEWIud/DFboM/IBEwN9nYDmp1YdR/aihA3VoTOvPwupIe5y4um5nZDOuvPy6bbJL8D6DuEINXKeFT\nFvq1ojKQr1+S38ueRDUPxGDOq1fPhP/DKz+Yiqju10inBVFAbHBO2gvyzguPhSuGfyJDamOUt1Ce\n8cEB0Ovjr/uqRxalhzGft1taN3pj1aOPOFIF/5NEUcZ8qDDRp/7enXGYTdToBthuOAI32G3ZTpjz\n7F2y9VNTsnl3c8KHIf/vg7NsEEWxogIKGCWImaBsOpkRuqNaAImzyzqS1O9HKNSEXGTx4HobgiKo\nwznT/s8QqK6Imcer+3lrcIjBEdNEkXGzKnSg96T89fhu+f9Nt5ygty47CcCNszjWXBskWY84px/k\n/ocd+YL+lHxmeQrEVdBr2SpcJU31aYascJesfglksqeu/09mlGGN03fukn4fqct/NvyyBRe8crGo\nbDuU1veubClTWaZuGRQBE3DxheF8csEZYD6/3UnxRCfcI/JDw0NQti2NXQ/OgcEufDsZeOuYAu0G\nayX70lhI9S4csjfqqp3TUfY6Yc2BOIpd9RYZ4skcX2DPwP2bR6DJUGXyY8O9Cigv9mQRkCFW0pj1\nTDaQnJqgB1T/gwnlzkDfS5ySvw5Pcd2xbN7FXsFLtybwn+Wu9rv7t1mPZjVuc/PKQLdQL4yDBOqB\nOm7DqdiYqHdlcKB+rddrb2pOVvOoqMzD4QjSaAwSJu56B+EyDnssGVN/NXAZbcY/jopWCxWnhXvg\nNBugKgWf03FK5QDenxqqk+yzG13VOX9CY5M9L9udggumjL/a2kSFp62xH7JvC5JHX85qDGZQip1G\nXTU+o3ka9uv7ne1b1EN9Uy2ipNUST0cFBMs0CJU+yMYyfncxBt/QSLb5nW+Kd20EwuThjz9kZmY5\nULoNr9pbr8gmwl7Vt4s/9eVBQntlaz6QiWNgqj1QbQGUty7eo71XHjXB0VC2sbqqZ6AJyioQ0p5s\n6oL2QK6O7j8E9VBvgThHPc69KB/TRfmwVtR1widRjoR36QB+06OjdfUnEMx0UmiP2DwKnyF8ymSj\nf8wyKqr/a/A7vXlJe9MuSEWXV07jNNc9bAmVfLSrOb6PWlZ2WusJoD1r+1T/KmpXly5r3OKs45Ew\nfCfJCczQzBMO26jbsgbKrSvTeu6Nw3N3+m71Ta2rNWsZ9Ksbjrz1tp6LH5qTTbTTcFsB/Wjtq041\n0Kw1tvievGxpYxN4aUXXiYM0jMHTs8Kz3zCm+tU7Wje2r6ivnn9Ne5rokp63F8Zam7NwwPZYEx9d\n0twZoEQY4P0MXLXFXT17RaP6XukIxa6Krj9uoNCIImYCjtrsKbgSIzx7rcPzs8HzuobCxvbuyEzX\neDwef68PP/e5z9nu7q79zM/8jP3RH/2Rzc3N2W//9m/b888/b2ZmGxsb9ulPf9p+8id/0t588037\nlV/5FTMz+73f+z2bnZ21n/iJn3jXmx8VCpbN59/1O05xilOc4hSnOMUpTnGKU5ziFKc4xSn/fy2/\n8Ev/wn7n3/0v/+hn74qUefbZZ21ra8ueffZZ29/fN7/fb+Fw2DqdjgWDQTs4OLB8Pm/5fN6OYKE2\nMysUCnbfffe9Z8X+wx//sX36N37D/uA3f9fMzBqcl++iQBMmK+fmjG6bs61vvqkob2ZFEbp7nnxU\njXlYEbwjECW168r69Mqc4YeEfRQk8zJS9NHnVxR53FHka3tLkbq5vKKP2YuK6I9gJn/jmwpK1avK\niMzEyYDP6PvulCKLqYuK3noXVc/dLUWtD59X/XOgV3ycK48s6vfTZ3S+vBsiK/iW7lvcVRR1eFMZ\nBwA9FoDPIzjQ/YZtRR53tkAnpMc2u6wzoXFYvb1wzARhR28W1RfXv61IbHekaObCo4o6Rk+rjo0R\nDPgezr43OINvitwmiKpWiTQH4AUalZTJqxb1/u/85m/bcco/+0V9b1RVRNeH+tFom6w2nAkXU/Q1\n2vQNU59Fp+HOCSlMueFaNzOzGOzqR/ARXT3Q+3YKVvxpOGQK+l3kpvppfqB+OztCpWgIhwCRdH+E\nzPOKoqW7KDyUQBBtVVXfaZ/Ohrb3ZHNemL1Pc8a0cPu6/fKf/m/2O7+jQKcvoe9Ve0IPuFJkIgay\nvUBLGYLNbdRb+mSkJ/JVUdUze0btG3eFUjhwyZYC0/r9kHPUW6+pPvmAUBTJllAZmabsofmcYrkB\n2h+4C4TSWHwr/WVFmz3Tus6mS//3iH4PD8l69TX34vABtMhWuXy6/r/5xV+39yr/8V/9nP4AZXOD\n7Mi9kXvNzOyz08p4Lc/JRzXhKBg3UEW7tm5mZusXP2JmZh+pCNmyv4ZaUVnIj15YiJFm6oNmZpaq\n62xqoC8UWfU+qSO1cvILe38prqjeCV3/4fuFOvgG6ILpPY3dVFxjeoVzyc/cVmR/KwY/0TVxs8Tq\n+v9KR4Hs7WeEyJkli97fV19ebMuPfBWUWQIU1QfnnlU3/bX85c1FoS6Gt4SM8T3Deeiivhe6qfql\np+UL1pqfMDOz1QP5v//mCY352r7Gbqehs7YzgCTzBaklxUAiFj1f0v07ykDcjGmunL1Hc3Dj2cfV\nPlM/r3BOPgovVOQH1c/f2f+y/fk//b/sf/7X/6eZmX36N/9bO075ld/6l2ZmttuRb+gz9xJx+Y4e\nqJJBA+4FztV73LKXZIwM7Ix8aBouikYJ9BuKQRUUJgYgn5r7+n9+BoUd2P6hnLEEKAafO2Iu1g4/\nY9Yke+MDXbC9qrVj56WXqLs+z2bhtYAnw4VSgbuBP0Phxg8XwKW3tBa18RPzZ+R3ei6N9RLcBgFU\n0tpjteGoIBSZC3RAdkVjHxro+iOQMGMyhyTrzeNWPb0uOErcrD9k9NoTQAv8DQOvbNELavb2ZdlK\nMgPyJKk5XUcZcXlB60K7qExttaKxGMOv9u/+/f9kxym//lu/qfrSnoFP/r+PMpAbxbL8nO7v78q2\n9w9QyIFDK47S0BDlmDbqHq6B6r+UU781aqhHkfENgjron0AdMKnxaLU1t8o+dZR7Psj3UUm5rc//\n47/6P+wX/sd/YTmQLAnWxyH3PQAd12Ddcz+t/tqe01w+MPnp0KF8R6iujHJqT+M3A7wgE5WPKR3I\njo486qfOWZBd53WdQadlo6rGcq6tNSayrv1N+5ruGenrWjPTy2ZmNg0qbASXiLuJGuZECQrEm+eE\n+ji+oD6/uq25scsaGZrSPEukleHNl9TX5W3mfVf/u+CH+KVf/h/sOOWPf+Pfqn5jjdEQ5Ul/eMLj\nJJttwHsUm4nRHt2nCvlLApUlD6nknkdzzA2fXXZ2YtO6bxWURb8NcgR0cgT+o3FL9WmOqQ8Z5T5I\n8+FANpYCgTODQtDBLc2tgRf0Ktxssxflvwtbst2bL2vP4AVhksrqjyEouAjchh4UvxIo5GzBJ7hb\n0xxJnGBfndD4jFe1rg3bIONBinvgNxni/zPLmjNt/PLeTfHkWUv1C5G5R6jTZqbZX6Oe8jP/9J/b\n7/32b5i3r/5q0n/dmurbamlul9k/hDO60HSWegT1+a/+0i/Ze5V/+d//c7UBxaYoKkgZ6p5l3+0B\n4Vf3qS4FsuqHIJU9oBbcPKqVeqggkWwfuNlPgah0NfTah/PR79aYrmR0HzdrWNtQLYInxDvS+2Vs\n2r2HzYBg7oIgvLIl/z+3ojVz4YRstAq/k6c3QeahgsScrTfwWyhnuUEjTVBqoQkisiJjP7wuRPgC\nPEdHJfVPE86xgU+2Nn1Oe4m5c+xhQHTv3ZBf2jpiLUfqLcSeKJZljqIG2MRoQh44Na/KVl0gbPLL\n+C4Q7v4IpyJAj9UH6hdPS3P9Xx/z+ebXf/33zMysChq3uQ8xlKph5+ExDILCfWsLvpY+3KDsQZYf\n0N7oZkF+vQ9/3RgFyWJVv1vJsn621J9unoV/+Z/9W/uDP/hVu/76DdtnD56Yl9/0BGSzp+/TmPfr\nstHBrsYoG9dYVJsocC3JbzTDWjv6zKdiGH9E3Ut7cILxDOmpa8yaDa3dKbhfoyCKF+ZBk6FI2zxQ\nn5+8V/vzTkr1SCT1rHvlDaGD1i9rLAMujfVdjwl9FWzrPr2g2rscVL3W9vW9Pv708LY+b3ZkI+G7\nhPxeRtGq3cRGIqpXdUf+LBagr+Oy+Qpqm73ttuVQivrHyrsGZX7/93//7b8nSJnXXnvNvvzlL9uP\n/MiP2Fe+8hX7yEc+Yvfee6/96q/+qtVqNfN4PPbqq6++jZpxilOc4hSnOMUpTnGKU5ziFKc4xSlO\nccr/txxLfek/Lz/3cz9nn/70p+3P/uzPbHZ21p555hnz+Xz2C7/wC/bTP/3T5nK57Gd/9mctFntv\nFuohZz3LJTK9ddQ4EmT/Mop0e72KWO0Z0UiPIlJzU3eZmdmY6Ob+t3SWuNJUtDDOuXKvDwUEzq6N\nhoq8hTn3XS4qkrd3E3WWSRT2rKKvXrciZGvwoYTgI0kmyC5GOUfJefzZqDLdrq4ifZ1LnFW9CgdN\nQp9ngspmVRuKzJWvK1LYI9IWQXFixDAl0IWvLHB+Ei6HEP3TbCjSt/EKZ9gO9Jqbv2ixjPqsfgQH\nCMz/0aGuXSwpAl1qKPo5d7faloZToHRTkdYO7O+DWUU9wyAa9vcVdfQuqo9nTur3PvqyS+ZzwpFy\n3BIj0t4mYxvoqZ7DKUUf0y1UQ3rr6hOfIu2jseoTQmWpCPInQBal19T1Qqa+nx1qDFNdIuhlZRSb\nRaK/nAtfcMsmegca0y4KMrEZ9dOYLF8DToYWvEJF+Cj5gYoAACAASURBVH3qU5xjjE4OGE5USWSj\npTgqF3llIEJB9XOxDVfLWJmB5FDt75f1/W4AWynQQBQUvGTee5z5H4E+qA3goABBMybz0kOZYQzn\nS7+u/71j2W6p+IqZmRH0tdiCUGSBsNq3M1B/JLO6viuDOsxQNj1e0HgMUXDoFMjUhNRfXTLmgdbx\nz/lHxsqU/Y0JUbISUGNevKlI+dNN9WXdg8oSSi3RfdVpsyXU0pDswWt+Mdc3CnAS/Lgycne9pPc3\nSkLSLJBJKJXUpssRjcVd+yDf5jQHXGR3Sp/VfP/hj3PeOS4kzfMend29b/S3Zmb26rbmcewpzgkf\ngv56EK4q+nKl9oSZmW2/KNTE2dO6frgpP+IfCdFz4jRndZ/7r8zM7NtPiLRmfkt+pJx+0czM3Lq9\nDRbupf2goRaEXgie0Nz60Sn5iD8vPGlmZp/c/4aZmeEOrd3T2G+aMpyLfqHvvtsBXRdWf3Sjss1N\nFGe+ry1fcT37A2Zm1n9UyKNbXWXAT6OeN3dZv9utyaaPW0ZLqtcDHxLqa+MG4/8t+cmZjuZMnwyz\nO4KyzsRnwJOSQPGtPDnPDuJyNq8MTXIaRQXm6HiZ/vfAveDW+A5AiY1BHx52+9bdR2nEz1q3j8JK\nGo4QP2f9L8oPxSdKBfhJd4RsO1kpN5naQAvkXEx+5sMf/bCZmbVimmce+B8aZDyj8E0E+pqnLo/+\nz+Nfi2SFRmXdv9QB1ZXU2ubpaeyDXo1t2wW3Fm33oJpRR50jg/qTx6X6dkDNxsgkL8+qT4M5kEND\nkDhx/AZ+109WbTwgU+j9nqez/9Hih1utjepdp676Rkhd5mJql7eh+xyCgAmC5vCAmu2H4XphTzNG\nbSWZl03UfPpdFeRNAARhx6frAA6whlfjUUyynoTgjsloPCYosjiKYWZmfU/ZrKL79FAt7JW71BNU\n7WnNhSr1a8A9EJ2Rr+zCG2gx1gN48qK0v4ZSUJ32J+/S+2t51LjI/BezLZt3a0xdrIGdPVACCfmr\nfBqUawfOP9BOAdOrBzWNHsoiE547H4Czm1vyD+sNzePI3RqrUF7zK1SaZDplEyF4LNwoW7nHQ7uT\nUkVZMgAPSKWp648OmSsD1mqQ3jHW8GAWLoK++qrT0X2nF1gDg+Iac/vhIwFF4IeXY7hV4XqoErW1\n7jQC1D+usaq2JygFvfrhI8mEdb1kmv6B52M6pPWnxvp3VNUYrm1IZaVb0fslv+Z+hHZ7x6pnBr6P\nYY96gXQ3fFUCm08uKMMciaAq1SPjja8q72mPGQRe5wlpjjVDGrcDuCDDIIMWz+u+Xpd8TrUknxnv\nqb0zi2pXyN7hzUi5pm0UUHsQF7Te/8vemwVJkmXnecfdI9xjXzNyr6ysvau6e3qmZ7oxMwCIHRiA\nACjKTDLTG03veBEpoySK2CFRJpOZTC+SyUwG44MeJJNAiCIhYuFg4QymMTON6X2rrqqszMo1MmPf\nI9xDD//n3RwRmMkyk1QP9PMSmRHu1+8999xzr9/z3//Aq5LCN5H4xpZzjYkFaLiU8+kY+36yBnIj\nC3J8Pgd5x1p/71hz25hsbnWygEZwnHgQbiwrjAEQLLkK/EJ19X2PsdLskaVvT7Z58ZHG5ypon5Wi\nbCxGIzXq+n/jllBrvQ4Il4HK9a6pvkNQA4/mes5WSe0Jmcsf3ddzHFAI124LUVKAw7FN9qCopno0\nanreDAT3qIsNdLGxPTizyJ56cq72fsTphavP6/6bn1PfTkGI9o5lsyHr1DEoq9u3NG+MQ7LM5lif\nj3jnPFM9ioy5/gg+oyXI7wz8nCBVLw60hny8B+8JiPpMjvU4KLLLSsD6v17VmrGySlbYsfSRI4tU\nRNZBB1utk/U2gjuo14Ij6AP4SPGdV8tCq6ya6l9paI2yBEl1crj3SV0+eGfP9jtPbHNVfDmb14S+\nCciKFPX0rDRZhB4/4B2rAboIbpnJhWyw9Vjr0P1zrdM6vvxeFT9UKqkvN2/oM5eR7VwcaGzcrKiN\nPWNOGehzOlV5R3D8OU0QN6fq+zPedadZ2dwqNpCdwlk41vXvfvtrag8vhSHzyv5DjfP1qxrD9aua\nRxpp+PUYq2ecXIkzCj8BeT+7L7RT7Yp0n1sHMVPU+jUKvve2y6U3ZX7pl37pk79/+7d/+9/4/Stf\n+Yp95StfuWxxiSSSSCKJJJJIIokkkkgiiSSSSCL/VstTI2X+35QJmRIigll+Q3/kYFkfENHoP9DO\nWIuzbtuvCiGz85J2/ZoX2vLuPmKnnHOWBrqhCqt7akfbtx6RzQ48ONG+dtgqFe2EXbmuCLbnatfy\njF3nWYdo2TXteLmQsR/AXr8JaXE1p520yQN2sd8RAmc0127yvc+o3uWcdkcL7MDPZ2SRGbNbfkR0\nirO3CxjNnQgk0MuKrBRAvfTeesPMzKaw4jfWFJnYurlmp+wmeqHKKETS/eGedqRb72vnd/eaold3\nXxWD9rSvnVfn2OVZ0kEBfp6Dx9odDDzt+OevqE2ZERHPgS4ce2T9gbfhsrIg0pqFcT/OpJXn/HMw\nU99U2XEuBtoBTzkgd9wxnypnTsQ4GLLril5iXNfONlGqrvQyoP4llzPBGbXzjCxPw56uz4BeOoD1\n3e0TESWjQROOhRns9BdkF/JzoJ0cfXaOyWpCZHpEBolWR9EihyiZD4N31JTNljw9P+gQ2S3LNoJI\ntnjQ5YzyI9ngkkjLhJ33gh5rc/RYzWkMpQtwAsEOvzygPxijOZAw3RnZUahf+4JMQqA6ZmX9n/dV\n7ghuBA8ugnnE2KRdHvZ0GfnDHZ0p/WmiTK9FMO7/hD47B+K5aUd/08zMnusK+fL7u+KQKXT+pZmZ\n/cIBdWtLp3/4Jc53/zHj+RW15c43pZM/IYLwpY9lPdcfaSf+8X3p6NVt2dgfvihenv5nhUj5i99X\n+Te/oHK2WrLhzYfyC15bYyr7hpAwJydkC3Jkg05FttKK/omZmf1k7d/Vc4u/Y2ZmZ1n5x6/AGv/o\nsRCEr50pYphpy3/tckb+4OYvmJnZ2o5QUFdb4po53PgpMzP7+oHQFz+ALfsdcdLcqsmm/9kruv9L\n3xEXzGszteNv3xOHTCuliMErJenh0T9X5OLzLymzwQx+qkdpRVZK31Y9n5vJJ93/liIsxauql1tW\nu17e1Bi7rNz5onjO/oMdBQ/GfP/ff+t/NjOzzp9rbGQfqr3DkZ4TZNTOPmO7ua9IyByUSKMELwqR\nJIeMa2l8hZfFB46JqA9BmXiMadBr5VzV5nl4xFyNrx4ZCZt74slItYn+kPHPzekz70FQw7nqJWhQ\nW4D2mQGFA83Z40izM1N5TTJO+TPO9of6HJY4X96Qza41dGNjobYN+5zJf09Rpjpn3wcg5prwdgT4\n4SGIjgBIXAGkyBSkCcF1m6DDWRtEYaByZh353ZGn9uT1eJu1yFZBFL+0VPun+NHLSocz9jHXTh5O\nmADETkjmhekEPxqSjQh0rEf9x6CpeiBGvJtqXwCytNOW7aZIWjmF+yeNI84QuR31QRRdAW27Dv8I\n2e1GcADV0tuftGGSd20CgsovsfZxYo4Ize9D5uES+qvF2Zk6XJ/V85Zz1TcFd9FkRJYoMgWlyBaY\njdcFFyAjC/KZJSdnYZ97sftyQWWvOlzjqszjMxDCRdnGpAzvENHvKJByp6zrWmOtCw/HWl+twDmQ\nvgbHSkrlxTx2Wfxn0ZH/yaXIaDV9uuxLhk0sl3pOrUSk2AGt4Mv2AubQMrrJOswvZdnEgoxcx33p\nw4+05nBOWWsF2BZZq+Z96bYHwi7mXTOWVPHaKMPaKFtlDgWFGsI91j6W321TnxQ+YjCUjYwY01k4\nEcIVPWCjAXI9VP0y45irBtsFjVCivfEUfkEEO8IfnkasBck+uplXfyzLoEVACPWwvRXW870BPmSg\n8nr4sgJriQn6LMQR+wNdNyJjpf3CT1urdWZlOG8qcPcsGaMhaGmPjGNOBi4gkvwF8O1dRk5Aevhw\nfrjMAT78GmeP1Le1VekwKqtvopSesfui0ANenXcZuFiGfZDjrB+zuPUU674+mf+CNdBnZIR1toja\n+9JVfVf+antH/vygJ5sYgYhZMvftPZLuumQnmuNHuu+qb2YgeK59UYjpAvOQC2RkWQChmWY+gfvG\nhVMsZD086MqP+byXlK+rvoUsaDCms/JtOGxc6bH1UPVKR7qg3NA7T5HMiHl4k9JwySzJOlvhc4if\nHnDKwOP5K5ySIHmg9fn9DGT66Ey2li7CKenFXDlPB5VJgQbJAMcdMZ+04Up78Pg7+j5uP2jb1U21\n5/5jIXf2v67MQE0QkQFjysgE1AN5s3UGhxHIe7/2qU2//KUftjupV80j49Yxc8PDv9C6NQ369Oa6\nnv3iF4SU3oqzDnXxI6CmcpxisDoZ/DDl5VJzzXlT77sfvyc/XQNZfNZVW0qvCtGcJctRH7TQvReE\nbL/1EjyjS9X3zz+ULvoT5qwALrGq6n3lpmwjy5rjDgjHW9S/eUqGrob83XOf0/vB+2dax5+D6G4/\nAGXUISOvrzn1JlwzpReFMNpgP6B5AR8oiJpJ63tnhHS/56+JJJJIIokkkkgiiSSSSCKJJJJIIon8\nfyLPFCkzHyriOGG3NMt5ZtdRZLR5rIh282PtvJUb2nm7d007Ui2yDA2fENmE82U+0G5hg/JaJe14\nrxB58VfjM7HaeZsE2qEr7mrHrETmgo/va/f49E1FZLycnpcqq9wcZ9bWryoyvF3XztjBuXbJ976j\ns3ETuCtufk7ohdKqdrEjsj3NZkRMyfhQIOI6baqcU86BuiBtqi+Ihf4q3DSPDqXHwxPVc/2G2rt2\nZ9fMzEanc5t/qLLi89QjdtwXIEJKsJFffwmEBVmT+uz4p9ipLSzJKvS2ovlduGhuv6IoeIYd/N4j\n7SYuaOOC6ERq+XQmF05ixARn6QmlLolk5spE7sbazZz7Lr9z1n9DEYfoiOiPp/9rPnwdBaI6odqR\nI5rtEz1quLKN7qlsymO32G8SqSVYFfbU9yHRsh6cCYsj1Wc6UX28umzbJzIZcl57NCdyGhFJIBJc\niGSL+SkRTCLYLqz4Kdj450Oidafqt/BEu9lVMkt4VuM6IhKB7vcJs7UupJ842lfJq35uT+1O99Xu\nqEIUMN7P9dTO7ogoH6ziMXdQYand6iWpZqJT3Z8ZE8mGYiggwnJBOyMiMpeRDEz4f0wWI6cmW/mp\nj7Rj/ZdZ9e3WhpAWgwONnztr4mKpLX/WzMz+9LmvSgeHqttzR+qrVo1sEI9lO1/blF9qjLQzP/0B\ncc04Mz23cvOH9Nxb6ou1ubhtnnxN5fzUq5zTLmrc3j0U0uTxthAtGz3ZxEef+UMzM+tUxGaff4Mz\nvbRnPtBzw2tqxwdvSNd3f0R9c+Cpr6+R5WOS0xgtHUtPXwUZ1K/8H2ZmlntHvz+Qe7V6Sdwz7qt/\nQ9dBXfCtb+r5Bc7yr55Jr/WuLvj8PfXH3keysWoon9IZ/IX0FBEZvS+/+EeHr5qZ2WdXxNXzXKjf\n50/kZ0/GsvH1vso9vCvfkinpHPVl5f2/FGLqH5vOEqdMY+7BB//UzMwqp5oflqYxWA3IioTvyxc4\nj17WPGFkeqtO4a6Yq7878KT0U3EkV5cvC+qXAB4XH76r8RR0ynhm3SO1rR9Kl7UyvA8rsr1qkSg1\nfBGZsf6fgLhzlrIdP1Rd0yDfZqBSF9sqLxqC9AOJ54JsWRLlnk9UfjFOZXJE5rJVNSZLVoyoLRta\nAeEzJcpdoH5Z2jpjjBYK8mvVAbqAT6fbVX3m1KeYUp936AsXvzSCC8xHt7kGHC6EUqGkMZ8sVKM2\n0bpLiot/H5MVysjs40xiSI7L80BpEe2PamQZWUjfc1N7xtvwVYCKurD4f92ffQLSJC/f4RHlby30\nPAdOl1SFrCoZoSXaW8yroWxuud//pA1+dW42UTlj9FDwNI84aa2RwgH2Qj/tLjUfPiHb4IiwZhy9\nJImLjboxJxBZTOpwZUAjUpiRFctX/1WPx+b2VZZ7rnFSJ4KZSeuao0MybpXx+aBGJxXpcBrR52Q+\nGYBYO+jKf+aJ9qZegQ9uRd93uppc8nX5qep5zL0im5uxhpjPR/Y0UmKNUYoJ0OBEqcdB5yVzrg+q\n4Ux9E5EVKTdlLoQvpD/CZkK1l8CwTUHo5Vdk4+uhdJ4j9U6bTDvDGWgyEOFpR+VGcLy4Q9YYcNiE\nn8zNOcqXnx0SPV9fk74yII+WOMBP1IQxjGay5R4IE9dDr1MQ3fAA5uagvFhTrVbVjx7cN4MFfEkg\neVzQWnnWoEt4QIq+PidkCvLgjgk/WaupA6YgeQZw1HTbn0amnXHbTlvyZbmS2pkDDbxMw3lRjtuh\newY9GXfHvneE+1+XVFE6K5FRcTEgcx/IivUrZF58btfMzE7h9piAdFkvMtfAORNhI+1jjZUj1uUB\n68gaSJBMTeNvsiLbWctI14u0dDKG5/LbXwO1+1XpPg+KKUiV0IHm4EJG9c2vw2GyDnfh8+h6GM9T\nzKX3hS4egbx8+UeFaqjfkH/pHGrtsHchFGy6p3a5ZK3zN2VzWfxOHyT39udVn/Xr+gxZLxZAqeYr\n8inTUz33vW+8JT1EGnNXyGhbA/01wc9n4LUDhGfZLfmoNGuZwSF+dqi1Sq6oNU3heY3B0rr6cQlq\n2EC9XVa6j1TuIKPPFJmAC/CQTI71uQ2X2kZNa9edF7VICwP1e/6m+vcCTszcKihDEDgPvy29P/lA\nev/Wt7VmXLl69ZO6fG3vDQsc3xZkSfOr6ushJ1QyG2rrMP3dmRT7Lemoc6z7vvV1reMKlJ3ZVh2v\nbsCDd03rp+KRdN95X33UPGXtA1fM2WOtUx/dFyfhqC9bdO7iJwqcJCETYgBKf9RTvT5ua136Gtnu\n7pxqvI/gusn31K593n3mZLbiMXbQAtl3KL84Skm3W7d1kqa0qr4IOEXQisgy977W8Q8ek6myFZ9w\nAdJYJPPsXyMJUiaRRBJJJJFEEkkkkUQSSSSRRBJJ5BnIM0XK5Mvaedv6jKJFHkzT++8rAnp+ph2u\nQkW7fhvP6dxiSHaM/iEcBGQECK5o5+3xB3tmZjYmQtOHY6L3be3oNzbYheT8+PZt7eSVd8T+HO2B\nNugqAlGvc+59QvYjUBBlyllZ1w7cnAjCxbuqd3w+v7q7q3Kq2v292FO5Z7A1r+aFnCmWtDNZSKve\np32d5xw39bzVm0QZyahz+K6QOO++Ji6I8q52WTfJn16sa3d4aW0rvqzvTt7TDvvBoaL9GbJWbN0W\n2mdGBpmDD8hyRICwAvN0j2wN45F2dht3tFuYI9uOkXO+f0L2iop0l2XHOg3C47ISZ6VYLohOOdJp\niopFRHuswrljvncaRGOyZP3gvPWsKh0ufXh4xiPKJQMCURoHtvwAG7GU+m5CdKaQUp/PQHR0DrVL\nGlZBzJDFIz5zmhtK/y5RnhWyk42GKpdjl+aG0k8jS2RlonZlBkTGa/o+O1F0azTnXDzn5msF9XmG\nzBIhGSfic9O5pfSY5veJR5ToCATMBhFVNvw7RDIMbp18nEkDjp4+4aQIfoBcKH0tJkRWSpypJrK8\n4Kyyy7n3NGw+i1BjOD9U/TzOIF9GbvwLjZO8c1tVTcs2+y+rjtfW5U/Ke0JsePAJNe7L5n/3ntIO\n/a331NZ/MtRO+Py2ds7rdTH9v3ukMfHlHdn6B01d/+Gbes71TdV5pQOH1Bvidrm4pwjBSxtEMPe0\ngx5uCoHy3j5cBI9AdX1ROrn6u/p+4xeFgPv4W4oGRaAiXvpZ9ZUd6frboLxqv68oUfelXZXvymY+\nrqu8mz3paXpD7Stf/Wn9v0LU7M9k2xc3hGD5mX8h/5P7jGzxD35Oz9/5Pfmv9VNFPpx70u8uyL53\nv/xlXfe/Kir3xs8qSr/yofyjl5X+v3hF9X/9XO1788c0Fn8CLp2NV6WXb7mKktW/7Zn9HTP3j58u\ns05+qHnktf/pfzMzszjAXH0ddAZnk20JjwhZS6YpbJrz+Tu3NE+kyTg33pMeQviqYsRMwHy2gN0/\n9mUBaJfhWGOkWNNndlqxMeil6FRRogl8Ccuhxucsxf+Ml1Q8jjinXSC6FYHYWKYYhxcqN6b02rqh\nOWdJ1Pr8SLZgTfWdB/fAgsjqiIwyLfjdvNdBFS3IkuSD+KB+EZwwbc76xxwy5sG1AndBHlREiVCl\nE0rHA6JecdTf4HLJEbFNj2QzAX5iSQaaNNkBRyCFZs7TcZjF0Xq/AJoBxMyEDD0xp1elrChaiD9c\ngFi0nObXcRGEDxlqlmR8mU/ICDnCH3pkTpwRsZ2Q4SUHtw0cPT68J85C9Styfr9Eljq386m/TF2s\nmB/JHhz4RyYzOIPopxwor3CqzyCr69bzZPvqwgMyA/4B75HfifsNfpYpWUdA5KRBtc3hnlmmT8yZ\nkU3TIePjHIRYW/dkQFE6abiXQEYsfdUtihnfQBv1+3Fb4qiy5p7+VDbcaZLphWwbqQl8DUR4y9hc\nRF9kM5+ijC4loLw8eJIq8PKNqFecVc4jjU9mRkY1gEBRV33s1MjiCW/UJhwmDrxQE6CJaVBa/SFc\nKqAlsjX5gIrHmgzkSZRhTQFq+Yj1Y4VMmiuhys/DRzUZyDd0T0Elw/s2PAYRCQdDEZT0gEw+Rfox\nJNPlABQZyZUsc67yimQNTZNFaniidvVZe02mZAZjDI/P4Zjw4MciA6SHD6g3yFrHWOnB8bO1JZ/W\nn8Trd3g0QDOYmb16dceOxurvIZHy2THz3kL6HdDOMr50AaIylb18DHvlJusZ1s1HMSeiSXeVtWuU\nGWf60/UboKLmE/XdtK86ZbJxhi7V5eqG5sKFj63Fy1ROE6xjS17AujfmnLmQrk8f6obalsrd3RRK\ndgBfT1RUfdMbZLPLaOwEK8wnA3Vy54lscwDfZdiRLWTIUDMGabn/zh71lM6LrMcnZfVdAS6wZZWM\naEAeS7xvMPVbCMLw8InQCCNsLFPR8y/O4kxrakcDpPzGmtYW7bbWXmkyKdafE5qjT4bMmAfpLNKa\ncmFwVIKSMGy4BuI0ntsHY7V7Onq67LLLssbQ9grI9HW1z2PMhGvqH5/5/GvfFP/h6A9+X5896f9z\nXxav4gSEYnggTp4O2Zk8kJhrBa3V7lW09rxC5iMzs0r1po1aXXNW9OziqtZzlQ2ti9Z4x/NAcu+9\nLsRx+4F0VCZD4vUvCKG+87I4YZpwEp58qDp88y3q/gQkMWuRl39cnH+FYNfMzDLMfXmf7G0gHsvw\nm/35v9L775w1y8NDld94UdlDX3lVnIwxGjjlat2/39J1NfiK6mSouv7Cj5iZ2dkp/DxwoPnxujin\nOa+xo/q5IAiP4c4pgzZL8Y6VZXlahANtQda4We9782UmSJlEEkkkkUQSSSSRRBJJJJFEEkkkkWcg\nzxQpswBcEea0WzpjR3xODvndOtmJ2AH32Zl6cqAo4sm7CnVuX13lU7vPbpUdfFiY05xxHffJI85O\n2YLz6pmi0B4hZ2T7MIHX2SGcbwmV4Cy0y9qCCOOcDA+zE6KM7FanK9rZa/yg6p+FhX9KZGDW1fX5\nkHPf7ML6Y0WG4rPWJZ/I7ZZ2JosN1SMc6veHb79FOdqB2yrBWA7q4+x96clLFW3tptqY3VGZwcfa\nkc+CIlrk0S3nsMMe545dXdf1FA3KF1Tnmz8gNEFmlUjcgCxBnM+bwX/jO4rmR6HaOMs/3ZlLHyRP\nyJnVEYHTZTbmSiD7yFSfPYddXrILnXbJdlGMOVRUzum5Cur1iYj6nNsmAtgznb0cnHOGnkiBXyUa\nQwav00NFVUK4bjJEPiJY3ycd6a0xJ7JBpDUXct6bKFEEvXqRzAQRWUvmII4CIsOTkr7POfAQLeEa\nSEv/9S21I1OF64Xznpkp3Dbs9Gc5kxtNSjyfc9wz3b8g8jnsK2q1UZXdRKb6DVsgkkDu5OCsOAFJ\ntOC8e6ZGNiXsKeaKKRalT8eVExhw/TKCS+cpEmIMv6i+oup2TKaw8FAImXpDffPWgaIfP9FVlGW8\n/PfMzOynMkJyHN/9STMzu/Z13bfdEZfL4EQ6v+O8bWZmqQMhJbZekB95Z6y278PT4935nMqvKCKw\n/lVlR9rf1P9uVeP0iaMIwt0lmdHgW3owUATgnW1FGnbOVN/g35ENvHwu3X87q+xGO4fS5cMhvFC/\nqKxJvd/Rmdrc69JtCZ6gxvKPzMzsxYUiGm9+Tn7i8XtC9PxgoHYW9slwtqmzvu81dP3LhOXqP6W+\nnFf+1MzM3nhN0bYn13S2+JW35SNOfl623fx9cfeEnrhdOimN0WhLyKLtA133/FdV7vJHZXNbGXHy\n3P2O9PzaHUVwXrunfrisrKcULZt3NSbGcWaZHCgHUGUe6LgZ/eqAcMwaWZiI/By+Lf2m+8wXrtBw\neaJaC7gO5nnQDWSqGHbVT5220IoHH8p/V8trFrlkJQrgpUgxh7n6dPh/kSb7j6uIowuny2CoZ54x\nnnyAFwUQcScTMgb0NZf4RDJb++qzNFnyNuibPFnWstVtytV4fdhkLCw1Xlfy+n3koVPC5XXT/+Ns\njLjRHDp4IL8yRqdXQZP28ENdMs34DZ/2ku6vSyaaBVnbPNUzBTfKkMjmlKi6412eB8LMzOBymOBf\nl+jD90B6gqAcw0OXmpIRBrqSRURWjhnprcqa0yfG90ONYReuH2fM/IEeFsxjMY/HCsjKcyLM9T42\n7JDZC76O6vDTrB8Ft2gGT9FsoN8DR/0RgXjKgRoZmGy3s082DiLybobsLSnaDbojtwQBkCWTUJ/I\nLMjJFOiOzFz9GITbliFzVgDa55w5IsO6bAoCwZ9TpsW6131LOEum5+rbJSisMusev4dtvUf0uwby\nIkUWnp78SBYkyRIenjmDI3q6BF1WC8giRYYUt0nWoXN0XVRENoQPLri2q+fSl+MiKCiy7A0eoTtH\nNl0qq7xhBVTqJu2E8yTVEW9HekFGH5DVXjbOX3SN0AAAIABJREFUTKm1RslR+0sZjdkMyKDJXM8Z\nfwRHA6iwNXxOpiTbnh5L/+munhOwZiqDsJnV4IohG+DViua12H/272se8y+k9zpIcxfeKy+tdl0H\nYen6qudxSpHqK/D9TZiHMi14N0DvNWPuRWMt4cWZcEz6+0i+LvZFZmbBxydWHcoHpfAdC9BxmaH0\nUluA7Pkkm6r0dhCT/VxCPLIPTepEzwey6XmdrHKu1gpnR/AfDeEumenZ7Y6+b6ywHoKTqwQ41iHL\nT6EsnT2Ck6bgsB7Lw9HXlq7PL0Awkh6uviuExN07cK3skC30Pfg9yIa3usn7QoUMlHD+TY60rp3B\n8dWHz7MIh83Kpupx9q5OM/RA8W68oOel4LgyEJnzvMotkn0zBbq372ksFEDq9XnPGJE1NZNXvdwe\n6+SUbOPWS0LA5Fe1RpiSa3EZaAzV4dkr8a54fCZbmV2oXVPeHUsV2c7YhQ8KPXhkCl4M5N8H8Ja4\n06fDORR4V8ziqy7wIfMD8ZlOmMdurqq/X9wVR0/2B4RCHsU8UJ7q2TyBm41shG04iVJZuOBAxu5c\ngasyHeedNfPdhTWubdg4RlWBesox9TbJpNpggBV2tV4sO6rD5k6OZ4JghO+oBbdhDmTgnQmZeeH2\nytKHQ1BRT+AjXWVOXNL3+SLv9YFs8vod5ua6+noD1K4HZ1eM4h3PpROfzI83XpTuNsieN4nUrshV\nu/rUs5rX81by8k+n+NvjJ3BVkRF3BlKxtqL3fb8Awof9hVyGMYQij+17I7wTpEwiiSSSSCKJJJJI\nIokkkkgiiSSSyDOQZ4qUCTizNSCDj0OE0S9oByoosvOUZdd5pN0/lzNZGXa4H7+tSG//RLuoa3DE\npGpk/8jqs6fbbfBYz4vgqhkcaGfu6G1FIBZkwFm5KnRJjTNsy5J2eW9nteN1PlZ9W4+08x49vqBc\n7UIWVhQ5KAZqTys+jx6oXb1szPKunbaHH6icHMih1YbqnYWzJs05zJMH2qkbnqu9qxV2nweqZ+tt\nlTehfqPeY5vvatezvKMI2OpdRdwKnN8+QTm5EH4L+Hi6He0ixjvoK9uKsFY5E1txYIUfqi1x1GvE\neWb3RG3y48jvhKj0JWWeUx+lZpwzJ2IcwT0wJmo2WHB+HLjSJNIOdJOsQClyyYegllocI59AslAn\nU9cQDprBBWf+iVC6IF/mcBicRkTDOANbiDNHlDkLCmP/lAxhhaKeGxIZjbMr5UPZ8AKE0jKX+a72\nh+jXy3Fmn2xUI6KPMQdCmOMcdUERhFYWRFJJDV2Q/SnLWVVvyfn1vmxpMeOc+1iRl05P5USRrptz\nfn9ORoReRva0kYFrAU6ICO6ZORH8MhkjBjPOGC9lD/m89G1j6SFGyflEuqNpaJeVYVs78lMy1XRD\nRbi+tCJkzB8ff0Z1raku5xX5i3ef/2MzM3vhd3GDX5AfePFHNa6WFxq/jwZvmJlZP68zrz884yzr\nQ/VJfltZmzKmNj4hcrByCFP+z6nNH36s+2ecnX/lbX1/8sMg5F6Xzj9/qp3/P/TVd8W3hOB5+8d0\nhvcF0AQvfVPIlPxItvDm5xR5/b8+ULvmPy9b+9vv6PrmF9TOR3+i7FCBJ32l/09d9zfxuyNQFdF9\nlfsOUfImKI6+o+jTR1fV/o2WfMpWW3o7uKPyV+8LkfO7H4uT585Liv40l18wM7NaTvo+w3dc/bKe\n15wLQTInW8tD+JVeXFVk5kvr6t9XtoBaXlL2HykC++hA0TuDb6Uy03NCuBTiDDhzsocUU2Q5gcvh\nfe4ffCiE1p0t9UN6g7EKWiTEF2UGKu9sSkSGjBL3QYsYaIPommPjFoz9jOfr+P5FGsQM3FOpEVEe\nOFMm8E4cPtozM7PRKdGbvOaGwZqiPWmy//T25Q/OTmXLDsjGO6BNJ0TLI1fzwmFbv0/HstEp2Tyy\n6MqyIPfIvjQL4ygSfCERGQqeaExePBL669418cSdnwmpc/QYBAzns+tZ9XWqJBtwq2Tdw/8vI9YM\noEP9KtEy/Ops9mmU/DKS6ROdW4HvZM5aJAKtgI8JyMwwJUKZZcykXfg4QA6mxhrrlZF8wxJ+lTTo\nDAdkSqbD/AJXTW6q6+cgL20GkuVEfnL5iY3p+YHz6bxR7lZtPIO/KObqIcMNCTOskKJf4PULQFb1\nQAQVmKcjR346ReZJF2RlaqHn+fH8BefbKKPyNuHlWKR8G4eyuSUZH/NwNhUyICeoepwhLM24GYMO\ndbJEf8mcWISXyNLoCH8YpNU3xVPN9SP8cBGEynIk/x/A/TeL+enyl59rzMzGoIC2QB6WtkBWsC5M\nk2VtBt9QNIv5oEDegZbIU48yKIbCE+qR05hPkTklXwS1RHqnixguPFRfZbDJJlxWPn1eApk0YA2R\nBdldMRAirI0mBTgbWJd6cFylWQssQvmAYCH/N4S/KlvR2LS6+jdfUt+n8avjkvRfRf8u6+CgpefO\nG3peEMjGohUi1czn2SxjC7SZA19RGQRjFc6Xs6I+XeaJBojTyY58S66jecbMzDltGyAzq4MOKeFj\nLPZ5ZNOL4GsZkcXKf5oQNlkuZ32VWUjBJ4F/WF6oEicgmUdd2ZQbyC830VFxS3045Z1kAeKuWGQ9\nCOqoxLq0SoayEUi+8BD+OlBoJbIcTUFtnsKv03oA6gnkdr4CDxoZApecDuifklWUOdvP6jkA/8wh\n+1PrCQidQ7WnfJX1Oe8F0LRZtQJXDn2XBnnZg0sxTRYmYz3Y72nOBIRqGbK6Lsg85pJ9KfD1vQtP\nULsL0pDMN1PeGy72NZfnBmpXytX3WbIExu8TFqhdK/jrqUsGoD4oPzgineV3r9+/nwx6ehedwE81\njrm/uiDg4aM6A6UxdPX/FdAYPpmGjzPMe3N4otBnNtI63QEVfM57Xu9c8+1wAmLp3zebP76wi0Zg\nC7hQ02QxW+AfI/jaDsmW3CBT16DEOxE2/fH9PTMzK1SwvTZrF8Z3Gt7KdKRyOqA9h4/EV7fsqc5V\n3t+L9PH5O9LVIqs2DIfyJ/lizMVKPeCKmoz0/LPH8h+5MqcG6urDHv7kjHLOyIA1c+RXN+pwhzF2\nPNCzHhlpM3CBeWkyL5L1Kc/+RNOFM4sszz7+b9z/3pllE6RMIokkkkgiiSSSSCKJJJJIIokkksgz\nkGeKlAnZiYt6ZLzh7KYLO/yCM8dxNM5lB28K6mDtptAeJ4/Jdz4nykiu+NKIrEmgHDxfu4ipq9rR\nXyO6NiU6n2lpR20Ee/KE83lNonx1IssjeEmKXGehdlXPAs48E7G4uNAO/TjQfRmiWy7nOtNEYL2s\n6rOyqfLmREsn8HekQGtMCJA4nM2t5eGcyUgfzXNFIR2QRTX0aeHATg9U5rgL10td0ZcZCBF/zk61\nT/SpFGeP0PcRwAaX8+BzIqa9CWzpNfVRFlb2zBzukQnnljnzn/a/9y7h/1M8MieERGaXGTIcWLyb\ny84/kYQCO8gO0ZJUmsheTn3kc/6vSMQ4S9ojj2jQoA/ih76OKMclQj2I01EVOD/OufRxLs5OBAu7\ny1lOzhWmQeAsiJxaoPvj7CLTIjvsfE48ztuDkJnCJeHFbOogYWYL3Z9h535IJNn1FKGYM2YcIioR\n0bkJyKOQ7Ci5OVFKsqSUONPrLeMMEERESVnjFkBTFNQfnqf6eCVdFwR59Kj/PfTgL2QnIdlRorTG\nVqzfBfT3E5A7l5HRh6rz7duy3VZN3C2plvzDz1R2zczsflFIkzLnhstviSNlJa1oydtkNZt8QwiX\nq2Rv+NyabOIPeqr7V78kG7j6J4qO3M3Ixi5EMWK/+PPKhvZ++4fV5v9FOrgHz1FrrB35/M8RTXpT\nkYPbX5a/+NqhdPBjfSFLjHO/v/BHd9Terb80M7MKWUb++T0hem6fiZvlzfDHzczsR74hG/qTmjhZ\nRr+j+//WnT8wM7PB7ldUPmfvJ4M9MzN7cqL23f4htbvxWM8ZB0KGFK5rTNz6Z9LT7/202O6fq3xd\n9QKJdP4VcemEbeljSpT95r5s7d1QKI1lT9wzb0WKnJ5dfdPMzHLbMorx/GfMzOxRWv3nNjVWf2/w\nLXsayXJefWtVEffpAl4lCEFSJfVvBV6qOILscfY4U9T3tyuMqReFGNq+Iv/dgb+qOZMPqMRnhznn\nnkrDEQEi4N5VoqdwGKw2qnYC8sUlC04q9r9wMo0JSZapg4HKrIOKnKyqTQ38XDobn5vW73P4FbKE\nixs5Ofa0LxtyytQR/rMROioSMVwW1IfroM5czmn356ADiKhmc9IJlGQWDNWObTIlbrwsm6nUxH+R\nJovGCsjDBdmHAiK+g3EcigUNwLn20QL/NJAfGcM/YnClzYl2X1a8OAIcEKlkDbHI0D6QgGk4HdIz\nPTdiTcAxePPg33BLGivOCERhnJ0OlOySLCsp+itifphyjn6G3iP4QaIx6FoQrhGZi5b2adaP6Xzw\naVgfToEIpM8CqEwz5iPpwh9C+zJkhRpntPaxBfMA/tshi+IpmYBSRP69lGzYJxvYaMx8Zy1z+G4B\nb0JAmR3mImcG788oxbPVt6EPb1kPbhNQW11P1+VH/O6r3CL8SFOyBVWo0yCectHRhAyRPs+J+k8X\nm3TxE6fw+MxAqmytyR/MWBMcnGmecUJQSH3NyYsFGXiIxtuW0GnpmurnkEmyD5LncKa+ytGe1Joi\nw+mJ5oUhPEgD+PeWrEsHoIpDYAW5GutWyokqGssd6udkZYN90Fx5gIjVDEgW1koRYy+Cj6MfqT1t\nbLEQo/fW9fsU5My6A4oMmxvCzTOZxhnWyGQZ82dNtKZYX4GPL6sKXVDfaUb6G8LjFKPHWr58l+uS\ngZKMmGZmi8+8YCGcOik4I5ox2A8AljOGA81XeX1cT88uv3YNadOyBY8RCJEF6zAX5JrnkimsAbKN\n7DlXKuLoyhTkL4dN3i0ycMOwvhyCnB6CFjP4M8aOOE4W+MfVMvMJfsXF//h9lTdJgQif6PcMaKj+\nVGNs0lP9x6DzsyBCfOpRua6+aZDVqD9QO32fde6sRPVUn/ZC5VZAzYUg2z2XdS9+y6P+Q3xHGj6h\nQoZTBLzTDeYgAXMxuReo3y5I8iHIcbgzZ4/JaMZ7g0+mxAr6bg60RgtASXmgzQa814wm8vseCJsq\nXFsxovOyEnOHZSfwo/DONiWD2EpBz506ZL0CKdS5f0QBvF+lNUZd1hpeLs4gKb33QNIE2Iuf0tjJ\nsNYxM1up5Sztp23CO1qUg6dsGvOExnMt72Qgvl3WOX0yT22wRvCYGwasAZy5dOY8wZbJUheQDS/L\naYqojj9HNy6cWQNsySUrU8A74fCcky+c7vDjdRf8bPe2mXdS8gNRqHoseVeqkok2M1Z9ZnEGq1T8\nDsNY5nRFAE9mjkxpn77S8i4Gd1k+jP2HdB6EKjef+t7vNglSJpFEEkkkkUQSSSSRRBJJJJFEEknk\nGYizXManAZ/Bwx3HlsulOc7ToScSSeTfBknGRiKJ/NWSjI1EEvk3JRkXiSTyV0syNhJJ5K+WZGz8\n/y9/3dZLgpRJJJFEEkkkkUQSSSSRRBJJJJFEEnkGkmzKJJJIIokkkkgiiSSSSCKJJJJIIok8A0k2\nZRJJJJFEEkkkkUQSSSSRRBJJJJFEnoEkmzKJJJJIIokkkkgiiSSSSCKJJJJIIs9Akk2ZRBJJJJFE\nEkkkkUQSSSSRRBJJJJFnIMmmTCKJJJJIIokkkkgiiSSSSCKJJJLIM5BkUyaRRBJJJJFEEkkkkUQS\nSSSRRBJJ5BlIsimTSCKJJJJIIokkkkgiiSSSSCKJJPIMJPUsH/6bv/6rZmb2K7/2W2ZmtgwnZmaW\nzXn6v6c9o+mgbWZmbiVrZmaL5dLMzJxCwczMSvmKmZmFvsqdj1WOx3Wzgf6fhQszM4v6M/0fjXV/\nOacb0ytmZlYv6/nj7oTnzXVfpPKmru6bR2k9x/R/bqj6LZeOmZn12iOVm9N9hXJG9QyKZmaWyqnc\nlKtuGHeG+n+scqadY5Uz1v2liu5POYGqu6EGFwqqd+BLX/Oe2tdrNfX8hWcTfvOWals5ozosTG2c\nn3b0f1F1z/h1dDIwM7PRPMuzhuhGdUrNpNMBbYjSU92Wlk6dWaRP43rT9f/5r/+mXUZ+/R/9N2rb\ninTtz1T/TEptH43VxqPTJ2ZmVvSli2ylpOvD0MzMZqks9ZXOlz6mj24nS+mh9/jczMyG1jMzs7WG\n9FAuls3MbB74tFP1aB929f3iyMzMCuVVMzPLN/T84UT6Cseq/2Im/QR92YyLnoKi+qPnydaDofr4\nH/z9v6v6z1W//FrVzMxyNdm+l9J983P1U/f0TO1Ws2y5lld5c/X/ZCibnM7VL25ZFwY51Xf1yia/\nq96tPZXrMgYyA8aGr9+dsfQ4Leq6sqf6zX3Z4Ggs/RcG2G4Z/U/VH7MC/XJ2RvtV72xKdvhrv/lf\n2feTX/nlf6h7IpUV5fWsUlZ9NZ6o7WFLNuKtyV+4Oelm0FUfNub6vj9V27KBdNNeqC6NIEvbpMMe\nfRpM1DeTub4vFWlrTbo4eAfbyOv6FH3m+zS2pPIno5aZmU370ll9Q88bLTRmbKR29I70nHwwRQPq\ng3RJfeimVe8IG0876uvekD6Z6bOWrUkvnp43PpYP8MrSQz4lG3QK+Lm0Prs99fVaRvULI40VL1B7\nQtqdG6p+zSOVm1tVu52Mfg+6F2Zmtnes+2vrKr+Uw6ZL6r/ug0Ndn1N7hhNd9w9/5R+YmdlvMH98\nP/m1//E/UbvS6p8cvs+lH8Kp2p0tqvxZac3MzKJ99d+gSz+u6XvPU3/MHLUzt5Q+Ls7UnmpOPmPJ\nvDUeyJ8vMw0zM1upqX09T9eH+8dmyy0zM1ss5R96j/uqUyBbLW2qj5eMr1aoMtOMz8BZNzOzzbKe\nfdZVOUv61gnkHxfbenZO7sqCHP5hJJ0EZf1++pH6aHwi28xF8oeOp75w8Z9eVbYSzClvRb/PxtJN\nm4GdW+WCqWzOy8i284zJ4Siuh2x20JbOhwPpqFGU7tyJxgxTtJUy8oeFtO4/6/HDULb6y7/6X9pl\n5L/4R/I3o6XaU8jumJnZgjm2v9D84HvxfMZ8N5DNYLo2TjOH78uXdObMX2XZfmONebOnfrGJyskU\nsaETzWt+Te3N9PC3zH9zV/1T2ZYtDobzT9rwd//rf2qpicot4WJSq2rPdKh+DALpexTqgoMT6Xd1\nTfbnjTUPzQa6frOseox99YstWcssVO9+R3ZaWpF95phPLlpTSzmy3RnropzDXDWWbe3urPC/2tDd\nV91d5ob6tnS2oLN7+Nl0SW3onKpO4VJ12FnXGGi1HpqZWX6hcnKrO7RJz5lP1baF6b7f+Pv/oV1G\nfuOX/zMzMxvlZcNBVZ+DQLYxcTWnL5oLrtOYyYXyt5OObKESqh4lqdbSzKntjsqZNU7MzCy1yjp0\nh3nihHXjhcrLX2gQ946Y9JmnKmsa+7aqcryi9BqkVV50Jr3bQ41Vz5c+cznVdzKVD7kYqH095qf8\nrp5rNc3Zo+WHZma2nN9Xe7Y0Fovdu2rPI5UzG+q+DPPIwFd5G7vyZUFe83OWZfPwIWuUrmy8Et3U\n82hWt4CPmavdpz7tW8oH1DeZ5/v7Fst/9I//jmVrsvXpSHoZRmpfycP3Rqpn+kKDOc3Qinrq19/6\n5e8/3/y3/93/oGcw/k5Z2w8OpDNzZBuleO7B39QZsBlPfT1PSQcpF8cykq1aoLpMXOluOZIOckW1\nfVHUmFtcSFmDSON03tfYGzt6Tj3FmiFQnyzH+j3Iqj4T6pce8I6S0fe5UM/rzbme9bVbDKmP6h9Q\n3/5Iz1+E0v0yYg7eUN+mTM8PXSl7MFS703Pd76VYU23wrjbQ8wdT/R440kM2UN85CxTvyE/O8Zt5\nX+WP8d/xenzuyOhSC+lrNlX98wFrKN7dHPzlnPV0/A6Z0+Nt4eq+X/2tX7XLyH/69/5jtYP6rt2U\nj7q2rs/zvtamh1+VL2teqL3VTY3d/HPSe+tYY8eGqs+Vu7KX+obGzLStfurRD3aqjwxrUTOzX/97\nv2JHjy7Myurj3Zu61yvqmZOW2jZ09X9hKb+cbkgXwxN0N1Yfp1jDO1XW+Cn5ndRE5UeBPgct+bsF\n7wRbz6vt4wG2o6nIdmr4ddZXp4cHZmbmr8q/5Hk3O92XrnJZ9fH6y2pHaqjfB8ePzcwsaKi8Fd6l\n+ifqxLMz3d8eqe9vPH9FumKeatMHg3P2FU41trfzGksrqyov3rf48Exz+Zw5snpFfuavkwQpk0gi\niSSSSCKJJJJIIokkkkgiiSTyDOSZImWijna8RuyIGbuk8S7njD2jXk67phV2Z8sl7US5Ve2EOxaj\nMUAZeNqxSoHSGLLbG51rl7rd1y51tcTurqvPrLE73dZu4pRonAsEx9PjrBRfF+ozpF5Tn13Xcz13\nNNJ2ZNjX893Mrp7Drm6mrl3KJbvA5UjPmUSKIHQPtRM3Al2SzWoXOlXXbnGWyIbnsIvNjr8tdf10\nqt3n6WhhTlbfuVnpZsSO+aSlXb7zpnYr56CLVrd5xnXtuJfr2o1MEQHsjdVnyzFR+4zatPDUpslM\nv6dn6qsYkeM6RDAvKRl2+HOUY552Y8+7eu6QqNI8kq2UNnRdrqp6t0/VzsxMtjZpqi8mRDwt3jEH\nDTB1ZENFV+UByLHeVM9NpaTj8ByEDDvlxq5wypWec1S33Yt3j1VffxTbCuWXVc9sSX2YJdTqLKjX\njq7LudqVXvMVWVgW9Pt8oHJnkaJE8yY2t6Ho2Tq70d0F4R6i+15Z7a01hIyxSHbg0uC0o/KGkfqx\nZqAWiMAu2kTKc9JruqjoWmld9TxryYaLE12X2tBzC0tdFwVEWtHLmGhmxpN9pEFpXEacrMpuz4nk\nEeE7pg6VnKInT5rqs61Aocmcr2dkB7LdGPExaRNJG+v7CdER57PXzMxsGUcXQFD0QcxFM0V+T+mj\na0S3RiOiQ30ZxXwhHXaJMldj02b4LnKypdUXb5uZWXAhnVy0hRiZgUDpPib6BnJvtaq+XIDwiZE4\njp/nAdgK/iq7Ib0wNOzksdpT38FvFiuUIxuI8Cf731aEogs6bmQaY9dvEJGYKDKQasgW9s4Vkayf\nqZz57JH0EREZ70hv5fRVMzM7RO/lrvT3/juKwNZrIFSIRjn4gMvK1ZvbZma2fke23DlUdOn4PsjH\njCIok0j9/NwN2cnQlR6br6veg3NFXj1P+kiDNluATHKq+jy4UD/Vh7rudCTfUllX//cNZFYovZ+P\nx7ZWV9vWo8+ZmVl+W7pttvXMgzO1efU6c95YNtC8UFvWS0Q8l0xWe7r+AiTE2q7K7xNhPPxIfVO5\nLSP0s4oGXd2+oee3Vc7+G++amdmtGrYxku0UFqqfZxrXQVnzSzonHRPwtMVAtrsAqXkeqD7RTM+v\nbspfLVN6XuaK6rFTV5+9+603zcxs3JatdAdE25gjJyXVo+1h8zzHi9Tey0rYUd/1purT4TX5pfML\n2eQ5iNEbDdW3FqpPpz21b8gYyYBw6Q30/Ect3beRAZqUJ8rP9ZMzoQ2CBWNqIFsvgHhyQF1F+Ljz\nAyn2FNRBunH1kzb0M89bu/WGmZmtBLLtnVmM/gXF4cv/Llc0ZsdV0CMVbLL/kZ7bBknL88d92c0x\niEuHSPsS1Byu1CqA+w77rlXWdlUmCEQflG00Z64aSkezc9BfTdXFn8h/hKC2Ji21ZZQvoptbKncu\nW1i0NK6Wed03+Fi2Ms+qTa0z6ap/pvJc1lMF1hSXFtYMoaf2nHhaV4YbIFzo274nXZfX5U+mU0VI\nx++BPhtpPqqCqrWqlDZ8LL2MGvKz5TtCw2V2u9wnfU3ffE7Pwb+3DqW3YoaJJKu+K1Tkt9Jf1JjL\np6Xn5muKCJ/ely2tRJ8xM7PU+hr11fdHD6XXRwu1d8tkS9Udjblo9kD1yuizeEP6zUxk69Phd6MV\nzMcGA4395U2NoexV+fkyKIRFV/3lnKq+Hv0+GBPxjlhrbOj3PdY6Pq81V9flfythjCg1C9ePzLtC\nxLq2Z2Zmk6ba4aRAr6RkD50/A7XWBbG1XLHLykVXOjtpqW3HZ+obL6W2r62CqE6DgLyi37MpEH8z\n6XreUR922xr3YVd92x/Hc4jq7u+oz9yaovrRRDrqh+rD/rnaFIJwy6xId0abxzM9x/FAxDOeM/jj\noKh6OU6MkFH9iiDqeyabnuEvFocdipfua1mQKlvy5+W61iq9tur1YKz2tUEd+CXp6eq1O2ZmlgN5\nuTjV2uJwyBojUvsKFc1HK1n5qbAv/3TGfNlmDbXH0s3jfcHNSX/VNOvNgNMXa/H6k/JC1etsoPpm\nQHIu8tJzDRSv+bwwXFJ81lhRU+05eUfzSJ5+uOLLr5/O5WP2/0Lz4Gld+v3s7pfNzGz1M/KFxx9q\nnj4EEenESCPWgmXQiA+eyC6v1D6tS8lW7J0np3axp3uXK2r71U0hV6asW5en8j/HIId3C/q9io0c\nUvbhRGuWK3n5vSijPp2B5lrhJSkcqo4HT/TcrZHavFHUeBs+UtvHq7yHm/zlg3f0feBTjy9pzeSB\ngD/n3XAbv7BzTfV4jC7PP2a9e+266kNfTB7pOa9/45tmZjYK5Xef2/5RKWpX9QtASI+a3zIzs/YD\nXbfsyrZd3sMzx7KZ5lh9m2Us/HWSIGUSSSSRRBJJJJFEEkkkkUQSSSSRRJ6BPFOkTDelnaZwpp0k\nB/RGZ0W7r7s3NszM7Aq8GMMhaA8iu50T7XSdfKwduTER6VxW9ze2dF9uRduB0YZ2aZcF7UqWStqJ\ny8xBVZwoItE6hwcEBE+G3dN1U33W7yhC4cJZ0W8Tcb3QztzUV3uiBrveU85DRuzEc547jrROOce4\nmGgXsw8HRv3zcNyATinkVM50znl6zqn2nyhCsUzF59zhKfFjVEZkBaLaIVGALjvNbCjbnLOIEXw6\nIdwwwSLmcCEyy/81uGfCsnRS3ZSOl5wG5S2PAAAgAElEQVTR7HcV7Yn7zOnA4xOqLZeVk56iKWn6\nJFiBZ8j0f47zjyM4B04G2gW9BuJjdqH/9x6ooR5cBm5W+sisq12lsiIM8xHlDUH2EN0r1uCZyBBh\nrMDxEqqcQU/tPZ8T+QW1EIDwCeh7P6sISQoOhyz1XExVv4j/C2Xpqcju7Rw9HsS8KPu63oVrwhZw\nxRBpLy7UzjRngFfhkhhzpjbLmeLBSHbQOiZSAXohiOAlQn8DzqLmHNW/UVf9K1de1POJOvoFPS8/\nUDtCIjEZbHjYIXIx0K77eBTbmXbXHcbi3Lu8a0rTpw5RqPFEO9anF4reTEFbDYeykfFMz/I5e968\nkN8pZNXHrUO1OZ367mhT+FDfr67o++Y5XCk1tdn1OMc9A82wrR396prGxrSlcrZXpbMr8BulVkEE\nEt04Pv7YzMxqcLsMlyDn+urDdY5VB7dB7AFHWBZVLyev5wXwkhi2NDyTXjqHQoRUrsD1cCo/cQY6\nIe3p/m5X/u8EJMv6iiINK4yFIANvE2eBrah6zPAdhZIiCr4Lf0iDeuF0/BnRr4HuC+AIG9OO+rra\nXztQJGYLvo1UEURK+dPz0JeRDIii/rnGaht02SBDFHGq6GH35ANd96cgXVz1b7hU/ZYDDmRj66PY\np3jyDS6R4DSolRb8UalSfIZa/w8z6tcaPDGNjRWbEFE9h08s8lV23gdBF8h2R8wFwZa+r2Ab58fy\nVxlQYRMitqmOdDyH4wkAhS2Ifj/ai7kBZOP5meo068PfNpI/GJQUPfNjTptD2t4hIlyTbsq78hNp\n+C0GA+ZGEH9+Q/VpgiSJejFqQX61BpJjTsSwfQQSM6Z/m9H3edXPhWNgAkjAgbsqBfLzsjIIicq7\nGhvTlsbAAlTsnDnbT+tBkaOxex6fbycIVmQO7jHvTkA0HnFA3k+pvzZWNSYOWvBfnWis5QIQkS39\n31/KFlfSoGs5L58ewcO0tv5JG8JqzS7ekb5xaebU1J4MaN6YV8oHIRqvLY6b+r7/RFG9TdYQgUmf\nZ0PZx4xI+OoLL6l9tLv7WHpwQIDOvC1Lg7xYXKjMdCtGeWluaI1AjoCgaYIUqW7TmVrmWb6o67v4\nDXNinjI9azIGCd1TeYMpdazo+U80JKx5qj4olOEezHzKx3MZCTQEbMnYtLtwKFzV3Dz21L72kPoV\n7pmZ2YzI6dGE65/AfUC0fXtT7c+vqx3VDXiE6NoInjumA3OyatAm/D3Zu3C5sKxPVXT/KA9fCVxj\nBfpyVpF+eiXZVN6H8wc9D0cxekMNLsH5Vd2SPsubek6xAbcPoLSGwXNyDhkEawYP3qMpkNA2a8R8\n+z0zMxukhZSpAOIoNbS2HIBodUETZ3Kq31kJhOu2vi9cB1UGQj67hJcEOzMzy8wurFbWGMivC83m\nM7YmbekjP9k1M7Nzxq5X5PmDy883Teb2dEHj+7lNvXusgh7NLNXnKVAC8/aemZmNurKJA3goUiDT\nhg7oMAAcOZDQjZrWErN1+ZMnh1p/nsKbMWLuqa7q961N6TTF6QP3AnQVtlHagEvS1e/jc/1+dCr/\n1Rmo/CbruEWWeQOkvMP6ePcm70oN9clqUe2O0HXzCWitqT5dOMHu/dAr+n+bdW2PMX0s3zFqsQ6t\nqj23d3Z13YL55G2tnY4faZAMQ5BB8AvVrmgwuaDv6mnpp5bX/R7IpSNsobmn9nZO5CuqddblNa2F\nChvSWwaE+7Sr6y8rmzdVn3RN88jxtzQWPvwTULVfVIdf3RHa7qMNte/+x9JL8dt7Zmb2xTtfMjOz\n/D35gqOWymmDBvZDlZ/x1S/R6C0zMxt+CiIzL5O3K8/t2vTgfTMzC+VGLe2ob9Y2pZv9I43fYVO6\nO4k01zR217hOn919+acLkG7lNDygPfmxrVdV3k5ZqNyL878wM7PO3ttqy+5nzcyshH/2mBvrvBNd\n31QfvPue6jsGPVbcBIXFKYbmiWz09nPqo6s3hEBfnksH5+8LSXj3ttaZm7ugdN8A8fyGrnOLmuRW\nX3hVv2/uql6PQUIOpPOsB+fMnvrKacq2rt2Rv1nb0nP+OkmQMokkkkgiiSSSSCKJJJJIIokkkkgi\nz0CeKVKmBFvx2oZ2vmawEntUKyRymk3BzE12piGZgsan7DITApnHDN/xWdeRdqZqJe1Wx3wd7hWh\nIkLOn3cOtWM/JtrjxtlE0vCEsFM/Zw/r6FjRoDnojDE8ISmydqxd1+5ndVeImiUU7NMnur7fJfvA\ne0L4LOBnKdbV3vy2dtV3rmrHblIAHXIKf8oZmXH2FU093NtTOQQErrH7unJX7Peb11ctS/Tg+Eh1\n9/LawQ44ip73dE8qSzR6DgKEqPbjD3Tm/ZydfX+hut54jowsIDXGcISMzlp86voxGWpS+aeLbnuc\nL3YIxmcCtaNINiRLk5EFroHWR4ow1F+RLVUKsoHlunTv06eBC0qpTLSHDA8FTzb08Xs6Ux8t9ByX\nM6f9E+3YG5lmqhn1UaoAH8kZ55MNVAOR7JMDoZmcOC3SWPVYwPIektFnCbrhrKsd7v0PtEvb2ycb\nxkh639hQu669qJ3v7K7Og2fuK9Iye8gZYSh8xiXtNoegJR42ZTunRNTTnLvOuKrH7lXtXu/e1Vjx\nztX+xoqe54LEiTMfdEHWBBO1/5xd7VELnqgP9Xkx0/NyM3hYNtFjjI5r6Hkx6u1Sgh9ZLGRzhRhB\nUVWUJEuU2zHpbEYWtcI2KIMOB2uXoKKuyxaK8ORUCSek67qvSFTKa+6pnKra0oOLyl0SRaIaU6JO\nswmZalKy6c5SOsvPFVVfkiVuvMDPMWbb8AeNMkT+MmQEgBvGySgCsZyDniCyN2LsZOHeChagHXqq\nb3vGWFhVubk6XFs70tOV3K7KzYH0gPfnI7K/LbCdFJHLxZJMXCAfG3npKe7JW2vS51kG/icyI0wm\noLFAbyyL0scUdFWWbB4RCMF0Tf2Vo98vK0fwqrQfyUcUiXzUMvJ9J1mQTl2Ve3ifeSWn9lbgzwhB\nRzTxhd2QjGcL6XnXL1O++qNFNr1BqHkmSKGnU42RXl/P3dy4bosjXfMhGQQqdbIdMQdGZByZMLCz\n8J75OUWnVjgrn+/L+AI4R9zr2AR8E9kaCBxQVM19nVUfHUv3jyeaazLn6qMgr3G5IOJWySsalbkN\nQpGMfzEyxQVt5UxkG+cd3bdRJPtFm4w6RJV6D8m0QFR7lJP/i3qgKkBz+WTWWTgqx52CDltKhyER\n4CyoWz/3dEiZvEdUjrGZYW4+o7ytFfjs4H5IL2UjxSzzUoxGSKsdDVBYPVxMjnknx5qgXIHziywq\nLTgAgjgLIpwGF6eyiwVoijTZQkZT4B8tiKnsjhW7D6wCP1+erxeRbH7aVjl9UCVeDqTNpqJ9i6Hm\nqRTX5+AGSld0XR6kjxfIV66WyZK1iLO8SE91OGjSDc9qWdY9eersqw65JnNeU78HoDRX8iqrnpKO\nfB8U5ZKMkWeau/I3tHiZBHBljfX9+ZHalpmQ3WeLTDVwAJwU4f4jum85EC+XlDFIkyVIt3qerJkk\n1QjhX3Pfkb+IFswXcMF08WN9uF3SoGTzM9Vj85bqG/PiOfB1HDxRvU+/qfY1sor4rm9o7p+ShWr/\nTUWOr9yCX28Cj9s+2UUYI+H7GkurNfjpRuq7fluRY5tLvyVQa7fghsiCzkrvgwgMxUtUPgUJhQ/q\nvSYbyL4pn9VmbeWBYFnPyGeVyJA2e0NImb4oHqwYgtqo6/puCI+hy9grqB86Nd0/aLCGAc02e8z8\n2Yaz0sw++JeHNj9U/XY+UPtSD9U/S7JEDfDvhR68VWOQQn7VLiubW+r7IB9nWlFfnr4lBMvFMZlR\n4aLKs+7yWR/uVDQHlz4vP7tSZaFej9fbqsuEddsRmclG8VplR9H451Z13xYcgmFHzzuDa9HB5ool\n1a+7B28RqP+TczhkWL9HZIps7ICQv6m+rYBiXZIBJ0umx9mRxvZ33hXvxuAYJA98RVnQSukXxIny\nuCvbPj7R5/JE+sqC8Lu9vmtmZpvbum8EGvriaE/tOVT97pAxJ7WqMZKqwytINtYR81sXVPX5se4f\nglA9Pld/1EFxPP+KEEmVAjZ5Jh81PlV7ppHq2Z49xbrVzOZ12dhzt4QKyaPHd//375iZ2Ud/pHl5\n9wW9S977whfNzCxHprIL1jIPv6kxe+9vyN7u1VTv0RgerhO1L1xoLDRWNHbb7z74pC4X/UOrPrdi\nt2rS2QVr+f6JdFW+pzJvPK++nTNXdeDuylBOFtRmra66hKA682ShDBfq2w8farx/8aUXzMzs5ec1\n8I/fVtu6j+XHho/hTPX1nHRVtrJ9i3fWlHQ+gOcs2JBtXgOp/egdlfOdgvr++oq+r9dlQ2dvCuFy\nDPL95hfFY/RDP/fDZmb27mMhpx9eyN/73xGSpwharMH7xmRHY7Luq1znXLa0//pfqp4RKOPa9+Yd\nSpAyiSSSSCKJJJJIIokkkkgiiSSSSCLPQJ4pUsbLcy5y93kzM3MCIhnwh/QeCNXRGxPxhWmbgIpV\niVjHkWCfHe5MngwURJnOYeCO2KHPglJwfEWz+j3tBKariszUc2zVr2lHKz/Xrne7C8rgL7Wz1j/R\nzllwRbundxuKNpV3tCOYdtiNXOi+Lrvip+9rd/PJkXYEC5y73KjDQRFHAMa6zyXy0I4jBSGcOGtE\n3eAvmcDDUYkZwOGYGY6GNm5LpwuU58JpsrYLogS00mSo3cST98n0MlGUqgU7u4EKyhHlOXygunTf\neUe6yMBpclV1ql1X+Q7R5nDwdBlTsmnpZurB/B0SzeDsp0+WDKfPecWmdqyHIHVSNZAu7JC3D0Cm\nkLFnCY/QuMiuJ6zwUUE2MYSkIE/UpFjX7mwDRvJlhWxMZDA42Sfac6qD8NfWhHrqwkfRfqKd9UVT\n9e701C6bw9y9RvSuAE/IVM9dv6Ln5YnCpziDG8I2XyPSEcLzcQzSZvgW2Yxgr+9fqD/7PM8FEbV6\nXZEF4zx8GcRKQITlsK/o5sGBPiMyFA0PpKeRB3fMNVAcrmy/c65+KGUVqdje1i536ZrGbrVCVhF4\nQqppxnrr8iz29Zra3GWLuQRiLYM/mD9UWwPG2Yxo7/q66uTDkRJ1iBhyHjyE42W6D9oANM/mLe20\nj0b6PVOAw+lQOrkYKWrhF2RTcz678FX0e7qvx87+MtC4TuXlf5ac5Z1w9nZZlo11yWDjcU56nyhR\nPtROfRcepJWObDSckbVtIRv0JnpObqpyex2deW1UNUYPnqgvx0Od7fXhgkjVVK9iLuYWiNEMREqJ\nDKdAoY3ow2E6Pneu9gzHKr8H71NQJFNEiYgm2UwaNen5iKjauKOIjVuAf2miciefUgVcSq7dFbfD\n+lB6nMCFMwL1EICoCvDXEXxRYzJElLb0/Nyq9Hm7KH0fEzneB+Xyxjt7ZmZ2a1cRp2JJ81xlReW3\nuvBs8XnxROX4/ZHNfeoCr85wTrQbtMEUjqgpSLPlHoi3fdmCx5nxrbF0VskxR2K73YWu75GdqEzm\nl3X6qD2Aw+QQ/jai0tucoT86kb/KgiQpbWsMZU5l0/vc3zsgY5fBSUKGwXCh6wdx1pCB/NYIZEmm\nA/fAGaiIJ/Kjvq/7PDIhjsnqFHO/+CBcMvj5PHG7wVNGLjNkPsuCkLlwZAtrZDZ0p7Jh92PZZrur\n+c9hKTUCjdYxzUMR2fiKDllC0P/ZG6AGQMhcgGB1h6DIfK1Bpr6e0z9WtC5HFLMOt08rUj+uBzGX\nwR0rFtp2c1e/55eq74IIcMyv4cDBUJxonogzmeU7IGlGQooWQAmn+urXJRHmUobsjZ5su4ddpMjO\nV6ipH9PhkYVwU93xZWQd/OG5qzJTBX2/4uKP8eOplH5fsG6bdOC7OwYR8zG8OCWtXYo9tSU7kW7L\noJqiqfyxlwaJU5cNlUGyVeizSwu8eEt48vwhayKQ3F0Qkc5bRNXfVd8Mib5frZKtDaRfdk0688AU\nDlrS8bKpMe6RidDZl1+vn8pv1rbE57ORURR/Qp8ekfVtUVU7e6APmgO1N1+BI4KsVHX4NQIyq43b\net7FAAQkawQHJPrJQ9ABfy4bv3ZL+iitKto/XYLe+0DtK7bhRlzXGsaFV6+4o8h70dX/J3nZ1Aao\nt/pt+RwXHqwmvIAzxvb4VGOiO5XviUDIzEFrHD7SdddmnyIqs8MXzNr0e3dX98EbuDwiexYZRLOO\n6h3OFPleTCK7rDSy0uFxV7Z69JrmnOMHssVbVZVZv6FnNK6qT+JMkf6KbD0FuuqwKds6faT15Ql+\nsAVCfDDmVMEN6Wy7VOd+9dUHD0Ef8FmLUaglPWevq/sHjOM06N5sfdfMzMog6dav6745oKHRBVyK\nLRD4oH0PnpAlj/eOIsi/4k2Vd2tDNuzf0OdhX372oyPpJ8e7zs4dobB2NtTekgc/1Juvm5nZ44c6\nbeAv9PutdZ0OyJAhc78lvR+eCN1wDp9ch/Vq1fScssGXxGmKF7+g94DNQPNpj7XW+98Q6mEJQjWX\nh+uroXoF9adDZrb3hFSZOyp/5xpI0Huyiw9fl42HH2sM5DaUYejuT35eeriQ3qY9jcXuntoTZwL2\nKLeS0VgvMx+Vr5Dt8Ohf832DMytlqtZ4aVfXwMHYPda4aB3SB/DC7ayo7/rM4a1QZc9AprmMw+lc\nNrFalk3mi1o/f/COTl985zVljLpyJd4PAHnCK+e0qPHd+hCeoJZ0scMpgRVQWzbVDUFNurv7g/JH\nmTzZog41V3s9rSk2PY3RDO84H39dNrV3rNMJt16WHm68JL+VGsHRRUa0Xlc6D5aaa3tTvVdsG/q5\np32NdFnr5BP4QC3/vf1IgpRJJJFEEkkkkUQSSSSRRBJJJJFEEnkG8kyRMlGP3d94B4sMNWmiUsNz\n7dQ14WIpkOc8tQYXDVwxa3fZpQQlMDsiiwmRy/FD7fT1iWSPWvp0QZQUrmmHbv2myqtva5c0v6Yd\nu9Nj7aw539ZOWHFdO2GVOjvqGe0eR+y89Zvapez1uW9GtIod/jV2m6u3dE5wDidDvqhd1jGZkS6O\nOLcI43gAF0NAVg9/ncj1Ve1i7xCxn56onmd72vVevLVvbc4S5jkfXF6VznpwjIzgMhmfkxGL89gh\n/BHVBtT68bMD0Dvn2ol3ic5ERM/LJX3W4cUJQu2m9uKztJeUJfwLvVOVPyXS53naAY75QtJEhVYi\nRQrGPV3f2CWKn71Ce8kOQQaAuE+K6G4T1vjzU+kl7BDpJINBKlP+rvaPu9o9dYdwG8zJkvQ17XAX\nX1T9Jkb0iijapC2b8MgmEsGjsX5dzy9dkY298LJ2xn36oQdyZ0Z0/uKJ+q3sEO1J6b6TA+knhL/o\n7ouy6a272qXO5WMuA9XPhaNiMFQ5k5FsKIT7wWnKfo7el01nByp3PlSkpXBLY6FUxybvKAqWbWoM\nejCv18lGMCezQ++CLGAHascxUcv0UyTEmLRU1x5R7XlLuszCtTL1OPtflA6ejBS96kw5q3+saEV/\nX22Lg+sxP5I7UnlXC7KhDx9op/v1rwsxV4MLyouku+wNRSXCqWwkxK8NsrK9/b6+bw3ho/hIfZkt\ng56Co+Q8JR3nQcC1QB2FObIUwQFQqqkPPXiOlgaHVU5KrJps5qwpf+DCqWNENnbKIAfzsQ3Jj6ZB\nLs7glZrCCXD2UNGnhR5vxYaQI7m6nlODfT/LGd6tG5wxhqcodS59lhZq1xwOl1MQPHdzsrk+3Dzj\nir6P2vq/R/RndPF0vqR9qAr3Rnpu86GiZ4O06jeFJyuYEmXCR+TnZK8agJiacKb6qtpx4+YPmplZ\nOacx/VEoOzrq6v8Vrt8gWlUoyS43i4p27VRV/tFrH1m6S/afFTLWgIyZ41fzJTJCFeVPayvyr9Nd\nUD6hrm/9qz0zM+uQEqUEL1GHKHy3B4HPVNGryi31jTU0jlsPQd6YbGSlofsjslIcwtvRHd6gfPVh\nzZUNNfFTXlbXX9kU8mOR1thpkCmtBc9H+ADbc8gcM9IYWbiKKFdnRP07oFfhfxsRBRuSTa7u6f8x\nEcG8+3QcZkZQPQJ5UwcdkPGZJ0FFuBPp2Q9V79oqaFqud5g/KyAE81tqT5/5IhgpapZBb1sVsj0Z\nYzTUvBr05Hc3GUs7DTiFaP9FU4iWi/fIdGM/Ygff/DMrEVnOzZk3QZdkSQ9VJBI+Ya0S+ziHrFqr\nNY25LD4lmMiPu0SaazHfFkioJTadhi+lWpB9tfbP7NHbin5f/6wyq2QWcALONU5yntA/vaXGcwBK\nNAQhPMHPxdntVtfkH1bJRBPOVddyRc9epkGBuuqDo/uspzq6oZCF7wOiusny6SB3IWjiObbQf0/1\nnU7lPxzWJNk9uMYu4OHDhjdWZdNjX+vOoAIqNMLGDuHsYp0aDLSmCUBsZELV/6IPUu8j8U8dHZA5\n5oi+JNtbKaN5LzsjUj2Tvx7BJ1SskxntXP0xGoLe7ZDpBn1V4NwauXru5ELlLwM4FIZauzgjsoSC\nuGE5a+OcbNeHG4cllO3BLTTo6Dl5spSE29JPm3nBQGD6ZHfy4JV6gTXUGPReAOJ1a11cFS/uyu7M\nzF7+wo/bAOTWxYfq/8AD9QVv3nyqMbvo6/8JWVxyUdouK0OQZQ9fh5twoDZ/4QcVPf/sba3ZZ6Zx\nS9WtTcbXEE6VfTJBnpOxLI1OfBCQa9vwZ9xSH/twkoyPyQgbo/pPFdXfhcOlAZfJpAffR0m63X5R\n9aqCPnBBuHfgJnl0Btr/baEJTpv6/9YaqAX47PKggtfW5X9XPyOUaioCTQuN0wff+DMzM/vwVPVt\n3Na8VyNbVYN5btGTnppNoSpGj3T9c1fgv9uWXkM4z97/gAyKc/iK6Lr1XbXvLv46BSfPdk42nSHT\n2OxE/vccZHjzsfqhQnapKkifEH6QFU3tdsYpjMuKC0Kn+b7WhktQIWs31a4hpzHOeG+Z9XV9eedl\nMzN76UUhiQ4fM5/n4ATllMXhIyGJLpgH1jhVsrIp+6ncq3xSl9H8zLzjjOVqauM6GXXTHpkPQfW3\nse32KdyrrOOKZV1frLP+rsC91+fUBbxH69eF8Lt2m9MWb+v3R32NlXVQoNUYYcz6aHZFup6n5a86\nIOCyq7ou9svDj9X37VUQ7DeFzs881vNOR6BCy/iTLb0TpW/Jpnrnqsd7vJPcuqW+uHpPiJmjA94z\nhtJdNq3n9EF2P3bUnhU4dVavyw+Fp6rn6PvwZSZImUQSSSSRRBJJ5P9m702eJEmyMz/1zcz33T32\nJffMWrKqq7rRG4BGD4SkCOZA8kIhhQPe+bfxRBkKB8IZEMOeBtBrVdeaa2TGHuH77m7uZm7Gw/ez\nyhmRaXTkKS+mF5fwMDfT5elTtfc+/b6oRCUqUYlKVKISlai8g/JOkTIOmveLa0UjjU3GFqUJz1HE\nbrVUlicR099xl4wwGY5goWjvyuZM75izyHABrMgquSlFqFZE2Mt13S8Lh4uZ6bOPksTC5RxmX3/7\nVWVCaruK0JUyyjwszhUZ6x4rJdD+Rs/xXP2uUVY3Fw8UOdt7XzrnsVugFYawWH8plugxqlLX8AWM\n2rrf3u6hMcaYHIznuYaev1VRhHKd8fg9WU3OdzvToXFoW2yTqCbs6IMYqhYD/dadq+9WjsYg5sPN\nYnMmsaHOdC1FJYs2SJhtopU+yiKcde+cKEKbX8MD0X277HYOvom5Q0aYCHtyFrLCa4yrKdUviRKO\ny/niCRnUe/eFSuIoqVl1VM9MSTYThJwH8HlkLd0vXpNNumTt/Ncai6un4tBZTRW99QO1M7hSv75G\nmSvLee1VoPu7cY1t5kP4SUBbpUCYNPfIMiWx0YYyEMOOIv7zb2UTMxS4PM5Rfnmtft3b0X03dpSZ\nDsoav9SWMhC1LWUe0ildt+wpixkbomLFefD+55qbTkxzoIKt76CEM2tzpvY+aiRwYKTvyBY3vy8G\n8yRZxF5P9UzM4Q+ZkKEl820v1W/xBBF/N1QT+dOlj20bVH/cpJ41PNH3F1NliW5v6u8OWZfRQJ81\nzuwDSDPlXKh4A7pg1aeNmrf5JJwE8PlkUbpZYfNpMqaznsaqSES+sq+sxu4dZWvWOKYV3CvDC+Ye\nyL4NpFPSZdXnp3/5CfWT/+le0+4kHAo95thC3+9uC8XQJIvloZA1QyWqgvJYjmx9NgVqjDO2uRKK\nDDZ+bE8Zh1Go7OWqX4KkJtVsCAIxp357gsLXoKVsTQsEyrRLPdKgveB/Gq/ISh3L9uZk4Vew4qd9\nMt2g22IhXOKGpTVgLlDPJdwQSVSoEvjrWUxOJukoA2KhApOa6vuej5qHr3r1T5VF2/1A4/veobKC\nX4es+/iIKcpxfkb1D+pk/H31/3B6agae2pzuy5bjJXgUOJfcxaenjdac0Up9cveB0AbZGP7iF+rL\nAoQ+azJsFjxnDuebf/kLcRRsPQXRgerH+BLOkQ35Qc/R//fJ4HV7ev58BBqTrNr2nvxOfAt01Sv1\n7bSPatAeSlPb9K2rORQbKdvffio/V0py7jqU3WOr4qPME/NABnGZz98ruHLSedmkX3o7pIztglKA\nH8S2SLGSdbNYb7K2xm5J/1s1ZU5rSVARdbJ8Ta1bQ/x1yF9Rq4FA9FhXkixsjubuHC6KIgiaRBJ0\n1ly2NuijgoWCWY69hDHGHNzfNvUN9dv4VChAK45NJ8kSZsnaoUDpxjU+GerhTfT3sif0RDDh9/1j\n/U06b9B9xnPgyyIzPYevJdbrGHOsawrbyki2JvgJ0FDzOapwU2Ug64eH6hPmqQOfRgNVuAIoJhek\n4XCkLHIehcQlyBk/o77ZyWhO9OEELMGrFzOgREFC3LQkffVtNS//mphpLFdXqIEmwk2KbCa0zUJK\n3/srrTv+HD4i2hOzdF0eJIzLfR1b98lbWjcyoaJiX7Z51dZ9FjF4MWohL5X6awSnQ3qh54aIP8Cy\nxl4BeWRPFwSqzwqUcAr+pxn3sYRCHbgAACAASURBVMgM730ozgaDAmULJFAD7q/YGB6mKugvVKZi\nCzgZZFrmqo3qIHuBBei82hLUHFxCqbmuc1Gg2wVFWEDBcTjWOjM7JoNfQEUmA4/hA2OOTobGAY1S\nBckag1fEBmVRsOk/0Ik+66mdv/l6MwXFuQ1H1Yd//lfGGGOKJd2781R7/fOXqnO2JD87BSm4wra9\nHdnunT/T2M/zytb3Q35JOAINSJYZnF7+czheQOl/eE+/297VO0jAOuKhnlY51NwcgoJIrjlt0NXf\nz15oneh1tDZb8DV9ck/7yh/+4DHPlX965WnOpxJo8qBU0wIR06FPr0B034Z78vCRUBSXX0t1yDnT\nGMdRiwuoT62guXHrlvrFOPr+6Bv15woumzKcPRsH8Oo11c8zFB/jcIfFZ5oTra+0rz9/qfVojWpW\nrabf776vNT6Wki1Muvr99Iq92PrtfEkM5KINh+LkQv2LKzN7n6idGZQdT45BIML59TArhNTeh6Dv\neHwqpvW468p+rs50/cVz8Qg+fE/9tXXrwXd1KX2wbaaDrrG7stnOBAQciqlrR2NeQhXZhWen/Y3G\nNF7XfLdAABbrqluSd6wlfGVDkICpvPYKG7f0/+tnWqsu2e95B/q+sKk2FOC1G3KyJt6Q7dYOUPpb\nqK++eqUxnH8lG9otHupv9j7dF7LtllG7HvGuVPvJT4wxxqRHqvfgUoibdk9z6fBTcXfVHpfoU9Wz\nmOF6ENHtjq6fjkHO/0C2k7+vfbwLKuqPlQgpE5WoRCUqUYlKVKISlahEJSpRiUpUovIOyjtFyixB\nHwScy/Zjikq6ZG9iO8rWHFSVofVQDKpw3XKl6l+fokpyrgi7g/JEqHzgVvSZ31K0eIvs1xp0QxIU\nwxDUgftSEbs55BJ5kDWJjCKEuYo+V2TFlmScXdRLQob1hK3IYaqiaOQumdEYmfM4mdo46BQnHp5Z\n5dx3mInf5hwjSJ1sQveZt1X/0QqOjCFRabgXghH96c5MCsWWAhwgc5RF8ijAjMJzvZzLK3JWP9OE\ng+aWon2bFUUbVyFa6R5jSGR6iApHyF+x7Kgv5lP1YS4dqtnfrAx6un+SbHUa5mrP1n2292Ube/BY\n9M9gu29pLGyyLxZZ9lAKZoCG/LCj6CbgLDOu6u+lrwzE4BVqGi+Ftkih6FMlS58ECWPgFcqC1ClY\nst3SHUVRbTIkVl6Z2zgcM+s1Sgxwthw/JQN+MTbmr405faootN9R/148USR9xXnnErYXgHAp7itj\nu3VPNncG+moNP8fVSz2vwJzwhxpvp60Qu0PmpQ+v0wqOl/Snin7nf6TsoN3S/TIh/1Oe8+ZEz1tX\niorPBhqvsy/gPhjruvhUz1ujolViTmQbKERs3RwpwzQ3HBU3tzgXvfI1Ztu+skA+HCppUFEOGdUE\nde+BkGvukV2HN2cEyieLkpd7FZ6XPtTzkQGaMXcKefVVF96cRYfMKei0cUd9EkftopCFCyujBhxw\nnnrJwesApIpHUuzpczgTlurDAspaCc4zO5w/j9fh7WGs0pxfnpPRnA04q7uh/vB8eD4WIZwMZTE4\ncRJJ3X/syQZ9fEqG88rDlWyrCNrJG8pms6ihjE71u+kMvo+i5kYNjjC3p98nUBIrxuD06ag/lwy0\ng00WUN65aXl4R+fOC/iwAT6vBT/KEtRB/1z3H51p7kzj8i1FEESNlDI2HhnmNr4iGNFuMrkcVzez\nkAttGhIHaJy7L5Qx6cPHNbNXZgdFg84Kf3DxnL7QPUsP8TOsFZfwlp2dKTNmD2Qb467aVIdXyVDX\n7J6u+37+R8YYY3ol+cE5GchgIr/mNzXWuYXGJoCvaTHHj8HV0psdG2OMuf5afn7/Pc21Jf56aKlP\n8mS5zZXut6ipHs1tZY/qH3/E83+r63pqX7Gg+/RROlu5+n5oZOMJkB0VVEricNakZHomWX27M/5z\nFBQS+G+HubCEH2gOEseG/6nPGuzA2eDBgVZhfeySPQtY/9onylTuNLWGj+Br2gLhuAL50wVNsrml\nLKEL79MMxNEI5Z/iPnOlUPquDYd3do2dhPPtibKGU9AJKfpng8sTAXxG13DcwClWz2luW3FQCnCO\nJZFGWqO+uHwlPx9y6RTgtFivUbRMj0xzF44TOF4suPfuPlKGMgHXCO7TbKH8d5k8pk7hngG0laX7\nTUF5ji9Bj20os+tMWFvg3rJ+CJcTCJaNxqGhcroOdM9NS545NUZJLIV/dPvU01Y91wbbL8BR5alv\npwxyzAuRM+rbHpwmAWpDCeaabZFxtuSH0vD3pBljaxDuY0ElP0ZRbVf1aaOwMobToZaUrVmgl1tj\nze1YljkFx0oKRF+Sfaofcj/y3MK+OLHaI/mCo3P5s2MXNC7qf3ZetlzGp2U8EOox2XSjJhu3HioT\nHeN7fwm3Dei0KciqBOv49iMhdXZR0+p9q/776jn77wwcYka+0Pw3xjRrd42P4tAyg5rKFRntULTU\n1uSYMTfnU/itrJsr66xZCxvwy8VQePztr/+TMcaY178Qn9nugdq+9554b2ITzZvOpeq4cUvvLMum\neM+e8W7y/LdCotx/D4Qe+8B0T2tsq6+5lmMMDw51n1iIkKfNsbTG6tqIe+bspfpqGx6NUFHQm6gv\n73ws9NHGAWgI+JBslGkuPpO/iZ9oXUqAPkqWZSNr1PFqrPHzTbgfd9WOoKXnTF+r/vc+ETKlEjs0\nxhjjgD7bAk2XA/X19KX8agLOrlIRHriF7l9Mg9KF4/Drr//ZGGPMIQjHFCi69gtx5dxFwaf0oRBA\nJqe/8+AYXn6j541X3B8FUC//dsjMKXuBJsbnYOPHv/qdMcaYak128IP//X/Qcx7J9r/6Quv2ycXn\nxhhjCkX5hgIo3zjqWuUt1duAoh4njo0xxpy9hCOs+mYPVU6nTfZW2ZTuav88PtI1r19pbVu29ews\nKmrVKtyJj0C4zUDB8y6T3VQdt/Oqwwk8Zr3nqoPd0PdxUKfppvzc4lz/71Hn9UOQ4Ab+O1C07Zls\nvR5T2w8fyh/MeNc5fqUxGsA3muXdo8epkAEop5Urv/YI5di9Bxrz7K7a93VLczUx0NzL3tYeZwW3\nlVtnTd1hnVuoPq+v5A9nv5KNfvQTvZNlbmvd+GMlQspEJSpRiUpUohKVqEQlKlGJSlSiEpWovIPy\nTpEyJbJF+S3O5MJ5ECdUVCxy5h5FHINyzeiJInin54rGTo716S4UJa08VAQus6HPJiiKrZ8Qdd1R\npKrP+cPzVzBbf6sobY+s1+WZotZ+oCjq/ifKtJqOIm52HCWLALWAsqKU9R+i3pTTdZkk50jbqECN\nyL51lYl1ySh4pTCDrIjgPc55lmu636SrevQ7uk/vc517fH2sSGIKbgl7G4buuqLr2w93jUmBulmD\nEoKnZtpRFmJMtnYFaidfUMTXSpDF0KPNBI32wrbalOwrO3FJhN8Zke3ukYUguupx1tUpErm9YWnU\nYdzO6HcJUA7pmqKYWTJ3S0TtJ9QzgepIZ6rIf8i9MjpXPSbPZUNTMo4lorb5DUXoE3XOU6/0/zwq\nFGXUp9YFfaa34Nqpy6biM1SIIL/Z3NJYpm4pIh8nWvzySXj++dgYY4yPCoZDlLkzUr37L4jOWg06\nRFP2AWdp8zXdv3iPc+K31Q6P8/gxnjdGyasKf9JFX1mocQclG7h+XM5z58qKtNf3NP75+5yjP1A7\nO1ON9/EVKIqp+rPFWeFbRWVerACE0iVoAlxONqv7VECfdVN6/rLFufUCc/4GJU6m1U7I9mJkumJG\nnyVUzcYrtXm7Ep6V1dg1OANbszSf0iGD/RgkC4z89ara8iXnptcgPsKz8s4wlIyCp8lT9mRKJrMI\n8/2yr7nR+kaR/q06Z1RBK1T39JzeU/VZHdb52Fz1DuCwWsE7NIHjAIoTMxpqbBbYZh8/VSPLdNSS\nTUNXYZY92XYuIAN9Tla8KZvqk+0KQp6pOSg5WPfzqCWtUijO5A7VH0lIA1B/2i2I12mC8k8MDoQF\nHFohV5jloV63gG8jreutGf6UbH8wezvVlNlUNuahsjR1NW5llG28Iqp+nFX+bVvrhotalgsSaV1Q\nfdMxXVfFLrpkvYavOXc/h+MopufOwsw6KMUkWTZ/rHWnkKqa6i21cfOu+rTqauy/fKIMa+wMzgFU\nODIoZW3Dc9S+1tjGlvo7ztl3GyTdnHnb2SILzv9jZf2dh7tmxXoQW4A8WcqvFWqytcwdzc9KQs/5\nxW/+Ts9vaW5slYQmynIePIU6XXeitfbZV0JmbIzkFx99XwpWDz+VXxtdyJjLttqZXareJ6hgdAey\n0f2YbHzBIfxkPFTp0/d2i0lxwxIPNBeXDpwNS32Ou2Qgs6CdQHtkMvgK0Hb2jlBuhYzGaeGwxXJV\njzyqH85U3/dQ2NmmP0eo5zkVeD1A561AX9jwiCxQQ7J7us+Xnd/rOX/7v5mvnn5jMnCuraeoJ26L\n56iSY06BurVR+zIrOBZsXV/e0LoyRWliBd9fCvSuQUnMwv5qCZCTqJG0Jmpvat419YL6pAfhQQuO\nmDx+LQlvQwm+oSR1KzggX1BVSpZkC0FaNmnzzAaIuWYVlTqQaSOy+zP8lY96kWcxJqCA/MXb8UB4\n+NFsWvWauCDk1prnDoi+LGubBzdXbAm6Fr6eVFn38ZBgXGITTld+f7lW/1Rn+J282hOMQMey1mbD\ndQDEeSquTLaLWkrWuNQDRDoKOV04vyaB7rvzqcYyHdfYdi/gH4KrcElmeBAibuK6/3Sqvy9OhOqz\ns+rnDz9CQaehOZI40Z5nMdfv/InGM80cymVQXWIdbx+F/lrtLcMxs1zD2QjKeYkqlIPqVDUAgeVo\nTk3MG9WkXLJm+iAwXUf9vAIhNIdkJ2uxZ4LnbrqAU21imZuWXFy+Pgn3igMfWf9IddncUDZ+94NH\nxhhjKjvyg+f/n/poAvdUGfTB7FLzcHaBYllMNvfRNn42rTEadvU7C/RXua4+Lec1b1+9FJLl6rX8\nxxbqqH1sIA8Cpn6g3w1z8qf3srIpG26tIZyJl5/xjgR/0Hgif7mzKT9u3XlM+0C7luHKQdmyyp6p\nFAfZMtJ9SptqVxFlrzkorQz9GbPU3j881f54AdJ7FQfh58pWpqCstnkHux7r3a640Fg3mctJ+Jx+\n9LPvq/05vXtdg6DpX7Nnc9RPyyncYPf1jlWq6h1tHMJjb1hGzzV31pY+H2xv8xzV7z/+n/+o9vx3\n6s+P/5d/bYwxJrgPUvWfZMMn32o9jYEcOizqBEF2rn6dsvfYvau/XWw+KL7ZQ42mnlmtHJPhHbD6\nQL8JINo8ast2jnlPbt5VH+Xy8hdp1r5URn1w3VOfLicauwL78MuJ5tNpSzxFuw09J42KZ4ITMg7v\nlDP2i7UP4WZNaV/mvJStPPmDFLmWvHM14D/tsS93L0CUN2QDjTLrCDbgerLBc969Cu/J9m598EP1\ny7V+dzHU3Kxdq/39K/mxpyCg60bXlfc1NqW+1tTnv/sHY4wxc/rh4I7u/8dKhJSJSlSiEpWoRCUq\nUYlKVKISlahEJSpReQflnSJlLEtRO6uqyNIShZmVpSjsPK0oZMAZ1pFRNHEVZkqNrlvAGD70UHiZ\nkHm5wxnULWUopp6iw7HXuu68pahzmMleWGQHG5xbBFXiVxS93KgrsrZGAcLjXH0+o0hb4T0haT48\nQLWkpShk/2tlTpffKPJ3caJM99rlfCVnf0NkUCEN+gFFo0ZF0eyQA2dIhK/o6fmDHooPvv5vNZTx\nKPO5uXffFLYUKb94pjYvifx6ZLp262T8qoqIW03dO4EyicsZz/Zaf2+QXQ+ScIeQWV3CdB/jvOFG\njYxuTCilBFmKmxZrW20vQPoy5/i331fU8fJC7ZhcqW+XIxA5Yz3HIwLu7qtvSzvqB/sAHo+crs+k\nyEDChZAFRRBw5jVh6XfJImdjyVqVdolA31c9/eeqz/mJItjnsOAvOV/ok3EeXqJqFTL7E3m3fHiU\ndpVBKcCDdP+hziNuO2qPRTfOXM2FDkig41/p/KPFeI4WiuZ2XugM8pysnOGsajFH1u+R7l861PeV\nAtFkMjJznltPqd/GzE0XtJdJ63cZFyUbuBbqj1X/6UfKWpWGel6BaHYAyqU8QVGIDEq2DUHMDYrH\nOeW10RhPhnDBXMFJwlnV3iVn7xnc1Eh1HmGTiwWM+lN9jlFn8I3m2wVcTUkUywK4payw7igMOCA4\n8vvcB/hWBVUnl/PUSZRn8pa+T64VWY95m9RXc7V6B16kENWAOkRyqr6sV5U5GPmyocUMlBQZwtGQ\nsdiSrXph/WZqV4wMZDDVfRcghGw4DXIr2agD54GdUKR/CSu/s9b3zoj+TpHZxb+3vlZ9UjmNaQ2u\nh/UY5bO05kSQ1HX2DDRGXOMY92SLPipYoS2uVm+XlZqQZTxGwabvwyUDH4YP4qecka+yKqDebNQA\nx6qfC6dBL6b6xVb6fwYejSVIqRJZL2ep6yeoAh6kD3X/BNwJ+6wfa2P6E7g95vrt1p78ysgWl1P7\nVGiuxCWcACHq6kpryuRKNpLfYk31UKQBSVIE1TPOMlagKrc2PlAbXmsudf4BZRh4HQofaL76m/jh\nhtpYu6X6baH6tHypNr4+lXJBpUzWGtvdrMBRQzY/Z8m2g1GIIkVtCkWu0aH+X/4ea/AHIEf+Hq4y\nlNeslOqTRbExlWavYL9RJbpJibMXSTAn/IRsMb0Flw88HB5cYAEo2Snn2MvwFVX3D/X9SDYTovS2\nUOxJoQQ3iKueflZZQgtURa0qm/d8bJ92jItkC5lDARxn+fkbf5markyX9c8GZeGUNS6Dkfoztdbz\n4xn5hOyh9i4p9iTrBEifrNaxqxQQ1E31j7vUfQMUahLIMcXj8KKAAFqsbLOA38EdoQBGm8f4JWeg\neVgogVKylP1eXumZk1AlD3/WAWkzQQkm7bEfDNivsVYvS6pLCzWRF/BJ9Jm/APLM7ltwhRhjjOvr\n+R6KKDGjjLFZa0wyDlxgKFrFl2Rkw7WUPVXsFORhBf6+nPxqfVs2sID/I8F+cwii0GNOZrNaJzaZ\nw0XURXJp/X89HPB3KFEGV2FM9+2NNefy7AV+/P2/Uj0SsolffvMbY4wx9oz9t6d+y6TD+4CArMoP\nTvZQ0/LkZ289Vv80t0Atw+E2RGGmCr/fAltdnLFPRqVqSka6XBJaIk09FxeywetvQHk/UzvdJag8\n5koKzsn4+I1q0rw7NkvUF+NNjWMF9HXWBl0Y6L5FuCRr7PFMemVuWoqHmrcJuL9Oj+TPLtkjNCsa\nuw4oHOd3QnCcXsnvblZkw5UmKFkQ2w0osup1tTULkjyO/0/NVPfGhmzxAETlGhTB5ER9nI2DYmjS\nV0yB938mXp8JPHTeHAVK0GC9vmxg3VEfZvHrPuqc5W2tI4ENx8pS7f/y10JRvb7Q+jWFl8l1tX4k\nm9gC/EpT3uGef3Gs+yRkq5+UNdeOQIY8e6F2V1EJzJb1eQm6qwTS2+PUwOBLoTMyWyCC7mnOxU7V\nHhslnVcv9NwXoCEyKPTk4I6MP+R5IAbbLicEhvjJG5Z0Sv3w+qXat9/U+vCv/qf/Wf3gym+f/Uo+\n8uBfa05s3hG3T2KludY50r5/+ZXs6DUysxWQpq/P1E/+Srb++FM9p0i/GWNM88NH5tU3vzEnX8n/\nbsIrVICX5u739cyrFyDM2HcPZrLt6oaetbUnGwjXyvHrY+oqW6nlNCbtJ0K4nKM0WF1rT5Df0Gea\nNXCCulz7VM+5/QONxTanA7wLjenlF0Lnb4LyiqN02z1n356WP9i5C/K9AqeYJX/SHek516/Vh7U7\nf2mMMeZHf/03qsdSHDWjS9nyIi7/4L/U3/0paOIHQoTffwg/4IXevY6+EuoplhJq9Y+VCCkTlahE\nJSpRiUpUohKVqEQlKlGJSlSi8g7KO0XKdNDzfvbtH4wxxgAWMJWQzySDkgRn+Yehmgfa7mnQHMUf\n6vxcBXRDngj+HJZ756miiZfPUZzxOG8NuiPI6LoyKILsriKD9gdwAMDSn4G7od1VxH/VV6SsuAF6\nAXWlGRlc51IRQG/OWdylrh8FRKtROFitUWVa6PnrhmJlE7JNyx4ZFtAH8QHn5zkP+eCxIpiGDFCq\nRP8tUFVpzb87lzd/rcjrogv/zJyI8nuKdB98T/fyQWAcX+kc3fVr1HmeKeLaXegzIHtt58n63Fef\n3bkjpMfGpygGJFSXk1eKlN+0dI/0/HRSbR7OieCjsABYysxSZHQzZKFiIHnyZHfIOJQaqueKbHZi\nwdnMuaKkwVx/ZziDW7yr+i9QM0ks1U+HTbXTScETAsfM2sbGOFfe5Wz98oxMaxOOBrJlHmdpDTZr\n54mTgh6IE/GO5ZX5SAVj+gXeoxYoscmxMcYYd6w5cvcTRZvjoEIWKOJscXbZJyO8dUjmmu+TNdKH\nfUXkB19y/7WixCU4Axqw6Z+XVb+Cq3rnyMAEtM9gw1tkSzuoc/WPZT8L5mIWpFIsBWqtcHOVrgS2\nkSfrnl+rTdlNjVG9qMh5N6G6ZHz8Bpm6nEFdp6bIuttGeSamOthZ1Smz5Hwxyi+TseZ3cswYkZCb\nxdTG5hoeJPg8JigyZOKat7UHyo4vYOxfDWTrJlRRmskm/dz3VH9Uga7DsW6rfpOZ6u2QrR5xxnXJ\nuXKfjN+aM/LJjPp6POXMLZwKqZr6YXUN0gUkzcSV7S3h9ErENTcssjw5Mg1XIGsMSKMk/Es2q4zv\ngCRhbNtj+cFCHK4H+ITOtjVnVpwHt2Lq3ylIyBRcC/7s7VRTyneVLVtz7jtAjaVIhr0LX0f7W42z\nC+9SvKI5v3Vb43ZxjDKbr/UrAwlaApWZiqPsWy5D5uQENYAL2d9pcGyMMaaU0fU2sjN+vmA8uEPc\nnuZ3el9ZoU8f/8wYY8zX8D24+OEEKJ0xiltr0F99/E8uK3+w9GSTqXO13c3BBUU2eQX3yeKYzO2a\njF9ZNtzlTH8fVOqyDyr1VNfl7qstqYrOvsf+A/wSKNOEymGvjtQHWYssvkH976nWwH5P9fSNxnbB\nXNqAZ6lahy+jpPrYjv6fRrEwXpatL0G42P7b8YWMQOp4LraGG5uDIPFBimb4XJJ9c+FCaLWExkjT\nvyu4zhaoKa2X+kyiIOnbcPiAMLGr6odURrbqg0RJtjS+yzxIoEDPc6co3JDBNcaYdJAwWQvVRNSt\nDEpw87TsJZWQzU6NfGUPzosQrUe1zLogH5oJVN8V68+soN/bed3fB30RT2K/edlFepk3LkqJE7hB\n4mm1dbMKuqqm//seilTDFnUGReSBFGTNKoKGMlOy3PRFmrV+nYUXZw4HCcpUux+BCkrqd7MLoa3W\nsZujMo0xpssc6jkgdXLwybH/syf4lwV9HSejfC6bj2XIshfpl0uNjQvfULyh+nZQHMtmQd6VZOO9\nTogKw8+n4ODBPxZzqFl5mquhqGcS5csM6iUlFF9WyBZe/5Pak7F1nxi8gx7cObkAhR/2yw6cjuuE\n6r+LSqCTA0HYlg9brFEpRQGuDGInD3ovgZqWnVb7165sx8LXlfg+yR4hB6/I+Er1nQWyiyp8SWWU\ncrqe7jOH08wYY2aua5Jx1TO7ZL1KoV4Iqm0RTnpQv0FC4+mt3iBu/lTp9vWM7smxMcaYZ6809tWd\nQ2OMMVv3UNSCc8/1ZfNV2lraL/Fs/d9nLcr78nvxTMhPBNopCOumNgDmMoZ3pm4RxDScW5Vt2aob\nx3+xP5vDZfL5Z8rq+z04ymq67gSVtnxOv8+8r32jSQjV0BpqTBLw/ZxNtW9k6pvaPb0XPNjW767m\nqDc1hYCZwHUz68i2Cu/LD+ZBuizg/Wk/0dzd/EjvfvkPdd+ztvp5NNJ9rILG+PS17ncN+u4vfv5j\n3Q9Ort6l6n0C79EQRFEZJZ7Cgd6Lrpkr44Fsvl8O9yTwO63fDufQ2BNC/egPWqd++Q96P/o3fyuU\nxp//m781xhjz/PgLY4wxT/+d1tXNv2BvBW/pRhOFo572JJPOser9ofZ0m3eFjLlYqV3HJ/Itdzff\nIEkLW3fMbatgXn/5S2OMMadfwr8TopCgn9l/BKcLyn1eT/6g1deYZPPyh4Vb6nv/DES6g9+x5PfL\nDfVlv6u6TOEAK3MypMS+Pd3U/B31NKZHv5ENVzdVryLo1FZLY5eAQ2wL5OV0LaRK/7nGqPFAeyob\n/s1kHSWxha4f9mTjr0AXZRqgW1F4THRlswesuWcgPfvf/p72ao4+/guN4acf6HmfvRCSZ8Gpjj9W\nIqRMVKISlahEJSpRiUpUohKVqEQlKlGJyjso7xQpk3BDtAMRNM7uJ0HCJKaK7DucbzRdhepGa0V9\nbc5T7j/mPOMeOueoJvXQYl9cKLMwQRnCAblio4YSKvwUD+F02VG0OlNSJI1EqlmdEyXlfOZsrueM\nr+Dv6Lyi/ignBGF2Td2cu6P71z6G84WzrMZRbGwGF8T4qfrlfALKIxsqZei+CbJ0Kc6f79za4rmK\nek5BT0xhv74+uTSZNedxA9R26HuL7EnJgf/mmCxxVm31HfW9RZYiWVfdQ7SRIaHqk13IJdUXS0L1\n52NFqPOoC3Xab5fdXg411qNA90sXiNCTKViTjS+SWSxwfNpwntvQvomtsTofoNADf5BVVZ9mcpyB\nraof0rcVPX34E0XwX3yGQsJzRVH7LV0/HCv6GRvI9jwynu6pxnKCUkGCSHYixrlxzkPG8ygQDFQ/\na6n2pcn0ppay0bOXOjeZhnPlybficonBj5Grag5kbsnWChtqdxOkT5DQOcdSnkws42TIYiYJgzso\n4jjYbv87NS21wz3U8/xQnclXNHy11LiGvCdhtLi9CDOwsqcJKlzLkAMCtMWaLFcOtYBM8U3m90+V\nANTUirP8/bwi5qtL/oYFPU6Wv/1KfTg3mjfj158ZY4xZgFCxUYeYT9RmJ4/azgWcBGRyhyi7JD3V\nvQTDv29QGgjVfjiDb4OouQdDhQAAIABJREFU6KL6kBjLD9VQ31kmNJ/jnHV1rtVHebI95fdQfCl9\nbIwxJgvCphbTmF7CQXOw0HNTqJNk67qv1UARrC/bNWQqg4yeVyDzkG/Dfs+58GZGnwmY/Q3+KD6Q\njY8uQN2BpHETmoQrOLkcVJuGC9nY5obG1lmpPpVNXZ+ow7FCvUcx1KcClNFyuq4IOiEJ58tNS585\n7xfgpGjDZcC4rKf4/UDti8XhO1kyR7bUj3ff03ikcTEvFlIlCFJw5KDeVUCBo8gZYw81KdvT/RIl\nODK6qGmtOqaYgNOEMV2MZBtr/NniBSplp7Lp+gNxgTy+DcJxpbnw+iX+h3lo1zW2c/g8lpfqS88l\n29/T9Y2F/MUtOKzWoMYGcHXt7cvPLrd1n8sUfEGo8RVi+v/4t3DjoL5nEvq+mtf8nk41dzz62pB9\nyjeVrUqBWu0ktMB0w7lHfcYttTMd6HfLta4PlbnKcKKsS3ruTUuGNTVIkJ1fqP+7PfXTisx10g/X\nMVBlWY1tElWkz/7fY2OMMXf2UXpLqr/6r4Wuy5TJiMPptV7JFq+vtQ5U2HvkLHie8JMeGdnEVM+d\nzchM595s5UbrrvEDVANBfHooGK0G9DeZ6SAWKsrIx01H2D6ccHm4IsavlW2c0c5iTPVP5WXra1fj\nHbjwK+HL1pZlfHgpfFSAUuwV0ptq235T6KrORH0wUBeZEsiYUDxniUqGDSIkn4OXAkSJC2Ikxoat\nD5Ik6KpP6/c1D4uMiY8fDybX5m1KAs6/GFxRK9BC2Zja1QN5E4Mfox7T2LTW+vsha3IJONLVP2tt\nTzVRPRqpnddP1ecZeDLSB3qOxZq7Zq2ugfyIO3CKsU92kePLOvB1gByZwgu3Bz/Q/Fz/v/pHdfw6\nDv8d3F02yKZ0Bf+J2lMMTrHiXM9t4C8nPvtTEIUh/10JuMQMrh/P1XMDVAp91oMhPIG+q34cOapn\niJ3NZ0Cko5qXmGl9XdHPi7zub/H+YAd9E5aC6323riXjPMeBD5EnrI2+j6/1XA+FsnUhZm5aWld6\n5hgVtg9+Lp6NYk37vwp+4/WZuLeCrmxwncOfMJ0d0KA2nFWAkkwZ7sP8Uv4uBxfheim/2O5rbJL3\nNLeGTCIvi5JZiKxD5SnBfA0W+l0bxMWDXc0ZJw0nIDx4+7e0Pmy9J8TL9HOhKs4nvPucyPZym7LZ\nR3/9Z8YYYzZqsvn2K+1VRs/Zq6GWtGQdmoUcOru6v8cYtvpaK52krm8ylzv4gt8cqd4uyooZOHVm\n1+qXyh1QEdtqz/N/9wtdB8K0XFB/9TitUf1YCJwhaOyja627SZ85AUebv5at+9bN963GGGNxgqB5\nH9Wl/ySVxc//TsiYO/+t+r/6UON2dKx9/+Xo18YYY27v4suonw/y5fSrY2OMMWtLtn7/v/9zY4wx\n8bqe0+7qXfXi+g3H57fftMyd3Q1T39czL1+oTwfsOToxkM1wPO3dlx+7v6MxftrWmB8PvjTGGLPb\nFsJk5KFi9ly/T8GLtod/z6MoO1ryjjhWWwt7vGNUNXfiC103DlXjRlqLUnDX+Lxrdr6UDb/3PY1d\n6p72Rk+u4d3ra60qZfT7tKU5efBQY//sV7LhDspel6BIPZB+M+bWLgib+7fVxycXxBee6Z0wfVv7\nv9qu0L33Hqo/ek6o0vpfLxFSJipRiUpUohKVqEQlKlGJSlSiEpWoROUdlHeKlMltKzL16BNFUVec\nR55NldlwLkE3/FaRuhX8Gvld+DA2FakqbyiamksrxjQcc05uzsFoUCEJsmoW4WaO6poMUdE0ijLp\nkOvFJepLVq77NZwISAD5RF+Pu4oS25xdzcJdUM4oqpzZURS2+UjZqdK+IoyzjrKPvStlBGZfKDLX\nPlXEb9ZWhLHYUHSzvqMIZblOhvxA7a5sK5Ny3QVVMlNGpg2XzrTbMXZOv7H3FX0s34HrpUimjqzI\n+bnOBY76KNUU1MYYKBzrsbI0dRRX3DWqTfBkWEmQD6CF/IsVdSIiu7x5tsEYY1ZET1Nr0FR7ivi7\noIasmUzYIYt2NVK0MiCbNgeREQO5EyOyvP/eR8YYY4ofUV9Hn61XZK1RAxm14JTh7P7wNQosHUXu\nu6iEmIdo1W+rnycWPBNwAOzkZKtxzvjbnJHdIup84XMu82v1v2nNjTH/q3kNW7wNX9LtTxR9PfyR\noq/Ll3ATwOmzznLW+EDjtPtQTN9jeJCmcB+s5vCPTBTh718oY2FVdf+7KPUsURzogM6awlJfjGnc\nZyh/jY6wWbgTZpz9bXwEx05ScyaTBvWxqehynudZEEIVcyhnBG/Ogf+pssro2qWvui2Z/69hPa+n\nNYZuOD/LanvjUM+u9jT27QkZMhAT1X3QVAXNs2JDbX7/sSLw2URoi6hZvJTtmLzGMk02ywbV5SZ1\nv1EfFnf8x4lPVtnW39UsGQq4YkYDzWuzoXZ12mKtz4+wqbLal6zquVtN/W1Qhzskm7NgDtbXyhAn\nJso4ZpuaIwU4qIwFQijkmajCkWCrHRsoc61rGst4oLk3HJDtGnLeeQPbjKkeIxd/tgWHz235v60d\n9aep6Hd7h1I/mpH9SSGTMulrTtoevB6Nt0PK7N2V/81WDtVMMibf/FspF/Q/A/mU03UPyhp3l4yt\nD6eXjcrI3gfKfGS76r8vzuW/V2dqV4pM69Zt3WcIMsYfojIFqm5UwNecXJpmQjxDyRUZtxZjw/lo\nB7UlmzP5cRulEjhDNh5oTa2vlDE8P1V2qsmYF0ArJGiTA0oodgGas8YY3Zd/9JLyb1+dyS9Zx7Kx\n+gON/e33lTFdNmU7C/4/PQUhiDrQRgzOFBA/1YayVzZ8QQtbc9cDydcFAbiGN210DiQTdMMStOsa\nZGHhgLmWUL0qB+HaHyJBblbijvyUx5xewTXWyGjsi0WQK8yFOWiJZlXfOyEPCkpbVogGWMC95mus\nt7a0pvepXxIkzfYdFBNvH+rvhtaJP3yuemUD1rOS+jkOCqWYeKMMU5mOzcWUrF0NnhZ4PK7hTGiQ\nUffg6NngORNQfSsjpM4cFME6Jrs02E3mUO3yQbGkBvKlYYY/CYxsbTyzALWTxZ+tUGTpn8gPXpzp\n00YpxEalZ80aNR8pq7uewcXVVJ0XoHgHZEBtgz/wZYuhgtUU/qLBK2Wflwt4lhaaI2n/5vxlxhiT\nAtFdgbfHBZWVgWfNnaNKtwr9tr7fAWFy91PtAfrwq80mWuMPi8reV++Lg2B2rbGKww3mzVkT4TaJ\nV2R7SRAoSwMfnKXnBklUOavqfyuQLbCVMrmExjgeCrBArZNCVWRVgU8E/iEb1c8FtpyAW6aaCtF9\nIDnhXPPZc0xAP9hFUGy2nrsC5WGDqBxcaw8xR12rHq7PZc2REUh3l36Mh2hb0NJr1onZheoX53sr\neOMD4gVjMqBO3HDuheg3eAadmT5T7FVc0IDp2M33JI0Njcl99l9uEqVUOBJfwnHiXssGqyAcqIrJ\nky+PMRYj0MA5Bm8NKjfuM+85beCglGhlUGjM6rkLkIkpmznF73yQbk2Q1lPmVGwCLxPvVh2UsHrw\nIt36SO0bzDQmRxdCcLignPLsR5sfHxpjjNmoaS/w+7/7v3Q/9kojHMiHt+R/Mk1QS7SvhFrfi2P1\n0/yYdxr45jJz1efoM72DXbwUSuHwJ6DiKppT/kBzrG5rbV9ea452UEv6YZP1rsskyIFMgn/w6lTr\nwAglr7sfybfkkpwQgJ4osbi5Qpcxxvi+xuPjT39kjDHmCScKvnqm/szc0v0q76kdW1tCdZzCXXa5\nRLUpr3Z99GPZWx7k1OhK101c9dPhHb1v1G+pvRfDkHzImItvxybTd0yhJP+6xd7fRWW0faG+GvRB\nGMK1eu9nqtvdQ+09Tr+Apw7kW5N9s3mpOnUG4sWxGpwcKWofZcPD5sAHFCJ0aj9ATYn34OC56rHG\nH2aLqN+V1MZrkCr2he6//Uh9dlg7VF/MQgVFzYnhkdaX7YJs8O4t9iAnIBzZ32Vcjc2z/1v779eo\nIX/60+8bY4x58IE4ZC4cceS2OiD5DjR37t+D12f4L2NhIqRMVKISlahEJSpRiUpUohKVqEQlKlGJ\nyjso7xQp00SrPrtDpnhIlHeh6Oh4oijs/FyRs3iFzO6QrBtnRocvFPG65gxx6mLIfRThCsgSFVGY\nschsuGR4UwmlCjzY5q9bZINgZY+jThIQMVsgExWfc346pkhikNP98pzj8/NEUeEJMHE4J+a63wC0\nxQCEi8d50uJDZUVrD0GfxJRZyIIk8sjmtc4UHZ6Mj40xxiw5pzpeKXo68PT9IhuY2ibZo7vqg63v\nkeWFW+QaNnNvBDIlZKyH1b1cy9CHZGyJ2KfTqpuV13Vtzsstj5WF7pA1dttqc5FM6E1LgnPaHfp8\n1dJ5wiyM296W+np5SSYyC8phEw6XmqKsjVuKloaKMQtQAYORIu/9M9narMWZ1RcoOrRkaznObY9X\nstUkUePkVP+fodyyAQLp8M9ASS1RREhxNhaJniVcM5ORsuujl3p+60jPDxVxzED9V8jTzixKEvc5\nS5tSv0y76vdQqWDR0XMur5E98RQFdjrKnMenIY+J6hEqMlgJsnJkHW34TMxK9Rt04WNKo9oFAmsM\nN055W+PSQO2q/KGi5yaj58TJhlZAxHigRbw1GX+QOE7qXz53+Z+X7Q1l1CZl2db9DWUaP/ipsvjl\ngiL555wHnvcVgb//CfwYqGRUXmpMA6M2JlKgnSw4EThTG5CVPj3VnCkWZBMjX/7jNspjU/xQHEWu\nj38sFSU3jSoUZ1J9/NaLb5XJzRn1iX2ieoVn+QPO5l51NL8b8FdMK/IDPdAE6XLIA4ISDCiLDDbc\nHYV8GJoDW8+UGZk6ZNOfyv8lv6d6DOHzIJFoFh5cV6Dkarb6fUJ2pk/2bDshH7N29X16pH7qwMk1\nhJPgtKN+PHmqDMQCVSiTli0ViyiIgUpAUMgs1m/HT9UG6YIQhZn8Xs+PD+Qr6kllC+NzfFxGD+qd\now6QVX9kJxqXRlzXb36krNMIDq+BJztJzkDfXckXjlryNRXmVjqv9v3oU2V6nleTZtCH9wfk3gQ1\nh8W1/ECoYkHy2gzhczjpidfmxbWyPjVQlSWSSKOWrqtYmufNbf2jUNb8nsDDdjVCve5SY7C/dWiM\nMeZgQ/9fkJnrviTDFkPV40s4ygZq2y1bv3PgKCmXmFPwIPV8+ClmyhxPUXBY2BpTByVBC5RBwgNB\nt9L3NRS+4vAEOTP9P57S74cnui7Ivp2yjjtT+1aOfESav9PwVdnsCQy8Rg7cLqO4npNiD1NMgjAF\n9etP9P+NTbjZ4B9yL2QbFnubfEa2XoC/IrnSQPtwdjnMnTp7hSTqUlnmhjHG2MuWCUa6rztRdtEd\n63d5VJ+aFXxmVf04BvF51e7xPNlFdQF/CraasdXfK/x1EtRBkFW7g7l+vyaDXPHXZjgJUUMudQat\nNSBjCX/axh3tw3yjZ/cvlVGt8vsyah6lGiicsdYK20I9Bz/qo1J0+7buF8BDd3bMXgT/nwS11dy4\nOQLCGGPiczjFjPokmIJIKWjtr1RBfGN6yZj8W77W4wv5uWkvVFdSP+Rc2UoRDq7GFmiJPogO1PWC\nLAhNFMIG2Fq4P0zmNcb1WMirR6YXhOGird91p+wNWGotxtwhY+2FyohLOBl9/CX9tgatloQDbA23\nTgLn5MA7tEKpzQPZkgNhFAMll0I1KzHU9TlsuwwqIMcesM/6OwM14rOeFWqa+2NQhJM5+/eCxt9Z\nvUEv+P7AGPgVAVcb3wXJilKlC9LHBgmQAM1g+2/4N/5UiZfgWppqT3B0prX9+rPfqW34kXJDe4Aa\nSrKDBegi9vIZ1gMP256Afs2H/DeO6jxN63chd0we3o4lyJgp6qsz+OOGKDHeq6Lyxh5nCKdkjT1N\nOFYXvBsxNGYDxbTrNryaqPnsHG7wOz0/C2/P4Fpz2bnUHHj0QPvhdVVrbxUkjQsvnQ9SpX0pfpLO\nk89Vf1v1q2xqzLPs/2/DZVj4+U+NMcZ88H3t/bKoO/0BHpAK49JFMbPm6z5rVFvbA+2/k7bmQgY1\n0DQ8ebvwnOR81O9QiXJi8s/JxM33rcYYM2hpvV7V9R7x4Mc/MMYYs7Wneo187aXyU/WnjZKcnT02\nxhjTG8JPCJfPnT14Xv6V9t2XX8PFthAa0VrxfvKxeAkb3pv6lpKWOftmYsoBvKLwqeVva2zuP9Rv\nLl9qzR6hLtx78ltdd19KWCn2BAn2q1kLlaTb8FlehNxXKBPm1Yfb74GAXAiV+fpbvRudfqNPCw7E\nmav6XMLFdwd5uV2UrMZwSg3hbiyhAFnc1pqX7KJUxrvc+ZFQSU+f6rqDssbAXjCHX8gWU/ARpW6p\nH65//StjjDHfsu9u/uTQGGNM/fufGmOMmSb1/HkH9Bkb13JN7yN/rERImahEJSpRiUpUohKVqEQl\nKlGJSlSiEpV3UN4pUmYIL8nkXBGzJCzn32m+FxVh2/q+MpEZECjpFOpHL4nCdhQxmxG5L3MG1dok\ncwE78u17ymCHKIqzPyh62HnV4veK8C3gxejNFUmzOUOcI5pa2VG9CqAWskWdj5+gnmSWqEdxNtUZ\nE/WF4yLMaExXKNHEUEC6pezmzp9/onbAqTC50HUvf6+I3lUf7gyUjDZqnMcE1ZAkM37r54ocroqB\nSYDmWcUVMe87uueYOk6452xKJmyqyHcypT5I5RXdc0B6LKDUz+zpe89Sn2deKfJ73Vb0cHShSHqs\nT9aH7NJNy8Y27OkF2M4511u5JTTErfcVVe02dd/L18qSlFAy6KEE0HuiiPOE7E+qRaSbZJI/B41w\nou97C0VvYzMQMZuH+n/IK1HWWN3eEv+Fvaf2l+7ouiqZzsFvFeV99VrZshhnUjtd3deuyYZD7oAG\nEXJ/IJvdf6hsUQpFnngCBA1Zr6AqG+9fiBdjtea6P6j+y1dkeuFNWl7KRi1X9U8U9ByEIIy9Al02\nUv0s0Gy5Bhn1Xsj1oHZsFjUulT9TPfJJuC4eoi7S0PcjX1H19Ez1mA7IaA9B7gzVr8NTFIPsm3MP\njedkl1AdOidbcXmteV3voQTVUvZ4TeZu44KMLBnN0ye6zgEN5PGPxntCfMRpQw0uq6fP1OfZlCLq\naZts/135g5BjZjUAGbfU/c5eyybqnIVNcpi/C5IngcKZ4QzraqTfb9/Wc+Kcp67dUWZiG36Kb5LK\nJpVrql+2w9jlUPICIdgswi8UqL6bj5RV8WYw+K+U+djO6/r3H8rG52Tvghjs9G3Vm+PKZptslZfA\nT8IdU7B13z5cV4kZKAnUUorYUhsepybKM8evhAAytn6325Cv6V/IRpart8tw9z/XWeMvp7IL70j3\nLQTqv2RFczDe1X2tQHPxAHSggUthBMfD4HNQXn19HxsrU7w6AdVCRnkw0Fwcwk1mbaPaMiXDEqj/\n859smtkvZYOFuvxacyA/5iZUp0lM/78g82g2NUb5A65ra2zCNW5rXzZy/n/8R7VtBkxoDL8NvBAT\n1qA5yLrnx7LtSRolL7LLCfzL4FJ9NwZF5PbIsILSqjUPjTHGdMnmX4F03EbNZxsOmvGe/HjII3KK\nX/aHcA6c63eFkn6XDvmErNCm6dMVvBU8f8Y64c3fjlPGjoMSiOv3KXgvgiVKauxR0jmNWbEJmm6u\n9vg5/T+DwlZsJP8WC2QDHspClx3182qq7KFbUD8uq2pvBwUe29J62j+VTZUSmju9S9brY82RO9tv\n8mvVYmDmIRprDXqEvVOxKb9f28DHrHS/BXuS731wn++VVbz4RlwOtaoWiNgMjjDWRa+ifoo5KMZ5\nsqsSKlbljGdWK9ZkG6Sv0dhZKLG47Nvmbfm//hiFKvxBbKS2xicaiy4KMd3nspEcSGdo8UwtxZ5h\noj7Psc+cw6czZG+SYIyyd/LmbUoBVNMOaC5nJhtM+vIrWVf393Pq2zwIkWVIefNS+0AL1NPtHfVD\niqz16+eaex1sP2/xQ5DXsRChgrqTl5fte6Bek/jLFTxuMzLJ8ZX6b74sUk/8NdxX/NusWyiXpVGR\nymi8PBQ480huLtMouSVC5Il8S8nWXIVuyORLGp8QPRWMUFtBjcqGo9FGiWw5BZGOmss0UD2CEB2X\n0/8rSfj+QJMtsXULtcAsyptBkT2TMSbmV40PT0sSriMDCixA4TMGCmwOYsnkQOYsbo6UyZGtj6fV\nV4Wh3jXS8Kbdf1+cJzn84Zx9ZRc1pGweJTFQAV6oXFbWWCdZi/s218OT0Y3RhipISA++vanGcL4E\ndVUCBVTVmupO4H6cyIYbW/DGzUDX8r6ws8d6A/fUdCS/WAadtg3iY059EnBSJY3G5LCq9u+AXruA\n0zBgDNIgeVL4t/bg2BhjjN3UXHv8od6NQn/UBTU1XbG+wLnVB5F0ytqcuIQnKc27G0ih7C3e4db6\n/VZV/jG7qX4JmBTThXyNtUSxcirfsoZbrApCPJ54u1fqa/akV79WP+6jwlRjT1TfEHpk9weHqneZ\nffPvUJYzsivnhT6HqOs+eiye1sK+9q5H36r+5yd6h7RQAi5W976ry8a9ujlpe2bWVV+c/Ua24H+m\nZ/3kf9S7yOYD7QdzY9mmc6rrA1997YMOPTmRDcx4jy8W4QzbkS1mR7Ll7lC/S3dVp2pZ+7AcvJsz\nTsrYW/pdxqiPph3NrVe8S+1+ItvZuKv6GTgIU/iV/D3tiWL4hRCxHAeZ/ezrY9XjHidUiEN8cyp/\nfDunOMTuxx8aY4wps09fTtW3F7xL7z/UGpqw5bf6PXiPnmt9K+TeoFr/ayVCykQlKlGJSlSiEpWo\nRCUqUYlKVKISlai8g/JOkTLtb4UeOPpK5+Fr+TB7z5nYR4p43b6lqO+wj1rREfwb3/L5TJG0FVkc\n+0MYpvdhEIcae4mayOUpeuUtMpZDfc5OFGW+QIHHItuW5ixZ5a6ilttbQqAU9hXZi28Q1ewoYnj8\nAoZwWOc9Mh6jniL/FwnOn29xvvsWkbwi3DEZRfBmfV1/NVEkcEUU3ONcpR0mAeMoE5X0O4vzmTXU\nRvzAMydnqOOMQe88V7Y+GddNAjKDBjWPANUgh/PKrUv1CZQjJgm7+jSBUtVK142HuiDk2cgcaAyz\nBz51h17+hmVpKZK9WQ5lHjhzuiAjSpbEgSOm+0Is60EPW5hpbEaoYUxB7CQ9RV0TnI3NF8jOwJWS\nmet3ObI8G48VcV5tonoBd0AyTUaELN3wpSLfBpTBpKf+6IBcSdBPlRLZHDIlu9jYaZ/sulGG1NTh\nYiDb1W/B6dJQPetV9fOrBapKHhxAG7KpLOeyH94Rn8mwqGzh4rWuH8EtE8N2HVj5z44UvV4VQESF\n6kgoMpRRG/FR/qlkOJNMdDm5CNn6UTEhO7kcgkBqKYOSAe0QqkelbP1+vg7zbH+65DhffTVSn/Tj\netasL/+QSWrsMxPVcUx2fY1aRBr0WGpNJmyuwWz19P/tIVwrZCjvPFSkvpGWP7CYQ/2E2lbiTP3z\nKQoxSdmCtWKuHJHteqA+94joW2Twsgv1TZm5uLZCnif19Zose+wOGdCinjdw9Hk3B39STjaWQLmr\nhK304R25eEmW/TZZftSTDFkjr6B6Njnr+y1+cf+h/t6cqF8cEIKxgfrrcg76CY6ZbF5Z98Vcc2OI\nkkGeTHnOJqMJorBQkB88JCOdwM8d5JS9+ur0F+ofOABuWmr419CHjIrywyTNjIf6lovyV41xS/uy\n9ZGB5yTMnjF3/LH6Pd6AuweOojTKFpUGvBxkwuMxtXvFXDj5Qufmk6WKmaCOdgmqZreiMd+6rzFN\nTnXvf3ophv+Gg893QQ8VNCb9hdqWhxtmBk9SLlAfWn3V/eoSXjR4MA4O3tf116HKnNZWl6xxAm6Y\nJAiSzZjGyDlUPbIoHGSqqm+mqLnX+rVs7Wwi5MX+HSGBdh6QbUNJwd6XHzxrkQnGT/hkctOO+tSB\nSyufhpvKqDhT5lBVY7JOv90WJ26DwFnpvrky62FAJjcPMiQHgpRsW8jNtTyBWwUUhGOjnmGBEiiD\nXCGrZmr8HkTRuKNxX8G9kEPBrASHWjUt3zNnfCoxuN38N8jCVTA2MU/jfnWiuZYoaPxiRr+7uDhW\n/Vos6Gn2DB+BrkU5woc/JbutLGEe5cc1qIWrJagz2p8K1N8xS/dbTbrGx5+u4XML6MO5C2cf3AP9\na+1JAhSearFwj6E+zYGQMSgr1kugb0FV+j5cWEn5vfbvhIyLbev+i0vNNxsMRwmUpwkREzcsM3iL\nLAdEiaW+yDPHvIXqV0WJ0oJ/Ig7v3NiV7aY8eHsKmitp9loO3FuFkn7XsFDrJIW6RmFnDvKkFDTp\nB415PK59o++jKgSCxcCVEipjegnZVMk/1L9BO4f7bJMLOWJAB8NP4sCVlXDZd8dAQzDX5iBXPXgJ\nrZT8biaj//uB6p3vszcAaRSD1y6V054r3H+7S36XDjleUIaEry+1QOkTfpVGk73DGHsb/2fqS17c\neKAplq6ew5bDpADUBChYZtirrkHgmOLNkZnbu6gGPftnY4wxfVR+dhp6N8nBxdi71tp/9oz9IZwh\n1lBj02ItvUA9yTCmIb9ZZiQbmtGX2RoIOEz7KnxngpPKQhHWA1UfD/fNHa3NKdD5yQx+vY3NwGNX\n/lBKMwF7lKCl++erGqNkFuUd1DyTSbV37xa8fsDZ5mdPjTHGpHMgNkAodqZaJ47hWrnzAYj0vUP1\nT0pz/MkzrZn9M/Xr9BWKPLxDVutqV93Fj/9Afq1a1lwJrtSu2Ih1E/87nKi/T5a8L1CvZRyEEL8v\nsH+vpFkXQbHNxm/UjG5SKjXtpVz2sAnep16xJ5y2ZJybSfhYskK2HNyHaw6OuGs4y06vxF2UfqJ6\n7P+N+E3u3hN6Y/kb7eGu/v7f6/739V5j3nto7PXMVOvF73hCXXjoXpyqr48+Vx3u/kxrUL72gT5T\n2mebONxMcD3FQSqSK0gGAAAgAElEQVReX2sNWm4JAbm9CYqrCd8ZfKDdjsY+hkpnIYB/jul39a2u\nq+/C/ccpgnZLbb28lI0zVCZVxdZBHSV4Z5vDt5ZJag9SgH+v9gzOMdQAC02N9dZcfXzSEhfYPeIK\nGx8Khdzpo3zm6PMV6pqHnKj55PtCA3++FHqr1/+XEXcRUiYqUYlKVKISlahEJSpRiUpUohKVqETl\nHZR3ipSZoGyQuiaTsg2LPPwXfpzM66Uicd5YkbAFaI84SgYHRLwslB1ynD1bkKG4Rvs93xWKAvEi\nM20pYpWGiXsRU2TQyqo+qRznC8k4+3FFr6dZRcJSBK8TnurphBwLQzLNZArmRD8TKUXSkqA/SkaR\n/fhY9/UvJ7QXdnzY+X2i0tVDnbHb/Atx4yQszjR3Qx4YMjOcI3XIvCdczzhE2ofPdc/LE0UlqylF\nP+tk7GwUbCqfkiXx4bHg98uW2rC8UB8MYJ6egpAoJxWBtxnD8q7qlFrI1BZvmZVKE/EOyMCtUcFY\ngjoafa2x8UC2rEEjvPpMKKwK2Y4V2ek8JDJxsmoJT2OwvaOo6CoOR0CcSPt7QvocfPTYGGPMfCLj\n6X+hjG+fTMcA1aQZSgzb9xUB9wxnfAv6zCbJph/oM10gA3yP6Kuv6O+CM6wmpvqssKEcKZA1Z/eL\nRdS00orGOiPZXmKJbV1zVtgoOtw9QqmMOTUDdXbpcv5+X+OWIQtZJDMQL+r7Khnu6oHaN34C6gTl\ngzjZvpWnfhiSifU49zmfyn4SZDvXnGndyXKevAF6hXPlNykTlMDWoAxK27KFGXxIXRRKmiAXeq9g\nQ/dBbxHhD2yQJRVUOVAmy6FUkk6qjblQ4Sqt5xU5p23mzBlPmYY0KAZ3CJcCSL0lSgoJMoM+mcC5\np4zCcAV3ACiw1Jn6MIA7wJAJdkF2rKYgDMfMMXih3KHGYDThfPdjtSPObUyopDUlG4SqEskus3Jk\n2zOy9+1LzakcKnPtU/mSYV+2s7WtbEwH3qGtY9UrmYYfI1B/hnwU+SxoK4vsHGpLLqoh7gAfA1fP\nJohHL+QbWr8dp8z2A80t9wTOsKzaZ5ahyh1IFjKi/lj/b4OsSuFPPTXbFJjLQQqUCBnYFhxkPc5M\nA7owRXhf5qDD4hnNocBHucHJmQfwDI3bykI/eyVETK8tf5PfUF/kQKZVrJAPgrP19Fl7CH/GEjTV\nBWtaibWWDGbjsWw1WJP9xia3H2qtyY7l/579XkoDAba6Jp/j0WdpZKFcOFSu4UTJbun74l3Z2tEz\n8R51fq/P3GvVv7Ar2yw1ZCM7P9Ya92iiPvvqH3+jfkH1Lg8SwwcpkqyQLY+ps3tjOG5mb2cjwwWo\npwnKEGUQkyt4MFA5SpG+G2Q0ZwF3mCk8IxkQMmkr5IQgi4eykAWHQrMsvz6FK8eMZVwOyKdiIJRE\nHCjmcqps4wKeliLcCn7tzTn1IJYw+ZL89Djc4rnqh8UgVKPSHI3Zspc1hCezc5Q1WijsoEBXKqAC\nBfdYsSE7dUDUeEv1+yKn8cjAPXfdX5t8qKZT1TwfOaAlgcBZKDelS7r5Gl6zOEC4ZFu2GrdQBwIZ\nXC6h5EgTSXKbKRnLEX5k1+K+d9UnSfYiFuo86djN1xpjjEnhv0dxrdGV7xAsas8KJZsE+K016Lb4\nWg2y6CuX9q/J1vds5jKIkkKiFj5R14UqRi7KOznNmeGCfetaz807aq9jaYyDFOpGQCYTC/VjwgJx\nAnKldyUbHcVUrzoImWv2bM2APQUcZeMRDQcBaNlwfsF5tnRUrwacM6Ouvs9ldX+7rkx5AiSVAWFk\ngWidxth7rkOEDfxOa5A7oPVS7POtNOsqCmMOql2hjzDGmFWQMC4IpTjrRxwOyHAKJpEZTFkoFq1Y\nf6dv7vOnyvVL+euzZ9pne6AvLRRY5/DFdZ5pPzZD2fVuUzaaglNmudA6UEKlyeYzZanv82vNZ4c1\nqBI/5Pda61bw4FRX9OWB5swyozaHCo1zsv13ULJcg14aXqvt5aLqU4Y/z6NPEqglleqyUY+9xgj/\neP8jVPFQwBp2UT6DJslCEXcN78f1GXx7O7L9xz/9udoxFnrh7OhY9WUNL691/+IHQi1UQPKF6qwx\nL9xna6634S/tnWt8RueykTQ8eIMZaqdbWhc3dw+NMcbYGfmuGEpxBkWuOBxAAftZ23k7pEw8q7l8\nb0Pr7eEnPzLGGPPsG50embwWOuPpr+SXV3DLJZKac42U2ndvVwjXY3i4njzF7jSc5qO/+htjjDEf\n/FzvCZ/9P3oXvkTx0hhjnv3u92bUnpudtPZx+38pdH36HP63BGrBV7LddV7z2J/B89aAw7DCSZVb\nIGReMQ9RnO3mhPTeZH/e3JCtel0UAC/kV5s7QvGUt1DP+1rrRutr2V7hQP5mG1WlcUJzaQVP2hpu\nnJ4HanYtf3j9jfrmcql3orvbQlEVd9m3Hen7ym3d9+DHmpPumfxoe6Y1OPcARPe21Jq8c913DgL9\nmyPZWPZH4vep7wtZZAWy5T9WIqRMVKISlahEJSpRiUpUohKVqEQlKlGJyjso7xQps3mg6Ob+x1Iy\nCI9Zz8lIrl5LYWI2BO1AtiifISO+p0hW80eKqK2J4Ltk53svFQ30vj02xhjTWug+HhwN2QqZ8S1F\nAndRvDB1Rc48MprpuSrGUV7jvFJ0+hnM42v4MnzOFify6KCnFX1uHOi5+R8o8riGbyQ2VzS6N9R1\n4+ewzRMFDhZEcT9QtiyzBafNPpG7jCJ3l5zdm3ylCN+EjG3JUYVjftys2qpTegxShWz8Kg/HTEUR\n5tKBop0bjxQtzYMYuXyieztdlEdQyZlcqM4ZFK+cpu5bBCFj51X3RI1M3RXnD29YXLgRYoHqP7wm\nMk3bEijuBKgz7cABc/aUSD7qIinGOOBcewYUltuAD+inKGh9yRnNr5RBuD4GCTP/e93H6PpxX33f\nfaqzr2PY4gvwCy1X6peth/AOxfXpc0YXMSxzNdH9M5dkgOGWyTR1/YJMpeWSjSqoPyfn+l0BNal0\nWRHz82PUPjhvPaWdzhClGFARMfg+EmWN+84mSj6fEJ0+UBQ4npOtjge6r73U+NoL9WOPc6DdL9QP\nSQ502qC4UjUy2ZuaqwVUruyGnne7oO89lMxiRvXsHiPpc5MSyCZioAf6cMvkjOo47uuZBVSJXI9I\ndQE+BjKvHudy3Tms6vAljDjXu7I0dyYeqhYumVH6ckUWfQlfR5KsUow+S6AQUOe52Rn3DTTGtzLK\nHPCnKePP8mSIV6CeDjjvvQIBmDtUhN+Oqd6THqpxAHhKnCM3fdASHopYrsY0NVe/OI7+TvvK2kwW\ncCTMsT0+sx5KY6C8FvCfNGzVxwHRkoypP7NwGSyTcHiRRdtE1WgEqqrOGf91L0QsKpNajGG7Y9RS\n4rpu5b0d6q7D2eYpaASTkI3ZcO04VygakCm2c3reBH6OZRt1qiVoMDLjdpb2MbdKKMatF/Ljoz4c\nR6AfZigFZeBmKIC0LO3vmxpKXwcb+px9oazRMqZ7N/eUQbxOyI+2A2VtMDWT5Hy0c0F2F/SAFXJc\ncZ+tpDKJCc74d+aax2sUSDL74g6o3NUYrZ/D08Bcy+1rjMepEGmBGsdSNvD8iRA+lZkyc+8fyuZ+\n+J5UR64Hqv9cQ2JmcLAEY9Vnb6LnBfCI+Ph928a203AT6OcmhUqJA4qqAjrCSb7dFicBKhYKGLOk\nX9cL9fMc5E12G7+7gJcCBMkizMqxZ4gVQMmuyJDb8tsePCB+GrSYp37MgWaoo95iod4yBg3hoJI1\nAblqwWm2BLVljDHT3KaxQMCuBvp9Br4jOwEXDzxUSdC6nicbbh2JhyVIoXQJN0XnRN+3yNznUNVr\no5r1ncIR4x9LaP1w8jVTRQ2pFVfbl/A8AKAwS7i9AlC6oXpHF964WBU/BGfJaAhnExnZLv42VtB8\nymf07FA10wVRskKpZQUCJFSKCkAx3bRkQVYCvjW5IvehL7Jr0LZL1vAxqiGB6lEs6+8p7V7DM+eg\nhpTHj/jYgAMCMpigFoJjd1E/GV2SGQaFsVFEQQwOrQC/X2vIn4Y0SwtX119dy69//UT75eqe6p17\nX75mQgbYZ79a3pZtzMjWZ32Qm1n1w+wlCj57yt434c04fiJnNGcPas1BlaFY4/uy7UWoIDlhvUiB\nevBlu2n2rCm4K5agkTMZOG8C2bwDYimWfYOECtKuWcI9Ge4Nl6hLhUidJH+7Sa1L6ZCzJnFzRFV3\noPnZrGtfufFA8yVdhEsQBaralsYmnQItxr7PQdWnjlrQPK/PLmtREkRkqIjoduVPyyHHoxG3yGvW\n0lAdNQaSOgZKNd5lrOAIjGObwUxzwoErKlTDTLIW+6Bq7ZyuS8WAvozhbQIZXgNlfH2md5kR6N/K\njtARzX0h7q4Ssp1rUBf3PtQ74UDVNV/8Uhw0ibFsqLYrm6pvoAqLSuGQPcoxyjylAJ5BXz6l9VKf\nwVjX3T3Uu1S9yGaJd8Stx1q3woXg7AoEEAibAHRYBmWwxgbjxhy+abk8UrvmMyFhyiAnb+1qDzba\nhMOHvd7TYyGJJieyr9OE2nnvh/IFh7d/ZowxZpUQD8zxH7TXmTuyh4MfSb3qo0/VvhffvkFtxNIX\nZvT60ngJ7TmSFTj09tWm/YJsOSiC2kSZywFhN+/xvryp+VrIqQ3+tvo2jhpdsND95ihvpTZlc1tb\nINAvUSs9Foqnugm37H35o/YrTn2A9txACXFrF24tR31yPSJeMOG0ARDwZUHXdb7WmpYDqV209H0S\ntK7naEwqd98zxhjzaFNj/uRYc2Z4dax2gvSplmSLPmjm03/7H4wxxvz7ZxqDOw+1XqV3dd0fKxFS\nJipRiUpUohKVqEQlKlGJSlSiEpWoROUdlHeKlKntg1S5DUvyC6XN+mQye68U1SySPW/CY+ERkSpt\nKHJt7ZAhnis6O4IfY8lZ/QmKQNdjoT3qm7p+e0dR2upD0AIfKZOwhrX5/JWiktOnivDNB6pXnyx+\n94miptcXKErsKTJY/eCQv1XPzVs6N1nYVv3XWUUUL357bIwxJj9ThuLVWBHAdluog9yGor8HnCn2\n2oqOv5gIQZSEnX5AP/W+UT1WZJQXu5yZzSdMpqTonX1XdfkxkVKfI5DzGNmYNEiPgaKBa7JVizM9\nY855woxL1j2vvkzmQXQUdJ+MTxaYTOUELoKsp7rdtMzbGvs+5w0T/H5GlHZ+rD5LbHEWFu6ZdBPN\n+h1FwrP76ssi5x6XRNRbY1BJZN2zIHwSPUU1A7JYPbJRqZCin/OQfg4EUsj2zplcAv9mBMdO45Ey\nxK21orN5eIvy+xqP4qZsbqMJSqGijECYybZAklg99XOf89KjBHwcqIOEDOOvWooi1xrKlq1BPfhb\nytjE4hr4oKH+Ku+qf2KM46qIIs8IJBU8LK9BBN1rq4F1T+M/pj9npDay28oc7O1oDuyg2NPr/5fc\nFz2yU2tY9E1M3y8Tb9RE/lQppciEplRHGwWBAWCbZY9sMwi7ZADiAZ6IOGfRvbIyA7v7isjP2/IL\nTXghUvBWxDOMNcoBBRseppb6jkSnyZDNt8lKj3ua1x5qDqftZ6o3TV8sZMtlslLdQA1YgKwYTmdh\ni40xxoxAXqzgkPFBCK0yqueIc+KpNYgdOGZKGbL2KPM4I1036OI3XDKYrvp1MNT9i/B1uKiHZIq6\nbwfVqh0UJnwUCC7I+k/nIaIF1BXn0XcZryUKOy4KA12Udxqc8fVC2w1Z9W3NkZgD3OyGZWHpue4m\n6wTKEWl4QFzmkD3XHAk4R7+VlA3nHqt/emf6fftE4zeCTyW7g2pWAZ+zBWoFZKY1lk89QS3AXJAR\nT8vOLi7PzNHXys7UDVn1Df0vX8JWySrdJtuShJdt0VSdG4YsEIiNsyfKct9OyeZD1FJ7If8yfaHP\nwiaZXKARnafK4B2BjLg61d+3WeNy8H9YcCDMyUjGPNnsg02p9cRm8tvthOpZ29bc2tw4NMYYc+5o\nLZuHvEVPZUOJ53DfLLHl56DCmHsu61QZPpKAs/ZlOMPWVfXbd/76hmUNp4xrsa6BvptW8Uc8f51W\n/3+nOgQCM8Uc9auooKA8tua6kPckB3rDxa/boCEcsv5OUnuhOHPProF6QHHMyoFEgXfFIZNujDGz\neN0EcC0EJbgHSrp+gWKajX8djTVe/cGc+6sfmzuaizacBP0L8UmlHPmidAnuL+wqvw0vwBG8fxU9\np1Z6aAKqNjjXfF6k1IcNtgJx0FeJMRxY8Kh5IEJslKHmcH2synrmgjb5zCsrgx8JEYcoEiKSZkY2\naEw4SAolEIJBx7xNcQMUBtchP51sfJZCmWwNChmlHAuERQ6SnFEf/rvv+CHkJ/Jr+C7G+j4POjZE\nWOZAvU7gPvNd1hUUew6y6o/yIfwXcHdddTTHXBCSQ/hCAlCtxRxqcyBJH3wqFOsH72mu/mGImh7I\n8ACkpMU4mjQog0n2v2jf/r5sYjCUET37WvWIu7KDRh4VrboMJNmAM4zxiWXBwaE8uYLzMQZ6IRGw\nd7Nkwzk4JmfYk4FHxVrIZxljzCQYGQOqesU4BQYUXgXEDf2xZj1Ll+DSMTfnlKnVUNSq6xlOR2N5\n8q38e/BKfd9/ob9NOuTRZM9wrf3bGPTpcBRytQixZ7KyATsjm0uldL8utpmCt2i/LpSBAUmdhNtm\n5GuvUb+vsd6sagyzINJ78HLsVEGox+Gk4XcxR88P4Jxcz/BX8PdswskSYBo95qhT1v8LZfnPCdw5\nL18cG2OMuWZ/f1DTu9kl+81BV/1ya0NcY9t39Dnpag3/+jMhQVouto9q0s6HqKYOdN/KgebA4Z7e\nfzIVPX9wJGRnf6zx2ELN7svPn+j7I82B3P/P3nv9WpJl6X0rTsTx3txzvUmfleW6p7qrpqfNDEcj\nQtSAgAgQkP4rCRAEQQ/Sk0BBEkFRJAVyKGFsT09NV3eX6cqq9Ne7470/cfTw/aJqRmA3bz6lHmK/\n3MxrIrZZe+191vrW98G5tsfnqHJQXRF8DuoHnF03a2/zWfHFoebn9Gt9Pojt6LNnIan1SVfkIzY6\nWs8nfyOOta9+Lq637/5Ue+zH/5XUlkqln5iZWb6i/jSaet6rX/7KzMyqOxp/KZX8pi8Hxaq5966t\nxudvH+4TP64xriLyYxX4xDL35C8OfdnmxaU+X+fO+IwI6mqZVN+jQCPLb2k/9UfaX62m/FEFG9zB\nn13XjszMbNTU59pKGSXeh1rjXkdrlEpp/+Zc9XOA2mX0Wrw8h1Qj7GZkk+spVcL497WWAdqsEAPl\nvwWXI24kB8Jz7/2PNK4HWvsXH+s+3+Ku5OeE2Ak+L4xy8gGHrzSPPz/VWux8PyB1/A+3ECkTtrCF\nLWxhC1vYwha2sIUtbGELW9jC9gbaG0XKjK4CNSVFWccZRc68mKK5yQKZzYiikBMi2BEi5AOUGYYd\nZXFmbRAtK+qtqWWrVhQ5q0JFPUdpIpkjO4W60TkcLpG2In7zJtHdmKKsDrIl2QpojLvU3ga1d9uK\nwpZ2UBHJKgLXiSja20epwF0qBFev6fuJhd5f2acm+F1xz3h5jTuKTnqfWrsJdfdOhBQQagMZV+8d\nkUmIGgoQ2bSlUKba3FH0Ln2gSPVyrCjg6deo8aAg9fyFooDxLqk4MmtpMoLLR7Cx5zP0BRUGsuyt\nAZnPGvXIQz036t8cAWH2LU9DnzlIUS+cNDhi4GDZJsuzJFI/SmnNUzmyInDBTCb0nyjtpCZU1WMF\nkC1CVrtJBnpyLhuYk5VKMt7731EEuwTvx8WxnpMg2jtGeSFWot9Jzf+yoKxNsqCo7TwOEgV0QfNL\nuAvOInxlPk9k4+2pbKaYlO13fbI467LJyh3Z+PArMsTUrUfeUrT6LSLzAZfBnIzIGCTShCxT71Dr\nH0UBYlIDPVHT+rVi+r1NVKvydxXBz/e19zLUQieG1M+jINSog4a70F5LjuCmGGiek1GY3Is3R1T5\nPkiMeIY+a253djSHlbTG7Pb1DtclywOqKgXSZXr5SzMzu7qQLX/xpSLtW3CEJCoay2SsvfP8UNmH\nOmMdoK60N9Aa1wbKruSogV9V1L+teygGpIXMyxb09/0LbG6lNUmghDLfgeOmjprHPrwWqMYt4oT0\n9+CHmGhctb781V5OKKX6SP9fR/HAJYU9g6doAYpphAJZHETP1REcLMiMROHISVKbm0xpPpJlOGBA\nBi0nWsNFBu4WOBKG5/AdoUCRyuv34viGCVwD18eavy4+ZVmCSwCuiIH7elwQHspiH6wrm2TXmq/O\nJwF/Eez7z+F3mmh+fOrN86xX6T3N93XjiAeTeUbFpT9T1q5bhyvmjvbe+ofKTnm/1nt/dfaJmZlV\ny9qzUT9u3ZGe3a8FmUe9orXQ9x//e9WKz99CWdCR3zk5/rWZme14ymJte1KLy23L7xVBWmThEJmA\nDrv4TGMYk01fLyqzOPY0J5G51mrvQ9VVLxaam0+fqx/JCf5hor3lwK9x+46QgSP4meZfkukdgU6q\noswV05wkcqC6FtoDkSYcNSPtuTyosxw8EYG6UhvOk+IyUM9jT9ThVYt9mwm8SZtNUdZB4cbzQHyC\nnHHHZP/gHVqAHpuwZxwQPI6n8Y7g+YiMUb6B98LPaj2iqHj0UCuaR3RO+m3NR4y7h4/PKkbJ7IIK\nyYP2mE6/5TJYjtK2KsunZTJaj74pg97irrM7Zp76nOuefEC2qn7mQLy269qDTdC7GbjjDGWczErj\nr4I+WK1pXcYgn67TeUvH1JduBh4dECwzkBoeyIg5Co6rkZ41SGtuEmTVWzxzmkGFByWUSFp9XwI5\n9ODNaMNRUtyRjaY5MyOghdLwXtj49XKTvsmPjuHdWKEO54EYGbt6XhZ+nQXkMw5ogz4qSo2p1npj\nXWu6Yi79GWolwG2j7Ll5Ds5C0Lsumd0S349s6/+LgZ4fqOllUHRbeaDAzjU/0TyotA2tzzZKOilX\n4/MDToYAucTSZ50g06v5jfZlM8FdIpeAj66hftVQpJzD+/Hwu1IhicyVAa9jY7so+EzgUXLS2OhU\n58/C9HvFdRR12CtLB9WVbTgq4F/yO7KbQfzbjznd6NQMENvY1N8d1PZWQ61jgLhd0I8AjbIYZu2m\nLQZp4Nmh7m2Nz3S/XrY5O7m3bW6Lp+PgPsiFLY2tw5ny4kJZ+Nicu/y61nL9AP6LgeY4m9FzIyiL\nQWdpCxDP4z7on7HWOEDZFxLw4HVkc70T+d9eTXM9jWpNsnDh1K4110W4rSJxPWfYZe23tBdzcChe\nNzWX7ZZsxttHAe2O7iTHqNx9jRLuEERPl/Nqwn3X4Y7mHAiNMMro/c9Q/3zGZ6M97rdbP9A5dndb\nvEa/hJPGQXmrAXq497dCprz61Z9qnGVs+QPuOqDVDu7Klu6AsKnw/gFI0BHVGNPoze+tZma739M8\n3P6h7hYTVEx/9edH6lddaNztd/7IzMyqKZ3D74Ho7/9c81oHZf0K3sE9VFNvvQ13T0Pz/vSLvzUz\ns4uePmck/o5Jp7dmtjVfs/wlaCj4IMubWtsG3FTHX+levHlPqkOJPJUgfEZY8HnWAfk3hf9zlZVt\n+Rn9/npKfXvR1N1jDFIyBkdL0ZcttK90t4Cy0SIZ+fM8d4ZhA5VLR3ssk9NaVbIHeu6V+nH9nM9o\nfFbMFWTTEdBliV2tvUcVRPdMcYDn55qrSkLjzt7X3abK3aJ5pd8bnoNqrWhNq29prfpRfX/aka2s\nFr/9ThIiZcIWtrCFLWxhC1vYwha2sIUtbGELW9jeQHujSJk2SI8xCjspsjApIkkbu9Rb52G2RuWo\nTUSq0xIXy+oFmeM0NcdkNrM7ysbtv6/6Q0QzbPi1ImYBp8CsrtjU6jMyFNShL1uKOsbpT5rMRBb+\nD6dCvT9ZL5fMT5A57S+U7aw/Uca7d0i9IXXyxU1F7KIVfa080tf1PfXbWWqcL75QtHjSoR6VqKwP\no3o6C9fFXUVDc4Hi0JL+pKOWM81hIqOsTZKw4zn1fB51y+OnipI2v1SEdjLX2Cu31Dd3Q2O9856i\nnZtvK3I9RmHk7AvVz52/FIqg8YzsBRwwCRSzbtoyaUXqN42UaER/n1jT96triqqu3T5QP4jW+lnN\n9XiocU3nWtvaiX4+vlBU9RxFlgKR+mSJLPxKWZyJp8h3lXHHQT+V7pNZ3IAr5U/gFqD+nfJLK2ZB\nFJmyRPl19Ws60trVP1UGsjtTFLVS1Xhc6udrV4ouL1F7KqJWtIntuGTnVyhCJKpalzoZ7i2QLA7o\nrSFojVZX0ecAwTK91Hu8ifZSlBT9OKK9Mj+Hv4Rsko8sST6m9bdb6lfnGcpnp4oeDwZwOzT03umS\nDOoZ/Cmefj8NWmRzU1HueeTmyjrjBWzwA7JEKyL6KINV17Umyyb7BU6WeSD3hnBJsqy+3tnVPkqj\nULBOZL3my8bX2K+xLJnImSLuF6CNUiVF8ktzFAI2sF2y5+m41rjvBPtUa9UDjZZMoCr3vt5fvaca\n2GkXVNtjZbFWqBhlNrXmb1c1kJIjpM7uXNmisqO5PTkSai0DSiqL8lagQpeZwn90X6innQJ8GA6c\nKCjJOAkyuNSDp7CRKIoyhX35muqabKMFeiqG2lQzdWRmZltvH2gcc9nm4Svt0bcqym75sOJ7fB2A\n4pqBAMoG8lI3bMuB5mvA3op5Gve7b8nmxmTnrkYaT6cje5q/kE/rXYIe20RxJ6/1H821p4uohgBU\nsiUKbBdPlQk6rms+374Ln1dB6z1s6O8Ptqs2Bakwoa57ltZ+iYOCXJi+H/BU7OwcmJmZM+UMausd\nDooo6QTZbHiXXBAfW78DaqmqOX3xS6F2+qa+JtLKBhXg5yiBMuoBTTm7UD8SGa11Cttz4CxoXGpM\nJ6j2LS5k63fYG4FayCKlcd3aU8bYL2lvnF8eaRJRaojlUE5D8SsTiH3UUOpJ62zccMmoghYdxgJ9\nppu1ZFXzmMWxRCkAACAASURBVEM1MBZHVQjVwb6hyNIHqZkls+pTR59SJrsP/9yIO0F0wtkPqm6V\nDpTgQAODPEnA4bYC6Znd0DqPByAnoxp4HBsesLdj02/za/PSPUuhRBFPyVf0yNJlQGzm1+TjfEc+\nbTBF1XCsvd07lwLHDHRhibr9PdCC3a7mu92C641s4KoNz11P/SmMPas1QHaggjGFaGIJEm+AelsK\nXoZkFS4ZMqzRuOZi6Sljmc9ovxZRTVvCV5HIaS4WoBHifc4WkBJZ1Ig6gH+9OWpQo9fjpvJj8q/x\nESpSY9RH5iArUBNacueKR2TTE9O9rrvU3QIhQnMq8gfxse5KAerJLcOPNA6QGyAFUbxJILmWwhcM\n4X+qX4JGA91bLOkccunPKgNnDejmXAQk5Br3y+aRmZldNUC7TvS+JFw+U+6VbqD8COAoMoNPBB8z\nAwU2qqk/awfaGw/+QHxTvSv4S/5KKitLVKuSGdDRKfn5qCs7mYH8zoIInczIvJueHytq/vsg2iNL\nVAn9b++cXq5lfcbfHcqesmWQkDHtUQ+Z1fSG9kjS0ftmr4GCGMHpd4HazwIFqXu/Iz9XSWlNkqC9\nfBDbT34m5MYoJ1tIljWX+YMDMzNblgJVM9n4YqkxN681llhTa1D3tF+7n3E3ampOJ54WKxPT3432\nUIKdaA9mQMDE4V7ZgjduzkfFEXx9ce5UWVd3j1VVfmU9D5oY2z56qjtHE7Wi7QroJQPpeY6twr+U\n25KNJBegWK9A+IBg95ag7CAMbHd0fy+CNlt/pLtSIqK9dgY64viZ+rFb0mfBzCxQjtT7N4rwf74r\nX7ODWt2zFLxH+CYfLsfnddnKEFUkLxVwVt5cocvMrHYtP1t5S+/dvae7jwci9N/+t0JaffbP/rmZ\nmaVLQqfsf/gDMzP74L/8sfoF70mswB0LrrD8SL7q1oHspgyasA4Ke3rY/KYv7YuI7T3ctiZozk5W\nfufuB9oHtxbyY3/xJ+KzOXt1pHdMZTP1E/mJVJq7/bpsvcTn06uB7k9n8IDuUG2RLcov9R7rruCi\nnlR0UZlLa27a8JKWk/h3zl6f+9fZC5Rgo/r7rRyoLWyzz3kygTfJn8o/JFeouMFHt3db99YtPvO9\nOBQq+PoLIWWcrn4/sgqUdZmvl7o7vTqWTb73Ayld7b8lZOAA5PwoC+Hob2ghUiZsYQtb2MIWtrCF\nLWxhC1vYwha2sIXtDbQ3ipQpUJdXJHvWXgY657DBU584m+n/0ytFwBf8v4teeHOsSP8mdX+pLUW4\nEluKkA2ozXW6ZK+miogtUDzo9xUR7D9ThG1Kdi1HPfYC5YtCUv1MZOG4cRRFzcIKHc0Q2RtQB1lT\nFHUYgVeEzMKcqG+CulM3CZs9SjSTuqLcQ1Ips06P/ivSt0zpeW5VEcM8ygfZRyBsHFAONY1j8Gxq\n5w1F7xooSq0orI3CiRIl2xIPVC3gPJmgUFMOasiTimgvyfz1YUe/6ikz0GHsxt+lqmQ/ZnAarL9e\nVipdpB5bQUlb+qhIkQkdjTTG46eqGV2cae5ePlF/HBBBkbxsJpaF74KI9wqEilvQuPPvwpGCakY0\novdHYXUfd+AHmsDUPyYb5soGpmS9PV+R8+YA1SoUxPpkmOcteD+u4Y5gfJbQmpdQAKpQe+tW+T7K\nOfOibCbI+mc92W6e6G5sDJcMqlsD6tsLbfUvg5TNDBtpEd3NULscK2r8ZdBqkbfVQX+kv8tgsw4Z\njxxqW7UFmdIzjTtNjXN2TX+fr+q5b6EsZkSZYx5ZMFAY89nNs1JzT2scd0BJkYkNVJhcFGkGjtBf\nU5/MYgv+Chc1H/g7er76ECtpLH4RVQ1P+6+sZIw5ffiBFnrPApTUPKk5LudlU+fHmuOXT8Xkv3tP\n3683ZUM7Rc3FV8+UvUjilrsr/TxVFeFRhsxAG+6ZzYT2+zxA9sXhLPBBV6HIsBzLNmaOMhlL+CVS\n23peaoWNYFvVojIjeeq4ByhAZMgA1+E4KIEQatXIeGY0T81nyvY9KYCg8VE3oo7bnWkPxVqgzeYo\nugQ2BX9IjCyds9J6bRVAW6FyFYu9Huru8rH23vP/VRmN2v+s/2dX8p/JtjIkK9SUMsy/j4LcfALP\nSlOZHgPNMEfV73Su86gywIdsyS4mM81z2oNHoKJa44d6rTW+wifMIrZ3R3PSgDesBqdWp0lWOAsa\nlAyiA9/DVuVAXaqgHFXTuxqfKctzmNX+9pjTJBwDuUf4j/v403M4B0y2cvxKttEBkbKxKdu4e1cZ\nzflQa7bCVjJkRJOgr9bf0e93oyBmZihcddWPUQMOF97neXp/D560gqbY3LhsZEm9d3Rdzy+vUFZE\nWSwS1Zp5oGYdfMJN2wx1ofFE/Sui2BOfgRKIajybB5rnlsc6HcNzBxIwgnJXwP21RPHNg8Mhm9Rz\n6z1gG13uPlENeOAoQ+ovQTRFQPzA57SqyPdE5vIB9cm3nDIrv2pTlMl6qL4kOSci+KglihNQ51i9\nrj0dcXVuxtmDEZTS1rlzrEALeiBjS6hRba9pvlbwSY1QYdpci9lgqb+dktFcq2qMtznbDzmTECOy\nSnB/0Y8thqpmJSVb29jR2JJkp1sRZUgTIDj8qOY45WstZhdky+Fp6g8D3h/ORDgFbtpWQCsXURQL\nUW+LzbRGY+Zu0gnODfbUKPCf3K3gZhnBqTPEdgdT7ZV97mZ+Qncab67+z7L6vlfUWra4Fw8GutPk\nPdANs0A1CCQkiMdUArRXHI4ZOGQyOfXfA9QV68GZw73Vh1QmhZpeAlUkTNJWc1C0cEK6qAaOl9wN\nsZ3zWmBL2MOa/p+MoR7KFTGZ5o7p6KvjaJ36oMLOQGEU8IlZV/d9b6h5HoLWGo7kl83MvErHHn0X\nlRaQTZmYEPfzE6FNFg29p5LhvEXxMv0aQm61FtwrW0KSHLwvdFCCe+T5L/SuAVyEs7rWbh0ymCRr\n6O3L1i6pJrh4rL8bgoKKgZ6NojSb7YG+BeGYn8vWV5sgYNb0GSnHZ65E6RvYmPqL2twKrqkxyodT\nlAl7Q6oUTlBu5EyMxlEkPJKNDlFp8ud8lsNfxkt6zsljkHaHWkPLyZ+t5zWuSUeoCq+h+YE+xFYR\nPhudaT62UbmLl3V2F0E1Xb7UXat2zN0Q5awYd5khHCyZ3PTvzcMmnIy9GZwrIEPHK/Z2R0bAxxDL\nrun9JRBM7cnNFbrMzPrHsvnzL3XHW/xQ/XprX+v0kx8KRff//ItfmJnZ6dlfmZmZk9W8bu3qrlG+\np3Mgtct5cCZ+xBaKxktQeqWiUNAJk10+//KTb/py9PjEYu4dK8ON2kNV+NUvdF/ae1f+bqME1x5c\nLmM4HdNwbZ3DyZcsad/tPNB+28qLh7N2htLVF0dmZhYnDrDivtU+09p5VbhbOHtaI615oE63B+I8\nl9RcIXxrJ0+FPrq+Bv0fIMJLmisAgxZb6h+zJmguFGGTX4F43FG/sjHNR407xtlAZ3MyrX5t78mm\nIxN9vTrW8w4Ptffuf1fopxzPqfd++3kTImXCFrawhS1sYQtb2MIWtrCFLWxhC1vY3kB7o0gZg815\ncAy3TFoRJG+qiNN1W9HjCRmISQNeC1jTI7DGb6KmlKFm2PMVZZ4e6+8bLxU5sxq8KRNF9qJk+SDP\ntyGR/MRA0dGgzj1DHbWPWomLEkZln/eRHerQrziKDDZVfyvUUk9gzB7VNd5Wl4hiWt/vNfXcxVC1\na/0J+ulpRWMLO4r4JVKKPM5yigI78BBkNxUNnaJ8NABJNHDH5nT078vnekdyRM3qXf1NoSxTKKb0\nrt0/UiQ1XlL4sU8UccxavPgbRVFb9U/NzGyZ0Pcz63rezm1Fvou3lBWOzciqNCg2vWHLVrXGhaki\n+10yCpCiWx/lLoe6YJfM5WykaOV8iIIAyi4xGLfTD7WWUeoh41nNbeWR6v8yOf2/9pxMRE/j79Vk\nG41rRUsLsLSnqKcegWrqkJWboAISCcoIfdn2eEzEfYWq0ary974f2YTL4a76cfUl3AAkRBddRW3j\nd+EUeEcR9fKmWNxvkTmZo2SzIoPRvFB/9t9R9DZSVnR6dk5NMf0sbMIZQ21xq6X3DcjYnBPhP3yl\nKHp5XX84nsGB4Op5lQqKafBHLchwG8iiOSg1Hz6OBaiKmX9zO+lfk71ZouiECsQKjpkRaxNFDSgy\nAgHX1c9XRfYEnC79l9orS2rpIz0Qa6gINVBjOG2QtUGRIAvH07wvm61sa01cxJH8iWxn3dOaTta1\nmOu3pJTz7ERzW0mTAYCrYK2kNRiwZ5tdZXGSIDGefa01CGpzO0fKQhl8SNOu1qRaJktHbfxkAUrq\niJrZS9lu8wv9/Rc1bTKfPZXaVr9j8CTNlXSx+ishPVr4xwHPHX6tvXOBSsnGHogkkDIFMpEt1Oyu\n6/r99teg7dKsl6P5rgQKa+7QzP6p1a6Ugb1pu7+revIRCgyZjmw4fkwdPFkxD3TF2p13zcxs56F8\n4BjyhKmv+e9XOa9asq8vn4sbYTjVebM2JIsXIYOL8sVXfy604vQU3qSO5re7blaET2jvEaoZf6a1\nmLgotMTIWPbhvFporupfy/azvuZ+LSmbceN69l70wMzMClvqQwtuK6uq7zvr8gdPBigPDlHn4Cwr\nOqShQG6UY9pDX30pvp2po/5E0/r53r78kFuSTSYTQtYsyE6nQT+l4A7wDzWXZ6bN4oL+irCnZjmN\nexVnfHnZWuU9KWnN/0xzP0GZJo3yztJ9vfPGzrQHpmP2AhnlQFFmAZr3qi6b74FmWOXZ047mHRCr\n5VKgfIPUalN+eO5qvPOOfMC0i/oSXDlDUGUjT/MemQVpes1DZl9wvV4dHqryt1e5aGbfrpo6LxJp\n2c0Mjq75tfp9daHzcZkEEZrX+DIo9iTyWgenhfpgRF+jKOrM29oL6xn5uHFNNj8HAbVow7+VuG/Z\nCJwCtYBbSjY7j8rPrZKgWafcMRqMAxtzCrJtB560KUiLbPLvc+0tB/DHoWRVBYG43OXe1pEt8BjL\nuhp7etG312lz/GS/r7WYcm9MkmEugzaegKBpjrABlME87jTZiPbWsMJ5dYEKaURfY0XNzzJAK4Dq\nLaDEtQSN4KI6cuee/Ov2pvzW5V8KbTCZo/yTUP9SoHFjcKtEUcFzo3rPEFuJgErzI9yTUY9CJMug\nj7LoKlBdIceLKomPOlJqHTQCXC+dps6DIjxFqbJsdQkfh5PT77mgyhKgjGMzOHTgZykznkqEzwN9\nfAp2YCDS4/YtWu4gF7ddFH5OQAkvl5rHqCvDiCf1/Nxc8zziDjnh/L5Jc9hX5X3doz1Qu//un0vl\nZ3yldz6s6hCtPjgwM7Od/UAZVjbSz+v/l6hhpuD1ycCD4aX0ezmQeBWQJkmQeikvgJ/JsQzhyVvC\nKePNNbc9uBd7Z5qzyZVs7ZQ5bYPk8zY5+/FPefxYMkPVAByH1U2Np7yr8ReDz2T0x+nN+Hv57wrq\noDH82yVoCTem597ic8RmVeNswuNZucBPw/FydCq+ky6Ix92S+lGAJ6Ra0WenaR3+khXnlLFH+pqH\nyUDrMwXt1R3qHHCoFNiE23Ee0TkzA23sLl+PwywFD9bRJ1JP/PM//R/MzCz3T35iZma383rvBz/S\n7yWfgSpcOzIzs/pKfnc10jz/4DviEcxuiXPm5FPudp/IqZ4wvrs7Oj/u3PrxN31Jevv26rhnpTtw\nwdzT2C6/EFqp3/vYzMwWqIBOQJSly/JTt/a1hgbH4wQett4trfnumuZsNdOcN+Et2wC56KbkbxJ1\nlAvbKLLeVrVAHlBXi2qDs5r8fr4cKH6pv7crKCKiAnXe1flRBLGYOwAZjaJYl8/f8bZsoAYSvZzQ\nzz2UFlMczheoMo8jss00PJh33tJeTnFudZnrPtUQ+V36WQ45ZcIWtrCFLWxhC1vYwha2sIUtbGEL\nW9j+f9feKFKmM0BNqa1IXPOFoqd16ipzcUWUEgUUgxKKgK1vkWnYUPYtWtQwLk+UteujKNQ4g7Xe\nU2QtTpYx4ylquvOhootByN87UfYoPlKkzyWT0bkmUzFRdNXJqH9bRTLupujx6EiRvwmZEQelhClZ\nxxFZRp+6TWeufnmgEFaMe9mDiZza5CI12IVtOCSIAK5gTB+TsT+5Vm3srAMXQpAZmi+CBKdFYE1H\nGMSyZCsiadSZ4DTI3z+gD2QqiWr2n6D8NCYrheLMwqNmMxNk12FNh7tkOFBfus1v2b5v0ronshHz\nFU1tXJC5G6CGAZphl6xJcUtRy/IdIvo9VIvuk7ng53Hqsiv8vHmh7LfBSROvaJ7Gz0BNgBRyWnDD\nNBRN7aN6FAHZ4bTgF2nLZlIujOQxRfZT1KDOclrLSFQ2liDD8GKq6G+6rPfHsXX/BK6fR7LdXBlO\nlpTiqoksta9LRWUpBzc7Vz+7KGBMYrDdJ0EZUOfvo/Q1odb2sq717BOJ7070njbrV0TRYOWCLttW\nlHj/RxCuYDdxspRlMslRamANjoTrTzXfo5r68xJOnljy5vHiQg41oCmIhqkyqAPUPVqgl/LwXfRj\nZAT72s+ZoWynO9TYE9jWeVd+KQ3rexwUkJuSzUSp644vqdtGQaDe1nO2lLSwWUy/lw2QITXtjWYc\nHieyXVMQfG5Rc9UZaW/d2pWf87ogdqhVzaFycerIZu6+q6z1UzKE+2QeLk5kAyV4ks6ptY2zZxcz\nzfmoDkIF7phKUv2c5Ng7ZA5mawGXlfxSFYWIREXj39lU/XwRlF2tq0zoHC6wOnXi6QzzRvYpyDDX\nekJd3KooixZhPJOJ5mMKiiIBYvGmLV7QfDQfwxFzDOcL5BXZPvXmIC/7h7Ltr9jrThLflyZDn2Zd\nb+nvf/hHf2hmZq2firvo/KfK9hWz8jnNKfPZUP14ISnkTiIpXzB5PrH2UGdYhKx0kHkLMlvjtP4/\nf6CsUBMeh8gz9dHFTybhfYijxLWEq6k7ArE20XMi7Ov8nrJH8bHWJtbVGrev9H8HpMYyp7nbXle2\nyzgjEQOxbFVjnaKYteFpbh79UDb88i/EN3TGOVLFf/pZnVmJsfrTRZlshGpeNsr3yYqPIwHfBjwj\nm9pD7UuNK8jIlhKvl3dyHTgQ8D9J3tuLak+n0gFPkN4/Zg+NyNbV2iB5UJKc9I/MzMwh6zcFTZCH\n1y4D51kP/os5XGzZMupLVb3nGrRbF7Tvzi7KPFHQedm734yhk8ja7Ex3gbVHIC5RSuszL+1r+EKW\ncMfADbZKyfcUk1qXFjwnJXj5VnDmuPBSuaDYBk+E/uoGUnZD/V735StbAK1ovkL9Df4GF5Wz2EDv\nSpdk0z346ooHOjsiPmfxhWxhAU/EYF3PjWFDyajGOO5pL6y2NYcuNuvEA6SkxjSn7/3Ra5CFmFks\nq+d5mNZyIBtPu1r7FZxkS45ow6/MUeN04GuLpfTeFWfvbKz5ScJ/F8c/jkBuOyDIDf+URvklb3rf\no+/qbpBd0732EvTaIkAngxpLuHruDPXBOdxjflfzkwoQMpmAAwweIs63KN8f4yMWqI0ilvLNXWi4\nkr8uHfBcUNh9UAmzmb56+PcYSJp4Qc8bZrTekREoi4XGGenp6wbcZ4BybQKHY9yXf3azcDnat0qO\ni6+71pkd6XnYcqog35TocadBwW6C71q2QTvDw3STlkzhf02Tcnyu++UVfvSDHwgd+xbKsO1PhI4/\nRkGmtC8bPzrWfv/Voc6SrY90DmTwayXUVKtwSpU5G72R5rbL3aRzpbtOB26V5lL+KAKCxwPNFkGR\nJgoHSRL+zOyW9rUfB9FSgNuRu8JaXP4kX2ZTgEzvXusMff5CyPLrQ90nR3BUPrgtVMZqATLoQojH\n5rnuDMWcnpMram3PrkCGfsnnkSP9fzTTfG3C7bLxQM8tlHT+rUBm1s/FZ3J5qnmuxrVOI9PeHJxo\n/jZuwdkFInMGor4chRdkCuLb4TMYvFDxJd+/YdtaF2+K/UB//8v/+n/R1//+fzMzs+//kz8wM7MK\n6K4731c/kgfq3zmo8PZTIWLOPlZ/U5zDW3n9Xi+jdfnV//TXZmb29Gd/Y2Zm3/ndO9/0ZW37fXvy\n/GP76mOt1fvfU9+c+0BUUBQ8X+gs7IFY8TogZnZR7XwAZxbo0AG/14xy5qFeOm/ID3fqnP1V+g4X\nI9dUG8708zL3zQAt2ruGp+5IX4eoLntlEHUOPDoLlLbgVPRAVyXgC017KO6CiBlfw127UAdym5rD\n1K7GtXmqcVxwH63zOSFX1vnz8P0DMzO7OpdtdrCtPp+dsslgHP/hFiJlwha2sIUtbGELW9jCFraw\nhS1sYQtb2N5Ae6NImRxIkzSoAW+hSNbE4ftxZW0yrqK58QTKPwlFwoJM65Cs4AyW9NkLRaRazxVt\npUTU8t9RBmH3tiLs1Q1F7HzQAf06rPqoi3T7yv40n5EBIYZVpiZ4RJRyZtSXwy0RRPRjSaLJRLVz\n1ING4XZIJJWdnBAJjAYgkiKZAkfLE6VGejokCzgkO6WAno0vFYX3xqA1YF6foHUf8yJWvK933f5I\nkdwe0UmSRTaH82XS0NhPxzBgo9Yw84lmLtSXTJ5a9LvMGZnOVER9XowVPT3+RM9pwQeUib2e0sFZ\nXRHt2ADVkTpzjFpUkLzoj5RRKG7BE9IFqTFGpQNlrnhathYFwTJqqz9D0FAvrxVx7u2IKXx8rGjp\npK3fb5PxPG6oX25eWb05megla15a03sS8IFEs7KZ9W1FXd245m8a03PrF5r3yRegCojAFx4emJlZ\n8kw1xVEUCBqXyhQsyEiOqVePUlvsgDgZPFW0dkEdfmpP67csaL5iG2QtUT7okUFPjPW8iy4oE1Bq\nFcaVPFCmfLugzE3yvuo+t27r+6+ujszMLA5XTRNuiNVPhQRwEhrH6BrVFFBzzZcoTRRv7ppKO3C4\nrJGqmypinyfb7Axkm114EA5fioOleCDHsP5Qa90fao6qUa3N7gjFGxRKFgbKCOWreFz+o1/T97s1\njTWLpEmCzG0+Kn/VXpJFZo7z1Nimsvw+mbkyKdg29dzOFC4seCcyEP+syCymyrLduyh2zRPq192y\nkDPFe4rUZ8mKu4/lJzzQVtW3tni//O2iQ7YsDkqui3pSSeNojWV75Rz11XdQ6IKPIgnaoNY90jhA\nQSXhaUqugfTZk+0NUHRIFfT8LHXW69tkSCco7rBXqmmN08u/XlZqRL38sIU/dzVvRUfz75M1TOE/\nHWqGX8FNlqpovgMFuRiqLY2F1n3X1N8cqoGv4LVa+bLPYkLz0nLli9LwfYy7cKW1utZsyJfvol6U\nS+hvJ2PUH8jAJuOao82K+nhwX5wwk2PZzOW/IUtOhm9a1/9dstyzqWx91tTX82fiBuu2tFbv3qXW\nPANKDDKrJXw72Ts6TxolzWmDfRxwpeSSstn2CoRfkvptUBCda6GJkhvi8FqHP6P0rsZ7tdDcndaE\n+Ji2ZXMxMob1JxpP9xUZ356em47BTTWTrTdQhbtpS5C1tzRogrj8sQ+XysZHyh72gQW04OhawcsR\ndUCbebKBNudpEhWt6oH2ZmkHjh3QwTnOtWhaPsDnzpAApZbsK3s5R+miC2rk+FC2V32UZAQ5i8eS\n5pbgMQLR0rmU3y3hh5dVEJoouHU6skU/JnuYdGSrC3ipZvj/6BIuM/jsDEWJIUoUc3hh5nH9fNg5\nsRgozmxJa1LOojYJirYV0RxGI3ClgOjowtMQ5f/9vu5ZK5A1iwnKIlHmGL41h3tkjzPMw3/5IBtX\n8HHEQEFlQRTetEVS8o9V7leRDRCYcGWNV+pvEgTPEpWjGCjZQB0zguqcs9TfxVOytU2QiBEQKBEU\nxpJD0LMgqqcD9SMVkY20fq15WGaVubVrFL0i+jsPToQlfHMuiB4oYWyV0P14BnrYIqjdgZJKjvWc\nzihAoPD3pnGO8Q1TzvYFKL98TOOIRjl/uLN4KPcU17EH1JYWzFsRFMhkIX85g/Pr8QtS6G1UkUCW\nluFxsQS2HNXzZn8HCTW8cs1HQXPGuZwBdbBgXQJE56ChzHiPLZ1afctN8x9rWRAWbhajxAbX4X0r\np/Xzbk1+7he/+gszM8ujoDjb0BgiafVpg7Px/l14i1Ya++BM58UcBPnhqT6zxFCyaczgsQSF5oJW\nKm/pjrS2obPfc/W8KFwx00D1DT6+aVG2MZmxh1xQTFMQlB35++MjFGxRAhtfgsDBj+xsy++tHYCo\nxkbaXwkpdPiVzoX1qta0cFf3ygFcXvVfH+n5fGba3tBdYH1HKLFURrZiJfYeCmzn+MvBqXxGAp8S\njYGiAw1d2ddnw/KB3rtYcfdaad1Wcc1Xqq/3j5fwEOFH3UgAUb9ZA/Rl3/vgP1V//lj9fPa/CzHz\n7FPNx9r3PzIzswnn/c5D/eGtB+KPOvtb/PNQNv/sM6nRXj3TufLjH/xjMzM7+O6HZmb2Z//j/2Vm\nZh93v+3LrBez24++az0+2zx5orO3uK19UChojHlQmlYD5cmZHovKf2VyWuM4CmIOXI8dUKS5qGyr\nxJ3gGJ64BZ9vK2u6C2zd0v8bVIQklvKXUXj3imvsT/jdJn359TKciWn4lXar2gOdmuaoQaVJpC5b\nqGxoT3nw5g1n6m/tmX4+vdIe8O5pTxaIG8ym3N9GGvfQR+HSkw3uPtKeiXG/v3is+ezMf7sfCZEy\nYQtb2MIWtrCFLWxhC1vYwha2sIUtbG+gvVGkTJRa+63dAzMz628qClgg5bGglrXbUPZuCufBsqVI\n1lFdkbGlA8cK9dZZMp+TiiJuXhLkCjridqnI2qtD1FMmep6bI1JP5L9LpjRS1Huy8H8Ez+ueqF+D\nGZmClqKk00agzqSoapIMdolasgj1mdG8pn+J0kML5A1y77Y4U7/OX0EAA6dDjExtoGDRvVDkrXOm\nSJ0fU7/ydxn/fsmqARcJvDSFlvrYeqasyuWR3tENlBFaC/pGDbwpupkkq1SgLjpyj5pTlFmmXc1Z\n/Qpk+9XigQAAIABJREFUh69IOSWNlomzBjdsKd678IhsbyqqmaF+MBpXBD21o37tvCXUg5/W3F59\non7UGigVkJH0Vvp5JlDpONWkT8i+tKgDXKIGkthB/YOMwl5ZmYbN98nwokWfWKI+dK1xO9RXR8dk\n42EINzLKA+ox56CsIlFlUPon1H9DDuMSdT6n5ni1lA0kHSL1ZDQKe+pnJ651cdeVVVrCrj+NUFNM\npmONqHNyHWWvQN2DDE/mgeb11o++o3khI96okbUEYdV/pn5dMh53pHl6eal6z+SX+v5sovmZ5FGu\n8TSOLeoxDx4oI7FI3TzD3WmqTw77xydD2iS7nHOJ2K+ogV/BkD8I1gIeITJ8Tl5zlISzZUrNfYK1\nG5OtXitpH9eO4SYAZbC7c6DnYvTTleYwnUUtjTrmiqvn9UExFEFbrehfdZe9xVQsQaFtFjRXE1BM\nzkLfHyO0sHiltX16SjYnyEzGyUwvZRP7Cb1/5Ov/ozJ14K/Un9VIvz9hfvJxZRTnrl7km3xF2uM9\nA3hKYmQsa+qfz/eXgTJaCTWVqjIJ8+dkGFJwC1TZQ6xHv6N0TiGb4v3wqERvXuNvZjaiBtiDhyrZ\nh48jJtuf5zSOJGjALLa4zrod1Y40nrrGFZuqf9ecJ2c/U/93B/L790tCKrUaWu/FgJpnxrHCV6yV\ntOedStkWbdny8oyzZY5CCmfFZKqszOGfKzPq3lZfb90WN0HvFG4vssfbt+Uvnz3R78/memcCpEzr\nVO8ZXmuNkkudyZOxbHF+FexT7aE4KkhxVJ3ym7Kh1gSbnMkPeE3ZfN/TXA1Rdcon9Zx3f/jh3+un\n7+MXsvKD5R24pzqau5OPP1f/u5orb6K1Goz1tQKvVLYsm8oGSMr8611xfNC3/gzOlSHqdGQJ11AX\n7B2iSAEHWQGlmGAt1yv6/mwYZMSF9Ok1tdd6cc1Xlyx+A66aNRRxzq/EE9VzUNcgI73ANqtT1I9Q\nvSv8nSz+qnNq2aj+3z/W+dc4ExLKr8qndBZB1k/rcdHReB04xtKsr5dU1tOFP2nUVGbeycJpkwoy\n5/BzGLxbZKBt1rAmNfzjFtx866BsY+Iz6MPpl0YppQ+nl4vy1xJOlmnAaQJibtDVO52xbNvf1ZgC\n9RyHs7H3VP6sRnY7yx3EKYJcTL4eenc01RzE4STJwaNRHGqtfOZuCfpomtTXIsiMQVR7YQanYDon\n/xbNguBDzXPU0F7vwv2Smmmv9FYgxVnzVV/z0f2l+tNJ6/npCUpYRY3X46zuzLU2SfaigdqwLv5s\nwNpHQPik4IDgfh3wAy6QGHP5GOGg3uSlQWyTkR57cAAhe7UCIbSKgrgBcdQmg5yawNX4AmROh/n1\nd+ivfFpjrPfmYlv0U+NcDGQPMc792eTb9Y3HDqw/lB21+1rHaFqoiDiIrhXccwuQXFPg5NGcbzdt\n2azu+o2B1rhTkw1GHK1pvaY1u3osf5BKaV+//ROpDFX3dF+vB6qnST1nO6k+AaK1ziVKfheyvcxI\nP8jfkx+8VTnQmCqaI4c7wKKAn4PPqHUMainFPfOJnjcFvTs7hmvwTDYW9ziTHdnsIIbfYM5zqDxt\nvA1HJffMFf4nNtfZenH4mH5ojR88lE9Yf4iy7b5+vwFifQoi79bu983MrJSEc5F7/fmR7nwOn+3a\noNCGXf18iZre2i6+JLibgdjZfk/zP4Qzs8H8LPjs2Wxr/KOpbCzlak+uH3AOJViYG7bTL47MzCx+\nR+N4+4/+mOfqrvDipVSZItyNMmtaj9NA8a3+SzMzG8c1vgcbB2Zm9v2SkEj//uf/p5mZ/em/+Jdm\nZnZw9x+amdmH/7mQN8dHz7/py3W3bbfubll+XXPTmmrOzy50hiyqWsMKqsex99Wn2lPtlzFVFdUS\nKC9Ui0en7P8O6kbP5Te2Kro7VKm6OL3WXHRNZ2sBNbl9PgvUOIs7S+2hckxrmYevMo6yY2emv3fh\ntCm4+r30nt4zOJWttjm7oz09rwCvamYDrionuH9q742PQYHuaG9Vi+r/EOSkD99d65SqB5RnN8sH\nZmbmgQAvBfCo39BCpEzYwha2sIUtbGELW9jCFrawhS1sYQvbG2hvFClj1IoFoaFEnhpS2JCXRKja\nqBMtUZLpUwucjysylUYxIBEluw/y5uBHipD1ySq1Hiu6+fSvFV08fKbodQV1o/UfU5e4r4jZu2jb\nl3LUh8Om/OKvlImowXdidWp3qQOfE4XuE92Mo2wQJXOT6lCL11HE0AflYABiJi1FW3101f1ZUINN\npocMtp/Q17yRcV+SsWD+MkHZ9zhirefKCizhfegNNPfTuubWFmQ0l9SUzzXWKIiOOrWHlYUi2EZm\nbx2m/gRKU06CbLdLjeU3yi2ag+ni5nW5ZmbZHUVLM2lgANQjRlzNXTRQ2KFuu92VzUSoV+zP4aD5\nWNn5GDwfbpSsEf2rtQJGbsYTgcF/S+NY/74yhpVTjb/TguMAHhMXtMCAuub6oWxkOoJ3qKaa/kA9\nI7lS1BSKBPNho99ahyepB3oKhE8mFuX78Astrvm5/j5W0rp1L4J6dM2zizpJ+l0yGAmtU25P78/f\nV2a8hC0tQQuk4toTzQnqSE19fxhk/eGssRacFAHnzlLjTm3CVXOh8Q/I4BT3lLGpwlVRgYPGJYMT\noMwCLoObtIDHoF4jQg4H1QVZiO28ItuRAmilC03aEUiPYlNrewpPRSuu512BUJst1Pdbj7T2I2yj\nMFcGcdIlK3OlOclkNeYtUGadDmogZPZO2vr7d6p6Xosadw8b7ww1jjEqbi++QqWjp6/JvNZ02uf7\nXVAVfdlEf661ntOvCoor075sYkL2bbmt/lxc6PfKedacLFFCS26lgmxmQpbfBQE096nlTcOBNWAc\nLmg1VEQSYzKW8KJEeup/xtF7Hg9lM9vUa+fvaM9l8vLDKTgCFkv9/hwul1ji9VB3Tp9sGSiw657m\nLYFPcVivCX7bQBNGMrJ5J4KijoejhtuiMsQnNuAKK8jeDtaUgR11lA2swb6fBrFzDTfEACTA7Yc7\ntvlAa3AFKurshWrK40Ot3V5Vc5Pd09ycg7RoPtfcfv7pJ3pWSciZjQ31pVDXXA3mqLOdawzJXbhF\nNuQH1vrwVozgogF99uJQGbUI/j0XUT8GGEkUlZ45PA5nY71ndhkooekM7fvsd7JY0CFZciZ/VDuT\njZVvUZf9PamUdM5RVjxHgWchmwxUgeKgYCfXAT+R/t8H1XXT5sFVUDvhPYw/uYGf+0wcaddX1M8v\nQRYu4Fabau82num9WbJtjgfiB+4s90xImAJZuVhOvz+bB3wk2Fhb4yuh/NCDf2gw1XPWdnVHWXn9\nb8Ywbn1h8SIccHm9N63X2aoLshRuoQi+MsP4YjEhP20WqLhoXUYxnSsDztl4WuMqpjn32RsB/1UB\nhKzrL60IB0mWZ7gFvaN4R2t81pHNrXz8xALfD1IxJlOz3BT1Ch/OkCNxgzVRyXCb8PuUtVdK8QNN\nYUtr5fY19t33hHJNosY2G387dzdpaTgNPVQ9Eo7+fpKBDy3ga/LU//yIsxg0QcDtNQMdkcDfJOFe\niK3gRYIDZ9ZVP5MgblyQllG4CxYFPX+MTQEkNIe1iU7hR/K47uNPV06ARAG121e/Mg5qp6iRJBjH\nAARPYk5mGNTCCi7DZSq4z4IsB/Xlokwz5vspkOwp+FWCO2PA2zQfqp/Na61nwG8SuatzZdqDx2qO\nf2bPHJjO4y4KlNNXPDfgiTIz7+Bd24KrcvyFUCaX3MP78EOV4FmJgexZgoyNuzdHZtau4aMEUTcb\ny+ffuSXbv5WHc/C2+pwuay5KOa3NY+6LnfMjM/uW+7CWEWphAPrn+ER+uQqnyd0PUPTb0Nlz1AAB\nPtb97BVqpmmQ7qOu/HMGHqRoU2M8/VJ76+H7v2dmZv6Ezwd9/f4OfHxeWWu77sg/FXepBggUbVYo\nPj5HgedQazNv6bPTbKLPJUWqEZwySG8Q5v5j2fRhU2d1CnU3B061l1/ruY2fS1UptqX+r906MDOz\nJPNafVcInAx8oOOI5qH/XPNZh3um2FX/nn+ur9fPQZpHNK6cac/d3uT58JqUQUVMA1nbG7aLwxnv\n07n96IH8+Z0P/8DMzNa3ZKtNOIIinGfv/o6QpiW4hn72r6XW9LM/+TdmZvYPP/pHZmb2k//iu2Zm\n9q/+j59qPC//rZmZ7Xz4AzMzS99565u++OmuXVzF7eA7GtN6Xl9Pv9Y+b7/SZ54IlSnZCkq3IES6\nqJz2PfmxalT8ayXOiv6FbLvR0twOa/KHW1XdDbY25ZfrHdCYxyDat7T/80n5o8YLrV0dTsVsCgXI\nkvxUBHTtHNXPrgOnGRyFZRA8flAtAmlUsEeycMIuUUvNZPX8Vz3167oJsn4TpE6JPYwCWu1aqN4J\nymnPrrWXBgPZcjzKgfYbWoiUCVvYwha2sIUtbGELW9jCFrawhS1sYXsD7Y0iZVpkhC/OlX1aEZEP\n2OVnfUWspo6ioX2yMB6s71PqnGNpOGNSikClHiiCt04dpbUVdb6O6e8ncMZkd/X7uS1FBNdQB4lv\n6GsMxZwZSJZhRxHAJZHBDEoJTkHRy7V3lfW6e1/RRxf+kWv01LuXKAiRLRs3FZ11FTi0FJG5GbW5\nW1U9b3ZP/fXgAxhR0xvUu+e2FYH86KGi8HF02odR9WvS69vlE0Vwj74C4eEropxO6uuKur0YdXJp\n6vBmrqKZq5KeFfFRUMFyRnAF9J5oEIuooo2Jhcbux/TVoe8Web3MZT5g8IbXYdKDvwNlhthYX6/6\nen8LREexrAh9oq3+jlBN8guK2i6LcOOAOtj+PdjWZ1pzj4xFLItixLb4IbpTVJoujszMrP25bDN2\nhfJMXjbin8G9wholaor6zun/xq76sVFWZNxLgkZwZBtn1yiR/VrR2QL1zX7AHdCh/tyD+2BCPTQq\nTOX39Nwktf0tMqQ5lHGyZY0/vwvaY4QaEkijJdmoMeN4UVdGJqjTf3UK6z/KOWmybKMN7cV7jzRf\nzg/1vuvPhUJZX9deiydRFmLc/Zbe68w1nuj85q4pQwbxHFu4VVbkfTRV39f3hRbogQZrGJkzOGVy\n7LuR6e/X4BoAIGd9OGu8DLX1da1xHE6W6ER9ddlTS7LrJEit39PYyiBO+i+VfVmAGhhdov5Gf+tk\nr4Ka/FxcNmkoHxwk5d/aY9nSeKI5jsMGX4Rzpgkqy70nPzI/1B5o9/X9FfxBQ1jt9zKymSE8Ha6v\nnwf8EFOUBsYr9T+HupPPnpjz8wU8T6NzfX80xSegIuIVgppa3g9yZ0YGs36tvXz+BSgR1idqfEX5\npXt5Za/T9j9838zMfmdb83myJpu+PtJe6oLm6pwrK3cF2qOLCspyiorVGtxCV4yPzHN6rvPLh9dl\nhQ/cQY3g4JEyRwm4D7ojzUejrnG+bH1tETg8Kg/um5nZMK85ffa5MnqdsWyv8Jb824S1n+U1J7t5\nIQvTt0HtbMJzU5AxNztay6dH2Ni1+ppgzRZxuE0q+v37fyyurPPH8vNnLZ3Vo2vV7nfJEHpl+JDy\n+vu72/KrqblsKjZSfxdjrXHnU9lQ/UpzUHpLft6FX6L5TOii6yd6XsB5lpuQZQLp6GCjXkR7LwZS\npzuEt2L5eso6iwkoXPySz9oO4f9pnMJtMAJZuS5bKMGRFSi9HH8mLoA5iKZ8lTW/RLUEhba1HRRx\nkFJ0rlF+BKHqg3j0UPiKovDTuVSm+eDhBuP/dgxR//obhQuuUjYCNTHp6vlZnJtbQa2wDsoBHpEp\ne3MMb0sa1IMP50TWlS9cocA2o9+JGfxbcM4s6m2bDrQm5U35oURRz+iv5Gfn8MXV4EqJYquGf+1d\n684ymsIJteSMGOj+mJpp/8bIpNpAY1jm5e+qWZ05qazGkEzBywHPh4vfumlb+hrPdKa1KXBvNXjb\nPM5Eb8m9NK6vLgjGKRne5QBlsyV7A8Uyf6m7l3HvdFH5s3W9pwmHYB8EXwHkUDStc8EDOZIFQT7n\n7tXFZqNxuBCw6QFcM3MQOvM0a+cE/Eqghl14BrdAVYCcmSwDdCuoLACM00DdakqmeyEbS6Jy5PL9\nMXstCwKzGyhAwu+0UxDPRzSmdRyjUpVARWrcQ20KrkUnEvAGgigqg2Q0s9zmnkWw8Y6nO4wLwnyM\n6uscxbv5SP3otOSLUtGbIzNbqA+VHmpO7xTFgbKZZYwBnyXKqd1nUsv5a/jeltxXY3tCBxXgTMzf\nhdtqrrmZdHWmvb2n+2uirDvF6eOvzMzs6Ss9b5zVz5+yl97+IdwtIBKTI515GdBBO3vq99v39bzH\nn8gG8knN+cGO9uiM6gYHBbUZPJcdPg/U8MNngB78If4ORHocJMuqDNKupPf0ruCwmWl+fBQYq5s6\nH6MxIWWifCZ04fvcf0tqfsW3tWdaKAnlqihHTmQ7ly91fp0eyXYOtvTcSQ9FNbh0vvuu5rdU1jo4\n2KzNsQ3QWlP8+jAmH3XjhtJX/VOt91+/Yi/9U7138+0fmpnZ2kooiycnOoe//FLv+5Hp937w4X9i\nZmZ/+vP/xszM/hbEzMPfld396A91jj/+K413cK77xNa7b3/Tla13blu32bPjc9nIraJ4JNfu6Z53\nBe/Y0a+1tnv3uD/DH+Sb/MMVc5FYaO1WqFJmONs7I6oB4Parg1jPgWQvZw/MzCya4iw8Z40DW8nq\neZNLuP24v0a4n0fgvRsFZ99Ktg1A2ZIgZ9ZQfWvzuSGKGt24rX4P4RzM3ZFtVMvwlHb1+6eHGod7\nR8+rgD7LgrSbXWp8kbjO0BpIPMfhA/9vaCFSJmxhC1vYwha2sIUtbGELW9jCFrawhe0NtDeKlPFQ\n+Lkmy+JGFNl284ooFWKwzBeVOYj+AxR/qMGPLMisxMmcwpruXisa2L5WhKzfVeTLcxXZ2v1IUc98\nhExCOYhgqV/9l4oWd18oOjnoKDrpoEiRg7V+BcogARokUlA/xwUyCaBNlj3UNsYaZ6ujSFnj16hK\nzUFNrAvpsv1AkbYU/BsbFUXmOuew15v+bkYtbrKqcZTvqiYvTqxteap5mLc98xZkr2t6d4Ra/MkG\nnCk8I4taR2JbUcvLc409CudJdaVoZQuFl3ZHWaN5HcQM0c9oVFmdZUp9L5I1miZeTzFlFQUVBApg\n4StqOqZusH6oTMDVpb6my2R13gEdATJknlMkfQtFKkNtaHtP/8/AAH79lOhmR9HNVlN//+pTZdVi\nE/XfodZ+/EzZ9v65/i69r7UsU48ZI5u2diuov9Q8bmbUnzQoiMFMtoFQjsV7isS/eKXMtEedowef\nRRobTIGmKm1Qd31wYGZmt9/X11ZNEfjpAiTKWPN0+RzW/qHeOzhD8eYEkppjUF7H2jv5O7Lh6n3Z\ni+MTJZ7p+5EqvABEhRPY1fvvaNx/C59JLqPocz9KJrhNZmipeY6hMDaeMxE3aPGC1i4/I2uMikIc\nnpxohdr4seZ8xT6OA/eaY5uBOkUkpjmNgEoa429SRPjrKHal8vr/aEGkfU7GgIh5kEHI3FGmoYoq\nURdlmK17ylYtF9rX974j2+rF9fPKGplPsjMnz5TdWY1QkeppDWcpFGnSGZ4HXwRoAn8KF8pUf5di\njiNwVRnqTcu+1nwBV0wUpMdiBWqgKxsf+ZoXn+zYnBpg19fvp/CH8ZHen3TVv0kXP91HcQzOhCT+\nsT6h3pws/3gaoOpc+ouCEPwh/vTmahhmZsetIzMzO5kqK9lxrxi+bLV4V/46DiouvoPCGwnSxz/T\n3qs3tGcqZdlTpMneG2t+m9eav3lb/49vkPkFGdXZ1d+vQEOMt0EKxUb2hJr2g4xs5f7vyUbKW/LL\nn3/+K/0tiJONXa3dgDVZlOWXZ3CMfNX+wszMclWdVXfeFYqz+K6yz+c/1fNmHfZlTX36eiF/t0fa\npvp99afxWHN0/UTZ4zwoAL+kr5coUVkL9Yyk+pWBJyS1AgVQUr9fdI/060/ktytlFMeGWvtaVyii\nzEzfz5RAFQTn15X8RGQNJRdswiWb5qOed9MWz2B7ICSncK9NQLs5HmpInNmRIfXyh9obi1kgi6IM\nrZ/GT5JgnXVkc7l1sn0gjnooXaTg1iqZnrfk+UZ/cuzhaUT9mjV0PrTdABH0h+aOm1Z/KpsKVKHK\n8O0Fwg9zX/NtqLcsZ1qfnVtCaC0GzAM+LD5DTaqNj9HjbLwMeFX0/lIRBC58KePrji1BMfl99eny\nxZGZmTXhsViQ4UzuoOQFV1YOdbMV6jcl7jVZVJimKF1FQFd6OVCYKEC+gmcpXUUFiUzoyS80Zge+\nn/TN6cv0vjbcZCApWqjzLXz5kQUIlBTcK66L4hWqRrMJfisH99cY7kB4QdIV2Tj0HeYmND+V8rtm\nZtYdHJmZ2RA+wBgoAUO9b7RCJQQuxURO7w+4c3zQTJiEOSCUUiBhEqiJOD3Z5BxkUo7McmwChw6o\n3Flee6MAcmbJGe/ommoz1q2P+lVqwc+bKHNy90yV5Rv8ScBBBh8d9jO6FuLdilr//Tuca65eFN+B\nG2eivRcHxZfOfrvA0/YLu2zo93pwPWTW5RPjcEHGUb6JxeSnF0V9P12++Xlza0fZ9cJdULgtnZEf\n/0z+1p5ztiVAETFHe1s68ws/EWdIBNsdNOFhg9ukC8Kjf6V9eTxSX2dT+e2rl5qTJQqR63CGQZtm\nD9+Dj6irvdV+Jr+27IKMB4k+OTsys295MtYr2nNZzuiTC71vgUpRNwbX2SX9a+vwnOb4TLOOAg38\nHiUUaQB1mVfDv0VlU7dz4kRJFTWfwRl7/TUKvK1AVUkPOFhjvqhSOAPl/GKgftavAn+nvZvb1nzu\nPdJ5mKYKw1ljfVbyKY02SHyQ8T6o5gHcN2uPQGpGcPQ3bAlQt8ktzUcHBPzJJ1+amVl2Q3Zw7/d/\nYmZmp4NfmJnZV/9SP6/9d0dmZvbhCxC2Rd0Xvvz5vzYzs2lPdnH7B+IGuv9jjfewrrvUwjLf9OXe\nw03zxwX7xcf6THP8lda8vE0lyYb80DV8l19+onff/55sKVC9i/DO0yPt11ROf+fBaVXMyx8VqHQx\nkHJOBwXaouY+j9+b4MfiIBpXadThMvKbwwGIODi9KIKwGLYyWfHZcYg6sqP3jGaa8yRntgvK14vI\nVrtDff6voZiWyWiONwHetS5kCxdnmssS3K7+UO+b4TfXQZS78GQOQbj/phYiZcIWtrCFLWxhC1vY\nwha2sIUtbGELW9jeQHujSJkVmcZskkh/ErbzLJlVMtk56q73Hypy5jQUAWs8VUT86kqRu/YrRYcv\nn6I6sq/sYlBDnKNO3suh0lTU82awqzePQX+cKpLWO1d01YspwrVOFDu1qYhgjMj+agFXTV9Rzvbn\n8H2s4JIhM7wiI92n1tUrUbsLG/9qQ1HXYZTsFkzbDpnhuU99qK/ne1GUEVA6uHiliF2GSH8blZnB\nfGY+ajfFhbIwK7LPgYqCD4N1BC6V1RIehS6M+0U9c0Hx+pjs1RCOlBGM2g1q1ovUb2fgiZirq+b5\nr5eWateIbroovVDzOWpTywkCI51VdDOOAtbumrgM1rf09TCmjGK8KGSMn1C//Rn1jXU9t3fGey5Q\nipnADzKgfhnVqRR1iL5pYEtUiuZtPaf8vsKp2brCto0WyllTlAOoGX6JfNIElNcqpfdmV1rzBONK\nk60prVM7TMY4DT+K46sfC1AX/WtURM7gDzmUbV+hADOkHxClm0MUOzMjswNXTZK9soxqXHEY12/v\nkwGZym6KcBGNa2SWJ2QLDQWIjKLjrxoo9ID2iKWwr3VY+7Gn1fTmrmkJN0fEpU8LrVG/Bt/Bpuam\nQhb864my/FGyTgG3k1eWbfSxiZWLokCJDC7IkdmK58NJM22TQSMSHh2jogQPhLcKVNG0h5ZNuG0u\n9PMFtp1MaY7OyLI3LmQjUQX0rdfQ+wvwQYwHcOBklB0Zo4gTJcuUTinrvSSTmzGN5/GJ6s3vvxdl\nXlDBQHkmsZKNJbMo9qCeVED5Z7GCd2iMGoinv0+ghlS7lA336/KjY4NfZKWv8YjeG0XpJ18SwumC\nGuH335bijv+2nuPjM7ygLt3V7xXfgTPshm0IR8z1Y6nvDXvKdkVnek6/LXsYBGqABdn6ThL+DU+2\nvuzAuQPiKANXwogs2f4Ome4A0QlHT6qkeVug2tJb19/tPxIy63Z6257/37LN86fiJPFBAeR3QTDe\n1VyPUCZcy8lmU9hkG9WPSVRzlqF2f9RQ5vIUm7l9T3N8mNEazr+AwyDCe1A0O58KaXMxgEtsojNt\nbQObIRMbyevrD/Zki104Aa7+Uv0cw8uzBTfZnfdU+18oqd+//FRrcgk8YIpCQXSo92TgIZmBdsgn\nZQyzbc6fmp7bQwEmH3AuRF/virNYgeqAH8oDzZEmK5egbt5GIIJimq9hD34SEDr5oowoahp3HC61\nNc6d/Jq+zhZHZma2BWo3WwZt9RJejMCPdtWP3kDjXk7Uj8axuAGm82/5LqKtui3gzVhG4RGZs/cY\nX4/M/QL7WkZ0Fxpm5BtOn2kdEjH2bholtKJ86QpY8QIb96Oyw2iRfs5BGWTSVgTx7JQ1Rhd+s7Wq\nnrH1vvzNytM+eDEUgiEHsrm0q33Y4CybXykDO4/JlgM/NJ7C2xMhY5lGebCgvgfKkzOQKak17dNU\n5PUQd25Oz3M5P9pzVIZ4fsDvs0yyBqCLV1HQTSgbFiH8cUEl+EPtwfkKZTMysddzbA2FxXpXNn3I\nPXP/VoCsBDk+Qq00xf2Su4mf1t/NXP1dD66ZAapWBfhB4qhSdXhOErVBL84d0FAj4u6YRSXUKcrW\nDH83wqbdCSpaM6GXvSIKO5eykfa1/u42qlgLOMU8VKOGl+pHH/RsAYRnPAM3TUwoDyehvyuvyban\n3M3cGJwzZrYanVoKxOZBhTsN/Z7AOZdnvqagikuoIjrY401akjFevdJZfvKXn5qZ2dm1su4//PGD\nzXA4AAAgAElEQVR/ZmZm1V2NeVRX33MguFsL7f+LZ0dmZrZE3Wx9rrm4fCo/Pz/XnIwWWtMgG7+5\nI66R1A73qjU9NwJyLlCeGb8SGmBMVcFmNkP/QR0XNEf7G7pHV3a1ljX82nUb1Cech4WC+jcEAVPi\nPIju8NnNVf8ioGCvQCv1f6p+zKaar2oO5Zv7Qhl0QORfvkTN9EJrEVtontcres8A23j+KkAgcodi\n7arvqEpiMy9/5YLaWoz185dN/X52pHOpAbLm+gIE/lR7bHtTfj+3Jlsv7cDj6dwc4W1mtg76ZOMf\nC4VhnM+ja/n1J7/4K/X3lnzC/bd1p5v39N5LUH+PWxrvBr4vl9R61S40n861/r7y3kdmZvYOHD6X\nl7Vv+nL68uf24J2f2N621v75M6FU56CyUqBYN7Y1dw421z7VnG1taAypAGkH0nyKOuhoLJuY9+Vv\nVhlQSnye7mAbfe7zs7n2XwSeuyHIuThKv3P8q7tCIZbP4Vl4QUem/sVLab6v5w5Bnjsgv7uDgBsM\nZUJUSDeohGnhB2YGT9Q2qKS0xnPxSsjrqxPUPFFxGrb4GpNfiVc5O73fft6ESJmwhS1sYQtb2MIW\ntrCFLWxhC1vYwha2N9DeKFLGR3u9SF2fS9Z8PoaBGj6SRIUMJeXhU9SLug1Y8Ed6Tm+hiFYioahn\nY6HfSx4qon+aoPbrnjIve2TVEjmyivCddIgAtlqKzG0Qvc5Tr1g8UCQxGSMaDnLHbyujcQX64eqJ\nIowz6jR37yqam7mn5+R/BF9Aep1xKVo+uNB7v/76MzMz67cUpV3AcxJHNWpnF+WJhfo3bChS1wKZ\ns3TIgq0ilodzxPk91U4atfKLBtmjmiL4J+eKWF9eK/M3AVFx+4GyWQMQDyMUZ9IgU1YHWsM1ahTz\noHjiaer2qDGfTF6v5vL8UhHgZofsOGiHCDX0JdBW6Yqit0tX/Sq/r/rrQCFggQrSGGWEFUzY14ca\nrxPVGrYe6z21x9Qpk3F1tjXX5QM07BP6++SmorJZ6sGXLuNdaB4S6/q+Dy/R1TkcLueoFzkgTBZk\n727DT0LNbfSWvnolvT+zq+yeCwfLtEOWbSDb66KqMvlcNpfYov+BikjzyMzMZij+tDbJhOZQc6HO\nPrHJOlLrahXZWAZuidiabPfqU81fHb6ASUM21+zLnu6ulAmag2haNPXeeFHzEgPFloQ/wCkFe+nm\nWanxUL+7gC3dJ7s8HDG3ZJcLRtaIjOoKRM2yxVrCVdBpag7bx2QcyaQuQG3FQPJNJ6Ct4AbxIvAM\nkclsfD5m7LK5fkP9qF1rjAfwEA1AJcX31f+T59p7b+3Jz6wKIOJQdChn9P02/Szk5c86l/r/+UvZ\nmA01zmRfa5hb6Dl5uG1sCi8HWfQL+EDGZAw77JGZR+YQVQqL6e9qqMAtff19nr0fj+i9m/eFxhjB\noTAbyC/24f2YxzTfW1XZyNWl6qXHJFx7tR790d7Z3pLvIhFhC3s9X7K/L1/hVJTpOPyZUAGYvq06\ngbICmVhtUWsMVWPdbWm911AlKZKVi8T1gPK6nu8BtZmM5Lsul8rk9kb6ewdFG7+q8fVaet58ULH6\nmfzOxkLP6sFP48GzlgO59+uXyoAt+FsnCwcASli9cz07ndKYsiDPAv+XqilrvXrFXqnr770tOLgi\nem4TdZAh3CdrBdlSbBNeNUPhb4Qtbmgttw70dfm1OBRScHMN4V65ipNV2lI/PiA7f97TexqXytKl\nA74RFMBmoAtSazozH4FIPHomP7Q41HN9OLiS9nocZtE8/jZABk7hhYOHYzUkI40CmJdCdQnVkQR1\n9TNH/U65nN0T+b0Y2Tv/DHQVyhQJOMh6ZNf6nL/r8YC7S/OTm4FgBQlTzOtcjjiBoplZbqtgUVC7\nMZSHnIV8hweCJY6PSqIUsQUPVwzkUy+rPZ/E96RRvimR8Z6CBjy9Qm0QNOGAc2mIzy0m1q0Gf0Mc\nfrUE7wiUrZaoM3W6oFnJeLoF7jcgDJMggEcgL3oOGU64WYbcCTzmrAjXSmINxS6QyoF/GoPwWMJr\ndNM2BwES8+g/Cir+RHuuBbdLEgXByEL96XP3SfP7De5kBSCAvgNSZAivGuilaUv+YwDfRjouRFEW\npF08rjVKgvjuoXLicYSu4iBKfO4KKHrNQEnl4IPbuYMa6RrcXygxRuBAWMw4o1NBhppxJ2UDLioo\nAcoM4KVN4dRJYUtv/+6PzMzs6S+Fkjj+Qtn+1gUKk9Hg8wAIFRSLNtg7bvCxZQnay9X7onG40DbY\nk6h1pcacW2Y263RtvtIeqlQCZCnzMkfNZaC/72Jfvg/6YXTzHHYTXssr1HIGY83x9x5ITef+d8UV\ncoa65mefab9n7muf9fsoPqY19/cDLkSQ6xGQHQe35D831uQHYiPuaXDVNOC76x7JP66GqBud6eyb\ngWrKIZm1tocNoEDZvdJ5cYEC1/VX8h9XK31WSaEkuPd9IXMsDvcka5+vwAvS1HPaE82LBxfNFf1Y\nAy12gFLmvYf6Ouhq3q5AGG1y99r4fd3vZ6Z+Boq2TVAZw4T87db7QmRugzSxsdb04iuh7VqHeq4D\nFVgBLswCKk+tuZCrpV39f2cbhUo4EW3GGU5lgbf87Xwh/982mcn29/Hje/8Itae5lI/+1b/7Z2Zm\n9uTjn5mZWW5L457Wtf6zFuqqc6179Z6+Vj7gjluHP68jn5qA7+XhR1Jl2m3vftuZ+siO/vxTK1IB\ncosxv/i5ULvNM53JsR3dPysPQMyMgTCDAl2AaIvyOTzBZ7YVtjilamPR1lq0pvr9zVsoegX39wb+\njLPTH8q2Fnk9Jw5yL5WiWgLOyDH3swj8a324ajxUWuMO/oPPNMvJkfoFSncI52Mhi6oeiPl6C8RL\nT/6uApdjns+eBfbmcKTn93ra+7O5bLI4B2me/+2fbUKkTNjCFrawhS1sYQtb2MIWtrCFLWxhC9sb\naG8UKZPKK4paXFckm4SKjalXnsMu3+0pujpOUXM2JRMMiiFeVVTwndvSXJ9Qvz66hKPGUADKELlD\nuaYFO3LsJbX+1NgWUY6J5RWlTaEKVXcUbax9ovp3Pw1fBhnboFQslVSELZ1WZtiPE/uiLj1KveQG\nkcEU6Ierr0G2gCZo1tSv4Ymi0nH4PWKw5LeWqAeACLpuKPq7OA0UcNSPRCVn6Yeo/7xNxBjUzdVz\nRYrrn6G9/kyR62FHfc8xF3OYrJNkwwsgX6IF9SXiZ/h96vL0FouiQLJCrmHZ6NjrtHxFUdnyHUWo\nN3b1HiemaO6iQ4aQmvsRiJjjjxXhTiW1NlfPNLe9hsblwLmyJANd3tJzq/vUET4TqqpQVZR0/X3Z\naAFEULwKCgMFgTnqJ2eXymp9/UtFlQvU4HoeNofqhR9wuFT0vLu3FHV19jRPO7+viPmj35MywBd/\nodrS+ZBszlA2NR3qvXEQT1OYyOdLMpWmCLzBy7TJnjt+KptJwA2TKssmI/CaFD39vpeWXbS6spPT\nkwueo593UW+6OkSdqqv5iBFtjg8U2b9LbfAle9in9jUVJBayZMnqZMNmgfLOf7wtl+pjbh7wQGgt\n12NwVfX1rHGFCDp8Pemlvg5BFywCviKgGpOxxhzUI/fZAylq2c/byj5FYvD4+CBfUIQJam6nY/2/\nAb+Hu9TcLXy9L4YiVzwKNwI2mvpIc5fExJ+DgEkafEF1+YdyGc4CICQnqNmlWorojweqT14DmTLE\nv0ZRCelR3/3O3Q80j1GhoLayss0RfmaIgtekpPlZy+O3HymrY6jprW0L0eJFNP+TJeitjuq5Lxrq\nT4aa/x5InEVd79n8kb4fJRP78qXG5ZJhaVDHbiACb9qOjlE4QwCo7sqvdo7gAmIPb6Xkayas3+RT\n9T8G4sn1tCBj0Alp0Bh50GypLc1LGn6u4ZX62b6Qbw2UK4anGnf3eYDA8s0bkamrqg95as7zqMcN\nyIK3TjQ3BdABo7n6uCQbXQJ5lgBFGqCknCjKAqd65/yFxriLQkA6Idsc5+SnUwk4rVD6G9dkmy/J\nXK5xrsTa2kOnn8k/ZOGk6Z3B/dKASwD1vOFnyhD6Xc1h5j2Uy3LwZRzL/z6A02Q616LNqFMfjQOE\nivbORhVViROyWVC/LEFZ3LSlONNXEIPMZrKRJMgQH1WkOepLxQLqJXOtj1virCfbt2qhZtID/QFS\nJRcFmQjn2pLzdjrV8x0Ql3HUqxagYJc8fsr4On1472blb8bQaZ+bCzpjx2QfPXg05lz5BsAodiPq\n1xLeusSQrGJM38/46ufSU/9qL1G7qhyY2bdqeVMHlCGZ43wSJFZuaKMRvDegjaZwbE19zW2vJRuZ\nRwPOLlTw4CmakOlcctYYZ8gKNbxoHD4cMrTjkb6uMnpOE16P/5e992p2Jcmy9DwiEAEEtDoHOPpc\nfVNnVmaJrmoOh032jBnNaMYnGs34O/h3+AP4QDM+jOgZTrOrp0tnpb438+qjJbQOABHgw/oik9XW\nXX3u030Jf8ERgIeL7dsdey9fa7IAqcbY5gqgm5avxymznIAk7GlMV6juuZbGatwFFbUG71JG/Wg9\n0dqYYZyx6t4Mfr6yj+pfAM9aqEx1k4yuB/orXwAZugfvhq/+BpwDLc7HKVTwlrbaG2Y0bmk4C4cg\nZVacl6M9VK2GnNkMSp3McYazVACyKcdaDaagyALOOijx5GJFsJX+fgn3Wgdf0e5rbS7ScMFFGi/b\nAaUFp1mMdF2BJl7NZYup4fhP+mOdgozKguZFhXA5+8EHOJ2VKcCjleZ7gUFJZ4ai5DwEYROBNOX9\nYf7mfIiDa3h3UC586yP58/XCvjHGmCtQqM9/p/V7iZJXM7NBDTp35/c0Fxuo7x0cCE0aK0rdashG\n0vQxVs884swzNLK5QUn+Kl3U+6r3dK7ONbglAO/bHLTT16D8Tw9QVzqTrZa2tR9sP9Aev7Or8+kE\n2zg4QxkWROdFSypB44szxkO984zG+M6mbOS9+zqnxtxVGdDPp5dCqZY4M5U/0ploOmT8fvlbY4wx\n1xPZQnYf7sw9raU05/pvvtD3gc4LvQ6f6/PNkvpT23hojPlBYcjivD4HyVj75D5/5xbDL4Ue8fIo\nfIGcyWdujvA2xhgnUDuevhKidJnVmW3/f/hrY4wxP//ggTHGmM8/lQ9zuB0S4SOO/qgz6PFQ9jb9\nK6E23vqJ7K3ynuZlhLJlf6H6z58Ilfj2rZ9/35bbP33LfPu3T02X74TFTZ0J3npPY378jfp8dKi5\n3K/Jx+fXNWdFbpKk+7LZs0PZUtHIH4V1taUBF1cnzXkWPrQ+33etWA6vxq2HlsboCr/mjPDbqIuu\nPM7NAOLyfIeZs4cvQMCN+G7ow++WYm7zVTgajfz2mO8eLt/7S6z7gFsEU9p5skL9DgXKCee6POgx\npyx/tDziFkNONtqMETj/TEmQMklJSlKSkpSkJCUpSUlKUpKSlKQkJSlvoLxZ9SUyuycXsM4TCXe5\n0zk4UlSvfa3XvKcoZG4D1Yu3FOXc2EQBhrtuA1cRqVFJUWMnzpqNuXPG/fd+X/c57QvunXNP288r\nap0DKdObkyG4UrRxNgNlQIZ0946eu1zAtj9QtLjxcyF3NlLcBfa545aGefy5opWpC0VnV9wDn3Gf\ntAwaIfcx6JQN7ubx3GCkiOX1GfdG4ZyYogZQmOvz6VRkIhSl2vD19K8VNbThSXBcRYC3393XM8qK\nDFd8tW05UjQwBTv49Ar29pyikIh2mOxKP+S3lK1Y2urL5TdCkEz6r5fdbuwo/OnliEbSDouMXMQ9\n9TkCBTYR9DlIoO+zbkQ/w1eKOM+48FwiausQod9/qIh5CjRFAXRBdpPoJpnQGYoEw57mekoWL4CD\noTeHb8No/NJbijpv3VJmY1wnagpKLNVUpmIw0jy1um1j9ozJkNGMyGQGHZR18hrn1YwMLqokIeiL\n1JiMOsiahsWd031lEHpwVzhEgXd/KrRDWNH7IrgnruE36YP+CC7E+VAhozxztIbLBLftBdmusexk\nSHQ6b6l/M1SrlisY1mE+75+g2EBGOF0hy3aDEt9rvkBFaQWX0sLiDiuonTp3/V0QKQsi7xlHfmHz\nfc31O2uyCahPjAsiYrRSBqGAH4rRSNW62urhZyplcQPY8EtcHiubMUM9ZNiGOwpOklWZdoWyMZvM\ngcvcZ8iMlnL4R/xCtab3lSrKrm3uKnPxM/gh7lTkfzpwzQwv5A/9I7XXhRshJmmZLPX61d8p+/QF\nygZpH4QeyfjcbbW7cyx/k0NN6Nlz2QYJWHN0EnOpaM3v7Mj2ptxrb22jKtdTPcMuvuKFXpcrjW9v\nQgaDu8dzXlPY6E1Lk/vt63eECNrsqD1P/m+1+/ix2nFma5xizoENl0zQO5qfEDWqq+/IIoKkilBX\nSd2Wj6ijlNQ90nO7E6HnziOtyS1P9WdKqBZkGqZdUJ8zFZTB6GKuT5a7BJcJiMUY3Vm0ZMNrGe1F\nUVpj2ILb6eV3Wle1Iooo2KYXwkcBumzua/JSVbXtIdl4Z0dz+BzU0PNX2rMNimAr0Av9lxqTYKYx\n8edqj02WyIdzwK7pdRLGyoVwalW0Jj1Lz53jR1LwVORRoeu90Jr6Y1c2tlNVP0iCmQn8GS5cLzct\nI9amPSVfhR93URYbGbXXAjkURIwnvHQr+JXmIHmKrvqfAeU1ZB5DXwjMFX5x3keRMYdNFPT5pdH8\nhXC4efCDFBzQGQ6Im+wPaAAvtWaqu/Ip5ZqeE7JPrkDMREVgyayx2ZnOIsfH4iA4Y3+3P0D9sMv8\ngkzNwO83dUET4BuWKKtNUCqL5sb4nItWGfUBd/09L9oKBHMwijOYzD08ckPu8i8v1JYayGgn5pMw\noLBAnsRKV3O4aep1OLXgwxuG8NIt1Hf39WggjO2wMUSg1coYHTxyuYB64d6aTWRTbkb+Ze+TH6l9\nZPfPn4tbxcnL70zYW/1pl3aCejjR2SWVUT9zGyBisrECIzyBqO+5IBFjeMKCtW158I44+lzHEhph\nMBCKoI061crT+5s50BCB6stg83PUB9OoXIWcu23OIKsamXPGpQcH2Xe/ESrg+gyUL4qWoxRoDuBg\nC4g+xl2NX9jV2Wp3E1RFTbYfXAshPoILzJvIGFNBzHel5xtjTBisGY+jxRIkpAViNA1H3BhuuTy+\nac6aXI1vfnat5TVWtV21NQ3PxfVLzdGoJZseg3TeXtdenY9VhK60V1igig4m4qe4ArHyFrySk65s\n5AXn6+AU7hCUtKyGxujtbfkB7xb8QnWthQXGf/Zc/rzb4rvYQGNQWt/X60N9PldXfT5nkJhLpf1S\ne/Tcgh9qBAIvUHubnKm2G6q3kta4uD78IF2N7Vf/9Tf6O7xsY/zv5nviQPFQ5vn2t1oz588OjDHG\nVN/XeXj/ocavlUbd9DdCd8xQNtvOcjvhF9r7845eowEcXxbo4EvZ2mimNTvi9xeHeu7pS62Z++8K\nyVJgPLzV6zmTd97V2ur11b7Hf/x7Y4wxwzN49Px9Y4wxKzgjM2mthbtwMl6/o/48fybf0IWH5Zqz\naK0hRFO5iNqfrc8//1T9GPRk+//23f/JWOml2doom6++1Zg9+q32gnf+G85LbwkxY7VkmwNusuRK\ncLOutLAy20LrjFAVnl1AMMR3Tx9OsUIXDkh4kwoxEvpU32tXoD1tD7U71u0ARGAAH2e6yNmgJxty\nUS324JyxuckycUHdLuHN4/zoeqD7Qe+n2a8WnOfcotbKGqjdATYxASk5Ii6wHPB9fUPn8bXSvjHG\nmN4uiPS+1rxf+MEf/VMlQcokJSlJSUpSkpKUpCQlKUlJSlKSkpSkvIHyRpEyDiiEKszkfZAqHpwH\nYU6RuNEZ2SSizdmZotBl2Jhd7menyRplQQksyEQvuPObjVVAFOgyMyJ9ExQNClWUZlaqZ8Fd26lR\nfU5Dw1UvKjrporZijCJmsxkZ57E+t3YL1vl9RYXDvh48h3n8DK6YzplUljwy+NUy/CW3FbXd+UQo\nC1PQOF2dKqo6/ox74llFDteaivpmP+FyHVnUcLw0Z4+UhRm0LxkjVCaaig6WHgp1lN+Dw6Wuv8+H\n6sv5FwfGGGMOv1VEvgufRWlP9TRy4ovIWeqDjxb8rK9shL2EZ+c101LTGUiYGYpSc+5Jcz/dIXsR\nPO/wPjKx3Be3AbiUbmvObBR4piB+6tw5jSpxxk9/L+xyF/+ZxitmaQ8PZDNDkDqLHEgVOF5WabUr\nQ72pDUW0q/uyqZijZkqW3RnJprsdjfMMtvve/KUxHxrTudTfS3O16+yFos2TlSLd5Yo66I5li46n\n9624T94DSeN1Vc/mvqK46VuyyZWt9l6CVvNQWogzODPucxruRk9bQhVMQYOVyGB72OYK9IVFhqT1\nRBmG1D1Fx1dEqftHstkF9Xhw7NTXhSow9Zu7JsBQxrH0TA+OgGhdY0Kc3kREwGtV9a09gSOmQFph\npTbNr7WOr0BX2SuyPj2NTfbHmsMJWYfLgxP6Ilvc3WfsmAObBjhl2eDmtsa+xF1Yi9B4jPoqlGQz\nCIkZx12jHfAowRtUxk+MVyD/FhrrCapFTwJlPMwMfiHU4rJkBjrXmvNcAz9BZiNFprQHamkBmspn\nrqtl+YqXl8qub62TtQGRc/8BSjFjuHPG8hk2anfOQDa/msMlAz9HpgKKIMRBk+ldL6qf+a7WRglO\nion3enwhMYJwwnyOn2v8t4q6f52t6vezI/3fRV0lhQpMkQxtGw6MTqA1GORQ60Ctz/qdJjy60ued\ndc1r8QP5cR8Vr1lXa9dC1Srsp83guTJwrx7LX4eglU5K4uUoZdhzuFedRb1snEGNjbvjXpW9I6++\nrUbskYHWoZdSG/uW/OYAPp18BCLiQjY9ZV2njPyHo+3B7KXUjjmIy+gcNb6S+tQMWe/wDqUNygo+\nthXJVoO5bOz6FVwrtsZsc5dsUgdFxEvZTJUUoINNWDO1fwS6dmE0Bx73xe3s6/GFBH34p0BDuHO1\n1/Lg1SAbuCrDw1HQWqiilDaH92PS1toLQSQNF9oPlz730kHIRCn9f4aNZasax8VMa+mqDQfEmvZ2\ngIdmwv5aKcPpE/2gMuXkmsbxtSbnKFx2QVIZED4l5tWGKyc+FPnwsOyj7JgBCQMg0kwhuNq7o78v\nUccqr8nOeigFnX59xONCs8rDsZSCew/eiinI4BUKIisfFFJ859/VerFRi1sOQFbgrlNwB/j4s/kQ\nFO34T9We1rN6Xr0KnxqcVBF8cFHq9WwkDfmhg2pSCFKuyJkjyz7k+Mr4+gH8TLvy280HaucAXrvr\nS9SXPNSUUBMJyyCEQP2mQKIUS5pDH8RMxlV/liHcgyCALFSFZnO4XkB4uo78/mpT9dQ5Z2d39bqA\nN65Y05zm8LPLFrZNLneOMk5XRyMzZD/Ng0xyQl5tjbOPMtBwqfcVOSuV9oRuCEFKXQ40Xg24u0ys\naNbX5wt78iXVuuzq6VfY0YnGa57V55whSJr/n0jfMpMyy0X0J+PhLNWfqQ3SBuTnkudaIxn/snBz\ntT/L19h0JpwXv9McnvxWqJ7ihs7LeVQsp7bqPn2kOWyBClreUh8suME24Dy0Mmrrsz/Kz5yDCtp9\nINRl5TZKXuxN87reP1zBqYgCYBfbfPUNiOhQY7ezLX+zVpVfS4EeGl7AIfhcnGAXbVADBdVf3oi/\nG8EvV9J+8uCu/KSLzQZX8hPjbzU+L5+zVkK9v7mrtb/MahxjldPFUv0pwJP0/sdq3+1/LaT3NWcH\nF169tXXZ2HpBiJSaBTLmGt6TlxrvMQq6a/B9BHOtkTWem7M0XjuoBG79d+J8bN7aV33wHvUWQAhv\nWHqguO//SGpcpTXV/+1//J0xxpijtpBDV/BqdZraFxpv/cwYY8xPPtKNhuKG/HsQ866wHQR92Xou\nL1u+//G/Un2g8b7993/4vi1/+LtfmZ36A/PwQ9W9OhZq5+qJzh5+TXPc2BISph1o4Y9a6vMZvGIl\nEG4FUJOLLKrBIFccD85T1I4nM9TNUL7Kg9Zvv9Aa8Niz0nzPd0DEOXC6WAvZzAxUrNWC/479ZDnk\nBgzcXSkPRAxcr0srXvesc87dqxn+LuYI45y2BOqZnhBfWPLdbaI1NGzx/b8p5HqOs0qry/cB+8/b\nSIKUSUpSkpKUpCQlKUlJSlKSkpSkJCUpSXkD5Y0iZSyySrmSImwhUdAF2R1nU5Gm2w1FN12HSFcA\nfwb3mwd/VPSw9xUKB0TqBkQvo5QiYFkYtS0i/+WGMp8FMgo+98bzcE/k1rm3vcWd14EicMNzRQgv\nDhUt/vIbIoEoFty7peilT5TZJtPskC2L8lXqUyTw+lLR6/WiostTuCK2qooYTuJM+liRwTncCw7K\nDMW06tv5kaLjzbfVr943inBe/6Ztzl4pqz36VpHhBRwpd9cUQa6iDBNnKk0PRZlXmpNVj3u2dUVk\ni2vKxFXKZEPgPmh9oUj1caBIuEUW3BABN6nXQ8qk2prDIRrzLlm01VBjds5cjF51+QC8PhHs9Q21\nbxe0UeGOMhOdp4p+ltfg6SF7EpBxTYUgPYbKGI+OQVU5cVZJ47XW0HgMm6rHIyO5y5znqsoQhNy7\n9m3uSXOPeTLQfKSmqFgpcWwuTzV3w0dEg1HXmBtQB2P4SVBAcEBZxXeXU7uyoco69zzf0uerH+wb\nY4wpharn6FONo/e1xmNUVn3FlaLYAHSMvdAEL0/UzvEztcvfQ81rqjUzBHEzeKTMR48s5GFPGZ5p\nnjUKb8DuW8qslLb0Wq5rzTvLm/OFzDp61mgi21uguJJJaQ7GoJAu8rINtwi/EIool8fcqQ/0+Wii\n/x8caozWbY1py5PtZlAc8GzV6/G5GZIoSxRU5mO14xSeodxSc319odftijKRGVtj5ID+KmTwX2Ry\ns2SXImx0MGDs4yz8QM9LkyGeL7UmbNAHF9yHdjaxoTl+ZK7PFW7Jv1oo2/iowe0//Ej9ga7hGb0A\nACAASURBVD+pBffM/kNl467zQimsWcqcVErKjqdLGudqoAzB6bVsuVhXe21btraEayvv4I/JoEa8\n+iVQX229jlAOyKC4k0I976Zl9I3m7/CzXxtjjOldysbWU/IN1Q1lv/KW2te/1Dyd8Lq4IHPtkmGF\nrMzFt4ULuHAc9X90KFRZrP7R/FD1x3eqz/9PISQzKbiNvG3ztie+iYIPB0kBfxYrGLS4Nz2STcyr\nWkfrKB8MY0U+ssDlujKy/oysEYiK2goFqOuvjDHGrCz5gQUZtBRZ+2tQnV3u0udAHObh5xmA6Mi+\nYm8O9RoUVb+FQkKauV8rxBwsam8XdNYIROLwUJ+/RVZq2lH/0xxV5mRy7SGKa+wLDuptmZDM8jrP\n9fX7TYuTwV+myNA25I88eEuCULYRsV+2pvArzbUmUnDZHDFfO3AMhGn8ZwQ3ACodgAuMizJO3oGH\nijOQVYYjyBEyaYwiRKzm1x0LtTda/cDBNfSaJrNCNRHeluFStlmtwLeCWkoUam2GJY1jrQx/FIjX\nfu+E54CoKe/xOXjsjuNsJojJUOORhVekkMuZwpbmstORX1pyDhrDF+RamnsbvjGfuczFGMcyClUz\n0JoruEforwsypRfFPDl8bqS2D54xdq/0e7+lOQhA2qQrD8zrlCGEOu5Qz1nBqxeiuumV4EUL9Bps\nYsOc286P/l9jjDFz+lvy4KCBm2FZ0FqcWiCh4SAs5lRPxP4SgNLNoNiyGOJHWBNFkH+ABozHGrJW\ncPC4qIykZNNp+CoCm3q2NZcp0LxzEOULkOpTzuGBq/1jybl7s6n9MWC/6JzId6Qj0GYOKGN49GZD\nPX/mkFkHpTaBu6FWZR+H27F7oTUwmcK/N9D/M57alV3Kvy5W+r8b/qCIY69yZu6rfy6o6zmZeydC\nARIA5ioLch7EbMAZ7SYlPeLMcSlbWbxQW+pkz+/99S/U9ivN/dNXOsPY7CllkMxNztsV9oP0utp8\n8qXGtAdnzMf/vXg/Mvsa+9ZL2d4SG7TgMWsfyV9Xt1HAgnNwzjn2w7ff1/89PX/0ldbm9Svxi0Rz\nnYkc/OPdXfmf0gfwDuH3nz+V6lIdVEF8CeGK7ySdc8blDAWbheZu631xxyxYG5dw3NRR+PHhHbFB\nk3kpvV71VO8fvhIfns85+MN/AwJlove1/qizXhdk/fBa9W2+K04fM4/RaepnEf5S29faqMd7O+fi\ny+/YP0PVkyr+eWWdf1y6nEG+DGWTbxWFUvnoA9Vz/fnnel9Hr324YywQjM339f3irbzmrwc6xWbf\nKPO94+xUvm/Imlxvym5uf/SD7xt3D8yjLw7N/rrOKbVbQmGegva6BtHSTKvujZrG+BIkiQ8qv9tj\ncIZwuKDENe+gmsT374nFGQcu1KCjeioV2VTBx+9zc8b28Hd8RQVobaw5SGtXfsBij7SmcNLA/Tjm\nbBTCCxfzsqVS3IQpa8yhjDVzvoNkOIfPfLUzXOnvZdDI1tyl3xnGSeOVQl3QQanY39aZyf8Xvtok\nSJmkJCUpSUlKUpKSlKQkJSlJSUpSkpKUN1DeKFJm3FfIaHCoCFyPO7NpuGbq95SVu7upyNw5nAWz\nV4qonV8r8zKE3TmCbd8iUueWiKDB/D1XQN+UiOY2KygXZBRZc7lTOokjaXVFb1OgRxYjZT57fbJ2\nKE/MI0WjbTKmUNqY9teKyk4+RfkArgbXU3vXm4p2bt6TVryPisqCjGswULv6/0XR2D6Z7RXZqCI8\nHyV4RQpjeGBe6nmXZxon20xNuqHo4zqM9bU8CAcyZtdkKp9/qsxoOI3TK2pj3Ueh5o4i6JUNjckM\n9NBVX9mdAD6GEYoJVk5j5ZMZtCo3zzYYY8wFWaEWqKQKc7bIcp+bDMLazxWFjO/xZda4R00muX5b\nEeXxpaKuX//698YYY9qH6l8K5YLjujIWKfJwIxR8rHWN+S4Io8ptjUPjF8qyL8j+da80fmai5y6H\n8Fig6pGKVZsuFfEOnoNaONHrABWpoKB2Wm2NY3ZdNrwRyEbGA0VtG/fFrl7aJ4NNhmAEn0lmxb1H\nqCgGZzCFQ2Rio8bR68qG63sgmipkneDhCLB5B5tbDmQfhQFZfy6Wx6z7K1RWatuKIpc+0bxswF3k\n+6p/2Qcd0Vd9Q7iKltyNvVEhdF6Hu6O9AOmwiPl1NIYXHWVTTAekWahnzS7hT1jTmGxxH7tPVmgT\nzpHWS2UrPKMx7pMpDSLVN+uwPh9yZx3ulwyKKWtN1HvI0OUqGqMh98VdEHsG3o8pd/VHtCs3IAsC\n2iq/ZO56sqUwVLZqFsrG1kBkdMksr1AJ8a70vEEfNvyK0BkWmc5RTw/ORPr8Mq33dZnjEGW23LnG\nvQXvlFVCgsUGuUMmxQlACQTYBlmzaEXmAWTTDORMSHuzC7gHsihHkI23qM99PVdi8txPn3LHeAFf\nx6glexmQGbEmes2l4bKx4E+BK2yR0vjugu6agFhqL2RPFdBvpqiOLiao972Ey8LHr4N2sWagORaB\nSZPlLpA1r4LU2IzvWS/kp3/1RBnBs1NlTMeeNrcRiiEB6ki1ovYsbyHbyceO4C7qbXc1Fk/IwFUG\nKNVsys+4BbUxBX9EiQzdRl3tbKSlVncxQ13vH2QjaxVsp6PndrijH+ZVn49/2fnpT40xxtz+hZQd\n/vgH3aVvf6b3Z0LZVJa5Gc0ZU37Po0SYuoJ3o4biIHxy0/D1FLqCDGgM0uXhTHN3CILSBiGTrsk2\nLnyyc5f4WVSSFiB2iiiX+XDorFByCWLES6D/58l0zjgbLC9ArqC2ZSytASvS5wZkQA3PCdMb3/dh\nVHzbTEGZ+PBJzVB7aqDqtZiyD4CwmQSob031Ou5rHxxcgLja1P46H+v53QNlzucBtjwY0E79vmKN\nOnXfDMguR2Rp0xnQXCBACih3rdJwgZF17l0qu2vDOTho6YxRrIP6zMgWlpHanEH2LVakCkF8eCjU\n5FB/clCQWRS0ZmzW6U1LBbWgMf7aAv1p5dRnG4SHVeQM4Kr/xRmoN7gHDOqYThMuNFCqUwh85iBf\nVrFcEApbATx9MW/bcqH/Z8f6fOiBFJlqznrwhSwijXvllvq7DipuPIG7B1638lxrMz8n+34Zc9Pg\nNz3tEwHIpSKIz8U4brd8ywCuoHwIp2Je88C0G4dMeQCKzE7hd1kD8yjOdIPecnO0V8+ZgoT3UWGp\nFZuMl9rZukLVBW5IY4yZF+YmBUIr8OEDtNlXQPWmkHmZxxyXpK7tHwA3/2LJgQi0rtXnZQUupnsa\nawt+mme/0jl0lNeYru2icGOD/p3JD6ZQcxqca4xeHsLlAtKwhULg7/7TPxhjjHn6xR+NMcbchctw\nj7NGH5TsxqbOjSls6MEOSG7O+adfC1k/eSz06yZchems6lt7S7Y122Tt1tW/o5a+8zz/vfhIan8l\n/z7hrDFCAbJW0OeWTbU7coVgL1WF0nj8xWNjjDGXcEbuwvkY8/4dHxwYY4yp7suvbYGYWcup/Y0t\nOHFKQvF2vlK7PJS81uC3qsKhWa6jJsV3Oacg27lzV/XlQWtM+nzXu0LpFtVAH76qCDW7m5bzU7Xn\n7N/J1z3La7x/jLJwfk0Injvw6D05F4dQBLpuxf6WgVc0x7613pRP3H4oe8td6ez5q7/9v4wxxhyC\nGnnvrd3v2/Lw3Y/Ny+Hn5uUXv1IdNT27yHcu09UYd7f1rE2fmyAd2UYX7sCyhVolXDJTFK2CAair\nsdbXRho0KxxQ52O+I1FfjKT2l6Bu/Xg9Ygs1jX0EEmfBuS1d1vucJVxYEOysLNThUBYbenp/AYRd\nCPLQBp3sw7e2BP27AB0662kNhdQfxw3y2/gNvhdk4etcgZadtbWmF37MRftPlwQpk5SkJCUpSUlK\nUpKSlKQkJSlJSUpSkvIGyhtGyijqeAq6oFBUVDJ9F0WZNJmGADWlniLk/TlZ9AWZxp4iYHMiUhYc\nDaU1RfLWbymauizDuzFR9PrFI2XO+wNFb/OwJNfJ+LaP1K4Rd13HQzIgcN80t1BXquo+p0tkv8Ko\nDi/QMb9UJrZroQKwjQpLXRmGtZ/o3n+de/fnT5TdfP47oUNGoAfmPe7mIcti5eFr4b5k70yRyBHZ\nsVhNpdjMmQf/Stnw3Yd65gSm+8NfKeN10Faktv1IcxL11Ne1O/say58qclu7p8hzmejp1YXeV2qT\nLQeBMeZe9wqFhQC+ilz2z2u0/+OSmSqqGSvYpNG0339AFHdHNjPvcy8QLfgpaIbOUBngk98pSrnt\nK6pZgOtgDIJlBsopg7RDsybbK/+F5iaFOkkup8/NHLLm3B2ew8Ew4o5scC6bMtdESVv6e8+J7y2j\nEsL/B6OYV0S2XCrBEg/XQBnxjFVN7Zk/Jxp7R/2pcb9xOOW+NrbS6ip6PXyiv9vcm86X4I6B7+LV\nS9mYOyYD8Lba4xFlTjXUzzJr8exaa8Neg+9DiQZT97Tmin8pG68V1PCI++M2XDfdp7K3yxealxhh\ntULZIlbxukmpbWh9hyjTbKCY4oGSsmLul5nG8vCRnl1ss+7hn3DKKKSUSIn19FraYgzSZB/qWvcT\nUE8h969N9kDvx8Y6sLIvjca+d6k112lrrJ15nEkAtbRAZQJEHavbhC19DpJ7k/FiiEisModqB4iN\nDLxLfoP2k433iey3M9z1P1D2PgJ1MOGu/nSCQkxdfmtthV+K9LkBHCv8aq6G8qONTY3fEco9u5ua\nl8FU4zQy8DGR5I8VBYoruB3mjPsI5FFWtpRGWcI12BBZu/H09XIKAf47mHG3eQWaD3WXNBnTOWol\nLmtlFqj9K1AZpSodqMgnLtLUM4y5LZifM/y1JZs+e6759jNCS2TbssdKCfTZyjYhBGIrkikWe8cJ\n6JzijtbVf/uW9pxfIp5grWnMmvD4hC21ZYxKkx3CT2HL5tNNrcuf/I/KUDYHGuuDz5RR7IOEq4eq\nb/OhkBijMcgTeCXWm0KVrRuN4denoNOGyswG7J3zS9nWmaN+TA/xH2Rut/+tMsTzKN7L9PcHObVr\nAAdVwYELBZKCOZxfUVv9XaRRExzoOUH1B1Wim5TiHA6YBXOYUb/qe6gQcW/eQlXPqYpjxdiy9atn\nQgptrGtOm/CPHD5Wf+sgDcfwRBmQOOmqxjcYwheFgGJg8Tz4sebwgRR47ZNXq+5tft+HrXsfmKCr\ns4DF2t7c1v6QApV3eanFG6FQky1pPi3QA3My2lmHfcbo7yPQg+lreF3y6rdhX/bIJq7g5onSrrk+\nQMVtproaKzhWGmQop2SXyZzm4fZLueqTh5LNAuTcnU0h9dJ+zPUnf9Q7B3lXU1/z66h1juTnQocx\nnMeydvr/IvgBSXGTMoTzxAP1FQNZJvAypVKawwgPbsG9kgOZssLPORX4POyYNBAkEePUbYF43JVt\n3L6ltXDShcPgWLZvpVWvl9JcRKALoiF+rKgzQ9jVHJ3CH5dGEXNR0P5lg4zJoCY66bDGOEusUK4M\nyQAvY9uERqMF79Dw1/9V4wAHy+23Nc+FNNxsnD29Ahw2oO+WI5Dd8BDWQELZIK3K8Il05qwdZBed\nEJUkeJNGKAvFnHGpLQ5PxpjcyjUTD1Un+mkmoL5Rg4qwD7ZJ0xuy/6Nwd5NyBZfM4Bg1PE9zk6rL\nbzx5IoTM4+fiXrn1l7LpfFE2cfpUfqRQhsuqrTF4eq7z+iBSW0o12UQQc6Gcw/u2qXP+xz+WKlE4\n0XeKAtyDdbhS+q/wm0dao2cXapf5lr0fpcUC6IQZSBXja4wnXAvoHehzl5wpXEft29tS+8JrfW7M\nnO3mtI91+fwyK9s6Ben55IUQoIW39Xe/hjLio0fGGGMs+EUbIFkKqPylsqrvHFtIH6tfQ3gH667q\na9D/RZ5bEDsa5wlnrcoayBcUes4f67bClHP9sgfKKscay6s/09fEOeQLGp/hSKpcR7/8W2OMMa1v\ntK+8+yO9Vm8LMVuDb9Rl7ayjxtWHNzE6kQ/s871kBvfk7i3Zwwcb4gz64tP/bIwx5h9eHhhjjPnf\n/zdjBoOBefedn5iDpdpiQPitrWuMW6gcLVCfHG9qPTfW1YfTJ3DwnWmPqIH+9OAIG7HObdbEaBe/\nCIqrYEDXXqvtOXjTlqDuZ/C5pUDGpWMlRPgvu5yLVxNUmFxU34gHzAIQNnz3C7DRIefAXMBcsvfb\n3EhJpfQ+x6ieEOhcaqp2ZkGzrkDFOvHzURtN+Wp/GQRj0OM6xD9TEqRMUpKSlKQkJSlJSUpSkpKU\npCQlKUlJyhsobxQpYyPtEqK+EWUVIxqQLQq+VFTyYKqoaI6I9tyHK6asiFT4U0Wf73CffDGFGyCt\nTEp5W1FqZ6mI1/Mu2f3HMFJHen+9QZZxoEjgSQe2Zlj9y03VH8EvkifqunVL7cqSVWu30TVfcY/e\nVjsKIcgao0idZSlyF3yt6OZLspjLCWzwsN7n0Gfffg/umGb5T/rZO1RG5eyZ6hlzp3l9Cy4GK2sg\npDcTEB4XR7q7OFnCDVJQnbmfaw5mC91FzHIBeES0MHM+4dkoxJxrrhYW/EA5RWaLaMEbkBJ5V9HC\ncPl66kv+vsb2zrruwIZl7lDCVbPswPh9ormcHcEXgrLACI6TUR6lF+5QVtx9tbusyH4WRvAaGcfU\npua6vKtIde/FE2OMMReHer81Uz9aLzX2mZo+f/VUY28/RYUEpZxKJUZhcP+bZHvqtua09pA7rqiO\npMgo+Hm9MbcDJwuZ3/HFgdr/UlHeo5eKbs/IiEdLzc8crpYlykCpdIvxAXFT5555Te0t7RGndeB2\nyXIPnzVUIvs4Rdln/RMhlt5DccEL1d/LU9V7DqJm/rnsJnOieiY90AUHamcxQhECNEcqh/3coLTj\ne9vw0IQT7tvCB2Q2ZIPNqtbRcqFnxxwGExRTNoAjxZwlpoC/gSfC532jAdmdjuYsg99qDbTurXXU\nnbhfvIIjIF0GbfBK6C2PjOnptdpzi/vfl6F+T6Nw8KwjPxLZqu9qqqzPmPVv51BlWihD0Q2UiSjA\n13N0rs87DbU7W2MuG2pvvqgxH8IFU9/UOGS5s78kI50P6S+J7fWs1tYVXF+lgvp3wh3fGDHkZJWN\nq4AISsFNELisZe7sugW9v/tKPioAYdNvwX+BoksIH0e3pbV402IV4Cg4Ub1t5jkXqR8zMvFRmtQv\nd6KXZJinLllCyAWyMyEZV2SOU6BCVnn5jsK6xiNLKn31TFm7DJ/v52IlB417tVg1efaoGWNy2WEP\n/Ez+rfRj2eT9/1VImdQ+cw8iIztW3Q/uK0PqTWVTz37HXXTU7IJYCSylNjc/AtlCNvzL/0PP8woR\nXRZC8hQ0wmeffmqMMeZWRX6nvCkVh2iovh+iuLVBFr6ICpLD3f/lbbXjiKz4aHmg9pPFcuCsgYrM\nOAF8Gay1PCokUV7tvQTVWgpUb78ASo41e9Nyfa1xubpSOzc+AHkTCRE0GMkGTp9oPDdugVRp6rnd\njvaJ7R3N/RqZ1gGoq+qW9tkMKLxXRrbozJVpHYNKy6CaZFAqW4MLZuozH9AWzTuyk+jylB7cM+bV\nczOLs3+ssdDAtRNzFoGsjNHFLjwhK1v+u1jQ/1d1+DcAHKUj9il8peOCLmM/XII2vHtX49U+mZkA\nXgzLURsC0JfLvvoGqNVkWuwtPijbLZCAAeoXyC21R7GaBzxC8G1MPPjeipxlVtrDTieq112SqQUp\n4Visy/Hr2cj3klmgf4MMSBue5yzwM5z7vBhGijqI67MvpFFWZH/JuvrdXsLjAz9EjsxwbqkzQIHM\ncuuEtdzR2nIL6tdlW/XssO89uCeejta1+vkH+D4u2sDx4HasX+scvQQR4sCNOGDtrUBiBthMlOcs\nV9CauPMzMtqnqKE+Fequ2hAaL8iTWYYvxc2pvokRKiQF94tbAjEFX6ADR2SYQnkON+xmYxUp/Q6Y\ny+QdFDRBV+TnP6Dl5uOpifjAgkx3Bb6uMUZuz1CwBBVt4Z/d16Ae6nRRJQOtv/mXUltKr1ARPdMZ\n4Ee/AMG+rb62r7SnDLs6n6/vCOHggMTemMoPbza1PjPwY6YC1Cy39Xu8FxcMiGn8423OazYo+gV+\nbHgEnwfnsNvvyBZur+l7QNDToHfhsYvKmrs06IFVT/UVSrLF3Ef6f8wXdXCufSKHH7OqKLI9Rf0z\nrTFuH4rLpj3R3999S88f049L/u7t6jk2c/nVC9X/1ZeyvW3Uiwr3QZrcQWkHrrH2c9lgf8T5/Uw2\n8/xc81Liu2T3ifbB5bnG5xYqUJld0GU5lCA5NofR6+Ecik3N2yc/0/eOF6C3B6ivHsMD6NS1v3pN\njNBBAeltqVXdww//4e/ENTd9rLPGs88Fpb16Wz546x21+/5tndcf/+aP37fl5VdHxnk/bXJ3NUfO\nRHPocT7cQM3t6hoFVlBR3obQOpVdtXH5WHxAQxCMeyXZogfP3AV7RRtEm23DYZXSuhvAFzrKyJYR\nyTNlbDPmJnRClBexsXSEajNqpCFIm/kUhWA4agznVhuETWoFh00wZCRA2vMdzcScNhbfTUAIBt8D\n50Dx4jdDvru0r9WPbIzYTIG2zcQO658uCVImKUlJSlKSkpSkJCUpSUlKUpKSlKQk5Q2UN4qUWXtL\nkf+9v4Q/A7Whq5ayPJcneg1exGoWaMpvKKuU+ZkidPc+0n30ClmaZzCGL74hG/idop2LCRF3InV3\nPlQ2cV5QhCsVki08IZKGmkb3AuQOWT2fO6eFktpRzil6XSCklyKSP0grcjcFaRPBHr0gxLb6Wu3q\ncK9yhla9y4Vyj0x/GbWAtVvKPuVRXhgMlWnqcJ9+DcROkfuV8efs2cqcHCjyevq1IvER2W1nxZ32\nO4r2Nfc0JoWG6mofqk2dr5WJe/pKd2Dbx2SJUWgp7aqexr7msvqxkBhrIGauLi95VZ9vWnJp1CrI\nOHp9zcVwQRaFDHGcRvNnIElmGpvxHE6aOAN9oiiqj7JWCa16O4KBv6hXB/UTnzk8Hw9oP/w+KLY0\ncorEFwuyRcuSDXWW3AmugIypKvI+2cCG7ip7VOW+5bCF0sIShMgKfiX+b6yYYZy7+zCDz2KG8Lme\nlyaq21tga13VOzBwxpDlslHVqsBq31pTf2dFl3aTId4m8/GeXjOB+jtYKqIfK2UMTlX/4Eq2HnMO\n9I9jNIXa529q3B7cU/+73E0OGU8rj5pJhjTdDcoyjPkZUE/gjn3vGjZ4IvAL+DF6cJ7UPHgh4Efy\nHNmui6LKw1uag2pV63qDzGq+LNTWbsQ6Zd2elMgMru8bY4wZt5X18UFHffCxMgmFt+U3HnLve3Cm\nzMMcroLjb5Vt3/1E98yXKL5UfqF+Xl/HnDB6XjBX1sSjfbUyPBGx31iT7fbJMESoLPVACA5QWnl1\nhb881f3z+G5uPi+bmpK9f9qVClWEos9iorm/GsbqdfiMEXeEYfofL0EokQpYwP90DedPfPd/6eu5\nWw81To2h1pbnaR7TdbV77xZ8HjcszU/2jTHGVG6pP7nPlBWzjkDwrODlSMPqvy8fMR7DfXasfaVP\nYn1puKNsK7O0tqPP98+1xpw2iACoC5qsqWUxVvXTPC7ayjjZwdLM4E/w4VJJcee9jKpEhbk9v9Tc\nP27/WnWGWnftAz1j2lQ9D3dkQ5OuxtoFdXr0LaoP3/yHP+nr2hQenyWKBXCOpDUEZj+vMdzbUPZr\nNtG6XeEPimtkIp/JJgJ43LJ1+YlzT37Ay6AgeBvVogV7Z07/z640B11QBLl1+NEqGvx8U2ivQl62\nkQrhE0FZazUF5eqCUrhhWcEzkklpbrwx/BoZsoIoIPpwJLhlcR9EEzKYT7Q2JlfyDdfctx9eq331\nbbU3vSvbXmvsq/9jjfN0rjUFxYIpLUC6gHiZoySUxkf5Rfp7DQ+A+dem9+g/m9yWMqKuo/Z3Fvr/\nOMM+hX+dwNeSyXA2Ims4dGP0hv5vF1C7AmV8PdR+7tkolNXVjgpoij7cNZ3JyNhV+dnNLTo10jo6\nB01VZF2POZdNOhorqFnMDJRVdg3yFjhngiUZTrjEBh4oV+Z87spGLk6xNdBTdkk2GcHL4YIsvmmx\nyKSmSnBcwYNmo8BoM2YRyGgHLgMLtaEx6OS0BdcZaLT5XDZbKmrupvDkjU81EE/n8lepIEYbq/5l\nVs9dMBc2XFtXV6CYHNBdJ6CHQ9SZ4DmZoorioz6Uc+B46YP0WXH2sGRL4QTVupycgjuUTbogeNJz\nkDcgTGY7mudoBsI9i+JkUT7IGWv83JxsZrsOjx/2MFjBNcPZJl3mbAbicEaGOwUSas5+X0rJ541m\nP/iA5TxlckCzJnB7GVBsEYiqMWc9Pyu78qr45Phgf4OSu6WzhL+p7zhupLH5+0+FTDh5Jr9RrqBY\nBaKvBK/ZT3+ss8EGfuLsgj1qDcVHFKnCc7gc50LCZJ7pzJMraczHZ/jPmcaohvLZ8JXOQJND7f23\n7spPVeEB8fNk9VG6OvxMiAsbVVMHHrjLY/nFc3g6s3nU6SK9dr850HP4LnfnLX1Xm8F31BvJhhob\ncDrCv1Z5qDmr0/9ZS987wpmes7WjufPXUKVjTdTYT7be1hnNycl3PD7U2uk/1rhPQZA3f6732RmN\n7xQ08v59ndWmKPw+/CTmSNR8TttqR+sC7jLQHsv06+EcnBFcN3fUn/T/onk/+yWo3U3WAOhrC06i\nQV/cQvlrjd9b60IU7eWEgFntqZ6whxrWf9K+1OI2xZ2P9tX/+z/Y9Dw1NyOrbQrsWTGaPY3a3NY9\nff9Ml/SZl48PjDHGuBpa4xY5K4D2H4C+OuN77OZtjeE6yLTOEC5Yvh8XUT1bFmOlRVBMFvVmVe8U\npPSc82O4BAkDsm4Kwj0Ln+kCxOL3CEa+k4ZBrFCr9k9RZ7Ii2f4IDhuLmzxuzC2ThifT0f+XtN8F\nXeqyn2XhtBqDuu0ZnZGqf158KUHKJCUpSUlKUpKSlKQkJSlJSUpSkpKUpLyJ8kaRBgQrMgAAIABJ\nREFUMtU1RczWt4Q0aRtFDddsZXNsMt8tmMXzZIVCIuVL7uheThTNHLYUERucKCLVOVBGZhZnLrnv\nWN3X+9buKCKYgSG8e67n9yK4ATqK1C1IE8b3MKsLRSEzHf3ee6RMw+US7gfUS+Zw03jch5zDfG7s\nmEuBjMOADIJRu+o5uCzIZAew8b/8/EtjjDEu3AVZMkLVOuoEG4oYVuqKKM7gmhgfdUzwXBHtgyeK\noOdAOJRg747vwC+2UU/i2ptVJFNY5B4dYzuCkb+W19hUSkI++A3qJdvcj5UIUswBdB03LasrPS/g\nfuHiQhnYEZw2dVftc7lP3uspOttCs37KGJY3YKknSnsvRkldKZr53a/EHp85AhGD+sRi+09Vl3J5\njc/Jt4oWO2M9L7eUDee563oB2stOywbmtp6z5L6hWyB7tqO5c+GAGVypvakF7wcZdP01jN1k2cOx\nxrl7rMi/F+nvkQd3Dwga1yU6jJoRFAymcEfvb25p3v0NtcefanzC9Sz9JgqNbc7TWhNmofpf/ntF\n7IsopVnc/17AbePPVZ8FG/wYDpnKTxTxX0Wy/espGSDQaPH9/5uUmGNkiMrRFgiYa5jn53C15Ep6\ndueQO+Jkh9IX+v27ltbXiHXe/g4uGOZsGcVcMaAIuJPuwxlzfam2L+DtcOHrMPAoTeBCGMAt8tkR\n5CwopGSK3LG3NXaXpwf6N6z1MWqgfyKby3Kf2gVdlCOL8sk7ytJ5m9wLv6+x7fdR1oLLId3UuNz6\nmbJFDThbzEef6POwzLugv4JYgWxLcz0YqL5Z7yP9PRfPqdqXX8rG5qC29uBnqt1TVmdmqR1hH7RX\nS+M5bMNzVFfm+wolHpfMuAV5QOrmtEPGGGOglzI9/PMpKnWFPP2K0WhF+ZJZVvNa2pafzsBRMPy9\nUkPhFapZXY1vCfWRxSutlYueEEcVoEE50IQLMr6ZLdBsqAN0BmffM/4XKsoAVrl7f02m0/Lg4VDV\nZt1WW0t3lNkLSbMMn8HZckUai3vQDiQt26hqrDc0lzMbZZouNk7mswAX12LABeua2lqvws8BarWQ\nli2lfqT9xLG+MMYY0z4BUYEq0mKose5+pb3WXMOLVALN9RjuKRCDM9Bjmfge+oXqe3Io5Mf2PTm0\nLGvTu0W2iuxcYF6PLySHgoK3iXEtUCV8AidCQ/31yd6nB2TRG+r3PjwoDmiBGdxthqzbHH8362qN\nLFwhmfooD81msWqRbOrsFDXEc41PB6TO2m2dQYpl+dfz2dX3fVi6F+b+rvZjDyTR17+S/WSw5clM\n7Z7gb+uojUy6shcnJ7SGB4o4BDk1spSJn4DeyDRYK23NT49+9RYH+pzbMJMB3AFke9Mz7Z1zlJp8\nuL7cscbIh4eu+JA9O1alm+hZ8d4fFVDt2HtXryhbGfz+AmRgn7/bOdn8GBWmwlB7fCH1GmQhxhiD\nH7Hw6xYIEQsVJQ8UwxSulghumGCkOU6lYkSNzgwGlNcMm8nY8I6kGNuFxq/3HFQa3AirlOqdgaT0\nUN1bgLS2hqgtTWXDXVBy1X2QS2+rPVdPVE+adqfgYAk81KNATDrwVWUqWsNlznjLCNQYCKh4f3T3\n4MgB4BS6qJf6cD6iRmqNQFnBU+RyXh5P9PkYCJsPVVFggfbFN7m22uGCsljy/AieFXv+g7qWlwmN\nHaGyEhMlzTR/Loggg30sYhU9Q2Z+fvPDa74AkoS94dETKVK9/EZ+5E5dY79/W3vhvabmbp31bIMk\nPOHc/vI7lFX5xhZ24NOA46qR0vqtA6LaM+wfm7KFvgXfJByHgFlNDe6unbd1Doz9zOgUVNZA/Xgx\n0Lrfg+PFtuEBxS/c4vtDs6qzx6oN0nGq5xYzWsulNSFNjlD5m8Nx6VZRXETFbZ12O6782gikYami\nfhZB9Fyc6Vx8/khr4wr0bn0C18zn2meOnsovNbOa6zvvictn+x21+9vvdI4dw/uRAdne6Wu+rLLW\n6vF3Om+ffKqbAktQGbmm2u27r3coGaA+WADJ3wABOvlA89ACSZPblm3v/hudzV6caNwffaH2PP6t\n2lP8SuPRtNWv+3f0fgvVwG86mtdRW+OQ39z+vi3V0oZZhmOTbuIH8MOXB0JheQPN/QZKUNNj+Elf\nwmEIJ1+N7zY90L5T1JF7UxCLIGk80EkrvitM4GzxXe0LU+ayg6JYaStG+MWIY9bnAPUj0FJ5OP4m\nsUoc3JGpEbcgUGmKCjHSm3WdVbsj+uGMNEY+il4z6vdXqncBotAbcn7jdoYXcwxiqxmUdmP+Vb4e\n/LMlQcokJSlJSUpSkpKUpCQlKUlJSlKSkpSkvIHyRpEyAy7nD6aKBofcBV2CfsjvcDdrW9G8FJlb\nEtSmc60o4umloopehzu4oSJgEVmlONvWzJFtTHPvfan/Z4jIRwPu9sL2X9xR1i1dh70fBEqWu7Xt\nSxA5serRIXfQIBFYJ3pcvKOI2cYDRVvrNUUQ+0f6XL6p/s/IwFSqan/7SFHPowv1M3LV8TQZlOKm\nMgGOQ6YJXfmIjG+ESoy1MsbA01C7r8xcPqc2Zqtq44C7o/0nZK/Rol+ShXC4D13b07N8Mms+/DY+\n3CnBVGP45Te6A+pOUNvgjrllXi8rdUT2fDHSWAVDUEUgK66LREHLZKlKinDvkpVPNfS7j3LWYAGf\nBvxCfkqR7tVA2atRV2PXhv/CGyqib93X3KcN/XVYOkR7A5QDatvcPfVQ8hopqpsvcWcX23HgCrC5\n5zhdqD/tbxWZP8LIv/u9otRFEC7FjTjrAyqDzMbMURQ3W9Xzi009twwzehWEULUJegOFnc0NUFnx\nOFyp/hxInFZLmYrWd8p859b09zSZ86NHYu8fRMpCNmsaRxdShCyqU9sF3RO/gvsmymgc1vaUGRi2\nQWJxnzu1uHm82IF/JyRLO6/Gyix69mSGDaIwNmX9W0TEPZBmJtDYVLJw0JCtNtzBn80O1NbvCHWj\nGLC0XH7Vc0+P5Bcmc9ls+1S/t9eVbbp4obWR97mHTMZ4QvZpnzk7xa+s15WZgO7BnD8XTKI0ZM62\nQeZN1c8Ma2E0+UztJWuVq8Ab1APFlFeFB4cv+bzmYHxCxtqDbwmU2hJFLu9Uc3Z9pSzNpK/+bzfU\nzgAU1bCnem1QDFfnykZtYFMdlBSWZMi9QYb6ZIP5mrh1xmQyViN4kLg7fAZq4qZl3lJ7Rh34pg7h\nAwH52PMOjDHGZHqal2AuX7X3vlADhaYUj04AeQyfYFcdslpduHda+lxuAs8VaDgbX1Tw2Ic+0Hjt\nNqSIcf3v/ovpv1Sdo7EecnEoGxi0NOfjFjwHt2V7+Yqy3tkhSDbW26qhNlycq776CL9p6f8zUJ42\n/GObddl4cFttHZ3Dn4OCV9rS8wot/CdonzzPuV5p7RVjBOZD7VGTlDJzxTuobpB9fvbqQPU/w8/C\nZZVfyrZWIAuLIPRy+Fsvp2xdrqq1mWfPPOurvQ+wQXdTz1+NXw+amUbdqIqiwgIejCgdq4nofZc9\n+dsFak92KL+2XMZKPGTtatqHXFAdaaN2f/1Yfj79QL7GctTu8prGYQ2liqCtfgQgisouqkqxciVq\nejnQesYYU/Fdc3qizGka9EQb37C/KYToVR/bPRIiqnuhNTHtqf1rqMZEoBFmqIClUuxjzHuKcfFL\nZD37KFUyb83tmnnRkt+rg3SeTFByhLfHHarP4672OrshG7ANHCYo+s3IKgNiNemy1mVYB6mMXynD\ntdIoyeYQ/zCl7X3GjrY6amO0XJjXKQ6opvEChTD401zU9AYplMLgvUun1Y4FvEDjqdo3HgiukK2i\nZJUDlYSUi2Np7Mu2zo0TVDtiNdB8FrUk0GD2WP6zXtS4TkAARazdKigw09CiGUz1GjggvLXtGHvK\ncxx46zibeL78l5uGrwmkjBOjXEEKZtPqZxW0gWdQ6JzLR0QO+6qjftedWKGTTDgKjBHo2ixnrhVn\nvTT8U+NRjOTkbBmpfz6fD0O1w/d/QC+kUp6ZgRoIVjiPmBvNA8kFYsbJgkRlHOZmaW5aDkAIXqPw\n581ltJ/8tdbfu3ynKTrwvF1rvR48OzDGGDNDhed0zvkR/pvSbZ2jyrfg3ruQn6nEfBdd1VdCtWfA\nLYOLY63BQkk26aIQuNbQuc1dqb6TI/mlHryaK4+5WsmWyjvyZxN4nfy85mI9K788RAmz9VT9mXL2\nysOFNhxyru3AR5Tne0lDNp7htoF/isLkS9nu0anqW9/QXv0KFdSIWw2Rrfbt4ztuleFFwfZzH6j+\n/ZiPFCWho+c6i120Vf9+HdXVnPz/aR9Ol7HGb8DZrsiBvPiOOFycBWqrudfDOcw4OxjWbJUz2rsf\nyGk9eqrx6J3r+c2xzgO33gUJmVU7J7/ReByd6PXv//BLY4wxP/9Iql+FD+AzhFtysNLn9mvV79uy\nef+h6Yy+NoWs2pBdh8/nVG14+lvVufxQKKNsEfWzldp+8qXmdP2u5mjvnubg4lRtD2bY7Jb8bg21\nvauOzjY+yMMF3y1dUE3BRLbYOpe/rMFP58y0zucrkHoT/d2KefnwdwFIQ8dHxokjQW6Oet4Kvwi3\nVMqNZdzi76qoMeGX+cpmANwYthFjGxQYe3DZDPXGCgic8prqGf0LAsQJUiYpSUlKUpKSlKQkJSlJ\nSUpSkpKUpCTlDZQ3ipTpDonaPY1ZmPX7wiXbVyDyXyPrlUH1iGxT/5QIGHd3544iUQXucKXfQsHC\nUwQ+xV3TPgiZ8UsieL9XtHQ6Jku2CSqESN82ChYxq3T/SpHD6YyoLnfV2kTSU/CnrOpE9te4s5pT\nxGxqK9raJxtowSlh078+bPQLMhL1PUVNS2X02D3Y4qEXGD1RhHKGioBbU39X3Pv3LNc0G+rDbdA1\nHjwUna4+032ujGbvRNmqMWodjqeI8M5biszmQcpsrKNcAwP+qK25a8N30XmOstSF+lKij/ka6Zgb\nlgzU2DGvjp9VhLsC4qN2X/Vtvk2kfoEiQ1/xxgHa9TN4e65fKpI8/Fb9rGYVbXVQOZm+iiUfNKbW\nNsgiC1WJffgxPGUsliBLJiONV/ldMrW3FbEf/EEKPCHqFq1jbP4bMhoXRNyLKDrAObA6hYMAHpBl\nU1lBwz3IQk3z2A8VAc+iHtX8UL+XS8wPGejRFBRJX7Y/+FLR6ehcmYEuTOmzQ7124baZ9lDp4t68\nua/5b6C+ctZQPVugTe7sKhM0IZvo2qo/asnmMz2Nb+tcz3FRrcqxZh1QF/PszdWXfFefccqayy7Z\nKdPU+h0EqNwQMS+CoGmDZCnnhT7oB/yeFct8akd93wbZdoRKT/0+93CH6sPoWnNZqKIGBPfLqqdX\nH46oEiokadBltTiFO9fnDyeyTT+r541RWsls3aJe7tIGsMyTIS22yDCSdSvGyj2oNK2uZXP9Lpw1\nlwfGGGM8lA1ckDTzc/mzF78TgqSYIkNQlo3WGxontwIX1vGfIgxTcMos4YC4+lzPqcGPMnbVnz70\nJKNrrcEVnD2jNmz28InUt1DkcWQ73VB+NSLbZ4HguWkpgVoo5dSfQVPjkrqQ/QxmGscj7sHPWCun\nIDJjsaeMpfdtNOAo+1hr04a1/zuyhD14TwL4rmJhtXk6Rg3Kx3hkxAfLK5Mtqm6DzaWWGpMcnFG5\ndQ3eeKLKiiAw3FP2SGyt2lRjey3N5ayj7I+Pktg6SIvrIz37YgQvA31q7KkvB99qX/C7ZN8LKJWh\n/DeEV6j9Un1ZsUetl/DH8PfE/HD5qtpbb7yv30Gv3v1+rWqNvbgWSipaMVaoTxlP9dx9iF/O4udR\nVLsaCrFSb7Gnkkm8aVnC0zHHnzoVFMjImk9QhVr4qEaBEhiDPgvx1332neq+xiFAVWUOv8p6Q/vm\nnQ9RoeuoH59/KeShPwAlHOr9ozl8ezy31de8to71vJ3GD9wAlV3PtL7UvjMlI7yxo3mbzbSWZkP6\nxX6+48rHPAXJWaa+VKh9rQd3RQWOsSW8VyYVI4NAMQ+0piN8XDHfMGmQKQV40txYPchVnRaqm2Yh\n/1AvyF+0UXZp9/X3UlN+uVmSLdz+qcY2mmuOO23VvwG3XsnXmMd3/XOc10Yce0Ns2LFfj3fIg0sg\n7wplMA1BnrRVfwGuxEKJM4CFiht7LJQtJnJRIRrpjJSax2pCmpPxWOOTA12cmWN7cOTEilnTIbxP\ndp/3se9AfhOrPtlrWsMRCjbDkP0lr3bni5y7UQQqdtinQPgtQarPQF37M5BBIGP8QLbQAEVhQKwH\n+ACftbJg/zLwWJlQ/e1NZasBHBTznj7npFBlgXNiTv0ea3LZA9kKosfy4dMDbTvL/MApM0mNTcqD\nx4QMeZjWGprQ7BTIrAWI0xWo6fTSNTctlTX1zcP27V2QMWvq4+RU6+T4CyGQC6BFMxvq63ZT/s31\nOR/BTzE12mMvjkGhduEZgvemEsgG+pDPvAp0PhvAL3kXddT+VH3vn6rvF5+CxOR8nMHGHPjp7u3q\nvJsHWf+yK3+/MJq7zoE+3wLpnR9r7gr7+pyV17m4h/KjBW9boYHSV1btbv1WaNqTU6F8N/fV7yZn\ngeadfT1vCMIEZR7rldbWOMcZJQMv0glnn3PtyScX2s+mFmcRbC1WSa2DKB88hjvrRDbVaoKq3gTF\nYZhHTDheu9PwXyAM+UdlBTLxsotiWKi1t/W+fMuHt8SX9egPj40xxjz93d/og3l9F13HT8d+3Htb\nZ5vWtxrni7bsxC/CIZfX/B2AIM3BIWeMMbUHd83qyDZHL7SH/ujn+vv+j3S+Gf/NV8YYYw6/kYLY\nekZ7RiGvuT7s63PFC3jn8NdF0DhLUKXOCIR3nbPLWGPaOcf2As1lZU1zaefUV3eqzw/xd2kfFCuI\nxBDlrDGckAUUefmKalxXYzviu8ky4GbOCrQr6qGuz94WaO5HUaz6B6Iy1NhCHWNScHyFqO4V4J4K\nJ6hH4/D9PKiufyHskiBlkpKUpCQlKUlJSlKSkpSkJCUpSUlKUt5AeaNImZhnpA178wqOA7esCFpj\nQ9HR2kNldA13RAfofpPMMo6BMRvyfRfW6K37ukfo3uGeOtkoi2ju40Npt58/Udap7MO+DDKmxF3U\n7I7aMYdpfDkkgg6ixpDFu79DA0pE1ImctReKRp99qeisTQRtAm9LHBlLcz9zbVvRzP1PFF3Oryk6\n3r1WVHxwoPE6J5rbeoHywhxkzQ737ff29Wd3bkIuso1G3OfOclcRRZgFWfEVEWybe992SVHNGSig\nGszXaTKyAZm8PhHiiChlAGrJLpOxXMLJsskY3bDUQdbks2RxiGqaUBHhZVb1reCZGHc1JkcHirqO\n+xqT0RGM/7HmPPcVJ/weAzOmHvekSZ4t4KBpwTvkFNSOwpYy0ekKKiFk4+YgXGagrl4901yFByBE\nDuAe4F71YiTbrL+nrF9xTfUGffVnc2Of9sIBwd3ZWDGsWdQ8nkF0MeI+ZMrXfC9Xem7vSPPUfayM\ngTNlXEDo1NZlw2P4QEJQJVvcOZ5twqkAGuXOz5XpNiW9b/pCGYkQnoAUqjAOiggxeiwmRukdkn3a\n0udj5oepT+ZixuK+QZnAl7EYgiCx47v4rE/uQ1tLuJeaWld2pGdli7C1Y6MWimH9vrLKG1VlCtw1\n7leDvBnBuh7BP1GFuX/FnXyDAkAqhyINyA4X1MPSBUWwQP0CDgCviqoEvA/QQhiXzG+Ou665keop\nFbQGri21O53RXHpF7uJ34Eap6f3PQfZkJnpf5MkGPVBpOZQQdutkbMlk53Pyp3HGNI1KXhfkYYS6\n3brROLbhdMihEufjF/duKcPyIq9xz3PXtztUdn8Mt8L2Q7Xr4FjjlIKvo15Tf4oV7gjfsJS5I53x\n1Y/tQ2XnQtaiu1B/UjP1Y8r96xZqVYvnmr+t2xrHDCiVEhlxNyOfuMe9edsReuM81KuJ5P8t7nNn\nUNbpgWo4fnJkPrSFNHNq8AvVNIanIGiCQP4j6LN+GGMLKaoCaMw7+9pDPgPpEnVATdXU1yF0Cvmy\n2n5FFqsKn9rGtvp4dizEytkrkBJL/O++npsh41bylRGtu/ydPfy6o/a2X6qPpbr83MM99efRY9lc\n2GYtjVEfGeGPSIiWyQS3ruEYm8Sqc3r+8Erty6dlU4OJ2rlKv6bcXwCKbqkBKjOnEaoaYzK0KbL8\nvQEEJ5HWxHJEdg1+ign8bgHZs6sj2VIP5OhdeDZCVJB2s6AN4PyavYqzc2TbCiic9Q/0WBCadu0H\nfzk9bZmrl0LcNJZCTs7h0Xj86j8aY4zx9jQP2aKymQYliyz8WRlbzxmhvONnZCcj+DZyoHXDidqx\nmsH7NJZNp/sanyvzrVmcax31UGqaYkNWT2M3BWGRRyEsM4FbAETfrAWniSubzqDwOAN92eqJTyg7\nl62WytzdJws+eKIss4PfzoK06R2iMFN0zOsUh4yqHXE+9GUzASjd6VT+bwXCsI3i4NUV2f63NSdr\ndY3Z+anaF6IS1F3CvXMC39sKRGABBAy8R+kpilhkkL0ZiBAPtbgKGVuX/YRM75LxTWXhpknDG8SZ\nsADqaYHi5BKFmwDpzAlrrFJGJQqE4JiDbMQPacZjBHI1Bd+fD3fkYpKn3yiPIY9nj1FPSmvftbbJ\n/h9ovoeXrJ0dPTfEZ4WgMNIOCpSR+umaH9AATmZpZhxBU6E+N7XilDdIzFjVCq6KJa8WXDU3KTX8\ncben9VACAV1q6fW73+s7iIHLqfET+c9qVXvjFB6dLn2dWah+DvS541/Ln95BSbYAL5KHjQ9QQBzB\nM1S6L0TeqKg97vG3OgeG16DYHM3F7sf/yhhjzDrfHRz4e7491x72+y+11sZTjUkBZF2Bs8rujvjR\n7mwJweGgCHlhM9bw52XhXixmVM/wGuSNr+9Kt/c197f/SvwlHupEwVzjco6C5hAuzMMz2fL6DqjX\nU53/B99pjW+zx5cz7JNFnZ+X+IoBZ0Cb7wN9uBobOw+NMcbs7MFfBTRmClfmtKdz95xzs5e+OZrK\nGGOWRr5owv71fKyzVxYZrbc/0PjN78pPH/O+0++EWnk0lx3c3hO3zc7H8pFBoHkYt/luWIA/dVO+\np3oGz2H7h7ZE7aKplWrmmwPtrb/+D0LEfPRAY1DY1rkoPFRfI6O9PV/SOtz7QP+ftDQXPfa+0ib+\n70jr/vj6wBhjTGOsc9g6YxZa+n/MIdjne3KF7/MRbtAFfRbxB9+Lb1PIxrj8YAK+WfuorM1szt/w\nb6ZAvvkr2f4S7qjJMt4P4AJkT/a5LbEEPQp1rIHiy6wKeo4FJ+yqDYKxxJmri5pTzFX5z5QEKZOU\npCQlKUlJSlKSkpSkJCUpSUlKUpLyBsobRcrMYsZ/7mGbSFFUi0i8QTFg9F2sdKBI+qgL6qDFfUFQ\nEX5Z2b2Gq4hUFxRI6VSRqcGUjE2gaG+BjGvjf/7AGGNMtqZskLNQRC0E/fHtZ8o6xUiZFIzZgzEc\nNmm9v/5TRYez3OPuHCnz8OpLRSWvX8EYPify7sCs/r1Cjj6XcskEjYi6gno4u1R9FuHNFOz31Qdk\nxsm0p7l7O4vvtB31TS/SM50tjdF6Tdmc/B29+nDHmBrZHgVHjcXd8VSfSPW55ux0oqzvNFAfVkvN\nyRCFqJ33VV8hqwi9k1bb7Ksf7vfepNgljW0WDpyJEgBmmNMPC7JtuSONWWemOZ4NUWw4IaPsKOKf\nIeNqL8k8+xqXFJndyo4i6Jm53l99qPHKE2Euk/Ufnan+qy4KMMeKbx5e6E6s2dJcpvuKuk6mev86\n0d5seZP+gVLIywYaadXThyugTeQ83eNuch3Vkx1FmfOw5ndOlRHI98n+c3/fMXEGXf0dtsm8wH5v\noaa0fFdR7vyaMgIB99/9rDIaqYL6M16oPTFXT2kDNMPfHxhjjFmhgORuyI4CD0UaUCmRpfkfEM5u\n5jSe+3c07ouh5qd3LPu6SbHIBJbXNSYB2RvDq8UctK5kK2N4cvIFRdZbPbLZHmpKGRQJUG8rMCdX\nA61HumSqORASMhGz5DWyUEZZocKGasaEsV8HjZbj3vYkpz43yFb1sV0PBYD+SL/X4Iiasq490EyD\njNbmqqN+zUNlV1Io4bQ7ZLVs1e+AVhqicnSb7Pgl99Pnh2p3F+6UyUD+srFBpmGh/89BSSy405td\nlGg/ShA1zUfvWui1EvfRpwtY+3uatzwZ2TYZitUEhbMI/goQgC7/X8zVDmvx5zMO/7gcP9G99wV+\n+es/CimZsWX7Z0P55xTzba1r/ONx9EA6Tbv6/5PPxUUW/I3q6YegW96BR+khd40HjFNhTH81fjmQ\nWz6qX+sP/sIU+yBfJqBpGqrz/W31/Wyl/3/+/xwYY4yZo+yVreKnUVW6mqmvZgC/AgoA4UxjOsuy\np5LBHbNW7Gt9zpmxF5Jt3t2Bl60EghKUWDCQTRXgjlrhn+ZkoTZQV+ukZZsBqLAe2XXrFWpzcIBV\nMnpesaj+dzkbBF3VZ29qv+oBoZmH8mNZX+0oghLIufp98HqJS5PNwXnAWmzc0v41menvR49RhGE/\nilBZWpLJnZTV7iJZvDN4SxZhzFGjfu+s5AMGoHanwOFuPwCVC9JmiCLaivoNPHM2SjgZ5mmOopgx\nxrhnJ2YTFa46WciTgWw7W5GT2i/KDjr4uNOnyooGrOUD5jXiDBXC5wSY2FjweFmgAZ2U2pVnPymw\nRuf9cxOhFBiu4D0A5RWr31ULsqUxiIphT//Pp/T+RV7PLsBlsoRD8HykbPF0EKd7GSuUqCZdrQ22\nVrN9W7bjrFDR5KwSjW6+1xhjTB8/G8EjVFrXfrFYoDADx6DflY28Qj3zu8eag3tp+cVFrEYCf5AP\n8i8Fx9cERJ3vw5vhq9+up/EcLuX/lqAk0vDirVAJCUCApDj7xWpFdkH15uHF8JirxQkoWRCM4TUc\nDnAi5Jpw5BxrP1h05M+qW/LrOWxnNdN8zfFz9li25pQ17lGMOCfjPYdTZjq427E0AAAgAElEQVTq\n8X+40u7o74XbP9Vz50JrjDnvTy2N45jxSC1Q83L4vQi6DvUnY4yZR6/MDJSbg69yyLB7wKWnIQqZ\nXqwGCKp5fnM+xHbrwBhjzAzVnNv78G/gv+2x9g6f8+TmupDHHca8D8LhGjWzHcZ4BALbrmvu3v1L\nfXfx+/Ij13/kPDqUrRTvgg6GA/D0mcbw8ExzWC+DVqjKby7T8vPPX+kc/eKRuF2Oe5yNNoTkvvWJ\n+rOfVvs3HBAzKfmDqwutycNPxZnTs7Sm+zFfqAUHJajYu6ijboPOTcP7hhs0Ry+0hp4+bjMuQNk5\nS2U3deZZ29X5Ne+qP1fcUoi50nbXWGusvTaoB8vILw6vZZutidpXamptdzqygedHGrfRhWzKBalZ\n29X5NTt5PWSmSz8jznqLnOb77FDPL6CS5W5pXhqgzcYxn+GXj4wxxlxgZ+ae5qXxERxtr0Csw19a\n2VQ/0/c07xffvPi+LU9eXJm332qYrS2hbo7//h+MMcZ809IzlvibEOXaXKw6VIS3bKbNYQTvpWNr\nPec9oTLz9zQ2L1+gaAX/W1SSf6hm1UcbpKDXIR6Q0nNzBY1VF+5Hf6V1a4WoI6c0NnMQlwBvDIBC\n47KHr8KY7xL/z3l4BtI9g38K7BiRyFkH1L/hrLPgHBzx3SY14nzKFZ40yrw2kJrC92euP4/MTJAy\nSUlKUpKSlKQkJSlJSUpSkpKUpCQlKW+gvFGkTJE7qZX3FNUzqFTkiSx14/vUS5RiYh1zAk0FN9ZT\nVwQ/VSLzAN3yIffp7WtlMmcZRepiVudbH3Nf8BaR/oqirecvnhljjHn2Gzhn4LxZkKn1UD2pl4Ui\nsDaIEKLW0T1ThHA0I+PTBI2wop1EZcv39fnqhp4boSbVPVeU/OBb3TVewbo/JYZWIzNeaigqmntH\n7a83Ve/8uZ7/5Hf6/DA1MilXkeJaWhHZSlFRxzyR++lI0cdxXmO6vUdWo60xvzoWW/zZicYwulBE\nvptW9DCd5u7qbYVPN+782BhjTAPuge5Q77smg3DTknVRskJ1YoAySrZDtohszVVKGYAUCjGVzRjN\npHpyZPTWimQYfY2lEyOGduHvwYYuj2gnSJHoVBUdLWUL01Pm+leKnF+Cvgi543/vp4o2+9x/N0M9\nxyOD64KmGofKYi3I7mw0lImobCvLV97U3GZhGp9kyN6j1OXkQWt46vcIxYbZiGi2gaeopn65lTjb\nr8+7ZL63YbnfuKW7q3/4lbKQy7HqXcHSPmY8z5+3aIdsv8eai7hjW3VBn8A9ZJM5n5GhrTt6/iKC\n4ycWSUGZoVC+ecYhRC3BDuBkAeFRzcVKXYwFmUj/be56GvhuyM6bOIKN0leL7HK7Kwb7bke/d8lK\npM71ed/j7j2Iuc23NSddVI+2y0LQXb3S51YzOAPIuDpk8qwCKKlzje3Oju6Z90DEOLbaWZa7MHk4\ncHK25mBYk99cxcgO1DTW06AHyGiEl6CmYIN34CuaWtyx3VC9lTXZnsOd/RTKZytP42QvyGzO5GfT\n3INvzdWvGnxPX19rTVS3lHUaHaCeN0UBpoXiQQB6DXWQDpmHADb/sg8C8goW/8XrwSAGj5WZOYeP\nJAv/UnYpu9jako+ExsSU4GeJepq3cUDmBJWoDbh7cu/AbRPiM7dBDZY1rof1A2OMMa2nqicTyqeM\n4E1xppqnTLliMpbqOj5WW6GLMM3mvjHGmFv34BT5i4+MMcY8f/WEzqnVo4nq6jzGT1+C5ozwF1PG\nFmWRHqhLx2JvrWhMZjP5NQs0aPU9+QULTrIOnE8zkHwR6IXrQ9lufV1j5z4gS45ffPLF7/Q7c+oy\nBtv0r7QmG2mihnFV0Jo7/lJrsOTjR1DX8EAbOeuo7IFQsVG08lKvl3dy4O8oZGTLHuinTguuMDgM\nPBTbMmQuo4X6V2RNhoHWYvtA++YCVMB6lT0ah3f13Zd6v63/j1DeOUHdJLzW+KYM4w3/SuRobTj0\n03A2MsaYUdoYF+6xacT8wqmwXteZoYQq36orH2VxLz9Xk69qVODnWpc9to+0r9RqoNRAfo7yMtCc\nh5IQKL+ITPVoMTc2qMhUVn4kcDXn+Sl3++EAWaDMN5/A9VXA/+DHW2Q6s/C3BVmN8fhSv9d2dNaY\nj+D5gU+tck+Z2gnZ/Pal1n8GfoqM/3p+xMU2bPYyF7/sofozgj/DBmVW21V/d1EB3UbB8f9j7z2+\nJMmyM79nbm7mWntonZGZJbu6qrrR0w0xEDNDzpkVORvu+JdxxwW5JA8X4AyAwQAEGoXWJVJWipAe\nHuHhWpqbmRsX388q0TyDRuQqubC38ePK7In7hN373e+bjjXHiiCyHfphBsNaFvSyB+JyFer6mYVs\n0AMZkoUjIeJg7BbUfwP2XA8UWc6SzY1bnBEyIFLqIENH2NhE1w1RQqvuqB6f/JnkWNyfySa++Voo\niMYSLjVssjuG3wmbdkDppui3cCUbXoC+dlE19UOdUWIUrumCNs5pfG/PZMtXL1W/tToILBCVFr/L\nsDbk4ApaDmXjxhhzMvzaZFxdd5fnj4izhrNi/edsafVV73AGWs+7++OSzzq5sQES5aH28tunepZZ\n3GpM1/Y031z6ajpA2bWD8lZJfV1m3pUDtbVUjHnVdJ2vfy2E9rSr89fBgdbr4sc6hwKwMYuhbOV7\n74lzZOOe+DNn1ygcPtUzw5Dzbq6s+n3/U/a4B9/TfUHNmhdCWnz7VNkEfRDbk7bGuNDQXtf49NAY\nY0y1oT4vWLKpjXWyFZjb3XP1Tx801uk3at852Qmppupz/0jn9WUDdATotzJZEum0+m/rWL/7aINz\n84x2Ptcz3hX9sSjo+u2QMwZnrgJord6YzIAJZ6om2Q07oHrJ7vDGcLjcsRQ5dz/YRaFxxNzrqf1t\nsivcqeypvo7a7B6qfie63/klXJVtnQfeW+cs95DzPqiSGkpkG5soUJ40vqvL+Nsz8+zsyrz3I6FD\nh7usE7ca0wLPhrdRjMZi/djQPFkeotAKqt+HuyrOoliB7tpc0/ftK1STPfYe+CoLoEC9lcYqhP8z\nDZItyzOUN4LXJw3yGH/ACgR4Jg9iPWDPgih0QbbE3CJ7Iw3fKFtpCLeixR6e4rnAi5EvIOssOB5X\n8Xk70pzJeKCS2W+8SO0CEGomGZD8/0xJkDJJSUpSkpKUpCQlKUlJSlKSkpSkJCUp76C8U6RMDQ/8\nw/fkfZ0TkR3iLUzfyvvXfiUvZmkB4qSGy+lQEensfXkZM6Af4mhNdSAP9wid8bW0PGZuJM9eNJHH\nqnOpSMXNpby+XbyynpGHrE6kwZvLo5aLo2h4DuN869szeanDkjxta3vyEhdr8vxtipbEeHBZ7DTk\nxZ3jlT2H5T7w4O24lpe0cyFvaJSV13b1kZBFBJJMcY2IrkO0jciJU1J993Y/NptbqstgpLYuyIlc\ntRS97RIfzpZgfV8RkbzVNSYj1TmXXv1W36RuUWa5rwhgLqMxsejDVxGRPTz/05u3y7n0UX9YoAhQ\nWJJ/jJfTg2coIOfTgVuhtqHc0nmXpFRQCBlX9U+DgCntw30DV8EIlaUOLOfdr2QTk3M4WsgjDCMi\nz0vyBcndL9QVyS4cq36726rHjQ3Kgn6x5rrelPzlzolsNZXCNsn7DkE/ZIuqbwifSO+VokLr+7LN\npk2u8o282As4f0Yp2U6LiG/9SNdJwSXgwTg+eI2qiCsbTOHtHsecCG1ycUELXL2Srd//QBGZxp6M\ncfpIn8ccNNufKlITR6B3UeuqEAHqB0RqUSLrwaUz76r/71LCayKgKBP0e6gZLTVG1z7qFDFrOrae\n31VkrkokN4An4qNdlkXUckxJfbTpwdK+gFOF/OklyBeDmlIano7JSLYUZhTdmIK0uXqlMVr19Lrk\nf5tEc1qM3T7KW941ubf40E+eKRqSjU7UDhj8Mw39f+ET1d5UVKk1EMogRTTcJ1c2RX9kUKHIcX0P\nDoH+S9XXc7BR8ttLRutZOgPPFOtO2sBxAOv+GmiCxQj0UyQUmA9ao+Yram/P9P+8F3PIMEdBylhx\nJHSKjU9AESx/d8Th/1uspq6bA7U3AFwQDoWya0Ojn7LVn1bM5g8nkGEtXNio76FMV0prHV8nCtha\nqX8ah2r3HzV0vb+/+K/GGGMqI41Txdb/xm31hz8PzAzUV4RizQSFl5MvFQn99YnW6xAOEgcugOEt\n3FNE2QdDkCooAgRF+qAITwMKAXNXEbkeClP2KlYe03ytbmqeDgqqY9mVTd3b1tg5H6l+pz/9uerN\ntL0tyrZyKGZldtkD4Wu6aOuH1QqKOllFlPvXGtsCSJ7DzxW1u+zIFmeO1s0CXGcEoUxEmKsIQg8R\nJ2N7d1dxM8aYkLkAWMMsmLMevEaHm1o/bfq1faH1asaevZmVzTtZ+DaIvntLXcd2QVMxx1MgC0tw\nHThTzaHajCg/KLwpypOLNAgg1JycfDywb+aCXSoYn/+n8vp/Fo4ix1I7Ws8U2R7C35HKaBzCrOzB\nYe1ZTYhgs+atOuynnhCjQQ/VPVS9ook6vrgGb9S0Z2w4PAJQng68OAuQB20UYsproFJBd6ZS6qtl\nRn3ps/4MM+rrAuo+bswbQR1bT2VbbfiI7sFjcfpcEd8p6LM1ULJV++2OwQUipEEJXqMiPEvwSWTY\n43s+ZyN4Mn6IimiQ0diMvoGbZjmgvfq9VYEjxoFbJh5a1tswVtphf0mhylQqxHNfcydMEfGFH68L\nd9UQ9agC3Fg1OGtclCbHILwt9uY4kn0GD10HPqd5CMdPGbUp6nkLZ+IKBCDbgrlB6WfEOd6j/jVQ\nbhP4kaIsvIZj6nuK6hPUQS6o3ABE64oItgPn0JIzTZDSQJfX3nA41D9Im9J9bD6ndX8BZ6PT40yc\nhSsIZTKL9TrmGrtLsVHFcxtqa3+gOl0+l+2UXdnC5r4QNA4IDQcCjHwNpZYHVe5NX4YxglIIvF88\nkg11zk+MMcZUUdG0D3X9/kJtOn/BORyCpb37GrOL3wgRffFLIUeacMpUQcqn6/BngLJqnQgd1XnC\nOjDUWWSD8/IDkC/VH35ojDGmsalnlSnG0fI4M4BW6L3QGFx3accrvW+AJG8c6aHpJ59or3RZQy6m\nut4VSHlvpnX0HH6PCTaQZU+/heeoi9LulHNm+Z72o8w97Wu5jtaiDXg9i3Ae9uF9Oj7SdXN1uL9u\nWZvGrEH+P5EzukNJ52VT+/uHqkda/X/+NTyir0DKXMAfuCkkUWND9S09/IExxpjdqtbtOajeJSp5\n5W314/jLE2OMMaffgpyd/NgYY8wac80YY9Khbb756SPTG2gsHx5p7LpZ0JDbWjeKkCe2YlU9zm+1\npupeI9tgdMWYXmmvKMO/ZvLsDSAEY4Wx9Ibmc4nn3MUM/pyQ9QyuGQu1u+xIv5+irhqgoJuL+d48\n1gnWTZZX44B8seEDilXYPJB+KZAv6VwswcvztYcfgqnoc15dsS4EcLpacJWleFbKpuI9HCVDlBb/\nuZIgZZKSlKQkJSlJSUpSkpKUpCQlKUlJSlLeQXmnSBkL9IO/kMdsmYnDXqAgUCyYzhRR9mDrr+bl\nJdxGSaj+sbydLpwDnRYIGTxnFqpOy6Fy1FoX8qoufi1W6RXIl+qOPPVr9UNjjDF75a3f+n6WRnmB\n/MGcjReZKNoCbghS4r5TcAgNqilwLaS7qufNSF7h2TRWAQj/afNN5n1FDxsb6qcSkfA4kruYo1n/\nUlGvObmwIXmSxZIutP/5jqmSq2/gNTh7IY9762eKol93iOw91D1cVD3KBXmEGweqS6YBf0VObdlI\noc4Az0SA9/PpL9W2cY+cdiP3Yq0ak4fcrVx3Vc8sDPtDkmNXeB0XoIzat+Rnr6sPD8qHqu+u6lu2\n5X2teBByoLhz87WQMC9+ijoI3AoRjN6dR+RTrnS//Q8VuXVQkMnCO1HESzoy5FOT85uqyqOfvy+b\nmZ2gEjXU9VYplA+K8vpm7qme339PkZaddXmr00SHhhegGL54YowxZvz0RO0BeXN5La90AQ6azT21\nt7al+lQc1J7SqscI7oJ2hyhdSTbcX5Af/1L9P7sijxIG8ZWtOdGCo6b+QCiILHM6R/583agdQ9jf\n/TPZxytUolKh7OwKdIQf6PtwcfcId25Pdal1tC40tsnN9+HLmcE/BP+FXWXZW9P/8hnZUIRiVbSu\nsc0QddraY0L/SBxU/o2uu95Q1MkboPjloU4El8CvXmud2flI+b/uGsiKAlEyFLqyRHLnt4qKFM6V\n1717KFuL+T/W9hU1On6uOVsA/pBpakxnaXJuQYMd/0j54uc3suEQHoit+6r3eU/XmcSee1f9kEWl\nKSQPeQtVK5+QrYUIRcicNEvZbt8AL1jBt0SEM0Yu9i+1jveIyPqR/ueV4bTxY54StfeW6Nusr+vZ\nxBBmIJ96/TeqGncpm/eFWotVq0ILpaEc3GBTUAegUxyQUIOW5ojd07inC9iqp/p3x4oeTjfVT6s6\nLP/PNK7BGvnpJ7qu8bQGFgogqibYZ39ilnAE2Cu9uvmYewkEB8iM7Kdazz/7TMokgxo8Ek90r+1D\nRRYLltanl6+01/lNXbeKDFzl3sdq+0pzZzg/0e+/kS3Wc1o/HFQuxkvdfx1ky/EHh2pDB06rU/XJ\n3NI6dNNVJHXqq81HJUWfa/v01QUKZKy7KSLMadR9UnFYqsh6udA6GMYKC6gBrXL0G0jDMuvbDCTl\nXctqxR4cc6zByWNQx9h6X/20QtHNs+BD8uEBWYerjDOBFYCGwMbdlaJtESqBwVL9FAcRJyOhJkoo\n9MyZ24U+efNpVJFQmsyy3/irN/G1lZUzTozi5fcxp8ASHqxBHPWraHzrBxrfELmqRUf798lz9UPI\nHCx/orXMipWG4OuounAd7RN9RBXwpmKMITffBx3JFmLmID5yOY25j7STD3p0aanvK3B/ZEELBahm\nrM85c3BBO4BjhchlWMzzf/hxBvqfCyqhCZeYU3y72OSyiNKVFytwaR3KgtiYb6geEXvb1FG7nZTG\netGPVf60rqzb7HUoQFZQoZq7uk8eTkEfzpp0HyUv2r22q3NqjBarcIx2Ua86BZ08Z2+NURdRPla1\n4/yJclkG3r0ptjtBven2V39N/eFgqKu+E9RKRnP1x2Ksz5cZrVH5MugykDTrm3BGsu55cFP4ISi4\nhe5vo0Tjwov0Icj4qUGpBtTt1HS5n+oxcbQGFeMzR+kNZ9AHDzZNcUvt7Nqy3cwIeJ+n+22NdP9c\nHg46ODPM7e9WTfmnpV7Xua2ADd6eqo29vtpcAK1/zbnq5pn4K09bWqc3H2r+F9Kqw9UTcU/NzvWa\n3Wc95Uyx+e+0D7js3T6Kiq0nOu9fwCP02R/pDDPtqm/635wYY4zZL6GCyTl/kVIfWqCRnns6Bzqs\na7UKcw++p/UPVJ8SqDEHPpBv/1ro5SvQs25K7bFAdXlwca2h4vTp7wn5sV/TXj0DNTECSf7sS73e\nok41WMgGvuPZa6hee/us0319P+7q7BHAffnenwopUv3kR6ofNCmdMdyUhXjO8uyF8a5Q4pl8q35b\ndjSn7TKoCJBFdy3+CP7Qls4if/A9ccUFx58bY4yxZrKL6681jl/8pc5yRx/CS3qk9TiPelUKRGqO\n/f3wk0NjjDGRrbPoy99oXHo34nZb29n7ri5rD9bNxfNz0/oSNWOQdjGXaoX5lf9IZ4aqrfPjlEyR\nKefoJqijFEqGV09QzLqVLbkF1rka5zyyEy6nus9WWterNPX/Ds828xGqpSZev+CQJPvDRT0pRsxY\nabIbQL5EcCfaqBPP4NAqx8c+/A2RQckyAmHDuprP6f5Tzp8Zl/Uerq8q59owFSOBdJ0ZvJm5vP43\nn3HDf6YkSJmkJCUpSUlKUpKSlKQkJSlJSUpSkpKUd1DeKVLGJzw0hO0dUnmzJLJtNeWBWvt9eU0L\nKM5EeO5WlryTY9jYbdjkgzN5A+cDIjSofNh5edI2yR2b4PW0Y/UN1JSyeOJGMWV5iehiXXmW27uH\nug8InD4qTwGRm+sLeQRzS3k/R9ColFx59sYBSjZD8syJzJabuu8KFuptkDqlY3mv3So8HKANJi/k\n/R58JZTIxVDe7Lqv31V+pMh663Jkblry6JqW+jyDV68C8iVCg95Kqw1NlFvcbZQSiHLZGUKTlryb\nPvnCq6o+91A5qlWI9BL9smZ4MwtvaXJT+D7I78uhrjE1qGDUFWXLNemzfaEDPv3jHxpjjDl7qTG4\n/EtxMvTn6iO/g80Q5UnhsY/wDh/9RJ7qyCVX/lTe3sKx7tcokXPLFJqfK+oyv9F156e6jkeEt4/S\nTi/QdVagOFJVjf0M7p3bkWy3gOrF6xMUxG40bsupPN49IhalPdlUjWjZ0adCrBxski+f1/tCUf3W\nvSIqBtqjc676TumXFRHoBdcPy4qAVGt636zqejbRo/ox972vz18v5am/eaIISednijxERD37Q3n8\ngxt5sZdEjHMbREPJqZ2WYw2cf7lkUBQzW/Dv2ES48HTv7spz/+03QqDEOf579xQlGKXVBwWY6edE\nMh3U4Ba++i4DWunFC0X/T0CdLeFX2AB1sG7r94sxkVmQcnZKkb4xUeiirTGapmUbM3h1pssYHaDw\njw1PUCavdjZ2xdOTB6218YFs8nKuPhteC/2VbcIB4+ChH8mGSkRXygsQOh3ZpOUSKQCtEfMq2UTh\nRyD6HrA+Z1FvcuGUWcKNkN8EbZfX7z/w1M/lA5B+cfSeaFyWhT9DPnitBqcLCjDrK0VcU6Cz6ilF\nIeusx3ct3YnqdzHWHDuH26YIqquZUX+7cJDlURbbPiLyu6H776MyMB/ptf1L9XdI9C4y6pfOr9WP\nNw58XeTTz+E6ClDAefgT2Y3JZY0NYuzFV78yxhgzXmq+51zVyc7BNTVWX7VZH66+VpsCvTXFHfg5\nymrjixutg+FLuFjuwRuBYkvpoeBPOSKslq/1/daQBw2n1mqmPvxPf/2/G2OMeVqPOWFkg+WHKOQU\n9f5VVWPffaEIcHuh6zsg6iyiTtkb9UlmWzbtwgt1NlZEb4WSWb7JGK3LBkdEvWyQh11L7WqCUi2i\npHDX4i1AesToBA+OLYv8+bZsttfT9y5nkC3QdTlQETGa9qJLJBhOLZftrwv6rVbW//KsQT2Qjquy\n2hX5+l3PZtzp/3JJ42tA645u59+1YRa6JovyWaxIMZjAVcO+vlnVazqtNakKV8MA9NftCyExwxu1\ne/8TqbU0UTv59pHWvj7oQm+ohlkgloqoLzluzYSO2lgAfRqxHqbyIJzhz8ijrtG9ls3mYxRmU79/\n1ROPhovSlLdkXYNjyiESGsA9VaiiQMPcycM50oejbwhKde6vmbcpHmNerMKnU+A67GUlxn7G2cjA\niRNW1C4rBZ/SnDMXgMMU+4BBVSqXU3/15nDAwKkAnZ3JsS6tstofXj+GowwE5d6/AhWLGtIlZ7zj\nh0JL1Obs/R0iw45+l4evKgMKbMH6v5qApEGxsbDQOhwj0acowM0JPUfwgUQrvb8ElV3aU722D7UP\nd7JatHz2r1RO9Ui76rc0/IVRhKoWa9KKfc2tqENWGRBKoArnIDYz12+Uyfpnlulf6dydZ7+zUY8q\nwIfURwUw76m9HSD3xeXdY9g5rn3zWjbx5Au13UUZZr4G/1tTdWtuaC/78Q/+0BhjzMb7WjdjpZiv\nUDc6PtL5dv0zPRNlOK+1fikEzRyurhXPFhfw3a1tiQNsG+6S8YX6zq+qzXsHOr+tFTR3TuGts+E3\nsnogZQ40dvvva79Y9HSWKcx1nybn2/GN2mlNNWaffCw11sa+9osrVJDqrtaGeo45M4+zHbT/vH6i\nenhdzTFvpt8VWPe2DzR3tz6Ay+pQ/Z6Gh64dK5yhllTZBrVVlu0+/lb99Hf/Wf131pLN7fxAPKf3\n4WL0V3AftkF0ouRTBG1dA6oTmDccLXcpc/jtWs/+szHGmNWN9vvdvOZoyai+C9aYJeqqj05Vn0My\nArZ3NNdKKBOdfavztwu/yf4nn6p+kfbhV3+rfj3tveH4DEZX5v7DIzNDBa9Y4HwKovcS7r39ua65\ne6x7n7RkG+NXqFvCGVVIy8aXqJz2Otq7skPQmSXZUmVP8yuNevEs0nwvwvXIsm2CHqpJHdU5xb5h\nQDN5lta3VMw3uoT3iJ/ZocYmslQfq6D7zFDhS4GM9i3UTgOtC8u8rmOTPWDhh5iD/IuRNB6Ic4vr\n2Kj6pUDsRXP1RxTFG8N/uyRImaQkJSlJSUpSkpKUpCQlKUlJSlKSkpR3UN4pUub8hTz73/xGUcGQ\nkMF6RV7iEuoo93+gyK5t633nlbysF18p+hc9R/XDjyO4RM6JBjnkPRY28JaS9+fgRVzA5dIfykN4\n9rW8pv5YnrmNzxSZjiM2SzzvE5yMCxLbszB2lwbyGL56Ak9JXx5Cd1MeQosIjX0L1w3s7+m6Pi8T\noc3BaVHdBqUSsz1b8pYGGa6P6sdhGpUXkuquYJMPzh8bhzZmyKl06kQs14Qi2J0KjRNVyImPdE0n\nLS/ilLw9h9zQKdGILGGbzR1db5ZSG5cv8SaSVzeZgrzAM3zXsoL5exYzb6/Lu5nPHhpjjDkoENlF\nhSTmEHj6C3nIb1vyhN/CwzGC88AdkFO/Ls99fl1RuxFe3WJW/fVwX7Z3ieqRPwHRggKLRfR91tOY\nXPXJIyd/MuuQWwzPSYEISWFbXuJUUWMbgCTyWyixWORPxtG8KcigrNp//1j/P/zXimDubKqeZ5fy\nkC/6uv/JcyLUIFMWRAZmqFqlyV+f1WLqctnH1n153jNwPaSH6t90RnbhFpb0h17PnxE5falo5tUX\nQiZdW/KuZ7ZQDovI87Zlm25D7cjv63uHnOQCDO93KTZR7RnRF28KHwRR4VJX318+Q2FgQt+TL90d\nKjq9uSkbGIPCStvydLe7GvPGOuoOTPwcy2c4gIMlp+uEDdnUPJIHfZJsgrUAACAASURBVHit+4Sw\n1V91VM+K0f9s1JDm5OT3GLsFqKsA5v1+RZ+3iZIMXyri++FKY7UsE1mdwgeEUoqFKt0U/ol8Sfdz\nNqkf0azGfbW/CLqMwLaxGev8QrZ5OYkVWFDSaoBuwLa39rUO9S5YPwl1rDU0F/IbisZ5sOjbPebQ\nQ637flrXL8GdNdpj7UJtKQWPVbap6921pOFQqIKOa5/D5RJo3OZERNOw7TebUsbYuQffBnbUb8Ev\nVZaN9gq8dtWPUaw6gr1kiLCu72kfWbJPpEF5hBm1p2IC09zRGExAMJxfK3LmL0El5bVOWwTVe6gu\npUfMzy5Ro5z+l++r7h8eHepzVItu17X33gy1Ll6+RKnlUt/v+qpHgWh5paTIbC5HDj+IjlxWNnz/\nY415vN4vPpTtPvhMaIV//CV72CkqfUa///aJ5uQSrpXwSnO3y77TCbR+uBXZUq6i64YF/f+9e3Av\noMrU+Ubr0CSM+Sgg2LhjKaGsMydelTPkh6MeUpzo8+up+s+39P0SjrOapXHKgBw1AUesLbU/Ro7W\nUMAJUK4Iob3Iw1EW78uNPGefmfp9iWJOIT5LFFSv+eD8uzbUyxtmCQfCEqRQEU4a44EayLGvD2Sz\njrrZTODUmff0eQqETsqTPbVeaXwm5/pDaUPtysI5ZOiHGB1hJhUDnY3xQcyUSho732idGYy10BRA\nWznM75jryQTwrk2ESNusyTYto70sCOGOyci2piAlb9iTWynZxMpT322zFzW2dL8pEdC7lmpWc2IF\nJ00Ix00KvqUl5ze60kRwIhhQpC4KW1GAglYdLhzWAx+Fy9lS/VKFXyqOoC5Ri3IKmjNOPu4fKenM\nWb+sNGexbfWDNdKcre+BVLpiX4o5buB48SPqWYBzgTNBTJaYcrQud9uqZ0emYWzOCFnOjk1QXu2+\n9qvn//D3xhhjio9Rn/sfhZ5IZ+mPIkgjW/UollBJCWSLIbblLtQeF6XQED6UXqD90E2j5hcq0u84\nbzhlFpdlk2UN9OaME5FtC/SFA9p7xVnZ77Ovund/XGq9hkfjuZ4FynAu3oMzZR3TnseKW2mN5RSU\n7bNbqQSdPNIc6aN49em/FxdK+1yfv/wHnfdGX+u8W9rTerte0bpYqaktR/tCfljMy9NXIOGuY6uS\njX5zpev1Bppb5SPNkQlKjbv3heBIl1Cc/VrtjJA0m7OeLKey7aiqepSbmrOttr6/vdWrVQZReC0b\n7KL8k0H9r8DzxO6R9uLpBB69NPx2WzH/lP53Tn28CchR+OPGoPN6t7pPs676Xl2w1oC++ujf/rEx\nxpjjB5wFQXaXIv1va0fXSWfhlIS/agWvSmfxBpV1l1JEQbcMV2Trb8RP15/r/JxGLbH53veNMcY8\n+Fc6Q7w80b4/gQdp5ct2P/5DIa1eotx28iuN5wqusHtbso/xpsZz8uoNIr07PjcZf93kNuDt3NU8\n3+O5t3emsbp5rXUkUxT66v49nQ1eP9aCN2zLdny4wMqW/ncJYm+MOvAq5BkJlFgmpbamXB1u5h68\nOXC5dCtwYoGs9ueo0cXqR6ynBYc9C7RazFGWS+n9DDWnPApdU1t95cALl+PssQKB48JVZuBqDMmI\ncZnT8xhRw1EjwzOaAVEUgAx3AFHlnN+N3k2QMklJSlKSkpSkJCUpSUlKUpKSlKQkJSnvoLxTpEyz\nQmS1Inehj3qRAztzCYWBVIkIikVUKSuPVmZK7v6VvJlDkC7rKA01bXmwXCLCjZrut/6h7ucRUbZe\nKupz04W9nkhMGUSNDUpk+HN58i9a8j7GEYo0qkiQPJslnrMGuczutiJDjbUK9ZeXNWiSB07OcUBk\n3ni6rzdQe/swZodD1W9M3rc9hBk8kocxRgY4qKgEK1ijg4UJiX7YqAIVUZSqoCxTg4W7B2Jj8Ure\n0AlcKufnJ7rmhD6uKpLXhCV+OYq9kvKGdhZEXWYw25Nzviq+XY5/c0Ne2MYhkUGiFyFtG7UVibh+\npDE8fSwvrYuSwOa6/lfdUC5u2YBakrCNccvYVlU2NYG7pY9iQbWOskMdzhwUvG4msrk0TN2lvGx1\n/RCumaLeVz4TiuHj39frCfnsi9fyUI9fgXqARX58q89rKIlVmrpOQJ5nPqPIaUzANPwG2z3RdVvk\n4I7GKDWgaJMiD74OMmizDl8JAdSASHUVW93+gMgGc2t0reuba0XW+6A5lp7GNQsqrcScCuBQaICS\nKO2S5+njLq4RlSJvfj5Afaqo8bULd1dfMnkiW0SBU0QtmjGCDf6eAioXC7g/chvKo44VvPweag5E\nfaKebCOsEY0AFZRakK9MRHeLcEd7oXmcGxLp434T+DmmyyltVr0WeNCXRGrzRABncF0tJyDmUuTm\nklObJaIQR/IsT6gKbzz4rfZO+iDqgphVXvXug4wpsF70I0X9G3mNvQWP0j754xvvKyJil/Sap/7T\nsWxmhELaEqW1FlG17rmue/lMc7JxH86cX7M+TYgAww3hp/S6UT00xhgzJjqYTvncj1zlet78z//x\nfzC3LaEs7loqrq7r1lGOeB8ejedal4P4PkyKeG2JJjGCRnbWBbU2zQqdEMJRtrTJRc6of8cdeEl2\ndB8PlOGiq9DylIjurKvrLHpTs7+rSFauzp5CJHUK2jKCj2bbVV16cInUhyA24G4aPlW0yT0G8VHV\nWBa3UGU71liPto+5j6JRX/+vf6c6PUbFbVPr6BIFlBTcLy78bFlQQqMr9dnlDL4keNFc2jH7jWyy\nuIAThbHYgOPAZ721mHs3OfK+4TQox+gEw3VBahrmjlvQnKhug0C5hDPHejtk5oRE8RV536kA5TAD\nGoJomwG5koFrzcCh4sHbsVqCLmhonU2VQKZWhe66GckG+gPVr+KpPQFrRg4Fm3ATpA6qUoNb9V8V\nNMIKHqpF9AYRFLi2sUGhVcmrn6CMMWH/ynOWWoBCGcLnsUAJZ3ij99s78PrBf+XDRTdFFatR5XMi\nxPNQ9WocaW2d1qdmdqF7ZUv0HRC8AASIM9d/e75s1JCD7zG2I2zaoKC4cnVPm3Vu4cCVVdK9LdBJ\n1Q393nXV5zNbfVWogNSx4FcCYXHX0p3q9wFKWUW4u2xUhfZ2QUXdwMXVBlV8oXZNiLw6JdmK09Q+\nY4VwonTgJIAHaAGXlss+AMWhCUOUfOCl+/gnOiv1UAzLVjUXaz68bU2Nfe1I/QfFmFmdcXaD27AE\nJ1bQBRXNVLNAOmVAjLjwaqSpZwrumRR7ugfCZaek+qT+QGdGAKKmtIHtznSmqJVQsoEXIx2rQmVB\neEaotMLDUobjqx+vu3CvFepaQ50Bttp+w5vhh1vmcEccXnnW0tsr3XcJn1cKzke7oDNQFRWXxeru\n6kvhUuvG/nvq6wO4YAwqp+0xiogod3mcq2NFqnFEneFt2/9ce2/JV5sHLX1/b+dDY4wxuX2pCOUa\nIN6ZY2XaXi3JdtqPZLOrZxqbFWjX+YDzbFVjebgvKE8GVR83o/Xn4GOdP7/5x78yxhhzdiFER2Rr\nH9hN63V7X303R5VtDEL97ExjlIN7KuQZK8v5+mNUlwqohAbwIy3G8PLFio0gY4ZXKPNcqh4+Z4nC\n+zqTVcvqjynn1eIKVN17oItr2iezw0P9/qFsJ3A1HquW1un1TdBloDxiTrebc+3dcwcloOXbccpU\nalqLsj+Ej+SlXh//7S+MMcZMzplboDQ23pMdRBucXToav8sXGr8P4CJ6sC1EVevvNc5f/m9/Y4wx\n5vrHWgsb7KfL3cx3dTneqppe3pguz5epidqW2ZXtfvyx5u+j1/r+FGVa60Oet/Ma66s26BuQKGEa\n3qBNjcmyzzkWRcJcRn0XVXkeZh2Jovg5lgq6up4Hp6zLvpCfqS+GqVjWT/XL11BvRs7Yh4MqCvQ+\nPucVZtQzC8csZwCfPT3k/Jxlb07zLDVfwhmZ4Vkrzf04Z4co8sbKvT7qqL6dIGWSkpSkJCUpSUlK\nUpKSlKQkJSlJSUpS/n9X3ilSJg1Spg43QKsNEoZcrP41Hqe/kcc/RK0jHBPhsGDVP5AHrjGV13HV\nVKQiVYNVmehNMMG7+Q1M4uSEzbr6vF6B0wV1kiwR0Mtvlb95DofN8koRjRQogOo9eQojFIBKJXkM\nDz6VZzHOHc6CUknDvWCF+nw+kQeveymP/ewUNMVTeZXnfVSmruLkXXnkth+ovRH9WNuBc2ZT/RmD\nUhbXMxMsyKOFKTpbIvd9jTw+eCcWeEkXoJaGaaIx8FWYUB709A5on1B99/V//akxxpj+RBFVJ0IB\nh7zf2hqcCNbduUKMMcbNaEwC8gd7KEwNbohukBN580r1jXoam9p78rTvbsNiT8SzS75jkKE9FThO\nUDhY4UHu+eSovtB9RrDa26Aj1nb0u+axcnVza0QuTxSVCuAacFBcGZ7p89tnGlurJc9256n6Ow2v\nxnxIrm6xQn3UbwXUOJaoeQyn8AXBW7IBZ0GjqqjbEq6b5vuKFGyiUlVBTWsAkuaWfhvDat97Ju+4\n05RN9a90nfZzecW95yhJoLqxfaRIe31Lc7C+pn5tw9MyI2+0cSzbLBN9WpWJbvVk2zegIuZZjXcx\n8yYP/F8qFjn9HsgxHNTG2HDGBOr7DLw5Hfh18hXQYj0im2XQUG3NuxKRSdso2rVCOWa6iLlIdJsS\n+c3zpdowA0HnkBNv+uqL1Fz/c5jvkSVbHcFhY/m63/RW7Ri3Vc8eyJl8S/fpn8OBMtHYF4caozBg\nbFATGl/JZiOPyCtRHJ8Ib1QgL9qFH+lG/eUTAW3fyhbaX2pOh2nQAQXVcwW6qcja0b44McYY8/3/\n/k+MMca4WSIUIITWYfEfo1CwBNGHeIe5uFC/79xX/vSrrzVXUnAZbKIoMwVVUGCu3rXEcyW7lK1W\niKAffCQ7uH2t+py8QL1voX6eorhTXpN9VDOouxxq/a0faw3dTCn6dn72c13vDD4YD1Sb/mbq5NFn\niAgXvidUgXe2MOFUY+ODdHB7tBkkQ9PSvfKs5y4KXfUt1SXsq69fXIhjYOWDimrDzbVSZNAmatNA\nYaGMmtyaqzoNUGUaX2DkzJkRe7MJVb/ZudbjTgZuEfLP/Vfq6ydPxQPSA3mTLoL0q2vQP9lV26ND\n/X86OjHGGHPZE6fCDEW0NoiXDUftXfR1/fNb9fU1/VKZqr7dQDbfKN09um2MMSui/BE8JSs4Zioh\nyloE4zwUx0qo3m1W9ToG7WDnYjSbIpu9hfp1stL+5+c5o4CiyhIZz5LH3sM2/DlnCHg9llvaf1Pr\nWtcX7Bvp4ZsIrVs7MA4otmkEUnWq8SvRgBy8e9mKrjtFpcWiu3wQoBEornla11mw5gxO4FhrwwNF\nfG9eihFZcCMtXTNxQEMSgcyGIBbzh+o7zk8eqj/DS71usc5ETRSqQq0n0MEZj3umQI3NQDJMUYLJ\nHKmPOnCzLECA2PCVLULZbmr2dsfgSkCUGfRUHnXPVVV9nOrDtQX3gA/CL+TsVXLhRkFp8GBb69At\nfEo+yJ+tyqE+h8cuYs6v0pzRbjWXJ6z7qQLcCBXZgjuJ+fHgDbLgXOsLVWD3df/5hPMj6F5Dv089\nbMqTrU5mslGX0HXpEPWUPLbmq52I95locKJ6sg9v76kdhX3QX0V93xvrLBQjNCtw0dgZkERRrLYq\nu8h5OrPYAed7ONnyzJ0M3DOjW5AynTc8HxeP28YOeW6At28Cf0mtorWlH2qt8lnzbmZ6rcZclXco\nZebvGvxqBuXC8y/+whhjjIfa5yRWlAXt5KypT3dQ04l5MEtl2f4IpcRo89AYY0wj5nAEQddmz+z1\nQR4GoFBB73auNZ9tOGHuf6h1fwuOyRLKXxbnsfMZ/HoPdf+rU2UJfPPoxBhjzIOmUBSffSS10vJU\n62b/QvfrokhmwpjrTOvXe7+n9uVACs2mKFmyr7Reaf+yUZyc9DXWp7eoyMbHw5Tavf2QfvtMc2nv\noa7fRhGoe6Pr5Q94Rmzoeidf6nMv0gVHl5qjnZZ4RatGNvf+3qExxhgfpLsHsnMyUX2sI7XLfwsb\nMcaYIRkIWW0XZvszlHYXus+jn6oes5TmbBZ0yIMtccsEcNycvtR1Xv6teJvubQvx8/GOuHh+caFn\n19YXqFkx3qmDN0gZs2HMxoc7xnkle++y7oxOdW33nvaiekOVvUXRd/xU31twqYxRtvWvQeitaUwq\nKEjNOPBlPFT54IRJ7+m6dKmxUYbyGjG3FgiVqWw3yJCNgXJXfaV1eZ7hHA63FlSCxqCqGaDSHJHa\nkmIOzkD2ePAL2ZxPM+z1YUo2s8BtEqNwA5QkIxA78f9WIDZjBHV8psj/CwpdCVImKUlJSlKSkpSk\nJCUpSUlKUpKSlKQk5R2Ud4qUMUYer9GQ3Cw8V8FA3spgptebgbx8M/L4YsbubF2etf1P5SXdPFLU\nJm0pJNlpKVc1iNEKl7rPgEix5ev+bl7XK+cUKRhEikCsYGOew8tRxWu9qJBTS+Q1vSYPXaaoz9dR\nCPIJO1nkv0folhvQAG6QpT7yuIWWvOtD8uqDGcziIHkWN7qf28BTR955dUft3TpWPmZmV/2y6Cny\n3L5+bToDeV5nN/ICekfk0S3xoDu61wDUQQQ3SB6PsltWhDP/e3CwwGdx9fKx/n8N0iMgolup8X+9\nFrdVp/Tq7djJL78US/wt3DQ1+pqhMXPygZtVRQxmWfVRb6Z2NQJFFhr7qnero/ZEE3krYx6OGdGf\nMrnyAWpOm5uKdN77CdwL5DtWiai62OCsp8+HQ/X5AIWaxWPdf3Gu+9hERPvfkvc41O/GY/Lt4SEq\ngMbYqav/Lqcwl3dB7JAQngPRYpGTW4b346r3/9BPsuUBqkmTM9nBCp4MG28zQmRmQn6ls9T1Nppq\nZ3ZT9W+Rx+/01U85vMiFrL4PNlDY2dGcHL+E5X+u9l0vFanxrmTjKXgFJkTut+B1cbYVMbhL8YOY\nm0R180G8jSOUR8gVnYO0mxqUwOByWmQUrcnaqntqBkKPaFajrLbMO/rf0tb366h9uBX4JlBq8Yh0\nVosw869ko91QkYNRkUhjQe9nqpZJNeDlAWU1LqPOwSrtEe1egmypFYk8zDSmPu2yI13/JbxQaVBN\naZQYWuRhZ+FLuh4K0bEwRGAZEz+jOeAQ+TVNlFXm6q/lUPXPF9RvCyIGOVAbi6l+32ZOfMo6W9uE\nTZ9oXgWFn6envzbGGLN9rKjTcxQiyiX1Ry2vuRBdCO1WQD3lriU3hldjpPsuz+G/ijljQl2vCAKy\nnFM72guhNlYL9d9NWcjNAUpr3cdqj08+/rAg286/pznU6SoKaFqypxT8WBsbqIs01W/OdtaEbRAe\na0KQZFCe6v0fipitlppniwOtR0X41opwu7jHiozN1tTGy+ca2xzrmQOfWXpALvovNYZRRxFFHyWx\nB/CurRntqe6WImse6mlXL4Wcu7jRWAB8MdBAmDzIQ4d87HKgsWugcNID+TOBw+R4De6YQ+1h1U91\nvyc99cf1l9/o/qAtAF2Z7Bz1PTjGpiitpFlnpxHcLncs9TX144z7eCOdIUycBk47m0TVV3PZ9KtI\nYzyDsyCEYyAAQfSiK9uoVkHQWOp3N6Pfz4xsIUX9V0P9r4+i5Kyi94NAr1XU85Zd2cNG8Z8gUKOc\nmcxl20UUK60G3A0gowJb+0LMv7UYsUYsQd+BxiiwNqYX2scy8GltOexXNZTEkJPJ78huLTh0rl+2\njLWlex6+r6j6kL64/pazwlxj7uXhv5mpL59zbqpmVbfhVG3MoHqUhYMmVrNYpVSXaVbXdUHYGZSh\nwhlcXnC0ONdwCmbjUOrdyjLD+ROejRScAquh+qbXYp+gL7PwqAWoKq0WIDPgVQs8ENugUK878Pb9\nUEo3jZTm+KildSfyNEeLfa1P3i1IRlCwmRRQUbhisqgwxXu93eN8eqbXeg2eiZrOeO0B3AoF1W9/\nUxwsl5e6f+da96vCsRVl4g2KQ1ld/RERaS/aIDZzslUD39wCG66OUBaDwyGNYprbg+smUL3TKG26\nJY3j6LX6qVTS/X2QmUEL7pm56v/gR39g4vLBj37PDEGcP34OPxPn5XJVNjyj/104KHPsx541Nnct\n1abaGLLOnf7ya2OMMVfPtJccMbb193TP7IZsO4RLZbXGswGcU3//M+01wxfn1FVj+vRUz0Zeh70U\nvrl8DgWsdc09aDJNmXP59q7W9VVRc3He1jo3eK59pn0qBMlgXfX44P5/MMYYcztFeQcOyeP/TggZ\nB87IL/9ce/jpM+0nVlH3qf+R9qu0LVvOoirU+o3648lvhMDZgi8q8LT+PvhUiJfUFmemtmzAMGcr\nFSFC3vsezzygsh49EiLk1z8VN0u0kK1t7up87HKGWsITePRDoXMzKc2JwZVse2ND/VzjOaZ1dqJ+\ng99k7UDtK+5pDRst36gZ3aVMUGwcoIJVh+Pl4I+1VkYFOCyvWEOKIB8LWr8bm9rviwi8jTjLvf6N\nlNicLmcRVKvKoINL+5ors+X1d3Xpn12Y9ZprDt4XImZjqXWz94TzDsixCvxB85r6JkKNtMB5dK2q\neTJ/pbqEBbinKpxRjGzHgZtvPkeNDQRlFrBRH/VjC9S9n9P9DBkw5gpYJ/xEK9Zh15eN2exdSx45\n7ZhaygLJbsHlimJixGsZ3rgFz0Ap1u0YkR8ZskBGqDyBXprAaZPiud/OxqRdqJNyvg7/Cf/bf6sk\nSJmkJCUpSUlKUpKSlKQkJSlJSUpSkpKUd1DeKVIGwRdTz8uLlyIa58PGvMLjfevr+9wEPfIMakrw\nlTgoxnh7sPLHXBCevKeDC3ns5j4qKpBB9OFwcRbyYI3u6ff1sl6DojztVbyXjc/1Ol3K25j28GnB\n9pwi0bGF8sPtpSK9EZ6/vV15U7NX8JvABZEe67oZUB4bu7pv3sWbuUG0bFPts0C3xFE935HnbnRK\nHjgcFiERlNloasIBfUoo0yMf+fymR5vIw8vInVhCnSnvwlaOwswKZaixiaPkqvvRv5VntwhzfT6r\n/wVlctVXuv9y8Hbs5AAxTBgr47hECvfkfSw3lVtZIp94HKt3kHvbRWnmgL5v3mhsT+AJ2j58SPuI\niqBSkinpepV1FMBQ6GnjgW9dgJLKEUkk1/7mtcbGvUXJBV6Pq0De1B3UjzJwO3RXsMWjAhVlYf7P\naCxtooc1UFqjJ7pfGMh2Jn3ZtttH8euzQ2OMMfWeIjCxQk76EkUL8s0LOaL7sPTbMIc71/Kcj680\nvqkC44dqSPUS3pEy0bA0CgYjvd9EgeLwM3nwf3olL/sltp4lquYVNac3iqrHOvn2qxH95t+dU8Yn\n8hfmiBZlFfG7vlY0f+dY729TcKgQHSqi2FK2FO3PpPH01/U6H2jsDj6Sh37EPLVIUq01UQggjP4e\nYxfRx/Ud1WsDfoVtX/UYWpoL+ViYDNuekCufGxERQDFlm3UthxrTJyWhiGzUm9Jr6sPSrn7n5OWh\nf/VStjF5qfUgD2jAyhI12lBEZA/eEQvEiBlqDGMlNhdyqvX31A6fyO+grzlWI6KQbslmrKX+n0Ph\nxampn7NVVIjgtQi5j0Fpp0SOv5vic3iFojmIxYhIusdaNXo71N2zR1qPr09kk5MnsoNSiOpUUf1U\nqstGG3uaq7dVuCouFT1Mp+HVyqtfevA35QeaYxuomxQ/1HiX2Y/OFopytlBKsD1ylC+JnD/YMEW4\nSXI50J8PUJD5EQo1T1CEGqNC4cl2//bFPxhjjNn53ie0RWN0mtaYzG81xrYPtxPR3zl7X/8b/a5a\n1Tq52tG61wdxUo40JsefKjJYuq8+Gn6hPrt6rj4tBaBMl7rONEc9G9gMvBBFUGU38O4MT9Un21MU\ntj4BAQT3VbiSLeSJyC7gBCvBBxI1VE8bnrkIXoxm/e14hwZt9bO3YJ2l3cFEY9UEqblzX/0wnBLB\nHJHXDifEvZ/8ntoPH8fJX/xG9YKfauOBIuUFHy6Cm8fcDxQukfYoRjmU9b8UimUZVEkm8E8Fm2/2\nVXuUMTlH7QeEZ3IBKMAY3YuKyArumDxrwmSC+t86nDYjoo0+3BJ1kDdEC22intaSM1Q/Pl+8pn9u\nzAfrKIywLg5RkPFR7Tn3TowxxpRAvuVAda4f6x7LkfakEbaad2WbOdR3/J5szhpiA7MYoUwEdk3r\nXIz4i+B6sSuoc3p58zYlYoyMD/qX8+mSPXWVBvWEGqBZsrcTsg099fVsU7bicFa4fqE5eAJP3to6\nqk4+akldkEJ10FTYRMEmWg+3WQSnzgS+PwK8ppiCP4KzmLVS/cOZ0E0DUFuTS/Vnvql2TgBhnf6j\n5vg1ioy1A/HpWaia5NfYR4g4p4ugcEM4JFBJDDsgBkF0ukSScx4cZKDGbGw8z5qUd+CCKMRrF0j4\nOftUzJM3l62aqexjY0foCGOM+fRHf2q+/Lv/Yowx5kWgOVdH6XKKSgpmZEqcYXMgjJazu6PusjxD\n9H8jLpAZ6LD7n0sl6Xt/KnWcKzhfTlENGs+1nt+eyXa7IxCFI7W9gbLsOnxDaVtjvPc5nFqgxTz4\nOux1zd8M564bOAunvubUxddal25PtTflUE7cgjNx9wefGWOMKRxpX3r6n4TAKMEfZKGA++gfNBZn\nX2mP3W58ZIwxpvpj/b+6o/Xn9bW+77yWLZ1c6xVAvnn4E9nypCSjq21r7F998StjjDEt+qMJ6jYA\nwdKeaQ++eSykzxjkf6Wp+hXZsw/hQTIo8jQ2UcdjnXtypT1+dqtxKH5fZ60Q/s/AQ9E2jzIntjMa\n6jB3G3Ou3bE0D4X0aZ0IMXT6SoihtV0hd3b/8FNjjDHWMylNdlBddWPF3usT3b+ns25mrn7LZtRO\n39V4z+gfHx6UB9tS7bLW976rS6aZNfPpjel3Ze/3QKtPmLeTGzJMyAjxUUFagK43w7hvyFg51Mfz\npfquiHJiAHISwLUJRnD49VT3AtyKLlkJi4nOPHaPZ506+wIK4EfT/QAAIABJREFUj3Pmv72Cpw04\nq4WacSyEGK/LFs8qEe6PgGfdTMDDJnu+BVdNyBljwfqQ5VkuZD1Kw2WWQc0vDXfMnGea2GYinucj\n53ejqRKkTFKSkpSkJCUpSUlKUpKSlKQkJSlJSco7KO8UKZNvyNvowjGQgadkVURpZigPVLkh7+MM\nr2SVCHKMqBl76Jk/kbf3GtdYaoDnagY7MizLdkWeqyU64xZKQZVt3LUgW7IgcVbbROk2FWnI2nod\nncXM3XBU9FGQIK+xhLJBWJSnMM69647lIlycKzLil9SOtc+F2tg5UL8Eafg7XHFGOHV5yYs1Isp4\nz2eeItYnj+TdnV7IsxgzdaebNbOLCk8Rfft+T3WeEDXuDEDVwFydX5fnfUw+XTgnXy5SH/tLXada\nkwd6f0t9NSK/O4UKiA83zfiFVDj6eHrvWnLbamsTxmxDnnkJiZ1qU9GUKbmZIZwH0BOZVkf13Z4f\n6vd/oKjJJoox2+SCeoRHAvg2FuSFt79SRGHY0nVGfaL6RBwLIEjSeHWNp36Zd1FcIV86VkLIfgQq\nCn6MdfLKK6iKpKj/AoRSB+6HbMh11mWLvS7qV+SPW3O1v5zVeNhEB+djedj3UeQq7yjisUCdZHYm\nWwlKmithFxTZS9lFHjUVB0WheVnfD1/qfpU1fb7qqj0ZyPaLREYKG/o+XdPr4X0haFbANnI2nAov\nQDbNVd9sP47x/svFnyhK4eGhztqymVmXyNoFLOggXZqosQ1G2DIKUUMQM8bW2I19RQZSAVwr5NIP\niCoZXygBvjZ+jZzYMSgf5m93qMiib1B0GfNKRI6ApXFhd99uagxzRHkaRIOGZ7qfS67qqKv6WpEq\nsFwqwpnZQI3OAR2GYssEriwzR4kFW4nHIspjwxmi4s+1vo3JS67g4L8hKrRV1vULrvp5ryLugUVf\nNrkggFLHloM5CCFY8ot5ItdjIikZzZ3b51ofm0v9znPh0gIJVYU/xUzfDimzjdJciXUxrKod/lAI\nzcVI9Suybuc+Ub13Foo6/SqnaFYGHo9Sh6gU/RgERMRbRMIdjcvR8Q+MMcbcP1J+/Nlzoe1OTxTd\nitIa92rRMj3Isk6eSkVhZ51rZkBvwpPU6Wl+Nht5vuee3RNjjDH2tjq/tI2yAEoJdVABgaP1Leep\nDXX2h22UByfwJ1396peqD4o4nZX2oHt/prE++lO4AuDTOUVBy/G0rgxBtUaoRITkjedRTHFBr41O\ntZ50rnSfKeH93kK2WoPnaVHQdQoxqov/W+Rp+yuUFJea6zZRtLuWNEjRVVpzLxfJNoaRxrxPxDSH\nOskUVb0VUf4MZ4zFAJTatdrl9lF8JAoX5eAXoRnXL2QL3Nbky1q/dz/Uawab/7KnSHW2zHg91Ofl\nbPm7NliNDXN1obUqFSvRwG9ykFN7WiBJq6AuUijfALAxKRdutazqO0aZYmMJGo/oosf5oHsre0wN\nGa9t2dFaI2OWcAF++bd/qbqjilEvCkETzB4ZY4yZt9V3fZBwH+0qSjwfq843r7WOFuCT2F5b5/fw\nSUxke2nU46bnmmezC63XMQKintG6Eq+jZv52PBA2tjfgTLSEkC0HgsdCabIEr44BgTmZa/3t9VV/\nC5RTLkIp8v0/M8YYs/UAhKGt9bUNyvQK9aUySKMilAoxpxhiccawn23ldabIsk6niZJ34WqYcD5O\npbQfzlBaa7Vl02usOVtL2e76A67POb2yrvZ0fFC1kfqhDPrXt36bzIFjuwkyqKfAg5GKNB5RyHoK\n8shp6D6tE+0HE3j3ilv6f8bT+Ds19adXUIc4I8291Uj//+avtG7/T3/yr82X//evzQ0KlsU91la4\nHhco6jgRZ9++7mPDPVlN3Z1Tpvdae8vjczW6UdI1M59pvXwKr+W3T4Uc6RPNH4JkLKFGV3Y0/9c4\n8zdQySvn4TSMn5lGms+Xr2QLtyDe3GP1rYUijBfISOw0nDUgVbIg4B58JOSGU5btpte13t8+V3va\nbY15GYRFBAdWgTn12b/5N8YYYw6P9Cwzw7ZuQASlWffHHqjSgmy/eqRXt6Kzi5dSex7/TEieLx7/\nzBhjzPYWqDCUF23W4Q4InBjZfa+u31kgg9JwLtqAcKdnqLBO1V+dodbpDGvHve9r7Tk6VP9fn6EG\nCD9piArrxEKFbqbxdey3O5PE6lpHNY3n6V9JTfCnP1N7PofLsrZ7aIwxZrXQfRvvqZ8KqA7ecjY9\nv9FrnXFpHGr87ue1Zjy/1P7xnGfP79M+Y4z59I++b7qZmXn5X4Q2+vKR5n0GtcreOepwDc5xaY2Z\nzTNLCnU2C8WsFBxNwbX6esa6k2/o2aBWA7W14vx6zvkUBHIGTsMoD+ofDr8V3IB5EO0GLkM/C7p1\nprZnDc8ejKnFs1jIs6OfgmMLTi/oPM0ERI1BHTVWV4o5ZCMyWjIhZw74SC2Q3L4z4Xv41sh2gObU\n5Ea/2+2SIGWSkpSkJCUpSUlKUpKSlKQkJSlJSUpS3kF5p0iZIISlecirJVdSZkTuGRFrnyhgBrWm\nASgHJ1ZPISd39CrOt5fHLkUuV7EZKwDJa5sh5//4A6EmikTfnLS80fMZUTDy6a2hPHh9okwRedjn\naMzPWygVwI+x9748e7W1HxpjjPEC1bv9SNEwb6D2BN/lzoICwbt90pZXeUEOXRod971j8adsVOTh\nv8YD2X+l+t32dX2fKNkc5vDDYs7U30NjHqZ56yvlfHeJhFXXUe9BqaD2fd2jlNFr3iMaQQTVjOH+\nIDIWkVNu1VCFmJK/d6Mx9CCHifOH71osolFFFHWCsa7jgY66JKrj5VBScPS79U/lgV4zMHITsd0g\nP3lcltf1Epb40S8UMej3FBHIECko1kDkOESYUcTyaXcY6fcL+DMiEEKxokPtQ3mT80e6Xv4BbPvw\nALVew+FyLVvz2+qvxVC2cNbSmFZBk61qIHoa6udd8u6noLncbXm193D7TvuyjVFH9RzBY1FAGWfY\n1ufTK0UMen1FFUvkT/dC1btA//txRHUdxbGmolvFBlw8m7Kve58pT71HlCl1qTnuX6hdo6ls9AaV\nKW9MZB2G97rzJvL7LxaixFW4SIqoMGzlFSVwLM33SlF9b1BhclLqs/omiBGiN5Gr1zkRwF5HEdpW\nR1Gmy1dCfXkd2UQf1Se3oj61XPX5Ak/8bKj5vbZGlIv63LzUdfMobE191atBBGCZ1Vhv7ikqPmDu\npWNlmDP1ZeRoDErrcN98RV70BepyEQpaBS33c5RTLl6oz1N2zMekdjyAT+LmuWxvhC1nKhrzZ79Q\nvc892W6IfFRxU/8rXbJuj7HlQP3kwRF2BmpggznlTzReBxlF11ttrXtF1tMlttmH48deEOmNVY3u\nWEZp3X9aYJzgfIjI5/dBj53NZZtWW+O988eHxhhjjvcVPWv9udbOQRt+lh5cFmW1Z3ATrwWE5uH4\nqt4D4TNDMeglqLqK7utbabMAhdQ9Bc1UhdOJ6NN8htpaVjZW2FKfHcKP0TLq89qRxuqTA83Dr/8v\n5eT7af1/kxz7qSWbyKG4Za7hagFhsTogrzytNrzoiyNh9HP1UXkPXrMmUesr3T+1qzZuoJSygu9i\nDg9HuREj61DQmul6QRArM6BoVld9atviyjFwZA2p7wglrSocB7mi1q0l0bGI6NVdSwF1pFgVrhDq\nepMh0TzW/wBFRnsec95oLlhjeIZ+8XfGGGPOX2nd2ylpbpYfqJ8mFyfGGGOyROmDANvmfnYeNbtz\n9bdb1ByIToT+SDHOU5BTpTgMZ4xJl43Jlg/1f3g7HNB0feayxxrno4QTGtXTrsI9ALpjvpSNO57W\nd6+h/cVGXTA0sXIZPCI13a9W1eti5JjFC6GtBpea97sfK4r+/seKZl8/AwnBvJtNxauQaeueS/bG\nsKt1zTSFOPMu9H74Wn1p27KZGBlYdNWXp9dESBcgWqqgmUDIpJy3i00GKGvZMUeXqzkCjYcZEa2+\nmoH424fbxlGEeEIk1+fc+OxUY7u9rTmRLauPg1D1ag1B3VLNnAP3YiNGIBJx5n7THqqdVxqb+hFn\nOpRvRlONQ86O93DVfwW3WQUEusPZycO2N2qqQAk1vDCnemVBWbtl1JIWcDcCGigA6ZlZ8f6F+iic\njN+pKd2iwoSi1zzQ60s4aNwS3EQOipQ98ZhsZNUfa6gkxhyLZerbbceyK8ac/fzEhEW16+ABaI60\nvh+zlnB8MAW4KdIgR2ME/11Ke6T12T3UenL0QM8CQVptPHmpedzuq41F1uvGQ/1+80CcH8MrUFzw\n5i1nOvO3n2iP9F6r79PsqWlsY/+exqhONsIZ7FIBaKPGjn5XqgkZs3ZPr4Gt+11ea6xuv1A9O6CB\nF1Vdb/eh1uPVRO8HgWw4g63OvhX6bcIzlMuZxrfIGliqPZVDFGex7a8eCyHq1rSvLECmVPZ1lvvg\nQyFHPLgxXdAZObgN7z/UM5LDM9z5S/bJc9nwHH6joKv/bW2BJltTO8rwX3nw+z17KmTJkjltufD4\nrWvOZEDGpEH8ZBagPe5Y7JXa2XwIx8tC7fzmL8R79ATETIqMgRuQqEP27eMfiLvs+H2N33SsOfH8\nZ9o3Nieq5/1PZH9Hm7KzDnxMl6dvEOnt1tJs71VMv6FnxdaJzrlzzgKDWxDjA/33CE7CCOXUm6Vs\nczOjeVWC122JqukEdFiK59xSlQwZOPeGoDn7PfhK4Q0qoNqUcTVGw4zWF2+CAix8SQ58Pmk4aiMQ\nl06MuIZr0YIDNkbU22RhzNkrV/Dw2HPUlzhDRA7P62TCrHjGDcuaKz7n3Aw2a9kgsuHGgmLGTCq/\nG02VIGWSkpSkJCUpSUlKUpKSlKQkJSlJSUpS3kF5p0gZD6WeaUdRm/FckdkpHvQMee/5Gmz8H8ir\n2UQ1ZYy31CdffpmXt3LaUv5fiB55llzT0q6+L27Ii+w3yfMsKnIxvcCTJ6evCU/xGs9Q5YChexaS\nS7xUvR24bvLkiXt4bSdp1X/xXR653mdRopij6+5P+d1cnknzCs8cSbfZqtrt46E7n8hTORvCiYNy\n0O4DeZGn8Hm4M5i3a8ZcP5cXs/MYtA7evPK6okrbVXlUU6gpuXAAFGz6+lZ9sQzloe924fFoy5M8\nnqqNdThE8njU0+SaVkryAJfX3k59aVFT20KUC8aoHeVDXXfjnjzbm/cUEZ6BCCGAaXxUI+av5X19\ndaKo3c1j9UfUQr0CG6zCiVORyZlslnx11JDcjDzmkxQoAPg0GveJNHQVgSjXFM3Jl2R7HZBFHnwW\nFZAnHuzprWfysDszRWNscvoXV/rcPkaN4576dQtvbqmi+0SxrYESSy+JsKOMs7jEOws3wgKOmxkR\ngWBCtItIgsmjoHOgubH+vvp5FQldNnipyEwtkP1EURyp1X1uQMakyJ8/PYEPZUZk14brYYYCRk6v\nG3iTR2/hLp6QKzoeoIKG6lKXaLb5UiioLvN4raq+fPZroaXSocayY8kGjoji58rqi+VcttMg+ttx\n1YZ8GS4WVIrK+/LoT1lW7xfVptMzFAYK8Agx53zmZ83RdV51ibIQbbamKGahKDbl+xoKLlkijLfX\nGtOjH0oNo+mrz8+Yo/4tkdYhymAVbCWEUwAlAadP5PM+6k6ohGRB5mykFFnobmpss5YmSf+cdROO\ngiVogcFI9XaItk/hYhieoDaVUr92LjQOO3VFiMdEB9//TO2ZzMghhvMmTWQjTeTirmURyZa7cPHc\nsCYWiiJLaEQolaFgMSE82H+siPzOPaHswnuqR4c8bh+lNjMFcQnrv1mpX7pPtR+NzkAjVrVGbLJm\nVOFE6E8C44PKvH+otXwbHqKAuh98qrG5DYh4pbBh5nsNFGkJyb/8GtxO7DVZeCmsIvw6bW127UvZ\nygTbyMVKONuy1V32XnumPfTlN1pHz9onur4nm5yxZ93eqg9ToIhC1rtwrMirPdJ60iTvvHyfepa0\ncLdesn6MNZcbFd1/uqP2OxBUXMCjlvLV7iVxpiocWFaORPE7lgXqUD5cNjPW4QKIFu9W6KzJiOhe\nUXPGgt9oBYfNcqaIZoozyjpcCOU8KFzatZppDhXhZmmg9BWldd0RfChzOBQONrU/3P9I75/8XBHR\nrv+GF2UcTMw4D8qXSOwtSmcbfqxAJ/WnEKTs3GhtnM5UjzI8fE5a4+RytrIhvVn68NyRZ1909Xub\nfh/ACZbyhiYFWrIGl59L3zpwYIUl9UU+jJW+1Ie9lzpbdEFe1Im2H27rXoOB6jxZakxc+nAdnjIf\npEM41fx1yfGvs97566jWvd2RxESx+giI7tqebNML1JevvkXtk8hyroqCIwjFUsSczoKSulX/dOGp\nSPn6f8aBa8VinSvpvhlQs07EGQTbP9jT3uzuyoYvvtbcGJ3r+tkHRIzhP5r7nPWw4QwcCnX4N0oV\nznicryPQWWXUlQLU8ZagrQyIlgw8d4UKans5UNMgk1axihIoqyXr5Zx1dwWCfGmrf+uHnG9/LEWa\nClxET/8XuBNR8aqgKOeu1P4YAdoovtkntjfWzIS1w8FeigvVww61lhq43WKumSwcMz5nw7uUHKjS\nIgg5H6WYv/k//9wYY8wQDsS1D3Ruze8JdRDAVxmBKhqcaB0pgA7NYXMhyL2dB/pfmT7Z3NA645Y4\nE1k8k3Du3/xIe0+shtR+pfs8O9P3L05Rbo1RBlXVb3dHCJQ0PEWplGzkIkav5lQ/B3RXlj4MM/D1\nwRPiljSW61XtF0tQSq0W2QiebOxwTzxshUD7QHXA3syz1PmplLNqjFHa0xoRLPX73lc6c3mvtH5a\nzJHGPT2H5MlmyKOSNfC57rfisLnsq12YsClV9b/SMfvgQu3rgyzNwZU5CN9uMTmFR+UCFHQto3Ep\nOlqfR4MTY4wxzQe6f5eH08uff2GMMWZ8o/59uKPf7x8dGmOMCa+01px8q/1hQhbIwT3tn9WGfj8b\nnH1Xl5NfPjHX53njwvnVAAkT9jWfFmXQVkDgVgW4U0GmLOHbnHVAjcL3FqtwjlPqaw+ezBTKfR6o\nVIfrBHB0TW9ANYGAb2yx10xBUANc843GynH0QZo9N15fjYHTKs7SgMxxNmf+c56P+XrSKNGmsGWn\nwJim4Ibh4aREfzggaljejSmAzESN2Qs1thHo3UK8Xv4zJUHKJCUpSUlKUpKSlKQkJSlJSUpSkpKU\npLyD8k6RMi63D9PyggYB+YhLkCVEQnNZeSdDmLstlGIy6KLP8GxV1uTJWrkwb4NSyK7JO7wqygfV\ng4W+uMATN5WnbdYjF+xc7y9eoq4yk0femymSWyR/f/O+FCjWQHP0OkSkUVnqt+Wl9I0iQ/klkYB1\n1atZU7tc8rxX6L3P8IqnyIFOpeV1v7kUkiZc6X7lWJEI1Rn3gEhyFOdMK2LhDXrm5Ut5RNP44fZQ\naKnn9ZohR3E+V93nT+GIqRLNmquOzlSfZ5Z6vyQaUSvoXiHyDakUTNshfA1E3VvLN7nvdykV+nZV\nlAc5N5G3NU9UxEH5ZApKonUqD/kk5lJ5qqjTi7aiRhvwPhTJ266iRmRCee5dUAELeH6cNEoBnq63\ngnHbbRIRwON//KmiVKOeIiC3fV2nt1A0fdhBcevXikhsfaBIeBcVjCmohrVNRSTTNd1n7WNd9/Bj\n5ZymVrL1U6Jtc7gERqAN+tfyoBd99Xf3kaL103N9Xy3Cxl/Q9SvwqdTuoZ4VMM412NuZO4373J+8\n78jCaw4XwqKv+81P9X7YgCNiqn6bPYa9nojqCtRIE86eLBwUGfI0jX93f3EalE6ROs/wWPt47gdE\n4BYT/e6G9cIbyFZccldHgIkWG3rvsV44BySZL2R7TfKmd5vKnZ27uu5WXWN348fXlUe8eqt6FPYV\npahs6LUx1X3WUVkanOs673+kCEU/0Fx8sCmExiNUSnIbGsOgrd/3iBQUdhSRDRZqX+4MfpGa/j/p\nyBaKcJssXF1/fU3r5esTse6X8rKtWoNoF0id0pbad0TkYWdf0SxvJdu+vdSY54CZLT3ZXBMeq4d/\nIk6W7Y/2qJf6oftcHBLx2tRC7ePhkRAsqQboMyIVqaX6a20b2ao7lg+/J+RN+ei3FSNGQ/XH8gKu\nLwvET0v996troTsqP1X/VFasmSgazF5gOA7cB3asCKTxCVjXR6jkBSAtHRCcC9BmhUxggqb+0yzB\nfzQEtROgpkPkcMn6+uxbUAJl3btmaU8ZPFUfTt0TY4wxVfqsFLCHEf2aZVCICVDuimKFLCKO5Mh3\n4P2wQI/NCFPVQLjtV+GU8WRjFpHGMWhXZ8ReDD9cONFYT1GbWt85NMYYY/u63/hGaNB+pHYWXNXf\nOeQ6+7LpCuix2QncArbqH/B7U3jDJ3GX0r9hnQ7VjkoBW6B/cqCiKiv1wxCuBgelCEPUbbwEpWbp\nf74nG7p5Jls/faa5XFoDZcH+UmL/zKMMlArU3tVIPEaVNaGrzi+0nl61pFbnZN/MhfGrc7MCvZvb\n1RzL+RrvdIa5DypwMRNajWCeiVKa4ybO00/FSBhQbii4pXP6HXQAxiEauhzTbjjfrNzSpDiPrMPp\ntBgxtqco+aEqtwLZYoPIcHy4BKhjFpm6cKT1NSSCWnL0uqprDG7niia7RCrzICXCHLxsK/h44DDw\nzd25QowxxqONwwG2ciYbKJfgV4MHaX1b7xvYxhKk9SqluVpgncjvwnXIVByCdAxW8NvBI7cBAmgV\nK870dKa5fv5r3feTj4wxxmx9qHNp61y21rv0+b/aXyzJtoYh5+WR+sNGJcTKgXgBaW77yCa5qn8a\nBTW/pfalo5jvRNfPN4VEWs1lMzE62J3od2NLc8uZcBZhfVzxNDLsgbAEWR5zSs7nOss58LKki+of\nN6XrGJRDR13Q1BbqKKU3vFLL/OA7lVcbhR8PlJmNfZbhH/SW8NoFcLet7n4mKTTZA5hXF4++NsYY\ncw0f3Uc/1t728Pd1hmjN1JbLC60TOV+8SfYg5gRkj1lqrErwDzU3GQOHc9hE68Sr1+qrMZx950Zt\nqNhCSJzxPPCzv/hGbeP8n90QMub488+NMcYU4WeyUOC5eKTrjlBt2gRd5aPMM0IltAi/UK6JutI6\nCPq6jHzU1fpzAS/mAqSJVS781u9nT3XdznO1axyqnaulbKgK8sPleaaAdO4t9WiiIHYEF427rX7v\nznS/k77G43IaKwTJdhqoQd17oLm0gmNxdK79ttPS2WYYxeg83TdduDuayhhjpr/S2tfpnxhjjLm/\nrzPKs3+QvdyciwvuTw//ozHGmIfHP1b7fK2hXZTEzmJ+JffQGGPM7nuy/XZLc7H1ja7nompYhcNo\nbWftu7rk7F0zbl2aLH2cWWldysJ5lz9WX0dIBloV3SOFmlGzxLMLfEEruGiG8JXleSZZoKA7uwbh\nhvpSlgyTjJGNTDZQAQ1lKz0QPAiRmQILxiTi3Au6y4KXbcEZoMjeFytXWqBhM6jDLX2NYYbnhCxZ\nCAv4ipZTMlqQ7srxrDsGFZzJgqiPxeaW6rccz1KpGLHD+6X1u9FUCVImKUlJSlKSkpSkJCUpSUlK\nUpKSlKQk5R2Ud6u+RG6pTY59PisPVjEip7MCGzI5n+OuPNkuKh4+0fQF7MhxBDKzi0ICTNk+KA8f\n76pL5OCS/OgsEYLMta5HWrhJhSB1Qnkbi0QOajvyCG5XFdFO1fR5fSbvafBS3tdX8JYEoCXW7gnt\nkb+n/9eO1e76hjx9Hnmig+fyns5Wuu6EfMfZBfn5PuzTRNX8ElFMPPnOujyF6Vjv3dk0m67amIPn\nwV/FnlR5RfP0oUf0yOC5fz1QX1W2Y64TvI0opzT28IAf6X1EUMVboOJA1H42oFOXb9i+71KKeZQG\niCqPO3CtfKs+WvjKX0xTrwkcKRnaaY1kQ1sFRed3HmoMKq7GwDlQ3ztF9e3rr+VR9un73S31ZQA3\ny2ZVYxHOD1U/+ImKBfW9H8mNuziTDQTk1uewjVkPVBcR670fKbrV3JGNbJfkyfcteWN3q6rn7CWR\nZzhhut/o+n2UtkKiS9EOSBQ4CGrk4aeIym1txNwNanf+GO82c9HpKALiY3MuUc7ZV0J9dUDE9G/h\nV4L7wX+tiE6ZXOopKLZSk3b+QP21wsaru4rAuORCu2miV7k4v/Pu/uIG3ACx8lSmDNs5aIBwII/7\n7Q28HN9HyaWu+VNk3pyMNV995mv96kTXIUJZYJ76X5JP3cbGDZFcuLD6jtq4WdDve7R5A9Wdzjko\no4XqN3lJZK4F18I9UFAgT7yG+mZMrn3RqL2TgHViKtstESwfvsZlT0S2GPM8xNH4siIeM1BrZRAx\nlQl53qjahZAtzBcgcUD4jb7Sfdtnf2GMMcY22BiIoaNtRaVWRCKmvtphw5lw2kL1BHW88UqLRmNN\n41cC3NCBQyvmBZnRXxHohH7wdjGF1wOtFdcj5Zk/PVUkOT9CSWFAxJyIsoN9fJABEelq/JxNlOng\n+nqR1Vyc/UbXWxJJseFmKLJ2Wnn15+RCkXzvBtUuFByqQcVMrjXfrq50LcfRvdw8zP+oQNhNzc+D\n++S4d1gnipqPhaH+56HMt0CVrgQq089rTiwHoEXJ67Zy7GEZzaFYPcMBRTpjH7FRbysSqS1mQU6A\n7vLgwqqAcnIKsS2gIjXUWPTOFLEdXArxkZ2oz5bYxlZTyJAUc9RHIQaqF1NgvQlRKpuDti147BNw\nnd21lODkKZJ/Hg1AIs01B9LYuA1qIOBMEp8Blh42O9SaUHE0ntZUa0XImeNgDcSlo/cdxjdGRyxQ\nbMtP1G8XN0JYxhwH3pII5xIeko38d23IlgKT3+KsQT780xtQv6BQUijGZXOa6xPUlqIuaokgZNIZ\nrQkTkD8RqIhyU+O6pL99uCDCMfn0RFPLjmucPEpPE/pwgQ2gArSyiXrTB14KPiAQFSvQluUGiBe4\nrabnapMFX1IOvrI+ankFV32/tv3/svcmT7Zl13nfuudbDyboAAAgAElEQVSc2/f3Zp/53svXV4tC\nFQpEQwgEQIqmYNgRcgQ9dTgcHmgqOaywJJJS0LLCjLA18MBh/wd2aGCRYVMSJYKEABBNAahC9fX6\nzJd95u37exoPvt+psmwSyIpw+Hmw1+S+fPfcc3a79j5rffv7tMakaNeTE7i6GurjevXTKUJmy7q+\nCYLEo88sUt+v0hUpm1GSCF2w9EGrglJd+nDsAFOKlul+E/4+xkYrJ3+SgPD02fP4OTjAbqqP2lfh\nbSqqPE0QIdMV+ZsQHr4kr3Zo4z/Diu6fIkkLcI2FIP0ycNd4ZKCXaabXS9VFVJ+K6f7lvPz4g73H\n+j7lJkOpMQ8KGbCzebSUBy9I3kDC8PwsimedD4VUzMCltl3S9XX4Mmb8vlT+d/ntPK9nqRXzQ8uU\n5EOTFFGKX16CHsslzH0y+GGAqop3+fWmiQrc0ydaa4aP5ed2r6utXwEp47dQtPmZOLqqjP1UATHY\n056ktAUfUuMWdYQXKdR+7ey+xth5ojkRFOkTlMburgtxvdbS515X68uL17RWt2+pPLOCyh2nfYJa\n0/xAyL7hB1rrNlB5arB/noOQLDBmm3fYVxZUjxljvHuhsXj6WPWKQCO0WUs3r+kzj7rp8ePHKgcq\npDfuiFulvqs1u1LF7/IulAEdlUWRMlgF1QAP30dvaR97/EBIw3hTY6e9pfb0yqrvjW0hhoyx/vgt\nqSBNz1HlY+zfAAmUA3UboQx0WVuy95mkKlH4uJsglvrHem58CBrwlp7bBJWSq2luJvBXRedqp3JJ\nv7/zoup38qHu2x9o7MdD1asxv/lxWdpXr1v+NGfjM43VDopa/kz+s1VSWy5QZwtAlGVS9Guf+cuS\nGxf0u3Jezz6O8PepUh/cLucd6l7SGKlywqUEb9F8yt4H2NnygncwVIkRmjWfedqHkwzgsmUyKfcV\n78Bwc4VA6rMgsGegbI13nhz1mqHKWgpZtzihkkdubwZnVo53piXo2jn76wSkYAHETYhK4F9lDinj\nzJkzZ86cOXPmzJkzZ86cOXP2DOyZImUsUESpUlFUs0gmurSiYi18OFgeKjOw9wSG7p/r74RMw8ou\nijRfURS1dVsRulmZSNs7RGd/pGjyybEyFsePyIi3FM1t7ii7VN1WBOzul8WBUCzoOSEqL9FMkbfB\nIZnsPf2d4zyiP1QUc50zr8cFMjzwjxTzZKXghDhZwBzeJbQHMsgb677xkIz8mDPMy1StQxmhrXXV\nv7a2a2Zmu3fVDgvY+8OnA+tx9nPAueYuijDpWfNJW2f0SyAmTg+VZThPI/0nKss66j/Nu2qz6i3O\n9l9XdmQScQb0gSK0wVPOK5PFWJQ+Od97GXt6gMpDALLnHc7Y7qkvYxAxq8+rzwPaugAre+VlITJu\nFOEsaQkxM+ZceB5+jAikDyAJC3saI5maIslX6qgOgbqIjnThKeWbpefhVzWG64ztp5ydjci8rsCL\nlC+qHa8wRs8OVN4h3DBTmMufvKH2j0fKgBgZkCnnPk/gPdpY01xpV5RBqKEIsdrS52iOAkOZDOeU\nKHElVWsi+gxnTYx81QVor9EYjgAUh5Y9tfN4T3Oxf4iiAZwU+bKiytW26pcpKRMznmvclSPOq+bJ\ncHDu9Hycqoggf3UJ63B+eP5UWZA6WZJFrGf7nOV8dKC2LV1XHx6Tfe721DbrG6gEDTSvJmRaj8co\nlREJn3bJ4BJpr8NlMOwwNuAGCAaqw8UF56xBKzw6UhZ9o6yxeYEClw/vxwzW+dkUlBaoo9EJKIE1\nlTchmxTgxpORyrkgI5wPQO4sUz4kPXe+UJ9dPNFnF0TMpI/ywgrKYCm3CsCbKRlrH9WMFmdlPdTf\nJjxnOlNfGmMumqqcCyCIc8rxZA/eow85172tdm2iKPbgXd1nA16pHL6jf6T+Mbi3LmsrLZXXX9e5\n+vM3yTLBwp8UyJapeOYt9XdUQi3K50zwKQp0qyCg4PPYvy2/vzxXvcpXNP5Km/LDVZTajlb0gJjn\nByPmQDKxRkNr0GRf82DSZb40yFzu6h4F2vzWVaG+ci9pDM4eqU8BeVq+Iv988ZHaeHrMmnlLc2T9\nFdXR7qrsA/x9rUC2GrRQXFMd2kOyXCjpVFBPa25rLL/gyd88PNaYxA3adK7n5ciMzkmTr+H/SmTN\ncmSKj0BLzY71vH5G5Znl4ApAdcJnTV7SN9kUPQqaNF7+YqWD/7tlyIwuQvVRwpqbNbhUQIBMOmrn\nYggSEhTClCzgYqjn+xn9PikpS5gJQQUbGWlUWeqoOZUqZP27ZO2p92pO7d0gydbpg36Yq6GWx4cf\n1yFMlnalAOIF9budHBw5oIYXoJLL6+qvJlnE0ZyMbIqsol0N5YyQLGVhCQcdXAoJe7UCmemAPUvZ\nH1rSf6w2BIV7Tlb9Yz8BmUqKiPNPVLcR/ig+g/fG1/WnY33fB3VaWFGbIcxiczhosmRYk5a+75CR\n7Y/4HYqTMRwGl7ViCAIZ7qwR/78AxRpQz5D9aUhGNw+8K2JdWS5QuEl57OBU8LIgWFhvMgGZVjhP\n5lN4jfDDuS2VPwApPjl9rHqhDlIF4ZEpaMyGocqVJ6MbD0A/4598T30eUO4RzqSCulTEHJ2zJzOQ\n7cu22rkP50y/p/uml1Wr6dzAH9Y1pjyU5SL2wQHIlnSnWKJdp4zNeapKipJPjj3MbMJeC1WXsIIf\nXnyy5/RqY/NAVMWsX8ESpTcy/ykHUpIqCaGosyxeni/k/BQVUMZ+pQj/0S5o3qzKNHxHSAg7VN9c\nf/0rZma2VpK/vM99DGS6X1cfP3kg9aHzifx1FWR0awceo7r8S39A3evaH3fxF0eHjA0QL/09jcVO\nV3Ou0NA83oTb0A7UB7u+7vfyDfVdsKE5cAayuYLqarhQm+1PhIDMFVWeBUqQa6jxXXlBnDo54A6H\nF6pfcKx6rdH2m5+V8tbV27wHjOQIOx9qD1cFnTur6/97KEk+Bb0RHGkMdzuqZxEk4e3Pibtn0td9\nhp1/VzknYa/mg7jcKaq+LXhFlyXVawwy0ksVPy9pa6vqtz0U1y721a+ffVmIqK3t31R5WP8bKyp3\n/jm4xd7XnnfR1z59DqKzmmg87cIDmKJZSnC5JTON8R78W2ZmfuxZ48aalaqspR21wfmMsQFSuVlD\nkXVTY6eCKtk0o/l/DE9mMUEZEcRMpYqCa4+XLJByYRH+INSPokz6Dsc7RIW1nj3NgPfnbNCjzrzr\noUDpU9ccfnKIqmYR1OqUfXKUKgbOQaXBVRWDmBkG8icZ/HUCajiBTy7ELwe8ry9AF1dQNk64T4Yh\nEefYk2R+8RhxSBlnzpw5c+bMmTNnzpw5c+bMmbNnYM8UKRPBaB2SeeBIsRVQiPGJOE1QvEmVX6ac\nWy5mFJnyE1SHPGVYkyUR8KF+N+/p+4gztPNjMgKcLc4RhdyATbq6pvN4W1f1mYeb5fF7iqaeo2Sz\nh2pAepa1AbN4o6ny3/zyF8zM7EUyvf1lh/IrUnhxT1HK3gmZbI9yE0Uv+LDKl1XP3deU2clUUGuB\nAbwGB0K5hoLOMcpEOUUY54cTG3ZU1imIiPI2nCNkQAtriqhGRCtXyJzFnEtul4l2NmGWTlRXn4h4\nxFn0ZAG/TV+ZwfM+XADpubz402W34wPdbwBaaQWkR21H5RotFRneuaby1a4pgj8eEZWER2hySjYH\ntEQPVY/ZSOVeeUHtcH1bSJp3J2J77445D082Z0kWbsrMyU3gNSIiv5FH/SRQn7cDXd/39fwAroPe\nRyqXD9P3uINi15H6bLyv9tv7C7Hxr29ybvwzav/NDdSjfBQSqpylXVE9SnmUJvJw/YwKtIPG3Bnt\n48Fd4J8rOj47RiHjVNHlIQoX6/C1VLfFo1TjvHXxttpld4voNJH8Sg2Om1WVb21F7XH2UL87Owd1\nQZYu4Rz7CAWzoHh51ZQMyh95FD8izoQXmbczzs9OUQNK4JxZHCmbMAT1dHtb2YfJORwtC7Xlkr7J\nr5PpXKguc7INVlDfDFAaS8jgBpuoOHFWf5rR2J1OlBUptVTOeyjTRDnd5xQ+jhJtOR+DGsJPZlGB\nmoe6T1gkA4B/m8Fr4YGqSjibP0U5LSmnqnZpRlDXNchAhKjHLQa6X6mh56ecXl5Z1/XJEDTrKf+G\n/n/A2AGcZj7Z+vOJ5nIxo3bNcxZ3mWZEyI0Gbdj0UXgYo67hwR3QmerMczZNtVzSghG+KgvvCOtF\nlnEyXahdsyirtVsa6xc9zcXjfWWlUhRBMNC5/HGancQPDzdBUsGdMETxbWVF7dgGGbD39o/MzGwb\nda44V7KkhlLKXZVl2EV5r6+2qPc03y5OQDQei2fBQNatl1G62QQxBzLj5A0QNygaRsyVOf7RI5u0\nJMP2MzisiqA1DURFEY6xOYiJUo2sE2iuG1tCafaLoLCWun+esZtU1OZNeM+MMdeYwiMCGqp4ADoC\nNJpfUT3qBifansZoL6PrGuv6vlxWH+RZZuYF+e/LWomsXwHeksoKSjlk9dNz8J2ncLGwNhscZfWi\nyjuY4IcZa02UKIZTOLtCtUMYqh3SubEOJ0OWfFmmonZeRSHIi9kznI0p166ZmVXzn6A9ZqcP7cFH\nek6C8kyqOFPMqJz9J7pPDWWffAgiKQYharoO8K9li+wHUMKYmDLiRVSeglyqVHHEc/R3PJ9YPQu/\nRVP3yMKttZyoz+NVEGyFNHurNlwlixw2yJyiOHYO0qGB37AYThQPHiPQUhurut96HWQLSJCajwre\nVWXJk/jTbYOnIP7O4czKwJOXQ3Gn0sQfsi4ZaK4JyMYuCJQK+9QlaIVcikyE16gEkmPJ2PHnqmeO\n5/lk6UeMncGJ1oMpyJAs/CAV0Ksj5lgOVO+C+wb0VS4nP5U1UACMmQK/T/dUS1DXIQjVKeitGrx+\nHhnr2q7Qc+2y9g4RCJdDFGNi1vwAZaB5ipwKUr4l1hs4ZCrsSbM5OBMBrngxiE2j/QpwePG8RZCy\n+5iFy5IVQPFmyVxPIpDrcFFMUKhZgLCd0x4pgv0yNu2jlgcvxtpr8LXBWzftCu05BS1f9DQGbrRQ\nO9qH/zJVzdzW/jZibX7ynlSTtp9LuUM0pkf4xz5IvlP2rxvb+t6e8k4FAqTS4r6gm4JT9e0GqKdG\nVX5/DIdW02fNZw8xeKL6HPxc5YlAUZRQ7DHQUVUQ5Nmm5tpOTf6l01V9zh5qTe8PVa7VFT33KnuN\nIlxmF+/quqcneherrAsJurYOEqij8h0NmSOJ+vru8zd0H1DLcRU0FfUYP4FnCuRjgzk6gO+tAkrN\nD1G0BZWXjFDmQp1vUvx0e5Jrz2lupO+qSU/vHVMU24obrCcJezfQZG04MmsvCkF0eMYe60d/rt/P\njri/UMG7NzSu2JpZFx+RTwlUzWz/+CNrXDSskKQoSlQy4Uh8eqEx3TlH/W6uZ7auUBaQIQsUv+aU\nqdVn/jbg/TTWDNbaFTgTlyP8QYF5PAV5zXt+NvWLNQIFIGTyIHgmjM14rv+fZ+G1hA90hlJwhtMh\nWdSWPPzfAv+R5Z3Q9+CmzIIa5voE3qJcipgBmZNH/WkOh06AX7Ix7cEpFAt/MXrXIWWcOXPmzJkz\nZ86cOXPmzJkzZ86egT1TpMyEbE/3QBH+UzLGWc7nLYhMl8eKVm5sK9p8ZUNR3yUR9ZgzsMP3FV0+\nfEyWjSixcd6xwVnf8m1F9uLXdA6xxBm2mLNjU468nSyVIZ0syKROyUigTHR2/lj3mysSV91RdLdR\n12e1pGhwCQWcZAZbM1Hw3gNFKccDzn+TSWk1lZXzdxWtvrEC3wt8LmlGIJ+Hg+IErgvQF+fn8Aos\n0nPwnsVE7zI1XVtfVxuuoD2fmej7WZbzhLDEr9x+Qd8XVZcYVaXRnj4P7pEVTpENPioYRC9THo1y\ngEoIzN2XtSxZsuGJ2ijfJGNKVqo5I6IMD8YIVvR6VX3e6cKr4SlyPOEsbQG+kbih6GU7Vv3yV1XO\ntZ7G5AwOHg9m74Aj9gF9blPVv3+o8vWyymwUNhSZTnbV3s0BP+wr6nr/PbHZRyCXlkBvvJE+i6Cm\ndjfU98UtjYXCiv6/cUtZ/JBzj4seCgE5zokTbx09UX8MxpxZPUT5BaRQlrPKWTIShQKcMBX1nwf3\nQ66KCkxD2csMGe76qsZqARRFwDnuaaQMRbiv9juEiTzmbO4pykXFUOWot3genBNRcvl4cS7Sbw9n\n6tttFLE6fZRo8mrTIci7zCA9Gw/SDj6bLGfIl2T6xkTcN0BSxGShEiLyc5Rs/ATmfZA4kxUyajn5\niQUpPT+DulqKaEHNbQRaodpQ1uSI89BXN9SGXTJ+M7LZYzKg3SWZSdBSBpprhgLOxECnRerjCXPT\nn6ocrTUy1cyV3lJzoQKaYgiHQFyB52Ss587nfH8B1xXZowI8Ff2B6t3egq3+XbVTbqm+zpXSMQuc\nIdHfQ3g5KmSppkv4NmDHz4L8yaJCEi8un7k0M3v/X//MzMyOySL175EFi9XuGThqQtB8kwznrVEP\nqcWMfZBJAZwSM9CFcZXz3AHIIvzv+dvK6j0A+VhJ5GPKXXhgOL9ezVdscgqPxDUURl5W29sJPA1d\nlEMWWuNKGymHir5foNCVBJqXi2P8F6iuCdnxZA/eooPHZma2fk3+amNb/j5e0RjcJ3OXH6H61AYp\n2U9V/OQ3z+7BU7Svcj0+fKg2I0ueJyPZY2z2Sa+ff6A1NupojHx2V5m/Eqo/g9QvgirI4kcmBRTR\nUNApt+Sf8vBwQG1jjcynW2+GKJn5Pv2Af/KGqE6BRBrCWWNwYq1cVbtEICGXoOEKcGd58IuUCyiV\n1Tnrv60M7pJ227ymvUkEf9PoIe0DSiH0NGZqm6rX1Rtav/uof5iZFePIsqu6/ta29jhjOHImF5oD\nY1AV8RPVr0/2Mpqpn6rbWmfjuupdrSnTPS5pPcqBRpiRWZ7A1zJDaa4GGqO6tWUBik0eyJLsUG08\nTtGmcGslIKQzFdK5BfjXyMDOuppfORB2xZKy4yPG0gxuljqKYKOF0MF+V3U/P6TOdbLOzNMg90nb\nXcrg6suT5V/EKn8Zdb9xymnA9rM3R+0DTpkK6FUrwbcG79EM8q4F/mc4TdPxKm+QqoIylhApsiJc\nDjFrbo7f5VED9EBD59n/JnASeihsWYDy11LlARxriw4cLSA4G/T9iE1QDjRCHZTuAlRbimSvBFXK\nBVKTuV9GwTHGj85SHqaR+tlDMciLVS+2BjYZ6/vYh7sNfqQZ+/eAjHqq7uQz91JOHt2kZoMUvU27\nNwpwegXyIeMEjgjKm2eP+fG4vITlycr7cKxk8RO9j7T2VEDhjIb63EQhbK0sf3/vI3GLRGm2f0uc\nfL0zzYEIpPr1l8TJMkft6cmbQlZnePfJVzU2C3Xdt9MRyqEKQm9tVf/fe6A5ss9afHVL60cFJcHR\nROXklcN8xs5oor64GGj+795WedauqN4XqeorSMd8rL+7vOvt/0Ro0yV7nK0XXzYzs51rcFR+JERR\n5kxr8QTVvyLoi/XXtA+O8BF9+EzCkfp25abKUWKvc/+x9t1j+rTcUPtMOvpdbUPlbLO2H72t/rJ0\nLrE3ysHXF805jTFL+Uw+ndrf+anqt9LEd6CqdQWVqQL+/o1TqcI+/I7W1UPKtX1L/deq4UPXNI4e\nfFsI2mlP/XLjV79uZmaNFzSOquw5lt1PkKSFeWKT/pHtn2mchxV9d/O2EIXPXRWS/DCvtX5xBE/p\nexpzfkNlrvIueQwC3aacRghQuUTtbtCHnwx1txmqadVYbVCowTWDP5vyiunxDpErphxdoDhR5fTw\n68bYHCcaK0XUmyb4nRi+thgknA9PWnoqowy6d4Y/mcObZikCD3RyiuBcfqwABkdhjFoU7x8+fq6Q\n+8X7VoeUcebMmTNnzpw5c+bMmTNnzpw5ewb2TJEyRbJdfpkzYDPOdD5Rdi9EcCZu6Lr6dUXsN2pK\ng8Uwdp/tKWrY3UepBsWbIZnPNkzZMQib9k1FE5vrikIenaCQcKCs1BnR2XMQLIuSInK1BmeHK4pl\n3XlB5/U4tm/1BefE0Yw/7Dw2M7PpB3ApECEbj0AAkXWsgB5ZbiniVwJd0thUpiDiTFrnJ2JqD4nW\nZjhT7HX0uw7M5aM9RZWjWOUvrORsdUvqQcWdCm2qzw7KBl0UZQqo31TaipTXmop+FleU2ZvfUxRx\niUxRMlVdBqB+ymtkQ1bVFq0aahNr+vSCTxcHLJNhCG6ozytkZXKcZ+wMVP4hXCiTx8rsnpKRjBeK\nhpKss+0dRWFXtkBLgRCpVZXVSbIq/9OMxkieqGiJSPh4oOePToSKmMHkPQIFsE4GMz9RNLcPH8lw\nT+21hFsmDy9JLuWbIKJfyIEGmOhz7auKbIcD9U+3j2LDif4eEpUen2gOVDn/PUUtKQRd4ZNdXFtT\nO3bICHuoKRVRUCjD2RO2OZM71/cRkjRppjpTI5oMm/syUDucHPZ4LmgCsnwXU7VPOdK48H3Y/2n3\nUlXjrFTT78fTy4+T4VxlKZGkqAbq03HEPCDrnoc7YAm6iOSEnUUqSwT3SgXukrOlEA6Zpf4egaCx\nII18q+w9MnETOBKqdf1/f6ysVh3/0F2SWWyrj7pzjYnsquZijjP654nqk6nofiQkzcpwrSAzkuO8\n9myo8pwB8fPrKQcMvCAlzt6C9uqDRlqQsfW7ZKFmKPuAmuiDLFohW9bL6DljlB7CIufh8VMZVIhG\nH/7QzMyuLOQzFow9D64IQ8Uit1A/VDlnvoBfyWey5j4+OkymAkWgPOvGYpnqnlzOms1d1esh918n\n9XKhDhrx3MqMDKuv5xVISY/I3JTbnHleUTmm+2rnc5TZNkBSLSpkbHv4iKzqu4K6lAcvx3QE4iYs\nm8+8iiKV7Zxz1YUq2SLQVSd9+R8fLq8VlP06x1T26E3dZ86z4NMoNsjGg1Iqcj679zFyTs9Zo8+3\nQK7MM6pjYaHnPwZpsRjCL9Ek20VyrMRcyYHCmuNfQhB4FfgryiAyFw3VJyiijAh6LQf/UwgCMkp/\nV9D3iwzKh1n9PSnp+hUGT6cHT8UlLUjVm+bpOXPmIEO3XsJPV1PFILgSipoTCzhnRqDwPObKcN6n\nHihObioTnHIBeV6KmtJkz3gq/5z2Xk05beCbK8IJMIi1V1nCW2JmNpme2xZInNZ17nNfeyPrkqkv\ngWwswSfCXPLIMPtL1QsqG/NYb/OWcsIxOUHKZFCsKUep1A5KStmi9QfqoxB0aZqJXICwq7CfS9JM\nY43MI5lNgxJkRJ8kOV2fh/ei+0htUPDVJ8UmiI2OylZagYcOIog+fiyCd2PhfTqeuxRl65fkJwP6\nunemsRaDeInItNbIxAYbcFGBIOmcqS9KIHXGKKGEA5QSN9SHNfo8zcHn8OMhCMIIxEeOzGwVJGVQ\ngjfDY471NAbHIEjzZQY1+9kI/4WwjWVz+EGQKmepciR7hhncEa0YlECKgGH/W7iOatG5/J7HHuDK\nhjLvQRnVwgG8HE3tuZgKVqDGEfvl3Ei/77LeF0DS+KC7u4zFJmM/hDsiRGnTzGx4UbQSiPhJT79f\nghQqbOizlAKIUmQm6I7Qj+2yFqAoG5dRm9uDy5BTAOWiUEeLLPtFENF9xvijfXGnlEC0ByiMnT/V\nPPbw2+UV7WMfPxGSonOmNmvAm9ME8VJCrW8f/rJsW22EKJQ94Z3Bh59pd0XPnczhIEQFMIPS7aSs\nvjgdp9xioKmuCGk5ber7zoeam+VX1Jb+UGPlCeiKmL3MC69/2czMClu6zyGouAHlWl9nD8YYD1f5\nhKNsAKfZZKp2LtZZ74rwvMEXNOpqzq++JNRHiX3rpK9953N39J40ZX+8QCluzl6pxLvoHL+djFW/\nmOuDqtr1srbAnx4PtNfsnag8ubba6bNf+6KZmd288td0/Y9/bmZmH3xPiJn3/lzvO7/yihBKWxtq\n/2uvw0X3ROv0w0dqx1soDEfM7QrIe5W9aKWcZwXUgX7+E7Xlo6HeO6OvvKY2aGlMJeyLh3CrBujQ\nRSg25mapX2Me99VGq3CitjY1JiagnrL4n2VBfZ9FxrRSh9+H/WOB/foEZHeG+ZkFKZ6BUzGTg/+H\naTtBUTaBs6YCYj3m7wmOrsSJFh9UcQ7/kE0R9PAUxezR5qz9fpRKTaJEy5jJpIq2oP8nv+TVxiFl\nnDlz5syZM2fOnDlz5syZM2fOnoE9U6RMCdblPBlhf4QaB1HSGWfNfM47j1FfGsD0b0TYZ0RBS54i\nWBewIJdzipylCjSVokJm2VRBYQh3wBDliRERNjLGR3Cz1NqcZye7Vb6iDEmDSJ/PWd2zj8gWdvR5\n+kTR5XknVTpQ9Lx4TdHY9S2ybS8outrmDPWIY37RQJHKi6dKPx6fKrMSlhVLa6ETXwwVqUvVl+q3\nOacekfku5Gzluq6ZcZ6vf6SU6gms58Olsid+qlAwTduCc3M9lWV6pj5aBIoKtogM51bUpmEu5f1R\nRDYkQ9qbqk9Ls093xn9BXwNOsDk8FkecXZ8dakxkykSY4c4plkFioBqURyUiAkkyh+NleK7MQ8g5\n9NAD6UMW6uyR2uU489jMzEhamV9TgQpNsjUghkac116CPDq9QFlrzBlXItN5osX1u8oONVA3ueCc\nekBmOpxobJ5coKaxjkIMXAfzDtwQh5z/Tsjq+6ixwDJfvqn+KMEcngx0Pw9FoJUNRc7HXThuQNgk\nVRSEUCyr4TJC+FE6M1Bpj9SOExR+qjCPD8pwC9RUz5VdFI2qygzVOQ+fA7aSnyhDM4vSlP8vtwQ1\nigQUVerWZnCOVIZk6gpcN6NtU5WHCAQIR8aDMkiUA/0uKalPC7HGyAL0T0SWKxwp+zUiC9YkSzYm\nM5svk1mFJyJFD3XhXcqT7T+co2Dm4wfh4Vh0UNWAI6YDdGYBz4aFZDTJcGQ5MzuP5ReHXSL2RPgv\nOHftrapvYsbQlPPrOTK7ccq7BDqjSSZgPiDrhBd+198AACAASURBVFJWPsvc3iFzgiLbDF+SJ3OR\noISTchscU48O/r62rucVUL8ISyATQ/g8ONObIcO7JON+WZukHDikYucTMizwOuWWKl8fpMuEDHTJ\nR5GsDgdNSf63SLnGcnmWSxWB4DiLB5xd5qx1E9RdwHn2HP56CephOBlYsQEXVKjvTvfU9xbrt8Ur\nINvgnJqEaquL85QLRc8+OUXRkLG3up0qoNCHZcYAPBSLWcoNAO/GAFQCSmJ5HHB3TDapR3aJJPQ0\nQk3NIwO7qTnglVGIgYusS5poUtXfm6gA1lvwT3TglcAPByBeKnzOa6AR4N0oodyToXzLpcrRB4Wx\nJFt+WQtRWPAZI0sQkyV8wDKjek3JZM7gvMmQAR6QrS+VUTWEe2GMMlchmFMu/T23lN8jvQ/+lTkT\noqI3BU0XgKRJz8N7s1TJ4pOtXCEc22yi9nn0tq4f7T3Q9WT7s22Ni1Esn3WB35+nPmSOQhKcCRGo\nsVmMOhUKkt5C5Soz12MQPR4ouv48tngJcg+1tCWqQgUQGn4RvjncmQd6dA6iJQtSOUZ1qVLSWuaX\nVLZSBTU1eHW8UsoxAr9SHuTMOgi5Eep5+P/E+3TcVIs04zqDd8hAG9GXWfjWsnAizqhXbco+FnTB\n4hx+jCZcODFrMMpfG+xfx3AdTJhsPm1bnageQ5B4PghrD7/S7ymDXQlAAvXkx/Kgfivw8+XSbP1Y\nc6uBbF6zrbX49AnrZbqvnsOfFGns+CiN5eGOWAUBU4u0Tz7Pav8bpJw3oIG9CzggQKRnt1ANZZ0a\nMaeSPuhcfE+xILTG2g3Wm1D1qqJGWkdtadzFV0w/QQOsrrQsl2Wvd679dJYMfJSKooBE8lAaWzL2\n7VOgvANQr70jUJPnZNHhd/PaqFRWdF11RWvE/YMnPErzqHVF153N1NZPz1THtZv63lCA6R+obwr4\nuxw8lI01eDxijf3JQNe3QJJP+6gGeerjzbviaAng9Tl6g/cD1pWdmso5ZY3sZNT2PdBJXfh4xhcq\nx5K2rWbY34IsSfmHtm/tqtwgdx7ta6wMHwkBkiKC5k2129EHeifLQBp2i7F6DGprwN6piQJuvYTy\n7aH2pz3WuV1OT0wTjZEZykDNm1onh+x5BiDRqyAwUwaWIutdj71MDAK+VP90/FSttjYPF+zXS6PH\nZmb24B21U/2qxsPWjefNzKyNSu5kpn7Z/0jttTzTHP7KN/Ru2X5eSKACarknoMX6FyDe1zQOgnD7\n47Ikg9h6x3Nbuab5sXqd0w34l/E+7wzrmn8VuJjmcGhNmYc1kOpxWWX1kULM4x8nqCHX2eOUWBOn\nIGJC9lUZL0XNl7gv+1RAmj7vcllQSgkcjwF7o0zIPhp0VSGDP044LZIHAQdXVwXEXVIGXTth/wbq\nf1JPET/sKcrpc+C0ycI/x9cZfuehXLagvYLZL0bcOaSMM2fOnDlz5syZM2fOnDlz5szZM7BnipRZ\nktVPMyAeWZpGW5G685RbAF3vHJmP8z6KBGRe8qA6smTNVoo6Zxn4oAeInC0XsDF30Q3vkZUiIl5d\ng/2f55RyZKVAYSScXcsQbU3OFOXs8f8e3AcZMhwN7rfkjC9H5MyvorpE9LreRd+8oUhaBPdED+RQ\nAOqjuKn7GJr2QRq2LYDaKClzENRUnhqZmqQa2ghwUWZCthbFmnJOv4H+wGblNHoJo/6QsnJOOBir\nTI1V/W6WSzO3IFLaPJNs0Zwkg0d4cxgRlrykRWSVlkQZl6ASjOhniYxfoQ7SgnOBlbYynNVtOBPg\n3RnB7TJGSSvLGDL+nsILksxVzlTZJ1NHZaNOW8PhMCdS3jtnDMAbFIDGSiPhtSbnENMsIdHeVFnh\niHPx0QUZloKe3x0qmzPlfPrGgoz1Bdk92PKDpqLXTdSqNjzY7kGhTTmfPe5prE1RT6mCLpn2QA5B\n05Fmig3ETpRnLqAQNluk7O3KGOSaun4VpbFFqmxAhruxTtSdKHUprwfliE6n0ejzmTIh9kly65da\nvkh21za5l565WtHYIPlsq0T4Y7I5JFBtF/RShUj+iEh/taoxnqCQEPvwLlWVpalVQCHBMzEg09aG\niGEM/04RXqQx55c3UInIwAlzQZY/fKC+yZXkNwKQHGW4R27vKIZe5dD7nPsZPCQJahkLMn1ref0u\nPSS/VVSWy8Mfbl5XPeYoBlQOQNZwvrpRwc/As+RxOLfQ0v3v1pVVy1bUTiXGjNfUfSNUiVqlVL0p\nVbDR9VBqWX2VLCLZsDxzok4/NUHOFGZkFVExyi0/XU4h7qveNaP9WG/SudoDEVOFI6FEtnO5CpcM\nalx5UBiZGuUkc5zytZRQ1piX1K85OIfGMfwuVfwz2cYQrplRZ2azQPOkynnmdbLeGfiOEvouX1MW\nKj3X7aW8B2ONteIqaCrWAMtoXnlZOFgSsk5kiwpF/f9qRWNk5GmNrcJ3E5CF8ob4r7Z+FxRThA4c\nUsyBqIM6E8jB3Kra9IqvPl6S2cyD6MjnQJGC3losQZR0QJDghzwQhpW5+iBp4khRRSqckkFOs148\n57I2x+97qJNkyYD2Rox90KfLIc9P0QxkKgsJ/g8f0AX9luX/lyj3BCPQa6BjPdahKefOp6nQC7wW\nEXwdI9DAXg71E3g+Aua8mVl2Zcc8lB4mrE8TH5RvDg4w1vFwoP4tcL4+yKToNpCvRdBkjLOYbGUm\nRcPl4f6ZsXdBdSndXwRWtEUWHgMPZAxQ4CkcMFkQzwGI38yUtmIfk/KLLWP5lWm69pzp/zMhSmOM\nwZi5s5hrTF3AX5Ydpm2mvsuhypHPXJ4rxMzMS0Dcsb/Mg7xAlM6q+K2pp+9j+ixc1d7F6+p5pTXU\n2lZQFWLf6cM/FKXrz7n2LLkKiBE4DOYePEDMwZi1NmBOB+x3Q7h5yvA7jcn4zgLU5dq6X5V9doiC\n4xyVvGCDOQH3TgY+pwIZ7EWqYsLcSXlJJm31a4nM8rTG3jCEXyVWv0wbcK9lVd9xioysgBZLeZcY\n4uWKnj8qpMhD2mWNzUte5Siusz7OP0FUlgqxzVFFLLRA0DJXIpQ44xSRRIafZcwK0eV9yUUH356H\n05AilAuab0uUnSKQZ08OhWoaX6jN8nUQIvTdnHeWYgsEIqiwLqpnC5DNhabWhXKFfS9KiMMe5aAP\nA7gUAUFYFXTEGu9eZ0/E+TKBc7LUAEGT5xTBsdrOh5SmHGmvUQYZOUdZN5vyPtHnQ9DEmXqq2Cgf\nMOjp+gH1sYa+r65pzZywHqTqokXUlDqo7fXhLVr2WI94LxlOhfyMYvnRK6jVldlgpmjfGoibYZ/9\n8ky/8+ApWaL4WIC7rAfH1hIkZHmb9S/4dPxUU9BllSa+7DZ8SPtaf/c+EGJoBAIqWqhfX3lBSKgm\n6IyAd88LlDsbICvznACogPTxQAWnSnbV8SfInkUhsVFmagXQqms1+IOyoCMhT02VCAdFeOlSzsEx\naxnvKHk22F4FrkAQ2BFqowvU+Ib4i0qksk/oqwzfR6bnLeCEXOAfglTND4S3LdJTHHBkZUDaFeC1\nQ4kxw5rpAZFJ2FNM2G/7KWcVXDLzCNVQ3scrqEQtUFoswBsVsQBEnGRJQOjHrGeZMHUkv/jlxiFl\nnDlz5syZM2fOnDlz5syZM2fOnoFlkiT5dAdq/998eCZjSZJ8zIXgzJmzT8zNDWfO/nJzc8OZs/+n\nuXnhzNlfbm5uOHP2l5ubG//f218VenFIGWfOnDlz5syZM2fOnDlz5syZs2dgLijjzJkzZ86cOXPm\nzJkzZ86cOXP2DMwFZZw5c+bMmTNnzpw5c+bMmTNnzp6BuaCMM2fOnDlz5syZM2fOnDlz5szZMzAX\nlHHmzJkzZ86cOXPmzJkzZ86cOXsG5oIyzpw5c+bMmTNnzpw5c+bMmTNnz8BcUMaZM2fOnDlz5syZ\nM2fOnDlz5uwZmAvKOHPmzJkzZ86cOXPmzJkzZ86cPQNzQRlnzpw5c+bMmTNnzpw5c+bMmbNnYMGz\nfPgf/P7vmZnZ7/3OPzAzs3Yla2Zm08jXZzLW/9erZmYWJol+mMmZmVmwmJqZWc4vmZnZ2fTIzMzW\nalfNzCwbqHpPzp6YmVkSKwa12i6YmVl3HJqZWa2u50Wm5xT9jJmZxdmimZkdv/uOmZmtb2+bmdki\nWeh3zbKZmT19eqFyBbq+Wc6bmdnBkwdmZnb9tVfMzGx2MDAzs4mnz9X1G2Zm1u/0zcxsZV33+/A9\n/W5ndUPPm6vcnf6hmZm1mqtmZlYo6Dnj4ZnKW6qZmVl+PtPz5nO1x52bdnbvsZmZbd25a2Zm+w/e\nVV1LTZV9qTr1zjsqS31N9w7VRtORvm9v6tl+EOl3M5VtMVadlr7+jqOA69SWSajfz4e63+/8k39k\nl7F/9LsaI/3euZmZTeax7pvVc+rrKn+tWNdzfd3fY2jPphN9X9b13bHGTvhE91sGqm+9rraOBrp+\nkWiM+Fd13/a6+jY/0H16C/1uOdHYWeb0//mF6mlzlWMSaoxOJvo+mur7JNbYLhVXzMxs7Zb6fpHT\n8/yJxvr/8D//UzMzGw+WZmZ2tK/nVhnbS+pb8jV3hnPdP5NV/zR93b+goWuLvvrDUzPawFc5con+\nf55V+1T133Y+HKpevp4fRqpH4Km81tP3p0P9oLKldtqotc3MLFtXfUaMyWKZcROqAPM5c43xkgl5\ncFZ//87fk2/4Rfb7//Qf6rdDtXV/pHE/PtW9Kw09e+vGC/pBSWUcXshfZKa0SVl1DBbyA9NJT1U8\n7erz6bHqcFVjZeea6mgtjcFKSfORLrd4qLF0eP+R2kC3t8qKxlY8Vltu3900M7Mc9Tnd11zKxCp3\nzlN58nWV22+qfv5UfT5f6sbHj/Z036Ku22w29P1Ubd051f0KK3rSlZWW6rumvjybyI+M3t/X50Dt\nsrKpMRQxaFZX8Q1Z3S86VnnjksoTz9XHi1E6R1WOoKo+He49NDOz847u395Qu1UW+ntmWVqC+pqe\n0x/KT7Y31R7/zX/3B2Zm9vf+zn9pl7H/9m/9Q8qrclWz6jd/oLkWDeTHi1dUnqjNnA0pR6hx4LNu\nLCK1Y26m+sb4voWmhOVzaq8BcydPe1equr6AXx/N9H3BK1mS6DeTqvq4lehZ40PN68hX3es1zave\ndGRmZpmlHprJ67plTW0d1PDvGf2d72t+XXyoz2LEmMipj22DMrXx30WNDS+gjQ7VBpZjbPTk/4bz\nU9U9p79zVV1/0NdkWF+7aWZm1aV+t3ikcg7LJ2Zmli2pXpmm1vLlTGNqUdTfXl6fTdadZZc5sGTt\nCzSnRgW15Qh/HwVaE//Bf/1f2WXsP/+D/0T39V40M7Pk7Z+ZmVn/6/+RmZl9/U/+NzMzy29qTPyL\nuyrPV4dysK2H6uM/ZK+R39Cc/BvvyW9ffFHXDUZqn49CjWlv7zNmZra+rbmy03/LzMwqc/mQP+59\nRc/Pa92a3pIv+vDsvpmZfa21/LgOv/u//mf2cCJfd9NX/7Z+qHaoFNVPtZevmZlZ/OGfmpnZYvdl\n3fcnuu+bL2o8fPlY9XuzrbF+uqPyNt/Rnupzg79hZmbffU3Pye9/x8zMsm+qfrc/9zetmf0TMzM7\nP9A+KAnfNjOzJ1eeMzOz5/flD/a2tLeYnX1oZma3AvX5d17XmHrln72u36+pLT/cYq3s6pmvdj9v\nZmaDl3T94/fUlpPxd83M7Iu39LvBnubET69rbN5c+ZaZmf3jv/Uf22Xsb/+d3zUzs3mftbGiOerf\nll/0m/If04XWjzCUP4t6+iywL/PH+v0iozlfK+BnEv3eZqpHBv+Rqehvf6HnWUZjPsqojxLW8HT/\nOl3odzn8aejruvxU91+WKfcyx+MoV0bfB7HKFYe6T8LfGU++wcNNZzx8A2v4DJ+VZ7ueVbFtlM4J\n/GQ4zFAvXZ8NNYYW1D/HXiZO8DF5fB33y/C+UF5WVF8P32e6wPPV/9OMfmdm9tt/9++bl9Gc2ry+\nY2ZmTdbt4ZnW6Qv2PH6ouRaUtM43WYf/yd/97+2X2T/+L35HdaGNsvRBXtPQcqbGGffZX4/VxtlY\nbRJShxb7wUmk684fPlWZfJW5usY+dV1jr+CpbgH70qSIHx9pbPVOR3xqravvqG6FLV0/CNO+Y5+6\nqjqXY/3+/FDrxmLCPq2sevlV/b7tq14BfTgZ6jmDQxbFRGOwzb63zDYyV9LvFwz9TMA+PNbYnLKv\nHo9Vn2ZJfevXNZc7T7UO5GL5DH9Nn92h1qvBR5qLlYXGWJ13Lb+BD2EsjdgjhZSzVtU6lG+p40YN\nxmyiuZKhH8Ol2tULVN7f+9u/b5ex3/udv29mZoUl7xGrzL2S+jXgPcIiPe9irPb08Sk19mbpvnl5\nIZ92fig/vXlD75hBUeWKGEfpO2y5lHxclt//n/7A/KlnSUbzM+moDzq8h1fzGgOlqtpoOVJZM/it\n5Uz3GrIBCpbs+RsqY6PMnkS3tZma3uY9/e7Row/UFnmNyfZV9XHDY1+eJQ4Q6W+GpGUj/ePk0YGZ\nmXXBmqzf0lpbojyZUG0c+vqsTtQGE+ZSp6O1cTLQ9as3tR4VeZ/PDfSckDk866pdoqXWlUrE4KVe\ny0R9NOaVMDNi7zPnBeGvMIeUcebMmTNnzpw5c+bMmTNnzpw5ewb2TJEyC5LmebLnjS1ljMuRIkkX\nB4py5ogahn1FrkfHyqwUqltmZlZbUaQtR3Q5mxAtJuJfXyrCn6soWthYF5JmsPdzXTdXVNWWioo+\nOVE08ub6FTMzi4l0VXcUqXvwppAzudaufr/Q9aWWInv1yrqZmR2X9NyrTUVzv/eRnjclothu6brh\n+UdmZraxqkxSjkxDfU0ZgLMTsoFl1Ste1e+zoDO8EVHWAegPMvFDMiw3sxl7o/vYzMyuV55XGchg\nrm0oKpnMleGbP1Wbt3YU3fRAzuQKKtNKXdef98hk9og27ilquP2KkDi9gZ4XZtS2RV9lSsiKXNbC\nDBliMotzEBfroBQ22xoDwwhEDtmShPTMxrauy3j6u3+kcvU9sjMTRTO9psbGeKw2nlRU7ytZ/T5f\n0Wc4F1opCVWv+lVFT6djlcsHeTQHXTE8VztnB7RTr8PzNDYLW2SwCwq/5sgkD9T1NjCVMyqo/M22\nxmCpqucGsb5/cl8ZlHlX9y+C8opvqB+XeVISVZVnGWrOlQuq1+qaxu6CzPugq/IuumSyQ8YaEfdl\nX/9//lj1jIm4VzMa06W2MjfzqZ6X8RTpT4YglcjwlGiHEtm9/p6uj5jLl7I5nzEZPB8kXVFtkSHC\nnm3qM+prPkVkR7JZskM5xmgM8qOpPgmpoxeob69e1ZirbirTlsuSoavo+UlANpss0WxGlgiUlzdQ\nmxfxD9UV+ZlcQb+/2FN2/uSpxuL1O+rLiO8LZC79LOgAX88v1lWf5oYGT6WqSP/RY7VDq6h65kD4\nxWQ4kowasEjWZ0Csnri/2UJ90aD9KjeUCliJNbb2Z5oT0Zixc66s1BTkUa1e4P5qv+EEZMyMcsdC\nHs1B3sQp6qqu6xZDlS+/QbZ/U77KKP9lLZirHvm+2qky0H3jI5X3bKQxvRoog7++qnJ3TN8fg2DK\nkkmplXk+KZsIhFZxpPYfgXQKyvpcvXJd35MVS2KN9foTZWii+tJGsZ4Vn+hZY495/IjsEGMp2mQs\n5JURm3Q15oogZPKraqsqGcw5WefxU/1+9KbQCtMeWaUr+t3qqtaH9lBtvz/T/XOe+mRGVmpliv88\n0nPn7+p+3prGtrerMVJijdrsaaxHJ2SG31Fbb76CH70i/3MCOm3vLSFMojXN5Rt3hezwuyBgBrou\nf6Y29MoqZx8/5zfVd+O62vGyVtj6ppmZ1e6/YWZmg4zQGcE7qt+flX9V13U05nMZtfPhD94zM7PJ\ni7tmZvbvRSpPcF2f39kQoqT7vX9rZmZf/ZKu22rcUv3Yi/x4oPY/Bsl49TflT781lr8Ocvf0/Eg+\n6fX39Pzhyc2P6/Did3/Lnl59X+V5xDrO+vPjUGMzM9X9XtpTJnXnCmi822r3lR/rXodFtd/VXbVz\nY6n279//bTMzK7WEmPnMO0LYTDaF6LnZFIJnvPFH9qOz3zIzs/DwR2ZmduVr6tOXQmVG712Tn7vN\n/u6nK9oHHr+tMR91VObV5rd1n9e1ttz6rspaW7tjZmblr/zQzMwenGvs7r7yBTMze5ToPgejv2lm\nZqNIdf/yc0IJ/XTwE/s0VmYf2bvQ5/lQfq8Sy99X76j8XVDB/kJjcp7T3OmAmK4zVlsV+d1eB5RB\nQX6kndGaGIAYHAO7iECzZkGUF0DKTD2Q02TBs3kQfzPN7Rg09JD1rjzFD4Gu80DMJDFZf/zrrMi6\nlSJ40j0ZSMEKe5+kRH2B0CxAwQYTBjPogph6ZUsqVxZ/OGXvUwKVt6joOT57tAro6Nkc5GGKmG/r\n+wmI0BjUwoy9p19mf29mleubds4e92Kmcldf1Do5uaL6dj8QSq0byC9vB6AlbNMua0tQlx7Ijb4x\nRoaqa9xQmVNEhH/Sp+wa6zkQbsM+7zB11bXjq4yTPvvLMacJQGIXQBqmaKVcT9+XM3pePZZ/XpK+\nv3hf96kttDZn1vW72Yw9EetD1MDvl1W+0ylI8a72UjOe3wXZWGmo3PkWSI6n6pvuBzoFUK3r7yJj\nNMeSXmYM9SvyR7VWjv9nvQNNuww1lqoztd8y1vpx0WVNZa6tgrabL1TOo/fUrqMLlbe5yV6mpesK\nscrTPxRa+Hgm39R8VeVopScBWirHKWi4i4n8XyVmn31Jy7JPL4DwrGQ19jNF1cur6zmTEf0Hgj7a\n0Zzf2FbDzY5U7sOO3iUnZxp/wS1Q2HX1WwASt49PmYMIMjOrtfI2mS8tmKhtH50KSV6rq0+u335N\nZeP9epLVmA5BwCzYMeYy8s/9Q62RBVMd8iC0LaP7bRY0Ng4Kmmcnb+m+a6BsM8Y7kalNgxXe70PQ\nRCD72MYZ7tAuzvQu1F5qn+619PtCBJKbPZSHf6i2QYl11TbHHdV7axeEXJYxtMXaudCcmdZAv8Va\nozOx2nISqC+rNZCaJ7pfgn8Lk1+8b3VIGWfOnDlz5syZM2fOnDlz5syZs2dgzxQpU6sQJSSLl57d\nOruns2H339MZz5cKipraSJG2SUcRqXUyt+YrgjU7U/btzT2dSV7dESImGama83uKyJUa+v/hI0Xm\nqmu6T2GFaPGZop4rLyri9/hQ922SEb04VaTv9stkQIgG9/uKcd1Y4Vz8QBG4GRGy2QRui02ddYvh\naLh/qPqWqoq47T+BG2dLkb7eKbwf8HjkSP5Nc2q3xw/VTh5okGs5nScfnCqT9GBQsoP7ipweXlEE\n+ODH+o11VZfKpp5170NluFobyuAtEtXp6JhzeTOVrT9WhHjWJ8JP5H1zQ9HBoyPVtVzQ76FysUma\nNbmktRr0MainUl9RyAa8GUP4fJ5yHjABkbN7R9l3f1flOT3hnDAZgJWrZCSyum7K7w8mirLmA2VP\n0nPUnQ/UXudw67RW4ZPYUfa7PFPmYEI2a0S75vOgtHaIqrbUzj4cCeVI3z96T+0akSXKFFI+C4WB\n1+EXKlCvyUhjYvCRsouDUGN5GZJtIoufnj9fHOv7WcQ5+LIi7OUVZQoSzsJmAjI5nPEN4JTIweWQ\nos16U+K56+qXzWuqV7as6PbJY429EG6IEI6Y1iYcQESRkxKZD1XfpnkyPvNPIvi/zAoZ6krEO+X0\niI7UtuOJIvpxV58k1CwiK5KdqIynIB04mm91zmNvXNG8HMCfEzOvu7H8xLKsMVHCP3XgulrONEfS\nc79xCFKvQgYPXp3sWA8cLTWXrMhBdJAUp/ugsBZCCM7xQ+UNjZXCClm3grIi5xfMzYzmRgNOrvQo\n64Dz5Beh6r3xGZCIRTK1beYWWZQNfW0+fjIX6vMC1NoSNIUH8qVvmqOeimH5nObaMCCTuar6T+Ya\nw3l4M5b0ecDYzQYaC3O4aCL4q1LOg2rm0+UUyvBhVU3lrHvKhJRfBtVxrPtu3IL7xlem5+AAZNU1\nlX+9rXZ+4Uvi4ZjNVN7HPxJaIjpSQ3enGk9nZDM3rsOlAB9L+AB0QVO+o1QrWFjUGJtf6JnDEZlU\nMon1kv6Rf01rk5F1XvxM/mkGIi2f0z2zFeb5DfVZcIsD0abvwwHoqiaIulX1xcWZ6t7raO2z62or\nH7RoxLnu6URjqfNAfqi0re+vfFlttNrWfF8+1dg6fKK1LtlgDX0dXofn1PbdDx7ruT/XOhSHKteo\npuu8rJ67jOjDltp+BK9Svggikjmc5FJ+osvZi3/0AzMz+7NvaQ2tRfIZV9fF+bK2EDJk01M7frAE\nOVpT3zbKqn+c1XX37baZmd0CBTb/2pfMzGx6rL+P35VPuNjRGOn01T7fXINL4ntqxykZ5GmgvcNp\n6Uu0h353/T/45Jz6n3/pB/bNoRzqveuvqhyVn5qZ2b8/EeLIOwdx9XkhW/fg3XjzLXHpvPIZcc79\n7K2vm5nZl96QP5/dlp8/3dH4+Gc76ofCptbPuyPQxrHmRuvt2NZmgt0EN+QH4pVdMzOr/onKMKyp\njt9/ojGfB9lQWVVb3Ozpd91Ea99bRSEJv/nrv6G/4drb+WOVtbIDT0Lpe/q7qt/X3lGbrG+o7X96\nLmRypfSGfRpbL6kNcneVMT2fKfvfCbTvtJaQjyX4gY4Y+zZg4WH+jyf6/VpeY3yHuTViPVgA0c6A\nDkhm8HjAD5Uhax6CgohBNaWcMZkS/EsspUX2GoMK/ge0VMyeIYBzZgoCM4b7JpcDfQFHRJV1Ik75\n8TL6ezkF/ZpLuV00Nxd5jc3yFNRfGYSObmdz03OL8OTN4LkKRuyjizwHApIGCMwMXBAB62kOZOLF\nBeWt6rpmVePGzKz00nPWKmms74+EfisMNc52XtH9zz18cE9os6mvhSwZfIwd/aWWu6Y+3YbX5py9\n/xBkSWeov9fYD22Booyy7Me6mk9z0O/ZmDclPQAAIABJREFUqe736g0h4uJN+ZvHcKDMuqpDBwRj\nHeT4+JisPuimm81dMzN75Uuf0/0zGlMZTiuMWU9O5lqbBl19emyaiqtqo6uru1RU9UvRV8MjXX8I\nT9TWVb1HNK/rnatAueoBY5Q9Tm+qdSQLB6X1QD6yF6q2eEeD42VyDIKbPcAO+3BolyzKpshy1vbX\nhHjcWde618H/5dhfjwO1YyPW3LZE3/cHet70IeUcgwC6q73ErdvyXfWCfMzi7NO93xio7KOJ2m81\nUHsW20ueB6cO4wdaF6u0tK6PQU2P8qDUtrUupTys5ZbqnwHA0wchNB+xOSt/EgKYxbFVwrp15npH\nPB/r0yLdwwO5NuUd6mSpsVnjvXfW5N2IvUTUA3UEgroFp0oUMFbix/p7qcKtsD7cuqm1t1Bl7ryl\nkym1QH41rKnNcviPBbw7Hjx7V0AeFlmTMzjA4Ynq43OCpFhW2xYS7e9XXtBYnYB4CesqF9WzcKQx\nuoTfCEovy/vM2QHvWv0Jv4efyAfB39Dz6vEvHiMOKePMmTNnzpw5c+bMmTNnzpw5c/YM7JkiZfoH\nylx88LYiWDPOivWmRDHJQK7VUSkimhp3FQnPEJnvfqTo8xJ0QmFJxpfz01fbimr+6Xti6b+2r0jY\n3o9RjHhOEbkbRB0/2FNW6NYjne9+9zs6Y3pzW9Hej97Wue7mhu57caro60MUjbwDRZ/f+bEi8X6C\nOtRjVJbWQLIMFEnbrStbdWNVWbV+SVHZZlbP2ztXO4V9RRyXc3hQyDznIkX6qgSZb1x7Sfc/ULsW\niqv26u0vqi1DZRxfeV5KBYZaxva2eBQ+GulMYgbEx+l9RSUPP9S9tr6iyP76mjJ2PbLZfV91e/Oh\nMoRvfKSs0Rc+pwj10bGyWem55svaGKRHRNanXFQEeECm9Ihs8xikyuqWIsgDsjj5J3DfnCqyXoBt\n/saNXf3uQOW+11GmYZkomrkFCqs/hs0cPokGfB2tdbhToMg5OlafTzjDG5PdKq8o8l7nWPMIxYH5\nU7XHW49B+IBEqtxQJrNtnCnloOS8oP5Y9lBagBl9AqyjXkM5rKn6x4nKGUK40j/RZ4SqSwXESwZ2\neuhLLIbdvVZUxL1xW/dtNzTWxyO1R4ya1g68JV6sOXfvffEEnLyr8bJ+W+29tk12saWsVWYu13O0\np+uyzJEyCKhehjD4JWxM5q9MVrxBBnGegztlT218dk99XSaL1eIs+mmOyDa8C9s3lP0IihrrESH5\nKWpCvT38TS1FdqD8VQKlsIXq023NqY/RQg/1/XzI32P6OPPYzMxycLVUK3ru2IdLqq+xXdhSnxTJ\nhhQ2QPaBZhsX5R+6D/GTI9XLq6LSATLIDnTdEJ6Qcl99U7gr9EULTh5vCi8Gam95MhoXcNSccE47\njDV2S1X8Ul9ZmALtl4T6vgzXQA01pmVX5ZtTzjw8IF5F9UtYnRJY8zNzPffwRP07jRm0l7TBWHMc\nMn8LUOW6mGhML66TtSqDdBkqExRd0f+3X9Y6tOAc+PI66xXKaI+aao8L1qlhX+OOxIndacCRAefO\n05C5dg31pTstS+A58s7hDfpQY8bzNCa9G5o/9Vd3dW8yX08PUuU9+bk8Z/GzdbLrJY35BM6Z2deV\nWZzC2xZPVaZxV0jByVKFHoBevfIqKnGvqw2Sffn3oyRVBlMWq4BK3WCNbH5T5Xuwr3IdF9RG61c1\nNu6t6TmZntbUx1llWC+29P9FlMaGKSh2Maf++v3KVdWj+1Rt3UOFY4EKSLb0iSrRZeysofq1QLC0\nN1Wvl+caOyeRUBV/+q7mzNw0N7Z+XXNn81/Kn518ftfMzPp/qPVw8i2ygQ//0MzMkhu6/pV1+cef\nf6T23dzSXiCaCl3y/ufVP599E367ofzrykt/YWZmfxFqzqy8I5SI/bZZP16z/z34FTMz+8xHus8X\n6IfHz2vd6jxS/z35vvrrq1/VXuWbX1V7XvR/zczMnvsN+YBkrPXkTkk8LK33v2ZmZm/n1M+7oHj9\nvW+Ymdn931S9C9/ftvaK9lOlPe173vqhxtj1r2rxzPxzKVqVSozZVSFg6q9rTE9+pHt3ZkKD/fq3\ntUa++Y0/MjOz4iO15ekd3e/93mMzM6sNlfmsbWns3V9VG77+hKx/gfl9ExjaJW0Gwq8Gr9MaKNa3\nQvXJtKg+a24IpXQ0kD8peHBNnWmsPj1T2+7U1PdBS3M/FUSZgqb4GANF9j8O8X9llCiRIyqhUsTX\nNsFvGqjXzIIMbYY5AcdCBG9dnv13mbU3BOmSner6GZwRE1RLErgTMvjDKOWIBGHpw0O4gNNmge+J\n+mSyc/r93NPYzIHSiFHcicloZ1Gx8yeg5FIkKUpDmQutm6vwsyxbur6+wDc+7Fhq/Q8Gli3Id9TZ\nu8RDjc9FVvdrfFH91B+p/OF9zek+aJXLWBGFxzz7sXVUb+pwNT76mVA482M4BuE2STkeM1XGtGnt\nvPdQ8z6zpzYomfbx9RsgtV8SMi2YwE+W7g+b+n32WPvkn6M4uZXIT2ZBocaRHKwv92Bt1ItiFHbm\nKCwOOY2wvg0v5qsq93ZdPzyF4yT4ufzJeKryLOEritc0Fsugm1pF1XcCCmmSRfFyT+U8e++xmZlV\n13Xf6+y7p4Hm2Hv7uq4+0nXjQ/X9gvWrt4USLyqgK1c0V3M3QWtcqB4V3qXqFThj4CtN7sET11J/\njOBbmj5hb0X5a7yDjQqX37eamfVAXR88EDJ0eVf9+sJN+a4qe6eZp/YanjD3jih3GaQTvHvFQOMr\nr6Ft/VQNEZ6+DO83eV++NTr/ZH3Mz0Pz61m7WdS+NdhSW0zg1YmAWs9OQULDlZWAjJvC9zboyff7\nqZ8EJZ8p8G4yUp/FqB3n4fcsx/o+k085EeEJKmps1EDixKjKjeZqg/xQ9y+3Uv5SOCThUEzwV4V5\nqvCltlqi5rwcpAhBOA1RgpzhpxoodYWguzxOhaQ8fvv7mssr9Nnqqho/4t01P0M1CiS81/7FvEMO\nKePMmTNnzpw5c+bMmTNnzpw5c/YM7JkiZdJsfrOmCHdhS9HG4vsq1iPOJz+6r8jb6UPO8B4o0uXX\nyDiAlihswtRdUITtzXeUdVuuK+L14KHQCZ/7gn4/4yxuMicDfgZZS1fXp2z3I7gSZqhqZDlP7keK\nkm6THVyOFG3d3tFZ5a+XdlUuskn1lxS1nZyQ8QV9ks0rcn9/rkzQm3+qM8qlsSKH3X1dP54pUrnN\nGdmY6PsE/panZ4rilqY6g/fTf6v73PmV6sdZlH/x3X9pZma3rkix4K23xYPw+kx1fYgSyJ37imYu\nYHnPEK3sR2qbJ48UHTw5V+S8sS3kzDEqEpHBeQKaYPxQbVskC39ZmyzVV62bigDXA0Udj0ANtZt6\nfglm/M26rgtBNVyEqscYJMcamYGUwf/ohEh+oD7cva0+KmfVx0f3lSHtgfSpVPSc3pGyOo/2lfXL\nkJko3tDY27im9tjYUoT+aI+MxULPG8IOnyNyXYc/qN4gWkxWzIj8X1yoLw329EyN7BfKNlsgbBZE\n3qMDjYnDfT3v8D3NhVUQQLVX4WHqkXUjK9e6rvK2rqoewQpjjeh0ONOYDZagGvK057n6t0Ay7tqu\n+mGlqsi/H6heYVfPOZ+q32L4SMpkfBqc44z2gX1dwkKQB0si6/k8Z+Rz8Dvk1Td7T+EUWNWY2n1O\nz1zLaf4dzEA4zFTXOmfbwxLKU2TfH4BuyjH/tl+kIA3VeWtXY6TR5EzsIXxOqDKNu5obXZRmZkM9\nb6UMvwe8HN0eY/2p/E+lojnYqq1STtUrh8JOEV6gFmdXDz6S36ia+tBrqc89sl91VDsys4jnq+8r\ndY39bldj7uht+d/RmcqbopmCqypf6zn1cZrZjC703GlH9T15SsYVxM3mS5obOdBWww/UHiU4ZUpk\nRmPao2KM1aG+H51qDE6Gn/BoXMZysPqHcG/tgUS6GKt+MX6+nFP956Ssi1cpL3wlH94TP8cPn6K4\nc65yhmRemtu6DlEWC1FW6PZg4YdDbdHU/2/9htaLtRe27CnqFI+n8jfTVZBycEadHGitOygLvRly\nFj0m01psq63yZJ0PQO71HgrhcYRSYAs+hiljZhWUWR6OKEvIgqHSdsAZfjvGr4JaCqG2iVGnO6av\nzuaM9Z+rrw739Huvpbbd/DVllRpfUVZuiepIfZ8tCdxko0P8GcpgByAk0+zYaKLnHKJ09uj8jAKh\nbLZ2+ey2mdnBb2gNjqdClh5P/hczMzv6oVAWX/+6KvyFVdVreQcFslP14btfUdb9taWQPz+tqZ53\njv/EzMzOdv66mZl97gdC1cZf5Pz6c5obL58IieL19LvCfdXz/c9pHb5z77NmZjb9QOPAquqH99/6\nATX4T82ivH3lvpSOSr+mdeEH31Z9fpXnnuNbPnNX4+O7PxU65RsD1Sv6FuiIc933+2fMxSaous9o\nna9mpHD04dHXzMzsPywJCWQ/1vNGG6s2OYXr6ktST/rcTAiS97vap1QLQuX4ayrLEeiu2WOtGQdr\nqutX8CvBXM+6/gRuANBQkxc0ZuyPNPYvfl2/ax2Jh2P7V+Fl+Ffy/zsZcdPsvfE1+zTWO1MbtbMg\n/17W83a9VJFFfV8casw0BxojlZzWurCtcm5FqNKRKe6faY4vUA/yMimiBw6WUHMyCxIlDFNFLtSH\nQJYXq6wLKP0E+Nkw1t815vwIRRsPpMwMdaSAdcHglBlA1FEYw92AeorP2h+TQZ+yPk4CVAzh1Cpn\nyUSPVZ9yCXUmUMblGMQNKlll9moz0MW5CRwxpJBjT/fLwjkzXgGZM0XNiteaGZxwtfEn68S73/mp\n7V4VAn7zJdAQfc3Z5QGcYnX9f1DQHjkHl0bK13cZ67PGD8+EPF/CpdhcUxkHcJkMxxqjRVR7hlP1\nXQHUmHdDdWsWUFpElXJGW0cj9qVVeOPqXA8qs7SqsVe6xrtRR20yBs2a91HRm8u/zDsaQ5Wyxm4W\nXo4iY2wcgjDpCLnT+b7uW4Q3L1zV9YubepfLsa9uNFXuoyP56VEeRPrL8k+ZOX76RPWp1lCGhL+k\nVtHcrezITz6H+unpkdaVMqhov52+W+nzLFUJhGsyTlATBJU7m6sc3XPtAR7AobbNXnKVvcrGDSEY\nh/CjvP/H3zUzs5/8BD4qFBbXXgGickm7CvInG2s8NFfVHkPQ3obqKQKQVoDjbAHifpqATGIvOoQb\nJ0LxyMenpACeInx9w7GeV/A+QcqEk5wVJyObo/y1mKUKsnrm0T5Kiah8Zhg7gy5IFXgn42rKiaW/\nV3kf9wcoRQ5Rc+vBHQXyLcvYGr2rd64wCx8SHIkxCGuLUG2jDj0UY6fwbNbh+wlRGPYXxBfYFydw\na0WUuzPWvswH7VWsaCylKlN91Jub8BfNQMR/70+EBvvwbc2Fr/y25mC1rjFTBP1vBbVDtIAn6ekv\n3rc6pIwzZ86cOXPmzJkzZ86cOXPmzNkzsGeKlMnVlB0rrSpjXYB5u6PEta0/r+xbjgx00gCNkFd0\nsLalaO6c6GrpmjIy61uKWD34jtj3i7s6b7kz0HNimKmr15RBbpPpzYDK2P66OFkq1xSZe/4bf83M\nzJagEu58RhF0HzDDObwkQaws2v2H+rs6VQTw+x/oXPed1/W7iwHR6q4i8Nc2QeBE+mwEitS1K7pf\nsq7Y2ZRMxvZVoTmePlSEbxPlJD9SlrAa6e/1pjJEhdKmeQnKKDNlyjav7JqZ2Y8fK6uTJTt89a6i\nfBnO5zU31QcxyJD6HSL9D+CrGakRrr6OUhQRXW9XnVjdUt91iHiXR5+OU6ZG1LIN0mJZRbHmjPON\naMU3yP4MyDL17xEh9oTgaMIhk+mrjccdIVwiOArWr6mt62WVt/euMqYJ0dKgrL6fnqi++xPkgjz9\n/xrR4bqnchbbaaYZNNZSSJkpCgpFMgc3morOegnn588UHR4dKlK+90TlDAqKcNfhE2muasyut8mo\nbCs63H2kMXB4/lj/P1Y0erMBZ8uGnldIMwQ9ZS78iuqRYwymvEURaLUpmZ8LEDFGljDIqpw5MiWb\nkOdEoM8mfC7gRdp/on6bZ/V56yZcMwV+RzJqXlS/XMaqad+gCLOAjycAgddcVQZs0Ofc8iHqE7f0\nfY3M5fGFEDCzjvqgTzYp5Q0aLcjWcCTUg/9j55oyb0kbjpJ9tenEUFw40d9eQW24LOr/PZTELmZw\nRV3IbzTuiofp7q8pK+59T4gMr6frH06U1fE4szuGg6p1RX6hSKavEFIe+IvqqRIOiJmyTyQf1Yv9\nE2UMd5vykykdx0OyUQsQhOuvincjt0VmEnmmhIzvIWody7zqlSw11pcJGVaUHNZWNGbn8EUNevr/\nMA+7/dvKmHThQkhovySv+01nn+78toFIDOjQIlwGt5/X+pDO1XvvK7t5/lD13llVey5Xtb5cf5VM\nTBcUWyRfmNTUHsUWKiGosIz21T8XkMvE0PlXavKti4zWo85ZZPdQCDx8kzPxfZW1XVWbdiP4KT7Q\nGKiCjInJWicoc01ANCZnZLNAk01QdqncgbenDs9RDb9AVt3O9P+Nie538ERIu/3jR7SdLisyBsYo\ntkRFtUmAAswY9Tm/DFdCE8VCEDxPu2QuI91wFKhcHipw5U2VtzvO0kbyo0vmVMhYOkMZrR+R7Sf7\nViiQcbykvfS21swnibJfwd43zczs5jc1lv/VudbPlzpCd5y+BcJwS2PmA0/+92yhsbb7ef1u63uv\n6frf/BdmZvbGxm+ZmdmrP1E7vBapvd69q36cfk79cevfqP1/eK658Pqd75uZ2U8/VHvfyElFZf2v\nr31ch1d+ENqbFyrXjZc09zsNoUL++QtqzxcfyP+vXZOPefJI9/2Lr+vv0vf0vNyv7JqZ2RdjIWPv\nFeRjRm+ofZq/pkz/15ryWd/+M3ixxsoi1o+/ardZQ4eR/OTTKyCdE/He3PyG9kdQddmdoVBHTx/p\n3tcGasvhqsqWbf5rMzPLn4F8GUsZ6+xdrb3vwElVL8EnsS9Ejgfa4M0QfrtNzfsvt+T3/ke7nC27\nysJ3Zxp7rS/ouSX4gIJTzdXssb5vMBdKI60zuZLKnX0e7gGy2vFRinDRnA0S/W6JWlHA/jgTp8qO\n+j4GkZJPubcmZIbz8M9lmBPZdE3WHPRQBS2BAFwY/jf9voQqKqpLWdSPpiByMvgSHyRPHrWoGGVG\nP1VpikA9oLQ4AQWQWaYyiEjK4FQA9Fh1rPL32GN4cFNkmeNxRu0cgDz0UNWLs+qPdk1j/PTkEzTA\n+PipvXeoObezpn19GSKV/AXr1X1dHzSE4iuByhsvU1/yE/tlVvBVt3xF+6KpzxyYqw1qN+UP6zWt\nEQs2PpMQniP8a7ml60o7jAW+iFGkHZ9oPXj6BDTrTPPWz2mM7G6rbldQPGygFpSd636dA439h9/T\ne8CH39bfrSpqRvDvtZv6XQsVpOGGxsKS/WBvrHVhMle9h/izGnuDVnZX7bGm8nenqu9bZ+JSKXj0\noc9+c1N/+zN4Q9nv994XF1YAAr+GCuoSdG0Zfqb1LO8Jvsrtg/6Yg2Ytb+u6YorqWNGgewryvQMK\nbYIKarKQf89NUfpqoc56zn69p/JlNuFwu6R1Ua8toAQUwm+XgIid4ytqJbV3kK9xHWg54GZL1K8q\nJfnKKZw67/1IyNtGVXPi6nMoKcFR4/9fyrJcDGwe5m2JClujrXfBUgu+y5runa79/lB+8NHbarM2\n78t15mV2iX8CsTaC99MH4RLwzpHARXj75q6ZmZ0dsE9a6LNW1X38JbyanPpI4HZJUoVZ0FPdPbXp\nlP9vl/VZyqF+mlNbPOT0wXf/j+9SHq2hX/3Wt8zMLKzDSRPSt8y9iqc2/PxtrelXs3oX29jQfT3e\ncecB6nVZ9d1ioXZYThxSxpkzZ86cOXPmzJkzZ86cOXPm7P939kyRMmFZkaTM/8nee8Zsdp/nnffT\ney9vb9MLZ0iNKFEi1SiqUbJs2ZHsrO0Y+8EbeDdOvGt4FdtIHNhxgGSVKF5nDQQLOLv+EqxtIZFl\nWVaxOkWaRSSHM5wZTn17f3rv++H6HU4WcKiXwQIMds//yzPPO+c551/ufzn3fd3XRU7oJkowu+Sr\nx08p0lGLyXM9Ie88BzvyJC3PXLpBBHSJyMA8XuoGXsFT8obmYWevp+WNTV0kjz4r7+ndHXnYUrPy\nmL1GVDCzIG/z3UN51jKLy/odovFhuA1mU6pva0tRvFQxR30dxI/qkyGC3EMJKZpR/cd4QVPz+mxF\n8TTKUWnVse4ba8pLW2+rn2IZ1aOwojz05lDDWpiVlzjmHVg0Jy9e+rQ8876TqkvylryL/Xn1zRSo\npU2QHYUF9XU1pqhxbpY84o76PppUXeNF1fWOo2yQALkCb0YCVJS/S2OOWMZ4HZsVjdmgpPtXyBVd\nfkjRtwgKNBuvwaRf1lgOnIjDlMaotqlIRLOnMYiAqpo5qb4LEW3ZX9UPwwH4N1C6iZAL2xiDJMEx\n3qmRn32o3wf8ilhskvvZ6snzPQXnTSClMevDsROowm6/KRvevinba8DFM6Vhsyis6b0S+Z5e3ScB\nR81gX5H2EB79yGl5lb1hKXuFevK8r9/W/YdEVCOzGnfHTVu/I2RLnYhPzEu0ivzymYc0R5JE8xrb\nKJnhe98eqd5jIuJN1J98cGP4Yd9PBjW32i0Y3VssSUQLj1bUx01jzEGQhEEshMLLZmYWBPnSrKKq\nsEtUKSzEnLMYDqpq06ivNtSIiGaOK9936bQis62rq/r/MhFbWN6bCdmal3xqL5GHXs9BAxDRAxGS\nWtDcnAGVhmPdwiHZ5iik+u68qDGJRlWfOEjB2TwoB5/u0yuSo3uciARjnAUtFg7DLRMiygWSZv81\n3X/7JBw1RMNmyQ8v36WdRMvGh5rLq6h1nHiHrltekY0jFGE+uGDGURBBKJX506pHeJqo3b7mSPm6\n1rV6U9fPgyRcntccHRE5zaJwcdTS96FQEHLy4DWXErMa/8aa5tSwo/9vt/XZAtmSKne43lEaYqAi\nmgu1utbnPrYOrYn52mpftw5aMA1yiAj3rR/A0xQb2SbzvVvXGC5cerc+VxS1rexqfSvfFqzA5ydq\nntL61PeT742c2jCluZEuqzKDuMYuOrtsZve5pd55RuiE5rps4dqXv6umoWwW3WF93dL62V0BWedD\noQzEni9A9BxeiABKCCHIpmpNzdHnv6M228vPqn6gUHML2le8Ue1PIRRUhkT7PfA7BWLkl+c0Z/xp\nzd7jec3Rbojr6kA3j1gi+xrLRlXPP37qO6pmTe06kVB/XSdP/OGGxqEKmvdtXiFpEKCwmwMhb+zd\nsq3Rl/W19WH1x8byN9W+4Y+bmdkm0cFjQ0Uf85c0iT6VFHr3TzdQrwuJG258DLW7+vj1NvTft2T5\nL2qcxk/pd4+dUz99pyEOhMGB/n73QY3bg6AAS3UhagKpJ/X8q39qZmahXRFnDZ7Ucz6+IM6YW6g/\njeH9O/suXde8ovFKTr1oP0TFY/4b6ivPsvrygaTUmF54TQiY8l3N92BYUelAAbUzLbd2A9s9UwF1\nuiGlp6XOy2ZmNrqktvluywbqI0VA56c1z7/Per34pM5dmbbUkp7r3u+7o5QO604JDrLjHbhL/Lpv\nog9P2wEIEgfJAYogxzlvAk+fv6a+r3jgfnEU2EAIQs1gI68THVf/TeCP6EMD5YS9w0NQAn3Vs4eM\nXZDfhVFNaqF+ZKgdDVB6nIB2G8PxNYbDYQQycRKAmyEAhxgoZf9Ye3oTnorQCCQmCpERUG1DuCOG\nPj+/mzgN1N+Z63Wf+iHC3/sdkKHs1Cl4U3phrcPtOu1jP+qj9hebv/+ak8n6rbOjNa67J3sErGKh\nHtJDZT0vcYtIPJw0kUbUjlp2djXfA22dMfY5GyThuZs6DwrBD6qAdTroX6AtIL3h7/CxHkbp676H\nPaWHOum9Ns9lXWU+Bx3FVvasJDYQ5QzQB2HRn9U6nq6ob8KoGyV8Wm8mSV0XzMqmjs/rrNHua329\nvcY5EHWnBmqnTfhDDgfa1/IZ+Nn8cI9tq34e+N5icMcEQD2M+rwrkSXQguco1Jat5lDWnaBAFkqp\nHgmQlkOnf+FeWVzSOTcAL16Fd7XRrtqXX1nW9xbKPAeyuUMPiHAyCs59QOfp1kWtUTtl+EtN/XfU\nMuHlbgDqLDAtO/F31c4+/IghkLBtlByHcFhm4TepJHWdNwYfqpZQ+87/JY4yz0h280u/+fNmZhaf\nh+/wcPR6Xeptv0UDHqs1taanc3C/gI7sdw+4TvPjYFVj880vaC9KkhXxsf/uZ/UM3n8rIE0cTkZv\nWnNgd0e2E2zpfn7OsXXUkeYWdL/+rupeKut5Y5+u78Fh2IezZsA6e4UzVCwrWwjFWC+Bfoc5o3jJ\nbOmTBeIrOly1cHN14Miq6FxaioIwD4FumuW9O6P+SXC+bIN8D5Ap0+dsFHA4IwNvvI64SBm3uMUt\nbnGLW9ziFre4xS1ucYtb3OKWt6C8tUgZk8coPq+c/XQQbyv5f7Pz8kw18VTXI/oM+smN9aEIMSdv\nXzhHlH4oj164SHTQT7Qe7olkQd7JdB6uGkfRJijP2OLMspmZ3byrXOQH4L144QU9P0TkJYp3s1ZQ\nPZNZIVN2a0INHEd5Z9Yjb2ooRoQa9EEBtMQwJq9nFE9cBn6Q3ByRCDx7Rby9U+fUb2vkVE8S5P7i\n2azfk3fecwIUjHdkPjmoLQXSok5+X/YBIpIxfc8lFHW4fqiI7Pyc/t9HVDeaU53nRvIy7pfVl36/\nvJzpKUXoIlEYqOF8ieAcdDgNjlocFaW6V30/9GgscwV59gsrqkf9QH0+gRfIOy9vrJ+ouD8m26qU\n4fXow1pfVAS6g3JVHVWgfkTXZc5rLPzk8NoApMzzckXvvkY+5UmQI1XVq1aXLTXx9Gfz+nvxQUVO\nPYx9dw+uFvhCECSz+En9f+iY6h0+I97GAAAgAElEQVQkVzba0vg0KyB/uvpe6Sg3d3QoL27klPo/\nQaRlouG19Vf1j6278v4GQbrkl1GjuoPaVBkekuOKlMTwWieIMEzBSdQll7bThlm9LO/3CC9218Oc\nQ5EmF9X9aoT/2vCetA6J+IxA0vid8N+PLr40ClQpJypCDipRJbtDtGaNKMQuvEPkuDc7DkeAPns9\ntcFrmiv5EyBkQO6Nmxrb7VfUxt0XpIQzRf51apa83zxoBS/8OFmiXl7VZ2oWDztzLkge9s5V2XI5\nIFvMgCba9gmp5+uBDGT17qCe0SmjyDLQOhEj13+E7fUrigrttzRnG13ZbhW+ihEqGJkpbId1qL+i\nsTq8rbzzzp4iEe2wxt4PaGGCAloko37wE0mdoLg1WUfxB06dLuz746bW69ZE7fWldd2Fi4q6r5zW\n+uknArsKl1avcZ8r4CjFUaeqMr7GnCgNZLv9XforQb4/iEU/HDblXY1nqSw0RDin/x8TPetU+f8q\nkRSiXSFQdaE5zZ0xXDbBIf0xIAd5Z2IBH+vxivr+xINCE5x79B1mZvYqIjsNIqIdlMLmzmpezcKN\ntfOy+qi2rbHqsbf1BuQzozw1H9dzojOonlWInOU1pw5LqHyoCRaYUh9O57SORYusj/AC+YjzNIh2\nR7xa34IzWj+DPfKuM1pfhl74lYicDkB5juDOGYFCio319ziRTj/RKC/rhwFaSl7Q/QPksXtfI7R4\nxNInj/w0yL10BFW5tNaApy6r3dn3aQ7tlOB58moN+NC3fkrfH/tzMzMrptSuRa+QR6Wf/qSZmVX2\nvm9mZq9+8ydVz4+KN+qjBbV3b1UNqg1ka9dbcO2k1P9TSY3L+W+rH7ZOT7/ehhPtr9uNgva10PuF\npLEXhGTxZ4UsPeyrXvEvi/tl7wE979Y6nAnvhVti+AkzM0t9UxHX6Ddlh9/9uNSdFp6RnQxm9fla\nSOgUS2jN2pwt2okD0Kd/SzZX/KrG6Om+ovG5CZwyj6vvfuw7WkcOdlSHwljXv3xBNra8s2xmZndy\nanusJsTMs/k/Ux2nhLz5GIiV78Fj5p8SGiz2tNaxeEhjkZ18395MCWdALXAWOCQKHdmQjacSmrMe\nv9bb0h2tB4tF2eLA2JdQ3qmCpIzDxcX2Yv4xc5V1y+dzzk4OtwzcLaDJHMFGD8pqTXgxPCBfeuwT\nBv9TAoRKD1UlfwDkIbxSA0gTfdzHHNRBQP/v7BdBUMoGsjAK2qHd4jncZ8w+OCDSHQfd4IF7rcVZ\nwc9ZzwuysEX/IG5l0RjIH/inbAxcGa6JbhuOnrZsPJi6jwY4/p7jdoh6YqegNXLg1dwJTal+B/Af\nbsQ36Cci3a2jx7BDBqqJaHsQ/oua6XwcKoEgBCk9qILOCaKqg/Ljbls2HoJzJAwvksEHF+OMcmxR\nyI3sjObOABW6McpRSbhGxjUt5L0x67vBY7SkvsqmZbuhBip38AT1vLLhA5m09WKcx5vqqzC2sDSj\nuZqP6lDgyZGtwLpuA3iCGpzDQUTXbqmvq2lQddNC9oTCQp/l56lPGc4Zr+pdhhNysqvPJrxz/RLc\nLI7EV1z9V2uRXQCfWxuOHx9I9S79mmCOTDL63oOTs1uDMyyiduVP6D6JLdV30H1z+00soXGZeFTf\nHHyidWze43DGoPrkZ07kQqifktEQqGr8Jiid9emX6TT3Q2k4kAR9zVTvDiuv1yXUjVg1EbZGW33o\n7egZvqBssVlRXyXgBZrEdX4twxVYgzusx9nBwxnfP3Y4HlGSXNeceO5b2hOjs+rDRz4uW87G1bf+\nqPrem1B9tm7KBj3Tum92RjaWCGjPfOpPxSH73S9LAXDqlJQBz/yPn6QP1Y46ysDZE7KJxz76ATMz\nK8FLFEZ1s7mP6jEot+yC6t8Gwdg/1H0CnHWCIML9vFd0UfANoepcBhUWWXhjRUgXKeMWt7jFLW5x\ni1vc4ha3uMUtbnGLW9zyFpS3FCkTxqPUNzTTPeSe4oUsFuUBG27LO5lPyeNUWFo2M7PEGA97X56n\n+dNE0WDwrs/oPvNTim7F93SdE4VLpOWhK62BzCGvM4yHK0AkdXJS3sxMQb9f8OpzsyxP+xQ5bVE8\n9lEiFm2TF/OgpUi0Hy9mJEO+4mk9p7sn73l4SvXtwh2zS5St0td9xkQo6mkULlbkBY2dUrQyDaeE\ngwxK4q32noqYn3zcO2i6DxfJGQW9s++XF/L4cd0rfpMIH4zYAzz+A6I1PpOrdUQ0uEPUurSBJzel\nPh4QNe6S8DzoHl1Vx8ys0lLfeNY1Rj64A6JTGoNGTX11+BoIDYInS2/X/3t78ra213Td2qtCG8Th\nSJmCa6bpVyRxvydv7yKs9YXjijgeHKgd21eESOmjgBBekec5ltGDS/tCH2zfVTRmFqRRoKh61Jsg\ni+A9qezKtjtt0F15jekx+DNWHkINa19e3dfu6vmNTbW3+CC5ySBmYnAH5Vew+SnUU14S6muU0jhM\nXxD6IE1ktgUPxurT4ngYwVN07ITqEXRybPGi1zZl0906akoVoRzqoCNSKfUfJPVmB/p7mwhA6Y7s\nrw6Du5cc6QARAMsdHQUxJDc/Tb5zj7zj1rZsplPX2O1f1xjXSppHxaDGKIjqTu6SouGJkKIeXiJx\nwTRIiAG58IfwdMT09+2Bojz78HzEcrDEo4yQflh9MXtWUaz2/rKZmXm24A96VaiBnVsw/Ed0/2mi\nTksPKHq1vC8eiPJtuHBAfQWJHIamZfN5UFKTRY3x/prmUB3umOa6bDRAPnk6onaX4D3a3dd9U+fU\nT5kHZEt3bynC3IcXKABPSHIiG+rAJ9XyqF05bG3nJfV/uSblhPHgFPVV+7KnFKmMEHUaEdFIgPgp\ng/Zo1VW/fkOxBI/vzSm5Nfoa7114U0LsPwbSagQ/SgKuGGetCUfh+CLK5ycSW9/XXG5PWJuIREcz\nWjvpBgsNnciJ7HLY1PcqXA0huCY6vqiN4UcIZvR/a3vqu9AVISnG9xwFA9Tn/BoLT0+2152oDeE5\nIrAD0JKgo/IojGRb5PT/UHwcW0+Jj+MQlaY4PGdJ8rE9p5Z13xDoTZRI1uqo8JWJ/M6g2kckLphW\npHPuhGzSiypS40A2t1/XWPRBFLZL5NJ7VP9OGnTqUHtZvynbHLFOl4mQ9kDRln+odSWFbUbKQA+P\nWPaXNYabO6t6Poo36a+o/aeWhVw5iTLXS4n3mZnZsVua25UfU71yT6ndkYL2m0pN6I3r8+Ly8q9J\nreiJgtrz/DOak1dRpjkX1tz9YeoxMzN7HEWcSUdokOcu/ISZmfneLcTK3a+IH8X+/k+Zf/RhG0x9\nW9fd03Mf6ekz9+pXzMys9g4haIrPao6ueYRKOzEBOcXfRw9+z8zMGhFF4it+jdMyyKXjprn87aLq\nvXKotbM6p/5f/4HZPSKSZ78mtYqrcG7NTcED0U3SRtno9YSUoHoB9c3e4FNmZrb0LakuffGi9uTH\nu9rT1kFrLX1V5DOj92i9WJvW3yNn9Jz5rtBLz56S6pMffqQPNd/cmSQKH1oYJLTvUH1RAjWcuqD2\n+FAhGcHH14FLxeOHy2tHtupDRSkA14IPdc4R52FvDyU1IrYDeKPCnEGgSrSmg8CDf8ORMnQQeyOQ\nMD44XoaoowQ5r7Ymqn8UJMuY64KoNvl43hCuFi+IVJuoPX3QEj6DtwoOsf4QtSVsJgiSx8s+7XD0\nOGpMHto/8Oh5XXg1UiM1NISqYi8MN1sXbh5jTTTVY9hGLTFzPzK9sBS3HKjANmiCKCjxCrxWkyBK\nRhOtjbU91WfGc9yOWpaXhUjzn1QdqkTVt1mH42PGnOi6s6cedFEWhEsxwX7gKDZW4PUJ+bVOj0Fd\nxTPaQ6dz8GRwfk0XUZpNaC4MBpynQWVZVWeJCXPPn1NfDw5BDcDrkw5q/R2zB7K8vq6Mm+ir71sg\nHz1DkCt7soFkBBXXBByHPjYIeNgq2/DuwcVTb5NFkWfPLHCeRDUpwdrQPmRugS5LwYNk8ICOQNcG\nvapHa6T272+o3QPOtbWbqkcHVO/iKSmzeeFqiUXhjevI1ksvCLKaAYU88LDPxO6jso5SGpyfvQPt\n317u4wFBZagoDXixCTiKPhxdOvRzj/1z0tU4L4Dc/8gvCSVyuKl6J1He7DRkP77E/f0xlA1budSz\n4Yh5y7oUDjnqabpHBdXQFFx/n/h74qnxRXk3QymssqFn5FGwCsCtuuZdNTOzm6h9rgANAbRkPmwu\nw7mpw7vm62cd+H9qrJepkP4eQsXJeO8OQcDjvLuG6Dsv58YEKs5nH9XZZHUX1O0WSHB4e1q8g/bL\nnEF4dwzCWRkfqgG1CQgc1is/GTHX1tXe269qj39wcMHeqLhIGbe4xS1ucYtb3OIWt7jFLW5xi1vc\n4pa3oLylSJnmISiFNTz7SXJnd+XJOhgqMtoeosaEF7Q4A+u6g96oysvZukNk2ycPXelA3kfbwivb\nlgettCvPV2ZBOXG7RL2SYXlhy0ndbwJzePWqri+jTlJe1v02XlG0KYEixCas9IctRTcz5Mi2YWvO\n5FFHScoTOXtK9a2uEjmawdMXludualZcNt4MKkwj1b9YkIewsQhjOt/bDdVzt79qZmahojz74UDb\n2qCDvGH1XfGsPKoB/cQaKNMkQaCErihqP94nnxfW9n2UQmbguUj51aYEijUzfC+EFTHrDcj39WpM\n+zD8H7U4XDadBsoMMXmAJyihlHvyanq86vtj5xUR9KES1bqusd16VVHyAVGn6LL6NkjUp7mu+sUI\nG00WISkgv7gDosNQbZq6oH4KehShCEd0/cEL8v4SzLJYkvr25GVtPAMrPWgmD15d36z6LZMnRxUO\nm0geNMY20ZuNVVULzfvAGHZ2RwWDyK611d7tG6r/NkgWRwUlg3fYYRjf3VPEOkYO8OKyxtePx768\nSmRm4uSXq79aeIl7XvXbmbOK8CbiavfBmljpW3UHraF2d3c1J+JJkAFL9DfKEREH8nSE0kf96AC1\nnjZIC0+ZqHuVaAu8GpkFVJnSmsepBXn8TzwsJMpgpLat3SGqchvbGWqsYiAq8suy+Qj8D711jVFv\noLp7AjKCOKprCdP1d+/pusa+1qdN5tR4pPscXyIiB/XJcAJrPOiHMUo6Brt8nIiFo3g2Hun/92qr\nZma2s6YbDYjMlvf190zhtJmZve2Snre3rt/v9TQ2o33WqSXZ5OIx2frBBpxcftlcYwDaCY4YJ9KR\nJJKxRfSts0d+Nzwg8aJ+n11Sf/aIgJZeFhpsa5u5VCG3uQ9viZeILXxGRy0er/pp/uyymZnVR6gk\nDWQHQdLBJ2yLXvqzWpMdDBtEikC2NOGC8YEmyaXUT30i137UUvwT3T+Z0hrQQlljSF79sI0CxmBk\nNpGN9g/Ye1Y1L/ee029mxhD4EE4poJrh7zkINK3bI/gP2kTL2w3taQNDzYI9KtIF8Uje+Aoqc9lj\n2hsNFAHCKRYKyIZuXtX99m7IlmdR94j39LtRhqjzSLZXR01qQn71AaiCdsDhpNL1HfjVvCAyB0PN\niV0ilOGR2hlKyvahLLNeUe1oJfT7CYi7yPjNxZ0Cw1U9fyCky9T4upmZZfLiHRluat94+ZRQudsH\nqD81hdr4satCg3n62l8v94WMuQj/m/fCo2Zmdi6sfPo+keB3flO29uUff5uZmUWfEUfNmazm6AvH\ndP3qU4rAB/v/wczMprce1+/fe5/L4O7gaZu9p3YvflBcMOO0UCpLT6tdf31Xz90faR+bflWfd8Oq\n/3tAWNW3pbJ0MBIS54mIrvveC9o/FqJ67iWf1vsXrupMFLkA8ibose3XhNp5+YNCB31s/0X1UUV7\nxRiU7RdY595zDP6xmmzxu0214e1anu3Jec2Jl17VH962q/laebfue+Plz6gPs+wlD8E9Y+rLS1+R\nTV09rus7/kfpuX9nRykRkNGhmPpiCL/RwT58b7dV7xhI7ckS+1BP9eyBsFu9o73R4WhJPCJunHRC\nYzeayIa7Xa0TvjAKNawRQx+IkQlnu5bmxBCEzcQcBB77AxHrDlu4D9SDxwMqFc6YEftfsAsiBvVT\n6PpsCFp2AtdNj3rGYhq3VpPINdw3Y7jNgg63DCi7nk/9FRjAQUNkuQ+Iw9fTfVMeVJrgpPCBoBlT\nIR/7ahBOiFqdM2dI9feP7/NmjLN1K3jhVfS16A890BdXJLue1efhUPuPQ7PlbR8ddVfr6N3FN4ar\nK67PhQBozAKbBKo+vetaJ9rrcL7c1rvGOK95NvOAkHjBMAgUkA/Dmr6XfCj45eAW0WOssaA+mZnX\nWA05//ay6pMB5zkvilzxCGqqSfV5Ag7KeB7usH31/T68PM2yzpX+Hnt+DfQC71L9JmpKA86p8GY2\nsL3Cks4UiQgIITgjB6CzRiju+nh/CUdQn0ugnBhSv5Y9GqsS6IwYvCHTZ9R/6Tmt1+2h9q0NuBMn\nnGVqXe1j9abqkfCqf4ucZXw59dtcRB1bCuv/JxP4hjzOHDu6QpeZGZQ/Vu7AUTOmf8aMc0n9kF7Q\nhZ6w6rPfR6nNUXrrceZ0EKQbqMDCB5WBx6RyW2vOENRuKJh7vS7+YN/8iZY1G7oHtzaDz8yDwmwI\nDpkBCqvHUTfrj9Q3bd6TE009O1bQ/Kzuy+bmIrLlT33mb5uZmZc5kGmBzvTwroI6Uhe+ymXGvh0H\n8TJQX4zhLDu/IkS5/2f+Wz0nod/7WmSWDHWfMfSgzvl7aKwzqDe1QN4E0vAYBXmPB1VVxZaTQfVD\nAL5SP+jlgcN15UG1E8T7PBxhoZk35lV1kTJucYtb3OIWt7jFLW5xi1vc4ha3uMUtb0F5S5EyE/LD\nB0TNJnjc29fkxRzfkzd26Jdrq9mRFzRK1L860u8TuNajAXm4mgfkxlbkc/IqiGd+2OADDXkNsy15\nsA435NlLw1LfJce0cUWerdK+Ire7N1/R78JEpIlchBZQRiDK30uhNOGDd2RRz51CDWm9IY/hmMiQ\nZ4TnsYZnES/wwKPregNFYrp4Hu/eFLdDZVte36jDan2IetTKFP2h4d3f3rdpIqqpeSKSbd27faA+\nPLijPphFRcm7rbpdryqaNOyQ035P3sYmmvIjIq5XDtRnnTBRcDy/5TrhfpAyA3Ifj1piCZA4cKWE\n4Rty+qJ9AB9REeZ/JGm8RGkO4fkJTGlMHpxWpHCSUD/s7agPN8n7i+bJ687IC4uD3pr7amcUbfr0\nonLpA23Y4Ev6f++8+inpl9E5/CA3f6CIa2+iCErmory4+QV9ZublPU6cVCR2cKh2dTsoIyR0n8IJ\n/j9IlCkkz3oblarxbdn+cAemcR/cQaAdTj2pSGy4of+/fVntDuVlQ8emlK8fIHf5lWfFNVHaFlrg\n+FlxzBRnNf6GosLUjCIphWPiimihJtUjb7tF5LsHUKowD9dEUXbZmsB1RASl2T26nZS3QZr0HT4b\n9b0nq/lGYNGmLmFLRDX6PqLLKJk0DzTYFSKPpXXZbrelMU6DkPGFZFP1iWxtFnW2fdQspuGwGoQ1\ndm1Unw4PFM1pbml9S5J7X5zT74eEMB11uaEHdSIv3Fig29JEJEvbqn9jW5Hj3RHRtsuqh5dIacIL\nQo98bA9qQAGes72l3/fI4U151M5mTTY9IVqUJ9rS3tZc71fI+d/RdS0kvsI8x7BpR01uKqR1bf64\nbL5Bbm5jG7QY63kbNZDartb5SV1z2xsHkRIlAu1xcoiPVqLTGvcQCgcdED71ddT9iHT4POq3NAoP\nFSLZASIsQdayBOt2jJznOPn9ffLrI2k9L5XWXMlNq971AxBL26p/v6v2e5sdGxNVijGvzUuUtwda\nMgxadAgqp60xdKLT9RrIQfrQM5St+CGeaDdBrBARDCyp7kvHZLMB1OpqdT13Z1ufQ/gmPKCjsqyf\nmXP6nTesNoZB3Di8O7tbijqvXdX6N8kJZRD067kRot5eFMkSRLcd5QK/E20fqR4RP8pYqErEsIle\nUv3QjTgKWXDvmBPuO1p52at2Lhdke911oStOP6517YtbavdMT/dPX9b6GEVt5VbiQ2ZmtndSa0P6\njmxh7THNsU98Rxwzl7PaP2ab6oenH9dzP3VV697X65qzSXinhntPmJlZ6JKie+f3hTJZv6a59I7H\nWq+34aWng5buK2+92lQ7Ho/+0MzMShfVnieCes7gYRn1+sZXzczMP9K6/P0d1evRuJBXvkc+qnv3\nhNiZ7EvZYrv9HTMzO/iO7ObdOSGl7v3wJfVH9qwdP6FrPd8Smuhr6ferT4ny78xqLN9pmlevXdb/\n55bVVx/yqO+/VdR6XCW6/1hetvKNgaK/b7ulOfPo+8X3EP266nL9tM5vzwS0zp7BZjwXZIt3vjm2\nN1OGIPXGKJ54MorG10G+rTHmmTSotoTmvREp7bKux0Et11ENsgqIGLjR2vBzBECwDFiXXhdR4mtn\n4tQfW4+CoByCBGG96jVArCS4nrk39LB+cX52+P8sCM8HaDqvn/0pKJvpo+QWAgk4hvtwAjLG4YUa\njeCUABXXH+h7xOGiCRGBR81qMKaecdbjEM+lvhN4QoznBsLafwwumgj7uod1PjT+TyLT+2MbjHR9\noCD7KcIleQBvXwKOm4WR1rRxCBXE7tGVQx26nRDvNIM4iBR4MGs1R0VHthFL68ziZ/2uowJU2tB8\nn0LRJgpXyDTvEj1Qs4gHOeKgdtBA0fAeKkycJ71hjVFvT33o9clmdta0PiV5B8rPy3ZzGa0TgJhs\nwJ6/U9ec897T/+9cU5+PQNav5LT3e5e0jo9AyOfhn8vlhXqopnX9kk9zvGGqb6MNbxJj33YUxdiP\n6iBqvNhWKgViHaTk3ctC/NW29V4Th89vekG2G/aBRF/U7xzE+QHI0NkzOdrNu9txOHVQu9ot6Tzc\nASm0U1L/zRTe3JnEC6I0y5xvki1y4xW9JxyWdP+Hl4Q8nPA+02QuBbOgU8hI6K1pXKNF7R++POeF\nMSpYIHA8cG36xvXX6zKu1C0bm1i0yDmPI/i913S+jsGHNH9Je89goGcFyDbIdjknYfMd+DM9cL1E\n4c/xgwW5MKVzYW+kvdSDomwA2/d24WRE3a4R1f3zUc4wcEk1QPpNhzX24XMaqzjnwwFIPEMNqucg\nWFB7dp4zZN2MgbxLQQ7rnZEtbKzrOT/44nd03Yz2kw88IY6yWBiETB+0GxxXGcZoALJyPHxjLkQX\nKeMWt7jFLW5xi1vc4ha3uMUtbnGLW9zyFpS3FCnjMXmUnAjxgCiXxyMvnxf298UF5QPWKqiGtIge\nEWHs1eXG9U2j8AD3gP9QHjgc31ZCuaK6p99Nn4SRfFXPPXQ84lF5Ub0debqy6WUzM8ujjGN47NKw\nyZNibLNLijIF7iginljWf8w20KDH4+Z1FGrgOAjG4NY5RKEGFEMPBEzIiZjj6fMRscgyfAM9zjow\nmY/4XWssb+v69qYFhspFr4AKam+AIKmgHAAvT40xiI4VJQjU0Y6HeX+rRxT8NUUbfHicbUce7sKi\nvrfuoTBQUp8XUCQJpN4cD0SqSOeiKNDoaOy278C6PtD3pbEij4czIHl29NxmhXzy8+r7QkC2tQNP\nyOY9mLX3VN85vLexOtH0Q3nmR1F4PablRc0VURFpyQPdboAW8IBUgR1+vw6vxpY89wugCDJ+PO/Y\n0LgCsucy7epUzS6Z1duqXxQZI09En+MGOcnwfuyvKaJpaRQb5tTOSB5UGP2YIeJxrwUzORwTPjzr\n8aC8uuWXVd8uSkXzM5qDqRV5yftEC1tllBXiasf61VUzM6u1ZE89GMmd/PLFJbh4giCpttVeR91q\nVFH/JRNHz9/2tDUmkzYcAnlyPtNqyxCPd4MxroGy6sNTFNmQJ/4uUY/cCWw+SbSKpPIuecYDSENm\nsencaUV5gqhb1PYU0e2DQvPW4SwhKlR0PObka08tyhZLOxoT/wi1Db/uP4aDpEogNJTU3Ny/KZ6L\n3VdXzcwsDxIjiPpTKEVObkS+9yxjVCjKw2+H+nu/JxvzB1DbKGquDLc0p3e8QuZFcqyLCVVkfU1/\nD4wJz01rzsyd0XNXTiu6k0mTq3+D6FJdtrNbEmIoMlQ7s0FUrwJEakFh+eE0SKWVM3x8WdelT+v7\nUUsPBbBBTuPTY84NWFs85LEno/AAgHTMwbMSoj4BeJYaOxrPThlEFeohoaHsxkM+d6evNWQLVasJ\n+5ajzhQJkDcfD7y+F8YienbwmPoyAuLMX9O1XqLFA+ahI10QTbIesTd4QI+FiEYvzhEZJC+639SY\n3H5NY1FBza5elU0m4UPywg807Ou6WlXPXUjLlnygnmqgx4KgPBtwjqThU1u6KKRecsLcqur5q1vk\nuqMIY2F4Mrwo3dTUt6Om7huMs/6BIOKoYNsV3a/NOmLjN5fj/yki0hvsEwstIYGeufJFXUD1lk7q\nH5vdT5iZWfH4qpmZ5b6tqGLmbUKKJG5rLg1e0efzn9b/V57Wepfdky1PgeR8qi4bjD2p+r/wDc2F\nx6M/MDOz9O67zcysTJQw+Tb104tPy27+zt81Wzg9Y5F1IXgeel5rT/hBzZVxU/1x84TOKqMDEFRB\nqXs9uLGs+80JIftKRuv+41fEcXPtHRq/d25d0e9TGu/zsxqXteGDZmZ2l7PXpdnnbO1l1e3iGSlJ\nLYI0vNsTgmUS1bntyjHxOnzMqzPK12ZUNy9IxofGWi+3tqQ4tbYgRE3+qhSxkheFUgo8K/Wmv8IW\nl+7o/LQ0L/RQCUTcRwey8T89eXRVHTOzOrbfRfklAwdgLy4U6b2aVHtCPZAec+rzqs9BGMINuCxF\nqySIxVZHYzqoaA5GhvruQ7WpC4eBH56kCfuEF6TL0AmxwgnT7KLMkwBZwhpgcDFAjWVhECjtJtxd\nEF2MuSA41veuo3bHPjQ0p37O/oiKEvtwAKS2heDMgqTCA0LckZAZcEMf6Igu3Ddj+DX8jnoTqA4H\n+OINwKuCktEoBlpsgN2wDyz9JYIAACAASURBVPq8TFoz8x4GrHwIPwcgxBg8fvGUriuHZC9puM8s\nIxREsM2+aS/bjyrJrJAZ8zFQUiAiBh3V6S7I7HpTbfCy7njgSJnN67zG8c/G1C1usiF/VDblnO8C\n7C2BBJyQZfV5xaf1Pp8CUYNttPc457Muhzra65soaEUa8PiAWvCALkpFZVOFpPqickZ/D1c1d0sH\nWsfLUdnEnE/XNQPYKnOnAYFbvcU71AiVUvg4CoAOOvAJTaMiOp3WfrhTUr/trsK1CJ9dOqU5WIZP\nagxppoe9vulT+zpjEO9xra/Jed4F4R0ZTjS3AxPZ4M4Biph53Td+Qr/b+KHu32jp+oi9uf3GAnCN\n8c7b6Kp+t29on716WfvIyjvElVmE5y4An5SRXfHit583M7M7cBH91N/9KTMzm3eURHuoLYG+K/TU\n/mrzfn3H1jBvMGrBrMZoBLJl96+13g5Relp8TGjLTNFRz5PNjlGV7ME/6euiHMmZpRNyeDDJmmCd\n8MBhM+QdKzfQeWsyhP+O+ZuLsI7yTtEbaJ10zgzhoOpXAFkzABEYR8GqskYmjaazxd8LryokM62m\n5laKs1OPs4fPI9vsN7R3P39Ne+vUrt453/Fh7TuWBA03dM5CzB2WpWELhHXwjd9tXKSMW9ziFre4\nxS1ucYtb3OIWt7jFLW5xy1tQ3lqkTETevoRfHrc0TNY+2IzbHXnaOl1UUEpCflRQlPAPQK6AUli/\nClrgniIRjSEM4ngHB4f6HQFQ66Dq5PPJS9lE1zxPfl8ARvIhPCmTiDxgXT+qThl5El/buMfzyCle\nl7fYk8JbjSpSlJzi7XvkC+KqD8EqnWrqeRMi5g0isx3qPzUnr2dtS/fzwW1T9yj3entH3trp04rc\n5JNqRzY8Zxk/+Xt+9c0YqpepaXmyA03da9IGVVDHo76ptsTJ2RxUVMc9mKpP5GDsn9Fnkahyb0TO\nKlH3HJHW0vC+SsRRSs90ny6IklJD9a8eoMYUQNkmp7b6QCmEfeTQFoUqKCwrchFFIStcVh8WpuEZ\nOqeofiqkPPSb16Ui0d+no+Zka1Om/trL6PcDuFMGJY39FO0NndF9QvAa+Tyy6WWYuJuoHm2/KFsa\nbMPcDZoilFZEJbekMc9NKXJSgffEg3LZLbiA9g6IbPt0XR9lgphH4zQpyWt8t6o5sg0PSZiIc5D+\n8dRQbljQOJ6eV+QlR4RkExTYxrOKVPiy+v0K0a0D+t8PJ09hWv0RgFckSJTM19TcuHNb7Y/AJ+CN\nOVGvo+dvxwJEDWZlYx7UJ4Yx1dkTl2faUW+r3kOhpqI+mYC0aUQ1pnkUDFK0rebV2I7TsvGlkOZC\n8axswUO0vrol2967Jttx1IMWHlw2M7PcA6ipnSA/3BmbGVTUyC8fDmSzeca8BXfUXlXrzBJ55QH6\nPJDV+jBiHR2HFAUPgvhYJEpenNPf159VdKnVku34DAWsAdGxLXL92+qvg6G+j8n5rQdRcmB9iaIa\nt0JUPZSTzXgTRFbJ1e3BubV2Qyis3X1Fg449pOhWlXHsw2EzdQGFsIn62xdT+GwP/pRh676qxlFK\nnWhgHZWUfhdVrhARH5+jJCYbzSd0XYSw3RDekGCXnOe0+n1IP41ZVMN9tbd1QIS4DTcEczrcYQ6g\nAtJGNSQ6Dlg7omu7RFMCKGwFgrKFOuoSjiRIF761EVGsGFGiEbwKPdY7X0jPrFR0/yh5zZ6W6tQh\nqpUkL3rhMaL4oElH8HjcvaEo8VpTc2hQ1zqSQQEwCfynRuTSUCAcZ7XuleEgq5G7P2iy7nVlew1Q\nUrEJyimoug1RYQqi+nZ4qH6YoGLin+j/p6dV374jsbD/5jhlNndQXJiSrXzzuurdWhJC8APXtJ4l\nUe5aPfxzMzPbPa/nlJJ67u5NIVNbLfXjT1/Q/z+yqjlXO5By0MvvE9fLxZBQH/2eonDLX9VzYu8S\nF4//2/p9/mOsMTX1296L2vvPve/h19twOHrOgiuKZjbuqv7v3tP1Cw9oLZlq67l/AfrM71NktVgX\n6iSXEA9M6KrWpq+dFyru/UR0/6ygtfLCoe7n82htGV7+ku7jE6KmFp+16Yv6zf4t1f22V+vDB87q\n+9de0PeT19V3O0/Ktk58V99voMIz98Gvm5nZ8Wmtj+se1WExsWxmZj+AZKXTep/+/k7tiSktx1a6\n95SZmd0t6PdZbMZbftXeTKmUdPY4LMtWOktaHxNwB0z2tY634GRYgGPAtyObiYAIiUU116JJFNTW\n4XipcQYjZuqs8yE4WqAEswHIPI7RFuC7g0QZw+PmaervA5QZHa6xMGRrTWf9gzPF3wFpzTofZO3w\nwEflBaETBAkzCLKWIDnpYa0IwEkz7hH7hZ/D79XvRqjT+eAMm0ThB0TqLUBk3OGS6YSoH+fiIEh7\n3wCkj0O2A/rBQbzvVe6vAaNR2Hoj0HDfFoKzs6C5Mf2oIt9+1p42+0HCr3075D36WrJ/T/feqYAy\nBSGdzeuc1ePdZr0pG51Pck5KYZPTmjNzjGHAevxONpNfAM0K389+WXupdwdePN45gqjQJYtaj8I9\nePXyqAdF1detFGMU01gWeAdyovZd0Psd9kArcnbiHSz6hNqVeoC5mpNN54o6E5Tvof6H8taE+zW2\ndLa6ua6zTWld7zBRsgoWloVCHt3Rc3xnVL8ciBk/nJM3XhLqDpo+O3lS3IjePLaDumyQLIrOvt79\nSrwCjxOymTiI8skIRbA+6LRXhSTcz+p3kXmtIacf0fXTD8JTuA387At2pNKEj84DV0zSq35bmFf7\nu32djSLwME0YEQ+qsE0ng4B3xtqB7KBT0ntSfVr9FWFcZ0CzIWJo/cP7XGSD9tAisbB5R6gpBeF+\niuh7l4yP0YbeX8enUJzycEZA4XEM2irP+jZkgfI5KnEZ9XWXjI8O78159uwJbSoBqCscY/3L6Xfl\nPa0XrarmkKfDu1hM9QmfAw2MqloV5cYXXxC6cxNO2o8Uf97MzFIF1SOMslXAo+cM+mRbAM3zcc49\nuXDRzMyiJ2SDwSjcuCBkWqyXacZ20NTf9/f0XG/IRcq4xS1ucYtb3OIWt7jFLW5xi1vc4ha3/FdX\n3lKkzKijSGepLW9xIE9ObVJev1ZcoYYUXtcE7PHthryE2ZPyhHX3UZKIkOvfkKdqBqWIaEHe1D6K\nQ7NE9aJT+n06Sc5uQ97EzHnVY39DEY/UEmoopKlPnZfn3O/Ho99W9OsBvLOZq/p9NqN6Hx7o/3Ne\neVU75Ma276k+XdihOyhpOCpM2aLqv70p7+d0T8+9e0XolTMPCI0Ry8gzOA0Px2xOEeZuGWTOnWvW\nBYUzhq19dxOExnE94+5defEGM+qbHjmUoyqRQxRf0g/IK9ol+uKdUx951hUx9RU0Br2uvIy5pPrC\nQah0u+TYHrH0e/JCDs1hWYe/4u1qY5F8wgF5xDvXVY8WuaPTy0SfsuqbQ3gjWjBvT4NeiKflmd6+\np77dvaX7TJPrP5VUHyf9MHZv676lfdlqMKd6TR9TZKAYkVd146rQEqGs+rOEStPly4pwBohk5KZB\nxkRlqxZQZCCRVoRlEAeV0NaYbqxr/NpDfZ+jHWmY0z1heEz6em71nsax1dLvwuSnhwrql7kZRTo6\nRaJzBh8KhEnly4pk3LsmlEWIaFvcllVfh38ppH50uCz8QbVnKqN69eCa2V+VN3xCfryf/s3G1A+t\nxtERVR3UbibkrI+JrjdAqsydVtS4zfrCNLb2LmoRAdAIHnJBD9VHxazqHIcrpYcCTXxadS4dal62\nNvX8Nhw1FlcbMh71RWSsPhh19LuFaaGfQtAlOez1W8+pb299S/wRV75CTn8Idvik6jGzojFbOoZi\nF8pc3ar6LATayIPHvttQpGBzS/ev1hTpMCKrPSd3+LJs3+HmqaXgN1lEtYiIb/Kk5nDhHe/S84mw\nNhmz3i3ZSgv+qhrKDyOkIYIR1t+M7hMlYg2dlc1eBCGTUqRljTzp8l0im4dqT7lMcvBRC1wvA9N6\n20edY0Ck1QuHQwTFtDr8Lj14lUaoLU26KFrAZdAPqv/ihhICUahkVvYUyLLmsNv2QF72O5pj/qEM\noRkfmJ8c9nHt/6keV+7CR4NtW5Jocw++mjvaQxuomC2CVhqQg94DXdQHaRLxqu0pkC0+xtB7Sn/P\nnVOEsgki8grosmacqPm5Zf2uCn8D/B0NUtTbjoJXUFGsw7r6zL+h9S/OHt0Jap3qwSEQTMFx5dgE\nkUoP6iUD5NsIZlvNo/uNd9W++FA3CnVkc9nA0bmpzMyebykC+ume5vaVtCKwPvaXp/36/uTq42Zm\ndmmRyO+qkDSBXZAmM+qPzKdlu19/RnPqfXPq59onHI4FddjliRAxMxWtVXvnQEG8okjpnZGeW9+R\nAuQZuHIO2u8xMzN/5Lu04OfsmL3fEvPwgBxqX3g+J3Ra/itqV/HtP2FmZqmeFJHOeL6j52U1p+df\nU308E60Z3d4l3X7jL83M7MfuyT5e7D+q5x8Tv1XrQXHeRJfU7+vXblnaQ5T7I2rzo/9RY3n9BTi1\nPqp1NfEN2cyopvXR92H1+Ulst1ZC5WJRUeuNK7KhTJgzQJU6L8pWW+yBd3xPmpnZu2e1fiyxl243\nNGa+IVH2I5YgSDgnqu+5ofVu/nFx1sz74MkYaAz88Ig0iPAWQGr04e2LocDVTsH/VAb56GFBHOn/\n/SBT+m1sHp62kUMVQ6Q5ggKlBxUj4yw0DDH34a7ps2+E2bv77MU+1JeiHHgHLdRF4QIawfEQhuvG\nhwpLl7NVGO6IVk9zMO4gbVj/e84CCfIk4DwXxbYu4zNGkW0MwicGl+QAdZcxZ0NzroPHLxzhrAHy\nsgsfoplZdRyzLpH874Eyy9/R898Fuix3TvbXC3J/kE2+wP37/KiydRsFWfrA19Zn1VFwgrukAhej\nl+/JYyBmvPBPQoeTGqE2V9Tv2+xZDt9kMa0+K1fgA9rW/fbgDPN02cvgCRp21aaF82rrCtwy9YDq\nuct+0muhzDhGXRXFrNwFoQQSGRA1U5wbQXQOUEn1844Wy6r+pVc0B4co8wTSKFh2QF3dE6IlDXI/\ng1pQfUd/f21LvB65mJB5obyeM5PSetQdobw71vPy2EJ4hiyHpvaXKlwzvS4Impyuz5xSfVsd+ExK\net5WT/1Z3tTvUqg8DUHqeNKcITjbHLV4mxq/MHx+FtFcPHGO95s51JlQIvPU1R820vNjYT3/sSfE\nObPEPjQVZ/9F0dJvoL79vOuCThlN7tt0aDg2XyhmLeqEKdi73vsxXZvo0na9A1Y3ZBvttPow4JUN\nFBO8A2RBpvdRNQbZfLCrZ2dzOvPHQyiw1jRG/aijwIhyK6qmVXjlxiBQQhM9r9bV/0ccJJsXhHxf\ncyEKz483J5vNgmZNL+j5DRA8w30Q4ewnI7hkPCjPpniHfeJT6o9YDk6tHv4KeJdCgKUCvP+PpuDY\nQSF3NH5jxJ2LlHGLW9ziFre4xS1ucYtb3OIWt7jFLW55C8pbipRJLejxxXPyYMWWyOWM44lvyQsY\nOyaP03ZTUZtwWl7NQEoepx1UU5an5OkOkBffaMmz51kg1/hQnr2pE/IOD1N4a4PyioaPg7iBP6Tt\nMHHndX0/iqpKUverE4G+A4dMilzpe3fkgU8eF09J+aqiZZWeItuH9+Qd76yqH/IL8HqQe7dNpCSa\nU/sLbXkziyv6/XRFXuLFY8pX36nJq71XlyeysklEuIdqyb73dQSDo1bhGait0z5QBCNyFQm7LPGs\n9gBVnlm8n3X1VTeNVzAnb6IPoh7PMhryZfx9MPbXfETnCZIctfRC8oqmFhhz8hx95P73d9S3G6+K\npbx6W0iMaEpjsTCPyhGcKqOOvJoBFAi8x2VbNSKrNRSspt8mL+qJxWUzM6vX9Ls7r8qGnGhLD6TK\n8tuVs5soEC0HtdGP4N2F86bdV32jKEqcPi1kTTRMdKeE8hY2vfWKo3yjcQnBuTAhqjR7Ql7rLEpA\nDcZ1/+6qmZmFJ+TeDlGcgWsiRs6uwy7vc4JCG5pjPdReAkSjqn6Nd+GUPPjZoubYeKD+HYGc2d6U\n7RsohHlQG4fkr9c3UJciCJg+I89+it+PUMip2dH5QmJJjWWzLdv0elAVUpWtgYLWzDEhyxoLsu1r\nlzUW/T2NqTeqtnjhPonDhZK+pDHava6I6P6u5u/uNUXDJi150GMZ9Wn+pO6/1dNYJkGLJTLqswC5\n8D3mUgNFm0bZUd6SDVqZSGZB98ss6dOC6ttmDFWllNaD3RuK6gTg3CK133ZviFQhFVP7vdhucFY2\n176nKPreHgjE8Jj7yrYKU5oLmQc09pn3asy6JfXb6g+FDqjeVX8ON+BYOKN6JeFO6YEsbCdRrYor\nh9+LJNiIcUuBKDwkL3r/lvonCIJnFIQd346e429mNoafJUQEHXJ/86JI0e3rD6E2UT4UIlpllCKI\n2g3HipwM4bOKTJjbA9BijjAQXBijIVEwIugD8tWtqbVi4PB5jT025toBCn3NiubzyKc+jaQUXffB\nGdVBScxLHUIj1SEIB1QQ5ao4UWNvTH3rK+m6clN1mgTUB70douqmPaVOJLFD1Dw4A6JtBv6isD7r\nqISE2xqTATwYIx9KY/BQhNknGuSpp9irBz71fcurejrKBwNjvYL3aMKYNwOqfxfFh2ZQ9Wy+wvra\nhV8Kvoyjlo/vaEzrZ1S/D8ITdch6eO9Dqv/l/S+bmdkuZ4P3/bmeO3qv6vPC0+q/d3xJ+94jjM+3\nu2rnh+8q8vzslPr9I9/Ufexdqu/Vy2pfLP2smZmVHtXzP9pBzeS41tnWRPtD+VnWhv/GLF+5bbGn\n1e/93J+YmVkl9XYzMzt2Udd9EWWaj8KX8efPaQA/Y39mZmbx2R83M7MJPFOD5/T31CXZ1V+d0pkn\nv6bnxJ4TomeDCHR4cVX/X3+XLSSVy7/2gs4r8XlQU7NSaroQUd98uYhyCBHTZyPwJTz/NTMzO995\nh+rwsmzxgazWF39eY98aaMxPm9al+Wvi7UksCzH5DfjpPuxXVP3OUOvepx4RR8C/t6OVZBrUMGob\nByhRnWxovTzJWalTVnv8W1rP/c7ZK6N61ze1DtwrCT0wndFZa5zSHA2BkPGBgGyOmQucj23S/08/\nLAQCsAEKIgiaLAh3S5ioeBcEjY+1w48KUteZezxn3Ad5E9Z1EzhifD14OkDtjccO5w3oPQetEIJv\n0FGC4/AX9jrqJs7zQbgioRYHOT4Bzexwz3RYM3oVh99E456NsobxXuCPaJz7cRTs4OwyM/MMOlZp\nEInfBOGTVgc2IuyrrFWtOrxecIUtd49+eJ2+KOTCBO68KjJKI6L7RtsGTl/Ap1nl2BNHAasDonBE\n1P/wpvbC/q72g2JedSyktX6Es2rb8XdqrvkY604Jfh94OlZ3NH9vsGcVFrSvRFnfZ9kjD/tanztQ\nmbUdxOVVzeH+Cmqip2TzmWWNea/P2E9ky9ljuk8iDAJ0XetfcFWHNAcXnX1AYzA8AGGEcu5USnMj\nxdbZ4F2nCjIogUpggP1ocgjnGip+7Q6qRS32twnQTLIvgqCCvTX1Q5AzwRAOn6m45ux+Wu0OjFBt\nmnXGU78bcuY7aolhUqWB9oWFEDyjMTU8xvnc0wANAtK1g+KlHyWjFdT0CjnnjMR7GPv+Tk33v7un\n+s9z9vNxHjAz8+Yz1m9PzAc61VG2jYG6SQV1/iu3UVYF+RH2c+YA1tUHIeNlPQnC9XWwprH+4p8K\nbXn2ve81M7OPfEAISA9jEEapq91S3WpA28MF2UaIM5JnVm2OsB4GTWPloIk6cCwOAS8tXNQ6vwNH\n1ShJ27l/ra13H4fzKhRmfYDXacyYr6By2uW5fhQfJ9jMiHNfe6yxjICALGRlI97q/fXobyouUsYt\nbnGLW9ziFre4xS1ucYtb3OIWt7jlLShvKVJmALt7fBZd8Tge8igKQX75T4uz8gKvrcmDVkARphiX\np+vamqJGngQe9748eZM+/tcpRYe8J8nJXdJ16Rl5I7ca8hovom7knZHnb7whlEDhYaEN8oe6z8ys\nPF4H1+RBK6BIEDmQh2ztGUXUH4jLM9faJhd2gQitF0b1hDx6nmOqj5+oX6OqKNsgreeMxuqP1lhe\nztSs7tPAAzmJwUsSk0czMJDHcDqJmsjZFQujPDPBmxnKKkIW9KgP5+aP67cxeClQ/xj55WGNEiXp\nJGE/9xEFpg5hvIZelKmGflzrKT1n2FWfmjmfRysBvJ25mNydvghKN4eKQlXRfk96Vd/EsmwjGpU3\nM0iE8uA1GLpR0gnGYfL3KTLgTand0ycVYUiF8NiTg3r3OaEQ2ru6TxFURHpeY5+GU6H3qryj9bHG\nsL9LHiZKQKEVeXejM8v6DqLm5kuyYQfJE0MVykc0Kl9UdC8Whd8opPuHxyBx6uRvPiVUROmGom9T\nZ1ELWSJHl36KkPvbgAuocU/tO0AN5cSi6hmbUvtWllHWOQfqoaXrbj+n/P7yliIf2/tq//wJIbBC\nqEzt3EGxDNr3KCops6fU/5112cvWtjgOwqjIHKWMRrCmw6zfRBErNu8sb/LQ74NESU1pbBfOw5eD\n6kXGT8RvgloFy+OkrjGsVxWV3rgHi7qBIssoKjQ9q3UiDt9Huw7So0MokzzqyTX12Sb52Ykoeb0z\nGvMTJxSRGBTVB4m8+j5M1P+wob72D9XuyAXQCLdlm91D+DWIzNoe6hhLJAmTBz4hAuiM8dTDKLyg\nRpdfJPKwDCqK3P3Ny4r+7zVlMxVszTbVz82a5lhMzbP59whF1iHCWVtHsWULXpESkWDgFnth2fAg\nrvFIo+Rm8KPEfOwbgftRnqOUYQ31ki73wy6aXfVrOMiaRlLwhDWuTnTKiypXOqPnZsiTbx2QMw2C\nqutEcsjfDuwTcWFNiZHv7uRKjx31pUHQhqwjQfKgSZm3CSpyXdCPQ6JYfuZJME/UGaWqYACVhYjG\nIlPU3mCsJ03migduqe4e/A6ghToNtSUDl1hxUXwZPniZKkgjNECTTrDtGnnXTrQnCDdWFMWUPmjU\nIDwbo4DqEdmBJ6LhoER1/0CTdRD1CfMSGQVFECXKnoUnw8PcdZBFzr531HLtuPaV5t6PmZnZmfq3\nzMzsh6d0n3NhlM9uCHX2tjmdHe7+pNBiq7c0p34irfXtex/Svjoispv9ocbn+xn9/jOXtf5e/oxQ\nG4WvCA0SfAjVp8u63yd7ut/NyF+bmdkOEdSpe1orLrbuq2h05h6yDY/WqIA9oc9DteNPokK0LH8X\nGOFF2cXfWlG0stRV+79/7K/Uvq9oPGsf0v47RiXv3c2PmplZ9UBztfCI2nUqqP3mj0uqZ/LsZbuY\n11iFv75qZmb1d8smqpNnzMzsPzalAOWJqG9vD583M7PEXThLkkLUbXI+DJ6WLT1762kzMzsx0O9m\nd1TXvUuymQbqHlnOew9/T5x/L579hpmZ9Wc+aGZmf1m933dHKQEQGXMFFC1RdeujfDK1rD6tEHGu\nHqjeCfjV/D7VaxXlxNWWkDzJqM6LcZCCY5CDjnJaEC6Wfo91AxSqD64ZRyEtCO6AqWU9OGYGE/g9\nWE8dBEoTrjCvOYgXrV+dKIgTUKzDhmwgENf9/V1U+FBFsq6u88VBqYE4HaMa5elyjkUBxutwmjnc\nN2z5E9RP/I5a1ARkD9vXPgqcDoeZH661oqPyB0FVoqb21h0okZl5O0ObdLR/PXhR++bUe4XYmoYb\n7KCq/XU00JksQ+R+kj66IuRUlKh4VmMZa8o22i0Qj1HUmB7UdXF4xtqojMZi8GB4BrRBthQBIVjt\nqw03b8D5eIp3iqTWg5XTun/AtE5cfUa8SSEQ27OzWpd8vHN0QCl5RtqD4+yxdcZyDuRjgqPKGIXC\nXl1/776sdq2CDLcQnC03tc447wdBh+MLBEd7zuEB0ZkgHxQKt5YRasESmpttEJ+OQmR2WefTWh31\nU9CnY5ClOz2dj9c3QLXBlRlNqF8moHa9e9QbVcP5JfVDy6/1+nCP/uD3vpDeZxoV9pcyRltQO3rD\no9uImdlhT/tt/ZbaO/UI75Ioufl9svX2pj5DKJKF+d2gpXqPeFeMZTUnSj0Uk0DD3b62qufAT7j4\nkDjCwgf338cmfb8FAgGr9VFsZN63umQl+DUvJiCYwzH9fwIkdB0eyRDncR/IuNC81slBXHvEQVNj\neoJ115vTnjEZ6vptENhXb2v+ZXPq+3mOMAHU2WIDh89OtjWEO6pV0t8noPtjPs2JFO9AQ86ZpVWQ\nMc67a4Ixpl2VderHehmJemiP+jwEV9oQ+Fm4Ch9mWrYTbjuqqKi5wnnVCTnnz7+5/EinzLPPPmu/\n8iu/Yid5WT116pT94i/+on32s5+10WhkhULBPve5z1kwGLQvfelL9kd/9Efm9Xrtp3/6p+0zn/nM\nj7q9W9ziFre4xS1ucYtb3OIWt7jFLW5xy/8vy5GQMu985zvt93//91///hu/8Rv2sz/7s/bkk0/a\n5z//efvCF75gn/rUp+wP/uAP7Atf+IIFAgH79Kc/bR/+8Ictnf7PRzMzYT3ei8c+HRUSpZWQx6lC\nTu6oBwcDqIBWHd3vMfmCEGIM80Re8Q5ugfJIh2E2R0XEm9HvcihNbB3qM34cNEBCnrZwQZ69kB/u\ngJA+167LE+YnIp3okmdfVP3n8ooMz8zL65s5qahYm1y23LK+12fx+KHwM1rR91m8pEsfhJ/kiryn\n20Tepx5QPYdo1QeC+v2FaTnO1vdhxd6F/T80sr1VeaJnMqrTcF+e5LsNRbuTcdSJWvIiBqIKSwyi\namsf1aBmR59RuE3GDV1/0FO0J9fReO9VdF0nD/ppQJ5ymyTRIxZvT97JITn9TaIq3aY81b6cvLSx\nY6p/8JDoSlvXrdLuPdRDMtPylM+dVnQtjcd+nJY3NTRRex21jV1HGWxeNrdCxDid1HNLZXmPHS36\n7ctCehzS3uw5ebCz+J7SCQAAIABJREFUJ+QNjg6Jxq/LNrdelWLE4ar6LwOv0BgkTrCq50yqGvty\niTxJVFOiCdnk4QiuH7gookVFEhZOqp0DIsq+liIbzVGV++l3YyICnqRsLVhQP4XSRJ/IMR4TsWlU\nHBSIxiEDX8qpjCIws8uKKPTK6s8xKi6jqOoRT8FhxBrQBA02ihEd7R+dCyIAf40PFbU0SlijGDw7\nXaJQm7KBbEI26l/RvI0Yuf8Z9ZWH3PiNHwjR0suA8AA9EIPTxbKgn3qopvmI0oOoSJ3UPK3ekg3t\n39Y6Va/p/vEs0Zqwoh/Fgsa89XbV7+73NTcHFUXjB0ReM2NdFzoFKmGssSnkFZHY2UHhAC6CtTv6\nPamyFgUJ44GHKAGaqp0h939PNnS4rzkX62qMK0Rlyk6wKwKyZg50RkRIw82bWn/GzIkG/ZNbkU30\n10FVgMrooSi2vaXntJm7s+dlg6kZfVY8cLqAxop53hzqLkHkx0EYdWHxj2vYzcM+ZKgw+XjeGFZ9\nb0sN76POFEVhbRIH6YiSUID29lAj8AyJMsLXFQQ1OIFbqI9q16jVMV9KthAhZ3wCoqRbR62jpTEN\nU7dYmJxzkHjdKrw48CxliHSGo6yTWX0eUscOSgueGdBmRK9GNXg6RrLFMMi/YQn0FYphobE+xx6Q\nOX64qBysDOoggwRITUeZgHXkgPXZHBU75mYSVbog0bcRkdwgyite1KnGoGOjoAWG8Cx566Cfhm+O\ndygS1d5cfkoV3QE99dgtRaYbo8fMzKzyXiKpKAilvqr6PPoTsu3SOY3L4lWtz9ldzcH11NvMzKyQ\n+KrufxsOt54UHdZnNX4nOkK2tD+ifqp9RWiSnAlJE/249o0KCMm/mn3OzMz+jv2S3bzzsq3ABTF7\nUfvPX6Q+YWZmH7khdMoNFB79e3p+5zxnBfaX1D0i1ie0L33wqjgynuqg1mdSW7Ks1pzWc0K3fPGS\n0ChzI0Vii+G6hZg/L0a1fjbgmSh8T/e+BD/OzM5lMzPbgietRWg0sqq+u72kMVkb/KSZmb3bI5u8\ndqD1LgH3XuKvxeWXXBHP3LGXWC+Pawzf9uJHVLeLL5iZ2TPhN4em8sEdkIE7ZsHLnsVZydeXzcdB\nqY0TsvEYSOa9ffYjEC3ZKOtGWnN/zP08VfgpUC0aRlATAe08aoIoCeq6IXPSQMO2QKp44I2KEtH1\nwLXSnWhtCDIXgyAIX0drELl2eP0ioDagSbEIiEI/U8yZas553lCf8oz1vc3zfB7NES8qJyE4ZIao\nSQ1ZLyNhtbvD/tbq8Dt4q3xd9l24ePqc5QYo+YzglEyFCbGbWSTct3RU9c4/ItTY7IMO0giujJZQ\nJZ0D2d3Qq+cmI2fsqGVtQzbti2pzGbHGdyv6bIL6SsKptY0aTqehvso5HIp57X1+uLgm09prF1Io\nwzRVZy8KkqF5VIBO6r7xFGp6h6A+t7Wue1Bvy54WAhvLMS8Kth72l8lAfTfZ01zLBLU+DmPw4cEf\n5HHO6fD6RQbw84Cwr+6BxB5qj4/HURVKojKV0vdZUGZZ1q94VOfyMYj57ZtCN4wmWjv8nJ3SadWr\n6RdC8OAuaoTroJzKes4gq373oawZTIKcuSfbPthTf3Yrav8LLwjBOIvS5fQD+hyAEKpAthOfRu2U\ndh+1TFBwnIBMqvZQohuB1g2BOuNdtstciufhPYXvzmrwInLGKvh1v+a21txbq1r7HIRQc4/fje+f\noUaxnHV6TfPB5dX36dndDlyrHvZ+zpm+ffVVE6T4GD67YQM0V0ZWFeedcZqzx8rCspmZLS/ofNzB\nhiKovvlA2mSnNGa5GaHugyiXdTx6boj36T7vJhm4sQyV03IDxHtQtjBV0F6YwqZ2akC54bucm9fY\nTlDHG1TVp52G+m76tBCbYT/t5/xboStbm072gr4P59XeCFknfS/qpIM3VnH7L+KUefbZZ+2JJwSL\nffzxx+2ZZ56xy5cv24ULFyyRSFg4HLZLly7Ziy+++F9ye7e4xS1ucYtb3OIWt7jFLW5xi1vc4pb/\nzxfPZDJ5w1DSs88+a7/9279ti4uLVqvV7Jd/+Zft137t1+yZZxRxWV9ft89+9rP2cz/3c3blyhX7\nzd/8TTMz+73f+z2bmZmxn/mZn/nP3vugtGeF3NT/i81xi1vc4ha3uMUtbnGLW9ziFre4xS1u+a+n\n/PPf+V379d/6R3/j//3I9KXl5WX75V/+ZXvyySdtY2PDfuEXfsFGo/twz/+cT+dH+HrMzOwP//2/\nsV//+79rv/H5f2BmZnFg8N0twYW27wqidnxF8KWXXhGZ3vklEXN1TJCuKhC+U088amZmPSBdQ8j1\nTlx62MzMDiZKU6j1dP0CklqvPCXo7VJRcCondeLlay+bmdm5ZcGWtrYFwfO0BK/KRwTDvQFJ64mi\nUlsOx4JrnT0rSN3quv6/Celp4TRy013kQyEkikNodDgUKdip04JZ9dYFs9rbEOzpQx/6gJ77ouBV\ne9fVruULquedF9RP5S31z6n5KXvtByLkWzkn+LXXJ7je9q7ggCsPCca4WlVdY8C2x5CQhpFw3nlN\nY5KYQrKNdJuKX2NWyCl95fodyUTOLyqVq7qpNJ8QxI//9p//WztK+d1//Xk9J47MI9KB9YnSbaIF\nJF5JSSjd1NiWD5DMe0l9WS2rr5YuKcVr6pj6NjKLBOpEkLtABwgekLgusNIekuEzAUHqSq/q+av3\nBHUtpvT3fk+258sI4nbik4K8Fk/Ktus7sqFd+rFGGpMHwuLwxIHgeu1zf/g5+51/9DvUAyJhyK+n\nIWjMLwgeu/2K2lm/JbhiPO+QPgtyWF4TtK4ZAD6ackgHBT30kVIRgJQxDSS4ty/b3B2oX1PHlaLi\n8ZAyuK36p+Y1lw7WBOccvqbxLu+QngDU7/g71R+JJfXPBChzHQJTG+r5AyT8fufX5eR9o/JP/+d/\nbGZmDcjPxth2iZQoDxBaS6qtJy5oPSDTwfa+JJhyBNLUARJ4B23ZTOaY1oMo0FrfnOZvBwLgSdnH\n7yEfzaltoYb6YuN5ZNtf1HOCeeEbC3NICr5d942dVd/mSC+6/Fciy/RsIVtOqsos60cPothcTmPc\nrsoGmmWN2d6WxrS3CUH4OUFbMwuQyc068FDNhdaB+uvOX2jd23thVfVc0ZwJziN3iRRsPKn+CkM4\n2UeecQhUu4cMZbaAtPii1qcmMu+1q3peYEJqXkNz1pvXfU48JvJR/7LmqEM4V7m6Y7/7W79t//jX\nftXMzH73X/1rO0r5Z/9Ma8kgCBQ6CXMkqTEd0g0CwPV9PeCvLdlwGAK8UAR4PVDvAJLWDqQ54td9\nBm3SDND1jAPr9w00jsMW5LqkYQ3rfes5srEF0olIrajnkZie0jrQ2oFsukuaT4+2kMbjIY2ow3oU\nJcUvsqixLjnpjqRFDTu6z5BchARyl4Mx8uqkKe52kUTlupmobD0IOV5jqP0iBcGlN6vrgpBlWor6\n10j92lA9hlsQsEd0vyJkeF1ISGMOgS+3iSAtO0HmuEcqWXyk+jWAeQfYL37rH2qN+FHlf/mTP1b9\nvqm5VyIta/ZdsoElyP9KV3XWuPxTWgPOj1Xvja9hWws/NDOz93vYJ5Dd3KwrreeTH9FeP1hV/z5X\nUX2LW8DQP7ysdj61amZm187rPscKpAdtCFa/NfU+MzO79ZdK4fk//vgf2K/9/P9mc+9QPZv7Sqc9\nd/4RMzP79lNCL/eXtC8vvKj63vyo1oSzLyilJ8o4rSIb3ygoJeih2PfMzKx7XUTI8Wmtccmw/v51\n0tkeGSkd63uNr1gwojqe2FCK1fQJtW3nvObB/BchyP6kbDP5tP7+/CX1ffLmf1Cd7mgPXUP+9X2k\nNHQG+v3LEa2vZ5eVnnQZosXll3W+u/x2ra+B1xQIvLCg65f9qs/f/u//nh2l/Mav/hvVt0U66Rmt\nT4OYbCS4qL0vPKt5vQsM3r+p62p1jXntgPQh1qNcRvuAw02dIhV7BCF7nDOIj7nXZco76+8Ewkt4\nyy3MOtzxQA4aIT2AdJwuQHl/FwEKiIVtSCobzLueKOv5UPeZIM/Mlm6jgAPHD/Dz+8S6uhFnxRCp\nkqQWjnwIb7Bf+0ip9AQc0QjmMNK6zQFrGukRTWgNkgXdJw25dj2g54R8CHZQr3/yP/xP9q/+z39p\nHWSgw0E9L5OXPewE1M+bdc3913afUj0gJl0OfcDMzP7dr37ZflT5p/9Ee1JoqHkVCLGOkz7uRXY8\nAQno9h2lI7aw2dgU590V0saRcj4c6iwRRFp6elFngTCpX/sIbXQdIlpkxEdNrZ/bV2SjjRt6/ul5\nvUvllnQWmD+LQANpVx5InO/eWFXfkA4TiateoQwkq0hRB3k3nCCL/DpZ9Uj1abb1+1qlSj+Q2oyo\nQSqqzwjrrgfbCeeVCtI41Ln52lM6Qxzc0X3PvEek3WjE2F6Vc64H0u9dtTcT1BxskDY0tyibsYr6\naeyl/zn/X7undTbAHl48q9/3OA/vbyslvj/U73JT+v/f+9//0I5S/uW/+F/NzGwy1P38pOwFSWvr\nDGQHg0P1V3FG4xRPI7qwKXsYQxMQO6P3rx7yzbuknpdWtSb16dcVKDMm5Bz+9j/8rH3u879n43DQ\nfFP62yrvKM9/Q/NhqqCU1off9XYzM/NxZs/E9azWHoTppDU6ucrtiGwhxTvl3g40HDmoFciK6nEO\n9KRYj0r63NnUufalV7SOP3ZCNjvzCOfgktroD6jvkwHZVGlH64WTAp0okGbFGalEOn6H+hULul+I\nBXjvqvq219YZKXJOc3kMEXmD825oT2MWnUAInHLSsEgDZe7X+qRcj9+YDPpHOmWmpqbs4x//uJmZ\nLS4uWj6ftytXrli327VwOGx7e3tWLBatWCza4eHh67/b39+3hx566A3vHSZ3NNlWNRJlDVqgqc1p\nJadOXsroADFUn9nMlBaO1hj+k6AM2Af7e5X8x1FEB9G9u5rAfV4AN1c10Xw5GfKkpM6tNjVIQV6A\nZ5ra/H0N8vE9OjS06zKSxJQW1CIvS5GofjcPL8f1XXLRZnWYaIxhGOeFFBuym1c0oY+dl2MkvqFN\nY29b7ZgOqR5eWzUzs42randrV5t9fU8HstYCyjhMtNSS6pFZWbR8lY0dJQKDNyM2rc/AI/BTXJdh\npU/qUD2gT8McdtNFjUUo4XASqO9avNjMzaiumzhBTpzTBCqlGIPNNyf4NexqMWnXtIjUkxqzeFaL\n0xQOs0FNfbt+Bx6OCYdFlL0Ky7KZcEoLSwNOglpTfTyeaAKH8npOcV7tz6I6VOfcsfuS+rrcUT1C\n5Ct7IizWcDJkl2R7waqec/iMNt1tlBpC8JIsPKz+CrfVn/de1HVlNpdugxc708LjcXg0+jpg7m/K\ndqpltSOyoHpHSEdfW0Vdqax+CWa1EC4sL5uZWSCrha+5rXbVW1pAduG62byhl78EtnTyAjmuuf+b\nvTd5luy6zv1WnpN9n7fv6jbV3upQ6EEABAlSogSS0qNEvRcKh8MOP9NhDzSzFKGJBhr7L3gRHijC\nM72QzfcoiR0EEmxAAiTRFqpQfd2+zb7vTqYH3+8Aakzylu0ITM6e5M2bmefsdu191vrW96EQsQjD\nOGou/RsahxoO0zYHqRy50CnmTa2m+h4XNb6zMLRPnlI/lkb/6mD3G0q7pzqUHmBEZXstHJc9yePc\nzF3TWM5zqA/jFH040sZ6+L76KJKEt0dNtVBIh7boLDmpOInrD9W3pXt73NB/0bovocpTJe+41FKf\nzMA10ltXm+eScpZU4SLIzcG7c0FO3VBDfbFX1HXTD3BAtuGoQSXDQSEhMak86XNn1f69LIYG9SYX\nDoOqrxRQhVPH0/ssucCHrjajfluf5xzZpzAcB4bzIndGHdWswKEAb9Koq98fP9Dr5BR56vAljXNq\nj8dDQZLNsOOq/cOPD+U4Q0b+AY+DysmniJmZ9cJaO05MczcPN0Mb3hNfwS0aVv3DPNS0mmnqAdcY\nD0vhGP2Ns6jHQ06IfPgEyhYtHlTH5HmPi3BSuLpvmIeDbiJkxkEhTl70MK6xm/aVuE5r/dZwcux/\nqHUU5YENShY7xA4VUUWbX1JbZ3HO9Fyf50F2LJSDowYuF593wp/U3SoHrYrfdvh2ULMboJAS5zUa\nYXD6KLowZg7bT9L/P3ulDdVnw6L+H+2z7yRZzGV4L+J6jfmcO+TeR+EvcngoSIXVty3n5NxUZmb5\nA6kOVZ7Qmnopp/47OFZ7vxPTms2lhRR+7LoCMdWS1sgVHmAniuKrKC5pvywQyCm+LC6Zt3deNjMz\n7wPtH194SbanOKHXn/NQdHlBc+/zKO+8+iutldJFlHb21M+voKBmZuZcjVsuLD6smUPNny7OvuOR\nnCmfccUJk/0KPFZVFCKZX9dXtU++wsPdGzldr9PVBNv/pc5QbUftfBxFu5caXzAzszRnlanHnrCn\n31Pd3p2XPXt4R3ZkfEp24aNJnRPX9l5XX72oNrkfYT+rcgitL6munfwPzczs6PafmJnZL76gANC1\nH8MtVtN1novrupmWHGhnfqy59cbEd8zMbHtf59pe+zv2KKVc1vnveFtnoqWz4gmKYbeLQ+0nmVmd\n09wsD8ItVEg62n8m4I/qwckwgCsl0dAc74R8xRvWKu8jHOpTGa0ZG/lcWDzUENgx395Q79EAByaO\nAKgjbARHTpw1G8IOdhJqXwJOmhH2boDCWoe1Bk2FuagfhVHkDHfUjkEI+0fgyfNpqXhYioZYw74a\nVA9bgtpfHVUVB46LQh4nd0zXbaM0V8GmhU3fO4Yvb2try/yytdOy8/AJ9jPw2CXgQVnkbHYobqP5\njGwrVEE2FarZSUu87fel9rgee9w0nIYReCYWV7R+knnVeYiKXRNVvNqAIFdYdenB6VWswPU40Lnt\nHGectaVVtT2mtjzY1toIobwVZq746nReXHtimLEsltRX44rmrL/3tvAA1uv63c6xzoWzXZ2Jlp/Q\nnJ4/DZdgU9/fONA50klqrOanZQOmZ3BKw93YZc6E0j5nJI63BzpbVXGOzGADIsta6yGcFdW2HKz7\nOJ+izJmpdT1/pHggT+OUSBNAi8LNU2XfrRNEnL2gdqw/Lyd6q6rrhRN6XUOptwD/3L3bcjh7mUfj\nuRvhwEzHVL8uS3nU9h2W2scQprMjlICK+yi+9XwlX5Qyd1G9MtUrS2ByblH7THdEEAc6FY5A+m2v\nawmLWdSBzwj+zl6FswBqviEUIjtESLpwNzV6KG3hCJvBsRVtwFGDetk5xtAMnlB+H01rLFxHfdHK\nal3u/0KBgjs/l3Po3ITO8WfjGgMvrD2pyDPHgx2crQAGEqh4hjM8q3Q5U+BsnY1rTYZa6qs+5+CZ\n06rP8UB2u8PZZp8AdvNYZ4PTqK7GUMyM4dztwOFVx243eUaNpFfsN5Xf+oT8rW99y46Pj+0b3/iG\nHR8fW6lUsq9//ev2ve99z772ta/Z97//fXvppZfs2rVr9ld/9VdWr9fNdV175513Pk5l+nWlcszB\ncVOVHfBgWkHeMTJQI0t5dXaloUZmkbwdMJFHWXXmBMSewzOKJrmH6pw+hJXRuAzIDJ70Lp64BCuh\nX+JhqaEZO2xpkuGzsVodki4Igs5d0mRIg1YIQ+yTw/N+dF2evfUnZBjcLaFVqgMeztoa9PKWDJx7\nUZKI4xYkWbs4INaJoJSFYnlY1KYRcTWZDC91mfrWQa0UOPAeOSXzzkGSvMCDE5FGr0P0No6UWlJG\n+dwZtaG9oQW59VCbwmnkyRvs6Me7vkQfJMtT+v5hTf9vIQHY5Ql3FP3NcmD/uhzfgkgXZMypU9p8\nxhDGVjZknI7qOhQP48ghs/nlzkEsXNL3W5vq0xqEmHsY4TxOh6vIrUc5eMTCEK3xYNoGxTRxSptM\nHkK1EXNpUNeYDoko33pPqKUQkeYUEYm555HenlO/bL4nGfWBYfxBI7RwuBWLSNue54GPg0wHcsO5\ns0Q+52VANt74wMzMGsi/xfEALq7IIMSItBw0Nd7NGgewDNE2DFMyo/oukGY41lS1agmHJuSpXSQN\n3WnN3bkp9U8tC3FbQf24s6+1V8T7PbGGZOQK/QxBabJ4cmnBwjKoIDRAYxwqIxDuRs6oDV2i+Hdx\nfM3wgJUEFXQw0gFgEdK5xJzmWgHnMOcRi3IQ6BMRGLAWSre17mpxtanV1PUivL/yWdmlOJEA138e\nRcKzu60+bCNxP53XWqslNEblTVUgibN3PKP7RyBjjSDzHoFQMokjLMcDXbmuwWvj8PM8JFkfqj2F\naVVoGuLfwzsakz5gJ48Hy+i8xngaYvT0PLaFCGt9S2O7g9OqX9bnaxc19yYg8PR21e7msWxR7iJS\n3Dhjxmz+OxyqPQiAh4RoG+lHI+h0qjiLQqBBxv8yohMiepZgLYzZbwoQR4YhwAzhBJuEZLWLNGwf\nsuxEGrJspGgTfdBvbe5HQMnlYSd7Se2fS+XsTgdyOe4ZNyQvt4lexzmM6t+Wwrk+GMmeOSD5CiDh\nOpBDuwn9f0TgIIJ84xDHZJToT4fDX9a4D1HpKHPp0hX1kR8IqeAMHhzLDse7EB229Lt0xJeNxOHG\n4TY+QJKbMfUPoSnQSWOkTw3neRqyfWur79O0q8+DmR+p7EEcnjZ9P556NKLf3qLs8nFfc/XHVR32\nSz9XfZ8+A/n3OaE/ts5ykHug/y9elz3f/T2tte4bskGPTQj19QIEum9O6ewy+6Su391W0OKteUlN\nf6n9f5qZ2Tun5fQJvSVnzbPsT8eQBV7d0xnjp5/R9/7UzKqFIzvC4Zrj4eOQwNGVlB7S3qtpzl24\no4epCyuvm5nZawfPm5nZS3UdhF/jQLn8I9meud8V4XD7KaHpnpuSg/ruXY3D1imNz8zP1J7sIG4f\nlFTnZ6qyk4kvy34NWuqjN/obZma2lxOC8fz3NJaRJ2RHtn0HJWT5Cwd6UCrndB56irn/7hMas9NJ\nXS/6nuboza8Q9HtV11tgzeQmNTc3Iy+byt/aSUq/i9Ma0tRxUmvTIeAQM82FeF5jm8zjzOUM4jVx\nzox5+EHiOgECpoFzPcQ5cQSBb4Rgm5sBRQDjLgFZ4yhgcZDeHV9GGLTTEHEG6+j/YzykLmeB8RBn\ne5gLcVQb8XkPNN4YexmPQPLt6rXT0Y2iIF08JK0NZ9CQtRgZqP59kDPW0vf6rN0ogacOCMQwz1Bu\nDEbNJM5zAlsVbETcQPtN6f6NQ92nBprXzGxv677NQKIb535hrhue0WuqoNcBwKECMZfovZM7Zbb2\n5USI1SFpxnyNYtrT41MytKWG5mQPtJFLmxwe/t06TpOU7PnCAs6MHocH0EC7t1Xn2ao+T3BOnmFu\nRMJav5FntBbT57DXJeztlDalMWvDJ/C1Y82ZTF4R8cefvGJmZvWazuUNHIjtLfVNDXvsJEGBgR59\nyPnW48F5ek5rIL+ExHVC58s82QeTILarODl2Hwrx54AkWp7VWWriRbXHR5h6nNP7NdWnUdNZIz1J\ngH0AqSvXj+K4DOH88FGz3bFslIP0d/q0rvPwgw0zMwsjh+zOQaielE1qtvDgnbAMIPtuh3R9n5i+\niSs1htekylrvgeTJjXXf2TX214psaY9n4wj9AdDfmmOyR5C1DpXZ9yFcNjMLOSNzrW/jOg40zgyf\ne+UP9d0o6z3B83caZPSW7nX3p3q+PfNZoXVS52SPe8fqyxgOpYimnvVc1SniQAA+QIqabIVxVG0/\n/xU51/MzGusLl/TaqiECwHm5A2Ll+h2tvavncHiuaq2Me2p7EiS80edhhCbC5gcrdV2A6Nbx1Inh\nOV2nJbNuv/ix7jN+AtTwE2p3mDVciMhwNQiMbb6t8+HE6m92u/xWp8wXv/hF+4u/+At77bXXbDAY\n2F//9V/bxYsX7S//8i/tb//2b21hYcH+6I/+yCKRiP35n/+5feMb37BQKGR/9md/Zhl0v4MSlKAE\nJShBCUpQghKUoAQlKEEJSlCC8i/Lb3XKpNNp+0//6d/yf/zN3/zNv/nfK6+8Yq+88sqJbx4D5pRN\nEoUHvZEIyUPXjAIpI1XEI+fUxRubnJdXtb+j77Ur8ljluW61jdcTWGiU5LVemzSpjjxzozBSrUfy\n6CVD8sRXtxUZKNBNy2vytu7GSPXh/6CvLAusKRVBEtfDiwmMMzmE/+MWeYAT8ry5+/r+4Zv6/9Yt\nueaLh3g/ifDH9uTJ66Btmz2n38Xqus8iaI84MNJonshuqPoxbHz2oryMJaI8E3DDTFxQX66EVnXt\nHHw2i3DB7CNPCRw75JG3W9DnubLC6RMpoX0uzapvM11dL+qqbysG1OKEpYMXM4XcsC+TGGUuHME/\nFAqpHqsX5K10E8BB2/LG3juUF7dLCskAie0EcpAh5NZqcDQMiK5UjvS7dgXJanhJ4uuasyOQLUd7\ncp8eH+p7i0gHxkBzJXIa++wMXDZIRO8/FKdPm1S0MXKNc0mNUyatcWkjfz7H+0GFCEcGmfU8aQ2k\nC1WayMBPIHsM/tGBQ+L+u0Cq8VZnSBuau6L6zZJyd3RP/Rut6X53P1LEou9Dj5G6zV0SauKJF5GB\nPtR4DFuKZnZrirwcfITcJCCHhWtA2Q/1eeNQ9a8enBxR5cuiFxIg6zaR1yXaUL/vyzfKjvTCpPuQ\ni772nKJXvbY+z/bIgSc9MYSHv02krAfscWpZfZTNaO7stxXNjpm+N5PTHFl9QVHsaEp2prStMa/v\nab37fEs+Wq0S1xoZT2kuuvNae8MYaK+U1sREDNTUjOo5fWFV90/6kuD6PJwl2vJA99mGR6rZlw2Y\nBnIcn9f3akTxF5+Tvau9jSy8o3YmgMAOt9TeD4gEtEgbdRtIwrqg8oChV491vwQpjpMXFe3yMoqq\n5yNaszvwGG3/RGsqBGx8eo3UOyDQc3EfBnuy0kOy0asSHSMUGk0is3wEqo+UzBEQ7oy/S4KockFx\n0B02BomZ6DKebuRnAAAgAElEQVQORAkbwH+bx4qQeHDSDO6QMmm6/jpcaEufuWDuh2rr++8L0dAB\nIZIH0j9k/YaIdodJqTrqqW+bRThdkMxMIvNegV+t8ivNrRHweS+r645zpMOQ4tYFedKJEp2uEL0C\n8RZNqY8iVTgFQFQkIbQYwgVgTSKn5LhP0vcDIMRh7E+YNNkofTQGZeRVgUgPWSNV1SPEnLYJtXeC\nKF43TkpDw5e3tUcqnQ81dleIEH94Gj6mL2gNj1/XnG2sK81p5TXSpPJfMjOz/Jf0/d95Q3D2/cuk\nh7beMjOzyILG61RYn3f7GvvXHSF0uu8LZfHti0rLnbsje7v7/JfNzOyFzqu67g/V3/tjIVuOK2/S\ngv/BMvsrtnpFdrX+1LfNzMzJqx9vRBXRfXrnW6oHqXzfB10w3nvdzMx2utiOZb1ePyUbWfU0L5/e\n1z7796SrTj4PSiKmtK4zX1Nt3hqesXW4pRoZUrO+q7Fdf159nUzrTPHy60IAf/fzqvvgJ0pbmmtr\nDxrtiLfmYQb7FJN9KHzLRx4qMrrqyO6+u6I+Xv9H7WmXP6fJcH0otE/jV2+YmdlC9uQICDMzJ6y+\nTy1rLD3Qa8MhPE8jUkN2tUbyizIUIWD5NdIjQz5wBSnnygHoCPhGsvC9RUmLHLvaI4ekkgzhWxqY\nn3qoNd0FhRYmdW/okGpIyp+TBBneBzXH4dBjvwyRvu+FiITDKzKG+yaK1HYEbpZ+xOcXZA75SMyk\nj6gBRQ0iKOzXP6nruvRfuKbPe3DAuKQdRNl/Bz3Q1tTLP9f75/CuR/oA7UolZKvic/AemNmwmrAq\n6I15bMUe0rq5Q831+KzWSKOh+ZYmttwf/7Ncj99SJpZltzPMVbdCChd7eJu95QF7TojofKWo1yP2\nQBupD89f1Z6ZTIP6WtL6G4D43r+ltfBwV8hqR8vUUtjJZkZjf/a03hdO6XpHFa2tFvw8w4p+HyUF\nrnyofePDH4hfJz+v++bOaq25pD91i5pTOw85j8OxmCxwViDN8uZPZc8S05pLj53X80ITtEFsGb4O\n0Axx0mkX4kIYFvtIYTO3Q7NC3ISb6sc853/vqt5nxqQ7FWSn6yX1q0Mqy0SeTIGM7jM1SWpKS+/H\nPEstrHLeJwWvewhqeUWTY22GFPQGsKoTljGp4N04SKUciJkB/eDDs0kBCs9Qr0XN7Q6p154Hao55\nFE7CV+gTVIFsjRRA9oMaqcPHamaWHoYtnOrZ5q7u6cBnk5/XWAzgRDU4Waendf794KN3zczsO29p\nT/l8T/w+EwtkkvRA14LCb8H9mKLOkRhpjo7siAOyewwadnVefZ95WXUf+9fDTjikWx3e0t751ne0\nF6bgU5q9pDHy0xpjfdYciOs6kt8ZF+5I0jidlK4f7msNs43ZMKL6lzY4x8+RM35VdqaOXcml6S/y\nO7tkAXjwMf268v9KEjsoQQlKUIISlKAEJShBCUpQghKUoAQlKP/fyqOxrv7/XUK4nqbgMpiA+IwI\nwlRfHrJTC/KSJuPykjrk6BYyfpRQvqXyR/L+jeqKNJSP8MiN5cnaCW2YmVmlDrIGgsazEOTevaH/\nP/sYvBsz8naPUP5Jn9L/Ew6syxH9bpI80d4xvCwpIuComTwk9yzW1veLHymisvqEvJ1zY4jH4LTJ\n9+T5a4X0//Ix3DZFeUWHKXkuY6hMHROaOOPqd/287u+m5CXOTs3YXAtv4Tz5vXhKuxCGWUUe5nRd\n3+vehYsEAsX0WB5cpwxZW0evWYhoUyFFr/d24fWAAOwA5ZcQJJu9CrCiE5bCJPwMebWtG9N9Gzvy\nUnaJJGRPyWM+nZXHephVO+/uK5c1NFAfZVHSSQ1RnKH5KdSlUi316RGe/QjRnEROUajJZY11+qz6\nYxNy2BaM38vn1I9Ts7r+EapHhwe60XBO1xtWdL0yZHqIDtnMi4qYTnYJzxTkIY/v6HfVA8ixyA1N\nL2vNHG9tmJlZDVSWM636zcyqP5JtrbWNWyIhbMDGvvTsqq4/Ka93PAufUQOSV+Z6C2/vx8o6NSIu\n8JdkIDoewjtSKcvz3xnrfQLizdQiOcPwIEWIoJfv6H6RNHwC7m/2Jv/zggPaOlyz29b6qtaJ+PG9\nLpwn00uq65h1E87Jw51BJaj2QGMSgtMqpuCPtfdRiIHXogcCJJNRH0yf1ZyfymqOTOfU1h550I0d\nKZ80j+lTFBVq9zWXU6c0Vtkca4X6TcH1svCMrjd+COlpjjmS19jWSvrd4P6GPk+Tb42ZdeBgicHx\nkl5SPS89q0h1P6/rZqK6T+wp3bd8Q3O33dKcsV215+BI9e9nUQTDPibJc++geNAoy642GJczBa2R\nGGoZm3dl1/fuCzGz+YE6vDFSf596VlG5wrL2gUIO7q4VIhQnLMkhpNxlSE1zRLI75ErDoxQhz3sw\nBjEDcsoBHei4RLfgAko46rdURmtnBKdCY1dr/6is3y3MEf1Kogh3Tyi8vQ3Nm4n5sPVakNfDQVUH\njuP1NJfb27pmjSjSCKJbNwoqNKSxikAAOJ7UHpmkjo0G1xlqjJJh1TUOUfCoRKQtBbdBW3aqB89D\nvUzUvam5kCDQFi9Btu9H49nER3CfZCC3HndBcQ6Jljc0hz1W6bgB/AgC4WhfY9Ht6PsRUARtlKu8\not7fjYLcnNGc8uB7avQfjVNmJiYS2drkZ/R6rHotv61+3P3aD8zMbA2utU5H7UmGtQ/816bG8rHV\n31U9NnS9u8WXzMzsqZLQG/dGL5uZWWJa++MzlzVuJYjmV/ZReHtBa+rtf/y+mZnd/BONy8pntaYG\nG+rnZ94++3EbevFv2Te3/52ZmV2prpqZ2VZSiMUXBkL8FK6LnDac1ZqLEnl+pvZV1WuJaOMEUdK6\nrtMo6veNy5rD6xXN4eO7EO+tP6N2HEAg/OYblvkiiORfKoL6+J+8pj7ZBKFQw25/Xn3RyOgs8fk5\nKVjdKCh6n1gUiXBqQwiGm9fV5i88C6IDDpUMaNwFRAu6T2lu3v8nrZ2ZObgEnsWuDV+i5/4t+vv/\nqaRmZXfmIb6MZFiD2IuubmMNnwAX1FHGQykHdJIDcW5zF24aOBIGUaLlec2tTgZEjL82u/pdO4mK\nEMppY4g3PUQLDLWkBApkjk+cC7fVmDU3AgkTgRizD+pgDGdMFCRJ34XvDhLRNmQ2DujcMedWS2ot\nDuA1ckCuRCHQD4GccdmffQWYEWvW57ca+ypQRLzHnu7T6sseN0DMDJqoOvE044KYycMptwJC3cws\ntjBnbbhnag04HTmjHYTEj5Tw0XqopQxof7gFh6P90n5bScGblpuGm5FnEp/DJANZ8+5tVIio+xgu\nl/It7YlVOL0msyC/6cMwHIMGUe5kGlRuUmunFVVfdWO6fgh00ACVodyK6lfg3BwDSXPnDeZOR/Ur\nLOjz8hZqmsdwAaLeE4d7cQbkThcE+NEWSGdQyRdmZTeWXlrmd2rHgM9rO+rjbZQODzvsg4zxVFpz\nKxZT/SvwFGULcLD4NCEpznRR2Z8c3IZZiG5HR6r/1qZQFY2O+jluOgu1x5pbLdQLI03ZiIMj5jpI\nmgbiC/VDuCkdnV+T4UdD3Xljfd+jATHuPyAbI8QaG4Pm7YOOrt+XTRz0ea7hDDyLcAeAV6uApN26\npzNmDHqlOVAuERCmZmb1zMhSZpaCWNwx5hrPfoMIwhIg10Zwv04uyx48vihOsJlzQpM6Kd1jiBpl\nuwvv5IizBec4HxNfbh3xO58jUnOiyBpI1UALoZbUI/PFhUs1gyjAi18Uh+upNe0PI/8sghBFs8f5\nGTW6bMRXzJW9GKHkWy2qs8ZwDfbrWgNradXvT/9QWUETk5prXstX4yQbo+fbXYQ3rqEmCLLx15UA\nKROUoAQlKEEJSlCCEpSgBCUoQQlKUILyKZRPFSkzRtfbQ26zhiSeh5RUuUr+fEyeqAb5l8egLyqo\np3T5XprcMt976RIhGOJtbRFtWyJSu9uTtzEXU4Q6EUECL6KIxiCjiEsTTpvmnryOvnrJIZFzx2Cn\nr8ECXSIi4CnS3EMONBWXx23Qki/s/k15sbcPhF5Y7ciz2MUbPLNI+1DMWL6gSHF5qPYtnqaeoF3G\nKODcRvFnbk3fT0RPW2lfbWt05Cmem5DH+hjpuZ1t/f/wLp7qrtA2U1NCbgw29b29bfVJqwbiBa36\nTEp1vf/mr+hTRSFCps6K+vl0nUeTjEtNI0dOfvHGdUXRfTWotXUhUqZO+TxA+vywpPZ0iZQuPK72\nDkBn9Yjid/DehkpIhm6rvkdEuecvCUUwvahoSyYN83+dSPSRPPrTvkwjUbjqtryqG/ek9JOB8yWB\nkkSfoFKY/psiZ/XiE7rf1k3lpjZBQ1WHsOvjtXaRe2w4oMKQUJzx8zhPi5Mg0YBrYl9z5BgmdA9v\ncbhD3jpqHM0bqndxR2tjSAQlDyihFlE943BMpFF5CW3p/fa+cptbA82f5ITGL79KZOVY/TAsos71\nwOcaUjumkfbLTvmSvL+91PGUu77qg59H/QHyjkjVza3r3lNEOkeggsIF0FbnlGcdiaFIdchauK8+\nPDqU3ZmFO2RwWlHslWsaszDKCJ1N5MUHIGR29bv2Fsz5RD0msvKgP2yKZ6e1rWh78rR4eRoNzcUM\nakiXPqf7lOLIn2PvUuTWHx7R97uyc+6S6r90WXNh/pxeW9jR6SUUEojGVEFPRZawV5Oqx4DoXP1D\nVJ9A2Ligy+bn4SuiP8sluA98tAOE7yhdW7sKOgyOlwgqI1WkojNLus7yWSk9rMNX1CUi3UYdr4YK\n3klLgsiI19b1J0FKxibghIFu38tqDlbZL9wQXGRIxw56fi408tKob3nwohyDVCoSZfMRPafgFpo5\npXmwPa3+qbVkq958+9g2iihWuaB4VmTjE6iaNfsoADZlrzKgTJdB8jWRqm6glOLAfzOOEX2H5ycM\nh1abtiSGoHxAIg7rRKmJ2Fkd+XP4zeKMpQd4KgRPWwxp1RCy6ANy2iNp9WEa1Ygx0XXz24O+eYQ5\n0Y3Ch4Yk9Awo0AHoJOvoxh0Uzhxy86Oo/3SI5secRzvi/OgdcRx89auq19fSmoPfW9Ae/crrOivU\n0vCZoFjz1lXNrS/+6HUzM9sHlbD2ipQjNm6r/vmu5sBXK3+v3w20JptnZHtGNe3d15/ReF0uCmXb\n0/Zl3ne09n7u6nX2K/DufffGx21YPnrRFjzZlI+WNNcWr6OkpiOB/TKifq6BhOnfUnRzMi8UwC5S\nqq8/4GyEUuaa8yMzM1uKfVYXOlJ/refEz9J+wFo6FJpl7sWE3WadPpmV3frxDdQqPbW9n5eS03FS\nClWRb8G3Y+qTlX1FYBtbcA/UhULKfElonkZW///ybdX57z7S2ePCU/BEcE5860nNxaU1jdlj/0V2\n6eBa1h6lTEMyNTmhvnFAC3QdzZkWakA+KqGLnTZkw31uGRckS9vV7zogoNMdlLu66qc0am9Dzss9\npKHDoFcdPu/0QZuhIuKCcjVk5BuonCSQaXJRRwqBbmuhqpRM6XvNAXa6oXqO/aB6AtsAF04YNbs+\nZ5kI/FIGsmU4hisGrppk01cYov6gsfuseQcUdiSldoxB9Y1QM+n29T42BrVbwcbABZGCUy0Kx423\n8An32ORMwjzUoto92eXNDbjiQM4sJIXo6le0Bo8GQhkU6iePYTu0vemj9SdBMGThOEGV0m2KjyME\nr8VcivOVxx7UVt1SnBXS1L1Am9JkCTy8AaJwRmMQX9bnM7N6puh0VY9yExTxls4GXozz5wLoYeZQ\nJork1UXVY70AYpNntckZuA2PZV/CoBoKGe1X4b7qXa3Akwc3Shx0VtiDT3RaczyXATEC1+PHUwhU\nr68OOvJhFQkQMZ76Ze0MyjkgZLpHaucHuzrLRfexv1P+3NZ9ag91HV85bZmzYRzVwBJch4eooDpI\ngcXgHZ1YVP+6UVARnZOrhpqZRTi71eH4TF8CdZuWzRrlNd7NIsj1sMajxv3qKBYn4VOscF6PMk7H\nbLM/+fE71E9nkq/9L/9e9V/w0V9mTipkg2baepzZu1v6bvG25ujVK9o80qBvGx2dBxdB3Xzlf9Q1\nWynQ70PVbRKEyyihPgvDV+eA/ooyp32uqTG8ngnsaq+uPT6WRLUTe2fH2k+KIJzPntOeeO5pFBSr\nGrvaDe3VKbi8YpPYa18xOKIxmAI1FDbN1U5Xvw9l6ctdnlEWdeZauwKvU1trKwJ612VNOccgb0D2\nZEDu1XeAMf2aEiBlghKUoAQlKEEJSlCCEpSgBCUoQQlKUD6F8qkiZeJZRUImVuQVzKXkgWpsCn1w\nWMPDRA6tG0cBAG6CbFSeryi5a1GicP2yvIoLl+UxGxH1aw3lcVs8J2/q/i15xBLL+nyiIs96eEYe\ns1kPVSg8fQM88t191e+gDs8GXmgX72SzI69tuSVPWzyq9u1G5VlMnNP9ZhfI8YVRe+6M2ncXpaBc\nQu2puPJYzl1TxLi1LS93DoZ3F69zi8jC6lPos5MTmHJcO27Ii7eNwlRqUb/Zfk9RgFNn9d0J8t+q\nHXkzJ2N6f9dTm3Pk+6W6iv4fgXhIwP8Q2lNd00uaWkdEDOJZkDXRR5tyOfIOm2N5knsgQiJxErZh\nCO+X1dd7VX3PhWvh1Oc1x5bOK194/0Ae791deX+rbXlb+7C8RwbykMdhU5/IyQM9JHJxtKd297tq\nTxNxkuS5WX5P/uG27lOYkTd4YU1z1CMHuLWpfg8XNIbxMCiDXfIe9zXGUWhDTj8FX0dCnvz71xW5\nDXc1JydmyJtGISYHJ8t2F/6kDuiqOY1n6pTWgBuCA+Z9ResJ3pllNF9WnyYSMElE47YQMGU4h44O\nyaEd4lWGWTw6qQstLKkfUxNqyBFKGttF9WP1SO2M5VXvBKot3ug3e5P/eWm3fW4XecwXYab3QD+l\nUGObPa029yJ+VENzswSqyo3q+y14hfarqusAxa7V83BK0XdTIyKPsMCnUN3pkONePILJH5Ulp0wu\nO9Hps6CqVp9RH9U3NlTvKDxORENiLh7+WXL8s6h7kFe+SUSjsQ0XDtwlC47szgz2ZXJO4fbrnQ/M\nzOxoA4WaPY0lAl/WHzD34tjlx7R2anuKaI9QxBlN6D5VV/Y5VtJcaxGNSYCySBKh6IEkuXtbKisJ\nR1E1J4Nq3JLaNTlS/8bjWht7ZVTo7hEFJF9+cPRoUalkn8gxPC0pkJShh0IohSeJHMOJEE7r8zYo\ntTb7zQh+lXEMniSin114mCo5uDJQ7yqsAHNIECECATmTlrpMPgcKplm16UnVsR9S2xOr8I2R4949\nhneBKFMBu9KbwO4cCCHRaGsM4xV9rwfa0kNxMJxBcQDeJCi/bIDCSByehySToo+KUmJAn4NsSXRV\nd3fso1z/pepda5N873nUH9JqR3tH/6+hVBNu6XWUU73yqHZYnnxwuL26oI/6Tc01D/4jB86qbkL1\n6bCWo62TK6aYmWWfUkf8U2XVzMzW/0n1zV8UYuW1ZyUrlHlf9x1+QXN/8X3ZrXtfI//+bXGr/MM/\nqB+voTayiZrJwR8r6pjd0XgshtSe7w71u/m+kCa1m0KCnjsWYmfys1IvOWpIIeZ8W6pOr3UWP27D\nwfM37cIHQtW98FBz7IMnpNr0+C+kGnUvLrRJdk9olWTqe2ZmdqeJ7VjW76d+KjvduigkzmT4j/W9\nmu5723QmubqqqGHhFgpEnvrhBduxf7wD+mkEcu+KuGEqG0LluJc0F6Jvah2uz79sZmb3QXHV12Sf\nZ6pwn6AINf0z+B+uyT71F9RnZ011H25rzsdRP5oray2dH4tPIn5GvDrrk017lJKME+GdRbUNdbg+\nymCOq/q1QX0lXY1132Tn2pDNeHEUXEAhZOugl+pwvVRll3sdOAtSrE32RreJ+hOL10eyJODZG8Cl\n4IBQScUHfE9rPgQvVR/kSxL7PyRW6wzUv/2kbxzguGnq85CDPYugjMn9xpwpEkSgPc6nMa7b5X4Z\n1O+GUZRi4JkKs594puuPwrKjY5A/YbjWynWNm39WSGc5w/G7FJH6Aeg/M7P8dMraqKOW6+qPd9+F\ni3JO/X72Wa2J4XDVzMxK70rKKBL6hH/jt5Xdj8ThVOvLHp+a0fnQASWbmJfdDvuIkBCoH/akyLr6\nfmmksXLg2YmAaBxG1MZ8HhQsbWl1dCZIdvU+6amt8Un9zoMTrLSjtXaIylOjAKcVZ6kBaIQMqIJE\nUntWb4YzBvtIB/t8/J7OBjFQVvE17e1ZEJIOZ4EK/HKdLrxFKfX51Kz6x4N7LIfK6uEm2REb7Gt3\nVc8OSL5SQXNz1VX9FkBDdzjr5eDZ26tqPJwEyKAJPRc0R3DDwBdSa6AkBjoiMQsq4wAFnZJs2HFX\nZ8M20J3Miu436T7aftPnbFm8rv6zjJThrl2Wve+g0tVnfJMgMCMg94/fFyfYr0Dc/P7viR+rmudc\nzlpdWdP1Kn3ZlNA0iE/nkzNUoxmzfNS1GGP1cEN73g/+7pu693/8upmZXZ3UHuVzWPXjmtPpnPpu\nn3OgHVe4l/pk3vM5CLlnWH1fhXvqaF91HqCSev6K7PokWQSRNohzeDVdziS5rOZCDPvR7nGdPb2O\njjS2DmtwCmXbNnydNVBjw7Dm2qCm68YnNKZj1EbvvC6UaOgaz5Yvaf8YtkAlR0BduTq7tVGn80Yg\nF+EyNJSEf10JkDJBCUpQghKUoAQlKEEJSlCCEpSgBCUon0L5VJEyXkNe1+Z9PFlEuvtV+Yqi5NHV\njvS92oaQLsVDeSmrUUUeap6iM0sritaU4QlZwwNfcoiqJeWV7MfJbQ3r/ShGhHzE52H9vlKSZ64b\nIo8SJEpqTt7nfA4lHZSNOikirNNEAA7Iz4exu1aSdzqyqEhKOS+URgSPYQQBhTAJ+1EQRNFt5cTN\nLsvb/f5HRFBcPJIwcHfq8uitrCoyu71BPuROxZKoa8wniPa3dO1BBR6Ltrx7/a7uPW6inoP6RPcj\n9UF5RlErB0/8mL5JkYOaX0NtY402wEGQdDVWldpvZp7+16Ufh58CVY6JKdBRCUUGM6aIZbMq76oH\nf08kqXonUU7pgFrqbivHtNHS5wun1O7ZvDznVlE7Du9LtWlApLjxQHNhUGPOwJ0wd1q/m7+snPy9\nzQ0zM4tPqX/nQBvEQVPcvaGI41FRc/7S55RH391irLZ1n1FJYzz7nNBTmbjau/GBEDbNtn4f7skL\nnUW1KHSocSun9LkH35BDHvvUS0KPpVFNefCWED3H24okJKZBFl0CxUBUKRPVOO/0WCNEAUdEuo0I\nR3yk9mYd/S5Jbm6cCM8YTos4kfWpeY1fJg0kiOnRKp2cLyQaRQEFxMEgpvf5A9W1jse8fFtztgoH\nVAQE2mCOiCoKWoee7EuO9XfqtMZ2eUF9t4X9qezr+qU3FFHIzGmuNVG+KTHXPNSKClNaE06fOYxC\nw4vXFPX45Y9Q8yChOoLiQIgoSAh0wsiVPXx4U3N0vA83yqTsyuLkAv2g/jkGzTS/pDm0OguXDXwV\nLmt/aVqvnbZ+2IU3aHlOkd7t9Iba/5HaX8gokjB3WWt76pzmzEpG0fMwa277lubWwS3NyR5Ix9l1\n3e/044qItGb1vnZXNqbBGvBzjFOMc9hXC/EeDSnTBGWR2oTrwaU+24o2RRaJuF5cNTOz+XNq9yER\noSIqHUMiHiMQSDkUD/pEI7PwPGXgponEZEO2biniWqnBXcY8PSLCM3aGlkhpLrTJvW/CndJC1ax3\nyALJ6fM06kjxGLwPoCOjxQy/I5rsKfrVgVcnQYTP52EygjcZ7tOHByLUJUcdaZNwFZ4I0FuDDjwW\noENjbVSjiMB2dzSGg6j6YtRA5Wmg7y1OkcN/WlGsGlxmA6Lv3p7mwh7KNmHs+uwFzbVkQWuoRLSr\nhkJMF6TkKPZo6kuTazpDlCqocwhoYlc2xQUzhkvmflX9dPFDvc9d0P27JUUTw08qslvNa600VxTR\nvtoDEfQP6s/sFUVG633twy+f15r55R3ZyY2quFvGf6x9Yf7/Uv+fuSQ+la2d51WP1Tsft2G66Voh\nrzV3Y0q2oBQRL4vTkE2ayv/czMwOll82M7OFhl6Td/T/SBI0SUa/u3Zd/b3/ZY3PqKg1/IfToAk/\nEjrlnQdC8FxN63s337tq/YLszC9aGqu5n2hMnjmviOubA7XV81G6Z8VLZwPdI/MzRXkXX1abttlr\nrqPAcoV1a/d+38zMHiwp6lyY0JjdJwJ60Nf6q5+RXXuqpANX6Pr79iilBSo0HAJtOpJ97420dmsR\n0KEprU2HMWj01P7GSGsjXEfdJIFCTALlsJR/PewbUio+D1TPATHoI1VQzjLsdijuf645NoBrxUVF\naIjeSTSa4L36I4QyUHdIVJ4zRRi+pjH9PUB1yhnqvn3/d3DUuB3ZvzhIFQcT04lwJgMNUu+hqgKn\nzdhfuyB54nEfuglnF1wNIZRvHDhlplDYmYA3a5QHGZMCFdj/ZJ9wklHzH3sq+3qeODjU2lsEHRLm\nTJtDWm6b+w0inp20FGZkR6aBH8VAULTGel+roTaJalwuBb8QSMJEnHuFQf1yHu/Cc3cXRcT9ltZ9\nP4R6T0p9EdrGHgOYSPOk12HPnJmQ3ek5ss8uyEavKXt7h2eyxRX1Sew0ijgtlCFNY+aiwLNV1Dmy\nxzPPfEI3TpxS/Wevyc5HQ3CKMXeaB7r+dlV7sAfyew9UUjqh82j6FGRYDdmA6Sa8gHBEVu5ojTuo\nCxbh4/P5Bct7GtOip/6bvqS1u4Dib25ar5kIvEZ5FDXzqt+mqz07zNoocQ6ul1Xvlsk+u6CCT1oc\nf3viLDCEA7PegyeUjTmFAlkk4Wdj6PM33viJvs/+98xTmneJafVfjHZdeEH7z6AjmxiFZzHc/wQl\nmAyNrOZ0LAMHa57n1EunUYRFCddXSWvDpxYfacxqRZCN92S3EzPq4/xYfZKBR6kLoq5bU1tb2LHW\nkGc4EMa4gAoAACAASURBVIctk33Oxv3zKMg31JiyjtrY4mzSTfhIas7zcZ4H4mpjeJJn1qjmbMa0\np9XgAutXUU0CPVSYkD0vkYWxzXm+M1C9z6xrDU0mQtQXVJkP8sf/MPKVJRM6k/kqcr+uBEiZoAQl\nKEEJSlCCEpSgBCUoQQlKUIISlE+hfKpImbaHckwZZus2HrcD8ggr8tZGH5DzT+RgFCfvcBFNd1/R\nJgs78iW4WCZRaIC1PuLisUrr+kdReTcvT62amdna0/KcIZRjNVRB0nhtjwv6XRMG82hB3x+55BTP\nyKO3xP9b1GfhrCLHNXLmptZU73iESMV9vKRjfX/mtLzLyzCsbxwrjzxGzt7ympAw6bFcclNEZo5u\nydOYH2tYo/tqd3G/ZIMteeem1uV9rMOnkWzqmnsben90V9F3dwQHAWMzwBva7snLODGnqI5bJ89v\nUq858nsHSXluWx2Y/uflZY14J+cKMTMLtTTmTkGe3XRY9cqgxNKr6n1502fil5d3+gn1XQWejeqW\n5kKDPL+ZdY3JzJTa39vS2N5+ICTKzkONcX5a3t3ZCX0OnYTFLpNDSgR03ASFgSpU9JTqmx3Sv7fU\nr0PY0ifgJUmBhmjsgYIgPzxxYdXMPuHCqTfU7+M+EQGD8wGOHwPlEQIBVLuudrRBK6TOyoM+t6Rx\neFgSb1EX5YdoRiiFLJGDDpH06i2tvTKR84O65kMYL/I8XDMea3BcEXqrVtN8sE15yUOOIqfHhxqP\nXFb9EkYtqlHX9at3dT8vfnIURAOFqSjs6ZlZzY18RnN0u6hobu1IfZjKE+WZQJ1jTtGY6TVFNqdK\n6qtsB6RDn/Vf1Vw+vKGxrDXVt8sjok44wAck98/NCZUWAt01Nav6NMqaI4OW1mstIwRLDLRZvcRc\ngBurAedNqKd2xsIaq2gOlNGq7nf5MUWr2/B61HdVz8qm1qJv/8yBxyiivPaxgWZjDoVRFeqgsJYZ\nqr5xeIGaKV0vRa5wPCp7F2nr8926okeHNxVtP/hQ9R8TAckuqL9jadRU0szlc2r/7gZ56rDuT4dU\nzywImTrIlZBDGPCEJUW4MJTR3Ez7vCgpzfWFRUXjnDnQBaicJFFlSkbU/wfY3V4d5SJQegPQcGPf\nBvY0P9ooRwyHKE+wT1RZqyP2uUg0bDsoExh5zG4YNTdyyytEcyJdXWOEykX+lO5Zg2ei0tX/h3Bu\n9bpwtRDlDi0yd47I8/bTnR3mgvmqTUS3sQchotyjrs9roc/j8FiEQchNwJ+zeEFraZxTfV2QdZMF\nra3lx7QmIvPa8z74hfqivCl0hR/VH7jwKy0JUTNzQeiJHlG9CvxK47C+3yWim4mpPictUy3d90xT\ndugfzqqfykMhFq/OwbX1Bc3FX33/c6rnsaJop/OKXN53hBiZ62oOzxwKIfnNpzSej/+BECixn6uf\n3i3IriaHssuf29T+9O3I983M7DN7UnGqf15zaol9buum5vK9r36Sp34zNWvbr2ucC6/AT/W22vGj\nF9/WffbFKTM3r3o9uKX+yieFNtkhr7+2K/6p1a/rfeFV+LueUft+GAXNnFc71tK63vCWIvjNJ5+2\ns4vq05m3XjAzs4OelEDuLWp9nf+u5sI77EUvvKm51/i8orreZc2d7/5MsKUvnlOd1kF+hFFz29zW\n2H8BxcYCimT3ItoLkw91/5lfCMX0M0eKUbPlVXuUEmpq7BtHsgcJfw8OyX4MUAfqhOD5gJ8o0tYG\nUYYrMY4d62rqWi7G2WBK9nkAx8wQfqQY57phA7QuiKExXF1hIsYhItg91JnGcKh5Ie25IcLzviqS\nBxLTR//6zCkjEDx9OGl6WdXHhWYjDPo2CZ9gr6X+dqM+Klbf81WZHBAxHtxeIX+P7/uoNjjTQLAP\nW/DTwTviwHcSAaU3B19JfAIURxReO9B0Tl+fR3z1KzNzkl2zA6FDHLjCXoS/JXtVZ7JRVFxHvYjm\n8tQlUBA7n1znt5V4nL6BW891aStjVtvSOu+jupNY1jnPgStx8YLQCQ5KLz7isFtE0RF1vsY+exGI\nFQcepgzPPGMUDfc5u0Q5/7qPyb6kQ/5ZgHNuQWsyNtL5NwmKeG5ee+JwDIK+gkIYKpmxFdXTzWrs\nQiAUBw4KOXRdLKvvZeAs7MDd0thUP5R2QCU80Nllelr1fOLx5/R7OGNmI7rODDykNTgn43CnNT4U\noqZ4T/3eual95+EOCpUoYZ69ioLaec2VKNyGC6dQwUIyMgLiqc778CnQUyiPHbf1vtR+tEyA5JTO\nTqdf0NrIpHX/WEX1PmyUuA+I+J7us8Q+//JV2eH+svo9x9lt2IfXb4BtiKB+G4E35YGu2/lnuIxW\ntW2RmGtehGeBJdmz83+U4b3uWaprDrgl+IkceEaZO6cu6jybxACEUeUcs/d3QLw1WfddULCFx3Ve\nHqPYVepoTwwdaQ1FxqiuoeLUxV71EYgMgagLJ/V8nJ3V933UkYuCYw3l3CSGdwhSOdGXHRjxvN8b\ncL4E7f8f/9tvqP5w4mQm4AKE2yoMzD+RB+WLvfXqKLHxHBLL/mY7EiBlghKUoAQlKEEJSlCCEpSg\nBCUoQQlKUD6F8umqL4XJb4ejJVOQd7I4hn35PN5ZXPOtsv4/+5iiPvmkPFGNY/hSrsljV+8TcR7J\nSzt/BXWTfXnGpi/I27rs6n6JC4rSpRN4/vAGe/Oq3+XHHjMzs52HG2Zm5i7KE5cgute5g0LEGBZ3\ncoIrOzBno9IRQlWlhWcwSeTXjcozWa/re30QOlXyH/sbeLtjMH6jZlCCK6NbgncFhFFxD88cPAPO\njmeNQxSfiKLce0gOJzmXuTn1SSYtj/P5M4pS3d1SVOnyU0St8Dr24f+ZBnFSG8urOTuhiKKHlv0A\n9vRcRt7BSo5I8AlLdFL1S8xobENtzYXRgOhYT31SPoTzBcRFrqH2NB+Q8x4mnzql9l+8rDmRndL7\njw4ViWg31Xe5gv6/MCvvb5gx6nhEpuuoMd0VGqB0oMjBgIjwM+cUyT26rwhqJAunyxNqR3pE/vyx\nxrhxqLmzfF6e8wIqKGUQOMcHtNPRWE9eQblspLUThjPo6A5zxjROC2fk7Z6DL6Q51NypoPYROwW6\n65zmdGdAru+R1k5vT/cfRvX/5ILW3MJF1XNuVeN//EvNk71t9V8LFIJrsOx31G+5WV1n/nHxtLQq\nzOGK+ikcB50SP3nEYdhRHSu7im6PTOglZ4Jcc5j8j8h5Tayq76bmUNPx4KRJy8PfQUXnIQpZo4rs\nQRjOpnI7Qp1R4NpWG9tEMfLn1Ecz87pPqIykVZO+IIq/d09juTjU9Rw4qsL39flGkXXdVV9MzmtO\nX/qM2hfHEx9GlaON2tTepqJMLdaEh0RYva77n7qgsZ65xJi3NPfaNdjiQbps39X/j+JaK6vXtLbP\nzSmiOKgR+bynOddEWSEUISrX0Zo/d0ljnR+pno0EUSE/qnWs/p7Nyq7PL8LrtEEefQN+JJTKoi7q\nIaOTq2GYmSW573ASzh4U5gYd1aPO+FU3FU07bmlNjye0T6R8ZbNFED6gwY7uEwkOkZefIIIPN8Ig\noftd/pyin9d+V1wa7/xSCMjtDzXPtu7WbNjT/J86rfXV81Ge5LrPoGLUR8mgQ9S8cZ/1kmQukYft\nQugwypGjPqM6pdKaK4koUeYDkDU+4g3+iGSbudv3eRyIWkXV1j5ohBCcBLWqr0zF79fUZ70aUSlU\nLsJExR1QYeGR5k4RxTOfR8NQkTPyx92Q1sBuEdRsSffpwfNzSIp8x/HHQHb9pKVV1FjcfvcpMzP7\ng2n9/vtn9Zp41eev0tyJPCO79fgDraWfTQqN8VxL/bh5rHp3kmrPiw/1erMh9b+Ll0A/fKQ10ixq\nnP4LKhv/blGcMT9JaF9bNu1H7y5qza3fhWPnba1J+1Ozhe8sW/KyEDE3Xdmgr8ANsXtX9dtyZVvq\nUf0u9JjQJxd+8ZqZme19R98/9yz1fUPvL+SEWvPxR599Vei8h38Arwj8JW+e1to//YushbLi2Wk7\n2itzM0K8pDzZldvP6x71d1SHN/ta55/5rl7Hc+rj3+loT5o4Kzt0YwHlxIbG7ImXNDZeUxHX790S\nQq91UX35lS2pM72ZV52fQznsJ8+zdv4PO1FpghrefxvOG7hlUqAdPBDdDZCJPnpsVNQcb4IuS2RQ\nj9pQ/Q85D87PsnZN7beQ6tfjvh2wLAmQLmFQCWHQs70B6nSgxqJd+KDgdmhHUC8Z635x1KR67DMx\nVOY6IHASprU9QMknMvRVpohEgyQMcf+MaRGOOWuO0rpemH3I47Ejw++G8Ee5cE3452QPtJ3PgxID\nJT0a+gp0sgXRNCg+Fy4JIKvNJPyIqBiameWaUfOwNZNpFEUvEzn/HVQNV8U91OiJ2yj/NJwToXk7\nadm5s6F7f6C6NdiqVlBYPfxQ997fF6LsPHvQxKr6am8P1aIO3GBwCI7bsmsjVI+m8qwRzjAVlGNC\nXcZsQ31Vu6c5tr+lNVOHe3DuiVUzM0uc0lqcX1afnlvWua6SYO8dg7TP6oy0C2/HBFyPoWd0/m+B\n9MxMaa5AW2TpKdmNSJr6pbTXdzkzZOY0lwqO9rdEUvc7rup6Ww2dL5M97SehguxM+jRIHxD1KVAb\n9Vmfv4g9fk/tzaM0Waizr5X5/IH6szGt9j6MqP9iaVCvIEXboMrGfb1ffFaZB1MgReu3T86FaGbW\nB80WnlJ9PHhLGyDiY9QvCSo53EP1iv358pPnuZL2m0zIP0/D3ejCTxVi3/b0muBsHPvnSkBHHQvH\nUxZa1G/TaV+JSvY0OmRdc68K59+7D9g74KtcnkQtjqwKr4y6kc8viVkr8YxQLsIHxx6/VtDci4Q0\nhnVQYPOTmjMJ3g+ZXB4IwZ/+QHxoD0u/MDOzxz73spmZLcJtM07rNQKCubgl++2CjoqGeT4HOd47\n5CxDekR2Tahe4/69JrxQKFKOQW5GQTWlQRk3QfDUampn+rckiwRImaAEJShBCUpQghKUoAQlKEEJ\nSlCCEpRPoXyqSJkj8uNrLXkFC7OKEpXHikCuES2sD+WRKnX9/HlFfxqwKm+XFEkpTMkLPfDkfa2X\n5BV+7KrysW8fiGX/AqzqRj7gflGR4Z2RIu0plGLKQ/I4M7rf7ZZyTC/PKdIygkm9nkNNZShv8ySc\nLys+eX5fvq+pmNARo10iAqA34mV0zoluNu7JMxeHaT3dlSev8aHee6gv7YzkzR234dZx5Z1uD4gE\nZ9QP/XHaYlF5GZfn5fWsHesei+uqk4NyTbGCKsSqvIL9B/I6ZmeElNnbV59WS/IoT56Td7TZ1D17\njuqY6cgd2hpoTIdNtdn3Jp60eCNd10Wtp5/SdYY1OG/wQk4tEMU5J09/CKWW2pbu34UJO/ckrOMw\n+x804CzoyGs7c06RicSKPO7ZmPrhwa/kqS/X1ac98iEJOFoMT/aFdUU82y3V77gCFw18QNNzuv5o\nUz/c3QZBQrdEXHlzfbqMoxviYgll1c6lFUXjprMgWu6hxPMT5e3vbiliUbikuThKam6O2yCUXHmj\nFyb0eeKsxj2KipP3niIq9Yrm2NFDRRunF/T92bNCjbXI7y5XVL+DrtrTiOg+E6iqGBEGL0OOcx5v\nc1bjNWbthxKKkCSTml/t3sm5h6JEDglWWB/kx+wS+cJPKzJb+o7WbxSUQYvoSv02ufsg2OIh+Dlu\nq23pKDm1y+rLCDwVm+8Riczz+QQqRCtEFuK6zm5dfWg7GtSDm0IDpKFprxTUJzGQHCVUJRYLcNws\nae3NEmWL5jWXO9vka9dVz8N7GrN6DURdR9fPsPbXpoSaOsMcDZP/fP2O7N7WQ6mWjJK6/hzouXNP\ny55NLzyh+/xMkcQ3vqdo/ERYY5f5jOqbndHv0stElcaw9ZNb22urH4qO+iuOkkDR9ZWFUDWCb6h+\nX+3rGv2b0JwduY+mrDNEpSQ2i9IFNrCR1318UEgHBboOqDQ7JnKbxL6TElwP+ygQRVzMFzJIwiGD\nclkf5bJWAZUAYiGloSIuAz+32gmbm0JJi3DJzoZQT/W+rnnqce09K6uKPNZBuBzXVQefP6HnaR1C\n+WHZsS4Ya8FfRt852NVIVfflZ5ZKgoWIgZ5iDEMekcAwnAmoZTTghzMXNBj2zotpjrbgMkAsz3JE\nju/sae+2FlGmaf3OjeiLYRRcuigydrooGd7a0H1Qhmljv2o0oE59Is7JFVPMzN7b1n1Wz8oO2ve0\nn/0O/BlvFYSAjPRBj23p/oWe7veCKz6KUEW24fGR1JM2PO0fOyjnJMuKkM+DDvvZC0R6v6l95w84\ng/z9UxqHPy6qXt8uac2dfvBV/W5R3BSP73xylKu6AzvIq35/+q6u84OSbMLs51TfKfcjMzNL3MRG\n1lSv+oizz++r3t5//YGZme3O6iw2swgCNiXUy8OM5s2TVa2V2rtwZsCpcWktZ2//SvZ466x4HnoF\nOKW+pXPehS9eMzOz9efVt7cH6psbTY3l9i9XzczsTFx2YOObsl+RpxW1r2fUJx9+h73xmiKmS3M6\n21z9vtbpD59Rm+KMWXUsu/wE6kj/2U5WBqBH73IeC/V0nfVpnYWKWY1FLKI+GbT1mgT1Nciob1og\n8xqo+/RRZExEUJxJaixckCvWBLXgI0pA1oQ4xndAs6ZQiIn1dJ8uEVsXxcQE3GU+12KyhVImUXvr\nwTEDAmfUA1HaQ43JB57A2eKEfVQBqLUuaD7OeukRypecwZyR2tt0ovQfijcgDGNN+i8MDwZruBeG\nDwvkoa+w2Q+BRErJALdRoHP7nDkbn6AXQk7XMtS/EaGf1uGyWdUaaazqeWAc0z43rqofYlsnP7tO\npFHdnEfp6RjVtZH6fn5JCIfpKc3hMHbW7WvMqx/Jbjp59e0RyOWDQ9RPPZ05Fs9r71xa1JqYX1Hj\nckONQW1CfZ1jjs8/0Lk8lYYHREvD4m2dHby7amtzWtcfHICoc+AI5PjW4+ySAgE+nxOvXgnkd70s\nLq0OHDfVfdU7DMfO3AQoKnjVInCkDNMg+q/prLECTweUapbM6vsHQ6FZD16THRvBmzSVUwU7nHOd\nCfVD/qrsrDstW5OAk2cMcqeQ1hwadFHCvQ+vCGeS1DwIH5R0jlH4rd7T/pVd19lscebkvENmZsMY\n3HFwDnkhzZMualFj1A8dELRjFIJZSlaAHzHr86qCPsnAU2VwymR5FkwvybZ4Sa3dfuWTtdEPOWbu\nwAfmWSrFeZe9j+VuLiidssEfeaA+qLc1l3NLoLc4wo85Vw9Bi47h4PIOde87P9C+8OMbeob57/9X\ncbfMn9M5OowCbhs72eH8l8Ae9EGmHDxQxd+7rf3jpf/mD83MbJTVnGhuHHF/FCUxBLOndL3dksa0\nDQImxhmnD/K7B1q4A7I7BCp0fgrunAHn0iLPhqyVHPynxRJjwVnu15UAKROUoAQlKEEJSlCCEpSg\nBCUoQQlKUILyKZRPFSkzMylP1amrsOXP4zXckTfQm5dnfkRua7ZDXl1OnqmFuVUzM2sM5c1df1aR\n4Ns/f8vMzFotX32InF2UhR4kxBFweLhhZmYRk/cwt6TIypXTuu719+VxG8NR08WrO/bkdT2+Lc96\nkvzv/X3V+/pt8jlRquhU4TvBBZlOyj19hP75UV3fXwcBdABzeBdSfxcug2YH5SDeOwNFpN1pefJm\niDD7/PnVtiLgi+uz9vCmvHtuDMZ6clJH5DWPwqpbJIqKkem33bh+h7PU4rPqo9kw18ELGcWLWd2S\n1zRxStdNpOWhL5jGuJ7163iyEkWxJDUEyUE0Zbfle4x1n8nH5Z3td0FNEFmsg1ZIjPS7WUf1rW6r\n7ytHG3odqv6nnkTpBfWTzbdQlzjSGDZQcUrH9XkKr28et2jnAdwIR4q2ZM7qe5OXFRkZ7SoisXes\n68WJnI4y5HUfKvJxa7tm9j+Zjdtq5/ICKibzapdXVj32mvq8GyUnN6f6JPu6bwx2/gqIFGcaZnDG\nf4Kwf4V898O+XOwh+JrmLir6NwOfx4Dr1O/CwfNA47KP+sjCrOZkktzYIYzmMaKEyUn107iBQgXK\nSUOQNk5G82QicnJ/cb8PjxAe9D5IBx+JtnBWc/DmtMZksK/11qrDBUL0vk20OXeB3FUQMA7oLIc8\n6FPk/PvRn24L9acK+b5V+ILI1x3XaRs8QS0ik9267Id3V/cpPKHrX3heaAgbgRoAPVWDb+Phq0L8\n9PawPxcUpcnCZzS1COfMJEz+2KuBqmkfvv4zMzMr7pAHTpQ7u6JoeBbVt+kpvfbrWhvbPUWlmkQK\nPPgvOknZ6dxA7Y5N+lxZGstqHF4p1DxG24pKNViDPXL/+/A1ZdeUpz19Go6fQ6FAQi1FMkazRFhB\nAJ20tFDJ6zTgTJjUWnF5zaxpjeWwr5EDzZPj25rbKSIzLlHCTERrzwVd6KE04du8pRXZ80pLUcP3\nf6gI/jv/26uqzz/SL3nlUI96YQuZ6tYn6txPqq3jENwxQPNmYqpz7rK+36VPuygjxEAS+koBXgSE\nHogUxyMcRh6152rupECPDhvwL5GD7pGH3YOXwhrshSBjPBfepWV9fwKeiqajSTcgP3xyWnNs8ixz\nrV3l9+rrbtdXqEH9DSUbBM2s1iJ3/5D6gFAJndNc89FqyaTqEWs8GjLz2hVF5+pD2b3rH2mNr31J\nc/yzOxtmZlaJiOulmHld9b7xBTMz+zCkdo+/BHLk+puqjyeE4RcmyYc/rTPIh9/Enl8VSm3qnOb+\n4aLW1ueIjP79fUWGL11Wv+TXdDY5uK8zz1HyjY/b0IhV7Gtw4xyd1XWioB4uepqTb7+HOiKR8Ke+\npDn4X1/Fdh7LVh7/vvrzP3xP8+PvntUcn3531czMrrys195A8+3WKdmU311UvT94t2X2IhHG2pfN\nzCyyq8F8OfxD1bGmPiiHQSqD5lpbl0pT66b6eiEuPpylF7WOf7wNP8RdrYWtgep8gfW79UPZz3c9\nlP+ONOdecLQehy/JvsV/esMepfThQBkUdf8KyIvzFSEyc0ua6z4is8daA9hiLbiw2h39vgV/0swy\nnCXsgUM4WYZwpPThHUlldP0u3DRRB3QvyLseCBvjbDHweal66ucRfBXm6Xtt7G8I1ZFwB44VIsGI\nolqc/csDHdcmch7jDDZmDoxihOk7qr+vUOOA4B6jpOb4yB1927rs4324JaJw8ww5OzhduBlByoTG\n7I+m7/U6cKxx3QPONFlsgZlZOxG2GPXw0RWZebgmUBXcPpDN6INgrB2BWM3m7KQlsaC9MANasuNy\nLnygvo/HQaqfl50pH2i9xobwa4JSiML56MEfVNnUGmnCpVjaVx19FdHpNaFq0/B1Nj3N9TZog6kc\n0f+Ph0jrf9REmQb1o0yF/8OL1ERRsM/nybzm5FZL9iC5onNfDDWnJLx7HbIWQoCwKh/q3NtM8IyX\nYlGA9NgFdTpmPzl3GpWogvb6uVWu39Iaeb8JmmlPc+NehTMV7czHhfKNLalfV1CTMuZAH/RsMq7/\nF9lvuvdQlS2pPuUpjcPMMnyiIFB27ogbbPiW+IfWlmUDTlriKICFyJLweN4ZTat+UcalAz9LB36o\n9DRrBEDrEO6cPhw8PfhXXfbh9FivVdDV7QL32298XJdxyrN4tmBd0DatI/jKzqBqBJ9NC86q2Vmd\nO6d+T3WZWdKzU7cDOh9VomgcxF2XZ52u+tSJac6mcxpL//E1w/oOwwtnvjociLo4CLlWHPvG824l\n7qN+NAf8LIUJ1lo4qbnW4sxQAK1fwS6OsXeTcFANQfc2t+H9mVB7zqzrGabX0/WrJV13ouD8i/p2\naupbN6yGnVlUfzVqZftNJUDKBCUoQQlKUIISlKAEJShBCUpQghKUoHwK5VNFygxTeNZhRQbMYJmL\n8oqOE+RZE6UPO+S0DuQpG6JO0jqSx2rzp/JuFu/CyRBHa/5AnqrnL0hRYT6raFFkTR62OJ703a0N\nMzPrc98ayhAHpsjMXFKR21hb19v9QF7rx68qkjORkAdu7y1FlKcm5S3vHaq+ZbywmRl56GJl2O1r\nqDHBNxLPKGKyuCjP4xhOgug0CJyGvKdJPxI/VH23m/KCunj6Dlx5JOcWlq1/BM9BQdGZzhl586Z4\n7Vb13cXHFOVduKg+f3qsHMzRhLySOVXVyh2iCA086wN5PUtHoApQuImSI3l8TCR1/GjqSyPym5vw\n6/jcBk4IBMpp9ZkfvbaHqk8VREdvn0gBeYexLXnW+6iVRBKaayufVT762iVFy8sbio4PHEUoE2eI\npiyo7yfhB3LjeGn35Z11UCBIMmenFpTrmzaNyQeoLNU6+l7+oq4TL6s9lWKT64DsmdCcG8LHUWEc\ne+Eq9wel8JQ8+KkSqK4mCl1FGND3iA7u6r6Ri4ouljNqf3VENI9IwtyaIjhJvNBtPxJxR9HIRFf1\nPY5vUV99L3MRPpUJ9dN4U+PWi5AH39Y865ThgmDu56dVH58Xxu2cnC/EgdsJs2DOUO8be+qrxIr6\ndBoESPWGxtRNaE6M4aPoN3XPwVDrbhaFqaNdtaHTVh9GJuAuWFPf7b+rNdWr677FplR1RiDdoiG1\ndZK85JXHQModwGNE1CmSUp9NUc+9oupfuSneCK+vBuZc9eVmQ/VdxIqvPql69fG1H1Y11w5ub5iZ\n2e6Gotgd1KJyIFqe/OKzus45Rd2rHY3R9pba1S9qbidyWmvTU+qX5ec01i0EbqpEhJen1b5ORvVI\nE0lw4copbqkfj2+oPjNnNMcn05rDYzhnMjn1b4EomZf086aJbvkcCCcsZXithmWtCScDqgyVvV6a\n+8zBdQOyMaFAuyWm4B7y4IZB9a7dEwKzUdHnUXiUCqdQJqLfTkVAh8yDpmCcijWikV7DrE1EDC6t\ntavq42EEDhmi3rWO1n+c73lt3TuFktcwBWKmQe7+kHUP11aUPcNFPWMMQsUjSh3j8z4IlzC8Sinq\nEs+v0AAAIABJREFU2idPvIsSigsn2fQc9gIumHZNa8KL63clOMCi1BfqAwv11VdlommdMXxpE3Af\noLxSKbJG4YxxicK5IEFcolmJNBHF0aPNkZWq2nHP1T5RuYyyQ1j9MZkQ4uXZM0J5vE+/Nt8VOnfy\ng1W1+1hIlvgC6ilvi5vl23taa19d0ZreIbr3uxlF0Ypjrb0c+e0/fkv7yBfdJ83MbGNDk/EOKIen\nQQfeQHnSzCz0dM1+8YZsSPmu5vbnQ9pnvCvqt8eK4ld5ENIc/idP6NzYc7SvAhfbnpA7pZw4cRYh\nBcqtKLK//Y/aB9Jf0jxbQo3rfkoD6wzH5n1b37mEEtjC4/+gtvzR58zMbOat1/UK8O1bQDPu39Q1\nf/9JqSbdbOtMcWUMf8ZIa2LxKZRH3pe9e/U1IdLic7KHlR1xCq7DEdV/TufC+dc1ZtXnB/YoJT2t\ntp1akd3yEkAQQ9oLMwUQlhG976A8FodTYVEf2/2H6uMw58tUWGMY9og0c16MglwJYfe7nl4j7Kmu\nRyQZNIPD2h36SBDQDj5RVQjUcdQBWQO3S5IDeHfIfoRaXpLrD+CfCpnPXQOSPcY5PoR6oAN3DOdW\nn2srxn7b9jlsEjqr9DzOPNQ3avBXDbHX8OG58IR4qFCFif73aJ4Hx+I2SjteTb87Cqufzcz6u0WL\nczaZSOjMmonBgbGPUt2h7PR441kurPaknLNc5X37baW9p7nWATU0KoLyAeG9DSJ6dll7rsVBLbVo\nM2ORQ6VuJSv068zvwPXSQDXIhW8Dno/KHaG+SvBYODzieQuqRwWkRQH1Txc1N0M1Lwsi8cG7sget\niv6RimlxJrNaY6l17UsLoLH23+H5IqT33ZEOBTXG8uySzpO+iqmP4iqVj/g/HDCc5fbpnxjcJ/MT\nGuRMDdW/AtkVK6AcJuDT7KMIOWQNsY8kfQU00E5hnhcKDbIv4JaJPES9CLXQ7jGoiZreT4c1fuvr\nq2oHc2/7vlB95R6HhROWLjxQE8DoWiBb5uEtrKP8s/lQZ6YK2R/XVnVWcgug1CqgS1DJMlDOc1nZ\nuiacRZU+yqGoFrZin5yzo9mseamejZvAqHjWGrOHOwnZp2FDnxfgqmpEZQebPT1/D31VN56FQgPQ\nuNitMYqykbTqeuYZ2fWZx8k6mNcYeaDHovCrjVM9rqe2JlO6bgPFqS9+Rev16lPaw2ZTmuNd/4AK\ngsUBhdby/D5T+yJktrh59dHRbd3v7R+Is2xQ0O9e+e/+vZmZZebU903OYn0QjfUhiEZQbwPOdEMU\nsEacwX5dCZAyQQlKUIISlKAEJShBCUpQghKUoAQlKJ9C+VSRMiNy/L0eKkywuE8X5HlLROSJKxLl\nd5qKYFYr+n65Lw/VeF+ernFX3yscEtFdwIO3Jw9ej7z6mx9IVz2PEkzHFPU7vCfv9mpF3uDyW/Kw\nzV+Wt7GxDdv0srzUOz+XVzTfVOQ9G1F39g/kMYvPyeM+dZ6IwX1df+qUomJOQvd1l1FVIakuO6Xr\n5M+qvQddeQzdiDyIlaIis/kr8j532/I8TsZ0vdNPKw/z5g31b/h02mYTMOjjpJte1h+XXlK06Wfv\nyDOexeN+QN5fKURUe0d9knXkgd1nTKI7RGRB52zf0v/Taf3+oCg0UagkL2W48GhqGEe7Gut4VL+P\nT8vbmDknr+r0WbW1v6+23tlWdKrLmLaIOMTJXxy2QNak4VxJENXCw36wq99XNsUl4KFetATfR4go\nj8fr4d0NMzMrb2iOpU8pmnJ6Vr+r3REaYKOhyGcfNvnTL2rsXCLTnXusBVjw02m18/ABigAD/T6/\nqrmYmEaZYUpzJEXEuwZa6ogo/oBIxLis689clld6ish3Mkv+OZw6k/RrFrRAt6z/l/fFeRBtE6GG\nc2bcQNFmQnO2jaJak9dhhXZF1M4aXvdoVtefOKv5N10gsrutCMlRRZHZk5QYgc7OANQQXCaHI42l\nz8uRP6M272tILN5Un2UW1JYUqhQRlKImZ4Ua64W07iv3tN47kyjDJPC8g/6JoA7ULhJdSmndx+fV\npzPPK3I7uKvP+79U9KKcVB9HO7q+gzpb41hjWDpSH66AmiqcV+R3CHdOrwa3ywH2cFJzzzmCE4DI\nRwaER+GC1sziqto3M6M5VYOzqsSaHkbVPw04rzy4AKZPy5c/ua488jaImliLvOYGUTP4Pw4qG+qf\nsq6XwAj5HAvtKiogKFQUUM1aWJC9Gz2pNVXd19rp1phjj4i6ixgcMqytIVxgOyWu2xM6wrun6yfJ\nqXajql9irOiUJYggsXs6cOXESZwvw3F24z2hISam9Hl2Uv1VASXW8ln9aU87PjK36XN6wKMTIRof\n9iOWqosLKqsCUiM51BxuNNUW10eI+MjCqNri9Ol0otoDyFrCRKGjPm8awMMQ0aQYc2fsoNIEUiUb\n0VgmiDqHOvBNYCdCfn45tA6NY/Zu6pkANdqBM8eI8ocT+n8c+zYkah7DDs504cjJEJWbAXlHbn46\no/4Z7TzafvODmOxyp4Fy47LGYfJd9fMMKhbvNzRH7ab27jMvqx6/elvcLhdGQoGETotrIP6B1mzx\nnPbualJngyoKDR/C0dNKat85zD5nZmYXs2rvG5e0/y6+B0fP40SkUYHq/4oG/M9mXz/csyOieraj\nOffaF4TeXf7PGqeH69pXbE79/pWI2h16VyiAUUIVS3cUed93ZfNm2kJKxue/pH55TOP4rV2U6jri\nq+q//zUzM3s6/rZ9dF5jeCUDcqGivth1dOb4ICIehi+vyI5MFn1FF+1V7x29rr75UHXvfVZzchPe\nhWZfqKXTya/o98vaU3Y2ZW/t92TwL7/PeeonILBfVh9+8Opn6bz/3U5SIp5+PydQraX6mmtnQT1F\nohrjSgs+H1CtA1Br03HZ3wuL6tNtFL+GIO1sQdfz1T0GHSLVIF4irN3kyFcoBPXmoe5EBHqM8k0I\nfrzhAE4v030GI+2T0DnZOKzxiWXhWgMV3XKIpoPCi6bgvQjB6cKad3xKBThzYj3dp5cCMQiqLmUg\nbECQ9kBJZEFFd/heD8ThgHYnzUdJY+t82xbXdWqg3JpFrZmHNzn7ZD9BymwcVOzxae0r6XnNh37L\nP9upHyPFZ/S7LV3v7i3OIo9AYTa3BLIQPrfqBEiLuhAm8b7WeSSvvllNyx44ddV1+4HqvrcHqpc2\nRmdQOSXqPjkje5dL/9/svdmTJNd15nkiPPZ9zT2zslZUFZZCASBAAtxANTeJotTqUU/b2NhYm/XY\n/Adj88eMzcv0w7R1q3tGLXEktigSXEACBECigNrXrMo9M/Y9wsMj5uH7OUotU5OJp5oHvy9RFenh\nftdzr5/zne8DlZ8ATd9nz68w1xdkpyJTtX3lsvaycVO/P/613olSZC1kGnB8HaueQ5CUHdBHsQRo\nhTNao0tww3DMtXsf6jxcP5BdiL2hscq/qLNG0ef+UrUtu6G5WPFkr1ZR1I2TxRCCV/Tw0D/LoPyV\nAw0RYY7Az9QDRTVrak4d12VbskM9x0Pha3+IqqnB58Q+suJqjdZ5Pwi5ak8YpcnKkhBOXz6rfnxC\n/9Y6GreTFmcI+gvUWxq+FneJuQyK4+77spWPQH0kV9R/z4FyMz493muSrJ1d5kMERGV3T/vZj38u\n9Edu5SlPUjfu2EbWP8WaeXCtDDpkU4w1h5Ps/dOU6u6ATPdVyqZwwgxBjMxB+DUHmtvNfbhRz2qP\niaJcu8Z5NtbSO2PjSP9PwtVShFMrhJLkvKO5WPBIsUFZahlpR5/rMQwvqgfPZQ27GXdAm3VUnwLv\nKHGQiV4KLhlQVVPOFj76q9EAYT3SHhqJqu9TvIdPMrr+8EDP7T/eUvuWn6Ja/6kSIGWCEpSgBCUo\nQQlKUIISlKAEJShBCUpQnkF5pkiZBB70HEzhbdQ8jonqH8Xl3RvvyGu6dkleypSfAjyTdzCeV75l\n/4HuM4Rdee+RPGFbh8rv3jz9gpmZ3X8id+65F+VljaH84m6TUFnRc8bb5K6uynt8cH3LzMxeKMiD\ntzyXZ27R0fUDtOaNCPk4LC9xNKXITTcJMzie+XGR3FlXUbABqh0LL6NQkyPyQtTvudPyxt6YyBt7\n9uuXzczs4w9+amZmdxvy6GcK8sx90pPue9LL29oLasMhyI1+iKhVSJ7w2lDRnegykbeu/l8/0vXp\nvNqQWJFnePBI3sUZ4ZFZTFPJzROhhV/CT2eeRkHKhD/flJvCwD/BaxsBBZEA2RKtqW+eHAuh44H4\nyC5pbmWKIEtQvIqQ59cDkTL11MeDbY3N4WNyVsOaI5XFTTMzK8LQP30i7+uDj/HmPkGtKqI+36iA\nSEKNagdUV4r88PJz5HpuKALebep+PaJqYXhDZn2Yv4lMlOBcWa9oHPp4wH0v9Hiq5zQdvx/0uxxK\nDmP4m5yiIg9DP4r2qa+6pHmQWdbcize0yI4OdT+HsFn1qupdKKgdsSONQ6Sv+7rkqtaBowxcPSe7\nqEhEvgLCCaRPbElrYYKiQziG+hOcCScpfqTN6vrtKO2zsGtMhihU5dZV58oLmgvj+7o+76OlIuSy\nbmvOHZPrb3Xdz53q/4e1LX1PdLv4CnPM1WdmQIgRO7K4rDGLRBjTCEgJcm9noKwmxxqz0YbqXYG3\nKLtINAXlsjFp4EuntVZvf0AkMAOX1QuKEI+yoAZkpmwGZ0rMJTfYUz0f3YT7AI4Bh+dUS7q+TjTO\nnaBYRgQ3R5QvAZqquau50r4vZF+3CtcB3TiGLb96Uc+PxWWP5y6cBlFy/WOgwOIaLyeGQldddu/O\nntbe8SP120nLFE6bFsoEEw+OhIpsFqA4q6MaMHWY80RmQ0St+k2tvS6Ro/CcyCuR8wjqJ2Fs1wgO\nm1pda6ztyU634VCIb6qfC6mCefR1q6t7z7C/ow7R9Jrm0AT0UiynPlqsMBbwOwwHqA/5igfUJUVO\neQjkjAsRUwx1j5FLJ/jhGvglBuypXkif2RhcNjnQUaj3EdS3EPwYmWVQRSa74pLbbuSXe0Tv0yGi\nYGOiV3C4JH2VJ+o/QGElyp45hSeo09ODc3NUQ0Iag/j086kvOR/8wMzMLq1LKWhxT/vgcElr8eCJ\nkCSRFT3XLeqzdk+Rx7DzbTMz+1VByMKVB4q679Ctiw3lvS9e03Pe/Lby30cgoe7+Sv10gQHwvqn2\nn/4LRbJ3vi3+ujpor+NrWhtvfeOVz9ow2li04pLGczBAWW0HZbRLuv9Xl7QGkj+XPf/gihAwXx5o\n3N77qiLB9b7q+dVfgHr7UPWtvKL+r830/Dc/1f3e+yOdSaI58cBEj1NmqE/YR/AQoYbXbavPTi8o\nOv7D61rXZ65+zczMLn4iu/QeEcu3iFiG39Oz/iCvqG+3I+WryEvaw6tHinKnUHJZRjXtuIOanENd\n/05zrn1xaJ+r+BwEEHAUU7pv8ozm7rCgqHZsUe0ZoMLRO9DzsvBFFIvaE6EHsSw8eXMiuLOOr9Kk\nNZdBKcaP1nuggcfYqQg8HV5f7YUa0cYzIregCBzQaDG4YuY+7RLIPUPlZDiByyXqc9oQCUfZcR4D\nyQMyJuqTQrIdT0IoCcEjNcCORtOcPTjHxwdE1ENww1Hf+dRHwqCqCJdNmEj5dEw9ZqApeI8Ygmxt\ndFTv3Pwpb0bIm1jKkb3uozw3aIBOCMNTktP8bO2rXtFtVP8OT85P5dDWcEltctrqi+SC7rk50NiP\n6hrbRkt1TiW0PovYm+QhfJEdzaUwXIhWQn1zT/9PgcZMc4ZpzbUXj++r7zZeQDmQKL97B44x1tTh\nDJ65lPa+ymV4MZa0lsKgFFzQyDlQTvO81lIqrTFIV1XvKGisx3d1WIkClfR5QMMg+ZqHoAxQgc0t\nMEeLsgkduMkioA/qR3r+FL68EqiD+BiuG961Ns/LroXG6pfjbb2LjVDIbcLXV+f9IWzqt2xOzxst\noxZYUP+5LeY6Z6adx9qXk4uaM4U8qN7cU6Wvk5R4hLXr8Xu41+bsewb/Sfm05suAObi+xPtI2Ed5\naRw8bESH/TgDeiMaVz3bcP3c/LXss1O9/FldutOMeU7UzF/XfX3OQN3EpqCGgAiXUSed8L7besj6\nADnizvXMVdRB2+/92szMfvGuFAm/MNGedfVLen8fcrYIH2tMTqN4FQYZmMD+GBxdA/iRwvB1FjKc\nRUb6+96hUGbVBc3h5Lrmpnukvtq/q3ruHWssv/i2+mKeVR9m4GG7+O231D5DuQxVvA7KYlMycBz/\nZbdKvXIgETs6p96Dm7Ia+d3vwAFSJihBCUpQghKUoAQlKEEJSlCCEpSgBOUZlGeKlOmjDDNEkcZF\n+/0USgQTk6fs2hGcLbjWPSILzceKjCxW5dmubcnbm/PklU4vC9WRTSiPs1pWyPjejrzOmTh5gCjn\nhFC8aT3B1X8sj1kO73NsJk/dhDz5CpHkQhmvbEQetxfLUgeIn9J9ykX020Py0FVf0XNToBnu1BUV\nLVzUcFSJpDx+pHomIrA2k8/eMLXzgPzAEB2ydEZe9udekGfw3iM9N1dNWG5JnueD+/La5VJqS3Nb\n0VsLw69Bvm0Ynol8W2OyvKjIWQFem2RKdV3blAfXTeJJz8CSXoVboASSgtzOROTz+QET5Av6CBin\nrb6fwH3zeEgUCk36aFltTqKoEh+qLw32+32i+I8fqd1LL6lfInvyiEeqeJjL6sP1VxhLnKCP4K6J\nEO0pPUd0Ja85mMzJ47/1sVBKY5P3dwHeoJxLDu+WxrJ+/aaZmbWOfJRChk/VP5kFEYTHvj3Xddv3\nybmtwCZPNN6IYGw+R2R0Tj5jA96KNsich7r/kYkzYNJXPQsRP5eV6FBP/Vq9qghpLAub/0DzIkrE\nvjdErQNUxB5zOga7fJEIS3qi33cGKBrcV1SxC59JjP7LoVR0kuLMdO9jkCcRV/eKx1E3Ixk8VRRC\nZu3lr5iZWWOoaLYfrZkMZYdG91T30A3dd57R3I0n1bcNovbPvSouhEJE9/XgcPn4Hd3XuaM5Whvo\ndyGUFebYkeQZ9fXeb/QZ7YNE2VffZ9a1npfWWWMgdryW7pOFWT+eUlSsdVtre2ZCzKReEhdLGDWn\nCZwnk12NlXtEdC2l9nQ87FBI7cld0lpb7cp+1priSBmSsx8qyp4m0hrLo7qe3/1U/ZAgelc5TRTq\ntO5TgOXemBv9O1qLc/K7vSfqt0d3PjAzs56rek1AnyXgP4nEPp9qShIFBQKwlj2lKFv0tOqRgItn\nMlX7OqA2UuRGtwY+Zw7RyiT7wgqs/WF4mgi8d0BthEEAJZmXY4e5X4LrAfSIN5lbKgQ/DejLcFdj\nnhygxkAkrA+CJQbiZYB6hAsyxjIoX7EGpiDZwkTT5yPVOYmC1QyEXtKP9mBf+0TaxkSxjHzsXpY9\nljHoMnenIOXmMUXk3CmoLJB9YZCSPrfWsKG2h4kPVUCMuOz1Pv8FAVOL9lgjE3iYRvBq7KneLeAB\nqaba5XnMtROWENxj6U3d98Mfya6efVNo2zNN2cFff6Sxjr0ppbU11AuT5R+ZmdnKgXhTHj0S0ubc\nd8URU9/7D6r/RdnnFVdr7d62bM93HZ0h/u+R1u46nDiDmJQjv+Dvr3PN5cYD1bfY0fPtX5n97KMl\ne7ulfeVnnvp/45UXzcysdKz+fAcKny+8ojWW76q+f1nQ/a+MZENOPdA++OtF7TelMKofYe2j9bD2\nPTerSPT3PlTU80MUOa5VD+37t0R403WEGnJva+9MXRbvTOfWfzQzsygImto9jf3Okup+eE1tvFnR\nXhw+o2flsX/uT4VeGoZkj5pR9Xn8z9SW+yAf15bVRy/BZ9Eq6nl/8MkvzOykjDJmUUedt4Ddiy5o\nbZWmqpcX0aeb0N42O9RaOIb7sL7H2jsr1FRqA5WOPuoiQ58jRvYmCc9TO4zCGgotVtDzY9iG8AgE\nTAjeO+xcNOnfT/efOD56DDWmqPp7ispJgrXlzhPcB64HkCVxVFCHvq0BsRMC4ZiFt2qEsleXSHJs\nANIwyc9YmzFslDue/VffR4jAO5jbAb8boawThXNyhBKcrxCXKeqstXxZyMpwFIk3M1sprtsUVb04\nRmU40JloFJGtzZZ0/cI6SHlUGCPY3JOUwz2tj/BDEI2Y1cSK5qg70pyZD/XMCUjEBntwPKJzohNC\naRDUkTvXmWBjU3O456Og4GPzQOGuxbR2mvC5dW7qHSdR0Fx8CApoEZXN3Ap8GfB5jEEuptc4a3R5\nL+BdKIKCTKQuu9UBcZJzNOaxdfXh1Q14+ei69Cbqnut6brEB/1ITFaaI7GJ/orEf7PlIbfXX9i14\n/SZq7zmQfzkUDoem9qWPQKzn1B8j9uL+XL8/AC37CMXdflNnkMqyxqcMkrsCGmSY1WdvW/vB4UO4\ndn4rHro0e3zm1FOOlpOUCUpCBp9TeoaSWRgDzbF+6Xm9f61cVP1yOfj8akdcj0Iv774zVBnHvC94\nnE3yBfXjxinxaOVfWv6sLulSyObjns1QcIIaxpIgtge8H8/gizzC3hjoWhclxOEQlTU4Y+NznT+b\ncMbs3xdS+AhuwyFnjHiUjBUHTsQEyBSfRyeksQ6BZpofaE6PQMqnpuqT8CnOxT3Oeyn1bTQNog8k\n+MPfaq++eXPLzMwuXJHdWMhqbcV551o2zeXZRO0OZdU/BZCNN2/pbPAEPqEXv6b3Ah80FYFzcPm8\n6lfM/u4sgAApE5SgBCUoQQlKUIISlKAEJShBCUpQgvIMyjNFykxhPW4dox6CczAOH0gqoc/zWXEk\nVJbkyWo+lGd7OJe3tEIEZdqX5yxOzmh8QR6uKHmPTfISc0vy/saKeORrfD/T76IVuA1QN0qU4HSQ\no8tCKBYMyd31ymrH0ZG8xokNXd/zVUjwlM0q8tz1PCLKPkdFU6iKNNf3mopA7KFosAzD+fYD/j6S\n5/DRQ+Vkx9I5+lO/u/tLRbWih7inYyHbP5LHebatPlu8oj4LkdCcnKhPJjvwJIBkGNR0T9+T3UNx\nZtTQGLTOqE5pVED6eGYHUX2fSipEkIO3oz0i4nrC0gDF4PVh0EYBJgNF+ID8wmxBXsvlL8hLOY/L\nq9v+SPU+dLfMzKy2R/SKqExmLHfmgCh4aKD7LLogRu4ruvaopfuMm5pLueUFPhX9DxN+b6FE0x6r\nXksLihRUic4Nmxr77d8IodJEheQUKlKLCxrrxhHtJr+7t0u/HspDHy9rrp5d0PObec3hUorxg9ei\nvqX6HN7QXGo8USS2eEaedz/SXq3Km51j7Uzxgs8T8DiR9x+F5b7Z0H1I47YkiBwPZNRyXPOhAG9U\nMkzObI/fHwj9Vq+o/4tFecEX0uqvZuTkfCHxOFwuqF/MEiAccnpmAh4dFzRPCh6OZkUImjs/ekc3\nqmudrlxEEWoVhN3XdV06rrnRGauv00QAu6iftR7DcYAdC+1gp4hO5z36+JzuNyL6kjyNOsWx+jqW\n1tiliXjm4UM6Br0wPNQaGg5Rs8iqTw9AMXTJf75UxEN/VnbMw27d29PccweaU7ORnpePK7o2ier7\nMWiDFCp1kb76d3tf7SzBgePCU7KQU7vCSbWjelbjsvGGouZz8qVncIFV4TY4+kD1mR9hL8n53XVQ\nNFvSnFhlXCYoT2Q39f+TlvxZ1WMjCooCroRue8vMzPb2ZL+dVbgi0qr/8bHW6NGO6pNP+Gg2zfnM\nptbSLAK/1WPZis6u+ieb0vWl03p+PKX79cmr9xXLZvstG8DrkEORIIyqUt+FjyJPlB07DCWL9UGs\nJLB7c8Y2zJ6WMP09OpFd9zlb5ijCOPBNjKK+pJQ+QmNUfkAHRWlzFL6JCfwOE0ffzwpEeFGTGNMn\nPThx5jOUX+DzicJr4T+/gxpdBDvjTj3qr+8boKt8Po8RCM0wPG9heCm6Q7U/+Tk5zEZvoAxU/09q\nV/qSmZmly1L2+dWfK7r25QOtiY+PtBY+Gf33Zma2eVp7+VFyy8zMMq+C7vqJVJkKUxEP3fu6ooI3\nP1Se/Ws52f2d15TX/sYd5fyneppz7ci3VK/9vzUzs7vvbpqZ2dqa5uwHFzUe/8LMvj36xP7qNWxM\nlf12/7d63q7s7mum9lxDNWV9RWiTb54TEmg61Jr7SVT3fWP/ipmZzRd0/V++qzNZ5PxfmJnZ6hsa\nj19EhDr5ekgR2PpP9+2vqn9qZmYvZMSLs3JOfVKZqu7XWMe5tPbA6r+XPVj9V6rL/oLmYC6itvfD\nr5mZWa35czMzW5yJm+DUh2rru3C+XNz6AzMz+1Jc58L3e7K/77AGKvtSivr4IsiTE5YovBwxEMxZ\notTuXHO7uqi514jouWMUYzgi2c72b8zMbKmyqd+fw26PUP9ADmk219wfgxDJYvdCKXighqw9OB/G\n8PZl4F5wgJiMfD6QudZmFDSFJVFZYo2FsPtdkIFJlNkSQP/GoHwn1CsBL5QLr50PQRyg8BkF5RFG\nncqBi8xH9oyxdVPXV5fyucVU7/FQ4zKGUyIO9CcOMqc9QA0K5M8UBGlhifO/ozNuNK0zkJlZIV82\nA7E4geNsENGZqTURQjICT4iT0n5Xhjcp8iRhJy0hnxuvAXqgpTo8PlIbmhP9vcq5J4fiYJi+c/Y0\nB/ojPXvCXjyaac3UD+B9A6G9XddcaOwI4XbunPaa1TQKraAWovDz9HnZ2v5U5+HCOjx6IO6GHRQf\nY9rb8vRpqYLqJnwjPZQE21P9bveh+nQyFVLoXAXFQhDf4776tjeAA6aDwm4XDjSW4kZI1+2Y/u4V\n9Pyls2pns6PzrENWQZx9YQ6ydPua0Au5FZ1phmQphJbV/moChKjJ5mTZx5JwpPlKO52Uvl/kTFaM\ngeTZ19ngAE7Ow332/Nrne79J+9xuoGsjCfY15rjH/rUISu2A95Qn94TQHHEGrBZRBEUVKz7mvqy9\nI94lq0X1x5/9T+LhcrNPJcWiRwPb7+7bCufaKOeTaVb37Nbgu0miuGg+b5me0WlhZ8hkCbOO/QBU\nAAAgAElEQVR3tPc1Jsurmqt//Gf/o5mZbZzTHuH4P3CpC8iWg23QnyhJlp7jvNREERbEcSwme9Em\nC2AJpcDFvI/uAn1E1kUmps8VzuG5qPayIjxQIzgDLYNiGMjxhSiKY2nddwjf5yL90IvpfmXOw6MD\nH7WsublUUPtnkd/NTRUgZYISlKAEJShBCUpQghKUoAQlKEEJSlCeQXmmSJlMXt7HxeqmmZklT8sj\nNTiUl3Z7W+iOMpHaPooxkbw8UvkL6KSvy8MV8eRt9fMdPSLI8baaGSNvMjeVlzO25Ks/yftZJFc1\nm5aHq0SkfVKRR2zhiuoXu6zrl9K6f+ocLO0ZfZ56Wd7l/V3lZ4aIDoZ6IIP25MWdgkaBgNuGR/Km\n9/BIDmpq/5Qcu0FMnsWVuDxu0Y7amyPfsnYsb+i9XXnLpyhPHLQOLdKVd667q+92J7p3tK+2xUzP\n6N9XHUfk9Pcekn+clBcyo6abNyeKAZfABAWAOdGMUNpPACbvN0U0Y3jyvFwzs2SU+pAvHIdzwGD6\nj8PBkMnKA5yEad+tj6mPH9GF02ZTEckK+Yop8oe9geo53Eexq6Nc0RgR2VhRz8+ubpqZ2cZzmgv7\nW+TUHoBQWdZ9zycVpcmvqcOcifrz9kcae2vq+mWi/8V12OZrmgO793VdHYRTKa25G19WfctFIumu\nIhzjhurtETH2JRVcnjOJ6/r8itBmeZAxY/Kxc1n9v9siInMf9n7yNSdFIWN6KBkdg1DKlMhV3SRv\nu6c1MDrmcwbiqKb5c/REEYXuSJGL1dcVyfGVdyaw24drTxUTfl/x+WeKcDtNQQVESrpnZypP/bVr\nisBmU6jlpDRHC1XGNqs1sPA8XFS0yUEFrnFM7nlPnztDjVV8T30Rj2vsF5kr3b7q4U5hr0e1Ikqf\nbRR13xkKAU4G5bApfb6vsXi0J2WUNipxcVSc/LU1zWnul1G2mhbJ64Yfo9tQBHAMB0CGXNka0buD\nA/XP5lnNxXxS7Rgfg84iEjEfaY7VauR1g3o7c06RhszbV9U++KpCGUXHZtizfVjuHZ6fnOg5gCXs\n8L7uO0tpjqy+KHu3+arGI7dKlG1Hc6eUesoVcJIyxgZ5SdAUjM/hfUW7BnG17/xzUrhZhJNnOlIO\n9PZj9eMukeUUudNFn1sCxQhnqn7tHMFxRvTLj4JGklprq7S7QwSm47RsBMLEBWEYR20uBnfAsIci\nyQJ2uU/UBaSKYccycZS9Zho7H8kXJro9w37GEj7/BNFsX3EBVY4YRwSXyGEYdNHUyLEfkGfNGkoR\nzZ/ldP1ojEIB6zpFJ+TJq3bJpXex0yPaE/JQwciQx84aiYEcmhG9i5dAK8F94NDXvQPy0Hsn56Yy\nM+t+pLH51qvaw28TvUvfgMeNHP/5qhAnCygiOo+1Rn8xFBrEe0fqTZU/0Vxeu6pxubWltfkq3BGp\n8h+ZmVmzDg/K3yhyPV0VN8tvimpnKyOUSKb352ZmFn5b+05lB460d6RYZP/GbNIs2OAd7U8bYfXf\ng6/oPptN7UcPv6d+WfprIXe8kNrT8hXSrml8vp17x8zM3k1pDX6ro7NH5atC1kzuYDM+fdPMzBKv\naL7cPRLS50xqxb5yWWob0/e0npyuxua9A82JV65ovU3UJLvzhv4x/0tx0bjfF1op+tdq01lHqKPB\nt1X3X7+qOfWFn6htLdbQ9kXN7QrohPQr2lNDRaGPXq4pSn79pydX+jMzi8G7Nmf/iMZV33CNuduH\nX449uwzfWw+OgTZRfRdFxiJR+kFCc8Ppc1ZydD6NFmVno1NQaCBYQnM/Gs7ZBnvicv8RqldR+P8c\nOLIApdl4pL9HQMYMHNUnCYeMl1a9XYOnCaRmF4K9KVH8FFxlfa5jadoIFHIoBPLSUGOawZ839NWk\nUF+CX2OM+skUlF0MdacJPCe+SpQD78isg5pTXP3knxH99wn7BzyGXsZsaD4voW9rtLZ7MfEwZVC2\ncUpaW3nGuzM5OVKmsKK9a+mi2txsqi7d26ha3tBeOMG+DldlP5fLQudGKyhz1YUWWBlp7LtIGdaI\nwu/syr7EOX/2PtLcvvFYdtlXXZ1XfR46EJJhUL+Hsjcj7Jw70H7RYt9I9rXnOevwfqRASaAAFgXl\nVc6iylnVWugegngEleqGtNYHbaH4Wz/d0uc+WQE31Y7Mht71zr0pxLsl4Nnk/F+4KlsxbKmdoZjG\n3MmzX47V7v4eSofwOE1A7k8dzkDw7C18Xc9r7oLIgYstMVN/zOO6vgEipTUS+q3EfndhWai9RZD0\nw47ad9Kyv6ezTO++7P/KVXGPpTd0/xJrxUcZZ0HDhWIovrVUnwLvXYkUKA+fOA+USX6ofXg+09+r\nKApPQOSYmaX6A4vOMpbKyK61+W0OLisPLpUY71yHPZ3vdh/oXSEd0vln4bzs8CHqSBEAL+Gi5t7V\nN2XPu3Cq+hyBc86NR7tkkFzXuWthXfa0j70dwiM6h0coU9FnBLt/SJaBj/Yvo4w7aep3UU/fv3ZF\n+1H0C6inwqXVbmtuTX3kDhyDsRSI+x3tXzN4ic4v66wQ4cw1Ap2UIAtljGFOlDmjtX43mipAygQl\nKEEJSlCCEpSgBCUoQQlKUIISlKA8g/JsOWVAgPRwDcVLeMrJPze8ussvKRqzDUdDD4bvxYI8cqOw\nPN3DtDx2axekVOChkDN4Ig/awjl55NpJtN3J+fVSRADIJatw3zTe4sgi/ChwRczK8pBFJ36ep/4Q\nwxs9Tej/tSGcCEl5vxMpvNFEjqdjP8Ku7wfbIH1IMHS31D/HOD1jMXnejj5VRDlRltd6MS+vp8/l\nUCZC4pH/mBklbTxUG4tEB+IC8Vi9qTb2UDeKLRKFMZRq8iBQcr5SiDz/rzyPl7FEPjIR2NESkVmi\n9y45qoW4PNJ7qPqctCTPEpkDcRGCqX/rgTzTHjN4jud+4qJ8MPERPCgWVOWlzK4pAhmFy6V3pDmy\nd08d0t7TXFoFCVO8JBRAGCryyjJqTqCqfN4ggkRmeHGbIEkiYfLCiWotlRQBKb8hNYwIHA5jV/1y\n7yN52jvwV4RQG0lUtAaiRLCbRBnrDXEY9GbwK11Q5DaLWoqHWtLZi5qDM7zEEyLuURQFRlPN2e4N\neYFHHUU8CsuaQ7NH8KagdJQD3rD0hrzj6QWN7/4NRZc8FBhmbb+eIIlA8BSJRq2lYHYfgCJrwusx\nfurB/31l1qKPU7IPzQfqy8Z1rdPxlJxwckyd8yhtLWpOnPuqohOjY/V1CqRN/5F+t4dHfBzSXHbb\nansExaoZ3DClJSKnMP4bOfSjFn3M72Mdct/XFX0uZWWHDm5r7jZ31Rftx0QKVzTnVuizRdQg8nAx\njOBbatbJ80bp7Ph9omAgSrLkU+fWtTYL2LNGjTm0r+vmKLH163DXlIjWlPW7C5eFiClWtEayec25\nEOi0QUf9NWnps4a6xxAOsTzmPYFNyoFWa51XxKKU1lw6+6ZQVFGee0yO8YA5Mup9vvztwVj9PPQj\ntID2piBcfImM+Vz2uAnKogU3gkd+ecIBZQcasNXTvtOYyobUj0G7TYU+GKDudxHEVBTelBERqe5Y\na3fuTCxE/vEoozFI59lTqHPKU5sBSVkchEx6RvQoBM/ZWHPQVzuLEQENgSYNg0wJoSQWBeESJeo9\ngOdhFoOzBTWHMNGzEfniU6L2yZ7+3ynDi9El+g6qaOiqjbEM0fIyUaeU7GizL3ueBLQQdfScXldz\nOUrUfpIk2gQKdGrYlT3thakMiB6iVuHB50Nmfn3+EzMz+zlotvqXQOFWFLX77t9rTraONFdrGfGD\nhOBpKh5umpnZwZ9ovL78SHP3p6gXRV6FV6mutXCwKPWjGftw+o+E3uii6Ja5r+tfv/JNMzMbmpA4\nnX3NrbsXv29mZosbP/6sDX8X+oJ9LS607OJ3dL+/eUf9lPSYiz8Q8sZelU358H3Z4U8OFcH/zvOa\nZz+4o+fOk7Il71XFTVMGUbP3RDZs8jIR8DtEYNfVnhu9kZ3qyl4dR2WXX99X3/7h2zpD3H8kOxF7\nSff8w119fvqc5lz/b7Xej/NwXO2L9+daV3371vvsld/V2Ifos9lNrctH2Em3qWh0+Ynm1PiC+vLK\nl7DX/85OVHpwlMU5Cw1TzNW+5si8prEPhaU2FU3r+6Wc7FqafSKb1BhPQYCn2fJaoGpL8GDEQMsN\nQZKEUDXyPNREfPAw+9YkCk8UvE0xFNcMPpHxSA+KR+BUAV0W7Wstzolch+CqmaIaOAM9DRDHHCrc\nd1ETxLZMsS1hVJ8MNam46fsB/BhZkCdDbFrMR+WiopiBMyLso6/hwply2ErG1A9DkEYh+Eci/TT1\no92Rp685oWnsM04HNw0Kuw3SaQEFz2XN024UNMtY9XQerNhJS+1QZ4e+ryg45ay/oTPIqaLmcNIB\nXQT3XjykdZpBUTae09ztoLxYRckmFNPcMM5ZsVWt8wwo3Tm8ZfkFPW+/LXsxfsw5H9RpOaPz7dIZ\n7eEGz2WjqbXjIy+9Q41do689uDXWei+C3Ib2xyIVFBvZG0P0dSauenQ7IB23eW8AbeyN/Xc1rdGD\nZa2VBPtge6znZLrqx1hJcy0Neiyd51w+1ppyR3pumfeX2Uh26mBHazFU1xzMneVM6KAmxSvxJI36\nlAdCPaW51/lQ59vbqLcuLqod6RyI0uLnQ++G85rzXRTN0lnWflLtGRjnclQIK/AE9vf1/1/95X8x\nM7NqQfPk7X8trrDhXPupe4xi2lD1DMMJl/LJIP2DhJnFMjGLRaIWYn3OGrKr7gr8k9ibWUx1OuR9\n/G//QsjFaVzr8H/43/4XXY9aaSyhMfQ6vOtk4Xwko8WBWzAGGiiOsmN2SXtSiLlgA87TSc3tY6Re\nG1v6vsD5OILaKUcVS/LO5Iz9Mw2oIzhgfNR+c0tjOgE1vLAJwoa5kIWDa4wibWjqc1qhFAn/XmYg\nuxRin0hh5/oxVWge918W/+kSIGWCEpSgBCUoQQlKUIISlKAEJShBCUpQnkF5pkiZMhHcZFQes2pO\nnrE2Of/xsDxelXWhG/Ym8vZGyd8rvKg8xhDIktpE98tfRFUDr2pjT97YSxXlsq2QdxcmF7VApMAc\nechDp+RdPQrLa1sl+hY/Qw6uh4fehfUZRZ1hSB40F2/y7m8UgY468igmBrrvqI52PIo1UxQQmm15\nYZeX5fV0Yook5adEOAb6jIPGWB0qWjeG/X4GY/rdprzBpQWQRLWu2aG8eMcT1XklRy48iI8oueep\nke5ZH6kv5hF53j2Y/qdEFeZE20cd9W2UaL4blRe1zOfQZ+Ynem59wvMnLDFQCENTn7VR6tq6rfzw\ndVSBUqd91ACKN+RZ++iA8lW1K4sywdFdRQz3HoIM2SVKEpV3s5qXd9bFkRxBBeoxOaURVzn1Q/Kd\nFxJ+JED9nEqhXJBWP8VQE8kQWUjDIVNvKCJRe6Q5HF9Qf61n1Z7lS6oHgRbrkovcgL1/eVN/Xzmv\n56yd01qZHjE3kxqvJqiEFOM/xI3ceay563uHM4vksWdVzzhKRfVj9c+oj6rLuiISo5muj9S5X5s8\nb5BTUxQpluFniaTE6TPuyFveJM99vK9xjRC5j8GBc5ISAlEX7auPJ121ef/2luq6qTG9eEZzaYbj\nPYY6WxV1o92PUE4BaTOF+8BZIipDdD8CL8ZgRes3D3IiX0JBYZXcViJ4bRS8pqCnkm3U5lQ96xEh\nnXTJpX2MiltI9T134XUzM1s6pzkTf171TaPE07yh+nZq+jy8rjly0JDnf/l12b3KhsYyBidAuKi1\n8GSgMavv3TYzs/WObEJiXWtmpaLP5ZcVVZtENBeOH+g+rUeyy90n+j4+VfsjoMvqB7pvmEjmpK/7\njUqqzzKImEt+7jDIkoN9cnldjcOgo7Wdgqth2INX5YSl1yWaRjBrTuTDQGvNyUneR+nCuyl73CEC\nUqhq7k5QB3GzIKVQrhsyfjOiW2n2lcjE50LAJoRlk6ZEOZ9iOcI2T/p7kb6doZwShxfBwX55LtF9\ncsejbY1ZmAjhDCWT5ER97hDVGfK0SBRU0MBXJlBbJiBX5nPULDxd7xAe72C+I/QBQgMWge9hAu/E\nhAhcLETU3AHpaHpOewzSsYcizNznsvGj7bQ34qvvaa3FiJInyNsecl3MY03ta2+cUZ+R8/kil++c\nlZLPV29LFWleF8/E3i2QRYtaS5HmD83M7KgkLpdXvqY52/+Z2v38ltr1qKLPr7YVyX7nJ1Jv+kkB\nm7WguV94WWoay80tMzNLxzX3J7cU4f3ZOa2h5Udq9+mw5mz9QBHr+IebasD/bHb5Twd28zdCtoR/\nqXolB4oKbvzpC6r/J7p/f0P1emtJtulHHxAhv44STVbnhLdB/+19Ilt0bVX7358yrj+Ni//l9Bva\nf463/pn+3v73trsrfp3Xz6oPj6tCqEQ/1lwuwRn4YCw1yesZ+G5At2aWhPJ8Oa85c0NmwFYy+v8H\nr6iuF1Dl/CrL7X5IfZR9IATbalR2Nfaq6rz1cxRLZm/pB/a/20nKuKW+6sc0hvmC7NhBX89rfCj7\nu/qKxnYe0hjOi3CGRf01xxnjSP/3uRUiyPd14cEroJqUJ7Lc8zQWc0fXjeZEpIfAzECRxQ0OBkf9\n7sR8PgrVYzID2ekrYsJBNuPshqiUIQJoXhQbw9lhOoODEfUUF86cWZezIvWagxJOwytiPi+Ur7wW\n8XmuUF9yfWU5tSMJCU5mrrXtc9mMHPgKQetFpyjs6CnmjLmv9xR1Ow3FLQEvR6ylM5PH2kgmtL+2\n4bo4RukofQvEav/kZxI3whxBLWcw5XznK1cR7Y+yJw6H2jvbprr02/BQZuFdA5Xb9HltPNnZOKio\nGRxkC69prjm8OxXgzZw+0X0Pt7S+h/fhU9vS2WTuqzlxjjxzQXYtysHTP/e1++rj0UjvRs1DEM6u\n7nP0UOfJ0yAiV06B3K7KDi/A5TJYUZ9WUd+MgUINg0KOF+EZymo0Hd757n2CvUMBKHsKdG1Ez5kN\n9fvDI9mCLmiqlTX1S9i05trYzQKoWGcJXhNUsybw7PlAywXqf/qsrvfmrBlX7U2QrVCwz7ffpDgT\n5GLqrxHj7Hk+Chi+KRA7CyB6PFBrT25u6fmnUQgGTQdIzpJp3WeMiuoUGzBtoqhWfFqXcmZu7tjs\n9nX1zW5De8fb5+HWg6vJw22QSKKKhFKkm2WP5nwWBu0+HelZUdb/iLP+YomHL2nuteAUy4MgXnlZ\nGS8D1OaeoPibgk8zCXpqZ0cI83BBcylR0dzPdUHocAbyz9NOSPZtDio52db9rn8sHtEBCJcM3Dih\nqM7bTRD34RB2DX5VXpFt3AfBN9M5tjeFZ8hHPkbgqP0Hff5PlQApE5SgBCUoQQlKUIISlKAEJShB\nCUpQgvIMyjNFyrRQbuig8rFr8mqOenKZtfb0/4/KytceHiki0uzJ05Y/Jc/THHIAn6G6RT7dgOsm\neAd3Bopg1O4KZdEb6bmrG0LczDfkvV27LG/o1li/Kz+HMsx9eU8bdXnEVonwjIgw+ComCaKXFxbk\ncZvU5fvKuHgEYelfW5WXN5yRJ27SVmTbTeq6DKzNXdAlOXJ2z5xRtGse93NuycdsgchBQSeR96Od\nCcsmuCdDHonpXiPy7XyPcIrr3Ia8gdE8kdqs+rr5RJ7hNJHbw0N5KU9FpIRwNNYYJeDJORjC9p3V\n/drzz4eUGXh4J/EfZohmV1bVZzmi+B6In3lDYx+LaUzi50BDLGqsel3NqbCvfFWV97b8GlwvjOUo\nqvZ2bmhMInH1cXRNY5xFOWfzqjzwUSLOja68wovkAk9AUw3qiqL7XuNDR2odgw7KCgWig2uK1kTI\nMQ4n5YZt3RH66eAe7O+nVN9Qhsgy+di9pv5eb4JKMM2hTInokN9P26rHk5n6N5lRe1aW5OUtVOT5\nNyLiO3fVr2PWRJVc3uP3FJHdQXGmSSRoFbTX4qKinHk4ibqH6sfmRKiUDgprISLb46Tun7KTKx0c\n1FS3/AhPfU5tuXhBc9I5qzmSvqDPEOszMSDXtIw6x6LW9cOPhJCo31LdlgayD9W0ojEd0/WxkX7f\nZ502USpIDFFFW9HYTVAKeHwNbhZ4dR5v6/vFAsoIrwuJkl7VmKwUNBbplD4nqEQc3dVz2vAG1faE\nVMllNMfjRCCyY41xtUfed0/1HHnke6PUFSuDvClrTZy6wBwAuZK6oP4cwI5fQ4VosEe+/JHWUOcB\nuflE79bPKZQQi2iuTEBf5MgRzoKUSS2qvk5V9Tj8S41n+6bm/CL57ukKKkYGtwARzZOWPupRvRi5\nxUQ2hhn6gYjpTkRr3utpLpddcp9j6p8kfC0jop/DtsZriXz6XhLOngtqf9TnZJjLpkyJNHsp9Vui\nqd/N4kNzfa6Uufrcm2iMI0SpQl04W1C7y7qsm6nP/aK2xuGvmYA8CxNtj4Tg25jBNYP0nxtXmyI8\n32FPGcEvFA+DSCE6Nnf8qDH8DHBTeUS/Uz5Akmh/Kk69jb5HXc0FnRoBiRkm+h0hEpokrESwy9JE\nEKNEyyPwVTioMyVBxsRBJkamvzt/+x+X6pGeu3N02czMLv6JxvbCR9pz/wu8bhuX9fzVH4pT5oPv\nSRUkfpa5Qd7928fvm5lZoy6EifMnsklroAJy7yo6l7yv+9/NCZlTeVH92fymbEhiV/Z13pI93UmA\n6qqovevJrc/asFG7bVYV79MBqi+Vsurxzk9kA68mtL+0/p3s8LundF0oprn/eFNIF0Pp7M5XxIG2\nCZfEC7vfMjOz91Z0NsskFNW8+bHWdPYq3DwX3rIvoVJ2/y58NHCD/MhVXTZBmJ25hhJNTXvY6+e+\namZmf/Pkl2Zm1v8GylG/Vh0WX9QYf3emvcZ7qD4MraDcFdLZ5N3vyp6s7MnunX7CXPmmrvvFj0+u\n9GdmdlBXn3ThXUuuaGxHpnocPobPjvWeeA70KWt1ANfJfKTvJyCnl0CnzlzW/Fifg7CvMKM54XMu\nJqag5dhP+N9na3vGGS2EvYGixaKgKIbYrwR/GPG8cFhzbsrfsyB0uqgbxbr6/xSVJCflI19QtwP5\nkhljG+a8ZsBB4/NWTUM+cgclNZCPIxCWSb8doBLm8FrNiuzfwPQmSZR1miA04YicD1SvowkobTPr\n7vYscR477CP1PZ3hOm3tS8knKO7s67qjD7W/nh4V7KSluIHCa0Fj3EHlNEqfzOFame7qrDFE+W+W\ngKenBsK5DadVX2OfBa3poYLnwHUSBpE4yev8OOnorNAF4YzZtrWEfp9gjCrravMxEMjaE/VVBnW8\nCAq0MZQps1VQSft67iCtuZ5FiSfEfjUCIb3b533htup7BKwg7DBmrv6fPqWxd7ugFODznHMO9Tl5\nEqCIpyBKewP9bj7X9ak8iluM/ROUdJq7OqcWUSJLcG5uHcvWOFFUDhmHI3jh2ihtPrqlDly+oPsP\n47pPq6sz4m4LRcUwMOwTlhAccOkN8bZk4D1sDVTvKIhXF86xZlzjEII76Mt/9j21K6vnOp763VdC\nC4fUrlRFttJ/d97D5mxmNj+ryzRdtMGkbyEOEUXUgqbwwhn8RwYCZnmuvvjWP/uy6lrQ9WHGbghP\nZgE+oQxcUR5qwTlQQlP4QsNj1EB5Xhj7MALxl+F9N8QZY/+32rv+7u+1P3w7IkTmK1d0Xh/BpdUD\nPZRKwj/nK/dSrxhctslN2YEU77ylDZ09xtiv8UD7T+dI99mvbZmZ2camzqdV3gmTvAM1jzlLgUrq\nrsoWOC68eP+NEiBlghKUoAQlKEEJSlCCEpSgBCUoQQlKUJ5BeaZImQhewii5sB65/JkxeZFFPOhP\nyHHt+3n18kp2r8uz1vHkuZqQ7/hgLO9mmuhgAWbr8UNFgQZ15T8mfeUKqAUe3hGS5hr8Jfc/UB53\njly0x7cUeSkN9P94Vrl2jx4qctM91n0r5xVlm4/VvbVdeT3PPf+mmZn1Yf4urCrq1ccjWFqV5y63\ngTIF0cLjQ3nqSygyzNvyRO4f6L6rZ+SVj6KAU8Zjt7wkr/nOrUMLEWVInZP3L1HWNa26LymlZ1au\nyhvYvaW+XcwIkZGFa6BWg7envMazVeeFrO7fvUfUpqL7p/DwjoiQhmDWPmlJwC2SRg2jHyEX9ZTa\ntpRCBeNYY9skil9c1xxJN4nyM3a1odrbamvOFM9s6n4XQbocEDH4VB7wB7eUO3tmTfdZ2HhJvyur\nP8ZEzZtdOGlSap83lDf5aGtLf68ropBBlSoTkpe4ukQeOEikfBVFggFR/I7q0WsQPcvAFQG6ITTQ\n3OntEinZ15xtwdFQOCcv7ua6Pp/AGj94BC8TLO/FItEj0BcdkD+dKbnMoD0Si4oWdbrqz4f3FOlJ\nFZi78ELlV+DOgSPCIRrnoRzRgrE840diYj5jOuovkZOrLyW5NFxQX2bx8LdNdRyh7JTtkIPeRQ2o\nJbTSMKu5kkxojq2d0br2tjRHPNAG5YzqWl4BdQaz/xhExUBTwEaO+ipXEdIkpMfb3paiyvEDjX3x\nda2t9BWpP51+jSj4J0KI7H/E2jzUHJwcaU0m8mpwZkV9XVxTlCVe1v3anto1asKvhL0IP5Z9sjK/\nIxJQvKgIb7JHZJKo2NGhoksz0AjdFGuYqN8YJS8HlEP3GBU67G3yNbW/vCTeijmoq8U1RTLCIGg6\ncOykPPVvdEHjWLsGFwIqJOslVJ4S8F+VSeY9YcmS6zzClrkOiglEgJohReHqHY2fr9wTKRBdjMOm\nnwDFAZeBryoVHqleYyK9VuL/cCj0PbgiULRw4E7wI0vRSdrC5O6HwvrbHPsyg5cmMtfc9aZatyEU\nvnw74FN4zXimA7ItOVdfzqmzR1TbQGyE+Z1HlGcKv0XSyGGf6T4JUEV+PXIJtXUCP1pqpL/3Qe5l\n+0TDsdse3DQZcv/njsY8zf3HIfaNOogeuKkKcHcNODMk4dRy4G1KMCY+gicE4qY7OLCKyV4AACAA\nSURBVLkdMTP78r76af9bUkWq3dTaGp9Cgeu6lCZaw0u0X/XyFcXOjMUNc2+sOfTXrI31quzyW9tC\nnDwcCCFzfV3ImS+/LE6WjbHqfXAHLoeW9rPvXXzezMymz2sO/ueb+v0//4n69WdXn0bxh+1VW2vK\nLk/eki348d0vmpmZk/srMzOLLMvmXahobZa2Uc1b03661PyBmZmdOqtx/vG+1siH+5tmZta5onr8\n0Uj7SO1Q7X0TFPF/whZ8p75sH2X/o5mZxb4IMqQGIsPTMyanda/FD2UvGt+Ac+kHPzUzs0vnmdsf\nS83oizkp16xU/9rMzH77/+iZtbc1l8LOr8zM7LVXL5qZ2Tfg/Lsf4ZyJgknlP2sv+u++r7H+v/4P\nO1Hp1bRe796UvVj9ir4P58Wnc3BLY3Z7pL47B2o2RaQ3OQcFO9TvI/CPzFjLqZKPetXYRhzQc6C+\nkvDeGXwk+THoXviXokTxP+OfggPNgU/O5XfRsM9PwVpEZWQCD0qGNd11fNYrxsFXU2FfdAYgWbAF\nvnoLYGTzZr7aHWszgYrWiPv4SMIMHBR9+Ol8BcaI7GuESHwEpGc8DcI1qs+hzw2JSswkjorM8VOV\nvlu3PrXjvvaRsy9d0fOiOkt27mscXEfn6PGe5sudH2r/SSz/HjKIf1DGBkrWwU6nQfmARL90Xuuv\ncxZuxgMQ3CAOH6GgeHAsFbXaDc2V0rL4kU6hitnwdL9UUXVezKEoBRLl4J7WZ/MT/b62o/8vLWhO\nLqxozWVWVZ9MTHN3+JDza1zvRAlf+SyndrTYMwf7mptl3lUuPPeamZn1G75CGGeCHiiKhOrVBzE0\nqeuMxnHXVldQiFxWvZYyILZ5F3Q4y8xQCxxSj24LxcyM+qOyonfIlWXZ1whzOApaKwbno4t63xze\nDx+xXYO3c3qoufn4UOfweFa/O3NBqLzMks7hDdT0uvD4nbREQDytn0Ghl7PToMb9fHXDsObmkLWW\nymkNX3hDtnBc898JQVxxEIiWtL/3ga6+97dClex9orPd0v/6bz6rS8ibmRfOWOms+i4PmtL9DA2r\nOuTHsrNjzuiFguZwf6a/197THjirwA+5gZ2h7hlQri7vx7O++jqGglba56gC9TOB1y6DWtIQbpd5\nWH/3ejoXd3m/b3xR90tmdX0CpErfV1PmLJQK6x2lw5lh/Ssa0wRqbXXOvQbC28vruhv3tV/88q/+\n3szMvgVaKfam9uhcRvdNDGU3prwXpGd+u383F2KAlAlKUIISlKAEJShBCUpQghKUoAQlKEF5BuWZ\nImXmHaL8U/mGhuQ1HtyQa6lSlgeuhYeuCwJm+Yy8vDE8WNE+7M5JRTRtKE9YF16RCSpMQzhkcp6i\nQRPyMEND3acUw0Nel3dyraxo2OSBPIURAVasnyOvciJPYXiEfntX3VlETcpPHesQHazCbfHosfLG\nEyu0n3rVpopWpc8rwpOMgH5oycNXfl437DwgTxQ0xOoVeWvff1852y65dNmCnjdbHJtD9Dmzrnsc\nwzK+vCCvZ/tInuD8GXkrxw/J2z1PdLmO5EFR3r8WCI8JPECtsMZqe6ho/DJ9l0trTEOMhbkkt56w\nZFC2cUfq2ymKAfElojgtebp3byuCMOnKC1ksq13DHXmUHzSEZnLxOEej+n1lRVGS5Aw1kiMY/MP6\n//pZtTMPoobAtT2+qf4IbZEzm9f9Tp2T4sLxlnJVu7v6TCThwEnBEE4euIsUUCbj522CvAE9AGDF\niq/qOsjkLZNSJGbnAZ5+R97i3FqFTz2vekpe7yzIJfe62t+Jo/BThDOiKq9yj8h6CGRMGI98elVr\nawGUyLhLjjPzp0qucrgIzwrKZn1Y7l04MLqg2QqnUJcCLeKCEBjtoQa1fXLTlAadE17UXE0M6VtY\n3Dvb8tC7qDd4ICUcovVDFMTmed0njjJW+mXVbYjaxsCFrZ3P0b7W4f6BxuDgsTz1KdBMFy6hpACH\nwnPPK1qd3tTzl08pChQmT3tIvnOXyOLuY0WpnLr6LgKnVBalr0hcY5wgOmQJFLayqnfe0Ri3d7W2\nI3AeFOCwyS0oYri0ov8/hN+idaQxzxXIvQWt4PnqQQvk+BKh9YjAnn5R9Wt3iHSj1pFFcWxaU/8f\n7Wmthlnb4YiuG6DqVASdl1lXvTvb6t9OQ+3eXEedLg79/QnLlDVTJpLbgIsszfcFIiFx1ENCbdXH\nR6fN4WNqgbApF+Bx6aK4QD8kQJuMyOvvM+9GqF7F4LTx1aiKMdnOuTu1aEf3yqI8Eu8BYSEaPIfb\nJQ4iJdZR3RJh1IvgkXAnvrIJednwL8SJ1ngokBjqRw5RLw/lrAx8FV1fJYTwjQt4KwxXTKSv+4VA\nxswhL8h3/fvq+hH7RGzEmBPUThKNisEhFa/rB0l/ztH8RJ+IcAJ+CJQMkwX1YRw0XA/U6xikzOdj\nlDH7zRuKFJ8aqcEfx7RGLzcUFctd0pobfyqEyadfkgpToav+WEyLB+VeVHb3hboiktfzsjHZKfno\ncaFpw2Oh4t6vf8fMzP44+zMzM3PXdJ83GuKs+amjNTH6Wzgczkklylu8SbsXP2vDT+5v2+nvgEza\n0RycNhVxnzz3fTMzO/z0PTMz++XLOnOsP1Zk+slN2azYHyuCffm3mo/z+1Jj6cSEFLoK70C4pgmx\nsC9b8v8mdb9SX6jgG6XfWue6ECSvdBSJPHhFY1Mi+n0pp3PL5CXNjfWfqy13HJ0h6r4Sn8vY7wgJ\nc8/gkPmixsx7V+pNb4CecqKaDH+//k19n5XyVfmexq7zouxLf9q1z1MSfa2V+VBjGgOlls5qboSL\n6ssZPCC3ttXetQX1bQVuLB995qHeVnRZFFHtN5mE7JtLlN9HJI5BwLhDX2lFf4+BBHI4YvU5V0ZQ\nL+mxiOPYMY/7htnzoSmyaUT9NsImpCecHVCCiwDUCRFxHqEeGua60AQFuKj23QQqTBHmzGCm8ZwZ\nHDAZ1WPaAz0BV5jLuT7COT8Bd5sDYnMEsigXAYWBstvIg1ONM9y9tsbJzOzd6x/ZZlPzZemSzmrl\nis4u95+AXILbZi0jxOzujPNF7+TIzDvva11OQBouVDhn5rReDkOoyGV0zwhIvwHoTA97YSX22EWN\nyWCOKlBCdmlMX/V64smc1fX/dEnPy8CP0V2CcwW0cHKu+49DmgvnKjpfhlDH9EBzzQ503YSo/84R\n3C5lEJE90J9pPTcxQM2Vd6o4nJUu/EQRV2NT3dBcb1R0jp4M1PfDsT6LYz3fR0xHQe+mN3S/9JLq\nORiypx6rPpOx6ndwXfWKFPS7pQX1twsaugo6OuSq3fWRzqm+Mlglu6nnnIWfJMIeTf/2+Vx4XXZ+\n2X9P+kRntpMWny8FkLMNOfDP62Qm7MhGxRa1htK8S7r0+xyb46TV/laDDZAzC0Jr5vGcNui7Gu/a\n/c5T7sZhbG7t0Mj62KEYXFbhGujdKcpNPrjfQKqA7mwPZEcdkMLnsXcuyLeJ/+418JVYUXxkDg/h\nqPHVnB4/QkkRJHI/A4IPhPSlq9oDpyONzRKKwGkPHjbW/6OW5vDxkd4tlkEizorqiy5nh0oYDp0O\niMIkZyuQii7v+ZX4ppmZnTsjpF0xp3ZGh6CbfPuc0FhGCxqTWdrnQWKM/hslQMoEJShBCUpQghKU\noAQlKEEJSlCCEpSgPIPyTJEy/aY8YcOmvLA59MAj6KNXF+U+7Pbk2W7BhD1ERaTTldewfl+esAKR\nhRQqIoOOIrLDoaJTDb7fRLHnETmk4U15rmp40LddvK+oJ7Xx8LltefhW8KbWBsrPXN+UR30S030i\nqL/MPZjUV2BjTur6Xlze7vxL8GkQNmzs6HflTXn8Qn2E24mAO9THV3dJF+VNzp3B87hP/vqqVFyy\nJfXPQTdsbtmPasg7edgSouVMRZ7eLlGffqjDdfLQpleVJ3dwqL5Z/qLPAUIk81D3LZ2BkyYiz3Ll\ni+Rv76uOfXIuE3568glLB/6FCGoWadAFiZDGYP8jjfE0qzmxsPxf8+uMWyglwG2Tx+Oc35Q3dfWi\nInxunYjwI/VLbln1ny1oTuaJph/dUASx29OcKL+o5xTwCtdBdXWm8somLxP1x0Mfm8HXQQSz5Kqf\nm0SI3bzm6sBRe8tw48RBR3gt9cf+Ld2/BgoiQ0Qiu6m5kCPvfNrQHNzp6n4uoe7Tqxp3D/WO5Iwc\nYtSmaqzB9QuKSFRegVvotD4dlL5WPSLiRPYHtOPJniLAnW21k/R1y8NJc+YlX5lH1++21a/OWBGN\nTPbkiKoZ/D5xQn0Tj6hChdDfDUWJ9xt6xtpV8UQMUdWJRH2Wdq2B4llFOk8X5Qm/+7OPzcxsOtJc\n6l1XHVsNjZVLdCsxUT0K8AbNCCkWF3Q/57z6ctzUc/a6rLlr+iyjXGAgKjIl/R7xNUuCQOmRi593\nNQbTPRj5w/qsVtT+8QXNmf6M6A6cBKTy2rxJ5AIepDB8HQe3BQlsren6YkZrJOcRMXFUjyb8TLmS\n5lAhqX7tHaifXfgmqjPNtUNH9Wjty671amp3BYWKWbnK/UAdgPoawSWWRkmg29C4pnqfD3U3g5ep\nmwWpkoMNH+SKr3bnEnkdR1Xf8Bg+rqJsWIg5241jI/qyGSMiIGHQZ3XQKpOEfjfHZkZRhkiheBTq\nEQmPp80ht30OotCLEp0GuQEVk8UdX3VC30/RXnHgtSE4bjaAM4ao0TSkv+f5s4cSgevzVRgqT2N4\ngUDWRELcH24y1w/2RJj7kNKEj1EfAokTa/Pp19OHrqCQYiHVxAF5N5/46FEQjyBxekY+OIiUCmp+\nYw8FrhZjmgFpg3pIMgmK6YTl3Ey8T+1d8Ze4nDWuj5U3bkdqR9GT3d3Pql5nb6gdLkoPm2d/bmZm\n8bpQGcPXpNDT29XaWhnKFpRuyd4+n1c9f7guzrJEWYiUHzyvtfcve3+neqEg9+Ocvv+NKcI7X1z4\nrA0v5J+38gcY3FeZ23n9fh87fbon1F6r/R/MzMybaN/+wleElhv8UlHIvdPqz/OM16Sktbz5KVHT\nS2+ZmVm0pTVfeVHzZ/e2EEL2UsZc015ymz1juKN1eHZP6+9JGeWp92W/3vyyEC29j7VXlMqaNLvn\nhT74kr9uN7U337+m6PSZU2rDb1ztZV8y9XG+AZLjRY3RrTu67hA1jdHPfTWM/9NOUkpV2ferrNXE\nRHYsg71frWqvP45x2EEJbT4EYY1K4MEd7SfzAaqbVzRX4j53YEZnLgfVpj7ImimIkDjoXgd+ujjn\nxOEY7ivfJmDwHZAr06Gui7GmQ0nWGNxoSbhaPHgGR3HZL2cOSrbnR4LhyAlprg193kDsZmaqenWB\n7iSIIGdQ4HRQYfFA0Azh10h24cWA6yZDxHmMimoaJHwMvrop/FhRlGlGIY3/GBXA9kz7tJlZzHOt\nBFI0NlN/zCIouoFUdWfwEhIpf+l1ITNLdc9OWtLw+kz4TT8FYryjuXuvLa6nPjxDZdCiCVC8E9T3\nKiC1c0XNmRzqcstl0KIoWQ1BGh+haDtErs4BabN6SXNr4xwqPSAbJ/B81Gqag76CzsxAwnP4ODyQ\nvWvtg77ijLF2RfaguKy16oD4KcAnMuIdr1fXefVgT/x44ZrqUb24qevjQtPV78uOHMER+eCBnj9u\nakyra7ouUdZ9D+7p/N/a0xxoPfTbr3aVeR8Y9EEll1CwHHB287l/+oxtHGiJI9uQmKgdG0v6/bTF\nGtpHCe0G6oKbmlOh+e9W1vnHJQYqzR1r3GOo1U6BuIRRFE6kUSHkbOKrNuVBX7g9kK5w5FiL/RH0\n3Op5zbtv/ss/NTOz7QNx/6TPlD+ry9DGlgzNbAb3XjTEOvGRb/ABGXx3IU91j4LOTSV4Byyq75KL\neuawrXPgxNPcHbFew5xhANVbOi07M0MtdAT6adDRWFcn7L1ke4RQyJ28gX0HyRODxLHBc1zeuYpk\njgxBEU2A/MRA8brYz7jPfQVqaQgiaAqSe21T5/mVF/5c7URF8/gRHIxLWgshVO6Sfj19CMw0QMoE\nJShBCUpQghKUoAQlKEEJSlCCEpSg/P+uPFOkzCwqj9LKpjxJpaIiG9O2Io+piyj1HMpLeNpnjU/D\nbjzFgzeTJ66Ml3bsKzuQu1ZF6742lAc8Sv51GK6WkosX1ZFHrenq+eUq+ePHRDrxvGfK+n0/Rv5g\nSt+vphWB6YN2yJKH+MpLalc0AQfEq5tmZnYw1nP2dnSfGbwAA5/Po0bEgcisO5Knskf/tI7l4dvP\nKvrWxKu9UZWvrTeCC+dU+jPFkzLR3Qfv6ZmnX1TdRotC1yytqi1LV+SRXiTiWCf/79RlUEG0ufOx\nPNXpU0RNWvKu1lDn2SdfLx2HJX38lAn/JCWCt3aRMY8S+exMQP7gFS2f15iU8XDP9tUXjUO1Mwlr\nfHpB/ZAKaWza5MQf7ysXvt5R9Mrn3qnMdP32ky0zMzvYxRtKJGHTxO7e6at9M3Jjk2cUCTiHYk9r\nT1HChz/Tc4631W9uTxHPlXWtBQTDbGEBha+y/l6A9b3TRUEHRE6OQHARzhcHEofdLc31TEvtg47E\nElXVu7qpyElvW3OufVeRm8ax6h8nUj+FP2U61mdvF6bzFmouE3mP/Qixz20RnhK9CsFJQ3SxnNM4\ndeBh6dQ014eg08qM78R5muv6+8rM56/BPkxRvUgS/EhUFFWq3VO0p/1Q62bgao4mlvSsCHVLZfz8\nZY3h40+umZnZvV/ps1AECRNWXy5ekOd89ZSQIofHRDiJJBQX1abZXG3e3lN0uweSJIki2bQCVxTK\nCmubGvu9Lc2ZBGO9CNrIhcU+1Nfcah2gWENUxTut64pY+QnAO3eouXP7uqLiq3lF2avct/2QSQgP\nSQJeksiIPOWk1sa8okk1QYWpAHdAFtWK/R04IBjLDBHZVgNW/RYRzZSPelC/HaGKV3gO+08O8bwL\nb0pN1zXHTyOgJylJkIyxGcgg2P57RIZH8B3lidj2yCF24HPxeaj6Cc19P6Li+uNMJLdLBHqlouuH\ncJDFXT0vXtD9oy2fV0rjURqEfEEVC9P3M5Atqan/LP09RBB+HoH/p8/eB7Il5ismeESP4IhJkVs+\ndYj+wPuTBpE4iut3vsKK9bBr9IER0UvD5zDq634xIncRovnxY1Si4rL3MebGmCg2AmU2B2nThYMg\n7GruxOGR6IFIDB1pDQxApszhE2rsae8btrSmI6fgRDEtFmfEXD5h+eVIY/TG5paZmS1tgUws6Yyw\ntK6Ku7+WrXj7I3L02X+uTaQI9NKhomjxb8pefvevtdZ/8ZJskftYay+xrPsf9WSLIit6/vLPUKZ4\nXpHoeVQR5iH8WQvvv29mZpvfUTtDzacQ1Gz0A/tJWjbh6sdEvuvq1y++ovveOf0LMzO7siWkS7Ny\nx8zMrj/UOL2dlYLGHY+o4H1x3TyG++BeVftH9W90bjiGSyi3pP6+MtD5odv41C729e/9PFwAx7Ib\nv2lpb/7akfaea18HSdjSGO6ek70+ByfA6LHOTz9Iyb69fUN1/iSnNq7MhYhMlMXHc/QBqNZloZ+a\nvxYKKV2S3bgEQdvuaMs+T1leUf0LSzoLxZKgy+Zwd61qjhRHnANXNObVFThVbujv7T1dPzjW81ub\n6twzqHBO2HM99tIJoVYHNNs8wvkODrIhf4+DbOmzd0dADlnKl1hDqQxjMxzq/jHOCPMRSHHQUWEQ\nLw4ojJmvlIgC28BHt1IPDwTgDM6uJPYwTER8PNc8iKaIuHfgJ0KNb1TUZw7UnJvWmojAw2fY3yHI\nnmgRrhdQfxGU3ubwVEVjT5mlnnvtOXv+daG/85wdx0PxsRQ3tK9M4DoKrWk/XsAWJh4N7aRlpaK9\nuwzaNcIe4VKXEap33lTPPBhpvZaz8K8NOHeNsDfwRDooYB2BdC/AZTiOYbfZs4qg9aFYsV6VzidK\n76sWJcxXCJR96nRAfMBZ04MLxo5A5fqSWnc5c6DQE+F8Xl1nf0joTOFUBtQPFEXY58bhfH5HayB7\nSefsWJl9zFcbhDut3dDhxYtpTYXgzSuyd0889cfjJ9oP+sdw0aAe6u93y3PZjiOyDaJw6wza/rul\nOqwI148LUmXGmkukZH8dj3PwI9RKt3V2KGd+NwriH5cZ6LExKlUTD86wNEqfvI+1Y+qPwQH8WfDf\nxVDanczgv+O6ZEzjkgS919rT+IYrWpPPFzbNzGwaan1Wl3BnZJFY2jhSWAdl3l/9UufeSkX3fu0N\ncTG5KKz63HtOX3U+cjVnd97hvMzZY/OSnhlLobrJWaHd1HNSIKV3R6gtbaqvC0fq+/FcfT0ANeXA\nJ5RCzW2IWttkChIPZM5p3sU+vqb94kf/9t+amdkXviE07IuvCBHvZ56MwuoTr80ZiXpmQLENUM2c\nwXE2AY2c5pzqcsZKYTfGoNZwP5j7e4juAqRMUIISlKAEJShBCUpQghKUoAQlKEEJyjMozxQpYz5/\nBjmdYQS96yUiDVF5Iw9jt83MrBBRBKXhyRu6sSiUQhROlcyCvLtJFHh8paDTFxSp6F3T/ZdPSRO+\nT66cC6IlnMazDpP4Ylz338+QH42e+erGppmZZet4xohMFDd032Zcz20ekKcJw/fhI/0/7ecIH5DL\n9hj1F3hRWq4iSHOiX5M99c/+vupRB/0RK8gLunddqIvunu6zX1aEaGdHudy5paQVs6rrOA5Luqt7\nN3b8XFFF7+900IDfU92ejOGXOJT3cWsXdx+KVkfUPRUWh8gYb+WYvOAM6KJCAcSIi2j7Cctsqvt1\nUDiJTlS/Plr1uQ31QY5c9/Gu+mrrutqz/VgR1o1VRfzSHfkhZ7vyHA/vqn1tY8yrmkNlPPfzfVRK\nauQzL8p7m06pPbkskQ+4dfo5RRoqSd3HJee3S15kbyaPv+/hToEgiRINGrXlaR+nVc8cqllJ0ByN\nHdU7tabnV5YVPfQVge7d0NzwyDFO4NVOV9V/laqek45rLXkO6ATQDqunFIGIeES+F/WcEYpf46Qf\naUG5pqJ5VSmrnlki2NFt1SMBu34KxNCEiMSDn4unJVHU+JU3QJPAru/Q3ycpMXI+HZAMNSJmyaSP\ndFBda1sa6xEM//lTWpcrV6TyUVxVtNud+2pNmvNJlKvuwHuTLWsunT2raFgV3p050ad+z2eVlx3Y\nWNg0M7MwCJA0vA5T0EaRKbn7O+qrUlVRpti65uBWRWM0hRshtK2o0PCBvp+tqs8KaZA+FzX3chmN\ndTcmO7A7lp3oH+j/06bGootyQBouhJKfP23wOEXUT6kCSJgCaLNFcnQbqs/kLuipmJ7TuaF+DoPY\nW7+MYgKhGAeFnPIqyhSoNJXOqX/HDSIpPdnNzkO1twv6a3pIBPiEZQz6ZAI6o0hOcaZNJBq1j5ij\n8avCUeQroMWwbQM4f5wMUa0JPFdElkMojY2i+ntyqP4tpmbch4g5Uc0IUbhJbGDORHPBwe4lyN/2\nUDpxPM0hB46YEOpFQ9ZrCnUmB56GMfJFLnNzMmPdwmsRH6P2AURvjh0Yz1UPwD/moICQJhI3hVci\nYqCX+LvPLzGK6v8LXZRbIMOJw0nTg09ihvJLmchkyCMi2EPJAR6i6HnZv2SGPPcqax41kUmByGhc\na6iBsmJ0+Ply/GeZV83M7DEcLNs5RdGuetpPlt7TfnL3a/q86cgGvPULteOHEV3/S1ALHch3km9o\nDg9RQzm/rvY+OpZK0ct3dP8bIGRW0ijSHEhp6J2OovuvnpMdPnNaa9BJyY4f3B591oa9M1+0b4e0\nBm/9TGv0wp+o/z5u62y115E9roEKWN4Rr8uX09rPb4Jqif0W1cDX1M7YA7VzPQtXzvfVD5dbOpts\n1P+5mZkdJ9Xe+uOkRY50fjtvWueHrtQlu2Wi6QOtn+qvZC8rKK2kriiS+Xz4L8zMbJbWnNgqv6E6\n3fq1mZn94QMhVpooKd45/46Zmd1flOrS5YbGtNQEfXSo+7fhJ3qtlLHPU6JxIqfYsZkDmiuJatJI\ne9+pChwtqMUlQEZ3QQglXBCVqCIlPuP50Nx2h7K3PhdYPAR6gEU5hdPGQKwkI6DaXNAZKEWGQI5Y\nH0QMEdwRUpKJJNxZoNVC8Oe5I3joEqjPhfU9lG2GKbEUaL6ZHxkGEhOGQyeBTZhg08KsTQ8OrpCv\nGuWq3am4j6RhDfivKTxw4mIL4GHpH8LZE5PdTlfV3z4SqFR4qpr04ltn7HxJ9+v0NUfHnJUWrug+\n9awi6u555uMpHwF5cvWlLGihhbjWXxe+ui522QWNuVHRum51UfGkr9NZzYkJCJSwA3qHvc+B26QD\nH9nBbZ2/73HerYLO2gBBnQMZnVsWmre8oLUSR8mq/lhtHR+rHpExqmsr2otbi9xvR3P23l1d7zY0\nlo2P1ZejY9AM+5rrT0B2Rw9kt4ZZFBZR3/T5+I4OdVYIeSC0M5ozGUf912Z/OgDRfgj/58KC/p4+\nq3P0hse5nTmxtKHvRyCEnAz92uDsBJ9n/wkcjagwLW9wBkNZJ7ms+5w9LztpYf39+PqWmZnt3FT7\nd9KfDykTg3fE64F65nkdlC1dFlsERNOT26rn9Zs6y37vX3/bzMxyVfZrUC4V9vER73sl1JZcuN4i\nCfif5k9hG3F3bNFo1jzO8s27atu7P5LC4ALnvytfkP12QED32dO7i5xrPbhhu5oLe4e8d6OKmlzk\nXLWj9d4+5kyCStEI4tHFDc0RgCg2v4cKaVufrqv7Z3hnyy/56nSoHsE5mOQ8FsVOOR36GhW6KTw9\nzbqfxQEnLKiuGPtOvKTrn+xrrf32x0Jgvkx/rFzSO6gDYnDOmaxPVsc4zPnd+91nkgApE5SgBCUo\nQQlKUIISlKAEJShBCUpQgvIMyjNFyoRnqJ9kyC3Ny1u6iErJ2iU8WOSgLlwREmW6J69fm4jCtCRP\nVmJBPqZGkohmVx662Gl5smaPYVlflActBLN3H7TAqecUEX5wSOTCZ74GoTOFkQg07gAAIABJREFU\nZXqO13EA6uNoW15SL0uEGY//7kOhUC6m5HUeyFluCVARfVADDqiLwRNY9SHDGMN+n+vLm5vEo7fi\nKUc7CdphjH775ct6/iI5tomJri+XSnZwl0gdOYYeXCqt60JeREaaCqTr2rAmr17HI3pBlCCzoz6o\nTeS+XC5tmplZFEWqswUhJcYeKIVjoaFGY/VVqEnU5oSlcwCipUnkMy8vZD5F215QTvs0Rn7wPXnm\nQ4uaUytzRQYyC6pXJqJ6tbblcZ7BSxQjSp9BSSaLmtJ98t3DIDpOv6G5GcKT3TmSN3WHyED8DPnT\nO/L2xsl3nOT1/fpbilhYA34iUz8/vqnfj6eaJKWe6juvKYozwCvcHGmNRFkzYZNXugeSqVNXFK6E\nAlCWKJWRt12DH2nY2jIzs0PWUFIBB0tGNIdScfXToKH2HT9RJHSf/5++ACptQc+JLytCkYhGaZ8+\nouRXzkFmtfbV74MtRXLDjuZyGn6pJJH90ez3JF7+g9JEqSVHpDCC6tmuz/pOZG7lK5or52Dwr1xU\ntGNa1Hqr19R39aYQMWkiannQSEtv6PeLfmAVpv7mFspRzJm0j3jrqhMOnqhPlnne8prs2LCvtTEl\nUtBD2cVmut5XXFit6r6PdsUr0TlQe9auaI5ceuWqnnsFdaa82tNpCjXQdTWHxi3W0h4R2pnGsE/i\nebWkSbByUWvmxqdCM62a5n53CBv9jsYwAzpiZ1/9NjxAYa2t+k8nIFDuqZ0ZIgqnTqv/D5NC7IRQ\nVvNmsjE+t0v3GPt8rPsPOmr3pImi1wTOmhOWGepRk57u0yXykskRmTfy+BPYrr7anYEHIIztWGTb\nnPWJvvmcMwM4zpIoMjRRB/HRiTta8wCjLNvRfWOoEDithLksnziKUFOi1x7xkzRRl+lcdur/Y+89\nniS7rjTP4/5cy3AR4aFFRkZq6IQgCRAgWSSrWEV2dVXXmLWNdY/NzHr+l9nNamYzY2Nj3TVdxWYV\nq7oIglAUACESSGQCqUMr11q7z+L7PcC6rJsTuUIv3t2Ehbu/9+4991zxzvnu9w25NtYgQ0dWfUxW\nJhXW+B+BiLGJ1prRBDUQNw3FPOTHd8JwIIzH2AbVD3+VNZd5zbVBrKDnxPwg8kCFpUCx9VEM6/bh\n8wHpM0E5ZkS2v+KXT1iU+qEeMoJfYhLSmJpgl/6s+jA/q3b5zoEAZL2YtB6PU+Yne5rPfhpSlm5j\nX5nTjzaxwyX53B9/IuRI84r65e8qyq4Pzuu6727L529d1v+b78pnfxlT5vmLV+RDL/Z13TYqfAsL\namdqXRn0c/c0ZwxQlTpByay1Lo6XVlt2eC1y5cs27H3asNGmPk9kVO/flrbNzOy5tzWWjp5Q/V/c\nwF8efGpmZv5TISUbP9R8//Iz62Zm9gGoikpHc01k+oGZma3/SnbO/eBPVM93xKnz/rJ4Xb7ZSNtH\nV1WXpfeFSJy9qHlo6VRrwDvLstX02mtmZnZa1PzjnGqe+dum2n6hIMRL6Ke/MTOzz9Maz3XU2Va3\nlbksxr5jZmYvhWTTL4703OeOpN707qb64vsXNN+8W3bHwNnKuKL95ph923RZa7YfPonQvNaDDMiO\nmaQGfPULkCFTFLEWta6EUQN1JdMqPVTa2Ju4VCoB0LMjUFijIGlx1osxGesge6EofE/jIGg5+N1c\n5KKBDvb1yBiDLBm22YcGQbkN4WqZqt2htuzVhRtiAm/TZAqXIzwkYVB0HeaWkLHfR5VqjErUBK7E\noE9zQx9FGh+IGD97ghEouchIY7zp1xyB8IyN2qgQRpk7Y7LH/Pnz5pb5tTmbgjaZ+OQ/Tmhb9QPZ\nVNjSmDwM6vMJ3DTxty7YWcsUDrBYFp4fF2UDkmQXdGkuqneOuYh8YIqiViCiOubntGZG57FNSfPR\nIWtqqI9y7bLmhRnQAQHQRxNUnGzKwsJ83zLZuH2q+5wead4do5LUrgsNEItonoiDnPTNyBbLF1Ax\nHYHwjqtPInDB9Om71EDP33+gffQeyJlLKGvFQTmUb7MXQPEqhc/2+Jub17wUTOv3x/BntlDcCeIb\nqRXavQZ/UiRKvUBPb4CiAuHjCnP1WM98j9T+MmMU4LuF+L9Y1NjOTjX2IzFQspySiHbgfDxjcZXH\n6g145eK6XwcUcSgNVxBj+aiiuXN791dmZrZ/JP+4tgVfFgj2EO+aBg+fuXx/IIMcuGyKla8QloEp\nmDTW+HRGtnr2ec2fLlerMe67cA3WfC55o3w8xjtEnehCjLU8xBrdaLN3gC/Jx3t2HbKVEzgiU8yn\nU7gHZ1BgTBI3GLCnGYz0d9IFTQYnTAtk5DSqPcPCgp7/3b8SOjW5nsMW8JNS4V5K9Uvm1Pku312Y\neSCZ0x5hEb639YtPqJ1Z1siSnu+b0/MmO6rXF/c1ppYLf1gR0kPKeMUrXvGKV7ziFa94xSte8YpX\nvOIVr3wN5WtFyiRRnIkvK1qcRjkiPa+I24izs42xMsSThKK2yWVlm3qca1/mXGYwq8xDEK4B5wQE\nTlb/j+ByCBYUkYte1O8zRF8XtpSVOvq1oroDdMsvPCt0RHtXGRbI/y2XUP2DEzKmNfhKiOBF4Syo\n3FLk8dbvlcm5uPK0mZlVUWHJkHE5rSi8ObyiCOWAaGewpPtHNhSp27+nDNNMBRRKDh4BzjiPK/C9\nnOj74JJjE7LwmbTuMT5QWyfueeOqIqilPdX16FAR36sXyb5XdO9dsldtlFXy54T8uFPmTChZkECI\nKCM8DIUQrOqhx0PKdLqKsqbJRsd88pVgymUZV71PK/BkENleOq8+ixLRb5dUr/0HnP18oCxa/qKi\nneeWeGCUGxB1nfHDvcBhzQbZHtfGlW31YX1Htl5OK2IeQ9kldU1/g2myNygqVInI9w5BW6HqFCTD\nsrrMec2S+qO5C/QEJYM5Mp1T0AmlqtofL5AxWROKYjTQ98f7aneyBrfQLOgNFH4CIImc87LruCl7\n7cHDUjxR9NcfhHsCJIuf6PnkgZ5fG8tObc4K++Mwp0Pin1rUmOn5lA1dWdbzfVPQKvAu2eDs8eJK\nRdfUy+pT/yIZtpSyO0uvKrs7hG+oC9KtQtsOb5K178qnw/Dv+FALSl+VbRYdZSXKb+q6nT1lXhdz\nGgNzC6C31jSvlB7oeQefa/4KkrlLkA1aWJPT7Yx0TtqBa2RQRqnhAspVl3T/lSHZnYb6cGldz6lN\nOVf+e2XBixMUb+A+CJK9GnT1uypop/MF3T8JSiFIpL9QUDsPSurTDmpW/n358JCMaP1AmdNBC7TG\nFB6kBflI+FjzdKmp+/Tq+n5zU2MzjnLCo8/Uf6GE7F86xO6gwGJp9WME1MSxT2OmlSBDc8aSjek+\n8Tr8KgnZaTJSvbKM/TEKFEMy3b6wrnMVLuKgBDusJ3G5k41JaUdbZEJc/hbQY6O++i9W55z4iCwV\nZ6Ad/9CGcJA4Hdm4554BZzx24HSJDfTQgJ/53HTPQZgsO6gfPwpdY1CWSdQspqY1JkAfDHuap8eg\niSbcNzDlfPYApAuKLxMyshGQGLEA2fEOKCcUBF1+jBp8FgEUERpkxRuGr86rvsl5rYWhghbZ1FPy\nIQeOmc/fl6/UyLjGyb6Fn9K8l+bs/4T1YHD8eEiZ6TUhQK5XXzUzs9n462ZmVglrDtmKa6/x63uq\nR+WB2nXlMuhWlA8/YOxvZskmLqE8NFS9lk3rxk5Y9rvU1HUnT6q976W1V7i+iEpdXz7UPMdaf589\ny6ay979cFULlf7R/bcP1Y5vfk73urogXL1kSt9jrPniOttUPHyywPqI41wkpI728J9/8oCVlmmJf\nnxc2hLLbRcFunUz2b/6DUHUvBrWvePFp2eWw57cf9DTHtwPix+mtyRblsua/P1vQPcsoFEZRr+su\nyUaXb8uG59mbTNZko3fymn+/t6F5/+EdjZH1Q6kw3etr3m6v/t7MzIYvaO157t9rD/HeZe2jNoN/\nOHP5z0sH1b3BffY8ef1duyxbxPIu6lU2cMFaddBekbT6sJBDbQrFwQn8e+EuSED46CYdxiZjaQIS\nOoxSmS+CwkwfDgOfxmoyorE8gsNg6rgqJXDHhNTnQ1CsLkohAep5GmS9dJivmG7HZMhdlHEApbcu\nOd4Ic4YPNaVAGK6HOmMdLq3QhAz1VHMBU4zRbGvx3NgYJCGKal32CpMKe5k+qL4uyJws/FXws+QL\noEXMLJKKWa2ujfV46Kq5aK6aYU8TZY/j7kB8qKD2b7btrKW6ozW/fFPZcQeOkggcWqfvy3e7qxpH\nC2Tfc+flmz2UZBvUNY4K3aQJl5YDFwr8O4FlULMF7T/9bY2hMAh4P+8Qfdo8uNGhrWpzAdXSBtxf\nw558sA0fVBtum43z62ZmNn9J6Ikgil6lHbXjGJ7McI37ZuHdu6rr56aaN3OgLZyo+qZUVTt9tNOf\nQTmsgy/n5JNp2mcNeOYeab3p4jSz59SOHlxsEdobRlknfx4Ox6qecwyHTm4IsmlT72adoOaiPrxN\n3bZ869Ej9esRaI15uLXm86pXZfJ4/FRd7HV0qr8p9iixZbV/gh2H7DUuP629WS2o+ueuCqURwPfH\ndfimUF10QBB1Bi4HHOiShurvKn+amfmdjI0HE+uMVJdMRmvrH/3Vj83MrAyaxwnoGh8qmkGUF3sR\nzSd3OJXxi//9/zAzs8IKSrRPSpHQ52i+7KKIm+a9vYKq5tEd2X4JBTEo/Cw9y3yCz4aCql/LVN96\nCUQdSr9xUMKt8jHtUT3iV7Rmtn3wo5bZW/xeY3UAIvpbP9EewFCMbMN5m8pq3ZpLag+2xztlwa/7\nhx3mV/aTXepbPhTKKuH/w2EXDynjFa94xSte8YpXvOIVr3jFK17xile88jWUrxUpM+wrOlqvKsN7\nUFMELb6hCNhMRxE0H5ry0aarIKEIeOlUEbBZsv1TmK8bYUWkQpc5e5ZW5GsNTon5K4paPzpVJqYz\nFUrh822d1zuqKhqazCi6WCGqunNP9UzF9fyQo4jh3TvKJs0EVd9uUNHXEdHvMEiY2ET1zDuKqNVA\nxiQXlOWrwUWzmFYk76ipDFAsiwIPfCfRlKLjqxcVnW32FVnc7skeOUft63D+dNjtWR1UQDShZxVr\nslEHDfgKijXLIdk6XOEcXQc+nbqyStNT1C44YxooKoLdPUR5ICnb5FANCqNgk0LBpWWy8VlLAtvl\nsHUHlvKRKYNYayor1nKjqYuoAM2TJSOb7yJZSmRY/WRRZsi+910lgvvqg+0jZSo7FUXix0RtI0RR\nR0o0W7arPglEVL8ESJeRiyCBy6XVV8S+XFbWJYQPQblimfO6T2QIwoWsVQlFLR+osfkt+dDyrPp+\ntyKUxQQk0vwcii7wYjy8J9+eUo/8S+qHaFbPGcOT1OUceAjVgGZZ0d9JXFHiuavKCISGqnA0hypM\nU2OuClKqC7IpmpXfLG7IF90o+jSG0kNOUecp/C+He/q/sq2xE0pxBvoMJQrfhQV0r0WQdJkLyiL0\nOnKOnZvKgtdAZoxoSyILd0hMfRyKkZ0Yu21Tm5Lr+r4G70ME5ZdgCmWpDioUAY2dONmgDkiJahGV\nDpBtkbT6wskqYt/nfHS/B8cMXDlz8PfU9tVnLZQKdj9V34fxlR4ZAt8SpCVwLkzCauf8c5r/ZnPy\nxTRs+uGp+qZW0hhZWVO9F2eYK+5r7igR4V9nbA18ZHWYX7NRXdeGbT99UX0f0PRk5UPNq+k53See\ng5fD5KMOakuZMIMLjp5hRf0aWwA55EPha/p4y1cMVZJ+V76eBF2STus5U+bANpmNYFvPG430nDCZ\n6BDoFV9A/R6Eo8Yh85wAbTLl/HafLFyuJ/8ZB+E06KM4FAbx2JpalDyJD2RejHPRoQ7jlLPxk4nW\nminIOZ8fvgVHbfPBBdMkzeQH5dMD4WIDV7GEtk7ggoGDqtp3s2BkWMPyyQjIQScjnx0wz53UtD4Y\nKnBh5oEEimi+lObHMcoGDvNGva77JOFNy6A6EgVFkI7r9yM4BMJJ2aPVQqmBvulwDn4cxZdRYOwP\n9P9ZS/lXmm93/kztutljXvz4Y7W3LoTfeEaZ4jnQHYO66rv4R5pbMhvKhO8/kBrTGiogH96UHeYD\n+v1cEI6gjHy8/qmef31J6/PvDmX3/EWpfhT8cE+EhUx560QqUd8/+mq+XHkYt4O0xlqpovl08US+\nGn3yJTMz8y+pv55/IAWjD+DiueTX805Q71gMw8ex8KaZmV32/wszM0u+LfveuKL1MffxD8zM7D8W\ntGf5SVX2C71zYg/8asudsOafwTufmZlZuqM6/bT/52ZmFj5GHW9evr1Wki+s+9V25xvq89+9K5/4\nfkJ98fP9dTMze6Gjeb88q/lndqC6zH2i+S65LhvX4BiM3NP1d+48sMcpYeaFChlY5zO1L/hN9U1i\nS3uOzikKNQP1QTqOsloSdRJ4KpJLqpebeR4whv2M6Sn8UCzhloRba8y8Hxi4KDQXBafShKMrAGLG\nceATHMkeTsjl/oJPg+tcZaA+fCBBl2iQfbcfHgynz3wJKi+O4toANEgHLrLYSM8Pwa3Ta7rcD3A0\ngoJ2gi6XDAqMIH5GQbVjCuFWB+6JgU++GkSxzg9HTBdEaC4POttcDh2zQbVn8bDG4HQAn8oAlaYj\n+ePCRPuGL34tbpnOP+ra+Okcd7lv/3/Fz/7FXwU5eB8eoVn5yAqcLwHQ8M4UlVH436KL8qEK6ko7\nN3SfKSil3FWtnZ0OfDxjtSUKl2MbrhD/EBU/TiHkq/gaHDfVvubVtUuoeKKSmshpjFRBrTnwgLgK\nMgVQtQHm2zx8IuOmbHMIt+MoBiIHlaRVeI8ABVsW7rHQjPZCBwd6Z3EqcKOAkOmikBhA0dDfz2AP\n2g8CxOHdKMUaO2zKHkPUT8cPUZPF9+sgTKoP1Nc7EBSd30JhMg+f0DntSZJl+eZ95oxKR2M/Qr9k\n7fEUIf3svXKcWIgyCAdlxmbX5XZTe1YvyHeTG3+qdsd1Xb2q96o51AZ7EfayCX3vKpEdfaF5/5fv\nipfriRee/7IuTiRiPf/QxnWNmzIqpSHGd4J9XgteyBbKTTHeGaOcLkgvCFVZeVlr30oIvk7GYZN3\nkzzX1UAe3n1D79G/fEfo1Gz8fzIzs6ee17w+gbvGRSAOUSQzHwi6psbAwxual1efF89aMK9x64NH\nJ5uWz6QGsmW5q/8//qVsMuYd6JvfVP3dUw9T9jrxIYqyIMgtIjtFe/A+wWMU78GlCBjpmUuXeP4f\nfrfxkDJe8YpXvOIVr3jFK17xile84hWveMUrX0P5WpEyJApsZsyZ+oCitSPYlidp/c3lFEUtFxWR\nKnKOsM5Z/t6sIndTzh+Ghpx1TaJgM+ZMKOfmj+DzcM/ozm0qChpDhWN+47qZmfnIpI84wxo9IHvp\n0+cxzrTlZjiveE3nt7tHiszVfBBpoIK0MqvM82xC7aku6/vsFhmekCJrTl4RxFky0S3O3Ebziigm\n6mT4txQhrHF+3MjghGdAS5BlnF1YtGZRkesAkeTzIEqqIDjiddl0dktnz5ufyLhHx4oEh9N6VhAe\nhHSE6CiqQgshWM8dzuWixtMYKJvfcpn9B4/HAzE7C+rnSJHwSnPbzMwGZJGiMGjnNuU7q+vK7PmQ\nnK91lLmMZlGA8Kt9IdRAIqAZWnfU3n5WdugkyIrDA1KYV5+trAoxUj/QfR/W1b5AQykPgDLmO5Xd\nHjSAwqAUkFqFx2geJAyZgMJA900S4W6XyOrtKAKeXVU7A0Sj6/Co9Dj7OyDTEoYzqE6GtITi2Dys\n84GofOmEs85TR9fFtzRWlh34jBKqZ6IA+/0qig96nLXKyug8vK+MweAI9vjzyuDMbaAEkYYXBOby\n45SylxPO6FobVS0UeOI514chbjpDydE3PiLcLrFQc1s+X4XNfQwfhnvWPVLTOIknUMcIaRzFGpw9\nXSLizbnt5XWQd1vKHu3sY8OarquNNH4DLfo8yZl3+DZGZBYjS5xxj8sm56bKuvfM5XxBjWQHNakl\nWOTTZF4n8rXdm8r6LMPTM4zor5+MYwmul82n1Ae5dfVtzU/WjfmzQcZw2hISMEg2aBRTZmC/KR9q\not60co3M5CJoubZ+V+qhQgX6KpiFG4xsmL8u+x/ty4nmyZSGYbevtvR5BK6bEN3pY+w03IzNojIx\nGbJrZy3dBtm0ffVXGoTTDGekK9gtFVC/NHqyEwJHFvQzVgIotJHwmLTIbZCRHn+JgFG/B/qg54bw\ns9RQrEAtLBTW2PYFOhb0g6RDCcDXky0yQWUah1HQNyj31dtaE6dJFP5QNZpOXL4cF1nD7ztwcbVR\nifCTTQ/I9qNjFK16KHexlhSW9Pz0JoosIG2qB+Jfq9T0vHxKbZm/IO6V7JLWtvFEfV8+ke1P78qH\nIyMUsECJOS4XVUu+dvI5qn0Njbl2BT4ofDTlR1nsHu2tqb095vd0yMUNnK3U/1TtPOq/a2Zm335I\ntqwmlN1Hf6U1/tn3UT86EPrji4za9/menvudCzqPnp9ojN54Qz71rReETPnN7/7CzMyegrPm9iX1\nw8tvftfMzAZ5zS3PldVfN3oaa7iu/bCh+z59rL3Ko2j9yzb0wmErpH5kZmYXTt8wMzNfHCWIyMtm\nZnZrovv//J589LmddTMzW3kNdJ5P83TokdAk+7dk7ze/LQRp7iWt74lb+t3hitRAntuSQtI0KjWn\n376Sto2bWhO+tyX0UOXzPzYzs3d+/E9qw6+1L9pZ0YB/7r58swQ/zz9tyLdXPtHfVUfooOFd9W1y\npLq/F5EvZZ9Ffeihxl32qnzn9Yj2BnPPam1cv6+1+/fO2VGZeqD6ogwiIwmnSQBUVaKivp60ZDMX\nX9GHj24AJ1c4BG8F14dTqLOxRwrABTZOsrayjzQQkb0miD0XfUaWfhJ2OV3gGGSpDbVBGTB/jUHI\nhEDDjuCIGTOHxMZw1HRRW5pqbop2yeKDzImAhrA27YvCQQaCxxmjNkpmOel3yWNA63G/Ph8HQQ84\nARCgPCeGykqUzPsYRM0kwL6Z9SQA6sA/oxtOTtiHm9mw2LVknDkwIr8LQd44LaNWdR808ZHGfhVk\nbRg11LOUzcvaz2WeEMprf1u+NmTNLeTmuKfanshpTesW9H8yorYMQCw2a6rjcVHzs9+Y11Na2yeA\nS1MJ+ULGRRqjjhdGhWfgV19MerrfwwdwW91WH/pn5APn1zXuYxH46OAKrB1q7PhRafK794MDcMq8\nmwDFsH0L/ksUaRKz+n0VVG75RDYfoPB1+BvNa304Xbae1zwTzDEWumpfPq/6Rc9pPnawk8s7N/Zr\nvqsHZa8+Kq63bn1kZmYh0LEWlv2KvNfUToSYadHVflDY+RzKlM/xfhFRfQ92ZYd9+ApHM4+n5Jaa\nV3vmYrLLCKXQCSqrCRD8xlit9dUPCRdtW2auQKGuD3IoDqdnB8RtmHfBU3juPvxQ6/bcwuaXdWlb\n2Fr+oIVBkiTa7GNAhhhqaWH2uT5U0iLMJ5UG4xBk21MvPWtmZkF8Z9BSnZ24+mqKCnEI5Fyd0xtm\n+lthsNRDcPH5ZYsp3H1+bN1Hne3jvxGa9afvCNr2343/jZmZPf8XQgP5iQMMW+7458RLXja5fAFO\nGBDPfpB5SXic3K1Eu6q+2VpeNzOzUUY+74Akn7In68LTmujJJzs51DhjHqeMV7ziFa94xSte8YpX\nvOIVr3jFK17xyn9z5WtFygzqqAQdKBIXTKFTfleZkkpM33dQ/chmOJcJuiGB8oKVFMI6cM+1B0Fj\n1NArHylK2ia7+KCqs2undZ098x0rMtbnrFwNjpteS/Vx1Zkm8KVYj6wdjNh1ErZ5soq7h6iNnMq8\nkVki9pzXrkfJBiY5B4+ayOKC6hHm+yHXpdBx7zpqzxg+jtOwIvhDnz4vnOdcaIRIZIYI31bMxvDx\njNOcwy0oehfZ5ZzgDOiBLUU5rQ0yg3Tw8rIi+7e/EDIiRjakHVd0NOVXtPS0rz6Ir6MCdAwfTkr3\nH1aEyDhr6VQUddymb/qcDV0+J06V2anqG+Qcc+3Btv6WZaMhXApzV5SJGJVlq/Ij2eHRbflGGRWl\n+S1lOHKoUgRTKMVEZY9BWPdrwxLfGug5DpkNxDTstMG5bBBIc1nZMZdTSsMBsRIH1RWeky914Eo4\nOuLsa0VR69V1ZQwmpL2O7/L8mp6fXI5hB1jt6cZLQ2Uph9i/9KHY9KvwpVx5Tt/nkrLnBEWEVl3f\nJ+ZV71hS9hseqD9Oy/s0VPV3Gc+TMVRgQJlVH5KBR22k3ZD9J5xHneZQTyGzMhOTferdsysd+FB2\nGaLuYx3VvWlwuIBQCIGci87IVsen8uUknbbEuecE6hbTKWfSG+rDk11dn0XJZg/y9vvbyq5EUcxK\nnFdfbZ7X/UKpZ7kfZ/tnlKXx1RinZDZrdzVvHNxXFjt1UWdQA2TTfAXq+bTqVzkCUYJSQyrvKtho\nrIYuy5bLzyirNOmqrxpRVJVQJKs8gvk/ousPW2pYkD5dQA1ufFN9WUVFaDYCwiOvsTfEVxc3NIYS\nQCHLD9UvQ1juT27B2RXRmd/MquaK8ofKpDeBQM6QNUoucyiXrFCH/h3Hv+IKOEsJuJmWCfxQQaGx\nagcgKafMr1H5ZJdlBMEji6IiEiaDGx6S8Yb7ZwKHQruj+p+CUhs4ZNQZg8Ei/FMFF9EJEtLnt2BF\n9z68rTUqDSIkdkmIE8vKB3bvCaFwOtT8u/CcfC2LImBvqvnymOxUfkY+kU64iEXOWY9VxzHSJ4kw\nii7YrIoiWWci24SmLhJFz+1nVfcMHFkuisiHAleb89i+iWxVhp/Jycun1xMaKyPW9IADKutAPjhC\nRWOMspcfVJWhiNUZkykGhWbHZJhBDE7g3zhrOfe2MoeP4uJsmYAweSsmBMjyW1IQunci3z/5NnPN\nQ9X3+q7G2vGGkDUPO+tmZjYX1dj/5K6QmlGQQO/2hJJ7lfXg9sW/NTN6HwPlAAAgAElEQVSzC6iM\nhB9yjv0LIVT8Adnvd8Fvm5nZC7T/79ONL9vwYvlj6zQ0BreZO4ZkVkeBvzYzs/w74oY5SGsOeg9O\nis9D4miz91kXtPxZ8hn1z/V92f+dttanb83I7tWm0C+3X9f6MvqJED+Tzmd2mJD60eV7jPO6MqE/\n3pVterh2+77mhd9FpYASz8umc59qPkxcBx16Ryik11eUGZ3Z+Z2ZmZ1riS/nQv8dMzP7oiWffAR3\n1B//P5q/T65qDLzb1XU/zKpv/k87W5nCqzRykYAx2bDbVkMGp/DyVMi0zun3+bj6apxSX1T1M5uM\nNS/6yAwHQBsb6LG4uchFOGEGLsIONdEx+8ihfD7C9wNQcgG4WfoJ1ScCwifAHqANV0wc9aGmD36q\nKIgZeDd8CfY+jKkIyPLpGDvE4Z0i1zthvuyAiEmSMe+xD56O4axxETIgFQ30nMuD4YBcHJGZn5jm\nohTr3hBerBrz9UwK9Twy1232fGZm1dOmRWa0l/Hn4VkpCNU3hBusuK37ZXvidvRFNUf1amfPYR9W\n1ZctlA0BNVkIJalRUjbowSM5aeErBXjKfHrmEjArZ8y8Eda+qw//WRJulFRG8/7cstqWBF10vKv9\neAPSxXwQ9Z2R5ulMXr5ZfKh5fnQoX2zBdxec0zwXS2l9CYMWHTdl0xpqrEef6TnOSPPY1e9+X/XN\nyzeic2oXVIN2WgUpDr+RH3HREGg5g1+uz74wyXvIEERIqbet+rCmFtkzDO7ILvkrqu8864v/adkl\nGNd1ww7oLBR6cpc1N62xj56isJiYgjA8lN1P2fcPQWX3w+rf1kh7ye3a4yFlfOyzOzNqVwDUbd4d\nw4yJYEN2z4fhXtuEZ6Ul+52caj0JuzxMoHbDHZTiAjJ8LK92Xn9F83X00vkv61Lpjm3cq9gQRSxX\nbi0Ib10cbqhuG5XNIO92+Hafd5khe3x3exafysdjKEE1faC46mpTMCkbv/yt75mZmX9GPrd5VWtp\nH5XlFidP2nBQpXrwE+EbSVC58eyT+n5TY8bl4sp21de9itaVIQicDEjub/7kNT2faSg1hbf0VM45\nOwMXWJa+4nchUFbVicaOwxfBDu9CHVUgyV6rh7rqf614SBmveMUrXvGKV7ziFa94xSte8YpXvOKV\nr6F8rUiZcY2s/kixoXhXkahqSVHb9TU4YQaK7qYnit5OTsgs7wtRM0m6XAquoo0ia6mcorQT0AQ5\nnyJyySkqSUR9EyhVOCg5DAKKuC2cRwcdIo1QA2WJBdUrbbpPnzNo0zScL/PKci2uK4K3ybm9gzso\nTcT0+8C8orlR3cZyGUUxd3eVyR7NKsJ26YqyXvsHOpeaW1YkcXFO0d+HQUXyNpd1fftUUeOlWc7G\nrpvZKRFUVB78c/BodBTVbHPmtBNUxLWVgjl6WW3pLBMOLRL1W4NXYRmuErIp936vurRzimr2yOz5\nyHgOycKctQzI5iQWldXOzauvs/OyQb2hvul8RlaJbE2Qvr9wWVkQP9wtOzdvmplZKMOZzBy+NVA7\n5jnr24fvwYHLoLWrerdOyAA30KbfkH1ST+r+tUPOLf5Gmc1RU/Vrk2no8n+gqzO9lTacLxmUfer6\nvw0L/OKqUpWhiJyktKf+GkKaM7MgX529rO9rNTKiR5zHzCj72LkPsoVs/vIsCjpV1fv2DaE9DIbz\nZEH2WyvIp0ZBZUBKJ7rPGDWsNIH2GVfBCPRE947sUwyg0gJ3zdI5tXP9uhQOgmHUW+4pe9o7giPj\nMaggWmWyPA1F8oNwPNk82XIUBWJ5+WwIpRcbqU/ieWWFV0Ga7aE4UN9RnVpN3T++orYvJGWTuU39\n3W9s674Z+c75p5X9jiwqS5NMwnx//xMzMzu4J99olzXGhkX11fENoR96nMXPnkf5hjGauajMQb6g\neu/eU7Y6EpDNs7PylWiGzCLImIcfqX5DuFmCUPxX4B3Z2ROKKQuSZJZz6NNV2W3zmjIO4zYZR7ir\nspxfT1yU/UIfw2EAmmtnV/YanKg9voaeX76peSw5J99d/obmt6Gb9SmqPhOUIpKX9XyXY6z3SNe3\nR4+HgvDD1TDHcyNj+YOL3oqCmBomZR8/2bQeHD+xedaPntoxJuNSRFHNOLNcgkOoCtQmu6b5P9tT\nvx32lV2MbsP/AhQn5OvbBNWiyZ6eeVRTH86uwf8AIqTcQhVuFoQJKKfuhMzbAMWwlNaAuWvyzXFQ\nvyttK7NZv6u6WAeuMDjFNs6prjvMG7W6fHMIZ8vejv6fnUU9I6cxt1NHPe1j7mv6naEc6HOzRiBy\nAmTnB/BdNEa0HyKf9tRVutIewcmr7zYToJngW+sMUIsCkTjOal6P9R5vvTkaK+P56jUQR58KOTKT\nkI8nnT8xM7MiPvDMQ/nOex3NZydrGpOzr2tvsvWXat8NuBTOt8Ux0f3k78zM7Ok5zcPDtrhpjmpa\n00MaEhZ+mjmsqfVp/aK4bnaPNYe8mZZdnvrNq1+2Ydxbsf3voDzxmeY0ByXIxm0hgJzvaC7Kw0n2\n8p7s+bMvZPe/eEH90f5bff8pSCs//vnyT6T+8f6/E7/LheR7Zmb2zefUvuktxkAtZ9lNXfNBX208\nP3jTzMwegepsk43e3kKlZ0n8NLOBPzMzs8t5oY5+9oF8cm5RKLJhUH0RqUg1I/cvZPPXt9UXTl19\n8WJTiIefgdB4JaC6/vnMupmZ/c0uxrb/285SmjG1JxLTvOuApG6GZOvTh5rHWtrGWWhPvrSa114h\nCLrYYV85qmOrY619LnIzjhpgoK/7u7xMY1BnAEosAHpsEiNTDfQkHNS8MmS+dq9rw4eRZL/rB73R\nR50piKrRqOcidECedFCDAnHTY2w6Jl8JdEAZgAwMwBMy4XcDHxlm1And69z79/tqd4i915D2BuFA\n87dRf0rDL0JG2oEDZ7bL6wxzxbgpfyo3gSSZ2d17betl1X+FiNZTJ605pT7UnqwFj2ItgnpqAd6U\nxxBy87OvG7DWTlCeGaMstrihPi0swGlyKB9oFXXd8ETz5giUQj6vOhTiquvxgLWYeah/X7Y86su3\nBqCYomAe2yBUAJRbAH6LSHLdzMyyea0TffY6wzjzn6N6p1f0fMT87AAVpACoMWMe6hyi6lrSGDUQ\nkFk4U+IF3TeX5d2vLJt36OvkS/BxjvV5EG6ZIKcIQqxfbMut0QFRg5pfeVvr1aivek25Lg13TRhu\nwwHcajOsGwG/Ps+mtf4Nx0B3QMbUDuEjvaV9bXKL/oMP1Leg6yIgJs9aOiDaE5yGcHogh1Ds7CFT\n5cCjUhvB+XbCHheUdRtEa4q9rn+o72tt5hqfxmKadXrrT4VGdOpfrY/Tcd9azZF1QEvNraqv8hF3\nXoGfJsG4h0DzAb7aKmkPkbugl4IwvHMDAy0LWss/5H3ap/E1GKLQhdrxd3/4opmZBTP6vl7T/Rso\nkRVQ5WwOUJtjIpx79ZtmZvbji+qLxYLW0sE+qFuUqoKMxanJxt2RxsjmlnyvNULB7Ib2AuWifHEe\nVaUEPtgJwqXVcedjEOER9o+gX4NJ+O5Opnz+h/ckHlLGK17xile84hWveMUrXvGKV7ziFa945Wso\nXytSxkGfPBVTtsgfV2Qr6lNkazGrjPODu4q6TmCDrhcVjS3BBRB5RtHkyl0YsDknHSwq5nR0KPRH\nLKpsXRwVk4dkiPtPKLLWhd29H1GWL7Oq7NjiSBG7g5YiiEHOY7b8ihROemQW2pwJNkXEKpy7jAX0\nnKPytn4fVURuIaLobKmi363MkxmYgQ8lqAhga6qo7f6OmMPTK8qaVeGk+OI3UoIYX9P/tRNd34ML\nw3kYsWJbz7aCslW+iX7TL5A1yaktnTnVqX0k26Y25SJl1DiGnNXvRPV92FEUcUy2d/k5ZYPWLiqa\ned/lqwBp0YFV/KwlAodCGG6CGJniepnI9V1Fxh3OJcZR/0imZKMgkeTDfZAYZOt7WUUzrz4P30ZJ\nmYPajiLhe5+SCd4CKTLmjHBUvhFGlen8ZaK9iNE798WLEXSFEiZErqdEtLdlj9JA94nn1b4WZz7H\nAUXmN1/Qc8/BS3JS1piogCKbK8gH566qvemQnlNuoobEuW834m4omM2n5HvNsnx2/4EQMq59l66q\nHkvzGovuec7SsewyrYPiACkV2dB9hyiUtW5zxnhX9p4iqTAH6syXkH90idy3dtXeegtGd5QYgqGz\n84X0UPWZ1HSvKedu/XDCIAxm88uqQ7FJuofsSa8t2+5+qs/LD9WHQ84LR6BBaqnJ1k7KtoWryrCO\nOLs/syCkygh294fva7zmlnThCUz9I7JJBP4tTPrq/GU4VvLyKV9BWbQOCAx/lHktqgolF+XjfhRZ\nunBddeChGJAlGy6gMhWCd4P6pInYRzKcgY3q+/ACGU3QT36Qh7k11ef4VA/sYvc4iJ+ThubfziP5\noFNEEQx1oxBcLgH4QIZlZbb7Pc2zS6hoVQbycR9nj6c1+Euw16iqfu6h0nfmgjLaxKf6DFATmfTJ\nGOdc1RLY+eHqGoK8CqLmMaAi4y4ojhnVtwnHTCChMZZi7OVm5BeTGY31cU+fF0cgJzn0PEn2LL5O\nxi6Eig3zcAA+oR4Z0LknZbOZRTKYqC08uifbVzpCE117EsTfQPNE6XBbdb0r9YUeaCA/akyDpozk\n92tejAQ0vztwH8TiKJKhTpfMyxf7CXiObglZ0meMRQvyrRxoV19OvufASdOM6XfVEyF3uvBAxM7J\nhpm4ft8Nk12Ky0cQirHWqe7TLjHfdMmoJlSvTPjxzvjvDgVvCNdd7hfN++eXhFD5eCKulNUXQJ7c\n4nz7khCJxxEUzn4oe6dG+jx6T/NeLCkelEczUke6FkEB6MaHZmbW+56u+3xfdvuXl/T/z9tar1PH\nL6hd78mez/5YaJDPnrlFC/7Cjn/oWOgd2eNhShwvWbi+OnPiXZlrSx3pqCs033gHtOCr6u+/+b2e\n98NLIDTPy6/+6c5rasfeT/X3nNAs5euMiUPxuSyijrI0v24ld344+LnaeFl8Npe1LbNg9+/NzOz6\n6rfMzOzWm/Kh2ZdA62RACMfEg+As/9rMzF5pq0/eWhQSzfe2uGum17XHmZvV2vnrBd3vGvu2+3dl\n0xfj+jz7XbXN/jc7UwmQYY0sgpxb1HNKQ/1feqCxsn0X3oq09jyh5+G0iq/reog0eg1QaKAkpnHm\nPfiagqDKxiMm+r7mv8EQxRtSqw4cLn7mzV6XDDTXj+DiCkfgMxnAV4UqYQeFlxFZ+yjqRmNUSCI+\n0BHw3hkIlRbcLlM4bgJTkDDwT01RORlM4DyDR6MNd0Vo4qor6fOez1WQAbnOnmMAqi4UYL8N2iLE\nfNyfhVMnqc8rzGV7X3yFlPnkvXvWOqc5rIti0fI5+cMRSMoJvFaVitap7AwKnJays5b2CVxcoHz6\nzEPJCacCUOEMb2o+S4fI5oP+fLgNf9LncIOAglp5VmtJoQCfDr44gEeyiOLkkcNahtpOBe4XS6vt\n2UWNEYf7xBPsm0FSx/2a34L0ZTgKxwworJQPX8nqubPM74aCTR8fG4L6Pe7DiVXU96GA7j8ChdGL\nywd63NeJo76Z0ZhyVlEw9KMs66idPVDGUU4fpFxVpoCLKpNPHX/B3rBBfeFHCkd4J8zSH/iOLwNn\nWUF2nEVdtcq++chRvwbhM1xc0/rndx6TUwYU17ilse7PqR0ueqMDZ1w/yLrsgHRl8xhm7Dggmgz1\n1kAEhUneRYdwXDY5SbDOXqSX+CoEkA2bvf/uJ/YA9bsf/w9/bmZm0xX1xRDuvPQc81pZ42T/c63d\nFdSMc+eFlEld0JrS2Qf93izTBtkqvcK75B423dOaFZnXwMwP4RFFnc5F0A0AqDhw1ByDZAngc+dA\nZQ15H3c4dWAgA/nYwjG4tuDKaeHzI7hhGrw6pXh3GvIe4Y+AeImjjgqn1UdvK07Rwseu/6WUDmO8\nc3XHas+g4jL2/ZeLh5Txile84hWveMUrXvGKV7ziFa94xSte+RrK14qUmXI2LQgnS4gsec6nqGWS\ns2gDVDgyKYWqkiFlsZyxslpLKUVTm0YmmMOfkamioAmixpOmvi+sK9o8rHDukgxKHl6P7V09r/mR\n7n+IqsjDHUUQr7zwip7jVyb13ufK5KzBeD4liumQGchuKHraSiqamSEKO52BY+ETZbNCGaETyqeK\n/HFkz07HsNUTDe3Au9EvyF5ZzosvFZQdDENx0IwqIjkzG7eFybrqiDLK6UT3mBkrihcNqU7nNmRb\niOht5Zwiz71dZeRW4SboR9Wm4QnqRSA4ImnZcvuhECzdQ0UhozNkR8aPxwMRXQJFRRS001OflW8K\nfVTZU5apsMr56ab6sNng9zcUoS9Sz+VNtX/lsrJbDucRSx8qo/nwt9tqr4KdttQjI0G0dlTRFytP\noo6xoD7rPFCUtDqWHRIbivbGiQoPOac9QYEmyPns8ET1JjlmNq++nLbUH3fvyLeOHikavTjL4eB1\nRaFHJ4qkf3ooezRq6tel5XXZb57z08uyS2dP9TveU3uHQ85jzsJlMABZdFNR67bp91Mi9Yvn5Q+5\njH436iiuWy2pHpWRMvCTABkNOC98cNgEyEbVb6i+JzX5epZzomnO6g5KpFHPUMILspXjZrJANvjg\nEIhyhn6aUl2Ds7J9gGzJ4U1lSgMw59fISEaXmY9QYAlF1TexTdBgRPRHJTKcZV3f/ly2bQWxHSir\nEUoMXVQo0llF4FfnlK12Fb7GU5B/Jpt2HTixTuRLrSVUieCs6YDqat1Vn0XhOQq755RH8B31lH3L\nkqH0YfOVb8F1gI/ngBZ14fuJoDq3trVuZmbNrnyyDCqsTvYrHiNjiaJBYFF2njXZqcH58FSXjAQJ\n12nfVfdQfTbWxQGRghNr90BzT7eqsZeFLT80eTz1JYdBNoSnqtPW/fpklepd5iiyYmOydutLqHAB\nz+iDcJkW5E/pFfXDCtm6bk9j42hb97sP91mBbGJkQ/bNTDQHddwz2iG/JV1Y14xs16aviz3ZKBZg\nTr++bmZmPdTSdh6pL3qcxU9x5Dw2UJtrH0vBpnao8TmeVR0LICHbRT1v70BcIw7KfT4Qd9lFssao\nApVPUWKY0NdkbDMZ+BfIQsfWNE+duyQbGdn5TlNjZpZz5iOy4tUDzXMJDtu3WPPXLwkNMQBB1zlm\nHUFh0VBYa3Y5r14CZTp5PE6ZtazQavci8Eeh/jG+Ke6AZwd67sczb+ixJWXDriVV3898mn+/9Znm\nlBun183MLP6K+qXf0lh9GmqA/3QkNPArWfngnRnNi0+MNR/f+IXWlfl5kJ7XZOeT61KqGO3LXoWJ\nu4CY9SrXrPVNPf9qV/Y/jeu+L97SWD5tShGuv6a5qvsj+c/iA43BtROtkx868oNv/3rdzMya8//R\nzMzaIZR5Dl83M7PlodaFNmp9pYm4a4YfZ+wgpszp974hG4TeIDv+mnh1oqBOJwdk89nPffaxfGRz\nRXX5xoa4YP7xbSFmNqdST/qzb+l+v2iJi2D5PwkxM8jq+vDkNd32nHz2U7L39x6qb87V/l97nDKd\nsm/MaH5yEtqvIrRoD4ty/hu3Nd/24YOYYwytXZBPh/0gS0A59Kfy2SZrbRTVoraD+uZY9/GD7DO/\nMq6+CKpEbZejCvUi7jMFyemie3s+1mTuO3ERfhFd58CN0ABtkGDeasXl42HaEwSF4GOtH8Pr4Yuo\nflPUWAI8P4haaYf9uL+n37vZ/7Hj7onguIFPqxsDyTlWe3uoUwWYO3pw0iSCWv/HLqKS/X4LhLuZ\nWaPYsaN5zRFzjvphn71YK5jHHmr/XkNjaOemxtg34HI7S2k1tXa7KHi3L6KzuvdJVfNkcw8kIlI1\nI+CcKdCk1aDWjnJVNlisah5KgJh0efLCSVBSjnyufKI1KlVw9xSyeQMERr+p+STgg3cyo3nB5WIZ\ngMLvsVcJBFH4CmtsjuDtcaWzUmuoHIE+LczpPSGJamv1WGO7/Yg+c5GXoHGjCyDp4WGbwqfpX9d8\nFEnDazRsYk/NN82Wi5RXdbKbuk8fHlE/iByr6fm792XvO28IIb4GGnn1OSn2pIMgxRfX1U4QpCc7\nmjsqqI8WXaXGmN4Rowe6TyT2eOqyEebtYl/rQjyg/kjCNdQC6RSJy96ff6LfffKpUNjf+fHzqjco\n8J7LEzVUvwRRZBukeIdG0WwygRMy+hWKLDV0rFXatlN4Izvsg3g1NF6JrAGyOxqTbWdY8xstfAal\nv1YZVdSubN9jPLpcUNmmbLU0B3dVWG3v1kHOgZqdRzW1Uwe5zGmCmF8VmwV1P2YfGYJXLgJ3TTuj\ntk+JM0QdVFHT+l0CbpoK8+u4rd8vwN1qbDV6IIUaU/jq4LLtw0FzeEtjrsrYOv+a1qNhiPagkDbo\nfaWU+F8qHlLGK17xile84hWveMUrXvGKV7ziFa945WsoXytSJhOHsyBBtBbFhTkTn4Z7hiseV9Qw\ntMQZU871zTmcNycDkDinDEUKPfFojPPyGUW8WoeK2M3CYO7osdYgA5pJ6voy+uWjE2VatlaFHukf\nKau0FVBUuN2DFTqhiOE3npXywHFREb1Sa1sPyKp+9Zgiiec2FTlrNEHwkCV0YHUOcCbO14bP474i\ng05Y7Tq8qwh+6CLtMz3f3yBLGVWkMpvU56FJzFIxRRFTaUVUrUlWn+x9/YDIfktZ6cmRkArbnEMu\nccY1tCYbTTk7OSRbMeZcYICz/437skEFmnT/HHxAsNKftQxBP/ki8pU+BwL9ZJcXtjh/OCdfCAZh\ngb+rzOA4rd/lZ+UDCxvKHIbzcq7dW/pdbaDoZf6KoqjZkJwjDGrh+KEi5g4M3H5Y3EvvyV67NUVH\nk+dRyUgr09koqc9PPlP0ufyIs7AEYZOw3Lc4fx0kYzGtyn7NouweJauTX9DYMLJVJRBDVTLE567p\nrPDGM8pO7u2ofg3OaffJrKeS8h0nKV9OEZU+LZKVq6meiYLsvnBl3czM0jNktIuoXvV1vz7KR+EZ\n3Tf1otofn6g9zYr8485HytgHqI/Dee48mYGAD26d1tlZ7CNkiUj42XQM94rJZkHQPx2QJDXOtPsZ\nEy18PLWgLNXmssZxYV0+O8VXJmQAfT71fWVffdYNqO67v1f24uS2+qSwBT/G7CUzM1t4Wgi9/oZ+\nP+vWD6b8+q7GXHcMV1UXNQ7msWaAs7ko5aTyZGij6otKS+1LoN42v6l5rnOs+/b7GjvDc5yR30ry\nPWpNJ7r/sCEfD5zqOR1SwKVT/a2BgnNQVEs9qXacv4gUlwMH2DZKaAn9zZj6Osg57jAqRS6ycIxa\nR4is3gG+fbqv+W4GbpbCFY2BwoqrmnK20kSZLOqoXa0RmR1QeEHH5TKQX4wm+ltrksEHOZQlu5dF\nnaBd15jZQ7WgUdP9inDf+DrKWo3zsk+ETI573r/Xkd2Pesf2sKh5eFRXHR3O+uezutaPckAYtYj+\nKfPXUH2cP6fxlpmRjUId/X/U3DYzsylo0M1n4Kx6ThnHk2P12b03hNrskt0eJlDPgE8oiPLg8Ijs\nFSiggVzPWnBpxclwxlC9OyHdFCNL1GkzZln7ImH5xAxr9wQFlxG223kgn84myPSSzYpzrrx7Ab6K\nHEgaF11QUR+ctdzbkDrf9aa4W37tnhtfFTLmOyH5YPIAhZxXxAXz/puq78uTH+hGz8rusZGUgc7d\nlNrFTlH2Xp+X3fyXf2tmZvmSMrXxI/3urYh8dX1VYy3w4DXdz48qYkT1WYbn6M25O1+2Ye7wUzvN\niJPo0cdClzR+KJ97Ziof/4dF+c3GPd2vHlS7yjdV7wffkK+/+on84G2UK1/9Qrwv/pxQKndR69v7\nG/Vn8Qn4APdUr6PoyBYvqK6HExRKQqrr/liopMnPNG4yE42rmbB8cO97qkuQPcPNltbmpzLK4DbW\n5cP3R0L5rD/SfDb/55r3Un+t++9OPzMzs8qCEA/xJ3Tfh9t6zpXpN7Dcv7OzlEhf80YYFFfF73J+\naUz0YvLhg6arWKP1pVWRLUdtV+UT5ApqeYU5UAp9OGHI0DojVyFG/wejLteL/kZBDo7pC8cPwgSO\nh0GUC6dwuLiqSKDboqjNtUCxOS43DMovY9SWHFfFCOTp0MeCCyImAlLQ5ZHrQq8RZ84aOmSqUTHy\nkWG2gfp/7KqiwGEzYS4JwEXmA0mU6GhOaoGQCYJscQLynzYcZJMx/rQqdJ+Z2cLakkVBHSSS6ode\nmzkDXr7BvK4rPURJclto651e2s5aljav8Dw4EIGF+kGcDAcotIAWrRbd0wD4DJxal1DBPIVvqA0v\nZjLDOw6IGX+S+RM0UpU1tQtSML6oMbEYly1LcPjls+xtUPzy8T7QSqienVP5VGcHlSf4Pv30WR8u\nymXQxH6QGnFwFWmkZWNpuGUG22Zm9u7f/1Kfg4698JLmKwMt7BThFyprbRyg3teET3QRhNC4rbng\nAIWd9JL2swdfCM3rhNTXF1DKXHtK828QvqUAhyumVdmjs8veY6r1sNnU9S4SNOCAhAHxbk2ULMua\np7OLHG84Y6myb/7ipta3899A4WfKXokxE8rKDz79UMp0t2/9o5mZFdZk92//seblMNyfkzZjZig/\nSDV4Xwsxhlkf/bWvQgBhp2c/+v737IlndI/V83oHquN7WTjyEqecCAlpLb94WWjPxS3tx4LGuyXo\nnwEDOcza3EUhrFjT+/QkofEWS6lPR349L+juy0IoO34gFb5RRba//qdq8xQCzxxKYFMQ8q6icIQT\nI2wprDrVfq66z54ExE2WsRBE6aw/kY3aVflW0J2Q8dkp75Yd0LRXXxP6dGoaKwl4TqcdtafBO3PQ\n8ThlvOIVr3jFK17xile84hWveMUrXvGKV/6bK18rUiYYVkQqEoJrAdb4zKYiVsOaUALr11AjiSms\n2XygLM8CvBklVIZ6qCe5xN37MKAnx4o9tdBNPyqCcGkq8rV7X5FfILgAACAASURBVFHOXkeRsfvv\n6jx0LKuo6BxcL30yyXVUVFpEv9Nkrt2M9NGJMkG1E0UCV+GmGARQY5pRRK/v1ncBrpw5PcfHodhq\nQ79PBhR9TUZ1n3REdsuZslvdkerVeET2sY26yqye0zkY2KgPZwAcJJ2hIrQBUASTPlrqY107acDH\nEyRS2+Rs/iM3wg9ny4n6xD+GoyCrbNaU88VBB8SESyXT/8NRwn9e+mSdwwM3m62o5vITQrxM2qqf\nq+ZRfAB6oSqbBCqKVg7Dur50SxHpLuijKlw4s0vKJCxdURS0W9L1B5+SSdxWlm0CG72Ps7PTrHwm\nOKPnbLyorEwgTjarrueMif6GEoqWFuAnWU7quYOU+mrS0++Px4pCR+flg6mQft9Hmeber6UckYyS\nmeD8YzTjnqmFURwFsEGb8+JklxZfgJeJ9lTvqr27NzXmUmn50sKy6jcmM7CLWlJrBFcNWajMLEie\nGWV4fESbS/dk7/qu7t99iEoKHAybm7QLxFWzoe9H47P7icuO3gFhNkJpoHykttdByHVjnO2ch3sG\npv3C0/LZfE4op3kQH76J2ngAe7x/KNvXb4FQG8PpNFFbEjPynapf89MUbpVcQW2JoAbicBa1+ZlQ\nQ+1DPSfGuE1lUIdyFXM6akdrV/NUq6+sz8Z5+czyvLJDh/0HtF99HV2Sz+dAKyRWUYQBObgAJ02j\nr3nr7g218+QDqZt0T+QD4ayuzwQ0lldy8slWXD7tJ4PpKgSlUKB5eKj2JQKy+8yc7JAcKXs2rGhs\nHd1AHS+t70ecHz84lS/mA7JLbll2HkX03HHg8VB3PZAvY1SpfKgtLYP+CpHlmsKzNcBvekO4HZjv\nIwXZLYRiQ7GJolxSdoowP19IaY5q89x0B26GE60/XZ/6fcp5+EQmakOURY47Gm85st6Wkg2TqHD4\n/MpEjkAhFfCpKIow8ZrqWka1J8o4n3tC3CyrzyurNf8inGE3VMfJhtrSBiFoIE3KftQhfBoDIbI9\nZVSYpiOQKnnZLhSRbcqsA90DZS5HqMglp5rHB2TBuw0995C1PI0PxZPq4xrzaAuekDSKMpGA6t2u\noTRIn6QvykdDpcfLO219KJRcYlV2zsflG4+amgf/lj69khQ3T+IN8csdrymbPvJJESi+9JqZmV1b\necbMzH71tuaoaz75cm+W9n6mc+d734Yv6Xfvm5lZIannJFbUvpvPqN1Pfax5+1EcxGRPSJzrJ+Jh\nsr80e2s6b0+S3dt9Vj6ZPtT9fjF908zMngmp37PnQHi2dN+1hNbPHkjMZEiZ6B8995Q+H6t+Cy1l\nKQ9fgbvhQP0+9MEP0xZqcO61tkXuML9lVKf6i/LB6o7GV/CP9KwXmC9+ta/M66WuxsBnoAeWfeqb\n+ydk70+2zcwsBVoqPac+etenAfXas2+ZmdnoSDZ+sCMbfr+p+x9F1Fcrb4KEO2PxhZj3XMTMscbg\nAOWTwopsceU51ccHr0UaNaX2AI4xuMv8zGOxJf2ux/w99IEiQ91jzPPGKCKGpyBqUK7xR0CYdGXP\nWBA+OxB53an6ygFhA2jCpi2QJqg3xVyVE4AsDpwLkYCucxE+E/iVfHDLjIKaMyagm0Mo6wxAXkbh\ns5iSCx6Cphgyt4SCDa5nvQT5M4a3JDhWe3qgimNwz8TD+nxSIrONKmAgq3pduKD+MDO78szml2jq\nQlf3bTTUDyM4xKBNsQAZ+FpB694caI+zlFCOd5uejOyHC6V2UqKOaitgURuyjzuGfy4ZVd3icAhu\nrWvvUG+rTX2UFPun+v2gqfkxONHfDKgoB+RMeE1tSMTg6ropn6+BcG914OLCB85du6r7smZXT1G2\nbWne2n6k5zaONO+O4SCL5DWvnxygevRIKLVEnLUTtMXWosZgbwIih3344qzqNziRb9UaGgsZ7j+C\n7NHflq9FQQ6traje2WXZKw9C5taRkOID0NMpkN+bP9B8lgAlFQ7wrsRpBT9jLhbXc9JR7XNX4ATK\n78qnSmHNaQ5ovlHg8XjuunBzBdgjRZqgUFyBM7/6pcz+eOuykPCVmp577bJ4scLwnFRQC1wIwK3J\n2A314MkraF31gZgP/Ge8fH1Lp4PWjcrXMnDwNQ+ok8mHw3C+tkG7BkHKBfOomXZQk3TYF4IgrLW1\n77EDoURDl7QHabhcrPBTRmKqu6suN2jqHeLD14X6HDeJCzyj99/ssta2cVD7yUhN+7gu0Y0QaqwW\n0tiYKamee7vwvGXhts3JNwIgEzMgY8JwkPXYlo/4v7XtntoAacO7kh8fDbNvdMkTmwGQjK0/rNDl\nIWW84hWveMUrXvGKV7ziFa94xSte8YpXvobytSJlOmT72qh+TDhgOc/Z0JsPFFlbfVqRsH5Zkan9\nU6EEMiuKkh7VlZm2gJozDul36Qv6fnDImdwaEXF4NLJwUex3FVlbWVb2qLis6GRhWRFBP2gSP2dt\nffCkhPOw1PcUJT043dbnnJnbeELR4PUr+vvpF8qu3b2js8xN0APlDtnHoTIl1XsgcWjv0qLaX94j\nGltWJLJ4ekq9YKUHLVIr6frseWXPqhPHUrNkLu8qOhhLonLTk02SQT3DX+OcMvwIAwedeyXp7ZGj\nbHwhosxf676+78J8bXVFMYvH6pPYOZSxYPwfBskqn7GE/IoqxslCxVNwjkSIpO8p+tmuy1bVImpQ\nh2TfZ9SOSErR3xLZpzCZiBjM3mtPqu9HRH9v76mPB66a0hrs8KiCxFFcCKCg0AI5c3og+3aq+n9w\nLF9K5GSHdFz1CKd1H59f9u6V4Ptok50Pqo8Lq5zVJStWKelzh+xWkDPFhTRjBLWrnWPV4wS0WWJe\nUelVVJCGIF1qt4nEV/Q7G+v6FCiKEGefDx8p0z3swkx+TpmDOaLjw47q12EsDFuyW9vNJipRY35H\nkfqZGfm6M0AN5KGeP2KszaC4cJbig8w8Spb2FARc+44i7JZQhDqzqezG2vPibRiDPCt+qPHYqep3\npZpQURGUB7q7qltzRz4VQXVjhNKYf1mNyz+JihIqEqGMfK/TIWt1oOsdFG96oATafWWrh7DaTz+S\nDxyXNIb8UbUncV6+k5xXnww5vhxZ130WUbip78v2sQFcVHBvJUIa8/2y+ujTv0dph0RCIqj2VoPQ\n7ZPGW4SDK4xqXSYn34/D73QE0qa1r/u6ig9OSlwPMezcjasezgPV65SzwQ9Qv8qd09gupIUCWF/S\nmHR5sCaoZblZ/JCDxNAZSxZ0WoLMCcAfi59Xe3NkSu5/+KmZmdVJaATHZLhBGe6RvWr0UcooqF0L\nL6jeI86rt27ClbCvdazZkj+63BDRq6rALDxX4xmz0wNNtNMw4wOllw7jaNJD0Q/llfSqxnMQPrZi\nT33fZT7qgGJqkcnrHgnFOUaFp/yWUFjbt0HvgGSMxlCzYw0sD1FU+II1FOWUKZnE8QiVhy6ZxjFZ\nZVSjhnAbDFBwGbbJhsOJsnek+wU4nx1YgCcDWxa25BvZLa1pzjEoq13O/sNx0GHNHIMUSgyAA5yx\nJH6gMfjZTfnCgV9o12fjGvO/R3ks2xEPyXvPvmNmZqF59X34E9W72NDZ//jMS2rv6BeqN/32+j21\n4+nnWb/uyqevfVNcFA/hKvCjPPmMIx8pTt82M7PvcN3HqFCl5utftiF7es8aKfifTv6lmZldLcge\n1ZeEUpnekT+9oX8tuCP7XmMyKL8tO775qtAr11GkfMuv+l1Nqn9rH8BFEZadXhvp78fPiJPn+s9O\nzObUB+8WUSGKi7fnqSX17cxIWfnuUOP8aZ/mj9vsgxYWdVa/HPn3ZmaWLKtvnjr+IzMza/xQ14VB\npLx6Qzw9x2mUai6iKlfSWPkEtNYcvvSeq+B1xtLFtwMd+bb/vOaBQUX7uyWUF/3PuIgQ/U2BHIlG\nXRSr/g6GWl+CKflQ1t0rkertsbcZ9OGdg98nGIOXjTE7IbsfNriqQElM2PP4pvo+xF5igupQByRf\nmFRwJ6I+nYxctRSUgeB4iEw1H45Zv0JR9n7wFbXhpgn19BxXRXQ00v19qK9M+5o7IvDL+eHt6LM3\nM1fZjflyjKLMlMx0YKL/2z3NKX44dAKgIqagqqOBr5TJzi0lLZTQfJ01VBP98KOAjA0H2GOuaA+V\ngMMne3J25dCTWyA0UDuKMq589MmoDleKzdIWFGNAzwMMt8OeUAULbt+C6DiB8+/oc5QDW7JpISNb\nZFB8DcOD426npn31wQynEsotrd2Ne0K0HGGDaRQEPLJG055sOeL5kVneF5bkw9O2vveBmBxFVF8X\nGbTT5J2MdSW9oL3MOkjwEGttDKTOaVEGGKJoc/dU7R2DLAk9yf6bvUY0j0JiVfXOwDu3Dr9mF4NO\nu2rvBKRnJKM5IgJnzaQCf16Rsc16Vm7CGUO7C/AMpuA36m242kQQJp2xzGdBMD0JehfU7mCk+XzK\nWJqpqANdxFQi/x3VF6WjCpRiIeBv/bz8qjzSeuWnXy7OgGZD3bXT/0oJqHc6tOJB3arwvOWycJUm\n9dvGtuZJJ62+8KGiNoRHyPWBCe+ME/gy/bznP3hP7+2f/PLnZmb2b/+X/1nPWRYyveVzfZ8x4yL1\n8LkLlzRf90qaX4MJ/R33WCvZK7V8bn3kK1G4Arv0eacvn7r9vpCU63BILsJRNg7K1g78lq0RSHWQ\n8QtLeu69kozur8rHl+fkk76JfLjbZV5k3ougbNaOAbn5rxQPKeMVr3jFK17xile84hWveMUrXvGK\nV7zyNZSvFSkz4hxcizOdQzIJ4SbcLgfKqKTWic6mFInLvEQU9FWdpxs8QL2IrFwDlY3siqKYJVRH\nYgYXywVF1AJk98cHOg/eS+p3gVXO+WU411mAU2EodIDL85GGpySc1efuOfbjOvWAH+PRI2Wb+mG1\nL5WE+yKhCN5SZ13P4bx5HdbnOGdoJ2RGig8UffeT8R7UlXldX31CdqzoeUHOk/Z7ilg+fPS5zbeU\n5d4+UGbx8jVlsip7umaSVwS1BBqgDHJjDVTR2FEfueeVXX6ONMoBSzOKIPtmVPcRjP5JeG2G8ED0\n2oomnrU4nMuboATgqoI0Ubjqcj7bicqmCfouDrdAhCxHpjDD/cjYwpmQmJGPVO+rfXugnUZo1mdB\nIcRgde+11Lehpj4vnirL3zzRfWPwehDotwL8Jfll2b9F5jfcVDsq9zlnP1B7wvOqz9qSfHz5uvq2\nDAInXee897rqGwJB1G8oq7j9EFZ4or0LF3WfrYviDIinVM+7Hyt63QjAXXEdTp227Bgkw1Pc1307\nyKvECkKbxKayZ/2R2nHSVSbBzSxMObu7NMcB7XlF+HsFzo0PyeCDHmnCWeMjK1dZgBjqDKWOUlV/\nQKauxVlzVG7CcL2E8kT+OTsegkU9kdJ4OnmgcVqpymezDrxIoA326YNVMnXxEFn4FdnqfEI2vs1Z\n+PYumYUDkBWobiylVI8xCJ4xPn7vnhAadqTfJ1GwOXdR2enFJ2X7ChmKOmi2MOeqR1G1a/a87h9P\nw8uRVn3H+HTjAZlXzvBn0horzoayK5kqYzWq9oZQHIsU9LveQD46zsAj0tB9Do/ly0vYNc7Z5N2J\nMiszJGVcBbAwdPgREI6nJ/Kh+SvKnKSXUJPzKWvU4Px8MAYSJ/F4/FSTKffZh9sL0oRYlrPA+Kqr\n3lcrknFFDcoP75OLcPJxPn6MaswQdZIhdu6g6DbgLHVvID/KR0C/QYlTgzvjpNSy4h2htPqoaaQC\nrBVt1X0AcqJF0rYwRSkrjGLUFG4BUDzW1VholDV+y9ugOj+Xr/tYy5Jz6vteBhTRGCUSsvPFnW3V\nFWWTFDwfybH6utRG4auu72MVuFNQ45ud1f+XXhG/x9Gh2umuN42MbLW8QKZ3EyQm/HGZK1pfcijb\nfAJyr1tRu4OodsThjzsC+Jcb/+Gs1D8vv22or15JSVXJ6ci+I7KA647O9A+eUEY19Uutoy/uf2xm\nZr64xmj4U/3+r7dATyyo3YtPwu3zKfPsjlQ0iptC0w5M7Tr3ieaEWk6fl1LKys2vas1/Y6z2/mXk\nh2Zm9qvuR1+2Ifv003aw8LqZmc3suwgrZcKdO2Ryr2s9e+4/0O8pndc/bkgFavEV7TWehaunU/mZ\nmZn9lU+old/BdXQ5L3/5dElj1rmp675dFFrlox+EbbmrcdHflwrdxrGe9U5KfXn9E/12bVHIuF88\npTYm35dPrDPufrsI/9jG98zMLLwlpF/jlny5uv4XZmaWe6A63vuOxsCPshoTvdvaT96o/CszM7vw\nnFShNv1qw/9qZyutMuo+cH2tXRfSZ1iH72gsW0dmZfu+85+jkSddfLIvu+yWtcY24DibXQRxB9Lx\nFJWjwFTfx+DLcNGzA1C1Y7hjxuwJgn5dPwJZCK2UDVBH8UVc9ACZYfgDuyBN4oDdxnCrBHtwtXzJ\nAQlnBHsd30A+H2LvgTifReCc8IFk7YKIMVDCY+ofRiiN5cCCU93AGcAtgRpTDA6bLu2MTJjXybRP\nyFSnUb3qJ77izYjngubwoLBf/Zdl79Ura++W96P2uizU1yjNGLKzo3cd9hyLEdXFF8I28GgGouxH\neWcJpzTvBVw1JPqsCX9GaV9/A6zVExAUzYF86d4H8rlDfOhCbd3MzArwpvmbcBPmtSeIhvV/fEnP\nTYfgLAMFlp3T2n26T/2C2BYetPSM2pEpaM9jPpdHSPdrsL+t7ms+8zVA4aLWd1ITaqLQWsU+WstX\nZ3jHgkMtu4qiDqqgRbgS20UUHDMo8fbUzns3NRcES1pfqnCv1Fso24ZAPfFudwSipBBBqYf6FyO8\nB6H82L6ldWEmofteuyK1qCF8UAOUFv1zj7fejEDEZNLsd1EGG8Jv6j9BwTGs9i2CGk6gvNkBgdSH\nd9QXUP1vHnCaI87YP9VcWu2oX8eguSeJr3AZtXDM/BeTdmFWPtIYqg4DeOVCCd27zbwQzfDePVCd\neowPlwPK5Z1DfMiiKLxG4JYK9kCmxTW+fJzSaAbhlGXv4sCZ9dRLQrgPpro+wUmZQQXOLTiuOqfM\nUylQaUH4zrpayybG/pV5ruKDu9VVPQVZV65pHfr5m0KnhrNac1/5rk4dDIeypTtPdUH0JFKyg4ve\nGoC6qnEaYXbmD6uGekgZr3jFK17xile84hWveMUrXvGKV7zila+hfK1ImSmRqxbn2kacgx+gyX7x\naWWIK0TCs7AYF0fKnt29Ld3yjx4pw/zCs8pi9XLKTGQ3OHtKRqCDJvvQjfiTyUhtKEMwd0nfH5EZ\nDcDq3wvrd3ki8b0UIX2il02osqOorTimqGexqMhYlIj8uAQ/yoIiiyeoQKVM//vqcF+A4JlE9fli\nXH+rZKXWzoN62ZG9ohf03MOJ7LiWV+a3H+f8Zc/s0gu6pvGhnrl1RdHQv7svBYKNgiLUpQEs6iMQ\nDSHdK5QlQpuB+R/0TicLgoZzcm34FuKwsIc4HxwhkzluPZ7LdUBNdSsKt0aKZIw5e5reUrQyxrnH\nUVLt8zU5n4wiVhE0RYUI8nAgH1h9Yl2fV5WldzKK0q4/ofOLEzKt44aeH7yn++yjIvTFvW0zMwsH\nlXkIx+RL4aT6enZV2bEwPtVFAawGaqDYdLkAFE3NRZQ5yG0ouhvPql0VlHA6Mc78hlDwIgu1+5mi\nulW4XFafVrsK2KWJClMJJYzjmrJA0SVX2QsUSU31OL0j3zra132dkNqVX4O5/AS+ljZcDthz5Yr8\nLL+EPUBxHO3KTlXs6YNbgSSYxVA5GYR1/5hzdj+ZEpnP5ZX9TZD175fJAMJVVS6qD48+U7YmPwMS\nBk6mJCoQJyXV1ULyoSAR8PwFnf+NLKqNwRSqFcwLIziqsmuq+/6h7jeou+ojGjPtPdBWUdliAuJi\n+arGWuoaXFQLRNSTun+xqusqdSFYJjw/TcZxOqt2TxoggeD7aBb1/HIVlZEO3ASaAqydkA/mMyAQ\nX9Zc8MnfaqyM/KgW8fwBiKRB3+WG0fU+zmOvzGusn3tahBWfvqtMuENWKQhCyDdCCeEpPe/eocs/\nAkInJrvU+V0wpPr0YONvFfX/WcuUTEqd8+mDDpkcVAUaIH5aZFpHUNZ04Eo46TPfcka5X9T/jVO1\nu78PlwIZ4VRLdhkl5Q+zZE8twXzeIYv3jn7nD4ctuaE+v/L089QRJb6Hyth19/TbVkfzWt2vOqy+\nKKRCnKzN6YnGux+OlnOzUpvwk+Uun2r+6sC7EMI303NkLhmH1gXBdwkOqZb+T8ENM4DnIXJIXzXV\npgicBXOs5WvPyadf+K7Uin53Q+tO1b0/XFLtAhMCSgkj1t7bnwspEoOTYLAPV9j6upmZLayp/U1Q\nBf4hmcKafOmsZfYN2XPyJ+rL4zfVjpkXdb/UZ8pIHx+S2XxOY6rkaL4++q36ayP8qppRAsnjKIO7\nB5fO1T3O/PelYtQtyQ5vv6bb5jIau/49zTntoNq1AkfAWl2cNu8sqB9ddJqZWa9wz5q/0e83OM9f\nw4/2z6k+6x+D2HlZdrtX/72Zmc2zN+rAq/VmQKiUYBFegdd+qecnUNlrqV2dKqg5VLfeimrd65w8\nYScm3p2XfPKtdyeaeL5VFnKlfnkLGwptlBhqHxffAon4CKRITj7Y3dHvkqey5dyL8qn2nNqWuKDn\nZT6RjYrPypapV4U6ffkffqc6fqC2nhvl7XFK/QCE96l4Qa58V8ichRX2QkmtrX7W9EgMjoSI6lG7\nD6qt7yJK4EIAoZgCLTrp6fchMtCuWhKiQ9Ynkx2Az8lC7HNBzARBNIZBvbrrjM9FzvjgD4zCyQLq\nIgzSDzCGhUD2DEMotKGKkkSlaUgGPOCuEy4XBKi+IfwVfhA+Drx0MbhzALKbn2ZMQTMb68UIPhY3\nA+/n7wQOmZ7L9egDOenyILqvNz6X78PMF+tZjkz42EHpKKmxPe6BaF8mkz4n1Fe0q/s1Ts+O3p3b\nUpuTMcb5iZ4ViqhtC5saJy5CGLCQheBzm9vSvqnSlm+ePBCav4UKXQTezSsoR6YDOjXQY37Oo8Lp\njOCxeCSf8FW0boxW9X02pbGYv8A7Q9pFe2otzKLi1uQ0Q/lAa28bDptzF0GHrWjvFYAfKL/GfASh\nUL2FSuqWxrYfVGkSxE0DFHLFhz3wKeey5plZ1tAgvhhL4rsA753z62ZmtliX3fo93tVAWYxY28eo\nFzZHWu9CDdlj2NH+P5XS3i6SAC29pT6fwkkzQNmrGAXNh+psrSK7T/vaW5y1TFj3nBne+XhOoKP+\n7XXkg1ZTQ5OX2IeDHiwj3RjEr278VsjMm3vbZmb2o//++7pfQe2ojeF8A2ETS33FgRMKDa0TnbVq\nV8/+h//rp2ZmFp5q3P7Rn3xX14BqGsHv02avcHwqGyAqZzmUIEdT5slnQf8v/WszM8uuaN4foOxb\nrcKjkwcGjILUqAInS9xVZVKf+hrufKMx4g/peZVbGivBIIi3uPq+xrw3x9r1rR/8mZn9f+2daYxl\n513m/+fu+1K39q6qrt7s9r4k8XiPTTIBewiTMDEDwmIQIgqyLPElgDFIzCcgIWLLjEQUHAkJRgTM\nDJNhAiQZ0kkcO97Tbq+9ubuWru1W1d33c+98eH6nTUYTKEsTyhq/z5dSVd1zznve/f7/z/s8Zkm+\nqzVH6HmitZVK4ih7WAzO0kGtHy/jKLt+Vnuy96EZ6/Vxx2NsJhPqi62K2uT8WVxZYSl9PzimjIOD\ng4ODg4ODg4ODg4ODg8M+YF+ZMlHO1k8exYXkkiJgW3jWZw8qCmy4VkQLigpmKopA9T3OhuItX5xQ\nhnYbbYONlfNcrs8lDVX/JWXdjuAikppTtLYSsD3QUige1HMaDTKrnIWbvU73qVYUeauu6jkDyh0i\n0p8vKFOcCytq3HxZ0dizLbm9bK2RIkijds8h3O0laBRhZcGS82Jt9CY403pAkco2Z2YtpQhf/igR\nuHEcenrUY69r9YjqcDmkKOK5iqKbXhydhilFuIsFPOpNdZPk7OWwrrJlplVXMZTv4139Porpeh+X\nkFBIdbWDQ0EMRf/wYO/ncs3MamVFsjvrun92QRH56WvUNtOcv/YNrYOC6qDaw4kKDZdsS9HX9gbZ\ndZgrfhddiQbOCDgnpDibuVK5YGZmCZgbDe7fKSieOX2YDHWSc9dkw+IRNBmI/u5WFC2udXTdTEmR\n6wND9Y3RgAwv2bXWivrA5jkyE5uwHEo8F2cJb0f1ehEtm6NFRY1nC/p//RLvfUl9vh1oPJABOHhE\nGfQWjJ3NNTGNwhH9HscFpRjV+4x6KufOG4r6duO6/xTOZQmU2FtrqvddMhAN3KgmrlK/GkMb4iIZ\nokFb94/UYBf0SQfuAd2U7j3J/JDkzGnZU1tvLavMPtme0es4ac2qjkNkT3Z7qus4dg/+5ayWsiep\n47hBbOBSQUpg57zG2aimeWAYVp2F8rTNy2LyDS7ouin0MYrXK4t24AaN7xR6GJXzKscKekVNznX7\ngbPMDHoe47rP7AEU/GHubTyhcpx8hrHTx92pBbPmkObbsZgyBgNj3iDDmZ9E02VBGd/2CuwuMhAh\nNAnKsM8mDpF1ypBxhgXlods0wFphZVXZ90J2hsep3aaph0pc9dnYUHt00YcyMqEtHMeGLZzDYGnt\nGVHNGckUzj44EgSOQa0d9YcyLiRDyteMqr77vM8aLkxh3DgKBZU/y3nwdA5GZrC+ZfX/FHoAXdho\n9deYE8h+FhZSFvbVJqtvag1q44YRZIeizD8xBCL6UZVpC9e4JPNIv65szWhSfXCabE+qiMvRC8re\nNHB1aHVg3qEhU2mrbNVt1UlhGneQI4u6f1kZvUwycF/S87o7uj4OO8DIuvfRbSifUR9KoYc0CRsp\nehWOZrjCtdD/6cBC7ZyF2YMOSQ6XkVKgZQKzZAQ7LhO4hNDH94oB5f72hn6O3SoWxI0hzZebZbEs\nXgtznnxT733mJs3jd9wvduxL5/TzvinNf1+HOfLer18wN04YmQAAIABJREFUM7OTt2suqe2I9dE5\npve4eSi3plJKDhX/4Iv1cc2H9f9n37zPzMyunvmSmZn5q2ITJ1/MX36H3f+VtmuvEsNlpasxPEKP\n5Oa+xuDySPVcPqm5YG5BbJNoXZpzR9AiePKI2qm5KIbQ8bLeI/stzWkX0DR6T0T1/Pee2nfyVu0D\nst/YsekjapPVo+zjOux3ECc4WdO4/ED1Tj0b3ba54yr7qXn9vXdadX3vgursm71FMzO7LktW/uvK\n7HYWlLmc7ehdCt9VWdbu0vNe/oA0YN7PuP9mGP2lP7Y9oVBSeQ2GYL+mupyF2Nj2NHZGSc3DgQ7b\n2jrjfltjKWPqQ7NTatt2DbYYzltpWLW5uN67GTBjRhqTiZ4GTzeEtmFb14Vh1Pgw+7rMd3G0zvx2\niOtgLvZ1QYe5I9DTi+B8GWJvFywQYZLrQzQLfR9Nh4DdyvoZauAmmIExA4uP7e5lTUkvgZYDbiXh\nQeA8hvYN++IhWmSdNnuskdqz1wk0ZGA+pgONHXT3om+5L0VGLYvgrpTOokFX1/rtZ8WUSaGT6I+r\nvw7fxIEzfJ3tFZvb6FWgbTLyYbvW0MkJnKFYe5u0YaKjeT9+iXdjCZyBcVPua60oj2AYomd26AoY\njhntjwNGSR826JDnt1kzd9dgxLOtTEzBoIBlm2IfF7CxvBB7hnigOai9lbeNm1FMbdisqa/FWuq7\nKdaH1gJsKfpWejGYxzUGvBJzwjZtjTNWh/37cBbWGKcRPA+tSZgqbcZgBE2YZE57kURNz9ni+4+P\nDkoe1paHG9Uublblbe1/MymcxfiOWLqFhYp1KzSFhiWutqWOGECbZcTM9oge7A2fdTzH96ROVGOh\n+TrajHotC+HQ6YXR+ikEOqxqv8YZzZkXz2idurCi9WThCvX5wGktC6stgnuUmVk/nbRYKGQNtK66\nOCwaWlPhMT27yjBPNFQXEfRIN9bUd8+8oLr8oZ9gr5/Q9+UR7NcpWFTBdzTkiKwKiyfMHiSF9uMw\nggYhGo4eVME6DOUd+mhhQWv0ED3RCI5aF5gHm8usPzOcWJnXvDyChdrEGDg8DAT79P8rbtEeYMjn\n/vI//ZXqa1kXvOeTmr8NnZ9eGMfZlioqO4tu0Xnc3pi/vh8cU8bBwcHBwcHBwcHBwcHBwcFhH7Cv\nTJkIkfBMCPXmvCJeFTQQsm0YNEtkAlBzT3YUecuOFK2cCisStXoKPREPl4wVzhX2FSk/cIhzdRlF\n2Iozuq4+VDkiPhHxo4pOzl2hSBnBbmvFFBVuDwOlcc4KT5GaWCfLeAl2xIbC0OF5hTnjZCh6Z5Gr\njwaq8mgVkAWcPB6cE9Tfc/N6zxwZofCkrg/hYFPFuYJqtHJdkcpMWNd1cn3rlBTZvuK4IshjV+Ps\nklJkvZ5W1PPiJUV647xb2lQXPTJt1lE0M5FFryanuh3h6jPF+ewh2YYwkf5MQmVpv66M517RJ2gZ\nRt9jjPN/I87mr59RdsNvKjrZQ+o7hK7D+LzqNO7rPeaz6hutanAuWdHbfkTlzb6pDMQyzI4GriKR\nSdVXBMbN9EHdL3NU9VepotBfIavfUV8685zaos0555kDYrBEx/S8yqbuF0TqS/T5+rbus35SjJTw\npK4fn1SmMkmkvn9WY2WyojExJBOxehaV+01l60pzykik0S3JxtROPoOqsaqob58MTHpW5UumYDXA\nwAnV9Z7Jg/TNnsZICcX0dgvNi1dgE3CuPLOIzsiMsphraPi0KmqvFA4/ozxZyIH69l7g13HQGtM7\nRDx0J9AGSYRUlysbsJGSavNhS+9YSur6/CTsMM7pxrOqy/yc3jGM8v/aaY2RrU3dd/GY+kYdTYA8\nQyWH1kwS96Oxkvru9PVkm48ru5XPce56VfPFxqbqpn1KdT1BFinN+O9zxj7uqzwba4Eukf7e7HCG\ndkdsiNKYnjN/I3o/h2EApmF94U7RJsPZxiktMqfnbb+qMbZ+RnPIwlGVf+Zq9YmJ4zobnIQRU4Gp\nOJNQn5vJ6nPn63qvOO0RxvmsnVW9FyfVV1Ze5/3RDUlOqbw+c8j6BhkH2Ht7RWEGx4kx/RxFVX9t\nMsKtNllKtLn6SbV7Nol2GO5802gPJUqcrYY9lggyuhAdh8b58xBjq8K5c867d2G/+GTEy0ttq64p\n09XCVS4CWTRJsreIu0YMx65GR3W29ewLPFN95fABtVGCLPv6m2JdNS7gdoRjQbBG7qxrXh5jTeyR\nXe/CIkuNkyEdU5+8cEHzSqaPs9dIbRSdCNxFVI4MNlG1l8RaePG70kTpk2kdwsQs0Bf7OCQOcdmb\niKsPtmfoq1W1VW+gvtogU1uvkm0faN4dpPT/SOefPr/9f2J6Tg4P3inpnWQPnjAzs/Kq3ud5HBJv\nbut5zxe156hkNU+3/lZ9ausmjYmTNc0V7RPSfDhzRO+1sH3BzMxeKysLF1vHMXJcTJMTR1T/VbKT\n5/672B33+qrH7x6838zMxmfFul18Hec2+4T9qx+dsyyMwzPorhxjjpn+lso/cVBjoHeT5vd19K3C\n51ifdnE62lZ93nu7+sc3VtQ+H/LExCm+X/3jbE31dW9CLlPlLfXHA62ohV9XGz410Pz2k7eqjp56\nQ+N7YSCnqxcPqe4LQ62pWVyTvKfY52XkgtE+LcbC6N6vm5lZq6bPD2d1/SqOj/6r6mPzC+zLvqZ3\nvONOuT8tdVUXN25rrPwX2xtKwdjCuaTP+A2h7VIq4M40Up3Fs7iCLGneatT1uX4IrbI060CK+bCu\nz1XRZcqwPnl19fUe87QXYt5H06E5YK1FDCbE/QYdvX8nHLjVoUFm7JPJiEfRJougVeY1R//44xZD\ns8VjH+vBuvXDem6kH+zNVP5gXk3V9TNgPwzRpxvCDojwvqOAYQp7wGDAtGFdx2D6DMhk+0PdJxoN\nXJz0+RHsuhCaF4nOW+5LMX9oId5jMNS83PG13sywDh5gTlruaQ+18lVdm2Ovthc0qrr3EMZvBceu\nKqzILGzSQ1fK7SwRDdoQNi+ulv2ePpeLwBRhzZz1NG4rONiMcNryYMOOwc7sT+GmFJ/j8/q9iR5b\np6w27izpuYEDl38I91FcNgMmfPa4mHkdw7GK9cdnTR/AWFktaz4MJXR9DnfUITpx6TAuUrRtFWZN\nBF2kWEpjszCm+wZjJnCqTGLRVUcnbmdN14WhFqVLnKrg+8LkJN8lcU4sTKoe++h49lNoZsFUatBX\nB7CrE0Hf1DbW6ttqXx+2Rx732UFgWbZHpGB1R2taV/tFPSAWsOQOqG93Y3qfMHuR3i4Mm5h+j8H8\nmUcj8w6+51yJQ1lsE3etsK4r8H1qMHprnz1sh23kD208rbr/4A/fY2ZmI+oiTRmHOO/G0XdjO2Pr\nOO+dPCmt10M3iZ174F9rLezDXo03eRfaug0La/VlWGUVtenBq7U2RuhbrYGuG0PvaMh3jkhV98nR\nRqPDbJb43r/Fd7qVF7WPzTFvHLtVa2q9qjW8znt6HqwwtAPDEFsuotd0/azaqJ3VmMq39ZxYL3B5\nVnl9GJ/9PjpAh6SJFkiAfT84poyDg4ODg4ODg4ODg4ODg4PDPmBfmTIVIk+blxSdrO7qZ6enqO82\nWa7z38Vt44L+3q0rlpTaRkV+S3+vowGRyygUVY8qitnyFdmr13R/L6bfW5xhTZDRHhU5D9lTpHCr\nrghap6/IXBUtg7UnlWnpbKFS3+KMGtn99ddQYUYbodpRJL5Epru0qPTnAfzSK01FRWPBWWVYJ+Ek\nbAZYK+E5ReTaeUUSF41IHboBUSOriNNCnvOX+fUJC+F4UkXdvIryfGccrRg84dNTMF04bx3Lq65j\n6DGMkIkfUHfWQsOASHeTKKZXVWTcz+nzTRS9B/aWEv5eUCzgWT+ptomgvL+OHk//dc4bTpN1wrs+\nO6O6iIbxskf/otVUhmBEMWJkltvn9P811PBbUdVHAb2jXEpZ89gRGEA4JOygHdDaClyr9LNxQX22\nVoHJco0yG7lpadbUq3jXN5QZr60T7eXsbaGDIxDZrFSKvnMYfZO4ynE6roykLZIpvqT3u7ir+0a7\n+ns6rj6aRBejtkJGd/mkrvepkLjqqzQh2lXoIO29GzB61L5RmD+Bs0RtiEr/KWVDq5z3nDt6rZmZ\njRb0HmsvKWN/cUdjMXVYGZPpvMZEv6J621oPzrH/8xgLWF0RMmbMaqM8Z/TPqe83zih7M9hSmybQ\nP8pcpexuFuerdg0NKQ6Z7q7rZ5s+PwzOrl/UuG4yzuIR9fnlnOqotKD7XQMLKBTlrCkJy0iHsejr\n/j2yJnPjqvsLIXRFUOIvHFf2KwJDY9RXn/WqsBZmpGEVOqZs99aS2iBg2kwcUR0PoqrbOO4VQw71\ntjk73+/jYpVVRqA5rs+NLagPHDqs+48d0vs1cEpoLqnt17uaNyMJzVelSZzaOPN7IIdzS4IMKC53\nYf7+RlUZjdWLul+ujyNBVu2WIpOL1MueUSeT4YfQptlmDNZVz5UG68O8yltE62CXDM9EVpma2UN6\n/9QUGjO47K0tqR2a6GZFcc+L0iGjzCktsolDGJd9NA66uy0rjusdZ65T3RZhqAwGKtuohgMhjoRp\n5ul+i7UrDYuKsdDYUt/a2FYWqtsmI+prnHusXX1c7rqM6ziaWTPjarNjc2K4hRf0LnGcsupn1SfO\nLIuVNerS1w6oLbexVknjfLbLuewgIxtlLEVIMA6TgaOV6j7p4QyDBlif8+7VN1Qfu33VfWIG5iMZ\nwi59bwRTaK9Isd7k0BU64ivb90RF89j9h1WuE2MXzMzspjWNOf95uUm9dK3q826YQ19G/y001Lw3\n9aTqKXP8uJmZHVtTH3nV09he21AfmlgRE6Uwrnk1fx06ebPKOl5Z1Rzz7LbGauHDm5ffodfKWHfl\nK2Zm9sEV3dfQa1r+Ibl6PX9Sfe6BZ54xM7OvHdY8/9FjardLp1XuO49r7D/ta19wHBbviRW1xyLr\naqag8p3dUPbRn1G7F+ZPmQ2VXb/HUx0tn5eG1sWr5TxVuiD21NEV/f/Fppgw3mG1xfwNr5mZWfKC\n3vn5a8UOOvq3cs948TaxdJKm/+fQIKzeSrZ7aVFlKundhhvfNTOz82saY1fHluztoD3SPFka01qe\nwd0j1mUdapGVZ88VSLJ4fqD/oDH56ikyqzNqm/fcLneTIWO5HSZbDjtgkKOPD3TfEZouYea1REbP\nRcrA/CH6SrgchUxjp8Y+NYITZjKq//fQeEk00aNKquB9dPciAxwt2S/HoDGPyARHmM89MtQDCxiY\nOMuQA46QrR82yEynWRAbgb4GFTZiz4j7ywCtnSSp61EKTZoI+3neExKAJQIWwvAttly+nzGfv7dW\n0OhZU314x2FGDmHMrqpfRk/jrodOy16QnoClhPtRyEcrkPl3yCmBehRtlja6SDhcVdE32y1rL3Jh\nTdelxjUOi9dpXppCX66DJlivpbKWNzUvjsKBfhDfnWBGh9m312AZtHA0XN/Scw+sqBLzk+rjSVxA\nu2geFheloxG4aDY3NR/XYOSHKrBPd3W/UV3XJdFqqeziEMZ3ngHfrc5ckHbVsKy+dWBG+93ZqzTP\nHpjX2htKa10qNmELDzX/ra6zZ9rQ7zs7KkcUVlcoovK1u3qfPmPIhv731E8xpvtHiugIFvT5ONf1\nitqbvAHzf3RR2l+BJsxesYEzZxUWds5Un3nW/URP83eCTWOvw1hE8zHdY65gfZxcVP3ML+o6P6OF\nNdRBq9FnrxdinxAICZpZITy0dr9r3ZrqKJlEqzWmsiQ5fRA4RCEjZGXWokl0LI8WtQYkh+j9VHDP\nCxh+Jeq0qZ91dHq+/j+ko9aECf6xX0Y/FIZ0aRJ2L5pcPb6zhpgnh6PgBAl9m/I1I6rjJdhN+Qva\nt197l/Y0hntTOITTFeyigEPk4+RYgMHz/g+J9RrtaX+cjOq5Q+anMDpKHfZ3iaHW0DDs403q6/vB\nMWUcHBwcHBwcHBwcHBwcHBwc9gH7ypQZEWXteUSqUcGfwMkmjc/3dF4sg/wI9wo0IfpnFIkKIlQR\nMtHbcVyUuoqg+WOKrK3UFdFqQpNo7SgS3vL0e7GkaHE9ibvRGc4pBuf2IoqM5dK6fwf2h4dwSm9T\n5QvPom+C3ko6ovJ2xnCg4BBeAbOSES4fF2BHROqKpMUzsB8yek5kkgwBCu7Dge5bXSbq3lJ02OM8\n+UoEVfxGw7pFIsJRGCaYEA38IMvAv3FwiUcVKa5S1siyyt5ACXtY0TsnPZgyqINDFrBQgjbdDJxd\nVCdR7y2XiL0gzPljD9XwjSVFwreX9O50ERs7ouxbtKQIcTpLJJjszhm0YVoxlSNGArGLFsFqXRUS\nrSpOWbxGbZ3CJSgwFrCYsjk19D8uVhQpD9PWCbRp4m1dPzkudsJESZmQmKlPbjRUnmSObODtKn+4\nrwftXtD9K1uKInfQBPAv6nkD6n2wQQaFqHa9oL5wlMxCoqB2jOHUsL2qKLFHFquZUXmmx1Xe+Wt1\nNjZH1q26pczLakN9qgyLLRK4roRUrgTOZAOPzH1eFRwO6otoeJOocp7rx69QdD2ZUr+49Irad2hv\nqcL/c6j21ae31tSGac6o9nAGS2XUuRfuVGQ8GlIb5eeI2FPncVwbapxZ315Tn6/jXDCdVyefPKoy\nby8rw7oFu+fIMbXhYbLZM3Oqy/qY6u7sc2I1bcAiSu3oulyBTEQe3aJD+pk8rTap76ju/K7KkycL\n30XDpY7L2qin7FgEltP8NWp7K8My4LkdMpMe2bt+Q79v9/X/NPNafAZnlmOaf0PoNW2in1S7IPZF\njOxNt8cZXObPJqyzLCytIRnTgafP9egrzRX16VhT836Gc/P1XWU2pnCxKk1rLMZwoytlyC7uEbUV\n1U8D96h6hUwrGeHwuOo10GIok+no1WCHpdX+ddz4+pxrTwzVb6L0I4/MbprPH75VWc2xg8rEbryq\nfrP6mtafgG3YWI9YdFbXXP2+o1yj3y+e0Tht40KULqpt43OsGcxj9T6sn7L6nD+pshy76yYzM8sz\nH5x+SW0Xr+rZ+XkcU3y1UWNXY6q9rT766ilcJ1Zw7eP/rSS6Gm10G2jbYg7GTVFtNppVW6WaqvNU\nmj6RhglURPcCfYj0OAfVOYDtlXGC2MVxEVelZJI2yum5tbSu88k4J0Nvj5n5shK1ds+0rt9GF2nz\nRrG/XnxD81rpiOrluYKee9uTnPVv3G5mZudS6rv3fUPt+HUW3NaHdU7+SZiqRzMXzMwscklzU/lK\nnTvfKojpeI+vdeBJCI0e5/i3JjUmF3blRPT8t35YH/h3ZuWv/C9LHFD9t3Fo+wZaZLd8TbosyRvk\ntvTsnO6T6Kq/PPe82rFRkpXQ3Rf+wczM3j+pOe9LG+o32avUni9PaCzc+CwsjFv03PWBmEW7mbCF\nT6muinN96lTzy41N9f+qL/bQ5E3/VnXxTd0zXFD2OZqVVkz8O+q7cxfFpHn9bjFofiipNe0Fsvlv\nTqqOPnpKfSk60OeOVzW/ffPA+83M7IevOKEyf5PNwB6RDNxIcuwDYXz04ho7uwlcOHZ032ogCBVW\n+ZNokGUvolmyrvllCW2VQg5nrx3NEw1ckpLsO/0mYztLJho3jxw6TFEy0qM2uhtoD+bQqPHYg6RG\n+r3PPOyjH9iEyRJvwZJlD+aP2HOh2db2WT/RBenj3kRC3Xq422Vh6DTJFIfReBkx1vuwFBLsDfqU\nI9QKmKWUE42YluHiNAz0DvV+UViE/SyaOTCVRvaWzkc3FrKEr7ls/ZLGltdXgTNDNCZ3yIB3tY43\nKjCxuntnQUSGqptwSmWJH1LW/5qD2pdl0Mfp4WaUg+U/COourD5Rg4EeH0NLKwEjHY2aYI2KFbRn\nWX1Ta1z5pLSphin1uaPX6/mRgpgvhntRFxe2xiWY80ua51a6MOXRBUqiZVav6TmxdZxzQrjj8TPC\nfHk1rN16idMPdRiQMGRa7McHLfavaODMzoi9tlZWnddwxootaY4wDGvzJZy40IyJzus95+O4ErHG\n19CYydEOPZigG7gkDWPqQ+UlzSGvr+g5CdrlyLT6wkEYOsk5zecT6PQN3qsvcSvn5W7aWX97mpnj\n01rf11jX0mgCNdBhio6zx0HfaXtdbA5voDnhyJzqecR6OxG4aPVwKqLvJ9DE3Clz6mNH61FwosDM\nbOB3LBrPmuFqnIVRN+pp/IXSOOvCSDP0kVIwua+6VXUzfS1M4qLuHeyfEj1dNyrCUuIdQmjBTIyr\njyb4LhCwx0aB9mEr0L7S/QZddJRMddhhnmv4aFwx/x1fFNtq+sNiVkZi2kfXdjrUJax/GHIx3Jp8\nmIQJKDfVwKWN/e7UQnAflSPv6fpBEFZp6++tpMrtwfBL5v5pLUTHlHFwcHBwcHBwcHBwcHBwcHDY\nB+wrU2YSD/jZebQJ0sourXM8usN598xBRdCSTaLOHbLwqCXHOP01GhE9RVMmk1HU1scxotpQhCqa\n1fNalUDxmzP9EX0uh0p9gXOfIzLSHm4uQ36OyBgMyBBv4QAUbSpKGY4SDZ/Ve2bI+I44exvNh3k/\nRfJGWf0/hnd8f6RodLPJec2LiipvBCrROypHOKz/x/qKFkcHiu5mUBgfzIWtOKvoZDIR6CqYriHy\nHCEaWkFJur2hCGuSaKnfITq6TZ2hz9Ot4DQAO2k4obqML6oOSzlFPTMTYzz37TmmeGgbpMhOeegz\n9BbIWvAjSkS/e57I/Dl0gvJqC7+m3ycX1HeyefWp8puwFbqKtkYYEgcK+lwLp5eLLaVQR2f1Pm1C\n9plxXXeAPryDin2eaHIKxkc7pvosX1JEfoSLSPFGZSQLYTRiXlXEfWlXkfx+V/fLlZXF324qU9nD\nGSiFhkQeDYfcBBkVjkt2L6Ixc1rn8GvnYZPgjjJ+JU4SZOc6VTLy5QtmZlYl2hw4xBRKqs8ibJRE\nXvXRJGrdxwki4xPVjuCshstSEzemwPUqskOUe02/B5oZKaLLe0GYjFuU87hWh7mQRLuD7PLigtrc\n20TfQo+0rdel99BNM+66ZN3R2TAi8Je6qrvDV2qcTS6q7kakBlMTOFQN9PzymjKd21u6vkf5Btyn\nv63fozPoDOG2Nh5V35u7Tvc787wyA35PfWEbZ64KDB1vDMYhh2DHj+l9i8fVplvfUYS/CuvKBuoj\n8bDqrVpVdqdNtrzMuer0mOordaXacDamrMzWSWVrIoFOlIemAFoDKVzxPNw8QrOqp4NoADQukC2j\nzXc5P++hZTAxr/cOHBXikzj6ZPX/aovz+dW96w6ZmUXJ9nVwWvAWcIQoLpqZWRKXvItoxKzgwDPE\nVWTqgOpz1Ve/CtO3wzAyw0X9HMH4HOKS992Bxvx0G0e3HOfdU8pKhoa4BswPrDLS/168wDNgRW6s\nKoMXr+EeMaGyepO0ERpTu0vqG6dhuMXI3sdu0OdyM2qLygn1hcgGZUIjJsG7NX1lgZJFMowN3J48\nrdG5DKwnGJLZG9RmEdbgTTKZxpqWha2a7Ot+tS3c3dA82CVjuk3GNUObxxi7cVwvEtMaeykokhvM\nj80gQ8qZ/jDaMOkLgePM3nC8D9vWv9LMzC6aKCp3HlAbvXZaekdzVWmzjC2pL70xUr1+IP9tMzN7\niey/3aG1/f5lteN/C4kBc80byiquHNL1M6//rZmZ9Zb0+Tuf1RzQMI2RqRmxw145qznFe0bvvXi9\n6uOGm85ffof+0YN24krdfwoHiPd/R5+/cJfa9c7ZE2ZmdmZJjJkf9tWXv4PT2cS45oRX+prLVg5I\nAydTFrvgcELP210hs72gPn7TCtnHbfXXRvwqC/2QypL7mur2qz318cUH3mNmZtWQnvXlV/+rmZn5\nty7q88v/zszM/gENgzt+RONv6jnZ4bzw5n16377KNJu8x8zM4mSHWxXN68/jsJKa0buE1580M7Nv\njkvTJj9dt7eDHgy4tbMaC2E0qjJXaw0OwWAZwMDeOal5tTdSn5zO6/3id96i67Y0D/RbsBPQVOj4\n6nP9LkyPDCwFmJ6Bdkp0hKsJGiz1lj4fYUGIohsxhBGTwM0p0L6K0Vc9mDYWhx0dxlERLZwo2lqB\nVo1hOtq/rE2D9k00YBDCnIHtFscVKXBkjKEP2BuixeCjLRZmfk+z5+uiQYM+y8gPXFtY8Jr6f5fy\nd6CblHpZPsckZWbhyJStVLSHWj2n52bYs+QXxVLb3dLYg5xtaZxt/PYsd3nR/jnUW9qHJmowigMd\nIJjF3pT6SrSmsdBNqW9nivp88zjfYdIal7Eq7qMHtVcowcAuo1sZiWgNPYhuXLUtFpaHTk8Opkdx\nVsy4FJosXbSqzkxqzSuUk7y0njvAgcbQtxxHw6bZ1Dxy9hWN3TLrUwt3zvS8OscV18tdagH279RR\nTeQ9HBrXcIFKw06dXhTDbnoMZnkfnSCY2+E2e7cNGPM4T9Y31bdqaOOMT2heOjal900yZq8+smhm\nZpeWVY4GmjQRvveEAzeiwJEXbZnAqayGHlwHtlcSp7eFa8WqaiZhJ+8RUU4kRBnz7SLfV9CzC7Hv\nHqLPEs3D/q5prLc7OJrBHstn1M4tvnsGWp8X19Qf1p4Sg2rxmNqzdM0Vl8vSjAwt5DcshQ5beIxF\nl3E92ub7LS6VlRpr7qTGrQd7N7Gg6/o7sKlq2ouEBnq3EM6IgfNTKannffg/PKD7Mk8lYdH20Smt\n43w7jl7czCGtlW3m31Bc9x/xvX35vJ47nlS556/SHmiEZpeHzk4CJmB4inmxgfYN83GG/WIdl+dY\nFnZyRs9Pj9CEHPKdcKDPN9ArGi+qD/bQARp0/+lTAI4p4+Dg4ODg4ODg4ODg4ODg4LAP2FemTHUX\ndXzUkhNk+zJTKJYTdY23OFtGFm2QINPKGa1QHj0PIuPhONl4MtO1uKK+Qxg0PTKfIULhPiyPMOyF\nTo/IHGdvO7h0RLucgycKOWgqMuib7j/Ouc7OOCqDydOlAAAa00lEQVTxPtnMrN4jgquSpVRen8z8\niLO5Roa1RtS43UbFv40OSk/NFcKVqrtDxuIiZ2k53x8LXKRgmYQqURtyXrdD0iDtoVNDhDZMNiPT\nVluEPJTzezBbcmqDfAf2AToVvSGK/zgERMns9lZVRztN1WULxkV+/C0l/L0gjXPNECmaBI46Y2W9\nSH8HnYyyMg51HL1CRLozhzgnmNHPedwlRkO9d+2sMpfFkqKy6Twe9PSBJpmM6pLuxxFdS06obg/P\nLZqZWWRcUdTaljKGMRx50mi99JdUrgswaVIF1dO8r+jtBiyrHlmoEirq01fr/rtNIt8wfiJkhcJj\nZI5Nke8Y0d7atjIQO0TSfbJm8Xm1e5FMQi4Pe4Azta0azj7oYoTIVpVgWqUSKk84Q3ZqU+UYtVVf\nHU/R4JSHPkcYZ7S2osn1bdXDKK92LZxXv9qNodKPXkkirvbaE4i8B8+M52D3MK7SOD+FfT3r0lmV\nqXlJP4cFsk3H0b9Ik/kjZJ3A0SUCOyifxwXj2DHKrMxBaxlGG8mWGEyR4FXmDqhvnX1Zn+tThx5Z\nkSHaLj3cm1IHyVqvqK+X0Q9Kc9Y/GVGfLOBQkIYlFaXvx9FX6kzpuvJpZUsSITKBKbJ4OODkF2Au\nzqnvRcf03tGEKqLK+efOeX2+8qbGRnZC948Fekoxsj1ttFV6+lmLqK9u1l4yM7Pwmt47ilNQ4YA+\nd+iYWAqnz+jvw13O0eM4VMcprDZ4e0yZBmyHYJ4ckfFowMqo40CzfgldlRoZ1DhOD7hzNIeqn3Gc\n2cpnVA/tVzWXhKO0V07l3ILpeGpVWap8U+0amdPzijtkvkMjq+IutJ5Vxm+Q1niJpNATyqKzVoT1\nNaWyNkeaT84FTMaE+nBtSn/fLSuT+e0VMT36S+qkAYOltqNM6UIMtyNc4FJzGjPBGlsxtUG3w9rY\nYS0liz8cqK481rpBQfNz5iZl5EKcK/efUR8vV/Req+s4G0LdnOesf2RKbVTkvHZ1R5+3aMCw0f0r\nGdXbRE5tlgjBsqq+vcyl12RM5GHukSleuyRNnmhCWfaTcWmtHL1bTgxbFbXxS32y7bgUrqABtI7j\nwkd6Yti8NNCCdsuZ/2lmZk+N67z73aPTZmYWxlntqwc0x/zbmpiOg6zm29q6dFWOXRLTcunFE3qB\n/2C2uTNhV53BFYl1aW0CZ0r073ZNLJWFhtp9eUVjcnYkNtwLuBHOHxIb5b7XpYd1AU2KeFnlPxfV\ne+XbP2ZmZpWOHDTaBem2JAdlm3hOjLPWrTfoGeOqmxP/TSyk2Zs0ruZh3mXWVQcztMV473WerbY8\nsqN3DuVUt8+Pqa9nzuu6naOwP/Maj41puRpV579hZmbDqvrqXVNa854/o597RYU17Nyy5lOLsaaf\n1pg8mkRLZlNttIK7FCQyy+Q034TZQ+Simk86sMh6ZO/7Hiwv9Ifil2Bqk7k22MskZq2Ds0qYTHIf\nLZcIrlCBQ0t40Pme9xlF0RYj0xxvo+eU0ufSHT03mGP8EQxIfmf5Nb+HlgtaW9EQunVo4gxhtBh6\nHSNffTFN+eq4KEbQp4ozVwT2Vb0G+/MQrk/MQa0W7oowejycZZLMWf9YU6bajVh1VfddWdffcwmt\ny5Ga+s009dxqSwtsiDZjKbV3PcQJGBMZNAMDh8JkXPOrT1b9zWXNJ+GAsQFrJ2D6DfmOUOP/Hjo7\nURynEuNqu13mzyFMm6PvU9/bqeAmil6ct67runMw+WirwjjfOVK4/cA4HLbUViGY4V3abmJMdTVg\nszOAzdbcftXMzFKwDdIxtA4Zc4dYbypojeUq2heeP3fBzMxmy+iGMo+PHdD6M4ZraRWn3UmfvcAp\nNAhx+TO+q11q6H5z6Ot1eX63PcbnYc+hZzKdxLUVvbpu4HiLvlKmp/tk0YXa7ajcZ5/Q3JEp0Of8\nt/raXrBZ196hUQ4YSXpujr1hvcl3RXTrOk39f3wqYIzyHbes9m2h5RmwvLqwtguwzBqTOHgWxN5Y\nXdm+XJbGm10rjE1YYKw7hIEdhvHRQ1gzSpl2N9DhDMEc53vtEP2e9R3mkSqsfvbBXpOTHuw7mwPN\noyE2ykPcg3dwAiuhQRbhtEHQ1F2+3w5gCfXX0V7EuSqfUh/eQf+uUEPLKqa66KD7NBrxHQjn3ISP\nVhVrW4c6DH62L+GoeJB5k1MaiZae14Kd7KPx2oOZ04D11Ppn+ohjyjg4ODg4ODg4ODg4ODg4ODjs\nA/aVKRMjEdC/iJNDcBY1h2tSFlpHkHVDAyKD1c8gYMSQpYt3OA8Z5TwiEawUUeU2mesOEX4rYxXU\nU+YjQXaqScFCnE1No5TejwaZATRm4jBUyBBHfKyAyPyGiroOSRrzub5HRK7VUESwXtGZ6GGdDEJb\n9wn0RDh6a512g+IqQtdc4nwj7Ikc/u2hvqK4m2HVU7wVtfgWUUCcAHqmKCAkJRt0AscrlLE5R5em\nDrpdPTPG2cZwiQg0rkC5vqKfHSLjJCusx3XxjqKDgVbNXjEiIxrj3OCgG+j76N3rfpA1gqVUhzUB\noyZO1HPIueUu5yLX26rzVlrlKU3CoKmq/GtltV19XZ8vFPVCWVhSYVhNTVyYQqjh12q63yxaNiGY\nPpcGOjeeKqEBk0WZHKetblfPmZlVvUYy9E3OM3dwavBwGhpGCDvvKkLe5Zx5t0JWDMZJEpeTQ1cq\nG+d1OHeZgpVxQRn5jboyDvma+kx0XpH0MBpAgxDaMcF5cBzP2mjDdGEzZIhOj6d0H17L0rAafNol\nu6izz+0+Oit1+jpR+WF/7/0kUdM9mzgJDIjop4u0eZOIOIwWoyz1TekztOucUSX7kJxWnecnlA3y\n0nrnJIf4u5zZH5JRrFf1c/mcMqLpmNpm7Bhq8mhJeQlVRn5KrKYo2f2Yx/3o06Ouxn8M97UQrkz1\ns8oY+6Rcp68QQ8bjDHClqsxFioxoH1enHoNxCSbPwRbz7PVq4zG0vTx0QnrMES3Ow4cYw1mSawMy\nmL2W6q9VUd+Kcb7aLzB/M1bW1i+YmVmjqfeLMEaD582MiV0QmsCFCHZeDw2dRoe+TEp2DBeOTGzv\nDl1mZgNf71OGlVWlr/XJzHgwKJt5tUdDzWexNrolMTLaE2TdyPgnenrvXpOxE/Thkn5v9FXeSkTt\nE2cuyeHmFyU34uVSlomS3R3SR6Mad6NjsHvIpreS1BV6Ro1tmCchZWfSnuazXea5S28GWmAqe8hX\n3+jm1NfCBcZQEWYc47yfIys9AVtpXX2onVSfTKTUNtluwNKiD5Hp28bZqtHUPJNhfjWcXLI4coXI\n9sdpUz9FVmsEs44k+8DT8zcyqvMW59KHrJVDnFoGG8G5cNgMe8Tpa6Uddhc6c99OyhFo6pw0X5oL\n95qZ2cd21Tn++gW9V+gW1ePMuvrSynViJk18lfpb+BEzM3t1RfV0dvs7Zma2feNtZmZ29zmxPk7i\nhjh3XPP6wrJYY88f0/py01lpufhZjb2zd0izIX3xg5ff4c5q0yoH9fk3n1A93TrNgswUODwFcyoi\n9sq1je+amVnqZo3R1XEcJZ5kHYS9vOtr/SjF1M9uzIlpM+trDqndovKsfPV5MzObvHbH/KTGzVJN\nZd8eqk/GWJvWivo92ofZERLL5pU3xSy7+krNl4He2embpFFzf0tlfnVVdbTxHrHAkmSx/8dA111V\necLMzDZPfcjMzN47JnbSy0OV5+DoA9Tcf7a9YMiewoO5EU5p/hrtwDr2xbDIx2EwslY3l/S8HTQO\n0jBHSkXmcdaBHtvyLPthP6S1cmTaQzS2YUjC/I5RjnZEbRUKJF+GgesTuhQwwpMRNA8YO70+Y5Dn\nD2DZDWAqBUyaOC6kvQ6sD9bodgq2bA3NRNyYBjjfpOK4/bGXacFAj+D+10ODLNHxv+f5XG6pgBHE\nRrrIfrvT5L089c0kLOM02jrJMG6Gybdck0LtiPVaYgsU02KhxXA+ivcXVV0t2rGjMVmCTT6INGyv\naDNP96u6JgYTI3WQ/c4W/4fx3NzWPFVg393La/4usfZv1FQZVdxzvIgYNmNRrSGt4D60dQK2cAh2\nbxiduGFXP7dwM9rYhdkMMyZwkk2jTdKGFeXDLGmt4TbKGpyaZD7oqI+mjA1fFJZyGMZlsI/cRHOK\nPtXD/W9Q0XtVYE94u7BVmSPCuMb6VXScIrBs+b4yzr4yDwO7A4sqG+e7YwUnsk1dX8HpLFHjewWs\ntFYZ11jcVMdgNg2LrDPsjfL0wSzOuRvnVY+l9NvjOaTRqvGz6PjhvtTdQXc0g57Rrta3lZc1h/Sn\ntS84cIg9REnlCfSiDGcyvq7ZEJbhRIy9FevUqac1x9p/NFs5t2aRqYIV0up72TzjP6K+6/f0jtWR\nFpGtHdVhLqy1ID6P49gQDcAR+0fW0iEaVXW+Xwf73rGe5ukqzr7lZfWFMfbb4+MwZZhH+uh1RpmH\nY3zn2Bhpf+XRpxvoodW2xWbaZj88uag6T6HpOuT7vQ1Vl15WdZ5s03dwN62vq0/trJX5nNogl1fd\nhplneozRLszBGt99B3zvN/+f1rlzTBkHBwcHBwcHBwcHBwcHBweHfcC+MmU6ZCb7MEuGPWVnBi1F\n5ryYImdh3I1SZCRbYWVW4kldP+DMp8XRXEArIBZXzKlPpGrE5zKcqe2miUaSnYyh0D0WResmAVOH\nzHRmyH04AztM6nff51xeL2B1EN0lEmhowcTIDERigXaN3jeBBkMbdygvzd+J0BtuMCMyDRM4UiTn\nFJ0eTuj3wBHDUNX3YRiFU/3LkeqgLH6aOg1MbsiuD9BtiKF4H+KcYAhHqjARbsONI0Fmz+sT0aWM\n+aTqtgPbKYm2SStJynOP6KGn4/XJ5NI2Ec7oZtBuCYgVHkyUDPQiHw2cAU4Aq+gUhVGrz4xgXRGf\n7DRgK/i4HuFukuOs5ggmUBt20qADywomTiQJw4WsfpXsXj6mPp2AcZKgHitlPccj8zBIqy8E2jyd\ntu4fpnyxJJmPkV64v0PWa6Bobq8XMEwUtS2UVE/tAjpN67TDDsyiUaB/pHrzApV3sv3xCH1+AEur\npZ/bsC8SsLcinB9PRxRl93HL6m2i8RPXfabjysCkTfVY3tH1UfpXj0yNHxyK3QM6aEsFZ9qjZB9a\nQVUMVIYoDIxuEqeZOewjcK8I5/T3JM4uHmyoPi5A2xmNjTbZHQxqzMPFqJhFGb+g6xIZ+gTzQV9d\nzuKwE0KMneU3cVeClTZ+FGYeriFRVOejBWUcJg8qs5BCnb6yqbb3qcPgfPMAh4TAlWrikJ5bKKl8\nSdyMLNDIgq3UvqQxMozyk0yiN1DfmE7runXGRmZSY6jIeXOSTRYdoJGwTd8Y6vf8mPSMuiQw+6R2\nR2WVszpUZqPbgIUXzINBhiFOn/Zovz0ixvnwFFoxhm5WQLAsLut5U8wdrY768oCMc+yS2ikmcoB1\nllQ/qS56HVWVJ8VU22U+v5FsW91TZjbN2PYHQVZQ9R9v9CyGnljaU9ZmHD2FkE82BmeB0KauGYdt\nlQwqs4V+WoSz5C2dxfcCBmMXJg6spTROB6MuDMONEXWFmx7JnSwOK7NV3DDQb/DZQoRh6EVZa2Mw\nbmZgviRq6KqhWRXZUB/KMhYGrBsh+nriIvO4lnqL5fS8cViyCbJY0x5ueOwN0lUyzU3GOCy4veKa\nKxfNzOzrryuj+qGmxsSJxbt1/1VlBZ+pqdzXXanM5dLEvzIzs5dOi71x+C9uNjOz1r9XRnvmdfXx\n1zm/fktG5Z8diFHyxFG5jjQzsC5eECuiHv07MzO787wYO68dRDdk5hozM+v/5d+YmdkVhwPW2IP2\nN+Fpm0AzYn3yKTMzu/k5tcfzMWm/7Nysvnz0VWW+Lx290czMhs+JRbB1D0yfu8Ucem4gO7+7fXX+\nV9FEizxJeyflSPPtyO1mZnbwg9KRaexebaVlzQulQ8+YmdngVd3LK+rZ+SbsGta+91Sl15O95t+Y\nmdnfRL5iZmY/cvZOPXNd88MbR8Woubmk/6/SpxuNj5iZ2eGJb5mZ2ZsDHEbmVJfPPavnNZ/BbTPx\nLXs7KKFp2LtGY3SIa1ADF7nlF6VlE+RDY4H+W1HzXn2gvjViPo3Bfm1BK02FYH0h7hC42g1hwxZg\nCXj1gMUa6Hegkejp7/URazoaD0lcBHsNGNwZ1kMcNpO4GA5gmyWYBzuJwDFTP0fsg43PR5r8HWfP\nKA5DRrmMvVon0I7ETcqHCWpxmOOs22HuH8po7qviFphpwvILMddMaaznAzZ3D7ZeXHNFb1f13Gq/\nlZluri/ZWHB9iXUZXY5UAybAG9Qr3zN6uP1lB3t3DvV7eqc+ejYDmB+DZT0zDRMxjYZLCserEWtt\nhDViAKs/E1LddGEhDXGGGaTR32H/2cEFM0ldDoI6CfZ34+z/V5m3YVfFvYDByFrMfjufDvqI/t3Y\n1Z6ijq5PBn2OdAzdS/TZzHCb6utzPfTyNvrq22GYNxHotxMVtE7YN4ZgcXk45Fa6mg8NXZBoVu/Z\n4/c4jJjxHNozaO+00br0+H5TpzxDtDObuB0a+p35BOwQxkorFugbwVRFTypKvcwU9bxsGP2R2Ns7\nCRBKsWdocZojwnuxjvqwTpIwlgoHYeMm0cfjpECFdTlZ1XoTiQRjWT+bdfRQYWtEcZqcGy5cLkuu\nGLXQdtNqPc1fdVyCfJh0SU4jhFjbx45qHxpGd7LDdwqDzRpHS4rhaSP2JH2cstqwaQfMR8HeZmKC\n2zDcOriVVvhcIfiumkF7qwVzkRMvHcZC4GjbL/AdFKZ6cw09Oti4FkEztsd3Ir4nhBP0Veb3woSe\n48OEz3BSx4hPdPmO24xrHjHmzaBPtYeUw/9eTa//E44p4+Dg4ODg4ODg4ODg4ODg4LAP8Eaj0d7D\nvw4ODg4ODg4ODg4ODg4ODg4O/0/gmDIODg4ODg4ODg4ODg4ODg4O+wAXlHFwcHBwcHBwcHBwcHBw\ncHDYB7igjIODg4ODg4ODg4ODg4ODg8M+wAVlHBwcHBwcHBwcHBwcHBwcHPYBLijj4ODg4ODg4ODg\n4ODg4ODgsA9wQRkHBwcHBwcHBwcHBwcHBweHfUBkPx/+m7/5m3by5EnzPM8effRRu/766/ezOA4O\n/+I4ffq0PfTQQ/azP/uz9uCDD9ra2pr98i//svm+bxMTE/Y7v/M7FovF7Etf+pL9yZ/8iYVCIfuJ\nn/gJe+CBB/a76A4OP1B8+tOftueff94Gg4F94hOfsOuuu86NDYd3Ndrttj3yyCO2vb1t3W7XHnro\nITt+/LgbFw4OoNPp2I/+6I/aQw89ZLfddpsbGw7vejz99NP2i7/4i3bs2DEzM7viiivs53/+593Y\neAfCG41Go/148DPPPGOPPfaYfe5zn7Nz587Zo48+al/84hf3oygODvuCVqtln/jEJ2xxcdGuvPJK\ne/DBB+1Xf/VX7e6777b77rvPfvd3f9emp6ftIx/5iH30ox+1xx9/3KLRqH3sYx+zP/3TP7VCobDf\nr+Dg8APBd77zHXvsscfs85//vO3u7tpHP/pRu+2229zYcHhX48tf/rKtrq7axz/+cVtdXbWf+7mf\ns5tvvtmNCwcH8Hu/93v2xBNP2E//9E/bs88+68aGw7seTz/9tP3Zn/2Z/eEf/uHlv7nvGu9M7Nvx\npaeeeso++MEPmpnZkSNHrFqtWqPR2K/iODj8iyMWi9nnP/95m5ycvPy3p59+2j7wgQ+Ymdm9995r\nTz31lJ08edKuu+46y2azlkgk7Oabb7YXXnhhv4rt4PADx/ve9z77gz/4AzMzy+Vy1m633dhweNfj\n/vvvt49//ONmZra2tmZTU1NuXDg4gHPnztnZs2ftnnvuMTO3n3Jw+H5wY+OdiX0LypTLZSsWi5d/\nHxsbs62trf0qjoPDvzgikYglEonv+Vu73bZYLGZmZqVSyba2tqxcLtvY2Njlz7ix4vD/O8LhsKVS\nKTMze/zxx+3uu+92Y8PBAfzkT/6kffKTn7RHH33UjQsHB/CpT33KHnnkkcu/u7Hh4CCcPXvWfuEX\nfsF+6qd+yr797W+7sfEOxb5qyvxj7NMpKgeHdyy+35hwY8Xh3YKvfe1r9vjjj9sXvvAF+9CHPnT5\n725sOLyb8ed//uf22muv2S/90i99T59348Lh3Yq//uu/thtvvNHm5+f/r/93Y8Ph3YrFxUV7+OGH\n7b777rPl5WX7mZ/5GfN9//L/3dh452DfgjKTk5NWLpcv/765uWkTExP7VRwHh3cEUqmUdTodSyQS\ntrGxYZOTk//XsXLjjTfuYykdHH7w+Na3vmV/9Ed/ZH/8x39s2WzWjQ2Hdz1efvllK5VKNjMzY1dd\ndZX5vm/pdNqNC4d3PU6cOGHLy8t24sQJW19ft1gs5tYMBwczm5qasvvvv9/MzBYWFmx8fNxOnTrl\nxsY7EPt2fOmOO+6wv//7vzczs1deecUmJyctk8nsV3EcHN4RuP322y+Pi6985St211132Q033GCn\nTp2yWq1mzWbTXnjhBXvve9+7zyV1cPjBoV6v26c//Wn73Oc+d1lkzo0Nh3c7nnvuOfvCF75gZjoC\n3mq13LhwcDCz3//937e/+qu/sr/4i7+wBx54wB566CE3NhwczOxLX/qSPfbYY2ZmtrW1Zdvb2/bj\nP/7jbmy8A7Fv7ktmZp/5zGfsueeeM8/z7Dd+4zfs+PHj+1UUB4d/cbz88sv2qU99ylZXVy0SidjU\n1JR95jOfsUceecS63a7Nzs7ab/3Wb1k0GrW/+7u/s8cee8w8z7MHH3zQfuzHfmy/i+/g8APDF7/4\nRfvsZz9rhw4duvy33/7t37Zf//Vfd2PD4V2LTqdjv/Zrv2Zra2vW6XTs4YcftmuvvdZ+5Vd+xY0L\nBwfw2c9+1g4cOGB33nmnGxsO73o0Gg375Cc/abVazfr9vj388MN21VVXubHxDsS+BmUcHBwcHBwc\nHBwcHBwcHBwc3q3Yt+NLDg4ODg4ODg4ODg4ODg4ODu9muKCMg4ODg4ODg4ODg4ODg4ODwz7ABWUc\nHBwcHBwcHBwcHBwcHBwc9gEuKOPg4ODg4ODg4ODg4ODg4OCwD3BBGQcHBwcHBwcHBwcHBwcHB4d9\ngAvKODg4ODg4ODg4ODg4ODg4OOwDXFDGwcHBwcHBwcHBwcHBwcHBYR/ggjIODg4ODg4ODg4ODg4O\nDg4O+4D/DaeNiqc0VLTIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAARhCAYAAACLezhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXmwbdt11jf22n3f77NPf87t29dJ\nT31jKQLbFFWGCknkSkFVIE5SKQowyMQSVmxjIduAA0YuFwqGOK4ihQIkwcQ2kW1JtiQ/da9vb3/O\nPf3Zfd/vlT++39YzKVk6L/UqL3HW+Gffu8/aa8055phjzjXGN7/hc13XNU888cQTTzzxxBNPPPHE\nE0888cQTT/4fFeetboAnnnjiiSeeeOKJJ5544oknnnjiyf8fxQvKeOKJJ5544oknnnjiiSeeeOKJ\nJ568BeIFZTzxxBNPPPHEE0888cQTTzzxxBNP3gLxgjKeeOKJJ5544oknnnjiiSeeeOKJJ2+BeEEZ\nTzzxxBNPPPHEE0888cQTTzzxxJO3QLygjCeeeOKJJ5544oknnnjiiSeeeOLJWyCBN/uGn/70p+35\n5583n89nn/jEJ+yRRx55sx/hiSeeeOKJJ5544oknnnjiiSeeePL/eXlTgzLf+MY3bHd31z73uc/Z\nvXv37BOf+IR97nOfezMf4YknnnjiiSeeeOKJJ5544oknnnjyx0Le1ONLTz31lH3kIx8xM7Pz589b\nq9Wybrf7Zj7CE0888cQTTzzxxBNPPPHEE0888eSPhbypSJlqtWrXr1//9v9zuZxVKhVLJBLf8fpP\n/Xf/yP6Lv/Cf2q9++tf0RWhiZmb9VlONu5Q2M7NZu2dmZs1G38zMsksxMzNLpvNmZnbn1gMzM4v2\nRmZmFk9s6T6BhpmZ+dPLZmaWmHbMzCw2VnvmjQPdPzzXdZGomhEImpnZqDE2M7OT1kC/T5XMzGzs\nU3t8EbUnUNb3gbF+H+vqOaOk2t/stPW8irqZjqn9rd6h7pPU99GhX3rbCOvvUoMdNk/MzOyCs2Zm\nZrdvPWNmZtcffdTMzCbxoZmZOYOImZntTfSg8JraFS1ErHXiqm8j3Tvgqo3x8kxtrEpX8UxOugir\njXdfecHMzFZW9OxkImNmZoMH0vk0I131RiEzM+v2dZ/NrOygF/DpvgM9L5VRHPCv/41P2lnk7//U\n3zEzM9ev343Ham+8KF07jJ1b1RgNg2r3cKQxmvU0RomI2u2P6D6Drmxl6/w5MzNr9fV7n6Mx9001\ndn09zqYT2WZuWf0JnNTUv4n02olNzcysWIqbmVkwKn00DhWUjEc1FtW+9FC/e9vMzJbTWbUvL5sc\nlDQlI07O/txH/rT96q/9ipmZpRIykth2wczMwmPd9+mvPW9mZqGxfpcqLuk+I7Vv2FB7I37Nlb5M\n0aIRtc8Nyh7CfukzFdf/fSn1dzxWeyfMAdekz+CS2tOvyPb6Hek7XpD95HQ7M7/02O3rd7Noy8zM\n0kn1uzbU/5Mt2X7LldHHHI3rj37s0/a95Kc//g/U135dz85JRycnGrxgSm0fddXnxKqeNXPUt2yx\naGZmobme2VWXzPVrbOsvaf75Y/p/gLE+re+YmVlpSb8PZ7fNzKxYkK7vH9/XfTUElnRkm3vP635r\nabUzlpPNHN/fMzOz3oEakMqqPeX8ipmZjWe6UbVybGZmtbDGKHtVc21lWe04PFK7Qq7uk1hJmZlZ\n43RX/bl7V3qivfWK5uxyVu3J8LxeVDYWPpItucy1YVa+IDzXIFfvSe/pqGximFM/fRHZdDClcej2\n1O/Tr72i9l6SX476ZbOjqsbeSWqcprOqrrtQVju70ntw6re/9Bf/S/u1z/5TMzP72Cc/YWeR//an\nZUuVifxkaHXVzMwiAd036VP/iq76f1JVv4azUzMzmzPHgn3pZeDo02VcIgn9PRvR/SZ92f40LBvv\njfXc3kT2mMTHBgIaH1/ZbzaXDrox5l9IbfAn0MlA8zPI3wNd/DHzZ9TRp+PIViMm/2xB2UK7JZsP\nTzUfc+c0hrmSbLZ6ojZ1K/KP05rmdW+HNWWuvsaCshU3qt/n13T/dEm6Cw31/MlcDmcw13NDAfwL\nfrXfkw6HJ+p3MC+/4OurHcEEYxOVbgMz/bDSVz8nru7fPdbzN7LS+Rz/lmQN/pEf+8/sLPKzv6T1\nZq8n2wv7NTejU30mmqw/9PtgvCM9nGqOdPxqV3hZ17tdzclkSO3xjzQHnaz66Xfwo03paxrQuPqC\nek52qPscdbTeRnzYBTbc7un/k4L+/3c//pP2i//9L1rjUL5nKag5mMtvmJnZ8UTrW7Ordvhobz+E\nLU7Ur+xY7Q1GtV6GfF2uw9eVZLMj1odeW3N7xP3Tc90vEQ/afLH2suZOevJfvoT6tnzuonTa1rP2\nfLpnul/jGWqjO5fNzQtqY2uuvyfD+ns7LNuc7OP3wrqfg65spuf2I1qLh13N6zT//5kf+5t2Fvm5\nf6i9i3MsW+4wZq3xvpmZlTfkr8orGuPWQ821W0/x98vac+QuSpcd/5GZmTWi8gvtZ6XLnMkfxeNb\nZmZ22GevwxzqpLV/XImp//Ft9ptf1d7iFJsKPtD1ywXZWvSK7rd7qjFtf/1l9SentftiWXpOXr1s\nZma3/0D3m8dkU+c/8H1mZhba0hi/9GXtQcJT6bNo+D0Nr1XvaF2bjHT9pSX9YRhV+/qdh2Zmdr+p\n368syS8vr2t/G6+wDlc13qd7Gt/omtaPDnvC8rLan05LT+N7Gu9bz8n//sLn/p79ws981jI3ZD/D\ne5rj+Rt6zsNvqh2HJxqni5c0PkGf+pPe1pz4a//Vf23fS378R35U/5hJ97Gc5oCToM/YeLgjnUwy\nst3+sWzFz/4nhx8JjGUbKVvsQTSvO1w3CsrPh3k36fKuMR9oDiz2r8OY/p6OSWfhsH6XdtEJ7enN\n2U8f6x3p9Eh+drUk2+isSRcZV+2dzninmmotzyT1/4lffnuSkI2HGrpPNKb7TByNzXSk6/sjtWfI\neuHWpRc3L1sd+fX/PM/zZ6WfaXMx19UvH+81k6B8TvMF2cJopv6X4rLtuKPrTodaZ6KrEfTI/v9A\n7Y1lpI9gR37PSagdc94R213ZTD8uPf79z37GziJ/48d+Uu2dqd/Tlu57Z/8lMzM7t6F1Ob4p205N\nNN6FJX1/1FC/Kg/kz5c3ZbOXN+Tvdyuy6WxKcyW/oud0afet5zSn/vKP/Tf2T375s9aodO2Ze/I/\nj/2595qZ2Tgg3TfuyRYeX7tpZmYn/+4bZmZ28Arz5bx0E95e4hnS3Tgk3eW3ZVup1fNmZjbxa24c\n39J9A1GNVSKmvgV6GovWSP7tePeOmZndO5Gf8J/T897/Z99nZmYh/H37BV23/dgl9X2o59z/6rNm\nZuYkpcMp7yqVu+pvJKr/x7P6PHpO7XpwT3uT7Yvy69O6+hUuqT/nL0jn+8/puZkLem6lLhs+7Uk/\nCb/mTHFbY/O3P/4x+07ic13X/Y5/+b8hn/zkJ+2DH/zgt9EyP/zDP2yf/vSnbXt7+ztef3J8Ykvl\npTfr8Z544oknnnjiiSeeeOKJJ5544okn/6+S//xTn7Jf+Ymf+I5/e1ORMqVSyarV6rf/f3p6akWy\n0N9JPvOLv2yf+tmfto//yE+bmdmULLzNFMXLvf+KmZn16orQt3cVVQ2sKoq5fVMkwt3bisLuHCni\nlZgqgnXaVLj4SlFR0WheEbNMU9HI05efMjMzx1UGofykMsC9tiJz+68oUtZKKDK/euUxMzOrN/V9\ncKz2xM6vm5lZvK/I3oAIYYSMSZ/I2vCEDDgZnaN9RdLWl3TdZE2RvixZzaOq2nH43DfNzOzCuiKU\n919SxO8DHyCS6VeEsVsnIxOQHrJXFbGL5kq2u6foYnxKhLwgHeVmattrL71mZmahgtoS2lZkf3dX\nkdjLNxRp3cgqE7r7VUVJg0lFXhsnyrYf7KsNNz7wpJmZBU4VHTw91fPX12QPH//xv2JnkU99/Oel\nm47GOJBVVitcVvuCcfVnNpJOBxGN8exEup0PlCFIZaTL3imZW5mYrW0pYu9klJ1p7+g5c9AWgSPp\n9vhEesgW9cNAX9HT9LL0eNTT99E1/S4fV/vuP9TvNnLS28HJPTMzO3nhRTMz2yRgGUmToVxWFDm0\nkrG/8Cf/I/un/8P/aGZmd+4qCrtyQ7aWWpdev/zP/oXa61fm4Pr5q+oP6DBfQNdFA7LN/bvSV6um\nDEN6puf6/JorTlT6iuWUOUjlFI1utYgOJ6XHTkN/79xRu4ZNjXtkdVP9yMougikyRQk9vz6RPqMx\nffYYp2hKeuzvaW7NS+rPz3z85+x7yY997G+bmdnojmxs6CjSHgoSqT4Q2uCE7NTaJpH+sbIL5x6T\nHyleVAR7eCx0WGygiPoDUE1lkCuTkPpy/2kh1pYfeYd+f15+af0JZd6+/pL81nSmvj3i19h+69d/\nV9eRubx28YKZme3fVjb85S/+gZmZpTd0/eWr19TRifzNi7+pvx+GZXNX/tSf1XUfkr98cV/t70+U\n4bhy84aZmQ3uKCP6/G//lpmZ3VjFRhu6bvmqrlsHcTN4KJsItTW3d+9Lfxs35U9X8BVf+Y0dMzPz\nh6S/9SuygekN9W/sk63cfVY+4/kv/EszM7t5Qc+7/oTuN2SuxeJ6/v2ZxufS2paZmdXaQtj4/En7\nuU/+in3q55WN/OSP/0M7i/ytX/lXek5K7UrE1N5eVRnnClnK3Fifo5Fs0TmVnqsjtW82kH9dyskX\nxXOaM5F5BD2Quef66JQsaIQM7kSZmD6IydBc14/jbUssaZ61Y2T9seFZTvOom5Utdx5qjQjUNJ9H\nJ5rPsZ7WsCJZH7+j70NJ5V4afjKf9VfNzGxwrL5vlpW9z29rbkQc2Ub3Jfm5yo7W9emx5mUqg58Y\nS5eRku7vT2jeJ3JkGIu6HvCQjefSScav6wJkLneONNbNHfmruKt+TeNCG8R96LaoG5Vz8oPNusam\ndl/t6w2wWdBppSu67id+7jtnpf6v8nf+8d8zM7MTk98uNDTGybb02DzVGGYL8jXPvqy51vQpG7a9\nBAoiI/RHwCe9uGRCT+/ovv6M+nMcAFUL0mdEpjUv921b+LLBVHqKhGhHUxnOW3c1J1Ir8hX/87/4\n5/axT3/S/HVdv16WHUSrGqeT3i0zM3uhJTuK5li/w1q3EkP9rnNf+t8AuZSPqb1RxrPHHLp7Sxnd\nVkt6L1/WniPgapzXxwVLldS3OmvowauyDSeosVxde7uZma0U9KxRlH0gqM3ZFNRWULZRJ7vdben3\nbhk0QI45U9MYrZP9bx+rr9OG+jaJgLwYy2YSoL7+yc98b1SmmdlP/eOf1X0ZS6eg9j773NfMzOw9\nP/gnzMzs6iX57d/6pd80M7Mv/Fvt486BALn5Q5qr0XdqjDvqvn3+537RzMwyIEve/siHzczscCpb\nzpyTPo5ABay9TWv0O96hPczTP//Pzczs9FT9DQ2191iebZmZWex9bzMzsyYZ7uc/r3blIvLnNz6k\nfeXauu77S5/6VTMzq8y0Z/nR/+mv6n6X1f5f/eRnzczMjWtcr3/oT5mZmc8F+fNl7VeXSf9mr6qj\nA5NduCm184Vnpc94Xu14pCQ9BR3Z3tGzWqfuv/AtMzN753t+wMzM6iHpYwCC8fqm1tM7X9P9fu9/\n0R7pxfk9+zPX/2O7+GceNzOzk7oQPI986IfMzOzhN7SX+fwv/zszM8sn1L/Se9Xwd7FP+PGf+sv2\nveRv/fm/rr5PZaOhLPusjGwxbpo/la78aykA+qsmG++AAFy+rLGbgmyIT7UWZ4PocKA+Tta19whM\nNWdGA837QhSEJMjIBRrVLch/u3nN/3XQmsMj9m0gfCqH+l33WHuTcEqvjJ0V6Trqk3+MMWUnLc0l\ni+n3w5z6awmtcRHQx5k4yJ2EkvKpnq6v8h6RGkg/bR8Iax9IvLjmeLiodpb6mjtdEODmgs7Na250\nMmpvb1eIkdqxbP6RpGxk7srWjvH3LLvm+nHA6DcWBdXL2p+exWmXLjt6KP1UHO1dfuHf/IKdRT72\nV/+umZk9rKvfkajG8d7zeh+79j7N+dW8xqfEfjwOluK1rz2t/vX03vKhH3qXmZklU7KPk1c1V6Ln\nNS7xFe15Dl7Q+vHcN7SH/cV/9m/s4z/yN+1u5djuaTraD336z5uZWb2pMXzl879nZmaP5/UefPtX\nf13Pvq195Yf/hPze0qZsvlGXf23HZCvnvl97i8INffo6GsPnflNIuwyoMF9B70S9O9qbNE6l5M9/\nQf71MKPBvvTDHzAzs7/0V/6imZkFhuyd/kD7zMsbWotn39LYPPUv/7WZmQUvymZL1/T3O6xLhaSe\n6+tLx//7v/o/zMzs6afUvv/w+/+02gmKa+mqxqp4Xf155it6bqos5PohJ2S++fsag/GG/NT73yP/\n+kfJmxqUee9732uf+cxn7KMf/ai9/PLLViqV/sijS2Zmc6DVo6gW0WRGBl11teG5BIimn9CE6DU0\nsSIT/W4S1AQ5BsK3eU4G3GsDux/r+2iZF8OJFjnj6E69DcQ2IYfnr+hzMGSRd+Q4QsBml1fYuGA8\n+ydy4vE8L6rA3w/3NcHO17WYFLdlBAcZOcThS3q5SqWkmwyQuUpDv+9zjKsUg/KnqOdeKOMojjWh\nUrwU7PKiP5vpub4jzappSg5tMjq0Mcd70sD9Ni6ALR0C9R2oDwsYXWAunZU4ihEAQmoBXT/oLV6m\npfNQQRPR6WkCOTjHakvOYtjSBPWF35jJJXO6fprTi54/JGfd7bN5pN09P8dequpX6pyMZ+jq9z6f\nFr3zGemkTQBr7JeulwNaxHpp/T/c0MQMZuXcY0ONzWtf/rJ+39RLxPYN/a420phGjrUxSnxYaLEQ\ncM+jAVC+jsb08uNynhmgvEc16bWzJxsvNENmf9JsOlI7Ao4W50lVNhvdln7zj8gxLeU5ehdmvJwF\nrBN9B/T7K5fVnkPWStuTXfRCek5+Lkc4COr7/kjtyqxJn4GU7OOYgEb8sjaeZT8bZOCVI5fPGI6W\nY2W+ZY4jpPS8SRJY/lBz4OFA/U8fn91OCkD3x8bRBxdof0c6cffVl2sce1w6r4Wp+5BjKeg8cF0v\nolFeBuLLGqvNrvoQvyAnnBzL9qoD6WSpLJs5qep+4bF+n2AuNTgPFXtM7crf1EZguAcEdqT2xbL6\nfr2ofhQ48nBpjQ1OQ+3bY1EL9eQHQmHdf1jHjzbYqEzVrmlI7Yg9qu/Lx3qBSxGwSww5ytBQ+3Nr\n2rBUI7L9yFjP3SjpxSvPy04oIpvilKTtAZdv8aIc5ihM6ar63XhUej9Xle2nNuXPBryAHzlq5/a6\nfrcS1qY4HtZc3W9y3Cwjn5PM6e9nlQj+csCRvbbUYw84mtO/rcW5wdGVjKPvWyF40UKac3EC2u2g\n/C2n4KwfZmdI4DHEEZBuQuPicMQz6BJA5jiHDUc8d2ztCEELgplLm5on7pbmwzhO3x/V990d3WL/\nJbV5rr2cdSoEpcd61vpIbbj+Nm0YHnuPXp4f3NWG4ehZzXvnHsHfjIK7WzcV6Nta1f1qL3HuaKx5\nHM5prIMR6cQNSGfjsfpxus9xxZT+7xsDMU7JhuJAf1e39KJYLmsunL6qsWj19XsLSLeZIS8tE7Wn\ncF1z0r+tIEjzRY4G7+iI3hybOaskVjVHUrvS9/BEeus8LWMZNXbMzOwwoXZG2cU/+qQCs5uPvkf9\na2pOju/gXx9IXwn8qY9xyXI8qLWkORJM6v8xV+2o7EufsynHgjLoHX+6+YT8f/n6tW/3obC+YZUT\nEll3NacOHyiwPOxxzHZJPmYvrvV0mePApS3N/SFHBVNdgmxhjfv4vvQSL3O2eqY5tbKu+6zntb40\n93VdKBqwyEhrd6RPEHmVZ7L57rwiv3HwTbW5fJ4kVUF+djSWX6oH5C/m7Gs6Lf3d5eiVv6lnRznq\nMZ5qjhRa8lOttK4vs99M8aLntmb2RiQ8o+8h2WgoxjHTC5ozjz6msTi4JR3O2Y/dSHMEfE3+d8oR\nicc/LNuZpqSHF/6agta+HbV/1sGP+zUXiI1bdhO/fk3+uY2NtBizDY7H+vOaY6Md9s3A/4sERnMc\n41xnjxQuS59NjhOUN+X3yvkt3c+ncVjdUD9zJf3fSag/QeaqwxGY2Xn1u0NwelaX/uIbaq+bk83n\nLzCOPs2RY/bBnLixGEd/xgEC0atq/xbHll77gl4OpyP9/RqJq+Ob77SFRAsTy/XVz0aQwDU8AZG0\n9PDYe/RyefuWgjYHexrf9o2+nVV8y4uXZ/2mFNd8aM3lv2NJ9X0byoRpXLpLLKgMCIqv8P2UI9iZ\npto8Yf8bXNNzmoz5nDGcmIykO5VufXM9f7VMwoDj6gP2vz6/Hhwwxiim9q2u6ftjxta3pHXJH1X7\nQkOSiSQV5wSB+xP8DEH1doLAKByjw4jaMZ3qe19SewNjrKckxGIrGsN2l6PGGb1PsN20SRJ/OsVf\nc1zKcTiDPpReUiXdbz7Tnq3ncAOOiSb7+r45ZLxW2fP1pF9/iKB4TXMpGtRzTg80lwLhxTuinnNW\nGRI0a9VZH5dJ5GxwZI7EV3qd9yD2DrX78gWjofaAJWgQllagrBhq/A/96p87UH99d9mzHOh3Dv0z\n09GryahkKSgSjg7Yk59ojCI5tSlPF68sE4BLy+9d29IzhgTH4+vSYT0s/7Gal44n0ATU6/Kf04D+\n36jJJvy8S1V5D4+W5D+2fkjtcTii56fPTQKYyYme2ySI1GzwDronmxm31b5cmiODHAEkP2+7x3oP\nCDmy4XPoflCC6iILNcRUczFM8D/cks04M0AXJBF25+h+hbX/EY1N/tEV+27ypgZlnnjiCbt+/bp9\n9KMfNZ/PZz/5kz/5Zt7eE0888cQTTzzxxBNPPPHEE0888eSPjbypQRkzs4997GwwYTOzZUhXCwVF\n4EJ5RdacOWSsQLMjENcGzynS1AZJ841X9dnaByJYFKwqRRZuZQXkTUVRwemJIukFkDZZBV8tQdj1\n3h1QCsuKwOU2lDVqTPSclx8K5tnzc5QjoPY4ET0nsaoI2TI37hO1Dc4VjZ5DEkgC2RI93ae5o/72\n9pTmrK8qUlcEHZLfVITOn4Vca11ZtPZtjlFB1jeDMDPNcaYECKLD+67N50BZV4kYtyHfA9GytUQ2\naax77O0rihktKpL68lOCaR9uKBqZDIC08et+j12S7sMpZRf8BjEsUcP8AAJeiBvPKu0qaB+grk2y\nRROTTotkDCcGUVlUkfzT+3r+pK0McpkMYyesaOuyX78bEWGfkj2L55XJGASA3obVz3JMNlPvQrxV\n0f2WVznCALHmjPu6SUitBhqzg4oQIc6S7h9NSf9h2hvNC63Qaen63VNFd+/cFgpqt64MQwWocfMz\ngq1Hb8hG3v2EMt+thrKNRmbDgSgy7cpWojlltyIdtbdNNj9ugnXea+szB5JoyHGEw74y6VPG8ZVd\nZaKzoDrWkxDZ1XV9NCx7a/kUh56T7fR3NU69PMcQ1vT7eUg2v0wWbcacOYtEIZjNMK9GMY1pEaRJ\n4ILGvD+GGDeu76+lNRb3gBmWXiO7tKQ+xEHKdTLSZWGGzjog5lzNkURQc+SQLJALks0PgaR7rPtX\nTqSTLESGo6rG6hSY+synLEYS8unaSLo4mYGoIANYuCgbbDXkN+Dws1aF41I8N9UnQ3AbBE9BczdN\nhsBdVbvnxxxd80lvxw3ZYiwk20xB/DvrQFjrkAE9lU3FzmnsAy9ApA4Cpwmx7+gY/95VP9NXhfRJ\nBqTP+xXpJz7XXJ1ARj6P4OfARjdozzbIoR5ojLPK6Ej6qR6pPTs9HQMLHOj+RfxxdhXiXtPzs0vK\n4iUKsos8nwkQRHWTXhzaE4E80WYaGAdW2ynHahcohPxA17km+yxkXWufCtHQ3dFacLoj325XZas5\nEorNe7L5wgh0V1HZ6khDfnJ/rL72X9N8Prol29vb1bGltz0pxMxFstzRsNp0cEtjcC+g3wc3OU6z\nKT9TOK+xb+6qnWOY0HNpzV83y1EsdNNn7Wy31K6Zw1GutuZI8zXpPg7CIgAZtm9LtjHfla22apD8\ndTTHAofSz3pbqIMrj31Q3797y8zM/GQgXR/6O6PUn5efe/i7z5mZWYxjYfkHZLgdjtR8UHNv6/L7\nzcyseFM2dVLRnD0ALu88JDPdlh77Df1/qQyh+7bmVhrf0kvovrMXdZ/pKccMOmTpu9LzhXMaj/i7\nOEpYvvTtPhQqyxbYh1T3QOMZGcrPZkD1pm6qP34yqAviytAhmeGhfEcSxGhmDhn1gCOioCu2rmrO\nJ9LS00DmYbXTHfVj6rNuFMRLFfJpB5TnkfzE0ZfVxm6T+UeGsYUtRBdonKugBBLqu7ssG5pMQGOD\nHujjxzvA2ZMjoaiC7J8mFzWGkVWNQdRO7Y1IGLLpXk7zvpiXrW+uSQd7A/nxV17WGu26+n77/cDj\nC2rvwYHm2PFvg254Qe3b+G3tO3PsKyeQa2f7HO/c1+9DK5Cevqj7n/a1V0hClOlzONIygNMxBTKU\nIxihsJ67ntVcSW6oH4mh9ioBjvHffJ/055/Khipf1PHb07hs9dKqMtntrvo943hmqEsWv8Qe4ID1\nB4T4YA8yVUDYUT+QSzLmBY6mD0EZ+yDDTYOeGAUg4wZtnEjJj/o4jrvDnndz6XX0wrlU2gJh7VGL\nMdbhl6TX4ctcn9L6O7jGOlaRr+kevYHXpbDu6bJ219h7jHnnmVRk2xlQ+h38RgsE+jiA/5zq++zi\nuA9H+BI5ju1znDE+1zwGnG/zNogWSJCnHEtsoes5hSCSU+m8l4ECAZua1rS+zCAW70GKGh5hQxyz\nDMQ4MuLqeZO6dOQyVhOKr+Rd1gXe8foOSJm+7t+mWEliBuE8FA6+ntrvzLVW9tnvZwGvTnpq5wAy\n2RDHPMOm9oyHY/QGETAE8SOenzPdqOdnPz7R9wMIdDuQ0S4IlOMgT8Yg8utREIVD9WMAuuKsEhyp\nXTlOBBiosTWO7JXSrBN+9mo1+ZzWWHuvHEfgNwPs95mzXQjYw4zHuK3f7U4XhMoUBll+vb3J7SWb\nugPLp9Xn3/+tL5mZWWVPa/2h6zCyAAAgAElEQVQ7r8svhTdBov2AULT1PemmPdnRPRMaw/w1rc1z\nTpAcd7HB25xU2eNodl7XuwPtAV5+VvPz/kMdtX3k3epj7iPvQkWyqUMQ3g9/Q9ddTKvvtdtaK++3\n5F9TjPXyB0WpAR+w9Q8hzWaNq+zpeod9d+nylpmZ/cCynl/KU9TltmyzBj1K8lg33OBdzs2rfQVH\nc2P7/fInhcflJxOZ707j+6aWxPbEE0888cQTTzzxxBNPPPHEE0888eRs8qYjZd6IkDg1H1HgMeVA\nez5Fmk52RBBWJ5N944Mi/speUnZp2FbE7unPi6xovkyJ6paimBNCYsfPi4xu1uK8/nt1fv1ikvKd\nRKPbX1GmYR4mMvaksoglMhZHe8ogHN5VNi13nSizQ6m+lqKXV5YoC54mE0S2KlqitHZiUeZOz2nt\nKzJYobRjiqj2cK7oZhxS1Rf2lNmN70hfh3X9/dIHn9D3EOUFipxPh2ckWx5ZDwTMCSVOH96BSyCq\nTGoe4rCNktrUrCmKefGyflc6T7alqyhfAjTBuEqkOQW58B4lqDmj6gOx0corqtg9fGNn/MdxjdnB\nPvwZBiqIUp+zTUUnN7cgF53p76U5JVm7lAAnmz28J1t6GIZ/Z0BmeaixKawqFd2a6XkHVdlYirLF\n69cUWW5SRnjqUqqWM6dtyjXu/OsvmplZhLjnxBSJ34LfyO9Texbll0sQDRcu6rppQc9fvQZHzUPG\nfKLzkt/4HTgn4GLJxpXJCEQ0jml4UWJzymRWiYz3KE+ZUT+vFYkWr4jEbmmk8Z49FLnVaXPHzMwa\nIIMaZFaXaO8maDJzFuXs9N85GfHESPYx53z4IWQ2X3/m99XfhObW+SW4M3qUbIT76CzSb8MJwpn6\nPJwyIUe2GOZcdqer+d2mbyHmYR5EmXV0n2iOdNMxpUYXibYpZKZkd6JheIco/+qQ4eVIrJV9sg2j\nlHSH3ydAdXXIGBq/C4wpV8jZeycLQTj+oA71QY6ykD3u0yeT2sdW/auyuSEkdn7KE88qykjEyKRa\nS2OTOEeZywd6zlJHemmHyAKB+hqvQsRZUX/8KcrDRyD9g9vGD3eDDWlPBS6VJeaSklA2oPtxuICa\ncBBMIf0rxtXuXEt6XoKDYT7S+Az7TJ4zSuVV+echSMLlGRw/G6A9gpp74x7IoYja469RTvOY89yU\nW94PUUbeIL/NgowhMx7l8PV0CoqsKJ/oByUR7ku/Xexr3RnY/Or3mZlZ40C2evspIUQGrwiZ1oG3\nJnZOY3xkO3p2DMRMStmYS8zLdle6O+2JEPD0vhAcR5QNvvw+ISwuLSkbHgal9OCryhq9elt+/doj\nWtPyq1oTV9bUh4ND+cGj1+SvYtdBqUI4XswrW9YHWXfYFALjGALJwL7W1GlYzylvqf2xstbWpTV4\n1u5q3ai01N8Hr+jz4K7u46Y1d26ekx8bbun6Kei0s8p4R/eLUYL8QlDIwuwS3A4Q2DpwyQSLlISF\nH8jXZu46QqJkS3DqgKKYzTQnZ6tASpKywQQn22NDSn3jD6fwqERZNnNw3lhA1518TeSHL+x+1czM\nPvR9P29Pf+nX7XyHssyUpk3A5eU8rqxdpCQ/HwaxeEjWz0rS17xF+eS42peLqb0d+DjaHfQ71N4G\nqh8bQO5aItPdm8fMKDebWpDzd3RNN6hnbl8FaexX3/w3NZZHfq0Vk7HuNW1Q/rsrG45CQBGA+PH4\ngfZlu18VQqUYlS2F1jUmRVCuoxP5qypo0FwcZNsZZUY2fTO1ZWZm5XXZuENZ98HX0eG31P6lVdlC\nYkU6bw31/E24aI4eosu7+n7N1dqaXJbuH5D1TjQ1pnPIR4tVPd+Nsm9+UXooOlw30acPpF6sLBvs\nHEr/rbRsNl2gzHkIUm04HiZwed0EUTPqyhb/4GtfMjOz3AWh7rbXhda6v6f+BkAnT0B696vyu0V4\nsqpw8qTgo5rABZHBtqJB9sdNjUuHvUcyBtLqErxalBAfUXs7mQY1MZD+nY7aM1t6HS0XyyWsEdNe\nKT+TDz0E+T7zyTeN4Ex7hLLDL/Wln+mkYWeVcEj+IlzYUlsgZo369Uw/fJHRMfyXKbUxCWef22Xf\nGFYfqywSS1xfD7Dn6OnvERDLOchTOxRKSIGIHsATEu9oos4o8OFjXzaPwElD2fXRQLYxMul+MNLn\nuKXrZ6AfBn3dtwBX2LQg23T7Wh+S7IG6HV1PVXrzQ6uRoTS2O9D1fhDxsZSu7wVkIw5/L9Q0JxY8\nUhNI9hNd+RYfiJgxBOtTePGCLUp2F2UbURBGC/RqPgUaD66YiQOCHCR5pyeEkLOu+weL+IAWc3oN\nXiKQ+GcVP2T/WTgWl1n/mm2d6uiMZXNh9nChuXzm4hSIPwk/YV/tuvOyFBzEb7vwoLSPNX69muZE\nH+L8GQTUZmYBX9iKuY7VcOYb8NKE4EcL3NsxM7MHJ/A+3tT82Lihgg39CtymvFPkLmutAVhtt3ak\nI78xtrz3T9hnJ9docxikNGTyOz21eQWbXKLs9yanCjJw+KU5MbJFEYDOntaBCiTTBdMYDzOylVZP\nug2kZRvRivxV41Q6bN5Xfwbw+ISIF5SuSaeroGibi4I/Wd5J4SuKluGCXQeh/7h+N70DzOuPEA8p\n44knnnjiiSeeeOKJJ5544oknnnjyFshbipQpRBSxjsQoFzcjxQxfyBEZyD7ZqeOBUB39u4o47TyE\nLySp/6/5FJkaUMEgCpN2bo3zgmkqVjxUxG6/RPaoRZTYT1SXSjv1Z3VmLbSsqLLLucN4ibJzMz3/\nmUNF1FqvEZm/pshcjLOuETLrDhwC6RKZAMo4B/pkKEz6GBDtTeUUKZxzXjHc1v0zNxQpnN0CCRBU\nZPK0oWxld041Kc7WtpJRy1AtIgJXhw+ukBVK4TlkzkKwxDsB7k22O1dUBLc1VpR0ElTbO21FU/v3\nNUb3KWO2nSRjtqJzh1nKpA0HizE+m6Ry0kkMnqDOIsLLWVWDP6RFNjsVWPBs6Psc58hDUSFDfOMd\n9Q+ugWMqG7T7ykiPQS2kV8hQvqbsSZ9s0x7nHG9Tiu4xql4ULgt9FaAgzBpjOM+RZapxHjqs/rsO\nrPlkLDr7iownmlRSoFLYiH7F8sq8rGQUfX4fmZdWUrY4BS0ShgMoQiUzf4WMNFm5FgzhaTK71RRl\nnMlarsJ3Ml1TBt33mtrrh/ckWoHTZ6L+habKcNtY+s7AL5KKK4I/alPSEBTFRkS2n3lVtj3dUaZ8\n0NacdCiR3fSdnS9kTvUeP+XQW5zfLhRhi/dRJaNH9QlsNmzSVdbHeeMBWZZFlTbKx/vH0vUI5EnI\nlQ6iVG8bxmRLq3Ab+Kl6NHB0nS9I+Ua4X/zw7BxTGWxI1ibNOfDAXP5k2IU7YEu/z4AMGVIeedii\nohrVhMaUi3RdZQDicDQkKDeeTOm5lboyHMMETP8uFQn6GktnEuI+8GFQNtMdw/8Tk98L4Tv2TkHI\nlNAv1TGmnG+eLZMN5Nx5IC899+dkaUJc39XcjpwyZ0HSDMuw2gcogzxZ8IXI1s4qVzjTO4jgC+D6\ncaL6DAx21A4QjmOykxP4Ntyq+lOFA2caUfasB1pugaxyKAdqZCXDadlPEJ6OTkxzM2L6vh/Q/UeN\nA4ucyscXzin7Xn63xubFF+UfACZYmkxqoq+xrVMCKhpXH1a35ScSl0HzxPT/+Zd0/15TbT94Rja4\n/UEhZUoFZZMCl9WXyo7mzt6+bDKahYeDsuklP1l3Sm3bnmzsaCZEnoGoMc7kRzJUIICTrE5VvsAu\nnDavyl+sbmEzlDvObJHJ7IGCA63UZY27uyckzhZ8TAl4Pg7eYPWl/E3Z9NY7VBEn1tTYRE/xY8ea\nWycpOF921f7xXOPkS8tHFJbJvh2rPR2qreR97DWY8+2M2uf04GgANRBap4IXHGVdfj+eazyOX9vR\n7w/hjom+nvEMd5vWOgfqJKr1ul+TL+xRNXDW0jp2MlkgeKjEE1M/8v8Bc7Cnz9YhVUL6cM0xOR32\nWN227CmRhxcERNVqMGgJuLn6oCAdqgalx1pr/I/A9UIFwtOK/FCzqzZagapK7Ou6PioZLiq1HMvP\nhoJ6zo0PagxWQeAlQSMFmGfNDT33QhqU1RtYa8zMevDrpMjo9obS7RHV6+LH8meDrNa486AWGpQT\nDlIfPucqM+vA/1OjYkzoEfaHcf1uaQ9OsDSVYrCVMHPI3aNML74hkVD7BtSFz2flx6otzekMz3dY\nTxJUbJyxZ4vDSdYC2eKCHGl8RXskl8o77qH0mqGayXJRtnwAAjEGl4Ml9Pvgif6/Bo/hEVXpUrTL\nN2ecQPC0qPgZSrKfnmkvmG3JprNj2VgZ/pY+SJYkFXcmIE8Tf2h4w2uuGeiEcBdOCDglfAtI7EDf\n++FRWb8A4rH03bkg/rAkMlSdBHnSD2gMfRM4m2IgrCfqc4cKjEE4GidRuJwuaB92DhR9ayj/XT5V\nW5yIxrABl18Vbpnxkeb5QV1/n1A1b0LWH5onS24tkBrwpqU0x+pUwPKPqIjTWbxryFbmvGMEg3Dh\nQCYV64GY6WhsdoK6LuLTdXMIhBzauXjny2NDgxjVRnugSdnvd0DNOjPZTgCfsnidmCzKNlENapaH\nF+5Uz6myJ1rwlPb9cHTNNHcnU415A7632QKVzOkDd1GJl2pa2ToVNnknrA71bhosv7E9ycme3pcO\ncGZpxrU3ogpUcoEYlz4e7muObcHpE6XalZOWnus16bl/BCo7jw/M6u8nnCRotfX/7unraOP6UcWc\n4NRyoLnS8FVe39SYTw+1xg9acL7clpK2L2qsc3AP9ltwsD6jvf0MvpsA+/TZpvx5CeTKnbo4a2JU\n7Lr6pJB3RdsyM7MGyHf3UM/tVbQG9cNUM8ZG6sf6fxKOyRjVmO996+u6fhNuLiqLNVk3SmWdAhlk\nQeRNNRf6DfnVcEDv1UFQ/7O89BK8qv4mm5y0YY/D64eV4MU74p0sH5JeK85358v0kDKeeOKJJ554\n4oknnnjiiSeeeOKJJ2+BvKVImcFEUb/eLtU1OC69AirgymVF1GZkIDo1Rbge9hWx2r39on4QI4O9\nyOZ3F+e1FaG6VlC0eZpTNPn2Pf1usgtTOBGsCaiGUEL367UU6Xu5qs+r74A/I6XIYLykqGOezGst\npgjeZk5ZxBEZgbmrKOwRmaKDnu63Bv9HFNTBIEQN+YH62TqFg8EHL0dA7T//hLh1FmiVbhh2eyod\nHdWVkY2SyRk0ZjbLKmO3FScrAk/O3gnnjbsgOVaVKSunlHbZP1H0cAq3yAIxci6oMfJnqfrBGftB\nhEhyMktfNMYTv9ruG7+xOOAi2eIHVZUk2x6Gb2PBo9GqPEQHun4eVXt8D/Xc4KrGNIvOIvBB5Kga\n1KUSRKzP+e016SdfUBT06C7njV/Vp9uWrsdkGJtNRZFnU923NYNbgOxQSM21MWztoWX1Y4tIuxNT\ndLcGL4qPc+chosDTU0WJu01QCvBixBmP+3fhdOlQvWgFVBVR5hi26IdDZzDkfOdsx8zMvvEVzmtG\n1d4g6I8hFXIc9BYNkTUaSA+1BllJspGzip5bNSL8oLim2KYDT9LlbY1nlQyQM4Sjhyi3Y3reWSQB\n3497pGxFOq9MaAT0QDdEha0IGT4yceOpdNEPqE3TkPzF6nRxXpqKZWRGwwGyKIzhkPPHLueWpymX\n+2qMtspCO5zsUs0CviaX9sQ5Xz3q6H7BMvxLR7KBFJw3o7nm0sTPmd0I1dgKoLwqZDzJ0g9g3B+m\n5QfrKaqWgMxLZGSjJw2QHMyVkKPnDecgAfFXBT9+y6/fzUFnzPJw6FC9KIWeYj78eUA2HOwqsxDI\nwKfEpM5TccZN6vo+qCof2XuXSjejGmd0c9JD6ISMqHv2zKWZWSiqzIYfXqZmQ3O2dU8Z4DDn0OdU\nqQovEI7MwXlhyu/xt4sKF1HO5YOy8+OPhx3Grb+jz5yeHzT101mRPcSjQe4btZ3basvhvubn9UuP\nm5nZlU197g/h0+hpPsfKeka2o4zbF78obpH9V8QJ89i7pfuNyzr3bVSjuPctkBItOabIs5o7y9fF\nBTPclE2tUJ1ul6polSPZcoI+L5ERDvlkEy3WMttVpjafhC/kutbIugua9AB+nUXVoYK+t2M4uR4q\nexaeaM5e2gKBd0n97oFmywaoCHNP19dOxRe1vqFs22oW5MYZZQCqyYVnrgbHzuweiMmsJm2uKh/S\n4LoT1uwYJeAia+pHnNJoPjLLJ1TaCnTV3+CR/l8bygcNqPyQMK3X5TLVPuBVmXTJ8K5pLsZWpZeQ\nL/vtPiQeT9rWJfV7b1ftnGVBEwxkJ10QsfEpaMFN+cxAhOqBMfw1XDjJHOOyDz/VRHbjX/BhxZgj\nXfXTnSvLOAkXrEUGMQBXVjeiZ3dnakuf/cq8r76NFgUaN1iLJvixqq4fTqhCB/JkCOI55VcbLm+I\nV2hyAnK4yXwDaZILS/eHsxjPfWPb4CL7Rf+aeJaiDdbWfdlg5a6eGwWpM1mDHymr9YgCNjYCVXAK\narVl8Mi11M6Vm+xD4csIj/ArPviABugLYrouvHIOVZFCcMMw5S3pgwMtof63qrJtB86DMFyKg6R+\nt7KuOdt4qDl/Z7pjZmZlKkhWavIZmwP5tXCOOXmg/gRG8JpQEWeyTKYcLsiMn2qG8CNlg1ovxqCj\nw2Tm/fB7JNkrTHPs4fg/FBU2Sel9oUkm3ZnLdv3F1zkcuvGCxcIL5JC+i7AnCUf1nL3A8b+nLwup\nnYX42fckwxn7ySAVCX1U9YRLMFWT7mtBtWUzL933HNliJ8K7T09j3KmB5olqbKFXsqgL6smnORLF\nH69lZZuhKNWdOlSK7WoOVUGIxyeMTU5jlgPhNr/Nmnte7fQdypZnUfwCY5JnP+gk4YRpUwGLaknT\nuMZoju1GQXfN2VuN2EtNJyAR4efwUZWoT1XTAKclpq3FvhROr4z0lna0JxjnZTtxOB6H52SD8ROh\nZP1wKqbK7KH6us8QLi9/WrbCK6ZdjC7WG/ZoUekxFtZcHYMoch5yKuLsVIhmZra02O9ySiPC+JYg\n3dle12eGqlPVHfkYf5b3gilIxR76CFAFa8Yc3wHRVNC4TiIgaqksefTg9cpzh7cPLXvxgvWn8u2n\nvEssg95ae9uWmZnNGhrbNryjLfaJq5yKWD+vtbfP/vrFF8U9tc/eIAWS2M97crEkP9dlb+ADoZwq\nEQe4rvvZSN+fnMrvRBpwaBV1v5eeh4P1svxLIqr7prbV7jjVO1sMbnNH+/R8XO3I5EGgg5xcYi2s\ng5QHiGltKuPG1uBdu6S56u+D+ITf78iv9/4SSPY0e6RuVe3/o8RDynjiiSeeeOKJJ5544oknnnji\niSeevAXy1lZf6in0dHDMeWTOuHYSyjBnQB00Gmrm0bEicpef1N/Pv3PLzMwcqpo4RJUNDpYWNd3b\nROTSLlFdKvLUppyhhf8jSkWfEBndVFCRsGJYSJvwZc47Pq8I2IjzmuvvfZ+Zmc2JqB0owGhzSiaU\nqaRQ4Jz74BYZnGMqUdT1/DDs0etkPI4hEHjpeWWdMmlF5E7vEgWFN+UI1vtzVzbQm6LGozXdJ+pz\nLEyUr0a2v38KioBqTMctzox3v2JmZi5s7NmhdHJ4rAhthsoiIapjGNnzMOeOs9uKzGaDevZsAhdM\ngLOOIen0rBIEoTGCG+C5W6oaNaSi1WpZ0cdEWZmIpTVlhpdWiciDrKkeSNf1nmyi5dP9BkPOmZMV\nf/HLz5mZWeqyOApCHfUnE1IUdHVTtlC+qGycLwsvUoEztUPYzheHUk/hTEhorE4ONPZ9ECURuGuy\nq7KREGgNH9Wi5qAOXO43JgOTWKI9sMZXOPfoP1U73AVCqCCbTIMUKlyDy4HKOqNDEDnHykoFZpoj\nSc6l34N7ItIl48FZ5/gy2bG5/l6nKlef/+cdReJ9cPw0e8rwu0TL/X44fxZM6/CLcLzbwr1FuvR7\nSxPei1MyspeJuI8jakOYzN88BkN+C5uU6m12QBYoJV2PGbpoRH2qwd1SpApQz89kyoGe6iuynk3r\neXsgPtww/BtUx3DnytbURgvOKF1f71H9gbPx0YCyIO2JdLMMS/0eWfUrEdnsBITOzkDzfT2v7Hr7\nnmwhj79YnB/vx4ncU+GhSlW3ANWBpnDlBKguEqTyw6ClfvjgpYqToeyBGAkH9QA3AVcNoIc42buB\nq/bnqa7XtAUngtoTghfJt0MWjgIGfSofOHAgJNN67qin8Rxnz565NDN7+SX5ju4DKpBRQWKJTPuU\n6k++gfQaIfPqjuAoyshg8sv6nPqpkNOWf+6x3kypgBEJ6r7QeFmH7KADZ9qESm1zKiksv/0Jy10R\nUuX2l8Qh82pFFQSSI+lsPMa2J3APgMQ493aN/bsSsr29LwtV9fwLylK9faaxycU11vVlfQbgp2hR\nvSgdArnWkw6iIfm3VfxXGxSYA4/biPPnMWz5pK/539qTjk8TmvdbVP85nEpH41WQljwvjN904/JH\n0wca2zGVYhbVQzJhXRdMqh3Nse6byGksWieyoWKSyhGgz84qo6psdFQHEdjEX1PlYwV0q7+svweq\ncBwEWAdYw3snWpd8rAvpORxAVDOp9dSuFNnEMCjYWUP+fF5QPyogglIhKipSbTBQkx4yZJIXFcPM\nzBqWtDL8UZlH5XMKQX06EbXj5Yb+3gcJ1WiQMe/i/AYat0BG1z++KiTNUkrryOEcHqWIxsFXB71A\n1cNFBc1YwGwwJgvtYCs12eidB7LNRcWVMVV+8ugi7UoXTdaQiCs/P+xRDW7BBQZC2r8e5/9wm7Tg\ns6hoTLv76uueX2MwAdGWxHbOKomSxtqF0+8YPonZHbhP2iAQQazM8e/hfJ7+qH1jUBTjmXQfO9L/\n6/AKrZyTjRTYc3TvgARNyBYGOV1fO2AO5EF2gqpw4HBwchqTIZw1M7hYokyNPuOToJpRMUyVkbB+\n/6Cq9aX/QL5n/XHtfSyo/58OZAPhA/W3QLXD+IpstXm0QGnhb0EHHEc1txZULaEAVauaIFvhxIlk\n8JvMITem9idY36rwURV4nakmqY4I8jwUe33PWQy61gJ1kaKS0C5okisFzZH6Q+2FeinNqQmIo9Yo\nb2eVV1/8gpmZnb6gMdt4x7vVFxDIlZnGzo8NnB7J5l95SvvvHMi1YnrBwYWtZ7bMzCxAhReDH6MP\nF0yOilKDGpUMy3A/8Rw7p/uW++wXm9JFb6C5l8xqLapSfbRFldF+Y7G2ScdXr+odrFYR8iYDSje4\nCtLwEORMApRcWjZVH0sfUTgt/SM9v0QFsE5XtlPnfWGLqkNjuCGdDfgy6WcHlFvo2zxzur4z0/pW\ngMNmBqI8HNU6GRrpd4GoPs9fkF56rHchv55fxRaTDfnDBUJn3FB/fOyRQiDnp6DXzip++ElzQ5Cg\n6KUFavCVW1r/11b0XpOCN3UKN1AH/tMZp0jiVLgMDtXuSo09FQggm8lHxl14+oKvVybzj83GvbnF\nU1pbxhD2PP1NnSx5T1i2tL6pebLKK2Czpvlyd0fo3GlX72K5q9JlBuTIztN6p3o40H6pFtdaupTS\n3/NLsoFxVzY3HGovMefdZcB+qr6v79MgdKJUAQ0nNJ/dE415M8G+Gs6/WVx9Z5kxNwLatStUbzkl\nmw6m4RBkrDNt/AkVZeeUk6oRv0hx+iC6rHbGTWO4llH/rrz3ST3Q1I7eU7ftu4mHlPHEE0888cQT\nTzzxxBNPPPHEE088eQvkLUXKpIrU8X5MEegYNdcHpgjXnAxlvaMo7/DoNTMzu/M0Z8bWlTHYLipy\nfnyqaOGIc9QdorwJMuKHXaKeAUXO20QPfWFlFvrURZ/NFIkbklEuluAXWVZosOcoYljZVeTv+a8p\n43PUVOZgmUzJ6mOKAEZgcS9vUonBL96AOy8qGp0je7a2rUo+WRi8O3cVeVzblB5Wi9Rtb1IlpUMl\njbucxYXj4eJFVY4YrygkeHxy3+YtRVRHPWU13KDauHlFXAUxEBDVQ50fdvsag7XLus4XOMendNLh\nQO7Ar7FZHyvKWD8UesBHFiVOxSsXHgo39cZ4IE53qU7UUoR9OtD/14ms5zgbmkhpTCb8fZeiQDkq\nDyQLnKfGBvbhkKm1NBb3X1Jm96XnNKY3W7Khi+9SVRKXs6Tc3gawvTtErH2+xblqzlFz1tf1g7pa\nphJAcZFJhbW+RvWOAzU4sqZMwTykfp20qfQDp8DSNRmzn+zWhPPYy7EtMzOrdpVN9M0UzT05VDsb\ns2d0vU8R93JRGfnABT2nBcpjfKR2BaLSWxbUQM/RZ4gsv8t58Ck8HdEY7cOOJnky+8zdXFC2HeAw\ndCeg9vXSmsOJnPSbBpnkBr47Q/kflhBn4Ysj6bJOpDoFAs4JU+mErP6c7DQJMvPBj9FoSlfBnMYu\nQnYqBXJkUSXHBxdWOCjd9XtE9OeymTBjk+e88t20bLXVlc31qfKQLimS3r+lOTNxdF0PboRImCod\nY9BcIHQCIflNh0zgzGQzvlPZWrSpdgeZE8MAfrGnds+XNFcncGDNT3Xf2AqRfFdj02mpHSs5qiiB\nAkjCxdCsye/kZlR/op0DeDb6+Bj/RNe5AdmYE5VvGDrSQxeOmVROc3NOtapxVe3LrMnmQ0095yRM\ntbr6G/MlubRssnRemd58GaRNSHoJkjmfGrapJKA5BaqHgKzsV0BUZoEEUQUqW9Z1U3zOpC1nMfFx\nPdWZ+iCUrKH7jRvyueFW20obN9Xnq1tmZtY5kk3PqXYz6HNm/EBZ3MproAemuueNJ1UFrg0vxUu/\n95SZmb0aV3bm0jnNs9BFrbVp/Hino7Vo3tXYlbLScZVpGBjq78aZ/uiRMnkD/Hnmss6TPwIHwb3n\ndN/7Ta1hnbjmXK0lpQbysuECVaKOm0IGperq5zgD4cOx+vXKS/LTbydjmn5cv6t9UWvv8nll70Kn\nVBzcUfZra01+56wST9Dq8g4AACAASURBVCrL14vIFnoOXDFT2UggrfaN0lQAKqr/8WNQGim1I92T\nP08GZBsbazoXP4zAD3dHc74Nv1MgqM8C68cQnhEHP1mHj6VPRS+b6Pfjrsap53+9+lKjNbOHd+AY\nY+7vO6A5Wvr9iApwjk++cxUb71Cppjfjfs9qnI+qGv8BPFfLlLQ5DWtv0+5rnMfwPK2G5COO3IT1\njvTbkMFv8UBjs8fZ+g3QAEEqjXSp1Hd8X9npcUs6S4PeqpFFtk35hf0HVCqhesbgurj/glS3G09Z\nK+E361FVw8+cmfrfGHq3fkyFFxAk7qKCVQbbHWnMo3BTuQPpasSeyg8KuXYgG49lWDNHat+tb0hf\n5Qua21d+UP5qtAaXFQidCei5JFU+53DthPA7cYO3iSpEcfxsL0cltDE8ffjhENUHl0uykVx+S/3d\nU/WSwqr8d/5xzanjHfFSvfR7+kyDmJxtaR27AQ9W/lFdPzuWjTRONJ5xOH5spPaF4blwI9Krn/H2\nw/U47Oj+l3JURwFpEzzSOA8Y7zzrzNxl3aFqk5mZE5ybbwy6BB6PLDwvCRCZadDPp6Col0bS47D0\nOjfN95I5fnJSpyrOCUhzsuc5UPmziK5bYd90q6C1fFHlp7xOJT/4idLsy/w9/a7rU5szVNkchfB/\nLThQXgUlkNB87Ae/aWZmPtCrhTl7iYx+f7ij53WC2tO4FY3N3u9/zczMbh9pbFpPah+5fyBbu7au\nvVA0K//pwlPXY0wSgWfNzCwwYN8YY42HhKWTZi5RpfRkLv92CqfXiKpECZCeBXj2Ro5sYAjPU7C9\nqCAm2zlgDxVm7+Oj0llvlepyPjjTWN6m7F2GHem5xJ5rxGYx4FP7/EHdfw5/aSkpm+mD8DmrTKl+\ndHAiXziZal1bhwvnlGMXiS3txQrv1Trbuq/3lOY9EI0R+P6wk45pf9Ceam/hP9DfE7wTnsz13NzS\nyrfbEi4Xrdk4tSz75KtlvSNk3w8CbQIKlgqRJarDnb+gvUQmqXm3v/OSrvsW+0t0nAbJvcIaXu3I\nD48WvEQgV1KUL6r0eEc61RrfoSpomOp81bo+fXW4WbGBGdXuXPjXmg2198Gh9hDrF7VGX1rVOlGr\nww+UhkMngR/Pa85M99QuN6LvS/AlDcK6v7+F30uC3AGtlMhT7Xmu5+7dg8/p37KxfJd9R/GQMp54\n4oknnnjiiSeeeOKJJ5544oknb4G8pUiZ9r4iWLWZIlFdsjEvHCnyXt5UBGz9mjIps2VFVQs5zrvD\nc+GSfS9lFdk65kxpIQw6Iavo88wlS5fmrG5IGYgZZ5qXU2SLyKi0xoquNg8Ulbz9+0+bmdlpT1HT\nMeev3wbHTbmoiGH7AATLWBHAdlMRw3hH0ctIjfaWlVEI1RQbqz9Q/199KNQGxOK29ITQGvOB7vvw\nC2rHheuP6bob0tN0qv4fnHL+82BH/RgMrZvk/PTiTGRVbYnDOL/gLqnt6/sO1SJ8fE/S2y6VlaV4\nYax7hx5IB5UVRWQdzoAOB/rBYKhIdbOrqhhOQTXhzyoxuAei5xV13B5T+WVEhZepMgONjv4fjVHt\ngrOku8ca8w6ZgawjpQY05Ob3K7J/4/u2zMzs4jmyOthSnMzmeBKk/Txnrr+P+lRT4oz+fMjZfCr/\nRIiouwNFWaMmW3ZLilDHIhqr6ogxa6hhPZ9swdcDPRCmAgMZkj5ZxyZZ97VN3Te8sk3/yTSHdJ8G\n/BWVVxTFHpeVmVg5p/EMz9XPHvwkk1f03AmIGD+8KXvwiBTJciUvLM6fql33sNH5Dlkszl/OcxrH\npbEyM6OB9NRp8wmaIEZWLELW8SwyL+jZ6aEi3w34h8ZxZVliZOISC46SlD67VV2XJOJfC2HzjEUb\nchM/WSw/nDU1uF7yoJF8CfWpgw3EgxqrHjbm61EVg0oqUzha3A2qaJgi/vMq2TXQEHk4o6pFPX8W\n1VjNW0JPMDSWh4m/3aSSAFwuyRSIHwAhM6oFdebKbpWoTNM7kL+JuPD9qPnWpcJMm6p180ONbWhL\ntju6r8xJsij/45psaDaWnuJU/BpybnwOb1Uppbnz6n3QWEmyTiNl3xKw3p+SWS6Q6W5yXfIQDrDo\nG1u+NvDPvjhVsEZwwYw4jw5MoAt/UxhOA5czzK2R9Fo5UcbXT+I0D3+Vs6zxDJEFdEAJUqjGnBUq\nZZyizwHIprbs8P5u3VxXz3LI8BUSVEQBHRSOqm0DzjF34SOrPCskXJaqOxfOy1aefpos047GuAlq\nc+H3LSXbOT6Vjhv7ytgViqrWlGUOteGxcA/Vvglzp0nGLUS2aYYfSlzQnDh6WhwJGxP51fkC4feq\n/HLyurJWblnX15rS8RL97qWolABiaHdP69OjoEr98FO48ItkrmkM9j+vjHA8vGVvRE46ev4QZGlk\nRpWSvDKUDnksQBBWBCm0Q0XFAFXkfH44d0D7nsAPZ/tkmplredaH/gAOtjBZN9ATw2PdP+WXb2nU\n8TkjjUcuzZwevM4NEHXT5odzogpKIF3V3O3WQMpE4BTYBpVLBpjl0aJUrnEuU1WJPU9igaKDm2BR\neW6ZjGsM/o1qBwU9bJq/K5vxgaTzkUVfX5K/Pn9V+7ATqnmksyAkurJFf5zKjQ9BdDRBfgS0dsdW\nZBPVunS7RPW5zLrmTNAHOoxFP1YCPQVHzXRpZG9ERqxx2QA2mwT5sQv3wJImvC8Pf4OD/1vwW7De\nuGNlZqO9BRpZNrOyof7tfEtr9fX3qL0rJr84zOvvoQp7H6rUBbGd8NK/vy+eTal2RCZ6jv9Ls7cZ\nwa0VoOJLG3THlz7/G2Zm9r999n81M7Ptd8o/v6sgvQ5vqR0P6+pnDN6lTlN6fvl3tE/d/IDGaVHZ\nKxfR8/qgqoJQ+jThhIw2WBeoENoZSd9T+lP+T1R99B6V5lpx2Xq5rH61JiDhQbiGk2qnmZkzWrXw\noZBaKSrdjOCK6IOMiZS0B1kaYh/4ylB0yc4q7/7+j+jZ73y/mZnN85pHiwqDC4S5VaguBCfLhz/M\ns1jaavANZU/1+0YUDio4aRzQTS5rk8ENE2S/FWZeW1ZjnayneCzPBSXsS8gPzOAES/aoCgRqOLUE\nqmqmNTMFD9pVyp2O4WUb9eHx4T0gC3dgc1Flaa5+jH0ak76fPYGx5qZky9k2YxhR//1UcX14KGTI\nXdBfm2nZXgaeOv+S+j3k3TCTlr4PxlqfHKo8uW3eQ6aawyE41WYo/mqZfTf8ooE2lc+GVBDTz6wU\nXezNNKdbNdCzZ5RFRbijF/S7xBWq4/r1ueC9i5bVnwDVutpj0GMztWtppvGYwVs3T1KpDFSvm6aq\nFZXaHPx2kuqIZmapcNsmAZ/NOE1RAaS1fUlt6XXoNKj5IO+GSxtaG4tMj3ZPup3j9ztwW82oLudP\n6e+5JPxpIK0X0Yg+yPZkAb5JuPviQ6rU4T+DY/nZUV19W6A+/fBoBouQ3nDqofOc5nMzLR1ub8jm\nT/ryB6MJJ2B8nD4oaQ8VYh/dAlE+43RChlMjU6q5zVxOoeyDAOed7/7TO2Zmdudp7Xkm9e/OTeUh\nZTzxxBNPPPHEE0888cQTTzzxxBNP3gJ5S5Ey0zzM19fETpzLKsJ1+7fE9lw7UmRrAG9HIa9o8CSj\nCNjhs8oCRqhWlM0qVBfhvPpmDA6FgKKBO/eV4azMFLEqwMjtLyhi1u8qiptdohZ9XJ/3x4oyn99U\npqBIlaj7ZI6XN/Xc6eJc90jtHiWFoAlRsaL/kNR5O0p/4bioca6wrihwH8RQ9qYidaOu/p+EJyBD\nlaVzF6W3wUD6uf0t6S0ACiH1hM4EhqMTCy/S9jtUaeBcXBV2+GBZ2Y8xVXCIMVoooCjkAQz3xTiV\nSWAvT1LF46imrM+1azpHPCN6ePu2zoYm4eFJlEjDn1H8PbL3SUXAJ0NFhivwgozuaoxToB98jH2c\nqkudFY1pqqn2GL+fpeD1gI/jtAUbPFwBvQporGXdJ5Qic4jtheFemLRBmPTIQoHS8jkLlAJneWu6\nbxOumQSJ6jaZhEgQ3hNX7Zug3xGIoMniLDHtjROtzcf12R7pswhzeBBOiGlN2a9iSs9vnOiTI8vm\nI+OQgPckRVWVMeclu6C7prDSh/dU1aVHpZ4ILPjpKHwaJn2H/Op3AB4Sjo1aLyd9+h2NU34PzhpT\nJr92S7bri7+e3fqewti1HDKWMNgvGPEXfPiBpUXWF3RYCBQP1ZWiIbJHVKqZnopVfrapvifgfKm2\nheSbEeEvZjV2D0FrOWmNcYWzuaESXAltUGpUUnGpeBLkXHh7JL/kozpIAI6oYZ0s1wXQZ5xLn74q\n/5PPiVvhQZVKXyBtBlSlC3LO2ZeCw4Qxiri0g2zQFM6U0FzPDWBb8xZZPc7B51yN7X6MjAnnxgM9\n5tB0UU6DjDGZ2aEPTpwgFWUcxhpOA6P6UchkG7Go2rUDSuttfdlyF0ROZ/w6OuAs8uC3/8DMzPpH\n0nObKnzZNd1vuKJxLi0rMxPGR0YLmvO5lPp58SYVLjoap55Jv23Oy8/6i2pfnKdPJumPxm+YgsNo\nT+uEDWUf1hvayQPdK7aJ/4nqbz6QbEX4hupkFJcm0s2Lt+FeeVlZn7c/IqRLNCBd13H7vWeF+rz8\ndq1NgbBs8vKK5v0x2Z45aKriBT0/Ysp2f5NKZ0P8lrunPtcTWqO2bwj5EqWaRfhrss0aVSDOZeT/\nn3lNfuSgpfs/8bi4cMKLqh/PyLZjKc7I44eqi0o6Q5Al2PDUpPMb17X+VF5U1Ypp841Vw4i0qGw4\novJCRBw/3faCl0R6SYJ+mK6p/Qn4OaZw4LghkEygbQdk6SYgWwpwbkUC7DXIaA8Yr+wCmUQFi9kJ\npAegL7r3QXDGeL77ej9XNxIWAnmYG1ChMQGqpKD2b+Y1LuGk2uEskJ8N3Tfgl97n+IJmXL6wA4qi\newpCFFTiPAfSpivfGQcV4qwnLV26rnuabCt9ojUsBj/NMWf/OyDW/CH93RnDNejHDy6prcXIoqqO\n/l/Oyl+E4Z7yzzRvd1+TzWSgLplikyl4fnzL8ES03xgPRDEAByGVa/y3yU7jX6MgMFKswTuHsvVN\nhz1MG06pyIIHSDYRZl/pYPNuUfc7ptLk6ICqIwX1b/uGEDTOkeb8kIz0fL7gu6OfJRCgU9BkIEbd\nHEj0JenNjWrM7n1T/nH/afGgrDm6z7Wy5sKwQ7VUUFXnN9WP7jK8JxM4xUCDHL+s9p/PCQ0SoKph\noiYb7YSkx1V4OeYge6ZUl5rtybY2f1C8TBeKGsdnXgaBNQUZ/94nzMwsdo5MOxU1Tw9er0zmC/fM\nyLwH2FtN4WirUf0pCiImAIplDh9hNt6ys8pRQ2PuNEAtdaWscIKs/pjqc3EqZnV3zMxsQGXGbpw9\nygSuR6o2QUlo4yx7nBlcMgOqs7HvWlSW4pXG4qBoG2X6fkBJxsWcm2iuBWYLLi3etcIay+JF3nEK\n0tXKlsayviJ/vw1f26yhsQwM4IqJso5QhTXq6H4V0E2bIE2cCBUgT0Be9tWOUhb9revvSzH207zj\nBECrDkCoBEBa+0GEdPGDoxjIer9s23kgDrNwRu90BZA104H09lxQ198/pgoUvKPTBdciPubBFO4v\nKvHMlt/Y+02JimxPvlv3W74sfc7xMfU+VaB2NSdGfdnyjD2iE4JTrL94/5DdRKg0FIPnbgGrboM2\nGfZBbkVex2WE4inLhcPm5724W9HY3XlN87AI12kiCDcgxydeeVqIuHBBY2MNzcsx72wFTk2MS/pd\nNKb/t+a8G0zh3Fvw3HBKoc2+skYF2zAVY2cLhB0I6qM6/oYKr1fhQEyvas1bLqnP1Y3FOxHvkCZb\n8MP5FYI/KBnk1APcrdNl3Sce4Z0XtOgkAIdVSP6oHQRxDrfknHejSEhr/BactT33u1eE9JAynnji\niSeeeOKJJ5544oknnnjiiSdvgbylSJkYVS5qdxThap2jukdIGenNRzjvNtP3nZGihJNXhb547puK\n0F1+2zt1PRnjdlPXNWBND0QV6ctviP050VaUsAVSJTZVBG1G1PXVvtiSfZwD75cUmbt0TnTJ+YCi\nsrf2f8fMzJ7/is7N92G3H9cUZf3B9yqyX51QfSWkiF4emESa6k5BzkX6H1AhiejlcgyW+YracReG\n9TDn3J8ff1ntTFJlYEz0lKh1mwpIqWzKUmGilUSSQzW11TdWRDYBYiIaI4tDJi2dgEV9rkxdZVcZ\ngN3qjpmZbcONssiW+wuwvvv0nHxQut1LcRY/BETkjOJzNXa9GpUTHM6XwyWQX4YfhHPeX/9d6eQ+\nCKBH36fsjp9qEHEYsaOOorbJpO4fAoESDpLxTGgsxpwzDJB18cOpEooou5WJSz8ToqfZFucj83Ad\nTKWHwVRjXOQs7ZTKD8EwWSH4K/KOxrxOhYBggrOiAJ06IG2CRJP96L1fhal8RsYSToDQXHMhtyTb\nT20pEr93T9m1k0PZVpXKZakV/e7ShqK7Ac5j9ipkag/1eWdXldA6nCcvUNVlPSm7SWWVgYjkpU8/\nLPU014IRqkxt6vtuk+up1jI6OPvZ3EFYEf0g/DrjrMbYR9ZpWNEzCmXN+yrnskMVtX1CpacxfY3F\nyCKQwZxSASuypkxBiMok1YAi7eWYztSmhlSygcTFdyBduRHpwAUJmB2pvRGqzyWe1PfRW2rHvKR5\nnkjBy3HCc7qaaz6mUGcs28mvai7HOIs/8un+WdBG0BKZA1rBmasfLnoLkOVuw1/hny9QTtJbhCxc\nMypbGsyoNDbVmDsdkCB5zaV6m0wAfE9puFVaZH1ScLukE7rO7eq6A7gDCkmqZk2ponEsfbS3YcVP\ncXYXLoCzCjQe5vPpueWLoNQ2dN+1FT3PB6lOjEywn7k0i6PIjPSdc6Vf954uHI01p0JU8Tg5gAMj\nIJTEgjcgHtX9x2HpceZSsW48MZLgdnBXfeyUqW6U0LzNZtSW1ThZ+oyeUbin7xuvcY57WVmezQ3Z\n3iCm6+r39az0BTim2hrT85d0/xlZ/2FbaIQF2jMBt1d4Gz4K/PrpSNclWZsa93fMzOxCVn5gG5SE\ny3qzGpUOWn2NeeWENX0d/wPKqDvXmGQyVMc4ULu7L8tGfFuyTWeovx/XtS65ge8zM7PYuvhKJvid\ns4q7pvbdwL9PRtLf6IH62bglG382rPUlfg8bTEqfhYz622dN7u5r7hTPyY9HqUKVm+g5kyGVeOAg\ni1NRcUpVlJGr8cgX1Y4A59RjMfymo/sVU69zcI0DIYsDnHFAtq5nNW6ThNoVyuv5YRCe04F8l58s\no6+m51ZYf62nvwf4fRIE6/wAg92V7c/nnM+fSn/VychGzgIBA4dXVJnFQYeKjOxbClTyi8DtdwRC\nOtJdVDgEwYcD9IFWSkz0+y5J4cKi6tz/yd6b/EqSZel9183Mzd3N5/nN70VERkRGZlZm1tTVJVax\nWuwiRakpoiEBgkCIgFbcSBsB2mijf0MQCA2gNhIkoQU0BYkjuruqh6qurso5IzMiI+LNg8+zu5m7\nmRbfzzJIQlV8sYqN3U2E+zM3u8O5g53zne+zdP9YedI9QZ3pIes8nCOb1Et1ntuUOSpRs0vxCG0a\noItC0AQoU01AvUagTgP6JJNWHzZiJKIH0g7EooUCjANPhgUnSvdaNviLD9SPP3qkMS28p9/tDzVX\nry1FbBfsX8tzUBJFfT7c1b951E77zJHun7EOf6LzeB3uh/2/eWSMMeYU9HP3Mzjb4HLzUBH0B/p+\nDP9FGGrNqIAoDZageyt67sCj3xjf1Q18dvCkpFDKbIJW3gl0nv4X//P/Zowx5if/3f+q39dVz1iV\n6613xFFUe6h6L0Yv14COmZoaKLVNj7MuyKk6nHJ9UCJpUCkN9vNe7vY8d6krUEJwZHlV7e1jECQu\naKrGUm3rM826nGOnafXFuIcCLCis+bZstQmXyym8d+kxyDSjdTAF0iIfoo4Wq56CjEnDLzTcwK/B\nXj8BUVEEkdKPqWpCEHGREHPPPoc3jmyCUT7HZ96ByIIobWSjqaXWvzF7r+PwLrOEM5Lfmz0QKksU\nZlMxt6HGpt4BRVzW/lI02u/OQNdCK2RuNlqv9uDbu+nK1vbvyPbWe7o+B0Inl+KM4mtdb2Vl02MO\nT0ETFBr8cKdwui1jVagpPHLbr3YmseAntOqgZxmHmEMnQP3QBlW4hvOslJf9rDeyyf5S/dbkHTTP\nq30ppzPNBaBcji7GRvW0R9aIMcbk9wsmWtnGgecnty0bcCPev/ug9UPdrMCetGYPW52g6gaiugu6\n89OPQIlmtW7vf1/zOIK7b+HJ1r9+D3dAqE3ggGHv8Q6OdJ8aSrUgrCPQst453DVwycZqyKmMbL1e\nfZP7CSW1wK+w2sAfBLpzxvH12XOdOQ5XsrnQinnf1Ndegc8gGitLrUNrV89dnFDPrmyswyS3NhjR\nrykJUiYpSUlKUpKSlKQkJSlJSUpSkpKUpCTlNZTXipQxRM/On0uZBweTuUF9qLVFjhp8ITaKQLuP\nlOP1dvTXjDHGPMrp80lXHrVZVx62PReOA/TQOz6ohybcEeGRMeYl23rvTBGK6gN58nINRb0uOore\nf/j//ktjjDHpXXnmHnxPOax5I3fm1Yk8YfNA95/CkD6fyZNWqKu9vY/kKesOVd8CTOdz8tnPe0SC\nyTfMotu+Iic7JBI0W+o+NpGn8hvyus5b8iAGE0WtNg3XhKBnlng75zOiEpeq0xv35EGeXZOPDJO/\nX4INHG9p+a6iMTmUYSK8mmNLY/P8E9XpBm6APGzlafpkMCckcMvi2vLErzx5O4tEXWagF65QK9mg\nSNMBAdKDN8IaKu/64H1FgjNlRbOqsMGvUmp3DeWAOVwFlan6ZxrBNzFR/4V4OdczWO4t+TVHNxq7\nICObbczhamnrs+WQy4kbtB/Iox7Ce2KX9Nw5ed/lNOocGdV7VoNLoUOe44hQKNwSDnmWk+fqB49o\no0ckJKjBck8e/uAI7p27Gt9JF5b6578yxhgTdcRPNCCfPSjKi926KzfyW9/4HX2PAtFkRs4rUb7+\nE/hBThR1s8g9jsjn7sHgXq+rH9pF9VNwT4ieAPb925QGnu6ztGxuH26nkGjA7AtF4wt3VYf8VGO9\n8DRmmVBtO+/oujDU3wvkunZ9mOtRZWuifjE81thldtVHOaJW/pXaNHqgPt26q74+u9I60kMJ4M27\n8OkM/8IYY8zEVxQqmsizvopVOu7A9v6Wok0LcuizJlZdU30cFtDOQveZESWpyJTNYK361HsocmVU\n3yIcDj4R58DVD5wV/bjSHPCISFjbKEIUZVuQ8L/Mm49AKk7VX94hkeqZ7u8Z9c+GiKXZyGZs8qRd\n8rtj0Yw4WuR12a6IVK8XkEXcsuy9o7lfeqh+nOdQXSmhJATf1NzSHFvCd5KlP8KBGnpzonpYRMKt\nCVxFECdFKOF4cEgs4ZcK4eEIC/CSFDTHx6iSpK99E9b0XRE+m8kz1OOO4B+ytdZ7IDHmKFxV74F0\nYR0KUQBw4aZKEZ3/4jOhQL2/+bvGGGOmS3iMWM9vyKF/Y1vrYjgHkbID/5qtvThgcHKMfRVFgyLP\n9TGKJntTNNJ914x5EUTdGuWD4ASUGZHcdhP0KDxEjSKo0ZA5FLC/rNT+i+eqT/85qDYHJMr61ZR1\nCEibNdH7GfwZJaOxa7+D8hicBT1fc79Evzgt9dPgTPVooqZxv/WA++n6QYd9Fr6mHP01Jt/cZX2/\n6ugsNMppHS2yjtotIuggOYdE+YwxplRsmPqubLOaV31nHX1+cg5arSNuoTMir1l4nry09lsf1EDO\n0xqTBZUynMN1UVX760Rq5x1Y6KogOUdaM8L0wtTgQSphM0uUEAtZOD9QUysewS0FQqaOwsiipTpv\nj1WXBdHdgGj+GM6ZtJPle/WdM9O6W81pb/V2ZBN2Fu6vGtH7V0BlGmNMYQxqdKm+29jag1NFjUEA\nCnZN/Usr9ug06AI4yzg6mGkc6S2DqoDLJKqhDHMJyjnmZ+Ns8eRYimthT+2ob2ms20XtoYdvsz7C\nIZNzUTOJNHbXF/AEwdlw8pnWOausMd2EPHcb1FZf6+LUIlI80l4e5jlTpjnjsM63QAHccOa7nsDX\nBzp495HQbLVdkKqB2l8G4TpaobwDcnJ5pXr/8f/y58YYYyrV3zLGGLPzSPULfq459/OVEPT/HmvY\n9tt6P9BNMiaV42x7hPIYijURaOpsl7PfNkhN9vtSLNl5i5K9K4T2u/DUAWI1qa7asuGctHHhnWuz\n97GX10eaT1Wqnm+qr8K8+ioC/WOjGLjm+3mo3zWwtd4StMAMbsQxv+d9YAXpzCoDhCKneT8GuefP\n4K5yOAuApFlzbi5xnk6Fuv8GZN8CfqTZChTwmjnmL6mvbGsSk8L4IO/g91jDV5f1WIdARHauYjQV\nqGBbNlWHp28DT1w6PjuATPfTavcLzrPQxJmcp7njvQGXV09Kt5Uia4kbI460JnVaIJMMKlmsc90v\ntK9OX/FM8qwr7rPJsdpRC3T//Yd6B73zJvsKPIm/fKb98i6261a0v3bHmhP2BO4weOzyqBJacMms\nmKPljOb4ORyRxhgzubw09f2ysVEfiqo5+gKk9/sgDces/Tld17mGk3Wtc1//BK4WeC57A9l6BIL4\nfkFtm1hq25x3ztVS18U8ml14504v9Lt7v4tMG24BG3W9o209Z1YC4oK62+nH2jurqGLuvgtvEqgr\nF4T2BtW1KVyLPmcme8Z6BwcOQ2AGqLkuevIzXJzBZdnQmWWOGpRPeoN7rT4//hXrDpyTv64kSJmk\nJCUpSUlKUpKSlKQkJSlJSUpSkpKU11BeK1LG8uTVLLcVBdsHrVF9KHRDFkWFs18pB2xqy4OWzpEv\nZ8O34aBoMJFXdv8bQrDUYGf+5c9h5p4RxYPfxCJicHKlz3NEMLbxcJXv6f5fluXhevon8lKWuniz\nd+SZG1blKWv/VQL9GwAAIABJREFUULwYi6s4AqvnPcrIUzcbyFt7/kSeupFS1kzY1/09dNXvtuT5\n3z0AxXAtj93RjpA79p7ud3YsFZjhQl5z5548m5kyOXTf+44+P9qYr54qwmg/lVfzxZdqS/pCkcBM\nXV7HgKj49LH6IKs/m4vHelb5t/+GMcaYgyqs5hs968Gufu8s9b3la6zsthSg1nCvFMe/OZ/u3yw3\nKFOte6gatTRWPnmPTXJyrZq8qH/v7/+e6nVDpLiqMfRBlBh4OLyYmIPofG6Fh3usvu5jS7NA9XVT\n+uzigS6RB2/nQBtUlE/Yfybv7M2VolBduGiybRQbiCjYBuWHgsYjv0CpZoLKx5J8TvqhHEcw62r/\n5ZpILPwmFbzaC5TCRnAzBOTUjj8RGu3Fx/rdnGid96YiMC4RnQfbap8PpGftqD0ONjmHB2TT4N8p\n6lhEnypw63gK2hl/oN8NUQUwKOdYKNd05pqbEZw6JRR45tT/NmWKxzu6gZOlrbaUPN3zMyJzjZG+\n9xvkCQ/VN4UKyA/GcjbX2Lk5zfOtQG0cUKdCishnCArhklxbcuSXKKK4geZAiqj++nPNIfeBJtX3\nH/7YGGPMTy/VFx98pWhLZaXc16Cgvg+HGtsnn/2pMcaYoa05drRFuGdE35fV19cl5UVH5Bmvyur7\nDLbiwwtRIGo/Sauf7Fg5LIT5f4L6FHwY8xCVFPLiozk5tay/BVSmej1FSsob9XcNZYAvs6wpY41H\ngXGYdvTvgrzs4SERBVSeYhWqwUxrWC6Dqkjp1bavzqn6ZQ7CpfINraO5otAHhjx7j0jK5lrtH8I9\nsIz5m+BXmsz0bw1+qlwciYePaiuruTRZo86yQqFhrL+PbLW3YuvzTRSZwUp1bJaOjDHGnN98ZIwx\nZvta6wICYGZ5oUhmhPLXFnvp6YZoDxwvBdBQ+Yxs+J/NUCxBNa4axfwSREpRPnGmqOyATs331ecl\n1PPmN2p7BpWKAEXBzJZscNZjHWBd9eAwCadwk8CJsGVrz8ysQLigANbc0vfHx0J01GKep5H2mTw8\nR5NYYayuz8+e0L6m7p+vvRpSplrSfVKoa7RQkBihKrLsaNPewAO3Y1AGQmmraqFeV5VNlEEyTVb6\n/YsrRROrRMx9UFrZDusjEeJwpCich42UQMu6oNBWadmWzb5dubn+ug3ZQtWkQ62rn/5ciMfTp1p7\nFkv2q28rWlmFiCWb0n2KZbVjRsTbRbFulZXhpbBlF7BIxL6+mYCaAO2RAtladnPmTkFj77PXzUBF\nLQKN1TIfc3eBssmrjc0j9fGiqz4dwQ1oyiggDmNeC+2Sq7zGao36RcmG162i78esh7ky6mldeCvM\nq6kvjaMY9qAxWxPbzBZVH0BWxsL2bcZqzvwvYMvLrJ6bhUPF6qoPF6BxM8yZmxv2EXhDDt7WWaOE\n2t2mBu8UnC+Zqvp5l/2gh6rIF5cfGGOMcZ5Q/QwKZ4Ha8fCuxv76XDYbcy4aEC8+yjI2SNRr9sNa\nCwWdczjdQq1hJRDniAyajz7WOf7Lj7QPbF1JPfXdN4S+3v6O9r0C+3LnF7LZGxSBHn/O/g5S5+F3\nf2SMMWZSlj0NfNV/+YF+90lZqN9v/W29DxhjzN6bFXP1GOglgfeqJ9SeN1NFJ8AsCqAMDEiv/LJk\nbltC+Cies9fWsyCJQVJXLc4QoLZslFzKoZAPIWpDEa9oyybvStjwgvNWaZv1rgNXYZVzn689LQ2i\nMjOGixHYrAVvztDV/TYgVIpwaY3gcFyBoLRBMRR8HezCQ61vCxtVUpDW8Xl4SbvTMTqL9T4bo9hA\nbgLGNZaDmlQR3rtz6rlEzagMh+R9xu4ShD7cWwv4STMoWdrY9BQlygrrMKJUJuzq7HINn1vhXHOt\nl9LZxVlpTTk/1hqRqer6FDx2HTID5kP1yzXn7p3JK6iGGmPaDmdF3j234MHKkeXR3pdtdjaqz/Nr\nzSE7LUTPwZ7GeyxTNzkQjVFNNww9ODRBVqV9Xe8ARN+vvVSLWgQdM+hOTQ7Uvs28XcMJ+OjdH+pe\ngDK/+licWjs1lGwd9fFzkIG7nH+KB1qvTnjhDeBUnYKEA6RpspxJnI5sazTXWJbH8FGe8a5wBHIF\nZcBd3r2ebYNov5SNLc81ltdIT3p5rQPFeyAOOzK+GRktBY93PMM7J4pkURjbkjY9BwT1mH0mzfl+\nMS5xneqxuZStbBdB1zp6TmXzm7mpEqRMUpKSlKQkJSlJSUpSkpKUpCQlKUlJymsorxUpk22jXV+U\n5+h6SP7gnjxTyxt5zvodecjGqImET/S9ncELjJrHF08USd224Xo4EgpgKydPWh4d9cyOvIN9o+tq\n2/JkNYnEfPqlQgkvroQmGcKOv/dtebHfeE8e/YsrefB+8QfihPjOe9yPhMXjT+UJ3OQV+Vit4B6A\nddqDC2NGpGhyqes2RBNHHXn6cniTlzPV4xsoUgzH8vg9vlY00UFhJ0D5Z7BWe+6afTPN6bcVVcE8\nePeQPsVlCi13bnFkjDGmekd1ePcNoZjyjvx3WzW1+fxLtOhR+5mgWT+w5A0dgjTx9nSf/JScdPNq\nOZenv/jEGGPM2Qv923hbHuL2G/BuEAnOlMlPdOS1XcP/serJ415OKdfSruPhpi8XRLOCibypa2ZE\nVIAzZoH31NJYro0+j8hfzxABSIE2qN+N1ZPUD1EPJYWZIpGFkq5Lo/xgwzUTq2pUiSYWCurn/Jz8\nzjUe+4bq28bjf92VzZTwtNfekA04xxqfLQc1poey3XNff88ROb/oyNs9GmmcKl+pH/75H0jZQN8a\n85/+g//cGGNM19V9BzP4ReD3OLIVjQzSKNWAoOl5sZoLymD0qw0yJlMhZ9bIux3yu1z69ipdXlnr\nwils7x24ojJE/9Pw2Fw4alvbV+R16TL2M9lE6MpDviK3dDbQ5+oWamZwiljkF1uB5s5oDBeVrXXk\n7bpszbnDfIe7JHygsS3f1/ePjKIg/wRFhfn/KRW57K7uO/Ph3aDPVve1rtyp6O+VnKJhf/Ev/lLt\ngR9kFak+w4lyctdzWO1dIWNqoCBSaZQMUrpvngjJaI3yF3nkVx2N+b6j65o1jU0f9FfnUnNsArdK\nl6iZBbdAjTEt8Nne1/rdIKq2AdFUbcjmgy6KM234K1CjixXg2mm4FnzQHbcsQ4dc4h2N63gqJNIF\nEegVSkLLMYpqoLZWoCRcOBZSDmgS+FJSBdVjjbqKRwTnHG6z2VrPK2SJDsIjkIO7aOZofMqtwIz6\n+s2dh7qnc6317Kup1pPf+qZQpDNUJ6pFKY04h6rjGUp9C9oSgmKqZDSWO5bGbALHiw/fzRpVjAYR\n3cUcNBOcUTeQx9QzQkwMbK3HOWzLoNLThS+psCNbuelqTz6oa2502ftWA6GQMhELF8osKUAIKx/E\nig8Kif3LK6OYsNLzHBCMR03d/+RU3Cs7ac1xy3q1uFO41H09zgRVUFlBSjabzaFyBfdMD7WUiw/1\nb/Obqnd9oeff2EReT+GOGaMmCKImP9f1UyK2dgeOlrTa24ijlmmQQqglOh1sDfWQoBl83YbdcmA+\n+yUcZ6Bs20dCLUCVYN69r7PRkxeykzxotXCk50+v4T2aqL6rmu5XQ23lAsWNBtxHi7sgneBac+Hp\nqLgFM+yBDPtS/AlLS/cahDHHCUg80K89lK7qQ7WtUtC83S6rL7IPmHfsvccfi0Mkaum6Rk59dLng\nzFNA+QaOsF5P89uFZ80HLXDbkknpd8Oy7uvEIDNUR7JwCjgN+J1mstEUc3BoyZZq8Oyts/p+FHNP\nxcqSkCf0NnCeoF4SjPX9jLm2GsGbcaL2zh7D63eIakqXPRuFRTfSHLxB6asKCuG77/5tXT+DWw2+\nodQuSpVXeu6Q/cMcol5Keyag3fxI45TjLNCrsr7XZXMenFqLM9X/n36q83P7Z18aY4x5C/Rel/X+\n4OE39fx91cv0j4wxxjgt9f/6XDbaOlQ/jEPxN/U/ke3/5Z7WxL/zO8ZUswfGRWFyCm+g72ruzVhL\nFlm1t1RRP005661RE7xNWXOucTlXTkPd02XvGIBoCED8WY7q6k719x7wojxzojKTzQ9BLRUttT2I\ndJ/NWnNsBvdK1YUHbqTn2syBEPRv2IUzBWTHFFXUcoQtRqpPA06uY/jm/vd/9A9Vz7z68N/9W7KZ\nBets+wCEDmMyYU+cs16cpjUWd+BLWoGutUHJpkGC+yCHlmuUJEH5uvDoTVFNtYCl+SB61lwXWLpv\ngX1pOUepDCSmXUZh6Fr3y1VRl+rDL4LyUMnjvQEVWj9HP8JLmKlordndkc2V06Cp/i9zqxJz9Xh7\n6t/RUuM+hhuzuqtxb8HplmM/D+FnKpXfMcYY09iWnZ3MdX5o3+jsWLjLGgoaJQQNsuS8vdN6if66\ns1cx/nRmgqXmRXYtG7kYvDDGGBOMyBrgXHT6Jzo/FcnwaN6BKwaU7DEKVg7noSpoo5g3aXMDTylo\np3CheRjy/u6hiuaRHZHiXSnXB6rDurnJ6Xkt1veYr7O8Yq/mXHz9mVDHhz88Unu/pyyO0o7ODN0P\n1b6Ye7GyJ7/BfMo6CydOxgcKyT4TgmKyZ3ATwpV79Qudvz/Fj9Dvax1+98dC+P26kiBlkpKUpCQl\nKUlJSlKSkpSkJCUpSUlKUl5Dea1Imd6Q6BrR+ZuZPFr7fbyXaNE3jsRk/jaeNp8ktPG5onBrGMLX\nMI3jxzf2hvzMlTxd47Xuv8ED574hL/IqLa+wY/T9VUn3yUZ4ZfOKQJwNdN19T/XZyim6+N6hPG61\nunJjS+TZjzaKHExRZbq79Z7ui3LCZKX7XT+J1WLIGwzkMaxn5aksF/X9FeG5MeoEBaKX6bY8gqmW\n2rvM6nn9zQv1n0mZDBHQcYuc1L6iU+mSvh/eyPu4QRHKe6G84PM8ua3k0Pu+PM5D8rD3QeWcw7Dt\nleQ93LwlJM4FqJ9lXm1589WAMqYN/88FOZ4N8hFraZRlDlAv8sjbnuj65pbac31FFIwcewuuFifm\nBcmpL50GObdEBFKu/i3OyZ+GB2IzxrpQEYnwa06xwbGtSIBN9Hw6JNI8FqdLK4LRvyJbbqzxVKdA\nDYR49h2QJbDgT1Oy4fQYNaw6XmcYwo8Zr3FD7WqBFLrE250j33srzkd/X+Of+Qu14zKlyPWiigqT\navX1XLKKqmeUBuGTOaQbyO9EQSbjEMFpaNzLRHTXnr5fgqJYoOaVQT3ASutJRUMkoHZ7Q9nMVbdy\nAc/8KWgokHG5BoiEUxAO39JYpokCBRdwjBAxXE+IZkGSvo7RUvRpdKg5seXq3/EQRQBUhSafKeLX\n/6U849cB6hRPxQnzy2fyzP/Of/g/GGOM+W9QR/rWP4OIpwjfA1wwEfw9rY2el2trnq892cLh97X+\nWNe6broSGmobNNgUZMgGNJNDtGdD3y+Wsp0lrPuur+ek9xlzFM/GaUUSPlvr+myK9sIv9fb3qL+t\nyMfzXwhx+JR85kVZttpEiCEkojFw9fd1TnMpGKvfmoT1I3ifJsd6br/GHCi8Wv72D/7693Xfe4pq\nDYaq3/Az1PBY20ZVFN0msu362/Qf93GMnpstqN3hUP8GK91nCHdRbwCX0AbOCTjT8nBSzEGHFFj3\nrXrT+NhGLku0GRs8/YC++xFRXpAkBdCQAfO87urzrq+xHsBjMV6qbVv7qsM4DVozj9JJWoNShJtr\ns1I9ClntaSk4akYgVWyBM42b0318i31hrPsc7R8ZY4z5YKK+89KyoSp77BIkySJSH82pj7+O12H4\nh7LqywzCJ81MzK0gm5liMw58Ip1rRadiLgSDeuBty8mXsrHpF+KlqLhCxeZbWu8qREYZMrMqKJLa\nKsHJgOLWxNVZY0he+Q4oqTn5+TkQSAP23aCiccqDfjD0xxLlxmlB/TobK5IanOu6489/pstRwjB/\n7z82Xz69MGFKZ4jKt46MMca89e53dZ/H4vE4ewGK4zk8ewvtA3XWRKdNhHvCWjrQv1nUpSagwNZ7\n2AsqhbONFjMb7jC/axmoqMxFV/co7aMs46mvUqUY/aRn1kEVrEAJPOvqXjcGBN1Gn/fvv2+MMaa5\nrfXyeqp5e3UD0gN1pdabQpfl4SZJxcowrPf9TrzL3a4MUcqq5vkdCO6gp3q5oDydAee2bMxFBg8U\nXAsrlFam9HmxoL5MgYqLlXCCtfq6yt/nFhFdeEnqM5CLBsQjqOcQNGo6BXcDCJb6W7ou+OlPjTHG\njD58YYwxZv1j1dPT1DcLH+XIDWhdUMmTlep1CMLx9ALlRPgxtuBqHKASVZsyJ+AK2t3SfRaBzvcr\nC7W+C7VrUkUxDFSYi6rKchjz1ak+m5ras8ZODGjc+iF8h0vV5/gnQgOb/9KYP/vJx+bdt1EOgpux\nnNUcP7/QGhvAKZfxdP8AxK2zeKlw9m8rNfrqOWqeuYbGaLnQvM3BeRJlmSeh6nrd0fxJwUU4TYG+\nekvzrokqpz9UW/so4dg7rCMhnIIyGTPz4Mu40N+HVa1DraFsp5SCT4k+noAscdca23kFlBd930Fp\nts3ZIueqb/Kg/ldjPThKoYgGR8oV/DwRe3v+IegIeELzcM/Ygb7P+kJhrKco14IQH6PymVmDRILD\ncrLh3M0unUbFLp7ZAVwwFshxB5WmqAByEy6aiPcKdwzf3VCTIZ3RmSvgyFFbsjEXdZ8AzrB8wGHu\nlmUDf0k9rftb1HMGj+Fwoue7IJreuydk7HgiOwoDVA3TWr9Pv9K+xVHP+Jfsl3AItVFom/X17uym\nXuIyMk5kqrmi2YDMzgYbmijbzPEOZg/1m11U5zovOEeuNW9SjNGyIFtKnaiNaaO+HcMDF/HvHDU+\nG3RTJc98roMMrOvM0KjA5WKh/AgXzPIL+C9nrHec03ffBFnZV2fM01oHemeyrf4BsNEcXFwt2VIK\nXr5mWff7+Ep7eatwZIwxpuuo709+prF+454QgNWyzt0V1rOLhf5dcn612nr38nZ+s9slQcokJSlJ\nSUpSkpKUpCQlKUlJSlKSkpSkvIbyWpEyNpwA9lL+zNoG5YYNKIUcEduuPHA+nCzbe6r2IJCHbVWW\nZ+9HP1CuVqcrT11/KI+WXSTK04gjxeSeDmFZnuvvVknf76TlTXz4jjzpseLM58NfGmOM+eJPf2GM\nMaYwV32rRXk57++i9EM06+CdI2OMMTfP5TG76qB4dKl2jeSAMyWiTGmj5+zR7jceyLOWgftiMiLa\nBl9Am+jdoy15EL0d1b/YUASivSfkQC3YGOdEnuTusbyaFx15Si0iqUUHxRrymOd4JaNj9dF154Ux\nxphegUgdyf/pN8WhErm6X5STd9IiF3LX1XXPGMPM+vbRBmOMKR8oqv1eg0geqhwbkC0rInMruG0a\nRPgiOFzKqEVMTuShj+B3cJbq0yyRVhvP9MzDq7nW5yvGOOaWsSJFGKdXRDy2iQYd6LqAKNIGFaLK\noby9158pCrNcybOdxns8rqh/mjn1ez6DggucL+278sJmZ7KNJ4E84T5RoJi5PCDqPpypPzZ4kx9s\n67rTjsZ5ci5vsUs+/Bz+kSn12PptoS7+Qfb3Vb+Vvg9ReAgvyaUtKcLhB3AJodpSOUC5jPzOYBsu\nBAIIi4zscD1Rf/hwHhiPiFBe3u/i6vYR7hWRSgekyCavug7Iz7VBc0VEdwMifyU4CzZ45hegqZwt\nuGi6us826kOrLDn6Q2yAup98qshmkcjnPIPaDioYZThnckVFdr/1EJQWYiLv7amthYJy50+vdX3v\nWvP96ceKbvdmf2aMMearju5/dFfrw6PvoloB2ugR0bUVahmFscYsXYC/Y631qLSr9rRTsrkhucAT\n1OeWIHwyRJgnBc3tQzi8AhB/94qy1Xv3hapwA/XLyqi/t/a1jo7hrrFYb7eYw5Ouxq1Y1JzqwyVQ\nAfkUwuUSZnRdAVRCufiSR+M2Jd0C8QPvyBeXUjJwp+qvBaiESVFz2W/CTZbW971I9YUOwGwN4QAD\nIbWxWJ95np8lrx20h++q/TEacd1TO2cgnjyrasKU1u6op/lUq+s3ha9iNQrUK0BN5h8RlafufQJ4\nOfKfp2k9K1YiLO6gjgePRr6gtq4D2YSzA5/RC7UtC0fXYAK6KkPuf7yHDsht39Y+cB3KdmJ+kDUK\nXIjFmSKR1lRKfTME3ZqF2ytaoMJBBDWLMlXOUv39sq6bz+iHPOomNdX7NK9+GhNJzrLe37bYRfLR\nQSSGcDz4U61bvYxsd3ak57XfkG0XS+rXDqhY61R7eoFIc6zgVfLVEQHtKhGptadq3wzFoBpRwLWn\nca2hWGajshWC1OygrBPn8RtjzPHzx2Yxkm0FvxSkKX9JVDFAhcNifzacwVD9C8eaY2FK7R2sFVW8\nzgtBdFhX/2QLIGO6oCRYK1p5+GOQtvHXnqnB1VWAJ2m2j4TYGEUr6pCGM8U38I7ldEA6hGct5vR6\n/ilIxM9Q1QDtuvNIkUqroXUqbGsupQx74NMu91ebUs9kK16sPHbLUiFyPEF9Ke+z53vMjZXqOWah\naNqyUR+0mgtCcMN+U67L1uLz5xBE0Zavv18XiCzD45bhviGIxlVaY12s6vcZmzFdCcW1HMn2WpHq\nleHc6RRAqmSIEF+BUsuDNkDNyUYDMrunMU9dg9hmj86h4jRELcWuat32QXzn93WGy5zq/nak69yB\nnmszF8I39LudGBlzEisxas6kQZcVUIi08ii/dXhPuIt9sS6nfebE6cvxHR5/bH72/LH+3padtHeJ\nYMMxGbW1ny33QNT4+n51c3tE1V/9SqpnP/vHQsf+6PeFVAtRsayy/uVRoUyBZJ/2dE59wXn1/re1\nt09WaksdzpIse6G74Rwao3tR8uqAGNmu84rHu48HAnFosQdFsqkaSJEltmmx5w1Zd/be0zn0v/5v\n/wvdrqKxmkdqj7PQXl8uaD3sg/4qgfDY4ow2HDJ2VfV5esp5GKR1AZTCY7hySkXWiinKbHDNxApZ\nRdQEVy48gCji5Nq6fhFzW1VA4T4B8VnXurmd15oxnan+GRf0HKpFAeqrISp4/jPZ6tUYJZ68+sm/\n0Zp1ULo9F6Ixxtgg+8dw+AQb9YNfQVUVTkk3o/rWj1Ax/EKf+yjQeewH7b0jY4wx+ym16xIOMxOr\na9VV/wZnQ2f0kifJy+WN2QzNHIHcQlHrTjNENY/39BXrWwDiLxqpjtecBaIs5821bO6K99v9WMkw\nRvlcygYtshxC9uo5yOISyoJOXvdfgBDcqaEIxvq3hEcpAhHYCuFJjZGCvJMEU9mqtdZ9r8nQmYP0\nydtk6OzyLnKk9bPqk0nDXJmjDncD52totI7cuwdP0kLtzO/r9zX2TIt12an8ZixMgpRJSlKSkpSk\nJCUpSUlKUpKSlKQkJSlJeQ3l9aov4WXcbipqU0R16Rr1jTb5kTfkz0+fK8JhUDnpfUxEdhdekT1F\n+VOw30/hrygRsfSy8mRN4fsIiaQXGvKQlbbgSFjhvfxIz3NCRVS2QAVsl+Tlfd5XhCCz1HWTM3kh\nn3wkNMLuW/Jyt7Pyut58qeddHeNx7KrekwLcCZdEgIawP6M6cL3RZzcPHwpqIJdFfe5f6fO4J89m\n7SFIAXJ+g0nZTM/kvayiHtHFoz0pyGuZ7cu7mK7LM75Pvq6xiAKhwZ6DayVEgeDsVH3jhmp7F1Z4\nH8ZrdwvuEnI8B8exns/tynKmqPbJV1e0Ud5Ne0sR5KNHSFP18V4SVQmpT6qjMUv75IwOiaq9pejN\nZiMbmg3JlyRiOw1B9MCzEZbUP86C6PdCz1lcykZLWfVDBu4EAqzGJoq33VJ9u3P4KsgzX0+EMBqT\nK7wiMjFm7M5dtbfcRDHiTO2dnMj2TgO4AfBiP/lcKK73Y3TH4b9vjDGmSaRifENu8FyKPSvUT1x+\nfwr3TT9UVDGem44fqyU16Sf152YGhwNzbLSEU6aASgDfu3itD5twT5BjPbqGI+NaCKAvPpfd1JuK\n4t2mjPDcu8zvNVHnSheVMtQm/IL62O2Rr42JxzmwTl3zaTUhrxfP/NPPhaiws7LhNUpVX0e13/qW\nMcaY3SO1pUEUyyNSd41iggtfkFf+se6zUD07oSKKjsf8zqmP+0Qc3+xofr/oCW1WwnZcOAU2RHy7\nE43Z5+QEl17Ag5RVe1b9S/pB0anCSL/b2T0yxhhT3tG61otUj1aNqLynfmzs6r7zFXniPY394Kda\n//7Rf/8/6v4D2fTZF+q3pigdzIOGUG61ouo1TGt9DLJSbFityDE26verJfxWzOmrGdH7T2SrfdTq\nbluuP1Q9h2daS/qg94Y+sQk4e2Zbes6cuRu04Tva0hwqTXSdTXRxPSaCkiLyAxKrkJENl4j0uLT7\nxRm8HdjdXgpepmlgaiivzCa6dtFFoZDI4ogccb/CfHRj5SeNSQNgSCHUGKeIgs889VXhnurqg2zI\nNogiD4jyL/T9CuSej3LMCASMC1fIErTQHJvOx/W5lK30j/W89rb2GS9CvY6kfAAbxoGzbE1fhuzN\ncxMjS1jHiWJnMpq0XgEETUntSZeoHzxSBVCy6xrJ9bcsdk2RyLqvfqvVte91z4mSo8KXOVMDvlpo\nzy63df3jD4WG3cBNtofalclojVovUE0CvXEBH5ULvmpjq97dtPoxX9H1qQ2InCxIUE/1dFz157r4\nMuJ5WN0xo7z66WIipMzJC/EnhSiLbcMFlltojZldqB/vF9TPX05B/PjarwyqgQbellpGf7+BW2ID\np5l3KMRUCFolV8qYdahnpOEvKG30jDk8OBG2Zi3hD2pqHhVn8MSV1OfVDHVuKAL57COt41naYi81\nb2cL0GPPtbd/fqHvL86ZA47udznWerh3r2lepUSB2p6uY3twqGx6qDmBImuiYtebYfM1kCRoGjqh\nzrEH8DjdPJXt9Aaq785Y60cRRZwM6qATzmLLqtrj9IVYGXJevmOpv5fw3wVEbj2mug8XWGqmuWfY\nqwdManu8swnbAAAgAElEQVSl78Os2mPZWqesFPxvZSLSoBv6qDsVHLWz4KpdHdSNDkA0VtOqRwau\nmeKO+qFDv1UacFV8UwqbDryAXlPjHdhqZx5eIz8FQnYq2zbwBFo1jcvgSr+vbr1U18qs8uYK2N7w\nAyFQl1P9fX9bfB3v/Z3fMcYYs0bdtfeJ9rEwRh3cogQg/spwW63mIBRQhBln4EZZ6O81kOmZd4SW\nraCm5x6qj104Z2YVkCWcQ29u1LcluMEs4uxFzr8hHF0rUGk5lKTCNMq2axTEVjGvB2ePEWcSUGob\n0Ko5Fy4YV+tRA+6YUUrzfoq6jzcDBeeBGLRlwzeBzsGpub7n9cJEoCpGKO0UH8tYLVBhI9Y9s1B/\nrEFKLmsgjuCJ6s9Aamf0HGetuRR01B8B/JsBiPL6keo/izQOzV3Nud5T9rUy7z8xIhMZowa2kHqq\n+p2gHDSr3/7caowxtRJzaAFKhPHwlvocn1HTXdZKVKtc+LAC3ldqKFTe/4bQysbWOEw/0Nx0UCpa\ndOCjQjFoq3r4dV2K+UOTr9dNlfUmHyvrXpFVMNW7Rj6QTeS3QU2+gZLXQHU/7umc1TrkvAx6stDQ\nHjm60bnrChQT+G3jx4hujmNTeNg8zrPVO1vUEzTmNVw1cBYGoHOvaXu5BWJlqfqNWO7KzIF5oPse\nX7M3ZlHn80a0W+t1F7615r7WnyzI8PI3f2CMMaa00FhM4GichnB4NTSXIo9z62RGQ3ln/TUlQcok\nJSlJSUpSkpKUpCQlKUlJSlKSkpSkvIbyWpEyBOO/9kDbHdSOThR9+vxYXt5WWR6qdEoRAg++iopH\nhMOXh809B7ECW3/GkTfwoivkil2HWTxQ9D+LQkyV6H+5Ka9lkUjBeU9RpicfyrN39315h7f39fzy\n2/rd8bU8iC5M4xUi2A0iPSm8zdWmIsJzmzxEXx2QxnOXhpOm+BAd9zjIBopgz0YBCS6ZAlHRpSev\ncPh9RVMvyc3rQzjydsYzswDeHJscRFd97S7kDbwZKdJVx/NdRSFh1tf1u/TNg/eECvjiMyEagpX6\n1K+jdIWyy/UFHtodeVPtGrwdoINuW7y2PMMPsqqPgTfjegyHArn61V3aRxRp1CcvHbWQrKM+m5G7\n2b1WtBzaCrOIFQu6GgsbT3ua3NwJnClRSA4wub0mUP8MPiOavk2kwNLzNznV0+bfKh5qi6iPA0v/\nOtL3GXI9S/hLZ3NY6clLrxwQRcrI1l3af/wLoRM+/VPxHnU/lVc548pzXnxbHvzmQ9mgNdP9T080\nB+ZTjWcHBYIUSBgLXqW9O0TtQL5siASlHHVgFSW17ALUFyzypkfePpw1XSI4q7XaU7Y1V8O07rum\n3zPModuUPDY4APUTNeD/Ibru5EDtdEAj5eAsycBbE6O8yInfEKWPiHQGkfrAJmpddxW+uH9fEcEA\nz7n/WGNyURlTL/Kuj18YY4x5cYL62xwVClQgfBBwadTgmt8UiqsZyia/qut3tZ6iUVuw2C+v1e6V\no3o2PNlQKVTfl8oo3oCO834gZMrRPd3n8eM/Un2fwHPRQYmhozG5aCgvefGpnvP8jzRnsumfG2OM\n2WuDGIk0Zq0dtePwW8qfH3xf9bQt2cBhmugOSMjAAeG3FBrOQZksVlvq9PW9TWQ3gJ/D7ql/Z86r\nrSWDYz23C1osbZNPj20bj5xgomlVkIoBa0uFCMiGfPnxDWopXfptoPHagatgTTQwbck+JlPVPzdD\nXQ9UQQ0ujXDSM+UWURyQfYZ5lCPKPjPkNy/hoQBpUihpL7nJwqOUAyGTB02UIlrOvC7uEBXPOf9a\nXSPC6VVX9w++Xu9AmRFd8lFmiECqeEBfFozJqKc99+hQe1oKToA1nAlZJHlSRPD8ifr8a3qPiuqz\nIIIbwenlxJFLbDuNekWBHPz739CcvEAdquS8Wo7/HpHeWU2/S50Tkf3iE9UDRM8UtMcv5/r+LhHu\nKvvCqky/xUo9KIWtUcnqBqrgkv6yiAT7rsajhPJkBsqtyFX/2EuUJsrwfWTg+gKJaIwxi3LB1Nhf\nDupHxhhj5qea4zlL9XJ82eCpo/4bffwHxhhjxlvaL8KHIIwaqu9OhqgpaLzRKYhYVAI9zjBrzmTF\nCIRPGH69vvqswyGIlzxnjSyxUs+FKyXSGC9R6MsRwbRQ11iDPrj7SLa95gyTm+k54wmoVTgLc+y5\nddarVk5tLAxkM2n31dBUTl71WMC9NYaHoujCtzZVO27yqvdOC06uNSiplPZge0e28tmNzl4TeC1c\neNws/dxUZigXXmjsvV3Oyz0QLqhtNgL9wAV+MAN55FU1Nzcb2eDcZy5ZWu+2He0vU5A1qaLalSOK\nfw3/m4vqXHQNig4bXPZQEqrod9Uyim4rUHU5fV/sqB4jOB5bjtbJNEpqd96Wqqnl6POf/+M/NsYY\nU7C135is5sTuA+1Le9/R9dv3iYQ/1TndgeOrvKNxX1kvFXFyP3xkvo2tluBNya7gYMO+up8ocn5y\n9pk+X2p9L7X3zG3Lez9UHZt3QZnusNdjq+4MPh364nIAUqMAd1daNjTr8YrGulhocz41qruL+k8Y\nws8GKrgC4q13DpKGdWUZvyt5GqMwYr1bw1kDf9EUNP5hTvtJ5xeaa3/8L/8fY4wx2YzONv/Oj75n\njDFmBZ+SHaL+WeD8CFLzeqF//RT7V6jPa7gQnUP1/bIHHxOop1ao/qkW43VO/y4yKGdOdJ+Trs5U\nTdYp24VLkudkONNNyI7IpeHQmahfQtbfalvvCZms6hGlQIeAnCy14dMDDdvd0RnlsAm+IeK94Jal\ni8rWRx9+YIwx5s03dEZbtrWOxqjsPEjFDAgnG2Xf7hWoZ1SViiWtcdZQ17WQCczDwTODwyczAKGz\n9xJhOblZGvuwatyi+sQBGR6utFdYrO3zC/VNB8UpE48FZ4RoT3UYOHpGqijbGcWcqLbOiw8eqM7Z\ntMZkjlKuC3pqxdxIwWM6wlbdsM394MFbaX25gUfNIUshLOp8dbCHoles1AX3nwciaHsfpDaI9i2U\nLz89ExI8WILs2+f920IxC6RQAYW1xULrTMlXP7kFtdsHhVXFBndQK/11JUHKJCUpSUlKUpKSlKQk\nJSlJSUpSkpKUpLyG8lqRMsMbedrPyF+O0RSrDlGmmA29SaS6TI4YLOy7u0IN1HL6fjqQ56xflsdt\ndioP34bISgEN+kkWXpMhuWmuPOyrCegD8hQPbaE//C09L+XrPh2ifZ6lerUHcDa4KFaU5AEcwQbd\nGBFZmBPJxlvrx/n0qHGM0/KafqMNWsAljxOOA7NRO31UZD6G7fp6qs/b35FH8GlD3tomPCZFE5gA\nj2vMwhDnFjohnvUYhbOQtzE61Zicjj5Sn6BQkrXUhxvGbLAiMktue7aiMfOOaNtGfRqQA5q5e3tV\nHWOMKeK1nTuKRuWrRFhBS2Wm5BFe6rkbcnddoiU1R2NR3iPv/FTXLW40hjeh+rRsx2pGRE3I2Q3w\nqOdRIcnBiZD2VA87dWSMMWZiy/bWoJRmzKzMWs+dEJ3PwOWQrstDnUvDrZKWF7h3qrGuVcnBhUNn\nMiAKRV5mwdXfLepbBl2RS/2e6hXofpupxufFE0Xjekj+pDMa/wx5042MbKdVRNEBNY8UfCaPF6pX\nEd6UdpG80wzqG028vy/kXYZayFhpjUM4hf8EVShnrvpli/Iyv/8debVtS/066Oi62xQXDqggQ0Qr\nQwQUHqAc6ICuAwdVV/O2uac+6KHC5qxUx1XMPUPubBkEnAWHUxjqdymfqMWN5tAVOfTtXqxWob6O\nCvrdnbo86E9Xir5YU/LAWb8sUEWFmJcIlFYdG5/BN1SEm+R0Kduo5jXf0yDo7D5qdeQfdzsa+50T\nEDnvaQy/sf87al//V/q3oPt8OdDn5QTeoo+UUz9GLm7voVABqX3Vu0X9d7MPjTHGNLbVzr2F5vrM\nAiVW1XisX6ByVRNXwDYRVbupCLadJ5pHxCL3hu43eKI5e/ZYqLD7NSlC3LYMrtVvB2nyzeuKes2q\ncAmV1S/Nu+Q2V2WjKZCN51Pm8ED1za7hKmDdzrRQY0H9q08ucobc6OJca6vVRBkOtIfdRDFtPjfF\nlK4NLrVuhg09s2zLZi2iLbltXZchLDSZydZCVJjmcbR7B/61juraQz2pVFTbV6AQNhZqP+oiU27o\n7yNUMEIUXC482sreVSrDA4QyVRbkxgKE3xzlrmjBnkyUyq/o+hx7appoW5QiEhzKFousHwNf64o5\nByH5AsQK0bymjQILHGbbqCEtZ7dXTDHGGCvOl59oT+09la2OfsUe+w4KDp769y1USHYeqR03rGvl\nUP23hEfltCe+kO6HmrOrke575xuK/nfOQfd5GgC2G7NBZS8HSsEQnSwTec6CyFnVNv9KI4zxUcua\nETk1ByByQhQr4bN6dKCI/vPfV31qoFjG8P2NtkA+urLtm2M9Z+cOCK78I+oLtxHKaD360UlbJm2x\n1oM2LcA9sKipb3IoyKThagpAmVZqspnJAoRMU31soUji2Bprb666OvBPHMAxM9zoeYcoIE7OUTAL\nQD+xZxViCcNbljT8Ehn6yoJXyWXdWnNm2bJkA5aPml0Knp611rWrL4WA7sE16BbglqrLps+f6foD\n1nG/rv6aLjnj5NS+EsiXNIqYK+ZgEcW1KI8SWVe25Ljw0KXUb+t7cJ45bNogbBrwTSHCZPrwyhUP\ntf5t4EwrxTwiga7fwLFTRils4YDiWvC8Fde19btOTeP2XlZngIvrmPtL/1qH2m9qRLaHTzgj5bVP\nTYcx6hjeD9TsItZhn7lojDH3y2VzxSLXPSPiPxEyJoti2+kf/lNjjDHHS50nvvVIXDOr9NDctqRR\nMSqUtSdHU7hhLLhUUB70sNFiWfNsDDIwDRI8ldP65cYcWjn1wXKgz55hTwEx4zA3AtbTahkVTBAn\nc3jbhqyLZdbx1Ib1xIbXLqCtFmcZlG79ns4S2QbIuTXIO4wk56oePRBBAWed0Vh7t4366gxV1grc\nWRMUa01W62OmBd/QGgQNXDJtzmabKQhPo3Y0LfVjyN5uwRFpjXV9Kq9+L6dlm6mR3h191K+6V5pr\nnb4ULg/zmnPjFxqHC1vtyF3oPvVUrHYnW9vn/WGw+4qv1KSLhKBtJ0eq7x4owb4FpxpzvdXWOWDG\nvnr+HDWpIYppwOv8EvYxVb3CovqjeKXfLbCrWjf8uiqTyYlZPysaprmxQNfm4OsJOP8uQH+ufZ2D\nl6ca8xnrgMOZvgvy79kvmcc9qZ4NF2rrAr65d+/wTtklq6ChtngZkNVw+7VBVq7ggPI4c6zhN8uD\ngAvI1sgGmgNrW/VcYMv+SJ/P+5x9aPCIs4ZXUj1OR6r/sCtbLKCu5IFkbBbid2LZhDOHBw7EZ4b1\neMZ+ZPEOmm//ZrW/BCmTlKQkJSlJSUpSkpKUpCQlKUlJSlKS8hrKa0XKWAU93l3Kg+QFMSO0crxm\nBfLW0XIPpzCGw0w9J6KShuGblGJjEVVq7wrpkurL43fRgXV+AGfEgTxiHl7W8h2YrauwLMOSf8+T\nR2+jP5vFCgULeFWefakI/IMH3zbGGNMEjXD1M3mVr25gMu/btFP3WeEFjeAqCBfkl3Z0v3wLDgNQ\nLmFGXu36rjyTd7/z26oHCj1hQ3/3yAu9U5TX2DUrk/lDtcmHfyPCi7d1oGs8I69kB+349I6e8W5b\nbYpzMk8/UN3sGLkC6/dgI49vCy9p+z1FOp+lNUYXj/XcTOo3M0//m2U0JVI3UB/2O/AyEI3yQZS4\noIjCmJQA9YtrlBcmGVjgUQzIwiNRIMcy8EH8xDm/8In4sNpniU5t0vKYD0aoIcH47aLKMUbZZ4lC\nQZW89jgiXdlWZHUTqZ+zEWzrJVSVMkSTiKY18Xj3b/Sc075sbo5aUmqpSEle3WQOvyupmzms/ssJ\nygY49tdpjUMOZR0vS/9im3lQIeN9zZ3lKTmocEJMv3qhfmmpvlue6lltwOGzC1s/EYiYaf2GvPEM\n3AgRucb+TL/rXIAIKMBlYd+eL8RJEf05Vd+kx6CoHqqN622iKb487Om25uU4rwjauKaxKobqsywo\nsjVRpm5PHvN7rviUhil9Xt4QDfPgFBhqLK2YAwWEXlDFkw8SJ7fSc+eR+rYOr8d8pHXruq36lBrY\nqCUbhv7IpF3ZjksEMn+kMRgSbZoRkd0eaU64C9Xr5E/V7lUf1nwi2IslyB3uMx/o3xLRsrso0hyk\n1M69fXFXhSlFqhcOKDyiNmGP6J2nfh/COt/Ykk2dkgddQtml96H6e0wet4PCQVBQZPveGPUiUAez\npWxmtnmpqnGbsvVQ7dhrwTsFL8qSyOlmghLdBTwbzOU+HEBWnTk/hEMhYm0oYTdwGg1i04XbIcUc\nczK6vgVBgI1ymjPXnPGraxNy74WjPmmUZBODkvpihbJXaUfWgOCeuVzJJjcov0y3VZc6KnXnx+Ka\nsog05kBFlW3Z+PMItCfIvc1GY5Zag7by9XyH5TWT5j9EvWejWMFMn2vMNf9FHMHT+lsEEThAjS9M\nESkEReoQ5VqBoCk11XcH+4qiz1DFmM9AiIBWuvgLFB/eg/sKBEgh0NjdtgREEEd/DqoO3qZGW/1W\ngWulBwfW0XtCiixZ32d/JW6A4yt47a7hC8mwx9/o/mk4tspboGGhIlijROYhSeGQV59B2WY81hpy\nbuCGA6Wbrma/bkPF9cxyiwj2qdrRR/3Eauj35ZoQVBHrdraouXx9qfX6p3/0J8YYY6ZNjX/j3XeM\nMcbkV1oDLuco4cAjMMvJ6NOoiBRRfYmyoYkmjDUI5nGotX4CB1NxLBsYprR+21XWnxko1pTWi9Fa\ntrxmPbGLqGUEWkcqcHPVd9SmGoi2zRy011LPv/lAtvzBUykVHtx/NfTuAp6N/ldCELZ+S3tuugYS\nm4ivc4Mq3kh96sGNuAp0lnn+AnWituZymJbtbkYas5B2TlGALDd1X2uoz1O4bdyRjMWqgpYCRbGB\n26Uco3WrsgmAOyaoqt8blp57uK259+KSaDpvB8s2iJxh/EPmdAp0dQ4bL2jcaiWUhfIgVa/Uzufs\nq5uC6n2FsNcQdEePs1DvidayiqO5tV1GKRM1pg3o7Btfz3NQ3QoHauez4c/0fHhPJjJ1Y8x/Yp58\nfmbW8CTOwI1vlYTwLEFbeHOi+mavQYmgfFTMtcxty5PnQsaNJlp/DstavzYg27JD3ilQuJqD5PBA\nsAWo3l2iuHj0vlCkG/buCFRwNsdLiYHDqQwSEr6LzTa8lnAI1vTRZG3Wk09Uzwg0qwUip7AH6hYb\n2PuPZON/9/3/Sk8rasFag4CZolgZgqz0QPOu+iAweddbsv7PbNDNcF0uZy+MMcZUc/CKgnTJotCT\nhcNrwr4xRGXJgjutdqj+SU1RRT0DvVBk7YFvySb7AiCfCVCSLIDq+uKFOGI6a83RclprRh5biulA\n7Amch6Ha0a2pvaWbV0NmtkE37/019d9WTeOyYL/NwS0X9PT3p1MhRktkQzT24GUCvTJAPXEf5SH7\ntzR3omvdJ35Pq8LNaYKXnGuBmzGVVdkUQ9ThyIY4BiFcBxVlOGNMUMzKZTWm3ZnOTw3OzRmH815T\n61l2W/OndqK+zTPvq5yb1h4ckG21LQvypniovW3ma9Cmx7rfusOeCm9QewskZR5EDe+mGbIhQpR3\nl13dd8yZKQeabWePzJKyzolbDfVVtFF9PXjwNpzHIxQvi6ByG0ZjFtKnLu+AHqjlSlv7UmB+cxZA\ngpRJSlKSkpSkJCUpSUlKUpKSlKQkJSlJeQ3ltSJlauS+HjQUQUjhDbWP5P3dw9sakDfod+RZOyev\n3FnJM2X3ibRO4Muw5NUMyP3qwiMSELXbRcq9ZhTxzWzDZXMiT1rnGblvoEnWebylRCdjdufhpbyx\ntZHq1SCPPmUU7Urn9f1TFHrGKP74RNbvPpDnLwt3TWeiSJGPZ23S1fBcznSfN8jfH+WIuKJm8ARW\n6nRHXvkoVHsHl0RQOjOT/YK+IW929KXUMZ7BZ1NHNWJ+AuqG6H2poLa8IMf+eqjftd4XSidHbmMa\nEpExqJ7+M6Ir+/IOOuQr529eLXLZPJQnuNckj3ykvrmEc2G1gYeD6EumqL4sgeDI5kAGdVE3wqaq\npTgfUGMx26AeBDO4cWDoBnGzaYGKQA1ltomVIGQDPjiGeQc1o4Xaf76W93h5qrzlYU79uVuGG+C+\n6pHD450lb9oiROG1yXs0c+6P+gbR+CL1GN3Ie3s5kq052/Li1gx586Co0mXUWix5n1fwKi0MyjZx\nhJaIRustzcXwfEO7iSCPNJ5z+JmGXfVToazn5jzN0QEKNvMeCjSg3CwbuJgDgzoRjxCW+eyaityi\n5B4o6rRLhNHZUuesiooyBVN5pocZqbpVlmq7VVVd8tsKpW1QWfBgqo9zWYOp1pdWBIqJaM2csU3B\ng+G4jNWQ9Yhc1a2U+nwM8u6Qvh0PdP2UObIA0VK5ou+3ZfOX8H9kTrUuRahBhUWNeRb1D9dhfYDL\nJEKBwc1qDDNZkDUo2cyJyg37mhvVptYAByWBEip0GfKUpz1FDOYfqV+tA/2u9U0tqNk9FGGIlO40\n3jbGGPPVhaJxqR3drziUja77spl+HI4bqv/TliIXeXJ6L3+hSGwKlJUVc4PNNWdvWwYTuMPINY5K\nmlOrjfqvZ2SLvU+1pkxHWmNMnahUhzWjrrnqguD000T2fa3HSyIw80jtKxc07qs56gR59RugNePC\nKxCNM2ZJNMZtyDZD1HHyoHmyqMTZZf1mPNG9bzqxmhI56Xdk030UYS7XqO/AQVXdl82er/T9EmSg\nV9fvLPg2Ikt9nulqToxmGrttOBFSqF2UQ+Y1vB45kJQTX/UMQOyt4blI00fBBIRHqHV0aJPXXVaf\nd1F1ah3Cp3Yg264fww3G76/n7J0fqj0P3SP1BzwVty3hl7LBp4+1VtQritbn91nvI41PF0TJIiOU\nQdbT71Ion23D3TNBoa3B3H70DmpUqGT5KFRYKOM4IEtDm3z0eC0CKeMQDSz2ZDwLkKH9zUv1pbW/\nMYMFUceW5n4lViUBMXkFD8o//5/+D2OMMZ1jqUjtNDVHI7iNGtvifXJ97W826AuHs8gEdENqBjLr\nUGuTIQqaXa6M62k+LYm0eqgtZV14HFCmScFz4aIW58BtMkGhK+sz33KyrQZ7+XgFzxtonTlIihlI\nmfJQbUl9ESv66fot0Jg3zLHblhPOfR3UPx404AwEOfnlE6n2DM5RxzvRPvHX//5/ZowxZoPyTpZ1\n0d+RDTmMSQR/lAnhmRgKjWAVUbOL+e3gWMjAYbCYYyPsaxn48Nxrzl6xYpqt52zVQdt1qIers1OZ\ns8gCpa7iUtdFKLSF8MitmPOZQHMwrLMPtlA7vAGZxHndAnrjTrQ/XoD8vsucbnK2+wTEqeui/udw\nhvmKMwP7VAb1Ur+ptWG1UP0GQOYbKLNtTV8q4qQi19z0tY/VUrK3+l24byL9LlPUc2tFXXcG3Ym3\nGZvblgiaouoYbsKN+nKxgP8ShHUEojjLvUcp9X2cNeBMNGY5VEtXVZRg0hqTi5n6oDRRXQEumpyl\nc2wEInoNR0med5CgoXps4IoyW7rO4mwAxYwZcV7cQqY0aGndW4NwsVHQKh/I9uuoDwEyNe19eH5c\ntXdj1MchEjstT7ZvWfrdDuivwQmKX45sfntLHDBX8OMVliBzOC+aXa0JIQqLUGcZD0ThZsL7QwEV\nO85mY5BD77wvfrr9b31f/ZbW3F4+1fvOFNW8BXwkPuqyeYD/MT9RiPLibcukoPvu1WNEjyr+9K90\n1nOaOgsdZlkLQq0lbkprRAlOoNkKzkzei45RUjt8R/ufU+ZsCdIxBXowBfLfGGO8KGPCaGKW2GQR\n26h7IINXZJqAgM6hvFivaAxHKH0tQRWlUB3Kg4Q5YJ2s35U6Z+fnf2mMMWbFC7XbgkuGddlGKayC\ngmwGvrXxT3iHtFG/7LPOGH1ucebxLJA1qKpmqqrHnPXbvyJjZoFS11SKiJX31JePHqiv9t+CZ4k+\njnmWCnChhSjrFuDUcsq6fx6kTLoN2rWhvfj07KXi1f9fSZAySUlKUpKSlKQkJSlJSUpSkpKUpCQl\nKa+hvFakjI82/Cor7++c6EwdD9twSk4+ii39NGokd/EOzvHYkQ+4JG/Sscm5fSzvbBrfEyTSZvAU\nBu6yvK65Jy+5V4wxpgUXSwbvsU/UKbfGM4fyzLfr8qhf4LE//0t5zPIZ3Te91PWHFXl7X2zJ47ZX\nUTumoAHmgbyb2aw8cNtlPb9HPmMKVZbykdq1JG/xaiAvbu5A122j537nUPW6X5ZnbvLMN2MUaixf\nXsYu0ZpgCH/NoaJVEazjtqO63KCa0Ypgjj4SE36lpjHqj+m7SJ7j0RCVnZ+RP96TZ3nvjqIw886r\nRbct2ODLZXmGU2n19Yb6zQby/I878uCH1/r7aoMy1qH6vratsVgNVa8vXqgfCO6YLHmFoYnRVoQK\nUM6xyRdcYJOzTexdJWoGJ0MO9apiDDkJ5AEvwn6ea8GfBEFR50rXdy+lKNMiDzOsuMb8B79n5peK\n2Hoo9xRICs5eqh0RkWKvpohuHQbypSMv8CxEsYAgjwNSarzB018HJZFTRDc1l22msuScLuAg2CVH\nOSQvvi+7mR0Tqbd1XRavd/FI1xWbytf2QPpE8EfZcFdkPFRY3lA9d2vq9/XpSw/+v61cj9SHgwtF\nF6otedYPtlQHyya6AAopRWSvkIujy9gSOaizotrU3CjqcY4t9IzGukrAtXtD/jQ5tSvma48846al\ndWYI+3oBvqJNSbb5xUSe+QMbhQb4MXpT2Wb2XPX1yeENiDSkUGMKUCWJc/+dmmytBsKuTHRndKbn\nuBv4RNIa6yzR9hzRfX9ADqxPrjBEF9ZU65NzV9+PBmpvGEe24TXJuKr/wtVacnqhfhw909zcfyDk\nTGysdyAAACAASURBVMrTupV2tHY0s5qzXV8Rl5D2LvPKh475ioYT9fcuaKwo/FcUZ25RYjWqfFX1\n8zeKPm2mRJKJ6KQz6l/vUDwamzb9Th57/2TG8+EFgeNhRsJ5zHWRSoOQWeqzm0IBB+WhQk12sfI1\np4eZoQmz8DX0UB4ATTADXZn19Jul0VisQWysWZfCNxXxWzY1xs+faOz7qH/c+y1UnCpEl8+07nTz\nasujPVR2QFDaXUVgx6y3nivb2oxRYJhqns7YGwtllA5RpmmBSvBBX/mxOpQLVwBqddc+0D+CYFNQ\nAsWl5vCY9dba11zZvaM+nVwTwWTudE913VeOuF3qj27PA2GMMVcz1bf6TSmuPMJmBrTnNFR7XZBG\nk4HWZwCmprKt9XvlwFcXqL+9vPaPCxBPpRdaRCpptaO+0frugggag6pqwEGxQAHSXageZ6Df1k6s\nkPOSgyvdzJpyl7XO6N85iKg+HGoe3HKkxZt33/2eMcaY3ffUv+YSZJOndp6A7tuAqEqvuO9Ya+ui\nqg4Yfa7vq01svNQwVRAXG843FRDMffbE0gKlJnjs0qA3uzbKkMtY1Yc2gqDpIaJ5cSmU1PoTVDbg\npskfq2/vBEL7TLG5/L7m/4PdHxljjFnB4/B//+SPzW1KGsWtCFWfNevnxZX2xNS1+rgwYs/bBw3V\n1PoyhSdi5WkMc6g2pW84p2ZRUgtRQhzHan2gZbOyqSooigkcgm2j65ZzrRUlW3Onn9d5dDgDhQrK\nzon5JNact7/UWN77ltaQq82/rpyzQaWqmgPtgOrgoqnvt99kjULt8GkPlMJc7Ys4Ey3gwyjOdd9q\n8z3VewHiJg6E12ICD/X36p7mUHGJyhVrpAsaIwSxnrPgOiuDsEq9VDvZpBamAfKmV9B+vs5ibzPd\nNwfqogiaY3Wseq5nbXPbUkhxDn5TY1iJ4BSE0zANyV/aV5vTS9TaWA/T7DnuTLYb1dXGw5buF2ZA\nmnxJnzSEJOlzvs6yN15d6Xycj1Sf7grUWKC5UgSZMRmwjsLLGYHUy7BePPsrIekmF5wFUFyM2rpv\nY8DYpmVra9CsF9hA6hpejR14PTj3dVD1bCw1d+Y7+t26y1iu1Z6hq3au4esclVTvbc65wzON0fBY\n192Hu9H2tP7fgC6LQIikQWRa8IuOUG2th0KNXfFecd7hHJxWu23OSAHvJSnWvwC1u9Urqv2lGC8L\n9FmM5ggL2ne3t0FiZlEYg8dlBidQtQz6mXffMK+/BxvVp8s+vRXGKA94V+BIy+f3vq5LwauY9DRl\nopoWVn/MeSWtfzvw0Hic71Yg4SIH5AmZIhZIuGt4cT7/hfjsTkFJ/a2/ARcqqNviuWzAJgsh14K/\nEsTMYgx/EmPoY6M50P1TkJVZ9roZXGUZ+PisHOdV3uMtzpfbO7KNOapwV5wHRxdxFgTntprmRpts\nD+cOaFK4F8spEDOQPu5v4c9Aabf8TdSQt/WOdvyHQlL+upIgZZKSlKQkJSlJSUpSkpKUpCQlKUlJ\nSlJeQ3mtSJmUB8fALvmNGaJC8FW8+PIjY4wxBbyduSLROTzuhbcVlSqiapJF2WeMN3Q8079Zjzz8\nEZFwIhWTU3nAhgPdd2dP9QnK3I9Ic5G8xhFKCqURak8peTEXeNLnRHRSI3neRpNYp1zt7c8VeSg3\nxWUT+YoYn57JU/gAzpo+XuUUUcZGXdGr0kYetzHe9PX4hTHGmHeaimxkJvLslU/l0Syfy1M575yZ\n3BjuDqLlRwcwQC9h79YQGK+hz2Oiv9mR6vbM4NmHt2L4QpHYdl2N2yxU90peXtJ+uchnPSeT1VjV\n66/mST77Um2MQOoUUU6pwPzvbqviW31QBRt5tDs9RYjHX8nrmz8kN35LY3xAjn4GpZfeWt7RSVdj\n7ON1LcG9Yk/gCIAIooASjHcg26jMYQQnf32BIsBioev9iuqf2qD0sNT3xZVsaYnqyDyl+xQu1c7c\nGkWfPP0GI/pyIlvqH4N2qMgm7JrmSoGo3DrQuJSyKPyAAiijXpICaRNERLXIHS6hYGTgSpjD2VOd\nam5k6mrHJfWqnGoOfbnU+A//iSLIdkZ29ADFnnlBdlFALcBN677NPqpL1HPh3F59qdtRtP9XZ1LD\nyGIDG0uKAWuiJnWQaRXUGFLYuKtpbNyp5osL50EmrbZUQ30/W6pvd6pEqx+jTOUq4lmFX+lmRQQw\nks2PiWh2C3pes6U+X5/wXEe/W5PTbqOmMScSbKFc5ZB3HLH+uKFsMst6twFtUK2rb52yxnoKn1SF\nyOnsQvxG2YKiazbcAOvRgH7TGMzyeu7iGn4iECD9QJEBH/W45Zz+AWXg2KqfRWTkigjye6Mbfq9+\nbZNja8O34cMpMyZ3NxfzWoHiGoPqc0FxbF5x9zpifV1XtYY5F6pfClMfrjTnarugFlay6atL1bc7\n1TjmM9guKnwhkeMFkewi/eC29W+M6FwU1K72mOvhVVqhzFNZW2YeI0uwuVRGz7RQq3DgKYsGqtMN\nkbANe+jervaKzlBjcD1GyYQ9rViXTT4baP3onelfT9PTzBt6zgreH5NTPSyeN4tRrQ5zCr43FwWq\nBZHF05UifQUidy24B3IofhXos7Gjv1fhnVjCATDu6O83ec3lNcpfhSzR7fvq+81I9yu3tQfmZvC2\nwe1l779UJbpNaTRQy3M11y2UgHqXql8KpGCuojlVrwv9ZRnNiTaKZH2i7rHCWcHTuFTXL4wxxgwv\nyLdHiSu4VrvGH2qO2KhIRXvEzXz1q7VHpBtEZJm8+4Fd/LoNA6tmJkM955DrlzeaWwOUgJxtcQ28\n9x2tkTlQa9NI+x/Lsak6en4VzpveBq4L0IClA61VNRTGMmPy+XPaPzPLnolc/S1GLEzh6nNjbijO\nJMul1q8M0e88Cl9RF64SlEPGKNPkYqQjUep8UWOUg0sgDxdCmqh+pa+ocI+FdZnSfE8XuuZVSghS\n0qtpDpyCODyjb9ecKdaBLixty4YiEDTWqepZeaD2e6BYJ8UYgQOK1wKda0CagHRJlYhMY9ot1P5G\n8Pi0qvp3NOF5cOxkQZ5UQW/117pPLidEYg9uhSJz8BEo43MivhsW3NP+C/0epPv7D7V4FEuy2Q9/\npnP7Al6LVJnItQc3IzY0LKu9Pvx65zGiJqP+DBqyUQ8OiyJ8WxbIGRvVvxrySpeR1opGTv0dqyt9\nTZBijMnkNyZT1XOuxtr3CjXZ6l5f/fEMzrkm43Hqyj4XcN3cprzz9g/Vlqb6boTiYIzGjdbqu8iB\nh7Ium4+VI09vVPdt5t8chNq+kW1PsLkOaIZhBL9QpPW8s5TN50PZeIBCZYW5tgK5vGQ9y8BjF7RR\nX4UfaQqKrEL2QqugdWIzR3lrpPqH2KgPorAAj2Ytq/pdO7p+BjeOhzJhMY+qUgjPXx/urcaRMcaY\nxUx7fhf11+KM/oLXb1FSe+wJqkLwCc63GrSPdTNQ+/qoqdojtWd3BzRrT7+/sPU5A1nMm4cgTIoo\nTn6X9yKUNdN9jas5BR0Gt9lty2Cq5wIyNluo5N19R/uZO9Nznn6g95lVTnZxH06ZAE6esKB+yR/w\nfuCrv1Oc82dd2UUEkrVUVn+3Si85cLzGjgm8E5MagRR7g/PLUvc4BAFioUZ29uJjY4wxj29ACnNm\n8OElq9dB9Pmg8B3tzbWcbHWTUV2cA12/vNKB+JA6tQu8czF3QjhUK3n4N0ONacnXGFkgL9fwnU17\n8DYhGpWuaG8OXPVhBoTcbKHPFZRnHVBQIxQw8wF8mCXOjSPNqf0t2WqRc/UUCM/ZjWwg09Lnt0DI\nuAYeT/s3q4YmSJmkJCUpSUlKUpKSlKQkJSlJSUpSkpKU11BeL1LG1+MnXUW6Q9Q1Bmt5qGy8oI0m\n7MrwY2wT9ctUyTmGSXzUl1e091j5j3kiGVYBqEpPEYrqVJ7AK1AU0548eNZQaAqCRmazI2+rcfT8\nCR61OyVd10F9ZUCEtJzSD/tE8/ooStx/V5GI2lQuu2oB150HfwikELmtFv2hKGMWz/x0pnZe+vKC\numlQK3gw17YiNMU+HDjP9PubCtHEqTEjI29jdIUaxqmiCi7exmysnrAjr2ZQ1jN6J4rWOM/VRgde\njsVafWa3FWnrDuWJPT2Rd3IPXooWKiCLa7XxZnH7aIMxxvRi7gL4fhaoe2SJxKWL8GTsgZ6aKyJZ\nzsJrcSav5cd/+bkxxph8SV7Nuw+PjDHGWEQYDCof5Yff0HWxChGs7ctBnFcsb3CH63M9jXGQJe+Z\nqFUGhZVaoPoUqvK+lgryspaNokD5XbhV4Fr4/CshTB6PVe+f/pmiTk//4U/092fq59/9sXiD3v3B\nD4wxxtigKApZ1KTo7yyKZoErr23Ng+G8Sn1RPBgSiUh3yRfHXTsFleYO1a40kdsCiKmdoSIIHVSY\nWkQMrq9kX9c3QoNllihe/FAcMxnUoDYr1ac3+ELtOJPNRjEB1C3Kd7/7d40xxvz2j8XqHu6qzt6l\n6tw7e6HvA82fFKI6N6gv7MBXcQWfzm5edehzvQufRgnFhHnM5G/j+SafN3Zxp1H3SRHdcsmBj0Ob\nUUvRsDQKLcEMlaOsotQh6KzNShFTn0hAtawIwTU5sCse6KGs4sOrtNrW3NgCyVLO6N88SjjjM933\nzlsai+hA7RlPyIOfaV3LFWRjQai5M53KxixQUpsuyBqj59+A/trLybZyVdUvnVP7FvBZrWLjWqEO\nRa5yqgR3F5HiBWi2yCHyDbJkDZrK70GIccuSRZlo3EdhbgVCKQcqZEX0D1ThbMma0lD/HdxX9GoN\nZ9l8As/JJYoWV+wTkcav0iXPHuWJKrwCpgQHWldRwOUYFa2oaSL4HsKq5vEc/gwbJF1nrDaUc4TJ\n4R4pFHRvP61ndonWLMaqa+3wSM/yiZoXVKf6d7U+331DbXNy2KxPBDBg7/TV1yFKWXagsakFQh+E\nGV3Xj7m3UEQI+/AKMZ+z5MA7W7o+jy2kQan+f+y9x5MkaXbtdz3CQ2uVOrOyVFdXV3dP9wgMZoAB\nZqAIPIAg+Egj7XFDrmjGNf8F/gdccEUz2jNyQTOKB5AQ9oAB8AaDxgAz3dNaVJfIzEoZWoeH8HAu\nzs+7ABhmmL2qjd9NWGZ4uH/6+/zec8+ZgKJYTDSW4qBdh09QleuQ3w6PU4GFequgcr//uZ5/MdM6\n+aD15Thl3LradVJV+bvwbmTI0bcdRdvGPmipCSoZC63rV/BkrGgvtwyXwZn+fwy6Ku2pPrOlxkAj\noajiuA0nF/tks625vljp/6scz4XzK0O+u7OefVGHcnrD6t9UObeKqKbc1Rgr9TW2y6D2nh4TFZyr\nvcaPdd9KRv8fkYffnqo99jaJaoIau9HQGSkGkrYD7CwO91G3kzYAe+aEfBbUwWOshspQsZj+DyWB\n5VGW6WTZw2i7gqP/F+BZmh9qDBZvqq/Ta6LkcbXx9IIoMqocLuiEaZU2nHy5dSQzVV+3kpoDZ+ca\nc9aBD62lsZ0E1VYpaa/vdNTXw6J+fy+pvfIEtNMeEdzJKeg41EkroIKdhOZ0BgR2oqrvV6uQ6wU+\nuR78gUTVk3Agcoy1MciXULklOeUcHqI1zvR5nNZY6cGTMe1qrMc21b6//JLOfnXQwu891bmzCNeW\nj0LPCoRgqs59Brp/LQV3GQpizadaRyeovGyi4JhCQTI31nPdKjweU9U/VgVdDJrZcfV3DL4mZ/78\nLFGaZWzg6O+bjINgDhcR+0o6C7oMZFKmAOLKD+y6loWbsPmMMlGWwqnaYAl6fwIfxYrzsova5zbr\nRgUUpTdmbKHCM5mozPUG6nc5fX8ML8/NpOo2YZ3wR3C5pPXcArx0C+YI4CCb9Jgb8IWspurTRVLr\nyfFf/sjMzD59pnLcu4OyY1F9vN+Ad4c9cMB6mqUPYqiYBhbyfKieMVARveZD2kNjvrQL1wqKjoMW\nalbweyRZ9rIFFLZGZAlw7u0EOp+34d9LwuESgBSZrnV//0Tn7CUcki4KPUO4KRMoQaZArO6U9Zy9\ntJAqiVtae7620D56XeM4bqOu7r8uqp33b+q5n7xzpHqDdKnm1V5z0MTpS3iytlUel/O/xzuj39X4\nGqE2leKc76AWe/5827CR17JVK7A86057oTEwAKFIYofV63qf7bOeb8E71kXBNsx0Obir99ubvyGO\nx9klqnNFrTuVA5VlZ4P34JUKUyiDhkIt1Oe9d7gkGwA01or5u0Blbc57uIe40TSlcpQ4Q3krtWEe\nBcgYe1Rvj3c53s+noP/dDmNkqXVwA8dAFjTxFKmz4q7Wv6/s6yzV7qh9YnM12KcfqnynA73jXH4E\nBP5nWISUiSyyyCKLLLLIIossssgiiyyyyCJ7AfZCkTKroRAyH7ylSGyxRET6ZaEccjfkzSvdJury\noSLJD69g4r6SJ+3BjV/Q76BJuYXHqpDVfWZP0H4fynO1WKvaWaJ03T4Rhgo8Hil59NzKoZmZzXvK\n50NYx955T+zJMRQJNt+USsfWpn7XfJ+88KS8tY1bsLtfEmGB1yPkNcmX4DJYEL3clZd0lJDnzsv0\nuZ88gZmSPIuhItCY/NJlT1wR8y2122wM50R+11yIbcaTE+6ltsvD3L+GV+eMvOj5RHXYAPER3BQ6\nKE5OpnVVpzEs87YgEkB042Kmulx+X2UKyNFMOESlr2mv3VW0fl3Qc5Z9PL++njPpwD/UV3kdwkGF\nosbAvTti9i/U1Fatpur/wQfvUS5yYLflzS2D1oqRH+mP9JzGkmjUA3lBU+Sl+3j2vadqt3FTbtrH\nQ0VrapSjkSKCQFSqh5LPBlGrvbtCLWzfUfSpeqA8xFd/TWPrCmUEz36o58NftMTTPhuhgoSHvJYR\nX0huobFQSOv3cyIJcyIXuZX6LYDjwemofJ2M/p/vwPM0U5RuSX8nSvJ2OzG1U53Iau1lqZa8Sr9d\n/BRVLKJmU/hPkrDd728oQpRyhVByQtb4J7jlr2FugajJrpAyFZAb/ZyiD9kM0QGC3WnY1zer+n+2\nDHdBB06oGnnd76tNAY7Y4QPNgTYKX/kgZL5HUWYJZ0zYpi2NudSu5vdsAlv9QPM3m1QENdFHTamG\nmgQe/vlYbdQpqM0OS5Snqvk+aqlgTla8FgMUWG4FRPbIhfWLKmeZvh+ARFyD5HN6RIpz6vtlRhGB\nEmO1izpHEhGL9FqIncFMUTRvRU7vOpybatd0FxWoIgoDCK+liV4lKkQ8UZLoktd9GA9RVJrTxbQi\n4SO4aoozoo+1L7d9/eTtt/U7UCBOmiihq/uUl3B2FdUPGSJBFVSoVnN4qMiFtpbWzmEAx0GVyG5H\n/5/AoePCC2Bhfj/jrXoolNmjI+1//WT3C96zIOQ2CTmcRkQuSxobM1TokgeoKMEVsIBv54L1e5kH\npZQB3RX2jQOPGzxG5x8emZnZ5Vzr4xBuFr+qsTnrq279EHnTVnnyKc2JLRQGGym1ReUVracFuGKO\nHwuehoCWuedwAJRBN+S0VydC9bUFigagANIxrSNnV6rXjtLZLfdA6/vWm4dmZnaFUsOjP9MFSw9J\nhGtasIK7AMRHqqy+Pi+ibBagcpXQ2JnsaC4vPnysv1M6S+RAJHWBfTQ7Gjv39+BH+TqR5KcqXz6N\nggSR5LNNuAACjaVtV3Ng0FT9F0REZ6z3o+n4izrkbWld+FkefibU8OWlon3FPAicqubwaqnoYc3T\nOJu5ivyuOIvFhyp/mv2huwYBG/JnoWboTIj+wfvhojiWWc9tldI49xMgPNizxijs9UEuJOGISYDo\na8Mp47pwWoE0u9xS2XxQqhU4SVZEIEcboIJBOS1MbTXcBjEIv9teXXvyPPXl0Lt9+OSKcLh4HY39\nOGgmn4isyz60s682ffiuIqWrvOZY5aZUSNqP/0HtkThUeev6fgMU86Ss+nhN1WNd09liMVRflGq0\nW8gXAjQpyfnPQw1pCv9fA/6/AEWv2UNUR+BYK9zXfe6+8nUzM0tvqq+PiOKv4aVwY7ruB//zH5mZ\nWetKc/T2d1Sv3Q0Ufwhdxx04KuAbrCVBA3IWWXCGScADkoDTLAkIYhUHuboAvYcqTODp71WFCPdM\n7ZYaak7FQQCZmTnpqZVBqLZjurGPApGTBeUFqiTva+1scaZMgZi9jv27P/oLMzP79K+FLvrFX/y2\nmZmNNzVGSqD+kxndez6lTCP4KeEhq97WOQ4giVWzOlfNQCOdPtM6eV4E1bDQOW040/091vtSTM+d\nwN3iTHnXKsDvFPYFHC/JjPoi5rGvZLWezdNqK39H5YvvwlW4UF+1WR9HIGEO2M/aICyLgdb7hHH/\nXbVxFZWhcYpz/QUcjSjvBnDk1O7rvoMhe3aL9oup/D5nmAFzMVTi3UVRy4FHqk/7Jjz9v+tpDhxu\n6vvTE84sR2rP8wmoZbhrnqEQ94T2XYacX3d0pruuLXnn7FwcmZlZtqv+b9TVHtUNrfvJl3lXRHko\ngcppH56mTF/reZgdkiv1KSeo5QUca6j1Jfoo2M1aX5Slf7S02dXUerc0RnbgkQxaatOjNkp7nMMS\ngZ7Z9TXWHh/pPPhR6y0zM0u/IRRVdkNtHIdLcLbSeukMtM61N3TWSMRAwMAhuALF31lqXSkyRlLM\nlVhNdZk56oM2KNok60AAl2OffScOD143oXrUCzpz3HCFbnoS13t+/Aq1wJbW8SZqm8uGxmbxnvaN\nOuiw2TnKwy21eWNX60iPs1L/TPeZM4n3QVf9LIuQMpFFFllkkUUWWWSRRRZZZJFFFllkL8BeKFLG\n8uQb3pAHPgNfReamPHA9eEvGMfFyJG/D6H8l72A6C0eAL29mUJQHq1aW93U6lqdvTU5/YfPQzMwS\nK3m02nvyiL1W0P9XMGF3PjoyM7P+kbyIjbvy+JfS8vwVd3XfCcoxIYvz07407st35NUdefKCfngs\nRNDSE9KnXJE39UoONHv0k5/qeng2Nl8R2iAOUubwljxrV0fy5AWgXSo1RaA24dDowGlwAX/KfAd1\nkO25VVFq2aroXtmb5MeOUYoCGbK5oaiU9wn5dr68ja8REbyaKPqfILrt9+QdDTbVRvfLL5uZ2aeX\n8kZOmvo+VdP9ajvP2b6vY4ulPLy9E3noJ568kjFyKlPbqntlR0iTOJ725kjPf8hnpYSiCsz/qZwa\nP0m0JYNXMwFjdjmm+87Heu4QXqNUSx58H4/5rE10CXb62Y68wneJrAZ4bTMJtU+MPPRqRRGPUIWk\nTcTx0768yQvy7L2kvMbf+u//wMzMXnn7DZW7hHoJUf/8UGOnQb63CyrDW+n/Ficvmxxk0vQtWULV\nCSWxNeiD+ZgIO0o8pYLGUu+Z6h0bq1197jdDacI/VX8t4KxIVuHfGOr7TJuc3rEi53NUWfYODs3M\nbDOvOfx5cH3VlM//WvPrqqOI4xK+n3lC96ihAhSysxcG6oMBKg83yGmdQtP+0k2tNw0QDd6ZkHF9\nUAUJUxtMiuScAsGJoZzgo2oxBs21Xig65KBU4Kf1nAwqTBOPseXIcz9xGPNx9W2ZXFlb6ft6QuV/\nNCYCiSLOAo6c1IIcWsofjmXfJQJI1O0MBQY/Rq5vUn3tt1S/1gHRp4z6JLZUebJpuA9QNHCojz/T\nZ3wNJwL574V93X9GvyyJYLigp2pEyHO0vweCJ+RlWqJkU4NVfzQM0XbX5x0yM9uIE/0HibkEpTYz\nQvfHKKFd0W92ZGZmH3+uBkuAOinv6T43d4USSU1DhBGIR7i8nnym+i26ak/HY+1Iae2p3xXCKbOl\ntSloTWxOBDGMpOZQMhjBp+HB/TFta96UQ36dIdxWqEdkmc9l1OZckIoxV213BT9ajLZcB6yDNZVl\n967GbIcyt1eqQxwUwAqeo1FH60CVaJl/W8+rw5nQR8mqDK/SugeHVUt796BNrv6h6pEqa93M9kEl\nHarezR4IxZEQKZ1PQFd54gLI/YLG2Cu/qb590tQcnmS/XNzp2Vz72yJgX3FVr6CBgsyB7vvylvp+\ntUbJZaXrBs84i2zoutxCe/7UgRuHqN1eSb8fwqtEQNqmqN9VGnC/jfVFC7TcMof6IGOmCAru6cPn\n5ADPTj4y/1T7ZHug/ikV4O/IaFz0jzU3XfLzUynN9VUAP91E/18Ttztcq12nnBecHBw3bdCG8J5Y\nibUVzqHxPGUForkAVyy10t+bayKKJf02wbo5RWmxhELLcKQzxLQPigy1uM9BpW7Ag3TJ2aA2UV1D\ndM/WK6h35uGj6KstxwON5YHj25cxjmU2DECLlifUWfddr1FBOlAfZ0FUn58I/XnjZe3R/iYKXMzl\nIKXyZ0A5rOEwSUxRXQLxmYJ3aQrfyHgCOguumUpR7eFV4LZCjSnVVx+nWCPOnoF42dR1t8o6l1Zf\n1hnwKlTqaum5Q9St1qgO/vhEa0L7bZ1fzxw4IXY0xkqv6kxWIKLdYr3P+3AJZVXe5TEIUtSPUqAq\n+g7jwGQlEIcr0Nr+MfxWNbglgXIOLlHMrKKWN/tHZ4l00ZZZzfE87RgHKVoOOS5p11RSn1lf9V3V\nr4+UGfb0LtAZ/sTMzLooGCbhE2oHWh+2OQ8WUHYZoGKXPwNRM9azO3DvjUHTlm9rzOyANL4MNCf2\nUapN7WqMBVn2EXg1lrwTLfLhuQ2urwTKWCDC56C8PBQdb7yic/3mjhCQb4IUfOOXUKlDNWgxgFvs\nme4bcsbkznWGyu+rvCt4R269qrPX/tdA+57o7/ap1q1T3h8yoL3GfZ3ZiijeJA5AqIDcy8EL1+cs\nkfbhzMqiRmVan2OcR7Nbau/NA2VbfOul75qZ2afHeodqfSzE5esp1Xs6A+HzTO+Gq2eas/0jIaLa\nX4IL0cxsmzkzgV9q1td+OG2hSojaLFPCXFBijsv5WtuzTdaoSLGUbexrfGzdQyXqCrR2W3O2C5eZ\nH0rJmdmF1zK/NbAkXFMZxtoz1t1nb/PS8IDz3TJUolLZ+/BtrkHDn36uvXqHc9eoqe/brubGQBSd\ncQAAIABJREFUEOXHpa/75G+rzl/d0Hut+4r+vwg0FuKgXpNpEMjsSUmyDlwyUAIyYFZJ9tC1nt9B\nkdIJOcxQGFzBS5q/0v3KMVT9bpFFUUFxcsH6dA7yBfdJPq7vz8+1vs8WarcRvE9OWd/PQI4PZ8/b\n/F+yCCkTWWSRRRZZZJFFFllkkUUWWWSRRfYC7IUiZTJQfm+ELMp58hqJLl18KD6S5lhevXSKSKoj\nD9prLwlRsiTv+vxdXX+G6koMr2lJzkfLx+WdHicVoZl68sA1UHLwk3KdjXJEHWH8TpILW31d3sd+\nCw9eR17XLhGFR03lDG/ug4K4p+tHZ/J9LWF7rr6kPEGnhWfxlsq52lKkop8M87NRsjBFqjuodMw9\neVe3HLVfcovI0AbKGY68w5kwkjOc2AyenDVIkmxB380DefPcLozSXRjtM0R/W+SghxFSkDMe+YVt\nEDYJ8nE34M8IhasGVdVptaRN5yiQXNOaPxUKYogaR/2ekCP5nVApi6gI+cH5Ld0/C4Ln5D2V89On\nastkSp/d4ZHK/668mz8k2tMgLvPr/+a/MTOz3U087PTd5ycam3NyNGvwE82I3hQNpZi78mgPT+Q1\nvjrTWHEqRDTONCiHDSIoe+TM5vTZIw/7oqk+LZBDWihrTA0XmhNOSpGKOVGheZ9cZF/XpWOgIQL1\nYwCCJU0ke4Yi0HpC9A2lA3+o+s5zmksVX5HZekHt9wweFA/lCCev+qeIWjpzEEpQOpTLGsM+qiLt\nERHmv1OEofXWu2ZmhhCPpV6St/w61utpDPdNbbl169DMzLIohU0GGgvJpdoi2YNXp6k+eALSbmj6\n/xNyQ1MJtYG7ocG8WoEMAaXlgpRbu7RdEaQI4QoHlFEWfolJHRUMECdVfjcg/zqGIkpmpnLGBxoD\nqxqIQDhbMkTvw/ziCvXPw7kwgt+pOEP9IkQOwtORKalTvEBzOgviJE30broJZwPIliye/g6RzmJc\nY3RdZt0kwjiB4KhOvZcDojS+1gCfqZ9Yq/5jF34NOB+2qFcrrnIVQEimPaGqgpqiaMNHmoOhwsJ1\nLb+nNSJdUbnGRGocIiuDBHn48KdMe+q3TBLVKRBEiZXmQq8wopxqz+xE7bSqqv02b6HC90z3b4ao\nkseq7/kdEFBQ+gzckbnwGVyhwJLZpM9SKnsMJEW3DVcJufNZcud9lGuyqNT1h3CQXKJaB7KmOlcd\nXe7nVPTctMeesdZYrmYVIS18BVTRACUG1EXGH6ovh03d378QinNWVLnzCVAKWRRwGItxR22DIIEt\nP9bzgnvwcoDg6Ga1NxYd9ZWf1li6fE9cXjMUCh+9p+e+/CviYNi8rTbud1DGuabtZHUGWME7EnfU\n12mi/cFMY/G9T1X+JIo+GfaHekX56V5c9Vis4KIB9baA0+WEueV+RfcdEY0EDGEDFGB8ov8u/FUA\nqKxe0qBpcxZYBM+j+JWVZx14AbafgGAqs/+iFJTy1F6FgvbRs6n6Kwais5IjukfUNIaCmnusccBU\ntfET/a6DClQhprWyDBdQueHYij3EWlo/eqjrJOuaX3Fy7gegfrIgZDoXWl/6zM/WhZDCW6VD/Z69\n1z1Un90e6PNwRwtNF9638TzkqdA5rcmZJz4DFZX9crxD+SkqTnBSAQw0Fz6jJOSG5SKoJPg2xk+0\n150P1VYPvqbza5657QUocMU0xlJAGp0057uRyj+ZqrwJVPpcOHF8eAK7nAtT7M3DMVwycM0EjubG\nQVXtlY3DwcZY+vP/7Q/NzOz7KD4ePlD5fvkP/hMzM+sM4KIBjbD5TaEcEuyrp/CWtFBreg3eJ6aK\nVQbq1ysUbXpXQh0kPJVjCtrXAcmZgrejy1zaAkWbW6FghjJkOg8CaQ16m4j9tAyKy8wm65iVmVtO\nC+61HfhDTuHvYi2dx0EqgbZzVs+5af7/7Dd+79fNzOyXf/tXVWZU0M7jKFNNUVELtD4n2QSqOfVJ\n4U142m6IYzDLeSnBOuOxHiYnun4HNOaMMHsBrpLcjsbQqAdqtqDr3QCeIlC1mbn+H3LC+CihzSY6\nfydiel6MdeQEhdfkuxqT5U2dN+dzjeElYzRUi3JRXFsFGtsD9pe3fiQkUeETnf8e/UTrejmF2h9t\nXgEB5FRBM/W0fq3h7fRohxSIwnxSY2QIh0pyqjnfKasdF/B59o61RmQ8zY0PU6pvqwkHCwDE9Lbu\nv19Tvcq3dTbJpDV2Wo+FpHkYKkL+5V/ZdWy8Urs0NoUEjc9BOV+qP5ec+9N19qUVnGMXcHehTpjZ\noZ4uql+P9f9KUf3ighos7mhcLFCjcvrP+bSKztra9bpBlWK9EVyMbQ0qwLbmP2I9A3HigsJ8/etq\nk5uB1r0NUL5J6M4KdbV5FgW/el5Iui04WpoDvb+/d6mxsHmpvXfUp0C8W8y7qJbuolxWZKzArzQD\nMejxLhPj3F/MqC2ncE2NH4F6ImMmmVdBm6DJttM6b+7e11i6eKjvWyhKvhSH3wmVKHemcl7Ctzde\nMdd9/e7JDzRmd+BJsv/W/kWLkDKRRRZZZJFFFllkkUUWWWSRRRZZZC/AXihSZo632MMzFYvJFVeE\nO+HmTfmM0rvyVLVhyPameMjJx86gIDQtqDoPXlW0qtGQx274Q1AHj8hFI2oVM9ifr8gxxiNfvSOP\n+9Yt8r7T8kKWyHEdwiKdL8sTd+sloTcyLWjiydfMgp5I31J9+kRS20Mi7ngYX/qWPIYbDUUlE0N5\n/B6/JY9ckvBY5VWpyyyI/g1P5VXOrkCBEEm+VUdBqI6aSBBYIpCXsPmM6PulPNxL6BlmHjmbnryV\nhzWp4RicId0j8opdeXDrd8htf6bvM0Rfjs+F4IiDJEnDrRKHqySOqsd1rXxTY8TtwMmCt/NhW9Hy\nHB7fak6e9FMVz7ar8rLuvHGo6+DfmJ+pXAGRgEJD9XqUFjdBguhMFq9txzT2Fgvdr1DT76p1oZ3i\nKCRkiLInyB+Pu/IGF19T+TbIW766kGd6NURBZyzv70FOY6mG4pi3kPc4CxfQBL6O8Vj1dlEcuHVX\n13lElJMpEDCoYwGmsFQBlngfdnof7pyZyrVwicTjXa6g1NDD67xMKFJS3oYDhmjkrKM5dbHQp4Fe\nmJNn2oVLwgX1lds5VH1hWi/e0BztPNG4Wfe4T+z6S1ODPOVgrTFYelnR9CyRyrNTVBWOVIbSjspY\nHuj/41NUHBytC90zzb8ToCjZbdWh1ELNI6sxmCeqsfZRBgtA+BEprMX0+9ZU1285RCSLoIuIJgdD\ntW0G7oV+DF4nXxFEFxb6gqf/IxJkiZBbAARLCkWdWkrleYJK3XYN1FSg+zc7inTEhiBHdnTf/kpz\no5yBjwNum/xaYzUF8rCQJornE7HoahGpgqAJE5u7nsrVAN219jT3g6X6yX1GfQr6PlHUOpl+BBs/\nPFQDIs3bC7hnMiHaigj8NS2LWkpszPPzaqcNAjGluub4wZ6ed9VTvRdP1a/Dlf5/cqFoWoO5mzwA\n8QRHWjIOAvSOUBupOnP9+1qvL1GwCFDSqRLNqxYL1oaXooVaznZc6wyCe7ZcESVmz4tdgkZKw8sQ\nUEfUdAqgCUI+jTGKUquUIp3zviKXw89Qjpoqup2uqy/zt7S3Jevqo9maNjhCwQturdW5xkp9TJT+\ntubeLhxlC9BWodJJalt7dBpVC6+tsTrta92ZOnCHDVCYeU2ddLcoBN2qozFyTE6/9+RI/7+rhrpz\nV23/lPpc1wKU2c4n8CGhwLJATShPNGx3S/VchWiMCegw0AjTM/iiUEJLMieTPu2e0tlgH56iLLQX\ncRAxI9BjaaJta9aC8Vz9+/afv2NmZp+cKKpYrT5XdLgcnFvrAgQrefzhWlNGnaWWQWEMTrQla1Jq\noectWH/9NlwW8IlMyvq8AVTGuaF2thjIIaKZfV/9GctlbXOJalJO82i3qPNVht3pyNVesQUvW6fH\nmM6oLW8daD0vg1wooZrU+RyFljg8SVcayxNf37sOKOATOA1QSSseqI3jcK6kQ1m5a9q8od+NiGJv\nwMu0aITKh4qal27B93EuhE+M8+gY1PDRP4CI2VW5bsfhzQNVam3VN4DfY5Y8NDOzDMhuD1RDytf6\ncs6eW9zQ/Q7LWs/cHY29KVwHuze0zjbh4Pn8++LN+PBdlbPzgeZ0tQJCBCWYPFH3T01cEZsrzpcL\nUHNZlXsTNayp8X0XhPu5uCS6E43FFOuezVXvYqgUB7oiDtdED3RJJc55H/VAHy61BIigTMgpwThx\nUWVZO885ZRq5pTkjFIgKGsPxAYgAlOZCpKvLfQugK2K5qV3XVrwz5Fh3uyCE50DhijM9I54AObgC\nRdZm3hX1+8qFkNxr2tanzxYhCpb5OYSfaQ0v5pOFIIj7C/pA097Os7pfCqXXwlLla1bUtnF4MEKV\nzTWI+A9aek7gqm0/+Js/MTOzCWo/mQMhetzgI/0f/o8aXDU+Y3JzBGIyrc+Qr6NWQg3uUO9ARQ6u\nR5xhhmXQXvC/pUHgLx2VJ4nSV3ql9dVB0cuDk2vJXF/w/EwKpR5DtcgDNXemuemj8trsaG4HvMt5\nT/V3c0u/L6K4G0cNL+5+OSW3OGqvTH0bp/X8Z++I06aeE4fknQZZF6CNq1VUsUD8FA10s5F10lY5\nW3N9Fni/2C3oeWvQcaPa8/IOshnzYz07Z71JNoXOScb1m1pVfZNjPvkrzWfEzKwCksbNg5xGiS8G\nV6HbUBtlKWMbDtZgrLFRD7ReteDlyW6rD4IcPHu+ziLjLc5da9Zz+IbO8ryTMGaWqEQVXBB0nMvq\nPH+9Zk9FPcmpwj2Z0/WpG6w3FdBoZfkDdoYqxwAkewveIxJUbAzibkp2R+tMc/Kd/0foqV/9phCS\nP8sipExkkUUWWWSRRRZZZJFFFllkkUUW2QuwF4qUmRLp7cXkG2pM5KH78ESRyNK+/v8g/6qZmTll\n8uKbijC8+47QDJnbclGtCoo4f4zn/itwz8wLR2ZmNoQTYHtDHrmv53TfiwtdP39L3uVxTN7iszKe\nM9RO2kSIV3jyxmU975xIeRcuhHUXLyq51Od4yggqWq1BVKoq7+fYyPsM1VbgaXlmuk+hrfruuYdm\nZnawLY/dVQJFC3hgpg913Yhcvqqr3zuTgl3BLRCfkOvel/dx6/WvmplZ/iY5rx8rWrL9hjzRdaLq\np6gCxUFO7NYUDTpeyEto8OBkUS55dBwqTclrWWujxpD6cpwyWRApx50j3S+lKM82nnMXv+KSKEqy\ng7LWgGhLhigJUTgjmrJ3S39Pi0LY/P5t5UvnMyi+rDWmHFjiw2jLEI4Xy8Dgj8d6DZqpkGYswtGw\nxI1cSci7Gkb5r5oKXcQfqf3+4X99T/cnenPzm6+a2e9Y4Ku8NXiOgoHG7hja9adPNFfCvPMK3uJk\nCTZ8kowzKEwkRrrfIqH/z1AFyRBxCF32E1SZii4KGF21Z/NS5ZjtyAs+TwhxNYcHZUXu8XqkcZCA\nj8WJkYc60FxzthXRTr+qsfzmG8pL7z3S/Tzm4HVsHEaBVvBYgJqqfEV1rN5WlKnb0pgcM2/S5OBX\nD9TnaVTYXkZNrUVe8iKnuREbMQeGKLIk6cMwIjnXZ6qCIgkcJktY6WcuSJIibQ9izi8SYkBlo0w0\n6MzVWJpk1dfZte5TQQWqVgJ5M5XHP9tQX5XqRKYfMv9LcOBkNQZnmTBKBL9EQuX2TtWHNThXRk3Y\n60HcpS5RBiCqlyyS89vTmMiFURiUHhCOsNqO1qPlWmMjEQcNhmJAbq373aAdTsLICMporTxR+ara\ntUckJlX/+Sz2/9wGLugsOCsKVfXHgKhauqXPzlrtGhDFSpRRuSuqXLOhfuePVL5HR1pbS9zPjtVO\neVBlOZR2qgfqx6sLlHiaPOcW6le1pMVNdWw91bw+f6iI2S9sa51eE+XJgR5dssbPmvpdAbRnG561\nNCjUaUFjCeon22gICenmiRah+hSqM6yeEo0ea4yUv6YxsL2t3735+4xdEDZ//2d/rfIda4yuZprH\nl7c1/zdiypkP1StC5E1iW4NkBrosU03QNvrsn2tPXte0D9x4WRHZ1FfUJ9Upil5d9dXJufbAXfaN\njaJQX9e1iwFRto7KOd3V71fPFGGesz6Xhirf0fu6fpXU2rKZEqpgAhImYap/DP6RbExzJjYGefpU\n9T/L6u88129taSxO4jF+p7nrdzVHQ26ZO6hArXcTX9QhWJttIAKSR0mnGNd9B59p/b346YeqD5HU\n/CuKyM634C4z7e9p+FxKoBKOOzpTjeuaQwk4CmIdjeGV0R8UpzwYWhMehPFY838IonkFb9L4sdru\n8E31qc8ePQMtsJEFRbCpSOtwDNo1yV57qe8noBF2F+qTAO4nv4BCItdPfVSIUEFLZL9cdNuBa2FZ\n0fo/CiPJRMtvf/3QzMxOm5pbz1DG2ivoTFVEra8/07qRPVF9Bhv6vlKEG6wRHs9Vv/VQn66nPswX\n1MjJuMZAoQCSaA2qFyW0zz7XGePDP/+3ug9IyJfhcvj0wyPd70pjwd3X+ry99Uv6HXxDH8A5cwUq\nbBOV1M77qkc5r/b1HX0fwL3moJKSh2fuElTCxj5cEDPUATP6TIOwzDtqhyVqfC7vC3O43MogVy5A\n3mQcjdXCPupNj7WGHWw8f81ZB2lzUWWcZFCLAuHZvIBAJOCsBblGrsWZh3FzHTs/0dg472ps79Xg\nZlqr7df0cTIFbw3yOvMTjckZClGnl3pmfVt7SvZA69pWER7KucZYJaYxOUUNbuZrHV+ndH0sp6yA\n3TyIC47ts5z6fAvkRGsMvw7KO0k4IFOgRDdf1TrU2v8VMzM72NP35R2NudWYPuWdKTbU79q8y4xA\nX+UYGxVUkbZ2hbjzKnDFwDOV4QxQYf1cjbU2PAMplAQl0TvTc9MQmORAjsThA1p0QCHDo5dmf5mB\n6N/JwmvH/ukHaoeGCwJypb8TZCVMWrzHsD4uOSsmYqFW2PXMgeNx4XE+Bwm71dAZtsac6LJOl0AR\nrrbUj/Wy1t8pipanZxpvk77qGaJalpxl2igSjX14UNbPUYLFctyK6S3rHdFXnEczzPugoLNHyLW0\nnsAjCXdTbJN3Dt6dMiF3U4+9kPfyFeikzx/rjNDpw4v3QHtOeV9j6ea3f9HMzC4Wejd68n1lMyxR\n65ygIOnkNOY3D9RmyxkqeEMQNws4Y8gOGBf0+9Ihaqbwpc5mkN/w7nL2HzRJLqbaKzfu6frDjUO1\nV11jZp2BT7Wmer/7ts5ui77a/nDvm7r+99QHdw/ERfOzLELKRBZZZJFFFllkkUUWWWSRRRZZZJG9\nAHuhSJnSbXnkX7p/aGZmq20Vp3Emz9egJ2/no8dCb0yS8tBN0KQ/I//xXk5RuM2KPFnVFWz0eB3L\nrrzTi5flHXVH5AeSs+ydKVqVPVTEIQbHQWmCt/WePGDZDXmdz2Y/0t8oGHUD8jj7imo29hUtu3mo\n6H93TKTcJ5IAaqBelmcvVG2yNpGQqryfmUOhCQpX+v/Vpeo7+1De0DX5i5WQXT4rT+WySUSCSNHG\nrlklpTaYu0QAUb+YtHTPcVwe9ycom2QOdK9sTfl0RdMzAnh/YkuUR8pqS3+iMq9L6sO7D0IVH3mo\ne+TtFfLP83uvYz/4P/7CzMz+6gf/l5mZfe3bQrS8+W9+18zMGmU4a2DOLtwBDUC0bHhM/ZbykiYX\n8qKueirXcky+MNr0CRQgHIImsw3y05caC3S1teO6v79Uu2Y31Q4r2qmH57qOB/w8CDkeVM4aXCoh\nc7cHH8n0Ql7bnQDek5DjhshC5r7GUHykdj5uqz9TsNmPk+ToJvW7BXwZkxG5pyhy5Tz9zhnjeQ9V\nmsirLKbp7xKRjD24Ep6pPUdd9f+MiMUMrojjfy8Vqx++p7zz/+K/lJf44DvfMzOzNLnEA4/2P9X9\nHrXFt1E0UCzwsFzH0tS9+bE81CE4avNNRYdvxOGuIsK2V9E8n3madz06O0mU6r0hbX9PY/3+TV3v\nwRW1uKf7nf6dBkOX5z+6VJRnfqG+tIHm7wAlswQInd21xmijpHXhAvWlWYr5T/Qj8QkqQHDXTNdE\nYYZEIg1llRH8Imn1bS+jeufcI/2/p/Jlchpz7lp942f0nHFTfesn9bw1vCb5LLn5Q43tLnxENZRx\ncqg2jT39vS6B4HFBj6HQU4oTCQYhtNiEQ2ACqz2cDPtvwtb/VNGbc8ZoI4t61BUIwzk8HaBBrmtj\nCKd67+t5gzCqBnInm9ZcXxHl81i7sig8LOEIqmVZn+FLGV6iEjNUNLN/SS7021o7N29qLJf2UPFC\nIWKKqmAbRbf9xEu2d1/Rl4upynbaRdnvVOtnfRe+MKLj9W3WfLhi5n21eRVFlvVMfXpxKqSHg8JL\nCxW9xobaevsGXC05jdmnPfFMXHxAxJe+bGzquTff0J5bqaC8cE97XWegPPHP39XcGj0Up0v8u9rr\nApCCu1vswUnttbEcyDy4Z9aO2q4F8uUI9Oydo0OVY0/tMLmvPXnaVFvGxirPJKVyuxnd/7qWYC7n\nMzpL1PLq635F7bTJHu44qN8dwE8ER85ORd8/BlG4xZg6W2htSY3UjlPQfGNP+25wAgIFdcAYyMfB\nicbUAM6IBBwOyxScYKgizf4Rl8HCz1sZxTaPcdGGG6E2RD0prnLG4JlKo6o1BCmVvFD9pqiNFLNf\nV/2J+E9mul9Ix3I2B+E401xIrdV/g3TW4jnVcWcAGqoF4uJj9dHsb3VuGtEGxyiaBHtaV/q31CaZ\nQ80f11Wbb9wWsmSEkpS31ljwiQqX2Qi6HZAtadC1iLbFEirjcDS2L2OxCojmbe39OZBAu6y/S9Bp\nSdDJ+QFopxvwjMDNNQNZ3e0w5nuao7df1tjr+bR9TvWtHOh30wBFMsbm4ER9lga59+FE66b3icr5\n1v/7R2Zm9s7bmov/6tv/yszMMt8UUjxzQ/2RY/2Ot3SfQYgYceG96KOQRpQ9zfobQ1YPykWbJQ71\nN9yIKTjJWvDUVYYaW940VKvTc3Mp0B1nIeeXbjibql0z8DUtOMtAW2LFOdxfpv50PHiYILmYT5+r\nJpVSNXNynAG5z4IzRzKvs8gQjqJym7lf0vNTub5d1zZrQn5s31IbJ0HCTNdwtoC0y4IouzzRvZeg\nd9MVrVvbzFND6caDx2gJn1sCHjp3jjoeSLUkaNoYyGcPFO84h0rSWn1QWqlu45AXyS/xOP1uCU9d\nF/6i1wpa577+i3DMxEOkiM40WV9jL0SuB5vsmXAI+mt91hLq4wHcV3H93DJdfX92qfLlQSVn72hf\nCkA9pEFL9GmXwwloqoVu5IAkb8LRs2SdXedZV13aqa92n5yqHicluDYHqI5yjp4/0+flRHO2xFnp\n6jOdpQLOUvkdrUHXtVmIKoM3KZ9DgbMg3hF/oXJN3kMhFO64HO1tN0BQ8v5WW3NWGsGbiuqhwZU2\nvtBa2oM7J114fs6+9Fbmj/4Rap69MMYe34eTMTZTWZKgs1Zf07o8QUnqx++LV+j2S5oDZUffj+GX\nvA/i5Bvp31JZA+1xs6TqGvBOcHkCbx3r9rqo+b0+g/8H9cvFRHXe2QGpg3pbF7XiEWO93YJ3k3k/\nC9RnG4fw7eyonlcgg+I9OBDJjkjc5l3HVx94ZGWMJ+qzOPyp1f1DtRPI7B3QtrVbem6mFzJ9/ssW\nIWUiiyyyyCKLLLLIIossssgiiyyyyF6AvVCkzDoWenP1d7wvT3j+lUMzM/MT8lilA3mYrlLyvG/f\nULTOh82+ASfApi/P19OfKnLS8n5iZmY7WV1f3NP1q1N5+E6J1LTPUYwhn7JcURQrBhv8RhFtelj7\ntwJFFd0DvKN5eeSezhTxTMLOf3JBpCEpj9lv/p6iie89kidxUZLHrUwEejyXj2y6KY/b7bKem/qK\nyuE9kedu+H3Vt0QOdeGGvN+NmqJybdALa1AxA8+zGgoHxTJ8ETvKzd8iJ3SR1rPPOvKSdijL1RM8\ntHCRzImkxcrqtE5LeXcjovm7rspSRTEhOJcntreQF7M7+XJRqTyqQsW02nSAl/bR3/yNmZn1t1Gp\n2FUkYD9FRKKq8swDovZ9jaUBaKMp+c2lCrmk23rOkj7PwcniksPvEEGIbaregUf0iGi+e6bn9pJw\nB8D3MTaiLJ5+lyTCsbjQGM1T3gff/baZmb0ah3NlEuYvo+7h6X7NS1StGDMBObCTIuopAZFzyp+b\ngVgq6boEXt0MkdpYDkUh1J0c1JMcVK4AEFkMtZFlGJHp63MF70n6HC4alBTCuO3p5ypvZQ9kUQll\nGnKjc1u094H6r9rXeGqdd+26lmzIM35YJCc+ozIdfXxkZmYvv6JnuAkQIQnGAPnGu0RtOkRMU5eK\nzncf6XetkqIQMxj7X3/118zMbAcPfhn+isaWPPK9d5X7mqOue6CRQg6tREJ9MED9qQCz/2Sgct3M\nab1qr7WepOG0cc/1fQqVoDiKWeOZ2rZeV18m0pojHlwsS8LZxQp52lsqT6jgMABVViMieEaeei2m\nseqguLAAEeMUia6jorQgp3i9VP2rBdW71QLhR+5/jlBqkTUgVqR9O0JC3t8Wh4G7obHs90AXZH6B\n56udmgQaAgdJomtansjFBIWyMhF3A2mYJdKd3QCV4MExQ+S4D7/LUVuojd1DoUUO7mktPVxqX/iJ\nJyTl+DHjCWRQIQnqLqe1x0dJ53Sgv52rj618T9we+/vq20WR9XYG2kpdZf5ciJTYviJlsZXmb5y8\n7jzqSwPWzxTcKz7Rqgko08UzxiIngeq+fnf4spQWVvAHXcC3MBhpPj8aHKnuIHUc1Ho23hCiYtak\nbpcod32stm/eIQpFRNRhrIzz6osCKLFkQA79Xa1Tg6ae96ilSGYdOapqBj4kOLDmIBK9icrlBdfn\nptJztc5nt7SmHKB6UkAdqphX/UdTjZFMnFA3YzVeVRSwwZnm5Zc1l7NXGrtjjlwOEfN/vwdPAAAg\nAElEQVQ1KnopVACbur11iKx7XY3BJOJKebhlFnCm+QXONLPWF3UopuY2JwRf6as9Gj7oOaTG7t/X\n2L1qC52xSOvB8U9138xQ4+bikeo1On7bzMzce4qUL+CuSG/ruSX29yVcF9VQWa59buOHQox0iED2\nH+scs9Nk3czCawefzgN42Z51Nfb7KDstWlpH2nlFTPdva3Pyq5q3uzfUZsMBhBlwvKRBCtpMfbPc\ngFMKDrKV/fzI5T+3g0NFgCdE2/sokb33UOiwhK/7rrtq02KJueyAkLkB3xz0dAnQAtMlXCitELmh\n+udQT5oNQHBWNSZjcDG0PtR6749Q5CmigHWp+26k1V63E/fNzCwNX0UHZR0/RLTs68zWR/Er3pEq\naB0ltAEoqF3QFbMrzhSgqWITlS9VhicFDshJH34reI788Ew0CxXJ1L/jTc3lBKi5EWeTHDx1mQno\n3TxKYJxt3Lwm24R9rAya7OLiyMzMmqgDmpnlqkVbL0BzJdW+zgnKSLyIlJYq3xzUtLdQ+2T963OY\nLUD1D1EIC7aYjyAwEg3Nlz6qauUNlGlAJa3ZW0dwPJXhAPRnIN2KavvZSt/P4Y1b00dzVDVzIG0u\n4EjZHKiO3SUqRCAvYpxlLguqa6ap+5XY+yfwfl60OQvN4JKCgzFTRVFyoj7Mz0EjgCrzQOiVQL3m\n4UTrPlQ9ygca00vm4uOPUcqBP64wh7+ohiIl62hN1bI8aoF9T88tNEG41FWvZEz3m8E1syqgTldG\naaeKGpYLYhyFzRFnjBXvC3HUSTde0brbvPyxmZn9w1/+vZmZHTjPx9p1LAnH55SjiA9SZp+z20ef\n6j2h11O9c0lQZDXWkE34WBLw7MFhuX9fc3kxRj01xprCu+wp/IDeov5FWdxZwrKDjJ0MNN82XdQk\nQ54deDA3OO+2FzqDrNgLJ6xP7fdIJ7jUuvPmd9mzJuwDp5oTkzzqaEldZ+zVU9aHd/7wz83MrMDh\npHao607gr0y0WQdKGpsj+E4NxTOroJzlq+5l9sQFxHoF3tU83qVWqMmlHd6fqzrP3WMMz0G4DOZq\nOz8O/9+pziRT1ttyBfXTh0L/tz7S+Ta1pz6tLn4+r2qElIksssgiiyyyyCKLLLLIIossssgiewH2\nQpEyCzzYZ8+Uv358rghH9qvyKL38QJ6qZz2iMit5bT14TLbx6LdP5MW8mVAUpz5AoYBwfSIj7+Ls\nEZEEeEgy2/Imeme676oN98ISfhKif5dEk5p/ioeuIg9dC1UVF1bqwQDVkJo8jFdPUHU6Ut7hnboi\nFXEYsacO+aVzclxzel5mrZDCaFNezflSz81UyWXLkQ9JpNfrywO5PIL3A0RPkvzLcTA0F7WbAN6K\n/rBAXeT1jE9RVfoOuaHwXFw2YbbGM3xypN/Hb8qj683keU6B7kmh8d4CWVNFUaWS0P+DuepwXfv6\nb3/DzMzufUd5ebOSPP+jjjzHfk9tl0OlyJb6vjFTG3uEo7oVlHEW6qugo884HDlL8ohXIFmyRFMq\n5EMOQRiV4fGoEM3poqDiwwA+JXe/31V7HuzAY5ST99a7VLmXMXI5yVkNCnpOIal2PEcJpppGrQMO\noCURyHVJY6tL5GXcJccVNawciKeNDY3JjZQitn14lFYdFA/IYa4DiUH4ywZNoQG8XZUnfQJj+Vre\n5HubKPy0QaVtqL1/8ff/tZmZvfQrqudGTeNuNAFdgRP9YiRvc2Eir/lOQ/d/anD6rK6viOEU9ezC\nBpFBVM3ap0Ka9DbgRqmqLQNy+acrjR2POlUOdJ/jC827RFURxTXXnf7tO2ZmdljS3Hn0KevEjuqy\nlyIHvRDeR30RX6mtaiV9XvXkWU9uqTxF5rcL074XgGpIwLC/JgK8hgzB1X1mc65DfSIOUrBPNC2L\nMtgS5QHXE+t7Ej4kZwWvFH0e1NX28xb5yIdaf/tEf4oV3WfCnEhXNQbHjPnMWOVZEZ2poFyQ7xOZ\n3tGacQFLfSmpOZi+Ur0SKA/V82r/UYd88gFIHZQqYlznFr8cp4yh2FaGQ6g1gxMInqSzpT434DSo\n39Oa09hUu+RzWr9bPxZi5qO3/4OZPVdTevNf/7rqWVOE+ehEEZJCS+0zR3VmmQOR+V3UVt4V18PF\num37K0XhT4HEJPJwUVGFODnti5yi/t4FKhQLECG+2njZQ12vrDosS6rz/Ep7xQgU5yZIwdrX4F6Z\nE60i2nz/dfiX/j08RHH2ItSS8jntF72mlBDHKOVsvinEz+mTj83M7OkE/qFHoMW2ifDOdf0YNNfN\nvCKmE3L9U3FQoA21w+QUniJTOQMUXzIzrVOzofajOvxq2eWXU+ja2NT9DrKHZmbmdvWc2FPN5WlX\n69rZSnP4NKl++mym+t/+LjxEHdSrpiiMWcjhghJEDj4l9sMkKLQYfE1rlCi3UJmqb6ldrkDEpBJc\nB1eCv3zOd+GkXCuzHQ5WqCfBIRRM4Pc4V7nKmVANCw40lCkzHig+ePYew1PidHTjGDxRUyLpiYLK\nk0f1Y55We/Un3hdI53JMfXEA594+8ysB702IPi3e1N9pkL6dhfYi26AvUSEKQIYMToU8NrgK8nH1\n/XSqMZVG8SXkmUuAbhqg7uOmro/KNDMbwRHz9z/9OzMzW78Lz0QRpcEM69REY3LNnNy5pQhweldz\nzvHU1iclRdtnoAmefKq5VgHZZyvOWKCFz0EWluCD6B5r/bCy1EvqWZ3peilFanceCInkrDUXlymQ\nOYyBxFTlDCYg+vLas8cgHNePiCCD1gj591o9jfHqNjwWjOVqFvgC3DoBaoQrkE4xuGucjNrNhWso\nFqD0w9z24Y704OuYT0Ex+Gq3Out1c612SKPGl5uhkBbounZwZKE1R1e2A4p73YULApTEGlW9flrj\npArarcxcWM6uj/L24f3xLlDYQqFrzjkx1gT9g2JUrKhnHnsozCa1/hbSqvvMAQnJWM2kVSYvwV4I\nEmQ0Vxs48KBNfXic4lr/PaL48wX8PKj4xHy1ZR406mQJugm0kw8vU/NcaIltePZ6nDvjLfiBYhpb\noylIIM4OWVD9g5XWqUIdfpAlSJALjfkhYyo+gWMnpuc0Wd/csTplyFhke7TZEBU875/y361Afsd6\n6uMJKrFJ3ikdFHWN9TnBO1+vr+/zcJ8VOGN6PT1njTLXrbQ4E1tfQZ2KM+Z1LVkFAY+KYYW1KoE6\nV8XVmpLPg8isaBzlqLiLSuCTM52j15BI5muo6MF5dgofn5sN1WJ5z3GfowTT86ytMknLvK9559d1\nzTQU9kvo2jqqQ48fau/JtEHt7un9+5d+R+8AFxf6fjujZ/ZRgFxyhti8r71te0dniE//w9+amdnB\nPZ2B3JbmwON/UFZEbq7nxlHkGqYY60ONzSN4zoqsR7F7art4j/MjXDJl3sXiU61Tk2eaC82K/Aiu\nD18qHLVrl/vlkDy8QmGWvboIr1scXiZ/CR8RnLh3XkF987VDXQey/WdZhJSJLLLIIossssgiiyyy\nyCKLLLLIInsB9kKRMuWYPFSFijxlt5LypC1QYNjcVd5zyxFHw5PzIzMzm/5YyJVv3RcHwdW5olbn\nK0WsizvyLje2FDnw8HydvKffDZ/qusXn8nhlYSRPk/PVDtQs8Svpk2fJNcsckMcOkqfzgXKI8yBf\nvnFLnrmbB4qU+vfk3X38jjx/QUfPG7fkPd9+U57F9zrvmtnzaFmtruf1puinP1P591ELiJOn3iAv\nfwoi58mZIibrBTwpvwuDu3to5R15/S4eo6E+l3fxo4+lltNC3SMDl0GM6P4sJu/hr9z/jpmZOSgp\njOmjxbY+g5jKMFjo98/aQj8NPfVBthZGqZ/nMF7HrnryAC/jGis5+DW242rTeUXe225TkbkjT9fX\nz+BSSKktpuTMV4oqn08O7TIhr22qLw/8dI1qBVF+KA6s4SlK0ochPFREqL2kaF+nK090A1b2M/K0\nH32G6gmcDgdl8jT31B8ETG1KVGlKzm8C5TArKHqz9ITaMKJLTkLf12q6bx4vdItIeGuoiEarpfYJ\nCvrMOPLkT4mcujEUf2qKrt39lu7bbOp+l0fiVxk3YTpHISFOBLYH2s3rqL4zV97rraKioWuPyLCj\nSG8er3LJga9kAV9AH899U17w7pdQ1vGuFG3x+UneVd8+oW6bRCBTIOQQrrLCVFEZp0HUCDb2Yl5t\nOEmQkzpT3bdhuk+s8LR3tT4MmhoLmZTG2NBRW6QvQY7AGVJ48yt6cJx84JbqnoTPaEh++Iq+2QPx\nNrzS5zqusbGGe6AIY/+TrMpZX6qtK/D89OKqrwfHAWnZlplqrM7IzY0lGGNEk8ZEkAOi9S7qGRlQ\nDEMPMoSk5nKyoPZzhyj+oBjmEJ2bLuFhCmg/IpAGQjAg8rpCxWi+1DqXZHsqLuAWAw3hkTftzr8c\nP1ViWw2QqKmfNtvsN0vNlQkKPivUt1KnGg9TOAu29tUupe9JUaPJnHj/La3f91/9j8zMLFNC6W6o\nNWk80dydw9p/OlWk5JfvvGZmZj+e6zmP/v6xfRVlvtVUbXozr/m6Wuo3HvDPCvnb6RyIvttaT2bk\nWT98oshj3FTnexWtm52Grv/oRHtFs6f5XLxCgYqoVrd3ZGZm2y+rjPVXtQ68+2daz3ooTNXvSw1v\nSp98fqw98cFKPDtOUmMqVLLyUBVyk6rzcA2H1EM9b/U9qU7ERqC/huqrIEkU/QSeoqbquQvCZ7rU\n9/2p+nAeh7ci/fPzt/+53b2lvht+pva9+GOdLcY/Vr22TPXZ3wehU9N6t+Sz7qv9BqzfJz9Su23d\nVP8k78NZc1tj4g4cMgFKF0MivRU4yPwy6ilTzfHmpyhG5kGXTf+pspCZWX7u2gBkoovqoEckuz+F\nMwbE5LpONBFEaSapz2UbLpoEaoaO2nmNCstyW9/7IK2SIJ6OKIMLJ0U6SFkN3rd6TG02A5o3LsPL\nc6W+PH5PY7JSJgKKomISNNQQnp0bqGXEXJ2DrKpnHVT0vV9Q20572hcKfUVkp/AwOB78THmVOZf6\nctHt4U+EODn5ULXdM533Ene0vieb8Pa1tS5c9dTWqX2Vd2fxNdW7TjT8VaHKMnCgTUFffTrQObX5\nlhCfXZAzhaHao3JL9ek8BKH9xiUlFCIyhfJKtay+uzwBObLWfrOb15gMOKsMzuAe22AspdmTYyqX\nCzfjuqXroOmzFKpH/bTG2l4Afweo3uQw5D7TfpucshGBnkjwWUbBMdyH0yBGF6HSEGtTwBlrEGf9\nT6I8B4/WM19ryhWcEfvFTQvNSbt2dSZUWxaVva3v6Oxz9Rlz7Aeg0eDhWLIfzEvXf116+3//v83M\n7Ac/+UszM/uPf+u/MrPnSi/LEmqYVbVVu6l1+OHff05B9bn5Va2jRQfkHAiTXoWFwwHVOwYJx14Z\nXzMv45rvJc5T4wFI6RCN66lPaiDduivtaUkQ9VdtjYVMUtfVq/p7AkrNOKsMuvo7C+dKKMvWQF1o\nynqRBqmXCdFfWdoDZOccZdwcqN/hWOtvvqgxvQBB7aI25w5130VSf2d91XvNXrv0Ub4FsR+Alliu\nUSgD6dMoq11naZTIQLcV4SibokR2Ae/f1kL36cEN5qThVdrknH5NC2b6XYA63zmokzhjuggyZgUS\nKgFaJbal8o66GpuLGfuCp7G/BGWdXYPAB9E4G+v7dKiiu3C+KEsjaXbeW4TgfSsPOXfCbRgq6zob\nnEGOQdufa77Eyrr+zfta3/y2njXrg8Iig2VeFoLPVqiHct787KnW6zWyane/obIXQWVlcrout6f3\n8PlE693HZ3C5orI6B42Vuql5X4Ur0UAJ+byrcTSx+Ejl89o6B8Y3OAuBTko0VM90XGN2zBkqDyI9\nhbJVAE9REGgMFuvMXTJpZqBIneDnZwFESJnIIossssgiiyyyyCKLLLLIIossshdgLxQpc0kOajaN\nHnpDHq33TqSalCFvb7qW52s3I8/Xo4k8cNtEVMYPpM5RGMqD1ezp+03yo/ez+lyXFRG4WOKpR/kl\nQ2Q55M0uk+fo4BlMoF9euicPWLCG0RrVp4fkM26kFXl43JdSgTfX75KOPInzgjzy0458YRu78qr+\navl7ZmbWb+u+W+Q3bu2pvqc9eQL3yFnObJMX+FewxoeRg4HasVCQ5+/4Qt7UaebIiqgmZTK6pvGq\n1DX6sLLPYmqLr/+moj7rqZ7xox8pz+/sVJ778xNFYC9b8ore3ladEqgc+UPdb93S38O5Ipd9omO+\ne2hfxgYtuFPg+dnC85vbVHkL8AvdRE3KRzu+91DPfTYX6sG9kqe5tynPcjGLahDIl0xcyA4PD3ts\nref1yGNOlNX3VSLPPhHDWBpeoY0w9xYOASIgGUhalhnY5/fw/prGhhEZDSPUa7yqTlljYzFVHy5n\noA7g/glctX+R8i9hSt/cB81lqk/M1/W9ueaSO9H1qTKqTQv9/dYT5cfvE9XP7Ku+qZLG0qiruTDz\n1L5TIvKzMQiklMZBDSb0MsoFa1BmRXJ3V2t4nZj7TSK0uZCRHeRMIo/cyDXMceAJquqzUwL11NS9\nVnH4EVCmSsJd0CSymgOpMAalENvd4TrUPmCjr6LM9fRMaLMJvBp3Xlebz7qqw+5cCLjh62rjzjMi\nA0TRHRj0WxdaN3IH8rQnoeAfE+UO4KZKJtRGwxWoqJXK0wNZVwEd5voa64GpL/KkCy9Qq0jz+wl5\n6rEF0RhQVwMHpZwUChFEjyZn8DaVtN7kXJU3VGLLkdc9AsmzJFffG+u+L7+hNSWG2p6/0hyawb2T\nPBPqbdnW3zfSas8Ja9Vg+E+5ZEqhstn45+fm/nOLjdSu0xV561XNwd0lCJ6O2mVCxOTZXPtA5abm\n7GQIeu6+Ijf3flPj6yefKLp1eqFxUdkSkmaSZN9Zq59O+ur/p6AUXzdFZPYbQqMcrT+3HhHE5rHC\nOI27+s0WUe2nbZW956ACNCbi2AYdCqJkmNOzJ31Ug9iLNhq6bgTfRZc95/JSY/TmLfFP+Kj79B6L\nP+eb3/gVMzMLWirXD/9EClOt94Ri3fu2fpfx6KuYPhsPtIc1n2jsfESUejf/ppmZJUBODjw9f30e\n8hyBGIFXbbXQGPx8BF8FEcwNg09qEx6NE1AGnwh18ZWbQr5c197/ofbuH/2ff2ZmZvW39bxXTPcJ\nXj80MzMnBy/VHTi3QKfOUxrbW3c0R2oZIpKOyn8FGq1+Ch8KKDmXaPy6i2oLXDFXTZ1Zuk1FjKso\nXRiR2Th7f9Z5jiyc+oHNArVDw4EX646eVx5qTu+iZOEsVJ5LT/2SXIIqgHfE9FhL1ODly6PeBT9L\nMkSXwZdVZqy7h4zHZdyKVUW565ucU451bXcE38QOHFVjrScdeDd6V5qvRZCBE7ignB7nsbsau7dq\nKAkSRU9S1m5HZWmtNI/jqDEFadQuM3CZOG37MtYGoLFV1TqwD4dUwQOt6mrutGuq12yoH2QewfPR\n0TpRzIMiW8L7tqM+fX1X6+EK1c7eqa6Pf6a5SPGtUgN1+ut6fm0n3MdQZIFfwm1oTM6r8FHMQYjD\nr5cAqdgbsqffU78kUyAWD9VOjQxnEHie4lmi86AlijWtawg0Wqam/oi7WrMGqDYVQo6KGChlzjJT\ngvbzJQgdzkw1EJvjhNo3BTrQH7DxTPW5dtW+PdT9FkuVu/K1l+wLyybtT//HP1a7JTQ3f+d/+M/N\nzOy117RveyjTrZ6pX/KhMlLs+ujdKhyOt3PaC0JEyWipNkz0NQfW8OakQbVmeMdJx/T9PlDtGIjv\nDGMiGSp0pUEXTeArg29uxbl0NFCfT1OayCl4NJZw3sThinE5Pwbwb/rwoMWq+uy01RZ//L/8O90f\nFaZf/0+lRLkGGTPiHO1ybkeA0VzO0wuQPl+pcEZY6L7nE+25MQ80LAh9F36gUVdjtgiPRxeEzCyl\n+8aXoLtQzomBohqiBupfoGLI2aHZAf3E+bwOinYE0n8NUqiI6uEKpEkVrp48SJtuX2iN1qXe0bbr\n2qeva8vw/L6hcoV0I+ecq9MgIbdCftEMSkTwDy4zoA5RgU2TbeKCNnt0prXPXYXcavBb7YLme3b+\nRVkKmawV3/3EijmUV3O6x/FQ61kNnqMUbZHf0ljJT+F67eq6oKZK7GxpfXizqLYNdlAVHXJ+Pjvj\n/irz2YVQpY8/IqNkrbmThh9uNtK75409cftNjnX/GYjkgQvCraIxdDDWGLKazkKlAkqRqI5O4OFL\nFDQmUyhAGjw/ixBthRJsDoShM2ZuOcwV5vASdFqfvXsvjtpfXO1TznA+jsEN+TMsQspEFllkkUUW\nWWSRRRZZZJFFFllkkb0Ae6FImf1NeYXrh4qkjNCI3/AOzcxs1kZLfSQP0zd+jRytriIQi0vY/PNE\nRIiMj+CluKqI86FJZOUS724DDpkJeuWP3laefJr8xtqmPFzFOpEcIhlHb8sjl4BbYPO+rtsh8uk7\nITpBvxvA3/LTz8WW//t/oJzjwg1dN7iUZ9B15anLdhTp/vTdIzMz+8o3Ve64r3q1LvDWgtboEvGo\nVeTl3r4pj2CzqEhDpQuLfCNtN+8pCjCpqqzVrMreD/XqQRc97pFjfqL/B+QFHp3Ly1lY4rmf6D77\nm8rXfnhJVDmrvrh7W3UMyB9OzeU597P63XWtQV6028NzTb64R4R4EvJsZPUcN4PSS1neVwMdMano\n+cFK1zsZ+CEguHB5TqmqaI5P7n3PQ03iWGPzhNzaZJVIKPnT/lzthFPZsgV5W7P3+H6kdvXJw57A\nc+QnUKhZqL2cvPq8s9DnYKUofp1Ia7Gh+80n5ATnFKmckeN78Ux9PkPBYPS5vNG5vLy8hVzIVyQF\ngp2a6r93h+dPdX1vAi8KTOVbsPx//jGor7T+DwWBrYlqpbfVrlkfnibaySMqGlsRTUswlskxbnY1\nxq9QrCltXT96uQhAD8E3FO+jZEJUozVUWcMoSZVc8+wclQ4QMF3yhatEczpErVtww2yTdz2aqqwd\ncldvE6UegGJa15A+QZmsCiP/eUdRiRvbGsPDlPoqPlE53FyYw0/0HZf5eVqNXIfHJ0dEsJhkLjka\nm/0RvEZ4+sdpeIOO9P1CS4DFcirXIgOfSBJ+qDloLThnAlAISaJQM1SWKiWNlRbosR755Dl4kXy4\nAeJGJANlh+6nKk9rpevKF/ANtdQ/Tz9VvWZwR1Tg9ir6RHQD1aMG35W7fp4PfR3zzsi3Jpm4OtR9\nHLgQqhtwiRFh93pql/W2nvOM/cM7I3/8JfXjLhHWZ6h8DIlyAnoxBy6wAGWNLu04eKo5VjGtrTfX\n27ZP9HdGG3afqI92XhOaJg2iIQYvURyOmWFe1zkrPetgT8iODz7U9cOZ9pbFnhAlDpHXUF2iAxIj\nuMN6sKP14Z13/8LMzBKow1UPyfcGBXAKT9vtB2qDFnt4gFJJ/hXd32WOvNfS/M75WreGcJHcvqvI\n8vBK0bCxq766deeBmZn1myA3iOJBB2Gjntowc1tzzIWDp/u+nhNUvlzc6fyZzgxP3pOiz4Pbisod\n3hQaIUChLVxH3a8KcVo6VTmunqp8zR71zqPsGNdYn4KI+XGP/fWnau9UqNgTKnURcJ2joFhLaUyl\nQUDZSmeSGHwo3hc4X7N5LGbTNUioPeY6yKPtgta69lRjeQG/0TAJZ0EDLpiervN2NTfyK5Q4iCCH\nUdMOnDfDZ0KLDVtw0VQ190/TNdua6bs+0WmXyGLrSHUr5rUHJLZBOLK3jQEFZYu6bg2icQKvXeeR\n2to39lJfc+LGazqT7Nb1WdrW71rFEHmiPX251Pnsonl9pT8zs3hFzyms1UlZ2mJMZHWIGkglC9/H\nPghDOHTclebq+Eh9toZj4DymdfKrd1TuQgNFsanWpeo9VOmIQOe3WB9Rs2p9BrfCqfaZp+eoxlV0\n3z48HDnWvfZMc9DgthnOhFZLHanv99/Q/TsrEEZwqeXi6r8Za0iDs8ySdd41neuXLvxYWY2d3BLU\nclLrZpmx5DuqTwCSsgCK2QdFu4avqWGorYLuzc10nZcCgYmizIRDWPFQc3O8+/zM+cH7n9lnj4Wi\nS685jP2h2vXGKzqfV3e0RpbuaQ2cXGlu9li7rmMv/963dc/fBkW1VJ0ncLjYAuWnGKpma/391V8D\nXf8FcoWzC+8UsTJ76ELfF7t56qy6lFAyi4fcL8Y6A8onwd5dH2t9PgENnOAda4tN6yyncmVSen4Q\ngJ4AXdBnPZ9topiW0JjJwpWzaKhcVRA9HkieoBxyPer7cYIzCJwpl6Bjx0zJTlLlj/Me8gyFrq0E\n51Wud0pafxeM1RAZ6nr6fRLUrxdHjWkGkptz9aSgz5rB4xlj74ffqUAWwuWV2iezofarZNR+q5/q\nXW5Vhjfwmpak/xsgjebb2u8OQB6Oxpyh4KQ8faT3rO5NjU0/q3ZzOCNW94UKq8PT+lFX16d6+v0Q\nFNnePZ05TkEDm5ktO2OLbyUtHSolelpHHNbfWJVzto8i7xbkgHA5JWjLoIUaKetNGd7PLH0+gWtq\n19cZorPQ93er2mvbRd13xTtL44H8A+/8lc4aMweVZtb1w1fV15OF7pfgHXQ0R5ELxdvtlOZge6mx\nUkyBLqupr2Pw+EzgmuzDBenQB5ZaUT/NhSV7dimpfaAScjZyDk5n4dUkE8fv8e60/vmIuwgpE1lk\nkUUWWWSRRRZZZJFFFllkkUX2AuyFImWmqH90yN1cJuTFu0U+5hy1jfFMUavZXB605Lm8sp/0lGPb\nRtnhxgN5Q2MH8tzlUniwXiGv/GN53qqonHQWihSMz2FfRm1ly5GnbY6XeoqqUx/OiGJM3lh3V9HL\nBeom66kiFaeXigzd/Q6e+tswmTdQV4FX48O35bEvLRXtuvcNeVkTqI8UiSgUR/L8d69C3hI9L0bE\nuY9XPfmScpE3KGdvqes3nLw5sK0f/Qh29wdwd3jyElZhqN86QyHE071feuUbZlQG7DIAACAASURB\nVGa2DZO1d6E6fPpYCgSPn8rTPfkJKhNEeao3VfbOCfwTMF7HV88jetexGHnQUApYDI/9Ikmk9Sh0\nqSsKE4e7ppLQGCgTrc46in6MiAw0n+iG2Zw8ypkGfDwjtSWCAZYvyqu5xPua6el5aVjLJ6AjYkQY\n8vUwMqA+mxNRriOztJiA4iB3NEe/zBwi2c/Iz8zo/jl4Qrw0kREnbBfacww7PiiRckPt3g/5Pkr6\nXZ0c3kSgz2ZK3t8+ChUWI8e4RzTqY43NFHmYOdy3P/yTP1U5cppTh28eqtwLedVTV/IKr+oaXw6K\nEfl9jfE8XnDnqSISq4TqUQIlMllo7idq11dNWbjk0p+gqlPEM++rjM5Akbz0oZY7F4b+nmkMVOJE\nALtqXI/Imj/RGMpnVBe/rrJ3z1E0gI19do5HnfB9DpDWcUd9sBWAkoJJfwq3iePBPj9TXRMrluO4\n2mYN51UsQWQwRy5rkwhzWuWdw1E1ggAi/0BjYACybkGb+x1UkpIoqTiqh49iQsnUhyvvn0b1gx3Q\nTqwNieWE+oPwgUPAUPAy2vPyUmO3dkJ99/Tc+lgKO5vwJBVuKhLiTXV9Erb8i5bKc3Wq9XdeIrI6\nQfHhGH6Ra1qayMwaNamAqJ8fU7uXXI2L+Cb7DhwwizONq6mvdipONGZHoO52UMNrXal8Drwn/Yr6\n0csQSVqp/aue2qFwrPsWl+qn0fB1S17Qpp4iYRkiewm4SPwhZayBuulrfu/RZjPynXMHWq99kCvJ\nPa1zA1SbpqhQ5Fkgl6ChfPLC07cPzcxs+BP9fj3S7+IzlbV4V20xhadohgpbOVTjWOv6BoqG718S\nWUTZYAEH2flS68ybr2kMXE01l3pNLZC3XtZkyi5Q5jKVtwya4vJE0f1XfkX1zZyD6Ai0ro3Xir5d\n17Y3dP33fld//8bdb5mZ2WiovrucaN8ZsT45XaJ3OZTIXtfz905VvxXKO4kt1bs+ULQsydiZwDmT\nA2kYwBfngWypl1TvCaoq64TG7DLPWrZUe69RJzQzy6TyBt2VjcM1Jq127K/VT/Ec+wsR+2IuXJs0\nVodx3bcG39XM0/2XqGbNCjwflHA3pjnaXuu6xg0hBHbnSetcovYGmjMPmjVg7V8k4Nmg0PG62sJl\n3R6uwvMcPBOghwZdtWUGbpL6JtHwtvrEQ4GrdE/qRim4U1IZOPtYl6dfTjDFMiimLDPqi/meyjk9\ngk+upPtfdUBepuBVgz/i9AQlxJn+3qzqzPQMdOrxsfpo8o7OWE//XByLRqT6Jqqk60AFz8O1NUU9\n6ORj9U1hV/cfs+6VtjSnQnRVyE+XmoPmWqg/Okuh1V4q6/y8eUf3QUwvFE2yNIiZOJwSqZbaJVnU\n/0slxjbqJoNA7V/Kg+YFJZyDMy0DUsbrqt9yefY3kJJDkDKGopifYl8poxgEqtCHo2L7qyrPmjln\nZja/fGKHr6ndVnDRrThP//X/JKWkEnyF3/vPfkvlQp0x9vj6yMyLz8S1tTDNn8cZ0DsokBXhucuh\nQJMF+ZgJOAcNGKus/0nGUGaG6k4cVVJU0RJrraPuCsIjiIcSVf0uiaLrRlbzfTYiK+AjnRkmoFAD\nBxUjsgYWrvrmJuiz//rN/87MzDqo3FXg2+nA8VLOom5aVblKVbhmQGu14CRMr5jjlM9rqLzJY5V/\n7GosFxJal8pv6GwxZt1PXoJGyLG+hegrlCFHGc73a7WXm0KJDMSQk9KYCPlF4uATuiDf0xYijXSf\ncklzaJh4T+0HamxBPyaS1P/5Mnwt8wOUHis6Q6RSKGdyRgx5sPpwzGVAB2dBTJY3NPevjvS7cYAS\n0ljjKESJrGKcZWbMhZjWECdf+aIsE69p+WrKVvDxeGkUs+ZCfIxGqlwJ9aGAd0YXzpckfKIuZ44i\nWQyDc63HsT1Q9ONQ0UrX+aDny3X4cqpS7E2AYMnwHr7rcK78qcbs4Zt6buGG3nvLqBuNeFmJfaLr\nXN6dFhusSx6IdvjRGpRrktX/B3+jc2c6p3qneWcbtDUmT99SfQ4aasNpSc9tcW4ecc5PtNTWo8+1\n3g1Q4q3e4qX0Z1iElIksssgiiyyyyCKLLLLIIossssgiewH2QpEyI1Qw+mGeXBY25AWohrk8Vr0+\nufen8uqlV/J83b8nZEl7JY/Y7VeV1945lwfunAhrBp4UIze1e0YeexU98l088eRZr6r6fWNP3svA\nlxeyvisPWHubXLGBPPNX5J5llkS/yIXduavynNTkeeyfKuJRuKGo5WIgVIB3Kc9jzWBzRu99hZe4\nDidFvSCPXnJbnrnjH7Uon8oxwOO/ysnjt7mj62eptX32gaI4C6JMORRotm+orc/W6oMlHCyzqdBJ\no6XqOnlINKvH7xPkwg70rMQhbPI5eaYzIDi2YUtfbMCBskJ16JoWmxF5mxB53UC5Kg2PQ0Hfpxy4\nXrqoRBB9npG/PfBV3jWKBEXaNjGHnOBS9XgMP0ewIMKcgHHckbcT8RN79Jba5/t/+2/NzOz+Vw/t\n/2PvzZ4kya4zv+sevoTHvmbkVllZe3d1NRrd2EiAJMjZyaFG8yKZzZgepJHpH9OLnqQxk8w0M5Jo\nHFIgBYAEugH0Ul3dlZmVe8a+7x6uh+/nXTMyEcx6qhe/L1EZFRF+/dxzFz/nO99njDHP/olUSjyi\nvTb8P1GW7BX1z5kd+XDmTNfPc5+9siLi0Rx2/VSG73NhotAGNaUpEfAc7w+n+r0UNb/331HG3aqq\nHwEcDmky1SO4DtLcr1UjCk4AfQ2ixaU+fCdQ9syG7D5fkm8uKQJeLoV2aI/0vmup/5uU3k9X5PMB\nkj3XV9TFH2iubX4QozpuHy/2URBLpeBHSMkHtxvq0xG8E/eo6x6E6nwa9R9noHtbwLWSg1OkQeln\nCwSLiwJYDpmIPnXAXVuvyzRZKHzKpia2D8JvB2TNCB/tj9TfIILHwZUPLFBQ2PYPuEOtgxtY7Eue\nfKjZV7YKYIe5IVNrLP1/aSMbThjzS6Ms1T5oMw8uKguOnMxAgz7YgDojI2nIUKyWsvMyQ304GQcD\nV0KXdXBvovt/7yOp4h18pEz1+EY+fNoXuuFnHwtRePJrZWY/Rsnn0RMp+bh7ZBPrmvsW6L0ZChZd\n69y8Sctswe+EEMH6Cs4DptY0JX9xqS3O31cm6NVA/TSRxs0DChU1UbSzURaD78Qr4icXZLVKZIrb\n2qfulTXn1l19z20oA1NJ2aYH6dQSZEYahMNkxrrBvF3P8bmhxqpiNC87ZL3zZIciVBxsW+iksi9f\nGqNSMXbJmOa0R170QYFtdC/be/JBD9WPywnrBxwkEagza6p7WKb0t5vWffgOiJ2hEJrZBzK+V6Af\np/pccACC5nPtQzcjrTvmvubqitp7+xNUPcjkXlpCaH5QA4UB+mL1V7Jxb/Y6S36bNg3hPAA58sVA\n43D6018aY4xZzMikbikz3ZzKN4MPhQzZfih03gi1uRwKP/VtMs8HIBvhqZs0ZYdcWuvfizHjWdIc\nCheaUzlQJMMRa8UM6CgcDun+63tIZ1ZmtYJfaxWrBMrO0Ux+U0bh0X2HfchWxtp3NX4v4RgabFjo\n4eMqoKQzHmi8uztaaz98GqtzwfEWqJ+bL49NHi6uIjwIj+Bti9V3ro/gLsjoXFSp6/XBodQ3RqBF\nT+BLszuj/+zeLhiD0AXZd6XfdUDWvbiUsuBsw3oCZ0k/g49Vf3vm8v/bpqgFrTPy7Wis6yCqZ7rM\n4b0IxZctrdvrbRApV3BToYCzroCeXWlu74LIPHlJP8/g9YEzIXgArx48e2OUEh3OdCFHmgWIkfwr\n5hz/sfcE3pDnGss8qObNuda949GJMcaYpwONbQ1U7OVMczMHj0VlhpKbq/vZsNe78TkarojJUnY/\nPJDdIhCSNsphVlcbWIhiUN4DLZEHyTPlTFBQfzMd+eRFWU6f+lrvPwdhVP2W7J29p9/9xc9BA/+h\nMdMoNJV7OtN6HfVrqwQn0A4+/1xr1U/+va5f3tZZM+//J5Ps72mV+zpXO5wRnCxcMfBvAFQ2bRAd\nm47GMlZDLeTlWwV8xl/qnm5AW3r8nYGX5yWIm3kO1BH9qOITXWzeZ1+xhqy3KC8W4UGaWLLhGj46\nF56mZYzcuKt9xg81hyegAVx4Q+qoFZ23ZKtWFhSXtvhvkORjW/3YAk0xbcmHB2v138fHNnA9lkC9\nOajbbbbYOyONfboNGi8te2VBaNsLEKXs8RtHc6zAnr0qat0dr/W9mq3rBZzh2AaNt8M4cR5fd/W5\nGJHi+0JrNKPbK3QZY0zEnGw805oXr8tHf/ux+seZadzUfpHK4EcB/YMH0IEDpwQifwT/YMCcNBl4\nUEasEUutTY3S63P2dDQ0u3v75nICup49xrLgyIPbyqZKIFY9zTkawwD1orGJFb5AAcHRWr+ve5yi\nyOvt6/396qHurQP6CwXWT36tc+LNy0+MMcYUHV3v9OZE1+NYls5qrvm++lFnbC/Ym6YMvgeadd1H\neQsbeTzzpIz2l8m7us+gC48SczXkLHWvgQ8Y/f/sU/X745b666Get/0t9WsN71rwLfW/8A5lGH9H\nS5AySUta0pKWtKQlLWlJS1rSkpa0pCUtaW+hvVWkzIow5LSsCNIWNaxrMgX7dUXo2xtl15fUr49m\nMFbf1+e/+l9PjDHGuFV9bhd+jONPFCHfoPhToG6+21ck7mwO+z0szOUtfd9HDWXwmdAQRXTPN3AP\n7DQUyzolOm3BPVDb1XUvqa07/oUyNEfU1KVgXv8h3C8PfldIn/HPlfGdoFCzJmo+uvmNXolSV1Ae\nmg3jqKmuuziSHbsDRfruHspubpFM9mRp6s/IbvvfMcYYc3WpPn55rOx0ZyHbPrlLvR/KKS615fO2\nrlkjsp1tyFZVaszLE/3dfyGb/xr1kBJa7XYWJA0R+Nu2k5cKh778RNHSD0mybX/7Q/0DtMF4SYR9\nqtdlikzjkNrcHAziVfH8ZB3qja9BwICe2CKyv7xPffoEFSNqg2NlgEVTHSnwfgGuhdUFnDKQ4EzI\nrqxC2X+/Fqto6O9wj4wAalZeW/0pwq/kpmHsJnoc4fvpAhldC36kCSiNvhQCAA6ZSZ0a1ZbsWC0p\nWu3G/B5dsv7wsCzgEQnIdA5gDh/ndX9b7ykj7DTIVOwpGhzAJZGGN8D05cudru5zQ4bXHcseEYo/\nPqoe4xv5Y4Z0Y7iGdOcWrRbI5ld9akZHyngVYKC/zoit/XqJ+hoKKsUuyDaDYlcKVSR86m5NYzzs\nyzZr6qAjakzTPrwMGxB+QzIMOWW5FgvQRwtdd7ajzG9A5jc0KBsYUGhLXf/L8y+NMcY4IF7Oxur/\nIdm2UVMIwOuJ5poT6nrttiL1V4Pv6jpkGjdT9XffP9R1UXOrwk8RFZjz3djmGus2WastR2O4pD9T\nUGgWJANRQ2N4ryGf8myUWTry6b/63//SGGPM8RdSO0mRLUzV9dq4r7n8Hln57/8TrYsOtcHTpxoH\nt6TrX6J0s/fgnnmTNq+QJWuTqYWXqdmHlwO+rOsL+e7uY/1dKOo6c7J/K+q6LRc0XUHjYjM3gxu+\nB7osjX+kUXaI4AIqb/R3CiUIJ1000Ui2Dcia+6wj7ljvjzdko6917SAFso35F6t41Iuy7WSoe9wm\nI9udKFs06GmO7KdAj0LhNIEzC4CjafjyrSHcIQbUaD/Q+ugttE9s4MYKWQ9nccYQFIK7IlvPOgxg\nw+Qs+H08UKAhXAMgBZcos6xLqNGl9JqFo8FHSa1ZIosNJ8LWvXi9YSG8ZYuulUFsHqH6B++QO1Z2\nvV7THHXh5ZhkNWd2G4fq75X6kSmwbs41111NYTMF1Va0ZYergfpZ20XVqA26DaSjBedZ3mjOzuDd\nSKF4lrZAPGJfY4yZLUemwj7lw9s3XYDWQLFtApIn1ZJ9hx6cFqhiefAHhHACWai6hAv5jwMK4QGI\nqcAIBdOKdJ7IIJ00nmeNkwIVdKN18HoKx0movpdRe1vBQzSH86nI3thEwSWCx2KO+lFxoXteZfR7\n6YruuQ6Sb+2oj/mN9pSjI+2N56xL477GOvd437xJSzkaGw8ulCXIxnSL9aCrMRqndf078PY4Vyju\n4BtZB45BFLDSddnDGutzfZCAW9vq/6rBWWGl708LIPNA2a59/b0VaawHcCemhtovqqj6ZeACKxRl\nzzQEdxbrbRn+v+MTjcOf/otDY4wxuVc663W/1veWdswhofU+QO0ktcRXONMM8N08iPBUFaQNvmtV\n9P9t1qwY0ZRaghr2UQ6CO/LVUv7UQTUrGuu69w7Uv/1nQgWOT+RPp5+dmLhlF75xQZB7+NmMM0cR\nTqKspVcDB1Gxj3ohCj23aSVQXGwtpn2hdWHj4SN93WseX10wF9yN/v/jT7U+x+p0O7vqy842qkPb\nsuEk1DzOgNY9bssXAtbBVSQkYfFSNh46Wrc8FMzWRZQGSc8DODE1qgmKO1r/r680V178udD+WVf9\nacBV5lVkwyHrbcZGWWcBz8+E9Ygxtuesb3BfLTIaQwfEiuHMMruSzQdrraP2FOSoi7IkzwMmLZ9e\nwus3ht/DhpdqnZX9xyCCTr6WffMgTbxv67nABo21juRL2SIDOIGbh73bjpiDzMUALphZPybYu10L\nUaILm6y3d+DWWTEH4B/Nohy3XOj6veeCHjVR5crv6DlrBpJn8InQXgvUs9JwhwYg480Q3pXodeVC\nsDEmyuRNpirf6MHDU6MPyxv5kDcDtQSCZFqVjbcqh8YYYyppUFgoArYj2b4CL1ybM00BlTT/CXx1\naznfBifcgYNqyFng8VM9u45R8Ru/1DrwvKdnw7vv8vy/J1+slbQOzkDybOAb3aBsVcnIN1Nn2pwX\nnKG2d/V8PuF8F4W6XpZnIZf9JriRTfue+vfsjubCkHPqahs1uobus1TRdXcO9bm/qyVImaQlLWlJ\nS1rSkpa0pCUtaUlLWtKSlrS30N4qUmZ5rIjc6kQZjOi+slDOgaJ3wbayL8sbRQVH14r6Hk/0Pf9c\nkad+B5bjT1WbvKJm9PFjRdb27x8aY4y5+UTIFwfek/ZXKFDkyeKRBboeClUwayoCuEsUOoW5xv9R\n/R2A8Hn6LsiUvCJ1j9NkbgaKDH40UATuhsy0d6RI2rJHtpPsaNHW/d95oGj2CmTOixeKen79XGz8\naSJ/JaK1S5cMN3WYK5SJWk3qCht5c3eHbFBefTs7EwpnBet7/SNFWrfeURS091w2bewS/TtStK9/\npOy8lQUZQs2sgbm/dYm6UggnQlX3UJnFtY0gKW7ZtrcVteyUqCv/Ddn9LUW6U9AFBWSrsjuKBM/P\nqDEdk0G21I9RAMcANi8EiqrO0a7vZ9W/zJyMcKxQM4TN3Oj69/5Avvnf3/s3+rm+fm8YgQyB92Pi\nKlrrlGQnO+Yh6WvMQtAGFXiSSkX1p0strzNAISxDFhGkUooMgrOHWgucCwb1lYyv94sov+SKKHo1\nUKABrdCyyMRf63VG5H2Q1vjNyMb1eurnsKc5GKyohz+UakqJJFLuQL/v9sgGUpC5mKCkgHJQXAs9\nT+t3yhnUn2x4TlD8uU2brMl0FTW/52RbMnVUyS7gWhrJJnagMenDhbJsyca1jGzUbWr+Rzua11NP\nfduN+1Yna4NSTTkrH+2hNhQV4NOBZX4AIq9Ije2Ke0vfyEdGZAAd1DLKD7V+bf1Y61clrTm5w9h9\n9bd/bYwxZvtYvjZIwYF1oQzFvKcMwDlIxMsrZQK2CloDevH6mUO5AV+1+6gsHen/q/BzrJkTUYn6\n9KF8t4HyQh7kSBeek1Nqgb/6tX6naPT+wXvKuv3wf/gXxhhjvILsOSMzfPG57rsKOuPj2YkxxhgL\nHwrqe/ye/p7m48r52zUXsaZzlGR8Mtm5nOw+LIKSA7F4Bb9KDeTheIwS0SrOoMguNVAJgw0ouYUQ\nMHugCPyU7F9njs4zmktT6rwnayZPLW1MDCSEb2EFV8wIHqPMEMUoauOduTJ4UxAxAXw1E9bjrZLu\nxQXllNsGEdHXXpl6IFsXXVTRrvX52UyZucjIp6YbeEF29LnO38o21aJ8wiNjGO8DeVQ+MtRzZ0oo\nqoBCyzG9C3BLmb6y+Yasuw8Sb97WerP2yRyi/GBAd81B3oSo+oU+eSZQtnb3zfhCgm35xMOYV2gh\n+wyOUaJ4rPFoj+TjdRBGQZmj1Er2baOIk3b1eymQSqUMGUtP79cbGvCspXFsV1E/QUWlZ8gekrUs\nDeTzI84Y0xkorOrrfXXRtc2CNcGkNMdtMrwZkIxlUL5j0BohimrTnOwbgo6rgagJ8dGQfWw+AIk1\n0/h0B0IDD5ry/ce7nD2CrAnxnQLKTrO2xnr8SutUgdr+rSeyiVPQej008I+tNHHz8CstxihRFTSP\na6j8FEEuBmSLex2pc06Wh8YYY1zQC0XQtCvUkFLzN1OELJJtDi1db5PWXJrW1K8qCBELBa0AvqMQ\nRNweKNn1BgUrsvpleDk2oMdSY/jiWJ+yFTge8ppDOwFIG+bsKACx09A6k8OHh2TJ/Zx8Yg5Hy5p9\nanil6wcVrb9lxv43//5TY4wxq0vZ9/7vSW3EB7lTAe1wzdloPNP4Fl19fmPrvh0y4mvmZsh4r0E7\nzMosBqj25UDy2KBGzsbysewN3G4ZlCdRJU3d1/fL94REXWL3+anOzenJa4WZ0CmZ1ZL9eF9r0jSl\nv3fg9zuHA6nOOPuMl5nUzW3bBIjM+Eq+XNoF7TSSbzqoZYYTFGhq8BT1WGeymiMjgA2bms4mfRAw\nvQ5nnDzr/g4qlvDAVbDlcsaGsqf1JUaQL0BEhkOdo+cFzTWPfrdA568PUHNyZavWZ5rfXdSR3Bj5\nDkdND4RJONeeV0TJtlfQGcteoWw711yvcbba4vw7sHS9yTloudIW/dLvR+x7VTbzlCVfXoHGKrEP\njVn2l3C0rEFel8co5HT1/WvO7Vvvw70FpyaATeNs1L/eFHs6cETCSzIALVZYc86vvBnqbj2Sb82a\nesatpHSeXszk20OUHmPVwVVFa94cxJDPOX0/Jzu1UeObs6aVQNZmQYfM1to3Ruv4PPEa2eMXPONF\nU+P58tVypDFLWRp7D/7Q8gZOPBDei2tsFDLPc6jOgexrN/W+80LriZNGhW6hz138TGM34NkpQGGr\nH8D519S9nF3KV3d55mh2ZLPBpfZid6Q5sljFzz7w0UXqt1WULSv4pLmUTZp9nVNTcFndK+vssAJh\nuQahbqd4LuCMM4HTygMNnId3bwP4yAlA4qFiVbsP95f57bxDCVImaUlLWtKSlrSkJS1pSUta0pKW\ntKQl7S20t4qUyRYVnT14rMhXJ1YL+QxVpvb/bYwx5roAB8JjoTaq1E2++4Ey1Hki84eOooCXr06M\nMcasiCZb9xUlHcE0bk1QDCKz0nwhDoeSq6j29qGinQfUiU93yQq9UuR9daxMxKqt37km42E1qDdE\n9cnJiovg/u57xhhjHhQUXV1eKdL21ReKRJaK1JMuFFkbh+r3EoROXP9X3igamnWVYVpgr0JFkUoL\nlY8OtdlLaujMVtV8faSoYm+hqGJQVNR/Q/aiN1f9cpMI+qtLRQGzBfXpfKXId+9IaIDH1HMPIrIj\nNdli+45+d7uBasdctprOZaNU6s2y2weP9ri3f26MMeZXvxQr+dc/131sfUeZy2VRkf3RK/XbRiXE\nKyuCnXJluzTZnY0nG1okaYpkyWeoLxGYNgVD5D+QbXtfoXx1TYR8JV+MiNjbKHQFjr5XrOq6W6g+\nbVBFScFAnoe7xaWeMvDU37IvuzWqyl5lUARrXcDGbms8wmOyabGSDhlVB26HFbW/Th1OhB2xzS/p\nT96VvRZ1angXcP+EoBzG+r5bkd3mK43HZAFnEFlLL4BHZY39yI7OarEaFJwIIJfGJ/LNyBCFfl9+\n4eb1/+3B7ZEy6Tr120eav3fXGoPijmxYACUwmchmhUDzMea1GefgaVjqezPUlvyQMSHy3qd+OX0D\n0oFa2QkR9mFKv3MnlA0QiDG9KxAhoKL8Goo0Za1LS2rnZ+9o7Lc82dhOw30AEC5WNPGWyn586x+r\ndr4QaV38/Jl8c6euuQf1lDl9pQzDCt8Yf0EtbYmsyxw+oLvq57hPNp6MbTjS+3nmrlvQfWSoo+6/\n0trx1Zd69UGifPhd8Q/t3mEu7GmuZrblsyct0G6X8rUvPv65+oF61jEKMPtpqTGl4Vc6utJ1nOGb\nZbhXZHjGZAs9UAudDQghUGO1gtQ2Xp3o+ttw0WTg6MlZ2Ac1ApdMSTAEudlTv/wnuu9Fmwy+rUzJ\nAhb/NZw9VdaEazcyIWv2xZl8+QAVnlxJ13r1pXyriNKM5+r9IkgMC1+dv5SNKp7mew4FQP+Vvj9Z\n6t6yff1/Na+xGTvwS4yVFaqjmDI86WIbrWctuGQyIHh2crqn/pyMHCcLfy7blObyuQ3Z8VJKNm3X\ntV/M+UIGHp5CXpnRNbaO5nBOMSdCw3WzrEcTuAPgssmwJ4aT11wrt2nzKkgXVOyq8NgFcDi0LP2d\nKoH6yKCkMBZSZMz9l/jcAq6DCUpdZ23ZfxsONEP9/QxlrnxJZ5pYXasMKmCFQtwozThX9b0c4+91\nYnIFYwp3c8bKsVagKpjegIbbAsW3QfnGijlr4Bhw9T0HJGwqzZkEpZrphqzmUPuXda3fyYMgenAo\n1UFvoftZDyyzaeo7U7hNNqgjnf3Fr4wxxhRLstEipXsbwt01qpxhI72E+/A6oDA2RXHk4q91LisX\n5Bs7O+rr+Vda7++gBrJzX+tR5qlssBXAjYIi5W1bAAdhs6i5mu5rHWygYgfoyLhk3TctuLFAheVz\nGtPRSHOhH2guPaiqX85QvlSGAy3aAg2wweeWssME1SYXPkCfzHXA3ArysvMgCz8Ta0YVfqpZAC/G\nnq4//kKv+ZLO4/fgdrSacIf9Umc//5nO2YUK/HQl/U4GlcH2CcQkoNcK1lNMSAAAIABJREFUoCwm\ncN5U4Hicl+XDZReFxhg5s5Kf+D77Drx3szS+19V9pDlbNLZQOgJW8lULRPlC36sUX2em1+WUCeF6\nG5f1vdSSM0oV7ppBjKwFGYmKVSp9e06ZFz8X98pf/ru/MsYY8+0f/olsscMzQh4EIYqA5Rt407in\ndz76HWOMMT861LyqwGsZevByfCoU2IxnmTZzJl/md3LwKxVQmC3oXngEMV1Q9mO4bAL29CuUE0s5\nXS+CC+aj39ezTBaFsRxogxyKsCGKW5MFyMBIY7/CB3Ig7uYrfDCl77msN+mAZ52M/t7ahz8Jdb9i\nXT5/U9C6uRnLBz0HPhK4YQzAjyJo6SH28tbMoQPN3VIku5ZYx/IgMdec/SLOCBa+HfNiOfhOah/F\nxZdaWyZbsvvjN1RfqpY4I0zYn7f0970fSLGySfWHDedji/FLg1R6hUJbO0Z1sfjkQKlkevrCuqV+\nWjxrri/lhyP/NS4jnWqYUWiZ+gFoffjRsqDal/iYTV8Lgcb6xtfZIOZAnM05H8K/9uFdIeyWKHUt\n1jGPjl67IE92USXuvFI1xuwUDrK/hRPyJ/r7o3+suVF+rL3mfVvX9wog3xbqRzDReuY0qCaAY9IH\n0dwEEW8tY14meJF+wVmFqoYyZx57V7xDUzhlF6BCV7bWi1iqy+GM4noopdU0ppld+Wzq7xFxS5Ay\nSUta0pKWtKQlLWlJS1rSkpa0pCUtaW+hvVWkTCalaN7aU4SrQcbRIQp7NVU0udTU3+/dU1bvJ9Ts\nX/1ErMvNUBmEsEvEiqxSXPPf/0SRqvVKUdF9o4zEq56in91T0BUNIv9Ecwdk49ItopAF/X+OCOAz\nBxQCKAWEDsyC/jgtXX9CxH16otfdbV3/3SfK3JThgrk8Jnt2rEhda6mIX4bM0HqhTMXNUBG4nKts\naMzGb6FmEmRlz6Cu+0pntk04lc3S/NaTd3Xtq0tFIX/xAp4J6r5DskebniKsNaMs/s5j2bJUUTZ7\nACqo21OUsQ7Dvwdr/PMrOAoG+v1H7yiLf9vWQ50nv6+sxjMNrflNW+im3vMT9fuAel84Svw1UJei\nIuIR2S3PJnLcVb961GR61LaGEVwnp4pQOwt9fmTFWSrY0HN6P4pkp5SnaGwOnohr6tbXnyuL14Jb\n4BHorEJa9rLwoQkcLTcD+cjC0ve/Ijsf+2RIYjbTV9S13Ve0t4nqlZ0FJXUgH80z7uOPUQz7THWd\n1TpRY1v3taHOc5EGHTKm5rmgv7OoJz0lq3nVUzZvA8dQVEd1hTp1p0ym1aF2OaPrLKnFLQXUKMN9\n4MCd0CcDH6xvn3FIbcl2i4CsfqgsbYV6WivSurCgVnU0Bd1EJtMH4eCVyGhSn2yTBSpjUyeEV0gu\nZdyhPlcMZeMRtf+jSPfU9WTjcBvVHljaVz2yWvc0F6YrReSHqFN8caQs2/JKakXNc/E/5W7ks5+/\nUJbs23+q7NXd3/2Hur+R1oeLjDKdyz2NoZXWXK2yTmThl4rquv/ele7DmqHoktc6mwJV1oJ9/sGh\n+jtHyavZ0X0NpqA3yPLslt81xhhTyqNehXrU9Znm7NiwvjW1vj+lbryU0xytFuF/Al1XzcQcBLLT\nQ0u+HxW0Jt22XZJRXpD5ST/S+HR/pXX06BWqW1X9bgC3wByETQCXl+3C8cDakabOPwOC8WoiezXy\nslcNFN7VUmtKuJE/HtZRtXLkv9mjl2be1fqRgyvkTnCoa8Y8DD3UhNIgaBqyeeRp3qVRSRvfaK8r\nlvXb16f63vJK63WRGn43RS19RX2PzqnjLuse3t9WNurnv0ShwJGvbDuoxaVBe9bwObiytkAxbFBH\nCuAN8rPxnqn7dOE4KcJrdD4DAQS/06ojG9vwMWUs4GdkWEMQQgUQKhP4i9KgvDLc523bmnWndFf3\n14BLIHRjbhrQvGRoPbi9+pesEdTy9yfyobBABvlLjfllW+iQw8eHxhhjNmvNoRuybvtVUCLboBEO\n9XcYwQW2BN2Bmopd0lwdweFmjDGDcdpEKBpV4VRw4D9Zsr9druUPxRy8W6Byfe5z4evvcaz6VUMJ\n51p2zpN5HhS1/o+P5NtPPmRNQdWwO56ZKuo2NxFKhewxs+/IttUdoZ3WcKAsB/ADWfCbbeTbOXjJ\nZiDRPFAEW6CWjnqy4TaIvNq7Wh+tNgjjlH6nA7efVQBFZr0Z4m4agEoNdY8RqkUL9odNDj42X9dp\n2PKFFVxYDvxpGzK6XohKGxxfVydajwqs2wNbNvYd2THDehhd6vesmn7vaiy7FuDVG630WoxYA2KO\ns7L2iexUdnfZc5fwNbVjLqwPlOFefKX7OF92+VtrxTUZ5uAu/FFI4Uzc+Pyt60/hWsiDzmrD6ZhG\nOW4z1Pd758+NMcZ8eqE1iiOM2eS0Tk/hOKvXNBdq97WPrVGZap4KDb6a6To5uHGs3ddoOWeTNt6A\nzHUGXhTWyDTIoNoAtayVxiOTZw1r3B7lnS1wHn4sG5ZqqOukuDZdCgJ8ZsQZYq5rvPxatmh/LOXC\nsitbVQ/e172BqMmC8tnM6CM2Xwxkq5uZUEPhDXsnyjSbLRDR8KyZmd6PqpzTUB3NolDYBrhsH6r/\nfdatS5SwyqAkFhW9FlmOokBnkBKofsvRWK5LoMXOWMcCvYY9fW5VUT92t1HCqun8XEUBaI6ijQdX\n5AJ1wCwIoLY/4ndBuoNAHfoo8R7IZxYjjb3jcgbkjOagvDUJ4e90NC551JjmqDptrkGz7chAPXN7\nNJUxxoym8vXzc62fpQegvjzdfw/lzvJKc2sZc+gwIJsYIMk4WED8yynsgoJQkeebJs/E45nmsB/l\nvulLK1ybXTMzkcsBd58KjAtdMwB9CWWXWXmyRR5+Gw8fnaM2N74AOQjf2RhVpTLr0Zzz401btuzG\nXFQgclK21ifASubiXFyuzYVsdp9nkUvmpbWU02XhbOnj21usG8Uy93EHBN71oTHGmDXIvA0+O0J1\nboptZ0P4kaZc54DnbNT+sqD9MyWtO46t67nw72U4o5Xw/c97Guu/qyVImaQlLWlJS1rSkpa0pCUt\naUlLWtKSlrS30N4qUmbwShGoM7L8W1VFlNJZReQGRH0dMg6erfc/uiuOgdnpiTHGmOgrZY/u3lGG\ndvvdHxhjjLl5roz5zW+ITMEsfp5B9SlUFHfvseq4s0TWXbJgR0dCOdSISjtrGK83sM53YbNHyYcS\nXTOi/1swhPfgATFTWKvJBuaKuq5FRj5PJv/rE0UxVylFGkdrFIPgpEhT+zpYxqoD+jtHzXLWUaRx\nDM9Hdp017h0ybSP1aQ4KyEd56r0nyhrdr4pvo0vN4bpPpBklqV14GKJYqYWa9daSewQ1kHny1Bhj\nzJ139XteU9mZxevS91u1Hln5/khfPPiOsl3vdMieDKS4kwdkNBqSjaZEdTA40d+GLEdGGQEP1SUv\np2hthgzvytbf0z4ZZDKQQ7Jje2RV1vD7VFDLKNzT/UYoZu0SwW+jfLD4RL/fJiIeUudeMbL7CnIb\nD34J666i1T7Zp3AkOzuOPtfNogpVoNZ4ofGyfPlMPk+aiSz+TgP1kxyRcbJ6BuTPDFb77CDD/Sp6\nvKT/NvXqhSqcCXkhrc4uhZhpnZ0YY4xJv6uMRHaDLJYNF0HMTM745zKKgrdAt52fK8tlU5dp54AE\n3aI9qB4aY4wZUCO+rsIxta1MqZOnPnit9aYKX41PNvjloV5ncMFYoLMC5vmcOuoy9bdTkC6phfo6\nHcn31ymNRR8kRW3GPESgoIPSibuRjeY2yB2+f3GMUsNG/d/ZE9LiWaxw80Tfq6bh8RnJtne6ypJc\ng1Jzp5rT6xaIHGrxl2SQ/S3xC3kNlG5GQk8ZkDLjAMgfkyi9ZF0cy+faL7WuujD4+1u6bgkeJUMd\nc2d6yv3p9/aeyictOHIcGxUjsoZ5FCmsMXXdS9nxG0WIFSocaf2/3XwzJbdNpLUpS23vwtLvduao\neaCk4NX1/xNqfydN+U36O1pzilvwhJBd7LG2deAWC8gg5eBhspayUwq71Muyk9sgI3UkO7RbV2aD\n2sKdB1oXsvRl+mvNM+9YfXR2tQ5Ge6gEoTSw9OFBYB6FIGqCln53SlH6XlFGn2b1eQ80g7OFwkKs\nqndHvjLlXpwrjb1dADESz62qfGC9kS8PHZA4HTK2ofboqCa+nlJJ/fdC+XaE2lxqRZad7NsIThcf\n/h6nJJutUDqLeYFmV1pY/Dusly2ts9dd7aW3bTvqzjfr6hjFsXQbVB2AmQlo14qDYs221q/5Rvc9\nAdLoTNTPMCvfC5/L/ifjE2OMMRn2l8Wpxstj/cz1tT5ezkCTFPTa2Nf9H19wJsiDbHJeK8NYZcdU\n2GhDVJfWEbxG+OjTd3RWCuAFMSjSWEP514D9PB/FXD8cFQOtNW3sEnRiZIzs/PXP5R/TM71GpYxZ\nluRjpUfwR4w0z3/wXgbbwHN2IiTdEsRcKZRtfXgkMiAZFzX1vXEPxb77Qmk1LoQsjNgL62RMr1ay\n1fkQxZHnss28rjGZ3J6+TNfzyF6jpuTDCTYhWx3kUYka6voR/cjDTRXz6qXNib5PxtdmDszJjhcq\n8kH/DM4VkOW5iew4Yf1dgvy0QTSGnJUyoHfDCvsFyBynpX1jVIETB5Wnwo58FlCucZq6n9ZY+1Kq\nAzfZd2Tv6h32Jc6W9x4JWZKbyUdPr8T/t7RZD0P5mg3PSdjVfb46RfkSBbbxtc58yz19vvGO7v8g\nI38Ys29efKXXLmjhVAjiE+RhGcVP2329T5Ryobmcyo7bqDFu4Oyxm7J3lsz+knV81NW5vbK6PXr3\n9/6r/8IYY8zTfyWb1Coo0aAolW2iNtRv8g3d+xTU1BMQ3j1fvHEuHC8F1rvVQGMTci7dDNXXJZxc\nTlb39iCjc2kRtbryPnsbNv/1pdatIK17a4T4MhCaDGeqDIgeE2puhluoEM10nQC5ooEDMnsoH7Xg\nxppZIHhQlSoYkESPdMZxsHUEZ5Vr6awwQfnKhl/JqWts8z04UUDO+9+oFbLeeRr7aqj7iBx4OkG7\nxnMhysp+NoqIroMSb0b3VUBVbwNnzbgAwsho7iwKssuHFZCa8CPdttlN+E/acOOAlC/7+t1JzAHJ\n352/EfLpVUf7aeUu/tUUojW3E3NJao6N4T3MbuMfFzzfdPW5rZ3X/c1FxnSvZyZT1GeKW5p/mfuy\nwWSqa2Z6+u4yhpaktN6sDBx5oL0GFyADL/UcPQa9taxrbKdN0EXn8A8tdDCsUvFxgLpn/7t6ju1l\nY84aeE/hfqr72vv6tvagC/gqK7bWs+spXFGoEjc4ZxYfasyirNaVy+c6M1gZ7X2uC7cjirTXFzxj\ngfBOx+pONfiVUGdNgxYz9LPzmexwTbVI7xRFsz82/78tQcokLWlJS1rSkpa0pCUtaUlLWtKSlrSk\nvYX2VpEyE1AL2WUcDaVOvqio8LOa3p8uVVd48n8oE1IkubOi7m/VgcNhX9FGv6tIVkjkLgtzdX9C\nlLevSFVuQL15Tb/v+mQwyoqa1r6lelAPlMDwRJG8HhGwOVwQM5SJRgvdz15Jkb2cR/Q0r+tmA0WR\nczVFP92h+r3uKAPsZvX5AwoyY4b01IYsFwzf+UMhbK6/BEVyotfBC0U4aw/1/1WixfZmaaLniuZ1\nBooGTj/Td7IN9dUpyvbNvvgrnv9Kfbq3JbRBrgKyJNTYjJaK8McKA8UUEfYc6g4Zsl3UGU529L1i\nTvdy2+bXdA/LpqKcz3+paOgaxZj1K6kw/fRzOE5QA/roxx8aY4zJkzmN+SfyNf295ypjsI50XyOU\nXjJwuxSJQNsj/X96oqz/lyeyy+m5ruu05Evv/oHqwPP3v2eMMWb7XWUYtlHwqv9LjXn3M1AMcPgM\npvLpkJrbnqGm9xy+izGcNvBaeFwvBS/FzUyZgNGn6t9/+MVPjTHG/PM/EVqs8D2NXx2kSudUmYrI\nRpGI8cvG8dlA18nEyjI+mWpQC9ZS10+Xlcm5n9XrEFb6QRuVqr7GvZum1pXaYoMKU9CQrweO+jV1\n9P/uCnb9AcirW7QvPv4bY4wxPzuSj8w/b/9n15qTLZ5+rfl7ciZ01XZdWajZXPdcwybuDHQPyJmC\ne2iMMaZI5H1pQMjl5dOtlWzjsI5lp2TYepojRXg5PGpPB6CSomsyB2QmH+8qYl8o6/rOkLppuLYa\nA32v9Ptw1SxUY5vOaIzNUPc9gP09ewOHTUrrSWsiO03Jjh9QHBztCL0wmmoOVQOyKmSdIniYTkEn\nrLBL/f5dY4wxuxXNpdax7HuBXNTTjOZQz2hcZmMyCYH6Zc9Q4ejq8x7ojnIe9noy7JOx+t+A16I9\nRHEoF/N83K4VA9k1h0rW6ubEGGNMfiQ753ZQA9nIZ3tZ9Xtty+47VdCBcEP0+6gORJqDaU8+u3lE\nBh/7zvj/eV73fxcuof6xfn+AapgXrkyadXhVA/lwI5ufTskiHWi+lhpkGuuHxhhjtna0hw3PNF9v\nUAjMbqG4RSZuAeKx74OcjFD+g2dnAU/HAISN01WWK4WCySsyeXG2KQef0yhW16B2Pb2RrW+Wsm2w\nJVvkQaXOQFrkO5qjL4daD4fwO+Xh26kNNCdSoMPGFyijRHAVDLFTBw4XCwWxnmzrbd5sv+mirGZA\nLMYZZnusfl4v9Oo14ZJBxTA7kz0HvD+60bre75B1Q1XkW8+05gRw+TRW+v3GM9QLUUe6JHO9hCPA\nSum+fVTttvdkl5uOsnjrnddZ/MwqbYacLZYgXWLOMx81ry7KZSe//J+NMcaMX+j3dx5qjQsaqPXB\nA7OCi8YGlZuJ1QLhztj/vpCT1kh+OucsN7Hnxirq2jN4H1ZwMUU23DHdE91DqPWrCueIg3qF48tX\ncGEzvNRee00mNh3Ih6su2Xx82+IsEF2DEGQ92uzj23OdhQb2mx2DHRB00xpIbpB9dpp1kwzyDgpg\nA/aFTF6+E5XJNJ+rX0VUO52BbBeGuv9YAWYAr9uWK1unohglobGyp5x72atDqLbSIIPMDO4X/j+i\nH2vQD6lA19uAUjNktGe+fjdApS/KCnVx9zvab7rwgZz9hZCW5035zI9/JB+O5/r9hjLOnY58bNXV\n+F104JOCS6L2nX9gjDHm8e+eGGOMWaAIV4aTZ5lGefKl/KaVAq2Q1e+UMtpfG1es06DIVv+JApuX\nyZhqRn7WgXPu3kLXHzbgt2vD3QPSdYIC5Wh9eyW30xv6Cs/Y8bV8oQS3SYffToGssBr6/9pMzxTr\nosbkHio/9pZsaUAHnKHI6vj6/e4LeHlA02fq+v+rqfae42PZ/Anr2LqnZxa3o3XXeqzzaR++yhGI\nucIMBCL8HCPU5O76MZIQND+cYQE+ZO+jqKbjpknNQYLMhZKY9UAPoAZbzKIACWJmzjPc+TFI+Iy+\nt4CrcsGc279box+gzXqgJ0qyXwc1pZwHKrcLMiYWWS3q+cfKoUjGWW4aYYe25lrR0v3eZbyGZzH3\nm3xiDueX8waqocYYY3Mur9Z2uV+dwYbwqi5B0+ZByJ+2tWa1bnQDdk7/30T9sDSnH3DyFCbwkXLG\nzQBuWdb0/VnpNQdOy8xNeW6ZzhHKtXAUzjjr3yk+M8YY45bku8NrPQtZRr47gYfIgfcmPYdnCDSR\nB6/ZCs69eZ0+UY0xQMWzNdFYe++DOATdtPM7WkdyVILMbK2Xhf1DvX+he/26pXOZxbrV4NmiPQRF\ndgUnK5xdKRSw0ndiHiK9v0Ct2UZNqoBC5AqbLjf6nt/C5zmvjwr6XIEqhRTKh/2l+psa/3YsTIKU\nSVrSkpa0pCUtaUlLWtKSlrSkJS1pSXsL7a0iZXJVWN5LirA71A+GFoo4c1jr50IxGLgJLo8Uebv7\nSBnonY/QsH+piNXLlLJUWzBrB139f+uYukA+d7lWDXP0EdHfe4rwz2HHz95RtPLOk+8aY4z5+hNl\nBMZ/o+hupU5mfVv65TfHivy1L4Va2NzAyowSzQTuGQNTeh5umObRGfep36s91PvFHNm3CoicmSJv\nuTYZD5Qm1mP1c71SJNKljrKD0lLFMSYiOpfvyHZhXpHePeq51yAXep+rL4+y6ruFmlHzUu8v5rB5\n1zV2K5An/ooM2w58QB58OmTWXJdaz9SbZS6r8DfUHip6Oe3KBr0rRfinA/V/93vq55IM3ta7h8YY\nY466ROhD6vlQmumlFJHOhdRTbys74pK57F4r2tqfKKNQyOj+Dh4qWryX03U3jxUd9uPMMGpLR3/z\nC2OMMduPVX+9f6BMx/YuiKO0xjp9pbGc9cmIeupfy6I+fYFCQEO+ZUAazS/I+k9VE/ziUgin0ChT\ncHGpqG3qWt/bAwGTgpMgMGSCUWiYjnQ9m3LHFapQQaho9Zp6dsuOUSCao7W7yjREZHg2K2VupmsQ\nPbz6KDpMqI29uIJYBJb4xgEKDYHm/HRxe06ZalXZ5//2v1MmbwlPTb9DXXRAJH9HfXZTGnObrHM9\nD0Iupc9t14RAGUz0+QHZZn9AVv8lak6geVyUB/yaIvnZttazaB80F3xGQzgPjo9RHoi5FizZ0N2m\nln2jscuX4eFpolYEl01mpPTTJVmvjCsftUEzuVP51MSDm6okZEahozGYDoUiOIIzZg82eYe54JAR\nDAcvsCfs9Ruhv3ZAAHrwBt1M43UN9TzQEpMlawS1/6my1pT2gNrjJyiInaqfblxXDh+JD8/JLJS9\n7bSuu1qpP+M3XEsK8EjF3DmDtuwfo/rKKNFctjVOBbJNblqfT7kopKEaMMa3bZTq2r7Wwjps+1M4\nCAJf/a3soXCT0evR1yCdUKjL+xXjNXTNCWpLJyBTcit9pg5/Q+WOfK28jdJeT/dwcUKN+iu4Cxyt\nm10X5N9KPltA/iMM8O2MfKR0X++XdrROtL9StuwaX5mgiOXvoNqW0fW/nsHTlJKPTGfwUcxlu2FB\nvx9TWrW+1P+fTVE0mzFXihpTz5INRxEZ5RsQPvBpZFEsLFTg5WFdurmWrw2uNfd3Hc2t27ZCQ+v0\n4T2t23t1ocG+7sonltGJ7g/0ltuSL7xEocFDqXEMjcUSPopFCY6dBgpD8F9sUFzrfC0f/9Xnyhba\n94VGiLaYU1uy0/BUdnM/kh8csj9OB7GMijHh0jP5R1q3Ky6ZYHhOVqAB52RcLdaw0CeFCkdMZ6z9\nsX9ANnEMzxXruIfK1CQTr6XsN2v2mQNd724+MAa00skLrScLVDWPrjTvs23tzWPQQ+62fMtaw7dx\nR3vt/rZ86L0ffccYY0yXjOvpKynVZIvqS+DDjQJK984z9bm8li3WHtxZKDYW4S26bStYcNtwVvDs\nWEWJzC48SROPsQ9kq3Jd/ZqvNdYZlq+8zdicql8F0Gsz1D6cPIihEFTvAnWPscYw4Jy6vgL929dY\nbHLymSmIpIWnsbSBHNkH8APCQ+JdgeBkD09N1K/WXK/vfFfXuZmon7/4aykDff1XvzTGGNO5ke9+\n8Q/+xBhjzLv/7AN9/0D2+OVPfq3fHchuW/BRjaCvelzQvnk8lH9c/pnQ3OE9zZlHec3FsQ0ScTnF\njrqvdRpFzTJKmDHyB+44Y4yxTGBWoN/SHa0ZM8axhHhruAStXNcb7gRuOOf2yMzJZ5o/3biPcICt\nNhrDAPSYneMsH69vvq7VfCnukOe/0lhlQ50ndwtab23QB10XVZ6s5r91jroSSlzWjt6fjXSv477e\nj+C5m4J4CeBX20CktpzAe9bVWJ/3xQ/0gv3gytec+vxrnnWYq/6W1uMMnGSlvO47rIKEZo83Kzi0\n4Acaj7QeTuCmGcOXOVyDvAMZnwdJucnBAwSvUhZ0l8O+Nt2gGjrWOb47RyHX0fo5PNPcGX2hdT0N\nX5UL+myrgc+wvwUBPE4RKlCW1qxcRvc7vpTPjqI3W0ssOGqCnMYt1kIag5CP18B0Rjxa7z/VM+8l\nz6y7kRA2zbbOEpdwujUQrQp3NVemPfmXzVm3wplz3Hs9N2aXC2PqvkEMzWx9rbGY1vX87R9qDCz4\navyV5uWsoL7Wqlp/QhDgFj80A126hLNvCHIwBX/P9j5jQ+WJgVNrM9F1sozNFqihGefb4YWe3yeg\n8Wtw0Tz5vipcLJSDXdZBg4+vbqhAOdDvhnCBpUCED6muKKEUO8xoVPqv1K/rS62PxZV8K4JTbAXf\nkovyY7BRfxYVzalZB1W3/d9OrJogZZKWtKQlLWlJS1rSkpa0pCUtaUlLWtLeQnurSJk4kB1NFEG6\npp47TSYhd6Ao7dauIk71DFHCGVwP1CiHjjIpllF0OgXD9BnKC34TJRiuUwcVkqNu34JtPfsUFMJS\nkb5r1EOCI11nAwtznYx2UND3e2TCx8fibJhQJ18vkv3vEZVcK4p5Q8bcQwh9guJPzNrfhdU5XyAS\nF8AHMFHU83SojFO1pyip+0QZpPpCWcr0XcXaNtzHIkybvbruLTT6zGit315R5xuQoaxSu5h6IPRP\nZqxo6UWfDGaGOrkh9c0o0Kxhxk6NlNXxyQxOdnW9LVBQ118r+3HbdvSlIsCpvsbAcjWGEWoShRo8\nHy516NQ1zofqz05GNnU8RV0nvn6nsFbk2CeKWljod3PU4laJTHcseC2astd0itrSHY19qofmPfxD\nD6kD74FaaL1U/4cXQrT0BvKhzZLsGkzldeq71/h050LR22ZX6KxUqP5mmTSrLpmCnL7/+//mx8YY\nY77zSvbfvvO+McaYK7KHBOKNQxYyP1PdZrSmHhtEVDutfg5H6ueM+6mjhrR2qDen5viyjcIP41LD\n56cDXfBkJlTHBuRRqUymKEUmnCxiOKFuG86aTf729ds7jzQP/IbGYNIUquvyK2XmNnBJlTzNNxfG\neRuFkQBkx5qsy526fNbfPjTGGLPvEtFHCaee0/utptaba1Qjhi1dx4rRQhco11j63Omv9b4HAmaH\nemZK4s0GNaFsQ2Nd2wF1ANqsE2qdsEpwyHyGqkeWOUDWvICSl1nldHW7AAAgAElEQVTLRztjEBvU\np5dBdIxQGJsDdFnCSROBpJmcCvXVyMm+gUvmmjrtbEpjetLS72bIfpW3QVcdayynkDBkQFt0Q60B\n5aV4n4yjbNjZBPWpHaE6Sj3Z/Wqgfu2R1ZvHdfFxdv+WLWStWsEJkfdAA9qss2TqA+agD4okXdN+\nsYQ7LOxR/z5S/5oomeUL1HnDwu9toRjUkn/58MUMQVYVyaxMWSszhbQxoBudrO6t0NN88+rKEsWI\nBwPny2iqMZmfKotz9Qsh5mZHZJvW8sEefDgd+BK8O3CEjOU7k76y3IUrfX4RoSjWk23aDvXiW+xF\nZflEjQzwFmpFA5TFYg6bFCikLVJ3eV8+v4JfJwUScdlFfYk67hTIPL8Ff89E97NL7b8J8AUbZR54\nI+Zf6T5mH8uXendlv9u2UVu+/9P/S2O5u/WFMcaYLmimRRpUWaD1bwMypEhmdgNypFzSnKiBbIrR\nGam1EE5LUAljMsr5mtaQSR/lBlfXD2IUbE7XHczk+1U4zfIPNQ4LeJ2MMWbvw7rxUHc5h6+linpf\nFz689I36U6/CP3dHny+hfvLqhLMPCKjQ0f2OQaulZqA+rrFzRt9b9VEwC+EFMBvTZl3oMG8iFF4O\n4ITyLSk09tOsE6ABRtT+z2/g0UDFbE5N/4++/yNjjDGFFRxRrtbZiQNKE1WQKujLVp89s67/n8Gb\nloXP47atCTLOXsEvZGts+iO4E5j3YxAzJbj9GqiZfArvW2lf57ZKRXPjy5tP1F+Uaa5Y9yvwS8xc\nzcEJqFoAhcYB9pAtka1HLtC3NHd9VANnIPdadzSGWc7fLj69tLUu26AUMqB1bVf2L35LqqdRCwQm\nXAvv18WjtzwUgmkbKcz11YkxxpivzjR3XvzZr4wxxtzZ1zneLYvLbAD3QgD62j7VuC1m2r8PQniu\nYoW2WOUF+85TnPlAZnqothr2QSt6vQaE69U3qikhXGs5lIYGea1N+RkcOk09V0RpzYWs8xqN9ve1\nKvxwEedFeynfW67g8jB6f93T3re2QcCAHssF+r5racwK8EzO4TQZzVDfBKWVZQ9agI5doizl7Mv3\nM3BOpQqgt2z5yJx5nuqz1420bi8D9Xe1I5sOb+QzT1E/Wk1BU81lkzWIuygLN0sEknOl/19ytnLz\nus/Gfa0PeXhDFyDwKtxfCSSmz37R5bmhOZfvtwYg90GI5kHYABT5pgrjCi6Y4kHMVQNqFz7S8bl8\ne3iivzeZE2OMMeGO1tPyjsZreFfX8a41Xi8XstsByMp0Sc8Xmeyb4RzsNTxU8JyudmUXBxS3ZXPe\nhpfEuSN7PIbLZjjR9daguUY91FdRy8tzdjH49BzEvF/TON08j9W/dNbPeVWzasONUtI1VvDQbX6u\nvTXMo6AF8mQZqq+XG73vuHAFpvS97SrqcSACJ1dal9ILXTtV0D1lduHSYi8NUDVaDTXfLz/Ts1TZ\nB1mo46k5f6FnFv/3dC7eycrnr3kGm1BZEitDtkec9xwh692HWl+e/Fh/r0H3nr4QOmzV0eftfc2J\nDMq7IYpcFoieHJU8YYfnDdRbOxaIypx8zWn8dh95q0GZKgS7c+Q5DYftfpoHyQ3Q5xukFGtI/6FL\n+ern2oTbcx2cKncg7FnrNQcEfIw07Hiuv+cFoLhFoLbf18TNMxF7WeDyGRn7s6accXdPv5vK6iDa\nugTWxeb+iAPSOgWELi3nSTNBngLtPkqp/5UypT8HwMRSQB1L+nx/KmfY3qH05a76efErOdcqQnK1\nRTBnJSefnut150AL+7YXGi/UvfnxPaN72LrR6+REG2C/CdQWOcJlRQ7eyOved/e12HYvtChPwhi+\nzIEJsuQVssArF1kw4I4hga3btmANSZ+PjDDEsjmPxQhCweFCcMQlJKteQEkJE3jC5lFEfzcmdXYp\nYehDMngJEVmFIFYJyOwSaHImrUV5ciPo3GcvtFlUj/X3+09/zxhjzM4THTwsZIjLLFDrFf1E4rSa\n0bg0gY0GSy2ijxqMfU39HF3p4WVBKYmNzGYBucsRULkVUOZPuoK7FpGnHG7kyxsIHoddbWpjSF1z\nKflKhQf2icvBsoPUIQe8Qg7C3liqOwLWyaaxNhxYga8/mUKaO9OcGnc1Dt0iQbxjLXTHMyQPIU8t\nVG5fdvDL/00w6tlah93hma718U8U/Ew1IegGGPju+zpsFe/rHsa2bLlzwAMrBNtFIJ8BROGtr+Qb\nazbKOQep4g4y4QXI/XQLJuMjwQo5XvY9rRvOXc2t62MkrnMagytI9hbELQ8eAC3uqP9pZDWzlE6c\n8yB8zaZpXXPgu6f+VLcgf6VUYtxEOrSi+3hnSw8FZsODdwBp9WP1s7mRj+7GDxmu3p9ADhjF6ur0\nb0TArW4TAChqbRl8rd+Zuer3pK//3yBjuUxrDsy66p+V1vc2eQ6O6F7a+HgeIt6g9WZBmQgSvxQE\nliukz/0FRJJT+W4shVomABBQrtBtInFLaU7H1ecqyGtuCAB7FflFmsDvNKP/t3s8mF8B+Yb4uLIv\nfyhsfLN25BPLBQTbQPyHECXaPIDO4sP9JfP5S60Pp3+uh/XsjtbpnbTmf4p5Wn7K3vhQNo+eav49\nKuser5daF84pRbj5SnvcDCiwXUOmvAZhJXKzY8g78x3d89DlwY+gjAVUeQBxYvcVAc0v9LpYyxa7\n2/reMCcb1pCHz1I+uiSwV4G0uddFlp7giN+h9Jl9oBSzaN+yZQl+BJR0zJfIEkMSa1E6MmM/8FIx\nCSrE7o+AoUNsPuHh6WakcekSPAqr+DK+NS2o1MN6hydtgm3XC4JhC0qrp7Lf6JTyJMQKrq/+Vt/7\n1//S2EdD00U8wBkTiOR7hsP+OftlYKmfK/zDrlPSwoN5f8ED+BBSchJYvodUbpYzDhKyVizNvZHf\nHH06MKOeylsM8t67D0gIuBCMU2qRxbeXBCXsB4e6Bwvfv5GtvjjXvV43NY+qEKMXtzVWk7GuXUQS\n+YXFkxp9dClpW1cgFDfIi9+ylVgXV01g+Ei31iGWvZzLdx32+lURoslr7UdXPV2v+lBnC4uSidEN\n9UwQu5fis5UjH7PGBHch/c9S+jue630rpPyLOZqayR42Jd1r9plKSHkBpQxzgiwjEiUO5QgFYhDw\nC5sac/D5XGuNzxlmvg/ZM2Tga8o1UzxoFymFf/QUdlUfIl0XWoGZxrHFuPs19SfMQj/g6z67jr6f\n5ozh2Nq/1intP/6Qhz+SrxZS4YXi6zLXcJ4y7ohS7LL+fzyjtKMMqTclh9t1/U7r1yQEo9sHeNMF\nAvcQbgdIJvdcgh6YIsV5NEMZ03hCOQuJm9Q6lo3XOrKivGkRn58IiuYgmW6xf+S3SP5BYrxK6V4G\nnMPyPDjbEKgb1ukoQ5kQwXh3wtysyWa1D5X4ykKauvsDEXwvvwnexw+m+AJBpcpSYxkhvtC7kA8N\nhloL0jzrRXmCOx35QkQQKS65HrcoAc5SZ08ydUjCY5PVWOcD/d4sJbvtBNoP4dA25X+kv9//3rdl\nB/bqwS7PKWvZz+5C9syD+sSTneaUTh6PFChoUD5murBs37JdERRrvTgxxhhTv6NnveyDMnagdJxn\nRc9TPy+Ptcadv9Br70Tjuv9UyfTZkOcLxm3N2Wwdiw4QxMuVXocACnspMxn0Tb+n4IrnkvSvyUdz\ncWmYYR2pEGxnryhTFrhkPTcz7WEW5T+bDWeaSH2Klqxra/nMHiCHGevXBnL8+RF7LufbvW0I0kmY\nrxYISZDIjkUFqogF+DzLvHgpX2I5NGOI3jfP1f82JWsuZexuRSXMDgG38pwy+wrUCn2SdEPG/NrC\nTswhC3L9XV1wiChAqvrbyaCT8qWkJS1pSUta0pKWtKQlLWlJS1rSkpa0t9DeKlJmSAmKtw3MEDh/\nIVbDhTRqdKU3rn6jDEOdz9WLigoWdhXVnMIY5nj624eYa0U5TykFlA7I80mNDHRPEbQdoM5FyFlz\njxWdnP6FIoeDpX63jVzbJaS4WUin3vtA8M1UpM8F1/reRYvIIGSNIcShnS0i9VP1b7RWVHcrr8hc\neIcMbhkpMV9ohiVynV5G9pigALwmmhxUKInZ1Wt03ja/PBJxWCMDcd++rlHfV6R6Z0PWvax7Ku0r\nk+oNZYMMZTIjYM9rylqmOWQp44oJX7+3BCY3p9ypuKuo5uLq9gSuxhhT21M/veBQr0Qb+01FI5t9\nZZ8Ga0WG3TqZZqK5gJhMkTKsENK3FVKBGcpusjllXTIgSaaXioRfZ2S3/JwoKGiKJ0//oV7f0xg3\nXygq3B4pct3+HJ85VSR831e0eN5WRnlVkn1zz5R5QAn6GwJNiywR/Llm7kDghnRtnixVnnKBTZb7\ngCxrB0bNDHCGaEyJRVnfK4OmiCVtZxAKTyj7egih2QtKcVoXur9JncxLUdHoXB+0g4NkN2TTFuUP\nfqA57G0LWljMyq65pb632FJ/d2d6v4ecaCG6PQrCwnZZfGO5q2zCh+9q8I/ua15sprJt6o7G2mvo\nnj0i9Xng57MlkpljfPYz3fuaTKSHhGfAvE/taWxKEM/CeWn6EG5PkTv3yErsI1X95ejEGGNMlQyB\nxTrQ6yFbjwT1AtnzPHNwukTilHIiZ66xXJCFmh5BwlxQ/+7kNSfbIzJ+lC2NyeK/fKWSl3pDdvr5\nuXz3J/9WGe4//G9kr2f7f2yMMebKgYicDLBPJtIBTRCtkJPM6fcbjyldxMc2oBAuwN8XjXwuIqvX\nm+nVI2ufhVzWnAPBzuGzwZvlFGJe4OGCtQ0pWauPFGoaQl6ykQa5eAORm7OMyx5AJlFJs2F99iDA\ni5E1myUwXeQru2R4LQjiag2Ne7UBQWi3b0LInNddEDCMvRNA9gm6p3+jvWsBPHy2lg8c/ukfGWOM\n+eCxyhltJLNHv6K0Y6Jrn52DWElrrP1HupkcyMYJsrszSOqzANe2f6j5vL0rqG/+Erj6J8j5rmLC\nX5CTEBW3XNBUZ8zrG+1dPnLEO5AENg6093oNZDeRQN1AWJ4u4rsDYPtUc3UHlHXa+lzloXyxvssH\nbtkGZMnSIGZcCC+pPjD5fdhAL4C/Uyq5TGvs5/j+CgRPN5aItjmbgBS02DCn2ZgwGRnRDUTAGfZ6\n1hALJFNwov5kgHi3htpPfvbZb765h09e/KVJN9W/nbsar4gyqXfQSx5TLrt/X9nQAVK9wa7m+sml\nsOFd1rylrTXxCuns/V2tQS+H2u8cypxczjDTDcTQs7HJ5iGnvq8scEBp2tqnBAM069hhb+E+NpB7\nZjhrrJ4iyNAHQQesvd1WxjJXZU9My1nTj3QvD3sQ75Zlu00OIQQIv6/eUMa2y/dmEQSOA9kiR899\nX+vy7o9/V/1AQvbqz2S77S1QZKx7hbJstf8DITiXX8pnnJgsOq31e54HoblgIVvovhyIijNp3V9M\nQD6iZDyzpkwzAzIIydp1qOt4GyTCM7JjdSmfWW2pv3ci2bF/rf93QJ5nCvIdm5K9mBA9pHxzSmmN\nX8IXQJ6PF5B1p7T+pvPqZwAad9bM8b7um8oYU8hDI7AApUbZ62auuZIOtWbFJLADEOtpzkzGGJPy\n+iaIRQls9Wcw1u882keq16EsoaDvddPAWrK395NP/k8hz3/6ufbQ77+v88+mobHYhJy/KAt/8bHu\nfXCqz+9973eMMcaUPCE6gkdaV6oWZxzmbx4S6BvKEjPIzc85I8Rl7wV8bR0LO4BWWuW0fkVDiIiz\nGrvFWrbk2GwcWzap3EO++BxiYOZ9ytdzhYes+5KS8CXlSg5Ew1lQV0sIZiOjwc1BJG6BWu2zTaSh\nkFgahCcs1keGdAbadhGqXzFp9yJGGmVll3MQmgFVGCEXWFABUOQ8vbOj1xyI9elDyntbnP2aoI5B\noEaRfKbf1JwfrOKH19s1F/qFdEf2q4PyiOfoHFGKgpnTT30uux8j3vU72aXGb59z/xpy3fYRJe4P\n9bvZAed0fm+0V/ymLxtvagb+3ORjNv5CDOfS2LUtreMbI1sOKDXuDbSXNxpC/jkupVTUxTehOkgh\niV0BSTxIU04Zi7NQx1/h2WJG+eGSeVc3lNJ2oFxADMDmXDW/5swwPNHnqfLwqRj53p7+Pqc8a0Y5\nbN3XOnD2se7rNyc/McYY88EPhQLLGX0vAP1apFzyBpLteh5E365s2UcoAu5qs6b0MLcdcF3zW1uC\nlEla0pKWtKQlLWlJS1rSkpa0pCUtaUl7C+2tImXKZLUyDnXudxVGbZ4oshSS2e1RMxoNFcm6mhFx\ne6ZI+gqugVlTvB5zsu4tZMV29xThC7YVZbSIEueo1Q2zyjZFZYh+yOJ324o+Dn+hiF5IXX+mqkji\nBx9QT4mEd28KMuboxBhjjL9WhuGdhiKKm5wibqOZYmGdM30uC7Jl0tN9HVH3V0fuM11WtPyG+5lP\nFemzN8oqhlVluB8+FhFbWCCqfKOM+/Xl0uxukEQtQqJZIwsNcaSNrdegCcKW/n88VXak06J2kSxM\ncU/3XocfB9OYZU5R0yUEttByGCeWZFu9GQ9EBs4Yh+z8aKDszQ3kf4susrZIcK/IjljAFewWEnzI\nroXUaKYCOAMs2cOtwDOBXFuajOkDauQvyK5dfiEfe/mpCHgru7LbCmSJDWneo/siCl4Qnc3ADXD6\n57LntCefO/41qCnIoJaXGrNKMW/Mf2lM6goJVDK3JU92XUNyNwaR4gRkj2qK5jrWoexwDNLlEglx\npLLNPerQkUydrfg9Mg0Ae8zdXfrvI+8GpGcF+eAYpNGOkf18CCrnZFaGHc0JQ317HnnqLFHsA+q/\nV6BI8hvdx+VIdrhNW+9qfrsgGKpwOPX/md5/yjzMUL+dR0bYIHndx1cyEIOZgW4+RA6yVlOWCw5r\nUzvU+hHik+lYenSAzPz7EAmCYrgc6IvLPNkbLu/AkWAgHrSLst30HJI3yOtCkC1rB0loEnaLvGxY\n4L5C+KGG8FwsXMhIIUWdDcgGFWSXKevqHuvT9jtkBgrierj/WOvr9/5QhJqWrd959T+KsLF5Jp4M\nxycTDaphCXldjuzZAFK5FUiYJdm+zRwOF2p5M9faBxaQdafhIqiVdZ8nffnyU08Z2hKZ9du2JXPG\nhcxwTvbOQep6zn7kBvBnwB+yiuAwSGtcFnONUwWyhZQDCqKqdXcaZ2xZr9fwaAXb+p6PjPydipAD\nC+SML45bJhjJJ5YdUFxkafOsQ/MRWZ4p2W76WnxHfWlUnuk3t+Rkr34mueCjr5RxvOjp+7WPQNw9\nlY1TM8jwIE8ugHiLPoCItiDfyDxhr7sSgnBzTY19R7/zjRQ0mdYQ9IAF784WxOMF+IIisvgO83/q\nsI6ATnJbcOcwBhtSpHH2e0xdugHFFCIpfgf00oIs2G1biux7dsKch5tss4zPAJqDkwL8bZDXFuB4\nOGsiR/9KJIEBXA0x71yPfaew0tyyQMisWbMifCmD7PxsqH3OI5O73CZTPIX/CWl0D54qY4z5gz/6\nY/PFz8QptmbfsUFSecjL7yNF7pwo1To6kV8498lSQm1z74HWghnoh+Ys3t9BLq00jmk407wKMtMd\nsqN7j4zZhf8txfo1gccNpIJdIkveRnKYdSkFQeQcIQUH4YIicu15kB8LDx6JnDKi+arWkchC0hnU\nbOjBdwHCxnDWqaXfjHdoVJUNLy61/m2nQB8gEXv4VHMwldUYH/2lMq+//g9/YYwx5rorm/+7k/9o\njDHm9/5QpPz3f/RPjTHGpJ9xpmkyd7pItsY8el4s5aoxy6dj5Izeh8LBBDPZsQMRfAAhcAExB8Bl\npg9hex0ky7ICafVUdt4taf9sfwVC/Cv9f8PXujwsgy7GF+aQPpex9xR037yEnfsgRzljRR1EKHrq\nuI/ErQ83GQAnM1rIvoUsMu5T9cvPI1YRxigB3ViABO8SYk5jjHHWeTPP6+xVduBUA4URgbpw6ohV\nFDW3Ils+n829/p2/r4VyRXP3XOub+45sWY/g7APB0rfhL4NrxgIlX4YDxuNMYEMaOoGUvuLGZPQQ\n/K5jW4M6ggckBblpkALqCFm+BSdXta/52k3rcxnWy+MyBPJj2SoLKuL0SxDTpyKlfoUv5yGYbXOG\n8sq6L/9czw0W3GCjPP9va1BL8JR0M8iPYw8HZMpojEw7QiP9jZA9axAv6ZLOGLUJCBl44/KR7JL2\ndR04ac0Q0tbumP2Js94QgncLJFOpwLm3obPSHme2Dv0KI9lhyDm3CH9IPf1mlQB7D8TNlUuBFq5B\nOh6v16xNQxD8PoIcjq9x29uTrwaIIxi43No8Wy7mui87jNdx0CUgN3PF17iMXMGYtO2YZY35wNZ6\ndQVJ8ljcraGtsfIXOhPEogAvb/RsY0A2LifsDezVs7l+cM2zQ0z6XIfvbA1H1gKS6ohzZADHY1Dl\nHAs5dsaln4Bhy6B/uiOI0Q38SlRt7H4IP2lNY/rpx7LRxooRl/Khv/kznW1a1/L9+4eqZqgfaj24\nHyDMgG91ESbKcM437EsFuATXeVBinEnGl799v0mQMklLWtKSlrSkJS1pSUta0pKWtKQlLWlvob1V\npMwShvLJWvXLc0vRvD5hzRzsyqU0MrrvKVIdKxpcdxSxWt4oejqHmbpxoChi+5Uyq8MSigyhInou\ntV3bTxXOXgELGNQVcnuJvGhjqkiXNdDvpdcx67uirWEGmUgQLmkkV3vISpbLilJmDhShuyH7lyHS\ndvRcv/feR7rvZ+8J+TLzFQkcUE9+QuZ1O69IXQ9J7+Uc5YNVzLMCGmWsrOjQ0vd339szPjwOnami\nh2cwRT909Z2X58iJw3Cd3oblvaJIrlPVtbOXioZ6ZGds4npjZGs3l0RV78i2e676vlNkrKrUKd6y\njbsw66P+MUCoK9VXtsYBpeBvKcLvUuO5uobxeoRaRU9jXyIT4DjIuVmySw8YRGtFdvy5bOgiET1w\nFKXdQzVjci47pEED5N/V737+10J4lJEcL1J3GKuhfPtfK7p8iWx7uwX6igyBTyH5BPTGEAWvHBni\niAzqCK4Xn+xQba5+LFAEMqgh2UjRPntAlBg2/Rsk8roo/lh5MhFz1KVAGEH5YgYD2fFnv5CfZGNp\nvmegHlDxCEFhbJN12pAN68zUnx6ZiogM+w38GhHZzhoqLNVA9fW3anCppLinYlH37BY1z7uokR2f\n6B7K1MTXDpVdziBNnK/q/TlKI24VNSW4ZkYbRcSjk5jPgaw6Kh9+FcSbOVQ/kDomOWTy76JMUkD+\n/EQ2ogzchNQHV0EfXcN1UkA2MorHCk6bPOiqWB7eQzLUG+LbSDFbFerMUTGJCnHtq1BMpcI+94+0\neHSi/n/0j9RPW2OxjcznH/0r3d/pGZnqFuz88wl2Ur/Hx5o72RrcWHA/GCTGXRRy1jn12y8o89CH\nW6fBmmGTcdicI/e5JR9L22+2lgx7skN+GEulgogqaFytEK6LIRKyrDUe0tgW8vGRhYId0tkZkIlT\nW/YNUSyzkFpdVECTIAFcRbHo1eBzPi8/CCPfrKhzvgTR4MQEGyOY/8nKp8iQhq6yvTOyQUcT7YWb\nn+rzZ1/A00A99v0/0Drw7L/+lt7fVV+ax0LUXDXJIEbw7Fzp/zslZY0++wK595Z859GF9qw9X+va\nui8broBO+hPGGHWmMxRlMsgJZwOQgEY+mIYHo0XWf7rGpkhBF+DrSQdaf1IgZbqO7LYN6mkNl5kd\nQbh2yzaj7j0okSkegcoK2ONBdezCITNAscVtk103qFwh+TqGX24DEqmIUk4MygM8YjIr5nI14m/9\nTj/S72SX8ErlNXd7oD8cuN/erb6WxL6ZjMzoUv6zRm3pScylBgfM5Gv93n5Dcsb3i3AYHCNTirpJ\ndU927ni63+/d/aExxpgQbrXxZ/KDVFrfGwOVsvje0Mt+wyexAVn4Df8EqKHUUGPu5uN1ik1nSqaV\nZdMa6v0e0s5eiRTpSj73Eg4uH0UaF7U3Bw6bNrwNa+a/80T9qrL+3bbV70rCu/A7yqA+vivE2+xY\nXAKtC+0LJ0f/izHGmP/n3/6VMcaYMmpEHlw5C86DnZeas8XDv9Z9prXOHjxAhcrWHImuUSdif8ix\nOIwijVWAwkrOaO6uUW7MwNvh2frdFIqTc6Rs85yvFzESh7mbe1fr/l2y8n/xP6l/cyNfffCeEEGz\nmTLoOQ8kKAjGIZxhFpLoK2TSM+xH07Xm5jaEVecLnbsPc/LlfEyoB0qrzHNBFo5Guyg72wuQ8qy/\nowKcaij+hOnXsr8lq2369D/0gZxy9tjMZccMqrDTvuaKi6qUnw3NbdsPfizbzL8vFc4cap8dw5kA\n5N29EXxsP9B6bMVoJlCYrzoaq2IJZHdP3x/ApRgiA57mmcigTrdsk5VH1riQl2224KXbgMhrYoM1\nXC0eylMZV2O5yeg82bnUPjJ3PjPGGGO39Tv7IC5G8PhkbHgyURgLQZfmWBcuh/jOlsau7WjuxQqL\nO3XOk3fYR9r6fKslH2uhxJWnGsKrQdzhy1dDlNfCnM7bqRiNm9H1t1J6/xwkaAmk6RgunXWo+0qh\nsLZYai2ZdkG0H8lnA84AmbLWoPsfaF1epV9ztNymXd+gLAl5T5Znx/aV7DeL1O/gEOVfUGZl5Jnt\nivxkeIpy8Y3WiuuWnkPSoE0mntaAAs+OE3hV7pdfq0WVHh6aUfvSeNcasyE8kalG7JOoIIear4tK\nXGUhH3Hx5RVEN1FGtlhf6B6cWBoagHO4rXtykcSO4OMJh/BLQibldeVTG87XZdA+M1v/XwYpPoUn\n1EGJrFSHGwvOqOsTnkHgVQpAsNywT+TK6u/jb+lMtWKfiTqsE472updr1jlQwKkSfEMg81xQreuq\nrmNcuB49qgUyQBT/jpYgZZKWtKQlLWlJS1rSkpa0pCUtaUlLWtLeQnurSBkXtmJ/W1HKkqdI1gwe\nklWgSNYOigzRhNo0UBDBUJG60n1FV0NX0dLiriJVpx1FC3Cb2v0AACAASURBVGM1I6ugCJe/C/M3\n9YrdUL/zzqGi1c8XipzNUH0atBRVTFEnmrtR9qt/JtSAS0Yg2Fbm5IfPpHyxminKenQOcuWlopi7\n70o1auMoGto7U/TZKR3qAtTetmEO93r6u/qBsna1dxTJ71AvHhEpXL5SNnI+0/UaaUUWC4eB6fZ0\nj51T1UFPqamckEGL2c87nq71qqNBqP2/7L3JkyTZdt533cMjPOY5IuesrOru6urpTcR7eBBgNFCk\nYJKBFClqR5NpIeNOK/452sK0kplMWMhIg0AKIAEQAN/De3g9VlfXkFU5Z8yzD+HuWnw/7xIhoZG1\nqo2fTVZmRbhfv/fcwc/5zvdV9AzFtrIcVSKv1wYehSVtIN0/hw+osCPXaq6odSfamYdD5K42v1a2\nfUSm0d3T9RogP46JbgbUlA5WtJcy67yrMb4ZpjW4wBJgObfJVtVcjeGD+xpkhyLSc9STzlIJgK/l\ng7/3v/yvuv87itr+y3/1r/TcZAOHz07VnrzuP9hSA7orH70BPhGtNHalDQidCfXXZB4KltoRkin1\n4fSxqOGvkvlYUl+5QV3FoCCAMIK5WVOnj4xIgRrWAf1SqOq5yg9OjDHGVMZCea1O9b02z/XjD/X/\nU9j+8zCh2xX4mYjIT5cwklMDW62rIbkqvE5r3XeTU6YkhHejS2YgoIb6LtaCG+qKWvODe7pm5x3N\n+zhStul6rIxkGU6p3JJ5C59QcV9Zrf5GEfFoKd9IOvBf/CdUmOBN6PdAbEw1JvMBnCQxyjhwp2zG\nQog0Jh2eDdUL6oXDXbV/NdZ9dz35VHilMXAfkkkgor8K9Pf8HtnxIRmAmLp0IvarBbwkdfWlQ9ar\nXoZDhWzZGnTClHrxFxenxhhjumXNkbNP/7Uxxpj2PTIiZOv9utblQ9aGOddrUBucOwR5c62xH+a0\n5qRImZBEdy2UD1eq+sMMxZoQ5KRVwhfxiRSpMpm/mWqKSRUbKPsugv5KyJAmDbU7grunHaIOMyWb\nWEsVM1ANoI5+PU0VElBIq7OtgqZowKNVLcONAXrk1pG/Wufyz3DcMPFIYxAxbw5RHtgW9NNm/rod\n3SNFH/hxyiVF5o+M7M4PNGZ2It+ufI9nJIM4/FQZ1yefiSMgKsHZwpyZ1UAoBvo9PlY77tW111Xr\nKQJPj1wgU5uOzG0ZdQ6UuU6uUYrZQ0UIfp1cVb40XYNGI/NXgn8tTBF7FLpXmQsJyjSNXdZnMp9h\npD5err47K/U37dhH3aqifjvMwYVwAeLyHPWNmnzDQiFinKrO4aPfe1++Pxnpe9OZuMg2IDpdEECO\nR309XBCpelUlrw7dK6rfCgEcESgvzgO1b/pU++Mv/1A8T//zP/on5k//939jrLzOFj+Cf2mO+spf\n/bs/N8YYc30rTrR/loeL4fva91oJ6IwCKAyAl8s9tacBgieep7x9cH+xn4zxKxfOoO0mMXYZhAi+\nteHsUEVFJyRj6XPtNSggG84vN6c+KMagrlz1dYM2+qip7YFimlhab21fzwRNUgpQNEP28tkv9Ezl\nT0AZ3NGaLc6HkJ3Mb7XnfvGpzgqjV1rHlzeoej7UGJz0xTM3+pXmeLWuMar/+MQYY0zswe+DQuP+\nuz8wxhjTbonf6GLJ90AIAtA2VU/rcQVkpX8MchEOlgJ8IOtL/f+iqkHdiVkDPJAnrFMPDpQpbqES\ndQEq+LMrjXXNRmXvx+q/FC0c2ZobVXg6SvDTGdDIQV3/XwT9YPV0nS1o3wQ0s5vXmhK15NMOKAY3\nQhmuogfvBCmRIWp9cEO4nBUtS+eA6Ub7hzHGJMuOcTirFuAGi5Fwi1EO3S5AwoNWKS3hc9ncnZ9q\nNIdnaAjaFp6axRKlxlhtXOKb3rX6Mo9qUgh3U4U9ZJKiZFlZO3Dvhai3hQFKMxZnmoJ+r7K3h5wj\nb6+1t7ZcxgIUhH2u+/ugVtcX6usie9PuQ848Vfmi+xt6vutnuu7BRgiSSxDXVh0Ox7LGqLTROl8r\nM3YlFMLgXStX4FbhPO/0NBZ5FLq2G/oNtb4JvuvCX7Kw1H4HFdmKAZmIItv1KWjqjn7W4DnKd9Tf\newV4AkGN5VEQylXhXKtoHA4mwDyacL3F8pXbGyF0qvAh3dXmE86UA/lo/YHm3jZJ+ejU/l14RROU\nOkuoS5W2as/nnvbv9a3267221ppUqS2HGpMLeixGYfLxV9fftmUyGJl8sWXiusa+RllCjvnmwtNj\no6oWD3TNbUFjsQpSPiPN3xzKkfk2Y2qzd3CdAmecHEqEqxv2QM7TS5S8yt/Oc77vgSJGATCpo16J\nclcX5cOIPSjldjyHIyZw5LNFfCO+lO8me+rLv/8Pf9cYY8ztUj7VB5DtFXWd6pK50QLpTnwhKZwY\nY4wJI83dmHe2qKH7PfhEPn2VwBv0t1iGlMkss8wyyyyzzDLLLLPMMssss8wyewv2VpEy5UQR6EaK\njCnA4l5VhGw5VdSxRzRwDs/F1a8U8erVqWemVtc9gF+kqMh7mUxypaGI2YTM5Ibasrml6Oaiqcje\nyVAxKu8K1Ien3yfUkr5HJua9k+8bY4y5pZZ5BqqgDleDcUDS8P0ijOs7DUUUjw4VMSsWpWrizeAq\nWFE/XyJC11N01APRMxq8NMYYUyKDnTOKKBZ2iE5Tm+3klGFuoCby/MVL45LB7P9Q9dDTkRAzC+qt\nm/fUV2W05T0ysRsfxavzUz0DNfepEkITtu8NNZ4G5aj6jIzlr/T7pqnoZn16dwSEMcb07iuC3iID\nvNPR70PY3AcvhDIaRLCQk9WoEt3NNakXJiB8G2qsGkaIlYNDnpdM5fSc7A7cDVGMb6HCYUa6Xyo1\n//SZfOqLz36mP0Qas+N3TowxxlSoJR5slG36619w/VjjEbWVRQsTMsyOPhendfWhIulBgezimsxC\nXT7lUr9YL6AMUEB5x6CCUVS715auc/a1IvuVWP1yS6bUpma2GWjuVeEgWgfyua3Rc/UPUXnJySen\n1/LBVSA/qdJftaL6b0oGIyLK7dlqb6rW4UzgIbGUrRy8kp+EhTdYmhxdMxmp7nhRVF/5RK6Xc435\nHpkvP9A9KyAuoC36tu7awrfHC7WhQ5reSfP/JWUQ+vAqLMj82rkzrqu55OKz1zDyl1CJc641JuUT\nzR3HpiZ1BgM/KLPtXE7r5pXxTREcw5fqqw8/Vns2ZH4bIOu8LYiNAZnVXaEQ/LXGZrmRD0zn+txe\nQffvnChLs9povXunps8P9uDiSTTmjy+UCTjE12+pgw88fa7RUlZs9kS+Y/fI/sX6fh5fTpUQavvq\nnwV8SQ58Jr6tcQpXyoDk4CEB2GIWl6i13NFcFIBi0BdzlMSKoCFCOMdcEC1RqtwDn5UNr4uh7r19\noM951Gev56h+4B8O6lmLAjwiM30uBsXSBCG0Ccj0LGamkOhv7zAWZTbH2Qt4GODr2ZAJtGKthztH\n6iMLnhuf2vuU56zEnrK11bbTPxbK8zwWn1sFlIK1hdOkBidYQwib4L7Wm8aBxq5CXfX2hkzhBnUI\n1qsbEDxVVKLq6Z71LtwDRj5SBL1Vdsi6reA4A4FXK5DFqsCjVIAXJAcCzyXjvJIPeWvt6THradN7\nQ4WuVPFrjHpToP68+b9+oftC/JQ/Yc+tah8pV/U5D1WV2UpzNwR1G1Q1TmXmSmKn+0uB54eLDZ44\nh/W5wZoUwHvlz+G3MPpcUNLvNfhCjDGm39g1+67ONGcr+WAenrwVypG7S+07lz3GI5Fvbqvy7RWc\nZOtznRPiodaaWxQkVqCW/Q1ZTzLidjU9m6A6U/ZNiUyj45A5bMv/fbiVyvhkBEdK8wY+ONaJ8pis\nPoiGPm0boiAVc+ZoNOEiPGevbOtzM1/zeBeOwCqf+5qzgDd5zatwFzv7SuvE6ZdCKU3PdZ3rv9De\n/Vv3hZR2yaZX4Rmqwqf0rIeiFjxsxtNzhPjCi8tPjTHGnDzR+lo90HnOA/JTBF3r0h8R3FxJCy4Y\nn/W2yXoHcVEN7rEF3CzWMkUqyVeP+/KhAj71+Au18/Lnes4ce3ZY0n0uAxCgNc1lbwwvEopBC9Yg\n9ypdM3T9uK3750CR9DmnX061Jm3f0YZsbTVnLAsVQs4cFsia0UzPU2ech+SY86AubqdaG9qr12uA\nXwyMg+JoDP+JC7Ixz9y7mmmO7yWaM949IdvNaGvuaoun6purc3gd35HP50GRTji/9enL9QQespXW\nz1uT8lnAcwcPRrUD1wiIkDVIiyXoqWADmgAFs/hC62SZPgpYN27Z8wsLzgSo3jlwedXYs9agDBaf\naS+fsf7ZcMW0LBCEFdaNEZxjXZTBxvBp1uFYhDNxxtgFVEPMpvz0hNzsp6p6nEMjlMGcLXMYXs8Z\nXIpd+ErKLvsR1QsVeOKMAZ28lA96IJHcFcpfIP7nDTgwUcoNOVvmJtpXzgZCw+VO9X2faoXFHqpM\nrffNm9hhV2ewp1Ndx2N8eg/4APyBlqXz/fW1nq/E8+0cabz2UMmLXlG9wVnQWqnfFkt9rxnofrXo\nnjHGmNn202/b8s2/PTVHH1VMAVXPvfs6g1iOxrpwpL4aogZq4F6s5zgfcSaw4NAroa7n8J66XfNO\nOAQVBgdqfgcVI96JEtCulRH8R1tdv8BeOqvpe+2V1s1kR59//4HavbmALwmkjsu76e1XWs/GVJLs\nfyK074K92yxA9qB0m3IInq2oQHlGewucW6e6X6/Mmamn9rYPNFbOjlBl1Z9ofevxTnb6n4RW/dss\nQ8pklllmmWWWWWaZZZZZZplllllmmb0Fe6tImfVjRUWffqWfu0eKJO0eKBp6Se1+TJQ4B//H3ieK\nrHVcRZuTV6hZvFLGYj5Q1Ph2C6s9yjlzMrCtY0UzP3z/E2OMMWdozz/7E0XERhNF1OwDZZMq1A4/\nPv1TfZ7a5uKZIn4BiJ/1M2Udl98ouluhZrV27yfGGGPCuqK1l9/oeYuurjOnsNQmM5vYcMEUUoUN\n1Du2cFWsFNGzUPOIQ93POdZzVBqKtk6fKAMyHZ+ZLeoUjxxqT/vK8J0Fivi2i8p2DI0i3SHqQIW0\nZhUESfnjE91rCd+C0c97TbW9iRLN4hV1z6fKtDk1XadR/O56ur9psyXcBjNFW8MiUcwynApNRb4/\ngAU9oFZ2c4Yqx4SoKoiZqwUKCeeKENs+qh99OF7I+riw2jeoBQ5Hir7Wfiif+a9Ohcroo4jV7+rn\ni6fqzy//QtHZVhUCi33qHU9AjFjyyc053ATw/ziocESXGrv1QD7pllAuoOa2CjpjNgX1hUKXY1e5\nviL7DjwZ2119/8EHipSPbtWvhbHa8/Pf/wP9/Ms/NsYY8zu/+1NjjDEPjxTtrbVQhZqqP3Il9Xfp\nRP1V2GrOeBsQMqAGDKowXkPjtAWdYNa6rw0bfHtNlHsPBvcp8JU7mFsnE+iCOOAeDWrabbIuVdBO\nL1Aem7TVZwUyiSGqO3kQKcWtskMG7gPTUh9aZyiQoVyQmFS5QD+XoBuCArX9KFElqFCs1mpP/1Dp\nkOWX8gGnqPt3yvre+Q3ZMlRJwlDt6te07iQ+6w8cBwYOAdshUxnqd4bOhK6yMTmLuumNnn8GJ0Gd\nWl0XnqmVhyIWCKFyTnOc5J4popYUWCiBMRetSGNebMo3AkjClqDzWj2Ua9b4LKiwGpmWWzIgh3CA\nbX2yc3O1r7LR2tVuv1n9dlAClVBM6/fVb1MUD8ytnjcpa+51WQsWR8rGJaxFq2vtM7UDEDD0pz9X\n/05QGiv0qe8HIZT48IHEyuxUlykajsx+rWaKoHTWIBDPnylLXRjSB32NlV1CwYYsvAd3ihexflCP\nnXJxtXhGf6h7P/dB9zBWDVQjSmQW1yAri4zpEejT4Tf6/OJcY1F6puuHZHTzIGQ6HVBl8BltqeHf\n39d18ih5LS5RBYTvYnKlPTuAc8pPdN2ir/bsklXPgRBMzvSc27l80EFtxEKBpea82X6zeaZM46e/\nUn+9u5aPx1/r+k24zCqgHl7BcROAkMmP9fNJoHbXQWcVd9TOUk/Io8WtfMbU9NzrNeMHMqbiyw/s\nXMqFxlpja/w6PL8/0fN2eq/Vlx58sGfWqGDVUbaMesp6Hp9ov+t6yhI24NGwGJ/UF/fJlG9AkFqs\nKdYt3BgobVjU2Qe25kqZ84CzZY0yNZNr6G/2kj17DLqmDgIO7phqunfDo7HbYD1O1AcWyJhtDLKv\noHW586GQDLc32tv9luZKZwZCw1cbjQ26YE9/795oHSnMT82b2HausSlNUW+D08spcy6F09C/Ycx3\n9ZxL+KAatnyoAJdO04NLAbRBZSrfOHuh5+yxZx/bGrNLV+iIGuiKcUfXzcG7sdqCTgP5EaJKtK2i\nrAm/iHdP9+usQDvjWy9Q7rr6Wupw46Guc/hj9bPLeXwIB0xliwpoi7VrhepfATQBCPIeCjPTifpl\nDdI0YH8bXMqnHqDmV9xN+aHkW3k4y6wtaGdQXtcevHwgXw1Klns5/X3qwLNnjMmX86ayYJ9p6XMH\nHXip4Dqb/1J++BJk7f1PtNbmdgJzV2vCQRK3yZ5v1Qc3KEW2E7UptrQO3t/l3KOuN0FOz3YBv8Ye\noNAtCOKBgQ+NPd5f6foL1p1aHqQaCjqRQcEGX2jDfXUNQi/2QaSU5Av7ICUPD9X31gEcjCDkwrX4\nhaJrFNGWGpMtnCx9UF/QARkXHqLcEIRnRe2yUVEtg+wIuyCpjT6/4gxXKYMQ2oBsCeFxY04FIC3d\nRN9rojhmUc1QhFvFc9Vvbc4uZfbZake/78JLtOZ9otVA3ZQzUJd3s0KkdXQdaV8oLjQnK+l5/45W\n24E7zqYqAuWiOeu/ueVs0NJ9VgPm1AKkEwiaaqrqdcg5HUTN0uOdkCqPVXqs5myyX/v1b9vy0fsf\nmMU6NnmwGme3p1xDfdlDSdZCATGAy9Tsa37EoHE3M/VFmb0jWGjdmXJOTlAxvldhnRhoTMogy7cg\nc5JaioZiT0f8rAwfjst65eND1j2hfwrHzKVfyCdLoMEqIAWHsXxkzPnPgsfNxJzfzkDIw3Xj7+mc\nXr2ndmx5jyht1JkB570ABP4FlS9dfHnCmenxWuvp6OcQ8En48P9jGVIms8wyyyyzzDLLLLPMMsss\ns8wyy+wt2FtFymzQWM/Vqa2HM6DWVuStXEGvHOWeCMbuh7Dxl5qKLt4shCbwzxRV3PtYCJc6NaCN\nhqKXU7gBrIgMLMoGu/uKeD2eEMXdUeRrh0xoUkLJJgTtkKCP/rGilM++VnbvQUcZkPMrMvBp5uSh\n/m6n2aVLRTvPL3TfORnW+4/I+BcVkXx6oczy5FpR7V1LjNqlY7XLLVLjewPjOKoEm7UidQT6ze6H\n98wmRCkg0GeWaLoPHwtR0X+kyP4ypCb0Vm366OGJMcaYF3B+GOrz7Loi6fMhdcWRbtbqoJYxhj/B\nVjamHKHyYDS2d7UVWfaI+vJkrejpmjpxC06CmwUM4PyMCAkXyQisGesjsnArmLnNmlrOGZHxRD4W\nVUhNwPYekG25ncgXP/rN3zDGGLP0UKHwUA/aE5Kmva/orHOr/4/J7s1eUmC/lQ+E8IWUiWivqjCH\nU+9cr1FTSv14QibaSzPZVTLUcPVUUXVKFsqcDsiMu9QCXyYah9hX/zi+2tNoqV/e3VMm9+NHyiK2\nOppjmyJKZxZqL2RYki7ZzOBE15nKf2IQMwsvvb/u44LwWRf1/LYrnzegSprUBk/Iat7FrC3qaEcp\nx5P6pMWYpapDgw0Z2QC+HGrNSzVq1mN4cVB/2M7JtMHDUOb/zwvUUzflQ4VJykIPa73RdWd6RON3\nUasgBL5ibD+saf14Un6s6yWpkhWZCFQilqgoBaxj4TlzeaBIfov1YpKqFC30fXtf7V+CzHE3oKOO\nxCtlhYwNWaXYU1YsLvI5FFvyZAYm1DeHKCIUyMTeWkrvtYDk2AmZ12tU4JrKNNxe6HtN6rjnY9Qv\nvs9cXGod76Ki5YEI3GlovXtaV3Zu0WZd7r1pTgE+ENpt1zSOTerUV7Dlr5hLL8nMPNhBAec+vumB\nTgv0vMcH8rtLgRLMOgRV4Ojz+RiOH5BHfgL/CkhKK4ILrWqZYJtyhICK9ECmoTBQLitD13+gdWO8\n1DW31LwHz0AFkG8JLcYI32021db3XM3zJYqHpRmKJCm6Z0fzvgQHwPJG11ucaq/zP5Oa0AQVkRy8\nPGWUFrp7oFipG1+VNabbovYDj3pvg2+PXmgOTZ/LhysgNIt7KMHU1YdeCQ4tltEb9qPlQP3Vhwcp\nAYm4fkOkTAyi1C6ABGLfaLyr6717T/05ZBs7AM0an+gPE5BBzRb8bjO1b8X+ayES1QG1MCJzOevp\n/7uoExZA1+VzWosmsda4IoiUJWoaS1ADy/FrvovPf/HM5AB/banTbzRByXH2SdEowQREbJr9hOak\nUEIxY6W/+6AZXDjdjo9TX9b3A5TQFmMQOsegD7ehcUG4eCl3DPxmhj0kYG8JcrrnAbX5SZk9jj5Z\nwfVlgUoqPwLhV9MYn3GWKaNusa6qLeNnILFZN/YNanEfa6+q+n3zJhZX4Ioh47oaaA5tAStFxRTt\npr8fM7bDW7L5cIslKBJu2Pv8CNQRaLLza7U7/lPd54fw/h0Vdb5ddlgfQSUETc3xHMi8HHwX9T2Q\nn12t+522BnnMPvjqU/Xviy+VyZ1fcTaAp2j/WL61hTtiUwPZiPzT1MjH8+zdFpxulbn6NWCNynG2\nKsJLZFK/MMzRhb63Bfi5A8J9Sua5+lBrynjD3AZh1QUZFLVQFQR1dmrU3l0bCTFjTKNmmwgOooMS\n6okuiE7QDr98qn1i9eyv9J3kvzXGGOP+8DUa7e+yFgqNOfjbKqwP3VuUYS+e6h6J7pn/FTx4VY1Z\nEW4YC761AK5Hi/PcRUt74eZWvjG51d755/9GCPDv/Vjn0J9877fUDkc+eYz6aAiCub3Sz1egAuIz\nzYkRSlw2Y98BkXH8aydqz3PN2XVwqp+J1kvf1v4wB+16C1qpDpKxApIln0NN9Rh1I3iVyiBUlpwb\n65zlppzDi6ClbOZwHtXOicVZLqczx3gEagJloDxIwPFK/Vu6UH9dLNjkUxTWjtaM3i7KiXn5RhVk\nuN2nnaDV6jvsBwXd7/zqzdT+RrwXJRWNb3/3Pd23pOd59h80nnOUMV34tIKc5sTiiZ6vfKL7v/fB\nia7bA6H5nPeuDXMLZaCLr3S91uFrvqWc3TGtfmCWVG7MOKfensvX3AfsbSWh51tMh1YJ5DloIi/l\nguH8WoHzNQ8f6QRuGZ+zgw06eETFShXuVbsDKjjl/anKB2qgVFPuqzyKZutvOMN0QAfz7jTinNV7\nT3Op6Kjhi7X+Pn6qvngCz9A7NfHzLLr63KbD+dht0A7exVIFzJRLh/d7D+TkJQqL8WdaV2enVJfk\nv5tXNUPKZJZZZplllllmmWWWWWaZZZZZZpm9BXurSJleRZGow76yQU5ekX43rTc/VRT0HAUA80IR\n7q+oyz5E3eiKLLxp6We5SPYM/hEfrfkdV9+fh0ppXv0VzOJH1GWSVQt7irTdeIpwRWtlo0Lq/Qz1\nfNUWGd4kzeRQt0+SP54rouadUw+J2kihgbpHX5+v59QPCQiXsylM60QWT6eK5B2CkClMPtT1yep1\nI2rx6nDQ3CoqPYaJfKfeMceBsiWDpZ7Zu9U17S38E3Cu7DvKTM5XGgurpizDwe59npGIeqQsDoIK\n5nlR0dQGtehuU2N01FfbNnAC+EZ9eVfrPlTEek2GL1VGIdhqErJEia8IfUymuZMjs0q0tDSHfwIu\nhkpRF0jqqB7BJL4e87kVY5kqB8CGvwBZY2Dw3zlQnXUFnog8CJyoAAqM7HyE2kZurSzUjCzhNlJ/\nDKYQdXyJohj12VFNmUm7oP+fxbpOjTLIAtFjN6SGOU2YUh/dJqq7ICNaKuq+60if71WVcej8C93n\nxz/VXIyI3HshSKVbZSGHNaEectCsREM5QJF60FJZmYWkr37Mz9WPl1NlUmLmziailnmqOb7TVhTb\ngR+pCDfO3UzXqizlqzlHbR1R81pqqrMmI7LCJbVxsEBtp6k+GOVRDqspyzWFQ+XQVRuvXK0320TX\ny1Nf3QPF9XWZDABIjxpqFStPmYIOKKg5GYLyXL/3yCqNUYmzUI3o2LDSDzQ3dw411uu82reFAybo\nw/I+Up/f1qiJjVCTQp1pUdLYWqC2XLLoDmoeHgiQchmOhLycaUSW7V5dz3d2pueyq7q+i1KNnddz\nrGKU0Fz4RBqsT9QCr1GnK5Odyi/kI0lTc5kpYYoUEef6mhMd0AOxrSxXZL0Zp0wTFAN0JcYqwzFj\n5GuriFpk4AzLhfr3FTxRPfcHahccEYNzrTkec74Br8fyWu214Z65BfHZ3EFB6CZPP6A+Q+IkKbqm\nQZZ4Rp+UWiBGKtoT3b7W13mgMa6DbHx+CXJirvU8hO/I4fsWaj4hW1absVqQqV2TfSoV+FllPYSr\n5vyJ+jyZ6X4+9dl1stPFvnyyWk25BODZgXOkDe/T+gZuMJAym0h9sgi1f3goyewfqC+r/T7tIdO3\nwZepM18NU1429fFuUWjSHGgvL1XxuKOVW2rnUYNsvGHdRmFrwr6whvMhoY49VZ2qotrRgj/K3BM6\nwSyUwXXIQCcNIZE6u/BW3EMlwyf7d6r+GBf0e2kE6o195HotH9sZw0FTfI2UaYSxycO9E4NGa1a0\nlqwC+eSrBSoerA2bS/lT5QS1wR77SjvlnVK/9Ooat6qdKuigTtJK1QPZN1BTyccls91Tn5ThEsmh\nWmFA58xAGDbJdt848EWM1PZzznlNOAGLifrs5oWu9/PTvzDGGDP6Rue6Bz2NSSkWinfy1+rLURNF\nmDPUd76Xqqy9mYpb3VbfnsIZk6toHrcX8GbMdb1cSX2ZZuvblsb+Jg+SBSRNCS4xN9AYFY51vhs9\ngVPhpRQfnxW0R5dAE9isJ84rzUkPLrIy6m85lA69r7df3wAAIABJREFUKc83F1/SH/2Jsu8LOMWc\njs5EQ9a7TpNsf6rAw1tCqrhjldTO6xnPNUfhkrNXtc/cAAFo55mzvnxoUdf6X8yxhnBoydv6/nCp\n8/7O3okxxphNijCaqD8//J6ue3XBWnKtcd7CZ2iD2ruHwpufB5ljjPGmsXHg1Gn3yYTHeu7Zp/Kv\n/Z764/lEfvnVc/X/hwf3zV3ti38vNc4/+D/+2BhjzHv/pXgsi13N8/6usvFHJfnOoKD5UocrpnGE\nmhxniAg+s3EDpRtQYDneSaYbzgIJ3CxzrQujBDUhuGac+5o7IX2fh9tmg6rf5ZU4zNagnlrP9fnP\nf/5Ltf/f6votUGJl1O2sKuv5Vt+LK9ovNhOQPtz/yjvn/nre6Z+qnV/+5c+NMca4u/Kx3/xHf1/t\nK8nna7x3TLd6ntVYe2+9onV0l34M2dNLLc4aoHMXRa17rUjvNwvuY0Zq9/Mlqqeo1H32ha7Xr/yl\n7h/LV7oo8dY4+9RRRqvWtzx/qvZ0NwteqJ03Iz2PfczZ8ZGQThaI+wCFNxeOtVYVhH2i/98y90IU\nPDvQvST7vIOOtUbMOHfX4SICOGSMMSbKzUxu3TFN+D+rhzzzofq4AoZjA1/klvnxcs26yno24/11\ncotKZ1fzye1SMQJXWADyJEYxMgf6M45RZkyR2kw7hzNDspRPNTry4fQc6YHo8UFWHuTg3eNlaQga\na5frOijj5ktaD2KUxhyqH3LwuZWHVPLAl+bfaq4NWX87nB83nAMtkPSGs4wDX+YaBawWyNC/zTKk\nTGaZZZZZZplllllmmWWWWWaZZZbZW7C3ipRZXig6eH6uKKXlEAUsU2d5Q/arpcxHYqm55ZaihDUi\n9D3qLmtXijF98StlTDZEvJrUtG1suCOWigS6f09/v39M1DBVKSnDWbCm3v1KGY5vPlcdaDJSpMv5\nsdjwTw5+qN/hdLl3qfanTN8XzxQdXm0VrXxwT1HzJioiRaK6PpG64AU66j9WiPA3ia7fPFbkcfFM\nUfidlp73ksz5MQzcefTVg1dkfLueWeQV7dyuFeV7773vGWOMmR+R+UszkETQbQca+LKim/1D9fES\nTpDxY0X92g4M/naabYcbZUg99FyfXxCdrL0ZObmJQFIMx0Tee8oi+WT10wyrQx13FdRELg/vB1HT\nGdmziDFIiGJa1LHb1Ik7oLdilGEsW/eP8LVakwewYXUnq5c48H3ckgUjkt5B7Sp0lNlc2KoHt8lA\nN3OaA2ELpA1Zu80I5Z0VNfvUXee5fYAv21PdbwxrvAuTeAeG8y2Z7x5s/DYcNDPqPVdEfa+u9fwv\n/lIZkadfKTv02//0vzHGGLP7QIighMyt5cl3yxSAO7b8aD4mY0xUuhTLP5oVuCdAZwzhIkgp1YMx\nfCi22tsgI3EX26aoqD5cMSA5eiDV5qjuxNyLZIkJbsiib0C4lNXWNQok5lCfn/jw5sBx0BtRGwtS\nY++YbMTX6oPDmf4/2AfOhe+bpcagYWk+T3Kaz9GBIvWlXypDWKgCZ8ijnnGt67belQ8sAvXdkjlw\nQH32kGzbrgWMaqLffR8lMIGcTDRyaL/6Za+CalOkuVQpyMlSboJmVXMmn4fpHwWC1Zy66or+vr5U\nfx7c09w4p049ulQ/7JAZWfC7l9dce8mcPQr0fFdkB9e2rt+H+yWqaQ6VVqAx4Ou4q6UZ42pbcyNe\ngwzqgvBhjlmgI1z8ZQt6YXYuNa7jh5rDrQ5KZku1q9dUZqbj6e9T6ug3EXNiq32rzhxMleK2KE3k\ncr4xKPCtx3ALkFXpt9WnlFeb2NO68TW8ZP6V7hGBIiixPtTb+O6OxshdaZ778CvlprpgowfCZq11\nfPNKWfUzsmHba/nGdKM274DG6nX1TGlWzYJvbcIeFqN6YYPUjOjTPDXuIYiNAipQufc0Bt1Ham/U\nBBFEJvTpN3CrrPR8OTLLNntfpa12zIzOFLMh+9gdbXmtOfnVpdAEezk4fPYZF3w439BzhPDU3cLV\nteeq/eOELNpU7evAnTVdgva6Vj/NQcsGz+WDAQjHAet+coHaERnOMrwXcYrEOVK7vMHruVB/d8+U\nyroegm2mVNA4rK/kTzlQbPWK9sX6kcZh1ND9C032bZQ34hwqU0bXGVymKiQgtELtk7UmfH8oI42S\nmene6rMeCl+mrz6bTVhf8PGboeaRxXp5DvdTvhdxL/jMNimP0qnuRd9/cl++aLPuVIf6XLEHNwqZ\nUT+SL706lW9s69+dufybtoUHySqCBp2hWHOgubIqqS+blyikwGcx8vX/SzgFDrfqqwC1wCiH2gdn\nrN0PhDbOrbWOFDz9/bimc2H5I1Cuv6H+uYK/LvlCe+k1xELLp5rLXwKmunwiJGkBfqf3mcOHXc7J\nQBUjV/3aXqVrj3y7POB3zhg26IUS5/NkIJ8s9+FMnGhtSVVVdobysWBH/eCgrlWEu3E5VrsbXc4W\nKBb9x5/pOboDtff793U2DR9+3xhjzOiJkO05fDEABeBVX8+N0v6x6R6BvmNpeMn7x9TR3O/sql8s\nMuAh++3qImfualNUjnJ78Fnsao+339E5vAayIu+rL+7VUIhFrqhaSpUH9f815muH9TxGjqn8rj7/\nyQ91v3/8z+XzBRDuyzEqaOzxiMWZvR+wnoF0qfLOUq5rvXOm8oEC59Ufw6dzidpdnfcEU9d9HUvf\ni/M8N0g7C761BMRegbOTa6vzFxOqENhDw2udPZIA1NUR685Ig1ltygdHcGZt4EXaAdVVL3N+fF/v\nCeUTXXf4S82hwQw+N/q5/xC0Boj/mg9PaQV0bKznmm1QsoUD7HSuL+TO/oN+eqzPDzlc3tGKKOXm\nn8nHhqDGKkW9PzUrXO8R63WCclpO/TFDbbEMQmY4ENKpCc9gFfRcBaRqAbUqrw9aZP16blSd2Kw3\na7OCa/D2TM8EWNWEqNZZrAdzFBz9GcjpLvOqor7e8q6SoDKcwFfWBxlu2yDbOBOEoPgXM61PObjC\nSjUQLzkUcnlHCG21Jwa5uHH1fl4aghDvao4U4KLdN/rcC3hJPdZTuwQXbeNj7qPv+57GGEFF8+qx\n3kGHoH2//335xuYADkov5YPSGWwxgnuRuEaD9xRn+t3n1gwpk1lmmWWWWWaZZZZZZplllllmmWX2\nFuytImVuQkWQqmVl3REtMYtb6vtgVW+0Ux4Q/f/kUtHEGSiG7QRkS56oaYt6x5Zq05pE1BYozsTE\nooooNQQwa4+GirRNrxXpS4v96zuKOj54V+iSMpHDiVHkK7hUdHIL90Kzoe8VUXc5htE7MCnXA5lU\nOGhmOUWRN2T7/KI+twjJWiW6XgwjeYoA8Kjh2wyEDPqC4HWO2t8mXD2FijHumuzzRve4jhWNdPqg\nCEC0TL8gc0lZnEON6TmqRkf7iiS7ZPFrqTpQjyw02S0LtSZ7pCxQQsQ/5RK5qz1+qvu/+rPPdf/f\nRtEKJZoi0JsGWbA+vB++g9oH2acSmdj8Rv8/JMJsoS0fVandn4JWQrEnvgbJQbYmzepUqvLJeAKi\nhaiw2/jPWfK3O2SACRvHRXhI4MZZwGrfXRJthuMnh7LCzJMvdOFwyKMmFTL2MWpIFeodU+WgNdl9\n29J1Gie6T5jT58pE5DcNZYVqsTLvOx8JETMaKzO+JaM9G6kfWqhyuPCmOLDr5yOy/XUyq3x+A3dP\nh8xtQA3sLhxDnk0d6DlIm5EyEkvn7pCqki3fG2/Up0UQIBGqQh1kMW7gbCqTRShstV6kzCQNOE8C\nMm3dip7pBhRCe495S8Zz80xzxf1AmctmBW4ST31bh3eiwH3durI+bfgYUnqlHvXhvyRTUMmT9aFO\nO80KhTmQcCD5tvCHOGv5YpLX7wnz31lrTBcAbwKX9aOGCh38D5aDgtkAdbs9MqEhGQdq9PNtWPDr\neh5vS3aIGuS0Pj1XFBKwhnJBEOu6zbLa+XKJKkiXuu8BSjMpOmIMuqPK3GGXKvBcBR8+IsbrrrZi\nTYou4dK5r/F14dhpVOAGM3qeBXX620j7huWhdHGtcdypaNyHV8qgTOFV2qGOe0xmp4MKipkq++Z0\n4T66lY+3yNQsi7axtuqrik3WnL3JL6BSAQ/SCHW8BTXxW7hcrGqqDMa1DzW//TZcYJf6/9Wt1tUI\nrq41HE4l1qebC1Bnvtocx+rz0o4+5+7AW9GQr9hFsuxwlY2m1JmHIAl7eo4Sc8KbwdkVgTYoq2+j\nDr52UP3Pvj9FgfH6pfbofuVEn4ffwhzRvo584uIXGjt7fffstq4nnz94JBWMd3riEYrhPcmjrDib\nqd/PP2fsx/Tnb/yafqJatO0oq9+8r/ZuYo1Doazni8+01pzNfmWMMWYFd9kOWXqvovv2UclaMI6F\nCYgo1DhWxdf8Sna9ZHo9fW4Gl9ACxJPheg1bc9HpkK2Ed28XZJF3pZ9j1qoyHGMXz4SgDGf6/0PU\nGQ92BMPzUV7boj5VXSfGhnNgC09PbcLhoqOx2ZBtbzS1d5UsrdflAvwZXKu1kE9efwOy0dcz7N/X\nPX24DKJQ50doLEy9Dq8F568qqKUH8K1NOivzJraEf2kc65z4Pvx5Hqp5hYl8eBujIgX/URnEXz9V\nYNxjXQGNvGXO2XldtwQnYrmrfjs/PzXGGPP032njSP5I7f7Jf/1f8DmtR5uE/Q9UhI1iVx6FnDWq\nRys4uqqc3Wau1hT7Qv2aH4C0bKjfQvj73EBrQqMKb9VK47Xaqj1N0LNFVJcSlNTshZ530dJ1D0Al\nzFNuMM5Ihyi/Fdkvbjir1G19brPUGnX5jc6EeRQj732iORvdoJi5D19S6bVqUrfYM8FY7T891Vpy\n9lTtajRQaYKDptzTc7wAaVqoLMxd7b3/Tu8K7/6uEBuFDpx/7IWbC/mGuwuPxpwzR02+uQSZvQ/6\ndQYCr1HV93LwzKVcTuWWfGQ7VB+9BM0VgUhOPPkYryxmOkMdrgKqFg6w6i59O9UY5EG+3P/13zTG\nGPPBb6L8eKr3h+nFDc+lvb9W032XlhB4nS33OQB9ynuIj2rSw/f0vB//Q6lEJYz1zidaTzYLuHOa\nake04Hn29DypKtMMhUiP33dcPYc/1PW7kT6/hGcvH+Hj+/i4jp3fIkh3UTk8/vW/Z4wxhuXPBPDl\njR5rvd88BpV2o+ffRcHyrpaAkmNqmSVnwmGsc/He+xqXB+9/jy9ofJ8/k2+HLHLbie4frFDP4mW5\nANI0AmnlwlGTZ25W/l/H7NZO1ZSmoZly4CwvdK8bo8YddsWf46M8VXWFonJS/po28xxeoxpnAwsE\ncuLD6RqD4ilp/Skx5sNLtXETgmRpqm8eVEBlMubmOQg8fKGA6mfd1ZhaJVToOD+maN05c6zJu14C\noryUBh7Yk3MG1akrOF957y76VDekglXw9gU3KGgBqcktQLv6akcRLtt2ieqMv+PdJkPKZJZZZpll\nlllmmWWWWWaZZZZZZpm9BXurSJlSlQxrI0V2oC7iKeIVjBWhKjtk49BPH5w9NsYY46Nj3jREsGFh\nDvPok1PHWOyiWkRkzCECN/tcdXvWrSJkrZYiXc8/Vz18o6f2HYCUscqKcA3TGtiBoplncCRYDUX4\n7A1oAu6bO9L352dwSNye6rn2hRBaXio8Wg+IChfVjhef6TnzZUX6DvcUba/2UZWaoFpCRmTN8+/1\nyIxs9fmosDI3oHlWA32mmKivvbkylPfa6oOrlrLrLll/pw/j/0R9tbkBAUMN7AgumgJcBl0yin6i\n/3fgIKk39bkVTNd3tSb1gvF91VZ2+0Q3QRd0QKYk21RBS783PN1nETA2RfXVgvrxMipKayL34RT+\nC1Q+KiBXFiW06MlwhjPqniNl40qgkaqoLbmgHSLQTb6jfmwUGKRI/RJQJ25Z+l7Fl69OUGIw+ELL\nUftTbXsfSA5UNiYuU6+d031GFjW/TT1nC9TVhvrPwFKUe4wPW2RCADmYE+qpy7/9O8YYY/JkpeYb\n3cciUt8kc5MrMzfhkLHh9kmaam8Q6DmXU8YJpbRSXT6cwGrv3FP7676i2RPv7nwhE5j8K2STB476\n2ANx0XxPv4dbMl6Jxi4PJ5ONcoq71lgwJYwTgy7y1KdRpL6/R7bkM0tzwh2CnIAzYexpXSisT/Ss\neTKEc7I4R5qfr/K6704FLpNUweVY13v5BRwIKZ/DGrWNBso5LylwLqmP637KZyGfmaYRedSV8gP1\nfUC9dwCfUi1SpH+51n3W1N5WUSSrwTGTwEeyw3U9si1+V/24uNX9YzK1savPTTZqZwcOgwAeFLet\nfljDveLnlV0LjNrjg84ziTIyKZeMYd8w6e93NdAeG1CB7lDr8QqOgYTx2w1Im4H+uCbzbQV63uUA\nvpY+mY8UjbLSGps0UKCb6Dk28LSU12TSA65HptqHq6HmFM0aRRSDwleDsYxRCBn4undIPqWSpIg3\n2r4LguW++qxIrf12rHvNz+RjF2uyPlX2kKm+v9yF+wmlmBgFwCLcBcWa9pQmP2tcf4rS1PqZxjIc\n6PszOAXuRWTu4GVaM1eLoLRCFAT36qw/IDTmqD0NTrVATW71s/9IvlLdVTvChXxzcKm5fYWaSKP4\nZj6Sryuz/fEu62MIkuiJ9ovoF6AbVvA33aDgZsnXHy70c4Taxejma2OMMVuQggUQpnNXa1H7vn6v\nb1GAg+fKAh5WZD/Lw3eXgyMtD/q21gTlsdr79hl6dmhqZDHDPf2/k4B4KsC7wn7isW4nKF/M4Caz\nUYrLe3B/vdB9JxuUMB/DbbHVmjn+huwlGdrWe3C/PWgYx9WzFJBM3BygykZt/oZna4N0mfZRqBqr\nL635qTHGmOvnmhvREJQVmdABY29z7vNW+nt/Rz5dgevv/EvNoVs4QvL4bO2dNzuTxGlafQra6Ueg\ng0Ap1BnbPCjXmYGTC0WbTUlzxtmS2Z2Sia2w3sG1YIEyLaEiYoMmcxZq9zzUmP7F//aHuu6ZnuvM\n1vf+yT/+5+qHrq53zdzfrzNna7rfeoUyDYjSBVyIDuv4En4qxE7MGqXJFii19DopqjYqqF3zRGej\nXqD+uAXR2gAZ47Ae1+FYCGtyBGgKzQp0V24qLq+qUT9UQej82c/0PP7v/4kxxphf/5/+Rz3fjvaV\n+US+Hz4HmfRPjfni8z83Iaql/TxnL1QTcy357mip8arU1d8duI+cTcoR93fbAWifPHxJ3o18ZgMn\nyN678oUw0jx1eWYPpIML34UHsnl7pXXmy1Mh88qo582/0vfKS/Xp06nWvyfw0/UCXf+H/73QVIMU\n6V6Ag+yWOQlHYsHVM+8ccl4toGrEfhHEqDr5mkuNfRS+0nMpaneVkXxgyhumf6MxWE/1/ylPzxI1\n0vVM7XB4B4w/0/d3DjSWW09jdokq7NWpfvolvfsd3fup/r4CjTFgbWB9voab0qBoWb3V/b0jvYPt\ngij0OAttQNVOB/K9K3y3xbuoQd3ukPNv19P7ib9+M9Rd4ur79Yqe02XupvvjcqLnCODgAfDyLael\nCyr75RUqrrdUixyoHZcoEddA3bX6kIztopBWaH3bljCfmDBnGaevdfQgPTtABVYLOMe48uE8HDMO\ne7dBraiICtFkCWKbagUDN6MF8sTmeree2uqVOcfHcPaBXIvwuYjKmaCuBkUvNaeuOM+193T9Kkhk\nh/f2EtyDm1BzxxmjBAZP6fVSfXmIGtuWqos2qlHLQHPghy2hlZbphgXq30OxNyDekAcReXio+5cj\nEDg1nV380ncrdGVImcwyyyyzzDLLLLPMMssss8wyyyyzt2BvFSkzJysYeYravporwrSYKloc3ej/\n99FUt1EmcPKKNB30FInaDhVbOn+usLEPmX7VgtXfVhSz2oEBHXUis1Rd5Bi+kz3C1R98LI34fIiK\nCmgJa0YUmORRUlWU8fiRImol6ujze9R30m7vivrOSz3POVHPYzLJyRXM5D34Qch63gwU/Uw5G3KW\n2r+xFZFcJmpvcQcljDp1lafUu3tkJKqOybmKAtpN3asJMU60Q01qngxoU7Wc/UP13WaCghXs8fkc\n2RpUljagCnJkv29BiPS2qAgdUddX1AeL2zeLJJd3qb3tSOGqRN8EICm2vnwhhn8j2VBjD8u4lf4/\nEWaXLI9PRtDUqeO+hntgRrYuIWpLdqsEP5GN+siZp36skeUZrBR1bbVBC5BlT3whjwIi7UWyeWGJ\nbL9BKQuuheoV2RpH/R9Z+jzJQdPJ6fkKcOaE8Av5Rf29Syg9StSuBdn9wZpi1RT1QTtS9INZ8twg\nYhyus6Xesu2Q1Y9SRQVqhxP1+wF+USQa7tdRwNjIb1YbfX8cqT3jazhxiooeF1H1qLyv7Noe7bmL\nVSx99iIPB8EBiJA5nChkxKqoQ0BVYPpwzgTUzJZBijhE7Lc5eDDKcBGEcDtR+57D15ZkOt2jE33/\npRA0s0TrWqeq7PR1gfrx3Y+MMcaMQMh14YqJ6YOYAmarLd/IPdHfrVCf32mABESKaw2aKVWhK8xS\nZRg9T4E69XNUjqpk4a2CfHCdJ4MBCUGVdnhGY7iBPb64q9/XcNmEU/3cK2jNuIUqxwbBUkXJxS+Q\nNQThE8NLEhsQhB5qGyHKOwX5QJ61ysxA+jggUHJwZdmkbu9oDZBEK3iPAlREqhWygk0Qkb1d2iFf\nz21Q4WIO59kHoqUcaa+lfncX+DzIrRQx1AD5EzuaM2XWcTvQPlCD06GYuMYi6zO0qU+G88VdwIPk\na50JWdDihtb1UhO+naLW9UZF6/kUzpnFC/nO8kw/UxU3yyKLg6/FKV8Ze2ilAJ9HWvvu6j8SECTh\nmEznmZ5liuJNiX3j/rviqHIPdMPtEKTJEq4Z1r0SHFsFsmrRHC4F9vboXD7YjECVHapdLlw125yy\nZjdktULWmyYoqLta0YGvDsCS9RiOryfkr87V3/eqrIf78v1j6tjzNr5RIvXdQi3kHI6bhp53nujs\nkcTiAcmjEJnroiSZ07itI5BEKNKUd9Q/7Y18KX8Jj9T4NVfbiz86Nbc7GucGCNg8qlSOpftvUQTK\nbbVGLUM9dwu+kYsZCmfAcC1H/f2wq324/EiZ7BqkBAXOHI08Ki99kJovNiZm3idHqO6U2IxrcMeQ\npV7XtReU2OwWV9o7l1fMpzWqlrGuXYULqsD6HvVAFB8LRWUNUCwEYb37HplTD0UWVDLWtTc7BgNe\nMiXUgexUsZLsdakAAiUBDWo0F/0knXtwHcIDtCLRXEUqa8FyZLrqn5QnowjyLuEc+87JiTHGGJc5\n8dXyF8YYY+JUSbIPchx+oiJnNu9dzbUGXIyjgcautQ+6CmRgqc6+iG/N65oD7R7qIijklEPUllAc\nilYaR6us6/qgAJy8/u6shb5ecIaZwQHXQbEsArG4gT9rFetsUQC9ZZPZfnBP5+6rldAOzqX653Qm\ndNocda1y8jozvVnYpkIG3oVbrt1Shy8Xer5WKP9aVlCoaYNshPvxLnbzh0KqrBiLZk1ngAoIwBfw\nRfoL8eJsQSy36Rsbbi8A2ibeqg33yaPfcnaJlqjpQUryUV8cWK33NQdshz29qt/fQUpn0kVRyheq\n1wXhODZqRznQHji6UDu++mudaYoozKxQv7v2NKZV9siiA7rYTc/RoOGW+tyKdSZgEm0vdb8A7pw8\nY9t7CD/UQmNR6Go93Z/Cn7enufPkkrPRWnNkiwps3oZnZBfE+6X+vst9r+CKHPxM1QjLlP8PJaAr\nFHdL8FHtF7XeluyUUCR9L0HdiHOtv3ozJbfOPoqcO0L6+CPQX8gs5ngfmb3SmhWV5BD1ir7nn+i5\nc3MhpFy4Lss78oc2636ed+EJvCp7vB+5R69Rgrv5ihk1V+bdls5rNmjYW+49ClC2Xattr6bwqT3X\n/3f34NN5R98roF508xJOxRz8opyfLTi43CYVICjStqjS8OGguvhr+Yi9K19/tKM5smymiG0toN++\n++FjdfiI3ET3LdJnUxbYeopeZU6t5/LR8ZzzGoibTpex5jxcrYKwhxep19L6kwfdvKQqIYSLyoJr\nJ9+RD+f9715HMqRMZplllllmmWWWWWaZZZZZZpllltlbsLeKlHmX6OcHP3pojDFm7SlGdBEp4jWm\nVtiiTrFIlPA+dYaNPWWZXk2lPnS0pwy06SiKOkelI0JVpEBNWv6EyBeKAVai+6xWRP5d6sipsz79\nS12/VVXUsQDj9SRCgSaiPg+Ol0MUcVo9Io5kGFq7ivB5M6mT5NBPNy1lKPK7yly0iawdbeBHgUH7\nyTeqb4xI4+V6uu+9HerqyQjcjtS+0aWyWf0Pu8aC8boOGUlQQ2mG7M6rUEz0PtwoWxilL84USV/O\nlXX44NcUiXeKZPTos7Ol2pagQZ+gVFMhorzdKPpZjd8skhy9Uh8tUUlKUUNVmLLnKMrYoIc2NgoC\nS+q3ydIUqWNEUMUse6AhbviZV7TXAh1RRB0ortS4rnwi1yaqi4rTNtDv26L6awHPxh4IkgHtWhmU\nxBagp/KgMiLdb+UoqurWyAqGKUpB7c2jaDABoeMtUNFA8Su2dT8P9Y78luv29XuVOWQ1hRqLqCO/\nShE9VaLM8DjlidSv4U9ZgtgpVdQPdqLnLdPPE5jUI9BaUaiIvU//xShR2GRa/BBUS47sGtfbhrTH\nvruyTsR6EVKHXW9qHp3eaLB3KaN14ZK6tBTh30sU4b6gDtmLyOSFZHuqIErwtWvqn+8f6tnat/r5\nZKI50uqAACGrshiCxoL34otn8BD9VO2aUXu6Ius1QBVkCnoqLR9+SZ1yLda87xZQ7ym8MMYYMyFT\n6Tga27QOPQfi52Kt+9oN/f9kofY6G5Ayc/VXmGh9W5Itsgtk+cZ6zlBDZCoNzakXV8r275DZsGDN\nv5y85H7U9m90/2t4N6ZzjZffxQdIZH56q+cZXKp/gjJcYytdzy0ykAHjEt5docsYY7Yt9VtjA49S\nqP70RnrOalpTDO9JDnWnpKa50Io0LpGr/x8UHgtMAAAgAElEQVSdodr0fVj4Qcysmbsd/GcxUf8N\nQantwIPlwE1TgB/L8gOzggOrmNe64ZFV6qDGZqeZOOqTS9Ta18jWF/N8fwYi7Zy9jRr/AvOrFOjv\nvZau51SpH4/hCIMDKtiyT7AHlchmNZlU1yDepuwTHVTiwnvKSln3QfqA5Js9BTGHAsoOCEwfPosN\n62EMonHtaIws6sVzIDD38pq73go+iglcZ3CW1ZooFxZJNd/RRud6/mas/i4P4DOyNMcOGmrfYEc+\nWY/gbevrLLNNy+t79HN6NkCxZhxpP7M99fcE5a5+TWeFCHTbGISUH8Jvhxqg4UwQXKWKYPrcg8Vr\n1Njx8qFZomo3QymoXAf1NVc7nSjliCAvh9rLnLNNtSP/q4XK8C9mcLCt5Ad1FC2canoGUSZ+AZdD\nAZ69Z2dXxn+oNi/JwhdQ61k76ouUH6nBcWi+hS8JWY8aZ5I85yIH1TcDj9yCrHgHZHIf9NhsCSq0\nrr1nCSKw3NX33QB+Ou/uCAhjjIlBOXRQWok485RT9TvOmQZ+tVKKWORMUQIVMfFBsIAccgLN6Qqq\nJW4ASmybInLU7t4hiD9P3w+2Wl/rLbVrhs/nQduGrG++pXWomMpSMSe9lAsGBLkLgrLAgl/pwi3m\ngTpwGQcQTiG+ZcGxs4V8pgJPnZ2DJ6UKsn0tny1tdeZqwou1hmOsDq9GNNV1azUy5UuthUvORLYt\nv0gz1W4CT5+Hj8Nt4YSvFdjccmScUI42ZcpYrLF2AxQ1/R2C0nNAfeTd1/wbf5ctUWycfKn5HZxo\nHm9DjeEK7kDrQIgU11ffnwVSYav5atMVvGMO57EyqnQ7O9rLd1F+9JacF8/V1h8dnxhjjBmifuqD\nWr2wdb1dH3RZoJ/DunzDPNY834WP6RV8IQXQWjk+t11qvXVR3xzY6tP8UMifsJwqjsHLc08cU++h\nCmexfgQf6f62w9mIuZpHqSbp6//rFx79w36y1rpcw2cHCRxX+MZVS/2QgDzfohbq+2rPwZ6+/+RG\nPmbDB3J2rZ9jR75Z7HygfvhK+1Diq52FUYrCUrtaQE+D1mtur7vYzUL7TI13zqWn6y6H+v3qWn5T\nguNy577eWWtd+WKDs0n8idbfylDPmc+pPbfPQa1N1G4L3hcbJM1+cf5tW9azkckt5uaKM0Pcpk8t\n+EFBr9+E+s7wBZBz0PgXoFQPOBdZ8I4W6torNyATiyU4ZDgnIc5mWn1UQM9AMoOUK1hqRxcey3mg\nueXUWe/h3dtOUUPlPDy45tzYZh1IOaRAwFTaqDfTt7egfItwUu53NdeSFqglkJ3FOD0bcUYDzeTT\njhnvCW5V/ZCHJKtc5b2i9N3vwBlSJrPMMssss8wyyyyzzDLLLLPMMsvsLdhbRcosKaa9/kYZUo8a\n/BXZnWpPUeAN2fs5ig5NMslbOGRuzxXFbH2kbFOv+54xxpj1Z4pSD24VMVs0la0qkhE+ek9R31pZ\nkazxWp+PZ2QQyEI2iepubUXW6rUTY4wx7zb53lB/T+DHcJu67gq2+xVM5Z2KorN2SZHIKSoB2xxR\n2HMQPQ3V4TuEEFN1mSY67GOyqO2GInneRv1mRdRN7uhnG0H1glMx1baiks9BTOSI2BueefKN2hi3\nFP10Plbff1BRZPZiDKfKSC4ziogUG7TfK2pbDuRKkVrWEUoj60RjUApeZy3uYhegfUafqkY3IoPQ\n+hF8PGSIvYayKRWQLtserPCXyp5MpijCRBqT6TNlDELGIocyhAUTf76rPpzCV2L79LlLvSG8RkPU\njqoT6qDb8AblFJVt4KshGdKIWv6A+ut4pf4rwLORksQ7ZBHLlu6zLqRIGWUoijfqx01FKK6aAxcD\nak4F1K+2RP4nsLnniJRXyMzkyEhvUHWxXOrFHVRUiOQnl7r/Clb+XlvtGsC7kSzUXosa3zz12DlU\nlnziv16ejApIpWmaoXgm/gBnovE+2Jf/3cl41jSZHG0VyZ4n8tEtPAo2CBf7FcgRmOgtuD1u8mr7\nA8Y+AU2QAzmy8Sc8C+ifBnMJDpjWr4udPf+5fOTZBWgGo2fZe6hI+Y/u/QtjjDG7hjpgalWnv6/7\n1vPv6PoH8tUfwH5/0NT3732gvv0KFFilmHJOwTkAgq5b0/OuF2QayTSHbV2/wTobxHK6c3hDuqi2\nlavwBrGu9amt9UAe5pGECUAe9R/Jl5pkFArHoAXqygb6WzKhZESuz+RbvZ6Qg1VQfB//BMWyj1FQ\nu1A/5FBe8G/1c71JyRfuZhYIog1qUlU4IXyUH6orEERdtTdV23KYey4pDAtUQUAqOM7DTUD9espJ\nlCOD5MIVZkXwa+GfxSOQXah+XC8CE+3xGXjW6tRNm476vsz891koSiD3CqhxNMhOWbF8tTKnz8ju\nFEtk7Xd03cahnnUB+iAge277KOAwh7pdkByoRWxsOLWMMnkRSJ6mo713m9f1DvHBwULXSYbqsxYI\nvCpKM3FL963V9XyVAFRUihJAKW1Jtq18LF+O4I7xnsoX+wda5yfM3QK8I3e1ZlH3axfIkh3BK1VB\nfagLQrAgH582QVuQ6fRAFOZ4/og6dTdJlSTg0hloXLb0p8fnSNqbpadxLVZ13QS0w/LlZ8YYY14+\nFrL1+0Xx3zXco2+f4dHRsQl6+v4zFCL9Fc+TBwEKj1Nk2jyf2hVW4TwjezjPMafTcXWVQa4/0vPs\n5tW+2Zf4I+MVreGI2BgzfqY1PZiQieziqz0QvZz7ItCiNuevBDRqXEMdZ6y+moKIKB7CKQCi+vqJ\nfHC1QMmPddCCB2KnovPaqqXfe5yfJnB73dVqKc9bG3VQsvVJBYShp/+vN9XHW85vmxroCJDUZdCg\nOdBlNkjAHGeHFqpR10PQXnn5XMXTmLlwsAw4QyRklBsFZZiLsc5AG7hrfFSwejl8ylG7RvATtVHp\nm3P2yLnwDoFYSiyNT8nod7eu7/ncp+Ci9OUJLRBx3xikU32q511XQcdeoYbKurrf0XOFE1AS6fiz\nv1s9/T72QMjA6/Q8xz6Bil2aiY5B3tvF1zyGiemaxE3RH2S4D0HhjXjvYO1xCuqnYEHGO7o7z93B\nkfb85YXa+KCusUt9psX6Mubs73K2r+OjPnv2RzX4beArC0s6M9wazcNd1tfhuZT/iqca4z8/1+dv\nfXHBHPyzX1PD2qCN6vLBZglU7XO4FSegy+jTqa/rDb+nsds/huPK6J2t0dRYt0Eq1ov63cmlCox6\n3gWKNpMpPFA3uv9FoLNDNNIcLHT0npDvaMy6ObU7Wuq6qYLbxRO9D1yBqqrn5PPzGpw3DZAjO7pO\nsFF7U36Uk4r2s71Q4zIKtQ+Wprw7gd6NdlIEI4qaefnYfkk+eP0l/Q5PUbH9ZujduAgnDmtS2byr\n68KLFHGGaN8DxUslwLPLXxpjjOkEQkz13lEVRr1Ff8Px5g9BnML1VW+giDmAC26i/jf/0pjz8dq0\nGy1TZh7nV/DWNFFuRZl1kyoAwh3jQtvmgaSboMhrlXTv8UsQzyDw7JRji/fmoKk5UMWXbc5RFfbw\nFQqygdH5MSjCacje6BS0bkxADG4uNHcc0Pst+EOtPbj84HVLroHoRPIJwFZmr6K5c7bUvuWD7rVL\n8tHmjsbegHwsQDJbr6q/uh+eGGOMKeL7fqpAzFll6X83r2qGlMkss8wyyyyzzDLLLLPMMssss8wy\newv2VpEyq0SRpqtTZYmm1JA+OFLUsv2Osj9zX5GmhEwpZdvGOyWrRebBv1aMaT5ThGsNx0HfpHwm\n1IJNqHG+UjTRKSsK3HdAXXQUlf2QunQvQT3l5tQYY4yFQkQtVbqhPtQLSGlvFWbN18mUvlBk75Ia\nt/19ZZ2Kx2QYCJzNlmrPAITN7UDt7xwKYdO5D8sEdZfHZUWD59SHXz5R1jLYU//t5hVZXFeGplLT\nv3uwiodwBFQOdI3DPuoZZBxXIdkaADVdmPTDMlnfS3gVYtA5fUU/Aw9WdhSmImQ8Ojt8b/HdGu1/\n004+VATYuVJfTB6jWkHWv3JITT8qIQYlhS2cK/kt7O5wEwzn+vvNQGOx8hRd7ZHZqLZRM6JeMKAD\nkjQCT1onGWqs3Tx8JhZ10EuNTe0W1AIh95A676tvkTDUQaJMkY9ThBE+To3wiGyQS928BTjganSq\n3+H+6Q4ULf7oCD6kHRjAi4puI9pkgoisGciaIsgjK9L4Bg39vz2nPrzI32F3j7/Q860+1M8W9ftL\n1EOW1Kvnmau5gOh0JeXoQfVpTO0r3BU16srtjaLllv2aFf7vMhtVCZt64/334CxArWN+DooKDoCL\niZ6p3dJgxLbmy2QI7wNjtSnJt3LvqG3HyYkxxhiXuurZjeaID5dB4Weqp372M2VxusdKIWxPlXl8\n8Zna8we/96+NMcY8HShLkaOWdf1/qs+u9jWPCwP5erDWWL6MFan/68/Vx+W22lVcwYtEhH85km/2\nq3qul5d63iXcCYWX+vzeO2pfN5XaAYXR9OWLTl3rzulSiMQDG6UAMiOFWL5XmKv/r9dpxlfZuc0T\n/f2WDPnq+gv9/qWeo4bi28GB/n/6TM//jObMfqHxWJ6qn3rceI0ayBB0313NRy3EBf0xK8A1Udb1\nC7Z8dBckS8C67haUmd868qt4q3ZOtyiPkcg+A1HVaem5z0GfObDtO09pB5khn2zp3MgvTM02XkkZ\nuTk8D40eSA8b3gayP7M5PpfyQqSqPzVUL240v3JbjWkMv02Aqtyj+6CZ4D4ZPj3V5/SoJqioj0K4\nn7YoEJbbZM2uQexUNUYevBJJh/ZSXw49iFmDvLgepcoHqP5R332zBVFSY/0syCc2ZyAw4BdytV2Z\nCuok43ONnZ2XT5VcOFBCsmVk6+9qThvfItO7gxpdkku5x9hfGuqXGMUcv6/7zVjgHdQOpyv1i1fX\nXt9Evc/aal1Ork/VXlAi5h1QHmz1YYJCpdH31iASq6DEOp9o3Z/O01ORMYvV0pQ/BDnp6z71oq5/\nndfkyhfV/z4bSuChALeGU6ahgduEGo85nGU2CmVz+sFdaE31jrXmhXBIHL+v5zfzK9MK1Aev8IG4\nxt67UpY3tDR2K9BBdeZ/AdWMEuvRCp6JnUP4MOCocfIgG4qpOh6oLHiHinDJLMrawxwQH26iZ630\n34znbsFYNkBY2pz3CmTZE/jRVg7oJPiJ3ADeJq5TC9IMMGgvEJO9tv6+WeiTg2vN5XpDPmlAQK82\num6J/WcAmqxEJnoAJ1Zjo3Xbnmqd2YA4cYGW+meaeyG+UEx5pOC+KaMIt0atxGzlg6OZnrvFJI/h\nTnRQXwrxtXKEUmZTzzNhPwCoYx7d07qebDTew2uUeabwEe6i5DmFz4oz2DjR92qlU32f15lcWfet\nsC/FIKeMMaZU8kyIws8cBFYHpOTMBjmKAlsRpE0AAiqyx+auNuPhFikS+AO15fh74s9cwlOznuhn\nej7Lw90ScD5cwcXX+r58bbORD/l95r+A7Gb4WG0tPhLnY+ErITi++Zn2k53/QWeW5fvy0Zh3jXYo\n3whtnV1sj3ebqhAb1ljXKTzQulr/HZ3Hn/3f2stP4O1MuurzNuitLevZBt4nc8q5HZTTjLmXv+bc\nPBFSemFpA3p3T+vHO6jbXbySr9cPhFxZ/fmnxhhjRvDx5X6gs874Gn6luq5jg9ge/nt97qDDXLOF\nFvZvqTJASRHBXbNMdJ9NFd6QI/lQZaXrFt7X950FqlL4fME9MW9iCaqoF5z/d0/k0w8Z2PMYHq5U\nLZWjwtWZ+n/Qln99BEq61lK/+ajFGniXmhMQSh045Oq8N8VX37bFKhqzKWxMp68x9tn7bq+0Bx2k\nCLSS2uT1QXmizHd5oT4u8W7W74I062u9qJfVtoT1/PqF+iz5ErTQB+rjg7rWpQFoKYeqjsFMZ44B\nnF0nVEnkONtETe09ZUt/nwzlc95I7eqDSsrDW9faRw2wJd8xKdr/FQgbqkrW8IFG9LHDO9cGNegE\n9P8YjMs+3GgT1vck4gyB0q2fSxW8/v8tQ8pklllmmWWWWWaZZZZZZplllllmmb0Fe6tImdJaEbiK\no4haARWiEqodI9jnvbWycWGsiFmbqGLswi/SUXR3slC0NaYwOyKTUIPxu1BUJC2ZoX/+haKHDmzO\nzfdhq0c5YOIqItijvTkicM056AuLDDTJwdJUEbmImtR8RfeJfdikq6BUqPsro3xzu5Pyuygit8op\nempv9Ny1DZkR0AP2DfwiXWqJc/pJotfkQA4U96ixnkfm1Vh9fXutCHm/pL72PEWCW9QzX/qqZew/\nU5RxZOvpvanCf0lTba/UyA5FcI0U1Ccr7l0gK5TWdQ9zKfP264zeXazlkAncA0EBm/z6l4rsT33d\nxwUdsEIbvtQgEwmqaQwiI7eRj4Rk38++0c/kI0Ux8474Lbpt1EDIbFZS9MQUn3Noh6VIvJuqKVGX\nPUG5wAXl5Xj6/0Zd31uiYjFfKpNRBOlTikBb+SnSR9eZwnxuHNAdRNBnXwjF4JPp9N6Fs+FD+UoJ\nxNIiVVQoKkLeQvlrvoY7oqr7eaNUkkA+WM6nxbXU3w/Vf5f/UX+ePYRzoAg3DQgcH9TKdnmq54VV\nvkTtrEv2ydqCJov1+QqZcte5u/rSzRNlXs+mGsNX10JqGHgrbCMf2SHz55HdOL2Ub21G8gHPUV/P\nj+VrlZzmX47s0QTkyuOF5sgtfEcumeCX8Cstn6LmlKDU8kS++hmKKYM/U7ZlAVLiXbIwdYuV5qnW\ni+USzgFP17PIfOZZB71bPe+6R90xK1XB1efHgdo7HMvHki0cVNTS7zwHZQGvxfU3Wgc/66k/P/kJ\n7Pio01msf9Ml2faJ/v8V6k7DOevfSpmWa3iJHO4bgB5r7+t7XbgU1qfqx9Pn6td9MiqOJx+0yvpc\nMqa+fqm/u/nXGdC7mFtAGQZlsn5J369Rrz6+lr/UHpGJhy8jhK/K5DQ3gyXKa7bGoWZrTYBKzNw7\nkr+NUMmrd5X9itIsGxntAzJSXh3UWjQ0fhX1OubTvX31xTVZbOtWPlbMqS/rNWV5Om340ZhPUSdV\n6QHxCNLCPdFY9x6ojefn8o0IZbAm6hHjAYoHh9qLH97Tz0Wgvr+OVaPfstReu6u+2TuCb2mpvm3D\nuzb9DGWzAntxT5nG6iH8G7daF0/eg49ioD6nzNyUAq1fP+wL0WjXqAuvaEzfKykDfa8rdEQ0Edos\nnNxdMcUYY7ZzzZ0UcXTD3gyFgMnF2jddOLpC5lItAQUB71KB9c2hDr4Od0KROR6xBqVZ/5tzzdXy\nBfXxcD1sl7pOaGluub58qt1Jx1nj57EPGmPMqD8wpiXfKqPihNiTaSxQjmyl6oEokYG4qkKJYM3l\nX/k+40tGfYICXMz+v7VUj2/gBtpu1Z5wqbWk/d6RuUV1be9cY3KLOkXOS5X8UBS8Yp2q6NkaByjx\nXWov27CeVGKy4vtwEN6QAY011nkQNJWQPeSI8xfzdYP6znoCiurNaCCMvdAc8FGu6Z6ggALfXAh3\nShUuMwvVniJ7eI6xGM7JWre097dtrsN5LxzKBw4qoFlBjFQirQHjdFniMeucl50qHC4gPcuh9t5W\nlJ71yHh39MXNSGPsbjQupoHvhPBRwLNnmqBaR/AH7rMmkVG2F/JtG8RSr8yZEE6FAJ6h/lLjXYIv\ny82pnbNLEDoWalh9xnUtP+iDFlhxFmvOUVFCOW5T5mzG2pMic+LKa16polUx+T3QZ+m4oCq4BQlU\nGuh5R4esMSAd68ndX5emcPH9/KkQDY9Yxxo/VN9ekZVfXMvnm/e1Hra6ukcIL0d3q3k34PNLOEIS\nC9Qm6prBUp9Pz0JffvbHxhhjLs1fGWOMmZz+1BhjzAP3HxhjjLE478Uofk2eaL56oJTOHc3Vixsh\n4Gpj3e/QEYJk/Hvqq3kLFOi5fPVPb1kPQAI5Y86zIKW3uFgMEnE01x8WQ91/ASLfA/11BPdhihxK\nlcTW8JCu2WujVyl3jO57UBGk8oHRXP1spP2tuNTfrZae2xvp8y9faY54IPlD9k97oXG5x5x6/Ez3\nLZaEIPJR7vz0a3E7NnJ3P7caY4yFSuJwAbcOqri9uvq5c0C1yADeKhcEKyqJV1/qrBsHoL/7J8YY\nY3b39DO30ni8vF7SPhD+cH02U+i9MWYzDE3ijc0FKseFW43Z8pzKjRAORdaV9Vp9FIJ6Hz7RM2xs\n7dV5S0hInzEzjvY446uPy/B0vppojCoF3W9+ojFyWB/qY7XnYqYxGz3VGCzWmlSP7uvz1SJnD5At\nRdavy+mXuu5L+Dhb8HGCdLdQssrxrmg6rKOc62pwagWx+tB7iY9XOReD/iqk60igz8UbEHa0Y8Q7\nW1jgff9vsQwpk1lmmWWWWWaZZZZZZplllllmmWX2FuytImX8ijIgNQcWZzKxaxQK3BtlRpZrRbCq\nJSL7M0X7IpQSnIYiVW3qFLcoCBy0xd0y9WH2JmAeU8deJcu2XaFIkZBZIEs5jhSFTeBR2bGUoVka\n/b5yYJkO9TsCGCaoUltnKZLXfETtcqx2N/cUKbwcoEpAjVxIxuawo3aMUjb5CNZ6MhJuVe3PVWGN\nn+u6pfv6fKuu/rihQcXt0uTILpfgXImobE5uQPsU9MztKnAbB6RLgDrDIWzpV3CBIEVSom5uMVOY\nsAHPzrqq6KJTpo0L/X9x+d1Rwr9pAzhVdo4UOZ4eUwMfkSFIQD/AZeIW1OcOEfM5CJQ2vrVpKPJ8\n76f63O59RXPdWNkVl2yaR+azBfIHYQMT5UG+jBXhL5Soj+b6aaC8wve9YZqNIwt0TS0+Zey1tDZ/\nAgpiS90htbkualXdGE4WsnOdffmQ/Vuq/c2N4ZCponhDP2+LKHeVyHJBYOTBFWCRdSqhBpVPgTIh\n2Seyfe8/VBZsVFHGxNtAPkFG3eunGWNUrEKyetTLh2TUi9wHyhlTs9N6UDL9SpQbk2ubu1pxR8/y\nzo4QCf8Pe28Wa0mWneetiBNx5nm48715c86sqq7qmd1sNpsWRUm0DL0IsB8MvRqGAL8YsCjLIkXK\nkmlZFmRDHmDAAqwXUzBE04IkCxJNkSJFdrOb3V3dVZ2VWTndvPM99555HuKEH/4vqlowyb714nyJ\n9XLy3DwRsffaa6+9Y61//2sOY31xE2QaN62DNNlryJY8zmsfXymbHfF11Pn/KbwWw5Yi9G14GLbH\n6nPjjqqk1fAjfoV0+hdguq/rd0db0vnbC3iQHur+eTgEsgW4YKLKBwaCpSdbqG4qExAAWlqRjfdA\n4uXhn5gtQSdd6nnLnhxK/c9SJchq6APEYFNjVae60HCqMb57h0zGSH6oVhF6rH+ido1AceXy0vda\nnSxaac7fpaf1UKiCCv4584DUbl7ZwsueMiuFjn6/swWCZU/jlYYOvw0XWHYuWz44haV/myzcNWUy\nAMWWYiEIQRQZCKC29PDomTIda2Uq+VzBrRDIXw9Av3XmGvcPD5VVDJkzp5HveRdeDjgVpm2Nyy7c\nPUNT+/vHIAeWobUv9cw8h9v7VBgYtjTfRq+oosT5aA+ejldjtTkNH06P89crMo7r8Pe4Ofm5o7b6\nfnyi3xU455xt6HmzpWzExz8Eh9LN6VC/Hz2NqoHA27CSDXB82s6ncCIcKjvWP6PCQSZCFWmsu6C+\nxh5+7xwEIOvJ6Eztn5WoMMaWpf19IfamoEZtQebwRM/xErKpOfwe15VOWf1I+Gp/gcpmRsXDqyt4\niUAmhgk9fwl32DSUjUwmui4PMnJywTpCds3NSr/lMhV54PYZT+ElovJNLhkhVLTmb1P9zidDO6jq\n//0fQhY6G1Mb4GB7oGkn8EZlqIpYK1MBckwFOpN9zQf4sDIIRjjiOqAOtzekHweEKGZktT2QO1Tv\n685kJzZrWr4Aj0RB/sCo3OVDnOOzRjsJxnhOVjwp3Yy3dK/KiKpBa7KhxUi2Ui6B8vTgHsR/NkO4\nogJseCCd5zO6b1Spsdf/ZDx3UdXLUVQqEXSrdwJHlK+/D+CUykTIHKpjzlk6/TyZV/xwCyRnf6rr\nCwvmREa2V56DQKRa0oR9MsWlbJzQ8wEaWkDVz5cDqgYyF+ZUylkPpcdlINt82ZEeNnNCAQzwAaUV\n3FhNrSMz0FGrQ+YG/jQN6mJMNbpkl9+TuZ531d4iiEW3gL+cyX+ehlR9GUqfybH6Pyez3AUps0wI\n9eDAYTPG920P2buuy1azXfVnlvrYBwxmKwuXem7OEUrlVQlux2M2P6S8+1QBc+CaHK2un8Ou39aa\n/TP/4Z8zM7OdG0L4eXBz1SZk7X29U+wVtQfxstKNk1MboHiyalq/89ZlIw5VgEpsp/OOdF5+g0qU\nzp9UO05133fe+ayZma1npMPec70PTJ/q04Ob8T5cWDtRNbk72hO8fUvvUik4Ke99Xf2oU70t9KOK\nXmp/kUqRHVBTS2xvMcZmQFNsviGf8PD+nzczs8mO1gs3o+vdPChibKxH9bj9z/2krt8AfSa3a1sN\n2fQNhtzLqP2lc7gp4Qv1XO2b13aorDNWf06oyOMnhA7JnsvW83Xpcd9Tu1Ib6nflod4nQqpkpe36\n+1Yzs8q22jPqgtY+jLjjQAGm4WWhmmKDUx8r/00zM9u5BTcl9rAAzTJfsK5vSn/r+NgViP1KRe2d\nBx+jjd3U0lyvYgHzNsiqr6uG+r5YRegh0P5wuhSquse9t7Uvm7D3z4L8W2ctSYI0W2Ljm7fhybmQ\nbYUr9iwj6b4CT5GzpjGfziN0LPxy7AUC3rEWoIennJJIu2pvraCxXlE9OQen5CjiiQOBWQRBGK5Y\n26fqV7kIwmWiv/ceaMwB1lsiQ7vgdu3Dx5Zc8UJPldISvJvjH1GBOEbKxBJLLLHEEkssscQSSyyx\nxBJLLLG8BnHCMAxf28Mdx8Iw/IirIJZYYvlY4rkRSyx/uMRzI5ZY/r8Sz4tYYvnDJZ4bscTyh0s8\nN/7/lz8q9BIjZWKJJZZYYoklllhiiXju/VgAACAASURBVCWWWGKJJZZYXoPEQZlYYoklllhiiSWW\nWGKJJZZYYoklltcgcVAmllhiiSWWWGKJJZZYYoklllhiieU1SByUiSWWWGKJJZZYYoklllhiiSWW\nWGJ5DRIHZWKJJZZYYoklllhiiSWWWGKJJZZYXoPEQZlYYoklllhiiSWWWGKJJZZYYoklltcgcVAm\nllhiiSWWWGKJJZZYYoklllhiieU1SByUiSWWWGKJJZZYYoklllhiiSWWWGJ5DRIHZWKJJZZYYokl\nllhiiSWWWGKJJZZYXoN4r/Ph/+3f/R/NzOx/+h/+npmZ9XpTMzOb9o/NzCxslM3MrFFQ7Kh1dWBm\nZsNRzszM8gXdZ+Hkzcys6OsPg/nAzMySwUj3azlmZpYdtfRZ2jIzM2+YNTOzl8/O9b1cNzOz3bdu\nm5nZ+fmRmZmtVkszM8sV0np+Qs+t8H0wb+s5zpyeJc3MLDHSc0uevqfX1b5me2hmZsuufl+vVczM\nzE36ZmZ2ctYxM7NMUtcXMkX1L6X7nFxd6nta7e8NDnX9TL9rXbxUP+7fNDOz2rZnNl2YmdnpRV9N\nHAXqc0U6XjkyhSDUZyajnyUc6X4+Wel7S5/jmT7dGl0uagw8U5tyqZSZmTn0YekyFmPp6pd+4Zfs\nOvJf/8f/i5mZpaqnZmY2OdUDu/6+mZltZL9tZmZnrp63ONL9e1sbZmb2xaH6fXkampnZN1bq987O\nuvpRks78zHtmZlZKaKwnLd3/fv1DMzP7wNF9kj39/93MXTMze9GVom6WNZYfDvVcd02/Xw6kv8RN\n6SGYyjZzw67ald00M7MbKY19eq7fJY/1+Yv/0T8wM7OmjdXvnPRcCPX/3ZJs6WFHn+PbsuHVq4mZ\nmXnlmfRzVlU7Q+mpmVV7A0e2v5aQ3k6aam/YNOlhJJvd3ZFdOK76W63Kjs7O96S/nTMzM5sFal+j\nr/sEednJ0eDCzMzyBel7vK371bqyP2eg9vQKv6ffPdU4/e1/9L/Zj5K/+d/9bTMzu+rqmsxAup86\naqs/ky4WDX3Pr6TrcHSlG2Q0oUvMgcFY90k6spllQv7G9TUG+Q3N++WiZGZm6ZL6PGNMUiZbX/TV\np2Jafu3U0efqsCfdJNWeua/rnFA6cwM9x7M6f1f7JhmN3VZdc6A1UzsPZ8/NzOzTd940M7POTM8v\nnes+F0/kL3Yruk+1dsPMzL7/T35T7cL/PfzyfTMzO9/VmG/XdszM7OrqlZmZ7b/5tu6/0Nh/8L5s\nZuO2xrSekX+armTb86GMyJuoX8kStoOeGgXZzmnzhZmZJbqaW+0Xum/kx/Ob0sPMx7bz6tdf+YW/\nZWZm/9Vf/zm7jvylv/HfmJmZs9C45Fn9EvjrMHKNzClvrHENc9jVWHPJK5LLSEpPU/6eSOp3+Zmu\nm8sMzXf1/4Ol7CmLn3fTus+Afs/cmQUZNSo905gN57KV1FzXJLGBeV/XpPp6VrahTyfj8GyuS9Fm\n03Vj7u9PWZMCzb8+/sBxdd/xXL8PJ8ydheaxM1cfB77GNt9RH6YJ2XaRLUVjf1vXb6g9E8Y8k5Z/\nrDT02TmSrrtjrfkb0RgvNTdnoWx5PFO7EgnZ8PxCz11N9dwgqTkZDvU5KaidpbTa/Vd/8a/YdeSv\n/aX/VO2ZqP+7dxtqt6/7vv/imf5eU/+yDbV30JINb93X3iJIyTc4A7Vjeqr2Hp9qrS4ytzbuy/8/\nOTkxM7PGSr8bt3W/RuOW7mMaz9VQ/R0GWmcraY1bGPof9eHv/vd/z4oV2cNyKL11ehqv8vYd3eeF\n7vfo6JGZmdU1hc2/q/YUPM3Vx7/5HTMz297/jJmZJYp67tmjAzMz29vVHC7f1Xp6ldJ47bF367Uu\n7dEzra1f+jM/q7a8qzX1D35LurixKV1WHzxQ36f6/xRr2s4bekb/UH7qeKw+13a1T0uzJi3P9fuL\nY/WptKk1b31N9z89lx9b39D93n+iviVX0tVf/1v/hV1H/sbfkR8pZvQ8l7kxDzThw6Q+x33NMZ91\nZJiQbrym1pNEWv6tN5ZtVSqRA9IcuvI1dzOh2ldiezljT5bwNbY20f1GxTbX6/fpop43XDI38D/h\nHH+F//GW2n86Yz03mWfOreTf0kvNucRYc9JjTR9PknxnPQ3VnoGmumXZMy1cPT+/1JzKJuVT5qyr\n4wR7S1+27c5ZpyeytSCh9i58/HKg9qyWut4JdL9lCt+3xL/iw2aZaF9u9jf/8n9p84x+P3YStEvt\n9me6fpDUdTlHekiGmhwrxu8v/+Iv24+Sn/857W8z+WjtY9+WpU1L9Wnc1ed8rHu7nsaoUdR8as/V\n5z779mQFXfdQsn5mqRnvEDPtw3pHmt+Oy34+L12dO7pfwVOfsqGed9GW7eQD/b76UH6vl9Vz/Ma+\nnluUznrP3zUzs+lEY7a/99DMzGo35Q8TT+Unm5fseSZ6TrGkOTmZyCbmbY39IqHnVNZZc1uaG+0T\nXX908H0zM9u8Jb9Su6H+DDC28SP9fr7QPjOT2TUzs/ID+U831P8PGctsQn55Fupdq3FTfjuz0ji0\n2rKRbkv/XxhJv7WErn/56qn0eSafZLc0F25+Su8FP//zP2/XkV/+Re1hJrwPFF2tG3Pm+MBTe7L3\npJc9T///+A80F8eO+nF3U+0bFWRfy8cHZma2/mnt9YbqhrkDPccxjeMhPsbM7K/9wi+b3x9awB7i\nxpe+aGZm3lDP6F69b2ZmK1c6ePRcz/ALGvObS9nO5Up/Xyu+oRvvqO2LC9lkPq1ndw+l4xR+0B9q\n3r9MqI2f2td9A36/OGV/2NdaFsw1ZuMN/f12SZMhbOj6w++rHeOVbG1zpftfudo/1pg8yar+3jqS\nLrK+rnc/r/UlOdD9e2OtS5WFxvrpqfS0sdCcWtxQe8ML3itGsu1cTWO2uOR3Sc2BP0pipEwsscQS\nSyyxxBJLLLHEEkssscQSy2uQ14qUMVAD7ZYiZrO+kCzLgEwmUd2eq4h7d64ocJhaMzOzSwLgblth\nwNBT9i2fUoTKQLI4GWWSL14oG5c51nPu737ezMxyRHGfPlZ2Kpwq4nVwqOzV3U/rvqWGMtSzntox\nJdo4Aw0S5hSt3EoqknZ6pehzJ1RkbquqCFnV1/POe2p331NGYu+BslhnPbKTp+p/4h7Z0ZwyB6tz\ntTOZIiP7UlHjXElR1WAlfWWKiqo7y8DmMzKmZHNyDUXC01O1fbrU3yezKEuiNo6a0mUhq2jpfEak\nfkhkP6W2D0eK780MRMimrksWFVXtH+n3iYzue11xTzR2y45QAOmCMnnFnu53VlREvHao3x1+Wu25\nfyYbmYJ6OK1rrL50KZ3lXPX/KtR1J6GirlMyyuV3FNU9bWss713IVhdT3dev6/t+DmQL2azNzIF+\nd6Yo8dGm0FbZ9xXxb60rKjt0ZQvtlqKwwUwZgLpuYzdLsr1pUUa+VtN1LkY/WFe/qkSpn+2p3/VL\nRXNDsofPjnTDt9Mat0fnar+T/K5+v7ykn/r//alsb/Vp2do0VEZ3eKG5lDpSu14+Jlu1TZbtlcb1\nksxts6S/76dk4yvQICkQMdmVxjEM6OeV/n/l6Dkd/+PM74+Sw3PNs+cn0vXUFJnOJtXXXFZ9yZC1\nyRU1thsJtTkZaIz7vtqWAPExJ0Pg9XTfnqc50p6qjQUi+nNXz5l1NMcaBbV9fCZdXnnS8dMOtnak\nLNJmQ9e97Mo/7N3eNzOzxUzzeasonXgZ9ac91/36KY1JSHuHaWWDBg1F/hfPlFW6zKm9hy09b/Jc\n7ao4ylz/9q//QzMzO0aPSVdzOF3UXBtuai5MQOYsPv2WmZmdPX5iZmavTBmBiaf7Rhnc5FTZI3ep\nfhWzstFCIBtNyjQsuNC4Xf6Tf2NmZr1L9XeRk+9IPVTWqbglvVxNZUu9M12XGH6c5bmOuBP93scX\nrGQONhtqGUzxu8RU+l6mNb7eVPYzypMZHqp9+aT6l1mBBvTUsWClrGYZfYZz2Vlmobm+YG522vo+\nWrCOhOtWdpQFckDTVAPZYKKuxs5BUTaVELQUqKIQyGJtT35kYw8UZajr0r7uUwDB5vtqQx93nBrK\nllbYri1H3FdtG6KdlMmW0wP93V3JD5Yvybondd2yJJsrVbSmzUF/NbGNcVI6rpV0Xw/06mKsubk4\nlm1FyM1STfcdtEGfLkE3DTQW0RrKUmwpR3pYDlHUNaVQkq2eDuRHc9tCj03I3o8PNXdGoAMimz47\n0bildvS9WtFcsZn+7qbULw/kzHmoTx9kTQEflczJt7w8UCY24ei6wrb8ePel5rSf17j6nv6+Yq6Z\nmfmXQ5v01L7uWOPzqqPfv7kNsiehPdBpU76tUQOVx/Py72j9evJb/1rfk+wxJlq3jrtCnWzelw9b\nLjSOF5e67/5n5aNGa2bvf0u28JObGnP/leb18fflp1b4z7139vU9IVucN39gZmaTpox0BvJsdc7e\nJND+KL2ptaTtyyY7ICw2i9KtHzLfjnSDO5vS2eRYOssxZteVfJb9FQjtYZmsO/7QuYxQqKC5VrLR\n4lBj0k5rzq4z73PcbwZiI8A/JrnOpqCSsTlbODxP93cKGuNVqPXBVtJLiq8OfmyJf+27+kxrqG3u\n4ccc0HGnIFnW5Me8BQh09iL5Dj6pJJsC+GL9Bftt0++WIEN90AVOUr7j6oJ+ghpJguaYF2RjyaHa\nPwId7IB0SYFA9Bb6eweHXQBp485B2if4XYrrQ93XzMx1llYJ1H8XVGAY6vohe1N/Rf9X+H3mRBnE\n+3XEm+nZw5Tu4eIfehVQ+/ir2qbu2XzJ2j5QH1K0OYc/zmyBoGDfHaEuizPZQK2uPiwH9BU0wGVP\nn9MuiJWqbC61r/UiudBzkxPZyKADCp93qcUY/1zQ7+p78ue9kVD4h7//G2Zmlme92c/o+ceMfbEE\nApw9wID3hUlTY5rLcxqipueNQB002csNz3hHbGrdy4Pou/Fl7d8vHmn3MuWdKEIXV97Uc9Yd6Xvk\n6vuY/aebUzuzLIBVjzm1IdupXGkuX12oHzugHZJj6S17oPE8f6W9UCpgju8CXbqmLCagotOaO4uq\n9H36PdncpKj98ZcLXzMzs8KW5krlTOO0eCRf8hQkanFfelmybpZBPM4b9A+kfwpUW9BsfdSWaj9n\nJwnPpibf/g7o2ZO0+to54N2INcoBjbu6wva2Pqu+sB/PPVQbcje1FjTZR61SoF2nQjReLWXDVdo0\nacu/LD+tNcg19eF0KV2ft0B2g1KtlrXGF+saoxk2d9QWEnJzqHfE/n09PzxTvwpf0fU51pv+sWzO\nZW+0jR/pl0Agdjll0GEurvT3flZGuVOUbRwOdV0yTZwgpzUzydrp5Dhq80dIjJSJJZZYYoklllhi\niSWWWGKJJZZYYnkN8lqRMu2eoqDdQ3GgbD0g08j5yLCuiFWdKK2l75mZWaWkiNdwpuhn0OEcfEuR\nrL6nyFkiC7dCQ2fD1m4QZr3Q9cukPouOor8PbynylSTd9oMPFD0+6SkymNlVpOv5M0Vlq2/qbPKN\nqqKjna7OSA+JmKU24IJoq59LoueZqtrtbOvv0XnvfV/980A/jALO/6UUTQ4DuGsWyvhuZ/XcVoKz\nbkm1J1jTfdfIOI+8kXXhsSmkFSGegJBZJqPztUSW1/WsoKJ4XeGBIvnLhZ6VITvc+oF0PIRbJp+Q\nLict2gjCpFDUp1vVfV2QGdeVLlntew31+bKj6Gqwwbm8p0IfTHY5N0ik/nBduusfSpelgrJxyU1F\nkp8V1I7JKuKNUGQ8UVLk2L9QBD010vMrE7U/w1hffFd6K76l/x8PONPbhavBV5YpPZFe195Q9Dcg\ns/GKyHWGs6rjnuZA+ZQM5w3ZdD4l2+2SvSn+uO4bcQ4Mjz7QZ0qcO6c/UFQ6s6v23yNKOzvR+GfW\nlLVMJdSunKszp3tfkH6HRelv7YkyE+2qouG9VpH7ftXMzN58R/o4upDNXxU1997OKrKfwlY/LCmq\nvYAjx72tqHXQVz/PnsmeqjX9vcv59kRVc/c6sreva+2LQnjk04xVTmOxUsDaFidqUyGrsQ7JkiRJ\nGXpT/ImnMd3Myf+ENdlMhXO/U9o+5yz75VP1+ewAZF8Nzhkyg9XbGoMHbyq7dM/Dj8F5cH9IR8r6\n3mvLLWcjHo2udDIxfYfuyT7sqj/ZFIiLS7VnCsfBnbRswXtD/dntKCP75rqyUl/50p+Wfo5lU85X\nxBnzKKHvU7LwzWey2REcD8OIvwhugUkovZxFB5fbssUbDqi6BlmqiWyh+1jtbDUj/hLd71ZV3A/7\nX/tZPv8dMzMbwLXznce/bWZmuYTG1SFTcl1JgcJa4rNSvYhvRVJ01O+RRf3S38cgNpMr2Xgipf+Y\nLvEdoAqzAzLW9DtYkumGC2FF1ip0ozPHevIM/q1MbmYe/DbpKYgFkz8aNeU/hnAR7CSFNpjvaiyn\nIF2mV3AQVPT78k355bQnXS/hOZoH6mtiIh26IFbmbfWFLtkgBL0KMmXB3Kjl9Pt0Ft4L1pPEUjYZ\nvEAHDc3vNXiHgi7+sit/d9KDEydUfwEI2crgc8qeoUsymnCCDeC7WKJTNyN/4XPefbgg3+TJF1xX\n3IauW3Y054ZTMro1zd3ZPX02u2rP+prGcMpe4sUJ/HP7mhNBX/ppDuDkcpRlMzKr/Wegf9+W390p\nyNd0/pVs1UvrOQE8SEv4MIKWfh8U1M7VpPhRH/qhZznGp5LT885aygJGaJPxulAkNx7Kd67d1X3e\nhTfkU+wtGjnZ1xKkVECqejaBmygp/XZAgZ1fai8zBk1WtKStRtFEAqGWByFyg6z0RG1sAvYp5dX3\nPoiy87HumcmSBV4+NjOzKXwSp7sgQ5jI44WeN/CFoGmsqc1Pr37HzMzeWMnPZkD/RPup60pAZnix\nCRfYiIbjj1vwcmRBWM4y0i00STZeyoYv2SPUqtovjuHr8Hr8PacxGpbgnFpEsDbpPA/6ajamPaBh\n51KfNUFJlHqaK4l92fY2CJMZc9EbR34P1K8xCdnTjUHeePx/ugJ/H4jOK3ifkiBLUszR5ZZ8iz8B\n6Q7/Uw5+Js9H/ysg71daP1wQTxHXTLHN85JqRwf/aviwOXs439Hzs6C+R/SzNNc4mJmNpz2bwElj\n0R4op+cGLrxdY7VrlpX+UnD+9JdZu66EoG4q7ME9/OsUJHpqBrqfPXthWzYQPte+bnwslFiqqDUx\nqIPSxC+Oc7pPhPb0RtwXTpLiZ3Sd39Fznh/ruh7o/dID2ej6hvZ/yTuaE83nQugtOG3ggyaewv3S\nr2kN//S//xNmZrZ2Fx6ep7ru+HeFZuiN5KfSvtrTX0nn7SOQoLxvTNDtLKWxHZxpXTh7oj1E4W3t\n28tjzf3Tqe5/3xeKoszccT6tuV4BgbRsy6YycDCW0rLFVE224cKV1sJmzs+0j71/Q6jj+S3tnQ6e\nCM336EjtKrFnOPXk36tf0Nwuf0bt3N26vo2YmSXysovzc7V3b1e+KnVH7Tl8X3o4Tul5Gztq17yq\ncZnXZKNjTneEA+nH2YW36jZ+GiT6ZV12cgEK3JbR5tPsw7xjmUTP7n/lc2Zmtv7T0vGL/1XzrL+Q\nbZY32Q9+R89OuiDNN+CI8WUrs5nGtjzU9cuc5teyr33x+Uz75hmnBnb31CcPpHJun/31qfYgZ1ca\nix6Im9YG6H4PFNaaJsMY7phkKJ2e1/WuWi/qOeWS1vDCmmzq8v3vmZnZcRLUL3xLyZrmzoI5dMkC\n1QGxXmQvNf2s1tDzBSdfeJ/IBppbPnyhfp537fIfv97ESJlYYoklllhiiSWWWGKJJZZYYoklltcg\nrxUp4y0VQXNr8GHcVcTpFC4Xt6Mo4VFHEbSzZwdmZvZiTEYajpfchiJ6WzuKTG1sKNqZqyqCl8kS\n6Z8q2th9qcjZyQtF7DJlsk1kdH0y1u/kvqDr4LhZTmG9p8qGD0v9iiRV/1SRMu9UETsIzy3N+fyL\nlqKft3KKdjY29bzHVE/qwKmT58xvK0lFDKrDTKkWNXf1d19JLAuIWAYelR1KoFvKZCJOl5YmG7Ei\nK1soKIKc2VC0sFGQ7jJk2Reu+jDinK4lFd0LBkr3JO8rCjqFaToJw35UvahzpTErn0nnJc4Prwqf\nLLud5nweABBzOI94OTowM7McKIbbbyhS3z/X//uvZNq3S9JNuaZ+fD2lrMnkSt/fgRXfIQs+oz+b\nQ6plFBV1TVO5JrgkA90m6zfgvCLnDqEPsuZbZOM6Mg4PLoXRtq6/f6KoqUtWZh0OhGlDNnRAQvV5\nVRmT9FPQAueKFs8eaDxKaWU0d9dgQC8qYt8go+5T/emMTO5+AF9JQXPgZVLjczr4ppmZFV7qulYT\nxvAX6uddqiq1Pi/beveF5uYyrzO9Ww397qJMFuo9/X9IUPhzRMG7lxoX71hM7uVAc3W8UJT6rUKE\n3NJ9/3f70eLcIqtbU9s6beY3VYV6H1CtI6c2TFpUGIALoE/mrUz1tFRPOuvlQUh0OY8bQSd8Kolx\n5j9T1tjt3qQKnMf1DlWbPM2N7D09dwSvRI8sO8lrC6KKZaCz+rjnMCtbDeFHms3kNwtULCjgl5YH\nspUuDPszGPlv7com0gUQMHk9cb8EYu+zyqodtmjJCRVgZhrDPgiQ7/8roawGGWX3N1LqV87IipVB\nJuY0J3ML6XWa1hwKOvp/h2okPlxhjaKyXJdz6e/5P/1dMzOb/2s9Z5GlCkhd4xFwJnfVxDddU4Ki\n9JLmnPwqI302+ppzM842uz7cOiChHHzffCb78BjfxFLjPoabYEk1kkSecQp0ncP9slSCa+VB6DB+\ntSjDPV+ZQ2WU1Fw2XGCNLFOBsJqj8tY22eah/EtuoGeP2vJf5wOtbR7ImdKu2rqYyqaG8COUHPWx\n19d9FqY50+mAfAGX5df5no0qJag9pRXIngwZ4RFcVPjXq7MD0wVCo/o+aCP8LV23UgbEDJWoJnDh\nDEGLeSA0nYAxgscnN4e3YwHXyg3mHpVpknDyXFdm6Le8oecfUuFsizX1ztvimHn2L+SHO1QxLCQ0\nhyZN6X9BtZQZFSWXIEhSnFMvwgd3PhDqY+NKHDQOaIb0SnawoiLOElRZgkqQTgauiKz0PkAfZmbp\necYSoEBCqiKOb3Nu3gPRil3M2fu4G0JlrL6rvVfLNM7ZN+Vbp1Sg8DPKAiY2NXAD9Ltkb7Wd17p3\nCn/fcjm1m1VV8WiDiJ6caayKJdBe+JHhGE6wGlxWIESCoWw04ZGBzagPHv462Zau0hnZeJOqGG/B\nE3E+g8sAJMTRBH67Otnl1CfjuXMyuq7G/c8ihFxHfnZFBZzukfpxsJDfnJ1oLu1F/B9U2mnCKbZx\nW5ucxVz3B2RrRXj8ylVQYAOQ3udwl+WxdRCLadaNWY65NAWh3aLiD3N5xeTzTc/Nws9ka7KZKm8H\nrYgbC3TUdBdk35XGbQVvkQ9CdA6noguP4WqCzZLRLqyr/RHfUQ7+izBCVbMMpUHnteF8qIe6f92V\n3k5A3DhdjWcuyzqbpooUXF79+sfohbEXWnKp55YY9/lAn4UCezz4WFwDCYnPCeDbu45M2c9MnmhP\nX6NqUrJEJdmOvo9G2rfefkg1NyrO9KkKtGJMC7725y2qz+VYszodrRPJM6rNbWseR0iUZEFzoriG\nrVJl6exE7WLqWe6mbGtjRyjer/+22pVkbY9s4em35DdqO/IbaSrjXL7SGL13cmBmZpugHVo34EqE\nxyeX0t6g+1S2djkQt+HRK/mdnXfg0HlLNraxB88RvEMvvym/egGPaO6OUA+7t3XfCI336F+qiqdh\n01tZTgjAvXV+JN6U0AcR/krvTh792YabJV1S+1uX8ntnoN+6nMLY/qqqTt38KTjRWhqv60qE47xg\nrrZHQv7PK7xUVqTnV2caj02qzDZAWRt7ivFE43kIWnpvW/2cMJm8bbVr8kr9y5xzUqAeMemZ1bNn\nlhimrfFQz75yZf9Hfx+OwIJsdN6kuin7Oh8UrAP/XJ95HKak05wn5M2YqsEnyyb3p8raJVyBDarl\nReh+dD8eSTcuaPxd5ned8patNP4P3tKnB98yM7NLqpbe+ahqsmwnB2/Pe98W8vrJh1qrtqny+fZP\na433dvSC/c0nQtKcwaNWpYKYW9NcLrLFmPfggAVZkyhTuTihMXwGUmb3/I/ny4yRMrHEEkssscQS\nSyyxxBJLLLHEEkssr0FeK1JmmSFjTRbPOCN8RY37dFL/35nAsk9krfxQ3AdvvKXsW7quc5ljatAD\nZLFZSJSQQ7ZL2OVzG4qIPdhU5OqipSio+0xZruHlgZmZ1Xejs6SgL2CF3ntbEbQU56lXnKtPwEFR\nqHL2ecYZN1fR2vlS0czmifq5s6nod4EExYKzd/mQ6jFwJ+TGIGOcfzv7l4JrIZtXRDMYk5HeIIMU\nsfd7c0v60k2WM48LeHZWnFM+OlB072IBT0ULTpSKdJhIEYlPKwK/tRbx3MDE74FwIGPoDJQVc2Dq\nH8Aa70elBa4pgw3pbE5EeFZRtHWnrO+7epydc1Z3AHN28rPqb6svJMaQ84m772qM+28rAxg4ymgU\nhwdmZrbinPjwUFmvu87XzcwsVZTemnndLzFUO1wyqPW2xvxFnYoFF1TCGika+3tz6W3R1fNLRKjb\n6SiyDhoKoEnxkHOMx8og5Dg/fa9CxhvugzQZyzucDe1lFPX1+1QQOND3YE3R3wv4NFoHZC6yv29m\nZns3OM/tKfNQXNO4ZTdk61cQmUyXGtcUmdH5PbUnkdNcdb/7iOsV2b+b0tycz6TvTdPz5qH0VQ2E\nmElsyx4fk5m2Y8pQXUOePvlNMzN770i67fWVPQon8Cowj7JzKTdNFql1oU6Vavp7L1RfyglsbaT5\nu8iACEmRYaQKRDqr6xyq94TobHlFxi9JdSGQffn3dN/OlfxNu6i5lyDTe3mlee856JIKVD4Z4hSV\nC5IgaXJkKvJZfTpkSVJ92d6zrnw8WwAAIABJREFUAyFOdhLYDJwAj1/IppYO2TiLEC1UUnM1Vj1T\ndinV0Ocqp3avk6Sxin6fqVAJIqDyAW6HI70WXIJMYa4kE1QEyMBzlIRD6xVIRgrmlMiAplP7agd+\nsTeI0CCn9omEzK6X4rw5aLIVnDwp+FLmnIkOVmRc8f/LBbwubfwu2bJ0QvpbgJCZgtJIg6BxQVP0\nyXynTO3oUnUlSfUTL+GbN5OOS2Rpq7Uq95auFnVltQdUOnk10LWJrHR7Y13zbXFCdTqqSHjwsCVr\nzKtT6XrhwyGWkh8cwJfhY3vZmvzoMsq6J2QLYzhEEp50WCUbHsKJM+I89pwhyjj4y4ZQUdkSSL6Z\nbGc4gNNqxFpKdn9eIRs+lQ5bPijUQNct4ANZgdJyqZ70xltaW530J9viuF3pobYmWzvtyVYWI9AA\nVP+b13R2vwVvlAdSyO+r3avHEIjAt5GLEKZwTaTJ9nfbIEmpWNOD28BJg/whq49LsogqJ7cOmmSo\n+w4iWIWZTTN5G1ItMBhRPTEToRDg1crBI8UeJgHXnMf5925XvmQtIz89JxObBJm0UYajwg7MzKwM\nb0gCHsDxe+I6q5UL9qVd+fZX3xAqKAHCeXtLNtPNaAwHXdl+MaoaOQXJEOr7cKG1LA86aJYCwRZQ\n9Ygxqq2DRPPgbnkmBGG9RPab7P+0xLx2B/ZJZN6SbZ8/0Zx80lYmeQVPxYj9WLSULQ6pejSUbVyA\n3CintBc6PoSnDyRkrQG6AG6EJdn9/hBko6/PTk8cD2kQlglPNj9x5d+zC/mCVFr9u+ywdr+Cjwh0\nqx/5ZdBV8wWV17D1tMEJRgXOQkf3c+FOdAP2XlRpKhc1rpdX0sdxBw6GdSrzXMrm3aHuk0xprk3L\nuj4FR4wLkicHImoM8tCv8ncozEZcP07DgzjWHJqF8AJOP66IU65mbHKm+4RJMvJj+RSnBVdZGUQQ\nPi4fUYNVro+oKpflp3vw2UR8NYuJdFBhP9elqtBkW/vNdXjSUqARTmlrAh6KZBkOR9aB2oXGoNdW\nFn9eRIcOVT4r0uX2m1TjA9WbhGPsfAISc6l2fe2rP2ZmZuMM+9N35efyCX33QWAe/SPta9vNAzMz\n26yo/bVdoeIW7K08EOtPRvIfHpV7Qube6UvNnYshiKGMKuJW1kArwY22tavTECPepXqglgtU4+sk\n1b67e/I1pU3ZQPNKerGEvufXWSc/q32u6+r3y9/SOH3n3wgx3r/Q/3dBEgYbcGS+qf6ka3rxqH8N\nzh/e/QaXnwy9O9+UbaZ8uCwZxzq8f94GXERtqmltac7fKMCfyLvnisqfNcjg3BH284H6lQzU/4EL\nynqhdb3xQ1VO270zc+Yl+96v6f3bfkW6uPyO/MboQtf00rKle2/I3yw9jf1tOFdPqfBYoRJruJBO\nLpn3s74+Kzy79LauW7uvsTgb6brnH+pdIXyE7VHRawRqKqAyVT2v62YQ0tUu2eusa27kHdlaFv6i\nMVVTXVBED3c01ptflk6zRc2R/g9AOLaEvMEdWtJTe2twXg26Wpc2AuIBe3ruRm7fzMy6Nfm5B1ey\npVwhwsb/4RIjZWKJJZZYYoklllhiiSWWWGKJJZZYXoO8VqRMigh8zifrEp3D5Nyjm1EEvFpRVDi8\nRXTvbZ17dGqKkE1mZLq/p6jqyUhnepd9RQmLVD2ybUW2ql5UuUARtY0i6I3bsDgXlN5zh0S3k2Sw\nqaPuwNsxJBIfgR3yaSrHcH4xl6DiAgzsy1cwjJui46McTNswqmcC7h+dj+f8+CihCGHaJbNcUHS4\nB0t/hmxiDz6BrRWRQ6LbnbljlRxIDbLgswvd6wVn30/IhCWoDDDP6bPbUtp6OWiiE/Vll3PBNSLG\nRc5HpzcUJbwxk86654rgLlv0bXX9c7lmZicjxQ33+H6roqxMi2oYHyQUOS7e0t+7S41ZHd34VUU5\nK0dqV+eLGpN9sjRtKs/0a2SGybymQ5j+04oGj+Yas5InPRxsMLZzRcgrnL+ch9LXgqoZqzXp+2GN\n/pPVcak8VhnK1hcXipCnQAmcc655d18R+gaM4Xu7+sHRkOzcOXOGCmSFlmyjmVR7Egk97ybj28wR\nxf6SbLyeFidOyjSeT2/p/7cO1P7HZMfyj0D4zA/MzGz8QGHjHTiJnk1/zczMBjVlO7fIQiVuyl4q\n31aGpQeqoJpWv3OrfTMzO32p5zwAEfBe5vrZyyxZpXtbarv/GZ3v9Qfqe4Iz6xmy4NbSfEmRLUqQ\n0QwDzbPeAh4hsjETeDf8pa5bkMUeRHwXlP1w+yBKqOA15f+Hff1+NdHzowo2BdP8n1IVqRzCUQPq\nYb2ibInvS6f9scY2cOFuAYli2FLK15hv5dXuqwHzvyXdl3BzpR3pJULIjMgs5B0QIlnduEBGdprT\nWI1A7KRxp86C7P9Y/VxRNWNFtmZBdY0cyJAE5+F7Bek3ATfCJEcW8J76vUYWrb+Un3UTERcEPB1j\n2b4trp+5NDPLgjRcRfxaaY1rOKGCREnjP40AhvClBPj5XJj5t9obwL818EG8LKVvgDcfnZmu5KW/\nFDwuvT6olwW8H/Q3vZjYkEpP4Q2dVb+i4khySGYRJM23QW3N/uSn1KZH8kvTQG25f09rQOuJ/MV5\nS4P21jtC+j2/0trIoy0Zghykapq/Dr9alr7X9P93d0G6MMb9A2WTpqBAgz42QEUtHxubg+jpcp68\nTGmUDrr1QSO5PutPAEIHJEk7sqWllHsRVVZZ01gmqIx2dEb1px3NyVI5gnVdT0IyiSvQbwFIkkFH\n2bAksNYyFWhc4BBLxikNF858rnFyQPyc438fgjobmK5zl1pXCkmqkhxpLodU3cqkqASDL8mkNA4e\nKOAIIZr6IWDhota1EF6sRF79qY41+btTZRcr8GlEBcKaZxrHrCMbzV+oH8W52jkB3RZSYSINKjC3\nPNB9fOk5t9LcbPZA7d2oW0D5u865dPLZde0ZXmR0bWGkZ9oGulzItsdD6aBUhktvpjFJLSMOELUl\nCUpnCqeBv4bfbb0rHeAnyqA62/A1ZdjrBM4n25NcdTV3fJDduYxsfIK/zFIRLFOX/87ckR8L4MHo\nTkHYVbWm395S+w4PqKw4h7tqRXUQ9n+rK7hh6vABwr0QkRpO4FAJrmQzzan8flQVdB2OgxEVaLIt\n1qOU2lHCp0xBB4zmEXeinpebq91zEOlLXh/SGXxHQf2/hD+pz3rgYBsj9s/QpFirp/EdmO5bdmQX\nKfaqySJ+NVR72qCBvQkV0fDHoyxIR+aUrbTX68KPlQctpnstre2o/Qkq3BlcFgEI0xkcOr6rdsyY\nJPlPUKXLg7ciWIDu5B2lQvXR3NY9fqm2Tnt69imcTymQbZegfjsv2b+t9I6ysQ+vEGn1CVXekgv9\nfm9f/t+fRxWtQCZ/Xra+eKyxjioqDj7QdR/eUJ+3a3CpgD46+EBoiWlTtl8GTZQH0blxQ5xYo5Gu\nD6mA1Xmp5/3Or2of7mNjf+4/+Zra9UXtr9e6av8m+8+LU+mjAoq5XAOJcxOESAeOFNav0UKInjJV\nWZNV2UznSBwtYUr+28FRpuDYScEL5TQ0TmlOHzw+ks/yc5pLeSrFpeDMKrxFRTN8yXkff/8JOcxy\na9ob3YAT7HtttXvwoZCGCXhLswv9/fw3sId99gXuvpmZrWfhX2EOjIsapwx7jXqJqqwT6WO0G9ln\n46O2JBsP7dN3zcZLqhZRJfP+1pf1gzKVnsbSTfsVa8DiPTMz+4A1MlWWPzhCt1VHtpPk5EiNvs4q\n8GkOeFeA669S1aA2m9jSqd7xLppUpVuXri9A9R4dRvtGjWE+LVuaTeA9S4KQCQ7MzGx3oO8fsI3k\ncIRN/kBr46Oi0P4nvEu1Kd4WVfFLh9gMKN/9JDb6eemyRnW8q4XaWe9xSoV33w5u54+SGCkTSyyx\nxBJLLLHEEkssscQSSyyxxPIa5LUiZcppRbhmS87cXiqiP8zDmbCpCH6mrCjlYjuK4CsD0TtQqGv8\nPhnvIZwuWcWaZoOIN4Tzes8VNT4OCZGRgRhQESF7n4wx7Zt2yXqVORtX47xnlvvCxn4yUugrLCny\nV0txHhBW6LwnNEKSTM/JWJG/yxFZOYfMO2eEK46iwiSmLc8/hpwTzJH1mrmcR4dbYmr63apK9Q+Y\nyL2pa1anug+M+OfHZL85x50lO1KBUXpJ+LAUUrklr6zK8ELP9Mn6T7rqw+ijahg6v327pIzsfEI2\nKvpcRun964lXUfQyvSn+oG/sSPe1lCLjA86XH3LOrwFv0ElfkeFqU5mJl2Tp9uG46ZNVq27CJ9Sm\nXTsa0yMqCZSyH+o5H+pMa2FbYdNtRxmOZyv1N3+Xc4JdRaYnnD9+k3OIi6HadzgVz8fZpfR8m+zY\n1W1lie6Wdf0bm4r6bs1gn3+ucfvgOdVFKorK3iHTamXNJR++jPVDRZnnZGbdon734FQokrMsGZql\n0A6PyGDsd4WgOea8+/ZLPed7dSF5fBA11QfSe8f9v83MrP1K98luwbtyV7Z+9JJz3jn167NzRa8T\nVFY4ojrWHsikE6p9PaTSxHVkBc/EVl33HCc4sw+3knMU8WTAvdLQ71ae+ub2NQZLKsKERMIDOER8\n0lFXcIzkIhogDptPJupDlnnquWp7Fc6Q2ZznhyAvXOm2TNam9IbmWLFAFobM63gCVwLIGevgL0Gm\nDOANCsmsLoZk38l2Vzap5oRDG1MJZuZh62RfgjWy6tSBciMeDkdZGahzLJ8H4ZIGwViDc6VI5nel\n+yWjSjBkMucFtWe6ggepr3ZMkrLJ7KyIXnRdEjKa+UD9645AU1R13eaPCUVy9wvKmtk/sGtJDz3l\nI/QGPEmZBNVF8M9GVQ9oUmwFN8US5OGQ7GKY17jnqI7ik+mfgxJIsJJMIJNJ5aTfBZw0KVAeEziP\nVrPA5h68ETuyifNDPcvIiAUPpKv/4Kf/opmZ/QX69qt8/st//H+amVka7qoqa1sbTpPQiXhs4AwY\nqpPrOxpDg78sMYWP7YYcWIJqfa1LKk3B+5EoiKsq6MhPJsimTbnPNKPnjkGbLsagEsZkdrOagwls\nazrX71dk6efwys2YK4MJNpTB9kP93fNBP/l6/svviPNg48Zd+yRyhTv1kmTv81SrYv2ogQhNYjtj\n9gCTPhUP56A0qPg4oYpVErSuO8I/9rQuhVT4So7gtyNbvwZcKwtPSSfiksAttka0KxQqoTa5/VEf\nhr3QvLTam4eHatDXOppnDiSyVAVc6ncUVbJ1Vz6oN9MeKZulmtY44rsD7bCElyVJFa6U5ma/o+vm\nocbRLWzaaVO/9Tz9LQEib5qQLh1HfahE1X5G0lW4gEsPorXVEiQbfjw71tivQC5Ge5lNeHZC/KW/\nE3G0sMYcgyqD/iHtJ+2TSLkO/8c+cwgU1yHbaQ/U6oxKlNm0cL5r29o/nh/yfBAoJYxpowgiG2TH\nCiRnY0/XD9/T3sMD6Z1LMndW8tMjUG5XII0GAzgNB/LLR+jH7aJvEIveC1AQ25orJZAwzoL1BtoJ\nlyomI1DPbhJbz8FLRZWUSUHtSwSgCdKay2us7UMqQd7C7y5n8C/BrbZMaRKO27qvl9LvMgXtWVYB\nldhWul8BvQ8dqhGCUC+OQczOPkbKTKcpc3xQXHCxTRay7XlZ+gf0ZgnsM2R8BiBcryUpXXPnrXV0\nId30r0CgDzVmw2P82Lru3X2hh7/1pta2e1+WDtsH8hczuF6cLfa7LvcDSWJp9aWJX89GFRbTIN9A\n+I1BMm6X9X30VP7hB/9ciOfNktrd/5AKWR2ud6nmlJAtFKvy/+cvZSTnp0JitF/o+5oLKhfEx8uh\n9suTtCrybN7U3N2GazLDOtDrg8Jg81FIa2xvbsrmTwagyQ5l830qJLqM9b0/ofcFC4XqcE71Dtjt\nyz91LyJeEdYjODHndXhR3te76J231L6tu0ICrRq8i4GCOACFPGK9K5xTzuqaUu5pLlzlhZzav61x\n6L/UOPbgZarvsxlZ17iUTLbd5R1wDEp6pwFCv6P3ny7I2wsQlX2qxs6aQrW41fFHbVmbLK1W/ZKV\nN+Bzm8ovZFibnrEnGID+KmVkE4kF1dgKeu9dW9O732TKWn5ItVJQSMkkpzIAnvU9/PJLIRtT78Hp\nkuZ0Bojv7ap028grLpCHSysVQV3kHmzwvmxpScXGgsvxAzhXVzO4Eh21Z7oBp2K05ofqx5u7GusT\neEuLQ82xZMC+n5MrK94nFn38If64daXvOVfvVKcCP9lmmbn6R0iMlIklllhiiSWWWGKJJZZYYokl\nllhieQ3yWpEyLpGqyaWilzMi4KmiopV5zjPOOC/nj/V3hwjY5JRo4kC/q8Ie34OpesKZ1XJINHUd\nLoksXDacD5yDbug9VWRvkldGI4TrpUmU2t3Q90qfuuecQ4zOh+dLyjDkOWM76ihCVoBHJP05ZbPm\nz0nRwP6c7RCpo177iEwDVDE2meo+Y/o5IkIXdOGSAX0S8ZUMQCM4ZHjdTMFsQCWrvp7hB7omtScd\nZLJUJiEr5cz0/xXYyjM1RcSrKelyeg6TticdL6jR3jnR389rVAAgtVfbVOT23NX115VGQVHX1U3p\nJA0XzMu8oqPupaKamyZbOIZLJdvV5ynnFiPUwmREhtBVu1dp9Xt9QoUbkDVbc874t39SDdkUUqRN\nlio0RTt7PYV7F0POfW9gSzBy/4vvquJE0DrQ9Vsam58sq1/ru8r671U1DpWZ9P29U0WBD4jy1skS\nLlaaCz/GufYJ1bTcI2yuBJfCuubAGkzoVwFnkANF+BsZjfNRUxH33Vtiv8+M1K/MVBnyyxycPXAs\n7LypsPElHAfjl2pHnipVXyr/e2ZmdnGujEaBiLyf0DidwyPi10BiMZ6zvvpbWFO73l2/fsbh/hs/\nbmZm6w81Pzm6ajMqtqyMiihdOFMYsxbnf720bCUJ70XgaR75viLuQ5cbJqiSA5rBLVKNoqcxnWWp\nhONT+YQKMRlXfa5vAZsCUefMqOo0BoV2rjnXxAbdnCL3BaAu6S0yeRSTqPiceSVrFFWrC0M4GMiG\nreDmcqguFfrqfwZkHVQrNjdlEnwq7fhZjYlHhjKd1twp0m8/wRxq6zkJqlWNQCq5nKH1ciBr6Ldt\n6HNINbs2PFHuFD6LLc61UyGgXgP5U1Am19nRdeGNj89DX0cqBSrFcRY4EXHuOFR54XcTOCuiqhvD\nQOOUT6kdmzeEfLxqqt0LsmbTtvSUpJJN+gruGE/jF9K/Sl6+6BjEUxL+gIt5wvIpEHdp9S1w8LcT\nPcNbiEPmsclGvmX63f8D0mH2d+R3fTJ+CRBxV5dUJJtr7EtUNpnAxTIa63eTDMRDVLnIUMGvz9w5\nfyU/WNiWX3kHTqnmjIpUDX33R+r7vAMqiCogWU/fhy38cUi6LMrkgcQY5+F1SGvdSIIyStZl/IOx\n1uoAvqZKUX6jYXCZYXvTwcdZ8utIgkoy86lsm0ITlluhL6qPuGmQRWSCQ7hxztqylQh4tCSTnWmo\n3e0lWTNP65Vb0N8PWZfLkCSckxmOqksVyLwHXLcMZbvJPtUCcx8fVHecjo2p/GVUgwoiFBwlJDLw\ncpwHGv+APc8ooLLOK7jM6up3Bl4rn8p1jhNVnqO6X1bryIos6rAte7u8DGwMgi+f17V9kCwf9Y0h\nmk5ASlyCTFvBFZOQLQ+pbuaTlXZdUKBzqg+NXqEb9gagQwtZrWmd4yHXgax28TfpT4CAMLOzsdb0\nF/jvERW1SqALgg0c9IAKVxmQNczJAlwwIXPA39Tzix3pruNTHS/J+gE3Q+eW1tCsy1iwbgSgnyNU\nWRLkT3Jb/Xz4psbw+BVVm4biTGjA+ZIEORheydcsS9JnGl+U8BlTEJ9zEIsl/Pk4AIHKulHtwNkI\nn1ImCRoELq4cnGUeHFvJsvYUkxZcPKA7xvRvAGnjqiffkuO9IFqnPdqZAo02S2udq8FBc8YcNjNL\nVhwL8MPDQP1O8xrkgHaDwsxWoJRXoLGLdv09yQWcXadn2kfWC6BhK/inV3rneXUiJEe9/I6ZmfVe\nyD/M7rHHr0mXP/iWeDvmINx239J8a4LMa+zr7/vbQnT8+v/1j83MbIOqSh4cLwuQF3NTu4qMTWdM\nVc7H8HBuMcccrXWlKnMNlGyHdePs25TXy8s2RwM9B3oQ2/sTQnn93F/8q2Zm9hu/9j+rX8zNGUgV\nn/VhMpDyU3XZxKgHYpP2ruD7K7MX6TrAlpvyKS8vv2dmZhUQf0Fe110V9bskVUPHVDc9A2VdfkPo\nizrotY118aiUQIdVedebDOTX3BWVFuGPqoDaWDQ+2UmAZo/qiPCI5j/1wMzMQjjkTk7UvuRQ9y9O\n2OPd5D1uJrvqwqHZL4EczbP3Aj03X7GnxX8HRc2hfP3jyXEYnljuu48/quo5hCfHNdnYyVOhnPap\nCHn7Uz+hv78CqQIv0uIu79GsEcGcMWY/zlbB6j19P99SX3YX2t+986c+qz59qNMQxzmhlsbHssFl\nhqqhvJMG7GsrINSbvIMtL6jceyUdtajSN6Ia6e0q1f/gApvxDvikJf+eTas9RTgaL1mb06H0kirq\n9w1Hv5uwBgdPNacD+PPaRxrbAlXl/B9BcxcjZWKJJZZYYoklllhiiSWWWGKJJZZYXoO8VqTMkGxc\nZwLXAVHTDVfZnFFA1h9+jmkWNmVYmMdNRbqKcD6sxspiLeE7KVFHvLAGKzMZXCcki0ZSsryjCJsP\nF8AMFvvZOteTeekfKUr6CEROHf6OBYia8YIKGWQjV0TIUtuK4JfrykY5ZDxGZ7rffAfulwkRSs7i\nZfKgG84UyVtxFm/vlkJtK7gPpmeKuqfIRI0GiiSugdxpJRI2omLJmAoo6Yx+a5wVNzdCFXAmkTPt\nT7+vaF+Gc76bcM4syvD+ZBVJ7/v6/wR8GFdNfU8t4Ffw9PfllKjqNaUAN03HPeP7vpmZBTeUjXJr\nsp2LtsY4+1LtqiV1tnUCf0f2tjLB3oGyUEXy4mdjosGBoqvTp8pA3J4ruvoi9ztmZjZ4pixNq6ao\n7eq5kCVHZUVd37ynMRlcRlwrOo9pRKTvUYHLfkrIm+2VbHyjKxvvcY7++UAZgjuunnMXZEk6owh/\nrqD7eTvSQx0Uh1tUP26ewjkDKuAZXDNrnOMeEoHfIoq8eUPjk7vQc13O519lZC+HVOl4uC2W/Isi\nfB9fV0ZlOlEkPvvTsoM5/CSVRzpAeYm9vUWVqTZZyyQcMqWannMF637YIxv1KiJu+dGSpVJAish8\n5wU8FlG1BKovlch22zpV3ECqOWNQZFldN71g3tOUWZbzziBrWvBK5MnQpvEzS/xBuiRbWXLOOU+W\naS+h5x6ewkHVV5YpqpLkdnX/FGNcTmhMliDeem0qWwWc696Wzef43aApm5m0qDIHL9L8gsww59Bd\nqhotqQgz5Sx93gGNUYsymGTDp7qP21f/Ls44E3zFmV/jXDbViiKEzBxug6mjuZtr6H71G8oGJYrq\nRxbulVkHQg+4AnI+4wbXzCAhW3E/nJp9xWz08vv2SWRJRncR6DkB5/wNBEyejHAAKgGAi+06cO8k\n1I4wqc81UICtUzhzWE0pWGbuGqizZkRSAB8A9pLDPodw7FQcz4ZN6brzVsS3oXkbACdI41ff//lf\nMTOzg+3/w8zMer8kxMKdiAuLyoZDztjnx1QG4/4emb3oXLfvamyLUWUqeCN6dXXGATF54+19MzP7\nyr/7Fd2nozXs2ff/qe4Hx4q/LuX1HM25JBwyG1V4ItbhG6LiosNYpFkfPCod5E3tBChkIypaZagi\n53TlN0ddbHKLsZxTISH7Q2WJriGJNuvJc1AVD2UTBbgcVp76kSCDm81SzcSTXpPwTjSpzOOD7vBG\noGuDiB9O7axiS/1OxC9H1TxX69WsTyXKTektR6WwEWg/Bz6r/qz2UR8mw5QFoExCeFQMxNIqpd+f\ngO6NON/W3wR9wB5iwvqwuFR/xti6S2mxNP1sUQZrCW/IyNfzmlTQ2W11bX4CB8ktsrpUs5l0qUqX\nAyky0j062FAWbqoJ4K3VheaES4VF9xYZTCqLLUAN3d6irf0oJcuYUKWud+jQB9nurPjJEHc7f0Z8\nGF/8mZ8xM7OcCc3VB5E5HChjfPRt8Szl4MAJQZqcguBeUD2qSsWyyU19lqjA4jDGk5xsZQ8eqJQH\nggXFLICG9pZaMz2fSl3wAS2Z48mq1puct29mZgW4B8NonRvKxhIdXTfb03+sUU00QzZ/RGa5VYIv\nrskcJBNsVOtLsY7ksf2VQxWUM9BVGenJe6Z1d8g6kNjAP7K/9X3ZTf6Oxn3Y1zrmzdlTULGtSKZ8\nPgNl0pBDLkjdZmbmphtWXpO+ggQV4gZwQhTgh4LjLFljPQYVnFheH3W3hBvr6Q+03xzs6d1kN/22\nmZml1yOeHe2rkhtClLjHB7ruTM9846d+zMzMvvDntS99+VL7zo1bQnYcvK997ouXqp62ta7fTahA\n0z9VOy6eyRadNThkTLZSbON3QLgEQ5AUS7Xn9i3qnrJHmvEOMnii65+w17r9Ob3TFDe0D5wNZRNn\n6OFzP61+Nvp6Bxrj7xoF/GtP7R5SYbKI/wtNc/byQnMjwb49evcKaxqTMVVau0dCVzgJ7a8Dg48q\nrX4t4flIgAbbfUO/q+9pD5X2ovUGJAw8Id/73jd1fRaOMPac3pT3IbiBElQgu640L6gWiD62a+r3\nxltqz+HZd8zMbHShvdZZR/29c6n3n+WOnu+uyxcUQNqHVAFMULc2w55ngY8dUPHY72c+box30z4Y\nHFr9SLYzYj90CHZjADrp6qkW4/E2KCnm8Yr5XzrSWAdTKsvCHXWVks0kqLxYTGse32OPsX1Hpwbu\n/cS+mZm962rupH5d8/79S/mNwWPtJxusaZtw2nTq7MdAMJaSvJvWNPdWYyrsJqgGCPdrgX1mPgBZ\n06CK3hrIcfxNaqDnH8P6cCLOAAAgAElEQVTlmKTq2+KV7ldKy9ZfPNZc6+FH9m5prO7cFi+pE/zx\nyMwYKRNLLLHEEkssscQSSyyxxBJLLLHE8hrktSJlcqao43KoKJ67oLrJ24pCzppklNOKoiapSz55\nrghcguuLCc4qT5RJzRB93akq6ujAuTK6UiRsNiPjOScyVqGiAxkWr6DIm19TpCxJVY3JmSKBu2SR\nciTeT1twIxwoal25qcxLBrbpEec4o8x7aq7+jYqKjhbhrujtqb/z9/V7p0qmg2oppy+ogJBUdHdW\njc40q78zzjkWclzncn6/N7dqUn0rwzR/zj3ncMs04ErJbJHdpTrO3TvSwSxQ5DUF8mGxUCT8Kqnr\nq2Q1rjxljYZdcZE4E0VkJ1N9etlPFgcccHb/5D3dN8xybq/LueWJ+rVdgzdooTHqkh7Knyqz8P1v\nfEM3bCtSvz9XdHM51/U9zuhnE0Ib/LMjRaa3gzX6rfPqbkC2qiZ+oD1PNlYaCzmS4mzvRl1R3wXR\nYvvUZ8zMrIw+VrCrvz/jrGyfCmOcQ9+bKHNR3OZceeunzMystann7H9TY32IrRtR4Tf7up+XknHm\nHdlir8XZYkefo4T0MaDi0Ixx9cj4fuCqHYWMIu1ZR3Mw8fj3zMzs6lSZA/uz6u/Ova+amVn/MXp6\nrHaMbstWP1wJHbG5gPW9Kzs4uEFkH7O4ojLErHZ9RFXzkSLUz95T5nNwMKTt8P+M4Gmg6oKTiM7T\n6v8bFfmPjU2NwSVcH/28dJDiDPtyDspgLNtPg+DoU8UhZM6Ucvr7VVQlhMxjZ6X7Bq9k023OB6dA\nCSwc5u9Q/mAAZ1SKM7QBWZIr0EXDgWw58ykQKnU4axg7B5RamuogUYR+xTlynwxoaUmmgwptjkl/\nA5Axs6b8ndPmLC9VqKIzvCF8SE5Pc3O0kn58/FAO/TfPuP5SnAb5TZ3FXd+RnvogmYYTuFjgSuis\nlDEZnul76Or+nQhZc01ZLNWPIevBOlX0UkVQZA7ZLl/t6IE46k31/LETkRVpnNJ5jU8mJ32MQGRN\nQExOQcSUQQ+O8AUhEJxECiQS6AMb+BaE8j+ZM2V3ClXNz+77R/RBtvH5LVWXqO0o25OryB85gca+\n+1LzMHSoClEgq873dMDcIHvt9ajABZdYAKoo6IMgdJSxHLmaK68e6Xx5eaK+NSBi8DrSQT8tXVbg\nN5pmdL/TlnTQqMkvjRb4Q1CxXk6/c8lUjqKqJQv45ajUkk/J5srwbSw7uu/spdqbzpPJzPxQJvAa\nEnGljLrMnedCPM5vaq75odo9gJdowRgWQVr24akbAe2J+FSiymr9trKFEV/emMxvrglqYVP9iPA9\nS9a/sq9xDkKNg3+uT4MDYZkaftSHQdC3KXNtDJdEeV2Z1+FK7c1SMaeMHilGYrMU6+uESnGBfM0C\ntNwK7gcPFEZiTevCCE65GRn1JD5s0irYMejUT92TjQ5BhU7JLmduah6eRdOZaTZJy/bzE+kgAFHY\nLuu6faorTeAjc8nsTpIaq36gvjdOpOPeoXSWIKteWZP/yVd9+yTypa/8lJmZvWNa08HE2ocn/8zM\nzNZAAyy7UmoZxHORKh/b++L96D1Rh5u+5vwOaKM+yO4pSI4i3CadCtVAR/KDZxnNQSiwbHNftpkE\nheuD3Hl1AiKoBEKIsWxS3a4BT4hDVawrh8pbR7K5PhXI8rtwupTRH1VSe1mqscCjlF7CAYntXS6p\nbtRXOxJ5qmLlZEtN0MqLK/g1+rLVC/j+JifyfZsJoaZdKgmlQZnlIX5awEeVYZ1etTQOqxoNMzMn\nMbEslYPmS/jtGnDOwQ2XyEq/Y9bzXFKfo9X1uYc2bd/MzMINtbF6kwp9GdrsaV/VO4dbhT41sMkm\n1ZnckvzXrbeUZX8Ob9JJDw7AvK5rzrS29UAT3K0ISTPFLTx+V/vxdVAQPpVkkyAo1/bEaVNg79IB\nfXb4vnTnl/WcED6k6kOqQ+F3blYoC3db/bqR1VyLKms1j7Webe4JZda7ku26Xd71FlRW66t93ZHa\n5TOH/VBzyZmz1lKdM1GWfvJt1h3869FQSO0gAyfNFRUt4eFbUHVqEx69qxFVpuAGSzFOo0u1KwPv\nUbQXdKI3Zyr0Pjpm/w9f1nWlwDvshKp8g/fEiVPdkl9d35I+J6yz6QzVknz4EWdUqBzCnYkf9t7U\n9y6nRpIH+n5ak73NT2T7K/t4D7Wada2+mNlim4phVEMr+5z4aOybmdmyDC8lqHaH/XO4pmdE3Ipz\nkIDtNm3AhvKsWd2RbDw/kU393nf+QG0c6N3s9NW3zMxsraS+b+1E1d14vy9rPfE+BQdhg2prr2Rb\ng6e6v+ex5vpUCe1pLE+h/xkMhK4qV0H2ZeRnHlAB97THHiOQn97ipMrNBgh9AHSPDtW/7Lr2Zusp\nEOOgx07bso1U8Mcj7mKkTCyxxBJLLLHEEkssscQSSyyxxBLLa5DXipRZkc0fwcOR3VT0LkMku0+m\neZ0s2hmVBLrUTa+VQZhQi91AuFQJNTU/FHJlcKgzXosUdckvOJMcZU6v4CrYVaQsTfWn1ANFKatw\nwOTgBZnnFWJr9Q/U7qnaPe4qI1DjnDuE5jY4J9tF9t+h8k2ip0hbOhWhVMjot/X7GefpjWzcmIoW\nJ1Q2qJGhCMmczBKw33N+0omqNY3mVoZkmyPkFnAWPb+liHnlptpCYNquyGr0QQXYXBcGSd17nSzx\nWhGumLKigZtldENll9GRIvt9ItHV+SfLXC4f6fc//hn15cmZMgmJOQzZTbLcY7gPQL5sUlHFXZfu\nHqwrsl8kUxycKfOwOVd089CTjY3hFfrZ218yM7MZmWcndc/MzPIgWq4eKPKf7Cr6+byss8I3yegu\nU7quznnu8e//vpmZvTono/pSUd533tk3M7P0mrJb2xtq34umxqV7oujvdKrodBq02GBTeqmFGo8L\neFC+ueL89aHGb51McrKk9k6oRGabsvGrKz23XFKkPwwUpc6QClivaE70TnRm+eyJxvsSTqKvLf60\nmZmt/Z70/8HTFtcrq7Y54/5Z9fuDM43LvX3pMQV30Wn1d83M7Dyn8d1eJ/13DXFBYTkzzrTC4eIs\nYeDn7GfWlQ2uyC5MOoqgX6axzYR0vcazTy/VRx+2dSegegbnqgNQWQkjE0dGdAZiYtnWZBpQeWt2\nDufNIdl++BumsLr34aJ68VRooe/9QOeJHzSEunrjx2UTkwu1N4/NT7Hp+jYVe0BuzDkrH2V9VqDi\nltMU18H1QAWBWY9M48JHT/ghsv0ZV/ePKvcMnchfq5+Zhmwv4ShDMuXscI4KPmmyPSs4CJor+Yb5\nRP1Kwc/kgFixFlWSONNfSIM0ymiOZ8lsXFd6S+mhvA66zEDJJTnrjG9yqAiWNPUvj36KcF9Mo6qB\nZMK7M9kby48tp1EmRO1dpqNKQozLAi4FeJ+8tp5TzfVtdS6/cfpYfDm3PqOszr26+toNlQntnJDx\namuNG4LuOhlQveNMY1JnzcrR584qyjJTaYQqdvN0VIGKigmgpUJsKJPWWhvO5Cce/YoytTXT2pin\nwpaTAakCGvUq4Hqm85JKU4OB+l5lroQ1XZ+g4kzegauEaj43mMNNbHPZ1e+iqkwOFWTGF8pmXSx0\n/zqoseuKU1U/1+6wByFbePIC/o9dPacE6i15Aa8cfHVpsvurCVwDVArK5jXm55zLz7IeLllfJlTs\ncjvwFxXkv42Kky48dotDqinBc5cJ1c9F/+ijPswvmlaBr2/vba1bPnuMkPX8bBDBUeB9auv3XkW2\nXqWC5JyqhjYG9RDKPgrw7mWxiznVQYYz0HDwU7Ucsz4IxQmcXAMQB3M4vaKqF95Afi9IgUCbgiBr\nRpyDcNBQ5aODTrIZ6boFUsLgEXJAQl91qOgF/0NlR/u6FJwqo/4PkY5cQ77xD37VzMz+87+gKiHu\nWM9b/Wd/38zMvvo5rYlJxr6XAxXwAz1va0N7kQztzY1Bk43gSNzV/apU6rk4pIIZ69baVz5vZmaf\nvbOv66k4Njf501ePhN05/gCkZUX6/cJn1N4aaNin72tf3FhpzCfcv5QX+rc119gn2nA6gpzMkDlu\nJ7WnSLFPXYLYhrLRpiPtq9MZ9Wstp+duwYdS/zEhhlrH76vdvyubH8G9tQ2X2zH7/lkHNBk8SSt8\nRA7n4iRBcbeodrfAHpYfo27Ppq4tL2SbhRq+DrRwpaz2tViPS2yGV3Bm+N4n4JSB22u9pH3ejP3z\nkDWhCMdiFqRHISndrdbZc8CbeflEaIEgVKWZYfvAzMwaQ9ZSnpfuaS36+tN/bmZmiZzW4i3Tvjzr\na23NQHhWr8MVQ8XJWYTNY/8fJvR9DM9ndgxP5U3pOleQX0mlZWuTc9lCmTHJwFXSYu/w8ltap968\npXZ8ewoa6VRzPgFib+VKbw0q0I47VEEFUTKvgMKFZ2/IXqrfUjuf9b5Pu+Rnb8OB5ryh9lZZ09Ps\nn5ddkJGsycUS72TrVJ4cSa9TuMZa+NsQfqryhta/t27q+dDsXVuqNc2FD47eNTOzyUjr9wLUBcur\nBXX28SOhONJUFWzDV1fmlMiAd9w0e+HCRPZ0tAbvyRDepVtULht9vIe6u1206tsPbIOKt7/xO79t\nZmZrc6oUe+wxQF634Ret9rQnGS15N8zBX5egyhn7No8Krtkp6FDmrU8VtczVgX4Ht2LrUMpMruuU\nxOlIz8kH6sOrtmyvdCg/sQ2dz6pLn9ZB357B98ar7JmnsUvhX6tU+ZyBkKYArD2Hv6/9XEjPeVY2\nUoW/rQPivPhCz+keUnGyyL6vSVXWkdp5jo1VnD9+3xojZWKJJZZYYoklllhiiSWWWGKJJZZYXoO8\nVqRM/4zKLS5cMnA0DKkUUyzCZs/58hkZj8yS6hgBJC1EoUuwLp8OdH6y/YGy+8mGImObGWUdNzYU\nISuu6Xsipyjq7FSRrGPKMp1fwAq/0t+3yVqONzl/T+Tt7hvKZL/KKNI/9fW8OdUAsmSKJ4dE7qkm\nBUm+dcl052D+btxXxn7AWdrhSiHAnTeF7sjlqWiRhJOCzPWM8h+JPjwBRPbLq6WtpvqNM2PIfard\nVPT3I7LR00tCvQfKJuTtI2iNrk8qE3lUVyatcBUx1Suyn+YsZH1H0cthdPZxqbOS3dEniwPu+Zzr\n7eq+Gzy/zZn3RktjlDxVZiBdFbrAAb0QwOaeTZDF92UTXgJ2d87EejNlNDaKQnacnyo6OiOqOSPL\nt53RWLnnZGqvdN9yCa4UShl4E/2ulJTNnF2SOblUVq5UU/T5gLOktSM4X/L63L0By3pCem9V9nX/\nU9jym5yfJzOb+4q+v0F1lWao6HLnUBmKj/g56orAL17coT+KBvfPlCE4auj/13JwObj6fP6u9NlL\n6f+/+rk/JX3Bk/HyAmb0ffVrmRaHTHKhfpyRDd3KKvQfmsbtVVXXX3qag2sVjUc3ef2qKZ2LqJqH\nvg8Zs86xxrB7rL7f2pJubr4jmw3IKrhNtaHHWdZg7/9l701iJcmyM71jbmZuPs/+5hfxIiKHyLEy\nWcUqsklWFbrVXEgiCXULakAQJC0F9FKAoJUgrbSQBAmQ1iIkqNVQgy1BElrdarHIIpssDjUkK6fI\njPG9iDf7PLubu5tr8X+W2WyQVS9XsbG78fd8MLv33HMHO+e//y/2+HJVdVy04EOq6ToenCBjxkwB\nZJ+VNLbWMUHOUL+POvAzwIUVXXJ+Grb4PhmCNJwwPWLlTzjvu8Fn6tcaU+kNSD/O9FseLheUbkoN\nfW8IL9EcbikfhQWXbE8KBFCskhRi8hR23HR0/ywZEDerefkZHD7PBqp3/7l88vX31ff3UTQYgLrK\nb8nXtlAC6zwCiYL0T4csXA10g8GtMwZ1lwadt4Dzpt7Q/3myTDctWdBdmZTG2GwBwmchO47jhCro\nkgIcXSW4zjac71+DIgtzut7llbJUGzKsLue+56gRjFHhqgESXA7kTyvynH4T5SAvb1tz1Cu6modH\nl1oDuo6+E3Gmfsx4an+mSrusoemy5rXmK/G8rJtOONNfgacjALVjcL5kOdPvV/T+izO4BxytaaUF\nvlU5MjOzXJrsfV/fW6L2MGSNTmGDtYfqzxZKWhvNUxP4kTxUejJw0kwv5ZPXZKFWM43hfEF28Vgr\n02ROx2T365kYYSKk3QyFG6hmblwKVRQN31QWP3OmwRCrgJThxEmhzDJlsJQ8EDCu6jlgL5Mrw18B\nF9k2vETX+EIefjmXdagG0rIH71VQAoXnwmPE+f5CFXRsW/YYzltftKGSq9q99zSHFQRCs4efoTj5\nTPacpxiLY72GKTLvvsZyd6YxkinCMcc+IB8yJ03k2/Op2pdBqW13rPdfgEL0B0PLNdTXG/gXCj4I\nxQhbwyGVLYA+GqktXqx6yVq5iFE4U9V5iKpPBsUwB8TKCtSUDwLkxYh5HPU0QxlmFKvvWMa+Svn8\n+7Lhn/2jD8zM7FdvS1Hxnd/8DX2BTK47Uh+V4Wo5v1YW/Gqg+WK7hA8F8EmgZBi0UaTx1e4l9ltX\nNFYePJN9Pmnr+tmV5tnjPxF6zf8/1L58pcB1UZX7EbxURyjwdGW3LdBREfvp04Gu53ZkxzkqIrW1\n5q1JKB9Mo5qSQwltAbImQl2wt4AzEWTUsKTfPe+rnq/DdxGBzht76qdNR3vL0wgEE3vVyRTelbLa\nk0F50gcVMOnKrv6A9TYDVwyIUDOz+alvm3I8djS2Zluq1wpynkxR7Z2CUN8wR8b3u0mBuvELNTVD\nOXarrGsVQa6ctoVWuu5pfHa7cCMu1NfnH8Mts1Tf3M9pXK8WattgCpIEBS87VpuctHz7RaA+j9G/\n1tF1NiAtHHjhZiP1WT+Sz2UOZbNKhC9PtY/NgWTJAgu9XdFa/+IMFaEL+VR7pb7NDEEboAhbeP23\nzMxsr6F58vEz8XlUt2SPKX0ef3+DWqjnqI9SY/XxKfx4q5kMXdnRfvfr22/QDq03e/ekXrVBNWm6\nFNp3OJ9gR7V71QL9NUaVlM3QcqJ2dZbwksZCiqhjbaEMF1Zln4aBcLxhWR/q/u+U4I7b1p7maVrX\nufyJkD/zp5qPg67QcN28/GBrX78LU5roa/TLxNFY8j3QHHl4SUesZ5d6za5i1LDZsw8/sXZnbMe3\n9Pz84EdC9ztv6F7t76sPrnLyue82dZog2mi87oFQv+hpfvJBueYHcL6CtHFBCD/taTy9iTLU3l0h\nCG+9gvrRO2pLpabfLX4ASugCTsOxbOVv5MunH8B/VtJ85vLM2oeDbMjpiSbb8xncZqOG+rrByRwn\nxd4HVegAZeHoUD7mjdSu1RPZ4aSv9eDqhWzafE1jZOCqT17bkd12c0dmZjavwL/015QEKZOUpCQl\nKUlJSlKSkpSkJCUpSUlKUpLyEspLRcoA9LB1SZGjZRZOBA42uiWFIfuc647GilzlK3xOZDvt6f3z\nF4oqth8oYrZHxOr2L71jZmZ3cqgeoXCzRiEoteIsakXR3YMFGvCcn754KhTAU1Af5RJnolGkmJZR\n8omze7A650N9v3Rb12sRnXTHqleqpojgaoqSwrHaUdsme7mtyGCBaO08B2kB2bp5fK67IHuUiZZ6\nGfgH2igpeEVz4EXoko1w6rJFFR6HJbwQpYz+P/y6bJ/Nwmq+RIGFs+jnp4oyBilFnOdtRZrXoAaq\nh4q47+ThtZirTxbPv2TCv0m5qiq79OwT1ITy4pK5PZFNJ64i9W5Otije1ffWc1Q8oJ+vOULqOGTF\nY+WBELWNbI9MBupAK9BQuxNlnlNNKcZs5vrdgujw2RuKXAeuIvTrsrJA0bH64vM3dP9XPfhN6qrv\ncMM5wxOUf2bKaAyewl8EimG4VvTYWcneO8GvmJnZg/f0+/4Qfoo/EiImkyKjuqv+O3tF6Krtc8ZM\nR1Hnz44U/e1H8I2YxgJBY5uudW699aHaPSPC/up9jdHtjNp38an6p1tX5uNNmM79pxoEp6DCbqME\n5CAQNO/pOkGN7Cn17lS5/qObZxyGE6GnWp8z/taq25hsdQH1iusnauPyVL5x9J14HKqP16aI9+ZS\n349Qh0i7GgOLC9SYtsjEzsgwVuFbmqqt64Xmg1EfxMVj2X6JAoADL1Gxqd/3ULrZe1vz1C99R5mJ\nd39filYLMqm3j5SJePKnf2BmZn36dEo2fg66aRcOGQM5syC7PfGZP2DoX4HCyjHPOYzhLgoNPTgd\ntnZ13+G1+uTRM/W55dXnP34kRa7JStmi+18Tqu2a+azoyK7bnuYWY+4pk3VzRmTHyJhmUQLbMCZn\ndTgb4CH5/Lxj9htmFw/U7zct9bTav4YfIyJTvuR8f4qz0uk5XD8gMJco6xQj2dGra2yVURHw8OVu\nmnkcLqMpCMu0GxOq4DcxlwyIpdlEr5Gz/oJbpSiXtMouNmOczrhGaQIypgbP2Ux1GYK+uUZFYnYt\nG81M83B9LN98tYF6DioUXZAQQVnz3kEoW3TIep2BeloPYTFAWWsyj8+F52gT2SdsNmOeXfVk01pO\n9ZiTJQ8KmkcXzGMLstOv/Pp31S6TLzpD1av12UdmZlatC8Exv5aPnvP7AnuGAhlXpwL66obFWZMl\nK6n9IQjTXUNNCCRJJpA9aK6tQA8sDtXuLZBH45B1tKT2r3v6vAAPRwaEijPW7yeoqWRRF3Tg4yj7\n2iO1QcXNrtTekM1Go/YlsvCbv3LfDH65j/+JuAoenskPmjtyLLeKncqyY77MnEe/T7Lq5yiCT2up\nfkuvUYbDtzNpjQlnEKP2VI9sHeTTqmuNNaihLApeHbLecDlt4+zXS32e8uVTC5TBXJAzOfYw81ie\naar3N67qXGB/lt5Tn68+1H3OXrS4H/PKkeatKqhWvzi1r1Jqd4QC/faeuGN+5e/9R2ZmVmq+Z2Zm\ns4l876onH8k1NR+Ud1G+gsNmGlHvosbOesKafCo7jG7BD5FVPcvekZmZPb3SfDu6AjWVIcMLH1Ut\nr/WvcUSG+znIo7E+Hz9SfzRXur63jJVyuE5Xnw9QTTmgL7v4aDBXv3nsZZZwt3ihfGJCvxr8UQ4I\nxSiUL3VP1L8/GUgB8hbKYCnW6zVosAVcOh7IlqOi5rwRHBWho/qO4ZrIxggZ5rIVY2MBr4aZmVea\nmLdiPUmjutXHHzPyn9VY7QhiSsc0/nZ5c/RuLq0+u+iBnmStPrvW/vuWK1tcXqtvtpBwGcVKsR35\nyOqxvtfqqk0HO6AzUdmcXhzr+6jpldm/1++wp4Gvo7anLH8a5N8EXqBxnj1LoLbt13i22eh6Dfh7\n5mnQq4uYLwPkJQqSaU/t25yqfWEAB00KtOg1qkjn2oP18/LF3kJ9503V18+Ota914D3KoxJXBW01\nAUnupfQMtF3RXiO3L46cWMV0McBXUU8aM59neI45YT9bgF8vndc65YGOePxCdt+9hULnbdRHX8ge\nLfhEe6H2QgVQETn3S1+7Sck80dwDdaTdfkXtGILium6rfs4u6JED+UdlBNp2BnobROkEJbpyRv3v\nwdFW2tX7W/AAdh326cGXqI3r8cK84nN7+572oYtrje/6a1ojql58qkC+U1yozwb4yBqFX/cZ82oN\ntGwZVCxIwLMZSpDwGY2rsv3BHrymhCVyb8soUQu+nrbmi8yZnpE+vxDnTXNPPl79G3rWWYd6lipy\nOqGUi/eZavMqiudN+D9BdQUtkNsxEnsqH20Hqk9tonZMqzx/X6PW+lhxhzvMY0FW9R7n5dvOq6pv\n6oD93gc/W6ErQcokJSlJSUpSkpKUpCQlKUlJSlKSkpSkvITyUpEyC5iws2llEtILuBvgHanW9PlJ\nn7O2G6RsiCU5eUXa4gzuGUo/lR1Fvt7/NbHNz6tq5lUXrpmW0AzjiqKmGc6cHT9TNPbtgs4hXk0U\n0So2OEPGmdZRT5G2zpQs4FTnQv0KETuikfMKqlLwatieImvraxA+IGpipuzJikx8C8UGkDERWTp3\nJTuMVor4OVkYwjmfWqnqvpupMghpEECF4sYisk+rjt7b3gFVQ4bMbZGpW6jNV0v9/+wHOlc4PpHN\nDr6hbFCac9NpU6bTQUkq7IA2MNmmWlfUsX6os/59lyzKDUvtqaKL9anqtZeRylEbdvQR17tFH7TO\nYV2fkjl4W5nCEL6KzURZ7cY+ffRUdigfkrnkzGierNETTz7SyKudfc4E27nue/BM2Znoa+KkuXoo\nzppOSpnJtx4pYh3u6cKDkPPdA0XE79yi78k41tq67qMn8rXpY92/sK/sXq/5YzMzOxooKnwaaEzU\nD+Qb5yNFiRc/VXsO3taZ3Rd5nb+8QK0kxbnvWQYn5Jz2GEWC7Cd/rvtxvjtVUv81psq+PYJzZ+0r\nqr43EFInT2bkyT3UPj6SvcOS/KFBhuXplr53m8z78JBM+mNF4U+8n33u8l8uu2R57GuqWxUm/6Cs\nSH/qWvPB5z9Wm08/Fu9Q7Zki2s0t3bszxAZV2agGb8UZB8S3QWPNVrLJhkyAg5KAz3w0BQzmwCk1\nI7vkZpWZa7yi+0ITZJdkoSddoZL+Ao6Zh0+FLiuV5SuVvJBzTkAWLKsxUc2gNrIAvTCWjd2S3vep\nz8xFeYd5Zo6Cwxhyq0wgO8RqRMWVxkx1j+z5Ndmjd5R1+/f+rjLEv/IdocSGZIBf2RGHzPAvNN+G\np7peG34L39N9SrfUTxcj+S7CDxbADTaBE+D6SmOq/Zj5t6CxedEHmXLDskIVZEo2rIR60wD+Dn+o\nenZRBcwN9L0BcIgVaJPFh8rm5cual+dpEFO0P7ur32dW8u0+GaEl2bRCSmNzxrqQgjNnPu5Y+0xW\n8FLKhA5yKPNta/xHcLEsSvBw0OcreB2ygXy0GiNqivJVD1Wk0Sln/lHFyPsa77M+aCHOns/3tWam\nUCIswc1ysZDNByeggPKc+0YxcFWWL43JYmdzZMlQHggnej8/Vx+vVmS/sdUAxNw339fYdTIak/6V\nrvsRY/foVXiL4FDXbIEAACAASURBVPsJZ5pvJxntBab0WQ01upuWNCooxUKs8MD8C8dKaUdjPcX8\n7Tjqp7Aeo83gbEAVr4nPG4CnURcuNFBrA0//l1fwTIECCcncFkAZzAtqx/KJ5vdpT2O7uo1Sz3vV\nL9qwWm7shz9U9u70RPPy7oHmjr0DzT0FuMjaIFtTZAO3UIOZ5XS/IkoZ41ihbS1HqIWg8PBXn0y6\nW1L962P54/l4ZVtHMsLCke0yKa11zQp7EpSisnDCLOHR2eATIQopm4B7gb5NT1WX2bbm2Sp8b0WQ\nhycDzafrvnxi622hP+9V4Utb6Pvu4KvNIzslZUTr7C8/PlFfXT/SmuidgURcyPYlkIxFlAyfzzSP\nlkuqd2oABwHIlxnqosEY7iuU0RYlFHn43j3U9kogq+ddrQd5VD43EyF1ivA8jbu6buVIzjgH0TlI\nK5Prwac0u5TPb+DUumS9W4xQ76uqjxuo+ZVW6q/xRK9TH7Q0yPQIoODS1ecN1tsS83xvCW8IYKsc\niKdqDnU7ONQWBVRaxuwh8Y9UrN7FPD714FUJdUE/J38zM6uFFXOLoD9AUyyZgyb4VYF2bOBqXMJf\nuCjdXH3JGP8efDwp9j8p+C9aICFC1Omuh6A2QRj6oHsvW/KVuss+bV9r686OxnHtVa29yxjsBXqh\nF6vggRKKeeIG8NAFtLmWku/kUbcz0EMxT8cSFTlb6zX9Qj7WWctHKofac2VAvlziO5UArqq82j+8\n0v3axxqzzde1h3ja1PxZhy9pk1G79uvab457mjNWcHLtsFdZpzT/B5xaKMx5FoSHqYbS5mQoX03B\nE1rEbkcVODXZ4+Xhf2tdsa62tIcagxYLfDjRtuBwgWMtnKh/0nC6LeCru2k5Rm1p/QfxOsIpjbzm\nmKO3dP3qVGN0sNL8P3wOSvouJxb6qn/I3mU20bNwaqr6+r765VmakxGgyb4Vq3CZ2d/4O+9atFO2\nzW3Z8Pnv/r6ZmZ38iL68kG3eeF11afnw3hVUV8BS5jEf9y+wLQjoIAUPEGhcF+Xcgqv5ujXVs8oD\n9ld3e/L147lOR2Tb+CxrXrWuZ65deO5277HvfKoJ59kuJ2FAgG9ADa0BvmWQiQtH8oleU32eZa0P\nHfWFX1Af5OE1OoOnNBjI9h78euk6iliRfLy+r8/v/ZbW3l2Tj09+8CX/219VEqRMUpKSlKQkJSlJ\nSUpSkpKUpCQlKUlJyksoLxUp43JmOI3akoOuuZtRpG5DtDZFqH2IAkEBHpAS7O5nZ4oK1lB4eOfX\nftHMzKrNIzMze95HGYdI/63v/GtmZvYf/tZ/rPuawsj/+/j/MTOz+lBR3NZv/2Mz+5KBfAB6JKUE\ntu0doQ4A98IGJYPsjuq7GcBe78GQDqN6Ec6EKeiNNUozJZjaxz1FT72+Iog+2cJqTpG7na+jG895\nwhCunW6fs8pd1XNENNcrFCwTKuLr1lXH4iGqGD293+es5xKW8TqZzZpPRrUuW77eVKT18QNFTa9Q\nWahuo7aEwkKJs6UeZ+uXnmxSyN/8XK6ZWX8uG78LQsXhPF/9udoxuwNnwLZsWunpf3+prNX4qSLB\n3h3ZapZBbegH1Pc2WakH8EcU1b7djbLz246yURcweWf7itCvaopYH2f0/3dQ5vnhp8poT4Z/YmZm\nmfeUJXwxkk8VyQply4o2T5+iEEAmwiWz+y7oqY4pA9w+Vj+94et+64aQQdW5kEvB/LtmZnYEQufH\n7x+bmdmnz2S/0uEnsk9a128Wdf3TmezRuye7duFp8uFwyJENK6aPZAc4YJoXiiavQ9Sv3pBPdsiE\nuw9kt3GJ85Oc3zxdc758BYJoRmZ5rHoHoD++brLXb9vPL/X3lbF8hXO0QzKNqadwFKyxcR1U1Guy\nfcAZdSdNBjZCzQH1pojsbw7ugVSZCDlIk1WfTCuhbcAJtkB5Kx1o3KbIWkWM/9J92Wibs6sO47gP\nF8z6oeazFdmrNGiwdZmsCIz5lapuXAPlNNnmbO+EioT6/RL+Dg++jJDPh2Sd6mQqjKxRvaoMRHZL\n81YKLoEqWak53FhnFw90PbJ7wVhjogO3T4az+V5a1/XIiHsgFw37luC+2YCSWGzki70hyj4on41Q\n4SigAhKSgblpGSGX54EOmabULoeOixfDmFMguq0MkH+izE0O7oq2qzFz+7Wvqz63NaY+/of/VN/D\nvsslyE4U5CKSkWMwQTUyv2Pm0EzhlhVBW12cMaef6F7lnupSKWDLqX47YL6O4ARzGbcb+BkGI7XF\nLarNNRKu1lZlAnebz+EK4HOHdJKXRk0J9E95qvkxuKM+cFDxCJgnZgFt4XdLstzjLuM8HyvjwDmD\nMs0a1NCLkVANf/g//56Zmf3wv1KW7N1/pnnuJx9I8SZGAM1Zp4aoTSzgn0tFsmPzq9GFmIOKxsFd\n+DUCECigxIbwZ6yqqIM4KCX21H4f9YtUCB9ISZnkaKX6rUDGTLdAbJ7pOnF2bAUKbn6t6y0bsUog\nyhYzMp8gWQ7e0fXj8/xmZmfPH1rvQ6E0bu8rS3cEL8CE8/WjlOae3YzW1RkcN/H6vx6jOJEGHRCC\n3gWVmIUQcLone4+6cO2AVomY29zViRXZ36zhqQk9eG2Yphx8JM384qEQGW70GqGalGGfs/ZA5aAc\nU0T5KwTZ4IM2GnbgSQOheH9XvnK2wuYomWxi9bwbluhAa927t7SPPIajrHuqdk5BF20ttc40XkNh\nbKB5sTVkXoezpDTVmPnsRPNnARW+EiiFJyjjNHoae6lnID/g23DOQciARJr2UFkyzRHTluZTFxTr\nZi67OX31feiyTjL24x1aH1WriL3UGuRMij1ZCKJ0MFTfx5ww+xUy0/BenM+1n51F9PNar+01EE5Q\n2m5BY2ICN2MaJbbcHfYakTbeXrweMAdWi8wh7O/XIKrSE1B8FsvqSRhrOdXck1oC4cnq+nn28SuP\nsTyV/624X8758jo/rzz8Y2X9TzqqWxEkyEVftnI8zXPRQn1foQ6LIvurPhwgDY1bbwu+DpAwIRxV\nAapFlw+FenLwmWgJwg7eOP8c9FIgX52WQY7Dx7mAD68Ah9cUNEBqpj3AnHnAB0m5nsEf5ILSDeRL\nQVF9NABJ57DGunmeleBzu+WDdiiwz6ygNIYq0hJlHBc+vwp7lU1K9RywpobwU7VA/JfYw/VXsZIZ\nSpRN6heq710UcT9/It9M59XuBvNzTtWx6VT7Um+IolkOBZ5btIcx1BprLtlfQgZ3w1KFg+bpgOeH\nPz42M7PbFY2FbKDniQegcOcfa2z3HPX7QVvPN6lyvIdRPSvMqTk46aYl2e3tSO3rNmSHD54+/aIu\nT37/J3ZRWVlmSz5TBNXvNZj7kaf0sdFsI9vlUKMsgrrvh6pDyoMoB+6vEKXF4iTmFNP1roZ61jqc\nSfFweqX56DgD/ylrzmsHskkH3rzlT2Wrh3A9Pk3rFMGdok4R1Nr6XX8l225tUFkD9dRlpqul4UGC\n62bBXqpZ0Lw3eK51qQ/Spgy3TKen++YKqEU34NJ5TWPrjfe1P3zv779vZmZteDvHcCj+dSVByiQl\nKUlJSlKSkpSkJCUpSUlKUpKSlKS8hPJSkTKrFCpIZBTTRE/nnPH1iNRtUBfKcJ4xTZZp2VNEb01U\n9c4riiZX9xRd/uBEEbg6h1X9XemqZw4UEfsUFMLvDMSX8uffU7T5b39bGZD6jiJ3y2sOoZHF84g2\n51C46M+FxOmgSDTsqF35WzBmgwbIgJBZEVnbcKY1XSGFSua0nlJ0dEZ2bYx6yqCl7/U7pDTSZM5j\nsZUR59pRAdmALmluNS2EiyC7JjvMWcjxkDOTG87TjnXNbFV1+OY3lZGM4Mvxc8rinJ2ICbt/or47\nqMNJQxTR5xyfExBNLKtul+Ovlrq8Q1RzQlYmD0phTLZ9j0ypvVD9WnAh9FAl2aC+lJq8ZmZm25xH\nXr1G5Jxse+FQPlOBWXy8q4j4ZqH2ZhfylcYcnqOuPj8s6DXlwD3Qk89Vnskun39d2bJX2/j6XTLQ\nZ/L1SlP2ncL1s2zJxyZ39H81pZD9eVOR7+dD+Wp2rQh5YYzKCOdA3bTq+01PmYM/f1P9e0GW0XWV\nQX32Jtn6luw0yWlMlf9A1x+h5lJX9c2Dp6i3VP2WBVBrBZ3Tb0SKKrvnaufSxy9y6pdrsn1RTpnd\nxkTog8212v96ivhwJGWLF62boyBW58oevEhRtz4cLk9C7qHP/Ybaun+Pvm2SBYaXI/LhgNmQmV0r\ny+DWNC9EkWy6Qi1nQQbXzcDtBE9GeaM+Gccs8k34dWIFAFfZlMVM9Szu6v90Wd/fflX1e7/I71aq\nR/da2Z9BQ/NCEKnPe5w3b1ZQRpmQKe3D10H7sqRCx4HGTArVIZ8IfwZ+EFupXcsL+UAeLp30LvMe\nGcoP/uj/NTOzkDP4+1u6znisvs7u6v77ZMEGnGN2yJzHnAkbF1U8OCJWcPTkQ+bd2pGZmb3xur4/\njVSP6j2c86ZlAycCfBqeab3wyYROUDFJrTVH5D3V8xJUQL4KumugDFGHjOu9ktaJJ2XGcqgxUGoK\ndfG8o+zhDjwlV+2YjyWWH5Q9u6uxlfhOeUfcWVcd9WUXdIDjo5oEOmkLTgAflY8F56Q3S/Vtkaxx\nFjTWbEUmkDPwbijbz8gOr6NjMzNbcn56ViOrBaIlayANL+QTWbJHQ7LnMfopWMCrwXy5duAtgpsm\nytFO1jAHWxRQ83C6WlPtqeaFZll9v78vxIzvkckl2zYmS+6tVb98rKiGPW5aBrHiwlC+MESpcRWf\nzQfhmEZBMQfILJ1TH/c7IEVBXOZQ9LoAOZpBbaoEkiaooxSTYY8TqZ/WqEoVUDsajsjIohBRaKp9\ntXekzvfgD//8izY8f7Kwwt0jMzPzQNgM+yjTwHNVZj3pkimfbZTNLAxAOC3kk332Tg58IGFOY3sF\n0qacA3VGv49QgamifhVEFTMQu2mQZj1P1yig2BVzesyzcSaWfV/M74YaT3+FagZZ+zlcX/uc/V/n\n1NcjyKOGoINvVTWfLkAJbQZqa95h3i2W7auU865QEO0UaLVt8bVNQI3GSlW7d4XMXPmqx3AstGre\nZMsyXAStF2pX7oka/HZVa/incFyN4cUo3n2Fdshea9N1S2X1xZI5IHsJQs8VmnYNuiJ7CPdOSeiH\nlgOnT1e+XXD1fm+FIg3I8AU+NwAttVMF1TGDmwxVk9oO6CnWh5QLeoo9YQSnxKyoMZqdwbcy0316\nfH97qu+NK+zneT5YsNVbruHo8WWX1QzET0r/B3P2Eqx3c+fLx5zseGor9uEzuG8yqLGEoISDFOvR\nnLFc0vWn4dJuWrpLZcXb3RgpLtRAZQs1UpDnrx6CzgHlVWWtN3zEZ22YRuqb8Ujfcxv63Wio61Xg\nPAwXsm0pVqby4ELZh18OriqffXE4VJvmPBdMnmrcpmrq49VatsqsQPsOGavsHVbs59cgUVbsgTJj\nuFccnoVc7S+NZ5fOta5bzMCV5UO+9UgqqZfpGC+g70UN7AZnWqGEok6seBvXqwmqGZ633gYkP3PH\nOobngUx/cweEThmlLuCs+SBGa1Vpl9q5KIIiWaHUyPy3WGpsteEGu2nx76q/m8xxq7n66WmkfXhz\noP6/xToTfPe7ZmY2HjBWz5mvJ9p/5+CXWsA3OlnKH2IloulBrE6ovckvHH3Jk1R77xt2EJi9CHXv\nW7dBlA90reeoRi4crc1hRc+I6S59ekf3ql7IxpdpFBVBoDhrPUP5vp5dwgw8avBM+qxJr93/Vd3/\n13X/e7ePzMzsz35PvrH4E3HdPGO/7DnHZmbmstbNStqfTXvyGX+j+rdGqncjqz53QKKPo3ivpHos\nfI2lk2m8Fso+cxB+QaB6x1xZi0aMTlYnlcrq06cmu4w++x/NzOxH/5d43pz/U7+zX/9P7K8qCVIm\nKUlJSlKSkpSkJCUpSUlKUpKSlKQk5SWUl4qUydaUNT98XQouLbToZ0QbA1jUs3M06lMoSiwVtd3A\n8N8kAp9KKeqKZLttyPqkD8RQ7pOFHP6popL/7d//X8zM7ONv/QszM8u/pYzK65G4Era2dB57vq+M\nRO6xIm6LFucQyYIdzhQx3CXqPeA8++CKjCgZ9QBlB684oj7KcAzJhFSJ6gYZRQgXaZQ3As64LvU7\nx+VcZKjo5xqelmAflSgyTqVQkc1+N7JlSXXLcmY8Hem7+SyM1GR9MyhhxcohizO5yOAh96wo2phv\nyDbeQogHh8za2lEkubMhSxIqWrkFg31xTHjxhqXL2c3UlmyTu1TnVm8RGR/B93NXWap5hrO2I9Un\nQsVn61xnPi/HihDnysoI+Ffq83xTtrqCpTz4AJRU9yMzM8u+xlnMXb06D9QX2YZ8ov1DZQJcUAIO\n3D37nFt/UVEf3RqhaJBTRPtVkEq5u7pOb62sW/sJGYOKPm+UUAWZKso84jzj0iObdiGUSDajc4yu\nqm/vtpSB+PhN1ad1KkWKSedjMzMrfEdR7NpP1L/HaYWFJx7qJ3nOkXNmN/Vc/pFqKRq8vqv6ncMp\nUMiKj6SKUsGyLX/xQMg4l4rwb2avm5nZbE9jJAhR8cqoPcv5zVVTRhPVuQZHU4FsbYqsxgUKLRHf\nWzVBqIEmiuqaR+og4MIeGURTWj/jwrsw1v8OIXIvi1oIGbUiGcsQdJAHEs44Y78C1ZCr6P2gLFsO\n4SDwFv8Kpw3Z8QJjapiFU2WjPtus5GslFLjyBV1vhk8uXuj9CmeCRyD2UiDq/DVouSvmkS1dv0LE\nfxWoD3tD1EtWKPHsaX6qhnDOVOA64Bx7OtQYigby5SGIwjz29YtkMECoLEPZ1R/GanNwjW2p/cVm\nmvbr97WG1oH9/a/GBZHdKDMeZ2zXyFK5tLfG+fXWCmUgUvVzsmpTzjJ7OY3B58ca20cHame4B9Ko\ny7l/5tq5q/enC1AQcF5MRmpXbZf1bJK21QKfw/aZOLsP2YvDmfsSHE2rNlnejfogg7JVljPz9gXP\nhl7zsdBMQeNx0dFaFYLkcPdAxJABzEJVMlFVLQARsw1SwnP4fZ77IQPSJvOaQuUpF6HsUkDdYgYy\nEARmrqF2F8lKhWtQZqj4PTxW5nnQli8eh1qDQ86dzwZ96q16FLK67nx8cx4IM7NsoPrvkUWff017\nkwf/QvNxFjqPaE0WLSfD5CegFeClSFdBh2VUnynr6X5JDXQ4325wjK0zslOZ9XhcVz+PUHDcwPXQ\nZz27f1vrzWaqep49+pIboBZkbGaouESy1ym8H/uH8t1+AHrjRGM42oB4WWtOS4GmKwxlfxcOigl8\nL35K637Y1fqyKagerkt/pGSXTdYzF26Soqs+CUHirbHdmH1ddax5LXRj3yc7v2b/tEZlqANvBiqU\n29/Q5z1QBCnWmAxZ9hTI6iworE4b9c4sKIFerOp5s3LnHSFW5jGSj7HoMZ9WPbXjawe6/oPvaw9R\nmwhN1QAV5VyDzIO/xwW1NI35mEB8BmSQQ9aZEJRCuaE1c/KR1vSHP5RSZnGuemzXVc9bd7TnuWD9\nW4Kay4XsreK+B1GzSev3G3xzMtKea6eGkmJKGWXH0ffcgvo3CNXuZQVUXoc9Z12+EfZRRWJdGqdA\nXfVR5Qq5L1xBlkUdBQoGB+R3tsoeIWLdgTst8OGO47lgAlelUU8zs1l6Y2UQMZ4v/1qMeAxK6X+n\nADck++dVH44c/+YoiG/8W9/Ua4U13wGRAS+ND5J4PIl54ECXDkEXwA3WnWs8pSbxnkR9kUWNp9zA\nl7IgypmnHdCrWfiLpnBuRSBIwkBty4IuKsfqeXyeRqlxE+CL8O8sQWw04KebwgW2BZ+mu9F8MHNB\nK8MLOt9Wn3ZRb6vAr+SBLkX4y05r+v+dppDtbkHfn1PfGX1trFvGXDF05JPNORxgMf/PXGNuzdrv\ngapy4PAp1+VD15dCQwcs4U68B8hjL3j5Aub/yRKev5IQUF5N982Pv9pckk3JXs6e+u/WXc3P/jP5\nRfex0G6XKAL5T1SPggNqhWfmSSj7Rjx/lPH9wqHGZgrlnyWIT2+PMVv6cg9153Zgi1bBIlCxIxRW\nj5e6ZqoH2mYi39i6C/K6CC8S8/c0p7UmcuCPxAetrT39vMYzT0Y+96Sktn8+0RpWzcLt8mfyke6F\njH79gea51VK2uP+dIzMzc5d6xpih5pkHgdebAbVsy4cing27rDdFOAzjsZWqoiLH6YsKyLwp6kte\njAZmD+XFgMQNaDb28dD42fifiA/v9Fp7h+mV7ve1N79mP6skSJmkJCUpSUlKUpKSlKQkJSlJSUpS\nkpKUl1BeKlImJJPc4bDojCjegiity/m+TURkPKtIU7RWJGxMJjuAk2EI+3yBWFPxFWUDi3v6/uVn\nOtOWg0H71VfJJOTE1hyQUem3CYHBJv3W24rajnzd5zmRtogsUpRXhK5C9DJy4XQYoKDRVmhtCQ/A\n9hbIFhQvYobx7ibO3Cjqu8woIhhkyJ6RNQ2Kel1aHG0nkztUVNg5Jnoe6ffRxqxMdHJIBtVFySoY\nKAr5/EK22QJN1CfyumirLq0xDNy8v9cQImIUkAHIo34UKrI8P1d6YwXTf6eGEtXmqymmDEy23O+R\nLYKXY00GsjuWDfc5F1h4oMh3sSlbhGOhmJ5k1IfNA3xtJPTUPmpC3Q5KML4gJuUpTOKVX9H/p4qS\ndh7T5wO1uwoXTZBXdNhfkJFw9P66L98tgow5geKgjuLLi7ruk2/pgxzk7ZlA9TgYqn9Wx/L1Ul1R\n2eU+yg7Xev0wp8xBqcd5z3OY0feFeKkGinqHv6gMp3EGub6RfT70pBa1uJR9vpYTV8wlWbPDz+U/\n0319/xXODn9C9q1IJqIUwOFzofa0C+KA6BfEtXOvpUzAzkbtarXEIZP1hTo4OVA0u1CmnjcosyvZ\n5smV6npnT77pRWpLBrWdIed2l/Af5LeU5QhQNrBr2XDp6TUHYqZLlmkJkqNQRfELVSI/UJYoZnkv\nkXHM75AZHpDVuIZrBuRNeU+++sYdzUNjeHeuH6s9i5Yi7Z2WxtSGdsRKZtEWKh811D1c3o88vk+W\nDJRa0ENRBTRDNNd1J6Cj3LH4hqZwofggWxBNsXkPjisfpYOsrjviPHcA39CaLFNzG7RYXfNtVIwP\nRuv1+QO1z5gnPXhTUqjNlYvKIvVQmZqTWfU3GltO5atxQYRkOgsbXS8VkjVLwWtCInSd5uww6BI/\nJ/uOQNTkQQX0WCcuZ5w/LyrD07/SXFqN0DFBtWSJukyzJn+bz+BzAjzoVmeWjsikUpkINOTGgQ8H\nlEG0IsuO6y7H6psRqgtFD8RLB/RBWvNCBqWZFCpncxAnqR19zwOB6JJ5fIHqREAmd0B2fRLhwyhn\nBRn19RxugTIcVSOyaGFLNigu1Ng5iigbULGVypGZme2UdZ0VfBdHO5pXVkOUaWJ+uEjzbZb/74Le\nGrNWNmNFtJgn6YZlfaw543Ii3pD78MtFb2m9uPqBsnV5xvoE9Y8UKK6yr/Z+QWtxrfq4cMU4IHAM\n9ZIMiBXfw4dm8jU/DZcDHDfpCARooDGWuyOk6sqVr6WXMQTKLFvJW3qs9a9FJn4PlZNmXvd/eCp7\nOqC5Cvh67GeTIegGlCg2K5TUVnK4PPwCHZP/uAv1Ux5FzQi+kTBXsTIKjDM4mjxUd3yURywHNwjc\nTS7Gy6zjeRXkLwjhHmn12Uda0zz4EcoVIWROP5YtKnBZxeoggzDmw4GzBBXPLIidm5YcSOQ7+1pD\nN2Ndp1WU70+ONa89+xQVzo7WsjIKkSkQmkv4Pya+6p3fwXbMU5t92htpDfeZb8Ndtet57NpwJbSn\n6ou8XqwF2tZnT5Y9kv1X7KODvPrygr1PPtD6tEFJJ+qR8gXBmcqTMQetsL6WHQr7cB2CKkhfxvtP\nMs/wJ+Xhfxqxr3ZBwCwcjRm/BdciYIcNSjJzuGWgArPUBDUvEOgGJ80cVHZhhSohqqeDGVI6ZuZ5\nY1uwfKdBcE5QR8zDQRGlQFCCzFqB+vNBs92ksFTbLNI8+pQ+SrFvysXPNHCvVPDxNuo4fozIgLMl\ntwWn1QBf5dnjCgTcDkiSJbxpEShQD26vEKkvf6SxEc87M1Cgi6rWC+dUnVKETy/a1+8GzHPZGL0P\n8mcKB+NmCoprpt9nXXXi1VztbFL/8JRnHfj0mtuaA/ogTLIohKVreo02akeRNXY7h2LPBtU3EDF5\n1EqnaRkuw/NGD2R6Ff4Q63Ma40LzY/ENnndGal80kL19uL8srfm2+wI0yB24eRZwUJa1zi3gW9pg\n95uWzkPxTJ2AaEzltC6X39L1n58LwXPEvNuCb9VHLap2qHoX4dVaMBbOeJ4owP1WhttnhXptFdT0\nBPvad81++sd/Zudzz3Ige32Us5Yj7fmrRVTWQDPlLuUL/abG2Rqup43HmjjUfJFJxYpP7CW4fhlO\nrsJIdc2zH+rO4E78AH7L1/XM8P6b4oS9eKx5/+Radf/e6R/JBs/kc98iHpDnOT1kba4s2PuA1nLg\na+MR1kZz1TMNh2QPFNO8C3dNT+0dw8u056MmmI1512TrzLH6ZnjKs9HbqvfX3oW3syB7/nUlQcok\nJSlJSUpSkpKUpCQlKUlJSlKSkpSkvITyUpEy+TLqHgVFwjzONzpkHJ0M6koXinbeynHesq2o5xxF\nh3pdmZLVQtHoMhGrBVHlkKzTxZWixrkmijUcS7wCBVJL6/6dZ0RR6zBtk/AsOoqUVVBJmsUs8fCn\nDIm0+VVFErfLcMyQbRoNFYFrcc6xCffEyleoztsoojfjXLkDp8GwpW5awC2zPtP9PM7xB2RwXeqX\nI2MTpfg8WlsRNm4fHoolZyR72MBBTaLYVOS63iBSS5Zpv6a2ONu6hxtnIMe6x6qAogskBJthkeuq\nDR36ys18tThgq6P7Ob8a8z4oenrZPjIzszsV9dkJGdLUq5wjHMP3UThWu8mqlx8pEj0FudI/VDTz\n1m2iuaAZLxwCQAAAIABJREFUTgJl92M+j9FYryefyzfvmFQvyitd5yIgUz1SpD54VYYt5+Sbjwfy\nzXt7IErwheOJfP+A848fkS07rMlHSvBmrFHi+RAllxKZy3lZv6vsC3GyCtXevYXs9egT/b+5p8yH\nc/dV3e++IvNPHyrq/Ox3VO/G9rdkv7fls95PlKV7vqeMxN5K338A+qLeUob6kAzBZV73Gb2uKLU3\nURR9a6Z275R0n07AGdzH8uVZWlHkALWTSVNol5uUpQe/Btmpq5EQH2kHbpct9XEZRQI7lG+WaoqE\nh6FseB2iXINS2TKr8TadosoAl8x0zv9EyKecuS3FPEwoSYUgANMbje8NE8knHyt79ilcA9UjtX3r\nQG3OgOiZw00QgQpbo/ozK2uMZVMgCWdqV4zisji7tlJGYIz6hcFV4DiczcenSmTLxrMYzab7l/K6\nfxWW/RXcNNWxvtcBcbLLGXy3LN9qkpVbgBDx4AAb9fV63hZqqnNGxsKTfYJtsmMoT2S2yf7B93RR\nVjsGS4211VznrW9aYk6xkCxlAG8Gegy2cWjPiIwK5/uzMft+R/0WJ2gDeF98FImq2HcFIiAPb8B2\nPHdG+t6CzFCs1uVVyGaOHXNBN25AVuSyZDRB04RkrXsgERoNtanRlC9PqStJahvNda+goOvuNDQO\nO2eqy+mULH5a49T5TH136ZNu35GP50DCVLiOBw/DiqxYC/SVMT8FJp+u4fsdfGcYqoIpeNSmp7Jh\nPZIvxGN0wV5g70DXmbeFanu3CLqWBnoT+dJ1D06GkHrk5LsZuzk3lZlZaiJ7PX0ozi0X7oTbr0kN\na/Gq7ND7HCXFCUqHIFoCP+ZW0fWW9PXSj5Ur9IFH4nZSAl0wAQkFp0OAmlOGNX4EmUHGRUkHtNkC\nJFM++yWXQckf2jgjJ23M4XpDqWIzB0F1oXVumWUOjOsD31HMFwJYxVZtjZJMVu8DGrTcPOZn0f3n\n7Ch9D461MLQhCOMIZRlnD5uAskqDWMut8W04U0L6egFqzIMPruIwnzByV3UQiq7acg5KKBdp3pp4\nR2pLW++nyyi+kJ2vlW+uqmNm9uBP/tDMzC7hgyuXtAYWhigqjuBNg89oB6WcBio+rQ7cgFP5RBq4\n26im+jwtaW+wMfmwWwBRNwNBtK0xVXxF933wp+qMX/z23zEzs199Tcjvv/hH/7eu7+g68z57pFj9\nri57ZeAfGp+x7mDvNL7fZF2rgI5rXQnVmoPzx0ayZxEVozTIqDY8T15eTrSI+VQG7BFBu9VAVSwL\nup+P0tcmQL10iYLbUP39xXrPfBqVWDdATfsZvQ6RRsuAEjAziwaOTSbsRTWVWY6M/do0JqYu/Iee\nfrdxZN+R96VSzc8rc5SaYqTZFiqiKXw8DNW2Kpwzhi9UUcdLb6mvGiDiSqj7PFkJ/eTAMda/PjYz\ns+yWxlahDjchKIV0FXUfOFCMcbvw4b/D1ls5xg7cKksmsIyLbWn7lPGe2oCOTWu+W1TqtA+uGr7v\nD1EsBJUw9zUGZ6gF7ZSEQIxGoHVBQ52faW0/+T358KqvNf+Nr3/bzMw6+GSUUT2DbSDmqIzW+jzP\ndEFtmfp84eo+IXunIiiKfEl2SqNU6eyDPl7L/mkHFaOafOWU+T2AZyWP8tuGZ76bljZcPiF7z+tL\ntbN2lxMJafVLGp+O9uQXLfZ0U0QKV77+aDY1Fg/uql6lGVyZ7B8c1ukuiKBJM/yiLqtm3cqptRVR\nxtqgVFV8nd9mOB3Bc2UXVNbRheq4Bq2/Aqm2dPR+K8vJDzXN3Lp8Z7zHvpw+bF+BQGGzExzo9wdF\ncfY9Qk3u0fMf6fsBasVr9qVH+v4eSO9xm33cC1D5zHvZkvYagEfN5znbyejz8pWuB12f1eHgWnAa\nBDFom8PTM11rPt8a3eIHIAH3VI+9gq57Bc/T6COhVO3X7a8sCVImKUlJSlKSkpSkJCUpSUlKUpKS\nlKQk5SWUl4qUOT7Wue3LnypjvIAJ2j1HZaSmSPWcyFujCKt6pEzEAlSCf0sRvOk5oe+msjRXnymi\nX8spUuUqGGqjKRwvRDtHriJnTZAq995QxCsy3b/3XJ8/7igrd7esrF15V5mK5q6iqdOhsos9zisi\ncGTFDIpGR6rfsqVz4MMRyBdP9YlynO+OYGQn65beIXoelPhc1+stiEZnFMnbLIlQgqLIcO7bWeRs\nOY/5b/S6gIE+JFtRONQ1z3tx1pZMIEz+Pc4Fp6jz5E24W1AA6F+hErSl6yxKRI5RC8nCsD8N4rz0\nzUrjLTKJKBs8I6t/MFREO8NZ/BXcCz4a9SNUpNyCfp+jHt4B2em02n3xVH3Y4yzszBRtnXQVmT5A\n+WG8S8YUFaizjRAkzawyCx/Cp3FvR5HqTU7vf7SEgwA1kdmpor6TPUWP84Rdr8mM76dA3Jgi/+OJ\nfKtvev+tjHzvaVeZ3BoHpC/2ZNehp/ZVyeAeNOBaiD6UHa9RjriAt+T7Uhrb55z6G7DIzwf07x19\nb+8BHDlVkFNvk0nQz+0KdEQpLzssOooS5wfyozk8HFcjzrh+CBcF5+WnR2SGp0dmZnY6hW/kBqUC\neisiu5Gm7YW83p9lNB8Y4ynFuehJARQUvtuHNr0M98lyCvorIju9p7a4E7JR8GHkQKoMibjn0tiK\nLHaIak8NlEFqR/U5RUmmdyLfm5AFL4HAyYA6y8C/sSarVuecd7Cv++TgEZlca17sT0CCcM45A09J\nCCO/b4T6mZ8yM11vntNrdgPiD26cZUp9lk3Ll1YgV3ao72gAautaPtpHoSVgbG6Ylm0AZwTcYbmq\nxkIWjoE5ihNhnqwiHDMGq/4rr3H+3Vd7R8FXU9apGUplMcoC5bYVql1LL56PZZ9CVv60j2+HcBY4\nJX2vfAaHzzn9nAapVJQfzPAbt6/PPfi8Ni4cQZx/DzhH7/lTGzmousXqG0NdK91gfmuQdUZh5CEK\nCdFE8972ljq1NEQpKkZDldSmXk/cUX/46Qeq64pz3XtKh4UoEuyXNK/3imTSkN0IyaAG9L2Hj27D\nw3TR1ev5ldq2RGlruZIt8/AhVQPVpz2Uz8Rn8iNQFeGjGBGkebSDLX14KTyPLHlGfbO70muxqd87\nEapAKC7ctNT29fvmWpnHy+fHug5jsHGPzOW+2vX5Z/CawJtUQLVqylyyhOcuM4o5D/S76hqkyyX8\neSX4LJhTIpNdZwP2QKBDGqUYASN7LWao28HnYWbm5os2b7E3Ivs3G7pcV/Va12Qvd6X+msHxVQIa\ns2ZyWKKcVEIFypvrd+uV+s9t4j8oQC4X8re0j9qKW7A0yLS5hyLThHkwDY8FXHwpkGYl4DZXPvMV\nymKDvGzTWKuPlg+Z31mrS29q7ZrAk5Mqah9XA5EzMl0nh0qQofaxaMcT1M1K9URt71+pPuu09rEl\n03y2nqImB1dOVJTNxjOQdqyhS2ALKxB6/RXIwhEZ51sVrst+FaWxrS31Zber+3zvv/mf9Er9/t3/\n9O+ZmdnnH2vv8a1X2Hey33WH8pnaSPvm23c01v2m+nB0ofqk4YfbqmmdybdBOn6oejjMSe5bWhei\nqdaf1Y7m6+2cXlesDz3UqipknOdwsXlL2TMH+nrBepPj8WTmg5iP6++hLMbyEA5Q+2PdXKLA44Fw\nteKXXDDRyrGNCwpsDIcN83HEPJwFwThmLk4z56S/gnBoCjTUEC6ZAxS7+ii7zNq612Ku+ePysWy6\nlxW662SpNqVWelYYg2xYwSly72+q79Yd1fV5X9f5xq9J9em4rWefbks+F4AmMHg/qrFaGvPQFJRS\nwB6qe6V5p8q8lYUHJKrICG24WVJL9U3qQmM8QydFIHkKS1BvAVxgeXwFRZ3pqyBYUpxWCDS2Jz2t\nTwsQ7Zm5ruPCO5UBxbUC7ezgI+48hrDoOq6n9qc4PVHy1ZdzEIvOMuYuUzs/PGY+74Kywi7PN/pd\n5gncXiafmuZQvXqu9pfYA9605FwUiV6o/7s+CPpt+mdH++PZta4/Zb/v4tNVOIlCVFjnF6pvGuTO\nEqRoeVd2LrCHbEX63Xam90VdNoct28y3LOKkRvUKxMkVfQiSzEuB4gWdm2Ntv4q5sniWcgt6LT1m\nXw6J1Hwi38p14A/yNP94dZSy+pwmAHE846TKvT2hqo7+HeZ/not//KlsNeqwVj71uB+chAu9X2Gf\nueD5OQ3f2jyrtdtPMc92db1MGduwXkRw3KYKjMWF7HILFOmypPmvc6p6tefwql2BCBowP/Z/9kSS\nIGWSkpSkJCUpSUlKUpKSlKQkJSlJSUpSXkJ5qUiZXE0RrwPOXrUXZEx9RQ0nnBGdc6ZrloWnAg6D\nPlmmO2vQEvBZ+GQkh5yfrpNZXXDcb5oD9bArHo4ITpbnXZ31ei0+1z9X5GzQ1vUrW2jb31Jkb0U0\neDJSxuL8DM4bztyl23HGFFkPMkJ+TtFPD1TBus9ZXhjMs5k4W6X7zomGuz466J6+Vw4UBZ1y3rQe\nov5E1HjwRNfN5Cb2+XNxB2zfIdq3Sza/i7rOnrJKD645D5chClqTbV58AgKCaN92Wbbeu6PrjIZk\nBEFq+CBUIrLiloXkADWfm5Z8R7ZKnQqSUb0P2/sdtWd5ocj7FAmT8kKZhrqnvlzAsH9dIuuyVP2c\nU/Xh8i4IjZaisAEIoSNUKp6TEUy7iqaeFWQHJ6PI9MDS/J5I9QGRf9Qy6mT9d4iyOilx4lyMpQYV\nFBWNbZIl2kz1/YsdvYYFZcDvLmjnXdm//gMhaD6EeyZ8JF87grPhR7dAI/RRhdq8o/uMlT27/r6u\nkz7TGNjKKFO+W1H7r/q6rsuZ2hd12XFnoszDw5nq1agp8v72c2VMO9grcJSFTL0rnzz8RO2pgjqo\nH+nVmyiTtCSTP3I1dl7xbz417b0tXwz2QCGRrXfJMm/ggEF0w1aRxsfFszhLzBlTVMwWZKHDOXwN\nKMnE430MSzwAFDuBLb5OlijlyNcn0Fu4V8dmZnZZUci/tnVkZmbf+rf/DTMz644033XOUc5q6cJL\nhzFXAiF3KB9M1UDAdUFtXatP1nDBbE71/5wsTLYiW6fIRuVqsOQbGcFcnA1jvtrIV2dkbvt9lAVW\n8tUCiKM185HjxiontN+HZ4L5dk2qY0rGdA1awFBTOm3DW1LS54MBWbaR7F7iepmM1ovXbMdsY/bO\nt342i/2/Wpy52lMHGZMH1bCBv6QNm/4STqA0aJQxKI1hW/2UX8KNUZRfXRxrrqmDYqlyRhqqIkuz\nHq0D+XSsBdJZaj0ZdXX/TLAwD/6CfE2fdeiLeR/fLMNzxjzrkuXppOQr7kRr3Qw1uP2C1rDVC43n\nz67FSbDD/Fx9X1wps57uW0UJsA8PWyFSW2cZvV9cgNSJz7iT9Cmzhla21EebseaH4Uy+nIuFsoao\neMBxYmSAQ1RHtuA+W8JJVV6Ku+sJY8MN4O2By6xC+9wYdXomn+rQV+vibfsqpTVHpWobZChj+vOT\nP5cdVmTrjtSL4a46+dkPv29mZrd+RZwHBRRbBmRoU6hShWTKsyN4LSq0H18Zkn0rFvW6LmgdrqLI\n2AcF67IODVBQu1x8ySkzT6etWNG83blgHURRZ7Ov75fo1/7sWPch27nGd6M89eR3Rr3G8OnlQDWH\nG1CDKNVFKGKu8ur3xeDaKqA1A/qo6aKe6agPmwX9djYDyQJP3MjTNWaMwwJn+FMFGat+pP8XFThD\nNsyPoE6rTVSayNaPKhpT9TScAWe6bv32V9sGp8lev1lHgeYj+fpFT5wHOcZ7GvRXGlTttIyaJjx0\nOeaf0EWVhAztCJt6c/lIBlVQ/1K+ObstO/3aL0nV43v/gdARGfgi3vvXf9PMzMYvNDbufltKimnu\nf4Jq1aCvrPzDF3o9ONTYhbbCVqBdvayuO56ofo3byhyvy/p+NoKfggXR62t+DXMo2sATkoF7x4UP\nK4Oc0nQO8iWv74/H8rE8CmzZuey1hBelC5dXFqRNrEiXgotiAyInqMp+XTiLzMyytY1t4gw9XD3h\nUNdNp/S9GetkQMraAfEafQWVrt4jXfP3/uH3zcxs9E21efG2bLfog0xDidGdyTYOfbB5rnm+FLD3\nyDCP+/gwKm29WJFxw5oOJ81eTT43iTQfNoqy6WQCnyb7VqcLL1Mbnh54mtaxmhNEfUOeaUrM07Uy\nfBrs+wFk2rLP/AQqzniGyoxQDQQldglPXgRqNQVH4aCuPvNAx/3iv/k3dZm55vNskbEAMmdW1//p\nDgphoNKCHV4j7fNToIMB51kJTpxYpcqKsr//CJUsppSAeroT1W+MGuoQe6Wn8Fv1pKK0+y+hsm5S\nmnDU1L+pffijh5qvJz8Q0uk9KNFyt+CBCrQejK7VvpOc7Jsbai+0Rk1pCkdoNgVitYN6E8/SlSbI\n+syXPl0I71lz5ZkLonjVVdsi1sC1q76p8vycM423HujWLH0yhxhoPeGee/K5Zlu2PGHNz9DXZfiM\nih315Qtf81MfJNth75I2aH6/B8/cjz6GmxXOWfcT2eKHnFq4D6I8A3o2BCW64dTGMKs+zyMvWu7q\n+8/gv/Mudf9xCuQNKst9kM+NjMaW09D3Rqwr42vZrZDVoLh/R+2LxtqL5Mc/G02VIGWSkpSkJCUp\nSUlKUpKSlKQkJSlJSUpSXkJ5qUiZ1/cUQSqTvYnPKa9DRehdWOEXXUXy8xVF3ipkjtdkroc9zrnv\ncPYtgpOAjHgGhu3FGvWOF3p/fMQ5w6oibb2fKtI2zXLe8RIVpqqi203qaygU9DlPvh5zxha+k8Kr\nKA9BppAhVVDhLHBIhnmWgjF8BOqipUgelDLmzxSJm6Hi4c1VrzkZgWxT7Rx8TuajBseMA3/HqTI4\nb927ZxXOjOeayqDt39O9z58d655leGnIEoxRevIdRVLLKMeEcAysyZqHCoJaicxYRGS2lEHdKFAb\nYsWRxQa4wg3L9VI8Poh12HvZ7+qPB0LKTM45q/qObH9BlDW8VlT1Mqv3752q3o84Tl57TZwsR3nV\nc7L8MzMzG62FtvjpSn13gBLB3FWfLvEtvyHEybPbv2BmZuUX2GdbfXn+oSLud0BZfL6j91OPFS09\n2BybmdlZRr6ehgNni8ypdwqKyleo/AGZ59pnsmPvPfliwciyLRRZLxR1ndfgIPj0Qgioe3Di2Jl8\nfTTXfe+R/ZncVYaz437NzMzeqCrynl6i0rKQv9wpaIxFnNt3Z5xXP1A/pUAA5eG4KcNtUGgqKt7m\n/Hzxc9Vjvi8HqpD16qXVQe3gy8zvzysteA8yI85xXyirPI25CqCen6M4FqKiMyezl+deM7JHRXgw\nPNQyMlnV/aoHR0ic7W+S2SU7NCNDW5jp+zU4sKZTlL3ONI+9+EjzRTMPEgM1pSrcM5V7KJdsKZJf\n82TjFXwT0+dCOV3P9boG4ZMjE1CKUVcg6qaoUGSLuk/aV/2CAlwBGRTOVkcyKLwfG/gm0mRCMyPm\nY7JNLnPDBoWyLsikkIz4PKXPs658ORrqPvma7Na91HWvOSd/iOLZCOTRxQcn3F/z8MU/1vWbW0v7\nDfsl++j/+7F9lXLxXPYphLpuqqjrTZkD4nkzzvi2XNAZRdUrX53xPY31NQo1eRSSnDLn21El8FCI\nKPoghfqg5eDCKTK3xPxbmUrTRqArV6jO2US+VgZp0lqC+GNtq8PRlV6gZgbSIdMjE7rSvFNj/L19\nIE4qf1vzUO+FfLaFakUu0LxQRqFrBAVYCZusUUSsLzUfeqx5M2BRvqnt2RXcXBAxeGPUmuAmWHO2\nP0sGdhqqnhcdcV/lR/reMK/fp+EAizO3V6zRG0e+cXmhseUPdN0OygtH95nwb1hGZ5ztv5KC29e/\nKzW6PMoNz05/aGZm+2/9DTMzO6zJDv9s+KdmZrYTakxFqIpMWLiOQIdcgHgxsoyrK7VzCowvO1N7\nOj32MCAp66y7HqiPObRQ26DOftD6UhlmM81a8b7q8dHxX1aamOwrgw4FjJ28UH2qZc2VAf0eruVw\nc7h6lsylHnPVEg6hbF7XK8FRU8xorimAWg77U5t6GieTXIwK0j3y7O+GYxC9oLQA/lqNtnlUfgCi\nJIQPr8o8Oemz98jKN8tFrVVpOK3WWbj5QDynG6prge3Xxvlq3FRpECxRH84DkHTeVH3jw5/RBD4w\n9tSuHOqeE2yTZh8ZgD6b1FS/HNnsTEp9s4Lzy6/Kttd/Ak/Ill7/u//hPzMzszcKX9f7/0B2Pf0v\npRJ1e0t7GoCfZplYgVJ7gyXKNB5oKOdQa7+P0tZiLHvXyiBTNiCf9lXPgUdfL5kDRijsMIaj26Cn\nUe7xDuBKm6rfizuaX5comG0zh42iGEEl386k9TuPdSgVo8bgUkzDX2dwe836slc5DRrCzHLhypx8\nzOmj6+aYj4c+6/8lymQl7aUiPl/O+nbTUq1qn11bg8DIa95969Z3dc1vxnt0jc9pS32y/6p+56HI\nFTQ0Du+Q7e8ca5/VhztlE8rWlQ2f9+HF4NHOTckHp2020KBOV1BQBezbQ1CuPkjleQbOlJjLCwTO\nYibbDjnVkAc10V9rTFdAMS1Q3Cri6yyFFi3+8rPZhut4ToyGlQ9egcZtGijelV5ToXxiDP9myCkJ\nB46ZFGNpxr5zDmptDjq2wvq1APk5Zr3NjdW3LgjMHr4RP/ulO9oL+Iz9FBxdsXJZCa4vP1aBumFZ\nl/T9AmPtdk5cQd1PhDQ/XV3QbtAkddmllpdfVODwWhdQ79vw/ACCZnol/1vAc1WGr2n4kerdAnVo\nf9vs+rNPbbo0s7nWtHJftoTK1LZ3dc90RfNGtc24AUFj7PeKoLNSjOcoC+IkLdRSPSNbBj34x0I4\nslA9c/uyfaEJuqmtef759/SMtj7SM8bwmdBJS1+2ab6lZ7Ft1NmmA9lqxR7BHcC/g/pfPH+kr9Xe\neZlnFtqzhqc02Mh3VmvxOw3KKMWO9ToG6Vnl9/mqbF2Eb2hZ0vWPipzysJ+N8E6QMklJSlKSkpSk\nJCUpSUlKUpKSlKQkJSkvobxUpMynn0h16Q9+5381M7MNrM8ZlAjyOWV7Cmmy6uew16cV5g3Q/x4s\nFZnKe4pAdTm37VYVhVyR/clyJjYiA7w4V5TQyyqCFcBYnSKTkp8oMujk4Rroqh5nnB8cdRUJrO3q\nPq/f3uN6nPtrkfWaKor5+KEy21enina//u497qv6vXL3Vf0O5EyIYo9LBiLTV2Tx4lrXTRfhYtiT\nvSpw7vh11GjIFN1+/545O7B1vx4rBJClgotlwZlMN602+x7a8Y9iNSBFnre2FR0codLUh7entk/m\nbxNnH1B72iPKeK42pr04XXOz0u+or5sHOj+9fCabzC+J4I/h92nLV3qgio5i9MS1+nbUlO0DsuIv\nUPRqfchZ3z5cNPtwCtD3n2QVFb4NkuiidKz2jsXRckha7y+a4mrIXCm62yDC31rA/v5MPnFwIN+s\nbqOoRea7P5Wd5w9lv633YI/35YtvleRbj7dQx1qgrnHJWWOiu2cD+UZQUyb83i9rbAxL8tmLH8ku\nVU/9+OcfyBfv47Od939iZmaTnjIEd7bUvlVW9z35iKx+U/6yeq7+2ULZ52qq32dAQZzsqD2vE33f\nMMaeVuXrU5A4zky+WyqIO+ioHTNv/Pzy5C/UZ1Gk7PYA5ZAtUFkRClq2QR2HceWRNYlMbfDKasPQ\nlU2r8Cqt4RrpgtirgFwpowZSBjUQwPg/BTGy8mHwRyGgAa9E5lS2WfboC5RoHFQuBvCIuGfqyzGI\nisGUyP0o5ssgMznT5+kCvBDQOOVJhwcOCjR1FFPSR2ZmFsLpcAWvlB8pQ7gexufUNXYbFiNf1J7x\nmkwt55ZHqMdtORqL2bz+D+Bz6sCZtQJWV02h9sS5dUPtyIX7a/LZsZmZPUPB5s6hUAd39zV3Vdso\nl52jqnXDcgvuoc0lqI+YlwW/ICloQVV/3G5KMSO1li/6bdmh11HGpH2hfvbgyyqjjDZjbqmTvYo4\nTz8ugA6B38pBHWRIlrNgeQsj2WLJ2f5MmXPRKANW1qwNLhAWuAScBUohGfXBdKX5zu/r+9n3hIB5\ncRWfQeeMPFnmKki9dHWH66Nog1qHl5KNCiU4TkBfFcgoplAwGa/UN095vwwSIw3qzFnIV2cbOA7g\nKCmV5fv1knxieKb6Q0dhQ9Se8nAZpEf6PEbNdg/lw0e/LI6cu676IrunLLz9A7tRibrqoz/+/T8y\nM7Plnux/50Bn/kP6ttfSXJN9Q/Yu1kCYMv9bSWO8ntX/04nGbA4OiDXr1ByUhstYnMLVEqMxHNT4\nFi04HkIhQYdPyDp+7W3d177karsKl7bXRJntvvp9dcy6FqL0VZDd8qyHKx/0bVX181qss1m9VuAP\nmaNc5/F/c0vrTJF6L56yng5Un/m6bxVUOYrwQeQPUbNDAWSBukUOLpBrOEkGLvsluAVrsfpkDt+s\na23+o+9LUcyHQ6C5jSIKPDsNVPYc1qISXCJtuMRmsRrdDctsHnMNaD7bgGC8fSjb5kCeRCB9MiAw\nFmtshzpgJ6+xFMCdsom5UkL5zhqkR6ocqyChZHah+eazf/67ZmZWr6De9L+J92h4oXoFP9Hvljm1\n8/RCaNvLBzEvHugoMr29kebH174LBwOKaxk/RgRpLnkID4fbheMmKx6Mg9d/Ua9bb5qZWSEvH7UF\nyBVQe/0FHDA9lD+BfdUKuv8y1FxUBz03TcGfEqgdt0BjDdmDFor6/QIgy8gH2RlnvDek+s1sNogs\ny15lzXNFCoRsFgSsU9X35wP1a6Gh+jrhl9f5eeXglvaTb94HvbSSTfug35vsFfJr1bUPPH5Jnw8K\n8uE63CWda9l42AHxDvpgBkIll4LLEMRjJV5jUQ1yQW922vp9vE5MUvBswOFXc1HvcVU/Ly2bh57m\naRclqjzrwhAlmTTcXiH1yW7Ut2dtXbdRku8vSswzbRQbh/hIRrbfA5108qnmocfP4bUbaX9t8L2V\nQRB6VI4TAAAgAElEQVRlQOQEBeaS2I4gYXzQDhEI7DHrRuDr/94I5DgqTROeiC8/EvLxyROpQHWf\naGzugfK9XVC9K0dqbzWv+TZTvPm+1cxsCkJm01J7d1AQq76i+k2L7JufsR6wZxk0ULPN6f99nhGL\nDdXjYgrXD8qglpI/DjZaTzbsCY9iolUzazh3zQlz5jIfVIqcItjWd6OpbLSB8+8SXrkJJ1BcOGJa\nIGBCOPz8mfr6qMbeZqbrLmYy9jkcW6vGsZmZNQ/eMzOzYKX5qjvghMu5rvfer2tNr3xT+8GTf/oD\nNYDx3t2wR5prDzAdgYRHrq0YMp5BVQ0ONCYyXc3HlSlImwrctVpybc1Jl/JK8+szkJEZn70XY6gC\nwn0E2ss7RWWa+X/O2PzrSoKUSUpSkpKUpCQlKUlJSlKSkpSkJCUpSXkJ5aUiZbJ1oq73FJGKMvB3\nwOUyeKxI/DYZ4NxWzPZOSNxR5iUbKAKVzZEJHcQM3lyXSJ01FDXcb8HuTsQ/zbnpczKY64kiZ15B\nkbHFhSKDpygA+SjvFFHICMgWXQ1h9X+qqG6KSOII7fjlWPfbrSrKuoCZ/OkLnR9soO6UdziX2NT/\nNaLgS9AJO2TeU6ALGhEZqCYqVJwLbezq95e9Y/vJ94Rg2D9XpHj3NiidTayYIhtUqig/EcEPMygB\nLGTbWN2jgDLCCqbrfld12NvF5pv4/LfaHIASiOzmDPZmZr9ABPryXPe5uo8KSaCz7IVfkE1qpqhq\n+liZwas83Ce7+t00p8jz7Uf6/lZKEe0ept57E4b/U0Xan6yVHXoj1qafCFFSmqBpv6/rnoaKdNf7\nuu/HFdXjW+/KrunlkT4fKELtwRHx046itmWygIcpfATW+OO++tJNifvmYij7p/rKXNyO1P415xdb\nTWUmPvwT9e9+qPpWvvFd2eccvqIj2eWTc3HiXIEi2WEqCH5PY649VP0+rShDs3df9ninJ1935/Bk\nkOFelhVOfiulzO3VLaEJXvlI9zt5V9HlzFDog9ucU98cql1XU9lzTAZ9Pf5SMeHnldqu6uTsg8bq\n46Nz2dINQdKhkLUogTCZyyeiEuewA1QZQKTkXTg/Bpp/7gTKzI7Jgm/43iaQ7V2yNSsi7aU1GdM5\n8w9InOwhSJsG14dzYMb8YQuQfGSt3J7Gc4CqU8bTPIaAgNWaGlPTONtNRD61J9vG2aTQIcMIEs+B\nu+ALxR4Sxp2u6rHswNcBGYGDKpUPq3wN9ZD1WD7UTh/rAtQrqKi9xaLe6Mz0+35P99/fkl1DxtgQ\njoHqbWUaGp/pvk24aHZRYyowf+43NAZuWlKoV03hGMtHIIIYg+s8WSXAfM+fqJ5XT8Vds8FADmO4\n/jp+0tTYT8G+749k706OTBHojwJjfpaSvZesV/4Uf7KiBQ4oKn7r4cNr1JQ4um5LsrYrOMCK+ETN\nka17nI2vfkfnr3/1N/6WmZl9/J//12ZmtnNf3AVzMqhTn+wx6g1rQExFD5UMuF9mfY3T2RN41UYa\n901QECHz+8ErGitz6ld35GvnIUhAMDDrseaPFyirVLbVp8McZ949VWTdVR/lVygSOnBavaJ2DAr6\nfesV+Iqea75dfaj5+KbF29WcsFtVlu3R72rNn6iLrbKrevdOUHbc11g/3Hlf9QZJk5mwboJWzWRQ\nKgMlsMGe/pK5J0KFJVa6iBUfAl2nfFc+c+tKn8/Hmudzc/VDPSx+0QZ/MbTpGNWVhsbKI1C7myz8\nH6CFc4eolwx1PS/UfXLb1AM7Dwus33A/bL8uu4dPhR786fdBj10LQVQDaVvLmg2bZO0j+agzZV4E\nJZpNw0+0pf+3DuQDWwHqGGTRL06Ozczs2VDXe6Ose6xmqvvShZtmR21uf646OagXbadAhoAstD58\nZrcq9lVKvD+sYPvlHdSIUPmLEZljFMxc+NJCxlgRjsE+fZCC0yvraEy7ADo7jtpTQP1uAjquflvr\nXXoK6uGJrnPV1f/lHdnz/reF5q214ff7HETNEzhuWIf6A1Bbh6BsI6FYYxRXirll50Dt/M1vC7V8\n5xu6/lPTHmV6ojH4+MfKDJ+dCJ0bPpFd8nAGeWTUd/vqxxf0RwkUXQbFsRrcbl14Ctf0+ynI8yIo\nri5o5UaVMQYfy7KHmqn/JRrAy+VsEPMhYc9FmlcQNrE6VpAG5QZiaJmd203LmvmscQfFMLi/ll3N\nR+FSyAV3K0am6V49Rz7pj+BbA0VUSIHwSINgYxsdpPT5+UB7nK/78uUO3CsOKNYcfHIxL+WqyLzU\njzki1bbhgNMKKPBMUIlb8yyzToG8Kel+2ZibZQHaCV69foz0BBEYK9gEoMicsu5TmINSZd4ZsgeL\nQtk8zSmF8HM4BuHtsAocMiAMeyDi3bJ+F17Bb8ceLdpoPcmAOp7BY1XZwH+S04NADfTYYEe/28qB\nOK+p/ncPYk4cONImGjOn52rPOqf58KYlv6X7nIAKfvxU+/Zbr7EPBoU9iJXMWvIDF06yCgpvH+Kj\n6SG8eTtCkQQVFJRA/sequQuUxpbzL1GCfnPLSpWZdeZ6Npov9CzgHctGK0fj8rrBvGla4/MV+VgE\n7+XeHK6puvqyO1MdrtPy+VITvhuUu0pX2lNcruN98rHuF8rJXzsSSvU15nHo2axW1f0v03pGOT4R\nz2i8Hx5F2pvsxcqH+BhbEut4qm8TFc0h+9qI+cW9Vt8s9zVGGwN4llaaB8twal2H8oXWsV4fXslu\nhQpo4Tz7+ZzuswUn4V9XEqRMUpKSlKQkJSlJSUpSkpKUpCQlKUlJyksoLxUp88v//m+Ymdnf/e//\nCzMzq8Jd8NNnUjh48tv/3MzMep8JSeJeKOI0C5QJ6T//zMzM/IwyoAHZtVilxKsR4Yb7IdsjE4oS\nkbtQBK20xzm+Kmd84UmJMxmZla7baSmq++o7ivjlOI85QS3ErXAuf6LoZpUzeWkYy3vr67/0+xnR\n8OfdGBGk97MxwoZodarBOX5f110ZWSzUPMKJInYh9hmsFYl0ycSWsg17463X9R7qFz4ImAMyk+sN\nqg5k8gDbWO6IM4z/P3tvGiRbfpZ3vnlO7vtSWVl71V379qaWWi3REpKYlsEI4xmYBXCAYkIewp4x\nTMzEhBiNrJExiwmMpXBgCDyOkAfQaIIAB45hGAMhdiGDJCS11Hvfve6tPSuzcl9Obmc+PL/T14Qt\nqRo+dDh8/l/y3qzMc/7nv+f7PO/znIKMoj/hkKedwg2jN9zVF4jszmEZjUZAu7ThNPH64oDXC4rK\nptDduPSi0LODkhDW6E1FWe+DLG9ncFAZwOCZ6PMX9jWG2itqIxdv+jisgcN9HFhQAl/O3NRz9qVR\nUC/umJmZh/NN7YIi0XdjGoMpUDH/tpxdJmm17yiO88RdjZHdqaKkGzO9P0zeMDOzO6YxvZUnCgtb\nKkPObqyouXFSVXS4fUvfz+EMUwTezz/xqF7frHbIge7UaXaX/Plrw6fUfqCLl3f0vWFa0eZ8Ts+x\nlRFS0PyKosgny0KO9041tt41Ujs9l9cNXonJPcW/Tv7kQO1//0jPkVgWEhAgFt3r6HW8RdfLRjR2\nY43zM2WuPC7W1xR3igNyXmfk3kcP0R+qMH9ckE5cknzypzsJfT6Nm9F8BoJaVt3T6DFksMKJdphv\nI429CqhRGjeJCZOo78By6AW6TTA0CsF9YN7hCjFEjyM5AxVDFqOCO4ZrmlMjxnwypg+MR5orCyL7\nGZg7gTtIr6nnGOBkE5/r//W2/j7uaUy1h+qTXFVsgS3QnNwQ5ofxivPOOKqxvTTXOtXFYWYQV/ss\nSmr3JQyFWEJsnZzc9ZSQjYYP6o8DkHtFa8b4ht7/8l1pkE1zA/uR/+Lv2I0vfsleT3n+j/T5V24J\nza+ugFDP0cuIaU0bgB5NYZ0UxiD4qzt6jjL9jxtJBKe6NgxNK4KOTtCJQp/DYBZFE0GutfpxSL6+\nn55bDJebDA4CM+o0Jz85AurkFGDptGDUobniT/T9PrpE/9nffIfqnnu3mZk1/+d/YWZm5Y6eeeqq\n7l4MJxh02jDVsImvf3jQsgopPVvxqvr64kLrcLWiOfjZm2JktofoTuDkNcctIgELDCKFJZZhyqEj\nstETDDYaaJ0tJ9EEy8L+gomylNde2R/o/i/jItV9jz7nggjeO/iqvZ6Sv6zneOK//1tmZnawqz7s\n39B+EiOvfYqjSwUWa2FJY3Y81fMNBrDaiqrHwkEdx4GlhvBTJpjLUxgwgTMjrLJuQ3P1DPeq2DQY\nM5xFGKubaw9cP+KjmLU9TbJlzgCHNVxM5hqz3Y6+t7yh/WR2Xf0/H+r66Zz2oXttrZXrO2rX2Kqu\nV0KL4fpdrf9brHVPv0v7iltB620xsBGuRzP2nohLTv+M9bcbaBOoDrsvi+GSBQ2vPKy2u/BmaUu1\n7gsBjebV95ZAWwpGR/CagpVVYv3zsswN0OU5+hX58utjygxg3CQf0/3X0EyJpNRXbRy1AubkdKz6\nJ2EPTGGMYC5iE855M3eZeunzr7nY1XE/Yk2IoSEz93FkKer+1W3t4Rl0ojxcSb8Me7Z1Q8hwBMeZ\naYk1BV0hN0u7cYa6f0v9UULj8c/+WHPAeZe+HzPtO33Tnp2EZZ3o6f5bA13XZ4zVA02um1p/4yua\n6xtpzgppjYvxVPtYl+5MNnU9B+Q9WdB+M0MbIg5zsZfR2pRhX8zibjhm3zQzi1Ydc/m/jxONH1h7\nwpQf0W5W0P/9mcZhbP71Ee5/t8xhTcZXWPPHqvMU7a+0rzbx0VviWG6lKG56yzAUA4fDtM6bzlDf\nzwbOVGdo+y30zGctvaaLzDW+H4H6OGAd38BpsMsz5uj7WBwWG+f0yQgHMNpqEOgBtfVcQ/TXKri1\neexXRZqwCbs03lY9nRqOO0306wKNrXSgZaP6ltfJguB3yUNv1bqSKeBoloW509Y6FylpTM676Hss\ncJRkzRlFORPGYfybxt4woTkUpf3mUz3nThVWx6WLf+G+EXSHHNyMogkxUZcLen8weH3MzC3OOplH\ndf0vdMgI2NM+suRoTXBxoAz0RUdzvb+cVHtVU7C8cdE6O1P97nFGW5/r+e9zfsji9tePPmB/ta6P\nrRM9sSl6o6MlzacKLM5CUWMmX9VYHDR3zcysi7OXN1PbBzI2y6Y6rkw5TLhatzMt9W0sz+9WzuXZ\nFizh4Fx5KgbMHerXh1n5wj8Uc/mpN4vRN4dFdCGt/SFWCTQgte6N4J40otqrprCJth9Vm8U6sEVz\nGpMTsiqcAlqze7iBzmD3spyU7+hzVy/pN079cdz/OAP4nK1WLolRmGCdr/a/vhZiyJQJS1jCEpaw\nhCUsYQlLWMISlrCEJSxheQPKG8qUOWg0zLbMPv35f2NmZqsXFUFyJrAi3v8uMzMbfUXRzDu/9adm\nZrbIKmLVuIWzA5G5wkzR54mv78fQrQhyipMFRUPrIOcFfMTn5G2PiB47KUXAEjgTjXfFHmj0lC/4\nlmcU3RwMFJGrNxUdfeqKULY+qu4nnUAfBMeEQ7EMpq8KUTGi0AiKW5Y8xr1XpEkz2VcUuLglRKIx\nVVS0hPK6UwZt21R9x+STxnCF6p0qInjm9WztGi4NLm5LAyK9vqKUvYGiggTurT/EOWCmaKKP53yE\nnNClIG83RzRyX4havyJk0YF1lMURqgOy5qBLcd7ierpP0lM99mJoyaDe3t0Tml+6iiMV7Ic9nA2u\nohexG8e5JaO+cIiWnt6HvTBRXnQ/ger9FX3eWxKLqX6sqG/hLYown6A7sYzOx72yrrsJ0+UrLUVd\no2f64NoljcG3HKmBh776Y+0CObEbun6TGRm/B5p1UVHWeFf1GAduV5f0waOhorP+qphQ6wlFl5ci\nivQvFhq7yY6iyKk1ReLvMWfSNVCjhdTmD85wXsjq80WYUBXmSmwmBHS5pna72VC0uwgy0T/Q8xen\nQsNuglxsb+vvgy/q889V1S9P7mlO3H5e9Z1t6j6L+QM3kW9UXnhV7JweOemdA7VJYqC6ZDOg9RXN\nrxpI5dDF6WShey16AZKK/s5UY88b4RYy1Ribj4QKTXH4SpCT3gmQYHQ1ZqwfWebcOKXrxEGVI6Az\n2ag+P0AwJL7QnIyhsbWM7s8YtL010LpRNs33SAk3krzqMZvqtTfm9YwxksEF6EDXOexqPZsdaeyO\nGft+DG2rhb53/1hzuog70jym58jidJDsqz3iq1pT5uidpEB8fdCdBDnJiTyMHhzdkmiG5c7I04Yx\nlExoTixAgnMTUCPYBQlHY/685QgmYbSn9q9uo8UFyjRxta7P02iOweBxQXATOCCd9TSmfVCpbE+v\nA/RY1vN6nr6juTTKojnkgdaxyM493PMyeo3NfYvm1PYzWElOVW0Ya+IwgsMAW4zNYZJETNecsJkE\n5Jw9WEYVU5uvPCY9iD6MP4f7xUA6p+RNp5d0naiHflFcbQYp05ZgASxwWHFKaJU8B7ofaL6Qu55e\n4PowRW/DwWEGpDSygKUGi2xB29bRIpih3TUY6D7pCm4afb0ml95pZmbf/ej/bmZmT3C0+VMTO+qz\n9q/sPCWd0QMmR1qP1tZ3zMysk4AlcKxXb1d92qJ+bl7tlyYtfjFSe2VhTXktXOaKmgORjj44TWqu\nTHBkWMCei3X0/DtFzbmGo7m1MtD77bnuP4IV6OceMAtLqawN2/p7rqLP12BaYa5oszPdpwgi7lWp\nVx/WxkJjPFVTe9Teov2wB8J99/fEQPJYvwc1IcqtYz1XZyBWmzNN2BjnlXgCx64pYzsfsAA0hnO4\n7CSb+v+kCbv0eZy2ahpDydiO6si5aYzuURMdnynuepMa6w/6Cw59NYzDALnM/3HrOG8pb+s5ClU0\nunCVM+bsogw7GO2YBBoq/QXILPvEgHWzjxtQEUZ1oOGygMXAVLc67VFZEsMn4eHGuUBk4a7afnRP\nc6V5R2cB/1jfW8BIKTyi184Waw2Ob4kLQp4PYTCdNTWG0gX1vYsukveSziKf+Ze/aGZmpx0xmy58\nRuvxza9Kr66K1lsxh4bOFzWm/uRXxaZ72zPfZGZmpffs6D44Mw5x1kxu6Dmfn+oMk2oGTCFYX7BO\nThZ6vvy+WspHF6RY01oxTzzQMczH4zamfYcw4RdFjRtIgWYFXLo6qvdZQuPFZ985T5nAeEsVNLYC\nBsoAbZOoaUwXoBXEo7Du+2Jez4I9f6C2jsNCasJKcN3gbIM2VY69Hs2tSDdgpuAgOeTcOdc6dIqO\nT/MMJnZKYzif0h47q6tNS+j6JNJoRaK7kUrhtgQTpg/7iGrYGOZNMoeGFnptI0azm8cZl99qE85k\n7R46Pi4OPZyhHPgDXXQ4E4FeIO5DGfbsyAaOijhFLtD3WzgwQmCMtLroL+XQQ6nod8TZXb0/iao9\nBrta526+ojNSkuesVGA0Ffh9AosqW2GBPWd5+SXtJ8WixvjjV+TW1eIM5DQZR6qWjXzVNwOD896q\n+tfnjJHA6TKXVf0Kga7LGS6tM9W3Pxb/JDt44ARUc9I2z16x/DraW7CGFqXAtRgtxqmesdXXtYqc\nrw/58TLb1e9hd4c22cb5qaOx33C0Pq37mt9z3Dp3cY3zEI1ZX9EYKK/oXPZtj+s30wa6Rg898aSZ\nmb0K83kCAzyCe2ig8Zccqr6FPkxotF3SpxrTpw9r/UpPdB+fOeSi01Nd1e965xA9qKjGijvW89y/\np7aMTfT++lU9792WFhT/DGY8mUC7h1/fgThkyoQlLGEJS1jCEpawhCUsYQlLWMISlrC8AeUNZcp8\n7rd/337wye+2f/H3fsHMzN70tCLrtQ2hb08/ocj9pWtvMzOzyYmincMW0deFXo9B87pErCaARiPU\n7uMrOAqhsB0hL97HV7yPVku6oKij11IELO4p0tWKk0uGpsRphxzpphBrAwE6HSgqvnegKHOMnF8X\n5PmJb/9W3beqiFnzFXRAkkTUThU1PfiskIbldTF/qmXd9/gIRJ5c6fwIZIiE1CzRYReEKF8m7/Os\na80g172uSKo7If8PxDMFBOoRhfTRyQicAeJcO00uuyUVbTwDPW6hZr4Pe2CFfLoBytbR4Pv986MN\nZmbLM0VTe/fVBoUM+j0n6st5TfXsNTV2qguNgRT6Gp07qleqokj34FX1kZtX2zx6QcybEtopkYr6\n9M49FP9XcIIASRgwppamchaYqjp2CdZFclnPu+7+dTMzK+KW5CcVrb31kMbwFnnit/fVl27jK2Zm\ndtYTKnV1WfW88YKiwLMi2gYxRWvrc6FA7QO0fv5A+ZLpJ3fUHutqH/+yGC+5vDRiegd6zseI2vY3\nNEbjEbXzk2/VnIjc1vXrSX3PL8AiKEgJ/SGQitaqoucbuH3M3qN2ih8IBdsviY1xHybVlaSeb1bV\nHLsHIn/5hhDXl4fk+vbOP06851XHU8b2gFUtCaqA6Zn1+yBpII15nEi66Ds4uDEsUmqTIsy6aBqG\niEcOPrpAFtEzDWApJDMwIMitXeTUt705yGoSVloEfZ2++i6NU1gaFtQsYIKAVIxMc3OBDs8WOhWQ\nESye0HXbDVwkfNClOmMYNGr/nup1yusUJ4fcsvr24gWN0QFaOp4PO4v73N5HywE0v8Zcn7GWNHHk\nKUS0ZkRHuJGQC1xAiydXU/uPYA+M87hSlUFkJhr7/hSXp6iQB+PvcVz0Vp4UOn/esl7U2J9tCtFY\nQnekPwGZRU9l6oPUkzycw7GiiXZECqQ1cC5Y4ESWQV/kYI88+mVQtCHrew6m1Az9roWuG4NZFRuv\nGnJhr+k0VAObDVhUvTboO/nOjUnAaEQEDGZNGqTyC//PH+v1Z8RcuIrrx/0BeeCwBiLkzI/RPsgO\nxCIaZgL3D1zUeqxDu2KNDepqk9WY+rYHc7CUh0mZ1xg4pk0LFfV9v49eWwTnHRPyG4M95DJnkCyw\nKbpPQ5C+Vkevt/d13bt5sUl/f64x+qIrlsDeb/2OLvCddq5yE5e6Hu5VY9xAyiDIcRgpU5hH4yGu\negV07WDb9mPobsDO8MnH9z2NEa+i+pfRUXLRreqA8g3LaMTgZFFa4GaVBd1f4DCBFk8MPTszs8WF\npE2PhMRbXNdJs4YVYQEcgBqOkpoLZZhHZy3tQ0dD1evpb37GzMxyvubKb//+Z8zMLHKmfenhR58w\nM7OVgHVyrPqe7aFP5eWtX4cVBVMj7eHwlQk0X3DFQHMlu6w2d0ow7mANBGzc/FXdo5DSGC1u4WSD\n69ECZy+LMUfQ0SjCDo3v6r5R1tHpWcZeT7myob6esyyNT1QPH42EMWccJw0DDwZgBJZbZBKg+6y/\nsHtbMGyiLZiSOOSkAVbH7BuDBlplrJNd5krivs4uiy73LSJGtq6KFqCCjHncBfof3hLrb1Xt0aAP\nfcbyGJeUiK+9/KHL2i/6nhDm5W0h2EsRxjZaL0XWuduf11g5+AOtGXX6adLXGhdF0+YEZyLDhav2\njveamdlbYF9f30fvrqK52J9qjlV29TWMiGyKPtYh4mUu+khmZoOk2fIINxb0uzp5td8cdprH2aNf\nZH9u4giU6dt5i4f7qIPzy4jfChFYuT1+Q6zU9KwZ6pRinY2hZzbIMnZgpy7hfhZkAYyYGxDqbNJj\nz09p3i/QtkrwmygG2zUTnHVWOT+31Eapmtqif6j6dgeqZ7xf48lY17Jaf4opjREP6uaY+kVxdlyM\n9LkxnRPL6u+JOG3ss37NcBuKs+DjfLXo6fkP2RjTh+qTzCZMP/p6zBljfqp6+/Mg20HtPcYhZwKz\nNM196+iXXMnrOn3WiCOc4lx+31TQXqw9pN8Dx+hg9RswIftiaWwZWRDnLJ0DaUreP9W+VYA9WNrQ\nWbJxqvY+O1W/VlbUr3VY1M2v6uwbuB2edvUbMhPopyY1dt2YzrRLaBHNOfNNzx5kLnSiA8tMG9aB\nCXN6ovlZ8tSW/hznw2PtLWtJjaEWY8mP6Z6rj2ndOUYXMt9Rn0xy6MrNYRLD0nTIguh1AqYf2nyX\n0bo6URvtw64/6qNzxLrUgaU0h2njwBLahiF5UMZ1FQZ54CQ2TmhsZG9oQZwvaYzlWHDLy9ILmuI8\nOD7VeTgBHXa2pjFxwm/MTFy/29vX1dYdMmh8Ml2WiF8sl78+mypkyoQlLGEJS1jCEpawhCUsYQlL\nWMISlrC8AeUNZcpUE4r6fds7325mZk992/vMzOz6C9KI+Or/p8hT+jsUnYwVL+s1rcjXBIeCGGyE\neU4RsJkH0kAEr9sivz2N4w5e9jMQlAn5hXlQMIeobpvA/dYFIQ2JCrnPM0Uz2+S2LnAsmO7hsoQT\nxGNPqt71tiL8MbzufV+IwamniN+mo8hZt60I3GZNUc8Lj79Z9ZwFz4EeSpR6o9Ddmogd4oD0lslv\nD/IJk9m8LUUV6a5hWDDqkZM+1zMPlsibPVAbpohkewugWwwK3KGu6ZHzX4a1M0oLcbM2bABYTElD\na8RR22TIpz5vOcaJZhm0v9RX254UVc/oKnoZ5J4e4fjSAywrrKrvg7bIoKGzSMG4ISf2xQO5Aq2i\n5ZK6qPevz8TWKq+Ty/lFPffhBUVDCzFydFuKb7rkja+jAXB3UxHp0RcUxY1d0tjplxRtzmAxsMjt\nmJlZBF0T75Bo7hX1feK+UMPLWyAPd0EiB6pvK6q5dA12QWWo6HZ7V/U+8DV3qkR521PdP4fmzWlW\nn8+DXrk47mzU9D3b1X28jp7zDMegaFT13TvUmMzvoU2REvMlPlL98xdUv/2sXjdjGrN+Gjbbw3K5\nuoYmQWN2/tzcyjWxgVxYVH1cKqxOTv0icCnTmLw/1rNf2mQMgbhWWT+OjjRmFqA2PvneAbqfj8AS\nIu/XJhqTCVCdDno4HmyiJC49DtpVKVhkI9zb4m00aDyN9TSshzaoRq+vMVbe1BxGHsIapxqj0R6a\nBkmNpRx6HYOx6t+ua64v6qpXgvWmTF50kDPcORESejbHeQzHnAqozdY19VE8AhNkoPs5M1AtXElE\nWMIAACAASURBVD0ckJHIGA0WT/Wf9nCwmYGSoTmTndEOOAk0YBSlAvcRX/3aRcOrbGIFuP3z6w6Z\nmcVg2KTIC5+DzEeTmtMJHCbioJRjGEoz0/fyrC3TicZJMjDjgJXXew2Cpr0Pdf1IGhQOZk0K1kQG\nV5hTHDSy62YOKL8LC2nooijB/yeu6nqME4BL3nQrDbrk4sZR05hOJzWf7929bmZma09pDHXz6CHR\n1j7ra5oc/TMH1OlYn4usat7WUmr7oaO+9td0n4kDexOUrY8T4rCuejmwSUcwfk6aWre3K9ojq+Sb\nj9CTy0/Ulj4Oif0zoeWLkhp92NV9OuwP5Znyvo9+TXvr7q8K1cq/9PrcMGpl7WNxtHk6Plo9cXSc\nIrp/IqV+GXZY32JoJWT0GsGlZBZo5PTVrilXYypL/01g1znMqRR7d3mCBgJ6GP08LL8Zef59HMNc\n9W85+2BfXc67dtplLg7QNuM6UY/P4b44H2msTpZg+mR1QHDuSduitq71/86Bzh7tL0mjZ/uKtM6S\nV3DCXGitPetqvExholYyF20LbY/2QPcqwDQb4PyRhimyQAtmmtG8zqS05/mBGyUo+Mv3da9aWZ8r\nzLUXDdBYqeK0Mh3j0Aib02dsTtG3SMZgGsNAOW9poe0SR+do/z6OL7AaEsyhnOGIkoU5w9wOHFI8\nNNAGNdU3ByofSaGF6KM3h+5Q1NX67AastAwsuSn7ybpcQBzaLw67IgJTb4xrkz/CGQ3NmtQW2g6M\n2UhH/cR2YqOF9ktkpcyBOXjvFc2tR59Ad7CO3kcJRpTpjDQ70Zx89F07es6m1pxlEOgJjkKJWY7n\n1316TZw+13CnO9UZZYYMhrcPaxuduw3mUL2tMZ997axDxc3s5GRimRL7Oa562S7rOsh9MtAYw01v\nxJqajc7tvGUUMAFx35yz94xe1jVXrsB0gJXj9OnDCvO7ozaPTWDxoLsUQafIxWEqQ99OfY2FqaEf\n5KpPB5y/cqwfHjj8CetmLujzjOobz+m8muCHwvBA6wjGVjbB/W0Cfdb1VN8hbqYuzJ0o7OMynTkL\nnM/Yy310MWdjtcc0pz5JFdUnx2fqyyS/uSbtgGUGcwXWagfGZyrJWOe+yRjXZY+NxmGCcqZaFMme\ngC01PmWdj6LXhL5Tmc/HHtbvgO3LOgOVOYukEekaz2GXtXXGOW+J11SPwoHm+D6ur+m49Jnm+5ob\ntarm9rd/33eYmZkDC+SLf/g51Rfny+ae9vk2jppJzlbVMvqiaRxIYbUlNx7o8jUGbWu061Z7kxgi\nF1zNg2v/udiSrZ767uCG9oAJupxBGxdwXCzWdvRsc8aiofHIuh9h3Zo0tI5343r2h5/S7+xMWm19\neldjwO/ot8Td28ypmBjSHkw9r6t1yOEcvgQLalhSX05h/LhRMaWzY60Pxwewr9CWqrEnO2SmtCc6\nQ1RxuroeVT0vEjbZG2s9TnHe3ozquTsz9JBy1DerM84m58f29OszM0OmTFjCEpawhCUsYQlLWMIS\nlrCEJSxhCcsbUN5QpszG40K4n/7+bzMzs5WiULf2rl4bRm7olxSxWtrAz7y4Y2ZmFx5XZOuooUhW\n4IbktkCQieB5J3qdLitiHwGdyo8VuQoQ8M0dRbRSBUXcUmjX9E9BGtpCCO7sqtnWrnBfkAePfPgp\nyuHDmNCsSoWcatSab6FOnfNBVApE5tEHcZd03WlX0dD6LUUK6zcU4cttSZcjRu7cUk7t6KzjpDGC\n/UB+/CTaNA9ng1iB6GCFnMmIopjzgf6eB9nre2qj6Iwc0jih8oUiwUPQmXxGKFhmW88yJIczAYre\ng2ETgdU0jgLzn7NE7yvym0dnaHJHz25ruGRMhaCmhuqbPVyjNkEWkkPQrJfVJ35F/1+ZCnU7LgkZ\n2AoMGB4lynr0iG5zSZHwCXnn1+caW0u+2E9nMIourQth/dLz0m5ozDRGlnZ1v1V0jY7PyJtva6ye\nVNVXXktjr/YWRV+TLekobWZ1/+a2IuX1phBM96L6Ywe0qZzaNTOz+VVpufRBZOf7+j7mHjbHvSSB\ndtACdkC5q/aI5nHkccUcuvclIdClS2rnHkhEcaRotXPI3Hgc162XQHSz0hoormms99AkOC3o+g7a\nEqcTRbuPYbEVV3FXqZOw/6/tG5b5kdrk1ivKPU2Qw7m8A0oEYpfFdac90Zg+OtN8WkZPo4lbUczX\nGJ+B3HaPNZa9vr43D3LiYQsMmyBvK6D7IJQeeeKxifr4TkZzIAtjxpmo7ftRNGgaejVYT7kyzD1X\n9491YA3gJDDA2SpCInS2JoRzQN54z0OMIMg/B2IswNyZ4HoU2E7MYZ9t5VCXL8KSQNZkOlJfDqh/\nBpeLJNd1HwIV61L/uv6+Dmureaz292a4eHTU/omx+ie2querpXHN4PqBnkjN0ffmoH6zZGCXcb6S\nTmruzlg3IwPcBGBfOFG0K2D2ZNHtCHQ8puhsJcewVQZCM8usaUspPf99bTM2y+jvDVyZMqCK4wxu\nWQkcI0Cimz3PHBywDA2u6Uh1SYBaObBzYkO1RRRdjn6PHH4IFhFYR4UloV6r5F3ncOCygLWT1hiq\no/ni07e1tFChk4nmQor7+Wk9+zLubmM0w+YToWKzOS4jA7VVCZbRBPYRXWoR9qgEqFYHJk0D9C2b\nCnTj6CNEExxc9eroLfkgvVn6bjuuuf/o03Kx6D+vs8S/th+z85Tlkj6/8ojmwN29XT3fAfslLAwX\nNkAhAxsNtD2J62AuBVLb0xoRScDihYlS8oMzCfpCA3SYXHQrppoLBdaQNBpDEXTxpmgBuSDW/egD\nTZmxk7LUIGA0gcQHjjq4rkTKMHpAYsdtzdHSMg6WaAdZDybqgeaqC4tgexMtIFgVd45wkmzDUkEr\nKHIhY8d1rfFTdGqauI2lmDejif4/T6J/gfvSIKo6xNKg4yn2Itw6sjCe+0PYlnOYhQ3OW7Cb4gu1\n+d6hkNlcRXVbAj3vZlr2esrgQHv6dF333YAJFLDO5uh49D3NwXhSfZEuBPp8jBUY0PN95joaY0xV\ncxKag6use7s4Ucaz6otCRPcdlmBgz9E5ol0isICjS9RjoTUiDdsO6TBLBzpWLa1DSZiDRl/2zjRW\nCozdQLOlhjNn5ARWNfpIMxiaC9h3SbSEauxnE9xPpmj+TBz1Z24JhhAaObvPik3bG+NEZGq3gNUQ\n72uh9dEJOUDXI9XT52YRjekl/wFTxjGzKOf0RVOfG6Y566KLOEJvz1hDs9zfxZHsPGUOe/7+seZP\n7YLOb300VRon0gLJpLWODum7wMmvi/aMg5bJDIaIO1edfQc3pEBIB1dUv8H6VNF9o7CDKw7ZBiv6\nXL2Dy9FI682d29L9SUdhFSdUj0wK9toCHaYFWjc1nCU55yfimkMLnLxGdc0BB/bBiH0mYNCkShqL\n/Zjm+NQ0dxLoeDj3mdPsH4mJ+jLNGIknNHdS0IYn6COV2F+mnH3GnsbEcArrAqcthvBrY3NOO0d9\n1adM1sEY3aIpbqqtXTFZ9o7RAqrBPBmrHiX3/GwqM7Olx9Dxg711fV/3OTxA04c52TvWfYu/pefe\nekTP0clrPAWk7aPPadw0TMzGJUfjrjTltyiZEH/60p+bmdm1pxAj+g6zzUzSMqsXrcV8un9fYzR7\nW/Mw2tf62empTpNgbNY1Vprs6d79XTMz86v6jRBHBy8T0b2SDRyAD/X+oKpnTjGWT64rQ2Zc0Jit\nTLRQJTkDPPEeMWmadbXR3aGul+J8voeO3aypH3WBIZaHduB4gX5RE13UlOZgqq5G9Jraw9f4jei+\nQ/d/ZhVH25z6uPuHOvMULomBs/24/r5/HbflPV0/DzOnz2+ecv/rn1tDpkxYwhKWsIQlLGEJS1jC\nEpawhCUsYQnLG1DeUKZMF8SheUcRp/ZAiMrRnqKGl3Z29P6JmDJ79xX1XCV3bEIeYyKuKGp0qMjY\nGGegXFyo15zId9zBPQVV/xwITKwBMoBLyxhoeJxGm2WH6O+Zrtt4VVHlzXVF0Fqn6LHgBDQlentn\nVyjj6ipsiyF53HXcklblZONEQPBBVFei+vtxXVHbwxf1mk3hPR9oVKypfQolRQ4D1xUjwpcpK+JX\nmg+tTb6sESFvgZpEQOvjqQBFISJe0WtkTA5mjMh2kjxkEFEXx5goeXTOAHQ+B8LbVhtHQewi6dcX\nB1yK67rduNq6mBZraOAqMh65rbGTB91JbeNkAztgNlVbXXqvGBor13G32BGTYzHSGBxdU0S54oMc\nJBT1XMKBZbehvp1E1fenp+q7iyuKHi/uwcZYU19UU4ryjkpicWRbuu82KHl9gW5GSlHW5TFuKKBY\ne3lFW0u3oPBsqt9yLTGGDtBVmqHNkkDPIvmK5tBgR44IWdPfL4B4VFo7ZmbWJ+e2ORMjJoJeUxn0\nfvNAkfXVN6v9DyZ6vsdzGou320I+1peZY3H1c/xhtHiW1D/9MxwgZmqnnRW18wFss82rOJul0WWZ\n6/lPZ9ANzlHqbbXVvKAIfmJbEelYUvcek+uaXdW916N6plsvq23SEVB+kL/EVGN0cKRnGE41j70m\niGYOph35xiPytyMw6iagVomC2qgHcugvAv0j0B9QjtYR6HUUpzIXBwVcLAq4U0zmIMldcuFx9JpO\nQbtxKPCGONjAHOwzp4ew5KI5tFVgjAQ6F000HII8bicXsOA0Vktpsco8X+tpqqe+ng+Y0zG0CmAx\n9Mpi1oyua01I4aoSGWvO+TABZ7AARnt6rnRR/TiI6r5DB80IEIoKyLpzhqbAOcsMJx2nr+vFSrp+\nEseEHto4CdbKGZoywyMcL+ifA+rfaWpMJ5fJK8/BVsi6fF7tt5wONDG0Bg1BM0spWItBvQYDm/Kd\nHEw/D2cCD9c7B2bjAkTT6emeuS3N/9IYhgLIpPnaC9JAiKmR+n5jSX3px3X92BwnrGO1xRjWVBHn\nQB+XhonpOgcuc6YBY4M9c4b1IdvEa6hzHn2lIWh2FlegKJY4GVhLU9gDMRDHGWO3f6Y+WwHFmy00\n52sVrdNF2ASHL/+R/n5Cm6IVdt4y6QgddNANKrDOzdmjc2ilOGheDTxYcaynlWWxCRZ11bdzpOet\nvAnUDx2lfEnXGeyD0OKkM4zq/dFc+9Bgjl5JTJ8bo1uVQNAomsEly3+gr9SziSWqasfpkH3LUT1O\nGoyHhfpjjK5Lb6z3cyWtkSlfa0H7lOdHl6qc0/g6gjHKdmBnOFb66HuUVtQvEc+3dgP9sanmUwZN\nKwfNgS7uS0muOZrr3gn06qZ7quN0Q30fz8LKHQZOkrAsq3rWxUzr9R56E5c3dD7sHGtPiaFdUod5\nETkLaLLnK+WHtK+sRcSmepV5/eo9sWdTSfWJ66EtxpyKMkcqj+l5a+jIrW5rDB2h6ZXqqS+mXZg0\nVbXXxrHaawzTMBKjXQOW2wqssxb7CftQIMIStD8Gh1Yuqq8GM85E2PklcVuZoNMRaDLk1lWfdhvG\nZhk23gJ3E9PYjxTY59BZKuIoc8I+28cOce2ixlqefbfNGE3hRphd6HNjDG3SJc4YUebKVPUuwQbp\no5cUyekBZ2gFTUcPHGZyGd+mvUDbC3emOXpLuB520Y5ZGuk647SeZ7A4vx5iHnLOXoM+qLBn4/IZ\nR9estKZzVYK9NjrSepuZaow6RfaB5l/UDGtO6WOO/A4MnAisBfeI8zasq7v8hiostF+cDbR3bWb0\n/+0VsRqiSfVJAq0qf0dj2WujQThA8woWVAc27YJ1egFLyUlqPznEFWm5i5tdDcYmjJfZda23qZrW\nR4ffJYHzWK+vdrpzS+yJJIy/LgzDJbR6VtdgQeAMWUCfKempvtmhXoes4+OA9Vxg/Q3Ys3X0QT09\n/1JR+9TpPbIqchorkQIsZzogztoVL70+faoZv5c6FV33mqO5d9gOzhaqT54z6d6//WMzM9u/pXZt\nHrB27ojhuECf6c3PiGm/jcPorqs1pc/+n4MJ5c0euJyOY33bzr3Jnn5c1/oSP4jb7E2np5ovLZjh\nD+H0ul/WJlA907WHgQ4o7Nh0BbcimGs+TrZdHAhXltTnrz6nZ57ONOFL6JNZTGNj745+28xbgW6p\nfovlYrruMGDeHWrsFBMwq9HgMtxX8wm9zhFKGnN+9oNzMhpUpzGtj/Ndff6srDkX7etMsYtT4byl\n54yn0DP1NYfrrOdbT+m32CSu9W/gfP11JGTKhCUsYQlLWMISlrCEJSxhCUtYwhKWsLwB5VxMmRs3\nbtgP/dAP2Qc+8AF7//vfb0dHR/ahD33I5vO5VatV+9jHPmbxeNx+8zd/0z75yU+a4zj2vd/7vfY9\n3/M9X/e6EfL9oncVqSLQZUtVxYryl1GdD/Iu94WAnOH3HckoKumUFGX0V0Hlj8kpnoG2kac5BY1b\ntIRojHAXSZOTO8f1JJfV57KbROzJd++3hS6eNpTf5zqwN6qKfHVHioRtbigv8vYdRRC3CoqOx8gl\nzoFwb1fJWzwhb3GGLkBGSND+y3rO0wkMoa0nzcwstSZEIh7D3/1M32scHf2F5/DJ+ZunHEtmAlSZ\nvF0iyJEsUveBewNIZaEduHDgyoEUTHKCHgR53y7fW86TX4iSdQ5UOQmDIoIOQ7eLU8w5y2RZkXzn\njlD3V6KgIS/qeXYeQtl7gXtQAlR/rD7uPaH/d15VWw3WyMFnjKQfFTIQxQFngPZKzlXf9ia67z3Q\nltWhxubDW3r+owYoVUn3Wz0TGpdJK6pcvaWx+zzOQLk7irxfyOHwQp7lvYSiwGPYA4UDNfjdLIgr\nCMRDayDJbVX0xkuq50ZR6NVqWWrqr4BGlfJCOkYv4LL1mNr/iMj7yoHmzKSnqHP+ZIP6CBnpv4w+\nCDm7nayer+wqv7+RlVNaCkaSAxpYvqN2z5Gw3ryquXN8DFL7kPrj+EzRaBvtmpmZtxD66ETJdT1H\nufLfCBV4ePWbzcyssK2xMPiC+uCVL6uODEVz8xpT0ZyeMYIeQyEGKk+Evgy7KOerDWdXcSsaBfnd\nsAB4HURgi3lE+EEsAw0Yv6Hr93i0+AB9DnQ8Nsj9H6Ch0kOLwW8Bd8EecMboHqF5EkPnojPW/92x\nxkwDjQWba/1w0TbIFkCcQVzbzJlHnlYfrdA3QxglgxY5+jP1nQerqw17zC/ouhkcacowF6+s6vU4\nqXXw9Ku7ui4MmGSc9flE/TBCI2eCxIOfVr19GCjFOPntuJO4r8/IzeKgX2M2mgF6SjMQ9yH7RSqr\n+3X62m96J6p/nP0lj3ZMHDbAzHBsw0Ej4qPZQL/kuV8WvZGzseoxQLsolsFVJL1kM5gRZzhP1Wo4\n0MA0zGTVR3OQuQgMPK9LnjKwcoY9YwCKvkBD5i7r2Syt/2fQnVgFsZ2m1fg+rNB0XmO6BVurBIPD\ncdUXsbnmbxRGzCTP+tQhjxyNnAYInofjTbkKGxVdt86xULI4bM8e9XNcXJCium95J5hL0o/qN6U5\nlsiB8KInlwhy/COvjwy8aOo+lR2YMiuai81DjYGup+sVYDxG0EKI0veFvPpr767mbgb9lMvbGjut\nodbR+rGu12YdLrHPLtC7iAfWXotgn+C5C7hyBdoRGfLx/52jXKo/M44AlqRfXJwmR1hKDudoyEVg\nQ8AY9WEpFNDA6Z5p3/Jw0FgMcTFpwTKoaew2YIOUttkvlrUv9Qddc9swx4owlBEWGoPSxiPo5aDh\n5fi61nSiuvjYADUOtf5srIGMtvW53Ex1DLS1mgPVNRa4OjGWR47uX1rSGIzgsDVxq/Z6yld+S3vl\n//W5/1f3CVyDLus6ARsqvao+rFR5Tlf1uffnmvdHVdimD4l1W6yondotfZ/lyGI47OTynFPbgYun\nXqOsL14XraqRrtvieQ0HtjiuJytshFNcABdtja3VEUzuJdzwztCBiml9buEUWVzV/eY48YzQJkun\ntF9kYeac4rR5hnuWO1W/pdA1qaypfWawYj0Q6nJM9WziTsh2aBk0dzrsfxnYaQNXY3HG/xOwjZ2O\n6j/LPWADxNoLi+MM123AbogzzpgLGcb6gDNawAZPBU6k5yiRmub79JbYuIsODooXOM+ewpRDq2vK\n2B8ylh3Oe4MzjYVkWu9PYBInXdyWVmEl0Fe7SbVRwCJzYF70cdpKFvSsRXQ1gvXYzWkvc6NosHDe\nLbM+H6NZZriWejjQxmasizBQsvThjDOFi7vSyUK/TbKjYNNWvXIr+tzWpuZAmnUuit5chPV/aUX7\nUzKivlyv4aQLa/ZgqutvuzDJ2zizwQgc4HyTjup7nYmeP4dukovzZgpntBbMmkFS36ukVI/akta1\nGme+oyziNDj2JNwHrKzzlAYueemptDKXK9IHvffVf2NmZvmy6pFk/3sep8e1ltojfglmPmfBWUXP\nuwIbvI57YARNoLc9I0b82vZ/pWqvLr9Wl1I5Z3WvaTN+Kx3f1J587arqdOlhOe79+U211Rwhm1XW\n1+w6zGYY3lHON/0x2oq4Dk8qWidzrtYVt6K2Xb+m382z+6rzlWtyHz4eaS91jmG0baiNl041ZpMz\n7Un7bdyYkpozPnvpDFfQrMF8Y28z9OySOIaNyQoppzWmZ2P0MmFrnU4Cpo3e33zkUTMzq3EWG8Mk\nt+d1JtnCbWqNPnBYP71X/oruS8Ph0H7yJ3/S3vGOd7z23s/93M/Z93//99uv/Mqv2Pb2tv36r/+6\nDYdD+4Vf+AX75V/+ZfvUpz5ln/zkJ63dfn200LCEJSxhCUtYwhKWsIQlLGEJS1jCEpb/VMo3hJHi\n8bh94hOfsE984hOvvfeFL3zBfvzHf9zMzJ555hn7xV/8Rbtw4YI9/vjjliPn+Mknn7Rnn33W3vve\n937NazsnKEWPFE0uFchJdYgig2Qm14gKE/UcoalgaAzMR4otdU8V4ZoQJW2gB5KMEvFOEPFGAXyB\nsvVwokhXCQTdN/I60QKYzGDu4AwzhcmSyuv/Hvc9Jf98bVkRsYWjPM4ZCtgu6s8FEGIXhOO0hfsK\nz3vY1N9bbUXk8muKuq9eVjQ175Ij3dPnvI6Qm26AbKyg3RChvaa7Nr2v6GIXV4sebjvTHD726O30\nQPrKObF7Mgm0DEbkD/P3NroKSL5YBJemZZxnYkRHF3HQeFwaFpnXl3PZ8n7PzMyGGcElefKcdy7q\nfi1Xkd8+KvdpT20+WFd987ALqqtqy2OcsRbX1NcVj0i+oz70R4q0L6WFxP4JekFXQO3uPizEY2dV\neY490KpiXBHt5/5c939PUX1+WtXzPnqivkvhynGaUPuvuDB5yGWddRUtLi5rDqyvKaoc7WtMukR9\nczFFY92roPQpRW0PV4jy7nE9nGTaV9VOSwd6/ougZk5fGj2386rfZuElMzPzmrhBrYtl0nhVUfIF\naGS7KGQif4gWTkft//wGUe+4otZnBoL9RQVo8zU9T/ym+uNuMkB0xLwpk0/fLT9wTPhGZRLTGEvj\nONAkwu2AdMXXlC/tZtBSAeWp4jBj6Ai1WFeSjtp6lMK1Iqv3e32hFJ06LII4bY2LSEA6i0ZQlceh\nZWkCKwCHmBl50Uhg2YxceQOpnEbQ9eirLZ0WbkCg7m2QzUkEHR7QpoTh5NKFRTHT987moCrcZsyy\n34/jxvQITJdv0pyfmND0oy8/Z2Zm3RfFAjs41fPfQC9j5On5trfUdwESsQXb7E2PvtvMzEpZsZ9m\nW3qu2V3ys5lTUVAdD0RzFgeVA1SL9HDDauLAg2ZLp6t89POWYOUZsu9UQLcCB59uU+twPqV9KFFW\nu4xAVFJT1TuGptfQV7ufke+/hhPREuhZFPe+eYbxiDZOFjRwgqPdoqn65Es5S1dw6Yjovb0AMeQ7\n8QPNq6SnvacSIJ4p3OXIi86A6sbQQ4gm1PbzqebfuBkgtDh5gWLFYKdOGho7DntlMhOMOY2lMmOv\nDQgdh+WZ7KLHE0G7rAvDI6q/V2EZzWGHnR6pb5Os66vsXVN0iTIJWLEttd2TT+h5V1flrnT3c1ov\nVjfVHu0G+k3ohazF1J7nLfGsruOjuZBa3zEzs+JDGsN2C3c8XIhafbRtdjRmurDI+kj6bD2u9bwL\ndeVsX+3s4ASXZn+agqLFCkKimx108NBYSMJqm4KIztlHXRiR0+EDfK193LIkDmyNvOqT7ujMEMGt\nsANC7OeDNU6fP5vymtK4uYB2Wwe2XDKHY9pQ+3HnVOOxO1Q/rJffoufDUa7VPrUuLphLOH/1YMIY\naHygxdUvgl47MAFBxVNd9IvQazis6/8rVdq8o/X7sInADZpZECesN9cz3NnX3rx6SX3Z3tPYK8Nk\nPG/Z50zw4r7GyONP/20zM6s+pLPD577yb1U/+ip6T/V9+E2wARaaQ619nT+9rpxQdtBnC5g3fdD/\nUVf7ieOw/qFNNmSfyUOpmSa1HnvMreUR6D3CIgs0rAINMg/dvSr70QA9o/ERCHIJjQT2yw5aPfmJ\n+t5Lw7TJ9qgXzBQYUJGIxkoSt1NDZySLtoTT1/85xlo8y9hmY1yCkXrKedmbcBZdaK2bcW5nCbMS\neoUTxs8C19Pk5AHDZZh3zGG9H0ZgnqKlk0VbZ8L187iF9eJ57n9+t78ifVDJq+2PGOtb/L3HXpyc\nsP62NY99fmsYjI45jk/Dnurg8psnMDF16ZsWbkwd9Dmfa6MRhW5lfKS9fXhRfV4p85ukqz5NwHRJ\nwlKaJWA7pHSjWBHHRvb4HI6SvQn6STA4HJyunDyaiXE9jzvWA3fRbxoeJ3lM7bHTOuvdsu6zVdZv\nnrTHfhXT/Zp7Wm8im2iGBWefJhqG0eCspfZp3dEcy8I8XOB0m4OZ6M5V3wnM/hG6fHFYINEZzrqw\nZk84t844n/Y9PYd7qn65lX3AyjpPyd7R99tp7QsbV7Q2cYS1rSKsj8tyg30sASO+tGNmZs8/p/as\nd+X6elzX/lWPahx0viDdk7VvUZaFB7Ppi5/V59/2kNjl/+W7vtPqnZF1rt+wC++FkYw2ie6NyAAA\nIABJREFU6l0c+ipLsDaZx927GmO3dnWvR3Ji7aRn/Eb0+K3CXrVSEZOk2VSfXD/W6/hUv//rd9Cg\nmQVOuTDsDjSGUlu67pKjsXxWUpt1j3b1vZK+V0TLarCv18YKfbxQvSNdrdO1gs5Y7ST3I5tjcYRL\nJsx5n98BaVf3O2b9Wwocwy5qrvfu4LKEc1dyWd8fcBhw0SBskdXwtUrE9/1z/Ur++Z//eSuVSvb+\n97/f3vGOd9jnPvc5MzO7f/++fehDH7If+IEfsBdeeME+8pGPmJnZz/7sz9rq6qp93/d939e85unJ\niVVrtfPcPixhCUtYwhKWsIQlLGEJS1jCEpawhOU/uvITH/+w/eiP/OP/4N/+yu5LXyumc55Yz//9\nS/+H/S8f/jH7kZ/638zMbG1TEac7uJ7kCoqSbpeUO1Y/UqTKJ58vFUNFf6wo5vFIkbFYRYhCxlNk\nLk1O68TRdTO4amRgSQxQe46ioZAp630fd45MTJGxbELIzCt/KmQjWlVA6T6+5IOBImpvefe3mpnZ\nzSMhM7WUotLVkqKo7Z6Q560VIQYvv6D/Z4jeesdquxZq+xtPCIleXxLCctrSczRAjPogIllytn0Q\n8+Q2eeTTkcVdta0fV2R+dI+82qbu7ZIr7lQVkd4uqe3G4Ms5h9zEtNq4j4ZIsUw+4VRR1Q7sI9Lv\nrFQEnRmqTn3yc3/8n4pp9Y3KD37L3zIzs2tV9Yn3NI5SIA0H5DeWdnT98jFR0RoR87b6KIObyQit\ngSouIi+hoRMv445xSe3wxee+rPYA6U3CJvDu6H5PP6bo7ckrOK8sK/LceZW8bvcpXW9ZjJthE497\n0Jm1mVAwG6pvD9Maa95lff9KdG4f+Lt/2z74iX+gz9U1Bku4atw7EqMl+qrqsfkeWA/7iqi/PJFC\neBSXlTwI+uBMc+qJlV0zMzvd1fN2JqrPelVz64ylwa0FKKI+d+2G7vdiasfMzDZQGl/kxNY66yvS\nP9wIkHONj+4Mhk1a0fWJr7Ffg10wWRLroTfW91eYiz/6dz9q36j8r7/035mZWYux2Mcp5kJEDJkS\nqLZ55KrvCv2InsAWS8GMG6nOPhozk8CBoKHPR9DdWKmRF76ksVQGweyikYVkiI17Ypw0uG+MueSh\nLTAk37o403zOpmnLgAGD7oPBQlugMxIwOeag8lE0rRrk+Pvkfx93cKWYo1WF+1QRpt+c9aT4tNCV\n+Ybqc/Sc2GmDm2qfPPnYG5eE8zVr6APhLhfJao5VDzU22ndwdsDd4+JFzQXvDKZMF7eOtp57PtR1\nHJiEPm5VadgVE7QfIg2QVHdoH/3EL9iP/U8fNDOzH//5f2rnKX//73/YzMwOG1qvLz+kuReBobQH\nI6m4rudM4DA3w4lnMEJPBcZm1wvYdXR4ErclmJll9g9nFrjEiN0WAQ31cIfp8PfTSdyKF4UQrpdB\nII2x66CXMMDRBV2FVEdr/nyMVlYCfYS0xl40r8+f9dnzYE+6p7CqejA+NlWX7afEQDnZFyK5cPQM\nE499YKSxsHBBdgOWU1p/T43Qz4EF1UfTppwFjUYj7Hii+e7dgy4Gc88/RGeoybqT0Fi6Xt81M7Pa\nW6WZtQKSOkavpJLTnBiAIJ/cUR+vpLSe/OhH/pGdp3zs57QveTCFiiVdN1bVmCjX0PBBk2D3puq1\nelX3uX1H7ePtC/27+Pa3m5lZ+0hzadDVfpsf6fkaMC1TQxDXbMDqVX8V0OR5zd1qgfMQ+hejuV6j\nrHn/4Kd/yH7kwx+3aU/1T8ahm2GHlcQxroPGj4/uShbWb+mS+ucE9letJgZl57b2k8bePS4HqwK2\nw2ee/WMzM/vAT/+YPjfV3H7lM9dta1PrQAp9iDR12t9XW5SauJBd0vrUwy0jyrrXZUxnerjNcbZc\nvoYGF20eaDQVYTq0cRYrpdWH9br+/u5nnjEzs6NnxQRssU7/9Md/ys5T/vnPan38wh2d77be81+b\nmdlLd8Qqvfu8rvu93ybW0Od/87f1/DAXn3ibkF6f+T+EXVDaQGsApvcomAJoglkC5h6aZC4stnSa\nMTcLzqtqnyYaX0lciiboGSX5vjfi+B/XfSML5t5M9x/D3PZg2zpcd6PGOZR6znG/CtgIswFOXLgA\nTnDOTMyYnOyX47HO8znYBT7n+TjsDA+GonU0buZoPY7QdUqPcFtlDXLyuk6lx7gZ6/85NNQ++JF/\nZB//2EdfY5jHgzmSRh8rneC+ep1N0J6D2TVmLfyxn/iQfaPyf/5zZRa8+vxXzcyssdDY21plz8Et\nLTnTuc6Nqg8SnHOH6FhkocRM0QQZJwMnWc7xY551ome4/az0Ltu48rzlm79F99uC+b6ktsylNAeb\nXa3zub6u7841liZo20w5mwSMmSaOYEN+2+RSMLmr6oP4CI1HnKyySc4wsKVcnBZdtGeGEe1faXSl\nXFfn8Bl9H7CafvuX/8TMzD7z8m+Ymdk3/TU91zu/82/o+UaawwWYM+Ou1oZFg9+h6IJGWe/6TuBi\np3asZtUPwZ4+Qe/PwXW2t6+xVtAx3s4gX+VrOP5wRhjhrPtPfvRjdp7yD39C+9LRUN9/e3nHzMz+\nBE2Zi+/RPneVM1T9SOfspZoqcuOP1H/1Y7E0Hr4kZubjf02OPy/c11p1+a1isfRM/fh7/+RfmZnZ\nU2/Xdf+Hv/MR+5Ff/Wc2fuHL9tiTf93MzAY4OEZOdc/+SPecnu3q/7iWOW20FtEnKqypTcdd9e32\nZZ31T3rayydFGG+wRW/xWyiCbmXsQNddJ1vDbWlfGM3kwOXOccqtwL4KXIlxl9sLFs4OrCwo7H4U\nvVPGgtvXepVHd66Y0lzqx/T/CZqJC1jLc8b2dA7bfwKrf67rDabEH6q4s8LSTc81piIrOkNkE1NL\nFdUm/6Hyl3JfSqfTNuYHwcnJiS0vL9vy8rI1Go3XPlOv1215eflrXSIsYQlLWMISlrCEJSxhCUtY\nwhKWsITlP+nyl2LKvPOd77RPf/rT9l3f9V32u7/7u/bud7/bnnjiCfvoRz9q3W7XXNe1Z5999rVU\npq9VFuRHjgeKRPcjihavwK6YmVgXM/IOoxcUXXKPFeFudMirJvKdKygiXyVf0jtUdHr3pl47RBML\nZX0/hn1HEbcMSwU5ror6poG8I+TKTsmJzhHlSoBi1cmFzUcUbZ0TqauhQj8BFXSXcPrBPWQ01XOn\ns0Ids+iSzM4UsYttqB4rNQW3To+PaC9Qx5j+PkYx3CfqnFlFq6Go+q3EKjYGZfADlCCpiPQUFfRU\nW9c6uS9mh68qWSZLDmlCdfNjoB8T9U3vVHVN4BISddRXgTVKdKL3pwtFLWM4lZy3JL8ZFlBGCMNW\nXW35CvXdqaJv0Vb9nDI5rEMCgrhOjaO4ZaTUpy/f0vNXkzBIerCT2iiE31EUtOqrLa/0NbaOi0Jg\nb8Fi2F7T56+f6Hn9gtr3WkNR3RnoXj6tvtsf75iZ2VlUCGTuMUX47UBjZnpL9bxTFRqVasMWm6td\nu6fqn4cHGqt3i5ozq8dihexuKRqcHyqqvXSgjhxvKpq7ToD2zkD1Ml+B1NWkPtfNqb0qu9QTvZaH\n26rX2FHkvjBQe/nJV83MrJdRVDtFvvuxj4sMOhz+QmhpbKR2NEf1uePp+S++oHHikB/fKys6fZ6S\nqwgdKJfVJzPTPO/VyXHHWetsiv4N+du5Kbnu+rONxoxV8qwXaBOUcd1JbcJQAUVxj9Q2J7iJrBXV\nR+4lfW48Vh+kDjTmm20hDjHmostccvqBE4PWg2yF+1CvNKjZGHSrmFWf12HEjCdCPyI4rSRAHqPQ\nBtI5fX9OHri7qrmTSQRoEgjFXH0RA0GtRTRGbr+Ec8SbNCZrW+rLP/yC0PPLKZ5zHT2SFzQmhodi\nC9iK2FvJiMbMMahfFXTt+AynLo+5mwCxwAFuGXZYqqz1NRKFWbTKWnPOks/peTqBTguuAT7tE0er\nazHW+Bih95FE42xO3nkB1K8yU3skCpp7mEeZCzPJg1mzvsV176udnJnu7yb1frSEc11zYA3abNDR\nxSBxWcRwMMBpoLLAQQWHkl5U8yWFHtIMJuAQtDvQayiR7z0ta4w4adX1Dq5D1b1d3Y91vwKqPUOz\nZL6sNnRxZOlE2Fdgr0bRQoj2cD/CCWXm6/736xpj3QOtmwkYHwl0kJonmnvRtupdK4uB8mgR1lEd\nPY2GkNrmVM8/wPklh+NNeQ1dKHL9z1siMEqyzNFeoGlz8KKeMwL6lWOuXYVlV9DYPK1r7KfWtL73\nB+rHXntX//dgSPbQ0EFzwgImJ2NmyFwd7HNWQFtmPlW/LPIwQvl/MvYgT33uuRZHu+cMK7PUkb7f\niam+cZd9GFZyh30gNRK7Y1HWWpSM6PuDaLBGkGcPQ6aGHtfJvr5fQDOt2db7vUHP4mnttbGc6jC8\nr7ZYvKoxlFkSgtj1dO2IozZrt/QMI/SS5gP19ZwxVu3q/Qn6SVPYQk5W89LBqcbLaS/fvqR13DUx\ndPbuqR6Z1Km9nvJcVOv478GIcSe4//R0Nth4SPfZ+U69fva39PfOdek7XNiAdZuECRjo+iXUN7GM\n1v9hX/dpwaDO93C8gumSyOn9TkzMxYyndWUAY8+FgTPqa4xEYChNHbVbN64+XYJhMoIROo3B2GYN\n8ge64RIaZLEMbI0Z53HWgLWM2r3Oddy57ttNwtIODpW4AkZw8EoktC6yzVk0YHz6gYYYz51ErwPd\nowj6JsZcDdytvLiuH6wt/cEDLRgn4lmVfbc11prS89AjnKvdZtFAM476zmCcL4Z23tKd67spnh2Q\n3mawIqeMYSehNp4lqFNL7xdgpHc5BCRgIA5mOAbCThqg/bJ8QevP5hXtRc2XdMPsjs5lB4DozkDX\n7QQuenPN4wlHoQnrRbepdSqN1mQCHYwabOSX91Tv0a7a7jLuQWn26Ann7Olc63IkpTleYozPh7r/\nKNB9gqkfGeL8RTaAi47emx5Vnyei7zQzs/KbpJEYgXk+Z3/qNrQ/ZXk/grZWxIWxjWtgnH1z7uq+\nfl4VSe4HmmhkG7C/TKPomvga4wV+u3me2iVRgh3hnn+MmJmtw3oe4By0G1P7j4ra904+r/dvfUb7\nZhY2yaW3wUgqav+4sqMzVpZ6ehc0tpczGtPjChpwTZzOmEoHTve1uvi3b1hnLWFHFbG7KnucT9AT\nPeRMMUlq3m0G2l8Z3ocpnuvqN0uZM4c/wNWYLIX7UbVpZk1jrMOe/khKY3Va0vWWLuqZZje1rvo9\n/T2JRk1tRef+yFzP1DhEdy1glwbnRfaFeQTWFu5rDjpMM/TwmjhnuTCZM5cZU3tcp4JjJWyq6Uhn\ngcmYzB5HfRFl7A+zen9ElkqFs0k8YD9/jfINgzIvvvii/czP/IwdHBxYNBq1T3/60/bxj3/cPvzh\nD9uv/dqv2dramn33d3+3xWIx++AHP2g/+IM/aJFIxH74h3/4NdHfsIQlLGEJS1jCEpawhCUsYQlL\nWMISlrD8xfINgzKPPfaYfepTn/r33v+lX/qlf++9973vffa+973v3De/d0sRrlf/XPmC3kh5bxto\ntVgS1yV8wwP0f4TmQ4zctkhJUdirWUW2Ds6EGHTv6vrRKTodl9A+yCs6mS0pchef46riKDo5PwP1\nwY0lRnTSYMx4FUW6Uq6+v7YF62RXEbgGKFIB1fbTruoR8YT8BIjs4X3lf0bIbXPQ/+igBzJFt8Ul\nWt0/BR1LKhocQTW66MBm2UYpHcTCJ5LZtaYVu0TIJ3pW71htMu0pkh1H1fsYfRwPxHA1o/eHMBtK\n19RH62m1+e1dMTcWIJlxUKvJmdrMQ+em31OOqkP08rzlkZza9vpt0IwLilauFoWUtnMaE15ebd6J\nC51K3hXiHOX7fdDo+Ant8JjaoXikeucvKcJ98sXPm5lZApTclnW9SFHRziJ5hTdwx3gspb/POoFT\njr526xG1Q+2W+rrbReOhIqbPcEX3O+7INckH3bnapu9X9P1kQd9zQFCzRHOvdwI0TGOkXNXfJyca\n48/eelbff8s36fmPhEqW1hTdTdYVrd54WGPqKzfVz9Gx6lu6quesokDe6Kk+/YtCXDI31O9jMiDb\ntzVuWuiUZG8Laehc0f8txd9PQEQq5BCD6k27IOC4TRXbMGrOUQrkU0OEsdgANBk5hc4Juft92Ew+\niBoo05Qc8mQPtHhLEfiH3yp2lltQnY+fl25Qr6G6d0awi3Z1/efJlb1SVUR/5RGhVpsX9Cw9T2jS\nGLZXkfzevgkxmHYQSoqT342bxDwDU+a25v0xKNfMVf0TI1zqChrLhxhXlVc1No57oHM4IcRhwKRh\nUYzHun/rQHOiUccRC12O+zeE1qzdfLOZmf3Gb3zazMx2/7Hynm9CWIn96N8zM7Nl1reJB3I9VX2T\ncdU3ybqVK6tdmgOtQemAYTJT/VI5TaY67L4MiEgRtkbUfX0siL4rJKcI0tJHI6HQV/9twiA6vadx\nsHxB/T8rgD7h1pKd6Hv1U9UnPdbadgbiWvQ1xxbkxUdAYhIZtcsMFLSHps54rvFVWy6bTWBn0ren\nJzDX1jWPYkNcFZiXBmOtUIYZmMeJBYbbHDZQPKnr7tOXdWg9EdgE+3U9ywA2ZiINwrasnPMoLKwU\nrK55FoevYqDTpvUsimODh3bZ6Utap6dZtFAGOLLALnAzmu+BbEYWp8LUtuaCA40tEziT4SaVBsk0\ntA+cHDoWPE+hBiUwj47FOUvyJHDXwLkmrrUl4qg/zobMkXuge2/X+p2GsXh6JnbDO65pDZniJLN/\nS/n0KxWNpSmMk1snYm3MESmIofcURwejiCtSqaCzQWQOEh24OQVOku0HbICp+eajr5eJsv/gjjKG\nBbbOUnNiuCLC9AwYnbkNzbGzuMbJhDz5xIGu2z7U+zXOQltIN8TZV2Y4iuXszPJV1TUgCS1eVl8F\nTI5UTteY1DXv5rmA+cf8RnvLDRhsnsZWu6D11IFxMkZDpJ/VM9WW2CNxKIu5uv6rz2pMHu1/SXVf\n27HXUy5d0pnjW/9HdOzeIweTDDo9E9DoG1/9A9Xz8I/MzGwNNlWBMTyYowsVMITQpppwVslxXuye\nst90QO+X9ZzjNu3XRQMGXZJ8Fr2Ohf6fSqJJho5b1KNdsQByYK5kcurj8VTv96Oa87EFrIAO94G+\nV5zAtivDBJxprAcaNjPciiK4iQYyk/EM7Di0Gm0WjBk0bGD9DZZoLxg31lK/lwNWB8yfPFqRHfZ9\nyM82cWCj9B+4a3kHPeuVdUYa5ll0erDAaDd/hjsVGjJD9J1K84KdtwT6PRPY/jn0coYLtdnlsjQ/\n5lmcYqCMLBXRbIElO4QNO+iif8H66iR0/l7GTeihx1hvRtqjfufGZ83MbHFL57T0HOYKjLz5su63\nmIslVsGFrQdLaXMN5h+sJ0NjK7a8yf3kxjnbg+2EXdCAvXG5zH7Fc3Rj/DbCJTWPK2cPV72AiZLF\nobLe0f0yMGAWaF299WFcpDa5H3MuQZ8m2bfahzBc2G+iMAfLMGcmvsZOegJjBve7AazYDAzRJnMk\nYL2m0FHqoj8SOSS7Ypfz+jJj9ZwlugmrucO5fEn9kRxojjXUnZauqD+qnup762W1W89V/5Ze0fM3\n0S7bvvs7ZmZ2Og/WFL1/daZ9JMb+HMO9y8wsv5K2y2urVt3WufV6RGz/6FdwXhyI6dc7Vht3i4H2\nl74fIYOkXcXRj3mUxY3oDBe89FBj/uC6/r7bkwPsOK09ctWF9fNF/RbaO0BfLaW2n3oa+5Mc7nQJ\nn2dC4wa3tsJ13ErJRIkuYNt69DHrbmsFFiq/XVPoiDZZP3L8Ns43cC2d6v5eXvUtGesY17OZxmoa\nllUcF9YkLk5Lx19fb/cvpSkTlrCEJSxhCUtYwhKWsIQlLGEJS1jCEpa/Wvkruy/9VUp1SRG0C1tE\nlopE6MnddNBOcXOKXM0nUrffSAqxHVVwzAFRHoA8zw6V151Gg2EDjQar6HHnXSEle7cUaQOUNNcB\nGeiQF03kK0n+fW4ZRBp0cjxTPVMgr4sSbgBniqAtXZA3fLIV53tEnYnItcgrd8hFy5AjbDNFNeO+\nUMQJkcVRKsgfRzk8C3q4rNdUThG8gaso6vEdoXBdb8+KInRYZjDjXiB/5POtrRAhf0RsoVlK/0/3\n1aa7xzA2DoVM+ht69hmuHDFcMNyxIuQV3EKCZFo/oj7w/PNrhZiZHY3lMrScUL0Gq6rPwl35C8+a\nR3m72RILoVoVcuBS/8ot1fNGXvXcSYHO0C6vvCwWxIDk2ssodlsGFypy8k/yqOTP1Wdt9DYu4A5y\nm9zYVfLdM2sa2/5V9H48RZM7HUWHp4E7VT7Q2sFlpaWobqWt5/bIT7yFS8fKCSj9N+t79Z7mwiCH\npgEsgqOWIulrOJDFB0I6kjzXblvtFQXhTCc0x3r39XzpqK5zCGLrvqg5c7eqaHY+IvQxnle7bYO4\nTkDATwvqnywsrzXy/fsnmhMTEIwCjjbpgRxq5rErdt7y+T+TU9b+vsbmhWWYdjDqlqbkhKIJNR2T\n1xzEpLt6ducxfe7Nb97RM+EWcnxLbmtxEUfsyavvMjOzJi5B/azWp4OO2Fn7dzVX/KRYCV5U11td\nU58e94X22FSfy6XVVr2e6jFpo/uU0Tz3O+SVk6vabwv9mYNQzmFFLNCLqOLYMMDdI4s+SAbmXAbE\nM7WEWnwWrRMcc7qo5MdB5998Wd/Pe2rPKsjpblVzOnr1mt5P4uaUB/3yQZkscF6AqdNBKwxtg8VQ\n9W9EQYhBFRceqv4L9IlAPI8aGrN7h2rf85YCTkATGI6QP8zQDckm1Q+36MfSYFf1WXvYzMxipjmY\nyqGtg85VFk2a5a4uOBhluI/GY3cEohuFPQbLwy3Tv6BVzWnc+rjBpUF9uoGL0ggdhxy6GB31QbwI\no4Yc92O0PYbsGUmcs7IDGGgFtXmFPp/j1Pf4jvaO8Yn+7tNXmSHoNSyFcQMWlYPu2TosIBxy2gH7\np6O+Gfa17myltB53YafN0DLLwpZIJtBIyGjdSU5hlKClMCcJfgJboBBDb6Sv53Rh6tzuCVosgxCu\nZd9kr6c0puxPx6BzsKTmaAa4EdVvOhCKOJjA1miD7E5x6cjr+zdvwnxc4FaFftIgqjkQDRzVcut8\nT3PNZX+OwqI66ep6rYjYtRPYs7MRc7PwAF+LJYdmgasdbksxR6hmf6B94xRnnIWrsTxBS6wz1H3i\naKwtUw8PZ7Sso+cdJPSci47G8NLjO2Zm1m7DJq7rDJPwZ7YUaHZ11Ua3+hqjlyq6lg8i2Y/gksGB\nzIeJWJjoXgOYIwuYMx56CD7rwgJGsweDo1rSnnjEnjTvwyZFj20tq7/Xqq/PkKKIm8gzV3QOTRtu\ndCZ26lf/pRg4vfs6Z37zk1on1nDf8FMwSXDraLOuDmEnT1u4hQK6F7qcF2nzSWAowxxg6JuHTsZi\nAfMajbKkl+T7sONgRVRTGnvNlvq8CAMpic5GCR0OJ027m/ptMdAYnrLuubBBjluwkdFkWCzre8k4\nrAbYui7OXlG0EqNJHMQaup4HS8wNtmfYgy5njAXOQxm0hhY4feVg5nTSer4cjnT19AMdw6EfsVgM\nRk8GDbQBrixojY1cvZ8q4m6I2E0XnbzzlIWv784qYhXkcGAct9RH3pKeZQ4bPw8zesz5z+nrXknW\n7RWcZnwfbTFYnnEYhMdf0dhLwKJPN2Gn9dnLa7pODJc8F2JdBEadCyM+CWWxh6NO767a7nSsttkc\n6nOFy7pPblttVW/AEmCMTem8pVU0yE40Zpod7d1OQWMltax2ad/Suu3RxG20VfIwVwq4ww1rbNoj\njelUXO2SDVwAYZsNcHocor1TxPW1x7k4cI3tZWDQwNTxcbNzGJNpHqtP1kMHN6YUjpNRj/9ztlhE\nz8+mMjPr0m75LM6fNT3HZltj9CZr54WEzqZnsG57X9JhdHl5x8zMCm/DMXJXn/eKZHGk1Q4nrDmZ\nmq5Ti2vdj8OKMzPrHMxsUOqag5ZVFJ259JY+k39R82S8ggtm4GaKluDmjN8yTdi9KbVRA42mIgyb\n2TpUN9xIn7kstmmZMZHnvB5vkmXR0Z6XhC3ksFe1+j5tx/o4VdvvUK82OnNlmDJ3qVc+oOyt49Y2\n01loDKPQv6zPxe9PeV9tPeV86hS0XsfH/ObKqA8TzK00vy3H7NHFgl5zGZ0HLfL195uQKROWsIQl\nLGEJS1jCEpawhCUsYQlLWMLyBpQ3lCmTW90xM7PNa0IcShcV4T+4J7Qq4ipilYwrenx0D8eHTZxx\nNoVYBCr79X1QRZgnubS+lwWFu31TbIgGeZDVFSECC9xA/HVdJ4q69KSHs9Cuoo2NjiJeZRx25gFS\nMAs0IBRRnLfJr0dl2kEv5PBQr6sX9LkEzhQLI0qKw0YlqZy+ZEL3a6Nj4pOTFiO6awtQtrg+50YU\n0evdFKJRuaZ2+Bv/7QcsPxZCNhwJuVt1FVV85TkxNoYvK2qYjwR1VjSweQPWEn1QIXLbO1SdVyu6\njtdTn4zvgJy9aUd1Jye2G4gGgLietxx1FY0sPaVI/zp9uRcJXJ3UNtEjPWv/iupzlFMf9+a4edTF\nOMmjqbA/Ur0uD3X9OCid9XbNzGz4TeqL9aQYIfGhGByvwlrYHIECJUB53ibtlmvolnQiYqgcoTO0\nlVbk3+0JMWhU1d6Pkk/ZPdRYasHQWQLhnvRU38ZI0dyIyfFhsq16Z3HHOEa6pe+JYZK7qHZ6eB3X\nrF0xaCLoYBTzijp7tKO32qWeoItJIfLzgqK7m7BOzmIaY2XT2F2Jw/KYiblUv6Y5OgdZePgFkB9U\n4PvkwE5g7EQ3NYYDvReX97ONB3ng36iUM0IJOms4v1RwFMNNYQ5TIQELKpkmNxT2QYZBfeERKfpn\n0EC582dyXFm8onWlCOPud39KGls/V/+EmZk9Yt9uZmZ/82npaU0cja27r8Ay6go1Mb+vAAAgAElE\nQVQdeugdW9xfbTL3dL3WVIiqZWEpkOPuwYrqR0CEQZ8qSxrLDto4Pho0iQx6GKxLiwnOZUmQYl/r\n3Xio50/vg1hW1A7Xrun5qzndp3mI7seG6tMAgX3qyhNmZvboP5OWwgioNg7MNUfjpox+VAFGX6KP\nPhE5wMenYmXNGyDfQMBJR/dtkS+eDpwjcHRzRnq+Psyl85b4BHc7V2tQJAJcOFL9EzEhO6tranef\ncVNaqF8OmJsRGDPTEyExfVgFvQn7B+4kERBYD5elHqyWGWuIy5Iz66IFEZnaNInGVYX3QL9bJ2Ko\nbeT19zununcJWOV4iqMJIFQuh/bIYkd1zOG0lWS9hNmS7aMpAvsnhouSHYMadXSfNQfdNNww3Ljm\n+QDUeQBTZAGCuQRiuICZOA6cVHwYF2XaEr23fgxmnq8+cYL8cKRhDL2Q6Fhjt9VD6wXWUwqWbJH1\nMN4O1h1osOcsOTRabt3UWG1XYASh9bJ0jTk0gBXb1NyNzQMtAjoVhk8HLZkFOlQ+Giw+7IVlHIGW\ncmgloDERNd1/4ek5yrAX1uIaowsHBk9EY/MMhwszs/+fvTeLkWRL7/u+jIjc96Wy9uqq3vvuc2fj\ncBbOiBRNSgIIUZAF2PKLAMEwYMN+9IthA/aDIBiwDRk2DBneCBugFtigODQtcUQOOfvMnbvMvbf3\n7uqqrj33PTMiM/3w/8W0aWDI6qd+ifNSS0ZGnPOd7yzxff/z/yc3Vy020x5gSSY0xh7hahWOOFRR\nkh34SXz5ehtVmGpP92+RcXU80L6boYKd0B9nF1r3aya0XD7Pufw2PCXpmi1BQU6S8t1cXb7pwvfT\nhe+owLzVw3YF+C3GabhJBqyJ7CXSKHyNpqgFNTVPF76iuiypS/s58xh9MDhVnX0Ac/N+YC9Tzv+l\nkJmzb2otC1bEr3jw9H8xM7PFh0IV5EFe76ztqv1z0F7Hqv8QRGC5rp8zqjFAucpQ2HLjYR/Kph6c\nX5MCvCUu3IKoelyA9LYK8xDIFTfMZPdYN+JwfC1B6AShEpf6IQvy0oWzZsieZ07meYYip4/9syFi\naRWVJlBnPmpH3kIG74F0ybdAXRfgckyqXukxeypQDT7oEY/1zE8yh8Ell0Idaoi9sl3tcUJ/W828\n4DGcLHoWnJKJr6AQmlD9GqgDVkDYJMYholJ/l0qXz2HnXxN6qtwBWdbWd0twHzogQGYgBZsPQHiA\neBz01DfX1lXHfZLsLvPdAPSXC29Fuymf+/zXbskGcGo9eap96ypVPxprPsob4x6ezID5BfC/VUFU\nJFr64pNT9VmvC3rtWHurRk429kqqd5l5uct9Dj7UPJQHMVTZAeF+DiKRPVkspvb/4ETI+AzqsK+9\nrXr4IFeSsRBtqv3oDu8p45bmiMEpSJe49p+34NyJLdWHY1B3febVFPO2S8MTQIigHbG+B0IJ3qPJ\nmZ4fqh4Ww/vzJp3twj96yTK+0N7wArTXlaH2iHPUrvZSWhcy5+zJ8M3wIMJpQ5ugJEqiO29qHb/2\nNXHBBSu8O7/3XdUb1F0GRGoe3ikzs9vXrtmiOLLmD0BBxtWnPvuyEQi0CvuoVl73Xm2rTlMDFVWB\nI6sKmheU0nSJOtxTXX8v5P2EH9MHhWpv6h1mHZ/w5qDOhrLJ+kht7ZVVr5yjsZYr6L7LHvtlTra0\nQXclS/r78QAevEe6Pl/QPJ7Ma8ws08Qd3pVvrWNbZ6F6DkEDO2M9x23p/w7v81bUfTcr+r4Ph2D9\nXLY+iaO4+wtKhJSJSlSiEpWoRCUqUYlKVKISlahEJSpReQXllSJlfvDTn5j9PbP/8f/6ppmZfe4N\nRczLnDevcQ4yv0GGEyWAxRkRtAxpNBAjyb4iceWqsknzmTIic/hGRs+FOrh6SxwBb/+yookJmLuL\nW4rOBhfKAn73n/yJmZkNwrN1oD7CM831uaKS4y1F+EoJuARWyFqSOc1zHnC51H1GTc7kDVG62dZ1\nZweKCB5PFbV9c08RwDMyHw4Z8VSAssaKvl/HDGec2Q7PjV4BKVOymV0MyUq3dT6vfP0zssWFIvlt\nIsTzB3CC9BXJDgqyWZzI8qio/x89VcT9WhV0Acz+DxtCI216ss000PVj0EMl9+XigNWKbLBMw/iN\nWlLAGVd/pkxjexV+jIaimh2yLqljVI4u1I7Nz8rG1Yna/ewHUv5K1bDxLqo/STLDRMgHhMJzQ6Eb\nevBHnIFoyf5IGYn4kVIa2ZR8bOOX5IOrI7Htv7chpIsN5NPzhaLS57DGx1f3zcysf6H2bN4E6fIz\nsntEnY9Cxa257NExta+WVSbi4+8q4xB7/lfMzGw9rvs9WNHPW6vy8RZcDSXOXz7kTG1lVRmOGtw5\n9zbUj68NlYVskwn9uK+xuD1T1HuYgZ9jqGjyw024HVy1L82ZX39b9c2Y7BmLK1o9SogDInvz8ogq\n75bGbz5FZHqqvlqca1ytTFCOQpmmGpPvuIyjel11WKOPu+eqS72tvm2NZKvdNc1HT1p/PtKdMCFq\nVtKyNUfxrUvWa6Og7McAfqOTe3r+1jX5dipQJL+XAE0F0i8JGmnGPLec63OvSuYxpnll4KjvYiiw\neEv5TC48IwsHQIxMX4Is2ZSM5/yMTCjcDtmkskMzY6wz/8VmZOcW8r1cVX8XOTtrKM30QZ1trapf\nkrDxt0dCrfkgXnwy4UvUM8oZZaFaZ2pnKqbnzoshv5Pam15orBZ3Xk7pYM5zHEfzdIKzvpO2/GLy\nXP2SiYMSREWvMya7SWrdAWmURznMxW/8JJwO8HGNUXqbwwWUMz23iZpKohKqhWisJTMl81tCxOyH\n4kpztfUIHp43bn9J18LvkK+rDqsop3RLsvWyB//CAuWoGOenUeEbzjRO3TQIlSkqRqgDZTOqW+dI\nz78Y63ku6m8ZFFaK9Nl4HioSgmqokP0GiZEEleTkNYZc1mwHRbAi57UXZGxHZOeKKXgtkvq/Uw77\nDP43smD9pObH3BzuMdQ1+p2XQ2bairJ03hPNT80T+WA/Jft4m/BRgYg5b6hf4gX5QGlNdu8/FDJx\nCTK0AJJnDu9Jraj1JZ3XWB2zp+iR5ZvHNPbmqJokakIQzlAamjNP9+Oaoyqp8Jy+Wa0wtXFSfpGF\n662HspkDGjcOX1OQpB9AIKU8kDAjtS87ha+PuTWApy+5oft2nVDZQs9ekHn26Odh+5mNkyEvmurg\nF7RGTclMLlDV8NiOJmbUEVTsGB6HDBnY8TMQxnAOLuHBWYIoLsHPcwFaar5QW49Odf/qQkjkjbq+\nl117OUXIJX3eGSrLHUNxZU0ADSuiKhcbwWMB4m7CPjSxkG1SWfa1SbgE4RhMZkFwHDOPgBJbkHH1\n4AYbpkCygMDx5yjKwK+x6Ff4HmjUUP0EfiJ/RfXMuJr3+tg73kbRBh8fF+Rj3SE8FhXtubwU6Osz\n2XlShNuQ/a7P2PNm8PDBQ1VApaV3CpKG/Wop7O+Ow3PhXZF1fo5iqHY0lvrMHX0U2vL43nCCStRM\n/eQsXvBmeG7Zxvhs7oJ1LS87JOBR6cJtMYevZQxn5aL/Yoz9ZcU5UFt+9J6Q0INnZPvZB6e24IKq\nsQaAFE6icraFqmcM13DhV5qeaR5OgZApZphvUK/MptUXV4q67/FU80k2qfvleDfKMv/MZqpPh7U9\nN8PHQN7V927wHM3vE3juCqDfUiDlc1va77Zb8onpE/08aTFWXPlUHmXCg7b2UAlP9YzBt7eZ0TxX\nToPCWuUnCmqpnHz6BqckfE4vNO/pvcNpoe4JF1oDlaZ6lj4HkTmHA8bNgsIFORJDbSkzAUEO8nJR\nxMfgf5uATOqDmp3DD9VPXt5HzMyWoK89kCxBGkTV59Te5iPZaV5Qv76+Ivsl7nzezMx6qKI2Hmsu\nOngue//s937PzMzK2pLZyUS/1CsogHb1/jYMeU7MbObNLJ+s2WpZ727DY9nySYN3OGC4C/iPNlA7\nO4Fv7GZNvnkKesodqg1Z9hwXK/K1Osqqoz14TJnfm57WiRXmn08/1DtF+5n2jVmQOaU3hR5ajpmv\n2Le6np7bTuvvHPxyA9Q+yyfwrHmqf80BzjUGBco+rl9jfmprvuuhvJju6n4O+/H5WPXYhs8tUUId\nmZ/DEgjQc933gPeS5JHm/19UIqRMVKISlahEJSpRiUpUohKVqEQlKlGJyisorxQpc+utXzEzs7e+\n9NfNzGxKJHwf7ffGh/qZQRN+HmrZhxwsHL1tLBXti62TrVtTtPP4Q860gVgp7iiD8uZviv8jwTnx\np58oqpsLZI5tUyRv9x0pRjQPFekLnuj8+KSpCNi5q2jjHKWd2obOWS+nykwct/fNzOzamqKbDc6r\nz6h/kjPPGc6TzycoMhSU9XPKijQmJ8rapWQOS+wpulquyx6xiq6bPVe0dPWmouHuqe73g//q9+3T\n/0CR09QCDpL//JfMzGz8O4r6ff7d3zQzs8oN3bsGb0XlSFn+s3uKGs7P4dnJKMo4z5Hd8vR/l3N8\nnYFsWl1VlHEw4cxsDCTKJUuNjGH7vrIYB9dQ6BrCFbDCeeyJ+vJdV1HKJ4+VqZw2ZZtVCebYBL6H\np0+/Z2ZmXlOR8hJZ9LW31BetIWdsOXN7QYTfn6id79yRfU5BQ+RT6vtnS2XhMjtk15/JN47f5Rz0\nUPWctvT/xh3V93UUB+6dKVPQ31U/3D0m+so58wVImDucy3Z9/V2AN2RtX/f/iEOnbknR63lqV+Y6\nh+W+JB8J0mT5SShfm+r5DRSEGp/R9eO2EFHdpnyxD/JlAS9AnDFbv5D94mU99wrntTucD3dBm10B\nRVD1lLFpeeqXCaog89RLnN9GUWYAl8zkXM9I1clOB3pW2Yc7BKTDzKROtrGNMsCh2lC6kC3roAZa\n78kWbkPP+Td+Q/PC+ieqa31TWaI+EfPmM40VB16dwlVlqZYgPib3NRbGIz0vWKKuBOu8swpqgIC6\nCxeLAx/FEPWkXDnkDFB7WijRVFBn6qU0ZuItzSfuVN9PcNY+udTf05BbYaDv5VbVJ94VtWtRh8Pm\nTPPskLHXI6OxHAvdEZRln3d+SfPsBlm2yQEqcOeq3whkjjNSO+Og51pT+XgCNbueKx/NmOw2ggeq\n6JEhJnt32TLAzjN8soRyXAbEUeijsTnXgVKYwV1w+69o3Wg+0zy7/54UeBIgd2LwjExP1a7Dpubf\nzYTG8ixUD8Ev4qgExMlEraamloZnovJrQoxtfVF98Dv/5f9hZmZz1p6U6brEUj+7qG0kQA9cTDmz\nj28kyDROTQM9kVMfjmJwyJB9X8Z1/3ICZcM8fBbHaqMf5GiLfHfm04YCE8hIWTYHpEumkuc5qFJk\n4Wghy50C0RMnezWYqx75kOKLc+WBB1cZ6nZOgPrICsqFZHZnKGkF3M9PvlzeKQlixKoh9ANE4MdC\nz/X/H833X/mifLvb0Ngq19XnqbKe+9F9ZW4towxlKa3rp6jNrWxrTB3Bw3F2pDljnJB9Uq7sUoMn\najnSc2acY8+kNbYTvu7TSodSYmbPOsdWm2NvuIVKGbKXGdVvCnrETtXOCbwfhj8EUA2cg0LIgnLp\ng5hJYJ/cEhWvmJCiixF+V5KP9xzPpmlUKlDqM5RLOjUyh6A9Z/AqJPLh+EMNCO6t+EJr0Wgh380l\nZPMlew0HPqRsAZ6dI/X90zMQg/hUgbGQdGTjRmNkL1NifC/kMimA5Zgk9dx5R/NdCsTitAcSBGTL\nAG6qnKP/hwpii4m+7y5CzgK1MwGKwRvpeXMQntlT5oJ12XpRQBWUjfGcfW92rgk+iYrQAhW4OEjF\nDuRWKZA2zYD1ywOdTDZ+VgFNwD797Jl8IJjChViWL7oj9d+4onYMuox5UAZZC5WE4DUBOVlLww8S\naK4poFI6hWcqPtf3uihB+gNQXjH4p1g/LOStSmouSoKqNjMrFNKW5z1icgSHGei8QZExD3p4wf48\nwb5h7F4eBXECn9D+qVC0jY+ALMS1P/rCNe2r19a1r3LgS0otQVz0tHY8fqifhRWNlXSOea4BYo61\nK5dA6e8CJapr8r3CNqo8KJpNQbH6TdXnaQfkDSiICb7gt+BGKem6EQgeb4zaZ6B5KPYcDqohKIOR\n7tcHpVZKaS9gA80Lo4V8K9bTfZ7OdJ/CQu3e2dZ+1gMZXwBxPwrUh0uU1eacHhg80/8XjJV8Ad6m\nLFxnoHzHcN3EV0BygvBcsgdqsNbHplrHxuwV5uydlkl8n7Geh19vxPqwyLGJmr4ch1nIsdN9qn56\nMtHeojLXXjZTQ3nyO7JT2wVlVwKZD+o3v6exs9WXvVpZ1vENFIfm2oMmR/p7sSLEe/3aiz1Ueq9s\n583HFh9pfHThrMqOZJN0D9Q+vDk9+IAScBKexuWLVRSiPPZpy7rekzunIPhQzZssNO7Hm5rfrzJP\nDfKgpnbU1jf3xOvZPgL96mi/2eddsgbna2mPEzQO68IZKNQ1EJUZ+eYG88McpOTsED7PNmjYJusJ\ncQQP5cWZo7Wu0JdvZOCwCRHmLRCeaVBJo3N9b4CK1CY8cUFN69gvKhFSJipRiUpUohKVqEQlKlGJ\nSlSiEpWoROUVlFeKlLnzRakuff3f+3tmZtb8VNm35x/8xMzMOt9SNPDgviJj6yVlXLo1RapipojU\nlOx7YVWRtiKZ18c9Rb7c3K6Zmd28puyj11V089v/7I/MzOzj70uRqLam+1//VfGtVJOKPhZSZJGu\nKzI3rqLXfkEkfaHnT+AHqWQV+XNTyvRkUbpZjvV3o68Im0/Gu72iTLxPBG/hk8ngfGePzFC2QHYr\nRtbSUyRuhHpLfKn7xTv63qMD8Yo0v/s9czibv31H2d40Kg4H92SjD+fSph8T6e1uKgLt3SRijYpP\np6JnllBGWQaKgk5yypIk4O3owqvTRcXj5Nm+mZll9kI5jcuVj1AD8o9Q6xmp3jXOes6aiqZmeuqT\ngwcfmJnZOhnLnRvyiYuhMg6TE0VBy/uKXr7X17nFdzZ0RjPmCulS76ueo6L6JoY6Rf6W+vZnA3Hz\n5NuKNPfHat/NK/r+xOFM7ZrscmVf2bOtunz3caBM6vBQkfLBM0Wf4/FdPS+nqK7HuUwPLphUU+2e\nhGiBnMZGhqjxkzVFte8UFAlPubp/+whOn21QDqb61Z6rn2oo5ASn8qVFUhmOBGdu332i7ze3dH+/\no/64da72nCU4d5lUfSagMh7AnbPeUqb5mCzgLqiWg3Uhb6YPdJ/yFbUz9z5qXZcoTgJ2ddLrPlkT\nl4xeoaO+dn2Nu3ab89PYcHQXzqm20FXXb8t210HetS80NhZkZrsz2Wg15K7ivHcrLR9bu6762B5n\nX8ngDVrqu8ECxQQyfSGnVBdFhowLemnCWdUyGWQQeS2U0GZkuR3Y4p0pSBRQC96EjCV9kefc8zCu\nSH0aNvk0YyUBe/zsRH2YHqmPr9Q1Bpecxx6P1afFN0BjgXpw4SjwlvKZbkvPOXyo7M+yAbcC82US\niM6STIMHcmW0rnmuXIBnaa52Vwpkj5L6uX5TWcbLFi8GmoTnLcLEKBnrkHtgBiojBcrg4+fiBch9\nRuvB3fc1x/zkX33HzMzeClW7yNLNUTOJo6wxXciXPz3SXJI9RzphS3NJ4VRzbSnRtT7KAN6XNP5+\nGVWbf1iXwsvpD8kqw0MUI7M67MK35qjPcyAXk1kyjSPGUwvEnc9aA9Ik4Fz3nKz045HqFKev86Cr\nMjXWOpRX5hNlPhPwChXh6RmzZgUx1DDg+IqD8JgPUTRgXRr1ZPuQW2YZBwUGCq4HgmbJefEUmUR3\nqO+n0/BYkGeaoEaV7Mkuly3zAqqCt2S3lbLG8AcPtE5+fO/7Zma2R2ZystS8vjdi/StqPTr75Edm\nZlZD6S3zRbhwGrJLrK12Pf6p1s8+SJT6Fd13846ee+sNZVBzCdmtivpIsIqPdtXent/+eRu+8cVf\nsR5qHQO4h+IJzQkuPh6DD29xjbnJQDZ15Q9dlOnsTP6UrqJ+ldecmQKNZyjtDGIojOF/vqv+bsw9\nK1Zkk49R9VlLa03KMk8EIaKDfVubbH0xDi+Ex5hAmcwbkJ3m+mEP9C3zWAY+nUcDjbdMmJntosq3\njqoPqhrjkLjjkmXcVtsCUAG1otaBFmqd/SkZZgv5MEBmxmSHlZl8+CJD5hRktjsEtQAaIliFkwb1\nqBxcM0P4oYoJ9qOg35KBnlevqQ/PEDB0IPwpkxTvt5nvUZ3K5EAmGugrUFTBFDTUBusZnDnThOzn\noBCXAMk5DpFOcT14PmAOSKPERSZ5AmLUm6g9CRCXo5p8feGGaokgwUNVExCa8QxoiCScjXEQnL7s\nMQPtl+5ivyXfN7PBdGwroL/6eRTcQDtkWKfZJtgU9amQSy39EiDvVYgeb/91vUvM34U/7QJ0GEpZ\nBhJjCPdLYwKfGr5dWcCTWdJ4jYFu8tfUttUrIMdB/56j0re6qTF2ZVs+d8r+8+mZnnN1XftUF2XB\n/I7qW1rC0TWAk7GoeTUDH928L5s8vc/Ygj+jY6AU2BNVQJ50+f/JXe2hRijpePDNFeG3KxXgjMmi\nqBsqdLn6ewYvYJdTDWN4QBzQp3WQ33mQfn2fV1vu03dk1xxoq3xX8zUiTlZEjTZeVicny7r/vqn9\nw8eap6eg1WJlfANFoDR8SrHUy6HutljnfN6X7jOWzhoogPG5wXl5BHfM7gi+KE9jcfYchE9C/pIG\n9XYXLsiNmtaTFdBjaXhjChsvVPsGpbEFJwM7Q7FvcazxPMJHUhPmtTz7bdSSFqiD5nq8t3LqIPWa\nfLHxDB89oO/gTzs/13t3MVwzWNt79/X9dl8+ezUr254/Ys3hnbKAEuI0rzHU5rSEG9c8Eu5VXPoo\nA/q+yf67BTq4CrIwgcKg5aUuumAvUADd6+BT46yeC+2qeey/J3m9P4zgT1qwH6yXVJ9sG+XgJ5BO\n/oISIWWiEpWoRCUqUYlKVKISlahEJSpRiUpUXkF5pUiZpz+9a/b25+zh7ysi5pLh3tlW5rHyNUVJ\nx6fKpo/halk2FWlbgfnbO1V0ckH2PVRbWk4UYVt9QxmWBefMP/yWMp1zlHI+97r4Vba/rKh2qqDI\n3hC1p/mpnpcImbVn+rwEsuXsWAiZ2ZGimMmUMst5FA6GTf0/s0JYFkWiQpzo8yn672W1f7jkjHBS\nEbVCAhb6GVk/QmlJzqfPTh9zW2VajgJl8oN91FFWrtmb18QZk35dtk2RvVkmFOUcwtew5BmdM7gH\nKqhgOLL1Guf9vGtq2wmKJTEQEOkraMYn1YYGmTqXbFk8eJG1uEzJf8g57V/R9xdnitCnWurr7jWh\nE9yJItm1ktpc2lSEe5xSvc/po9VPVd8WPBhfuCbOBkNFyifjd7+t6Otn6tg4q7570NL39xayU32m\n++5PFD39ePHHqt8j3e/aV9W3zcU6LVJ02EMlZJKXnfbr6rOVPuiu+/i2E6qZ6LoHA5RfVoRCKK/v\nqp2fqB6TuqK6V5pyksOp7HL6XH9vfVX1Wp/IjlNUmOxUnAdPimpf557qU7kn3793S3Z5bQJHARna\nNhwFPlxCHggsDx6OLTIVhxNF6qtkn6Y78qPVtjIYPzvV/9MF+eMssWWXLefPla0/m4YKI6qzN1K2\naLQM/yYjt1Tfx+EEuBjKdr0D+er2lmwwyyubtPl5qSqVyOydcMa819I47sYVAd8r6PpUFl4extRR\nVxH0PgHyOmfa11bkWwVX9ZiQFXHjcMokVY8J812jp/8PfLUj68snlmSERzPGYFdZkAz8SW6HlCnZ\ncIf5pduXjxd8FFdKIHRQ/BmS8ajc0vXlsvrEien/R03ZwZ3oOa3HH/+5v5eoVy0Pw8y2fKXQVnt7\noDmWCXhJ6rLb5hX5UIJMxnQq35gwZ7XIJk4OXnAFXKbMHJA38J0kaceCeTgApeJmlHHJkD3rPBdi\nc0gGqfK65rh3plo3XrsjjqHzYxBIU1CEKGBk97jfgLG81JhbwPvhouCWspmNv/++mZn9D3/4+2Zm\n9g//2//CzMx+/C+EyilNNG/sbknNrQOiJQcn1cYNzZOtQ92zXNPa0YPXIuaBKCnzvTHZ6KS+18EW\nYTZ+3lcftEH9JHMoM0zlO4tYqMKh+/YuQNzk4JBCBcMKnNGHQyVFdj5gDMb78u0AW0xQLRot9L0u\nXDkd5ts9snQ+6LA0Gd4F6Nk8aIFR9wXXymXKYiCfPGPdunbzXTMze+c3xBl294/ke8mx2n98jArH\nW/DaoUoyGzI/VtXOq6Cvuigrto51/TjQ86qvKZv27q/r/Hw+wZhsqR7TUz3vUVN2mZBhPxnA0zKW\nHX/rv/8b9gf/5J9aYq4xU0AJbLjQ37UkPCVxIT1LcL/E0prfi0k4iEAeBRuyX2+ueuZSoJTJXuY4\nb1/y83yOgg0Z8FqnYOkSCi1kk7PwHPlxsswZjZeZLx8sgDwcZ/X5kr6NseYna6jN8axMUmuGU9L9\nXe4f9zU/L1DRSec1DmNlkHkz9WU5+RdnLv//ZQbP3dkT2aQItCKbVZ9nZmTxBYQzjwxpCmRGF86D\nHFwmXfiCLA93CmNqPlG9chv63rQFihRVpCxjMoB7ZQKC2mXsrnHdRRdECvvOMpw4F9i3kNO8uImC\n28M2KnJs1cr4UjstO48matj6GqoqqIo4qD5NQNqk4K0y0AntmPotx5gN6nBUVKgf600cH5zAR7UE\nBT3Hf0qooQxDzoZkmO1X+xfsUTugz6bPpvbzsijYOMbcBIpjHiKm2IvFUW7LtFAJBO0XcppdpnRX\nUIRxQFaw9n50Vyqo1+faD+a2teatr6Hc2lVdKjfw4XnIsyNf647Yy/ThkQxk00IVNBachwcXzO+7\nIELO9HcNorraHa0fG3DNjFKgbB9rXqqC4lwwD8VR18uhVFYEFRW70Oe9AzhkUNjpDfX/Zk9r4hMU\nLBesoXu3dJ8CyMAVlGSrQz2ndc6e5ar+f6Wm7/WYZxr3hV5dDuEV2WDdQtcw5N0AACAASURBVBXU\nRQ0vC/dh0FY7zyfy4UVMe6bAl92Lnr43RY1wg597rPUVUBz739Vzu+yPkyjJHT6V3a++CYfOJcsA\n5JG7qT3E9AIVU9Bm/aJ+JrY0tlbPWfdAC9bWUUjjRMFWVfv4VAUVP+aatRxjY6H6BQn5TeM5PExv\nmLUe/9Ay/Z514dxaAiVegBSLrzEeUUdOwic6ApXqs/Z6oapbW+Np1ZPvJe6orfGxfDBb1bNf/5ze\nDUZp3d+5z37obqiypDZOQVIXS9ggpfnsEIXJbZDloxiI96yUpnZSzIOgcDPP4YKMa+3MoXI8YZ5b\njFFtO9Ln+yecAuD/kzTrBipunZruu8r7QVxbJBugApjkH3ebmufXMnpP+EUlQspEJSpRiUpUohKV\nqEQlKlGJSlSiEpWovILySpEy5yeKti45++nDSt84UQS7RFanC5fKPDzL63Du8UKfn/b1/RvojM/O\nQLRwRCyRUVR21iEjc65ocA4m8u3rRP7INAe+7hcybCdqil35cd2wOOdcJ/wZVU9R5dY9Mh5TRWHr\noCFaRD0zJUXOdokUzuB4iHMuNHDhJ7m7b2ZmY7J8STLE7a6in6kN1TcBD0CrqeiqF56N68o+Hew6\n6zr2rZ7QRkc/UtY3B3qghu791g1lwWt5RTmPJ4pw5/ZVh3mdyHtOdS9ucKaebM8Y/p6AM6HHaUUR\nU9dlm2u7uj42fXH2/TJl86rq3Z6pnmN8pM85c+cHet7OqmzRuK7oaq0tmzz+oeqVDFWhyLCeQS5f\nqCgTuov2/PsNsl8baq/TE9eMtRQhT6fkW0X4LlJwxNy8JV9Ifqio6P46/Egx9UXdZMfuhXzxNC/0\n1EZWPlNd1TnGE1fR3+eNJ/bvmtkYVYw+Z4LjcBSkn+zqe/BktK+iSvKRfOQcO1w94NzkOs/x9PN9\n+sF7pPsvrsrHS4caI+0yykBN8T6tva3o+f5jPe/xAIWGPplruB/8hu4zI3s1rCnDHMvKnz4cK8Nw\n9b4ywtfIrBTXlMVcBTXyxFO0+zKlvqEsQaFCxB2m/3gP9YeOnu2RpXdA0M3hWUiR0JsQiX/wJ8oi\nL6fytTL8CBdwp4Q8GPEbisRXOmQqO7LZ2b7q/pgz+uGZ+gncVIltfW9I5m864Ex8Aa4RlAj6x6EC\nDEoHLflQCjZ8tyBfHhjIOjKjHZPvjp6AToBxv0CGNNmCywFEjjfRc+IVQvycly6hKuR/X339cCnU\nVZCEXT9H5iRUs0rPuR9ZMxRxlsOQC0HfGzK/5uLqcw+lsSzZMgcOgAFnh4+bcPmgLOHn5KP3TjnU\ne8nizWVHL1T64TkOWcxckXP+2LGdUb/s5DR3pTnX3i9oXs+vy47jE42pCYpliXXZcRb2I+ojhrJP\nMqexkkN9wED3TfNVu/XbQms+5Rz2l//ml8zMLLPxupmZPf4j9cEYpat5W8/0Smpbd6o+PhkJPelO\nxKM2BgFShIcsVCiZBOqLUDMiEWgdWN3U5402iLsjMoFX9NzzC/lioabrA1BqS3wjVGCJlzQGpoiP\nOCDr+kNU1vhZxhf8kb7fIeO7saGxkk+xxl4wv8Cp00GFqQpfxwjVuSUKW9nUy/GFPDwX2uvogTi/\n6mmNhTtZzX+xTXyEOSCJKkm7D+8J814C/pPlNFSZ0hidTfbNzCyY6fPSVf3/a19WpjST0vrwBGWv\n2U/10z/Tuu3PZc9BT/aPg4TJso6bmW1OHfNBE7gj2bUcI5sZMHfgBj147vyCxlIlr3aWc7KbW9T8\nveJpbKZWdP2MzHID1Zj54s+r5gVNuCImC5uh6lZl3zYFjbuShxurB6oHPohpDqQJ82eZ3GGvTLYX\n1JHLfLLMyoa5LP9HYdKbqk4rnPFPleWECZDODa5LwWd02bJeUN9N1+EgKcvGfeaRuO2amVkaREY7\nD2+Eh2+SWV6kQMYwf/tDVDng3gmwcQyeH8upj6BcMR9OmVVX81EGXzw6hbusDbqJ9et8ob6KwSdy\ndiqfenpXvrtxU6iNCvvui45+Nldkx+GZ7JsDxRaqSKXP1H/nefl+pouKCfvUQqiORP+UAYzP4PjJ\nrGm+9NlXt1EpyXtqbz8RQo7keyO6y03BXbHQDacj1BVnIDBZ7wobrGtmZjnfxktd76LyZQOU08ik\nd4ey13wdxSJ4mNzB5RFVs4H2g4coWZWuUsc/lm3mzN8rK2pb0kWl7kT7vM599nOgZbMZje9UBl4M\nD94KEDPLrPqIHYR1LvT51R0h8IarcKU8A2UK39tZA6R0QT540tE6coXx3Gbt8vuah+qv635+F16O\nnnz4wffEoeXCw5eCT6N2RXuzz39GXJYBPHcO86MTclf19P9wDxObCqVw8P19fT4PURKyVzcAwX6s\nvVqyIHRtHJ6hXEjtUtDf8Znal/dQ5IFHKg9nTlJD1RYd7U+fPdKaXlqT3ba3tc5lPqd+OTjV/v3k\nTOvxwRPNLcntl1OE9Pvqj3P4R8ubnzUzs8pA7y8z+PW8iuxeuaYxcXFfFd6/ABlUVXtWQPB3UERa\nW0WxjDHVYY6ZoPiY677gwEkctq05zFh2zHhIwvmHsOKyAMKb98wLxlezp3vtrev9djrhFAXqaj0U\nsz76ntC+c1D/Pghux9HfabjA4qDM+mXGRkd1jBdRlqqq7RnT95Nz+Dd5p0029fynJe2NCgmtrTXU\nNWd7IK9jOjXQOpRNuoc6xdBsy6c6ayH/qWy8WeLkSg9FM94lC2n1PeJTdgza62tf1nXNT9S+1KE4\ndSaZvxjhHSFlohKVqEQlKlGJSlSiEpWoRCUqUYlKVF5BeaVImT0YuD/7hqKpHVAXU1Aa664y3+tk\nEtofKSp5AYN3LI3O+IKI27kiWUPO1ua9XTMzS06IqqI8kYZZe5XsnANvx9EDoSEeXui6rdcVYcsX\nFdW9sq16Jrc4v9hHSaGoyGKW89bBqSJiZ33OLT5WNLSXlrkfwD0wOtf396bKRiXQUR/CoTN5W5G2\nOBwSDmeXk2XO21/o/u3HyszvpBWN74ThcpQ0Bumy5W7qrOENztpnyDLMUeU46ytC3AJFMOjI1sux\nbFSLKVKcg8OgTHSzsqmfp7TdLtBob8GUHw+Z9Mm2vNwRf/M5n11+rvuuzZQxPoIx/41t1ec+tl37\n4Q/MzOwwiUpEWlFch0yxS5bEruj/mc+GtpQdaj31Qb6grNHTJ/DzwGK/66ovn41l+4MKZ4I/0f1i\nPMdLgkBCYeGMzEmsREbzTNHcDufGXc4nVs5AJ4z1nOxQ4dcTrlsb6+96QVHdZwX56FZT9U6P9Pzn\nQ/lgh8/3HyvaXB+pvwrwsDSL8q1WWVHj2ZHGyptzlH825QeDY42xVTK7w6zGRLeqfj2Hs+LGiqLl\nsR73z8lOre+RHV0ls31N9vSPYcWfqv1nh/K/fPXyyjr5jnx0MJENOsf0xQnZgD68DFmyDrjqGL6M\nMWpuzo6e2ftU2fL9H+j899EqNsvr+204C4bn8o0x2WaDOX8+UFtm68pgxm/Al+PBeJ+XzWLwS4xA\nluThCDglO7XkZ4EMp5dBBSKueiyHGt85svYDOFAyG+rDeEXtynpw1jxHDahARpGzuM2hsnfOSGMs\n1Vf90/BNjFOq/7LAmf+Z5hDP0X1yoB+mKAEchdl3MqreUoN+ASdXtaAx6MHXVC/umpnZuWkM+vRf\nu6/61TmjvLaiOSwD0uTKjtaPy5YcGW4HzptMJoRIoToVqP7HJ4d8AS6YFfXbxSOtD0fP4A7D530Q\nVukMagQTziDDTbA4Bt1R1HNnGTjLQAy5aT3n8bRhVlR2pgNSpU0GtMu09dMnUib8zB36kjRWAiWv\nzKr6cIhCyhietuOG+u5svm9mZkX6bsw8mWjpPnMyiZOm1p48GdqVlMZQHyWD2FT1rLiq+wFKNHlH\n9S7SRmeuPvd9+fIU9ZAM/AydU+qZJOvlywfah2qHn5Rvhr4VDzS/jODn6BuqRgX9bM/Vx4UqXAxO\nuBheruRKZPeo7/HxT83M7Prtz6m9O9oDDNtadypwEiTg7Rin5APVqnx2soBrJgGKAARP09X8ffO1\nL5iZWTGtsfbkx1J3mt2XPbMgh/ogRfdA7KR2Vd8gpr+HmRcZz248azlfz1mOQfBUyCKynrZAcSVI\n/s9jygz3nmo+jrGeJkry9WJZ61zB1P5bn9W6coZfPgo0z29VNeele1p/MsUNq4T8dSQeZ2wCkimQ\ncSDFlqjL+WTpF9hsDpKvnEc1CY6BWYg0qcFrF6iOQ5AvCAJaCkRhCr6idE6+DoWJbW//f5AUlygu\nHAFX31UfX8DX0YZnab0mXzxbMi+w5oechL6BnKOelRxqI3BnLeDiWqAEk4N7rM38HNBuh76/8PR3\n/lRj5+JE3w9QEyqWtL8slICYBMxPIeeVXNSmHbjBGLPpKQo4rJsj9sFTEEDxvuyaLareBm/FGD6R\nix4pdl97n4Wn53YG8IcUyNqjPpVHtS7cSnbItIe8R4NT2WkKCm8y1zqRhKcwg/JbDLW+BaitVBP1\nKDNzpzFLAqMI4Lxx4iH/lOzrgo5LAbUPTM/NxS+/ec3VZatdT2tUFrW5w6u6Z+Ycxao5KC4QcoU9\n7bNnSzg/9tWmdFx92ezAvdVm/tuVjTMYzWO/3u9pHGdAVsdBsI/gyVwFpb8oCI2w/QbvIBdyhllD\n3087akecfWxuogF//0AIm3VgT851qQTGVmTrrXc0D/gj3c/Pa95oJPS92Uh9l/blw4OjfRkuzfwB\nOqnUhUMGxcQyKIvcZ1Gb+jG8QOxPgxUQfqA4Fn193wVRGaBQO0c11UdZZwGiJpNQPzQ/1h5g/8G/\n1ufXbpmZWYp31m4c1NqmfLeCSml+5+XmklEcFFZLPllNgjJh6Azex1+GWi/6qE75JfasjupT5vND\nEJRj+Ae7KJIueYdcMtempqpnZzn+eV0m45JZvmOpsXxwkJWPbAeyYSyvZ/XYr/q8Jxfb7GeY53I1\nJpQWqpnr8r0vflEcfD6cfu1fUhvuoI58tC+1YIabDUZaQ45AUa3DgVUKEYdHmu8Sb2n+83OgcOG7\nTByr3q2cUEe9rvqousNauqH9ZHj646u//qtmZvYorffvzIL9mi/U8ekHsnEcvtQ+J3Sqru4zYp/7\n5ucVt6jntUbe/+a/kh3gFKx5qtcvKhFSJipRiUpUohKVqEQlKlGJSlSiEpWoROUVlFeKlGl+pDOt\n//p3/zczM3NQbDEy1+5rikCVdhS5K2wpwtW/UBQzbURTyUA3OBvm1RTJWllTNHQWU9ixHyhamIMP\nZAZL/ayjyF4qq/uEUe0i5x47nLF7+FwRt1pR0d1QhcnJomoC63sqjmoIWUFnCw4LT5G0PTgHDqeK\nGo/JJDSbinJzXN6SkF20Z6icxDkrfab6LxFKLzQ5S11TxG8IW32wo6zizXduW+6GuAWWZPljObLZ\nnC2ddHVtCf6Hs3NFrBst9dEFSlWJuCLrJwUhIapL2aJ2VX0zR4WjiErQaEyEdqK6Bq2XU18qzOUL\n/aoyByV4JlZmslWWCHMlD0v5rp5bQ3Wp94H64n5P0c4hkf0rnxGXzLirzwdPyI505DP7r+ncdSYt\n1ESMc9PjjKLFi4nan5u3sYNsf7eueswbygzMQZ74nyEbdvJA7TnRfXZg/G75iiZfPFdmckl0OZ7R\nGWP/Z5x7JBOQ4uzt7BHcAnv6eVRVP4ZZo+H9fTMzc1YU5R164nKpg/y5eF/Pf3MXRZ01jbXjvrJ/\n9YbuM9qD3wSekmld5y5rLfnJPA1KpS57tsiGrXdR3fq8MsD9vsbC2lAok0Vl18zMfnJfGYl3bkoN\n62KqsXaZ8viJ+vaMCPk8rgh6nfEZR3EmgDU9gaJLuwCyDj6M0jpn12PKGjXPZFMPhN0p9y+vJrkv\nGTyHzCdqIrYjmxmqI4ui6pGqyfdTJSL4qEC1OPOfIDK/ABGXy8EhA7dV0oiwgxBM59R385zqVTCe\nR2Y6WZYvTuAwKNDeDMoPA7L9KZnLfB82eWL1ky4cB3HS4T6Z0by+12XeGU+Yb0AzJNOoPoVqK8Zh\n24Lq64HsKZChmGd0/eSR5ojhVO0swx1hHdlvUQbpdIAKnYedL1mcgLEJN4Hf1M9BAC9GoPuv7qpf\nvXXVe8HZ54NDZcIToFNSafVnGoRSMgGyZgkysgInUZZ6OmpPb4rBXdkhAY9XNx1YHBWMczKi//R/\n/6e6R1XIFXdPvlvFB/vn8r1ZoD6bzljbWiDaEDHzKqpjAtSBE6hOuVKIzFMf54ayxePGh2Zm9sZN\nPSdTVVvyrA9+WT4YjECLgtQpX0G140z/X4D4M8aIh3JDqEZSLGpen6MwGAe6UeCAdm6VsTeE9wde\nqH4HfqeS6v0RCMXJNo87VdYt9VhZr8uWa6ggOTNUjkCanIEALef13PhSPjoD7TQAfZCEUya3ror0\nj9T+EO1RBJ3Qf6b5ePOO1oFhV/P89BPmXVw8E9s1M7NEUuvNHATSwZhsoQvCZfpCGWY5duyCZbaE\nCkkf9IDnwosH186cfUBuAgJoF86Yc5A1cIYdXsge7WfijuifaZ7O7Kh+I1QRH400xpMT2a0zbFjr\nWPw8DunfTlPjvEYdGkwzuZADEARIKo4KT7ghGsgoQRU0ZYjIi6E2V5EPBPAkxcmOZ/PMe3CCDeA4\nWFmDny4eqtNdrlzgyzMQg5mJ6tvuqo/ScBW24HSp31HfJGPq6yLtOl2S5Z9oLCYKamcbZOQg3M/u\nyZccXwYaDFDggbfv5xxfNY2FzVu7ug6kzoTs+TIJNw+qQyV4mMZ3NNZiKOqEyM3BnPWKMVctKwO8\ngMfOmO9HM3yIMVG7Qz3Zg80OZZc+YC4HxOWsi7LaRHvLZai2pMvMPybrv8t6A+ot8/Ncsux81NY+\nOgH3WCyRpT6qZ8t9gQYInLFNTkC2Vxl7IB0T8AV24VWxltaDfJl1t3D5vevkoWzTW9eznLbmvXxG\nE3KCd4qzA1R0bsP3k0LlDr6KchkVIRSydkLEhwuaFt4hC2SbHKpoo5D3Y4w6E+itxhPdfxSEaH/4\nh4agDhK6z2lDPpWYwynZVn0nOe21VuBTC3nT7h2Ic+bRTzUf/a2Nv21mZq2O+mYFvqgKiJkxY/r6\na+qD/rnu37qn/W/rXH2WhI8vDZ+nLVXPNdM+139L7Tx/ipJkG6XdAugxkCEjFDJXUW8agFr1z+GD\nQ5GyxBh680tSp0p/hz0USjzn7Am7Kdl15x1xwJRuCgWyNnq5V+rZUO3aASE0rKvd998T4j+NOpYH\nOnCMT+dRkoTGyc5nQnkXlto3J3iXjodHE9KaI/u0v8YJCedK6ed1cXzPsic3zIN3LgECzdmSzy5Y\n+8cttb3DxO378pk30vgwYYUFpy1iF/L9E/ZB/X3t/Zcg+rJf17tWpaS19+hMz9kuwPWa0N+VtJ7T\nPFdfFNPy4UUPXk1HbZw01fcj9otV0LVeoP32x3/0bTMze7zznpmZDVBKHF7VO+FwW2vxpybfuPUF\nvdtC1WUVT2Nz5Qo+k9PfU1SqKiXZdP+B2j/6x0JYO47QZNndv3i9iZAyUYlKVKISlahEJSpRiUpU\nohKVqEQlKq+gvFKkzPquIlkbnMW68Q0hY2ykkFQbdEPiQNV0VhSRuprgXB+R83UUfrrogLfPFaG6\nsil0yNEhykGc0fUqygw8Q9nAq6geNdjY0w0yMGH2EabqEZwBSRRish4KM5y5cyuoHS31HLfPOf88\nkTQCZMUknDb5XTMzK9RgHF8oQukUFV0ucA688xS0yQIVKhelA0ic/YDz8xmyYBlFDIu3FX11ElW7\n+1D8GCcfK2sRpHTP+qqyMKWkonx9mPLzRCmLpihm51jRw56nCGvWFCF/DtImhyRAaUNt7SxQgorD\nIo/iiWcvd8b/DEWbdytS4ThJKauSB2FyzhlZN6vnr1UV4b73nW/q8yFKMkoK2bU9UFAVRaC//1A/\nC3CxTN9QVLh0KuMGIF6MrHm3LKRL8bGyRrmWrpvvqd3puaKyT9Z0HnIL8EXuMLSL7HCzLLsdLFW/\nqx317WKpaPL0Qn/3JrpfFrb4W1f13BbKY+tDIZnuwQiec9VPAQoXlhPqo3FXPrUoqJ2jsurjVHX9\njzqq6GyiMVfY1v2OL1TPOszl3bwyHIGCv7YEZbDN2dU5yCZz1G+NgfiOtp+RjSLT+2kKdMgmvE4j\n9W8MZFV6uGuXLS4puFIl5BJQhq5EBN+Pqc0pkC1p+DbcnsbpMAuijaxP/qrGRGodBa6WbNUAEXLS\n10D28qg7lIQ+qqZ0/x7KA8uY+jr5JgiTCnwhYzIEz0FONMm8grpa4brsVPdzQ26TtHwxOw5tiboP\nSI5zeC269MliyrwBcshdcB6bbFx8DdUmzpXPOHecISMyamn+63SVvanC99FBKaLioJaSxve5byyv\n+Sfn6H4e56MDkImZsp6bmOn6Zl+ZjV5D9t7bVv81jjUGzn4sZ+v09PnJwyP7D//Tv2YX39Scdtny\n4EBZuBqqLZmqxl61oMlhkUTVjnXl8HRfdniq9o/jZJBA+nggLp2Y7LScq6ELUAkZxswcbaMxnBB5\n0CLeHPUZuHRisbglUBl6+21l3jo52aJOFj30jTHZHWehNvgZ/SySYU2uMp5ALC6Yd3OcRR9ZqEoh\n26TzqkOppudXjtXGjW2NhYErHztuwRVC3w/DDC38Hwkf9FhPtnZRB8qEvBGbSb4H2iEeKq+QiQUF\nUC6GSmQ+tmSt39ba/xg+NyctH0mz9v2Nv/9vyW4mhMzjf/67us9/Z5cqHupVb37+TTMzax0ru9Yl\nCxb4sqfPefuVADUPFFuyKAwBqrOcaR7tVMjckuEcohBZSWnO2ifT2zddV/bUnwN47zJAntogc7wV\nOCTgx7tSr/y8Dbf/9l+16lL3j5FN9NsohTE3nKDOkguV3QZqzxr1DlbVvw6KYQV4ODoAcgbMNXXa\nu3pHXG8xUG0haq6WyFjKlc8uQeplB8o8xrOgh1CocuAEGMI3FKKRCiADfRRilo6evVfTfR59rMzp\nqAvXCtvaeT1Uh1Pde/hKEV9yhvBJxELtsUsWuLJCBUZnU/W4rq2SrWf196IDXxw8PhOUc9wNrelF\n0AEBanleWb5SC1AlWkHVA1W6jMknMyWtE5vrev79T7Snu4BjIcZ+2lLyiTJzx4y1OR2qmrq6fpHQ\n/4cZ+VoB1arsmux3CjIwDVJ7kdUckeqo/xaroOJ6su8x65uzYINaQCEoqe9PZ0h/FViHxij9tNWP\nTkf912K+nx3p+T5cktUEY76gucPL0D74VAL6ZzYHSb8C542Z+aOr5ruy67KDGgvkQhOQVPFQBQrF\nnxlot8z88n4yaKH0yjhpx7RvXXelstmJ692jPGLAJbW/fHpX+8tYUnVfK8mn2y6oXVA9IYg0NuYX\n5q14Rm0vwzHTb6uPc0X5yh6cgOPnsmX3XPW8+KH2ffW35MQfP9M71CpKNe9//MdmZvZ//jMhx3/j\n3/wVMzOrvKvn3P6tL5uZWeZIiLnqVa0/i4X66Bb8nNml1qcf/u53zczs8JHaN3V4RwMxuX1LY2h5\nqs8fHcnH959rXu/swenCO1smo3cdLwBV1ZePxCugvWh/Fj6nIVxmkwY8SGP2x00QiNsac/1QNfUQ\nnsJd0FJwh81eB3lyg9Ma76HAe8niBVon2yUhXb56B7VX5uX7n/5Qj0upPcOh+ut0pO9VHBSCdzTG\n0mmQrext+3C8zeF+W0V9dQA/jMt7j5mZ79+0Un5mvZzGZQ3eyIB9Sh+OxkUD/jlMsZmRT+39spQi\ne9/5wMzMPhipz7pH6jMPPs44nFlNkHl32/tmZpZ/rOfEQLYlUdJaZRyewcEVQ+3Og/csRHXmWJtD\n9FEXROMaHLAr60J3lrZQlQIx/+CuxuK9U/H1XXxP89CTM6FtK//x183MrMM+eziHZ62meTxUSz1l\nrBXuy26P/1SInGAhXwoRRZ2jv3geiZAyUYlKVKISlahEJSpRiUpUohKVqEQlKq+gvFKkzHv3dT75\nH/3h/2pmZn8noWzLGimH8rEi4HPOdtZnQgksYYF3yVhPcopE1UtkpokCj/i8gz747o5QFEfHOnc3\n6ipyt/u6ntc6UYTuuKEzb6l1ZaZ7RLNT6JST+LQuUUYnyRloOGimHUWLp3BD+FPO3rY4xz3nPF9M\n1x/dhekctIrjosrRRzGITD/iL+aDpmiP4TZIqJ6xhCKWtq4MSQy0S3sct1Iam35Z59pWUGYZcFZy\nNg4jzHCfwLBfQk3BMUVJ/QZKMOExXc48Dj5WBD0N50wevouYp4jtJnwSI7Lfly1XrnAueAZK6AwU\n0Y76JI3UVHah6z78VJH1p5u6rnqq58bfkG/NdmTrT7rKDLht2SO4IdvvNuVDD1fVwF5L97+RkS0n\nY/V1QObwWVqZ5FO4EE6PFYkuHqiPj74hnyuR8RzHdN8PuorO/moYYY+rf472/kDt/Z6yOVMi24WE\nhupzX99Lu+qXZ2XV401X/fheUe27k1UEfeypnc5AUWtb11nVgitf6Ux13/QjfW+LSHvMF0KmBft+\noceYa2ssHXJGuODJzh+C/vr8VfVT66kyu8E9RYuL1zSWU321M5GHX+n5vpmZeRu6z3RJ1nTl8koH\nIeWAR1YkPoeDyYfziSxB3gfRkCCrUAlVJFA2gKNgONYNk4wzT6a2UkrjLIXa26yNMg6Z1nZTfb70\nQWKQoUtP4WE6UV8+P9BYWctz9p0z8HGQG/GKfnYvNOZWQUPkk7JJD3L7s6b+7g9QH8nqunKeTPRV\nZadqFfVpi0zjsqm+DpLy2RLzWLsBR8qafDQLKspA/NnP5yGy9PAaJTjXPpppjKRnuj7w9HkahMlY\n5rY4ij6TEbwdB7rvGO6bOAihg0+VkXBQFamvohCG+ggJ3kuXG9u7Zma2EqIBUN/oTFH66Yn74gnn\n5+ddOBvK8pctOA+GcDu4c30vl9d8u+jIXss4HBYkaMdwiRVBHaTgSnHVOwAAIABJREFUgOj0Qi4y\nZUmX3aXNPLKyM9lggtKWM4A3aKg65TjTPyEb5Dj4DmiBSgLbMy7Tps9nINEKWc1rcSfk+ZEtchW1\noQAqaoxizSSt8TmB/yFRV1uCjuaJCoiNWEJ/tz09ZwMVuxioriVqUP5c2bNpfFfPmaLqtxKq/8E/\nEuh5LpwAjaWuK051n6YjG6ZQJBQu0GyJSlBsd89ephzuo/JB9r+zgIuF8+rrK3DH9FTPtsk+cThv\n4nASeE/J5O7obxeeOm9D93PTQme12BvEW6AA4lov2/M47Va9egWU1FgvNm/CbUY/duaLn7fh+PG+\nPQSVNW6qvm5Zn2+6qs+Ise22Ve8xSKpzlCirc/Yscc0JJVAeiblUSDogAO4/3Je9QAmmSqxTB2Si\nd7PmurrnBZwwBvdAocM8B8op5umetZnqdmzq0zEcJukp6Ep8MlvUfBDAoRenbQmQNeMmz8nhUyhL\n+iWQgxOUUlIvh5SZFbW2FlD3aU/Uru4YeSmXvUlefy8GIB7DPVRP3+8y/zlltXdwqjU6w7zahooq\ndqYxcDoNUVSy03PWHwcuRB/FrUIJ5Ajqm3O4yZbskUaGT49kryHr1zwpu/RBFc9ZdwLGXjPGno6M\nb3FNc09yqAVykAVRiCrTnLU8sUBVFGTNEsR4AIor2UYxLoOaXagO5aoilRkKPSBQM2k9x4czZ20u\n+wIStD5cM+OhBk/Qe/GaE1+vmsucmoATLVRXWrZBl+RAtbXgRZqgxndStsuWqzfkm6k+irECJFsV\ntD1Li7lFOGJQSCwXtDZmV0C7okLUByGx6KvvEoyzEhww8zC9zoQxWQUxOdI8W7qhC2K+0Fi950Iw\nT74tFOrpKqp2qNY9ARFZ/VWpztV9fb4/0N5l9W2Q0VnN97d//d82M7PW++IavHvIu8xE88CZp+vK\noGO9Ln0Ciu2Cd6ZUBWQ6Pri8gkIjSljuSPUIUMDJgv6qsh5NUqCsUNA8aQvpWN3WXijNe88Kpytq\nqFOd8q44HoCiehAqZsq3mzdUj91tvS8cbDDvggzsnOj7mRPZ7bLlyXuaEx41fk/1Qp0qeUXPXRvI\nHnFQzpkP9W56MpDdWkz7KfpruB6u9/CMgmDP4j8jxlR+wfqffMHLl8glzQ2WVoAzJQef2pMe46Or\nup7wrlPsgQBZVx878Lf9+EA+8NZnhUxJfU51ePDkfTMzK+/u6nsP4OXJaNU+vKK1fXWgtjzt6u8x\n/EnVonx3ynxgnv4f4/3b4LXMFuAbGsvnnvF+7WzheyVOuoCuun5F7XN2vmhmZm//fdXn3kOpJq2+\nrvpujMQDt7UjHyjtqP2ffqR5c2shhNAjOLQaD2SvtXVQX304xAIUeH9BiZAyUYlKVKISlahEJSpR\niUpUohKVqEQlKq+gvFKkzNYXhHz5m//+V8zM7Ku/pHP05/cULWzPFV5ufKDI2/nTXTMzq90W43UM\nTodxSpmALBncEoouWc5hJonIx+A1mZEB33xT0dMqHDUdR9HjlRv6O0gqsvXwvqKu1+K6/oQzZC3Q\nENu3OQNdJypZ4ZwfZ96SSyL3WxzCO0TJAEWDxVIRPiPblc8qktedgaghY+RWiZoOFYFbmq7zS2pP\nfE/cFqkdRUMzcbUjOQxshsb7nMzeZCpbJVL6O4EqU3FDdWw6ZIFRwooFiiwPzxUFnGb1/zqKJhcT\n/XwG/0Otpr7Nw/lyGlNd22TPL1sOHc7ex4T42IRtvX+oSHZih+xOV9e5Uz1/cQJS5LOKel5bU7S0\n25UdmkqK2/q2bBnPC9lxn8xinsz0jGy6d65Ivm3Ktt4QRu8NPe/mvuqzhbLN4iZZc8AGx3DvDBaK\nzmZBhU3mqEhlhN46+UB23VsF7TRRxqW7pjO4VypkKqvy7dWnun48l51vh+e1z9WPQRE1qjVl08Yf\nw5z+rjLI79ZU714K7pgd2evpROcp1z+VvY/ycAtcE+9T8kSR9jZZuBo8RsMn4ripVOSLjyuwux8p\nY5T5Lf0//Sf7Zmb2hLG0k9D/F0uhScahws4lyg7cAcG22rKE18KBG2WJ4lN2SuYMtMAUPgxvQ32y\nMoITimO2Xlr3vXiu+SgTZvzCSH1WPl8MyKq8oUj+0oN3J4fqG2Op05OvVlFpyxfIKOZVz4UvW6Ti\nmk8mcJM4Ne7X0HXTpuqTNrWzUFZfzsNsF2fjR021+2d9ZVrjhOBTBZB/ZKsCWPELcdl+FsD5goJB\nisxvAsBMAr4KD5W5OJxWySToLhCAZTKSLTKr6UBjLeRyaCxAb4UImgkZYjIo7Y/lM6+9/atmZvbl\nb2idaH1DvnLnC1/VF//v/9ouU6pw/Jwfap73m/RLoLEdA6FUi2uMu9eEYPHGZB+Zvj0QVx78WwYS\nyE2EaAV9nuf8f5q59jyrzE+ebGYBLhoS2JaYlmwKDDOGesY66hc5zmFnY3pW0iO7n4YnCYRjiEpw\nHbK+KMLEXfmGy/wfgHScpORLttQ/Dj5UnQ+OZZOVK2QuUf1ITTUGSj4IP7hlZimtNf6J6l2Av2Pm\nMgHC85DbVH03bv+amZntXNeY+cl3lEWrgwiMgaTxQQUMn5FBLMqG6YwQd1vwZxx/qO9/+0/+GzMz\nOzn7T1Tf39f3L1tiMc0NDZQnfFAOgxGZRtbB6oqyXfkpHAeZkB8DrgFcowxXxCAhu9VdrTMZVFUy\np6Ae4KuIuyjvMFircPwsIHspvo6qYFzXH97V8xMTBudvmg1PfMuCeFytKpvnGMo0oDtWEyEhgOb7\n3BDlnaQGY5AkOwqKbAxSdQHf0oKx3r0L7xRcFdfy+vmzD//QzMxuXt+x4wdau583lAF9d1trWh8k\ny4h5dQ46dwbKtjQEXQqCYjACvePDebUGarcPAg11u0UCtC5ItgXqaC4o1flUfQeQwvIBsIVLFm5j\nQ/Z3KbbRfXwnRN4t4Daoxn3+Lx/JzmWH7hz1TF8+MQNN64C09Bbq43MQdjNQVS2QdyO4F9PwariO\n2tkHxZthLzAHYen5Rdqvz2egaRcuXBGgwhZ5fT7keV6gOWDGGI7DSzXt0y9FjfnMBap1eZBKoPrG\ngeYKF97BeZH5ts38By+TO9LnHhPtDD5Cjz1oEVW/8kz9OyDbP0xrXZ0tdV3FBe0LCKDjvlBNGqY9\nWy7U/0FR/ZVkvTLeFxY9/AwU+BxU2zz+Ao32l5XxVIgGA7G2SMjW8amcJw4vW4u2XgWNOqmq0ivz\nsG/I/lc0v2aAeU6z+t4ytBl9OMEG5Zj2JgH8POfPQb6MZdMn99QHv/NcSOb2c7X1b6EGd4hKaTkp\nn3jtt8UhM7mh+hduaf69N9Rzrjqg9JdaZ+agiRt3tfdIPtDeYrSJss517blmXZCgqAsFS83zP3sg\nRPibbwhpPoAHaQiXWA103Imvd8QrMfbV6xpL24H2qYGPstcI1BNjd4ai2Jy92elT7X+PnqOyB5qu\n8Fm18+ot7bsHvPckhxp7E9BgKew57L8czuHaa7u6z3fEJfThR/u6PwpDg67G1tUcyMMb2uu9s6l9\ndQJFoWPQ08Oe7DFGHaoG2mWUUH9WUVtcwv9XYC9nZlZaDG2ynbFSF9uivOr35TsBMp011D29FU4x\nMCweNzSe3v/2n6ltVdnqAB605hSuvQZ7Bkf3HXmohjJfN9gPjvHJRVnjr+uDfIQvaZkN9xa8b4OK\nWoKkrA3lk89QKDw905g8u6fnffkK74hd0KJx9eG9Y33egW/I/0D70EFL9z/ZinEf+dyjnwhBU3RB\naWXkSx1URV32h5kSezp4Rn9RiZAyUYlKVKISlahEJSpRiUpUohKVqEQlKq+gvFKkzK1f+7qZmf32\nP/jPzMysbooeP/wH/8jMzK5dk254Yw5HC2zs5wc/NTOz3IrOdnkcqByQcswmFe0NGbKLnPlvk03M\nJhQBjJHVGcDN0poq2ly5o6joMjznuaZIWnkbRnSyV2kyCVMSLYMjXZesw/ZPhiTrwwQOKiBNRvZm\nVfdbwicyRxmh7ZNR7sM+P1D9C0U9t49CxZAzyzPUpDJkHWco21ycEEX98MBaZNIGJ4r6LeFH2FuH\nPTyjaF7Q0N+NqaKiO6bIrLeijFp5DC8HWWxbV7RwKyObP3ootvAkyisDFGBmZP0Hju572ZI5VEbA\n3dlXmyaKhA9WVd8FB4mfP1QnnK/KJuu3UHJJy9bHXc5DTz40M7NbC0XSS3HZOjNRH307pnOBZdNZ\n2rWloqIjXz9P7ul5u6+rb1ceqg+PVhSFTdfVR8sDGMs/0Oc9lCW27qj9zyayx+kVZRHzj9SuAhHv\n+h79tdLgfrLvwVNF+J0N+XIJFvpWThmFCf3igMqqoNhjQ0Wln6EC8Dn4R3pvCjL03gdkIt6DO2JL\n2a022aLihEO+Y0WFhz/SfervwFkAB0yzA8P5sfhATgKYztMoOuR1/Z+uqJ63lrrvAGUO/6HG8NSV\nT1+mxPfks54rWzdaZI99+ciSA9xNYtAOSgVBh4yiLxsHIM8MFEKCLPft6yiscBg+llLfJ0Dczfr6\nOUTNIs455RgQkFBdabWu+0xNPtSby4Y+GeA8mYDnoJ9spPskQFZ0j0CixNXOIsiac9ARg5ba8eie\nxv3j+/uqF+29BTrqzlsas3EmriQIm1RF7Wr+TJH+NFmyKmRWwTO133XhQqnCaQBayuACSDicz2Zs\n5VAcm83h4TjS/X14MxwQJjH4UR4/lO9cHOn7w22N5R/92b9Ue6dd+7v2DdtHIeKy5Qd/oO+3D8Wr\n9M4djbkrr4NwKmns+im1e5RAESip+TdNpjvhoPLhhT/J6MQ4778EoZVVe3sDxipcOX3OwRdAbjrw\ndwQZz1Jwk4xAGfVYE/au6Lv39zXPxCeqSyrNee4NMqjwRWyi1LeIk/2mD1Lw4wSBPk+C0goTZptf\nJwtelprGaztCpX7zf/p9MzNrjlBBwjdCtFW4kZiw5s3JinnwTLhkhEcL+UqCtfPJp5pvmk/VriXj\nvtcFhUU7PF/zRPNYvrNSBR0HquKtTc2PiU9Q0eMMfSL3IhN4mVKvaC1erur+E1Bli572IA3QT3lU\nLZzNOu2F12kRomb1/wLIp0P4NLw7Wp9WjuGnYI1PevAaLZQBnYIAyrAuT0ICJRBQF3e1bgwPNYek\nNl6gAXLuyNyk6u9kWLdQL1mGWUoy7DV4lvyY5q6Uq7mphApYyg2RUrL7FIW2Ejwm85uq7xx/NTgd\n0gX1495XPmsTSLA65+rr+qr66pOxxvlKDBQngIVCgHol80wR3rNEHZWcmMZj0UVNE06uJvNnBZu3\n4MPJgvLqwu3lZdWGVZAoHfflyKkK2GjYJ6VLJthP4/MIsLhJ+Uw3dYW/ZYdzUG9L1EVmIZgLVMUF\nyLrMSPNLIgkXThW1PyPVOmfUuZrH82ld3wpUn2RFfR2qes5AV3lwyMzgLrS55oSQxa3SBSUGcrFv\n+n4aFFsbDhaLq8MyKHc5S9a7HpyIqJdOUDdKsnf0Q06bsQx1AqdMPAFnDL5USakeMZBBczji+qC7\nS0lyyqAV5iA+hxjUAYkam7x4zZm3lpZcBQXNe8Ai5JwBFZ32Qv+DL+uJxmh7/EKp5i8robLMOeqh\n6QJrAWvDLIf6KWj2CUquZdbAU/YEy6Xamu7C08Y+/gQ1vDhIdZszH4I2a6fgHEuCxrqv54xpc7Al\nrq+341L76V5DZe/2rpmZbczlYw0HHiJU1pJ72t91e7pfuqnPn34AkhHUQdy0tvbgHHOq6otJF1T/\nGmi1thDZXZCAm/CDPH/I2g8gdG1T6LrWBIUuTh8Mfc1r/lDtH+FTngOSaF1jr/l038zMWNKtDPqr\nl1C7iquq9xTOn5DnaV7UunuWwJ6+6p8CXZ0CjR30QUUPXg6ZGXA6YvcLXzAzs9J1Tj/c0XMe/4n2\n2wPe+doBKrcNtfshymgZ5LjqVRCqzP/DkBMsx2kRxgpAVjvzXiiTTdOexQ6XNgNd1KAvEvChBWd6\n9gFr3M41zdvvbKgvb+7pvXn87/xVMzNb29M74/v/WGis4321ZX9D42sx1HO+8nfU1nKGd72K9qNL\n5oO+yYfyrSlt0nPz+Hwl5OhDPTOO04xQcMzDUTagqcu2UEnvowhbrmu+DR6AKAc11ead7bWvherG\nGiOPPoQb7JnQXKMzjfHYHbglj+CcxMgrMxCVOfmw24Cb9heUCCkTlahEJSpRiUpUohKVqEQlKlGJ\nSlSi8grKK0XKPP/Te2Z/9zfs6M/Ep3GOzvjh/6xo7y5ZpVtfVyRu1ABlcE+Z8FZT34sRNc2voGKR\nVPRx7pNBiCniN+FMbI9sT7mgCFiHc3txzjUOn+u6RF2Rrq0ruu50ooj50Q/13L21t8zMbHaq6G3T\n0c9t+DfGE7gF0qpPL6H6j4aK3IUZk1C/PSSzGMPun4JzILFGdhNOjAWZnyxnblO7qMIQ9by7r/aN\nqZeTLtn165zD+5KywpWc7rE8VUS/y8HAclE/9z9RnU5SssX1FT2jviZ00vEzEA0TRSNrOUU3yxvi\n3XELRD/JRgWkYpczRRkvW85BtpSucobSA5HSUrT05FOhAuKbipBfjcHIn/mMmZktGsrCbHo6a5kc\n0Lcb6sv1mKKf32mJG2bQUx/46/Kx4+vY9khIEz8ltMGpqT6FpWy+Z+qjJ6eyc21H1w3P1Od7r8k3\nk6A2BjPVx40pEl8DSXTg+NxfEX7jbOhxTO3+yhVFn88P5AsXBWU0XuN8+f1V2SERcgp0iD6P1e+n\nE7Vjeqgx9nissbXtyo51VJGmvjIfCeoxuPjIzMyyK8qALGuKetea76g+R3reRn3fzMy6Q/nH+k8V\n0Xe/pPu0RnAnoNAQ9Bm7vur/KQpqi+TlEVXtD/SMrslG8wGR/SGKNYs8bdG4jJP5yyVAoMCKHiPy\nHsswTzTJdjGesy4KYmRwM3PZaEkGcAp3ymKhevioL7kJ3ecMpN+oB+Klo4h6KaXrJk3OtsJFkyar\n1ICFPn9C5H0H1TaQPgMQLz3a+/G3hFZzN5W5+MLnxF/08NED6qnMQp1s3Q5cN2+/Cyv8muozHMgX\n0syfDkpfI9Ab1iPTi9pSigxnI1B9Q/Wr7CzMQJKNClEMIEYyZHUGcVSxfNnHmwNBDGCtJ2PjMi+O\nUqEE3OXKxra+f2NLKLmdm2rvGJmkHtlKFyKoFBlqJwCVR6Z5AXLJc/58hnjBujNzdB2ARZuQkS6T\n+Z2M4WwIeQZQSLLx1MZktGrwILg9st3YNsMZ8VQ2zEoruxPADzFljelzfZJsdYwM6/BCbUlwpnyG\n+s60hvLgue57kSdb9mP15fEnQtQVUfKyItw3Z2Q+p6pv2EeptHw7VB704CIJhqA4f6p1IJHWGl+L\no5yDMoIzkU16Y2UkS3WNteBCzx2DJo0PQOrFNUadnPru9sYb2PTl+EIevK95zUdpsVzaVf1LZOfw\n/dFQ9twugNBZQfGRtXk9p/UhQKUuOWUsYfdkES4WMrrDU41JK2rNDqe/rVvq1+OHav/woZ6Ta2lM\npMi8T1DnMDNLjoaWNNAbIfoXno+CB/cX9vOHmvdzy1BNRetfDxSGz9yYDNFdFa2XGdAij5k7Yuda\nd0LOmURN9Yl7rv3knjicPGx21pFPtSZCkmRLuqePEssU5a9WD5UM5oHSTL7Q8GSjGDwLxfqumZk5\nzJMO46+e0Zo7Y19Z58y/earbEp4dpzG1lyo92cRLau1tw9OThLBiOVKftlANrZpscxHItrWCfKM7\nIcs+Ul+UUP2rgc714VJZgMxMM5YNnqV4SCsFyQ3bTUvm4UpA6SyHgk8CFEYiVKGCz87PqP1rc/Wd\nE3J8kdDNgfBuwm9V5kEjONhCLrQJdo+D7vBBMc87ms8dR/04R2nMUEUsscd0kvCKhNMh6K3MRHNE\nqgT34kyouVhW902gXmdw6qThS4qBHCrHmIjNrLKRsCXouzSo7WWSfUBc18UmascqnDyjLT2/3Hhx\nn7+srK+oLn7Il0Sf5ZmPLth7nJzJN3a2tM9chgqMfV2fgb9jhmLrbKZOqcRkq0kaDit4KOPw5C1Y\ns+anum6RllEbqNuV7gjxcvs/0h6hkYCvCP6LArR5Drxp86T29zuAhXog/5yGPj9qifezmuCUASim\nDPeZjFT/aUY3eJ19q7PLKYCzAe0HtfVT3e/RXc0Rq5tr2AGVoyy8H6i8HdY09rNPcd4N9dlaXj7w\nhPqencFjlwS1lwTxt6E5Ye3aruoZQ81pjnIPvl1lmp2yNzrfF4di64N9MzPzui+HlGmei6/0k57u\ns1MTUvN2Te8vsbfUr+ff0vtCeiL/eN5FXXFTfjNm3p3BEbYyENpjsdQYybKu97DHjPUy3nixh1pM\nGuZNV62FGt0qHGCnIISTm9rDp0/U1tWYnjU4kU/+i+99S3V/Q+PxtU2hf0Z/DSXahtbk5wdqS7Ug\nTsBKTj58dCb052L6mPvCf7cG709dbd80TpDA7RirwtPUlS+GelJnpZDzC1QZ6njFtDgJhwM959GB\n7rtR03U/7GpNTPjy0ad/pL4J968xlB/zPqcw4qiZtrUXWJbk+6UFNUEZzFLsj/2/mC8zQspEJSpR\niUpUohKVqEQlKlGJSlSiEpWovILySpEy/XNYjD+GUwDejlhKEbgngSL4zZYiUbmioqqpNxSRap0S\nMevquhP4NDYznGMvoqKBbnmOs8rZFZQiaP3qDUW8isVdMzM7nRBNTRONXlfE7vAHit4u5/r/zW2y\nk31FcwPOkC1binUF6KhPlorc58mILzK6LgYHzuBYUVcHLoq4AoPWIXu1XgLpAy11F04Jp0bEDi6N\nMJFSycH4XlN7/WFgeVeR1JFD5DepulTq+n/Jhxl7M7QNZ+oP983M7Kwh26a2VPdNzqCePVbk//GZ\nooyJjJAU6Qts4KqPugMUZWIvzjBepuRvK6oZBIpqFsgwTn6o+hy3FL3crigquQ6Sw4HboGWKejpP\nhBSp5vT/VKB2nk1lj/UBSgKOfMxvKUq6GlfG+GlcUeJRH64dH0THRH2yXyebN/p/2XuzH9my7Lxv\nRcSJODHPkfPNzDtW3aq6VV3VczdHsSlSBEXaFuhBgPRiCzAgGLBhGLDhP8AvfrMBwzZgGDRAWYQk\nQ4Io0WzO6m42q5vVNfS9VXXHvDlnxjxHnIhzwg/f7/QlDbE771Pp4eyXRMawzx7WXnvHWt/+PhAs\nQ9XrxmU7HZ6z09Vc5kqK2vp5vT6FU+DIxJe0d6j6ityffA2Fr6MnZELgaJmRNbSy2rfzWJmKSUvj\n1byt9m8mVd8PWRt7JuRLvSrk0ySuTESrp3v+mztaOysUc4oeyl/HmuetXdj4k2Syz4Useg6awpsp\n4n9QU0binVc1rvlD2UMZBYjxvmx/Nf+y3u/r+WOyb1cp50cag0yFzB1IhnJZaQ2PbM6cDGSZLEGP\nzJ3XQ/VjpAh2tq65yZDVCkYoWcVQnwA545MRnMNxsKrDxG+y8RBQ0kQtLcG98D73iItItEzgjZh6\nZH7n8hsud+/TZCx7ZMFc3PZiorlo1LVW9xvyAwevqT23vyyb77D27v/O/652fF7KN3/rl5Qt++7h\nu2ZmtvEF3QVOrctGR30hAh04Y8Y9bA90k59SvfGBXh+gIpcw9ctBXSRgPBJwN7jc2x7R/hEZ6/Wy\n6lu8qbW5hbJDD3TXGBW6OX7V770c6i72uhAyaRLjrSooi67mIwvScs59/ikIn1SowoFKRzJGNmwS\n/kX1C06iESiFHPf9M2Q7Z2SgRuwHVbJ3S092k4h5FoD0K3KXfXaujFdqIH+3s0nqMasM6wr0ZLd1\noD7m1IdgEaKc4B3LkXUCnTVEjcLl2UvQCP0zeNLgU8hk9b1govaUtuEGIJO7TGlMEvBqLIv0lXvd\nOeYoBmoh8OFIALUwmjEZZOM6p+rnlLvyodJOf46iC/vYcgDaK1Qw8/R6pYUqxhqcLWS1rloWfbX3\nnHHwXmGf9DXehTx8HijPXBhqHXD1JBhfB5TVkIx2Z6S9uMs+mdnWPhVjLfU6OnPUTWt365r8sQuy\npjPQPra1rn13Znq+D7rEff4iix9f5M0HJfHsh+JI27yhcXKuqx2DT+VnsxuoBabl+9qg33JwEcTh\nC3HWZE/TCpn+HtwNTa1FL6b9YgmfnnMGEuhgZKO22la7qc8M8V8p1NBmbdV1AQ9RAY6lFFn9DBnZ\nGQi5/gnZ6bnmpnWpPa6Jyty1m5wjQR4n8asB3E9xOFOWcNW4KNVctcyx3WkA0gauKONssEIJMURk\ntgfai/2RbKSfg3eIc9yqh8om8IRJnvOcp3ZmQK+uQJbUprJR34MTpay5zcLNtWSfSVX0/SRrJw0X\nzCREjJb0XBdFntgIDpsYKCo41EYoZm4M4bkyzoxDYBMpUGX4mglojgH8UwWQpXnWfop5TIM8be6g\n/pfg4IvqYbGJ+lJO8zrLau2l4EsBAGvnTVQLUbCczUGau5qXcgafaWaJ0sDS7FejBc9JaFyq7MdB\nAj5Ezsh5T++P4Ka8Sjk+1ph3u5yf9kG8YGo5+H5OnsrPTlwQ5hcaq+aZzk0JFFhT6VC1Se+n2Ivi\nINhGp5CEsCen2KtHIC6znFWGp/wOqLGWYBKKgQxppEFCgmB04LCqP9eYxPkNNZth43CLeay1GHxy\n2Yl+Ezklnt+Fr452HE91DlyCLHEz8B3NQbi8rlsIASjZBSg7t6o5SN7m3Lk64fmaK5c1WQHFEGN/\nq24LuT59KpRGF+7G7l24Iev4b5CWGc7ruRX8QnCyzT2dcYaXcAWh5FlNa57T6Zf7fZPb1jn59kr+\n3QH+tnkNFS0T589f/DPVuwFqLAh5/xyNR5vxPv6eUNKdHe0v66gIHjigxsP9aQAHz19qrzPPmVcd\nmvMcTpYYKmUJ7cnBOciPAXxqW+y9HwsZ/uAP/h8zM+tNv2pmZo96GuTz52rbO6+Kp/P1ff3myL2j\n3zZpkObtk++bmdnJFD4l1IpyRXjQAtn+0GddZjgbgaYdFlSkfV/rAAAgAElEQVTPGM6pfFNzuSiq\nH1W4EWebWiNLTzbRWGlNXA7Zp2KyzZBGs8wtj/OezjB38FdDbjXsjfC/ZRB/IArbZY2xiyJXDXTx\n7DTilIlKVKISlahEJSpRiUpUohKVqEQlKlH5d658pkgZBxWLeFOR+Evuy+/tKIO7eR1WdZd7021F\nKdPcFd25xv3ooiJmHRjPD8mWLRTwsiCMYha5d1nR82IlIn/wglhBEbEx19CdKvfk0yjIoMZUqu6b\nmdmAiH7PUWRvp66o5dxTBTPUAPJZvX55rqhqJstz8/AEFLivvqGo7HCAos6Z6omFnAd59S8A4uOT\naXDKqs8fKuN08qEyDolLRSi9vNnZhbhZDj7WHcZiTd+58YYi0klHaKIGnClZ0EC1a8q2h/eAp0/V\nh9KOxiDtgoSZKdLrxpXJ64NymozJ9qD6k8++XOZykwjyZUwR5eML9Sk9UfQ2gzpEpaF2juqKEG99\noKhrLgfLewn29A1FO3ccZSKacXhBztXOL35eUdxDskKdB7KJvVcUDe6gWjThfuFQwVh7G5WhEdFW\nW+eOZ1pzukG3g7LqqT1X/f6nGu8PDsRpcy0nm9rOkIk+VP+fYpNrRRQKuId5l9dTT2VrB6A1bh1o\nHA5QdLhAQSzz5J6ZmU3jmreUaU2deAcar6ranSXzelyGy6EhlEHnA6HFhqR8nLc0vvd92XjuuSL8\nNxKKFnc2+NxQWa6LC2VovZU+f3ek7zczKBwYWUPuXF+l3H5dtjspwyl1AYN9oDGpEHoOfEXe42QL\nvBFKYiAhci5cAWT0xty5j801BgMyrUsSekn8gtVUXw5Oqt5Q2ZjDVou+ar2WYJOPb4LEIcMaIl/W\nsmSjUaBJgF4IkgrZp4sao2yS+9qw1fdQJMjVVO+rN8lkcCefxKvFvqA19NW/K/+ay2jcsjOhnPwp\nGdQcigsgjZYo4WRBLPYD1ZuAPySGP/W4x25w68QTas8KxZqpo3EtwreRDlVPIF+ZwiFRWdei+vzX\nZBtdVO1aHa39bAxumfjVbcTMzMHftpKq11nChYNKkkeGo1TQ+xVXa2zIPE3hPQp6cHvRfg97qcGj\nlexyfz4vG/eGmp8smdjcSn68q+rNdUKbj1lmgcLXVH7i9FMpF9y5LfRQsa62PurIL1xDLWgSkEGL\ng7oyUJ70MYVqRLHOmC1AkYEodFPKFA721LZXsso+NUERJYoy+nQS9Z++PrfGve2AjGttobka50AT\nDBizpMYoibJJJ4tfgItmAJeBraudDiiKImpUtiJTC1p0AfGFy136+Fhre9zWcxNd2Uq+Ht4wv1qp\n7EshIdlHQgdESq+v9roLjXsWLofkSOMygp9ug7Ww6sOvwXg3mJ/JmfbBvRvyz05W499qKuObBWVQ\n+JLQIWMy3cu+vldiXvogV0vbnEFGL/bV9UrSxmRGSxX5Doc1N21rrX/8vpQjfunfF9/UgH6cHgrV\nsbutfbxW1Xz3UDoqHsOpM9W4pwsgiZKokoAOi2+AtMwszOCcyqFWNzhHjWnAOkYhLAcCzSFDucIf\ndkEoLi91pvAXjP0+SlagpKaOzoFZlPzKoJDOWkJQFHI6IxRQ2xjC57Gsv1CuukqZwjlScNWf/hz4\nwwDlG9ClCbi4soHOKD24A32QdbGM+pUGET3i/FqDa7CLUuEaCKIgBQqJTHASPrrVFLQZfsVAr02H\nIHJWqIvMNIeZJD5hCPcK9U7hGYyFaqEoy2RBzixL6s/OXLYSW1P/2+E5EwRouHZrqFwFIJryKNi0\nw/lh/1z6amc2pXPwjEy5x9lyFOj7mSa8SuyjXca7gP9ssR85IzglQTuk3BcIl+Bobgl8XhX1uwHn\n9wIqVMskSMcxnG2ousRiE7tqSYc8SNflT0rwSwzhmHHSIQeXxq5zpL8r9pwgrzZsMyarrOYwswRF\nlVOfLzog5bKgjzizJPf0+S1H67h8W/Ukq6rfXdOYHB9ovff6et4wpbXpg7Yaojh1hCJPA0RNDs5C\nD+WvNTimQltKwm1WymhuL2aonMJRNbhUexKgZC/hCy2CoDaUvhBvtdwUTp2KbDszgSPL3Tczs+ZU\nfvnsDMT+uf4O4LzKXgM5uac5dkAE1atqR/kayFKQp4u0nFCS3wHdUCnsvnj5rCt/fQeOx+SXtQ9n\nRi9QWVcpizOt2dYH+utMhGz849/Wc978xV83M7OdHzKPlxqX9ly+7gL+kzlnk2kXhE1a5+xVUeNV\niPEbFuXPRUlrcDZ+gRIcZTIW62VsXlDfipxFTpirjaLm5qQpGy72tC5rXxJK31/7r8zM7Ff//q+a\nmdmjP5Tf/b3H/0TPeq7fDo9aWsflM7Ut90X1rbrLXIBkm7naI08m4nnLwQmTB13rZ+XPJiD6thz1\nrTNkjg3E2xCUGvyeAzimktyqqIRqaw38Jap65arOXMO26lmNOfjz+z6UBtvZ1fMA8tgFam9OIBtK\n3cbfwb0zGvz4c2uElIlKVKISlahEJSpRiUpUohKVqEQlKlH5DMpnipQxMh4eijghc/jqmiJKlynF\njBZNRSmHaM3n4Xjwq7DSh3c/dxT9rV4jY3CIwhCZ6gTR5GJameh0XpmGZngdk2xSIoe6ChnpBlnE\n1Vuwu5PxnIcZn56irHtvKIp9eoxSz1KRtP1N1EzIWmY8fW4IH8pJR1HR7ErRVpc7rBMH/XVYpntw\nKhThkEmh6mLciWsfaZyyPWXDyihDlKpxGwSwp5dQyWmQ4XQ1FjPmwp8pGto7a/JsVHTIBM6YI48s\nfKGmLE6zp7GsFDQ3TdAKmUD1rgpkaUovp4bxfKJ23nui6O0Pu5qT/CPuXn6D++MpRVtjf45qVOMd\nMzNbL+j+eWqi91cZ2NpRJ+l04KUYC8lx9K6yM82K5rY2VvT28SP1v1HcNzOziauob+6r6v/F97lX\nvavo6GysSPabAYoTKAOU27KF822yZNfJ8oD82bgrpE6zrPY8zKIwcAQfCqiMi5peLw2JdMPHdA9E\n0qdlzdvNJ6CpUOo6Hso2Wh21+5WvgvwZCD2RTWk8HnKXOP1djfcXfk3z9014P47fkz1VX9f/jqeM\nSxyW/1M4MW5/Cpu/ozXhj2Sz246yhwu4jII+d6WzIeqCS79XKImEsscO96tbQOSKbdBdKBPkUZ0w\nR6+HoIEspC3eRJH40Qq+BhQTliikbFU0BqO+5sxPqo8TOAQGQz33/JHmZlrWWlqvwB9B9sVBTWMx\nBymIgkoOJI7vqB+lNbUjPmOO4ViIg8xY29PcBGPN4QL+ovo6LPAl0Gme+vX3/+u/bWZmmZUyFMO2\nED3X3xBaa0XGsHcBV8IM3pGQM2aq57tLzVkMfqb5SGs0k1e7E7kp39e4uXAIzJZwwqBCUiyqXYmA\nO8Wo3Y2XyhoWSrKFKmpQezHdu59k5LO23ib79Vt2pZJGhSRP5rSOL1jkVE8cDgQLEVcgn1Ypze+w\nrfnKp/U93zTePj7RSWlcRnA4FCuoqGCXszYcRmW4MhJkYpv6fqnqWRk+msS5skP5nMb43s+LW6u7\nlH87/BfwnunjVgQBmEAlyDv+qzwZ3Uut63aoNIjC2BRkjdPlf2wvSZZ5hAJJfA73TEBfQjQo6KoG\nvEgX7AsVT+1Okdn1LrUmVqA9YwvNwSQDqhXeijgcXfmYOjYma5Xgrn05RDuhaBUPNHaZhmxtO6s1\nGVtD3aOQsZcp63CsOXmNZwdEYH2l/g9Rj1qOyPzCL1VASWcAV5hTBikDQmYjIeWJ7w/F5XXHQdEF\nNZLLrp6zDlIyX9CaXJxpH8El2ZAzwRSU1caa/Ggs9kJFo10wm4zgNNtGKQwqHJsJBbZegnPgdWV6\n3//n/8rMzOaX2q82P6c1d3EZIoRALYCCiI3hz0vjSwI9z8uDNs5gB6OZVeLymyvGKLy7P++o75OK\n/k+gghOfoBSJf3VA6J1dol60rjHvjuTfXBRZPBAsI5AqBhp06YBAzIBEgd9o4muNlS5S9jIl5BRM\n+KxvUGIz0FpTstflOiqZRVQ0UbJZsjZiS9nwis+5nL0GoBDiU/mbmYsanQdKwOH1BDweIIxyGAki\nUFZyWTsp2gUiZZnS3KZYwzEUw1ZxFNlQ4omPNB+JHCgNVPMC1ObScLOFKI7JQNn5Ylm2u+yCkoa7\nqz9T/Vug4+ZpfS+PQtkk9DEjUBH4xYSvzHyzqO9NuloT/lLtm5PRToPOHeVYSyCS+r4+b2ZWTZ7Z\naCUfWWTNpKhnAt9JnsVyihpfERSHm/7xqil/udRznHdBX87nqqN/AfcVc+CCoh/DZbX7Fmpu8GDE\n4KO7RCXVn7FmUN1zQUUZfHpzj30gtI2y1s4cRbBKTbbicYZxUY5JYjPpNgiZsuZ4DT44HzTxYo4q\nHiilBWPbW7A22U/yJbUrnQXRCLfYit8+c082vZ6TrcR24FA70evLvs6LWTgYJ5xLpx1+y8WFJI1x\nNstyi+GkrXN0Z8J5vKb2VO9qTssgC0/6anfcUf+Hp6D20qCO4RFpgww8OT8wM7NiWbZVQ/HWUMBc\nzEB91DV+Vy1FR/bQL4BwQUXv/ndBI9tfmJnZdkf28GSMaukt2dfrY53Dfdbgq1n1/6IJ2nkmVIpx\n5syCnnNAOtbmL7gb08HU/PLc+qA8E6GOUVEo/nRZilCbp3rm+w++rfe/hX+6Idv74IkQid/5N39s\nZmZ//t0/MzOz4BWhxvxtPZNjpt0+UJsfgpJyqxqD4Dn8dyHPHhxbXk7rNzfV604eBPo8RJDjN1Zw\nTKJ8WNxAkVDHS1s8BB1a0Dk4X9MYxtmHepzPvFBZcg3U2hj/BzHRWV77zIK5SaJwVeEcnmiHv4nh\nkF3+eGRmhJSJSlSiEpWoRCUqUYlKVKISlahEJSpR+QzKZ8spk4A7xVM0r1ZSxju/rkjSCciYyQlZ\neBR9SgWFdcuwHntJRcYaa4pWOqA+5mTnZ3G4Ip7A0g+zeQ4eklmRu7DrqCCROFlOFSkroI9eX1cE\nr9XU8wemqOPWOhwJ3Elt8r0RkbThbaE0utyJzu2qnwXuW56bvl/OKdM6IaOUhOsgS9bwAtWA+Bpq\nApBlzGAw758repxGmSe2oX6fPz008zWWd+69ZWZmVbLQadjezwuqs1JRdM+7pUzeyXPdC8xyr3lx\nojENVTKubwjdk0vLlJaB+hLzuZeICkUfFvXBhSLTVy1bGyBVjhTZXnzInfYvae5y3t80M7N17sZO\n1mDKb+t7tlRGMLvD2AUah6Mz2cxuRpnC4Y64VooVce7MSupXYkdztX6GMg/3Eleu+rvh6j7l46Xq\nzRSUfVpvygbPH6GgtaHnfUgmNEXWqRAqjrVAJ3CfvH9XEft7ZDAe7ZFJLu+bmdlbIHF6gAUWWUVr\nE77aVZnJNs6ysp0G/BfpLWVmyiTaHz9QO+MtrcXkHWV0M11lvR5zp/aXpsoMbPb0/HgFBYSM1J6G\nZHrTZIjTqEJlK3o//wB2ee5WZxeoWW3CUbTOPdVDZU5Gg6vfzU2BbGhhW0v4FSYjOELmIPAycIg0\ntS5XDdl+oq913Z2F3FMolXCHvIBajrMky9/T2CYbZJ1O1fejLn1mrrcqWvfLrMau6Mg2hjGyaITE\nS0TWizk9Z8eBc8BVvQsUUBJwlcRBeSVQC8rUUXkL1L6lq3oSCzhdUN1Y9LWGx1ONUyOr/4tVjfkM\nzh0PVY1UGyTOUGu+wn3kJVmdHPfiQ/6KWIIMK8gcp6jPLRzNcQ5VjBlIkiWcA1VULdaKEDTh1yem\nduRBtDhwLzSot5xnjV+xdC80v/NDoecur2v8fDh1DKWIQiDU2IL71rOe5nkComflaw17ZHTHDsgX\neJFiILF8uBcC2Py9FiokIRdQh7vT8KNsLGp2+URcWP2TAzMz27wlG1rENBb/7++JY+b4mcbuBw+F\n2JtNZdtvf/0XzMxsuqmxqRXkJzc+pzZn43C9sGdYUnMRQ1HGfK2NwLQ+L+5rbLLrmqMsiDvnlLvs\nqPxkUAWqDGRrq3iYdVYfh9jS2NPrMcbGBZkzdVFYhJtkhIJX3tf3PDgAVn19b40s/Qg1waSvNdVj\nrRYH8IXMXu6IU9jTftEgyza4RMXP0bjkhqAwACLFya4PYuG+p89l+hqvoqFmVNGa3cJf949VT/Wu\n9ttGmn20BpoOZMwTeOUmac3nPOS1qrEflDQfPVAOZmaOF1gyjg+baTx78PHdRCnOf00cYT182bt/\n+ImZme1u6/UZ/C/LlsYxgbrJAgTMFK6LOOqEK7KUHlnAlYcKl7+0BWqQrqu99vhYaKGLQ9nwN35B\nvHb9kAMMdFNwLr9zPJINBiCXl0llXMPz1QK1nBScKouZXh+RPe+RDS4E6suUTKsHv8XcfTkeiFJJ\nNuFzFkisdJ6Mo+JU2VIm2YW3IUTnVv0szwMli43HOK+5DplY0AmFoj7XQ+XNd0GCDDXXlaR8wogz\n1gBEUKkIwrpDRhZ+jgJryU3gr0GfjfsgwtdRChvCZeZqPnKM4xA07NkpyjQd2ezWddBoPgqN2GKu\nAZoKdNce/bN1ve5xFpgPyXSjCJdEhWqBet9sydkF1EgGdcXhCRw+z4U0X0ddL99V+waubL6y/oJT\nZtiMW6GocUsv1O8piAB3LHubYmcb8HAcwg/jgD65Sjl5qnPz/DJUckLVzrTnpBIgy+G1cMpyDHPO\nyTMd5W2a4IwBMs/Hn1hS9WThvUylUDID0ZJFmqo3k/9Nwa8x+Eh+u9nX3DawRQ8Ulz8DHcq5sx3T\nGK6BfM5XZGsLpCXT/HYpwKk4m2nsnTXaCYorgz91KvBfaunYED7QTFJzXmxwZknr3O3u6/UpCJpu\nSwOTAKE5CpGScJvtvaOzTMrB76/RvtvwiPpak7U1vV9GkXMOqnpwKN8xB7m5TMmP3uRMOIPja6uh\n/bEfInM+AZV37eXUl7KvySe+c0O+ofMcfqX291T/qdrvD/Uc/5Rx5Tz/YaBx6buyXVyT+ajBFodq\n5xKl3yHfa8D902M+zcxy7tR6yzWzGHxsDVDsTT1z1IcT65ZQO40L2cYHIInfAf2VOJS//tzbQvem\n7uoZO5xXn3yi3xYlULEncdWz56jeWQ/EH2jPeE5rZAEnVQxO1VCJrA0KrLiHLXTUx64JHeVn1L7l\nGH6dkvrV3dCPoMljff94zO0IkIxFEM0jzuElVKImgfzMWkG2mkLJt5+Xf9je11oZGIjqY/zsCH86\nezHm/7YSIWWiEpWoRCUqUYlKVKISlahEJSpRiUpUPoPymSJl4rAmG9wN8Zqie1lY5ZdHioA7A0X5\n6kST99cVPfUqan6eyFk/rkjXmHrnKMo87uteno8ywOkDZTZu3f4lMzNLgHCJE10sxBX5WmQVYVu0\niNCFGV6gNJVtRf4XZB/jZNaLM0Xi0lkieqbP9ZvK0ObXFFWdoDmfX+j5CVih4/Szzv31IFAkbwG9\ncyyhiN8I1v1SQpHGyVTjuEUGfzZERSZ1YDfuKCJ763OKvN7/Td3z+/gPdV8wMYbJ/96+mZnd/Tu/\naGZmuYyifFUixel3lA15/IHmZghTfmVT2aHKRG3xx8rarDa598sd1MB9OTWMwe9o7vsd0AE1RV/v\nJtWOOapPH5XUvrVHcJWouzbnfmK2o9D/JRwJ2zFFX8coez129f7GU1jhBwd6/xp35eFSmGyqfm+m\n/t5BFSQ20/upUGnhIfwb7+jeeraiOfY/RgliXYiUYVPjEbyr7N9yrmhrY0M29Kiqdq2nxafxqPmR\nvt/X9xPbD/hfnz/Elp1d2Wx+qkxE67H65ewpo217qB19TL97YcZa4/vJA/V7B/KCi0vZ4giOGu91\nlHfeVf3XyrDvowpSQH3lggh/f65xnq6j1gH/0XSienLPNM9u4sDMzE6uXR0FMbzUur/4QG3uXuj/\nfe4zx1DMcslIFrjvPWE9j0AuVBi7yUKvVxch8k7vt1mPKzgEkgEZVu68xkA8FFPKIAasGQOhE0MR\nJ416UB2+hyIqFNkJ2WbY5YM4KCoUb4JQQQV5uDyqJu6WsusxIvxJMhDDrmwzua7311OyzSbZtyR3\n8BPMzeCCu/co7mRClvk57PIpkB4p/FRK/SlxB7cfg/MgqTRYJqb3JyPQYSQsnTHjfgGHTU5ZwBTo\niUxRGZWGg59nf7AZ7PlwJwzIEl21ZDyNZ1Muw+qovMRRgCii6ldFRalXhatsTxmc4FhfzPma1y58\nUcEKTjTalRzBGURWrQhy8wBuhM2ifMfZoXxDfUP+/uxRx374ez8wM7Nbe1rPe/e+ZGZmf/ptZXW+\n+U1l0L54+9f07Kxs/gSlr4umnh2ugU5RfiCZITtNoq2Y0xzMk2p7YgIqjDGobcrWnj9B5amujNuJ\npyza+ZE+ny2r3nJF97LTpRDlAG9EoH64cFEZfnw2Ya9mjaxAicUTtLcLtwt7YwkFl1MfdbgQVOUp\n67aYy58N4ekYASF0vJdT6OqPVU8nzhmCvR4hIFti4zGy5ssp6khT1KQY3wyqd8Mh+2CD+lay7eGF\n/j+DU6Z4DQ4ZUFgLVKe6p2pPBp/VHIeoM3wVSjoWqv6ZmZ/1LZPUYsvUUbI5JlO/IVu+BvohNpGf\njYGWuP11uNkmoNVC1C7KjgFJPv9HPgq1EvbBLMo3y6X2XcvGzZtr3QWoJI0v4Bfy4V659Q1950PN\npbvElkH3jFgnhS9+XlWCWGzCwxEiDtP48WAO0qM3/ytjOaurr0t4FQZwESSyL8c71L9QJjiN31ss\nNUalPfiZ4CKJYfKLBTxRqHuk45qb+Ij9JIHi2AwkDJxbCbhyFqBdc5xvQ6SmB5zKQRlsADpiAYo3\nk9LzEhlUQTtw28CxFvK4+Q3mJ+Q068Mh0+Dcvc4ZcF1o4v17ssXusXxSCYWuGO1fgL4oFVFTwt/H\n8mpfa6h5ToKumoNordThJ2rJlhJT/Z2kydCjILcK1J5aDaWfM7WzDGdZEpv0x4x7n33YzArO1HxQ\nEbFNOCTScE+gNtVG0aiKupSBDB1PX6DRflLJcHaog3RcJTTXPTiysiA5Bg2t4xQKY1N4zxzOKjsx\njeHoOuczuK3yGc1BsiK/GB/IZnKgn/K4hTZ7eLoo29zckR8v4edKcLt04enMgFZroswVIg0X5/AS\nwdWSzmgMm/CrOfBCLeNyzA5npVIMnjiQdytuNcxAdZVD/qhroWOBU+WhfivVeO4f/at/bGZm79u7\nZmb2S2/IZ2RvahPf/rr8Z3FH6IjZCKSkaa2ePw4VNkES8RtvFCrqoJDogkpeJuBeKTPeb8E3+H29\n3r9/oO+hgrpRRRHoJX9Sn2dAe5yqvXOQOeWGfg/c3JQdNTaF3k3+oj6/+ETj/+iBfk84C50pBg2t\nrbU8qI6l2pOCYzI7hFAFu8uMX6C/+um0bYzmlvA1BjOQaps31LcmXKXxksbcZa9KHupctoTn7WSh\n72/fkN+5CSdYcaHvPRiKi2YJmnc7pd9imaHm/hQ10QCu2A3QX95QfVyA0J47Qu4VUtrT5hP2oJzq\nWWvq+034gTrwc9qAelGju3E3VLfT54bw7nVBXOZRWUrCy1aEx3MOUnsBgiYBb8/kEN5VuGAnY83t\nasy4/QQoTISUiUpUohKVqEQlKlGJSlSiEpWoRCUqUfkMymeKlBkQzXXISpU3FY3sNXVv0EcBaLem\nSNrWNhnTQNG+VQcG8Dn3HGGXT9fQCX9Df3/uZ3/DzMy+uiH4xO//zrfMzGz+UO8/f6TvPf9UUcd6\nXhGywjb3NlOKlKU2FMUkyWhLotajpCJ3afoR428GjpskGYQpGdn5UO31YfJOccGyB5t0aannDAao\nvCxQeiiCOoELwwYoMZBZyvko8pjGsbatjNLeF79mX/myMq6T57o7PjxTnRslRfKT64o2HnVUx/l3\nhYRJoviS2Fdf9zf1OYP1e9gW6qgw199LEBfLvCL+2+Vd+q7I93zF4F2xPABxcyOmubt3Gwbvs1D1\n6btmZhbbUXuMu6zXNsS1MIXP44NNRWvLLbWnA//IJ3PZQDFQ1LWXh9NgU3dak0fch67recsmWvY3\ndC/+qC6OHn+usXYGyuq98hWN43OUClotjeNaTtHjjbSiqcVnisp29pShGIL4eTWp51cv1d/WSJno\nIpw0B2mtjfSpOFscFLj2TNmr1Fw2EBSIzqKAMCXzOs9i0xl97mAulMStpyBnUDrI1jTvP0jdNzOz\nSl3ZzUZT8/Gwoeh5fRNUFnwml9zrXN/Vc9YTmp/ZEv6kujIVMdNd2JNdodbKCyG3XPcFK/xPKq3n\nKNI8l42VuBdt2/IbqbjGJhmQOcSmkyEvBBF+Z6WxL+S07udTWNXhOkmjihYqCkyT3KvOk70H0bIq\nwB6PukTIozMn8l/mHvgSxEx3orUzgANgAYogWJDJzMhG11Khmo/ae3gh28mictG4rrleZLgDn9aY\nLz3Ug2IaJxKDNu+BHDyB5wMpn+wiVOHQ50K0XI47ti7ZppBLxiernuaesu+R5QdJ4qPMsGqjzAJ6\nIohrPryxxjXL/e5BCxst6f8Sd4CTmyBzuLtcrP14Fvv/f0lxv3zzptbM219R9ulgrPGfwen1DLb+\ns4/UjlpJvvL0HMUI7ulPQDb5C6253q58Yw5VpmCi7424+zzugTJB6a05Uf/LZJyG06dWfU1t+tV/\n+B+pz6gsnDxSG9/68t8zM7Ovf+3fMzOz3/2n4ph55UvqE8vdzj6W/36VrJaPMlZ3qr3CgQOqWlU2\nZ4wySi5EKcFj5oJm2Lr2RTMzG4A03Noin1PQWByC1Hmljppf4cDMzOKobaQH2ruWJa2FGNkrlyxY\nDg6sgLvvoQJCOgGHF+jZVUljtqqpnhTKKPl1zV1hgXJNHKQGqKWrliRcDTcYxxZZs36IQoP/YojK\nSLEjG0myd/fJTDfnoBHIuA7PZDvb11BL6mk+O0/09+5N2c6nz+WHB+eswaSycZmJ2uGTcZ/AAZQZ\notQYvMjij/25LeOoI5Lec1C96oPqSGwLzZeuaZzS14iI+dIAACAASURBVIWQrN7SffkgBk8LmfT5\nttbcCjtJwBUUQ1UlBU/JFD6RlU920G1YHsTYcCL7d0PwEln9NFCXroEEAfV5MTmh7ezpoLCetnU+\n7IMMLmTVx5Sr948usYmJ/l+gKhfAd7HIa6yXqBjZ+dVVddR3zel6QWtnE8SNA3eXn5U/rFzX+8tQ\nbWii5yXYhwDr2iqQzZXh34jDETMZw1k1RzUENNh4qe/HUWrppYVGXUy0phtx7emXqMmtFzVH3jJU\nVQrVqFBkAXnSacNdk9LzWiBGL+6Txc/o9bu7spEm++F8oH4lOduVEzrjJEDnpVLyYZUa+6SnM2c6\noX4v4PaJh7xS2yBLOSvcWOh7zZ76P6D9iTN4SKogb7xQcYczEtxplVCBxsycScIC1KiaPc5+8ODN\n4SqLsf+0QZpX0vjIl3AlWzelorlCgW8GT1vJ0d8FKKCdXdTsjrFlF54K+CqT+9rD45fYGDweHdZh\nbaI+9hLhGUe204IXaAXqqseZIoZyY8/gOwu5p+COOoRzJcVvs0wF9Gue31oDeNbgQ6qs4KFryxYT\noEaXcN94oJbqoGqboFtXoPxXN+TfAvzSp0+FFP3BH/6p+tdQ/x+azuf7Jtt561d+zszM/HX1v/ZT\n8l8bN9TeD/9AfjTfBsGyUvuSrAmvpd8HYw2HJUGk1+EDwXRsfKH9LwXCsAqqbsZvMxe1vsW6xn2G\nGtNVSwa028jl7JaXLXcPNE6HD9SPT+L6XfFai3P9XO3xuAmwwVpOuEKzBT35BCfPWYQzTSGrNdVC\n+a668wJFlvRndhbLWQ900+6Qdd2Qf2212YuP8BMgXXZRln36qfx7+v4/MjOzP7N9MzObM0dfvPa6\n2hDXXpJlLNP8RjoJf7+WQUom9Ll5T68n0+GeqL54IA5jWfx9Vr8pLp/D41bl3A2/3epMnw/i8oeT\nBZxdJ/yOd/RbZom/2plpbL1XZFNbcJiNQPsv+T3vh1yvQ1CwRbV/uJTtxFGGLFbhvDz/8bdFIqRM\nVKISlahEJSpRiUpUohKVqEQlKlGJymdQPlOkTBqW83gatnmfTOlhm08oUrVJZtnn7mw6w11Sj7u1\ncBzkaorY3f6CslHxm9zLhNF7wxR1zW8LLTG3UEFHUevukSJbQ09RY+soSpko7JuZWQy2dpfMTYX7\n4CuUh1Zk9901RT2XOVRglmpfvawIXBYJhjxR5DZU546BXshyVxjlmyT38QtEMONkseJpRe6mTxSx\nq5OlylcUgezNQDvMJvb0hx+YmdmnvyMkghdX9PP1X1NkNcH9t6ff/XMzM1uQAYs7moPx8n211ZQB\nCDXYXVQxRj1FL8cdIR+SMFNPYaQenRL5T7wcUmbrhrhUrj/TndGHS+5KgtC5OxG3ymJdSJJxQWO0\n3hTSxHfFwdKAl6Jd4W78Uv3N7qme3ukXzMysVJHtrZ0rEt15R9HULhnSm4z500tFT3cDFGT6yjwO\nk7Khtun90oWyfqWF/lYzev4AHqIuSkADOAC2AmUCLj09v9iUrZcd9T8J902owjFBNWsTZa+jKWz+\nBdV/LeQ/IbKfKpEx39A4pg9UfwoelO66Mgib3FXuJ/W8XE+2dPp52dYGWcd9eJOmLe5152HB97RW\nW3UhalaP4FAgK7jk+xfu18zM7NV9ZUUPk0J0pb73r+2qpQiny86WUEXVovpWjqHW4Wr9uSF1APd2\nlw7ImJjGcODD/4AKTwzFkQxfXICIW6H+kE2i6kYWqAZCLl0jm7QAMQOXSgU+ijT3q1OoagRzlHFS\nmqOYr+cMyBAuO3q9G9OaKhF5T6LSMUUJ5yyhMa2ihDMvgl6aqF+D3oFeh38iIMNRrcE74WhukjN9\nL9FXOzPwfvgT7hqT9ZuTFHIc+YoFnF1DQ9UpobUzgPtmnNK4FVIoBsCRFZ+Fz1d9K7KEZ2eav/6p\n/HB2HQ6xTM3sb5gZ43LVsmqpwR9/KhtPZNT/f/p//aaZme18XWiQt37lZ9XPtPqTCLQWa6E/x/+O\nQB4lFvKFDggmB1SHC3otm9F+0N7U2kxzB7mCml88IZ9w0HliW3XN8UfP5ZeO3xWysX2i7EuTPfB/\n/e//odqwuv9X+vj6f/zfmpnZ2ZFQn6P9fTMzi6Vkazv48/c/kV+8dlt70orM2Q7+3IE75o+++cdm\nZlZYk/958L7q/c6HQgr+Mmpt87zG5HrIkYBtGX8GKG/FAvm77iBUFdKcrpfh1srQDlf+e+qj+kS2\neiOh7xcb6seDnGxoY0vvd7HtFDxss6OivUxZLuBUcLhAngXNulD/PDLFRZ67gnNgDKospebZBPSr\nC7dNLKV9JZ/SGvNQwWiT6S4X1U4/owq8pWy+RAZ5jG15oN62K7KpyRnqU27/R32YLiaW9kCswFkw\nh98pO1f9S/iqFgk4Zu5ytgAVN4VroFDSOARwJyznstWx6W8HH5krgepFocwDRbE0xwo11fHwkWwm\nS4ax/pbWTe9M/qEIkmQ1RWkr0Ni5t9XXDhxgXdQv5zPZUK4uvz9hjxvjh3xXbe4/g7vmjmzYAp1R\nVk/VB69Stpcp1ev7ZmbWeGuN9mqtJvoai3So+JLSnA5BpXbJWhdRqjmBmyAzU1bbS3FmAgnj4G9y\ncM4sVnClJP8ql1Wtr/2jey4fMdawWhqU1xhFsgSIkDbcNPWY1swMVb8VnC0hb1AONb5zlDbbT+Q3\nk2/Lf8eKau+4r/kIj3ZxUGQFFDvPp/JR9bzGLZnGP5LN76FWWqop876fk32sphrPDmpS220UIK9x\nLn6qNXL0mP0oRCkUtMaKIKXG7Rd8S8NkzwyUXrime3AUVdlfs/isMWqvE85A+dILVMFPKg8eP2Qs\nNFZtuJaKSVC6Bfjg4PxYwlGVAUbWxV+vrcGBAmLu4By0r4v/cfRbxovjX0BV+XBrrVayidaFnlNH\nsXX8HIRLVmOYAjHusBRcuGH8gc5lXVTyLKbPuSuQgzj4gQvKFiUzFwQf9GzWjcP3w9kmM1G/Rk2t\nwXUtYRvCUfbVv/OrZmb25W+8Y2ZmP/OeOC6z7Mn1a9oX3j3pM45a4x5InznIoRl8eQX26gz+aVLQ\n5zbrau/Kl83EAN/mUR6bVtSPCzjU8jW1z02hwIiKYVAJlRy5xXDFkkUt9bV31J/WxYHeQB2rD5ow\n4Dmn5yGiVD5s3INrjfGNgWKOg4y/QX87nOH6oN/SdfiU4i+QPeOsZ/lY01z8zRHrKePqs9W69ooe\niDmP3y4h/9HddaF8LwLNxb2bKKz29Xp9B/XTin7TlZcgp1HnTKLEhXiqFUcgAz0UgVOaizXmJgDZ\n5mTV9wwKuxdt1VOd6fsbCZ0lliV9/9gFPXUoG++D9qou4XJtaL8ZF+G6eqI13IxrbidL/Z9bhpxd\noN1AGI5bOdrJ7wrcxpK5G+f1W/WvKxFSJipRiUpUohKVqEQlKlGJSlSiEpWoROUzKJ8pUmZKNquU\nhisFdv4pbMcbqCwtlopELQaKwBVAgvhoyRe4Q7qG5nu2rvoefFccE4/+SAo1l88UKWv/tqLHG3tf\nNzOzdFkZj90smYquIm0nZ7rfd8T9/ExVGZFrVaEKejVFL9PhXdQ80eWb3JM8UwZiBN9Ktq7I4JIs\n1sRRlDg21/fTcOLMQP64m/pcyPI/hxsjA4olZPVfJVR/PkXkMKlwd2aoKHe2vWa9Sxj9UYzZek3R\nymlSUb1PD4k0k7lbmJ7lkyUI4IOYTOAQua73q0WNXe0Gd/4rmtPemaKKlwON3RJ289HVRXU0Bn1F\nK5d1THWsPm3DNzHbUdR0v6Ms2FE/VB0he4KyjcFHkVqiDlJSfY28xrYzUD3fh4W+tFCGesnrlbjq\n2YppvLbhDxk6sq3XNpQFr5PBGKPwkkYFatKRLVle3A/jhKK42TXZ0CsXShV0l4ourz6QDR5vaFxn\nKGrl2rLRTADP0KXmc4jSwqsljVef+asUlF1aFZRh+BhEVONM49h8Q1HhtY8VrR4cqv+tzykaXDzR\n8+Z3hLAqJzTfbVRbikPY+MlkV0E9uGQslqeyn7OqeADip6q/yX3QwaEy8g8/VOb+yITIenOfzMwV\nSp653SVD6M9QmiHTV0iRAVxhA2Qgs6g/LEGsJfFHHpkBL4WKBEicOCoMRVSWBvD7pJIaq9mUbLQb\n8maAnPA0hlaCYwCVtqYnGyiM5CfaTTKW3I3Pks1xfK2982PQYNhAvgFaDe6W1oEe441U/8Z1EHxl\n+aVsXlwAPlw3eTK1CyR5ehPN1TRk1S+onsEFmcYgVEFCcQFVjTF8EnOP19MgD2MaB9cHEemhjgXS\nKIEa1WKh12coMaTwSS7kXYmxPn/+fZTO3InZPzB7+kTZoquWASiIw+fySVOUML7f1H3tB/9S4xjf\n1VoO+TfyKEPEyCDVa8qKrWWVAUoFshMPToUAbpxWX+17i3lfn6LcAzfQRl71uCWNz5tfuWv77wix\nZ13QRScam8262hTb0Jx+5WdU1+//CUiZstQo7l2TTSy7evY6qLHmMYi368qsVlPKHhVG+GlD9chF\njQdei8qG2ljbUL21VzUmd+Fxu/M1tbd5qTEd+BojH5SQ45NlTmoMpvAJldY1F+5Y+8lkrOevWvr8\ncEtj2mrLz735uvzFOdwz3kBZ9mfH+v4M5ZmTx/JrWwW1s+zL/121PP9Y/sf/N7LFGk5lniR7P1P7\nemS94kXmEsXHIRnnGD6nP9RGMEfxJb4FmjWuPdpZgbaCu2HQhQMiJ99QqWRpl9Z+vqTP9elfGj65\nofcCDRD0ez9SkhiB5EQQx2agAVIeCNZLfX8Nta0i/CvQS9liR88HcGNnC61Z9wIfh9LPEJRzMYTP\n4YN6w5HVX9PenIA/aBTXs2/WhdKdrtRXp0COkGyuuy6bz8dAqDVRq+PY6i3VtgXnohmIvHR4dhnJ\nL3fgBvsaiJV2G/QrKIDq5tUREGZmaThkZpfa0+aHqJKQ4e0+0mB9v6/nj1FuLMPfE0/KpiqJEBWB\nMuRS57g0XA6rhF6PoXCZKMJngTKO56OggwqotVF/gyNrjJJMGlWjBEqKcZCQQZ5JnbFmC3AejEIl\nHK29Atxhc5DoVfgpQiOZA3EM98eLmL6HMI95T3SWOSTjHN/ic3D/1IvM57l4Q45AljdPtHYWoAmK\nJh9Q+imdoe68I/uoFYXW63xX82BlFNNABXaCEwuLN3FtkgLxjrmthnDoOKDgMqwdEOoeazdTvHoO\nu/aa1lkRxN/dPNl5OE2mXWwcRawHqM0l+ZwLP9ASbqlVSut4HAM1+yFcJGX2CebQgw8zDh+dsQdP\nUVpMb8mfr4OizY7VPgfevBxGPAVdO4mpPr8N704KFDD+fcB6z8GNsgARGeRAHYPYcLKaC+ciRIeN\nqQ8usOq+mZm9clO/ifIh8mRH4+NwjuzxO+Lgezp3Px/LZlotkIZfFsdjNa32eHBvnXwgG/ByrK0K\nqlBwp60WqFgNZaM1bjvke1qrwykqefBRhaVd4HcVyKAq3DJXLf2O9rFcTeNw+6aQQTFfXJkdkEAF\nfMcFZ67qFB6q6xrnTCD/He+i7sX8eVX1Mwd6OemHPFL663Re8JtkpgVbJiZW5LvuCsU/VOLsUn7l\nhq/fv+M1jW2Aul2b37MTeOceX+g3T9aTf+o+ly25A/mRxz193g2wCdTzzkBlZeuofcY05zEQeLOy\n/GBxyTkX/x/jXLsz0lyOOHeufPm18NZHNScbnTe0lnbj6u/5mN+GJ5qTGSp1A9CyK863y2Golgfa\nqqx2LLClHfb2yYbaUWvBLwrnZRzk6F9XIqRMVKISlahEJSpRiUpUohKVqEQlKlGJymdQPlOkTAbV\nkqUpKtklsl9KKqrncddzTMTLh/HbWylK6BDZrtQVQV9x5/hbfyL+lPFjReL8DdSRfEWuPG/fzMyG\nQ0ULL54SSSMzu1ZRJG+3ITRJkNMwzcaKVgewv2dWaueIzHm2qPoa63pepw/bPVnHQhM+D487yEQt\nLU5ksAHHBf1fzbhDPYSpHBWTJJnpXFXtmsNknkBpYzmF12VTEbm3XvucHXxwoEeRbck1lL0aX8Kx\nAhLk1ttvmplZnmyFj0qH0+AuY4G7+qhOPJ8r4r1Ldj0H384ld2YdIrINuAuCWSi9cLUy3dRzCyOy\n7DXY1leKvk42yML04A64q7F4FlcWawe00elQUdFZUZH1zkDfv+xprGcVosMFZWGyj1HI2pRtlTvK\nBHcD1VNhrktNzfH9bT33Zkevb9TFX/T0VFHSnbTY4YenRPBl2uYuZct3E0LKPN/U32L5bTMz++lb\n/6WZmWXWlClt/az6v53Qc3of75uZWQDXzHKk/pVAJcyn6n8mLZvYdLh3D0ph84HG6bCojMk8rvEs\ntvR3VVVG4tlM45VaHpiZ2TXQYe45aitb6udGyGR+Q2ulONY4bpwpK9p+Q/2ftWWb23uy2cHwV8zM\n7DfICP1ZXc+1/8N+Yokl4Xgh4ZkIEWQxveCStU2HF4YHGqsZqkvulOx2iJTpw79DRnA0IrMGp8p0\nBaLDIZ3s63+WrS1QrkqC8AtAL0Eyb0P4l+ZneiHD/edT7sjHz+Uf7rwiW0zznFVLYzMfwHWDYsDQ\n1E/P1/dtip85VL+yN+GLgNdoQSZzFKqSzEHedWXrSzgHZiAWVyjLOKdqd5Z75VNXa94SymSkyITH\nHT1vQYZ4yeeXoTqeDzcC7s8NZFvzQPX0MvI5BRA5PlmesqO/QxBMlRVkPVcsVbJvb3/jb5qZ2Vd/\nWhnWW9/TWkusq77Mnvz+s1OhuG5vabzPTmQXg6XGp38km//o8XtmZpYDhXgdv7sEAdAhM/4JPAP3\n9lG6eX2LetTvuGe2llIbHgcHZmZ2c1ccXmmU/nojzfFXf+OrZmZW+4rqyOwLYecsZBNfSEjp4K3X\n9HoX7pEC9cdzqq9Iltppqq0JR33deEVjsLcjG7Q1vX4nobHa2lV9Wxvy6zNsy0aqr1wDSdhDfSjP\nfoDiWYZsdgm/Z9iO24BbIS2bnibhk/iaxuzB+6BFM/KvtwPZyPYXtW9tbcqf1ZLa34L+yx1xFvjr\nTw8OVM9I/EyFaxrnbExzGcBhMO6iqIP6RS6jfi5a6qiHj/EdUBttlBqSer1SRrkMDpo+a3+6Jf+8\nUxGyaeHC4cB+m+hq/hZw8gRkcs3MJu2uGYgYwHtWTIGCADnjzDTuy6Rsrwa/34h9JLHF2n+CwgXo\nwTJKcL0N9nFQfrmp5qMPd0MSdazTk565IMfi6yhJHeOnSqCQ4KcIiupraqqxKqAW5IAs84KQU1Df\nW+G/Zj2NibumvabT07MLKGHF4hqEqYO63TPG0Nd6Ta8q9jIl2ZK/nAOH9Sdq7yZ8cOeXcBxkQHKX\nBJe97KIiklK7L+FGWEuqvTMQkpMO2XAQRcuR/s7gS9pJaxw/OdPc7eT13CHcixfsDynU8JKgfwGG\n2iRBpjlLVn8IUmmKbbJfxrvqxyY/EypFPXcEF9rinMwx4z4calyqrMkMPCgxxntRUj+uwysSIjVD\n4bCRDzfbCpQtXBBWkg9qYfu97+iMUweB2GB8F7sgWuFJqa7pff/kxZnTi8dsGVN/i6g0JhacZUBY\nuZwTinG43UDSTr2rq3TdKguVmkJl01upTRlHz+5T9zyL4hYcIRc/RCERFOzJWNl1N6XPP/3Bgf6e\naw9atOQ/ijWN1drbsuVykTNCiGIFkWwxlLv0tl2iujQ/V/2pQO0MQKvWQJS7Vbixkuz57OEF9osK\nUpY+qN58QjaQXGff+lh+zYGzrAXYanmuejKgM9Y4RD36vpDTj38vvE0Aj1Sgv3E4rioXoHqz6tei\nqfb7C3wGanyldX3+ZlbjNBtr/CYgTxZJ5t5n3+np/wbn/8Wx5gWQtc3h9Vsfg8Yy2SagjCuX1CMh\neIZnoLnflE1W7ulcnIYDMn6I8uSCfQKASzCTnWwFqDcVNQ+jhuZ7esZ+iYJkBtW8yVxro556cXUh\na67N+76N4QGd31Vn1ify7e89kL/pOhq7ddTRNisas15F555yHz67ptbjhSPkifs0RGmpjdevy28l\nMiCu+2rjDZQCez3Vn1vXmonNUW2KoeoJF2vhHdlm01M9/aUQOmvO583MzHPV7vMeyGpuxqQ4j2b5\nLZlZsXdzRlnB51OA+6ZQQo0JTqrENdn4HDU995jfCw1QcSBj7qN4mwZldj2UyPxrSoSUiUpUohKV\nqEQlKlGJSlSiEpWoRCUqUfkMymeKlPGheZ+HhNV9VIrq6JM/U2S6RSZif12ZlBkRsmxe4cIxGdSD\nZ2KH/+j3FWW9vqXsfIp7c5mG7qBuv6L6/bKioO2Y+ENyIFPGRLEXE0XuyihJ+IjXj7nXGAvv1oaZ\nbAPBA+dAmiiyk1M/40XuHTLq/hD9dDIlQ6K2zeYPzcysYOE9U6Lh3Pdf1hXJ9Lnrt4LHpHRNkb0l\nWbr0HUUQvfHUPrivLO38Up9dW5JtAvlRYMxjIW1ES9G9OQpXwaH6ng30jNKr+/ofRRooBqwIQ/31\nEmPS5t4x9w2fn3O5/Yrl9bH6mNgS78MNFG5GE/UjQFWpWtOgnrc0hhUUEDq+EBf5XdlIPge66Q01\n+MYUbpSuPr/VgivgV6TEkkEhYLfxc+o32bEVKIThTUXmn3CntITCVvVMUdnKNSL5AyFdTmv6XGMo\nPopNskbt52pPewEHQU+2/p1v/cDMzPozZRpyb+p5jz7hDu9In8+QbUSYwLZfVQR+QjTYyFptjWFW\nJ8u0WNd8vhPHpu/IDj7p7JuZWXZf4/GFDdlSDvTHWUZcFmn6X/1I3A0OEftUT2vv9lz2dRzTuE+a\nauceGeEezOmpdxTdvo+ax/6nP56h/C+XUl19Wm6TtbiQrebhdFrA9B8MZYNxuFMS2PLU504qNDYk\nfWySCNXOUPlpg9SrauxzA41NiBCZguhDiMASRThQyGY4WfmxHmiGoEjW4hJVDrLqARUkfbgE8qp3\nEzBCNss9a9rbQf0jjXqGP+EuLOpNqXMysHmN9XIeRvhlewXW1GREJhA/1OfvsskczVCtyKFC5Wku\nfVSgkkkcuSO/mIuDwIF3w1lpLUy4354aknEAVZcdq4MBkKI5qiLxpca/A11FrqXnjvovp+SWrHOv\nGrWPB8fys6dkYIc/1PxULkAScUf4KL5vZmZtVEjGoP1C1a/YTPuIU0Ndryr/3wNxlYTzLAaysnGN\nfQyE0v0/l+JdMZ2yB45Qnt1nsv/CG8q4Ho9lM0cnWm/vn3xLbWZPunaIOtGWssa5peao+0BZrZOe\nxrQASvO8BRqKu+onY5S64GEqV1HVAIVw8h3tqXFXfXz0WH61U9HYHB4rK7S3pfa8+QX5N2euue+B\nAqhluMt/IL/1FPTXNooHQ1M7HDjQmnugjC71vd//bY3P9c8L6ZFMorT4qWx99Jy/8HOU4AC7atl7\nU4icLPflm3KLdvyp2uXnNC/uEgWcoZA5XVB6ezvwNbFGS2H7cvv6/lLj2fGVySw1lC10E/AWwWkQ\n74i7ILihNV0KUPbZgJcK5Gd+oQc7wxfcAN4sawnQgFaG04u1GodIo1LV/r6Evy42gAOoLJusbSuj\nfJ5X1jONYl3Pky37jsYnFwOdQnbTmWq+UiACMn5g4zMUBAtCL/Vd0EAoVYWqHjF4NBZZOPlAXGRT\n8MqB3EvA6RJPytaCFQpQnAVcst4eUjLh5wfwWVj+r6KVZhaqfV6tXKLytIMfyvU1x8eP1J5vv6+z\nll9CMSens8vuN7Q2k4Ca9uHMOQR1XMhojBNDUBOoAVZQRiuttFZSN5Q1jx1rHIc5raVcRX7IgwNh\ncAkvyabWltcBue2j3gnaN8ho/BYTGfsqia+AEy0TV7tm+PX8gEw1qobTGTwV8Cr14RVxLtSu4Fh8\ndM4T2UF3HU5IuGhicE6kUT3sniuT/c1/9KfqX1o+77WflireD47kS/pLjdOdOzrrVOCkaGAP6Yrq\nbWy94FuqVn0bHsgeOLqaU4HLbab2+DF9vjQDNRGXbWdmL+r5SeXRH0g98hS1ugp7rwufz3isMSyA\nZLz8C/m17Lrm6saaXjdX/iBdl43t7Wn9VVGw2bkmxOTxRJ2p7eiclkSx6uiJzo8xkHIxFGHWQKdO\ne+Lhuf05+b2GI74QJ9AcDTl3DrC9Icj3Kj8dF6jhTZucJRaqfwLP5RQFrQVKYAOUG40j1Syueh9/\ngpppBd6PDme0GVw48IV06ae/0NoeTJmTjubqbk3nzuZcNsNx1QZPQKT4IHZctauButycs5OT1vOG\noMWW7B/FDMj60xAhChoWhdwN0MpzuNmuWmZVlONAGz9/pDNqo6P9IQWiNBPbV/1F+VC/DEfZQ43/\nqSf0WK8KOg+b3ShrPEcZ+fWOq7PJbkd+OkSnmZklhp7NVq7FUE5dTWWL1bc4f16oz865xvbiU73e\nrshPbN/i/LOJgmpVbVsL4UVweXX6GqvOQPUMuyHKlPMv3Ffr8PzMQWXVUZ9rgfZ552//tPrSYN84\nE2L5ozkoexAplRhqy5xx6h1+c4Vqn3P9725wTs1orRXwZ8u+2v28rTUVM9lQqqsxXo1RFtvTeHRR\no3Md/aYpbuv1z72uuc5kIk6ZqEQlKlGJSlSiEpWoRCUqUYlKVKISlX/nymeKlFksFBPKF0K1FFAR\nKDQ43MHyZ4q41UHKtIaKZvbgcljy/vOPlJFYTImugpZ41Nb7+7v6/CSv1/OxNerV/wU4Gm6D+nj4\nnpQYkigA9eFQSPT1nDn3/Jfcp08eKOMxAXGzQYZiOgEtUoQJnSxb2oULIqbn7nDfMv26ouCrJBkR\ngsEeykLjecjZgIIC6isJFIEGRWUSCtwD//Tx0JoH+sy1LXEUBGllVQrwbmxu0GlPEeWTpSLC5ZXa\nfEYEt42m/PxUEfEyaKAAxv4xilkuaKZMiXuH+7CZ115k9K5S3ssrgvwGd2Kd20To56qvT1ZlJ6Ys\n9vINsucXyjC4ebXXgz1+1VJGYgZnTg9OlIMDNOCrKQAAIABJREFUvf5bjzX2zsX/YmZma2lFml/l\nXvZNsl87RFv9a4pcZ7f1vFQPNRMyn9OHikhnpopUh0o1GyjvPPhYUdbRu2rP2UAZkrPUhf13dsvu\n/776ldzReKab+ruW0fPr3Ic/JWOZQ+nLewD/BupKkw4okXPVFyzEUj9d1+tJkELHN8m41OEYMNlN\nt6Vs/rxAtg64V5xxacDLMgFuUjlTBuZkl7vJRNcLoOOaRdVbdIRuO/wBaauasmqPYj8+mvyXyzBD\nZrSn9RGccN+6q7ZOySpnBtx1NxAdpFFcECNhhmBGYD9DzHrMC3FQR4kjrb8JqmidPPenc5rjVKgK\nMtNaCMlkZkTqKwmQKCBqUigulBuyrcIemUb4HZJDtSN2XWO3CjN8OfzZCNU1kDdxMhPJH6EU9P3E\niEwzGYkMSLxOAuUBWOInF6gujeVfXLi+imSi56yJDGt/VVB9RfgmXKdA/+G7yOn9WBbFiK78Wrys\n16f4mESau/xwhyXgVOjj592Z5mcKn1LIVXPVMhtrfuKgGLyY1l6eDPHCV7/215XRPsqACgxVBuCG\nSYFCKTqy0S/WtWZTefVnBBLJqZPxn7DPoSDnoM41vlQmeQflujdff9syW7KZQxAshsLgs4dCc67l\nyWAutG6rKInsX0c9J6cxLuP7kxPVF8dfOHATTMmGJ1Cj2MrCy7SpOU2UZMM7t2WLjYayR9Ud9spA\nNrK9T8a2gP8HvjUAbeqDnvLhqzAXNbcE7a/I5nLY9sMPtbd2sO3yYN/MzP7FfWW/vv2JkCnT1z5n\nZmZ5eH86Le1XPrxrdThyWvWXU8NIgvBMoNTgV+AoeA9ug4lsIBEqt8TlWy6b8rvWQe1iS/3cROHG\nr4DmyKve4ZnaGfJqZFDvc+GSyYE4jU/1oPoWqJGFxjGRRq2JjHbCeYFAdZMpm5RA9qzwfZ5suQ/f\nyVFKdrF3V+eAcVztbJ7Ib29wJlokgOeh7reJPWbwnXNPayqXUnvmZDHHICMXu6557LUNVN6aWa2b\neEJ9z5FlHjL2ubj6nEE5pe/pmfmMnjHOwItTYA/KL2iixjaVgS8ips/XKiA4PFCsnA9dlCIXwxfZ\n4quUBnvY7BBlswvZxh//6btmZnYcKh9mv2ZmZj/kfPp67TbtkK2ecw6dBHo/PUNBBY6C2gwJRxRY\nVo5sf29TyKJ2Ve0YBHwuCcqANb6sM4dD0AwF0BETzn4t9rU6nIpJzUN2pOfF4M1YwvVQXISoMzLd\nKJH5Sa2RSZ9zew0EeYhsmsgG1y8OzMws6KqewttC07lr+2Zm9l5bn7t/ps/9ock32EycMiUTT9bz\nM6H2vnqu/vdyIVGVbNuBs8JARsUqL7jH/JiZhxphOkHmnv16DaSqx342RH0vfS5bn8avbidBW2MQ\n+1QIwt1boKTgSBzDT1lirx5vcg5dsodm9fdgobm75+jcnkqpDQ/u/4WZmc3bsvFPQANv9MX/4byq\nc9+cvXUeVx+POupbCkRND8Wy1bHG+gdnQkB7IxAXVfkRD36kHOjQ57PwjMH6B1XbBbUfoK4US2vf\nGPPbJphpLDsTvZ+m/34HNO5NuLTeki2P4bqZo1LnP+UMB9q5N5Cfv8iqXx2Q9Z2l/PBWWf0829Tv\nmpBnajyQbbiLkC8UThlURF3UmwAIWWFTr0/eRzUKRbI8/RyDFt5Yfzklt9gmil9wh22kVe/3plpT\nU/yx62p8c3ONTzopm25saE2XU/odkgEFnErLJy2zsp8YCo/ehFsZRdRfZ9s/aou3Spu/1rYW63n/\nup45Cc+fO6GasPpYbqPW2dLYHy8OzMys6ghledlArTREbXKOqsHns9xW3+t51JVn2hcW4Tk7UFvL\n3BBZZbTHVl7XXOSo//fO/5mZmT070G+bFOfnZUxIuoyjz69tM3dD+c+Qa3K6hmIsazaJ2t0p5/I1\nuGQAXFoefxFw3ivy/vhYY37MeTcPX+bmDrbV0NxNzoCI/jUlQspEJSpRiUpUohKVqEQlKlGJSlSi\nEpWofAblM0XKxOOhypIiUinuqs4JSWXJ1vkLRYPDe4ABd4HnY0U/m6ESgYG4aSj61ysoInZ4oIhZ\ndqzudu8ru+blFDnLVlV/9kyRu/Ib+l51X2iCfqCo4lpS7Zs8UwZi9An3rYkez+eK5k6/o/oHdUUW\n3bUY/SIjnFQEvkvGPr5EV51+uad63yMD7iVgw05pPGIk4IsxRfpclB9CxvQlHDfjlT74/OmlTaZk\nTVAsGX6k7zxdCpmw/1O6B3jnjhRJck3V4azDD4FiQO5E/0/nGqvOUKHk2lxjewvEzSRPZBwERe9E\n2egBCiVXLfe47+tv/IyeP9HzymvKLDyDz+Eky11bIsveSpnHKiikk4aySXc6yrqMvE/4HvcM618x\nM7O/21U2K3ZDf+tP1O9xSX83jvScez6IFrJXax2153hFpH9d3APFtjIl41c1lzPu3D8GgfKlkmz1\nky8o87vxgdr35YWir7/yH/y6mZmlNpUZ6ZHlysFn1O0oU9HYAj11Akv+6+p3vqf372X1evfnZdOx\nP9L8bD4jMw+f06Sve5AfbIhvwxmhBPaG1sA698jXN8hGZtVvb8Qanmq+JmnZuvveF8zMrLrQWm2B\nfru7gN9kC9RBQ2unyT3w9OLqXBCLU0X2PdQ12j6oIrIxPiprmanWYQalEWeu1ydxECBLVB/oo0cf\nStxx7aGiFB9obbQTKAEM8UfcJx6D5CvTjnlGfZ/DcZACLdZAdclWsolaWu1d5VAFIXvkg36oopC1\ndGUb0z5cAg3aQVYsiW0EZdALkOQkPVSPQAbF4R5wOxqPDlm61gAlnLH6FU/gt/KyoTRZ9hjZ80Jd\na8KN6/9gDkoNLhUvvGc+Bc2Vw3bJqiXxgwEognlXtlUewKW1gBNnAwWakT6XLL+ckluWdtZ6yrhU\nd+TnOxnNy/JIz+14aj8mbf17KE6QVfTHEG91tNaPUSprMC5zUGHVd5QpaXE/3nHUn+QOKLYL+cRM\nVvWMGzE7u9Q668JHs8zi0wtqzJ27Wr/xuMZybRsVipzWYbcjpIltgPQY6xkl9o4wm56b6DnVvPzc\n4ZSsMn6+iJpEIi6bSOaVBUrE1NagoHZNUEjMozgV72qvdUA3JeBCMO5dZ0r4GVATZTK2fkFjOk6h\nHvXL/4mZmU1f0b3xw38uboTdv/UfmpnZtXtfNjOz8/e+aWZm65vcvYfP7ToIocX45TjMcmvq36vw\nn/xUSfvhp1/S+By8K3/vh4pkU63JW45sqn9JhhNg0CnqdxUUHJMouRVcZUaTabjOkrLBnYrunac8\nzRNgD8tPNU81FHY6PKCM8uPQyj/qg39tx4rYXADn0NRX+5+3hTgqBjqjrFZSqFjf01oYP9TnFwvt\nM9kN7beTNqg1UCurUKFmi/1oAmoXu5ywvxWq25bwQDBuyhaSXaEjPfamjTfkb2ZnIB1yWjfujGw1\n/jIFL4KFHFZwznimQUqV1MfqBLRXBST1Um1M1/DTLfmNFFyEeTgRrlo6MbX32aX29uFYNjeuaS//\n4q//p2ZmdufXf9nMzNrf/hO14w2hJZ6ffdvMzF5d8tyCvp9paA7bbZArXVQDUZ58+kRru90FefK6\neO/csfozg/OkCWpiXAQh4qIwyXl7xb537qB0ds54uiCuQSwmfO1LQ9PnajNUp+AlSqc1T+dwHpZQ\n9vFAEn74TGfLIXyGuZBr7bqeMwDpPfBkD//koc5ub/y9/8zMzP6H/+n/NjOz45JsqnL5W2Zm9sE/\n+J81PlshV47Ocqkdzgy++nm2QHEOHhczs4RXtVgJBcwhaq8g9AP2oRTSNnnOAS188Iq1dpVy81WU\nEzvao7dQO83cUV8O8srqx19VWzMgjseHOuel2dsKoFST1+GaOtYg3tqVzb96e18P1E8Ru4jzW4l0\n+xRbWIzhlIH8McbZJpULlVvhb3um591YV5+fwQc1KsCHV4CfbwD3FxwzuyDvg9AvgrjsoaBWqej1\ngaPzXfMQtVAUwqYgHCcJ7QfLOMhulH7uoezTgr8vZ0IOhWisRx31b5LWGno8li3t7HK74l35u5u7\nOrevPpS/rje0TzyD3yREpk7G8HQ62j8TIAEDVPTibZRuTePYamlfmI1fDplZAPnYhY9q9fNqz1dS\nP2VmZk1fZ8f2SH9jgdqxanFWK2i/9Vdamwn2i+SaXp+BoI/lZU/prNZeyQet237Bk5SysQXLH1rm\nNhyub+s3ScvX//fgy7xMyI+fu5qj7AJE+jFnDs61DpyCvan6lH0s/9xaQ00YDsbkmDGF2yvN7Y1c\nQXPRzaMIltGc7Bb0nMdn2vt/990/MzOz6q5e33tLfrb1vvxqGfRQIlRjhesx62vvXpjGdgq6eFBl\nzj340ljDS3iaxjPtlcmh6jsaoy4VqH3rNzW221/aV7vKet9/T3N2+BTk0M/Zv7VESJmoRCUqUYlK\nVKISlahEJSpRiUpUohKVz6B8pkiZbIq7V2Sye01Sk54iTaHaUDJQJKsH+zvXva17AEM2AfLKtTfN\nzOzk2YGZmbWeKlq4uy5G8Wuuoq1HI4WVb5QU8YtNFSE7fP87Zmb2rUNFyt76vOobBmRgNqWUsP6W\nUBgXKB8kfUVzU21F5uZZZTJicDTEm6i0+BruQoVMucHgnVE0ebRCzQO1kRScMnOUcooe98QdRYeb\nI+5KZ9T+FcoWvZHGs5zWwJz1Anv0EE6UuqKDeaTSnz5UFqP0iSLJ/b1XqVOR79twgkxAwgzJsGbI\nyo9AKdz/UFmjDqoe1Q1FE7MVtSlZIIs8Qs7iiqWPqkThFrwPxxrzvzgly36udq1uq115mYy1HM3x\nyTO9cPNYUdujHWXjbpqyTGsgN8bAj5Ib3P+7VIa0dE/PfXO0b2ZmwUI2kzlSdubmKXf7ySTne4rC\n+s81Lgc5Rf5nJ2JHby24A9uVrT/bUzR6LXFgZmbD11FymXxsZl+2SVsZ4lVS2aRCnPuNaRQZ1sjA\n+EK41LIarwdkSAsFRXk/OdEaOv+2ot27F+rfwFd2L0+UeW2lTG25rPeTXwzRGPp/VtR45Au6P791\nX/NweENr4uZ3uRfqKFN07TaR/CNlLEo19b+GCtNJRoiixqUywb2UbHu3cPW7udMxGVFUNzJdsjJD\n/c0MZCMeCl0zeI68czhetrFR5BhSWY3F8SH3nPdUf7oPIg+ViBzImGRHc36IGlMCtEN+Q89LpFCD\nGKk9Y3h56qx7L4GSFlnzNBxUCTgD/DR3ZOHGmc3hfTqCmwpEYGCycS+jSHwF1ECsA5LPl40uuKtr\nXTJ/S/0fb8MJMMEP50AUJblDW9bnVy6IF5BJCVe26KH6Nk/r+esVrY32ufxg0Nf3fTgRFiALVwv4\nTEpIMjiqf5lXvckh3A8x1KVC06CfVy3LGcoPcAUMDvQ8htXWy/LvGVALvZHW8FoKuylqXnw+X7im\n/3dRFtqvym4+vVBGe78svpUW+40LH0waXoC5p+9vbGjNV9OBjQoTnqU2xkJBK/aAS/aGw7Yyc7fr\n8h9F2uilNeebBTg/eD1AQWwV6Jm1BNlt0E0j+JDSZDhXRdR1djT2lQwKgih11QA8ltiz+vArzXOg\nwUgYjlPwEpGxHTnceV/XXPYqmsOtldauD8eNe1f70L/4H3Vf/E/+t//TzMxe+c//GzMzuxXuP9hw\nrAq/04cal9INuBm8UNrxaiWBcsLFE/klHwTJToPMMiinHn5+jpqIs+Sssif/N0YlJBloDa0YJ6cI\nChcFskWGjCX+bntN/ne+1Dg3yKT6O+rPuKfxK6xpbc14P+nHftSHfD75IwWimSd7yJHNvJmSOknr\nI+0rB3CNbdyQ7R8fyg72Hmi/qdzdNzOz7HV4nUBZDLkXP/L1f8lVO7IOa7RI5r/v2ZxltwkXVLtM\nNr+pM0ceTrBqFiQH/sBbYw3MQewVNJZZ0FtuSm0aoQi1QhHKRgH1oeJWV/3FJGjSfMj1pXWYyr4Y\nu6uUWlJjevmazhBf/UWpAtU3xXlyArLwFB6f7Js6Awz2sP2B2hGEKn8LECrwPmXK+nvjhuqt/sLf\nUP3/+rdVTwqU6bZsLQkCcApHj8GhUOJ8vUIhJoECl7sOh5oP1xdrMj5k/NhPHZA8q3UU00Yg0Dm/\n2kC+Y9HUc0/h12i14NRCeXHzrrhjApDvnX3Zzvaren25oXn4xa8I/fbzv/FfmJnZIdxiv/m7QhZV\nnqodzeo/NjOzwqtaK8fP1Z7Xbur9GOfmHdBmXvwFOjvYyFj2EJ5B1PBajFMJrqAEn5/Ewv1F9bjL\nkV21zOH68hY6aD8GPVSGi/CiqbHZgqcst6OxnJ2DvMDftBiDzSqqbvDGFarqw+j/Y+/NYm3LrvO8\nsfbafd+f/p5z27q3+ioWi6xSQ0mmEzuSYytRHqIY8EMSGAESBLEDCHEom5ZiKUjixDASBFCgIEiD\nQLEEUZ1FiBIVSqJIqlhsqr/96dvdd2t3a688/N+ushCRPvWS+5A1Xjb2OXutNZsxx5xrjn/+/31x\nIUaYFGMmJEjaZyHMnH1+JF8coZw4HYFQgQNshE8tVdoy20veN7hpLhQn6nmt46JllGlOFW8D0F6Z\nc43pakFxrjMSSmAM6sFBajeaUT2yfbX14orWmbkrGkNW0XrSgw/JBx3ReEP3z22ByJwzhuMtygEf\nyBKhj/LtBE6WKAj7k8E3VZ+u2msOB40RWwYoVy5Ym1VRzPQHnBSoqj3Wi7p+GlF79mm/y9pJR2P3\n5HhX1f5jTou8pL9nmA/jMa0lJi6cjlX4Asdql2iPNWlGa889X/PwyhoKmLx7FpfzicuYiB59WJZe\ntmmd57L28ks7uha//9//6J+YmdkLVxSHtl7UvSYoPF1pgUyryYemxIPaFD47+JEiNfVNJwnHGOuo\n7hZION6noZu0DuvsVE19cB3F3OS6nnfvnsbYD2+g9lQXQiZ9VqGOKt8YdeO4A+8n8c2hy2P4omVB\nAs5130xMv3dRorSpfDoFIiYBn1x/C143+HoK+OriTH3xZ3+idWSG9eTk3vfnpgqRMqGFFlpooYUW\nWmihhRZaaKGFFlpoT8CeKFJmypnWuJERdsiMBtptHHe04xYtKJMY56xx2rRL+h3UVoqwPQcjbbHt\nffEtMzPrrmin6pOvfdbMzM7OleV/8GVliRKf0E7cnReU1U/AEH7+nlAf51ndt3WhTOeDlNAOr/6I\nduaiL+j/0TaKDAG7xChMtMnktFCCmB9o13hvT3+3pHYpI+xeJx103jnTO49qpy/O+fw+TOExMk4u\nie6SKYORrOj6ZIfd2qmu2z18bG/f/UMzM9uuaxfv6ivaee03tRv4/hQG6s1ltoSz5Bvasd64o3s9\nOtTfM3HtxEc5SxqFZ8HbVVudNpRpjOU5M1tmF7JI3S9pFyi+PP5N9dlwVainclu7lvlrKn+OXcx3\nHqEUkFMWZWsiRMsUNYzCG8oET+CBuFfSrqX/UN8TB3AfBEKe/EGZzERb58KvHAiZcpPz7RVP7TNf\nBVUhQIndLWrX1PHoiwM9xwuU2RhWd8zM7K1f+YJ+d3/JnfOy7pOum9mn7IPur6rcMKBHl6oaIEpy\nD8WWD2DIroKomZ0o+/PwXO2yU9HOfvJMPvUQlYzRTO0XfZtM9QtCAr0jV7X1E2UU2mTL1tbFSeCt\naCw2+/L91bbO6D6syr/czrfMzCw4Y8wGZAMfwtuRV/m9jvznGwWVbw02/X04gS5jy0zfFM4o36Vv\nkrCj39J4qsfVFl56qQwjn5+hdDIgYzkjC95GXWJyzs4+56xTZGIzMz23C3v8JmdkB13FMY9zvlFU\njwxVinifrFUEpMuEc8VR7cC7fXyJ883pluJdBwSLP1JfJAKQOjFQEr7iV3auzxQ8Dx597IHMSMHh\nNQtQUVpwvnuFjAb8FG6g+xRQAqqijjJNgRhaZvlP4HnKgbiBy+cCxFKDGJPPqv2XGYoI599nGThx\nyHhnUM+Y9pXxGKOuUUMdY2hqv3zm8gpdZmYjxDwmhpIEvCZ9UFvJVbgYPPloBBRBdqT46qLOFCzV\nXkAzQD1gc0/tvVhy6yRAqcBFk06pPj1+5zMmnLTuv9eM2CHPnKOqMx/DtQIvQvsNoYvO/kQIx/2Z\n4qF/a4laUpniRVCYcLREUEbx+nDA4PMBfAmZoeJPPqnrovAJuV1U1Wq6vgSvWxJ1tulEdcr1qHsV\n1Q5QCVPUe3Jbuk+c7PQ02NXzHY2RHjxoiSrITPh2vvJL4pEwU/xvfvnLZma2G2M+uau53skKAWIH\nitv+EmJkH493aO87uv7xG5ovEyhlbfyA1giVTQX4XEn1KEdQEIPbwMcZfJBD06HaIw90qIgyTsAg\nKM9QzTrXfVYqyrx2W4rrccbUKuQyyR2tOboT/b3io8yT+ij7tlXatMCFG2aJroWDZn0HRUq4ww7G\nqJKkhMqIrcnHP3hT7Vpqqh/WNlWuxLaem9qi3/GbEdwFCfgHUqieRIKFLaf85A35VqGtNcLBHjw8\nIJ4LcJNEssRh1IOW3AO+qmSEeZvA8bdCXJzAFZJB1XMOj1oNlNImc/0IhcLjJKqa3XX7ONbOgFIF\nSDGPad33hd9Tvd74QGuOzE2hP1/66yiFVTWWI6BSo0dCGdyqaa5zQXC2G2qPsw04D0Am3oeT5wjk\n3fZYbT1B7S3LfFGoqh2HyzieB+lJu6W6zCNwhBXi6tMeyEh3rOvHqKu4rsrTSiiudzx9LlVOW3AZ\nTkG7laH7CMYvqZ4lxf3TMfwoG8y/zyh2NVn/rz2t9vqyaez91j/+GTMz++A/+ikzM3Oe0jp+ZQP0\n9HWNwWt13S+xBk8TXBAXJ7uqR+Oj15zTYdaKILMClICWfIkTHyQn3HIlFM7OQUnEo2O7rD060Li8\ngH9oFX65YKZxvstcFgE9OmINMGENEox0fWIDviS4moZD+cw7v/F7ek5T8bC+onVj8tNw+F3V+j6P\natFjTwu67DlIxuvq4yrxZAQf0MlIY2O1I+TcYKQ2akLntHELBdqxynvMvFJGbXVKX6SYr7rwiFRB\n0C0c+PBQ/jpdaKzkLxQPC8u1GYiTt+fy8eQ9xSvvUJ/HC9Vj9664Y/a7ilOV90DQrKne1TLIT2LQ\n4EC/O+zBxbit+bbdQYkrjoIlXGkrNflU11WcSzMPzlqKAc2a7tNeKip2Px5SZmWq5wxRKZwh4rf3\nRd33xobWzyl8NGBN2x1qrBZY08U1lK0JN9tOmTXaXCiPLPNuYgwCCxWu2Oyj+XF1/aYFsZG5qKu9\nbWrb+7/DunXzDbXBy0K47QzhhqrD1fKAdSBt1weJl2eOHDuqQ9X980jHEiqlQZK1Tk99VsCnLKp3\nhCZqSWdf1rtY55/rXecewL07afXVcUfvEA5z3nMr8rVWQ++sKZQFs/vw7mSYF2YaY/mqnpNCdTlq\nrI8P6AP2FZiOLDpaKt+qHc67GmvBvvp0/A5oYZDrG3U663tYiJQJLbTQQgsttNBCCy200EILLbTQ\nQnsC9kSRMgk2whIx7SRlySIl59px6ya0Wzj3tWM1PtGu6YgsfxLN9mABJwTcKi/dlkJFbEO7vRtk\neo3M9Os/pJ373Jquz3Le8Plt/a6dU+biKmfdchFY5lvaZe2za1vegeoapu45O/7Lc/K1mnbGkitC\nE8xI1SbbIF1iKq/P+XKPM3BOj3OSnDH2otqhS0a0gxihHuMhZ4PZPR0fa1c6w/l990LPe7FesPQP\nSF1o+yWyKSm1+fUXtXtYI5tSIIt8uBAqaLK3q7KU9OwEZ03Z9LTsUtHmk5wFjcCro81E82JqswBu\nmNTHzFxuNVHcqkslwmOXNXtFW8rDPhnljnay67dVnqCjM6pWVFu39tVXq6Cwousqzya7pKUxZ2cr\naocz2N8/zRnNyJH4hTLP6PtWS7udI7J66YSub6FSMchpd/faRPwS7Wv0qfOXzcxso0ED/U2hrs6P\n4D8ZC7FzBfWTUlG+WgehctIUUqewoQxDB7RCDnRB54HaKb+t7F39eZUv3wclclP1iJ2R2QTEEWXH\n/KCj3ePtvHaTo6s6p+msKDPfHooV/vqJnh+Zqh4zfPT8XP60ldM+8mkZJTK4F1ZBRzzeUX9BE2AF\nMvyDI/ly0YfX5BK26IDoINse0BfLw6kxOFEGcLhEQJDESWosQAX4A/7OOV4AeJYK4BRJk0WZgD6o\noIZG3SJwzqTmqAgR36ZJNXKxxblm0AY2Xao+ociShJMFhZtoRM/rjfFxFM0MpFyKzICbQekGpYQp\nfCB9lF6GYxB2qB1lUBJwUEaYwTtSZCwNUcgJUD2K5PXpg34YgqzJo6Y0RJXCnWlMBC71RPQinVT8\nCzLyjfiCMWx6TqsPqz3ZoBn1TaTUL7OBnrdU7MmD1Ol9eOb/chblzHIuzTlzuLnKaTjByBR3GypP\nrYaSWRvEy0C+PoZLIR7TfeLwacxRpKij5lSBK62NYkQWRFC/A+fPApUZZuGYl7X4TPEzBj+RA89R\nrKA5KVnRMzdQW7qNusSCrHknot+fnyjuJlEWg37MEhdkZB34OjzNsfEuc++h6tBZKnallcVKoaox\nz2nczhpcn7zg+cxpEfnIPGhQJ5TAAtV16Cse+CgiBKjnpVDA2QEdUCcu/71f+FtmZvZnX1KW/LN/\nXTwevanG3FpKCI6VuuKbX1LfxEC9piYfT1nnxjNK829eFyphQIY4npWvxphbI10Uu0DGBPhkIar6\nlxgTPc78OzGQkKAMlqolQ7J8Xl/tlQdpNIurXYbwkyRM9egdKD4vQBRNyNh6+Y9UP2ZOYEFMYzwF\nKm/AtOvSn/VnnzYzswrXV1DWeO66sqDB9pJXRO3Z68IX8ADFmhJcOlXFwDRqTIPRkgsJPpVRwhwP\ndaGx/raWFWImU1EZohNQk6h2RFDFSaHsuFT7iaB+UYaHYsT6J0qWOjNRGYfwqkWHIJSJN4O+1gRR\nnlMuCqEWxD7eMtijT/Mgb6YNla9alq9P/neoAAAgAElEQVT/8HW1/fYnVc98WWP08H2tBeqPFG9i\nCxSqmA7KyL2NksQdxnI5prh566++bmZmV1vy0WJBY6Uz1Vzbzer3OZSvoqiSRkf6fx80U3KJRGds\nDFFtStKOadQJg5uoqXTVP9OqxvC6BzRwRfW/gcpeqiCficRAMsJVZsSCCZxeC+KgW9D9og31i/cQ\nlMPXFGt+4Ej9/Prf/ztmZlZLC/0Rm+p+CRTPpkO4alDPC9Kq12gCd8zwI/WluhdYG0RSvoqq6Yzy\nMh+PkLDpg5Apwk3UO7l8DttBJa12ReN4ZV3xKXtTffnCbRDfcMfc8xRHN4pAJSYoBUJj44Ly3CzK\nl175t7SO/NGG2qj6qr5PQbPOQCw391HSWeNdASRO/Ex1nbGejs71vM0drS9XtnfMzCwFF4mL6ukM\nRI/5qlcJXrdYXQEmZaC5eEdJX2deKaMcmVR5r96Rj5/0WbsV6Qs1g00Z49ezQigWKhokuYLeM5ZK\nivMtted0V2O9Bko4n9C7XxwEep4YNARxdOdZ8aNsXJFPzXN6cI13ySlxfRGHj6nL81g7VOHMCkpq\n5woIVKf68ZAyUzhuVutaI0V4X3JQk2odowBWBnE1h3cFhblxinXzKYj+MQpue7RrljUvSM5uhrVj\nT/VZf/rWh2Wpr0ZtfHjDpupqK+TU9v/+T/+0mZmVIvKNznvEEZboHgiUHHNSdKy+iMHV2uXZKRRe\nfTgOPeLVvAny29UnAr4Wy+yYmdmEdXMHHs7JntrgxRv/psoNYnl9pneVyKq+P2yo74d9+WotUJzp\noWB2AffWHPWn4JS4B1LRYX3X9BXHS/RtvKM5cm0Vdam26tHJaawUHvKu7KhP61f1nPizOr3htr7/\nO3CIlAkttNBCCy200EILLbTQQgsttNBCewLmBEtZgCfxcMexIAjMcT4e+31oof3/wcKxEVpof7GF\nYyO00P7fFo6L0EL7iy0cG6GF9hdbODb+v7fvtfUSImVCCy200EILLbTQQgsttNBCCy200J6AhZsy\noYUWWmihhRZaaKGFFlpooYUWWmhPwMJNmdBCCy200EILLbTQQgsttNBCCy20J2DhpkxooYUWWmih\nhRZaaKGFFlpooYUW2hOwcFMmtNBCCy200EILLbTQQgsttNBCC+0JWLgpE1pooYUWWmihhRZaaKGF\nFlpooYX2BCzclAkttNBCCy200EILLbTQQgsttNBCewIWbsqEFlpooYUWWmihhRZaaKGFFlpooT0B\niz7Jh//c53/GzMz+4ec/Z2ZmQ6drZmaRQczMzM5Ox2ZmVvT1fRbPm5lZ1rswM7NJXH+PXknq/76r\nz9nQzMySuZKZmXWP9HvLOGZmtnmjrOdE9P/5WM8ZHflmZraRaOvvtbSZmR2dL8zMzE3rOYHXNDMz\nJ5XQ/fcmZmZWqOj521vPmpnZ/sNvm5nZ4wf3zMzstc+8bmZmp0ee7lNSeaKpqZmZ+ZOKntPR8/3B\nSOVcXTEzs/7gXPVyO7purvJEE3WVZ6z7Nu+rvNmyrivcjtliNlAblPWb3nlPX1NZ3XumZ/vDEzMz\nW6SqKstEv6tvqu0Pjk719/dHPOOamZllyg0zM3vn9MDMzG68/JqZmbV7hyrjVM8pJ1XW//xn/xO7\njH3+879oZmatUz03m6LP+mqz8VjlSPP7lqPyTvNqm9qqfp/KrpuZWSSjPopPZnxXe5zJZSy1ljIz\ns6Cl33VnasvVZ4pmZta7rz5Yy+n3w7768L37d83MbOP2DTMzS+IbF235dCyr35XLOyrfudor7vLc\n7vDPPS/iqF6f+6Wf1+8qev5wX/3T+kD9WVpVv83H8t1cXgVre/Kh2XBuZmbVitrBGasfxo+Pzcxs\n4Os51U31i5tVORK+njeJMzaiChWJkdrNa+h5Zmrv6rb8ZRjR9X5X9e34+r/T1v5v8emr1FvlWBxr\nbI41lM3t6v7xtPztH/zCv9xPPv+P/ivVNaFxMZ7pWYmE6pzo6542VFnmMT0sbYH+ntRnJCkvGrXU\ntk5M182natMEnTWe6Dlx+jQVLZiZ2e6Z+tQS+v3qmtpkOuzrfgv1RSwh30xP5cPzsp4bm9Bmjto8\nNdH/I1G1hXn6f+Ar3jTn8i2nqL+bI19edFTO6Vz3WfpAtKtPXz+zaErPzSb4Tv0XQ5Vv7On3ibTG\nRDTu8Dy168Sj/HOVZx6VT2QC/X1RplxZ+eLe2++pXa6q71NZtVOqp/u3G/KdwJUvFvn/xNGYGCbV\nL9G0Cvyz/+N/a2ZmP/8f/B27jP3CL/59lT9LvTN63sBX//ttfU4jiu+JhMo5NbVnOYibmdnZuf4/\nbGnsFG9ozAdz+dfBoWJEqqj+9wL54+at62Zm1nt4pvscKDZuPr9mZmYdz7XeSHUsbmr8Bef3aRM9\ne72m3148UpvnShtmZjZf6LrTzkMzM4sEqmO6SjxyVbf2ocZ9mumgsi3fKmxu6rqOfP6krzKmRwSo\nhOpQLahNXJOPjE4f63tcYyCI6vrz5pEuq22rDfHlaEQ+6UzlhG0jblVVXr+tggUDldcp6nrPlw+5\nRT2n39RYW08Tzxy1z3yk+2dH6hsnp3L/F//wF+wy9l//4j8yM7P9oz2VK71jZmb33la79dOKV9sv\nP2NmZhen1HNLfb1ev2VmZotT1eP+dzRvbayrHVf/yquqp6++H9/X9YuZ4uvLr6gfsg2Nsbd+7Utm\nZnb4td8xM7Onf0Lxs3gDX4ootgRu9cM6/PoXftkef+F9MzNrUI5bL6sdGxdq95PhAzMzS91Q/z91\nR/Pj7l2tVa6taF4/u6/5vPl438zMbj6t5x6Tz7v2Sflfb6D7vvmlt/X3K59W/TqOfePrb6jsn/mU\nmZndeF5t93hXc6bnadxcua26Z+ryhVlzV/9/oL4f3ledVldUhn6U+BPT9dsrqovfbpmZ2b0/fKQ6\nt+STL//QD5uZ2YA1Qa+ptlsw1n7+P/28XcY+97mfNTMzd6C4NE0qzk2H8r3Na1p3DYiDvVM9J5dT\nH8+i8oXJrsppC/19+1rNzMz23pLvtTz53HPPv6x2yCnuRZgHLppql3JJ5e9PVc8G692nbtw0M7Nu\nXH93TzWmg4zGSvtMPpiOawwFruoTKLTYSpk14FzlG1cUj72m1iB9T/Wd6nZWXNO62pmrfBnL0S6K\ns+Wx5pOLseatcUdxNLIm3/OYjqOs39OsOdyVLd23rTHt+/p7saZ6NU/Vzl5f7ZmhPaYT+eiMWGNm\n9nP/4d81t6J2TEZU8GRG5dxtqH2chP4fTS/fJ1SwDO8hn/8Hn7N/mf3Mf/aPzcysvtC1Hmv91FDP\nPE/LJyYzxb9Ki3E5OqXuaqs5U392Jp+NRvh9UnHQj7AQrfGOostsyHrbomrLyVRt3j1XPJicqm7O\nusbaBY2/mlK5drLyRV4LLOdpjp4UFPcbB2orS+m6bFRtHWOe6Q71nNGuPtMZXe/W1YaVheaxdl3/\nTy1Uj965fHc2VF+25CKW6Oq+hQ3W4awN0vhk4Klciazu50YyZmbWYY1VmMrXjx7qezarihXWNYbi\ngeKqz3PHrtolmMrn3KTi9JA1QM1U/nFfvxvmNOe7Q/XPf/nf/Hd2GfunP/dLqmdUz6mk1Y/tnu6T\nTerz8cG7ZmaWTCtGuhdqpzTvE15N/eG2eJ9LaY1aayvud1zNl25Gvl1knq/kkh+W5b//mZ+zh62x\nrazK6TZYg58xl1Y31Mdj3oMHnuaEA8JY0JTvJgaKf0PeBdfivIOx9p/M5etrdbXl3qH6prKucd1w\n1XfDh/LFa1vPmZnZ/Qd6XrCm6zdXFd/8NOv5ru5X5b4HDc1xlbTqOmipXPOu7jPOq1zBXD6zSOu+\no5n6dnZfFXv1Nc3p++eKy0NHPpQeagwNu/LJg57WXjeKO2Zmtv6Cyuclue/7u2ZmlkzyPvI9LETK\nhBZaaKGFFlpooYUWWmihhRZaaKE9AXuiSJlMQbvHuWfY3SSb3mtqe7Sw0E5UlgT00LQDNphrl7gR\naAdqC5RDmd3gdp3M5pp2xlId3ffRobJA5xHtklZmZLny2uHvV1UOb6ZytRbKwMRK2k1dM+3Yn5t2\nI2cDbUsPjIzpEZkQ0AJH3xRS5vBQO37+v6HdzMVI5Tw/1HOqBe1+Xr+p6/YjZDUv9LtrFWWj/Kg+\nW2Qqkkfana39qHbkFh3V6+Lr2iGcDJTFbGZu2eKq6uKP2HEukBFt6hn1iOo0L+vvo5HaNl7Wzu3A\n1+6oU1EdA7ILueu6LpPVruPs7Lu6f1Rlu7jQc3dP1Ke3t7VjflmbR/X8ERm+yIr6PuvqPo1z7bIm\nknr+uK3yB5tK9/hF7XrG4mTzcfnGApRBXln5yA35TLqq7/fbylB3pvKJTTITkaru0zOyKQNd12hr\nlzQ7kI/UP/OimZkd/K6ye+22drZX8rquT8Z4oQ1t60xUP3/c57lqt32y7lmy+aMT9e37D7UrfS2n\nrGMir7ERiZKdapHVf6jBU31BO+bWUD+0/pQUxETZuOEnyeSsaqz4ZZUjDWJmllU/9Aeq/zvf+I6Z\nmTU7uv+z/9odMzNLsmvt+7qf19Nz3v/urpmZvZBVv21eVTt5vhqgta/yFhPqH9/R8y9jswBECBm6\nWEpt4Mw1nqZztd04Lh8uOSBTYhq3056eOZ+qbDkyeo5Pdn9ORjSt++SHy51u/X7Ezn8c1FY/pp3+\niU+bpXW/vKvnZFP6HkyUBYlE1NdBVG0XBLqPF9f1KcberKrfTxrqo3hB3x0QLP0lUrBI+Yd6XjKi\nPhvGeJ6vOBEPdP/YTOWNjGmHtNon5+p+7WO1Q8COf3mo50czKleEPht3Fd+6eY2Z/Eh93yf7N+x9\n1czMaqUf1e9B/o3a1M9R+aZ9EDNkBxcaenYBispvqZ1GM7J1l7Sko/5aDOVzAZngiq9Y0GppPohs\nk4klM33e09h9dKR2ffSBxmB/pvs9tQ5agIzRIbHquU/sqLxdMiqB6tOOqH/HKbVjrnpF1/V37f7x\nO7onMb9t8m3fU5nLaSFfLvC50Vx/n+DbzYjKNHyET0Y1PusZlWWR0n3PT1WHk7v6fzklX7iSu21m\nZqUEiL0Llf3iPohHUJ3ZoubMIoiZGOi0w6jmylZMPpdqK7vkkpnMbun50wZzYkO+Ec1oHmmeqD6N\nvsbEan7VzMx6oAkKgfpkmJMv9ByNyWiVeeWR7rsHCmLNUfy6rHkjjaWHd+Vbt6+qz7wZCEEQiU5e\nTnm4L9/ID9UuE9Cqj97bNTOzt37lN83MbOWq5vgf/0HF62hZ973oKZuYKavd+gP9P5kBCfruV8zM\n7N6u2vH5d+Sj5deVyR51lPU7Wxx9WIeSc2Bf+J1/pvsT72/m/67KN9eYi5A5Xr8jf7r2mvr5j776\nB2Zmdv2K2jMz1O8evfk1MzOr1RRbh3mNmXhBseJ4T/Pf+a7WPGVH/d14x+x33/xtPTutv1U/85KZ\nmbVP1Hcn+6CjVumzGxrfBRB8ra9808zMpseq6+281nWP9v5Mv1sB8UDWfO+P9ffdrxD3aJfK62rb\n1p6ec8KcWo4m7OPYAuTelHVeLqHy9A5VvkRCa44U6K0Zuc9IWmMmtVhmv4UcjIEOuFZ5xczM8mPN\nyceP9f/RjsZApabyz1gfnh2qbxebatdyQZ/vvqc12DYos2IgXx0yFGKg3pwPeL4DglPVssaZAll8\nR7GnclsZ7nRaN7jvgUJbgGrdUkbdTYIkBwkamaldM4zl0anK234oNNWkoHK8+NJTZmb2YCBfmx6B\n9Eypne4k5GMNEDRL4OhoIR+dBerPqQOyJqPP+IwY+UhrOTOz2cmJ1XyhwILroCFc+cnJAyGryneU\nGV9b0fzQ71Pfcdwua4RZG+HECw07a4DCT56Bug3U9wcnqkOxqPVntaiy51bkSznTeHNd+o65OUkf\ndLpq49OFyjpqq+/cpp5/DCInzmS64B1n9lD3TSR03fyO4n8kAzq1o+uGt+WDGzPmSuJ++ZzybDC3\nJeU7hTNd1zPWrwXFq50k6KW8ypsFcN1vK+5vsHbpNBT/2j1QVQX1RZG5u5wFubmmMdEA0TJtagwE\noGoLZyCxQbceHuvd6bWXnjYzs5wnlFbSl2/1QGImcpoX50eq58lDjbmNqtrdX+G9BGRQOqHPGe+W\nl7VmUv0US8ovdvdUjne/tav61dV+j0cg0omR5Z5iSSyv+tSBNJ3MdZ/IROV84Gne6J0qNt1YAS3S\nUj0HV+cfluWPf+vX7YPud+3ay4rPt6rq0zdAe1Y35JvbJU6IpOSbkazWjxvMxY2Z5oDzd3Td44TK\n/HxJSElvqLInVzVIklXVLVlUX+SP1PaPGDPFnNYq8xP9/fBQ4zn/EsjwuN5/G6wlLj7QuO6X5QPD\nknwnU5GzuaBKy1P5avtMD9r+kU+qTVi//fJ3NW8NBrrfZFdrlCynB87yGnv5gk7GPH7vLTMzO5kr\n/t7uv2BmZjevP6/fl5fvyrz0fQ8LkTKhhRZaaKGFFlpooYUWWmihhRZaaE/AnihSJral3bpcRHtD\no4J2rDba2grvk51vevqsgozxyH5NInAunGuH7j5kCYmpdjfrGe1kra2RSYlrR6tQ4YzZvnaLB5w5\nDc608z6IaYfN53xlDhRGZxVUxZBMNtw3N64q2zS6p2zVUX+J0lD9MjXdZ4udwKCpnbpcRc9NmXY3\nU0Wdw67NhXCZp5Xp8Ee63ysvKGNxtKtd6z/ztWO30eTc423tPO78Je2GNg6UOZr7Y8uccV64qDaL\ncZ7O4CrpkiGsx5TRczh3e+7AITPRbuhiXQiQNpnW46/9vpmZvf6T4st5auMHzMwsWlAZX/gbOsed\nfUvZkUSLA8uXtHJdbR67Sflc7c6ec2468Uht4K2TaYBcZhJoVzLB+T+vpfpPINCYck44BTIon1J5\n125p1/X9B8pWdR9pJ/rBB9ppbt7Tbu1KUT7VP9Iu75u/8S0zMzs810735hX19Zz0+fGxMqLbKf3d\nH4D68lXuGGeKJ/B49DiH3byvdg6G+v+M893PP69szq1ntQsbT6udnn9a/XPyLWV9vukLnXCV7OLJ\nnnaLS1WVK+LvmJlZjgyMzUErNMlYz1W+/kLlyeQ0NktFUBmgKm4/rzGwStZsxBhIJ+TTvvt7qidj\ncsSYny1ULo6vmhvVddHs5bNSk7n8P4CLINEGwZbkXnOVtRDT/yMTOKp8zmPDV5GYgDZy5WuLhXwo\nxpn8ZBdEToay+7rfeCpfjHEWNj7X/d26shdOR30XJUM5IjPpkjGd9zgPXlB5Y1MIdihPK0M9hiBn\nyqC1OPM+BSk0Gak+sbT6ylnod/0IyI9ZjueDdkuQ9ZkwDSzP0oMcWiT1WSpqrAyOQfgNNBYcECwz\nzpUfDnbNzOzaMju4CjIJ7qt46RNmZnbnJY21vW+TQc2pHT71wg+ZmVnnHDQb2bMhPtZvKkMyHGkM\nBhcfcQVcxtwIHEGePrO+4nznSBna412V/+pNob7aoDm+/oYyILlNZfuS1xSDAhCTyR1lentZXb+x\nooxQ6apiSfw+9QDdUr+l+sdr8pfqLcX5F9q5Jb2EvfpJZSzf/UDImS78ajkylHH4H1z40K5e15xy\n8znF2+/WhAptnKqN+znGQFXxfr2obHFrX2364Jv6fYI4GyvsmJnZs3cUX2JFsuWnavtZU/EjndY8\nUq8y1+Z0/vv2dX1/cMzzB6BOc2R+QSE1QQQWN8QT4izIXs/UZpWU2qYJUiRHJnnaZo6lL2slMrmv\nqN0Oq/p90j6ej6TjGqNrZPHqFTh8zvScckV9vk0c7NXlEx04xLKmPq1z1r/yrPhAImtq98aBxn7r\nu+IIODlV+18/13Vffvu3zMzsdkzPn2U1H78cE6phHoc/rgfHWlblOD746Jz63uHQLtrLbJxiiVdY\nkpepHM+Qvftr//bfMjOzgqlcX/p7v25mZtWR/CxJDIG6zDJwQDjwJI1ONL+ar/IXr25TbmVDp9mB\npRgn52P99vBUvvMefVhf1ZzYimr99XxO1z7zlOa4i9/8hpmZrWzJB2sb8pGiqS02XlQbJBPq61vP\natyVH2rsjGdqg9IVzTV15uglKqq8+vGy2xH4HsZwyGyDWCyu6z55QJ4d4vvM0/OyCfVptaTyxl7U\n3Hh6V5w76aja/CoZ6vM9lW/UUrvlS/DnkbHO5jXm23Cl3bkpX0zE5Yupovo6MtHzFkt+vBtqh9a+\nOH0iUc0zMeKT3RNK7O4XtaapflXlTjwndMHyraF4TX+v1fTccQk+vinr9ofylcaefHFtqnkiAS/H\nyobWDKVVXZ+F76TMOrkJCtBJqB0AmlouLl9LbshPNm6xZgWpM2+c036a1536R2i5Xrdhc56zaWqH\n6qZizzp+kIdDLcbYyYL6nc+/PxfEv2idjubKYlPPfjhQ4XNpfUY7mnOKSY27lSuqSyGhvu4v1Can\nj9QH7QBkOsj1bF/XjUF5HgW6Ps0cPswrbkXLWpts8a6y5LE8uKc5vD1TW2c3NJlfz2hsNcvwXPJu\ndZ140D1VGxSPFY8q25pHJsT/zH1ddwS6tJ7lXawmX+1GNH9kA/nkAIR4N6k+K0fgyWT9uwLKKvuM\n+miUAvUF2rfO2mK0AKFT1+Cb+WqPu2dqt6wjn9lM63scHqM06+nRhXxtEVffr/gqX7upd7FkWb/z\nWIutsy6OgJxMMNbacNJc1tae0li2B+rPVApU8bOq5w+C7rOc6pteUUzsfEPzxzko7FpJcfcZ3nNi\nP6b2ij/Q2uX/+N+EZGz2WGjH9Jz48JkPy1L/V16y5N6G/fi/rjl8AsK8dEU+M/TVp9mcfORmTG1V\nuC5frTrq41lEffrNO2+amVn7rk4L7H9dPpOH33T89F8yM7NX4VmrwisX6wg5fO0zihOvv6b/f/EP\n/tTMzEb/RHw9b31bvv/p1+RTkzzvuI/2KL/Gwle+9SdmZrZdWHJTqe75RIE2kY8Zc+mrn/2smZn9\n5E/8lH5XYF+grnpMHssXegvNL3fqiiNXVlSfw3ua07/9R182M7OT5nIdDbLoVfne97IQKRNaaKGF\nFlpooYUWWmihhRZaaKGF9gTsiSJlsjB+z4qgGtiwQlDBRi3tXJVRTeoMOE9X0q7sDlm1XFV7S4NT\n7bCdn6FQ42hn62QdNY+ZdhVHHmzzO9plzTbYSScjXihq9zMaUfbNzXJmNalzieUWXAdRFbgW1/Vv\ncd6xntfnS88KmfPmHvwnD9jB56xtnvN/94+0u5pMaPfT65FpDoTWaDRUz+SFMhOTqTJGVRjc522V\nyxvo/9kVZYpq8LGc+uc2cXSNJbXbuTC1aQWOkAGs3GPOpGY5G3k80W7i8txxEIPPAh6KPwWl82yM\n7PHTQmh85VelFvFDP/XTZma2+wFICxAWl7XWQ/Wle6q2GuXglMEX1vPykRnldznf2CmqnEEfhElG\nvuaOtIOeXzJyc174lHPYU84lRu5rt3UdREx1pt3geIadcbJ+Djv51RJ9dAi7/TGIGRAqhSGcNlzn\nkulIuigjLM+pk0nJu2r/REHt2m2iKJRU+0Vhlz9/VxkPfy4kzrQJe/2B7gcNiI1RuIiNVa7CDfls\nIQAFUVqiu+hfjpp2UReJkmWboU5VeUUZklRbWbVeR+3WQSXrS7//RTMzW7smX+xznrwFCuSlDCz3\nZdjs1znby8H2efvyGe6Mq74PBuqbEdwkiBhZhMyhC4JlCsLOGcCNQhZqlkSVoQsHAGfnK5v6fnIB\nSioL8z4cMkeHcMaA/JvzvKXaUsLoW5RplupyMco9TantPV/PSRGHxnBaRVA2GCXV9pEYHC/sqcdB\nOeVdlFimsOQTHyMRjXWfc+J5xrJDJsQnMxvQHinG6BjunAXJlQhKPNmpGnZc45w6mc/tbfnk1Rd0\nJtkfK95NOirvC5vKyjig1Cqu2n0A70gMHiT3Qv8/vSuf2f6sfK2yojH4EB6j1KYQKpe1GGpbPcof\nuKpY3gUVQdKqWNI8ctbQmMqi9lHfkqJcNAcyiIx4LqGY4oEMmoLE6lHvDmekL1q637Vrqs/ogcbK\nHx0qi7WTvWqNe4qfzpqyVbWO2mgFBajVotogdUdZqd0jXRs9k6+4IFfurO+YmdnjgcZn5Jw6B+qT\n0g3dJwB5kVTX2YN7+v94rrY/f1vx4iaKWXEm50UD32woLj/Yh78pqTlsFcWCBZnQNsomzXcVZ90U\nnCP7+v/GbfpmrIIMjMZdx+d7qEnV9f24rT452Ncc6fnyxWN8NkVWO7L4eMjMOIot11EZScJdAKWB\nZUugyNrq242C4miVjLAPd9gAGZTXf0DoAh/kz+JCvl4Yg9T0lb1bSyqmNBa7ZmZ2gZpW8ir9nf+r\nus+KsoP3DtRO6avqv4BYZGZ22u5Ylfa3rvynw7x/BtLJQ0Hj1/5EXDEFV/3Q/yX52Uldz1lUNBaS\nL6t9T1z5l0tMap1pzE5HGkvVkpCaF3Cj9ZJmn37tJ1SWbfX5d3blC/fgO0vc1BwBBYjdf09tN72v\nzOrYU1xNw3u3C6lIsq54Uq6pjO2O1ntZFF7sdT1vhiKXR9zxCvr/HJRCEhXPy9p8od93HmnuHYFg\nLIMcrLN+jKDeFyewjEGb9uC9W7mi+xTbWiPEcPnyutad2xdwBYKw9Lqok8JNUN9Q3Lp3oGy+gzrp\n6jprFZQ1z1EquwChVCyAjIEjJpVdqgspjl19BW7Hr8Prsac1QCGu5xduCeHizuVb598W6uMkBc8T\nyJ5ojzVmHjUmVAnrdV2f2NCgOjtTHJyMQJtdV7+d3kNlEM6dc9Rd9o805oO3QMonNBZSG7p/1FH5\nk3AFlXb0PDOz+tbtDzltdr+k/utfVf1WNuADRHX10bnaa3C+VGNc2GUtnVMbX8xUhwjogJN7umcM\nZF2jqb9PUel0T1VXHx8prauO11EIq4EwSW+Bxl0IiVdB+cqHKyYPgqK9r3jpoLT4CO7Dk5Hi9qar\nttmuyQfdqHzH7gk5uXlbccIjHmJzecYAACAASURBVI/nKv8sofp1ngbZcqLvh3DZZNKs030UwzKa\nV/x+jXIyxqOs4zvMnQDvzmYoixXlC5mlGhKoYGdT8895RL8rwNt2gMLkdk3xdp7V79di8rXIusoJ\nYNucrsbGAOTjFV4FT/fgnCQoXU3AX3ShONu7juosCmILj1MazL+XNf99xayv/6FOHGR2FTuOXPnB\nyfpP6ncjCFbSiolN3hFzJ6pf61m1xwPu++pwx8zMVl79QTMze5H3qKX61z3eD/KVj8pb3L5hP/j6\n85ZdVzx99PgDMzMrvSokWs4RCjU/Ul/M9zR+Gqfy8T3bNTOzCqcqapzCmG/pFMVOTnP/7I9Vt/d+\nQ9wzk76uG3VV5uSKvpejus8xqNBHcGi9Ce/O1efUid/Qbe3pvOLl6I7m6GfYP8i8rM+VrnzpblyI\nmxnvWKOB+vbR25qbS6Yb1lYUF1fW9LvYS0Ls5A5Zv3+X+D7Qmi1a0Bi89lnVd4Q6a/sE3qjHQtA8\n62jM2r9rf6GFSJnQQgsttNBCCy200EILLbTQQgsttCdgTxQpc16BtR2Vk0EczoM4jNYoQkzIcBc5\nG9wCbRCfaMeuco1z3igGFHQM0yYoSJTISPfHnI1z0CVf6DkIVli6pt3aNtw0Rc6kzUDWZAd67hlM\n34WuLtwHLfH+m9pddm9xzv6adsQKZWVITz2UKwbweZjOAW7U4V7IaIdyynNWN8hoXKibEu/pPoWS\n2mkR1w7mZKLd4uYD7cTtlFDMSQh9sLKIm5/TzvFowFl42nyGilAKlMEp7Ow1Ml3Zvtqom9IzVnLa\nIb7yr+q6G6/8bTMz+3f+pjJ53/yi1CJ+5f3fNTMz/5/p8/3H2oW885zKfFkrxdQ2qeucx+tqlzRF\n1mK8pR3+ALWPCfwUEc7mdlDryJIx9RPatRx1OWOLL0Vj6vPBY2Xxsnm1YT2jPo6CakpxvngcqD1r\nN9Vef2NVO9ojR/d1TlA16um5uarKGW/LV+Yo3cTgJ5mSWVkmiF2UdKpkYodx/SPvkM4fq1xZ2N/9\nBeiIR/LNDdALCbKIRc7S3l3TjnvRIQOCAkwahMwcdagu59TzoBnGKAMtPP3OravdMlmVZwTDeglY\nxbM3lIGpbJIB5nczlHvm8ETNQOp4WTL9cMlMo5fPXgaM45EDJ4qvHeyZpzYswr8RoKCSgEtlQtbA\ng2skw868k1H2IdnSzvysozot1SRc+BfmcD1NUW9IogLiTtS2E9QifMJsDDW5OAiYLoieEZmHONmj\nXgCqKsn9yH6lk+pbfwrSJaFyJRZLBn2+D/T7BKgkLyrfjoHGmjkqR85BgcGn/NxvjtpUuojaUQeu\nmwpKQGQ+o2TfHIicCnnFSQc0wfE9+gHkUZYx++BP1K53aop/g5ayOD0UF0ae6j0HuTM50n26Q2W1\num6L+tnHsllWY3Ub9atyXJnRBx1lhPY9lct/V5mZxj5+sC3uh/UNlXfYVz02XdRVHI2Ri4e7ZmYW\nG6t/c5sae2tkiMslzQvX4Ew4rqPW1Vd7vnB1x7yWst5xssyFc/mSG1e2Zv/rOiOeKukexSn8O3dR\nfmmqbLXbqtvNbVQaQNbde6w2TPugBFAeDEAhJeMgaxL63v6OMoZnR/Kh9VuqS4Hz0bXrcCGcKNt8\nel9ImdbbakOvrDFQZE7q+/CfBSr3APTY/jfVdqMMKnQoG/oxlef8XWXjC2S/cx78GzfJOrnA4i7U\nDnNUTiaMxcuan9J9Sgu1Vz4OaqzEGCuo/mn4LqJV+UQWLoJGa4lY0s8Jl9YHLZdayGfGxL04PBjr\nayjXNK5QELh4pirHDIRQzFW/TqZwG6D2N4EjwMzsoO9bGgWZJvPMOwvWQjv6/RJ9cf/Xds3MbG1N\nY+PKujiJPBA2janaM3NFPEuNnMoRX6gf5vByZVAimxNbWlHNs4XK0IIt1W0AUm3KOMt9iGgApfOW\n6nxwXz5xvkCtEhW59KrmlG5TcTNzR22fWVUGtzFT352y3hsWFCfcuurerqLyBvIth5rOsPLxlsFr\nO+rcIUovx7vKTzeWHGHwPE1B9daIAylU8mYeXIYnqAN1+UxozdCaw1NUUfmcGPxtEfmg56le0QVc\nh57K/+iR2vy0q/pucX8HdFu9hg+DyIzjUwu4xqZ5jdX1LbXn7Tsa4xP48Lo9jd0lX+AsJ9/sseYB\nmG3VrMa6C6o4V9ZzOoz56RH3qah9nKnqt/BVr3ceqR2OHqtdq/BIBauqbw7VwAAk6AyVxQKKoAn6\nP+Ywb4EKNzPbfOkZ26prntt7V3F/SGwbm547eqDnTBgzqxViZOnyKG/fVZlzlGktznpwS77gHctH\n4iNNYvMT1d2H8yu6o7a9+bR8och6q95Xmza2VbY1Thf0k4rr/fuqy/6Utod/Zw8k3Ql8Gpm5xk7+\nFnxDKCgeNVCkgc/zCnxuJyBRLjpHlEdxJN1U35/DoZOLLBGT8t02684SHIOpmAq8GOn/ORTDTlEi\nS/vyFZ917ww061JVys1d5+96bu0ctDHIvUWKOFRTeeyu6nt+ojFQWKJZcyBt6vKNjSgIoKXUI+v9\nTpx3LxCCwTpKQQFKYqDR8ktlzjmQykuaN1P9cnnQXgLj2kuexmA8qvs14QUcnXFigLG0RMAP7/Iu\n+1iojX/+ger/qb8i1HIZHqoZ/eC0iOPViw/Lstt8bNHYdevflXrdB18WouT6MyqLR59VUadcKcsH\nsrxrpMuowp3Ap0Td1p9WXzXuaQ4pvgYiDYRcISsEytjXHO8eqY6HA42RSFd9sxjLF3d+SOif56oa\nGw8aqHWCIs2OeEd6UT4c5Xvuin5feFfPdzfhds3oebGIxvk34HmrzdS3p3c111+5BvprW+2RvKrr\nLw5RPtxT+e06ioY/Lg7F6QOV+8G39bvtzR37fhYiZUILLbTQQgsttNBCCy200EILLbTQnoA9UaRM\ngYzsZKRd2+IAPgwPjoiUdr4mM+36Bnl2+WACT51oB2sP/fD1dSFgYk9zjjFCppldxthEO3mG6kUk\nJvRCaqZdWKdBlo7z1q0sZ1S9cz51fY7z09MJKirsmq5U9fs7n/pRMzO7+pQyDfP3tcucWud8Olml\ni/s8F5TEgoz9dbKPY9SbTkba/ZzVOF/J2ex4V+WZtFWfwoUyS0N017NR3b9VWLVYi2w1+vU+Wu1+\nTLuRi6HKXnQ5t0x2dwivxnlH96z/vs7jfgDPTp2d4q9+Sburs2PtOv7HnxOXzO0tKar89m/+sZmZ\npXNq21+3X7XLWDJHm3G2NIipzz04BuJkVoco64w4EzqDNyRLRtHIeC7RDjOUBmYghJYZ0UmgPk3D\n12Oc3VwyikdRJwpQ5hmN1PduFrRAjCwNvp0HfVFOwMPhgAIj4xiM9LtFBMRSUs9NgVBxySJVAs76\nxtQfEb4mXfiY2NH3yTqm8R1/oPZqnuszmVL7x0CiBHm107Ci8kyHSxZ4MregOZZj0C2SZfThXCD7\nOKlSfk/3TTZVwMo1cWPE4SgYcL49e0X9mZvp+kQS9FcGZACs95cxh4yrA5JuQNtnA32foAwSzNmD\npk1jGcULL4CjhTpl4BiYMEa8GfdHpSKg7VpwFQQg8uJZuAGGbeqGysey7XBFD9SCDTSmZvB3TMh+\nAHqyCDwZNpZTj8ZLVBPQPuJRFnUKj8xvBDWkKGPbITMK1Ywl4JhxQC3F4Stxl1msmertwjMRy4KY\nQXkmNlK7DUgKLQL1bYeEZKwD4ogsntfkbC+ZlWaXTOmG0B6us6v7JDkXHxAXB2SfUC05afZpNiFr\nMuPLn/E3M3OOyG71Nc/0Hquf3vhAWbpkRmeSx2TOnZLKs42KUudC9WyClHHGKCFVVN8NEFhz2jVD\nXHfgGkuhuBZHJeapp5XBufcG7Tc/tDmKWwf3lMXt7Gq8fPIz4ifb/Zp+e7WiOXNla6nApbJubsoH\nh/Au3H2kM+u3X1HGLA+Kp8dZ9Dy+44PYCChrGU6afkXPP+hobqke6f+xM9QnUH27si0EZAHFs/h1\nlSMH0gPXtQOUrsq39fvMJoqEnBOv1+CsWSX7PpfvXKsrU5mMqrzdlspRfFlOmAcV1txW3MujmDhA\nJeOyNs0zdopk48vqK7ep5+aI82My4DnkshJJxmqEDDNrhwM4w2bwkBThNrOOyjlgzo/76ve1jMrb\nHQmNMN9Rdi0yVLxcLMs3BT3GGCsmPkKgRlNZayfx0SnzTF7Xj+egi5cor5Tq15lqTG+tiHuuP1V2\nMkgsucxA2MD1EEXtqgyf1d4cdAjcadEo6kuFuDlL1TH4w9IOKM8cCAf4JwLWFF5VbeU3iE+OrhvR\nxokaqFDTdY+b1KFPX6Cq44FWSpXgTQPJF4G7xOX5M+LMZc1Pyueef/2TapMb4rY5/kBjdkI8bLfo\no7HabE586CyI14eKY1ljLgS5mIKHJEiBkkqq3Omy5oFMdUf1iKtdbsB/VE2hDhpHtQhfrYAU8VfV\nXv0RqNsUaikp/m/ygUct/k99U0nU7xaokPRAQxyDzoIfxV3VejcLOi8DgibBGmg+0NjfX6hdtkER\nN1mrNc8U9xdpfS9syhfrqG6l3SVKGTUrV+Xx4BfsDNTucx+VJ9b9XvIjtNxpr2dRFIZWnldMvKiT\noWfejMG1NohpLTRZogsSWbusVZm7nZY+u3CBzX3GZR1OwwPiaE1tuXD0jByosoee4u76A31vroIM\nOVWbXsBflqBNRz5KOKCDL1BjmuyBgHQ0bosrGkOxssZtZ7wk4NN9Nhz1Yb/Pu8tjzZ0BCjWVvHzv\n3CG+gVK2pMpZRMGqENcax0nuqH5zzb1uWn3d6BL/IhqzE1Tjqh4KvGXVL57UGCmAioo4ikctxkye\nmJBpCtk3PUThDC7E6qru66OImcmrnfJnuq4LysLbU30d3pNqM1AXGTjRzjWGitsooeXWaTZ45qIf\nb765+RoI+aJiSJp5Mr2Ae5L3helI5Y2s6HmbRbjFWGPU1D3WfX65hlV9d7+rtU0xBw/Uc7pPdFX+\nM5l8xN24MS7Z6qeesRu8nwZw4RWqOh0xPtCcMDrW592u3gUjJfXdtYjm3M04qnllFWrIurpHG8V4\ndxnOxAmYnMkndpnbLt6Tz8zxqY2U4my/qrpm4cYaFeAviuhdIZpWHT2QdLW0UFVHc6F3hyeKw3k4\nAJO8Bzwuoc4MN5izr98VN9QnfQ+FSmjbEiPe0+dal55f032+2td7+uKruyr3DwtRswBdNT9RPCld\n0f2/l4VImdBCCy200EILLbTQQgsttNBCCy20J2BPFCkTY2c6V9SOV4MMNccn7WSqnfxMAm4GTzv5\nGXbW22tkNBNiFPd62qmbsvs3zbKbOtFOXAXmcofNQacJdwPn0aMOahyco0wvOQyyuu8IjoFsmfOK\nDe02ljjvXyrofv33tat6/1TlGoy0UxaMlHEtV1TPijYYrXmu5x20lWmJXdNOY6IH5wV8KNmRdoV7\nXc6LkkWsw/dytqIdzcW5yjdasAu/2LNgqizGIsu5u7l299IgRdpFbQPOh2T/4c2JRVCYClCWyavx\n8icoV8EZcPS//p9mZjZhZ33nr/2AmZk9Ht41M7POxXfMzKy4UDkua/2xdlujHRRxQJLM8yqnC/fL\nZJmhoy9zac6LoywwJ6OZ5uxpirPvU7J4vRhZODIB8ZR8bRzV88dkfDPszMeysMeDlorsavf2fAKC\n6LZ2bWdFOGsCuGmQNZql4f1IkenoqZzJpNp5NFa5MmXOTYOoifv6fwrliGlc/TRCkSLSUjuM4Dma\nTvXZaC35k1A3op4+58KTZHCzEXg8TJleD86bBBkNg4/DnZIZIVu39bTOi/a+qUzF6ZlUPVarIJwg\nV5i6cNWUlBGaBXAAwbkQ5cz07GNwyswBjgQgR2Lc00cpzHFBZoBCmMELlKuSiRzq+/QcJAWIGzer\nMvZRjknBldIk++KR3c6l5UujlJ4zK6CoMFPfJUA3zeAJWjDGpjHOKaNqNJ6xow5P0ILnJCAaqoLy\nAsxlsZzuvzC4cqLUf6mUBgt+NEqmjwyiQ6Y2cEDm0LXTBUoKoK0SZDYMdYsZXAYBPEtDsumpqOqR\naqpeM1BbS6WzGUgj38HXKsogDC8UOwZTtfMUbpv4bJ2/KwNSJmdbrAgN0AFtlQStcFnroKbhIkk2\nhitoc1tnmq9+Wsoxe3B67ayiRAPnT9Qj4+1pPolxjn7aJHOysWNmZu2C0A3ZBbGlp4z4KapR/gPV\ne4VMdrOh+yV7Zbt+XW2ZBtYUyZIVTqtN1ioqQ6WmNu6AFpoN9Pd2Uz6SQTWilJKPVjIg+8j2TqbK\nDleKQuBYAm4nR3/PFeSLzz2teHN+wnxR0/33z5dlVl3bqFA83FVmrkDbrl/R/Rdct9vUfS/ui3+t\nUBbHwtDfNTOz+ERzdopM8WimPqvfUVYqbaBK+3pOZ49M9GIZR3R/B1XBUZY4dUkrE0MWOY3ZxIJM\n6Sp8SZzhr5Bdy2yp7+e9pYqF+iOG7xQbZOvPyByDAGriG6ug6LKbZPNP5dN+TDFkxhgNQFmM4RdJ\n9TTGh0n5ycq/gAaIRRxLTFFey7PWAInYx7cnBY3FVVBe4wkZ7zIolDYxLdCYq6+jfgL/yBx+riSc\nEPGmkFlOGaTlHNRDY2h+RmXIgviwAdnxAuqZEcW3WF1l8Xsq4xgE8zhDWYjnC5QLC33FZd/TuFqi\nTScRtV2LuFddKGO6mQb5WAARjWJk72MiZdrnet6cuXBtS/dZTbygNomSwTV9DkGZncBFVuZ5ixcV\nb66CBOl7IGzOhZpwQMdmklooRuAS7IPQbF7od/W42rXp6vucXOuQsXN0Dh+HhyIW68PyVaEmkszh\nPuXzQJT7cPT0Imq3ZYY7m1P/nMNPmIjBebYiHxyj8DhhbelOFRuW81oC5bXhUsXqAPTVkussr7Ge\ngAPCyYPaPlO7txoq/6wqP5r4+nu7r+fEPVRUUeQceR+95rTHns2JiZ6rejRAFW+sgnQFgZMeyI+6\nffEh5r9/gvvP2RDOrkIGjqm+nuWf6HOREBpgSNxYckUlXdVh34PnjfVluqa5tALKKwO/xhiU65Ib\nbFLi3ecYVOZYPlGeoSY0UpuXQR424CVyQbzEBvr9dok5H187iarctQD01/K0wUP51tWx5rg+8XmO\nClG3Lx+L5vTcFFCQ8b7KG4loHhnDCziIql4DEHyVwpJrUb51Ds9nrqzrolHNi2nUAAsdPfecNVaR\ndXae9bHB6RWM1beHJfV9Bs6cfKD7Tia6byfQ2I0lUOqBOzHe0fq+kIEHsKTyFS9AHF3SZse677Qv\n/qTatsq/31U/ZHm3W/BunDzX95MB/Hhj9cfpKii7DlybaWIGa6ujU/XP1HT9+kTt0RgMPyzLXrdh\nn4wPrXZLCJFvbYKMnuva0S21fY/3562s+rB5yCmA410zM9td5x3N0/+jnBJIFzQO+22VceTBDQYH\n1E/87Z8yM7N71/TO+OX/QQquE9bFeRDe46WqaVJooEYP3qIjlHNRUSsNVNDtpNabPu9iTTgdh3BO\nZdcU31JxVFUvtAYaz0CXjXh3m+h3Jxcgb4jjM5A3dV5EdgeKR+4bqAteRzEtp3p2lr74PSxEyoQW\nWmihhRZaaKGFFlpooYUWWmihPQF7okiZ+EA7TK6Dkour4gwL2iuq9dipRpu+k9auYBs1puRYO2Z1\nXztQDgiXJqiJDDwZO4HO30/KnPk/1f0HXWV3Spxxdrm+zY7+KND/4z3O25Px2YcTIVlVuWJDMjQV\n7X7fm+jzqZmyTO0zzqzCgN6D+fy0wzly0Bt7R9q1vFNTvX2fs7xkTQ+bynxsovpyAZ9Ivc5ZNThk\nhuyC+74+C4O5eVUQCJy3yzfY0a3QJg24VVCeSq0KgeKdslu6rjIvZtrJn3JW/vqdV8zMrDMQU/fk\nTPff4CxkzdUuZaeizKjlSLdc0lbWlaks5fQ5nGuHeMj58gVKDPPYrsoFuiBSIYPXAQWV5sxoAL+I\nR9YKFYlhXPXJkqGdwMRdgDNnZmQu0nre+Bg0AsiVdksKBeOOdmFjayB04N8wjvxHyDqV6NspKkTZ\nIgoUxxoDWRAtJc4mDzgXnyIDMIqqfyIZ1SexVEBwVa5T0GXJjOox6qPctUDhLAGyCHWOgGzScAIP\nEWpWc3biB6AmVoeUmwSGW9Jzb95U1m9c1i7wDG6i7VtCb/VgZH/vbZTPmhoTjbbu37/QZxF1k1IR\n3pVLWBwOj1GGLDBtmhypLTJXNA68nrIE/hRkHr5tRT0zQnZ6mFWbl0GitUHSOKDFFnBVtQwlq7iy\nQaOenpsBlTVnZ356oXJE4XeYuEv0FPxBoK8GKBaMe0suLfnmIk8fcMY9kyNzOeK8MVn0JT/PECRM\nrqT69Dpk2ck4R4hDDkoHUbJ6kyGZzMSMv4MmAx0QAfHT8dV+c87aZ25pbPZjZEgPdT/EMSzTVz0G\n9FO6rHY83BXfyUoBRA3cEWlQfNmGfhdvyNfTQ2VCXDLKzVPF58uauwbXQVQxaIbvxpDKeXig+h0S\nr+tj9evDvvxmZ0uD+PoW5YIXYDyRv5zvKcNzcqAzyFe3dL0PZ8Y6qLEMKlgBKLkS6oHZ5NBcVI0W\nJ7q3BxLm6K7uPfblc6NdssHUKbGt66Zk1Gpz5iwynNmusj5bDplPOGhmabi1yBy6eflupIfCC9wo\nTpXz2Fll0Wovq69HbbVdCoWVEpnhwweKN/sDISRf/rRUfWo1YG1JfSaJ4+fwubmBnuPUVT7vQH1c\nhJNh0SUDjKJP1lE5hhH5btBAuaEnxF5QUNbssjYHPdfbV7ulUOfLJdWu06UyWQ8OsjPmaqTAMinQ\nu2S485xD78GNtgAhs4IPuCACk21IAVCnisdRkuN5MVAEUeYnF6TmHETKzP1I9SPtF2xA5tsnfhtK\nO3nmn0JW9dx8VZxfj7/1ppmZRYiNFtCvc/VnlPqnk2T5QHbGQLc5Sz9pKKblPH2PJT3zAlTncigK\nRigzqkopEBMx1NkGtOVSCGWJxIvBNeVOFA+mRfmI48oHol2V3YvqOQnmuiXfz8V9jZ1OVn0QIftt\n48ur6piZEUat0VFdZ/D0JFx9j8J9MoGbwV1VHKiVQGSirOaCKnjrPa2NHt/fVX3o++2nhJj24LMb\nHcJ3ATnZiHkjC69EC76mcVcZ5HqejDTxNB5ROzRBkaU7GitLTqwsiJQMXGxR1FRSoKj6bbVzfk1Z\n+HX481x8vefLh0fEywWohvkSqdlVf+dRWEzBcZNBkTJBnHQzS2QinD/wFc3aat8k3GWpGOiLJZoL\nNNucTHqQAaV2APGSmTV6cyutKya0QY/0LkCAHsKRU1A5qpRzjKjKjLXRZayeV1yIA4f3DlToKzX1\nwe4YZa6brC26qDDxDhCfUEkUZtIVuFR6IExugrwDtdrfE8IjfoySLXP4fCofaCwRd2us+7hvltMA\n7hlcXiBHRll8bMZ6bc76DAWs8yWnmKv6DOGYmbflM2X48foJ+UQB7rFhExXVqdBH6YTieCOi3yWm\n+HoO9bdTkIFXQcJw+iELnqC9UN+dVprUB1U7UGzeWOWdJ1S+XgzuTJDwyV3iK5w0XkL1b+VY4yxR\nxSBQylF4S3hvKsRUzwnr4mjuI+TJZewDYsiCsdl6W/VpngmBWr8h1NjadbXf1is/ZmZm7xz9oZmZ\n3e+onsUKqqag17wp6qogmqIod8aPljELHqlg8GFZLnbP7Hd+9w/tL99SH+SAxnXhI13dAM0ER+o4\npf+XC+rLUYT1zPFSqRDkGgpcM+KDB8J5fyHfO0SB7N+r/YiZmT3FHPj2GxqPW6znJw0+s/TVmdqk\nyDr4AqXG9K6uey8nny3BszRLMyYvWAefcmqhqeetfALlwGsohxG/HN6VavR1NaF3WjvdVfugdhrk\nFYciXXHLHDU1JrOmeLz6gvqymPz+Cl0hUia00EILLbTQQgsttNBCCy200EIL7QnYE0XKdOD7mKHu\n4ThkxS44e8W5Qm+qnbQI2bC1UxQkTLuTLRiyb95CmcAjS3ik37XhVpmhKtJHPSMPw/icc4DdujIp\n8ap2thY1lSuYavfTncDuPkQNZci5xr52/j5xVWeK90+187ZxDdZplBOSGVRION8f48xxqaLd2dWW\nzhZHERUZogpTAn2QPzyjnbQzV63CYQNfiLGrnZyo3qMUqgbRpi1OlK2ZwOWRiyqb0Ye6I1NasreT\ngeOIes/RruO11I6ZmT14pAzk7FBt4b4C+3gUtaC6dk3f/dq3dN0nVPZTzrKukym4rHXPVJ4Lstd5\nFByyy0xlRm0wGy+zbdpnTC5VkFY5Hz3ULmYPfp4EyBc/BxdBGtSWt8wIspsaV1/nfXzCV/u5rtqv\nyhl/lwxwDoTK1U2dY7/Ljnea8/QROABKMw29EdmYBaiveF3/n8FtYCl24EHCjJZjhfPzcXg6Nja1\nGzzKgBzqkIUksTnl+clNjYHzU/lKZLSkFNcPWzOVYzST78X7+t1ZU/UdDDmTm9Jz4vuq96jzy2Zm\n9uab4lF674907vLTnxWnxHZNY7RDts1QWhuhULSgPc5QgIhOyKhfwuacNY0aGVBQPLMCXDJkEmfL\n7BHqDkl25MuoRbTJAo9acA5UUMmIqCwdD1WIZdeQWfRQnJn0YOQHNWBkK2JwHHhxuFpaauNWSuPU\nJyuG61qQgTdo+XtUo+IgOuYgB5c8QH5MfTtEmSwb0XcPFaQ0O/1zT9clPLXHhB38yACeIc5z22Cp\nyLNEh+nPSTi34kX5XhNUXQKfHgw0Vk4aQkncufW0mZk14KLxThSHd1CQ+AAU2dWqxuZwSMYiTmYj\nuuR54rw2GfdcHcWe9OXRVGZm5XX9fnSmeo9A3MRW9fw48816RfePokTT+dKXzcyscAvFHLgFYhOd\ntS6huhfDZ/0Nspu5ZSaJ7ChKG8co2a2sKWt4ZUUoxKP379p8ojmwUFdWZedFlSFH9t/j/PRxR+Os\nMta9Nsu619lQbd0ZEtdimSOWogAAIABJREFUoKFAMfVp4zVQQosz1bk50f83d8R7dtbeNTOzJFmu\nDDwLp8c6+57Iqi1mqK91iBfFp14zMzNnU9mk0z8TT9oZPA9jOAlioItKJWU+Z8/AqQUfUSwu3+uA\njhi/q3nnaKg2fPXVT6n+CY2lg1OhDdLPCJlXBMEzHy65Xi5nDvxADu3UhSMmwdn8eUAmlzi7jNvO\nmDHGGmUxAr0Hui3X133zY8ZmHM4YUBGRia53A8Y681Q8rnZOLhEs8H7Mo/q7M2Ue8T7iMggSccvA\n+RK50HPmIKxqVfnT1OBt6WgszOC981HYmYNiSTP4HWArRb4v4HTrfEg1Bl8T5+W9mPopmOetShbY\nX3JlpRQnovBIpCIoQhK4UyBlbKa+c0Ba+KB3HPjZIiA0piD3RvMlhwmqZyhQ2VzfO3BtGQhlZ4oy\nzOrHiyNpkCUeKKZuR2M2SjZ+BiLShW8vZqjRjdSmY9DGXRAaj5b8TFnNzRvPPa/r4f2ZwSEYwF8R\nAzW2BZdYmmoNaJfkOmMbVMAKSKBMVTElVVLcSoDC9fCdw5bWl91TfT51SzGllFJ8bPWV2S7C1xdf\nqP69lPrn4JF8KJNR+a6iBJdkbXUMsnEEV03WgT8JJHhrJl/cKKEEyfy5Ce9UL8v6fInCQCWqC38e\n4C/rwy+1Cmdb/dpHHA6pYtLiC/WLAxdPsKUY1AdV3T2mnnd29Lmu5zvwk1zG5q7W25EeCHVP68Cu\nA8KPZ+dRsto/1bNTE9BFCY3bAuvL+QSOKF91SaHgF9xVnOqDUohDEBeFH2PK+tNqS7U91JtAskfb\nLDpKatsFCIo4Sjizpsqx5oOEm8IDgsJkGnWk/kOUekCIp+EJ8QLdr89piBSI9LN13sXOiBvE/SWX\nYIt6VFmvrud0nwWnCArLMZ1AEeyc9W0X/iJfPnFzuR525ZO1mMo3BnG5AIE+Mj3X8dSuC+o9yClW\nlUFwTpARTKXl+7us+TIuSMrs5detZmbZGjHiHKVeR+jh/Fvqr31X/bKM015J5Yn5er9YiYpbLVgq\nUTpwf4G8ihKD8reEiLwAQepDi3olV/mwLM9du2WRg4FNnlFfXF/Ts9509E43B1kY66N+9BTKqSC3\nncca39MrxHPWUz5KgkOfNT+kiLdAonzhf/kVMzP7v377fzIzs8I7UuqNwn/a9bU+yi0RhnWtL2NJ\nlaNG3077IOtSGq9LZa/JRO+w159WOeNwTx3CCWtplbv7NnMbyM0gxrtOEiWslp5nm4p3qz+m+FLe\nkw+8e6I+WCtoDfLwRIiZ3X2Vu1yQj+5v7dr3sxApE1pooYUWWmihhRZaaKGFFlpooYX2BOzJqi9d\n2TUzs2CVnbgWu5NtMpicFVtrKsveZDNwDFt8ml3oKdd10Evf5fxfMbrkXtFO2Tq7zOmkdlFbI5jH\nK3qez25jGqRJIs6Z3B4okiIa8Dn9fbivnbMIO/Xll7V7uZhoZ21lQztmfbgK0iha7O2B9GH3vFXk\nXCKqTmcPOdcPX0BABn8WUT36ZLCvgpZY8n2k2fW1XZR24toRzHgr1mTn2OVcnruittsZaIe2SZYi\nub7kVtHOdw/+hEhBz9p6RlnkvTQIiQnqDk8pK/5BV3X4v//nPzAzs413yMTC4bLb+Xg7yW3QDBnQ\nTeOI2ibJue15U88vkJ2OkKH0UTkaQ2wRTaLgBQpgEYB4gdchG9XvfXYzk1HQArMlzwX3AehzzrnG\nBRnJgq/yddiZ7+PDGc5D+03t0tZg/ncNThjOpztZGMvh/0iSRbSoylMY637RtMo7plxzsj4Xbc6Q\ncia5H1c5Rm8pK3ZyT5+3U0/pOtSTWg4qTSgFpScoA5Gt7JI5cXx976FWVeH3karqffGe/Gd4X7vO\nsQw8KJwXPyZrF+E+gD4sPefvO8rixchULJUgLmNzVI/GcKskyAonUBCYR1FDAjGSJnuzoIw9EGmL\n4RHf9bsiTP2G2tsAJatKDJ6cKmixs2XWHHb4ZWYyDmItCQ8EiTavBtM/8WepmNAD+ZJG+SwaqI+W\nakZ+ps99FA+mGVjtya6nR2TPQSHE00vUFE5GfboT9dWYNk6h5BBElCH1PPlcOsMYwNfdFWU8UiBj\nkmdkMpbKYKDPvLjaP3vlk2ZmdvZQ8d1H+SWVUObDh68jStZs9413zMzs5icUS+J5lftsvmtmZo9Q\nJHBiS3UNJoRL2uFjxbT7u+rn7U3NK9Gq6hXAnzFsqd02t1S++hXFrOW5/+FA9fHgzqmgwhXA/YDA\nmLVjQpXEYvC3oGRhQ43R+kjtXC6q/pPsqY366vs8HABrcGntN9Rn5XVUgE7hBknodwk4Pbw31Yej\nqXyldJ34PVe2+/Tsu2ZmVkwpG39+obYYNlH52NAc5u3qeUEVzpoS2e6FFLFqUc5FMxc93NXfb9eI\nnyhLOTdBf6JkFu2jrsE4v3ik5084W1+5Jd9wQZHGl8pdoBOCHvXrK+sWMJ+N93W/eYGMZkzxNTMH\ndXFJ6wD96HAefDPQ/DgE4Rev6X4zuMPcgr4HQ1ANPcZkljHXBZnpoJw2Ap3GmE6TsV6AhEqCfpjA\nHZMGwRQHiTpHWXKx5LZhLRIZZj+sw8Q8GxAD/DmZYMqfqKOeOFQ5uvdVjsGhxmxQVhx24acbJdTP\niFGZNwadh8JOFGRQbKHyd4mlqeX8ab7FyDhGQKH6SwVDH/W3tD6LcFS1AzKwEXgduN4hmx0kQIEx\nRqbEK0spHg1BpAQt/b1DvChWyYSCkHOKKE55H29N0gHh0oC/KBLV9esg/iyuNhiBvDg9UVsbiJQ5\nHIJx1EvuXNF1WRR2DJRC8wJFzKp8uQbnYTKJCgroYR/EShHOnnwB3g7Wv605fCRptWspoudNQQrF\nmZgqPsjukeLs/8Pem8RKll53fifixjxPL9485FyVNbDIEkukSM2tqaVudbfhbsPwsDB60QYMtAEb\n3njppRveGjBgL+SG2rAl2C2YDVFSS7BEUVKxyCoWqyorM1/mm1/M8xz3Rnjx/12mbDTJl6vc3LN5\neDHc+w3nO/eLc/7f/9+5hIMhC1cDvhqNaD7qdb2evwciZg76NqL7tUDtxeAd6vHcGYNU8tUMBzHm\nG/6rBJwu8zY+udJ1P/++uLryWcXrdkvvdzrw1x3wXKdCPt7W9eJ7el6bCSmzgvckxvM5CYdO+TX5\n/oy9VCICJw2V8njuxRr7SVYdyydmPCuKcHRFb2luJmfw9IAMLqFQc+7JNyphUFFwZoXgqZuAUAu3\n4b5y4JIZoGy4o7Zfz1B8ncondlDli99L03cQ0BM9E6egu3K34PVBBbNU1/XOUe3JpVDthOcp0VV7\nTkCDlcKam4WPuPfku+7CV/+Rr8QXQnpG2D+efarv50A77yOsuAQd5rKPH7Z8NVUQoCCEcqAkmijg\nxq/0+jKp+/nosDQI0uGexqU81H3b8xPdMEbcHTLXM41PuKTfF/EKaIwOG1jU52ZJUF1hoIM3tN4F\nyNaG9s2+uuAIrrAHe5qPH3xf7ZtGxC2XekNrOAEH0LJLvGbPN0KdtdBgP3+t+9zaUDu/NxHaZAW/\nqZlZZLti7SeuHbOvK/b1TN6D8yW0UF9zB6A8gQzHpnpGOBkUq9ivbaMeF3qgMWnw26Ryzt6A/eS7\nG0K2fPg7/9rMzO7/nPjndlf6rdJijThfgw/zGt69jnw8W9ScL5raKyWiWhML+Jw6c/0OTta0twnj\n+96u4sdiCaffXV0/8Vh/Z3DZxCIoOHJa4fipXv/122rfSVpopTJzmXgd3qFrXbfmfs/MzJ58pLV9\n1CbO/wgLkDKBBRZYYIEFFlhggQUWWGCBBRZYYK/AXilSJkWFtjqh+rNSti9MZWRM87obykBlWso8\nxagIUwC3NmdcozFfRUTZ6dxrqtLZTNnB0AR0QUoZv1JcGa8lWeioo/t4C2UKOwkUaTaV2Ypd6fM7\nnB98ivJNCFSB21TmbnisjP5oS5n38BH65yvdd00VbutI7bu7pcxaFpWS9lqZt0lEmcc7D3T/pyFl\n/KsjVSUXqJUsUxqXOVW0OefUQ1SiJv2+2ZYypgcrtWXNWfl5RdWWdFsZ4jGVyR7nuwdPOR8YEUdM\n9UCKANW2Xj+rkYHe0b2yD6XOkfo1VYlvvSuOgvduKbP7qKEMuf3vdiMrwNvhoXwVGqofj+s6Gznr\nygn24hrrZVzZ0hjM2rEK3CpUTjsoNeR3lVHuU5kucA7ac0jRr5VdLVJF6RVVIZhTQaigbgGYwaKo\nBoXmcMz4PgbXTZqqf2Kh/wcL+D9IuDdA4KRiKDeAzgiFUC5A+WfCOXoLo1CW53y9y9+8ssMpUF1T\nOAkKKBTkNvS+lXVdG3EWOQWjuvmqUJr/ND6V2JIPUtA2RLwsG9V9FqApcm/Cz+Gp/xFH16nCRTDP\nqZ3jDoplcEZscEa3dId5vIa44waWpFrrgvKJZqgKoXDiUSlNETBSxSN1nTkoET9qqJYBaLP0LSqT\nRpX6AtQT6g5bOV3HVzabDuDhQd1j3VF88Mb4QEJxZeQjZuBfiFLxzVPRdCJl7kM13edYAAkUSWms\nMyN8Nfv/rTz7IhFRfHGCz0fHoArmPmkVSCFPMWA9pGJNIt8NM2fwVixaIGN85I6v6BAiZvjCLT21\nJ7VEoWGk629TSV6O5TM+Cq0S1riv4RZYZ3ks7fJ9lCz2Smr3OWtgXX3BFXAjK6AI92XFpK03FKs8\nqvrNT0BxPFP8dXOat928YsfOHmulDV8ASkZJKu6DZ4oZs+ec4yee7/68+FX2Ubz4wbeFVumP9Ln4\nc1Wc551jI7yY+5zqdoYz/pyd76Km026hiMV6TafUtz7vzxw5gfccXwHqUIyiAHAgNFKlrDH98DNV\nc/ocm66joreHgkFhJV++RiVtFtPa2dxVpS2PmsX5Uz0PclSpnITmejbX390HOtt+WuN8+RDVub6+\nH+1o3eddKsUo15QqGkufLymColkD1FsiJh9KghzqtYlvyZfjC1nQjj4KNttZ+ViYtdhooJZUAFma\n0BqcOzx7mcAVnDhreDuWVPvWM64HmsIByZKGu2wEz1LUFLe9qL4fnWgtj3m2p+bsTaLwXq3XP+zD\ndF2wOBXkJSiLxAiuiSlqKnCu1fraK416cDWUQBWCEo6CQp5SwQ1nfH4q0H9ZVK9Q+ImC2p2BoA05\nri3ggirG5IuLEbwZPOPK+G4dhGEE3gmnJ9/24IJJobo5YU5ToItS8OP1RlojaeLoFIRiM6z3Gxda\nMymq9j4PXabwcjx3UdScbh/CPcWzNlRRxXjSBDE4Qb0TJI1zoDnNJOBAgE9tOdQ4tEdafDPQqcmQ\nngNFFCIj7Dmaz1S9n8MnlTF9vk61vVfU2qqWVMmt1dhLZNWufn9AuzSnZTitBiWN053162ofD6rO\nsXihcqgWmYOiz1j33w9pHBIodGVQrJyD0ByAnBy2Nf9DOB6zoM3mTcW/zUOtdQO5tPaVbUACOezj\n45v6u7GpCns+B2IHlHJ3oOdNnbia94kTzWzHQrZIgnhEJcpHke0caa2s7ylGdh9pPJfwlKyJVTex\nCaj2AcqJzhpuQpDBMzhWfFW1RgHuD/gqXZ7dOdSV5vC35UCjrlbscyca2yLkgQ3H923N7RRul/EG\nXDR51E8H6tMAFdACKLQVPD8h0L+1DGipkOZsBL9eqq/Pd+HdzDVB4sFRk+W5ZZvaM8xqqKa6GtNh\nSWvYqeu5tJVSPL0caM6d1ZG+D6fOGc+bPbhjfITgMMVmh7iYe0achM+zDKJvPtamZhyHa6yl7zUX\nii3xmdZu21cDNa7LMzsBJ9vVUr5eBsEYAZ2WBRm5AAV2UzuEQDS5AxoORbC/Zs/XnmoeCig0jkzz\nO3ikeVjd0e+53Ehr9BqEZBkl0NOi5uM+Kk2hhO5TTWhe4+vTH7Zl7q1ttepa6UrXmD9Q3+vf1W+t\nPVCxlbzGajmXT12hspS7Js6jOnfN+vqpoj7fR61pwI+H1ytaI+uH2he6Rf09fqbfiNslKbpOV+pz\nyPT79+27GouTPwaleltxPsdJk+aU/T+nLIo+l+y1fC/OnDr8thmzb9+41N/KJgibp0Jul01xpuYK\nXVQF6XI6VvxqsN8drNhrRbQvLB0pnj1s6ff9EQrGmcKPV/sLkDKBBRZYYIEFFlhggQUWWGCBBRZY\nYK/AXi2nDJnySFsZtxma8LGRMkm+5nxrBHszWd9VQlnbGGiHJbwgcyon5apez24oKzj8gTJ2M7LX\nWdRYLKJsasqlgkCF4YLsa8JVVnTFWdqpB8cBWvTLtr5/iBpIjfOgj0S6bIk4zNiw2OddZSfnK2V9\n5zVlpVtbsObvKgO45Czdmsr4HIb2UEnTFYGLYjJPMx5kxeFoiCf8ipGy6P2sZ5M5ZxVjyvZFGnCi\nkDl1MpyVD4Eg4cxkNaexGz/RGDvb8OpUQKx8oupOCC6RDPw4r6Gqsf9LP2VmZm+/oT7N/uqFSsRN\nbLmUj/Q6qPagRDOHM6Hm6e/qApUKdcdiCRSqdpXVhDTd3KF8IJxS9jNHkWyJylB+mwpfX2Mbd8hU\nD0FZAUOYg9jJwE0TSVL9g0OlRKHWI+85bXDeOkqWOcz5d5QpQiiMeZ7avQDdMV5yjp5qWjSp95eo\nTs2Guv54ofFvUNmcn4OSGsGPBOLGqBAsCiBhNlSNi1HhHOEnW6AH5n51LarPJUsa79zaX4v4UU39\nqa7k0x2qXSn4n4wq6OYmiKMlyhVUNTOc5Y2Amhimb16Vmvfhscj66mjwO6x17yzqQoOo7u0s1bf2\nc79aIJ8oUgGsLdTn8SljnlflrBTT91dwHSxhkU+CFpr14RiIqz1FqtT5OVwtjvpWjKPMMmVd+2od\ncA0skNPwq+EpqilT1nVhAl8QvE4Fxno18Rn4UTJwNVcefElzlGNczu578FtMOBvsMceJudqZ4Txz\nCv6KJlxc1geRlECxDEUDBxRV5VDjNWjpvlMq4fFtXXeKil0T5ZxOUfMRPtT9HvVUobicSlGnXFIs\nisbku+2PpezVvlZ16Ka2zikmZVCgGMGh8OH3PzQzs9ezqtR4xLAh6IEUKLLeNRwUnLUetdWeDNwD\nGdSrwmWNywQUy3LB82cENw9KNXnQc0VUVsKJtIVq8omeo2u2OSs+jcIl4PnqPnA+eaArqdZkDhTX\niiv19eOBxrC65tz3gdbEU/ggHFTU3A3U8+AyufNT+r4Xlw8TFiy0q//7IC42ULKKM4eef/6cz/d9\n3qGF+pxMCh0ag8NseKGxDI3gExkIZRoHndSb63ulleYm6VfpZ6rOTa7kQzlQCh4IjngctEHs5VAQ\nQ1/tyVezyGgeOs8UI8bsNSKOfLxPxbkCj8cYtQynqzW5hNdjBvInx7jEXNYoaNzeQr6VAIU7WYBQ\ndOQbfTgCEqjjhR35QwRk6/xv9TM669kJKMFVjfhMJXdJBb6IupPH82eAvyWnIBRRS1wk2VMBxFmz\nx1hSWU9x7n4BP9Vi6XPkcP/FxJKOKo+eT++DSlEehN2MeJ0ENbRe+7wMvjIiyoqLFN/T6xH2LAv2\nifOkX6X2VTgUrzNwDyxoayKKuh3xN/oSqjpmZmHU7hw4y2ae/ubh1UBAx+bGmhMwzyoZ+fSSCu74\nkXy7zTPwaEv7yFxS45JO+ipPer/7VAjpZl1rpgJicQJKwEUJ7KqpfWyBynMPDp3ETOiKFXPdbYMM\nJ14lpqAwqpqvQ7gaPj6TD/iigkmQJnnkjgaoB55dqsJ9++DIzMw27muNjA1UxxZKZPhQzFfq8pHd\nOT0fwiA7YzM/fmp+EdWyBeMYSjEOu4op6RUqXFTol/By2ADkopkNhl1LU7kvcP8Rz+fGR4o9xS9o\nwsJ5vb/Nc9wd9uymNsEH121QoCENXiwqX1yl6GMTLpehxqi+Vlti2/BxDHiGxvW/u0NVn/X2BA6X\nZFx9znrqm6+A6K5RZAUhE3HUh1qdfWURXpCMqvjhuuJXHUWyrSbxfKyxaBf0f2bNM2zKPjmn9l9G\n4R8CvZ9mrSS25UNXTV0nfoy6HXM6TBPHQFSWs8QTuLgO11obsRKqUHmQeWdCjbV4lqf3iRX8tpt5\nas9yAw4ckOMxB262a8X1JcFpuSkfmrGWc6iE1pKozAIlrYE8CtdBQxOnQ/Ba3dQ2bglFsQ3fVA+e\no8SZfHtc04mDQ05VnMXgGe2guriWH/V3NU6Jlv72M0K3rGpw3hRRb+yC3ivrc9ns2z9sy9BpW7+S\ntidJ+c6Xp3qmjeaaW+cTtWW5Cc/lJjyQn2kOens8y1BkLZg+d8p++RCezI6/l5jqut2K+pJgnzVE\npfI2vzVPTvDByf9jZmbvvPcLug/cj/lz3a/CiZbPrzRn77jq+zXqdWFkUyMh9j78ts1A7NkN8yxj\nTAdFrZkqKqW5uNZav6U4PJuhArrWnEX3dH+2VLa958c7oYM7oLa8HR4QP8ICpExggQUWWGCBBRZY\nYIEFFlhggQUW2CuwV4qUmV8rU9brKevocxrYmap2NVcZqmxLGbNxER4PVxmrKBn19IzsZ44M17XO\noMVgV/Y4l1gpqqo1LaiCEPbPdqF+kUfJp3WmDFr8deWsRnVl6kpk7NN1ZdCGQ2Xgd/d1PciZLfSO\nKg35kqqNc743oYqYojKQnCnTd/5c0JrpUlntJNWrIv17XlfFwClSSQBtYFTzMpzD9Db0vTqV2GJf\nmbxhbGyptrKD6z1lPxeOsngHR8rwNlAcsWu1ce4q47si29l11ddEU+d177zxBTMze/Cexuizf6v3\nL94/MTOz5Uhj/xe//ztmZtb5wa/oepGbq+qYma3hC4lsor6BClPOoZKaV0VxAXt9D8SLRwWxf6ks\n5nf/SJw4n337r8zM7Fd+9hfMzCz5QHwPmT5ndp+QiUbhITXgjDzSX77SjQvaIQany+mZqkSPnqqK\nf7ur/3czer91putk7oJAQTkmQ6Whk9X9Q2RppzP4laZaA1N8YbqUry86VEpDGoc6Va9EBY6HNKiu\nT5U1fvNrYh7P73BO9FjzldvT55cT+ccIHxzEqDjAU5LLqZ3ZDmgOUGlFEDMtSsCFKSoD8C1FUS6I\ngvrKFjgTzDn8+hP1swESamPdYxwgjLqBxXKUYKmOhKk2x/g77muss2G9n0zAtg4aKEkf47DFrz2h\nC7q9OZ9T3GijmnZAvKiP1MbckcagOUSNbaIx90pwqODzObgVxvA5pOH5WMAhECYuFEFpOWXFuzAq\na/k16nFVFLz6PjcDvkLcmMF1Elr7FVSq5Euq9lS9Fwt9vgW3AseMzS2BFKQ0WT6kApBW5WEcUj9d\nmPwH8Htc1E/MzOydh180M7M5KK0+saVRkY/P4DiYgZ4YgTypbqm99QshDO++refDe78pHqupKx/t\neYrv1Y2X45RZoTBzDV9Wtos63ydq57u/obV0L6yqlAd6YcPU3stLVZBmzOdWDE4LqowH9/CDR/KX\n6xP14+QDPU+qe/Lx7I6eb5UqfAFh+h9Om1tSjA+t9LfJs2zJOt8raUy2v6L1nIkrHnR9xAhV4DXy\nFfFv0Wf4GXzk3tMP3lcb0prb8kNdrwfvxyquZ8cE9bh8QffZXOq61wNVi3oXal8T9YvZUmOS91WB\nuN9nn5yYmZmzlG/d2lQ/fGWyuONXBuHegutmEyXFMVXqjT09W9N9tSdO9d3LokJBVS7F3E2cH1+V\n+v9bKq3+FcuKBfmi2tlAmWwdhQsGVNsM1aoRcW86Uz+iVZRlQCamiT1eWYtswvxuwhmwWKGWBF9U\ngsptIg2qDf4nz9H4jKL6vsGvlEu/UP1YljYsAbLzaqXq/6Kl6xRLVB8bamfj7Jr+sseoqL8uVb0U\niJkJ6oJrD6QrXEOOyX+8pK/IoddjoA1HXtQsoteKLtXruM+zAeoyJp89C8HT42pdD+DTqcCZ4sDT\nE/ar3CgBeiGq2nG4CYl347HaBNjMFiD+IiAoxif6u+e9XByZo/yy7vpxG6QiRfLshsawhALNAmUq\nX42pz7M64jAn8I1keS65KF8tZ5qb6QkXhj/kIKvPJVFEc0GZZvfFBRMBIXr7nvY2q4U+n4PjMLmj\nuX4E4nCHZ/VVXc+tLL6X2dHnN3cV920JB0MNzoSkfDC3re+XQbBMHdAMPscZSJUxe4cxfEWZImpc\nc3jz4IQDUGgjlGwKWX0uC6JwG367EYj67ljVfxfUdCWDQlAU9dTnisdmZmtvZFkQ+auC/sZBtbXh\n85g+0zjMu5qnswh7w42bqy85I7hK0vjgCuQzyMZMxOeX073iKf2fnIOWH6GaUyWeJrq0X8+mIfGy\nyP64B6ogeqLPRasaxO2WqvSzlNrhnutZt0xqTKL9I90HjsIFSln7da3/dm6H9mluoxN4gEYnZmYW\nckHg7Mrni/h8raWxzY/gNtuDaxAUcfdIPtH/RHMZbgrZMeA0QBx1qvQtUFI+GhkETYNncTii76c8\nkO5ANLvEofgD/VZM83th7sAZBmfhEqT5Mspzr6/4v0P8WqX1XBmiyBVKx2iP1sSt+/LJ4gTOt9DL\nnQS4utJ4zuBBOipqL3HI3uIjYkeKEwKVI5Q6iVmLoeYxe6kYunsE3+m1ELMFOMpmKAonFEIsPNJ1\nCl95gbC8c/+2nf3Z98zlFMUQlHuoBL9NAt62UyFjqgX5Ygv1tc0z+fDVLgi4zzXGJVSHOnDUdENS\nkLrzmv7f9LT3SKMa/A3QQQ/hz8lXNMaTnn67bvGsvw231CgJInyhuSujwDtBhW8LDsiJB5frSj49\nGvN7mnUePoQPiWekfa7Pz/L6fychnzomvuXYp4d2QJ+d6nPfT+p7q+9r7j4//kMzM0uF1O7tyq/Z\nj7MAKRNYYIEFFlhggQUWWGCBBRZYYIEF9grs1XLKUGXy6sqsRaioXqPC4c2VffTgQEjP9H48rozc\nJMS5RCq7ub6ysamEMmGdhbKjXlSZt+dN9NdRwEnA5h8Po0hEJtzXZe/3dP88FZp6Rhn5ykKZQjeq\n9rsxZU39PHq0SsWxlpJ2AAAgAElEQVSDc3wxlHPm12K6HnBOMgoXQzgFaqGuTFsHvo9ES5m8Emfe\nFpS4h6gMGGiL1RrGcpA+hayu4yaVAdyazc3dojpbRkWirT6ca2hsTXVpQiY4V9M1rpaqELaPQUS0\nldENN9SWN3/uXX3v8sTMzIqwksfeEYfMoz//SzMze3ohhEoOhZubWtdHpsA6n+LsfJdzfMUIakIo\ntLhJVYHKd5U5jnLWc/cNZdYzc1UOKhti8p76CjFhZfZDZNxnqDLFrqhu+WfzUYaJZ1UZsBRIkD7X\nH2pcY2H5xJwMfxmW+jbVnAjcEF2qYt4l6hxwGMypEs2Xuv6kBvcCPEEJsscrqoSDBT4Es/gHj75j\nZmbf/INvmJnZf/nOP9f96sqQf/yB3v8CaJLFAl8aaBy2iQyNFJVjuCZsV768Jhs9r6PkQFUsFKai\nArdAiKrUkgrKkirjVkkVjukR1cswfEkGugMeqZvYbIUyyIQznBk4BxrwT7SoKm1rztYjFKPo6zU+\ncLgDFxOqSWkY/CNjzsqilmEpqvKcZ45xnvetI/nUADW5bEVxoNUF7cDZ+6iLQsuC+5Q1x2HWYBSu\nAJcMvwdnSRSW+BCqPhmUUPpLuAXguHFQilkvqOSiduHzEXm87nEOfI/qv0ccycG54HPHnB5rzYeo\nxod8NaJNVUoaVJnGT3U+ew4Lva+Odzutqk3plj4f2mQNHGqN7N5XdWheRzENH//KL0odaSet1wdU\ncu+VNQ+38cWbms8ptAW/Rj4tH3Nf13jGQBYNV/Lp9meo3N3WvC6GGjdfAe0pSJ9b8JwsJshW9dW+\nUQRFi4Q+txzouTQF1ff4r+F+WKFEVNq2LGOSzuvvxTlVnBGKCDGNcZnK5djVnHx+rDhb4vXESrwI\nC87qO3CAJZPy8XhD6zpNNTlaApUFr8TjjzUHlwv15Z2v/JLaCoItixreDPUKl0rhfKCKZ20g38qh\n8rezQ7zo6rrh23oO7LyGkg4osscTxVEfAbMCzea66rfbl49W4TuadXT9hoGa6LMG4MKaejfngTAz\ni0Q1LpEUvEAL+UTYVTsTrJ0YfCLTpSqVY55HCZCOMfijsgP5eoY5Lw10vUlG8zpHXdBpqF9p4v+M\n593afy5t6vXVlV6P8n4mpb9D0AdmZhm3b92srpsDXbuao6q0r349/0R7mY+/+YGZmb37D94zM7Md\nkJunl1rzW6jHFEFCDpjPeFf9cGLq3xowRw4utAHKScVx02IoS/k8G0l4yIy47SNnIg35QDgPaod1\nmFqpzW18IQtXUxRem2yEfRFkLh2e4R6cJ+EwPhHWWDWe8Ew/VR/Lt3bsZWwG0mWKKlQyr3aNZ3oe\nhJsg5kACVbdf4/7y4f5C7YvEUJfKoC4UVz+i7D16HcWF5icfm5lZsSrkdQlOB88FaQP/SLejcezM\n1Y4LX2EHdMOkrz3CBqi70IX2drMiEpCuPnd5BdoClSknilpSTvFyDiJzDCI02UAF1FAnhMPhs++C\nBoEv6mhfz4FhS/ctgQydjvS5QU/3dVAr9NgjjTJ9+keZ/8mJmZmtgSbNpuqvA6dXCFRBgt8Ro+UL\nfrro0LPwBhw2Po9Tiv/hSNvb0Z7yBIRXbKp9wHpx859LCVQtQxGNxXac9QoP0jFxNeVq7I5Bh7lR\n0GBr9SUCssZ4tvQSIKpj8u02e5LICYqEadToQBG1QPnWL+VTWfY6KdBchU14lRztl9NNECQTve66\nQvFXUG1dHrH/RvnK4NlsOprTo6melZZT3H0Cijb8PfHEbW/Jh0Og/aNvKD4N2It1Wie6Pkq2qcea\nw71bcDKiKhiHD8gJyQciIMtbcVBzMcW/MMj/cVH9cK95Jruof+aJRR3QbimNb8fRmhq1Qb02QFmk\n4dXDh66eoIRW1vfLY2B5N7TIJXvBmsa9/TUULzNCqSXGIOTrar+XE0dnkedBAQ6hS/ZMva7GJbGL\nkuRc7V+0UNHdY6/TBv3y2Cf6MqtcOrbeObCnK8aa/WYN1M7rcMI00v7vc8XBHRStWhn5QJTfPCUU\nuDoxzdHDrnzi/bF8cMn6TBNXnhV1/aSjZ1KPNu6MQXFVhPpstuSLhT0QlShFtuAUy/nIStSUJ5va\nSzUutLe4vfWmmZm5C+1VuqD3yzzbZ31Q/Dw33gjBkdhDHW9Xc92AF7P+WHuRy0sh7GMDeOdYO3tR\n5SV239P+t5r48Yi7ACkTWGCBBRZYYIEFFlhggQUWWGCBBfYK7JUiZWYeVXZY45uwra9hs5/2yTiR\nqfdQPuhTEY5RibwfVyZr/w1VAHbvKiOVh8397ETdfDoSLARQgHXayhoWarArR1AfSSubayVlCAuu\nMmFZqv9D2pW6VPb02VNVIPYSkMp0yez3lHW9h5rHLARDOFU9Z6Fs7LTrVySUDQ8tlaGfJVVZmQ45\nqws6IQQjOEITliVDWOeM8WZfWdNQWNlwL9K1MazeYUdjfF7XtVKuqsFXjPnr2/D75JTxzaMg0ExJ\n6eT4OdWVEGdLW8rsX3xXVadlQdWS//ztv29mZm/eE2Kmbbre1eXLVS53NlGsKcIyX1S7jz8RR0yk\nSBXuUhnrNJnvXEj9eNaFaRv5kPLrmtvlpuY+BXrBg5l75igLGkHRIVbR/8Wk5mSV1vdycCwkUM/I\nzOVzX/8lsakv+iBE0LIvvik0QLcJAmcDTgRPmfAxHD/mKcO/jqo/mRRVqTVVI6ryBspiQWb+4lzz\nmIUB/Ad/8W3d/wR1FKAvt4q6bz+l8amgAtKoyWdiVEIXrvwk7aPJSlQOyNwbij1T0FpRuCF8HpJl\nCB9P63sc37bVQP1pgzZLOnAPNOU316dwF8Vuni/2C2EOGf0G52U31xqLIee5sxMqsVS1/UptJabK\nWGfBueWEfPlBXlwmJ0NlwPcz+vx94kutpbZ2nmksIvuquLoo04SHGrtSmXPJfSoMnDMfU2nlX4Me\nxFZwxESp2seS+AaKBqsZSmohzcWKgJagojecwTdEhSI+ls8O1lS5iUM5eDEScF+tqOZ7zPGanH24\nqQpDpwmqDImzKefZN8KKET/F2jp6TePe/Uj3D5d1vwzKYi1IHmZX6vizodbyZKZxTMKJ1fgrff78\nX/6pmZld1FUp6Tdc+09/0+zRN//GXsbuUFkZpxUX53EQSB35YvNcfrNT1JoPZzT+WxWN32LjSP2+\nVPsuL+S7kVCWOwAXAFkZK2ucIhlVShbEqlKXs8pwpM1quv76adsGqGz4fD+Lc81F6QDFF/hwYiGN\nTZmqdaMPoo7qdWKuatKdTfn2uqV7jTgP/aWvCeHYP9XnY+qSRQp6Bq6SfoWN6j0+cXUlhIXDszuf\n1/Uru4oz/novTjWWySON9ZvE0atHmsP2JxrzzTtUGI8UH8sFPfMGc5+bRu0ZDkGNsdg78HOsQ3Ct\n8DBM4Zsur4fWL4fMdIrqT5y5Wpa0hl342eIomBW29TwahlHo6mvOfWWzGLElDho24lB1hxNmhlJj\nea44OwTVGnO1lmYJ+gcoNk+cHvgcPKgwzabw1Dkv+lkopG2CKpYHGmFoCi6ACC0JiiSzhcJEWTFt\nntDn6nWtxQPm5RrlyLhpLSeI25MFlWs4DjyUdXJw6yynC4tG2CuY5jLMHA7o2y68Y6dR+VglybO1\np7EKsc/Lhrj2NqidKbwdM11osVScSoLWTLB+ffWhMIp++cMjXTej6+7cfTmkTA/ERjgManSm+/Y9\nfx+nsY2BQMmzd5iH4auLag0VC3p/0kcdqgn3SZa5v1CltQSf3H6aeA+v34w5TR/Ay8Fai7X1egHU\nXOo1+Nzg4CrT7/lTngNr0BUH2kenQQOn4KGqeSCZhhrHdEnXTUd1vynotAIqpLOJfGLjCAWhkXxw\nZ1vzvwaplGacbu8L1VesyLfHbb0/B3EY9YTKuM2aC6FENgRFncrrvgn4jlZ10CGo5c3hDjMzG6+n\nNqKSbvDceSP1s4liUXFT94nn5T8J0NdT5+bKOr0SyETUO6vE8+VMY5Lr6VoNlGAqIDu6TfUps6U5\nHI21ju/e0liduULdRmf6fokqfoJ9cfuMPUZYqPzZFBQ9gPLaWs+iSB3lmo58oMf+Pg7K/jClde+G\ntcdpzeSzizaIEtZwf42y2kzPpzYPktQDtetOVb7WvVDcf/+5+EQQB7JiXL67vSWOyoe/LHTsuAnf\n5ikISZCUd1aamxT7w3FU45Pe1ng1UD9dgFB87p+yONf4p1E/TYFOK8Kd1fOQBLqUz1w01N5HJ3CJ\nwYF2f/vIzMyybNa29oQMWif0fjj8coqQ3W18mD1aLMVElTTP2/w+WNbgkmzoudm/1jzFflbjnFtq\nnhoRxYZ8TM+DeVX9jY31nF924CyCZzH60N+7mA2SDXOmMdtCje4KbqkoaKcVJ0mSoL6iE43xNRxf\n2Rn3Ig5eZLUOD7c1xwOQKKlH4tqbhnXv5XdBRbnq2/Yd7buHcBfG2Z/3iTOPrzQ2FRQIkxvyiV1o\n1b7jic+zuNT3co7GasnJlt5QvhtG9bj7mHbCeXM+kk9tJdU+z1csI04epBTHHJDn847ej640Xrdz\n/N73WBvvyke+8LUvmZmZ68efH2EBUiawwAILLLDAAgsssMACCyywwAIL7BXYK0XKNGEjbqFuMU0p\n8xUmU04Czq8/WmrGWVyq94OKMvaDM2Vfm1Qcr1FFOSoJtRAhixlzlHFPD5Xhi0c5s8v5z8l3lPFq\nwR3QRiFm61CZ8kxCf6ucJXPuKJOWiaky0J5y/rxNJq6uzPsjzvaWmsqwuSmUhOCwCPeUDS49zHF/\nzonDfbOZhnsmrfusUdiJct0ZI5RtKUM5KSvrO+W8ZXQVseSFsnZLKm1vvqmMdLKqPoT+REz87TYo\ngikqOXepZnxJldXsW8pmlvc4Jx3XmB2s9P7Tz1Td+bM/Viq8vKGMrZPXHGTCL6e+1EE96cmnn5mZ\nWT6vrOjVM2Wkjx4o+3jdUUb7wR21K5QBCfNM6dMfctnM4JEAObMOaU5XoJk8+ISSCc3NsKD/Vxuw\nwFPZzIQ1xy2qcm4VThaQPWfH3zMzs/FSc/LehqpBs74y2U5BlewJRRzEnmyRYQ3AfG5TtSNaQpmH\nalkarpwUaiuvffGrZmb2U78oboCv/qLUrlqXyqD/ym/o/8cfCF1QSoJ2uKASPlf7p1RksyX971d+\nEx01dEAlIjxUg2Nx+U90iqIFWeP6QO2s3tL3xlRsC6C61lOqYUv17+Jjze+n3xUq5c7hzTlloszZ\nag7yIaPvOhu6dqEJxwtIl7WvxgZiwtnQei+m5fMXT0AvcRa/SbUmj5JL71TrqhBTZn2VoNK4Up++\nfynUUmWuMZrO9H4PLoFSTnPmMOYrOFPCU/gjEnAtxNTuqKkfGbilpiB9oi35Ypiz/HUQNimUxxxy\n7kOfUwYOrvlKcSZWxZc99XuO4kChDP9UQd+PF+HWSSjePOYscbMn32ouVVXvjeVTjZri6vC5YkAS\npFLnQr6xuqDim6SyjHJDaIzqB2shNlRFutjVOO+w1j7vqB29T18oztzEliy24RyUl2lc3LrmZZRB\nxcpR9ckKir9DuH42UUgbgmjaHqpde7tq14yK/fORYmAPfhH/eZXIgojZQfGsQ39BznSXZSsw11lf\nUQ/VnlBNc351Dg8Nc1OI695bnBVvUZFdUQVeMZjTmqpLlw1Uzt5428zMJi35Tgt+hrs5de5O9TZj\npvXo9EDgwJPhuVTfb4MkNPgmfiDfdyPwBs3VR19BJZxXpXZ6rf6ctUCVeZqT1K7GPuVqTURXIISo\nqndB4ETmcGrBoTD11zKIwxnqcNkhcNIb2jSi8emeadzyBuJlpXmY4nKRNUpuVO9c0LtuXoiTBYqL\nDgpbTtNHmmheSyAS11Qd1/DfuXPQtA7KOnD8OHON3xIOHz9ehyNx2vfinHpslLL1ChUVrjOscL8L\nrd1dFHhyvyHFnp20/k/G4Looa68SLet5NgJJNQJRWb0rP0l1p/RL8+lwHj86BgE5CFselbhRCV6b\nJXMH8rnR0j0z8I3FiZPrpa4Zggsq5MAVAEeJ56vWgbRZgFxxcqjwMR4ZeH9GqDklVrpv8o58PM0a\nuqndOtQ+0oNjIZNWu3fxgTTIjXEGdNpQ/VjBtbKFAk2K58DFZ1qbqbT+Hi41F0vUQb+wp8rxFvH/\nHERffK41WXuudqzz+r8/87nUFH/XY5CTNc3lBc+l4URrPnYO4shXJQSNN0E5J0fcXYKsnHsgnagc\nX59p75Urqz+TsOZj24d+ol7kuZrn4pZiAGImVtz0UWXsw3leGrGm/xhVqHsgguBpCY3hUYnoPhsg\nh85rei55XflRJUs8N7NwsmQOz5loRuNRjmu8zs+0N4uxjxh1QZZuaP7ScADdxOLwZa43NGb1uPZ7\nEXiNPBAeO1NU50BTxVHyaq61zsrboPb7misvob7MVyjJosI0nKDuVNQcFpNa14UsPCAXIOBRLRoO\nNGd1kOUhEPQbjuaqvpCv7W3r7+A5yjQDEDlwExqqUemEfOWaNVxyiVsPjszM7OhAXCilrObmo78R\nx8w3vvUtMzM7O/59MzPb/qqejb/+1m+bmVkuBedhXQHoyYz4w744kdPvmhg+nfH0HEhso5hL3A7t\naByaIERCzon6AbfMNapJdXiaVgfq3xe3HpqZWRk0V3lPPuP6Srgg1aemcW13Xu4ndY7+LD1+LzXU\n/iFrfZjVWmnAjZbi9MVVV8/l1+E/PA5p3iv8JhyDNK2yd5maYta4qPtE4FE6GL5AbYwHERtGk+Z0\n5LvFO6Bj6+zfoJ8psE9uLECN+rxroDvrXX0vDkdhJUN8OtZJlcybirvJkj53mdHfBrw68RQoy7bm\nNnSI2ugMfqWO+jTH59Y8U9d34Hv7nN98nvZh+ZDul19r7bQbIC45AVPO4RsoPOYN9KuPBt1QO4rP\nhMBx74OUZ8+ycEEbw5PZZS5WO0KXHdDPyaW4wbooFv4oC5AygQUWWGCBBRZYYIEFFlhggQUWWGCv\nwF4pUsZZKhM1iynTtAax0kJtJDZQ5qqXQKudTHWkpL/ZprKjLVPFcj1Q5ircUFZ4GUezPq9Kd47z\n6csKlYFTsTBvpJXRChf1eRepeQ8N+MVjOBaynHd/oOzkHpXy0EDZ1wFZ78QmaiGgLyJdne+8pvI+\nH8KcTRa6Q5a2d0JFPqv7LWAO72eoiE99xnBlaUO7oFqW+n8Cb4szUHZ4u4Riz7nzQ/TQBhXYVkNZ\ny3wIlY6h7t1awIru6NozsqZxzkMv+1SNv0JGPqFM/pd+VtnID/78+2Zm9je/I+RN/JSMfByOkd0X\nKhE3sRT8Ow0XrhdUfhxfJQPkTW6tKk2poExzfeSf8+N8N+ckF5zjLpGObFJxdOEAyFVRWEFdIuQr\nPVCB9kqakyGKM7mcXr86hRWf89PPT7l/WZ9rjsg6k21+GNb/HugGB99Lck46BNP/fK1xjm1SpZ/R\n7zkIl5jmumiat7/4E6mw3NpRZebyuXxv8j+iCPMHqgZNLvENqoqTKBVXVJ0mVJyTju7X76id6RBn\nikFP5EAftDh/mU6p3fuoKa1AwixBxvRQPEDwxyIoEZVXR2Zmdgcltezmi7OuP8lioJ3ajEmas6Ie\nZ9tbIEWyKFU5Kb3fiaGidqW+7u9w9tTVdUqcxy3kVb1J0OjWWFWRi7Yqm/fuqZIZhqtlY1PVja37\nmpOGzzdBexdU5tYzeDdQS1rBMZOiyh53UVGbaowG8Dr4KIVVFi4bFGmiKLXM4JsADGYpeH9srTFd\ncPZ+zAdiQ1Wv+nPQDSD5fPWTkSskYvGB+lFby7fXccWOY+JkoqPPT6k+PfzikZmZ7e6rsjB9CpcO\niL9yUdWbOUoUhrpTC6ThSsNsVWLWHtw3h6+rnxtVoeJual1QXlHi5JSq3poqZTql2OErojnXnIEO\n6/l0cQZvCYpocVRkrgbwI/UU6yZtxdIF4XlxpPukOIPswDMybWi8VwP4AbJZK6ypaO6DWHHUx2lb\nCJTMSHPTg7upFNdcVyqqzj+HkylOtbmM+ll3wDPkmkobPjGeEGdAofqcVUWUEzYKWgPFCnEH3rTx\ntSYnSlW/soWSzIbaN4d3bdGi2uyBWgPQEbvN2XY4t66oroVRWBxE9fnDbflSBN64jKexboBUSbBW\nQ1Q4zx1QYnC4LMPwvN3QogOqciP4PcbwhqBCF4no/UxS4xYuq10z+lks6u+MeBldafzifN6DJCYE\nkqcUBgkE59saboFoUv2IEVO6Ea3ZxFj/r1Bc8/n4bCf9wz6synnLUDENUwlP8ZyArs524CLqswWM\nbmic0sSIEpxn97aOzMzsbK7+LCo+L4lfwRXCsYAyZDGv+/Z57q87EUu/jtIhnFQzeOcipjb0Wup7\nlmdIi3gXnYGcYKxc1l0Tdbs1vrjmjH6IMYrA2zMGiYM4k1Xw1TOTDx2B7BhlB/Yy1jtRdfvikSqx\n1V0UT+CQSt9GgSuj58Kkrep0v6v2b9094kqoBKJyFKbi7MCHtIJzqxnWcyYD4m4vqX3nsKDxGk9A\neBOHYvt6XsVjapeVFNcWoJeyIDBLFcXlWVvPkWvidx3eqNFU6IQya3qT2GTw0WU8xa0kayLNXsxl\nnCMD/T8CgXkBSjid1N5kRQxKxdl7JLUWSigCJZ+rfxePpRRZHIOUyWoNzUBjROBBSrJXsu9ob+ui\nFLd+KF81M3NGHYuApC1lfRU9X8UJHi/QCKGx2jehQF8q/XguiL9tHU999MeoOEA9NKIxXTQUr6+G\noHJB83sgzso8iyYr3bxG9Z2vW2vM2Md9/joQy6j3nfflC526xrzxR3qGn/T1LHvjy1IhfbAnJEgo\noTmtMoeRtXwgvYTj7G35oNWJY44+P0SRptYB7bqtfp58LCTHA34/pG+pX9tvCTHz6+990czM3noq\n3/2X/0pImfFHcFze0e+H0uZPm5nZrftqhxMSaqGx0FoanNA/+JjSPX6vtLW3WOb1f32m+FeNgjBq\nKkacsBdy4BvZP9B1R2sh8Es5+X4UlOuV6X4LYkC+pv63k7p+dqVxv6kVWUvnx1rz5zMhiKo/LcR7\nEl4Xt6j7lOLi3hkCM2ugOGZwi8Ug6uqxlqKO9gMnc83PzkJ7qF5ba2T0oP3DtmxubFjs/NwmcORN\npnBTrcQBEwbZPD/V+snehncTjqdnnBhJEY9TcLdMr/kNBGLvS/mfMTOz04/12yRMXDm+0Nj5XF+F\nTfbxpyBbKoozYxB364h8dMdVvEuBEEy6mvsRqP0qnIzTgtbKXTixPnqOeiYqo3G4y+bsARJpEIJw\nyoRMz/rsWL4YrqM2yu/6yiYIvAmcj3GtxZ2Zxrzu88qhPvejLEDKBBZYYIEFFlhggQUWWGCBBRZY\nYIG9AnulSJkhWcxuVrmhPrrlBfTFT/nr1FGW8Dgn90yZMe++lH3uUaFoodXezpP5v0AFqa7M1OFt\nZa7inP299nzFA/hOhsr0JVJqR2VTmbFJHpb2CNwtIGJqdWXEtnZgp04q47eacyYtcsB1df090bjY\n04+UQWxSka2iVFN5W9nNUVnf632orGw3JSRMt6Pr5svKMCbasN/n1N8stfjISu3liJ4d7RXNWqrq\nPOZsZu39D9X225x9paKaRpGEYoe5qCulN5WV7KGac/4n+sBfnp2YmVnon/5jXYez88+b4lTJZo/M\nzOwb3/u/zMzsZ3+GQbihFQ5Uzbm9C78GmeERfBZRVJZCoBhGKAQMW6Cv4A/pXykbGoqpfckdjd0m\nZ+cnPj1FByWbKJ9HISIUhv8D5MwS9ZN1RH+zPt9QSXO49WX1++4W3D2gu1YrZVfTqF70J2SqKdbN\nUVmCKsC8EkznVMajaTLia1BiVLhncLhcnIs1fnoGr5B/Lv/kmHZQVYJPxCuoYnPAucop5+3N5cww\nfCUVlMFGqI/EqNS6OfpPFtylcj9FSS3UV9Y9jxJFvEXIGWvAXVArobj+37qvCsq6DHriBtalUjh2\ndY19zmWHw8QTjnA6KIP4vpNZaU6HnPkvxMRBVQ3r+40rzY03UVvy+0dmZhYta6yyNRApLhwtsMGH\nQQWlYopLTkLf31lRSezBrwE3lRcFRYby1gi0VJQS75K45/uakXFf9BlTUG3eyHdW3cdx4aZBMcXw\nnWhN1R8X9ZKQz80wAimzUhytF0Ds7Wi80l9EEeJK7b+9Kd+JtlCNa6m/z/5MVa4J8bjfUDuu4Aty\nHV3nux/pupdNzd8bbyjuvVkQ38kb72qN5lCnG7XUPl/VxOe1uqlVt9XeeUjtCU3UvilVxncfqKI/\n7irWnS4UQDsgWq57nDmGg6KKslF2g0r+Ct6qaz1vEkVUQVDWiDQVk7x9xYgvvnbHzMyi+/rerD2z\neUrrPTHX2ORTqJlxZj5UhCsLpMN5V7528MWf1edvowC21Oc6c9SJcqjX7WpOQ6i6RUFGzuEfS+DL\nXkG+sRtR2+NUUqMJUEyoO3k9PaOaPPMSaRRzFiDnGOtIFT4nk+/ELnWdnM+PNpKve658+Xld8WoJ\nSilHvA4VFT8mDX2ulVIcNVC0SRQK4yB8opz3vqnFMqxRqnHzkeYyvgUSEw4bD3KZeFS+kEQpMcWc\nL9pCEnke/HM7jB+cQeuwfMoB9bYEobJm/tM51O5WqPV5GrfeWu8nY1pzPWJfOevHa7P03LHjsMZj\nBy6fBSiATZQhrjlXX2BeChE4EuAQ24ZLxoPnY9GDIwK0VxxFjRV7jGJR/Zhcgv5Y4Q+ZjC1RYgqH\ndM11X22uHMgnZx1Vhwsh9XnS7NB3XTsZkm/0UHqKMscF+jg2Xc9XIoznqXQCC5qA/vJATb1zXz63\nUVQcjMA1dlNbz3gmww9Shp+hM4NX7XP50DbKMlmQK0NUl6Y8u8PE8QR7hijIkiVxO0EctqfypRT8\nGtW7um4krrnYQVWJpWbujt6PucwhgpdQh9mc+OWAsmqhCtgZgMBk/5gpKb7t72iPVIA7JwZ3RHgg\nn02GNA7zPlCvOG0AACAASURBVEjOsPrVhBNs2gHZRNV/GeO+13CcOXr9ELVTc3S/rbeojEcVm9Yr\nrcX5CDW/nO6/D2qj+kx+9uxcsSFxoHbkZy/QAKnY1LKo8C1XWuMzEKEbaZSLUONbrfW9IeCHaOQF\nb9NPslEBHjfWR2sXTj1UcxIJ9WXa1j03Uf88RkUtm9Xc1qMgufnrrLX3n+IayQdCYx3dU9sSA93n\n+yEQ8V2tMSi3bPNA139YEUKmOyN+DNXQRlVzuY0SZZTfPhuXal97V3FwY6brXF5rjCK1EzMzuwOy\npfEW6GHQTO3Hio+Pr/7AzMx80NXOrtr3W78q9MSHu7ru+HOhyz5d/qGZmS0u9Lwp7Yk78f4h6kK/\npr1CfgnP3XM9N+dwpC0nandyLh+cED+XIElubQnFEMO3s3BA8jPAxuyD2xdCCi3hlqx2NA6dsvaM\nhZKeM87y5fYk66z2HM5D7ZlOW7rPCPTspKTfoO53QMy8I2eM5zQeC7h+9stq9zNXfpchnp+wVy2k\n1I80v3/awL8Gsxc+PVyPzZIjWydQnYQT74TfRlst+EHhHToeykde327Td/ajK/3WHPh0bo9RVwL9\n39oVauv/fKa4/7D4d8zM7NaW0FvzgtZ9v6s1sL8r3/Rq7GdBHg+egEL9GqqeKInNGIsofDm1rvq4\nmeU33ERj5wz1W2m5y2/Krvq3WmifGr6j50OVwDktE6eqilunINpHHfr9Oc/Win5bZ07Uzr/YF//p\n6EROf//2C1Trv8sCpExggQUWWGCBBRZYYIEFFlhggQUW2CuwV4qUCefglOFscJLq3eJaldQEvB3j\nDWVBV2fKRn7rsT5XfV+Vh9QDoSm+9NvK0qbGylw94Xzg6YfKLkdMGbBsSPebZpXxT7eV+XpGRTkW\nQtu+QfUNVvtqTllLr6b3Nw/VjvhDZZ0ParrP5xfol6+VDa911c/KfWXookcwmD9RprAR4iwc7S7t\nKvva3VRWdFmEUTyv932loc0sFQQUcJacSw+hvJAbwSTuxK2CHn2YTHrGVRUksaUsoDeSK/SoHhXb\nmoNnA1Vp7r2pDPBuSeikEJn43uQjMzMrt2CmziiF/yu/9RUzM/v3//HPm5nZ5H9WNrWcggn/W0LO\n/CSboGwzhTV9WFN20w2TuSezHdmiouzp9RUoiASV1NA+yg4jlAcGVFGS8oGcp/66qJokOL89W+s6\nUZjEQ8bZ1aqq+rcrqko9ghk8xn19qvLRhioEq9iRmZlVMqqOhws655wBzeG6KL+01N8IXDPpqXxy\nlFLFIump3Q5rJu6QCb+jrPGwoDXw2oH4kpaOst3Hz5S9jkR1PQ9ekMRKmfnWSL4Zp5IaZ+3F1yBe\nCrC/c247SRVyvtT1Cgm4FGagRogsLuoDqaXa74BMWi85789aKxzAkg8vyph23sSieflshTPgBu+Q\nO4A3ZwRXVJ7K5ExjUjrg3PHC55LSvatV+cwm3FIt0GWrbRRmUIwJoQKyROUh7FAp7amv7SvOos5A\ntqC4ks5oTFYhEDADjZkLt0nY9Ppsqs8vGBN3Rbzx1ZVcvd9j7FOoMsUdeHxQG1ly31VHvjLnjCyi\nVbZgTYxQ2KrCofPFn9dcvflL/1yfN/3/183/3szM/vKxrje80jj/9AEojYzG63Kmdh5/org7vVBs\neO+X/wMzM4vuKa5VUJjZ31FsOP5Loezc76palkhqfvMeldOa4t/lYw7Y39CGHVVczq9OzMwsBw9T\nElSIm2Pcw4qVw4TWTCGnato9IFejAaz/oMMyIflR4lAxJEc878Pj4qRBicC90H+umNqHp6pCxTqS\ndS3MmHVPNEfPUC+KdHXP0h5qeZvy0UcdxUOPz3WXamObCuGgrsrh/dua0zrVnSwcJOVDrcPjY/mw\nGwWdimrDKqK+FFBeqRH3Ex6qHyjreBegOCvwqMFBEsqpPZ0zeHriKIKBbMks4FcinqUP9Fw62kHR\nkPPkS5COeZQQvCRIDZAiERR9LEY8vdSYjtcvxynTvFAV8OKJztEnB4qLm8SM/IFQBh2q7+GF7r90\nfcUf9hA+khHVqApoiim8J9U7mo8cXF7Tke57+X098w8fsEeZac1NHxNzVjyfUOGb+4jG5L0f9sFN\ne7YGPVJI6nnT78oPYnfgwLnSGtvLg04BrVeE16QGMieGwkYF5blchedE0kc4oigW11oazcQxs3NX\nVcfEJGYXl6hqwL3SgBurPNNYXD4H6fuQ/QsItRjrZzbX65OOxrTg6Jk1QanQPYebCW6+GjxnxbTa\nkANpM6yfmJlZuqg+j0HRTp9c28tY5Y6+f4SyzKqoscqAKv6UfeplW3Pg+8R0zJiBtnLgFqseyqcv\nPlBFtdnSHG9QDX9yKZ6440vtsX76kueBtp0WyWm/mEjD/9bQc+Sqr/gV9nT/ITFhvoTfjnYmQUmv\n8vp+eUvPuc0D9hxl0B0jfW7U1HjFmnBHgNZtjJk3lIZmSb2e8X2G55cDT9TVI+2Nrp4rnhf3iDnq\nlh29rbh69JrGZw2v4cmxfGyJquLlU8XA5+9r/Lyx0HuFlAYofPcFP10mF7VcTuN7WYcbDbXATVC6\nFyjNLcM+mhg+ptnN1f5yDXglK/KJ3Tr7TlQtL/gNMXD0+v62ng2pHqptcHrdGaLUGkHd54n+z+I7\nd29pbFp9FGwu9MysDeWT5bjWxLdR6zk60r7zytMcFvuKY7EdzflkDGorA+oA7sDWSD4/OwX9xPNh\n/47efx9fWC/FVRKHT6MKN1aqqrmIj3TfGYqDZw3QbVHFvUpVn08mUbG7VPs/Heu31fZz/eYbf8Sp\niTvac4wKin9OEbVSUBp5VKVKb2o8ojx3eo6un4JbcUa8HoLYnGR1n3UDlGuRvV8UPhO4KBdTuFnm\nKEqGbs47ZGYWQ1wr3QBt+/GEd1Dq/Bmt4ZMOiNSxfodtxtWPNYqYy7z8oI9S6BiEZwkOuqEDT1RG\n8zDuKpZUY38r9oXy1hslLLvDyZUx3FFTtSGZUhzubqmttzV0tkT1eOqdmJlZERRVzFddOgXt+Uv6\n7Vi8q9+Eb5/pWVq5r8/XPpQy7GWLvb+vJLkCdZvwUaP6fBPumbivxkQfyyi81huKF5kMv01AWOZf\nU5wK1XWdRV39jHcVRzJl+dCDO9rPNUbwu4FCOn7E/vYH2iN88rHG5wBevY20fGX364onG7fUzzKq\np90rJHd/hAVImcACCyywwAILLLDAAgsssMACCyywV2CvFCmzHiujFJmpajQ1ZbDSB7A4nyhrOw+j\njMOZ2sSBspGDx8pcNa51Hu/yO8oCexFlYXfvq0rkfuHrZmZ2i7PGUzJ+88fKtGcp68djPkeEMlvz\nA9rT1f9uSu16TFb6tbYyajsjKulwQRxUxZy9UVKW91FSmbR4VhnAN/+Rzk8+/kC65c3P1J4mRb1n\npx+YmVlsWOC6ascA9EAio8rIY19XfarvRyqgLPpC0JQbyhyGxnVbk4CNOhqj7IayhKOExvjsCsb7\nJOe/t9SY0RgFhAtlLSdFqiOoE72RVKZ6OOWc3cmJmZlV7ikF/OCrOvP5u/+b2My9peb6ppYBNeCh\npLUuw1ESFzJkUobPIqW/9x5obBafSAVq1qZq5qEKAifBJmpQq7Bf8VOWM++h/sG5yRxInSFn8tNT\ntSeKUsGQisWiq0pGL6rx3CD7u+ac+7wpHxgPlX3tJpSVHVGBdeHyWaRQZZqiAGDyrSQcDSHOxI59\n9REUhvoghsbwoLy/VBZ3ulAm/PvvC5X11dd0brOcJrvtgFhZKsPuGBXOjPqx8pUhoigRLeCQKQvl\nMOuBCGJcwigdOXBLrOec04abIMv59x6M5askZ6gLIG+SPiKIw9g3sBxz1kFdqdPWtSJDtS0R1dgm\nHb0fou9pEDUrFBImXc3RJmofqa7iwSaQksOI2v4cJYUC6h1x1DKSnIe+AyFQKE71nypyB5+atTVH\nmYR8dgpPRwT+nuUQThzaHR2DloCvx5tpLczhkor19PkJ6iXhhaosS7gUEmNdZ0oleUYw8Fl7hqAQ\nOif6XnysiuPn8EM8+776+dW3VWX5jY3/1szMTq5Uff+0fWJmZttbOkc+fUM+8GvvSmlhjLLbn/2e\nzofHQZScnKk6Np5QOZ6jXuRwHhwURYqD+S36077GV2bH9jK2Zo0OT6jKvUYlPkw17rt/ZWZm+bX8\nJBNmLST0nMpT4R2B/KmhnuWeqsLj9TUP6T78LxTNllXicxuOh6aqmdOJ1nb4NpVcN2aZqnzv/Jnm\nuglHVAQVtFAVbhiq8+1HqLB9pmfeQENroZTOqs+m8C0t4WwBlRRZCzFxtKu+9lEq8BZwnDQ1Z1Bc\n2QUcKCH4HxzTWGxEUGszlAJRXFh5PFvhyZhxpj00UQU1i0LDlLJQNAJKlupc2dRfHxHSn3KuPKTP\n3QXhWYcHY0YV30UdcIjPIHB4Y8vtoPxAXMqAbpp7qA+da/ymxMWNrJ5/kzzqfn35cJM1to6CLoCP\nonuliufWA6EHzmqoKuXgOaJK2UC1zkf19ou6ntfWPHjwVRmxJzR9oSA0Xw1+qNyWZYvXxw/uhUBz\nZdWeMX4VGcMVBh/JTlcxKktRb1aS3znwW81R+on7io8+N5ujL3g5jcsy5VhvAFpr/11958xXb6Mt\nVf2NRzX3DijO+QyFk5WqwDbSPXsgQsLwcRgIBh7JVtwGXQXPkQeaqZjTmN4/0h6hc6Yq95nj6+Ld\nzJwUc4mvh1FJmvQUn6bMRTi6RbsVzwyuleVEYxgHdRpFCnJNwHBR5JrtKz7FXlPF9fpS+7n3m4pj\nk0/Uz2RPa6QNX0gspjW5LOo61bzaEQaJuWBvEYVHI53T99JVlGZK+CK8gjPWcAwISwalyih8JGeP\npJhTh/Mnf1uoiiSKQelKnPFQ/4oVxZ4haNk3j7SXyC/hJPtU8fTJqdbGVlXzvQFiPFwCzbAAhQzK\nK7LFz5mEKvLRL2ieY6w1M7PorbydL9Xu7rXW0gS08wYoi0FL43n49pGuC+dEFFTFTWyS12B1O+pD\neUtt6F5oLcxQFlwewS04Uxs8lAmjZa2F1kJjOHgCcpu1VPzK63p9qXjSesq+ESKP9FJtPfv8xMzM\n2h09H/Kowb31ZaGQ4iON+a2C7jfDd73bKDnOFUdSOa3RRRtuG9Bs07nW++slUA1tzVUlBf/cSs+4\nOEqwlTfky0OeoStX13FQ0k3A0RV/HWTKIQhBjzk9E0rq2lV8+vCpkPrhkJ7daVfjWQShCOWkLS50\n3W24HdcrjUuowJqDk2a5gAfqAh7TMHuRE417eKXvf874LqsanzcYx6Qv3XtDW1+Dqi3r95LzEMTT\npf4Wp7puFH7SbhP0yT58WCnF3S/sqt8XTzUu7kLz3UU1KlHQ9/fWat80i1oXqkxmZtHB0tZTszzx\ndJrSmHgVxatrUEwIf1nkQG3YoMsuSo4rOKci12rDn34o9bR/+Nv/1MzMPj5W3P3mkz81M7OfK37Z\nzMyePUGhK4Oa8C7qSKZ1/DSk6+3jc2w9bIiaXBpkebIFp2ICJGBMz48kfE2Np6g5DdlrFDSmz+rq\nZz7jq7RqTlJXQml9DFJxc6q1uLytNf3GQ133y/va/z74O79gZmbv5DS2VxG158OP/tjMzNb85vxR\nFiBlAgsssMACCyywwAILLLDAAgsssMBegb1SpEyGM2GRdJlXlFEqoQYyJZMep4LQMmVPc3vKnhYH\nyoCNQ/o/AirguKGKymZRmu7NcyFpUiBetsrKKkbRV5+klf3MDZSp69yjylRTlrpZ1fUewg5dulB2\ndrhUNvjb3+SMGmz66ZX6E3rjSO1GIaME5fj0BIZscmKzfVUevCkViEtlO1dUhucwhSc4v5/gPmPO\nS06n6nfpubK80TA8JGtl5GbhqGUqqg7E28o0T3fIaC90jYN9XTtPdWU25dpkPSd9ZSOfXyozvx/T\nGLafKxvZn5Hpbug+f/1vhFT5F/9Mffm9/07Z0q9//e/ay9j0M1WHak+F9BjFOVNLVagM98qALG1r\nU+8n4YhZx1Vtm3RAAlGtCmXh8aAimwJFFYEDYQ9Vkhr8PbkE/DwbOou6clF8QE0kTuU2CTqieKTM\ndLNBVWug8UkmlP09H1K5XpHlnXPeGxRWbqh29j9DxSMsX42n5cPLnOann4TDAf6QRJYztWNlk2tw\nJLgd3XdIlSwMTMJBtaoAv4bHmrAF6AyW5tQDpYGayFZKFZdRU/7huHATgeZI4stuinFLcT4VXo52\nVP3b2NU8zVBzGlAFDKd//LnLv229sTLckZjW4aqmsQxn9TeRk0+E4VgKJTUGHjw3EcZqhfJUoSDf\nmnKG1EEVLuJp0OKoKcWo5C6p8CZ8Nac46/dS15vvcV3C7bSgORqjlrHqEQeocCZS6kd/wjnoteJf\nCM6cUJSztQNdb8TZ2+xS33OR4cjP1b+FR+6do7pJzuQuQM5EtjROxYri25Kz9sd/qFhxUv9XZmb2\n6T9TpeC1vy+2/M53OGvbk5NEqeKcf09r9klEaC0XtMNZG8Qg/ayjbvH5hSoR6TPNzxf21dDybVVU\nCxPNwxfvCmH43ZqQJrfeBhbyf9iNLLetattbVFx3d1TN73R0//YxKiF5fL+ofrXaut/5ica3CaLz\n3muqjFSLeg71nkpVYHKu+dhCrWsYB6ZINS6FushwothSX4JwTDgWRVUnsaexPYzqGi3mMDUFFTWG\ndy2heNQa8ywDQfil23pWun3WY0r36PdQSqjJd+ao/hSoWObhkLoKgzKjapbIaU4GbX2vmIHbKq2y\n2QoukgVxLpZRHxMV/Z+KwF3SQPEEZOW8pPuvQImtOxrr9ggOqg21fzFUuy8+Rw1uV+OQh3dkq8rh\n/C3NaXFbiNDp+IXyyk2sWlY/5jtaQ+Gc/q/ktMYHl/KVNYpd07z6M6CiHZurvYlrfc9d8bxBUWJJ\n1WwEyuOzmuLdTlPzXtrQuI0u9VydplGKgQ9kjJLNIqV+hmDgeFK/+mEfogPHUj5ycqa9S4w15J+r\nn4JUTILGSxhIpRG8AUjObK6FNvZQIxxE1J9KXPO5DMnfZiuQN+wnRqB+E5Gqxff1neI94uqlrp10\nNRbpa62LIoo0c565cyqKCVTz2qcn6l9ec5vTI9bOPlVcOYd36espoQg6qKhlWDuJO/Kp8bkQylfP\nUMzKv6gW38QiSyqxDX2/VEKNjT3ACk6qWEFj4TNfzS61VuIoallCPrKcaI7zh0IRh1DFm8ZBbPym\nUMZ7b2vMva7PF6V9bzMBVwJKhhsHinPzsl4Pwfs2ONU+cbrWfBwcsYe6g5INHCr+vnP4TAiYGuql\nrycUt+NjfJF5DF9pHG6//Y6ZmSV3NR49ZJ86V3A94NvjsHx4SMn98KFi1f19TaizQvUQNdTGU/lu\nE7Teeq77ReYav2RV417e1DjF4Jjr+eqA+8AlzCwUPrJxU+0G6GOrsNo1gPtxMNX7a7jC4lNfXe8F\nGu0nGsjsq8801qWQ+tSvap0v2dc93NM9JlXUdUZH+npom3tqDsZDKbokd1EmTGlOaz2UZgrEH1Tg\nJjXNfRqezq/v6zmReYtnP6p5nSkqPiCgo/B2FHr6XH4sH8wkQV6A2jfmIp1X/LhsgWB/oPtHDcQJ\nnIk9T/HjECT9FIR5+JTfdkn1v/RMn+uOv21mZrtZjU9hB9WnguL8rajm7LKmfiXhLJslFJ8zRfbz\ncX3f39fOrvC9jNDAnWO9nouAfmAvOd/RXI+66ke3BJrqXOM2R1V2D4SQwaG2CIHqu6HVQf+tYlpT\nebggn3eFFhtfyYe7ITlr7EN9vkwIGR9qDXWSv25mZlsoEz3+Foj/vubNhdPMx3ql7mq8r0a+RJLZ\nPJ6ybGJijYj6Fm2D/pwKrbteaMwzRbiV2O868NmVFyBsFuynUez6mf/oPzEzs9/+R/+FmZn968//\nyMzMKh9qbjY7QspsRNS36jb7o7Dmovie4vPOY91njBpavMI+v8tJk6y+58G1mptofzYB3VRGTcpB\nKTDLb6ezK8XFVUdr7bXXf9HMzBo1Re7OicZwwfNi+hBu2AFIoYLG67O23q//sfr35yDN5xfytU/g\nY3rwNgrEv/kP7d9lAVImsMACCyywwAILLLDAAgsssMACC+wV2CtFyqRXyoC5KzWjOlJltN+g0pxR\nBmzhwbEQQ22opsxXAo6ZeGqLzytTF22rogBlg61AC1zPlMG7lYRTwlFWdkWVp7+p11ecC2zt6Bxh\ngsz/MEkFx+cfQeVoHz6TTy+UdV1R6ehk/Yq8strzp8p2flyU8oFR3Uu4qno6KG9kKiBc2soMNlEZ\niVZBJXhk8KmkF6ec06eqmPHU3vWh8qJjZ2b5DbhM9pVd3CBL6Pqa9KgWXcMVE4YxOwl/xSncIZWi\n2vzuV5XdfFLRWHz1N8jEx/X+7/43/0J9C+n6p5+hnrEtBM1NbUwm+fqxqmGJPd0nTgVxjgpIOKP/\nz3+gbGdogjLDChUOztQ3xsr+xpg7n1F8NdEcpamCLxxlUydd3X8CQidDinqCGlQsL18docbxZKgK\nyNfv6Ozsv/lfvqnPz+Rj+28pe7tAvSiXBOGSoBK71DhPUUgIwa+xammcU6iUjFp6PQVDuMd57RhV\nRpdKwtEeDOcZoQwKKMEAMLK1y8FxVFXGU/hY1rr+7BJkUlLZ5MVc97nuwXWAMlERVZCUB0KHysE6\nqXHK53Tdruez9GttjC503U+uhcJ4hhLG4Rsvqls/ydJpECKAfOZliCTgYllSxZ/C95CLo9xiWmeZ\nEuuTM6lhlF3cliqqBn/HJK6K3wYqRK2uMuNZUEyhJMiWOhwB8DI5HM6PJHUft6Oxza/koz1UQNYo\nAIwHqlIt8Y3hSr6QgGsmOgeFBGImEkYFKg5XAZXhIWgkjhHb0tH9k1TFU5tam8n76k+spvt2F7rf\n5t8TImYTNaePvqcq0VlKczS40ngOQJllthWXdkDRtU5VYXkLlZL3vqSqz+YbqjT83S//EzMze9T8\nrpmZ/eDPtFbub+t+dyZaex/8rzqLG3+qs8jHNfWrvT6xlzGH8UqFqQR39f3WhfrRhVfD8Is8aiTu\nlDUIoinjIzoL8i8fybSA7ySVBS1xqH6GQMGddlE6iOi5krp7ZGZmsdsa905jYeEJlU/QTOsdzpQv\nNYlnVGDDJ8TTCr6Csssm3E1xVD5KVbWtYCBbUBBzQUC2UQmJuBrrUIp4gY90r1GWGWqO46jx9MYa\niyKFwkWU89wVtW81RJFlwVhQ/gll5KNX8B5FznXfIsiUjbLiWTOhNb3JWk3x7JvDZ+HAA3X6SOik\nQk3XmYZUKXXfg+/JebktTrfh+xbKOCl9PwOqoUeMSWS1RlpttafRE8Jnb1vxvTXROE3bapezIV9a\nzBXX+iA7N+Atmg31HCuDzvL5iCZTjVNyS+NQA0m4zfwUNjTv9avGD/uQSzp2heKQC5IxDFqw32Qv\nASpiDQdMBL4sHykTAfFjad1/QDUyvNRzLOTHyI7GK0bM3Upq7Q9CrJF80eJwJ81GIAtBg97aUSc7\nFX22QjzqjzTWpazmoAIqwF2oDTtb7NOq+t63nwi53B7oPvd/RYiNHrxIP1tS3LlX1Fi//41vmZnZ\nx9/8fY3lr/6yvYz1ngm1e/qNPzczs3fgztr+uuY+Bb/QHJ+MJVHfyMOvBvJnCQ/T4lJxIWTy6eL+\nFu3X3LhFEJ4Z7a2Wl/KB0L7+vw9/R51HeSylub7ss78FpbEGPbUCLZe/L66GgumL7QZ8QKDmkvDC\n3d9TvzYaWltzUFyLJ3o+9ke6z94WPHdV1o4J0TSCw+Wa9sSfal4GLa2RD+BW7H+u/ifY+0QdjVeL\n50AMxcxVXPeJwwU2T4H+QGUlwx5pIte1WQOZQTM7+cGxXcINsxro9Y37ihXjkOYpm8G32bP14Wgc\nwqN0E2uM9Kz5ziPtd2//vf/YzMzW0xMzM6sf6XPvvq25fvqZnq232K9tAGmoX8FV2NfaeOdn1NY+\nPBh2xpoAAf6hq7jSGaJ4tmbvA1Ii0tfYtIjX2ymUYXOa2xJ8HnHQtrOa5mq+L18oEy/Wfd33Kq05\n2oYfqX+m33DjBygl8pvGV81rhziNwO+MPpyNBh9g8UhzO2nCv6Y/Npkqvj5DKSyOWlGxClIeLpzQ\nsXz52RDkZljcNYW12pMoaBwzKz2bqwm9PsnLF50dEOMoPa5Ba0Thj1vekk9vuXr//FS+kQzBmZN9\nOfWlaoz7tzR+h1nd7yPic7am3z1lOBwb/AZe8Jx0XMX/p5+e6POerjPZAwEFQv4AaHyDx2H1Su9n\nqy94kiKrnjXjFdssK07X2vBqbqpPadra6WgdpOAje4Q6URRVzGRJcSl2T/H5F/7Jb+le//V/ZWZm\n/8NjIUfsY937WxXt65YhtXEKGj+Pslc2o3U6y4OsPFUnThp6VsYfsNdhDuYAeRanuu5a4d/mu/LN\n+icg4QBI3kJFc/YPhGB5+9f+PTMz+/x9ne6YcVzgC/eEJJ9taw1etVCuffTXZmZ2jIrgzgwuWNSg\nKl/SvjjN7/J+/MfzDgVImcACCyywwAILLLDAAgsssMACCyywV2CvFCkzp9pTSijb164ogx+lQhJ9\nrmxnJ4JCQUuprdCBKo19R9niHFXCsCmTV5kqYzdFoWZ3Qxmu1ViZtMUC5QLUkhJrpdR3c/r/6QUM\n13eUxd7h/s/O9P2dQ2Uj83HdN7bQGeZ9FHZ6XGcOc7mD+kmbc5sbjvq9fqIs7phz/UXI+qNUK1ec\nY5+dKLMYeaKMm5tX5eGO6XOnpnGLDOCc2VM29TmVhd1CxFJx3aMTVhbUo+IacvWZFunFOG1tLfS5\nzUNluK8fqTpUa6oS9hefCZHy/u//32ZmNjz8D83M7Fd/+jW14bbOoj/8TVXD/7O0spDLLbKEVKl+\nkkUy6tMm1yuAiHEKPuJCc17MMMYzDrN3OI/syRd834hMYFO/hsdhi4oA5yBdQwFmpfFJoeYxzWmM\nh5wRNLIO1wAAIABJREFU7tVVQQihyvGN3/tdMzOrtZXt3fqf5KuPP9ZZYLev9u3cU9XJQzlgMJAv\nOdvwY+DTiCJZKKrXwyX97a3VngQqTyWUYjpU48MJzkvONG5jFx4Lqo1TOAHKKARFUWW5HmpNxcco\nwVRBfThUOcncG+dG0yglDKi8Pu/Dxk918pq1UEWhaP0O5yiP9Xoko6y1S/Uu3gBpAz/KYnhzFvsF\n6IBkniruSteYwW+TnnO2HY6YpfmM9qr4rUBzOUWqw3tUbK80Rl5W8WGdhqtpjloRVZ8qnFRrKrUe\nyi+5DflsvS6fm4Oo8VC2GsJN8P+y9yYxsm3Zed6KE3FO9H1ERmR78+bt77uvqb7KJE2XZFAQCUu0\nTQOEAYMTDzzVRDPD8MgGBMPQyDJsCLBhG5Ap2hYtW41JiiyK1ZCsqtffd/vsM6PvmxOtB/8X9SxD\nReYbvcnZk0BmROyzm7XX3rHWv/8/yhqc+LKRkEd2ey4/mJvqufMYmULIYVxP/V7AHROPyKYdoDEx\nT/8PwS0QXeH3CrLZdFi2P5vAETBXVq49VFbqnTtwujiyvV3QC/eySl/9kx8ruzc91TjW7+l7oZra\n2YArpltWe0dt9fePfvsP1F+5FBu80vx8eqX6Hn5d/tSS4ljo/rf683f+qVAREa5t986o4IZlfaV+\nNprKlGRAjXkoHaRBvBy9Iz9bdZVNGiY1zpMwCmUo7iRBz/WeCuU1PEWhYUiWbyEfOo2jULQGWdSR\nPT14IF+ZPAAd0vvMjgcoTMFj1G5qzPffgtuDPXM5la1s78hGr1HlSZGFX53Kn3lt+a0J3CNpOKQc\n1CPiZJXr16hcOKBI8X/hpWx6MkLqYKO8MkZFxNF+kN4me0123V9hoyijLVcoe8HnthzAsZUFiQOC\nJwmHS/dEWSYfpR4XtMDt+xr7jC/bqCzkX3y4bM4+EOrqGH9SPoJr5oYlhqpSnrnJhuCdqsBf91pr\nJJcWYrNyiA38VFlFnzW5Sun5F7R/CxRWc6OC8gMQhZ9qHzVsZPqu5mXhaJ8bsB9Eq1o7g1fyOYuQ\nbG4CR1ebvd7MrBXybdCXrbVozxL+jpOa6sknWfMoSM5AaeQ89b8xUrsL+Jb2C9lBJqv5Ofno2MzM\nPviXQgK48Oal1huOM9CDd6MWvkbhEBTlV74iFbcwilMzkIPlWxqDSVd9f87elTmCTyIL98p9zUV0\nV346A2fIAiWSrfuHZmZWeyZ/4cIT5HgbtJDWeyItpMid3D1G7vfsJiUDkq5c0GtkKdtuvdCa8FHE\nckBKp8vy960eWXRsvIJ8yOuB9sQp+0oirTXbucSfwu+Xe6AzRQS0lf9GfqzFHn7d0fPGGfijRqCY\n4PWIobaU8vT9vIFqO1PGd9CWbcfhBdqv6PWuK5scXsFdWNMrYFvbAh03n8PtUEOdMAsCNcwZBj6V\nqwtQspxtIiDlL9vydUW+t1Fg291CYe6W/Go4ylkVX7VEyS0GGjC0QPUQJHwPX2NmFraCFUGDxOEu\n276l+e/0ZG+H8JjsPpCvWU3heZp9zr/xl5VpWKOzw1xEUAzrTWTLh1PWBNwsEQ9bfqy5+vBj+bEh\nHIC378D1uK115XbhLwL9eQbHVRV1zhbqaz3cQjqk/3fgKdrtyQ9Hcqq/jxLNgas58mLAjHIak46v\ndseZ9SFqcPHeRqUTTrCh6tvsK6MBvEbwKMXncI3NhGKYwGHjamu1ZQXVodsa+3hI+1Yf1cDSFsjC\nlfjqwi34neLyCecg+7ywXrdBdk+rem4OvhHjnDvlLJEEMR5BGbMD71IFFad+HC60Ntwsa5ThAGGl\nODtGK1+Mn2rAWkloO7FZFHVBj9+qnvahVlNrq3+CWtOB2rtT1v7W6IAW53yeAJHqoJZ3DRddjv+7\nnuZ1zK0PM7NJyDM3FrNQT3NSAG05XGou/AvNcSWldXufc8sa9bhLlP1i+0ITdY81Jj/8sc5pf+cf\n/mMzM/vgf/4fzMxsBGJyex/Oxrj2hTtPNCmTO+prGwXg2Af6/KvWpo/a46oznY0GK9lw2nSOfAFX\n5LtPdKvjwXeE/H7x+0I4Rhaqr8btAvdaY/OPfvt/MjOzNz8QonIvpbPJqKO9+/JjjeXFWpOfRWlt\n+z1x2L7jYmNrrbGdnM7dH8CTWV79xWp/AVImKEEJSlCCEpSgBCUoQQlKUIISlKAE5UsoXypSJse9\nyA0bfRnulXhEUb/mtqKdGVjWwxOYwEGgDLhr5pNxfgvt9vfPFfHqvtL3E0p4mlsgsg6fxYYx21uT\nzSdjHeeOmYte+ZDo6OJEyJbSNgoNXdXfmygjMykropg7Vb/GcEzs7ygSH0srOumZvv+TU6lCpVBA\n+IRMy0FJUd3SlqK29/YUmRs24QWYcCe2AFpioM+viAxmVkS154oYRmZD82Pw4NQ0GKmHaoMHT8Vr\nmOfTIbUhAuqg/kwh7PoJrOtEIx/eJfMKK/pRQdHRxokiuv/n9zQm08t/amZmH3z2YzMzK1YJCd+w\nOGlFXyvcB0xyH68JiiDiKRIehhjf5T7yYKVoZZq7pUMyeB2QNNkEvBwtFHtCGof5RP1LFOGd8FTx\n2tffC+6BD0NkpLGR0q4yt7NDjflv/tZ/puf/gbL+H/+vPzQzs8PbiqZe1ciOOYqiZnl+H9twEhr/\naBHJnJneD69BcYF8CmeJVne5Z07EP0t2btzXvKZAZywWisQv4FqYm9ZCrKM15IeVfRuMyFYdgJwB\n0TIGadNEYShMNq2IMkG+quxj7MdaW3u3SUUw3qfcUa7AebNcaBwP3tbzMk1lqVrpL6B04Cl7MiJT\nNg5t+Hq4kJzVGCSJQQ/h/oh0UaJyNKadhtqYCB2rj2m1LRHXGMxxl/MhWX7uQQ+N58CgP46q7QUy\nfWaoQJEoXWJDC2wxAj9HepMd4X74aoG/gjsrPNdzYihhzYi8pxMg88Lci/Y017OYnpsgUxqNEIMf\nyz8OQO6EyUKt4X5I31W2LJLRWhu05fcyJc3l3Uey9fz3/szMzLZLR/o+nARHe8oQvPwpaisfs0bx\n7/mR3p98hOoUPCpbbXFBlJfiP3pnS/VWLmQrz34Xf3lHaLN3f0P39O2/Vzv+srIGtZGFXyNDRjYD\nj9IgrvHf39KaSpH1c54q0+OABgjf0/jEQTdcn8nWF/BMXbF/+c+VDUwfKNPSGcgnjUCrpMryNa9f\nHZuZ2Y9+/My23xOqMx7Se28GWi/xieqYw4eWSJP9Luv/bkN9aU2FMHGuUIaBR2jWUd8mKJ94azhC\n9tXXPNxcoTPQCamvqQ973F2PoO4x1fdq78t2+iuQl/AK+aBOw3MUDtmzpyCAMiDvCnBNvWnp760f\naswiGdkMQEibY+sGncNipXZeX4uvqLgCWQiPUnJXmcotMtQ1kIM3LdMI/hM1u2xV8+C5GsdCWe9v\nFNWSu4f63rEQL0VQc9mC9tntO4znY2Xzqu/D6UUy7fyn/8TMzPbhU0k/kfLDGHW+Ptm4WAZ1k2qJ\ngZANTsigxmafc3CNT0Pm0Y8wCNGhj73ENmotGqcBnGDJKL6uKHsKD7XfZEA8XcMzkr93i3Zofqtv\nlKmNgshJp0DkknEO+WvLkZGMka3dO1JbN6ibOo6xlwK1AyfLCgSfS2ZxG46nXAvukZLG4KCqsX7n\nUG0rsFfuwUeUjKivV2PVu33rUG3/jlSKMrvqi/0Du1HZf1dr9MF9Pc9qmoMmPEdrzkqTidqbvA3f\nEvxEI/h6lrsah72vS1Gn+0Z7uDfRHDkR1OxQ6GI7sDj8HR1Hz3WHqj/Jnn94T+ORgNfk/Fi+IIpK\nYGqt/w82vE6OnrcDAvDwls5y6ybcOf/se2rX7wm9Eb0HcqmovXp+D6WzEhnlKUpf+NvMWyjkRLS2\na0O1Zw/V1VwJRA8KmTGf8y3o7b6vfjkgiUKgmqeMUw4EaQdFTL+rv9sojJ3CGfaf2N+2yzd1q8Dx\nsFjIfze68plnL/SaTmntvJlrv3Eiao/r3zyH7YLWid0W0qEEr80SdG0/ozEbN+Rfb1dAx4LiHIN0\nTMAZcrDHWWAoWx3VhaKKO7LtfgxOLUhD9kG0nJfh2QQxU1jo+VM4SXZRD11m8dv+hnNMfnO+0pxF\nxkIJbHhEamO4wvAfiZxs2MUmE9xKKPMbaDUf0n/tP1HDj6Ea12Q/S3fhxdvVWupim7dScKDglzt5\n2Wofpc2oqf4qtxCmPgpc23q/ChIJkJW1QVFnQa/V2cvTCWwXFaXJGDzYEDWsKGeZGZpqqEaFU+rP\nDN7Rm5YhSl8jFNXKIY1/H+Wje+9q3ot78rOvusdmZtZ6rf66ZY1ncSYfYCD7l6hdGWfJAui49JXG\nu1Xm99R0w6NnluwsbB51zW+BKAxp7nbghGqE9N3Jrvr6Gr/afoOyGH7lLZR6545sZv0p5yjORR7o\nz9gjULNFjfkSPqTLrvpeegon6lD1nMMZ44L4O+B3daKovgxHGvtQTH/vPdHYfeu7v2ZmZvms/M2P\n3td5cQJ/2jSiV+8z2UQ9ofalxvzW2wLttaX+5legjfdBz8KzVJpprYQWGofOFNXUHLad0XP8uFTi\nfl4JkDJBCUpQghKUoAQlKEEJSlCCEpSgBCUoX0L5UpEyE7LtsTx3NZMgYXqKHsbI8NbWitQtCtxT\n7nOHi0xzl+zfAm6IrfuKQqcWisg3PUVVI32hEiYRRRnTEdQ1YGEftfT+Mql2PSBbOTsVp0tjoe+9\nvFS7Trib9u6R+DLyZLMGPUXO6peKVk4eqp3VPWVu1hWimSuybVGyVSBhVqA0hlcbNIuiv0dFvX8F\nE3sMLhkvp0xCbE6MrQ9XAlHwYuEty3OX8xlZ/GYTvhs4QVIoUBnRTq4R27yiPqde6/3t23pdO2rD\nx0+VDX78z/+FxqqsLETJk2m9828r6z3iTusspTbftLhkn30QGgsi7Lf2FS1dLFEOGGADKNiEuGM7\nTpABABWxaIKaqOjVX6qdsx1lDkYofxVgV0+AKJmAvohFycYMyLIX9Lmv/I2/aWZmhy1lcD/+gcb1\n2Ws99+MzZZT9mVAHTgwOhiIR7YRsLe6of94K5S5HthzZcC+gIDYDHeGtZEslFHL8gdq5RJkiC6eL\nkZ03FA3CRNJDvC73UIzA5pNxkDMgo7JEj+Mjzf8IdZEZ6ir+UFHwk7aQQj/88983M7OvelKhyo1A\nE8TgTZmrH/2R6o0kyKzm9H4YZM1NytJVHROy5i5ZHj+iORi63P3fJ3sMD1EEFJVPljpJlqOLNNVw\nob4OUeqaN1TvjLFxi0IFRT2978zU9mhS/mYO+ijB/e5pCOQeU+E4ZM9QdrGxMhRR0EtjsjspkDWb\nIVmgFpUOgYghG5KLoBjQ1DjMyWa1pmTH5+ICmMCibzPV63Vk08sld2SLcKDAFbCGr8RLa47nPuoc\nOfnrLTLbPeb0EXwb3ajQA926bGz/vlBisQQcLn1lND7+UM8tlJU5+eAfqT9/8p/+rpmZ/bWfyr9e\nLvW9Ul/zcNX4XFXjJiVa0PwsT+H0Gqq+ISiAELa96W/zfWVoJq+PzcwsQtIsdECGaKrxnMblU0tw\nhs2jypissii2pUBZHKi/+YHGe8PvdHGK3Q2mdsvVZ5xtkBMDst6oznVaypo32+p7dYLqDUo2Z3CL\nRFw9wyNjGZpqT036ssGruvq2bXqeB1fN6BLOrW0QLDPZ8joDV1VBKKXFE9UfHmHTrtZWaO/QzMxa\nqPI8+4SMLvfTo2QcvV2Nybt3hCCZXMvmEyABB22QgfBArRz8E6+LNRneuiblGvW3DbIvdEcoBv/6\nc3WJm5TaZ+pXC4TPXc4a/h4+Jip/uh1Wf3s++0maOS7o+V1Qa4s+ZwwyvLEdtTPjyBY/NI3PCxKs\n7/SFULoc6/ntFf78RP3tXIinqfT4iZmZDUFA5bKf59cGk6bV67LNFfM2ILM7Yc3E4bzpXctfh6LU\nn9UZ6LOPtI9VE5r/5jM4ft79jtp9LDv8B3//fzczs2/klOH9jV//lpmZjVbnNKZqvRBIvZ7qGF7J\nZpK3ZdMJEByxMconICgql3CzwC9WIhu94esY1oTqzcKxVQWR2O3I78TzymRmHmpd+334fb6lM8oS\nVNbg/Nq+SBl6oFmH+Ouc/s6hWBNuqn099pEwCIsIaLNZR3PYvlA7c9tagy5Iyz4ygo8f/oKZmU3g\n1mmdA6+K6nNbZIrLWZ0rz1FVmqBQMxugsNmXLYX3NJetC/mC2Urj8WT7UN+Dy3EKcjBN5jqKrYby\ncJYxjpcz2dYxHFljkFBheJwi3ub5er/JWWXJ/jsH1TCqy39eXGo+811UV0GNdPFZK0/1J9IaRwSF\nrD3VeKWxg2wOlF5Ca7TiQ9BnZrmdjKVdvT/DXhZwz6Tz1Lsv+1i1NE+9usZvP39zvhCH3yb3q3Af\nprQefbLzewU4SSKakyFj47/Q+8WG1l/6rpDWPdD8ew5zh/8b+/q7BIzqIiMbicBhmMT9DROqP4Gq\naIY12eYssAPSbYyfLg7l10agjMdDja034pwWkZ/oZkHQ72kO5h04C5MgKTfo2Jls9AIEYJ7fPIvS\nBumh9q5Rh7IDkJncRgjBcXkFB6SzObdDF9RnvP0lqnfM6bCm55V2WJMo43Qiqi/1QGi5cItbBSj6\nxEogDGMopaX1fR9usBEotOxSPma44QvtgJq+YVnAS+qMtA9corK4UbvKfkPn56O85vcMJPv8YxCU\nz0F7uJpPflLaJSjoBMpk8bBseeTBS8WtkKjX/VlbrvYnFpklbNXR2GyUuU75DeOl5Z+/cfeXzMys\nzbq2vhBl0UMQwSAe43B8xRLai1Oe/ELGV9sHNbUthfJsrS8/fOBqrdQmGtvVS/29nIHaPUJ1+Bta\nO9GYnhN/rjnZ5nf9y6G+98Pfldpx3Y7NzOx7vyOVz9J7+m31mJspFfg+Fwd6bgwFwbCjva5zAoL6\ngc5OgLNsgZpnfiWbnoOSrTI+0RKcl3HNZTKJ4/o5JUDKBCUoQQlKUIISlKAEJShBCUpQghKUoHwJ\n5UtFyixhsQ+DmCmimhRDG77hKQpb9mCZB1SQaiiKOkEVo7TQ+86Uu/5wLThZMtsninSNw4oSxk2R\nQC9/aGZmHdRSyu7mLpzaNekq6uzOFXk7iCvC/uSu7olmhmpH9VD17EYUSfu0+VT9m+m1h0jIoaOo\ntxtThiXH/ferN3ru8Z/ortsO903XmSLPJ0vIPcNyTv1Nj/S8QVz9jfjwg7iK9Cd6itQ1WiFbuETs\nO4pKTnIox0wUDVxwf3u+JtI7V9TP6SmqV97iTiZZrfZMY7Of01gNYPlu/8kfmplZeKwo5eEjRUf9\nHTFgx/t6zn/z3/3XdpPS8zVXYbIzkxJ39seq14sTicdGFmu4YKJE9qFk8VEpKsa4fx3W2M5BWThD\nUANRRcjHcK843KFdeupvBlb5Wzv6fHuice33FD294I7sb//t/8rMzFq/q1RFEg6cFNkhh6yPt1IW\nZh1RvQmyUnPY37PwBllCz/FacMOQtc+SNVqTUY2DREnwfhwuoQFs/34GdY+5/l4XZDvhrmw7gZJB\nfLG5o6q1eZWmXWSl1i0yvxsunIj6kcnJfkrvaX7crKLng7LGP+soCj2G9yS2DZ8JKLdNhsPZkC7c\noMS4G7+KylanYbV9iW3MQWm58GvEpmQ94ChIORp7p6z15DqygQp8Cn5NfmmVA1XUki0OI3o/wr3k\nGLwTSSLs06k+PyPjkOjDR7HQOnU3PEZwJkRB4MzJVmUgSvJgtV+GNAcOKkFh7tKvE+pvCKWBZY7I\nPNmbCf5jPPH4HEoxfY3D2vTcCNn9CWitrTRKWHf0/BmKP1ctZXjXXFQPV1Gomam/FyjnnDS4V36P\njK7BY9ES8jBMtsvOVE8JJI3bVj2n35NyWehANrU4VTvaTdfs3ze7+FTPuWnxwiB6yGBsgIUJk09z\nUYwZD/T+CBb98BaIqoyybBm4G8LwouT24UpAFS/J54pF9XtM1jBd03hexjVeHVSfhihe7N1Nme+p\nUS68P8W06s6jArGGX2hINn2NmlkHJF8F5FqpLf/tdpSBs67GNJpXfe2h1rVTS1G/ntfrbLi04M9J\nbVR6NCb3vwon2SEcYtfKbnthkH7MaQJukURGfiVL/eEUKE4yo9vb4g1a4NDOW9ozkwcg9FzV44RB\njZLZrcFdFn1P7X8Aaq1N5nQwUL/nq5v7ETOzNcicQV1zeb6Gw2eltTpmTfZW8C5dap9LJTUeCOFY\nBJ9y9yF7eWjjC7RvpH9Be3Ty75HdByWx9Te1BgbvC4FahktnhZJaGz9791AdfdYERTxN/awPe9Wy\n9ZtCZCYW2ucyK1QI82TMUQ4rLzlbbNT8sJ/dLc4QM33Oq2g+cry+/6nUT2a+spt/ghrhf5AQkma6\nUL2D4doiI52vDm4J8fZ7T8VRsg8HXxF+iGZDNjl6Q7afuR71tbduYbsz+CDWoFnv0dZSWXOyWsvP\nelVQTCgWbrLoixmcKjUUFf0vhrh79gEKgtfyP4m8bCOf0PNr+PdIWhnieRykDojncAlFsKT82fkL\n+t3SWccBYVLdxs8vUSkqgdoCHuCxh1oafw2KzJuj0Ajyo34FMhSBxzlI0sY1qDD4REY1+fVT2v8W\nyi4Hbwv9lKkI1dZBpSmN4mN8rDXSot3ZJEpBEc3Tm09AJWQ17vs5jcsCuqfhZt5bWrPrrvo59/Cv\nefmQ8pF8z4x91uKqL9rW3x3OiPEy+19EduFWUI4zs1Xcs8blsdp/JLsLh1BIKmuctm/rzBKqyo6u\nfqy1tIz6dtOSTMLzhnJhHyRKaANMQG6nXdX/p/DaJC7h7oM3Y2sfxDOqenPWezKutl0P9P0+bRtx\nzlsXQRlx7l3B59Fn7jOe5rzQOdTzMto/8iP5lzHnYYffYltr1H3grImPGYuh/Mt0pnbF0qhy4v/W\n8P2N+fG22gHhfo4CGpyOy4J8w2jn2MzM9vCvbka2NO+C8I6oX4Vr1d/kd0eC2wFjkNYDUGUbZbbl\nBKXKNLxSrEl3CudZV/2JP4TPqoYaU4T9DOTRrC2bTMCPlF1rv3BYXCPvcxW8m5TSSM/5MXyi44H6\nMwKd1d3TWekCxbnHKFIe35Xt5+Mg9+dwZk7Urvln4vTcPdK+aHGtnYGqtVhc4zPcrCUz2z92rV7s\n2zypz75+yp6xxa0AbKfDb55pTXPho0zoolC15KzRqqMAiJtyONeu2upzDMTfIqTP+fCgOUls5pg9\nHpW0AsqP+RGIvSv1uZaV/6h/rL14ntCYjFBLjkSP9Zy5nrP1K7q98Wu/oLPH6xOhiOZwWGXgvBrH\nZTtzuGTCTc4wnuYgioJY4jU29I5sILtEITHLjZ+xPn9dE/ot7kBy++/av7YESJmgBCUoQQlKUIIS\nlKAEJShBCUpQghKUL6F8qUiZLJmLMKz4Prwn/bCixjHul19vNOS5dz0uEe7jruwgfWhmZiuiuq2e\nImS7M2WpCndQaECb/hK1lVhY0cnZ5g5uW9HSrQNFq6M9RebO4GwIxxURDIXIRKSVITj//v+jdtz/\npvqxp8jdrawyC31X/ekmUATqatgPHyqS38moPZ9+7wMzM3v9QtHxew+ISpPhd6JwOjjwevhqR6hI\nJgRekiEIoxQZcmedsD7ZjFBfrxEuH077SerUncpBTFHCDglGd6moYwpEzO6RIvwr+Da+9pvqczWL\nssBrFAhWx2Zm9of/x3+pvr1SffcewXFywxKCdT2ZJ3K+4p4i9xuTM/W9PVY726AkYhBARJZwDOyg\nsJLXnES5Q5+bKmMwgQsgw11LH16Pkqv6Woz5mgz1gv/vx+AP4t74/lvKdIZnstnyt1ETccVOPx2D\n0oqijtSF74Msfjmj740dMsMx9a8Et03DRXGHzEQdRZgximER+r/hnDlCGaFWg7kcxItxb7wz1/yP\nQPp4RMFDVbWv7ChrlEzJ9ttwEi3JfPRhGI+C1ojsqL3luMZhc29/xl3cSIEMKv3fgmfpsqW1mMor\n0xLu3pxTZhXmnjEZxDDIFOM+s5PQ/1cLeHTCPAMjn214KvjamgxfugCq6UA2F43rcymUr2YDbIGs\n2IwMZR900Wyl53ggMYYR2kfWfZ2EuX+uuZihNONM8XdhlAu4PB8t6TVFZjS6RYaPLFzjEuWdPnfy\nz+kHGc01GeLza9ngCh6gyFp+dJVRPw5u3Wf84EgBEeSQvZtlVE+ae84OKLAB/BaJLfmITBK0VEqf\naw9As0WV+dxw8QxQw9qOKSPxZq4MxKOvfotx1Hj34A/5+l8Te/1tUBY3Laue5j/l0O8xXEM7auca\n9Y7LIZnWueZhgapIDqW50TZKRyj+tFC5G5IdLM6VMWmxn7x8qUzMsqd5nnO/vxMBveKq/tjdqPkg\nGl14g4p+mjpB96Dckg+jNAZnQGSouc+C/NvCf/VewruRhtfstu4111Aq6JNBTPK85IH6vISrZnmh\nMW+CxPHONTdNkGwLR9kpD6Rfvaf9Y70ST0bqbaFD80n5ndhICB7f1ZptjMgMN9TOzz6FayEsf5QE\nhRojudQ/Vbapdiy0wuu4/McjEIK9meZowlxPHb1/0xLfRXUIvqUlyo71sWz3/ELjNoObYAVPSjqr\ncWvCKTAEjVc5VDa+09MaK+TVkfy3ZMO/8V/8Lf3/tsb//q9928zM2hPup7O3r1qonzzWmeH+2+JC\n6NY0/tH55xnPVHpt2S359URK87I1lE0OQZ/kEmr/8ECfC6OKskZRrgJSyUJa23sVVAKjmq8n98V9\nU/vmL5qZ2Xsp9XNW0evihQyz7Y/tGlsNwU8RRp2n24JbYIkSV1N97Jpsa5czxuJatl+DR2nVQekL\nJa8IKKPFACWwGXAlT367xxgthqq3iN9dXIEshgPhpiXEunWTascmC//Clx+YO7KFrbuaI38JStWX\nX959IBvY3dEa+Wygc1+orznaO9IcOHDQzMeoMoH4GdTkp07W6m/xEpUT0BLhBBw7KLMZiM0QaK2t\nnN+5AAAgAElEQVSDomy03ttImunzoS35QQebftXWeLVd+e8CCo7LLFxAIdlECUTLGlScU1X9Z8eq\nP5zBllDimXflf0chtXt6Jv/ooOyW3jk0M7MsqMDUNkghzqD15oD39fzYvsZzfapxmQLBCYGYX7CP\nmZk15kMbX8PrAoo4k9NrB9TfrS3tf9Oi/PsI2LHDWe0mJQUSLbfk3DnRXO2wV2ZAOaVAD7y5Rs2S\nPTG9QbL52uPOC/Ar/anaaBX5tR1Ug2on6nsXnrcF3IJDEJMc3yw5OzQzMzeqPo1Den1U1AeWcNJM\n36jeECiiY7hw5inQszH1Z5aQDWdG8GFyXq2y9prtaz6Pv5xxK6ALcgXk3j3Uo7oN+e9EGHWnpdoX\no94aaNvXWbUng3qQ32CuL/W5KGthkdLrRVw2d7ThJgPVtqyhTsqZLDKB76PC75jX8JXMNT9rFClt\nhCImqlihrtoZR7XppmV9pPZsvRKi5SQmpGgBdHEInqr2R3DJuBrPFCqtKdC3ya8wDyjTnX4smz5v\ngLoGaZmFh7SLklks9uRnbWnFR5Zy4tbntoG7eQ3Lp4+39aw+3E8fn3xkZmYlUEbRZ9qDvaj81WWD\nWwXfAa0FKjNyS2O681y2WoObJVUEsXcKV2xXY3EXv+JXQcBw/upxa2P0Ru24Yq4nvuZylEAZt6p+\nnH0q/5zbk62+PNc+MB3CVRuF84zflhk4EvNR/cbt7OtH7PINilk5rc1+50d67hu1N1tBXWkh/5Hb\n0W+wuAsn1ehzVOu/rgRImaAEJShBCUpQghKUoAQlKEEJSlCCEpQvoXypSJmwp0hVp6sIUmipLJTb\nV7S0BhJkMeZe3wxFgqGiruuZImIpon5Xnt7vdBTxilcVDY29UVRxkldEPr9U5G0EuiAdI1tXBB2A\n0oxPBiD8jIwmfCSvP1JkbsnfiSeKUh7tKjMxRH1l8lPd6zvVizncszZUoULcnbuTU/by9rv/pto1\nVbRzXObjS/WjDGJo7ij6HdpS/3sD7lCnFWmcRsnsPuJeq92y2DURbleR0mhdf7+JK1uRIsufbOg7\nMe5KTldqRIzI8/xCUcXqNxSpfrz176he0+eLv6q5nL9QFDF0JITI17cVXZyew1VywxKB42Q2lA3k\nPf2dNpS2CmjHw0kSR2Hm1FEkfz0ms8lcunCwhB3ZkINiTyqLuhIcOosJPCVkdAtk+w20RTjJvcis\n/t7lPvvj94QQuT5HnYS7uPmIxvHiWJH9JHwi041yQFvtHU4VaS/tqH25FBlP03OKcDVM4cRxFpqH\n1YR2gTSZLjWvI5RkhlP9vRijzoLiTxSUxiKtbFS5DLoD9MIlGZDoVDZba+t5WficfCL2E+6R51Ya\nl3RK/cnFuGcPh9GEzPZyIRuPVsTPFAcJkEIxIQqHxU3KDHWkpSsbccdk1tIaa4fkhsOdfj8EogOE\n3Jw1EY/K9ptt+HNi+uJgAMqIbHSpDPpqrT44LNTQCmUxeIG2yqi3jVH7cWQToTxKBygNxLm/PUih\nPBVhTlnvCRTFZlO1r8/6T/b0/gT+j9UApYSpbHqjpDBF5Sm00ufiWTIecMAMJ6zNvsajECbrxl19\nf6k5LpKZ7LAWV6xFJ85cJclAbmnNnHT13Ak2N0fhZ/sRXFgob2W2UFhIq1/n539uZmZf+8ZfVfte\na00Pa+r/EGWfVfxzroCbFDcqe0i7en4G7oAEWb36WvNaR1GnH8We4LLo31dGdgVfU2+GSsAF99fJ\nJG/4lToolHVQhoiixuSCxIriEyaoN6UsYeMJ6CmQigkUmvpwwMyv4MSKacw81CUcUAbTuMZogWpE\nDKWqeQdeo2+qDfFtZcgScz1olTg0M7Pdr2vOP3uj5046muMsCMHNHEbWqK9BzNOBv6h7hdqTLyRL\nrKC+P78ic0lGOFOAd+eexn6RBulHVmzgk3kkMzvBdlcFuBZyQmqU4dxponR2Ulc2a3CsbN5mjm9a\nnAVqcHm1q5RAgQYusbKvvT21o797SZ1VNpwRpanGb4K/XC/glID3qtNUf17/3h+YmdmQcSyGlSl9\n9iHcAqAQqjnNX60jboHte/CHxECCTuFzKnyeffMicUvahrOMfqEYlPLkk6IcRVxI15wFKLg8iJ6a\n/p/KqYLdhWy/ftmnPj3/278qhaCdqOqtY2ceKJJM5b6t2es26frsgdCqoxhcXPBQlErwHqDmY6A6\nexM4n2LyD2P8/bgL4qavPf71WO+XtlXPOw9Bv0a0FjJhENL7sok16nAj1v9NS+lAaCWvCKI6CwfK\nUO30wprzGEpWp6gJdUFw+C1QD6DMDCUsZ0vfv0KF5OQE9KoLVwMcZ7M1aDlscg3CcRduqvBGiays\ncS+hGrQEJe0l9P046GPf1XhXUXibj/HzEFCM4YaYx+jXUj7kgn1u0IBjbQIHREK2mCxvUS9qSKgj\nnYK2cyeyoTlorCy2eX9Xz/FBpA8HqjeCYpC3hkMR9cF1BxUnlNJ2b2mN+CBTl87na+P23cd2Mtfv\ngBj71xSE5MkbUGfh75uZ2dYD2SkuyLzi52i0v6xkTG253IxZU3PahuMkDjpr9UKognUXPg0H9U9P\n/sAFmZYBeVZHQXIxATUPyulqY4uozV2hLJmETy8HJ2GRfWTR0xjl5M7smYbE9kAnDQoac/cMNBlz\n2m/pt9VyrLVVReG1t+Fdy6pfLdTeZnBadVAqzGM7TV/j4/XV/muQOhmQ6402imH7nNdRAkuv1D8/\nxNnoWs85Af01XWg8Q23UAkHeZPh8577+TsEV0+yjcpXV75RwVPtMvS9bS1T1vMZrkCYLtb+TODYz\ns2hon++BqkYl6qYlhPqg81z71l5da6+N+lKdWxrlbZRDPwOVPJY9NWKykxS/hSvvaE1XNz60q/HJ\n76Jc91Kv7QvxN8VCr3/WlukibdHBwKaMQYTfdPtF9WmB6NA1Y1duopAFAs+Bm7XmaYz27mvuv/PL\n+k3U/0TfO51ojj5Mqt7apfzAUflt1Z+UjRVAQW02sVSPPW8m9G3isZAv7TONTbEPIp7zbbTKGQZb\nG4NwefJIc73FefbPPhGXa3xfz48NNIatMcjGnsYwDrfORF+zJ/wOeOoLWdd4JRt/+vTYzMxcbi2s\n76ndVZTGBigX/7wSIGWCEpSgBCUoQQlKUIISlKAEJShBCUpQvoTypSJlTmAlnkUVeqoPlF1JTRQl\njY2V4ZhdKQp6NVGU10squzfnjvGAbN5XH6q+0O1DMzOrdRS9HV0qGnr2Cv31kjIFM6K6yQiqGiPV\nv4wre3+2VDTRhS9j1VHEa7qtCODeFnftfEUUr9OKSu+7ZAbeUxQ0PiIzSrawPqJfLpmMb+u52XfQ\nef8jRUHDqAiEyKSMqD8ZUQaiN1QkMIci0TKkehMo/IRdIXgmtVc28TUWnRER57WyAxnuLIb6CpV3\n8kQlQSNt7tutk/DyDJVdevq7pj68Q4ZtJYmppMtcrpUReEwmdX33PTMzexXiHvMNS7fN2H6o+uMP\nded+/VSM+LOE5jbHXf0KmYhFRNHNxKPHZmZ21SGCTbYqxtx3iNK63Et3c6gpJRT9naNKkYvp892x\n/r+GZX000JjXXiv7c7us+4M97i9+8PQnZmb2y9/9JTMzO3mmdifhJMgSwZ7PsdWGxjfTKJr9R2br\nY/W/s4LjoAeXQ0TzVl8oOhtGNePBW7LdJggfjyzhXRQMak19rhtSPc21xqlXh8/kEFSFIzt4/Mu6\nT2kozPT/XIo4hbKQUE4N9ShP9ykX8BqVk4eqBx6TcFfR82RU/ZnDUVFEYayXhw0eXpKIIc1wgxKe\nKIIdBRITI0PmEyEH9GOOpXim2jKFB8jg0XHhiOp7qAaFN5/XXDXIOmzU2dzoRkVHkf1wDmRedsMq\nr3XdXyhrEcOW1iBawnApDMk2rUBWzOEgMHgeEEuyyFDtTcVVfw1/FYOPKASiJoyNxn8GEWI8yJBu\nuLDcu6zxa1SHuAMbL2hOBiv4iUi6xNagHGKoa3A/ewRyxp3K5q5RvpnCoVKAUsBBaSs2Uwbi9FJr\nYZ3n3ngargc4X6yMqtH1J2Zmlj+Uf2yDVls3+NwNSzqrtRb+qvpXHKr97Q6ZbNCC7Q4ITlBgFVBk\nM7jAPjwRkmc8U39WoAziKBIZ6Ai7Vvu8lPoRAlm5yuBL2OfSKJJZOGQOeZIlqkETeI6crtJUaWMM\n+yDVZnrGYKi6tvHfDdBExS319eVTjWFyoxw211wt4nq/hoLhw6L8dBX/1n2lemdkft1txuSO9tqT\nttb9DFWOMgpha1Ofz8/79F39SN1WlqgAp1eUOZgmNDcHb8MbspZtJvY0lqvOFf1FQW1E9hy/PQYF\nMZttMrZwp4W/2BEnDcdBH39cJBvWBJUxQaGxBW9JdKXxfP1cNrnYPtT3z7RoXq7gyipqL74Gdde5\nZlHP5TPm25r3P/0d7ReHG24tlGOi+K6sC7lOR2shw3gk4p+jAdKrlW2hzjI0ra1kirME/BprUCoZ\n5mmFrxgNZJtOhazgTPOejurMsQZ5uUSpIu3DI4Jiz4SzTWpH+0NmO299eCRO5qBHb2ksHDgDUxH9\nXdjWWNeu5TDW8CNZQXMRDisjmZxrLWTaqC3hv72+xuzBkbLXRbhM3DMhPQbX8jejS43F80tlpzNf\n+6p9kXJBVvv8uc5MlfuHej6IkAiKJgvWTAhESTrNXIKGe/OZznlJ0F7bWX2vMQS52DpWvfiNyVJ+\nPAFP22JX47Ieao57C/qL+t+8BRoDFT1MwGwBUhPE0aIJ0meh8cmCEstG4WO6Q2aXjXQ9RPGlB8cD\naI3VGgghiJVqSf1eXMhW2kvtnwVP9XVArq5YS1u78ilpUMf1Z+r/VhWFx572lbOfKLufuKN5HpG6\nbjTYqNqqL4fqXfbwc7RcMpy1NAisMByUeXgL37oFNwZKcXGQ+fOEfNA6cXOkjHmy+RTnqBicI4Wk\nbN1AUPfaWvfzPqqYj2UjGTj3JqCPGijO3L2lPWYGt9jpJcjKEUqzcMBkUIDpOFq3xQu4A5+oDzug\npDw4vaJlje1kDF8TCPUxCJCNQqRNqQcUQe8AtSCQ9DugtmaoTm14ecYjtSOxQeVO2U/gqSvtwOcB\n6mF+qP3gNjxM9bn8kwc6owR66sQ0d2n22um11sb1WPtnCYTJKCcfcDQTssRnz2/19Pn02/D6XePv\nuNUw2SAfC3DjXMEvCh9RxJeNOKgxtUNfDOcQOz42M7PGkt92IJrCINRzPf1u8W+JYyaW1TieAG1a\nH2g8cw19PhnXb9JD9r9XG9WpCSqB8FntTEArLz5Xi4ovOraalywdgttJgEDLZeXXPhnLRpwW/g80\n1VuoCc3nqBPDCZX/N/R3HsWrN5dCoE1YX5kzuL6WWhPxLX5LfSCbKJpsoIxfGDTh8DrQ+r58X/W8\n6MObtw9PKFxhlofTZa739zJqx+EdjWGL3xql+xqzyEz9S0ZUfzaietqzDfeWbL/dlJ/J3pNtPDkS\nd9j78BLdgvfz5Qc6c4Uu5a/WcEGOV7Tv55QAKROUoAQlKEEJSlCCEpSgBCUoQQlKUILyJZQvFSkT\ngSPhfKYI/2oNrweqF10fVRGyO6sorPYXKFGQaZzPuLf+Y0W6LlD+SaA4kYZx/NZDRUk97un7p4qA\npfdAFWxpOPohZQCSdUUb37xRhN8Zqt55RyHE22NF4J9+JBTHgzswaO/o/1nue5fJCr5oCQXR6ilK\n+TAhNMXxWHd5H95VRPCTHwh18VkLRYYq91AJVo+i+n5lTxG3BrPYJfIXm3BfEoWKUWtl+9zVz0QV\nCY7CAdCcqg3ZmCpPwOnhF7nnTXbm9m3d4/v0R4oYT2q6h9fe3O9dKNp4n/vaf/8//7tmZvbbw3+u\n799XpPfBtyHKuWGZ9VFUIGKegVF/DTfNi+/prn3zAo16FB7qFX3+r/+t/9jMzLooOGRTmuvtW2+Z\nmZnDveY1Efu4yTYapxrzFEihXlbf9wcgaK5U/wBFhGc/ke3tPIKV3tc4Xb5WBL/1hIj/K7W7UEG1\nCBuPYcsRlG6aZ7p3GSeSvZooensxBumDKkf/RPV3Z1pL1a4yAidXGo8Rak9HcCtkq0JvuSgzuAVl\nH2tZ8STtolb17I1s594v6PMZ07z98H8U03h6W1HtcRnOig81PrvvkrHljq8Pii0/UjtiBdAOA2Uy\n3vxE0eQaqInRRDYdj8Phc5NCVt9AakwTerbTUEbVCSvCHSFzORxrjNtz7up39XqQVIZwBc9Dr6s+\nlSrKTjkj2UTWQe2pqnoQoLK4D0/OHE4aVC82fmhG1nnDqhThb1vhj7iD6s9lk1EyeSs4o2ZJVJ0m\namdyCWeMB0eAu+GBwrYAG7ms7XlZ7VqCKohsa65cFFjsufycrUH2LFG3ILMxgKciBcrLOf3UzMyq\nj5V1G/K+f0rmAl9jGbUr48q2xnAIpOHQCeXVjgb3nOP7yigs07KZn57JFr/5nV82M7Mud3zPQS7e\ntMzhx1jCAfNZGy6K9/X3EsTkeVw+L7env1tk8AdjPe+4pdftbdlZDH+8c1d3la+OtX80UQRawFFW\nyMJHwn37VQTFtUPZ+nKetP5r1j28NisycVPWc4g7/zEXfhp4EeJ7qDTd0940ONfYbVX1zFcbFTme\nOdlkzUEZnKIqZFmtQw9ERos78pOl2lGFjy2GImAcnojh6ITvaS6dmNp374HGZgHP08bPdS+0Nl90\n5CcTgIU2am2JhPrjoB5y8Uo25V3BdwSIIvZEz4uBBD0CKZhK6R77aPrF0FQTfEWZbSq0q/F0WpqX\ntGketlHG6SS1rzkpvZ8DvdAfwvdWV3vjW9rbh/iGi74yw5Pnsvm77LsbfqkJiKRhXf3vop63C5Jn\n6Oh7C1RKcuHNhJo58ZmF1lqTcdbyCuWbSFrfDw/gy8vCOzfReEdRmon7oFCw+cwt0Cs92WV8CfcE\n6N1QT/V6O/iIIgO4dm1NFnk6VB+S+KUNR8gsDuIQfogMPDoboN8KBKA/B2WJ6t0M5ZjFFM4tFBfb\nXc3RqgtXWFtzEAWhV86q/kpSffb/Pyijm5RaU/vDCk7E5RpeNXigvBxcYSv9fwf07jyncfBAj44Q\n0pmBaqjjlxo1uHGWspViDq7Dgr6fgqsslNZYz0FcRlbal8JjUK+u2jFxQcOBckphQ/OoPj9DzWm+\nUUKbkymuoEjjbbh5QJikhVA5Ym2YkeHuaVwW17IJf6XnrIdwP9S01uNHOnsltzbqffgI0FsLUAIF\nUAN37+pc3WFcGo7Oxw/3tKbcqjLVtSvZehN+PRceJQ9ElpmZ65plM9pfBksUdkAhxrY0vvmy1tIA\nlHb3Uu2PF2+uCDmH32eKolSCubCK5mbU1W+BNmicLIf7/bbOW5FDfbzfQRkxCsL5pWzhughCsgG/\nZkP+t7ZQH16DJCms4GZ5BMIjrPPXcqgxWaKUlfT0GySdV73L13AQrjW3kWv9VhqCmA+hPNgGCZSL\n64y0gp9z3eKcnpnTf43pZyeovqWOaZ9sa9UD6RLV5/fCqq+ThbvsDD+In1vBr7SeqZ3jPdlKC461\nuS+b7qdRA43IVhdpfb5W0/hsgZjPwPW1Zu9vw/WYhGOsey5bLqCwOIRzZnakz7mgwzZKkTctx45s\ndumD5vNA1Y20D7Uyau8qgkpeWvNXOtI+Fxvo/eUzFCE3aMQOSNONClcKxCnzkuNvFz5FM7PwrGiR\nudlyRzbTewN/2HO9eihOXbzROj4EjZ/81qGZmYUmnLOT7FW+xtwHhV+vq577t2RrzaUc4KSgud93\n9RvzLKTfInHOzc4RyoD8rg011WZnJD+6E9YcRkHedeEnWo81NrvLCmOn561RptxwY5UrmrvmU2wK\nftI+qGP3KapSrIXBih/cNfmhJf41ludzLX1/fktr63JMfGMEWjXGWevnlAApE5SgBCUoQQlKUIIS\nlKAEJShBCUpQgvIllC8VKXO+3GSIUfNwFMG6WCtWlBwQzeNeJfQXNsjq88lruBdiiuy1jj/UK3fV\nmqgp5W8p4rbrKGLnpxRl3KgurWKK1I2yiuBfvVAEDDoOu/tLyoD6L7jLC2fDp6eKTj/7x+I16eYU\nmXv7F8iUL1Vv7r4ig2Uy1oOhnlu/VqRuearPVX5FUfLi1xQlHq82qAc1JFlUpC/yQlmyp1FUmLjT\n284omrsNCmY2Ur3OQdJCC7g90Km/JuqZRYUnxT3b+ZosT0avzReKkF+mVddkqaxBCKWpynu6D9j5\nWIiH6NGhxjSr93fDmtMpqkGjEdTVNyy331KUs0I26+BQNjEm42pdZT1CWdlIGw6GUAwuG6Kby5be\nf/WnGrOn/0L9OPtIc134iub2wR1l+E4HGqf1NdwFD7kfGdKcXZPhyHHHc5NNMp4X35ONPfo6yg8h\nRVOr3F8soNAQgrm8DlInD+zCT+nzPkotTRQSRijpOHDXpOdqd2ej8ADaYjlQxLzOffoWHAyzT7U2\nlsxLZkdIGX8uNEJ0T/WevlHG/H/5u3/HzMx+8L/932Zm9v3f0vd/9Td/y8zM7j7W95998oH6DVdM\nak/9uXglJNPFCzL3NVRaYId/GoETaFd2gaiTJZPwctygpFA3mnFp3oE1vs194L0yCi9j7m2P4WZB\nlaEz0li4IT0zj2JB97nWW30s20+Rwas3NbZl1BnKZdTWUC8aGsiVIdwuU31vvblLCrBnBi9QDxUl\nP0UGYKE12RyShU5ueIPUnzT1rdJku6Lc805T8VrtQEjMkmSeVyA2slW9Mc/r+WOUwnK7WmtD2pkg\nwxBCoWXdalGfxm05+VeRjVHuRTfIaO9UtTYGdJjEhEX7WoNTkERJfEW7o3bEEvr7FfPa9mRLoT0U\nBODDmu1+se2r8UoZnpc/km0XQDwN4OIqflVrdi9GZpl78lk4wjy4GXa/iY+E+8eLy7dOIE5xUnp1\nQeVFkup/aQdVkWt8EjwwazIvq6FvYUhkPHjBUvjyc7hB4iiNZO6rrsYEhcJ91RED4Xgy1xg3WYfp\n2TfMzKwH/9joGD4L+JKsqz6F6MMKrhQ/jI0yRoYq2uDHQoemEqj1neF/60KAGBnX937lr6se/HP3\nXHNOct8eHymjnM/h10GxxUD8GXxRj1IgRFJqxyfYbKGh70fyyt5PWRtD+JCSoMZuWraW7J1Z+fNS\nSa+LLTgeunqNP5At5uHDGNe192eTasdeBbXCNMjILRQd4N1I91Ctgh9pBVpitFGQ62jf9Yca7/4Q\n5YYOXGCoqLisoRWKjmZmrXrNuuxPziaDm4UfJK9xdoxM8kDtqICk8qcbNAQZ+jU+h7NaN6zxb4By\nW6CQ0UcBMzWR77uao3pYa9ocvrMCy3Wc0Fy6nPvSPX23R4Y1ucb3ozI08vg8a6GPn5+cy8YW8GAU\n4LFb4VcXEZDVQHOKZaG/8l/XHhfzNbb11RdAZZrZvX9Lyl8Rk/LUFDm2PhxaltRYdlGSKUQwdp8s\n/oXmalTXXPpD9aPZlw25c7i/7sCX4eA4N3MJx0E3Ldt0HTh3QEp6Y50J3LL+n67ID1/BK1G6LYSJ\n4wmtsSzoe4Y/2qDi+uegKxieOjaSI4Md5sxonKsHcDb2R+r3tqvzdHpb598G++dGAXPVB00RJct/\nLd+xhWrgGP7D4ZXGKdLW+yvOOj3Qg+Glvo8Il0VAAvn8vPnshc4mZr9uZ+dXlkaxMwr6+PQlXDqg\nD3eKGtcsXGLeFhwznL1uUqaMYRL+CfcQBCHnnh4cVBHOCOs9oQpG90H19NSWOapzuxHQTAuNsXMh\n/z5E2W+Yk+23QPdUyxrbfBH/mJLNT8L6fw/UqHOJUu0D+ZPLY/XR74B6Yn9pwpMxQVFxf0+cUalb\ncFd1dQaaMVertNprz+GJutJvpVFDc5bBn4Z2NlyPm/MwHGj8djnkrFaHl/OItfSyr31tBF+TG0KJ\nrKG1dTrR++8mNa7JkMb9tMb+yn6a5myxLuiscwpv4PaQczJ7fBjflI2DMMRP2lzfm2c0bwl4j25a\n1itQtiGdPbYL6ufLc5R0L9i/C7Lxy7nqH7Lflzk7DlCXSnIWsx31zwcR5I01H9OYfMowpvqW08+R\nPast1+qzE9sFmRjbFwLNmj81M7PdjPoaK+l81uA33R7nPPtE/HKRgmxt+uGf6rUqW8nahqtQzx4X\nNWdbSdZvFEXahvxb6R39tkgntKce+1rH6Slcr2u9P9+WjYZAL4USsrUEisOxqmz81qXWyOBMv/22\nvql2hsdqf/P1p4wh3F+5QzMzO98VCtbDL4/OtL/k1mqnu6+/oyhGtirweH4En9JQ38++Daq48xf/\ntgmQMkEJSlCCEpSgBCUoQQlKUIISlKAEJShfQvlSkTJenChtgrtlZIeKcUWHxxu29wT37oCuxMn6\nu3HukpEJOfiKlCO2VlKMKZPxnsLivyBLNUABZkPWvk8mwjNFSZdEFSMvlCJoXylqGyfVs8wq8peD\nT+TtQ9iZSYS3PlbGoxdSv0qO0CTpoiKMR4fql3ul9jRgJF9yF/bxd9X+458I+ePOFFVOLBTNTpcV\nra2QHTzhXmeaTMqCLN11XRmT2ymzWEdphOFA0ckdsr6OKaI/TMKPABfAm2vYvcn6LH2NfbrJhfC5\nIuLOJcovIDac2KGZmX3jPxT/w1fvSdngs3PVNwyLudv+od2o+CiX5Cpqbwu01CqmMfO29H9vT3f7\nC3FY1LlL36srEj9AQSsDMmjcZhziip4OubM/LiiSnOjqc1Nf45H19f9FRpPsrcg8cp98e0cR+X5d\n7YmH1Y5tUAD9BZlHrtq3F2qPF1eUdYWCzgr+jmlH7WrHUHkiejun3jB3kGM5VDiy+n6R++bjtqK/\nR7v6Xoh7+z53iS99tXPU4Z72M2UGzuGAub2v8byFOsvsSBwNtZ/CsxIHWdVT1Ln+TFHyy6qi5/so\nHG2uc/tkaGJ5kFlRvVEqyLbvfEeZfANdtri4ebx4ROZ1I7TSGaHAwl13D/Wy4YbThTupsc7+5FkA\nACAASURBVLsau8JC2QWPLLUH10CBu6lJ7sZHN0pRHUW+Lz8WCmjroT7nxcjooqY0iXG3nYzsanNH\ndsacj+B2WZO1GqKQtuQesZFZHev/ZVSk5gXVs1GFC6G24WIbjqPXhQ/HALaWQDHAG6teH9taJZX1\nj5CJzmDza7JImYXm6CVz7YJUqYK0uVPS62cfKNMwqcuWDr5yaGZmjVfKyBYdZSYa3GN+PlI9vxAV\nEvF5U+OaqOh7ZzX5x05K7TlOyTaGvj4XDn0xFMTxlfab+hJ+kHtfMTOz1Aad8FB+utXSvLUGcPYY\nihhksSyuzK+HwtFoxrgz7yGUg+Ypra3b8GzFiqwl+FvCE1RV4A2JjKNWXslWHHgyMlXWR0Jj10R1\nbrXQdzyQLbMRqB8PXghU9epwYPmgoDzGMtUHwZiAHwk0Qv9attd01Pf8lmwjvdbYZFlkbld+fN2H\nqwuJrVRYayccVTY+SlYs1gYNMSbDx5hnCnDU8JzJS81RDbTqiux9/gH3wh3Qb4/ln5KHyuYNfkYv\nBOdBA0TH6i++v/3/Lxvep96pxseJyubSYTLSwAY26IXQEs4YFwSQCyrM1XhEoloLltPac33tZ2/f\nUj0lmYQlUtpP/BXqJHOQUhWUKTC9+aH+nl7ocx2QTMve8md9WIayFuXs5KKyZ2u9JlGUG4Lq22SM\nu2R+Xewg7sfoHzwt/sb5yJd6oFhsk/ln/Kdk9u/e0nw6g4UNObel4XxZdECQpdSGQXzjB7VuZjH6\nVJOfmMw0dgv41OZZzi4RDZ6bURuiLmjgOSqUoAf8qNrUAFHhX+p1kJOttjtfzEaiKbUzDQdJqykb\nKVX0vCXH6uG5bHkAj8MU9NugDVdDQ88dg9jLeNqzq3fVrt20bCJ0pcxwYqW5uzxRf697x2pPic8B\nHO/19NzYjtqZ2n9iZmbnPdnizlBraTzSmSeN0peL+lP7OVwqE9B08AyNQJb3enpeKqXPVVBp8lJq\nQBbkdjzF/pWUzazgaoG6xhKo+M3h9oqiIBR+IJ+wk9A4Xb8hU43a3j3O0Qt4AutnyqCfjrX2bv+S\n/HoirnbV/M8VZpz43MYx9Wc1kP2lPNlqr6YzavhCdhWuMC8g3F24aG5SvD6KhgdCQMQd9eX5qfbC\na5CA1Zjams2hgvqaQ0wEBcgMqk1RoY6O59gGiLRRVvVcX8g/1YbaF7I9zj5pjeXK0xzc23lb9YOG\n8B6BBOQ3SMjXGMxZMy2QNFM4cuI7IOk4G0wuQPAtNDchfputP5O/eQWqwYebcZuzS+kxaKm4bC/e\nkD+9lZL/vQIZvvJQtMXftkBQr+CHKg5lM42FPncKR2RuR/VHMvAVgWowVIsia63dzDt6fncCSq2n\nebjK63mLM1B+7K9r1AU5/toKVNfaBekYublqqJnZCNS13xVSPfNN/YbtX2v+B5wtlvBiDSd6deFz\nSWxpP+ihNtXhDLIPCrw4BOEJAtW2QDYutRZzWfdnbVnNRpZIOPadr/6i6mpqTD87E39oNKe/myiv\nZkIasyoqdy9cjWmc8+6CvWLUUNuOYrK1y7B+F9/Gz49d+b0sfnG/BDRvsk3f4GVCRfQYtP233kN5\n0NPcPqupL/f5TfYqClcfXGX9ffzQSP3YeiPbKN7R6xtseAI35XYSBHdV/bRzzXUsqedfgNB0z1Bm\nXMhvRFIg6u9qjM9/wBmCc/wtEEA/rwRImaAEJShBCUpQghKUoAQlKEEJSlCCEpQvoXypSJkJ95Wn\n+U10lnt+HyoamIoR/dvcuSfrs9rQkkQUcRtwl6x7Jn6KaFmohTOy8umQosWzGPe8QU/ETZGuOfwe\nbk9R2uJYUdJ6RvVOWmpfs8X9v7Ki3WMyv4WHytpFyXzkiRzWkLgoFvXczlrvpzYC8GWyer6iq7PN\n3bNtRaF34A2YdLl3ulJEMR5S9PplDZZsTxHC+VTtHq70vEETZu6tlF1tcU+WjF6PjGaazKDHXXoj\nS38UUTZlccT9a4KFL9oauz/+SCo8VzBeR1GtWCeUuZyiJODvkh3hznm8QYbthiXMnX2fCHAHZM+4\nS1alQESfyPkaVYgQEfIGWbgkdy+hybACSluhA2UgIiNlhdYV7liSFYpyZ3eGaoWzJKpL5sEBpbRV\nVcR6O8bd2AF3crdlC526Phcv6e5tnOzYEDRHGlb3AXf0DeWBIepM6zAKMWXu9rf1uS4ZBRfm8yFc\nMtfAthxUmVIom81QiomCXCkW1Z+Ep/GZkxn1sckPXwsdcfe73zUzs18vKUo+4961N9DzH33lW2Zm\n9uQ9obeuUS7Ko/qVukU2r8z9U7JetQicBgNFsyegXjzQbDcpUbIXA7LWC/qYIOsSggcBugnrkgW6\nDYxn4ssm35xr/W2DnEnF9Todc5e+IMezD/9Da6o2hjtar9crrcvbtzRGcZj0JxveCMZ0TSw87WgO\nlmnWJJwDqaXGakzmN8eYOBskC7xFDn7RL8FNgjiEw1wmqd+uN4gS2chqjGKPr/Zv3l349LcH35SL\nDYE+8KBGyG6T6a6rvssToTeWoOei2GjKY3wK6m8etZI6vBjFbWACSdlE3zlWf0HHnVzIvycPuMvM\nftEG1bfgnvhNy9ZjMqgFZTx3yficg7hJJYXumHX03AwcCGXW6puPlGnO5jU/pZL6lW0oGzWrax4u\nr2VHIbKJsTCZ5JDsxm/Tr4jeX4Dg8YZTG23UOgrwz5CVLyy5j53QnjaLasz8JWpvZG3Gx/hB+JT6\nZJ+HuygJ1DUH7aHafrhReDlU32OoMizgSFmuZRMR1JaSZLHjDfzQH/yxmZlFC9rTClXZziqpdrd/\nIgTdFBKZOQpb05nGctjR3lp9W0i8MYiPFBnUcAVeDfh5FhW1o1qRIks4rfH48I/EcTNe/auKZvnY\nF+MLaZKmmqM65ICiCHU1DmuUyzZqKr0pqkSebLLKWlnDIeP4qrDIvftJTf3vgY5zQeHNHdZEWv0e\njWRLhYL87FMytdmh2lWfsubZrpaFz1Fjg3nYJiiUdZnnkIEmgZ5kAKxi3t0oHsm+1lM4E1B1CuXg\nXFjgXFJ6rod6kw/Ccz3UeF+jlpJANez0R89t1JO9f+3RY303pb4OIuxF1J0w7Qmztsa6h3JILq+6\nmvjN0JX+HoEMjtL1Ntw1Dv7WGWtddVEZWiGPFM3Ay5GBqyp0cwSEmdkElcvwSt9PFrSnR0H+jGoa\ngxr7zbIDl2FfyJ/xxu9ia6kK6h0guzPbWkvuQOMxbwJDQhU0A7/GYVlrdlmRLWY4g4TgThvlZXOp\ngmyxX5OtTvh+47nGwT0ACcJ+uVdVexwUw9Ku/O9ZTeMZmsJXktbn4kXVm6C//aXW9NQDKQNqrQan\nV+Se1nAYPpDlBt0HF03rQqgBFxRzuag1MmZfW7Av5bDNWELzl/RQg8nKR7lZlHdWOpOYmSUf7Fiv\nIfsJJUFU4SLWG+Uz1Jga13BVQlaz++gtu2kJldlT4LT6s6dCFp6CiNgBRVQ41PpbNDV35/jPfQ81\nIsbmgwVKkmOhFjrP9JxXiwxtBW2PYs5HA5AWI/F6HL+n7Hzjpfpy+K7mdg8lsHoXW2ugtofC4C4c\nZWNU/LZBN3RAovstzWGnJj8f68oIBnH1Kx2TX0wfaE5ulfnNN+HWA+i3MSi6FSjfykpzfRnV56LJ\nJPXpc8Om+tkE6XHxVJ9PLIRefnBfa2juoBo14owFSrl8qHbU1qAbTONbjqjdx8dqVyaMoi0cPaGR\nbK7A7wMvqzU54gJAJA7X5Q1LAohnlN81VRx05q1DMzP7KSqzcc7zk0uUgkCa5+JqVzLGGc0DGZtU\nffE9zWv7HB/X13xGcvqtPLm+/bO2REO++RcTG/HbxfrylwvWbXJfY1Vy5Meu+K016cCPFNNcxUCs\ntHW8siK/aerwD4WO9X6qoPomE7Wtc6mxiLB3ZgvqW+scVWR+K+zBo+ZxLmvFqI/fUEt+K+bD+u0y\nQRHS7WvOGyhy2VjI7ndnQgYdwpHV5rfScf0pQ8ZZhN8NiazW3GyGUtmR3j97X7Zw8FxzcZTT2eUs\nLJuq/an2/u2tv5hXNUDKBCUoQQlKUIISlKAEJShBCUpQghKUoHwJ5UtFymTzimSlK4rOtgaKajpZ\nOBGiihlFuXe39BQdzV2q2TMib9k+kXYibfGZIny1p2ReEqq3ElE0OsJdtzB3zIyM5XXj2MzM+iBs\nHqGA4z48NDOzF33UARrcA0yq3XlYmUN7tJv7o/mkInSGcsQ8JbWWBcQosZIib9vcbX35WpG5+Lme\n3yAT3/9UUdw8PDBrX5G28o6ipinUVhagRZZ70nsvctf6dvXALmsKrSdL6sv8WtHPNvdplzGyP2FF\nAUd9skk/0DN3vq4o4+2vKLK63tYzb2WFjPkDFKhqP/x7Zma2qmqO7pSkynR9JgbvSuqLZS4nqI3k\nbinynXY11kOipWPuLyfhYPAdVJFQOhnNQFnlUMBBLaRDVsZ34caBH8OFGDvBGI/hFMhueD8y+txk\npfHKkIk0eDUSORAvEBblq0JReZ6yR2c17vyicpQgIxGC7yOGcksozB3dHdUb495lcoHiTk+vfZAx\nG6WXTdowDLdBwlPUOYwCTA6gUthR/5yQotj7d5QNcx3152BLmY0Oa2KTgT4ebDI2+vsgDxpsT59f\nR/SaBWWWQJWqgXrLhCi8t+GgILEQBq1SBSWxREXqJmXFXDhwpYSisoUEilZdssuhjmw+pUdbGk6B\nKJweG/RRAlWfNlmfdk+ZAY+M3fEbrY3wpg8oBAxfamzaa617L68+L+AKcBYMPkpo0whqIdxx9SKo\nwfGa5O5qaAHfA3d6EXeyWQE0F2iAdVRvRFEIWE1kzIDebEqGNM7rBf1e4mdDQz0vHwZVVpXtrOEt\nuQev0wTEz+lYa76I+kd0S+3bvU1Whru1EdBU7aXG/6SlbGHla183M7MuGWHHRbUILoElXAPZouZx\n6JGVmijz3p3eXA3DzMxBEaNLdtAhUzvl3vY16Igw89EEJZHoKHvVeyPugvsF3ftORZQ9bLVkD92S\n1n5lrXrPfX1/Cu9WrA+vyFp2Vmb7nUfgQJqPbD5QNmXQU58ja9n2FLfZG6nPt3JaJ0my1IOhxmxQ\nV529U6XuxlvymxGUvDZ8FIb/6x5qj8sW1LZ0AjU3kw01jkGKwAtRJXOX4n53Z8ma62gvXyS0plJk\nVM9fC1VayKIKkVTfW/hpZ0fGucqhxMNd+AljuR6jArilz7PFmd+XLUx66ld4BVEFyj3JCmO8/pxr\n5SYl1dR4Px2r35VL9TtS2HB5geL6TP1dT+UbEnMQnGOtrZzHPgoPSB7U2gmZ0FhS478DKi+T1Twk\nuAffJHPtsC84wPxicfWvcg8U7bVsL5qr/KwPXiZhi4xsM4IvjJFxnxfhIKprIBsgZ+NL0CVw1CD0\nZjnTc+aooWz4uVZkSbu+bPuwhDLa7UPVRz9Prv6p2SWKJF8Rv8YA5ak4RDlJ9obOUn+XQa6t2QM6\nICFjvD8EHbURNZqSZe+9VD2hnL5fSsh/7cLblnkojoAcqOEO3Af+5dq+SKm3ZNP1Y736oKBmIC+T\nc1C4yTVjwd4Mn1urJ9vNl9W+bdbyELTUAuUqHyWZ0JX87PhErwjj2M6v/FUzM3t1pYEYDmULU/h/\nwi19f3pf7anC2+QOdR5+8jXx/eU477ab+v41a3YOQrtagpOxhtpRWeM3xEiufqx2lYuqx4PTIYba\nSqKk53fvCrGy4X5zWDPFqnydo8eZ/1JIw0YSlZOv6cxZJZN9ebzhtoHL4RaoY/a7y77sbTUHXTBm\n3zSz+VXHvI19wdO3HrzmTa3lnYRQeK8WoA5BnQ1BeN6kLNlTji80lsfnnKdD+IPbKB2OdF4qxVBA\nRHkwbfLbYZDmhzz6BPW5KHxAySu1scL+EH+otj/hXL66Ldu6g3Khe4kqZ1tnlRnIvRDKZfGK1uid\nI7Urmlb9k7rm+PSP9fdwIFs4K+gsUCnBoYWy4x1PPEahiebG39V49C9RXhzr/Bkry9bjbf3dQpWp\nAPFQoqs1P8nA4TjRnDYj7GNsK+4WaqsdtSdyIF7OWV82s66r3w5nwhScWR7+a7ZQfa9QmUvDyTWN\n6u/CQDY/5ly9qmr+CtwImMOd5q++2JlkeM5++Fxr4fbHx2oXty/e5gzookR8evoTMzOLLfV7LjbX\nuDVbKJbd4fcDv3UncN5Mw+xjRX6vtPX7Yzb/fG0s+msrLsyuejo7pBnrwo7WbTe1QY9qLEJJ7Qmf\nncqW4lca69OZ+vDON7RuB/iD+JX6cuyp3lJZNuKA7rquC7lSeU+8R42+xjJVl406INfXR/od3ZzJ\ndpagtSqojw74LTgLa456cBjGUQ5zcqgiTeFFGul394pbDVFU4WbwW25o4eabGykIHUY4pw4TWjNf\n/66eV/tEv3ljnvq9e1dr8OyHH5mZWfqR5vbnlQApE5SgBCUoQQlKUIISlKAEJShBCUpQgvIllC8V\nKROfK3LmcC/Zgz8kvEtUDwbvZQI1iwncCkQx0/CEFBwieQeKTBUfKpL29bruwA4vFIKfpIn4NxV9\nTQ2IKqI0MSRjEDpRVPVyrmh0BC6DnCmK6+wrwradPDQzs6O/wl3Xj6UYAYjBVkRNy98Vl8EeUcnB\nifo3OD82M7OTGXdyT5Uh2PB5pItwP4CECcFZsN5GOWOoaPoyp0jlcKLPVReqZ1njvmd1ZPmJGjVy\nleHz4EWIzclijxXBDi3ISrdRAWopGvjtb8MY/Y7GYuuOooMPtxWZbx+r3p98X235xV/6K+ozd0kv\n5xqrvfQX44HI5jXmSfg8Ep6yG/kdzWEX7pLljuZ40CXSTjat4ilj6K8U9Rxwh3OjhDOCtXzTKifF\nvUcUu1JT1Ca4i5+DF2OKikWyqEyAt2FrB60xKio6+/Vd0FFEvoufKCrrwh0wdBSGXZINbK1AhXGN\nfO5rrmevNQ8rV+2ByNxSqGU9vKOsV22GGshU2Z/kGBb7EBw8RG/ToC029bjY2BjU15JMZ+E9tTtL\nNnBJRtTn3vzP0B9krPNw+ay4h5kl8zpHQSPZA+FExj/hKsv35n1llHIV9TNDRukmZTDQZ/0cdz65\nW84VU5syx5umZrmrHrqSrXpTkDRLrfdCBe4DUEiRld7fyqHScKiIfJLs9hikXgglGWeiv5sNVDBu\naezyMw32CJ6JTRLfQTUjiv+DZsJWIC6WEdSWQBHEM3AGYItGNieV0NivmVTX2SiRocTiag66l6AL\n0sqWFFlj6TzPgy8ov1bWrouCz2KpcT270Frvcsf30deUlTHuNW+UFrpTVOtATczaynjEUTHaIsv2\n0fd/38zMHrz7HapRv9ao1+0dKOOyBfJvkpKNHJZubiNmZidvUKVrk0m+jR9ljbevlAJ5sIfShIOq\nH4iqVVXzm09zpxhVqYsL2cmTLfma6reUpfTeF7KmcanM06ygTEoR+/N9+dxqVePspXfNvUSZKa66\nine0Dq8+gseoL/8xbmksPeR70hGtN39HfQoNuVdd1lhHqvJDKXgrxqhqJCOsz3P1oRlFOfAafo4W\n6Kr72nvqNc2JO5K/qGQ1Ngn25HBG7ag+1BgssOHFOba4hPctoz079URrasFaavfVz/Mr+cUx6LXl\nCO6pjPY8j8xkn8WSeaw5S8c1XnF4n9Zz9eumZZDQGhl+pnFKxJXhLoHwCaEC8vFn8q+HR8qC+aiT\nfFDX+FTg7OqBSojENT7LHuRsZA97oKYqafVnDXJyPtf8bRdU/wvAFhG4FUYtUAJtzcvBvc9VPxzH\ns1QGJbiI5mkOoiqOQo4L/9asgVpWCIW2JE4JtSlLcJiBr85xtTazwFTGGxW+DeqljD3l1e7dB29Z\nCN4yLwXPQ1xj0l+yB6AANsaPz3ZRSAQFkASJOF+hpoHK3DIGZ5evsXar9IE+QodkDZDTvTPOOjP5\nvQXcKKHuF0TcdfScAX5uuYArpaB+llA8rDc1N40ue/ISJZkSiG1QS4my5qoFCY3TPFa/a6q3ONRa\nj9aa9FNjuw3PXXeo/s1y8LeBkqo3ZVvrc7hssMVXdZ0P7x3KJ0QmcCbAw9RF9W44kY0/KessF0F9\nqHIkPpIQZ6U/PwN1zZkgyfl9OEZFEOWXHU/PWUFOVhtqX9mHA66Hgs3gSvvLNYiX6EuhAr52X899\nsKN+LmKqr7Ol738CH5Xrq/3rLIqZ7BdmZvlK3nov8Z1jff6irrW0UdaJZGU/lS35JN/Z+Oes3bQs\nLrXe6hP52aP4oZmZjeCKKSQ4m8O9VE5vOP1A2+Nvsqi9lW9H+J7qqVU051td9fXkz7XOPwXB9/Tk\nX+rzZ7KF0jeESvju3/j3zMzsPmDWywkooI80xu9faCx+8v0fmpnZy+d/qPZAvHM3ARfNI9nON0qo\nbXp6fhNuq1ZfcxuOCSE+xrZXHbi+QEdVffZwUAcTVETN1ZgP4ExL5mS7owmqTR4qhUPVczRX+1z4\nkzZcOYul5viU8+zBRLZ5XZDPiZdAXH6s8c3CW9qH2y0f1Z695Gw22dX7h66+15tq3vwcZ7IRPHk3\nLHcO2Vefah6evS8kTBpfcfe2iFkS3xTn2lf5vfbJ/6X90aloLeVd2dXrY5BVYb0fdVmra6E3knCR\nTW6BIsP//7/svVmMZFl63/dFxI1933LPrKy1q7q6e3q6p2fVcLiIHIqwLEu2bFiwINiwIcCA7AcB\nhmz4ifCTYMGGH/hGi14EyLJhkxZskdSQQ8qc4Ww9PUtXddeaWblGZuzrjbhxI8IP/9/tMg0Plf1U\nfrjnJTO2e8/yne+c+33/8/+bmTVtarm9W3b0kT7bqaI0dVdt+vEP4EQB+ZZto3yV19jcRSky3oTP\nc6j5NzxDVTkvW8wW1Hcx+IEGoIF7+LPaUP74E7XUkt6P+MQJiBu4KOimdghj4LcCv5RIye+tNXm2\ngffNgWusg5Jj5wU8ehXZ0m2e5S6asuF1EHSdY91vwMme8WNsbCWET+lrQmcdsM/OgEyssLYO1zUX\nEjyv/6wSImXCEpawhCUsYQlLWMISlrCEJSxhCUtYXkF5pUiZHGc71xuKCuYvFalacu4x6Sqblp2S\n1UEpwkmTWvYVMW8l4RHh/U5HGczEALZ5V68jWaE6FlllI0dp/T6yQo0prejstKdIGiTSlk0QeU8r\nI7BDRL7VIhOcJLtGkLc4UfTRg6354+98y8zM4klFzqIPlE3rePo8goqIh6yUD9HGwlPEsJBSpK0f\n0+89HwROSfUYzhUBXCbVTxnQGwNP0eNa37HTlrI4ewVFM0/gn1hGFaFNkBltwkif6sCvgMrCkwOU\nrk4UFUyRKZ1/5tfUNrhU9t9TNPS9z76r399WXT7zGuoPg6ur6piZHZOZXZ0JhVRCjcLg+0jBD5LL\ny1bSdeKMIEOijEGUbFpsoPcXIGlyMGQXU7relOxJKS5bSnC2fmV6PzrWDf2Irtvl3GXJ13WHA6Ky\nHUXav/f9b5uZmZMjwn+mCHZ8nbGGqyXZIypcAD3G1PRHIGcgEvGm6sfnDxW9HY90//hC7Tk+VjR2\nxTnqdD3IjOq6C2w5W4Yf5BI+kQQs7mVUrk51HecURFETpaBz2cczziKXyUyvo/LUa5CZRuGgCx+J\nuXo9h3V/GCCKQGG4HJTvPdFc3H1TdnSVQmLL2kPUK/bgYFmqj0YgRfIZZTlqjsYikwaF1A4yrprf\nQ1dj1CazeNqBi2Yh1FAM1ZDlhcZkwFy5h8LB+r7m45/8vu6XQBnHK2ObS7IUZMvnqC7FYdSPoVoR\nD8Y8pQbGOHQ/IJKfT+jzaQK+iwBhx/nhBcgajp/bagqHDGOd9vErUY1J05U/y/dUr0FCEf3ZY2VW\ny3C7rOjvvbflTyeg2M5/IOWDczKx65vKWrkc/J66GtvXviYVixLZsgGqHbvrGvPHPxGypBhR1m8D\nnpPNKEoCPfnzah0HfcVydx8feF8ov9w1jdeDE9n6ix/pvjc2hMxJFdWOGGiAm3eVtWrBMTSOqv/z\n8J+0l7KXxAq1P3xEhn4ugn7rDFAxicBDBQI0tlzaixONxZ2vwHcEZ9P1d/AXcEaNge41z+UP+i0h\nUG6DbNu9uW9mZgPUNIpkYHucu17BIVa6JtRA0lM2rIetZ1vyu2cztXWvgAofaAUflFblnhAxVQ+O\nEVd98uChFLl68BY5ebXHSWqMi3AAjMkqTS5RdOjr9x0QPJcL9emOr/b3iloDl6xfowt9r9lRXyex\n2ZSvObYHX9xVy3Cm/jp7LpRAZ51s/rHWiXt3ZUPdke7zWlbojyHrUftUvuP621onzuAnOuuSXWuD\n6piD5IHrJwLyZBhRu1YgCX1Ulzr41fR9jX/P1K8TeC+c/wfdhd/1bNZE4Qf7SfgoZcBnNyCzvAJN\n14+xvqFqmIVXKlFFIcnTXEzCETYpqH5OW9ctgYg0FOI8UB7XN/ZstaW+6MGjk/HllxbID6VLWruX\n0cBfar5F4cpKFkCqwflUSGpMvRlKUUANfZNtxdGTW7BH8R2QMAO4m1B1O2trDDNbny67vft5zYVS\ninaw9k0ZwzGKMnPQxzO4TfIxlE/Yp+6gIjcD9WVDtR+xPUvBDTYAIeNMNEfKkyBzrHYk0srmF0An\nZfa1j3UTrH8xfb/OniPPHrB2TzbdOpT/q4NY2fusfu/BgeWgmOMctKmvxnY3IT9eYY8xHcsW0qxX\nC/Yk/UP2cG+png6KQUsIoqKgtnOgxdIgjVKgtj/6lhTe2n+svzs5+df+eo6/WodWr6Eks6N+iMd1\nndLs5fgmp54ZvnAIv18pqXoEbIcLwBuTJWjpQI3KSdlVy5h99TJNn9wWT8bhMyEhihPmM7bc7+le\nhTa2i7JfM4860vvwJhmogjT8Sfir6ET7q/i2/m7DbXX8Qvvm7/yBkDP/yz/6DTMzq+5pLbuB8uxR\nVb/b9DRHp0P52Xfe/qKZmb3+pvq2XlfntADQ5UBenPdku70xKIiPdJ0YfbiRBT279b05OQAAIABJ\nREFUo3bdnMlfJFGQdGMas1UTRbS49pcxlAtLpxrLwwj8JQtsCKTMTFPSKnH942Sx1Uf6XRI+p9gm\nz2ALiJlmuk4H/rd4C1WodfXLwkc5F368EggnDxW+SF/XyQU8TutX50I0MyuuyXZ3fknWt2yqfRP4\n7P7wWP17vyA7msJ9Oa1qbrZQEC6wLhZB7Z01mFOb8q2ruHyjl9RcbPXUL7eyL2161vBtdS9tyYH8\njXuifcr21pf4rda2E9CXb97WtZ+c65rLHY3FmQOPUQ/OPtBRG4gOeQ2hd87gEquyj+1n8WsLkO20\nbebpejX22XPohaJF+Dld+YOjrPooY7rf7EhjO6+prQPQq5kJXJMRXa9ZPTQzs/0pz3AO+25Q/4MV\nqlA1/T7KiZtEXA06eiGU2dahEPYGmiuKSnK5Lv9xBu9m4piH1p9RQqRMWMISlrCEJSxhCUtYwhKW\nsIQlLGEJyysor5hTRn99tOJzK0V1J5yDi3lk1y/hMynqtXOB0g4phWxEvy8RzWzDnjw51OsTdNW3\nzwmxpRXpqhSUBRvnFO0E5GBnRMayt5QJuEHk7AEs7C8WnONbU8TtCF6TGtmpBuz/DlHWk5/o98WZ\nsm8LMqxpzvf7jqKcMTgTCh6oFVRRoqiveGjS58j8r2AwH60rqpolI5BaKLPU63C+9LhviYWihREy\njGk03lOc2ztG/SJr+l79Lb1/9AC1HBRTnn2kqOjt6+qbpy9+pDahQvSFzygCP+SM4+R3FclvcZZ+\nXIVi/4qlQFp+6KEONdKYj0d6/f6H39cXlyB14LqZwysSqFlEycpZW33V6+tzH16HAbwc+W1lczKO\n+jDFGdslfD2pnMagWOHcdJQMBufHo1P9rkY2zHuOakhVYzvpE3V1QEOQEQ2ybOdTkDYrRbwvztV/\nq6k+L3B+uphXxnb9DgibuK5//H1lYqJBtvFNMqZ5RZtL8GNEOM+9QG6qOda4zs/hrKHflo76xf2x\n7ODxU43r+6AK3rqvuTq/huLQpcanlJRtrsioRodwSnCO1BnB1r8EGRSgRGhnogWs4AqlHyUTiQLV\nahgg0GQTlbne78bJxsAJkIITZQGvzWaFs+8lzpiuy2/4uMltuK9O+0JQdDv6/tGxsjobW7p+Kw2q\nbKK+yp2h2JUIIv9wRQH0iJv6aLbSGwvmZgTOhITB8J8o/pn2eHm1swTaYIbfSk/1eWw1/TPXG5OZ\niBuIl3XdL7bU6+p7ypD+/K/8dTMzG1wog/i4Js6Xe9tSdWscC5URoBHOP1I/PT3T6+0bOlu7UYO3\nqqfMyxIUViS1b2Zm3/+2+skissnGU9n6yffEm3L9vrJzN5Lya/MByg1jtdMlA3vV0h+htgLaZNrX\nHGs8k2/yPb2e+ZozrQ/VnvEaGdW7ysLNmmrH2utwSIBCe/iBspEnS7Hs97vyFdWC6j/oMYcOlJm+\nva7MyQz03cqiNvT0nbMzlA0+1r1v3FCmK1WBgyXwh0OtBY2GbGQT4qQi/ELxuOoWKJQlmhqL9hR+\nist9vZ9Vn2YiKERtax7vpISEyRXIXi/wx3CnDMZkl1A8aDU0FwZ91ceFG2o7pznml/PUH6TloalP\nmkA9RvrePKm+2b0GYvGOsnIVstUtuKmSoL/6nNt2gKtmayDy7NPxhawH6wRqUYkyWTzm0vGp7vfs\nUHPg2tvqnxcv5BPm7AH6KM34pwGihTw8qLYffaT1dGtH/CLdHnuaJgiaJUhM7rsC9doEWTPpBH4T\ndHH8ZTtjy67N4HiYkbmu9mUPeVANC0NJI13hr9rtw3c1Rv1vDR4QK5CR9kGokmlO4MSS8G1EA7ed\nBo2Rb9sUPpoZa12+Ci8QSnwxcoMRZPFcxiDnMgYB1wdKkSvU6zzGNpdhPsMBlQQ5nYqzx4loT7K5\nJduZg1KyE43tHFTQVUsaZOMQvqJZn7VtSSY2Qp8BGl1fR/mGbLeDcmQfVNS0Qaa5idrJa/tmZnZ9\nW+tJ+1L+ycnAjwHnwuH3D83MzF+T/20fywZTj5Sh7WHKa/elFtcG1ZurqZ8SrAsL9suHcLh0Z6r4\nzbdQAirovpcpFHtG+t35VHOg9Vz39VhHIzWtE5s1MufnGo/X2OfG91B4G8rf+iiV5W6hNIYKSmIf\nm53gwz7QXq9QD2wWJTFQyIV9lEFBmUxRvUr4L9W1Fqdti30UKEhqbq7gqvDY85031Z9xVLt8UNPe\nvGVXLS3mUxk0/s5dtemb39EaN0NZ5he2tX86jarPc/CszbGZ9pHm4WZOe/ntXaGbdp5rTI7j8jPj\nvL735lxtKP4boA6YAxGHPYKnsX72TPU7HGhNvM++NHVdbX0tJQ6TyB3Z8iKlvrqE53OWVP3PQG6X\nl/p8fgbygj1JDR5NB16o68aeJYlCblz77TJjESvI5g5Pdd0USOxhlme/8wCBw+mAqmx6Cx69JnO/\nB+fjdEP9Mj9Wf/lrcIR5QpQesHfrRzTmhYJ8TfJM/TcpofCL+qCPH26YUCOZDEj2Iiit5Kd7pD5c\nanyyc9VrfUu+qgJ344/OhcJwUei9jX307+mZuNnXM3Nmpf3BaqY9ycyVT9rb1F4qeYtn0hMQqK72\nJH3/5fPYeDm1zti30lS2+tzVPKnVNX+SqJ8VXNUtzR6jwvPz4SGnK+I8f/IM449kK7EsirV3NXbn\noCndlsZmDKImtqvrDfU1Wwxkk92S6vE6z+nLS+p9DWhhRfdPwhXmpTU2J+xpyvDuXcTlh32fUwWP\n8Wfwhm7X9f27b2nu/rSligzhkYuNQEjucPriQmv48QEqeaDUnvb0+034SbcWGqNliYr/jBIiZcIS\nlrCEJSxhCUtYwhKWsIQlLGEJS1heQXmlSJkoGYb9liJhzbGilxt9kCGXnDHltKffVOTLR0EmNQn4\nKQ7NzCyTUHR3O69I1tldVDHaiioe+4rGpjiPGXMUcZ8OiZJG9P16eu3P3Df9JUUvX4ejZsY59h3I\n2Ot9OBXgiKluoUAwgcV5AfP1jl47j9S+SFlR7hQRvsmCc4qcPc4TEexWldlJ9xSR65CO8lAbKKZR\ngeE84+UGiJuYos6FiWfxR6rbmUu2uKdoXgK+hPhAfV2t6t61uiLYm9tqc52zmBf9/0l98dX3zMzs\ne7+v7PAPf/uPzczs6C8pS158oMi++6f6O+Hs4saXOfx5xRLZ5pxgQhmC5VhjcjlWVHIF78YKnpD4\nSq8v4CiYcFY+e0197aWIqnLGfo5iwAnImw2HbFuMPuZ7o4ZeXyfLs+QMcLKsvnfGKCdwtH41Z2rl\nA24bfbCxpn6IrUBpYEMHnqKnCVP0dUmGexBQIsBPkUrJNv0NWPo542sxuGnIbKSGKAqAhIqg8hEN\nCDxQO4nH1F+pGgpiJBFXnMvMIcYxhNeoRKb79htEyTO6fwTFoQIcDinOlRciGq/Olv46oMqSnOd0\nYMdPlghT5zhTnb169jI7hDcHnpyhr+zIxYH6dIu2riJqEzQN5j5SY0cj/Y3Q5u4MbpCpbGg+kF8Y\nkEHMo0RVrHAeGq4aH06nzlO9LqBkNXL0/sYSlago/myGDa5QXcqCEpoTK49pzJJE+BdxFNHos8qI\nM/sJXScRk21NhiAMuV4cxYECyCG3FGQOyUjD9RCJamzTLAvzdfVr7XcZCziuDr7xY+qtfuugZucs\nVa/aF3R+PpFX/RvfUz9eFuHJaH9oZmY/QR3v6//m31J7UBzKP1R//eKv/av63Uj8JJdPVM99Azk5\n/XR8IU5ac3cM/0UHdaxduBg2b8mnZUGPHbXlu1L7Qt+NmuqXZ4fi1YqTxavdkW9qg/J4i0x0ZAoq\nEZ9RyCgzZN9WvxRuYYigFir5lP3c137BzMxORyBgjt6nD0CBgeIpkNXdf09rpmX0upqUzz9vKgN4\nBjJmBe9FLaM1ZA1lkm5Pc6V/Dp9QRnNl45oQIK1APQnOrD5oovaB/mYmgdIBiBmyyqui6jFA/c1z\nUOOY4gcCG0URjQSuxXZlA2ugEfyq1qEc6KhxVl9MYmvZG/LrWy71XMjWomTPk9znqmVtQ+3+/Dug\n1JLaIyxRFxqQgdyBIycJqmNFxjgKkiQWqB121K/jhf5m68qMnx/JR0TgbLkR19y9cPHz+L/eUD4s\nBn/JIFi/URcZzxzef7mVa500PuEiikc1nmUUjsZD1ffsQ9mH2wDJuAPHWk79nXXVz6ctxs+F/wMk\n5wLklQdv1coH6QMK2FCVmbi+LR19tp3WHmKUwI9F9Z10VHuMGKpKM1BXLgi6LbLeQ5DKg5T8WCGF\nCkdEfZ0BUWyRLO/DH4fft7oyl+vsFZwy3E9u2z5NmXQCfiAUqLpoN8L5lbzDmsx+Ml6QDSVjqt8E\n9ZA10Edp1uoA7TUDyXkG/128qP1n+nPye7fn6rfTjL438jXG2znZUHeu6yZBoXrwuC0uVc8zD/Rr\nA34pkN8JOMOijHkeZbPkQLZ7fVN7tzhckIdPxCGWiYLCW6JaFwv2HGpvH4TgU9DSDrxKUdDCT8+U\ngU4u8FEofxWZe5t/5ed0/c+If6PGeh5FmSi7JjsZVEGTeaq3wx53OFA9zczOfnBgs47a5yTUj2sF\n1Jw2NEeqoNei8AjOqfdilrWrliy2u4BXzbslv3LxBCWwAs8WvyTb33qsulSqqKuh2LUBYZ4zFtpp\nDWTiQ1+ooR24UC66qmu3jlIMSI+NHfh0NvRsVNwTSq32GqcHIM504CJ5cqI59u2W0E+197XWVUD6\nvX5dfVVMaazi2F4cPqhWXHMgB3dkE3RwGbXTyUx7mWSCOZ5EjYpnrhl7rMoK9Tp4kayPf43r/ll8\nxJJ9diSu+hVANvpwyIzb6s/tpJDduci+6gEfUx8OrWAvmM2iuLUNZ9pKtpynHTGQ854j/9tKaW0v\n59SuYfvT8dyNfnpoZma9n2j8j2viTXrrPSn27q4JdRY8z4wn8gF7Zc31JTxUEUjFdkAonky07j9/\nKp6TtU1df1ZWP99Wt5u7fMm3FMsNbDkbWwIezjH7xW5D13o9Lj/U7sER9brWeEO9KL2QLabyqsv4\nBH5OTkfMvvBXzMxs/lh9vWjoGa5/obG9ltfpi+M8fuhUiOMdOL8e4yebKMWWUd+sz+AB8tjLLFE9\nQjUpOgBlhTJYEcTh6IhnF+IB3RH73lsoOsKTt56FAwYFxdYY3rqU5vYGe5vOUO9voVDm9oTEGazp\n852bst1h9M/nHQqRMmEJS1jCEpawhCUsYQlLWMISlrCEJSyvoLxapAyZXbesiH2a7JJHFNXhbNf0\nMefhYoo+t4hMRQuKnFXGinh1T8RvksjofN8EFZVMXpHvrKco7HiqCFhUSTabtPX7GJmWIRGxa3C4\n9JqKtEdQObp48AMzM8vXlNU7aShCd/pIkcLX4WVpc6h3ElekLtZTe7pEf3dTZAPXFEGDwNwSoA0C\nvpE85ycXXnBmWt/bIgM+SAfnuaVKsjpRJK6xUv9uFlNW2VG0rzJV1mJBnZIJ1Wm+0rW3+V7HUx1v\nVGH05+y4O4T3Iqnv/epf+mv6vKs+3rj1lpmZ1UC4/GH/d9QHj5Vdaj5TBP6qxU+RnchzTnilvvY9\ntW1vQ1FJL6I+mIJ0KcKTMWYsIxAYrQYB27iitbGa2re1prHPwVO0gEMmAf9QlcxlFpTCDCWtSqCS\nFKiaGKgHFAYynNmccF9/W5+PyLDORoESDraS1eACkjJnRxH6fAsUA1lAklHmwmLfZbxqmyXaBdoK\nFINxLn+1QplhSDafuGw68AQgVUYoJ6TJfCZT8LSU1f+FFf1RUrvjZOWMcYiSDZwv4C1JKhoeD2x+\nW99LdFX/ZZTzmTNdN0l29SplBjeMO1NdSxFFsCegcZYl9UWZbP/mTfmHeMCrg5LKYUP+YtTR3xbK\nBytHdT/tKPKdrXJ9eHJqMPJv3ZFNZNtqU72282fqEYOfZ8754BWIt4TJNqacbY/FqFcGvghsKg+X\nlJXgQpgwRgsUXIZkhzgmvGyrvTPUleZwMPhxrlOjv0AdeBFlRH783d9WvU/kL8+/pfdbvvzLwfvK\nYHz2dWVxsvlgrNXe4anm+oMfwjUAJ9dXvv4fmJnZ+leU8Tz+H/43MzNrDuT/3v9TnY++fF8Ilc/9\nBfX7gz9WJvXFWPWoA1H8qPvp+KkmKFfMzkAzkK1chw9jyZy5VlK/H2wqq7h2Q/WNgmCMPtb3R5wD\n98/lU6sr+dRyTdmox+8fmpnZzZTQB8WEfOTZnnzDa6hNtZ6LB2pynrXXvyikYbKJukZSv7m9pUzp\ni0uhLl881VqXJTPZJXNY9eCziID2VNfa5WNlQO26rnvtuha//kON0RiER7aouTQfkn3ua74PiiBc\n+qxtU30vCxprqwraYa75e36mxewYjqgsa+dGTVmvJXwaUQd1EtXO8nBRpXNk0/gkC8+adw7CEze+\nIBs1ZA9QycM5MFF7lvlPt8XpzkG9gcxx4Fi5jlLXx491Rv/+W++YmdltEEHTvObGHM8dgXOlXlH7\n+qA5pmOhs6Zz7RVWpvF1A+WHgWwq54B+bfI79iKNkeoXR4lxntL1uu5LRNDKiVjUw9/P4PaJq9+y\nrAMllDFcUBDJKUptcThwUJgowknjgCiNwdt32dBcyq2p3gH6It3XeK9QJ/GdrmUSKHvhvwIVoeSM\nfV1CfdxBXSMZZQ0AyTCEF2MKx151BXcgNDrTAG4KUsVx1LYK6h1R0LNdlBy7KxTLXoCQBGV21VJM\naMwXCfVdDFW4DIphN1gfxsca4ykbuwAxE6joreZk1deEWssv4RY7l587ONF1IyBCEnH2CmnNkTnr\nQw+OmgjogD7wszGKMLPnh2Zmlq3o/ttbcgpRUGtR+PQKCbgSmctL0Amdc9lA2fT6sqFxuXiu/nQ2\nUOi6LVvIBKgyFNoKt5RhL+V1/w9+Kj//2luaU7s11efySAjMDgj4KRnwNnPKn2nSF7uykxnr86Sr\n+vVRQ7SFrpeBd2s1fzk3xkvXduDqScJ5FkehJo4q4QqkzuGP5BsPj7U/qOxv21XLKiMbXu6A9Jux\nD0Qd7t2S1ElnWfnTFnxvLlwxmXXtQfLsw6yssX5xCQLuoWwqtae55ZVRzUPNaIi/dgWIs5indWP8\nfa3dpyAnGyhBNsa670/hcysVtebl35UtrL2lMezBq9ceye9mqqjLPZJtjAPULMqCKZQknYXGwM/K\nVrKg1xbsWUbbIPH4fbcF2imqMYqABIqk1O5hDe7GjOZCBP9ZhnOynVF9Sln9rslCGAcZczzkhMC5\n/PasjL8va284zGg8lln1ewsOr3gVNSl4RVLst0fsm4cogF617LwrW4vnUBu9UD3O3/+OmZnd+ddU\n31VD13+Q1NzJujwAgFRceuonp6rfD3lOiXrqr+JAdraCX3Va1/oRIFzNzNYzdes1Rparo16GUuwS\nTqs0SLzToebbqo0aHvulGRx647H6ZJ09/SNTXe+xlrg92Wqkq+sNffm7RQ4+S5c2ZFErqsPpd4F/\nrGheJxmTkaO2LROqdxreuzEI9FgUv9gGrZvnmQmU0ySt/WZkBa/mY9n+j16oXuldeJro2xYIxdII\nZP1t2cxsJBu/PJLtbWZUr/kLtXPgaM7MLFRfCktYwhKWsIQlLGEJS1jCEpawhCUsYfn/XXmlSJkc\nWbUo2fJBRFHb4ljVOl4oEhXZAtXxHDZ0Im97GUWhHzxROHj5RGfUhgJP2LxOdLagaGJmW5GrOOey\nTzgHHSUzMyc7ma8r0ndCVmrxA0W6btTRHQeB0ugpwrYXUWTudKTI+tlYHATuUNHfPZjY45ugL8gY\ntUu6Thkuim0y/DP4TPpRfR61GP0Toz2K4Pmw0DcnnI+cqB+SsFnPumpPYv01O/NU9zocKwMUR/IF\nRfny++rrC87NXn6giGz+XWWLz57+xMzMhpzhPPiW+vpxTVHIbEV9mOOs/fZnlUl8q60x/cbFvzAz\ns97k0ymmpFDW8UyR3WQKdAJs8rGU+ihQsPHTZN9Qr1gvyUZijNm0jFLPUlHYcURjvOaCkBnpe/ky\nHDWgCFJ1MotJfV7gPHQOhRwP9aQZyJ6Io2juHATJYgYSxDhvDgqKo6qW5DpTlAYWIHySpixOcgXL\newlWf9SUymS4FwNdNwqXy2ykLJ1blo2UPL2fy6H4wPnKJQQrHtmoMlHlLGoeUzhhsgtFd0ugNtK5\nHvcLFA7IeIMamcE1s0JtJOdrTnmw6JMItxGZ8UgcVArXi0ReRvD/ZcUBLeC4amMw3+u3b+p9xj5Z\n4uz+TPN/Otbfvbuar/tVZZ1GcRBvNc2N0abGbjAnUo/ijTtSxL8LB8zFU82J503VJ7tGzLsD0iWp\nMZvBNZIoBbYD94gPLxBKVB7Zn1SgTFVXO0gs2xxkEAlNc1HgMurjpdTJA/g5PNBHZTLDJbJlKTgd\nDDWRHhmA1JE+3yLj6vXUD5sbyuxaZd/MzBYgENd2hJRptfV6im2VDD6ojq63j7JO+vS/MzOz+7/4\nF8zM7OZE4/Dwlr43fC7bOONc+M5f+4uq/zVd93lAgHTF4gTnwGlHocQ5d19+/Mk3yda9LbRf1IG7\nbAEnA/xMFfpxdSRf9vxY/T549g3Vb+frZmbmvo/Pi+j7i11lG7cCdRiQR3uoHFw+/dDyJS1ezgTk\ny5ws+Uq2u5nT2MVQNplwptxMbQmyNL2J6hqDH6HwtjJx61usgVw/UL7JpTgHXULpqg/3CGpC1XSQ\nldLc8jeFFsgW5V8boNUuWbNPJvKzs3u63taO2r4OJ1X3EITGXPWMgkxZjfSXKWKJFGgDkCdJUGUZ\nFB08smJxOAgiS91/GvRf4GCvWPI+3GpwC2RQnlmgaFZATWoVl60cn2rNLW+rXX2yhAHCMgeKIAoX\nTRwepLduimOilIKTAU6aAlm/XARkZUbtjrggbsjGbRV03fal6tEFNWcm5OBoovW+QkY1Etgw6OTp\nGRwFQ+0ldiKg3ODr66KMESuo3SOUIa95Gu+LJQo1cfZooNCSFcZ3ILvMTWK2LEJgQBZ7jhJkAn84\nOEdJDITCIo3CS5Rrz8m2s6aPWUMd1DxiS1R44HWbXcK3pqpazmOfNyHLDWfBBQjJevJl312ldLuo\nG53Kb2TgZlle055kPIFbpqD7zUFJxeDgWrK/m7vKAHuZgMcOnogqaKOMXu+Q1Z5M1S/tlvq+FNfa\nnoebx0Xx8U5R/nUBKnUKH9ESFaIhyBoXhbQkaImhw/67B4p4qPpFBprb/Zb8+siTzeRzoN92dD83\nCoIwil89Zq0v6f7ZbfFfRS913Sh70STo5mpOPiIHusGbM56gsDJF6sXeogTaOKDVuwRtnEX9pM+e\npTB6Ob7bb71tUVf22APcWwFpOlthu2O9fvBce+DusfopsZGzq5Yd+OCgP7JhV9e6eVMIxsyaxi7x\njLW5q2tXV7Kp+LrakElpXlZRQ2s8F9IliXqRA+djBgRhNKYxyKFitHtdkyC1p+v/4AV8dKcaw/lI\nYzKKae+SZ//17l/WevEme6hba/BvPNcYfICSbWQsWzxrqc+uwac2PUJhBkXKiMfzAYjp2RybqbKZ\nack/DVBEXOW1753N1O50QnulPIpsUWxqHlc/1Hn+OGE/HD8CYbKr62cueMabyWekQdx7BfVbvSPU\nVhSux2IX9FcXBdwNfS/OI7OTU/2WMVRYUTsttoWGuGq5BOFaAnXXrsg3HvxUz5LVB3p/HU7MLdrZ\nOoDPzw18p9adKSSUBdBil572GAtPnEIb6/r9CCWxZPylTfvrVVuePzUnrXlQB2lyBkJtjXmaB306\nAjFTfU9cMGtjzfd+A25H1PCuowjZ/VhtefZU/jO/Jb+WmcMVhr/Z49kny9o+Zy139tXGzAv5z0PG\nroIqXBr0aCavNXVzqr8XR7Kp7evaC41A4tTzstkpfioD2mhtF6R6SbbdaKEOV4YHdCobm8DnNkaZ\n7Lbp94/GKGmxR8nrEdqaz/V+FSTSzyohUiYsYQlLWMISlrCEJSxhCUtYwhKWsITlFZRXipTxY4oY\nefBOrFCYuODscPaAjMFcEbdzuBESeUXcWuh+56KKLh57isK6I2WvFkSrT4gq7txQ9HBje9/MzPJk\nMsYZRdIHbb12T1GkgfPBv1SU+3igek5fKMQeJYu1fFtZrzSZ9kpGkbSeq2hk5I7qGUR741NF9BYZ\nRdgyEYXSvLJe91dkFjie6E9RS8np8yyRxzSZ2w0idfWxrlOs6f0XE0UQkyPHknP4dzKKvEfh8Vmi\nOLO39oba5pMJfFvZ7Wu39Xd8qmt+6fOgfEjPjz/W2DRbigL+wXe/bWZmXxj867puVp+/96+IK6GQ\n1u/+zx/8E7tK6Y04y8kZ9cSQjB8ZV46W2pyzqV5GneZOlCFwOEu68mVbtQxqJGRiffh4pmRq4z4K\nWZCsJDKy0WkahS4ywTnOBToJfT9d5Bw32T6STjaNE1lfqd7JAVmzYnCem8wzSJJlluuPdb0qSgpO\nFYROPcn7ZL8mam+TTKx3Ad9SVOOcjBJ3hVHdgZcohkxUjjOyLmiSOefaFxmUFDz6vRdk/XQdjyxe\nLMV5ftptZDUTGdV/g/73s/BueJxXJRruk4FeohAxj6NItGCArlAiK82ngO9gztn7eUrXiIEUGc1V\n5zFnZT/+sbiiOpcoBoBCWoLumU6VCchENTZjOADWCyDcbktlqDTR3GIILBUnIu5pPo44Lx5HESaG\nEoo7JwMAZ43LXInDLh8rwVofyfBXrxPYVoAl8sgsLzk7HyDsXOZ8ZAaHCkif3iJAQWksVoHK07rm\nTGIJrxEZ7iVIwK2aPi/dUhYuQcb6+ANlY27cE7JotSK7d0/f88/Uvt/9e//QzMye/85/ZWZm3/rn\n/9jMzO5fF0ojtVB97tbVr/t1cdYMNzRnf/mvfs3MzN7VTeyv/kd/18zMfv/v/5ZdpSRXypTs75L1\nvy1EzACUXfPJn5qZ2TYqIC2SSKdnal+/K3sJuGP2dlTf4kT2dAby852ifMO1EwjgAAAgAElEQVTh\nmvojeqH+hIbL8k3mzgsUEzKyz3g5azkfzq9DFLVALoyO5H+7AylROXCzFEp6fxO+sjFZ5otT1WkB\nGmvrrtYozwGJ90yZ0XFRbVhjrZku1TfQNlgfXociaiJpuLeug/Qo1zT3pn0QNaj5DG6gonRP3wus\ntTlDHQQ0VT5AnwHyWpH9WoE4RCjBFnAZlJaqaB5+pgrcWB7qfqsOfgUURdI+nRpGCg6tnXUN1ngC\nSneqbNv+vmx1MFD/NieaI2s1vR9xpfKRisjvTZmzVfjw3LS+f/seXDIT+YI0aLN8lXEHCRVwKdTr\noA9icAPQH3NUURaTl1u5ZDxmUdAN7hooZFREpg1lYJ+9L1TXt4bKWkbIhEdbun6fzcdmVu/3D4VY\nem6qp3epzxeMf/uY8/Vx7TlywPkuJy0rZmULfo+1La0+WYIYc2nLMsca02IOgIZ1I9rfBJw0EZSn\n3BlcXawVHdBSsZHqmIbnIZ1GQbIW7AX0Paelts+2r46AMDMbu6wrS7gJc7LB7rnq2TqUEuUcjpLC\nl+XPvKF+VyypPkkyzsMmqDJQR85KY5DaAMm4pXUkBU+E19b60h3ofgXURsoZUAH4nyVruocS2ykq\nJC5cK4C9DCCKxVqHZmY2aqCY6aletwtCdwSIzd1ryozPNuSDhnD3zFDoahyivgKqYTxij5RRf2/l\n4EMC2dJ7qvtdgt7IpEEkMgfXiiA7b6ofon3dp4da1xwOmjIqUk0PhGOgVlh+qXbiz6c2Zi4sxmpP\nF+RjOq3v767DQfmrXzEzs7PncE5Urm4nM5AuCVdjsAABXU7KT1yHN7Ib1XypJUBfwduz56pvExW1\npQ1ybgZCeQ7/ZRoUw3yuuVDuo5JaQ4mqCacfyBAHZOXwEj6dHV3v4H8UwuP5gz8yM7M7XxZq9XlP\nKk/xPdmwDz/SeVOcZjGQ9ilQFcdH+huNaq9w/xz+ozroYbgrT3O6zkZP7TxaguoaaM+QBBkaZc/W\nL+p32Tr8ISAz99jfukPdx6lobP24eOjyTbhtQBo9A92VBEmahK/K2eC5AbnRBZw0cZ4jlkvmImqr\nC55ZLanrLPGHy09HT2U7GfmkJUpfmVsa14vHWueff0/jmjOtN3X7gpmZebf3VZ+meJgaKIWuipoT\nyaLGK/lD1XO4fmhmZtM+XDg8OGVpn5nZm17M3p86ljgBOZcDnTnU2pfsqO9K6xqj04e6ZnxX1+gt\nQJnuy6Y9EGiGQuOMtTo9BdmCf68zBoOS/NMCmKyb033qLbjEctpXjuaaj0mUFhPP9QzisK8bBOpG\ncPulPPbFcEDGiSPscIqiCXq/MZKNbKOAFlvputUnus/sFvviJvxuRZ4bmHPFNzSnb41A+KT0/cxU\nfuyioz7Pacr8zBIiZcISlrCEJSxhCUtYwhKWsIQlLGEJS1heQXmlSJl2ThGqyTjgzVC0dgVK4CSv\niNWso4hUOqNo4Rg2+toIpElNEbDi179oZmavf0ncAw5M5H/8PWVAD97nHDSM4amxWJbHJiRMNI8a\nB92SmumcobuliNmioIxpJI+KR1wRsRJM615NEUAHNQ8XzooomdglCgrOnqKiO5znG7fhBVnoOqkV\nygk5zn2SKY8M4abpkwkgY1sh+uusKxLnkSn/3EiRwkbOt+xI0f82ahLFuKJ3q5KilGcBMuQUxZVH\nqtORrz6bzxQtbQJgcE/VB8uqwn7FtH7X/X1FqE++903VcUtZsvgNtWFS/vPP0/2/y942DNywkzso\nmbhjjWkEThnLK7qbg1fEyspMZEFwzJKcueXc87hANqZPloqIe6wA708CJQEyl96K6/b1t2+K9G+j\nDjLnXHuxouu0QWcs4KRZkk2ak6WJgYpIkCWcgbrKTuGWcfWaRLlNyCxniRb3yai4Q/2dn5ERgL8i\nndR1JqA+UnPZgofCT3LAGVnY/yPlgHuA85MoY0xQOvOzMJZPZWPrGfXLiM+TLsidAmgwlMem1CeL\nIkYC9a4eqJM4meZYjPOZI7hpcp+CxZ7Ma4TIdGQOj8RU1/CT8N6Q+XOIhFd3NSdSBebvgutMNDZP\nX2h+1Wucfff1vVOy9IUVqCjO8q9xbjs9lt+YM089U5Y5g01MOdMaULmsyJIUTO8vUig3xJnvZf1u\nnQxofAAqigxnlMzvnEPy8wzs+Cu1Zwh6yT/WnO325Dc3S/pe+6Zsah/UXCylLNqip7nfPpdfO+7o\ndQYurI07Om8+G6tff/iheKfOn+i6X7yl8+oleDX2amrPTkL99Rc3NLcj/5fU7H7vn36D/lA26iu3\nf87MzP7Zkz8xM7MHv/wbZmb29V//t+xvm9ngIyBDVyyDueo/IWPtDfT7KOOShq8km5a9VFGNyQBN\nck/l/+N50IRkgjzmypDz5O2HWk8KzPkxPE35Pn66qgzQEGWEwxicZ6WYdQyVmxpcWfBAJBmDwZnG\n7l5Z/AurJZxQFfXpekZ+8nFM1w7O0Hu0PfpM87zV1+vqTPduJfU9B8ReOqk2VW+oHm++qbVykAKl\n0FQ9njzUmE/7mgul63AZbOyrHbS9fUy22ZVNboBSvQT5uCLr7WTlXwAWWpTMaqCike7gF3soIoAW\njftAbVAUa5Idm4xeKq9cpbRQCYnBO5cCNXYJ/8juFlwQcHRlB+qPrbzm7BMykNGi/FkGDplVSf3Z\nI4tfgCMmVYafiL1ECjjVoq/3i2QRl0u974E4mgUZ9aLGO/GJXp+ZH8mbS8a0hH+vOmTU87rv/V/+\nBb3fkE3fhVfrcVN7LKeguRpwtK1tg/o71z4gzTrnsJ5t5pUtXNFvgXpfvNu14g3V/XSMjQV8GwF/\nURd0DYjlEbwODqic5Rj+OFBTETha4uQUuylsYwqaAPSOsyVUQq8rZMnFtz80M7P29+Vvvv1AiJav\nnv2afZoShU8pBcdIZgyPQ4xM7SP14cG5bGl9oPcbIBRTcMes4ANJwwM3QTVphH+2gca6j8LMYKy1\nctzUejIAJZsuaWymLc35CeuAA/9dLKb73oRrwS+ClgZ5k+xqPDZvy7Y3m7IF7+CRfg9ys0dmu8/Y\nNk6EwLkEDZsB0VIH3VG7rfvE43ACcR2D0yflqR0LOG+igbImPBsz1FIes8/fY7wXSfZUQ9S5ukJ/\n+W1df0o92+wxClmQ5ma2srEVb8EnyH777EAoleWHspPOtvqrVtXnFXi5EvOro3crPSHMI1m1IZWT\nv63zTJPUpT9Zc8Zws4wHrPF3NRYjuAoT8GbOmvBjvKs6QQNnbsB98o76vA6nyIK16xKU/5xnqyV7\nhosfoRjo6bpbSa3pP3f9dTMzG7aEqKyB6uqesk/u6HoVkOYt9nmXEaGYPleWzbZ2mZusfTGQiBHm\neHeouZ8ANZUA3fwUBd5AvXMXFPMMdcCNjvqpBQpj5cEHh/ItorHWAaHUKKufty40F5eubHVRAvHH\n3mdmer4oX3KKYg3kt+mCrSWoL7hkMsxBpwNar3R11VAzs1VeviTytubMO6AovA/0DPsx/E4RX/18\n/FgqWv5TfCIPCJkAHX4AwvFrPAtu6nsLlNbyIF3X2DplnaNP6uKN8pYYtc1bl+0Uyrpn/1x/u6ax\nWvmyPT8vf9OEL2kVkb+dsmYPj+GKelv+yS+AwCnq990Lzbs0z555TgVcoGZ3HZ6dQUF9H50LPZSD\nA+xwoTYm2BtMiQvEQSD3duTvolnGqqB2nQz0XL0b0fWzZdUzx7OxRXnGKSsu8cF9ta/0WHO5wJq4\nfKj++BiVuWIWjjTQzuspXecr/+HfMDOztYZQtNXJnx92CZEyYQlLWMISlrCEJSxhCUtYwhKWsIQl\nLK+gvFKkDEfpP8kGTjkDGxxFKxekbtEdki3iGF9irFjShMjUwQMi+kNF/TxS0J/9eXEQ7O2/bWZm\n/oEibQNUTdw556lhOHe6uk5joIhYvKSIWhzFiRRZyPmCiOGZInRn8LNsFRUpzG/Wqb8i/JU0CjMo\n/ERN1+8RFU8kFWlziHZGW4qwDWGDXyfjP5kqkl+AZdr1lJHxyH4uiVBmCspIXXIePDuYWItsTHGu\ne49cFGR+ojqmuj80vYHKUT5g6VYm8Iy0fLQNE/9I9/zC5zQ2G8VfUhsu1aab99Tmg6EypKcfC0FT\nPPt0SJnGY9nANKF6XttT1Hbpco5wDzURMnaNicYshepGpApjN9karw9jt6MI9CyiKTAnQ+3M9f0o\nZ0iTEc7kRtV/5YLal9oQ8qTyiWIEqkNV1SsNR82or0xElEzlCqTKgvP1xddle7XavurRV/ZovFD9\n1jfITtG+O9jWcUP9UiWC367rdzlTvWJT2VSWdoyytIOsmcHpMonqbz6a5HMy9OngPCjn8GeKPlfI\n7EYSul6OTHChIrvxU/pdMjgLjFJDHAEOL0YGiQx3lMx4DNWRnevqH291dTuJOfBSkG32sdkkkfQZ\n88pf6p6jlrIl2Wuaz0ven8Bvkc8pwp4kwp4lAh/wQ8Q6GrsO57b7l/IjpQWKXXBj+QkUB8gsuina\njKpPkoyxl4A7C+WXZUZ9ECB+UtRrhQrSAH9pQ9IdXZRxON+cILs+QoUiElW9DVt2qNdpl3Z8ID8S\nQZXo+g4KB2QwS2/CPfN9ZSQvyarFZ+rfDFn08qbqH6G9lfsoTQxU78/9ijIP1RK8Spuy/dyufjd4\nquzg/kK2dN/RXCrDav/xN4Sk+d+/8Xv2t5e/bQf/tThprlpuJoUu6cLt9Rp+tNM51N9nIFd8rSOZ\njHwXU8lWc9nN8z/VOuLBk/T2Z8R9c+2+EFLLhDJBd+4LXdKZoJpVVT/14QFIFbSOLLPqh+aqbc2D\ngHtKYzMgs7i1Kb+0aGssxg5+rYsSC8oAF8OAX0j+I7UCYYGCSAe+iHlHn/tR+Y2bd8T9cpu/z2ay\niXibM/dbnLn/sfrGP1EGNdLSXMti2wkQg2VstPlIa+ocnolNOFlSqMJFsPVeQu1wUZhZkQ1zUbFz\ne6rHGgi92kj1n7YDFSmNxSCveqSSKPzU9PeqxYGvIk09Clsa2xScOamG3nfbqBOhxDAcg/bA1hNV\nFCo8jWcGTp58oNa3RO2PvQpT1nJwmvkrSH2yIAjJ5GYy8nEeCmkBlLI3e6lENhvHLI4KYgyFiF5O\n9XDZ+2TuwRN1/bNmZpas6PMo6lfbjmw5BgfaLvV+tFS71/el5tGbaF0OVKSG8OElfPVXMZuwNIiM\nQNFvnladcygrzuERcjh7n0FFydi/jFD2i8NBM4CHbAYx3MqDzw3urvO2XheSsuHzR0ID7Ra19tz5\nApwo2Nbaaxpj++7/YVcpJbLuASfCqo+aURzOrZhsu0Z9Jox9ChvtwbGVA3Fd2kedrq++n2Q1J84H\nIB7P5XcXoElrGZRY3pQP2N4VuqFxoHaO+J2z0FiPyPr3IsrUJlDY9Cfw5J2xnjR1n6On4s6Knmqs\nI2kQ3XV4kZLym6dl7Q1yn4ULCDRsFh66tZxe+z0cKGiGAipaHdRWKnmN+8broBTYY+QLuk/3BLQ2\n++Y+aK3BhezBGcg3rUryu7k9res7KPvMAxSdmTnllKWLslWHPcoKlHWgSHN5KB/Za+j62RFzulS3\nq5bJhmx2nIDLEXXM0iZ8Nkn4LUC4nJGlz6/Lv5RAGw1bIDBQ73R8rRXbjtbWOWOYSQpiUZnt63Wc\nNR50cGUD9BZ+tL8GP+dj1W/I3uP+12Vb6ZFQnyMQLFG4x1pFXWeW0n239HV78n2UwjaYu+x3t/u6\n3wrlQ5ZMW4KM7MzwZ6xXrq/vJQI07lx7gEQPRMgAbrUb6pccCPj0QO3oYGstnk+KaT0zjeBpmsQ0\npvkCXFw43vhKr/cW8CGl4WOC83HND5QsVZ88e7NOSX5/xD67+imV3KYt2dzxAyk15nw9s45Ba3VA\nWS/gR4pnNe6OfmYe4xuBL+rRi0Ndp6a5MGa9KKHGl+cUxog9x9b1vU/qcvNXNqz3j+r20++Ip2bt\ndaGlpiDRL440Zm+kUCdK8gwG19cgKRsdu3AmluFn6wX7WfVRgCDpszb2UGzNcCrD91kbh6xh6xrb\nWpEx5PRCCfXTDgKUt1CW8nNw1ARckew96j+v+kxmmsenC9a64Fmyqz1Nsi1/GtvR/W7dFHLQmejz\nNqqmU/iSBs9Ujxcj8SxdgoC+LMq/bfzTPzAzs9S+xuKDY/nZr773rv1/lRApE5awhCUsYQlLWMIS\nlrCEJSxhCUtYwvIKyitFykTHiiqmUwr7teGXKKUVK2pOUcSpkVFukFEhy5+L6fX2mqKaD5+TOfkT\nZQxm8HNUC8qEtPd1fs/xiLR1yFTcUUTu4lz18ZsoScQCtnxQF6BIhka0NKmIut/hHD4RvcGlorR1\nT+9PImrfgrNoRZSAZjCAR8i29WHf98vKdMQ6ihj6pn5JkClKcGByQn1GCbKRnJcck6nfhY1/ub1l\nt+Es6cO7Ya76puMretdsKroXmSgKuAV/xWlC5+kSTUUNczDix6aHZmb2/EJZ48lUUcknh+IYKNxR\n3W68rUycva+IdXzn00WSm8eKzD/rKSLtusrQtXqK5L8+VrTR7XG+uUXmGMWHWEfRSqdCNDSqsY8k\n1I5SwPWSV1/XligGLDUGlYKyNxfYynlf9amQST2ByTuFwsOaryxZo6/3fSLsy66+PyNa7FQVgR82\nDs3MrP1C9ZxOUc56obOjl8dCGB0/1d8ciKfWE9l4LqF2FpMBqkL1LxCx7ziKXtdp94pz3QPOxKZT\n2NhY9/XyKEukdF0bKlKfLGsuprLqjyFnoCOcjxx2hNxJ5VCvglMhPlY73ZTum08FCCSQNHPdt1oE\nuQUfQAak0VVKgDSJMN/9NOdwTfM6ybniQUsZvGUS1NNQ34+S5c9yPnmZg9ugIxtIlYV4mHfJOqN+\ndi2C/hG8Dg7nqv0lqhhkKQYgI/woyjFpsmjwa6R9zsTCIZMMlFI4wz7DD4xANxgZvlQSvqMM2W/O\naffIHOdgw0+DXvBQj0ihMuH68idjVNouGyi/JJVViZNp3Krvm5lZ5TaZgXPQEGXUlVKa2+sJZSC8\nDdnGhYsfO9NcTXpwsDSViZ2R+QzQCft39fu7Rc2h7S5ZoqH6owBHwGP6oRb/dJwykbzaUziVbc0H\naqcdyD/fARnV7Muvj15ors9v6r43SCjP4VeyMqpft5V5n6fUPy9QKUkWlJE97sFhw3qSzan/DrDL\n194Vgmf/9ldt+Cea925D34GyyXJ7Qpjc2gXJd6n5f/6B+qia17yc5pW1SYGOSsb0/XXQCMkRSmAI\nFBTKsvX7N1FhiGjMmh8rK+TzRecA5Mqp1prUwYjPNaYRuGOiQ60X+ZT8oY9SzQh/OgVllk8oG5WH\nm2QbVNTlErQZCoyTAX7MlX9vjWS79QU8PeXsn2nvnD514AxbJl5yrVyl9C8Ozczs9ED9+gacYRmy\n/hFsuAyHT8C95aJal66r/hF4OtbhbhujapUGKTmLosTGcujDDZQC9Wf41TkZ5SwqUj7r9gK/XoiD\nhoN/w8wsW3UtggJEOg9ClHPyKWQBfVc+yifb6YJeqUdks9dv6vsvTjS3KzH5uPxQPrK2UDvGoJiz\nZK6nJ2Q1J+xFSpuWigfIF92jiHJKKg7n1hg0Vll/8xN4g1BkYemyEX00jMqWCmT3+xFdrzGFByem\n+TxbwFWwq3n62S+jkolqXH0TFaCqss/239uVis91Z6yhM1R/lkDqHNBf8aL6atjT/m1zW33Y91EJ\nYq+y2oezJPDna9rf7YFWDhCXdq6+bYNiGwICm42UeT1mrDIlfTBmbzG5gDcipf6rBBwLILezA9l6\n84GUdpxn8otJeIXKn1O/RdLyETM42TY3BJMoVoWqCtadzTX5nHJGtv/x8UMzM3M76ocFsk8vfqh1\n4Y03dZ1JFMQnPE5vrGndtZrWqbSrz1cJrQ9LMvRl0GyG+mkCFES8qvWkNFR/mZklrGIz9vd+EbTI\nttaxjXXZQ7YnH3qEKlTnTAijG87VpXUqJdbkZ/CRgYxZpnWPCX4uCkLk8hHqlF/TWpBCkfXQlR8+\nOVYf3L+3b2Zmp6iyDRP6/Qqes0VO+8T0HH+Fnz15CuJkpbFNnIA2AqW/uaOxfgNOxclS9Y0U2bfH\nZKuxE/VJda4+y6F4W8jJBmNRqawOqmpPvojKEYhxv6uxHqRAXPqsR1PN2WESxRz2ct2a/u64IBRR\nC60i1zcw+JQageKW2geFjg1Qzkyfy8bLqODNUb6ETs4SBfnP8YpTGaCls6CvF/giLwv/0FI22DrT\n9ZwF3G1dvX/VMjxXfzYeHJqZ2ZHHaQx8Vi6iv+ugxm7/sp53XrxQPU5/T/uFKOivzELPY8Oxxi37\nRHOuB7dYty1fUq2pv5/H+5/UZe1aze7++/+uNX7nf9U970rBqXwqG/z9B6rrXp99FOqcza7meX5H\nNrh+iYLUWHX0UT2e8HxaroKqv62+PjhSHXZBwc4j+PlL2VTRVOcmirKV2yAtf6p93ApEZKalejTY\n326hcPscdb6lK3+T59nQGrLNeVRjdwEaqdn7yMzM3mvovttrKHLt4nDXtN/L1OAb4mRLt6U5dj3g\nKYLD8afvf1fXacivH8MP+rNKiJQJS1jCEpawhCUsYQlLWMISlrCEJSxheQXllSJlSosgK6SI25ar\n6G0LxYhMRJGn6UQRsRLcLfOuIk6ztCJs5S8qgv+Fd97R9Y6IVMEi3SS7lUzC83FG5pLMSjmuCNh2\nXWohHx4QhXZgW4ffIldUZmZfwVdLnSo62YTFOddQpC2WVNR1klRErg4yp++iZT9SRNEj29dDiWfO\n+cnRAhUUWJ2DTL+TRRkHdZbILmdee+LMibylSKTXUv0PR0S5G1mbFohC5onYw0VSvaG67rR1JvUQ\nBMqcCLw/Ut9E56CAyArFQBtcPFWUcv0a6IPPqE13f1ns4fduKLp52oLzJPHp2Mm3P6ssSD0nZa3t\nLUXSf/rPUVJB2eDZh4dmZtYlu516g6wLWatEX30fi6MmRDYmGgUtAT9HAZ6Ls0v1/eu3dd57ntfv\nupzRv3FLUeQPn31gZmYkFuykxT8r9X0spjHrpVBBSsimFgPV30OxYIGN7l9X1qwKyuLevrJQPmdk\nq3C/2IaizTtkyNunzAWUvmZZ2eom2cQVnC3DJegCzs7aTNdbwm5fB+mzTb2aIFw8X68LFdnqt76n\njPhmHu4XlIaGIHEc4r1xMuE2RaFmLpstXlOm5eJC45VNwtA+Vj+MaMdVSsqVzbnwDjlxssJkL1w4\nZmIox2SjsqFZVvfKdkA2oLjlwJ7e8piPJNsXcLJEgswt2ehSWt+fcI56GaiEREEhrTSXMszbAQiZ\nOJnfCfMcEvlPFBXS8PrMOaubZWyWtGMZZMMcZJzg81knu98js5dY6vvdHAicJUoF48D/yaElUL6y\nAnxDcBM0p7QbHouYp/dPn3I+nlWkQQbWJaMJCMOyZGnm8BAlsKkImeYcn9flxqzaRq0Otv37n9f4\n3FmTj/qMvWdmZtv39/WD37YrlfYjIXQSIHfaTVW87Wou7mwqS7lBvz8ayX7iQ9nLdFe2vlOVX9+4\nqX6LMe6jChxhcD80h3AZxbkP/r6LaR8O5CPaD1GOczybNjRWpy+U8ZySyesZHB07qPmArmz2uGZU\na6cD30O6JlsrgmSJleQnt1lTU/AsuF2Qgg9/amZmz0At9X6ovt98D26RCVnpicYwCW+EB2dCdVdj\nE8e/DU6FvvIiIDmSspk6SLo11rxWV/c7QyVprmXC5ij2ZODoqhR0vn01QIWkBzrukvahZjRqoh7Y\nVFYvN315Zv4qJVmifyJw84ByaqFEFkUpKyC+W3H+PYKqoJdFvQmVpaUbnL9Xu92Jxi0Nksdx9bt4\nlrmE7UQzGEmgNJNBpWmCUhhzZ47vsMJLhZncKGGIYVmuDM8Wci+JjGz19EDtrOPzKnH2KGnZX66u\nvc1uV+2sUI8E96vugS5mr1IFiTNGkSOy0vWT5n6Cnqyv5OsXoARycH45adZG+M2WoDxjANIKINzm\nIE62CmrDsKe+yhXgyyPjWgDNWYXnZpYP+I70vacPtGZfnKo+a/GrrzVmZi1+1ziTjSXhBVo6Gvtr\nNe0ZpnC6jFGdWjjyezkjc8v1/EPZ9BIFq03W9mZPv4t1QLFm9PfyUu9vszA9PQPNnEMZLC5/9bwl\nP3fnDaEXrt9DTeWJ6hmBj2RM5nZjU/vfWlX1j7+rv70N9dsQDp1MFeWfpD7vghJb4N8m7BEzY9DH\nK9VrtifbmvooaG7pd2X87ngstO2gpfYdnapfXFAS9RGKQaAexgeaW4l78IAMZCetC9BlR8q052vM\nWTMbDSfmgrYrAS6bo4i0ApJVrgqVOMfnBdxrw/jV1ZfGqBQ119UXGxhzCZTBKqIxOGSN7aPUmoXj\nY4by2POO+iB6prHzbsJJSF3dI7Vt75fkH3fgomkco5Y5Vt/ks7pe50BrzhIuLgPBWNwEQYICbXUl\nJIUDn9B8Du8c+7LKpurRBMU6Nf3uJhyO7VawDwWhA6fhMdwnZRbBzhQFM/YgaVDAiNtZin15tA76\nKa61d7iQrXhDrel5nmcCFNpODyU2V7aUhGekAbfNCn8bDdB4XfmKcp3TFmn9bsK+fO5pTlbgF/Xa\nGq+Wp/HZiWnOZXsv/fBVSuGW0GBbP5AiXFpTyy54Fi4MUSnkmfKrW3qu8lhH3Dtqt8/6tPgqKnkV\nfT5J6vmpSn+lLnS9DqpX7gcvucj+8W/+jn3+jTctuqYxW7uBauldPXvtfl9Iujb8ag7PiBsJ+JA6\nGqN5XraTGer1DcbgKMbzL/vFGUiWxBxuWFC1VU/3LfK8fzKUHyvB/ehO1UllEPJnCxCIIPOm8Jw5\nKXg0QS7PxqicuiB4QKM6NzW2iYt9/R5E3yH1HvwQRcEiz9tpoc8yl5pL509AVre0Z8pG8X87ssFa\nUXuoGog8B8TizyohUiYsYQlLWMISlrCEJSxhCUtYwhKWsITlFZRXioXF09cAACAASURBVJRx80TO\nckTsyXgXQRVEJorO+gY/yEAR7lmFVLKv6OZiorBqJK8I1wiG6VSLs6hkEPbIZj3yFC1NXyrK2YZ3\nZCuNMszrisxtJRRBz5SJBp+gf36oCFp5TdHiDBrw1W2xNJ9cqH7xKYoQK0WBk0Q7g/PlyyxqLheK\nsqZXRLVRK5iSdRujqlRYU306KOicneo6+Qk66Qsy6QNFWYdkXZ36C+sR0c5tKJI6XyqaueL9IWc+\nU/Bl9EHz5JNqw/Q2CiyO+mo7r76/nMGi7ip7UdjT+4fnyvQmyRQ8BlFSiX46kxv2QXQQ4R40yPAu\nFAUtjGQzWa4bMAj4ZEEAmFicc+gLziem40TCm7K9JlwH2ajq//ETndX04Db5o9/6n83M7KKvKOvf\n+fX/2MzMHjbV1zslZZncc9nUSUO/r1Q09m4OZNFH+jxC9PYXCl8xM7OlD+u+t29mZqdHus/HHynb\nE8EGeiM4bYqymQLR5t4zEDoxlBCICsfKao+NNb5JOGTSZFxHnt43T/HZ05Yi6D5nZZ8ccR4cHqfr\nX3nDzMyeP9E50/U7P2dmZpkyGdw5f+HsyW+qv7vUZ4F6ST2vaPz4UuO4swF3zyVRbjgPrlKWpmtH\n4aFIoXoRSWvw46haRIhg1+APcl+gUkHbYpzLnsC1UubM+QqllORcdV/EsTLu4yzVV8sRTPxTskML\nMnA5VEYinK9OoNYBv1AEBS93Cd8E95mBaor19btjeDOqKdU3GVckfp7QnJgng+vr/lnOsceigVoI\nZ2Aj+n4jp9eAAmwBb1AuI5t1Yhq7Mhw7PTKGgRpRGv8YT+j6raYyJ4HAl1vQP4Wy+sefqP6RHZ0r\nHz/T2d0XPnMTtx7vii9lDxWSIpw/z1soIMQL9jX7uzaMqb+vWlJBpjMC58M1+YwC2a3ItmzunPPY\nfg07QmUrgEityMwPUNFyyQLOTevHBVnPcVLXW/kajwxcR62I+rGSECpviF8fX45tDIIiUlKfxRfB\neWfVqVTnPHNJXF2JGv5hhuLXVJ0YLek6W3d1jxJIiyEKhF2URWqBKtwzOgnVnxtF+MqwYf+Zvl+C\np2kO98m0oTEokE33sMlBW/cJuFVWbf1+ug7vB4iaJMphqwutH6uc/EYtqqzSLBEg7dRnY2x7mQOV\n2tb9L1hr50mN6Qp1t/T06tltM7NCXVk4/5bqkSbzuzxDmQ1VEI7H2whFtOJYNuTA47RI677+DIQl\n7tmfgxKD7y0BasIuqUBVnycDSi3mUhzFiiTn7T3a56DMlgSVZ2bm5jyLoebiw0kwDlCDoAIzfD+D\nAtLynPs6un4Nnpdj1pM+/FkJ0GCBglwNla3lUuNXga9l7KhB80rSHKqWmONHC9pLpFy4Y+AAWEV0\nrTh+J1YBYRINUEKqY2pNttFsa41M40dnXc2FSVd7m8Hn4b8pM5b4qdfvag3bvyFEhD992XdXKfMY\n/h/ulmJSa2yf7LWPDVQq7FunmgtRlFZq8FqMQbO6KELmUWfyU9jSCF4OuE7m8P1kMvp9GZ6pzh99\n28zMFqztlyNlbp83yOK/IR9w8VS2eAQ3RBYlmix7AW9nX7+HOiWfByEDpscrBnNP9fCxsRh7qgQ2\n0mugkuTiA+BIy5W0P83AAVS7jR/e1PXqJ3p/4xbSMn7AeQNXGwqg7rn2QE5CtrbBOM5A5CQWIKvg\nNUqMgsll5trM5iCPzsbcBwRWAk4aW8BxhPpXeVf9EEMB6SolFVEdEyvVbYp65xEIjPyp9jujnmy4\nua35tIHKXmssm4g+ZN+Gn07l4dsYYoMZXScGVPsARcQk6F2DX7LbV1+cghZzQQFlQbpFWOIySRAm\nqHAmeLbJXYJwXIL+zOh1f8oziKM5XWHeL0DeLUEJj1FkTEf0+8a57ptLyX+N4IfzaMcae4t0Sv44\njQ0lZqikwsk4fcYea0PrQHSIOuwiQPGyJwJxsl5iHw7XY9o05rkoPqSn/p8m9XkxF6j7qZ0TnrUe\nvUAxc6J2J++hStp6ye11lVIY4Cv25JNOjtR/F8/lT1sZkK/f0tz7bvUPzcxssyhkVDGq70dRIk5w\nauM8KZ9XZo+UhqfvgvV8M6X2TLm/mVn86MB+Mpna5Ey/OYDr8POoBL0G4u6sAdK4r9+uF1AZvaV7\nTJ+jInchRd/5UMiS+JnmxHSsOtz7kmw3ckN++/xQbRk4OuHiY+s7Z7pPIwXCkNMRA9bE8iCYI+xf\ns4HNs993hBZ68VjPpKm39Jz+ZKi5V+5zUoXTAtUL1XerIVuZFIM5K9u8UdT1e9dV/3sg5v/Fgdrb\nHAm5eL2tdjws8yyNGmrmdd3/Z5UQKROWsIQlLGEJS1jCEpawhCUsYQlLWMLyCsorRcoACLH0kiwa\nka4lZ/odop5V1Is6RKiiRDdtoGjxfE0RrNlI3x+arndJdDU+USSu4HO2K6VoaxekS9xHtaSk19d9\nRSe7SaWQHc5v128InZBJKHq75Lx+6gyelogifU4NroRLRchOxsoYeGREckWUdxa6Tq4gtEWjR4ab\nSL/XRvmhoMjgioOWeVf9sYGqSomodoqMxnRXZ3SNaL2byNsl54ijICYi9+DdQFUosdS9/Tra7UHG\n8QLFBLhZsjUhQqo7ior6OUVof/QHYpiOn6qN/+1v/n0zM/v63/ybtAV1CrLkVy3eSNlmj5Thmiek\nTw2m7DLnzfM7ykrNMsqiGaztM84pznMoDoxkdH2yOym4DQpznbl0Mno/isJWYlvRzvXPKeOxOFN/\nRArqv/6zQzMzq5NVn0ICEQdtsMK2EgGChaxavq7vt0HyfPuhbOTkSOPxm7/xD+0/+8//gf3Gf/EP\nzMzs7/wn/6mZmX3nww/NzGwXNvxTMsarA6byHWXrl3A0XC5RP+mifLAOIRJnZQdwQ5TgPJiC4EmT\nsa6m1J+v/Zo4dG5/WVHzRkNz6NYtRX0vPlAUes4cSNG+5Bg7GiqDvzyXLceukS3r834Proxjqbu0\nJlc/5z9E9aiY1LwaBeo32HZkxLxbl61GyO6MUQwrrqvtEbIlq7bmQJEzqYm4rjcmK56DY8pLkNks\n6Xtp1JyciK6bz+nv7AQOGQfllKXut+DctEVB4ICwWCYD1BffRxklS5YtDk9RjIyqLaknGWfHG/CX\nzCaZgxIIxPEcLpyU5tYc/7G4wF+uA1mBQ2AMGs6bgKZboRpFlitG9imW0nWiIBeToBxcuAAef/QT\n7is1jwtUkArM3QIIJlupX3c/o/PWnUvBOHrfU4bmLCP/1+o+tk9T8mvqtzYIySE8WQvUOk48zZGj\nnuqVQNGgeFNzYAxngtdmTp2B5mqhNFYEdUD39TgPH2H8xnBXIJxj8zWNSw4k1vk8YQHlVqaovlvU\nZWvZAvM6hUrRgD6IkKXCZqJFXSt3QzbWcrUGPOwc6rrM+zUyr7YiG17SGEebqDCx1ibJRg96GvtF\nVG2/cVtjE11qTUySzZ9wzjualy0vQCFU4UJYBxXWIZs+PJXfGJzLn2VQ/RmAcmvjL/odfb+eVju3\ntuSXc47U+Lpb+t6dqvpj1AO1BcLmqqV3Duo0pfUtndL9xnEyqnuyhcmB1myLg2qty68u2vJ/SUfv\ne6jlIaxjxtyIsaeYMg7pBIgT+JgmCfVDFJ6SmYeNkW2b19Qf3gC/vXzJZRAdZW0WnKMnE57rwx0E\nsmYBim3J+lACcTmaUT+Qj4UWSpGMeyRQUOLvcYxxKar9I5A/8xXcaYnyJ5xRA7LIKRfFwg3GCkUq\nx4WfZkNj3+hqHub3teavaiAaUCUagdZZ+qjaFXSfEvwRn7kuv7KEv2PUekRfsha3dH0/++kUum7f\nFn/S7azWxHRWY3XwzT81M7MIqqFGtr6GsmEMxbQuKkP7X/6cmZk9bSpjO3dkJA2Gcuiq3hvrmmtt\nuBUTLOGLGfxFoJ4KOfVrdKUL3LqjPUu9Ih/Se6oMbmSluRLBFt21fd0fP5+Bb26e0e8T6+rnErY6\nWamfvZb8XwzjXoLMXIE8GZwFCj8gYECZ9ZtCAaTopwqKixGQPpubQgNenglJmWJd9rpC+JTYS+x/\nCaUinhuenMsnLtnTxVGPis1eouVquZz58Gkd9VFb7DHnYxBapeBAa8snFRnfJTZ+lTKHO2ajqrGN\ngorMUMfVQte+bKku78C9Et9Fsev3tNb99LnWuC9/5cvqg6jmQrctv/leBc5E09q2eHhoZmZ+wB3m\nyvae+XBZMZ9bFfWlg4pQLKLfZwO1vA31wTqw2EReY70EFRodwoVVVDvWayhKgoLKg057fIF/YCwG\nK/iTUIGdQMCXgn9pEQW9hgrSrKQ1ejaQ/xuAtivAmbLi+WMAWiI3ly+YsLEuwaG1yMFHOoe7Jyab\nSybgMKzBIeaj2HapcZigFtrLwaPyXLbnYxt37rIO9vb1+4hs9qrlwpF9XN6QbWXa6pfTF1q/Pv+e\n+uPRmer94TfF/eb8HKqrvsbpklMWAd9qZaXxGAYIqyH9BS+KBxJ3t/hSDTd57XUrNh3zGZvO97WW\n/SAptHyOtS7T0j1iA052wIPzxV8Tav75P/uO6oLqaLSqujt6DLfOhvqwnNezQ4JnqRvwVT6c676J\nvtbaXgFl2yaI+Jj2VQvWKB/bGYBamsOtWEoL8XO6r/sWH8M71NLvK/iB/BDUbYu/ga3wfF9DJbkF\n/9qgLz8eLcp/X78lW93+zK/ofg90w4Mj+Hpa2oN9FzXX187+fPRuiJQJS1jCEpawhCUsYQlLWMIS\nlrCEJSxheQXllSJlEkTs52cgYOD5iJ4pmtclmhkj6pyJKmrrxhQZH28re7hGhmXtvpAwoxuKcsZH\nat55R9FIiyvrF8Spcg+5zkKRs/3rnLPL8I2ZInQeZ2+bRG9TY0WpY6iR+F1FDC9/qPoXdhQVj6YV\nRc0U983MrAi3xJTzfPOxImknXdSfMooqn80UkSuSvczG1f5RXK/7aWXtYpzDXJJyHxc4A1vkDLar\nTEK1urL8pjKLrQ5nXVEUGYMWSnXhVejomic+vDtVzvedK+tRnHHe+a76+N1fEHJiAcfAzYWy4CeO\n2vb6Wzr7+OxUGYJC/tMhZT77js5aLtPqg92i+vYHC7GuN0+FcCGR9wmXQmLB2f1CkQ/Upx7Z/QJW\nkOAw7dxU3ymcDmkyEP6a2rv/q+J+qZPpSCSVUd6+puxKYlO26sLJUivpdXC2NkG2Zu+a+i2/rUh3\nhOxLvKFw81f/3r+nz9/SOciv/q1/28zMfvFv/HUzM3vyW8pC7bymfh1BVuBOscl11bflkrHIag6M\niL9GOJPbRwVpCfpqElMmxO3z+YVs+eMP/sjMzC5uyqa++aGi5v/Nr/+XZmb27/xl1Xf8kdAMd2/B\nBeGqP0uk9bwF0fKlotUnMLkPzjV3os8UHe+SOV+uB6QK//KSgwsmxVn/Gdkn46z8PKc6FDnz7oGW\nIhltDoz/S+P7MUhW0rK1mBtwpei662nOuI51v3pXY9wFSTOCO6YCSmBBBjEKp8vMAfFCVmYJx8sM\nZa15lLPwIGsieTLJafmjOJwk0ahsMGPyS1MQgAHvx2xJpjBN9rsrG4wh8zSZU8+FbNJLgm6g3zLw\nTS3JPmVBL2Rgx0+CZmrDkXN5ifJZQbafoT1puAj26urPnetSyXtKprUKGq1vcCI8kQ3sMGfdNEif\nr8rmSwl9f+OmUHtXLc84v39xqoz5/jX50VVZc6+LwljtHa0rs5ruk+bcfvNCdjGBH+lsIZvNB9wF\ngDICbqA0indOgOTKac5PU/IRqyiKPKjNRBYJK8A35pDtjjIWqy3UPEAFfAxqKQ4XWB6kWyAONJnq\n/SP4JbzvyV/uLjQG6TRcIzHZxLWCMrBuRvPuAu6TFSiGCLacArGxWtf6kTf1zWFbfilAB+RdZfjG\nKH+lqR9H3W0toutkAsUdeDZ6Aeqrozl32YD7y9f7pYLm8hC/1VupnYOBMstur871ZFubNdXzqqVS\nhbcOtbgVymZ9XxxaJU/+ywUNZ+vsNZJwtJR1/ygIkjFzY9om+wbXTAz+lByZ2zlrfDQPHx7XX8Ct\nUGL98GIounX1PS8DZ8/4ZX5tGlmZ44FUIXPtB0qXoNygHrAJe4jZGuMLUuf0sdbVTFH3aTRpT0bj\nsPDU7gW+0Xf/b/be5FeyLTvvW3HiRN93t2+zz9fUqyoVq1gkRZEq0jAt2IQAAvLEsAaGJh74TzBg\njwwPPPHEI8EwBQuETcsQbFGwKYpVxSpW8169el3my5eZ9+bt742+jxMnToQH3+9UmpKqdN8oJ2dP\nAvfGiXN2s/ba+6z17e/THBrQniHrby4Ttzn7o2IZfwanR5bsvktlblAQqW8zr09VhxSKh33UPLIp\n7UVGIGAc1C2LCX0fsA4M0rpf+RKkBWpGgJIsMVebz5JfDk3VvVJ9mzPZxEZJY96d6f5VeH8q8PEV\n4VxwXinD6sPjtuYpU3wOd0ocfh8nJtu+QMHsvK49RvdSNr2/oeeN4MUo1HV9xkEtxdNYP3zM/nkW\n8jqpXzbZnyZAvAxQLCvnQEYy99OsEwAKbZjR2GbgG3p5dGxmZru1EHEp5xOA2sqATHVAXFoJaOgU\nDjISyZkX6hcX5ZwhaMH2zzTO93bxbWONc3ah9u2AOP/Js39tZmY38AvWHgjJlKtp/1txQ5iaWamc\nsXlJ9ToEcXN8wZ5uSUZ+Q/5/AP+dmeyjULo9p8wkDbJwLv9YmItTcXahsWwswz2L1pDMAyFhimP9\n//9ijcoV4GO7R98GcG9VVbfF239H/2eeruJaI9sXstHxWMiUNGM4S+p39QGqbJv6Yos+aoOqeoAM\n3nZctra60P3X4P283tLYrAMy+4RjD/c3NQe7IHQSKKstm6CPfdnCJSivOuiLFnxtNMPiVbgi2+rz\nTo3nY3sxkEZLl3bAKzWHl8mN6/+tQPWc5VCNW6gfEyFqmHe6pM9+faDnnnL6ooJK1aor/3d2qvun\nvibbSpVkKyMHheDhl+Mwc5kr6Wvd9wt8xKKtcSottUd5AC/JNe8t20X136tj1dt1hNDJxrTHuMT/\nDhOgBAP9frOHj9xiz7r1em54hbm15nFLgDhcm8sGrr7Q3n4x01q6OkAx8a80b86OdN27T+QPY1XN\n792vyxbvlfQe/Cc//sdmZjZ+xX6nK9tc8P4axw1ns6prHBuKZ1GzZG8RKjxuTGVL17wXl3jH6Aao\nOBW0V0ijVnfOe/2eq7F8AZo0j/raNcjE9Vy4t9GeIrYA5XalUwpPUMu7D/fNhz9U/+R/Q/KhKzhm\nHr2rd+E/+M/+rpmZDVEx7bfUT7+sREiZqEQlKlGJSlSiEpWoRCUqUYlKVKISlTdQ3ihSJkb01qaK\nXC3RrvdAqMRvOF9dVBSyx5mxwCe7NtchtWVBka36U113UVTGdrlQJK09V8ahwlniAC6JdFnfXyVB\nwhwrKl2+KzRH5hLW/Gt1U55MQW8UnrdXRGyTCF9yUxG+zI6yRu0TRdrOOXtXqiu66k8U/U2gdLFT\nU6Ru8hL1GDgTijVljDqoPuVKnHvkLHDnTNeNXylK2tvS+dDGmhBDvbnOEAftnG3UFdGdXKnuxQN1\nfjnBGU7O4fa7asOaoz5swuezTlTy9CMisr4i8bOSsg2XP1dWa+v3FR395sG3zMzsbkl98ZcoJ+TO\nlLG9bbn+TFmYVzc6S7n4jd81M7MkLPB1lBoWnNG3pWwoC7fCggzsYAWnzQwt+5wi7TGyanO4EUpb\nyupvp79iZq/PZ5cbiv4mYnyS/aoOUFjg+ZkVqAYUeZJwOAwTKBRkdL84ijJQRNjj39X5xG80lDFZ\ns6bZPzJr/K5UVlrJEG2h66vvyZayR5xNJlLfBk3hojiQQuUob5wDR6movtTvEtME/YNiWBOekJrm\nSBYOoBrZoyn98bvf0fnR/QdiKr/wNcc215Rxr8Cx00+onaUk7W/K/s5+8pz7KpPkkGW8dpUxaMZv\nn5VKgSwbzPQbH/RTwGcZ5IINVIeBr7amUSLIunCfgIhzQsGvovrc9Yjsox5URY3oCpRCjLOwHmdb\nHbLgfhq/hmrcHO6QJXwLExTEEmTl52Q1clWNWcH0/QxOkjQIQRflgyBLveLq03XuH5B1L3FOfEzm\ndAlqahXos8xZfQtRGZyZzaz0O7rHyqAa+p6e30farEg2JjkESQSPRpUz+M0b+Y5MUvUcGuofc/3/\npq0sVnpDGeN5Sz5l1VV26JJM9uACrhyyaZkHqGvgh29bpqDDMnuyufx9cUL4cDwMz+CYIGMaG6E4\nh1qTx3jlKmrPWka+Ls3vV3D+GCpU3kK/LxXlMwpkERdHssNZngzNiebixPdtCsqqQtpoLa9M2OxS\n86LHWhnA0+OBfEgxpkmQFmMP1aCJkDJ+Wn06QV1vXIYrqqL7r+7q+9iZrh9/puzXTZhxa+p3XynK\nT/bgcQiaqtf5h5rP4wqKDIeoZ8DRNZ+oTz6G82Ajj8pRA8TJlu5bgctqBFIz3UOxIal6JllzOyFf\nHH19eqz7HC+UkY6D4lrdAxJyyzKBQ8efsL7Bl5FeR+ERdMEqof6twesUqv11UHIjWWfuTDaaIxM9\nx4/7abJvEAylQLfNQA4Ze4Qpfw6n2CbouWRc9TDWwQTIKTOz5WppblbtXwSqmO+RWcc3hHuudFb1\nGwNPWPRU8S6KE9mExilA1cv3Vf8hdtcFSTVk7ntw1EzxxRvu0s4QgsnM4QCEa2oDG/dRyXDwE3MU\nX8KxGHbh+mL+LSfwtLkoPaE+F0OZ8eZIexS3oz6oh7aEv9xsaI3qsQdIxhr2ZUq3q772B2pYuqZ6\n1YuaQztF7cN80AbVGHw8ZPs7z0GH0ofZhfr6dKB2bZY0tpV92Vg8pX7rT7Sm9+J6TvdE7dxuaC8w\n7el5Q9BmD4raP/ZvaCcKMmtFjWkTXrgmCMIZe6lNuH48OAtbr+SnFyhzeVsa26wPt1gFHir4CosJ\nrV+1BweqJ1xpM9abyqb2DGMXfpU5trmCOw2ewCTqh/F4mefr+zg8ITH8cpZ6vn1Xe5T6W2r3eKR+\niIUKnmbWa3Zsih0mQNA67NHaruZ8aaX7GBw9o5ZsfxXcnlPmIIZ6Xkv74qMT9XWW/ZWflZ99m7nw\n1te0Vjw5lj/78PtCyrzzB9qH1qlTF8XVyo5seAxXSB71tyFI9gwItn74zjQAWTKhHjHZ2DJULQUF\ne7hgX2igdhmLXMgBBuKk0NH3K1AR7qH6LobKVB9lruKAPQxzM8YeZwKH5Zmj7+/CUVVGOXc2BiF0\nV9dteZqjMfjubtrYPOtbAn7RDkhGB4XeGGqmVdQL2zO4yPqs6QXVf7GCoxGbioH+aPZRnExr/Tl4\nm3fNhvYOffarva7m0DKlcblticNnWAOd3Rur/h5ztg0XUKKKb3wie/oCXpcG3IzPr7Wel0DCr4PO\nHYNgDXwUg1KqZwzOnE1Oc5iZ2daBpS6eWlABeb0h/1puaixOUAvOmPqi9FA2c/KZUO//L7ySg8/V\nd/cfaB4+PuS9uKS/G46+n0K+N01pjW9jE0nQwC3edwNX+0Ofd4mNI7j/7umdYxcetCRoz90zeENB\nEpZqQs4dvxLCJROOMVxSaU7grDf1+/2a3ttLIKivP5OqUgigf/yfisfut/7j/9zMzP43+x/UT57G\n5llfYzfs6D4/eQZvXEp9/fJctsghk3+rREiZqEQlKlGJSlSiEpWoRCUqUYlKVKISlTdQ3ihSZjVS\n5GsxVbSwM9FnEpbiZF9RVI8s1DJGRjapSFeRM2efjRU5yw6Jmt5V5P4AHpJljyygACQ2P9H3Q1Ok\nLQm6YgJ6YINuuYaFusxZ1S6qJh7nsHc9RStHKCx0SJftZRRRd2O633YexZ1dhdqefKRo8XZN9UgQ\npUXPwRIJtOnJOi3goFmQtfRyqsc6qjBXIIsMDp31O/q7Dl/M+x9c2YAM5OUrIVU6A9SXNmCqJloY\nVFX3AqzsZc60T7sozVTU5qOXqkOy9z1dd1dRwNipEC2fPPkr9Rm8O485y5ncrtiXKS8//9TMzJ59\n8L6ZmRXjiqYGK9U/PuDMKud9C0RbgyRZkrz6sMEZ03mDs6ojRbxnNf0uPO/eR7UoPiJKO1I7Ryhb\nlQq675Rz4TGyXX4P1RNH101yZKThPkgNAuqv3/fIiAYr2W6no6zR//LP/0czM+s++e/t9+2/s6d/\n+l0zMyu/L1s9fq5zjR9zXrJzrrmyAUN5vkxEnHPcSVBhQzKqrgeaBNqVUZg5pX98zqomQJE1dpXF\nWzvU8/qc6X3nd3/HzMwqobLMGefci4oWv3gJNwaKMynuH4dP4Oa5ouNzVLJWKB6M8nAq2Ouzrv++\nMkMhwLKMPTaXBrU05Kz7akE2eQafEGfLp6ZMarev+yRc/JKDehPXJ1YaI68uhESYfepndZ80md8p\nyBSSFbZYoLJDVnxOZB+wlMV9EC8gNAK4XMacN14sdKPytn5XZKynjNE69Pchr5OLotX4RmOQ7qKy\nwXnpBOpGWaAwXVQ9UqhCOWQ03Ymeez1Uv/Wbam8+rbnnorY0NlBrWweqT0z1ORno+aVt5iLZJqep\n/5dT+rvcUP++ILOd2VK7io6yP0cDISILCdnYxVPNyatrZT5uW9bJHLvwOS2Tuv/xK9lin3FIzNW+\nYYgkctTOLApq1yO4e0ArpA80N6ZjZUAGcfVbqo8yD+vV9JyzzX3N5R24gXoe31+cW/lAyMW3Hh/o\n2YBvLi6UhZqiVrE5o+9DJa4KZ+A9ZVTLcBrU13SuOUXGsIFN7aC4QhLfRmE2nMxleld9Xb5WXRPb\noKjWsN0VqhgttTk+12d5jNpDTNmk2AaKiG1d3/m5rlvtymZWp7K91ZrWm8Ovyi8nF6gd3UHxKqH7\nbpH1up7DD4LK3f6+7rO5p/5zW+qPIPcaQXKbMsVfLtlbOCbfkd/Wfadk6yZHqKqQGV2BkHHgJXLn\n+JQpWbMJnDNL/d4by6Z7K9U/VUHZDLW6OJw/u0n2GCX9fQ1aVDd63wAAIABJREFUbQ5KYwkKF7CA\n7p0ZWTLkC4ELIQ5vUQIES3MOamQp33TRB4kTIjhBBUyBM7fwSVUQo6cT+cI4z7mEp2sB8rIPp811\n2zXP0xq3ZD6sQ0TRulDfeCVdu+LMvdNRX5RBd8bxx7U6a00SPwHqa9lXnZJ5VHjGoISOyI5XNCaP\nc7KxcVb+p3Op31e2B/ZlyvoOqKnSr5uZ2XZNc7DT+qnuXwBx2UMBBVXAGXx3vaKe6ybUD05Zc23W\nlE20y5rDmTyImxS2mNBYVWuaI+//QBnqnT2hKQZdoYrbPX1Wb7QOBMC2OiBC6iizrDIgQVgv3DI2\nBcojDqIzwfM3Gyj11OWfY3PNsTv78qeffi5k+Yun6ofQ9mfU5zKm5733DiniLMiZEO28CJUf9ZwE\niKMhyJYk6GfnCs6dp/gskIgevFNP3hdazsJ11gWObGazIGaFXfbXoAUvr1W/DPxaE5BQmaT6OVYH\ngboK7LYlH9f8GH7yYzMza/1Y7ybprPr60bZ41QYbodKf2tD7/rGZmbmggx79hvgooIK0+U+lbJO9\nI2R1eiD//Dyp3099+aW8j0INfdqpwPuTQVWO/ev6DBU49tO2ib813W+lKWRBRX6mjF+1iubQ9Vz7\n/v2Z3mVGI83RaahkyZhf1tmDdeTfSjGNXcGX7Yyu8Guo/s0S+r4iAKZlY6Cb4VbbTMPPVjnQ9ymQ\nnaCJ/anGfuZjg2356VJFc+CMtdz5HNuMixekhAJPdht+ThBJ/hY+JqO9zQV8Q9fMufxByIv65XAO\nqUDr3DW+L/tAvuBgrHEto3blogZ7ryaU2TVKavm/JaWyBvv6pqP1Yr0C4qincarCwWMgagvX8KP+\ngmHVrHHRMnc3aS9PZQvbcJMa+7cXZ/KTG6Aub0CMb2+pj1Lsrx8WhCK6mKtPT1AL3v2q/Ei/q74s\nFXSaYhf//+Pv/tzMzJxQ8fCVxiC3rbE/ZG0awKO2vAKhXpd/qLPvXPjHZmY2OqNPv8a+uKz6XeFv\nii3GdF2228uKz+dOTn936vBugjJO34d/6bH4RSsguwdwwsbONSZt3nESzzXnf56RP1pM/m+1Lyvk\nj/19+3eWCCkTlahEJSpRiUpUohKVqEQlKlGJSlSi8gbKG0XK9OHxaAaKzJU4F93NcM4R1RIPToPl\ngrNZZP0HOUWo7oMK+HlVmdOtI93ndBONebI9+11l7womtEh6qmi0X4ex21PU82apzEMO1vrLQBHC\ntTwZmzaKMiXOnV8qoueRgTg9UpR33tFzU3mi0YGik5D/W4xMfGuOqlRS7Trc1nnJ0VwRwqGj/5dC\nJMBS7M0TNOa7ZXhLPlKm5TStCKKtlN1zqtv2CKWSRFp1nb4CXbBUNC+f0f/78D4MQXBkyF7fkDm7\n6ymKeOWrjcW+fvedb8Ah822hCHaziuj+8+/9azMzGyc1NoWrlH2ZUqSNX31bEeFK8UBfjNR3F4Ei\nysUBXC9VRYanjmwnDpdNAMv6sqfen6YUUR/1iXLCUbDahq+izXlnuBte/uBHZma2/pg+3ZCNtWF9\nL6LqNMnquauJPueM4ZRRX13pOS5neaegorbiaqdzpH7az8iW/t63ZIv5rKLW3ZlsY4Pz0AaPRSKl\nOdBrktl21R9NsveWIDMdoiZQ41jBQN4mO9RFaiGPqtOra9nH8rt/ZmZmY87ulma6zxco0ZAAtgUZ\nm5CPZIGiQwLFolwV/pZzzjjD9M4wWGlTkf45PB23KY7H+WjaaKCRvDnKJSiBTQdEsFPw/VRkA3FU\nk9LYQHFPEfeQ4yWJ4kn3Jk/bQMyhpDINOL8cB/XjUx/UmVKww3vUK8APxFAAmJLJm5INWmGzyxSq\nPUBulh5zFIUswFgWd1DzATXhonTjLnTdkKz/irO6UDZYnyz6igzhElRT4JG1Q5UuwTnlJNI5m1vi\nw5jAtzGCS6Aw1liH3C0dkEfBDiogGc2poxeyqa1HynZlEpwDb0nZK1NWJqEEb0d5iN/nPgX4r9bW\nD+xLlRwoMbgpzp6jatKW34/tCYUxBTFUclEhGeOnUXq77JP5fyQb3r/QnLzo6Hu/C3IzqwzLLI66\nFmgwZ6R+d5l7e5zh9idpKzWwDVbm2AJI21J9Ov1U87kPjcNGVmNxv6oJlyNDuRiAZHmlsZui6LV0\nlNUanchmAnjPOtS9vn+g+97X5zWcNuU8SEcQehkQNJ4LojB+rDagEjGtaGyzoAFWqNvV6hoDLjMX\ntNp8R9cn4UHKJ0MlRJRllnDGHGvtnvZ0v+wkzLrBYwEvhV+TTd/0vpwaRjVH9gxejE6PrBxZ8vVH\nGp/6vtbTrU1lnge+xjLk/PHYOzRSuo8zVD+EqLhKHp6hqtqbZN1dwcc0QklihNLEAoWcJGjh4Qhu\nGy9Ek7R/0Qbf822SVD1d+FSWK9Rb4GyYJFCWWMl+gqHq216ov9c2VJ9pG9QJ69wAfhdEwWxZgO+p\nr3r6Mbhw4nBneBObjtSWwQhkyq7GfDyT7WT7+ruWQH2tJ9sKObX6KGx5PZSsfJSo4BaMTXR9F0Tz\nWl1jUl+XrTYysq2v/N6v0Qb2eymttbPEl+Om8lqs9X3tt+xS8zxYqW9SSc2x5A5r/7Hq/wV+37ZA\nXYGQGTY1p4dsycoxjVkHxa39MXNiCzXNuhAejTp8UPgKj7lZxeaOb/TcrxzIWbQ31O5xCeRiCDBd\nY85ea+yuU/LP6/CdJPgs5/U7H9XUGPwlsZH8aG6sej/cUL127qidT16hsPNEcI9uTv2eR0XKZ1/b\nPJUNz8+0DixAqMaWsvlURu8Lk6z89RevhArZeFf7+izoiQVojHJDfHi5+uvxrVQ2bMHe4gyuxlZT\n7e5m4AhKw93G+jsHaetPb68IGWdN7IBWWoej6WtbIEHo+wmcML0n6vMRtrwNKikPMvy6L14LH5TZ\nVl1jWrsj20uB+Ljoaw61rkBWcspgFu55EhqDPIjyWUPX3wdZ0mLft7UBIoZ9aXyitb3LvnKY0Y3X\nd+R/zj8HzZSXLQRn+l1vKNs5fQHSBv6g4duy5R3QtrVdThPkNdb3F2p/01N/3aBSNfxQY1Cpar2a\nwd04d0Csg9Rx4RsdxIU6SzfVHz3Qvj6Kl5mJvn+nrveVzEPZ2HBTexUHVbtUW/WYZIXYd8uaC3t5\nHb/Ywt+1phqH25buz4Qum/rqFxfE0sWa2jG7Bp1yTz5ysqP/J3+sud46U7vzDe3x6u4595GPONxW\nP8ZO1X9fLEAbOvL/qdrWL+oSOHG7WdSsCrpotdA+OJ/XPN9l3xhnrcstZatzEHMX35ONF76Df32i\nfdDPne/ruorq4h2rjodvC/U/XAhxeP8dPa/1mfiUKinWdu7vgXy7rIDa7aMYi4pxHOXcUVl91Y2z\nzzSQbzmUGQO4zHjHtTx8SCPZgrOn67azes4ncfmZRV337fxQ9ftXSSF7Zh0hgmp17R/LK70b1/7B\nb5mZWepK/uPS9Bwn86u5qSKkTFSiEpWoRCUqUYlKVKISlahEJSpRicobKG8UKZMlc1L1OGuLSkqc\nrNSU89mpMkpBsCMPY4raulU4IOr6/bavrE/mUH/PPkVjnsxxE1TFoqiIl9vQfWtkkPucXS1kFMnr\nBmRoySx4oBwWWbgmOJ83cDn47+g5ubj+djhXnVwqxNi81v2rNc47oi6CKJRVynpenrN6Lz6DL2Rf\n9U05cBZ0lTnZKsEZcUdR3Bc3MJanFHX2mooqP/mob8uZzrVt1EH5JFTHEUz2ASpL3hz9+hmIjqw+\nC902fUK08ZkitD/gHLH7J39sZmb/+5+obd/8HWUSQxWe/cxjPcduz2BvZpYkO9LgzGYaaZxnaM+P\nTonWknFMcK5wBb9HgpRzQEY3tdDzYy4KOZxfj+dRj2iR6YOnqD7W3/lrRZYbe7Ixg8um6qq9HupL\nyb7qGRRAogzhalkpqtslI7m4hNUerp16QfVxQVkEQz33CuRL+0Q2eQbKIFvQc0YgmTZBebiubGAK\nm34JJQYHFNewBJKHcXDhEwnFPEIeIweUQj2reqVAKAWeMiHxomz0z/6nP1X9rmUf3/iWMiB33xLa\nYQg1TAMkTwGuhMpbqke3AJIphSsqwbIPSu42JU6WxIHxP0BNyUWRyue8rQPfz5IIud+TbY1D3oSJ\nPn2UDEacne2DMghQPWonOPMKoiKPIooP8iWYkw2Da2WFmpEDd1XI/zA3xgKejyL+x3PIjvf0fD9G\nVmuO8gpjiClZrA0aIKt2Jch2T0DoBPAhOWTN5yASUwnZ/AgHFIfTJlSPcjRk5pABznH+eArnwDUo\nixjohoAzvyt4SXIMYX5DWZurT451/Uo3dorKTKxGZONBlx3s0c4rkD1t3fc+aiTdmPxmavk6y3Ob\nMrxh/UAVqokiW/ye5vSDO8qWnaNYsByArIF2PwYi8UEVvhXmyKqgfs2e634dfOUm3AXlNWU19w7l\nmzKQpPVnIcpO41XLJWzFWfU+GcbxQPOtsqM+fsRY3aBYc/cd9eF2QVmoWVd+on+i7zNTrSHzisag\nCqfWCl6etRv5peQFigYljc1hVX2RReHKWcrYMi/VtjSKX5kD2exBSX6sA2dBeQNkHOez02llxy+n\n6oPqQ9WnmND3s5Rs8ubJsZmZsSWwXFb3X8ATUiFTG4D+OmspA7q/1Bp51ZRNDH39P9X7csjMQVc+\nYA6MIA/yzwexVIInpAe/nDPU3MyAZgvgbDHU5npT3a+fAgXXJg/G3CtO4elIkt1H4cJHVaoTA7kJ\nB8TE0xwZBNoL5NPslaav2zmbpSyDTfqoqCSYuzE+i0s9bw6XxbyvOZGY6/kx5vCMxO8YX1ImC9nv\nyF7cpOxi5KAsNg05HVDIeejaaCh/4S3lL5ykbGt0poxjHN6hsS8b7461xs1r6ptVD+XAGfcuqe4u\nyoo+XZ6FO2ZtS/sffyEb6SbUlvNLnflfjuG3ADERh2/vtqU3VR+O2L9253Av8JzKFP420KejG/x4\nQfWrPPqqmZm12F9e4JdXGfxiCr8CD9M0C88R61LzlZDSGdSeJqj3TXvsZ++qf68+ljrTYAxP4DrP\nB4l+zT6z8UAZXq8i3xF7psxwuw3CFGKrWEvtqNzR9SWQMRdPcfRk9Rv46TJKcvsol9lEc95QlBn3\nZMP1LRSCQIvl8gdq33v6/9mnx6o/aIR8Qu3uX8lmR3ndp7YmZEyezymI+t5LtcfM7OjkEytVUcgZ\no34FgnUyU/+W1kAZdzWuk4XmbvZLvC21Y5oXdw7UhsImaHhQmd0Sdcb338yE7Hh3Q2OSKQj9kxup\n7m+zp4/9mjhcuiCnb07gVTuBG4o+WWa1LtzkVfcUyoweXIkxH86RK9BoS83n2j5KOTE4YuCSWTiq\ndwklxKSv/X0Sspv1jPzgZ138CnuhOYjHAxDas5L6PrEmm8rAfdOEI2uGnx9Vte+972i9SG3LdkZ7\nmquLrtBUl02UgOC9m28xl2Kq30ZLviNETvoLUGcgZZLwF42SsoWXc82Bvc91vYcaaz2hdbgIn543\n194xW1e/zALVI7e4PcLbzKyIrTkXx2Zm1geRdBfVQh/EfH1NthyPaa9yvY2q4qXqlS3IPnpF1GBz\n6gcODNg8KXtY92Uf5yNQdv8/1b7Jcmrlat0uvtCztmZ6xrCrd7ciPD+Fusauzn6vDUjzuCd/fmd2\nYGZmy7bG9KYpP/TWb37TzMw+S8nf//UPtEZ/5T2NeXuJ6jE2Eo9rLCZZ+oA1M4//YHtvi4HGqP0K\nVbWEvqhl4GO7ls3GgPMnQYA3ApAxHijebdWjGFf9m1MheZyy+soNNDc99oVPOpobNRdV1ZHmYidQ\n+w43Vd/jla6/bOn338j86nebCCkTlahEJSpRiUpUohKVqEQlKlGJSlSi8gbKG0XKTDjLO3MVnR2i\ncpGcEQkjC+SAKJnB6VIiMtVLw0/RJlPOOfU7CfGPXIZRTJQQNu5z/ptMZSKtqOn8CzKjZFhGKC54\nLmeOU7p+k3PZMzIhExi8sxlFLzfImI84vznOK8q9yipCtrxShK7+WPfpNZU5ypHJSBkHTUncuFVF\nCAccNp6lFL3eaCiKnE6qPTzWOl/lHGJLz61uv2NmZr/27tziWbJKcdVhk8jz5UDZo9JSEelcRpH1\ndl59nOMcX9MUFdyvKRo53ldd1h7qvt84VHTzz//Pf6bK7IqBu/5QUdadTZ29bD9XhPu2JUW2ZZ5T\nHzlhFoqsRs5RZ2U4+xlU4FhZwJjvcR4dfgh/pTENekSiSXIRKDeoBGxMP+1vwGlQ1nMqoBiMs/Qn\nIFBqBc4fz+CugUMmmSDzCU9Ivkzmk6hrlvPSnR6ZZ1SwCiBU/Jnu2yczPVrCmUPGo57XOIaoq3yg\n3xXyRI1BqCxABrnwhcRAQ7gxXVdG4SJD9m7o67N6oHENyFxnQXNVTVHox19XRmLpKTu3uQ8ihgzD\nCuRNjCzgBCUhI/rs10BxUE8HVFkhfnulgzgKWBPQNklUiCZDtdEDebdC7SZf5BwyaJxgxLPX4aBh\n/seT+syu5D+aKKy02vD0kNnrgJrKkCXxFmSXuE8MDpQAZERAxN5NyZY9Y06R2W2T8RyFvEZN+aed\njGwxvy4/5eZQtOL+CdQnArJAARwLsYH6Yz7BTwa044YztVnN5QYZ2WCifkxxFH/U1Jh3znR2do0z\n9vOM+uvwXTKT+FMXFbgUKiFxMsl+W58Z0A9L+ImGoNTcpeZ4Pqn7OXxv8EAVUd45f6Xz9a2OskS3\nLVlU88ZVNez+hlBd/vaBnu+CIligGDaCjwPFobc24KTwQZd04rRPvys/FIfCVgV0XF39k5mr/578\nUBnuk0/ln8t3NF5N0GrJhPMLpRkHTpIl/DPeCAWohu65iUpZHSWB1pn82uhaY+oNtUY4qPesgZSZ\noFrkwxPk4peG8JBV0xqzdB4Fqmtlxy6ewJPG3/c2QS7e0fMzd6UGcpDUGE6AWU2P4UPqoOYG30U5\nBu8GKNfjn6hPn8PHFgcVu2qg0AJ3wk5N7RlOQIrAnbK/o6xXDYTOYqqxmORx7LcsAy6PTzSHV7v4\nywR7BZ8xx48NJ5prQzLjY87sx1HlCAJdX3JAKIF4Cjnc3BW+IeSySeu6Jep8G0mUfpZqf8sDPQuv\nysmF1g8fXjozs/wsMBeFi1UGHwgidsH4OxXmKuvMpQvPCAqPWXxCL689yuyCdRSfs4J3oA1MJQ+X\nTLODImTIx3U+sGc/1XydTFT3/T0pgnXhWHFjIOsQZiyOUccpkI0GSXwE50wmo9958HGkUC5ZsNZ4\nJc2RrSz+u6nvL1BZW1ypbn6atWr7dd/dpmzsql4j+JYSE9lwMJct+AM4b0BsxlPKXpceaU45rubI\nZ+1jMzObQRtVYI+0XMLfBDdXlv1k+1iZ5acosa3By5GYgGgJ5EfKoSpfKkR5waEAKtjPhypOIHKw\nhVAB0UtQT3hJuseymdP3Ue5EXbBaUfvzC7gVV6rH4lLP+7gt20nC+VivC+UxaMNnNVA9hkn2bAXW\nx5x8m1NUP0wK2qMO4Nhx93S/clfrxNUL6gnXT/qh1oliGtssvkZC7VUKlkvJxo9RnFvRL4UyKJWs\n9s3JIfyKcBkVCrdXDi3EZCPLTSm6+HPVeQm8tch8CUqs5fiR0YHafLcMB8xECJrsfe3PvQSqZkfa\nGyxGICGXjPEWqFNQSOkbkNczzVcHhMwiDvdgTfu3HVRFV4d/k3Mw81T1H1dQit2W/84P1Gcz9jzL\naxDWVfzfK9VvUmBO4i9b74uHY/pj/X7MPnWxrjE6KGhMszX21xtqx8ZnKOnCdZMoaIzf3lU/rZh7\nLfYaJ09lex90hOTvt+D5QJ00MdX4rO/p/xnUru4XdZ8i++oUipUu69l8AloCJIrfBQ3dwaZZV29b\njpr4ss81B+7taByusA9oEO3qC/XT4T7/gIvt40vWy5b6OYdi0hxuufgMFakDkJwv1M/VheZqMH2N\ny5icT2zDTdmcd50MvJuJuGzMGYXqpaCr6ihDFdn38I6YY02ebalPB13tTY7ONHbrG3onLDDvp2ey\nzdFS+7lxUs+v5eAHGujzGpTm/QlKWzWNfWshRM+aw9/soYoOKKwkewdQrH0UdS+ID1Qz8qNVuBXr\nIOK//685XXAkv5d7R+3qjg7MzKwR6H61h1KTu3gC2u2ObLe8q3ei2QeywTT7wgT7/l9WIqRMVKIS\nlahEJSpRiUpUohKVqEQlKlGJyhsobxQpM84STa4oEpZewnGQVUQsSxTPzXJ2tK9IWL+Ohv1cETVv\njXPvzxWRW2Q5Z/eQ/58rQtc519m2dVfPdVF6uWwoglVBjaVOdquLEsIEdZZ2ncx1R/9vXuq6jRRn\ndzl/vdVQ9NmB1b57ogxpe6wobH2uKOzqBjWngtpxUVBkr3rJfeDfGJ7ruVnO3QdpXTcJFL0uNRRF\n3zY95zKj6PKKs8CzdM6mF4oc75IVdrYV/S8n1fepNOoeoIoWp2R9dpXRdFHPGLnKiixEq2A3A0WI\nk3vSbv/6b/+hmZm9OvvIzMyef1fRw1ffUh+5ZWU0b1v8qiLUtYwi9w7IjjrKWqsqfUSmcJngjKar\naOckpuhtlayaPwB1ldL/46F0QSFU1hH6qDDTIMyysK439P0FiikHm/AN3SiamnU4awu6y3NQFfE1\nFpk5/Eiw3ntkCJJTXZ8F/TCFtX/iqh5ZosOHsNRXQZflUDgIRrLdOnJHAbwXCwA9bh51qbn+nyKK\n7MN3Mo2RoSUAvyKjW6J+Rc5/xrDtDmiGVVH1rr0lta0DWOsHruwqjUJQ9gZ+ElAnllZ/LUElJOAr\niU1C9SwLK263LStsIrbSs2bwAY3g1TlwyW5UZXsleBN8uE2WnBN23ZC7gM7zqSsZwSpnWknkWbIB\nBwKICeMjlFaYjrEJFAWMLHN+qr/HMPonQKhMQbBUQKnlffXplL52UEJYeii2gKoa0VWLufo8hb+K\nj1N/o1/CsV6RsZ756h/Ef2wMWmIBt9eSdgQoqySAka1vyt+s5eAbIkP7+YfKWN4HNbdICBHSGQhJ\nOOO+uXVlTIOkfp92UByKgyDa0Fy4vtF9u3AB2abGb8wZ4axBznPL8vKcbOQCBNEchbl5qCKiOTG/\nlr8tlvTcXEz+OpED0XSjfh70UR4is50gA+tmUSiivSGq4/z5sa4js17Iqx+L28qk1yp18860to0X\nyh5VZyh5wSfUeKhsusN8bl2jMtdWG1odFFR6GuM0Ruk+An0KyVOA30/c0RriwcXV+LrGrgVny+lA\ntjrDlsrwpvXhRsns6X7FsrJlJyioXLe0Llxd6vdJ+DcCbP2tomzFQEXNQMmaLwcwKev5VU1Nq9mB\n2gEKogCSKFMD7QBMdkIG11DASta+HIfZoKm9Q+8IZS3+D9WXuXVl1WJw5RRSKJfF5KcXICcXrOWT\nHufJL1WvHPx0A35XK4VzWnPNA2nSAT6xCtf8vvrtsqt1adRS/U6u9f+d2ut1NShmLAgRVyjCFdnq\nTUDBVQtwd5H1TGG7sSo+B/WnAkis1BaIVdJ4Tg3uiZm+H4HknMP70QDN3Jw51oPTawmvhYGoSy61\nP0kDw3Q4c38JQqF0obkQlFDRATkc90E2TsU50IxTdxSiCkP8PTxIc1dtScTwYyiShG3rBLdX1TEz\nW5DFzsOz08NfBx09vzOE981DxYd2zwagkZZqVxd/VNzW2FVQE12hNhLyTdS3NAniM9nc82dwIiTg\nIxnhx+B88Uf6Po960BQUwfDq2MzM0mnQEmtqfw73umQPE0eh091RpnejLL+fbenCfMidhjrJZlq+\n48G+Zkvolydwuix29PsL+uP8PNzHwsm2Yi/EejTrscdcqj9LqBN2ByEHJDb2FfZsLICtvpCc/hl7\nHXxFrfo6M71V8q3bF1dE+0QZ7BIKR/ktIbiyCdTyBqjQwO3TQbXvNqVTRYUyLlSAcyrESXUTJNlQ\nc6DMGntVR1VnqrHJL+ASDBHacKMUShrzJH5hfk+oHgcUQgCS5uMSfjuhtWz8QmM9nP+1mZnVWaOS\n8OWdgYxOnajNOZTRfPbHzpaem0WFLzXTGKUmss0vGFt7Jts+CfS+cfEEJUcP9T9Qpw/fE2fOrx3o\nXWm3IX+Uz2lupgoas/LgY/3+KcjEY71HvGL9etYBBc1pibOx2judy5YmIOjXQQDtP0C1aiHbduOg\nYeH+WuaFwJkEuk+S9fOCfenuDGT7SDYTR0VvDNQ+lww3sLcr+XXeFz7QHDhqoLbkas/06qn6+YD3\nncEUJbC69t0lFCHH7DFsrL3E3kLj8AT+rRhI/HgFpctN2cmsefWLugRl37rLts1K8F4W1Rd1uLem\nI7hZQtg8e4BKWmtSIwdXVle2ky7JxnJ92V56oLb0pvi3b8mmtx35jRefaF7aJ3qPT1TlV8p/S/6/\ndqV3yS6KX8tTjdnhRHuWHvv+3TbcVQ2N7dTR3Ottq08TJ+z7effKwDeU2tY+v9UJ54z8CaKnVpnK\nT/c5vbF5qPst2BcXH2nv4DQ0NmkUtXpT+ZliQr5gdgDH1i8pEVImKlGJSlSiEpWoRCUqUYlKVKIS\nlahE5Q2UN4qUIRBuGWJDc86iZUaKSJe3FP1rtxT5itXhZPGUSR3Cylye6PfOtrI8YYR7e1eRrDaZ\nlGSYifAVtZ13FJVccl5yPlYEL13X39WZnu/D+VD2Vb/OLrwgzxQZu+Cc/UvOw3+tryj25gNlNcNs\n3RqZg2JT3d4rg4ZIE2UlUz5MKZJWWug5iwzZOF/R82FTkUV/BYLoUJ/1TUVJ73JOddlV5K+RWNkF\nCIa7D9XGT7/gtyc/Vd/dBbEAH0RAtmB3dWBmZi6s8Af06T24Yv70//inZmb2+bminO6Bnv3xT9UH\nR0f6HHI2dkME3LcupaLGeKegiHSfrHowUyR+6Ki+FdQfArJLOTJ1KU9RzAB2+QAulynnFWNnqE4R\nUc+vy8amHhHliv6//U1FjZMw/8/IiJYq6s9sXBkNn7O344/eAAAgAElEQVT+NpVtpFC0GVV13xic\nBcm0bMrhvHgGpE+6pozBAhWsGEzdg5DHqMjZ3Sv9f3MXlQxUL/Kcw88NlSkPkUC5BucjySzkyMYZ\naJFJBYTLFD6NuGzTgVV/kJDtFchor2aw57eYQ1XZ7No+GYSCbH6ISkm1pHoFEARMr7rUA24DUBdp\nlH1sqijzbcoCroEpZ9urJRyLS0YzR3abM6XzJoi8KZC0HHwQXbW9fyPbX98iuzRA8SXOGf/QdlAo\nSVdRHYqpDwqcnR+3QJ0lqAccAQuUSdy82jyANyhB5jCFwswqj+oRSJEEmeAZfEUhAiY+hGkfDptB\nWfXKh+g2EDkrkIdL0E/5vGx8ttTYZzKgCuC2WVzq//MMaDoHJZ0DXRdA7d9/+aGZmVXJnr17/+u6\nP6pFpUyI/lI9N1MHqperdvc47/0Cnqh9MuvdFbwZeT3viPs8m8sWvcqXUzo4uAcHwzpcPyhaHPc0\n7qWqxv1z0B6Jkdpd6+v7y5F82PEL1Xfiq/2FPc4K+2p/GR+wWMnma4xrrSz/fBEjcwOiKQMnzc3c\ns5sjZdlX8NYUIQzL5DWvTlE06IT8GNACbe1pbOL4iWQLmy7Acwa/TfUeahRwzAxX8A+d6Eaf9DVG\nYw6zdxEuWWFzM3ia/DoqF3NlsVzQC6efKrt0PsPv4C/6KID5TfVtc122V62TbdtHZQMU1vgUThc4\nb/qhAiJz984dXZeooUryTMoPn/5L8U/0z/WZuSd+uduWJOjYoKb+a03pb7LlQU/tKsDDMTCyiikU\namKs6SBgcijclKHImk5RfsOXnJ7DLUa2rcxan4cPJEiAHpjoBmmUf5omm8vBQ5dYD2F6ZpOZb3HQ\nKBn4s1a+5vICbhmrgVIYqX9vQAHkUY3KJUD51uBzGoNARaZvCepkhHJcEh9VAj3RAVnUSGZs9U1x\nMdUSGuvyLjxEGXjuQFEWHe1X9kPVt7LmfTYDkhCE8nyI2mVaNtQAqRIvAfm7hkMrjlIYS3Iyr4zq\n1l3WWJMNe82efZkSsE50fNZcN1Se0hhdwvPz/FJzeWMTzi84uJL41zScW/k6ay3caAlUpOYg8Gbn\n2odmQ5U2eOlcOA29a5CPExAi2Oyipv7c3NT9Ph5oTk0DUFuMaQBCMlGRDSZRI1o4+nt+qno4poxv\nB8SKd4M6CnNyq6rr99/WHnGJrS0n7Nk68mkt1O0O78tnufTjsI/CjKM9WQ5eo/qOMs+9iVASORCM\npbWwnig4HoHEhMOrO1I9L38on2Rm9vH/+sc2GOh5jV3to2t3xAmxAQfEFXxQzWu1L9yrNXK3R2ZO\n4HBcwetWgIvweVJrxoz5053IfxncUrEr2WzvQM+KB3BKwXXSuCO//WhXCJkXp7K107n8XQc0ZvcD\njfElfDgvLzV2d1zWtiLz2FVbU/dQNYK7qrilPcydDfX1KNB9Rs9Rpv1c7fh8qrUMoS5ry+SslpHf\n3XlPY7i4h22g9pYE9XbT1n2eHsnGp953zcxs7VxrfGasG7so2oRIST9UtkVFNshyf3jiMiBKBqhJ\n5RLs2UBunppsLN3XWr52Fz4/EKL7np7jruu6Q5CEl/CIQJ1jY9RZY75QFEH5tZrRbcr2mm7Ue6j+\nWIdnyWdPWc7rfoOX8Br9tubW3jrrd1vrb7en/UByrvei6ToouxbvByD/+yhX1tj79NLdX9QlmcvY\n6rprY/Zh9+HvyQOjH7kaS4f9WiInmzyFk/Hud0DxjtRnQV/PnsLdWMyEPGvyQ/OJ0FL7f/S3zczs\n71XUto+P/x8zM7vuyQb8cfjupTEujGSrzwJtTkZrIG7SWi8uHcbkRp/7hyCz2Qu9HAilW2T/ujYX\nWusCpE33yQ/MzKwJF9Z+ktMQdfVpCd4ih7XZpx9SQ61H9YHmyBcfwYH2KZyQd7VuDE4hSfslJULK\nRCUqUYlKVKISlahEJSpRiUpUohKVqLyB8kaRMrENoQlacMpk0EV318gAvCQylVNEy0NRZ1FUNHEd\nzoge2bjYEjZoskI+aIdqVhG6GhwQcdjlzz6HN4WzaUtHkbkzV5G8TFWRwXJPmYxWQfWLTVS/6jd1\nn+2YorO1njKpyQvOM1YUlS16ysxMK7pPB7RD5pUieTM05nMELXsrRfbTBc7ALUENwEsyqsNyH2Y6\nfqrI3JTMftZVu68vlcHO7tQsRdb+0x+Rvfc4T3tf0cdNmOXPC4qCludwlgwUYb25UNuTDkiZ98jg\nJhWxjSeVuXz4bWUfhgX9/t1n8GdUNDaJOFmuW5bYS0WKm5z7Lm6AxFih0LAO8mKqts+Iyi5gfZ+e\ngUiBpyhBcn0bFvZ+Vdnr2A5RTiLJ3ZGiofnCgZmZlWuPdD/UJmyibJTfJGK/pyjoqqMHlELUQkVj\nlx+Hij76foQaVJloa4+zuoU0KAXO6JdMNrhMa67UyGo5M/VDDU6WKefL00Tucwn1D0eULeeF58dV\nn5Gv66mG5RYhikw/WPJFhXPeK9BcXc77F+jIxrrGe21TUer1+/foF6LoYzhlYiB3evQPrPXxDbVn\nDmxuOJRdLsekWm9RlmTh3SKfnOfuPVdWKBlXRD3lg/CgDVMC1tuu+qrI+V4H+bPKgfp+CNt7t4ka\nw0QTNQEXjQMaKIZSSgFumnpRfm1i2CR9GgcJt8RPZdLwSpCJy8CFEPITrTJkBPsgY0DsJVA0mHig\n2xzVy3klmxyQfUuAcliu9LsiSlwjxjABR40buhm4UOKw4McGqk9vobn4s7/8vpmZNbbltwYt9U8J\nNv5sQfcfz1AkQNGr29ZZ4cma5toEpNEIpFLiWyjEPJQv+cuP/pX+/rr+7jI3e2Stth/LF9229M/l\n21ooGdXuak6MPfmkCuOe39T4lEENxEABLBzOu+9hs1fqsINHygrGCrr+5Ac/MzOzDTgYmg0UKOAJ\n8TjPH0uHKjK67mZwYhc93TPbByFXUlt34RyIzzSPXsD5tYQrK7ujus2K8B+9S4aMNacCgm28YA0p\naa3qX2seFvKqe6IODxtZ6y5oBQcurQQKJfGsbGH3LWWXJ3n1WRsbGJ3DMeKqT9ObGuMNEIzZXWX4\nSihhLQLVrz3WWLzqkSE809/1UD2jorl1Cgpp60L9EL9Rv8WKcLMcg+7qaG28bdl4pPYU7su2y3Dl\nnJ4q+zfkfjEU2ThebnH87sBRfd0uczgGAnJN/d6oyD8m4D7Lwi2TqmmcFvAd9VGINLhdkgYHxFfg\nxero+xlKbuXYa7U6b25W2kHJpgtMBATLOupaiHPYvATKDjWSclHXDWaqX9nR3mVGpn+F4mUSH5jN\nhKhEUAQgtcqsj8VlwtLwwflxfgtPQ3qpe3fgGMgdspZjCwv43OYdeJPmGuOkI1tboA7Sou0+ew1v\nfEKf6D4p/OqC/d1nn2ssl139fhS7/VpjZtZug/Z6pjnkVDQm5XXZfuMABM86c4esd9JT+4YoMjZS\n2js5Wc29ONxo6/DLNV9IqfLnz8mCx+BNYg+yuYvyC6p8pRocY576aeBpjDZd1W9rUxnn077qf/Nc\nWfUY3DP1tPqrBCo5AVJ7iYrJCORNrgcyiXUk24Lb56k4DcfX4gFZpdT+NtyN8bSQSin8ZAAC8noM\nrxGmFCJmjDmU3tbfI2zw+gKfAKo2VQFV4mu9TqFuVUXpKNN5rYhTzKWtmFV/FUHE+6jyffHhp+o3\n0MJhxrq2Aa9i/fbqS1udUMVI/rqTl60PevJjBVCW/bEQIpNTrSEBa4uDX19vaWw6ByC/L6QE8+wT\nUAKgjtpw9I1AfV1n9JznT3Rd+xg1v7LGPn+AGl5JtuH2ZFt7SKCNA82VT4/UF2N4i3od3d/PgRSH\npy7/t+W/3gIF68GH2YOfr83vv//pseo30J4h3mOvVNA7muuDegINtcV+P73OWINQf6+ATCq2P0tr\n7p909f/hBetaV/3XPEYJ19FcWsL55ZS1h8hSz4MJqqzQkqQ89fsQ9FgFCOAlalk5EKiWVn/7qdtz\nIZq9Rtz7Qz1wsafxKd/V+8aHR6gkdrTHm/0I5cZ3ULjMa33dArk+Zm+76mjdKtjfRGb5BudNU3ZX\nq7+urz/ZsnH64hf74+EVXDL78sN5kCKty/d1767q3Codm5nZIVxTzyeaV/k8744JeIl4v12wZsSe\nine09RO1IQAVXPu21sjTH/EcV307KKDYyN5gc6a2XE3lz7vrQrzcAWFzUwD1D2r1KfyeTgrUPmgp\ng5/p7IXecfMHuv4QPtLJvubIZg+lQ0f+eQwPqfO5nldBGfNmrOfmMnDQbtB/D9W+w6+8RrX+u0qE\nlIlKVKISlahEJSpRiUpUohKVqEQlKlF5A+WNImVyMSJINYXQpitFzHLXymBkyRL20qANUEVaBZwr\nTOu6Knrn7rWivD3O9nY55x1M0TlHRcTdhA+jgPoIGWOX83z9tiLtGzNF/oZrsL1f6f9jIoILOGLO\ntxU9XpElDGDnz6BklNnU9V9vHJiZ2Wik5ww8RYe7M7TmMyBzhmTPyDANhzqrVzRF8upEaxcZtaNX\np5+uFOW9GSma3jdUDDJJS6BitNZHDeNbygg+fPwV/TYpdM74fbJS66CRTCigUlrRQQckxcvvqy6X\nR7SdbFaFc8k331PWwU/C+ZIRImV8rkjwbctlX1mY1LnqvdZSBL6Pgk0sRaQbpu31CucPC4qgN3f1\nPO+MrFig+52QIY6hWrRe1Ke3UkR+SKb6dEaGdKhoaPxSEf47X4erIKU+Hl+H2R44EKh/FnTGEEbz\ngGx/Ec6F6RzEC2migOzeFK6CFJnUzEBZqVUCNaWF6t/HptcLQhN4gdo7TKHWkuRcN2gJnzkXKsOM\nkrKxJKnTWB7OHIcsJCiCBbwl/SaHh5e6b/uU89c9smooyyz6oeKDfj+o6P8ZMg9HN+rXAspii40s\n7dbc3YiN7LbFATGSScl/DFtwPoEgMVQvcqjn3IAWiE3VV/4hWWEyf12QLyPOY2dKZBdACwVZUE8g\nXwJfNun1lXlsNfEPQ12XbaCAs9BzPM5nu6hdpOGo8bJkjNPhGOv3wzjtKwHtQVprhloQABabgIZK\nxjUmswEoilTIWaO/p77uWwLpE6uj0oHClouqyByeoHiojgLHzE1X/fbw74pt/867sr3Srup1dKSz\n/x89+Z6Zmf3hH/1DMzMrjvX7za/Ixj94qkzIGJb6wprQE/FNECaBbPPtx8oanQ/hweJcftP91Wdz\n/82SqKu9NXiWWiBnnn2szK6/qcxPOaV+LD6QjwxQomjALZaPH5iZ2ZOlzvHHYmT4r+UTr4coWLhk\nmMl9lGqae1u18Fy8fMMEPo/hxdRSHhk5kGcrVDhKG5xxL6mO609BeeY0X6s7WjuKm6B/RpzbHsqW\nJyeoftzIf/VPZau1nObMGr8/ACnyigxsfSLOgNU9PTfDefAQaVhZl193UE5sbIprLBbyFIFaa4DI\nTBRCtTVlrU5egW6YHqsPUFZJgaDZhntmHYWXYKH1xnuuev0cRN4aPBvVhrJppffUX7PgV2el/q0C\nh8EE/oshGe/1Q2XXtg9Rwulo0vXh9ViO4H0CHbYExRsDGbjsyWa7WZRyFswtEIreRM87mcomM8D4\ngjg+Ig+vXBPeqbH8cW5PvuPq8jVS5qrXsl241AbwdZRAga1Qe2lDRpR3ZT8Z1q0xaK5YV+PTAiVR\nCsiaLvEhM/V3yuAky7FnA22RKut3ufHCRvAwZAb6PPtMGdR8kXkDsuPlB6rTCWttLFR+Yghj8OyU\nQMZ4rEHFJGsnioHxsjKt9U1Ug8isTkFOTLjfEhWiTPF1392mTGahciFjHFO9l/ADZfDXuzvq21Uc\njin2hTWUGResdd5UNp2kT699/X11pqx40lOfb4GWGE9QR2JvtbGjv1ehUhsojLOfag8Ww/byW5rj\nW6CyZqDb2Oaa30dlCPU5A7WVy+j+B1ta57IPtMcy9gS5LXhKToVyHVPfGXvFVRb+JXiYCgv1y7yn\nfpnDPbZGf5XW9LkYgpB5IZ/lswdKldUPrYH6aR20cxKUV4Lnz0Ggprf0vZnZxju/bmmUzs7C9wRQ\nFX3UUWcg8WtptTfBHmrm3Z4vBOFGG4M6Csfafa6+P48dq84g0pdToa7ioLqKIE0SJfm5aaC18fJS\ntraqwuODGt/XQedesE//RmijM9V53AG5nYUn8xJUMfM54cnWLs91/zTcYcmh/FJ2pL7Zf1v1KjVQ\nfr0HXwcIulfPdN/PTvU+cdEEBTpEWXIGQgZkeBEezeRS7xn7+/iKA9lOEn7Mclr1SF9oHUpR7wl7\nivZCfjto8c6WAI2FbxnWZCuVJusE3JCG/5t7obIYCETud5PTfapdVKpWocqc1oG0rzkzSQkJtTX/\ncpwyfbm6XyB33IFsdSepz996rPXgk49V/1ig5xy19R7TW2k875ZBWnniS/Edfd+I6/3oJkRsouo4\nHKu9jdRrFFnJSdh4WrV4DvS/pz1CHOWmelHvis0AND3KUzH233ajMUoQVqguOamypmdcwdESH/FO\nhIrw9/5KtvLW29rnhTyXqyzcqcdwSD1GMfdQfr674l1yIj/vgs4M7qlelZHm2iirz+BT+cP2QPXz\nq/JH4yOUw+DzZMmzEcjDJfxCffql2EVF9Vz1OEa1ueBqjp6PtL6tg2g/fBeFyX3N1ZWj5/6yEiFl\nohKVqEQlKlGJSlSiEpWoRCUqUYlKVN5AeaNIGa+hqGIxS/YGTocqZ/7n8FBkV0R1oSNZuLDHDxUB\nm8NQ7q2BphgrQu7nFfUcgJTxNnRdEgmcOGfdFrA2z5NEs+c9fnegB8Kq3N5UpO4GpvAUSgwzIoW7\ncYU9Z6F2/Re6/uRG1+fjcBmQ7VzbQv3kUxQWUopMlmOK2A0/V+YhZ4rmnqK2kmsT7fYUtV7dh+Nm\nW+0LOmK1zsDtkOvHLV0iSlkhmwAL+9GRnnF8pEi9baJi9Ep1f3X6l2ozZ/ofvPd7ZmZ2p0QUlCyT\n09fnR//0z8zM7F/8xV+Ymdm73/ltMzNrXalvGrnXkdnblLUtnedLwQf0eE2R3ycfqL5TsvqzkT6v\nZ6gBwUK/ABGSIVKcyynjmh0oqntGkLd3pL6/jsPPQZam11Fk/9mHPzIzszlIkdqmori9S0VFU+uy\nxX0yCPkALhVmWDGp7xFGsEReDwYcYYu5+r2S1WcVJbIaah4z2plCcSyHOtZFeP4apnT/2Ke9MKZz\nxp9j1DZFpSmJ0kPKg8+DzMIKno8YgJhBmGh2lBlYknk9ARXgkX1MHoNCqXFuEy6ZyUrPX5JpyDUU\nNXYWcDL4qIDEUDVxySDXbn8210epyp3qc7IE2VY90L1XiqQ3EprnuQ1lhQY9ziujwDUk6z24RAkg\nKZv46qHUQ25O1Oa9TWUl8luKabfhCSqNZatJ+BxGc9jZUUzJZ0G44MhGjtqYgVMkhx8aL3VdDo6B\n9BwuhhXZ+6H6LAvL/MJQHVnq/yQALefASYMtApSxOcAfDy6e9BB+ITLHsw6cBEvOLVfg/cB2M2Rz\nzp+pny5B7P3+g98yM7PaHdXjXluZj723UM/7obge9t/W/Y9AoY1HypTEUc06O/mJ2gkLf+MbyjD0\nr/W8QzKjZZCKty3be/BkwbdU6MENtKssXZ7Ms6Fcs08mZXgue3rxkeoZq5K1m6pfXl0rOxUjC7cD\nf0hmIXuoPtBc++q3lGk6buu6p38un+LC2/Ho8I61Usf6X6imhkLfo8dwNYF0e1GVbWTjsqEkPA0x\nZDBuPtJ9fM5Lx5eoNeDnnz6TLd97oDlweCi/ePNKKEs3LlvcrMoB+NjuPEDVh8zo1TP1SQ+bmQz1\n/9a1+jZUZVp/qOfEUHYYfq7vr5/IJpZwqMRQe9vegf/ogdq9vqb6DT6Rvx3G5ZfreWzYB4XGOpA5\nRGFrdHvFFDOzESiDTEm/X3TVruYTrZc1eIDG+NM0yJCYL1vewk96abXThYunP/rF5oVP1f9kouvX\niqrnnU2NdxEVkQVouOQkRLlx3r+h+4UcP9OzZ79oQ3wZM8uqX+IzfEgSNAecCVmU4PyF2pNz4fwC\nxeGiOlhkL5MBcdRD5TCVAhnah28KHo6pRya8D0IoObSGBzqKMUos1ZeTNGPkgIKqq1PvrcnGElnN\niwSI38VSz3bJ7vbhvZn09LcXU5+kWEvaL7TnOL+WzYxnoFRRaxq4qlcaW79taaD4BZ2DrVBFMtCt\nWZSxoPSy8NsYa6yl9Xl1rb5aztS+LIqFOU99t19SvywL+n6ygDfP1/p19Kmui4GGc6rqzxpcB/dA\ntozgQpv7odIO/HKgFRrw1y1QbJkKAGgLUGMjuBcAWVtnJFupmWzAYc+UvfvQzMySjHcOpcUAXroF\n/vJqpTnlg5xKsecJQOQkUf6KM54vL7T33AmRPo+l7teZhAgjOBzpx0FTPmU+BoWRl22amU0nKZuA\ncsgXqSfjWSrAD0JG34P3KQMqMDHv2G3LNdlzF+T1Ap4JB3/hN0FEs+b1QcpVWlrbgvtwP8J3d4gN\nZw+ERCwV4eu5Vh8f+VI/PTrWc66wid6N5tpJW/X46Jx97IfqU0sIUVHDr28fas362q76cmtP++3a\nfSEoyzX97ezp+c9aqvfFE90nRCbGplpv9uqq3/pMtvI8o+fU4cwpsM9d5mRjAxBCpUvZlDvT+pIY\nyhdkUQl9hn9dXWiOV+HGuWAvVJmo/VcoKK7YiKc34FoDxZVgn5wCXdVaQ9V0IBtY4lv8kZCSc9bT\nXoc9J1ycqaRs+RrVwtuW5VzjWkC5M77UunwUaN0rFaU8llvXur2dhPNyQTtewZ+4z/vQFnN5pf4q\ng9TqfKo59bAsn/FJGmWko9fqS9m0a5PCqe3Q932QiDFPY+2l9Iygof3YMlAfT3+Awu631UcT1CtP\n4OxbAw3WBe1bONZ9vDjqcHNdN+prH1Vljd0Atf+iI9vIsCfaSanPV+w19vZAGqPY1QEFtbWtdw3v\nWvV8iqLjuyWhaTucphjwPDeHAu1C7yqDMbbsaE7FUGBMbep5LfZcub4+y6z9azmtxdOl/NXFDYi9\nCyHIK1O9O/6yEiFlohKVqEQlKlGJSlSiEpWoRCUqUYlKVN5AeaNImfgUVaOGInJuE1Z4BZgsd4ba\nEmfF4iU4Uq4UAetnQp4OMsVkvrMFRTtXY0UL3dXnZmY2viEjXUYhoqnIm1cmUzxWpGs+VzRxEFN9\nijlF1nbhrAge6fqxqyhjdan7JAJFkV04bnIgYuKnnJO/VCRvMVCmY9kg+kuEbfgKdY41MrGBIo+j\noaLaxaQillPu27qk/l/AXbHBmT5Xv1svgfpYDCyZV/wtPkd55ibkVFEfNqpEXvOKei4nastol3N1\nZOfjZOMzK2VO63m05veUlTh9qWc+vCPt+d//xn9oZmYXF0IdZOBIuW2Zkqkcc973uqeoZPeZopGp\nmjILqbtkWSa6vj1BLWKiPuqM4C4ZKtteRWVkfYMxIwvXain7UkXTvgjvQ35DmYJ+Qf2zs8FZVDIg\nK9QxOkuNfZ7z7x5xz9QEtaKy+m/A+e0Fkf/8XM/LG0oFoLmyKOBsxFWv7hHn7R/L1idnygotOqCz\niBa7OXiLYF9P11DY4b5LzrmvqJ8PT0lmxdlc7ATQgAUojuXyZB7IvNfXNaeWKD0sBiBwyLSuZRUN\n79zovnEU0hoNUAsTosiotCxzZAxQvrlNcVJkr33Z4IwMap4M6xyU0RfPlAKskyHbbOhZI1jVqxVU\nGdaVCejBh/P2fWUsL14pG+WgQBBb0/z1nijjOeX5Ww+Utckn5D9GMAyFOZT5gsweyiqBj6rSWPdd\nruQXPchiQsWwPlmgOOefe6hPBKCXgrSu90JkTRJej4X6doEPqHj6nUuGM1nQ3z7qdj0yhC4ZzRyK\nLVkQjdOy2vn8fWV1zl5KbWj2TO35yjuyzT7cBMcf/AszM/voR39lZma/8VJzoNgTIma/p37+o//q\nvzAzM8dTlsj5TAil73xTHAYffab6uAn1e5DA79+ynHwiNRPAJFasywbjoAWWoM+8sZ4TvFA926/0\nu/EnGs9YWf288d63zcwsv6W53wThFEP9Lo9qVZyM7XUXRaVPURg70zhW78l3ffVrj+z962MzM0uA\n8twli1skO/3FU9LYZ/Jj7aXWhtVQGTdnDu/ES2Vlkg3VZWtffm4CqnQPrqi3tqRYUEVt7qMnykx6\nnJVP5EGC1GSEJJes/an8zqoF91ND8zg5Vl+kfdnGpAOSg3PhsaLqs4SXaNFXu2yCahxog6srtcNb\nyebq93QfS2iNu0s2PhOTbW+CsOvDjTVF4eF67Vef3/43i+OpPsXtA7VjDT4okCAjzuJnkvDTmWwh\njfpgB79bDPnkUI7MMo7lFX5/ofGYU08HvqugCcztDFQc6Lg11OhiSdSmGK8Z3DI3zdf5tcSiby6o\nilzIV4JiWaEW8jBpD7XKgBohM1yaw/OSBmEK6nAI/G7OOrTooM7FsBRQ1Sou5bviWyB1uktblFE3\nA73kw60XL8nv3DwFaQbwbZRn39LFf2dAtDGPesZYoHzYCtc4PoMY+zFQUk5Vfb2bUd1KG6rHTcg1\nk7i2L1NSRf2+Cn/eYAnXCUqUCE3+wi8vQF4WsM2Eg2oRnGKnV2pPq8mciXt86v4ZdukTEEYFYK/b\ne+q/LpngBSivOmt7uSg/uUIVagKP3SkZ2xn8b4099UujoM9YuPSyjizhRTqZa867oAxmqEgVgQRd\nM1dX8CEN4SGZunp+j/Z7qC6tQKZXmaMO6+K4oz1MD/6+IICPib1g8Kl8XoK5FLAMzD24MDbl0/ZA\n3CBAp747uGfTkfpxAO9KF16SmMd4oezWz8oX1ZGwTPkDu23Jw++YQB0tvqX5/9KVLQwq6qPaC1Cx\noFQv4XwpgzSb+KjdxdWIwSv2HiC950s1PuirDRsg5xIlrZmlLRCWJ3oHevFK7zLzIgqz7rtmZnb/\n20JxfrPBvg1kzMEjbGlbz0+81POGrDczvcrYvY4P4OgAACAASURBVIz6rMNph94lCCDesY7xW7Gx\nxnLUVn2bVf29YbyzwGUV1OBbiwkZtHGAYhp+6N5A9x/v6XfNoeZ6cgkfEjxTlUSP58lGr2pqz2GJ\ndzlfvmXO/jiD+wWEbAHr53VMtpjB/ycxqgEITwcE0Wr05XxJHnHAZMifxL65cqIvsod6vylcy1fF\nRvIJVXgCmyBPL9r6/U5c6OQrbhy/Jx+xfiqfMUnDi5LS+PdQdzUzu570bTJrWLAFZ8xcv9mAB8jp\nHpiZWTrO2n2jsattgtAbav5/2Ob/Q/aFcHztoRg7ycuGpkWUx1Bd8m94f+c0x4p3zxnHGer4++kp\nfqmKn5mDqp/ouhqcjLMkpyqe/UszM7sD/1kcW3aGqPllZCMbIcqpLX9Vnaj9XfZKbgXurmWoUqd2\nVOGY7A6OuC/vC50PzMysmNCcy3LipZn91RxmEVImKlGJSlSiEpWoRCUqUYlKVKISlahE5Q2UN4qU\nCSXd5yl4QMiA+GlFrDzOuq6tFHlbdhS1vIJrJh0oM+GsyKSQbZqeooCzpuhiyVNkLJ1XtHaMsk4K\n5YoBKioJMhzOSlHXG7KAg+eKCnv7B2ZmljWyemTzg5KiwUsIQ1LXqn8bxvU92jtDtaN5ruvjoCSS\nW4rslYg0LjOc23bUL6WGInMt+qdApqK+zZm1MdwUoBAmWUUAnaEywbPszIpkSBNFRYRffqbsVGKf\nM5k8e8qZ1nJJ/39Q0vm3tx7pHO9iTX35F//kz9X2nn73e//NPzIzsyJa8SNXyiql31Ef/+SPxQ/x\nsPKaCf82ZQZiw0EJJ7uvsarAMRMjYh2MiC+ucU59rqhq2jivHCPbHyjLMp5qbBsL9W3c4dwjSJIY\nZ12T8EzUQFdlErrea5GVccNMp2yi4MgmnLmyVDXOmhrqTgtHtteokgXzQwST7j+Gw6Z3wRieybav\nnmu8fvaTH5iZ2W+lf93MzBA5MY8MeXVHc6IEj4pP5jcbJ7pc0v8dFIk6GfVDGUWzPhnyInYyM1Su\nTN/XHdUnxtlbWyoSn+V+4e/SMzIsnJlekGJPFlTPvKN6zD14T0CDFMrqtxmKZLcpS9rmwM2xDNTm\nVFV9ke3LRp9cKZLdcGTTWXiGrp5yBpSsSAbeouGFMoNH72u+ljuoEIEUWfNka086YnVPrcnGvBio\nLDgMrBye0QWVBDImAJExXKjxnguPEOobHLU1BxWM8Ky7oXSTwS9OYqpHnkwBwlsWxDVmDtwrS7hj\nVlkZjZcCoYfa3ayIegecDaHaXZJM5w1qG+5E1/3mb/8nqsev/Qf6/UL9WyeLv7b7O2Zm9od/8B+p\n3X//O2ZmlgCZ2H3235qZ2X/9j39oZmYv/ux/NjOzP/8vhQYZfKg52fPFr9GF02dkHbN/8A+t+XNQ\nI7ctqG7kyZCnOdfecvR3wQEGMtR4JOFgqHch03HgVWGcvvGW+q96ILTgj4bKjDx/X2pOiTHqIxOt\nJ/GBMkfDn8muSn193zxXuvHZ/AtLgiDZImv9AATd6J8IZTRv4Zfhp3jKfM3n9XeGs/vrIFxSLRBu\nCfwJZ+LX39Jcubst/9y6Vl9u3ei89w1zZppUxm33N1Ffgq+j2ZIN+XBF7cFt46dRz8hpbUptMAdA\nLmZAh2VAtmy/pfXCv4Gj5kh9M3HUrlpbcy6oaA0usnaff6Zsf/YZ3DV5FLl2QVKewQnwOFx9b1cm\n8DDFPpL/mRVlCxsgFsv48elE9Z2BEBxNNS4eKkedhL53mXvluPzoDH6neB7VJnjpevjVxY3+f+Lp\nd2u++usGJbScA+8HCmJjUMTZ1Gsug0yqbquW+q8/0XqCEJgtL+Drm7LHKmmcE0tlpnv4pkWSjDMI\nzHwWlaVMqDCE/2eueFnWy5nm6BDEzeLGN+OM/smJ/Nqryx+rD3IgfPOa52l42co+ajggGZI+8xFk\ntI9iYqyh32+W5K8bJTgQWHsWCdQ5O6p7h4zn2QD07I1sexXKO92yhKiE5lRzajVDxSjBfVAaTLXh\nMmnJpoco0CRR1Eo1tF7kMmqnh2JhN1Afr+2pTwvw6pXn2Eig9qTLcMI4QkWMrmWzT/7Zd83M7PNn\nQkfc/z1xfWU2QMtua+4/eLxBfTX2yZHGbDwGBcH+NVfQ9ZUNZYAdENvxM/mq7rVQ0OMeHGoj+c0J\ne6lcSu0pgiic+eqvNOi9PPyEGdRYMnA9dkCorFf1/XSl37Vv9LzZieZcHnRtsqjn1KqguVlnknk2\n9mbmLEv26ki+rnuGghqclYUdtTO9zfsG7bhBriuTuD2HWbqCuiW8OQZ33k5efnF0pTXiAuRaJS3b\nXcMPDEGObHY1Fqt1/C2o1viYrP8ayoW7IN8K6tMU6CavqTW5lJAtbqIwuLanvnnr12U7dfzbJuiu\nfAWuRk4HNOFVy49AsszhjEmD2FsHcXKpOTaEw2Y0V/vT7ClaIQKlCDI8xRxP6HsnLoTOpKI5XCqg\n7sn+PV+Aj4p2el3UAVG6Scbh5wRlNxhrHUwO9Xc5rvXual++qADHTzeQvy6wn1+BCPe6IJZ6qFeB\nIi7lRtRH7VmiBJYP92q3LK94T2mwx3JRVx2PNZfTM95bUHfq1dS+TZQ8bY/1ccT7CDyts2P178k9\nuHkqavfkGKWgmsa/4L9G9jiLpCViJ1ZuamwnC7is7sgGtuCzdD+Rj4+DbnV3UBcC9Z4I7zlU57wa\nyGYy8KuVNuFoQi156x3Z8vML2VC7p+dlC2p74+uyjfNn6pMDwK+JoeZlaVfP7dH3CdQ5ixXQRR0W\nv6Js3e1qLU6xV/Jr4f6Yd5Wp1oUFcy3PXM6M5P9eosa5eV/70kJPa2UrDmq4Kn+f/WvVo4pq1Dmn\nCB5ty+Z+WYmQMlGJSlSiEpWoRCUqUYlKVKISlahEJSpvoLxZThmyMtWRMtejgbJfw46ieoUTzuCj\nze6NFHGqTODviBORzypq6L9Q1LDMmeREAbRAmGGBk8HPKbrbJguVnoRM56AsXH3vr8IoJdHTrjKa\nqYYyOitTxNAlkr5KKHJW2VW9sj6s/2Si4wTsK6ADxk8VUawc6DxneJ4w3uGg5haZnx193h+HWTiy\nbe1QHx0VJs5r5iDUzm0r6tob5q3Fme/EVP9Leaqjd845vS213UER5eUzsvU5PWOdKF9urmd0jsWv\n8cWV1Do+/CudZUzPFLV0yHQepg7UxqI+/TYM97csKdQ41vcVVc3eVVS2OFZnBvBieHHVb0VmMz9X\nX61c1b9YJMufV2Y2n1OWZZlEscqFI4fsU5AjqkumswdXQG6qzp1MwywbPEU52cTwUtHZVFL91yaD\nvFFU/8c56xojC9PjLGgcpu/VStcPOYsbR51jZ/erZmbmAINo3FXUN3ihOeOf6rm1kuo565BhuNTn\nahP2eYO3hHON9ZpsvAwDeTytubbB3BkcfWFmZgT0zSuRTcpw32WocgIXTU/17qMklIT3xA25eXxd\nn4ppPMdp2UmWeizgc4oNQs2Kf3+BXsI6nOedLuCbYL6XmEeVM9lMqa5npWGir4MeGiXUhjt35X/S\nafmb1rHmxN07yrq/6ihbkwTtlIfhfvtrmofDgSL604b8SxIFqgQx8Nn/x967x9qWXWV+Y+33+733\ned9z7rOqbtUtu8pV2EBot50G2kk7NghDAlISNVJQ4nREgyhoY8AGY7sNTdOoISQkFkTpVqwUUkIk\nghTSbbDpcvlt1/veuveee95n7332+73X2it/fL9dBbSrfEpqdSlijX/O2Y+11pxjjjnm3GN88xtd\nEBe+7ktxCouQVWp5yqYVHWycKkjLSi5OHh2RMQ3BZTKhqkfYly2kQJlFFrKtBOfbfV+ZiykZ4xAZ\n3nhUGdksqK+QC2HEhHPwd4XWijlCu9XhbGhxzv3e08rMvgWOn5Nj2c5H/0+h5p79L1Wd45n/S5mE\n2Eu6/j1/S7bxnr/735qZ2Z/81v9mZmYv3CEzfFdZxfYLypCeMVdHU/XzvFK4KK6gfE3Xd/qyvbdy\nRvjhLZ1fv/U1odE24DfJdqX3bcbP3dZcjx3vql1k5aafUwbWIQNfeWDHzMyqRbJcp+p3+x7IS/hQ\nMlGygt6axejTNZBp8V2huAZfErogvqyIdUH+do21bGeJpBjIrw1fEuKlBc9EisPypbL6eq1ApYQ7\n0q2/q7mTHoOopHpSh+p1F75fY5qpaD4nWGtDe1TB6Gisk+twYH2XdB3Gnzb2df/4bX3PbYIKq+lv\nHL6PxLruV8nJFnfeJj/XB8kZpfrEpVXZUu5U608e5IlLNn2yPOc9emPVl9YiIAZBjYXhAbo90poc\nIzMaB5mUySmr2Ib3Ig4KosC64OH//Q6VG0EMjXqykTgoXS8t37F6SXPrIdbuAufa53AKNYfwaDDH\nvbbsYX391XV15/ErFqcC5XoKBCU8W3My5pOuxjeTVPvH8FdVKrpfMqF1MramfnZDrEcgHFOe+pfP\n62/jhEx+UuMQI1M/Si0snqLKZY81B/RtOqMxz5TYvySYRy3Nl01sNgepSii5tBX1aTCHKwtkTeNI\nNu+2lxUFpeujkfywO4CLBki0DwLHrbyx3GS6AFLF/6tVl7ws1XxA8gzqWgdWcFPTA72+98KumZnV\n3qo5XHtMFVZCGFe1qLFz1pSZXYU3Y3Ci+x7dkp+5+a/E/7RORndZVXTmsRcg279BVnyKrV65pjk1\no/rS3vPay53B2TWjck8c9MWyqpNDdSiHcTimqmiN6nWldV03m2n9SrMeDUEoOiCZXFBekVW1e8k3\ntyDzffG6rl/UNW6p+9T/GsjOW1pO7PREfjTKnmdZOa11U+vEneelp0xJ1733Ax+w007d5iBAMxXN\nGXcmO7v0PQ+pXSV4SmZwQIJsX8zU3/PIdCKbmBTgxVwHwQfapjMB/fnnauMwp7YXQUWtw4EYjbEP\nK+jzqavfHHUQ1ptz+dkSexoP3qW9Y/mX9rHmxN1b0tH6FfZ/K+L5GNyVrez1pLPWqp6/1ZCfudTQ\nWJ04+vwyFbKi5V2140TPC491XQc/4jhq54SKlgn8wbCndrQXalc1umNmZvEFnC5lPTeZA3kOd2EY\nJEpyY1ntFR8Ap84CLskp/Hldqiq1PGx6Q/vVEnQeia5suZDCN7CniPY0Ll04W05AM4+o4BXje+5Q\ne8R24q9W6DoBLHFeKYDmqh9Kv7kUXGP498FA/ZxRqXPlBP4oKlyW92UXx3CEJlfVvvWiGlJ8Ruut\n/7DGJ9yF35C92xIRZGbmJNqWaDs24cRJJKR7ZFOgTfl9+cVvSpePXpIN3vegPh+34VLlt1CaeXnX\n1b4nGdPv3KO6Xi8r+A3gmomCeEtMGBP4PR8ual5+PS+bHh5KN42enncjqT63TP41MpZ/qw7gDjvW\n8y59p3R7wm+tUFI6n2d3dN8jTqrA71RaBxkYpuJsXXuAddD/ta78w7inuRof6ndBkzlxF7652sp3\nmJlZ0YNzcO/1jSRAygQSSCCBBBJIIIEEEkgggQQSSCCBvAlyLqTMpz71KfvKV75iruvaT/zET9iN\nGzfsiSeeMM/zrFqt2q/92q9ZLBazP/qjP7I/+IM/sFAoZD/8wz9sH/jAB173vp2uIkqRwTJ6rChn\nVsE861KXHKCLJbtkZj1935tRqYbsTLbKOWmye0Zke7Ygg11Tti4TUgSPJJJ1B1R+IQs54py0UyPC\nP9RzDmaKxL0loqjjqAK6pAs/Rl6Rvf49zlmS+UjtKSKY5Vz2KUgb70jtW/j6/hrn4V/eU0StlIQF\nOqbnv9RURK5KZH9IBYXBAn6YoaLlCw+umpwidaFR1GbP69rIQ1STWFUbBkNFEZ0XpeteSRHgIhnJ\ndFUR9UxB0b1LFxS5Lv/n/6mZmV398uf0uqaI64tPqy0vPKdo6kbxs2Zmdo/sRTN3fgSEmVmsqoj2\nfKj44WGdtBOVYOJUGOgSEU948GvA1zMYk8GkGsV4pPeznPGdwFaf4CztmUOFBCfN86lEM4Wr4T5F\nT3MFZftevr2rfpJh2GtoTEPtEe3jfDwlxVLpZUUx/Z1QmSFJlaIq+k2Q0Y6g18iJbHcHtMbsjjIN\nZy8pehyC5yh3Xdm3sEPGcmuD62Qb+2Rs823pLwWiZeDJprogXRzOfYcn0l92U+3tT8ngh2STK6As\nWlkyHTH4jTZk+0sunhDx3xxcEyOqVqXncBXAgdM6kT7nvtpxHikwkRdNzd8854LzVBDpkPXvw72y\nzLSOqbYQpYoPVFKWv6jXt0aytaMXZbsP3VBG03te87O/0H1bZGW2ifAfc7Y/fwleDyLzLSLnkSzz\nk4h8eEZFKzhNXHg5JkTW40m4YCiLwfFsm6XgdQDlVARN4Mek82iKijdk1Yzs2wzOnVFSkf7Cts5x\nR0HmnMG1koLDqliQnu5/TFn8UlkcKqOxbOf4mzrXXYrJp3zXf/JD6tfX9LyvffFfqD9/rPt/8dbn\n1c7375iZWWXjfWqfKTv/6Kp8y+r3Sp/rF5Qpefz7pccX5uJmefj6DXsj4pFN6+ypX55PdY0d+ZBs\nlso6jF+YMk0JTHEsd2s13njuy1S7i8s+IgPZ2zaojasJMr6g4na/pvuGBvq7tio9b7/rETMzu37/\njj37olA66YHuWXlJY+XfovpESWN99hY948KmbHprB4THn8BvNJFfr45l1CkQEfnLICPo097nhTSp\nZajukwBtCT9DsaZOVxa6z/EtZaedF6iaNCDrNYNPIiebrZXlH5YVqdzP6TnRnq43UJ69jnR/4e3f\nbWZm164LAePG5a86C9no4aEyrytUVCvtkFVLyg87cJok1qh2B09GyX9jZ/wtp+dugwgK3dDry2QN\nXarmHZORnrKFWqHa0IgCLT5cM8sqfBk4AWJR5npBvsFlvRmMtA5EQWbee0G2+sKE7CMInjRVTDyq\n/WUuot/5q9XqEnPXOg01JEIlynyOvRZ2UN3W9S5cMj6VfZKsA9M+3AS4GN+hGhaVJSPwDZzAyzGh\nAkYcjob4pi5cccs2zGkMdrbhWolqjxFdVkG6p7UsPGRvkKft8LN1evBm9MmsUi2tE5aOx1RmdEEa\nFpYVaKiSVJtqHkao/DUv6/oj1t7wdGxvRPw5Ve5M7UnznEhD7dx7TtXa3DPN+0vvlH918kI1OGfs\nE+HVqG5KH+M61dpS+P+2bH8Gh9gKa3UInqk2fCXVV1Cp6td971RVuCyIm5kLwsZdVkiEy4w9ysHn\nlAGOwmWT3dFeJLfkVovJX0ayoLpABr58G+TkdfnnsyN9Hmbdvf4d2jsuXqYCjqf+lTe0jpTL0tuL\nN+Ub0nAKtVqysRfv6P4JUAvjoto/aVFB87Luv/U9WpeP76gfg2eE2HT5XRHPvrrnnCfC5lBFJVvQ\n3Oz2QNnxvWOj0g777MFU41BxXr9qyl+Wg1N4J8ryT+GQ5m8kId0OHwaBRuWuxotwkuypz71L8rtV\n9ipzUGOhU7VxZUv7wNpVuFX2pJu7C7V9caK5VqzK9h+vwT/p4fjb8GCMtXZfAoWUKmq/WKOEWC27\nrDxV4LlqxxL50sns0y+4uI503z7cLZmM5gDgfYs5er3W0pxNw/dTSoBeQ8fpifrfSao/hRocKDH2\n+/BtduAo85nbkaa+v0TJGb9boicah7OybHe7pHYMUEcpJT/fy6s/4xb+zFV/eqDrXCp5zuEMy8L9\nNR9ITxsgyM8rA0e23mbuZqm82YZTZgiS1Ief6gAk0FvXNZ63X1AFSw8E54wqgams2n+nL9t9cKbx\ncPGNxzP1ayP7agigl53aWStll0HfGtWIVjb1t/ln0s1wKITe7BFxBFZAIH/+mW+oDyBLwty7SJUm\nP88JErj25lShcw80VsU1jXGHdWBUpvoaNhd3NHccOGPG+9rrTMuaWw9WtH/sGNyxrDvhmX6beT04\nFvPSbeFI98mM8zxXiMH8tmwvWtPYHj/N/hY0VBOEXXXJwUXl3tyRnvsSCPTShsbqwbfpN9nXbun+\nvcbr+5FvG5T5whe+YLdu3bLPfOYz1m637Qd+4AfsO7/zO+1Hf/RH7T3veY/9xm/8hj355JP2/ve/\n3377t3/bnnzySYtGo/ZDP/RD9r3f+71WKBS+3SMCCSSQQAIJJJBAAgkkkEACCSSQQP7GybcNyjz+\n+OP28MM6C5bL5Ww8HtvTTz9tH/3oR83M7F3vepd9+tOftosXL9qNGzcsy/nWRx991L761a/au9/9\n7te8d3WoSFiZOuWLOSzrDWUi0vBKTPcV2XKpUtIhKpsgYzIK6foY6I4JZ9TCR4rMDzfIUMIz0iML\nND3jrHNGkcBUWtHP9kBZI2fEuflNtaPcgg/EV1R7DqO1v6dzoQOHDCuojR78Kn6aSjQtzvXdVSTt\niPOBme9Sf1I5RQI9Km8MW7r+ZKZMQo/znfF1zpnDqWOwx6eKyhT0OLLWBM3gpns26yhiurYHKzzn\ngu1U2YL+ULrq+/DmXBC/QiKmth+6IGxaVN+htnusJh20uooqjmGTP+7tmpnZHfqc4JxiwX31DON5\npE8WbDxReytwqswh4ojDHzSZEWkmQu6RuV1SCsRdqphQsSYDOiLp6Ps+3DVZsuB5eEY6YY1NvaEM\nb3d/+Vz173QsG87X4FBIy/4dMgAhxnKe0/N6rmwkQ4YkvK521eFkyTigM6jmsdtcZoqVfTOqfhw9\nq6h0LEqGIK7xqMEbsshgU8aZVbgLIlRwOF3yLsHp4s+pLpVBf3OqLpXoLyz8mSWABTTGdJlN4nzn\nzFWkPknVqjb9WfKixF2yXlQGaoWlj8WJ2j+cdGgXaLdzyKQN8sVAHcFgHyGj6JGFjsEd1aS6UZLK\nYYcTkA7wQpxO1aajEyqYhOCDmEgXvbDmynMnQgmM5xqjs6lsOwwCJg6yZRSlWhzV5Bxf78+otNKD\n8yBZUp9TZMVDcQW0FyBnsjNQW/ATRZKgmMjWzFY0JmGQgvMBvBbwR8yOZMMUFLDiJmf/QQUkYdMf\nH+v7lQtq57wFSz3nurvbQi1kE2r/uEzlhK5u3AbZc+zq+S/D7XMvrDl1pwfC7//V8876Qr584jt/\n0czMnvgRZWTWllU/3qr1p/oO+cfnWy/Z3/uR/8qe+4qqHZ1Xunt6nn9MRZoIfnZdNvny07rfN7jv\n+H5lYmNUYoub2nOzKZtu73/TzMz6oA+SoDMW8CINHM2h013039M6UYajIf+wMsaLvNr11S/9hT33\nDWV5l1mZBZnSGRm+FsiYZFa2m1iRf13AHdXtqW0xEC/hijKpObL5fapTjMeaE/GkXie2qIg1hscj\nJr9eIqt8h6zU8Sln8/F7cc72zypLfjPdb9iXre3tKsvUO5LNpMdqXylJVT2PClUzzbV6D76f+a6e\ne5OqRZwvH4O8OWZuXcpH6I/au+iScQVpN3bOXzHFzKxXV7/aEfjiQBfkmdsZ+DkcUHFDMqfjOv4+\nQZaPrLvrwnUwlf+M+tpbTI61zkZABzen7DlScM6ckU2bwm22of4M8O+5OBwyHT2nl+690gfP861p\nut+qL5vcH8D1wLjNyKTnqHLS6ur9ZoQ9C5UkvYXsLE9FzOGECplUVzqDI+diCV+b1+uhB3eNf2pt\nkMedgXQVKpNNP5YOnYZsyMOfJVPyRyN47zJUb1q2bdIBrTPTWjit6W9iTXPBiamvC7LKQ/YKY8Zy\nDCqhAWq0VHj9ahh/XYYd9X0wk45nKRAkPfnnQ7i3QiCWLaZKiYlNqgSuArlbcr2wR5g15B9mE805\nN6Trh0dan/wN+Dhm8E3AG3KQY432qIDIujGmetWIbHnXkf5GX5dtt9DvCevC1iXtYSoX5ZdGBtmZ\np36GQlovwnn5jtUd6S2NKTZDcCz4emMECiwSkS1UQdok/GV5QI13n/U1k9AcPrsn/XVe0N/Zjt7v\ngnQ8PtZzNt4m9INXhNeEuT7DVi9ckF5Def01M+tPOtYFGZX2ZR9LFNkYPR3sSz+roFvCVLgz/1XE\nzbeTJFX0XsDPbiQ15t3ekltP8+T61mNmZnarp/3crKV5fo8Ksk5Jr4tT6TqxpTYegQrr1zV2M8Zm\nTFOLVarx1TS3nj3TnHNeZK/S11zwQPEuruj69QxzMS3b6oR2dEMqP3ZAdJShGenu6n7X87KtPuuW\n50jHo3sg7Kg6l7ilfjdQ5X0gJhP0cwGv55R9ahxuryEchKdNvR+Lag7kQA4Nsuq4y++EBvv8+Ql8\npKbXtTQ8pF2ti4V1Kgx1sCGjuupE/jQJB1eCPV2UymBT5mgxTkUwOIGOT94YCCEDavAwpPEpU0X2\nzlD9XHTFKZcBIdum2p4TFm/KAq7GWFj6GEWkh0VSehtQpeteR/aSn8I/tZC+/emrIYD0KGyZWc9K\nVMRqgdq5t4ffeF4ImTM4XVfgjDpuai2bjTVvFjHt09aHesawpu9XT+CzWZXuQ6fa5zU9+bfNieZz\ntSbdf+N5OKuyak85rn1WNiLb3D/S9576M+3D3/7d8KDB8dVta38WHek5xaF0OPT1/PZQ7a3A7Zeg\nGt02Vd9O+A0Zg5uxQFW3EWtnf1V7m/3n2b9X9P5sX+3+W+/523oetnr4lPh9EqvSz2uJ4/vnx/d+\n5jOfsS9/+cv2+c9/3p56SmVM9/b27IknnrAf+7Efs2eeecY+9KEPmZnZb/7mb9ra2pr9yI/8yGve\nr91rWjH3+g0MJJBAAgkkkEACCSSQQAIJJJBAAvn/qzzxoV+0T338l7/lZ+euvvSnf/qn9uSTT9qn\nP/1p+77v+75X3n+tmM55Yj2/9z//M3viH/6K/Q//4p+YmVlrTAp3l/OWJ4qgxWFLnxPtdDn/FzFF\nK0sVZQhiKc7Kct55eW69SzYolFLEL090eJBQxiR/qsDQOKuopdPXdaMpzNsrii66nCXegek8ldb9\n7hwoqrlNhC9M9ZFxR+0qLxRhOx0rCupReaHeVISu/Ih0FRmRiYhwxrao58SoQb8XozrMQmHq3kLt\nae6rH6tkoo/JFJRAbZydHVt8pAiqs0Z2J2TnDgAAIABJREFUA46VHhHlSU99KITItlxUW/pkxtxj\nzi+TjZ+B2Dg4VGb3IlUyfFBK9ZuKFqYuKdt8NlPWozqT7n/mF37eziOf+Ee/ovvGpKNqSpHpIagF\nL6co7Iwz/JZYZiLU3wbnipNkVidkOKsrus94pP4ZXDSztD7PZEAPUOHmDDRUd8KZ3oIi9x7VjKqX\nFaUdN5fVMdTedFVjPAGJ1HallzIVX/odXR8ma1ReU7S4fja0n/rQf23/7J9+2szMBm1FZcsZXdfl\nPHx5RZmA465eVxJq1yROxoHxy9Vk44P6Ac8D/cW5x0RIf+sj6TExhgsnLNvLxpQFbHC+PTmnog/t\nnrtw93BO3iXK3CKrV4IlP15U+9tncFeM+D7VsdpkNaNw0/zihz9o305+/hMfUxvI2sZKaluRTFcT\nd5AE4VC7oL54cK0MTxXpD3F2vfJWMfAfvqT32xNd99BFZbVu78qWfSqRTajisX5VYzEjixXGD/Wo\ntuZjaxmQeR106cBFMnfg/0hQqQsUl0sqMonNh8iIhou6XyhEtsRke/OFPh+BDArVyZ4wRgk4FWyV\nKhg52dyUbPr4SEihVFnnyy0im+jBI7JyQRwJUyprHTwL7wk8TVsb+rz3vDIY/VP5u0feIQ6YXkvZ\nnyjVrk4ayipuZ2WjLcbRBWkTX1aNuk/PO+ke2Sf++9+xX/lZ+ZBf/NTH7Tzy8Y/+Au2RHkpV3S+7\nzOC21f/O8/JpK9fkA4dUnPGpAhMeKdt2OACZldT3aqvyy+2Z+rUV0ftdR+PQvyd7qqwrI+Mt1yXW\nt8O7XYsfap4/cFlj4h/rXuMz6cjDnwy2lNX2K5rHcR+uqhNdn4Q3zQHhFsZvuzOQFR0hI0bwC2Wp\nxjSfgrCBE2AAqUi7DpKDc+AXS7pvDt6lPnMgmmetxn+2+7IlB/eco4xbJLTkP9Iamrqq7PxxX/53\ndoI/gFMlQoVFAykz7en6Uoz+UX1qRqXEGdmvRVr9+/A/ELL328mvfkhorS7typAdD8OKMA3LRlOr\n8M1hG/229JkDBeCgh1FT7U3nqerX1p6iDZotlaQKBluxbEWvl9xnqaqev/Rlg7bsod9a8k6RIWa8\nP/ZzP2u/9ru/YwsQpeuMa7uhTOy0AxKJKhxhkD3Dqe5bBu2VhbMNF2ITeLNc1rU87XaWYJAlyhik\n0zis+6cWefPo6zIpG/E0f5Z8NQVQNx78O0Y1u1AbyC8cTf5IuvaoqBgtyMbi7A0S8PVMjti3UZZv\nEVEjJ1PGAt3OQbPGad+HP/qtN8l/XT78Ua03bg9/WmL/5mntHR3J74WoLnr1ssbAQrKJ/Yb84QLb\nqVyWv2yAZpjgD/IgJ4egSNOgkqdN7SUGQ2WAV6lcFgad6lIBzMvDwXMsG4l6IFfgKuuxNk9DcMnA\nxRbdgqcEzq0l5U5xG3jDQt+rH8tGynA6DE55DnurMvyB90AmxvtUQ1wiCllvj1/WnmRjySkDl8Xs\nSHraelB7qx7rWw+0Xvmi9Bpnb9Pcl++bUc2pWpL/dUED/tLf/yn75Cd/yQZ9qqCk4e1jvx5PSA93\ne2rPJnvLeWdZxVDd/6VflI94Pfntf85vGk9jWGO/1bmgNtk+DjEvWz51ZcvDA9nO5Fi/ATKMYRFk\nRiHF76oNtXVBNaStEXxJO1QXhavkFqQp468LUXMLBF7eoYLksnJXTf43BNIlDG/n8rSAsValQhr7\nMmvyYPm7ALTpsKl+3mWfHW7p/X14egb4nVXQXLUNrWPTiPo1W9H7OyO4cfjNlsuwr+1oznlwe83K\nel1vUlGnx7oGl5oLCq9b1TiUiup31Nf98vDyzVkXO214qQYgLjmdcbii/q+AKM9lQZaDeG/yt1bV\nHPzJf/CP7Dzyid/6Nf5TO8vwlNzeFcrjwqNC2bU9IZIyx1rXtt6ivdlJXd97lopuD6zq/SR7j1aH\nPVhNe9NwFBQd1RCtqN83//jnnrAnfv0JGxynrYDNjbGBVaqfdb+g/U4X5Mm7/s679PkD2vfc/TdP\n01Z4KQeypRZrSzEsf7EL9+M6a/6CqmleW/OuVBLi8ZRTBbGM9o0L0Jg7Xdngl178rJmZpSvq81se\n1umOo3u6rhpRP77wNfHu7FwQWu2MEy+hqOb1ww/J/95+kT0WFbb6/N72bmmupkHcDV5ZW6VCtvfm\nwQUWYg685d3iydvDT99+WvfbXGvbulzst5RzVV/63Oc+Z7/7u79rv/d7v2fZbNZSqZRNJurQ6emp\n1Wo1q9Vq1oSI1sysXq9brVY7z+0DCSSQQAIJJJBAAgkkkEACCSSQQP7Gybc9vtTv9+1Hf/RH7fd/\n//etXFak/hd+4Rfsscces/e97332sY99zO677z5773vfa+9973vtD//wDy0cDtsP/uAP2pNPPvkK\nx8y3fLjjmO/75jjn548IJJC/KRLMjUAC+dYSzI1AAvm3JZgXgQTyrSWYG4EE8q0lmBv//uW1Qi/f\n9vjSH//xH1u73baf/MmffOW9T37yk/bhD3/YPvOZz9j6+rq9//3vt2g0aj/90z9tP/7jP26O49gH\nP/jB1w3IBBJIIIEEEkgggQQSSCCBBBJIIIH8TZY3RPT77/zhAVImkEBeU4K5EUgg31qCuRFIIP+2\nBPMikEC+tQRzI5BAvrUEc+Pfv7xW6OVcnDKBBBJIIIEEEkgggQQSSCCBBBJIIIH8u5UgKBNIIIEE\nEkgggQQSSCCBBBJIIIEE8iZIEJQJJJBAAgkkkEACCSSQQAIJJJBAAnkTJAjKBBJIIIEEEkgggQQS\nSCCBBBJIIIG8CRIEZQIJJJBAAgkkkEACCSSQQAIJJJBA3gQJgjKBBBJIIIEEEkgggQQSSCCBBBJI\nIG+CBEGZQAIJJJBAAgkkkEACCSSQQAIJJJA3QSJv5sM/8lsfMTOzn/31nzIzs1m4aGZmxVTazMxa\npydmZha6qXrekVjLzMxGrZmZmXUy+nvt7ffp+oium3lNMzMrRzf0ve7CzMzGe6dmZhbzkrqvq3YM\nO2MzM3NbfTMzSz+gdkRdfWE8n5uZWXKnos/N03PyCTMzi8/1vZbpPlNP9d5jvp47L4Z1XULX+d2J\nmZmdvVQ3M7OsmzUzs4Tp+8cd9bO0s2VmZpmSnrtwdV0qVtB9m7Svpdja9Ej6agzael5G7dt6W8kq\nl6tmZtZv6zuDSc/MzOp1mUDC13cjYd3TzUgHi8nIzMycsHQwmup1OtJVW9Lr6lNEbUuGUrpfSX2y\necnMzJrHx3r+YGBmZr/zG5+y88hHP/G7ZmYWjeTUt2cbatcJOlrX8yYRxuBAOj3p3TUzs/uvXFK/\nHlA7YwvZUqyj/kSiGTMzOzPpI+rq8+7pkZmZ1XKyqWy2ZmZmp676P31KOnZiGtvEQ2UzMxuj80br\ntpmZ5a9Lj+XIBTMz8490345NpZ45+s/EzMys55+ZmVkusmlmZp/6l79qZmazI30vYge6rqB2hpPS\ny52v3DEzs76j9l298lZ9XyZphYjaf/ebu2Zm5jqytWpU45Te1vNbblT6HAzV/on0dBySTfsdteNq\nTf0c+no9bel+nbHsoraqdkVz0m/cOmZm1mxqvDaTalg0Idtt+nEzM0sm1f5FVOP5Mz/9Eft28tGf\nf0JtiKgNkcyqmZk5Yc3nzfSamZmNJpr///p//6aZmeW21ba1+zVGyYt6nb6s+TX8usbq5jOypc43\npJPK2nUzM7vyzsfMzGy2Ih1mTGN30tRYRKKy0XJauo+MpcsZ/qjA3Fn0pYthSP7BSUhHeU825pt0\nPVazbNLKm5lZ1GNwHfVzmFE7pviJckX9GeT0OrLQDZyFbH3m6693gr/I3m9mZtlN6cs901yatdX/\nZImxnGlONPf3dd/MFbVrqLHrTjXHFy/LxgeO2pkfqP8NT2ObDmnsVypqdx2HHJuova2a3i+vyjYi\nE+mlP9PnP/erP29mZp/8ec2Rbyf//JO/bGZmh4NDMzO7dPGi2htWOwan6q/v63U2Kp+ZSqnd8bDs\n6u6zL6k9cc2J1HWN70pH/X75UOvS/Y9I3/5U+jw70Nx1MtLHIim7274m/958as+inq6tPKAxrnc1\n9ic9+e0NV20bp2Qr0ajWsvqJbDUxlQ4T9+2YmVnorsZ4FJafWvR0feG6xnLMFiBfkX9KsvYcH2sN\njafVd4vpOm8k/zD31XdLaGzoki3yen3w5a+ZmdlWflt9i+m6yxdlO6Oxvrd/pnXh0oqe78U1tpOW\nbMeNq929tt73PPUnGdbrtiMdh9Oam7WBbCREO+pN6fzDH/l1O4/801/5n6SXvPQw3Zd+bte/YmZm\n5az8fGFT69qUPcNkIL+3ltKYvhzT3Bg3ZBOla5fNzCzX1liXfV136GscwyHtVdYff0T6qWt8vvKZ\nz5mZ2aIh3/LAuvS5aN8yM7Pj410zM9t6+/orffiZD37Err1F/rdzS+3yOvqbK6h9jd6ePq9Jbxtz\nzbVOXHrzTPZnUbVzXJfNb//wd5iZWexMnz/9L/9E/QnJJ4bisvVJk/UjtGO+yS/0JlqzKhX5v9On\n/42eldMz84/Jj2y+S7oNN/T+vHFT927LtvsLrVXhuMbaFhpjm2hs+jHpfKuotf9eQ309pc1b73lQ\n7anL9pZr5D/56D+088jP/5z8TuNAOk2sqj9Xq9qvRRaymdM+e6WMbLbRYb92Itsux/U3ti6/Eo+z\nDrnSeWeZM23LJ6TX9XmlpP5Po+q/d0fPOaWfixF+aa77j+LqYLinMXYvS8+1G3puOKrvNZ+TjXem\nmnPrcmvWGkpv07nWtRD+f8uRLbZ66tdJV/5zm71EZ8FecKH3+67uk83Kr7aelY/p19Xu6mNafyr3\ny+fFRvJpfpQ5eKx+lku6bzwp/fTq6m+3qXYXdLmtZtWOw86ruedf+W8+bubo/flCe8k0649Pv8PM\nlQa+yJ/vmJnZxiWNy08+8Qv27eRnPvhLutdcNnzlqmxj5GsfNB7Jr2ZmavuY/dwsqsYX52qzk9Lr\nFGtlu6F51R9I505Lr7szzXdLSzeZmnR9+5kvmJnZYqrnVR7X/HQS0sHN3lfNzGxlXWOaHOj9TFRj\nkyvdMDOzUpy9FX7i4HmN6QT/YhH1Y21Da+q9ruZWfCI/Gk/Jn2U2sNmRbC6Slg32bmksvvYFtbdy\nv95fW9O6cNpTf3a2tC++eSL/mlpjTzOQfv7i6PNmZvbo9zxuZmaXa+rPoCPb2dqQ7bkHGgefff/x\nl+TfWmd6nXpgxczMqhlNAjem9kdjmksx9v2zFuPW0R4qldF6/HOf/Md2HvnIr/6smZn172luxVfk\nw9jK2rSruR/PySfG0/qbSKtfw2O1d++u2n/hmvSVT8ge2jO11xmrXQlf7XX4nXeW8l9py4c+/jGL\nLWaWWGit7mAjsYW+u0jofcdkc15YY1mcq43zicZ0OpItRflN6HqyPZffOouF3o8vdN2MtbpQ0Fie\njDTPwvwWm/rye6m0bGzWlE3FQj66UfszU62lg5Ha7U34TehJmb6v9oVL6ocbli6zc103CmOTp7KV\nLP1PVzX2x7yf5DfRcp98dEfrTyov28qwZZroMTYP6b4z1q9V/PhrSYCUCSSQQAIJJJBAAgkkkEAC\nCSSQQAJ5E+RNRcos0golnRUVKYtnFH0chRRBG7+giNz+y0RFjUi2p+hs9DsUyVp9VFFVN6L7HL2o\nCFpqQ1HV8K6imHefU6Z8oYCXra8pO9V8TlmnxUBRx+p9io6OycZly4r8FfnrOIpl+SF9PoooCmk+\nKJORIm+9pNqXJNuY4/oBEb75UBG/7pisUk3t8Qox9KHhya4qohfNKWruNRW5mxyrP6NDMiKn+v5s\n1EFPii6XsxkrVhWdO5krwh0G0eF29Gx3oTbPE4r+rVXU1p6re0ej6kN/VxHtNgHWFNmK2Vxjmcrq\nb8zU5h7ImsbLynrM/Fcjs+eRWlVjOOso2nlvpPYnhoqaFkPS1XNHila+/MyumZmtP6aM5IXvVOS+\nT0a3u6us/5zsd3qhMKuDPoZ96a7RU7Yt7eq5q9kdMzPL3VPGen+obHt6RRnCaFv9vtNRhmHnwWt6\n/mPKkBy9oPcHEUWB3YlshiSdhWXyr2TtGivKHnlRfeAkQSoNNU5xU7v7fenjq4fKWMZXH9Xz3/mA\n9LYv/ccOlOG4237WzMwKM0V1ty7pb9jUnln3Bf31GKeS+lGYkJHJK2M7ScgGran7e8zZOu0vnpLt\nium5zXuaK2nTXExc3tFzhnX6rTl+QkaiViXcfA5Jr8hWT26+aGZmqTCIOrI7BdM9IxHZyt2v75qZ\n2eCbauzj28r+Xq6pz5lrspVsTbr++p8/p+8/p7Yv7mhOpNFd+eJVMzPrb2v+Du+A8HtWiJzoBY35\n7duygf2nlBV5+JKy5yVQYC6ZxKjcnHXyyprUTP3pd0HEmXRTXmgOjLKa2+MQiL+s7rMXli0nM/JL\n/qauT5PtOfuGrp/E9f1aSP7PSV/ke/In7QONcbgmvbhNzQ0XBOFgqP5GyWjEfc2FUUrfi4C6Ml/6\nL4WlV8M3NGlfIq9MSc/0nFRf1/UG0p+V5ecjRuamzH3OKSMyricvqP8PXFe/N2dq15cOZIPbVdpZ\n0/f7Db2egDjqzuR3d8oa72oIhNJcvrF3ovWpkBbqIREiu+koe1j1lamOXtE68+ANIa6+8qW71iDr\ntAVSYdFQ32eujMJhrXFAInj46RDZ4K5J91c3pKtnX5RfTDiyJR9IS7XwNjMza4G+Srvq60FLfev3\nZRuFVY1pFvRnN6k5knPVzsaRbCy/Kh3lksxFF7QUCJYlmiuU01wLkSnemmgMPWx3BNJudKz7OiBl\nZnw/H5JtOEnZwFoMRE2IbD4oiehQYxVmz3BeSa9Lf0eHalekrvUiDRqgdkV6DCXlC2YLPd8Z89z7\ndH1poHE6BRGTZm/h0Bw/oc/bt3R99p1ar5zvf5eZmX3xf9Rz/49/rUz2W0zojurzoMgWf6b+mmzq\nwuP/2St92KnmzQeZOGrJ3/cdjW+oKP8dZk7m0E9/R1nPGP2wlL4f3dX9G5FdMzPbKH6vmZl5V2T7\nB58CcZoBPVEQ2qEHim5cu2ozX/Ni1tSadud53fN/PXzSzMy+/yGtWQ89IJvcmmiMv7GvZ0aH98zM\nLI4NFxJLxAx/0/Kr4Z72GPmZjNrNSwe7z+o+zz6n9eDi4w/rPpeFAhjU6/ZGZO6xZzg5oV96/uh+\n2czmupDb4R2tO61D6TpC+jsFwKc31JxZ6cs2hiBikmndf87YxEfSW3dXY5dPam5PE6zFadnE6hnp\n9SpoU6nN6p+VLX35UHuWRz/wDjMzW7vvfWZmVt7Q3Jnsyh/FWG+MLHw+Rqa5zr56W2MeOtNcnc/U\njkVX4zFrqd1Z1uGDoz7t1riWF2r/F78g2zw+3DUzs//i+2U78xX8/0zj3Viw99mVb/Jekq+YsR4V\nhvq8S2Y+7mldPgO52ejK/szMbj3zrOXS+nztBui/qcbHiav/C3zOYE/Xr1/T37hzxc4rsz098wh0\n/mhf86p4WW32F9ofLWLS4RD/HXOkQ8A/NhlL524XxIOrtkdBcKccITp8R/ebg2S5+xXZ/mAKymBH\ntjmM6vm7zKn0NdnahXcIVZYDVZB3hbxb8zWXjp7SGDdOtXcZPCP/F0X365uaU0NU3X1J607lPrUr\nv612p5Pq2DFIfe/0ZennFuhi1s6Nt+t+87z2ItESCMtV7bXu7WpMakc8LylbOwP5vvJu2XgxpP7E\nTzSHEkPNscOpfNDwrvzUbvcZMzMrM7e2Qcgs1uWXx23pMwfCZD7VJF546vCgzZyIA484pyT5HTJI\nq987IKJyMVDFrMNOWnqcZfV56whk+iEIn1vqf2FFfnk6Uz+nLY1bFLS1n5Z9hNknJNxX99nutGde\nKGGejx8ay2bGSa1VE367pQ0EzURtG4BQyQxBmizRlvQl1NXYeXNQVSPNhd5Ypwnai+XpDP3WA6xr\nswmbkzzzPYJuQZ6EQVY7Q7XL5/NknN/fUf1NgBzsjaWzbktrWyYtvzRKy/9FQCWdjkCORzW34l3d\nd3YmYxu6en/M7/MOv7v9uPrZ6ev6+j7xgy3ZUAy9jpYIz9eQACkTSCCBBBJIIIEEEkgggQQSSCCB\nBPImyJuKlIkWFcWNJMkCRjmzliMDfQXURZRsHRwvTaKcltbrU6LISxSCQ5asQ7Q6NlckrUR2P55T\nNPHKFXhGesp0NPqKJpazimQ1yORm0ooUZrJkcgllLc+seUQ7Z3N9b9TnjFpXUVjjuiHn4euc/T1r\nKoq5neCcY1J/L6yRNSNDEckpkteaEk0nMhjjTF80T0ZlKHTKemlHn28pKlp4cMWmZEinIUV8jfPd\nXlTPqLcVTczkFc3zErpX50DfW91Q5Hj7hrIXCzKhcaKhzlBtiF1VZHt0pusGtxX29B3pZrUMwuKc\nsjzbPnek0wUZh2lO7QklNWajtnR74e2KdH/Hf/xd6s+GMgHenjIDnaH6GyWj0CXj6bjS5WpR/cte\ng2NGpmQjMo/DhrJqcc6Pr23JlrottatyVTZ1/QffbmZmLzb13MOW/hZrak/yjHOYnq4broAyGBHR\n3lcU+aip5xYy0vO8zznKimxzsDvle9LvD3/8h8zM7NHL32dmZp/9c3ESeCM4fyKyxSvbav+8BKcL\nfCenMknLbWqchpxdNZA66Yz0dDLR3MrRngGZ6lXOu4d8kEAgjobwmFzZ0jl0j3EbNOFkANVS2uQ8\nfEzR6PNIqkZEuw1vUVcZzAy8SKdpvX8tr4zstetCqBz7ys60GAv3Zb0u31Bb1i9oDqy8Ted0t3rK\nrB6Q0awD4BicaQwuX5I/uLChvu3fgRuhK9u9MNbryDpna/d1n/aGPl8hA7CIaP57ZCAWZEfCI9ls\njEj7nKy7S0Y1NQK1lgWJB6oiCnJuGgOZAhfVHPQCiQU7XajfKwN9r9+GFwq/64EWMDIO1uB5nOFf\nlEANJMgI+yAbmxpTLweicCpb7NX0fZJZlp7IR6Xwt4sNXTfHNsacZV4fs2zFX/9s7l+XMGi2RQ4U\nCJwxg7nuPzwkIwM6xHXlC+oz2U8aPqzwmeZCuAqi8lSv2/dAOs31vcQMX9WQ7XdO4I8io+7BB9Bs\nSh9HrZm5R2pbZx1kRUI6Kh5L950ifDRksWY9zTeS0VZZUxtix3p/b0/+7bHryt734D0a4XdSAyEj\nuy35tSbZ8fucHTMzi4c0hi/d0+eFrGw4FgJRcntX768KAeMdqb2tqfqR62ssk9joaATyD6O7NVK/\nHnWk8+FcxuSEpZt5VXM7c6p1pJ5l/aonab+yb25VWarFVP3eyup123tjaCqHbNmQzOgQ2Frxfs25\nwob01qjrb2wBX1xUcyEylV4qIAILD8iG3JbmUgRkY2imrPvAhNItF7/HzMxaKdni8z/3r/5Ku3Ye\nlg8KH2tP4bDWf9c7hMZ6y4+tvfLdxIW2DU+03sQc6efahp6XvyT7mK3rPg0QSdOxMtseiKTNDY1H\nCLTe7Zta5+7eFeriOvp+7D8Qgqdxh4wu6Nxj+P0eiBXtbAjCYagxC8OV9d07321mZh/45f/OzMy2\nL0mXu//3n5qZWbYrP1SJqW/DqtauFCjOYU42cSmlMZ9F9XksrjFcZ21+7qvKxuddrVn1GWtNU32d\nTN9Ydjt/WbpJRKTT9EB97sHPcJNMcG6dvVNR7U/RrjmJ0jCcg0dnGovBSO28s685UQDttrINWqC1\na2Zmz7+gdcrH1mcLjfGVuNpz7TGNyeW/L+TRW/9MaKsXPvq/mJnZi7c1Hhmy6BO4FLwM3GSQIcRL\nZJpBBTcret1vw0eX03WJNfnBa5fV7ys52eo3W2rnBn47ApfC1bL2AE/BG9Itg86qCgUxqwtBE7oi\nRa2BdL09kd10PPV7Y0Pj67a1p5qgnwl8Vx7cFVsXZMNmZtV3V6wAH4jvw+04w9c29P7wrjiMDtp6\nnqX/rpmZFVamdl4pbsH7CI9QlraETmUDKVDzc1+2U2R/eTRgzV+AjGH7lYcfJ87pgmlIfrIDz85p\nSDo829e8P4MTJntZa07qsvalXkZ9ePyS9jKF+7XXqIVkE4MXtdZFPX3vhW/KL7S+DN8a/JexMKin\nLFyJcdlOLKl+bl/ktwdzxY/rvndBL/VO1b60B4Lvmtp37ZG3mJnZ5ju0f5+in1FL1x3AbTiBb65y\nv8b20uPa211iXcvDuXb0nJDfzrNwLoLMrjeEqg6F9fzLjwsRXilqDiXSWncWPqgzB04zh1MLcDIu\nzkCFMIf81OujIP663H9B47kJmjC/kO17d0HVso77xXebmVlvqDniReHwuarX6XXNsTV473rw7o0T\n0k8Ke0yz15qAvF3wm9XMrBopmJvoW6inPpzF9HcGWifCvm4CQtubqs8lUP7m4i/a8kehpL4fhv+o\nNIJjNa351lvTfdIlff/CpvxCsQh3IL9pRvzOjvJbMwL/6TymPseXv4M9fiPB6ZViPxvjN0wqy+/y\noT5vcfrD5bfRak5jsQNCppaXXxnDM5TOaq7kLsjmHTAtqYexmax0f/M55i5+sfS35YfLcbU7HQLe\n9RoSIGUCCSSQQAIJJJBAAgkkkEACCSSQQN4EeVORMollRQhXEbE5VUMmJ2QsZ4pkOURtR2HOdppC\nc6FV2N1hae7AsF1MKKLVOoC9/USfT5qckx4qM5HluvaB7p/MK3IXovpGpaTIl3GmbkylmXCHKkiJ\nJWs7Z+kicFIkQOrMFXELzXXf/FSfF/M6OzehytMQ1nd3qsi8e6zo63BN/ffIYi7GZHBbivxFHPUz\nX1REr5BQdDUU54xbFc6bvmdt7hEbULUHdu5YTtHGYlER4C6IlN5UkduX73xDryd6Zj7LmUQgJJWC\nooThDV2fBp1wRNUPb6wsx8aOzgun4cU5r1Q5c/vMsbJi0bL6tlLQ+7MErOeXZDNl+IUyoBZ2n31K\n1yVgSU9QNYrKNT469UbS3TSnyHKhlUOnAAAgAElEQVQyq7GLRGHiP1UE+wgG8K1L+jutwrXAGeCH\nvkdZqrtHiszffErPz3MWeK0q/R0eKivWodpKvKNMSSxJ9aMlf9AxGWqqegxBQ4RucUZ4F24AkCdv\nufwBPb8n27n9SWU6vnt9x8zMtq/q+U6UiH9cGZLT22rPnAh7OqbPZy3pqUBmwneVXfNAi5xRLSAL\n3KFMxtjnvLvH2dZICXu4qP6d3NMZ3lZ/V8+rKZsYLYNawBecR+YgSkZkrVu8jufUlgScTXWqgPiP\nyPb9FpFvkGnlrrIJ7S/pvjtvl81nw7DJX9S8deDV8MtkrRYcgj2B1X0qmy+SZU4MlBWabqmPb00q\ngj7lvLXTJrLvwC6fVTtzY32vD2t9usCZWJ4/mVFdKbqE7mmMFnAU+Jyfdmv6m63rfg6og9SJ9NSZ\ngCB8Ue3vp5ZVkDgnbVRMOCMzAfphTDY8AdIo1QHZskoWELREJCLbDg01l2IgeGINXddbqP11KpKV\ns6DF4LRJ9zUOLuz/ffobJ+t2boGrq3qkcWy31I5+V9n/xQyeEl9zvz2SD5xC+BQ61vOb8E/tRGVH\nuwPZ+nim9qxdppINfE7HC/Q70X2TPTgvaP9LnuaC9Rbmons75ZxzgQpWPbVlQlaoUKBaxhTbowrQ\noiQbuzOFB4LkbpK+H96l2o7p+iEZy/m++jDbk04G79D8i+7qum5TfiAygLeoSEWwup6TdfX6DHTD\nvK/3Q2tUxBlpzb3IWfzxkDP5o13pCvTngnafDICBkdUPg4KNnVL5C0TJFLRDLyUbqyT0epzizLzz\nxpAy7SjrXAzbjmoubaxTpa+l+yWNbGGMChKXqWCzq8zsEl12IasqeHcH8sMT5hogAcvf0nhMfI3j\n3jdVtSr1B/ASPfKQ+nUDLoSJqpNce1jtWP97mtO98atz4fjw2PywxtW2OfdfFNrh6EzrZckTUrIO\nUmZlhwp1PY3veF9/vYHsYMPR54MTrZPHd2TDpceUNTwDfXc0YP1ime/E49YfaR7HplpDk2/R2D3w\ngJAyhW0942uf/ayZmfWpZlkh+9sLKYsehgNgwLxtnx7SN41ZLSdbcefy58us+Po1ISr2F3rfmHeH\nl9mXvUFuqnCENRdUbCm5Y2Zm0T3NoXttcYlNn9KYdUOypfhlzf/YFWWES/iLyJo+n5xqTMbXpI8l\nB4EHL1vxgnjipifq92ykMR7D1dUFmfLlp9XOM7hSpl/T90JZ0ExF6Q8qR2vsSU+DuZ67RgWfYkg8\nIzvvBJECP8oJSJUuqCqvLdv2I9Lj/tFfmJnZ6AQEN+tPCjT2rZgq5IzgGApP1b6NHbXrNuiSs77m\nRC0tfT0ImiFSEupvHqeaVHtX7c0J/bGokJGm4oxHFUQzs/TVormsN15P7U2DHo4XhLLwhrLhMT4s\nsqp+1MnMn0fa8E10mX9LHbW7oFdd9b0EIiOf1/sXr4EEiWm/uAA5E2ZsjqearxO4FecJ9bWQY193\ng6pBSdl6GBuvwb8RhVtyuacZ35S/+sbXqNzVRVdwXU3gDFtyRVXyso30VY1Bi2pSt7+i+zz8oPzV\n5vvUjsFcNvP8bSEC5yApjapIsbC+N4rIL5ajWi/22A/fbgvR8gKo4j6/bWoF9W9C1ajr+P1QG+6b\nP4dQ6QDEIMj93Fg+ZCuk/W1+U/eJUhWqyW81dyS09RT0Rz4NL2Ffz29yimLCnjMToToSe6LzyuqW\nrp8yF/I96R+6Ums4VBo+1h4ltCI7yec1Fxz4RhO78DexlzF+bxhz3QWV14EHJhzhd0RoCXMxm/sZ\nSyyiFmJtXeGESScBvx2VXSP4pfRCDiSckE4TIz0rztq34Pd4hPdDGX6/x9SGKM8ZZNnzhEB3ReRv\n4vCTDkC+nYCqZVtvceIGLvxMIXjuYlTpDEXYGyy5aBirZELf26BiWW9GhUEqW16swBkWAkU00N5r\npSJdl/PSx5262tsDTdw9lK3vtkACgZxc3JIt7VHN7uHk6/PcBUiZQAIJJJBAAgkkkEACCSSQQAIJ\nJJA3Qd5UpMzJHWVdJmTf0rA0d8aKduYGiqrmDE6YIlHlq+KE8NcUvYyVOLfuKQr8CgogowjZkPPd\n8QjcCAU977ShjIPfVzsSVUX+OjOQL1RQmMCone6REZ0q0ubDReCBnlgiYsIriqRtwwQ+g50+16Ny\nRoHMc5mIfpPoMTwc0YKi3qtlRY1nlGyoH6ofPrwo7nNwMpCJKXCuNEkFiMq6nhPORi0+1rOmKUWG\nO1TvyMQVUc3GFMYrUM0imVVbblxR5DtNFmSRohKLryxRLqWssw+xROeLih4ef0mcKGXT50bU1fHe\nWKWD7kR995qKVmbDes4kqTEL5zRmC1AFpTW1awZPQ4+MxOqxbGK+qwh86poi/dEQOoJvqHUsHSfn\nep3Gtpy2bGutIr0l4YZJZ4XGanKu3dIag+PPKitYmap9+Zrin+ORvre0tQpZwS5ogijcNnmu6zXU\nnt2ZnutzljdCxRx/oSxPtKvIeZRqLV3GIdlVtLjwKBUd0FMiBbfEiIw7yJgYUesNV5nRI4fvnRJl\nprJYgUpnxaJscUR1pnEMjpmposUJznku0REhMsLdjjIgqw/rvPzWA2RMyDz3b56/+lKGs6IrnIEv\nUtnKpYpFAYZ5B5vJ0uaFpz7XOORfzJPRZShHJ2SdOGPqXtDfiwnZolcG8RHTnJpDyHMlhFsluzSi\nolelQwSdqmxRMocOWYwpCJhQT3NyDL+Gy3ny+ZBKaZ7GKELGdpnN5ni0kSCw+Zn825JnY8n/NOWM\nb+MOWS/QV6OQsvOTA6o2MZa5Q82FKJw3sbC+n6QaVIdKaAn8a6i/ROOpIX5WtjIiQ+2G9XmiIj+X\nICMS5Yx/iGzRLAP6bpPKDXzvoYp8ypUVZZbPK32QMPMEczgm/fTmmkMRqkkNCyB+7mm8Co7a3wdl\nNwV5ObtBP3f1vRlVomJratfdlvQ19uEXqYK2IOG6N5K9XC9qPRteWrXCERmvEbZCduilBRnLvu7R\nB6noLqtYLKvJValMcFvfB2Bikb7G+nSmvqyS5e6DzvRDcGUVqdwHoqVBVaQluiBygTP+U72fhfeh\nc6S+nEXl//oxtbsNOm0CN84ZWatBRrp3qIg15Ez9yYvKqI5BMk6rgpQs0Vq5dVAEKarvXRZSo+Bq\nrufhB+mb/HLctB6cV1aojDgowpfEHqRN+ipCFb/2AQjNtNq/sS4/NmMdOT1VxbYpFXYGrO0JBwQK\neljAYRYma59/WZndRVXr1lv/Fufr+0IaxUvy6ykqT3orut/X99TfHzazVGJhEZeqIXl9rwM/XfeW\nDCJsut+oAkdcUXNgSkVH91B66GbhG5nqfnEyzVPWg/xA4zNc13WF5q7uP9xRuzMjm4dAT/XgPVgF\nYbhK9v/e82Zmtgd3wDYIuznVd3oz2ebQly6yIemqtKY1eT7X/UMgODotkIRTOMKKavslkNB3qfiy\nPhBPQzICkdo5Zd6RDZxRWSu5QX92NDeyc6GH+wvZdGOm9tTgLkzBB3LSoypoi2x1XEa2tSVbTnTp\nf1dzshnWnE0CcSnXZHPVBFU32dOdPC/k3Zf+H3HzzF29n6hoTa8+DtJkB+7CfTjIjsSlcnJHPmUS\ngXfI01z1hqAKfJA6IFraVEN1QS00JlSMA2kZHamdZ+h5Xlcm3MmqXSHmwh7ckGGq983nGuc2vtAF\ndR0+VnuPY/IVIfiq1q7JhsPseTpF6T96+mrFz8y4Z92c7KWwqr3QjIqPKzHZUzQln1G+IT098K7/\n0MzMBqevzwXxl+XCVfbk98Gx2NG9V+BydOHXaIMmGDJGd+FMjMRA+kV1nzB7hiy8PmkqvUSj0mU/\nKx0kciBJHgB9DzK+RZXMWF1/R/vyT35TtnfZ0/P8iGwuWtF99mbyW9eviOvlTgOEOr8T7tsRp8nR\nvt7vJvV+73nZyCnIjW6SvUpSz0uEZUupqtpv6H65Rh82QBdH9frv/IB4OaYxfX8bZLx3V2O89yVV\no4ucwa835NSBJ1vYgJfOkiDhC1TUKen9nguHFhxi0Q6nM5a/awBbZBaMS4OqTsvfghmQqc4bQ8r0\nb8qGh5Qc2mbvmdLPLguxl1sM5Rv2zvS9yQQkel8+tAG32ozyp9Wr6mc6z3o21hwKUzlpNlryxDiv\ntCUSHtkoZJahMlMopr7HqQjp4n8ycLE4nFhJU3lqysmTJFSEGdN89Nbgf1vwGwAEynhVbc2taown\n8CiFqa63/N1vI41JCFTWJKmxKvIbKQ1qKR7SPJ7zG9XryR/n0tJdv6sxSmALLpV1c1QaHE2XvEFw\n0MC3Gk7pvtV12V6IaqGTu2qPB2fkAr+e24zTXrW72dhVf7HNYh5bfA0JkDKBBBJIIIEEEkgggQQS\nSCCBBBJIIG+CvKlImUxakbRrVUX1xpzNar+kaODxV3VO8eahooLZvCJktS1FoqLXlDmpFZWR7sOh\nkHEUPY1HlcWJrRI1rCkCWCRz4XAuvLeqSFeEKPM0SmQP1uYwrPkuEcQIkbtBVJGyWYfoo6dI28xX\n1ihNNanOVFFMH26JLBmd5q4ig8W89LC5zLZRpSm9UKTPiHKnXLJWVL6YkI3sviRUxpDKSqk8qIec\nMi6j2NDGvSXvhm7ZJyM2mCsLNY5L5z10kssrOpgle1+ER2EZDZwZ5wDh2RnCs+OT2Y1wnvfkWOfp\nXM7Erq+dHwFhZjZokG2GX6KYJ7sGV0DGlS1sU+kgAVopWQGh8RXOHXMeckpG1hvrfLYvFVmXc4Vx\nIt7DgVAVC3iIMuhjAr9RbwG/RlbZlstzorHHGuOOum1XQeQMWsrORZP6XpqKAu6q0BeJtjKjMU/P\nL2wqKrt+eUevPfXr7FDtjB6l+b7mQGaLymR/ruxggUxvpSAb6tQ1vnkQQK0mZ5LJOiaTnH1uaXzu\npBTBzzmgNuCIGXuy/TKcNy3MIEt0uwHKLYYdNY90lvq+TWW05/fUz1FDGSH/ujIaszDZRtAXqdz5\n48VejkpRITJdF6iSE5auQkb1NM5Dx/Lq8+oM3ZEtyS1kQ4WJjKJIlZ+2L+SDz9h1EjwHZv6rMO+P\nHM3jSUz33yILMQAp0lqA4upr3meYr70QiBGqxoVjVAXBxgY+LPEUnokU9L1Tzhtn8WdJMpUeGYl8\niOw3GVqfs8AbESFN6h0qEuBHwnA1RFzZRvo+2WYddNZkRDaGc+BJOAnaB/p+O0cmgMz14hUUmjKu\n5Yn80ghURxRIT9WTLZ1W9Hx/ORc7au90ousTJdmiN++aPWI2m76xrFSCc/gRECtHA4gvMrLZDgie\nObmKU5OvqKR2zMxsOF1y90hfyZEyp/OMxqlzJp/RwVeuJaT/w6/K5p11ZdC3H5Ti6l+UD76ET1rc\nG9hzBy+p72X1tUJ2ZtKm4swGFQWXlaHItPbrmkerHdmsl5ADOiEj2AMZ5zfhUwuJf8Ejc9YBydjt\na0y2PLJNDfVpOMSvTfCrDVCnbdn+nq/7FtdBaMR1v6kDR0FUc+JgJARlBMRgtApKy9H91h/ZUX+Z\nm94ABF5Ya2KX8+VpeJhmvt5v9dX//KZsOwr6tue/mgk8j4wj6JHCXt94CUTkPemjek3tbpFFrDfV\n/iw20B7KdkczzfUx6FUPFNm4rrnbZd2pwc1TSYIyK+nBdxLym+tF/PRY45CqgniFZ6QJqtcWr1aG\ncRZlm/Y0d07gFblxVeN9Ly2OuHJiydtEpTlsdZzRehZZxf6omnd6B96AhubwsAQPV0XXp/f0vUhc\n1y9yzN1B15LYkr8GVyCItxX2QXHQoVWQcR6Z2DLcJrMxlcKa7BOpqpENi/Nk3pOtj0IauypcL+MW\nlarC7EnWhRRp7ur9S/ilWPSN+RGPCmJ95ko7reunEdCprGWJhx83M7OLZ6ATqDo1JwsfLmus374h\nfzrx1J5hWzZyeybU1PxUtjBraS1fp0LmSZUqRAUqWibZMzwiPV24IV8xONT9Tjz2zT4IlCb8FQ1Q\nuHCpFEHNjuNUmTsAgTJUe9pxtXeTyjHRvPbZF3J6v2/a89hNrS8LqqVM4JAcgRbz2afGM9JLk6qk\nNfbpYRCugzugjGfqT5IqKFlP68XLdbVregCvyEj9ckoaFyf/lyp+blUsD2/SNINPwZ4mcFR4VG8J\nR+C98mU/s1LOzis+FZ9Wchrjg4bGcIlSjUJCeOECSIZhgz7DbwOqNTqgumlcbW7H1YZIRn2de7L9\nJroawxnlPidbT1KJMdEBGT8AGUfVoCG8nfMBVUn5LbJOFdXGUP5iDCfjOCHbufu8eJN2trSvK2tp\ns0Fbc+AI3s6jhsZm5xGhQdMgxOtdqnhSCScdZk/lUrknDeoZ5I4bBZXqa82d7Ks/zgH7+Wekh9gY\nhKOndsRXqMyTgm8vB6pjuecYc4oiS8W0mWwmkpb/m2ZBVdwCKcrexAvp+S04f2ZUz8qN2BSdU2Zh\nuOOi4k2ar6j9XV/taQ6k34Yjn+Yyh/g5ZaEQ/IGgyerwrs73hFRaYc8U5tRFiYpCy2pRo/mrNu0l\nU5aJjoxCWubRhihjk+F38WwG2t/VPBvC8ZeDh21ZgcuH8ynlgCx2+O3ImhyC12fOWPRYw8Jdzf+u\nC7/ZmDkz1vuZCFU98/r+DAKzGGuhy351uS+LwfGYooKsx2+sZEz9Wzhqfyal65IT/LVLP9fVjxZz\nMNzihAtraITfQiGQnJWFruvz+3sW4Xtp+efimKrMryEBUiaQQAIJJJBAAgkkkEACCSSQQAIJ5E2Q\nNxUpk4IRfE4d9CiZ3wIVaHJbiq6OMrA6E9EaVRTxikwVwVq7qOxMBjTI2bPKKs1M0dJBVxGx8anu\n7+wQPRzofQfWZo/z5PMYGeuism5F2Ke7faLWW5xtm8FwDWdAksi9B9t0lLNjGR9uGSo3OFRJGY6U\nGfDJyPc5p5+A1yMcVzuKRXhAsnqeT/TcHEWVw5u6fk6VkBgs16GLio56kYnFQgp/AmwwLyedV0Nw\ng1RgF3+ZDOPLyth6nIWPwaexPJ/nkf0vE1lfZl8mIFLWYNaeralNURiv48nXP0/312V2pjF0OcOe\n2FI0NlVXltlfV4Q4Q0Ubl8hxZKJsSjILWgCOgipnWZ2JIuvjIcziROIBF5jLucMY1YcoVW+Fa4w5\ntlYlkl+PUo3oL5QJrlG9qVxTuycJvY4SSF+y6ofCsp0wiJUR58Jdzje2DuC1qOzoe3l9fq9J5pQM\nZ4n2d0/Ur5WwMiX5OMiVIZV+VmR70SNFa5NhbDKu8R9lQWWQrRuTZVzAtxFxFA2uU32pyDnTHrxK\nGw5VPRKgveAl8ROKHu+TmTAqpPlUATt+Tv3pcc5+/Zo4cs4jDrHl9ArKddTH6T1FzuNk9BZptaWS\nki6GIbWpHIfvgcxZBmZ7H4RdO6R5urGiebYJassnWz0eSAfZiZ7XMY3R3okyCQNH34+P9PkScLGs\n6pMGgTKAWmBQl41FipztH+q1UwYpN6dii4dfSSz5L2SzW5ucZYV7KtSlChucNrG02lvLc16aCl5h\nUBWdicYgNNXniXW4A57hHLJprAyuFRKb1mROtKhYBr2TDV218yBLhmBM1St4qiLYwBpImWRYeu+Q\nsRmCNNw7ht/oZGD2H5k1O0KfnVdGzNX8VOfc3TTnwUH5LapaD9JJPdgf6XVsheolVEqLREGdMOd7\nHH0ejpXFS4+VNmzDdbCsWuVzHzek/i9mmqsTqjwlt1rmw7GyXZVO3B0pN3misYuCigpTcS+SlX9K\nwjvmzai6k9P8j0f17BEVyDi6b/W+/GcfpMuCTOqAqj2tEFxhRWV3YhMQMxNQaJeU5RpgU31sdXNd\n/ijxDPxA8DqMF7LhZdWnJhm9fF5ziOS2vTTUP2HTGHl1IUXCGfW3QYXD8pBs9z68RSGN7VkM/qKY\nPl+ZgDY9p8zIRJ8dSO/bV2WjgwZoiih8J1QLqZKRPTiW7ZbSGoc06I8Cfv9CRTZ8MGN9osrJ8Lbe\nj5Z1ny0lTG2Dqlhx0FyDrmyynFa78i3QGGndJwvvlJlZdD60lxLKlI470sOIil9tuII2s6AhdnfN\nzOzmXFWfHEfjvQevVIIKk3tRZbyL7Bi3wpoDYTjRQvhgl8ppm1RBGYbdVyqetJPSbY7KKUmqXHSg\n6qiMQdJReeWEqjzhddniECRMCERkD3RUbwY6dqox2C9jW6d6vwU3QJW1KB6RzosjEBnhN7YnGcGT\nlB1hu6BqE3AMTvG7aSqq+FTzrE9kyy57Gm+kMTlJao5sX4RLhuptlxqynSWCMH2gsewv96EgMscN\nDcppUsiUtFHlqQRn2APKtq+ABA0b6xUIksVVtaPQl427+Jh4Ar6jucZjfKBxKzlk2ffU3klBvuSp\nQ3EDbZXk/1zQX4WZ7p+u6L5puIK24EdpgEbIYR8hUNaH8HYArrAXqDSXncpvFgqaa1twKoYuwMEG\nojTDunsEys/M7ObXTywFD5MHl2MsDuoC9PLsQO1ufVNzKNWjel75LyFuvo2MXtJY11foQ15j0Iuy\nb41o7WjE4cOAJyM2oXIkvwnmm6zB2Ggyrr6MsN3EVSnnkQdU9dM50zztgM6K3cQmG5oLjbF4gxb8\n5tqkTydws4SaQvTk3glXFOjge/Cp5dlbvLSr75+eyG/M2QcuTwukKmrXpS2dYlh7u5DpYYd+4ofO\nnmN/PdYYrlC58ZF1+e1mT86hd6i/CRCjRz7VZKkqmylIT1W5EGs39TrJ/nW2SSUtOF8mvp67GPD7\nBX2fUPWzzB6uAop5BGGfBzLJg2vGLcu3TeDbc5zlL6zziU/ltvSaOHPCD2vudFoan/oz6t8e/CTh\nZcXiNU5twL+V2dA47oBg7YPmO2U/nWMPNa5qDlcd1sUl6ZyZmTcwxzVbxJacMaBZF/yuhiNq0tEe\nIDSQjaWLtI29iAsKdp5iX0n1yfEAVE9IbR4vQMK14cWjapPv6vM4iDh/An9SWX8X/AadgqCJcHph\nzD4+0tF9Yyn8GZ/PQfREQe6F8OPL32KpqmwESjKLotsE/nc0kw1M2uznQHZmQEYfHoB0hBtt2JRe\ncquaA6GQ5tbI5TfQa0iAlAkkkEACCSSQQAIJJJBAAgkkkEACeRPkTUXKuFNFsFoTRY8TwBQiKbLw\nO4qo19Y4w7VKxRnKh/ciimT1YfxO+kT21jk7S8UJF9blgU+EC/6PUyorLLqKRq6vKrvoEoUeE0Fz\nYX2Oxf9qhC62ZJtOqV0uWTLLKCqZKSjaHOdM6mGHbBMZi8olRY8HVMRIkzHwHHVwzui4fdjniYLG\nYM6eenBmcF59ZVtRaJdz58n71a7xad6aY1jfqfxRBjUwp8mrF9T3C5yfazb0+uxIY1Ph/PKILEqq\npuhnyAOhcQoPxAnRy6kan9qGsR92+Pl0196I9Im8U0jLClGN6a2UsiZJzsje95CQMg04CM729Zwo\nKIIohzCTGV0/xwbCzpI1nUoOcen2agRmfjKCRja72FM/jjhb61J1KXyiz18GNXF1RTa8rJjgtclc\nlGRLR8tDoXWy7+jVXYVTZbBkOpcttWLqb3WTqlFhuAngCVlrqx8ndUXyq9swhYNmsLn6EfVlE04R\nzoYGrPsjqnIUlK0q5ZVtOzpSFtDzNVcyCUWfx2SKIzkQSJQnGTNecZfzmpwbnYJMilLpJwP3Qm6u\nDNJ4XfwAoTOdVe7vSl/nkSnM9BUY52ctta3uqQqFZ9JBmEh6fMiZ06p0DKG+xQdUbyOjV+L8dzmt\n7w+OuW6gOTGx5dlTfb8aARmXkm10OOsfguvK85bICbV3AmdKBATGgkopwzjZ5y6ZTBJ0CThmhlQg\ni8XIOHhUNgCd1oySBcmArOHcsuNTlQR0QTZD1h+UlZGtWkQ5mwuKwkDmpPJU0jnDdiZUCsOXjOAE\niOBUTuE3uYDfbszwqx1lCrpLbgVflbicmxq/SFXjUL0m26nkdb490yTbMwRFMj//GX8zswQIyHFL\ntl2YyXabzM31hZ4/pFKdA/dPHxDCHP6WONWnulxnZ7L1CnwaHVCJ06nmur/OOA3U73pDfE3OPTJD\nl6maUnesf6B5+lUqN632qfzV1ndvpzQfr61Jp60zPeuMsV/BdtJUrMnQx3tt+Se/ICTbbCx/kk7L\n33eK6mQ+BjKyK5scxZSZ7UY0lsm2rnM5qz7wNSZlKoUdH+r5U85VD6daR8ZhXTeKwBtCpvZwoHY5\nZMnarvqT1W1fqXDmgIApUZ1jya3izoVqK6VBj4GYCU1AaK6zWTinJAoa28RcY9ola57fYp0ba27H\nwlRFWdP4XAIJc+sFjV8ErpszKjM4IAQTEfjn4JtL5peVZtTebkMZ4dAS+QLqdvWi9hJTEDxt5nZk\nLD+/XBfNzKbJnF3HF/VYz4zKZumW7GfwoJzK9Aiej5mef2NF999v6vrNa/IVpRNl4iegV4b4iKwr\nfdXgokkd6fuNVTLHL5zanEpY0xFruYH+pPrd/hnVLEAcuy7ItBmIlwx8EFTjiYz0fh0EYOWSnt2+\nJZRq5oQ156pstNQA/kqxtitU1ezOllnxN4aUSZLLbKc11v2xdBhvYDsZ0KEgc5yFbGUtIehgcVtw\nqLvYyoLqeR38oQfCM0eWP1GTjS2y+p4Dl2F+QqWxnPSV72tONNxdNTQMGsLXczIFZeGzVEOJUj3F\n4Fo4qWuOZ0EMZstCqjdOqLQFsvKsJ9/SoZLOVlK2uRyfE3xClKpS7YzQGckzUHRwRYxWQfH6Gi83\npvE/A7nuwGNX2xE3z9YBvxMy7G1m6ucR8K3r7O3cMzjmLqqf4ed0nZlZLNez/Fz6nDr4tq7WmzZ7\nnAS+cjTTfTIga0t+wc4rRyCc9+EI26hK92sr0tUgrLbGqVyTg/tl4kmHHsiMMfDZ2RJVG9d1Tg0u\nsAn8mcfifumeys/6e1QHYkwjzP88lV27XY3pxRvimtpaU9+ff/rr6kBM68vmRfnv8Ayk+qbav1XS\nfV6kOmguRPv47bWslOVRLXT0fhMAACAASURBVG/3QMjH0zva30VWVV4okxcKbrm3OWE/mqyoX8vq\nSY7J5nz8XIr+ZSKaWxmq7jXDQjelqeyY2tT3Wwv4UahYmaNq6wZIoYMjUGT8Tjppab86XFH7EyX2\nihP8clJ6/v/Ye5MoS7L8zOua2TN78zz4HO4xZGRkVE5V1SWppC6VWkd0CxrRHJoNB1hwWLCCFSu2\n7NiyYAFLYM85INEHqREgqVRT1pBDRWYM7uHzc3/zbM+Gx+L7Wabog7I9V7Gxu/Hj7u+ZXbv3fwf7\nf9/9vi3Yt8um5qD8+pvpU91MuP4SrZfXiQOwfp6xT3Zggxnew2LeXUex2t/jNEahiW5iG0Y88/qc\nOcpnDzXAsa3Z+IrZkw2Kxi8szOSGtm2wB0DLtHuBJl8MAw5n2mqJ/SYaiwucw9bJC+woYd3DUIF1\nH4R6piCjebPm6tlCXNGKrC3rEN2eAidROI2xyiTzF25R/JopEauwOA2M7Dz73wg2ssW7iM28Olyp\nzRLO6ZSTPFna1qC11bNP9P3kvRydoZD94GyO0yRMouXSo36qR6If9/eVlCmTlrSkJS1pSUta0pKW\ntKQlLWlJS1rS8gbKG2XKtB8KMShVlTFbL8mAcSase6MMewFHlvFKmSm7oMzYDJSpucbFpCdk4PK1\nkJky2Vob//JVoAy9CZTJKuASMscFJI6VySvlOUeeuJrA+oAMYAKDA4+PEw7nNb2GPufmla1cFJSV\ntPJ6vmxZ9Rihej89FXPGzsGMyak9YkvXraIdM7/S8/kzstCwIsLjE2OMMbczIUTlrpCY6luqRyUv\npGPTW5mej27BAtVzHAvCG7J5r5VxXSyUSa6BDth1ZUG7KFGHZOybZBU/v9E5udUJ2jQLtdl0rLau\nol3TaCYuG+YblXZDfXwM4jji+8Wx+qxYwAUEtOd+SyjIx8/IcoKqBYljFbpFMeyKbFn/7045Zw7a\nsyjj7IAjziRBCgp6vhJOBjGaLGdorKxtzim+q76odNR+PmhhQBa63gcxxeFlyLnlBmrxe/tCZeY1\n1OAHihlvI+QiKOo6rY5QnsuPSBMPhUjEy6e6fgmnhpGu80E1yd7ijhImeiK63mitdlgFsEZA61zO\nvy9gEcx8xcvcCM3KMYa8llCsSvMt1dNGiwY2iIWWRD/Q9c5Qz+94QpIq98WK8EdQuO5QAjSYsjDt\nqqDWs09A90FI59d65gxoe5U+dRD66efVFuu/FONjiGZTRN2XOfWRAzpTo20qoN8WzgHzE/SVYNTN\nUXt3p7pP1YK11YZhcoUKPcSUGiiZ4Wc/QmfjS1V79DrmipUV574bY92/cqR2eA0qkuOM7+ZWY3LF\nPNpEP8MkfQxbwSriVoUWzJwzvYlqfXaROBzgChKizt/Rc0wiofGZa6FT1zhQHB2oXjd1XDvOdZ9b\n5vvemTQRAjRXVp8JySzU+MmcE0SKuTXMx7sWN0FOEhYCZ4vdoeoRWnreoKD27eMGWApRz8eJrlbB\nHWAOYs387lQUaL3nqm+jKRQwAyPpBGbUHxaErvkHaq/zmeb7WjlvQpC3CI2BOjpJN7HabvRSbZpf\n6fcNrkr5E9XNBamLYHQM0QRxcKV7mNf1r/qK8X3m5WueJTPClQKmxaLPGXzGfamt+SybuArNcYUi\nZqr7uv6Kto2nGu9WVvPhBFEbC10Hd54go7pupaJ5IAOTJ0b3YVpQGwVGbdYExSp66iPXw8UON7oI\npqNtfzPksloHqYwUg5mXaiff1/3asZDim1vc6HbVbvud940xxuydID7W0TwWbbTOdrGpOzrU/F0A\nPWt/V/XrXuk+47H2AAfviUH4aohuEtNhhFvi+lj9WtunXayvFtZM1TNTXBDHDT3PQ2gil/v6fcy6\nWOvAWCqoP1e4Gq5xyTq/1PM26qrXBLeWGuyJS7QXDjoguxPWtXNdf5TbmNpAsWofaF4YltVHFVyP\nnDyxFCkWDjy15VlB84uXsJ7QXetVp3xOdbBz+l7xtzXe1h/jFHarmBw0cGViAzdcal4ss6bm2TPc\ntdiskR0Q3jlj1GKey7KOVKaqV78rF1HnntrhVRfNBfQvapH6OmIt7NtC+wdzmIK9GZ/X/apvK7aX\n7AuLY8XCFO2cKIvDTlcxepK4mlyJteF9znUqqk8EQzLviVEShqpPo6z14Sir738OA6awozG6lYMp\nWcNtBMZ6GQZPy4Y5aOGudKP+msfaC61v1a+jDHPEa80Z9S1d7yZZl6+k1bBk77TbJGZZx64v9P92\nVfU/R0dp77nmnM6Oxpwxxtxr7nypvWbjnFmn/uMZrAqYo1VX8VGgXyf8fpfy4KHaaPGcGIGtf3Kq\nPqmgp+PhBnTxqfoyQKBs70j7pxKOL2s2B+ev9czbbx8ZY4zJJq6fOGjNL/T5Ds6HOzz71VjfO4IB\n/ctI+8T+ieanmHkyWxC7LByrT3ojdNCIkf0q++RHun/3Uv9fd9CUYR7ymM/XMEgSl77GuxqjT7/z\nHWOMMYNn2uOMXqvezQ57op7qa+EAVOvyzjXWnJBnvfFgDMWw6nxirNCB8Z9HJxBG/Pmv2WQdqX3u\nv4W70Su1hwOLw2K9zPbUL+6O1oPXljR0ZjCSmkd6T9iqqb9s5+77VmOMCbrUG/es1U3ipoWr37ba\nq7GLwzCaZCv0SSxctLIwSdcF1gE0yMIseixt/b080ZieocfV733lFuUvhmbtboyHq9CU9MDpCXpy\nMPoO9xRTFdw2LZgpI8ZnAc0YyKRmVkB7BRemKfp3XhZtRjSqAli7Rd5FbBa9jK9nXub1+XAO+5R3\nTZ95uOBrbNkb8gk2zPgcbYPWS4F9bFzXuF6N9DnfwsGMegWcVhiiLWjBfAzIU7TaWlNdX/PYjHeg\nJo66IfmFSgy7rYyrc+PruTApUyYtaUlLWtKSlrSkJS1pSUta0pKWtKTlDZQ3ypS5JOuZIMomVnX8\ntbJ43ZfKfGfJRDVioTU10Lr9h8rAVZ4IWfGe63vF5Nz6GGaJhVJ1UdnOUk6ZvEJNWdJgrMyalfip\nb5RBizmHOOBcZ4yGg0GnJMbRZ4krVHam/y+myqKev0QzAoQ1iz/75lSZwdcotN/bVn3LBVxaYA5l\nDEwdmDSJBs+mTsYNV6jcWlnn2lPOCm8r07lzX1ncXvmVCc9xcIkTNEoZ0+a3YHxk1DbXn/9Ufwet\n9rZBj3FK6KGnsdkB8dQjmMkKtwb0LOws54pLeNi7oNL5u5/LNcYYt6Ls6ZpYuc2qT7ZAmVfoXYxW\nKGXjIBN4+nu+ReZ6nDgdqD4ZznkvUDF3b5UpH03IXGdAbtGLCDjLOUV529ri/sTWqKvs7WapbGkB\nrZl6FbuTmdozHODsQlb2/FSx0oiVhX74B39kjDHm0faRMcaY7zSkIXM8kA5FMVQmfbNIEAHckDhr\nPA2JlZGy2+WR6heh8bJBNyVw9XOG80CG/OzqTM+xhXL50MMJDKXxtq0s8+Vz/T1xOIhxyCjgoOBF\nGot+ITnfqfibH2jMFFaq54Tz6e4VbBeQ+2rh7gj3/GNQXtDePuPNKihjPcaFI0ewXvuqozvRPXc4\na+pmcEeCERPm9b3JORouJSGZwRA3IFgFxTaoBroQXkVtmOMs7nyFZguI7xJNm4WreuRxNliAnk9A\nueod/T2Lo4mHhk1/pJh5+FjXWZ3hBlRWX5ep/5PqB8YYY551pa3TCFT/8UixOCB2As7w91ZCaPOu\nUP7qlupf3NHzbXqg4KewrWIcgArq0yLItx8JqR34Qv+Xl4r5J020s3zdf31P1zt8R3/PjHDfcGiv\nCo5dV/r+qKDnAnAwxcI3W74c5k8/sblqad1wLT332gfpiVSPIsuSG2us5Di/fztUu+VxRNi8jWYO\nKNfgteLs8f1vG2OMGfeJv4HcSfrmfb6vue2mB/Ly0DEnMOWKltrUOtW8tRXiPuRo/vWQECktQMVb\nQpNmFXRslhqP22u0VnBfGx2pbXMz1fkCbShD217NhGLf39L9ruf6fcF8kwMxtbs4hOU0b81vNfbM\nu6r3UUnXs9Br2G7B/pyiHwGi2LeYv9W0ZnhMG+KY0kxCITFWw8nnOWNhMtU82q6KoVfqMObKaOoY\nLMDuWIYLXPVwicqhGXMzxzGhrnZ0YOXmhjBK+1qfXuZgkuTQRRmhlYOV2H4oBkpYFMq2GeKKAhrZ\n2ld7bL8v5HX8sWJm1VWsrGhPF2ZoOFc7TB9tf/kMuUrNLE4Q5YkVD90GLD600TKshwfom6x6qt/8\nhcaCA+FnhmOG95A5iqFjZurnB4/Yc7SkOWPD7PFPGCOOMYsn+uyho7Y8XKJlxfybd3DSCl3aRvPN\nNrTaT4af6l6R+vgQdug1a3FwohitwaAug6IPQZ/zjD/HVkz7VzCNKzB0dvbNNykO7nurbfVJBa2w\nvKsYuQIxrpQVS1cMjeAM7S/2s/4SDZRHatvLT6Wt1X4onaTAgSW80Pz+mDX2Xl3z5wJ0/PlYsZbH\nlWkVoUWDS6l9pkG0xIUkj8uoj/5bM4ue0ZU+v3tf9Vr2NIYurhWzQUWx/uAQjQZ0o24uxfjOJ3vK\nCuvnEKe2Ipo6qDX4GdYB3O/2n8FG3tHfvbHqfzkVAyYMNOctV2rn6+4ner6CWBhbOJI1D9RuEToc\nEXuQYPGVrlTk582EOWSOzcrTtq7j4p44xW3RoAnnjnT/OazDu5TEOfXhe9qDexv01Nj7xzANLUfX\ntGA+z15ofE7Lqvumob6Oxoq5gZW46cB+XfMuUOXdBne6qKu+dHAzSnyjxsRAjCbhyxewxjzmB1gO\n3kCxOsX1L7/SGD2J0fyy0B3q4ExjWLvR+XBg6JRh3OeSPVkN3bgxTEpc/QzurcG1nqs31TyynqBp\nWUtYDxr7CaPl4tWJ/n+gd7mDD6XTCZnWXP1Gsdk+0j46X1RMW7CGr/P64Gyu59mG1ZE4cYaBnvf8\nQu9FqxpaiGg7th6JEbXCCdg/g4lzx1LHlXS5Uezb6Eo1imq/tdE6fXmBk/AMHSo0YUqwBCGsmjX9\nZtBXtUr66SXOkQV0VHA4s9ZfufZdm4mp+DlT6mhtuHyleXU+1prQ7PAOyWmBIA/rkr4LeW/N48hr\nc/LEy/LOM9H/NzneqdAmTDRfNlU9+xhnqwKszOmSRQf27AQNxSxjyrF5Jk5VxD77Sfbb4w2MeaPr\nDtCQKfC9scu4Zh50kfuc4Yq6vlb98+QNLPSLbN77DTpHcVGxs4fe6upEsTZErzQD07Nmvp5NlTJl\n0pKWtKQlLWlJS1rSkpa0pCUtaUlLWt5AeaNMmXk3OWMGkwQf8RLaEGtXGey5r2xqlvOVHM03k2uc\ndUJpz2ReKpMWwVjZQi3ZIZu4neGM8VDoUYRjA0fozIyzY8W8PlcGqb31yPzjZR+v9L29otCs0EWr\ngSy1FysTdq+auIXo70X83q0PVL96XSiezZm3HOyAImyPRkPZ0g1aNYsbZY2HNyBNgTJ0uZbQsjUI\nzHIKGjpUu910F8btCX24xQXCRxF7EXOutqU6RLTR0AFhPeOsZ6x7hqHatLintrnCpWN+qzadIVOx\nwf1j8rky3l/8XP9vHCjbetdSMyh5c553F02cYBenrRv9PUOfzCZoAaCwb/qgU676sG4rG7vgLK/X\nU3tEsJ88R8+XRXckLKq+ToyDDucMI44pOyiRuzgR5GFnlY3ad83Z/TUZ7oURUlCYq2+aVSEpTVCv\n7pWQ4unNwvzgg3/bHKPZ0yRj7kWKmWkT/Y+ZYq3eUHtEOFy8BvmsVpUFvuXs74j29EoorF/DzkrM\nPpq63myhfs9xnnp1q+teZsgS36r+NZx1HFvPdz3G5WmR4bkV83NYXfWSnrNCvaZkw3uciW7ixFDY\nu7trygZ0ej0BBarBYOnrWtc4mtSrQoXzJbXpPFafB1Ai8hUxRAqoyK/yqqPdVN3GQ1TmbT1bu8i5\n8ImeaQlbaQU0GqAan1so9jxYVZegMw30h4Z7qv9mAZMD96IBWlbuIU5WIHfxa/VtBt2fKNDYWl1q\nLPv7aruWB0vNVszEsJ6sOsr9aA54MBVzC7XXeiRk5GylMfTB9zo8t+ani/0TtddY9y0XNehHS123\nwxyyfU/o1RTth65C0HicO6+U9Nz+UqjUGOQ7i6p/whTsPFC97n/399ROgWK3uaWxdNcSZ9HuuRTr\nLHGOGe/j6jdhbgRxzjf5PPoYXlntGLia2xatBBVjvbBwMtoCzQM1jEAVTQH3LlCtBKnpMWbX0ZYJ\nQyF767Hmsc199bUVoEMRqK4vowQx07XKsCknsG52H6AJcwY6FWstClb6Qgt0eUrVrJn+PkRXYQaD\nZZNLNGTQWcKRqnkfVgIOUjehJsQIPQcrJ+bGdh1XDbRk8iB5YYNz3xtcK1y0CdBratbQFWK9GqNx\nkwfp7TDWljXm24B5paR22ERo8uS+mbNOnXYYMH/vv/Pbxhhjpsd/ZowxJk7W+LJieBXgGDTRcySI\n5Ds1jZ0MTM08iKuV1xwzPNc8P25pjM9mirU6Wi7Nwj80xhjjHuEkNIPpyB5plEPLBT2j/Cj68hkK\n+YyZFjS2toDdHFiCLVh0jSbMmy80hrO45B18qL+HCyHBl69PdJ0t3JXGavfeXHPoTSj2xj/a1p7N\nyYm1O/3858YYY1589rlZ9/WM9hMcGh19dhdIsohe0myoe93AZr23g6PIF4ppd1ffX8D0q3mwmdBS\nmV1pTERlrdmVtVgH9qH6osTauTbaL6482LuZuzMgjDGm1tZ8179VfdboEK0v1afDJfO/JzZUZ6ox\nUma+njY1pgpz7V1ynmJi81jt8egBjoTsWSxYD/f39fcRSHOtovVs0dPzWDU939YATYSMPl88gPGN\n1kIT1kMIY2m60vVnNjqD6O+NGPPBLRoPE8Xm5RpWLM5em436owMzyAuJhYeas4pozAz30T67VXvV\nYG29rut790Ndx/fEWq7H+r2O+1YFRD0E8a6ivxLAcH3+PHHK1FzSPYfBmf/KyXF5akwAA8vCBXX5\nBEeaS1zyRlqPqq7mkjXr673G3debGc5aqzWs/KdieRWb7J/Ye2Qqesb8CtelIxy2srBp0YxxYREY\ndNhcGM2QCkwOBvxqrHl3GusZel30Lvh/FkZ5+Uix8vaWYnSAhksBnY5CovsE69WlrXz+H+9qDFgZ\nHLVwjvSy7AdhgU66iv2Zxf73RGvv5SUsBJzQMqxvS3SWpmjQtGB21HCyrbU0D110T1QfiDYx7de/\ngl0Ma7cAS2EdoInDGj6Aibr8THudTUExkkdvzqrqOc9/qTF6OVTsf/hv/IHa5Yn27S8+Uqx98ane\nc8rON3OE7CX75bHGcGXnPvVQu5wO1S83jNk8Yy7O0vE4HDEFmjz7apPH/crwrggDdM17yoPvyf3K\nlL9y7cu39423XJolbT/s49rG3qJyqHHfhv1kVmizoKGa59pz3n/XaKcucbdLYn7t61miHBqPnKIo\nOrxn+6rrhL3EGnaWhe6mh5Zsifk7h7bVwk72Y/q8weEwZt5boS9UWcOUjNTXeRjmS9j7iUtSpq7Y\n9nC4DdB2tHGBujlXn4Vo3taOFJshJ2JC3P2uulp7P/2xHNJ+54PkHfg/NP9/JWXKpCUtaUlLWtKS\nlrSkJS1pSUta0pKWtLyB8kaZMnWQyE5FGf3hnIPluIHc/zA5Q6uz+WW85wegRLe4ZWTJyi72yaT/\nJsl8o8bs4wTAOcTeRBmz/Q+UNS3hcx5sdN91Rpm+rOEgO+rPEdnJDamshU1GDseCci7RskA1n7O1\nYxyOJrA6Qs6Zx6Q382GClCvrOsSxYg4rww113cEQpk5f/7+GOdO3kiyrsrQF/OCXNyDrU8tsHF0r\nl2iezGFWHAvpm9FWK0d19EGPNhmykQVl9N1LsQ6Gx2qTDGcXtx8qq7hdxbHk8Ye63kKp7P5L1XGd\n/2Z5QB9UqdPU/a/QfjkwuBAZ+uZK941w5SjYylJmGpzfQ7F7bqtPW5a+10VnyOO8Yh+NmpDz1ZuY\nPqqq3ksYQHVH2U4fB4Foqc8llvZz0LE2+h+bLO0DW2FQ0u97nD32A5BrGCprYjbP+eu4pHbooW0Q\nujwXGjIuqFqzqZ+3Z2j6HOn3HAjvYi3UrA7LKtNQDE9BQqp6bHMTKtY6PFfcAom5EJLvvIXT0bvq\nB8fVdd2BPu/PyY7jXJPn/OeaM8vxgeJmd6Tvv0KFfuiAviUuJncoy5ky5DU0QfJdMt8cr7WIUbMC\ncZ3rnvZYbhTDGbpJGbX986HQk9qF2tr2OCOb45w3rmwhmiYzMu/ONTGQV0wVyXnbnhDIUVZ9tpPT\nOJ2uFBuuAUEFZHFxicvitlQgBlqN5Kw+DjeA43u4dExgFVivYOiV9P1yjfuWhTb94hM9dwlE9ZZV\nYAtEYdPgnHtf9ZhcaAw33td8+SCn+fosp/+P0a8Ia2vaRX1+eqbvTceqx84DIdaNFo4JE7WXtaUY\nbh7hGIOafmap65ey0goowEiaz3W/7t9hB9ylFFxdv8cc5dwqxuogNI0yTgVLIaOFnNDNlYdrHwyp\nMujmEicEd5XoSMGAhCVxCkssjyOZtVS7Lme6fnhPf8+einWQ8RzzoEVfegF10mcSl7wyDn7FOePP\nBVUqoFOB+0081OeqHVzVYDjUOf/tr/VMDmtFmfllf635wGfNCys4nhzCUFzgvgardNwCUbVAo0cg\npIG+v9vUWGtMdP3+lgZl2dfz7e/h6jZSvTN5dCemGtM2bnHVQDFSb2lsxjU5Cx7ByNvk1LcZ2iHR\nr8jb3wy5XK61Bmdmmt9n+zgqtORmt3gu3Y/WrsZgt4/WD7pKOVt7lldfaCx6OKhFxJhzCHILavfk\nQIyUflFI6+0pjhasvwctXe/C+ivdf6PY2drgDMF6ZsXHXz5D9/ra7INqBqy3H59Il8WGRVtlD/Ji\nDu2Yfs9X1V/jke7Tm2gMz9BXMgNcSZgz5j/XdX8FsyiKpS1zi05Ma/exaRdgo85gaRa5xj56PLRR\nBk0SF2cQx1YbPPxAziMTtA16jI3yiv1fHUYjzI/bgf5/cKDrdWHcVdCqeefbGr8xrLLC8sZ8k3L7\nQuN1hFNjBp0fB4cXZ656dYjZ6Z7uZ4EIZ5nHb2a67xGMofsV9kYhbKSZkNXphfrC/I6ud32Jk6bk\nLIx1qfYrMH/aCRva0piLXPVxHUbJkrGXyaABAyt6XlA7ztmLtEGaR7CIL7u63lPYHqdnGiveNuvr\nM11/q4Gr0kQxZSfsAfZKw6Kev9LAnW5yout8KJbA8iVstGu58U2rao+No+d6/bHav/UIBigaPqai\n5yi1tc4h62QW8690PjYdY26+QB+LseEMoGcsFV9VWNG1NZoZOHU2K3e3Dm1V1SfPz/Rsy3OcY7j2\nKlQdDpswsXGaKqPTsTawfArs6XGSrVQ0bwSQFRZDtb1tae0K0JByeacx6F8kTjAh+7ks8+rVhd4h\nVjcwagb63a2xP2S+iA9Vr1Ib9paHFiOagZtdWLrofzwfoEXF/Oxl9JytSDE/q8A2Zr+ZOOm6vtb2\n/UM9d5YYWU/0fvL8ox/p70XV76Aqpk8ZJzEflkaB/fAaRmAW3cBgwrrHuok0i8niWLay9Jy+f0k9\ncVLzpFVTxE3qbz5WbL6CSVh+X++oVfPN1psIfcJ8rNhuZGEu2awnzBUHGbWDy1j0YVUP2KvUykls\n4uzI3m2NdpvtcLKAd2sPxnreyn1ZF2cemNF4Yor8qerUeWbeqWB9rQPNVy6OV95a89tsxemLhNEG\nc9pOBPBgoEfsOSzm8QIaV+tE94aTJXFEH9mqh40mYanCOw8nWWKEzooLxsA80YZlHjEz2kL/X3I/\nQ/1cGH42pxX8Evtv9vVjdH4CTrq07rGuTNW2MVqDtQ0alnMcEmF3lWDiVC60b/Y3X8/eTZkyaUlL\nWtKSlrSkJS1pSUta0pKWtKQlLW+gvFGmjIUDzXCkzDdi8CaeKwN1/JGcB351+RtjjDFb3xcK0/qO\nMuornHlKNWUXp2gwLNAGuFdRVnNmgYxMQUTIfIX4il+R8SusUXMG5Rmj0r4CBbJgJ7hkzFakWcvo\ncCw3oIyhVOMnn+t7DqyH82fKxC+udf1Fl6zwU7FKDp9wNndHKGCW7PnNK33exSXFxZ2lg3NCB1Xs\nwgfKsRUP9L0C3z/76Scmx9lDbwtl6xYuEihT51rKyPYHyhB7uAZ1b5RVbMAeChOdjRkaILCF5mQ9\nY86WBkZt1NxWHUuPOauOhoj5H8ydSo6s5pesIpDe1UZ9mIFFcE0GfjdQptiOhOrk0UaYbvgdnZ9g\nCNKcRVuGGNmgVr4w+rsFa6HN2d7LKefcHV1nFQtZbIIeLTg/7wBlzDYTrsM5yxLIr6fnGI5U33xL\nSIAV8X3cVsozZVtfXxIzsfqnFYME1NBmALnogDQPmyAyQ92vQeyuOcce1NHl4DyocyE2xwpkpQWr\nI9FDslEOz4/0+/Y/UFZ4u8MZ31tl04s2ek20R4nseibgHH5JWWsb16ZS4jwW4RQBwn4LcnCXEpzh\neoE6evEWLQEcVBowZWaxoLN6VnU/P0ELxlGbFtpiZNQKQuCiHcVYiYx4MFZfvZgIwSziXPPoHloj\nntp0QibcjXB9c9WHFc6mZzh7u0a7ZM2Z1WpT179c03fof8wuYLmhg+RuCTWJTvWcTcZ7zFi1HMXS\nBSh4B40FzKiM+1LtEoGUbg3UJxe4TOQ4mxt5IJ7PFXv327C3gsSxTe2yhYbNcFv333tfrk+/lZEe\nx99+8gtjjDGNUEiBuweCwfn2zr7m9cI7aIzhzLD6/NfGGGNePFd7BmdaD67OX5j/6Id/aG5/rX67\na7FBaBx0OboFXbcFNFQ7Vz8OXbRuErSRMZIZg8I9VIzaazS/MmjMwHjK7VBfmFtVHA7cR+rf6Ujt\nWGvDmDxU+/WDnPFdtVF+Jj0HB9ZA/x7jG/ZAKYKJ1mb8znEDYp5q9HEuwO2uvYUmwAhElnloUsP1\nAkZgIaNnGCVoThb3sPs++gAAIABJREFUtSzsMLS2XNyYnLXu7xJbDoy6uaNnPcNprN5UPWqwWzdr\nzTevrmF4nOt7A/vEGGPMEAJH1lLb5NCT21i4jhALVlV9ZrmaR9ydxO1D95muYRncsawvuE4TpHKg\nsVuFhXvJGf9oDtIL+8DFqSGHK8oUnaHI1frj4ToVDTQ2u8S+M+fcPgjpaK2Ytl7o7/WS2vkWZDP3\nFNTxZ7grVWG4eg++fIZNYJlTWLVHsER2YUfctNFe2Ggv8p0fft8YY8zgxc+MMcaMZ1rPH3e0Xm7n\nuO625pA40PNaOL759xQvC5yP3n4LFmBPc8wn1sCcnWie2tlCc2QFCm7D5IgUCx4obj57ZIwx5pTY\nbxN7tqUgc3EW3NzTvJVZwG7Nwt7tENNj3SdY6vfbqv7vBNqT5O6z5wFVvmuZ4JhSJBYGNdXv0BWa\nHtj6+2ZHfb4saCxb7McquHvm77NvnaDHF6tv/cGPjTHGXLFPtUH1CzaOZHNdv8lYD3AlWsA48riP\nBcM66MFQ2VfMVEONzU2k+b4I6Tau6X5799FeZP3ZLLSf7WyjLwdTc3rykb53pvZo4CBzdgO77FCf\nW9ra39tGc0BhoHr4rK8x+/gnj9R+f/Fa/bvu5Ggv1W8E23jJ3JXBuewio/vvT5nfhzDeYSE7W38H\nmW7cNxtHLIfxPGHj8ryh4mA2QHuNOa50H/dB/+5x4i5Vl10Yb82mxsM4wvXzWDHh+jDV0YCJIsVA\nFvNJz+fhmQeWfV0vZg22SswDOEWuBuhyokkSbcGY5DqJ7t7kWm0YoGmyYI3CuMzk2Z/l3knY/6pQ\nmDhQeeig4SAZjfUcl+yVFhPF3JR1JcZpzFtofotPNc+M0e9MGC9umb0WGowWpyKGuAKucOvMbOH+\n1zlS+8F63USKkcauYjCgL/v+OfXSnFHdgUHznvb9Z78WU3HwC8VGK6frvP9van6cwiw/eSaWcber\n+731R/+eMcaYf/ef/fv63LXmsv/uv/ivzF3KDmOklpcjo8Xe5PpE17lln29tNIdCtDIb2HUZtNUS\nd7+5r/ax6aeizWmJWN+PQo3hFx+L4dj/XO36H//BD8yrL05MLlga7x3tQRJXtjUspGChvoz4e5xX\njC9gDK9Z28bQKLNoPy1D9UEEM9F3E+coxfAVbkg5mC4L5usa2rJuU98rwdyzYOsamDUxuqHxQm3g\n8e6yhnMyh/WfjTV+YzQos4j7LdiPOTn1xUED5jp7oIjTGbM40ZpVPYowxpdb2gd6sPzzMG4akdp+\n757W0K2y1oOS9fWnAFKmTFrSkpa0pCUtaUlLWtKSlrSkJS1pScsbKG+UKbNEDyMEDcssQWIrypj5\nnjJg5z0hBHtkwmY9oTzjUJmoWlXZWgeEs5kXApPp6Dx+iTP/IVnbxn3Oa6IqHeGqlIGFUcDSYplR\nBq/iJewLzu/XlPHaf8AZ6C1db9DDNWnGWTvOSJtIGbS9ghgwmz5OF5xlzuBGEuFscV2V0rdthNKt\ncIfJmoSFgqMQiPoCpo+Fc0XrKY4WuEZtvjDm5hUZVND5ga9nL3BOr8BZ/JuJ2mq7jq4O6NOas4eV\nnK6d9dQXlzNdL2E9lX2Up2HOzHFnchLl7eQ83x3LfKb7F3FiuLpUBriF5kHMucJgJcTAWgllKWWV\n7QygX5XQ+fDHyrAXOeceLFWfHq5ELbKc1hbnq3E5GZEFHqI9U/ol55ffF3o3CfX/gOcsDWEDtGEY\n4U1v4Tg2rKgezbZ+v+opVnJldEoWIOS3sDXQLHCqQpMSx688sWvNONN/qOfY93CCwWXrFuefOsDK\niv4alWFOZdSvqxZMF5CATl7PN5xpDPa5wIOy2vNmKuRgRD/ZsC5iVPVvQo2525kQiAJuTtsokGfQ\nLzmgHuMbxWntWte/S2ngKHLDmfVJokvD/GFwHpuccab1UL/vkOE2GaEIC1wuOrhPRI5iYcQZ2ns7\nGo87D79njDHm+LXG6RyEMRhr/FU4W+vYaKYkSCSaJT7MiinsryIaKzbaJe2q7utxntvBKSCLi1wN\nBPA80vNdJHocAzQaMrAn0JF6+UzPt9tQxv5eizPBPOdJA12jX6ODgRXXgwMxEidZzp3nOY++p/pl\ncCUao7Xz0V//VO1y87fGGGP+5D//L/V8PSEeV6/VP80btf+rvtphLJkis+kqFgpAt8m56N5r3T/c\nFpqWzwnpLpe/mWuKW2SM9DR/10LF+q2nWHTf0vWjEDQNp59RSWPe4KYVDdGCMeiboLs1gKVWizUm\nfVw//CKMGVv/D0HE3aXasQ37ZbC8NQ/q6pPZXGyoDUzEPaPx8IL5LM7iEIWrhIVu0BTnkAUszk4T\nV7k1Z9DzMB18PXMZbZkANugE97kmbNHFFN0MnG585qc1seNt6xkXxH4fnbgYF5GXEexPNK3a6Em4\nFX2uDXMyquLIU9Z80wcJDlnz85zTXrKW5m81D01G2EcV9bmbT2ECtXRfmz3BXcvFBPYV69gu68I+\nLkn3Hwsdu/IZMzARl7GePz7GQeyeYis/0nOeukI+u4izZG4SbQDYDmtcBEENJ+eaby1ctFoHYgSZ\nF+gRzTSmPT6XRePLGGPy1YbpgYSvYYdVynKK3NrWvHxyrPk4j87SbYgGD44b1zA5lxb05TNYdyDI\nizp7DbQqfOa6Hpo3AXuixY9/YUZdUPiOrnGLy9ujPrpEsHVnuJTtNDQOhz8Wer2C+WDX0U6BmVLy\nNX/Hbc0PUV99vj3TfDTZQSvgBhbW1SfGGGOctdYgU0AzynyzGCmyttkt1jDWGR8NwkWRn9dC5x2j\nmLexn1szv5tAMTzCxa+2wtnS1nUfs06cjsRUSaRvlg09/62n9lp0cHG6xdWDfeCAvqg3WYPR2Ysi\n1mocusZDtFMWOHFlVd8jV33714nLIKy3zVv6uTuV01bUQqMGFvFiCPM9hiFoaS5LXJ3CPOyHc9Wz\n/Zbmrkt0kgKcynIV3bexrdi1cPuz61qHbV/X2cdhyIINfjwSC+UW963S2Ve6GbNXJybeZd7/BGYM\n7IS4jp7H5cfGGGOewG5pG13fHoXmruX0C13j5c/Eqv39P/53jDHGZI7QTikpBr3E8SXZz7noL6Fb\n5+VhTuNYVoHFusT5q1FN9HHQV4MlFQ30uf5MfVGy2ecVYHU1jowxxvg4Yt2DFZpBNzPDHsNGX2hD\nXwz6aoPFXO9Y041i2g9V7/lIbWbnYQXMYWz66PVAAfLus9+NcN6FzVBBG+fFFbZKK81HNXSZ6rw+\n3P+W9gDTpWL+s4+lNdNqxdSDNRb3wJ0DPc+v1uxliKUf/J5i04n084uuxpRP7F5OYNU+13Mer1SB\n+lu/b4wxpkM7fvEj1fPmf5Hr3F2Lc6A5aPScd9sBrnyw/Dxi84Z+iC40ZyD/Zw50e7NCV9GDSuOV\nVE8XXZS4xjs27ObhuTZdy9uv9LTe2y+ZRXxgGmgl3hj0avLUpYAejUEbDyaei8NsVGKt8dkrwFz3\n+P88i2NjyDwEuz9xrA1h/SROWjMcIyusxaaUnJpgf3g9oM3QqYNJ7qPlZXFaI8PatESnx8W+eY0+\nj4Pk1BptmPGaEzElvfeXd2jsS/VR8h5RrCcas2qXDeyyCvmByFYsvX6pdySzUEy1Hn29s2zKlElL\nWtKSlrSkJS1pSUta0pKWtKQlLWl5A+WNMmXynEkr5jivSOZscqMMWflQqvu/DxvhwT+SwnW/RMZq\nocyaFf5/z6kHIJIeaJaL1sMYz3uH8+453JFCC5aDjZMO6OR4ogxcBt0ML8IVBJbGgHOa9kh/D6+F\nsiU+64aMXMy5RvcSrYQx7AYQAQ9XEq+I+wdq9Vt1ZRAHZEnja9ArsqGnZ8rA/fgjnQcvgta9X/uB\nMcaYHc7urYZ904Dp4mSVxcs7ukbOU1vNb5Xpnh4f83faZq66j6rKdDtTUK0+zBQYGBmQzQlnW8O+\nspjZmAwvrkHuHijVXQvoSTavetTIeN/A9HkIU+ZyqqzuhMx2g5T6CjcSbw80hyzqHCXwkOyth1PK\nYsb5YxDAAF2NkPOMjU7SV0Jr6nX9fnOr+zeLeu5upEx/HXehDSyH60DIRQ1F8VxVfeZMFWsuTgFr\n0EW3CZtspc/NYEXZqK/PaqpvLStEYNbXc1QYU7ldtGuGqleMG9JqlpyvhCnV1nVyI11nxeHiaJOc\naUYbYcZYxRVgOdRz7digX5VEaR23pVMcanpo+cCc6tZ1pjUD0j9EG2e2VLvtFjVG71ICX/fcK+g7\nCUI3sXFLyqpuq8SZYIC2zLelfbJJ0HvO3g/6GpdL2EGbSGPmfCH06/G3NS9lG0JprLH6wgHBnQS4\n+aAlFa3UxvZ9kIaN2q5q6fo5mDWngTL1rbI0poZ5zWdOX///Vk3Pt9tWzNVwTLh6Dgtirc+NVjBr\nALlHL58bY4z59F+ixM/Z/9qWnmt3C/2i7wgtuhzo+9Oc+sKDnbBkDD/9/pExxphuTn06HOnz3kOh\nWZ+dC+F+OlT9kxjKoYLfePQPjTHGbHmwHdB9WoBExIkb1K7ad9HUWGvgqPB6oOuvWSfuWq7nau9O\nA82XnOrbWCpWu+g45UGaFxXVZ2uCVhnsvyJMznX5PWOMMWO0Hu6j13SLBkQGrbFZTz/bscbWuAKa\n1YXlUtYYOfSbBuKK8Roo+K/0HQg0Zg+GgkWMjQo4RSEYVIF1UED7ienbeDDhGpFuYBXUF7ehUK8K\n6wDEELNiLUwcRyaJg8tMseOgEZVhTR3ArDMzfT54R65Cc/TPrrEWsxYD6gkDE1eioKf6TF6BZM71\n0w9gk+Jo44LmR1WcDTy1bT6j32uPdJ8d+sjMcUi8Y9lcqi8XY/X1MxhENwsh1fcOcECERbuLDtTS\nhbkJo3PhI7KDBs+TAzXsVQ8HCYPbHI48DUf9XPX1HKcrjdmjuuYCd6h12anAzNmjv/jhP//qOefT\nkSnnNHa2arrf//VzIfZPltJvSnTyrvpqz30bpyCQ5kZN61PvC7XH+Y3cE/c66tdSXnNBJk9swzLI\n7WpMvX4OS6F8ZI7exhErB7LJWrQGdV6wn9qgJ1Hm2eq7xFJZ32+VcBDLi/HXv5Gu0PQELbGSNMEC\n9CIqN6p7aZ/93E/UB+fs697Vx41b/Mqd5y7FoX7WGkeZgtb4EWwuz4PlAIpfwb2kh47djNhawGTM\nYucZ4MY0gd3WyMPQY28Qu5rvPFyBIlhW+a5i0mZvNIedaqF3182dqJ4rmIY2e7kFiHXihrUE4UWf\nb5jo7I3U1yXYYhuYhJGr712eKoYasCnmaLcNbhjTt/QzelA7Du4sG3RJrpN9uWI0QKvHqWksRaHm\ngg3zdblDO1g4zYAtF3FnsrYUowcNMWzWn37FhIpaY1M+Vftc1NW+qzlz4lz1XZ1oj3aJDmG5r/Ze\n1dfmrgVJGRPzLK9/IvaodwZjm32z5cM0p+3yjtoq6jGf5Fiz0V6poecxC9TGLvNijle5NmyFrAMT\n3rBPZ5+7RpcyzhIjPusIehsb9D2tvOqxgXmTg8W/miesNn0/w/w2490oRisrx/ziZNE0RPfHgSWR\nh32xGel6fVizDo5pWVgMLsyZhovuDzoit6d6Z8ugtdXAga0AGyGMYBQmbKkfaK93wJ7r5qcnxhhj\nfvovxRhc5BUjXRhJTgkNrk84vVHG7en9f2aMMebhvmJrg77S4pnqP/iCMXvH0vtM33vxsWLfw5lz\nhR6JtcsYQEMTEoppdXivQWsowp3Lq6ueC0c/lzhGhjDpl2Pd79Of6H7b9f0v62LnHBP5U2Ohx7lk\nj98s4m6MO/IKKofFvBUb9OjQgBniQukyj+R5h7GTdzG0w1YhzDl0QTOwey3WRhuN2DxrDMa4xsUR\nsgGTpZgQD3lHaxd1nzW6eyE6nTdDzSMBr3glGDFBFe0uTqz4zJ8Rpy9sdPZK95K+wOmWd5Y5F/QH\nqveDNpo839d7wqefar69/ETrVTH6+j1JypRJS1rSkpa0pCUtaUlLWtKSlrSkJS1peQPljTJlCmRb\n8yFODuhfrDPKWNkLHG1A5wdkohy0aBCfN5kLkJAbZcqrwIMnaAZEZOpnPc5Xcv5+ZkszwUWt2Vni\nFJOce+R8pUumbVZGhR2tmNyxModBSVnuRK09SJwpFiACF7r/+G+lQXH6TGdeqxWhYgdZzvc/5Vx6\nATYDSMFqoHZZgZQkyEb7HX3/WwfSGSk91fnEe64ylqMTnUUujRumgSJ2rkzWH6V6jwz0imtu39c1\nWns4B4w4V7hRVjLcKEN9Rd91OuqjIU4vAUjoEgTulp/T12IRNY+kq3PXslxytjWH3kMe+L8rFN++\nz7m+K/XNosH56glZT/QcNiiHV9pk/K8Sj3nYWTBibJwJ+vvKquaRLPAj9IE44/rZQkjGThWUBwRi\nA2ujACLq3CNTj97E7Vz1Lz8APSLtnAEp9WNlbXPEaAbV+nlJf8/ierHCrcitCg3LhBoDGxBcHyZO\nJtT3m1VYB2eqz5Rz7tsXeg6/ga5JhHtJC8SG9LR/oudrb8OyACFfrNSu05nqYa/U3/4Mdyr6P64q\n/qr1Qz6n52vcU/wdPRX6+fpj9Zt1rfa/S4nnquOIcb8PSh6QQs/M1XeLA3QcLLXl/LWYZoW3Hhlj\njCk9QEcIvZ24qDaro6twDYXj865i2dlWm1QKausBrm9VWF2jG7Vxuaw+i5fShZjX0PFACyve6Fnn\nGMU8YpxPX+t6wyv9/9xo/ircU1s3fI2lrcewlFxdYJHXvBChLh9xfrsFsjvHcWw9xcViW+2SfUdj\n/j4MlHCivp2thXgcn6oehY9wLalzHr2ovvtP/2udm3+Bdc6juhwFFie63iuL+QhHr0FB7To4Q2eD\nsejX1M5XaEQ0qpov/THICnpWXqRYvmuxcQXxmdOcmq5zC1o0BlmPOLCdyej5F0camwv0p7xrEOlr\nMXacnL53hS5SaOEaMITtlhwhhk3RQNdqU9T1yg5jqWTMFmvGuqBYXKG/sBwhTOTANHR0LQ9XiM1a\nz+LWYI/W1AeFOQgpCKtbUx2Dqa7fIRZHtxp35SpOYIzP2zK6Rpeg/JyfnhcV01ugaeFjPcMElllw\nyv0fwih8By2F12LsRBOthSX0fUroZ9TK3Kep+uVWQpvysJQKTdA2EFQnh1vJnLW2jNMaDgvFPDDa\nHcsEpNpiDrGGav9NRuvK8c/UXg30TQYNoWAZNADqrKMLmEfZxBUFd6xiWe3QX4BgRlpgAnSwwljt\nXsvCXgBNNE2NOfMAZs1QaFz/TO24qX31nJvJ1KyeqD9WRSHERdbzIm5bVaO5Y/b8xBhjzOPf1by8\nOEUTYldxVslpj1T4lZ4zgEF6O1Y/Zya67tVKY3u3pescfuddY4wxp2dnZvoMnZoefbhUG54z/k1G\ndS0PQRyJvbCmNhw/RxPwEfoT1OEEpvLqN5qP/xBXzjnaKUiZmN5AsbQFe7Z7rPEa07cB2gd3Lf6V\n6ukwprLrZP/IXiQzoR76vw9rzV5oHmnAonAW9FkZFyJYDfUV7NwBzBPc39a4kjglXX+FJo3d0Zjs\nDnAZwXlnvcT1aKAYWm6rH5ZoZFXY/rtXaGWh1bBCuyEa0Mfo7Nnse6Nrtdf4Cu0WmKfvvCedjbOK\n7l+yFEOd90DQEw0y2NYhzmNT9gw7n8vN6Waieh8eal2eLNW/11mY8D/Xcx/CoNzd0551bal9Y/aa\nuyDs0/e+es1pVsvG3sN5p4uWYyXR7YPRdUC9YWE0YSH2cHm5Szk8OtI9/i1Yk+yPo1htsEI/s3eq\n2K+3NI6GCYMZF8osOjYO+9d8DlYXTOneBdpTdXT0eIeyWziVxcmpAHTOuH4IG8EyMDtwFqzA1Ahj\n9f1iobF3yx5oY2BCw3qYJxKR7HnaHkxCD+0bO9E0Y/9tqT2yXHfg43TVR0uHfe/jR6KxDQ2aYhnV\nO1NSH58enxhjjGnUYNPBFHcqCZMb7ZRT9jhdjYG9lualIdv54wu9R1SziqHqPvp8Bm2zmvZa1fu8\noyUsvRM9Z/EcXb8fPdMFYZHdtXRvcD0dSONl9z3tmWZoU45gbQRowXlbivmgqPaY8P7gFNhr4AyU\nWeHSZScvyfox41326LHYZN/68PGXdcnnSub6YmZGnCzJwaJ3lrhxwo7NwXJ1cFdaZdT2BgZwib2K\njzNjlv2Nw9oc4MZUgmHjx1nqpst4zButFidVMvp8IWHkMHY2zFdV9rtmV/PO0oUtNYB5yPtBEV28\nhA5soTfnwrLN0XYB+kh9HAw5uGIyX57I0fNf8o5ZJfairPq+9xuxXKON6uf5zO9L5unh17/bpEyZ\ntKQlLWlJS1rSkpa0pCUtaUlLWtKSljdQ3ihTZtxXltfrK/M1AomslZQrmqEg/qOP/tIYY8zeQOeh\nO4+UtWy0lKFKzpbuVZTdLGZw5eA8eXImrUsmbMPfCxHIAM4UHufTFzhCbJS8/vLsMwCtWdc4E2zh\ncrLieqG+UC3ijgQbwT3ifCQo5/ah0KscuhnrFi5KE90n81qZuNshri52kqVGnwVthXxR9//+D4/U\nHt8WNNQGDe1ZSvH5w765vlRGOLtEed9VG63JXNddtWVuH4V9o6xixPm80g6uID5K3JwZjZZqsxKf\nX6JlkgEeLkX63hzVeCcRR7hjGd4KocvWdL/6jp5xxBnUAUiCx7lH6wyHrD1cRmzO8C91Jt81yohv\nAJxnsa7rbdAhIfbKWd1nmkUnYilUfvBjZbRfwl743lNl3kstlMPPlC2dL2AGgfRuLLX/BmXzAKeG\n2Wtd9/Ce+szv6f+9Io4CBT3nhrO7dkvZ2aajdp5cwaYo6P7lNmeJ0QWJdtGMiRWbyK6YIdoMPcN5\nzxWuITguVKtqT2RLzCTS3/dBpZZFId4OZ2n9ov6fg4Vw/Es9/+lYCOp2VoiD1f21rnuNcntJDKh3\nH6i93/lDjfGrn+MkcYeSRVpkDXKYb+NUUFUdq9vqk9qF2riPY9gQlk9mcMUziJmxtYM+Etf1cUXa\nXqtNpi6aMyAHkxLXCTX/OLbGRHFbz96d4rSFYIiPW8/e+5z/vdJ1GkvpNniM986exuRjHBOWfP/l\nL4SOd0IF8WYixDFc6zq7v4c7RUft0P3or4wxxvzmpc6173wotGdAbDfQDoiXer4abh3TDqgVDgPm\nMzFDquhorEBpPhuia/IztXP/rzQ2Rv+z2jXzU8XMZCAEdAoC4YEA14j1aVfPcYmGVgeNlueo8D+y\ncD4ASckXcc+6Y0l0oYIu8+5Ysb/zHojrE9Xz2Uj3ezb5hTHGmNtLxfbWLGGx6LkrnsbUDmy0eiLI\nAqLdAxmq5mGx3MKewAXKhl2XzFHVTGga6CBl0AOLBoqBPkhlpwRry+gZakafH7dhhtyqbjkbPYSK\n/r+01LceaHDDR0dnqjZooBfhomuxQBenGWutGd/T54szxW6M61AUghbVhbxZxFSQQaPrUn1aPZQ2\nytPf13Wmn8Ni7WteHhi1pQULYt7VfBeXFDPLS9X7mLVxiibDCk2GOpoFhabYEoeHOJGt745uG2OM\nqSS6GTgoMg2NQ8XEwa7YbgViMUZDZ8nzThMXvW3YrbB8C232Bjsaw2/t6e+rW8XOYKK90AgNH4ay\nsc6EpObZ25RysO0qGovLlea4YPXVOfVeNm+qJ2gQdPQzj9NkuSb2wcOlvv9RoDiaDWB/HKt9+2M0\nLtoaaw/20QzCsa4+09ywnsGg7aLbxVjxq5rPM7OWsQowNdaaj+a+5q93QTCDK7VlHzblGg2VLExF\n42jN9WLFxO49sXHiL2B44F43htE3msL26Sk2rgtoVU3UFonfSPkcZ7P2A/NNSsNVmwxdnNBCjb0S\nzJ8ATYbTqzPaQOP7MWvvdAPbIABVJ4YyBTQK1rCwYj3/+lbzaYwO4BqXI7PLnmyp51/mcSn1xKJ6\ngVtSsai12O/AWrhOGD3Uh+s2W5oH46XWgxBNRId1ZnSu9ts5VCw1H4lt5Z6rr2st2HUn7LEMa7wL\ncxWWwz76dCtL93NhFxTRNfEu1d/rqpisfqj+7mBAltlRDLrMtycwz3O4Bu7DDggZM1shTj7GmP1p\nw+S2mG+b2puVcLiZeThn7qn9gpzia+sBeh3WVw5n/7oSwrZ/8o+110/YVR5z/gi0316xH4cpl63p\nmZxIbT7BiWa+1HxZRoOqDBvAYWzllopBK4M21BBW1ED3y1T0zHmcpNY4zJbQgJnCoJuw5npLGHzs\n230Yl0Nfz1EqaYKy0Qly0Y1booFT3MCaCJLTB5x+wGVpxrpTxuFwipsnJAoz4H1lUdZz5dDLrLFv\nPh/w/LCDK3swEmFSPqxqTF+8Uix9/BdistzGMM1hqVlZdAjrWjdyBf19fV/rpbvW9aJb1XtJO9mv\nVL/Zn2ts/ouf/rfGGGP2WcfuWj78vp47euu7xhhjSu6RMcaY31yqIUL6efuB5u08Wl/dSzRAP8eF\ni3pPHd5jLFjcnDpJdLQWF+rXPfQJs2jNGWNMvKmbStExhTxucehCZmA5VTnB4cBStWzYnej3+K7m\ntQiWah4H2IiYCGH3V5P380T/pgv7lH2Vx3zh4DBZ6KGTyfBLTFWnrHkRpyHsPtpcBqfaif7fQkPR\nZw/k4Czsoim7SERm2HusWXzZUhjrRjG6oY0XzDse+phxU/9vxWrLBY5WL47/UvXkJFA4QZe09fUO\nxClTJi1pSUta0pKWtKQlLWlJS1rSkpa0pOUNlDfKlKl4ygZm0Q2pgBzEfWXklkVV7+B7crnYfgBy\nwplVq8PZ/DjJuIlVUTfKyHkdspZzsrILdC48ZejLLRglXSEM5TZsC848FyNlE92G6jHG6qBOvWPO\n8RUtZciWnFGe2cmZO9yPUM7e4jz50VtK+floz9zgwlRCDyCGNbFTTVA0ZfBurvS5FWyXISjkyZn+\nfv9crIvXHFWOLvW7fT4w41s9ewN0Ync/yTSDMoEO39zo2VqeMsBZGBPrKZloo3tnUGf31yjxF9QX\nMUhm71o/H3QriRjmAAAgAElEQVSUgd5qCz1x9pJzfXcrLrogF7g5tXIgoI+FguT6oM2gTeMVTI9b\ntXk14nxhHqX+NawkUDm3IPRmA3LhgnKvkTkvlPRz94901rNyKNTm8n/8v3XdGTHAWc2lxbnGGw5I\nvqNYGo/092JJMWn3FCtrzgB77ygmliNcjqI+n1d/RLgqOTByAFbMEmQyiFDLN7gibcEKwFGgzPnG\n5Q5aM+dqhxUshFuyyDVdzqz6OBbAHgl9IdZro1ivuegkOfpCZ6B2OgH9nIJOPX6gdr//XcFcN5/D\n4CErbR0LyTj7P/7CGGNM64ca6/cqd3dfShxoLj4TqpzjPLFH5r69xRlUdJEKvj7XdlQnixhfjIUo\nLjmPbRnNJyEuF0FVbZBxhVokFB0bzYAy89UtSEHhEn0PT5nzsKT7BJecYW8K8Xv4bV0v5Czr9Up9\nVkqcGUpiIRzl9f1XF7hnoE1w/lyx8X/+/F8YY4z5xy3F0sE/FYIZHmsMPR/DsAG9MqjKbzK4Tg3E\n1FnD6KvA2CnWFPNHH8g16d5jrj/Vc/zqldp3+jPNQzddtcsuFaw2ZlxPsb8ua15yQEQyqNmHj3CX\nulE/LKo4TqDhUszhkoHLVD5kjN2x5AeKi8vPhJpNrlVfC/2T7A9A944U4/f/5J/rexaMSlgLFbR+\nGjdCwj3YKpkL/T7EJaaB00MMKpnpoLOSoJquxmrBx3nNco1lqy2cGeOvrPHfgR20YM1qebqnf437\nxhpmA24LS7S3qjBrWpHqtMKlIYRZt5VHh+i6zt+Bh7KK6UQjzJ2jRQODYl2HpcB8sbiQm9oAJDZ7\nKrTZ7agvZ7/UerDIiTFz5Gk9WDxWbNivQMnLxGQbPY4Z7kxtNGxWWmd8B80tV2OoeMgYhm2ap0+8\nEvD6HUsmVJ+9ulZfP8zpusss8/4Q9hdn9r1QsRzDuo3yip0u6+jeDo4SWY3Z57/AgQzmaS2r9bH5\nRM+xDWt3MGTO6bC+5kHEjzQXuDCVzq9OjDHGlEZ/x9UwXJpRXe05WGjuKTfFSEyYoSPYv+2m4mwJ\nfSRuql9XsdDDXeIvU1M7XjLXVJtaF9y8ni/zQM+9hnEaTBPHmpYpGtVtfKb5pYmj4kZNbfpLmIdT\n3ct/S2tC3lZfZxh/OfYq009U2XlN84xzqLoEsWIswu3S39M8VVNXmlti2D/FHaitNj5cfTMdiFEN\np0Xa/JLxaxMbU0dt/dY2Y7mucX5NbMYweuKK5sPsUvNgeYBLHRoKE/alwUbtMcThxmkxD071vNu2\n+uQSvRAbKNnJ6PuVGK20sfZ0NjFmxWiLXet+Dez6HB/HswX6RfuK8eOerlNe6HlOrnAr6srBpl8R\ncybGZWtxodjownIzOHZdZxTredi/S09zxPa2tBHbT9AdjHSdwlixnmjUbGD2vIZ9HKKP1YZJehzA\nKh6JaePCWDTGmMHgczP3FRdHNs6YGKWVthRvwbfRvmH9/8KmPTJfj3D/3eIv0BmDKZcNGI8R+8CG\nYiNGTyMO0b/DWTXRjsnjtBWiLeLwE+MqYyfrAE5eix5rJezLWlvzvIcj7RgNsupUMTNi7Y9wRPOJ\n5dCCNdBGe7KkPUMHBt+Y9wA7o+vlYU1k0bpxSuh28O6Th1Hp866Wzek+OVj/zQZaXKx7UYgD2QYW\nMppcc5go3/4OTBfeyeIiLA5EIKNQfXb09pG+h2baHu2/ghW85D1gg/6Jhfvc07fkrnSKrt7J/64Y\nr1YVW5UTxvBKLK23jWKxc6j+/psTc6cSoU22OFasrVa6z2SivVuErstqonaqog1aQ2MocdGLPc2/\nRU6DJEwpH8eyDnqIL3k3Ph3qfpufMjb/M2M++/hzkzWOqeJG2sLxq8f7Zt1CpwxCcDEHawpN1jhA\nZ4ftpWXzDrJivmGt8Ax6ebgUZzy1fZg4yybvlkNihvFeitT2U589A/PlHGZ6hAPsmJ+lBTpLObRo\nLa0z2Yz2JnP2wUuYMsm8GBNza/ISEc9RRF9zp4JbKUy8HMyiXFFt6/D9jq/ft4jlOfqrJvx6F7eU\nKZOWtKQlLWlJS1rSkpa0pCUtaUlLWtLyBsobZcpkQaFKOCSsC5yfPFPmPLurjPZ33/m+McYYn9/t\nsrK6ZUuZ7vGZkItZX0jl9QzGSZKNRWD8ixc6v75/X4hsJjlPSDY6WqPgjdJ3kEWpPFAmrLLhDJ0B\noU1cojxYCjbIg41Suq/MnD8UovPxL/X76GNl0Tucjd39J2IHRNtkm8lyj5QEN6sANX4QlDhRMG/q\n9y+B7yEo4ZYynC5o6PpBxRSqqlMbJDOKdI2LsRrHmnHu2ijruHlS4+9k+K+FlsxhA+U4bzjBC36D\no83wUpW5+Ykqv97C6QTv+rr91RnGu5TqRhnwW5gbQYCD1tvKUg5j0Gsyyi7Iw6bPWVU0UiroVKyo\nb6WPSjyuSNMiGgxNHGE8ZZj3d4XeHDwVwjt6DzT8RNnaLgyjB2+pL8u+Mt2Dleq5mgphXKNY7u6r\nT8av9H2MG8y8CzLsgVbBXFmicWOjZj/AyaZmqT2ditCjcgaNmqz6Z36pTH5xBzYZekkNkHTvqTLx\nV1f63HKmmJn5MHte6+dBGSV2R/UqoDE0AaXLgxBnYVXkLqRVEAfq/3f+5Dt6TphKy1/8xBhjzIcP\npfp+vBLC0P/bE2OMMadXyuC/1dRZ7LuU8gHnf2dq09cDxWq5BIzfE+qx/ZQzpC+FZlyfC92vZFWX\nCOepPdCW7G/pzPl0/EtjjDG3Q1TlfQZmAIvMU9t1cdvYwR0pc6D7X/wC5kxPY2G0Upv/P38u5so/\n/0/kWvT0g6e6LMyNNToVvc8V4+umUCKABXO5UJv3Kurz50axV/jVn+m639Hz3v+Oxpy79w+MMcbs\nOort+Uj12NsWa+GgLYSytiMk4PmnQhovr4XUWp7G3OcuDlk4NhQYc8bWXLLX0fUNyPDVtVCbwj7I\nwlJj7ct+At2pRLjG1fT/8W9APAboiIDK9Uf6fRkCF96xlGCTfO/B94wxxpx7ismTV2pfDNDMqa36\nRvtqv1cwZE5/pL8fLoQ4v9XTXOBcar3K4JCQ4/uxg54V68FmK3F60xjcHehzrq04arkzE8PuGmTU\ntjZMvDy6OwucRS7QhDHMK3kDQ62gtt/BFmOZaMAkjls4BWanOEih85Ev6P/nCVtziLNVVv9P3OWm\naLz4OJrZsD+3Gnr2MgzDhZ24sKnPs7dCFF//KYuxBSs2hz5cFVcf2iI/ViyPmcddS2vdCi2TqE0M\nMhZHz9C/wN1kUVV7DPLfbIuzzqjPOe5u5ku0e1qw12Yag33mw3xe9a/hzDAuoq8E+2s211p/PdJz\nNaE4Dnpab/uWdItqxyDoO+hXbMSgicaqSM7nuXD2cZjHy6CEN9Pel8/gHy9MkbFU38FNb0foYA1H\nmc2pvmft676HOY39L6bq34d9PR+kN1ME1VxWoOdNFYdrHIVqodaL21Dz/4NviZH75HHHnL0QM22Y\nwz2H2LkewzAJcK1kTxIvtKYliGzAPqpLW7pjnAhhOpaKWiO7L9BhsNVWbURTgiPYoaDki79Bg2so\nfbOF/TvmmxSb/dz5UDEKydZsatKxqLYUA2tQ/KyL28gKhhD6dxucD2eM5dNTzbOJS9vEaAy624xJ\n2F9+ovHFNnQE+ynf0BioMX/WYMf6A9Vnc6a+PV/D4HtOn12oH3a5zu8eiRVsV+jzZ2rHEozuwypz\nE/veAS5IixK6RkN0qtq6XhMSl7uEIQ6r2cf9zi2hEfZI9d8LcQZjv+1eqr1PV7RHqDnu6TtiJNlb\nIOYjta9tsx+fqx3Wxa+Q6Y1fM1k05Z7hqGaWIPzop+wdaA67/+iPjTHG7O+o3hfHY3PX0mOfffsp\nzjG4sRVwhF1dqW0yORhrscbE2kqcWkDXi7CFfH2/XWS/tVDfzWF62+jx1EDvN+xhApjjkxHMCVhp\nixHOgi5uT+zna00cqXh3iGERhNQv24BZjtaNQefJx5XJrqr+K/arnoXWCfdrZfVznOiPJLocvua9\nXqQ2zi0U6zlOQ4xD1T/zpZsQ7AoGwfzyRO2HHujVRPvKLgz/+lJ7oGGMJgw6JEFJsVtAY4WhZ24/\n097IJVY8NBi9cxhJn2rs36vp+X/rn4pFvHmq94X/6b/5U3OXMnulebQ/l2PP/o7m/SdH2pNeXCnW\nezfqx5cL7Y+9JdpDMGunnAKpo79kweqY5/VApV2tW2+hjzjDZbaaK31Zl2Z23/jLvvEd9vwwXPpX\nqqNb1xqS31UsDvqsiTV01Fgzcqyh60RbNZO4oPKyg4ZTBmaejU7RjHE7SWKb+XInr//3x7yXExtl\nF60Ylr7Z8oJnhv1UYqzwTmPhoLsoqq1idNRWaDwatGMGMGY2rv6fZb/m7bGXQkfpbKL5usA775JT\nAi7v6VmY+QvyB72Z5q9GBQ2bv6ekTJm0pCUtaUlLWtKSlrSkJS1pSUta0pKWN1DeKFPGcM4y8pS5\nKoL+21VlY6c9ZUdHqL/bkbKfK7K3s4hzcXNlEev7ypxv5ZXZHn6hjFqQ02N2yIAXC8pkrTOggRmQ\nF1giBoXvBKWck6nLlWAzdJW97jsgCW3Ozhldp7HCxSkGGR/qe7NAKb2bEefSyThWZzjz9IQwDK5h\nl3Q401vX82djss+o2M9x/Tgs6+/rxNkI5o9d1+dKc9uMRyB2PWVOqzVl7w5waPEPxJwYL9DHQJfD\nJ7OdMFD658pu7oLerAYo1g/J/qGtUosSj3Y9k0H3wwy/mRuG29CzF9HEuaGttkBgG0aZ9EUg9DpE\n8X9VUt+7Rm0wgXVQ9tE24CxrNFC2N3+k38uPhdIMzxVTf/2nf2OMMeb6f/vvjTHG1Mt/aYwx5vKZ\nUKewqnbd+lD1sfcUW5sT9EBGoDucFS6X1S5XiQvTROjh0EeRnMx3o6j61yYwYDijn4lU3zHnsqto\nAFio2WdQzzcxrlc4m63Q/rGHnDne0s8azjv5XVynUEwvLVFrv9b1Yi9x16I/x2rHHOe4Vxv934Mt\n4TZ03z/+D35gjDHm42dCUD+JlF0uRkIoSj+HBVJSrO+iORSCtNyl5FtCTI++T1+jrWRAQ85vmTdg\nC+W+g7vFHIcx0JqAcXll6Rke7SoWir8r9KOBlsjJZ0IOHAvNgIHmLa+IE5iltuu8D0vAIsN/inz8\niL5/KaZOorVwG6j+w0uhMBsU+M9eKNY++C0xWsy2Pnf+qst9pDPxT9qc376v5zrOgdpnFSO7R0JR\nbNyjHs/QhUgQilXI5dXH3haaXMdqH5t55uRXHxtjjOkHiskHW9LEWV7hxNDWzw7nxwfnYhqV0YwI\nO5yjnypGQ1z37AwuVOhYWA31xwT1+thRzF0fP+e6iEXcsQxA2dyO+uPeFuf3Y7XDMQjIGBRz8wu1\n78ZTe1eWOEnAeggD0E+0IcqMtbCtOMly1thx9FwhrksH3QSFROUfFkIQr0xc0DN66InlHmleXk5U\nl/EZuhEVxajjqQ3dsvrWXeN8FaqOB7B1bIQTyn21dS/QM1vE+uVAdZuxZm1wR1vn1cabHbSlJjAo\nHF2/eK75L3egZ6myNhVuNAavN4rtpI2P0PEIA5iDY13vxTGxMdL80IdFYYEqhWgzlGDMZM/09xFr\n85bR/GHdE5r31i7uP8HXn9/+V0u9c6TnpR0GG7Wn/4Vif4HGGMY4pt1R7E9wu8ouNM8OP9d9ryxc\n+ECat76lebuATkoJx53wQBfMj3CIPOIcvC32xc49oW7tmdqt+77uV/dwY/rN6y+fYZkPjAP7q7fW\n+hnfxxmnzHp/ISS4fqT7j25w0TtVjD9DK6yMeEUX18XaezCDRvppJ5o5Pda5fbV7DrbGbL00haFi\n5DGsnBxrWbyvPuu+0DgfTzUv7R6rDa0tzb/Wu4qdVl1t92lP7KLHjhiQbDWMDevgsq/5YePr8zu4\ntO0eKFbe+1DPMpji8NL7euTyXy2jRNtlT+j7Dvu0Fqyv87nacsXz9J+JKbRC06aBrtzMZp4LhAhn\n39Fzt8q6To61erJANw6dvuY2TJwV8xcOKg32h75CztRhF1yHiduQ2rHkC4XvfFvf725pfcnb2j/X\nV+q7ZUn1SXT9qo5ip1dSfVvQyXJNEGSY6eUsz8X6mHX0uVnCwmBMVkCwu7iVXPxEMZz1xUDM4oCT\nZ48SoAVnLdW/N7/ETaWtfreYb3eXWidX91g3Lr/SDFpsuSY717ydaPdYiS5HV5/7Yqx2W/zqM2OM\nMe9++HvGGGPWpa+0af51xdljX9VE4wMXOH8Je3KucelmYI7ANLbQzfALaM4k+1VY+K/67DECxeDy\nXOx/pMJM0eKdh3cRH0Zixtc43WLfb9d596ior6MKjGz0N3LMTz4ucwYWkYEx0kI3bQmTb5GDub1C\nJy7PaQcPF76ifoYwXCqR2qPPuhN5vPttdP+ZBzPQKDbLaHUV67iL4hJbuGFPENMeS7XPDTpJywz7\n0m3FaK2u+enwAzGxE6bmL3+mmIrmes94/VP1/Q7MzV1cr6bH2ptdnohFXHmi9m0eaUw7yXvOHUut\nrXZ+8FAs5toRzpg3vOPBQPJZ/zYwk4boFno11g/2LMtI7dFgne3iGFlCF2URJu2vdT+7zn1Zl14w\nMbcnL8wIHaD3OFGyYS2PcopZZwkrCmbdBjbpCNbqLoxzCy2rAszFJT+nkcb/cqXxvynj0gRjpj+B\nPeXp55D938ZR3xRg70+ZPy5HWqMz7OdzZcWGU1XsljgFUa0xLzBP3sDk9ljreol+ETpD9ZzaLJuF\n1cU646OJ1srgtor+U8B7u80YvnLUbl/8Svv8Z79WzLz/x2hm/T0lZcqkJS1pSUta0pKWtKQlLWlJ\nS1rSkpa0vIHyRpkyg74yS1fPlbWzyeLNL5Rl/fyLT4wxxqyXyqCXPlBW00XDYXdL2ejEu755IPTd\nneJqUcEJoqnHrEY6r7fi/GU0ShBNnCfQlLHwMQ9xWfJhA4Rjzsrl9Lk8jJscnvCYA5jVmqyzq/ru\nHpIFbyuz9vYD1Sds62fkkqmPlC2uwrwpgMSE1I8jtmYIKuXALmg9FRKUtZUp9E9hlQyFOLz6pGvs\nAQ5QR/psrqQ2moJqrMhQZ1HnzqFQXWvqmV30GG45Uxo76oONh1o6Dlclo3uXnihzvPdY6Et+C0Sg\nmLCR7lbiEBelotriaqTYmJwJzSi/DRLMufQizgOLgWIhyZ6uyILm6cMVrhPrmurZfCLE0YMR9OJn\nym5+9hO14U5NfbnzrtC5t35HOkeTpZDgeCEUJ8px3jqr9p2ANAxBIj1i9IBzlS9Q5o4misUWDBrX\nU71GWbVrBEpfKX5L/y/gxIXC+MhXewS4kngwmeoxqGNOWWKbc6Ihn7/lQObsCgSCmNp/pIz9PINu\nSUvt2gbd6zN2Vn39LG2pnd1tzvlf6e8T9J3saz1XuwWiDMpnGnqO9+4Lwdj6vvQ+5qBydyk2zIRm\nQ9eoHjKPaNiaCVpTNmdJv/U7f2iMMSba/MoYY4x3SiYcVtXwVujMs9+IiVeeo2mC1tMc7Zo8mfoi\nKNP1R/r88Ynu91vtPzHGGFPhvPKoJ1RrZ6E2yv+2xnmzfWSMMSa4hl1VAH15oPkiE+v7lSfoP1T0\n+c2O6r3fYqxZ+twKhMFmLGc4m5s4ihVBei0cVs6eqW+zMDZedWEJ0EXtmpCMy5n+ngUBzcB0XHMG\neEqsHSxUr01B9araQgZ86hGMNFEuJjjXbGBb4cb0wNLP9rZiIMS5oX1P953UpfXjfhvbjP/V3KnE\nQ43RH/3Zz3SfPTGMwoS9sCVG1IOs7nN8JYR7PNXv/VD9a05Q+X8m1KyRRwfpQHNdK4PzhKOxZqO/\nNIQdku/BFOB89waHoVWrYGKDy0VLa9tipe/87GPpD1XQR/ADjdMF43H1UjHroiWwZasPXvtCAGdo\nC7Qt0G1cN/yGrnPSU0zssC7ktlW38yvNE1POca9y6pMO89zVUvPH6K9PjDHGBB9ofsqPVA9vo/mv\n+pbG1v6O2miEDkd4q+9V2oqNudG6s3tfz13GibF3pPq2LmnLfbXxg7oYQtslkNSOLjyHhZVzv5lD\n15Q+Kqw11mLcCucZzVNhTXuVGo45v75QjGTXiulKFt0nHF++VVasxi5rcZ+Y5/oWOiEBmjt2B8eG\n16D8zRNjjDE3P4cpdB+Kjqe5bn8PXI09jzHGNJ2mybX1/wFoYYg4zA5jLoC95eOmNRmpnTdIvn1Q\n11h4jjtgHa0GG8fH4Y7msO2l6j9tqN+yINYYVJgfdvbNi9y7eoafKYYnaGq5aEWVYSwYHGTGMxz9\nYFXO2TdNz/W5cqzxt8QtL9dWXZowGcZDzYP9qfoqM9Tf78HeefhDGBt/DjIanppvVIqK7R0Y2Juy\nfl4t1cdVtBVukNryHmjt3WWPtRqAcoO+xxXFVu6+xrwH4+O7UaLHxryZg5FnVO8LHLru5UG92TMs\nSjCnHbX74yHMzBzOWbAMSujPbbP2zo/VjisY3fGt7uuzH25OdL+rM+2NRresm2x8HVjAMxfGOE46\n17AdfLQQi6D98zwIOHqA8UL9PTW6/7Sneu8Tk2+/rdifB7jyuRrj6wvVa5HXdU+pf/GnsO7+DsMl\n92xkRjWYNX7i7qJ6VWDQZGEWJZJ042MxPRuH2+auZesDjZ/Wtua7ya1ifTVE3+KFxqGFFlOriOPM\nDGYKLIIgUsz6ZRjpA403CybLTkGxFqLTNjWKpRoEiA3s0w36k3mYKQGM7Bx9NtigcYj+23QLBy+Y\ngf8ve2/yI0uWnfkdMx/M59k95ngR8fINWZlZWZlVLLKqyOom2SQa3S2ogUavKG0E6K/Q3yBA0F6A\nAK0ESIBEAepBao5FFpNVmVU5Veab48Uc4fNs7m7ursX3s3xsgUXGW72N3U0gItzN7nDusWvnfOf7\niqiWXsB9mF3DQQj6dMVeyINsbE81l5W1bLIcIqpnfB8V1XIF/wwHSnCgs0YBBaBMTGucTKL0Bd/J\nGtTYYAGPJuiNJFUJuft6Zzra0x4YxWXj3amu8wQFxCQqU9cv5EsO5+rvOq3POy94RpdQYAQZ+va3\ndWY4+JH+XsRGr5Ns+ls2r6jnV6HBO+hA8/Lykfr1+FOtl7+G97SEMib+tVqRrwvgaWoP4ZILQD/D\nBVpAGTRW5h12qHWes2fMzL7zm/dtdL9m01GXz2pQ1arOTUFPfnJW0dgnQ82NBzeUg3LjJADNxTvO\nEuTNGALNFOdSH9tPonw1BZmyBuUVhLx6PrZY1P9n4d9R4QxczcGKZ13Bhf8oz/twXM+bVkf+oA9q\nNeyP39H5bbLS7xs5+eHLc/WvDDqrxFmmz/ykQJVdnKh/1ZDbNavPH1S09z0QRpkqe2nrFY/P39fe\naFBmG1hRjQe8C7lVPUDGOK4NtPk9bSznIeSCO/reYU0Hni//4hMzM2shr5v3w7ICHpZzSi0cyF5d\npBR9zWKomjkGxZoOy5mQ7UxhBAMk8VZxjArSrCwH6EEbuWiIggKgezHG40JMuShqHAWIhH1eAtwK\nh3ngWjeUvnQhmvQhc2x3df1+Uw/jJUZZLUMOC/Q75WuDB925zSAZLSWBL/sQXbFxprxArAL1rZuR\n4S1bsCjRpzxlKrzXWR6ZXkM2LZ5B1mwCSWlLD7SA0rRM4/Yv22ZmLU9zsoTMLTOAgXEpyNrFSzmI\nHBKua2CfHv1KLHmIDcKSLzY+EnuJO/q9CBnnR3+p0oznP5UtfVA80H3vI1lKCUgd+P7FGQc8yKon\n10D2tuXkQSZbbE4J3AjCTp+HGAet1UDzdTnk5QNpwjoHkHlOnw/J8S4pBYnNkWXm+lng5rtI5i1L\n7CUQvB1eHhK87JW+rb1ll7Kl5vmxPs+8hzJxJUi5pgSD4kapHZy3hb7mq7CrPbNjWoerP9OLa48X\n+qOq4P61hPbMxWNByLsnWs+zn0hqfLiheb5NOz/Xw2JxrWultmSrdfxADsi+QVrd5WXaYY4HEAmu\nCRqMS5ChtWTLm8C0ywQk80ci5nY6rBmyiHffwmlDTu0/C0u/9PfeNURiQySVCU584etlJXfCi3ag\nufApl/z4k5+amdmTU+3F3/uRAoL+hQKCQ18vLcuB1nRMoDUellrwwhVfQZ6KrS7YxAmIN42XCx9S\nvnQFqOyUgOtIn+sNIOjkUOw0ZRNrPee/Cban8wSZIR73xwSbsf2Uq4dVj5IaL6kSt6anfnV5eekg\nb5k400Nua1/XOXiowOFtW2NLtvnwDzQPHpLUI6QdPdM6NimFKUJ+vb/UPG5c89B31K868vJeRfOZ\nJEjVeokvjBOghpR1q6akQBofOAX2mowhCew2LBO+uHDKe3KtxEQfKdQpspQL5maW0r1qkKTOB0Dy\nIRSf97XP6mWCvAle8Nrq2waHNO9UNnfSk80WGdM5B6frzzRnteyBrrun6y2Zo3FBe+UeRJU9Eh/7\n2OCsres/IUAaT2BrKTmmw5jWckE5zTnP/vFQz74aL7pD9qDncV3IR332UofD9org1GXr9cigsxMZ\nsUPQOHaflyagyn4YcGRvlp/L1s8g8Cw2IMLc1nwkK3qRXF0iJ8wLbjoOAecpCRxH87jrUY7UQ/Ye\nMuibte53xpmjis+5pNRw4b6CzfeGMcvva9xJgi8rCCtnlEtMKQVKIY39dCgflI+rn48ok51N8AF9\nzWvrlEDkc63jcC47bS3lizLA5G8on6rVk8b7jVXfxg9c67yyWOgaiwxE12lKogkOTyir9E9D4nZ9\nrxMKMky05ssTzVVAcLx4X3Oe/0L3m/Y0tqdz2VjB08/Vg3COXs9GdrKUkUKKPSew6N1oDV5ScrCT\n1txv3+fFmGBRs6RxzwkSL2N62fdXei5MpiTVLtT/aqA1T99VEHmN7HgsJOIc6355knl5R2uSphx1\nTilxhuDM8pn6eYMfGwTsxYnm+X4WZt4ZAbYTrcMJxJ1pCDQTJUhSOR9nPfW7MNSC594KS3WQ9g6l\nwAcEz1bIKbEAACAASURBVPDz1ZLufz+pQIbL+fqKRFSC8qgrPyRSl8+6uNTzPrHG9z0mSUpyc8J7\nxd2/kwcs5BI2paRjRTCmfcLzcKozW+dc9tJ++pXGR7nF3n/x23bb1sL+fbiBE/tauwKBsURctjB4\nojIZ43xW2oDwlxfJMWf51QzC7rc1d90uQXLO47UyZ5wVwZYCghG86FpBz4ElMuLDa13foVx93SOZ\neaD+pUkUG4TxPmcg/1wDqh7IxvpPtIZN1moV46xB2eQcvzUmuZrOkDhaEwxASntdl59Nk0gPPIjl\nCQpPBgTZKd/qtDRh66meV1OCRqNtSJrT2uO9AUFsyLWXXK//c/mxPH7wwNSvLAn26aXOs8e/UOLu\n7g9UXtR4myDKHmXGhwRL7mg+NnmvuG17iejLyxnlUAUFt5sE2dyY9kY/lCqnRHpJvdoMAniH4JTF\nELFJQJ7uhntb3y8farzJsOz1ZvpNX0Z+YPnNlB3/lWyjyDPaKOGaU9oVh4F9uoZmo6k1SaxC6Wv6\nQqnamHeeNAG2KUGZ4Fxr1ytCnQAxeUApXCqUxM7IppYLCM1JtMxJWJdrSGvzXEhSWpcjOXbNO1r7\nSuNa5Ai2VOXHW9CcrNgjC4JEzbmeKxvVA/19rf7mCEC2nssGjr+Qn1jWdD4dl3W//FRnpPQ+fuhQ\n579C8h9OFEXlS1GLWtSiFrWoRS1qUYta1KIWtahFLWpvoL1RpMwSksLVBDhBB7TDDBLSgiJMHsRB\nbUhlZ8h/ZTqKUF09EoQ4fU6pBPD6bB5YYkIRK38ALJL0fq2k6PKSoHCRrOAiJGhM6HMB0d0l/+8g\nSzoFWpMDfuv6QJKRjM31iAYvFc2Mu8iPch1v+Y3upsYFgZED2mPHVeRuXSQDS9TcIAVbQlAUzIA4\nAlGP8bECUpEPjt6ySVHfCUu/XCLVLpnZqpHhgpS0AKtRnCyWD0Srj7T1HCTMegIi5FgZvSnwvt1t\nRZAdki7JTd23kHk9OLlR2pBZg6Iqqj+XRHgrZBz7ATZBVLcMAqW3UgTbpxQtO0f+9h2VIZX29Pdf\nPJMNffTn/97MzHLX2hqFhq7TfaaoaKejzPViQxH4IfNUKylKnCXDXF6DnoIU2ito/H0yFFUQLPFt\nRfRblMRMLhSdHQIP7YN+yFcpeYHEqgOxlwfcvoMc5uGRZJXTyLA9/uhvNL7P/8TMzOZAnNeQ8h2R\naS1R3pTdhTh5QMnejTKy6Q0tpLMkM1BWf2OQXl1ONK6Ntq5X30NG0lc0fXElW9/a0XiDqbJyqR2y\nnWvZ0ZJMhdO/fby4TElUuiHbenaqzOIC1ICHjacgl/vVldZwjzkyMrTDGMRghbB8RrbjrPS7sZaT\ngfaAj7xtGOGf5zWH+wl9r5EF3oit5segGMheDMgY5C+BsR9SGnKjfqWR/PuD3/1dMzOLx7Q2xR3Q\nbH2QO0i/dlbsMTKrs3NgpL78mFvQ9aZz5BCnIPIckDGgmToZ5DWBxA5jEDOS1dqAqHfe03wtILyN\nrUDMYMs3ZNnSIAmTZPWyQGZXEKLFQNQEkO7V8X+HH+j3xVB7O/CFpDl/pD3y6U+FkLxtK3xPWaLf\neO/31Q9KNIdkUvst3fcu69Y9oPQwSSnRM/mOFdmwWQdEFRnbeZpMcIy9hNR3Jq49NwggW/flK3Og\nJG5CiPniU1tv6NrNluaGCgzL3gFNkFQfb1K6Vh2bGM3V5+wE2W2gcQHPiI0jpKPxz1NKpyoLrUkL\nLdDnkEp/+/vKdt/b11r7E92/i/5vo665qzaFkChSolcHV925BhLcozwU0s0sKKQeMsFbpuuedlTa\nd4OsbcD3ezmQPOyFyhXogLT8R/Zac/iooMxmbIsS4QJnidjrlctmkZg9dbWXglM9F3L4hkVZ9529\n0MIk45Bi32jdLvBBdYzq8hlS4Jd/ZWZmO3sqz5zlQd9RElEgQ52gnGi+qb9nE5rv7b7m8Qp0cQ9k\nZ7ZPhpoyYjOz7e1tcxztxdNPtD7xOKUZ31c2L0MGexHKlfY1rj4or/U25KxcdqcoO5tv6DmUoQRk\n3KR81UDb8cBfXcjO+kHSHEpyU4H84n3c7hVErtlrxAQol0xTKj0Bwh/nGeXsqE/eDfcaa9+Nl+pb\n3AmJJbH9PUitu8pQZkCXOpTu3aPGox/Wetyy1RFFqO5q71y2tdY9ZMIrS9DFXfXjBWUw5bzumypp\n70zxMzVKVCyvNX7ZFFJjORCi5swDiXcpFO/6JaXWE2X7M2WeB49lM9MN5m0B0oRyJz+jtSlRGhKi\nbNcjhDDKlPUjM5wCKbOoa2/nHD0fDqqIQqzk57wBxMOICcyB9x9/LD9X2tK8N3NktkFhr2Kyh4nP\n2RQyWNsDdXChPXb2hVB2DnvaXVGqc67Ph8foXRAzC87/6ZHWoXX8qqTks8+alqYUZJ5GJCFbZxy6\n/l5J9//N3wchsAmauRwiM/9f+8fa6X8UAuZn7T81M7MPfkelzIltrcEOlbceWfcb/HW6rzVJUiq9\nBE1U2NHahn425so/Xn0mJHq7oDEXikhQgyhp9fTMSuehagC6HadMasg7xXQk/+mAwkrhrzs9+uOD\nCgV90OmDuKuBhqIUbIE/T0NoPIS8tQCicwVh8XQIQpCyLA/0bkBJSHyJCACSzVUQ4Gn7z0tYVpBX\nbx9oT2z8UHLu477OUp/8nx+ZmdnmXeY9fmBmZj/56o/NzCxT0POkwPPFIP9e3sh2nILuU+FdddEA\nQV5Rv64R1MiNtVdPv3pVDnSb1mlDgMzZ0Poaf2lTPiL+rvbYrMN7Tl92suIMMR/Iz28hS+8VNc4B\n12m6Wt+bx5Se4+/rRc2P13hVSjMYXVgqXrNSAz9aBHUDmvICAZsloiVOAtEP/N2S998ZxODhe/AY\nIYdklXNyk30HoqaeAh2FX4qD6HPr0JKUmHvIrcsg/wKoH+Y9EJgI9TiUwU7CpUirHx77PL5BCTfo\noxSbMVXTuDu80yRB+sRZ4w7VJcaeWHMeLu3LX8RA5Af4wzbv9Z2R9mAxDan2Nrrrv6ZFSJmoRS1q\nUYta1KIWtahFLWpRi1rUoha1N9DeKFImScS7SB1zJ6mon0f9e4PMwTwGydOZMpGjjCJZ10tFru8e\nHeg6D5Ghe6b/n13B+UKGvI807vwlGc27YSZGETQ/h8RVoMjdfKLI3WSlyFYMcsPanjKuBnnsZkUR\nsh4oBx+kz6hHRJEM++yFopv9J7re3tuqoS2+q+jmN9K8kHylDjU/DSR/4zEkWOvK7BwuFIGrbymi\nOV4gYUgd/hoiplkyZ7W85iSTpcacLH+SjOUspWuvIWgsQ9i6JAI+ZQ3KZL1aEAfPfK1RDnnvgqsx\nbG2S/eLzyz0kmxP/MMnR/78tqXeeh3LgZXGSLFqf6e+U0o5fktKDh+dRAXLntL4Xn5DBJUP87R2t\nYTqt35v/z/+q8T9XtmtvXyR7GSL7GeKXiRFR27TGm0sTtUXOeJol2wRx5qygaGsFRE2iL1vorOCO\nyMoW1wv1N1Mj6kvWsD+W7SZNttsh01yu6j7Ta/VjD1nO/Fuy4b/+X5TNOf4/VKt6+K9+bGZm9z/8\nLTMz++jxz3T/EbxDZAw24Wlyd7V3zkJJVyTFYz42NtPnM0i6thcgp9raA1sHB/qdaLJ7QPQaUm47\nZbxHWkBnpb0Rck24OxA93aLVS1rLxJbW4Iis9hxEWgLEWrBSxi2GTGJ6Fcpv6zpeCRQSsr8riGcz\nWXiIRiF3CBFzCCSX+KMk0q7dKpwiN8jFLuEQgYcoTcahkaNe29Pfqwl9bpKDvJXMY3YNwTn9XrbY\n30uNb0A/ZnOQPnxu5iLtCf+GSwY6E9c8TOdhdhvuFmp0R2QoF1X4jSAun4E6K7ZBgLRBJsJlsFPU\nffpw98SwrTX8IvMamc8U0tcbyu6slur36Eyogv6JEDBeIFvOdjQfyyx+HdLs1t+RAb5Ne/ZM35vA\nKRSPI/8Mms8hI+zFlFnPX+BzZh+bmdnLT4XU6XWVKXn+SOvdgJfqwc73zcyshqzlFnKjo2u4wfJw\nMIByKJAlTMBlNCy8Yy4Ei5W1MmTdJ0KQDI517wH+bI3U6fFEthHLQK65A3dXR/c4PtNYN97/Z/r+\nimcoZKrNuvZ5DXTPeEFd+BCZXkj9SlXZTu+ZMoLjY4jMIcHOXZMJpWZ9O6Nn26qp/m9UPjAzs5Sn\nyc76suHJEC4D9upsrPtmt2RrB8iId5A6nfQgK02yt+4iecoz8AC+ng0yrMOubP22Lb1FPbsr2734\nHMloV4TJu5A5p/Ia5z4iAnYPLpaRkEYZ6tM7MdBVoPKSLuSG8FG1yPadXimTPU7p83c8ONA80LIp\nyBThDvMyIacZhM359TdjuB5c2M0L2fYYFMSDt2V7XdBwzg38ABCR5pLaa6M9ZE1BEXdOyci3tS6N\nI7h/Fvo+KqB2cF/9mTVlP9egUQ4Tecteyj/5SNFPITsNECZwQvle/EJxGynooWx1CUfXNM/PsuZu\nDM+dx72yWe2zVlPXqUK6vAEHVW8Kp1hFfR9NhPi4Ox3b67QR3IHOWGt1eqK96HH2qR/I1nPH8g+t\nQYjwIEPMEWg7gdxtnuz3DH/PXizdU/9qDbgRIe0KQp4SJMETSdmEW9f1MiAlrzogOTkHTvDLBrfi\nAZw4hzxru4gGBCut9cUU1AB8ROtA/T9lHOOnf63L9WQES4QrgpkGmHe0jvOs1u07Zd0nlheadwQX\nxRIEZADSe/ZSe3bQlt1M4ceI9eAaO9FzokD/XZ7Xl2u4GSGrfdyBsLjz6jVn1Hcsc1/zWy3o/ou1\n1tNdQ1a9B7rwu3zuQ3HIDa60t+2/s3+01SC8zjwCEXIX8lQkq9cj7cc1aPYYpKOxJUjAJufnDa1V\noqC5uGnLVovw+mTy2rezAJS8D/Eu6OHNBX46oznNwh93Adl2FvnhYAyataC5833ZnoeARRKuqBVV\nBEv8YxmukokLxxgI+gAOtGqG814iFJLQr+UtjX+5pevGZ/AfuTpv9tj7sab6/fIYbqufyx95C5CG\n8Mrd//6BrrOpc/sKbrM5pK7OKfxJ/WMzM6tgw3XObiPEHZYzba799+T/3i1oj019+ZZ5XPO7u6/n\nzc6H+nl5DBxu9XqS2H/4b8UP6Jnmf3qjeX3WAlGExPVGWn9nGSwOMrMD5+PwRnt1EXJqxhHsgIPt\n667m7fmpxt/ztRe3d+5/05fi7pGlchmrQhI8g0Q4PCsssvIrPd5DPYjKJ33tvwLPoMkMf5eGHJ/9\nn+P9NICXMpkBOVeB228OvxDn5zT8p1vYch+i4QLn2HRRY22ConJBpE/anOtBCeVSspXsEYgX0Lid\nFn48R0UNfD5jzqF7Df2eqPGu/AlxATdE+ujve3ckZFHmPskr+Iu8kP9UZ7TWCMJi/x8mg46QMlGL\nWtSiFrWoRS1qUYta1KIWtahFLWpvoL1RpEyfurceah3ziSJpHaKAXSQGS7+lyFP9wwMzM3v4QynG\n1GrKVl39UhnTxJminA4ZyDgZ1tWAKC0S0yU4JBLU/K+WyIUhEZgEuTNJkMmG08An6trpKmqaIBsX\nr+jzAVJ/ORjIZ3AnTB1Uo0DshJKKSyJ8w6XGXyZlGxBxi5Gx6A3gaLhRtLO4pwj+4Er/76YUfU+g\nrLCCC6JzoShz5/lj68QUPSynqc8lK4+4j+XLin5eTdWXZE19WGEhLRi0i2UiuH2NbY2knE8WYRNm\nbI/rJ8g81okmDhOvat9v0wqhdGsMKW4QGaEMeikFogJJ5kxK/R9M4dkIlJ2vwk80QSHBJorWjoay\nnSncJw9RsmoUFbkupqlt5fq7ZDA7KM8sJnAkwHNUJZTt3kEB4oUi2HHQUzdwOCyRX5xRxz2EG6Fa\n0c8juGaySNAO4S7oH5PVQb4tXgcpAzfB9FfK6P77P1YtbbaqrP/v/et/ot/vf8fMzE5fKPu/WBDh\nb+k6i4HsYzNHvWQJLhsPng2SbVnqNuN7+kMV6etFV5mWVlfj3IIDKFeRbebhVWqVNC9p5DRXS2Va\nnv+FED7l9isZy3+sPftKvAne16CR8upzkFQfBhn2BQooVeqEe0S8myNlZQw/EGBj/ZeKmN/ktJaH\nqAgtQIe5ZIkWZHMy1Ocm1rqP68gmUmShh3ON+WZOlh/bWc9R34GvYwQbfKooW8uBnFk2tf9Hn+m6\nWerR59shX5LWrI+60cWp+rezrznvr5Q59FFlSw3IlheI/DN+L641bUz0vcEN2TmkDSegHdwBsvRT\nzU+6rvmJ7cvmLp6Kuye7INv/Qn4sfqT7br6v61SLmp+nyK/ParrPTqC9uH5AluwXKOPAW7S19Xrq\nSwEZnV99qnVt7Ghc+zll1wIQS314sq7P5dOSZGK3UkIV7L8nX/btu7D6J/T5yYV8yMef/kT9zxyY\nmVmtJvsLJhrXIiUFhxWS5NOYxrNe3NjuUL69V6PWvox867XWLLMJpwBqGfk76sPzM2U0N0eqqc+4\nsqVpVXMUG8uPVsay3QzPKK+Jv+yC1umDsEDVootCV3yhZ94u2en37msMv4Rra56WbQ1O9f3Glmyi\nDWqrdalsuO/ovnOe+eWMPrdbRzYYW+3FUf8DZbSfDeu/lcENHPmHdEq26sJXkmDvnuM+pvZ6HGbj\nhPxoKY9y1gcgZU71vEmgdBMva827aeru+1rbm0c6syR3QemR9vrn3/1d+quzwKd/c6z/FzQPK9RN\n0s0DMzPz7pEZnaEIkUR5Bt6l0SOyhkiYj3OVb8bQ9bYszXPh/gPNiwsnwsTRPC7D5+OlxnGz0B7b\nyGjvVvZ13UddxvlC9uWhHuU4ul8JlZeyI1910wAt0uMMN1/ZHIWu7EL/y29qDOWE9v8aob0iUsoX\n8CUgtmETOEryrv5fBnGRGGttO6UQOYOqDhlMBKMsTQm/19BcjjkPpuIa27n7eoqQnWP5sTZ8EP6W\nbnBYl0JL7gg5X/x3+kpzdmXy393neg4EoClyIIAG8Mw5I9RBK7K9G+Yhi83PgNG2maAEA1yQST5D\niS1Uy3PhrMrmQGpO9Lx6jD8dJsVLEpvAhbWl+6a26T+I9qqH/C+vDc92UZTcBOHZVX/2viu0bRo+\nwN5Y83WNxPbyAgnylHxb4lj3uzhHLp51W2bhavDhYujpbNNGnj1NBt33UPPy8VmgGeo1+Qo/z/Pd\nzFIflu23/sXvmZnZ1VzcPRe/EJqvzPn8cqpxXcKj2L0WImjg3p6fyuPcFh8Ikbz8mWz9Epuxmq69\n8VC2skCyfgCx0rCpn4PP5Fe3HuIntmQDd0DITFDBjLnavyPkxbNDlBIXQkr6oIVWSdD+adDCWfmd\nalVjnqACl5qCfItpnxdQT53CU4RbtgCOmWwd/jr8u8OztLQGfQVC3wXNO5iADDwBEYMa4Jh3qAX8\nn+5Ae979ClVXUFt7D4VeyiMRff0rdegnf/M/mZlZMSc0lneieYtn4RcEIfPuAyHuvTlcmPAcpSvw\nB3n63HDKu1VN/T9CHjkPl87Zid4fnjzTHionXs+X+H3xor78+f9oZmb7NVAez+WrbK3zeshTVw4V\nL4/kNDd4Z77muetwLkji/wue9sA+/H4XXX3u8hfiSrtCJcz+2z+yzrMTCzaqNkONrs55snqoc4+F\n79Vj2dIIzpg5MutzniHxrGwsXMs1+2ZBZckCRbDljAqUvL6fmnG+RpksRKjHx/LThoLwGsXGzkWc\n6+I3sbUYCPFVAEIG9aY4ZwM3pn69XOm+GV+2WuR9/8a090K1pziImgTXWTPOhMM7NTyt8TxqrVSd\n9APFJ2JF/azDMZNdMp5f0yKkTNSiFrWoRS1qUYta1KIWtahFLWpRi9obaG8UKTOaKBK1JmO9CmAc\nHymS3uujcjRQXd/LU7HPDz9SZDtHBGr1tTIQe8/0/TtxZVIKBidNDY6HIdwQDSJroA/iSUUXfXTO\nEynqOXOKjG2jxjInEjce5Pg+n+Pv85muO/Zgm4bpuvSWPl87VIbIcWGH9/T5LkiZpUvGPKwrXSny\nNjnWfH19LEb33IWit5O5MgOHtks/4TAgGl1Mo4RQ9ayE2kJxW3VyZdSD5qB1UqgWJRxFGTN39X9r\nagyxgrIK+ZiimDeeshVllAfO/lKdbC/IgP6L39SYPM1Rex9kSlgUecu2vtEc5BvKDDh1zd1na2Uk\nv8lmw8+x1VBUd9FUpP30uaKapU31t7aHAk0H9nKQQfsTzdXMUcS96JGpTWhOk03N9aCi68x8rdGS\n6G4q5DjYA2GDYldvQ9+bv1SkPcZ141645tjw4tjMzK7OtA7J+Us+p7jp0linMkibuWw6Bct9FwUz\n6Dbs6K4yvt/58R+p34HGd/yR0AvTTUWRX7IH656iuFdTzZvX1LwvN1AEM2UAMiCm8vA+nQTsKdjw\n03V4RQAkpeBxcslA57ZBo1xr3F5Keyy5Q63yWpmdVkf2cqvGvh7nde9Yj7ptsjsr+JSy7IFYcKA+\nrbTv50TQ876u41H0PyD763XJZMLGXsBfjdLK7nQvyFRWUdExzd0a/5IHjbYakXmca86zoK6aHhwy\nZNFGKI0Va6DQZur/IpA/LO2qf9MBXA2Q4qx6oKjgctkJESpkMFdT9l5af5+PZetJ/r4LN0wvo3EG\n8CClYfiPoRIScqA4C9nEuKrf/ZyML8085XOa3xXKYwP4NbxAf78AnbFw5b9WiWONK6NxPz+fMV/a\n2y/O9VwYw40wHcLtc8tWKAgF8OBDzXeDLNIxEjPxR3quLDfDLJ/2sNuQHZ3CVdD9Ujb69VfiaypX\nVJf98B6qf+y1uqN+L8luxfu6ngOfF2AR63WVLdt50LDzY41tXdQchlxLhfvya6sr7c9nqPt8u641\nGZDxmvwItNWpbCHI8QyZKDPYIas1JpO5saT2P68+VsnU7h2JE2Za1vWffKS5jw3IIHY1ttQ9PWt3\nlxrzWEtmY0/Pj02yZqmF/EX5Hfmrpy+V7VrD59Buqv/nV/LrAWokXhyVH5QdcmMh/Npl+ZF8UnNZ\n2NK4aqjWzclWxVNsvlu22QX8Uz31o022L2aa908/lz/LpTTQOxX1bwXKYwfllsEVz724EELxHHwY\ncLTNTItfa2me9t9GxSmnfneacMistEcnGdB2TTLfqJBkjmTTBe+VooPXn9o5Kn8VlM0c9qyxDm6I\nTvF0Hgge6Tnqx7UOjx/Lt83aWq+ttOxlzFknMxba4ukZKOWa1tm/RJ1qLH+/txm3UZilRgEyC99B\n6wZETCA/sl7o9xR8dIVvqZM7KyHTXn6qNXE97YVlgkymaa7iqBnNyMiuQDzP8DcOnAbJkvbpzNEe\n2wiy9jqtkVZ/V3D77eZ1Po1VNVc3n+C3Oc+5A619Z6E18X3NR72kNY07mrvdkvpdq+rZeIat2KnW\nvA8qeQzqrZfReDJX8JIAxPaKsskQWdSb6XlonBlGqKGkZ+pf91xrXjvSfHxrT+O5ynEeB7Vwdq5+\nngbqz5y9ttwFrcXvT2++NDOzCs+/uatxVs45A+a1Lu0LuMauZDNuS/6xc6mBFFA6yzyUf+1nNC97\nKPw48BSOTnT+d1GNOToA0fi2vjcbIWFnZlsbe+YWNX/pqfZqvifbX6B2WpgIkZO+4flS0ufH03+Y\nC+LvttpD+c3v9dTnMWeC6khrkk/IL2TO5GeHZOndCcpQ8JadPtXP3S2NzQN57IdckPBmuOG+hLuq\nw9qv1lrTGnxDqZz+PoJnbgmUD9oP68FPF+NM4BTgXOGskUVBplHSmmequl9/prX0l5qrBNw2Y96R\n7Ey2N+b874AaDW0/MdFaJlZd/q8O+S/0/+5J6JfVn90PhBxxH8h/vlPXPF//J70jWlrz0rir69ZQ\nmvQTIHNQTjwbC2W9XmlPu3zP47llBZQq6xrvbI6kD1UIFzdCnDi8hwSgAG/bzq7+dzMze/Yf9Xvp\nPd0/64PSctXf4uEfmpnZZUvjmX4JL8sm76Jw44Qws1DBeAmivrqPYtxb8qlJUHdfff7FN33pD0dW\n2sx+wytXGHKOLekaAajZdQJulDgqbtnQn/IMmvE+Dz/kZAG3S54b+bK9KupKTk6/dye8k8EvNDgN\n1dS0f2sx/CmqamnGGGTkr9JVPcsyoDlLW3Cx9vXM7n0Naorqh3qZipgJ7/EpXa+R5h2lA3lXTp9P\ngbCZxTn3tuU3L1HCRUzVqlRxuKDQtuqyidUm7ynX+PVf0yKkTNSiFrWoRS1qUYta1KIWtahFLWpR\ni9obaG8UKbPRoI4aFY4YWbGAYuDttxSd3P2nqlF9BLqgzN8bdxTZ7sIWvRFHj/xUWbse0dv5tSJu\nZ6fKSC4XKAzsoSbSUBQxDSu9P4fJnOz/kvroRRrVlF1F2MIauiWZ3EVMETfoNmwKV0Rmqqhk04NT\nAEbzOLW+y5wibbkNMqlkeraO4MxBkaOeVJTzTkVR4uMnGleNjBDTZ6mYlnUN0iaR92wG+/mcesHT\njrJODipBDozYkxJs8ahBrKiR7M90rQyR4gXqHDMi7XNQCQVXUcIRcxhcqS+nnyh7YtnXy1yOqZmd\nxrQ2+bHuk4VlPNfT9dOgIJyY7t8/VpSzD9Km9l3NraHKlCSl6/yKjG8HhRsUA6YDosNwM9Tpd3Yl\nm70aw0eEAkO2rLWZnMHUvSVbrSzh9ymoX5WJ1qrnwD90qvuld8mEPlbm8eaC+uaOIuXbafWvDpv9\nIIGSwVrZpHJGGYxz6qH9rLJEbkU2/vFXKAfsyeZ+78f/0szMHl0q21+aaK+EFbGZLuMr0T8UMOYz\n9WfYVcbVyWte02TVjlE7SSTJDqIQtOoqWp2tKYsVByU26Wk+PdRKjn7wr83M7KIZKmL8jf2jraRs\ncRxESbzAvVHusoHmPJZUhD051tq4sLtPpiiPoLRVBEGTJYO7WJElBpHigSZKUG+d20AdDu4D/0af\nyxdRZ6rrfu0nROoHsqkkxPfOUP2cwtEyIIO53ZEfm4DImW6BoIH7pVcii7KEd2KNzVL7WvXgdWjC\nRLh+ZQAAIABJREFUfZBVfzYvidj71LOTCZm0lZFIw5GVMmU+LhPyN5ksmYslnFrYNolfG6NKUruv\neSv+WHwmDXhQjgfq18d//B/0+0+Evtt7VxmOs6e67p0t7aUzUBPvbb9vZmYP38VfL5VZ2dllT9+y\nzTbU3631O2ZmVka9ZDstHxCH46UNKi0oab2CoTLDTf6/XWLc93SdDP2pbWueDrLai/v7eq6NLmUX\nA54Hsw3ZzV04zFrv/sjMzFL+yqYIYpWrqG6AgPviAsWYodaoB6/FeFM2sdjQ/zMLGdUxPDj1ihan\nmAfx6JIFYg/MfM1hFT6gYCqbulEi1x78E/mZVkNohfGQeu1TrVV+CZ9Rhf3c1ViLXfUzPtczbOai\n6HUBgqWouRwM9PcxmcwSHFODomx/AZIvu4kyzQxlxpn8xjyh/ge+bO96rbUsuJqPQvL1jjglECjP\n4YrxQHMlULF4Z6352cVGx9S3x05kE+UHIEfXcLRMlQnfiGkeXDLJGdTsPh6BfPlaezEFctIlw5yr\n63rrmVByLopk8Xtad/9GCKbzRyzYH/1X9suLL6yMAs6wh4IN/H2WlX9uxHXm6VRkkxsHst0vT+Wn\n+5eyj3vfJQPdpl4ftajcTPNaP9A85TzZVwCydO++9mprcm7lMYowfe2Tr+AaqWyRiX0hG7iGUyVP\ndrzwFra51ppfvyW/tNkla57U/5drVHZQJiygljlAIWo9l213SeS6BkcWaj+jUpjCvV171tGzdPUz\nXXDnHaHQCoxzAmI5B4ph5GjN9t4Rd1WWDOpqJYRH8xHqSfDdLfOyje2sxtf/tvgx4kPtuTq8fS57\n5tLX+CuY+jXqgJkbrW0eroNQfSlb1vMyuSVfcRjIDzbp/7ikC52dCkUwfq5+1T3tjZdwc70PujW3\nLz+4m4Of6Jk+N1ro/udf/LmZmX2NUkzFk615qG9tc/6Og6K4A1rhCtTZ7l3dZ6MtO4hva13bcDzm\n9kAFDHlenmscj5q/MDOzYgZ5PTP79MkjO/zRD/V5kKIGmnsa6DpFkJ7zonzZfCi73JjfHpnpgDz+\n1oeaGwNJ1nqpe3b68lPXN5rjnfvwJKGu17wBSYh6ZRsI9CYossFM+82boti6gOuJNXBHqL0ZqkYG\nf0+Xzw1ku7MNzgAoJDqco+PxEXMCsg5073jJXIPaOkFdagniubLSXAWg1pZD+D9Q5EkHcM9MNc4B\nZ7QhqIR+Qra8RH3I97V2aVdrDSWOBfB6rn4G2usD7fFigneuFUqaSZSEQMA755qfS55zAaiJ0l32\nLJw4+YrOVFkUOccgY6Z9kEmgfjeG+v8FaNv58BV/0W3aEVUYUODY7+hxYVDt2AIOnRHIKW8NSpmz\n3hgQWBKk1QAVw7UP95lLNUpc8zxe8h5VZr22N77pS2/8wvLNqc15hzoHZVO/1tzEQVfZVH0KuU4T\nOdbQR8F3qbUvwzvWHYNgzGsN01nZ2MR0/T6IyW5Xa7cuoF4U0/67oSrB4SdDsQB0bimnny1syvB/\ncVfI5wywfQ//E8Q05jqI6GNQvz144QyusyTqUTFUWAcoXq5jYYWP5sUtzPkd5M1M4xld6O8dVP82\n9+TnYgYx569pEVImalGLWtSiFrWoRS1qUYta1KIWtahF7Q20N4qUGfRhz79QdHSBos9sjfLBFFWK\nPtFL6gN37yuz6piigaM/gaMF5nEHVRIk3q2aVoTOP1RGYwHjtpuBkRxFoBmZ4BBpsuoqSn1GvXsc\n3pImkb/dhqLbninCNoOtOZmkvh4VpPO+wpnrkSJvJdinU0Vq7ipwPTiKkSVS+pmuo7QBuGTXFEbd\nrSriNmqrHysyAQ58Lqk0UfSevuh4K7M1CitEGxOuoprDJEgGX327eam+DGCwj4N4cIg+hsHSTBZU\nwZgI9fd/Q31F872yTSSXrFC+MGNObs9gb2aWAf100VFGMBlX5u5ukY68TUZ1qoyjM1MkO6hpfMUh\nKiZEJ2fTUH1E/7+c63t56tNnefg54INwyOYEFd0nviPESvJENnTxVHOdr/BzpeiotfT9fkHZ8npZ\n4+8SZc104DuCRyOspy4fKouUIwp8tKUsVsi58Oxr1YCuylqnb8EiP0AB5+ziUzMzSx9oT4xgia+B\nikiQxZ+iWOGiLDa+JLrbkq3WQYXt5pWtKgdahwG1xQNTKD8TcsoQefdQ9ulNqQtfo8qhy1sxTRSd\neQyVggKQAKk4KIJD2c1tmtNXBNsFwdDGxnKObDabI1MK94yR6YtVVTueyigrMiGrM8cvjFuao+Q0\n5NHR723QU4mYfvZHmpMWWahDaukHprnLoaSwilPvW4VDxtS/cUy24oXqDqGKUgeFhppsYwiaDVEl\n66FmVNjWfZJZEHxtuHNYuwFcBomuxhVnfIDZLN/TfYfbsvUCa7siE1usYdPwJDXhoZr4WrN6lWwP\ne+AEZbNf/bv/28zMNlnLyh0hZybbGm+GtV6t5M/3UB6oVeXnZm/JdmbYojdAiQxek1zp9gpdZmaT\nM/mAdhDuQRTRyKRvwFNS8TT+5QZ8J1Otx+7bspPhQj7orR0Z9QQ0wjV780lcE/vVS41vKwkfDBwR\n6wncEPB8NPvKvO/f/8ASvsa6Qm2utTw2MzP3JepKWZSu3scv5/S5mqe+rUx98uR2zG+B9rxLvXRJ\nfRrBTZNzNOYZ9eJ7HvxtKfUxN9X1EoHm4p13H2gOyLT6QOu2DjQnN4xpBco0KMomZqi7ndyAaiB7\nH19qPHfugu708TM+6KItrVlyzh7ysBm4FaZjMr99ULIp2ehmXn/vZF7viONuap422fM3cKwVsnrm\nLjZ1/8ljIQx/eSwfMmBN99IfmJlZPa/12FrJ7z5Dyc1QmijC2fODkT4XFEDhQf8RxEAuQkg1W+sM\nU/sWyKOufMffvlQ2sNt/lV879IpWSuu50Cfjfe+e9tYEhIxXJpuIWkc/JTsqgDg6Q8knSKKkA7fN\nGD+9yAltsc+eOfsK7jRQwLupkEclYQsfBDSqQtUKSjM36uMc9cgkXCmzudZuthC69hL1sgnSf6mp\njNsHcVMAgWNwuuQfwOXV07NoSQY3xTlvcKNn/uNz2WK1NbHXac1Phbj++uNjMzP7EYjpDspcmz/U\n2qbgTuij8tP+GSjZun6u8jqvJYY6GzxGZW/6K12/kNGa50HcLUFPlN9CiWVLGd+gqXEurjnLOeIe\nvBrq98EMBcSx5v1FoP9n4OmrcSZJpvS5r79Sv4tzECpwZe29LVu4e6nr8JiyybH2wqQNyngEMnVb\n83G4L/93OtC4knmed0aav6E9mw3CDLLG64KyPYUfqb8GhXvNc3V9bGZmM54DuRRqL0n19/Ffo7zJ\n+dzMzL3KWW5Ltt5r6Yw1cHmOOnJmPnaYvVH/fUd7bO7dXu2vy1l/URASprHSvs0fgmLCzzc/BZUL\n0mSUkL/ZPtTaz0EjBKjbNUFFbcbhWIRLZHaDQuELVEFrIFJQvuqA7mpkOS+DVvCfak3GIGkynKFy\nK30ug5LXEkRJg+fECFRaA9hCzODVdHTdELk4HMEPBTI6mKq//TnXhdPRgcckn0a5DC6X+Q7KOFpy\nCwa6XpH3inZS83z9ROpHBkeanwx5ivDjnWMzM4sP4fvc1vUP60KAeqB5s1Q7JODiOr8Rcn3cu2Ze\neDdswx+Hoo7zFB6U69dDypw9QqUP0BbCanZZkX1svy0ITTOQ7Q3h0SsvtBdn+LQ2ez8BGncOV9tk\npOdVsqv5PT7V88oDkvPeQe2bvuxs71rJcWzMO88KdaQZio3FTfxygbEPtQbJHmp0J3DygcZ3YyCF\nWeskaPssyo/BlfzwKA1nExyLK1BVuCVLVnmfnoCk3NXnSgldZzzS3LsT2eh8pZ8zzns5nhPJlfp5\nQWWNBxo2VdNaT4a6XgJVuBXxhSTwrCVcj+kJZ5Uic4/NvZXRvDmgbZ06yD1UoGM8h8q5V8i9v69F\nSJmoRS1qUYta1KIWtahFLWpRi1rUoha1N9DeKFImTi1ajghTew5fxY0iUJdk8bOPFP27OlfE7Sf/\n/Uf6O2zGpb9QJCqVU/RwfaFos9MP6wl1v/lU19mlFjazr+j1kihin4i6s0ZphqhpIbHi/6ANlqAg\nQr3yEdlAuGM8In2pBdHjiaLh8RsyzDVQDHFqnqmhjsGUPitC0vBMGZZHl4pyX75U5PJZXNHt0RDe\nkrWyUxlqhqt5XT8PusHN5yxNlM/x4PDgZ6ahz67nulaBGs/EhkLT2YyipF+eK+swDUANwK8Rh79i\n2WAtUOs4AXniukTg4UKJp6F5v2Vzkvpesa9s2tVAGbxyYcXYQTMtwgi8eCgQL7FkRWt5MyEbh2qG\nByfNGs4C2xPqaarEhsWpmW9kwlpaZSj8U90vvtb1dvIazwqUVJPxpsgYV+EVqTSUER7MFa1Np0P2\nfP19gsLNCBvvnimi3T9VFioPmmOOqsnzpDgEZve/a2ZmQ7gmVsUwaqsIe2C6vwv/RzqDAsOFfq+g\nTDDOyXYW1xqnPaZ2dS47SFQ1ztqG1vdpV+uwCpCQgR8pgfpUbaRMTsikvqaustNS5iHpaX63Hmo8\nF9x/daOaX/8fYSj/zxr8PMOl+ljinn4aZAJ9LFI+O4ZradjR/xuoBs3gSYqvd/mgbG8In1IVpEa6\noN8HvvocW4G8IUnSvq85qHc1lwPqsst5atIXoUoTimCBbCkGj0YJqpRJkvuwZUZz7eFN/NEipmz1\nHDTSkNp4I9I/yOEfrrXmUz7nBbKxBPxPeQeEIFxbI+al7eJXqREu5FHQgvdjMZBfC9F2V2TJ3/6u\n+DZOHfXvrCnuhG9tUDef0poHwKcCUA9ZVFCmIP3u7Orzy7Hmq4+yi3sjv3hyiq3essW6up8/1Pi+\nYi8Wm8qCtbrybe4DapvJTD8/B1GV1O+/+ko/raVxxxsa7zv4mqP6d/R3lJFGqPHlplrYOBxh7Sbo\nB/hCZu25uXndO4H5p+egMWtk+KqoVKAY8Oz02MzM6nuynXOyvO4aNb1NEIFtEC9pzXG9pO8l4dAy\nsuKFDZRbBlqDXlK2PIX7ZPehfr9uwytE5jPOnJb24CAgw7omk7jzUJm5zo3mOriRTfgxXef4c9lY\new3qLcazmOR5DBtt9VClAzWWBZW2sS/URRFFnFANyYOH7rZtNkNxi6z79AyVjarWyKMmfzbQPL/3\nljKYFyCDNstCMUxALN2A8p3DmdDCv2bWWofGA9lIt6l1WID6K29pHsdwkKUOhCabnOr+07W4X6Yg\npSr+K1XD1MFdG/vy6xXq3mdZ0MPw1U3m+GNX8x+/Vj/rJe3N1l14twzEkg8Krq152ZqD3ILXL0sm\nvd/Tui5Ak006p5behm9tS2N3Qs6tfc1pEKptaGltnQhV4VDwSmguDD/gZmVreZ65J/CYzTuoFI3I\ngPbgIIG/p3JApvb7PzAzs+KG/Mj0vGuv09798YH6scNe2ZZ//dXn8hPjv+ZBAM9elfNeegsECmeV\ncQ7UEzxSW/hRQwktlgTNavrAGWeJHS9UgtH4r090//SOng8P7gq1PMNNteEPjF3q/0GTnx3Z0IyM\n9jgr21jDpdDk7aDMcfTxI61tBfWT2Fprf9PWOq478IQU8PfV99TfPY0z2eZMlZUtX5+ispoFPYZK\nXTej9cyCSE9fag/0TXsO4JD1WqgrvpAtNg90VtnP6QOHHwqhE8xecTjsV3PmtUD54TtzZOBDBOu4\nrcPjLvN58iVcODtLu23bA3nhr9WXjs+YJpzNvQONtQRPBaheZ8m5GjTRw9+WPwlQbXI5D8dQsdww\n3WcED08P0yslUO+rwnsHt8gsDVcV/qdegeeCc2OQVn9KSxQYu1QfhOh7uMpCJVoEt6w/l03H4PVw\nQ+6SjOZsgjLkijOFC1rBMrpAqShb8sN+gwQvof42uMCvXICuuK/5C1XsJly3Appr4GpPz/qyjRwI\n8fyW5v8+ylyptOb7aQsE5wQ0yLXms/Nctp2t8y7VA/H+TO9gIZ/h4YffMzOzcYiC+LO/stu06yt9\nfsPTHh0Xhdxx4XA7Ovw9MzMrzmQHi8dCo1xxphuDQnQyvGtOQfLwXAySoWKS7le/o0NwPiUfsvpG\nEsmsnEpbJlm0lcs5EpTpFFWkMXxwuW3t5zkVJQaqyIWTtYOqWsbRHC7hNSqkws+hRMgzI7sAOQM5\n4fkc/py4/r8JmidJtUcKpM4EvrdWU59fwqsUYy80UeANeOc5QnG2QtXAEgWzDOqqc84yiZz+3+3J\ndjpwLpZBe81c0GAt2cLn8HUO4RF1PZ0DK6ikdvvyp58/Vtzi3e/rrPLrWoSUiVrUoha1qEUtalGL\nWtSiFrWoRS1qUXsD7Y0iZdJj3d6Fy6VIvXN1qUjTCCbtCrX8Dx+Ayqgo4tWooyDwQhGqLQW27GRF\n/V9BEbIlGc0TuAja1LU3qVmteIoWemQgVmQGkihKZFdE6mqK3OVm6t96qahyhszxDfXwLgzqQVGR\nslJGmYEySgoxOC6uhupnbAM0A/WcV2NFZydwYNTgT1mmqJGDlf7tAuomB9QWXyuiOUPBxyfSlzDX\n0tRq9kENuGPNxWyhMTihSgXcMssAdJCjPk4mikZOrtWnINDvw6/EYZLyFZ30fqgIbxrlgDoa7d6u\n5rbZec3sNsiW2Y1+zuPUTi4UrexeKpK+s0eGj9rKGIgLq4ScNqCbzjX+xfuK9qZ2qF9+rvr144nm\nLoC93X2otV414QE6gqPmQtdtlagfBInijXSftat++GcgaDL6Xq2itbqcK+IdWyoCXjjQPNf7oCvg\nWin6iqCXKrKBx6Avjk+UZfrgv0Z5a6C/933uc1frm6eOPw2vUt+TDR49kM35ZEImp5rPhKvsUpcM\nt7sg0xGXXZTjcBJRH7nExsddeDLgfkiB0qqXue9c91ktZSfHX39tZmbZA91v54Guc0J9+fInbOZb\ntEURrgG4PEKMTdnX3AyJoG9WtTYTYAhFHzQXlATeQHOVyGvua5vyN51miJRDjQc+h0NsvEsdte/I\n33i+sjKdtGxkr6F+XU1RsoLzKgOqIV0FGuPq+50r9igqEEX8lpuiPnihcVSmKNwMdD1vW37FW6C4\nQsn+ytEA1xnN/Tolf+ZSoz+Ftyl7AAoAxbJUQms3ONG8ODl9f7aJr0iRdb+QLX76Unto+3vyAbld\n3WcNamMFH8rRptbriyts5Rxul55suNTRdZdZlH2WoMDgqonBY+W6r6fk5sCZEz/TvN77gXxABu6y\nAupUzbnq0wcD+ZD0Buz6E9nD2wdaBz+ljH6WbNNiW+Ne5jXO2qZ8R/NU4/0yTsH4scYzgq8ln9b4\nq8m6rQv6TjIm3z4tah/Mn2vsBpfL/KX2+ayktSrl9Sy8GSprU3KU9UmTNZ7PQ/UO+Z/PL3WfAupp\n1yhtLUHGlKvKTBbgfUuSCfU9UGEN1NcWGsNlGyWwfbhX8IcBfCEdnsFJjywTak9LaJTKoInicMNc\nz3g+ASPw0urfXXiNHOrP3YqeratlyBuleRqu5afS+dfjMINKxxau/FGspDX3E7L5AgjH8pbWOu+E\nygual/YV6F74T0Y5EDX/VFwzI4OHqq29lKTfWXiN/Dk8Rh1933sbLoHesZmZXf1c6/AkiTriWrYW\nC15l8SetY1uCisvgU5Y9/R/xJLtuaP0T1OtPQV2kUcF7i0zq8YW+X/HwAStS8Xmcpgv8cBNVKVQe\nQ18Te7mwEvwVVZB8ZyADHRQQqyXxFLVSeiauX4Ay3ZENrkHE5F04P1zOi2v1PbGjNR40sbUhfEXw\nyy3HWsuvn/bpqtBn+QDUQe311JdyB0Khfu8e6j/boA02Uft4LP/ROdb9M74yo5ugAK7ItPrnoMYc\n9T/9tq5z8M67ZmZ23Nb4X17j986Pzczs8RkqTaiFOHJjtln9TY0Lzob2UP2o3NWeSewLVZsCHeXc\naK3PL7XGVdAP41PN//lA1z9pyQ8eYjMlsvnJu+r3t7aFFuilNK+1EyGGlgvdpxlm5VErPM/rerGS\n7rO4lj98Uibz/VT/rx9pHt76tr4XgIDytlG4RDlm51L9mPK8XxdAWfT1c3j9ijNoXOtb4Ov6Dnwo\no4LsqRwitrLyuc5a67y9IZTfEhTZbdr99zUnW+/8lpmZPX2mueh+LSh2Et6cJee8GMjtBBvUWWkf\npbLyA+OQG2sCKh8UUR/uxhLn7BXn+XRO1xmCJorLHdgSThgftMIsJ5uswRm5Qr2uBZprBU+Hd6I5\nGX3DrwGXIOiCdYw1cWQz03nI9wFyM6b7JDj/JfOcI1EzXcI3kgANnEQ5MgZMqzcSqm1+I1sNPuT5\nsIbfr6F+lI/kK66eohJY13xtbsl29lKy3fhM92/DHRY8YnwgSRsVOLc4v5bhqOwPsGmqMTIpnV8H\nbRA/omS7dSve/2fq34dC7hTfQ4aprE39GPXak480/ouQP5Fxx3hPa6GKe/7VZ2Zm5gfhe4WeH3k+\nN+UMcvnn8lUeyKD/5l/9Gzv/2+dWPMhbMoeyK0i/NKgbh2fcBIWp+AL4DZUl2/fl58ogFxeo25VR\n6A35elpt+WF3DOkr7yb5pO5zuEE1B3Q3d+ENnfY096OZxjjs6/s9EJTOGCR2m2d/Sn5l6er3a/hE\nLYX/NCE4k0XOvyDQfVC6XsgrCrfsfA1CnD2ayOn3Gs81FyRQp8f44GI8H2htfvpnx5oP1Jp+XYuQ\nMlGLWtSiFrWoRS1qUYta1KIWtahFLWpvoL1RpEy/rYja2ZeKaOWKikxdXioS59QV/cwkFFWOoxJC\ncNV8UsHj5/r5FSpO8xAtkVB4OFlVFLpKlNejZm6eRNEhCwImpt/7K8WqFnC+zCeKTvaOiZ7WFJmb\nTKjNzSr6WyOb1ocB2+b6fTepCP6sQiY7p3HlqCnOU5ddaWhgBTLK+99RFvAKFZbPZ3/LuOEduUHH\n/ZfKVKfgxsnDF5O0MJs5sz6R50yabEJKn0m76sv1lebQp+b8AHWc8UJ9fvddZWEWc7hVcqBzYmjK\nt9SXfENzM2wrEvsEjpdYW5Hw181cBvCETKZhppIoZkVzNiYrtoLnJ0Nd8oQoZxzen9wZXAMG0z6o\nijPUKRbUIe4+VLaq3dMaHu0IlfTpI41ve6B5bKUUNc6WqN1cgVjxyTjAeeBTN+lSix97KJvcXmv+\nzq6VDRutFdGv5tTPAhH4NWoiA7JjgxfaMz5KYIWJ1umKDILrqh8ZotfTGLW+CY13OUNx4oEyOb/4\nWOOejKTIsAFnQSkBS7+nfs1REruECyYgs16e63OpTTLcv9J8TjPag+m5+hHHtjNwFvVRFfj0p7K7\nt/Y0H427ZE19Cu1v0bKo4yRg8J9VqKNlrGX2s+NobhoF/X7VAQkRaI191IDcS61BjKxPg7roNMoF\nVzeqxR/BH9RLheoOmrsiNbhdamnL+1qjuKN92kFZJbdBZP1CcxHDptLUB6eooR3DuRKDaytUlUv1\n4O/JUIeNotdZXnuvOFB/rrKyxVpMczqqKyu0XOk+S/zgAATfGDRcbKhxDsiylArqZ5WMZQ7Vp+Z9\n+IM+IyM5hlcJZa40nA5nH31sZmanIP0KZdm05yqrUz9Smqn3TPPQGcFnMdf467sh4hCOmzu3txEz\nMxfOhMGG1v9pW9mnUVP9rRfJBJMxWW7pvptJPX8WQ2VqZlvwvOS1R2P4hK8+0f9Pp0KrFN//tq5f\n0vV3HGWSlmWQnofKtCTjWtB1IW9ZR2t4yrMqeKk5iBf13RjIh2JO91oHsonpTHNdX2ltFoH8hIdt\nxNNkiUBkZJIaq5tU32sd+aVL1OrW3C/J97fqWrMVqk0x0GTlhNbsdCk/74FCLYMI3AL1eu7p78Ox\n/M2K7FUfPrYl5ASFBCqBZTKY8CMtkrr/KAO/E/XrV5eylRXKCsFMz+ydI7Lz69ezkcVC89vv6br7\nHyiDmexhi13q1x8dm5nZo4Xma/9A89cvanwXp+rP8lg/N1FiiFe195eOxvHihX7Wq5qn1Jbm/a08\nalYgQ+MQS80L8i21axCORlb/76DGrq/HtpkD9eBq3QcxjesOnD+7+5rPOXm580dCvBrPq0xwYGZm\n00DcZZOF1vvuux9qPuIa58c/+8TMzBoFjf+gqPmykvrfGv/c7FxjXINEHg1Ronqhz2R/W3+/y5ni\nZF9zHfJnjEFzpkGFDeDlmDc05tqAZ9sWCi8ock1BDC7gm3BAJYU8TAv80ubg9Wyk5QvlOYRT7G6C\njCvqSU38d3YDnqepnvGTnsYxeiEb6sdBSKPolTmWP0o80x6+8OUfG1t6fsw3v29mZjO4vC5A6jVA\n2kxQ2Pn8p3qudVZCZTzc/C/NzCyPLa1a8hnZHH58X3v8YsD5lDOgB9Ll7a33zcysgjrguCcb/Po/\naI94Nc6/8DDV9+DlSMh/NkGqOPBX7dDfM5DnRRLHxYoQKRO4KMpwoj0HOXV6o7OCixpME/6pqVyd\nNd5DuRJ+K7ei6+Rnr3LP28ui9bGHWQFU+AvO5zvq3xpk1VVX/CXPQa7WC57dtv3Fnwo1mvtIc3UP\nBaqgr7Wc8a6Qr2q/5Gtag50HnKOauqffQ53oSs9iH5tNxEC/8q7joIY6W2nt0qgTxT2NPeVqrxVR\n65nH4P9o6V2rDRrNA/GSnmiOlyv53wSKjx14OTMdzt1J+Ps81JQC9hrqP9m8rrPm/DkFDZFd6+8z\nuMcyqADmUtozPmiyKap98yIKQO9qzesfajy5ufp3AQJxBeda8kI/t0zzlMW39PHfk5nG0TvT9bwF\nKlhxfX4BZ9vNSz3XBhPdZ78oG937kRBQxZ6u+5dPfqJ+xV+pGd2mzUDmvFiAAoTvKdvTOjx7rHV/\nfq6fBTh4+vAB9vuyj+H1sZmZXYOESrCexYD3kDicnnw/z9ksVwi+6Uv1oGqFddpmc83FHFXfFOqa\nM5T6XND8q7lsbA4Xa4rqgHgW5bAlqm74gTEoqPAd0kNWOAcKbJTRmtNVK0y1D4cga7pUgMR4HQkr\nAAAgAElEQVQ9bfj4FaqinDFCbsJkqDaHSnESviQ3o7Va5XjH8eX/xlPe6znn5pcg2DlfJnuyrUUa\nNCvPzNVa/csdyUZLJT0DYxn1c4l604Nv65ne45m9SP7DWJgIKRO1qEUtalGLWtSiFrWoRS1qUYta\n1KL2BtobRcrMqH1dgGaYdBTFHUwUoffPqHU9VaTJD+uwv1IsaY4iQQaWeQuoS4zDAbHU9TqPyFC3\nj83MbOO+6uy2QDksxtSeumHUkOwc0dH5isxLyAYPO3OjTMSeOvJFijrNEeoCZDWbZM7n1FWOB4oo\nrqf6Xr6AYkOaKPFQkbpyWxnayQvNhzfW9WM3+v+sR4Z7qMzStA3vB/WTmYz6vY4HtkQNKUAhyoHJ\n3o8z94x5ndTnhijDPHkk9Z+3tw/MzOzx58rmrNGez8K4fz1TRHn5Qp9L7ei68Sos7SuyQzBf37oF\nBfqpSLE70PeDNJrxZL2HK81xFpsyeH4ybc31tATnTUnfb6OOFOdnaVdz1nwG5wyZ0uUY1MK5xnm2\nVL10sQZLegvOARR5kkSwhxPqMGH+X5RhVyfrk3lLmZPMErZ0MiLLABvfVsQ9X1a09xrumqM5WceY\n7j8aaNzpsdY+XyTT3YNFH+SQP4V36YeKKn/Xfl/XPfwfzMzsF//pZ+r3M5A0ECtt7B2oXzMY2fta\nx1pJtt9G8etOQXvRpz5zstDnpvAjrV2hCzJkPFIhx9GJbPf4rxX93v4dZUBW49dQ6XJgb4/JRuIj\njTEkrAhVG/IgaeIzMgADoYUmM1jlYewvJXW9ODX7I/gWSvAJDZIgakhOb5xrzW7gLUpvwsA/pAa3\nCGfKU63d3AMZsyALnydL5Wu/eyjwDEFLxMbUiZOBjY/h/SCLFaqUrKrU8JIpDuKoz620post+Z8p\nyMBgqkxDM1CE/yisUyZD4CSwwZb8ZwDibzBX5reZlA3eWctW5u9IbaNa0fWKoLaypQMzMzv/8hdm\nZlbhOk5Rfq8TaJ59/PjmnvoXb+p7PgoKcZm6TcjyuNjYbdu4D2ouq3XONpQ58UsgqOAEi621V2JT\n/f+6B59KU/3s+V+YmdnN5/Lvezsax9H3lT37jY13zMxs9IGu+6Itexifzxk3mXky6/5Efx/ezMyN\naR/waLL1PdlEownS7itgop5sdJ2Wf8i3eTbh81sV7bdZiMCj9j9Vl63uVNSnNgqFG9R1F8h82hju\nL3hvqlnty2Co63cLup4H18j+SnO1yOj3XqBsUWqhvdJASWtydqzvU8tfwG89xa8NnuOv4RPKJzXn\nC/g/HFTqOvBGbKEe6KJmUqXu21AKmw5CFNvtWrIGF4+L0gLcLmuevasL/Xw5xd9DrTIG+RiirIoP\nNF9rUB8LOMpazzWv+RJcPzdCM7Sv9YzfOZQtpR/q8wX4llqcfdxN7UkvBUKVLOXqZvzNGI62D22r\nLB84Ieu5TImrYDXXel6A5i2h9pLPyX8fw5O3garifkKImheojRy8jyqLL5+zgFPH7XPmKmtedq+E\nsKncv2v78Nv4GY192ePctY2CVld+6EmHZ1Za1zgOESFfak/s/4Z4eeIXQoSU4TlqHWoREgFZarhB\nynnNvQ+S0i9pjTa6ssmLvpAQAeiC27blWHvn4b4QJD4oovDZmNnVXB/+tmy++xyuMl/9eXmicSfJ\nRBcr+FvOANddnRWSIDtXZfjlqnAcgmicvoCXo6e9sOrqupdPNF/jCs89+EQ4hlrM4FCEc6UP6jUD\n39zcAwW7Emq1fl8+Ykz/ZmSAq30hVzpk+49P9ay/eKTPZbd1xllWtB4NkCvXgWy/7qhjzpZ+Lgqy\nufsZPUccOB+Dhv7+rbL2xDSrPbhxJjvp4UtKvvrfPJN9pNrq3/reKyTUouHZFD4RZ6J+jxl/so8q\nIvbSnKPqFcAl8/z2fIjn/07n5CdfC4H2g3/5z83MLMcz3E/o2mvT/o7H4GpJcW4C3VOAGyaHOtHh\nPqhUUE8u4NRVSWvShc/CXuq6PlwjLVAMEzgCM4HOuyV4M5cduANxnxNscAzfUDYtG1jC+TWMgSwp\nhTyc+glIwpwcSBgQjStQqlzesgmN19dRwmI5kN152ebFM/0jiUpcGV7RKQqJzUBr8eUz+c9WXz7k\nD+/oTBLwvAurIMJ58ANUA11drwGdlM/5tpSCIywZqtOmmQ/4+3Y1grrJRttwBV1/CaJm+oq/6Dat\n25Nte9y/Dxo35OwM1QC9qtB41Zps1p2GimKcEfPqZyWDwia8W80L/T8BwnTNmbCyJb+eL79CWFZ3\ntixZqFkR3pqpp//NDRQUnHvOCCQ1lSUhsm2xBNEI4mXNWSEJ2rWASmqQZu5LIFjgv0uMOMePQYSD\ntOle6/wZB51Z5P0+l9V1tvJ6di0d/RxPQeSAyp2C6vVAsuTgTXPHVIuAaF+gIufkNd7SDGRgwB5F\ncTiLWvSA9/3KEhUnOBdjQ83Di74Q6yl49jZ/wLjtFTrp72sRUiZqUYta1KIWtahFLWpRi1rUoha1\nqEXtDbQ3ipSpPlDkaH9fkfMSXC01V0iWmaPQ/sE9/U55oeXIonXHimB9+rWyMgUUGzIFRcDqcDyk\n7im6nEXlJFsn6gtnQ4a6+SX1lrGk/t4bEmmj7tEH0ZPQ181foR6VQqFiSqZhCE8J0cwp0ck8hZlv\nbak/66oiey7s74uZotLP4We5GilqevUMFEFemZc00ef0PqzXjuaxdRNGl3W9FXWaTiFvHrWeK/hs\nMmjAp6bK1ixziu4l7jF3Oa1Fp6LooUe6ZW9DazFo6u+FXUXEEyNFL5062fhaWMeN6k5MWZwcaki3\nbQUi6PUd1bKPWoqMP+4oe/7tu/x9pkh5yOif7GoNhiPWbKrIeo46QidU0kprXHk4EI6//iszM7tu\naS0mN2SHNnS9RIDUAWpKw6TWNJUjW+fre3kyF8nrMGoLJ8GVrhNHqWGjrIj1DNWVIaiL5ULfX2yS\nsT1TRrhXFLojTV3n6JL7b+n7lRPZwMy4X0zj95IgoVZwG8Ctk6z8X2Zmlv2fyXTvaLyFqeZnjt1M\nroVCWRf1/e27pBg+kx08ewoyqqLvx+coJgxQ6HHhWQlk8wco+8R3NM4JtbPnga6XIvt2m5aHG6Vz\nIz+SK8MBxdjdvval0wUNAP9PPwYiAuTbaKBsiIOSyZS0TxwSl5Tp/5tkURwUwIags3Z34HEAXTA3\nuGMKGkue7H4cFNU2/A7rl9SJt9Wfflv9zcInNItxPeqdbaD7zlEvyTxURjLHnuuiXhRPaU80QAZl\nG7puBkTeiw41vBNlUUYL+ZEsHAdOUfPYIat2ei2bq6AeVYXf4qwHPwhpu8JEfqrV0vd38tqzFyiT\nVY7wRSACQzWMDjbURk4kUwcN58i2r441nvELZSF755Dr3LJ5HuisNv6WzO1ODXb9meZ3gsCM39J4\nsydkeDyNc6uMxMKG9lqemut199jMzP70uX5Ov6Qm+lA2n6b2OQ5njzsS6q6BWtMHPzi0zbKuVf2h\natfjV5qzT/63PzEzM6esuTp/obn3JmRx4KfIzLX2d0O1jZH+n0BhJoEfqlQ0x2E99dzIfObJwKHK\n1ENNLVfhGTjVM2kbPqXREL4j7peEx8MjYXjh6HuNU+2dVBEuE1+ZwBhqPgX4Rpb3ZXsFlLa6HvwX\nZL0SPG+S8Ax5df2+QuGLxKpNyAyX3ddDU2UTWrNJXvMSkDF2fI2jL9O2o9R31N/wGevLfzXhkNmu\nyBdVPhBq4smJFCNGHe39D+6AHvmx0FXPT7T3k3XZ9OPP9bnrM1C4IKAcULi5FfX7oP8GyVdImWVs\nas0b6uF3NJ4aWb+bFCjAp8dmZrZOoMJVE2pvvRbKoPdM615/iP+Gb+T4ie7z7hacGCjCzfqy21Rf\nn/t6IN6VRuOe5R+yRk9ksyWQdDlUM46Pdc9GTn9PZ5VZTJd5xsLdl0E1yE1qTJf4xf1HWpvWnr6/\nk9ezrBvIz2XWWpvtefiMkf9OHWvOMwdb9jqt5Or7zZfYyJWM/eKa8+wuHGX0I7Oj/T5GCaf8QGux\nRVb7vANfCPwWqyocaDzjxy0OnH/DHt3VdVOcZwtZFHgC/M0UTjHQWAbf1DUZ31hTe7Ff1v/Hn8rG\nCu/DSXYtf1fb5bm1BhmT1Hg7RxpHDvXTCpyLy33OvS+0rgtP8z+4ENq6B0oj3dK6vVhoj79/JP/X\n/UQ8LA++L1v8FeftGuqB8TUqdfAlufAWjQLGG2ge2nnZ7sLXvN2caH7NzOYnZ+Z8KP89gNutCKfF\nGjXEfELzfndL1z94H+QrqOTbtPTGgfr2pz83M7PTL481lj34L1C2SYKQmXNeTe5orGX4NePX+v8F\n/vPic5RtmIMMyrF36GtiDXLN0T5McO6rgCqL9akmGMjvjkBthc8P4/ujsda6EKJg+7LpBiZ1CTog\ntME0CmsuSrWhGqkTU7/TXH/to1YKp1icc94EXs71gGoB3pWW+PndmsZ3tdCebYKGC7oaVxHOro1N\nPTfPQbaPW3CoeVrrzpl8SNxVv7ZBTYTqV6cogRWnek4+vCdEzLCv758/lq+6/Fj96LZA1ruan/q+\nzuf27M/tNi0O2nd8HapW8c6JYllsBZImJTs4hd+og5LnAG7MdErzuhjJdrtLkJQh4hbux0IaTs+V\n5m08DLFLZonUpsWzGRuC3p/Dv7NA0ctFqSsJ79uc9+8C78sjlJzcJeebjH4m8JcGqj6D7fucTdbY\n6ARl4HmCd8pQrRQlspyjh299A5WlLCjRlVBEE9QxT+nvcgL/KBUvwZeom2KrWSdUAtPaJUIxKRQN\nnQz+MiZ/vFyjiAjCL4lqdBnkSyEHssbgZtRwbDsH585EKNjkCnjYr2kRUiZqUYta1KIWtahFLWpR\ni1rUoha1qEXtDbQ3ipTJKBhpPmpLJ1OihEmimstrfur/Lzr6/c7Dd83MLI86RvkerMhNrttX9G/S\nh5EcVvhiXZ9L87u7pAAShZ9lTN+Lu4pVlbfIMJMlS8PO7Pb4fgmOgHkYBVZELICJ3FxFXxNLsllw\nSTgjZTuDMZnvhu53+LYyqt86VOZ75z2FpTtKqFr/CVw7F4rgZdYgflIaV6i4MGoqmrtGkz65dixW\nCItFNSddMoGOrzkdZWE/9/W5cUqfqxAaX/Q1JgKyNgNpk0SZppFXxDmoaC5LDdQoHEXi64kDMzPz\nAvXxtq03EiJmPNFaXR/LNkaXyn44vwn6AKWWTFWfy5WoP6au2OuiZEVGcXOuqOnY03hJTFh9Q58b\nbmt+KilFTUdtzU83B5oiEaqcaPxemqgv0mCLudYquyLTjAKQCxrK/wqbgL+jUaL2lxrR3kDj6z4H\nzVDXvIWs6QYXDqWiFntLNnAy0fgOSvp+JqcoMMFea50pkv7z64/0h4nm8/CXykTE8rLZ6SkqIQVq\nlxfwlHRlL5m1eJ4c1DoW7I0sSCQPzosruCkmN5qXWEPh45d5zfvm7oGZma08ZZAGx+KiSDbYQ7do\n0wVZpzUR7b78QnoC8mKpiH98F6QEHCGpFWodHVQhNtTHDlnobE/708soIzgZwNGE0kgZhvserPKF\na+3rLCisOopSdVQuMmXthflCxnZ+KhtJtVHYasKPkUBx4R41qmQ0S11l6q4gB5im4RpwUeSiVLVW\nUr9fkjkYJxgPrPILsiUOymNuXV8c+NprL0FF7QSqz87lNP7+QGt58ENl/3/jD6QG8uVEyl2jE2Us\nv/ozOFfgucgVlZkM4IIYxXW9JvwlhRhKP3f1+wXzsv8SFQ9AWRkyNR1H8zRmD9y2zVBpGcO75J2Q\ntStpHh+Wdf/xDI6DIhN6X74kP0TRAlXAZEWowSsy5isy8nt39Ny4/x1xTjQ3UVYAJeeATmgsf2hm\nZulyqIoytlNDZeELsuWoMTTy+I2Zxv7OIfwGbZAwrsawgH/CwZaKG3CygJRwqIueVeAxQqErFcCX\nhFrPBupzw6HW1D0MM3fwuZH19rLUn4MKnQSy+TS8D3nQUzcDlApRlFmSzb4ONBcz9uCKZ1YbtGt+\nxTio87aQU2CtPV0kCzWBF6QDsmQDJJ4PGu62bUDWrzTSHmqa7u/BS1UD1ep0w3p61AtBLOV8GWtr\nJhsef6LnRSYO2gMFoaux9uwSJbONNP0vY/MTrWMCzph4ES61RxrfS3xaHzUUm77ianOaE2umdWaq\nX2p9nvp6Phyi9BgraQ8mkrKr/SNsHnTBn38mpMvNU56Dd8gCvkBFy5FPenhHqIarc3HOJO8qU/z8\nj9UvZ7dv/x97b/YjS5qe930ZkRm571vty9l67+lZmxQ53CTRsCHYgABd+UKA/wz/HQbkG0M3IiTD\ntkybMiyKHskUOaPhcNjT092n+yx16tSpvSr3PSMyI8IXzy/6QIRnWH11buK7SVRlZMS3vt8X7/u8\nz9PwdW2W6OwtkdSbhOZWd6p7Vx2tm1FBkcQgqTpt1NQHVoBiWFL2Pt3RurwgCl+60lgH8OdZe2pz\nvQC3y0p1T8JZmEoeGGOMyaGweNfirzU3rgasAfjeArgSPLhI/Bs4vaZwzbBP7X1PY7XRhg/qldpx\nnFKfF23VZ5yWvTRd9cdZtG+BAO10USPa0n1ckDguHGkpFHdGNhFteIgm8HtUXd3vaqU9t7ZUxHmy\nEofDW/CddDgTZjL6tBsgW+BaHDtq7yYKNzU41Pp9Iudwstih+u10wD5wcaJ2T9R/X/SEKqk90H7Q\neaJ9pPhI+0cuyRzvg9TJRrwomifrutrXLqo/0yAgN8av0XJ2o2JKIDYvOItOxpx9Q943rtTfz34h\nPpgC98lmNsxdy/Z7mqvf+8O3VUeDCt0MxSxHfWXB+dVFXWcL1bmORzQeZcZTEIrDruzHBx8LEWJ5\nqtvJsc4eLqqXCEma5VR9FiBp00xxLsZe5n2QKpw7LeACdfg3QuyZyWttVbY1FnP2wjkIn6Rh7mM/\nrao+k/CIzNdwiPHesZyDGIL30+rrOr8NNyIchYsbjd3E0nMKKGBaKOve+5bm5K2r+l3AM2T3mCOc\ne9Mr3htAr4U92cfGe3pOH0RkwLn902vNhftFbsB+d4wC0GZdqIeD7+ks9JGFAuhD9ecf/Yf/ydyl\n3F6qvfMnQv8W2loraSfik1J71yiXDSe6PuDdL5+Hd7SjM+FyBhcNnDKZguqZYN/yh2SBwO5TXr/e\nH6fThUkPFsZD1WgKAj3DmSJCfs990EETUEgJzSkbJV8nBI25hCOGc14IF0wRHrIpvEIeClrpDEqM\nZDeks/DIsbclQHhPR+y1vDdbS/iUphr7hi27EN4DcQN3YRbU7WKiPc8d6Pc3Fxd8z97O2SIBqss0\n1FeBiwIi5+ZaTnY6BMWaKqKgmEbRbKD2TiOFMzi52tWID+j/v8RImbjEJS5xiUtc4hKXuMQlLnGJ\nS1ziEpc3UN4oUuZiII/8088UMamjGND6HRK3ySds4Ona+Q4KArDtr9G83zWKSM6O5S0c/lwRh/UM\nFaVrNOmJBNfh32gU5MlyiThbkY46+ZDhRJGICd5Fl/zxDLljmTFcMivyGjOqV5CU97IRoHKSlWdw\nlpAnL0M+5ggFhNGZvLInRXnSrvGw3cwUqa635W3vo1RhER296eBxvJHnz+/Lw/fgQM/N19U/yVRo\nbHLJLVzHSRRAEgu1qX+tvjm/lBfvpkrE1labBqgyFOC1uL7S9X2iVkFdfVJArcJp4+nl92MbpYAV\nIvR3LNNbeDCSGrO9LUXiPuvq+QX4Ia5BI2VAbthttWsL/obBkshwqHZcdfU30vZmtVJfBW2hlMqn\nGpNXZ+ICGINqWrvq8/K22jki2mIvUOoqKhpXGcNUjgrU13xERPHGzKXh9MQYY8xuSlH3h//gt4wx\nxvgoA+S25cm/udHcdjJ6XsRTFKT12WqqXn5OEZMzol4bJaEVKp7GPz+Hlf0Ejp+2rgtbKMxsS5Fi\nRfp0so96SCqKnJDjfHLC3xqXTRQOAvrBJ1q4B3JqUCaCArfP6Jj+dzTPKvc118tb6odccHfVlDI8\nRoB4zIjcdxsuqHRfjbk4UxtLKD9F/DiZhZ7ljlXXHAovFmpKyyz52SWQL3l54pOs01ZeUZZ5RhHL\nakn38wLW6U9lj+Y38FyUZR/KS9mDlQ9qDfW3KapRLv+vE9EsthVBnB9oTCL007qs6M5VFsSFrQjB\nGPb7NWoTC6JHaxBEpX3Z1TClRbBO64bboJy2v/+hMcaYWUf9cftnPzHGGHPZVXv/6H8V2urkX+jv\nf/D7f6B2beq+LVtrbb8J+oxA4wA2fxfughB2/Fxk/x3ynY3WeOoMlvyGvn/320JK5ovfLMK9NmpX\nM6X+KIKMMTmi+ijsuDlyjT2Nu18AHUC0bfxY+9XVSL8LsaUPDlSvyqHqOXX0vf83WlMzcrUPUVsx\nDbXLhdti0p+Y5LXqcH2tOTsihz2JIkiSiGd1V58z7HqqRw49Eb3Q0j2XK/V9WNTe4NHGxiWRyZrs\njHelva42h4ejDipppXVvw4WyLut5dpeo0wr0aIloURYlLZBzSReuqpr6LgGKzb9Q9KgAaqlDLn2y\ni7rSUNd7DPEsjV3nuumt6l2rY+dD1CuYwzZr1+9pLt61rOF7IoBrDogS9uHCCVzVrwPiZ7XS2G4s\nQV8dqn+mRJx7KMO0OijYlNT+1UT33bQ0xx9PdL936r9tjDHG2tca7mJjKvAzXcJBkbRVzzJqhAvQ\nGsYYYzXKpkb9R6gqFqrsx2tsyabun/QUmU26mh9r8v8z7BtWX5/rulAXmxvqh5upjO1GXTbPgFIs\npYA/w0G3eDkyqarOJ9lDPbPYhLNrqt/ax/pNqqi2vTwCkReor7f3pbp0PkPNArv32a2iy2XQvMlA\n97eX6jP/RPeb1HW/zKbWwgMinLclrQEHLpK7lqTFXoqKZh51oJmrMbGYckujfeL0SMqGhR2trVZK\n1x2xBrKgsB7dF/oht6N9YzaU/XU7ql+tpLkSqQXal7L7o2fqkGlC1z17LG6Wxm/qLHN1Axqrof7M\ncr6dgaxeLFBBRTkmRI10ZKu+F1PN8dznqlfjB3C8TFAfKcG98r7OqRdPNd7pc52d1kWNs1XXc2oA\ngFoopd17S2irJAo6QV5zsfNcZ4N7SfVL19J437iyjZmyVO5aaY3jAkU4G+SUi8reOskhzxhT2igb\nD5R3G4T8akNrK53Q/lqEMy6/rbPUdChOtEzi7sjMENVOCwXWVFV12uKZTgZkdQlUDxyGFR9U10Bj\nseSM4I0jewrXC1yIFyBo1qzTFGpzBVf39UBwOI7syxCEyEZT574c69yf636DNSgAzs/Joe5zCgLF\nDXV/ey27coUKUsQJFnJ2sUPdd8i5vJCEdySpuWjzzpRtqV8mFygiTmTPMuyR2RTZCCB6JitsxQVc\nl6BV7b7m4qf/h84o1SbvOw9AN6CIs6vHm04gu+f5HeoFKjkNp2ZLz0/d8ooMH0q+rN+FnGtfLMSX\ndAOX5L39b3YmCeB+TLIPZluqYIoXE3tfn9MJ+zIkMSFKmQsApNHvMqB8Pc50afp/CY9iKhchb1EQ\nTr/mlKlMs2YyvTaZiDORs0FEouqiJrpesYctdGZYO7qHwx6ZQ4F1NVNd7YhbNRWpeuq2OVBUlqU5\nHdkhjjoGsI9Jw0u34qyzAfq/sIPK6lhzNr8UimnOdS4qUGtQq95a9ZlCTuuztizOuxFEZeWimgqv\nUNJX+xM2iEjQaSvkQj3Qbik4EgtlXbf/ocbk5pT3kQGo5tyvzwKIkTJxiUtc4hKXuMQlLnGJS1zi\nEpe4xCUub6C8UaRMBb6OMugLnwhuMano2jwSYMnKM9X8jQNjjDFhTd7Yn3/yqTHGmBUeKu9TIW+C\nDqz6GXnw00S7Fuv0f/48XHGBK4+fn5THLCBXdjQh4tJBeQI26TqogTSe+Qze5J4r7+31F/JGj2HF\nL9Xw/uZ0/xJqHdVdPH5bUnJoPFR9n1xJTerTXyri4T8n9+5U7cwliXAP5d2dvyByTk7dCl10z9ff\nQTJtEiA8fJQH7BRePpAcE1R2/KSetXEIZ8hU0RX7Gh6bFFwHhBJnIE/aeHY98hC7HfWBSy5ppoqi\nC4zbdy1rok4FB4UUVH1aR+rzwUh9bqEqZHlqc8FSjusVDNkBKITFDWNG7miBsZyDPCmRoj8m+uaT\n/lci1z9DZHhMRDoBc/+KnNco13XdYCz6IHjI6+7g6fZ9PahyoTG/7J0YY4wZIWOS22dOwTw+K5IX\n7mn8ZqzcU0/Rww1XaLF39xUBOblQtCnbo91FzZVsR/dPkHOchhcpi8e8Bxt+Kqto1JoLk0TR3LSu\nT5GTfD6Gz+SF1lAdZZ6Jq/7IFdSPTXhAFhP6n0j26lz1Sm8oGhe2NO+meKHvUsIVilIgLDw86xbR\nhBSe8ORz5mJDdd+8L8/9AGWwTJc1AHdBb4EHHkRDK0VuPLmwWThoEhXdLzcAGTHWmIzgULCJDE6y\nqkc2r7lp5dQHUazCc9WXRX63gGthDHJju6KxqG9qDP1Qa6JHlMfzWaN7qtf+vuyoM9ign7RGM6hB\nWQ3Zn5co3cz7QrxcjhSR7RAxWMOZNYbfaeUomvfVJ3+h33VU7+zvCuVVQAmtkBKy8baHKlwA6soR\n2q1/DZfNUP18D6W2HEoDdlmR7cRcUajEDIUKS3Z4N/0aHXCXYsOjMumoHlUQVrWU+mcEyq4CCsKB\n/b9PIKXM+I1BOuWJuOcZr+OhbFHij/+G69SOrX3N6bfTbxljjGFamXCm60PUW2oHO+Yd+BR6qDJk\nUDYpoDax1BQ2nbnW2/hKk2sr4giB46qEolMpq79fnanNzZzsw7qiMc0P1OYL8r8D0GUL0JgzW3VL\noLY0PmJPKcN5grBCGjTXwjowxhjjYw+ToNSCNqg0VOqOPUW99wuak024atK7mluJV2pomEQhBR6n\nVRtOhjaqQXAUOHn1bZDVHM2BSu2k9f1dS8so8usegCwZwe9Gx89ApWaJcCcipaAySKoDsOcAACAA\nSURBVMIO6KeU6rkDesK+p/7ZgMfO2lL/VhmPAajZrbKuv0YtxeqCVAHJkkur/8pE55YbKEskXiNQ\ni5u7Jp3UvrM9lK2Zke9vj3X9Yqz7VhEeOjvT2u/DKZMDSVMgQrvMRNw4Gp8r+EA6FxrnEjZxhWrL\nDvMjG47MAhWhWkv2qpLXvb2ezjkHu+rrSFFkGyWncUV9X8qobzOgCHwQEI/KQlD0QbB5nC2WIJZz\nIFl6czhRUoqktjZ+h+fp7/Vn30zFzauAis3JTtR8kBV57NxMnfrwe/DgfaYxyDJGBf/AGGPMWUdc\nXCdznVvvPxDSbicvu3JNhLlqq//GIJ/v2+rHq231T76u/vnqX4uT5Xqi+84CIRfvexoj9xp+ClAT\nuUsQNg3VL0ITzx34p1rY5zOtKfcVnD2gGC5BZ3z8QyGZ0vdBGRs9fwAPYJVzdQhPkp2WbVp/BC8J\n6obdAZyOS5CqCUWaF3mdHZYo0QVO8z/rh4sruC6meh9IFvScsQsHGGc7Y4wJrZGZZkCmZlGkvNG8\nsgKNAzR6Zvf3hd61p6AqQNKbf/a/m7+r1LCv/ne0BydD0LmRMis8Gw1UT1ebqusmyofppuymC1Kx\nxp558kLnpEQbvpyirm+8JXvozfV/f1OfdRQFy476ZATq36xlT5ZTeDCJ3icCkDkjtXUxRSkHRN/V\npe5TA0WxugIpCUeMO9Ga8uGty4Dos9hHUiiA9ZJaw/dS2u9S22rnzFe7EzN487DfBc7fJRAzw89l\nX7Mo6Zb3NFZHXwops9FWfx2UDtRvA6mqzlAVvT6Dg+cSlAeqfuVd7e1bAWeCV6rH1Yz3HXiVLg3K\nRBk4Kv9Q7WiVZM/vWnYfac1b76v9pYTW6PmV6nkEgmjJOy7Ha5OHX8lxIZXkvS2IzjCR7FJan03U\nuBbwuUR8qjn2fWOMCVNr4wzTZl5EOXcNPx08b8tAdijN+csGgJYKVPcKdmM54301oz5yHJ7B2Fvr\niHOVdyYbpUAHfjuu90FTJVJwOqGa5ERKUz2NTWeg8/bpS7habdkTh/f+W5CTIQjBALWn7JrzW6i5\nNDeaWwm4ZQqgwtYW77a8y+ZAhU5DtbO5Vae+qE1hX/YPpdwVgZGOR/grVr/+TBIjZeISl7jEJS5x\niUtc4hKXuMQlLnGJS1zeQHmjSJnIJeS05B0cT+TpGozk+fLxqHUS8qh1/i9Ykv9C0anVK3nEXp2B\nTPklijxdecIAjJgS3C4ZkCtrPOQZ9NILeXnClniTl3j8kijCrHx5icMB+XmwQHuWvKTLFIzfKxQj\n8uTO5mDk5rk2EfkB7PEJ8hQn/RNjjDHnU0WOZoHqsQ0T99aGcovPx4qK5hZw4sCCv/0BTO2+ollO\nUf0VZslTtLNmnpfXMYRJPyRf27iqwy7ePreuttW25eF3x/Lkjy/koV/j8W5vgDaq6PosClhuSA5+\nIC9pkCUyWFeba/Zrz+xdyqov7+QVyjZRvvEKZM58orFPb6itmSvUf0owX2+pfsMbRUHqa42h39PY\njfHyZlu6T3FHUa4m3DeDsfqtAOeMR0Ay7amvCy5M33iqUw6qKPBHjMlR9YiQ+ORP2gYeD/gtrl6R\nt/nqF6rnoxtj3vvAlDbzPEd511nm3CDUc6egELorcpfJ/c/Ao7QCybTCsz7w5K2uIVU2PAd9AedA\ntqUIgwvfxpj7OA4cLwtybYkEPTRq3wiuh2pN3uflWs/LUq/Lp+JVCWzNq1KbCG5H9/3xv1eUr1X7\nXPV7V3P+LmVdw/M+Ut8eRGiCrOpeRXXo1TPl9ieXQmC097+vOiU1p3v0lesR3UeRZgBSLkzJvty+\n1JxoWYqKXBMdCheyE42yxixTVx90jCKMPZBu9Qw5qkTLsptEJHrqywVRqzQRAjuhOXU5FrpgVFKf\n2h1yZ119X23p97m85oB3q/pcroAcYi+DHf2uPtTvlhl9Pn+hz2fPxRXz4Fz99MH7v2+MMebeoebG\ng48FX7u393vGGGPOUT2xh1pLL060Rr+N8s6rLxTtKWwr+rQ9hzW/rcV0fa7fjy5Uv3oRVv8UimQl\nVLVONC6Wg5qG9Tof+i6lNEZ9CpSafQHrP1w3Fgo/1oyIco4IcQ/VO0JDqaTq167BvwGvUw6eq/WO\nuA5+40NFYEvkQHtLrZHj59gwEEVTItTl2Y45+huhIyN4VQo1twHr03squzNfyB73+6rzvT1UdWao\nGsHPMGS9huRTz+ECgDrAWGn4i1aModHcWdY098YukVsQiyH8Qnn4FbKO2tY9BfG2h10E3XC20vWN\ngeZACNJjhVTYqK795xRVuDYqIHN4I6J89YKR/Q67qBBd6e/bJuiv/RP1Fwi70YV+VySv/K6lSA5/\nwUGN6lJruw8CxqDE2HE0ZslrovuopET77C720mmiSkj+fADnwgz+k8yN7tdI6vtX7K/ul2pfmrlV\nQgVkNOM+EW8GFC7B4uTrNgw+/8x0QdE9KKre7RwcDQ/Uf7UN7ScB0b/TieZuhQh2FkRjkrV4RoR4\nwX7QdHS/FfwqE9T0Sufql8wBUcfLhuldqE0VVMgsG74f9rBaR+thVtA5bdkESWN0Djw+Vd2aRCZ9\neClSB+rjHVeTs+NILWe90Pdzo/tlUXvynqiORzOtrQo8EOOtb4bedcbwNU3UVxYqIIhwGG+mNTCd\nsu4rqucIsoQPNtX+h33tH8djzXX/ldbQs1Pdd+7pzLOxI7v71gGchnnU/ZZaO61t7P2x7M7GSkiV\nw22N9S3ch49Qt5uewy1GxDY7Vvs9FMIiRGM+oJ+TsofzFOoqMxRi4LDpoUT25U81Z+2X+nz2V6rH\n1ne0lxep97ShOVPmLJCrg+qaReqG6p8aEe8ciNRFoPoP4Vs5utIc/OpaZ6DNBxHaAHWrkurpuq9R\nt84ya7IJ3W8dwaATIFRR+3o5+5ExxpglCKcqyjUZt2TuWsrvqS83PVCqPKpLXw34TBc0J+tvc06E\nby0Bx4xpwAcE79CVBadLR2Nm11HD43x34ksFrT1R33q2xnIMJ02JM810rrHIId85oj5r7E3IvtCf\n6fs1RCAZDM4ERPd+Ae6ohNbEAlRtC4WydU1/TwfaQ9Mr1X8CYm+Y1O/mSdqb1RjfnIEk30YBF+XF\nKXbV2tecn9+qHx6hVHvZ0Gd1g4wAbE24ll3f2ABljJroFASqs4BfDtXB81vN4Z9/pjVY3paNSb9/\noE+Q69l/KDTEvd9TtkP5lPeqOxYvpesvnoKyg4cv4D0qUoKcwCWUKmjtzCuqfxnVxYgTLJKqzG+o\nPZMu481ZOM275XQinqQvRtH++N+Y6ZMzs0j4xgFJbVD1fAG/2/JUe3S+FmWMqI8d7J9JwGsEKicF\n0gYzZULsu8McHIGmSpN14fLOmDaqe8T9VAg1RzLw2nlJ3gUD1c9CQTZXYe1wLrRL2m9seE+HaxDh\nKAk7eVBhPVC+aY2pg30Zo6Yc+mp33VZ7OyD3Upyrv/A1V1plrdWXxy6feqeZFWSH+j3V1yn8eixM\njJSJS1ziEpe4xCUucYlLXOISl7jEJS5xeQPljSJlSnA9PHhfkBaffOVVRdVKh3jMKvIdnVwrcjLL\nE4nA41XfUMRh+7eV02p19f/igrzJiPUYjxkpriZp5IVNkGOWLqAKAtt0Fq+kO9V1NvVJrLjPGJ+W\nRX63jUe9rPrYaUVA7AhhA6t0dZPcZ1fPmURohAwcFXvyCG7siln8sKJ+cZvy2C2IqCzgvsmtI0QM\nKBgiGMsMefm5tHHIMVwTpTdRtCrKF5ygxW6jbvECZYAcCBv4cFJEWoO2vJO+DZ9GLuoK+CostXEX\n5IWBrXz4U3k571q+9uzW5WUsh6CcdtSeCTmniS6IngbRK19jUE/q954FcodI5wSvbs2WB9+Cv2OU\nULvzbbVjkdJ1nRf6dOHf2M3CzZAncgkzd3JKZJoIcQ4lntCSF9VBeWvWUWRgWNFzim34hkCQpEFZ\nrQPUsMZwGRBtt1Py1paG+kxfa5wq5Fse5+E8IC8yhRpKwdZ4D4mc1Mj5nV2C8irAObCneo3ILZ7N\nWEOgFPqot0SqKwmGdVXU81tENAZwWlyDmNm5p37Yaeu6GdwFpS8UVbS3Ve/NLRbLHYq3AGkB58ka\nlNTetxQtGp/Kk73+SuvxGlRPMa983npLfX4Bl4pHZPHGKKK63VAdv+zDh8O6X5TJs77QfetVVHyy\n8tBDZ2SSWbV55ui5T1EVSrPmtg8UDTFV0FIDIeay9xUNcolyl6qyQx9ufdcYY8yKtXz9TCoXEbdA\nfU/1naXUl8PnisJ8+kRKAesn+r/FGOz+17rfHr/PwNXgoKTVzMnuvGDMO08VzUmgTrQ11ljNZ1p7\npamiVbc5XbcYae3azK3bnOoXEPlMEzEZ9FXPZkUInd5C45iBHyMJ14yf0XgVWpr7dy1hnnqONbfd\nBdGjEvwZY30uZs/1A9Z+xjAXe0Rcc6rPCdGt5FBr4xaip62PtMYuyN9/+UsQoD3NpzrRurc+EgdP\nCGea212bqxP1VQ8oyx5SM6OJ6no1JJeeKNQH3xNvj9fQM2+n6rPusa5755HmYrGoOXRFX5bH+v0a\n7pWnU6Gw3n5ABHGquf6ir7l1f1fPGRVQfLlUH7bZU1+BvHvbe2iMMebG0nOHTdV7MYJP5CFcMwPU\nMbqQW7ns7SiyTMnbDog8JjTkxkpprY8jrpmV9sZNkC3P4BdposDgRxHQO5arJUpgHsqMIBnX7BuJ\nqv4+nMCJVZE9XNCfywghCVdWD+ROjTHPhrKzqytUplCz2/tQ4/f+Q63NP/1Sv98n2n+0gveur+e+\nvBYHTAaVJ7v8GoE6SjRMCiTnCjTCpKHn3NsX94IDSm0Fym1nl4i3/jQ+whZrVK3q8LVMq5oX1bVs\nU4jKSiqvH85AOm2GiixPaqemcwXCLQfH1Vx2YpMzRYSKqu+DOCmLH+jJLfwYn6qt1e8K2fj8Ruuo\n8JTzzx65/Wm1LYcizCV2pQI/z42lOeuwridjUJvrhfkmZQLCrQ63zGSt+tcAk650bDPBJaiisfq2\nz155c6qxuUJJrVXX2tp+qD5bo6hzAp9Pry+EpjWEuwsFSgNqwhorOl5Hhe/j3xdnTgGVwPFU/Z1x\nVbFXFmg2ztneEXwVKKR1Qaj7cLINQdB0fa1Vtw9HIkprY3gHqzcgx/soXsKHFJ6r/kW4cjqnsq/L\nj7T/OiPZphmqiYfwYyWamoTLa9VnbssI1Aq6r0Fp7aMSKl7b+v2rr4QCmAfaR/0TrjfGdDo35u1H\nmlfP4D9MPNXcdndAH/8EPhRPaMTRltbgsHZ3ZZ2LE+3xDLnJwTm1SLL+OTcnkvDZNTT22SWoKdQ7\nG4BzepzLyzW1uVDhLFJBCTKlPvriVG1pV9W2TKRGB0J6DEq0kdP6dRoayx5jXStqTgZkF7Qfwcvj\n0wc97WVV+EHMofp+ONQcsnn3GGIP66jNuWnZyRDl2sam7Pbalt3wUDLMo1CW5Rxrl+BAwb6vbLV7\nDy6yazh2Li9k5+2U5vCzXwrtNHsG6i7NeZp90Pb02YA3b0nmwJh3pmVO45G/rznob1HfTZ15biN+\nE9AfL1G1Oj2+OxeiMcYs4a/zzsVDZ0drzAGxz3O3dqgP5/ooOyN5iUpXhA4BGbmxqbk6sel3QMUf\nfCTbevKJkOunP/ri67oEhYRp1CpmlVEbexn1SXEAxx48ak4CBcWcPpMlVIlA7UbYm6SBF83S2OWn\n+maU131TC1Uq4oAMUaQNZhrDCnYIsLCxA3iGjPo4AwLS9rU26mnOb7y3L0AR9eEZHR3rujycWGMy\nani8SaEmFYIgzKCgtk7AJUjDSKAxC9RR+2PVo4qKc8iaTSH11S6gSneFcm/u1vy6EiNl4hKXuMQl\nLnGJS1ziEpe4xCUucYlLXN5AeaNIGQ8OlA7RvwA1pDXIj6Akj11tLY/TH/7wHxtjjGl+JFfV0XNF\nDlzkLG5hh756Iu/fDP6QTEHXp9FBNws8cr68iN4ajxhRoYmPZ2+sCHuPqFapIG9lA64DF64bZ6r7\npsmBS6BgUcCTmMgRrUwTJYRXxbNU37Wcw2bdjNip5Uk7fwYvwFiRouQFrNNnqveLP9f/z8+VS73f\nPjDGGPPB75DHWlN7RsmUCYkyF+dwmmTkVex2dQ8fN+BirHvbNThHQFKkhvrdkrzuJXl3yzq59R7q\nHxn6JFQbGz9Q1D0ZIUMcpGjuWFJ1ECc9eX5Ha9W3SW7qEgRM3icK80re18pD1b/SEKIllz9QO0HE\nJKaobKAqZeMFTlcUEfAd8qnh/dgow52CN3Ro6/9louhDFB4WeL4XOThVgoiniHzqsSIoKY9INZHS\nHKpGC1ST+vCgTLugB/AWD1DJqpFTCgG5mZ3CWfO2+n0HD37PVz8VQD24ddYYLPbLa/VD8p7mdrIK\nBwFcObP39P31C7zeoEKWcPK8VblPf6EWBWogW9T1JUv9sPt9eejfrWveXZ3pPnl4j5bwsQSfw6UA\nauMuZfRCvA8jV3NrM0v+bxVlKea8uwMirslYkE+9+Z7mSBuFsOErrdesRZ1/VznxJyfq4/ErRf7a\nINjSRApX9GmanPgUqk1zIm2llxBAoJbk4sG3aqrv5ga59gP1SaqMa36uMevfyh604OCaL/S7P39M\nHvJMUaMffgQSZgf+CHJ/E03Vb7eiiOmgpTF4dE/fV/ZQ1Tgkp/ZH2Ke+7v/OPdmC7qWiZWlsigEB\nk8/puR99+7fVPkf1zjvq1zkRaR+kYRVFnkc7+t0cpQgXPpQUEdBD2P7Nu6p3ekbks3r3HH9jjKm6\nRPF6skVJX/3d7xDpOARZhJJQAkRU9aEi6v0J6K5btd8hr365p7+/m9N8qO6qP3oga24WslkP9zSf\nUm0hOnsroVPGP5etWhRLxjTVR287GtuSrzFcPRPXzH6bPOyC0ETeUnX+8s/ExVQHbVrIq85TgJFp\n/dtknmrPHIMESWzoOasu0Su4BFIlzYHZp5qzaZlxY69l5y6WslPtMlHzucbycopyTlr3C8sHxhhj\nzmZq43cmsivrpPb+CcowhRxcZhsa0+kN0fwq/EeoLWWYcydEsRvbqMMltedVUI6wWZNZ9t67Fpt8\n+O2m2mk1UX7Zlb0+u1a7y2v14y0gi3yWfRCFmWVGY/0QRGqQhesGRYkyc/cwoc8hPBh5ItjbOSGH\nlgaVpglcLYx3eKjxL+Sw485r7pz3382bDpFqA2+SO4Hf6UhzLj1AMQhVwHFR+0Td1vMXttZgiMqg\nTb58kQj5DLUox9NzAx8VEwtOMRCoxtk0mQNU7m5B2ezIHtaJyh+PZPO7cG6tLJ3fki24/ZgTV0cg\nZNhLwxAkMCitFBwCS1Q3iwDcBgtdtwU/h12SUuHVlfpi2v+GPBBLePKW2ptzBRSzsnrOHpHa2xl8\nH0T56/DLDZe6fvlKSI5xX99fnWvOr5H/aaHqdLqSvWulWZNX4mppgkJ98ZXm5Ai0wlaWtX8Fn1wR\n/jp4+DLncGAtNR7zFGePgdpVJFKczsNT19M4OKCBEwEIp5SMysyDb2Rfc7LTUT3DIijgruZMBVRC\nDxXT0ecazyz77hdPhaDJP1D7k0X2ubLa+b3/Qpw5NzegC1DECfMa9+mrE7WDuZh4qXofz3U+MMaY\nwcVLUwWF0Igi90DnUyjd7D7gLHSoz3dR8rly7o7edQm/DzifNVsa88pbQvtcnmnOhtiD7JpzYJY9\nBWRhrQZHCuerWUl78mTFORDuPxvUVYZ3iwDEWnuTc1wdDqgLzhacjZJL2Z0G69+gTJuCa6WIPUzC\ni2RYw+fwczRB8QZ9zS27jGIt9sbALRN4qkcfVaXartqXhluxs9T39ZSel3c0B9xbUBEZPb/Gms+x\nxuyW7l+Hx6/ybXiUuqASkpwRUNCxXM6/oLhuQHCfv5AtWHHmKn5b59raewf6nlflAefje/+V7Hth\nW/X+/P/5X9TuJ9/MlrwFWrCGCm4JZNAZqkq3l9oHbsYadztgvNqam5mcxpMji8mguBs6WhMbkUAl\nSkQWCPurz7TWXp6/Xhulw5xZuLZZYW9yvEP0I/VN+M52GxqjDNysFu/T0Xt0CuSvPdd690H7BrzT\n5FEpCnmHC6v6PjknewNUl5/X9/kApBwZLUVQXXNXfTfCnvoRfynnuvkQpN+15lCfv30Q5HXaPUWx\nygIdFoQR1yOqUjO4waIshwQ8crv6vA8yvgYi3kOprA9XYncqntCT50Kqz9O/HpkZI2XiEpe4xCUu\ncYlLXOISl7jEJS5xiUtc3kB5o0iZzlxe0yd//WfGGGOsiGNgQ3npex/LM35xLc+S15Vn/egTeTV/\n+akiDQm8n8sniljOzhRF2ysrsrqPEkQSVRObXLYkUbhFQl7WXED+JVwNES8KTlmTizx+RLhxJpsV\nCgYDmLqfH8lTtrUtD1qdiHUWVImFYkH2niIE736onLNlU57Bm4kiq2kiMr1PyGE2uj4sk3u9J49k\nuyfPX3lb7tIpbNhZ5AACKzAGafQeKgrWEtTAjGfARF/dVN2aeGLna6LmKBbMR7pnp6c+XhD9Dpq6\n34ZRn2ey8l4u4J8Yv1BkMThTNOjOhXo7eRjAUblY4AHOB+Q3RrwTRdU3MVGEoWeBcqrB3P2hoi+z\ntSIW/XNdn3U1VhB6m9SGPOiVUHNnRL611dV9CqiHrEooIsBe72dV4TkImmlIZBOOmPQYHoxtzcXk\nBG/qLaooLdQv8LpGczHTUnRnq6F2DuFLiqJRZ0PV90FH6ILrotqXncNFQ4RhDlqs6oDa8vBO32oe\nJDyf/tF9vbL6q314oP5C0WLeVz3mHc2HCRHU+9S3AyJpPJInfr+u/PEEc3fw1U+NMcZU3lVEIllR\nxx9dK9c18Rl583coRaLspbr6ZM6Y+K76NiyRp/yRwv3lEoiU+1pP+ab6upHWOhwHimIN+rIzLwZa\nj50b9aXX1TqbTZUH/MrSc4q25khhoPvlI9UjIp9uoD5rVYWUGCeEuMkmVO8MqK69H2iNdk+05n72\n40+MMcY8+0Rz+VOUulrvaO72L0G0yOyYVw+JYr3S9zmUW0qgqKplzcU+Ubzlrfp+Fui+5Qnogvuo\nzhEkq6FAcP4zefyXIPqSLjxGtuyfm1F7UiiydI50vT3R3No5ZE0dE2Eh2pbO634np4oOHUZ8SIdC\nKi0y+v3Zsdo3O//1ubl/uyzS8IWQe3yL2lYRnqhwrf7JBGrnLEG0n7ztATxRS9j+bWzLNsisQp5o\n2kD1ukJlKd/U2l2BmCqTF//y8YkxxpheX7bk/lbFLEhI7hBJfRbSpwuN8UZCUZtiWp+Dc90jCfeU\nW9ez2zvwLPhwbRFxnCBycdqR/f7woezko/qB/g9nQBYepewGdSe4M/dkVzZ31XY/1CSKwEvTUHMm\n8UBrbQHSok+0/DqvC+chaE74lc7I6d8iJX8FEmMMAuT0WGtl75HWVg/lsFxaKIt8SnYXAS2zJrN9\nij2+c7nQnOuA9Jj0QZ0lUQg6V0dc8ndhwD6wYuwjQTC4aAoFuL0WWoOVLOpOIBiHnsarB8rtCBSD\nC/qiMJJt6Yca7/QmEXTQbyPs+dH52ddN+I9/8QvzDspvW7/x94wxxrzzPso0gfojipCOL9jXiIhf\nGPFx5EDu2KiirPMavwYohGRW82NN9HK9JAoacDbysPOzldk26iu6yuQz6iunrjkwnapN5Qc56qR7\nZFK67t5v/oExxphffC5+ozbnrzE8Q8fn2jM3zvSATIvIZU11DlNEMFGUOusJVfbJLxQtzplvxnPX\nstTW5zNUSOqqj+Npn1lca820DzXXH/9cn9+Gpy6BFI9bVb02oih2FTRxoIY5K933w4T2iyUo3Tl2\ny+bMEYLADobqR2/K3t6Cq8EGjUUQf71CFRCeuRxqcllQDAYETKTU5sIraBV1g0lGiBgX9dDMI7XX\nrDTHbs7UjmZFczMPZ1qGM9DmCBQyEW0LVPVDCFTmoBt6oMPGXwo59fyvQEPUQVXAJVSCP6q6gVrg\nW+JI8+F3+uhKZwpjjNnd+46xsDFuASQ9Sjorh4g74IHTJ/r//ISzrl0zdy39v1YfvHglVFNvIHSW\n0xS6qoGd9wP1bdRXngX3FCqe169kh4rw/9igxHIr1W2Rhk/I0lhtb8ne5EBMLDxQUrzqFdmjoMQy\nGUdzwYIzqpLV71+dqhNcl/u1QEtMUDW9kt2upkFN2LqumIR7Br69/lDn/SqKtSPUOsdPQQm39Xu7\nDxIfJE/Ae4bFuXi8oe+TqKBeTU/UgJH653FSZxgoYYw113MCUNHNomzCHADPsgYnGFxtISjZVV12\nNgOf0WpDa2hjX8iYoACqjH50OQO9+u8/Vf/dfDMOs8mZUBROX/0N5aLJrDUvbLiI8vTrgLPH7Ebz\nyN/TvFm5cOGgVmsttGYWKc0zF4XHxals8ac/B41oXqO/MttV0/nq2MxB8ac5O5wNtMfuFJFghO8H\nAUCTxPZPvQiBx7sQ916lZZ99CyQNKK81/G2pAXsMKKmExbsa7y6R0lTFR4mKNZBkMHO87yYr2k/m\noPznpyfGGGOqvNfvHkpx0IDg7qd035qrei1C3bdIf+T4fgovU2Ki/mijIhpJWPpBpFqHaiq8n2vQ\nxGNeeX24xNa7v/5MEiNl4hKXuMQlLnGJS1ziEpe4xCUucYlLXN5AeaNImVxJ3szvfPxtY4wxKxQO\nbtN4wurkV4O6CPHEp5O67oMPyceD2sDff2CMMWbypTxizlweKx+v4xyPFgTcxgduka/ihSXnN4Dj\npUyEwSWS6bjyrNvQL9sL3XcVKSDsqX5bC1ShNvX/CpF7lwhFsqjnXRHlvFjJE194IG/oqibP3Xe/\n+4Han5cHcvipvJ3eUBGND8ih9r+nCH+OyPQ6Iy/73AEVU0wZgvlmFciL6Rl5GW0Y9Hdy6uPWI0Ub\n8gXVtTuRl7N7rD6o7KiNm2UhHKrbKKdkeTZ9ew1KwfvpX6mtT+UlrAVRkuPd30RwmgAAIABJREFU\nSpqI3GiAqhK8QyUionNCo1k8/fkKkQF4RIagE1awk9d3dD/nfUUuwoVQCN0LefY3YI9vpNS+OXmV\nK5RzoBEypF+bJDwVPjm9hZUmzxgv7hK1kJJFvnZT141QMJjn5IUOYMW3HM3BVuSldeFaea4xT1Tx\nnBNl8qsat85A9evTD1E/h9xvPkd5xoK13cjjnoZpPTlVpMEKFI3KkjdaJO9zCK9JWId750bfn0zl\nsV/OiKQcag4XUB15fKzfVcvkp9Nxga25+/Z3hIbbnak/ymmt+dT23ZUOGkRGs4dS58hmdK8xqmiY\nGdN8RI76qRAwI3Lxf/rkPxpjjMnBH2FAIY07GpOzo3+v/4My2KvKU95wDowxxlRQSxuhhpFc6z5r\nOAHSeaLk99S2DGPod9Xnz/9Gc6D0UGiAVVaRyoux1lyBvPK33hFXwLyg7ysJ3efRD37TGGPMcAkX\nQBTZnKkdPpwo72/LniSyqtfFT4Q0fAFfUPBcc+Nb++rPFGolKVSUMMumfF//D29Ur2e3J/wd2T1F\neh8cCvFYJ099/FztbFTgH7rW86pEYO9/6yNjjDE7sOMPj9RvT080p9c/VjQq7MsW3FySSH3HEinN\n2S01ZLOnz4sj1b/RBkmDXe1hK1eXWjshLPzFhb53mkSnkNi4AI3SuyDKWNL4tOiPNYjOz57o+yVq\nYVu/o/FLlipm+VfaC86XQgv95qH65JK9pNsFqTYQiuoWbqdSVWO84evTZu96fqT7ZALZoXZbc7C6\nRg1kyvqHA+v0P6mPMweo58H703mh+5wPNSY7RK9GDezbfc3JS9BZOwvZl9USdTVy8QtJEJqgt+wr\n2ev8SO3KpuFm2YdzJVR9u6dCpeXqmlMRcnKd0XMHDlxg/okxxhg3jb11v1ncycfenR+hVjjHVgCB\nsUca8x58HgQmzQaKEE5T9bB9/d35XP3Ryct+51ij1fmBMcaYwp6uKyN31ECicbqlfpmcse/U1T9D\nFCImx6AaWiga3bzmMmiapKk5qHbsw2cFOuPyFSgvKo5gpEmHaqcPctal/oU69cGOn6I4sd5AIW6s\nfgpqqn81z/7V0N/b66SxQ12TRtopRBErA4Ixjz0poUQYJPSM3hOhdvop5lBbBjhgLy2xd9kncAXQ\n9x5R4RlKV942ijVJRXoHt+qrtQePR7NtvklZE5VOojzVncFBUpNdSmU0RrPpgTHGmIYnPqghXAQW\nCKCiBdcZ6ORI/cOeomJEKHppyc41FrK3iQ2QHQWNZZ25ebWHXXwu9EB1JuRlE8R2ydacSVU0pjev\ndE5MgSoYg3rIzeDcQgEtY6EACfq1VNRzCoGud2YaV/8aFRTav3qmfq5VhZK1OMs01prLC/ihSiU9\nZwoaIDuC72pf43IPlO8sDW8KqnwIkJnTT3UG2fTVT5282l/b0RnOW7w+c3rllumDOkzChTHjLOOh\nEuODEvzwLWwTPEkXg7vzIWbuCenbmmhsp+dwdcFfNMioT2twCo6SuneyEalgglQzESpTddmuyR7O\n4Fjx+yDpVvBa+pojkZLsGjhsCPpgRZZAIgABE+rM0Yf3KID2bqOqOZODr8fnXSIABVDmUFUIhEq4\nXapP6xuc+1GP8rFbUOKYTdAGtg8yewZ/B0hDC06WPKqp8wHInJ7uuwbGkE2jOrqp65rswYB6TRa1\n2T6I9q9+8jNjzGsVw8QWCKGS5ljx2xqvw20Q9BwtHLi/9r6rfv2/f/J/GmOMefYLrekcanTprNr/\n8IHen/7S3K3Uq/Bh6Whm3t7lCwAsBRSC3ZruO0Pp8kWH9wJsCrRMZgIys5oGKQ9XzXKufpguyAyo\nqd0HD+5/XRc7mTLjtWXqFfiHWE82nDLVvYijkDkLyt8DkRbp/00KqmMOHssiyJklSJlVUr8vwEkz\nHqNuDH/nCE4Xm/Vo9aL1r+ckOFd7KPEuJ/CxJVFP471/xTtggXNY/j78SsyB2kxrZAyvU4b9IlFV\n37lJzr0zuM2AYSGIaFb8f9HXGi021AOtPY2V4Zy4w3n1ZUGDZEeyrL+ixEiZuMQlLnGJS1ziEpe4\nxCUucYlLXOISlzdQ3ihSJg23yr1vyZPex2vaeaYcX588dK9FvvaVcoF7gTxuSV+esk8u5O0NnspD\nFt7K079HhKCRl3e5DhrE8xSRWS/1nOGACEFJz/fRP0+SU7siL97Lkudo6XOdJr8at2a9KQ/bfkZe\nSDcHAieQV3OF56+Ql7fSQyGhi2cvUgLy4Wi4SioUMHmMF3mo5846ikR88VhcDSOiabugC1JAhwr7\n8kDmnOzXCIiQHH37a414ciSn8hYOjxSp3diATZ2oVtqSl88jtDYhhzW7pWdEqh1WRtfvo4axutUY\nb8JF4hSipPu7lUQUtemqD9d40E0B7yz51Wn63EqBAPLlnbSJBM9QcCmTz35wqDnRMUJXLJLqyxc3\nX+n+E0UCN+4JfRWWYPbOwnVAtGeCMoBNPuScCIEL8iW3JGffVv9PYU9PF1XvnbXcrhfwZwRH8rif\nEUkZvCSSsKHflYgurRMgcxqgOwy5/ShZuKik5GH7t+eaMxW4DdYJ8jhhrc/CAWBH+erkPBf3xU2R\nfYuIOTnOC3hLUniL3b7W4Pi5cmybH6CmAu/G/IbIDoitkEjN9RncECCe0mUiLEHUrr+7nB4JeeAR\nOQsbanOmjhpOTW3caGouzpbynM8hYZnfqm96lxFHgOZ+25LHu4q60GgCb0Je9w+I8O3AgRXZnTUE\nGylbfeON9f9lTmM5JwptdVXvp0txG9SuQTf8iRA0zQq5rDDmLwqa46kd/X/u0ZnwiZQWRKThwgpA\ntZVdRQDCA9X//iPxPpX2UXr4RGP38lIoieBC9mw2VT848Jp8GWrsfXglhpnIZmgsk0j9tMp6/nSi\nfjh4R/c5uVWkYgLiMMwBYbqRnby5VDsco+hNmFGUzx1ojuSXmlPdM82x6dlrxZm7lDUcNm24weao\nuhzeCFG0RtXD+Y7s6HZZvCidNFxl2MJETf3WREXq4lYTr9tTu4twBu2/o/nTKMt2nj4RGsFijeXv\ny0Zuo0ZwfXJiAri7Uuw5BZS57LHs06SvZ228oxz3m09kp1rN7xljjEnvolRwo75xQPtcX2outt7T\n2CfJFx8OUS4bQwpTA20w0RiV3oe4A3RVpRxxgmkOXJ6pL1tvETVHUapQFMJn5Oq+e3ATJAa0vai1\nmEzITk8f6TkXPVAML7Q2M7+tNXx9pTX84YrI31TtzD3Q3CnP1C+3NoiWDHwZRAbvWpykxjbcIkrY\nF5KvDpJkBNKlQQT2Nq0585i1Z19p/yil1C+hq3bVD/V929Z4ejOUEVeag0kU2aZdzfXiPXjw8iAc\n1/re8dSPqQeoCK41Lnbj4Os2lN9tmcYG3A4vNHdHCc0ry+j3hyViykSEXRCfZokCRVY26+IV0UbQ\nfmXqHbDm/S2ezxo6x0asRvo+Xw6N42rdhW34kFCZ8+Eu2K8qSn0719xoopY0WrDeXxCF39Ge3fM4\nbw30jCzKYP0r1c2xVKck6NUaZ5EzuEvWR7Ir6SA6D0Y6HHcrC86P6YnmQDKjOZbPoQCZQCkGNNUK\nREwCXiarq+d3b2V3nVe6zxFKhA/gVhmAuHa/EBLkbKLPNhwt7gq7u4nCYYOIcEIImfBt+KCOOUdW\nQF9wns7CsehVteaKoHythibFZIBKKeOwYQktl3eFRPc5B+ev1Z76fdm/lD7Mj0FQfmC0hkP4Uz5D\nla611vm8C+puKyV7OW+COmOuZeCMm4yJbEPyuJcAqQQqzg+19nOQ5wQn6q+w+VrtpLHOGW+i+p6D\nZl5T4RU20R/rszURl1nle5ofW88a5q5lF6688oHGYo7ajzfCrgZqY8gCjJDPqaXqPkrCdTLRnFid\naw0EvHOsQAms7QidxHkYxONsqD1yUdN9E0u1NQ0HpLtAaREuwBKcMNcWaqwz9uip1nUFNacESlst\neH0WCdm/el71wnybrqe57X+qMbtKg0YL9bfD78ogvROclXzmdMJRvbc2tabsMmgFC+QgXI2JJNkN\n7CNrlHgssgk8F34l9gObd6JsS3PYKvI+wZnlCjREnawDb4WC2lOdjRx48955pDPNAfZz9+/rnLy5\nVn3/ufnfzF3KW/9E+/huWed2Y+vssL5Qf/3pn58YY4w5f6ZxW2TU7smYd0H290QIQh+07uoRmQ22\n1tR6pPEPymR5gCCt1SMGFWN644mZT0am2dbYjq8iXjT1cS4rexJOZOPXM/g7Qd36nDuXY7j34A/K\n8qwA7qtEdGyb6NlZS3uNT5ZCMQVMiPfvGe/D+TBPm/X/BJkvfbjCcknVK+NpbudA21ZRn8sYfh+h\npXw9J0+fOpGSIpksllG7ugZEISrLSa5LRXybTd6N6Y/xc13QH+pdegWyr4WCr82x91eVGCkTl7jE\nJS5xiUtc4hKXuMQlLnGJS1zi8gbKG0XKjF/JY3XyWFGo81t5QSN1DftDVW8csSM3cUuWyV4j2vPe\nprx/Y9RObCIYhbU89Hm4Xwz64Albnje/qs+CH3lddZ1LLp2pyFNWgCU6Q+Rl6cl7bBEZNqgvTV+q\nPqdfKirVIgcPoI5ZG/3to5xQPpCHbXMHxm/y7ocoHl19qud0juS9zsBVkQQtUcsr6tm8D+P2rrys\nRfqnvEl/+FMzMurbZACLO/wGi6nqPBrJi5nFcz7LEZUa6t79W3meHVt+vBkcJoVj/b7yPlwtliKB\n1V1FCoZ42nu+IohZPOF3Lf6MnEtUliqQyYRJGLxRCVrB5zEbqZ6jY9UzT5/kUJc6O0NtqA5yCATI\nblue8/WfyoP/b/74R8YYY76/0P3e/ns/MMYYM13g1a3BgbLU55DI73KmuVN25aX1YOQ2Y/WDaYIi\nWGnOpmH+L8w09rMSHv2EIp3VhvprQe6x8RhH3M31PPnZGyCTyDk1Y/LH8ahboL9yrto/SbCmVpqr\nBbzQy4yiQatQ/7dPFQHIwKdR9dXeyUiR7BQSZNmc1triRiiP6RWR0pnakQnUb5at/q0SsZ18BfdO\nHW6MiZ4/cO8e4YaKyiymqps7Qz3tXFGNBcoG0xyKBK6iKkn4gsqbmls7CT07nYIbxNP9trc1l2dp\n+BUWIDWu9Nm/UpvHoIUGKT2v0tbnKyKJHVSJGkVFhis18rPXiu7s7H6s56DMsrxQ3+YPFTWpEF1q\nEXWqvqc5fnwL3xIR2DpjXrhU+7uOPPbuJTwhWXJm6b9ESvXIJfX/5Q1s9inN5esrzVVroecc/pbQ\nAwVXY3q0VLtvTvT8pM2dx4r+ZA+0BkvMuTAl+94H9TaeqP/O/43u1yiBcEI5YUTe+mwGYhBEYpj5\n9bm5f7sMQaTMbjUOb8GCnyEiPYPD5+oXUnlJZLSmFivZoEJS/b6ccp2lCMqAvP/EPqoFGPxkVvPn\n6LnQKDeoCeyCOtneedcYY8yLHvc5nZjDA/0WsTdz3dF3z16qzypVrccEUZoFqmx1+vjkRoia27MT\nY4wx72woUms+JNqzRqkwoft5F/qsgprayKqPnl5rrGfnQsac9uDc8g70PDinPLhKCg78HEnmPuQE\nTgXlRLi1JheotMGr9BhkSKOlMd8GFXad0pkgj0JMhuvSRMdKW9ozg1D364CUrNnwt1n6/az/OhJ4\nlzKA+yVxRXSuTnR+S/tbKqG14M0jBJDakUAtqmMr8jllbmQbav/Vmeb+rSUlmJYH1wsR4kUFzpa+\n5mab/PPEAei3C63FUR0uBlSTLpZaO4PO4Os2ZC/GprtGlWqLM0wBdUFH43kRcYSBJIrUWfLwAeQj\nDrYW+xq/SzcVeU3AZXE20nyb3sjmbm1qXiYeqt+DZdHM4JuwF3BnvdI9O3P4GBqgh9ibLBDO21XO\nS9cRdwDnHPa+gaM9615NcweqA2Nj2Xqu+u7Fhc4ez/6t+mr+WGP8isjnR3AB3rWk03ruiSX77wQg\nPTx42kBTrcf69Avqk3VPY1TbU19PffXRcCz7kp/DI8f50wJ91fyWOBcTvRzP01r3NjkrwG1jg8Zt\nwnH2+Frt3T7QWDqojFqg0Oy+5vi6C5quJvtkgwQaojIVuEKcdHz9zg+l3FJ19fxJoP67HhxRH9C8\nqON9jppewQLBCiI+3NO86L1Sfd2izhyzEapMPdnhWUH7cWYkW1cE2TNDVet+WnZ6WVJ/Njn3Tp7p\nd0dnr9WXuifXZlGE18pHTdFXfQHamJvnat8fPRbXnPs/arzuf/zA3LWMT1COKTBGRVQ4x3r2AFSU\nvdB6s6dahxGPWQJ02ZrfL+bwaaC6lLDUh0WUZXtwLU5QjHRB/xSWsjMhfbiaqW9teIBMGf471l7W\nBvGN2poDItwsZI8yRPnPQVZ2jtW3q7zq3XxH5+hqRmOxBE1qg4Aukt1gZ1HXTJCdUAVZyNxJJ9in\nArhrPDgiOZsVsVu3Y83N4bX+v5zyLpYC/UoGQLin+pT24WWqcdbDTmVBjLhnmlsFzqfXS9m9P/5n\n/8oYY4z1of7/j/7Jb6n9KHt9/m9/bIwx5nSiPf2uZZjWWr7gvL9t1C+zKiiRpeZ4zoHnBcW1Ckpj\n5aHGccg4zcpqb9aPskHUTzceqq4g1ntrtWs8e33OHi+nxsqkTRZi0OlKfbtXIxsC9bcBXDEr9uZ8\nGt4fUEXTEedHeIrCQGORyzAXBux5CdmTAeffxBzFwTz3MyARQU7eeqilbaCMBSLdRUk4M9L1wY7q\n21zw/gs/0xSk3ZD395Sl6wLsdjXipgQ0POG8vZ/T2SKL3fBC9UMDVHEaVP9XT3Xetof0KbxtY/ph\nPZG98zOsvV9RYqRMXOISl7jEJS5xiUtc4hKXuMQlLnGJyxsob1Z9KS8vbyYpz9wuTN/Zb8lV1d5X\nBMTdJh/7vxNFdSEjb+8XF/9Bf1/IA5YBRRD4imwjLGTcoZqZhB96buBuScKuntf9s3nQF1O827BK\nT+fyjs5def6LeORDkDdTWJynzxSRPn0sj39mIm9mpYyHvyLveW8ImmEob+VVT567RF1e4XwJ9uqa\nvKjv/LZ+v0Q5wR3J6zkpw1lT1nNybbzAOXhMmvIUmt7E2ER3PbybdgoFBHLW8+RubrXwHsK/4f21\n+C7mRLmzaMXnN+XBbVfVNyvUdzxQAWFPURPznLo+lid7vfXNotsZIqPjMtEUj7FDzccsySdcyft6\nSTSqCIrI1DUJPCJ/7RTqTLfwFZGb+9aWPPxv/VNF7Yrk1BbKmpuTCVH7W82BQsQrcoBiCxwyY5Qh\n/AoRgTBSWwLd5am+BQtP/qnGKgviZbaB4k2g+vYnRDgmJ3oOaI46igRjIhhhjfvWUFKYq/5rVEHS\nqJW4KCr4nry5KfIml5FaEyiTAciirCcFjMzb4k2pbKkd2/aBMcaYzqmicZUV3EREbjoDjU/Z0XwL\nK1CWo95RzEdqK6pPKk8kANZ4O3N3RFXrhz/UPSzMGTmnHrwcM3LZqwsQD9eq4zBQH7hwQgVwhlie\nfl/IaEzTHlwErHOvrzVSLJJTW1HbQ5Rt7sFH4QaohFTlGS80hVr4jT9QxO3mCepFf/GlMcaYzQca\ny+5Az7+CMyabIpJ7o7m9LCsaNlzJPj46UF8V7x0YY4zpfy47dHEsz703ol/gl/i8oLWZB2m4OIeT\nBiTeMIviw1L3nY7gTgFVUd/W3+ldkTkcvqv2HtaFmMmtyb31ZQtm16AGQDEEaeZCSnMnN9KaTK3J\nK+/r/ldr1c+qkYSM0kCkhlepIIV2x9KAy2sx0Dhaz3RfBBbM6kb2OAGqbLoNOiAtWze6wvYQsRmA\nXkuWZafLqDHVAFAuiUBn4OmosP+U9mVrJ2nWzLn2i3wqZ5ao32R2QWWBLKmCoKtsgqgDBdbOac9c\nVlE8+VL3XBNvWdW1nkpwkUzHsl/XoJyWZ6i/ofKUg+ehBEfYBORkBm4wP6ff1RsbNFLPa6PykK/q\nswlypBui9gDSMVtBISylTlqwSSfYW+0aCmYgbhyUd9rwpQ26J8YYY/ZBJgbsOxaKBjZcY4m5xmye\nAKF4x1JdqV2nrL3RLTajz14KP1wCWzDg304JNRNH/z+YQHSSJM8eDq8ZCkR+CUUxkIblodqzQiZx\nYAmBYqFE5sAF9nWEeEvPK6PKFxTtr9tgtffM9p7a0UTRMWk0Ti+PUI+6kQ1YoIhheUQRX+q5rV36\ntykbY11rfJ5NtR/cr2k8ajX1cyMJb0hWtuD8K50b0uOxWVaE7qq3NOZdIqnplfpkB27BDMp+xmbO\nVNSG0UJ2xWIPbnB26fG5RulxWUQ20wHteaKx805RfizqnHT/h4pyfxeOvzzcgn/8Y3On0ofvw6Bg\nUo4UqhxQWr768mEAv46niHNQBNENiqDSUj337uu8uoDbzAzUh1NkPmyUyrKhUFjBSHPaRhFyhprJ\nxRh1q4ns9ybcav/ov/2nxhhjDozG6pOfSHHyRz/VZ/kavjtXc9LmrLVJxLjSRtkto7mYviWW24AD\ngij9aKBxKiQ0Jwvfl00p7WpfWVWI4ndVjxrAk8UhHI5I3qzgV6mVdYZr7XGmcdVvOVv7YO9E7Tx5\nLq7J/jPti3PsbAoT5ddfR6afd39m9p9KebO4FZ33db8A9HSrobntnGpeDHyNo31zd+4hD1Rpj2Pq\nxts6X7YesZeBsC77IJ9TWiPpnOaWC/fWGO4uDzjwBL6iOrw9AXxF3rXqWLqPWmmWOcJcXeRQZ2JP\nzxZAM/COE4Ded3PsuexhVXhBFjfwX7rw9Ti6bvsD1r260lgohhXzIHBQznVBYIY5OC2Zi7ZRPUM4\nuiwUEgPWpsvZ4RYekDnIF4+z3oKzQpn7Bdjhek6/z31bc3QZrc2q/s6iaJubaawR4DU/O9aamI+0\n9jY2dL+P7v++McaYPKKgyWe6f/0L3e/Fv5B9XNb+DsKQv1X+3T8HDdY5McYY8yf/UvPmX/8PsmW3\nXaHkktF+TD8C8jaZnOZNGTWuLOjcBWvNQoWqDF/UKq12t9/SWdSHK9MYY6yEbXJN28xyskNrOGLs\nTY2xsTkXctZPOrp3hvPpClCqBTerteacyLkti71f1VEiS8GBSoZLCPdikIOrdaxGJnhuNmCt9Hmn\nWGtsKg77RZozA3xGEyN7O7s5McYY078FgQMHTanFewH2rtXSOW7U0VhOTtSOEgqTc+zxGEVfB87b\n9AxFsQT3LcIxg/JYE7Vmd0WWggv55a8oMVImLnGJS1ziEpe4xCUucYlLXOISl7jE5Q2UN4qUcRwi\n2hbIkwweOvIHu+SLz6Z4ex8rfy+Yo28O14rblaeq/0K/Xz7T50ZBXsQK7MtR/uLkhgh5EpWnsr5f\n5Q70NzwgDgzgJSKsLqotxpI3sgCNcrYoD1njY3ngdyu6TxEBmYD8zoFHrtsWai5wVHhBxC2h+7wc\n6HmNCt5lvJyvLpSb69+ovRc//7n6hbzNrY+/q/pu6e/KjerX2CyYENUkJ1I+Ie1tAXdHlqhTOitv\noQ0z9damEBK2LU+8KagtoyE5s3higysin0N5+HNENSYweJfwluZLryN6dymuBfcKnCRLGP/rIHbc\nsu5/8dNf6PmohhS/q7a3yBectfS7ERGMm1+K5yEk6DU+EFrh0b68oTUUajL02/U1EQye75Rh4ge5\ns0BJq+KAegpAU2Q1Vr2KrpvDvxHMQUXlyYeGU6Aacf0M4D1BdcOGh8Iu8Ql/ymSufm3A45Fr6/tE\nRt7nfoAiAvn56YGi8lnmyJro2Pxz+We7S/1+c1f1r29LgSAPqqxeQLlopXF2bXnNl0eqrxdqzqZW\nqk9/pX4bgOxpgUpL1PU5JC/UwFDezqu/GrPXHAl/V7n9m18aY15zNbmoJSVSUV/pOrukuZC0GXRy\n+Fdd2YvzmexBI0AlCTWLKWZyCgpoDooo0wOBV9Vnf4oyAG1OHer5k2eyI6MvTowxxlweklvvQhwC\nx4lLBMBxUMEAzZA8kuc+QCFh9hIugxP6nuhYEcU0PwVagva1cL1f5HSdudTzPJA8S9Qr7JT6vHCE\n8hrKDu6V+uf5X/+l7k/+9nv/+G1jjDEhnAomYs8HtTXXVDejFDxW2IA+NqdMvy7ghuihAGZNhN4Y\nU78N1Dly8ElRXeNXUHS4Y2nsqV9dlL+aQ43zziPdf5e8/5mv/9+gctV3ZBMSWfaBqcbloa3rZiiV\nOaH6dYWy3bikCEsCboh2RUiqZlPz80VX91tltRabdst0iejVUabp1oUmykyE4POXkdKBPvubKL8M\n2NvgmWjNlJu+dQiq9Mey36es10dN2fn+A32/g+JL/8tormns82VFybIoMhSIkHo5Pb9V1/MrqIoE\nJe0XqZHGqggHWTBFHQmlsMX0wBhjzAeo1g1QRAlROEyAZr2+VPQ7B6LD2Px/CvoMe1RB3W+N3Si6\nmoPL1DdDUzUPaA9KaF0i2S5cLy6cXQERXhuepmuAkO5Y7b0eicdkAWfDfZCChYdCa/gLlChYAzlU\n+MaOFk0FHqVVRXNyXNcanDF3E1OdbS4/Y5FFihXGmIRvTGcTtUO4zGYj7Xc1kJuzR/DYXah92Qyq\nHB9qvGdTnTVKKB05JThuQDy58PFdfI5S3CaIm4nWhtNQ/ZcFx2wniRAWtM7vwy8R/T1CKbACj0av\nob/X55oTVhb1DKLp2azGZrMCstBjL1qpLRZ2ZAznSIU9p7Kl+3aQiEkM4TBcf7M54m7A8wPf3ekS\nRGSTKH1Vcz9oqH2bHws1tR5pbvdutM9kUSTz4ATz4a/rR+oiKJetO7pfPgWHQ1FjVOR5JSLPZVAJ\nRXjzuka/++Jf/b/GGGNO2n9ujDHm5Y8ECVqigpQDALJVlE0IMvr/YKw1O7VBPSxAzeVBG4Qgv0G1\n1giVL+9pX/j4ns5QN5yRyln11xxOnlFIxBvUmzdnX0OV6ngsVNoxXDpND3vb0+9SBfgDkyDlUdNL\n5/ScRAG0QOa1atJePWX6KdU7nAI3gUuiBL+G05aN/PCjv2eMMcbeAEXhhPa2AAAgAElEQVQ21Joz\n//J/Nn9XGRzLPv38S9mBH6Ae1/hQbfF59AgEm4sSVBn7VkWhbAR3jNmARw5kt2EsPPh5cnCLfftj\nnScvbY3ds5PHahN7ab6sdZ9k7OcDeN7gQbK7ur8DMn4AGsLwDpTOcT4uccbYxv4Gqu8tSjqzK/ii\n4H6015w5BnCgzGRfDL/z2Bf8KWcCEPIOfCJ5siNStubYfAHvKDxAIxDZyRZZBnsaq62PUA9N6H6P\nj3S2KMMnZS20xk6Yc8sr1aPH2WzD0ri9/+j3VA/O8Y//RGtpeKH+Cn0pCG9vR5wyvzB3KU5P/RuO\nI05GrRn/Wu3crOrveV37f5mz7ZL2TOacaUGGLkDgu9dwEvHumQB9kmc/rm5qHKeT66/rspx6pmQK\nBuFaE7I3leogy0F5TiOlL9CbPfg8I4R6xAuUS2uPsCPZuSzvz6D1k6Aqywn1wU10UGcuZOApCmzN\n2Rz2LMr2yIL6GSVB2zqRQhiKWZzjRyBk5mQp1DaoB2iuEXPyLKW+GJ1rLmTgFUpy7kbA1+RRk7q5\n0N636mtOzV5pzQ3a8KmRTdHlnDei/ypwJf6qEiNl4hKXuMQlLnGJS1ziEpe4xCUucYlLXN5AeaNI\nmeuVPEjJjDze8xEsy0eKJDRRDCg35CW+/E/ySPVP5KFq5eTBclEQaubkhQ5L8HnAWVMiYjHFI1eq\n4+lDt3xUkBfRhvk85crb6HO9bYGIScvTVsTRtiTHeU0CpgXixnoQRY6J1i3lrcyivjJPy0OXI4Kz\n+0BezuSOomj2SyGCtu/p72UXZZznKFDAJD4eyXuaQU2quh/xmfA88gWXlmvSeL5NAl4EIo+IcZjl\npSJxL0KhDpa3+sKFJX4w1bPbFXh/Kvp9FDVp35OnPmMUJVkekye8lHfw4vxTPe/uAAiVPHmIeIRz\nOfIRK/Is394oEuB19f880extIodJxjpLXuL8RmNy9URzqEzEL0Q55skVqiRZ8hvJN4xy+tdp5WJW\n4VC4Ro0p4P6VUPUKQs3JuaXndVZq+ArekrmtsSnDPRPo8ebSwP5eIOL4SGNcm4OKmOq5NyB+0iB0\nErS3fw73BOzrlZpuvALFsCS32CFSsP5c3t1z+Iqc96SsY+elNtWbqT7Hp+IamD3ReG5XlBBexovs\nlBSh8VAOWy3kdU6juDAZKnrlor6VItpZ8ImcXBEpyimCsqrCD3CH4sCSfhGhihBPWyZQDMBjXgZh\nl6SvivBaZGDkD1EkmA+13q2F+uSIPOidqfowU0SdAtW2bZ5nuppTnxEB/C1QBgmiR9Op5tLzn50Y\nY4x5a1NcAttwR42HWmMOCB0ngQJMC+UBcm4N6koJaOJvj+AcIGc1V1JkduceecT8Lk+u7OiJIhJ+\nD2WVnO6TBmXWLEcqdhqjdlbXf790oN/lZMcqX6i9sxy5tbDl+xOi6qg3pUcobdXVjoQdrQ1UOghB\n2FvM5edqvwcfSDAjWoeCRI588HoalNUdy9EZOcWf/7UxxpivjlT/5L/TfWv3QJNtqt3rE9nAW5BL\nflpRqzoJ3cs6cx6OGcfGJsLGn/e0VoO87HXDgZtsKM6f1ZkiMkmQlctKwWTZE2fYAQceB9fXGBeI\nSgcZ9UmqC0dJVnVLjolKbYFUCBQR61ji+Eiwh+WJAN4SCQ3mIBst2YPSmgjjUtfVsB92pDRDsOfE\nURSr7aOSUVMfl0FzrkOt+/FEfZkDqTmeq+/XgfreQ00qRVS9Yem+dZB0HStCjYIGoB21UPbFA0Ux\n7ssubnIGKIAovGt5+Zc6e7Te19jWLe3BFw+ENKl2tGZcVEzmfqRyQtSsDrfBeyiIseFNQV9517KL\npbT6N7lBqLerccsXGe+K2lknmperaPwv4NlYfaK/n/1Czz/cqX3dhqQTmuCJEJGrb6kfZz09PwVa\nw7LU7yH58NNN9edGSJQvqX0uAWIzyGge7cJXt30g25Wc/MwYY0x2qXZcsL+8d5/5N8iY7kvde4xa\n3TEKKX4R9Yo91SVY65mb8EUMGjpT+PBgpH2tjYhXYQP0QPlQ97n56qfGGGNOfhFBI2U/lldq+9Mh\nUeYjUMEd+HiwJ3ctRVCfdhGISR6kDiitOXZ71IMDC2VLuw83Ar+/DPX8IvY3lQcR0pT9WxTUl3mQ\n27nCgZ5XUD90h3A8gMIoZ3TfyRolMM7Tl5+pX+Yo+GzD4ZNog7JwNHdmHZDpSd13MMHO+uLECemn\nGfxH0ypcjEb/v+kIbZxLgbxE0XERyCZcd+Gzw47bz0HXBbJh+YiXqqQ5/y6qWoO0rkuBHK2iSBR2\nUB+Fy2v1IFKh0n46W8u+JvKvUWT1hzXThsdp7Wttr8v6XRUEVASs9xwULj3ZAobvboU54J1qTjxe\n6VzzoICdBr5aAgHthjp/H8MvWfFYh5wPfdTv5nADZibsAwmQLcyVkzFqdCBeEhda7x4cMp0uHGLY\n1YIr+1lGiWYNV5Sd1lxJsVcnmJvWGm4WBx6lS51Z+uxPDnMnMdDvOiAYM1bEI6I5kc3p/8GKNbHW\nHPTLEfel5riX1BoLGYukqzmSKOlcXIGjMpHV3xdd+mkC0hMgSNjkPeaF2m/BP5WB/yMNPuEffvxf\nqt7wy111OFs+OeE61avzQnOxzTil3/tNY4wxrU3V466l9uA3jDHGFMeaF4sV/b4NIrKu83j9kdZU\nsgC30EugVszxtROpvpJ1wniDszJz0LsrEJ0FUCeD6esz1HRtTKnimCnIvBJn9CBSM+X9uObqHdDn\n3XAVRnZKdUAwy8yWoCwd/cMD6ZdM6NNCqXbiaw4lI3ViW98vQaSUHLXVInOk6Oi6Gef3qgv3jBsp\nB8Nrh9JwehtVVhDpczJwHLIwDNystyAohygLHpa1v8wD2YVkRvWZQ1Pnw/3lMGaLlvahYlvPv7rR\nHPnsL8V59dNToX5/+Dvil/pVJUbKxCUucYlLXOISl7jEJS5xiUtc4hKXuLyB8kaRMnVQCuXdA2OM\nMSNXXr8hKill0AbPb+Vhui3LRZUpyv93grpFsyNP1nomz1y9DZ8HTN52Qp6yEERLSE6aS65cOQAd\nsY7yFmGDRs3JIyLhoWjjkTO3JuKxAKnjvtTnLepL7U3dP30A3wc5vzOuv0V1Ixuo3vcGipxckWOc\nqxMpIH8yIAo1Ar2Q3ZNX+8Mf4H1HqSGdUv1q6MpffHlq7BFtIDczRH0nDdKhUZWXL4siQB9t+RXR\n+9UM7+YeOfBFPK9LXTf15A1dhvr/FOb6FUiOJFGxZT6CFdyt2DMiCXDghHghqw4opXNy/OfqO3tT\nY+eQXzy6ISpjUHZJKlq3SWQw14atnqi+S77xgBzb/Ere1BxcOO1KpALF3IBhvGrpPkEVFaaZ6gFx\nv2nk9b2d0ZiOE/r9VYR+Ksk/ugkvSMbW9TvkWydykbLEiTHGmNnnil5lYV9/+Zmeu5nX3Ek8kJfX\nSWruB468v6kMXDQnGp8xc8upS9nsu+/8rjHGmCkR6Zsr1dPx4LTAC51GlSUHYmoMGqKyrf4bXun5\n4ZS1jCJCBxUSg2pAkf6tE21LWnpuJ7w7i33tQPO/hhrarcu6RBGrsAApB2t8bqS/bxJRPi5h/4Ki\nMg656O6CNjF3JiWiNDP1YcJnjbCGsu8pemxuhDbowj1TSMgzfv+RxrTe1ZqwuurbnU3lIQ9Qz9gD\nhhC0FbFopdUXlR3N6fFT2Q1/HaEH1K6jv9LvV4+0WAqWxswhtzeRR/kmp/qfkeNaW+j7PqodIdH/\nPKoi7Q/VX+m06jkCOWOBECn9f+y915YkWXaeedzczLUW4eERkRmRujKzqloTGiQAkms4i7zhCwzv\n5gHmMeYN5gFGXM7NrEXOEA1CNtBd3dWlq1JFRoZ0D9fKpNtc/J9VglhAI+oqb+zcRLqnm9kR+wjb\n+9//T3Rru2EuELn0jcZyMQIN9QYuHdSq3BX8TMkaREBzfFeRyeaEvGjW6xX7wpsZc2wk9MJNy52e\n6rO8I1ufgeIqWKyFNY3HpgWqCzRet4GaC3N2Gcm2o2si43uasy1P9w3hlKgsprRX4+64es75RP3c\nYi1ZtWX7Lbduni1RuaMuhZzQAjkQMCuQMhGqGAPUl/ZzIBM6UmipGV2/hvcinqkP39/ReuHlsQV4\nFWL20hrrVq+dIA+1xxRbcKDAo9a7pbbW4bQ5H2n9LaCEE+ThugEZF9pJtAy0WQFU1ThR24A3Lq+x\nL5ZRBbFAAyR8UdhmMa8xGJY1B3sZXVfg/68zrPuoPd20XL7SeuyjyNb8odaCA1tz6aoA4hFuhwrK\nYCPOGJUrtSuYwWfRZfyute4N3ih0e55VJNZjDehHzNUNHAsvpXL0DWea7CO1v+5rfA53hCqxbN2n\ndJj7tg2ddsZs78pmG6jcVR7QX9dwo33JPk3k19sI6fPpicaxUyOCfghaGO6Kl79SxP/1lfaf9UD1\n/5M/Ur2++IU+//yZ0GCF/diUM2pTdQeFKfhu3EB9lMEGXdaz6w0291jPzNj63uvKJiq2xjREedG8\n0no4eUXf08ZPOYPES7UxZj0v2dpLVzn1wb49Mt+lNFF4qYUas1lLNlGAd249BDXF/hMTYR5VEsVD\n1Di7GtN8RWNzBLoigN/P32hOZ+C2WoIomaGW1wGZt7rS56sq51jQZwX20hr8cmW/wfPhQ3J1JvNW\nIGPgT2qzzgUdta9Y0332USeNQEUEoAy6Cc9RrPqthtgsZ5oMvHq1Q43/9EyIGr+o+oZwjW1rIDTX\n+v7q+bExxpizUHMmO9f3Be5Xh6vLLwL3huPGhZevfaD+czqo/RljOv0HJpcFIZqN6RdQGkTeqyjH\nDeGeW2dkR3nzdo79c+XoA/V1/0x7vxuo775BAbFuab1yErXNNogL5oS71hhuIhAmU9lQ5Rbrf6z1\nxkGJ6upYYzoYgXwA7bNF2bZfR02NNlhFPb/U0PPnc93PAsloeP6MsYnhlirB5bUEjlwAQVnc6PmT\nFed9UMlBFfVV3rGMxxpQZX1GPbQMGoJXK9PgfSRflg3FZD1ErGfrjfrX/ol+t1fWvjb7G2UZnI90\nBiucav+zC7pusND6fjXTunl4xBkQBM6G8+0Spcipp3YsPf3eudZa0d1FcZFsiubDRFHyu60lc84C\nx69l41VQJdldZRwUS1rr5hec61ey8XADKgUerg1TwM/ITjKgdB1QvXXaY1DXcu5rDXpZ+Huqfd7E\nRH7TxCjvZga6Nh9r7Ddz1hHGMg7gAOzQR6Bv/THvu5yjTV51KXFd4HPug1tqm8MW5rpPA6TkMsli\nKIGURpXNsTQH9pKxQiVqCro4A3eMl9H9CyXexVAo3I7lZ/BBp1UanOtDjQUioGbL+uWBGlvDFTm4\n0BzwfI1FK6Nz4gLEY6LudIzom8e7X8FKztWoWf0TJUXKpCUtaUlLWtKSlrSkJS1pSUta0pKWtLyD\n8k6RMhHRcB+FAOPIw3ZAxLl7XxGTKtH43//j/2CMMaZ/T17KyzdiNnefk1f/Ul7o1Svdb7GSB87N\nySNmUFManct7mp3AxdKXl9UiolyEfT6XkZfZL8qDZuGpK0PEEsVEOvGYeVeK2HiXeDWrRBTggNig\n7tFGXWD/94/0PSpMY1SXVq7QHCffHBtjjHl5jLcXZQc3YZfOJr9HqYEctz48KFty3SqzpQmTqMWc\n6BM5hXW8mVV4deoNtdnaQbHgXB7p4AKugC5IhrXaeNhRRC2DWohN/nSevo5a+v8qSgitzneLXI6r\namNE7mOL3FeTKLG4Gtt1VtGpW45Y0BO29+lcnuNHbXkrN1nV43mBnNtMgvzAI0+E8+guedo5RbFO\nQdw0c+q/zUTXdxrwYMB14+Ioj7OomJBnmSXiuYHiwCbHtlKRTQyW2ChKW2fXikh+AjfAEaosVsKz\ndE/9eFBTSKTkKvIRweZfmMNlUCL6Q36nKei6F8ey6cCV7T/+bSI6POezkWy6WNHnKtwT+7Z+74Rq\n6HCg8Sm04Jwg8lHv6/nTU3hNAkUCylN4oEAarVv0ewdekVD9XoKz4SZldkLOe182EW9kczXWkyzK\nAduF7r0CFeUzlu5adSiA1okz9DUIjm0JD79Rn9XwvGd8oj5bos0oXzVb6qNL8njrC5ArRK/zqKxd\nfCSej7atKJANKmBT1BjehsX99VBR8zZInryCHGb+krzra11fxqY8+JyKlmzQ6qEaRQSiALpiD7WM\n4YnyrAugqlYLjZ0XgQBp6X5teDqK5PAuiArlsyBHQHe4rDE10A5zcoXreaJ/Gi4TwAG2IlIdw7VF\nwMVYsOsvUd9rOxqPQ1BunTsgk25YbNRemv9SUagqigexy75BPrpTUD8vLdrjyo4q8J7kYdV3surH\nXE5/p1n1f43fF3JSQCovEjtTO+szIuD3eD6Iqk3DNR361IvVd024WqbkR8dFUJ5E8Fq2+n4egw5F\nwTAC3WkZzccHbf4ffpwMOfudRBVvofVzy7qfKLvUiaRCgWK6ttqeK9foM9lYjTk19nV9lE8Ut+Am\nI7oVRopSNW1FFk9yoIZYZ6ZE/FpwCFhEvYqoMjmgCRyQQAUivJ6OCsZYIClZ5xf2d+Mdqu6pf85f\naQ6cT9Sfd460vuZAe+RL5O4j/9FCocaNtV5/cQZK7lefGGOMaT8QB1fjBzq7QP9kimdq8KgAagA0\nWKKS5B5gs8g7WQWNU4z61uFDtbOae7uvjldT47yQzX2+r/6qEUHttYlaNjV+V3W4zSwN8GRf9Q+N\nxnm+0vje+77mWuzAKYda1vJHzJUEjddSO1z4SJrZpllm1Fdl+IbyoKYOuMaG/2BCMD1saq/KgNra\nu6XrKwdCbrhD7e1vPlNU/OULIrcW639RbbxfE4JydaDvrZn6cJNTH96faO54Scf90tyo+KcoYtlC\ncM9+jUrUCg4sW3OgT6S3WkjOPsRAC1rAy6Hq4YPC9ddwIjga2z14/y5BBgYLIQP7KI5NF6CXUS3Z\nvIA3Dw4132ddXYMECbWnzxrsrVnVP2vgDttXPze76pcGPbNea8yhSjNF4Ax+qLkxX7P/OPCdEJW/\noj6Xc7Vz6mtONVErrGY0Prfr6g8rAE02RmFnrn0p10ZREm60K+bI3YZ47x78iRQiOz/SHDt+8/8Y\nY4xZnqOyFLCoGGNie2Jm8EyVA913Bt9fwsl2Cgdcrqy1Y4HdXM1ufnY9m2l9be+pbQv4N0YCahgH\nlNcb1G92WYcD3nXcY/2+nEe9iPPl2lXdbRseprnqVmwyVsTZqyiyZuH8Wp8lZwvdrxmrT+bwrM03\nIChABXucFUoFvVuFIGCmoB7yrtaT5XLDdaiOzkGxoYiVu4LzBhSUQTXIBqUawV+3pf7ZjOpLs42d\nSNi21I9h8m7zmWzj40/1w91DzbXjgWxtPCOrArW8uAx66rHW30ZfNn3Q1Lr30//yZ+qnz4/1+5Lu\nW00UNM81XtMXWh9t3hechv7fdrGhBVwvNyzrqdqdh+epeij1wlJF+9CLgeqzhlMz5p22Bn9pwm+Y\nG+g+E9aQalHtm6NkvGRcDJyUuapsu5Z/qwRkVUpmE+dNnrNFAEJxUdC9W3CjIoxoNkO12WUemSYq\na/CgFW3GFnW8JXsaRwGThW+oCMynUGCdBhXb69EGkI8W52OXc3rAe7DDe3YVb8bC5b4TTTbLUz1s\nOKt8mHbyIBlNIBvYtDTvC7zrrPhd0WF/Yqzclda9fB0urqX2yFPO0Z2GzgoVskN2/0Dnzdb3tX8d\n7r/luPrHSoqUSUta0pKWtKQlLWlJS1rSkpa0pCUtaXkH5Z0iZfypPGgr+DsWRBhDCESWIEfirDxw\ns0tF2TzyBF9/qrzlLEzj8QV8FZE8UeUazNpEvkO8wbkqKk2WPHqbCCZtWOU3RZRrPLn0molaUgRb\nfIs8SyI+R3kYt+/Lezluq35bkEClmto5zYCyQJUpH6t+HrrtASmrR09+YIwxptIResHLyTubR7no\n5UDe6+sv5en7bCvEUC0vL3fcl7fZIlfZiSKTdUH3wAWSwdNryBWNcvr/izNF75fwboQZeQWDgaLJ\n0R6qOeTd2WX12fwCXp0Tjdn4FdwI8EEcP1dEYPoAj/kNS3kK5wu5rg5R6dKYfF8ipj5qRiaGj4N8\nwmpZ9Z90CaX68kDXm7KlIh7nU5AhZ59LzWkzlk29/5R8Z5QSZqG8n5msvKG1EmgAFAY8SGQ2S5Am\nt1X/HGNRCECIJLmgRAUd/KM9PN8X5OqbBVwz/+OPjTHGXL8+1n1fEzEBrVVyFCFwxxrH5S6KFeT6\nLkIil0nk5Fzoi1v7cDGg5rKGF6QPJ0QmRH0KDoThK/W7vVY7833Y+V1QA0QOzDKJ4Ojj1ggVsMnB\nHTHVOH35UtG6oxNFMMKu2uWjJHGTch1gGyDkYjziDqtbAMfMCtRSvqbIZWOryFpUkS0MYOxvNohO\n7VD5JJS6RsUJ9NaghDIYLPHTZ8pj3vkXmr/B6ZQ+gBl/X32zw3zOovC1LsEvgQLY5kLPvQsi0BBF\nT9ACbu9H+nqtOfnVma5fXajBqxOhrLwDjfXd+7DMn7BugPS521Q/XMDrEcPzMSEi6V4oEt3/QFFy\nx8iGd+BA8eG/cGaKFCTor4iovIciWgFekkxEPjgIplVOzyHQazITzaFSG6SJTWQXBbO5pfF14AsZ\nZEnavWGZ5MmVzsFfFMpO1mNFSnzy+3sZlM321T8eigZXK/0NUD4rE2jJ9mQPNVdzpdNWf5eJTm3Z\nX5YL9csu/AFLg2qL4XlW0WxCcsqbcAeAzty24Wxx1ZdOSc+cEnaqoIhlz4hQomDg0bnWUUIywBy5\n0l+LvTBAxeP2PY1Zoha0BZUVV3R9BHprvP5M38M14tDWpqP7DkEGDlHvqCSqIexD7lRjV2kqYmqB\nPrUSZa4EZepp/SyCQgpJ+PbhV4tBYdhzlBC6SfSNwan/5qjUPyxzOG9qKKJFXTjTpiD9OGIsK/CC\nxPr/OeuwYb96RO7++R19b6EetQWRVEShK9fR+PV24JQ403ML8I9kQbQWmVtzJGDWoD3278Kf5b2N\nr3Xirtk2ZC+5huZu/wrVK9T/Tol2Zq6OjTHGnOX0e58I/lER/o/Phc74/BSOnDYcY1XtG3X4PS4H\niko+agiput4DWRr1zfVS69HkC1Q2QH2ticAu93SP3YbOUX4IJ8qZ5sUXrtadH1KnRIlr6ctmF/BO\nRCAHp8zzUo8ocsz8jOFKSQ4vWebU9rspdI0mOiOdfKR1t/AEVEGsPuruaYw8+CbqcNfkC1L7ycBP\nYbU4kzH3ygutGx58HpOp+t4+1u83cIJ9vVFE1p2DBCeq3l6AgFnAtQAydH1f9emC5nIeglCKZGt3\ndghdw5UTcDYJQWwS+DbOJegIUAfFiebWNef1gDPGIlGGLGrPv9dWPa7hS/HhVCxzHj870Zlrylnn\naE9ogcxtjXuZM1r3+3CBffLcGGNMzBoxCzSeB6jFODVxnwUv9Lt59lsslBm9qhgDn9Zgqv0ziYwv\nmZsx6/VJUWtUFpTaFFWpm5RdeNtqP1CfXMKfUfxG68UGPrbkbLFC0qW3qzlwntf6FcG7FoKE8Iua\nQzsJPxOIyjwImhX8HzZoKA8FyXIWrpGJ1id/q/vFa5DcKMy4oIUyoM7WA/WVD0LPXHC+5BxrwUPn\nD3SGiuDlrCJhlT8Arc+ZzAWJGcN3ZKOMVcqj2IXCzsLXc5xr0Akg2Gu8t1xyPt1caiG7WMNr5Or/\nW3Anbtljh2P97u4TzUH7AKQ6+2sJpbAwD1rtDcqLsea6NWeuH+h+P/hD2eZjkOWvv/xLY4wx442+\nv2kp1PQ+MUcpbo4C0OszeLLg5smjfrfb1/3HF5z5zrSGhfCH1logNj31V9LvlTpIW95T5ksyJHJv\nkTIVyzFBvDZRVWNTyaP6xm+tvBBxWRQV4wT4x7KTRzlyO4dbhT1xk6hkwuVkRmrTZoQ6Gu+t2T1Q\nUMyNGYi/gLNIwUOhMacHr+BoyYOk2bCOFkHsOW3V356i3mTJxpp9zYFFcjSAN3Vrg+Kq6P+DFfsM\nfEfzF+rrKSi09w+1fnrwtfbZh5p3j4wxxpyN1fd37+k9I0EG5Uefmt9UUqRMWtKSlrSkJS1pSUta\n0pKWtKQlLWlJyzso7xQps9rilSRCGxOl2bjyrJViebBiclpf/eWvjDHGODD82+Tc5iMUZYbycNuO\nvLQAbEyhTySlJk+Z68CYje64C5v8piJPWw2mdJNbcz/yPTNE/fDURVtymMkrz8MYnr1SvSY1VWBN\nnnsu8T6j2LN6rojHkJzXalXt3LkrT12VKF//riIO488UrZtfiJTB76i91i2YyA9QdwE1Yg1ho85l\nTEBf5GEZ96Z4ZvO6ZwTHx4BI5OgYzhiQHktbfZFDhSLEE1sgWh6RI7/F4+wPFWWIUZJ69bEStov2\nb2ae/odlWddzrl+qAR/UNdYF+Hkc0AMV8hWv0JjvrMkHxtuZUTDfWE1yLEG6BJYixZ2yIgnTtvKc\n+7HqfeDoedMJXlSiVREqHHabXPvjr40xxqyJHBRairIftORd3pTpFyLFa/IoX36qaM6WkMkOkdEW\nak63Huv6rSebnA/kra3BIfAGJND6E3lfryC1ebL3W8YYY5oZRaLPvtb3p2VFuBu7bToEnpVA42IR\naWnh1V1VQIe8Vj/bVVAGtKe7L5tfYAA5vOUReeV+DF/KPf0tvNDc9HxFqSpD3T/cU3tcclyz+zeP\nSlXyIBjGcC0tNb8zXe6ZVVTbnpJvPKSvH4FUqMmmy6EiAGsQfHsJkgXumJyn9Si7QwQBz/iGMXNn\noI/WisZcd2GhX6lPbtVRzSBX9uQ5fEBz2TYBP/P1rzSWS5j5LQ/FFE/12Qe50q1IaWe0UDRnTc77\nhEji8FPZ6JP/JHSFvSCnl0ir8x6s8M81B5yY+hG9msCFVVqoHWN4gYwl24nyan+WCOUWVSl3pu+3\nGzhY4EWZ1ZFQA91WA3VnzvT98UbtOIAzoQnXQjWnftoe6v4JquVPEY0AACAASURBVM113kZAb1KW\nRKCff6kI9PJScyIAVWKm8COhSFM5BYFJPn80kh01GvBqwNOyWKEIdAB/Vh4+kDGoFAuWf1BxvqPF\nKIaLLMjrOtv3TIaIZg21s2Wk9a9JFMigZuEtxVdzm4WtMSbaPUW1qKC6Faqgll7TNiJjW/aw1kp9\nuKgnamfsZVv41qyE8wTlAOZQd63fLUAQzonCL2bsyVX9vgAyY8N+EVZ134iolEvUyfI0Z4Oc2pEF\nlVaoamycMQpZTa3bIxR7WhVQVwX2qZlstFDRHPTMd1PDKKNeErfVbw1s3a7rbzMHInRLnvlKv8td\noPSDyskGLoTvR8onN3D9fP6JbMLzQGmAwrVB/2ZALNpfompC1G+VU7vL30MhDqUJO48Kx9X82za8\nXFyZ/lJ20ECtK/e+Iqz+L0AXM5cnGfVrPRJarA56o1LT7/tEYEecOXJEYv2h6jv9pfqjiILG9pau\n26Cctpl9bFbYfQBisAhy0dse6RkT1X2LbRRK2lMKj2TD/b7udXGqOj87IUK61XUl1DJnB7KV4jON\n4dbTXNmysF5keQ7nLWjfTGDH5ruU4BWKgnBk9Yvqk/v/Su2JQUlkOXuYEN6jETxrPrb9FehTEICX\nF6AfbDgW51pnQjhc2k1dN3qtsTh8X0jq3nviVvn611rXdxdaO0ZV2c5uTffdbap+I6N1tsQefwlX\nQgz/RGYICoJ+2bImcbQxLnv2lv2itdSYLyqoaH2t/pnAO1R8KqUwB0SgAy+Vzf5SvFZ7P34mVaYP\nDkCIxmr/xYXQtHuoCTq7mttZ5Pp++fzXxhhjvrzW2aYOEidT5C+qTcYYk/dnZjLR93X4o2xf+811\nTverFrWW3IaTLXtHn/tRx9y0uAaFl2uNfWNX967cV59GcJ24V6gOBbKlXbgZQ95FCiBlFg3N4ynK\nLtYaxDlchMMm6CzWU2+d8MehTgo/U8xYFhaaAwHqpq6jeizhDSlXtJ4hYGt8uMHyEXybKH8VeyA1\nQRbmnEQVSuvYHCRmEw7IAftKuNF9KiAAt2Qt2NQ7mTMRKOLNGBnTrX7fAanYAgFyPdXcjuChC+DI\n7MFddu7qbBbNZJNvTtWwN6DeQhCmBd7lRmPNpQTZuPdY9X3/SPX64XuoBn6q63/2f/x/uk+Zc/UN\ny2Ko9Xj+XLa/hH9q5YDSgFvR7qsdMaiVPNw8uaJscoGS6Pic/Wmmes9ABZbqalcBrhnf4sxsvVXD\nLbYsU4p94y21ztoooxY579q8l8+H2jMs3qMLDgjkGWrHoH2itdapfFfzy2pqbNwEuf61+njB3niY\n07l20QK59o3OaRP2/juH4o5agUBZZTXHso5sowQv3SZB20ayzSqoq+T9PdfSelWFc3Ve412FTJta\nP1HSgo+IjJ01mTIO58EJaskLVJlqKBdvUMhaDUHIN+Gh6+sda1sGuf5PlBQpk5a0pCUtaUlLWtKS\nlrSkJS1pSUta0vIOyjtFyhzekcfqvT15WeexIqfja3nOsni4LgJxNbgEVu0yHi/yKU1Znqu9h7pf\nFrRGiwjtxJfnb0VObATPxhnR/gSVYGdRigCNkcPr7B8rQr62iVKSf5lF834ylUds8VN5O5+dq74f\nPvy+McaYyu+TN18natUlGtVQpLs51OeTsbzT1x/Lg3iWIdcNHpiTF/qcrypS8fRIUbg7/04Rk+6O\nol27IZGlP9V9JmfXJucKQbLBDZfDC5g38mL239e9donUDYuKToTk+u8Yot6++mZpEV1CoSaPx7Xc\n1P0WBXkLqzXd79GPier8CBmPn5kblSSH1MU7OwRdtWtAGcBXsdtOciXVRyMUT8qoVNQL5F6uUOco\nyxPtbuDT2Mq4bt1Xe4p5+D1ASw189Z/9Wr9r3ZG304kTJA+5uw31zz7qJR6RjtOFrj99I9u9vYcC\nwR31S3wt2zEgYkpF9dt4Je/08L/+tdoB5GnvJx/y/2rv+EDe3VrpsTHGmIc/+aHuk1f/TD77v4wx\nxhz/Ql7l9/+Hf2uMMeb1gLz7subEUUW/Px3KProoHbyB1yQiL/ywpPadn6p/rkPV+xa5yqWO6tPp\nq1/yqG/NidyYR/r/oKn+uhwpKhX93Z/pPjnlj9+k9PKa58uu/o6G5JxOZRM1lEayddmCe635eXEs\n275N3reFTXgohEWsC3n4O0xOY5Ep6D6VMko1+6i5gTKbjohEeqiN4Cm/31Obey3Vx/up7vvmV5r3\nxab6/gjExnIOcmWrCOFgQpT6z7WePfmJbOfeB/rr15SHnBtqTF+8UbTEYs6YHRRsUGnzBrL9dkf/\nP0hycrdar5omQcio/gUUZwyoh9w6UbVQFL/EXFkX9buLEOUXS9+7se6zAkWRc2VTt3v6vuKonXnQ\nXgGImTm5zf4S7oWmIg4H+5Bw3bAkanx91O+iqiIzfg5lhYCwIOiEIhxEOVv9Vr6r67Ke5v66pHHv\nFmR3NVSkMiv9LbEGLkH0ZEAQnfq6X3OFGh/tuwxWJhvLRiqR1oshiLMu/GPjieZZpwGvzgXr4X3N\n3/EI9FCs68sD0KFzfb/pJYgUbLUkG22zzqwb5NzX4Hdjw4gCzd8tkdozOGMyPupMl/Rhlfk9hOvA\nhqfIgOSBN6jmyzYsIqhXRGo7RPJGcAEUQyKHIIQ6cIsZ1Cq2KKgVQEH5VdRDymp/a/bdOGXGz7UO\nBagITlHnKMsUzWBH43M71BcHd7Xe2ndAMqKUeMXefRkJtZYZq75d2te4K1teL9QPr+BP2cfmoh7q\nH2WUzTogaEbY2kOtBb226rcKzr9tQytTNq4j2xufak1wd0GQ1mTD/a7QC/O1EFfnA0U1r5eq/6vn\n8Low5SuW6nFrV2vU5Uw8MWfwtTTzILM8XX/5SvfL1Ivm6KnQp+2lxn4zhccuBo20q3OQX9A5MI9C\nTIY+GD9DCWuutpd9+ClqWneabaLHgcbG24HX7htQwKCltuwHEetXdSubjPMJSuxmpfyB2rNHPXZ+\nrDkw38B5eKxzVw3+pXgE9wvcZ3EGfroJHAqXKKbVUIS5zRllB07CJ+KTM2e67+il+v5Hv/PvjDHG\ndP9Q/WA+11w67bJOvdHctdYam2f0g4ea074NsqWq33eARWxAkJiVbDd7rvtOqvDicRYa/ZqzUU1n\nl/s1nSErLdX7FVyOLZApU1QIq7fg2rqjfnvyr/61McaYiz/VHKkfaV1uwF1x8TVnSpQ0Lx3119OV\nbP+oe6T7OppTiXrgDP46O3rLmxH3a8Z/pX6so65q99RP1yAn/R2tOVYR5LuhvlehuWnZhqpr6LIH\nj9UHNgiT/L6QHpVQe81IRxKzaIGqhH/Da8BxhVqo2bB389nGdltwwTgVfR5eqO0Jkj0LN+QqQoEm\nSpDmtDlkL2I9DlCWKSC1E4GALkMwZIEq6m1QJ8L2B3A93n5Pc8QJNRavT3lna6gvC6BfF77aH/q8\n801AHrZBl8E3msvo7/gNHDhVsgvsRAFT1yUvtBXmWoAiUHWhekZTPXcn2evJsqjAAeaeHKudM9nI\nw/e0H/afkLVga5395Kf/2RhjzMn/rbloQW93+LBFDZDZ+mfKmn03Ayq439X1Z8uEQ433CNr32Sd6\nvsMadv8DnYW6ZGlcgipZ8G7aRgHUg5NnGqqiVkvnhVztLSLdvVgaZydn8vDxhFXW1V0QMxpis+jo\nHwWU+LK8kwScj2PeDYMG/HY5ePJA/IURGSgo1zaLWr+yXRB0vL+aOntWoD0nRNVuBuJuO0eBck/r\nQ7ucZDNo/Wrauk8uUSWFi2wOEnAKD57tMBedNc+B+4UxWbog+or4F4q6fgyadwnSL7en55fgU1qO\nVP/PPtI62r2tenfxA/xTJUXKpCUtaUlLWtKSlrSkJS1pSUta0pKWtLyD8k6RMlO8ua8u5ZX0B4ps\nWEtyVheq3pMnigRX/1gsxr0DeaLCjbyGC3LPLv5WUa75lKiVJQ9ciOrRFJ4RFy37AnmJYQ+PXsGh\nHqpXtoTXOCsPWmmOJx/2+ZlNJBXFmiAD74Yh2lXT86KNPI/jgMg53A41cn1zTfnGnsAR4RKoCMj3\nn3FdTGRjvEaG6YLc7L+Vt3nelgrTBJWUiNRka7w1VpKDSLQ6iaSZgryTEfnFLdQspuRWVmBxj0Fw\nzGBzr+3BMg4PEGTsZgNiooC3tdKXF/MDeBgqH/zmfLp/WGLQTv0DmLsvNXZb2Od78FrManpODtWS\n0YVySJ3ekTHGmGtUMfaIAsUb2VrC+j5FLcmaycP8YibPfetDkEBG1zsJ3wQ2s5zKWztDgWbngLFG\nAWH3d3/bGGPMoafBeHnyiTHGmBVe1upUY9jcUX8mUcK5p/vv59Su07psodlQhNMD9eGvFen49Jtj\nY4wxZUue+zk8SY/3pUTw0Zm+f/6V+u+P/qMipFd12XqLSMSSSLRN/vs81OfGCnUU7GO5J8/8m78R\nggfxE3P38e8ZY4wJbZTKsIelq3YGa9Uj09S49n5Lf+d/o4jux//lp2rfAQnsNyhT8rBziQJUi/lI\npeYAXfpwNB3CfxEQGSsP5YEP4c0okmNeJKq8Zj5PQQVYiVLWXdSAAjhUtmqLnZDDrGQbS+rx4r8q\n933yM0U3KivZYovc/7WRLV6dK8/49Gf6OzyEjwOFgbMh9ZyrL3MBHFnwXBRATT1gzpyHimzE5B+3\n9jSGa9bPXEdj20xS70HRFYjWmAJ5yETNCiAMt3DcxHDuWNhSQGQiX0L5YImKXUNzqsYaMkdN5aqg\nAer2tAZN1ur/1Vj3d4xsp8U4P3xPKLE60f6bljqqdA2j8b9ao9LHeEaXqn+dCE+2SIQ7Q9SRaJ9b\n1efSBRF5AtXlUP1aJFI7Ie+f4KiZhUSeBrpvAGhwAxIyCFamDv/RBapJ+QgVnfKRMcaY+IX60OnI\ndtycxnYbqC9iHzQoOeke3AThitz7CTnyRrbqRRrbMbxnLfbK63HCQaDK74P6WcdEPAkaB6egHuBW\nyTr6i6CXsbaKFjnknVvsF3MirEFRfe+Ado3g4alVUFFiX/Ej3dBibpenjFlFtrWt8UDWzTx739p6\nGyW/SbEa9OtS9QtRtcpsFT0vb9X/Cx9uhzn8VagQuj39rnQOJ9dEiNMXX4kPr3Ffg14l6lYt6znv\nd4QO2G40Hpmc2uNOhDh5/Ux/3ZXGrw9yqkh++y4KD8YY09jLGr+itWSNmlf3Sw3YBRH4Dkik54Fs\ntTJRu/whijsoR9Y2GoDLvPa3zz7VeDaaso8HoEYWkdaSFZH7Tk37y/B6asY/1V78Fbn2/apstXAL\n/gmUwKKu1oUMkcs8aNgQdNLdGjwLcBccP9eeYS11/nNBQHdK6sNuVX1toZp29R5KjW/0OxckRS54\ny8dzk9J+rLHaPWQ9nWkdeDWE3w2uG/OR1u/X8F1sK7Ld+x2pC5m7oBju6XzbabC3orTzi0+1X+wR\nQfZfauz/6pkQJA8vBa/YvtQcmE81RiEKkZO1bKPB/lWCT6MLf5S7hW8EJEgcymbKcKRdjvTcPDxy\nj4+EZPLHQjSu35NNF1ytLTugLGY5tefRT+BRgTdpe6X23a5pHb4KdNZqdtQP3/uX6tc7D/T7Y1RT\nWuzPy4LGrQri8Lysftjbg6cQgaDKfe0fESjggYELzRhjXURmBSpvQCR8h7PK5Uj21yzpRs/hxCl7\n+j6wWuampVJV3/VY/7LwjZ2NOFdCYzarar1w2INt6gJFiFnDYVgCMZkrE83PooLmoLLHO4KBJ7MN\nZ6Djwx1Z07q2y14XbnQ/D0WagsW6DodZWABZj1pfHgR9xLpXidTHSzjLXr8C/Q8S2rfVgOFLfT++\nkm12H4CQAdWUK6seTgmuszVnAFTmfF4XSuWElxMeP493RVvt3AMhtKT/1vAbZRKVKFc2NjrTOlo3\nssFqjJLkUuthiMpezdF4HWAr7nON2/WlzlzTN2r3Q/iGvvc//QdjjDHZW79jjDHmf/0//2dzk3KH\nbJHVlWxuB4R9rqb2nHQ1bh68WVnW0Blnq8ulxqfCet3OqP/r+1p/8xUUhlFJzNJ/ERw6E7hEjTFm\ntNqY/blnrl3tCRn20t0MqplGdRiBes3Bg7TTxjbn2NQevD9Z1X1twd0CH842q7rWH2m+B0Xeo7Ma\nky48co2WxmBY4nxNPcoJUv2O2ljjnGaiY7WZV8USmTZbOA/zaxA7oIw3tL3LudbPUo9IY21zTnR9\nlARBeXmcnSpwblVQ9m3toO7EnK78C32+THj6ymRZuG/Xo3+spEiZtKQlLWlJS1rSkpa0pCUtaUlL\nWtKSlndQ3ilSJibX3iEK79SSSLc8U9UG3ljUkPzXRGPw2m7IxQ2fyXtYIHdtvwT3wJ4iLtWM7ju/\n1PXTnD67NfIqC3Aj2OQvopxQLeIRRN3IG8mj1kZxJkHAdNGq77blsb99LHRC85G8wn4RLzIR8aiB\nGslrRVJeXOh7e1fP38vqeo9806gjD1sNZZoz0BkOaIs5HDbxsTxyNqomLZjMHatgJkTIrEjRoRAV\nJmct7+CbX+oev7r6K2OMMWNQTPvw9FTuqM3hijqdy0O7DVWX4QkedNjdr77S/UY9jUGNMXNPvpti\nip9wI2CpGzTsw1Ce9+1djU2pJg9xeKb/H1yrL28ztkFeEWVAWKZYAy1whSIA0aiQ753Rl1QApYea\n2hvASRPBrRONNYYnrupzYJ7qMpjJqzvql8lcHvU1AY3BHA82XtnKQvW/BqXVfyhb8ovyuhbyipA4\nePTXvmyz4cCHFGmc1iB+8lO1K7er5+8EGodRUc+Z5+XNjnNENEA73MIrPYVtvxwROY5V8W5ftrtz\nhxzd1+q3wTERhj0iJ88VUXBRm3LwHtvc5/CRrnvvd8Ud8+THoMwcKSi0QQLdpHiePN7XjO09lEqu\nmWcN+sQh6lAip3MQohjiw90EEmaGSki/p7+dpiK7mVf4sLMgIYa6/1FbfbsF+ZEzGtNcRh70GO6E\n01/B6/Gl5kYelbQ1/EEh0aSKq8+7Ldn29hV5wFvVv4OiwfRSEeI2fA7QixhrF84S8pE3GZTSdmXD\n9dyRfj9EYWGHvkYdqkbO77IlW2909BlhH7MtagynRMf2QBTNNrLZwo6eM4Elv8l9nTrRq67anZux\n7qEEEXXU/+/1Vb/lPUW12k3ZyhhlnmfHXxljjBmcECG5YSkQKb6Y675TOHsmM/hUQLCM66jZkSju\nwglUniVKGfrb7JB3D4+UQZFmBmeMDTpugsKbmWoNmpBS3ArUzvX0c12XqRrrlvpsfkz0qQJihYjk\nGuRMzVaUaC6wgMmiNpF31IbPn8k2jp5qPUoWPn+mv+cN2fA6L1vrEdm8vtbfpaf5mgcR6BElewMK\nqI9axgQ1jDFzKUZxax1rPSgGqNeFmmO1lcZ+1VZ9y4mKH5xkV0S5yvA9ZLLq0/FSe18bnof1VAgU\na00e+kbtWKAkUzjQ750VC+4NS7YCd1iPXHsizZenmrMNIrkOc3x8AWIF7odGQv3QkQ21K0IVNOqc\nGUAsbYjInoxli16khjs5DWiV9q5Aqe2AaLUPUUaDs2A81Hgsv3mLLHzxswtz8IGe+/hD7WeNezK6\nDtvvyXNddwtEkmkKaePeZw48k5rgzm19PxrA4/KVUM3LK615h78npEyTc4E/0FwqHGnNzG02ZgoX\nQI/oc1gEUVjUszcl7V2dGghjIqlrlGnCWDbrBIkyi/rg7lNdP1jovtsTOATp4xIKfwHIxxyqH1WQ\nOvkMHH4XCTfWzcrouebrxRfq2xw2sok4B3aJ6L6nMT9YaywyI9U725ZtBZzvNjbnQU/rrMe6FPio\n7hEdLx6on+4+FM/FlPWyO9PzLgpEhD14SzgfZu5o7AsLOL1C7c1xFlU7FMwslM0soKWDK9RPhqwJ\nI1RSUZc7uiXE4nKmORPG7I97KHXCvZVfqt97TdlQXNDzyq4my/lYnAvrc61tr14JNbAAzb2Fo8dG\nmaa0CyJnpPsvWANfr7W+VkAeehy2EiU1PXtqam9k+/kD0HqMl885vmFk29EduNVoll28uUrX1Z/+\nnTHGmOuh6v70t3+ge4NYcSKUsUCwt+HWW4E6cnoa27qVzAmQJHCA5eC5iEBS53dkK0ULhcUGKkdL\n3SdBHgYzUFytRAVKY1J1NIZ+A1QCyloBXItFbCTnqf5ZD4VBlMyKvCu17olX6P5DcW15KyGp875s\nq9DVXNgBnbB02IcKss0Z6IM1/VKpyea8vNpdAbm4BYmfRR1wA3rYKuv31lb/Hy9137WFDaDQezE7\nNsYYc805t0CWw6P7qn+5TnbFSL8L5rLNaaTvd1o/MsYY8/T3v2eMMSaz974xxpgzEDU3Le02NnwO\nz8kbnQHXW9mBxdmtUtacXxzCG4oSUCFSvRME1eWUDIcdjbu7TpQgNZ4luNgCEDOZev/bujQfd8zy\nemCmK60PJXggLxLpXrgOh3BkZaD0W8Ra3zu8d2dAllk5siwKqOIVVaeQCy1QWRnQV3k4qxaR+mJ2\nRSbIQmeAEJ6mDah+71R9PchrTPdQO7Xg1Tthu3CPQUTCizrlPbrAOS3GZoIs6LKSfmehXFhbw80F\n6i0GjZRhz7Z99cvFF9pPrrK8T3RAY7X0N1uCW9ZNVEj/8ZIiZdKSlrSkJS1pSUta0pKWtKQlLWlJ\nS1reQXmnSJkS3AQFOA4iPNzlF/IeJh74HDlsgxX0zz+Xp85xyAEDTVDF02XI3bWIxL5EzWlyJi9r\n1oF7IYlM7BHtAoGyxks8hJ15u0R1aajr/TKM5Hj8XCIEyyvVd4ZiTaLatEAZKEseZgS3TQGvdp1q\nB3V0ze/BBj+AER0OjPhD5fTmzlXfDvrvhTZRRPJIS7M8z8f7OpoaJ0rY2hOUjbyElX2iATy7Afv3\nvEl0IoGoGP3eJT/w8XvyeIcTjYW9Iomf6PhXcNDUiS6cwzJemX236HZI7mYRtY4McAjvSn3UAAmz\nzMGdUIGtnqhaBo9yfg5hxkDts/aTfGryla/lbe1WdP98XRHCHIiS81CR0qWH+lGL5xKdiy819quc\n/r9CVPB8hN+TqGC1L+9qLdbzm2fq95hc3MVCUaL6EqWdDHnVVob7628LWiGX3NwffE9KX1kYx7dE\nHGIUxGJyj20Yyn34iryBPjd7qEHh7a7BKzJZkH9PFNC5lm2bV7KxxUzRtCH54SuDzZ0KaXTqqt2/\n80fyFuc7zAEPFAKqU2dz5aeXDvX7Xgf0wQ1KztZYlIYau1EMO/yenpmxVacsecv2PTzWW3Xi6gqP\nvYIRpv4GdBX8GM1Dok+Jctg4UQ+Bkb8nWyn90ZExxpiXf6G2e+SY5pYoBaBC5J0ryj9FCacREC0h\n0vn4iWzOn2vsn/9KfbWFOT8LGqGAapEP2ipH+wpwuHgO6wwRilUo278Fb8Y16DF3o+vrda3Dtkuk\nOqPrG7DsW6iVzIg0uPANneZRXoMApFQjMgI3i8Wa4BPBbfSJzmWoF/xOc3iMPFB1i3PVb1ahvqA/\nvvrPf2bMfzLm459rjbppKQUJ0lDqWEe9p/SH6vWipGjYHWxvjRpVIaf6DmDlH3r6m0NprsMaM4KH\npLQkRxmUy2qpflmGWoMseF+Cvuzw5Jnuk+m4pgGS7Cqvax7Bo7Ma6ZprlKkMufMrolKDK/XVmqjU\nyI+5XmNzXiestTpWXaaKSvmoUzjkT4/PtR7U4BjIH9AGlKs28F24fdAFVdnEZKS2lVFlWhl4QvZB\n3o20vk7oq85SYzyAC8FxFWXKEuHMt3U/KNBMMFU0PfC1x50sVJ+9AmeIPnxMC/K1ffVtMnY3Lg2h\nvTqoVgxzIGPY8xtL1cst6f9LPRCEeSFGSvc0xxqB6mHD2bOAG2E0I5r2hdbR+WuNcx2ekvaCdQ+U\nsOH5tabWjsDSvvsDuNF8ON+G+S++bUK+7poR49EYww2DYllmoXGoE4G+KKFSONZc8i6JCkZ6zgg+\nknpLdtj+njjDxhtUW461L4bYx+UEtT1UsDJWbBooPNpH6oSwnqA/4dFACWUVsV6GQg+Vl5yDTvXs\nM/aeVV6fP3ysKK9jC5GyeKg+2mLDb1YotcDPdHlN5DNSNDoDQqXeGprvUjJTFMew0RdDrct5OFWy\nK41ZfVcbSqei9k4t/X4yly3/7efHxhhj7vRkqwu4Cp9+oHPeoiFulrCiMV6MtU4vieJXljorRCB/\nynAUhsdEfpnDXRDpV7bGqrZRP6zh8HHm7J9d2V7jru7X9tQ/B0Sg78DtcxrJVspNzXU31lwI4V5s\nDlkf+5rj85jz91zj4L1SfwdlzZHtOVyLoCbmK43rDopxVgZFHvazC9DZtw7hR9pLUMTsiyDgL74W\nl1ExVD2MMeZsUjBuVv192AbFCwqsyxnMg0Mi9HT/TBHejs1b3qZ/rszZA1795bExxph9lBOjx1p3\n4yI2Y8P1yLvECjRvBQRIBIefV1Lbt7H6dhGhjgbfmoFzZDjVfTNwDZYg2AhRzTQWWQbwCNXqcIrA\nieWh0prb5ZzKebCB4uwcVbbYSbhKZCNF+PhaD+A65Ny/SZCKKKn1exqbJYj0DOf7Ug/OSVv3PavB\nN8T6miujkorq3W4Mz90FKN0B+xEKbQa07/AKBR2yKoo2NjpW/1ht9dvth7LtPN15fqY1wkt4huDQ\n2tnV3Ni/Lxudx2rH7O+0/p6Mbq7QZYwxGf9Yf19+rL8BqDkUMMe8otfvay1pkE1ioQi6hfclm7xm\nsNbVczr7RrwL50CY5lGKXMAlVIveZi5cn03N6atfmsOOfnOrj4JWTjefJ0q8vDP6qCxZnL8H9KnN\nu4ZPFkKzyPsr07Bc0f+vUGOyE5v29ZzBue47nwgRPQGpU4Uj7IojULGk+3ZasqkeHF0l9ofJNQqO\nvvpgsADVe4pK1A58dOyhNsqx1yCqy1POIuyRG1BjmW3C26fnRJheCZsO8GNMXmof+/qv9bcBsvrp\njzQW/1RJkTJpSUta0pKWtKQlLWlJS1rSkpa0pCUt76C8t7l0pwAAIABJREFUU6TMuiCPlZd4NX15\nacdbRZNOfi1P2+Pf/S1jjDGVvvISq0m+HUGl4oR8wjV593j+J3jwtlN5iddJ3iQImDIevB6euiyR\nzSr5jjnUOZbk4+fhTijm5fFyPdXvdKSIxfEv5dkrkPO8fCyPWKtPJKOLmklZ3s56UV7fPXg+pngY\nd24dGWOMWfhKlvWIjo6Iqo19+EKICGQHoF+Isno++e5EVgLHM5at32bILdzym+2MHEOjOpTIha/m\n5NGfw75eqsrNmV0o2jNHccYj/3hEvnYeL2i+qzEqEzncg7nfBZ1w0xLGRGhd8sLhmFl4+tywybWH\nPyizVnSkOlKfBXl5P+eRxq4wkgfebuu63A4KAwt4M0AnrIkG5R3QTPRfADInQVtZsfpnGRAZmOhv\nvQdS5UT3KcGtk4OfohASSYzUPyuetyWHNANnjrXUfbI9ecqbRCQXEzgiaN8IG45RkIkD2U7ntiKw\nMciXThtGcVBnXkb3y+GFzrXk7Y1B5LRL8KwQ5d/EcNn4ev7ubbVrYDRnd2BSv97X+Gyv4Y3akOuL\ngtgaVMvVK6EW8rD9v/dQeeqb4OZImTxtSnLaYxRecmPlxhq4XsyF2lrZl8f77m+Ll+OXf/ELY4wx\nB+SgjwuaI4uFbDq81vWHd2TDG7hkvhhozAor9XXtYWLjmqfOWH1WRU3oTQw/xoLoz5Xm4KwHd8A1\nuamurn//d37fGGNMuap2DOjLdqznZkJFYPvwiUyJ4q9Rs4iJNEe0v9qB46otmy28UtQ8yMC9U0f5\nADRcYaU5P3ZBMO4RSQWNsX5C6AP1OS9BVe0pwrILXUViY+uK5v70FAQSSjXZHdmeC7pql13pjBT+\nwqX6t92QLf74ifK5H/aQPbphSVAU5YLW5QY8Ta9nrNcDrd/2rvLhl9c0r63f+XADJRHUNfn8z5iT\njar60y2pXwKiUI6RbU+IxJRnIDLXsrNEBWbjlk0HxQDnBWjLp4qWj4jCbxayjRcX6qQaSMZr6lZH\nbWfBHrZyZWObkp6RWajt9i2tj2vWEbsD/wT8QReBbKXNlnXigaIit38OwdDA0zrSQHXuciAUwCzS\n8x8EQiPNQYdNiNIvDtUXRdSM5pf6/QIetAp75/T8jL4D0dNR+zN/rcHJ7gnRsUJRx56TJ76Fr2T/\nuyEzZ6yfS6J4tV216yE8QMZSBNJrJ/1J9G0u2/JRbin46q/rIRxoFkpB8DyVdqW02H+ESh1qTdOW\nfnfJmrI907icfcm+TATZvdTn8i5nkvtvo/j77z/+Ng//2Vf6fThQP+9/KOWfzErtKDO3RgvWgJbW\nzioR68uvZSerUOv7wwf63RYuoeuXspc1XHIu3GalCRHfuTGjpfhpirbW3XijMdtWUI2Dkyskghl0\ntG4FJRAdB6jpLfT7VVFtenOKkpW2cONUQIFSt32QyAlKdwelkgu4/TrwQyRIvJuW8hPtG4UOipVH\navslyo0RfEHHoJXMpeZM0NOY3Olon/jwR5rTdw51v9HX6uOXcGw1HO35Vc7JLtwn3TO4UlDrc5uc\nzVw9bwsfUwjSsQL/3IsR6iN92ZwPl2Oeud5ENeWlr3rmQDDVOZ96qCg5oNz2szq7ZEqas0v4LUZw\n4JivPlJ96F4A6KZFNH/NmpVpgvxpac7vwx0zQwGzcC6bCm3mEOfvBSqHeS2vxnDO93mtWa/huqi9\nVZix67ExE7U/GHEGA4lkwWtSQi1lPUY5rq195sIZmZuWD//kT4wxxuzxTpGHC3FI3zjwV25KGpMN\nKmcuNuOCXPQ4FxlsogkS2gIN4KFil2voug7n9xgk/CoEJRxoEGxU6pog3z3Ody7ImcaBvp9vdf6M\nUbryMnBCwge0Rb0nUZ695J3sYKjvp2uhWjc5kBjsheFSRhBje8utnu+D+IzhINzAI3peRWnyCk6b\ngsYgZN9yySYwr/T/MRw5b85Unxlqgw5qVbuofraf6IzSasFbGutscrHQ2cpxtK7deaq5mQUR2q2y\nNrEfvrnUeC5pt0d7blpqqLYeNDQuT49Uv5Ejm3/Ge880p/qPIo2T+0zXDS+1r/Z3ZKMuqntHRdnB\nuqn7VlAhzDi63wx11q+/eos2/tmvPzIHVdvcfh/kN4joN7/WPJxOZButQ9QxOb+EBnXKms41LbgZ\nt4dwtDCW1yiPhdhsoQyiO1vkd5wzbdV5zvq/68BjtIs60/fV1vfeQ8XOaL2qoBrlbvROsZlobLyQ\ndwlQaYWW6meX1Ff+VvV2kTxrsPfHIKVD1ruQd7MmHI6mwEGVfW22Yb1oaR3Z8m43n/NuB0o1uPzN\nipApUiYtaUlLWtKSlrSkJS1pSUta0pKWtKTlHZR3q75k4fEmNFqYKOTRI1c0X5c3MFeEiRvvbmdP\nHrgGOf0jcpCtHDnEeNjKZXnItod4p18T4WzJc1eAMdzf4n0E7dFD5SOEZb7cwWO2hucD1/wcxZww\n1PW7HxKBJYJQ6slrm0GBJ9yqHRMi5CuHCOm3EWV9Hk3k8VuAIMpv5Vm8upQHMMBbGuMdXWwUATqH\nO6dg9Pwa/bUpxiZYEAktkA8Hc3+WCNcCNabxf/vUGGPMxUIe2PYdolH7eDPxNjpwFkzg+6naMGrj\nuO4cyROdA8EyK+J9XH439aWJr7GzYbxO+DkiIsabIrn+JUXfNnUUBNCUX9uKylhEJNwtqKkredBj\nonVHsNGPm+q7+hl5kkSLZln6HHWiYMVfIp93erqu6qNqNZRH3/P0/H0UXbq1Mu1AAYAo03YORwCo\ngijJm7SJtsENs8bLmyXal7nQ8/cdReni+7qPR4QjX9EcKVc1DjEKMPNrWP03RIRHmhsjlC6KHfLc\nHVAVqLRsiKJtyL2tGc3FJlEuD6UFg305AaouRH6hkjHdfebUpSICtXuKHlbID39zfXMuiFweZac7\nilCG5yhMeerbnTpR3bXGvDZX3T74LfEj+K/Vx+OVojtFInAuvDvhBTnw2MqrtX5//BeKBL74b1Ja\n+ODf/htjjDER/EIZ8p/HrGetcyHm6uSN+2N4Qoh2vPhrKU8lNvbwrmxqW9BYHT6RR748guMkg2e+\nru8LZX3uwdU1yILiYh1pkQvroaAQFFD6cVkbDFwErItBRutdkXVkRbQqvqV+DfOKXDRKmoOvLdl4\n5opoV1Vz1L6lsT70NDf92yhCNGUzPaJEn4VChVR29Nzbvmyj4CcKBOLFmHQ1OQoOCKgblh3Y/kOi\nbRHcNVm4Gba+vnct2jtThONwX+M2HxFBdjU+oafPDlw4reIPjTHGBERcZjk4crDDKsQiSyfhcVF/\n50LWedsy2URZIERxIC8bqru0lVx6z6XOcKp88lwIlT/4PaFK630QFq813+tHuv4y1noacZ9tBWVA\nuENO4F8IfY1dFOj+04X2lju7ssnlKRw2cxRP+tonpuT+F8Zq8zkqQdOE16itejWyqscMNTu7pTlr\no3ZRsrVeXU30vZMopq21jif8PFmQmSdwlW0C9aXVYn2cKKJ501JGcWy+Uf1Wb9S+nzu6XxsUWesU\n5TTWsYjo4Gii7/eN5sruY3ieJlJUfO3oTPMwJI8+o31r7ojvIxjoPpWa+rl5BwWiEzi44L9zGA/X\nVb/bIFqNMcY5aJrSG6KMO6jowVu1DdS+fdSpsuGRMcaY0huN93yKYliM6iAcEyOimxfwacUZzZXt\nD1Fn4T6ZV0K73T7QXJgUIxNcSaGkmFOfZkBcVEqoY8IHV/6B9pzhhT5fwxvURd0oc8jezvy8HB4b\nY4xZnasPu1W1yUJBprBUm/e76lML5EQZTpKMUZ+v1m/VeW5Shleam/WEN8eo3nu3deYplDVn529U\nv+EGLqmZnj/LsT6yPwzhMDtf6n7Dl7ru8V319Zgzi1XX9VFGYx4lgdorUFp5FBFBqbUhmlix7hcd\n2Uzkad22tpobp/Bs/IAIcGGAmtRC95k2QPyhqGZAsHwOyq0wh3MCBGgAn9I2hpcKBHgLTq5NRTbc\nAsHj78DPBH+H4axYqepMcH79c2OMMWuQoSXQe1EV9auR7Om8qDNGGaRpzahd7t97zanMY3PKeT6L\nIqQL/4tBZcWpad2uLUClQAFRvby5+lL9tvqyefffG2OMgXLF5FCAzbFORewlMRyMIQiNybe8l7ou\n2HCOhcAiZu8rgbj2svC2BfpdOYtybKvJc2QDFkposxKKN3AA+lveiTy4B5OXkhnZB0mnD9n7cvDG\nWeqrIkiO5VqfMyjSGFSiWqC8NmFI+0AHs68B+DYcR02HfXDC2cyDVygLL93yjc5q0URrggNyf3Wl\ndu9gSgXO87uoyGbh8tmAJJyDTJ0NtU/twtN5uC+0bJ05twR1bLNPnqOQZk5V8dkAZbfad8M5RBXt\nB31V0zz8ier3xUp2UpkItbIcoPrE2rEoa7yvnUQlS8/t1rXWXc/gSwR9mHAIFZjL05nmzODs8tu6\nNCr3zAd/vGOaZIRcom4ZwYmXhR9yG8I7l0vWW82TLAjq6BpezQ1cio7maYjKaATKqQYHyxZumDWc\nUwF0ar2yxqwMIjkAgWxZum45Zq5MdRYqchZxeDdcDuFRwmaat1G/czShYzhyVvDytHa0HpS3KCGy\nB8ZVfY6m6us17zg27wMFbCQPz5/F+W6nLGMOHul57iWcWv/Mq02KlElLWtKSlrSkJS1pSUta0pKW\ntKQlLWl5B+WdImVCF/4Rj1xj1JCsHgozbUUEgiYea6NIy3iClzlW5HS6klewgIfLgmymkJHnah3j\nEduSX76Ci4Vc0xwe+4CIzWwr72xxhRd6QqQhyQ/N6DnZtjxkCSIlPlJ9wrnqP1vICxrMidCAcqjn\n5L3Oz4nQFNWuLIzYFZjSK6gUZOHKeEYe4xV5mZM3anedekQhEWxY/MMkN26VNyHIioQ7JkfUIs4p\nmtQgV9W9I6/k/StFh609/X8WpYQoi3oOfBvBNXl8C1jIX6vNp0P1pcfY1eG5MET9b1qqofrqFEb8\nXATyYoTq0z4KNCEs6fD1uCiqeCtFuy04SrKxbGdFjm8Dj/mVp2hXsaE+K91S+xPFm6srPOOoSyzP\n1H6nqXaXjMZ+HjGmNlFwD+6Zomxqj/zKFRGJjEEBASTQFmTLZMFzUI2q5lEACJTjWsYj76FkM7oi\nRxkPfjGSTdt4oTOW+uuwq2jexUA8JSWiY9dEaIpEiCv7ij46nu6zCjTOZfLUh6BFMoFsr7jSc778\nXKiPrCN7qZfUHi8k17aq62y4BwJycsd5eZdtItFF7+a5ueVd/bbZ+4kxxpjwse65eAnXlKfP+zWQ\nYy7zraQ+zT/R9e0vNeaRR8RyKfRB9IyofleRyG5OY/jjp39ojDFmQpinZVBaCYgsEg2ffS5P/iV8\nTPexmf4jze/K9H1jjDEN8oFrRGV278ATcSFOBp91xuypj95yxsCzAa9Qfo/QHnNls0IZJ4lSQeuU\nOVB7iyiKbcmRrUxZ1440J65Aw1nkwy8tIpZEGLeHspXDitq5goOmTt57Pqf2rqhP/kJz0kft4sWZ\nbHO1ealqX4EE+khz0zvXc62qFAoWL0vG/C/GrAeKdN+0DOFfqfvq53pIpAaVknEPdS2LesKrtAJt\ncUL/5ZZa45yR+tkpw6UDR80VXAQGtv01qBd/SuS5qc+PQC8cw11mwom5zTq9hdPDmmoeXRf1zDxc\nMRm4AArY1BJ1IwMfUh9k5BQUpV3VvPdRddoMVYfaFv6EHWzqGtUO0JhORet48SX54GWhG/ztf88t\n8mKhSGOL/WUO2mp1qrFtk8u/fqP7z+GmypDL37K0L5wW9P0eUWqfqFMUovAyVARxVpYNRpZsdL3S\nXN1UtZ6NZ7q+VIIY6IalQtT+iSM0welcY1xg32hPUAACXesw58pwcVVn+ry8p3HbteD06jMnPtH/\nH09AAW+k2mG1Ve8e6nOlgj5PQA0Uie614FiL7+n/nTFor/Vb1Y+qlTPlW/p+YsHZM2ccQdeFkcbD\nAzm1BeUQotLVQb3Q2VPEuIIq4GCNss4Va00fBbKi2v/rEz33+EvN1ZFTMB1UeLI5zjMdjfUsn+yR\nelYwl22W4QNyy5qXG0hJXBRn2teM/VJtG8ZaN5y26pJ3FD3Pt3guimCnMxDVINOmnPvKq5vzlxlj\nTHipKP0Y1adeBY4EzhRByDnzvtaTTos5C6qhEau9I5v9iPUmiTyXH4pvKEG4xKDOSiCHyqgmZVay\noVpTcztvOPeFnImymlsBHC6uL46abcJtBRdEtoqCGAqMNrZWOyKyDBpgWDnls+p9cann1z3ZRlDV\nPnD7HohJW3NoyfO6edVjuoGXqQpHgwU6C9WS7Ebju3itKP43K33fieE/qYImm8Gn90g2fJfnxaAs\n/H3VYwOC3BhjosramK95n7jL2hirH2oNEDScVaqcXXdmICeLv5kL4u+XP/9IqPbcUHXbfSxbKGRl\nKxl4kCIX5BncL7alc9EO03nNMSgbyqY3E9W1xbtEwLtGohS59UF0F/V5GXFOy4EW42xSgnfPS5A2\nIA/H8OoVQVmFY84Y0PJsIz3P53w60ZQyPgjrCITMhusrJc53nCns8HNjjDEzIPVF1IBc3hcckJuz\nZE6isFvm3M2yaxYbbIA1w2Wd3pZVj1JHtnDrPmc2UAvLIv3Pu1cl2+D3um+ve6T+WMv2nv1KNp9B\neTIRKxqyftuoUq0qqm+Z7I2blqyt/jn6A7741zoLPtmKW/EXf6m1bwVf04A1MLsBPX1P7VyhArVY\na+7nXPitsrouiwrg0lU7RqjlxvZbJOmd3QNzu7xrRtfi5cygKvToQ9Xpq89AEzEmQU1120W5qt3W\n3nGOqtzmmcbMyjKPyGCJUJQ1rFMO/DYb3pnyrIsBUMDlGtXSGZwsqLy9/Dt9DucoCqIk1gAZ30Bx\nKmzrvBeQAeOAgJ+CuCyDuLPg5JqAyrIWak+2qj2zDL/oiuts/BU+XFY5OHXqBdnAFejfpgWqaa3/\nr8JL+k+VFCmTlrSkJS1pSUta0pKWtKQlLWlJS1rS8g7KO0XKTInuTEBdlPDGzo/JcySaF1j6Xe+B\nIrt+S56msxNF5WN4K7Z78ibnEi/zmAjBhIjKMbm9E3g1NvJy1nvy+HUS5myUdkqwKC89ecK2PMdF\noWGG8gJgE+PB/B0Qih5fyY1cJiJtTxOeDfIC8SJ324owFFCwWKPeVO7BTk3O2/fMB8YYY/oj9dcu\nTOBxrHrevkf7q3TAUB7J05dnJkf+nA3KZ5UgFGCGHmTgoemoTc0d1anYUp2u1/Iu7qAJ78EhY2fR\ncM/Ia7hMFAfm6jP3GnQQfVAufjdPcnlf0Yn+qcbIIuLqomDScIiiO/rdPKO/dk/1zo1AsCRSKgVd\n15sTFcqrviGRWJt86hV8QCsY+nH8myCj+i/mivjaKDf4O7Dbg2ry8bZGWY2Bh82UKxrbIrY1Io85\nhxGV8MSvC6pv3iJPMyIPviTbXViKeuUDVKbgCigv5NUtGaI6I1jn4TGZJJEaIt/rWONUJAI8A2XW\nva36T0AORXDwTMlZbSa8TbD8uztC8ERf0Z+uGpKFtd/Q7iY8T6Wynjsi7zT7FVE9mN3DWN7tm5Tt\nQNGMF0PZcpFc9hhW9SXpzctr1e38C0XVL07UB/mt6rTidzlyRQcnihi8hgNqb6S+DfIgLfJq+zYL\nizu5rDFzwh2DJBkJ0XHxzbExxhiLXNqDp4pATFC3qFdlA7OpojAf/604ZiI4YZ7eVR8PGfMsCIst\nOa+LlZ7b3NPY1GzZ/sZV/0QlRVUmrtYlG4WUJFr17Kur/679T2+BZvpGPBFxLBur5FSfn6Ns8N4+\ntg1HwVFdc6t3V5wAEev39bHUjX7xpdrXYa2oYUsPYNNfysTNa9QucnD8NNq6305V/d3aVf/dtDSI\nhCyWsuGISO2afSgrEIap9PR53VV78gXNpdt59YeHClR+V+OdX6r/Q0By56Bb8rsgYGLU9UAZrofa\nR6I7akcjr8j7PAhNZq55aBNV3mY1z7PfLqv6re1qDGx4GJ5gO4jqmUxWtl+KyZ8+JspUUhtyGzW2\n3ACV4Gj974Ya02sUX4o+Kh85jUGCXDlBEbDVPtLvP9b95u+prU+xqb/6Qnt04ZHGNlrousoOCmWo\n/qzKanePubBaaM5kDIgQ1r+rAL4m9sTTNbw+cJw1bfp8o+fEi7cIkhsVULvbme7brYOmmmAz+6pv\nb5AotoCKYi0I4NSpG82hL7/UmtStwGsHsrMKsiQAAZphn5yHoPzeCP2xrIJcQSliDofA7BTOiNEv\nqW/r2yYMvh6b3RobSV7PiVYyjMlS4x21tO+UbZQiDtmXQM2NMtoHr8/hlACt0QTJGMJVsThR/dx7\nqncLhTdrrfND3d+YaIqqJgC++jnKfKgo+Tmi6ETPL15qATgFQVIA+VCsap1+HqgtHfbsakvrWuYM\nVFVNdd+yDjYr+v8WqjrHcK7kGJvr9dx8lxIwVjvwT/hEjl+MFV13WD/ykcLv/So8TKCWpmV9vg9H\noTuQrZkn+nyCkldpBl8fHFubib7PTBhrUA5DUA8t1uXrPHx2K8b+CpW6QP1aQgZpAyJlp6Cxf/3q\nWO34QmvAAn6QcKQ1J8yrPQ04xW6jGleydf854zc7A6FeUnt3idYvjOZOEKA+6CZKcvBncLYIDtV/\n2yLthL/EyiYRbBTmQJZ2HLgeUUe5/kZ2tWRcisHb8Q3coqn2UB7tc5Y8BjV2rXOB4Ux4CRLnGO63\njH3H3LTEoEi/GGuvW3yF4ivnVB8bbIKyCkD0BXC2lMpqm8N53LrQ2L/4WAjnnabWcbuv39kl2XYM\n4tuK1bcTOEh81qOtA9oWns4ianpbzu9luEeGqInGIK5L8K1t4e+rgYicxrIVM1UfXYFqzTb0fMuC\nizLU9cs567eF6tEWW2Rd8tfwFHG+z+3A2xnx3gCaoleDIwvurV6sOW7gq/I5Q/lTjeWnQ5QX4YRp\nwqeXOdDfLWqimUBno9oG9AbInCVKbasrePpQ2OwcCqX2CIRhjJrrTcv2gRAx9Q95iTS6XwDXzp9z\nhvR8jVsIaiTkTLXtoaI3AK3BO6FfUz1261p0rVj9efyNbLoAKWSr8NYF0G51THY0N7VLeItAhj15\noHNWcapzoIuS05qxm18kylfwBl2ozgEv4gW4Vgyo3Kgum6+X4am0NMbWKbw9wLJCuL9m+AeyWfVJ\nkX0hyztU/672mhpoovMF70ickbKgdi3W/w0QoBrn2byt5wxBreVQbw6KKFOinjeFB8nCVqbw2dlk\nE+zC6+NzNikDhyvmeHncf09/C2+Re/9YSZEyaUlLWtKSlrSkJS1pSUta0pKWtKQlLe+gvFOkTIuI\nYwGdb498+gj6kS08Jg7oBwcPf87I+1fug2TJyLfUwUu6ThR2zvT/k1he1nYdxZcMqIu2/r9R0nOa\nJbhiyNsnaGdqC3nc4iT/voYqSZecYPL7Nifydp/P5JWtwPq8WuHFnKB4EykCMQV94keK2Bx1lH/u\nE6XLZtTO82fy/F2g8nHJ82I4dxrkyi2aRB/P4E1Zqx0bxzcW6j3GwwNdkmeWQJmp+nCxWLrm+Qvl\nfq5eyzO825TXzym9R9tlOhmjsdvtyYO+aylqsgKpUT+C9ZygRxR+t6jUZoySDJ72eyt5hu2HjFGo\nPonO5YH3+kRWq6h5oDTTrsjb6oPCClAcMHNVrAAvSJRwH8DmXthTB1XwjsaW+m9lgdCBU6XWgBMl\nwlOPt7dIFH1F5DmPClO7cWSMMSYDD9L1c0VGy1n1X8j1/lLRrlZNzwPQYooN2Vqnqv7doFqU5Odn\nR3DMZIhcEu0v59TOxS75kmfy/l5NUWUhv3I0lE3dx5s9va1It3UptENQVj/45F22S0TkH6ifh18K\nnXG9UPvqK5BBoDryNdnLrb7+bpcapzmRjbBBBOYGxX2tvquUWSdq8pyHWd1zp4PiC57z+YY++hI2\n9F397upEEcEfPVFbMz/8se7jg8QLULfYwr1CVD6PIpg11f1LK3Lq76gPH999aowxZvdQyBfLI2q1\np3Vpn2h+disbOnokGw8u4OuYilPmEoWA9UYoAjcvfo8MijnBSu3xQUFFqMdtUF44Bil09VpGVKjp\nOb09+DpA0Xk5/X5KgCPeJbIdy9b2nmot2DnQ7zptfb74RtGp8DX8SxboNKJrO0+1VvyQvO3hZ2rH\nN58S/QPd4e3Ilt5/IJRI/ff0+9Zaz//ss09Unylr2g3LKqPrb6HMZkBf9Gug38ZEfCZ6/tIGGWUU\nPfMiooDYj4PqSDxnH7ivuVtnTkRzrc/P8ygmldQvXXi1YiLPa6KRd+t1Y89ki0v318YYYzrw4Ezp\nm6LLfIdzJuiqzl4O1ME5qm6W1uklqKWQCGy7LBs+p+4+iLUGCle2refnzpgzAmeaTV5zq+loDHNL\n3SdXZB+p6vkOXACbvtqUb2h9PWT9WYLEq2/VV0uUWSwUDR6X1WefvxQnwwP2jzDQerA5Vr06B0KB\nRWP16RlKY+9XNXbTc33e73439aXNRmO9nmhM13Ds2OwzIYjHs61sr33F+g7isNrXnJxfqF29hmym\nhNJYt6P2tQ6JXMIxMy6teS58HyBOCqcoTNRBx6JiVatpHFY92ZA/2X7bhiAXmRUcbkcOaxZnBQMX\n2wAONm+RkFaonddwm23eIBGR0xxoBCBRm0SUh6rP+cWxfu9pzb2FUsZW3WBmi4ypuPq/ltGYFx/x\nDKhXlihcxSX1ye4j/d5eoXZxDidTEpEE8dc4lG2X4Qocsx7Y/P7Lofqk3yTKv6s+KPrwZXx4ZIwx\nZv/1ifkupfdQNh1MURgb6f6jgda/e3AGlmN9nlRArzZV/+lL2djrodrdaqlfdkEh7fW17i2yOgOs\nE/TVRDafAZ1lwUFjw0G4ihKeOj0nhsthiuShy/5nDbRf+BntE7NY1539HefjmeZadQcOG6LxdhfV\n04S7BxsKQ83pozzcCTX1xx7cYy+//IWen6CCQfge6yCCAAAgAElEQVTYTWyMM2nJ0v/vzVSfeUef\n6x/p/9dEvMtwTpR9zck1aMBmQ/Vol1kDQeQst2/RcuvF6bdKmmfHGofsQPXIOUTsjeZEY0fPud06\nMsYYs3Vuzj1076n44FYRZxJ4ewLoNCqgA3zW9Wipz4uM2tje0xhVMlpf13l45jqyqRLogyIcT2Mf\n/p82KLGVvi+CXqrXtB7MZ6B4E65DxqxmgRZC4aaeZfOHHy0AGV+JQL6gtNPvgvAA9b+t6HcHrLt+\nHSQO3FuNCfyXoMwq1QTJp+c7TTgKHdlu5Ki+DnyiG1CzAe2+PNF6XICz0S7xPe8+4Vb70p0HspH9\npmzyxRegv+Dby57q88nHIIngeozBLWRAR0fAYd2K6tV+iKJv0p8rSHZuWLIrzemPPhO32F//vzoj\n/u//m+b+5UTorGbz+8YYYxq7Qgvneuo3G+TTBK6xJQpJ3kD1vzCa4w3sIIpRR0zUveK3LoD6NjJm\nOjNb1JaW1+q7T7GR0Sv1lQPvpZNRH8xPhHRzQX3mGyCMQSQzZGYCF0yzTHbBgfZ2n41gZXMu4owQ\nwdmyc0t7nOepbRVsMeTdygTYtqv37ulE92vc1rpVQhm2zbtX4JLxgsKVt5Gt9Jv0HShWywbpzrS3\nyIzZ5kHOobhYhMcogrc0z1lqhSLi2Vj1D0EZ75V/cxZAipRJS1rSkpa0pCUtaUlLWtKSlrSkJS1p\neQflnSJlluR02XvwjpA3P3wD+gI25/ouUTnYjDcFeaQqB/pdkSjOdCQPf5bc/XJTvz8o4JnKK1Ky\nIRI8s1GiwFM3zeFlJhJeKOP9JSBrh/KAHeygu+7KpzVY6vtCQ39rfdWvQVQrG+uz3ZTXOJtXZCQD\nX8dlRt7vFUiY1wN58BLkzgU51BdreS7dGdHOSF7sPCiUl89U/26inFDHY2iHZgP3RyaTRGn1uRaj\nAEPkbQOjfxnvZKGKRnwNLhFy3DOgByKUoAJX3AFX3wg1sKaPNxlFfTJDkDV4GW9aHDzS22/093hX\nz9mbyYOcKB9MWvBOjNUH/gq2eThw2r68pcO26rEYkluJQlch1nXhmrGvweJOZHhM1KVWUb9kiNqt\nxxqbDWisYk2efguG75gomRXo+RcCBZgVKINmS95bq4MiGFwIxbjPZ1AHiFbV9oj+JPxGK33eqen6\nS5QKPC4oehd8hssAxbOprec6jmwkeAVHj0Ad5vJcXufiI9W7+gHeaNBf1hREkAGpFGnct5bmRmVH\ndrXCPqwJ3Aso8djnsrPtXUUKPCKwZVSgroY354L46jUqFf6xMcaY5s7/z96bxEqSZdlh18zdzN3N\n5/H7n3/8H/FjyIjMyHmorCFL1cVudjUaEJoSAS200U7aCCAoUqDYFNhoSiIJcCMRAghop4Wkltgs\ndatKXV1zzpmRQ2QMGeOfv8/zYOY2aXGOZTagGn5uFAu9u/GI7+ZvuO+++569e965GJNsZktERLQ4\n+mwV0IeVy0DCFAiFixtE76wS8UB0VIpItovPPCMiInsN6Hb4GJHVJaIa7pwgymEO0Y7H91H/lg3b\nnzKbQ86ELcWYWmHexGeNmRRO9jDve8yalkpDVyYz5+TIjZBchW61JPxP0CZr/CnGctyCDS0xElwg\nn0dlA7abp186JAP/gKiDbAI20Jmj/UdJfG9OMecnOqJAgYV+X6/Cn65swJb8U0SoW3PYTmdIBOQI\n0Z840VLLZfRjOEG5vbeBivikx/viqyg3ZtDXCPox6OyJiMjeXUZ+e18tKmUxBDFnpq+0C72c+MxQ\nw4xfSUbbiib0NS8yYkJuIZ/300vMkDBgdNOd0u+a4M/qEB3S0nhvPcdMa7wvP404Exh9DKsFycKd\nScnGd0aOnC4jcg8E6Ht+TNQl174UCTsGy8zcx3mW1aDLE0bxhYi2NOfbnNk4Nkr43YDZ1wIiaqKI\noHC+xxnFyjHaVLbw3BF1Zy2INiUC0CN6wb+IuXBoY+6s12Bz0y78U4t+4yKRMfI5kHa569BNh4jM\n1in+vltCxLBHPiefcy55Bb9Pcu7Ow6+GzMwTKWkQ3WQx29xSjdlTyDMxKzP71AnHIUm+on20rxdl\nkuH6aRPtekJOgmqc/Bzcqzg1lFcmwiVC0e6TI8wjmiBdIXcBM1NkqxiPzdyXW7lMrCTZEX7fyjBj\nEbN15c5j7voxZmc6RfmxFvudQrtr65ijBrPkOdtcd5pAJQYJjGuV3AVeHnp2XOxtXBvl16pFCXr0\nT13MG4eR10oeNmBf2EKb9oEIHBSI1iKSL0mOpkdzrDWGzchkh9HwAvzhzhWUu5ghY9TyDH07JQog\nPeR+cg3+leAjcetf8vGcRfwN/H60Tz6ePdhe6BAB3SDCIwPEz4Doz6UOdGUSqZebYMxGLlGuHS7y\nBczV8zUsxv0kkc8aubvaKLeXjPj98HyM3FWeYMw9kjSmmV3oi+RB5DXxUuR7Y1a9GZEvdXKBaYUo\nOxb0PyEiaT7ZQ7uZ6WUQZcbpYG73ibzZqcIP5rlPTzCrYdhG/bubRJMU8Lse0RT7bGjeJy8Isw0m\niTQPepgLAfeoE6IXmGjuCy45n3Oq5G5JJNa5c1JitpYquXRSRMqeFrGnzHJvu1lnhrEK2mnQ3s4i\n4zk59Ig8cSMk9ZxZ54iCSjOj6+CQUfoQe4BcEjZsM8tlghyHVQNo+hSzLc0M+I8CM28ZnDt6B2N3\neojyVupEq5ELyiBPT4eZZsMp3i2qVcy5iOPFJOfYIox4ddA/nxlljQRvKyy4cBHVZWys8Xvo8uQ+\nULHdHlG65DSJ1fiOFMeexW9jLs7JbdZmuqU48QMe97t18ovMmblxUcN+2SWX47QJ2wm5P02Tr9Oy\nFtQj26mh3WEe7c3FsKc4/rTF+qFX6zL3Li/xuTLKM5jNqWvviYhIMdLDGcXVMDdOP4FdVPiyacTJ\n/ZbFHJqSl6m/z4y7E/pbcn+N94n0J1dPwAx2o1M+RxSIQY66kP0X/0uEpacF4jieiM7MutT1/DPW\n0SLq5jzGfsa1tcQswecvAJ27YJakvSbWvLgNoylUaYMbzNRLPkmbCHOfmbQkz5spBucxkecJZoIc\njzimzNrkTNDOaR82H72DZXLY6yy4v+pPsf5Er6AB3+niRLxUyFnm0ya7J5gTHnlCI1RSj/WPeXuj\nwFso7gztr21gzCrmroiIaEn4qYf7N6G37m/2Iwopo0SJEiVKlChRokSJEiVKlChR8gTkiSJlRowm\nHTNryVqRkV8GLk7uI+oUdHD6mCjjpGyg43R3MkBUxkmgG/aQLPQ1nqRPcUI2HuJErvsIp7S9fbIy\n53H6WdpkNo0q6q/yvqfLyHGuiO+dEU7OnAFODKMTO2dOfg0yXGdOcSp53CHHAiMaUZYlh+zuBjlg\nwjrKz2ygvVmySm+cY0YGstLbdZQfn+MEMM8IkdFitJCn5UUSkXtkTLcnDTHJhO2TJd3cgw7cGTlA\nPCJMbJw86zm0sbjOLBFzZufhXdMc4TlVso5PZ4z+JFCOtcCpY6WMPiXZVtGhs7NK/TL62iFz9vQW\nouq2BibwxbM4+c+Q5X1RINM2szItGuintoxoh7WOMY5RV3YT7W4xAl1o46R8OEE5oyzKSa6h/S55\nOgrkK3EZsXZOEJEwc/h7mMbpqNvfExGRgHwSOjPHjE4RHcq9gejMWhlojI//+mciIpJlRNTaxdgP\nmbnH51hHLP5tD+OSOYcT8hoz5kgJeh5OEXEoF9DvNu8UlzTMvRGRP40jzDXjBL9PVDGOvWNGxK+h\nnfolnLR7j6EnL05eDc7lFCOtJUbCHQvl6uRdGRHF0eowe0yJ90x5X3xB7oWVGAkHziAGeTdM8ifo\nLY7dDGPSJxrgkqBvuRSe757wsmgOOtIL5F3o4IR/7zayLw3voa8TcqUETNPkPYOo1Q6RH1NmJCjt\noJ6NMubIo2PMMYIdJNvCGBw/eA/1vor7wikTunWji+dEBgbFLH+Pv+/vc0xrjIbQP+RegY1rVejQ\nISfDlJ/HHwJl5pTgx/o69LIaw/PWU7ChDaLKrpxHxFRG8HfvP4Y+3v/gL0VE5Ob7QMCc+xbGeskj\n6o5zcSWN8m7+9H0REfnhu+BJqb78Etp/CRGF7ZeBOLl2GZEWj8hG/0NENoptZlvaQPRwERJFsonf\nn1Uszk1nwegf9WeeYvwyXDccZgw7mcEGt1dgJ56Fz+4ayslFmWuIShudwMZTHP+TBcY9l8T4NOfQ\n+zgJ+5ouox89ZnQreuckSQTbzMQd91QSa9xygHkzXIcuclXovHGI5wpX0IdjZmuIVaAbj8iWRpZZ\n5y7CCFuPUOdKCjoe6ejTlNwirgcbP3GJdqKt9BOMEpVhk7kA7aV7kYnBNctA/do5zJ1BlrpegY00\n80TQMCLY3sf/w6UtERGxi+A0Mxh1Mvfxe50cAxZRX32uvfU0olj1Mua+3UZ5OR/9OquYaczBGhGU\nd8klMzpAZpYO1/LWXdSbYCYHkxHV/GWg2q4xG4o/w2eyHGUZwWc/Dr89nqOerSRsIeB4xYjilR2M\nc2iQr45+f3gLiJUyfV2nFHEhiEwmD6RBP6/pRPzk8P3WJdS3ViTXWh3j2PMmbC/RcyOsi4k8+j+P\nsh0yMr4gj131Iga+T860031GmEl+VhmsymodOm120YfcAaP5m1hzy5uwidkQkcXbHXBG6TPMQ9Nn\nJkcHbWsyym9yKxF0yPcTI7ImjrHQ2OdYB8/3mD3DPcIciaLdM3IKnlW2yeNzu4G5MyF/0mYSyJZJ\nF+08iBCcRPh80oX/ff4i5rSRwfqxukReJRe6e+dd7ivLmAPaLvyxccSsU8xkWVzCWBSvYV/50AFi\n895nmHN18jW5MaJUmY1Jy5ELTAe6QCdnWOka+UaI1vXm0FeBnGWJNNoRi+P/sQ7GfrtMfqHURTwv\nREEQjddiprCXruD7Ux17ODcBH9Pj3q5FdMPFMvTjczz16S/RfvKRjC4S8TSFjSUIMIoTdTJago1P\nydFWCL58zSlkUlJoMwsqucPsAvSTG8EXBZwLJ/vkDXwAfRrc/59FCknUbW+hLWVykjgmGtv8mKh8\nJ+JIgQ02j7gffRbzzU6SR5MIk/ERbCjLbGylNYzpOCT/BlEBATOA2XvoW6OFPUOS+75unUojgafX\nRV/NCvyKpuP71py8GXGihiIePX4/YiaemIbfn3wKXWVSRMPVmBWUaNIZM9KMToCccbrMKmrS/8eJ\nciYvyUYFfnHxBa8fmj0MZmwX6vXa5F4kL1MiC71OyCF5+j76NbqJ9bL5CO8P2RzmwHhMXkBmro0x\nk2+ZWUtTF+GHPSIDD/u3qE/YSshMt1ougqOdTe6+C/TEjXc/FhGRlR3eTEhiHdGICK0uMYNaDPpp\n8T0uxkxEQoRUhpnd4uQtse/yBkMT+sqUuUcjJHca+9L3JeK2TOZxKVbRh5Uk1544Ofbo+5fraEv/\nMbMtEd3utDCGvX3opE9+tOoa9+dEz/ciPrIB0bAx1BOvoC0e/VSCN0GmHPtklKWJ4J4ExzrgniVe\nIa9SnjdRyIM3GMIGOp/jnWuZe5sE0VbpJe6P9zBHPJPvXE20MygQ/UnuLp1zuUheP2+CuTkbw5Zv\ne/BjKSKIcq+CmC9Jf+o6WN9+nSikjBIlSpQoUaJEiRIlSpQoUaJEyROQJ4qUyZHB2/d4Ah1D5MDi\n3bOxsyciIjrvR+dSONXMrvPubA3Nj+dxsma7jKKRsdxlRp0kI+iai1PO6SkiHHGiHgLykixmOPHq\nk8umwtzwWWYk8nmHLG7ihC3Hw0vTZ6qBDk7khtGp6yHvT+LwU1aewsnaiKzM3YitmREdlwggj+iH\nYQHlpmpk9mb0afgxiEn0NCIzRWYzMXyS3/D+uEZOGrfrixAZUvKgo+kCukno0Em8jlO9Me/I9xjd\n94s8qd+ADpJkRZ/HGdnL8xTzEHU75AUKydeRE3Ih8E5qnBHEs8qIzPmrl6GL9gDtazRx/zzBe+Ip\nRkhTvHtfrOD5JhEcgxZsrE4kSYoZecZZnOpWPAymzaxFGRuntHGWFxthzDJEK2kWolWTKvQwO0b5\now70s10l2oEoh4YN26l7OL0dky19v3lDRESuvvBNERFJ2xjTHrNJuXW2l1mX/F7ULpRbzkIfQ97Z\ntXgnuLTN+9YRyz9RUzlmj5pxXDLpKOpEzh+N2bmGzD5CvqNhA/pcvUrGdEYjDyaI+qdHZD63iFQq\nwraTAREzRG8ljxBh6AY4lbYeoH6CWSRzifdCybt0Frm0jahCvv4a2hagMMNmFoo02uoy0ldqMlpd\nRtuztBVjHo0ZUEHBMdnWQ7Tp/CaQGllyjiwEOs2Y5CwgGiBBzoJEHSfqyQUQJZVzaOdSxHi/Dlsr\nLqO+lAEbC30gdg6GPNEP6Z8Y+UuWMeZeHZHl3Dna8pjZSsgV441ps+RQEXLmvHrtKp5ju22iDBoD\nIIt0E7Y55GSefYroUlWnX7TQ3l4BUZ7Xi1siIpJ3oN/mDBGQ2R7q30pF2VIwPvln/zaacxF671UQ\nzYlzfNaZLeoes949IlKp3SLPximiRf0T6P+s4jIiPqQ6LGbRm2yhvG6XWT2qsBuPCKIZ+VHsZWY4\neMAMbgl8r63i/0lmADKvM0vMQ8ydvTr8d5Eok06TEd8tRLeSz2C8Z4NQbLrHOte6cci6iYYK+lhM\nTIdoImYI0HaBRljcQTRoUMO8P1gQwfY82jBkxDOWQ5+lyvvhzIhgnBCBsw8/8wKjQuu7zJJBfqbl\ndfpbm1nmsltob+Q/GMVaxJmFgwga2cbafFDgxW6i07Jzcl0RDeGvoZ/zFNYlh8jHHLlNXHKXpJtE\nsZXgl4Zcm/Uqs4l0vxqnjEdOmEUR7Yy53CMwOsfgnsRWYEvxOLlePDw/IIpWa0cDCT24REPlGMnM\nm7DdUgXogekC/nByB2v7eAnjtLm+JSIix2NmURliTi4/hfVnwQwYBrMAiogscoFsGfD/OXLk2IK5\nYzIrVL/BbFE5tHO+w8w4NzEnhg709uCY64aBcUgsc50nMmcUQ/15olpyBrN4EYWsl8oS1qGrl5bJ\nj8Dsk50B+3wbddVy0OFl8rjNyZvjb8LfrJAzoDuG3x4QlWkRZemO8LshUWXpA/KmpWHLIXn1bJ8c\nBn1yJyTOzl+GAtG3oQ9/S9CTnP/ey+jXR++gnw3ulWLkqmrAeOLLaGfgov5JE3M2dQ1zr56K9oGw\nlZUu5thRC3OjRdStyQxm1Ro+47RVa0p0F1EKi/tERo5Qf4rZSnox6H31CjOCDTA+BtEA6SXOYSJ0\nGsyAU2IWlEdJfF+sbYmISPYY/ZhLtIYjyr8YvYv+NvGc0yVagpxlUVa6RRaKtDfhizza9JDZslbJ\n+ajpaG+mCrvqcX1ff+XrqP9wT0RE2o+ISHzESSsiJx/1JCTHT6JDvj9mpQpIURbGmJEnT94QF74l\nXSjIWcUhMn3ONStjQlfPXCGqiYi5MfkfvYBcTw3s4zQN8215lRwvER8lM2Z5HpF0K+Tb7EIH0zTa\nXPP5DsA1p5riSwj9o0duwRLfddrMAKkH8NcB33VyXCdG3A+6wy7bh+dSBmzUJm/RnAgY+zHfuXLw\nb3HeIigbRIIyy9tmGXM7liSfH78PuIcIyG0z7M/4eyLVXWYjHZPPLsD+UyrkPusSzdUmxwoz1i7q\n6H89gz1QcRO/PyaKr7aK9liXMEf3etBrW2PmsiZQXqeHmLtPXeQek9myUjHeCDijuDb5lqZExO68\ngb9HmYKYtrby+usiIuJ9CDTc8H0ga/oNjEdoY+6svADUcZEcb/kt7AuO72FullOwx0mcGdX+BqdM\n6GXEzfdFYxbONkn48rTlfAH715A8pLMMbDDjY6zbLfy/OYLOlpbJv8NbCnoJY3GX2VKPPiSP0Xk8\nl9CZ/TOJz5Av2JkxbNDwyCtEpMuCc8oQlDslH17B5zsFuaZKIfcgfK6+Bf8jzIaUiZDRp2hPyD1O\ndnWZf0e9HWZrK15g1lLeZmgN4GfyRNnGiZg57AKN9dIFvNOZ9F/J+Jdr9a8ShZRRokSJEiVKlChR\nokSJEiVKlCh5AvJEkTJaHCdZFu9d6zEyZzNi7ek4+WrPcHbkHuC0Tyd9chS1cePohuWRg2GFXC0d\nnAqOeHLn8lSx00dE2HPIi5JA+cYlsjATzZE0I5pmMqjznvWCKIeMwdNGHSfu/RnvyYeIADUY0XF8\n8rjcQfleAu1Z1HA6XgrJQzLG75NkBE/znqkTMpPPY9xrv/0XOIFbX4aeTEZBpYwTwCDNyL/BS9cx\nR3I8ARcejHpkJffGZLIWnFR3mUmqTTZ2fYCyy1ne81vlSXWGTNTk87DJJt9jVo5+H6ebw19AB+Ea\nTj/L6zg1PavoRKwwoCCrm4haHB/gXl7/AKePRaKpDDLp+w46WuUdzf5tZoaZYOzrFjlfBH+fehjz\nogmd9hjdMtvoV0PH6Wx2iohANUdmfyJZkmT67jDLyYxRriJZ0BcuI6sj8hZpeP7996EfW0d0beWZ\n50REZPgY96jjBSKZnoNtDH+BiECa0auFg/JS5HZpPdwTEZF9tnOZkWmdWVoCZnMaMHtGmRlxEuRH\nWsygV5f3KNs2bNn+APVu54B22NkB/0eWkeL9u9DTglwxfUZYrSKiZdl1/F0CZLxp30G9HWbS6EQo\ntBbaERbPzgUxYQYBv8s7rW3YZob3sXVGNt0UbKXvMYvFgFxVvP/9+R2c4CeZuWZsQmcFzoE47+Ga\nLvp67KEei1nXFhMiIHhynuBJ/EkPfUqtYU7dZdSmS9RXaMCv+eQnkjJRDQvYpqGTQ0WHrtp56KZW\nQv8ae7QhRtnizLBj5hlJqMMfrCfZvhj+ftxFtGX6OcpJZTG3B01m5BpirkwfkD1/B7aorxIFx2jU\n5Db09uAA9QdNjOX5TSAfDd5zn5HCx5yi3AcfY04cHQMdsFmFv9cK5EcZwsbdDsbBZZTwpIH6jDTG\n9axySk6fiFV/Tu4HP8aMGFP0q+MgSmcyG0g7zvWC0cJeE+2dWvAtTcHvjWegpx0iYw4Z/Xs2xaxY\nQ/IktTHeF89/R0RE0qdEDP3wl2IEr4qISDHPNWuEMU9UEVHbtDHWpy7mpbuENp8jCujOKmxONxkZ\nW8c8Tplo04QZymz6tVIW/sErMrPKKvoQ3cX/pIe+X6XfHjPbQ4TKtDvwC8ki1jjbIm9aFX1yhJxV\nzDzlEwWRdWEju2tAn5F+QzyNc5co2BIzsUy2YTz520SXxjjnkvA/F8jzkSXazNHwu3TiS66Vs0hs\nwT1FCD9uMjuSdR79qTTJoUKOnQqziHSIsNTzWK86RElMHmD8yitoV4LZUsbMUpKP+Kx0crlMmAGC\nvuO+YLwbnQ71wSgm0XCpGsrr2l/G10LXk3YP+nnQha/bNsnJwHVKsminw32BxwxHizXybJjw10uH\njACno70U1rtwRI4K1jkg147NDEA6EU5hfyZTrhEDQZ1jcil55GPQG+jbY+4Zcjk8f0RugcwBkHQ6\nkc9xDb83bSIlmJVHFtBV0cRY5bPcNzEzYeAS3avBH0+GRHq4Xw1NtX+EOZGeon5/HXuFJSK2p0uo\n3+7tiYjIVsQHQT655BKeP34ItO/BA/T7efqnzAxrprkgf8SEWUZzqK8Bii45qsMPPn4AJGOjCT2M\nE9y7ETk5Je+EWSZ3Q50Icq4TyThspJOB/y7HuA9t4PuQSJV8j5klib71OrCBgOCAsUcHH8Pcybvo\nZyGPuXjHx/MLzvEp0X7TI8yF41PY3NXniOIiJ5fw06GfTp5g/PQs5nzIffmdLvbHo7sfoD1v4jlt\n8CU/nfZ4JvNt8qIQJey48IHLzNakkx9p2idiktms5l5eziolHX08JNK7S/6hVgs2Yl2AjYyI0Egw\nK9OUqIMpM/1Zq9Bh5E+GRJE2Wyjv5SL9IDmtPBdjObSIiOee4bCPsV0mqnUh9JNEG3AbJiny5bkO\n6kmuQEclF/3pLFDfnPtGrYbnMozvu2lmBLO5x5lhDGYj6DDOOddr892kRSRhCf1OptEQN9ovM1vS\n1GOm2TzGwOB7hks0lEPT21zC/jI2Zxalu0ApH3MvdyHAniR/nXqIMYseEYPDIvp5egyfcOMmfI9J\nhGnhHPzfzg5saGUTaOXeY7yTGVGa1DPKjKiTXonrZAL9OyHvyqNHaP+LCczdCLW2z0x2TXKLbW7B\nt8Xo99sh9ijeEtHhWe79prDtrIFPjTcaoAtPjIUuPXLl9QYYo7YJndSIKNwbos5+Bza0uYm2HR8z\n/VkAm12uYx8XcUbZDSIDydX0+CFsojNFWzXe5qgvM5NiGeX4fMdZeJGfRzsKZfTBYzbmJHmE/Dm+\n77M8dw+6Oj6F/8kY8Md5pt/z2d8uMx6acc5BvnMejTF3Ht1l5scY+TD5/u9PmBFzBbZgJtC//cfY\n4+x//ib0cMR3qOXfzDukkDJKlChRokSJEiVKlChRokSJEiVPQJ4oUsbjqV2BEWeTDP8pjVwLO4jO\nVZaZAWjK+5ZZnLxpY5yQLWzeQeO19WQ75PN4LoqEp5l551KCmXR4t3YS8l58wFNesv3PRyinTdbl\nkAzipNOQCe/jORPyjmRQnrFJBM63mEGHp6cpsuV3HZIa8O6a6/DU0ifPi81+8VQ9m8TJ3LkUoorW\nN3Hvscr7miUylUdZqMw2TiAd5k/XbUvaRP2kGaWf5pf4G2YI4IFpagvRi8rqZTYRp35z3kG1G+Rd\niOM0MuRdervEiBoAFLJE/gmT93KnefzOM78ap8zklPfBKzhBLm+ivMtNnFJ2SEbSIAIkQ7SEFoOO\nK1lmCwpRb3xG7pQMEUA+dDfnfcUwj/IKRLo4jDRUQ0bbJtDDdAmnyIaGyPB6lVEUFzaafcg7+ruw\nNY1RvcEY6IdiCae1pLOQ9Gc4Zc6uMutVFpGUOiMg6SzmwmiZWVhCsvsTJZZIQb/5AU9hyYbvDdGf\nObkM9CL6sc1ARVhiVpMLaOfIMNkvfF+f49bwKxsAACAASURBVPtZm7wl98i/sYm/RwftVojT8mIS\nUbLxgtwyPaLHyGof5hERsK4SATXhXWQTNl1ckFF9dnYURGyEsW+7GJt8knwSKaKdaBuTEJ95ItAk\nAx12mrB5gxFFlzwbW0QXjci/oxeZPafBu6hE4oRZ2IBmE7FTZVTaBqJl4zLmqV3jyX8TEb05ObAm\njKZlksyYMCIPiI7nLWZnm9PfrBLxY9JfyBTPxy9Bh5k8o/pMidNnRh5hNK77GCiKJCMPNdqGNUa/\ne2PYju0h6rR5CXqoMiPB7Aj+ZZZl1J/ZVDI9/C596RUREbn4FObe4AHGuncfkWF/Dpswme0ow8wL\nczpwn3eIS+fIv0HUxayGcXuVmdBKzHp1Vlnx0f9sCuM5kwbrh805mxi3bUZ2pwywzrJEUDL6V9pF\ntC23At8Rm6EfepHtZRTqGtGD08dET5SI3mPGh+IxuSO4DqTWE+Ja+HdlmX2bY6xiBsbGqTMDCvk0\ndlrMYELbWyI92xoRGcMy5xm5TsIR/MTuFnSZTaPcLoFsefptfxX1ZPrkcmF2vXIe9YQx+nFyErSY\nra7EqPa2jrvvXi6ag5E/ZnY2hjbLMei8FEWtHfR3O8U1zUcUbaWNBu5NiIhMwJZMHWOZJ2dLeELu\nMvIx6S6zU5xRwhqRNT7alyG6w35IBE8IvQU6/Tn3MDp9TtLB32NV6Cudha0WiUCdlXkf3oB+20TI\n+G3YTuESbDFFopI+jbA+gT+s5eBrAhd6cYguKJJbQkTECkpSJidBnplkRtH6Tz6XYII5O2cEP1NA\ne4oG15sZ/j+vEUlDnpYWuW+sEceLWVZMZnEkhZDIAO3X/IQkOW+cBGzQ6UOXq0TutVfIpUKOFYMo\ng94UdQ6Yja6WYGYZcpaYQ/LsaFEUHXuaKdd+nRlavC78u1uGLnI+/GKO/nZmfDXEnTMn6pcRZAKx\nZfYQfBNlograRCdpU4v9hU3ELYxxNQZlTXYwx4KAOs2hfc4Iz9Xj+HufiJV4mTY/p09gpLeUxdgW\nydGQYvZRfQP11OvMZMO9mjZjJh7yABXIkaMRGd4g71tI3xIwq16iQK4Vn1xko+jvsOX4Av9vEZE+\nJQKzPkF/WuRZKheg/+yQm4jsFfQnA6RQhII+R+RR6MJm4zuYA3oePnKF/VlqYO8RdOhjuNeYXQUX\nhojI+lNPST6Ffp4swV6KU+g/QQ66pIW/2zki8FPklJjdlbOKXYLfW7MQPdeZiXVCxEgqzexCJvrg\nVqHTa9cw76pcS0wHY7vCLKiFGJDKuTJ0ayQiNA/auGxiLsUy1HEZfbO4H5Mq94sL6DRDfrvTLHRr\nRryUfEcKyRU143tAzcRc8rivD4hi0Ln9ffprQHrmMlGmHCIxozfNJGx5Z4d8oj5+GCeEP8zyQXKp\npciLVOiiPXHyuAXkZkxc4rsSM4aNUszYloX+Nl+/wt+hnm3yWgmzxg76tJkY8Qlc52Zc02ucoxVy\nnK0twzYD7ssT5OYicFXcHPdaZ5QYMzNurvx7IiJSzzLj0Zj6sVC/Qc7OkO8rlzZfFBGRZ7ewR4vz\n/apQQL8PG0Qdkvuzxix7zRHaa3nkPfWHX7Rl4doSpEwpZKHTUhjxgZIfTHgzw4uyKhGFk4FNtGuY\nz3GHiEj6kXDB/SJvxFTWsI98I4ffmTF8TlLkSuRtAo0IeL2Kv2fiRAz6fCcZMAOXFmWvw/cRfDPB\ndUHLQnc7sYjPjQhycrtYfDdZOs/1hZkF0yyotgs/srOC8jPMwmkY0PHAhp5SSXJUMYPiUzvMpmxh\n7uSrJn8vv1EUUkaJEiVKlChRokSJEiVKlChRouQJiBaGpMV+EpVrmoRhKJqm/faHlSj5/5mouaFE\nya8WNTeUKPl/i5oXSpT8alFzQ4mSXy1qbvx/L7/u6EUhZZQoUaJEiRIlSpQoUaJEiRIlSp6AqEMZ\nJUqUKFGiRIkSJUqUKFGiRImSJyDqUEaJEiVKlChRokSJEiVKlChRouQJiDqUUaJEiRIlSpQoUaJE\niRIlSpQoeQKiDmWUKFGiRIkSJUqUKFGiRIkSJUqegKhDGSVKlChRokSJEiVKlChRokSJkicg6lBG\niRIlSpQoUaJEiRIlSpQoUaLkCYg6lFGiRIkSJUqUKFGiRIkSJUqUKHkCog5llChRokSJEiVKlChR\nokSJEiVKnoDEn2Tl/81/9V+LiMh//g/+noiI5EJ+kdFERGRyOhARkVgyje+X6iIiMj0ci4iIW8yK\niMhsaouISDLliYhIKmWKiIgzX4iISMnE2ZMzRXdjOV9ERNJ8bpocioiIHSbx3NGMn6ciIrJyfhv1\n4DGZtB0REaleWBMRkTAxFxERi/Uf9vbRDg/ll1Jo92iADk50V0RE9EUZz7noZ7qa4/ddERFpn6DC\ncgHtdcsVERGJp6CPmI1+awHKO/kUv9tIFVF+MobnrZrMwkiXloiI+APoxjPwTJK6D2r4jLXQx+P+\nnoiIrK8u4/sSnl8sUJcpVRERGZ5MRUSkkESf5j38PqFDB34V38dDQ0RE/vGf/mM5i/zxf/EPUI8H\n3Vq1EtrtJdAebSQiIs4CfS5k0JFghrHWQ3x/MghQfxyfyRTKz6Rga9M2bMQ3oSfXQz/6DYxl535P\nREQuXL+A/qXRr/Ob0Es8i/oaR49RrnYOFeioz9bRf22K8v0+ns8kYMMTt4VPCzZYFIzxf/v3/xS/\ny6G/wwbKkdFERETCBf87a0M/S3ju8tevQy+oTmwN329evigiIi0ftr3380f4nnrI2+jP/mew6fgM\neq9uo50rFzZFRGQwRXuLWcyVkwkqqpn4/SBEeaGLBgYztMvT+yIiko3DpmccJ8dEfzM+7GaShG3/\nd/8EPuI3yT//Y9hSp4cyA+p8cIKx13TUvXYV8zjuoe9jzp9UAnOiG+D5rI8+G24e35dgW2MTOrHR\nREkLbDmRxPyb9h3+HTbo4Wvpd/C7cg62qxkoNxnH7wIfOjl6iHo3tvjDNGxwxPZYPvrnBPh/TlCf\nY8KYY1P4i3gaOl3EYCu+jTmbM1F/mIKth/Qr8w6+79qY0ykN/bXnGNtECjbpUY+TOdprtTm3U+hf\nIYsxDLpo//7wGP3tob76BtqpZ/B/k+X6Y9iOU8bvwjFsJmvB381nsHXXhk3FA4zvn/6zfyQiIv/l\nP/wTOYv8i3/xr0REZOajX4UK9Ns8Rr/7p/is1NZZL34X50DqY9hLLoZ2DCfwCW6iAb3AfUt3/LmI\niBhV9GN3B+vE2tplPNeAHv0h+hHaGRER6Qy60riPeZq5uisiIu0FxlBP4dkXXjovIiKJAereP7qJ\nNvloYzELf3x0n2vNAWwsyTEtW7ABO8Qaun/3U/SRfn354io6kcWY5GvolJFAuyZzlvs5bKd1i+sK\ny7V28fuMYKwbU4ydH0f5G9toZ76INdGOw3ZmrUMREVnEMQZpH8+f3IMuS7Ul9MOAf5m60EemDH0Y\nHdTT7mAOz2dHKC8J3f6b/+l/lLPIv/6n/xr1mKjfraK/nTHamcti7o6G0GvaaYqISKBDTwkPc6/H\n9aafgI1vGRjzecg5PMDcdZdgIxsVfHbnsMkk1zvfxzgbGfpLTD0xm9DvmJumeT75RR/+0T/9Y8nE\n0J7KGvqxVEW75kXo48H78PuFTcyxpc0dlNeEXXRvYt1zHeh9nIFvWUp2REREOwdbtmZo3+DeCfQy\nx/PpesB+FmWchL9NxgoiIrLrwkYnWYx1YYE27jyPsXTy0O2nP4NN9E8fiIjI+Z2X2Wf0ZXQbtl/f\nxnyVLdiGdgN9Ow5hAxUPbUlxDStx8e/ehc043Ab/x//p35OzyJ/+s38pIiLzHmzCiKNfNRQvaRdz\nwef+sv0Ae4IU/d6oiDng2ehnSqM/MGFLEsPvh8cY7BT9dIH1jzX4n2SAdms++jflnPbXMMalDG14\nDr+1f4AxXc6ipJgJG8suYdM3ncJHBHP0K72EdXE245i7aK9xBL8+qaDegHPdWcAWF4/RLjOLcsMl\n2OLUhUON59CvzR2sx+Mm9HP64YGIiFy9ij1GwoVNvvdnPxQRkY2XromIiFWEHveOsQe5eO011IPu\niN2HD4hxHXx805VI/uF/8i8loL4S9EFJ7hnnfdRftjAHo/eQ+48fiohIUUe5f/Jvfrsv+eO//09E\nRGSUhY1deg198tIo8+bP7+LBAeZVKY8xD2x0wm6jruX1SyIiknIwNvfbaGM95Eb9PMbaP4Uu5m3U\np1ego8IK+pY4t4G/27CRzgnXjzf38PsQa/fF89DlSRtzz4zBdq59B7ofOvBb+6fvi4hItoRyDRtr\nYOcW2lHwUe/hDej+uf/sD/H3CtbCd3vviIhIJuQ7z0PoOLOCdqcN2F5wD77DQ7dkvYj6OnO0dz7A\n95Mk9FpKQx/FGPQ18KDHfA6Tc6jDlhMNzM1mD3Mu5LZ6ubgiIiILF3NuFKC/GRPtiR4M8/CbSbpd\n14OeZg4+/+R/+O37VhGRf/Vn/4uIiGi3vo/yhO+0NmzXteFPc8UtERF5vwM9vzb/TEREspPnRETk\nJA/9SQm+tb+Jff75Itr7yHtTRETu/ABzLv8MfK0Z9L9oyz//7/+uyJ2vy2H8ExER8cxvoq5dzNuJ\ndQ91HmGMfrqFPUr6xh0REXnhGG39gQPbfuMZ6Hhhwsbv1DCf+z98RkREKk/Dhp6+QBudwS/+cAgb\neiENv3h0H315sYaxe+ct6NiP4V2svYU1eeMabKDzfexJXszBb9xYhe0tVdAvYw6bLMPtyMfr2LOU\nfRhZj37DitO2PnpWRESWX+S758c/ERGRy7VXRUTkr12MxXcuwzb338P/T65dRT/u7ImIyMDD2JRM\nzv1fIwopo0SJEiVKlChRokSJEiVKlChR8gTkiSJlxhpO2N05Tq5bCaI3XDTrsI9TzGIKp4fP1BGd\nmbo40Uq6DE2OGG3TceJWIILGd/B3x8HfzRCnnoGPk7QRo0+uwcjxACdxjo/T1Z6G70sefv/gDk9J\ndTy/XsOp7yiPemIeo/yM7FgVRsOMItuDfuodnLjFEuj/PEHkTAwni5kxjl8fProhIiKJHUQ2Chvo\nl3sOp8QuI9LWDO2bTRDNdBc4Rdep32whIf4YuvLYdmHUP5zjlHFo4IS+PMVJ8zAB3U8n+HtmBW3w\nhNHhGcaqvIm+7X+C081SAifIwxH6Wsvj97ER2q4Vccp5VplRZ0GIU9NwgNPQhYETYzNA3y2daAE8\nLqMA7R/1iQAh+EAy+EewQD9nPOEmqElSAaJuvob22gtEhdon0Nf6BaILxohYyHmcfhYuwRaaY+hh\nwJP3OFFeKRN6njfQnvbd+2hfjTZShs3nE/g8GaGejoPIRqILm0gLT/gfYRzSCTyXL6D//SPY7qCN\nenSiCsZD2HxwAbZ2/Rs4ZY5RL63PcGzcZ/RuxAjFHZ7yenQVX/v3X0R7EoiMSgX9iqVhc4l1fPod\n6GHcINorhH48k5EdDVE8I4H2pgTtHc3x92D+ZeT3t8mc6KvhlNECD2P33o33RESkxz69XsHJfzGH\nurIadH9CpEbowsbaI0QG6gn8fUi/NGKYuncI/5Mjwma1huiKScRKewTbHD3cw/NN+JXBEiILVy++\nICIiLiOd3UPY8P23fiwiIuO9LRERWXoKn0YVczZVRWQvoUE3MQefcaKs/Bz0kIyjvbkIybNK/YzR\njhn92XwKm3YZ1ZKQUf4Y/0/EXRzdk14XtjTch3GnXKLjSmjfAaPsR03oZ3KMSLU3ho2GFvpPYI0U\nNmELGlEgqSnGxQmg//EEthM4+L3uoF/2DOPiHWEOnFUCE3N9MYE9zPuwtdgEeqwaiPTE6T81j+sR\nfZnXgy8bLdCurgYfsEiiPXY0V89j/C++vIXPq1CgNkM//CnGQTrQm42gpMzbrgxC2O7qyisiInJj\n+BH+fwV+KX+FSLYb/6uIiIQOojLWU0Dmpdj2yVtow/hzjH2mDNtxCujD9D4qHbQwVpcvw2/vPgd/\n5sVgC0YK/u/e52jH4R34hdM92P6ij/qulZ6GLjVG6jToOCSCY2cd7be2UW6aSEu7zWjUHLqM59Ce\nqYe1bO7viYhIeQX9jqF4KU1Rb7BA/xpsV4RU8W3YbqbKBeGM4hbRbo97C3MKH6H3YWstDKEE9DmL\nKWxkQLRscQF/HzdRv9aF/vZSjJJRP5KErQw+xxxJeZgLRozIohR9EyPBugc/uzTDOD60YDvZEfxn\nMWx+2YdhRpo51Ns5Rj16iPF1dYzHRMfzp/voUK6AuXDahr66B5jbl85xjjpESk2JkF1zqR/8v5cl\nItQhgrOI9SWXn8joAZAHXSLR7CuwcesYZX98SB0JIq6XkvhtPwZbbfnoe2Wwhz6PoYNHd7AGLWx8\nv+VjzA7a6HOYhR9zGeXWPifa6Wk811vjmvmxJ19FpkQ5BU3uyzJckwmhLLTQrmEH/ub2h9jHbb4C\n21i9jrnSI6JSYvhdh+tA3sDYHH32Kf+P9tqXYPO1BMaqRT+vjzFWE+5bU/RjB2xnSYd/0ow9ERFZ\nu4ro+nwAGx77KCflAUljD7EOdua3RETk80+BVnOGGJ9BA+VuIOgupReAYFoMUW8Euy4X0O4FkUmT\nddSX3sZeoHIFEerHf/4xym+gHvMKUCXuEfzshz//AdqdITrha0+hnR340bIDfXz2AHPp0SPMmQvX\nXxcREd/G/0VECoWnhEAZKWZgF0MXex9jGKGXYSfdT4heI4LHfNqQs8ogjnlweAI/u5TF2rfxEtaC\nxL8Fmsv5CGtdqYS+zR7jd4kY/E09hjZOU5in8SHRUFvw90kiTZw2xjhOv52OY56HPvqiEeGxSKJP\nifN4bnILa67Bd7AS/dagC90322iH9nfwzpI28Xyzgefzmxhr3Uc7Yy2MhXyGfnx6AwiNzfYfoD/P\nAi2hEYUQ4/vBYEo0WILvdnnUY61hbp3QFgyiZddieP5QR7tGROUeH6K/kzr6aRi0bQ1jVy6gvVOd\nfmpCJMk+xsNlv7QAv0uf4zoi+Oxyja8m0S5Dw3OdMY0q/GrrzUefAy1ybRvIlcG7bP825sDOKlAV\nn36IObOdwN9/uIBvCX8f5bzxFuas5mJduOr+7yIi8rNb8LGTE8zB3Dcxdyv33hURkePR7hdtud2v\nyu/79yUZfAfP+B+KiMjb73Hvfo5IshrG+vU/2xIRkVs5+PfEC5jPQZdr1H3o1iKE8Bu3f4Hv1+BX\nBjP4m+k9+O8Ekd+/0yV66iJQW6sFzM//633sv5/5DzAWQmR4mIZffT4EEubnL2BOpfrQ1TqRPp/8\nBdpTfhoIl8S30I7zP8Lca76M94XsO98VEZGLJmzkxjW+q9h4vvwdrt1vw6ZeiD8vIiJ3PayJ1utE\nxf7yAxEReT+O8r+Rh15u5Xl94deIQsooUaJEiRIlSpQoUaJEiRIlSpQ8AXmiSBlSo0gugxP2wibv\n1tbwGQ9xahhFhisXEZkYM0KQJAHK1OMpMKPucw0nXAEv4aZ4qhjdvTXJozJgpNdYwSliZov3tE2c\nrG2QS6Zew92w+yeIFHT2cKLX5d06jWgEN4dT3yCJ72MRr0bIqCHVnTZxyuoFaIed5l1cwXPZLH63\nuoJTYCni5FBfw/8LhH20bIacGUEIee1xpKG8rE6+DleTCfkrDB99tHlnM0VUUuCRp0ZDXbEpykhn\ncFJe2MaJ6+GY/A4L1G2W0VfNIFqoinLTKdSXyWEQdA068s8OgBARkeoyIqyrm4gw2oR2HNzF6ems\nidNbewLkybSOU9lkBjaU46lumEH7U+SH8EYYuwUjBPEYozkho/wGPouruCe4+AbKy2zjs/cQJ/33\nHyIKNtuFHhO88zrKw4aMYxKQjKHPeB7tS2/h9DlHhEuujtPiwCIHS4hTYYfoBTEZ9XLRHz2L02Kj\ngH7Fl3i/vAmb6jXJTZFGubrAdj54Byfki9SWiIjUKiint4VxWlri/2cYqNqcczKB9m9dB1fNsIv+\nNeaIfk5HmGMtHafIsQae70157ltCZCMxxhzpk8PCtNhvcs6EafQzZ5PA6QzikV/CIaRj5SnMh9df\nRsQ1IAdUuoYTfYOIFyvDu++cGybROnObPBkO+sgDecnFoBOLNmCmODaM1tsl2ExpDVGsi9/F3Vm7\ng/K6t1HQCcvtELkyHSEy6tUxBzs5fJ8JUF6KnC+PyZORzKI/ZR31+mnYVMGCjj1yniQ16H5OW05n\n4B+DIREpRCtliXbKrsEmAxs22TpAu+9/AgTST395W0RE+qdox3f+EMijygqiPKU6yn3qDzBX4wb0\nHY7RjkoJvsVfoD2tKfppE8W1ILdWOInQDoxcMipVY2B5NMQ4WxZRB2eURIg5kDEwjlqT60GLkXQL\nc+n4PiP65JfKEV0Yi6G9syxsvVwg+m8N/U5twldVX0YkvLKL8TFP0N+Dh4jGDT6g37a3RETEnZAY\nap6U9A6iKeMNtKX5Hsr41nVGq8jDMTlCBHaDbSgnyKPWJwrH4HwrsDyHtt1F3TqRj9/6D7HG7b6G\nNTiWwPx9dA9R+scHGPPWHOjPsIrnrjyN6NCy8TUREcnnwX1wcAS/o5H3orIJ2xI0Q6Y9osaOUG7z\nABFOIwPdplO8X07ukzeuop7dZ4GSHRxijty7gTnQ+Aw6bfah48wKba6MMV3KkOjjjJIk/1EnTk6d\nFLmwGIE8OcKe4TL3Lh1yqo1s6GcSIPK4HIMe+9Ut9LuNfvrk36jU0b/cDvYwdwZACeQDtLtsYXy0\nOOEI+1jfemUieMhD0uL61bdmX/ShrGnS7BDNkYRvuU3E65oQHTaEDVs9/P8+kVSPbmG9z9LXHSTI\no8TxPO7Qpj9Gf+OXYHeJfaIOiCSy7n7Gdr0oQQ660Dqw2Ycn8B9WBn3zEih7703Y3GkRY7q+iz5W\n1xFdf7gPTgOP0e1ZiXsLF3PiNlGibUazt5exDjRGRMJMYHtxgwjjBNa65PkvdXcW2V3FGNtEYDo5\nchbeQb8ec27qrT3ooAv/aY3Rj+cu43PYAsLRaZFTq0KEILkNXZN7jiKMLeGi/ScRHxPhuIUybN9g\nNN8q47nRHP32CljvCgZs736/wXaRm/EEc1RbYPCmRCdbcYztuXOob2kl4oFC+TtPYS9Qexr+7taP\nYOO3foz+TGmj45BoigzL5ca/dwxf5JG/UKef1z30v57H/3eK0FeJvHqxBfxlLYPnulyvbeqxkOc+\nm6iwXpnoDRE57o0kcKC3gy7spvsQdrVdQH29LPR0r4E9pkcOOr10Sc4qNRc2dn+Iz4d7KMMaAE1Q\nuwPbb1nQZY8Il0oWttQcEdFGVH9IB+p6RMbM0VYzy74RIq4l6Jhi5LmbQGcWOR77Fnknq5gbG0Sr\nnr6P74dz+O/UNsr12mjH6WfwC5nz0M3SDtZgl+jViJcnaaLe6jbW2jz3nYOfQJePL8KPe3HoxUjD\nbxTKEZcLUU1E4i9M+MdoCMdcn0z6mcIWyo84LDNEadlJPBAjkmUcAL3mjnkbgfvdl16B7V4+Rb+7\n9H8HHfrrLH7ftDFXbc6ZAt8lj6FekRn0OrO+2gvOqzcxR8c6fN7Rxe+hnQ8xp1/+EL6mimVW0iW0\n48Id7CX7fH/rfA321CTSvPIJOIC+fg399NvwAT8mkvYS14PLcuuLtrz2WU6O3uhI/Jf/VkRE3vrd\n32ffobNnAXqSyh3M2w/+CMiUNQ86bHXfEhGR3z2POn9Zw5jrdzC2D03ut5/GWlbAtJPcKWzQJu/Z\np0UgXEzt/xAREYc8Qd97jryd/xv83CoR2vVz8JsfpNDnZx4B4bM/wP9TQ/Txtd8Dyr92H8i7kz+H\nrXzAfdt5coNNTSD33nkZ+/gXbmNdujdEu9r13xMRkVNyx4ZVrIXf+xls/yaRfOMYEITzK7x58yOs\nc/YfXZHfJAopo0SJEiVKlChRokSJEiVKlChR8gTkiSJlgjgz5FQY/TEjjgRmVsjhVM/iaeSEzOLJ\nOO/P8f5hPsaIgoYT/zjZ+4MJThX1Be+2Ck4Hdd5HtJi5Z0bW5ViG9z152pkguiPOk/uChaibscKI\nsk9UBpm6dd4pNhycJk9zRIfwXuOC/B9BGqecsynLT/KUm/dIowxFVhxnZoMhTnGnbejrOMqMxPuq\nr66CoyLOe5M676unGAny/blkmHFlSh6LJNFALjO66CG+H/YYtZ7N+Ry5TRgBHfLet8vMLg4RFBOe\nkI/Jw2GxLZ4g0uZSp9bZr+WKiMijh4jqODOUs/oSohUbT8M2ejcRaRgO0Z8h71drGk53C0v4nJHj\nZeCinIAoJiEqKclMClPeZZ320a9ihRm0tsnTw37WBrCVoYsT+JtvI/Jbuw7UQG4ImxuRbd8fQH+J\nDCIZ517Eqeu0g78fPyIrPOfEnKfDhRR5QWiDDWb40pd5D5OJAiyytrvMvtRu4rnQwmfRQj8C6v/2\nDxiN/C7Z2KO7y7xLW3+BHDhpnBbnfHLj7JCPZIiK0wXYWJa27jIrQGqJmXUC2JXuM8LvwTYtokyS\nDvQ5szgXyA814Rw9ixQ2GUVaRtkRA30KKpQ4bSBGRIw1Yba2BLlahoxM5njfdgVjE57CP0zyiN6Y\ncegozowquRkqWBAFNWcmqXyN97bJD5RY3hIRkYMjRMMzNu+Pk4dn9w3c8Q8YIV20yH5PhJ/dJqKF\n3FcGM8PEPXyGRBe4vNOaSOHv4yk+0xP4o5AR1WSZqLgp+TNsIlYaaPecXFqH5IdoutDL1gXodY0Z\ndnxy8/Sb5Jkg94HD7BemjUl3+hh+uPGAiCDeHy+fQ//PX8acXq0gIjrPEXVHbh+3z7lNnhKHiKZY\n/ssI6FkkVkB9sccYT/cxyjVHsI+QSCdziiiZxXv5LlEegQs9Vi3oz1qFH/er+H28kmH5KOfoL7j+\n/BBze7xHBGOIOZdNAFXXsLg+dXxJlsmV0kKZVWZQKSaZieomoj6xU5SZzmPMTn/8toiIvPlOxOWE\n6M/6Du5HaxUgXFIWESSriAol6ujDKzRwzwAAIABJREFUwwf4fXuM8lv7iO6bCXyfI4oqv4Uoz/Ia\nUFL9I/ibQQ9+WsgZFkvBf4QptGd2wDv+I0SX5geI3FVyaE+CvBwVcup45DDxF/j7nbfwu5O3Mcd7\nGCLRbOiuyOhaZhVjEITM9FX+anGnPtPZ+T5stdeHHic60bNEnjRsjlMNY71MjpvGPtrdYdaTeRF6\nSBPt23CwfqY7eL5aJRrWxJwaTvB9yLR59WXoY5/+3T5l9JFzZUpEanxkfdGHSf9IUkSRjOjwnSna\nffwRuWuYGafJdd/9EOM8T8EmvTHm2OBzjFNtHfZXqJBn6zH+3myivPKL+N4g0qj/AD5Bl/ekuBsh\n+TBGe0RfXdyif1omPxE5SAbMttZrMVuPh8ilMSZXAPdlGjcTce63HhJxSMCHOFPY/LkCbLl5QtTA\nPvqwmUF9hfSXujuL3HobPBC33oNNlpllqUyk4hr5IcLryBqSfYi10ifyWS9iTU4yg1erSHQYEZm1\nKM3SdzEWuSKz5sUxt+r0g0EAP5KwiIpg1pAiucYyGWZNIprCYCYZvQMbL85QbhYBZEmERCswW2mi\nwPVkTvQr11EtQhMzK+Cgh/pOuuRUnML/15i5a5FFOSsx/H+4TyQ7eY0CG/rJJhHZnrbpl5lv6tnv\n/a6IiMwidDAzoZlxOGZSnImdgw0K0WP7J5grjTHGSURkPnxLbJf79irR0CuYC14Repp5aJdVIFp4\nCb5vfWdHzioa0asW/e3kU66FS/CTFYvvNhbKjhNpvCDnlMl9U/OIaNk1cjuyje6M/nYEri2jyrVx\niLVpykxYeWaxDAlhy4wwr10D35fWYEO9TwBb6I3xTlG04I/WuMYfvYt1YTuEDmo79BOjPRERGQyI\nVKTfFe4bzz+HdjZOoVPzByjH3OVaSRRYlZkWB0NyVLloX1V4myHKXDmDLXpEp2nkCc3mibSO1jkD\nzwVEayW75P6i72jeQzse92EjeQPt8S6hnu04+u/wHaw4QL+Gy9BnlyjnoIF3tg556QhGO7P8WEe/\nXyQnz04cyPvHFha4kFn77J9gHXm0RURVCfZjfgK7SK+DD2VxE3No98U9ERH5KRH2F7eIGvkcevnZ\nVfgw+zHG/z8SkQ++acszn7wq/jdhA3MbyJenD8m19zWgePy76OuzHMs3mQhsfAKb//YGbOMiEYJm\nH3179zqQ4998jD4Z6+BQ3LOY/fg217jfxT7528waOt3H/vD9KXjtrjPr8fcP0LfnO/9ORESOHsOP\nNLa+ISIirxaJ7o2jPcmbvxQRkb+6jEEq853lO++QA9ZH+94lYu/qAfxN6zm051wftnok+P/rc9jA\nYvFtERF5h+ipS2m8Ex4PMKcuZVC+/wZQYsZbfDH5I/mVopAySpQoUaJEiRIlSpQoUaJEiRIlT0Ce\nKFLGZeaCgNwCjSZOB22HURtyPwwZJTz0cbdrew1cET3ej59NEflMMq1HOjr1JHfLlJHXxJxZlkKc\nwOkOIyQD1OfWeUctj9Pq00O072QCVEF3zGj/p2Q0J7pihRwF3TEiBEKOhGSG2UsC/N13cfoaZ+Qi\nmSLvCLOheAZOYYc2om2zwKMeyAXRYtQr4F1i4Ykj73OW6uyPTb4UHSd5XccTj3dcTaJxUnOcFloJ\nZlIhv43FE2mPkUsnwClj0cD/kwWcWvbJd1GwyLzNI+KQqCWNPBUG2xpjNGnuY0zPKnPyV7z7PtAD\nF8nPsf41nhTv4rPoIaqSOsVJ8JT3y1uMusQqRAUs0E+N0STDxhhPiTYIeVc3VuFJfBmRgoSL56N7\n0blXt/D/E2a2uYdT4UNmo1hdRpRsKYOIwZhIFbMLvY3Jl+TMUN5owMxBZWZZWhCNxUwK7gTlhkRP\nZLIYa5ORBm+EU+M4M3oViSZzJszCMiAiKofT6Ngc43D0I8ypdUZejS08V2OWJP152HCHWUJu/OQm\n2jNmBHUX3y+V0d/OAWyuQ6RQdgnj4go5jGy0K8VsWXNG9xyiV1Jl3gUOzn5eXCqTW2WOqNGYaJwH\nP4dOjx6Tb4iZVDbLaNOVi7DdFHknqlN8BiW0aaHBdqs65zG5rPqMBs+bvMtegu3E5mjHo4/Ac9T0\n4TcyMd6/Ji/DKIGxnJNu6MEebZioBz0Bm7Es1L+UYQRyjHalmElhHIWEmaUoySwUUx/PWVEUPEke\niSTGyGAGhjSzfLSOo4wr+H/EFxUzYVtXmAnAf6XO3xHxR+6G9tGA7SFHzi/QvzpXl4hXamWJ/CYc\na+0Un3cDRFxm1Yusl5nCmM1K5pgz8z78YryJ9s9mmNNnFecWxuWTHyBKZNFd12uM8hN5VF6hvs5H\nmWrIiUGUWjwOvWgGM1eQ52nax3MOsztZRDwGU0bMk8yElMWcHo2hl84Ro5dZTUzGSVwPWRcKjP4P\n/gr3oA9+8SMRESkRdXSShV8ZMQtd1YDt5F9AZCxdRl1ZZkGKEQnoxbEODMdEF7jM0sPsbk9df1ZE\nRGY5jIFjwIa7LfI07OHvWpJIQ0aVObRS9Fj+PmzT0ul/yadkMKOZTtRTiihXj5wnyWAL/d7HIHkd\ntHPcJndBFmiEzAbWVJ18F240F7l3iFCwZ5WGhr1EeUSkiQGbM+Lox5AIGZ0ohBnnXLaAjusTtOfE\ngK3l+kTZ1bj291DeCTO+6EJ+qzx8kU5eo9aYGYROUG4tQVshV05vCr++SiK5ccQvJyIHhaKsH2EO\nlnOcqz7aPeReY5gi+oFZododooF9jNssjX2ARZ958giTuVYkcqjOvUgbemh9SJTIGqKNI2af6Y9P\nZEHeGn+Osc+R963RQUQxyh4ZbqHM6hKec8jTEBA95evoq2Oy7T5s/V4fdaeJiPZimJ+nh+hLSPTZ\n8ip0P96H7T0yEPHU1s6OgBARGZcwJtVl9HHzKmwxyGAMXXIEpsg15p+D3zA3UG+D2fK6wn0dUcf6\nJtqfWMLnKjPL+ETLarSVuA1bDxLQk0+ePHcBPZ0KbNXrwG9r5J4JXfzeMLC3WEoz+5KHNXnItXuY\nxv9np0SzjsgRE9B3cO8yYgbKc0Sm98jRpRtcP+n34zbGwWN2vZCosfZtjG8h2q+GeP6zR6g/7ZHb\nrUwUMLM+SZycbGm26zb5Sci1WEji+TAGn3GOfIgiIskLy7LM9wGbmeNSm2hvLoDeRsz2db5Kn0a/\nPas7clbRF9DFJudtj1lA+3fQ9vIV2HJ1BfOp/wDz2ea7QlDi/s6J1mqib0uwbVL5ia9jTFPcz86J\nBk6Qv2PSg5/2mWVU9zDfdfLNVcldZT8Lmxo8QjsyMyKjybfp8hbA6SH81oUl8msYWDtXB6h/WuMY\nN5n19ALmVsAsb7MDzPkx25euwhZX11B/0sRcmTDb0ogZytJJvrvFyOPGNXnBdySd+1WTeyaX7tAp\nYE7m0kSZhUQFZzBnvRSeH/rkNOPeI54kVw0z6gZEy64Q3btdBteLmcA4z33Y7OiI/HD/s5xJzOfw\nPpU8/r6IiAzOg5/l2z9Fe+9vYP3ef4YZIrk3O6+DN+UdZjV0C9D339qFT/ucPHalDsb7wytY16+c\n8IZAAL2Hp3/D993qyvRcUxa30Kcs3wkyS0AqFu9jT3J/CxyrF5/BGFzgbYHV6xjTe7fwHn9UeElE\nRC4PUPdl7R0REfkgT50n0fYrC6L1DfhFbQGEidEEKjee2YKumLVSs2H83w1/gu/Jzfe3v8ZMuTlw\n4kw+AJq3fBW6/DmRjLGfIBPY/rN4pymXMLizLPoRnDBT4VOwucO3MEfqV4Ag2nsTtvPM75BHKPd/\non/vATFzcwZ/981t7MHkPt6ZbtQwNs/GOQa/RhRSRokSJUqUKFGiRIkSJUqUKFGi5AnIE0XKeDpO\njBZEoJD8WCrMBDRl5pgoM044wklXkRklogw1/ginlC4jD14Mp6smIxUmuRU8nmYGzHKkk52dYAIx\n4tGdYLAn6zypb90lkuU+yn/wABH4oc9sSOfwfKJOZEpANn9yEuTJFTHjSV9ADguJ8UyMrPI8mBeT\nd4hL5GGpBDyx3EW0UiOzuKuRG2OBU/XsBd5bb+H02Ijh9HjVDGUUkt+GWSrGgghen9F3nciZYEHW\n8SnRRYweDJPkoYij7BiCOdIYIVpSJCrIdxhdIQN+t8/MKQlmAtDJDn9GWV0GKuqE/Du3mLlh8SFO\npDefxalmirnqC7vQzT1G8cMp+qsN0R5vhpN2k+0xXdjGghw0xRSe9xmRdDyir5IYo0Qf7RB2o6yh\nvOkFnPqefo5T0kNmK0kwo1iWWYZMRgJ0RtElBRurrKFAdwrFpnkP2yTqKsrUYzFbU4G8KXZIdv4c\nOXB4B9YnC72rozzbgV6MOE7+ezxt9m/BVpsbZN0nz4lew3Pb6/h9huOWYFRynkXkd2ud2U486CXg\nnBp4mCNOC3ZRzsKmFxXoo0g+J8OGDRu8SJ8jB8LE+82nyX9Tfv6Xfy0iIg/3YBs7TyNau7qEE/iY\nCV207+JueUJHW8fkhAkC9EmzOPZHvOtOPqCVOvpqL2BDVXRJGk1yUZGzJcMMWnOiCOYho9S8B21y\nPs+bkT+CzQ0eICPWfUYSn/vWloiIWB65FhgZNBiVn5D3J1VktooYG0R+qID8SgP2O0n0WsqA7Tlz\nor5CRJoLJbRvsIDtOswup5nM+sbMWeND3juPeI3IPbNmwB/H16Gn5DL9moXPkoaxDYmO8qiXxx9i\nPO7cBZJpzkhJnJkj8stEBlVRvuOhv5M4eYf8r7Z8hUmUm4rB1rNljP8GAh/iEKnU0SPuL0Yp6ft0\nImNS5Mny8/A9GSKocjr0PKfe5y20M+LC0C2Oe5K+8Q58bZ+RaimYYghscyVF9BTRRWaLWTM4j6qX\nQQSRpE6q9H8hOUoGaUTCJk20pU+01ZJH/8170/k6yg9TERcV19Q8UGceuci214CcMWP4/YgZwawB\n10ZGz6fM7FJeR3tyVfx+1oKNJUP8fkYUV5LZIrws29+B7h1yaxlEyUoFn7vb5N8J0b/hCM8djmA7\nJhGNuQozeDXRz7NKTGf2DqKwjFWiDHpcJ8nRYOjM6DbAOE3G+Ht2NeKpYn+GQMuFHPt6De32XfCq\nnJIcZ4NcAQbnzAr10iBN1rLAxiouPi1yyRjkSQnL9hd9yDdt0ajPoU/UBLnFTHIfmG1yvjGj2CqR\nsA8YEl7ymaUrG0Xgsc53XNiXWcJ4WF0iu0ysd8djfNZWmaFulJdOm5msiNbyiFQWtrm5RPSmxkip\nTQibxnnHvciCSIjsEfzJhPx1gQFb7TNTVNvFvJ4yGm/0YdP1Nf5OI3qW7Sj0vho31dOvYV3RXsHe\npMi16+QTRFInc+ytBsy6aTMbZ5FZPjT6BZ/og4yFaHiHa32Pe6dclvtI8o0MuW+culiffA2/d6cR\nUhP1OiP83+B+OEJW+zHaCBF9+xGnIXndkmmsIwsiZTTyjoQh1zUibaYB0boJoAUm5HUyqf9+khnJ\niNCUSbR3wH8zOmzML6Jet4X2JapEVR9gnPs20Xvk8/CZUVNfxe8zIfdsV2DbiTiRr3OU49F3GLMv\nES7lpYSUiCr0dpgplPuBMAXbzpHPxLOwTlQF9tSen91OQu69XSPipcTakWXGqfkSM4LxFcym39bJ\n+ZIaog2jCfzD/AHWyCRRvqaJtgdz6HDBuVIlKGjm8xYCiYrsCd8RuP/qTshjlMaglM5hLzBidszG\nAdbmUhK/80JmxOWep/OQvDvP0J+RWzC/YIbJxR76s4x25SNENJEq8QHKPfoEezbHR7/LBfIoCfqd\nWGDdG5rkGeXvOz65ZZilyiI6bbyAP+qG2C/XfNjElEhxg0hRYVbWUho2siCXZpxZCkd9zglm1B1H\nNkVEzTgGVEUxwHMlIiFD86uRyjy3j/5nnFdFROTgl5izH72CcT7wMKB/6AOt8pO7aN/7BnhTrrAd\nDza4bmThk6ZEkO4TYbU2QTa8T4jYf20T/CZ69tEXbXF2fk9uNH4iW3Okeuqswx8nU8xi18Q8n2fJ\n0bLPzE5LQE99/y34xden9FffhT9qrPM2wM9R7vgc0jjVltGX+xex7/xOMUJGo/zOI9a3DZ6d1Raz\n572OPt87j3XjUw82+Bo5YKZl7pF03p7IY2xfIv/pp9/GXIp58NdyGb9v3YAOX/gD/N1+F2O9fhkb\nxEQaNrS9QsSNjXp+NmdWthH8xVNErboVIGTefBOIoasFcOL4+W/JbxKFlFGiRIkSJUqUKFGiRIkS\nJUqUKHkC8kSRMoUqTlGTNZx2Jis4IS+lyVb/iBl/9hB9S5YRETHJC1Ils3ksiZP8LpEnpoHo1XzO\nqJLFU+Me4R28b2hnGTUkWqJ1g1mLFsx21MfvNJt3h5/fEhGR7W1ECIJl/G5zlxGdDCIeegnfF6u8\n60qW+EEV7Qz86J4nI/Qa771HFyENnOyPeRfY0dkOnxFnoh483jed2jy5GzBbE0+xi3lG8nd3JVVg\n9osV6Mya8P4yM8c4Nk4tNSIrnCZOIyenA34yS04Cp6fhPu8Bk2nfZFanKIoy6gPd4wo5Xnpk5C8i\ninJWiZGTJBPDKWzrPk7w9w7xmdtGeSGjSbMKxqTGDFmjuzhx9xhpLBKxMmfmnSgTQdzE7z2fDPx9\njEGBGXRijJAG5O8JbGZQMKHjFUZbUkS87I9w+tt4iHuE4QbamS6Rn2SCsc5YsAUe8MvAQT2DHmxn\nOsT/SwZOhZcrmBu2iXbH5vjeTDA6OEG9LlEOISM1Qpb6yemE+mKUsch77y5+N28xgu0y0wI5iKw6\nIiV5IpPqQ0RYuoyYD9tEBTCCU1/CabfpQk+lAucWU6kVGI1zXWZemDCrgIFIi+OcPftSOYv5NWLW\nowxtprjG+edtiYjI1i78R4rzeUZEWYYRQ4dR8hQ5ZdIB2hgjj5Df5R34KsrJMUpsD9G3OLP4JJl5\nYasAf3BgM8LYYtYk8mmYRAktjhABuP02+H3KJu6m5jZhw4s6o0jkPqmkaOtRJrEF009kyD1Afihp\nMipH9EXA+8RuJrp7j89unxlZiPBzixhDgzwgIZGF6XOIDFwsEMFDtEAG7kYcRvEd8pKED6Dn2w58\nSYl8IosM50IB369uon6rRvZ9zsmQ/EPZDKP2jBKWJ8xqRXTHWaXM++kbW5hzS8tYJ1Zo0/0JbI4k\n+pKokqOHXApCjjKTHAizGeynrzPDxYxcN1HmMx/6CVlvitmf0kT4HDBT3OAU0apEqSCJHupqFIFM\nWPahG3sfa2DWxBiksyhzOkJjT4iYWdCmp3E87wbkCiHni0Y+INI6yLjFyNzBX6Ht5K+4/iLutt/9\nBP5+7jP6zsjkpIN6FuSDC4jSsnSiNJl9LxllhesQpZYgV8IXaAL6a2Y9kiXYht9AuVP6AVKsSJfZ\nM2YkZLKZUcYygSKtbxP52INt6fpX4zBLkE9iwqh/tgN/PqiRi+0Y+h/XMZbZCFlJNIBlM3NFHv43\nyoA4OGbGLwt+t7wD/coB+I0WTdhCndwyx6SHK5aY4eYU3yfJZ+Ro+HuXaJMieVdERDwrJsdEdYVx\ntNNoM1NcFbY2CIm0pK3PyOdRWmAcRhVmXyQSKBXCn49nWE+XiCJLcT8R7kP/WRv9HOvYA+UkLVWO\n2Zj+okKeGp2ooHGb6CNyDehEY0VZ4abkT7P6nHdpfAZEcSU8jkGH2XnW0PYgJK8G+TOODvD33TLm\nf2LGjJTuoXwV8ciPV2C2UDtHbqsayremRGkxe5xNxKM2gB72aLOpLCO5LmylPKMj7aA9n4+4b2Xk\nNbPgXoEmrTHqHZthjiyozxTrG87wfDzNzGYwbRkSxZFZpX5HREmTnyMcm+wnyyNPnRZDv0pT2M7c\nYES4Rr6PFvphMStq2YcP6BE9HSPviZBTLU4EzIx7nDn3MNZTaP8a93xeNkKcowPjSp/6gI0HRLZE\n6G6tEKFIUL6x8uVeIiuaMLGmJOkrWzra7yWwToVEMzsD/N9hBrhM/Ms59tvEI39Ffo9onzo5HHXo\nwmXmVJM2UKcO+wMim/PwN5kp+h4y82JuAht3iPbRPPw9U4RfGRAJPh0RiZygrWYjv8E1iWv1nGNd\niMM2l5dRf2eCdg/JYZhIo/09rr0OeeRqS0Qbcd/dnmJs0nzXiXMuWFnoY0LbPGnBT/Qewgbn3MtM\nrjPLHxE6aWYP8sgrZzNrqkmOQl0n92XEY0TUc2KGvZcxp40YsMXRmHxxXaL0dOjJ4k2CLm2+RGSO\nNyC/UYp7G2YpNbje+VxPF23sWwfO2RHeIiLaHCjpv3wa5T53hLm1/zH6U+D7wZ6H9eKVl/D/98to\n141bQGmMzwOt4tyBXV2/C1TeYgGumtg1IGv/zgXsdXoP0e/9r1/6oi2vLz2S7NuvyZ8Txb95b09E\nRBoBfuPkmV14CB2d+vg8+Qjvy7EJOGDe3gJK/ir3u+fe5vz7nR+KiMj9OfrY6qAN3+a++RfrsLll\nckIepbAHMjaY3ukz2PboTd46+B76+nfvYD9+J0AWpu2fAgUUGMi21Pxz8jf9LaxhGWYSs9aRmXK1\nDFusPIM901//30T5bmNMv5NAv4IbQLcebAExfvmn4Ix5JYWMiYkw4gu9LiIiBfYj/wbGqvfe8+jf\nG/Arv04UUkaJEiVKlChRokSJEiVKlChRouQJyBNFyuTTvE/OzAYJ3mkdaDhtjfHur8toWYanpMMF\n0Rc8Je7zdHS2j5O8UoIRXvJTMMAiKRsnZskpI9rkLjAi1v4A0bzmPZTfI39JnDwdhRVG8cilkCG6\n4v9h772eJbuuNL+VefKk9zfzelu+CgUUAIIeBMEm2UN2k+ye6Wh1T0ijCD0oFIrQP6A/RE96V8yE\n1GpHDjnkkARAEgDhiIIpX3Vv1fXpvTd6+H4HkELN6IsnvJz9kjfz5jlnm7XX3rnWt78vBL9Guqgo\nZqOhCN+QjGoiAi8HKVh3pHaOg6qfw7nuYE6ZEofobzOlaHntAyJrE0UK95uooxgZiQ19nhvB9dBT\nvZw1fZ5wm3bSUhaqE6IP5vpON6k6OwQz44uKSk4migxn8orkr1yCDwLUzqSsvr7zRIzcubj6IACH\nzLSruiRAK3WJqtbTnJM+YxmCTNmI6qxkfI0sT1NRVg9kdLesDN5qX/UvFtT22I4yjxWQK7OaUAlz\nU3uOe6pPCr4hB6b+TTKWXY/np0VmuAXHDCpSvbbGdIRKR2Zb/XWpqYzqk1vqp9N9jW0eSEwKTpg5\nCKNZgLOpOdlK4xQeEUfXL28LedRHmWwETwnAExuPyRgnNL4VzrNP4dQZ1JWdGsDnkc1pvIp5FBgS\n+n+QzLeTlL0cPpDtZYLKPKwswtGA3Uybes5RU1wCrRgR/+dB6jAH0wONRwh1qj5wNefIU4PRdeW6\nnh+LeGeu//Wy9pzUbdIlPaMBd0G7pjbE4zD4w+nikg0ZNjjzH9AYZFJkzEB6DPIocJXU56Gc+i78\nSbZeY55Mc66aLFTgRBH3+YYi+HGTLWXWUU1ifi/CeXVu51tmZnbjeWWXg0M4teZkFJ/ouftkTJdy\nslEnJv85BzURyIEUAs3QG3FmnznY6cGPgTLEfhwfAEoq4qIkg8JDCAWvNomK/LL81mJONn78SNmZ\nZhueopL8ntNAbQV+oQhZuEQEfpCJxjjgKuOxeR7UWgv+J0evSY/LpU32Ko7vgBsngXLCWcvtkjIk\n5QOhE+YLX9YrvCS1OdwMIKTmbbKUTLJ+DS6vCef0myAAYmTnJurvIdwDUY8/C7b96Ezf78Lr4pLh\nz11QP6x/6YJNxmrTCC4SN0PWNwnyokt2GYhDHyRcGhWITsdDxuHnQbh5fBHhjvowsqA6Dmqy1W5D\ndfzO//zfm5nZX+38T2Zm9r+99R/NzKx5E3TZIWM6Vx9027rOs40AqKwwKiDmeghEtSsAGDTQRQ3O\nkY3nt8UDlUwom3VQ1lochUckGCNLHdZcKkCeMAqBDmMvUKvLv9fuqP/i+bMj7szMMvBYxFErLK/i\nr9p67kJEth4BUThfUj36AdBQZfnJRAYFSTgSHPjmakq2WeEq/RDRefXH8Cqln9Zzc/gYLxPbBTHl\ngoAaoYiW/EB7lBR7CjOzsGsW7KO6FdK6UzP8KVw8cXzjtAAfyAgEKH7X4wIrRGUvK67G8zSO0s5A\nrxuoXQ22NLfbB6pfrqtsYmTjvD0EeZBvq64BEMXDtvzSmH3MOKA1KTIROmvEPmvW0PdnI/V9hvl/\nOtYa6rIPc1ZBJXRATCf0/zxzopQHYUGWfTvLnuh4xz5LOf4INQ0QyfMtITWDx+qrK9c05r0BfpD9\nbQNOq0FftlDMoPbHGj3DH1bhj4sO2SvkNBZtVJYiCThQ2OcO4pqD8a7QSsXz+AoUEm2mvchwLN9R\nSIFmSGl9WgAx2WLPl8uhJtrQWGZAMMYcLQROGe7GFnMFjrIyPE6xkWy1bqhigWzylNCiYw+qMqZ9\nGt8iXFzpDY3HkPU4xN6xio1GDnWf0UTjN4OfbsoebeiCKutrnBvdT/ecreaxzejHecxTsARp09M4\nVbpa16dd/DzoMTd/zc5aHLj7xvRlvAenIb4/XACdG0AhLC5kQ3JJY1O6o88dxijMPrjVUNsjIK4H\nM30v0Ad5jK2lk7KlCGtXGGXBScNDDnqIaI3tiLF04PmMr4HuEojAZvDY5fjt1GO/efRQiJksJIuj\nNNwva/D59FW/ityBhQKqn4VR+VyHhy4Fwgc+kkhWNhRDNW4tj6Kuo+cF2Fc2QGoP+6DTpvALwR8y\ndVTvAb4m5ei6EXu8OH42OKT/POVflG1bQ/miQgGuxZLuE41qHBpFPbddZn89pn1nLJHv/qWZmS2/\n9/dmZlZakbJR6rrmxlO/EXo6uKO5+xo/1Nq7oOyuq53B99V/p0H1x16O/fv8BTMz+6t7+v4bL+rz\nZ+7Bb/Ka9p72N2bv/fIjc555Yt9+/LKZmR2diLem+x2h/X/4j9qfvvbsT83MzGGtf/ElrSnDn0sZ\nMjkX0nvwjt5XX/6K6tYQt0p2mwclAAAgAElEQVQtr33iN/Dj79/XfQJPtD60v/G8mZlFTzRGCdTq\n9rd13fhpbKL1Z2Zmdr+kvgs+q7aeXJL/3DrRmv3wumzxD2X1wXZs28zMJomfmJnZvVvym3Zd8/vr\nM/V54Z6ec+8j+cH0QLw8P9r5rpmZ/XJd33tmXc99syvbPP86Cmgxzemco/qkvq6xeed1IWv+h7+1\nf7H4SBm/+MUvfvGLX/ziF7/4xS9+8Ytf/OKXz6F8rkiZWptsPuiDyToM4DVFG8NRRf8mGX2vP1SU\nMxGFzyOmyFekxhlYslXTmaLIDpG4yMhTcdL95mQVnZmiu4OqMqilhiJ1i5uKFq9d0n1iKUUCgzF9\n/uB1nZk74Fxij4zzelv3q5OpmTUVJU4X1J7yLhmcKdnJJrwdWUWvMwl9Hgsrouaxwo8jKErsqB7F\nlr5fO0EdZgMumxM9r35OmYOQh2ZYWrBpV8/OcQ54CM9BZF991HFUlzXO9h+RZanXQIDsKJo4JLub\nyCoKmajpdet5nVksPlFUc9ZVRLZfVZQyNeQ+qc/GAxGH1yK4AhcMyJgZ3CV7dxThb5dRHwI6cwJv\nw8J5ZRqWOV9+eiREx5DzyJki57m3USEh+lsPCXkT7Kkv65x7jFQ4rw5XymRJ94kklfFMJlXfzpCz\nuym9hoa67zHPdzsw+18RAsjjgpjEZUOLy6pveAnkEefLq6CkcjnUPcZE6meK0o45r18uwf2DSkfM\nVb+vpJRh9c7gjhdlu4ucwy4fKBJfP1aKpMtZ2tQYRBDqUEGyYfl1XbcKKiOPkkwPRYhuHaWaGGek\nOducZI5kyX62Hivr2DhSSmW+LmTQWcrJHWUu3+J1ZVVjefE5neEMgyhxaEufjFoG/oypwfWCslSA\nzJ7jKRvQRzFUjMJjjXkIG0v0db9pVPOtbLJVF38VQvUiNFefBWZexlRjZAPO6sM+PwnACcOZ+CGx\n82CZLDU8Tjkvg7kCr0MQBMp0zKueN+/PuE5jEB2iXgQicRKB2yslP+KgRBbEDzooDnSq+v7+E7Hh\njx+AGEyrvdmY6jtIgTyi/TNsJ5EG5QFSJkNmdDSD/yOC7QxAw3nII9AJhg33Yno/4xz4mQvKP/NV\n+azcNWVCZgvKqEdmIBtn6s8WsI4ZXDEOSJ4ZfjkMEijDejSFe6AdZP2awY0GwnMI0nGMKslwovZf\nASG1eOX8J5nFFuoUcZBtk6auaVfl73oB1Wk0Zw0jU5lY1TOiGZATcIu4IdQjOKM/HHioH41JOKvr\nOyAffmnvmpnZWzd1Jn31FM6QHsiULraX0P2KoL4GZK3bLZAlYX0+rKpP5mQYwyjS1E22sLSpdWJ3\nV3Ol0tb30k193mDNTg/VP6dHU9qt/hjXWXdALDaPlZ1K4+/OWpxl2cCjmuoVHSnbtTxjPUzJJrJJ\nkJSncI8lZLNBFCM7NRTc1mQj5yNCT7wBonOeka3sXBVXwGGVuQnHlqeW2Gzpvpmk2jN0dJ/zNe19\nftp/zczMFq5865M2JKI7Vq/rftWgvh/Ia/xDVdmRuwpP0z29j52XzzjugfpNw6FABr0EyO1iXP25\nuyv7KIfVnsLzyoIGTXZSb6r9nUHFNuBxKzf1Gh2q7bUMnF59+WtnoDq6+J/hXP6oh+JKPqCxqPO9\nyQzkxylrEypy6yP14SnkKx3W0PUW+8mpstpVVEWWlz5VrjpLGQxR9yig0MjlgYw+H5C195BxnY6e\nX32gNTpxTe2ajFBTQpmsEdP3l10kdEDgtfCTWZB8PbL4/anW4izIwjoIo8WC+qm5pzm3wLqFCKgF\n+nA3sl4NQUFMUTAbwO+xC0I0fYFMeBSk3772yR8cCkV7MSqkaiatuXACejYNkieUlU+Yz9SuFFxh\nddScoqjTtQKsD0Ot4y34S6pwr0XpaIf2dCPqtwg8IS6KcvEl+hUusMzwU/WlQCBui/i6Fkj2GGjk\nEvfpgvBZvwgvCbKwGeb2Wcq04aFO1eZwX3U9amq+ZELy+VX2k0k4ZLKr2q8O2RsE4b/rfwB/WVn3\n2fky/r6ptWsy1vcK2E4JhMgYnsmgwSGIOlAaFSZDpTMwRtkmjFrShuZkzBE6ofWQOYdKVKeq+jx+\nV4iL9ZD4f5ae2jYzs9wl7d+GUxA9JSHqa3v67RTJ6vvQxNk797Xvu/sToW8Xr+j5V7f1vQ7+cp11\noM7YOSAyG2PQquwvo/BRBXqsG8jFDuGCDPC7ol0H2ZKCDynI7wz+P+2hhhVmTwdSsVrVOAX6KJyx\nLs0dfX7W8s5vtF4Nq1Lw3XE0tyYjjWezIOTM0j2UdBvioHl4Xp8vmPZi7gP532dSUmn6p6c0Ll9C\nube1q7l0/CvZW2PwDTMzSxc+VRSLT160neyr9vGW+uyFPfXxrVf0+/jBy/KrXwM1tPe+bOqt36pP\nr+9IXcmBGyoW1zOKGdnQwmvqmx9f8/brQirXv6Gxvf4L/MMT+dXOzo913Zvy04OnhSoqvC71pt5X\nNUalzR+Ymdn7Xd0381BjsbjE3ibM2NyVDe9m1AdfQhnstbuKO3zrRAiW3DXNiX+G12hzT2taflM2\n8n+e6LeR05CNvV36uZmZfXuqtfZuUjb8hzQ8bVvql+J7GtvGS0IO/bHiI2X84he/+MUvfvGLX/zi\nF7/4xS9+8YtfPofyuSJlrE4EfaToazjoscvr8yhs8vMAkfWBosdZB215V9Hd2QLnvptkMqeKfkZp\n3Zwz/RZFBQV+i+aRorflJtwxZNJPO6Q+OG+9fFERsEyKTDdnmWdllG6CqJycKoqdhCl9omZYn3Pa\nSe94O9FdFwWglIsqCZn7+lSRuBjZzFJH582fyb5oZmYrc0WfE2mUbLZVH2em/ihPVC9LwksSm9gC\n2feZo2hnrKk+Gcw5t0cWd4K6wxK8F/NlRQsLGWUNGm2yGYeKko4GnsKAxqbrwOMR9VQ4NDYO3ABL\nq4TGz1icVWXukpsoKeyqzc2P9Jzjh+qr3BZZDtjeZykxcx+31IdL0DvYBUV58w21r1VHZYKMYKeh\n+wWyRNRREEiF4Ski8+Fl773z0nSbHdThDamSpVmQrTpk/2egso5LKE3EVc9CVu0cwTkTTun6qXce\nPKP3SbLzobjqVYFvxI2RBvPOcUfUzy5zaMC57EFStj3u6n65KOe9Oecd6oBCyMrGonUi9oca9xyo\nkTCqL/2I7GZ9R5mfTlCR/49v6rXXkF2ELyubhuDZJ+fKqw+VOZqBUol1NY4ReAbOUgbwAy1t8npN\nWZb8usa4UZWNprm3A1fBBLRTMqTvdVBFigY9FAHnqztqYyQMi7or24/B09EHUTOtkYXi3PI0wpid\nevxNcCBMW9wPpYUZWai5RxAEr05Ozy2QWe6AKAzP5cdmoNnG+8ripFY9rhmU1EBp9UHOLI9l+w9u\nKVt1/0BnhVeeFsHFEip4oxCs+cvKbJSONUY90AjuPvwZCfVzloyvi0qVCxfMCCWeZgPVKlIACwaC\nB1WOcAIbn5A1xPbHqLDMUP5Jw50TAk2S4Nz4WcvWn4gt/0ZAZ4fDSdWjavCEHKNQQT/3uP2AjHcC\nzi6PtiUWgatgIt84RaliWOP8PRxjU1Bk8SjcC2T5SqDytlHLeu/nH9pgX9meAlnZGapyfbIyiYxs\nKErfG5wFC0W9hkNeZhQlAPjWnBJrmoeSaqOOFFJdd1A2TB/I5g5+pfPTG7/XGKU9tZ651hgXxZdA\nFr87ByED/9t5zrQHEmT3UZqqgkpb39Y6VEX5rDQBMfdENh0ceCoWKA8iztQnez5wySiydmZc2ptG\nxQi/u7LhOf6zFReuglANROJ1rX+l26BfZ3CDRRdpt/xcbUAmd8VD0Ki/AqjURa4qk7lY1vv7JaEM\nvhZUvS8UZJvjsD4vvStbu/p9+Yjje7rvMKHvDwOaiwtpqWfk02uftGEh0rKjvOq1GRGypY1NDmNa\n31IFXVc61R5ojqLOWlzrYDbioQbUv70KPuWb8lGbObW3tKv1q1hjb7aj503vyubrh1Vzr8qW8/if\nHsiElQPQpBe3zczsdFdZ4LWw5mcLlGUsrrqdsmcZLchfrMIrN4YjLMl+bzKUDSxO1WejtvpiApop\n09P9oBCxQPqzbYM3LwgVG0Gpslsh6052OwGa+OAINBIcMEEUb9Io8ExABlYmcO3AcxFY1hxqHIEu\nO9XrYcDz77rOhasrVlQ2vAo3Tagm28nC55RztBc4RVHz+KHGbPN5FNvYOgThNhzG9JwI6K2FBLwg\ncGh5riQBKi55FaQNUJzwiTLjmaj6PwsCcQIiZoJyV74BLxRog3ESVPFMdnLcgSeQ3wctpnIU9N86\n60gf5EsSla5YBF6QFOjm8bZ5JdzrmoXlGzJT+ElADg3hxumjqhjMqt9aqAbO3LCdtQRBCTVOQCLD\n+zg+QhELbpgE6p519llR1Nlmnnobiqx15rOB1pzA7TLBb4YceDgd7UnintJhSmMWAb3gwp0YasjG\nhhHd/6iq1/yG6rfNfrK6AuKlpez/wFMDRZnWUORKtNXnrSf6rXIb24uCXAmk1cfFL2tux9uqRxX1\nvxgIlp2i/NJ6EpVBlHbDA/mQIUq5hbzqF3TV7ulE7z9BtTqgU/mNNWHPlBizx3K0LnWoVxz08rCh\ndjgg8fMRfuuBthrV1T95uHdS57XvHdSEdBnAuXnWsrqEP85qPA7Dav8SqoFHaxqX0tFvzMzs+YDQ\nJTv39PzKTM/ffEkcahaW/w3u8zvmstAfsx9pfcn+g3hQnjqv7500P/V9oafvWGdx1Q7+UXuQ7POa\n91v8puhXdO08KRsdXN82M7OXT2QbDjZfiwohU3ok7r743+k0QD8rDpd/+1Br4RtFkNivqm3dH2oP\ncr8l/zE4EYLli/Clhcrq20ZB93tYVj1O7mhuXPuh6rGzqt/Jv31bNt96oj3L8veE7ly4Kc6a9z/U\n888ntA8eVtSXP7n+uup9U2P+ICYbuB/TPtlx3jEzs3+DsuJH5zRGu+soXx6A2IuKa+btJf3/L8Kq\n58UT1fuPFR8p4xe/+MUvfvGLX/ziF7/4xS9+8Ytf/PI5lM8VKdMfKIqaSyjTmOsqGtpNeqpIinQV\nUEWqkNFME7kb9FEtIiPdzBHCDyrbE4AzZt5WhqDd0P+rHV0fQv0odUWR8wja760pDOBJzgK3OecP\n78fhgTK/3Zqi1osFT7WDrOQSZ+KCythkyAC7WdUz3Acyk+WsW0jXxz3VqGU9Z6Gm6G9xj+h6U8/d\nv6NI2ym8LVlY74dDRZ1nQ9ji4ZqIL8RtXgYpUSH7NAZJEQJd1FVfRWCQbsGu3j1QFqeyzXlpIsH9\npqKZV9YVtUzBgzPhnO9qVt8/9jgQ4D4Juoo6nrUkPP4f+Hf6WbJTcJkE9tRHq2vKXk2SinTXTtSH\nS4t6fUL2u7gM18GmMs39XyrqGeoomhoDUjN1UbIBNTEpw/ky1hh1idiPW9gemcs5WalzmW19v0hG\nGAROLiPUVeOWMgonj0EUhdVfOTXLRi39kV6WjbgJna2dj9SOJx24geBy8PiWWneFghgWdN31p5WZ\niGVl24UQqkjrmmuLUdX/ELWSwRyul4jOpT8ZvWVmZu19smaO6jElej2Bwye/BNoBXqf0ksf7hAoI\nijX10ox6Kls3VTdYJCUbj2zruX0yzmcpiS21aWeuLEOoIL/RMdW5V1KEOpHXmCfmGrsWWZJRzRsD\n9XnbQ6qE1TdB1BcmHSL2nMV3R/D4MJ0BJ1m/LFt1ymprJai+j81AKdRQXQMFEOfM+sJc9w0WyPr0\ndZ/QRFmT0FTv6w14QcqqXxF00yFZ/osXPeTctpmZzU197XJuOlZQO/Z/Qb9c0Ji2k2p/biFNf6DM\ndaC50UddxF1Q1i8dUn27YXhC4FKIzTw+Do3hJIByGf3UI7OdJfsUhSshRKbWppqDDrY+icN7MfXO\nk4PSCp49c2lmloADqA/C5gSbHlU9pTK4uhjQMWgwy8hnjlz8MJnqIKiPWUjt89BnuFLrO6BLIur/\natRTo1K/ru08a2ZmW+elPDS9+bGd4JcNJZT+BATGsjJbEdR+HFTaLKk6BDylGvxSt6+1Yt6A74Z5\nOUEVJOZ62eEZbdK8SzX1veMTjWkWVbRZBwWyU9l8OKLrF3jtxPX9KRm+wUjXhTpqR4vMbIQtRzfj\nZSB1fQwulWmGORFQ+/qnI/oMFBJcVUHQX0kysk5Ia18YtaAcqhiz3GfLXM7hXBmvaqzGZOXnWfiP\n4rKB2ZaQKeMD9Uub+qWuoxTUVvbt4a09MzMrXFF27gtLavd/+Z2yiG+AqHn6aZ1b7+yqHU3Qd/Gw\nEIbLMWU8P/6YrOR1rbtb11E9jH46Fx529i2e1fstqLne3cOntcSJsJXTutABlbHf1lyLgGjtZdR/\ni3G93jsVF1pgpOcmUQnZBwl5H0Wcc5dQUYGnqtM4tsWGkA8tuPMG92WTA7LZC6jl7ZdZ259iH8ca\nE8DPBB3tJTb7oE4Z6zR9byCkT1dQlgH1E3iiNmVQ4esW1cfZx5rHh8seKutsZQjKdf82axg8SYvw\n7uEWbBJSn85BlWVAS7RBhM/h+8hOdUEVJE+ZueYpyMQuql82QE9U8UsPdtX+ZZB2UbirZnm9P92D\nGwXkYwQevcqu9gi32Vsl1lGZA3Vx/ill1Qebel/pwpNXAf0GSqAf0nVREDH9plBX44S+57Av78Nb\n1QnLJxV7miNdUBbTuXxKJqNMeeGibDp0lzk8hmMMP2t92bCDP15ijjdR5qmfgkIBydodfzq+g0nc\nFtmznIKsSeIjs6jtzUBlhJsarx7rZSR4dg6z4FD3bj5WXz/3wrfNzKwKSrZzoDrEllE/QhFqAPoy\nONU60GduxPiNMYMzcMYexR16cC/1VSvBmAzVphTcXy3a2IIrKjnR3BiBxo/AERkewF1YBbmDqt76\nOWz7gfxAF5TDelBzu8Nc7h7jJ0sok62qz9avav3aBqleeiAU1AgFzCJjvr6ldjcq2puUKuqv1kPt\nQVogfpKspZlV2XYSBPcMbrUUSJ8+XGwT5kY0DEoBJGDc8yUeEpN1ZCGHuhNzNwovVAefMjtlD3iH\nfo3Ltkfu2VVDzczun9N9Em/Ij14E8boMb9LHv1G//6AghP0uKoylZe3LF5ryw/cL2n+v7+q37FJV\nqJbU2+ylrsBt9H3xmzz62W/NzOyLL366z47PC5Z80+xHQT0ruI8y34766ndPtL9+vKP5m5/+nZmZ\n/fxN2dgXv6Kxnb/5MzMz6/+Aky8/E89Np6s2/d1lIVYu5sVVFbisPk5HxbVS/lBz5msZ/SZ5pYJN\nb6Ac+eGerr+nMX/yvJ7v7muMdkEV9c5rf7W8qt9cpddlyy/Ae/nhqvrmRlr7r9uLUou69lvZ8CI8\nnb9+SciZb72rvvsgorX85yta41cfChETRdHyQk/9cHRFtvKdf5SN//xbQv7EX9VY2f9i/2LxkTJ+\n8Ytf/OIXv/jFL37xi1/84he/+MUvn0P5XJEyUZRXTvfgjzhSBLwVVAbz0mUy15DDhOooxmQUfZ1y\nRjea0utSHQ6J9p6ZmaUGZB178GgQHc3lOUu7RhQUBup8gv+Dykhwjr5zoKjpSQV+jV1FgetloUgW\nQttmZhbME/FzFd2cOSgqxGH+9lRHyEhMpnoNJhWZa8J5E+P9oKrocIIk2MKCIm3Bi4r0RVCbuRhV\nlLnG+cpAXxHBcU0Ruf7NqQ0c9WUKfooQZ+KtpUj7gLGIDxU5XZ2QgYVXIp3T52lQQ6/vK7KbW9Ln\nlQe6T2VPEe7AqsZyaGpDjSxWofPZOGX234RdnOxPdlPR1XNkL4pfwBaI1H/0rhA8RwfKKF6NSRWq\nAHdKmDO8iaLuV7ys+nS6inTH4BMa9NTHBwNFOxdM0dop6IlBFJ6QAPdFYcY4X+6u6b7DFkoAJDQS\nKXg4thS5Pn5PUeTJQ6HBRtcUje5HlWVzUKyJ9xW1HYJESreUzWmFdX8HtZA9VJfCZK6HA6HEMhPV\nx4l4WTRl+cqQNYyHuk8+q/supDlXvayM6uMDZUjKcWw4IHtyoihFGJmCmexo8bpsb3Kohh/c0/X9\nm8qQxNtk+smO7VzXa3BFUe+cnR0FkR4pu1GC62UBZakYXDGePwn04OEASWOgxlwym+OpMnwp7jvu\n8Q8yalMQbomx6t7syA9EQ5yP7sGkDwphnoJjaoRSDSnUHtmUARwl/aa+58R5flV9F+B7MXiMouvy\nR8GS7l8uKZNQqaNEcEd9f5fz6flroNTastkqvE/ntpTt3nlWZ2QXXb2PkiWb1uVHmnDqTLog7+Cq\nicGhMiZblyFjOkN1aQRfSQhky2Qmf9Zy1b6kA9oArq852a3pAEQh2fogqitBsoDDJqpZcDmkGh5J\n19nKowcaL2foKSvAqwJarEQSzSGrNnc1biEy29mMx1mAXQTV733sbNg7pd6gNzb0/+rHGr9sXL5r\nAOqucST0w7s/lR+fhDpWSGrtyKyqbhsX4TNy1EdjssWzHoi9NgpV8Nb05hr7OWocsShIlKna0Ijp\n+kRGfTcH6eK0NDajh/ivE/iL2hrDdlf+IoQSYixB36CIFcRWAgMUt2K6XwO+J892usEs9UFJEOWu\nYZmxr6peB/uy3UFVcyqc5nko1CQDZD5RGekFZWPuIqhTUKJu/ezcVGZmu2mtZ224xrZZbwaO1EFK\nu6zRl2XzWztq36P34WapgEQ5p7l6a1/vK4eaq0sptf+lrwudNmAPg9COTcfKdBbzWsdGcHSFu8yJ\nOApiMa35GxHNhXsfqn72t2YTJ2ora2pHBL6NSEBzqYGSTQIelR3m7nim9XJpLD6A5hEKb6tCUC3g\n13df1/h/8c81bqshZTf3xzfNzKzryN8Ho3C5XbpsNfZnvZH6IggKx8t2r7ioDAETzTjyf4fUNVnE\n/+XJQg8ZA9agUZHOQ41p2VNECcFZsqnr2qAKkhX1/WRd/nB1/Nmy24MGnH1V9Vm+qL3UGFWhcUTP\nd1Abag3V7nhK3/tErY/1qoe6Zmqk+z5syi9kw5oDS1HZRBRkSCKuvU8GFFOrC8KQfeykC+KxDfJ8\nqn1qGN9w9bLav/p1oYt7IAP3H6KA2FX9FpfliwZltcfjUovCpxcvwscB79CkqvanR5ozEdAa4ylI\nFfpjAmQyEoB3SM2yKCqJJyiX/f4N2XQE7pzta6Bx5yg9gs5u0p99fFWlz7pOez0ko5nZPD22TkT3\niYM0H03grgS1x88MW06qnwtwpXnKZWcpzbn66N2b8ps3/lzPWN9Qnx+ciD8pUNf89BDenYr6KLEI\nImakZ8/o6yVHe5jT20ITTPlts5STP6ArrUebQvD0GLx6yYnaVAnI5hKubOWF57QXqFRkKw/fE9Ji\nMQ+C7or8THJNvBu5IpyNt4UAb2l7Z4gU2WRdtjOHN8pJyranG7Ll+IqQM1dRhWscqx13PtD+cAAy\nca0LhyUOcn6kfeZJT/c7Yi8UY9OWx79W8AmFudrXC6hiIxDwfRQlB3VUW0Ogo5iLQfg956CoW3B/\n5TKq/wyb64R0H2fi+Vn5prOWSFD78+cSL5uZWbn5D2Zmdgjv6L/7jlAc77SE0kg21O+BW/o89Izm\n5K0D1cuNC9Vxo6D+fWsmY375Pc2pXlb9vfGiUCTv4Tr+GzM7Wb9vux3HnlrTXjwVlm/vg1zJga6/\n9YYQJf/uKdnY8TN6rdzXb73L7L+Pf49y60vqm1pT70Nvq++2XKFAWzf2zMwsO3vFzMy2UWJ9zdHv\n3aVl8fXsxQSrX09IsfC9kdry5abmzmxLRnCPkzDOSGtw87bq9YPLanMFteQXQvJTzbZsKl15SfdZ\nf9XMzLpva66u4KBOUlrjbyzqeTu/0L4v+yONwaQnv/r2Be3nrv+z7l/5kcbsq12N2avf/M+m8t/a\nv1R8pIxf/OIXv/jFL37xi1/84he/+MUvfvHL51A+V6TMCHTGoKxI0kPvXN9Uka1OXZ83DpVp6JL1\nm99C7QiVIYKB1nusbNScc/AbObJRUbJocLoEMyBjOBeZQKVl0oTp+lBZqlBZmYr6RFHI9I7O753/\n0nP63ilZpLSi26WSwsXZq4pGN6oerb2i3VGUdcYwgs9gQh94Z48TsMiTSW6DYuijUDHkTO9M1bJa\nQxkMgsbmZhTJTC7rzFugpYjjpO9YbKa2tomlz1H+mNb0GggrulhH8aDZUp+FyVJMG7CcIyG1QEQ5\nFuSZOd2XALONpoqGxgPKSqRaivxa9+zncs3Mxm1UPuaod0xVj+UN1W+c1diMURtJwGWz6RDhh6cj\n3tGYl8uqRzShvnEXUUipKcJeL5ER5oxvkux4AKUY18hUxlFSyMK5MFUGw6mhqLArGw5kVO/6Ew3a\n4tNCGSTToKeu6n6Vyp7qW5Ktp1ZBOQ3VX3HY9Qdk/xaW9Pw2ii89MgA3vicbfeZPvmBmZkEQLKcf\nKyIfgjPoXBKVEPiMQmHNgSCZ8xqZ6ihzY2Gm9o0PQYkt6v9x4AUtlMpCnNc0MrGpvD5/goJNbaD+\nz4LIWXpWc2lhS+87bfVHrYeRn6G0XN1z1tOYd5k3C2QmHdBfM84Tj0/1vTg8GyMUrWJwjrRmjDny\naYMW6h6c9zVUmAZJzjUjveWCXkiSwe15KAGy200QJJOZbDUCF0Cas/1hUAdz1NuiKOXMOJNPF1pi\nVf5lllRGo/6Ydh8oa9UgMztNohADuqv8sSL8+ed03cqyuAPWN2X7e7vwF6XxRxHZsMHQv1SQv3OL\n6rc+fEZTMqI2Qc0K9FY/hzJYX/2TANEUg3fJU64JO54f1P8BT1gXhQqobWwM14yLAsQIdMhZS8Fk\ni5E53A1w+rQrsgsnqgdPEvB5wH3jwm8SKOArQK0N+sgzwakzZA5GODsdG5NJBhEUn6neDx6jsPOR\n1qtaRCi59eUNS16XPxsa87KueVCZoGbhcXfNPZUl1pQpyBY4AmIJ2eAcdaWah+LxeNjOg1SryKi6\ncMsMOVw/GQ64PkrdQd8AcWQAACAASURBVCstkvVOwsfkodAqZEThCWrDJ7QaZS7lZHORqJ7bnvIc\nFF3u35V/O74l9EHpWBnbdBxeNLgX0guynSBo0ylzJ7euz9ObyhBaDPRSVf73rCXYULsKGfnNDpwM\nkyVloiP3lcl1T/CPMc3FpTAKN1WNZSihubWzBkqjpfuVB/CQNOTfM6DjZiNlASf4skQBtaWybKs+\nQCFsqgx0zPN5qLOcgog0EyLj2evK0q1dVbawdKz+OEYRMhlA8W1HPqJ/smdmZhtJPa9zKhu+lNKc\nL+c0HqegMk6bZLw3NSe77+t8fWIHLgx8w1auYbdRpQyPNL/On5dN1YOy5cqJ+iTHtY/hX8uCaFx6\nSnW/fUs28tSy7lPHZjMofoXW9P7RnrfvUmMDCdTWeuJK6CVVn1hQfTkJHttnKVef3zYzsyP8fPa8\n+rgKl2HjJkjINDxHQRDR8MUF4CQDfGRN9nGhjOby0zeEWtg4B/LjQHOsdqoxm094ban/pnk9P9sD\nOeQhE1P4MXgzqj34TKLMGdAH29vqh0ZNNrqHql+C9bMDyiqKWlINH5NyNde89dFA47XgWlyRiRjL\ngAUbstUQe8YO6nyhFHtEUMftQ3iv4nreSg71rmVxQ4yfyF4c9s8j5mzAkc86vy7br6IEGql8mnvO\ndUMWiWmculHWnSYcOJ7a4hAETtRTg9L34t2zI6rWQbTEgHA06dMra8r6HxT0W6E181C3WmvzAT2z\nM4E7BaRbnn3fMKK1fZSSjQ+pe6QAMhBUbxhU6RDE5CADuh4Ub2imvUAPpOEBSrKlJ/Jv9TJ7G3jm\ngkPVIwpS0hnrt9X5y/q83tbcOoTLcTmhQc+i/tQ5FCpt9xWQdEugh2OymWZUNvzs3wgFYVPVu/wQ\nBbPHqMelZaOrrmwmGvbUk+CejOv7FtT9QpyySAZlw52hfExkDkLUA9+Bpgqz9wvBwVMM636jhOrp\nYEqBlGwkwWYlxR6oBk/pWcuXu0IpL9zQOP7hlyiqJbd136zQGsGuxiXjcJrkC7ruECUgp6G9RH1N\n6JK7q+rfax9qrjx5mXF4Ta+Lv5c9baz+6pO6PL27ZdHmBfvVnubBjRvijHm38ddmZvaFF1BVa2ks\nHv9W8/GrIJnvXUM1uKs9fQy/X+RUQaIN7+ay6v7Rl1SXw4eyoR8c67oEil1XAnreva9ICfJGQ3Nk\ne1mDcMA6EKjLFpttIXjyG1KoCr+ltuWelp/6h9/IBi5cUPsubeA/jnQ64dHK78zM7Hb7B2rnt+Qv\n4wHQVxdumZlZ+T14j/5S9bzwCHW/Iep3C181M7PfXvi1mZl971311yiiUxHFJfZef6T4SBm/+MUv\nfvGLX/ziF7/4xS9+8Ytf/OKXz6F8rkiZUEaRpuxVReqXNogOZ3RuMYgCRf2OslHVnmJIkbyilodd\nReISnK0NcB47G1CU0Enq/cUNkCugCrKOorjhLV0XdjlTVoMvZMTZUbgFulVliQo3hEIYO7DZr6JV\nH0av/LGi4Tc4q+qSPZuDDoiR5eyTaQjG4GoIemee9dhJU/8f9ZQtCya98+CK2saiZOcu60zecAIn\nTU2viC/ZrKP+DbpBiwXUZ2OyCy36Nkq2Kg2iZQK/wyyGhEiKbHCXTOlIdWl6HCuMSWxbkekEmdXT\nfRAnc0UFPaWElvvZ4oCrG8qwTmOeGpKyZj3O2s7bygCP+P/SZdQfKorGOnAZzOceyzgRe7TiC1G1\ne3FLNlgey0Yqe3tmZnapCKIFVEQdWFJiSWO7tKpo7cqSzgsODjR2dz/QuXB3qGzTzhX1ZwHE0vFc\n9c6E6FdH32seyYaGcVBToCnaDGqYaGw4S0Z3mYz4iTK0yyucW3fJWD9WBrMAV44lVe8y562DfdRT\nhnA41GUfXXhEQmON/zIZ6haZ1GhHNnvaVj8unsDTwpyIPAGdltHn6+eV/Yt0VL+YqwzsaEN28+ET\nsmgBvS6T2TlLyZIprJ78wczMlkC2zVFDy8DRlMX0Oh1QVmPUF0BMjECyJT3OF5QMAiMQNNhea6jI\neLmt709AI+we7pmZ2QoZ1FxctlVHRSRhEAvhdaMNOF9AX8XJesVB9nUjus+YOdeaaCwH+KkQ58wd\nsmiWkC3WUECYOLKx7S+LHb4ZhnvniDFMwgGQ1JypVRXJ3w5p7owiIElaylDk8vTboZ4/juj6KGeI\nx2QYuz3Vt98gu0W2atzTazSC/2vq+hwKN5bV/+dw77TI5m2wTozrcFOA3ptEz24jZmaVKgiffdlY\nr03GmYyxC/rMQxy6c41LACW6YIcMfAC+I7iADM6ZQBjkVUD1G4CQTMdBs3Q1HsW0+qfw58oMbWQ1\nFyKZkA1Qwxv2QXiQPS+wFhlqRp25+qoDV1cI5MMADoEYijURd873hEBpO3q/ufmimZk94Py21VWn\nYQwlQVTnhiM4aryM4oCxBxUwpG8MXp5xmz4YqV5OHAQLfidUB9XQg7+IpTbtwP+wo7mbXOSMPioa\n2TzKWwbqIqz2xwOyATel65pVreWBnvxosOlxXp2teLxP7YcgVVZUr6USfBioCpVBPQQ9LrY12n9b\nfjgB/1NutKf6HGkOBeG8icT0/p23NS4rl7R+JFy4H1j7w/twTaA6lXPVD6dNkDKuMqeF/xcCdTUb\nMCcFmgQUw3xFvuLKVIifaknn44PY7nmUKKBDstRAmfw5aIlgSBnbxYp4PibHIFZBimbGKFyM8Dkb\nyk6WSgnr3Jcax7VvaV+3uqa+OX5DmcmjqfxpclFjmIdjpgxfRCIjf1RHgaX7su49MalstAO638pi\nnj4ElXRPY/JMUX3zeGPbzMz6t7Sfu/qc2n70GfjLzMw+gM/j/vvK5H4t/00zM6sNtBbOWVtzqOE1\nUBmNwmU1htsmlpNNjRfY/yXgh2LscnAZzAO6b3LOnotEa5u0fY51q5vCR8zJ8IL2LXX1vrjA805U\nj727GuNgW+8rqHsm2fNFJhr7tsEXBaqhcigbv/ACaBBQti4IyMU1VOZQ3KyAWja4ZRBTsin1y85B\ncU1kB6G00MSraY3r4qbep1Hhu9NB+Qeul35bc6AZByWIslukCtI8zLprZuO4Y+6cfXEXHwcPUi2r\n+wep9xhEwAg+wli6YWctQ/YAa8tC7UxKGrQT5qvbl9+apNQH3ra43FUfrKx5HFyyCRclq1lA319n\nrkRy6rt2V/vSu4ea15ur+q0SMdAAddU9scm+bKo1f1ZCWQuOyPYxSOoNVEpzmte9htaXPiqjDmv4\nUlLtu/ysnhN6KMRfGpSSAyoqDCL/BK7H1S2N0T78UO6zQjskn/pLMzOL4ocfvCr0w/y+6jnJgDpm\n/XnzoRAk02MhBbN57ePDIz1nISubjGKjDv47v6B+DBf0/2QCRE6TPR2bNAd+qwVUV6cgmeZwNrr8\nDhknQNU6n+33zelbUiJ6LSd0hgvP0/y/yseFr4tTsx/UXuFJT8/bC0s9aeMV9fMz59Vv2Xf+yczM\nLq+Jg2byDd1n/BupNa2wf5/Be9o8+N4ndbk5PW+dpZEtplSnSOFvzMzsqz94xczMem/KNuJd3fvj\ny0KwrIK23duBf60Er05CyJLbj3Vy46mPZDutF2Urs/9bbXO+pzF9e+M1MzP7+k80d6Iokb3zy++a\nmdndZ9hPfQS31XfEnxO4rz5fWdB1dzkdMAm+bGZmN97f03VflM0/2dXY/mcQ5i9v6nXrRBw6F0ry\n7x8mtFZeymv9ivIb5b/uaW59baq5Vmlvm5lZqKL/X0uJU+bN85qz98/LT16bo8T2SDynf6z4SBm/\n+MUvfvGLX/ziF7/4xS9+8Ytf/OKXz6F8rkiZNGdeQ6bocIuIdXJFkfHKsXdOT1HR44EiZ0umqOHm\nZUUVI5xzP35PkbPwQJnpDuogsfS2mZm14cloozyRO1YkvFFSVDW3rcjY4iKs9USlh0RZN68oo1mr\nKfNwcI9z2aASuvCu1OFyyZDNCwT03OlAKYKZq3RUMAzaI8UZXTLP7RFKOHDV7HDuOwJo5VFH5wej\nfUWTX/mdotNZODOmOUXsojCHDyxgQ/o4TJpiwvndAEz+ThVeC0eR54nBcO8qslzJws3iouoB6ucx\nPDzZO+qTehMuBFA64zX15WysPhx3P5vJeed4GzWIc57W/XqcgW/B4N8fKLKfSZORDQlhMwN54mWn\njlqqb+Gi2t8kqx/rK8q6sHHezMwOH6svj1vwfIDgcJgy58OK7GdBLXnyStERGvecKfbOR3b7an8/\nDIoAiv8USJGVHUW0H7+jM6IjzpEPmxqPENwMltLnTXiTtlc0LsGwMicBmMiPbiqKOzlGrcnULwMU\nbQID1WcOJ8KATHchjq2d4wxySNdnlmX7vZuKQofhjvAy46VHQkadi+lMazcIH8pU9pa7BtcD/CjD\nvmx8MlE7WmTg4zGN5yB+djtx4VeIoIKTwNb6DY1hu6p5nMuqr92JPg/0yJQFVEcXZnqmvfVamqdt\nkGhpFF9GDc2VzZT6Lrehvk2BWFm5pLEPTHX9FN6MBlwAIRRhojlQCT0mNupHLZA3M7IuE/xAMaTn\nnTAHZ/A2DeBg6Yw1dr//T2J3fzAQi/wPnf/VzMzCQdWnDEfX00/rfLslUYAAgROGR2hzQ/+PB+Hz\ncD21IdlQBL6NUUi2kELhIIhSGnRI1ifLNISLZQyvSXTGOW+4EvqubC3U1ZwdWYvP4X4g4z1rc747\n+9ky3E2ygHsf7KldS8zhTWXDkhfImsGT4YAGq+1pLs0ctTcIurAPqsTtqf1RV3MwzDi6FTh0QFhN\nH8AzNdH7woLa00OxodTpWBpenoCj+THCtjttjfnEg0GC9orw/yCIu553pD3OvfE3YxQJMs8omxU7\npzZXfww/DgiMZF/ZrB6qFImwbK9LJjGDvwhFNGZRuMl6oJ2Wo+rDCVl9lmBLxvX/YRX+I5AsLn3R\nApGXYNrHtvU+H0NBB9RRcI4fdnVdJ6yxyoAMGjbJ6sPrMw9+tvUmFPdU52SLTdSgEPuz4YL2COkH\nQhk48DtNySi7pgFojuHwuqD6h4qgyth73FjROXYHnqIogKUH+9hMXLbWZxzDTdCyXdlaEl6s6Vzj\nFwt/ihqbN3p286fKjDoT9h7aUllyQTZYeVfn/y9fFcojf1nZuw8eaC/heIp0Sc2RS5dkFx88QcUv\nI3uszVXPOQpL9aYedGFRvqaYnls1hmpZTH0URykm8JwyqcsnQhH88H/8WzMze/K29nGvvqZnpldk\nS9tp9ekL3/kTMzN77y0PHSWlmNjyj8zM7OKyxuAJaNURXISRFHueZZA4XY3d6mfkuQuwniytqG+C\nM9lg74j7szcKYKuBlF6TSc25ckdr5YA91oSsexJESvlQe7WjPe3zHEc2kZ8KMbS4IT8fhTdpNNV9\nlrHdQUU2P23jT/EZwWX1++YiyE/QD3P4qxIgDxeC6pdYR9/bL2vNj6PY46KCtZBUO6tV1W8OwjQK\nMujEYV1g7gZYR3oo1+RXdP14V/3pIRfXQUo1DOWyJyjcVNXuCVyPfdC7mVUhxp2QbDfc0F6wB59K\nAIUzMzMnUbBxmzkGon46gSeltqf7XYZD7Lyemz+ndc05LdhZS4j96g4KVuGgnvHwsebfJIe/3NKc\nqIY1duWHUjGLVlS3JEjtKE0IIRU5AUlocDX2+3peHx6PGf4mFtdrP6f5GIarZoQ62gw+y5incLWl\nfVoMFNMoIFTU+EjPyST0eZ99WgMk5cpF2ebKtsbi9n2hLRIgZAaePNMdjWkAHpIi/FLWVLuO76n9\nTkP90fLGfk313t4EAR9FbunanpmZuWzaFkZwiZ2ABO/IPwZRBZyONfan/HabxdW+IKcjYnl8FGpL\n8XXZkqdAOQygwAk/XWOkdSzT9fjlPhunTOt57RXX94Qaefp9tav6F+qf2w/kA74Kr1HgWc2p1X8S\nb8m9q/q90N7/sZmZvbmu/rzREao6/UspDlWvymcO6kLS2LF8kXP9o0/qsjg6sEDonn1pUTbwm1Pd\nI8D+t70hhMwLGX2+d6y145WZFq9/U5FtN8a6fjiVLZbhaG1sfM3MzEbwcyYz2l9+8WP5l1tHGuv5\nin5rHMDP+d24bGZwS0ju3xeEvHmpIqVA96rm5S8LqDD9QmvqtS9qLB4HtNYlbgutf2n9bTMze1LV\n74E/XFH7vnikdeegr3qt7wuN9Ku6EJ4vb2ouF/HbgT391gl/+xd6jrdGN75vZmY/uKv7TsuaA79+\nTjZT4DTBHys+UsYvfvGLX/ziF7/4xS9+8Ytf/OIXv/jlcyifK1JmUlSke4RSyxwESberKGWGM56W\nV/Sw0tZrq69oYR+ug+BDReQO0Ul/blMR9RNI9XvnQbzUyQyU4KZZ0HPLdTIpTxOdLpARr+p+PbJ+\nVlHErg9HTMEj+ec+UYfz5kd6TuyyopEzFA+KBdXTBRFT5R/1KZljeFqsp+f3UDp4vKvvfXSsjO0B\nUeSdG0IK1eowc2+jDkL2tLHMefhZzsZTEAnII3VnylY4n/Dn6L3L+dsBqhWNkjqRgLrlCrr+cKDv\nneOM5azDGdUanCwz0vcNIrwpjfV0cHZVHTOz/TuKyj450PnxG1GpCnmqQPkCnDMr6utAVJm6wZGi\nku8/UpQ2OFSfNifqk2JAGeO+KfJdfaR2LCMZkNtUBDs5UoQ+zpgd395TfeLKZnUfe2dxYRbv6Ptt\n+nvO+e4GGehWRP3Q4/1GQmPobun7ToZ6cU66BrP32lXZdByOngHnnRs5ZQKWUL8aexnWI91/yDnv\nNoin3kTj1k7r/XCqKLdT4fx0wVPyQUkGRaOYpxTB+Ma9fspxVrisuXJ0yHn6RfhQUDRwQXUktlW/\n9kPO9HJWuo09dnbhaMjwwDMUaHrMzaJKRB/MYOSft9QXo6zGZgASzZkry9FFHScFWqo1g68BPout\nJc62bym7feeeeBUqZP0/eFVZjndf1ZnYL3/xS2ZmFimqTcE285q5lyCjGPaUr8gahZJh3oO0IHs0\n76pvB9uy7bVtZWiPm+qj8BNlyVKbsoGl57bNzOzBG69yX9nMUVO25O6JU6F7XhmB8cER7dHr+69q\nDO++r0xBIqj+WVznnDPIwCgZ1RZH9lNz+aEWqAWDyyfC3HPJlEZD+GNQFRkvK9+CUyEm37GwrvFK\nwRn0GDTWyOMtQc3jrKULwqWVVj9ff1H9uPWS2lXvnFBtFBdAUo3apCk9X0n7ZqAWAvC4zFC8iIzh\n/OnLT4dYPzwFnhBZyhG3DUc0h9NmRoLSmszTyYH+N5t7ana65xRem14SpAzcMY53tt0FqVIjqwzP\nxfnz8HPAJfWHj5TBfPaazlMvFrfNzOzRvtQ0EnACxJMag3QaviPUdWooSkXrLHLkeRzQpA4oBY+i\nbMyaPo8xN+AdiniCBDH9P0z7Wk3VuxnS5/Go2hWKY2NwEsxn8FgM4VJhrQ6EP5tCVwbb6NwGNUa/\nDXfU/vyh6nsfpOMKCo5PXdL7vduMRwkOMJS+3Avqt/d/rPPmw0vqp3waX3BJWbd19kLHZA2LFfob\nFEUormxdd4oSZYRsf6D2SRs67siKh5rLDweak9eeEkrCBb1bz+Ajr2lgcnk4K0rYJnur0ES+Iujt\nhfJCFa8nlalN4VMQmLNxWzbeqmv9HDgTayU0uDX8TONZZaN3nigL/X5Z/tMNqC6n8JE9+oP86Te+\nKmR0Y0V7kuIVzdvMb2WjZe577ob6oHWLsUvLNhZQjBnC3VXCrzpF2a4zd+yzlCFqclsgq9dXtIa/\n9dvfm5nZZbhtjuGb6Ce1h1oo6LpddZkVMqBDyeIn4KRaZFveLyojXEyhvJVCgaentXea0d5mnNJc\ncyea21UQIn1QAlH2Omn80R4ImTScZMEi6Fiy/jPQXolzoCmO4GgIq/+2ClqH3AzoqJL6v1ORz7r4\nFCp9NY8TR+2cJuSL5nCMOWmUvWZqR6SncRhdkG0ufOI/9flsDXVDULbRGL8b4KqZDPS+EZHNTvr6\nPAanm5lZ2HGsA4dYJILvOEF1daSByWxpXE+ZA+17Wnc2QzfszAW1n20QdJO+nvnwgdBb1/70ZTMz\ni6/K3zy8jyoeJFszULoTFB37cBi6qFaOQhqTIAp/izHNsfCW0AAOvHd7pxqzXFx9FlxDVbXKhHXU\nZzP2pdZRn9c9qBwKh+GU6jOAiyZV1XVNuAg7S/p/ZoXfUCGN7XCqvVcUvs+1ZdUzBzq5dqr7d1t7\nZmb26CPNIQTJrLAFOuwFjaGLbfRARQ/47dQdwyM01efdhj6P92SDfQ/5MgHtC//QuI7fQ9V1BJ/Q\nxyDq7UhjHwHJvYyyF8uEXTinPWEEhE7D8dbBs5Xn9oQsqm+ylwO1Vvix+Ef6X1O7xvfUXz+ZoEQ2\nEsLlxYZ8xG9rsqtv79DvjvaoDysgp/gt3EgKOfNm+h/1HJBcZmYXsgfm5n5op/CdOW/KRgrwbI4r\nUjNK/7X2yZP7/0XPQqnvI5ArT4gqpOKyze92dPrg96Y6N8Lab8XHQkr+7Kru972J5tdkJNTP/ZlU\nnzZysvVURraz/Ybq/LAkhEqpKT8U/z42+y2Uv4Ia61+bxiwc1/PmH0uNb3Es/7h1rPuW3hJ3zQVT\nu26fYx8+kz+/9RjU8ld+qfZU9Nvz4kj176/Lj17uCL30Szi8boy0F6l/oPZdfkropz9WfKSMX/zi\nF7/4xS9+8Ytf/OIXv/jFL37xy+dQPl/1JbLnYyLz4YEicvWSIksJMt7VliJfHF+3YlSRrURUmZb5\nkqKoczImsQQZ1gEogCGRcRSGFtJcF+nznkwn5+enwEKmKNx07+i+H7ynzEwPZYyTmWJaUU/pIk/E\nbMZZ2piilNElFG3Ifk1CyugE44p6ptPwepD1m5JFHFeImXF+s1jkTNua2r96QRH9R0Sxt7+uSJ3b\nU6SzXD2hHosWGKsviyBWmnWyvKAJHF6DM2WhJtdRqEqCyDjW2ct0Um1sHKDWQGbThUW+WNRzMo4i\ny84U/gwyhoPPqHQQQnVk92NFF9c5o5/dUmbRcTVWgxrnEcd7avuQehgIlLS+Nw4pgxcki9UOYVug\nE5yJxiZg3tl5je3ChiLaA7hY2pyfzCCFUKiisAOnze4hCBMkf5oJjc1CTLYXzaMUkFUGo7mn+8UT\n6tdEStmockjvU2XVL7auKZsnA93uq38fT5SRKMR0XQO+jnGNjPHytpmZTbxUvKkf06iBTKlHMq32\nJkvKXp1M4PEg6p1fkM0Wi4o+d6p6zqyr73cTCskHmuqXEGov6xc4bw+CKBSHy6IGy/7bOktcOdC5\n0Xz8OTtrGXP2PYACSyZHFrilebTLee5OWTbfQW0pFJQ/SOM/ZvATZVFlKM1Rqahr/r/9lpBqd95C\nQeC6MqQbnMMOfl3Ik2dRRZtOZQNDVIUCIc3TnidxgpKOi8rRpAGSI6TnRuGDaO2CYkLRLPgF+ZNB\nVGNzBLJwFtX3z72kiHx34T+Ymdm3/72Y/X/1i/9oZmaVujKaxYLGZh6VLbz0F9/Scxqy8QjwqHBH\nthnmfHsX9FSCc9xuEn/aUL1TQaAzYzhvxh4CBluJwk9FtmueIAsVVn86qGo00vKz7Y6uC884L57D\nP0bI9p2xxEB1rX9R9b3wfWWVpqwDnQca1ynKRpExygqg63JkhicDPXcGd4zHbxKIwIfU1nVZxsdA\nFhXCmjvTJVCJIEOnZHS7/akF56wNcMtEQTaE8Ke9sGwziXrerIeKR0LPTg/VtyH8cgAk4HyIokFC\nc2P3A/nTD38t7pFcQn1xnUxbBDedYNEdzJStqpfVhlgKJQQUZgxVv1pNa+4pyME1bNlFCS1elB9o\nG+pSrIGROcqBjrcG63sehU4OBbQQ/njeos/olwlgtClzfnCs+ibgnThrwW2Z44BEceTXHI83qYiC\nTVnZsOkQf31ZCM7Vkmzr9olUQ5bXNRevfUf/dz9QO2tkH+/cVL9cQj1lHNb1bl//P2TuLMfkb0dj\nza3xBDQFak15d/nTRpTGFkKx5tyIzG0P5FRIPi80h99oSeOwsC1FiWxa5+q7IIzGddWr0kZN60gD\nkoYfqssAxR2No4feO/KQXf2WheAqeRKUTdyYqM0nNV1z/0jzrw3fXHxTdVlY1Z6jGUf5xL1EA9Wm\ncEwooAQIhzH7u9aS7rOMKtExPGtpVDLjZLXTLbVtdHaqEF3vAR+nGvv6A/Vh+Ji91CV43k5VzwBI\nISei/ydyoKmymovnUHbsknGdwSN0aRmOs6Ce0wQ11ZpoTZ/gpxc9xA3Xze+pX7p1tT8N55mHAK0c\n6f+FTfEIrUOY9OgXoBaC4ug5d/7LqudYa3orpfVlfV3oj0hIWfzLF7S3OQXuFjbZXoT1cw7KwEKe\n+hSIbvZSoxocOK5saXMqG6pMdf9gyOOjYi+ZUn91QOeOUCByQMzEUNBJBVnfPgXK2NQq5qBgM4Yf\nxPCRAdSrBnBh1Gta97v7ek7s3I6dtUQWMKo6a/5drd1Rj2dH4AHbe6xnBPLM8wUhLwJtzZmT2/rN\nMQEdmn8GfrcECjYBje2spfuMi/C0HcKVCCo4vInfnqmv2+wDp47GJFfTb4/aEBQqClWAi23scbXk\nNe8dkNcF5pyBWvXWsvwafgZE9mwT7q0T+YBKmzEDaTOZa0wyB8ydMTybOc2BTAm0LYps1ab6Mwkv\n0IVnhRAaT9SPVVSrCpxeqBzIB8yh3lpD+TGQQPmsrOeMUc5N1TRHcjn9HpqW2a87qvf9R7KJJ++I\nnyQ8VH9nzn02Z9Jdk+/ab0k5tNTROF39rlAnV/id1T6PipSj/vryE/XDP51TP3y7qP7/3ftvmJnZ\nDyPag773stb5+U3Zx5V1+da9rubsjbvnPqnLnfYVa+XestY7+qz6Ir8nH8kIogmQfzNxyxSvaayu\nXBZ/0M1D2fpXLqktH1S2zcws0FSbDnZBcve0R9hsq87rB0+bmdmT9TfNzKwWkZLU0u+EmpqvP2Nm\nZp13tRY/wY++8IZJAwAAIABJREFUGNWYFzOqZ/i/yjbfeFHo3xi/tdZua8zqX9QYPntD1+X35P9/\nv4mq1Lr+P3hF+9DWVPv67x0ItfSzHY3F8iK/u3v63rKj3y4fsC69e6DntkCvHgg4b+tvaU5s7MIP\n+keKj5Txi1/84he/+MUvfvGLX/ziF7/4xS9++RzK54qUmU+UzVtZ5pxcRpGnJGpK0THZ9rKiloOy\nMplhMrXxCOcvCS0VyTyERoqKTsnApuaKXLUdMpeEzgco70w441++p0hXqa77pwaKbKXI7kXJaDig\nF4Kc40yv6f7pfWV2Bh1FPzsHev7aN9SuSU+Rs0lQiBeHaHdprvpWDjnjW1dkLwkXwfaq+sflDG5w\npkhbE2WdOSiRxaCitJMkvCCn6p90b2zlrs7ZTjmDmRjBQUJGtj9UG+PwKAQ3GBuUErwzlImwrms+\nVkQ5Dhv8kKzvqKb7rK+qT5o9lKagj88jYX/WcuVPxfA929LYLa7BUUAmdYK6xxRU1Ah2+VBfpr10\nVRnE9lD1LMD3EA6o/oWZ+qrX1v1qnEte4Mx+A6b+IqoezhrnqUFvVcl0eBwseTLZATKUk6BsJIY6\nSfwSnDD7cCs09ZxAQxmKZpvMJ8gjl3OUxygIJBqoH62pXSk4dCqohLQfy/ayaZ137CyCzNnU65Rx\nP5+TbZXD2PRE45QeqJ9dzn1y3NziZK/6CRlCZajocnOk+kTITo5anGHle9OG+mdyoPp5/Ck57KZD\n1i+1ovt0UXLo2Nm5h4YgGtwOyicgXRYd9c36guruIVB6j2Dkhw/CyJq4EPqnNjWPEnXd9/gj+Z3W\nI7UlTsYgDsJi/RmNRe6q0D2ZZfmX4K78RAM1KC9z6ETJXs89AhHVI5uDTwc1j6HBUxTSpCkfyb/k\nyIp57juOn2vCmfXgpniYPnhfKIg3f6Jz2TMUCRZjKDKoG2wQJXPrBfDh91nMyQY6nI3NBWSjsbm+\nGIio/lCqWCANEsTj+8CmWyEywR1lXNs91bPX1xifgPKY4TsWsmrP4cdqd3IDdERPc2DMOPcqII7O\nWKIo3axgy6G5nj86UTZp0lXWqZDdNjOzOnwZTlzjlSNDe5+s2mwId1ec9YCs43CkOVzqyK8voroy\nz+jVhSOiT/ZxmtY4h9pzGw3JSEb16oY0Fj3uNUGpK7pc4P+gwgIazBDImgH5lj5cJA5opsqRl1XX\n+y+99O/NzOziyjPcT7YbToAmy+t5/TJoz5nWkcYQ3gmyXQnEJ3Jwr4RB3qXhKqn0ybLBMRUh+x3d\n5BW06HSivgxzpH8Q0Ji5+M82a/+wAxIRZCEgV2vCfTLugFZa8MhqzlbW4ADbB/HX6KNMU9LY9clE\nt0AAejx45ab81+yG5kYvxBwrSxGmWZc/zubkk7aauu7oHY19J6HXfkX3GSzSf33tFQID1pOJfM1x\nQPVYNpQiw51PG5GNWTSLyl5Mc3h/IFvO4+/DoM+e3Ea5EcWcGAjOY/YBPdP/x6BV8uyhuqd63hHr\nqgPKIc9erNeQD8onMraWUJ/s39b+5+Y5ZTyTA31+yQXZdyzbSuI3IkGNffeOnvkM6muNU82F0a81\nf1M5oZBGbdW5TwbUjapv5lpibBpSH3vz+RTejEu9z6a+dBnFnMBMttU+BOXkqI+nYXjhktq3RpKq\nRysPt9Rd1sLHWldCqPYleprDPebK7az8nwMCcYJyYWRVcywRVJ8nQ6pPy9H7Tk9jM4LvKaWvW2sf\nDjVQFM192fghfEz9gdaXVJp61jSXsvj/6A1UTUFkhuaPaK9ssoDSWfdjeABBoCyAEIwW1C9uAMRQ\nC4TMVEYTTsmXldlHH59qLlxY1v1P2eutolTkLqleDdBiabh5OkHWB5Tn0m0IrcxsMkpYDN6P2YB+\nGqLoNtZedwG0ytVvin9j0mA9b0ztrCWRZR7tgnaNgHCMekg7kCk9tXVpQ8+IuPr/6etw/5XgygIZ\n6cKrE0Z5K4gfmibY53F9lN8AIdBU5YpsqzKAnyMHqpg1PL4sv9TCb45PQT67/9/9YSyJDfZ03wn7\n6cMyc2ogNPFyGWRHAQ4Z0MvjjBAcyWPVbxIEGTjUWBRS2nD2HI1dDaXL/Q/lh975e/GI3NxX/b70\nb4UoSc71vL2yOLscVGGDz2tPdgAKegzqtw3XSgKOMIdTEYWCbG25iHorqqlt6tdh/WoV2MNUtBc7\nuSO+ko222nPW8t5ccyL4B1AcKNXd3BdarX4ZtMcdtfcrX5IPu7kp/pM/2RXPS/1YnHDDH+i6V36r\nObJ0It96ZUG/QQ9PNP5fcYQWeX0kVMt/Z2ZLtbctEXvaTru69uoD+bOdC+rLjx8IOffBz8UB9rUv\nCVHTiAhxFyi8YmZmpbmgIeeGQtC83Rfa69wFXb8GYnF3LoTMhdu/MzOzd0x9v+Fq3zp7WXUMvsZv\ni+/Jlr7xf+2Zmdnen2Nb9//ZzMzyz75gZmbJjhCVffZSaVBVa7fkJytX5Zf/sKs58I0H6tvXclrj\nx89qLKtN+bfAOa2hAVfo2LWxxuRhR+09tr8yMzN7T/3y7FB7qcVnhdj5+6Suf+k52fKHr+v5XPX/\nKz5Sxi9+8Ytf/OIXv/jFL37xi1/84he/+OVzKJ8rUuboSOiGo98rKlqJKYo3duDrWFGEvX8AezFq\nJ4UlfX93V+og4ZqngqHocqDMOfOWopv3TsREXbuj6OZ+knP2AUWrIxlFH9OkfCtVRZU3txTdnXQV\nLXYbel38wkXqpxTEJ9wIVxQt7tf1+f3HOmuWfYfYV0eZmRRSBU+qyrDcQ1XEJUaWTSkSN+Cg/C7o\ng40Vsqh8LzRRpLD1UP21956i1C6KOn3T58nC2EJBEDAl3aPpgDaaKKPndHSvsac88wFcJfDpVD21\npcuKZvb3OLvKmVCHhOSwrT4e3lbk2lMdcgd6fnENVaYzljCR+sWizvN2DhW9bLU0dhvnld0IjpUx\nOCUiHp+irOCgiALHQjKl+jQ/lq25GV03A5UVHVN/YBPRoPqnEwPdMNX/s9uKrD/+WJH2t14VY/eN\npKK73YtEfeMag/t9RU0XOa/8izfFOXD1OZ3xXI7p++ki6IeCoraXz+v/x3sa2y5Ioz1QB0uXYacn\nC9+JkVHfhycJPos5yJ/IUHOp3dL3ox31VyjN2ecDMiUgnOIZjVf7VP0UWJb99E903zWySgY/ya27\niiaXycKtLaBkUNH3kygwRNvwj6wri/XdLUXRj55S5mBxA4jO/27/apn3UJhpye6bd5QtCqySbV5R\ntjnUAY2zQvZ7SiYWjpAuaki5Oxqz6qEytwZ66cJzYrrfvAqfDoz9oQnZp5r8TvWx6hHA5ofwP3RA\nOwXgQpnCOTKKaT7PY2SXPEWbIGfzi8qe1Mj+zJn/w5bqW1yUv8kMlIEYFdT38w1lBtbDcGOdU/Yn\ntq8x7TTVb09dvk4/yB+99hupnkTXVY8Qah6jrK63jGxsiLrGqKOxnU7gVAFBNIcrZ9QDwUR2rFBA\nkQZUmUvmpDVQxmJiZOPgGttaEkKw1JZfbpT1/Ez0s2WlVi+rf08fa1yHp8oSDYcajyI+YgaPxwQ1\nkgwKZi5IxLan+AM/V7cBR8yGbN1ZUIZp1oXLKIgaHxxDBw9L1Aj1QPMyuW0LBPBDIEN6M1R1sh5/\nGf7TUyaB0yXpqi/CZJHbXmaQQ/QeH84Mvzkvy2a++cKfqW9WNUeGLa1F4YTqXKuhgoSfnyc0pwKo\nREzgO2u3ZSO1ow6fq15j1IFmKKVEgVw6aRQYUBocMlcmqCyN4VzpHWksnJju44DWCrr6fh7E3xT+\ntFFDWaiVJIjJzGfjMHuMAkwJlRO3JFt52NTrhZqed5ms/tGxnvvhTZ3lv/ScsobPFpUt/F1Tmdv9\nf/pPZmaW/LnIJBKvy1Zii2T3H8PzNEO9JCBb6cO7UcnI1oZz2U4ypvGcwxnhKbaZmY0nIxtPdP9s\njgx8DuWymeZW4Kr6tfRAc+r+VH7b8OvuOfVDf1f1CI/03Om6xvvEgaOhgYoKfCNry3A+3JLdldcG\nli6SuYR/7OQVZXNja/BAgBh++//4tb4HN0GffVdqSXWspeV3P/yp9gBHd9Tmjeflv26/K9su/Ya1\nuqG+DIZVt2oWVc8oayJKkAfzT5EUZykuvHrvvaGxdeEKGyc191pLIFjC8t9NuAVGHa0LWRRuhtSj\nV1MfemivEMjsZBhOh4z6J4oKXmKGjca5wPC7jOUYHr4ArqKFgo+7JVu4DiJ9ClrNgTvs4vOy3QQo\nuXYMJOmO9goZkEqBiWxy70OUtk6FjMkN1d5iDq4FlGzmKK7lPV4j2lFpaLzCC7rvah4EOaisFWC6\nQZCWsSQcYn0UiWqyzbQHmAyon+Ij0LoFMuwZIDZm5nTaNjJ+J8AP4oI2SzCOI23V7Kih99Wpxi80\nbNpZS58xngFHTbuady1XdXx8T2u0s4yKG8jHUl1tHM6wIVBLo4D6ogM6vjtGpQ6UbG5DtuABA0uP\nQbKk4UGDn27Q1WvO+82SlF855jdGv682nsLNsgQf5xx0bSaido3gAx3MPH4+5hwIzxqnCtIlfT7w\n9vEunDagYQN99kJpuB/nem6R31ppIJiVqj5vC1xmKwegeXvM3dvy+8mWnrd5eVufO6rvuKu5N8Rv\n57+uPcXzW3rdvyskThzEYBLlnn4AFdGQ1vQi3JBf+GshU4rbWneH8Dg9/Ei/+V75D0J//GtlE1Tx\n+Sx2QX269zWXvn3wMzMzu/uS1o35wXfMzCyT0ecHi1pnsuf13PRbmhPPviDfGo78RN8bCVF0+1Xd\nZ/CUfOHX3vhUwdKdLNpJPGeFLMjkU43VQVxG1dvRNaGu/O2jifrkYlYT5gWQb2/W9VvlC2khGGcF\nIV8OQ0KgfITq6fnan5qZ2QJ+ZbOMKueilP1yMc2/UldooNhPhbIKXtRv0vyJbO/gffXJu3f03C3m\nQOhLQrpd3FafTroaowdvRni+kDyNl1Sf6PD76pOCOBgP21qnunLz9vRTQuLc/a383p/1df/HS/ot\n9/UF9sdBjUXtvtbgnXcVp4j/uebYbfazf6z4SBm/+MUvfvGLX/ziF7/4xS9+8Ytf/OKXz6F8rkgZ\nq3P+/ZTz4RlFf5/UyLbNyZqdKioaiil6Wq0r8r3XUYT+KrwhSZi0OxCNeGd1RzSzz9nmWEjRzWAU\nRYqooqOhRV23trBtZmYbWUW6HoTFsB2vKUIfuKeo7R9e/wczM4usKOrbKSmbdOWcIv4rRIsTHUWj\nQ3DBDHaVITUig0uuUCDJVUXwwlNFDjstRQKLK5z/LKo++8eKBq9xWLjH5+swq7tZfX+OkkVj0rQ4\nGbM+2YFUS9mBEFn8AFmppMd9kqDOa2RoHyqLHR/BsxMCaUKmLrGk7EhiWd8f9BV9dHeVKWg34dPJ\nkX05Y6md7JmZWTqiPp0HFG289Rtp3uemape7o77NuvBYpEB0zPT9PAoGbZItQThRAi31eYKMQm2u\nDPE6CKI+GWO3R4agozHOxNX3F55Vxve0okh0oKvnX7moaOiMSPoaPCZb3wbZs63vX9rQucop3D7d\nx/Qr3BB9MtGDAWeHUS/qRGSDETK1DrwVy3BHjJaV4Wjto8wDyiCMIsV4iGJEnix/TTYXI4MSSKt9\nJEbsFEWDEGopj12dhV70zmvH9JwYPExBDxUy0ufzkuobXSCbSPQ9u8CcQJHDLcL30YLw5AxlBg9Q\nZgLPBsiX8anm2XSuPp/B/RFflM3kTGM8HcC/AJLm1oea7/0jvd+5pAi9h4ypwYXgoO4wLcl/Pe4o\nEh9o6n4pR88NxECG4JcwObMh873POWeySN593ZjGpOllOjmLn12Rv2s+kS0GBurTCDxGW+evmZnZ\nypayOvk8WS44UA5d9e3jj/BX3+RcMxndxZTa44b0vc7M465R5mIOMiQJL1AL1Tnj+bGR5vgUlbzw\nEM4fuGsCBvcXHC0Z0FchFHmKi3BngdoIFVDQQQHmzgfK6o+6n019KR8mwzzhPLhub4Gs+skBqdQD\nLdFvomC0TsYbzobRRO11g/r+zbLmwlpc9rKyKDuc3hdC8/9h782DJT2v877TX+/7evvud+7sM5gB\nBhgsBAGCBEhCBCkyRUqUxKIsO5SKiku0XeXIIlWSi5GVim2FkRi5Si5FiaVSVSqJIlqxRIkyKVEA\nQYIAiXUwgxnMfvet+/a+r/nj+TUR2SRxUZUUKqXv/NO3+3Z/37ucd/nOed7ncch9NFF28KMGFoyj\nogU/S68dsRg8NxPugdC8fDXJvNaHP6k7US7s0idjeHxYy0LMY60amTCUySoVfW9jTdmtAmfq59fk\n2/kg6hoohA3h+2mSXW4V9b3aruadQ/Mq58KS1rAgHAFNkBSJCJlGyhcEFdHnbH6bNiVJbYOSyu2U\n5RsduE28KBLG4VZIobox6ul9dwefnfBTpNRuscxb2+I4ZfoCgJKBOIkWVN8tn/6/EGBMlck039BY\nulJSn6ffo0zlub44DVamIfbYUnaxuSvkjW8H7paI1s8RyhJtUBIduCmqIFi6ftADIJX67JWi8OmZ\nmQ3rfnv+qsoxa+r3hZLKmb5T5R/kls3MLOJVFvP2yyAZQcNF2vRTRv1fvq379kCvReBCc1CS9A/l\nB96GXrsgZurra+bJy2dSKfZpV1GaYW293Nc9drfV5xmPXo/F9f/tMmvJptqmXIEkJiEETucVjdMC\nqIQeSimpgOpYB7XQZx/YQYlyDrUi/1vbktj1C8p8fvcVIQrPnJLv91CyKpaumJlZbk5t5ivKd3d3\n9f/YNCokfq0r0WkQGiDm+kG118CDGpADrwjIkxL7ZR98Hv246rePUmIatEJqSXumEfx7La/ukwOR\nsh2HB6S8ov/DfRYtybf2WipHGET51Tr73AKoK5ChLOk2ZJ1LsddK5OR7zRhqgnnWwaraYzusda+B\nMs7OCHVBEKAdEIx9uG2G8GG1Bvp/LAJqDoSMBwUf/xC+viLosf4bY6Ma8Vivrjkpit/5E/AMdkEF\nNzQ2966rnzIzcKmFDu4oHi8qeil45IJqk70tVPXGGreZDn0Er1G3zOcgAHN3qm6Vmsq8c1Vog+At\nUGBnUAc9BH9dSuO81xWkxN/TOMwfZ82aVR84A/2+vQ+fJSiu8JTqeuTchLNM86hnB85G0GctkPZO\nAyQPwOYkCM2mR/UsR9g3TibUPvxqUTjJemrzQF/z4jio8jVz6rs4z0KzqO7F7xdC5a53CCHewJfW\nnhFSscd+s3ZBqIm9sK4/c594Pg6lhB5OzaAehUrWflBIGQfOLI+PsYSPDQaqYLWGWtJ1ofWqEyVL\neKN8qbeGc1i9rXV4kNB9bo401u45/5SZmQXXxdtyekXlvJH+ppmZHW5qvbiIct3dd2nPtOpTPRor\nar9rZdXbOBFwdiR+F6vpucMJvaEotnnnfRb1Vmx1CdW3b2iebVeExvkv2lIh+u6dunbgm1obr57X\n95bn5auLf6W1r+LTM1rpbs3Hd81ovi6+8A0zM7tS0tpz9SHUl+F6Ko7Ud+97hT3Kj8jHIux3b8+B\nLruuPon8mBAtp5561MzMUgGeOcOan29n1Of9PEpfdVC0HvHtVL7Ns+IHUST8GvNCTevUVx3N05mX\ntL+/awCy7jEhrdeS71N5mppfL99QH+17ULJ8RL6/1BMSMfkOrQ8/yFykjGuuueaaa6655pprrrnm\nmmuuueba22BvK1ImFlIELDWvKGD+6LKZmcXJbGdnlWm9/rwiS0NiSOGj+vx4QOfjjtwnXou1C9I5\n76Pq4YsquhpeJtKW4Mw/TN1e+FXC07DhBxRN9oU5R+njTGxZEXJnVtHVLEozeyhDPPKE0BIvP6No\nchAUwy6s+Zf+RmfM/EFlEQec8w/CHxImYzwM6PqjEaofs4r4n7tDZ+w6fkXoPGFF3op7TT4nEwOK\nZHpW0egOkb5Oo29xD+f1xooSxlAOGNY5609dzNQmLYdzwLyWu8ryZ0GQ9Gv6/s6efn/nHAouZELz\nIUXYUwsqY/Co3neTE5jAwaxpKufhux4yM7Oz9+s8Y6+tiPjGprLUqbYyfFNn5UteMpkVMqvDgCLf\nsaraMEZ5Wl29VkGIhOAsGKPQMOzAM7GhPglE1aaNpqLDKThd7gAZcvOWsuXho4qSZs/JNzqw1p+7\nS9HZuSP63f6urjsgqzPyy4dqt5VZLcHdU2OohpLq63BJvjoc6nftiCLsVfgvonPKaHg4Bj0sKIrb\nDICwIQPR85CJ3pqgwOAUGoLimNWY6cMRUR+qHP2R/KjhV7tFvGr348ucAd5WO5e3NXbTPZW34ptc\nlzEAesXqisJff0rnM3fJch7I4EEawNHSqqBmU9C104vyoemEsgtBVN88cLdUN3VGtdpSX7QLGkdT\ndylLcfb9OhsbAM2zVVSftDaUjW4ndN/5I4rcx6OKzLdX9b0+GbxAUlmxEJ1S74PQ4Yz+BB0xbsBN\nBffMRCFhYw90F+e8B2RGp3Nq2z2QI8E91ec7LyiDcGhX8+PJB8mK9OWLqSz8EkH1WRM00zCpMZHI\nyJfiKCDEYnAapJf1PUMRoqJ6dEDRtcIq5xxIxSKh/wFZuNGW6u8k1C8OSKACnFsjU0ZiA5UV75Ta\nowrqq35T/bS6M+FmOZjtFTS21q4rAzN3j9ol2pcvlvuah0dQEIxQKHJM7VFag2sGtERhR35y87nv\ncge176EpuB5Awsx49Tqe1fVbHpV7REa3HlD9fLmohcjCBAOqexpOq47pO2USjomU2toX1/c7I5AO\n8GP4QJa0gQH4YrrO7LLmyZlDqtuty7pupAlCDUTMyKuyGtkfI2vtRJWZ85CdL/dUh+Ws2sTXA+3V\n1X16YxRLHKEkOh1dz9/T9XqTI+0N+fBgpPI2G2TJh/p9YrI2koEdgswbsa4Z1w2HNcYAa1kDPqOD\n2qivLHmWbHyF+d83BoWKsstGgPl6GpWOgubbyqbWu8pTms+6oHizdVAdCXiYWnAbgMCcnKtvFeRr\n5ZbGcL0GD91Y82vINM/Hma+bcN90S2+oL437cUvTTwV4VrYOK3M+VUAFKqpyzUd1Lj4zp+/tNFG7\ngkOuAhJoBGeYF5WvMoo9cS837aufNn2sSwMQOXMx86BQMgOSYoyylH9afXmyC+qpBicXa34cNEGh\njhIfyltNLwperCm7Rb0vD0EBe9RWN8nCR1oo+tGXfniNKqa65PxvTcUtcbeQc+cTyqBOPaK1PtnS\nuC6BQk3BZ+QHxRoF3eQJaX0YDlXuUhOkh6P6etm/tpiXAqDhCkyk3Q71n4LfqYz02Yp+/9quECfD\nhNr9SAz1oroywTsB/T6zyx4JThd/BDXQEeqCqBl1fawDHb2eWlIm3PM+7VFOo7q38ZImzvYWxHdw\n32Q9+l32FEqRGypf/AYo7Sn5Tgd1wWpWvp0ECRRJg6SEfyoFGrARVH2dCmpMQflsoKf7hFm/Jhxm\nZmbppaytXNYYb/fVHtGY1u3stOqRXVa95u7SWBzAaRN4C+vNMCSfDqTUN13atFQEYXj8jJmZNWNw\nv6yp7P6W5uHwDOjNGcbGq/r/c8/pNQPHVOaS2nzbq/kmFtN1Mwn9vtTVWtljfvVn4TejLt48iJsW\n472Gz7J+DAMT7irNCyGQ1k6UeR4usP4Gz0ogr5PwEqVO8GxT0Jheu6o276GuNA96rsc+1peF72/y\nHBJXXwd5FovMqB4B9jA9EDiLBV2n35fPlldREourfMFX1P4rzwpRc2FdaIzj5+Urg7ruv7Cscvo9\n8pk2nDeRDIqYEVTmQqCQQaDE0nAkNt/aI/XMHbrPjb0VMzPz+PSsuLz/XjMz++MVTjCc1rPtmael\nRht6WHMh7mMvlcUx87BHmj6+dc0Z8w+AekMx7dl1tfsH/ZxGuf/q98qy61210bV5M5CJg5ja7AMP\n/4mZmT29r7a57zW1xeW8+rKGItiJmnypGxWfzlJf83BqR5wvL10RN0xtrPlj8Ljqfu+21qSt6+qz\n8BLz0ZLWzDgnZW4OdVrj/AtCdntPCxX07L58/p6K2qAHF1TmO/AWhdQGm6xh2R090wRi4pQp8OyW\n+Zb2+f2R+mDwE9ojfYjTD4OntX/8q/drDLwzqGfS089LEey7O5o/H/9R9dGzT2ueq6xqHsmWNBZP\nPC6U0g8yFynjmmuuueaaa6655pprrrnmmmuuufY22NuKlEnCddCA2Xo2pghYES35MPwnzQnreonz\nmGQTt8jmxzjb324rijpG673eVtQ5SjQ30lAELthQtHDoU4QvRrZv7BXKIRhAnSROdiim6OtwSMa2\nBvojo/dHz4vDYf0pKfBEOZcYelX3ufxdnT/MpRVhnL5b2bzEXapv11Fm2Mvh3KCjyFrlVaEMuoeU\n8bi+wjnxaaEvBtEJG7bKSYLd5uF66FPv4ChvrZoiu4Ga6uJpcLZzjPLLiPgc7Oxh1IXiOc5KkvUt\ne9Smhqb7uKlIdYcseiu6TxuhxrGpqOPsEWWVQpFJau1gtrlBRLes6OvyaWWZvDPKSqd35BOrFd23\nvK7o6zRn+AegKPpkl1JEiAOmNqyg9DVC9WMAsqZFloYgqzlN/b8LoihIcs0XQ+HqLIpcdbVPFUSK\n57q+uHZZmYyvF9XXjpeIflsR71RAUWVfQO0am1F7HwFFlptTJsBqqs/WvqKwVXgqElWVtw66wkOm\nIntMkfZSq/S3vp/2qL/jBdWrAzqkNJSv7VVV8aN3q/8rZC6msqpXaqB2np0FAdNQpqU8QtWJzLYH\n1EQbNad8R+Xqt3WfJj46D23IOx9UOxavv5H5fTPLHV82M7MA49nbVjbq+b/R+Gmuqs69EgME3oQo\n2f0I2e/dbdUhe0TZk8PvUER/v6/fBaqgEVALStzJfQeqa3IODgAytvUIKhAFlavngIyJ6vvjtspl\noBtiebVFAfRZaAwqKqS+imR030BX5WgP5Hu+hCLvHlQneqhJDLh+GqUaC+q16SMrtYhCBE3tIzOa\nnKhCMQYg7ghnAAAgAElEQVSCIGKMc+hDMgtd1Dv8Xs7sBxhb+E4LJQXHq/rEx/LFVRQSDqs6Vq7r\n9+GE2qk7hhsCkEMwqi9Og8K66yM6w7u4qH46qHW25OtOSz4b9CybmVllpLEWhotoh3J2Qc3F4OK5\ntKNMjqcMciilefyh9z5mZmZnTpFxzaBWBWpkiFrT9g355V5JZ627IJUGEbXj7MwdFsc3HPjHBnBL\neQsqU7OtcTwDUqUC6VOjpO/ljqouzYLel6lb1Ku69FhbvfBU1PaV/RnVUKXD19P4btCn+WmYVp/n\n8vKts/cJpZrwqg4Tjph6SdfzOZp/vVXWCRS1vPBkdD3yTV+d7L9NEDQqr9Of+D4ZVxB25qjtm1XO\nvbflJB2ffCjBMnZ9XfNs3v/WkJk12rNl8t1ATn23S9bvUEfrzGig+ow21U7ZuPqrzPxWuqixvrWr\n7J7Hp/k7fEI+m+hMcX21d+2afGa9OUHVypdmQK5sgDjysjfpgW4bF+UPSW/ke3XoWNcArFgupezm\noIyaFoqPPp98eW+gcmQW9L1YH5RDFtRET2PRaev/QdS9BiCcbsObFQBZlK2rPkFQMP3arO0y/wGM\ns/WgvtO6rr7LgsyrL6EIg1JKrQLMswVPHOiiCNPZgD/KcIF4/PKNThn+uCR8d03QXXn9fwwyJhKC\nq3DvrfnI1F0gcN4hNT5PD19hvOfh/gqEVeEZsu2l2/rcV9Z+t7TJ2puER4p9ZdeB69AB/drWdUeg\n5lKgeoPhCboMLhoU2dKo+dVZk7soXh5fQIUERI4fPr7MSO3YiKl9j8K1GAzqdw7rUK0nn051UDlq\nyDe7jL3AnspbhosryDrTijHvUp5eS9fZbwq95QmD0o7Dj8J60TmkcnlA8Hhb2nNMuIEOJVXvzt1q\nj7xHYyzYV722r0rhqDN4gwtm4GtZJq36FFdB+6EI6W2z369rb9li7zlBTXvhPTmITRCHkzVsAHI7\nlZ2oKTF/TBQht/X/qeOgTTNqo8gQlbOU3p+5Qz4VBeneZp+99wrzKvJE2fvUFiH4JafuUZ9OjUGs\nVIS8iA1ZF5a0r861QfRswVXGvtgzQdKwb8yChPSxrmQm3GYBntVQ7eyzLlWZR0YNOKiYt9t+0LZs\ntP3sHarMd2l4nwwfiIG+srjGXASku7FvnjzjTRQpl9jT7bX0e/+m7vuAR1xfU0OUKxdVrhRch1tr\nWqunEipHlL3BfkD9toSiV2RB7RBzOB3BM+dB7fqrut+RaflW9cLHzczsL46pvR4Nwn9U1DPmNxa1\nfl95WeW6o6Hvxe7Ws+T2ESFfLh3TnJt9XZ+n59U/iaN6bhiDyn62pHb7GTN7T8Gxja2BXXoMtSPm\nxSfHHzEzs7nn2TcyXI/doWuVLmsNuHz6KTMzu1HUHv76+yRb9HBF4+lOuBh7XY2nBN/bvqQ6PXxa\nvrLV1tp0Y1knRG6ArFusC7ly47TGzA2Q3e+6QxxfV0Dvxx7VWBg9KxToa+/W/VLPwGOU0e8unVIb\nvWddPnIBZOFTPJs4r7Gfv6z79e5dNjOzGThpZp/6mtrwtBA9zjHVt7yi7/um9PteUZw8w3tVzosv\n8VD5k/Z9zUXKuOaaa6655pprrrnmmmuuueaaa669Dfa2ImX6ID1GXr0GQ4pQBVE56YOUmaAVKpyr\nD4Jy8K/oH9sZfT+2DweAo4hec40MbWxyLhFOmqQ+DxAFDvYU2WrAtN2HwTvEuejFs4o6F17XWdQl\nOGlWKnq/c/XrZmZW+q64CrpeZTzqoAOcDFFxzrgGzyrLGD6lSGGZ8+D9gep/70lFf3dAC0RBP+Qz\nyvjMLuk6lSJRz7C+v0+GuQnSpjVAEWdgFiQyXwHhEB0oYt93yMKMyZgu6XOvD/4Mn7INfc7wl3yK\nKoaOcQ4aXqDQfSA64mTzKwXuBwIly7lw0EcHtUBNbXhzS+XpDjlXTqZufmrZzMwOwQdkXb1Wmypn\nfIq26qj8FXgcUmSEk3CkBMgYNEbK+lRRZxqboql1OHXmxoos+8kIDNtq13l4PUZHhK4obOr+nYiu\nEyVz7KlPzqiiQDMHx02Hdm/p/5u35VtXXxRbeoUEgc+v+2SOKkJfW1FGeJUzsXEy285YvpvIg8o4\nrHbyXxPaKkDmIWlq1x5KaKdOi93+8Y8oSj1zTiiMP31SKDA/GeJuWeVb31C/FkERpDLyr+y0MsK+\nffmDMyA7OmRsoWS2OVBkP/2gvnf8Z5TB8DwLscfv/qW9mQXJhCVPwVHlF3fMdpUzr2v6/96uxvna\ns+JaOXZeClgThZal8+KQOXFkWWXI6vOLX35S1+Os7TxZicUpOFpQtrp5bUV13QBdkIAvh9i3Q1Yn\nEkNVLa0+2t9VGzYb8okU/EN9eD4KOHuGDGhioLYLGGiCBEo5IITmTyjLHvqOvtcGkVGAkyEUISPd\nly+1mvAIhVXfQZ/sOmpISVTcPIyhnqGM00Axq8ecYnrdI/Pq8TJGCP17yXB3UAbqw1fV76tfvKjJ\nVS5rXtuCbf/Icc3v9b7uH5/S94bxt5bhjqfkB3NzWj8Y0tYiQ9rx6bpjUBttP2pdafV3bEdjrUym\nPTaj/rkT5FW7qnrsXtZ59WATVBgcYSMyxCHm2FN3qRwbJTXMzMy0ecg89q8o4xcH9ViYcLswPxhZ\n7+xYaJ1OXX3vSZ7hXkKJjQOa1wGe2M4rel8qvKTf3VabZqfkC3NkOENBlKbwnbkZ+UQSDhsv5exu\na9xHyLD2QC3ElzVPNoegq3blWzXW4ACcMZ4Jcq434bCB94OMpbevsdUHBRcGtRUCjeBhHRji2+tw\ntNS35TM++CIOavEuvEeoiHRa8gH/mPqybg48KHSBSOxu6P/tw8tmZjZFNt5BPbBQBDnZ0XzuGykz\nHarLxxsDOHFyrN0oBo2n5FORGqp6oLdGoHv9AVB+0Z3v1SEYaFulqnpHe7p+izlxvqh52AmgxuTR\n++Zr8u2dvMbUgL2UN8bgbct39+BXapMtTKZB+znqryp7Ngduh5nO0EILIBK6GtdnMxpn2wP1bQ1e\ntdaa2tYHAqQwUXRCiSUD30aJtdrZA1ESZj4ZyueKS2qzQESfN9oqU20a5awK/DmowDVCb6jzHMSq\ne/KNFmp0zT0p4tRR8evBreCw1wihrNOGzy/ZgMswofr02LsM0hojWZCIfZQWe/jccAxynDU4S5tH\nPPr+BuimYyfeoYKyu3fmUO3rqx888BP5QOtOuAxjZPn7eyp304QeCHDfyKZeN3ZAb6A0VjEQSjtq\nj1PHtS5Gg7QDypL11/f4HBUolHbaju4zSoGoQXnIEwJdB4IzzJ4llVT7V+twyU2QVGX5U6mFghv7\n5nHoDXR2uB+0G6ACx3DlROMgfUBdD/ZUns1VyjkPOmUQtoNaEW6pBuip2UXNi+FDWkt6dflotwkK\nFoReIgbvUg8Ey76QLwGm/+MgwMMgRmreZTMz235WSjBXviJUfukx3ScBd9jcJ8VlmDyleSd4SnuO\nMcqRgR2NzUEADi9Qv2GQzN0APguK1KHNh6DVfBOhK0ffGzoTNSl4e0Bm5tJCVdQZs6EhXIXwA43h\n3BqjpudFuctTZ7HmecMx1SsFZ4yhMliNw4GDYmRC1bVgUeWNn1Z7jQFPXalqPr69ApKHUw67K1rX\nTj2mPaGf55jWmhDvty9qvqz+L3pm29rQujoTFeflQe0DTZX/my3xmSTf/yVdZyjf3KrBqVmknSJw\n6LxHz5DPXlG/fbip/fa3t9UuXVBmhYzQGa2xVJhKoDcqSTiImm88jzmhJes9/qRlK3revWte97gW\n1DWCGb0v3S1n3L6ttWB4DA6wSx8yM7PMx4TCmnpS1y6N5QPpgHwyiPrxxbBUmJp+IZ97C5pHO99E\nHbQsX/p4akV1e0DqRfMV8QINVj9oZmYvPi/ff2xBddy/IY6XzqLGzqnvyAl8Pjgm1zX2lurwtN2l\n+azd19hJsWdZPymfu2dR68oK+972LdBjPSFgFhfUJxd2db1nQuqL0Um120IT5I1XyB0nL1/5Qfam\nQZl2u22//Mu/bPv7+9btdu0XfuEX7NSpU/bZz37WhsOhTU1N2Re+8AULBAL2Z3/2Z/aHf/iH5jiO\n/eRP/qT9xE/8xJtd3jXXXHPNNddcc80111xzzTXXXHPt76S9aVDmySeftLNnz9qnP/1p29zctJ/9\n2Z+18+fP2yc/+Un74Ac/aL/1W79lX/rSl+yjH/2o/c7v/I596UtfMr/fbx//+Mft8ccft1Qq9QOv\nPYJNPYayS8dRpDpG9t6pw1EwQp2iSbauo6jy/kgRqXgJBnPObQ+qih5GiJbGGkRRu6goBfR+5FO0\nuB5DTYWMdxDW/95Y2ciJZv2YrJN3ACqkgeLOkzoHPoZbot5UeWePKmPg/XuKktduKsq9yrnKLmm+\n7hglhTGqLGPVo0WGodiGY4czyv0B5SB87plwPzRVzn6ZiD8ZgO5myzqctxuTve6k+G2NSHhqcg6a\nM66csx161DbjpP5fJyK9NKW2aa0rClhpq80DZL+jXCeaVVvEybSOHUVJD2oZsv7pjspfQhUiRJYp\nsyi0UWC8bGZmO7eEgiiVFckOkAXLhuG3qHP+Og4zN2flxyM4FDjPnO2pj3twOAxQWwqQtWpwaH+0\nT0Y5o+hnPgebe0nZuCIqI05E101Pc/4wJR9rrymau8F5ch9ohL2i+rwZhH0ddYsmikFHz9D+8CM1\nWyrfcMRZ/jqImYjGShIES3BG9Q+AzKnAl3GzICbzyyB87rtHiJ+yR0iW8o6uH1xAYciBewIEVm5G\naIHEDGiDMQpoKIyVSyCQbqhdhotqt8Q0GeR9fd6L6voOaLOD2M6+0Fx7fy3+hqV3Cm2TP6w2mj0K\n389Aff2NL0stJ0rWJRhTmzY8nGUPMB+UUF1YVN3mcnDQ+PW9XlX33UaZayIsNkaNYjK5Jhh7bZSz\n+iFUJ3pqez/nhj01xq+BKptSX3m3df090jv7qLd58vLRbpfz6204c5b0eQteEN/kXHiDs7bMt/4o\nPlBSW+ejZJ4BLdAsNk5zpp95OZ4VOiPNvLW/qfINyd5HfKi+kYkO20RRp0G9J0pjutE+3BF5eJj2\nd5hvUVgLJ+Vj5RX5YCKq++aDb42far+g64/r8oMR6igBL+2c1vUqNfizymqAUZnz42HVJ0d5/GWN\nsZ09zTkOiJ8UKJMRWcTBiEzznO6bWNLvkoflV9XXVf/Ucs7GG/p7q6e+DKN81UXtptRTX51ckHLU\n+o7qdGFVa1dgnnmjhIoSPsOSZgsZZa+WwsoADrIqc3JGdeoAa/LAUxEACRFH5cfTU51CeyrfziVl\nFHHJ7/HEZeCAcVA/2oOLYMy8VCdTGZyMARQE+8hJ+GizLpxm4QqZ2TioUtAEHjgEdjc038dA6Cw9\noDP4DipVB7UsvB2VEXxNfvYUXb3f9Snb52E+jsMzVc3LV3y3tQ7U48rOnUhoLho5miuKcJuF4SJz\nDmm+zHXU3rd8+rwPr1N/ExVD+KA60Yk6FpwOPY29UGf+e3WotKYshrrJDpwyqQLcQ3ldLwrqb8Jt\n5gcJ2wtqHm42VY4IfCYOyKBRccIdR+YW5aBEHO6jOdSi4G8K5MsWYm1zFlVXBxU6u6G2CufgkmrA\nPbMAl1MVlFVdZVqDzyHYBokXwulCKD052otkYvr/qAqvUV5ruNOB4ymh+THW0P2j0beGlOlf1by6\nP9Kex5PU9bJh9pMgC0f0dbSPmhHz+zbIyaiGjhUmiESQ4z14paJV9V0gout12EswrZoT1XX6Yd3f\nNlf0u7T2WEH4mPrUuxtjTd1Ve41Z+zsN7ScHEfY0E+WbLfVDZEJW2AK5Dm3GyNS+WfaxzRmN1Soc\nNACaLAlXzBg0XB++Jh8ovFRFiMHeLO/v09wUHeh75V3dv8scYfCOpBLyi0GbeZq9235Re6p8Unux\nvPcNtFy10bChpjzzoKQzhCCpG1c7BiIa88fOqp28EMN0OjftoNYD4RcGwex4NA/lgyrT1bJQRomU\n2iTJ5qHLvJ3Ky3cGqDY5qNBFUWD1w30YD8JDdAg1Jrgjk032r5vq0xf+nfZGL8TldEeOy0fSh+Rj\nC0vifBzxHFCsqvzxyZq9rjYPo1DoxNRmfUc+2KYvxviOdTX+Y135ro9nGafFHsFhHmHvkmHdqaNQ\n1vGoT/uoLPV57oi24DWpskdClakJ90wcfrbuhAMLzpp0Dv6pfRTOQCgm6nDXLC7SnrreDZCSmQ6q\nsXWVK0e9fHWVK7Kq79cFPLXxuYPvW83MbOqbZmb28LRQKIGy/GCH544bt+U3OUcInB97RKjt/2tf\nY2LmmMbg/lX1X+KE9uutvWUzM3uPR2iSSvQpMzN77ZbQGulplB/nh98ryt9cfd1ONQJ2+pD2/s81\ndQIkdV0oy7WjqnOctfhY+9u6xkWtidcXhNBrO1r7NniGSj2kceO/Lt8tglgffk11fNd5lW10WXua\nLz+itfvxZ9RXl+r3mZnZORDMK3E9Q23NfNnMzHy7Undy7tH/r74mXzgDgnB4p/Zn30i/k/KDcHyJ\nZzZ4Uu/v6D7fOQd32ZbqV/bKNxLP6rqjseb9Pz4nDpkjF1TPk6ZTBhfjUpA9d1O+cOSw1ua/fFo+\nd2foh/NlvimnzIc+9CH79Kc/bWZm29vbNj09bd/5znfsfe8T5Oixxx6zZ5991i5cuGB33nmnxeNx\nC4VCdv78eXvppZfe7PKuueaaa6655pprrrnmmmuuueaaa38n7cCcMp/4xCdsZ2fHfvd3f9c+9alP\nWYAzhtls1gqFghWLRctk3shKZTIZKxR+OFu5AyN5OAR6YX9yFlSfBzq6h2eoCF2gC/9FjagrCg7V\nMefLYd8PNDhz3NP7IdHbBOfgY3A2xIOKtnZzilwVHUXwOmNF2NZ2XzEzs9a2os1btxXpCvsVSQsm\nFQV+8cUVMzObRhlo5FGUNn1a0cv5w/r+YEb3qa+o/P6KslHdGGdby6gykQoJJhRVz4z1vsZ5zr1N\n1Svn1f/34JoZkb2sd9Gwj+o+7ZDXIpzJ903QNA7Ii7R+EwqoLaJkwMKLqoMDEqXfEE9ChQhtN0DG\nj0i5Bw6ZMmmIVfg84qCfuhP1jPFbYydPZdU22+tlyskZ3CVFlkdp+Dp29f/9ssq1cZ0s2Pvg8Ygo\nGxPIqh2CpkxiEWWEAJncIef/iuWJGpUQJD1QBulT+n4mrHaccM9sw5lweE7lTU2R+djR/YamPlm5\nrSjr3qaum5xXpDtCe2YX5Gsz97zXzMze/cgHVJ+OMhw78FXsXVH0uVdQVmgfLoYj0xNFHfVTEe6a\ndB+FscO6X2+N7BLnOw+9W761fVMZ5/1VZVZWbwsF1iuSMYnoes1t0F6msesjI9tEWaJfA3GE2sA0\nGYbrG/KLIRn+2HGNmWFE7Rr0ThR/yLgcwJq3VNdrrykIvL0vX96G22VpUf9fPqNz1UOPynz5ZbXd\nzFmUW2aVZbpyG+TJAD4l1HbCpr5p44MNlE8iZEJboIZCDpk8MnEtskgTngzfSNf3gUjxJ1RnL8pa\ntaB8dpK/bdEW/jGIvz5n/TX9WLcvXxv6QcIM4ZxJoVgAh1bXo3J0QV8cn1tWO5XV17lF8Qftcpa+\nhUJCKsX5d5AxlRFjAdUqg5/CgY+jCbu+Z6T52b+krP5wR2NyZwgqAr6Odgt2/Li+N1H86dIeA86T\n14YaaxXKt1XetrdikSAZ6EMgYQZq11Ff5dy/ovuU4H7Z24GTKKL6L8IbFfMqM+KFJymd0lw6JosZ\ngt/E61M542n4RkhKlXvARCYIpwFZwkLbmpx37pHFLsRU1h7r7Qiky2hW2dzAhsrq68n3qjf1voMy\n4biE5A2KK/W+fp8M695Olqx4B74h1gUPCFc/WfcJh0wKDoDgnsZ5vavfnzol32lmNYbKdX2+TWZy\nAA9SsIHiItAdJ0D2HP62QETzwqgK2gHOmHFU79ugqAZw08QhM0iCqJlC5S8Sm6BKSYsf0Ho5+CwK\nKk8xipJiQNcbsqeIBeAaY/7rdLV2O2HWWZQar2yqX6bJMobhpgmVNIZvgdDMkXn2QP4zWSVDiyiC\ndVEV6ep+zaT2IsGBfLIPssrMzEn3rQwnjIfP6yA88xtw8jDG2mSoh6BN/EOheyN+jYlwEYWgOb0f\ngML1e1Gk8WgScuCvG15X+UJh9nChgQ3zaptBCfTmNFneeb2fOq0MabAgfod+S30Z7KjOKy8y/6ZA\nj7Xlm70ptV1tnzLCQTI/RjErq/nCH4O7BbStZ6j3S/PKYA5n3yLiblfjultCybKm+6zDjVIx+dwM\nKLGtvuoZmQON1tO+rRqUr4RYN9oolLXhfmnA8TXFfpftoI1R4AqD0PF3yOLH4HUCSdJH7ag9hrPr\nplaUie+2RypfqIBiG8pbXQ/qUiAeW/AEeVA82y/r826B+d6j6x8/LN+ph3Tf3LKuE4WnpL2udmqw\nj6+Z7pecVn8O9nXdi38tLoYYnIxB5r49uCYDu2rPCW/VADXEw0c19tPbcJWRkN6fEIiYWd/pWJf9\nQSCoz31l+YETVXsH4VgbgBIpB5kbRwfnlBnV4NMoaJzm63BAwYESaYFsC6sMbdbE8hrKgzV9P5FQ\n3VMgCAMZOBp3UfLqgLBmvhu/R/vcZFzrw3ZfbVi+rPn65W+L72PjhNAIc2dBJ71LfRCZxycZKz1Q\nRE4AXqQ2app+rTN+Ti2YX76UA23F18wBLhVostmBw9GHAmIsCSfXUNcbwCMSBI0aYEz4UTsKMc3V\ny5M5RIMiBZp5skfrxRlz8BG1UR2dnUMlqgs3zz4qreylJgj6QxlxszmMrX4XZTPUq9KzmtNCR4SE\nPHNY+/HtLDyDL/5bO4h9NwVf4JpQF82k9vv5ILxR83+m8rdUnq88qTE/PKn2fFdOiKvudVApa+I1\nDQe0rx7jd9fvF9qlCPp3wJ5rC44x+7jZ/HGzaO3d9len5LP1bdVlYELpHDrxlJmZPX/tXWZm9kTg\nUf12TWvNck5lvXFRv2t35Itbz3KdwyCJ4Sc7+Y4fMzOzF16SD8w+oLXj3ft61rn2ju+orqDyB18W\nIufmPeJy+cg19kTT2geuvQDCjn1ouvVuMzPzpPUM88SLGve3UCXdzAsBc2dEY6EC2ioU1TPgg476\nZo09zis/rrZNXhF3TRxVqa1djen1yNNmZnb3Fs/YD+q6r99ABXUOpa/+G+ik72ee8Xh8YObVK1eu\n2Gc/+1krFAr23HMa3Kurq/a5z33Ofvqnf9ouXrxov/Irv2JmZl/84hdtbm7OfuqnfuoHXq+4X7Rc\nNnfQ27vmmmuuueaaa6655pprrrnmmmuu/f/K/t2/+BX7uf/mX37f/70pUubSpUuWzWZtdnbWTp8+\nbcPh0KLRqHU6HQuFQra7u2v5fN7y+bwV4cEwM9vb27O77777h177f/+jP7B//Au/ZL/+b37dzMw6\nZBZ844kakyL4/YqilFv7ykScg0Hbi6qSF5SBD/WhwooiZ7efI4K/rCjhfkmfZ7Io3PSFOnAynB9H\ncaiVUOS9vKdI/3RYEbXudUWR+0TeH//ww2ZmtrOPatQRRe439pQRHnO22E9GuAqrcwnEzWgSRU6g\nejISSmEuDtP3rjIOM1OKBu+uqXz9IAoXPl1vosI0hG8kdFbXnUsoqrt+bcOmphS1nCAYgknVadCF\ny8Oje3mXFFH3jnQNT073aF9XG928pu+989xDZmZ2FT6IEycVoY4sKCq4+ooix4E2Z0ETup/T0v1/\n6TO/YQexT//8f622WFU5ZzOqR+q4oo5NeD0IjpqfzOo23DOZJZV/OqnMwfSyXttDRU33aitm9oZC\nTLtAppKsfogsfSyr+i1Mw24eRz2EI6QlYpvpOWVrfOQ6J7xJ7bHKe+MZMYzfeFER7lMf1jlML0ii\n3i4KBfNZ+43P/xP77d/6QzMz2+/oerWq6pU+pehtuwjtPYo3gR5cAqg85RNwO8zLF3NksuuoA/jL\ncEZk5VPOHpmFMGojZI0mQCfvSP1waVVnV+PwNqVyatfdoq7nIeO8DDoknFT7rd1SFLw/Ekpl8RB8\nACd1/7m8Mja715Qp+Gc/82v2ZvaFf/l5MzO7cv2SmZkduUu+9vw3Nb4HjrIa8yA2RmQGr5MtePQR\nsbrXQJhs3X7RzMySy0JjGdn8ANn+7g0hS7pF9VWKNk7Mqk/itJ1DptOf13vvRO3CTxqJdHi/gmIZ\n6g9DSF289ElvG3WNDZU3ALdU5iTs8XNy3uKaxm48o9+/8lUpZt11Rj7WQ61ptSnfvv9OnaHdLElJ\nawEEyOuvKEMRnwbldEw+M4IrIEI7NuAx8ezBVzUAYQIkxCEbP3tCWZ4r35LvX7mgueGJn/+vzMzs\n8ms6u3tqWpmFP/j1f2NmZjfLYtX/1Bf+kZmZLR2DZ+T1jv23n/uifeG3fs3MzD77i//CDmJf+Ff/\ng5mZJbzyrRL8KC2Ux4pkkP2gHyIOHRRQ+wfg4BmQ6QkN9Xk7qDHZZU5xwvo86gXNgUJOL0RWbFHt\nuXCH5tDdZzSW6rWGVTZAJe2DBkUNyQf/zGZR1zj8+ONmZrZzQWVZfUqKBLMprRVDOLAGQ/lq0Ke1\nyRsHbUD22zuLmpsP3psUiimgvBwypoOC6ugf6LXyLWWNVq7rjPuHf/sfq44+ZYBvPad5oF0mg0ty\nqAqKKmzwt83qe6221rwuSjkh1DUCqCx1UcHzw6ESANwwcNTmpZr2DLnTyqYNQLsG42qPf/7zv2QH\nsd/4V180M7ML+2q/JIovhYbmt0ZO5Y+gpNNd1WseLpixR30bGKqdEmM4Wbxao5PMdxF4kXYCus/t\nLZTjAurnPqocQ+oRDcoX0yWtJw0AUAGQUFWfyvF7/+M/tX/4md+zVFTl2RxobplCxWsMamIR9cDt\n5oQ7AjRuEp4/UBSbIX0vOVGL8ah8FZR6YrPwaw1Ry4JHxR/Q/RP5pM3F1Udl9hqRI+rTux9UlvkY\nqll99LoAACAASURBVB6XB1oTn/lzncnPVuSbzZF8t03bdlCEqW2pL3JV9kv4SiOnfWKSRd1JMi4r\ncIYlQYuBUF5MyGf+4Sf+mR3E/sl7P2VmZjsvqk18C/KxiF/XC0/TJmFQEZP9aQIUclLfC8VAJ8Xg\nckmA/G6yB6nAoVNWffzsZfJzrDfwgNx+TojucUa/X5pTOw1T+r1TkKpI/SX4BEEgjUDNDVu0JzCE\nOtw3sYbWg8QJUBph9b0XDscb31B/3S7r/k98WJnpbdB8i/cpk+xjL1ktau1vMYcNtlbMzCx6RBnu\nCBwzrzwrno0yanfH7tb61d8Tuni1rXY/di/oPDiHjp0Sp8ONy1qX44Za02Fl+n/1x/++ff6/+7y9\n+LSucxKlzAHoYQMhGW9rDqvWQWLt6TU+o3L/29/55/Zm9muf/admZrbxrBAQd75X6AJ/VnW9ioLV\niHHWBNFWZT99DEWb3JJ8c7oLetXHvhNVo0YRJEyVNg2orQc8e3S7atNkU/cpX5OPZI/K56BXsxAc\nh9GMPvBr2rCpMGhW5h8fa/uEa3GIUlfJj5rpAIQmqN5AD4Ue5u9+BwQMnFY1r647EUAb8szSCXLq\nAT4+f49nG7gHh6BwfSgm1oAdtxt6Fpvs11MzunAI5d44695wonDp0e92b6l8Ddb6IHuwIUpePvax\nTlvrT6qMoi7lcHrw6Pn0+T/619//gfs/tZ/+7S+YmdlpuGw2tuGabGpOHN8lFcWH/lp+U+AZL3xY\nvno4q354ZU/9fmNdY2ZpCf4lr37n7Kqcd4fPm5nZM/DBnHmH7vvzn/pt+8x//z/boeDYlkL63+vf\n0r44NtAepAm/6Ab72/vbGmft9+v5+jXQlrXVPzczsx+f0edfjemZ7XGP9pVXWlrbrzyFsti9y2Zm\ndgR+zrN3qO/+45fVB+//gHzgP9wQF+S7zwgFtLqpvp9+SX1+5eiEd0lVnz+m+epiTX1/d0vzwEs3\ntN+aflhcM73nxVFz3z68PodQz1zSWLz8svalKyO1S3ZZY/Lsmsp78bTa4QG29U2exW7fkqJW9r1a\n+1/zyzce3XvQIjntvb+fvSmnzAsvvGC///u/b2ZmxWLRWq2WPfTQQ/ZVNvxf+9rX7JFHHrFz587Z\nxYsXrVarWbPZtJdeesnuu+8H39g111xzzTXXXHPNNddcc80111xz7e+yvSlS5hOf+IT96q/+qn3y\nk5+0Tqdjn//85+3s2bP2uc99zv7oj/7I5ubm7KMf/aj5/X77xV/8Rfu5n/s583g89pnPfMbi8R/O\naj/yk0UPK+IVi8GZgqJPsahIVXwMe3tdxa10FAUstZSt2y0rAp9PTiL5imxX2/p/paLvj2GB708p\nipsDBRIl+rzLufVUlSwdqIo7ZxTxer2hjENnHWZwso9doqtTA0XYlyPKnHRRoFlfVz0iqDtNuHP2\nqmT3Zjm/PlIGoNSBs2CsmNkaig7hSdaN+nUdlIDgJPDDkdPmHGFvXuXzz05bhIxob43zsRN2cy8K\nJ0TY00nOunoUia+0VObJOeblNJk+eDnmU7rX9IzaLJxSW/bS6sNREsURzrR3hm9N6SDR133HHlQ9\nYurjZp1IPeeTIzO6/hxtPx+FMXx9xczM9tZRJ4IFPjEPvwdcBu0h/ENxRYOznPN2YjBxo6jSDXOu\n2Kt2ceJwBOzqd709VDVAM3kT6psMmYL0IUVZoyBcWhW1f7UstELCp/JkyAxUUStZyCj71Z9Xu1uI\n7JNXvlGkHUp7KlezRVYsI5RIcEcR/h7KO9FFXacEwqixqfKnYd+3gcbkkAzJbkuvcc6gLkfUDxmy\nYYPb6o8yair5MOfLPSg9wN2TmNOY6l9XefduKtuWzai9CtTfx1nmg9j8gwr+JlAyCc/qtdqUz99c\nUZu8/Loi1kuLypC1yfautDU+/48vCqHRKwjR8Q8+/TmVEaSMlzboks0Kog4xd0qR+1mQFMEpzrDH\nk9SN8WhCLaysoM4BT8eI7FMJFY7ZOP/HVzsgeBz4mwZw0PRQWHEKoB7gkgreVh/mZ9TWRlbc6+j7\niRacMxFeqyrnsK33UVBPOTK+fs51dxJwd5HV8ZCJrEP8EUWpZQBfhrOg9hi3VO7OaHIuXnPFCDU8\nD+Q4Q1B18Xm4FEKaBzdKmt89+xrbzZ7myTa8Kwe1GnPZ1RX5cBNFmWFX/djmHHtsDOITjp5kWq/x\n7xGcoJYHstOLH4RR0EiSAXcc+Z9DFm8Egiab4Nz5ddT7vq65qXz9lkXu1//Gcc3dQ+ab+QVlmzav\niW9h70/+xszMBnDKrL8opIw3C9JlSvNHLqNxGjskX0vENTZ8oLB8E64YMpsFssXRKvPhAN6zHWWD\nsl5df9SVTzWyyjLNPCKVh13Wqlt7ykbNR9W3m6BHPahupI/p/gN4fvysoW2QNC0IIYaoIQVBHeRR\nJPNF1KY+R+/jKMAEI+rTlU2t1W9RoMv6HfVtlvPk7ZAu0HDghYKLoINyz5D5ctxXOYI9EDNZjaGI\nX+tgaKA5oghP0jAtHx7l1H7TPr0vX5ePhvyqd8jIpMMlMzuUr0RBd7UdfX8UfYM3w4mumhe1lxB7\nnRAcFQEUeKZOyZ+6+2R8N1S/8Ih53Kf7OUPQhayPFRQrQ2H1X7emsR1qy9fDAeo1gptipWitRdZ+\n1oZIE26s28qUPntNXDKBG/AV1ZhfU3AN9iacNCBuVphHJrxJSVTgUL8MMi8UsxoDCxMUbEq+2Gio\nrME+nFFvnpv82waHVnxO89jiWfHu+XKgDFK6fiKrNuvAt+bsqe82x+y9xmTv++rLwpbmkYhXfeeA\n1BjDYRaD22AA78UEubnvaO+QY4+1uqns+uZXlVne2xQyMVnWfBqnfFaXD+RA1wXm4FaLyifqoAuy\nDlwI8E31BypXmjFSybCvhomgwzoWiYFMAtVR68JrhHLmlSr8gOxFW2TaZ0+qPZfPy/fu+xHx6129\novtEm/KPD77/PWZm9tRzQuv1NhlbqJs6M0LSBGhvM7NivWtOgr3XjNohidJjF3WvSkVjwWEvspRn\nrHi37KA2nVefv858dvOK9hTz9wg5MgtXYpk1qLWnceOwXy6z5+i8rjFSSqjtsyD30qhsOnB8xRdQ\n+JrSvLNVk691K6rbRoVnqrHeV7bgjmKf2WIsdTgtUL+g+X49r89ziyjdopiYntE+th9RX1hDvllY\nB/3AdYJdzeMtL0pdcIWNPSBWWDtLdV23BZpu0FC5Dp3T/Sd7oXFa887OCpwxscmehD0Q6LAxaDMv\nqLR2RfN1H1TYAE6sAM8jC9NCnU2QKHHTdcsRjcVoWL7a3UBN+KjuNxVX+aJAyYutH86j+p/a6Y7G\nkte0XiVzWkczi2qX899WOa931H+FOaHAp1fVjxd2NbbPPPiEmZn5z+i5J/O6fDvb13r+1d6KmZnd\n0dL9TveE3HomrrH582ZWLLxomXrfqsfh9clqb56hD+dy4nLpnWUeeVFI5tWv6Z7zLEGZmLgb//wm\nqNdz4nTxzD9qZmZh6IUeukPzZ+t1tfklFGBPHdcXEqA0R99SX9/zXiErd7f0vWMvqVwvnNTaepJ9\nf7oqdFrxonzx9FHWlZuaJ8+jIFu+ovWgVtFY+RZjM5LX5++8LGSNc17In+Rr2iudgS/vW3sq9yMt\nzVf2iPqouasTNJ6YkEHd5xU/mAcN5zv5l/q+/Zh9P3vToEwoFLLf/M3f/M8+/4M/+IP/7LMnnnjC\nnnjiiTe7pGuuueaaa6655pprrrnmmmuuueba33k7sPrS/xc2hI2/0oD/gszsLln+Xc7BHT2tqG4D\nNZQqGeLmSBHvBmomy6A1jCzgkAxwZ1lRw9mjQoHUa4paZ+7WGbIEyhTjjiJfM8d1hqxYRDGhpwic\nt6RIWDao9+1dhQYdWOOvrStDsdGG56Sqz6NwTuRGun8mDN8Ix/7mUyp3HzTFIjrx47Ei/q2Kvn/k\nuLJqXg7oNwugKKAVacIj0HLUbkGPyre0PG05r7IO+xnOLJJh7UYUAfaNFbGP4hLDvKKJmYKu6QWN\ns4nG/OtVZUJ7ZCE218mWjyfs5mSB4BLxTMHF4n0jo3cQWzqsLFnVowhvOEVWuwCiI815bJAYpT6q\nFKRtIrTBOKHo6xboJC/qUh3QXF24ZJKcs/bQDokJ8sdRpmCM7wW7DJ0OCCQUd8YNZS69Y5QZUO8o\n0icxlF8O4wvrK2rfCdv2/Q+808zMppPKRCzHFBlfu6kIfAsOnEESBBPNYCgURKa4Ul3t5BAZ343A\nIr+LyhGZ2FhO/VxpK2LeImtXrQtl1mmpnVoDztqGUbqAa2Z4Qz5a52xzL6DreUEg1bogZcKcCSbT\nEUKRqFgFTXBdfnXUq3K1UX85iG1fV5ZhY+sFMzOLg6gYdFTm8/dr3OR2Veb5abX93tcVOa+gotQr\n/O1MmBMFTbAjhEv8sMq0cEzs6zFUPKJxECxkPlu9CXpKfVZaQ4khhjIWgIuwQ6S+pvEcbuh1P0QG\nETWILlnqZkR9ngwpG+YMJmNW14+O1Ff1sPo80lbmeEzWehDXGIjFVK+2wZXDPNPtMid4UO7aBJ12\nSN9vtRkbZDZHffVtB+WEkZEFm+M8N+i6BsosfQeuggWQQD4UvbjviMzyQx991MzMfPn3q91AmIQS\nuq63p9dG+q3NJU3OgVf3NT/XyA6OptSv6Yhevai1pClPChTaEMWfCQdD8jiZVmMdmCIFxHn7dk0+\nPsmi5fDtPufwrQBfyIruc+3q0J74gDJ2a3W1zS4qcaWCXveHKJK04UWY1fxw/MPKTs3OkpWfBgEZ\nVvbHg6pFhXlqNNL1vCBiKqh0hErqewdup04JpAg+6xuhwjGv+fxIWvPUkPVhdYt5AeWW2giUFPQ8\nCdbiDqit6g1l4zysN+MgfEygtmIpUGqoHnnh/en5NLaKdTi4FjSmuyA1Xl/TefEzcCcc1JpJ+JDg\n1Sj3Vc9UXX28Nas+i/lVr1yT9YQxmGmjigXKIdpD6cEBaTlWZnO0JV9sPqR1ahF07jArn6mg/hQG\n3THVFldAhfk93mWsTxTO0vXv1SGXDdtme8XMzO5YkLJR96rm99drajfPGuiLnK4fWNTr1jbITnir\nJmpX3aD+H4zBLQQnRHogPxm31A7dgPp1riS/a2VWLLijeXVqDG9ZVXW/+F1lMoegTnt13ctpyhd8\nqWUzM9uDN661gYplQj4wBcdMCT6HQA8OPuaZegO+iP5p2gw06OxEjYk9yfZbU4S877Hz1Fnz6wBf\n391U3xV68mnEpCzNmmcZUA6gANrwVJRbap/1Tb2eguPEAxCwwWvumNq0M9IY7aRB03bg6nFAuDS1\nv929JPQc22iL3oFiZlfZ/4VptWc4zh4tNuGOUL3SrQnKVX09BDXcL6sdDaRLKqh29Jd13URG5RmD\nEKpsTNAD6pc9+LJmcvrdOEg/bavdbj2nhmuhHlqEm+yV55/R9ad03yX4MC5tKzN+T0DX65nmrPi0\nxkq59MbY6OzXzQO3Q7Imv4qGNecGWWcMFcD4DHtjEPqBZN4OalOPCj1wYl9teeOVFTMzSzd07cg8\n3IPsFQIouS6Bct+5BYeTV50/Ny9ukHRW/6825QNBEDBe0Kb+I+oj31V4Ldn3Bcbq48Oo+qRBJu83\n9f9dlLo2XtTv117W/s97QnW/uwcqFN6j1LbWndmcPk/DYzSHClIZpcTxBuqmRfVBEZRUsA8nIhwz\nibzm3ZhP99usw0HDnsPgs+vw7DNCNXD2kOZ975LmoRe/oXmusC9U9Pkdza999kDzIP232e+vr0qx\ncyqjvt6/pd9PwQ/oZz/bQJmnta16BFc1ljdR8FqY03NKJ/IGKusg5hxTe9Zuac86XZfvx316Bn1x\nGj7Bx9Qud5RU/4sZzZ0fG4mX7tWh9gO7HfZucEWO36n633VO/fXyC7r+7l2aSz74NZ5jPm6W2Dxs\np9/bt6f+hrl7rO923qc17dDrQiyff0H3+Msz8uF7Q6AvoxqnL4OifeiK7r1eU5vfvKw2blWE9h0u\nyud27xUSbYbn9cIz2pefRpXtWaZP3xV9fs9Y++/v/qjmi96TavOXLwi5k5sT2uje3p/qviPtUW6d\n0hjJ1nTBe28J0bKXVFueTAtZOCr9qO63r/lmb1s+el9aYzo4kk8MUPurzcuHvgKfnr0qFabF+1EE\nm9H9Xv8T+aRd/uH71reI23TNNddcc80111xzzTXXXHPNNddcc+3/DXtbkTKRmCJyi3lF4lLziqwt\nwDZfR23JTwDbR0Y6nOVc49yyXncUKUtn9b7eVTQzkFT0scz5xhnOQW/uKeo529T9t1A52uVM7wCO\nl2ZB73M5Xa8XVCSwCXt855ugN5Z1nVFA9zkOb0YzwrlHlH/mkoq+1m+o2fuolYz6oDFQXwnB+rzv\n6LUc0Gs7rMhhaVNR7Khf1ytuKSq9u6P7nTgkBND6s2q/jdWXzRNBHSmkbIJDtjkG436lrijeyiXd\nK0DUc+ThzHhYUcA+6KYRKh7zx9RngwgICM4bB72KHPdRZYijNJUMQvd+QKuNFPG/zjnp8TqRfrgJ\n8j7d3zelz/2H1OceeCJ8XjIL2yp3Ayb9Icpe06c4CD0iW4dSStqZZOVJEXO+sQO/ho8+G8Xle8ka\nyBt4Slo9Xc9HdrAXRakmoPvN3gE/Bmc+Q01lVNbLut9L//5r9tG/f589+3tSNmjOcUb/kNp9aV6+\nMOFa8E8rKtslw7x+U0pEQ9opVZTP78fkE5Gc6tcHPZGYhb2+SoSdDE73mrJeXTiHhqAgOqAD+qDa\nWiHalXpsoNI0BKlURxkjO4KvaVZZtR1UP9rr+v21kJBDp2aX7aAWGum3MRRkygX58q1baqsPHRGL\nvOe0yhprgwDJqy5ziC888Q9+XHXhjOnhe9VX+08rQ5AFWdJB5cLf1NhoOrpPwo+P18kowr3SCqB4\nQCbRE9V8sTck6wNPgyesbJgH5ZWmI9/t4ztelNPiA/lcA4TNRBHB2wXN5NP/ZwOgnGLqgyGIxChq\nIH44AmIoENTJTk2BCkss01czem/wYfSvKPM54cQa91W/hkflm8vJ5yOoTTW5Lglly6Q1hjxwa0VA\nQ/T7mnvGPrheuH6d8+FBMuw9Eg0e5+CZSzMzf58xTcZz6YiyR2NQc4kYfCoOnBWgEFpNZVKsonbN\nz9K/Q13PNy0/6KNQZqAQfb2/rSSRCMjRxqwzN54RauL5v1J7vja+bU/4NXc3IygDwtvjjNVGH7zn\nUV2b+cfTUEZ1iK80Te8HRb2veTXeg0YGlWz1yK++h4rFhnXVzWF+9qAK0vOBUoKnowcKwU+WKLMo\nFOu3v6JM3XWyacN9OK+m5NsAbCweUraqvK1yXrysbNcMaKpMXtdLBpFQQP2iy3nsjQpcXqgFjuFL\nSmflFDs39b3hUGM3x9p7UJtH8ebSlMo521XmtAT/XYp2Woqq77sgEsMBxuii2n0U1zn3LKiDIBnq\n6IxQG3XQeRfWVf8BWcF+Wd8PwfUTRV1pGFC9ZpFdWu8pQ344zhiotd6oRDts02XaIc5cdbd89Nge\nCjMRtX99R/2aiqq8C0dBjm4wJ8FTFZ7WfZp90IF+xjzyLaEUaLwx6I+B7p8uLNtOFAWTkTKdR9dU\nVw98PJU1rRUzKXgtRsqc3izomqMJn1lde4oy3C2lPRBsA/g04PTa9agOwzp8cxG1dXWgeSx1TT4T\nTpK5TdtbshMPyrdaNzU2xlHW4rTql+xp3mwuqa0bIGD6DeZRVN9soHUm2NO8OfH98Fj19bDGdoPy\nuQGqJwG4eQagxNKgy/qM5amoynf8Yz+i8n5MmeWljDgZnvpj7Q0CF9QOG6AyYiiv1R29nzqqbP3W\nPpxeI7ixhipXawg34zSIIeYqD3NDCu6eIoj2dEm/r1HOTltjJgV/UXyo9XF+Rr44OopiZEyZ7lPH\nhGzJH2UeHej/yTFcXuxFfTf0vXFHHettqT5mZq1mz5aC2iv5/LrPGOnOYJk5B6W5EpyWzhoKO4v/\njzH2JpbMqS6Zu0BYvyrU0qAJInmTMrBWz6CG2mGt7leEzh3F5UsF0/e6K/DawauWYsz04cMJ15r8\nDuT2Pmgf1DczoKK88AH599WWIRAhmcMg9uCy8k6h6sl8HADZ0vOrHLdAwESHoJoCqAMl1dd++IYi\nCV0/DxquuAF6FiXIWxs8k2X1nDEHJ0/fh8+X2eugVDZgj3bDozV0KSLfjoAiXjouX549smxmZlsX\nVvQ7+JJ8SdXnjgVxq4Ry2nsVbwpl1oGvKboon+rtchIAnkALqh/3dzTmn7sitPbMZDN5QFu7IB+L\nrYv247kZXfdB0SFZ+S90vQ/Nacze9Kt/zq3hL6CZpwqa42Y8aq9n+6pnFnW9BdB0N1Lyrwef0+cv\niibGftrMFn68ZH/am7H0XbrH4yDyYk+pLb7yLs0j3VX55rlndG+fo+9fn9KzSnZHCJTwA3pO9ZnU\nN+t3igfvjmfV94UTavMEvEIp5oXUrNbQ548JmbL8qubXl0/I53e+KWRcOy8UaOoePRs+/IrG1IUF\noWR32vL9ypbKHVrS58eIA5Tu0WsVZcV0QBwyz0f+o5mZbZzWGA7DrTXeYX5s6pTI3I/qOSPxF/J1\n53XN87n7hV4697zm9W+ch9ftDJy4y/r/DzIXKeOaa6655pprrrnmmmuuueaaa6659jbY24qUqVQ4\n/3aT84tEb52yoq0xosCpaXgmdjgHDZohE0rzftnMzAK9CXu6rr+4rMhZaU+ROD/s/CfSOgt3fEkR\nqxjZnQhZJKtztq2pyFwlqshePEsGhM+7ZA3Pooe+R/mhKLDNjCJqvpEyGuUuZ9H8iipn4JrxexTF\nbteVke2Y/k+Q2Dy0Q2FPUdyrqzo7d98hZTLG2ygLcX4zNa/I4GpFUdxOaWjRkSKkwaRemx3VNZlV\nJNjvVdmXlxXVbI0myA4i1FF4b/YU2R3mFUXcd9QX1Q1FCbdvKHI9l+B8MX2ygWJAdvHgqjpmZtFZ\n9fH8SZVrgMcO6KsRPELJuKKdY7gHettEY+vKQo831TbDfd3/elZt/UBfv0umlR23EVm2lrI7/hQK\nAn2QKqALKn7dJwSnTBCVDg+oBR+cK2W/+t7xkqEgw5jLc0b1DGiCTThvnleW5397+v+0/8l+xZ66\nLgbvBzM6x75MdDl6pkf91B9JFAW6VUVvh+uoU82jAAEvRigh3/asEv3NK9Phi6CqhcJPnLO6ATLV\n7Y5el2aWzcysmJdvLR/mXH9NGeBhg/Pk8HU0Wrp/YIwqlFfl9MTgtAGtUlxVPToXVe5R6uDn/JOo\nYWTvkd8Xy+rz9RVlp0JR3dPbQM3Crz6dqK/1ycSGUvIBD6o/1Yp8JQFdvOd7fBf6PBDWdcJhjd8w\nCgS9jD6PohiWCyvD20ZBobGN+k9b5ezC0VKBm8VbnvBywHkA+siPClM1ouvnc/AImepXh+eh39Tr\nKCKf70dg0w/D2QBKKpgAXbGhsTnoq1z9qPp06hAcXWU4bVrK4jTqun4PpJ8voHrms8rqtIYq39hR\neTtk1/0x2hf1ohYIpzkf5+GphxdFg82ixnCkpDEUm4fDJgD6YPzWuCBu7SvD0/aikgVfVHIINw/U\nB14UINrVFTMzG5EBDsyqnF6yUCNUtcaQgw1BUA5rqKjkUOYBYRQCcbS9qbH06gsqj591JTY6b8Ul\nla15RXX3j3XPjee1ltRA7sVDIFiYh2YCQFFy+n3OA4IhrjbrjuAnQv0ivK069kNw1IBk9KP45wxA\nC5GBMxRbKiNQXKBLF5Oa55PUIZCGAyfJfNTQdeugtMqoOOWAv77rzsf4HWpCEwQQPG8tOKwScWUG\n04e11s7go5bT96s91O/K+v4cKlShEMoIB7QRHAkhlFxCWa0/yUXNX1c2WP9qmocPHQLVUJOPNG+q\nfmE4bzbmVF7/klAQhw2OG9T85jhvv8+6mp8SKqDp1/twQP1UXqO/H1C/Bi8qM5sGhfJq9A2Zqen5\nod1Kqz8a+PDhIxqbcx/5qJmZFbbU3hf/5R+ZmVngvOaoQFbtuv+y0BHemJBbM2Qvm7fk+8EprQ+d\npHgHQkWhDoLMZYmYrtOrFy0bgQcOnrcbIxAOu/DqwL82DQKw09B8HmA+TLaFnKn49Tsr6XpZkIDF\nitrc41MdwijMNJmH6iPNF7GxfMqHilyrIh+fIXt+UPvG//r7Zmb29L+XKscZlKwqRzUWHvrIx8zM\nLIoyzt7reh0kNL9OgRooFNmvsRbeMauxsnpB82w/xzrCPrcxYOww3xqoiHCX+Qj0VovrDti7BF6C\nu2ykOWTjRXGv5bfVtwH2o0nWlXIF7izW8FgQBbR9EJpk0MNwIkZRsAl1QK95taca+FS+/h6qUYHJ\neqE5aghflTek94sZULNZjb0MiPP4MY394Yz84uiM+nM4QFHOo7EwAkna66FotM/eZntCvGdW2tqw\nJAqWPtROt3bUboB9LbKJAhmqVs46SmuBg/NT7axqP1z26DeZk4I+DFnjxg3N/aGIfKFT0T2zSY3T\n+inV2d/R55VN5h32Hn4Qh172Yz6eRdbgjgpPa6wN4yhR9VHT46Gi2VKfZEKaz7tj7QESqA/VUE70\nTsH5BwfYhMfOeHabrAd7oMEC8yBj6vj6SGOiEVDfjOC+ifNMMxpymmFXyNA613fGcMHssm6l6GuA\n9nGUdHtF+cqtayu6zp7aN7yg60+e/XoRjaEenDXVFdT+UEZMj8KUCx7SiMoZCcnntrt6xuqDBJo7\nIp7CEJyX83C9Dduq90Gtx95y2P4LMzP7WE398B8Get7xTGkMPb8hRI83rvl2AKLy5oLKdRoF43pJ\n/f8+xsKlZ+42M7OXM3ouO8S6nbxL/VkunPteWVYunbEPp161ryW01n1rGgQIampHLguh4n+35v7X\nbqttHp37KzMzq1xnP3Ra7681pYp6fEZo0E5E19k+rzK9YBrfj35NnCxXj4DsPizfPFxhr3KvKhwH\nnAAAIABJREFU+urdf6E15lmQgrFvaT7LvecjZmZWvZ9nGPapUyn1+e6r8q3pmNbk13k23V/TGvcY\nSL/niyDxusv63az6+G5HffNN1DmXwnruzv6JkDovv1vz8ju+rr6PpsRNU35MqnH5nuaPedrnYl7P\n72b/pX0/c5Eyrrnmmmuuueaaa6655pprrrnmmmtvg72tSJn6jpAfl777pJmZ3dpSpHx/hegwXAIZ\norz9qqKCN3cV2SqjHe/xco6Rc9xlFGcWM4pC76wpArbmVUQ9yvnr13aVMVjn7Ki/zxk0otMFlApG\nlRnew12T0X06oAgK8His9TirCxqhuqVIe5jwbsIUAayBUvGYypfiTHQwqvvX6vp/ncicfw6VlJCu\nc2xGCJ8T89QXhExwki3s6T7dirr3rvOn7PCH3mdmZr6e6vDi04oezoMO2IGb5NADiv5tbCraWCfL\nXS+rbLucHV0cKTKb4AxqalqZw0Bfke+jU/QlCiODsqKFo/23ppiSzSubE7xT98nAL/TKt55TOV9V\n3xZm1Wee1ziLm1A9F/LKPHruQ3GAM7HFBipUNVjiYwwF+DHKE5Z1sk9hlFfK4QmyBGb/tr4fmPCD\neNVesQl3DmgC29R9wkuKrHuquk6W9hqllBENZtQ+adPny4uKZCeeEAok9TDpKTIgfgcFASL7U5y3\nDy8o0xImM7HpV/u32pwNTpI9QrVq2JhMBWq3aFLXiS4yhnZWzMyMhIyFh5zL3Od8vClTUkeZIQBq\nbOzR/Vp1zpvTbqm2LpRLoN6CqtW1W8oErOYv2kFtd0vooH4T9FIQJIhX78Mh+gp1paOzE3SV+mqf\nc9p50FZ7Y/lQrKG+rafJpsDpFPSpTuUtzSfJqHy9UFEk3A/Tf8mj9+sdVIvISiXDmr9mptXHVZA5\nQ+YX82o+uv68+nivLFTXkUO6fyMqX+mgqJOaUnnmyOQF55TJiHAe3YGDq7gnH6ivKbL/navf1ue7\n+tyDr2RPqPx+1JtWLquewxX10TycONFZ/T85rz6cAcmydUkZyGYVX0DhLYKShB8ekAhoiCEqHmPQ\nGtNn1R4zeb1f76p9nQ5cXGTGY6DZDmqpezX2phdU3nxG/d3dXFF5NjVfjwegNVAiszgKEihQ9Afw\nqcCFUB6ov0ZFrRcd1AdCoCBGJFgbVX2+2Vb5qzn1/zt+4e+ZmdnD7zhs8RmNk1fWvmlmZjmPfHMO\nTpKZJue4p3TvfBIlrCDoITKd/TJtxTzTL4JQI8tdQw4pCkq0icJJCoWYzljvix2tA9G+rh+Nad4v\ne+TLdfgiOtfhGVrXGKsN4DlCAa2OTNx4R32O0JjFltW3WdbQwCQDPK95JzHQ/9OLqAKOVL6WR9fd\nvaEL3fiu0LZDTYdmzPO3OrfsrZiTINPLnmCvq3nuuAOvhandyk0Uy+CJ8qP0koALJpbWWH3hVc1N\nqYLmlBdA+fZQveuhYpXYUrvkQFd1N+Dwot08qI0kavBfpFFgQ3pxdP2179Uhlw9YcFnIxVe+oiyf\nsR4HrqOKOOL65OXmUUksV9TPlYHmmAfepWxhDwTTcChFitxZIZD6L2mucWblZ/6m+s+Df43b09b0\naD7Iwb3SbSlzGmJevA0io+ro/2EHZa0eKAK4+OKomoWbuueI/eA0XIROVb7XnIEPQ8PMguyzJkvc\nyAPKdgoVpO5by032Qc5NZ/T7+aOaD30x+CqicP3BdTKGXyfeVdskQP+uXFN5x2Sioz2hqQrjC/oe\n/GthuF4iZONrzIPG/OyZFP8Ge5G4Pq9f1PdfffqrZmb2/FPK0Cbymgcfekh7hFxWSJ8Jr0gLfsEJ\ngnAPlJ2nz94NRGjFo/LPZtQfvRSqUHHNKeMJx9tIg3Ie9FQipHnvKqiq3T31a62ncrdRNVzdUTu0\nnxdXRTqgsfYKc+F0UBUvwWsUgKfJtuG+Qf2uFp5oW5qlEwtW8an/O7vw8cF940WBdDyN4hG8g87i\nsl6DB0dUXbmg8R6YU9nueI/a+PqTGgu7L6tsyyflu8E03E1w/h2eUV2rHX1eh1OljRKjB4RKEG4w\n82te7vWk0uYvayyFQqqLA6FbDLRscAAKAomvNGqcDRAhqRm1WfgYHGMV9X0ETsmGT58n4a4ZdORL\ngfwEhQQKCr68MAqE/QrI6xxch6CPfT75Rg0kRwm1JT/PPMkxfJyoROXyGkPdvPokhJKlH5RrqEHf\n7YP+baNCmPBzP1DEVdV/q6M5ZxVez15N7ZjUY42NmTOC3KfQ1BxWARnfHai/oy2NrYPaB7b0fHPx\nYVRNQXgGi+JfuRPFzsFJqbJufetBMzObOqXv+9bVX2vHNNkd66rf17uanxNwAd16UPP4NApxXdN6\nGcqvf68skemyvdpYsqWo2vjQquranH9U917V8/rMvrhXfK983czMNhyV6eRZtUnpT1SWs5w++Mol\nrUWnH2QfXoR7dfCimZlde1yooJPr+vzmtp6jyxn1wbFt/a5wr/bBj4N0vnlNiMSRoz3Ky08JGT93\njnk3pGfekz+htbu+rXKcXRMHzU5MbXqzKQ6ZBojnzmn14Yeua02uHmU9Qc1uzS8E0JGoync2Jd9d\nvw8lQ5Dz/Ysa6+2j4rK57NNph97KD+e5c5Eyrrnmmmuuueaaa6655pprrrnmmmtvg72tSJkcmvaL\n5/QaXFC0NxNWhuDmjqKX2YQiTw3UM7JxkCAbKOaUiHwHpQDhXdJ1hkT4b7+qCN50XRGvAhn0wS1F\n3tbrimidgZPCN6PrH7pfKIWZE4psPfdtZYkGVf2+TUa1F1MkL+4h07OMYoIpqtxr63pOAmb0giJ5\n4YGyXOWQytuto67EOfxRRjGzAKovO2S0nYqiu1cLiiz2QA4te5Vp8cfIfhb1/d16z2Y/xPnkac6q\nRtVWdZj0E7CiV28pkhojC7xfIRPan6h3TJSo9H40VJmbRrbYp8h1O6v75LO0RU99GczAcH9Au72p\nSHCPzGTfI1/Zpg8aHb0e8qpNtzsgUDhPHr9bvhT0qj7bAQ4OoyZU4ezv1KIi6WFHrwWQH2EQNI0g\nqhpqehsX4TcC3eRtgpYYq5wZP9w09J0HdZFOU/dvryhLNGmNGKpG4+O638c+9SHV42FFvIcEV0v7\nigq3hypf0K/r7b2m/gyD1hgkVL9IT/XJkbm9XVJ0t++geOBX+Ru8GkoUnYKi3ZGEblypq1/7ZPnj\ncNjU4O7J0j4esp8dlC3CKOh4Yc2vggJrOmqXLv0Sjshfgn1liNZvgRo5gPn8yjaV1zSOZ07AURBW\n2T0gFPow/geX9N75v9l7j2fZkuvcb9Wu2uW9O95df/vedmiPhmkABEGQxHt8jy5CTwopQhEK/Q2a\naqTQUCMNFGJIjOCA1CNFPqIfbHej0Q002rvrzfGuvLe7SoPvV92Cgub0qDWonNxbp3btnbly5crc\nub78Pr9sMh7pbKlLWxdQw+g4qDX5QQ2BkOl2Ua4BNdaG+8Tgv/DNkG8zpS7iTSAGimlTfVrgvHYY\nrpX+XSE13nlb2f2XX/6PZmY2NfV5YvlPzMysSN+1yBQO+zNuAVRFFpXdD4XhAYFfaDjQGK1zfv3k\nA+3gLz0m5YKt734V+22amVk0DuKDzGxpCpIEjgMf5+OPjpUJPX2AGgrZozzcMAbnQZysnX+m3NVB\nuSwou/VAqcWxW2tR12VB2bXanIO+o/6694GQjmctG2vKgMSXVf/Kierdu6Xz1mmHjDXqSwNilpNW\nf03JsnU81DjGjFmobUYtYgHHysdw9rT63K+kLwYJEE9Z9eu7FbXD995Da011Tnp4rHGaA/UUTGhc\nFOCcQQjFJj34iODdSZ9o/PVAI/UrcBiQUfVAxKTgkJoh1ILwRozgcpqUQKEydsZBVPjo0iVQUQEQ\nlD24pPz3db88Pt0JaWysJBW3nYIUFcLY2mPeGID0S4Xla36QhkFUnzoNfT6tKLM3JHKGUMWLtdWn\n4Yxiwemx4mOAMX7Wko5pbD0oaAwFd+FlW5Fdi+vKeA8+ls84QDeDdflCy5EdzhWEYn3xeXEBdNLq\nz5OP4YaJqd8KPfXvvSm/A12Wwkedj5SdjBNfwyguJs+rXa6rsTzeKX/WhuFa1J58Quf2g28KEXv7\nXY2hOzvyk0e/ovnl8pqyh+MYaII2XBjwPq1fVHvv7Oqc/KSktdTystoVhf/l7Z9qrHz3GfXzNujd\nXqxhCwGQbudA5d6DryElGxdRaMlg+92G2uLd05wWjKst7jpKNDuoXoTg4RjIN5ooQIUcFFNMNu2G\n5GPpvMbAcYm4gpJV0PkcSXGW8swfKE4uPyfbbcLRFS+r3h1QoDXUMEMgCttd2uvJB+JLqOKVULED\n5RYDURPoyRdcUAX+FIi9E62JBgE910XtL5uK8a/GmG8LdPNdtT8ZUkY6Cv9QdlPrzsyi7NUs6fkd\nuB8mGT3XtwOfiMu/MWLGVPHMWWBt4Ff7Uxu6nz8PJ2NbYygGUrTeU/1LKKVlN2Sv1cSmmZldAJly\nuyTf7e3KPgvwVt39VD54AP9GdMZHBWdQZYbm6Kn/i7kZmtcstxW1HIqdfRBFqQGca1N490Jwz+Xl\n2ytxlMb6YTtriaCYlUppPGRQNBxii2pVfZI51rMWeAcYE5+7nuJFFP6ySIr1Z5g1CKjSzolsCM2a\nRWfchShKJVgX+7jPAATzME1fosLanxI/XNZjEOy0Bhpri3HU4Upww2CTXEZz490KPoHKn1PT3NqB\np2g5yvwDainHOrEKUnvGmzQJgYjhlEK/q38jK7LjCLRWmPltxj/Xvif7FFt6npPVfUZj2SvGm64P\n5d0IyJ/QitYEQ+zmoQTZh+8vCr9nyVG7fHGg4qiTjlE38lA9yhfhvTpjOY1rLOQcxZJ3+y/LDiWt\nh29vPmdmZs+2/8HMzD51v25mZpv78q/9NmvOX2reTj0Bqq2ker16We0494mQMh/m5XdXBmrHd36l\n59h/MOuXita8/7I9/YiQLw7x8s7Ba2ZmFn5EtvnY/WszM1tm7hig7HSjK1jRNb8+v3FNPpP+9S/N\nzGwRFdLxBbi+XlUfrYM+HTwitGc2p88npj7vvyPU/O2nvmFmZnezGkOjjN7HNx+oXoFvbJqZWeRA\n88UoK7TxK6D6X/hQvlx1ntJ9UBDOuOK1e4o57sGxfKKbhAPrPdlj8Vj3C2flEw97+OJrqq/T1rq0\n/1DImX1c4TglDtvAS/KxSx9/zv/2T5U5UmZe5mVe5mVe5mVe5mVe5mVe5mVe5mVe5uVLKF8qUiZw\nXbuja18VM7nD+bcDVztaWXgvFtZ1JqzLzl0atn43pK2oza9rt/agtG1mZhPOrk7ZjV0qokN+QTt5\nBc4Hrj6uHawln3YVi3HtZv/iTXEtjExZpWaPjCfn6McDZQCSUe0ENkHETDztvI192lUdg0IZDcka\ngTbx+/W8wUA7Zz7/TC2FzLenXeqYq91tHxwGmQ7nT2EMj4w49zmWffxR3S9fVJauuCR+mMFO3W69\nqgzs2iVl5gJkRQLsvI9gRz/c0Q59fl075uM+O9wzVSOywhz5NK+hOnSryu43K/r9IKg6BxPamW1R\n1/QYqMkZi3uq7Mf9h6hQLKsCEReMyaNqT3pBmQYDKbJEVmkJ9Y1WE24EFHGSYfXNvZbOVrpkKD3Y\n1Q9elw/Et140M7P8xVlfqz0BkDYIyNiIDMeUZIo/oudEYUHvc746MED96kS+5YdjwIkqa7d0TX2X\noZ+cBbV7cqj7v/Ojt83MrNr9qZmZXfodMiw+VeR739JOerSu55/C9RBHqeLWiXysW1Omd+pqpzyW\n0XMiU/lof8IYm6qda2QDm6fqvzZnnLNZjeFpSP3iD+s+gZHq1SNrOW2QceZ+PSX+zR2TTVzXHy4+\npWxeaahd9bMUPxmuMb486ZIdmWUAIcJxUfcYgkTLjPS5gU84IDziYXh/WqipFXSfTpXMG9mQaXZT\ntsCn/fhQxyefbZ1qnM8I+Udl/We4p/v6FjVGllZB8KEaEdtSH/zhH+pM7BgETJY4lgLVkIXvJ4lK\nUqKudlbILt2+L1b77o6yVgcR+W4Y5M7qS0IGPv9NscS3GdT/+S91xvZX/1Es+uuX1CfXLqz+Vjtz\nqIN4cVSH4GCJ9mTf0UDtigRkh0CeM/u9WdZf9+lWGSsxDZ5qCX4MeFDcFX2/ugQS8VnZZ2XzXz6b\n+/8tcVB82zeFPhjckU/OuCpCZBdLZPk8eJ6uXhUC8fAEZKapHvUpqIJjVEfgfOiBDhujgDNE+c7h\nfPg0qd9vPKmY0AAF2Dlq2/kt1bHwgrI9haB8awzqsc1cMu3NbC6bkdy2nsE9sAuSEMTaUl62rJ/q\n+1mcmmSIoyBOQi3F/UlFz+uXURokC59AhScW1lza91TfS+s6G1/ty1a9AfOAi6qcp4ygO5BtwmH9\nLpdCQRGFxQiKNR6cX10yt0kyo1PQARkUxfqoUTWw/QgOr/HY91v3O2s58CkurzW0FmgTr70xHDwn\nqAiSab0U2tTzD2SvJoove4u6z9JQ1xWSQpxsXYebAJWV7UPZJXgHVMcFZR8XfPKJvSAqTSFdPw2p\no8MNPS+1qX6InrvwWRtqu/dsMtaaKnJHaN+EJ36O0gmcPnAY5DY03+z8RrEptyq/2WoqHpfh60uC\n3hgtacytkdFur8ku2ajO20eeUExJ9lHbsx2zNc1JLsiLDgiGzLLi6uN/oPiy2yce/518pwviInFd\ndfLvwU21INuUh7LN0pbGX/m25vJzlzUuy/ADeY76ZBxQPdIBrS/jOdk+0c7ZFyl3KqjC1WSTnZ58\n8vShbFgpoHrEHBbpysZOEJ4m7hMmuz7e0Nzc32MtMkOP4vO+EIo7qP01mCfcE7XTCaOwCHdO3dV9\n2yW1z+eqL5celWpIhDg66sJtBW9JrQ1qOgEfCEjG0BT0Bapxra6u6/rlk24eVUDQa9Ek/ESo0JlP\n7bhzoHmpCKI8n1M7cxnF83fuoqKE+moFJbNgG1Tt42pfAPRHkvkjhr2m8KJc2dTYbaKMGZ18rogT\njRYtHoVfi9gYgk9xxtm4GFKG3oOnMHyifq5Nz57DjoeVnffgdxyCTIgT74pp1dkB+eHwDjFCrdRA\n//dAVeXzsnWb9Vqkq7odl2echRozzSnKkmsoYgXVljDcLn14J0NR2cgN+HmufGYwQ++fyEsbN1S/\n3ob6eMbtkg6pfTHQoDmXeQFeu8qyfC7YAHHi0+dqBwRMGi4uh7gN4nMEkiYFuraJWpLbU70qE8UO\nX0mxIdaW3QJBEJcZ2bcDD2m8pL/3UCGc5kHooAgWZF4dJPW78QC1Jt4DJg3UCyOolQ5ZU0bhAGON\n2fXNEJkp+yIlfSSekU966p+XNqUk9JuS1ihR4qihvPm7qxrzb3OCob2o95vvtoQe+w3z+JYnn12F\no+fJZ/Vv+2XFupsgOX1f3f2sLr6Tn9j3QpfsYKi5ov5AbV9kPK2+LV/6aVPvlXvrsv0PVkE4/lTr\nqV8FXjIzs0iOePi7svnHb4qL5msJ+cDLIOtOmEPWeSl4uoYvf6rx3orJ97/5Cevzmsb53u9pvPY6\n+veJlJAuuyC2b3nPmJnZn38qW/7qRd3/Ulhz2B9s6zl9EDWDG0ITPYM60t01xctLZfXtzec1phbh\nyPIqeoe6Nf6u6vEE9XtFz/lGdNvMzN54Swiacxdkj1ulf1nFbY6UmZd5mZd5mZd5mZd5mZd5mZd5\nmZd5mZd5+RLKl4qU8bW0Q3bKuUiX3cYAahyJ3kxpgUwJ5/qspN3NClmcS5vaqfNQkrAoGvYe57PR\nkj+oa8fK4Uz/4pJ24CJNtOIjMxSGdlFd1Fzy1NPLaYdt57a4aMLwjQQOyDTALTM40O+ScMR4A7Vj\nnCGjD6JlQKZnJU5Guad2D1AVyZ1whhiUSSimdoRBjww4Ez3oy361hurpe1c7gHVY5SvDgTmcy52M\ntbs34hx1CKWpYlE7qI2OdmKjA9i9p/A8TOCpQDElyJnSMPwLgQA76ew4ezntzM4QJIOa/m02Pj/f\ne6YCg/diWm1dvqhMbBPW9odvaXe0Aet65AJ8ETvq0877au/9N5WFGnb175UfaNd2NNGurT+i5/hg\n4J9wRtZblD36nIcOobYUCtMHqGQMR9qZ9lClOh3pvsEI58FRMkg5+jwdk/kAdRU+RpFrSXZOLGtX\nemU9wfWy7+vvCf1QgRvm2lfx4XO67vxzypBGx2rP+/f/3szMtiIoFpwnU3Bf9R23tBPvg6ckgJKQ\ng8pUF7WPVFYZgTr9PzmQrzaOtNsdDKjeu7D5ew1lI0MoFpQe8Jkz1lmXM7yw8hsqX9GIMsq50OfZ\nrX+tlEEwdJvy5UYeRZclzqQi0uOSnW434CcCzRRGuaZX04WpRzQWBg/FaeCiqNIAPeBk5IsOB5WD\nXp37oWjSke+PXfgm8rJ1t6Q+6ZE9Gk2VgUjH4QQAJRHNqD6jTe24D1sw5p/Kh9pklRKcSw+vKi55\nKTKdoJM80GLpZ/T9xobqt7wmFFYio3odvqIMx1vvq49e/p/kMzVT+0cV1ecS3DPDnnwv4td9cyDz\n8luqb2lHcbZ+CmphhozBF6Zh2WECMiWEIoTrwkvVBVGCMlyXrFDIQfVoXc/bvKhMxllLoI4d31MG\nOTTU8yLBmeoViEafzjCf/1OdJV75vuz0+l9KLWDJ1XObqLZ4R3AjwJHhwLXTh+8qAArRgwNoZaak\ntCyUQyIzU3UyM5fM6Qj+nop8y38MLxCom1aIjCe2iUZl+y5nzBtNjVMXrqpJBH6hoOKZf1V1LYAu\na3VAMPrhpCJDO0AZJ5eVD4Qz8lkLy2e3b6l+uaDi6Zs/ftXMzD7eF3Li0p8+q3qeB/Fi8r2FZcZO\nUPWIwLXVnaDI1VZ9RmQKKx3FSYuBrFucrQVQbumIlye9jPoFfHKhzbPzQJiZDe6A5GuA2kABcW2y\naWZmjivfqTPf+VGlCl1QVm85xnxZl13v3RPqzN7X3wfwSF2/qHPsbhOUFVw6cc6rux/JV5Lw0cUu\nqL2DnuLtvbrsdQXkTYG1jJnZ4Zsl+zQEEhIk4hRko/UVG+L3Vf8hyKuDQ6HT1s4JoZVd1Ty7+1eq\n/wyx9PyWxvzNI82jzbKyhkmUJ3LX5Z+fvINCnNe3IiioI9BLHebACfxFrfAMnaW4UW6qry8/qizy\nFTiu7twX30Kjrvh5/RHVNRljzKTEQRK4KLTOUkq2/eQN2WzrGeYH4mLltv7NbH2x7HZFwo+2jxLM\nwCcbdzpwujAPTGOaf8p+eCNAeSXI4tdBi3k1IUQejODxOa++7DAnjkCGNEHb9oqyT+KC+qhYggcJ\nnqNBVc/3DzWPuWvwYIAwr1a3ZYcjfAIuGx/8QPk13bcBysMBjeAbwV/BmiGQ4/UB1amgK2TLiiM0\nx4Nd1Sd1XhnoxZyQliFgeu6+4uZBnzF1pPnGN5HdLmUUU8aoGLb3UBlMqX6dRdkzMEBNC86X5Jqu\nWwpkaTawbjNbWStY0K9653ys+eDTm8JpdlDW+t4+lZ12UG8c2NmVQ4Pwzw12dM9TuFuCrKPil7gw\norofsW7y30P58RGtY93pb3Ok5AbE5To8GkMUpmrwW6L8VffgZarr/osTOKqC8omjkeaBgR/+ItTV\nGi34LoaKN4ksPgvyPcu/Xks+0z7VGDisqg8zl+Wr+/viq3vsMn2elg2b7+u6pZDmER9qTN5IvtgB\nMeIHiVMogFAHZRzs6/6dmXrpV2SfsU/PSTLHx1jTGYgRP2pVARB/uRycaSDCGx1Qu/iiy1zeGMx4\nTWWXDv0a6IESc1jjVOBjSoNsOWOpb4orZmnr98zMrBxSjPN3/r2ZmZ3C7bN0R/XfUTNt4S2d8njq\nOcW0RFlr0rarNVrmMbUvsKj6/ewdKZi1VjQfRx/q+tBTh5/V5Xuh67Zf2bNEX3P04TmNZ++dTTMz\nS2ZRAX5Spy6mjMO/eVUonce+Jt97piMOmcMdIRPjG/rdclvrql9+XciS+LHmkDUtJ60D15Xfr0Z+\nBeXWn9OmQ+Lh17+md4RPUDDLxDXOR29/08zMajH5SOpE3/cYa3vHoD3vSu35sKg5+Aebao/3PfnM\nz3a1vnRBpVpa9f6z14XovLcBkgZevvRd2Xbc1f0uoR64syJfeO5T3bfZUvx47mnFgH+uzJEy8zIv\n8zIv8zIv8zIv8zIv8zIv8zIv8zIvX0L5UpEyLc6ODpogRVCy6fW1i1dFcSB7Cn9Hhu/5+wm7tbsn\n2mq7X9YO1doSiJOAfhdn5+zgvnZ1swvKap2WtJN2Z09nzi5ehuGbzIc71G7pZAhKAq6KhZ52/tIx\nzuGHtVO3MlUWKWuw/weUMWif6H5ZMiOlFhn1pnbSJkXtkm9w/P1wlhkGrZKGe8Y5UvuqJe1+Njva\nySxvc0Y6rp3Au/CetMb6vj7t27lFnS0/f13ZWf8UJMtIWZrzF1X3jo/MK8iO6EfKyoQmMOp39bso\nWRsfyJF4W78rgFqKcn48Bv9FMiRb1VrAFs5Yyje0C7m/rz72QuqLjW9JASHtKTM6uE2GIa72DTjb\n/8k7snHrULYbjIV2uOop253Oasc+lFN7rm0p+9ZvK1NQ4GzwyFEfZVKysZuD0wFlBN9wlomUb52U\nUeBZIGNCxqLhwdSd4Lz1WL4+JDM8+YAM92nJ7BmzNOixhk92Pv+IdnFXYYG/+u1/Y2ZmR8627GTs\nEoNgapFx2B3IPiOUgQqr8uHaCWeKS/LJFuc8g1vKBFRRGPPhU0kQLq2c2rN/E4ZyeEyi17TL3iyQ\n2cltmplZx6cMzSLcNL2xMh/Qa9gUvpcxGX1fl+zeGUq0qJt0sdGEs/yNHOecXWVzs89q/JU/FgrB\nw/YMX2uj7hObyKcmKVBDXfVVEIRHP4kqE6gqf1N1DcZB+ywojkwfUVuOdkBMBDjf3IJ34o6ySW/+\nJ+3U9zlj/+f//R+qQvANPfekMgAG4u7WG0KHVXZl849+LZWmgVF/bLiyJpvnl3XuOF1eVlTtAAAg\nAElEQVTT/U4dxYsOGdYT4mcerpQ//u/+a9XrfWUMf/+/1DnnEKi3ITwbTkL2qR4rjh61ZNdwUHYI\nwIHQASmTQBkthlSEH4UeQ0miP+KsP+iNtANHQRTlA1BanT7ZfTgTzlr6DZR8DpWhKRY1NqagT6JR\nta+X1XWP/kCcPkPieY12XnxKY8N3S+0s9RRTIiuKDUEyQ85MwWemSAHXg6Fsk0JZyKqKHf1S1SI1\n4lRH9wyW9HkM7YWb1G/WQspSlaJwzswEZPogIFDZSEY1Htt+1DAmqvNWRH3QGcLnU58h/VSXhlzV\nDkuoL6VRjHlE1/dB0P36XdlyMJTv/O/viesqdlH3eeqrGkuRNFxfcGfN0FMu/D1tuA58ZdWvCRdX\nBAW0IxCFgYjm9iy+c+d9IXIck69uPia7xOBwKKS/GDJzzLxVvg+fxpLaHSFj2k2pb6+tqP4VU1w9\nhrtr4THNP8soN141jb36vjjKetjplLXKyUP189LSppmZ5doaIx/TfxMH9BUohXZV7c7iF3dReggn\nPs++Bb24ffhDISqLV3X+vxkT508M5cpXPlW9F4/gvTsBLcy8H2vL/vfqN/VZj7H8mubHX78uVMPC\nir4PP6LMbXM0y6Iqg1sbtGwC2iq8o/gwQVnLg2vl09dUl05ZPjnYUPxafoS1xDKqZlnZos34PXdR\n8WGHubn7GxRhsGXWU5x7I0o2mSz7IKA+GKIiFOl8sWVwt008P9XEEV1TvRYW4f1ZBoVaki3KxPur\nIDVrzRkHGtws8Ho4IFwGmxrso7DmyPwIxR2QkYEyaw8QlwfE1XoLNU7CSn6i6726xlC9iWrTjG8D\njsTUKvwioLLcLmqnM7ScA6+HD3TEodYIgcdVz9hYz5+gTjdBFenwPbV/H/sW4PCZ+PR9JgBiCu7F\n889pTRfxq7/7IHWCKLPN0CcxlCyhqrFAQvaPhrXWU2+bjYe67v+Ngwp7YxuHZb9qU37YgDsnCk+T\nP4wKX0b9FR4r9vjrZ0fKDGq691Fdvr2KGudCHL66jGwRjWncPrgnVNHtjz8xM7MLSSEaMiGNhcia\nOjUOP9Akt21mZtmCUAOZLfnKfn/GtQX6rCMbHKKaaXFsznozMoU7xfScdAKV1ow4qtyAjDzh9ICf\nUw3VAXxGkEy6IJsjU/mkeXpeal3ognRW7U+9JV/x8Nk+CHwDMTMBdepfon5tPT+akK+1orq+1lYM\n6BzAxUXX7HX0eW1D9Q8uyNeb2/r7iPY2WqpfvjhTx+J9Z6pAFyScjo7hfZoqdsRQ+GoZPKMglrwD\nzWOjFovJM5ZAXXEzFpbdXumq3l93dL9bO78wM7P7rJvHN2WHpe+qP96MiGPy8s73zMzsGfdHZmb2\nYUD3Hd3Qe52/L/TJ15/S2P3gutq58jqnS/7Y7OXNpK00XrAnDmWbKlxVwws/NzOz+M3zPEtxpVDU\neDv4rvoy/q7q+PZXxMP53Cu8AwWEeLv1A+Igvui9rb4+zKnNtTXF5ZontNCr35ePffWGxv+wLr61\n3ZTeWZcO1AfNr6hv34IrqvOe7tNXde0U0P1LN1DkWlT9Hi8L8vjzH8oGbkK+trkoxGYalaQPr4qb\n5uqybJ2Jqz3f2NT6/dc5jdUrr4uLp+rHV1m73M+8ZGZmk5z69LmjOafMvMzLvMzLvMzLvMzLvMzL\nvMzLvMzLvMzL/+/Kl4qUsbp2qHxd7TZOA9pNbaFeEZxo17Ee145+wbRr+aBKFimlnawjlyw76I/3\nURtJsjvthWAQZzd0gJpJy9NOXpcMQC6p591Co74T067sMmdJ+yU9t4vZaiB1Ckfa+XM5Y3tSIyPA\n9u2InXg70b+ZiM53GpwDIc4S91BqiPpA6Jwok3N6qJ3B7rF2AgOutv4GfdRMUtopTH5Fv0tfJUNe\n03bv3j/82HYaymiVbitblRuhwjNUhnEw1e5grKi/Fw31jrraFk2ycw5vToqz8XFPfbMHMmWMytGQ\n6ywpm7SjnHMOf7Ez/nHY1y0gn9j5VLwOvstwpKwoU3D3aJYJ5kxnVM/Jntd155eVhZlkdD5x5Sq8\nHbC/d13Z8KCmnf/CirIkdXwt6mknvzYmhXxA1n5K1qeh5zTIygUT+hweyAfbFc4MgyIIoYaU4LkV\nskutY2VlevWSmf3AjPOJF/Pa6Q78vs5ptntqR4PsYmlXu8D/2/+gTHX+f9Xf45zHPnRRxtlCqaen\nDMERKIn+WN9PhtqdXoDtPR+HXZ4Mdjyiv+fG+v2Efr7N2eZ0eJaXkt1anMtcuMB5VPiU3Kr8KhZR\nlm4MKsxBlWB8enbVlCncJO22+tLlzHizobZMI+qrc0/Ihq0y3AUf6JmXtsQd0iT7M5qqLX7QU9Wx\nfNxH1v34SGPIneKD8OL4OKOeWFMbGqg+xMnkennZMgPyIhqTDbbf1BnV6qnOrg5OdJ54Ct/RfVdZ\n6SzopwrnpqdwTS2AMJxxDySLcMqAajrdVnuPP9UYGZOlGhMDAn35Xg0ln+kCXARPy0c/vP+G7EGf\nbS3r+wz8JT6UDRYTimujyEyCTH3vO4JPY6p45hI3PRCRHgjCMDHiBORfNco5c85t55bUvgBZqrHN\nFA/OVprH6t8ez09fUCqlDM/WkJhmLaFLpqDOPr6hdt/5nxVbHluRvU5nvFMcw3fgwpn4dZ8QvF0j\nOAmmnupLCLBmSXZxh4oZgWHF/DPuqj31caejvosOyGJHN83MbDEpH4PuwZq7qtMAFGcHqqYi/B29\npioZmSjrFAUlNq4Tp1HZa5HFL6Dod34DFRHGgoMiYB+Vp8KmHpR+Utf/4H/8czMze/G//R0zM1td\nkm/84ofKttX25HtTFHgcFM7C8MZ1O2R64X3qgyaIR3Sf619Tprm4pes+/Uh9miP7H3pE1zXfUZbe\n10XN5KwFzoZgVnHeOVAf3wI1txoBSZIQIsarg0iinnt7QrEVNxWDMqsa+8lVUHkt+Ui4BjIIF+4X\n1W+3mb/ioCNqcLfdbqH2wRomkNTzTz5SLLLE+mdNcKeXrIoyjfc6HA3E33AIxNND/a6VVvzNXNF8\n9+B9tTsR13NCPdUjDtrrwxZqUQ3NUxWQNzky3W++qjoMfbqumL9id01tKpf174Kr7G0fNNPDD1A/\nY/w5FcWRW7+R71sDhMsenH9j1CWvy8car/4VbYNTpI3KGhyEF6pqw/hZ3X+0rbrn0uqzUuLsCAgz\ns42Lsr27oWxzY6TntbvbqudN5hfGiDHneSjvdErwqxF/HTjL+qZ6xZKyj0O9+379LgXH4dGe/j2c\nzbmgUTNJsv7E33ZAcavPmM0WyIqDVAmAti2CiiqxFgkEhRgJmXzDg9ekDFdajTXACiiELipGK2H1\ny/kr+vfBibL13g2tMRbT6o9uS7/fY37zwUtXBnWQTqn9yVMQlz7FOp+Dggx2G8EV43rwqjCPxODb\nanRQNXU+zz0fnjYtAD+SwfXjB6kZBVXsxTS/+VFlPQIFFwQdfpaSgKPk5KH6dARHzGw9GgABUuPd\nIJ2TrYNA0vwVTgWY6jhm3Vx8ggdM4Ahz5WNduKOO+vI9X09zWDwHErKGCijqRdmknuNjzu6gVHvK\nhDLckQ/cxVfPwyWVJA6n4OPLr6vei1H5XhIFxi48astxtc+Zqi8BHVuadzYOM9jpgHkBNddmAFU3\n+Kgm8IkUCihtJfXcSknxP8RYKIKqSiVRG+yqHXH4UFy4E1NZISpHrHN7+LY5WrO190F0I25VLKhe\n5e6Mi1OB28faK7aqmBBHefOs5VVn08zMgj+XX6w+olMb1ffUnq0/e87MzB56ms8WA+qvD3+ssf38\nS983M7PMU0Jx/OQ1ITO3ntLYu5cWoug6a7YHf6P7+xd1UuDjJz9Xnjv/dsXWUn57D26pzGVxxVy4\np/HcegGfKOveN9+VrTd+IlToeEGfs47Ws/7zmqvffk/PdBqgXlEJjXPqYe2y3mWyHwrduf9VrcvW\n3xDPWSqnz/eu6vPxK3oHuvCkuA9PIuLjuQLXatsvtNl0V5xkuygb7oW0Ln70gZA4f3dZPnH5xafN\nzGxpKLXR4zeFyHm/LZRX9lca/29F5Qxf82sMdF7Re8O1iXwoe018nntbimcZT+ilzqdC5Gwdievs\ncEOImn+uzJEy8zIv8zIv8zIv8zIv8zIv8zIv8zIv8zIvX0L5cpEyQe0JRTl75QRgFEdFyWWH2w1p\nJyrkwSDuaTc4ScbUF2XH/5J+F+xo9y8OX8j4AbumUZ3v7JW0GzpuK3N8/oq4X5Yvabc3lYKFPkzm\nnYx4HMWFyKIQNX12l6NwIHA83+IdtWfq43xmCobvIWiBHe28TTqq/35VWaaSp13fcF3PrfjhooHN\nPramTEM0JHSIm1G7GmTi0xe1U5l8VM8r+rTbe7G/agmXbIujuocTnIUk2+35tQvYC8BhMIU7BDWQ\nJZSs+iHtRvrZuW7A2l6CByfO2cjFiWzWm2CUmmweTWgH/6xl+Yp2fg1VpeOGdohrbyp7n7qKQlaO\nLEdJO94hsl8L+ESvrnqPPPlUlR1vn5/sEciX+31x2ISTyhwGptrNbY91fz9b+0HO2Ppq3CfJuXkI\nu3vwejRAXTWbsl94VRlltw/vUVDZmBR9XR3Lbs4p586bumHqSf39YkC7rbuHQj7tvyfFiY9uKfN5\n8lCZlavfEpfAU38qfpIqfCMFv+4740xwA8ocBPPqvy4ZnPK+MjzTVflUJgM/CN+HYzCfr+v3jy2o\nnxYf17956j0dql2xgOwZ5xz/bk39E+rrPiF8tWn6HPSdnXto54HG9Uf3tbP/jedEtx7PKHvhi5It\nWRDaqzVV9mB/WzvqqRzjK6m22pSd/CxKXKivBUKKC36f6tg+Vt+WgyBUenAE3JLtSkF9vrKsTEIB\nToTtm6pvgYzgd/+bPzIzs7u7QsStuHruO7DLR0719/ElEHBwRyVRiSrv6/pZHwVQafPITs0y0sGx\n7OKQhXKnqE6YfKsFh0CdrBOicNbYU3sioNZKh8p8jqeKn7m0YoqzLN8ukGX3gXqyINwzFd2/QgI5\nOJJv+EHITMZwSOTVHz6Qk4Ws7DuFh2jQ0NhLuV9s+nIZY0sgiZII9czENiyj+O+gAHH6UD7rkVlf\nQIEnMHCpt/q3sKh+8KGg0eTvwQEoQdB0cXw6QmzymnpOZ6B6padNc+tCDRxWhZpaX5ZtMxtkIs/L\nhw8PyCh+qsoPx4qPDdQ0wgkZ2RuC0iGuZMNqUw8OmSm8C3GfbOzQ16fUKQBCovVAn0824cSCQ8sP\n/0WviE/59JxqXWNr9KHGe/0nyhaFyPovpNQH4RjqT9saoz0UYsJwFfjX1P4mJDcjRzY8elvX9++D\n5FxFae1E329/oL9fWZG9zlpax8pyteDAmqBoFt+F9yS8aWZmkeuKg/4gPpMHJXdTz//gHXEBvPuW\nfDoCl9nABS0yUaa6ldWYyaE+UiOG9EjRhqdkkIm7TdZGE1ABo6E+t4hRZmZ7ybqtlzXPnqRBpe3C\ni5VQLBjklP3s+8hAj/W8HRCTU4Of5aLWCf0j1EdA1BZ9+ruvI386+oSM/ljtiq3LTpnpgjX3NTeV\ne/Kh9TXNTe42dQYVmQDBHAzLFw/fpi9Qdok3ZKvlNCo5D5XFdzry5csr4gqYhpV5jX4on4klFU8y\nccW7Y5LZ067iYYCs/VnLIojqwRBbNme8GyjD5GWrYlf1d1FOjIThaInC7+FofdqfcY7BpRKsw6kS\nkQ9mJ2rvyYl8aCOuvqu1tV4c1uU7DkjymTLaYlrrxE5fdq+7ajhid5augFyBg8031e/dDgE6ARoK\nfpAwfFV9H0hL1I2GM26YI/XHzZuv6XcfaW3ywU2NhcWm+icMsmaK8ld9xl3hwKPVANGOgloM3qkq\nyj8uyM4E/E59Y4wQZ8MD1d8FTRipfI5eiIQca6I46qZQDo2gyshYCLbhutiW3z14WyiFrWtX7Kyl\nidpofV/rtMK6xmMBpcXDhHxlFJj1PcqJOdUlxlzU3tFapfJzoQhWPPlsdI3rEaELopL05Euy8UlF\nbZiAxlwGtV8+RSnscFs/7Mq2jrep+/b0uxAIyQW/bLt5SWuVaE3xq9lTXxyVtTaJxPV9kzmNJYCN\ndkEdo/RYCKrPxoxZG+h5Dnxy+SkKiKDijlFGTG3IXg1Q0edWVd+VkO7TG2is+yPy1WFY6OJxUz4b\nHsLzF5SPNvq/jRycgFDtgyzPs9ZxfKg0gVBJj1BwZG0XZ8wP41obOqdf7CTAHx/KF1+7Ks6xC0u6\n7zvf+baZmTX/Rtddmer5J9/QGjf7DdRYb6rdT+8J7ZEBWZSr6/2oHX3KzMz88OFdSXzDzMwOw3+r\n+1WWP6tL8Hsja05uWPENrZsX/l7X/sPTGgcvnYg7pVBVnx+kFbdDcOR9yLvh5rvydWdBdR0/or68\nVhDiJXWyreddU5yeDnTdG0ldd/5DzdlHdY27pYD6qLUrLpdnz+m6D7YU33wVzS8fodz4zGNqUyI0\nQzAqDj8G35m3JSTMH4xVn15dalH3axpDHXjSLlxQ/D04VP2+u/5vzcysrK+t+F3NhdsVIV/uvS5U\n02leceeJuOwSmOh5Dy8IibN2719ek8yRMvMyL/MyL/MyL/MyL/MyL/MyL/MyL/MyL19C+VKRMukg\n5/NQfBj2tGsYjmq31WZIF7KHY9QtwhFo113tMifgfPHDlm6m74sp7XztkVlxWvq3R5YvWdLvXTha\n9u9pR8wfATVS107XA1ia603Om1eUnaqzG+4ltTs6qes+PrJhoZk6S0M7Z8Ounhszft+Q+VOLui61\npPquP6edvoMT3SfY19+zS8pMsAFoLpl8B+b0YEB2clCyqOypvdFG2RJRZVfCSf0mzLnc8ZJ2A2fn\nmz3a3hrOsruqS4usey6sz92+dmgnMOIvUjeHLEjxunaOE3l9/9DPjjkKCGctwbiuXwtH+b369t4D\n+c6RKz6ItaJ26rtR0AxdED0x7ZAHL8OpsKdd1cP7yjJl2blvgiaIJpTpm9rsDCqZ3oD6woNXKMd5\n9WlA3w8czqBOZ8o8skelqr4PkB2PNYDSOOrE7rHuW4IzwpeWnWJoBkw5m1x+CIqKzLSHckAYpu/H\nLqNMcUlImkeeVkYl4pNdjre1G3xCvQylBuPsrT8iuzWbnEO/KV/KoZYyjGj3O0IWswPKwZfS52oD\nVMeOxlAPtEfQH6Z98CJtg3qrKis24Vx7FSqa8QPZJzTW2D9LOW2qrz98R1ml6KM6w5rBVstLyspX\nd9RHl4va0XaucS44qCxEEnSAeeqTaUe+23Pk+8UZAmIB3+A8caun770uPEVN1Nvq+v0oqJ36Lr47\no4P3T5QFyoOGSKBm1GzKlo0DZXVKIAVTAflyCVW1jKO+OdwFcVGDayak501Aqa2cky+kVlESQ8kl\nNFU7A95v8w8tgljs4Mtl1DcSPflSr845+T1iQEPtr4CS81DjyA9l9/TyTE2ETOOp+r59Kp8+2FN9\n0yTOg0XFmBQqJvElxfXmDmz2cM4cPpjpbJytxNL48rKQPiWQii3QHaGM6hmoqN6Nm8oiToeqx5V1\nIZ4G8IFMq3AGbSoTn4jhR8QUx9W/vYl8vLcntEUbxTLXZkhLlCeCTev2FM8O2m+ZmdnVS1JX64I6\nKmyRobyjupV6urcfZF6UZ/XhPwhl4eFAXa0P+jRMhnIEQsLHXFxFRc0DIRhgjj3tKFu26Oo8eeSa\nbHW9AmrLVRxJxdSW8Ruy8bCl51zAVwsZtSPpV/3G+/KhvX24u9JqxwCQlYfimC+uv0+mGgPHD5Sl\niod0jjuXUNYs0lXcuLakMb6w9nkm8CylE9fv67vK8k/iinudLBw/p7JD84F8ZwuugRkyJP1V1bNf\n3VY7+F3IUyYzuIyq1CmKMpxHH8MhMKjCP5WTHSujGZpY903U9H05NOO2UT9Njz7nuwjtpuwO802R\neSTuasxOxigR9VAggmPoNKt2ZBzFljHzYRukUC2nWJXtqh87IHR8TfVzDJ6Offw0u6N67odLFq+o\nzY+m4LyLoezk6Z7hgnwu5Wj8+EGWnIQUDyP7iu8Z5sjyKaqZ/wtcBa7GlbOizOcADpPdI/nWGF6h\nVENtTaM8YwnWb8OmfZFy51Bz6Y13hFIrnteYyCZRM8rArQXPURdeDV8EJAqIoAycgnW4wcbkSIdw\nIIZRGuuCJBnDa5db3DQzM39MfRBtqV39ivouABSmDsdan7Wa19b9SiBF9iuyW7CrGOCHpyN2XmN7\n3ICvhDVI22TXcxdRRaKffDM+E/iG9j6ZKdTAdzRD4MDXkTXFSycvOyysFbEXa86k/CSLr3eD8tUr\nLmvUEPMVqF+P7mv0NI+EUWUJIkPViRFMzGzgOOYGQWQxD2ZTmq+OKsSapuJ2faqYtpwX/8bixjXu\n8tf2rxXHr7g7vqNx5106+i1bOPBPRkGPteC/GUfU9rCLClAQH+oJbdTagTPmSD6dhCMw9qLWEJdQ\nOzoy2eKV//MvzMys7GktkmM9PeQdqwViJAOS+cBDZbOs+84Uu/YeqL7FOCqrMVAIKMlCMWPjiHyj\nkNRc752yPh6xvs2BMmPN5Dhqnwf/Um6D9eq7slvtbY3x6wsvqJ3Mlb0myMQ0axqffLoHDLfelp1m\niMTZ+0oTJGYSVFonIvtHIIarDuE3QpJzAIJmAhqkyppoNoah9bQM/eaPKzadtQye1BrMvy2Fn52c\nYko4JxWla1/VvPHmSGuebzEv911UDT3xrNR/R/Z+8XWN6YqrmPqVW+rnl39fJwCeSKGm+JYUPX2X\nPlewLB7m7HStauOLWpe9paWIBdriq3lvQe8WL9xUnVdXhRC59bhQPen/KCTKHVBMBn/ntWVd/2FV\nff61Nc3VP69obr12SXX9Rks2vLOs53/T95KZmb1NvI/k1KcHxLEXXlV92t/W9zeCvDu8qvtUHXHH\nLBNn3tnRc699ou8/Pv+qmZmtZ+VzCVC7WVf3dcdy6m5UhvB1ZQdvWz7/cUScNRd8QjVXvia+02uo\n192fyEeP/VqzrJr6LHTvc/63f6rMkTLzMi/zMi/zMi/zMi/zMi/zMi/zMi/zMi9fQvlSkTKDiXYp\nHXZtkwE07MmaL6Fg85Dd5HifTEEYzgKUcsLwg/TLaNBzrjE40Y3ckTIXT17Wbmv9rnbuhu9rV3Tn\nLWXFfHllAvb82vFby2knr9ZGjcR01i4b5dw11kuwc+9yZtm3qnpHB8oYTBbgwkF1KeRox85/d3ae\nkwz6snaVx1u6ztciYz7RLu9WXjt6HbKcvig8Ktvavd6LKDOxSL09Mhj5acD8nEceYIsB6IKNi9pJ\njhS0M9xF6cA34Jy1I1seoEKUzKjuQZRPPM7xTkO6vjnLThyiEoGylVNVHfvOF1NM2TtUH7Ub2gEO\nh7ULmeesfOBQ922PtbsagRslkgIhk1Z7xsGZEo365u6dbdXzvvpg9bqybCsbcMxw3tjL6Rx7EXWQ\nali2H9Z1v3FIThAfKqvnJNWXwwGKDn0y0lxXQQkhPdDOfhXOnsW4MhaJpOzLEV/zcdb4pKx+KKT1\n+0gc5QhSFE6Us7emet/e1w74ybHsVqqqnY+9KB/yLaCAgTpLCM6fAMoxYRSFTg41tvJyE1tI6noH\nHiUXHpLMAFTaA/nggEzroqPrpqDb4mTOexlUPnyc/+a6E7/8Zhg5+zn/3/ueGOjjl7Qz719F2QDV\nnzJZ/urHskUmrO+jafVtBIURaH7Mh6rDhKzRFIQbAgYWPtHnBGfeE9hiMkShxs9Bb87a1/cVb0YZ\nkGuL+n4MD4TTlQ0TRVQ6oAZYvwoqIavrA2TNgyijBUHIuag8hTLKQEY4J+2byKeqD3S++sENjflk\ngIwjiD1/X/XIgKILcH567IIQ4mzsOC0EScBRPBzCMTCdqS215aNNkI+dE9nvuKP6LS7Ai4IKSRzf\nLTZmCmhk7Xvqr/p9xeEPfqHz1u2yYtAYNaxODUTlGYsL4qcOL4kX0u8d0Fou3AK5KPwpt7fVHlex\nccx1Hr5tRXhZyJ4dHut+IRCLLVAs9Yo+j8iIp0Gx5EBZ9EfESLdrU9SISEBa/IrQOR8eKYPW+wQE\nBVmn/W353sZj6pMutpvxjQUyIBuOlGUKwxVm8GH4fZzhZ04ZpNRnq48p4/r8t8VJdelY2aLklrLp\nTdQ/Sl3ddww6qhCi4rTd6+rvA+LYuAV6aKC5rQtqLAz3VBBurirKiGNgobEYfGz+TTMzK6ISuFWQ\nEsMQXqRdEDqVfbgaWrT3jCUyy1h78vUWKLWlXfq6oLEIuMuaI/g2Gvrd409pDNWXdG48Z/r9oCA7\nR0CZtQF5leDWaqNsNgYBM27LDovEokpfPtNLz5BP+t5D9cmf+hwpM3D7Fm6q/uVFxR4fyCR/BM4f\n0IDLCZRwuqypppqfB/AhRR6ifDbU53EGdUOUglpd+APi+hwEoVpFZWpkOduGz+7yguLT2INrZYE1\nCHElBLrAKauOiygj1jz9ferX5+AYLgH4yPZrKIp5muOaVbLsoDc34ICptFDJRBHRTKhOy5+3L1Ka\nJc0jAe6XjM24yuR70Y7Wg5MF9Q1gM5sOyIr7UKKEU2Uy4/DC9wM+FBiX4L3Ia51XGqivRszt0wIo\nqBbrWdRHymPZtz8kBsCRFpswj6TUl0HQZ25uphQJ500Mrhfi66imLP1uTfNIHs6G/aDaO50pKhbU\nD6Oe7JKAa+ub19VfAb98qwNaetoFLcJatLMMiRlrpwG8hWG4GasTtSs7Un+WTkAYtn5bGe6orTXI\nbI3qj3/+mhMeja3W1N/dTThpUA6bCYYeoXA2vK/71nyaFxZm/INnKOMGcyZz7HQMX9uJ+jZQUbxL\nLYGiL6CItajxdoyaacGnPju/pbVAmrl1+9dCKVw4YpyD8vf9lX6/+QzIidubZma2gSLWFAXEhXPq\n005VNqtMtcBbug+SAt9ZY02xARITaqvPeOKGQdb7pus7IfXZwljG7LJGmCE4kzScOfIAACAASURB\nVDG4Z1B1dUCLRUCOJy9ojdC7Ix//6COhn7Nrav/SU5p/prP5JSZ7rD4nREnkK5q/+iWQmiAIqz7N\nMy5roghcMG5evlAo6PkFkIBtUHm9fbXLhVsmxBrGceWL+7zXjMp6/4j3Puf2Okv5UV/x85uL8oc3\nfi2V2JERq/5IKIzoJ6rnwUeyw8NLav+39zfVzvr/bWZmt6pCrWSfkTLQP2ww//2t0NIfJWXPyLPy\nwxd2739Wl5ubC5Z/v20PTvSb5xjPp6jiTTKKr/srWjdv3NOzfW2hmZ79I7jAdoV8yUflIwe/ROUT\nteXfePLV3BTu1JjqcGEgRFoCTpl67u/MzOz5x2Xz/3xH8WT1RONz9D2tD4d99d1jv5HPhZ9/3czM\nqr+Ur9VRHBt/R3Go/Roqojn11V24s46TmpT/3Z589q6jeuXHWoMdgfT7+Hk9/+pAz/nNynd0/7dU\nnzx8cI+vKE4tfUfX105Vz9u52Rz6T5c5UmZe5mVe5mVe5mVe5mVe5mVe5mVe5mVe5uVLKF8qUsbJ\noIJk2hUdJUB+1FAVimmnLoTCT7P/22f8h7Ckh8l0+0CwFEfwbbS1UzfpaBe6eU87WHd/8o6ZmcX8\nyngUn9Rua/FZPb94ftPMzPKbYk1u3dffQwtif+7vaC/LKcMRE4O1HTUpZ0vP7ze0m9k65tx5Qhmj\n6UT16SRmXBSc157ouhaZ7GGBzBFs8wfwfcTI+GZIFE/gURmPyFY9JJMf0S76KBW2VlU7xHH4HPoV\n7QYeklWKFLWrF81pxzZDG3JZ2bq1o0xt9AIZQ1fPDAVVpx6oHA/1i9le4LAJ3wRcIrHMFzu/7VXI\nYoSVUYhxPjhDhreKdvyQbEkgqraHUWM6wXfip8qexC/IDldq2jnew9Ybj2p3NhlWu5ucd48XtPs7\n4Xx6Bq17yNzNgyuhQhY8yA57Hx4SN6bf++HoCZJRqKOYNeyRmUURp96Sz6Rr8AWBDrCG2jkK0A8L\nat/mlupzBFqsU9UutW+b89YgajZXtcOecrXbfPKJfP+0rh3/VITzlOeVUQnAPdA64bx1U7vGEVdj\nIgYPi0VApaXUjiXaN0nKDtEpZ20j+rszgqsmydiA78mDmyiCHZq+s7PYB3PyicuedvDHqDIU4rJF\np8K5WRRSYiN5ZwTfaPVQ0IJ/Y1jW75NbygiucP8u53nHU42ZATxL3owmyIPXIw1vji6zEVmZYFv3\nncKp0OuQfeb79Ex1pIlCS4bMaGKG3AFZQfbM9cHrg2rUYpRseUG+0yabFAqrnvmeMpK+gXzWw9ad\ninxgpuySgR8iDxIvhN2sq/s1/XDRbBLP4KDxQEF42DMMImUIb8gOHF3hEFk3eEiK6yjywGs0QjFi\nv0w87CsDEUipXi+SFXv8O8qs2F/YmYovhB2Z9jyX8+VrymCcDOHdgCdpv6NsWy6k9i/B/RMFvZEP\nKrvYgWusA5ptBGqiQcb2lEz4enHLzMwS69gTBICvrDExGUZsUAfB4te4vvAdIUHu/lLj9t4txkcf\nvqOEbBspKI7tPFQdri0qS5TPy5YP2kKDng9ojLRAd8UZh2Pmnji2OAUldvOBVD9ugHoKlpVpC3He\n2k9m0B9TnKmSzc+0ZsoDxEESiHH41xz4KMo9+cIQboEpyLkec38KFaRORzY6hlPh3k/fNzOzlaxs\nWoWr6+QmKFIPdG3ui3GYjaLwH2XIaNcU6L0UiE1UQpYZq90GHGRtxed3/1H186+rz48i8tnlnubd\nk5B+FxnDL9SUL058Gnujup4/gEuiVIV7B6XJyZLu312HE2wbDiEQOWZm4ULcBlVUtSr6frKqWBiF\nBCEYlb1aHfX7eeL1XolFBdxwod6M80vX53vqv9YIJUgjBp2ovypZkFfMM+FB11zQmDVUhY7g3Fpb\n0bh//utS9aiDJPnZm/+XmZltZmW7flv3PtzV90VHbRvnVdcJ8dafVtu6qKf50+qbepY+2iMuOhqX\n0YmUAqPRL4amuvqUUAhP/3shNFcW1Nb/4y/+Xs8ty1Z+kNN+VPtKIzjHQFhWQRePWQMYawpnRTYP\n9+DHQG1uCmJvu6w116QhtMMC3Ch+OFkiKdmrmJVP1Zg3nCC8TyHF9dUFxZjKgcZ2FxdqyFXsmHiY\negTUrx9uxmcVQ/ym33VAcZ1/XnZpduBC681Q1GpH8BCEDDx16RxoB3jvVrrMx6C0oyBP+97ss9rR\nQEmy+bHGVMCn6yKLalf9UPO9D3TypcwMGWXmC04sBMdPELRgD75CDw4eF8WeHda06+e0DsgvFO2s\nJZhSHA2O1Wf+Joi2kvqu02UtnxT6fj0vHzou6x3HV1K828YmW0XUK7fkJGusYVIstHt3NCbe/Zu/\nNDOz+5dA97ygti/JZNYuyCa+vnzRG+rfENn9WF7XZ0CGzHSrMqi9RZqgZFEa3JgISWNR1kIMpTFc\nWV4HZUH4kYYn+rcHKitE3/ng6TuaqE+Xn5HN0zeEqiiNZJfJgX6/ANfYeEu+vnCP+Qa+qF5H9S2X\nZaBxT3ZswGX4sA4i9SPN8R+jOufz6755OMImjuqXT8pHkznVO4ra1MIV+ElZMzmHGPqM5aWCeEgi\nb2usPfYdPf/tkN5PvjLVmPvHU3HAXApqPu4+VM/8HESSCy9TflWqS9k7WhtdXxMX0f3vfE3PyWjs\nXvlr9dsbf6Lf/1dm5o7G5p9Ozf9VxeUEvf+zBxpXybLi5nJt08zMQl/5mZmZBVgX/eO7cKYorNgm\nvGrlC2rb4pHqeKMrH14qivMle/iSmZm9fFG2Xe1o7tzr6O/+mvhwLma0hqlxkqbWFipoAA9QNohv\n1lT/ICdfOlefMDOzb7mKVze+r/lh5UPZ4EJcfdj4uWz/92mNga9cELfM3q2fm5nZ5B2dtFmHW+v9\npHxs9b7WHJ1VIfV9Jfif8rLXhzf1968W5Is3Wr+xf6nMkTLzMi/zMi/zMi/zMi/zMi/zMi/zMi/z\nMi9fQvlSkTI+snMzBmsXBEkoqGrNTnD6U7puAKdCEQbxmzPVjz04AoKz63Sf0wNt+e/e1Xm/4K6+\nn3B2+RznFB/5U53rW/0POq/YcKUUc1Ji9/kdMVxvjOARmWinLwRjuOuN+J3+3YQLZ+dAvw/2tAM/\njXLG16edveCYc9xh7caGQVW4nI8vZIRa8NqouQy0m1xBNaoz4yqoaQfuBIb1Zkv1H4DayA78Npwo\nW0MywPrH+k8M/ojannb/RpwRjb0Puqile5bYcU4FtSPs43xdqwgqwUHFqKM+indlqwJn8yOxGdfK\nF8tcpi6ofrm4di890EJluEzCoxmvA2z3UPE7VdlmCF9Gj4xlFh9ynkR9wqfsThAlq3pAfeqM1Xc9\n+ijQ0O5qG+WCUSDC73W/fljtdAvaLR7BE5IeosADKmDi71FvUBNNMsOcr/THQYN58v5UQvc94Zz2\nvhKltj5TptjULvW5R5VxObylTHavqh11pyMf8h1p9/nBkZ5T7ZORWJMvjxA78oFu6FfVTyMUevpV\nznlj3z7Jp7VzsoMH39MExYZCUrvi4zFs9ChoBNNq9wBEVhAFozDnQmfqXaHK5xwJ/1p57Uf/aGZm\nP3xZjPWPP63M69UXxY6eX1Bl4zn1eSAum9X3ZdPptsZjpyofPdnXjvzJbX1e3ZBt46twQmXkc37G\nG2I75ice9EaclWdHPwB3zMiDHwNuhAlInSmZ0wEoryzxoAJ3SQFVoAHkBIE2feJT3+YdMqGcr45H\nQCuk+fsMyZLQ9dG27DCBB6lfQ2EG1Nywovod9skKkchN5zSmnSicCSj3DOD/STLGhjVlJKKoOQ0b\nen4XdIUHkimJIoN3Kvs8GMp3p9S/CE/G9PpTareHEgLovVGbDO4ZS6mjevWCKP3A5eLGlT2KwXfl\n2wD15skuqbB8slFSvUogeYZDxYLOPllBFNtG/Gtx9VshIjtvkL0M+9Te0rYyul4H7oPQ1KpT1SUA\nwqNcQ2VuV9nnux/JV5OgBwJROMBQBgsTZ5fXUZwhC5xFiWsYVJtD8ARNx/AroGIRzoAmOlCn39jT\ncxNkSmMFxaPYVDapw3sGFYo5ZCC7vhlBE2pLjPM+fd6eaOwMfIoLjZyem+c+U/iSRgHm7IHau76u\nrFNvS9cn/HCk3JVN46Bja/4ZgkS/O2tZJHv/yX352jLCLX2QKtkjZUirIARjcIFlO4p3fvg/nJLG\n6MDTdceg26ZptTdcA2nqobLC/BAfykdLE5TC/DM1JtrbVIU6ZH49+KmGoGTNzCq+hm0m4a0C8eS0\ngT+EFejXQEUcAY9oJeBcAMlkk5miJKpMrvqjCSqj2FM9juDT88MpNKloTeWHw6GZKFjCEbrTg/+o\nDf9Zz9W/e1mtVxZ7ZLlbZO3PiwNg+bp86iGIjFJHY2AWdwpw9Q2O4ERJojTD8rbCnF6OyFfTI42F\nhYLGcRdU7VkLoC0LZjSH7hAXuseycSylPl2PaZ45RdVvNND3vShxogl/ED7egzvQCvB/sAaojfV3\nP+pOS0FleDMJ1gzE5w7IkCicY/6x+mAVX2rAU+TAQfOwKnu0SopDiUd13zxoriPW14GLQscusw5/\n9PtCCF1ICV383qdCMuaILZGg+KgWQGw2WK9GY6ydqFflFPWoofyjD6nbGG6YGijd6ei30bPBkMbQ\n7n1l0P0o3zyVF4LyQk6I9gPQKL2ZlJuZTccx64IqTmfk0x14TyZ9YupAKLbZeju3wfxQPLufJFEz\nii7JN+twt9gJ49alr4gPwZB8dhUV0SmIvN5D+c590JephuLG8oUXVdeKfGoNdaABClLNKgjnH+nd\np/KuFo7eedWnyHNal9TmATxn4Z6+r2DzUY65tq6s/xRFwRHrPGNtEfDg9UGxauSyfgPtFAGF2xpR\nz65sybRg/Zbmr15JPrm2prHz+J9rLTe9LR86uAkKi9MSz+CDZdYcwZh8y0P1Nc/aKb4BR9gG/IAd\n0HQ9xcmb8MfN1GTTNZCErBVKp3pu923WuXE9byEjO7rwIEUim/ZFylvwZ41/Vz72fEnx+TGUez8J\n/FszM/sdEFMfOVIV9K0oRj6z84raXVE/3C6q31JTIdudlO4bvCF0RqgjxMydJdb3rzNv/JnZlWbX\nPrlyz9Kv6Lv3n5dtkn7Fo+JHGleZa+JScS7o88Zr8jHveSlGFk9+z8zMjuD88u4qfvQX5AtP74HK\nDGybmdkxSO2VgDirclNxuOxtoCwVECJm6VPd/94LUqrauv1TMzPLm+LOh0/puf0jTgnUUORiLXOv\nD9dWReP+9nN6P8jybvlcSigj/674mt5f3jQzs28fq76vfpvAf0/3efyCPjceaKxvHAjh+dFloZzu\nV+Tj51dVz1ZL7xFrESlG/nNljpSZl3mZl3mZl3mZl3mZl3mZl3mZl3mZl3n5EsqXipQpH2rHqs9u\n4ZQd/n6dXdORdsRr2/BtnGjn++oFseWPx9oB76HO9OCEnTn4RYZlzmGTTTz3ItmsAGdD+9o9flDW\nztfBb7R7OoaDIUXGe8WPQhGs79GedqtrZPk8zqBGI3qe52mvKz9Su1oBuCaCnPXlnOKpX6iI0Eg7\nao37qkfjmF3tju4/bZE+bKN40yULSlarhVLOIiiNcFroh0RCu8SR6MQGZd3LaerZJ8va6Y2N9ewW\nyJMgLOkjVzvCnZbqlCBLMe6qb44qN1UnKGIekFHbv/uJ/uxqhzZM1qhTV3bm/JPaLTxrqYJ2Oiwr\nmzKKqY8iZFOWF8j4+tzfqs9BnawNmd9RSzvC9UX6YF1ZIf9jqlfpVO1tvK+sz3iq3dM09tg+QCks\nyfPIfg2HsnG0oL83D1TPG7/8yMzMcgntpKfhEckHdF1/qvquXZD9C3lxI0zhmXBgQHdynA2uyL57\nfbXDP1J9fS21J7gjO2XasM3HZZ/6UD5275aQUH7UmR57Rtmsiy9wDpLMwv1tMgJVMar7kBiLwHVT\nj5NVQ02gVdeYyOTkcw9PZrIiOgscnsgnIzHQXSg/DMmgRwZqV/EJ3We4x9ljsp9nKVPGYQDknTna\nue8faNwc1MiWcMvoghAQCVSA/Kvy6ZhPtsyQ7W7U4fEhs1bhvHCQzF8gLVum4HYJRVC5oG+nIEMs\nxvnyvnxt2lPWyOeg2kYYHhDvXM7GVkH8bQQVbyq9WWaULFtbfRBD7SmK0kygoLEd53z0mDP4I7JU\nFbgAvJ58yZ3I5oMgqKcNUF5kLgOg52p1Ykh6diZfdhn24AVCkSEV1d8PD1Bk47y61ckSGj6fVIyw\nrny3X0bp5bzGgptT/63AoeUHYROCa2biI0V8xuKAdEy4un9oESxmRLHgtEuGnnmlCS9KGQ6MCqgC\nZ0y7juj3VoP26L4TFMrC9OPEhTutCScC9hzCKTR1Ob/f932GmkyGhBJ4+CF8D3fJzMGDkEQ1IomC\nVNzVv8sJ0AEfaRw34vCuoUAShxepHYDfAiUyD2RENqF4XXhK9XCnKE+Bxpo05AP1E5QDOyB1fKAA\n8IlICLUl0F6jhDKAExB1Vf+MX4mz/i2QMln6CMRNFE6aBCpBzRNlAOOMteqO2nncUNzOwLmwtKa4\nW1j7YmoYJXiP4klQCgn4MMhUhlOoogxQMDuFQ8XU/py63OoJ1Jeyam+IGNKEO6cblq+FysTrsu7n\nxhU7xnzvNpjDe5qHRyCe/EV46chY54orn7XBP2iaj0yrA9osAsqu4WkeSGb0fSuvNVUD1RF/Qn6R\n3gXJSAjrwwdTzCi+n47h+wvDzYCvV1AUsrT6uz8Y2QBbxuBvWwyqT6r35ZMPfvErMzM7SOm6Cwn4\nN64pXsai4kcIXVe2N/kePGxpkIpt1mEoEzY4uz8FJeqa+qAZULa/mNTYCRZZL5UO7YuUfkBtLN3T\nv25AY2EtqTgynIAgjGl+mWBbgyvF39WYjA6EtDlk6RJAjW7qk+2iKcXTwS1d16vq9+uX1c5OR89/\neCp+pUxc7blXFeKwD6/Q9fPizqnV4fhC0TKzIZ+ZZFF/g7/ChwxRibXfylR9nfRrbJVua8y1bmis\n7P5aa57tvnypDrrP6J9sFc62sewQCsuHah0UQeEA8toe7YdHKSt7ZP36/SpqhjO7jNbkF+uLqME8\nrcz9flf+dfIR/FKDz1X6Bv6RpWjPpK/6OHBYxFEc2qH67qp+33bUrlL97HwhHfiD3LTiUA9OFR/8\nONMIKj/wJCUOVafVtHxzr40i4jX4Mz+Vj914S3yYU/jc/CgA5qPwY/wXytK36PsBvl+IgFAEERdk\nHZsAAejBNWLwM3Waqmc4Ca/bgvrSAcXfS4AEhK5vhC/WiDtpxrDPQ12uzNpoQd/HUd5y4USpszay\nmup9wBycKoDyHfP7W6p/pKd/uyhjhok7Thi+o7r6tA+nTY93uiC8e6kZ4iclH3qMd8LWFMRPabZ2\n0XMSqNwF1tQPXks+fHhL6+TbP1b8P7ekmHPW8g3QzP5D+eirH4E0/ab6c+tXqvdPFvS8fEDr6sce\nxQ4DjUn/ij6Xb3/LzMzGOfnX7h3UqY40bza2Vc8nF39tZmb3l77+WV3ez/Zs9S2zcFi2jt9X3dpt\n+X/uTxg3r8lWP95XvFl35ARbH+pdItIW8nG/LsTLxlOKF5MbQthE/o3WNqkHQsC4S4rrqTtCMz0w\n2SLHqQarCyHj9wnZUu78JzMzO3Y13hdKim97D36otrE+rpyTDXOe1gaTgBB+y1HVZ5AW0i6/LYSd\nj3Xa2/D0uWGtU/eOFRdeqGvufPk5+U7xjpQpPd7jr39TY9f5GP7RU/XZ3fCfmZlZNvmq6uHwjvTP\nlDlSZl7mZV7mZV7mZV7mZV7mZV7mZV7mZV7m5UsoXypSJgaCJOPfNDMzpwPb/kS7pTHQFu4q2vNH\ns3Pp+t3SebEqb20p6x8+Uiaku6ff7y1qxy/HucfIOe32TkB7DHe169vkjOo5v7I9PXbaJyB3Sve1\nE9jqaAdwYZPrmvp9LqbdcEM9YFDTrm2K1LyvBSfMgXbUxqh2hOrsAqM+NXW1M5nkPGbfL3usrivr\nVgEJNOFs3kpWu+Jj+EByGe3sPTjScwJkEAatY6uVtFvohzNkAlt44nHde9QFbUA2vgvqIJUhVXbK\nTvUlPWO9BVv5OpmAHWXd4z61OZlRFiaCSlKopDollqHmPmMJc5a9MuS89pIam82jihSVT6TTqk8f\ndJE9VBamHVNfuX3SH2350iSoesev6n5dzm0fk+Ed1vX59q/UpyPY5s8v64xr068d6NB45sPaRW6W\nlE1Jcka2uKD6JciGn5Ip6RwoO+efKYXl9bzxMRwrZFZaNc5rctR/KaTrJ1OyifB+7Aw5m9xSZmQ5\nKvv7RtoVbq7M1KvU3sg59eNBU6isYQ+0xoHs1kFNJIXKVjBBppfnzRKip2Ssi2nVN7kiO9Tf1G5w\neEH3iTJmRkMysKC81i+jSFOUX9Rr2tEflM/OPfTED14yM7Psk9qB703hNGnLJg8+/tjMzH71t4oP\nsavaWb92STv7qS2UBSZwjHDQuegJJdBjXE5QjppMtaPub+t3sw39loPq2VTG8cNlkB/AHTXRv/0+\nahLYbDjjzyH7ngjourDD9XCUxDOKS+VdsuTEp/CE893cxs/5bWuiTpEBaQIKYMTYnUzlu344bpJJ\njd12QO0bwHUTn3HLLIDsgD8qvgqnV4XnDenroHxr47LqedKWT+6+Q8bxE8WC7LeVybj1ger52j8q\nA/KD7ysDkbkGshEVljBj+vaR/j2+pzPIZy2Zc6pnEP6nKcgoXweVvobs3z1RvRsoy5ThTTFiZgi+\nlDQZ24jLmCL71ierhuiIuRNi7gT0CUpszUPdN5GgHm7CfDPOroDiTmVb2Zn0UHVfelTP9J1ofDw8\nUdzNkYUPJWjLXc0p/i3myqLOMY/hXcvC2TJMkdHskskl4zkd4Atd9V2pDB9PD+UtfCNGBrJrqKfB\nCeWM9fe2S3YbBEaJ899jeHn6QfWFR3aqD1fNEATGubyec7ynsffB639rZmbxsOJ3ztF9coiAXH0G\ntBJIkzqqeGctUdBQfiAiQRRwslEyynFU6UAIhvIgZkAI7W+rL/tZxdWTY42FHL4UArUbHCh2+NxT\n7q/+PQZllqrDn4LSVyQEZ9ss0zuSvVIoB+23Pm/nQj5vrZvwp8BtESNzWnOFoqi7Qqy2ElojTFoa\nk3n6sRuXT081fVggLXtWhiAfI/hNA8RjVLEoAn9HGx6t5XDPpiUUTfryrTbEQeGUfLTyGs+4zNxJ\nHNoBGe1z4fIayldC58laB/DNjurc9zQWkt6mmZmNQHUO6qzTAnCLraE6VAPtGlqwL1J8qMvduak1\nVTIh5/PgvHKjun+SrHsVRF8ENMCE7P4EJZz0RNdH4ZQZT9R3DqiqIUi82h1xnd2bql0Z1lp7pyB9\n8npOBm6xQ+KNN4OIdoV8Cc8IhQq6vwsKrAbnlod6UxjE6DbIQK8pH/nkR4yJNNyI8HJEI1qPBn3q\nt/aB7DRy6J+a2hUAxRtGAc4pyEezoLfGrKPTxMI2KL8O9YyiSBZCPW/qqR2f3pZ9vDp8ShVdP85+\nzisVtIJNTX4yHYBkBInpwDk0Hmr+K6Tlw0vnkVecnj2WtOnrmk9xIpwBDgXXUhL+MgP5eAp66Tzr\noQLo2mEQnkjUPHf3VfdjkIteVX25fSiE+hg0//KCxnu1pvvuwAHpNLUmShd1X8CpFgH9WkEp0JeW\n7ZcKut9gCQRMUmM5taDTCj3Qqz7WqwtDuBgBvhw1ts3M7NMd9c0jT4pfZAUfPP1EvuIkFccmU9QA\nd1SxDqiHUFbPeeTrso8HGqvDu9n+pxoDV89pLB9X9dld19i64rD+nqgvk/ALtjnlUB7LTqGg6tEC\nlRUhfi5uyJ6limLGwjIyU8t6XvEEzp0NcWrZTcgf/5XyrrOp+t5R+77+XVSkygq8mX299xxcECLH\nnWpd3/+ZEDk/flHtW/2h+FDW/p3+rb9Jvb6h/q4lVP9bfXgIK/pdu/jpZ3Vp//J1G239gb2D+ugP\n9tRnr/yextPFX/L+GVDfvxhXX7/OKYvoseaWZkZx4NGnhIw5Lsv3DuBgPOfJhx5k1YeLJdXp8HFQ\n+TcVX9I1Xddb199/8Yxsc8XRurAX13t/qvITMzM7+n3NaRc+VL3HR3ruJRMvz+uxvzMzsxao3UDn\nO2ZmdnIiH2o/jW89VF9+bUHKWLcSL5mZ2bsLWm9mfq3157mI6vXWs4ozr78MUrMlRM+3XhQ3zdG2\nnju4KM6bSEnIwn+ufKmbMoa8YqAjR/Mje1zkhdtJyfFdVwuBbAKCRV5uJgzM94/VKXssfrMEPC8y\nI6LUwKr11dlrwFebl/W8g9taaEU+RaKPQBMDOt24BUktL1sJXr66df6NajIbIXt5/LYG1NKmAkGQ\nF94hcmxpFmaLyH/6I5ocDqZagG9cFbFlFdh/YMzCDLKvGDKixstigwVrb4jk467sdGERUlUnbn02\nVxLAn/dGqss4zLGdmephTBPxAkGs3kdac4FFJQuF7BXZMFIUfO6gpqDeP7ep+0LkuHZRmz7uUN8H\n4gp+Zy19jpAVV9TmxUXw4bCrNjxtlPm7qt8hpMitiuqfZYGXDCAbPoAI7DbS0Rdl28kiErGP6sV+\nghT38KEMszqTlv6qSKZ8SNfevCVSOMfRc1I5+czVx7VhGFrU7/ptpKeBAHuwwMaWIT9loVeNsCAA\nSltnIRVisd4ZQirNi/lyT+2cEab5smrnVEPGnJvqv+VV2a+4rLHgZ3J1OQZVQ0q3zaJ8kWNTXoSj\nKZC4xmekhU022yAN7OzIjms5BdjekgL4YAfoNeTYU+wcZaF2CIlW61NdV25yrI4F1VmKP6+6Xboo\nm5crwCXvaxF58ViLstgLInVOxOQ7PSCxvobqEkJe3YA1TzmWlGZDzZeWTSYstodI2UccXTcmnPoD\n6jsXqHCVI2mxI9nAiahtA8ha/RniDn3egwB4HASSiwR3l82WFMy7Xp/6zJCWzgAAIABJREFUxljg\necjd8oLuhTR5eVVkayGj848hWW0AT2WDsVzXkTsnhDOx2dNlEzs02lT9wvg8srcRH5sMbBC0kFl2\nF+WEa4vyvYMsUqZs0C5uahLlBI4d39aGXPI8hLjIrju8yO8PtNCq1vQy1OTl5aylVpfPc9rBxhxL\n6uPDHkcyEknIpoeqxyqb5M0ZBypynxM2KrOLEB9X8V2IRM3lRX6muMuRS5Rmrc1xsgibY+FpxiZN\n5HTDwMeJcxmOxDpHSI/ONspYDIdIJPgjakM5J9u1WCQHIUTvBOSjAV72AxxLGXP8szJWnw8gVO+X\n1bdxCM+LEy1onClGJA66ccWz8YC5su3HhrOjEci/Q6ZZgcQzxLEkl/tOxrJ1eiZXywtSeii7HN/X\ngiayod93aGeMuc6Al1fuQCo6/WJyx6GgnrdI+JlA9hlJ6D6NYy1QFyHgrTJPRmLIga4xXyAR2+F9\nbtJRPasc8ciwKdZoa+2TC0GYDBkrJzgsNZMdrvNinWaei2ieypf0OeH0P2tDqx+1yDk2QEpaYLqM\nqcip5uOjoGLk6pJixAPieeshIgtJ9d8hUthFYPb5A45fheR/3SxHLVv6nCxwPAKzV72OLXHcx4Pk\nPqV/LNTk2B5zZuSATd8jxZcJx17+H/be60uy87ryPHHjhvcR6V1lZTkABQ8QBAWQMKIT1SRbZPea\nNTNv80fNSz+N6YeZXmqJokTRiQQNDGEKplAw5TIrfUZmhvdxb8Q87N8FRmuJ6qynernnJVdGXPOZ\n85n4zj57vznW5vgKUs6W51B5VwdzUVdr+QxnK03g9lMjEDHlMCKqHxN7EIQvkvJXGNzfwd0IUlUX\nEtRiQvW7RbrmVQJBRspvwuWAFLLsaE/7vA5S13kI3mPnCTgZ5M1Hmi+nU+1xCsG8zPwyXtV9l0mR\nTpDu6V+Wzxavq+9yCE8kfJXXKeoQKUZAbfuQQ5C0foBn8cGF8/KZuXXG5lMKYsQPObjrQOaMvHHt\nMCBPVbmTkEKXWJ8n69objKfUizktTUqjDylsBuLjHkGIfnC4RHpVm6DIiAPU/braM8fviEhU5Yjw\nnHz5S7n4SCRve778ZS6j7z3mmoZx0DHROjN+TP3aIwV0enPPzmpT5u1USW2biHMgX+OkPsG8Rxr3\nKXuWURMn5uAy3YMkmVSu3pPqu0Sw92ctusGhRIzTkFhBaSwT9q1GemRxrMHnRwnIENwbkq60f0dj\nb5BWH7sbmi92f6NUjzi/zWJpDm0zQUBIbe+zF6gsXqE+eu8+6ZBrT0CynEEAg/IVSWcdRNXmJ23N\nW20ktONJ5vmSyuOu67rTY+0bk8scZl9R+1z/b0rpc3Nap+ZHum/vSO20noFWgQBZPKkxmylrTLhB\nIG1WvjTwkLcfqJyNZCCzDhn0qxo7fvL+0peuQpy/8U0daHzEupl7G9qIjNrtW1Xm6ZdU39YtrTfu\nHyS/fPhj0nx/BV1CmX3CP+ug4ZBUnKSnQ5vCK0rlGez3vyiLvxizzGbPnhz93MzM3rRvm5nZd3+j\ntr31whtmZpa9BeXDzLfMzOzFmOaFDiCFg0c1P5dqOpT4bKhDkYv2UzMz2/lcdc3vaJ5+hgzjZgkp\n65cQn/mTfKM+XFfdZpSe1NxWIKHO2lg/ftnMzB57WxLdu2vy/Ye25ZufPifRkxlffVNLax/e31Xd\nz50SvPx7+cZ0qvf77e+ZmVlmVe9dWcTnzmkeXeA35uU25xNL6qM/XXxN9Xxb+/K1r2vsr5kIf/ef\n/Y79examL4UWWmihhRZaaKGFFlpooYUWWmihPQB7oEiZIRKs197S6V28pBMsF3h4w9UppQMZYBdp\n6/NXdCobpEDsIA2dOkeqRanLc4Dfz3BKDSyyC+moHelU8oSoY6JBCghIlHmgcCtPigxqBjKo7FAn\nYz7oh1gG9MGs7iuAAigQGRlBIDSfJ1oFMfEIkr8pxErjusrRgcCzQ/TJDw7XSTPoAtNdQobOJfJe\nBk7fLJJGNVBEoNr82GpxRaEzRGtrnyji2Eda7hQSzy4w7SMQEalT2mRNdb+9yYl5D7QAxLgt0p5m\nHEWj9pG2W7+kPhm2AmJY8NBntG5LbdxBirk71almHISPewy8EWnueSCtsSVIAE3HsLGCfCQ/0PW7\nB6TXgCZIrnKCv84JekLl9Jrqm90OMr2f6QR/Aknn5geq//qyIHtN0sNWliD0JS0siO4l6LMIQy9b\nUaTEJeozlyWa6IHKmoV4DHRHHOnC000RfiVI9RsSPUu5Km9pXpGB0R6pd6BCmls6pf78DcFdE1n1\nVyor3506kJQ+pkiHX4ZYFORKgnSyCGlj3a76PdLT2GyZxub8HESlx2rH/VP55NKCTvLrdfnZtEk6\nA4SgaQh+07Nnj3B3jiB6BIs79NSWEdBLUSSsl4j+BpLL9V3kf4nGN8a6fn0ZIu1FlfWorjb0YGTs\nDeXbSUiKW0SLMvRZHOSJw/yTB+k2yICwAJKbiYNEwSdsGqQ0qC2KkGf6cZU7D+l0F7JWH3l21yXa\nkxGSpt8l3SoBuR1B9ASEkyPkdL0mZKOQmc6vqu9mkFN2o4riVN8nekaqSpSUDm+oMZhJIzVOtGkI\noW8yofmnBVohS+Zi5gA53RO1awRy05UlyEqJ4vXb6tcyaZkbT2mMXb28bmZm6xeEfDqrFSaQFEKc\nnqKdhlF8PkJKZJV5FlLxBKmR6QlRRWDsMRBNMZBL9bjak0xHS2chbyXtKQIKrol8sQMKLgc5YSoe\nN1tSXUdEUgumCFwtp6jS8EDRWrevuhRJL+wzzYxjIOtm5PNT8h47xF/SLn00hlAW5/AYj26EKPWI\nSGka8ucaiLqJ2qREzp6fJRUFtMDA1IaNeBAh5n8ivjHIrWsgMAtT1beQJrrdoG+Q923vqE3LpD89\n/yNFmbKBVDXpoC2i7z5pPN0xhORJtd9ZbcJ74qydw6LWg5gJgXPuHGldNcibSQUcFlX++ax8YfdQ\n95UypBnl1E/zRVCxR8DbY6RtEXXLRyHdXmUM3tN6A1DJ0iBex5ukkUFuO+p9KfsbPZ1aBULNMSlD\nM5BMj7ryh13S2B565Hk9f08++Fl6y8zMEpCYx45BueHr8bI+nx2rvk3Wn42KrtsBfVIkpSThxM1A\nXlQI2k/q8q0kCAQ/oTYdkLJXYA3qVLUWzrAUbIJsS+wQ1R4Kpr4AiekBqVROIFIw0X6oA+lwLEZb\nIEpQK6qNWtmzozLNzFYuKDKcIa3G8ZinTjRG4wukidLGk1Mks1k76xmi8DUQGh3VO7ul6wLUwBQU\nbYF0nczT9CGIjhT5qq0l7UcdUAeVqfaZ45Lm7T5EuVn2y/0ZzbOz50DtQr6fJvUsssyY3GHvR5Td\nAfY/GIBEBahYAgUXyYCoBEXQIhK911W9lpJaN9IgL+OIBQDgMd80d1VJIc/0ETGAJDsgvu92SPGe\nIgBCasbGkxpz+ZQWmshd7XFbwy9jz9F015jGbRrsn4P99yH9QcrlBuiWTEpzSHQpZWe19ByE6tt6\nRhr0bAtI+mIesmhkx51gXjxS205jiuq7kPQn+C2x+LB8pw4qcx5k4vR5rY0nd9THo4BrmbUqO6M+\nWSmpjVxQV5s57dvcse477/6FyjNUueZWtAfyxiDdERUpkF5VY3+dSZJW47PPBUXqNdUXuWxADK/y\n1jqkeDM9Z1IQ3p6onQ5c9X0so/qnIGfuNNSncynNV5fWhQSpL8kZ8+vy6coL2n9OIc6fQCNQITsj\nID7fN1CyPX6bRUkzW5PPJ/ZAujPmMvMIcIA4cmdBSTN2Mt59/qSuCQWYHKmdB68L6fP0JdXz41nN\nKTduqlzrB6T5pxFMWRSK7mu7QrXM0K6/n9XvtEFf968mSKdbVDn/eFepRe7alwTxVv6aTcYf2PxY\naT23EspAqQ40P5+/p7K9XtLflSkpxW9qvv3OJfXRDZDG3vaPzMxsLa8yXBlLxv3TEsS9VzRub36i\ntm88rrIsjoQouXNx3czMFm4J9VT/WHXsvMJvvKrSibw5rQP25ONmZtb7ROXoPy2fm2e+i9/VfDg9\nUHm9OAjLZc1PdxzV+7t5zUNv9fX943NC4F/f1rrz8p5Svn4OlcYjQ/nobYjfIxuaN2/VVL9XPoIq\n47z2bo2skEhm/7P9WxYiZUILLbTQQgsttNBCCy200EILLbTQHoA9UKQMXIDWHxB5znBkHhDXuvBb\nzOg49RBJqhJ5h6vPiOhnI6VIQeayTg/rWzoRa98SOiRObm+QizutwcEC18PMPPeniTblyY8nsupx\nqjwmv7w6UYSnQIQiAVliB7K+WFvPOUnrPbEB8p45nQj2m8iA7upEbQ60Roqc3tZI93WJGM2UdVI5\nRTrQG+kUvg2BcI3o6OhE9Tk4EDeEO6d6RCp1y6XJo42qjQpFPePx50R6em9PdYpF4NOo6aT2HtGf\n88vUvQNZ3sPregcEwJ9/rNPDEhG+fU78k+Rvb/Z0optBmvqsll/V6WQRmfQpdA25iN7TyUMal0PG\nPAYfBUfwgy4IG8g1pwHhIoSSU+QpR0dEiYjmdyGhs3Oqd5pcz+QiaAYPObgtyDpHet7dXdV79bKc\nuAR6qQHxJPRDNs8Jez4pnx/3IcHr/euoYTJAUbSI5syD6ipAkjdSeYZjZJqrtNt8QICsU9pIXy8+\neUMn6L/+23fMzOzCC4rEnv9rnRJnnxLC5qlv/djMzOKmKOD23+tkfX8PhNEhucldlWdcVDsdjyAh\nTKsf0uf0d3gCxwwReagjLD6BFJvT9Tyk2f3+2c+LT5AMPWqoLvMQXM8i0XwaVx2SCSKLLflCLokM\nPDKO/lhj5JSoSaQL8euJ+qID4aIPp1UMH8v5REThLKlX5FMupMs9olWur74dwdszgi8pHtxPjn0v\n4KyCzM85QUoV6dIi0rGRKLn2Y5ArkE07RJccOGtcEIDDYz3/FFhFCt6S9Izq66Q0X0whuWt11dct\nJJ6jQ7i+snB2FXV9F56pAdGzoUeet6P2aUPQGINHY3FW5U+DtEnRHrOLEEayLmQWifzO6z39HMSO\nexCAxu9v+Ro2IY47kI82TiGpjUGSS/tFQLVlQYHkQBdOiQwZUc4k3GB9+jkNGWMSvpEIMtNxuM2c\nL9AFap8eqJQ48qF+ctciYz2jdSJf/OB95Ukn4UPzICfOZtSWqaL+9+FTG5Q0XwZtkwapki6rbVH6\ntHH7XyNT+vRhIC/vwBEQBQk3hcsqBuKumwIdAELGQf53hIRoEnjnMMq86YMOHRIaJVwdBbUW8fW8\nDsS8BfrAA+nTR548DpKlB3KyjmzviMjsqK7PDzrMp87ZCcPNzIYG3xMR1guPQhb+qdqhjIR4ZU5j\nIMnjJ6B1DyaQ+OeQYu2DVOzo/mxKkdxxC44eIrv9DPLAIKEmkIJNiSCvgUKrnyr61y2ApPSFdGw7\nW1/UYWE8sincB25f69AIxMxwVfUafwqnA8+dZtT+HuID+UfJ298XomcCKiMLsqpLuQqnIJXg7ZiD\nlHf3tiLwq0/lLXWgZ9eH8om5osaLA09DzpdvuhDKxpBkToL4mEJ7sNjQ96NhQJytd1Uh9/eS2lt0\n44rkenHGxEDzx8kcXFiQS+fgoVvyVu1+rAbCsvux9pcGIjIBpMdLAFOAGGgAEeYE3r0sQhVJcW9b\nFr67fk7zxAikZ2oMGu6qUBBTkD2JPggf9jRZR89LLEK27CCDnlb7pEAftJO6rwK6YnKg9qojx/vp\nx9rzFSDeHQ10/XCoiLTTIwLNXqWCj8bhxmrCz7GxKATjpKj2bsEllIDQfDhQOYd9rQMuiCLzGbPI\nJKfYfx9nNd/70BH2iGBHL8Dfcagxf1TX3DmGzHVvV3+nkFKbmfXGESvDNVRIgFysqZ7dgDMStF06\nob1QPkD/se6dxSas3fNLrMFwwLQPtQ/24beoeHCpBDxx+EwXJF4syZrNnmMZTr74se7rIQawCmlq\nKkDRBrK7cFj12T/fg1NxCcRbtM88wLqxBmfMEai0PMTtF9fZ67gaSx34nnogJ70JqFeQ5c3bSIKD\nUiqDEPRZdzwPrpYDUKrnEYhgX1w4VbldiKKS8P5sfrBlZmZ3N+UMVx7T/DdgXTg6ZIOd05jJI/bS\nhv/T4JjMnNPvoPOL8uH+gXwKvntLsi/dZh1eXUNeeUb70y7otmRO/dAeal4egX47q/XfFSL9w4qe\nd3nhH8zM7FYGovcbavfZNXFZZmd03eB1ZZcML71sZmY7abXjn8pClazENAYfi2lM976qdnwIHqXt\nNzT2P/xcfCv2v5jN16/bW8V5e2lWdV78QP4+KGiN+jQjVNJiQ7/1/Mq6mZk98fwvzMzsvQMhSp59\nQ6TEzaz24w78PZOHtMa9ktHv9uotxFiWNI9+7Q+MxyvywW+DsjqBvHomJgTNvT9obbriaY/SfVYT\naR9Or5mV11S3OfnAzi3NQ9llrTNPqHh2e0bcre/AV2ddPf8WyKDq9+WTiU211froq2Zm9svH1Rff\n3xWS6O+fhPc0rXqu/VJos70VZSMUJ7r/zuv6jeVd/Pd/24RImdBCCy200EILLbTQQgsttNBCCy20\nB2APVhL7PPwXD+vEfO1FnYi58+SENnXauwH7+/49ckqRsEsOdDJe7egU1E3qdHVyrBM3ApLm+XqO\nQx6hj2JCIL1onGS1iTYux3VyNrEghxelgZFO3E5vg0KYXVc54QNpR8nPLOgUOD1LdJGT92qJHN2m\nnt8p6rmBFLYR2djjsDcB+qBFhNhBgmvq67kj8ulzqEWde1zlGSIZ+dw39X+9/469/WsxYceBguQ8\nnUhXEnp2FenTaBx+CCRDckixeil93mwJCTKfpCzw13jkLc+lVbYWPD75svrmgqNTzRFohbNaJa66\nOMg/DiJEieqKjpUoR62u8g/pu0SOXH8UZzJjtXVkqvpG6zrFdSM6Me84KGNl1D4Pf1+nvp8ewcOB\nxOgHN4U0+fynOh32kP77/n961czM1st6XhKJwQhRsJJDDi19GE8EEVzkMsmhzYGqGDUVJVrwFT07\nxmfLY6JYRMzroA2SUaQEkZHbrOq0OxFBxQVei9UL62Zm9vWrQkjlvyaJ7ye+/ZLaYQWJdFAN221F\nQG7/rZ6TQQEMkJmNiY65bV1fKek9U5Rnksg7d1GJmcBNMSBKVjyvdhnDkTFIaywOe/fhJ+TRxkZ6\n90ws4NGQ782uoG4Bd0E54M1AvrYLp5QlUJY60ThutNR3I8ZbGqRIrqwTcSuA0gJBM0joefksCiqg\nByZdUA3kk4+D/GwQcU0SwAPlAe8oUAlS23/SUBQmdh10UkXXraBKNyRSmStq/hyhfDZGxvgYeEQC\nSezMLPLFG4r+uETNdg4VpR/e09gaE8HOTPReJ6YoWTONulNT7VzIy0ezebXz4ASUGZxgSea3aQQ1\nuHQgGY2yDugon3x1D1U6P6r2H3cVFSuCINqFp6k7ZvCd0XZuiP/p2q+E+pphrJafAKEDl1BiFYUi\nlIGmU5TlkG1KQfDhDslX76n+UeRLu+SlJzOocNEcPrL1KZ63vKHvc8so9exOLFlRW5WQ1R2jZFKg\nz9yKIo5Z+Ba6yG+P4ZwKeHIiDhFJxt9eFVWcCKgmuFAMLqcY6jvRFRAWI5Vp546QEt1j9cHGV+Rj\n5QRytQbPDnUN4K892qSIotU0g5w4alARFFBmFhSFS2TXzcystq33xfq6vghSZjwAAbMreftYUc+Z\ngrCLw8fUYy8QY21MwON2Vpv1kQdG6SVaFjdBuax5aWdf68Szzynqdd5Ted97R+04n1N7LyT03oNj\n1S89A2oACVcHtaW5sqJ8HRCI10FKXsJHhqDnijFUtOCv6h+r/XIbjP1PvozQRqINS1VU7v3buq6A\nYtxKU/3Rq2hPdef3ilLu7WjOS51Hev3qs2Zmdvyp9g2BPKnzjOaM7h34rPBdf6qxeJ5IfnNX5V8a\njW0CIjFyF6TzlUfNzGyAilEDpEsMpF63p7YuuvBjjOR7TkTv7oxVFw9eoxjqRfGe7h8n1bbHviK7\nAUooP5DvdpERLq0irVq5v22w31T5tm5+qjo/oshtJlPmL/MY2+v+aaDuhNz6gubTmMPYXlI5z19a\nNzOzwyrS2UTjB6CCe/C6pUBwJlB+6QV8T8gIn4Ly7cZBD6MmOCQGu3ekz6dFlSdf1PfZOhxaKXhD\nAj4peN/6oGNL7FO3D7SH2j2U7xTKes6Fc/K9FnsONwmSKc38D4fXFO5IpwOf3QSltjn5iwMXTRR+\nq1xTftAG+Z6aRY0LCe9IVT75OajlNmiulShqWGY2OvYszlzZCNoVxGikznwOAjXOPrw7VLs04Jk6\nix2zLyutaJz1QJaMQGcebIO4S8l3I6jwjNizZBsoLp6C2kd1rXWAAmMJH6rz26MPD90sCMUmnGRw\n2/goWBkImkA5bIQK3hC08Lijtul2dN3W+6AI4np+EtWkCLx562QHNOnTLtNQqaU+H0TheYInyQE1\nZlOtuX5EvlM9Zt27rOdF4Y3r7es9XXio8mW1Z33Inot9Ywblyh14inr4etz0fWyIAhu/F+5uak/V\nQTmzB5q4RNZFgJ5OF1T+wVD3Ne6BxgNBM+qwd9vVujCZPTvvkJlZ4ntq54ermmdzM5oLLqGG+GxP\nqJJ/YJ1ZzWgOXPvOE2Zm9t4bqtfFodrtMmqKWy9o7/RaXOvLk2ON1eZ7QmitNiVNPjn/j1+UpVbf\nsO+U6vazm5rP1lbkQ8vXdO/it0Hy7Wh+aC3KN/oV/ZZ4rKffRn9CaXVU1f2PrqnN/rmmuq39Udfd\nWdRvjW9sqaybVzV/XkOluLzylv42vmZmZhtz62ZmdsFRHfLNd83M7PXXtNY+FBcy5Z2nhJ6aIrW9\n1NN8tJwRwmcRvjnnnM4Lym0hX6qX9Buuck99sQL/qFOAS5ZEnr+6pef8fV/Ime/DRXgbJOT172hd\n+Pof5Bs/mxdyZvZb8qnBZ/K9P2chUia00EILLbTQQgsttNBCCy200EIL7QHYA0XKpIjQzj2iU74c\nnAIRDraP+0RIfJ28zROp7rk6gRp30THf1MnaeF8RkgQ5qYE6SiwCp0tBJ3EJ0wtisOB7Ld3X6sAv\nQrQwW9KZVWGeCMVA/7dqRPOI0rkplXuIQkNiVSeIsVmiSynQAiTFtslxTRd1GnpK5HwId0ITFEjO\nQU0FcYBZV6e2LdAeg64iKaWHVJ8vOGaOFf3ahmsi0j21jKlM5RKRUaISmb5OMxNdPSOHRvuI6FU2\nqXem4ACoTHQqOUcUex9OljTIjwH540W4VI5RdXJQ34mgTHVWax6jLgQqKj5CIeVAbXkC50wSZEfE\nBWUFomYK0iTJifkY9veWp+fMgY6qHKjtpmmVs5x/nPaQD935jEjmx4q2v/O2TkPLqA09SiQ5Na8h\n1STiOgtaYKA/5mRBGcDSnoNrYNok6g+fhwNqYgQ3hEN0bNhWOaYgmGIoco1R0Ro58I8cwSoPaiTP\nc8qzqtfVV4mMt3V9+y3ljTeX9P5331S7bP03nRqvoQRUzhIZTen9gVLOOEJOb0ztvYI6lldWuQr7\n8pNbhyr/0rzae9gk/x10VyEKSoF+OYvNZRinF1CxATFSvydupX5X4yo9VVTGwzfiKI0NiIpMyJee\n7KmO+0OdqC/Mqu79knzeoS17DUVLYikQMhX4ljKK5nRQY7IRdYXrJeHoPbE+vBRfoKfguHEUrfna\nkvoqlVIfbm8qPzhCNMhAG52cwupO9HxQh2kf1YrlFPPdPMieq6hUEMWrRdUnM5B5+eRZn4CY8eH3\ncZh38yizOI7mTd+H6wVUQ7qiz/uncLKkgwikfKKI0kQwn0ZjcDKA4sih4pGCQ8sdaI5Kwv1VSqgf\nY8374wvx4LpJFFSuJ3+oiErpstYXU/fZABWlMdwL44H8IOUyJnH9CXwrDijBJOiVsQv/C3NddADy\nEv6UQVyoCZfontdVu48jESv7mr+YPm06p/+HIOE6HqoecAV4rAWjCWtbADCDP81DHSdGSn27q7Yf\n13RfwEc0KaAuQfR60CWaM9Z7UvhIOa6oUwpOsjbrRJrG64KUSagJzQcVlYtqfmzB5VVKIakDn5zL\nOpNI6f4TOLJKoMCmPDB6AUQhPEQRFF0aoCHGIDVnlhQJzCys2/0Y07HN0ddxovjOAE6EplTv5lZR\nKeTzZEnRv8hY6Kvcw6pHuyjfsSYR2IfV519wa9U0Zmtwo5VLiiqW17TO3mBPMwPcKmiPIXn2E9bF\nJJFzMzMvkrQk63RsVr52cMQ6/Txz4S2h025/pvKkiXQXNxSVHDT1PmhG7Ic/Qs2PeXxzrD3Gcxf0\n+fE11X/uCZSJLur7/c2OzTwsn/EjoDqnmidmV7TXGL+uNrUSSi85oug5jf/Zbc1XB4580XE1XqMg\nZPw+iBSQI7Wu7i+gStc20Fp19gID+Vq9rLa7eGds92PxqHw+CofUcBGESTwoh6L4I/Z1EbhyJq58\nfwRH2RFIwc+P1chLnnynxCDORtRXdRSzSqBufWKpLVSfxvBFxVHr7ExB6B3Id0+a8DzRHjGe0wC9\nMT2Vj+2Dyhu/rcj40vy6rs9rLjkFTVf24ARjrb66Kl9bXGbOofzllOaMGpxiqb76O4EqXw3kYGZB\nn3uoOTH12QnqhBGG0BDVwgjqSH34USoJ3ZHKiEOiC2qrck6+PLQvx4bvNcwSale3qTGYGYAWj+h5\nuamev7oIyq0MWuLOvx/h/v9bygdhzn57yP67BQqpd6y6LT2kd2TzlKGpPj1sy7dKJfXlbAIFQ3h2\nrAvnSyLJG1mr+bc5ASkOv1FyQW1dSfCbAh67DDxqwx5o3Ki+n6+oPOkZ+UqOLQegWYv01FkdJkx/\nyJhgv5cAVtCCR2qWbIFpjPkZVNUgqfp/tq01/SrI/aWHhb5oRzWW6kfa4wTcYfMoQ+Yaat8e9U21\n1E4j9rWBIu0UVF6a+vusWz5qpQMULgcuvwP2QPyj6reSn1Bvvf9mZ3DbAAAgAElEQVSoCpoMH27A\nAxUdBKi4s9kH78IJdFF/f3+MWuw1lf+bz4gjxi/IN439/e1/QU1xRu377gx8LDOaf5//UHvfH39F\nysFv/Z3a9+MfCj0y+9MtMzM7uRD9oizFXtwSxWVzP0cF7raQJ3dXVKevvac+77b0jPe3QFDDjXj9\nWPP3t461NnW+rjXv2h/1m+nRebXlIKZ57tWL8pFPj1SW402VcWFdioAzGfX5ykXx6lV/JfWlc+tS\nkP1HuLm+/4Tetw/P5oXPVL5PykJEZynfel88O3/3HdaRXwiFlPwBypb74nsapYScuffpa2qjR1SP\npT/ovRN42hLPqV6vfwIy6KrGSuyG6rnp8VvrGfH/eG+pXFsDrYd/zkKkTGihhRZaaKGFFlpooYUW\nWmihhRbaA7AHipSpV9GAb3JEjg54AlRG5oScYaJoY3J2TzZ18t6b12llxsjlJfJdgn+jAZIkYLcv\nDzgV5tTaI9qUK+o51QYs+ZzET064jtPp9ed1ejtKEB2b6LS2An9KnaP+RkInaIaqh4EqiMF9Me6S\nJ2mcpoMyGcH4nYFbodPWdYu0x4To4hSVpgFqMUNUoRqgR0ZEAGp/glfE71gU5nyXyGG/DVcA0fzy\nnNq4X0cB5hRVnYxcpDugTAOdMNdqOiXtHOoUNeerjSaoMyzOzn3xbjOzOrwZsdT9RaUIjpjfglk/\nrromltQGFRS7oklFPwK1j0lcJ9jZlPqmifJJAQWD2aTuT6G2MYnoRL2zD5fCb7bMzMxbUH1Sjr5f\nf+5FPcdXruZsVJ+XiOLnUCPx4S8aoQISIXLdvAmXTR4VkRL8I5y0J+mnxBi1kobarUPEIJdZ1/0R\n1Sc20nsd8qf9UxRfyAH2QF9MiYwUivLZJx/TKfHHRCmPb+i0uHkL5YeSyt0E3WCLjD1QX5cT8sk2\nEfoIIZTOHb1v81Tvn0FpJzajv5NdUCOeomjZtMqfrqnds4/Jj5zp2acmH96MCFF/P6VxMIZUqky0\nqeGobUsgZ5IVtUX1RFGiGVRwjqhbq6G6F/IqY6AWd0KOPU1hNZS1fJ57cghyD8Wrpun7fAuum6ge\nlIpoPEfJc07B89SPK+rR2kWtJKs2qRP9yYAoWVoD3RZdNzOzOFExDwWcyL0Gzwedli/TXuqLo1qV\n8qgvchPdf7wJGgofTDDf5WZQLkjja+kAYajrXdRMnKHKW6A8rYnqkUYNysmqfA4qIV4/iGSiKjXW\n33ge9aoJ9YX/pEYed4pI6llt/iJqdAuKHhWeVvs3J6rHlOhfhvd7Q5CXiHdMIVJyUJRLwGnRZv1p\nwwMSTan+aaJwgFMsbhqz+RQRfE/PGUFeUG9ObQhKx1qqmwN60sYotLAWJXLMrwW1YRJUTwv5iCiI\nmjgKNyOHSF6gUAJ6K8q8nWTNmXTxZebr1Tl8tjjL9ajZsbQlQHOOe/K1eFd1bIMejaOkM6AP84tw\nBmThojnUGnXYFVdZJKn3xViXuqDCZudA9qBWN4IjrOOiqIYiYXZJigpzK/LZQeNL5ZWz2ByKWXdO\nVP5YPYiQ6jmuCydOWu2X3VE0cWFF7fwoijAHNebBzzW/fvW8fC0zp37b29eY26tvmZnZYldz0aEv\nX5iNKVrnphU9PHKFplhZQQGGyHTThEgpPrbyRR36mSObEjleekTv++COIq5re+Ii8PCHdk0cPYvz\n4ioYVdXu1aQQNgmU65aXtN59NtHeZrauuSC3QtTv2ptmZsYUaJW02q/VObSZkvjZxs+ApIBnaLSi\nPm0x/vKXVNZzC/LJxrbGf3UZ9YxDUKhE22OnIEEGilw2mFemzHftCdFs1JrygRpaXmMgdxtuvyue\n3Y/5KRCSK/KB+cuq9BFreHEVfo2PNJY8V3/LCb03/5iuv7KmSGrpPDxsDf092NIewTz9X0LdydMQ\nsRYInT5KO7EJCEk4XPp3VO9UWu2QAanY8OENYR7a30IFrgF340Xxy50mFTGetECkJ+GcYb6Oz6rd\n55MgVNiLNVA+80BuOnC2VFz2hmP4mkAtR5IgjECmBPvk0TSYS9Se45GeO0zp7xxYmip7wvg51LNQ\nedp8Q+W//BJ7xEmAvTGreb6dQ2HUj6ECBuIztgXyKRsg6FFNGWmMp0/Ozk8VKapuHRAZrQPND8tZ\njZsoIM9j1I88yFi8qNomXlJbd/ZAQ63JdzfgvUPQz9oJeOKmun+C0s1oCofYCMWudJb/QUYCv++z\n/yx4aqusQ18FPudpjzAKFLOaAS+a3jsB4ReJoSBbgtNmwJ7H1LaTiuYnD367fgkFw2WUZeua504C\ngHRfbZ8DlTpdQEWQTZdf0/9teJdSoHmTqFIZXDHTpsoRJ6sihpqUAy/cBH6pcVZ/y/ASOqjJTfmt\n2QWgNG2wB2BLlYCjc3mJPWX27AhvM7OvXdKD3nhN/CTPXNBzRq9IFekn8EH9R1DSb56K62umonl/\nfUdjsbOP0tia+qt0b8vMzF5zhBh9bIUslD9pzOe/p79rn3xZltSiZ79qdG3VNH6u/LXm7Rvd91Tn\nff2fBjnyMG1YvP5Pum7yQzMzu/X918zMLHuX/fiG+uhGGWTLKWjLa/ADwa3qLsFLNquyL/ydkDef\nPiEfKTysOnzIXuLCtp7zu6vs29pa+1ef1v3f/K2e98ajur/19u/NzCzxdXG8PBlROadV+UwUmNnh\n+1JhWjahQE/BrvRLyo7ocw4R88SRU7uk78/9TDyjvRf1/AuM+dSRypX5qvpws/rv+0iIlAkttNBC\nCy200EILLbTQQgsttNBCewD2QJEyZZQjckQBm+RXd5s67dvf1glYqqdoU3+sk6z6kU72O32dlg6J\nHM8t6iR7ZUGnzN0JeYiodYwH5A2iHOEQoRnGdILnwWUwBbFySIT3YEvPWUoIXdBt6SzrzvXPzMxs\n8TG9N09OWyqJysuO3heNc5pJPmK3r/9d8hujRBAClvyu6TR2dkLEGwWiGNHPNJHW3QP4YODQycIU\nfnH+62ZmtvG4onbNW+/a3T2dGDeIWrRADR3tqQ1ODhWha9R0Sjrs6x0ebO39Ptwks6pbsqJ3RY7I\n7YeYvloVAifCqWiyTnTLU2Jwmlzbs1oipvdlL0CWQIjBJYo/Aa3QJi86MlR52+TaT8knH5b0/yin\n09d50E2jQ3iLsqhORVDA2VU94r44YzJxIsJJRbFy6/D6wPRvnJBnSqr34EAn3oEvOQ5RGXg5BqC5\nXCLMtb7ap92HhT8JymCkiIGX1Klyq6X33Kvq8zxRs0kKpMqJfP18QtGjtKd6RtLku88QWSG6P7MC\nO/0e6Ac3yP9W/8/P6v7ikuo7P6fonjsCTXIsBvS5mE6x2zHY/H0i2J4+d2YUuV6eR+msQaSEaFcv\nqnbYuSE/jE+hOj+D9YkAxqYKJcZQUSigFJAAtZTty0dGKETl4ZaZAIGZjED9dFXGCGoeDgiS5oGi\nC6uXlbt+/oKu39tTJHfa1/hscn0axF10QiQUNYxYWuWZtjQmARdYH76eaE/fk95sUxA6BvfNScAD\nckdR63FKY8QB7bBckq8m4/KV0xNk6A70XOdY82tiXX0TBbVV39LYOb2pE31/FmTLiXzmtKp5MHFR\n9y3nGOND0G8g+mIgl5qe6ldBoaEXI0pF1CqJiFULZYMo+dIBv0kPpEkGToPREA6tpMZIr/el4sxZ\nLLVOxPcUH6WfoxP53DhGlNDRGHLJi58wR066IHviaq94QfX39Rjrg+4qMP9PfOYkOH4yOa0T7anm\nnDLKFJfTQmDmNvrmxfWONuN/6Bf/VVlmCoRYA9WOqpxjQEQ2c6o6dPPqgx7cLIkx6IOAYwa+i7im\nQ5sm9dwE0a9IByWXQ12fT+r+IcgbF4RKuh/MU0RWE/AkwU0QB8HjocZxGNf86YB68vERv4SiItGq\nmaTaNg7/Wv0UtQ2i6E48QOKg4rao60sbylcfbOq5HaJyZ7UBvBopeE/GJ5qXo8coK66p3K2euLb2\nxtoDDNN6/9pzIEyvwSHRBTU3p3ZJzyrKGPloS+UfyleGG6Aeruu+yhUisIfy1aNbzJfnNfe463AM\n3dZYffrrD39Rh1JubDvwXT17SRHq996CL2tBzxk4miuTjsp1PJRvthpvm5nZ1Ykc4+Ky1p0MnBeJ\nlsr9l/+TIrYT1qFIGW6hDOuyq3aoLw9sNKO2KQ+1L7l9W6iaxZuqS/ERvfvKC+q71EX12Vv/+x/N\nzGxjSfsYp0w0ek99fpAEqdYhel7S9/GefCVDeLuU19gZRFXWLBxWmQWVq9po2v1YNejTop6XRhkr\nWZaPlOF52jRQsaB1PfYG8QjInSzrQllrtdcBuXgImm0T7pmufMLtMH+DnIzCo9dib+UO4c7Bp8bM\nYzNz2sMMQBauxNSetT5jHWXIjcfWzcysuKPyNNvyoQncMel5ULQgkGo1kIonqmcMFVKDO6dShAOm\nrLV/zP41gVLQdKz3O/DQOahtTUBz1EGy5EAaHh8EaqOga+FNKsX0fDer58bhNUmyh2n0NN/q2V2r\nzKh9j+D16x1rjB2nFQn/6obaa+GKytP+g/qlOz07hxlVsc6h+jAN2igGT00VBEehJh8agNCYJEGn\nprU4OmVQBPAm+U39HSVAZR5o/u1nQL7AceJM5AP9gvokjoKUxzoQKLoWPeYFChwxeDUd+JlA8gSo\n1kmeeQglnKUsCmnw9gxZo2ttuM5QWyr3UMrFB8fwySVRwkqAtEmCrmrd0pg8Be1VnnFpPxRzUbCd\n3tDzmwfAyAb6rXgup/KlUQKbnOq90zbcmHB2ZSsaO9Nt+U4BFJ03VrsGHG3RsfZGLXibJqxfVfbd\nadDC08z9IWWmh7o+8YT8Yj/6GzMz2/gn1fsKCJw/RYWkiQtAaZdRB9yuCr2ys6B6z2yqnq2v/o2Z\nmZ2+v2VmZruu2nP+O5q3j34if7zBumlmtrl7y17+sGI759bNzKxPGzwc0f8/yeodC7+Rj5z/kea7\n3lOg4H+nPq3+g+q0uySkyYV17YNy93T/r+CoyW2I4+XZHfnyqC9Eye4fNJ98cEFr4Pc+/oa+L6jN\nP69oXrrwjOa3RyagwNhn/3Fb+9TsORRsG2q0k5IQP4l31SafrQs1+uqnGvf+syrPrbJ++00vyjde\nuSEE4b0XNJaO76ocT9feMTOzT9Oq7+oPxIVTYqyOvweX7JHmn9/uqY8fH2jv8OcsRMqEFlpooYUW\nWmihhRZaaKGFFlpooT0Ae6BImQnRN5eIcsCnkV6EV2NdURqPiMCFC1LLaDTFgpyc0Wln/+6WmZnt\n7SvPLpEnam+KIpXiuq5LhNMzGLJBBUwCdZC2Tm2nSX0emSiKFCeKGI3r/4xDfqPp5MxtEHH2UQ9J\n6XSzGNffMQpCCU7DjVPWIQo9RdArPqm1Sx7fc+pdmkeZIqcztGkNRRvQFVFOv3unRIR2dVo9qAZc\nFVlLT3QqeHyiss9XFFmLLigiFtBOVFDfcXxFg7a2dMrXIJc+hSLVaU+niV6cKHKGvFwCkykUcUYj\nlEdioBISX+b3nsWGXZ1ClpYUHYmVghxKnYYeE+2ekuTpUJGoQy5plrxnotejkr4f9/A9OBMMjoTI\ngepfHeg0tujIV6LLKDVclC+lz+u+zX9RhU+ret/e28oFTRK1OT+7rnr76sNRWeiKAkpaThzVDRRb\nRkvk6rflW94FRW2mRMEaA12XclWPLGiN09tqh1QaVBjqRw2iahXkn6bk3EYvyvdytMfplsZKY0uf\nV775H8zM7C9fetTMzC5cFadAtSbfcm8KHXLS1PNaIF4Oj+AOmlP9U6i5pEFzZS7K33wUHur39Hd2\nTafisbyiXkcnZ+ceSjB/DGqoAhEFSgb8RSiL+KB7MlOiA/iWJVTGia+x0UXhJAZ/UQQ+oSwItdUl\nct9BPXVhzE9k9f79z9WWPY+ILVH0aVzlqqSCHFldv5RTnTM5ECM+Ed8juEfgRHBB2pXI497D94eM\n9xvviOW9tiAfrWyIO2VhWWM9nlVUp8VEMyJie4zygVfVc5oo2lwqK6Iah1QliFTHk0SWiZR6rtpr\nBCrLZTAVx6rnwGE+AynkgaIYoygU6RD1ghMshlRQnDx2p63P+3DUDEFZuen745SJ7qKK1yRa56BI\nM6+xNQtSpg86L0YUs95AZQmkTyJQ/xup3v5I37so18VjKJsRfTwBQcWyYp/8DrWTD98wM7ODl5mn\nK0uWW5avZUBjpeEdOiCa24K3J3F0xLtRmeOvR1s7Q+ItQAk9uLNGHdACoJfioMh8IprZnK67va15\nf29bfApPPfcYbQC3So/5NgOnza7q6qY0r3WI0rdGRMHhhhkf6/oo3DlRTV+WS6icrq/6xqL4FMoo\nWebvTErRpiTrVJ8IrsW0Nrd31Tebb3/McwJ1krPZ8RBECHIjeyBA68wha/sohb2DT0zVnm5Nffr5\njS0zM7vX0nOefURqGLOXhVipH+n6u0R611DNKK9pfb7bVZL/OI0K01dV35P+DTMz82f0nnJKY3xn\nS+/rTY++qMPwkTWzj6Wm1welsHZJPlhNaez69F8Cvr2NiP6/uwMnUEVjIhtRP975SKiV/icqV+lr\nmhuO6J81FI+SY+1JJkM9d3k0b4mW5vhoet3MzEZVRbVdot6LX3nBzMym86DC4LAaHYvry3lBUeKH\nc2rLmz9VZHOc0Zox86R8ZnhbKN8+SoRrRfZLWe0VMsim+aAGHOa/pblFux8rg7xJbzxtZma5l4Qe\n9baYp0EfJZk3hyBRMn0Qiafq+7//mbgL6CKbW1RUv4mipfWEHoi3QMZE5MtJxm6W+XQ8VDtkQGPM\ngrypNjSfL5wX94HlNTacofrqCsjKnTuaU8Y9lB5T8IacoNSFIo7P3ivjy5dyoAqchtr5uKDPB8eg\nN2inchoFSlTqoj348BzQYQHyE9WozkTPy4MybtbVXl1Qfx2IRorw5O1VNVddLKud5vMaGxnaf9QI\nJOnMyp6Zz++OeCdAAqkdAPlalX2994vfmpnZJx/Ir8qXzv5zaTjm3QWNtyQKhQ58Yw6qRa0Ja2qD\n/SrcVEn2yQWUGWvwbh6B+sm1UTtFpTOdwIdRbxql9d4ofep39LwRqPvcSG3ZjKCe1ILPjjV51EZN\ntAxiMMt8EZFPtkFcHl7TeHcWAl9EKYy9VxLUWBduqgj1KBSFDm1F5ev58/IVD86wO8i+xUFILn1X\nXI4llLq6Uc13k5R+h5yA2Nu7LtWhzqN6/mpPc0t+qnaKjfX8PnuK065QUKd9VE0P9Zx+Hc4cuH2G\nU/joKvK5ShqumaZ8tmW6P524v/Xmo9vy/UcMNMWrf21mZkdwWb6ah1vnhlAmvvOSmZnVUUY7zpHR\nMKf2qGyqXtc+UHtvJDT261c1X1del0re9Htq37lf/uCLsvzF4xfsVsa3R2+qLj91ND5e/I184+lX\nUeirqM+udV5WGW4JsV18TmX4zuxfmZlZ5/rfmpnZ+59o3qs8o8X++Q+138yg7jm9pd/1f7yq71/8\nlubBt/6oNn53Rn26VNJ7nzxlLb0kny8Npc70WVlj6Ny/fF/vA5U1BYX61qd6/o++pzY7hi/uJ02t\nL18p6TdNoLj46q7et/dNrb3eAXx3a1rPboDWTf5K1332tNrnBA6qhcUrZmZ26RP1rW/y1WtJff7n\nLETKhBZaaKGFFlpooYUWWmihhRZaaKE9AHugSJkE0ZrkiFzNIGLwhFARUaJ777wnBIyhDDDo6+Qp\nm9UJ+sxlwm1lnXwtPqvnHfV1Ene6hWoJObzjpr5PRlDAgSk8ESjKtHVWVZgHFfIRXAmwwycuC72Q\nuAvZA0zfRfLh8y04HuB0SMX1vn4jiFoGKAL4RYgATOEJSPswlJPXXwj4QuDEsLLK0yOK1/5EJ5VT\nRyeHWU7lJ/s6wWt3a1Yq6oR7eBrwaiia41iMe9WmJyiIOPAg1MkrLsMVMPR1ghwZQ/+OwlSESGtp\nLmB/131R0ANeVWGIfvT+OGX6VZ1KbrVU7vPPKu+8gJqPE0SLEAlKdeHhScO4XSZvmjYB7GC9tG5I\n93Rdhzz04UinvVN4SlpElovwFy2/rBP4qCsfONpSXmFUh6D28ZuKqixeVPRqaU0n87kSEWl4ikZD\nIr1wLaTJ45yg1NAj33lEZMUl8hEBDZK9oNPkClF+H6WfNIpiiRmNocmBooRtJ0BzqV9HoLey66pn\nYYpC2S1FPgp13Vf7WD793j/+SRUkclpMy9dScMFYUs9JntOYcuMoPRDd6xHRmcnBAg+q4GRXfpch\nApHfhSNjSIeewRJpVBMmcJK06POsTtRjhyBl4DJJZOB6og8S5IDGM3CLNOTjOXLiF6Nq81NXbV1F\nleHopiK5Hd47C4qhUWeMDfS3dFXooLUrmk8yoCGScNo4UVjqQUOcbGs8D8d6b39P5dpv6/ulMko8\n8Igsrur5FSKZblm+5+SJus3CUTOUz2RAse29qwjAf/0v/6eZmT31gnJqV7+iSGsPZQeLo4oyr2jL\nYUOR6sGhxloxr7EfJxIaaaFeRJ57ciQfJhBq0anq5XfUvm1H9YrCMRbpwkmTh18E1ZQoPCu1qOo9\nqN0fp4zRj6kZzQULKY3hNii+UZO8cPqjAWJqjLJFBF+2gF8F5FU3GcylICvJw48SdXQaROfiaveN\nZSGY1rKKmDzzvKJVyaWS1UGW3a1qHur6KOyhWhYHpdMCdVOGn2FIdDkDL08PlaY4a1MPjq0IHANR\noszxiPowylpUiigiGD0VmmEF1OeLf/WXZmZ2cKDy7N3U94WJolw1OEyGfXLu25rHIigLTuHCmZ8N\nVEKIPMYDjhqVq8eWxBuorVPM03Hmby+t+cUHgdlHhcktgPra0Vg52JSPrM3f33pDINm6AdCIhl4d\ngIrN6ovta9qTFBY1Jrq+fHj7vwr9VL2k+XfWVV59fV/z6rCndhsDGC09rE3P5a8qn34YV3/VPlZ7\nnrB3qLiK/ic81ScDmGJmoM/Hd0HKPGt2PuXZzYzQG4m7ek56qLlhAY6vzYnm3XPnUDyb1Twe+73a\nNYU6yu5N+VMlqchqzRVK+b1fwp8Eqq0yA0LqnvzoHCoye5WEfX5ty8zMHv+q2sSfqszQDVmzqbL9\n7v8W0u+lV/X9ZF3z0eXHpWYxaeidw6aet/S4xu/sOf39+ZtSmHoavrvzV/XcP/1Bvj9fUB/NltUG\nzbrqlEydnb/MzCwDx02BsVQBlTYAodg7UDmzHZVrt6/5fAbUg8VQDa3BeRJVOXNFIcNLvubvKb4f\nLeu5HkpmSfrwwlXxQyR/pT3IW8eKcGdirM0gYfJzWmtTCb1nG5SdO9T7z1/RuhCDT8ptsLcash4e\nofgDMrFhmkdzoOw8EIT5ofYe6ZLG/iCq9a8/0DqciMnHuqA3oiDWB8xpDZDrUZQj60egNkA2uawL\nqyiC7mypfW7eFq9TeqC9YW2i91SGGlsN+FfMzDozffMioLcjIDlzWsezRfWrHWnMfICKoR/MWexp\nzmLJR0BNwnUy3NP8lAOFmYRLq1VHyYu1L9uVz4xm4WihjJZUHQ4+ZL/Eb5mHHpdvpNZV9+M72rcF\na1Ysoz4vxvgNUQf1Cl9I1AfRngUlW4dPDYRmBZSUQ92nU54Dqii/DLcYPH191sjOiXxnDpefsger\n8VvHgw9q6GhvkU0K2ddDXalVo32GqACCtD4dqv5L7Hud83Aj/mchQkoXWKtBPY8i8vUGiMmJB0ri\nAFXSksr1JEiSImpyx3sghxw4s1B5GvN5l3m6zx4kE2EfPECm6Yz2XF7+sfsCv4H/WWPmxVe2VG7k\n7PpjrSNbFzTHPYKK3iUT6qT1LlkS31F9CjdUvidQixp8ruf//JLa6YWPtB7F4O8zM3snkbH6rbtW\nzqgt5lq69rOkrr3yptA6b0TFrfrYDfHfJOEmjMU1H/4EHs+HNr5pZmalQyFQYq5+O31S0by1UYSr\n8VFQ+h9ICfBOSyjh42flez/oy6d3XtO89NvzQjc9NVT5RiC/J6/xOyCttfndb6sNX2kLYfndNfXt\nJ++w786L2+zZht6/v/tt3Z9TOe6xh+r+d/H2PDqDz55nT3NDfXHgqr324Jn7mwMNjrfuCdV0Dd6m\nv5yKf7OjpfnPWoiUCS200EILLbTQQgsttNBCCy200EJ7APZAkTIBM/dJhiheTaer7rZOutI5nYIG\neZgjV6eR+TIsz+TeVo/IMW7q/kfbIFkcTnfhYIhNyC3lUHIyCzs8+dSRU3JqS4oIzOd1/ZuojlT3\nyVk+1qnw4YkiICVUUh56WSdm0Rwn/WOdgs5W9ELPhzsB/XYnw2nvlNPpJKiCCJEE4B8N2Peb2zrR\ny2wo4pSg3A0UfDIl+EOWdNI4JB/z7s1jK8PXMJjTZ20UUgZDRRki8OHEiBpnUSdyfJ0unlsO+CH0\nrtUNnVKecDK/vafneHk9Z0Ce7iws7Zkg6tz+8mT2LJYkUrjP6aNd18l3bEZ1TfRARQwVceigUDMb\n1eltD3USJ6ZydoqKAIwP1YfnyIOO5Yh+kx/toaAzk5SPBmpCDfLhUxOQL6aT7Q7KAscxva881Ul/\nrabyDtPqs/KjOmVO31V59nbk66ltlF7gN+kOYO0HtdFGbarZJB+/rghDF+6ZBBGQ8qp8otlS9Mcn\nQh4jAt8kgl1ASaZ7Tp/PoupRb6neh23y8OXithBT+dYvfU0foIB2hHLZeKz+mScHuTfV2JwiLZQg\nYu57iuy4y4qe7Z3sU089NrmKklnk7BHudg2+DDhNooRnoj3UKRy1URpUwKQNciOmsvoTtVEDRTIf\nJE1uTv93mEfqUEItdVSXDgo0fVBHTVTg5s8p4llIKeKZXUYNArWiIXnXfl8+OzrQmOx2UZYhGp6P\nqNzFy4qSLIGccVBA+OiGTvQN7quNhxUty1d0Mt84UF/fISe/MM+8dKg+/t3/9TO130CRB4spIlCe\nV0RjPg10kUhyEn6i5JHat8vyMThBOWdIHwf55PhGdwJHD1BEjKYAACAASURBVFwLPkiXNlGrNNE6\nx9cYSUaJYqGuVOT9gyEoMaJ86Rm181ktPqcOTA3Vn0O4DMZ1+WgEFcBRDEWMU1CDIGMiqG84cPyM\n4dNokQ+egBsnT/QvltPzu335V+ZEzy9eUTuXlvTcGqiV7ZtbFiuoLeuoPLSZj6YoNbkNjbsgctoB\n0pGIBhFIvdubgogBjTpExSiHutAA9GUuJh+NwOEUZf6MBkqBWflmv646Vqvyldou0eWMovITxlIq\nTpR/Vm2aYUz4yUCVB1QYaFHXly/4KCJmULCaxPX+0QiFK1CwkTHRsJ7GQC+peX6mrfsHOyrXLNwB\nc3mNhbNaivWxVdPz0lGV22fv0Oqum5lZEsUu71DvixY1Vg5c7VlSN9W3bVcQymOi9YkjeOl89WO9\nIbRUe1eR4gX4Mt78o/LkXebtcw8puhhBna8/1PWlISiG2xtf1GHQP2drC+qv9/a0/pwvg25Iw1mk\nrYTFHgMFByJqp6DyzsHtkAUNkSmiZJEXim4/ArK2o/VvkFK9lyvygwNfflKolu2YtXRyUyibmYyQ\nfQNfz3JHmvc68NbUF141M7OvzzEfZYQiOrkmZah+V2336FX4JVgDkwk9P/EVtWknhW/NaTwnmT/6\nC6j3MO/0UcI5qx201Xinv9X8e+19PbdTU9/GQEDmQK0egCj0FlXPlQV9vv6yEEARuAcdeN9cVECP\njvScyoL6aB6ER7Dnat5QX+6DIInCIZN6HhQqKqYJ9rOnDZWj/5k+z7JXK2b0nNNTlDMTKs/sgtpv\n2NK8d8q8Z1218+6U/fpYY7YIX94QxE85jpqhC9oA9O+YvWYEtdIJ8oIZ1KX6LDvuSO+rjeQ/AfKn\n9JRCzf2ixt6RhoQVF7WH6VY1NhwQTWvJL/u3sr5qE9CFng/XA5yQ6Q2ts67JPy4UxRm0vJClHAEy\n82/tf2QLefVhs6HCBRwoxhriMh+6zOPRsXwxltK8Fu+ihlfQHiFSVp+6V+FubPDboAe31NvqkxZ9\nki1rjKW6ICVANyVZL8ZZOCJRBXXZ4wxntd9PoXzowKnYa8lnogFfH2qko4Avz9NzevDATQeglufV\nma0uPHTsk9t91kraawr/2ph1a/miypHblM+OWYvvXFffdp8MVFT1hIvPCw0RvyJ+kKN7+k3Y2Ca7\ngmwIO2IN9+Q7bfq0fV31c29owzuJwfUDz9w4o/KW4BHJpFjjATINXJDvw/tDyhxsrJuZWfRf5Ksv\nfFd+8eYtkKstjZnKgn4nfIU5bSsrX723IRTL81W1R/xzcZLFq+qn6xc0Fh+Jqv4Xa78yM7OZ9H82\nM7Ptuze+KIs7+cS+t1O2168KQZLJajxFTPP0Vknv/PrDatvX3O+YmdnCid75RFxlHLpC8Yy67Bs/\nRk1t9y0zM3v2ay+bmdnhb/Se3ec1Rn7wDZSAUaf8j6+pr65X9FshDafT0q5+339wj3noG+KwWf06\nKnQHcJP9Wmt4rf07MzObpnTdQIAY63wEv9N3NM887ApxeOFTtdXbRak+/cWs5sWbZdXv0yP53I9e\n0W+hgzfFPfU8anY3N6TC1H//JyrHV8UTVBurXm773+dVDZEyoYUWWmihhRZaaKGFFlpooYUWWmgP\nwB4oUmYYIVIJZ8A0p9PGrVOYteH5yPo6cd9GIWZ5QWoiCXJLF4iqV4k+tdGcr6M0FHDXRDydMhqi\nHVMivknQDbW+IhXFlk5JkyWdjs6XdNqbgmMildOJWGlTJ3FRclgXv7Kucsd0ovbJa8qly1zWyXvD\nA/VA3n0cjppqT+8vkd8Xb6r8PdonQ57/dF31LiX1//E8p7pw1biz5E2mddJXJ89/aaX3hSJVOam2\n/BzOgNqeyh6BRyeS1clqd4fc0aZOlOdQhunx7CI5lO5Ap5wTT9H1hEfktKXrsuf1/WlXz4nl7i/H\nf/aqTsyzJdpsRaev0xpRI1/1mMmTOxvXKSp0QrbAc5qpdTMzyxHFP6jq77AbIGn0N7qCQg8cAlOi\n/zkdctr4LdBOSSE84p5O8kuPqd5PjcUSvwzKIgLSx/o6sW+DtBkQMZlB/ciPEQEhqugSgYzjA3G4\nZxAlsSLcBqe3QOqgDpLK61S5e6L2T0fU327jXyvkDC4QdQr4P5ZUr/JE9Wj21F/TqMqXv6LntGGx\nv/65ooTLVxTFTF+Gx6Qjvxl1dF+7KT/Jkh8+Jg8/ltP10QLqUfh4mchFLHX2/O0MSlQ9VNFGdVSA\n5hjoTdWxfYLiVJG+BZHmebo/5qvsSUdtmwJd1hnp80LAGeBqPnj7p3/Q/zXNO5celq/mi0Q4V9SW\n/iRAP6k4iRYKKCg0mMm380QoczjtGL6I4RiFBKIxcRBypbh8LJYhwtgfUC+UvRLyGScDimCi67e2\nhWrzUfu4vKZ2e/4HPzQzs9OOIg7HRKD9Q/ns1jVFJvxTjZW1NVTzUK9ziBDHQak59GWOMdCAOyA9\n4Do4tJw27QCv1WiMGgacXJunKk+Ez4dV1Dh2IdU6o53saKwESJxMDsUglNHa8K8E82/cUX94Xbhy\nSoEaFup6rp7TREmtC1qsP9GcEIc3ZdHR/D+YBnn06r9+U/Wu39J64ftpK6Q1fx0zv+UyemcypnsO\nG2qz2TGRRZAoARdKDI6WCVFtb4xiiiOfa8B7ljnV99FFXd/jPijDLIkyzhiUz+lIf11TuYqL8u1p\nSs6aS/A8fHpgGtc+fE+9iMZeluuGbsDvpLbLgZAZoiLld4GfxigQyoU+O5b+CWputE/d0Z6hf6Ty\nra7AYXPx/iKX/TR8c6Y+HIEqiyyB5t2CqwwOHheEUvOUvQb95PggUiv6f3BDc1BlHtTIOUX7/brG\n1t/9F3HRXLqsMb8AD0jvQHPLuYdQy0Ip7dqmxoRP9VrF0hd1ON9I2/tb8sVkUWPEn1UkuZODt0pg\nC1uGpy8xp/pVUNapLLMO5PV/c1NRxPyiopBrca0zHx2Bnpgqcuwz7zfe199437ONBT3ruCMfu7cn\nxPHjD+nzMrxuse4lnqH5dX9TEdjpHxTprN9SW+VnFFUuZdRWjX1Feyv02doiPiY6OosfaR9Wf1Fc\nTqsz8rHenubHgt2fIqR3qvv2jxRdv9DTnik7q7bZBVWWWZCzzhelYFhy1YctVN1iWY2R+ZLqvx/4\nfF/XpVGmKYEGiLq67hg+iOTRCeXXWPJm1AdTeOkiFfZMVG9SFSfEdKzOdz3UBiNwa93SujDKw5kQ\n19xxwnUOqkRxlHKuzNPnjurR22cvWVW5EygpTkcgQwvsicbqjwQqWUNQWqmI2qXZgeNnKt+PjJj7\nUEPc3pH/7J3CsRYgREt6zmhGKO5KWs+pj75U6avk563VYX4GcVlcWqQd4DSDeNBZ0Pce6qtJ+ETO\nYr2m+j4NOrafVxsd76EACD9QJqp9UBvkYf1UbVhOaF7dh1cyV1TZzl8VCuwExdn9tupyfFtjIxJR\nnYuVdTMzS7Bh7PJbqQgyMUJVWgV46EC4uPDAxSKgjtuax8ogAAeglyag29r09dChz9g7JUB8d1DQ\nSrJHaUw0j7fgthyjomegg6cdECJxlT/+hMrb2dHfg0P15QLz/u4Wv3WqGhvzKB924RX0QPZkEqpP\nJAvqGfTXAATPlM/nPZU7Du9UCoS3w1qeQs3QBnpePkBVRzW33EnB+3lGe2NTvjp3RXwjlQ+FDuw+\nov68sqe9QyYrBNCtDzXhL/aEpNyOqJwfvYHq6X9ir3Wqej/16X83M7ODr6j/mpf0G/L1XzDWX/py\nfWzl/sKG3j/a8Dpz9zX18Tf4rfLG45o/fueK6+tS45/MzCz7iaAnt17QeH32/9V1tx/WmlJ4TGtd\n5pbWrr2EEJGpJSk65j1d/9mcnPKT1nfNzMx9RL7xw7K+v/O6fu+m85r/vlXW+/IpfX5ywlq1pN8k\nF7f0/8m3xe2y+YZ879m3hdCxisoVvyMEz71Vlfd2UvPhsxld98aGEDGViOadGZR7p32pQj1X1Fj9\nZU2Iohn2uYNz4uFbv641+CChclwdq+3/nIVImdBCCy200EILLbTQQgsttNBCCy20B2APFCnTT+sU\nNwNjt3se1njUhRIjFS8TUwTi7lvkvFZ1opa9qBO97KxOyst5FGngZplBvWlAJNwlpz9KpNKBNb+f\nIkqU16lvDo36YUzlWL24rvs8XZeckBfKibqHHno3hypIgnJf4JS8oNPMUU2RjWlwODmn7yPH+mBC\njq1NIa8o6PndhE6BS1lFHoIoXNKD6TylU9tygQj9hsq3/sTGF+Xd2VbYyAMpc34fnhuK4oDeaUHd\nMr5LlL1BJHBfbdIget75FB4KFEuaRypT/LxOlJttlGngJNm8qWjwzDJKWWe0e5t6z3Bf0ZXVqNQ+\n3EcUqcsekBsbqChNFG1pD9WW6RQn96Cg6nXUmqL6v5NQtK1CDn2eE/pBTH01DhQI2uqrSUH1Kk0V\n4Vhcl0+N83rfMpHe/qbaszuUb/QbamkPtNY5onylZb1vfKzT3306oJRQX0co9/b7QimcwHuy+l2d\nsO+m5QOFocqRgK3fH6mfCqgaDRKodoDY8Q6I1i/B5zGWr8yvqL93mhoLzQM6EPSHzen7whWdCj//\nY+X/V+sq3/U3GaNdvWc4VOTgiBzpyDLlyqseiSNFPcdE4Y72VZ6Vi2fngvBAX/U/I3qzoLrNRjWf\nePD/dOF16BB5yzhwSrWJxsSZDh2Nx0FWJ+BR8qNPuW/7n18zM7MPf6mc0fhF5ZB+85JycDsDRcNm\nc/gGvuWT49/bJxKHolisqOcW6MsxSJJMAl4PaJgGe/KFFqpR0aTmiWTAh9QFuQdnQ7wv9IDTp49R\nU2of672Zh3T9k88q53WTPPUJHDepDZW/fU/tl6W9srDm90bwL6H0kCQal4qr79MgW4Lyjsh3n3R1\nXf9Un7fq+nwEt00C9FSKyOfMrMaeLWvMdSIag4MiKLQzWtYFRZKinWnvHkhFqG5sCp9JBPTcmLHU\nONU87vcVofHg2FmGD6V/qcR7jPtBgeSJUpK3749QXYHLIjnLepKdN484SaSp3Pl4QnUejjQe3Y7m\nQQMtGc2hogE6KlDxMOZxzwHN1GbtO0HRJaN3ToiC5cZ6/gAU6Dl4jLbh7DIQfNMZzbsRUGZtkBW3\nD0EzodYRc1WAVEH1mUMZLJtQm+dAeQ2DyCvKYgD+zI8yNgcgBB2QMkki0CB+3AB11VVfpEGjOsDN\n+vVghTubZaJq1zqqH9G02iUGetZ3A2UZ9fVRRwVOo17iobyYQF1kcKzyVSegqDqaNxcqoPVa8MpV\ndX8CpZ3EHAhC0MPVP2r9Hu5rrHQOVP84Y6MUHX5Rh/cnPTvOao80f6i9QXNN5ZmZ0j+oI9bgsyuk\naH8XtS7m6ZfmFHX8bU/Rvaqj542W1B6tt1XOVSdJe6ifTlEDnMl1Lb+qOt/9SHuAzIz60N/S/7fH\ncHCtKSqc8uDsq6ntbv0f7+kdzAdzoAhi76tvOh+pbcoZtX0Z9bNrQyFo3JQ+nzYZp4mAv4MxA2Lu\nrDb1td4swauXK2rtrMDHEXeE+MlGGFsrqCvNyddHVaLvKFYNQLWWA040fLzO3zFIjYALqxiFpwMU\nwwRepVQJxHlSYzLYP0ez6ttmVZ9HA05GOBhXZ+VjUxCYFaA1qRWVbwqXWSrGHiKv+5oD+PhQGfTh\nvXNc6gsfUgT+qCgckCO4Gtue3js3RGknxvrRli+3eqr3GFTEwxdAY4PangS8Kjvy5dv7rAsgWw8S\nmhOiNSb2vzHb279hU/gOMzH53TgG+jnFHJdQvRAiNQcerdHmlypO/yPrBVxTIGTW2e+8+64UxtYr\n8p0Fxvsfd7TPanwY7AlArvRBlkT17hPmwem6xkrhFE5BfjIAljXf05i414YbhuuGqBJFs+zPWqq7\nlwTxDkK7jnpaAWR0zIO3j7UtzphaSaBc2GJ+hifUj6mPxx29twVaNp6lXsdwzxjqcBWNaZf3QeFo\ncdSj2vwWWgK5eFQP+Jbgreuxz4bfKJGHoywrNNdiRb52coxS5kDvXU6um5lZtq65pduSjx6wD++Q\ntTE+Uj0mcL1FQWlN8gGfk96fKtxfJkD+CSFklrb1vDQou9lfiP9k+/tCtX0DftI/renvQld7zkdv\nv2ZmZpsZjY3bv1L5fwA47NNVKSDlM0KbNEHCR9lbvrr9uy/Ksvqbmm2OvmnJghAhD71ENgK+UTCN\n+9Nfw5VI9kXqilCeOTgDf391y8zMzpVR5Lumd98cwUv6c82XT4Cqj+M7dzJf0f/HP9XzZjSf3qhr\n/MV6QnKvD/9O5biivh8N1Oe311Sntf9H9Tl4Qo3w8O/13r1F+dydXfXho0/rN0v6hvY6v0ZdLvqs\n9lijrnznmYl4eG79QWP29JKu/9lHUp96ekHr22hJffPoZ0JNDV58zczMmvXnzMzsuK76/vYH6tP/\nzf5tC5EyoYUWWmihhRZaaKGFFlpooYUWWmgPwB4oUibeJ9pyqhP+WZi6S3F4NiYgUciLL6Z0QmVj\nnUaegN6o3dJJXH+qnLXdj3RiVzvSqWF0RARiqJO/oen50yHIF/Io8ygW7BDpnVvT9a1dtO0HQgEU\n0joZ84512tommvfeL5Sb5jp6br2vk7G9e7qvM+C0GVRHt6WIa8vRyd3pFkobfSKyIHnuvSUunWpZ\n7ZUtkDfZ0cleKa1ubIz0eYlc2ds91JpaGbu7q9PP+UWdUg5gSy+T720ohiy3YeqPbZmZWa6stlpb\n1XWZA7V9wJhfJQo/ISe1us9J9oE+j6ZBBcAL5Mbu7xwwQ5T65gSuks8UXVtG2WRpVaepo4FOcZ17\nijw4RC47fVSfOOk+QYEnk5fPDYkKDYb6fvVp+eDunr4/2UVNKQ2aYhPmfqJckzm9b25ZkQsDbbHZ\nky/t/k4R7wz8EbOr8s3uU3pfvqT31z0UBjpEEZPqyz6qK5EMbPfwi3R7qJlEVc7iJeVBdn3QVqAW\nfFQzvJreEyuB1oqABmnLB91uknbTcxYr+vwm6I7+tu67tKET+QhqHtW6IqifXpd/BSz781H4kSZw\n4iThyEirXg5qMAuPqP+23lJ+5pS8+vVLatezWLoFEuZI9/bJ7Z+iLOONNf78RtDncKWgFOKgSFLK\nqE6THMz75KQTZLIUymGTgq5beuxlMzN74gmdoLvzGteFLUXJJj3yrEEZeFt60HFDfVgJ+DiICvlE\nu5NEWA1khTMkIoEyz/gW9UHtJ7YstNGUeSABN1VnjAIZij25uv6W4GXKE6nIVDT2J8fqQ6ciH7h4\nTqi0nYYiAA5RsCIor7kZkIimcucGKDvAx9Qc6PrIRGMnBjdBizE5cOAMADyXjci3Vi6rHSMon8WI\nyllU60AHFEgqen/Ll1tWuzgRuHd8/Y0HOcBZIrOgAbqHoAcZaw6RdZ/rYglUu0pqh8Wc2sVnvfHr\nijoOJ8znEXhZQHcQxLR4n8hvr29d5uzjHc1fV9bUN+6eEIBHINgW1/SuyQBlFCKRyTbKYCbfj6Nc\n0vUUncnCv5Q2+X60Bq9PQXXrNdUmKdCXxYTmtT58OR4Rxa2q/q8dqY4N0FDnL8m3Sovq1HMX9Z5B\nXT7QnWjNdFHQiYEc9BjDblzR6ylcCCPaJoYiTZyouk99Hfgoam0hdXqAHvoRfOcE1Y8zWvRx+f7s\ntua9bZQjagvwu9FnCRQi2jhvb6p6B/nuQx/uGVSJ1o7UXoct2ps9QgPOltUV5el3OurnOshCdwI6\nL689jt+gHVBaLE81f1a3x1/Uwdu+bdkOKlVr8E5V2WsU5D8LLrxPY5A3Y81h3YrG2NFb8r/Yc+Tl\nT7UuztLO1btCTI0XWJfaIIJOUF1CjSs5ytvWbb17AmIxl+YeEMzt2pbqBn/bcUVttVrQXuWIfVLG\n5BuHKLG8Ta5+o6HrYzm14eY1Johj5vMFld0DldVGObCUUx/VBve3J1mbV92HCxd5L/wU8Duke6jH\nsU9N59WnrUPUPUHYpeDGagLkcFkTM5QzXpRvT/oawwfb6jt/yF6koT5eXtN72yW4ZSYo28yoXP2q\n2mvgqu/KBT23wJ5itiSfTz6r9WjC/Gggt90WhHoQ9e2wIPZvwp0Dojxd0FxVJEI+Sur7Cai2ZIZ1\n8ED1z8GjN0ijcANPlgOCxvPkU004YdbggouCSr7wrDgpRgeqVxOElBsgbBqaK1xX7WFm5vfMUoyp\nfkq/FyZegJgFRRYXOiLSUTscHaEYFMAPz2BdkNKZNRQGUamLg5p0Y+zjKirb0iMaf40/fmxmZrXP\nVadZ9ls51JMaAYoTSOE0qzYb5eEeqcExCIEdIqsWaJ7u9PS+hWiAfNT9Hqp2cdBQFVCxXfjjRgUU\nB2vwx2XUFkPmsz5ZA70h6lEMKY+29VGJy5LF0JpQTto8XtZzsnFQUo7mihQI89hMkQeqPWLss0d1\nvaj+kfYu3ixqTBc1Jqp91JuAG/tl+USH/X4c9c+tPqqqcNu4BZUzDTfPmN9L1mQuu6DnnGyjGHRb\n7/cH6sez2jc+Vrv94xOsV/Pi0broyA8qv9L8fP05+JkiQmH8ekvvnWwIPeLmBA95BYTou++iomWM\nNZSIYi9qb/oM6lK/WJYf/a9m5pXmbHv+by29xz7nSJwozYp+1yZA6z71itrug9/p/8LByyorSOzm\nLfXNRV/z3s/nNC9HXhQHY+R9jVt3X6ixTES++xScfzW4Wrv7apP6C+JD68XfV1ugTPXdd8QJ86sN\nrVXr17R2JV6U0y9k1Bd9UKDPZfW8WbhX732s9eUOCLj1tvp+cVa+cLCxpfe+Ll/Kv6L98MZQe6nH\nroj75jr8myufXTMzs5ytm5nZZE8qVJOXNJZfgM/JPvme/v7Y/k0LkTKhhRZaaKGFFlpooYUWWmih\nhRZaaA/AHihS5uCmTimPr22ZmVlnWyfUtVVFlw5PdAJVBs3Quo1yAMew46lOzE7IDxwd6DQ2Aht9\nJqf7PAeUQFd/k+RVO3HyGl3d3ye/sptStGfzJooUsMcfBBwABbTtx6AZerru1ueKcpbJ958SgY+e\noCyBIkaU0+OWq0hCP62o5hRG8xNfJ2t5oocJOCnM1cmjkVe6d4+8bdP3o6rascLp+OmpTm/TlYcs\nOYWDgNO66qHaukkksjRW3YawzIz/P/beLFayLLsO2/fGvTdu3JjH9+K9fFO+nCuz5qqurp6KzW62\nKAmcJJEg9GFbHzYIGzZswhRskJQJUqJtQYINwYABAzb8Z4mSaZNudpPNYhd7rKG7xqzMqhzfPMQ8\nR9zZH2vdKlpmd78CDOfP2T+B9yLinnP22WefE3uvszY5ZkJGzMMsdGBeIJfKeURk18gB8rAGHdab\nyGbVHyKbv3QJWXx3C4gRySUx+7PJ8tPIMDy9h4jvwQMgMzqHGKvFu+1ZIkRmeXImxORWcdGvbsDK\nOlt4Trl6geNE/w2Oe0IOBS2pdJMhOoGs60NWlQpM3tnn3VjZTKqBIIuWYVY8YkR+4iMTsFQmeiPC\n80MiZHSyvjsrsP1WB98PiGjZfurzIiJSL5AjgXwiKyewoUIJWapTck7EvO9pMyuXZuWXgOgr3YOe\nTll5xjrE/1eXMe/5IqLMOQvjPe3DJqsPEUW+P8Pa1d9Bf5bLiDo7RCJpeaDJqrz7nCU3kblI0ALQ\nK5N2UuFauf8OMgWXL27KWaXdxlhCopNyMWxOJ9+RwXvPFu8Zs6CMVJgJy7CCzXzI+9kprI1wgexM\niaVtPHJgrZ7D2Nbr0LlWRPveEVFIMZEgA/ydJneJt2C2ZobnFSvI6DkprrmE68onx1SafotoI49Z\noykzmCVy3mTIJWXwQrltY4AFVojZDeA3ghTmeIUcBSesVLBFlNe9Beb04Qd4rZPrZtZGdmhvFxkC\nm5V4Vp9G5qCwwqpvNis5sEqGbRHNwcyn58O2bIP3yyOsUd0hNxjRXXNWCop4bzya7IiIyPEd+Md3\nXn5Dfvuf/udy8i7+PqtkuJbaATIyGc7ThGiRpIKEN2M2bUqCE95rry5hXJkC+l3fxvjbrGoy6xBF\np/N5BDyluR8lni8cw3dkOB9TZtbn04cfVT9aWcbc1B18ay/CHDgG5jhPPrJZgqjAVil6iZXDRrSV\nmJXDWPXC9zA2seAXo6RqW4QMqEvUZ0jUmBBV2mFGskfuq9EEc+Oz8tbyk5siIrL6OLJijSfIPUVO\ngVt3cHc9S14fh0V7eqxSYtGmrCwRj+ShmLG6kcXX2YDV4waYwwL5JXSWVDRoa1WiMdz8J+MdKmWT\nSozcD2rkS5qSY6AE/x0ye6/FRLFlsNbNLtENrJpXHHLPJ8pqhRWCjndga9tJZRyidMcm+S4yrBAz\nI+8c+VAMVrOyA/BXHTAD/ZGtishu3JaMg4xqntVb9siRtj4GKiIm8VFMxKmjA4FaWsK8Hr2L6nr3\nhuinTRs9bKLd/BicFdEe1sLeKnn0+pzYAAOb5FISENkR+7TNCiuykFtJWLUt22B1sx2s0xmr1s2X\ncKbo8kzSoB/RBtzLBvDDNv3ziJxefdp4dYg9+YRz5eSY3WehlGLpk+UmT7lXhdxD86z6MfKwRicu\nbMS3wVmgk8PAH+NcWWHFsSNynBWoK92CLsdE4OXzOAvQXYk2xlzGRL/FMTkQyAOUImdDVog0JHot\nQeIUpuhvo4r962iCfW53grnP9eiHUnhu/x75RshrNyJ3TZ6I0QRtFxmwEQLaZUEkoOPwjCNYi4NR\ngqxhv0MiYkKucVYEmhElHNB3aURU+eSsufv92yIiMrXgKxxy24x4htLz5GkK0KFz5Y99gLWcF5+8\nU9GU+iSKOowxzsMZzjgR+UdmE/R7pXF2FIQe49nDNveOCtrYLKL6TcQKXkOe+c8tw8ZTT0Anb9/F\nXjv8DtABzmXMaeM61rVFJGCb/EE2K8PGRAEU+LdGdOuciBfTYkVJk5wsflJ5jL99yA15TIR6lnMo\nrNxYIOJZIyqJRxaJqNOpmaB7WQEtDx2aC6IvyB2Y/mx0YgAAIABJREFUVFKULvyI1cD4Jal6xL3f\ns2GjaT3hpiHKySVqdoTfGX/5Cjh5rpBnpJAGj0fXxPc75FzL56Fvv8Z54VpcKxHJT2R6Mn9BsqeT\nC80iz55hYz4uPUdutS+D42WXVUbl5Y+5Wn6cOI+h3ctfBxJmdjlBwMNPF8hpph/jXB9Z0P9TXFPx\nGiog3foq2nddPI8FSKUZgw9Fe4lotm9i7ba24Rtfqn/uo74815jI4/3z4p3DOvohz4E3qtjz04ew\ngcCgH/sZ/IYq3XxHRETeex1z9wufxe/gN2pPi4hIntXWnryDv3sN+Mm+gap067s487eJmNv8MtaZ\np3MPn6DyX/gWf+/Hj6EfW7Dp5gi/Cc9/CefhyffwW+TmErjIFgOcf8NV2NQlDzxpxjps73NXMM7v\nRkDeVCY4D5/+BfbA9qdge83b4LrJHGPuv17BvvKVQ/Trzt/E3H3jm19H/yefERGR7BDnw4u8yWLw\ntsSPEoWUUaJEiRIlSpQoUaJEiRIlSpQoeQTySJEySfQzW0RU0rfI2E0OBMPnHVLejbWrzHxnEZFr\nnkdU8OrWV0RExCFHwP59pA0togpsK4m4kZGb9+l8VpDI5IHGMJPoKDkSimXeCyfXw/E++8X700UN\nGXmTrO2NZfTfzCIStkOkT9lHFLTJSj6ZhOuCmYA4Q2hLGtHMBRm+bTJkD1uIaubI4G6E6HerjH4v\nN/G80yNE9lLknrGDJCIXiFUmD0/Eu5Q1RBWXGxiDPSbHCHlq/BSrQWTRt7iAMUzJRL9gpHyXdxt3\nT5AV8hxET49niFAXiARZkEG/GHwypMyU93+NTd711BFBXnTQv/iQ3DEaI8cJh8kY/3cN6GrpCnSU\noe1oEe9t26wkM4ZuZ7tE2miY69hltQkiaZbqRCkw0j4kT5H3KnQ/yZCZPES8c3v7MvrNLF3W4N3+\nu7CF/BOsRpJjJYaY98EzsPnWkCzvrI7i2JgHa4job1RLMuB4Px2in2lW7bB4DXrObJrBTHyPnEAp\nVmDQ07B9nXeTqwaes8JMiE9OoKSSwoUmxrXaxLg2vvCSiIgcvvc22htjHIsdZIS8Ajkppsw8sCM5\nouDSvMeeI73/guM7i2RX8B17zOxsBm37LUTsiw7WicFMqu1jDjpDjLFFxnudlWfcFhEfMyDNpszc\n9U+ZRT/GGlg+h/VlmUCEpHz0uVLG33lWRRq2MDczVsZJZaETt8LqD1z+RZ0cW6zONmcmNkuUWyeD\nORycwratGO13TsnTwSzSbMJ2+/h/hVU7fN4jryfIO3IE+KzSFB9CD7sv/7mIiJTnnxYRkcYa7nEX\nR7xjz/vTVVaYkCHW3jgNX+DTx6Q16HFB+IfGbJrwvrhF35J30Z9WiNcsOVnSrCaiuQlSkCljm/sE\neT3OKj4zs7NbmI8BKwd9VLGIHA5mDq+FOnykS56ngBXXMlWsweomfOcp7UE0zL8RwV7iiOgPPcls\nk1PHIkJgSl9MVMbopCUZVpOorcCWY1YGCblHlMklo6fIhcVsuVVjZacR5tTiHf8pbVyj/ypXYTse\nUQo5VgkaRshmjTTyXBB1urKM9uasSpRehr/ZXMMcWDmsLa+G5+R5fzsk/8WI3CxpIgbzrNgl5BYz\nWn3qiDw9AdoZuKxWxLv8Ra6xWRHjDVjdbehj7gbMPAt1PWcFRyOXIH7OJsFtzKEWkDtggTOA67DS\n2SGe168RdRGQJ2VGHqI8bZLcD/Ep13QK/nWJFWmWl7n3E4UwHxItUYfNLALMk04b5RFCKj3oYZel\nYQ40rrVq9NEYrEFDxmvk2JknXBPol1uCvtOstOPfQT+GbfgS+0ncg688Cd9pdaDnjIfnL46ZoScy\nJ8O1HJMbYhhgnBZRc5PQkFUiSIZE5VRmeOasiLHmiJRJEVHmmkQis1JITATjlNwv9nwTfUgTqWJA\nV5lTVosjb5FE5H4h4ka4B2us5rGoc70bH+vuLGL00G77LnS5xyprVgibn5aI4GC7BjmqMjyvOQ1W\nhGR/fCKISuQC3GXlF6fBNUFOrnmCQiCCMamyZFLnhQyR1UXYyFSgl2YIv3V0RD47oiyGd1gxjf7Z\nWyVaLsDn01ZScRJ+sEpbLa8QRWsm1QJhQ6MuXoMVojJYwSciv5FGm+7Ok6qr6Hd9TiQNKwxNidrz\ndfJ4FFgpzsN+uZihqtb+ETLddoh+NqmXgBtqugS93f8rFdha916TmFUUCwHJzMrQYzTn/k0fkmXF\nHncLZ1orOnvlUH+IMWhz/qboQQelChbygJWoRDC2cQxbyq/h/Wsuf8scs3oe3YrP2wWpFfIVmTyP\nci8tETlOYPRH6zswyAdXwZzNWWXp5Bh7+OyUCGnygoQn1Bmr+5W4zgdEimeq2JMXrAbq8KyTJkI8\n1NBvnfuTRlsdc+6dDNFYE4zj4Bi2scq9uFgA+m0hQHWdjnFGEZtV69i9YhVo1a/8LdjoShX6cGf8\nvWFjzYVEIPpEdS05rATE87LO865P1NWMsC+rQa4bg2isHM+z/F7HwHxUlmAbuTBBHp1N3iQaurlN\nZGwONv/dOdBrL2s4g/1t/t753ovgXoweoH/7r+D1wlewlnt9rA2rgN/EJSKUjBPYwY0Sqjr58Wsi\nIvKNr+K5/+BXRfyjr8mr3csSfgFIk8s8g2RttGmz4tMfjbDunm7DT1QFz17egs0f7/2SiIh4JfiL\n4h8C7TX7FPzyZITP3bJZLdUEZ0whqQT5bfivu9bXoJNLmONvz/H/8wbWTm93U0RETjbhj6o+xrRq\nAjX1PLm/xgPYUN5ApavvFdGfG3vghBnyXDjegg5fW8b31i//goiItI+AnFs9wdo50KCPn3kM1Ze+\nXgL6LYzQzhOfwnhu/wAophe/Cb87KwPhMxhwf/p35a8VhZRRokSJEiVKlChRokSJEiVKlCh5BPJI\nkTLL1xAV3nwSkanGJhijwzz+P3dZyWDMzLWDqG6Od7JGHqKU/fuIyKV5v7x/siMiIgUNETSLLPMh\nM5ktVuoxiEyxjsmDQS6GmJw1Lu/zD1g9JcM7bq/dJgImh0ihU2YlBWY0zq8iWut9iPbGvKd974fI\nPi03Ee0t8fmLFD6fLTGqXCCKgRUPkgoUBvlaYp/38NPQj8H7kBtLyGjXLiIKXNtEZG5/ZyiFBSPX\nRE74aUS+HWbiFmTQDxfoy4TVMsY6Xo0jIGGOeb+2wXvFmRwemM3he7UVRDsHrOJRrTLyzPu9KTLi\nn1Xm5P8RZj5TLjIBAXkfdh8igl7ZRHvLdUTGoxx0nkOSTsY09THRARNGwg0iRoQRep3dS7GqUTHH\nuCXvf5vkD9ImsJmqBhvQikxl8u5q+jKzVmVmDPcQCX/4MqK03Rn11sD3zC1m39lej9mnfAlR5YCX\nRL0eMx+sZJMiUsYjisEnZ5DJzGXHhX5SGdh8MGG2kDwqgZlUHkA/++QlqZRgQ8sbYEo/noAN3uxD\nX34emZbTGTIkzh1E9k9bWBsas39Gn1wMA3AKzZgFrdWYjfOwRhvM7h04exzn2TPcqQLW5doanjGw\nmIU5JkO+j75VyPLuNmlTc7TRYJYkxfvMPUay20S6ZVrQkZOHjkxWVpk6RCkwWz0hj8e5i1iPYRpZ\nmXkHyJKEOyHOsOJWBv6hHGIuhykiR0JG1tvI6FrkZsnSOJ0Y/amV6b4tzHmB6LdUnllwrhE/QaQQ\nmTc0MYdOhbxL+7CNehpr6/qz4C86/zzu2IbMgF69DmSIQ7RYrgb9xeOkHBL5QnxyZJH/pEJURyFD\n7gFm6fPMCSwc9HM6Ju9RHjYd0zYj8lTYFaDkLj0L/aZL2C/OKr0dzGvrbei9cBW+orKEDIdTg32k\nmniulYV+Xn8DmaHTKTOwrORw8wdAxy1O4YfzDaLumN0sGdDPeIT/G+Q90duszkK+pvQiIQHrS+MS\n+RCYxR/45HXIMANpoa9d8qktpkmWl3sC+TRS5Lw6x8pSngY/0Cd6LEEr5VNYOxNm85ceY2WcY2SH\nNGa77RkRbJmEN4hVM0yObQRb7RySD41Zbp0Iviz9mcdstt6lPyavU7bC++qsONYlGnTObP2YHFQS\nk9usyIoygldvDH9kL3FPZ7WQcpZr/ayS4tonj1ytBL2fdMlrN6etTKHPUQR95VjJMUV06oyVI61z\n2ICS7PucFeD8AtoJyD9SteFrTklE5HgJ3xJ8S8LN0yYCqkUus5yONd+NPuaU6YWOLO6R12ODPC1E\nYVTIVeMGRAdraPedKebv4muY97DBNcyqgS3yjAREUAm5K/pD+KYxK1baU+hjSnBb3m6LzwxoQOTv\nhKiACveg4XnotnvCMwlRuTb9c0tjlRwHGdxGlzwZrD5kG+jrPA9+CYMlZ7Qu0WPkzsrFyMxGOYwp\n/wD9KF48e1UdEZHTCSuJEQVgr2CNFNI4x2420G8nxSqAEdENIR9AbpwB98aIKLgeeTxSrOJkFqCv\nHivj6EQKtWc8v+bIC+XgXKiR96LA6oGLI1Z/y6LhOEVOlwgohGdeek5ERGbMPPdPsFbSgueb3F8K\nU9pinlVNx+RkIedhbEGvc1bUuWiRR3DBMwv5CiOf3D8F+NNiC3oLiZhKSGkSVF23Rc4aovNsVh/c\nuAI0Vy4Ef1XBYhUYVrs6mRJFzTOnFX5cga2YXRHtHKtADWCXaSJ2KqyemCXq2qbvyzvQe1fOfibJ\nkJ+sRRsZkWMlsfm2gWdnWWXO7uHvCc9p+cdg088S+bL7ISuHvbMjIiK9HwANUCG6KbiBzw8usYIW\nuRtDInSKRH/ahJjoF2Fj1TWiWcntZZKDyuDthcEU/jwml4kXsz1W4OqO0I+AC76Spq2Q01BszI2p\n8WxGZLk+Rb/qTbQ/H2DOFhPujYL/lxPOSKIXesesJEkejxFRzDaRjIdzvB92iVodoj+7PMs9vI3z\n99pP8dyZxlxLmZU1iUTNJfsmucOSymDpOs4GWSJaDFY5vFDEvrDvET18RjEFei5yP3u4B9+UWyUH\n6Dmcuydl6HflVdj+lcs4U1514RPfHkFvF3nWsMnTMt9hpdCL8Fl/lAZapEEewPSD4kd9eblyQZ4/\neCDDCXVcJDIMW4L8sAnb/CmeBd7voa23+0CyZFgJbHHAKkvnyWu2CT/z2hwoHqGNNm9iDNdfwJp4\n4y44YDZeBB/QufeeFRGRd98Dh9TSReiibmPdf7uGMenHeO7aCM9tdfD59Vfgb04aQNCc/B8/IyIi\nf2P5WyIi8q1PY2Bb72JPm3FPX3oH38/ZsIUN3uj5E6KDv2ziHPqNu7ChWhO2sMHqzx/G6NeldSCL\nvncMvV1scF8qYg5/lCikjBIlSpQoUaJEiRIlSpQoUaJEySOQR4qUcW1EB3sxsjQ2+SUs3r9OKgZ1\nXUQfBy1EtlIXENGvbiEi3ztBpCytk/49hQyExTIr5TJiT+MxopA+79GLgwjZXENkKzVEO9kq2h2e\noH/dU7yfqYEt+v4tRPq/+DyQKfsfgP15ZCIL6V5F1PTuLqLI15kh6d5FZHB1gQjkgBnrSgPjaY0Q\naTuJGflH8FdGR+hnKYt+tfsYR/cA0eCcwQ/m8bxh9i6fy3G4e1LKIcJrsApQzKyLL8h+zF1Wr6BJ\nVIqIMkbkaNFqiIKulZDFSieZzRNECcvLiJqarPQyHUJHro45mg/IMTJJ7tKeTUKdteot3jdcYVaI\nlQPcY7DUT3dhM/NVRMaLzLr0eN9Rm/N+tktOG4dZHlYqyDDCHJnkFMghAp9fwnNC6s2fEzHEcWda\nRLzcQPv5HO4XTrmyPKI2fBftGUZSBQu2pS3Q3pyVvaw6eYBqRGek8DqtoT9F3mt258l9cnIn8I6w\nbSb8Ibz/vQT9Fam/oEh+pQz5OkbMVHAN5JiZT7GSQaEB21p9gO9rRINJCxmCkQ+b/+ExGdoZVXYs\n2iTZ41MzfG8xJDoCzUtQQX8zRfKdkNdjHJ+dU8Ynq7lWx7OaFbTdIgKm+0NG1POIWK+tIutSu4TP\nTVkNScp4Lbt4n+5JUlOuFRM6ZSEDufU2+HN88iWZfTw/lSaaiSgEj3PtmOQQCBOUEivKZMmvEyAS\nn+fCJ+hANMbOXVZgOSYXSYNIl84Efutik1UxbChXJ/otw4pbIe9FOw3YWP0SfEJnF35nziyZlofN\nODMMdDLG98Im+ldfw9wvImS3nByep7OfqZCIIPKAGKxk5jJLV2ElGpf3ww0NviTFqkXTDvQ87cEG\ndvdh20vLGO/qOrNcS5+sso5LH2BtoP8rV3H3V9IY15zzPGVVuwX77dE+5jYrP8ww3miKjEqeaAZz\nhucX0swcEwETjcid0WRWymPWNMD7MxdrZOgdSbZB9E+eaKx9rMdRm1n5DSLTWOEvRU6B8Qm5SMiX\nVKzDb0wioMSiAMbUWmCvEi7P1XPI2hgBnrv8JNrvf5eZQNpOPMDzPPodn/xm7hx7dyyYs1Kd1aAI\nPrBZvS7hGPD3YQMhq0ElQMWIqLLQwFqNUniOThRZL6b/7LMaB/lHrAg2u3aOfD8XoLd4gX55I6Cf\nzir9AfRqET0QaAl6gK8O1srhjMhI0l4MWOWulMP3DPIq2VzjPsm9KgH6t09/XGQZqsEiqcxI3hSN\nKAOidE9d+I6TLvRkEZna1cghNvk4i98xCjJxWGlnRk4Eok8OTmAHzQp5VMhhlOY19w/J+VAZw27c\nASv5sL+S4ZkiIL8fq8p4ArvTiEruE/WW1ksyIMKvPiHqporGMilkWCtEeXZY0Wu+ARtYGmJOH7yH\nPa++CR0fnaMNfghkTJrVdeIpUbTkmLGzOC8e2/DnhRT2Kjvmnk7EYnf+yY7B6+SN855gdSgHmdMZ\nuWo6H6D92QLnMJdGntWTqmv0f6zqV23AT/YmtHnu3RH3i5jZf4tVBLUDzL3J6nH5G0QtsNKNzrNK\nQF66LnmmdBv9HAfo5959+giioT3uuTFRV14nQcHh3FrRYEMaEUwhOdFyRLS45OsgWErSOcx7aoDn\n26zoFnXIwUNeKwtHOAmJhBmm4X9t8qAU6HdHKcxnIcZ8anmMo8+Kjgcd+IZVotXmXHNR/2MeQ2et\nJmlWZdRYadKd4awbk8dukkZ/AyJgpz6elws+RhX8JAni5DxN3U6wjoIybDmOMZbBDDZRzREl5kOH\nMSsY+vx/rQ4E8fQD6MbSyA1DnrsJK7me3oEyczz7r7OaZ1HH52c8D1cqQFhkMkDMDY+gq5yGz3uZ\nHRERWSuh2prMsWbyF4k6o187aW+KiAjdpIx4vg9o6/4Y4zZpm7Mu9UK/t+RAt8l5NhjzN0wPFWs8\nHf678iLQEbqPtbVLVIPJCmAnH2Duitw3aqySNCMCaNLBGmqTS7JKP3sS4v8B935tl9yLRKi7Q/hR\nq4j/12q8IVDC2iyv4XvvutgXDPfHV9b5tyX+E/w+uv3zOxiXPCkiIr+4932Mfw22/vou9P+ZLczr\nN3NYyx55AuPv4jfwt16AffzcAc5MoQWf+Ycu9vmffRK/Sb03wJNk/krto7584ZZI9OVfktQx/HNy\nXvJ2MPbH1zCXO9cxB8cDcs5cRx+018Gxss7f28WbmMOdT31KRESWWrDN8l9gTqqfgR/407eAkHm6\njD79nzw/bT4J3df/DP5x8gF55C7jd3c6wth+jjygX62gvc98Cr/Bjt+DTvUR+C/dCOe1m5eBmHn6\nG+jPe8tY/184ISSoDj/nj3DOPOyykqQOG379efT7Z7+KvfRODTqdDTBXlR38/r/9BBA6nz2Gbb9O\n9Npm7Yvy40QhZZQoUaJEiRIlSpQoUaJEiRIlSh6BPFKkDJP6MrEQ1QtmiNB1dhD1LG2B00AfMhvI\ne3NaCxH47DKinHNWs1jW8bkM7z3miP6Iury/zXvzBrM8voPv2aQ27xmIfK1uIQOQ1RCJi1NoN0dU\nhRBBY5l4v8HKRhpfr/48so29P0YEsLHJDPdtRB7XltCPHu/T53gnuecwE00G82oJUdRBFxE9k0zo\n2VOMq64jyj3ZRf+2P4so92SAqHqGVatS47kIOUDGEaKeFiuKZExEVod9Vm4JWG2BCIwp7zyazGb1\nyFRv6+jTURtogUwM3QxZ5UMXMtmTpV3z8X13ztIyZxSP1XiqRWYpLGQvTg8RIa8+Ax0s9pA1WzwA\nM3b9KqKzaWZ6u2SXj5htMshR4DKLl+J4NepFKvjegBUHQh1ZGZP347NL0FvvGNFZnVnx7hx6GYUY\nZ9VClHZeYpZnHfcszy8hU9H/Ae54upep5xVmbYj6iLd4h59s+CbvHnsOs2YDZqCZZdNYZanIKh+x\ng0xNn2z+WaI93JCp8gwzOD3oc5RwVRDRskXekDQzGjpt9vYBIvONG4gOG8vUJ9QscYXIH/Ku+AtE\n+hsFzgORM3YKa9hjZY5iiWm2+OwoCKNGJAOz/VodkfVVIkJuvYY7pLe/hYxfh21uxVhfIbMgxikz\neQtWqDll9p9dSfg1AlYFarPKxxVW9OoRPTbxoMMaeZv0HHTseJiz/RhZntwCY01ZzBA7sBGP96/n\n5BKY5sn0P2HWPeLd3Qh/jzLo7ymrSXg9jHPO+8159u84JAKxBr0Ey2j3sMd75Kx01rvHzOJHGVGu\nwSqeM5/xe3OsgSiL7NgkyYBa0K8esUINETspZhqn5C0iBY2EJv01kj+yfwpf1SdKbzLF38N7RD7G\n/CC5Z84qsYOJXKkgI2NQ730ihHLk5opY2SZeEM1WIA8KqwKGVXT8yhruMPst+Dr/IfzupMdqTaxs\nFqZZ9W+E5++Rf8XJ4XOzUyKV/AMxb+CZMe+6P3iI9RI6zMLYsCWflQBah5y7U7TlsWLhaR86O+rB\n9h//+/A7z3zxRREReZNVkXIXkRW6t080Q5+oBWbJTWbJAmZ07RL9JG3lgwH83+PPIzvFQmfSm0AX\nEbPcww+xx2r0iw0iAtus/FIm/8OAFavGfSIqWbGmtYfn5Qro3zZ5JuYdjNtlxURvH2vo4AH28nqD\nFbvOKNkp9LA9Q4b2oYH+nxvDX51o5NpiBQmjAj3O2f4Kq3wEY+xHrbUEPUXESxn9y49ZUZKVGjtE\noxWJDLXzeL/TwWtI7h5/BT7H6sCWWgVWEMp+PM650xFhhZ15HzaWXyJyhRwTUwvP0YiE3GjCnnZn\nQLguPFZjKrOyDjP/iwhrxiTnjT/Ac7PLyLi2yWnWYKZ/EQdSXGZlEAd9ne/iGdnn4b/2mNXN+OTZ\ncIFgG5ew3qYl6PiJq+DIO7lHPh9WOPTJNbXjAAW2nMX/dSLQiuTrsV2ivcjPVONxruN9sux2RFSn\nN0OGdnLETCmrJplEWVWb8DM6UWozchTYPHsERSIm09CdP9nB9y/g/BmQx0JOyAM3wnMLXbSr4WMy\nJgdLmXM8Okd08H3YwFEH/ildIS8V0QNd8ksZCYrtKrkLya2yxjmseZiXHNeEEA0Qt4kcjYEIyrK6\nUrmM8bhEaQVV9GMxJ7KSaAWN3IiLAvtLDrJ+D+/36Ic9oj5sojoi8hSGIf6f5xm1OwS6y3OxZvtd\nVhb6KwU/RztH4phEDxf4vAH+9jM4kxW5BkJyTmb5+ZCIorPIwsRZwGxjrjoR/NRKGut26TJ0uUsO\nvlZnR0REMnn4laoDFFmZCELbhP8uFOAnC+RKnJEr6kEH/nV+F/7YYAXJg2OslWAd7ycVCPf2YLMP\nyBHYJ1Jk5TrWUtjD9567hjVnkTct48AWjwZEyPFsVHDR3gmrTemp5DcU3p/w98OU6KhlVoBMz7iH\ns8qek6D+ici+8/Z30T7XinMN6IU8Ee+5EnzJNrlgRgErXRJtuzTHuD7NClr5F7G/ri+hnZP3oZca\n/bPe4a0KVomtN8mrwvPook1OyvvYj25+A35+1t4REZHVdaJvzyg98okGvCXx5H345R7X8t0T+rQh\n9ul/XYAdffnOpoiIVLah59usMHT39tMiImL73xERkT/9AvmfHrwjIiLu21/CKyuNPtx/hz35Zfl6\naij6O3flyTn6cucqKj9dZLXJYRG/9RwDSBW7j749NXkGuvjZnxYRkdMpdLSRxvcCnq+euv1l9JX+\n4vh1nBkuDvAbaBqRy+arPFevYY7u0J9uPMPKvodviIjIz93Aufj0c/A3zR/Apno99L/lkEvqcfwm\n69c/IyIi3g/eFBGRa0/hTJV+GTa9+yTm4lofNvbnOmG8F+AXLB9VSbd16EUvwX9eok5fIY/e4qfR\n308f0M986qfweXLFVv6ApcN+Tf5aUUgZJUqUKFGiRIkSJUqUKFGiRImSRyCPFCmzCJEhMV1E1kLW\nLdcM3qPMADUwZtYtzQj4msUodII0IWdLlhH9qIWIlVlDpKrWZK123nfsZcmbQhRBd0oUgYNIVn6D\nkfdd9M8yECWtMCJf5Z23Jis7jF1E+ApLrGqC4LIUD1itw9sRERE9h1enAXbp4wX6EzWReSiM8fzj\nCvk9LrIi0n18LoyZ7WJFH4fZx70Tslg/jeeO5wmDOsPYaU2cEDoZ6uTf8HkXndWN8kQP5XgnM6ko\nMwx4n5koILuGualcgE5ru4hQN0bQfVpH1HFGngh/inbnbsKLw+jjGaVA3gl3HzpYLJMno8DMIu8x\ni4dxPPgB7g2aNmynzIpUCw/juNeGbjIlZCriDr5XYAYhVUU7NYNoCFZ+sVhVqXGFEX4L+hi/CcSI\nSwRKOsW56jCb9Riiu6l9fO98A+0sRZjLP/szZDbiHrKB13/174qIyGEGGRTnSYxz71usKOCi3fQC\nz1uERNIwW1Y0edfYYTae86oRsWKmYfv+POC4aONTImKYrZwfdak3VtwhE3t3hzb3DsYdseLZ+hIy\nLKcR2r3gIAoephDFDkxEr3M6bH1C/hSTWbuA/C2LArl0Cn8lvfUTxCX3SOs9ZKH9GnT1mRc/KyIi\n1x7HfeT394kS8zCXQRc6MFjJSi+wSgQrwNjMtGaZ1Un4PFz6ixLv65qsFFPI8s4rOUSWz2GtmMx+\n+8zsRW3YQHGF2RmiEBKbHeSRKZjn8JyoDt0MDaptAAAgAElEQVRbH8LGeh34h4ENHbY5p7mLmHuD\nnFPjFPRQYYWwxRx+tMRqJXEac18meinJ4N7z0M6QKIiUhfbnRYy3vso1F2Dt68yQVpklH9CHeAfk\n9RjCZotE2fmsinLPx7wt30AmIk3ejJjPaZ5DJvP8CpCHR+8iUzPlfXN9eHYbERGpVInmYwW1mFwP\nHsfbWEd2sqrhuR/cZeabVUX0HLlt6AvPZTCeDz6A/41atC9BhqjXwTiXLuK5BaIfZMqqHsyID3vI\nzNbrm7J+A3f477RgY3MPfbVY1SIgwuJ9+h1rP0E64P8REQ0O73Vb65siIvKpX/5bIiKyN8EaGfNu\nv5dBtijjY6xjIkC8DjljyDWwUqdfmBMpwSpAIbm3CtdhuwG5EjqC9b40wxhbtNn8JvmaMuiXT0TJ\nogTbZTESCYjCWmH1oCiL8V2/jM11+zz6cfQ2qkyc9KFDs4DnrJO/J+HkOqtkC2hnrmG/sE2iGI7x\nnKSa08Ey/HvtGHqxyK0yc/G3zgyr9hBo2dTPAaG0tId5e3CAcV3ZQAZ8kSYa4iaey8KLYlqwqfgU\nvqTJTPmdBlFvJ/CnYbz80RiieVEqJvRqllgFkFwRGrlvvC7mKfawxvrn8X2dFcckxYp0RI7mTaKO\niYR0baztdIVZVKIeMkTHpWzMv3hZCdvYa50Kq+6Qc8vjwa2yQJu3WG1z6Srm9vg2bCDDSmKVG3j2\ng/uo7pEt4vvnyB220OFP1moY0+0D2JxF9JJXJZKyC7/VynPPHCdlkc4oE9jYwMVemDeIlObeXmJl\nweYmPnf7QyJ3htBJrYH+5ecJVAf+c4dns0vcw0cj8sWReybXgl/qkEfpWh1zdj+LuShU4QuGFXLa\nnOBz++Sbe7qAvVxbwZxdbsAvLV8hMtOG7e1MocfuEPNhEUW8fwu2myfyz+GZ4XBB9FYVet5axtqb\nzLCGBve4DxEZbxDN0BNy4mSQ5Z9xn7EWRMCTK21pidVanoaN3fkuUB4uq6g2eniefYx2Gs+yOuAq\nMvgpcvOIiGxvb8v995DhzxLRo3t4TnUbPsw9wjy0PoS9suCaVCpnR2YmIM7WmNwwe2jjbgZtbzXh\n5y8/jffvE7Fy8iaRaievioiIU8b5tbFEjscReW5WoavVJtZWvoU5zjfgb1eXMdftLirWFHn+m5jQ\nVblMf5GBTbWIUFm7iufd+S5s22XFrU4Hz1kheUzkwSaGRO9qPK/NiB5rbmNNDEasHngbtlg2iJ6o\n8rcT+Yva5DNqNDFXFVan0g5h2zf/zf8mIiI3tL8hIiJ6n9WgxpjDp74MP7oDtydTcorpPMd7RDJe\nCmkbRCCVrmFeLjRxXt29DdubvIO1mi9A72lO6Ngh30kd8xd9Bv3vfQg/H7ICmsifylkkeAH762MD\n3ArJNnBG+3YZen3xCD7iracxv7/4GvTSuUa0M39D3vl7QLwsvfeSiIh8b0LE+5v8jekDzfHWS0RO\nvQI9P1M++agv9Qufl89oO/KQthYeoA/vEIEWPEsuLvLnfN6Azu72sB41IoWrS9DNd/4C//8S+c/+\ndA2fL23ytsBfAs0zquB8vr8Nm3zuu9Bx7nRHRESOX4BOV94mh98F/M79Qw9r4LE55qBh/jHG+BwW\nbOYubK3fx+fWPkB76W3cothxscaunsdvtKCB8f5rctZ+Vse469+Drv6U+81bf4F+HG7Dz50TnEtf\nYvziDjkQ37oHDtoK99TJK7DJ058jUuZHiELKKFGiRIkSJUqUKFGiRIkSJUqUPAJ5pEgZI0LzNpEr\n83FyZxMRuYB327r3EDHvPkAk7vwzvNvKC42GxuwWWeajIe8iMyqazSBEPzV4D1yQpZrMEW0NWckn\nuQCZMREBmx0hOlyIEHXun6LyjsY7a34HkbQxkTCDh4igBdNNERFZ3UK02Ngnt8Qqq6I00Z9yFpG8\nLWYZf/g2MhHBhFk3Rr+zvFtrE21CUIR4C0TcooBs8ceIbieZ34MMosDjcCxpgwzZ5IPQyayd4v2/\npPJKPoNIrD/Fd31yf4SMjGeIKBlPEHmenyJLcnxMtAGz390jRGhbbyOL3Jrx3nOZ2aEzymyAfvQP\nkEE4V0JUc2IjQp5ntmv2Fub2eMSI/C2EzLOb4HTJsVqJpBGtLA3Q75nJSgg65ihFDpuTI/JDBIyk\n12Bzp+xHax9R4P0fIvOx8RTvK7ah57GLuX32EvpXehYZDP8dzKl3E3rd7SLK+rCLObv2HbCuO19C\nv7euYLyzP0IkfMA7rXaatk9m75SJ/0+HRFdN8P+RCRupXkaKs0u+E29OlEaIzPWMlcciZigGXTy/\nsUSOIHLm5HiXd3wEW8u2YQcWkS+1KvSU2cR43V1mfnw87yTAGggfIkIfrDOjn0U//CwzOszIn0UC\nIjyGXei2zXWac7D+pvvku0nuDZPro3WEvtd1vD/m3XqHpaEGu7Bht4TPrTcwBn9EnXJMdsBMXEBU\nFTmucgW0v7ZErpJjPP9WD/1M3aMuyCllsarI6JCVUQasuJXDc9/u4i7ua9/5uoiImEu8w/8EMp3l\nJ1k9KMDz/Q7aGzm8W7+PV2GFGp0pwDKz7xP6k4oHv7j7HhApzTrvSXeh1/EA/S1uc9xTZuML5MSa\n4TlHrHox9+Av01PYxENmXrr38X+bFQR0ZuEGR+j/SpN3l5kp3u1hLS1i2MYwKX1zRpmxql17Dj+6\n2kH/C1VWCGLlsB32q/U+/LHGCkLnWP1lq4Hvn9xDduytr31VRETWTGR6cis3MB6BXpJ77zvMlo47\n8E1RAH3sk2+gt+jIQ1boO9zDnHduAdEQEUnWZ3W03gM849oFrLfSBvyFzz0isLGnxUvwe32iSr/5\nffite7ewR15fhs11H0LnLVbc6ryNdks9clmVsD5PerifbTHjGZl4rh9zn2C1ijbv3J860Fmb/sFh\nRa7RDGO+d4A5Odcj9wzvgccWqz/Z0H3Nw7gmzMp/+D76v3MTFQ6sCWy/fh5rLkMOMjP8ZPvNsY9x\nnDewJ5fS6O/raYzHJDfapom5i6rw2zMXc1y8xrMIUb3zOl6f4jy0W9SDgfHlLiKrmP8+/OkwhzWa\nKjB7N8Y82A58yDDA82xWK6nTphepj1FjG8MjcVbQ3n4X873FjHSuToQleaJmJ9Bnt4jnNFJYEzQj\nWXB8Aw2Z2TT3g8oR9t8xkUP1CP+3WS1GWFnSTFmiF+nvOlhfcQV39k1yAI5y0GkjA+SGYUCXq9SR\n3mRlsG0g5lITzH2dftV6DGPR3iEvGzOzxRRswiE6KJsFIu+YFcMuTKCjw5WFfBLp8uwwDeF/I1Yy\njIb4/5A23/0AttQ+hd/eKsCWojLWzngI3eZJrmiyKpNBVO46K0SejnCmev8m5rLXhV9efRxzorWI\ner4MroMy18wtVoNqt/H5+SozyII1dtBG/x8wI70zJm8eqyZFrDgW0l+2buPz24+hkkvIM2Lsknvl\nMxhfap2Z4Xcwbr8N2x5Z6NdRf5/9xvciDWvNWIbPuncP/e15+F7TxP5kOLC51Ax+N3/MaoFEUnnk\nYMuzwmWGP2/m/seZ6XbrSMYaPr/E/kdEuVlEQB2eoN3FPl6DAO1mrY8RNz9JLFbWs1mRz7Wwvh7c\nxFxmivDfzXXsGddWsd775DJ5/WXwbDhE1qXIPeINOGaeMRoOdO5HPA8mVYxq0EEjD/8Sk8etYoAH\nI7SB1pqystZhH37dP4Qu7nWw/zxLGxiH5ABjhUSP6GSfXFeWxjliFaaI6GGDv8k6bH9jDe3mWFWu\n18aaSefglyp83Walxd4+zhzf/SbQcUdfw9+uA5+y84DV+A4/LyIipU1W8XNhq30+//QuzpuNTezN\njk3kH20mJKI/YoWg8ATfX7oGjpYF/ezh21gjt1bw+apO1PUY7Tr8HXFWeXrnL0VE5O0CEEDuAZ4z\nv8VqsF9Cu+ObGO+3eXa7Tu7IOc8OuT8kP9IVtL/8OXKxcb948Vuw7fgBxnezDhRZzn38o75sud+W\nbzyxIU+8At1c5x7wHe8FERE5/y+p6zXwdt7hbYNwnRW/vkbk4wzrZCUF2/7Bp3Heu9ZD327/EHtc\nlbyW5efw/a3XsTee/jzW67SFOfDfwO2BnODc++YUv5E+RRRsrorz6ZsXnhMRkdWHeP76l2DL2p/s\nQDdL+Ptbd4na5X6Ta8OmHrTBifP8NfzWimpYOztLaO8CUaE7J0TlTvD+h0P8hvvwWfhXh2SJX0qh\nnVNyga0/j33rez4XyY8QhZRRokSJEiVKlChRokSJEiVKlCh5BPJIkTJayHt9BdwpSwl5L8qI+qZd\nRNCXNxCyyxfINZNmVSQEjcVkFZKYaI7yOjMxvA+u15MoJt4PiNAxWCnIiMmSj0Cd5CaIRtaXec8v\nRnsTVjS48HncjWs8i0jfix4idfsGvpeegF8jldynHKD/W1VkesIYETuzgYjiiNWUKjqybzYz1zne\nu79QR5QzX2N1kwDjDYnCSPG5zW1EzZcavBNoIRNz3DoVb8hqOITZhDVG6xz8XTsHXXjk0UgzXFfO\noE8J54gVoQ8p8mIkfdZqRFJk2ccidFFewRjcIatD2GdHQIiIlMhNY0Zov0A+hnVWC3JP0VGzxspX\n26xJvyAfEXkhYnKvLPVZ8Yb32XVy7Wg6bYQZP4eZyXIV2bVMnVw5U/R/Jc/a9TfQjn0O9wfdE0RD\nA0bMe22MexWmKO0F0U/MZP70T/2CiIjcGiCrpA9hO3YHc+kekIfiZWammXkIA4ynzUVQW5Cdvox+\nemSvL5EnI3KgJ5cosoygfYPzEdUxj2lBhL5EXieXKXqnSDQBMxjPfB6Zia2tpCoMosQljXeMD/D5\n1j6el5kycz0naz9tOl1Df7OsIlKbEp3i//h7l39V8gLb2LqMOWiOsU6r5PZYVMmLNGMGrYi2zRxs\n2KKfsCewhQwRNtYK/Qg5V7SAthND95k8/s7zzn1Idxou8PeEFQyGPdhglpXHtsqscOAwE8kqcYU2\ns/rMMiXZp4hVgi6wYsPPfP5zIiJy5QL6N85Bp/MdVqXrY5zFNSD8sjra3WY2rbBgJa17yLIYnDOb\nXDSbV+EPNSQEZHUJ42QRPIn79CXkOAjnyDYNyMdRj2FLDn2CMUr0iTV1mX735Ar+rjCTPSR/xQo5\nAPJT6F1nxmZ5C/rJFLFWGzb0c1aJOb86q0GlyY+VzhJRNcSa0emfz20g02NwLReX0M9Zj8jEDvp7\n5QbuOOcz8MNWhjxKE/Q/S5TCxMD3nMeRYdGWkc1qLsCTsim6LFrQmXeMdbCZwxymyGdUIzeIsckK\nY5usREU0aJs8DrYPXRk2dDnYhV9uTrBOs008N0N0kraAfyjNoFOtDhtqVrhm0JykeRd/dYNzJNgL\nzXHCVYbvV0xkJHNEIq6v0PYcvK8TWXPlGfQ/04Sf0VlRJ2eif+t1+NdJh5VYWB1pxgqMNVYozNcx\n3mIFc+mOmNH9hHknrUtEYQNrtsq1mOf+kiESVFjBbcCMb6WLrJ5MoV+LHBErAfp/uEuOnRh6adXf\nExGR0T5RHQXMb+sh0W1zZjan5Gwh31xZx/5RIsrEJYdQIfcxV5u55EqTenaTypXkwUsqyaV59oiZ\nUW+Sm8hlhTWDVbAKRG0URuSMGBLd10DGvUmUoowxj74DRJFFvWvGicT3Wd2nzvVNLgBzgL7PXfjv\nWZncKDvwS10i65qsPpd5GxlMk+vLnGKMNaJwcxXY4uIE63U2hb+szpk9TyWVI1lpkln5zf4nQ8pM\nPcxBmnwhGfLvBfYq+0tUU4wsvVOCXygXN0VEJCYaLfGbITOrNSI1M0LEjYvnzEz8vboNPennyMFF\n9FqhSn6hh/h8OwUbzbEq5yoRJiXOdQTTFotnh4AVcbYTfsEqzww58nGwMtvyi7CBi2uw8Z0e+pUX\n8pTUyRdygM93bkMvNqsM2jwbmhuYN/M89136cyOEcS6d4zmefFfPVTAue455jRLEzFPwzyWiFAbk\nkjMN2E08xt8EO0MnY022MvheysRzl8mnFeWw4RlZPK/+JOzHXCVCJrTlrBKQz80i79hKOkHTQtfH\n++R8epeIZKhcSjXY8PXz5A86hp+slTDmvo4+9FgNKeHTWxDt67Jqj5VHO4bFMwTP9Z5JPiPunavk\nRllmVTud71dvoB3LxpxWy9DRago21N3kHsrbCGn+BgtZwdDjOS7gObS2DFtMlVh90+VvPB2fSzgO\nJ6zo1dO5TxSxdh6rYu/Or2FuyynoqTx/C+1w7562uF9l8P20wSpyq3htNolmdYiO7sOWbZ7rN6jn\npevkjiSKNk7RJlawERb5GzQgIp2F3cRg1amzStiEjT+/ijWzdx63M6587e+JiMi9NFAk1avgYVmN\ncRvjjQw+94UQ8/bS34E+Xv0DVKs67sF+Hr8BfY/K4LhJk8dqnIKv/WPyqvyq/CdyfE+XZ67EUn4e\nPG3vE0GywT1tqYnfVu/fxLlzMw1ESvMBbEZfY/VkIsi/N+dvkAmrJh2/grGeh45epR964lVWoCKq\nc+lVcL68d4L190KdfKhPYa/fLAJBfTfC3Hs/4N57Lfndy01uDMRdMcCe+39dg0088yr80FsREC6v\nPgG+va8EqK70Z3Wcx3RywxhtIIX0h7DVL5pfFBGRr/dhs89l0N/oDvRVI5L7f7+G8/8v7uHvP7eJ\ntLd+vB9RSBklSpQoUaJEiRIlSpQoUaJEiZJHIFocx5+shMX/l41rmsRxLBozBEqUKPlY1NpQouSv\nF7U2lCj5f4taF0qU/PWi1oYSJX+9qLXx/7/8qNCLQsooUaJEiRIlSpQoUaJEiRIlSpQ8AlFBGSVK\nlChRokSJEiVKlChRokSJkkcgKiijRIkSJUqUKFGiRIkSJUqUKFHyCEQFZZQoUaJEiRIlSpQoUaJE\niRIlSh6BqKCMEiVKlChRokSJEiVKlChRokTJIxAVlFGiRIkSJUqUKFGiRIkSJUqUKHkEooIySpQo\nUaJEiRIlSpQoUaJEiRIlj0BUUEaJEiVKlChRokSJEiVKlChRouQRiArKKFGiRIkSJUqUKFGiRIkS\nJUqUPAIxHmXj/+R3/pmIiPzav/+bIiJiNiwRETneOxQRke1NdC9nnxcRkXlvKCIig0xeRES680BE\nRC44WXxvel9ERK4vb4uIyKSP5+yU8ZxyqiYiIumwKyIi/kFHRESW09dFRGRW00REZO/+QERE7HXE\nrJoZPL8zG4uIiH50KiIi2fPLIiISWr6IiNxroz9r86aIiJxO2mgvWxIRkSvFooiInHT3RUTEWOD9\nRSMnIiKr62jnwbt8f62M/oXrIiJyuPuBiIg0SlURESkUN9F+OMd4hg+hhwOMLwpdjPuFDTnaneA7\nKfTBnC1ERKR25Rr60L8rIiKBNxURkWFki4jI5eYFERG538UzjQzmyBnjc7vTD0VE5LHrz4uISPcA\nYzo9amFMS1siIjLZx9/lDYz1N3/3H8lZ5D/6jf9YRERmE/S/ehXPs7UCxjjAnLTeR/9d00G7Nvo/\nOIXNzF3M7drViyIi4ukYhxniuTMtFBGR0MD3fR02k0pFIiKiWXiVPmyjRD2NPei42+qJiMjWV76A\ndq2UiIgcfvBAREQqZcyZNeqj/dYu+u9g7nIx2suG0I/RaIiIyK//O/9AREQO9tFupbKG92PYVGTh\n+7Zlot+CcUZZ6CVlwoaNLPRlV/B8dzpDv9mf6YMRxpeCPtZWn8Fz8Dix62hn6uN5cxdrJ79Zwddi\ntO92YLtB1xMRETMDvWV1rD2Z4vvBAvZnWCHbhe17VHM+h/n5R7/3e/KT5J/+xq+LiMhRGs/Ip9FX\nK4KO3AzGmA6xTqdd2MYswFhjD/7ESKHPmW3MlWNjjhcZrPPSEebgcIj1P4tWRETEn2HM+WP0uXRu\nA2PJoT/6HLa5+y7Wb/HykoiILK/BTwyyGRERWcLjJQrRjzd++Db+1mELl39qFR8YwKb7LdiYZaCd\n9Qb6m6G/jGLooZPB89xTvJ8bYe4mGdhuhnqb9qAHX0NHFlPMzaSPdvIZrI3iJUxSs4Lxm8uY0+Nj\n6Pn0/oyfh77DBd7Xo7SIiMQa/rZ7sFHT4LxguqRKWx7wH44Fm22kYTORAz/7u/8FbOO3fh/7x0+S\n3/zvfx/tjKE/qwy/GrYwHm98IiIi7gH0FdbQj1oAvcyX0b6jYZ49vEiUwtqPirDx/Jg+xcVzM/QR\nCxt6XhLotX8CvWZMPHeWaogs473pIsZ7IWwj7eBZYQq25+jom1FH38JDLNT4mDZhYwz9A4y1UOcY\nuaeNPe4HLuY0nYFO+8lz0niOqWF9z7lW9Bz8j+3CXyy6sKVV+nVLQ38HI+gyamDtyBRrzj3FfnFq\nYJxbq9CZvkA/vAi2M9Rhg+aE/iyP/kgGNjHs4v0czwL1CK+ejX7pA/TDM3EG+J3/6l/IWeS3f+t3\nRURkNoJ+0znYpi7oX5yCzcYz2LruoF9RCe3VyxinP8X3OwPMVy6NfqdSmFc/wjzkTRjRR/vNGOPQ\ndehhEaB9c4R25mnMo+1zTWPaRAsyH43hd/7LfyaxF/N9fI7boaRi+qQYNumZeEA0hZ5TLtoVzn/A\nc8KM/cun8aDIQXspwfd9H+OwAzzHSGN8caTJwsczfD47xb02Y8Ef+DP0UTiGuY0xF9BVMQR9cUPM\ngYWuS8wxBA6en0rRxrSYbaMPlom/5wPu5WGyp8NmszmskX/4T35bziK/+5/+1yIisvch5nYrj7lt\nH8G/X/oczlT5x6GLaYjnT0+ORERk5+6OiIic274hIiKmz002wPikDD996ybODisX4WfXrj6GcaVx\nLnz3uzjv7XyANbj93KdFRMRz4feXnsf4JhHWwL96+R+LiMjf/42nRERkfR9nule+eAvf5/i+9Cs4\nczzw0Y59HvvZ6Qnmr9OFvzu3uikiIh/cwfMHMfS8eQX72lTgMzIWbOexZ/H5W2/+Cfrzv/4vIiLy\nn/3zXxARET+Ledy5ibPR57/4d0VE5PAN7K+FFfRn1MYav/mX6Pf5lStobww7OaXNXn36JRERaR+P\nJZFf+ju/I8Ua9Lz5FM5EmncgIiKt/ddEROTp53FGnr0B/fTuQp9rn/2ciIj8e7/+38pPkn/63/1P\nIiIStqEDb4Q57e9jbKvP4ByqpWHD+Tr3ggD+8IS/dQp8v7iEPmkZ+JX9V2+KiEg2h7OEtPC5U+61\nuTWMzUzh/2EfNqZzLXRn6FfAOeYRREKec1P0G7GBOTe42Z0uYPNxhP5mV8+JiEjDxj4xmaGd0QOs\nhVoTtpDmMe/NN6HrrWvotxOjvyc++rO6jec5PHdXeW795h+8jH5wji+dp7Uu4/3JBDYxtvGcKxs4\nA42X4BMcl+dh7ne9AT6X06Dn3iHmOrDgdEpFvIY8r5r0ny4PqIsJnxdiPjwH+gm4j/727/2WnEV+\n93f+BxERyXB/8X3YSTjEeNLrOPOVSxj3jPbTbvF3SJHn7gjfi5o4K+b5+2bu01lyXgIftmwGPGwl\nzlRE/vE//OcSZ+cym+B/WR9jmeuwmaCPZ6YLeLUK2Nv1FJ5tsk3f42/FGfrSncJmxj34q0IFY10q\n0Fa4x1lZ2Ny77++JiEj9cTy/wd/NyXlKuMfn5tDJMX+LVrL8nI3+2iv4vs3fGIMx5kxz4Y/Sqzj/\n5bto/+gBbGLyAHu7ETE8sgEbKPK5mTp/Qwt0n+pDp3Of+84Y/ZzM8Fs4dLHPWTYWWS5HY/oRopAy\nSpQoUaJEiRIlSpQoUaJEiRIlj0AeKVKmt0BEzmW0shYiwzC8gMh/lEFEymeEaWwjhpT2EWkqzhgd\njBCxMvVLIiJiVBAZe7iL9wcMc5avMxO8j+jvOEwiaojQ5dfY/gLZvDGji9nLm3htvyUiIqc9RALt\nJUQbJzaimfMDRC9HDiJ0hxP048nHkF2MTESH919DRD6fQzR35RKi45GDz+/37+B7T9fx3AjR7M4e\nxu8YjILayISkBZE6ySGj4R4gGn3MbNlW7ry0TETtOllEKTVmZ40wpM4Q0Z7rmIvRDqKKMyI4rAFe\ntSZRSFnM3cE9RDW3OVfuNehWN6DrzBxRyLfmyK5cdRDZPqvMXPSzRzSQzoh7PodopLmMCL3tof/u\nOxi7V02yJkQ1DBCt1EZ4XnMZUVLHxANnesBxoZ1RwEy0h/4XnT7Hg8/7JdiMfw+vN3eB0jKmyEJV\nlxHxbwXQh8WIeqoMW9am0N9ggv7OT9C+vQlbqs9gQ6eHQBgNDmDLUsI4Mz7GnycaZMZsVMbB/BkO\nxuvZGK9ONMKIEfUuM6HZq1gbnfY9ERE5vImsl9OAbZbWr+JzTTxvaB5jXA93REQkIKojKzP+TZQZ\ns6FpYVQ4xGvAbJpvYW3ZBuPCaWYIDPx/sWBU/Ayyn4dNxX30YZAG0qVqQRfREG0OjSRDioi9lmHW\n9z7GJDae09+DrubbWGcrHFPADEFsYW60I8xZfoJ13UqyyTWsw6gL27t7H3OYTWO9Ll8A2kua+H6z\njX61c7AR6wHa0RZYU2kP/d3Mot35Bfw/ehX/D0YYd7tHqA0zt5Uixl1po91FFWt6OocPCD3M3amG\nTKREsK1qEHCczBI5sNHUCZ6nBRhv8SWMc1CHfzIG8DHOBv32BGs+O4VeR0QqyQzZnpiZ8bgK2yo7\nyFS4Jmxg1YZeAvazZ2BtxkewLbr9M4vNTHo7B1uziBQyHejj9Bj6zepYA+USxjlbQL/ZgJlVZu79\nGjI2gc8Md8w1moWe8gH67+p4XSKaLLbwuToRAa4J/UnaEY3IgxQRJ5GDz/SIoMlOmVFjVrk8x+uk\nTwSa4Fn+CfaUrMFMa4FImRCfW5iY00UJYzBo0/0hM7dFZlYN+Nd73AurzGYtudBlhuvYYybVtpn1\nd+D/nRA2MLbRn9jA91aEaKQCxjPOYBwZIiIdwfePuP+U6M+iKfRCoI0Y3MP1LN5fFDG+FNe+5xFu\ncUYxA6IrUuiXwYyxwbU/72A8JyHWdBd8nZIAACAASURBVKaM/w+ZHdQM6DGuYLyjI/zf9Znds7A2\nDO7hdE1iTNFOoEEPMZEnSfYxZv5M96EPfwI9jqZY83o4+mgMo+OZeHMieQZYM1EZ/alsQB9pD/qy\nPWZ6iR5xF7C/gBDJWIPvCOaw2RO+5iJ8rmhhTSSI0tEEa6XA51rZsqQ99G0+JeKOflYj6tLw6G80\nzv0CupgPaNMavmdwLQSLBE2E8UYL9DHKwCgKWegschJUJ9GaRI2mObcBUUcaM8JnlZiog4OvAa3g\n1OA32yP4tSefxd5fsDCOWg1z2k3jrPT+3ddFRKSZe1xERMZE5uXy6L9p4O89B/vS+aewX3g5+NeY\ncz9ktn5hY81H65dFROThPZwfww2gMXQdZ5O916Hfz1V4ZpJvi4jIr3HJ/m2O7z/84H08d+1JERGp\nN4DU6d8HMmVB1G76PNf0Aqi47gj9XnsBKNuUjTVy3Mb7V1bR7/t/+I6IiNzZQXv5K3iurzOT/T7G\nfeEyFkf7A+yjVgW+qc6zQhxgXPVzaM+557I9vJ/NYpy3Zx+fOcfeObEs6Cssoj+hByTrG9/6hoiI\nbD2G93f/EmvoLUyX/Eyyf51BEt/f72H9DW8RLVCGLTsNrL9gTrSui/Wip4iQ8Lhuua4XM9jGtXXs\nucfsS4Pr+HCBzweHQGPFPtbEyIa/GA0wN6kCzganbwGFZaVhu/EGbNaqEkFHJOQ8i7XhLeDHph6e\n1zgPmyjTzw2nRFFM0Y9uG+Ms8RZBWkd//H38trOvb4qISIdAjRFvH1y7irVtN+GnogPYwNH33xMR\nkQJRw4XN5/D9HvvLc3hoY85SW5hzK8I8dD5E/6sF+CePaKrk3D0hwj+lox/1F4D893n2G4wxPytE\n4j98iH1gPsbnF0RfGUSJnVWiBcY5og8r0rdJCvvcqov/jw+wlu59D2szzyODWYI9pFfRfo63OkYa\nUYkLzJc5wn4YEu1iBl02s/xRX7KuLotSUTJ5zJnhYuxOn6hP7rlHcHOiE33rONA9AcGid/C3U0Eb\nZoy+DfeIwurj3Dpc4rkpQ2Qxb76YGeh2ef1Z9GsFOnHZsOOjfzYRjhbRtFmimxY2+30e7VlL+P74\nA+gwPYdt5OvQ8eEB2n/te2/gc0ewuYvX8BuxMsfvCZ83bLQIn88S8RNK8tuGvwnnUIRxgv/HJlFp\nc8zJ1PjxZxKFlFGiRIkSJUqUKFGiRIkSJUqUKHkE8kiRMpkKIl7xgrwfFUQ5r1SRQfjwPiPh24hc\njWeINM32EAGP1hk1ZSYl22IE7hiRcqOEKG7KQAQunUJ4McghmjsWPHetwLvFffydYrbIYqY2fZrw\nh/CO2jqirGPetzR3GXVcY+aAqI5wB//fKoKXZWkZEbubxeSuMSJ3gY7I2jAFZIy+RX6QAfqRKRF9\n0MC42ykib8b4/oaF6GfhCbyvnyDCF7QQNR96KbHrvDvuIjp4wLEXmXlLuXhWnvf3mufRh/YBIsEP\nsrzLSYSFz3uAuSx0ej+POWzM0E43w2iksQmdRJjLYuHjyOxZpMwsthtDB+0xdDrm3cjz15ANWtp6\nAv0KeR+QvA0bPw1kz1EPc3VwjAzBzuvoj21Dd6lz0P2sDB1KNckEEh3gYnylEjOADuZg61N4/94c\nkfYRuVYuXvisiIjUdzAHfR8ZjXPLtLE8vp8nyGlukmtmhDjpVEemYvMGx/cEs3lZ3tMMod95B1HY\noc+MaRpRZjtCP4wU2p3PYGNOkRlncjNkriELdz0DhM7J4R+IiMj+u0DOjJgxnebR7uYV2HApD31r\nFsZt8c50rgo9Whrsw5+hvXCXHDZpjL8Qwu7CEu+6MuOd4uVjO8aaPIuUmWWOihiTmSIXCiP4Zp28\nFEQN5eYYS9wiP9I2eRZ4T9cmB0K4gznSL6PvkyLv6jPbdKzjub6H7606vD9NioQDH7pxHcxJuom5\nTG3ze2O0/zCLOV/uQodzZgy2eEd2lxH6cRvtVy7Bn0y3YDPmQ+i6myIPRgjkS9RDFmVcw/dKAfku\nnoVuc2OMoxHDz510eV+a95rTY3LAWEBNtSY7IiIyoL9eXhAtoGPNeEX4gukRETJpZqSJTCkSlefO\n8PnwCpFK5M+IKtCHHsPGZlO8FkqYD3dA2/fwfMP9ZBnugHwXKQPj7/BvK0P0VpZ8LiYyI7k+752X\n0M+xDn0IUXopJk7zaaJKhpgPjfwnbg7zqpH3pOWindKAzyN/VFglutDzZEzbGRnw00WieXTyYczI\nq5OgfuYdfK7He9FLKbTpEQGYmmGdDUv4vyvw53PyWFRM2FiLmVZNknZgY75HHiGDmUSiUz0iR7Q5\neZxy6Pgigg5ig5xf5LxKk+fMJCfZlBwrWT5vzj3Qz0F3/Q4RK+Ra8E0830rueRcwvjF5jgpEI/nk\nHEgv0I5L1MFZxQ941iCKN0eOrV4A9FSqiGx+/hr5oy4xC7gPdO20jv5tLUF/qSqJh+7wTGLg/Rnv\nw9vkOhOiw0zypmjUkx8k38PaXkSY5yixA6LrJC5+NIZ8OZAgxXvz5LzxUvh8iYgpHqUkZGZeo20K\n175EnN8VvFbGeP6E2cCYSNIZ/XaFa8Qmum5KhKuUXYmZrS8R6Zwx8d3TNvYof8RMIucqxfcdnpOK\n5OayhDxBvMsfuOStCRb/j753I/pJDX0ucz22RlywRENlYuqYe/xZpXYR59PqMnnyyKdR3cDzann4\niaMd+MntBtcqUbcGUa1FZlpPu7Apn9n75Q2i0GpYQ+ki/FGfKN8pM9HHHv0X+TM6DvzjO31k07eI\nciqfB9q1+X3o4WflP+BIsF/9/kv/o4iIXHsF/13ZBkLwmzERTC7am0yJzi1Br7ka1vDKBhDmrQfY\nd6ZEIg0W0MvJBPwiezkgeS7+8ksiInL+9E305+qviIjIgYA3pPc/AynjJJwWc+inOCTCimvdyqGd\niGiOcQk+QasRKUVUeD/VkUSCSlMC8rCcRtDnc0+Di+enS+CM+ZsvQS+vPfhXIiJyBCCP2JWUnFWi\nDGxVJwI7RX66rRrO5mmNNkEuGPMSs+oLngNj8rIRTeq2YDsTovpzVYytMyUCr0KeTW4g8wnGtpYh\n0uJJ2HitCVTRm+S/GBwTaUmEdUHD2tKq0GWZ6DS6VWkQlVyuwtbGEW87EF2wGPGcSYRhxsF50F7F\nOPLv8VZDAWsg7hIZuEbk9Br9aRtzXkhQpVWcT5eIuKyu47lj8gud1rG/hPxtFIbksTqm7Y5xZigU\ngQhqEuGpX4QtWEN8P+bvi8UJ0F12hX50SFQI+URWr2JN7nzI366cr4qc3UZEREwixXX+bpoTSW7Q\nx40WWFMHrdsiIlIuY7wrN7Cm4zrRXkTkz2L+piavVgLuinPkxTvl7wKenVzv9KO+jANX7NAVo0Ak\nIs9pNvnsolOMPSRn44jnbdF4vqNNZsmvljkHv50jcq2zizkZzOA318kfZNfRTpyC7qZz/jbJYQwe\nz/d5on5t+s3pkFwuWo/fw/9HCfrqIbkkiVqbHSechLCd7m2M/f73MdcJEvryS0BJrZ/jOXWOvT8W\norAG5L0LabNZzJWdgd93BN9za7DhkKhYnXt3Vv/xtwAUUkaJEiVKlChRokSJEiVKlChRouQRyCNF\nymxqiJTVNnjfuYFXo4huue+QGbuPyF15iNdpH5GttToyz8USM8m8YzawEMnKMfNgLBD5DvdwJ21O\nNnw/jciXv4+/T3h/20kjijiIEXXVpojYTQMicphYiVnhIb1ApKyZZ4WK/YQLB/f2j+xNvE4R0esL\n+rVSR8TOnSGi2OSlvVVmAAYzoh+W8DnhPUGDSbHpHO97rGyj7SKbORi+KyIiu7u4W/xYc1WcHO+Q\nr7GKBz87IaIhx+jjZAAkyfIGIvr3h2hT22MEmJH92So5Wo5YiYQ8PYcx738Peff0MiK7nbvQUc49\n+71cEZGQdzhnJqKneaILghGilPctzOEXnkf2avQk0AHDu7gn3HPQfijQYYmTZ5eZNWdEuuvwnjIB\nGjmiq1LphO8Cb+hZcrfojEiX0L/yB3je3R2kVZb2UVnBOIcIv9WCjc55H9FusHpFB+9XyZY/vw/b\nOO4w68eId/0qbLhzgvY9C2tgkMtxXPh/lUikahGZDJ3Zw7mH8XfIpL4QVo3yEc298gz68ezhCyIi\nsvt9IGW6934gIiL+FDZqD3GXePU6+uN7MEZbQ7sFclS4PWbm+7B5kxn8LDktfDKvB+SSCMkZUSsB\nuaPxDvVZhMln2WPFgivXiIQpbaLtIjJvFR/r2TcxZjdLhFybCyqHNo+OkrIfZNjvwBaqF6BDjRHv\nNa5Hv4lsy4jVimZE/Jm7zCrPYLuXG+RemaLDx0Q5kEBfOh6z5zlWxBrDthojVvcgmu38DFn40EG2\n5uEaxp3pMsM8YwaBvA+OkJdiFWu/YdEPsZKKbuL/6yFsxWV/DyPObQrPv0Q+o9uHQAXc60GvT2Yw\nZ8UYc98qM2PB5zHhLRF5kKw6bD2b2GYD+g5KeDUTnhIidwJyQ/iS+CKMZzFmuv+M4gaw+RJRFrM5\nK9h4zJyziktgEJkzIYKKaAVZJq8KK4f5RHWFrBiUI6eQS16WxFGnibDJMuN7ygxwvQQ78jwiOG1X\nch6zLKwYEC5YPaKArE5GaKsn5CJghb0a/dg8RhtVVtMYFfGcmH1OBehjFMN2CIARO2S2mes5TcSI\nzuzUvId+TAKiMokSy0TQ0XgK29TpQK0MKxXuM8tGP67NWWmM2asOERepGnRIkKkENsfRx5rz6a8j\nIkycNJ5jU7dzopUy3M9S5NCS1I+vdPBvS+zg8ya5HiZMNSYIF/Mc9trmp6GHzBrGGwsr0ExZxcOE\nfy6NmVFmha+oRZTchHwnEww4qTCkxVwsMdZcKmKlLmZU0/QxEat15IiSzTY+rr5k1dISsYJPiRWG\njh9iX0/F5NfbIndDAHsbkPvNI6dNwGxgSJ4qM4e1n0vOPkTOejqRSBrGp28wa8izjJ0RIb2MmNxb\nWx3oaO8YPBH5CiueLJOnYgV9SlPn6SkRapxL00oqUNFP8GgyDbj3kAthHrCy4TLmwD9h5SzydRgG\n/Nwo+GR+5IDZ5hb9lKEliBn089YY78/bQMnW6vCPvWMiFNPIcrsROQmSAij0u602nlPNo9rSdACb\nc/dgEyb9h0muLaeKvbc3J88efYg2ot5uoZ/rr6Af/1JewfcE2feboOeQfB76/nYXtvt9IhubHZyb\nPaKsfLZ7911w6twnkqZLtMZshnNvj0imkY55u/UAPqymYZ4rl/H6b/4bnlvvMLN8gHN9/yENx2Ml\nnT7GNSXCqiTg73MHbJeIqQKR73dPMC9dVkcRERnWU5ImaiXqwl6yMfSXSUERrTYz/hdQSfPaL+E8\nHa+t8ymvyU8SU0cbbRd7bbiEdVrdJgKihzF4A+i6zDN8PKNNdDHXUoXuFkSesUCgaKwS5JKLZhaT\nj40LdNzBGUI65Hqhf9CW4Pcv/fxnRETk+HXcLpAyjDAmYjGpXCZEueXzRM7xfO+mMVfzXe7F5Joy\nTKy94hZ/H1zi74Ue+dMSyhX6mZQO/VRKsP0eEZE7E5zfGzHOVsYL0P2kD9vf/7/Ze5Nfy7Lzym+f\n/vbt61/02ZLMTFJkkqKoMmWpyijIhgaGobFH/rcMzwwDBqrKKFW5ULaIUksUG7HLLjIyo3vx+tu3\np/dg/XaGZEjii1FMzp68eC/uPWef3Z9vrW8t1qEFZ7DlRu00GGqsj0acH9HxCNFiC3P095a4neIQ\nVvJeEAVq16WLft0Eti+s2q1B1+kB7wOp2n95wnq/fDUNM4hHJi3UnsmSuW20Ro5wTwoPeH96B/fZ\nlp7jAsZLB9bfBlfFJETTE53SRcq7I0yk+QWOvfFLZs802xjvwjclDLJ9XDA3nq69YEjM22i8cq8C\n7cKjW+oDZ437L+9IX6ZPjDHG5A2th8MHnCv30VLtaew8v9K6UUcbdcq6Uocp47Y0/+vsC05Nz7bP\nO5jP2LSMypNP1Fc99HTq6Ll1HZ0pInQrP/hA68vt7/+J2nJXfXj1mbIppmjExLz/Bxwt5ifqs2aP\ntu7rZ7inPrlYqb6hgxss+1Fm/vl3m4opU5WqVKUqValKVapSlapUpSpVqUpVqvIaymtlypw7isAX\nOAXsdNFyOb5njDFmFzTm7CNF9N96T2wIQ25uaN2bcGjwUZoOUfnf29F1nnvkKmeK4r5NvvThO/9K\n9yWyPr1SNPTwsaK2++SEJU0h7Ls2st5RxG1L6HBFHp+D1o0L0v3Hu9Iz+QZ+6I+RcT9IhRjEM0UI\nM6NwaQJycwtWyKmvSP+RApIm83Rfzwba5nrOFi4C+ZEinMdv6r7H5NT273jmyUMUqUE4h7T1eqOI\n9M6MqF4NHQfQ/H0Xt4imop9jmCn+GkS0idvCUt//Sn8hV15zt/yh2gbUZvzFZ+ZVioMKfN8jEl+C\nnKIFs/xMiMPV8RNjjDFfPxYKddbS5xovNMa2RtHPhAizR0TdDdSGd0GrrfvPqgeyQXS0Fqq9buHI\nMrtU3+w31XdvfeNd/f2nYsr4TxT1fRMHhBHOOxmCIzugSCl93QGpCN+BpYVWTGCR3pnqUTQ0JiNY\nVh3QqeM6c8IlR3itz9XQfLCuK41YzxVy35OfyxEi/1DP8f0fCi36+m2x2L785Inq/1D9+cVfizlz\n+ivdt02+e2eodrnONDgbwKJeLabe6n/rCpW7+n5TtzHOkZ5nsNH3zh+rfW9SznGDKHCjuBjoWff3\nfNpCbdIAvV/39azHuOrMQZ19VzDOPi4eqwn53mhW5aBbEciud1vP0CLfu+6g2zTW/3+xVIR+0NHY\ntc5bSFSZQx+0+Ur3a+E+MoLB0uji3LKvekyekmP7fZADcuePgYrnDX1ui9PVBk2b0hELarsExUZb\nxgfdCnycenaAbEGHBp6eJ73EUaYrNKh1KrQm+0z5zgGaEOt9fa5NEn4E+r90mKuR1ohsqDkd4MjQ\n2NP/+1tdx2FNKdqq5zmOD8srNMJaQjAuX00uxLjsFylOESXOPH1YJAkuUe4GppGHPtO+7u9OYH+Q\nSl0H0wjXqucanatgxvPgBtCrqR3OYXkM2KcyNMZy2BHpum0MukD9vmXtqM7ORp+JeYaeAQW/wrUn\n0NgoQQDr/bWtpDHGmMtYdbOubUPcj1a4PGywsuqEquMavaVNi/WXvzdgoJRrHKZgKzhr61qEdhTu\nTBmshQPgpcWAXPat6u+ii5FOrIaKPrdjXYrQ75k9V3vcGurvUx4sKmBy5LBoOdLkMHqa6avhTtbd\nb9CnfjiZlYewyAKhfRdPxYwZxqB3EWyvU1yIFuqnxSOxydaf5Vxf17MOQw4oZIQuUwZLt4B5EhjN\nkQDU0ubZpzEsPTS6cjTNjDFmOT8xh9/S927t4NK0VTtMUjEgO7AOug/kWFlOVb899vULEGZIdyYZ\noP0AshrA5KrDDitAAz07nvh9FUWm2cc16VTXmE91/gka+u7Xf0eMhwZybgnPml9qPZgYrbsWJS+4\nR7+NvhltcPhAvzswWbKR+irsoxG1qz5dXMBAxn2vlbzaMbi5ozH7u3/6A9UHRLdmtJeWaJctYtyA\nRlpXFiecDzv3jDHGjGBkbHGzC2p63tVc9eng4Giu9P1sZvc5nGAiWARHloKkMXC/p9+dh5q7qxP9\nfHvxh8YYY/7yf8d99HPtL3e3cjlJ/kj9MJtrjt3a0/X7fTEz411d5/HnatcMLbS+EbLtgcqvcOQa\noCPS7ev828R9qZPq+b/7QGPk5D9qLplCzKA3DrS/PKe9kqnmnku/T9FLKdG0mOGuFLMGRLC+t9hz\ntVhnjTHm3TcGZjPRc6/RwPkF2mgv/kr1WN1hbcEpye2+Z4wxZpPcXHtotdFe6cMG7eygm9HUvF58\n/MQYY0wDdujySn1ewy1o6+qZzhibBQyaJ2MYdXbPaerZlrieOejQzRcaK5NH2ivDSxgSuzq/tR7c\nM8YYc9VFPy5Cj67QmaW7o7myhFnnM9+LUm0T0hZJgOsm870B06aP5ouLS+v8RNe10leZ1SDbakz1\n0Cdaj1TvcKnrb3rswQewNajnsqs+m+OEtq5zlsFlzmPuN/r2DKf6bTN0UWDHlQs91wZmzPYQJ0/e\nKUvOVklb9fz8Wu1yZx8dqVv6/BWOXtfZq+03+VrjZHKqenoBbLg2GjbotDh7aIrNtQZ+geNmAzbb\nlGwNE6p/AsZ+gn6q65NtcVd/Pz7QGrGZvDxEOfXMXJ9tTXyhdWyMppXn69l66Fl2WE/vH6GDhHbe\n5FdyVdtePjHGGLNzhMYK5+U7/5Pmd9NT345HWq8S9Ho2a94p0DuKOU9HDdi1aFV9xXpCd6/sqm9m\nZDUMHNbP3h3qx7wdwc7/te6bwbJtDXCshN26OOWMQxZBn/tsPT2HP9V1llfax54/1556+1hxgui2\n3iO6nAkWEdfb2PeMl8y9f6xUTJmqVKUqValKVapSlapUpSpVqUpVqlKV11BeK1Om+EIRp5NPQMc8\nsQve+FeKxB2/LVX3cqsIduOuIuj1VJE886UiZFbVOC3I3a+jxN1UdLW1VbT1xed87xAUbisU6+JT\nInLvSh3+yZWisINSka4DFz/zGW4qCqCZva4i9vVAEUSfANjJRJEzz6JL11Kf74DsDN8Tk2WGevQB\natCLUJG3/gHP/Rs9xzRTRH+SwwAiqt7uKlIZG9X/+omeL76UlkxQE4LRrO2Z+w/UNj0q74NGPFmB\nPp3hVgEjZbz6O/09Fcp+QCS4BMmLyKcuLkHy0PNp1RQNXOQwI8jfvo2b0dUSmsANS6+mtsm3IIKk\nQEYMXVLhzflfa+w0/7UixgcDRS2DtX5/4eCQdY1eBIhvAG0hRQ0+jGBdXeCy1NPvjYV+7hyrD2cL\nGCYnimveOVA9L/tCt0afiqHThJFyC2ctnz5LC43dhL5bEwUOQNF7fdU33NX94pJ27CsPu3VLc2S2\n0Vhd5SAJcxDTa0XeV1dEaVGHX3rqrw7uS4O25sIaxH0ckz+eqF6HOH7t1EDRFpqLUaAo+k5X9XHm\n5OC29D0AcOP4ao8mzgVRX/cvoBtELT3vYqn6Psfta/lEc/Ympd4XovcCJf/pM42FxVYowi6R+lmN\niPlAdfYjkD7+HI3UB+lQ11m3NO/zyRNjjDHulZggcVeR/fpaEfF5DRc20BPvTIjn/rXmrUvOaVmo\njbs4JCQ4lOVt1S/fUF/QtfVKYyZhTjqnauOzz/Xz3rvq8ydL1avZJnL/TGjTnPTmOqrzHuiL19IY\neaelPshhcsxYP1eB6jsg77uESbRGY6YVaa7HjuqbLcithXH4LNa6012RN49mS9gmrznV/dpD8uKZ\nCy1cUpZb1WuB5osLYmHV7zewEKI9KCs3LEmq+vrYJnnM+TTW87lokbkgGuVQ7Twd67mHoIVbWISN\nmsa630bP5DmLEdUKZmqn1VR/dzuas1lNny+3uo9BH8W0Y9Nb4yw10ToRwYAZu+S2T2hTw5hIdDMX\nJl7jCH00WDld3PIaGXnSa1iVIGXOGocCctDTtpBGs6GP2RfqR+hw1DXX2qwXV4HGunVATHBsaTAm\nll19f4SuRAONFpYrU2vBDrimT2ACNT5EV+RC9X7BXnld188+618x1jptzYP6oPVz8raDLQvRDYuD\nG9E6AAVk/wpwPlsyJsOJnncx1+/zf4NmzEfqywO0Wppoq7StCwmaBXN0OdqwpLwFyDBrVorroItT\nw/oajRfy+eswiBJLZRm8fM6D947Nva+D/vkaL/13QH6f6vNfjJ/o/3GBuUKD4ain/d7ASohj+nel\n39eO+sdyDzZoOmQ4rTVhrZzy9wfdnnFAb58giBHkGhtH90EecT96+lR7TzljrNRhmu1onQ375OTD\nHvWXWufOU9Xxdg6Kf0dz4jn6eG3aejBkLp1rbC/naqPG3qs5ppRt6xoH68uH3XChMdxHK8FPmYsw\nLi07rDnETanAyYzzZY6zlcvYK9ADmmXMEdgRDkhrj725XKHLhqtJDbbZcA3jY6j97jsf/M/GGGOO\nBxrj/+lnar9fXGvf+OWJzjQ1e0YAlU8yzqFoOwRNtW+vgF2M0+MadkPQ0fdW1/Tr56rXxf+l/j/C\ncnK/oe/vHmi/eLAvlm67p+/PTmE1+xpbmwnrNdqSqQfzcaDnbNKep6cw8NGx22tozTLGmCgdm50j\n7bvDr3/LGGPM16nHN3ZgBsFKCGBoXc10nrg+t2fX/9P8trK5VJ80B5r3/SFs12ewdGCuFT7OYrA1\nM9bRFBc8F1046zgWuhoL52Nd7+g2ewoOOR4aI4OunuUK19Wfwwp6+O9+bIwx5r//U42Jzi31ZRdm\nnOeoXhkLagfY3upmLnBIi1mf6uxHSzS4zI7a0nwNnctr9fk5LIR+SV+iAeazPvs12GDortU5Sy0W\nGqtpCdMbFq2VVgs7JfWlb9B1smNjifZk2YFpiItrzjplYPZfwNYIC7IPOui8sc8WuBguE/1+PtY+\n3Ye52V6rnmNYwzctVxdqlwyX0z4s7u4D2NgD3k+2qs8a1nUTl1ZkBs2SA7cz5T2noXoFuCcG6CjN\nXM56rPdx8VJPqzXsmVqzY9xcGivzFQxvnBtdzltOQ2Pq8lKM6Oe/eGKMMeaL/1vOrfcfqO/f+/r/\nqLre12YfHOk9+fJMfVyQ8hGeab2KcrXppoRVip4e1TAnIe/7vM9HHZxkGZsnl3qfv2Ys5jiPuehb\nfvnvf2GMMabfUH0++LaYgx7uSjVc8UrabgcmZ2oNDhPVKzlUGx4Y7ZUXF/r+9WPdfw6j5uAIFyky\nVuIGY2MJy/mfKBVTpipVqUpVqlKVqlSlKlWpSlWqUpWqVOU1lNfKlGl9QxG1W+8JTb+YEo39maK6\nbdSa33ygKOHmM+VDFrAbgq4iUI8fK4L1ve/oc/MayPNMkat2pMhfD02HXqSIVUYe+/NczJIPh6rH\ne7+v6OE0VLT5TVw2QoscFzBjrxniCQAAIABJREFUuorYe6eKdnbvKip+dooyOUjoF3+petQMLAkC\nZfNCEb/OWNdtx4rQ7eIWMLun6OccVepvoQ0xIWIZoNjdHak9VokuPPkxzJlAqvFHZcf03hQacXqi\niHC50DPvdcQOit7Q353pE2OMMV/+HE/1gSLLvY4i6xPQkmGoPlq2hQaN5uSJkxe+JnKd48jSuA0C\nd/lqkeRLg8MUCKp7gOsEzgW75PoHV0Sqf6To7eB9cjLRyPmA/ObtHRgyUxS875Hzmlr3ERT8ASAL\ncl4z9DHiSyHLGcyV6wkOBW+IrdCrg9y+UAh78hdiHK0PxNzZw03k6HeU75ihrm5zguMaehYg3cNA\nY3Q9QdMg1Jy4V9d1NugKeSh7G6LCqaOxtCLSnow1liIUw8cNtetOC1X3psZOGxenLS4tcaTn3w5x\nwiBffHat9jUTtUcd7aHdnsZuD0X0RoucXzQm1jjqLInQjz7S9SczjSeHv/eDl24iv6007ume76Kk\nP8fha3KpebO5UB1qjlClqK42vIbpsHuI7s5Gz9aCiRajKp8scDsiN/TuM/3/akdte2B0/+VWKIW7\np7bY9PW5FsjC9lKfD/fVRx0i53N0eFyYKqNj0CLYBP4Kl6Rfq96jR7rO/p7mVOMuyMNMzzdET8Lg\ndrF+hmYXKM7wg3vGGGOarEdnjDUDq2wPNkLcgBkUaZ2q44LXg0zx4jmODKDobl317zjk+JIjjNyI\nSZbomezD1thhrIFMPI+1lhSu1tNlgm7Vl7h+nOpzZUsVCKJX277y1ObNw2Igf78ASb9YwdLItQbc\nzmHpke8ewmCKFlrPk0LjY43byQEMTHep9p5M9bmyxPENdyenhYNcDisDFslh7poLEEGWBdMsYRyS\nq1+nq6bWfSnVtXo7uncIs3AJYnY51TxvvUk+8wwXiWuh4vOaxu5tX3Wo90GJV6BSoNopWiN+X8/W\nPmL+n+iZigzXiBh6FuhSCxR/Sm57/6tprTZfM/aHRnv350YaCJkAWLOPM0NT0iema92Z1horDZh5\n46nYX7WW7r/rah3ZBlvzKqUFk2UDe2MFEyXFxWTInMhBsiPGZjHS3Gva/amj9T0v2LdwclvCXJwt\nVN9FCCsix+1qhTufbcBM7b4FiW3AcPJKO6nQFmBOGGPMKDkx60uxRJ5fKc+/hbPk7tvah26txZT1\nI5iOnDHKLQMMVy0vpP1ANYsVrOR9rZXBOqM9VKLA5uPrZ63XM8stzL8prpMHhzyT2iaZwSZyQNnr\nuuYGfbTFSm13CQOkZ8cWe+AMNs+CPaiOHoeTsn4t2Pt8zVMf98uSPXOxufleY4wxyVZz5wR3vCDA\nGQtWbbNEa4wzl5Pq7xP06pLMsojZc6nPmGp02ZdMqbk2X2qupGgX+p1j7qPr5Yk+59Zg5jEUBsw5\nhzPb5bnWowZo/Lv/4l8YY4zJ0BmMJ/r+5VjtWUdvbzuGRYDGmGOZOZn2ly39u5nR54cwNzsaQ4OO\n2v0We3qHfdE4ut8E7bXfsK6W0J/9Gs6S6Jv4OayyA82FOezlLmvBvMM+NNfPYaD/v0T7wRhj4qc/\nNm6IlgQM28sdnEe5bzzR83ZhA+cZbBT/5oyqGlqDLro0s3Oh6Ze4MpkA7ZUQLam6xtBspr12PUcj\nkHVx3cbJEFblBDZ/8wC2F/vDRQvWAdoqd9/QO42zz7vIE52znjwUe799D7YabKwS7bAaY8JbabK5\nsIG9XJ93YH8uYL730O8bvKu9ssU71hkMxxCdtgR2rst5O7as0lDPn6OJljOXCs5MOdpqXlftlXb0\nxY0rTcwVzJF76Akmc8uIgXHK+TZl7s22OmMcNLUWeWh7rVhLwoC1KLKuTJrT2RO1w2SMLuhAc9y/\nc0/t9rFYWjctA86KLc7rjXvUP0STC+ewuIlWjKf1urQ6hZwTvDOYVQvex9An9HDDMhuN4YEDc4i5\n0cOR1Bhj3GjH5GPHbGDczXCdjJdqw6avsdPH6aqoaQwMGHOjb3A+xIFxwXUWE9X9EO2WFsyRhHOW\ntTPewgbd4Lza5l0gRNMm4nzpH7NX4iQb3NH9fnD/94wxxlxwePrNn0m/dIPjVt3V2B12dP99HHZX\nuE1hGGxaU/SOXLJDcC62mlY1GOIxTOtGqjGw2GhfSBdq+y1M6Q10M5uFsQms3d4/XiqmTFWqUpWq\nVKUqValKVapSlapUpSpVqcprKK+VKTM9UYSrP8d7/T2QxviJMcaY8ylMkD+A+fIbRdKzT0Es3/p9\nY4wxbRwi8lxR1CJW5OscHQ2fqCgmI6bdFtKwuE909hdEJUdymHn+TNe/zv/GGGNMcE8aL90OCPwV\nUVWUqy9Higg+CFXPw7e/Y4wx5v5tIQa//pncoy5n6IiA2DYninpeg3jURoq07eOIUANiTj7WdQnI\nmXYixPxyaoU71I737gr1rP9Q9R3gfHEd1o1H9G6nri5/BuvH3Sj6GT8j/7inn85AfWIOhSZc+ERN\nLxUlfAZCtjNUo8ZG0b8DcknnwzZt+Vh1eCFmzq6rOt60ZKBcKUO1A+vAgLK1fUUxtyh9O6A6l58L\nam32hBi/IId1HguJKG1EHH2LbQHKhdf8BgXvHPV1D1eRy5MnxpivAujGgLaNt0KrukOhd6urBf+N\n7s8V7UC7hx/pOXr3FKluoXTeCFTPZlM/GzhrnX4h5LMFzWp+ocj3xY9/rfvg9HJ1AtKyVt+3Q4um\nCVlIQEJ6CxwxrIMYIffOt8Uqa90DYZjjbEH8dvICfZZTRaEL0L48VDtfXai+2Qz2WBtaGPpMSxCS\n+UjtHKxUv9ueEAsXFC2s39zpwNvgHHNXEyS9UN8W5CkbGBgdcvun16pDDXTqxUaox05TfXgNG6hz\nruuWfY3Z2kZ9N0FXaTfV5+axUDCnIVSqMdZceRONlQkMC2emeevgDJa6GiMeyv7TreZOH4eBnIB6\nf6X1agn68Qz3i/439fcj5ugExoWBBTEwONoYrZsFLhXbL3WdJ3fRaYJd1ThQXwW5njfzYak1dN2d\nDoiCiyYOY3ezwdFrpu97AUwZ8rUbII9pG+YRa4aBARTMNVZqO7Aqlmi/fKT7THyQk101SBOk0yfv\n+6alfoAeRx3nNVC/U9DL1RRkBpe+013Nsd0ANlhD/Zmk+vsGdkET5pVX09zZoFmT87wFTkEjkNYh\na4DxtT+kaN2s26npoL8xg3m4PVffHA51za2jeezVYVosdK097ulM6UPD50Gn3Vh9sI/jQAwDzzvX\nOrl9h2dzQBhBh3w0VOxJIRnp9w2MwJx1x4OpmDTRUghh5nD/Jkw/UvdNiCaBdWNb5jBEQC5TnM6m\naxwVcJpZNdG1gA0xQ/sqZX1GlsNsyJ1ftWCN3bBkATpJehxToo1WhzHiOzi7PNb9EksRwW2uAbvK\nXePcAot1cQELjDWn3tZZZRf0bAULxMV5yIENkrLv9h21cxv6XIzDl8NcyzbZy2fwMjN4Xy6EBZ9b\nrjSexqcZ12FdRhtny1p2OVcH2X5zYWJlW7TkrBsg+2a6htm4z/4C26Cw7mBuYPJz5jPf6WOzdJFp\nXi3RH2oNYGmBSnug9QkoewHjw9vVOTGJcLgCyW1PqBo5+6HPPEVPqUB3IYAxOQNp3c1fTXdoAaS6\nmmiu1NEeWKPD9Iu59sIW2ix3YIwEO1r3Wgu0cRqwjtAN6uG0s+V7W/Q24g19UofRkem86cOWci60\n/qS2b9ZoNSZq1xW/X3z+G2OMMR//RHPpELbT4OuwG3AtemtP63/JOnvXsvO0jZgZ7kV+qs8ftdEJ\nQf8Ewo1p44biHVoGFCztHLpbDvMRFliMG2ILzZyYM2awZUzR32lpXUx0mTlONCkkvd093c/KY7ne\nS4bLWwcdk2UwtC5gkz3TuMv43IxxObu2jneag7vHN99vOu/oLHLxsZgcv3ymZ3wLnYm1Y5kmapP+\nsebZ2QvcP30cIz39THP0LVi/U9ap8fKE7+thw7n6dHIiXcvmQL8/+Kacb7acx+boO7XGtCUONW6q\n+jU9y1Dh/JjBNmN9msZ8fxcnQ7SoBh2cHy9wBVzquTesM607ul+BHlQvgtWGtmKB9kk053MuzPNc\nfTK4f88YY0wn1XVf4KYaNjQmU09zO2EjCLeqXwMmp9O3WRRqvxFjq9bCIc1SNGFDzGCIQrQ3Lppe\n43MYlEP1322cxcye7n/TUuzybnel57h6rudfJtrfI5ifIev71lP/lV0cQWEANQ7R8kSHy5/rDLjC\nuSzHEa61wC11oP6Ky/CruswuU2NMZp7zbvSYrIYQVv3bgc639X2NhV2cv4I7utbde79rjDFm80ht\nMpqqj2q8o42P2fsctWELSt+S9+r2Hrptl7rfZoVOEmzdJXtn1CSrgSyFsqa2/wDNyL2mNFvbu1qw\nhlf6/8H3/xt9P9H6eQJbtQ2TxUHoLodFNIVt3KjpnObWYcDnuv9Xrk4whhpr7f0T9ugZ62GKrpHb\nU32j38KFqZgyValKVapSlapUpSpVqUpVqlKVqlSlKq+hvFamTImf+d98qvzGD11F3JIeEf77ikx9\n68O3jDHGXN9WxO3TS6kouw8VyZqRN/ciVozpIAbdGeg60zl56yOQiEQRLo98vYIo5Jy87uE7iqwl\nT8RYudWzDBlFvPZvE+EPFFU9O1fUMsSJwluKZbJYKxJ/geNRfoojBDlyw64ghf5dMWZml/p7p67f\ng1yRvOeoyLsg+Ps7+LNb7YVT6ahc/yehYfW7ymd3DhUxrA/bZmw1SshVvI3Dk0s2+OIL3WMx1f8P\nUHXv4v7x2am+X3SFMrSWauNHFzBWcF9YgZJ0YFA8XavtHs/UV51bQvBuWgZDoqwTtAvIq866qncO\nA2O4RK29prEQw0JwXUVzu2gzRLc0xkqu5+AGsoYZs5iLaTIr9VwD0Kek0PNO1laPCEcYmEX9KYya\nBMT3EJemS4u+kBP7VIyZ5ErtUX+haO7eHUVZyw6INs4KjYjoLdoEzo7mQtnWWImtrsYpybkeqBus\nB6+GCjuaNV5Lv0fksdeXeo7TL4SsrHEGOkanpSBuW8NxwhsKOXj/vfd1P7R+1qD942s9Vw0EfO9t\n1fMjnMQ6mX4vgNPG6HpERvXoOLp/bXnz/O066ukT3CqOv4OWwFJogXumPj/3NV8OcXxaNTW/vFjz\n5So7pw30TKNEz9xZC4kcd1B9L3AK+BxNmTfUVomjfOKYvGbvfSGSyUOtA9OH+n7jADYQCKkDyr5z\npOudoXFwjObKGFZCeaU+bqz0vMknqteLSPM8Qkunw/pm3kXJv6exNf9MrLiPHsO6Qpvrznd/YIwx\nJvDRJAAdXy5YN5kDcR9Ujfzy5lhzLdgBscAlLhtrTtZZd+foMvXu4yC0o7Ht4tqRfqb2er7V9dLH\nGgPOhDzrXRhPdXSYYBKFOBTdtKSwzqYOLnig+S3WUzdB6+YShAOENMTVZYXOSAv0sVZqjVzAOpuc\nah/DPMU0QA89o+fvoqOSGRidDdZ1tGnKoG5yGBN2XfPR1fj8c43JnduwhjpCYuuF1uvRKboSu1p/\nHPQVfCh9KQ4HGX084PuzEMeCa9WxicaMk9MW5Ic3QOQGc83T9TnOU6DKOYhmyJh1lvyOy51p4jgz\n0v22IKXmjuZqbUco3B1cQC7nGhsrnLti1ol2DQYjCGheV5sWmZ7TwT1jCZLaSl6NTWWdteYwIIsx\n/dFF64d8d7/UfeoILDlokZVTmIc4lC3PtMa4uGfVctivmZ5zxZxN0E3JfT1XBCOnIO8+ABnfst6u\ncBwKyM93apayY8zZmWf2MrVX51D7/AZ2x8VTrUHLCcyiT56oXh758Q7tih5e3SLlsdrT29UalBrc\n9mBreBH6JYgeNSyFaJSb7cI6u8CuKjm/wC69zlSn6RRGyQDHKxgYDgzAjD6ej3S9mYOezVbPOmPv\nctCnKDcaW1tQcMB/U7ZVN+dSbbnpv9o6EvR0v1t9dC1gZjcKrU/lUkisu1T9ns+1TjfY05o4VOYg\nrAFotTPALRRWVFa3DmyaOz5ssqZlOaUWLVd9Vuj4BGM0rNaq1+GO2mFv/9uqH+y6eKrrffJftB8E\nuJvkDa2PVv/Ji7QmNNgXzJI5iRPQhrme+vpZgwVy9Yw5eSadKB9XlZKxk9HsIbp2Xzm4wZAqYUmv\n6DgPJlEJm7lh9x1YDwXtPTcaT+OF+qHRhEJjjImi2VdMrOFtPdd2hTMkrLutq/0SaUezQqfDewUN\ns7rR3v/lxz/Ts2Jy47W0zq1gDrZ5hpXVSUID5WIkho3p4OTF+Sji/NtB82n+idbJriuGYe8I1tII\nLZpzzbG1r7741pvSx0vWup6T6p2h4Hr1uuaE1XZJYW7XA/oYxn0jgHGZ4d7Ug4XLunw51jn34pQz\nVo/zcan7hjC2l+hyROhsOJxd1rARAvRAQpwwBweaCyXMz4izw5qx4h7p55J9oOlqTC9hJ/dwawov\ndL3lQu1TpPYdTs9Vg2nj2PM/unM9NHGWp7ru2Scaa0PezRpo3ty0lCO1x/lDnVUT3ANbB2j5wB5b\no181H8Imm6ueSakzUooDZKsO07Ovs0e20hywOqwvmBPjJ7AOvZf7Y7YszPqOa/a+IVZV+wDtmJEy\nPe6s9dk6+kMJGlU5LsTxEgdF3lfTHDfTKWeJT9CpewCr0lXf12DQ7XWtA5euP9ro8+fXOldb/ZwW\n+ji3vvahrjvVWPmr//BfaRvNnc2J5oZ1FDvY09gcj2B9rljHrB7nUvffeGjj8AqywnHLy9TWNau7\niYZld66/z4fqgx5uoSkagi56pBveiVsOdOF/olRMmapUpSpVqUpVqlKVqlSlKlWpSlWqUpXXUF4r\nU8Y7xqEF3Y2pRUaaROyfKNL18CeKZpYv9LkuiMMaNsTbvtCgLS4gZ1tFf51Ska8Yj/pNS5Gr1RIV\n6I6i2QdG0dPLMQgNqtN37sOo6Soy98XHcn/yifAlS7zlB9KQ6d5RBHDuqV7xQ12vbl066rrO6Up5\noOMtSMM5eaapYmQfE1GM0EDYfVfR9ekARyGQETcXMv3soaKfP3/yI2OMMd+79S/1faPrZouRmVzi\n2Y72Rx1dm+UuGjI5Cv9dRfN6L9QGX8JOIg3Q5Di2zHEqCTcwI3YUXfTJ4V8WqtNVJlS/fq5nKu6r\nbW5aMkOUkmcOQAqaDhFs1MTdjiLINdD2nMh5DtI4h9HSyIQo7O6rnpdrXb+O84z7VU6ofm/MNPZG\nK9CnVD9nIIubU0WL77ytSHy4VdR0HQsp2HmH/Oat0JYY7YU5SPEGF6fkXCyNYIMmRCREY7VSJP7y\nGU5i72msRZ7Qr+U5DjEZaE+OI09bY8snN9YbKkqcoGKfMoecUmNkUOjz8UbPuzolagzCs0TLodVV\nlLmFI9kK95TZCI2Ba9xevvWB6nss1tj13wox8umnq1xzuwM7oXdPCEMv+IdMgZuULS5k6Req+/Dd\ne6rbQH25JT/77YY0UBagyt2poLCrUpH4LkiA2Wgdml5oDI8ydCzOYczMVPcG+kizLToQ96Qp4tr8\n40wolxfqmZ5fy4nr3l/o793v4k7xQ913CaJwQP728jZoxpn6ZtCxSKDq9+X5E2OMMXcvNRZaD1SP\ndqQ+HVmNrUAsqMtbum8t0vr41DpywVjcQdMmzYRu3Rrg9JDiJoK7h7vR2D/Elch1cDFZaU5tcCe5\nOlM7796H4dNSffJLXedkprm3fa7nWsLGqjWFOAfkp3fRJwm5b7ZWvbzmS1eNm5QWFJYE1HGyZH1f\n4ggHY3KXvP+8zZxB42CIq0o7Y59qcR36wSHHuQaLrzjQXAj3uQ4IjEUDxxFaPgitLIwxPtd2cRVK\nTzUGszF9j+5Bbx8UvYfGCKyDqdWYYb7Wh+yBMDmew9xorDX2br2hObLGXeiSuuRoGOzs4R6EbkaG\ncEO50bp0WqrtWqnG0q1crC2/i7MU6FKjhYMLbbRe6/sFGmVmoPuUaB70cErIcOBKY1hGczQDBnyP\ndbXE3S16E32Ph+gluTByblhckOImOlVpBzR+DorOEtFDW6Gs4SaHxlk9VfuWBq0A69AASyTCqWd7\nqTUkXlldOBzZWK/XsBYKy94CJWwXaNOgExLg7DOHMWOMMY1VzTz8keZGSrsHCZpxG61ZzZnqN0U/\noFhobOaM3RVIdYrG0aZA2wZNAwcmUtYE8YYJ2nc1xx0YttvLqUkW+m4H56gt6HV0qPXmcKbvnuN6\nUS40FrdTjekNjjMBbNYULZPYQ3etq/nqU5ftjE3L6vKUtBFtuYCt5PIBx2qc3LBE6F/U2jjVoJlQ\nJpbVpDHvtHWfbgJzG5bAYq7nzWDF1dG6Sbd6fn9F28OELtH0cmEXNOYIJ8EihkRrhuzlVuNgE8Be\n2uDmR7ttYRJFvn6/zRxPAljEjto9XqHtAsu5gMFi0LZxGfObNbod6NetaqrnTgt9kYx25swWot+X\nF2i2rGA+lejtrfX/HqyFAL2jVYPnGWnuuL7GbIw+VQtdw8Ii9ejXFfFLvaXVamoczoxZic4I2mu+\ngW0QWf0ukHEc0LLoJRvtt5VPH4l99PBnOrd98/s6z0We5t9orrNALdJe10IgZ9LGeYz14tLoWful\nvpfPYC7uaU5cPVZfXYD+H+xp3h3/vhjpa/TtPvrPendp9NTW+zja5paFleCahvPZkvv3YS8hCWM8\nGDcFrKdWT23ko380O9e7Tfxc624D0m4EA7xAjy+DLRbB9MBM1QSwoYIx7wkwBttHzFGYINaNacv5\nPXE0V3aPtf9smNPLc84Qdc6zsZ7Lg5GUwfjPYY5jqmfOWadvd+mHue6zU7CHQ97douV2zpjst15N\nnyplPU92YAmyv8Sp3Vc4ezq835yj6YiWTQj7tnCtLgrvMbyftOxcRQ/PZ1+d8f7Wbr1kyizLhfni\nk7n5nd/XOvAnP9R75OW5PpN9pjE9fgRDBMZjynq1HcP4g8G4RQvQZaycjzU2PLSr2jX7bmm1tGA/\nDXBw5dzl9zlPwfZcLvS5mqu/b8h4mT9Cw6ZU377hw2Bh/Xc5h9c5Q0XsbSvc2rZ2j7vNOglL1JnB\nim3xzluojX3mbMqe2eIsMH+GliP7VYR2oYsGTei8XI/+sVIxZapSlapUpSpVqUpVqlKVqlSlKlWp\nSlVeQ3mtTJmlUfSu2FFsqLgClSpgiAzFEFk8F9viYkUuafiuMcaYO+8rypzPFBmbOEKEr54qOt0n\nR2xPQLIJm/pHkSsKO0pQ+Sfnq7NSpOx5IMRh+qXuG7+tSFerppxcFx2O7UbaL3t4zY8vFYmbn+m+\nEa4dQ1gNPSCNJWwK07M5Z+QJ3hZzZ5EqyuwB8p3Odd0o1ucmoJPeRJG3r38ImlhTZLPcFwLVJPK3\nSZrm7bswSowYDFep6tYjN338QAhXmJIrDsKZXagt6+T9RbjrtN5WG4XoR8SgICfP1GbrlSq/dx+m\nBNHQsvdqQ87J0CjwQb8IMrowQ4Z99YXNEy7JjbUOLlvyHzewibafyjWo0SNnvoV+DxH0NV0ToZ2w\nhZkzJXe+4cF6munv1zhqfRO0yKIp8zHIIa4dRV8aDkFN7V6j3eMVLIAMFylYB5tY349AlQyaDp02\neexoAV2SR94FxfdwzQhAehs45dRAFiboari4s7hdmweu+jWJAnu+ZWWBbMA8mpQg3JiaLNFvahS0\nB9oyu4yjcKHPZzP0VDzNaYNmRO1ITJ/WfWDNDMR2TH/foDx+hn5QrLH67FKoVE7+cI/czpmvSg9o\nixDXjWJf6EoLDZTLfaHdx2iy3H2ByrzRWI6nKPafqE/WJN/3GAsLXI48VOkHnuqVfCoE4CnuSNNn\n6ttbfyEkMnpXfZDD1GmDUm18kMtj2gp9idMvlKuf9IW6mWOp389hhGSOkI3rOvXr4GYCY2hdKvf2\nN38nja6j+8ol/nAo5uEUBHcX9tQl6ve9IQhjBIICwlibko/+TJ/POjw/DMg1mhDPL7Q2rEd6jqSF\nbtGe9JIOGPsb7PLWhdp5iINCjbHWmwJX3bB4Iq+ZdYi+E/ocE1CldKI56faEHjYZL9sRiHFLa5u7\nUL225JknOFZ4jJvC1xgHqDFMRROBdM99iwDDMLJr63j+lduEM9e8qtdA0HZB1HCGmrv6/wJNlQAE\nsRHq92Whm7cS1gHQ8bxUH2zYYxK0BwLYUFkD1LiJOwhoVZ+5YTW98lBtdQSEGjc1xuJr3d/FAaV7\nydxr6e/Nfa23xRh9EXL656Dghn3E3bD/RLr+buuYz+GomOKkhgNil7mewD7qwo5dJjdHt40xpr6B\nYUn7BgUIttUoQ5stjWBDoN1inYHquGV4gcZqDPut1WYdtvohO/r+DhpdqzraASu1V4cxPrGMVNC1\nsAa7DTZcxpmgjpONMcZ0jt8wSUa+/DXj5krtHOEOtcxB9zjr1EA1tzg6ZhGOZGirBaHVDdHfg9Sy\nLRhX6LXEIO0u1ZmuRian7Vo9nW9mI3SG2hqDw2Odj0LOZQbm2hZdBw9tgszq52x0swxW5ZYxn8P8\ncxO1ieuprbsBqDN94I5wCGOdDF8Rmmxaxs1YbZqiLVDPdT3fYw5zdknRcWuij1SiiRXg5peix+On\n+n6OdpWLC1Nqt8KV1R9B7+IK5zS0Tma5zjh19PMc5s7W6hWhzRNxvi5wobJnKYPzjWUnhK7msNtX\nBRyYJSUsrUZH93FhVRQQeJwMzSAc0ZAZMksYSgamueG+DVh2G/Q06rAEC1jJGfpYNXSctrArMs5g\nLnMktowl1q46TPG49pKd7Xu+STgXl5YZg6CLxa836JWYtebOlP5td2/Ogrh4Jlate6D14OD35RQ7\nfaI9eQVDY7+vPl4wNsJEY6HtwogZUSdYVwnMO9eDPTSCkeLjAvpI7Pmgrb59+1h76ujb6svtI7EV\nnj3hHQlmeKupdcGg6efU0MZy1ZahfXT2CdOwrnawsnDls7qbLvuYFSZqNnW9jD5vcSaZ1WCK+3oe\nF22Ui8dqv50d1bsGw8iRiFDrAAAgAElEQVTH+SuHIZhHOlcOONvU9jh7fYFGTKQzmU/vei00V1bo\n5uFQ27SMHjTFCnRBNgVaPR7MHrQzUw/GKGJBy5o+55FpcNNSPxS7+gHvcOVG9bk6088TdFVSxsEE\nJ2GD5ldgXVOP9P7m4b7UxW2pLGDCsG+PL9XeV7DLPz17/lVdFkVsnp793PSeqDG+gIg8e4Tu5Ujn\nm9pKlenzzGaHeRnC8uR8V7J3rkewSLnPZvLEGGNMWFedmxMcxWCiHKCTN0PPaBPpmSzr68f/7peq\n3881Rg5ge3kwn/feVL0y3N/uQNdK4KBkbVhD9HkLdtYY58HZXPdvtmEd1Syjj3dj2KItGHobzjZh\nrHNh4aBFyLuZhx6Tj45b9luWkYopU5WqVKUqValKVapSlapUpSpVqUpVqvIayut1XyK3eIAqcuwp\n8hWD2jRWIJBLRca/cUvR3ClqyU2ixecvFJmbgcq5qN+3uiAt2ztcFyXqDc41E0X+9o6I1O0IxbuH\ng07W+x1jjDEOGghtWBJLEAanQ33IWVte6nn2uyh6o6K/WqMjUtf9hoV+X+0Q1cXRoNMg34+89Dv7\niqJ+cEcIfeEqqvn5n/2lMcaYTx4+NMYYc4BC+4O2vn/ZFSI1xW2q1jg2L3DfaQaKcs5xNqnVQYdR\nonZBCjOPiDIe8FPERdrk5TVwl1j7+v/FqaKMbz9QXX780Ue6T1v3efv4e/oeyO5NS0B+cdfGD8nL\nzsgzNiB1nSOcqfbUl7NC9b3eorRPvl+yQTuHPMcMrYAM9Ck80XM5aOeE5OTfpj22KPl7c10/wR0p\nRSU9mKOfAZUkXYCAuDgLEJ7dbNGzILAegiQ45OR7Nte0Sc4sjJISlsSSsd5Gh6O1VTu1bc4/qGCT\nvPESxsweaJnDfWuwxLZDIutoxORNPUcJzB+2YGsR745j1avB9VyYSS1f9Y/QSljCQOqHaO6Qlx6A\n7AyPYbO9o3ETnxNVR8X/JqUHqvTRbzQ2Bt+XWnyzrWueMc8LtAk2P9F60TkSoyHYoLMDKjSogSCC\nvM67qovna+4MibyXtLkDar6Y6DovXKE3Hx6IWfd5KObO176ldWH5mJxWUPHtxxpjKayq7i20ZkDy\nLLqdHUj75kty5289Uicu0GS4+EJjMDrUz23BOoWe0DZROySsW+ZrWof6jI2cdXOEG9UuucQTX5BJ\n0+g5w7ra27tLLvBa9d+cCsW5YsztkEeORIQ5naM/AaIR9TWGmp7y32NXY94v1W87jvqzQPPLZazV\nl6wh61fL31546BgNcMzBmcj7UvUYk0O8w+V3j7WOXqHzMfmVmJhJrudMyYHehcVWNHHbYo6alP0H\nRCXClaSDXsjsWgwB5xKG5mZiwpHa9v6e1oN6qM9MgCqtM40xGovONfpmoOUlbmt1GGsLUOReU/Ow\nW8eVAT2LCL2kaY26ljifgKylS+tCQR/A9mnBdMn29exNWD9NHKtSOt3HebBJW4Tk3G/e1PqCjIYJ\nQMvX6Aa1rdaWgzZMyhywbnJohxm0b8xacytEL67EYc2uSzctc/vxAjYYWgc5zhIR2msecz6ASbiF\nzhD4tC+sgOvRE2OMMXGseh3u7lFd1Xfc0lgYf4kTG0zEzo6e17qSbNE0O3sOUyjSWrEE2U2S66+e\nIZ9FxocxdMfRGpejZ7dhrXM4D5S4DS7XaEXQng2rSQDym4OCjjkfNBmPHfLmHfbXFTpRdU9r7TqI\nTQZRwSOHP23onhi/mGJXfRmhHWA4c2QwmVPqukBnogFbx4MVW9BGOU4tASyp/lBtuObMEK01ds/Y\nWz3ObXX/n8/x//+XDC3AgPXCMrsbsGTtmM5oMxfHrhS2kWsRZBiEdZiADgwNn7lWB83fcAZwGVMO\nrFiHOR0xRxzOMAVMmRqQrD1jOOt/yFSZ4zgzt/uY1R+ib0uroQKTpMnnF/ZsmKA3hR5Swd999pPU\n6nXgahr66gc/gV3twSZrWKRZ9YhhB5cu7lowWsMYFrB16gFJLxzryIb+Euy1nLNqBvvXGGM2RcP4\nDm5Z6Pet0eDx0H7w0CH0G6wloeqRpP+8a8rfL9266vaD78qlsgiE3v9y9ivds6Nz0ryhv5dL2KUX\nsJpYB2c1WEjnMKLfR4NlV3XNf/FE14NlkLhq6yauS7UDPct/+8P3jDHGjL6hd4rxZ2LXljCTDefl\nlKyDLmylJTpFfq7rmY51JoS5hzPXxUhnkwbn/Tms2KgtVm4WX9IwakPrWlpj3/BhNOZbnVFCtAc7\nOBzavsyvNPcWpeZEjX3P/b7OLDM0a5YNy9DR2GrAwlqiU+SV1IO+tmvJgv9vWT0i9hUH1sXSMnKW\nWlsWI7GV4yeqd+cIy64blukVZ9NUa6IHu806Xe7A5tuSdZFewh6eqD1f1GDKnHCWwmkTI1KT4UKV\nw9AcM8fPmjjerSZf1eX+9x+Y9nuuacCmnf6Hv9A1MpiFsKlcWE0en7OszIi/r3iGMoHV02besE5a\npmOAbk8eck5FG2uJ5t6zmfYFt6UzUGNXfXDY0pjqrjTWDtuaQ7WmxkwDhuRyqniCA9tpzdxo4cjr\nsYcu0AIb6PhmthHnTjQh2+irhWhRbXALTOvq65C5sEVfqQdl8JSzWaelMW71Wpf6+j9ZKqZMVapS\nlapUpSpVqUpVqlKVqlSlKlWpymsor5Up02+S09knGhkrgpWsFQ2dzxRF/BwNme/vK9JWP1Is6eqh\nNBGe4uSyt68InXcfTYlYkbKSKG06V9S5o2CxWeaKhC3IVYvJDzwA0SjIsa1vFUV9AnrfyFFjxr88\nbJAbTZ6lVV3eS3XftREaNlwq+jlrg/jMFUn8zNFzfOv2t/TcH6keP/sViuo/JG8xemKMMeZspBy/\np88FNc32VJ83NtKksBYRqa/6ls7K+B65/eTq76ELYbZC9oLCKlcTJe2qTQdT/R4fkRt/prZZvEDX\nASbFiGhqQeT6bKv/PywR9HmD6OSzl5HZm5SU/OocpX0P7Rbj2CR23e86heECstDuoFORqG3cJvne\noEnX5RM9N44rzgaNhoHartlTZN2xkXWir61r3TcK0YBBV8Pn70Vd7dvuwXboodxPpHpGvrV15EqJ\ni8ZEmxsgFM5C31vPiZjzXBmMm/VCY6uHK4oHSlXfR2MHMflWE9ZXYXN9yU1ukehdx0HnTP1VkMPa\nLHXfZFefKyao4vetqxXsMrRztt02z0X75KBaW5hMvn53QVDzpube8FAsMBc23JMn0jdpLW/Ogoha\n9tnUxy9OxCjr7+I2BJtoF3cPs6d7RuhZZBucUoZq4xjNkVbIPJ6CVMLaSucgajZXFbSjg8PJdUTO\nfU19foA2yRo3o9TXerazEvPC4Bwz+jWoywvQsvuMoVIh/CEMlHuuUKHzQ5DSKa4eaAzMQQCz7ymf\nPLJOW009l78mJ7ivsVtsQKM+V7751cdqPxf9o+B9/f8YHYqDofr6KNRC+uIKF7ixniMFiTRHqvdz\ny36Y4KrX1pqw3RHi0cMN6Q4aAK0ucx43rGyJ9kJdz1f29HknVX7+TcveA/V72kPPBHZg/3e1brZO\ncO1DJ2UyEqSx62jt+xU6JqNnWu+7b6Kqf6Dn223jmNNX+3Q2+jkCZYwnjK8uc8OuIbBT8kcjs6hp\n/i/WaJgcqI7NAXoUl2h7wGSYwlwJF6xzgdaFhq+2Lbugzy9wcTtjr7wjVuiixC0HRkiJS4VBM2Z3\nho7HFc4JtIWd3/4aBglOZz6odPsENiht5vbZ0yfsSRHOVGiqWKecNnMothnouE9s0CXpdzRG7Fie\nTXWdXqCxlsL8yNpoIeCycdOSw4qy+hkejMka66sBna+xbkcrEFf2Vx9034d1l9qzAvtYCQMnRx+j\nv6c1qs7a45agkSzgrUuNkasIGHECcxIXJePrPrPkJYp/MbkwHgzNAawT6xJSzmhoq8cxs1pz1sVD\n17/GnTFk3XfR9WjxPGmgM0mMjkoXTbSLRGvL+kpzaVsa4y3Roiph20ZCLsdHMNTWlrkC44P5sGJd\njAvWE9rY7r0O7mzWDSljTJR2T8SdY3xm3dVoQ/7uokeRTNrmlQpMEn+Bdg26bBZR/opBw9ko8XEu\nSzhzlXYMqRSwClI0uzz2zMyy07CmyUO1l2MNu2BSFjBYQlivHvp7BQycjPYKcDR0GAM+jMuGAcFd\n62dEvWPPsmM1tjJcDH3Q900DlrU9W3Ck8EGKISMbD90Qn7NPwXNEaMas1mqJAo2gWm7PRqyLnNsz\nGCsZzMms1NpRg+kT+uhv0L4cCY3396THwqQwPv1hQMAjmEMpGkYlLOdtB+3GmfojwFHsJqXW0frb\n4pw1XUtHzkUD684Hekdx0SrZltpDE/Qn6zu4ovGsn0505u8OPtTPr2ndjj/S2N2FybGmz1pnWi8/\nKn9tjDFmB/mPfkf12WcdLWAVWQcaH82UBAaJ1VpxGGNxyKi1DD7Yt4Z3t5j9yLr/jK54h2rCvNth\nz+taFz8YMhvtS+sz+hg9vRgHrzLRu9x0C8t4pop1hlr3PesyyPnVRbtyg/5QOkRPdIRWJIJvGXpL\nl7C9gl2NtQm6dk00cZIrtUc9YL3ua507ggH+7DP179lT9LJuWGIc5s7YR3r7sEaoTwS7O2uK8bjT\n1KCeowXkPsdlCg2cDszJGN3AAZpF00T75J/8L3+qzzOW//Z//bdf1cXtGBOfLszAzrPSOu6pD9Y2\nu8A6Ie6pD+eW5RrajBOc+aaw32H1ZlONleUCJ9fa28YYYwook/0P5Sz74Dv/nTHGmObf/sYYY8zq\nlL7kXFl7iz3tnDHQQvNxQb3Hur+d9hEucb7VteuoTc54ngi90DXr93qNQyVjdQPDs8GYKWlrf63P\nOwHvAwnneBfWGTp7ne/oHTsd6zm93yIqUzFlqlKVqlSlKlWpSlWqUpWqVKUqValKVV5Dea1MmRUR\nrDnozK23FfGaKihsfDQDSpxYJpeKpkZDIuVvKNJ2/4hI3m8UDfzzv/4zY4wxqasI3e9+V8rndfLC\n0xeKIh7uoYsSgfKR8z9GeyAgojellZweES/qtbCe9ORve0TeapFcOpYjRdZmsBo8FzemW0KYrxZC\nylOi6d13FaXuekIxQ3LgBnVFedMJGgbf0+9H7whxD18IfSQ1zsSgWTvkHHubldlr6hmvmjbqCKoL\nIhjhppDv6pmjOc5NddW921DUM8Md6BF6Nd98QxF7t9S9Lidi/xwM1Fa7+4pX7mbqi/ESGfEbFg80\npA4SGKMhE3G/BdFJf0Zkf6M+jLugRzA0ElB660QQknQZkHsawNpqgvasAbXq5DevMxBfNGFitHR2\n6jCFiHTfx73Eols+ecrxSqicDzJdhmIBhCAlXVDELY5haaTnWM1AgzyNmWFHfW+ZMle57lcjB9XF\naagB8umQqOn0YEuQz+4u9PleXfU4CzQXyg35ormeqwSxcEAQMvLjAWQMoJlp1BVVTnCFWgeq92QL\n4k3kfjPV5449sROctRCAs5/qeSa/AQ3d0/i5Sdm9o7HZO1CfPP2pOu/WMa4Jt3BSCdR253U962gC\nMkeS52imPmyS+3pNLvtO3yJo/1DxvjEBCszRa4jUdo0zPcPzM6EnBUhuAKPNC3Dz2RdadXCtMVIj\nZ/bqWt//8qk+N/I0dmMYOGGp+me3UKmP9Vyr56BEQ6HouxvLvtJ9ZwX1bWidbS5APmBn5XfuGWOM\nSefSqlrBauvhFuKTc+t/W+jQzl2tvz/5f6Qf9ehzOZsdfCAtri1jPO/AboOx5F7o78cLIRKTWM/f\n6Oh+o5ixvNBa4cGM2YN9Zzbqn3n91bQgtrA8kme2ndT+V2i6lAnMRkf92L/U79NU9evBlvMfqP7R\nLnnnAeyPu+g7OegFANXGF2r/5y80HmuHuv6wjQYDa299WDMR2h4u95xew9ahL9cHqnsDx4B4RRuA\nOm9hrpjbWk/2GrrXM5wEMo8xs4CdcBt9oKY+dwwMn+3p75GnOudXMHSeaXMOdtCZuKt5HINOB4z1\nka9nrrUQFAGZc9BNiliX4oZ1h9Icnh9o7A5gGSU4q/3mkVhknSWuIS0Nxh6udiHMxlmh9nJwMBtY\ny4cblhb7yyW59gct9o+W+nSxEWNoF70Nj/Wvj3NOMlF9reaMReVmtGt/B0YhDMOMs4NF8yYIklhN\nrRL0vwVal4OgurAOGmjFTEA1jTFmrzMwDnpOffY3F22vBHaEB1urjGElXMJIAtW0zjcl/TVj3c9w\nkmgyB+15oMT5Zg/U8vFaqGCv2DHTXPcsYLk6jI2Dzj1jjDFzgxtbojGZoi/hwWir4TTig8KnMGoi\nxvq6hpYAukWl0dw5OddYcWCd7exprPT7nBFAYHPr7HjDUuCqEYacuyDgpA6DDUZhga1THbaYZbm6\nOGlZk58QTZgSza24juOWdUWCeeLCYKlZ3TcccjbMvTUuUxFjwyKu7kL19dE2WMDa8pcgy5yt2mhs\n5ZyhIvQ4DOtTkOO0Qz+0OXssPe7E2cLH3dDEul9ewsKAeZ6s1T/Llr0+rC00fuYNXT+AYeWiMenn\nVstGY62HLl/swtLOrCMQZ7XQsnxf7hN+UphwY53o0LzhnO3BXi5gypZ00AI9kr7dP29QMhedS5ji\nA1yTPvgX6Fsead4WC6vLwXn0PmOLM/9vPtY7wsO1WKE//H213eG+WLC3/jccXya45OF+5GB55eLm\nM3+GFlVD61Qjgx2L3pLL/Tce+j5oHK55P7A8vIDzXchP51rfy2u8T+BouELLbFbom4P35Prafot3\nLdi9WxfBo43m6gIGfIN1ONnCjh2rrzhCmBwmZDHQ2tBgTm3QI/ETrb+7uOGVsDjmbdYOnBaf4XIY\noGvUR3/knDFz+5j6DdCvWvBexFnA29O+cISzbh1dz5sWB9aEw/tMlmos55YxCrM/wYHOZ/3vdGG4\nJ9q3/YXaecL+s+T97pI5cz3X8w5hkZRooHWCl2PaOTkztZMT42c6q0dkGywCNGB8MkjYy7fotcUN\nPXvXU50iX23oGjJU0ERcwPq6xAmwieucoc/KFH26RGP66b9njH2uc+LqRH3yxU/FoClwSXr/wTv6\nnKGerDd1zp0b2KQ9zpk5DlwOmoBBX3+vj2H04Fzpp+gesX8loXXKVTtMc7g4do5E2vtmrMf9d7lO\nW891AmssW/3z78AVU6YqValKVapSlapUpSpVqUpVqlKVqlTlNZTXypQJraozCe3pFU42kaKPVqH8\nNtoMjz4C3dtRuPSP/rWitKuBorCfjKRHce99RbA6eNu//T3lbz77L4qwPcfZofOZImhBHdX8liJ9\nbdgPTk3X30WJ+1lh3ZyElDbIX9xD42aaCDF2V4qYleRCN8mzv9jgsrJRfmQ+0HPsgyA9PUNBO1G9\nv/mGIoxb8sgfTXW/9UhIds0ydtCacFFK78KKyHNyd3cj8wVRS4sKtOuqo99Sm4bkum+wn8gPcVoh\ngrsZgcaAEO7Finj3aorYl+ZvVMfP1EbD26rTIej++bUi9osS14wbFt+36uEgjEQltyUMGVwfwoKI\ntwvTxFFkOMEFyPT1+bZFjEHVtoyFFIT3KrcRc9U/DnXfFkjn6FrPv7ur+xSwJb48lfr8wTtSub+Y\nq696U113jJZLhIJ/HVV1B7RqHFiHFlV3caHPby9Ru8+p55Ui3PlYY7dPZL3WUn1slDWgnxyrpUOe\nekAOcdjTGB4ca27EMyExM1yVarBOatYJw+aRtnT/1RXoH9oF2UbtvW6D4KLP1ACN8luKni9RiTd1\nsSmSU83x8ceKHg8ioZmdrkW9fnu5MmqDvdvKSR394j8bY4x58TdyYbr3gdApZ1990kVjIN3RPZYw\nX2pnasOZUWS+Dqo0fcoYHJBrutHvPkIYWUNzxV2KIbc5e6L//xv9vPVHYpRcoini7TAGQK9O0dVo\ngq53yBcuDHPzudD/Sa688y1juMXYWYFGnRdC8dczPecDI+eH6VjrTTLW3HNwm8t29dxD1o3GSn1z\nFYmV5fS1nj1H48sn//v2gVgKk1ho+F/96CfGGGMGVjvmFpo9oFhlpp97M42FhW5nkkJzqwZSbCZC\nLHa76EPBFikXMCZruEcdk0vcu/kYMcaYYV/1jgFOJ+hIvXj8c2OMMY/+Xz3H/a7G5PKWdfsQ+vTW\nMc40LRiTqPSHx+Qsow0xj8WQ2qLVUKzU/ik6TG0QoulW9b+CtdIND01SW/KsausAxscEdwwvpq9y\n9WUDJ4EyUJ87idXl4DqlmGi1Ej0fSAFuHVTfAaGFGefirnG01HXXGU4zaKVkOG8Za452TZ42WOoC\ntMpr2KMFbiFHaAawd9eaagPrdhSh7+NHVtMEjQTW+5T1LAZksrpPfagwTXRCrhY4MLraO5MS+ugN\nS0neuAtrY8ye2+1oTs5xoslBch0Yku0djZkMZuV0qu9vcblKQbAXHT33hud78QKXFFgVPiyQGWeF\nCAZijk4dQ9YsrtE/Yn920RMxxpj8amZKqIxj9sM9T/UvG+wraHa5M/ZB2ADOCqS3B7uC5zwEofYS\ny1rR7+tr1X9xAUt4T/Xea1hNNMcsH7P+GK3DWzSWWtS5M0TTC4MWjl0mZcxtYUrYvcZHt8xBG6Qf\n4jh2R3vMHgjvZKp5WHpCXmdzrc+zK83bqxNNhrt3982rFIe5aZ1NYgPiyxnEauI0Vrr+hnXAatyk\nVr/JuvlsOXOhRRMxxhNt0SaCyVL6sJkcdIHQPwpYXz3OqSbQT5czzRb6bwkLC+KjyXEn9dEgS3ie\niDNDxr7ioPGCGZRpsF5bxlIjp3442lhXuiigfWBfODC4s5x1k3ZJYOi47GcRcybAxaWA5RVbZzC0\nX7au/h74ul/BedenfTyYPd7fmxvexjEZSL/vwNSB4Z6gDRElXB99RI/9ftW4uSNkqwm7dZd1ItC1\nLj6TfmTHaA64t3E3Cq1zlAa/n+lZtjMxBPNcc2g5l3tTaDQ4vv417UXuM1iZuKsG9E0rg60KG9jh\nXDvf6PPWMWdDtkLOulRDU8WuL12rWZMw1mHM5UvOc6wfbbS9inv6/9871Hl4//v39DwwTX7xhc7L\ntUtcUnk/cXCwdHBQy9HmasNQ38KCK9n3/CbnSxwgk5n66rCm9i4SOxdhN8NAOXPQtsQabsM+Wc/Q\nsaL9NtadydP6vrGsOtxWPatzAmnCmaFfdcOyZeyxnZk57xedBQxTNGGGHOw3sMjWE975yIZoc6h5\n4mgtXJI5EHHG2j3WGti50Ng+efipfl+/1CLrzFfGu7NrOsz/xVZjqYuuzdyBtYR78Spi/YBRUlCH\nGrqTLeZnWtPYCemLFevFYsvLDsy1px9rT/vkU53fRz/BrXiAixHrxDfu6Z3T5739TnDPGGPMZzgd\nTlro78HMyQuNoQS9vnqsvvRhCRWsF24C+xYmu8u6uEJnKeryroOrXI13GzsX4lDtQUKOmV5r7v7d\nL/S+fvpLnTO/dk9uo/9UqZgyValKVapSlapUpSpVqUpVqlKVqlSlKq+hvFamTECOlknIZwS8O8SZ\nIAU9Gl0LIQ6v9IFlE62W54oeXz9UlPXjh780xhiz864Qk1ZTUcKzJ2IBXBPRa++jvI3eSNGFWROS\nB7pUsxyGii4/TMh5JcpcBzE+HChCtp4r6rpdoJlwWxHAOgyXOc9TDkEGYCv0r1XPmNza2rXQrADU\n8+lf6j5ndUUM3WfKL/2vP/qpvn+g53vw/vd0XUwEHBBvgyr9cl2Y/Z4ip6sdHGD2FKmuo+nhnqjO\nnY6ii2scT7yv0ApCuY6eMSR/7nShPuiA7F2hs9M6QGcDlL5BfrcJX00Hwkch37pfbGCc9EA5NuTy\nR6AzOWHKEnQkBFWJyZMuic5uiWqWNJqHs8AuSHCJ9kuT3Nl4pnbbbhUJ3/PFMLnINPZGjxQFDf8H\nfc/LhMqFMEfqqcZYDa2YjEh+iPbKbXL313McFTzcLwKuh1fDdoHGDfW0Ob4NGENBoOdZwFzpLDXm\nbJ73MlLEPFrrc8untCNzwauD0OQgPNfLf/j/IMFNV1HiuK16Z4Gerw46tTgHYenq/n1X7K/LROjl\nfqBoex89lYXR8/Qc1SuMsU64Qal3yAn9Hd2jNxcL5yzQvQIYKce7qvvBB2/oGXG7GDzXWJnf0fzu\nJGJ6NLfSRyo6sKaucCKJ9MxjUPj8sdaNEqQymeiZOz3yqkEm336gNvv4Ga5BQ1AKRxpSPu4XW9aH\nOnnnm6HGQLICOo11382umH8R7k918sjzEz3X2YmYM34NXaOHqmdrXzm4TZubj4hXGDNW9lXh52sx\nEFuerp/hnLX8UmN+ey1EIamj2fC1P9DvL/TcU1gHB0ZzYYWmQgDrKmHONXHkabVgNWxAD9EgKNDV\nWBe4Rc0tGvVqTgePfynmz8lcY+1OC4QZZ7eDO8qldtBRatdUn14dBLiJU1EPh7R9ix6CiuIiE8Xo\nbViV/oW+d2A1x1IxBmboKy1P1D6N+y1TD8Tw6FmUF8ZfDvPEok3zrtqiHZN7j1uRg86Du8TRBA2Z\nmL0vh32awPTzYNQU16p74WisjGB31nFEqaMx47VZV2ECLnLm6QY0nFz7YKj7rgesZ7hW9HAmmPQ1\nBxs4m1yxrpWP2bv6MERw8din3nuwAzZosLRq+rlBf2Llqk/v4g40W78am6oFyraGIbkZ6wxQ8vf2\ngD5HdMxhzocDnBnoNxd2WThTe05Gmnunp0Ifa7gtHTQ19/dgx9UGGvsrmKVbxtB0rucJrZ4KDmhR\nS+2d5S/xtTJKv2LApDCdNoVlL7COW8evhv5eK9FnYX33Q93PQZvMbEE7rXNRqv5t7sO84cyygD23\n3tNPf7Bjrn71sTHGmK9FQjjXK1ifsEhznFtKjqNzdGq4pCkj2APsnU32OBd2V9gGXWcMntW07gWH\nartddI2uPtV+cBHhTgQTcslef9OyZUzVa7Yt1Cc19DFWmfpuE1pXQDRPYtisS6uvBPrPXDNowqR9\nqyvFGgBbKsa9ycRPiPUAACAASURBVPdgjONOldRpL+pnpU9yH1cQXEIMTBtbPFf1iyOL1uv+HmeK\nnPXasc5jaLUk7NHtgLmy1HUD2iNnDfFgz+WWbZBafRJQftjZLZDqpYtLE45pq69YxeiswJiCHGwC\nGDyOlbSBTWZA0INE1139Pd2MpBmagDPiku3UsZo4nBUzNOU8GLQZgLjn3/zseu/W1/WMR2gtnmrP\nz2DTJ63f07M/IEsA16E6OmY5jlZ/8MF3jTHGfOt97Rm1z/UudP0f/40xxpjNl6pjD4ZNRJ8WW7Wh\nRzZCDLUtW7G3tdGUWajNHc75LQ9GJO5GkJnMyPbVCjfRuto6CWF2sIfGsJZT2nh0oec9/bdiLV89\noz5omzTv6fp1LRdfsboC+AIeDrdr3r0c2MN5nz7GOWe54ZzcRLeIMWY6OruUff1/DSbpGpcka1rX\nRoMlzNlXW+q387Hqc+8ODYHOYMnY3ke/pGAQzjbaL25aDna1/s+ggDZgHK2YUz7OZL6D5iTMxRz3\nKzfR+j7Dac15mzUm5V3SakOydjz/C/VHEz2+veCl85zT2pq2V5gFup8rnKq8DNboldqs0VIb7cCM\nK9jrFhE6aKzbMW2VckaxjoQ9mMgR7zgLHGvTc84Wia5z1Na7qQ1SJKn6sn+I9hPvYueJ2jzcoJvE\ndB+jl2nPc1Zrq0THpwtDPOO9P2KPn6PZ9VX2CDpJeXzPGGPMEsahdRybFmjFvoPbEo6Ejz76O30/\nV3v6e1zH/ecdiCumTFWqUpWqVKUqValKVapSlapUpSpVqcprKK+VKVNvKEpYmynilJGfV7QVofJw\nLhiApseHuBQ1YJjALNkSPX37rW8bY4z57vcUpf7bX/zMGGPMoz//kTHGmOYDaSz0l7rOk1iRt8BB\n/Z8ctMahImWLEYjnpWJXbx7pvuOWorEv5vre8LY+t0uEcXpB5C9TVHvQB5Gfk5s3wSHnTdX7aCN0\ndL9LHvxaiG2/q8+9/Z0/NMYYs/cDct16/4cxxpjwDUUKD1D8fvEJOgN9IeEZDhKmE5oFCtBOJvR/\nXSiiGlidm1KR5QUK252JhsbiVNHSpqvo3503pAr/9EpoVPIx+g+3pUNxd6tIf1iC/obqo3Pycbvl\nqyGXJbDItobKeqlo4zYmjxz3ijQlNx+tmc0SBX3yA9tbjbHRVn3XXqDEfaiwbhuXpGxKXuBI9b9a\naSwMSBp1+N5yV9crQP3PVuQ91hR9LdF4ma3UJwl5lNcL1Wuvpz7OmzCYQGdWIcn7ma5bkI/pg1iu\nC/qDfPU4BuHIdP8JjKAaOk25Z7V41A8Z+hw5ubjX1yAzntpzNBWzqb/RXAhABJI57AZyceuwJjbk\nezugbCGIbTjAaWgKMjJRfaON7rOHq8lqBrJziSuMZYWB+Nyk1FZaR5r31fa7H0qXJn+kZ1gUmofr\nn8EKatAGHaFQcVvPFI5A4lL9HJ0rX3unjXPWoa4fghKXpdD/QU9zoA9zZjK/x/VZV9AB2rlFXjLs\nrAGfby8EEz13QanRP1obvgcbLL+n5+xfizG3MXJfu25rrN5F3+gTWA8jpQCb3jto5+A4to+jT50c\n2WSpz08DrW9d2BhvPcA16FJj3oXZYT7XHPpkpL66TU5v1lSfTmAo5af6OSFvOfB0/8OaxlwL3YkM\nlCvDvSQP1G4pTJZbdXQs5jg7MHZqk5f50DcpR22tXeZCc2S2tq4rGsPDQ6GRRw20YG6pPSN0Mmrn\n6vfJknUYxpTH3J8ttJbUt2rf5lD9M4ddYmCXma6u5841lwsQ2TQuTXRbY3G9VZs7X5Jbvtbfgzva\nGzse6zeMi11QnzzRM40tGwlWlWVOBPtW02WP/8ch5Q7uPAuc+2roGcHAcX3LFgUBtcYwMHk2Tdhh\n5LgvuzjF2HW7rXrN+5oz/S06FOgpzV9oDjz9RPtT0NH6uL+PdhlIZA7TrxE8Vn2nVhMH5BRmZYy+\n0YD186Yld9RHYU/te2ndhUADu121Ww23jRmMzdu79K3P8zxH8+sYtkELjQN0UVa4pTzDrfAUbZa9\njtbHYFc/o5rWigbsYHMFM6nDWQlRHqfz8ii3M+wbB1eVHGewBCcfS052cA8M2ffyLTofOPWUjNUE\nJlPi6/+jELesntp1FwbTiz0tNps9zlTf0u8/CO6a+q9wyKJvDx/BisIFo9VRLr/Ts1paaJhcaoxc\nYG9UoF/hoeHi4iRZoJ+TeIx1tA7qdfXZc19Mnad91a17T0zK2rtiRA6mr6YpE4WwitCrC9C/SEFk\n06naNmjg6mOdLS0DBeZGYNlHTZwlrasR68EavadszjoDFSZl7sehdSUCoUZ/yYNNnDM3TR09o9i6\nKunPIeuti73ouoYrFTaeocuawphJYVkMAvY5NH1c64zJ81otGRPAFJrgkpTq703c/jZozKScOcvc\nauHoez5jcLPR2Ktx5vBgJq1geTVj5gBsDx+WXMyZqvT/HovMTUzW1nWjBWuFZx090SepcSbha2kd\nbYr5zfcbp6/5/Muf/rkxxpjzS61XJefIf/nH2msW6JytTsRcL2Cu3Ga+B+/hxEo2wdK2DTqUfbQR\nWzhabWBOJCFnCc67NVgCS7Syrs5hQrM3daBXJRuY4i2tsy3mlvuVXpGuE+FiWsCsW3H+rFn9EBgk\nwUx7+TVaMj3YYvVbetfZO9TzT4c6oyXUN4SdsMaRsYBF5vb0vbvv6Gy2faw9d5Vobg+4b9xC/wSW\nwuANfX41hVX2SGuR1WazTPScObXFbbUZomN3hO4fczz8MWccziIPHuid09x6xbUEdlfUgQ1HdkMD\nXZdppue/Zo77M1zu0NRZsR7XYHMXdZjnW9U7xjmoxpxOVxpnx7tioUwWL1kbwzIyRbMw81TnSS5l\nlqFlScKKr3N+WmrPdn2t2zswAzOYag3WL7suX11rHl2Ndf2LBWzSXHt9i732uCXNFTuPPfayHm5z\nbNGmhP0boY/k3NXYslkCjRCNKZ4vxX2zw7twAiMnWKvtajDnZ6y3xlMfXJM9ctiDpYxjYXiLsxJn\nknsfilm+h15UUSp7olVqrhc4ZdVHLKj/RKmYMlWpSlWqUpWqVKUqValKVapSlapUpSqvobxeTRlf\niKl3X5G2RUpi4Zmim3dx2ViCQq1hQ7SulBf3y0tF3Fo4VnRR0R/sKXp41EMv5Q/+2BhjTB+dkZaL\nuvoVyGZfCHE2RzsB16RbRGVHjpBPd0ueNOrwuUs0NVME7Amq9J0j2A+PcUA409+b5M5tuooAth7z\nXKBp642i0S9e6H6/fKho7B+Sw7bcQS3aSM35Cm/6fqBo+hcXuM20yfOEtbG+XJtuTW1zgpvPEIQs\nDfXslzBcajNd6xlI5q1SUch6A6eXS9U5J2L7AtbBERH6bgenAxwSzl8I1S9QkXddoVM3LYVRHyUF\nbVjDFco6SwHjLEGf8kL1XZ/rebrWFaMkJ/+SqCrotzdDzwiEOZmjU4GGTAE6VN9Te4Vo0kzQzegO\nlbcYkbO7Ptf1fSLvlyv9fthCc+BA92v3VO8xzisNdItiWBMZeduNB7gZoWQOEG0icmyjudrB/f/Y\ne5MeS9I0O+81s2vX7jz59SnmOXLOGrIqa2qy1exGky0QIAQREiAR0or6AVoJ+gP6CVpqQVAQtBAI\nCqBI9qzuYs1ZOVdkZIwePrvfebRRi/NYhppgV3uuYmPfxsPD77X7zd9333Pec5oa641Qa2c4g+V1\npvouYWVEU/SL0GKooGWwtan3r1B1d4Z5v4OMYhnhbdzQc3DxmpyJWROE6n8PHafVRO87RW9lgivK\nBur+3ilo20iMq+nZAzMzS2aK5JfqmkcXKbOyHA0StGQaVc3h3vVcF0dtHp4Lrap+pLlcK4GioJw/\now0RGilXtnA/wwZjC72IcVt91UVPY7utvi6PQGO20el4oLE5eaa5dfs11e82Ofcnh6DdV3BdmtKn\nMEu2yOk3cuvDGejMTK+vBUKDdmr6/HP0iRqXYJNVYY81hUTMYarUx/r/EPaDj2tIOdGYB7hQ2I6e\n250wN2J93pdP1Z8DkOL6tsa8exU23lpsgrSEI0RP9e+hJ3QM8yeewdLCAaH6FDadut1KSxzb0Pe4\nvtZeFcDeikrYOF2wdDoanz1Xc+zZnvohgzG5s6H+OGNvzDV+OvxuV8AwnsGMea7/77Y1j3IWxHjE\nuXWgfbxRVz0DHG36bVyozjX+o3XOfnGtmTNk0BLxO6qjw77FNmUVHGtaIKJ+E9cIBIxaZ1pX8T4I\nJ8yzfkuMxrDP733V7TpOZKtj9cUU/aEBmjRlcuvbbc3pDKcWz9X+sQ1bLOHs7FZBHnMmXVdn8Qo9\noMUAByry1bcWYlOMNtE6GOp13Uxrb+MSWjK40Lnnet2YzyuDiHZwn0iZ23Ht6+kOjU/VPh90vIlW\nzXAMSt7W2qo2cTWBBXB0pP5K6ecYTQAPxqOhUeCi5eIOYP+Stx6N9NwhdxwfTTcHRkobnY0Fefol\nWAhJR3OphqOMmdnSEiuFudaC+rfCeXSMy1WtQv3QVcldnnwQWjdT/Xo9NNkgXSQT3KMWsOhwezmM\nPzYzs/J3tIeMTO4eH9iRDS6hJbIP0+/6m/oM2ExnB5pzw0Pt+Z6nvi05+e8eddY+kKBBUgMF9kCv\n65d01u9+V3edo7qQyuMn6tPmXXTLdvTc8mNYYziuXLSsYBW4uQsR+3mdM7aBU0zCPSyAHRGPNRZx\nXl/GIGdX1SI0tByNRQ2dvInPnQWWcbuOlgssWQ/HxDkupQGuSyV02lI0FKop5xJaNDlzz0VLwXAa\ni2G6NL7aZ9EdQe9izF3Agb0W92FTwLbNYFstcFCcwraooK8X4mRZztl8rPXckdJl78jQHYnQHktd\ndK163IOXaveync8H/X4Om6zZQvNi/f9nuLjmw+ZYs+/6MPSNfl3hBlOGXVaFPeE3Lj5PJl9o//31\n/yXtl8vXNUde+0fSkqnsqu3uc92LO5wZXhl2ENosCXf/0XnOeNRa8aqa4xXYtcfsg96IuVnDMRE2\nVq3NnFhe5v3qo+hUfTOo5roZuGaiCfMMnZ+mo/07wzVvs4YWCfqVPqxT5IOswZnd7sAc5wyMOA+W\nbCh7H+m7zG/21Q/7T7WfdO9ojmy/pnPhKt8F26/pbpGzmQ5g1LQWOi8HaKsEaLAMYYu98RqsspXu\nMLWfyMVqOdB9++prf6DPfZ37/U+ksxeeaS40qjpvrr+FNiLOmh//So6/5Vjvv3Zf2RgXLYO5vsMe\nTDQ+u2i8rNowxdFtaqDfUmINHfL9K0HPNMKB7OHnPzMzs5/88Z+bmdn7f/ANtf8f/K6Zmd2God+s\naK88/+DZV3WJSqnN03NzN9lXWujb7KMXl9/b+M7hQLkrcyeITtXXQV19NUP/jSPPtt68YWZmVxwx\nlo+OcUFeqk5r5m4AG3dE2xow2JrolcYVXNz4LjSBXbqJo+RzHL0am7CA0Rdqsg9ypbF2CVYZIjQu\nmmDlJq/jXOiiW8RxZaseLNlIa+jhofrwx/9CWq811mhQ15ycczZXWKPr8m/PAiiYMkUpSlGKUpSi\nFKUoRSlKUYpSlKIUpSivoLxSpsx0rghYhPJ/1haKlxChehEqijh7oajlmzdhYawVgTr7RMj3eU3I\nyi1fzfm//8+/MDOzKrledfIYDxNFr2voqBygwXAfBPR5VVHU4FARtEt15YJVB7iJ7BCZN7RfUlT+\nq8qHNCLuwQD0jBw111VEceMyObg41VRwWbl27RbvJ0ca9eb5UFHT/UN9zsmh0KgPP9Dv7W+p/u+9\n9z0zM/vGAlX557gRkKsbl2eWnIjRYCCca5DKVo9c/0BtGhzpMxso+s/RdYgmamMbnZ8qmiRXdzd4\nvaKVM1/o9+MP1Jc5I+K+Secm+AEw+L+0C5X1ACQY5e2kBdMjUB9moDWtOvnX61zxX/VNYF3Vid5O\nYWzsfEP5f+PnilBnsJQyXH/Onwvlnj3TXOv+Y+U5ZuTePz7RnPzRa8ol3doRkjA4AGFGV2K6r98N\nNkGjA6JZ1dh0TVHjMEGbANTHBzF+7Q25lMwmGvMFKurpGMeXQL8vhuTkDhRdXo9gczFXS2jalHFt\nGaNQfv5Y7IXJaa5ar36ewBA6PReS4KNa/1ZZSM/lH2k8dy8JyQgWICCgfS6aCWcj1cufaZ7lLiGT\nUPMxJCe628OJ4roi+NU7aChcoIyJ2I9x4fA2NGc2DsXKSsinzWjDo18K3Zj9Um176xtqS+d1rUN/\npTos1rCRcFEqz2ArZeSMgvid7en5UxMrrEWO7QJ3pWys95eWen8QC62qoPdxfAKjAnZD+ab+7hyr\nb7dxWYs97WfZPVhMwxtmZtaraZ9cgNg2BqpXBST5MnN7BjtqmLCGP9PnVojkz++gf8Fa8Rto8myR\nm++pX1YPhAxMcBC7/V05kdkVzdWN06dmZrauaO7FJeZAKHSvDarjL9We9insMJDIY04lBx2o2kBz\n6nmo/r0Zkj//THnhFy1f/FTI+S//lTQm/Mv6/K2bat+Nt4WCrWfauxJYedk5rDJYKelI/TQrwy5c\n5UiOEJ8VzkQzX3vFZIVbAEyqFmwH80C78jXtujbz0QhA+6lZpo8uofvAHl/FjWfMetnaVd9daarO\nXxyrDifkjH+KS0fvrhZ+54rWRs0nnxrWER57VqvmTEL1xTDUmC8O1VeXtzgXcOGoOBrbwVV0K8jX\njus4mODyVIGBsf9c++Iz3JamV/R5u7hkLJowHNFvOt+DeZNozDequLTRvpD9I8WlKp4iqLT8ekyZ\nKnnzWabnty6LnTXGMS2cqR0RWir1Bq4j7N899N3iLmsWhyEba22vWWvVGzgILTnrca5Zw1oLYRf4\nsd4/4lwqs+Zc8LQybojz1Uu3OqeSWv+WxrM3wTkOrbQQRs75sfrHwdnGQxOojgZZxrh6MHmq9S71\nxw3EQAEh89351g/NzOw90x76v9v/YmZmP7cvDNkGux1rz7/nS2tpgcNMypxtjTXWMXVYZNoXyrBh\n11jBOLBh5xFILc6ADve0zx/pfXURcqx2V2d3H2ewEmP76N/Bpj146c5zkeKiz+HiJhKjrxHRh1VI\nnqmrPovReAlAuWuMQamsO0yEOydETEvqsE5x+MoQd6ij4RLhSBYHWjNzUPYAXaUy2mFOzqrtoHkD\n43PJmRvh2FjDDSqs44YFMj3LNWFyEYcpbnIMaMjcq/e1z/tj2NQg0MkShhP6TD00dWL6YXKmtZ/k\nTmboM9VhBTuNXFMHx5s2ehuwuhwcK2fcPWa4SGWwxJYwcOobaImZWcVJzWAlJ+hwBMyrEgyhZIE7\nGP0dwLDP3ItrypziGJt5qvudt98zM7Mbd7+tz3que+nRJ9xn0dfIHbW8tv6/zHeFTk9zYI7+jwsD\nbz1GTwi0P8VlM8T90mDILM71nFqUs+3Rs0NPJ41hBbfQ2RmgycI+u4x03kyfwH69os+t0kdZBBMQ\n9tJwxfmEI05jjo4H99XVUK8fj9G3457f62jx3P7++2Zm9s4PdWaeBTBXYKk9eKT+G3+pfbUaaZ9u\ndtGdQkPt0re3aCdj/UztnaItE5Zg5Lyj9996X3vTF4/FpGlzz/ZwVmyW+K75uu79hz/+iZmZ7X+g\nu4W31h3goqXahq33QuMxgd3RnLIf77BmMxyD1+qn9Yh7OXM37cH6gtH4rcs6n755X99L7tzmXEbT\n0o20hsuVl/ombj217HRtra7mWtbUfB+j8bp6hsswWlCNDVyVFuikwWBJ1uwPrt53AiOwD9v0pw90\nls5OtJ/c6KNf+pSsArQGazhpZdyBUupaRkcuxYGqB5MlYq2tfPYHzr5mHSbfSM9r3Vc9cqZhBkOu\nwdwaoaM2Ih7A9d3GJ5oLrSs4Jd7SzytoDw4e6Pt5dVv7aR/tSI4JG8H8i3+7pEzBlClKUYpSlKIU\npShFKUpRilKUohSlKEV5FeWVMmXOtxXFnIC2lPqKYOW5YqvHQu0b1xQpc8p6/S4aL/XLiozNrinK\neef6W2Zm9ugctxX0P5qwGyoLRcybdxW6ugK6VSEHt0+eXmOuSNyYvP4xUeKuL+bM0hNi28lRpjNF\nmTsZCuDdd9WeF0Ji9kp6f8dRdPXIUR7lEVHk5qnQv3ClqKiXq1iDEi7vqV7ffeuP9JwfKOodPhJ6\nGcFyKa+EmHdbqP+TYxcmZl6iPtpcKYrpVMlvw0EEYNSu+oomLio5uoKq9yCPGKNdoACsbeJlvwAR\ndTKcTNDpOB6CSrTV93daXy+SnHvZB1NF5ichSDL5jgGEigDXpfIWDJq/UKR72lPouEcu7YII+uWq\nkOL1RBH4o8caK2epz/nsxxqjGU4Qb8BwOcCpZ7xQewekGdevKjLt1NRfdfKSmzcUeS+Dhj38SO//\nzU8+1BtRGN9mjm9uCOF0x10z+5F9+OfKEfXXIL9Eh3M0a01/zM+1JkawCmoNrZUbm+iqbIJkGJpA\ne5orZ6dqf3mqn63rIPPviKVR+bme/+O/kI7Tl78SMrH1E41nJUfhWEuup7VUAZVM0CkpgfjsgrhO\nKvp5+bKi8t4OmgnkALvMv4uUFMLEkvWywr2o19Gzdkv6bG9918zMXnjkiD95qjf+QG3xBlovI/aX\nqqc5ET7VmCxLQnpTkNttJAGGOMh0InL0T7XG3Fh92Mn3o09Bz1q4djR4PcyVUQ11+8/0OccwfB6T\no3+F/O8A/ZDFJbRe5qBoFaEnaZXc+0R9WEJPqd2/Z2ZmBz/WWO6iVxLUtBZKJ+QQ30JnAnejOmt5\nSq7uGKR18lRz6NL35A7XBGE5Zi2ao7m4A7qz3GC/hSE5b2tOr5o4AaFDdD1W/8UgxEvc+ZyR6vvk\nmebUw8ZLHY2LlMd7mrtJhsr/63r+5g792EUvBIe5MsYEi2dCdpZdkG6YOg0ceGY+uic7IP9lbUoT\nWHITV++DxGa1kV5vS9XHAanpldaWTWGggMqmaH74JfQ4YG2tAyb9SohhgqPficP+gCbKOYhkgMPL\nHnPBwzXDYd0G+1r/6yFzYioGXU6F6K1hvsDkmzVwhwPFcrc0R3us61WeSI6O0OmJ+mIMS6jZUx+3\nz4WO+cjJJYDam12daZtz+g6WW4388JyVsMDdbQRR5PU39LovnrAPpSzSC5aU/XGcwVbAscYvwVqA\n9ZTBVPJxmctC/ZyjpRbCGkjQzYiwPap2YYll6v8Zzy3jMLRAa8GDTbbEKXLR0c9tXDhWOKRZqvGv\nuS/ht0atYZu5+99ae9jK1I4dtNG6ff1ccV6E6KOkCUygDGQbhx4HRLabszXQ91jCCB38XP3xb2c/\nVbsbYs/9j/bPLb2j97z4VPtO74D18URtrLLXt6tq4zBCO0ZVM9eFYQH6HsEWq/TI/a/p/esz3UU+\nf6H7WfAU3aKG7mXln6rOtz5EvwH3PCf+etpUNUQJpmjdlGE7xbCKMpy2GtwrVzBKQljK2QbunDBQ\nnERrbo7rR65l5cAYasNwDEF264x9xNz2cKGKQ/TafFyMcE8y+rUR5rp7/D3GWQw9vgY6dREuUAZL\ny5gbLEGbw8ro4MxWxY0k5BLpgogn1GMDnSLbUnuCGE0KXKEimIgJLidVwxGMbyeNDuwR7nx+/v2A\nO2EFjUgfrRs33zMDNHZwezIzW7gl81Pu3bC73Rqfx3xLQfYj6MQubjK5jt5FymKkvrnakcZIu6Hv\nBOEzUPUT2LZr9UnuHhex/pZnanwH5kq/o9edOUe8DhZpxP0KN9U6bNaTqjbUcMY+AWthAvspgoWf\nldHVhOXfQncuxqnWIYthxr6UBjBjYPUvmYNlGCdOR5/fxU0uYZ9z2rlODw5aN9CZM7Fr3Zl+X93Q\nnenO97h/su8dPdDdyYEFd3auuds713nj9/T89QQmES55Vx31y9mfcBb/VP13v6XvYt3fRW+pCTv5\nQHPxNnpWBjNwQfbBC7Q3N3GPevu93zUzs4MTPbeMg9BFiwNbrtJHz2+pA3AVwGhhbY1gTuYslYDv\ndjdf0522VNHkvbzSc5Z3tRZ2tjXu4wNpNsY8r8888f2Xe1897dqssbbUYd/CiavP0RJf0j9OWN/z\nU/VFKT+KNtVX53zXuP6uzoCA76eHH+su8G/+139lZmaXUv3/7f9G39tz3cztBg63MxiA7E/eEhe+\nMvsOY7Se6wzM9ZgCHMrcnNmG/plTgW3LPdfhu24FZ+ARTr7HaNps97mnsY+2OJMbl8iA8TXHl9y5\n2D6t24PRg97RmsyZy32xic/QK/3bSsGUKUpRilKUohSlKEUpSlGKUpSiFKUoRXkF5ZUyZaJECEaU\nCjEtz0B9FriBpIoZbTUUccoeK3/v5/9eETofx5k3a4qqrjcVDfXJH+zAOHmxr99L1/S8DHrFOZH9\n6VARs46j6Kp/DbaDj6L5h4peTsldTo9Vn9oV9C9qQmhsT+87nCpq+mwPXZMTPf/FXdFLrrblwnLt\nPfLmn4uVcfZE7WpcQdvGf2pmZsd7iliel8SuuJEq4vYlblDuX+l184doX5TIkW3gHtJuWlITOrCs\n6dklEo6v1VWHh6h9p6DhLrmm24Ha9gLl/uotRTdrGagQ7kPeQ9XBuuqzJUraGejOoxOhV83Pvp7T\nwXimyHMD96fSipzQJVFKNEymRLqv427kNtSu2ZH6qHIfpwDyu4+Q2Plyn3zy0zy/UIyi/nUhG3de\nI/J+U0h1ckT+OBoLyVr18y+prw3Hmzxvevz4qZmZtTL1W/uq+v1+/++p3qAw4VD9s/e5njs4+5nZ\n//TP7YO/+lMzM6vhRtTYhc2FUnizr/ZcuS7EoXmDaDFIrqEH4pKwvhorYj6cqV9qaCKUQO9KOEdA\n7LGbf6R8/N6WWGKf/1SuGiO0Gmp1RbU7lzQPWjBl5qHamWZao9WGHlgp63VVot2dFjmx6KsksSL9\nZ/FLdOvvKtFAKP+EiLfxzAjdgwSkr7qjHNCb/1TspePHuGIsNIeOyyB76GzYgog9mh/VFWhRWfvW\n+BCtKTQTTJN7YQAAIABJREFU4ky/N3AJqk+0n3250Ji6f4mb0O9oru7uiKHybKB1HUbafxwH14lU\nP1McAMagJVMfR5yHavc40BhubWl/iXZyrQJ9fugT4YdlsY9r1PoETYSW6hfCWGk7+nvwurR2zp7o\nc2bodQQD9e/JTP02Nu0pV2L1r4OTw0kJhLPKHAjU/iDCJcphX4typByE0kOXY6bPq7Zh7CSag+4V\nve664QBxwdJ0tIZbV2FpMU9mN2B5XNI8aWxoTe4dys3u+Ina1ztAG6yl5wSwFqpzjdOwRv7/XM/x\nce9z0C7bBNENQ/Q6YM7Uc62Mct9Kce6iwfrFqalxW/tZDQen5wcw33x99jFaVvPnYi+9ONF6625I\n46NyQ3OuHmif77RAyKaay2ue46C59eRDPacMgnvzjuZW94reNwIWaoOGhxG6OKDgYaz6n5LvPQPF\nH+6LHZQFes5rr6mP6rg4JSl57I/V56c5qpSjUbhGlTMYk+hn5BpVkwVzhLnv2Nc7b8IIpBpULoMN\n0CyxF8AyGDD3u5yxfqb+GKEvsuBcyKY4a6F55uGoNhlgU4J+XAprogX7K4WNFdwEaWY/XeGmNINd\nUAbdazVeMguXzx/ZTz7TeGal3H1Jn791GfcN0L9sg7sWiPoohI23wPExd7hJdF7MWbPVRq6jpHNj\n+FDvP94Hof9jnVfT3982x/SM2W/UpuFT9UF4Rq4/rhQhejrH9G0IJSJB66TCmZPhXBjM0dVYaqxL\nZdV9A6fJDppf9SpnjqM29/u6L7bva/+Yp18T3aZedZiISYuxRgvRQdNrDkPDgT1lZVw4FjAu0ESZ\nrrmXogFokf7uwj4uwxYuVznDczYA51oJfbpqoH51YevWYDmsYC6uylqTX7mHwgSJcHyp93CugVwW\nwcoNPdYAmitxrDWypn3pmrXCOZPieuRxF5jhELSBdswEtN/D2dFlLlVWmltZoHYFOM9EaNFEef+u\nuGPSnwH/7zVxP8UZyMuJLQl3MzNzo5pxtTUM2iyKuPtxR/J5YwpDKcZd1XfXdtHS5LvE6uYP1Acw\n/NbH3N9wzKrd1mcP0Hya04cuZ9PyTH8/h7nn0oe1peq4iNHiq2sNLH3tp4s1jJRM50ITLarc1XPF\nORChMXKSivGWnKit124z99DOunJdzJKwpvqcHeg7S3TGfY81tMlcWMCKMldj00BHKYBdFqIflHCn\nWaAHmmuenHyofeToTPfiAXp7Fe46217OPoMJQlZEHSbmZg+tnTP9POCSVo50DpYyneGbW9oTkqX6\n6xjtzKSM1gvsqzYue4Pn+nvrDe5w29LzjGbopJxdnOGtirOHncL+62tuj6foQ12BpoxGW8AeuX1b\n9bt2X/f+0YkcSMsdtWM5gXqKm2J6qOdV0LZcwdqr2qWvqrJem9WSqp2tYJCwPuImLPi69tVGrIuL\nR2bJlO0tXOh7b5bqjJlN9VnTKGes6Xv0t9/5PTMz26nrbrJr6stzNF9XEZouoepeWetz3Zb6Nlwz\n1jFsLZjhQZk1xRwJYMStcZoqsXbWHb4L4qLa6emsevpI972oBksVNu+IvlzM0NR5wD38U2nInBzr\nrhShRfj+P/6O2rXFXOO7ThLwHcn57dpUBVOmKEUpSlGKUpSiFKUoRSlKUYpSlKIU5RWUV8qUuQSy\nvUF0sLuLintZsaIvjfzmiSJm2eipmZl9+ERo/dV7inRt9b9rZmZPHipnOSGS376s6O4UDYGDnylC\ntf1NXDVQja7ijjSOQaE+IkftXUW4zsuKhG2MQCCaisRVE0Xins8UtazV0Rzw9bxb3/mRmZmdkV8e\nTxU9PyXX7VuunvNwosjbACeJGUhL9boihPc2FQn8kz/+sZmZ3XwvdxF4m/or0neCX7sHerg4ElpW\n3nBtOnhkZmbhTG3IrsKUqCqK2PAV5XPb6qugIzRp5AiB7L8rxsRVoqajFUyGlaKXJ/vqo2dfKNJ9\n7btST//h+zfMzGz5SGMYZvq8i5YFzgIloqdVFL5dkL/kTH3pRKp/ba4+3rquKOyvHyl6OzgEjdrQ\nnJjgsDNEkKR0VUjw5q4i4lt3ccipaWxOhkIG6pf1HD9RvV6g9VJHF2KBu9AOGjOTZ2r3QagI++ke\nzgIbUFEiLcE5a2H7FvoU7+r3299XPTJU+UugOG0QjwykNdfzaEaKXj8kV7gRao7miPccxfNggzlL\nrnIHVGjvUO2tn8uhpndDCHb/riLq928qTzR6pOfl45F0teZ8ULkaObHBElcX0L+M6LWTkit7rnq6\nseZ8Qr6+m10c4Y4T8nJXmqt1nJ4i0PhZzta5qrG50XifOmhMDn/9VJ8Jc2G6CYoNm8hBF6cXq2/7\nE/Whz/otVdX2+FTrP6ppTj3WNmL+Smvm9Apz93PV7+ofirHzYoLuz5aeH+/q8zdgXUWovg/4PSXH\nPva1RuuwpeI1TA5cmGowec5F3LGr7K+/GKvvnZHq3bhHXjsofM3XGmkwh0oHOAKs9P7ZFbRXPlS/\njv/sE/UjLLaoxOtvaY4s15rT9QaaPVv6/DKaNdtNva49UkWPK5oLDRBoFybS4rpe363hGvXGxd0w\nzMx2bqB/BJPnCOR4Y67PG+e6IeQkB3X9/fpdkPCh6u+XNLADWBgN2GUG+nkOg8fBJaWEhtEqA7F3\n9fwQll8z1V7Wa0+sgv7CIFEbLdUYIzVj0xpjV9HPCe4bhpvE809h7ZyrLfu4MLz+B5pr796VJc3e\nsRDI6lSvrx/T18zVq3e17t05aDkMwylaNXXYqwuYLTFOCYNI+0dY0hyu4QYxZY5vsg/EMCmfTDXn\nLr+mOevP1Uc9NHCiOc+baE2d1nB/6sKwA5D10O+IcGxsokuRel+PKZMju7U6zD4Q5gwnmGQIE2aq\nuZGg99QnX30TNNFa4F1ddOnmaLidw07D/SRAm6Hcgw1RAelkP5zh9pThDIGEmHVY40GT8zx6ieJn\njY5tobfSwb3DD7VWp5xHx4c4tsFmi3HFSivoXMFEig3XD9wOoxKaEzCjluzfSUn99XpPulUj3L8+\n/pcfmD9Tm0sPVFcPpLBWRcOEdZSge1OHfVXlM6eMQcrdpIGDVcY6y2A1+dThes6wKHNGgfgujvX3\n6QO1fbBSn5TGX+8avERvp4zOXGmqegam+i3y+qgLbN3GMY2zMAWCnq3UDyXaW0bLxaV/yrCWnDhn\no+VrSz/LAUyTEAY3+iNlmChJ7iaEblQMI8TQAVmjddVqMT6w2sp91hYuVcE0Z8agoRii38cZnnFf\nL7GvzdFcY9v7SqNiDCvYoz4pTJ866H4Z5DvJNW0yrRF3CaMR/awFzJcqzHVD+iGN9T4f9xWPCsz9\nl0yoph9bDIMqgdWXcMf02ZsSNGbqsNCcCL2T9CXj5u8qWUvPMBzFaks0YRC/SmEOX1uor07n+v+Q\nfeYyy3mA60+/rTv+sgbLf6nnOinOiMd63QLNqiqs0/VUc+SAbICruzoPPFxM0wQW1CEMvmmunSJ2\n7LKuSdw501hcv64+qMRo2qCxGKNpswhVDwctLgcW7ASnrxj2VD/CuXLF2Y92Y83T559+Kmfdo4/1\nXa+6dcPMzHZvwqgcaS4c4/K5g1Pmeof9F21GHw2dGppdU7S34oXq3YD9WznXvjgny6DFHJyy3y5h\nJJXG3GfJiiizZlqpvj9MnYuzqczMzllLIW6DyR2xkx3ufI2W7kTRM63BL38j59D4tubX1auaD48/\n/rmZme1yHUgDPbeKTum6qXHx0CWsNNH1s9FXdYniuY2qgbVx6DJcTdNId5ESbK3aBowVnGOzIfvp\nUK8vHaL59zN95xzus2/3xOp5+z1lCVwhI2bJHM+ddJ26Ot1BT84LdNbOIxwPXRy22lorrRXMP5iL\nfg32b6KxqrHPLHv6/RyNWJ/7/PPnulucoL1149u6/zav68709JeaiwlaMzdgs57squ936OvhC/ad\nZzAicYuar9ELYr9dVH+721/BlClKUYpSlKIUpShFKUpRilKUohSlKEV5BeWVMmXSFNbEZ0KT1ktF\nkN5743fMzKxxSRE4/1gRptJ/K4S7sSuF/0meG0se+GBfeXWlTUUbt0ATaxtq5j2QUR+HhakPA4do\npwNCeoTC+I1T/dwco3Gwqd9HM0Xk4qmQ9gCXkas1sUn++sfKNXvvd/6BPu+qWBsT8kCDR4ryPgEh\nPcIdZgNWRq7RUGmR67qpfmqjYu3XFS3uoDlRQ6XfQQtiNle0eHKZ9pc2rH8D5OwMHQzydIM6ji8t\ncvNnGotWVdHD2Z5+30LT5fMvgJ0q6vPOZTFTjLY9G6lPes4P9bIN6WZU2qr70c+Fql+0BDBKZk9h\nG1XRY6jnDjaKfi4Wasf+QO2686bmwKOfKE/wIerpDdTd9x1YSVWNfa2r+h/P0elpSd/nnCirPVN/\nbFxXRDw1zaXwXOyM5rYYLe07ikz3b+tzVhN9jj/UnHu2LwXy4+fKQfUdvb6DvtFiR5/ngUzHDZTC\nYQqFONmsTO3xGvr/Jfol5a6it9WnROxBiSLeF8MG6F9hTpMCu1jq7zsAPADmNsE1ZU3+fitQfYZr\ncpjHGp8Ihk3c0TjU0c2YJ5o/jQTNmkDzzHf1/xmK5m0QH6ei9rQrF3c6aF9GL+lcfT0B/QlwPTvb\nIjIdaa5cwenJT9BT+pXGsIvmR2ktZGBS17rKUaukhiYMDgWGq1tInnS6oX0gAu264WnOb23hogSa\nPTFycq+h/ZS7hjDHvEx/30e3addTOyYL9aGzQFNmdEoPqF6DqthMNzb1ORHOOx4sLgOVN/SPHuCc\nVjvX/rST5AwOfd7oEPc23J6G6HtU1Sx7+x39HC/Eqno00hzYLOtzDg7IRZ6q3+cg4xsgndkmmj4j\n1TNrStumXUEXChbGaFs5ym00yGJfjgNO77p9nZLhPrI41P66A4vAy53ovlA/DndxiWJv2O4I4Yk9\n6ZVM58xZkHiPdk8PNWejBOZnWf3rwmrbbcDAQRsjnvCcNvndTmIR+c71UChUynumQ3LG97SPDKba\nn0Yrjcn6ueZECELbcGFlos9xeoQj2W10PFbolkVCYGfP/4M66YnO3K2bGuTRNuhXC92IVM+ZtXFC\nAXVfod80AZFd40bk4t6ErISl7RvqC9D4/T2dWXuP9f6boE6rNjn9PTQLcOApG/skjJISDD/3mDU+\nZX9s6nnxGHu+CxYHlkUJRun5HOceJH58w3EHNkKILtPA07k3oaEhrIlN2B4ZbI8cmd3aUD9kuFQt\nQSdXsPMSkN1ojRYADMyujzYN+kVTNGvC8eKrNnhuYgGshoMT7dOXdmGaXocZyxqswRJG6sYm6JcY\nefwGerlkjlbY6xyYO3V0t5w6/Y82WMDdrGRra3V1NiZtGHKH5Ox3cQCBsQcxwRKYMMecLYs11lpl\n9Dj4/3UDdqbDup5pLh7gIFYBbV6gl1fnfrca0naQVcu+ng5E3VHbIu6RGcy7KZoFMWMfwkwJ+H9j\nn1lgK+TDOoM0ZVkJhLis/WKyRt8Ptlju7pHgiFVmf6xwl8tAcidgrY0JOoGwE1z2pZw9VmKuZugJ\nRSyVCJaqF+MegkaWC0vNhaFS8mCIIkCXM0p9zpswgfGTal8Np/qcUqw506L/ci2gBMdGD6egvB4R\nbkhV9pIsd29Ch6Q8hn3M3cWD0BLDnIkWL53JVqlnhgPNnHErc3ddwzqrwhIzHCPzvcviizu5ldFM\n8XH/SRYao/WZPqvTxMUOFtQJuhvJnD5FJ3ORaJ8fn+h1OTugto+eG+t1GGrOdUOYx+jrzJmrVdyN\nojH7SqC2dnE+S2BzpQFuTF0xNDLuAuGZzovnjHUJN7nutuZCF+ewWYVBgGXqw7T0VpwDsGlPaqpv\nnTUbs58fn+outuSM3NzW3eTmuzrzV2iuPXjBvsy9tIteoMWcyWRBHKHvuZyoHwOsJD3c43I2GcQ/\nSzK0elhbJZjsCxg8uePbCoagbaFDuqM12yjBcL1gcXGO620o62FnR3eNJUyl8an6/eFP5Sb76K84\np9/TXc+/pvbc5k7b3ta4zGCrHPFdsz5Vf89SnDpLrNWo9VVdxtWyJauRDSfcY1L1WR/WUAkmSYSG\nS4pb8gQnx2mmMVguuNc8hXXqa27f9HXXWMG8ycr5umaOwrhrrmDQ4DwYwthpMwZT2GBd3j8jjFHB\nGbGHTmp1ptcPYR4mJVzvuM+fsr/FNbWnhG6c4Vxb7ut5O/d073tzV2fimu/INebOEu3b2jPcoNAg\nnBzDbMeRclHLnRqxq/pbSsGUKUpRilKUohSlKEUpSlGKUpSiFKUoRXkF5ZUyZUr7iigl54p4fYoL\nUYu8yfUjRdgfO+QVkh85HCuKeO+fSPm6cq6ocq2r53htRRFnDxVNboGkZJeE/g3JjQvI94zRTylt\nKEp9nRTULojv6A1F0urnQsOmLdXrHhoO2XVFyBawUB7+5P8xM7M331d094e//1+bmdlkX4jPU085\naofn0sBZz9Fz6YI+gQA8fyZWiRcTVcb//GQhNDOAaLR/INZFl7zK0x5RedxB4vUzGzwDxSG/N4kU\n7Wufq0/SEfnLTTRTKnpGg2ikE+rD9veFig/QFPjDazfMzKzyXUW0739B3l+suowP1IaUPN/K5tfL\n8Xdxb2pCTliQl52BAo1B6Hpl9dF0R1FY97Kimhu7ijw//VJ91tjEYz4g//q++qjbgZECeh2hfr8B\n7JI5f9MJYU4+9+e4nVxBK8CqmnMrkOIhbIaaq4j09puKJm8k5KjO0aIp6/kJCGwL6HJnrfctPRgw\nICABObsLkNaM/G6XvOjeNXJizzTnYrRmelU9J8DtpHaGexV6Hw7j3cS5zCF6neeFu7BJOqjCz8mL\n386ddpZEuUFeQ9xcQk8/IwcNA8atXNI8WYJCZfQ7oN6FShkUfaOiNpEebRVc3VZTsQ5mz4RC/6as\ndZydo73SUSTbCfZoK/o5aKysNtVnW2W1rZMz9EDBxuS0N/MxWMM+AISYbqmNzi/Fkjo91Vi3cZFo\nwe66jibCYEOR+etD9DxwllnBmClFaDCwr52j6xSM1b5srDXaLAuhvkTfVre1Jvo7ev3oj7WPbeC4\ntrik/qiAFE4eqz1jNBTaObsJlsPGu0J39j+SK57zUGtwjqtJ51jPO+qTvw2INPP1j5PPtXb6HXXU\n8BB9jKoQmngDFM7Tfu8vhWD00GuqNV6iPBcpB2ONb7WluX3pllh8D6fKxx4fPVU98zUYCy1MOpo/\nEYIeXpA7GGj82qBNG7DdSo76cwzLMAI5WqPGH9bz3GmtqW1YiNP60trk5jfukguOO9JkJWRrCZu0\ncg4aHYPK4LzV+7Y0n3r3pB0T/JXmhOeoLqNf6awIH4JkVnHdeQSr4Jn6/vY1mHRlzfXguligVtUY\nj6DSJTA8UlCtnDEZTfmpx5kLGeHNt2AnzdQXy3PV7zTRXHeaaArgaNVe6POfHOp11a766u2G3PHO\nXI1BVteZOaziCFOCcQRb6aIlQ9tg4rImGMslriLbO5qDVzbRqxpxh4FRYi1cUmC2ZLgd9me5vhIi\nOOzHOaKboCFjWe5UoTXe4U4T49gzYa1HL4QAr2AJd+sv8bWj1UOLnKdmZvZ8oj3nj777X+l5xzjj\ntDQOc7R9TsY6ByYLGJCwHJY4+bgDdDbQkovRUUJGzzbm9AfMWw80cRFmVpljz4HT39kSrcABuhfo\nAa1YJ4a+jY8LTxPnEYPtGbLf12EaN2A6u6y/ToALEC5LNdhVlrN8NnDjBGU/PZzb1ykYspiDK5+P\nG0gCktyOtT9FJe2vMe5GJVihTk5GmqtdPvfRJnM2ZW0tcdxKuNskMVo8aCE4TX3eCCZMDUKR54Mg\no3tXCnET4iz3QJTLuBfFMP5KIMjLM32e5+UOX5z9YLgeuoIO50KE/coSxDyB9ZG7S61x7KpxqMel\n3M2FNZJx98CBzKVfQ+5Ya9gWNcOBzIWphNNZ2EZ7Ak2aKpo+MYwiS17qfKSl0FawBnIG0roHC4x6\nWYlxYX9P1txNcrumCxQHrUZD0+9oprauQOcNdvtwjpAd7KoUTZNJlOvdoFNUx4kG59WQdVqFWTwH\nfV/itlPBZagOs3zOPc8fa+1V+jovyttomgTaTw7+VHO2hlZLf1v7Xbar17cD9clqrs8/5XVt2E7h\nUM9r8brI8iwEGCcVjW2+r4cwa3I9o/x9FRxzGu/2qZ/m6KN/I8bI/EDtae+iMdOHBYE+yQTX1nWW\nO7vBhkDPM8FZLMFdb833lUqou0kz129CS8anfyN0QSawbpcDzcEVd6Z1dnHdITOz5obaV95QO45O\nVN+zPVwKYdtd4X7e+4Huptsb6rdySjt67B0Ra8nXvKqjfzqHQVrje98SN9gQbSMzs2C5tkbL+2rv\nn9AHi1BzxoVtaznRA4bJrT/8I/0k4+Pjv9T3+PBT9VEHxrHBnnegnrk99m/uzYNT9iP0NUO+M675\n/uviBFZKNPb5cdFAyyotqZ7JSmvuGFZWir5SrokzYP9qXdGcwczOzs70/v0nysTJ/oPmwnysNbW8\nqTtVvzPn/9H3o5+6rPGjRH0eLnXGNtM8S4F9Fc2qv60UTJmiFKUoRSlKUYpSlKIUpShFKUpRilKU\nV1BeKVMm6ypKt/u+fL1fu/aPzMxs8psPzcysQmTtDkyWR58rSvrzgZwjbqXvmZnZ46lUno+filHz\n/j1FiY8OhQreJIpaPgPpHCjSNbuM0wHvbx+hX+IootUZK2qcErX2QeNKv1Es64M9Ia9v/T0hrr//\ne4oY7v8Pes47/5mYPPv7YsR88JkYMkZ+aIbGg3+JKOgdImygWbUzRUt75Dm26jB2mmrPEBeYfZw2\ndm8j9lBStHgDBs4ibNkNHFMWB4rETjqKOrbQx2jgAT+GPdCYSsPAhY6ze1UIbIba+sMvhMDNyEFt\n3xYr6PtvKZIL+GHPHgoqLZ+Sg5l+DQqEmfm4A1U88plb+rkiNzLPcZ+RI++RMzsGHYq29DoPJC+m\nnWkX3R5QtAinlJavqGfDI5ceXQ+H3FvSnu3ea2IJTI7VvsFzIQf7j/V5b3VQT+8qEt4BFUoCHoAz\n1qJEBJtocJbCUPGhXwR6fyMFTSSXvwEQU3PUfi8FTfP19y5L+3RNfnmJXNsOyASRfkysrAubwgOp\nCT3QKBg5jTwHF62beoNIfRk9AHQApiDGWag1U6ur/pGPKwDvN+ayA6rmkmMco5BeWr90TPi7ig/7\nZwK7q7Mg535FZP8cnQucAF78a0Xy/Q2tk+tNoUAxDDs/d6FAZX7bFVNjjdtHNAVdQEMmJfc8d18a\nm7RRUo/c1qHG9DJsogHq60doH1z6ntbO4FQR/t1zEMEdzZG0IRRnl3xx74Rc1m3tTyVPjI71mtz9\nY5BaIvKHQ43N6pn2x8Y15tRN/X0E+6mJqMDDJ7g+vSCXeEP/v/JVv0uv3zAzs/oVHByGmqunS/VH\nFdeLIfpB0TmOEQGsrlCo0HZbDKBDnGkCN2dvoGM0QrPhVPtgssm+/ZPnZn/0ezb/kP30guX+LbHm\nTmHgOBuM5xeq3+aWtGsy8vpDxssJczQPtxfW6goEPG3jyrWFI8UEbSG0fvxcp6sFajlUuzeasDoC\n+rnTMQ/nwPNjUO6aGCIrq/EstfmEdfkcdtI5U/1bt+Qc4GzpLFjsaCx7T0H+tvIx0s8ybNEg1x5o\nkxfuaw455E2fL7RfNnDKmZ6xz+DWE6KbkU3QGMHJcI3Wl+vqDI9xqpnCHFlAodnMNWamQqeqOGIt\n+uqzfqQ5vippbU3RqqqzFueuxnA00hyqb2qOJ5Xfjkr9x8WtwpyE9dDzhEyfvdCYpc/1c+oLWU4v\n4U5U1lg7TfXTtTvozo10PrQysd+6aHdNPtVzvmIVVFiTW2imxWjrrHF0S9gfQS3XMJgadY1z6e5L\nJ7LSt0N7+x+K2fRtU/1v/c9ai7/43/7KzMyyI9wHhzAV2Sv9eo3nonXGmo1wSVnD5tuEZRGU8ysk\n7BVYI25V769UyhZz5nvn+ptH7j5Aq7mu6jLn7F2FOLfAGopAWnOmiQtTsFOBqbFE9wJHmkWK7s+x\n5tIoZZ9e6H31vvoM0tdXumoXLemUs4z9Ye3CFljhOgRTpdRQ/Reg7QkOig6ov4cjTa51RReaD0u2\nDlNlDrvUch0j2GDJEHYvDJgF99bMVb/UcxNBxHqqaxyzEvoXXbxKxj4Ns6Yco8eEvpKb6wrh+lfh\nDuLDjkvQbIg52r2lzqkIFD9DT26G61QZJ6JpuKKfYBjikrrk52rM5/vcWaf0J3ehMsyWbgxTJs2F\nQfS6MnpTnv+SKVNKHEtga2Qe2mGwgpMlrl0g76tM78sfW3EvzvJOqYOz1H5QhZ10GqHxB0NjNEHj\nMcZBcqJ9s4QWoJ+pb87RXbpTUx0O0dXI2ZtLtKFWnPUe+kIbaI4YrN8swPmLu0cLXbU33hcLoLmp\n/f/RL/Rda4YrlLFfN2rqmzL7njNH745zwYdFtob1VTnh3s5YBDiFxXyn8WPOjzr6lzBFK7CTzmDE\n2Eo/T060nzZ3dU9s3NSZPYSpvsmmEpVUz/OPdXfYelv7oDPmO1ag/q0s0aZM1L8Lh+8JMOar7Hsr\nX+3L2I+9EA1H1lx1R3fHcfj1WHd1dKUOnqkfB3u6oy1hBV7fgpV9RefDvZnOkRWaMLND1SOF7Xxc\nO6Edel+Hu9gMltkAl8Z1KPZHq/VS3+Q8Gllp5VjQZr88hZECi6gE2z1jj587YlHdRS/09Ag9m4E+\nexdWp4+OZSnD6RHXuiaucxO0BmsbOEFx36pyv1qjQRM4/H2GFlcbxh5rK0BzsYUGTZPsh/NdjZ1L\nukW3rc87K6l9e4f6rnt0Cqv4XHOyT+bL/a7WxP0yrDJYU03O6tzR9gC9oxg2mluBlUTWRIV9MFi/\nZCf9p0rBlClKUYpSlKIUpShFKUpRilKUohSlKEV5BeWVMmVmnyjK9+v/IMbJfZLVzkCWY6KO3+vJ\nSefhlyroAAAgAElEQVTy7ysyd+NNMVB+74f/ud7/41+ZmdmTF+h7IFN/0lLEq4JOygp06flKLI8q\nvum7RK0PJ2LobFQVaQsU/LTsQ/I3U6FPqxcPzMzs01/8hZmZdW7q8zpvKGL43lIsivCadFbO/lyK\n2Yvzp3od6N3piaKVVxNF4irviOEzzPT8E6LEOx2UyUGzts/1eW2X/PxI0dUAhLa8rahpUAaJHT40\ni/XaHA0orxVRXS5v6GdKzn5Tz3jxc7U5A0Y6TdRnH/5Mkf+joX6vbymC64F2t38gRPMyeXbVIUwN\nUKHz6OvpQHT7GnOXfPQlCKKLx30JRMDbwIkA5sxkonpuoo6+h+tR5qhdHs443VRjsAlCPCXaWiNv\nPSDKG04U/VzlEegNtWuKwr+d6vNPh0KyB4+o/9tCiJ3pkPez5GCs+ANFgeMlehpoywQLdC3Ir46A\na0oofUdjGDabqo+/RMsHZ4FlSeNWIY8xV0CvkmdJqqqlpdw9AwcYkJaUvP8YxDhMhAzned/+Sn/P\ncGLw1rC7yANf4FoVumjaNPW6GoyjkHFzq/xOon25g+PG+OLwZWmqZ1Vm2Ef0FaFOQFZLa42BN0Cj\n6vNfmpnZGWjUH/4z7S83O5oTqwPtA1ECGhNrXZbJ4Y/Iew5hIaWM3RAmS68h5lzDhXEB+lMHCbiD\nRsDex9oXXv/u7/F3zYUEBCEbCPGcMxZL9IWSDmgIYz5nLaYgft2G1vJ57vZ2qvcFvtq5gRbLwR3y\nykmlnx5q33DQz2ia1kS5p+fcug+aD/vprKXPCd5+y8zMas/EQHqBExcmeF/pfHg4FtQz/T0LNF71\nkp4TAbXOUs2x7VOt9QANAW9P/fbkQ7X/6LHW8kWLh5ZEzN5w1lZ7O7u4sXS0v3cjEA8QbgetgiFo\nYIk5XF6pHjNQPB/UMzrTONZKWvML8vGrMKTSTGvCLav9fVDHZTy1OfoJTgpyBuUwPAJ9maA5sETz\nBQev2kh1PRyDgP5U+1rzGTpAoL0d2ExhhG4QuhodkLT4Ddq6jUMUGlEl9t0hzlNrLGPmucYNjoQD\nUPN+ImRyWck1BdTmz/Y0V7fZR2qwuWYnmrsba7Vnid6O56pdm32dK4tIcygBjXNx7bA6zEnYofUZ\n+41/ccadmVmKRk3ImFZgBGbu32RdVLp6/tV7WoOHG5rDD8p/red8F0bQh0/NzOz7G3Ij7K+1p/gG\nu26mS0aLOX6MnsfTlZg0Dqigy52m0VS/1XGrW3lot9hLhPZ5+IENTHeqe6Z+83DH+nwtpsw3L/8z\nMzPrgAKGoeoTwcaYY0eyXGs+rae44sFw9NDMWY/RrVugvQODqYpWkVc26/ZyxzA9c+eWPquENtMM\nrRRvqblYh5HszdAkQYPAw+El5T6UO6akOMT46J4N0OJK2+i/DfR5ZQ/NAnQm9k/1eUH94k5/Zmb1\nGm3HmStBZy5iffto5HjovVVz/aUajJkcCYYRM+Wu4We4mPiwEdDSacKSWrMPLWDW5DJEOZui/JXJ\nHmc8DBQfNtYaR6B8jF3Ywetcq4fz0s+dtSJYuxVciWChxW10TPJzCgZLJX8+czmE8dQoaZ8OQdxz\nnNitwgKA9bdik0rpTw/nsdwtyuEuUsFJKGfE5BoViwXMTc6bKnqAC9gNZmaOk1gL1vUaklrAeMQ4\npKV5/4/pZ9wOM//ieiFBi33vc73nkPvSINHZuSxp3Q2HOkPCCawn3POG3DMnsKQCnKvWMS5DLk6O\nMPQSGOXxM9X1BdkA3W1Yszv63HSq99Vx8/ziY+3HtctinLz1LTEtVx4M8C9hkHAmlnHM8tGyquH2\nY6eq73Kp13VghWbNXMOE+qH74XNPL8OIWTNHZzCpK5yx85G+00WwKd54XWfptTe/qXqhK/ToM5hA\nVem/rY7FbnZ87be1FWwOtNlWM9UvuITDGAxAN2d3wbZb5No3TbWrCSt7ONL7x/v6+9YGrK0+mmEX\nLKcHOF2e6WeEM9vOTXSocjmsWHvNMILNAWNyxh7YDmAklXEMi/W8GQylDNeoRqbvgSnnZ9h+qZPk\npom5rYrFMEki9CkNds3sVH1y8ATtwED36Cnuk/l9JhizH+Gc68GIyzXAQkdjELLPeLgOJ7R9AYOv\nv4nz4hnrHueykPrF3D1c3KGsqbaffqnvYH/9QN+Lo1toHH5TF9Lmhj6v2eH+ydy8CaFunbDPkf2w\nd6DvPl3uIp0uGll9fS+olXBb5avtSYf9Ap1Wvw6rzcl1jn67zl3BlClKUYpSlKIUpShFKUpRilKU\nohSlKEV5BeWVMmWCm4pi9lD4r3YUIxp/oijtya8U8Up+jVd7qOjnO//lDTMz+/xLactUHioafO2a\n0Kidm9KauUJObQAy3SM/fS8CmclwO7msyNga5NYB8ZiDjC5Q7F4RpbxMtLZ6W65KP/jv/sDMzFoN\nMW9mX/yJmZndgZnjXAbBAUktvyb06st/JdeSZluRs+BTRb3LIMQ/uvf3zMwsJCqbkT+6qOU5wnrf\nNtH1Zah+Kg0UufN3ef1s3xLy6XrkxT0aKKJ887b6/jm5nw4R5RK5iUNXEfcr5Ck3NtU3u021tUS0\ncgBS9wbaAwG6DdlC///FsSK7l1pfLw44PNSYL1L1TRQp0hsHqo8b4mQz1OfNWqBXA82ty5tiytRp\nf5n2b3XIla/idpJHSUHdFic4ErQ09r2G+ivZBeH19P+XLmvuja+qXo9+8bmZmf3xv/93ZmZ28xON\ndfm2EI4OWgcbIBspY9cCAXUSHBdqKP+j6eDUyX0FrVqDwq1wC2nhPBHiDFRroJ0DY8nQEFoDL7Zc\nfV5K/vQChHtVQQsCNC0O9XvETlFlDs5wLIhAHRt9PX92LuQlUjNtE02cEKQjjPX5dVgRHkyk7J7+\nvlNTP79wsG25QBnSphTGx2as9WkJaPMyz5F3aDuOM32NfYouQrnP+mSsxwnMiDkRfvKOSyB4NXR0\nupHQZLcptGk6VZ9NU3L7p9o3umU9Z/xASMEvPlf9Nr/9Xb0f9tPqWGNc5fVlUK4Wmgll9H3mOHgt\ntrQWw8UL+kP7WBMEdYYWjNPA8QqksNcQk28B2h7s6/3rqd5f6aP5BTp+DntjfqQ1HuLaceUy7LLZ\nDbXvUO1ao6HQrWkNhrgMWZe95Vj13/W15zgbaEOgCTRvqL/TQGt5+AE5zgvVJ70ppOKi5TQS4nF8\novrZGI0JkN8GLAm7oTV7vaN+P3+kelfQR/FxwllPtMayE3Q+DjX3XfL7Wzta882E+QbC7y41L1od\n9KpYQ8PR0FI0okIIHtmXmpOf7mkf3LwiFlbzjubau9vqmxfsW+OPVLcj//+lTfp7fUfPDSbk8sNs\nC8+FBg0SrYXLPbRb0LbxrqEDRB1j9NDW7KNZmTGp6PNreziDbUmDrNsFFXuQo976feKob+o19Um7\nhDZBiBsJedf+BAQWdqnTV059GUZMht7EDtpcn4LGNyv6HD/7esxMn3aNch2QTP1w4qpe2+hzTFra\nbPbK0rgJ39D//27vvzAzs39iWtOfv/tvzcxsBlPIeabxnOaOQTBYhuhEzdlnKz3NPRfUP3f/8NFA\nSIP8d70+YV81M3tja9siE8L8mmkvvGO6E63fU3+2fs1eBDtlfIxrIHoes6H6dZThYOmp/yOQ8hIs\niRRW3ZpzqIfm29LBbTGNLYXV45f0zNyBqoHug001lnH8N12Y4pyVuUbjAEeqOi44AdfXNWPvoo/n\nws7qVnQm11qa4ysYiw7szI0AdL329RxTQto6HaleHe4QS1xBgtztCepKDBMng9kRwIzJ3fM8GBjZ\nHB0R3H9WzO0sZ0uxn+f6cAaav0JHrsS+E4P6V7jnrnBPilO1u5q7MkFG9dhzYrRXyrAWYnTwlvR3\nznDMNdVckO0S7Qmh7oScS/k+t6CdVfSaUlhwC9Z4gDuSSz/RbPNruDlxj16P+dyuzhuXS8mSebNG\nV6+EZk3KPb4Sv/ya41pqS0PbxvJ5CWUGVjEkA0sR+VlAK665F2dUbaON92CmM2GCk1YF/Y3Z4oaZ\nmUVDrf+zleZqHV2KUg8dM9hHp+yD2xmuOh6sANhBHbQgfUhBR7/R+n/xWHPy2oaef9aEme1qnzzY\nE7u19Jc6L7x/on2isqP69XtaI+lj7afzWHcEw4VoPUdbsAFboomG4zSf46xx7nlfOWzBME/Q20ha\n6tucqT2foEuEg1aAJmF7R/16OtN5+PAjMQJdaE/LWH+foC1Z76qfQtbIaqnvEUFd7WujW3U85W7H\nnW2FpmQGw3890fv6dT23D1PyfKj+OHisfrpW0fl00ZI80d7ko4915XUxgK7d116XlnV3tDHZHB+j\naXaAfha6UjMcx67n5wXfe1ZoV7pNfY4zw0kM5lPwZPZVXcaHe+YuffOuwuZsaa62bqEhg35k+1R9\n1lqJDbsFY8SZ4FJ6Ez2eob6Lzb/QGKe4HrFMbQVT0iowImFV+dyv1zF/r3IvXfKlApk4b67nNtDz\nWYzUZ2c1tP3u3DMzsx/9839gZmal7+gsXK61BlLYSdU9vvzhareI9fktmHmr37D/LbjvwYCPKjq3\nUrIDWm19/rwFExwXqHn5b7oJBo2XzL3/VCmYMkUpSlGKUpSiFKUoRSlKUYpSlKIUpSivoLxSpkyH\niNilbyiKW72iiFfvdUX1KkSy2+T/dT8id/+JUMLP/w9FBTfbikSdPEH5H/TvADbBPbzalyhVV68q\niugR4XdP0N0oK0LowRaZgEj0UdMfOIoEtt8VwnxpkzzvrpD1H//8F2Zm9le/VK7d6BBHm7VcoM5N\nUcvvva8IXultRaU3rut5px+KZXEyVzT89Xf+vpmZHT1StN0nJ7tNbvUx2bleWyyF5hhEHs2C7kqR\nvxflxMIYNB/tjozIcX1TfdxXUNOG+N3X3lDENlyJrVS+QnR0IiT1vbuKCIc7ioq2/hTGRE/PS2De\neG2NwV2QvnlPEe6LliNy1B3yg6tbij56RNy7ZSL2K1TrcWJY5i4/5PBv44ziDDUHJmeq76qsn2Oc\nZh6eq711cuZrqLGPx8AnjxQlnYMA1Pvqz05Hc/Lm2+qfXgemylLoXQxqVl2AdKJN4JXIuU3UjlJH\n7SxPNXdcHAKWuX4JqFcIqlUL1f9L2AY1UDzX15pIYDfUVjgakH8doVKfmp4T545DQPQuzgauEUmP\nyOPEgKC8gl1CdLh1Wb/PQthuA1gqOJdNcZOp1NQ/lY6e17vOuOC+Ei0UxS4tXkbw/65SXmsuLkES\nj2LQAfK3K6C+M18uaL1/rPV/v68xS9paGzH6PdkZzL1YdT8fK1I/gxVWXaqOhyCRboY70UTr7xrs\nMhcEro0ewyhRvdbkuB+dfWZmZs8/0+I7AkHsh8w5T8yOymPVp9/X+4Yd9WHb15wvZ4xNVfng2+iS\nHLAPVmC0TEeq362ekI3b76Kx9avcMkFzZnsGcnBPc2nAvrJRVb9NF2IH1HogKQDDyyvqhzdAz2OY\nJSmaXu4N7VPnuXvUJaFPGTnDy6GQjIqvsa+jn5QbcYU1XFPuas60ezfs65Rd8vOfDXFv2dKc272h\nzx3g/DP9CTpIV1k7OAE1YZd5Ae4qFVA+3DwWHbW7g26UC5Mq7JB7DDtsDuskxb1lyefayixuoUvD\n2Lt11XF0qDnSQOdn1VUdyt+TXtJd0O1f/PLfqC5nenb/luq24bDfgQCmC/0c/rWQ0to2WiX9d8zM\nbMwc3uhqbuyf5M4mqkfmqx5uCquBNpz4mpu3ezD9QM2dy7gJ4e5WXcGC6OTubTgRsqbGC43BIVoz\nPRDbK9ta01M0UIImbLE5uhboVzRDoXjT6OLotpnZGC2GDNZUGqhevZs6o/N9/SDS53xxLLRshUbP\niakfHhvuhaY9Z/+pXvfW51qj2b5+1jnHFvMW/aH2buaaCgn5/bHmhY/rUanN1W0BW8xvf9WGTvJN\nO/hEa3bylp5zbBq30onuKufsZd6U/dfJHYDQb0KDYJs133BwzFnm2hGwFDhfAva6OVSfKtUr98oW\nc/YHnDkeTJIJKG6EhojDXAk83DKZgw5zI0HrL+TMSmBmLHApsjmuRDAjj3AeCWGRbVbQ5whxTWJs\nayC4Fy3pOtemgS1U0e8N3HkmS7WvTp9UcG5Z56/H1WeJu4hPuzOYKzFnOkewlWDPznBu9DmEYxzU\nGmWtqXV+x8jvhQH9hKMjVzFz2xqHJWvDwV2pU9ZcW3M3NFxNqrhnTcBwfRxpMtq9zNcuFJdc18Kp\novWDi2rm5++HQV7GXQ9kOh3TYJ87aso+OtfvQYAeFvpXHvdzt4TjEKzAADfBmD3GsZd3iaXnWTVn\nI6PTFzNPYvT2AhhIEQz+Pi4tcenlGvu7yuFnauMv/lxs/kuXpbt259vSm5yhYzM65bvJGs0+mBmN\nnAkzFhPEZ3Kcr2GlboK+7+MKB/vLw4W0H0EnQMMruaLPSWAAXnoHLSlXzo/7c50DZ5+pviXYW2EL\nxuKOnt9c6H1zzvgqDMI1bqdcIWzNnG8tuVtxr63AaIlzZ6uIuYjJkw/Tu7Kjfe0HN1Tv4VB3BRdX\nwNEp9+jRU/3/pRtmZjZr6/W/+UL///3bOo/Oj7Rfx+gz9WCLTdDqCXNdp5LqFZ7j3MUcXC/ZR3FU\nK3NX8ze4T6PPFK2+Hs+hsg1T31O9t9jLnv9ad85mj+yMW+oP/zYdzBydD3EKRvflBBZGD32kepX7\nBHdOF4e7HRyQosHLtdFdJbaYBlaGqZ1tss+xvsOW1lc/0vf0ADe2zRosLFilKRpR63z/4rtSQDrC\nAuZkCeaIi6ihiyZYkn8XYSwWnAcl5kqd39eceXP0Mp/Brj+pqJ5T7p2P0c2rfCGhz4ALZQvtr9I5\nDLxTGDouLk8L9p8O78d9Nd9/EtoRwNhJ1uq3Vhn3VO6HqwX7fYqballz8m8rBVOmKEUpSlGKUpSi\nFKUoRSlKUYpSlKIU5RWUV8qU2esq6ne0UnR28ICc0mNFCTtE1rvXFInr3f6RmZk131LU+dFzRbqG\nD9CK2BL6lM4Udm2O9fxzInHTY/3so3of4NwwrCmylaOSYyJkO3OipztvmplZBd2Q9YYihU38zP/s\nX4sJU9oUQnPrmzfMzCwDyejsoZgOurUbKuJ35CpydvpQUer9I0Xyzj9Q+x87r6n9OP0EaDvYDCed\nROrSGTnECToiIYnmed7+cplaK1N0LiKPuoJT0+BcP2dosIyfayxSwpynC0Xwk0xRwI9+9TMzM7t5\nW+yE7bH67Pn4EzMz+9UD3EPUNAvIs27o8Raid3PRcvWqEMpSFfV4cmwRbzePKKTbFKpRBgVJQenP\nQDQ9ZEbsDG/5lcaq4akvD3MEeABTZEdjHYBKlZkrKdouDSL73lifs/f4qd53Q2O1iRJ4QL66S87n\nOe4oyak+p3IJFD5WfaZnisbWYSwlMH5yrQlzNedri5z5AoOnr34+JHJ+OQKFA423AK0Z6lPpKqp9\nNoCNMAGdy1FI0KUYZGOyUv+0F3pe1M2ZOEJqqgd6bnNLHR2gW7KI0DHJ89BxEUlg7Lx4LCRo8lDP\nWYJQNGIQgQuUzS0984MHGpRqqsnWxjFlCvNiAkL6Vl96Fze/oX3k6Au5nT09Q0H/lIg9qvGVVGPT\ngwW0Alnt4H50UhL7qwuKfDbPXSX0ufuHIIu7iuRX0dGogX7Mpupb39Hv47rQkfJK7TpboNPzTPXp\nnsBK6sLWisUgca+r3Q550vfv36UdGttkX4vyLNYcaeNw1b+s9y3Wakfika88QNNAhCJ78lxz7e08\n3xn0bgQjqTZFuwa9jbO5nlfBweHpGqTYEWugjNNOGaZNhrTDCseEIND7szG5wH31aw/0zLkKQn7B\ncoZW2eI5DkAlNawZqT1XX/u2mZlNDpSPvwQNdGHGpCca/wViDHVYYKsdzdWtNHfxgPmDU8NX+e5N\nXD1AfqdYJwzQpqjUa+YsdJYc73GW3BdTYef93zEzs5A+8nCo8tEECTb1mXffFQtz8Yn6rgFDZoLr\nQgCa1UDf4gS2Z4zezwLUeZGzB9g3QpykGh2dKSUcBeyUOTJR29Ol9tvzSGuj5uhzp+xT9UDvdxjs\ngP28ghNW7IrhsrlWvUpozSRoXSHPYxmspCnnzOaOXr/Q0NkAhmHOcr1oyVkGpRaOPU10OWCjJbhM\ndXFu8NpingwX6p8XQ7kvfdjSmf5PPTk+fHNDWkDvvPYPVb8D7Qlj3P5SWBYnMxzbYEZF7PsVXKqq\naLt4+drJ2SDjl3nq65+2bJnq8578C3TzYHc0nmk+JWdoszHeISyMcvlv3oUSmEsLzq0MXZEw14RI\n8/x/WBIRelCWs918a8DkTXMGnpfrTOgz8n3EXQmhRDbHAidHoXE8xPVuiY6cT5s6Ne0XMa9DDs26\naJ5MFuy/3PsWVa23NXWvfb1txMp1HE5wIkvRz0nQYYpTzdXRVHedDfSbKujHrRf5vgcaz/3NQ9ct\n4zlOmlNbcFij3WkTNyL2SYPRWYpyNyJYC2jstNAeXFRwDfFyp0ruGLhfRQn7F/qALm6oKz93WKRe\n3Msd7iLlED3CQPXycGZzeX4ZtnGE6FtSyZ0tcy2H/K7ToF767xL6dXGQ20rB4GGtLJn7PpoxTS6F\nDlpwMQ6Pq9JL7Nlbrm0C4zHXlgthQwS8L8uvTLDlMtqVa8xcpMzPnqoOaEZ953feNTOz8iV9d9g7\n0t1kmaEPh25kn+8iU8zUWqa/f/5Yd4LdbY3B5bekIzft6n5uOB5CDrD6rvaVkItq7lC1x9nnwXJq\nXdHabB8zRueq77rHvf1IbQ+ruc4Q5w7fHBO215R7dDZWBXowT5yq5kade9/U57lomMWwEK42OSvR\n3ol4/3Km/f/kC90TK23uVF/oLP/kke5ud67orrNCoyd3sNzaUf/9+nMxF7uwsGZ1HRzVbX1nXD6T\n42azqn6osPQOceIpw+Bx62hbchCNYYCXW8z9jd+uF/IfF/dUz/9yzH4PM2r2ld4VTrsD/f9ule9P\ngfbx0xKugHxnDaZ8L/BUz1aF84V+tiosa963yF5+H2u5maWnM9s71H7gwG5akzUQwmhrd/SdzIN9\n1EY7EOKLhW2yJpiL+23ue6E+u9TUXE5C3ePKVZ1FWzAMc8fFNQzL8Uw/p7BFZwt9bsJc8E5gr/Id\nZvtNvp9ztj76tcY+/PVT/f9YY7+7qc+/VYWBDXMx18ia7qve00HOZCYr5I3cPVBnbCln5sOMrJMl\nkrDfeexz5ye6nGzkF92/pRRMmaIUpShFKUpRilKUohSlKEUpSlGKUpRXUF4pU+Y+3u93Lot10asr\n4rVXEfJ6KtKGObiXnDUU+ergxHNpoQjX+k1Fnm7y/i/PFC3tvK6/j6aKrPVh0qwzIvALcsxA0HP1\n/spKaF6OIo1vgNaVbpiZWQndkZNzve9SW6/fwG1j6/v6nN/87CMzM/v85Oeq/y8+NjOzJXomTU/I\nePuW3vfDP/zvzczs+KbqFYKkx7AfSh/q/+2OEP45Uc7gQChWgD96O1G7z84U2TsYr+zaTNG9AZor\nYVVtqZBjGMCcWGF+cUx+9i7odNDSGGVl6WB8is6N2yCnfa2+f62vCG50TVHRwS/UV4MIRkRFkfmL\nlir55mXyDAe4QzjkE0eg1hUQVxdUpNqrUV9yXwPypXHl2N5SPeOJlsDiTH3bf1P1fuMb0lao4OTg\nkF999gwHAVDvGm4ft97CDYOc4DlzbLinDvVC9ftOQ693PBgn5KSWZ6BLBFH9kT53RtS4AtpXQuk7\nHcF+QJumfVe/l4/I1z7TGtl21N/PX2gx3XvndbWDqHe2xC1rnecka9w9NCPSWGvHyMs/gg3SwrnM\na6r+R74Qm+ttRY+TiuZbB5QpYm6uF3rfeqio8WKi98UwqpKxnl/qXJxRNUKboA66sAbhy3BNGnjk\nZd9RX5SvgpZ4sIXIJe2RA5+uYFnlrKy9nD301MzMwjM9v7qv5wIu2wjEroUeg8/c2HhNfTA2NKi2\npQOyMdQaSiNF4qMMJDVnCQxBJkG1TjLQNeQ9Vg/Y/1rSrZh/pLnZ77IvGO5PV/i5UPsTYKAaKvX9\nq2KMPDwTojD4EmQB7ZXWruqzuUFO/yHIqZHn3UUHKIR5wtz/zZ7Qn/NAY72Z6O81mI8xec7LDuOW\nu1otNA4uDJYFGgT1G6BuONPUj4GzLljyXN7dy2gewOrK899XzAdnV+NQAyAJMEAY5DnB52KhTNkj\n610QlE21a472l2P6vQTSm45V3yc8xwV5mdU1DqudoQ3G+r+PDoQADjEgeP3u98zMrMLe/miOC8NT\nGBpfah1XSc7vwRSZcka0cbAZo1V1GaeTy+9qLkYTtcnDwa8xV59Uj8nbPtD767dgWoSaa1GGy5Gn\nMR7lDiwv9LlDWFMJrIDVgTqzz+dPJuynNRC9IWsQDZMKaN0i0NgsD/WcrM8+3lB/xORzZyFaVXO0\naxpfz32p2tD7Ytzs5jBG12gYzNFQaa5h0tQ0F9tr7Zf3oGT6nvaQd5gDz4ZaU8Mv0YpBRykZ5/s8\nbiE5g6ij97lVHOBAap2pfg5hrJRgpmS18ldtcNxtu1WVE2XAueEmWvsrl/MT/Y80hUGF+4mf5eeq\n/r6gX5MAlxWQbH8bnRL0A0Ly9jNcSaoLXFYanvmg6CsYy3W0ljJPYzV4CksVhgUSK1/pVNRwAZqS\ny79Gv6cEMtnBHTNca+63oVqkMG18NLXcDi46S9pawlml+vXclxyYLZ1G7lqUuxCpj4MKfQLjcsHc\nz9Bycevo+eTOWThaYe5hLh2Q6z/VY9YQrIMSjBAXFuqKOwLda2Guh8TzPe4aEEss9NCTwP2qAhsh\nzKcQzJlc88Vdqf6VGnMWdzwfB5cYDZpslbtOwWREFGdN+0u4KEVoMdTQDIu4y5Xpt/US16cq7eDu\nVcbFJM5Bf5grDo45DnM3THNNCvZnWBpm3A1YAwYLpQTbMCvDOoaJM2Mfz820Kl+97+8uvb72gUTU\nELcAACAASURBVPe+r3vk9d/V/fnj3C0I9u3GQj/3H4j54Xxf67FRRrML3aPVWGf8aqh9uLutNt//\nhu7fzxI9dxFrLZ18pNcvNtQn332f/erat8zMbArTw99Cwwq22tkAxg5jv4xynaKc+aI5kLEfrBz1\n2Wqdu5nqPDqHzV9hkqd8x6rCsHOznN2vPh6vNdbRSu0I0Cy0nG3GXaYC2+1kpHvjdqRz4ZvfV39/\ncqx+7MLOmsIgiZf6/8zUXyUGtdRGF4k5MKRf6ttq3/Rj2M2sRW/I96IrYio9qmnPWbyAFdyHvXbB\n8iLReXt2Ip2+TTTZ+q/DpoOZv4BFErDmO+j3jdBSWy0RBUVvNOhQD5iWLgyhELeuFWyQuOt9VZdx\nu2Jh7Fl5qmdsddHaQ4uvi+br629oTh/8+gPVkTPAyAawVa5HhI7kGM0n9tuMtjjUqZWzX9F0TEf6\n2bicawzquRhzWdBSPS7/QG289E1ps3Z+8dTMzA7XumOcTsRWXaFL2mbN3eFszb+35/vkLCGLZIl2\n4I76ODnDXTOE3XoEC7SpsfvKYAy9uUlXbN/kgO8h6Lgad5pWjcyZv6UUTJmiFKUoRSlKUYpSlKIU\npShFKUpRilKUV1BeKVPmo+dC4fcPhCLlWi1Hn+j3dkC0DweBLsjJAuVyb0tR1eWxIuFDooOfos1y\nvyv07mxF1NRT1NNSaUqUp8r37l1WJG4eKbK1Q87twUD1a+2DPPf0urECbhaDxIxnipJ+8al+bnwi\niLVLlPZSVz/Tc0Wp96dCG7/zHWkYuChuf3kkBGEEI+guOcuLAAeOXOsgw1VlU/oBk0uKbPogyx75\noy5oWjPu52nH1l4oB36d6hl754psNwfkGaN7E2dq5M/Q9/mDN8mN/5EixNs99CpiRTWnqeq8GCki\nn1YVRdxrqy+SX4ox06q+RPQuUgYzfX4V1fTSBhF3HAAwVLCoTJtxYZrNyFPuodgdkWtZQx8C5s3p\nqeZESN739ZqeMx0pGrpHjv/iUK9z0RTwiYquS7gxkY9cLulzyqDvHnNyY1vR04w85jwZdzxX/5Qb\nubMCiEOACn9EnnRbA1idaEzTOg43DxQVbpD3Wb6nufXTP/uxmZm9ti1dIifSOFVxL/GfKzJ/MkGB\nHARg5fHTVT+mVVCspvpxuhA7YgXa1XO0Fofksg6P9b7zR1qb81hzt8UaSBxyZeMG/QXKVdEavnSt\nzt8vzqiKPT2zMdJ7G4HqcpTrUTT0/1fvK1KdNrSPPP9rMdgSHEOOP9OcneNgVUazIG0x9hXVtWsa\n061NtFy6mvNd7C2WY9BomDNxrOf2toTSfAW4PdYceIHuRh9tkg7OMlvfUh94M43ZOdoJwQNyauuo\n0CPCsLqOrgY5vo6JibP3SPVowCK7d51I/ZV7/L/mWG9Xn/OiS97xvubm8BTthGPGuqd+vN5A/2Iq\ntkXXE3ujWdH7r93W67rn2s+z+zyX+lVwjxqhpTMydcz/x96bPNmRpVd+nw/P3zzGHIEAAsgEMivH\nGsliFZuDupvsBU0mM5pJLS20kJn2+hu0kul/6I0WajMZZVKraRLVbVRVs1hFFmvMsTITmUAAEYjx\nzfPz54MW5+eJappYDKyghd9NABHvuV+/97uD33O+c9ZQj3og0HXcRUo1HCQaeo6ncwRFblj2vqn7\nlxO1r7eTuW2oH86ujs3MrN8nL32sOas5VbvuTsmxbmpM1NBGcHHrW4AujtE08jN0caiffRDfeQoa\nuYUq/5VQv8mwZsVtXWvzTbEhXURkZgG569x78ykI16nQoD4MsxWaWPuZ002q8eo31Ech8+MXY43P\no6LaYn5HfTtfwgTBISpzZYvRF+rBJmocKfbWdZgRfbS/1kLsEsZ529XfJ2XFXDtbPGErbBUV42lf\n980cHAq4WVQaOGBlrArYFDVoBUsfZxfQ9uY90KoLzYtp6Tc7Hfz9soKxZ2g81CuwFW6p/sVU7ZWC\nOA5/rOe8+glr/ob6dOvfax5+ivvI6b9Gp2mguSR6pussy7AqQAGjbdYB0/ULMCgXOD/4MBP9DDVk\nrR/GzxHPxaBoC3ROEnSRNm+hGYFG2sJRP1VBoIMa98GMI8FtpAQbpQJjBwMhmyw19sIZDEgYnCU0\nyXq4vOzFFev3dK96S888Q58nHatvV0N9J+joHgWcp8pbimEnhTEDY9BjzQoKrJVjVXpIaFVxE/Jw\n65nistPk94tAfebRZqX0xURlliDC17CndiB1jiBlNWElle9QvyGMETQRUmKW7aMlX7KvMk0XGEMg\nsyv6oIg+UoqraALbIIWlkMKCTnGq9DNXPFOMRewHGzivOfx+7sAkWei+HmyoCDZbqQRjBtQ9KMKm\nQrMlyaRWcAqrsp5kGj4R93FhTFVwiUrYb2fuLAs0Yxw+V1yyXmfPi8ZMLdP4QotmjktXGSc4H9ad\nsR+OnOfrhONVrAOTM4RhtPSZwzLXRPS6NrbUoVPmLC+5uc5d39WcPi/AtGCuX6OfaYHGTRHGdTvU\nPH13U/N+h33fHDbPdlss08aa8f6x9sX3vq53pr22fl7/VAzLnw2lTZbCZp2wzw/KarODu7D8D2DV\nn+uZn36qdxhnylhDA2YG+7iEXl2mt1ZFh8Nhf5j29X9vEwebof6fMdadVG29TFSf9SzTC1J7lSu4\nBuL2GWyozRfXaK18KIfaZ8e8T7yl+9bRJEu/0B5kD6fK83P9f4nm1qqDlmNb82GK21zIfjyC4ZjA\nso6Yc/xEPy/RUGvta4zdvqv3orMT5s8+Gj83LPUtxeoBeoWFA7QlcXvdIlPBhbUV+jBBm7CSofGu\nN7U+Db7Q3Lb4UHvEnUPGIut4uYlm2j76g/Pn68bh229apdS2h5/q3SBh33z1I+3fYuany0Dz7dUx\n7x4wP1pkCQSwu9ZdtGgG6LGVNBYKsH+StcZlCWb4Cj23altsew/Xts8/0f75U2L597+jZz/DydY+\nlJ7p8URtv77W56q879dZ2+ZP1CafjrUv7n6mefrOnsZA4Zb24QXmkULmnndLsbO+YB2CkTdGI7FE\ntkYTPdMdtB4/Q59oPoZJmO2n99hj/AMlZ8rkJS95yUte8pKXvOQlL3nJS17ykpe8vITyUpkye7iQ\neKgwZ2rpn3PE/05ZCMvJz3WqOsNJ5u13hEKlHgjzlk7GSttCeu/t6+/uPkyRlk7EHnd1+rg51olc\nWNIJ3+wKV4+BTkt7+LO3UZ2v3tep6C5aDKdj1be+LPB/nXZunelU9vQYLYpXyGHek3vTrqeTxc9B\nUp/19TzHlzqZvP97uv7JRA5Hn76nU9P7TeWjho5O7oYXOnXe39Jp8QZaFUXyugtNnUBuVnXi2OoH\nFgx07S6Mkk5RjJfbVZ0c/9xV3Q84Bbz9qhg1xVAnr+ul6r7KTnRhUix7asOjB7CcKuqzqKtnq+gy\ntvwt1WW7/2LngHW0TTaAo0Jch6Imedg4ZGW5lAmOOXOQwgCl7QyF8XGoyg5Zo4lip1XX9eoN3c9D\nDb0x0PfrbT1P9UgPVOBU1IHB0wap9WPcRchPXq1hV13perOJ+jSEHVWCjTEF3SqvFDProp53DSMo\nBF1y6vr+Puji5UKISKGm31f3NQaevPczMzP76h+KDeHCBlk/FsICCGYeuikVnn88BkXE8SuowgJA\ns8CD/TUc6P6dDCFZZuiVxsz1BIYNsTjPummisdx6jVxXUNF2Q+26vaOxMji5uWvKDmjvOUjX+Uz3\ndOq69t1XYEToUWz9VCfvCy9jSqAp84bqsLmFmnykeWSHXPcW+dRD+mSEy5uHyMv4RCfwSzSwxrHm\nhUpxh2dTG35BX0yu1Habh4qhRlVtFzaFVg0eKUh7juaH8iZaJ/fR+ZjqZxFtgCFj1enqPn5N7Iid\nLbQILjWvPkITZ9tVfYP7+lzn22LutZ6ANFdVjxljYLqAjYDBwKqaxS7OODB5kMaxoyM935PHyg2O\nQZj7OLMY7I/F+5p7ImKga7CwiK35Aay0uubdPebpevc3Iw5/v2SuSY9hc2210OvYFSLaHKo9g5bG\n0tlnMHZA6dKtjKWHxk5d60qjoLmvF6KzBNviaqp+rbhCdkYTLNt2iRdX93u4FPrnjC/tG9/9mpmZ\nLUuqg3+OTgVaTjYEuVvj+EIfxBmyRueM0ZXYoTOcGToOuNGdnAq1abQUE82W5o0yji5eZq8BdcIv\ngCLBSki65GPzuXRbz7oxVr085Bl6ZXSWQCAbR7p+jN5SER2h8RWxjutQfUdtWHhFMVGOFTtNtLAW\nbobG63mqrGsNWFV95qNg8WLuSwnoVzVzOnTV7uOufqZr8sh5viJONQ3A+FqCbsgP1S/XOLHtNMVY\nLDbUjn3Wl+1tzQ1zdDyWRV14TbvMYDd4BsOQhWvFXIH5n0UwHM3MThYTi1kfxs80F71FrAUl+pX+\njNAeSjItMZ7HKTHX8LkZQ9ZCXJgS8uQ7OCDBksCsyQpF4rdWtDRjBqKPVIbh0kM7wCFWGziLDOeM\na9hImZOT4egXZS5FiAEkOGWVMhcjtAriudo4mOh7LvoTXsT8CFMjSl5sT5LOuT/MmyVMnrCv2Ahx\nMquhTVhsoovnE0Mr1TuGuRix5sc0lEtDBej+LHHwcXBXWjnM5+z3MreQFFeruJTVD/c45opsSCeM\nkQWspuIUZiB6Gkvm5RrzWcZtnuHquYadlRADa5DxOmMlxDUqDvX5FAS8QuzOMo0fJ4s5lVKmj8Fe\nI3DQmUPjJXGY68CSPdjJ1TLuXThuLmAOFWBAFaLnbACnvLI1/T8f6vN+KdMu08+MdJbg0lTsoJ8y\nvjmj6jzUmv3m74sFunsfbT2cFWsT3IpgLgabGj91XOR81uxZT59vHtLmFT3bT3/w78zMrGvfMjOz\nrQ1YCq+pru+0pfsxiNGrm2stf4jmytZQsbl6qolrwBirMN9ERfoQPYyVadyHuK26mXMte6BkqOus\ncY9K+7h9ztEvgtkdwIQ0mOGNWLFeYW3OZImsDuOOd7ZpT9+bFPX7w28cmZnZ0R8p+6B5G32SL8ga\nSDXfnRyzduMWGsGeqqCz5MCQWcT6XhN3qdFC7wWZLtWCdWxwxfw4U3uUYFXXXoFNtvdi7rKv4hw6\n35bW4wQNx2hIVsRT2GToJVpNzM+kgA4Ue8LSGJ0unI7GME+dAU7CsLxKMG3msFgmi+fMnl41sl/8\n+Of2+UPda5+MkXNcTW/f1b3TJfuaNe6drOXRgol+oTaqoF1VQp+tssq0W2H/oxc3IyZWA7XdFHbv\nVVnXXR7i2oSm1rqlZzr+UO7D1zXGJXo7+7e00XfQxPFxw4vJWih8oj6fnsE4v1Yb+MTkGtZnhJ5S\nIWHfjy5qhObMq/e17xtMcf1Dwyosai8VZnqsW2QDMK/OskXyHyg5UyYveclLXvKSl7zkJS95yUte\n8pKXvOTlJZSXypRJqzpBegJy8vqGTsTuvqlT15ScsllEvmUdJBbQMJkIYQ3r+Irj6DJt6CTqtCcE\noE6eorNLLitshl5PF3p9Qp42+XzxCKSihCI47kZfuDhDeGhPXOtkr7LQ9wrHKKmfS5V6Feqkrvo1\nITb+pk7wKqgyD0F64nf1XP/9f/3f6Pq0z7/6i//RzMyi/1un3RGo4AV5nlc/V72bhzoVPrx1ZGZm\noyeqR7vwnpmZPTyJ7au/pxP7Fu4eFyvl4ZUGYsy0Tc90hvL2NSfUGxz8zqs6/auAxl/jztE7k8PU\nW/tvm5nZhJNjv6HTxCnK/lGoE/+r0qG9SEmLOl3sgtYXHLVZeA1ahMZCPcyYJKrXhNzPCAeA6poc\nfnJipzanvjBMNlGnL4CKTNVnbqRTU59YXJ2LmXKB/kWMboRNdZpanOnUdr5WHyUV1PLRSFhvCHlE\nqsUiEM/WGAaQq9ibgLYvUiEcMbnE/lynyuuKns9Bb2gG2mU9tVexoZiog8CUe3q+j3Hwat3XWLt+\npu8V7+DME+v5z3H52EA3pMwpc7ujOCpvk+uK/gmpwhYXdL8ejKVDV8+7hsVyDVrWCnSd5K7iyq+r\nvk9BpEdPxeK4SWH6sAQkMQQd376FPsPryvt10U2ylVCs2ziILOtC40MQzOAZMVRUXyeXiulnjNch\nzgIOau3LKQgpCGGzqD7s4DwwOkTXaKjY/+n3f2lmZmefSg/k97+t+lUK6ruLh6jQr9T227d13WKV\nXN6nast1Q/OfP1Of7YBWz3GmKUNPGqJLsobREdf19+tzxdTeLVDxHXXiTkPXeYSmwcZAfbSGHTd/\nprFRSNROe8zjXdCu2rcVS/O+7jNONC8vY13Hm6s9Cn3NCU9gFMWo73tHio1FnKFyMBxxYrt4/IGZ\n/af2JNB1b1rGsEQikNgYVKr7kfp57R2bmVkRVslBRfHSh5FZ6pOXjmPFBW5Ko4L6vxSrfSe0dwx6\nWOig5+TpflOQ4i1cXz5EuywoFez6qZ41uNS9HOYfF3Rl2VQftBrkQaM/sd9Umw1OcfcAHXdgwk3L\njIm9IzMze/RTsXMuMZ5pwUCZl2H+wQyMcf3pBGjPpKpHhrIXDC0t8sqHO8wnuCpl6HkRRxWXfOta\nFSe0qq5bSOQW4p0oJsdLxXgNJG9eUUwmIH0l3IpsgoNOR99rmerh4yIV9NGXuGFxcCEJY7VHgXnQ\n/3u6GRXcimI0tWrsMdJm5vCDhgJIcynQ87qg8oUWTmuwQTINtxlsjhKTWhNWllPMKCiwi2F5ODhL\nrHBhMjNrVTasVFbMekDPMxDhFXNCAXZdHWZVphnmkke/KuKKBSuwCtq5gNHZKqBZkzlm4BiUoKFT\nIbadVs1KI5DXGmxXhGlmOIIVibUKbRKDAtfROqnBSp1hH+QjwLP29H2vr/koc5uLYUg4E2INRosD\n09iZoO3SYIwtX4xx19yBAVOHOZK5/fVgzExwk0KLZAH67jbQeuF5ghgXEhgtmU7Rmj1Xpr3iojM3\nhY1Vx5VoCHPEYc0tMlYLILwrWE48poVL6gkU661x9AKbXcFa9dF5C0q4R2VuJLAeYtzk3AAkHKZo\nSL8V6d859/PR0plWNUY9kGeDYcRj2DqzQfnSVQrGOXp4bopLHkwkh/u4S/1c4c5UhHmUshddpc+Z\nMt7KtQhGVcasWoBgt8qai7rXE74P28zV+4ezTu2mZe9I++p3/0gaMU6s/cz8yU/NzKwJIzhoK/bu\nvwlrU1+zN7+hv1/1xQZoP1Ndv/5t7VV+8SmOqyO9G5xP2WeifTLfRL+nICZekWe9g4NOOcLNDtee\ncqlJPXGkMl13gu6Hw755Xc6c02CkZGOXNX3BnsGDShjiNlpy1LYu7AlvhXaKw7vUNHMshE0GG7Yb\nqg8abTRc0FLxcJ3a+Iq0Lc8faS8EydWSaz3fw8/1DvSt1/65mZmN0cKqwlLL9Jgy6rwHM2aGw1u1\nzvw5ginzRN8ffh3tm8x6Bw2eSnxzhy4zs9Esc1ZTxd2EdQKtMWem2OsxV1SR6lmP0ZwkJMcwXj32\nSJtkncxT7XXjUDqqM9htlboyFx780Xe/rMsrd96xx78M7f7bejc4CJShUfZxCebNNPxMfdvItJ5g\n0KVDzfPuFu8q6AnVcBRM0O8JIhyimFf8iHezlv7f2Uc/qaOYvLsn9vAve7gll+nDuvpwo6X6QVy2\nhDW0Cst3PYBtmrFRm4qpDTJVpplmIvOqcd0i7lGJaa9VvNBeZHqhThicaexUPL0bjZrEVAMtyAqx\n0lI7bOxQj/lv1lXNmTJ5yUte8pKXvOQlL3nJS17ykpe85CUvL6G8VKbM7FKnu6UTnVgNOGHz+jr5\nmpZ1yrfpCGFNijryj0s4PHRBVMlBjg51AjY51wnZbgOUCscff4RrU4gL0xrF6k1Odcmr3jEhuAvy\n1GueTqXPUaquLHWyt1vjtHqsen28EuIZDkC1fksnZZMVuivv6OTxgtPkKh73QaCTtE++bBl9b/Z3\nYsp4fyeNmb/40ffUHt8CQb6l089GpnIPY2djV8enY1xa5qcri9F9uHoqdfZrHBE6d0G02jqfqxtI\nITntCSfJy4FOzh/c1ylmGuoEfhqoj5acojbJN5yi4VK51nXXQ/29sRrai5RlqL4skp+cKeuv0Z1I\n5jBeQPjKbd1nk/zs2RUuRRVdp06e9GyE4xanvY1ttUOtputdf6bn9RaKzWGo9pqMFRvlbVTlscFo\ngmwGBRgmoEJuW7HrNEAAQK7n6Iq4Y7XPtARqQ85+gn5RRL64X9BzXYEQT9D+qdzRGPjkSvXeR+2/\nWNRJ+Ij88VpJn3M6+v/+a8pFXpTE2khBRq8fyR3gcU+x0+/xXKFi+P4DQTkJed6Luq5Xaej641O1\n+9Ox2qu2od+XNoXwlKa4wmxK66Z7ovs87SmOxpeK4dr85ufF17h2TB+KJVCo4yxy79tqCxC78oj8\n2aEQxOuC2rxcxr2B7PbJivzozOGlKLZSKnKZrVOhOzHMlkVCPnJZfVPbFnqzuKVnvrWjcfrZx+qj\nx7/8wMzMoqrqUfyGNF0mC3JvQYcAYM16+v+zM9VjivNVjKNYD62YsIFWTMjJPei4N9b/L3GbqD5R\njCwK6vNfHet6X7/SCf8YB5hOBIMHlkWGFs0vUM3/UM/dPUQ3aE/3H/Rx84Al4XUUi2Ffse0VNIa6\nAzQBQPVqbbXXoISWjKl9tzZ13+szzV3LZ2r/6FnPXqT0YTRFR7DeRmqPrkmbq/yBYr+1VHukMJ82\nRrAINtB9WmsOatYZs6nad9BVP0xxYIvJdR53FF/hSnOwn2juGB1qTrr1bWkXTS2ysws9Uwqz7eA2\nziAD3dOf4oLRh6W1j45GQ31073ekXdKa44p3hUNgms2TGlfb95i/xqrbGEbcrguaP9X1xmgYFKdi\nJQWJYjYFuZxUcEyB1RRsa4111zAQC7g+4BQWdXUf94B5E/RqhguUbastqzv6nANbYlbECRFnltKC\nWIk11rdwavFAHhsmtC94Qbc/Q69jDeoXu5mmgtqxEKtez9CKKSKRkDEe6zAVr2HRueht+Ct9vgyq\nn2niFDOXpAQNFvStIOXaOoDxeap+mjfRHYFFEaMZEBWfswGK66GlsBPu7KjdS1U9hwezJ/bUbv0u\n+nMl9ljUC/MnW+HCVQURTgL1xyJiboHtsEDnJUGQowwDKp3MbI3bhlvX7xboq62uFVPuPfXlbK41\nd4kOHBKClrDG+LjM1Su6Z0SsjmD3prCGnDl1hDWwgtUUwD5dZS49TLAe2gU3LSv2m3PYVMEK5ktN\nsdsEvV7CSkrpe39NTICGL9FsMNhfccbkQWdkkmSMFdhYVT1ff0Qbo5OxRp9u6WZuSTAffdzd0OJZ\nw6qrTOhjNB1iGCUt2AwZu9hZsB8v6DrIOlkJhqQHe2tQgE0Lo2cM6yANCCL0RzDNsxVsuxBmzHLF\na0jGaMENr8RYSZLMeYY9z5C9EVoyfprp2aFVUYU9B/MoCQgkMyv46y+ZQusaz4FOYcoYarZhYsHS\nznQ50vpzNto/Vtp30XwaiiHz6CNtHjqwf+519Awf4SC483VpihRb2h83N5jHcPf8GPb9Ita+29tE\n3wydjeKUffUS9v6IfSbvLmv6NqFv0xjNEdxGa4SiB5PlinecBlpWQ9hk4TrTpIJJV4GVFij2Sw1+\nrhWDoxPd33BrGsEkqeOwmM0fBa5noSpSRCNnD+bHAiPelQP7DMdbe6QYfvxQTJkG887Tj8S87LOv\n7Lyh9eHJY9xDD+UW6LKXKIyZR1m3EtxMGzDsp7wbdo91vUKE29672uud4paVZRrctIwX2gsZ61oj\n047EITJEA6dc1HXHaIclY92/toV+Kho+PdaLDRhXP/6ZNCQLodbt/Z7mminan8cPEVp80+yjH1xb\nEG/ZNs5VEUznNowRw3m1yrOW0AMKeedLWLRcT+8K0xjGNlkDiwv0ST2tSR7z3nWk3z+bqC9ubyuG\nPx9on5yJFIap9q0rWEKxo2fun+hZBqe4s6EHt+RdqR3hUhqyj+fda4n+ZQ222pT5ulHiHYx3zHVb\nfbN3cKR6XXys55/q7wsYPvFS9exeH6u5dtG5O0K7Fg1L5/w369zlTJm85CUveclLXvKSl7zkJS95\nyUte8pKXl1BeKlOmvSsEud1GefxCp5TzM53upQ2hN0UcCbxLnWR1U51s+Ru4m+Ag0KgJcWnjeNMt\n6MTLmZIHPYMBszgyM7P7rk7ezob6e2Mb5xt+pgGe9lUh2Xaq09f5uX7/qa/Tyj2MCOp7qu9Xtr6q\n/++ovhHaFu3fkSL6199E1fnH+uk3hOD/4Ht/put/9D+YmVntUieNZxWdZmJqYmuYAQ/e1fMuz1Gd\n5/TZGasezdf1jb1bXXvtqyhRl3TNrb6OnvcOdWL/wd/CsgGxfM3RifxyU9cskDM+OcZLvqRnd1Od\n1K5a5PKjxo4Qta1Q5t6tKrd24d9cwd7MrAEakxRA3vACSNZoL5S5H3nO3ljPHKScNIOaJEucXzhx\nTjgVLRZxA2qKuZHl7l+BIB+CBEegKZt31C5beNvHSyBNTl8LHbVjBGqzCmFd4JrikdvrNoXkNov6\n/ZMZKB5K5ENOvq9hFvmcsvoDXb/1hurxhHzJ5ZVOmZtNqdGnJf39w0f6fW+ARgvIcecApLeoMVQ1\nxUw7VDx8w3nDzMwWddVrmeV7o0FRChh7OO7ceVMI/XJf7VH7SAyczSMxq5waDhiHisNL9JienmpM\n3m8Ludh5kCH1sNluUFqwbbowOjbuHpmZ2cG7quPFua41Rf098hUDta7mmdVUsfFwqmfZxiVjWSbG\neorxlg/zbUPfD9Zq491Efdm/nTmOofJeEpLw+IlO8k/fk3bJyUgx9V/9SzFR3jhU25xeCO1ZcHLv\nTNTmT7ogFCADiS/Uw83QapDgEmhIH0ey5gINFEftM1gJKXiKDcf+Qn0w+EIcvWev/L7arSVGX7Ol\ndjkmhlq4UHVwzbhMdB1nBnLSVWwO3gfx3NJzVL+m/HjS0e39H2nuSGFXVW/hNNFEw8vVL3xLHwAA\nIABJREFU2K3XdL+TSOiUm4rRMl1Ii2cnySxhblb27yketu9pTrqives/ZP4Eoe891H22qppfV3tC\ntstFnDFa6KtY5sRGfj66INlYWYE2bpNzPSihgQHal5Q1ZpqHiq/ZcWgB6O4CZ4PKGK0nF2cu9Bue\n9RQTk4/0s144NjOz/qbG2wPc86I7rIkDXWc9AFXC6aYGy6s8AUEFHQru6vctnGm6zD+LC7Ebkj7I\n557GyIMj8rArmn9T0LQVSKOz0Dw9w+Gg9wU6PjAvwlBtsnUIil5R/eLMeYf1pIS2TCnWvBEwv6eM\nKS/VmKuiYZXC/Lxp8dfEwlL1T2BcFpi/CjBnNgM0FkA2w8xVL1B9yrAeKjxfAa0Zf0/rZB29k5AY\nXizR1oKF4Uewf2F2Lstq1zrsj3UBK6Om7lfPJmYzs1nPri5BSGEXr8/1uXt3hcg3d3Q/d6n1b4F2\nThXGZxnEPPLRgkB7rYCzkYOmTYr2QrmndpuVYNzC9FzOfWt11Jcr1sTwWuM/YB5qI3riw+LZYD5w\nGW8p6PlwoXloguaTgwtQEfbXCpQ4hpniZW4gtKGDW48P66cGUya0F9uTXA0zPSP0eVrZffTDI8Z3\n9vXckxWspsUZH4B5AsOjkgmyBRk9CgS2BNOD64ZorZTRJfJh6rgh6xosjICKxDxnHeZljz1PpslS\nhc2QfW4cohVBKM1hInlUIOFnyjo6oT7OEi0dNGlSGKQNtHSQkrAFbImUMVSAeW6stxVcT9wVTKcW\n2hOp+rkC4zVCk2sFI9GDUeRnblyw5nz0nJLoudtJIY3NHPZgIPhT7p9EsABrsJhhrU1w/vFnE7tp\ncdAVOn92rF9k+pYHmocjmOkubpYP7mvP8PRZxhqARbalNtuF2RhSpzWsgjn7R8MRbImWVQl9jRba\nTguYkvMlbCmYHzHOZPMtmCoRMQDzfVpQDLdw7xn53HcEWwwNwBj3ohhXoxlMcuP3o1jrVAOmdLjN\nHqCotc9Ls3chtUcJRsikzLqCXlJlV+vb22/q3XGONs3ic63Z8bn2OIsTreW3Hryr9vuG9rM/OFW7\nvo4D0AUsrSljrjKEST9V7NRxztloZI6eat/3z35uZma1fyaNnlt/rHfE6w+1V7l50fzaW2qPVsZh\nMsUtzympvVNHe0x3rjlkAnOy1WAs7Ct+nC8075dhxJdYjyc4VV7A3h2yflfc5+5Ll725bRVbNsXS\nb32tPuu0NC6ytSkmK2Htapy6WPMtM9b8XGuzx3u9hw5Zoav/H9xVXyTobP74EzGUG3+i9+a3/rs/\n0vU++FszMxs8lZZMjT5ZogeaDDXGxk9VzxVul1bWnqeBWxQycFbf0742wX0tKavNkyccg1yr7Z6Q\n7dBBg7G5CfPOIabXWjsfP8WlmevN0PW595ae784/EUOcJdR+9B/+UvWZqd7/UMmZMnnJS17ykpe8\n5CUveclLXvKSl7zkJS8vobxUpkz4mTQgqiCubRghvg60rHel089WE7cOcj4LsdD2VUQ+oqsTsjGo\nu49mSw3ngBn5gZVUJ1zW14n/ZB9IINEJWRwINRpygh4PQZESTiFRIB+iHVE6FmJ7uauTxNvf1AnZ\nbKDTyUe+TiGTvu6zi/bM4Uo/z2fSSIjf0/UeXwg9/Nbr5PmVdNI2/UPlk24f/o6ZmS0P9TxXGzqV\nbnR0gjd3QD9P1S5LkJh06yv20UM9Y6ar4JMHfXYJkunAumnqGZcDtUEHd50MqV02QIGznFDybrOc\nyATV73im3wdjPUuIY1Wx+mIhV3AR1ohBj1BnL65gT5EfPuP0NgIlcjbVFsULxcAUl44aDJikiIMN\nKEqLvh+HnCyf6MQ7xB1oaxtNlAO1dROmyKNRphNBjOIUNsL1ogoSEqLwn3i4aZCjOwMhWFRABEzs\ni86m6lNY8vcR+ZTkS96pKpf12VgxOBqpnq+9JYjkEieCen2bdkET6HX159ZrQmzHNZ3ann2i/lmW\ncAGZ6jop2jtrWBKnp3qu3ar+HzqwxbZQ4wdm22iq370mbiUlnVpP0OloD9ENqUjb5mhLY7p39WO1\nz/nNc3O7tCUApDVvi5EWDxmvl2rLzbnqPAHVTmHIXU/1DAs0Wk5MJ+jLa5DahWIhQ3xfK2rczdvk\nuGfz0n31XY0T9U/Rxen2VL/jR6rH176hvtv7jsbzw8dCCvzzh2ZmFqDLUEAT661AbTny1SftXfXd\nHJcNS3DCQbG/Sg5taaX7RbEYKa8cgDjDvphfwVb4nHn0UmOqhd5HCHK40yS3Hh2h/obQqvudYzMz\nO73UfUuJ0KSf/UKx2npb9Tw8QPPhHAbiBkjGbRxhaqpv28vmEtVjDTutOlU9B0PlGPswcErN35yb\n+/dLGb2MExiI48/RXwJJiWvkFKMvFcH2cOiHhqv+76LztMvnV6BuK9y9HHKkfYW0zTMtggHaBbDv\nNoizR+Qmt2uuHeurVkoVk+uDb6oNuJePnsJGH+eputp2js7EyWdiPV2gGXY41by/UdZa4q0VSyVY\nCnFZsbpGsysAnb9yNX+UQJs7B+gS+eqb9FJr7fqZ6vnLUGPEQfNgf5ccedbu4pZipmnki3+iWH9y\nLa2FvW01VoKGToDORYgm1uZK9VzhjrEm978Ig9OhTTMNlCKMmmX3xXSHUpx6AlgUFVzhXH4/h5VR\ngEWboL1Wr1E/9C9quAC6LfQoYCMEmRZaVe24Qr/IY62GfGArtMwC2HoF8u/XMIHmOMx5sECSTiZA\nZVZu1ux+U+y02q7q/9H7cts6OxfS6pbUnxEMID9z2pnrvgmIdws0c7XEwW2s9l3BeA0z9gUIfo31\nLSzA6HEm1imCtMICHcyZqGv8Hj2JFKZG7KtuHvo+bg3HPubdFa5GazRU/CrMRZh/SYG/41TlzmHx\noElSguWUwrDI2Gc3LQc1mC+sxQFudaNjraFXa5Bb2K/lzHUKJ7XM+SpAL2IJ27YISu6UYGZEGasX\nDQaYl2sYJwbrNmHv4MxAktkTBRM9X8YDyrZeyxntAeOkBHs4Rf9pvIDxQr0KlczZRT8nuMjVlqrX\nqKq5ogF7KluIV5nOEAwpmt1mIOsBWkNVD2YL61cIs6awZmIus3fCATPTPanF7PnQ48u0JppV9v24\nNq2d53pLbly2hDGzhvXgz9FozFjZtK/D+pOgyxIkN9ceWveIZVhE+wda81M0WrJnuI2my9yjTULY\nOz8X0/hWpDW0/Ap6QzD5KuwLQ8ZCUOIZuH6AXk7UZr68UH18+nyAxVemMdNh3lx66pOMsb1CP81h\nv1eK4OuX1YYdNLHWMD28qu5bK2mdaX5FDGiHsRo91dq7CmBgE+O2zHSX1OZnsH1ruDqVcHMdzfV8\nj3+sdWN4pv+vvtC7Vh823WJTY/A7f/JPzczseKr1qedp/hu/prmni8bMgvaqsO7FTf2+G6i+hztH\nZmbWeCD2xOdd7dkOR2Kgf/1duc/6g+f6RTcpc9hg6Rn1OERTLUL3BH2ogH50L7V36z3Tu3P9nr6/\n29AYWrra76eMuTbrwIA5sEimwb3XxSDagaFuZnZ7+xWLp0tbwappltRGCfPFnLU4Zl9UqaKZN4YF\nFSkmJwX2UcxL3b765C9//FdmZnYL97sSa93PJurD//yrf6BnwNGx9Ko+1+H9PWI/v3emmB++ooOC\nwoH2Fus5jl6nOAjDvi2FZAfAMLQlzDtc4By0bCPc6kLeJ6Kx6nXB/L2zq71NY1d7ninPt4JltkYf\n6gxGnfOpxvCjf6v398d//iM9v6M++odKzpTJS17ykpe85CUveclLXvKSl7zkJS95eQnlpTJl/JSc\nW3I4d7Z0UjUf6jSzCOuiwgn4CYjkXlOnk4UFPuA+zhQ+OaSgWgkOCZ1tnZCtYUG4INwQaqwIO6Q+\nF6LsHwllbJzjMAGaVSvpBO6N7SMzMztDTv5ypjzGGKcdr6lTy3sjPc9wpVPii8c6Ta4k5JptgHQ8\nAk3rSrPmePqfmJnZ4S7uUUtJaZeVRmmLOfmHZeUxpkOddtcnJK/d50QQlxk3Dm1wpe8MyQnf2uPU\ns6eT6e1A313NyHfe1udGFziPkK9tqLjXcHi5aqruk0hoQg20u0yOe9cVyl11cRwg3/umJUTjxNJM\n80bIwQWMFI8T9hKIXlAEVSvhQLWh++7gfNBHi8bHIcAnT3qanSS7+lydvMISytsu+haBKWiuBnre\nDuynGaSrWYSeTwEmDH28Bg2qpUJbJvRDBeRis6F27Z+j/YIzmDPV/fu4sdTvKkZdHBWm2Y2znOJ1\npskAmgdIv+jHtJv6x/1cjl6ZUZgP8nF4Gy2ZFU4MaEEMfDRvQMinc8X8BCZSArr2xmsK0i2Q3f0d\nnWanY933Vx8+prp6jnSuCr7/oXJ0T977d2ZmtrNF/uYNys6G2iptqa/3m/r5q2vVMUE1vkcOuxMp\n5vv0UWcX9BsNlig50oXJxfdeITcfJHOVzRu+Pj8ERUrRnxhd43Sw0jw2fYKDGKjYW+9qPLdxSzr5\ngnoeqz7t2zqRL5PHnd7S95qWzWOa96ypWK5ccPKOi1sy1Vgp43ZyAYrfBHl+9Su4JM3EXjodgK4d\nKtbm6EPEidgYZTRkJh39PFrhetISu6Ee6Hrza+X+VluwOq4VE9cfCymZoUVQ29Hvq03FQAxqNqvo\n703cry4uhAbFS7VPMFQ7HwRCq9LbQkhuWibPxBr5ZCiUbU17N5jHd1pCM0M0K8qO4iaC3XCJ45mf\nqL3nfZ4b7YQAF5JVrOfbYA5xcA+oBurX3lBj4HymOSp1QT9HsW2N0VxBSqWMsv+el7kTwfx7S3O/\nf615eAai2kjUl+GEeZi+CuqsMWMcT+poEQzQc4Ot0Mvm2RmuR8z7HroZ9zYVuz2YM4bO2+qx5vlH\n6K49uVBsvPrbR2ZmdnCk+haaYkldogHw00dCOCu7ioUW+eILnBxaOxrLDcZufwGDKMy0BkDBMpZA\nVb9PF9QrQFzhhiVBtykFr5rM0WsqwOqC5TEBTfPR3Wi2cYiBUTqEkenoh3l1UHjWzzW6eEv0UkqZ\n68gMLZay2vv6EjZBS/d3XRhC68w5Do0d7/l8WSz75sOAad0VYn37Cn09UMyU9XJ+qjnK39LnAix2\n4qnq54ICxjCm1o7+nqBJ4eLo04zQN+mwbsA2KBRL5qKGN50xb6Vq43pT4z1dEXt9PXPxUrHhsIY1\n67AtPe1nmi1YlkzEEdvYlVHnEIZjrLZboDu3hoYUgsxOeZb01/V4blAuprCKmJ+qh1rzC9voNDB2\nFlO0A3DQWS8zxjfubugelctoc8FWm8SZM5ee10NrZsF6UCyqvikuU5FP7KDdkDrcD44MJGYrTEGI\n2VK57GczJ8V0ylqO5prv6GfJ0f56EWcuVsyDRfZEGQsCB8cId6UabK/sewwlK6MZ5sI6C3GwXKOz\n5BKbDlovKd9fwHxxGaMVxmgpzli1+tyM+ngg4anz3IEt9VJz0PQqMkf6m2ii8f4wQvNoga5KA9Zb\ndePmTJk5+kW1ltbYkYfeRU/7p3nIvhqnmhS5oWoE8+Sxxmvc0d9bMNbHV7jCBXrGKddtMw+tmA+K\nYxjrZdYoD4ZLj76DHBaz/ywUMg0ZtX0VllkyU+xFuDn5qWKhsakLDCKN6YT9aDgQ+3TOfnR2rs8X\nMn0hPl9aq34rxkTQRjuLsdup6jmLMG8cnA6RubMi7qDXMF3KOADd3ld7d9D1aLyqdeqvPvv3Zma2\n/R2twa++oT3Ex//T983M7LJKB6Cttf06Gj6MyWRDMbP7DdVvDmM10yEZPCIbw32xuaRUwh0R5qQ3\nVb/7ZY19h2yQBGfQOk6VQ/b5blcNMsVdb/OudOq++OhY3+/A9Gde3m5qj+PXNd+fPj79si79T8/N\nKXlWZN4Y8a7QcXXPAvtlDzbthPEcodu2YL+T8k600iPYHJemxr7W/oPvHOl76Jc23tO7yCe/+L6Z\nmX38b/QOkP4vapN39nl3Yi1NYNsW0YL0YXGWIl1viTvflCyGNUxA96nmxY0OsVyj3pn+GwzNGm5r\nvFpaDbfT9QZOwsRUABtpAGOxjJZkNNF+9fIn6P65MPU3xUq6FfxmnbucKZOXvOQlL3nJS17ykpe8\n5CUveclLXvLyEspLZco4t3RK2wL1ilOdfi7IZW3jUGPocTRPlIe+GuvkrH+IS8hEn+/AUFlxsv00\nIu8eTZhZXwhpn1PfjVek9jy9hGEToOD9CM93XE6ix++pvvtyLtjGkaaMpsPgoU7SNhqot5P/uHVb\nqGLKKbXn6uQsuSZHlTMx5xs6aZtc6CRxc0u/fwj6tKzqundiGDboc+xWdJ+wq9PcEPX9NbodaaLv\nHXiBxXvKqdw3naSe4SQzr+o77YHuNR8LBS7gCb9oCTUohThADdRW/YraYBdmzKymZ5xlWi9X5LqC\njpfaOj0s78vl6KYlwo2kSH5yeVvP2hjrur2HatPSfbQIQPSGoOpV0JxkW3+/PSTPOGPCcGIfnKt9\nFjOdwm7WcB4gZzbsqU2TPT2nUyWPGWQzhtHjo8AdOqAqaAmsOMmfL2HIkOdY6qhd3TZ6HU8Uwx5o\nVIDrVIec0QC9kJNPdfq72TrS9cn7Hg3V7tsgKbcKqv+QvPniE42xKzR/GreEGGzVxTpY+fp/Ywjz\nBheuffLcV1XdL4rIYfUVJyenKKGXQG7quH2Rtz/sChG//L5ycfczRAGdlEpdp9o75HvvV29+Xlw6\nUp9d/aWYGp9c6Wf8QG3YIcd9gf6Nm4BiYwc0PcVJqo0OUIPceVzYXkFvyd1RDK9BtWcmFGu3qRNw\nHw2BZSr0YXkFcjvV53du65k2jnAyWKnN3jjQ90vYuCUxej8hJ+2gTJWpxsIoIEav1MbbW+rLM3J6\nFxug1VPFyMaCHNkT9c3naNxEjzQ/fuUVzStuRd8bPhNby0NNP31Vv2+W1U4xEMkcp5VOSD75HblJ\nldDs6p1rjhksGBMj3e/+A+kIjRhbVaBbp49TWU8/vbHQq4wVcbCtdtqHtbAxfjHWnXVB6X6mdWRW\nhE0xF4ujgiaQf1/tb2fMDWgPRSXYBx2167QBMs48PYfxk7roMzHWt0GCy2VddxBqLHk9zc9t5iyv\naba81N/igq6RPCFXHq2sDNX+kilXwfFpqro2NvUMbViWS4+6goJXuY6Pc0zmFpTACvJiWFcuY6YP\nUwR0O4A1VYRVtgVKv35Vfe+js9EDteriFud9rjUvrepnF8S3ynzThI1WZv4wmHoxsROD2tWHoFu4\n3S1S9I721S4x2goXI91nC6bITUsS6TrTUaZTRczsac2tFjMdO1iuC9gGsDZWE42FOutH0ND8VoXl\n1tiDWTlUvXZB9XpzmCxlzVGF7Pkauo+XOTzAUKm1YE2wB7Bm/OUzjAcDG1y+b2Zm80Bz1/VE131j\nTy6IrV21+0c4vGVuJ5gU2jKbI2H7xjBfFrg/edxuvVL/+HXmKNiFc9brSlA3H22OEJ21Si3TxVHM\nFhqqW70FM7iCYx+h4HuKoREspeICnSCQ2hidhExXKFtzC06mN4SjyyjTrNH9KzDgwubN9cvMzPpT\njclnzzSf7ZcUy9toC27eV6z4c9hFtEky0vNG6CEhG2GFzIEM5re/VF+U0Akas8fwYI4HzNODhL0P\nWicezlnTRaZfBHuYvl3BkvKYt2OYRMsx2oOx+jzAMTPAqdGloiUYKiv2s05GCsD5zC0TC2ipWeY4\nls0BhGrswnhBK8KJM7dTXbAMO29J+6W4qfrM+wX2t0mSuU7B5mOMlQniFQh2vPo17bE0sTXPFcDE\n8WEvZyy4UeZE1mFuRDPILzzXpvnHikf8z9hXFwjWy0T3fsB4WaKHM4k1BjLm9AgG+kZRdZ/N1FZD\nsgUsZG0eMl+h4VSpEtNpxqbiXQDm5QIGeYBTImQiW5ZhSy0Vg+42jmknirECDoIrYmQx07yyva81\n7XKCjtJfoxmTwBLzNBYKOFNuNLSHSLIxmOKoRdsXYGFAnrMV83Al1O9DHH8S9Jg2d2DasE8usNZW\nca26uFS7brT1/f/sT/9E/4fxPv3oe/reNVqVb8Fe3RTDJBrCUv6q6tk915jfWGoMhOijXHys3wfn\nL6Yp04YFlrE5CvGE59XfW+w55oUsVtWRbWK977KnjbXObBwemZlZ50OtJ2WcgyPaaTTQHFh/KsaW\nZa6qZrbfrttk1vtSg7Uc6tornBqr6IxFzOMesVtlL78gIySFGZMwQRQ2FStv/nPtVxsPEI2FAfnm\nLvM1++EYZrlf1Xt7+pi+gj2b9NjbwBodwM6yUL9v1dV3B+hZThYsFLg0Z2vWKtOaReNrNdHz1GAu\nzs9wmSPLwOWdpL2vtg4zdhKxV+adcIh+6T4MonoHnR9f9SXp4B8sOVMmL3nJS17ykpe85CUveclL\nXvKSl7zk5SWUl+u+BGL7bCDkwYEhswaRTZBnHuA8492VkvQ+J3chqFRCft0g0qllf4j3O6evZU7E\na6/AmPlcp4M18tdLTeUG+y30SBydtI3PdaLfx+3Jg23QQ6uh1RDq9NW3VT8H5fIrkN7CNogJyPXl\nX0mF+fyxVKg3vyb9jaN3jvRcf6hTTW+qk8aPPtHn91Y6mYu/o3bZHXBqmiGs6JNEZ0LoSzWxUcap\nTvq6pbk1uqrDaKITXQc2ToweTzwjbzbV56YTTs493au9ATp+ijMVTiOLTO9iIqbJEOeRJRopd95R\nm4we49rBifqNC3ngk7m+v4H3fGVT9z3xpWVQIAfecEgpb5M3Dkq1g8ZJug16NAK1i3Vqu4bhE0/U\nd9O6UK9a1h5os7SBFgLQv1kV5JA87wDUbsIpckz9XVCdGQ4TyxEOPwXdr4lDzuZdclmfoBeCi1GA\n+9E8Qt8CHaHGUrGx8NSf1aFOmzdhOYSgYZ2qYjpjDrnnuv5HfyYW2EdlxoCjXFzDUWicIaQjxdac\nPPOv/K4+167jSnWm9vxicWxmZvX7PtdTuw9/BeJ/otPi735Xsb/i5P4ZKvZNHMWKt5/ngf9j5eMn\n6uufPxUD4gAZiWATNk+TXFKQvCTRBzZB/acPcGUjdz6oqm+3GjiNLDS+3UyfCLS8tda8UC3oc4up\n0JPTT8WoGaBaHwdqi607eubGEU4qn8k5y450kr4AVa+PQUxjtc1sxEl+lxP8lWJ9gobJU5wKmqBf\nZ6DvEXnoGUOvual5Iv4boSQOaNfit9GeOlZMxpeo0cNgmdcVU17AfIt2jYdTkO3rubdgtGQmd9bQ\nfLv4sWJsCFIRHeFehAvddV8XckDhel05CBmxew/UMOxk2gqwCOIXY8qcXKod+rRfG42x8q6eZ+Kr\nvV6r6v9FXwyi5U/Vn8VU7Rc6itE2cZA4it06jjzFBZpCS5Bu2qmCe0mZucAZ4nJwoDiauJEd3VUb\nnVyrbUazM66Fy0SXvG2sTGqurlnfgX2AnkOT+br6UPPhlM4aC0CzKvoJ12ijNJGIaaL3MV5mjiqK\nlclA88F8oZhzs3mN+60QjOjs61nCkmL6+hSnhIliqNLV94exbrjxSuZ2pBIXNDYaMEQmMF4m3KdO\n27dgRYymeq5CTfNnA+bKI9hL3f6LOeu47IgyHaVrGIXRRO1Qc8GxQJajutppBZpvBX1+gQ5dstKY\nmZdhW12pn2LYByHz7JpYzxBuN/iP9TqKFZg5OGOES8VJqanP+6vnzxkfzezVd9UPt+8x//4rMWe6\nC9h09EtKcHqRGFYJCHK8wF3JQYMNd8MEHY4irIs4zjQPYPJkTC5YG1Za25w53qng9IRjU4gG1xJ2\nahvXs6qpjdINdHrQKyuia5SCltfYb8WwDxKQyRRGxwKtr8pCf191NL/PWHvDWG1YXWcT1s1K+1AM\naA+9jxU6EMdPtEauQPXbsFdTNAkKMEHSSH/PtApSmDFTkOatcoYc6/sRrkPNOho5aNEkaFelzEtT\ntCAyV6lqAEOH9SGAXTeHPRFkblfsHco1GCQ4A7kR+2X0jdxMoyVjZMNWCFzmYeaiBG0ZB5bzkv1p\ndYWmW4UYWqOfUpxST11mQkyFjL1iJUO4M+YP6xiuqwWef8VYijNtG+bMyFN8UUnz+H7W/9GKveJY\n7RHg8tVq8h5CvEXE8U1K4Osal2hLGX1ZYqJNsfxLFmiWBJk2o+oUwBCcwU5wWGusn30ex7ElbY0W\nyxyxmNsF7SWiKdorDMc6jO7LimKjmRk4wq5ajFSPFnob7bbm8dMr2EMwWWbDY/2+qXnjlVf1zjGv\nqE+vPsoYHBnTXPW6golTg8lSZU2cF2C8jJmAEfz00VIJEVlbZFpcjOEpbNSNhsbiAp29GIee7Tdh\nt+7JkfMIdtyT6Z+ZmVn/v9S7WLOltf5WQ89RaOl+D76ud7Lfe13s3uXPlE1hX6j+m23ezcZaB9az\nm+9bzcxS1ofaVHuGzTqMy6k6po5G5gp3vHobJirzc8PHkYyx99EP5VD5wQd6L3rjdTSCskwHGLUJ\ne8P6r2mRLZ3Q0pVrTZh1I/TFqrD6HVyLDL3HYMl44xqTrvo8ey/1LxW7V1AeY2Txnl5q37v+EB2g\nVxVjdbIByujORcRAyH6t4YjdWcCJyqtofG4iNNR9RkysOC8INWY2ArIaNvQcRdhZhQXXYWg1y+zD\nn6Bbhy6UV4XNW1Rf94uK4XaTvslcn661v5zHaDQumC+ewqi+4JzgH3Fxy5kyeclLXvKSl7zkJS95\nyUte8pKXvOQlLy+hvFSmTBF0ayfVKWcz0KnkqCZUao3rxuKpdCiWnIT7E2kLZErlha/oxOzyRN+7\newcWxIZOcWdoGdxKQEQaaNmQy/zJAEYNnvTOBp7w5Jrd3dUpaJRmbAUSNA9ATK75/pK88zYng5xy\nt0CEgprq+UFR2jZfox7ruU4m2yvV7wxWQv+C53hDZ2f/xTtfMzOzyZbq8fjh3+j/KKf797+unzX8\n1s91MrfR92zFCXTEya6Ri1/KTDjwYl+DMgWg9VuGV30XhO36WG3yirRp9u6p7z4F/lajAAAgAElE\nQVT54Idqu2OdEl7V9MxvboiJ8vmjj3W9kVx2blpiEMPRGD0PT31a2yKvGRTdX6jNRihod/CCnzZg\nFxR1almAAbTaAQUZoUkQ6HoTNAVqZVyZULP3U/LTUUNfpLQLSEjaRA8kAr0b4JbRQql7AwSbmF2h\nw9FHR2MKKnTwNamjezuo54NMJDBxqmj0zDIHBJCJFqe6AXmPm6D0hUinuLXs7+eq56ffFwL/t5+I\nXXKv8U/NzOwr3L9E7u8R930Y/q2ZmdmxGDWL9zR2hplbCXnyt8kzr0dCajcqev6f9oRQjE90gm+w\n4woroYzrS/3/9j/Rib6zjVvADUqNfNx3v6LxePs1WGBH6qPlSPNHpaW+3EGtPXDREIE9NaPv7Rq0\noqKT782mNA5iEMrrnp59+YmcZh4Odf9qUW12tYbJd4mmS0X3GYNI7jI+r1HEfzoQMyR9RGyuyE/G\nkeDqCmQQZ6+dOyC+VXLhYTtM0Z5pdcjNJ9YXdfVpEdemn1+K2dFGbuPWUvUIB/p9itbOGm2G+H09\nx2CP/OyixlZQEboUofORZkzDLc3PpM3byUAxU7tUjGyCaJ9WcXyYH5uZWf9ac4eLJtjWBAcc5v3N\nUGyLJVoB4e7zfOiblA6x+M23/4mZmZVR8V/DrhtO0NEwPZeDE9EUTYIKoFJxqd8XcDCIztCEqKC/\nhX5AkeeMkiXXU79tOLrQNehhB0ZW596mPaugFQIbqFrRNYJj1fH8sdrg/Fp9tfe22nyf/OlmS7FV\nBOXtbHDvh+hNoPnSHatPimVdzy/CtKnp2fY9HLFw3yigvVVB962Pe8hqgoZBCYZL7cjMzN54TTF/\nsqm2ePa+YnpZUlA0MjePuzAuYCKmoPuFmK1JrDGY6WTUYc8WYLulfVgYCX0Iwuy7GvONyou5YZSz\noG3D/kIzoRipHa8u1MeBoQ9C+2TaWV4dt5F25rCAcwVMmgh031vAGkAzoA4TcgULLR2jj1KGkQRD\n0XBuKMBgDOa637Iy/vIZ0trY7n5HY2gPd6TdP1d731qr3RJMNy6xh8rqVQC5T0FgZ+jmBTCE/CKa\nMawvLnFTzhhT6IXU0TxI4qXNvUxXAwcWrgU51Vobqtsp+yh3obXeASUuO6pLGXZYwFo2ApGNcAWJ\nQt07oY2yNo7YQ1BFK5pidTrCZSjNKH83K5WmYqNQ0nw8hYm4ZMyu0NMb10HxsxjEJSiqsvdYZnpO\n2k+Wk8wdEH0kdJ3KaDYs2aulMIdqvv7uwHhxsxhkHztDB8o3dPRg8iWx7uvACPG4vpeqX5aZmxKM\nFcfNdJSIaerpJbpuCmOJ21gCE2UKQz1gu4zUhCHHZOtYf4jGsMz4/QontQIOcSnssSb6SR57OZf+\nX0b0N2MyyBw2LdNo+zW2XGrmw4aewGjyq2jcFHH3Yi5zTP0UTvX5ePWbXVN+vZRX2jNE1+hIMK0U\n66xpKY4w/GE217ySZvs2nF58UH2Xvcc6035y0TCEBbVm7W3DhJjc4l2JOrug9mEpYykRs2iDNYi1\nZI2+EPva3SPWqitpnDljzR8rtA3HOMoewXy5dYhOJ8x555nuV21qnzeHORNcw4Zin1sfwTx3cChj\nvYmq6MuhsQK5zBo7WntbvDvaXNet4YIXtGDq7+tzg7XWuac/kAvT5H9V/f70d/6Az2mPFLjqt+Nz\nrY8l5rfB8tjMzLZ/kLHF1G/dz2A/jFSxTRg3Ny2uoz1JydQ+xYnadR2x/+c9J3NEmsBQ7K8zl1vm\nXfZgj94Tk6c+0VwUZy6qzLmNjLXHvL5cPM9cKF8vzV0sjWFjG2gb9s80P1Y22Vswf6YwfR2yGAK0\nBAdVGC5LfW4bTZl3/+XvmpmZ19G9f/Tj/2BmZptPNRZOu1qUnCfaDwdFPUPNU8wNW4q1aAIzjncs\nwzmyWkWbEA3Hs2ve53nHqKNRM/cVY3tNYucA5jpMQtvSu8tyrLFbxZHsz/9asfPFw5+amdl3/sVv\nmZnZbdrFY1+6WckcH5m31lrPogCmovObuTA5UyYveclLXvKSl7zkJS95yUte8pKXvOTlJZSXypS5\nOv/UzMwe4YpUB506xInGn+jU8eef6fSvgb7JOtDp30mo/z/4WCd2l5fk6t7ipKuiE7LLhzoxa+AY\n83QgdsC8KY2HDg4w1+RRbo/JQcbRYLZUTtkp6OQW+f7jok4QL/s68b/d1N87cyEoj/5OuXM7r5FL\njKbFO797ZGZmCfmlFyDXAehfsi8k+vdameq0GEW/+plYBpkid4dT0KKn09pzlLvdvk5VW2WduY3c\nkm23yJ9DnbyLInUZXYrVGchsm/xj0NyUXHcPNGq+oTZ6FsrhZjbVSetp5nR1qD7cAbU/S1SH3rWu\nX0eD5abFCRULc1CQEISwjCPVzqHabP0ZGgM9saWSeeYlr881NtRmziH3H+ukeezSx2jEVP0l9yH3\nl5NorwK6h6bBquDyOfIUFzptXcAcuSSHuEmMuiXyLEHLwpJOa72x2r/bVSyVdhQLr9xSbO6+o76/\n/Jn+HjZ03+a1rjeif/ZK5JN7OmkvgaTEOPU0N8kPf6LPHaDd8s1dnLy++Qd6fk6TZw7uL+To3jkU\nM+rNN8ir7InZcvoQ1tmm7uvjABThYDAHjayW1d67gfrD2nruEG2fV7+r53ztnymn91kfXZEblN2O\nxlvqglZ8W7FbBw3qtuSaVgeBHYxBO4o6eW//kpP/PcXAeoHWCGfWU5DBBRpV8ZX+Xi/CfHlD9w8f\naTzORprPHpX1TN6unjUASb0uqO0HuERkzAl3CweBU1hpKdpUe7jNHej3Y3LzN85V/zVjbXNDqNDk\nQN+roInlbyh23nvvV6pHR9d780B96sMuWDZB0cpHZmZW6gotGuG40vtYPye+UCa/IrbVpKn5cc9R\nPZ4cwpw50n0P1mJNXDVhGME8qeKa9/m17rs5wkEiIc98T/2ytQa9Zz4sTdAEKr1Y/vbmnp6rWFSM\nI4tl62O0H55o7nAPFbsbFVhbZcV6A50p95bum5YVB+khbJRP0ZJp6LkitBRWMJoyBMrpamxmpi/T\nTBcl9q21I/Tm/q76ZoILzxD2ZLujWCr46CyAmic1mDIFUPoV6Dd1XDfROJnp77aAyQD7YFVSzFTR\n93DrbA18PfsaUa0e7K/UUT3DMm1UImEcrZcVGmVj5uPHvxCrbAS6dXAbRiO6Eg1YXCHs0WlXMVYH\nJS94OMyAindj3H6Ker7uFDYBOkP9UPPRfhn064ZlgR5cBHK8uavYLZFP7sNcGcH6cKdae5doMbhz\nfb83VAyUccopoROyQGusAru1gAvWMkLniPl7xeeKNfQ9eJ4Iliwye+YuNccFuP6ZmRUaQ/tiornu\nsq454tNn0nUqbgm1rGxpb1X4FO2dExwv0PvI1g1DPwSg1oIIN6w6ugK4vmSORzXWyzUuMe7KLEGL\nwMftLLasL1X3CN2fEFe7gHHTJDbLdTQBkmy7ir4R+j1FnK8KzP8pjmCG+5JLXYJMFwdW6wKmR7H1\nYvNIeKJ9ZVhSH1driuWdojQG5xXc64Ya1xOYcmV03gJi3QLN52tiutCCSYNOxop2qLHvnaxBzfl/\nuEYbpQ4LK2N+pKDh3DdGcyWC3VBGVy6CiZSmsDXQiSqgO5JkMYomg8N6mODWZDXcnGAP++iiBPTH\nEJZGwNqfZK8baLMsYOJEzBlewvPCjFyCLPv05wqWiMH28nBkq3gw02H6LJhTfDdj8jx315qmsRGi\nVicOMx2lCkz2jPITLnHohAg0DX5dm+Y3l7nBrsHdLMBhJoGVusBZqoCjVB+tpnJLz16f4a73pUOX\n/pHinhdCEs1YQpsp+j2Mz8DX2PLRrpkuNQ8X0SFKYD+tYAPMYBsM51rT/bLq+UpT7PyNhuaRp+yp\nCjD7zn+qfeIPBz8zM7PfehPtHBzDymhepejvJTDEHZiDzkh/n8ByCNjbTHl32+hpbE06um+HmFgi\n/hXizmRz5hvmkFvs1weXut/oAmfHK+1BdjZUn/37YsiM53qeYU/rbIV9/e61rt//v7R3Cq9V3wqu\nV0UcMRePTqnnC2qYocHlwGqboPXmLdl7ok02Zaw++La0bepvqF8vPz42M7OeiKF2D2Z+41D1jNHS\n9GF7ZQ5vEXqjYeHX5j63ZOvCyCxCG2YFW9RYA4l/R0uLzdcaL1nGyjAVG6mGJljrdY3TZ8zz157m\nxSKx7o8Vk9cJ8ygssk6AWxEMvhWiLz5MFndb/28UdJ81bm8+sV2GFbTJ/8ehvld8CjPPz5xfFSun\nn+ln45bauPgtZXcszpTdMZ/q3XbFO+gbb6k93vjKkZmZdVM9h4dOXNJnHk8G/F71XcJyqqa/eU+S\nM2Xykpe85CUveclLXvKSl7zkJS95yUteXkJ5qUyZTparz0l3D/ePaKqTs92GTqTqnEgddHUa2irj\n8PBQJ1El3EYaHZ1qFkwnW/GJEOy9BvnoW0J0Kz1d/2Ai5HNEkmthruZ4dJY5Hqh++7AfYk6pC6hD\nz651MthCc2bjSPmIP/2JGDL9oRg5t3tC/z3Qsrj2mu77VKerFx+KCbT55u/puTM2Ci4FrR2dNP78\nh39tZma1lU4Iv/a2cvSyfPp4KVRzAOOofqb2S9sLm5yTR1wR+m3oG0RohjS2UZDmFHMH7/V1pGPR\nIXoWWzWdYhZb5Mld6pTQJ5e+3TrSdT7QaeH6RM/wrdtyzmo1M62Qf203KUlNbb6BG8gKBkZUQ50c\nttG4BSPlTJ8/f6w2q3RUj89xPNlFR6RSQvMEJsj2SG3eNyCILm5R6AFVEiHDE5wLXHQjYnJ/p2gL\nTGCuFD3U4kmcr4IIdGPyG8nl9RD1GQNFXvxCyMNmrFh98LpydLsXyr/0r1HBx80jyByD0Aiq1ECW\nQeVjXzE+GZMf7qldBuQ/1t6G3VHRmHG3hO41yP2tbIGSgcYZCLVTU3tuo3lT4YQ/ZKwtXT33CneP\nNboCjVd0er7/ttpzhJPY9pstLg8q1kdT4QZlDkpUrutagwGuQU1yPNEWWNSlWXU3wEVtRM54R/ec\nnGs8rxdqiwGMhqh2bGZmBUdt0gbdctDdGcM+evRU89eAHNwVwFvJhDZdg1oMl7Clevr5DLGDnYrG\nUi/U+PZrigG3QY47SHP4K9X/HFSmdKWxeI0exa1tPW93VxVYfCGEYo7b3Tt3NR/d3dBY/uLvdN8P\ncMja2lfsbsOCCNB+ae4z9kCoh8RClrc+g30xmWk+i88Vy83mkZmZLddCIMYT1e9yqPZakT8dBhny\njKNXQYiN0Y/NK41ZpwVSO3wx15SrUzkT+DgRlfZVnwYMn6drPffD/rGZmc1H+twzdJSOYMy0upq/\nO5tCnRZoXty5o/aagQwNHNqtDnrmaiz276sfr640F1Rx2Tp5f2luU2xItylErOAjxADDJKpp3GwH\nxC7OAy30Fno8S+da176CGVPB1WMFE8ZBx8ZDD8l6irGq5IBswZgpjdTGo88UQ2PyzNtfVdsd3CGf\neq2fnx6rz7tPdN0xTJ8CmmW1kmI1aIvqsb2j6/emmmfv4JQzmuq5ejiY3c9YZAPNH2X0JyIcvxZT\ntL6YlwPWtV4JnagbFg8EeDBj3puq/S6JhRIsggJ9a57WpU2Q8BHPURqAUDK/I1NhAQ5EHkhlE0S6\nSmz4aE1EOL6sHdxYPARYpjgPlWC4RrhwRc+1cwrjtiVPVe/G7MjMzO78hcZ+nfx4B0R5yNjzcIzw\nGvq866BFxt7Ih7mz8NT/ezx/yHP47OEi1o3IMm2a1EI0R1xYqAFs0y/Reuq0AZu3XYalyzOP6Yu5\naVyluLYVV7QVaLyDhp+L20cK48RlbaRqVtqCMYLuTRy9mKZMAhKborM3QcOlwDxZ7GgtW8PEKODO\nFE7QhwPBDQLNAwlaYyXcTKIqOiQILWFsZlVP9xmhK1esov8B24rbWcTffUN3BOcuF72QCOewNXuA\nMvtMl+dierYSDmQp81syZZ8MKW4Byl8uogdCv7iJ5vUS1MBwQUx4OH6h/RMEmTaN/l7KZKRgjpZw\nf/HQmHFgG6cJIjXED0RPS1Z63hJ7tgnrUyF+PjbSOLFC9jzUP2D/MMb9r4YrS1rKNH+0Tlb8id20\nXHXV5wGsLm+mfac1YOEw3pJM84XxUh+zhoCqe7DE5jHjC7bYjIeGXGQ1tLZmM9hSzGNeE724M1zz\nfF0/nChYHkK5ayFY1Lqttffkl2KGvPZt7dv9Xf2+CSMxRgdzjsNY+Fj3vy5ojayZ5okprK4UVkOJ\nfWvMO9Uc1yhbE6MBwT6rcv1MO0frxwgnynCodWYy1897D7RwZbqdoyGsvMfqhwI6Ik3cTOOh2nGM\nHeEU5k6KtmQDLbciDj6Nsp7Hg5FYmOt7e1timj8yXbc/FdPopmWN5VjagXWLlk4fdtkeY2RKR89g\nIF1dKn6OHzIWLvVzjp7K4Clx5mtM7zS0vrQLtHPGDvOfO4p5m6lV+mu7RAtmBHs/QE+tVlcbZsRC\nb0PXuPyV9s3/5i/+TzMzu/0t7dNeX/+RmZktHbXVB//2f9cz4gxZx2Gxzby3Yp4eJLSBad/l9Wmb\ntmJ5p4IbGkxzpnkrwnCLqoqxeoex90Tfe3IF85t33FrAOlSF/YsL6x//6R/oe8NfmpnZh//bX+q5\nmmrDAOZnv48uHxqzmYudyz7fYH1NBrCU6NtSI3dfykte8pKXvOQlL3nJS17ykpe85CUvefn/XXmp\nTJnSpo7cXt0T+tUZo7FC3uK6pdPJZCT9kl90dQL/+pb0NuxCJ2Xj2zoqO3wVrYAZJ3weTgllIeSr\nK53szUP9fhpxCk3+u7fSSViVXNRFSj4+jhhxotPehFy7mS+EubXU91rkb75d0/2O3+TMq67Ty/5C\nn9+Y4+teJLcZ7YliR+1x+URI8xKE5ff+239hZmZ3cSX58G9/YmZm7duwLEKd8N3HMWM0VH1I47SG\nu7YyKFKIA8kpDgabQ07cOflGgsB6tFEyQk9hh5PWPbXZOUrZizOxCqaOvvjdd//YzMz+j5/8wMzM\nnM+ELrxyVyyi+YPnLhE3KdWx0JcJiOBiBEpEbr1b1rM7B+RHo6+xwp2oF+ln/UK/P+7pVLeB1/yU\nk/FiQSfGa7RhDE0B31N7uSj+Z7mw/oZ+X7xS+/UmmTuG2nFF0m90jcOMr77Z5hR3SkzEPdV7eKLv\nT5+Sg7wSqh8+0vcO24r5KNHp7ORMvy93yIU9y1xIFHsB7Kn5GeysVLH0bIKK+4FiZ/+OPv+Vr0nD\nItgGpZxpDDrER9qGHZLqvi1yo8fXIBawSlzYJsFa/1/BIMrQuCJq+ykn+E5D/XAFO66KvsAIF4Gb\nlO5jjff5QN+9FSpGx7tCgZJnOFW1dY+frECz12KieDiNHJSoU1Ux1a/B9gHpq7uqa3+N6wZodEy+\n7u5t5ScXVuTQfgEDsIamVaJ61GJc5nakQVD+QnobA3JPq2hGzUHbp7jDJQ7MkRaOBANybcuK7fqe\nnt/D7alxqr5470LoTWskNKfZ0Xx7HqPA39RzNF/V791MpX6GPtMlTI895mNQvBidqOlKjMCrpeax\nGJerpo8bFfonxT31U3esmPpkcGxmZm3y6503FLOVc42FSUPtXKQeFdA/vw9UE908x9/MrPmW3LnC\nRPVpbqk9yszDdxEbiGAiXj7R5zxyjycXas/SDtoK9ON8qn4ZTNQfzQd67ibaBiE5ybvvaq7Zbaqd\n6+eK09kadtj3x3b5OU40bY2r2kJrXgyDpJwRyO6ge3SX+Yg1q9zUtUYX+n56rrpM0GMokvfsgUiG\naEAVTPP5cnJkZmbbnup+XkXfIVTfB5mrU13zebDztpmZOehWBJ/IEfC9n8uhwNrqs/JbeuYibnYF\nV328QMOsNFAM9mEGtdGZOP8CjZymEFsngRmEG563p0Wue642Lu/jIoUzjT+9sBcpC9wpiqD0zjLT\n6mIerWbsA563R9+B7tlMz9dukUfO3BIvcC0CmY3RiIhwoSsW1J8eboJBouuUajiNsS5tttHOIVaf\nXWiOOWs9dyI7fzSykwuJDLx9T3NcAMNoeQQ7zMW9qgiiX+L+oJaxy0ZAU4HV0EArsf4NMubjBCYk\n+k4Obk8+7ZbERUvQdAkhGnj0bYzbTYX5K4SJ/OxM+x8XF53BAkenKug5DJo1e5iI/WIN5kSxyV4A\n1uWSOnvMO2nmYpS5DBVeTFPGh9JR9mGcjHT/FcydhL1HCxZvjBbVOsXxBs2VFcyVKs5amSZOgutP\nSkwF6GfM0TZjqNlspLHrgX7bjPUAZp7L59fMXxV0kDyYSTbTWh6CUNNMVkJnb5kSg2iKpWhlFSP1\ngw/jZVJgTcfJJcUpLcqcg3C/8nCb8spZe+OUlhJzuJXEmY0T+3O3Rv1AuD0YRpAYLGE+92AJrhzG\nLHPbyn2OPZeXBXNw1syYWw6MqWqk9i+ha5UGaM6kQsKX05u/LhVGTNTsmzM9pVnE+IdGGznsTWDU\nLGHKJaxBtgBd9/T/MazKggt7Hy3EeHGL+1DXUEHSRvOpFsOoJnaWaG0NrrV2QfC2BA2sh2iH7X+o\nvx8WiZ062QtoU05f0++nBX1+1IUe3EJHiL5t4GRY4EZzXAIj5pENNLV6VLCOJmKYORkS2wO0qxo4\n4957U2twuaO+moxgf8GkyfSKWrwXLHEeG7mat2ptnotYdti3eqx7PTTRgjpMplAxsMDVtH+sny00\nK60F1fSGJS2yhwl0nVXI2JorRq9hyDgFtdejY/X/1d9oT9d2tOeqwnwN2zgQ8T5SZKyUhzhqsk+I\nGCOz9Pnct7weWpgsrQaDLITR0fC0DyuxZ/d5h1ngGHUVSnulX9A+8Kv3tMasAu1ddt8Sy6o2xe0y\nUN8UmQcmMAMXF4ppB6exxgDGN/pC61P1xfRTPeMumrCNbd7f0ewyN3OS1PcHjtbYIc69j69xgjzR\nGlnaQdPxM+kitea/MDOz45//P7rfVPqWbd7byz30MC95j0BHtd5S7MchewfmPQcGef9TzY9u8lzj\n6v+r5EyZvOQlL3nJS17ykpe85CUveclLXvKSl5dQXipTJiJv/bPv6dSv9IZO0FYguF//3W+bmdkt\nULLPv6eTt21O9j/McmBPdJq7vS9kIhooL//sSidSr+9DGVnpBO6VklC/MafIC06hi56Q0I26Tgav\ny/r+EEZO85ZO/KpJxoLQ/c6nQrr739OJmk/en7ul080eeeHrJzrJe7atvPpb+Lfbq6rHNghLmCEi\nQDo/+1To4/lIef2f+aqnd63rJFPVwzedVGa5tMWCULJut297d/FkJ9cyc13qNtGF6GXWIHrmHRDM\nKxC+aV2sg3pJ6HIt0olw4v/Hivnxldr41rZOSz8+VV+0d9QHp92bu+qYmS040Q0WOsGPUbZeXunU\ntbyj+s8jHGdoUw9vesfPXCB0wlwHvV+hUl9Cm6ZoaOWQ+pshCj45mllO5zrLhaWNZzBjxnNd34vI\na+dEfYgmwT2QgVpVfeI7oIc1xdL919Q/ffIbp1/ouX/4P6vv7z3Qifi6pth0i7rPwa7aueTpFPkB\nTkMLkMprNAMC9JnKmftUgNtHPauH6nn98ftmZvbpT2BCrTQ2xwscxm6p/jtt1WOxJr8+zJKbUfFH\nc2A/VYy6DZ0Sb1bIL0/UX6cnQkX3MwV30LH0BUTs3bXuefG+6rrGhaJyT23a3FAdnEuN89vEyKKs\nOrdc1W2YoSWcgFdwIvFheAxxnLk9UNtNEtyVXhUDY2dHbfv+L3Xd+ZVO4lupNGWWILJnocbvYUuf\nO20LkdhOFdOkuFuHPiyisTDje3VyVY0xF5EvvNnWPLAIFPsfk0/tnQsVv/Wu+m70TH352cmPzcxs\nv6jneBX9jQWaOeEt5Utnuf7LleYAf6znr2zjqlIC9bvWGMi0IgY8b3OZaUno85jZ2cVfyxHGKer7\n73yD2I31uRZoVFwjj3qkMdoJ1B9x9GJ6IZ07es697+i5wlM950dL9ZNzprG02VF8PJuqfmsQ5ccg\npuNztAhexZGIfPfFtRAZv665arOs/ut3FX9nJ+hiPdLY2MUt696rYqnVhp+a+32Ng8H3NG/+4Jda\nE7/62++oTe7rXgWQvDasp9K27hldaH5NRnq2QaLYzsDnCmysHY/5ycsccHAC62g8dxkTpS7sqltH\nekY0Uh7jaOB3sQGqw2K41nVOYYV2zzQm3z2U/tnBhmKikWkF+LgtVdWnuwhjHF/oOVfUw0NXZDEB\nVXtF9fFg1F0w3+/cgl21q/bYGvL8Nyw+ekkOLIvGgdq3hb5HHwapfblWZwis6oXslKUwT+og2vMV\nLDzQ/NTFYYyUfhcmZTLGxQ9ktgq7INMWCtl7eLuaixowPP3yc/Tt1s43bTPSIKuGOE7AlLUzteMF\njmb/L3tvGmPJfp73vadOnVNnX3vv6dln7vBuJC9XU7spOqEVxJRFRQgF+UsAGRGSCIhhKxag7EAi\nKLYAKYKCfAgSIAEMiFFoyUicRIpIyTJFyrpc7n7v3Fl6pvfTZ1+q6pyqyofnVzOSEJJ9P10Hrv+X\nRnefU/Xf61/v87zP4/AcTNAIs1SLArzOY5xWaPvMYBnWCmpo3IHZw+0TkP0FLA+nsjIPxt+grLo0\nKlpn1U2NuU+uvYNbUR73tXxV+8JVNPsS5vxOpN+d1JERNux4obqV0eNx2TdTtlLCPrYa6HM52Egx\nTLmLlhKOVFXYTQvYTedoB0xgwiQhrCH0NAxdixJaMEXWUMDanLA2DTZExH4Z+TBEYDMvYQusYHpY\nBLuXtVRdoDUD86YAU2aGi4kDe3XF/eKU4ZOep5mzebQkkrmuP6+l7Af9nM01nmXYD3EeFyjmfhXd\nE44g5qaOkPzMoY+SIsqWalU8cY5TOybT1NlLnws4ayS0x/P1xSWHtoizWomzX+I+dfx0CqsnN8oz\nh0PmR4xbVwmGfILe1jRAFyt3cU0Zv4kDJNpfp33t52GiMdoUwcN6I/VZOGgQ6e0AACAASURBVMP1\nlGdqyDm9y7vACqZDiTqm2iFBJXV1SvXLtO8lOFMFnD+NuX5KVzQ5b9VdneMPXtP+2Xnpg6rfnrQM\ng8eq30m6z9SZsz1cNdH/SbUH5z3chHhv6KJ148PQGKH35IZoWa5Sdqo+12nAEqY/bJmycTmTwRor\nbLBPwnLyzzU3vIX20R6OtLlY/bENy/kxzKK1WsoQVYcc44qa7l8NB71A5kqFuTCP1d9VnBkneemH\nTmF0rqOVeNGSuvCVdrU3nDJc91/Ru14JDcw7z0vHrrmhiVPbVfu9CQ67PVgZAWzrCnsjc/YcN6pS\nwvsUrLDKn3tuBJ2VrVYbNh7Dut9UW8/fkhPidKi+uPM3VIcEd9/OFV3rc59UlkT3lt717j7Quad8\nqLrUN9Bjg+G3xDmrDFmovKPrruo4iZU1ZsFM+0xc11loPoE5ONR5a+KjHdviGQlpKeIdrf0JxQ8u\nfVI3OvzV/83MzF4/UB8/d0sai/WK2v3O73xR9x/x7oZGWBFtrjrP/HPY/26suWCcRSLeYUozzb0g\np3ZubfGulIpgfYeSMWWykpWsZCUrWclKVrKSlaxkJStZyUpW3ofy/jJlHFTyL+nn9WcUYXv3sSJs\nhbEiT0tYDBtdVff0HvmJu4qM5cuKcHVqLp9XxK19KmR54igi1lgpgr66ftXMzFr3QXwrup43Q7ek\nor/n+7AIiqCJR0L1R0tFQ0s5Xe/TP/gZfZ589z+9J7bBs1WhbJOC2veYCGTFI1II0m1HQjdPD1X/\nm9+vKHVpX5G4b74mJs7NDUVN/8qzn1L9A0X4+gtFEPNT5fl/8KOKfu+D6NbskXlEpg/zyqcreopc\nr4Fix2isjMnFzyWqe2Nb9xygdfLoTH0Ro6r+sedfMjOz3n1Fpv/5t8TWSSPh1z4q9LtaxC1oBBXl\ngqW+oSjlBJV4dwRTxlTfmoOnPDmdEfnnMxwGYpxbzCeiHoLU5mEDTPVzhKvTgkh6cRP0DEbR+BTX\no5qin6Xo/C/Usx9Sv5XqW2nocyff1JypPqtortvT9R6NhEw4DUVZ955VNLeNi9S4pjXQ72sO576Z\nRpuJ0vYe6Ocr6u/9t3S9WOSyJ9oEhxPNuQX53SdHinonddWjfQXNgZzmZCXNaQbRaJH376BblCul\nbgCgSHOhm+VQ7IMV2hUF8ipnvqLT1ZzGp7em/h7O1K4mIhkVkPaTIewO5+JUmcoazJRbjPFS66E7\nwwXiiPzpK6DpR9LlqcPQmBCpnxbV1jIuRn7KsEGLJXWm6sPcmA7Vty3YQv1Txoac0c5cfVAwRfTz\noFpt56rqnVdObHKkudxcQy+C/OmgrPtVrqHufoqzAGhKAQRx8wZOYatrZmb26Otq573f1dy7dVX7\nSSWn+y09zaUC+cZRHeQUh61uWfut31Q9CjiFReTqBnswZGJVpANbrN7R9w4cdJvQJRqBhsWR1sRl\nEN+bdfK3e+of56HQIIcc4uYcNgb6HoZbX6q3YSv+fsHi4QYyhol0/bb2z9wrqsf9iVgd3lL1a19T\nfR/DIlnhoOagy7TqiTVRRZV/FQo1Wy41TvElkNyJ7nt6oHY+ekOo6WlDa37jofba87eXluvD2sRl\nqXlJ33XbuubGZfQpumKyeSCX1ZrW9cFCczbNHTecAYw6+F10ImbsLw+k1xatwU4CmY3m+lnB8WT7\nhp4p40T3OwA1Gpxp35t+VW07gPqx2xIrqXkTpHFHc7kFgjyCyVNJYBCWtH8scGtqYVf0OI97nI9b\nSVP1qbIPPVzqvsWW5sx6qiOHJlg8e29HnFkPtsM5zlpruA620P+BMeIwhzuwwSo4sSUwTxPm7HwB\nEgmj1KogveBhDT7vJOzT6GOshsxt9Dwi2GEFnqM51n7RA+VfPXWrc2d52+zouViIQO+Y0wucbAro\nGFVreh5XcVnyPZg5IMZFqD8uRmdl3FJa6AsEsAvjQPUbw3J2QL5zbs189viIZ3ehpH1jIz0fwaYt\noltRhbE3w0UnBzt1fECfxux3aFuVnnQt57Wp5vaU/WJnW/tS+syaTFXHWjHV6irbeylpny949rll\n0GlXfVmDVbpaqf592EpFHGZq9H0I2zXP2E05P+bPGFscUpKyruNXQVpxW1qhP1FFI8bDksyHAZ5u\nmy6OYJED4hymDoroO9XRjBnqvku6w0FfacZ5OPFxj+IcXWvA6kjRdxg7OZiqxnV93KbKsAx8T/9/\nwviM9ABewYIr4ui44DyeYw77qaUkVNI41R1paI6mDNkazKQAVopTfIo9R62qeXPYa7DOCivqzRqY\no+fh9/X/VIOs2qjaRculDc25/Ud691ie4zi1o7qkLM8++5rj4uzo6JnjMuYJrNHclubu6T77B+vL\nRa+itKk14cxhvFVg16IHV0Jry9vHQdbV2F65pX06QNsmjyvR7Y4W/LLHXEt0pirBDhs5qa4bmo2Q\nnSpFnuk4f4U4WDVKzC10LxPul3CdAefPUo/zLo5qyzHubzCOCrixTua8Q6HzlkdHMA/LgiVgXZhH\nAfUqsn8PKnq+Br72+ehEzzEPh07X1VrJ5TQeI3TtqiONS3v9qpmZzbti1b5zT+fw6Py9ObkVCpon\nb+/rHe/4rupz94Hu98Hreu6ewBIxfsRLGoieXYt36VGEK1aseqSM+SJLcv6EcYlOXu+pduNoEFlS\nDGyZzn+YLA9ONYddtPQ+/+nPmZlZ7qbu+cbL+r7DuTrVWlz21Yf9f6Fz4GxbY7pD1kYRfZ8VLsge\nrCpekcx4ZzHclpowukvoT67Q/ymirXheUn076OTkd/U+vHaDMd3QfZqflN5dF02yZ1/Sudka6twy\nzoSVkt7lujhbjkK1YwHLrAaLKndA+yoayxK6cyHsV4/nQDzjrFP77lyYjCmTlaxkJStZyUpWspKV\nrGQlK1nJSlay8j6U95UpE52jYYDHekK0c4V6++DtV/VBIviHoPilq0L3/btCNjfIKRu31ZxqT9HB\n8ocVmcodKyq8mAlNW52Rg+wLUSnuCKFd8ftWR/V6XBLSfrWBuntR2hHTV4VAR1NFJY8eKno8LSm6\n+ZV//E/0+c+KtjCJxQDqNhTpT50LiofkCsdCWNIo5/BY0c8erk+XB7BNttAuOFak7jgS66WFNs8b\nh7ipvKuo70Oi3kk8slsrFLTXda/iQlHNkFx+N1A0EqMYW+BBH4VEXDuKRt6GKfImOY/RhtDmxVBR\nwXcO/7mZmT1z+0d1n4EQ3D65ou5EY3DREqJOvn5F9Xm8/8DMzCaP1MYER4biRuoMAxOjT85/qksB\n8tcPSeI/1ZxqgqYEoDrT1E3pnurtoAWQ0H8vvaRIc26m36vENUcP1B8b6HpUm0TicyAZKHc/HsOq\nGOu+uyCYkza5rnWNWWMdZHxb0d7A01x09zSHRr5+PvianLgm75JT2tD9CnUUyAk2j4nyjk41t0q7\nivJeeV7964OMr6j3Wk7zwZloQrjbuDVdE6I9H+Bwhl1Xgejykvxy0tEtxploUtOabAx0Pw83Kxen\nn9lE7R9OhHw3t8jTvEBpgbj+tR9X3ZOe5tr+vlThF8AERVTTJ+RjDyr6fe1IdfPRQViZ5vKwp89d\nLqhOixG6HbCMlr7m1gRErdLSWojW1JfBlvowgYV1nuh627f1+9Yl/X4fxK8bCnV5sBJ7oXqsMavs\n6L55NE3igiL6M3SbRrhMtM903Qrt2cAJoNC9qnqM1C8dGIZbe2gORPq9lYf9hNaA21M/nICQuqH2\nm2hTY54baQ493OC+Pmu7gKYWCHSjDKKxAEHZUzu3bogpMt+R2v3Z+dfNzOwyukjjBqwpVPtrDfLn\nT2AgvUctiJOvfNPMzN7+A7Uz+P0fMjOzbk8IxzPPoUcF0nHJl5tWaVfMx+iutGfGoHwxWjNt2B9H\nbbQMTM8Ra+h5UUejLNwnV/sEZLpIjvM39BzLDVu2ZD/yr2hOXV3T3G6/qHWdrKntwRyEkfU5fqA5\nsYRBkub0G2hQM1ZdazhxLZsam93bQpGmebRRQP1Lvv6fNFTHsKrrNNDGegSiN3mo58h9dCjqm7r/\n1Rd13UIL97rHzF1YD9P7Yvp0d/QsqyzRrUCPyIGJs7mjOZ4scLxBU2BEPneKivlznQkGOK0Vu9Tb\n/+5OB3+5JMzZk1D1Kz7WnB+7GocmrkkFT5/Lg7ZPUjbAHBcNnhsxuftlvpdP9710v0QDAOKqNYro\nFXVwwcNlZOWBjKKtkzoOzaE1BFEKL5qd7Z/Y8AQ2Mf1ThjHaxtEsjEANYcb6BTQWZrDoQLBLjb/E\nOuA8MN/X2pzgELmETYdEgjltzirjkZUKuAoBroe4a7Q7oO4H6PisgbpfU1/P7uJWB1KawJyZBKpz\naQgDpIbrWbrO0OJbwupd4ZRYASVeuDo7OHkoksnTvrtICdDASblJqf5OBY2TheH+AxOmG6YaMw73\nB9X39fclLk7VVCOH9jxxNGOMHU9zeQmjo85ZIUEXrhDoc/4CBt8mlJcYjRbckXye0UVHcyTOaxwa\nO/p771T1r/LczMFimMOSCvOaA7kIXaEYpiT7YDzB/Yr2lNBZyi10n1KAoxp6IEXYVg6aO0EEQwpG\nTgLDtLDgTIc7TMPVhFqh/+TOcbSMVO8S+ioxyLqZmbtynpwpi3P1U/peUEKDaInz2JI1t1yoHnHu\n4ntJ7KkN++gMLXk2bpa1T82rLPhjvTPUYaeOff1eQk+pP9GzpAkKn2d/GKErVJ+qTid5jdGND+pd\nJoYO+pB9oNIgCwAXpHPYCbVFqgmo+kQ15ggM8noZPSLOg13clDZxgg3O1c45TmlD2AsdNAsdzpUR\n2olupLU99/T/Ovv01oh3vIHu3+TZ6MKy66HRmLCfe0P1E69MVm6nekycOdjnXBj9YZ/6wDz0cD5L\nRrgR4fLqor01QytrWYJpwvvRnOyLfou/V3VOzTf1vDgdvTe3vxGMzlf/hd43CjWNy50XlA1Rr6Nb\neKZ2j/t6z9htaW4X0BhashYc9K5W7C0t2CgRazwHfW7G2m1ETx0si8u6bWw1LNzUd4asm0u3tX/m\ncRlqXdfvga8x83BydGv6fwhrZ+8ZvSsMYYIv2RfCe+rzUwjPrVDvNv0Qltcmz9gYxzD2i/unWkOj\nM+3XFVhU5SU6qZzPT7toSVU0Vvdf1X4/G8Fg5J13F23JHPp34wHnMxg1NdzyTtGAcU9ht1bU3h6M\nvShMmYAao5WRwWPoI/GutpiKEerzvvKdSsaUyUpWspKVrGQlK1nJSlaykpWsZCUrWXkfyvvKlHH3\nQPWfk/vE/QeKTJ339bN9oojW6kQRqGsfUgTr+//2T5uZ2Zu/9/tmZva135W/eAddjQfvKkJ2y3/B\nzMwaVxV7evW+InQbHUUzN24o+rwgYuefKip93BTiffpQEbblM7rv9U3Vd15WBO9KSdHJTdycKh9+\n1szMnCMh3fU9IaXO26jpT/T91Ro3TBSpr1fFpNlo6f9H76h+uQ1F8kiZM/9l2BIVRTcbkSKRxaKu\ns76ZOinpex2iyc3nbtl0JL2DPErYlTr6OmeK5o0TRRk3K+r7MbmX5SG55SCz3o6ikJ1NUN4YvQx1\npd0+VZ1uP68I8tvcbzRGnyN5b+h2Ah5VuKHorC318/hdIb6rR4r8PtvRHFq7o/sHLZgeEW4ZE7Xv\nOqj9dIazzon6vJcjtzfSdQMi442F2j0mhzOIdf0OqJyNiRIPyBXuam6UymK43CKHuF4gCoxK/Da5\nqHVdzlY5kIo0EfwSmgUfYI6WtVSvvyB2we6n0Yj47A+amdnggdoVLMntX6Q5u4pSz/K6UQvkYF7S\nnCxVcBUZCPEunOs+nXXG91RzaIrWyxH55SWi5DUcjBbkFsf0bxKAiM9w1LAF7dL8iePUcQENIOxh\nKjg8dMsXz/MfzLXee0NF/1/8PhyicA8K39D/Xe6Za6uO4wIuE/uaq+U6KNEApLGuNp1R9RB0AYkp\nK/jkfe9pLoxAIHdx1ek7mkuDfX2heAvUmvxyt6UxuLqrOT1O1Ff1A3SOMO2oolYfz9BmAaXa3EKT\ngDn57T9VXjImJrb1QaEt67fIjV3qc1NYU81N0PhYbIATWE2LhurXDIXSVDZ033ZVKNxspbkQoJu0\nCaNw5YAoolVQRh9lir5JFYeXyUj3f+6TV83MzD/WXvPyK2KiuL76rTbXGunCMshNQL5LaN40vruK\n/V8ur/+xGI5//AdS3+99Se5Kdz7+CTMzu/yc9LEKuAB0qhqfrp8yE9WP6zO0KHAHiUBOWgdq9/JU\n/VFg7xrBHnFB5cYDzZO1Fq4tzI9mZWU+TBQP57AbH9YYXP2w8p7P0dY6fu2BmZlVhkJ/Boea4zE5\n7R0cUDZdxhSUfoprUGsJA+ImLCucWoo4osSg2Lk6fX2mtvZGus+7ryuH/q1TsYi8LnpOHV1/2+XZ\nWwelV7Ns1UMvCMfAxUj1Wy9fVd8l6rtwTD1YiwO0rbab+l4p0T5kifbb9Uj90uuhXbOGO96lp1or\nFyld0MC4JoZOC7bDYqzrl9e0tn2QVgeXkMIq1cCCYdSFvYGORpTAmASpnRrshjDVgwL1Z1uco9eU\nwDKp5EElYXHlihqXNghy7D1FPK8+c93ypnnh4vKUw9UqXvH5JfouKdsA/RUz/fRgPbjs2/1T9WvC\nPFugF5W6hxTQgcnhGDSHwbWMXQtwTfI43xRh43hrMEBwn8t5zJ1renZWGkIUxyCj6xtaC3vM7eBI\nY3III3IEk7rqoYNTVN0BUq3IsQuzIatyfosq720fCRn7En05gxmYRwPRQfukQD2dnMY4RZAdtAgT\nGDJFxiiMcehC/6LsaEyXTeYYej1uFTYZCHW+pM/lVloTRc4KEU5fGB7acq41VN1RPRawExJcl0oV\nfa8EG3pZwulrBeMcFD6lJxTRMwkQuojYW+aO2lsz9FFgNhVxh0qKOGnOU70lzlCw/Iq4JyU8n1do\n4FiRecS4GV8vwhSNcIZLmIM5mFXL+M9hz3FkRdyUAhww5zwPAzRxOrQ7ybGmijCK4otj2D3OPbOZ\nzt2VO9o3ui+ozw4e6hk3pG+6lzmTTDRnOnWYLfP0XQH9pDbunrT99JtiWJzybPqbP65nWbuq9fvy\nn4h92r+vMYqrmmu1gp6tMc6weTTF6r76cIzuRepCdDoTQ+O4r3qWVrCXPNWv0lH7CmiZ+OfoLKVM\ndBgdlRKspAV6QyW0smAP5JkzPswftk0r4vgVMdaGblARXakC2l3TNq5UKUPkRPtVta29Y1ZK9fBw\nsUKfL4DJ7/mwqmJeaDhLxSnjEq2zMzTH1jswgzbEqg2KT52+LlJyPF9ucfaobFw1M7NajEPwffV7\nfgybjXEZwygq+qmWjurdjnT/sAGzJ2Wn9DX+yUD94qNHFYVPQwDLs3N7NDiyzjY6dZs61w5hrRb7\nGrvf+x//kZmZ9WBsO7BBPc7scQJLH229XFPrKOZZN+HMH/dT9zzGhLntLfVznMp6mr6/c0lrotsg\nLgDjZnmO1h9tn/fUZ60dXWeJK18+0f0+8KLqV05d5A51xiije+Th8DtFd7SCDl8N3cuAfbVqas+I\nbIcYrbHZXPtwk0yXQht266nWnJP/7lqIGVMmK1nJSlaykpWsZCUrWclKVrKSlaxk5X0o7ytTprir\n6OqdDyq6WzwSKn8TDYSjUyEhR69JLXnxohglL5h0S5aO0LrNNnnfaK1EIBIxCMNypajjTVxKvKoY\nLAa6Fs0Um/LIr98iJ9kjcvcq7ki9h0Lxlg8ViXvkC037K9tEMV8GSQiELPSOhPAE5KNPC7r/zpki\na2ewFIIztXtWVbtHKxyKItT6/dReQFHODmyTSSLkd+NMkb+1thgCdlP/f/QNRTJr7UsWHOtvLfKq\nc48VIg5b5AlOVdcROYb5TdyGcL5qoF8zv6+/b5aFus/eVqS+CrqTa6utTqR750D/Tydv6Pqz94Zc\nrvIay1pZUdvmdTnIAMTZ8QONoeFIcA1EuJAyLVJkNQ8rADeJ4lSfTx0elmgWOJGimZsN9EmIrrqM\nYUKOfkAOai51lGiq76tljV1ujrZMlVzQUxy+YFOUKiCt5D8X0/t4f9G9Ipipf989ESPpkPzKSkvj\nVAK9WbsMKoeO0BzU8QmiAevDCdCIQefEMJEKcPvovEC++o76YdLXHPPRaVkDTVsm/PRR16d/Y7QO\nlk21a4bWgqHDUYrVL2EL1gcsBCvpe4UcjKjKxd2XTu6rEYdvac7t4eLm4XiSv6GxzKdzA8X5+Ezr\ntN6EbQDaXKgLESiicZXUFPleuurjMvnTuQFsrGPQ5S4sJFdtuIIu0Ay2llPS3DjpCSW71ECDpqu1\nVLir7++7un95ovsucJM6Lao9HroXfqI1sVXU73eP1Q+X2+gsgdZXYfZFNfSjQEfuHaIOn2gMWgXV\nu8F+E8HAay20TwceFCGczBoV3K0CtSveTnWoNJcGd/R3zPXs4B3tc8Ga+rsMEp7f+qg+d/xA1wHd\nypPPvVionXVHe1GcaA53e++NdfeB537YzMyqvur13Lb6f4LG1/AdENdHYjr6MHwKNRx3huSho4lR\ngl1QAfFtgzoeg5JG5zgYsbeczTW/WhvaK9q7GqdDkJZirW3tO3oGVS9rnZeZQ+U2TLKq9uHGOzAV\ncGo5fBvHhIfKbQ+Yy2sfEIPQrfBMNI31qkPu+Uzr3AqwedBsqaI5s0Ib5c0D7QMrtGoW52I1ffzf\nFIPHW1Ofvnr0h+ojdJnaOM5Mub+D/kUNfbRGTfcZwj4osz+OQDSngEoOzL/cruaODwrVwgVpiF5b\nIXdKc/T/jSaMxgsWBwcXF4h0OhaD0PfV3zUQyVqiteLWtbe4ZVhQaDGUQeudQH9PPDUkPEtz/NVO\nFz0pgwETo+1T5TmVAxIfox0xRIvMg0Xh46Tm1Z4yC8/PeuahPxLhplVCy6fcVb/0AjQdXO1hUepm\nQvvbTf19hBvV7BTmLBoTlTXtsanmxBx9vfMhLAY0M4KlayXOAAsc/ByoG0izWBOnmrNznbNe72mO\nezjUPNzXmNbKsAo6nJtczalVFbcN2Js5WMClde0vZRzK3ASkE4YjxI4nqPlFSxmhtgimXIwTVjDX\n3CyAMEPWtdE57FzYVF1c9mJ+T0D1k1Xq4gQynU+1ZHBKmWq/TRizGlouyzOYeyC9K5xVkoX20Qid\njIizVNHRnC3gguRzJogHMC9xUDTY0xX2jCKONHNQ9jzsuAVnjuKQ/X+Zaueovk6+Qnt4vvJsL9He\n/FLjFaxglId8rgOz1FKtM+YwrG1jv50HqWiNruNgx1Xm+tPC0/EdLaZWLen+Ic+xCms14my1qGjP\nrXA2W6VuLt7F3f4en2gfTiSPZs/+1Uu0Edcy2PCtGGcutKMKxr5f174672stjHDwaqHBglGVxbgb\nje8/MDOz1/5EzJwW7kv3XtczfO7r5+YKJmArZX6gwTVTHwawT9uszVmO+xa133lD3XjKnCrHuEAx\nlxewxOopuyjkfH2EWx/n1g0Y1hN0jiI0rBqphg2s5ABGTYKr1II5PJugLYOuiLMNywuHxADWwtjX\n3KtegiGIrmB+CtOcOZJMeC9i74iD1JVW7RoNYToyV1Kttsc60liIZtto/t5eqT3Yb15Z75JOhD7p\nOcyXntqTutcuYVC645R9jBMc2mRLHIF8znROTT+3ee9zcLgb9NGyHJ4+qUvvm2/aH937HfvgCz9g\nZmY3PyO2q1eADbXXpc6cdzsw6NCFS7hX/1BjePIqbmoFHKFSVzbTmFdx8JujPTXnXWVzAmsX1hGv\nGLZibMzV88Klr1fMyTde1xnlzdf+HzMz+wwMxvZ11bN4Qxe60dVZ5WxCdgCM5tKcPkb7sF7HaXAF\nWyyvfdKDTRqlzHC0KXnUGyQ1C3K4OS30hy7vgm7A/vUdSsaUyUpWspKVrGQlK1nJSlaykpWsZCUr\nWXkfyvvKlAkfkYv6QHojY3zGo6EiXucHYqSUuopwbZ4oUvV//nfKaSv+iSJuOXJBL38Mp4Y7oPgV\nWAtV3ae4UMSrSvT2LV/R6uUbD8zMrAx6N4eostlFVR9V570X9Y/glpCQOeiR4yvS96f3xOgZnZLv\n11QkrdNSpGxFpDDeVX7jZl+IudVV7+NYCLnbBPHxcAPxyA9Hi8Ex8sTbaFnQP4czRf6CA0WPHx0I\nzbwzq1vskY/bB11Qk6wxAEFFENqBAbIKFV1cVlMURpHyHm5H28coYQM3FXJisDTbatNr5Mwms3v0\noaKs13BQ0Qh+7xLMiZYuFIZsdXGR+rjq+fBVXb/3lhglj3/r/zIzs8113a9+WawoL8H1yCdCPFa7\nNypqV9JBL8IB1SFP0uoa44QEx9WAnwWNSTdRx62j2F1uqX8L6+SdnyjivQRkaXdSZwDyD1Hpd9EY\nmAEN55e4cxBFboB8hIeKbL9zX/2bh+nTBUFxiZCv1XAfAU0bzoSalc90Hx/NCA/Xjhj0MqH9KaOm\n0tacrxJRL3C9whWxJ6b3NSfLoHkjcpALIWtrrus4MJfcCggu4xqiYu+U1c6mo4mZ4IRwkdJYV+T5\nG98WOnXv9+Sy87EXcUsrwCrIqW6DK+qDS030EtBaaYCcprn8h4lgEA+nkvYpn1+pj3yu1yKXfT91\nV0q0vm0dB69j7WcF1md584NmZnYyTrVrtCb6OFytmCtDWEzJAVo4LZxxYPoVJvr+rKz65VnDIU5k\nq6bG9OG+6rFGjm+/TLum+png3na3i2tSpDlbGaI6f6L9ebFJ5B+V/YA87vxCCLe5qkd0lTkw03ic\nxWhBPKM1WN1V+xOYP2sVoXvBZbE63pxrTc/OYByBws9aoIrXcUiw91ZcT3OxmFf7DmaaN/N7sL2a\n6o/illDNiatx205NN+YwqFijZ2tiAGxOcTDq4MqCq95qDhMT57bBXANa3pYrVmtPeehXfM2LSqtq\nbfoo5Bl175tig77xjr7bGAvF8cndv3cPRyv2jyJshM4VTYYaiOFiOhLvRAAAIABJREFU86qZmTmM\nmYWaS+toR7VBuyIQ2OkROeloTU3QJ4sdGIdoZ2194vvNzGztMgyKY9yX0A+ZIsjkoXmVb+j3Em5O\nFXQ4XPQjhlXdd2eOW9yO5sgpBjlTnleXXLGN3Lz+4aFF1RuBgIIYevFTJPAiZYjGTeraV0ZHo9JS\n/5RwxglhsT1BJGcg0Pw9RK8ixNlnBVpWR4OhgRaCh4NYrkaeO+hgCFstQWurDHLrVpjD7J95XFGm\no96TNuSCsYV52AO4Nc3QParioJMnv98pwJ5A32Q1Q/8kdRhr6PdGymrZkaZZxPMvQXMuwd1lBxZI\nqmcSTac24pp+qsvGyvXRr2hf1rNkiY7D9EDPtuqzYrJ1rmk9Rpz/3j1RWwtoEWx0NOeXMGDmOI/k\ncPY7RVOg00yf3SnTkLGBzXXR4tdgN+EWEsFonudUvy2Y2sGS/dDQ0cjDDvW0PxdxXpmD+gdoHDRS\npxnYrcsZ58ZjXJHWYZfRzpRtsMn+G0+1h8yAbuN0LXGW82BE5l00W3DgOUNnyGW8yuwNCXPEPwGZ\nhj0Rw2RqoO9RamgNTO7h8JLguAhDxt0JqG/qKoWWEP3lc44uVNDmCdCrgyXgc3b1i7C20POo4dZ6\nTr0dnmflDc4S86fuWqtpYjmci4po2cwRLolgb6zoF8vDduPzAa5PFynda9of125qvTQ57z36mvQv\nnX09uxsFta0OU64Hm3etrfXz+B32VWhlcai2p0zDlz7/V83M7MUD/o6LWjTVGkmdD2u4+HhFmHUe\nuj64aM7QBynomGhl2LZhqnnDfrqsat/Nh6r/agorFPS/Sd+F6Rz3YB/hjDU90VyctGGab6KjVNHY\nxSt9rprTzzKMzSnMwrOHnBfR5fNT16g12MCc54MBjNIN9bu3Yl/i2d8LVO8yY7+CkRiyTxrMkmSq\nOVrw9BxMzjj7hVrrt5+R/lXvWPcZnvFOd8GSR7syFQJc4M7aGcIWgwW9oH4Oekh+Dl0odFcNVnjs\naK6H6PC5KYMmhHkJK2Stpe9ttJ+es1/6sdu2MfysXfmhj+tezM1TX58dLhhrWKOpbue6sX9PeGb5\n6NShJ3c+U52GY+2DDuz+YoP39LGudzLWGWfBuq/CKI7RUK3OYD3BUlpMNdcCnisbm3pXmcw0JrvX\n6FtYxqWe6jFm30jQ7yzDHnIhgkfor4U49o5XMCB5TCw4eHrsS+2Z6nde0lkjD9u1QLaD4co5HWvu\nFQoZUyYrWclKVrKSlaxkJStZyUpWspKVrGTlX7ryvjJlmntCRsfrRKCniqTN6kTWO4pYPXdHka/t\ntqK7r72tqG5nWwjlDL/w0YnQvIpDhO1MSO3JTFHdJI0Krut7H8JB582ZopveNjnK89TrXqGx9T45\nyqD+9ZL+f4D+SueFj5mZ2YsdIe7nfdVjkLItXIXWtmK184Tc1XJeP0sVRXWLY0V7jfzuzuoV1QcH\nB29PEUkHRMhM9Y43yTs8SfVF9P/cmhg4uep1O53KocDqikbW8Fbv76qOeVCKuAMCx8xIQCEWARop\nD4Tcujc1dtvHKG/fIRp4ALvnRIjAOWrm4bHq2kS356JlNdZYHx0EtEkR9HokVO3mTaHu002hakFf\n0coWau/ejvp07pPLiuPA7V30HkB+J07qeIDeDx71GGSZkdOf5lOWcMRJNvT5bRx4Fjl9rwGjZEW+\nYa6rei0ua06XyP+2EhoEK9VnAvJQBkkuxEIsSiDeO1eFeDx/U2Mbo6kQnWkOHRzxEwcYd0x0u4h+\nSEP94YESxU0hGlu4R/lEc4/Gqtf2hhD3QUVrajDT3LoRqT7lDfVr6vZUA7le5dHCWLD2yJ3OL/X5\nNM8/BsFw81rb1Q0YTf2L5/lHoOSJq2v3QzHEXhupT9sFtGB81XnrMu4MOA5soKdzDno9fFf33sSh\naliBydLhe4x9Fdeh4FzrslMDVQdd751r31rA0Ahxedg7AhV6cZ8+0Oe8qvaDGnnXZ2eqz/6xPpc4\nYlh0n2Ot1YSM+o/Vt5uwo/JNrbElzjuNLc3x05Hq64FWrXL6+7IlVlMXJMNG6HA0YAR2cV4Zae5O\nQL0quIu4zPURDmMRa74BOhO3VP/HB5q7dV/j06yjn4S7U9m7qnrcwbWorPqsXtXPCeytS/ta86Ui\nwlIXLFPWwikoXDfVChqp3sNvad/u/KFQsYPkLdXvIxrfrRdAlDuwVtBVCtZAqgswYu5rPvV5bqQO\naJHBrNoVouORRz/fYH8v+Lb/pvbJAuyuyVgsp+OvySlqY11z+nJL69GH4dZeaMxXN9R3C5xtUi2T\nIlowtonb3kx1q7VwQ2uqjWdTsaJKE7XxaIh+D+u0cUVzdQiq1bunsSwMcHYBuRzys4GuThGtsSr6\nDrmV7j+v0U60qBw0U6aJ5pqLbkhzlWqcqK+uoOeR7Gj/slj13oC9lICeDUI0qi5Yale0Jgo4QDS2\n0PUwWAawHeY8L48eCVreWaNdrAkPF6skr/sXU+cWni/TOYzFpeZgBSbouKr2N9DimoOMezmum9M+\nGeK8VoYFESRPUfzVNGchjxcHZmiUsirWeM5BpDmHkbVb01w8Ger3dfLfF+h3nBzpLJVvoGmB08+K\nhP8heh81H20G9LeKzapVY1yE0Jkz+qR/zpiDZNZ2NbfO3tW62zpVXXduaW7md9CVO4KFifbfaqnP\nDZiT1Zb6aI1GnuDI5SewtXCBGx6iHbB+cVammZnh8lTEFcTQE2osdb8Q9pCDjtKKfSss677dKrpv\n2EKFPdhkbTRQArTMztVfLi4gI9ykPJgpuXOdKeKe6rPsaM5UmriOwIY7OFZ/NWBURmvocIAIz0HX\nFwNcQ9CkKYEoh+h5hJ7q08PhbQetskpHP130UlIJxEUfVsMmzwvYV2E/dd9KNX5wADvVWcFvov3G\nWSnH3JrHWmuVAN3Con76IN4BTFamheWKINKO7mNmVrbEwrw+EE30vQIMGRcEm+62OQ5mCWdfrxja\nRcsGLJ1UO6p/N3ULVd81DVYq29MmaHp8RJ/hnlMvU1fciMLllN81d3dXaE2VVXdnInbnoqmxvrmF\njlPAeRZ9nyU6SmM3ZVPBDmrgasR+V8OMyHDUKnKf1DEsyWv/ncGc85fq6xrstNw6z4W2xraIDl8P\nN6fGAG2sCJ0oGJNLHHAK1OfRgfaf8UPN0RdvPG9mZuUKrAscKQd91XOWoKmGRtqA9hZx6EnQavF5\nlyu4ME4517bH+v/C1fUWedgbrK3FI+01w476IV/XeNeji+sOmZkNTtQvefbIGqy5kqmeM1h4Jc5U\nbgentJbWXIAr4gJ2d9HR9Vwck0qx2jGHeV/nuo2C1k5cfXqGKndWdvsjL1nnY2Imfu0rev90FvpM\nfx9mHfpvLfaNM84G1ZJ+b+CQ68MujTycuWCBFslQqTY5/3T1uc4JrE7uF080hyoHGpvZBudedNsm\nB7pOGSfbZ37gqpmZrd1FvxMdodwcTUeHd9sp+nkMVQvdtSO0qBLOIAvs+nI9shc4/7fJDnFa6Gcu\n1O5SkLJzdb0l6RFN2j3nnTV1BvtOJWPKZCUrWclKVrKSlaxkJStZyUpWspKVrLwP5X1lypTJi6/A\narj91z5jZmbVcyGWf/S/KyJWPVaE/s/+6R+bmdk3DxQx//C/pXzK2p6Uypcz6ZpcugzatVDk6uxQ\naGNYQgncF/J6VFLUM3YU+eqSs7YiKnn3LUWRH7wlzYNST9HJm1dwi4JNMEbn496BENaY5LMGkf0D\nIoAVFM83S2jX7An5DogKl6qqV+MqzhS+os73j1WfZj9VsVY7JtuK0NUHirofoe1w66EYO9fWdJ3N\nG7EN0XSp+YoMl88U9ZySh1sc6bNDUJ/qSBHpYBuNko4iwTVyNvM4ELiRxqoe6e9H6COcoXvzzBXp\nJsR5fW4+IyJ/wTLf13UO3tV1a9uqh98ArUbLJAD9SF0mMEox90DtC+ZikDjkoYdz0CY0AsoGakOu\nfQyC4E+JhIO++KDhw36ax4hGQkVzaA7yWd4kv7mnes6G+n1976o+3yKf8hQUnehvFRSvTP7i/kz9\ndvhVzeHaHfVzC0eKeU+Iwwp4yAWNqhLlrVxRu9bWdd8ceeyx4ZYEihTGQnKiOQh0ilzALttizp72\nQUjrqndzF0cZ8uCnKKg7I9xiyB2eLVhrIMz+DHV7QKwSrDTXV1Tdm16cKdNMtI42qFOC05Xl1GfT\nOshfICR2DEus5ej3Pjo/m6znwkeA+ppSn790qj7NB5p7hVs4EICmnAsMshWuSX4IS+gSWgpj9VGE\nYv5hWWhWZaDPffQ2aI+rtfJqKFbb3a9r/+gzB7dZ72dL9WmzrrE5RIOr2mEs0CKoFMWmWIK+b4ES\nuZ72B4geNseNY5086dxNjdEpDL1bQ/Yp8por5CsPQs3BoCSNm0ZR9c09Bt1bV7tcGIMDNHAmff4O\n4my7qNlfov64PTWb6q/TS5rL3n2xMs7jd+ivpwjoRcqdv/VjZmb2oXU9L7bzYpfsf0Vr6Pd/+X82\nMzM/90D1GWj8TpYa10JJ4z+M0VvyyPde05pcwH5YdbSWSjnNr/1DaeQEMcg5WhYPztUfHpoRSdmz\nwZEYMde7QlVuPf+smZnl3xLz8PErQgzrH9c91yrsr2upppT2p+euq28S8rZ90PQo0jM3hqG3jtZB\n2NPvwREuQDgHJjnNoeIWKPQuzLoNoWn+kdbA62dqSw70aonDQgOU+w6sVj/db9U15sK0WytrDi1J\nkR+19f3Ft2FyOqmehdoxd2CaoJHi4I43iXVWyE/V/tvXNNcvWoKJxu6dnvr72qbmShl3lCXMxObO\nS2Zm1sGBK9nUeOSGuOvxHE0/7+M6GKOhUwVBXzZgl+Ey4gapNhcaETBelqH+vgL1G7OXWMjzlP3Z\nzCyqNiyHNkMBF75FqLNQOEA3hPbkyMuP1mgHLImA+nbQdHgIs7I3g+XL5tFsaK3udvVzhv5TyqTK\nzybmw3ryYlB6GCvJFHT7SNfchMmxUVVb9u9rXXqneva3YHVOyf0vwK4ac08nxnWnouvM0JFbMgdn\ntKE8wSkKcYCt/Ka9l5JDS2YKG6yFdsIUt47xkn10xFkCjYRlGd0JNGByA5y4YBtV0Cw5OdM+uoKN\nsLmrOdztoEOU0+cOOLu5uJiUQMs3r2qtuUdaCz4s3byLPl4tdT1Se4on+n2Ca94EB53OCG0eWB3h\nBC0vnDoXMAQbuDHFsI1raKyFONWUudEUXb65j/seDjiRA+sYYjmSDOYzrrbU/Ei1KPIg9MUQhhN6\niRHjnOcsFqPxVk7FIMws6lSsmDqF4d7UhoVSKsDowuEnOeG8vdJ4tGsXf95c6YhJfm/ympmZLR5z\n3jnXXCkXNXZd1m0FfbUGzlvJANatrzGJINFjMGbFHgw1mHupWWVUZp/nXDjbEDs1N+FdC/bQhP2m\nVGBfgYmXwMQp5vQcmYQ6f0ZVDU4t1SuCResuoZLDMiixOCMcao4eqZ2Xn2W/4PzqDVgL09TlFWYN\njozraBBGY9X3GIex6qbGfP2G1sSDb/LcOYLBmHBWgyVXaOs5mmqFlVa63gzdvJg15zIXu7Srz96y\ngxvoBLsrh2e+F6keJ/vq7/XrqnfLhYJ4weLCUOzMcGjjrDo/hcbBc2LOGlrQr7mx+q+SZpngpjpO\nz/W83/kL7cN1nh8DD4ZUX/02RbPy3zazb7z1tl3e3LP5m7idBdo/qrjJXWaSTc507wnih/WB+qpZ\n1yRd4RJcZn/1Sbso49B7fqA2PGJ/KXdxWdtGU2qg+03fgWF4oH11q6p9er7Q93dfuGpmZjc/K92m\ncKHnxKin9+DVMGVO4soWsT/wDG7EGst5E+eunvpkgKuTg87TnHNqiw0qZN9wgnQtq9019sUKTroD\nznVjtLwaLT2/gtV3fwfOmDJZyUpWspKVrGQlK1nJSlaykpWsZCUr70N5X5kyb3xbCO83fl9R3Q56\nE/eegS1AFPcwVrTyfKGo76StyHVIDmi9B/MEZx//UJG1fviumZmdPBZivnVV6N4Id4/F20I+55UH\nZmZ21lAkrlTS56ood18nr319JSZOjqjysi/ENkSNevym2uGug7QXyEUz8g3J60sioZ3rsE72HRD3\nuVC6DmyBIpo6hQNFHA9ABJrrqtcmTht5gZlWgd3yCoiyc0BuX9W3wFWU7/6JWD+7I3IqJ+R05hQJ\nbpKbWSY/ubb+AbURdNwPFDk3NAlOY/3+1p8JjTmZg5TmFO+bwCKo74HeDxS5vmhpbvH51N2ihNZA\nor7Io1vRBBWb4lIx6et+RXJdV7Sv3iDvGvV6r09ku0i+M2iaiz4GALQFkfsXrmOwnlaBop6VKvol\nK1xNWqrPIzRakgTtABDeEJuTU1ysmuR5uzndcLDAiWsEw6ikqPXVrhDlmOjzo7c1l77vU59SfddA\nC2EUOSAww/PU1Qm0DKbTMgaJGZKzzFz02iDnRNJL6yifQ23pHz5QP+SEytU3db9uDQZQSQOfgK45\nC63ZBPcRr4oWxiVFjysb6Gx4rOFjrdGLlBaJ2R/ZFaPjOILB0dNcLCxU54Oi1mlroHsP0FKxvtAF\nj/+PjumLQ6FLXfrQNXLeYb45rKnlTPevwz7w0QQIQFW2umhQDTU3+vdhV5GPfIpeRkRuagwj7goM\nFxuhQQAz5wT0ydtU301wqwjy2g88GDT1HY11HXV4a2ss6udod4Fq7YFUDnHVmE9hJ7DfJFsT+k37\n73AmBKPjaeOZrnAQ4/5OW78fDkGwTSy1Arm8UxwAznErGZ4qJ7hp0gWxy2pXoyf0qQBD6Og13OYw\nOBjEwIcXLLMD3Xd8V8+DYP0N1WehC176pPb9O1c+QD9o7R2d/jNdgP4pljXX+3v6fHsCLQ/kqNoQ\nuyUAoTl8CzYCDKVKA+2JBS4noHd1/8Cm+0J33j2VrkazJcR1n3U6W6qPooV0daI2bhsw2Nrkb89x\n0VuwHmcnQpGWMDGQGrAEh5bRUHOiPVJd3z7QfbaaaHKhZdX5gMaqlqgt+3PNsW5NYz6izUkPTYWh\n1sx+6kgIup97SC68BzvqGdX/EsyZXVfXf7wJ8nmm74ewB4LUESuvftnuaM4Hr7E/jTV2y433xqY6\nLWvNj2BAun8dN6eXVb93v6G58oJp7Puh6rc9x/Fsrs+NcSsp4PKX5HCAAAFelNDN8Mk/x3nHS9kA\nPszCDZ5vZe0RMXnr4RmMxUT9uUKnzsxsMezbKtJ1IG9ZUNL3Rgv291Q0LmWEwqIr7er/oz5MFxyM\ntnEZqddxoIQJ46ANVk0fow3GHWeKpDKzZayxHsIMqeHOYUXaPsKFqK8x9jiHbVUY81Tv7ihlVuv7\ncQQriTlXwkUjQSNkgDOJDxO6BSp/7qcsTNWx2H3KMrpIyYOcJqz3OSykIohpHMA+rWrsC2gJ1tB4\nMTTMVqDehTW0tdC3Sx22mrBdXfbLBr8v0SjYqOoZu0p0/wBU/TEunbkSjptr6s8iz/Y5LlYrzjgu\nehnNde0dJXSM+jDGczhzuTUYl6lrEgzI8RANBzc936o+bRxxHBwdE+ZBFWZPlLI+cFOKKjwHC7Df\n0rMJDmMFGD5LsOQ8rOsZ7wFr7FUzdDRK3MDNP10bbt6zkHN5Y8wZyGN80IIr4c4V1nSfGvPP/R5a\nEH++PExRdxgyEYzvBu8ylmes6fsSLjzRVH1cQv9sib5kqa6xWU217qZFnsm0vVhNz126T7OoDb6K\n6+awgr5GhDNYUdftwoT2cMgZoCE1KTJHYT9FM87z2+qjYvr/BsyRvuqTcA5ewOzI4e70Kjpr2+up\nexMuQal2YgQTv5QyTXSdg0T1L11XPW9//BP0C45nUOLToWlyLi9t67oJGlxOTv0WwXKbI7pVD9Su\nwE3rjTPbSOfqAu6jKxiEDmtswpqv4V6aY20PKu9tL3FhNJZ4d03Py/MNWMlTRH1wHlvNU620VH+J\nNZpTPdfQpSpAtV+1yWzwYQ7t6534W2/qfHHj+64/qcsn/vrHrPXCVTsraX+4vI5mlKe+H72pZ2qt\nSx1GqmPuSH2bwB5qT/T9OZkoVfR6JrSt6aGzxjNxNU71jvT/Esy7c87Jj7+By+jRy2ZmdjDT5z/y\nNz5qZmYvrqFN+y2dWVowdRqwuwLYrM6Yh2FXc6KYh3WLRmJS130j9EMbJdhHnImM+hrP0rwHoyjW\n7xV03coBDsZz9tsDmIgpA8/LNGWykpWsZCUrWclKVrKSlaxkJStZyUpW/qUr7ytTZuuWEMlb1z5s\nZmZv7JOv7AvBbBFp8/aECDTKisR9pKzvVZrogFSFUvnnilz5Afob5KZG60L5InKbCybnmo07QpsK\nebknnZ0qqvswJ6bJRklo3TPXhRLFj3T/2oq8xh8RWnltU9Hb1ZmQ9zePcUTI6/rdNlFsD/0WVOLf\nOVHE7ModRTm3mx8yM7NB8A0zM8u9qfru1lXfYVnR1IOxmAAdcqcr7+CMMBGyfPslMXq6RGF74cIM\nfYguOYVhQVG/XRdP9qaiicslEXFyMtfoRBdmzDtvq4/cQIjhM88r0jproNuzj5o5FJMpUU8fp5d6\nSZHvixa3rejmzpba5KM1MkpRICLYS/KIKzA0iiXVc0zccTNHbm0LxNIjNxbdixY5+gWQ5UWKECw1\nVnkcr6YL8q3LIJTnGuOI3NTSmq7TxplgsUJrhmTgVln1PSJndB0Uq4srymwfxGKmeuTLiipfu6z2\nXruhufDoHbHMGiVd/9aLQlKOYMSURxrPGRF8l/zOJ+r9ILMuaF3C2jDcolxXSEsrryh1JQd7ogFi\nj7p9D0R9Sj+tl/X3Qp0cXJCH7p4Q9oj+C8uwM0bqj5OHiuDn0Hvqp8nTFyiHkepQua57rfkfNzOz\nMdpUwVx9FaFp0ntNbX6M/PruZf1+fFlzfROV9hptni8VWc8R4Q5N66xU0vU3cikTQm3cal7V35vq\nk9NNzcnOy9KKKc5BAB+ordNAf0/doLy29rH8i8qVrflq3+sP9PedtlhTiwNyVHH92G1pLizReeo9\nIN/7bY29s6/73oVV0MW16oh86cto0kRN9f12RXPTOWNOgMYnOD74Pa3lu2j0eEOxMeogjAe+5lS+\n/sDMzAr7aC7goFZmjXg17ZsOTMkttFySeuo0IHaY7er33vE3zcxsNLo4cmlm9tUv/d9mZvanvytX\ngcaa9q4feEbPk2JL4/hgqv10AAKc4FAXoZVQZDy9tp4Pk5XmR3AshGhqICX0y4Q10d7R9w76Gs/8\nmeZHZ6F2vR6c2eH+t3WNpfb4j9/UPT70b3y/mZnVJz+oPqnoHtvXhRY55OjPDlWHhWlsc6H2Qa8E\nygMbrDDTHB6DkI55dtb29bnjR2KqlRJcGmAnjfboc9CzPswQp6A1tMX+1N4Rg24x1FzNwZAJznD1\nKWqu+OSjH/yJ0LZ+S2voA7toU7HWnMvq4w4OYAuQ5s6p5npCTn+VvPb9c50hTu9etfdSarC0dj8s\nrZ5P1/81MzM7MiGL8z/U3Csv9LnqUP3reGr/HMe27kL9NEY/qA5DcAxbw8ENa4TuRT4AuYU9khT0\ne4W89MUStghoXcrk9NCM6bvRkzZ4Uc4C8ueLFfVHweW5BmOxBsvOLen/qQvI2hbsNLbf4YHGZQRS\nW2ig/xFq3OfHasc30YQo4OhTRssonjVsuEDfAEbxfKU52qqj78BcnT7SfljHWaoN88GBVTSlDvmV\n1mVcgZUFu9IS7YPDU5iAoMoejAmfOq4K+hkVcE9L7XouWMIcTjk8w3y0BUo8NxJc1XL5VN8CZg+6\nDrHhqJWg44FeUqo5tY2mToBTF4Y05q/U/rikz1fXtJ/E1H8yQSdjpLEMeG45aN1EsOJC3FMmnEdr\nsNWqINUOjJwSTouGc43BwFyugQgzxwPGMWUu1VzYyaazS5JoPIowS1crmOZcNlyBoLdhg804Y8Ce\n6NKPM9gdMaj/Ikbri3rMmXMNWOCJcTbLPX1OeLOF5dEe8mCVpHpOiXGmc9Bsq+jvfgUNIefieojx\nfZxVcaIp53TtCAZdzLks5B1n3lOdVujkQFQzB0ZbqgUTcN4t4JZZREskxI0uHqKV2FLfJGj9JTDG\nB7Q9D8PPYDWFKes3xqkLbZYpk2+O81cVTRnbQZ/jiYaK7uvndd+IZ1ppHbZ+T2ewAJen6zfFJu1G\nnCWGKRNSVwtxllyHqdf6lK7f6Ogs8M0/0v5+gm7nVlnn3+UNnVu3NzWnHVjE04OUsc1zKOT9ARfU\nGW55Gx7suTFMm6J+5gvoxqGTFPAutjyC+Q5jZ8t5b2eSCd/LN3Hbwr0vMuYF2jFtdA/jge7XcWEi\nLaC8djn7jXEiy6sdDrqtPd5NkwLngU+gz9V+6tr38huHFhwe2/pN0htYB0FL15ziYppwpljCEuqR\npRDBYPFhHdXK6LmhqRU3YRvxbpEjm6FwzvpjXQ9g+k1Yb/VbOkvs4nDbeqR6bPDuM3lFGSuruzqz\n7PHuOmOurXBhXcDYW1+i98az1yMjZwmRppy6K5EdkWpYlYdo2uTU/lIIAxHyWwjbKT/XWumh/Tiu\nauzcIvuskUnzHUrGlMlKVrKSlaxkJStZyUpWspKVrGQlK1l5H8r7ypQZY2nTBn3Z6ijkdHZfaFmF\nXOHhXUWeGjmigEWxJipE9v1TVPbHipTNyPkvFxUNvETC4TFONvsnQr2uk79d+Sg5YrAGnD8TklOY\nCC37RqhobLEnuHANt6eNuur7uCEtmRBxl71nQYtAio/WFLF30Y7wior0XRrAwjgmd3gTR4SFdFR8\notFLEP38sSKALtHvuKuIXZBXe9dBZK6Yvl8FPbRhaKOZmAhJWf9rEaEdgcjefyitmRj3n9v559Vn\nsAEasaKHUU0ocumx/v7aPfVtqwrj5FkhpQ10dE4HQgy6M3IzU4n9C5bcnPxlmB0Lktc3UJ2PiGZW\nyAd2iN7mO6BnuAElqNgXm4q2rqagTXwvRKumACJpONGEKH2ojq2kAAAgAElEQVTXyCNvrqNVAzvB\ng31RTlXTQULyBJu7sdo/GAkxnp+jmt/X7+1tzXVDbyPBeqBCjn8B9K+6iRZOGXjpTHOxVdf3SqBd\n3kL1NlgHnq/fz8ZEhT20cYx8eBDUUlsIwqbBlghgBZAzXAd1m5+jtQN6lTKBxueCdiZo1uRgS+Rc\n9FbQKFrC1JmfCFGxidZCAcRkMS/Q3ovHiyfkWY/PhKw+80HVvb6pa49eVZ0nOe0Hw8ugWGW+ByKQ\nu6u+PFsKlTmrq80bZa1fK+I6gS7HZE+fTxHQBYjgEkbKDCbbAg2AImj5rMz+NtJ9oj3N0WpOY7/K\naY2uebrvAO2paqQ16kzVzklPCEEdJHBW1n61AbtpdE/t70YwO55hH03Uxyc1jfmlrtZEDeTAWag/\nHoy0Z7jkXQ+G7K/kCJexhFgWUyRAY/gIJ60bl9UPg4bQrcol3Xc3Sd0wdD+3hSYLefUj1lZppva3\nNrQmyztCXsbfRh+FPeGi5ZlnxWzcm6mfHLQnYtzrkkDz4QAWWjLX7166ti5rP91qi3W3qqg+IXn7\n4xTRdtSv80faW9t5XFIe6znx7ft/amZmN6san73nhBpuxg1r3/gBdcVc++zmJzVnO2ijxOzb44nm\nyAJUuRKiVQJjLemBPqVrYwCyWVWf5TfSHHZd14PRUmvzDCOn30HXaDDk+UBe9mobUZdICFx5iI4G\nDMkY1LuMfkRquuc9p7m2jvtdvOxRj1S8S9c9mOvZViPPu5pHPwhEeAXDps++sYOzw9mO+rrwNghu\nU2v2omVe1Jg9DMWI+QpnAt+0tucz/RznUnaV2reKNA5dWA7lRvo84bonnAFyOMWg71HxtZZyILAO\nTj4Oe8oUvZUl7XRxwgnQkPB4vi1XT9G3oOaYE2ucxwnufktYBCtYBCvVowybdhjALEXDYOfSbV0f\nN8LpA43zxjWNR60FA6emn/VUN8anv6j3YHpqkEit29ZnAzSsxrBtSimTBEZMMNUY9EcwLDZgJV3T\nHK8sdcHFMu17XHJ4xttK163SJyE/Y9w4DT0JD20RL7w4K9PMzEUjpogLR45zaBhorbgeayx1CIM5\nU4TVZOzXCa4/6c8SCK4VcBXijOP7MGv4vzvhDIKez5T9pgL7IkWEPeZKDEt2vtJ9yrCBE571ZVhb\nMftUgmaCgyNlDr09JGYsYa7mUjerMGVHwAiHXWCwtZyUkQTTJ+F5mzD30udRtGSu4yBZQavLL/A7\nbijTHCw6WB8JEHcVTYe5B7MzPYstnz4n8mFsTgFkn+mQRyckQrvHwTkuGOoDkYemDIygixQX+Hwd\nx9eHuAMtcFXa4mwSo085XamOSaoRNeEcyzMiRBcjj3tqHoYMX7cQXbIS+3uJ7Tksp7od+n91gRYi\nGpHTMs43aHPlEs29cS5lcMAGg0nZQgcv5HPhQn22tgOrALu4s/v6/FqXNQ+ba/iK3r1Shk2nqedY\nsqXr5XmOFaq4UcHgPmcu3Xv9a2Zm9pU//qfqvwfaP/c+93kzM6tv6n5TWGfzc9UrghnfR/tmmVp8\n8W6YMkljdJNmj/T5x2j7eLDDcjCIIhzQhivtVQMYTld2YfVetBTUT+OAvYvNsggjqlLBHavPuPP8\nKMPGjdBDmUz1HA1qmjdV2jNnD7AdXffH/oO/pd87+v4f/6//x5OqrAp5W82W9hjNwnWe8S46oCWc\nqVZlnsmwiWbv4OSUOhFOcH2DYebi2FgpMhcH6vsWr4LHqeYL+2RnR5+/c0fnrC7ueCcjnZ8MxnqD\nd7f4oTQLI87XBfax/FA3cGD61VOdNdZAjnc+ZJyszHlygstUwnk0fW9fLdJ9m/0Ml9PyCOdHFx1O\nMnqKu8xhHG5HZ5p7Pnqd36lc6M3H93370R/9Ufvt3/5tOzo6sp/5mZ+xL3zhC/bzP//zFoa6we/8\nzu/YT/zET9hP/uRP2m/91m9d5LJZyUpWspKVrGQlK1nJSlaykpWsZCUr/8qWCzFlfvM3f9Oa5Pf+\n2q/9mn3hC1+wz372s/YP/+E/tC9+8Yv2uc99zn7jN37DvvjFL1qhULDPf/7z9pnPfMZardZ3ve70\nROjLvfGrZmZ2ZVs5/oVQKOFDQvMFNFwmoEOXFjgkTMjPTHPZuoro5SoKFJ09EpJcq6LOjoq7d0mf\nC8i3W/YUweoRuX/2E0LBYrtqZmbJ6yhsr4FkF4Q8vzFUlNS9L02IN78hf/TAEYvhxpquM7umvrsK\nMuuDrk0CNBVC8h5xi3FMkb34SNHkXk2slPpYyP212+TVn6heDx6T/3+GcvpM7fkg7T0d7VvuNfXl\ngpz0QgfU39c956dCnysjjdnpZd2zfaa+b5K//cxt6VwM1gnRp04CZ4rIhkR6H5DXXK3o+wtg5FlN\nUdCLFh8UvkCUtQEiFxOprrtCAh0ggxzq7/5MfdUONUZTT/+vpIwRwJwBTgN1nAPOiaKWyS8u1HS9\nIlFcJANsBXI6SlDyX2ksG7gxtWGS7G5rrh2foBI/pz24Gu2BqAxRox+cP1B7QERIz7QWCEAOBNVw\n7aiikB7RDiOfO6EdA5grS4KnLownF7SpWFX0uwC6VSDvvFrW9zqwLxo58jTJSV1NifbCiBkPFB1P\nnTSSpaLHexvkry9hD4D053L6fx3xgiINdVL00bl4nn8F7YCDqfaRY9pWcMkzflZ93AaBK5V0b+91\n7Sehq7H1fXRymBvVY7X1bVCLHWDvyZ7WW+7rzBkYJkXU54OGmHS1PE45e2i/lGq0lYj6RIyM6be1\ntgpoSzXXVZ8hEf/OC+TeHmguOZGQT1LqbUm9ty6rPc2B5oQ701iuvajv1TytlSVIa5MIf581NEYf\nye1pP61so4PBUDRZ8zVYADlygTuwIkKc2p5pas2FMHpc2AOlJ+wn2FJo67jkt0fkT8+dVPsAhDvV\nqUBNf6/C3Jm+N6bM6WvKQz87BAWswdQBxeySh1/exjXrB18wM7PkCszLNRAR9rJFT/MjBCm6e5Si\ngFfNzKzQhFWGG8AUxHevq3pv4Gh26Ol5t4o8e/6jWm+P0ODaWFcdPHTTwkeaU4V7mhshKO9xrL/H\nJzDYQv3u3tU+XryENtg+Gl8wAnf3xPbpvfvAzMyWK5iQsKfW7vDsxT3OcLEo4yywONX9+yPqdarr\nzNbQg9jVnCZF3gqwzEpV9eXcZ+6Dbs9O9MFLqWsSeexTtFg8kEF/icvRVCylFXNt3dH9DnZglfnf\nHZX6y2ULR605TmI+jmBlHG52vg5btbfg/1pbS9gIjqO5vlyqXuej1JkMtyX0p3hsWIxDWxjx3AKR\nLsIqWHBmaLV15nDZ5wPYFm4Bdyaes2Zmrea69UdagwXYEzGOEqsKDM8VOliwFtL9PcFJrQVLdw1H\nuxqONqsDGDGwvpx1NBfQfvBAuBdoJDQaOYuHqusIvbDZEG09kEoH16T6OvpBkJwCWLbLGS56Ec8q\nGMq5SqqhovWEtIs5ruZeUtS+lupu5FJGJBuaE8DsSN4bmyqHJksMS3QJeu3ivufM9PcYNkC5xBnJ\nh00Aar/kuVX20G7huZVH/6/kwHorwE6D9RD2GUuXZ/tc7fXKPCc4GyzQXPASrY3WOrqBI56Pvv4f\noC9YQUshmqZaKpzp6L88c7tQhmUbpLokOGFytoxBsIuwI2LmaCWPYw7srgDthQXaLsUGexS6KEuP\n8zl6hku0H4x+XsH8CdB+cWPObGg2OIzPKn66BxS8vC1BzqM8a3WB/hZskQV7TRlNudRlsZKO0wXK\nDIZyqhE4OYbB0IXZvE4bm6DzuGz6MNw6K5z5arCIOINMK2gDhqD53K8NW8hnbrd3YSmcqS2Fpfbt\nGe5GCYI+T+Yqz9ZqRWsugIUUUw+jDwPGqBgxBmQfDM905mldhRULMxyykXW29PejvN4zTt7Vcya5\npj7NFdAcDNl/YKA/hq0wRzew12NOs7bX/qb2pw/++EfMzOwBDrgj2B61bY1x+FD9Foy1Zqpr6v8p\nDmzeOc5bu+qXVUM/xzhNXoKlOxly/66uf38Ea238mtrnvLf3m4RMgJT1G8HwL/G+E/BcK7Dvz9i3\ne7DKXFyw3Lw+392R/qmhvxR12ce31M4+TKfXHurs+fJ8+LQyNyu2HEYWTXXNEPZrxDNqCavKRb8n\nbKkPCw20W/xT6qi+m5KdUXmsude5LPbl6Ryn3rvq2/Wa9vW97WfMzMxvqE932poT5+9qLo1e1/mK\n7cKiSM+Lmc+5tYuWF86yESxRa2nfHaFrV0PrqsDiafBuNIUZX0r3C+ZuA0ZgMISpB4u41kJvb8az\nuCtmT72pfnn0WGvp/msPzMxs/03pBV65g9bOdyjfkynz7rvv2t27d+2Hf/iHzczsa1/7mn360582\nM7Mf+ZEfsa9+9av2rW99y1544QWr1+tWKpXspZdespdffvl7XTorWclKVrKSlaxkJStZyUpWspKV\nrGTlX9nyPZkyv/zLv2y/9Eu/ZF/60pfMzGyxWFgRJfBut2tnZ2fW6/Ws0+k8+U6n07Gzs+/tslME\ntU/IIW4sQM920txfoUPdqyhwg67PKuSw3lM0dYlOxlU0WeYHiojdnSq66i8Ujbx1DdRuoOutiFov\nQA5WbyvKuUzVp9H/WHr63HZNkbu9zyjqGIRXzczsa3+o6GyVIOX8IfonuEM1yXFeDIWq5Uf6fXNH\nEccZCE/3QPcNQefCDUXc1mANeEXU+1M2A2ja1gCtioLat5XKokx14fagY0ct1bGF00EBhf08jjU7\n1+T1XoFx4pQVvSw2YYjAPKkQoT+6pyhgLVYdS1BPNivqo1Mi87kSeb8bqkuj9N6Qy8IEVlSsviuD\njpVC1Ojz5O2BYpRhrLggDgvUycu4Y8SgQbNY9UtzWM/Ia6zjIpKrqb6p61LOJ5JdIOd3mOZ/k7e9\nrjnoR+rXNx9o/uevqD+6OZ+PCzGJmbPehsa8CaK6qOrzcQetiCtorIS4I40V/UVKxlZ5zaFkSP4n\neZ5n5CRHILoO9UxgpBQ75KZGIDLkSRZbrAHm6PCQnNqqxp/0cnMbIA1oWmyUYV2kblcNfT6G3RaR\nz19a4ciAOv/jN8Qqu/uGWGYNULv2R6WzcZGySnP87+te546i/2s/op8NIvBelTEAjQ+ukCd9Qo78\nXsoooS8vi7Vwh1z10xluRugqFUAORqixJxMctEpYJ6AFk4A8LplTGyCa80u4G6GzM1iqL4IY94q8\n6mMDoffP3hJScHCuvjvtqa/857UvrCErUd1RPSYztSM5kNvQCKeAOSr4SYReEHN7FmguODB66riD\nXEb5v9gmJ3imOeqjN1KFRbdgL6iTH32CPkZrgvYD/Xfmgf7jGDSNYGHlYBXgIBaidzQYoG3jyaWv\neUl71fLSe3NNCcYgLmgGlAOtnT2RUezaC0Ld6re1Z+RpzxFuVuf3Ufmfqx+Gfa3x4SOtyRVaBdfR\nCIpxHiux54RoEu09rzVfvaP7O2+jYVBuWr2jsS6dwNL6mvbtZ2BbToZiDQQ8NKbocNgo1cXQWK0V\nNbcWS+3Tbl1zyXX0+xjdpKvkpruePj8cCMkcbMMy8NT2CqyGCLC4D1rVbKhNHn2SHGmt9GDEBH10\nQ2ALtNAJOq+pHi32n7GrC9/Y0D6y3hLrKoiY1HO1Oz9Wnz860ZlhEeln5EvLbN7FnYS87nzhvbGp\nfLQQYtgFs1fRNfln6ufwPhoIsMp299R/wxmILqxXB5AuD4suhmnik8Aeo4U2CrUmSmWYio7aG8Dc\nNNgGOdxJRqwJj++HXV03TJlMZrYo560A26KGS1Y8QtMB7a8QjaHN29qj8ntoN9C/B6F0jzZxYGte\n15xd2+X5vq/+eYj73nCieTLNp7og+nyuVrUQvZ0oh4ZfQ/vLinPMYqo5FD7SNXYvo6n1ASGPPrn4\nC1/rN1yqc5NA+1MePbcSzA0/1f0Zoi3CM95wIfLW9D33nHPf0667UMlXecY+hIWGxkKqJeMW1L4h\n+nY5X88JD82S5QTdIJxa2HafnKtzILURuh3FVEMFZkkeVsMc9lPRU/9MU5aWz54wVT/kcLEbwAZw\n0Mlzq+qPBGQ71UpwOCN46A45OH3l0DgLYZpU0fmAZGVFhz0KNtsMtkURVl4Z3cEm7lVVnMFi3Flq\n6eZSha1QgvGU6igF7EmwxAKccmKcdJZsgQ7aEfGCv1efOuIMnYrVnNRpFAYTTPp6ornuwkbx5+ji\noX055Hl6kbIeqM/GaGp5sfb6OozBEW6hmzON5fFQ6y7VrArXxSzxOTc6aIXVYEaOJ7j+cJ5frvNM\nh8W1xA0p8LS/+Oj9OOgvhbAfAhxuVjhXRTGM83Nc82AVr5Za5yPYrOsw5OKexmgc6D7ruzA72rpO\nEQb4kIPjtToain3YB+N0f+TMBZNvzL65CnTfYl317DKXow/p+fDcR1/S72jpPHhbz69qV3O7PVI9\nDlnrHufOgDWbugLm0bnyV7wSwzzsD/QcXuM6S+Zgrq05c+WyPndvofbPT7QnXLhEPF9wM81NcQyD\nhZKrsCbo70qs+08GPOdSU8UN/f/Rmdjib35b5+nOBzTvLj33ovrh90WWOIVu0m5ff1KVZLln8fKB\nFdGyGvc0l8qkB/i8MyxYVzkYag6ZKbbk3TH9+1jn2UPeTda2eY9F5+ddtBdtHc2rpVyPC7BbZzfV\n90XeYTxISEVotxHMyzo6qEuoLyH6nCUXzVnmWp59JMkz19jfVrjGNcjMGfKO6+AcPC3DmKOffFw/\ni5yLFybmSxcG9xHvRN860Fw87utncafC52ABf4eSS5Lv7Af4pS99yQ4PD+3nfu7n7Nd//ddtd3fX\nfuVXfsW++tWvmpnZw4cP7Rd+4Rfsp3/6p+2VV16xX/zFXzQzs1/91V+1nZ0d+6mf+qnvevOTk55t\nbq59189kJStZyUpWspKVrGQlK1nJSlaykpWs/P+1/Ps/+/ft1//7/+r/83/flSnz5S9/2R49emRf\n/vKX7fj42IrFolUqFfN930qlkp2cnNjGxoZtbGxYr9d78r3T01P70Ic+9D0r9tv/5H+xf/ff+Xn7\nT/6z/8LMzJpdRYv331CErANy3S4IJYqXQsPiof5/0lRUtT5SBGpQVGRuo65Az/kUdI3cswLOOd4j\nIl07iupWUZsfvoVmQFndcmVLUeAwp4jc9duKOjY+KRQoQRvhzXtf1udeEWr34E/UvmpH9Y9RVM9v\nKqfOPVU9I9T4iyRRz8kvbDcVOay5Qk3PVA0L8W8PiVzeIFc7DPWBfBrfWlf0c7OmPM/R8J6N0T8Y\noL8TOMq5j8ZqSy3BG76iPluZwpIpWl7OCUWorylqee8tjZUDM2QbptRDFKqbVSL15NY2F4oE+zBa\n/vN/8J/aRcq/97f/rpmZJTXqgTq6N4Md0QW1AYHIgfZUfbUrMFA1tAsGuBrNYCNUPRyvJqjWuyCd\nabp0Ee2GuaKltSpoUTlFcPW95mW5lpRAqyawH9Yq6p8ezJoQFsfrX5e7x0vPCf2PU5eOoq7budK1\nn/3Jn7X/9n/4NX2P2KkbahzP39Z6W8Bkuv2cWB39Nx5xf42P54CAoImzBdLqp2hUrPpWyVUtkTub\nHIPYMDebuHakqGS/r371UblfoSVUBzbzymr3SSgUb3Ks6HEV9sjiVFHqR3+gXNxz0NK95zTvdj+l\nOfyL/+Xfse9V/t5/9BtmZnb2DTFJ7Kbulc7Z8vepbreaGsM+Ef/lUHXs9FFlP1IfJbCqwiXodwE0\nGzQlxJFsuULbxE1z39WntYnW4xJ7h2Rdc6wLc65Gzmuy1HVOH6ivS7CJ8gWtwRFoT+NUY3t6rDEd\nvKH/HwWaS9G/rn3mpedxpXtOc3H+ij6/GGoMEpDmPQf0y9NYODldpzYk1x7HgzinMR7t6veKo3Z2\nz9F2WNPaGBxpzroFWHGgg1EZFsRj7YtzdItGMFaKoPmVTZwSFuqfPrpQ2yAaY5f+2/shMzPz7+3b\nf/z3/o793b//q2Zm9t/81/+hXaT8g//pH6ldMIHKOB94OFF00K8K+HkAC+DwgcapwBwd8f0GDgc+\n2hFVT/POR++qOCfPv4RbFS4eq+fV75/6kJ4Hg8e6Tv+tnnmXNYZjNKi+9Y+1T3zoY0IGh480Vu2h\n5tgE7agWLjh5NLBWeZ6l+5orz21pPyxupk4xGttySfRO/57YX9O+nAzuw1pobeu6t/5f9t40xrbs\nuu9b555z53mqeXqv+k39Xje7yW6yxUGiqIlh7EiJAEOOHcSIEiCwQECWDGuA5IgUY8mGDEuBYCD5\nohgIBCiGE9mSHA22EskkxbHn7tdvrno137rzPJ98+P9utwFJZDWQ5AXwWV+q7nDO2Xvttdfed63/\n/q9nlGkjmWxz/NpxHRTQgeaIv6jqQUZvwaHSgmtrOpXurqzTngyVxeAicUEbRchSz6ha5O/rObWB\nbKXz+p6ZmZ1Rkez63xKnQBFepZOK2h8CBfczPy0/+u3kJ37lvzYzs6OQsnaxPOg6uLCyLnPnVHuB\nSxtC9NUW3GrYapiKMt4QfRsZ0DFIGM7Bj3D8C06XBHsaKB+sB/cYNEs2qWpOOYw3j7N5TP38lc//\njP3Cr/6azeDJmIEs9cj+NeAimoMwyq+rf+sf03hMVvfMzOzVzp+YmVkSnpfikfYi6Tuyz6cSQqud\nnYOcBW1y3sXfU25rMPMsDmIuTRWKCI3OeGQi59Jdd6gxS5KBTIP4i2JDtqhQBRKiN6ciCQgLighZ\nt8ra1AVd4MlfeXGqxYEaig3hfKH65+f+wU/bReQf/8pvmJnZDOREva05GaYa1ITSNzGQHCO4ZKb4\nlRBcWdMFzxD8czH4fOZUPIySmx0P4JqJkvGl4k1rRL9BPUThq5vHF/5Y36ueg0QHKbT8nOZyFoRM\ntXqEPtijQKYQDi34NXT/VovM+Qy0ANxkC16kWZsKcKwDBl9KnDnrghZbhptruuAC4vMhaAgPv58A\nWZqkHQMy1BVQFS5cEC6IGx++vSnoiw62v0TF0Z/5mR+zH/+pf2yhKZWGEuiN/mXSVDml6tMC9dDG\nlqPwOv3SL33Ovp385j/VyYKvfUm6PT+SH7/+glC743X44rLyh3fuiJcyuqe2r39olzZKl9Uz0J05\ntaH76C59Bo1Z0H1cV2O8sg5qmN8Ig7rWgRSoAEtrDNyQXi/DGTpFh48fU90zq73E3p549OKbev7G\nFT2vB0q0N9Aepsh9Z6yJBpJw/472Zg4oq5XEtq6julCOKkihDLwdVBDz4P2sg7YKhRb8P/K/+aKQ\nNwdvCgH48JH6ef05rQduW3q+93++ZmZmGbhistd0XfNM6168pPvtXNP4dM60j249kt53rmg8mvAU\ndWqaU8mcXh+19XotpHX5H/3KL9tF5Of/toAMVX7DFkrwP1FZbZpnDvgLHkKt6118R7xHda/Rvu7z\ntsbpvC+HfP2mKk4Wt+S/R5fUTy+jv31+g/7a9/6I/cRv/rrN6w2bgR7qUolvHIWDMa3f35bXs1Og\ns2L8NjmrCIUTrcd4X9+r1dkfg5LPwskSncn/79K2/Ir2/jN+s02pKjw+1Vrcu619o8uJEQupj0tP\naVMCMNk6+KERaFaWUBvAoRWJ44/SIPm4cAKf5WLtHLH/D4OEr8Ot1YNHL7W+o88LVHWlQu/ZCdWY\n6WduC9tag2OrPbDSC3rvL5JvGZT51V/91Xf/XyBlXnnlFfuDP/gD+8Ef/EH7wz/8Q/vEJz5hH/jA\nB+znfu7nrN1um+u69vLLL7+LmgkkkEACCSSQQAIJJJBAAgkkkEACCeTPy4WqL/378tnPftZ+6qd+\nyn7rt37L1tbW7Id+6IcsHA7bT/7kT9qP/uiPmuM49mM/9mOWTqe/7b0oNGApDmBPQ4peLpcV9UxR\nDSnhKzI1XPCLeFQx4Vx0v6mMZm+iiFf3ir5/eVsZ5ibM2yEi/cNVXRcZqQHHR3A4gBaITxS5e6ep\niNf0aM/MzO7s6fObHUX4pkQvU1NFw3tk/XOmyGICCopkCW6IJKiMXSFYOhUieQNFZfshXXByBit/\nXO3KTOGiAXWwxnntE87rhw5eMTOz4keVSS6BWijscPvXo9bkzHmU7ELWUTbkFHb1dlsR5qMHing/\nldUz0isw/XPG8WpWGbLkhnTjRzgLSaZv6CvC3uLsfL6kKOJ0X2M6dd8fp0w3DKKFjGKHc9bvHv0k\nUnwOe/kSzNpTsvU+0dghEeHhHK6jmmwpXVBk+qzBOUOycKER5xM5X5nIwM5OdiW1pEjnDBuak81z\nOLN79Jr0012THqPXQNK4iupmUqCy6lRLIqvnZHg/In358FZMPfoFC39kAy4fslvWJhMbAiXSh30/\nR6QdEppYXNHnPvwdszrn+slku23Z4Ixz315N9tFJwuI/hvuAjEqzSYbchVGcrFOPSguDx3pOz9f7\nYVAGUyo2eE8p8/offVAZipRoBGxcuPhB/6inbEb0pnTbC8mGXc5jT95QGx4tSTexvIxnmUze8RmV\nvajuMPTlh1JEyCNp+pbUffMTNdLvi+tkCAJmBbSYTybvBDRXFPSV6+k+iRVF/KsHmoP5VbLpDaqy\neVQy6Op7tbj8SxybO+7D43Bb7Zk+0Bi3bkoPu/EXzMyskhcHSp9MhdeR7k/ScO4cqJ2pHO3clE3N\n6soQ1FfUnjJs/F4UPg2TbZ6ThVpqylaarvTcBi3n2iIrT5WqPnOM+84isOR3yF5ldH2a7FM/RnYs\nLhtZWdX33/iG/qbhOriojEH6ZOuk1EGwTBLSS2Ug3zWBlyUKZ9CVy8rqTag4EW0uxpMKZXAweGtq\nZ/9czwlToc1/Sqiv0pr0108rA9uZ6L7uVOPcfdi0+pHGenVZ82EF5FwChMV5X7Y7z6gPveniPDdo\nTJAy3lRtWwYRd45f2gD5FumAmJvo7PkpnFo5KhWU+urjuKW+3L+vTGMU3qTxlrJmbdCbDx+qmsMA\nLoMYPCIlUEHpLJURj5WZrC74GcZqd3pfYzqhMkuoBp4ZmOoAACAASURBVLKmrX7fiMr2C2N4HnLw\nqEVBeFS0h/B2hPzxhqAwZu+PU6ZQFnppJafMaLogfey/Q4VDX/7TycKTRGWxrCu9Nk4X6yW8VR3p\nZ8AeJsq59amj6xKsS6M2SBuHbFpIeoS6y1yyjlXQFt5Q3w+F4JYYvLeuDgYTmy6gNZybj4Ngyt+i\nwhHr5tGhMvSpsPqVvUW20HT/77VPSB8me/xff08IgEINHilQYfEw2c6ixslJy39Pmr5N4BeawG80\npaKWM2ONi6mN5W0QEQmQ0SntSbyy9hAbVLXrwmkQvc+aTgWUOvMxTCbXIfOaXJRzYt82YN84wE9P\nQNFeVJJUB5mmQSfAEeCDAOxONWcMm7A5+zTGcLCwcfxXGLRpH4RihOpJIfj5jtCTw9qbpRpTlf2w\n9UHOgOT8+HWRZM2wlRzcCrElzcHlLJlvqiJND+ErOte6Uptojva7ul/mssZ2UYF1wR1m6K9egROt\npdfZ5QL9kA3NqW5YhvSlui8f51fVjxFVlmJUnGzG9bqtrxnbfUtk1tGL7teFVynchB9wgTjPaDzT\njmy6BnrZzOz0vG8ROI0KoN4ceFnG+N406JEM1Uvjy7LL3PK3rpry70vL2AOAtpxQaTCxqn2gS5/P\na5RQpJLhiP2xAwrMjyz42oTEWE/K1g6HrKVjocASfG9IBao5a/Wiak8DRKWf1hhmQTfM4BqsxTSG\nK1TWmcNHOYzr8yS/F4anVGbclQ3UQEVNGdvGaFHJTP54JyKE56Qs3b2xrz3ToKP9cXZH7TyHbyl5\nDBlXmsq6Ia0fmQjIEWyqBNq5dlf6G43Vrmde2EVP+v6re3rOhKpU0UtwcLE+Dtk3b+2yLx/qey3Q\nzDEQnP3eAiWm190RczKh8dwwrUOh9vtbbzw4MJO++h8H1TFsqn+JqPb/Dr7EyVGpKM8eKwzPan2B\nsBIyxoWvtftA+/NOXXuOAnudeYS5GnlvbkSiaQtNOzaD62rOnn08qdNWjmx0FtXS9Dq9iu3VtJ+Z\ns0+2Y9ni429oXp3eFlrqxi2hS8tF6fSA/dMcPiWPffgcDsgxyBWP53hVfqPwG6KJP/fgnJ2xJ0qC\n1p+AtvL5DexQJS4G+mrSgVursECIz7ke7kBMesqpkSb3dx31b5bW/s6BY6u4rnXKhzcvmuB0Q182\nnZh86982Fw7KfPazn333/9/4jd/4c59/+tOftk9/+tMXvV0ggQQSSCCBBBJIIIEEEkgggQQSyH/Q\n8r6RMv9PSuiETHBFzXiRc37Da4o6Nu5+w8zMTvYVbfY4aO3Gb5qZWaysSNlRHYZpAvjTmKKtR8cK\nceUJBnY4M+bEqfYxV5Qyn9T3B5cVaesuzpASgc9dUsSse67Xac7G7r+mc9end/bMzOyPf1v3WTdF\n3G58XJHEfTI3G2i7H1lkKZXBWFqHS+JAUeBoQe83F0QjnCuNtdS+CmzwE6qc9DqgJI51pu+d8wfc\nT3ocTHu2XJeu2ksw2J+r74m83l9kB5ZvSZejgaKeYyLUawk9a0Bmr0dk+/xtVXZJrFJJhgpYaTha\nRiBx0imqPSXfX3Y71pYO5kQ7bai/8yhcLWSHwkZEm+hkPL6ImnL+mMytD4t9CH4HF7hWZqysnJ8j\ng0kG0oOjZsy5Zm+i92ddRVP7tC8Fd8tkSFiVygjNx2rPlS30kIYNnrPEtTc1VpOevmcRKhTsKgJf\n65O9J7oajhDlhQrcgSV+xDnpBOPSgK8kPGBOLc7jw3UTAwnkwicy44ajml4b2bAu/UiBUGr21c6S\nt8i0wCUz0XPP7oAS4Gxx6zbZSV9zZ+NTOuubKCjzUzsjop/U5yc+159h+xcQryhdLsYqPoCNPUaV\npI4yptVzZU0KEGO0XD2jAALFm2geTltUqArLxpwTnd8+K8m2xwskzlxZHK+myH2jDhcNlb8iVO7q\n+FQfqe+ZmVllSRm/LJVWQstkaqkiFR5QEYcKaQWy3qf4r2dSan/qaY3Vm49kGw9fBSmzIZvaAxmT\nIILvLjHWDxYVb2Qb5aGyWHOy+mNHY5zZV7vaMY2JUxVaYA5MrbCv+9RCoKCo8LCMrVTy8n+ZrPoR\n2pUfn04X1TOkl0iOig2UQWmn4eyi4lia+0w4pz4GbdAmm39RGe2r/adUUBv1NJ6DKv6ec9oRzo2H\n0soQJ+Hwmrb1fpjifD1QDakR/WuTQcHXZZfhKqIwYZeKhKMHcDLA69U9UybJbYdtMtAY9CpwL7mL\nbJXuMUtq/kY4S5+CG+usv2dmZhtdIVjCIF16/mJOcPafqh3rN7j/Gcg8E8pzDK/D0Bb8FPp+HjRB\nryUbpYaGRZeVmcu9pOfeH6mPYTLFCaNq37Lus7Giahkk38yZLNZCquqBkBne1Rn5MyrGpLPyzyFQ\nCfOkxn6NudsdMpZUSovDXzRblEG6oEymjJnLnAOB89Y78lcRUAuXOAffhxcjz54ikqIKyhCkD8il\nWUv97A9ARs5AGMIN48Bn4eEDcmn4Oqi24pKVzEYWVVJoMLxM75bFMrP4fGIzqvy1z2WjNaqhlMiw\nji9Rae6S0F2pj2nOntttMzN7zL1qprn/IROCqPzSjtr9NXj7WnrO6FRIqaaryeEWqda0mTNnpDYu\nql0ssrgJMqDJS5ov65+QvzoPaaxrEc2LkK/W1Osag/mh/FW/R5UQKt004O0Zw/G14FSxjPYyWba7\ncTKuRvU3132vOs9FxKWCSxzOgGJe93NA9Dw4pnINVdecLKgzqi7Npuq3S5WkIUihFBwvoSXZxAju\nmEEXHo20bKBLlaYmY7xZ1FhugtSMwol4fFdzEcpEO/265vjBV79qZmZhEI1bOztmZnZ5S2N6ff2W\nmZndPpW/PoHHqg5ishzDd1AxzC3Ac0K1pT7ogQn75UtUeinvqP3Jkfq7VZRNNhimKhlsw993syBt\n2Cenonw/veCv032rVHDrMwcWPCuNFIiaFmQTZjZ1rtvQ0ThlI7L5YV+cFfUD2U1uSfprwjkWBsVw\n3ru4nZydq017nsZg63khRmLPCL3/4JtfNDOzyAn7aWwh2oXrBU6qJJUgG6BKPZAwEZBqHjxDs6r6\nOmb/PZ5QydUTWnZGRSyfqm5z0EghkH9eQzodrOJ3WLNiVI7sghypU/ksxKmGjLNnZmaTGTYLkruy\nJ3+QxxbS1+RnroFu6rR0OiCETeWW8Z8xbGfMWLLE9xqa+1n2ZCdTteNxVb5hd1sI/h24bs7e0vd7\nr6l96Zz2NIWQvnfakf8dmWyqx+mCRZVBl7U8zR5sCmdqHN6+yhsal6289FMsq91GBc2LyjzOb74Z\nVfJG/BaMUiUPfYUorZkH5d3jd81R7W2ugx+PgXOpRDdgD5qPy+b7darUUuF3wa9n32e2FjLrlOM2\nrPHbJyr/Ox8vfrPJZmb8ROiClIsm4R3jd263iR+vyj9tuEKO7O5Kl5d35Y/DCfg+F6cY4NCKUDUu\nBCdjjrW+2+HETBG0KryXTl/tSoLyDcFd1sfvLNyKS1WnAUCV2DxD+0FMjmXDcX4rValMFoYbNjGH\nrzQm25r2NSbzU7hrs/o8k4GTK88pkQFoZ9pjs2+NlAl9y08DCSSQQAIJJJBAAgkkkEACCSSQQAL5\nf0WeKFLGA63QfbRnZmZvkE3rVBUB644VZV7eUWju9FgR+rWU3h+6L5qZWfl50BCgHuYTRXHdiCJx\n4xTcCyBYpllFPX0yKc22oodLNUWxiy5RSs7x3byhCjm3d5SBvv7XxdngfENohOG/VeY73FGUtPNY\n7dxKqwJVraxI3iipSNzDQ53PX00pUtc4VNS2N1DEsT9VZO3KpjIX0yh8AqBCHFN7N5c4T7ikKO3K\nVbUzXVLUdX1Xz3/7tT3LLCq3kHUKRdSWDpUDolFFQ3tkvtpE2N2q3p+CRvAnVFEKwRUCD8+ISL4L\nw/Ygq6z00lTXH02k8xTnqS8qec68DohizskU8segfTCHCPcc9NA40qKdyizkM4pajo/IuFJ1KQFr\nuUPFgSTZlR4ZWWfM96jQUKB60AKVEeMM6YgKMy2iyqdf1PnJIYiSJAideZHsGcibaAp4F8FTD3b4\nJNWmFrQZs4LaFSdFGvfUnziVAiK+xreN7bicewyRcR2P4UHi3L1D5ts7JiPBef+Jp/aEZ3q9QaWe\nJtmspSVlYPpwO0wONc79HDxKfV3vgV7rPlYpsvsglbZy+jtyODe/qrmZJvPcoQKH37449xBJclvu\nSUeNFLpGt/MuFVE4P1t7sOA2kK630OUEXqJZT/P/dMFtQJWQCJmy/kivDc6ZyYhQPOfGQ1QPipJd\nmnOe+3So9jkV3TcSR5cF+JdAIWViMoZaQoMf8uUHtsu6rpHTGVZ/X+1YS8vWDqji8+WvaQ7f3ATx\ncQUumPTinDJouGM4Wu4KUTR9W88vlvXXWdH1Bbhu2hDGF8ZqX3+F8+6+9LJZk74HT2X4np53DGpr\ncZ59Cv9UakN+r8/Z3EXFmlRPz2tG1e8ifBf796kIxnh63feHusutKMO+flX6q1PlY+/ul3VfuG1m\ncELMHNn2cYsqWrDvR6tUn4KTpkpFsklV+p83te7Uydy0+1RC46x0NCtFlhNUbzqG02c2tOEjeDWW\npZs1skXRA2Wtcu4C4ab5kU9IV4170k0zKx0ukDLREQi+CJxc+N/wNfnL6LMas8Mj2ZYHaqDryS9O\nTpmnGV3/CB28SvW19A21c0CfhuvqyxoZ0mUqVC1Nd8zMzJmqnb1T0J5UHsuRAT58hO7INEdB4PWn\nVOMIqz+7H5RNN9kLxDivPT3THKzAWRNJvz8bGcFZcPRQmcRIWPf1XDLXVIQIUd2vMlLGd06FCj88\n5XPpMQwqwAXBGI9zpp91JQ06y6GCTJjndBZcZVQKGqX1Og6P3YAqJn2qPnUWB9/N7GDvyJx1+Exo\n/xAE4gnjfPfOn5mZWbmg9h58Xb6kva/M65DE7++Ev6TvwyM1eIXs5VDImcKysqApKlDUzxa+jooV\nraH1QbZlTDYSAWFW72gtjo71+rX7/4eZmbV2Xzczs+/Y0j4uwTa10oB7kLFp9JVxjcc1r0MF6WJS\nUp9qMa0DHrwRaS3dNj4EXUt2Om3vb09SbcovLHjpMmT5RyB/ekPtnUJR0MiOdDsC4RLuy4ZmVC2K\ns24NIrpPoQeP0Vxj3fTxm3HpY4b/tbD8UPmaUBihsfzsK1/Vmjs5Vzueh88uNFO7/fsaywhVTDdz\nek6HrHxkU/q5ek16LZT1/JMH8KCgzxGIlJlHddNV8Tm1xyBLjjVOu9tqd74Ob9RX4J+CG+KdO7+v\n9n0K3qmUUHcR9rVeaME3pT1ktAkCHN67MiiyeqfL97DBlt7vxd/jzTiIrtqkJn136poL6cfydbvw\no6w+rXG4VqY613Xt7wfvY705iUnHyW3ZxOb3SjdzkA77t7Vf3IU7ZXQCN9QGaKkia06ENRtbbS3W\nmIT61qQilbMEvyVr+2C0QIPCvYVfjxpIOfiC4uw3J6BBY0npfA5aYBST7tugwrpUL6129TsivqT7\nDztaC2NUuOycykbuPBI6a5djAllsavS21pFqTTbiVEApJNWOBP2ed+FFymL7bJf9Q62HWzfkA268\nJJ6Szol8RPuxql2l4BuNbOu5Hvq3PfmGFdaTLoht/5b0embq51X8Z3siX7WTpaLiCFTekWxytqKG\nJTY1zhcWKm6mqIq6QAHPohrnckk251OR7rSivdqgsmdmZrWW1s/khvQQon3+SM4uDOorOtbc6MAx\nNDjRXO5tRd9tSr1Rs/BkbJbgNwrVOMcj/HRNOpyxZsSH6vPkoXSwOPkxxSYTBdlSCfS/21RbvBlt\naMlmlkHVOwkQK/jN7ILjEUT5LCGdR/CPrbDmdQ5/OOjBSwTqNNTUGC9+axj79kVV0TF7hOlY/sTj\nN58tcfphDqIeJM7DM+nh3huy/cyq/G9+hfWFSmeJIvs50LJLZWwOSh6bfGs/EiBlAgkkkEACCSSQ\nQAIJJJBAAgkkkECegDxRpMyI89+JnM75zY8VEasN3zQzs+sf0Pm9XFlnXJNzReQOzhWNzZTJGPQU\nGRsCn5gQZdyAk6VCpYMoHAZ1MtYkAMxLg6xpKmoYnSki+KCpdqzC7vxgqgzOjUN97x6Z6eki2u0r\n0j89U1Syvq12HnIO/2PXFM301pXR6HImdrRP9mug6G+DcPA9GLVTsO27ST2nQPWQVkuRu8OK2rny\nnCJ73zjS59c5w3uYfmSdqrIC4TNF0k/DilJ6cyEUHswVgQ1VFeEvl0GoZKSkQgqEyJLieOmpshn1\nCkiUMkiaFBWwyMrnS3peVENn1cVh9QvKCE6b5YiitlP4KzyybRGyIDMPdnRMYuiTBSHTWgCF1eip\nvddg1j/vECGncoJfVL/m8AZFC3peNqSxbR/C4fCyqpZMQTdEfNjiQV1VHykrtR1VJvHS31R2/gx2\n+tQSWbIYrPhk2zLrnOEtk3HNyzaXOF8+gSPCHinTMosv+DikhxTnqh8QhXbWZUNnFdncek/jcemS\n7jvYl21nmnDPtPT63pki8BMyru8cMRcuqwpHL030uqDrXvyez+i631W/O6cLpI6eF8toYDZf0v0O\nKyBxNmVnW59S1Hn4hvrThlvjIpIFzVWDryjsKxI+iel1G5b3mBGhXpaOxq9Ip/fWZJSbSfVllepL\nQ6o2zNLKxo8HoAyyuq7jap45juZriWpLIaoGNVLq+zJohUZCWZQElat8UF2tsbLtrQTnmSPKIMZB\n6oUc2OxBehQ4MzvOUfGgp+8192STg6hsY/WKskcZeEhcnyx9We07xlZidSH80j1lDBwqL4Sqej3L\nyCckyDzHOIdtM82V3KrmlrNChqCu+x9x3j23DooCZGDI0/gcDOSvJlk9P3cmH9MecYaXKisNznXv\n3afSWoVKB7H3l1MI9ThvXpG+nQXVwAjkTl96q8MbxVFmS8fRdx/uLqrl7VOFKXaiLy4NdJ/sDenF\nS8HuP9L4LcHhMyTDs6j0096Tfc33oxaC9yZyLt0kL8OFRVUOt805bqrAeevS6dqKKq40Rsx7ssiR\niGx72IO/qKIs9b1N2eDSdbXlIKO+e1Q06HHw+m10tebouskc1NUVbP6j36/7fJfQoxnDtl7eMzOz\n6u+LryE6kw4q57pP72vK4lf2QPYM1e4luE6eu6L+O6BE4/A/9bZBzpSpUgQPR9iTv0zxN9qVnx/D\nG3dRSSVla5dmPL8IfxJogClIxAQcYs6xECKxGBnHd/ne1J+hBwoDv+8lFtwLGtc+qLoI+vaKem5s\ncR0ojjjrqwP3xOgUuwjLTxYvvVftsrSRsQHZzh7rYQgUxjKI195YVUrCZEr9hOZ4PCM7+ijVlB6Z\nkDN2oDlcuqP3p6A9+jX1s8s5+QZVpDqsq51s0noTKm2Bms06rLkp9eXyTY357XX1vbir/eCq6f3X\nTaierbxsbGWgKpNv/XP5jVBU140Sakv2aSEbtoqaI6E9jWnyHRREBZVelUwqvHoXlQXa6dyXDa+A\nQi1cpeLZpUVVNa25X/qdf2dmZglTvwYZraExb8F9xj4Ym5qSvR9RHc/C8A65C54h1uw19lZF2dY7\nXxNPyaWX1J9bG/o8/rK4q54Dkejcxwe8qb/XPqCx+6OqUAXvpLVO+TvfaWZm47j0GL0l/qj4Hfg4\nqP55MgWNRUWhpi8/3hrJz9/MC8Hd+xMhoWJfEhfjEjwZy6u6bve/0rj+yUAoh8RlKs1ReW76CIcM\nL0qHij9J1pko/B5nVaqsghbxSosUtZk/i1ifdeXpsvZks4aQ6yPT39M7us8797Tfnz7QHF+//v12\nUSmCUp1TMaz8Sf2WOfyqxuLBsYzx0ovq85Gj9y9vy5YLHxPK4PY39D0/KV2XQVQMocraO5CNLX3k\nJTMzC6W0Np5TSTCOribwX8RA7M1AHx1Wuf7yjpmZsURaDfTUmGpEpyG4zhyqScXlP9wM99lS+5bZ\nJy94gR7f1vvdlK6//Lx06W/KptfZmzV8rQ+xOVU7x9hUTq+zVM45qsj2Z7vYzhXtiepjKWT/VP7K\nh//EK2ld2/yg9D85lw0dnAsdtbn7UX0PZFKEueiGdX2iIL96mwpyO2q+ZdblU+7c0/MK2+xFNqXH\ni4rDXrK+r/GazzSXE1c1h3qefFTrRHN1j98p4770NpnJf7tN+YrakcbTTcoHDllfJvAxjc+lp25O\n7U2k+u+25Sw3NBuODACvjfjN5HaorsSpioivtfCkr7Yk+S2wdFknTaL4gz6I4XgftG1YY5hx4E+D\nnKYHAt1LYaNwXY17+J2sbMmFQ3Aekc48xqrD2hkfUskwrXUgnMG/9rW2TbJURKxoTB0QmsOS2hem\n+t2UirZVTnccHMiGFpUUDVsJs+/NbMKliF+ew/XlTaTjcfOUduh1bPyt15sAKRNIIIEEEkgggQQS\nSCCBBBJIIIEE8gTkiSJllrOKVD+zoQhbqayI2OnvKjtXuqXonlvhL/wdW8vKODYeK6bUg09kNazX\nLSr+9MmcxzkDe07JiDjn+MaHikbGhrq+ToYiO4c/ZL5g7VfELneq9uULihJvNxSVPugouznqK5rp\nX1GU+8oL+l6trkhZxSOrZOpHlvN945QyE7tEDk+JcsaGyqgMppzZfaysZ3hb3/e43yoojfWrak+7\nt2dmZimyoelIzCJn6lsqosjrtK+Qb3uiSOsKUcTZ+o6ZmTlRRfsKfP9BTxnPnYEi4TkybiOimxOy\n+osqR+6J7lfJK7JuDUV2wyBLLioZoq7TpNrhgkIIewt2en0vNNQYOWQgm6CYyjc4b85Zy3hL90mv\ny+ZOv6EMRY+I8s2nlY07gLK78y5zP1WTXv03ZmZW/X1FUW98pzIhz/3gd5uZ2fJANhJ5Q8955mPi\n9Xlq61kzM/tmVYgTd6rPz7p6bmld0dtxBPRUU9HZFFWSUg7kOQeyzSrZoDLnngswn9+9C2P6TDZY\n3lV2y4E/Y5kMxq2SKpg9omjH8f+l696of9PMzHxs/oUXftDMzE5gyV//iDI7j4mSD4tqf+GjOtde\n/+L/rutbVF/ZgpG9Lz6m1PPKkNyEROer/1p2Nq4pK3X7a79rZmbFsXzDRWS+rnvNTzWPmyHpcMo8\nz5Lpc5vyC1neb5BE7+8rK3KIbVZX1SbnXLqKw7cUjeo5fp5KYFTTCCfIjvdlI928rg/39PdhakfP\nh8OlUpFuup7mxozzwt5UaDUHZMyMDEMjgw0eyM8kzoUq8mdkqQ41NmfwjxRcqsh19frApQIEZ3b9\nmNp7Lams3JiKa7V9jdUUVMMM9ETUAQG4OLMPaiM84pwzSMA0VfQWlWv6cF+5XXxFXP7xEJ6Sfko2\nFHmsz4/CyqzMqfgw7jEnGmr3+evqZ/FdDiDSVheUal0+7P6fSu/ZBX/SCojHDfnP5itkkk+0Dt36\nHlUMysGbER1Jb1F4VpJ1ta8PysTz1X6nytymEpDDHLrzpa+ZmdnTf13+feWqFqbe44Yd/BkIRk88\nQYmZkAndJY11dOHf4HfYzHOuuaSx6FHlJxZacF3JFkJkVE/3ld2P9dS3zav/qdq4JTRqIU5FGFAL\n42+qrbeufdLMzLZ25M+qS+rT+Gn1IdxXlur+W1rrnN/XfL/7e8p6Z12tWa3mK2ZmtsPa/+EPw6vU\nA1m3QhbpKSrWzDSnFtwthTCVxE5liwPm0iFcVEsdrblTqlKl4YO6qLgj6dWlwljkEL4NzqfPqMo3\noHLXeER7QLN65Lkch7+47dCYyjtU5EllGU8PLgm4ZKag6JJwKjhFEKEgn1pwiiVzVALjXH9xo/Ru\nH/KprPmgBSNULGuQRczmpI+lnL6/yXpfn8M5R9WUjGlc/f9N45l7Q+PlNeU0uwfwa1Gtbx5SR9NZ\nfR5blf7WlorWPYdfh6ps/aHGrMdaPKjDowNvxTX7tNpm8gu/05ENptinReHMOntLf5e2yZ4fwoWQ\n0RxJduDhuKdM6ailvk/g+5mDFBwMLl7pz8zMwd/vw5cRAoGYAbn40o8ItRDBFn7zN+XXoYewtVVl\n7fuOvt/paazCkA44oL8ac+k+wxj5IELq8ANtfUBz1C1qDFoh+YzP/Bf/mZmZ5UzrxWu/8i/MzOz5\nS/LzX/pF/Bv9+ZGrur77gub24WdAb5h8x//wP2pNfvqG5lZoC569pNalFLwfY/aMOTgcVp/X3P7w\nM1o//uhzv2dmZjeo/FK8Lj24eT1/6ZOsj19Wu3c+JSRhqKHxenus/e/KVHu08JFs1snAFQHBoAuM\npDfQuN/YfA8tF000bAWOtCtr2ht+5XUhZLombrG/9jc+YWZmw5La9+++rD2bXxjaRWUtqd8WPjwY\noeM9MzPbe02oLw8esjkVHftUxdx4XsiN/E31/fSf/pGZma2npcNxRvfdc4WKOqdCVOLj/62ZmTXg\nyXnzm/KzN9d03fBl/OmWdBEp6bqDN4QYKSfV19hHODVwJtsuxDQ3739VNhMLg9BOw9XyotBf7uug\n/bvqR3wXlNa5vtc71XOaVebKuvoxieu6ZXiI4vxt835mojlMUTwrJ2VTSx/UejL14bvrgZBhLs2p\nXhS7qetv/dXvMDOzN/61qst1/5X0lHoJv/uc9FRNah/cyYAwAqXR2xc6zEtqb7T6Ke0FXn1DnFt7\nD6XXldh7iMULCdyP9aH0u3RFthyDf6/v6Ln7DSFpymtUhNyR/rqn8gX34cg55nTI8jbVXqm61ItL\nLzP4rarn6mfe3kNtDENjm0ajNobPrMj8duEdMlD0/QegdePaq1y//jEzM/P5nVo7le1Q+Mmii1MA\n+LsYfHch0DtNOGZivr43oKJgijWvO4RvBw6uaB++OR8eNXiTouxvrc16w14m4mmeD+FD8s/gbGyA\nKoYba7QEgjNNpVv2saub+JeP6Xf5dZDqBq9eZyxba8BHt8TvjXiJ3wFzzYUca2TNvjVfZoCUCSSQ\nQAIJJJBAAgkkkEACCSSQQAJ5AvJEkTKnbWrNAQzpiwAAIABJREFUDxSzH87EgRChypBX1dn8QV9R\nwiH8JWvP6vMBlVxKROiSLme8OFc+P4XNmbrmIyLuZc5V1uCiibcVaasR2XOIXjbgnqkR0ZsRxW1S\nwcA91v0GFWV833qg17G2ImfHN3XDLGiOnTnZrI4ice2m7jMle3Z8TEQQRvL8DbUr3dH7p7Dxb1cV\n4XtwrGhnf7Kn557qfjEYt/tz3TdSrVgTVE4+oghrtEYVD1M0r1mVjkp1RZInWc4FxqXLZEgR1+Xr\nVF4hYzcZqK1tUEuXr2rMzguKdp7fU9Yj1QCd5L93vvciMoMnyIE3I8eZ/3Cew6/wSrhk5aen9L2r\nzGkIJn8f5v8OFW1aE/Wr0iVzuSbkiJ8UOmoyVJZq0FU/C5znrh7oPlNep7Y5W1tQ+17+orIuhyM9\nv1SRfo7+WHrenyhrtn1LSJYUJpGkmsbiLH7DpSJDQzbdpsJPhAo/uYz0sLyl9rbI+g2z+nttU5F/\nL6bnHH3z3+r67afot2zp7iPZ0Dv1b5iZ2R2ya1ft4+rXDSGBnCkosJzs4GSgLNUE/qJ7h8qEnHf/\nmfoD10WVzPydx39gZmaP3/yQ7pOUDZ++rezU6w1lBLrHyoYtrSpTexEJ12QDG/BMPKjK1mdnVMNY\nks0m8opgh11lGMvM0wqVY2Jj6aLZkz+Jp9WWPpwjS1SwqVaplkTFsUYFZvszMo5xWOapcDY6km4P\naviLPhkIwEBZKqeMNmUzRThHnGX1Ixfh/HBNttuIkz135Zcuwb3VX5d/XIHzoHuorE7oVLo+AT3R\nL1PJxaholtKYruxqLAcPZXsP4V4YdOXf3BKZhEUVqqrG3H9N3391rn7ntsh8dtWuR+fKnDy6r34m\nG+rnALSEu0LlH1AdqRj+mWpZo7psKetp7sSf0ngUn3p/Wal+iyom52+YmVmbc+qrUbUjWpBvnDfk\nA8PMqcax+h83Kp6ROUnDT9WmMlAoQQWLiuZss6U5s+A6O7ktPbz8mp5/61mtaytLum/IPBuTRW6Y\nMpIrnHNu3FMb5msau9apbKhHtZ9WSLaRI7PZoFKIn9aze6brHtWFDKy8xtp5T4jBuq+2p57GtqLK\nSKajGgM3p89bEd3n9p9RserfvGxmZgNPun30x+pbmTVr78/0vJQp23wGSvTK35TfjK6pvc1DIWF8\n2p/d2EQ3mpvHewt+DTKjI+nJj4PmmsHBlQHN1SET+/4oZWxMFY7pVHNmRvWm2Jhqg2P1a8a6YB5r\nLA+aTeQjImQFF9cv9jTDEHxNIdBmc42vgy+JhkFvgJyJkAxcIH/GvsYtHIN3BGRqt/9e9aV+p2Xh\njO6fyFLZgspyw5Hm2uiu7GlQotrKkOzhfc3NB7+h9rzy20KXuavw8g31nKgLepB25nPqf5M035js\nYeTR2HxQQ1FgQz3mf4RqZ4031JbXjmQ77l19P3v1I7ruS1qbD8jQPvrK19XnI/Vp2dkxM7MYfjGt\nJtvoMVUvX5et1NlnRUFAjhnD+Oz9VV9qwz3VnFEprKf5/vqXhPaM3VS7tkEgApS2TBpE5S4VCg3e\nupDGsLCs9jSp6mRklK9dZk6fo9Mpc2hTf8dD+fnTkfYebfs+MzM7fiA0xTufl5/ee0pj9y/pxz/n\n7/1X1cA/9HSf9tvybztP/zUzM3NBRU/h/TBX7c/BCWPY+ORQ62X9XO16aleoi6NTccj8uunvizx3\ntq/nfhkg6CpcE+dwQg5NGe7BSPoeg3g30MERuBzjVDcJuQtEqfxuES6w1RztNrP1UNOq8A3GJqDP\nTHujI3zkO1W1K07/Hh3pudFbM7uoNB9oH9UKcY3HM+GXeGZZOnxqFW6SD2v+XHpRnE5dfqMcNtT2\n7HUhZ2IR+D368HGAvvLhRep2tC+b9WVrBUqOVeEH8TMg2kBMHB1rTV0ayk+vF4XySrylsSsMtL/s\ngA5uwZW43NbY5FPiC0rmtdYnjepB8Of15X5srwrPxume2jnS+lKgutGY/XQXpLjxWw63aD4oCS8G\nJ01D7XlwovulkupvnMo7tS3d9/o6FWkvq723H/2x9NGTXrd3ZNvFK9LvaCa/GS3Bp1eYoC+1P7Si\nDj27pPt//Rnpt8P6sD59j6PlIjKD+yaf1nhEl9kLuGrf/gl7LGw9sqJ9fYS91rwjvWxe0pw468ou\n6ie6foANr8YWXEL6/nlKej6nepSZWafdtdVZ2Cbsu3xQ+h1QubVjeMfglYuugmKCf3PQ3DMzsyHf\nW17Tj5s0fJ9T+GzmVD12p3DDUDUpxGLnetJpnwq6Dn67CAJ5DMos2ocfzdV9mx04wqL8VvRBhsc1\nx0Y1rTvf3Fc7fTgAI8zBIhV4FzqKsZ/rO7pveWmVdssm2oe6TwYYV3GNtdzRGEADarOW9HGGMfcr\n3zrsEiBlAgkkkEACCSSQQAIJJJBAAgkkkECegDxRpEx5pFBSLqEIUmioiNpleCfiRKzmmzrLNed1\nJaKo4iCsyNd8rIhdY7RnZmYJIltTUBnhJnXVF9WYfKKxad2vn1fkLw479NzR8zdvULlnru+tXFOW\nf1hVdik9UpTxZl68HWs/ouza2akiY+ENqo+U4CJYnIGLKapcTCui5oTUrmkdLoLLipVNEoo0TuFD\nyUGLPRgqPL55WWeA43AVxDhvecN0Xf227teuZC0D30GmCQID5EW7SFWckT4/pVpFCiTMgqskTmS9\n1tHna+hwZay+TVMgawrS/VoX5mkTUiVVFjqhFhUi4qKSznPmk6hmj4oNTgc0FAiYSIHzxKvq81Je\nEf5QAp6IiWwlnNXYjTOyjY1PCRGSyII4ISszeqiszziyOFe5Y2ZmV79P/Uh8BF6hD+tvm4zIMKJ2\nfccP61z2yjMa60aa7A/cNymy/DMqB1XCisoO9uBWiMKBk4G/wpW+l2GDjwK/mlGZZgjfRwiOidIl\nzZn2jPFjjkXiur5XkM0sf0RZyBwZ6Y9TzSm6SzT8GoicGlwCA+lxdSxbH3Am2mtzJvaqosmbcBRt\nfERnjssf/C/NzCw9VwYm0tb9dzbVzxvL6mfW199UQhl8s//Zvp14ZKvPySKvUuWjG6XqEUi4BFmM\nybL6sJxVWxMg4TIm3cyppjNzdP2ADGyTDGUkLB2Pe5r/ZbJPTp6qblTRaJ2T3S5TueyqbC7lKcLf\nwR+Fispu5YeaK/0k57bL6scqfiGySdWhiGzOx0YGp7LVGFwt/lhzzKHaUYJ+5Rz5pek+7PYR6SOZ\nIONLtRMrkF2hCtU8LhRDgwxpGlRArqz+N6nkcCukdg6WlHWakuVrO+r/zlS+ZnJDc6LkS48D0F+2\nofbPxmrHWlfIpaHpOflbGsdyRtmqUVRZpItKBjTbre+WH3fI9sdjar8zVzvTz4pToEmFg7DUbQlQ\nHrG65lTfU38TXaqhFDR+8YQ+74TUziUq0kWK8j0/8AwcYs+C5qjLZ3rPpe0jbfmjJKispQ3doweC\nI7WssXGPNP/mRaogdTiDT1Y7HNf3MiAJnVXN8+ef15ieUbVnqai2pLHtFhm2DGtsuaT2lFyNVR8U\nUL4hv5+Iy2/4U+k2vaV5e21dY/gs89rF3+7sy1a3b0gX4dxijdZzOxnNnUQSxKAj24zC49HvcZ49\nDMoKroV0DBSWpzHoJpWRHnfeHzLTpcpfKrrIFmrsfKr95eBQm7kgL6nU5S8y1mTDpj5n9ckCWhQ/\nOdA4zagqZY7mhDPV94dtfc8FPTHHxmZT9TvNls2ZaA7nqMwT897byqVjKRtxHj461/1zc/ozZ53M\nSf+bVLYZ9XfUPubEJTjFQmu6/zZV9Jqgy2ZUwEglZH/xUIb3Wb/o98SiNsCPxqj+k4azL0kpk2JR\nz/xERFwyyT8DPfWO2nzlvqoARUDvDnY587+l64orVKyiomIsIj8ZnZA1hhfCoaqlw3qRo8pIaDEW\nF5RSesfMzL7rMz9sZmaFZSpTHQndGYejYHKkufXx56WTPkjp+EjzvQ9K2R2wV+pozjtD+elCSu1M\n9+XP+6CUivhF/776FYvLNr5743vMzGzFxDtxFIML65ruN7yu1z/0N4So+dBj8T3F/5b4SPwjoSWa\nb0iflYrm3tafqL/xA7VnYPI9aVDGpTJZ/KhsshvV+5fK+psAufkjO/IlN3fkW9Z/QL7ie1dl8/kV\nfX6jBI9gBfTVN+Fvqi+Qruy1GnDbMHw+aImViHxCaix9JsbvIWWuXTEr5/R+YUlz7K/86H+j69vi\nJVl5QetTiApoH/yI+PKKy9ftohKaaax38avpkfZj0atUJ2XPPgIZ9/yKnhnGj0/fEcL46m8LqbzJ\nPB/46vvTL35Yf0dq48pANjDXUNuEPccshN/IYfvsZ8MgMp65LjRaqbFjZmbuW5qj6yfy58mybPOZ\nZ7Qm+uu6LmNqr/eYNXmsPVW/re+XQQ9EthkLqseVqFLXhWPLS8hmEn34PLHlSQs/EmP9AymYmGgs\nx/y+iNdBUVC1zwedbK782xK/O/qH0vPuOv7zBz4pvWzz+wTEin8k29iEJ2pIxcXkujYBsQrcYqD/\nnrsiPpUCCKaI/x5Hy0XEYVzSOVBfSfYOvnzYaoIqe3GNZ3bEqQ70l4iA4oI7zRnAwzfR+6Muf+Eu\nW4KDZ5KSXrrn73F8Zs+mNo44tp6iyuZQ95wWNQar7AlCvnScyOu170tng4r2rbllOFCzcLWAGg2x\nhjdYO5epRBiaqw3jpj4fZfV6GtLnSX6btjw9x5/BLZMAUTiiqhJckpMuPKdF+eXEHMQ8z7t0TWOe\nSWj/b5uaqx6VEzsxqjlNFoSl8rMrIPFiU7hkEvKzPn7aodpSkva0sCnjt1scDMyQ36R/mQRImUAC\nCSSQQAIJJJBAAgkkkEACCSSQJyCO73NQ60k83HHM931znPd3pjeQQP5DkGBuBBLIXyzB3AgkkD8v\nwbwIJJC/WIK5EUggf7EEc+P/e/nLQi8BUiaQQAIJJJBAAgkkkEACCSSQQAIJ5AlIEJQJJJBAAgkk\nkEACCSSQQAIJJJBAAnkCEgRlAgkkkEACCSSQQAIJJJBAAgkkkECegARBmUACCSSQQAIJJJBAAgkk\nkEACCSSQJyBBUCaQQAIJJJBAAgkkkEACCSSQQAIJ5AlIEJQJJJBAAgkkkEACCSSQQAIJJJBAAnkC\nEgRlAgkkkEACCSSQQAIJJJBAAgkkkECegARBmUACCSSQQAIJJJBAAgkkkEACCSSQJyDek3z4P/rZ\nv2NmZv/wF75gZmaT9NDMzNLdkZmZNacrZmYWcmtmZjYzV9/rzvW9QtbMzLyI3rdp1MzMxvGx/jpV\nfX6uz30/ZWZm+XDSzMzajp4383WdP6+YmVmps2RmZq34qd4fhs3MLBrTY/oZXd8bTs3MLB5pm5lZ\nZJQxM7NwsmlmZqOWY2ZmnXxen7cnZmaWjeq5rbnUnxrRvqn6HY34ZmZ2llU/EzM9bzoYSB+DiJmZ\nxWJ6PYyrX9lB18zM5l01dBbV+5341KKmtoR9PcNx1YZuLa17hfTMTrFjZmbFvvpcj6uNpZba7ob0\n7K6rZ/QSM7VhptdeS313lxTvK4513Xikz10nYWZmf+8XNPbfTj7/hb9nZmatsJ6TjcTVXl+vN69e\nMzOz9vxM7Vm0+67aPa3sm5mZ712STpp1tSehz6/eko4OHzXMzGzQPTEzs5XCqpmZ9SclNaQrfR10\npfOtnGxznpXtxHvSW2eADc91v2hG92+vSx/5UF/tjOt786H03sP2bKTxCa+ovb/2L/6ZmZlNTlpm\nZna0p/ZF59joWDbSrsnWb3z8hpmZhWLSw5/+7h+bmVmxv2ZmZh96cVP38fT9Yiqn60PY6uG5+h1e\nNzOzwqb6N23JtqLoL5TVdf5Eejds98qHbpmZ2WnjsZmZze5pbhy/eUf3W76q+2ygv2hRf8PSl1U1\nF1ZX9dwf+/EftW8nP/HzP6l7NGR7iZjangvrHqkV6ahyojFaTart/Zj6Ymeat4OQPl+7Jl31HLVl\n2tH1h998W31Yl21kk/r+vYfSzbVd9f3x0YG+l5eNjfsa+0ld7ZsmC7o+L9uwjMZqJSp/Ut2XLpZK\nsvXHb8qGw1evmJlZpN4zM7N2XM9PlTQHxu1DtfPonpmZlW4+ZWZmXk1jMI1r7mamZTMze7Svdsem\n8q+pKztq51S22O/p+6mo9BTtqD9H2OjWJd1nEJO/3TD169Ge7udM1U43rTmU35Serav3u13N4fBM\ncyC/sa3+3rlrZmbxLfl3B734A9no9IHmwC/+yufNzOzn/+7ft4vIF/77X1S/hmrvcKJxieP7ZiH5\npkJYPrE5ln76lWMzMyvevIQ+5MvOb0vP86yuL69oTk72df/eueygNdPrk6ru89Ef/gEzM2s80utZ\nRP2y1sSO7h+ZmdmVpzWPD7uaj6OhdHX1meu6pqi29l6Xru+98qaZmaWX9P61Sx8wM7PTw7d064Fs\n6oVbspXTuvxPJqe1Ze+1PfVhQ2tVak1je3hH709OdX14S3OnvPa07nv0jj4faq44Jc1ndy6/v/n0\nLtfr9fnD+2ZmVmnKxqZp6XKtpDm7d+/r6i86fm5Xc63e1hx08M+FbfmxeVL9bTP3tyO6z/Gx1u7l\ny/Izf+fnfsEuIv/gc7+s9jaY+wWNbZTX7ZjGLI/NTiOy0Vxcc6I7wZaqmpuNjNq3XNBcjyxJr7OR\nfNP5vuZsWlPN4telv9p9tX9Ukd5nc82tybFeZ5PyGcs3d8zMbDDpv9uHz3/h71u5pOc4c821SVXt\nq92Tvw5lNZdzMis7bGg8nvmrf0XtTGm8/vQrb5iZ2W5c92sdyB4nY/Uz8xGNb2F9w8zM9u69ZmZm\nblNzZxRZtuM7eq+4rb6VWIu9keaHG2K/UpMS2l2tdf6q5mHhqmyg1ngkHc1lg962+jQ/DtNH9TVC\n2+bscXoVPSeTlm1Ei3pex5NfmUzll37p8xfzIz//uX9oZmZHFd1/84aun3c0l8ae5ntGzbRYVGP3\n+Ex+2I3KlkuGn/CxpZF0O3DUTq8vv9Cayies5qS/fl+Dtr2rMTl/rH4cVzS2OyuyyUZfa3yWvVLS\ndN96Wnoy/GmH9sZb0n8Hf5gY6XMf2866andtrvt1zrhPXv129cdmFdnO0GSrsQTrSE7jlDxR+x62\nta4llrZ0obH/7ao/5bz6G0GP05b0105oLvkj2XwSXxibsgdlbkbH8u+VbMsW8rP/3S9bbkN2dXSu\n78V92WoyrTnRGKkjBfrfHMvukjE15HM/+zP27eTXv/C/mJlZv6qxO9jT2JZ3ZPvzIfsjV2t816Tb\nSFR+JhNRm9N8HhqobXvsG7NT6Tg91tzosc89aqrPmV3pLpGSHzpuqC/lpnQ1WlOf4yO9DsXkj9y0\n+h4aa4xH/JaKxfQ65Dm0X+1y+rpPlT1SYjThc70+T6sfxanmQCul61c8xtbRmNYY88KM31Ce2tV6\npP5GEuqXs6a/44L0NHRl805b93Xwo2nTdbG0vh+Zag/SS6t9nZ6+v1bSBdOpbKJR0z410dHc6kWl\nvwFz1mup35mM7udNZROOo/EczqTHn/35H7eLyE//bdmS01F7skvaQ8w8PffgWHuv9Kr0kkvq/s2Z\n+uGk2SMt9F7TeE1Yh0L48VBX96+O5RNylxm/UPvdtnzhn/xdS5XL1n8gWz1oyW9eWtNeYtyTTm9/\nU2t+uqA2Zba1L511da9oednMzEY8MzHTGEzn0mGL/eZ6QTqPZPR+g/2gm1CfZh3ZxNyVnzk/lC3t\n7Op5/kz+4vRNraFLq7que/pQfe7ot1oDW1jalQ0OpvIfKdbQ44bas5zVXBq6IXSmzxtz7S38nnS2\nvML6k1D/x2M9p3kivSVDam/xqR19fq4x7Mf1fmyg/v5lEiBlAgkkkEACCSSQQAIJJJBAAgkkkECe\ngDxRpMyYxGnYiKz7REFTimj5ZKc8IthlMpsjUBpjsnHhviJd4ZgidGEic0tjReI6GUXQol1Fddsz\nRfBDCWUF001F3CITRW+rUX3uRRUpm0YVtW2CaiiMiOilQa6QxQoTrR2FdZ0f0/v5np6bnivSdj6K\n8zlR58w5CiHTQpR5qQ7qI6bXxYGit/2cMgQTh8zxjIyuo+tnJfVngbqI90fWK+ke8Yoiw/OCdJgo\npumjMmXhqjKQA1NGMEl2ZESEvAN6J9mSjqNjjU0iRHa8yKMbavtRUmMUz6jNbuO9jN5FJB2XDYyJ\npIdN0dIa2bS8v0AR6fvFNdlApKGx2j9WVHMaU4Q4TIbydKrXGy0hN3JLaucJSJvIlPutqn+HJ4pA\nv/HbXzEzs/u+sk7f+dJ/bGZms3WNTSKvqKpFyLYP9NrxFdHvYDvzkBq8lJItGFn58yFZsYTGIZxV\nlHXSkQ0fYxNLu7p/7UzjeHSo++eTivZultT/x3d1/eM9RfJzEdmyFwWxs6n7TG49Y2Zm/bnmRFPB\nZfMO9fl8rvEfzjT+a3HptUo2zO9LYU6eTE+IOXCm9/fHsrvZHORNTRmBEyL7hSvKlg33v2ZmZuUV\noU4uIgsk2ayD7l1Fzs8nGrvavvpcq6utxStkyl4W0sFS0m0spLbHHdpyprHye7L15lD3tYegetLK\nDt9//YtmZrb+rBxaJL7IXpC1Yn4eHWtsSxvKgkxm0lF3LlvId5XV7410/1RPqIbKicbu45eUZXvo\nK4vebGl+X/2g7rP/LzUnmu8oa1a+TsYhqvt79zUWsbLeX0VfB2TLw2TbV0rYoq85EqpqTk2Suv9o\noutqj6XX2bZsbbCm1/G2bLH+ujIDt65qroRSsoHzujKPXkv+ceqRtRvqunVQW/XDI/ohp3LvpE+/\n5ZsSFSbpBcVJY5NkqOdxnnOicSpMpPcuc8fpM0fmmgxrrD/JnOxnP6L7FB29Xk0qe3aSEppjUJH+\ntsjCHfWkvyvLytR86TaKd6WX+nHFzmqarx/ali4nd9TGg/uyvURJ83N35TkzM6uO9f69V4UuWtuQ\nrp5+7sNmZnb+ssbq+I5s/WMv3VTbHslG8p5s7vVvyK89m3hB99mUbQ/aavPDO0KJ3Vr7fvUZFNfe\nPRAdLfXpqS35nxR+Jbeheb7XIJOL7RwfqN3XnpdtbFyR/3x9T7p2OlpP0p6yYpWjb5qZWT8knd+8\n/EG1bwSK7a5sylmRLzh44xUzMwtHX7T3I/We/GkmSSZxAsosLVuIVTXH+w7ZtKH6M5/Ltgw0w2ys\ndtpDjecMFGupKH1PEvr+GJREi6xfZqL7p5b1vn+g5/gz6WNC9q+XUftS+FWf9cPMzGlObfslEEYd\n2bQzkH3UB1rnt+e6zjW19+6ZvjfPyiZToC2yGbUrkZLfPntbrwdTtT9HBry0rXE8O5S+9uqvmplZ\ncdgw70g6im1ojLeW5WdfuSv/kAlpzLyR/OIMtMDTRekiSmZySJY/XdL3/Sz+FoTM+Vj+YvpIfYiw\nJiXn0k1kV6ixsLsjnYR031RuaO9LotJdtaXnpRwhKy/dkM4fvi3bnpCRLYGYbpEJLuW0LnXG0pk/\n0ZjWaujpuub4cIFmG8mvJAqaS+OJ9otHj9Svu1XZfuWR+nv9BaHs0qxbj16RDcZLskmXzZLjkpWP\n6rntKP1jT9cpqd35GQimqb4XZo80LzHH+5qDsQgImoi+X2vr/hmmQr9A5rmrN87qat/KttoTq+h5\nD9nruRm971bUnjmIpnla3+vHpN/EUPrvpmXDrbZsPJku82B+aJhZI560UF/6DIek30SOz1Os/+d6\n7gLJbg3ZW6NzZheVKfP06BX19XwsG10FmnbKs3Km7xXDmu/tieZ1dknzstEH2c5+Kl7T6wJz5Lwt\nGzy7I/9a68g2Lm1+UvdrysbT59LJ4Zn2EuNztStxqjnl39RY5XYYW09jHWV/3W2rXYWErhtVNeYu\nCB8vKV31Qfl7y9JtqK29Q6uruR02+bGH7C3KzKWIJz9Sq+t16w7ohJM9fW9XcyVpMtJoU34mc1Nz\nLn5Z7WqEdf1krj1C9xQkY1LtBKhj8xS/oQayoXkWI51Ir9EMSMk4/v4hezbG68HBAzMz+8TNj6u9\nQ+l5NmYduKD4i9MdU5BRMemxx/oxm/JbtCx7mKbVnhnrXgF42tHiJMMQZAwI1BEo3HlW7R82Nf4d\nX/33IqN329IrTqy4ObY5+8LJnuw9tqPPY65sJdLRvHV5dpK1ch9/Y/jV4YC1b6zPl/gt2G863Ffz\nsDaVrUzDIB/1NeuAgvVMfqYbl1+Y5mQrblW2NADVtcrv+fsPOCnD2lx8RjZYLOu69owxxhg8tvM9\nEJaRotrfYR/q95n/Fc21/j1Qppel4+01KahR0416/Pa8FNV1lbBs0QbYXFQ2+ZdJgJQJJJBAAgkk\nkEACCSSQQAIJJJBAAnkC8kSRMh5cKl6I84zdBdcKHAMxRcJ8uF+OhoqEZV19Xqf1kZkiadYA3bHg\nPSmDBiET2wI54zaJ7MPjMcuIy6BJkNPjnOQ8RvscRbkLviJojZmimtEp58z7nJnNgh7pKgLocl6y\nnwZtMtV9HVAGOaLRnYkiZ+4Y3pWwIn1tzugmJrQ/rn5PBvpenrNsCUfZtwrInSwJ5L6vSF80ETM7\nz9B2RUyzPfUpyjnmFjwZ4VXOCTeF1Ih2FB1s5EENHZFF4RxgzuUccFyfDyacZYc7xXWIyFfh35kR\nqr6gDFKKZHsT3b/jcSYUDpOzI70eFdT39VONQT8h5cXW1e/RQGMVWlfUdvpIUdzBVDbjJtT/fBw+\njRFj5aof1z7zndIDY/61f6Xzli+/+bKZmW12NYYru4ra9pelJz+m9sy7nNUtKbM8JvtUdck+kWlw\nOoyxr+fUmhAZRWUzk4z6U2mSXSwrmtxJSq+9fSLu3/URMzP7zv9cSJ63/qff1fNN4zvleQ9PlbFI\n+sruDTMav7lLP8JwETHnQi4Zmp7mphXV7wHog04fDgTOvHo7G9xXvAIhsoaRFfWrzDnVKDb/KCpf\nsNME9XIB2SRj50TgoHpKbYpUOY8MGqCQrV7kAAAgAElEQVQu8IDtpsgipDQW7aZ0keX7/YbacrD/\nupmZjbOKsHcfq02Rq9L9PCX0QDTHWVEyjY3onpmZ9SrKbozIyC38Rjis7ycdRfDbI71fBZ7l9HT/\nU1fZ7UpVtlaPaS52TtTu4jW4B3zNYbcoWy0/pf7dXFK/B0XZ8leG4vOwtPq35MrmO2NlREolIvlz\n6a/PWftsWrYRTgid8eISiD6y6t2+ri9nNA5lUBJvVeRr5h3NKRc0wLAPgmksfa7A3fPmubJ9WyHQ\nVfCpRMby+3Ff34/nQeh866O5f04mjEOrqHbHmctxsl/hlto1imvOlh30wHXRqN73crLhVEz9zHCu\nO76M7ztnLsFRU3xJmevsnyi71ub89wLb8MxNIbO6j/ZtbQs0Doi/lTZIu4j4gfrw9KRBJeWuyh9c\n+hDnrEFfLl3V2C9X9HdIljtS0loXKaiNsUuX1Tc4Rm7dFHJwfll9iZ7JhjOHQmld3tZ8TjPWE9PY\nlK4q05pdIruU1Prht6Xbs1O4U8L6fgZkzLXPfJ/amZOfz72qfnfhqnLToAuW1c8emcxkdOFX8TNT\nfa+Ykl6yrE8Zn7TbBWUlp+tC8GTMQGf0R9J7GI6E2RHIlTjcCV2tJ6tGlh+07wReq4N9rTOxsvSQ\nf0o2kStJT/UF0qfUQR+am5W0bGbyGFRACu4J9N9k7zSK5t/rxHRu4z5zb6R2FeDuinKev5/Q+8sr\n8iFb7MXGj9SOblTIyXJ8kZmV/0+T2e5N59yfjHRFNjxhz5SbwDmW8m28Jl1mQ3DcsV9yQEp4Gek0\nBpItXpINJK9j0zX4zFbI1jt69hnoz/23tM9KVOA0aLHGOdJBrqjnrV2Xzje+W9ntWVpj9PqXH9j7\nkegGa33oWf1lrMYx7fsm8z21H0TIdF3PX4HCLAJyrg/KNBuRv57AA5Qie34Op6ELeuoUbsTjPen8\n0lWhSQf7oBpAjoRYs72k5mp+Ez/XA5HTZk8FT8awrvdz7Fk8kCEh2j/0pE+PueclNCe2QFk39rQ+\nTXr41SXp5wYcZjMf5GdH/WqXtQ6ME9J/DsRODzTzGnuxXFnfv3sXjjSQlitJ+ahGRfepj7VulCK6\nT7qi/q3ASRTbhhfQzKzVsybogKwDzxWIyEhH/RoOQB3Av+G12EeAnriIFJelgzsr0m08rmckPqw+\nLc+k6wgozdFEz4wmNBcqXc2fCNwg532hL6+vCRU0gXfDTrWmrz0rbqdwnfm6BEp+CPoMpPs63FAO\nc+oYdELK03XJLLYJkqIR1+ss3FgtEHnxgvrhjeDlhNezwNpWO0UP7AVma6BOp/IrqccgfNhrZRzp\nKepn0J98QbO3Y2ZmK8+J1+ROTQjIGoi/5/ld0E3ACwp/iNuTfptd8Z+0z/X8pbzmjLcpvb7xSFxs\nJWxz5oIOe0rXL3dBdl/XOFVf0XObIJaOJ6wznN6IMZcvKnG40+YncH/x27UBn4qXgMMmK/13HTjL\nUvrbn8rmmyP57dyq7CZ5Wet8KqJ+pJPyGYf7sod+R3Yz4retmVnCfAvNauaP4CzN6m8U3soFb9wS\nnIh9eEr7cDC1+f1bWGa+LattEbhlYi34efoyjgGnBjwQMJEuawsIkxB7nS6/OUJwMEZj0slZFyRM\nQa9deEe7Pa0Lm8t6f+WW/MW0DGKxI3+VLcg/zgvsT9twk2HDSbhay8/peudEc+/0gdbQ+iFrXUk6\nXoKTpo6fHYAOG/AbJ5tVe6LZb/0bOEDKBBJIIIEEEkgggQQSSCCBBBJIIIE8AXmiSJlZG76PnKKv\n45GyRqkBZ8c4nzjlbK4RhfRhJi+G9b3ZTJG5eEnfC9f1vUpEkbbBOSzQVCsKr+l7FSLk/YoYt9Og\nPYaccc5yvi/bU0TsZM45Rk9ZqU5PkbpsWJGw84nas5rR67Ox2hWl+oZDNHkWUQStO1AUeWWs9h0v\nqjFRzanXVnR0TkYhHtf7cyKXPQceE9AVmciCY4bsIcibZsSxdElZ59hMEfYTR5He9Fj3CMEGn+sp\nwjrd0LMmVKyKc643UoRDpKmoZBOm+wgVA/wIfA/LijDPyboPW5zzTlz8XK6Z2ai/yCrBwcKBwx58\nHJm+2tkaqq9Dzqp2w9LR1KW6UFxjVU5iAz216z58H5djnI/kHHurosyE7yqqW5nJRta+S9VPPjzj\nPPY9pb/OR3rukAh3nIoH0RLn4tNqZwfETJQMRbIJ+3uCc+0NtbewJhtrcW5ylWx8Dt6Tlk/2qqN+\nF5apKARfR6ivbOP3fEwZzOg7ypi7TX2emCsemysoG9kY0084a0ZE7C0PH5IHFw4ZiERR7fepQDbO\nkLkmO9mOqX3LIGlinKE+C8sOS47++kS5k1Ei+lSq6M4ujpSp19W26RQkyKF0N7mt+T0LKxuSKQht\n8EZZbWuQWfXgXgqlFQnPxHX90gfER5EAWXN5G+TEgLOvVK2ok+nrF8kgwKtQukLWIyndXH7qQ3oe\n6LE62ahYWe3K9jjXDN9EJKUx3IFDwFuSjqpd6WyzzBn7pNrdKu2ZmVmlpva+zVnWrCmCv3RTc3RW\nxa+g+w1QGMc9XZ+kgs9qRiiK0IEyka20xjDs8FxQVmf39BznXP4uC9qu2mSuUZktvcUZ4HXpMQOX\nTmqJ6lcVtcd7WnpMf5XKZHDiuGRQqmSCqwYX1wVlXND15QKVHzinbw3pNUyVqmhP9w37ZFpdfV6H\nh2pek82TULERBEydkfoXm4BiY3nNl2Ufjgu64SFoNnilIviebmhkictUfRvqOy2y1R9//jvMzOzr\nt1UNp3nnttqS1bWpmxqrNvibZpIszmVlUOtU7Ds9I5MI10vxstADDjxI0zi2fCS/FstrLEIbyiaN\nQOSdnwjxUYSXZ2lFNlOtSilbCenqrZPFmXXN0WVsNgJPRgw00TtfVL+G9/EPJbVjTumVSEn9c6iy\nVL/H33PGBA4056oysdsD+enB+6QL6ZOxdpvwDoEAdBdIxpba65TlL7sUzfPm0vfRHXhSrsnfri84\n0Zrq1ykcX35E6+jOjuZGrUYVrLfVrw99Qnuhoiv9Vzytz9UJaDSHqi1UZMxm3st4eumkHcNnlICv\npEOG1S3pdYXKPrEpVQq3tU70jlm3tpibVOfr1dWPRkS+LAxSptWQXcUr6lcR/r1KWN9bbs4s47HH\nALnrg/yLsJa4OZDCoDHLW/JT0y4VISNUKqSyzFldunwXJduQzc94ZianNiwVQAF9TH/TzL9ph6pM\nVSEde733ZyTuvub/47viP9t7Ve38wItaL9JJECtd7XWKY+2pag0q2FAVNERFymlSRlRIa90Zd7SG\nelTaMiod5kLyCaEV+a9Pfkq27kX1fnyo9eTB6/LXdi6bGcEHl74EgrQBv0ZevqZ5StUqKsmEXfWv\n5utvAs6YJJwMBdb2c9bN0WNVO5mBYFxjL9JehugvBGfLfdpZ0jhdWwexAx/Tw6ran+P6LCjpyyug\n8kALTFJ6XYKj5/aR5uLVvK47ATn6GH6WyyH108zMjQ/NRf+RGUjVE7W/XJSdPgUXTTMM358rfad7\nF19v/LDaukL1mzP2wRl47ho+qKWs1owC7/cq0s0wKn82PqZiVwh+IHQ1djXGBfYca6v6PHUsRGOC\nvtTuCZHiU4FsZPKrCwScC39mkbUotEQVPZB1MRA2sThoBLhcwqwzjbM9Pa8gf377VP5r/7Ha9x2b\nz+u5bbivHPV3dEtjl9jX74SBq+ePQVT67A2Gl+SXNj8lVENtT0iZ1qHmzOSS9j7TrvrRTGGzVBHM\nuNrbjEFex6gAlvBkQ1dvSu8z9rv1A/Xv5LHW1wh+s17HFi+DHB3p+jhoCMeHA2b+/uC7GbjDuudU\nU2zKNl1f/rTMHHBGamc8R5W/kWw9RHW9BWw4vsx9qCTaH0lPlY6uW13ht/IMH3pSf7ct81jIQi3P\nxlRx2w7LlmJUaWvC/5hblj9b8Bl5NfaxVONsUl1o6IB8TIDuoYqSnSz8AlxfIJMdTlG4/DaaLX5z\nUP2oBA9qiN9sBt/bGqcFpi35u4wrP7N+XbYT4fkP7jOnVlmTPdYuOGiHSX4TxzRHKkm4Yydqd/ky\nv+c9jcn+sVBY3Qd63jK6TU+k8+Gh9BJOso8E4ePFgupLgQQSSCCBBBJIIIEEEkgggQQSSCD/v5Mn\nipQJpxR5G3QV1Sx7itB5MHGfUs0i7ZL1CcMFASdBJKdo4LhByrIKCzSZ1YjD+W4q69gUvhE4HCJl\nRRujnM8bTxQ1jOwpAldtc8a2rPvGOCc94sxpqAyKYwAnA1miaUffX43Du0GW8oTzg7G2ouY+FYne\nPXNWpPrUiPOVaT0vTmao7iqqvJqX3lpUaeosqd0eXDw+/TSqRUUGFavx3RjnezMxtcEbP6YNiv4d\nNe+iK2UR8lR58PN6tlpkdsYZ0FiTc38Dar0rwWc1qnHkyXZVqf0+77+XtbiIxMgETlpk0yHuiPoa\nm8qpxiCRUJT1NE50kyjrkERtZK7Xe3Fdn1jB9IfSRzi0QAGQmVhUuOrB/P1YKIwNJZYt+p9Q5em2\n+tWu6PoBHD1TplZ8KNu1ucbMG0ovKRduHI/zkq7en8C7MR/rdXKs71Xb/zd7b/IsSXad+V2fwmOe\nX7w538vMyqysKlQBKAAEmmSTYoM0iTTRmjKZFr2WaSGZ9UIrbfQvSH+AZCZtJDNJZpLR1NYi2aLY\nFEE2ABIgClWoIeeX+fINMc/hMbh7aPH9HAmaCeCrVW78bCJfZIT7vecOfuOc73wftcfUOXqIWBUc\n1DTgKyqX1c/V53q/9hX4MU70hRzqJE+uFOV2QiFngpKiw8WiotsOc9im7n/LdSsl3WdDPXwZNMGm\nQI1rX3O5SS1s0QNpQ73pdi0EUsZucR1qljO6b21Xa3awuTn3UDhWlr1zpXVYBgkX30UKDAUZP6v9\n4nqBShAINJpqVnuK9J/ZGsM5afZEYWxORnLCXNk7FQrh0Ebdra+xWkfK6lRaZApc6oxRjdiCCroD\nl8qiyj4xRTngWO0okX3f/ToM/dfMWRBzxaH6ManLZ6dv/boxxpjGrtBPdp/sOGu+CneW74M0+Vz9\nqRR0v72aHLEskB1va+2NWAPVbKIaor1kDUdEg4y08amhXWlsj94pc335cUkt/15ea6d/QB24wxzZ\nl5+8PbJZXxXa4QDejoi5VKtr3Cp78vNNzUXlb1GXn9cz+XEnAz8G2cJgQ508z4cj1FWCZE3DU1Kr\naX5tqWd3ITkb8f9uuUG/9epmQHChMujCLTG7gN/Ly5nDnHyz7mq9ZbnWHXhnXg2UFZ4/0mv9HVQz\nfk0orLNrZW8WcIY1viluqWlfbTs/01y49bbmglfR2BdamsuJImGE0sheKMTHta91W4KT4PwTrbnG\nu8pEFtivXr7S+++/LZUnM/l7fIVyIMiM/ivq0Z/r+TP8TP3Z29dcuvshdeCgx6waWbRI7VuAWvXg\noIo4A8zop8WiDoMvd8TZPT01xhizzGtsPHgyTKz909pF+aFL5hfkZR5lhgHqgm2yaIV7ul7CNzSc\nKoN8fUWm+0BcCVlQXBG8eGu4eOKi1tCM52cGKonFQs+VckbfyzAXjTHm4K2vmSnPtUW7w/W0R/Rm\nKNKAlJ3ZmidbV36fkQFv9XW/MWp8ZbjIDOgyNzlDzbXmx23Nj3uHQjSdgYwcr2cmA79GhwxnHrSR\ncyt55qotG7g/MmX5dhmrD9Mz+oDqR+9ac3Mxg6cjq88f32PfRQnxDgg1H26szmeaM49e6IyzRTFy\navbMl7FFQd87dOXzIhxhRc53VfiOXs40hr0zcdaUOb81j9XP2Uw+m0/0vSbAvS08SRYqTft3UeEE\nYTfs63tf/L9C+vSfa8586574Mhb+j4wxxrQzcCpk4W4AGTklu1+Hb6QOArMcao5c9ZnzoK9yZHgz\nHXG7LEF/7eVBs+3L37kaqlEga2pkoHPM3XOLs9ZK+2kNXhQPDjHfoHy25vmLGtOgq3bsuWSwn/07\nY4wx9+6cGmOMqdR1/8xb8qvVF9oi+EioiqsVCNT/5HdN99NLU7/L/r+r+bAcau0uQeSvXfl3+Ig9\nhkNk/lTz9ia2WKgNo4X6ngWhdm203z0FnVMFabzzXe3TDXgvHz6Uepk/V5+KeRRi4cHxOY+XavJl\nj2dZz9V97sa6z25Fc2cHDqvhS/jsOFuYK31vBb9HnXNd1Fa782X23Z7ef4oiT6sMV9YTra1v/DPt\n11//Q/Es3b0SOrm+q/s++uN/bYwxJgYVewvU8itfvj+C3y1gH2vDlWPVtPaPvwbn5bviSLQ+Untb\neZAtr7QmbdBlwW2t6QYcMfau/JSo5k3gN2nB7znuaczLoHy3C5TEbKozrrXGBq7229Lb8CnBg7cP\nz9Ha+3KcmV4ODrQCvw8WIBsDkObHut+ywoGfM0MIh5mHEuTWTbjG9PkAtIizAiXHczAooGLraBxs\n9/XzMdN3zdgYs1pShXB0aowxZjan6gCUVKOosctcy2djKkbyyDRtq2pDzuj19Eg+dOe67uKxfnOs\nZhqzapZnUgM+N/b5GUpSxQ0KrUesb7gGyxEcVkWQzI/gbCzDv9bQmWa8lu+mqMPdAZme4fd7xOeT\nqoRGFX48lHrzZZTR1iBwdnUWW91S/5MqkHAo3y4inR8LtO+A3/EOCmsB1SW/zFKkTGqppZZaaqml\nllpqqaWWWmqppZbaG7A3i5QpkTHZKku2CInewWgdz1QH2QZFkIE1uUo9dYySULmrqOi4oqhqsaiI\nvU90sEwGYrHR/fKwOEfURztLRcSOcorIze/ocy9RrBiRrSvZipa61Ehnx9T8cr/hGKQKnDJFYl7b\nvCJoh2RSL+HdMFVF0jyyk925sl9NmLynS0VD10YdqKL/PnIUrd6Q0XWMIv/uOlGzUpQ13lG7C96B\nybm6hhWgpEI97gYG/m0W9Yia3h8SGW53qd/dAenS0uvpAepA1FYu17rnoKPvl/KKcgYl0EpEqIcA\nR25q8Za5AB8PpaY/rx/3t9Qfwrqe3cKBMNL7Y1/tCWKUuFCFimxd1yXrE/sow1CLmctTb4giwNZT\nVic+px7cVtR4stH1rbK+b43U3yK1pSF8Gt6MzIOvdk7WpDwzCTO57ueF1NGTCZ4X4JgYMKdGRFnz\n1HnDqTODL6maLdMORaMHI2UPG/f1Gi51neOMMvLngTId2T4KDqyVYl31pDF15RlQI7OM7tPcUp/u\n6v/L12pX/QEKNtRNdsbydwNuiElX0ehMS9dZlUFjkLGo1NSOcYeG3MDsfUXQPZROhiArfHh9ahnq\nq1sgM9gXrrpkMLcao94n6mOppfUYG7WlPWMNtLTvrPLaP85faT8akQF2UHk6BPF2vZSPrAZZZcZm\n3SFy72jscmfKKIx3NRc3E9SUAq3fChw0mTroibz626Vu/TmohTHKC0FD7V4PQPQ9/ofZ8q0rP+xt\nqKOOtf+WQ+1nLrWxned6/wKOnN/4ml5HeflzJ68x60YoBOTlx6OWsu5esjYS9vyx9q3pXP7ZwMU1\n3sIdM5Cf3HPNTftac6XXkX+acBGMAmUyatMvl5XqBsoeTh6ipjGTPyYoLFRBLmVQ2UvQCHYGRQtL\n88YmA+SW5L/WIZwx8DTZfTJNt1Df6sGPVJVfCwf6/IvzM2OMMcdLeDxWGTOFv6aehQ+sp31l2ier\nDT/RS3gfLDJsO2TI2i81Ng48aA/uCLGyvKOM3mdjEDZ3hZQZcN1qXZnEfAEkREFrYPQctSDmfHVf\n9/neXypL9DsFSZpN3fN/4NPSjtrRaKH24clX3SfKEB880Bg7ZMeb7+r+ThY+JZ5PnbF89843lIEd\nwX01XcpPt7+uNZcokm1ADUQz7QH5KpJoN7TzZ3oO2gUypmN4hqqaE3s1Mt8PNJYH8MVtz1hLL8jY\ngio4O1d79ndAQo70fJr3tcb7XfVv48MdwIks8LWnhEk9PiiGNUiVKojGCXxEx8XX/cxsJybcaI8J\nyfYFW2WkDTxWefgyrlaa23X2yggU4JQ9FMCN2YLs9Irw5fFcuHWg9vXhljgCvVCEV2Cy3hhrH/TV\nY/Xpgrbd2tX6CEpqY7ag/XK2kO/HQ43FeIPSyQs1pkRWfQckW/FA93TJFm9Guv7fXGhfDM+1/+02\n5KujHe1PNkiN1ZfMTZbh9Jp9Q31vbpUlz6J0MgfdWiLjHIDMa5C1XsFJtoQPLjkbbUEddZd6JoY8\nW334JOwm33+k+7ZfiOcuwz5ru3p/2NX3Ynh/ggbn4SUI9E//Ru1+57fV7pLmAG41wUZnh8Ot2n1K\nxvzf/UwIo902qnNwrJUPNYf3j+WH5z/4njHGGK+ps8sKtboc525vDafiEEQ4ymu3CpyB4IZZwCFU\nRmmsfqjXM1DAUVZnFM/TPm0NdcZJFGvsW9pTmnlQBsaYUtEzh8y7AnuNAcUWRvCddLSm7Std9/EL\nrZ21d2JuahNUiqp78Evk5eNiFb60vu4V7sIxZTg/wqnXAtE2AcVbf0dzNsN58iWKVF2QGrWcvu/A\nXXP1U+3P7Z7u33pb3C65GjxORbhRntHnOoqzM43ZmPP0fgHuGU++P2yqQafvCRJfKulzHVf3P+D8\n2joQSuFFW8/0F5y7j8baN8fweM7H6v91qDnqMueyqAvarJW//t6P9fdYCJqXj8X5Mj3V9Wz43F60\nNec/hDMnKGmu2W19r+jrufPJFyh2vaXn19PHf2eMMWZnozl076tvG2OMqaPydF5HiQd+QWug+w0f\ncmZ5R3vLfu4XVPBuYMGaZz/cMpml+j9pa03tbnW9/BJlMH5XefCP5uFFLYACz6GGW00UkiLOmPwI\nXs40pyP4XopB+edtmQWRKU+3xgU54qB21rsGTQWqZlWh8qTJuXWm9XG7oLNGdgUCDT6bGP7OLByw\ndZDsqwHI6hEqn2U9y2dFuGYW6ktg0UfUhceooRVp3xq1ozWqe5sG1RgNbWgrzgI1zt82YzQBSZ7w\nrK42GlNwdaZKdUBmqDFeTdSuFc/GZg1uMpCR0UBzOaZaorSr/rggdAKeCyvzq1XcUqRMaqmlllpq\nqaWWWmqppZZaaqmlltobsDeKlNlMFJPy0JpfEO0NYMdvovwzc5Qh8WHCnjn63gZFgAVKD7tk/S9e\nKCIVNYhCLhXd9fK6Tnamz3Vh47+TU4TtRah66Exe1z9wYFsuK1L2PKRWDv4Ue6D/D4wifo1MkmqA\nO2JOppr6dLeOUkJIBqVH5A0+jSafC66pvYaKIiQ6OgPZ40I+TWLFZMmYl+HeGcCVYcP7Eq9nhrJi\nE+VPjTHGLH202AuK+u280Gcna1R59uAQIfO5CFEDeSUfTJtqa0a3MsWJxmxowxPE/apkcsdk7Vtf\njpzcOAvdYEjmsBbDcTOBSwD2+DlR0whFh2zCLbNW+w3RTBteivrGp19Eni8VPU0oBHyiqYOlop6N\nV7pu4T6ZXAArxWPGJFYUdlLWoM2nKHVlUAkhIp4sufxW1/EdRYHHa7VnU1U/gkBzKY+K1AD0k1PS\nGvFXRL6JPmdqoCy4z2VbGdqv/HPVmZuWoseP/0JZssxXUMqhdrjrqx191mQlUPS4CA+Im9F4O6DG\nggpz1Aa9UdGcn5DBLsEGH1LPGTZh9R/oc56tDHxcgveEfkPfYirMt5tY60QZusrbaitiOMaC32G+\n1pyto/Yw3agtJdTc7GNl5m7BxeTB+RGh+rGGx2gJP5J/qftco6KW6cAtQt21vaOa0wF8P9HH+Hii\nOusQ9JYDn471Sr4cb4QkiatqV4Xs+Rdk1fd27vyD9pScRPlKGUE/IKOxEBLjFrW8w7bm5gGosLHN\nGIG0K4I6m3V03cyINTYTsiQPkcUM7pldW5+bwjVQoU45N9FafeiCfPzszBhjzIhM8Q6La+KQOaBu\nu04d9qSnOXPxkfg4nFsJakJ+/OJz2hc8Mea/+pfmyRPNoZtadgoCal/+divcn33bmZPRhTsnWicK\nSGqXM0GZDH6qLHX9XRQn6l5SEw1/F/Xz3UDzYpf6/DxoiwzgBmtDNq9ujBOxziGNKoBQeNVWNioA\nPeWTFY+GqCyQKavUk7FU1mZyKTSYoS7cm4PcW2hMFnP5MOtrDJeMie/o/y3Wsd3S37t1zdki2f0q\nNfHdl+SX6mT0nmoOWHAgOFNd9yW1/L/1bSnVfP5QGdAD+HZCUEVPVvLDMUpgrZbWwsMnek6VQKhs\n1qg53dEeYIXwk6xQ1TvWWrypLVGzyIfy/yrSIFkTrYVnQ/1dW+q+u7vKvJoj3WePMT/7MZxnY2Ws\n89coIx7CnfBI/rgKNa6HrviTCiiMjToJKo79fQnfXInxMNq/DSiJaxQrjTHm8SA0lgenDEqMfdRP\n8qAAIzgJHJ4fQ6P2b0HvFia8wveygLsG9xq7o+tmH6AcRnZ00eeMBT/XZTAzTfaXfggq1ALZm+WZ\n4Gld2XX5fAQ3Xh8ujzn7eLnBq5GPswe6x8AHWXOhNs9B7RZB4h2iOndnV5ncDGjYziu9jqLk2Xwz\n23BO3Y/IHMN9MwHRsunrHBai6LI/Uz/nqNe51wmHlPpZYIzGIDyyKNkknGYvXuh6NU9zvgX3zr1T\nzfmnF3qu9AagoFFVKtqoCl6pfZkDPefeOpQ//D2tqRHo3wJcXxVHc6xxpH2/Heu6F98T2sADOXN0\nGyR5X/3afxtVUFByUY41xJrZR4VkSC44Zt9zprrOFHSJNeA5HvOcY+27IIfyKDqaPRBHl/Lfs1fi\n2KlEeg5Vc6jiha8z05mcY8ZwCj0HdVaDE6zI2WXLeTvUY9UcwjXmLV+jCv5RawhVY0c8+0DZOiAi\n3snpWT4Y6Z6Pn8kX0RTEekGIjfFYiBKbfT7X0Bhdj1HYeooq6W//vjHGmJNvaX3/7M+FXLz+KRxk\nNaGfKudwrNyFz6eidgVw0XhrtS/Z3yccpiahnsFhgkaGp6/ytsb6+V+eGWOMObvW8+bOtz80xhjj\ngkbei4Ss+Tnfx6F8mYu1fyxQ3M9NRakAACAASURBVCn21I6EdqN8QNXAQDxJ/SfaL6soZd47Un/6\nKD/ugAysteS/wkL+DKt6DVbyTzAX19k2q+tZ/IZagQCPp1qjEXPb5/fOfAtqYqr7XKGSVZ5pzh3n\n+NF2QwtZ42u4a7K6jcmimDZ9pTW/fwiPH8/vPApjKxTGivyuSH7zbeB5GYKwt12NZ7jW3zn4T/OJ\nsrExJh7MjOvnzSbWPrFZaB2MApAfVIQsOT+WC1rfZyg75TfwESWqmkZtG74EYb2R71oxB/SS+hKx\n34Qh/Gw8k1bsj/O5vh8hd5kN5ZMyimCXTzTH3Dy/rWpac31UMLf4pL/QfUcPtY8N11r/Dc7FWUu+\nCFGxs70CvlP/jiyN+QoEZ4kx2nJms/j9vS7DRbWjtbpZ6/0pimtlfp//MkuRMqmlllpqqaWWWmqp\npZZaaqmlllpqb8DeKFLGgV/DA61QHIKUQaml11Mkqmmo+aqijANKIEtNriHw1CUiVt3T9wPUh/Lw\naASeEC6TraKERVAF7TZqG/bH+n9XUdwjanjjUJnnOzv6e0n9Y/c2DNkoSWxzQFdAXWw8XWfhEa0l\nw9ykvjScKjK3CKhtsxWZ24DUWaAkQWmamRn4Q6gbPKjBNwDngb2S6opVVMRyp5Owya9Mz1bEvHKt\nvi4aiixvniuiWm4Q/SREvcFnURPukI3QAEP4fhzULgo1vc6pz/Z7qCPtK1r5akwUdaI2xTUyize0\nIRrxmVhjvsnpdV7gej71iiN4N8oag4mn6GdxQVafWtd8RD1jRlmZBKkSohDjgFpwiXiXifZODPwS\nE1Qy4ENawuPjw/Vg75DdoWZ/udH9WkbR380EzpSk9jZKMs/U0G7wPwzeEbWklYUyIxa1ogFoA7OU\nf+pknZpwP7RBTQyvVXvbZdxmcLck/B+1qtrZqKkdly+pcba0Vnz4O+Zki6qW+j9fksEoaN7UaMdm\nBXfCGLQaGe3qRPNtheKFC9zLJUMfZZVxKPjUe5qb2wT1isyO5ugOqg9rxHl24E7pkv3dRe1oCR9D\nRGTegvcntjVH26HG4PSW/vYsjd0l3CSuK5/ZqOc8LWtOfiNUlmwHlbjFVO+PyErsoAQQT1iTh2r3\nBk6FsMIYZ9TOI6MxKKN40H2FOhK1tU2S5lNb+0Ajrzkz34XLgKxW9bbuU+qhGhILmbM1cBIkrPTU\nzp4cUVc+1t9L6p2Xh/AEZdWuSziwEBcxjqP2t+eae1v8FOXIDDNXiw710lU4gHZ1nVxG7XdDOCdu\nwZsyEh/JDFUTi7l4UxuPlBWbreB2gVU/w7i0yNBvLBBELlkkXhMunmAkfy1QVMtcaG/ogeB0UEir\nOHAW4JgY3pblnGxkXv2butTRm6aJVvJFH/WkTAPOrp4yn1OyOBufOR1A0nUFL0WCbACh9sUPaStI\niSnIv04HTgOUEop7zD1Xc9xDJS4mE+eOUFqAFyN7BF/EDEUYED133/qaMcaY8wHruSQfzFh7WR/1\nDfgn/ubP/tQYY8zut5RJXZExXX0MOpba/klPa3R8rf5W3wX14Gv/LcBxUkWJpceYzMMvxylTZM2Z\nDioX8EwkDFdLW2uhfyk/rUAuZeDO8UD8HbS0BpYr0KtwRuwN5M8xSm7zcxCTd+FzImObQ2Ft3Eug\npWTzihqvflbff4e/a95rLoNMLTTeha5zMVSGPEu2r9XUuD6iDr/Ac7VWZF7BOVNmfnXa+n+vBWLS\nyJ8jEEXLTIKY1PvtSP0NUFgq75WM1dPYb5k7uabm/6ioMSuUQNwt9P7lGLVNVJMmPBMb8CbNyVjO\n+/LRdqoxCrYg0RJuK1Th7n8otGjhUtc7f6h94OpzPVMnjS+BgDDGrA28bzzb6iu4tVCAKTZ1vTFc\nCEsQ3iGKKOssGVn23TnPiTz7ytrXc6EZ6brxWv2cAviYr3XfAaokec4oXdb81tH3DitaU58OxT/S\nWAjt0DzR2g2X8E2E2o9dFBHztC+/1APUvtb3jqb63Nun8n8F3r2dA/l5cwbijyy8C9rCr8G1OON9\nznQVV/vwkLNA65bud4UqVWmo78VdPafGoDjKNX1uYWgnXI3X8D/tPRAKZcpesfVfK5Plmy3Te67+\nrEBU3XlH3DQLuHw8EKylAtyVRyA2s7+aC+IXze1pjr3qgMq6Er/RDudHD869UQKu/0RniquJ3q++\nnygX6ixxck9jc3dPXC2Vheb6M5AaVh2khbpmwpz2870/1D75u9/9Q2OMMR//8d8aY4x5enlmjDGm\nXtW+4YE0T1TtZnsaY6cCPxFj22T/eDgUOuHdujhZ7H2tpQBeOOdC+9nLgfpjVUCj8jthdx/uw12t\nmavPNZdXRRBDqITmOT+fP9KcePFcKKdbH2gOn800dkeenhPjltrxBJXCkLNPAYXMt2+Drril/bmP\nGuu9b+s6PdQAf/g3nCEDjeOdd+THIYj4GuRfxa2+Z+BoGbgJI8nNLALpuF5oDaxRH/TgnVvAq7Je\nwJ/KOIdMnAlKaqsNvz9AP9/9QM/Xk6na8/L78Gtx9qqzdpLKCGOMcduhce9mjcd+NQcB4qPitgRt\nY5gTQbJv5eGH7GouxvCbvff+u8YYYxqccz7+0V8aY4yZjuCgStCUIME90GRb1PQS3s4MCpQWiJ2w\npPuOz1HlhKi0WJTv1iDMl/BkLqiSaMEtWYDbKuzJVxYKuDHo/PlA39vLar+qMUeyKBZfgwIejUD6\n5eF38+BQBB28AtU6AjnkUtpiZTmw/xJLkTKppZZaaqmlllpqqaWWWmqppZZaam/A3ihSJiDauDKK\n+m6ayiTuBmS3DuEJ2ZKFtxXVLZdRRjhW1LIwp468oAjUeqpIXoUM7Bbt+eJAEfaOi/JQX6/LIlru\n0y3tUYTu4RPUltZE6M7JKjYVZfV3QZHY1OPHiqyt4bLZgI7wh2rnChWVdkFohKylyJ4BxbLIK1I3\nWykautpXJK+3Vr8yS32ulgTsa9RRjqhvdNTOGczgU7h5zHJt3BJs3EGikQ7bOtG8F9T6O2StskuQ\nDXCIFDJ6PSFjF+QUud6M5AO7obFqZpWt6W6VbfDJtM1cfJfUE97QPDhqpmQWmzmiqK58tKXu0SmS\nuSOyXtzI91OHOsUM3DGofbgBn6cusUZEukuUs7nWdewVUU6K6RcdEDVbfS+kHtqeo3CQ0+czG425\nh5pKhgywgdekeEW2MNRcKZJ9m2c1F6uguQKUaTa2orx5Iz9Y1OUXiqAGYJ8PEn4RUA0zuIIco37V\nQNhkyGwnEfYtSKkmrytNUTN3NS+8Degw/FgAKWNT5x1Yylz4PThiduDCaWu+lGF/345BVaypr0TN\naQJ3gsVay/jK8t3ErobUuv+QOuUMCIel2t5HMayYk28DJA1WZ1oDW5Re7CXZnID1eaQxCKfKPM7m\nZ/o7x1x6qe8vapqjWTiuMh+QTQbhUqrptdJWxtKGxylTVJalxn7RXigrNn+krEY+qb++q8+Nmetr\nX2vPgh+plNE+MiHjECQKYmQCzgfyOcAaU7+tzGO+oTk1e0xGpKK5FYFuK5wIITR7COcVCjA59gCm\nmCmj4FYkA14C8Tesi6ditaN2J5nbF5busxPAx1RVO1ZTOAVs+X1KDbHTVvt6qKY0G6A4biFNcUNz\n1vo+QnImGsP1BddFDLeD47EG1vJbTO30ksx0ydV8WJL59+D2cQvqd5bn2mAtByXcP5kitdpwHOSa\n+tsl8+8VCybOw5PAdrFGEXBMm4KhBpHkj4nhOVpqiplqGa4AF94IW58vHGg/H3TI9rQ1BwbUrBe2\nymbltvpcf6v3ox09N9bsj6ux1msNha7JVvtfCAfWCYiXv/kLcQCc0J5NFi4skD8e3DMWPBN+UXNt\ndK0xWOQ1x7eX8l2nogxmpaDrvPWhUF0hyL4JKnxv31Em2Vmd6T65m2e3jTEmhmcuKrIft9lHQY9l\nQxB+KMYEKAlNtsoM12wQMi2t6b0eKN+59udRGSUY5k4lQDVqpf3TBe27RK0uWHE2ILuXhXssU4Mn\n7z2hAswvcMosz5fmJZnscKZxzt1DpWoLnxQgsygPBxHj6weaB8sG3DBZ/f8ChJNVE79I7hEZcBTa\nvLLan2fvaMMvsL9XNz2y5SsQwCHIMSeE1wBk30zL3LRAZV3PUEmDk2ax0djkmIOv+upbEQ6TDLxm\n+armUuMrzL2l7vujv/+B/kZxBhCtyTpf7hgcg0JNFLTmZFid5LmwBu0AsmKMmtQc5cGdfTgUQXHl\nXX3fBp277qu9z41gDwc76vc6l6gSgfA5A7EJarcO+uIaVJoNiqkIBcsW5HgZdcD+EhQEiJdSHq6v\nGRw/tlACdTLTx9/5p7pfRWt/hgJnea05M1mqvceoUF3DM9UBbbZ/3OL68tsCtbvtBdwTbyvjfYCK\nXRuuMR8k4XTI8w4VmJizR3gHJOk1fHpwEA3hpdpbvVbp23HrJjzSnmFxRpuwd/X4fJ0zZ3VP/bJB\n6gfLm0uHegWttxNUhDrwkRUPUF/LyAfljtZJfVfIBvc9tb2aBzloNNbjz9T3Hz/T2WANQnJRAKn+\nHAQ8D7cGB7jqb3zDGGPMt3/7d40xxsz+T3jn/tczfZ65Viprbq3y8kHWThTD5NPPWVsWnGJZ+H7W\ncBy+taf1v51rLKOuvv/OW0KwrEC9VeFeyTXk2/Vzzf3OSnN5t6IzQ30o/0zhYTv5NfkjC9Jl8FJ+\nmT3ld8hb8nc8BvVwpn1q0NPnuvC97dwW905tV/vmISgue/cdY4wxIUq8dRTCPodvzgXVtgURGLHv\nV3e0B7lZnd02m9eorJtYDhRGl0qCzFDP0+Oa/PDFlfrRPoPXJFH0BSG5nqgdiPGZqQ/SyUaBE260\nPr8dS5yNI+Z8NHvN3ZixjQmtjIlAnzoJ388C7tec1pvHb4l6Sfvuy2c61y7PUFblN87olSpPtqi/\nBQPN2dmINh5rn97CsVIuwh21p3X5/FK/v7fsawvWX9HSXO0sUGJ05JNmC36zDbxJnJGydY2JBbK5\nSzsYQuNu1Y9T5uQFipMdkIU5lCjtKqjgrdZWogCco0qilyjhsnZcEDR5VJ/P4R5cdoCz/RJLkTKp\npZZaaqmlllpqqaWWWmqppZZaam/A3ihSJmcU8fJDsj5kEN2mInIzsnDrmSJoVkGvHtmo52jI20Oy\nS9ewOI+o3a0pUlWHZTmoKJJnTRQR82G6tpEQskCRfECo6uoQ3oy2rtd+gVIO6IHyXNHZxqkQOBaI\nGYt2FIi4mxIZHDIog4wiacUDRdb6LxTl3osV8d+z1K8eWc71VlHa6VrXaRTU/tUl2cSNIvmLSBG8\nXACXRV79rWVuG8tSm9cVRbQt/m9DbeGur7b2ZorI5sh6hNQTFuA2CTaKeF+X1PedJBG50VhN9hWt\ndLpkk3wi9mTSvDzSUTe0tQ0bvau+z2N83KCWnxpOCy14H/RT5MKIXVVUd7vQHAjrur89QkkHhYBl\nSZ/LPIMXAn6JfEX9Hq5R1mnr+7eI/p4PNVnyATX3ZJVmrKw8me1EeWHLmJpTZZtsVKuWKIztohAT\nbjVe2Z7675PV23pEk4mEW1MUhix975gM5aqh+10/0TgUdxnHPipHW43TINB9ChPWUhEugBnM42S9\nQheE0FDtzvkoTcC/YaEm5aHWNOnqfr6l9gzJvNcjzfEe2UW3o/vt4R8bRZ/19c1luior+HCG8DLA\nj7H01db6me49QpnmkGzV4124l0I4BeAXso3Wc2RrznVJJsxekqELdb8Z2aP5J7pOGXSWQ4j+FJWI\nSyLnq6dC9BxRq75iA5rDyVIEMdirwvOQ0xpzUV2zIo3lDvvfgrnkwU1VPyabn9f3+tTK7r7HvtGA\na+EINSkrQQypXW45qZNmP8lqX80WlLXqRvr+/bW+N1vp+h4qVvt1je2rCYiaQ7ivXM3NRUl7QGaA\nsgv16eNAfvcLut6zR+xjzLE1Cj9NFOHmGfVvd//LPb6gmTJhDEfQEIQmKLYZaI76Gn6nBE02h58K\nlNkEdJzHcysAbTAmuxeD9Ckt4G8hA56UEq9GqC9VNMeDhBuinDNQypgYGbLKUmMdwuG1zWpuuCDo\nJjwbQuqqA5QOxmRm1/B55JpqcwR/zsu22vb9P/87Y4wxJ1Vl5hy4WyaRPv/ufb1faUBsxtwsvqXM\n5Yxs/ZRnzzh55mU1F8M1afqsslFNFFZ6V2qv1dCcydk6C0zWeqat+vp79BZIvyFZ91XCTyJHvewp\nW9a+hvvlRGvtXf+35A83QYbezHZbQhjld9WuBuiN+JX2x2c/EAKoR/ZwZy00QRmVP4TeTMGo3eEe\ne8W5LrSDmkdmrk1lZIGo8dXODtxc9x0hHkeR1oYFmqN1pPs0S/LPuKP/75x/QQ/+0Dy9fGl8nn/F\nlvpR9DWPVm3Qdiu9v+OwBgEX2ijGXcJ55oGQqY3hwkDdJPS1di5HnBfg+4tL8l+AQuV6HJrWjubM\nRSdBy2pOVALQnoniGFxgCxBqEWeW2VBj/eAYZaq2fDuD/6JRgmOkjsIY5y0fVQ/zkfiYNo/O5EtP\nPjg5BsXwWoDkRlZdaEzHSWYYjpTVCZw3oE2z8PZMAs6fE7XXh2PBQSFyCEq5yhkkQjUkQWx3UYXb\nsTVn9m04WsjEvkrOJCAqd3xxb13N9XxotEDJoTa1N4ZjAT68MfurDWKwXARpM9Jcy8IJVmdNdDrK\nYH/zW6fGGGOuQTotfgiC81DtSESPViBQyyADfdDS0ytURXluNlBFnMNJEYJ48W/ruRHDCbZlz5i3\ndb9sCXTDW9pjFgtlul3OIMbRXmaMMZNgbvKe9v84J785oLvzAX5ALet6oOtXeT77qELdxKJjPfO2\nHRCH7EO7++y/HbUxgK+sBqq/ghJklf3wOWeaL/723xpjjCnHatv9bwsReIgKaWkfri14NT6aaSxX\nfyqkyP/43/y3xhhjLv9v+C9Rwjksy5eJ6t8s1j6RRQZosIWXB3Ts/d8XZ9hve980xhjz+V9JHWoK\n0rtgQMrDA1XPaK7HfY3x2dOfGmOMWb7SHKzd0XPkxIAURIl3tZGvM/D+fevBd4wxxoze4vfHIymO\nrUFRdJ6BugXdtf669oQ7Oc2JGFiENVS/Ly7EtfVYIA9zck/Pw1cP9Tz51h2pR73b4Bybk19jlNPO\nrnSfPqi7+99C1TUPZPWmxlnQWoCS4/dV+Y78cQTP0WCheXABQqlANcUUPqgcVRi5gV6Xz/EDXJtV\nzm67oHLHl+pnPHyNIouKdVN2fdNfJmcIXTs28nEXxKPfAPnLtW7taL0Pr7TOGlndaxTL11N4lQpI\n8lI4YjzWsW0LbfRyoDG6DyIwA9/kegwaGKSfA0/bsqt9JAbZExY4ZyWI8pJuFLHWeud6vaR/WyCE\nRc65R/t65mbgLuucy3dxQftd41D7wwhFYgvuqQ2qTYsuqDNPcy7kWTlj/8uom2ab+9X7SIqUSS21\n1FJLLbXUUksttdRSSy211FJ7A/ZGkTK9IvwYTXhKqihNkBEIptQElxXxKncUavq4S0abLFKhgioT\nkXZ/R5G2CjWjxX1F+O74ioR5kLKMtoqsLSjgr5CZDeFkeKuuOsHFMVmviiLnT8Yo6FyrPV/kFbl7\nu/G+McaY7SHXP1ekrEwmNKD2thqQQdmB08ZJotO67nyBEgJqBDEM28WGPuf1QL3UQRXMFQG0qMvf\nwsLfLKtO0goDE28UzfQzivQ2LNXkz1FAcNryRZX6uLisKGQdFMEMZI0zVSS77KsNmTmopo0i0z5K\nMz2y+vuwx28i0EsOqcebmovKERlhL2aMyFTmA7VvTQY278NiDrLERZnHyaq9C/6j4qBuBEdKZqB+\nbypwOmTkwzoogMKZMh+jSBH1wVw1wLmMxqgP4shJuHmItloeY0n9dtjX9QKyNA2UClZb+CYi5oSH\nGgpcPdlA7QxQT6nixwkKNNZSkf8IRYMNUdqsDz8I7O4TIDdxn/5l5U+PDEx7ACqNeG3A+1si6k6i\nWkVE32cLcS2Uc0JQHWQtn5+RWQcVZze0ViI4eFwy7MFcczsT6/11/DqC/4+ZC4dHGRRRMNK9999T\ndv8C1FeGjOsC/gcXlvUNSiLrnFABBdbrGkTG5FzrvERk3J+DAmuQfWnCTTNV1ufiErUGuGhezZTV\nma3VtwbKCEXqr13qzg9bZHx/hHpSoDVzDSIueAq3yy0UznLazxIlMHuutTYC0TfR7U3pbc0Ja6Xr\nXV6iduej5FIDxTYFkWdTS8saCqmTziyUfUmy/3FZn6uibtGuyF/lx1JdimHxj+vyy/6h2puFC8eB\nU2a/pLmzhEMg/Lrq0Hd3NSe2ebW3TDao90LjNw5Ab9zQwivmsKP7r3LaLyvM3QhejhWs/z5rqETm\ndr3S2q7lNI/mCzLxkOvsZtW/BZxBreR5xp4bR3p/7cPdQP8zqHz5JmeWqAjZKDmFrM8Z/GRhhPoR\n2emcTRYaBbHMfc2hE1t9OoePpy3RCrPy5ctfe6CMZ7GprM6BrTlQqul77b+SSsdPfyAUVYLQ8VAs\nNLvsLxnN6QJcKOs26g57et4ku33i88DW/a8eqd78/gO1t3wiX43+inpvVH6G13p/OFI7bGrne0/h\naBmDTmLfiZjDIUi83vnrLPlNLAZh0v9Caz46AeFzX/25zf9fPdSaXrXVzgvOALtX7CW3tJe0QDnk\neM5aqzX9gJdpqTkxmYKSAHW1RGFszb7ZArm0mmjvmPG8mcGbFVuJPpQxJ/u7xq6TUeV53QegOiVT\nvLTk1wAEag2kjwUH0NoDfZAghRK+JTKufoX9Gx4o90prINfUFwogbKfTnqkeSP0o39Q5JabN4R7n\nF5ALm61QVyuQIAAYzDCra3pkQoe2fO0YkDbw7Sxmur7XFF/EFoTK+UBosG5Xz5rd+zr7eAe6b77y\n5XKTRfiEOkZj4vBsdS44d8L3Ee3r70JT+2wm0n61hGNldYXPwwQRrf/fOnC/8CxM6IJ6z+QH95bm\npANXSiE6M8YYY1e1X26m2huiS123fF+OjOFmWYHOWhRAG6O46TdRgnnGfjdj3/2q2rGcce490tz5\n/T/6z4wxxlyBCvvv/su/N8YYcwtVvdjVPuqOOJO15f8ZZ7DoANWtl1oD01CvOc6W7qE6fswe9xDk\nT76gflh5UBCgSSJAeRk4J8bHGiffeY2Wi9aOWWZBr8T6/9wCDspTuMSUGDc2CFyzhq8vb25smwuU\nXF6J2+nq2afq01rnsdJt5oRRWyagToOn7F+7GrMdkCwx+08ehbHK13/DGGOMF+mZ3AVFkJ3oOnnU\njcJz+fzVJyhvOZrzrQP5bmL07A7hScqi0rf3gDGMUcjpiI/p7N8IhTX/O/ns88dCyjg5uGze12+O\nMso32ZbWYBsl3bEH52IE/+cMHjm4DeMANEZGz9LDY/3dA4n/o3/1f+lzbflt/20OKSBKQkvfu12H\nexJ01vIjIYZ6F/LDt97XbzU71HVqBfklN6R/kc5cs4fwqIAYKr2vM9beAUjzBBFOv7YLvd7U+q80\nd2cg6rO7mmQbnpwWaOIN/FkZOLtyp/pcKw+/ymeaZ7OFxnv9BWe4svbMBqjt8RC0CgifCnuCMcYc\n2nXjRpZB5MjEILkLdY1hDu7W8FL3sOHMOizBFdVDPRnuLK+oscjxzFiBIrVAcXn4bLZE8bUPsgb+\nSW8l3yaKUjEPsQAFKeOjUGngZuXcFS5R6l1ozM67Ojs0bmmu/wf/5Hd0XZ7Bn31fvivBmXPAue2y\nrY0gAiqf4bdaESS0V4D7cEqlTgg3Fyqpoza/JS9AXKNM29xBFvaXWIqUSS211FJLLbXUUksttdRS\nSy211FJ7A/ZGkTJH8EvMu4rwz5aK4pU3oBvI7FpbRQnbZOdz6KNv7ygyVsoqAtbyFe3sOfB7RHo/\nv1LsaYqiwBpUiFVQRK+KVnzbU3T41NJ1r3r6/zIEIatTXe8OKgArkDJDImqPAtUul99SBK3RVATv\naoQqE9m7GVwI1kSvB2VFqddkfs67un6pCFdFXpHFARmOiIxr77H+3j1QVHyXjO22peh2bg3iaOGa\naYHawyURcHhrQny9QIqgNKOe8AAOlkhRyu1CPnRQ+8lfK+zZgwdih+xyd8qYUKe9hk+j0AOlcElB\n4Q3N8nT/ki1fTRy1C0CPCY3Geksd4jKrMK87pz4dFaAiKiUFj8wpNa8GBEuiMlElSrwqEXl/Rxnk\nZVvf++z7ymC8dx/kyUCvJ3dRnKFucjHTnFij9mRQHWlk5CcbXg4X1FV2H6b/GR1zNfYt6hcNiBwP\nRZp1Xv6wY31/2EW16Rt6fzRKOB30d92T3xc9zdkNc9g+0PhUjdrfLMqfMWWPeRQyMkSlBzCOb6hL\nd4imb1BCMCBrKnD/DF7Koc17cOW4ip67U13veqTXPEph7+9pT+huX7PC/2M2JzP4jOy5s092+gnb\nG74fdtSpUVd93SaoIdZ3XFLWZAOXzPyaz8NJlWlqTrSrei3ONOfm8B5FqIBMoNXIwGwf/UR/l26p\nb2PWvVOSjwpT3aePElimrDGeevJN+AWoJZAZmQuyMrv6/oi1W85pbn3aVcZ5NFF7vvY1obraZDTX\nn2kOHMaaYyGLqcL+0QZBaI3hL/GVZdrQru6M/Y1sTnQH1brn4rWYWPBZTPT5299E/epdVDp+TAZ4\nBuLksdoLiMxAVm8ukgxyW6+3KtSbdzSncsGX46dqkDUbz3SjPKi7JSiFMhkQK6f+RCiDbUEqWglq\nj/FdktNwMvr/KX+7Z/r+yy2cPHBYrBKFsbHmlwvlwSKr6279wOS3qHNs4asA2VIO5IMRXB8RCgCr\nAogGkA0O9dXbltb7LWryqygSfHapOfnZc2W1f/R9PbM80Anf/uDbxhhjDu6iItHX/eNIbT8/UybR\numZMQcRZC+17jz4RgiQBblTgEcqjrFAEDbqCA+zDXxdiZ0q9eu+Rrn/nRHO2CF/Ez56rvyd39Iw/\n7wsVEZExrWVAbLZ5rpH50j52vQAAIABJREFUDUA33dTOn8gPw0DIw1PU+2bvJMpf8suiocz11UZz\nNwenVkRdfImzRWArQ+mHIAB9rbnNUv4roWRhUBryQFiGIKWsEjxKFOKXeB6u82rnAdxmJtf8eR9y\nRd90LjXenQv5e/AKtBZ+cQ91n6im+9v4eQOXRYu9on6X67KX9eFsy7sgaIEnDHqc1eZqVwskV7sf\nmI2trHPL0n60xTdN1oHjkiWHz8gv8eweKdPpJhwjcK7M+vBi5NT3aVb71jLUeq6h9nbZ1evgMfxw\n7M/Ofc4ua70/Xn05Upnkmb91UE1iX6nDZ/Tp97SmKmdnxhhjjt/RHDdV9WsFGqDVAtoBIqMUJKg4\nlDETRB77xFVHY1iztAYKruba1NcHDrraF72p9rd6Ge6ZM93X8xJuLNBNc1AGKM1sUWA7BE3xrMBz\ngv1xyLP+5UfKLD8JlIEuw8vXn+n1NKu16oG+qqMgZ1Dy3ANx6iRo2BIZ8CWqKSuQpOxJM3gBd2sg\nqthrsuzHTlXzyQUBO/PgOIPnZPgL9HReoWDiUOPvby54U+MX9Tgr3UE9tYtSJ2fa8fzm6N0qvzVW\no1NjjDH3TvSM3+U8mlugdqft0axRGWpfwu824rcK6kr1r3ygvobiAqln5MOpq/8P4RwZrdSXchnF\nmXvinjnqgwDMaJ/yFygFdvH9PvsU5+B4rnaeF7V/zFAf7T75vl4fJih9kPdvCw1b47dIkOW8t0Kd\nNNRr88E9tR8ulLaLWiBz0eb3Rbmi/kyGIDLH2mfPX6r/S/o7v9b1htc6b7/Neb0LH1IOJbe/+sH/\nY4wx5uqn+tw/LwnlFYAmPsnpuj/87G+MMcZsUeJy+d2RO9Vz+V5XaLYqKI6DXfnZ46zk7Xy5SoDk\n95UP0sfLgWBELSp/LP9EICrbE0Fe7TM9fw4fqL/1jc7VHZA0DfhYihXUDiNQg9d6vi5yWqPHu+/+\nvC2W55lxe2HmIziWipr/B3dQf5tqf7vu6Rk76cIV80BtPHDlo7PnZ7pnj99IEedMUMBr1t9wgpJj\nUfuy77AO4V6d95Pf/0Am8/DuUNXQY47evaV2xfRxMdP918zxMj9Gb72H8tcxcxwETx4fbUDI74Lg\n3FCFMQZJ10M96dVK+6zfEBo2y+/2jAfaHzCxdYVKKCivk5bWoin8ap67FCmTWmqppZZaaqmlllpq\nqaWWWmqppfYG7I0iZdqw51sotMRkPlZkCb1IEagh2f5wBwbzA1iYrVO9DxN1f6JoqkXN6WyhiP4U\nFv7wY32vCBN6kiFddmCkrirK+BNYo7NTRcqmBUUzM9Sr23DclBxFSbe3FSGbdpXZiRWMNMt9fb5e\n1vt9MhXRhBpklAuq76nGrPuQOj9DbfQK5EtBkbywnSCAFNErokZSqSl6uyBDEFN3OkfZJucsjTNS\nxmueU3RzwzXGFopU1Jbmmno/SzZisUTJiUzgz7M5BVBLPnwQPfUt64EqipVZzJ3o786lIsh2nsLC\nG1rdVbuCQJHdzFZRzLwN90oVpYOx2u3BLTBAzWJr9L2szVhRP17aohLkgpIYytdT0AiTtebm73z7\nq3p/rbr02kdkiEe6/2igCPtVjLoRrPtzuB82tqK82xeK0Ls73J9s/bqoOXj+QmiESlXXqVLbO0SR\nJ1poTuYYrxAEzmh6pvtQjx0S3W0tNPYDo/Y5SUT/FYgioreLR7pOBt6O7IHuN0SJzPGT+QIazZbf\n1jCVV/tq94ha1TsffN0YY8zZEy2CyUzZqGpGtcZdaqdzOdAi1Je+fKy16vUVhT/6FimMG1jtnj4b\nw72Ss3TN56ggHeGLIpF/ZyqfDLNaty6KYZartq7WRXygdeeynuwlmdYYJZyX4k7xjzXXk4zg2Sf4\n5KX6ukF5ag/+H+cD+WpVIKO40JzZwAsUwkPkP9MYjLIoVf1Uc/LqA633O0ut6ZBs1npJ9gtEXX5X\nGYwdsld9avev6Ge+v8vn1b8r+IrsXbhzQNJEX6AGMtA+VjzRHIwzCU+S/LGgP7dQhTonE9o507hs\n8vJ7eK69Y+Hrc5shym2R7nP4QH7OvNJ+3kVhbd7R2hj9TJnoPuz7N7WI7FcAB5G7Vbs9Mrczapxz\nG609H74NDzTenLp9FyRNDjTDksx3t6txrzvqRy5EwccFjQgCy0e9b7OS/6YrOG7KrlmjEuHCnxHB\nD7aNycYU4ScD4WejdjSE92A1k7rF4Epzf31NNijUXCkUNOcDT33+rd8Rf894IF82KXfOsV9ap9r3\nHdplUIdbTVBB4pno5TU3F9SVhzmQFR3NtcotrdE9np2ug9IiyJLF5xrrXqB98t0P/wnt1P1/+kQI\nnP2q1nKvojU6nXJflB/un5+pPyNl+f0ciJ8bWuzrejWQLfFCfg/OQDntgOZoyr/1NepYF6hGwWfX\nRlGssgNCaK25NoYfw2LOWDaKQazZKs8fi/6F7P9xHsTnBw+MMcYchahk9VEN+bH8Z/6FMZ/+278w\nS/hKtnOt2URtzzkkE7tQe+Mx3GQz+dkOtW9nCup/BjThYUFZwbDG84jvHQQJF47mWQhq2K1oIrlW\n0YRD+N5Qf5uDaAnhAMvTlh5KNOUJvEJwOi1Qq/DhlevBX7SH6oU9gEsQfoX5ClToudbjGFWhSl3Z\n5WZRfftZV9Ir+fGXQ9yNatoX7xwpy3x7TzwTpV14glBluvyZfJF5T2u0VUeF7pXGcoSSSrLGpwt9\nPr+vOR6DMr7Fc2tQ1BrNTTXmIYparTpqe6hANUGzWixZ46o9ZqnrJCp0a0/7mJUgwYecBeFWKF6j\nDFnWWi6UQByhxPO//E//gzHGmD/q/5H88Sfat9cf01+UGYNDUBhF+XnEGS3nw/sBeDrAH0XWzmiH\nM1WSKIdzrFNRP3N0cL6GnwRQXMx53YA8LU1fq53Y2bXJgTS3Uebx5vL70tb9t5fq52GiWAavS8a/\nMDe1bZln8x4opbWusUBlZ1bUs9L9AgRiqL44oGBzPIvsPRBzNfjOnur9zk//WvdhTXk8qzqghpog\n2Cz27ZEDKpdn/Wym+w9Qu8yhNho6GoyrPoh4zhj37miul0EzdAMhNipjfS4GIX11LqRP92cgAC24\ntn5X5+gPf11r5fGfa7+KOBebjPyT5eww9uFUBBV7ciIOnf/oP1d7hl/o+1c57R07jzSWCYJludZ1\nTm6/Z4wx5td+U2N+8UDPieqpPjf5vu4/35d/3oOvafeOEKMea6k/hEdlrjl8uQARs9mj+aCuB1+O\nw8wNte/OQPA3gJguNlqTu1X5+/7XxYM1udYZ6slDtXuDWl95B/Qx5/2HL+S3EpKPjUjjOoDz8nZZ\n/czuvkYJjlZ9kyk5psT5J48iaraOgpat/TRBOI6BhMzY87eoszX34aCCP85BvazMM/B8Ayr2U12v\ndKzfEiV+lw8u9Pt3CjrYZYM4ZP/s1rQOc6gsbeCA6VOJ0gfx3Wxq3e/c1xjZdRTFXmqNbGeaAzX4\nQz04EFcBPGs7KMZyPp/Bz5N5pDlXYJ8qsT+3JxqLMUpjhSO1O2/pNQdKbbX41ejdFCmTWmqppZZa\naqmlllpqqaWWWmqppfYG7I0iZRyUGlzQFk0YuElsmGdzMsYbMq2Bon69CN3vhjLLZYKW04qyOaue\nsl0xPBp5kC+lgiJ5vosS0EKZYu+eImL3KLGNSspGFXUZMyAy36Y2N3qqTO3IUqSutFZUd+spYz6C\nET1GBaZxBNs/0dv1UtkoZ1+ft3OgE1ZDrketdFn3y4KYgS7AZPKKTp+2pDJgEYHcrPHfiP5DHm/s\nplnAxxNTa+lu1ae9rCKxXkNt607hWaA+r7rQtQpoul9Tn5ul1t3APJ1HAWaKPIa/VBRyRi3kmvjf\n4Qwn39CWNQgmHH0vH8hHzkTR21pJ7V7UdX3fRR2K7LqXUYZw4svHzQv1v02W3d1XO/vwhtBcEywV\n4Z/uKaJcaKr/zqHusyUDULZRtiF7NRsoOtsqgEzyyXx76seMuvnYh49ig2IDiJ/RWP5ewSnjLjTH\nZ64i6cs8qk1Es+cUTB/swcvUVz+2I/oXwea+rzly/J76+/gz/X8RLqAVPCFxF+RRBb8NUIExZOxR\nvbItrcmLBdxDrtq19NTuz3+ojP1kquhz0FT7Jmda81FNa9Na6v3aQOPTHSpKflzX+zexzSsyeUXN\n6feOT40xxry0NGYx68tda4yuJ2rDhHro099TGxcg5jpTUnNJ7Xop4V8gq93R9x9P5INjS+t1L699\noz9VFmkaomhgwR+Ej7awwwP+Mvl9eJNQyrrsUDe+K1+7L/V67WsOvAvKalhSv/Kg2ZKszhkKaMvH\n4ngZjZSdykyFQmqc6/oRvEkTOBocxiIqolQ2QI2pqu85a7JMZVSRJupXb6b9sFAH3VEAbnGt61sB\n6I6RMiMFo/46AXXucHrNx6DhfI1nkqk5moIwgVuhl9H395tJKvhm5lF/b/fO1C5qfKeW+rvDWkky\nFTGIJRekZiZm7oJmyFU17uOh5kGxov7v1pUVrKJwlqgzZTpkjgsgBQooUYDqc4ORWfDvJVwjbgbE\nncX6QpLGgW9i5KEkUlIbnF35sFTHZ76eMS4cJiOQDaYm39/eV0ZwC9LButB9zn+qsZq/ZExsrYGK\nD2KDLL4Hx01Ahq+a0GSAet3E+vwSzqg5J46NAWnzk0+MMcZcdrTuDx5oX7//e8pwPv0z1fj3XigD\nG3/3140xxtisxTz72Mc//cwYY8x3PhB/xwKlLR+Fl5va7FLXXbEHXMBdcGtPyJtlS2eMKoiRMAYp\nCiImmoKEIdPt0u8VakQ+Ujrbsf52+H5UJ0tXwV8WHC8OCEZQAyU4y551UYh7qbOEh1KOMcbcaZ4Y\n/wBFCCPlI89BZcNJVLPI1h3o+ZNd8XmULtoobJg//cgYY8z4A6393Zqu47S0B4zh0SvBAxLYqIbY\nyp6WW/tmPYAfbKsDyVtNPRsXBdQ61vDOodi4XcHlBbdfnv0zjBMVNs47TZAeKI0V4GlbwyXSQ50z\nu8v+W9f6Hj1WprR7oTleu/uW+TKWRVXvkmd+19H+OM5qDpw+ECp0a/SM24GTpLJUxnbKs7yW1fsF\nW2vlytGZwgbR4jhqd8JFlSvr+hMfFb6R+lFqaU44nFenQGFanD0CD0Q16kVreH+qiSJlQWM3WWuu\nL8ggWw3QtAMQmKcgR1FX+sl//6/VXxQ2jw61nzodIZCiNnx1oHinI/mrVlU7hnCX+aChi/BWLaqg\nekMO9iB64jVqU4yzF5LJB5E52dPnV2P4tfBDyN5mjDFL2zYuXDQVVFyCvMZlzXwxcA29HKn/caS1\n0duE5qbmDkBgg4q6hiuwBKKlPAD5koHPzUG5EGXFyi14LEacS+Gt2yloDvRmcIWBsLEaGoNdEDiz\nivpYmGjMmqzzJb9JhpHUoOyt/o7pWwRnVQCfR6eK8iRnqhJIx+nPdH/3QO83vvkNfZ/zXmf45/r/\nvrhmlhtUSyf6zfX5Nee8hlAScVf9ymTh1wThaeWS5w2KOpwjF/tSfQLMYC5ZG9Otvj+F96nAs3l7\nqvZ++45+A+YitaNf1BpaF9ljGvpN9c4f/DNjjDErkEev/uc/kV9YQ91HWqvvNnQ942hcg+prbq+b\nWLak9kbMMRvFsmKes1jyOyCj8SzdF7L1TgW0BwprhjVwzO+ARQbU3lh+WXIGS+oUYhCns19Qi1qG\nsSk09kwRTkAPJJuX1dxowq+zQcUon9P/dzk/hXBhNQ+oHFlxlkHdeAXvXYFzVTzVHOs+0nl0xPk1\nu2XfyHP+LvIbg2foHK6wjZ2onKqvY8gcNw7n1mv93Z9qruQeUeVga8zqnNcyDsq5WRDRCQgKRCau\nNHu1U2OMMdtDzR0bFOvqWl/YfK61ErBvVzmfL+ESW8KxtfV/NRYmRcqkllpqqaWWWmqppZZaaqml\nllpqqb0Be6NImXyG7I0LP0ekrMvlJ2ixO0KcZEBLWHuKkBXhMtj2qDEj2lxsi5fCIcI3nYDyQDVk\nTnbPKcIRgSqLR23adqbI2iQgU1NRpK90pQhfk8y1l1dt8iKryGCJ7KZfUOTO+hSdcxcljCtFOxvv\nCnUx+6kyCpshSghkPjzq5wMiiy2ioyHwjeE+XDbUupqZ/NYPQKcQ4vObMLaTgTmfhsZfKjq5Svq8\nQeXD0t8RakW5opAZccI9ckS99kR92MnLF6srRRk3cKL4cLAUconCgqKgW9A7jVBt79SRN7qhNWYo\nKxyifEKkf4AEik+2yQn0uYjsW2mKwgJZsyLcMj0yis6RsvkHcL98+licBTYs8B9+V9mud4uwuX9P\n0eG7SZQ4IBKdQ00k0liEz8hw7MnfZSLeiyb13qGuPwwVaV9QBx6jOFEkE1EgXpojWryBa6bOHPnk\nkTINy/aZMcaYOx/+U2OMMVMUw3IoERTgAhg8kt+zX1HmonpApvWCNRjDiUAGJrtFyaKgv0dkVAyK\nOYOM+pFr6XMNIvTTC3g24KypgjDaTlFHQfHGppY2Rx1nKaeMyfkrrfnri5urL41s+aI503zvk82Y\noTTVOFQfR2vN2b1jeBSo/V9NFDlPlLKC7pk+B0O9Bfopy9g3DjXHn/8bRdIXWbW59U+VLRo0yAhM\n5POznsawBDQmj0LYCj6NrCtlhW1G18naKLdMNAcKZfUjZl9Y9lG4Yr/JLGnn+2r/nab+/2wJJ8BY\n/QkH+twE5Z4GbPhJBreflx8NSKIYfqmv5Ph/UFRDxs4qqB911O5CxtKdg9Y41Zh2UbXYR3FrDFrD\nquj9dYWxnnLfDOisUaJKB/+FrTW7c5zwLJHCuKF5Jxq3Mvt/kbUFAMiM4SgoxWte1c+kdroMx9mA\nWuktiJ8tiJ8VnAQ+dd5XcBNU2acjA/fRju6Ts1Aog1fEWdbMBv6zPFmVGP6DRYa5CZeI5ajR3lY+\nm5Pd2pLd9UPN1U2CaElQl3DJlOqgyOCz6D3VWBYTLgFH79+6r2cdiUCTW6k9ARxSAeimAMTkFISi\nzXOhUmA/yysb5bHfllFrGyX7H0nor/17v6n7vq1s1MP/g7rupvr//je1fw1QoglQ7jGgK5o7+txU\nU8aY5etM4E2svqsx64JgnDtaey9RpChEZ8YYYzI2WbsG6nSh5pY91+c90A5zsoE7JWVQR3DHGPqL\n2JbZ2BpHb67xKRfl59mcfbIpP84jXS/u66zkrtjHvV+QmNlMzfVL/MNeEjPnN3BHlEH6xFP141YL\nPqeynhf3but+XTgjFl1lM81SyKsWfo7PNb8uqnre2FOt+QAURnPtml4sXxYduAJCdbq0VF9jFEjC\nVcJtolvtkAROVCnj0T9EzNlwEFgo1NigCDLsNzUyqGGF/f+pfDfZAWGCalPrzr75MhbXmAsj9Wuz\nJsvNOdLimXtS1Zi8ilBKWw3oJ+dTnrVuXmu2jnpJaBhLMsr2EBQUvBsFOKi2GZAzUOJUczxn4HmK\nKyAgOYNFkfanKko6w432iGWImiCcVyZR+YT/pOPxHJ3AkRbrOfWv/u5jY4wxL/6L/9oYY8wf/Mv/\nVP1gT6kZFD139drytEYAdpoVcntLznCbrK6fX5Oq5owRgZgJQO+ueK4tcvCp0O5oAoci/XXyoIF/\nYQto5AJj2J9nnvbAOgptGe6/ZU0lZ7IafIr25Oaouw4cJNCRmYynZ6iBw3CF8kuVbPywpnvmmbPX\n8HYU4QrLDjU3ynChFMbwFqHk6EdCa017IMbP9PcIlHBMtcB2qzNSB56hMc/QJuikkGdiuAv3DO2b\nsv5bW32+/UxoqGZFY2ottbYntHsfhGb1rub6o4f6/qOl5kzBQ1kHxdwZyPMSqOMafJnrvtZm8In+\n/7PP/9YYY8yrx7qfhfJj/a6eU8On8vv6XI4fu1KLitqaG+63pOrnDoWeWAZae9Nr9euHn/6x/NTQ\neLxb01pO0M1FEFDzGgo9TZ6HPNciEPc3tUpea7pWE9LTwLdiZzX3LRTPQnicbJ4bfoWzRJmz7gUc\nmlte+U1ZyKKeSOVCNtkLeZ7Vvde4jGxlx3hmx6zgGzVXasuz5yDfZvL50Ee9LUJdqAyie4oKKcpf\nB7fVtyXIxh6uaYFKGqHcuJnw+xn+yiK/RacgZiL40DJLVDAHGsujpq4TcU4boK7qZ+BwQZWp7Ovz\n3pLzJOfMbn/I5zXH5/D1OQW4EnkeRSh4WfDXVTI6g3gg+GacYQ75zVaM5Zc6fEAbOAbXGdRUw9fI\nvf8/S5EyqaWWWmqppZZaaqmlllpqqaWWWmpvwN4oUmaDCkb/SlFbh8xFs04Gd1+M224hUQpS9HR4\nrc9HE0X7qrEid+t9FB5Qtcg0qBXdwq8Bu3+c8I9cKHo7ziiSN90QXbzU/RZTRSmn1Pfb1LA2yVrG\nQ1ipy8oc1Mk+Wg8UGYuvYaVWkNcUifjfqoMMGipit074T0CBLPZ1fXvFdfYUhT2AxXmT8HjAB+J1\nFHWenuj+rbz82Hd1v+xsbkrwPcy3igquSorEZiaqq/bhDOhS9F/Mcw9q2+MsdbXwKZSIEm4WygDG\nZEbnROQbNr5GDahdlRNOzJfjlJmRva71YYmHB2LVhltmQWY4CxdOkPDqyMcFQssudX57eY3ZCkGC\njz5Xbe2n/9sPjDHG3P5NcRkERJb/7k9UU2+I9t49EILm+TMp79g1zYkdUBhBWe1d9lGtgnekMFPE\nfXao67ZmqGfU5b/xAuWfUP3abpW57hDpXrqKQm/O9b1nf6mMQ4MM7PFb99Sfx+Jo6KPu8dZ92P5B\ngUyvURBzFcWOchSiswbCgaLiPbKA/p4yHmXWYFiU//Zyat8ErqLJR8qmPbpQBrfW1NrbWpqLE9RR\nvLLmmZ+gDorK6BTJOOdXZFqp676JeSDptl/TOsn09N1aIIb+XE48E5c9Rfrf+br6PqHPvafiq9iF\nLf0WGblbnnzwySut48LHcD4dqO2VhrIzLVQqrl/Jd1v4G7xjzYF39xg7GPWdPvwLcCaUCnApdMjO\nn+nvW5bGbDzSfe/uwr0CcuRsg9IJCIwGvBqzlebgMWp1k09/ouvD/1FiH4n43LiBQsRc+9FFR2i5\nxRzeprfZn6hL3yxBrjzXnrCGE8egLjW7hfrTQve7Rf9mVyBs2O9mcK1Um5rT66W+lwl0f6+u9nVB\nl636QrPtkoGOD0mp39BeoLby9NWPjTHGtE6+aYwx5gjlBGuqPSsAFpIlzRnBL7KwycSS7RyAPLLg\nRGiV4Z1i6tr0L4tfstRATxKlN7g0jEVdeX5pwgAeHheVsyzZ4HXCkUUWfaq2LOBj8+FZyFeVUd1k\nlHGs+mrbfA1nQU5tsY3WwGaiPpR7um9IPfa+A/8G9/O78vXLHtwwnUt8oc/tFuFUyWs/2lZBMaFU\n5VLzTjONM1H/tiD/ynCSWTX41FAwcye6z2//h0KTnd5WpvPh3//vxhhj6jWNxa07QlHtuvr+x1Nl\nVJMxuKnZh8qCHaB60vhE+9FFqLOCvVZ7OkOthZ0D/X+yXXlNFB4i7YdZFGXmZP13QHtcwV9UAm2V\nC+EPOYRTZi3/OT7PMZR98m3tWVddve+vtHYX8OgZY0xvuTRxEZ4RlDOsHEgqEC5BW2suQC0k90Tj\nO6jpwXj7LXEX3C0zZ3PyS9+THzIgucoNEDxw0ixQEZnClVOubU0GDsDeSK/7dbj92GfXXT1LogHc\nTFt4jeh7A18EKJ7YIAQNqFYDYsQBgZeclxLOgXDA2WSjZ1OZXGT1rvrUXH453iGLsWuBRCmAsChx\nprLhnurkQSUZ7QseSjfJ2vYj9WfNua+4o9c5qkEJqizO6bouCO4CvE5TV3P7GGSKieAlAp02t/R5\nZwPPUcK1QLvXjs5q/oizH2i66oI5ylwNzzSXr4aa25l74in65qnG6Z0jnW1artbgdnlmjDFmBMdE\nMsfyIANdsv6mobVqj+WfYpGfI8yXeKzXIiiuDfCyAKSRB/+RBa+fB9oiBFUcT1l7zmv0gh3nTYxi\nncXzbg16zE1kqeCwKIFIKvJc2sKDdyOLUXSMNLe3KBu2UILJzLReuw5o2I3G6tFGc7V6yRzy6Rt9\n33ymaoA+vJIVEIiNljhloh4cjgXNrcGZfPIY9FEZH81i3TeDstmU822eM0HtSO2soFT28Frn5OfX\nKMzuaqymcFN+/tfaF7KgYXPs54stiEzUAteAcVu+zvE5kPVVfhPFAIyyG83NAUjt2SvOwc80dr1r\nnRsrh3re3T8VL1TYUvtGKAVVTkCGg5Z2S5rD5/zGC/tqUMzZsP2J9qDO3+p8nf1Ac8Gd79MvUK1Z\nEI0ge5qgAfsgEG9q3oH8uEVZcsW42SBhl5zthnO167Kv90u+zp7Zkvx7dMSZFtR01NPnAsbZcXSf\nPKpWk0/1HBvXXocACnbNTMYr03mBmuYciJmDel5dc626D6IMDqY2ZxZnrDFrf6ZzVmZwqu8dgwYq\n6Fk0Ac3frMN/eaB1HIN6tUHKOJdqxwqUllfUb5ET+IMifvN9ca61MoP8pXAi9JUPF2Strs9V4Y4p\nMueS/c+GZ3UB4tkGqZ1BjXnehpfnc805E3HuRP2vCHrp6IHOAomqc57qgqcjrdnFK635fOtXP29S\npExqqaWWWmqppZZaaqmlllpqqaWW2huwN4qUCWBlt9BMb6JmYRQQM9EQdY65IlPhgHptsoeFmqLI\nJf7e1Mg0z0HK+IpM+XC7zGIyEy/1t4uCUIXo8uyIGlYi+N5YmRX/GiWhHX1/FCvSN3qkaOyzSJHB\nwx8oY2DdVvS2kFVkPaQO/cUTRQpv7yiitvIUgRzbiu5GBVj6YbdflBWdrUWKBOaonZ5NieQlzNkZ\nRfpz1HvGE3hYOorsWaUds7Lkw7xR2/ovhCJIeGxyjEWlrrHY9eTDC+oGPTgGvKYi4GUi2d4cjpax\nIrMNOAtG+2TqYGOvLxQt7TdeZ/RuYt2XijJ2Y0UtK6CAdlDnscf6e7YhK4VmvFVC8WSsdqzG8sWn\nn2lMzz9TTakP2spA05NZAAAgAElEQVQ/Eev6b/7Bd/V9kiIPHypiXiTbfXCk1/2VPj8agLZaE+JP\nslr39f/rjvzS7ggJM0cZoJNXPLRMfXcFZbBlhD8tff7iQq+zjtAcywtF4nPHmkO/8/v/Qu1H9uSi\nR5Q2Vv/XZF4iGNSnc7h/GupHDo6hzAblmQQR80jtnsx1301bn1vvyI/5h5ovE2ABS8a5QZw3UwCZ\nRb1nwJr0iup/QPaqBIdCiUzRhsxDJYZ74QZW6GouR6xzpyRfrlhPRSjn/a2yDaOJ1unhRuu6Q4S8\n+lQ+O4IHx9tVX94fcoEj0Ai78tW//xukx5nSYxSs8iX58HTvfWOMMYMynClkcucrjam/0ee27G/r\nmXySh0tgSW183dU+MD3QPnDLTri4tH0HTrLfyXeFgtZwzmXODVHuAaljqBuvwIc0mqMWN4MfqasO\n2bDEL0F2mDk1vHTHpi58uQAtQX1yr0Mm0tc+WQnUrhU1td6WzGOkfW/DXvFWSfv3tKTrOjNqk1sg\nZiLq8W3m2OjLZbh3buv6vT1qjvdQU+pp7uXhCAtBCC3IdEMhY2Jb82vF1LRC+WXvRJ9fo4K3IKFS\nAh3hBHpdTBLeK/khKqpfERnk2Bubkgfib0l2G26uBSoU2RkZykyiyCdf52KNuT8kg1bVXMqCkHOX\n8JONUbxZah90QDgWUcbJgYC8nMHrcKE1c8Uayazk89v39Oyt57RWFhn4QRxlvXwydDM4cQbwNszb\n2ifrJdRJinCAFbVm7TX7yk+07xRz8u23bmvN5qf6vDWHF47a+/qxMrveHfnhfvtD3Te4+T5ijDGb\nEajTQM+9sI5yY0B7r9SeoA0v1Rp0xwMOLRW4B77QmrZQcCNJZ1agGXJZ+C5Ajo5DjWN5o35GdThy\nehrnfFt70CvOJNVAc3XE5nZy/3Wd+nv/8XdM/VioBY+6+LgBwvGBkEbzQM+t/p8JNfYMjoblZ8qI\nP/tUym3rXY3v3l2N+2GkNdQJ4ZLbUfu3HfbxAJ4X6vj9fmBypP5abymbv0fbOh2d5xbBmfrMugZg\nYbIr9vNjzbUJqncWczoD706ZrPKqrrZZIEcWIEvMC1TUQO4dnGispjXNxev5l+O5u8v3XzzT+c+h\nr62vau2ZPnwWQ43x3hA1PM4aDug225cPx6AlMiB//D3NoTmqczsoH/oorc1Z+00PhB2cittI+6zl\nqV8uay/mWWxm8FLY8sPckl8LNe3DfqC5NM+hjgcCcJEgjxx9/wR02Hf/6Ld0Wbi/LgagQuApuQWq\nOkRRLFE5asCD0UWRMo8i0RL+FG+pdpTKKNkME24xtTtLpjyG22xUUdbfg6MngyJlDAK0GDKhjDH2\nemFyIJXcGkirsdqTQe217oDkQs3lo2dSkozyd81NzXG0vlYgnDP4dPQCpZacxn4HdFImVF8r+xrb\ncMAcB71f9dWWNj7NV0HNj0Csw501mWpNWVX5OoRLKuFq2QPNlaM6oQ3HXxbFwy3n5ibZ/M0ApUMQ\niPUd+aDMmFX3dL1HnyUIbXiVMto3miBxHtwSknueyO9FOrOFD8+MMcYUD7WmIn6zLUB7ZVFmLLPP\nnX71O/LL1+SvwZXm7hJepz5cY8943lQAkRXboMSe6v0TS+0p8Rvr7a/JX8Vjjced73zdGGPMit8X\ngyudkRZI4Prs27bhNxiI8Gxwcy5EY4xZeOzvVc25YKE1tBzwe2wPDlBQdV/5PfEWhrHG4+yvNM8m\ntvaYOvx/4QHn7xd6PvVRX9ptUp2yK/+uO69RZMMgY16+6ptJX23af1s+3kGlqHQK2rKuOTYvau59\niGpy09Xnrv5a6qOjx/z2OVcbqscag50D7SsRsKgplSwOv8+rnuZeBqW/y/OE8zVRhdLcGj7Vup9c\na8403pOSZAm08AquyR8/k09LBRQHi/pNeVjV9etwbW3gBIyMPl+dyDd3D4TCerpW+93nKDQG8MCB\nsMuD2PT3OWvxPIs7CbGU+unltX/+MkuRMqmlllpqqaWWWmqppZZaaqmlllpqb8DeKFKmRdblBK4C\nC2bo7UtxBzxBCcKnxqsOa3O8IqtWVoTKQ7EmIloKebLpE/kybUW84goZ40SRJ2GlbyoimLDo54m8\njcmUdvf0GswUjRyiKb9TULRyP1KUt1inBhi1jb1jhWnXOzCUv6Kur6QGFgrKrPx/7L3JryRZmt33\nufk8z+5vjHgRGZGZkZGVmTV0VXV1Ud3FJim1ukkJXBBNLQRBC0l/hAAuuBMggCtCEAhI0NACCZJq\ngRSlFntgD1XVNVflnDG+ePPzeXZzc3M3Lc7PKgQBXfVyFRu7G8d7bm5253vtO+eeMz5G5bmq565w\n4LgFa2Kc0xk5u1IUdoTmRPue8jUsKR8jWCvZ4TMzM8vg0pTwVpZY6JrrqfQaHM58F6uqkwzoxoo6\nuCJeV/QVNVwQ6a9dq67dpM5q5suKhm7RYZiCAKQ6KkONM6xXMEPqnLW9aRq7oDqf/ED5x9FmB7bC\nnPPH1Wv1kSUuTBPO/idQ2O6DLG6yqusGiMHtX5GGTCKh6OuYCP1ipnoogULlkpylNVD8JvoXJT0v\n+wRV++dCANyioqPNts5fp19T/qogvEm0GPrXqKc7x2ZmFuAo0NhTn/xCWejiOa4YuYb6cuPNd83M\n7LV7yv+zCxBZzt3nsyE6j0PMBvZIGVuSuaK667X+LqMFUYqrTxZbimJ3kqq/ZFZ9uTXTdemqfl9C\noyi7o3x3cfQJNQu8EfXXwl3g5+w46AdzGDI4sGUaut9sdXOEe5wQmhBMQPOzMFEA+083Qn8bSxTr\n14qgl0H/p6a2mMRVFxvGXepUbd7B2cZ7AlL3GUgs7KQ080x5dKwicdZ02tF1UxT001uNlc0umllF\n9V0PFCcFip6+grVQV5/deyD0Y5kWupOE8WNT2hStgC0OYGnsJpa+UK3buFC4IKkO7LhFUWMkM9O8\nWuf6N9LS8krDZBl2cc84EAWk21VfTIAyHeFMMISxc7TRGKq00Jvi3PKzE9ylOKuLcY+VxpzHBpVz\n0EuJZSmng8PXfSEMdRBgt8K8eMNUQkusBioVZNC/wCnHd0EROSvtYgkUoAnh4X6Vwe0OsNDWgfr2\nGm2I2ZC5B0eLBVpimbLq2a2pfbYg3SFbxYmbrdBNC3CW2aBnELofjdAZSgXKawHNraTB7kSvIc0a\nuIQpkthwTjuhtmnvKa+p0AUIBmJ8rLKUsyB0ZbRQqprvHVD+EPmNj3C8YV5egg6dhGyokfrwOqP7\n7pZ133yJc99HoS4I2jn01dFIdbL3QGtrFrpS57FYqRXmaX+t+enul3Vd5gCnlDsqT3WgtfemqYIe\nRb4VasFozK2u1aZzV32ms2Jd6sF6eq7yN18D3a+qry4WQg2XA7RzQL4DnN1WGdyoApUnUYPpyLpw\nEYf5CQKbGSpfMzRmCqCHL/K5n5fh5MMre/IUZ7e6fp9rMRku0ZQIQn0Q9Zuvt47MzOwMXbzxp7Rn\nX+vZlPxncFTbdMg/OiD1lvLXx8UkqKlvx9JtizVgFK7V7z/80Z+qbk6E8uZgUnhXsCoXQmJdWJU5\nU94XRVhdS8ZRGnehLAyRhco892Cc4ELUORXravfXNO63B7hrZFVn8YVvnyedPPmhmZn94L/7PTMz\na+Mws9/8L/ScO9Lj6SfFRuilcbZq4IYJOzYDyyzJnsUauLJdMR+gMRO4IatM5a4s0WAAnTcfFycY\nMPEQa6WvzZahvhPstZLuu0d9nbiax4M661MXxvoRunew81z0RvxTjcHzIW5MF2rHJs+plvWcKxzD\nWrD8PPRHLlnn1md6ngerNxfTOtBmzzXvap0e4wA0SjW4Hw446PUlrvX7dUn5XaFNmWUMudmX7bt0\nMhZDaydzhWNOnuthVThZsdGsr3/sQ6TqH97cyS2RU5mzLd17jPZeNtSbw6UHoyeL4XSIgaEVYdEH\nA/o298vdEwPb7+LkhZ7mczQWSzgFxmEaF3LqM9OmPpdj9OsKnBZYqC6ocqvAvr38mdgEswyM5pnm\n+cDUJgOYkA46ne5Udb3KqM7qOfSdaCtL0xYu7CXWeEurHM9hhFfJyDYG026oPvSzS7VJuaxyvdZ+\n08zMGnfUh2JD5ic00A5YYysr/f/0x2L+XR6rz7z5m/q9D3svzrtn/r5YEbWEGIUnc83fLmzX0gAt\nzqae66N5k4L95YZOaTdMMS9kf+C8tuD9pce76gDmEGyU+0eaW3ZN+R788z/QjUbon/jao7kj9mRM\n+8EaXT4fV9esxtqy/FK7cXTtmdfb2qaCRqCj+elJXGvG/FJ9YuVofk7jgFsK1LfaSdVF8y7vCA2t\nvZknut/xuZglLZ5Xv63f3S7rejfHGLhiHMPyKmVwcEX7JVhrTYsP0Kdcc92B9hS9UI8vdOf7kvpQ\n7EBjaXgt7cXMHOtD3OdyOT0n72gv8egTlTfvqbw5NCadFqcDrnCunPFuXNP941n0i3IwO2HsNfa1\nv87cZn79K1LElIlSlKIUpShFKUpRilKUohSlKEUpSlF6BemVMmU2CUXgFoGioM8fobL8E0Ub83cV\nM1rl0OFASyHnKTKW6+q65YQz+RlFpgYbRcDuoXEwwXkoQ7T2dlIRseuMorwLX79vJ3BxQk65WlFU\nspgSCnSOC0B1T/fdwSVpiXZMmzD3D34iJ5+rE1SeOac/wunitWdC3yowXQpoHFwVcTs5UfkmOZUj\nFuj5Z2uF7NdEaeO4GGyfKpK3RWsmF1dEb+OpvLmUmQ+SGWR1712OuW03oLlJRaA9lPf9UCsEVCG3\nUFeZpdRGs40Qs0Y8ZKCoDA4o9pyItTfCseQABxZXeb1pentHKM6PX4AC9Xl+UufSK3lFWxfhwXXQ\n+hrsqWVe+X69oCjlhrba4zzhBjRqcIbWwliRdJcIc3tfz1/EFHmeDjl3DNLYpi9W3xNjJYlCfwcX\npLmnz1VK+WyC5qQ5M3znriLzMzRrLpfogKBZcHkNfJNSO9XuK4Ifi6ntjy/QQHiKy1Nd9TJOq74W\nc0XODzNHZmZ2zXntJloM/kp99BoXq1RVfS4F8lrFmWBGOTdow3RSGrtOQveb4lA0D1RPLse4XVyY\nPBCcCsfbk3HVdzKUQpiA3OT06Qcvkd9flt64IzbSugaagZPA67jnJBecQX0PrZQ8ZWzr+xpsgyAJ\nMptWW12fKVJezKtvJWA3rXGOWTNmNjhnXaNflKuqTk596A0xtBNwJAu6OOCUFaF3NrCLapq/cjvK\nXylkSeBccxeS2XggRGCwVV2VQKLXPK9O2203aATQJiUf5BgS0iIBEgtSuUqqz41X+sxdqRETVZxk\n+mJLVMuaS/zneu4JGghFHHuWIKVJzvyfTdVXVnnlLz1QuetJjZVCWb/LoGpf2XCePa52m74Q4jys\nyPEsj1tKwRPr76bpBO2I2UxjIgg1B2CnFWGhZGDfZXBZScPiwAzFVjF0nRJo94SskjXaFiHCn4AR\ng/p/N1D/22ZwwUInIABVDJKerWA7bQLmX0MfzIdhklPfc5nHA1hi61Q4btTmm5nu7WxUhy5snjg6\nFnH0eXx0Ezx0F7YTXJjQbtn6uASRRx+XnUKX+RDmRT7U2cHppZHU7xdokFlea5KbVh/3Pc1bsQv1\ntXhFdbldwQwB3W4nhaKdoXXShT17e1/l+vATtelv/N1f1e/RPhh8qrZwip9vi7M9V31sbqlvVDlf\n7+Fyl2ppTd1MdV/PR+8ITbXsOQ4VVdB5R2OmsNR1HRiCKfSj4qCRyzoonW5jQ/SNdmDh9ek7ZRx3\ntqZ1Kaflww7XLxmoyeKOTT4WO+Qcl6wVc9Ynjj53H2idOPzaW2ZmNoIJtXtPOljFuhDx3jHze0fP\n3xuoX7Zuq516fdVXZgnTaVf5nSzD9dixGuzKFysxeGML1VFrV89MjZTH06LG/xQ3vTrMCaYLW6Kb\nFORUN1UcRUJnl3Sol3AqrRfX15q4KoHIolvRhbFTTrNPOvx87F2np/wncsrP269rP/drX1Td9Xt6\nbrwPwjrBPehAz3fR/0jCYk1X0BXq4woK2y1Axyg2Q4etBBM8qc81c8MarYIAxqOT1e8X+RBzpS+u\nNVfkpvr+Ci3CLetAucdcUlCbTrh/Faa2Rz2v0YO7X9DYjX1L+k1xtA8bc7XPymOdw00q3tf3pzM2\nnwvt5e6EeiV59jroX134mlsKPD++q7EzgW3R85gT28qHO+Q9YMMeBBZzY/mSKbP1Y7ZgInczsHNh\nAK0hXgYdXX/76+qfxfdwdcUhzX7PfmmK7ykPmzFOV4+1hs1Nzzw4VJkD9MT6A+UhhpPNeqr/z3Ka\nJ8u4Vc6uVGdrNB0bu+qL5RnaXiGTcs3+m31xfKz7z9YwM2CHZmEL59mIJca4ptXR1eGdJ1HCSWvM\nGg9TZ8Seo4rT7QHr1imfPnp56zkugQu0tlj7Z+xrq7w3pGj7mZF/WBuLT/Wc2aXmtW2Rvo2O27CH\nOx4s11pFe8K739Q8l8ZE1dlqDI5Yb/ZnONWu1Nee/pG0JpNfZG+GREwaHasAFsTS0fwbT6udOzjz\nft40x+U0zh5tzb59i4tVMIaJNNbYuf7+sb4/ZJ36v3A+WqMpxx7reg7bEMfNckFz8JL9dT2n8gxh\n6piZ9ccDW9nE6jBXnAaOXbwj7X4NPZ/b6gtx2mb8I+2TB+j1rIdaxMq+8lR+oE/3QnnrL3mPfcYa\n/XqdPKI1Ew9ZoGi08D4+5fcpnAVjjCUvp3mm4GjffI1z7Wimsn/jv/xtMzM7MN3/B10N4NwJ7zI/\n4B03ob50WMR5DPdUl3ec1aXWxNQWl86Efr9hP7hhLxaH1TvHrXPNu+Mcl2RL/uJTABFTJkpRilKU\nohSlKEUpSlGKUpSiFKUoRekVpFfKlJlyjm9KRKzk6nOYV9Qy6CiatwD5zuQUZd36aL6UFW12J4oS\nFxvocZQVMVuiWbDx0Qzw8HxfcR4yUISsxflLz1DgbiiitVSA0FwO5qVBq55B9nj0HE/7K0XQHM7w\nxlCRTzX1vLvvCkGpwXwJz6WPn+CrnlTEcW9P0dcJIv6JE53n3hI1b3KOPQbKOR0R5SQanawpMueu\nOSPL+ctx1zU/DrIWQ7dmn3N8I3RwiqA3gBhJtEGyKP0P4vo+4SnCXQJJXZ2CJKIanyRCX+acYWIp\nFGx5rLwl9rE1umEqNBSx//J/qCjkgnPMq5Xuu+bs7S3U2WMJMXi2PCazp7peoBmTz6gc3Usi/9cg\nz+gW2UyR9DzRWBurL1pDbVQeKR8+7KVLR23eHCs6235dkXknpajxJA57Iw+T5AxF/3O5XpQ//L6Z\nmX39bUVzD/dV3kpTnw+/9i0zM8vhRDAuSM+j/0h974Kz/vOF6ruBvlB6oc7fQ8V9UVc+3A5I7S2V\nb5JTX8p7qrflCISgDbqEZkQbXY9RG5X5FYhHnz7GfQoJoUv+CcwdtCX8HdBC3dXic/0dL6BtgxsM\nhjRm6Zuf3551YUzg/HEexyUoPGu/BZUHNffPNID7IHe7CHZ0cRJoxnA1mqOH0+DccUt9qQFyuQN6\n4saFylS/pjobgUTWtqr7JIUeuMwrfbVNUFJf6E/E3MhcqY/l0SDoTvWc4kx99cX7qvOMj5UL9ITj\ngcpRudDvrxK6bjVi3qPcKdgUASypJBorC9yNVrgvmauxMurpdw6uHMsuiHZH81K9gT5QFyQEt6pK\nTHPNI1cIysI7Vv00Qtc55XNCOSePdd8659R93IzyoG01zkOXyip3gf+vYUTeNN12jszM7ADntgBU\nzWOi3yLOP+7q795U/3DQFCqG2g+M+WSg/F72hd5lYDwFMAGO0VtKxTV2Q0ZO6IgxRbMsFToOpTxL\n0WeGRRBW0JYtfXLNCKrgdJCBOZMFFVqP9enB8nHRCNh64dlxtfFyAXIJspqIqW8OmfayRcHGSZwJ\ncsybqfB+oMblIfljrUytcbRCC8VHT8dW9Pms6i7NuuKjfZUvasLO3dFz3Y9Uzr6n+fcctxDPNGZ2\nbkkT4Hs/0jyayGne7f9QrLXRc/W92w8+Xx+ZnmnsPOP8+0FKe4LmLc3HxRbs1ywaY2j7+KHryASW\nRknrROKWKiZElNN99f1hiTmkAJMUBmUfdtqmqXouwvhMgjRn30YXqQFCDhvuKnR4MLODRsGat4/M\nzOxiH40c7rtg/VmM9f/Rj1Vfy9dZ32Gf+Ht6bh02bzml/J/AenuYfqDrEpq3j2HhFWFHzGGNOY3A\nugs0UkAY877q9vhMa+b0TAw4J695o/AGa6ije3kgolkcYjxXdVpEuytF3/Q9+uYF7pQJ1fFhTdfF\nA/aJPe2Bartc3zi0z5P2Hmh++q3yb5iZ2du/I323KnoUf/qH0nnwfqB1KbEnxnV1ovw/B61OwDoY\nv9DYqKeoO9ijObQRYmgVZkINK1z+JrDf0i0Ymr7K01mr7dJoYPkZ1l4YNT/f2IIsZ3MwYNjfDtEb\nTOHMk0QnpAqzZJLEjSml5zRgYYxwU5ovNYacIrpDAxhMK/Zo+7r/3kSs32xNz3dxYAw6YivEPta6\nkPoS69VIc8NmpO8TMDu3GfZM6CIarDQf558lc42ZWXzTsXTo6hWHmYrGTXWmfJ2/0JiooPuyjCvf\nL/y+3TSVE0dmZrYwMTjeR0/tFij5aKTxkYblupPVvu7JTGMizTxZhPngL9TWWxjNSdyN/FNcmdJ6\nTtHXGBqjLcKSb3FYT3HWnOkQNj66RPmtxtAU5sYKXR0f9sAcrZNEGremjOa384n2UnHYSNkdzZeJ\nBe9CvLP46AKlsmhwBbqvx0a9PNe+dYq7VJp3HK+kfOYP9Pe5zFDtEF3QU9zoZjDoC3M9v1rRc84/\n0D706RPmNVyHutf63QYdkTp7tgKnHc5wrLzNOprB7SqAhdbE4WvDupsp6j7xz8mY8WCMBqZyNrhP\n5xQ2L45pKcMl6QSd1S2aa1mtR2F/mFzCiGKfXyjBeOdkQBIG7Zy5cRVa3ZnZyntipXbDim+g1YoW\nYAaH1m0DPbOK1gCf8EH+LekcZWq4C31f424Ew7lCG+eLyusCMb45fbl3ob4TZx++vtJ9w7Uokw3f\nHTQf1NjjjLYwKjfo7hAfSGKdG6AtFgS4QsWOzczMPdfv20mocRn1ld4xLncsB3t3dLqiDFPm0Sd6\n/n4L58dz5i3qYcq8uIHpXUZ3r1jRmJ97un7u/2IH4ogpE6UoRSlKUYpSlKIUpShFKUpRilKUovQK\n0qvVlOkqohZPhE5AR2ZmljtUhGocF9KQVpDZPKKFlYIiULGFEJVClSiyhxbBE9wwCFqucT2Zx0Cw\ncQtJwXbogTYmiIivcdfYohYf5GB5gALtcC6+v6uo8r08jgqc30819f10ru9PPlNkLl9S5LBAhK4G\nUr72FdE7mamgd/JCXNZtfX/1XOhbPY16fgY2xAQNA86H3i7oeWGjXnD+O1EvWA1HmU1VTJBNgJtO\nWmUbWog6wahoogEz0DNT6PFssoqs1jlb6SEeMiLKmNpDfyGtSPKY49pFooZJUK6bpnFHKLRb0/Na\nX1abT5ZCeTofCFnYOkQhEzq37oNylEagJjHl8yrQZxp9DyzmbUvkOYkOxIzz2R7aJhnQ+XwOJ4gV\njll5leczXDDaG84AoykQFHCh6CofX/l7v2JmZn+v+DtmZvZv/pefmJmZs4JOca3nd+qcVzzDAWGP\n6PNUrKyFi54SyGs8o3Ya0S4VFMoTnAPP4/jwBLGc0Rw9IhzIVpiG5AKYMKCQboA6Poh6gfPp7pYz\nzHWce9A/2Ti673VaUet99FDSONksfdVPEUpWijO5yabGxPjs2MzMfCcUm/nl6bNPoDgs9Zmt4EhD\nZNopgG6D2GZr0gAo3gK5XeP4gjPBaKX7xB11jmvcPoJj2GQb5S1048l3hcpfpNQnApg0H+FQVaWO\nc8BWWVCKOWdr3a6ef4lrxE6CWDlaJbGx7vtaCe0ozlH3ispvbqTfpUFLkvqZVRq4Pk2F7Ha2jOmE\n5tWZq3rJj6kXV/PHrIiq/QPO7j7SmPnoe0KX6q7y2/yGtAT8hMbi2FO9xze6fj7U9a8d6vvtWJ9P\nQiigJ8bNC+77Fur93rXq95OhnA8qzFGZC5iOc1zsgs+HKYw489z/PtoyjubXFefs86BieyArVVh6\nceojDgKdwCXA79AfYHcFaNF4OJbFQO4TgFwrXEicEBFCN2QV3mDj2hJXuCJ56PLj7EbPLCTrlF1l\nWQzRsxnC+AuNbnBZ2HI2f53Wfbcr7p9Ah8JHsybA/QG6UIW1LVYANR+obgDnbT1Dv2EGajZQWbid\nuehUhGSmRHgmHyZlDedEr8o8BZLnT7RGnl5ekH/VzRLtmuJtrV+LiurFo05HTzXvP/pDMQ/dF2qD\n4B6Vf8OEHJvtTnBPQsOhl1Y+CjE9v8Va28vDWFmpTzm+nrsBsSxXVAEu87GfUl8rZ6jXHdXrCq2e\nyq7yu/slsWu3aP40cLrYcn69N1RDX01hBrkvUfxHTz+1bZq91RSnMDR6YgKSbb7CzQktgviVxvqZ\nibXSTqucK3Tzsk1pppUWqt8ezj0N2L2XYzlmjpKsN6CL8W7atibU13sk16JOV215PFfdtnJiIt5+\nU/PyFpeyyRyWFRogOdiuSxhoa9hEcYZPfoXWE2u830Y7Bv2ExSLU5FPZtqXQzXNknyd1hmrja1x/\ndj/QvPoXf/TvzMzs27//Y+6r/H3hvSOVZ199ZcP1l2iK5YrqA6M8qHhXbT2FrRsfw8ZCj6PFWp9G\nE2fRV7lWObRSpriR0PUdWM1uBl07DMk2rBtDWNCGLmAq1E5hrd7gmJnBqm2OvWkCXaQNDkAx9CtS\nSfT6yrrfkD3HGNZbnjF0mtEYv4ZtcHCp537wTPvd1Z7q4/6vf9PMzDoXWre2SxwsTXNYYUx7D5nz\nQMjdEuwtdF3MzBbjrZXpN1McKDNJ7XE81hlLqYIuFyp/vogrDJpzN0kbB50a3ikKOFHFfe6Flsrg\nHEfXpfa5BXdpo0oAACAASURBVBz7VivmBVi1CzSdCm9qvFVZ+ibsA/OsvfORypbdAbWHEekzZtgG\nWxymSfoZbNAdmB4H7DPR65yi37SFIck2zzINtU1ugsMra2LqBeysvH7nsH+OzfScMSysKX2swlrY\nMfWNGrp1E5jrwVBtUNlRn1rgiuei7XWIa+hkT+ugA+t4fIHzGTpH1de1vyyy9+qiQbMZ4TIXV703\nvyrWRzyp+X8dGkCGjMgJ9cxC12qhe4cjWqaCbsgN0+pS7e/j3LOzo889GJRr3q+cNSzs72u+Xxzr\nd1lP149Tat/5JUxaWGw13l2LaGl6ngq07ao/zd3Bz/MSy8cs2N1YMXx3gRGcYm3qH+vZH/6x3kHq\nB7rn6Ic4Q8XRTFyortZDtUGpBSMR9lN9X31m9kF48oV9c0dtteJkS6msPhZjzxKjz67L4dpGxpl3\nXFj+KbQCU+S/+gxmzUfqU0crsTyrOGqtUjDQA1jEMOWWzGN9nIPjIVE6pXfQy77KF8Bi3g3do8vq\n0zH0+dYBjPOQ9Rb/xWyqiCkTpShFKUpRilKUohSlKEUpSlGKUpSi9ArSK2XK5JJ6/NNniry5oGGv\nVxW1rNcVUbe2IkszVPM3oG1VR9G+zELR0kVdUcpZRdFFjIIsHldEbz+v0NoZiER5wpkzGCj5GU48\nnFFbgfbnPiN6nVaYOIBN0OJ33heE8OQ4OzczNB2OFUnrd4SkP3qiyN3+QxgwnyrKeesu58df6Per\nkqKZGbQIrI1yNk4V/Y6Q5btvoA5/W+WZExkcc/a1VgFFdetWrCrPI5A8Iwo5IMoIcGoejJrEXBHh\nHVCSxRqkNERWORuaauosbD6nPI9ATusx5c0bwyIqwZSZfr4z/v5UbXE1VRTzDmfkM2m1iX9baMsG\ni4YqEXifyHeo2+HCmrAkKBTnisPo7QxXkgXK/nncRrZrXDNg3GQD3D1wCkhz1reE131YkbNQW2eg\ntrjEacDJvWdmZgd7XzEzs2/8WP8fvS/Uy5/BhuryidPDajAi36rfXIF8opo/xoUpxISuZzi6NNW+\nq1C75Secw/Z0v/wbQgZmILHhfWOgakm0CxITmDhEv2sBzjk4IDyDbZIFEZmjhzT9FZ0bb4BkzK7V\nXs7r+v/kXMhGq4oWUBuNhUWogfHLU+WW4N/xE437+2982czMTjqgPHPlKQ3iulNS2w2G6CqgT7Q6\nEWpyNtX/SzUhZocPQcs5c+6ASq+u9Pd197GZmeXn6uuthxKFinFue4Qm1YbxOgMJth+DZoXmEBl0\nKXKq8xxod/Oh6todaJ45efIDfQ/DLpWF9VaQdoG3FtNwiYbB6AJV+Xekw/ECV6PVR9ynqci/m1Uf\nLrXUx8sxXffZtepl8DOce26rz5ythNptN+hHrPW7E/SH0rT16PUjfV9Qmzofq/5ysB3ePRAKnz1Q\nH2k6+gzZGVUYlBc9zXsfvS/EdPTTrn2edPFIc8lyq3otJpXfw7buX8+ovDEQ1hkCK6uOxnJmo/Is\nQK88nCJyoIYJzlznE5p7sozGNeuK56j8OZzHgpD9sEbXK5WxHPppHtoDuSJsJVhNiTiMPvSOmmif\ndPuc70a3KAmTbZBGe6aGuwcQ6xSNgSCjvDVTKsslGlrDrtq0GBPCOMdRxpmpziaMmRo6cMVdXJ9w\nSkzjfBgUQL/yKvt4rD42AYUPYK9t0TZYrTQfTHGiSaQ1OMq0TW0fTbGB+kAeJtH1YzE8DF2Myjsa\nC+lKCKfdLGXQRDC0a1agXB1Q81Bnqg2SmaqDguHQtRjp91kE7cYrjfV0WnPAmjW5jb5cUFO91foh\nCqjvx5ew94Zqj+wcpitabyXTnHB4XyyT5L1/7+dl+N3/+j+34x/rd4+/I3aKd3FsZmbXHgyijdph\nCDNpy7pVwXXl+pg+PlI91Nn7uA6OY+i7jF3t0RxQ0gzMpiEsZCdbtOWF9j9b9Ovy7Mfe3tXeofqt\nd8zMLAFbt/9MrIHnF2JM7KZhceFe1ETbJIH2QPkudXatOg+ZxHug8DZgI5jSGnvIvrPIZ3dyc6c/\nM7PTZ6rD0VTMxR/+udokh0aCi65HeR/tF1DusxfUYRcU/0p1++A19P0Y2zP0l+Ip1UuA/kV/hZbO\nmyqfw1q95b49T/voNO5DK9inkx7sVnQ8DLbAZKp8hMWvs/dJFFVf6aT6bnGt/89Laof0FtZ0U2PW\nWWv9OMA9b7DV+peGXTy/DWvK1xpfxEVq8ZHKsZop/4OG8je6Vr7f+uaRmZlV3hFz/A/+4T82M7PG\nXM+982X1/UPc//ot1c/JM7Hm6hOtg73/Dzl77ictNH8KcCft4pZSxOGo8UCOZMmy8p3CibTp3Hwu\nmb6vvvAYllP3ezDJ0d5bo+GYxS00ZKAP0QC8g55HDDbTGu3AxGPYsnW0vGCkZa/1nBHuoQlchRZx\nNKhKmp9WjubXFfv7MeziODpnsTON21PcWhfbT83MbPdLcrdr4zjWgUGYYc1P4HA7Zf7yP9Z9M8zf\nC9aZMmvvOqV8udcO5ccNCM2TeEx9c4pOEIaGlsqqXgboRu01NWfs5lUPs6nqNXOkvro2dFDKqr/Z\nTG3ehiK/GGpdGcNeCIra29AlbDfUYTKV53Kl60sJPddHWyaJJtpq/lK/6CZpztyQOmVfvK85MV3S\nHgK5OWsVNMY6rq6bsLcq8Q48g+IZrEJWtv5OwjLJMYZHjPE52mexyksnoHQqblsnYz6agkvcz5Yr\ntekQF6TMrsZnNqY+6F2iF4d202bCu2FK89ra03WDBLpKO6rj1XO9I2Rhgy5gAxep2xzz2MJj3GWV\n1yUnZmJFtc12yXs57x4l9jyblfqmXbD/x9Eqg87nrM87U09joQ47f77ClRkH3GKReS6ptXExU993\neYeq1tHBg/Uf26ocCU6+TOKaF8mWxWK/WFc1YspEKUpRilKUohSlKEUpSlGKUpSiFKUovYL0Spky\n9rqigt/8O3/TzMweXykKvDjRmdzxXJGsUhX0LaXrYyNF8HogsomCoswVVPodXFjctCJ1QUuRvOVS\n1zevQQ33iZRthGxc4agwe6HIWlBQxGsMAyXjKWJWWCoavSS6up3jjDNWFLiWUpS2/J7Owv7a73BG\nOqmo5vUjaSVcPFfUOolGgrdWdLoDAFwrK39VzrjOm5wLxQEpWVHkLguie9nX/XYdIQSGK4Hls7Y4\n0XdpzsVmQbcXniKyxhnzBCrrvRguGmvVbeimVAB96rtoj4xU18uCUPx6WSiXj06Qm8L1wdDrOQgj\nzzdLyQaK+ycgwqEy/kO1yUFedT1An2PRVxtkOI+dxvHBCgp9D5eK+hZAHDs42QToCA05R2g+Udqi\n4pYT2A6LNM4NW87iL9VHJlki1F3OFzZx4MIJrOzS9qeKsn7ngz82M7OL71Hv6JQsQUa2RL79LOyJ\nIW4pkKfcpdqvvlJfnoK+F3DgiuGSMR8rot5uf8PMzC5xQ/nJnwkB+XJW6FVA/azQoNluUMHPCp0s\n5UG044o+P+8zNl4IxZvXVK87tzQm+j9UeffRMUlnQGQaODqgabRGzX8TVz9xQdLzldCn6ZenBhFy\nF42R+ZXqJgH7yc2pLicDIbZ7pjJ7qLWn8mhBvdAYuQ1CSJe1BU5RbY4Lr3BSiYN+b0Brknc0Fvr0\nkRyuE+eOfujOVUd3W+oT5wnVoQcjpc549jPKfwAqtIGlNj1Rm04/5qz8Nzjb2v2Z7vNYCGHlruaH\np59prFz/RG309R3Nszs+rLeE2nL9GYy+u5oHv15Wftxr9EvOdf/boPy1uNgAFz+AJQYSOsUe5PUv\n6PslTl2Jruq5nNbvL4vUL0iLg77GqKdyDzvKzyEOMh7n7JfnGjtvllRuH6eym6bbtzVHpZvqJ4Ut\n5UcDJwbyMb2GjYJz2DYFS2EMqlSB/cCYjTFmpiEbEOR3k0RjIQ+jZg7CjFONw/dBaF2Uj1kK14pt\nAa0l3I9KGZwI0HHwz8kL883ruC24xzDrSvRp0Jspa+UaNqnBsPOmIKvoKyWznPG/RhcHXYrzM/X1\n5p7yWsftLhfDMQbWqAOav0GDZQMyGqRC3Th9zkLmYRxUP9DzplP0emAZOZzXLr2pPlCLa9797C+/\nq+vPxA74ZKn7fuWh2AVxLM8Wyc/HgvAXeu4KJHWNRtdmqnwsTnHtg9njoAGUxbUjC1vKcJRczTX/\n5muac6pN2gWW24pz+jPKO73S393HaOkYuio4yRXR9TiuqlzJZ9JyGf47ff+3/5t/YP/s975jO3f0\nnOrXNKZTiyMzM8u9EDo5fqJ1+oI+H3+m9dMDRSwesv7NNFeVCspXUIDxiL5LxkcXKUU7IjrhUS9O\n99JcdBOWMfX/McBn+RA9jDPc5TzliSXAmmh8lJiPklVYUjjTBOhzJEuqa2esPCZATt2V5uEtWlW7\nBbVZ7a766vVS9zubfj4diL23xNyoz/VZw2Fmcqb1Y3EXJPWO2jyBJtUFY+rkRCyv5n3V7WRHi/r0\n/WMzM4vD/ro7UZ/4IXsoyAR2FtP8k3qO5gL73hk6T8uCxmCJPjZCF66C65I/1/wZx72v5MO4bqJ5\nNdH/y1Xl48lK5SnhgrKC2ZfA5chAgge4jiTQ9Bl7yp8L4h5MNIZfLENnNvW90oHqIebCzk1pvTr8\n7f/YzMzaR+rDT/b0fnBrHyYq2pB9WB3JnOo7NJTZewc3pecvdTOKRc+SCF09m+rCNpuqp2jr1GqM\n6ZH6z8VA62oe58ubpEvYXHsfqo9mEPLJokHVgiETwPJxplqLctBmWwfsS6GIrMuqu1P0e+Yd9hRT\ntc18g6YJtKD8XZxjcKhy5+G7jMZSeU2fL8NSKKLNiEvn1SdiHl4HGlPtb3H6oKH7uh98pOfyPlCd\naI91gINir6axEENHLjdRuXzWoyXsrSRjMEl2HFgNRfTbJjjMrnBJrf411cPQ4VTDifYKnYT6WCyt\nvUcKlsOsoL5kuC+lcOjd+qrvUl35WePEyGEKm6NF83yl/OcdGJLomrgx5jT0oPbZG4zbL92MbpKC\nBU50H6FrldP8XG5orLmcDinUVR979zkVEuogwjQqjNHgqYR7GeVzA+XH44TEuqMx5K3RqMPV1cws\nqMat745tn/nVu8alDL2ih9+UQ+xXS1/Us2GT/sW/+h/MzCw/VZ6HHb3fOrw7VgrqM4+eM7FDgm/e\nh5GD/tsM99HcnsbxdU/jLg47c8KeaFtEXwcXz/SQ0w5d7QWKhVArEe2ub0u3s38tdtDrd9ENYv+9\n5dREDlZZDK1BBy3HxbJDXao85+gtZfKwk5uwpFbqiwlO2nQYY95aYyhdFLOvVPzFOncRUyZKUYpS\nlKIUpShFKUpRilKUohSlKEXpFaRXypSZomTdGQshqWdBQB8okjX8RJGm6YVCa/tZRbp8zgzXHUUX\n+9cgyS1FSzMJzq9zXq4BctlNgjgc8D1IcQ73kwHOObFAaNBuAQeePbQi1qhRO0JcnX1dl3MULc4g\nqjytCsFtFBTVzd9ThL2F28bzrCL9g8YHZmb25FNFL9NoD9TniiBen+n/2SZIM4h57rb+nqMZMQHp\nKaZQCG8pkpfqwDA6DWxYx4Fmo3v6qMNv0VhxOAftVQlZwzqIcyZzNUClvMQ5W87qz6acHQX9nW5U\nJ7dTimyPQdHXJ7CKEjfXCjEzi6P5UgPB9DnT33muMpaInsYOVL6kr/K5rqKT67oi3cuJopktmBrX\nF8rvGmRzcKny5WDShC4igQlFSt9WX5h/JOQzaAmhqDrqQ56LGjoo0BBkICipfnIojG+ecKD5Fm3G\nOUp/g9bDSvcZE+lezhRdDlDxT5+o3RbojVzlYeqY0KBUV+UaznSfHjoYe99QXxx1hST87B/+vsr9\nWAWt39P/A0fMmOlIfXE1UOS+UJYGTAEXrtoX1EePj/S8X/2db5mZ2T7Iw3//sZBsP0HfXpF/nHsS\nWSFBO210VXAhKIEUbRI3n5qWJeU1NVDdnHTEAsrtaNztvQ66lFQf6YeMh1NFtDd3FZlfPkTBHyZa\nMATt91THVbRell1Fzmv39Pfbd4WYPlvo//0PcEXbU92m3sfhIK66SNSVrzhuFwvaeqcOioNTSh5G\nT+Crrq+6PzUzsw4MnfdAz1fpI90vpbr8lYdCNA7Lys9P40LTq7S9WwdRRltmW9Pn+ilWAw/Vlg72\nHT2Yh3t3v2pmZpdnqo/TMdpWD8RO2HB+PFfDlSohFObiEW5YFX1fGIL2zHGjquM+9YfUa0bsuMa3\nNM8+PRPDKaDv+IfvmplZ/RY2UzdMVc7VuzBW+ms9b4b+RWKiOaUWg51CvfhJEGTG2iIBm6zDGA1V\n+eeggTiNZWBTxECoUzldP8UiaR06K21xJ5jFbIXzVtxVWzbS6mNZnLs2aA5gvGUxT3159L7yNjoX\nSpU2rUG9Ci4/bTSlBrgz7OLellFfGuBAkMqiswRyuntXWiWplFCoBIybGNo1Q9yaYrjXxXG9G6fR\nBvBB24Yw39Bo2aY50w+bYR0DpUL3qYCGiZWFwOYz6D9cg34911pfdjSvVd7BUe2B5uOffftHZmZ2\nC52lm6Yt7I2t4XDYw8nhU5WzAxujmkZ/Cdacj/bBNo/WD2ifu+L8OH1j2tPvVkPdxwftq0xV/3HW\npWCM/hJMqTzMoy2MqcmpkOou7imTbKgm9g/s8b/4Mxu8qT3GLmyNfdC5WEv5LLnqH+MzNIea6EYN\n1K4p5uH2PnPMmfKRoJ/E0V7wN7josY4tYQNuPbXTuLCyfhoHkR76deyb7h1KX81HG2WC+04w1to6\nw9UtCYuoPUL7AyevOXuJ5bXGcWYLu4x9pW/qO7swhvcy6DSgaRNHQ6wRanrdMM1gL7noJpkDpfIB\nzGV04BK4cl5MYag4uB+9+7byQz0ML9Xmf/xDMRLfaWkvli6p3Cn0RPIPVZ71idroxVj5v3PAGEAv\nojuGkVcRchtnf7thPhvAJh7ASrj3K7DoyvTRFzhr3UeDZ6F10zX0OpJowhisBNyLfFhcPm6gcQcm\nJHNYHJ2+co+xjIZYbsy6B6t51pT2WcL0PvDC03qw8x+pz735t/4TMzO77Gk9/OkTjYV3DzQHGNpD\nPfQ+rvyXrNtlumIbWOHZJSzePZzUYCu00eLx0JQ5+f5nqof9m7t0JdlDbBqqq1tHqqt2SXWywFXo\n4lPlfQnjLJnRM/upIzMze975WDccq27SMEIOHkr3JreAidjBDdXR5xItqHAblYNllk6qT2zYf03y\nKtvrX/11MzN78Pe/bmZm936guvzw8bGZmZVzqtOktjCWQDfo1pH+332h+3T7PD8HoxNm9iqJs9cA\nZoyLU85M68oYZnoTV9CZhrTZY/XRwQGaNF8/4vfalxrs2xjvPkVYwIsdzVNFT/N/fld9bsL608CG\nyl+H7nK6z5LFvAkJbA4jNIH2SwfmShk9uTx7BT+Ozqn3i511/v9pJ69+8Yj19PkTveO+mdH/z8+0\nf796JN3Ccp4x09CYd0LtuQwnAHhPMN4PAhhAq6fhSQJYb3u6f6z2km08iSft+mprsXeZZxbqK8iZ\n2eAztcWHpnHTu1Ce5n+ieXiLFs2aNl5OVLe5b6iOyrC9FjDXtgnlvZpT3o9h7dbKmseed1Wn2R2c\nG1f6fsx+qkBdjGa638ZDpw5mTxG9t1pM1x/cF8MngAUbcJqgj/tmQF/YhmxknzqrMXbWvAvH1Be8\npubzZUrzgrfFUXKhvjmYaC+2f0vrWOFt2M5TTm/8FSliykQpSlGKUpSiFKUoRSlKUYpSlKIUpSi9\ngvRKmTLZzxT5mv1LoerFB5y7PsJ96ZYiVs8vFNXsoQPSzCiS56G/UTrQdZNTRWPXnO9uwwbZoDaf\nBel0UD/2+/r+bK2oYjmnSFmzoShw9jW0Z4xzeZz3n5SEHDTi+v5qrYhfBYRi9EznMT+Z/p9mZjYE\nkdgUUJU/UsQ/jPoeVXX/z94XMjLvKvKXXHGefInTAWeTy0vOWINGdTn33t7q/ompInbXTdwJnIzF\n0oq4plGQNtwjNqATpbieNS+obmJzfWZyuPIU9cwRx3NjMFbcrMrsckY2RZv0EjgQcE6376sO8smX\nat83Sb0+bAbOlw/XqgOnqzbbEHRMzkAUi4oAd32gZJg8PmdCLzlvPqQv1LOckYdxMwTBqMEQ8gaK\nuN85Up/r3CcC/Vjl6uFEkKqpvIUwWltQfbU4B35MdHSfvjk8RQsmoedvPFVsvqLybTkTu8RJa4XT\ng49+ynYPJwsQhp2A/+fVvs2ExtblWPnZ2QMJ/7vqe5PvgH7lcOh5qvKk76j9sq8JKV6gV9TrKCpe\nAP1Lo9VwPhZCMssIWRlyzn9S17n5wx30STxFjw/Q0fCWqo8y59/dfY2B83P1o4Olzl/eJO3m1O/7\nOdXpbCG04RZ1GWurzNsBZ0O3QguOh2Lo3eYc9tGX5QJUwYDlyYdisp08V1+6W9LZ2POWyhQMVRcP\nH4pNdQ9kNnYqV6M5fT0N4naJa1OPyHrmtto+fnmsz5jqPI6Lm+uoTyRwLmiHZ9on6oO5miLwWVCR\nDvPGXz5Sm2xmqo+9O6ETDwyPnvpWDfekKS4kWbQDkmhlbRyQDM7Yl+fqIzP0pjIr1fNOX/P24jX1\nnTw6RMW3dN8zzvYGBVWsN1FfrIJQVLdiYT14R99vYVskQVba6CJd3cWlBLbW6pnYBjdN7pAzwWuN\nJWetvrgbok97sEpgg/TJ9wbtg80CLZipPv0lGg4xNBZaaCrk9Bnzdd8VbJTpSr+rg4AHMXSVEItI\nrALLoc0x34bnlJX3TGicEjpbof0RQ1MqlgOlNj2zaGrzDeygMe5tsRDtDa9nLHQa6PzAjnr6fdVt\nAySzAxrVoqzVRovLcTDc4lRF39kZhy5PME/o8zGQyGWS509gn7ITGeN0YhscdnBEmeLQMJkL3Uof\nHJmZ2cG+5p29tzU2dxK6/g/e19gu3FU93DR5uPR5HRiB/H9zBIvqQ9qsj/vSIb/DKWIzJ/+g72vO\n3Rv1kEabLEE95ZhD5uxB3D39v4pbXhE9lAn6TIc4Mo72NFc57ElCbR0zs/bOri0Y4ydLjdFwvS+8\nrbkyjzZMpgJLrKo5cucnYhlej5SfW3HNEbGKytVz0RoDAc8E6JbgWGG4DGaKKsdwENgY/aOjL4hR\neO9IzLrCWyrLycfKu7PWeGs0bpE3as6D4YaWgIfzYsFXH1vFQDq3uLaFMnLH+syh5Xf0jsbUnE3M\ns+vvq2zNL9vnSVPW+HQ/dBVR3cSbaGxlVCdb1n7rMYhhV22X+t3Mg4ntwWwGdb/1rvr0kwnsA1D0\nN7Yac6OV+ubzT4XkpkOX0jwMPUQb1l2cK3GfauY0v9Zh1w1xeSq8JTZB7Qva93784//WzMzKF7DA\n0FbczGC94fzlb1TvHnNAaYwOFAzzFUzuKo5sAU5tMdh4rTiIOeuj46k9Mw7ssqHqLREo/zsF9dE7\nMGCdkso/X8IuvKd1aPND5asDQ346e8nOzgZD82DyDGGPrT3l7xjkP7mrfvTOF8XkKuDsEzI6b5LY\nTtoCVteUtbl3orIcvqd5JL7Ekcq0N/k5A+ISracKz4RlOTrR/2uuPnn1sCzzRYMJy8FS6wyG+xmM\n63QMFgMuaZuJfjeH0bgP8zt9IeaM01PdvPi21s7jQHuYEi6n2VAn6pS9Aczzd+qqszNYZOkrmPYL\nzR8zhKUWQxh4Gdhb7MW856q3D0ws2cKZ7v/aZ9orDNCla1S0lscCTRZPV7q+0sFBEn2/vGmM5FmH\nFqxjLiyN4JJ3LdhgF7CvY4yhIvpM6ar2zUV0/xZoL+ZasCiu0E25Yari9PUQRmQXPTuXdbGwp7G5\nWmg/v+adMMBZNA6zdpwM2YH6XQ2m0nKq+w0m6tv1ovIfQ5NsvnpJE8yMarZYXNj0CtYl8+lqgqvc\nt/X5/j/5IzMzK/1LzQs7MNnidXXGVKA+1bFw08I+7r6+X/Q0348uVVfFLc5fFd5rM+h1wlBp1zjd\noOnw5TtkCSde3oH6aMVua1rznOyR6oAxkcbZsvNYN1r4ur5QUjmrbVxJ0bkM93FxHIkHV+oLcZx2\nizj8bmPquyOcKwNOPZTq6PTd1nUJGIOL1S92cYuYMlGKUpSiFKUoRSlKUYpSlKIUpShFKUqvIL1S\npswAlffRB0LVnx4LTX/ti4qUvfVQkfF2VdHWwSe6/sWpon6lQ10XooZNzgz3YR1MiBqGkbgw4rXO\n4uTzHCX0lqKqec7cTm8piti75jy/AyKBS0ZmrkjfY18RuWCCIjdnh10OcsY5e1zFuSaJz/oiOFYF\nXCu6u/+aoqFf/y1F3E7QpNj8yV+YmdkVDjb3OPM2Q1E7FDMo4yrlva3vCzNFMGtEQWfO2hoZPONx\nEyqiP7HGWcqfKFroggLN5mqT9TmuQwmUsXHLyMCUqGJR46xwGsAxIH6HyPOFItT+VGX2Z58vDric\nqm0XOAy00FqYg4i6V6r7UpGoZ14oSwI3oQA9iBj6D5aPk0/lf10HfVvo92W0G1rlIzMze3YqtoQz\nFRJ7l0jz4jXV8ZNPcFXiPPKYM/exKe5IbbQGOGq6BfEIiorwb2dqu4DocAFve28fJgnONEvAI4eo\n73Kl5xdfEOkOQNtB8+d1tfcO2g39M7E3vDTRaDRh7i41Zj6daeytz3SuPVbWufcWzghDAAAfdG0O\n8hK7UHTY6UvhfNlEhb+BngrsA+cK9yUQ4Tg6Aqu8GDFLoKX1Y7HMGodCaG+SplvVRbkoFCef03hO\ntPTMFJHt9A5sLlwqCpwbXiIGNc/B9IAtts4d6brBt83MzNvVfd5AH2e0VtmXn2ke2FSAaDk33sJh\n4Bo9jFwfpsSAc9Yb3ScfqA38hH436ooZslsRIng6UJ213xBSGksov35W+ck9ww0IJtDyh7hKfAEm\nTVWf8Se67yqmNjqFTVZuoR0zB2nExa3HOetgD7eoa/rmntrmABeppQPqn4TBkw7Pr+PehF6Igbg0\nOHc9X3HnowAAIABJREFUd3HuOQIlTOm+Ier28XffV3krGiP7VSG5s5Hysa1/PtZdpqZ6emNHc1Ks\ngPPAVM+vBJozrtE/cXCecAL1p5SpfP0VGmIgxCES7KRohyzaGUvOzYOE93Er8Zot7st1TjgXb2yD\nvkwWjY6kGzJNQM7AUVxcMxIZ/Z0MdTI47x1w1j6+j3aWr3lwm1GfHKIL4b6jPKzyYkhUYC25PwN1\nD11EaPMdX8/pMQ/McJyZwJRJLHAFwQ1us8EpkOcZOjpb3InSrGVhHwoWum4Ak+QW/0+W9fxsD10R\nEMtkWXWZnuMCBGK8y5ru4Hp307S9Yj3M4zY0xfkL17l0DudHXKJ2NrC7QgQTBNVgRuaZj7cloYnN\nOowT0DJ3jGNP+8jMfg7+WeGWrndgwRbQIRo69BnqOZ2mL7198PMyvPXVpk2pp6dojPVwwFk/AZW8\no75fMn1m0YaZNZQP55mYRvM90Me18jFEKyhclzaw1pxn6JHgAhPH2Szf79oK5kv5UPNODpZq/0+l\np3HmMv43oNDhuMyrjEv64GyrOt4F1d9BS8WmWstma2lcrROqxEVWrITuFW4/WfokrNnRY535L5RK\n9nlSMYf+Hjp6TdpoDOt4UNI6tGUvNIYhl4rBSnDUFoOh6uwObn93v6q1sH3/yMzM/vx/1Zq6TWvs\nVmBijuqqh1gGZx9YBsZzyrgkXT+mDc/UJvffYP8819j97kdCjP/+175gZma/Rfn+0f/2r8zMbMPv\ni7gCjkLHxJTGqIMmxBodIQctsaHHeoueVTBmX+wI7a9kYc6sVR8p9KMWzK+tkeqt+0Tlv/fbf9vM\nzF5/oHx+90Pti+NT8sH6vzjRWJ8HuOBVtD45g5evOaPruJ0xJ+TZy5bKsKRhO3x4or3QJdoVf/4H\n/9zMzH7nN3/bbpoKW/R8QMfnrrRhLsaaH26VHpiZWf09tLeeqw8/m2heWE21p2i+I0bcAe9Ap8fq\n+zXeKX76mdrozdd0vzst6fEsoGmtnuF2eaox5uMqtGnp/69t1efOfqZ91//8T9BA/JcaI8Nz1eEY\nxk9rqL5ahNUQZ95tvHGkcqP9mIYBfsvUFp+yjtUysBrQ08ujz5FAL9PLMp/fR1vsE+WvZ1qfwnmx\neSlnnhVM+tI9zRmtMesCTJENOnHPCxpzqaX+zuLe5KOZmG/r90vcVBsT1XfykNMPE1yQXI2dFRv6\nbVmflbj68LNkqO11s7REU61ZULnj2D8tYYrebihfyYr2LM6MUxN99a+cwdThvaYUupiicZbYas9X\nqqh+wz3QmNMXW+/l+9g2u7ZCt2RuH9cgNLoKuJPmYJA0JrCtcM6aBLyvTlQ3wwxrE05cj3H6y7TZ\nJ2GvF+C65+XVZmVOelx0NW87OeXZ9WD18O5gcd7bPdV1nfftBY6Sixeqm+C+1qBVX89bUp5MSuvG\nrUPtdzMJ9jRzvbut0JrKoQ24xFHShXk+4P06Hlfduug3eWifZYrK3yah/eoCXbnEFcw/3mn/qhQx\nZaIUpShFKUpRilKUohSlKEUpSlGKUpReQXqlTJkvfUNnjN/93d8wM7MP/kLsjEd/IlX1LmfE3vs1\nRdBu3dH16YGisBe4oBxyvjKJYnkV1odD5GwcKBpac4TYPJ8qwpXjrH/+nqKU8wxq/l0Uv4mK1lzO\nhcNyKPZRxa/qOcmtkJLcAdVZ5vx4XOhVlihq/1IRuIsLENln/0zff08IyP1bUofezeHffl/sjDtX\n6L9MFelzQVN366jLDxUZrL9QVHWSBoUDrSxZ3XpEjgtolCzO9PfZXGj0hjONCc7x+i1YQaAwezO1\nwXkRJGwp9tCnDhHbQHVZmnCe+lRRyNi+oqkpF0/3sspy05QtwAICKewQfS3MlK9FknPKALFbHKwq\nGUWEe5z3zpmins5CbRnkVI48CMAW0Qa/ozZKvqP75ImCLreK/joodr/+JTnUxMpivDx5KvbU6oX6\nxoc/EjPlK/dgc92FiXQulG0XMHCQJWIPkjmF0BNc416VFfqX9kH5usrPCoR5Y2gCwbJYL9QupQYI\nekbR2tBwqAqK5eT1j2RTvz9KaGx8+pn6/MUzsdEaDuyJIoyngvp6Kw4iQiS/gqZC/FpoWLus/oJk\ngXmu+mSC86Xzc0XJ819TedawCuKwDxa4DNwkzTeKrC9AaYr7yutooj6Qc3WvGO5pMfpQ7lDIW5s6\ncIe6z8k5aHxNn9PX1GajlNpqswMa7+GS5nIO/CP1nVmgOgm1A8I2cbP6XKdwXVJg/ucuR1X6ZPdE\n+d6ATCyYT5Zou9ydo2VAny/s6b6JT9THkzBpWneEsuVALH/UBznt6sGbJi5IvtrYh8k3QcPG7wiN\nqqH9MlmrMZtNnGVSYvj1dbmV0Hjwk7ruKWMhGeiCwRadk6naPkDHagPKbjsaI50szghP1fcLNQl3\neMwxu+gUxbqfz+kgSOFEgJaDP9T6EYA6LTjvvsEZIrfBTaCocszQVVniqlTLoCsCvcHH2W27QEMG\n7ZkUeltxdLHi4bHzmH5XyOu5w/XGNrA6gwr6Zys0WIaIeRXQb8hR6VX9vWaeXuR1zxcdXe+uOOt/\ngD4QujfjhPq6v9Tvpnn1kaM7mq++8Z9qLbKf6v+jnzA/gYwurmgbtENC9kO2KubIHuj1nPk7WOG8\nwES9BslzU+rb+bXKk0ypjm6HOj+MORcdDR/mzBaXt3QJJHqk+eWzp2I/3MNdYnOkecj+R7tRqjp6\nTnqlOSTTYF4baGyP4rhBDdAlgrGI8YSlerAumCOmOPSUcHIY0r69qf4ul4REt3GK8GA09RLqQ8kh\nuhn0wRxA7KSHoxxjoom2jpnZdOyYh5bADqyE8Zna/3wtBlAFRugaTa91Su1eQYPhsoNu0gxNs5rW\nh4KHw6ULgyYFywHnng2IeDatepvFE/YmLkNF1tLnP9PacjHSfLRNwLqJ69l/vvyxnsFeJAfKW98T\nc7qTFKqftlDLAL0IzvDnYe+Ox5rfOmtcO1aMFRiOZwtd/3ri880j/gymRVH5OoVZF3NgsMTRTKnB\nZKGOYms6SUZjejbSvvRqjGZXjb78HMfEI607Lm01gUUWB7V/uAsjMa37hW4hiVDXDefK67X6yuae\nnn8Pttu/efoHZmb2o38r7cPnf1NMkD/YoFXIfQqmPuBtQXiz+v92jMYhY2CFwMlOCTctFoYUbnUV\n1rMJrnurrfpiqaB9vZfiOSN9/6Nv/5mZmb3717XX+q3/6u+YmdlP/uk/NTOzS9D+TV/Pf/xEe64p\nGhP7OKCd3X3pdvI8GNtipfoolmEhw0QtzDW2N4xJN3QIgt3RXd/cfWk4Zt4uao2JMdd/+R29a7Rw\nw/vBE+kavYGbWR0nRjen8fir3/iS6oRnXzJvnD9X2Y8fX1JWrZEX11qzP3yi6wswQjYwW4po+i0X\naqM8rputQ+aPjsp6fK3fZ2Psl+saa+U0On3oWXbGaqsGbk4YXtnJqdaHGOzX4p76XBl9nuBT7Ze7\nMPVvlTW/LFjHyi/EcijhKpqFbRfcgfXwhD7msU9HK3ID27WK7qfPJitBm1sKx0lefQP2XjM0bwLa\nJWC96Y7Yp7rqE3N0n7Z5zSHtpdr1ugyLbMk6fcM0Olc9zU71nIPbYjqdLdVvnvbFmKrh9tQo6fmt\n28qPN2MPhYNkyJAZxbW+Z0uMfRyNvATaZbDAPHQM9c+0VbIbi7GmJGCUbWCUXf1AzMZyWn2owLtK\nrQnLvYTma5w1NwPblL1/gaq5Og3fh1XH5TvKQ3EPJytOnhQPWbtwy/Q34f5WZZig6Rrn9MAB7KvH\nH4sBGD9RnRVbyk8bpubUw5n2RPPN2RQNxjWnD9JaZKc45oZ9yIUFmshzSqStB8PfsS06QH4DNmoX\nJtCK+qlqTljFfzHDO2LKRClKUYpSlKIUpShFKUpRilKUohSlKL2C9EqZMptdRcje+muK0Be/oOjg\n2U8VXe1+9qGZmT17rkhb4y1FnnJvKGraGijSfXGs6OkO5yWnu4qo7fnASq6i0706qscdRdgyOUXS\nU+hsTM6EXASBIln3y4rY1Ti/7o3QW9lXxCyLZYQLGnUdUygwNlfELebBsAExSQR6zlsgOg9Tv2Zm\nZsc+HvUdIUALdFEKKUXijhe6r/dI35dTQobufUVI/2aAo42pfi7jKudeXM9LtMxiaLBcwLjwiT6W\nQLG3qHdX8V5f4OKRgkEyaeqehylFHUPnltu7hMb7QkKvWrp+BLJbmynKOAsUEe48/nxuGFnU52c9\n5ctd6f5Dzo3HOes+xSkm4Eymj9ZCqQd673A9GjMVXJUC2qZhus8JOhKZmCLh2ZT+30jpuu5MCML8\nRAyj1I761t/40t8wM7P8QPk7Ajmu3BGb4PCe6vPTC6nDT4hGF9EhWjXRB4L5swBtr3M22M+jAQGS\nWsDtwsE1pTBV+3WSqt80CPVmqmjw+lJ9apnQdaHeR3eG3klLfXzHEbtr0FGEvkuUuIr+RxI2x9IB\nnQNZfvYXIEIwmkoZ9dFEjyg3+kcWooYpjRn3Un+3q5oLLlOK8I96N3c6WNK3Vy0ho7umNllt6HvA\nN8mD0DVC6FCqwLnrrupqdj6hTEJwWx3dt8l5bgc22WDEGdqCIu/JJ6pTx9H3FbRFOrCJFkVce3zV\n+ZpIfMicqRY1zjcj5WMNUySb1v0rsIeyV+pb8xCwRJtge0soW/YIlMsVWyA5+pGZmU0Hyn/ImHFd\ntU2TM77LCsy/xxor5wPONU/0dx2thEtcMLIpoXH778o5wL9gPkTwaDShPS41B0wn6lOrGKgTGj7x\neJGCoMOU0/cP9lWeVF75nMAQHDT0nO0CjZYyNlk3TBuc2wanKl+7iGYOmmSLDeysmNphGqgcwaX6\n9gAaWxk2R6FKe4JGFmFMuiAuCx9ntpzq0YGJEzooLZM416XV9zc2Nt9R3rIebKQtukVoRvnujDqA\nFQbymTtQ37/zQG0QO9X3I+b7bE7zwBTNk6CP+46pDg9wUsmCEt+uS1tmtNW87Xf0/esHcs4ZoQ3T\nxvkw6cOUWDCGUrBVWQJjRRBNXDIsy7qCI40D28ACmCkwQ6YwE7fMz1n6bDxQWx4cqm+1ud93/6fv\nmZlZ5VBtU2q/1Fq5SbrcqD63aL00K0KQXVCzEo6OXdz+YiO1bbai/I1yqt+95JGZmWXQmhlOmINA\nz4I8qCBjedbF9QMGyhg9uALrkPdC5b17S+tu/VCI6hvviWXgbEKfKLNsK2XnoeEPbIUADbjLnlDB\ndgsmEX2yEaihUvuaI9tF1oel2uGAsflsTj3g4pLhfLzjit1RgLmUG6kfePNry+2gi3Cu375+oN8e\nFbV/uYap0sMxqphSnQbMmxPYVVPQ9xzumc/p2+U3YLMy/xfYz2WKaAwUtKZfwMZa4SCVQXfNXbys\nu5ukXAyGISh/nXwOl8ynE60fY7RxEinlY71Q39gmNTaOstpLxdh7rdGYGjLGb+OkGI6RwvpY9+O6\n1KF+X2Xfez7SfZKH6iultNah3Qf6Ow5dNpfQ/epHqudHvy/dvP/nH/2+mZldd5TPfB6NhykaLQmQ\n8xGOX+xvg5L+H1MXMA99uPqOPh891VjaLWksFeLaW0xgY6Wqel6ZebSP8+WLZyrvv/7f/w8zM/vW\n3/r3zcysuKu+mU6ofqa7uLiybuV7uKJ2YBnPXmo41Esty8RgayzQ18IlptxEjySLZhEs5sav/wdm\nZrbdf+ni9MtSuYUuXV/3Prlk7S6qbccptAg/Vl3k7mhevPC1Fl5f6/+Nn4ktv3yhOpr5YujVayp7\nUlm267zuW+N0wLKLW2dFdXxwqD6eiOM8NRVTZXAC+zSpeaVR1ef9L2rfusFl6fwUPc4k70joedxu\naX5l2NttJLwuOL3gwZ7yJqxxDkyNuuaj2py6L6vcOS/cC6nP1L8GK/WO1sNpuB9Oqq29E+bRFtpj\ngeaY4XMYJGu1Q4692Chk1uzitIhelYtrns/8PE7qd+kYulV9nMLaoRYa2mh15Tuz1XWN0ktW1k1S\nmXXl5EKD580HYrYXef9ax9D9a2hOO0NvsMQcsEXbscz+YJTWntJgxI+ZxysV1Y+TZk6c6LnF5Ete\nRmq5tqytrcx77fOpytbAqfHqEYx0GHRZ6jSzUt/10Y3LwhTcDtUHVjH2Aq8pL0kIZ80s+2c0+JIZ\nlXGOhlYupj4yQcvQcAbz0+j/jDTuHfYa9w40rhcbPeeyqz4+P9Xvhx21TZP3a6YBe1hR30q29Lzw\nndiF4dPDNS650nt6sqR8T9ASW12o3Pld5oeixuZirXxNhrpPEle8VoN971+RIqZMlKIUpShFKUpR\nilKUohSlKEUpSlGK0itIr5QpMznmTNc5XvMFXEZ+9RtmZrY9Aq35qSLfxx9Lwdyqivbduq+o4v5D\norg93W/Qx7Md9sEB7hjeRJGuLufp3ryriNZpoIhaDMShXeLcJOrwl1NF2qaoTmenil5OQseCgSKJ\na5wIEkvdZ4TyemnIecw7nLElyl3KKOKWbuv7g48UnfaHyuegopBifE8RtsVfKgr66JkihPUjRSTz\nnJ2No3WT3XImj/IHiZx1z1V3bl+R4BhnzlP3FCnOcq75BQhYISt9Hx+2zU6/RZ2GWieqk9g5bCTO\nGd9p47DwJammxziTuv2x4n8J/+Zog5nZeKzn5YswLSBQXC9gZJjqyufs//ZK+XXbqrsUGgRZT5Hz\njrqO5TI4qtSU38Jn6gO5BG5NQ5WryRnRah0lb1xB5jCA1ivQrQI6IJwb9JvqE6ON6il+rvob9tXX\n76KLEY7ABRlLUY9z0L4NjJ/0vE55lL+RgQxgcuXiIFDsow000HUOyubbqfpIZ6wxsvE4YxuyTIgK\np1u6roCKvAPan4ARYyuVI0jBWlijG3KqKHMSRD4GypfPql5i6AdMNirPdK16yw4V9R6iHVFNHJmZ\nmccZ7JuktCfm3B6oRx4HkSUR68JG6E5qGbah+j6i7hbAjCjhgjSvaDwuZqqj5FrfZ1zcJoqcQR+p\njdOhDsRtlSk9UFtUtkIWkg56DUW0RWABJUCR4neJvF/r+vSIuvyirtuslZ/hRM5YKXSETmGj7ZVB\n+L4Ie+BEiOQlyPD2ClX5NmhKDaeDQIiBh3bD7oHa5sUSBAL9ixhnZ7djoeu9on5XzaivtdsqV++C\nefcnz7mPfl/K6Xc+55vTVTR0YJr00Z4pJNQXYmnG6gO1195QbIHmRH0zaOFagm7JTVN5VwiFtwGF\nIn+TZ7BB5rgGmPqewxgbuTBeQJ2qNVylbqveZ6dolAHILnEXSIDaQUKxFPNyqJO1AdnNFTTWneLa\nrlD2r8bVtqNhmHscocY46hVhmqCrk5oJWUwyf/mUbV0FdwHZTDKvFGLh79Apc1W3Exyycil0OB4D\na61UJ8ul6uLj70j37TluTrffQr/jQvNdrqy/vbn6RJHnrQq4VSR5Pn0xwbwaeDgXjkAC0QfZAcX2\ncHxZdNE2i/PpwNCgT43RP5r0zu1zJRDYVeiigZ4S5DtLome3LXMOHfQsA6stznrgo48yZW7ZJNHw\nKgLPORoLTkz1PxqHehUwhiZa66cwWJLMGT89UbvEYTTd6h2bmVnzAEbQl9+yu3/9q7Z6X1oVT76j\nOSWch+PfU3sM25qnM0W10wp2rWdip42bqsdQ/2nJHLb2xcILVupX2xbr0ykslAlsCpzn/GbeDtHH\nmJVVptxV6NoDazIJ26queSjVoLJxsGoulNc5rNITWLHWGVJHaqt7TAdzdBeyLc133qX0NpDeM3eh\n51lV64afU5lvmtJxtWnvWmPUT6pNZxtc6z5QOWtF9Yl1QuWYTNR2uR3lL4nGVhJUPNjq+yXs3DqO\nZtlAYwTDLWtWYUYv1GYLtBRq6EItcDvKVJXPN/PaVw5ONM+tQKTf3nnPzMy++abqYYpOXXOO5o2D\nwyLs4AXaNTFQ+WCo+2XKqr+zNBoPV5f8/8jMzFKwcYfoE5VYP9aGzhJ6UAuYjLkEenhjlfv//sdy\nPxo+FXtkONBc8VodZzTYzwvaYbkHUj/WvBx3XrKz1+uNlfMqh4d2WnGifpRqoiGGztaMveveIQ5A\nIZPyBskpwEaCRTB7Xfpu457Yq0v07kow39awrA4PxXwrLNVnr0DhC7DMQm2VnS+KKfebR/o7nlPf\nS6x13/a+8lrJ6T4O7m6NusbKIKM+6Xe0N9ogEDLw1XY712rjCWzO3Ib94lHIHFFbx1gzPxuiY8c+\nuFhUvhz2lYOS7rcbsn8L2hOM0MiZwB7ejHXf3Dtqizto2By+wby5p7GyQs8v11c5fTQmXVi9I9b0\nKlo4Lq53O7DaugOec6K+1gtoj5Z+f47Wy507+v04x7zcU/1sqmiHMbaDEvp/Ta67YarvU18foEuF\nU1A6BXMVVkeurs+So3ZOwfzfwpRNopPoMcfld9EQ2lN9j5O6f9zFDXWpPp/NvtSUKaUztvRH5uXQ\nM2PNqcOeavw6rFQcADNZzaOhe2RvCpM6pt8v0ZK6hGXU+Uv+DzsnDSPyqoSj6wrGOXuFM1zfer1B\nmEEzMyszf84ulPfeRO9UY9hPh7saQ40iOkxPla8AhnWmjJ4o7/mG06V3ofw968E2muJUVqJN0RAL\neNfMcWrjxUJjqF4Xwzu9YqzWEA5lbIxPlI96jJfQvyJFTJkoRSlKUYpSlKIUpShFKUpRilKUohSl\nV5BeKVNmESiCNHuhaOcAeeYMZ1/LFZDcd3E8mChKO+T8+uW1ImTNmiJ4hdf0matIhd1+qsiXf09R\n1DOivm00IuY4D2y7RPBNzxtwED7h6v5eH1bIakU+cZ45VcRwjR5HfVfPb1CtQ9T+qymVa32hCP0C\nR4U1iM94pIhfuwGjhzN1k4Ty+dav6nz/VYuo+r/+F2Zm1vmZ2Af3vsJ59R0xh3Ynyt8qr3w8fvyh\nLZ6ICVIs4GpxF2QS/ZslEdkv4AwQaypPfVPdO54ixFOU7uMbon2cbezbT5TngaKJWRPy+uDXdQ74\n7huK2G8++NQ+Twq97ldzRScBRK2M53wcnZ8lbRY6x5RHOKLkUPpOq9zTE+lhbJsq10GgtnmGE1cp\np/JXcal6BJNkCSKQK+t325Xu2yqCDnXVFtlA9Zat7vM3LioQfQo454xBSCugVnFYE0ucFSpEZVeu\n7nc9CTUG+ES7Z7EEdSKYHIMtMoVZ5MZUf8sF7Z7VhTPQtMO66qmLOn0iBZpZ1nODlaLF84X6eLYE\nAykL2wu1+zHMl9UMtsha+VzCGCpQH7kOrLaMIvXLtcZkBeeDdYGzxevQouaXp81MbXO5xjmLs63z\nx6C1MdVJBlegdYlz1uj3XKMJ1ULrIxMHdWqqj5dwKihThoSpzQdT1UUNvYwYDJYN58i3ST1/gR6R\nA6NkNAaJANks4rgww2XjIqOI+pvLr5iZWaqCrshM+ZgR2e+gUzH8VKhOHqZhusD5bVzaRji7FKf6\n/bqg+2FEYD2Qx8QIhBTHnnyCeQvHMreiPnsKGl6egPRyn+ua2m78Q5VvBKPFQ9srl8CNJEa9nwph\neN7V55NT1Uesil7Fx7he0Kcnx1L/H2W69p/Z79qHpzAnb5i6T/Sc8wlMJxDbCWenWwkVpAqKF6r7\n55NiJTRgNIYOaSGiGniqVxdWy5Cz1I04rly4oFzF1K63qlonRrBUNqBW6XXefPKyLoPAxdVnYx2N\nEwfmnId+UQqnk9mMvj7W/ObAVMvhhhPEYH6ApCWYD+OMV8zabLhlPsii85DQdYkWSCZssTEaA9ZU\nH6wVC+RLa9atmtDlAJan4+GYEH4yP6xD7RGfeRAHmRXztjeH+bNBr438ORm0EZ6gyzPX/JvMhmws\nteF0dvN5xMysjHPLxYS+X9U8XA50n42pD2+Yz9cwa/wpmg0Jjb3hEC2zQJ+xie4zDWC/wsIaMt9O\nCux5WG/qDa31nbnqpwDjprjSOuxf6tP9tyr/h23NWfa7Zp3zhTmsC5uJnI4O7qvPPQpZtJx3v4Bt\n185LH6rqM5+7MGFqquc0TFO70vMKb+v71ErluL5Gd8SHNcJcu1fcN486e8F49a5VF/kG6HBbfaVV\nw/WmhyYTe45ggwbIkeroDuj2I1i8MdhdL870/9oBbhtx/S5RBR1P4QKCrlH8WnlsJ2nMG6bJWgyM\nyxPNo+98SU5l7a3u2wu0b9yio9Ys4niGc2HcxykGLYX1Vn0rY1pjU6wHMfqWxVWuDOwtZHwsntfz\n6jiw9Ivq8w4OaSX2zy302zq4PQXXMMNTyv8ClL+I28qnUPtSsLaGIMwWU76qoO6hK8mirT7vLLRP\n7pyqnJWs6neIJkXhVCwrtyAWhesyBxjMcvKTLqovPvy69KvG39XYHlxq7nAY4x/D/mua+r7L3JC3\nHM/hvYB518yssXFtw/dZdJasxPqHG2AJrQjHQ68ErcZS9uY6d3M0vUK3pBJr83KpPcTtL8Puvfcb\nZmZ2+qmYh+m72icXCmqjZ38Gu6qmthyBzs/R+EP2x+bhu9SV6jJW0vwxxTHGP9W6sOzgCINWZBGH\n1+xa60UaRkx3DnP7gr3LvvJ7i/Wgj1toak/3936qNujiNFlgc5HHsWvyTM8PWmLxxmFVBVC9KymV\nx22hNQgtzPOOzczs4hOtpbOhxl56yh6lrfo8XWkei89wPssxh7D/XqJ3VLn9/7L3Zj+2ZNeZ34pz\n4szzkPNw8051a2INZEniIFKk1ZIAQ+1utdsG/GD4zX4w4L/Af4Wf/GA04DZgwIK7gbbaFCVIoiZS\nUo1kVbGqbt0hM2/OeeZ5iBMRfvh+UWUJIDvr6b7EfknkGSJ27L322vus9a3v0++S3lOheVO3QIFg\ng2tL/d87R2kxlI0uODsF+yDvW3CnbcIpxpqz9lfjlKmBFL11S2u5N4J7E02fKrx3dZD1tVd/Tf0Z\nwHfyqRCbc5R9fVDb6TXNVxe7mI/0PAX2/euV5qvJfm1mlsgUrexVzEM5LFKRXMKFst0EKcJ5esj5\nr4dxAAAgAElEQVSeMA9loxP4Ig2/lgWReMs0ph2QeEuQfx7Il2JecxY24UPC363ONabnA9nY/W2t\n52dTeOWwRcuiGPipDjfVqr5X2dR+UrzPuRx0rQcCcfIsUqCSLXtUkaRymvN8Hb/7ItxgC63pDn4x\nCeJu6xaI7le0lo5OQVan9bo31n7AT21bJH81r2qMlIlb3OIWt7jFLW5xi1vc4ha3uMUtbnF7Du25\nImWuu8qcPHmkqF1vpaifQ+1wqwBHSo5uooOeXFIrXFPUczZRBmCfGre9jCJW5/u6/sMOka+0InYz\nruPPyGQnFdlroEyzTqTskuTTKGLWJkJfp2Zs/jVF+BqoOC0mihwGZJaTDxSpm5Fh2AApM/FBsmwq\nwpfJ6HMpIo1hVRHBKvXskEvbve9KraB3QWb1XUXgnimobrmynj9NxqD/gcZl1Onaxo4isemcxiCL\n1nt1G0RFHiZ7MnnTzzQWF1nNSR7+jDl1t2myFCUUYOZzVJDOVff78COhlX7y/t+YmdntnW+amdle\nVfe/cdugHh1ETBb1h0ZBUdEQIgd3qf6FcyLmc2zmWP0qb6AaVFPUtAKHiUf9eiOktjar5x4Tqd5y\nqJ2NorseNkAt5gC+iRQR5yhLlappfGYBkeukxjWB4s9sprnPFhUX3Uuqn2eM8yipv4kkWcUGnDxk\nELpk2cvUyNoYhQePrBbZtDI2XmxSd32M4pAe6wt+pjTKMUPqHxPcL1uSLU593TdNjXSHbF4W3qRm\niDIR2cirZ7Dvd+FWKB2Ymdnmrr7nkpmZBigQOSCcAlRB4Ma4SYtY0VuPQUBEojzbevYmNZxXoAwG\nv9DCDuGGOXzCnDe0DnvU9qea2BpD+uyR6sEXjl4o+/AsbGjMLkDEHf5U39++pev7K0XasyVdr/KA\nzGJF2YzmJiiDz5TVLuP/cutk4amt9fc1pqUe2Zg7KOvsHJiZWa2smtbrS2VbxlNU6YpKp+2hYpLY\n+YauB+/I1kwZzjZIxA3Y520NKQWUGQ5mcjRepM6EYlbDh5+pSc3wOhlg5nRV0TzsoKyToeb/pz/7\nqd4nQ1yBh6SaVT/rD2STF6hpFJmIyjWZ5eKvrs39p21cBtGEOkACBaMm3BLlda1hDxTHEi6eQgG1\nKJA+yxaZErgfQhCJoQ9CiuuGqMwEQ/hgQPst4GYIURSaw/+Uyc8tY+wBLfUhDapzAaJkhjrPEv6w\nCfwL+Yz64NTJxsNvVvA0pyH8O4mG1mlpSYaTbFOIbZRQVVqhoJWPVNYcLapcQX3dJHu0VoIbJqn/\nJxNlROcdrYGWr+smQSPkqTPPZ0HugE7yfc1JOoGSQxklng293osUZ8hm58mseiBHeqglFQpCXdz7\ndaFG+5fY8A2bU5W/TaLONwyUUc3UQP70tebKl6jFzdW/ClwNK5TSZvSzgF8cj1GagefJJ0kfmGw4\nhfpGGqWiJbaxlYYvahc/2lMm3QGt0RmSrex9ydV2+ZNHlnb1+r276mcGlIWXA6UBAquOstk4CQJq\nqox8dVs+ZpSQffnwt+Sr8pGLJmcz7DIF4soZyq4ye7rv3p11ay9RrYCf4Ws/ULb39r4QERuvcq5B\nhWnUE6Li7FgIh6dP4Cj5WHt0+67uuYdy3yWoI+dE/jHiUxq+iv8HCLMYam/ebKA8VtWamdRvvteY\nmVVBMOeq8oNv/M5vqb9wGlbe17mzBh/ekmx4Go6BfMBzwlmSBUlTGmptT8gYRzxO07SeowCvXGmh\nPZPLWAKeju2J1toCRHiY09rK8f9wCgp4oXPjK/e1pm+ta24fPlF/W49k8/dfl1907+t718z18Fzj\nfM7+8uaKcyyI7xduy+ZbQ43PAdw6ThXUGoiX/jPtd6lQazVfBEFa1fO1i7LBW78mmyu5ss1eSuOS\nm8Or5x9oHDgLZSKOmIgHj33azCyVqVpxKjvwQUwVQEmMHH3Oz8uWkyGI9hkcOtOq3bRVUOmZgC6d\ngFTvrfQ3udBaWODXjk+wnRacjWP50S4qdAnWaYZzZR/0fvsTzdV4omdwPXjKunzO+E2Q0TM3UAea\nLDSmFfxBJQWPThL0Zh90LMi69IX63WpprZyNNFcvFmTT+7c0J5lQqP7t17Wm258JGV/uaC1HXFtB\nH8VH1I1yzFWS86gfqVONtXb6J7LZ1qdHZma290C/8RzOVPNrfb7EflS5LQRNlnPxsCu0VQBv4OwK\n3rtJxOOk/nx9l/M5vxFref0/QOmtAA+oD4LG62lcH3Im3A6+GjJz4qIs/CJnkrn6MXii+e1eaX7G\nbc6Q23A1cr6/bsu3+jP2d0N5LoDzpqDreqCwK67O8wlH3+uPv+TASTopK2WrllvKv7XnnOmfyi+V\nUZ1MF1nvOdlSDVTWOhwxObhZp3DNBAlQPDisHmpu1pIfuaYP9aX8jAuCOZGHw29Nv6/zqCR1rrX3\nrfFbdLmSP3fOtWb6cCTmIjTWUv3MpUHt4oeTfG410lxWqJ6o3tLzF6u67grE32ShNbqawvUF/1+X\n6xThYMzB/xO2ZRudpT5fpjKnvvar95sYKRO3uMUtbnGLW9ziFre4xS1ucYtb3OL2HNpzRcq8tKGI\n1K19dWMTZYh2VP8+UeZ5cK1IU3GJrvkeWUAi3C1fUdhTVJBe2oUF2UEp5hdCezSzygyEsLYHV0e6\nHtnAREnR48lIGZmAOrwsRCYJB330piJnCRjM/VNF6EpJRRYHRFPnHz3R61VF1I7mer4h6iM7XTKl\nDWWGpod6f6+CUkUedMcHul+VutJ7TVSavk6k7lgRvPSasoXBwYGZmZ29rWjwfFawsqN79T1FnBc9\nXWu8oaxCF8b8FLwIq4qim02XWvlXYLYOYO/uk0lL61lvk1FbvACXyrkudEaN68mRnnHVANZzwxYk\n9YybZIDP24pKBkQr0yhg1fIgO+CamU8jZA+Ikl1FeVfU9/ko7OwSTR0T6XaG2EwRmNSYNBsZhRqE\nEl1QARsl/T+aKOobJHSfIpwxYyLfSeoRC6Azpn1UnMiuF6jdrwVaE922xt/lOTwy1DlqQp0EKiwB\nCBbUS/LrIHdmmp8xkf4oK9/leWbUu7c8PX+WDK1N4YyZwc2Q0trMm94fUWdpI6LgqLQ4vF9BXcTP\ngXYLZZu5c+rYx3o9Cf9SDbtsX+t5Sqz9cfbmyjofnWkM3/7bPzYzs6/dfsnMzOaoBa1mer+JyEb/\nUtmM5aX69ORYY7hzR9mdTItnW6Ao4mhdnzyWTddAglRe1OttUGPtjzV2PQh+avA3laEGyIJkm1KT\nv5OlfvhCa3GCnynBdp/fhLcnr+tcgtDzUqh+UPO+XSED+ooyCeMMyL+2nvOMLNJ0pDF1MuqQBy9J\nAxRYCU4v70jvd7C5RooMdFLjOYA/JHtC/8m6F9b1fFkUtvLU4l+gxBLCiXU2kY3urOn5fvCtV83M\n7HgmlF3/RP3YzMiPL7f0+kGklLbU2n3xW8rk2v9qN2plbDTIgQoBnZaAKyCBIl3goeiw0tpIo741\nGsC/0sAnuKBTUJFZhahpLUEPZFDESYG2S8CLtZAdVfJwh6FwM1mWLFjBHZAf8KzKdK01UQabyS/1\nyTRagsxoGpQTKKAlteRTOKFS8B6Vouw9Nu366msY8d+A1sySTV6wp2VA1qxGuu69W1pMdThjKg2t\n+9q6ruM1lXXeAHG4CjS2OdQ5PBAznkf9OAi/JXxxczhyZgs9rweCaF5mz2xR409mOJXR+3m40JYg\n+FrMyU3bGlxaY7JZ1z3N1UGBuYXfaLqhtdQAVZagzr26ru8PF2QDycCukigFDWQDm6C8PJQppnCn\n5UHZOk2dBapkCd2B3i9mlL0/zaAghILlsv9lhjacX1gAGjeT19p2QIAW05q38UD3dyugMlrazxxI\nKha+7DBF3q4HengGctRNozYyRw0Q1Ng0I3t6c1vXmWVKlrlSH1O1A323qWs/WunZHz1818zMupcg\nRVAYeakhP35bNBTWRimqcKaxfGTyP41znf+OyxHXlv7/xgWoJzjDOoeakweva2wzEbqIM8RNWwJF\nmIwj2yuxZl64ozFZfkccM4ePNFcV+C02r9kbs7rfDoieCUKDPvxFCQMlNtLz1pryR2N8Qh2eogVc\nVqUS6iXArzJzrcFFwPmRc3MJG6zU9P9mQyolkerI8YXG8/DjPzEzs/mY/XBP/Si6EdqKMw6I9dPP\nlbn++UOhEX7/X/62mZk9+amQkOdwvf3z3/merncfhUn86iIHGqSreQlRf9lEMSeE5y/ZwReyT6bK\nsqsBHA9rkWpePkLbgpzxIliwWSrMWK4CgtNVvxYo6BRAs7mgCvebOvv2Qe+5vZurL2XXQU/Cf7QD\nZ8j4VM/YO4nOiygsPtW5tFfTOtv7ntBkr76sZ3n3D4XSDaeyofWc+lYty5Z+PhPfWpY9+pV/ITSs\nC4Lm8NH7ehbU7cZt0Kxw0kwz6mcC1EHdhXtmXXPRLMgWgk39v3UKgobs/9kvhIhpjbWWp0U9h8GX\ntnFP3y9g22dZ3ad9prU6RtG2vsc+tq5xatS1do/qmpv7zoGee0foqmnvSH8LIGOK8i1F1mQaPqnD\nE7hVznSW2DtgvwIN1nmf825RfvUBpGEO5/mgCzrtFVCwIDjTnHXcDVBqV1/tJ3V3obXjwHu0d1cT\nkpnq+sNj9av/VM+ZhS8xwTl5hlLRmEqBMjwqS95PhYzztXzHLvyCuRq8LK0v9w0nPTA3nzeHyoxi\nT9dy4BebtSNuQJSfOD+l4HQcXmluTyay5dUFKE4HTjB+ewRwy6yqVAPkZaPX+LX0BDXOJH6BvfAK\nxdtOTp/b2hYqKw16OMFvQxeuqxXn3RS/7RLwstX5LdSbqZ9JSBGrr6CgixLYAHW46LyYXoEM4kyR\nbmquxsegWEEAzvMgguDoWqAQub7DDxDQtL+sxUiZuMUtbnGLW9ziFre4xS1ucYtb3OIWt+fQnitS\nJltXJvSF775oZmZHPUUtNy4UAW9lVZs7RXz9+PNPzczs4lARfbf6hpmZVeGSSZgiX1egO16/p4jY\nzwfKNq2ekQF+qMjVXoWa2HXVaf9sqPs4fUVTF2RaxvvUO8K3sqTWzuuq7q860/37RH9LZJPKLuzt\n8InMqDtfnyrzMO+jpDAgMpjWfQ6HykAUIvACKipTSOSLD/T5rqNxC1t/aWZmJ4d6nu1vw3nh7nD/\nn9n1QM+YqigaWDxQhDuL4kFiqmxLaZf631DKLymYtidAaAZzsktVoqZZEBRk4hp93Sf3lqKF211F\nK/uoIyXho7hp2y6QrSDrXkUz3mPMV2Sdx9fUh6NiUSNi3gTBck6WbDIVeun2d5WFC0EzjJXgtPW2\n+l2iXtmrK5rrUD/Yd8lmJfT+jPv6CdRMEhqfVEL92vQ03pMALgQi2P6YqC41vJNA/WxsKWrrwTXj\nIZeSgyNnRCYk68lGsoE+nyjL9tPn3D8fRZuVsQ56RODJTnowhIcgYVZklhNkwYIpjOqBMhLLFBl1\nyGpqKOQsQb6ckOndyWjcp/Az1VDvmi41f/MeGVmi1k04jkr7cNTcgV/kXGvrJu2Nb1Bznvl9MzPL\n3RYCIzdWX09byiLdWf+67n1HNnJKLWhl+raZmW1uvq4+NlGoqpGBSx2Ymdnv7oNSKqqPM+q2G3XN\n0cFvyh+9kdZcblMv/VkbdBpZsRdWIC3WyASi4rS1xE+QqXj4E6HLSkmN3YCsdI3670gZ6+2fK4O3\n+zPd51NY5Bs59bM4hecJPzM/1nNlqJ3/BD6R+lAZjYBMwbCn+809uFDgccoldb+Pj/W93T3Z5GSo\njEkniLhaVPfdpG4+4hfqPZRfH5yrv5V1apFRv8tST75yUet4Jn+/KMrWuykt1rn/1bavPFmzMYnT\nAiiCWlF/Z6hO+fCEpMiwznKy4TKouCIcPf0zIa3aHnaEr1zmtDYjzplImSwLKmwBIiAJD1eG1+cn\nl1begF8MLoBJByWwmp7d3YDfDLmkwUWUMUMZEJ6HIuitXF5zuvJBVoDsWMF1FQAS8E1z6qxQdKFv\n4RJbIZs0dbUJ+fBfnJNdvmZuZyjtrHxq8uugPgd6vdWV/zX8xnSpv3kyuD5Zb4PzLCATuCBblcKG\nw6XGyVvq9TJZqxC+id5ArzsRYuWGbdBj/OD7mE5RZkFRbZDX+GTZDxaoVCUc/Lyr7+fg7whQA/Ei\nxGRO4zYcR9k6ranClvxve4HyI4qUYU7PBTDJtvaEbsgWtfd//iOtJb99+MUzdM6GNgDltrcJatjw\nHdsgbgbqd7ErX+nuo1gTcbfVsN2UnreF/zZUAtOh5muAHRSyqCCC0kvfVT9X00ObDeBHAjX7wSc/\nUZ9RBkus6RmvUEfLjUHYvXlkZmZVkBRlzmmzip5h/Zb6cJGU36iMNZaztq7b+UzXK29q8JJ19TXv\naYxzNThdwl+dufynbfCRkNfv/PDHZmZ2f0NjeP9FnSne+m0hQoLax2ZmNj2V/03som6HAmMmG3GU\nKFu+Am3lgujO1LX2fWz6FsiXEM6rOhwsNpSfr2b03LMvbF5rPg/PRuEJr7PECq/JT82z8sN5OBEz\nITxJqD8VQd26cBVmWQN+gQNpEp6LnJ4jC4prr4xNXWqciwv5iG5L+2v5Qq+XvgfiBv67Jf60WNG8\nbrZ1nSF8Kkl4i/LwLSVW8B3BLRSAtHHhqJjDUWFmlsqszBq6bwVkToA91EH3TkB9Dyc6gyxPNQ5B\n8ua+ZM4evxyjkpYFeZLX2MxSoHLgv0ntCf1evKe+vvVf6PydD3S+Pi6Jo7E9lk2MQnFc5VF7K6Fy\nVFzX4eGbf6CzzrQPx9+/0VyNzlG7cxijywO9XuRcN8A297Vv9LvwEa2z9ws8YGfsM2Vs+O5r8jP1\nM9bk4yM9V1p+IdPU2vvsc83R+pbmcueW7ueH+u23ysC3FPGu8f2GC9fLir0V5co29yuB1n32FCQJ\nSm0bKa2l5Erjf+u29o03flfjW2qo///bu/+HmZl98qOPzMzsQVYo140DOGl8Pb9/qP6tZfD3Ofj1\nrjReTlI+6qZtbQNkrIN8akW2uAFyvnWq+RrAIZQ6hpNxGz7VKdxwCY1vtarnbbGWwglcQeeauCnK\nnPsF2Un37EsUWRC4lra5ZQKdyWsZ2d7Vsc5fEarfzrVOOkut9+T8SH2At6yAUlQZZGPJ5N8nmyDW\n2Ts8njELUmbY1p50MYiUGlkz8OZtbYqDzIUb8gr1J3eiucnDh5fDdqr4zVSoz3UvUKCaa29NpfT5\n1Jr6XXF1tmovxXUVrjHXa4xDV/fxQAjlQNjl6tFZRM8R8tsr4HmM36wbu6CCF6DIfkmLkTJxi1vc\n4ha3uMUtbnGLW9ziFre4xS1uz6E9V6RM51PVIX769s/NzGw5VwSpBVO3R4bEv4CfI0TZBj4MJ1QE\nyk8rUj+nlq3/nq67cn/HzMzWmmRyZ9TTHykSlngVlMQG0chPlZktkNkZ7YJ4IfM5g6/E9RQVbYBg\nyeyQCSIblqD+3KbUNC+FNij4KDEsFalzk/B+hOrXKFSUtzBVJqZk6ndAtsppqD9ei9rZmmJqTlUR\nvuNLRVOLp4rW9tYUdb18L22vwwlTaSjDZnCwJM6I7gXKOnTzLn1TH7wLjXGIGs6SesL6SmPQKmpO\nVnVlowYolNgxfBwFMopkGsvzr2ZyQUnRyayryHCB6KkfccpQGxnCrN3GJmZnylCcL1BKyCtK+sbv\nSinhW9/5l2Zm9s6f/D+6zhNqLUHkdHc0N3nKiD3UTSCxtxnRUA/VEKO+eTSVLeZRaGjB35Ehsr44\nVj8SVfW7kNDcP0JVKUfNcC6t6GuaespET2vCHenz6aXmvJyAGwjOgQRZfxf1lUgRJgOL/oAodIvx\n2/D1nA7cNYUC9Zmu7KG/0poql3W/3hA1JxQhxln1b0ZE3qYokBXhxKAOM5cns0Cmxl3p/VODD+CJ\nxuW1ruwztaX73aRVUGLZfJOs8gvwMFC7mfg5vAo12WilqmfqwMdgKJRcbuo6uzmNaetEfqK6o4j5\neUFzm7lCBW4N1FYf9RxSkMuGxr7jCBVQYO6mBX3vakP9uw3KqUumstiEUyYJamB6ZGZmj57C2wEP\nUsPT907I3N3BxgdN9bOKMthGJqrp1f/Vuq6zs4PiAYopJyONQ/VA4zXMwysyln8sTEFJlVH5SGt8\nMglQAiB9Dg5E/rCRxtbJeq0cIUqycHbd2f91jcOesn4bKDrMXK3ZiyP5qklaNrWButV2XhmLz3/x\nxOwHZu3zL9EBN2kTUGHXrvobghZJUFgfdFmbE7JRCz1/muy/ZWRHi1BrpHMpZ+BW4JZBXSqE7ykF\nOtArk6nO6Lm6czh4As13Bj/eOxtbBp6G6h6KIVeylckSsq+u5jRb0/v5XdBN1GEnJvDkZGWLU7I6\nLuszBHmSSpGPwQbT+O0U3E4ZB7/AX4QXLAcniWfseUGUeYUXbktj2VnJ7827uu+C933uV76t++2E\nkBrAQZBnf3BBFA6pz04v4ASAY2YEL5QfoZ0KoA5Q6joaaIw9xvqmLQnFSsbVWl+2QayU4AmayRZm\nKc29Q3awhx/fDFFwC1F9SrBvsvdn4D0ZodTTBTGUqqDk5qE809X8uR9oH77Y1Zpd3UJRqCIUWvo+\n+0W29uVD+Etz4TbIPpCPyPooj6VAA6z0/lpTNp6CX8PDtosoVKRAjNYwv+U6alyoIHaw+SForzUQ\nAMlQ83952LFkK0LEyW/s31JWPAHfwQwukAfsuY8+0hzPn3EOY/3NOvBmrAtVkGmC+t0BBXaosRuD\nnLl+pDEuwgmyvYNiIn6vjGqP15/YV2krEHt7L8vf9S6VMf5xS5wq/9WWrgvwwlYpjaHP3h6i4LhI\nDKILqp8gFFfwsLlpGWMJ1NbCYy2W9P0ARR7jbDGF88XHH+WY8wAOBKcuG7t8Kt6P+SPZZP6WbOnN\nbwl9YVnQepey/exM43mCUk04jdDO+v6rB/re12/r+vNr2dCL2zr3BmXQDpzbB89C+qc1s4tcopfX\n/B13tV8WjpWxLzT1/OEEPsMQFBpogEZa8+pz1iyh4hVO8cdfCsxYJZu3cCXfUYFrYlUGVYjvyK30\nPW+kfpdAkk6dut20pUEb5Qu6VjfipWnoGQes80gs03zZYNjS2PzNf/hAffwJ56yZ+gDVi11MQH2B\nOigW5B/G7MV/9H/90MzMnB/Lz1+CtFiAHq5z7luG7B8jENOcyyLb8jDR6VSfL7MXeyCZj9/RGWnn\nruY6BE1ceKI5+cHr4sbJ3tZc/s3hH+m5OKdOQcXOn8GZeAd1OrhonqDUs5WUrST4jXh9oYEopvW5\nO2/9QP9XjtT/hM4c16CzkijnHDG3jXP9RqrC4VXB8SfhlMm8ga+6A/fiT1FIm0X+T98bhnBQgt7L\n5b9EZd2kJeayiwTn/TE8hpm7ms/Uqfx/61L2kkRNKZXT33CMbcIFZJw1+o+Fzvv61/d4WcipPOfz\nBch4n+oSM7O0DS2RqFsxg7ovsr89g3eGM0QCjqd9VOJK20KIr9+VXy57er8DivXqkt8scHANI345\nfveOOUPk6vjBkua4/0RroT+LENryCw7+Nw1aqOHqDDH/uw91/WvZRgGEc2WT8/0VSPRL/S3f0vMV\nQV5PfZ3XA/jpvv6fCfGYmmmtPX5b8YEcClcRNUwBtO/KQw7vXP2fXGlsNzeZY85i4X8CcRcjZeIW\nt7jFLW5xi1vc4ha3uMUtbnGLW9yeQ3uuSJk52aU+mRRDkab+AsoEK7Jkm6rve+POb5qZ2ZN3FbF/\ndqEMxdxRZuWgoKjvh2QVux8cmZlZ4TfITFbJlMKX8YDosg0VwVucqAa4/tJv6O8ClRGiogGZ6OxY\nrydheQ8qivwluX8FPpBUV1HXESgBjwxCJqnPGaomZTIoEWlM3xTBe3YO+iGraHSmfaC/G/pcbk8s\n/7VdZWySCBvNPldd5GiC4k0ytPSG6p2zRCmnTxUNvEzALF3V/2tEzpMLUD4HuzyDrp1PKAo5RXv9\nAO35JbXw3Qw8Fi9qTJd9RYAD1ECcC439TduiQwYYBavaNlHNOpm6LjWqRMB3UJNwy3r/1oYyfi5Z\njnt/IBsqo+bx9I8V8a+cwxO0p4h+rofyF89dhCNhUJXN5skAh1UyCpQPruX4HuohaeoaE25Uj4jC\nRAo1KNRSQurtO6g63YJTYSsgU1JRdrHm6f3xhOxbXraQAL01Q3Uj0aFfJV3fARUwvCZTenqkz93W\n+CQjlIdHxkJBaAsek3GFLyNX0FqaT1gbqFLNosz7UP+nsOkUWctgpDVabpDdXNGvB6+Zmdmjv/2P\nZmb2Z//2T83M7K3f+y/tpu2zc41dt6dId/cXWv+3b+nZxjD3N0ONVfdzzXWfOtw1H1W3BVnxMSgE\n+IB8lMYGIClKKMisWnqm3lz3q4NYCZjLQRXFGq4zbak2N0+t/6iq+2bIvlwSSa+Q8VvBB3SYFpIw\nGOt6mVeU/Wh6solnLRnf9Gd/b2ZmB99V1uoEJMc6fm4w0dw5TxTxD+DG2tgVi/3TtrIxNVBQExCL\n2T3ZQLqr+1znyLJEwi1PUZDYke1sg1prUG/9uKf3n779t2Zm9rW3hIbarmgcDlfwNcF1k1+n/pts\nzsPHGufdlFAa4UjjtBmQHbpha4CEWlGfvpHVvMw/0/0uqTWuUV9fScumfZBYLiiJM9SV+gmtxd1A\na9kr6brpvsYbCiArLvV+HqRM70xcF1nAMElX1y1tVa3VR4VsQb31umzXG8FjNIF3oSM/mqlHCIso\nY4aCgYbOUtdwo1BDniWLlUd5JoADxjf5DceDY6SDbfr6XuiiEreFGtsLUszqutqDj+B7q2+IS8Qf\nSpHwyalsqLqm7NJ2Wf5gRfq6PxXaaQZPRtaTn05SN27001/p84CdrLSm66Rd9fOkKxsZfqy9srPS\n4N/ejng7btbqzNkoE3E+gK6d1hkHFCNALUyS6lfF1TghGGlOSuNcmuj5L0twr6x0nbkvG9AQ7s8A\nACAASURBVHAd/HGErgVlVYR7ZjzXmmufy0ZH8GlA7WK3QM8NJl/yongbZs5DreVwpf17Cf9UBv/u\npvX5SV1r0EH5Io+ymJvXPBZ8zU+f7GV6TWthEWjeg1GkYCE7WpIBf/jX8jGTo48s5YIC9WSrfgjq\nEiUpB0XB5VJjnQU1cDLj3NVHyQbepFSfjGVS/q++I9saBQd6xoX61H4sG1yAPFkVtbfP4NNYVTXG\nQfDVjsEvvaV95bf+6/9e13+k673zR//OzMzSA50p7ja1pj7t6sySWNPcZwfauxMh/gJUmQuP06Cg\nz3ugxmau5rzEcd0D1RSUUfeDo2DFWSFfQJ0JREkurfG494NvmplZeE9z/vM/lD9eB/VU/Rp8gKxF\nK4BmgEvxLlxqQ/hSuuzp8ynn95mMctgCeQnyJ7cNb8gcFC9KXpsb9+k3ipn7ID1nen6m2xZd+YA8\nCjerAvuxozWRHMGHNwSNVpI9DHJwBuW+VNdynKk14PEzeJcKEGs5IPMjpGxlWyiPz1Fgi57rJq0L\nyiiBSF4B5EcatFYNxZgZnCczN1Jhk18f/LXGtJmL9lLZnLOl9TdJyeYGE1D3BfXZKcgfHX2g3zK4\nF0u1NCbFivxhDzW9dANFrrp+H4xGqGNegUicoEqUlh9bpg/MzOzeptZSb00oqVsvCyUxRt30J38h\ntaePQMKUj3Tfdz8RAuib93RG2UFa7dOZ1nQ+UH+WIHUqrNFyhFJta630rhivhmzpIFA/w02tqfyp\n9rEsyO/gTXHe9J/p/x//6K/MzKy5YH8t674cDayxpfEsvyEUyJtL2eYxZ6Rony3z+2kCb1x6fnMu\nRDOz0w52EqhfpZzOOLWG7n9b5mHvnz+i//rfGYBa43dVaRufsoCvEDXFKgqXafihLj/mTNfX8yb5\nvWBmVq0lbdof27ivdZNOaw7u3tP5MOPAUzPltwwKrX322sXHQqqUQ821B4KksIZamqd7TeHay2U1\nhykQ4lUQOEWTbZwN1NfeYypJrjS27Zbumy3r2TZ29f1mXTb+GMXHLKqaKRAzGRCZ02hfAfW/dVs2\nEGGGspHi7ErfPzpWPybswaXbsvmQeEIaxcnZQvucfyp/mcvBJbMVVWvw2znxq/ebGCkTt7jFLW5x\ni1vc4ha3uMUtbnGLW9zi9hzac0XK7K4rKvitf/XPzMyscabI/3UBjpclNWRZRbbO+9RnwmLvtglr\nEjFPNRTRe3lK1BbVkvO2ImiZuiJXn8Ok/WJbEayNDb2evqvMSzrSds+gQY8CT4MI4ILy7Voe1ElX\nUc45dfDznj7fWUNZIlD/N7nuVQbeDqKiKyJqSeqyK9coPUwUrfam1CsWFB1tdBU+zReVrWps6zrz\nN6nhO6YQ9KFif7WUYzvwXPQGZKVKqn+uJRWp3lVZsU1Wivr5QD9c41qoSyTIqEYM+4Ox/l+QWVzA\nEeK6qOs0lakrgFY43/4yMnuTNkQNYzhQjWQSXo+dW6hQuIr49nN6Vu9Y/9dK+tzlp0dmZtZ9IhTF\nO/+j/mbIgn/6p6pT//bLyhT4ZK9sqMi3U9C4LZZEW4uaOz9NFmilyPkiqSzNfBpFWfX9LuOUGurz\ngyzoLx81KpQRZqh8LFsavxmIoBmoA4QVLAUaq0Y9drJInTPs+62+oslDlAsOyoK8tBaaz1ZP854g\nU5rARn24dAY92WCD7NWooteHqCmtL6jzTCrKnV+ANpspc9NHvamGCklAli/BOKxQijj1lSH49rrG\n9aiMAhv1m02QOTdpW2S+FqgS+XAQBEldo7EC9nMFugB29rJLjSfZZjvV/+dpIVqSbV3nOCt/Eay0\nrhcDVD7Iltxb6Bn6vsbE31R/kkh6zYpCrG23ZJObSX2vS7Zi01cWI0U5chJOkwhlVfXIgjf0vclc\ntrMLQq/1VCiFJydSYrkP0md5okxx/ddke/XbWuQf/tWf6zqPtGbGKdmQ/1TZmMJt+c9IaC0/0Jp4\ncizbal0rI/LKb39b/bhLFo+M6fAUrp035E+TK9lEliz8ObXJOwk91wI+pSrcDk2kZjL4xVRKPqvP\nmkySOZ9tkPG8YXt6qfsMKhr3wkTjtAKBZPlIlgReFjjBQlj6Z9SnjztKV9XxcT6cMEXGyyeDvSLr\nmC1pvpyZx18y2/jORJ6Md3n5RY34CGTe+lI2tCyrjw7KXv4IdbYrPUu2BvIOdKkHTCfryF9k4ZzJ\nL+DcCvSMPmmZdKjvl6/ha7smq9XT30xZY9CCDy0kC56pw/0y1HWLoI0S1LjX1mVbtTWNtTOWrScM\nXo+mMq57+KsV6NlIkTBf1POMUUrr41euQMlOn/yDmZmd+RFKQM9TgdejuvbVkDLXAVw0U5QS1/Hb\nM9RNCqDgSqA/fBS0Qj33MoXSGNwAZ/yfaINcrIEOQZkmnYF3aKa9fm8XNMUtnVnGn1KHD2fYxbX2\nrzGff+k7Qj/45ewXz1CdORbcUr881O5cVJJcUCpVqNDmKIrV4BoyFCWCmXxl91prOgOCNBXIx332\ntp4/OYeDweCoeCzfOEAV5FY1Z2mQCyHrpO3p2u2l/m9cynYmDdY7CI0yilERX1Jnqk4Phvp+kgxq\nMq0zxjpItgJjUa/LBjOgeOcT7QcBSpIuiMUZSIibtkRJ/mk5Z60+EkIxGCjbP/xEf1cljdmwJ79a\nBK06BelR5/jtzGX7k4Kut0Stzs3I39SnsmEoCy0TwGMBWrkNwjJSBSmE7FMgIz98V2en7/7r75uZ\n2bd+T+ftk1/AdQb3wW5GyOv1+8CDfdnM5YfitVhtazy3e3AxoCi0gI+qfqB5XuFb8jP8Y0rzccX1\nHLhmjDXvjeHLgJ+vmgJxinOK+Fmcc1TrmN8NlGQW+O0hyM8ANG/dkV1ch1/Or2N5m6BMV4AXMBzI\nl2Ty8HrAsXZ+LVtfwNkTZG+OzAxBYi9Anl+z1+/CHbVIqY/l26iW4acqR/zWgMQpU5cNjR3ZQm1f\nWfriQH6hj0Ji4SX46NJa3yeo3aV8zckEpVlztC7XrvW5EI6WIsqJSxRgs3X9xth8gXP+M+07XNYG\nn+ocOUL9qQoy3QXdVatqbudtjfEjbDABKqtQBV3hyfYSZf1fcuDdzKDkFSE8X0R5B97MAxAk85n8\n7tGRzlglzmZ99qcqnGg7mzrTpECyN9t67gBlnsy2rj8JdJZ6eiibv36o+yVAija2hLiZnoCaBlEY\nwPtkoEBu2iYTfNBEth6yljZQFC5saL7XtuD2ZI20QTIlOXRsBvpcn98FZVRnH/2d+KNWLTgm53AZ\nLbGP/Je4jJk/tWQpaVPIUlJwUqXwK31QmkFWtnfvgX5vN+t6P0KKrEBGO1O4ApPaW64vNUcXoC9n\nKVCnoGYLJZ0Xd+p6lr09+blOOzovgbgBnTr6SHvhZRvup46eLZdh38jiMJP81iqjgomCV/+J9hHv\nZSEEK45+J7Q7R2Zm9tm/FzftBX5gJ6v3S+ug1eAmK8Lvs5xFPH4gCw1UnGm8HJ4jkeGQ8ktajJSJ\nW9ziFre4xS1ucYtb3OIWt7jFLW5xew7tuSJllmNFKS8+U2b6sAXS5JnqIU+prw6oh0vmFSlbW1P0\nuPqfq96vlFamewxPx5Is1/RaUc7+PeoKTZG45t0jMzN7SI1c7yNFtRMzReYS1KTtwx2RSJAlaui6\n6UAR9eupMqaNQJniVUnR3QHZM3eAEo2nSN2FTzR5oPutUGhIFhU585eKLnd3iGajFtW9ViQwQST/\nmqjt5Ez3qe3o+sU8rNCmSOBhSdHW3fV9y7nK7pyjULUqacw2thgzkA7eQs80J4sbkJ4ZpjUHV2MU\nV8iEjRJkM4gSumQ3zn6uZzvJK5p5uwGvApmCm7ZCX8/4yYV4NSoXZAZ+S9errCl6OQijDLP6dfwZ\nWf2/EhJm2UEx64Gioht3FfF+4ZtiJU+SxZ8yR6km6kdtzdW0EKlTEAnv6z5DOGXSKMUEwKiyoBlK\nZBaXZDrKqFlkG/BLkIHYL8K6PtD9P78WyiE/Bc0Bc3k5q+fuL7VmEpfwo1BzvKIe0gnU7wFs/Ofv\nafzah7ruzutKNSwrmt9RShmHnKP56WTIKIAWWATwo7jwHMEVM6OWN8l1GqZo9WQBQmihcRmQJfXS\n1DSjWNSHy6CY0TzWayiv7dw8K+WTMawstH79BGOW0Vy4Q9n8hc/Yp7FVal0778lWggI1/kVlkc7g\narlbhr19pjFYz4KEO6TOeqKsVsB6rlLDWoJHyPc0FjkH9NZI/qgSrev7cNgkNMfHcFmVySwWS5rT\nShKUGyiicEffu9tRtqa71Jzt72mtfz7+mH7pus092WTmjp4nV5TNvPSC/EYPdaTGa/r76C/+zszM\n5nA37IMOWKEqtL6v8UiWZAtTsvofd5QVO7hS/5pkj0KycEGF7D38E+tD3e88L1upXIGIqWjNTuEq\ncB9pnjy4KOzy5mgqM7PpubJLR5/Jxy13dJ39GYoRrJ0cmdpkRc/jpcn4gOhJwn2WX8en4ROW2PJa\nWb6oje/IoBA0z6KildJ4L1A18Je6XzPfsGRZe0g4o3a9IVuokDmbBXCIFDWGEzimhlHGNC/bdMm2\n+/A3RHw4PtxR+QhklID7yYv2SK2BJVxUa4HmNkQtLgvwxFnXfZ0D2dL6Sv4jQO0tRHomOdbcOiBg\nJvA2NAsag1pVtuX4ZAYDrakrX37lCWp116Dcrh8pgzk9U3+N7Nf2m0Lavfatt8zMbOubQoX5M8h1\nbtgyBdlAoq+1YSgzJkAktZ/gA0AwOdugBdhf+gU9Z26l8SrBCbPAj49OOXPk5RscR+Pgz9nTx3C1\n3NbrdfZpt4LaCrxxl58JfXGxIdRBvvZlhjabK5tb0D43nWnN9DzUAx0UJFFR2SjC08FZKNkEHUYW\n0IHbphZo4o97Go/MQOOxGOt6AdwTrYnsNlXVvHvVF6wCos2ty7aKFd2j2EYpZITtgFL1TWM8xR9N\n4G0IyTReJUBlHWtszxoa+50q6jygMkv7GrtRS33eZG6S8P+c9uSnvM5Xy24PD4/MzOzj99/RGHyk\nOdvoorr2TZAqfdmqwUfhgnQcww+xTGuOs+xXOVT30gGSj3k9zzWIvPwSJGIf5UnOd7bU3zz7wxgk\n+ATFspOuXv/Lv/kbMzMbZb9vZmbzjPaj9w/F87F8VxwzQzjF7jzQGlpxxvHh/lpU1L8FqkerIfxJ\n7H++w9kgDwca5/hRTmsiWZIt+aBJlvDcIeRoLgiqBL5siTLOHDSxZ7K91BCFuKLGp4xCqLXhQ0zo\n/o0kHDlm5mUXVszJXjxUmDqubhzAJbPwfcYHlB6/krL/PzTaf6qlN3SGyPQ119mcLrLMaQ8atNVX\n7xP9v0hrzrZ3QDbPUd+ZaSxmoJ/2u/CvRQhuUAmZT0Hhw7XoV7X3ZuD7KKXkDwK4Dudp2WyyRlWB\nRUqSGoPlUH43aGtuk6gfbdWZu3uvmJnZBD99+q6QMzM2lu37OpM0PD1Hs6o5O1uCwtjQHJ1zxgqH\n+H1UYHsd7bUhyJ8DVGDPUa3buy0/7y41d88e65x/zvna8aM9GyRQVuOUB/EdVSdMGloDu7fUr/3d\n3zUzs0FLtvH4T7Rmwm14S9gA+/yMcUtUWXD+DamauGlLZflNCAokOFU/T+DuTI5Ruixjoy4otpH8\nehih0UacJXi+kN8xHkilGj5iBeorkdTnc8nKF30p7JXM8/OWhlOmj61YSTYYsF6cgcZqye/hq4Ve\nny/U5wOQ58/gXByCjj3rwJvzWwdmZnb3G/IfXaorLv9Ov026ac1hoyTbrBdAn7ogqwe6znKB7Zv8\nUb4A4ruA6ih8eaOxbLdEtccEfqIBv8meHvIbDKRfzVAS7sCLOsQBrIPYAzU7muj9Kci7EP6+CtUS\n5QZoOdBbS1Coi8GvRmbGSJm4xS1ucYtb3OIWt7jFLW5xi1vc4ha359CeK1LG66D88PfKWCxQ71gS\nkUqhKLG6JFuvwJY9chVZK/xIkaiLutJHWXgysmSq80Rj84FY1N/4PSlG7Nivm5nZCbWy//Hf/O9m\nZpaDOfygLK4EK1GjSt3ecKkIXKWtyFwZavNxQZG2DKpJGaKRmSJ8J229nqbuPLmAU4LsZY4M8TJP\n+JWo54JsZ6Gmv+2BPhdRKSRriiheduhXDoTODuownxEFrh1YyadWfa6ayWT1QM8Gi/sJakI1shbQ\n6Vi3pGfLjvT+wjS26bImYxseiAl1g1OY7lMoUJ2fKVpq8OQ4DVJ9N2w+PBuZdxS1/fRKY3ju6bq3\nXlHE3EEFaL2mZ369KiRIq6Ja0SWopSk8HAPUkmypsf3FibLn4wtdd7+gaGn2DooBcMpsoNgzhfE7\nGFGTivpFPgN6oqlJWhKdHXeVefWwgQKZk/AZ6AHqMp2s/l6/J5RDMqP6Szep72dQtXo5LaTPJ38q\nG06E6s9+U9f98Bj+i09VFzmkPr24r8xD+i4ZGNSrMmSBMtiDO5C9dKvKWORRDAv7EVcF7P1FEEIz\nVKSIEjvJqC5d473yUCRjTQQJMhmBxn+xIV+wtdJzJlj7N2ljbG11hYraJvwV8Nt4PU1251J9/c6r\nso0O9bsf/L9aEyW4QL4Op0nB0VgVXlXEvvkzZRQTGT3jRoNa+Joi/gN4H8r4obc/0NyU15WlcvZQ\nSXpHNnY20ZzsVoXWqu7J2PPY5pMoe9QXSiB3R88XwCeyfIYfrICmKKvGd0REvhDCNQXHVM9Xdqw4\nkI1tvyiUgiVR9CLLtSKz6EZKLWM9x9YD+c+Lz/T+ySfq6Ne+/TVdH0mY7ELXy5NpGE81ztfwQSXO\nZTuDpPq/19J4Di5Ro9s/0PPSrzpqH0vGdfmevtc+ggPmhi1SAdjKKgPcBL2RZxdModQTzkE4zrQm\nUqiGDDrUJINayeWEoPTzZD5mypislTXfvQuNWxKlMZ/MtbMBd1hGmZn5Us89z9etTJapB7fSfA53\nCXwJRnY8pBY9gPhnSrYoi59PwGXiMPZTUDpVUDshqkaur3U2gI8pk9ec5U1zfDlVxrQP2iu44H/Q\nq/er4m0YTCNeJLLV8Hec9uXvG02tpRrZZ0TorL/S9YbIFs0HY8YSVBb7S2ahsX3xTWVo939XazhT\nQxUJZODY1/ONIr8afjUbMfiPvBTo2YnW5AhUxWwCAgh1vNWQTC9zuNQw2CV8VpkJNoQ6RweOsDkZ\n3RzZvoanv62SbPT2Z3BNoNy4n0Udr6TnrlRQpniqDLFzUP/iEbKZnDVr8teHXT1PAuXH7IF8XAL/\nuyLzW3c1v9mSMvWrlLJ7IWpSo7nmEdoTu+Yw5p9oHOae1sCM6927DU9SIWVBnUzrFK4+0E0G4q8A\n79l8AlcAHEt5FGkGPlwCJdnGVpq9iQzopBcpQqIQRca02YjmQDaU8mWrZfjclifwdrDX37Sd4peX\nZ5rsjS3UleBbm1/Dq1MiG11HHWgT7kA4t3xQpgN4oK566le0hFbwPZRTmrsByI+gAe9foPvPQdDs\nmfxRZ8n5GXW55su6bvvhkZmZvdMQArKEfF7lzoG+R7a+19PndkEeDVEHdDgDjLIa120QOD4ciR0U\nX9YCrYVZUWun2KOfICodfnaMyLj7dZQsOe8a+2sSDrE0Knd+DRQfiPIO3FyphgaskdA4TvAlfdZ+\nvgQJpJll/IwFI/hcQD+ErOk5v0e274hn0Wlq/p6ea74v5td205aY6rvXZ/JbnqNn2V9/XX0r6Vqr\nltZVvaGx7C2wfUAKPgjEckrX+xj+nfw1525USSdwQG4e8vomyGn4M1zQV0nQV4ms1kKk5ulQZVAB\nVbuaauwOExrL8khjOAdtmt/RWG+lmcssNp7SHh8pZ43mKBiCtKncobrhgLNAXs/TzWvPzMBb4u7o\n/yUo5ydT+ZuP3/+ZrpPX93t9HO4V59EsKLnb8gEp+E+yn0cKbLLRYQskEAq1J+/Ib50+09q4t4Y6\nVFNnpBXI92Gg8dpZgx8J1TkPvtAuHF43bSE+L1XBX650Jlhynl+glrsCTVfi/wJ8Wc4ExBS/Xdc4\nsxYrOkeE7JudsebfQ7VpDsdQIv0limx4fWmDVM7Y+mzCOaeYRdUMKFsr1Hopn2lOVqBsc7uo4EFP\ndnrN3lgB+faC+pR/U3M7eU0fLJv63P8z9TGDQK/D3DqcFdym7nt/R9d5eiS00EDFGOajJFYGjZsZ\nw/NTp5og4rlkLTYbEfefXj/8BWemEns7iLncuuaitqE1MIIjy+vCUebJn/Tnql7wV7K1BP67CL9o\nMiX/nIVP7pe1GCkTt7jFLW5xi1vc4ha3uMUtbnGLW9zi9hzac0XKnMM3cUI01kV9Kb+Lgsu6Mr8H\nSlTblBDccKnI1ILo7AGRvMRtoQdWsMJ7bb1+3df/Tz8U6iD3QBd8I6Mo4/UPxbdx/o4y7Em4JcoJ\nRcJmTxUdnlRheT8kM4/KStrT9WdkVJcNoreuvt9MUsuWhjsmq4hgjexn+1TjUN8GGUQWKgdLf76n\n7NhlGtTDpSKC93cUmeyjB1/sgrIABpLb0P2KrzXtPNAzjNLqyz0fFZ0J97gg+7OA/byozGC/q7EY\nt1HRgWW8CmJkuQb/DeoLjYKimOm65qLwsqKWly1q6MlS3bQ5zMWD7wrtNCED+vmJopJbe9SMkhHs\nJRQxDjZl2gtXY+nCAzInm5Zb13PWYcgupxURnxE9fXal57fHZPlg2D5DRao+JMtE1ns2o34xIPsO\nCmICj0mYlE2kG7pfMKcG/+LIzMy270n9aZPoah91jZNn6kdmTxH9B4E+970f/HMzM+tO9RyP/ly2\nM0MtZUw27memcS/Cjl91o7p12cYCpvBkWs8TpmXTcx9VF5QfUknqIitk4oki+3AK5VfwAAS6fxLF\ntATogAjlFm4pK1ppaZ56KBxZQYzrkaLZaHxzlS5/potPUWBpwFUy4hIXET/SOlnzkuYse6115TZZ\nb/6BmZl14RBZ3dGzb63ofF7PvOGT4SOrfZ3TWNUP9Cxj6ovLx/r7ym/IthoVlBHG75uZ2fxK/bz/\ngjJzpygBuEpi2d0rZYO2NzTGzp6+f0kWPYPK1Ips+y5Au/FAa7k4UL+vy3rOKizy+aki9tvUCl9e\nyBYz52R44f/JZ6nFfabxSiG0tVFXZjkw1QA/G6But5LNhqCuwgH+DFsogMra2CUzMkedajNSitH9\nWiP1MyQz4pDBfYQRTUM9b2csf37jtqTOv0KmHJRDe4XSTpJMiau1McD/J2Dzt4zmPQfvSKZJFnAm\nO1mhBJdEFSRBptiGEY8UtccpfA5yWyNPrxcXUwu3QH6cwX8B/9g0UvJDmStVRiUt2iP6kL2wp46W\nGqMiY58PNUfessdQoNQy1fXzKJEsqUUfben7fgkkxwuy4dQdrdPb8F+U7uj+T4+U3kqgDrG5q/5M\np6jJTUCRNlDOIguWdWXzuSibxP19EIO2rX7vfpE+0ue7Z/L/3XOUeKiDT6AUMWkwV+tfZslv0vyh\nMrfhTH7w7IIsfYv6cTi1ZnCq5UPUhzY0DtWM/uaKet515Er6qBPu+CCAUGwbgTjMjJSZrVLnPkPx\nq4qy5NkKVToUJctN2U6iBQrifPDFM4QWmqFsEcDHlKnKl6zyWpNZOGcqOdYuNjh7ov2mNdA49Fqy\nFw/0R6uFgtlDOMi2tNZroc/z6/MPZyBMcxN70Jf/WeXgJRvK/yRBIng9jWkWfrsIvTpiTyos5bcX\neVC8Xf2/2dT7J1cgAOE5e7Cp61faqBT1ZStNePMWcI7Uh3qmTOWrIWUsoTnuN7RW91DrOQs1Zn/7\n9l+Ymdn+W0IQLlHAya5prnpX+rzLXrixxVo8A0UKH8kUtalLFB6nLY3xHTK9A8Ytxxb6OejlLOiH\n/JrOYhn45qZt7bnZMzLA2/JLL9z9lj7P9vj5M5DcCVAW7Kf8+wU/1bAGqmGkNxqgx5IzeElAd1kZ\nLgh4o7Igb2pp2XIbxIuLjftIg7lZlDfxu1XUTQNfftuBQ9HjbHm0ZA2CEksEen1kSI2ZmeM5NufM\nEaAk6qMElH2m/l+1Nd4zeEisQL+mN+en6ju6d37G+Q/013Sqe3uXunapAkfJNTYP4tAfghJdgyfD\nRfkloz3WAQlZdLXp5+BXm6FmuY5SZMhemcRPjUYa80IBv8HZqJyD7wilRSvqOg38dvIL1Jmuc7oE\neX2Jil8afiB+JyS7sr0IHdoC3dQINZYXPxS8YV4/o1+ylXpFttoAgTl+Vd9rrthTl7pfs67/pwGI\njxVInQPZ6g++8X0zM1ssdL+fH/+1/j/UOdrDvxa21c/hY73evtC8vcJZzdnW+M7OUVBsa78JC0Lb\nTjg7bPP8s8pXwzlMeiBEO/KnPfgL92babyvbGo8wQguzn5R43hzqreOO5rsLF12/rXGZUiHgoTbb\nqGjNHOyjlFb80qZnmbKNBtfmrVi3nmzhoqI+rXGecUCaXXF+at6Xv22gIHbxnmz02VzPtvEy1Qpb\nWpcXWT3TyTMhiV/fY438Oz1b5B8KKDu6LghEkOHFt7R3bd/Gn57Bg3oRqVzq75gzzQF7psN1+nDc\n5EDUF8soBzIHwysUEilJWfZlQ8ctvd4GETmGsybNWchDfbS8obnIgIipoqgYwokTHP7q38AxUiZu\ncYtb3OIWt7jFLW5xi1vc4ha3uMXtObTnipSpk5ms7Ckqmksooh14itRdnIrD4cfvKzp5HgkukBn/\n6DNFzj4/gYvgVUXsvvUNcR+Uv/YdMzNLjBTt7T8WT8fi7/7QzMxe+ZG4JL62+w0zM3tt+aaZma2G\n7+lGU0Vxu2SzPEMtCcUfN6mY1nShCGKBhOoiYhjvKVI2XCOCRoBsnoGLAE6aNHX9Q+rSM0SDz8eK\nAL7ykqKm2w8V0TtMqV9bDqoea8pEvbhQtm386Id6vaF+Zxt37Pp9ZbXXqXXvLzTGT0ZiTS9YVEen\ne8xRFEkG6vTmhqKbCxi5PQfeChQNukPY4snQ+T0908ae5vTOvvp2PBMb/U3bwgN1p5buIwAAIABJ\nREFUVFKUNf8tZbVeeKQxLsKVEFCfnoFbwIWtforCSSIFCsujtpLay2lVkeTaRNHM8td1n/Ur2eSQ\nCP6QTEZA/eRlxO5+rOxWGlWpOkpc6ZxsZZ0sUWapiPy0razdwzbs79SKbvugoRKKQu98R+O18YJs\nZZwVKuC9p//ezMwes3T/sqWMw//yP/9bMzM7l4nbG6+rdjf/mlAY3pqi3d6KjAYZjKxLFg3lgvpS\n47WcEqHPEWWmFnmGEkYJRvIVygoXpNHmkBGlongvYAGXbN9yoUx7h5rmlJFFQ1Ej2NU4Vcjw3KSV\nQDsdrysyn4GLoASHSbAnP7Hu6N59Mo0z0/qq39HcJeZkT1AYK2U1J8NNEA4jUFG9S55dmYEg0DO4\nZIvnWY1FnQyBixJVItB6LRxoTqqbcE41dd0FCLd6COoL3qL1DZSyUHKZYtsLUGfroCAWFc1pfaw1\nNygJrZY/hU+JzGIxrf8Tn8rmN5jbnqGU81Bjf2+hcbkKlT0fPNXre/dAUwxBIXym53hyGdWZy3YL\nG7rek0OUGch4LuCCqA1QEAg159tkRkqorowm8vtuiszqHnwfDtffU7bqpm3eVjbsivr2DLXBeTjC\nctTzl8vyATnUmIzMi0cWcjmGhwnESziVbQ/w+5HNV0FVOCjbuFn5HO8a9ZAH+uA2Gdnz05HtohyQ\nKOu9y5FQAKMzrY9ruKgA8dgc5JsHp5ODH/Q9jVmiAKorI7/igzIomp4hKKBUCFIifRApY2mMpmta\n73d+ExUm6swffi4ukztjralUSbZ1jHLiLK3XnaZeT6PGNEQNbqsm/1KpgxbKa64XWfwGPDx1suOz\nltbc8WPtHy7+r4h6xdqu9oXde9orExvs+ZOvxikzbsPl0wchib9PwtdWhPurVJdfXoEKawTwBcGl\nsGQ/fZwEwYNPcWqanyLKcKUVimolbAK1Kh9USD6h+Zv6+tykBToBNUCXcU1dDb94hmz/0ObbGo88\niB0XtN+iDN9IQf0twN0zx++PD2Vvk7ZeD/x/jCoLUL6ogJD5GmqGja/pfttfRzGjoTU6t4G1QdHm\n4CPqoWySwm9OQE9lIQ9wQRXk+qh6wMUyIJPpDlEYKWqsOudt+ozt3tE6Xy31ubW8bOyFvNZ1J6E9\nOFWG/KAWSZHdrO2SYU3A6ZLpqB87IOFa8Gi4a9rjPNSmLj/XHHx6cWRmZpsZMrsJ7QdXcz1H+qmu\nu3NXrw/el3/xWCsBiMoWc5OAG6YHysmBR+Q+2XQHxcNCXmujTsb6Gh6O+VS2twV/xjSlcSlxRiyn\no7MgvicCALogHx39HaH0VgNRWgxQV+FcnIO3aoY/zDqg/dLq5wWcb0nORudp9SvXgRcDpZwM8+nC\nsZgMmUeQ8wXUVwdT0BXlL3PPo3TSxqyZPbhwynx+ckvXffxz0MmOxnlzU78nagcdu2lLgzAPUK28\nGqDS85lQBAGKM/1ehITAcaDCVlrXGgj77FWge2euxm7I+aiGUNcyYC8701hcg0pasE+k4D7xUZha\ngbi4W5NttmZa9yX6nVrBIQjK1h9prQ5AXq5RBbDKaOxyKH9N4AlawSsXIWaqDfkTFwTHAn+/5DdR\nuiabd3Ocyxdaw5++o7PDJkplHficOuytIb8PUlW4FM/0+dqmbDmAFOsUVdb0BCU31GQ3t4Vm+/6v\nievn7/f/yszMXtwVr+jhKbyAFyAEWRsh+3QzAMHiUQUx/2pKbgf3dIa5RHHOn8nPPnksO1kfHuj5\nQNvl4HNKwnuy8Jknl+oIg1eR39bVffn7SkPjkauiZJSFGy31JafM7ht7thHess75+T/qQ+9S/++8\nDk8PaP7ra/V5M685P4U38gn8NT4qR/6GnqGNsuKDqp55jTn6HqrIP/5jlMjwSyk4rCLA8eBcfrvB\n/uHC+XprT0pfHmrOwzPZ1ggE3SiJH8QNeCDq3QW/VblODVtvgErrUWUw5LohcYkA5GbSla0m8CP7\nCT1HhoqXtduyyWFC/em+/5Gez4PL8Ze0GCkTt7jFLW5xi1vc4ha3uMUtbnGLW9zi9hzac0XKJFAC\niOqaV5BAPEoq+9++oKa/qYj3rc1I2UWRtv/u1xUNnr2oaGxXgTjrPVLkKkMdeN1V1q6yq8zF9ef6\n3OSa2rGuYlMl+EJWcLikqA/cySsrNl1S95fRdatdskslRfAXNUXQmihX9H0yAT1F/Ly8/p/yPt2y\n0mP1dzaCv6MgdEKC5xnAFJ6owix+qAzC4lhh5qTBqP1rumDynsarea77JktLSxu1rJOI34as0kQR\n1sFC0cSdquZgBN+Bu61nmp1Ry9mgPjqne89hzA9dkB9wrYRzRXIfnquvTwuKtja/Yhiw1yYTDMdJ\nuqjrL8rUyKKUUiML74KUKTlwFsBPlEal5JLoru+R9WgxHr6y9gHZnaAORwOohHpUzz4FUePpe95S\nz5lAs97pKdp7hYRC/1TXnZzKdq4neo6mowzj1uuK8tq6sm/9MdHkX5ciT3CgaGylq79BX98//1w2\n8squuHb+1R8os/D2rtbO5ovKAFxrusy/hKWf8cshfzIlc5C61vXdKjXKZO+9nuxiAmJq5YFWWJFd\npL504mscikTNAb7Y1Vz2NHS1RotFmNrJMK+m+l6f7796oLU9bd+cL6Swp7HYXcA4T01nDrW00tod\n/kch5SkcMpua6zdvK8s7At2VyiqS7byg9fPKbVRyLomQwy11UIU3o39kZmbnPn4G9YjZWDZ/fa73\nVwu4sC71/in8Tfm2+h+txWuQIu62bOb9j/T+iJr3rZHW5gwuAoe68CnZtvOO7pepszZn8F/wuSU1\n/O9l3jEzswb12r2s/OGix3XX4B4oaK6n1FPnKrr/dJ1xRTBnq6I1sFaQLWX53N26uMHmWT1XEh6U\nlcmvVbeoWz8mM+5wfdbc3ktwg83kPG6/dqD7gt67aUvXUZzA/9aL8tvL7JGZmc16WqubKJ0dX+vB\n1uua/0ZC43CxgheEunyPjH840eshSg2W1HjPyVolMyCrXPkeH96X6rr2m9l4+YUqXAjnVbVKthnO\nlCJ9iCQSHO6RgQcpiSJAPwVKx8hWIQvkwd2SyJDhA3WQhLMmbKL+lNCzX8HXMXlfNv/eL6R+cfEP\n2kS/8f1/ZmZmb97/vu63dqDuocJTCum/J7+W7KMKV5aNnD+WvxpcCMm5BjogZepPC7W9dlsZUD+U\njd97Uza1X5MfbsAjsvOqOLcy8Kn99D1lOm/aJmNUqTIaBxe1vtso0cxv6fVNFBOnKJZ5zyCwGqBO\nspANNaua40pTc5yv6PMd/GJ1QX17kzUCEmU5hQuM7FwWhYpUXdf3L/W5lENGePvZF88wTa8sf4wf\nRrmmu6H+b2zJ5t1Q9nF8zv0/0/3G7Av5lMY1oWG0UlP71Po3yci7mtfbL8KpA9fRnDPXoxmKmucT\nC7Nkq4e6WGGpbPMZ3DF+BfSNB2qoImRxsQgadgEvUlV7Znsgm1xFPDYozYRd+BPG8iM+/Aprd9T3\nQkN+pwUnigO6agbK9abtEgUaH76dq7Lunyywlz9T/4ZljfVkCG8E6IZ6Rq9vlQ/MzCxR135w9lOt\njRpqIZsHZFpBJeyCelj6qPAN9Zz797Tv+BVdd3Sose9OOS+SoU5WQXKikDhD3c7n/OujbpUJtXYn\nIEqz8DPNh/jtNOpFnB2GoLk80MO+FyF0dJ+CRUqLoF9RlpmC1ijznID7bB4oI55GPTDMwP3j6H69\njtaEG8pGl6gRpmvwH6F2NXoKEjatNWtm5gZD84bqzyU+DqCQNclsbzwQymtwTOZ9JC7HZvq+3bRl\nwkhlTWOZWeraAWij1ab2oiYqTUv89KymvW9yFiEe4ZiBRxKQkKXgCOzDTZicM6en+kAJ5IwLv06k\nDhrCWROAjLxAPXRtTd9vX2mPr6a01sKOzmGppmzc4TfaWQeUURWFmXM4C3n+UQfOGRCco4XWwHiG\nImOOfmCjlW9oju58/0W935ENn3+ETwCB0teStlZF1y9QXXEJQnt4KFs/O1O/i08119WefM4c1dka\naNnJI43rJai75ZFs8gwV1Ql8IhHvXXkGlw37awo/nlzo+d3qr1bW+acttQ/is4zyY1vz5Xyog8Bq\nCMKqDN8UVRSuadyS/ISfpWQHRVBxlW2456pUdWRBjVCVMR/Khx1jP2Zmb//oz21Z3LIdvrMOX9GT\npxrLbkN7cRVywSxIth4oKq+nyQEYZwvQvmnQuG6o7yWn/IaDp2fQwN//n6zTLhyzTc1tIYN6HsjG\nMQs2x2+9zLrmrrqu749X8KatQFOhPDtCCTdf54wz1pikHsoWrtfln8olfiOVNJfra/hV1I4bEack\n/KptFMMCk18cDXWm+egTfockr+iX7l9Kg+z7JS1GysQtbnGLW9ziFre4xS1ucYtb3OIWt7g9h/Zc\nkTKLriJO5ysi9ANFknaKivzvfEsRsHSZyDjRyNEKdvmXlSW6fx+kzFzfO0HLfvyBsmvB2btmZnY2\npgaMTO7kUJGy9iGZ2g1YlakjDz2pMtXvKDpaefFA37/kc0PFtEZJRR034SDwFno9k1HEbwnvSgBn\nRbYAB85I0fJjyGZcavJyRH2NuvigS01w9LkNorMVReZOnujzu6hAVe68YmZmvZbqIyv9iV0SqR6W\nFMXrkVgLK8owVuuKLnYduEPm1L5+pLEuBIp/Hm8oSul2GRMit9mson8+dcPJHVSKluprDZWgwCPd\nc8NW2FBEfdCWbaymesYmXDJDB/4eopZ5N1Lvke0UUaZxQRWEF4rellOagzS1tkt4gRJk7x2QIHPY\nyZ2hPneR0PVCstzTBcgRamj9LDWvHylDu54nC0adpRNozu/9zltmZlbNyWafUec894nKUrs6eKLn\nqe2SqXXFe/TphxrnscFD9B0ha95443t6bgeIzFDjFZIxrbDke2QrV6hSFSdaCycj2cF6VnaRbmgc\nfLL9XhLlGxBKRXiRanD2kHi3DPMRRDXHMJWnQpR4Kpq3JJH6zlT2lkExIkjenAsiTGtM18vKrkRZ\n9gx8GOWVIv8plGGuJ/ILIxjzC2SBMvA2LFx9r9gTf8XwSDwJpYUyeNeoeAwz8iPpnDJrJBStCprh\nlMB/IYjY12XLMx/1HeqSU3C6DLsa8yVrKU2WpztFkeVQ32+iSDa+AIWEzdkhiJiJ/vYLIDAYp10U\n09Jb6mhhusNzaG0cePrk4zX4k0a635z68voMnoshGdi8+t+4rfFpZnW9xbYyJp0eiL+Oxr26ocxL\nNh0p6xzodRQEwqru06KOfjuAQ0FL0gq73BdVlvVIDuqG7aotG/u//1yosq9/AxZ/EIzrY13fgXcj\nnMu/OnDarGao+i20lrNwFizJli3ga+qQiR2RrZyjpFHb1fhWydhMQRWkUmSgC1lboiziosxXAAE4\nRI1oHoAqyOs7yYXGbJbTmM0rcLGgMudPyd747Jkl+DuMzGNRfWhsyl/c/i1xUbVRzlrAm+ajIHjv\nZfmfnab8lDfUs392pLXhcR8HlOg90GbusfrnwnmThgsmg1LZnq89a39Xa/HRJ/Kfc/xmbQOFh7u6\n7kYJhRZ4LYaX2tCu5tqfVozfaIJDumGrN7RmajU4EuAdKsGbkZqDNkBtzpmR6YQLwgXRkt6AQyHU\n++E6/UzpeZtF2Yg3BJUQKpu2xuf7FfksP6+12PA0n2MUd/yG/nfgwNkEeWlmttap2eWmbDyZ05rb\nR/Uv3WM/6oKuhS8gh71kFnDUhLL1AM6EBRnWNIjJ3BJE1iXotykZ4o7W2PX535uZ2Wl3bMZ5LQkZ\nSY091d+Ug0wtte5SUZIZfp4y6hUhah3Ta/nBPPAdJ1KYYk/rj/S+MyXLv4OKXElz8qz9oZmZXaCi\nsfZ9IR8miZF9lRawFkeB5qZwrbHZvg8XjiNbHcD94tR0/9kjOF/gmVtiWwl4+lKotu28LrToAn87\njhz4bY3fh2+La/Hxe0I63vqf/ltdF4ReMoNCIujb1bXmuoSaU2pb43IXRa65L9v15+wfNT3XJv+H\n7NkzbD4dyM/PS+r3JOQMENGiJOFoQKFxQu43dGXrTlrvd9ogBlugIZZaA0dPtUb2vyE7cJPa3y8/\nEZouy5kkAFnl4nNWoMETKT33FIRnefklz8dF98oKRY1Dmf3n8EockkFHz/ngrvbz07E4J//8hz82\nM7O3fr9nN21hUja4GMl/jS5lc+kDkCWP5R8u4KoKACyk8qCl2IOWfT3LINQcrVDTmaXYFCey/eSp\nLpA1fX74VNftuiCTPbgNUdEMsPlwQ34zxRkmaIIig4slecIeDMLRZ03Wxrru9ZnOSBeO5uglVFcD\nFxRBXSiLADTwBAReaQu+On6PXH8CEruhv5eHul/1QP64zPkyzZzfe0EcMMuSzj4p/NdqcmBmZnm4\nVmae/OCEcd1GHe+cs1jyBJVReImu2KdSY62ZNDxXDrx3A5S4qhP5pGVZ85EBGp7TvzduiRxoQFSt\n0uuy/cQeaOg+Z1nmb8VvyDADGrAAP9MUG6eaZADSchMls7mv51+CQutSFVLbXf+iL9v/4ttmVxnz\nerpmPqVn3DiULfRBP+Xg70nDqehy/hnDFbhgr3LhQXJBRNYNZa9jje3VE53D/2GiOd/HL6w4jwZ9\nlCFRu0sDtFvABeNYiRdQbJyCXB7zOxi0rDfQmgP0aSW4Dp20rrOkemHa0Q3GI1CoCa2NKepKU7hj\nHCp7siEInYTmKMe52lbyj9NAazyBLd6Hf23NXrBf1WKkTNziFre4xS1ucYtb3OIWt7jFLW5xi9tz\naM8VKVNGDWQdtuPkK4oO+qAVnk0U1Tv/e0W+ZtTSVhuKSn7wF39mZmanP4Wh+7aitbtFXa+xpkhf\niuxgoaVoaJQFc+4qwztdRSgG0A5It08u9bkP/uF9MzMr/pX68/Jr6ndtF1UWWODP0FffIIoZoPCz\nmJLVRAFj0dHrqwYqMRGTOJmXYEJ2LqXrrIxaPXg3pmTHuhvKrIyLyjBMx/re/l1FP1tbisx9MmtZ\nOFFfj87J3gw1Frl9/Z20yNxNpKrRGSgivoVWu6OgoG1FvDgtIryU0i+oR85VhF7agnMmldWc9jv6\n3tCU7bhpC1GASRrZHBSwlhEbOfw+WSLlPdjbdyfqz4LIe5Y66QZzf9n+x8iaNniC7TnKNnOy5etE\nYXNkCODpiOqYXWwm6yrrtp0Tp0Hlv/mBmZm99m1xu1w909w//ltURraUGb74SONxPSEKXVNE3ktq\nPq7Hum9uAiKJ+vXxhfr97gV1i2UUu1paCxGn+npTWbflruahQ1bPBdW1TIKYKYFi6GlcOjNFjxPF\nPOMkG87An5Fcg4uCjPQcpYsU9Z8DkDghNpmrR7at+9dqut5T0CfLS2URvaKiyIvw5rW5/VBZgf4V\n6h1kzuanutfW5pHeP4cbhhrP3n8gc3lLfdxLag7rZGKPBxrFkw+leOVRCzu5UHbn/JbY1N2RnqVc\nghOKbEVxprUzgSl/o6Ox2tnX335BNraX1Xo9InOaTmtMxgnN3aspZYvWXgKJQszfD+S3FqChSk1l\nqTLwKQ1X1N6ilFZEcWAFMnGWVEa3RAqiWBTaKn8phOC4q36dfSr0xjCp+61Ac5TnWmv1Z7rPZ1t6\nP/ULjfOyB6cNSJFHHyuzO6VufjWl3n0L/hP8e5mMrovPGlAjbM80v4eB2f/wr80+X341XzJQ0syW\nD5UB+ZyMdUi2ah7q/tt3qf9fcN8O7PvUffsoiTkRL8tYz5+kv15X47AM2AcGIGx6oFnglJl7Gofs\nVB3z5q4tyDr5A7IsZF+KDbJQIB0WvL9kj5hMQKIsQRfAG7RC6aQYqTGQKfTwe18gTTx9v32pPenw\nUM8wAwE4nqnP04b8z9qWbLMDOqtC1qwN6GDGOs8mtHFMAs1xm6xWdQTPBOg1hKns6lIXOLvS/RqO\nbOTuvvb0OX6rdar3ofay2Uz3S7YYe54zVfpqfCGFfX2vbvLD2RzITrgUknMQpYgdXTyUv8115ROm\nOfZVk62u2MvP6Hetov+31zRetyp68BzcNVNUPCp5PUcQoSm43xZInmEelIIvZEoC1RQzs7DqWL6o\nvb/4/7H3Jj+WpNmV3zV7k715fj6HewwZkXNVZY2sKrI4qpsUATYEaSMBDWmnjTba6t9QC+iFAEGQ\nIAhqUGqxWZya7Gp2TSzWlJWRmTFkRrh7+PT8zfNoz7Q4P8ukBFTRcxVa2N08uL9nZt9wv8HuPd85\n8IIMu6CCO5r7OnzmOCdvzO+5rPxnnFK/Vu/ArbOluSA3IBMLerk0gocvM6Cd5K8PXtFctNfNmJ/W\ns16QgR104Zs5UR0zbbXtk5TmX+82vHQ9/X+rTqYz0No9K+m6FPNuz9M+yGGflC3r+hRtcnWhursb\n1eXur2uNqX5Z81332WdThCzCmZKOo3wCEnrtamxkqppXrweqZ4zs/iyt35fTcM0s4U4YqA234AvJ\nbnT/Rz8XgmMOZwvbWGugRHlWVH3moLM2Pc3bmzY+eKDnJHIoLaIysu7LJwYgQ9Z5fZYD+XZlpesG\nKfp2oHWsDIJmtlK5s2yUpxn5QuDBbwWvoOXltAEcaKOU+m0bzrQ2e62AOcEy6sdqVXPATlLtNqed\nnv5c6LlZQvf9nf/0P9b3lyrXux8cm5nZAuW0VU/PC7Y/RZGdf+TY9pHm7SyIrIGv+Xk+Bp14KiRS\np6l17vxSXGO3nn2KKvjHLMY+KIDLb32iMl57KGzdQf3M1/8vWcvTba3xG7j2liGfJhwoTfblhZY+\nE/tqo60YPBnPaVP4znKXKCQ6IF/gxmou4e2BC+vgjzT23trT/n35rp53MtMae3quNa50V+XrxvXc\no0O1ict8m17ByYJCZQF1wOu7oLjSet5rv6Z98Sug4N6HB68I8vyECa+Gb5w+1t/dkcpdqev5DVd7\njQB+EB9fn6X1/OCOfPh+TFw1u184Urv8O7XTc3ioTkHPxbfkO+O8fNo91ff7kGE6W6p/DzT2qs2+\nPM8pCJCfN7XBmebvx00hiva2eTcEjZfIMuZ4v5k24cKhne+8ofbzanr3TYHE7HXYc/BuGfJJLeFh\nqqOktP3mV1WQwGzri6/Z8S+G1uxpLt9hTV97jB/QTuM47zzwFfkoR63gvQvGIEmAfCQ3+l3eUR8V\nVvr+qyWVOZYFkQe6pzNX27pl1lz2WR5qTPFwb1TR73Lhy85CbeOj6hZn7xBwWmEw1ryyxd85X203\nianvdhiztqXrUyD70gWQ54kQIan/r5qgzVCwXbMHKaa0RjvMg5fXqL+uUKkr/mo4VYSUiSyyyCKL\nLLLIIossssgiiyyyyCJ7CfZSkTLXGRAroAIWXUXG3n3/AzMzW085V55VJCqfVnRvSJRwv6Lo7uvv\nKOKW3FNWrLEHQqaqCF8eZu3pEN3xoaKGxYrOU1dBVyRmipQXkpz554zvLK/YVfcDZcPe/ZkiZG8k\nFTWtoVS0chRNHnUVEXOSKDPkOGxL5jydUn0HHd1/CyWHEWfcFrBK+2StvCTZPyKL5QIIo3md8imK\nfMWZ3Cpn6JJdVEB6fZuRtV1uQF44itY1WsrotWtkz8nM3eLcdyVPxhHRj9VUEeQl57nXqDrUOcu6\nIIsxesF54l3O9YIEWX1Gl5twntm24YbhfHA7qXLnyPB5K33v0tQTkBnra7VFBYUD/xaqUmSY5204\nWzhz2ie7tqZNS3DxOERHJ1NFQUv8PhMH9XAu3zjhbGr+nChyX5nUMco3H/aJFvtCzPS5fhRD/Qjq\n8iSp2PSazHZHWZsVmefVgkxEFa4JMrslR+39GD6UOgpiqQ2KM2U972SmeiVg7V/AGeFWlPkozNS+\nw6kKNCHzkoRbYIOaVQD3hItP9wPQHvhLNkkWzdf9RiCPKoyJZ3My8HNQKy2hBm5nOS96AxueaDw2\nRvAZvalMpQPiJbtR3VJ7lPVSfxffUl9aX2PC3dd9ljPV4ZB5ZlaSzzT2dV33zW+amdkumb12S77X\nRl1jAqpgNtbfZbJKPuiuEainTFl/b8qovZl8aHyuNkuk1IjLJpnHQ1ARoJIMFFq+Kp/wQ54HGj/D\nmdsKPuOQbbc19ws0/7U5o9sEhZYYqZ6LFDwTQ2Umxn21z34ahbK85qUp6iXZqXxtQsYjTrs2j+Xr\nrYGycPl9ocl2PLgV4PIqnCpbFHI8BGv5vJ/UfSoMDj+t+b3o37LPYr/3T3/NzMwOP/+but+hrl+8\nq7FycfI9MzPLOHreRyg+FOARyR9xZvgUpTnURDaMoQlqI0m4ZzagUTooI+zAUTMjw7650N8dkKLp\nxMQGs1C1I0Q0wotUkE9v6mTkUM/Ziqusc5Pvz3j2os15aThcMtw37ei6Aao/2VBEDeWxk8fiY7vo\nw3Oxj/oeygrHj4Wk/NtnWus6L+SL/9kfideiWoNThcxhtiYf9/vyqdZAfRiKtyV7ZEDhkFq2VM4G\niJJEFuVDvg/O5EuOr7bP1l83M7NXb79pZmYlFFouL0C0hGinG5rPGf4W6LsRCFJ3GKrPad7t9zUv\n18l8L9lz1HqojaDE0N+onXOctw/RCf7ZsZ7DPPdaGrQdqlutHZTcFhoDXk73X8Htls5qPZpvgzia\nfsrB5SU985fq52t47fojEFQgEBOo392CCGsB0jJUiamDOi6hutQpqRxQuNn4QuiBF6g2zUBWjt4X\nCm1zqfpZtmyNPdUxs6c63SkIqbIu6drzsZ6ZmanN5qf6e1zWfmYIQnhrV2UqZuRjY09Z5vWZ2jh5\nS+PKhdNr1tYYctnzbH9d2fK733rbzMwuN7r/1fs35woxM6vdVdsvbwktNp+yVq3JZvta6zdw5ZTi\n8tUt+DhcV/X0QT308qB9QdCEqLTinu4T7kt9UFr7e1rrY6ACSiBarslY9+GFOxwJCX6Owk/Nk48V\ni6Dq1iBnTPXPpTRWV77KV4Snyl8AY4vpOV4M7rUQzcDfWXgxZjX5uMOYLzBmuZmBAAAgAElEQVQv\nLtyQc1Ht5KJI1nNU7jRqhn14PVpd+dhoqu8TFZA4KdX7wV3506OE9liljZ6fY3J5DNogF26qzCy2\ntbAh3DjTE3HGlEGMOo7q/Zwxn7ul63//n2i9L+0ccZc/sX/UJqgYldm35lDXYektoF5WzaitSu42\ndVPZLzaab4sXmg/PR3CEMc7ioH3cY43L04zm/S6/T4IwT9xDKexReApAdUygxtRDuXUNX2UAGuFk\nLkRKcwVfE226z1hturpvi7G5RKnqweeOVK4EqkUrOGrivF/MpGT1o+/r/u0CCHv2NBdr+WAJvj9D\nCSjb01itcOqgf6726FyA2kro+xWoVttRPRIpeJTuhnxP2gut2XdX2Y9O+tp/7rzDvJvWc69yzDFd\n9eMoVFYMT0GgAjWBMyyxuTmayszsaq56+6jfFrN67noHJE6avdxY5e9WUSE85gYTXedW1c4GB12x\nod8HAdyYDIFMjb1gXP520foUl/Gd7/6dufPXbQpstQbfmZ+BX7QLep5xvcyxJs953+V9NQHaftIH\nLQ+31AqUzxyuwnwFpPBYbdg51lrq836+9jglgcpenb3Fkne9ybX6vuKqriveTRpOiDhHlRTfymbl\nW92WnufBa7dmUZuAKqqn4ZBJq35OgdMIKPI2iDOsLoUGTYLo/Ojv4U+q814f6L7nz+Tj51cae0l4\nfn6ZRUiZyCKLLLLIIossssgiiyyyyCKLLLKXYC+XU8ZTJCozU7Tv+U+VsWxOjvX/XKgrjiIAWZ8h\n0cHGbWUMvvpNKdnEy6gzEWWOf4Q6yVRnc2eh8s+pIngnV4oyp5Ocu4Q5fJznPHtKEfTX7n3FzMzO\nx6i3vHhiZmZPfiJET7YuxEz9UFHJIZnTHlmucpdIYVn3W8EpkIkpoviYbGEiRtQT5vXBR9BNh9Hz\ngs535uqKMN59Vc+501LGxiWjEDsnEpjT704urz5hJ68tFO1bhNkeUEreJQz2WbXBiihiO0NW19X1\nyZmiplZS5m4HTpXrLIiKDmzhqO70X5D95+xlLham629mS6KL+QocLnDaxGDaX7mcF18SGc/BpL1Q\nlNKLo1TT02cWvqBpEGZiyVa1ONAdB2rTVL0WqDx5FfneHFb5Dtm4DIiiclG/m8CGPz5WPd/7U6G9\nbqEIsA0nzPyaaHJc7ZTnAGYctRQf9QsP9NTah1sANEioOlUay6daReS08mr/4lD16pzBLs/Z5ATn\ntBv7MJMPVa/UU5AvG/nspqR29ou6T1LNbB1P5S7g28k0qlVEs6sZ3a8d1//TZFpmqHLl8O1MyFq/\nQskmpusuL6SQkf+CzhzfxGooYT0a6F7FNj4bZuBQuUnf4rwvCDgnofkjSzYrVNzKwcMxS4EqM133\n4mMhS4Id9cWjEGU1I4PH+d/iRvcPYqrjxYX61iuob28xD8T3lPltk1mIocIR75HJu1J9+tsgCp+r\njWPp8Cyr2rTHeH+6ULZoea7yvLGtPjw9ly9dJvX7B1/6opmZPSeTkT1QBiJUmMmO5LMbA6kDf9Fw\nrPm5eF+Z7vlS9+tO5Qu722QQVqpnF7r7OAjC3jWqUpcaA6fMa3ElLC3LEHQ7tP9MN8g01Q5tECvB\n2ypP0mEuuqG9/9eaPz9+qn6sPJDiRHag9vYTKKA5un+I+guqyl55cDuMx/p+DupjEUPhIidfPyOj\nlI7Jf1pXZBXh0sn4+jzvwoGRISs2T1kAP8McZMvwmLXjPpk4kIKTFYiTCpwkoI4C6pLy4HhC/W7D\nuek5yggxlARiKP55KKgMkvLZUkXjdAIHwJAM7fwNFAlMmU6S89ZKap6PDfWP9UL3n4w0FtauxswC\nNNcC8pkW8/BhEs6rsvqmlGVshtmtpnyv9UJIOsdB1W875I9Sez2Cy2XykHKWgHbc0Mb0SS4rX55M\nwiy7xuicOaKYVT0SGaEvDpDdcD2U2yYoPeZADnFe/QD1JGcGInEjH1tPdb/WAh6qp0IJzNgD+Un1\nf3VH9YqRQW4wN7mNT1UNV6uiXS7lcyFSJwNK4pV9ZUqfMAaaEzgqUNGLk/GtHWgfcNpTv579WO3e\n/4CMvWmuyaPOlEDF75XfELKmBookvjmyCWilGPutFEndFujQLHUbn2veWIGCclhTyqh2zOFJSKAI\nloV/JwNiIwvX1gSlmFB05/A1zTevvSHkSGuucvzlv/ifzcysc/nZ9iTNS7XdBo6AJAo3HhxV6xGc\nW+tQ5UNjugjS5MwF5ZBhvUH1z9KgCUCS7NeUtV+21NZOS/d1y/AJPdM+dDxBtZQ9Waah9q5mQ04s\n5kuQe06IxN7ob6+oMbaG/y1U2jQQJQn6Y0l91y7cjD6Za0frQAqVQQPFHIACm7rM247+TjjsRUzo\nBIPnwlur/6tL+fj455pzsqChf/8P/8DMzB4OHpqZ2epYe4Z3/9dvq1zvHJmZ2dEBPHg/1hgovCIU\nnZnZrLW2bgdOiiIKcShb9taq1wak0u2k2iX/QIpzTvbmqLtUXWvB1m9oHO2jMPj8PfHV+I4QKi/i\n4f5I9z7a/bLK8BiFR/aHDdam6zQIcZDJl/BYHBV1KmBrBx9B4fD2N6Smd3pfi+xJX0i/KtxhNlK5\nfvHnQrAEpnHeUfGsXEL9CE6yaRFlHnh7mi/ks/6x5qt5Wu8VmRxKNaiABnBPDRgDpS3V+423Nc/3\nf6x5qp+RDyXY507h9bjzRfmaBzL0+F3x+Y3hMZnCixfqbGXGum7YEbLkwyaoiDv6fR8e0dVUY3CK\nmt/gTGgHpwT3Ib4a8iVBf2J+5ljNN1D93D3eB0afDZmZhy9wtYOC0Qb+KRA0SxSKA5AwyYzQvfO4\n2vtqwjpUApXCdYkyvKJdjYGFwUuV17tqAj5A/5wWq5k1yp+z3/36H9mffV++sPgRa2Fedbxqah5q\njuWb99ZqmxgcLu5Mvztvy4emcBcu2/LNOLRjwVj3ab9ABfVE49xBaTEJ0qTPiZPRgDUso79Tpr3C\ncq1x2jvHd2MaxxnU7hZ5tZnP3ueAd6/T59q7xOa6zwLkzYL3Z6eoeTdgXp/lWasPtW9/+q7GUgF0\n8lFeJ3bKDfmyk+T9Yw3HJHsjN4HqaoOX0F9iEVImssgiiyyyyCKLLLLIIossssgii+wl2EtFyqS6\nitr94ttSN/rBj6SmtPtNRaZu73BueqYI09BRZOvVgiJSO96RmZldmyJo3f+giNsmpkiYQ4Z8VoDH\noqhI18E7uu++R+biWBG93lyRu6SjchkohUleGZZbX0JBIafrvv9nividu7pu//AbZmYWQ7Gh1Ve4\neUMWcNlWBrpeBu0xUHS2klM0fckZtilszcFY9foRLP7X/04RyOJGEbrSH0rB5wi1kPAceaCAoOXR\nh3/R9q0C8/7lUm30Wp1ztENFUq87ZAWgsi6BbPBRWfLhtUmB0imTdZlzNtM/V1vEUJDqlVU3J0Mm\ndg0yxCebckOrbek+6zCKyvMcyBA2sNKveU4xPHsJH0YP3od3OJ99Otd1HVjpK0gaDFCPKhb0u3VW\n7TKFe2G44nw3YcwAzgXjXLf5KtcGNYx6TtHWCcorS85DZwkXLzh/nkWBZ7Mic8256KSvBy0DXTfn\n3GYKNNWcbP0gVERAISFDRjo9UzusYyp/91r3qRfgNQJRswPHwIRM6/VC5Zu66q8qiKnYAfVd6foU\n2TJnSDSZzLEL+q3ugLhZqTyFbXw9qfK2ifAXaM8i3EHrU0W/r0rwptzAEjvyqducv82/ouz1/Knq\nsmFc+RPQVXn56uxKbbJswDkDcmQ0Bj2WUhvG4IRp3NJz8kP1wfVa43HYIeL+EeecSQXv1TTOK6Y+\nOG1z1nRHz8uT8fTzmifOQTUMt1B9ek/ogDtzZRrKX4avogXfx0zzXKqkzEDwvr7fKqoesdeEBAme\nkklY6/sOmckX+FwpUB8feZr3Wr7mqSIZz+m5sjL5pupV/5aybBeOrktVOa8OamqDmkUBlMX5GZlZ\nVxnmrK+xkYGvag2r/RokT4xsXCym/usxBjxXv38Ax5iPOsBNzWFeHV7IN22Jql0iPIetcsy69Auo\njniNc+xLlIh8ta+P0oGX3+E6tVfnWhnsz99ThrVbVDbsEnWw+4dav8ZZtd9OQnPv9bhnMxRDcvD+\n9F6ozKOQv6yqT78LmmcmXy7uwTlD0n3cAW1Fljqb0f2WZO2TQ9XVKcARRaZ2CX9FvKw+nuK7Liiz\n23CIvfFbQlv5FypPda3nu4/gZJnAEeOCAsrL9+MJjaFRAHIypA44UhsMnoEOYx3x4MhJwzWQv3tk\nZmbljOat3L7ue3p5rOuforgCamy1+mzrjYdKkpOX73nMuwFzQYL5M5tljPVVgacD+dS8pXpv8mrP\nxELzWosMcReejgTz4AD+ijqZUH+p36eZx/22xuoc5Zr5Rv/fdOQXyQJ7i/ynHFzjeyuLPVZ7hag7\nt67Pa9CDSzgSMmQ5y4fy0UxZ7R0rqFxXTzQWTv9ec0ARZZ4kKIhURf1/cE/3ufUFMtvvKEN/N71v\nZ/CXtd8VSqAJsq/7RPNMfobSVUX/P72CDwmeIxc+MmdHbTNg2OeSKEaxR2mPQeTAc5GAn2d1R745\nDtRHP/9zcUe1viv+pPnd2/ZZLOTqWlRU5zxo2vGJ5pMAzq1FWeWeh4qVfflWg/njOs9eA362NCjm\nBCi4TACiw9ffSRB8h6CTsnAbdOGkWS7UjkENTjL2GDP4g4w9iDME2emCUFmy3qG+NENhcehuUT+4\nZOAqS4bcYyB8UiCaAlQGfV+Z4mSaOQafDvmK5gX9Lkn/WYdNAOiPUhmFyZb2qoOuMtPV/a+ZmdnO\nFHTWx+K3WqJg2bgjrqD0l+ATTKO2eAXM18yKdd+yt1QOFzTzDLWrYlztMTvR/c5WWt9nSa2f+3t3\n7aa2XrI/TmjN66DQ+gTk+F3mwf0jUAFTtdF49mMzM4uh3LKeH5uZWerr4s56K6dxOkKt6MX3NKaC\npPpqVtV8cN1THXbgCXIa8sUV3FhdEC25Q33md+GvrKmNt9+iTQQcsYcTkJAg4Gt3hZa9e0vvRpev\nqI9W18xbrvogtgYRHUOZ5p7mj9/+L/+pygXv37/9i/+g+8FZMxtq/p4/BZoCVUsfdbvFGuVGVJGC\nov4ucCIgnN/ySbVX5xzlxqb6NAaisnZHyJOKpzmgN9P3ywHzMciiBGOFLaQtfVRp4dVzQO3ZFuW9\nocU5vRHrqF27K+YwOG2csvzmTI+xUpXnZFEcDdS+t+GU7M1A6eVR0fM09/mgw9ZZ5oYMHJmgeu1z\nZsOToY0WZst/Awoyod9kWWOuRvptkGM+SYSnFtgvoXhbrbA2j1FdgncyGaobwyEzPOWdkjUpX1NZ\nvdvyvZCXLuZpXsiC2k8xXwWgOwPUopamusf5nS1AEYF8T+2qPs65freAC7Y1BJU84V2Vvpwm5Buv\n39d+9c3bml/O/id43EADX25C2Ty1bRbeuOUQpB9r+TaqTmsQeb/MIqRMZJFFFllkkUUWWWSRRRZZ\nZJFFFtlLsJeKlAkyiiQ9GSoKm8wpUvYFMhejzytmtAtvRpXz0I2KorMebMvvXiritrmtiNu94B0z\nM0t9mUwwUWF/wnnCpJ6bmisS9pVvKDMwGCiidXIN2zToiPOfKtqdIDORPtDzc7fEf5HcKKppFzoL\nu0qr/GVUT17/ijLds5h+V1oqej2jHFXYnmPwomRui8Mm/kVF4Jyqvn/xne+bmdl3/5cfmpnZR2d/\np3INj1SuJWd+O4qupu8qg156ZWPDpaKDiaYyXl5M0b+mDwqpoWxWPq9o3ritaCBiPlato2gF8YP/\nQt9/TGY3nYb7pEb2uNuhLeBAqem61OazuVzKowCcJR2CgHGJgq7JOGymIELSKE8N4cGgTbpwLuRQ\nCrhMyReGVNABFbCaKyKeLIrvY7SUb2YWivIO4EzxIFnZhu09TkZi1KXdUN/IxhTBnhO53xTUxwvQ\nUinUnUqJ8DpZjGxaLKn6+PBv9OExcTylDi6Hijo3Yvr9vEJG3FN7JDx4Qjr6e5TnfPsztcOwrvKU\nq6BGXH12OvLlTpuMLNHepKfPAGUDZxtEzUh/B26I7NFYcVAF2I/p3OUcJE63K3RInjFXTsFltFB9\nFyefZrf+MbtAgcBfK1NZG6ptRh5n5WHKT/XkOxu4DF7Z0rMuQIosiWD7K87h+hqfNZSrlqhcnPic\nceW8L4F4K9b03KDPeeAxiAxQRW6gvm6WyEKFWW8QOiXO+K8CPX8Cv0cb0NDOAJ8nizaEuyV5qDF8\nC96Ri4/VJ69yJn6wLbWjErCE0UhZt75pHsmWdP1FVQ/quaDhFoyhHZWjSzavX9d82luhzGMamw4K\nMZ0cvCITtdOiKt/eO+bMLufFA86pu1vy7UErzFJR4RznnXvHZmYWh5/InZPlS3y2rNTrX5b60u09\neLW4/QKerIRL5mZGZhdOCOvD9p9QeyO6ZaUjUB8o/ZQMpR6EcDIo2hRABy7O9RwHNZIxc0dwID9s\n1LeshZJYfk8+skABYX0Juistn8sWQ8Sfft+B/6d2S+MuANHiXmpMrJMah7kRCDzOXwdkueesdaGq\n0QQkSxqkTSGOKtRS13XaqM+BvoqnUIP6nMb5HtmzdAdFlhPNI5ORxrUD+mxFdmmEQs4S9SM3xnxZ\n1fVXg48pn+qf+gZqf5Rv+ExtGZvItwp3tebOG1rnbmqTjOpJscyPw3EASmoCiu7yuXxl95b66Z3P\noygElHIFMun2Pc3/w0BjsXN9QTugxPUj1asz1P1qqJ8MGfuzM/rNJ8PdU/t5ad33xUr9m7ZPs2/5\nRcLWW6y79KtLpn4SKINercqvYnDIZO7ruWcnmpf9Y/nb2WOlyodkIYsPNHfcBwU3g3so4Lz/e3+s\nPdFP/q/vmJnZV//4d630UPu3UgoE9O9+VW3FGf/nT941MzOnrTYqhlnjpfYqwURtsZNQGfsDfV89\n0PWLHAjDpsq4BXItXgQFAJ/bw++JA/Dx9/7ezMxWcHjt5ev2WSxZhWcN/qflEE4cuA7GC/oCnrkY\nyJdKQtdd51lXrtl71fW7RB8+OdTfvDyQIEc+UB6yB5iHvBy0PXuYFcgYGzK2anCqMdZL+FCogLlm\nfRuB5hoyJusgXhKg3Hw4sAJQD0mQfS7cZouQk5E9F3QqNoup3FMUKZOOnuOOUZSMqX5uQYjP8QpV\nwlvM7z35iz+WHwwfyXfrT1SO+h3tp7/xrd9Ue91VOa5ChUt4/xb/YMsZcxO2nQmVh1Q+B9VE8uuW\nbmh/UEbxaNSGW8e7eQ67ea17t3lHSTEf3wXluX9P80WM7HntUG338fc1fjaobQ5A6N0vadyNUYhx\nQTim4mqjeJE6F3Wffk9ozQ//mvHroag40Tyc3QPdC2Iv21d5AWBb2pNvtFGgHK5R+zxV36x29P24\nqz2Nu6RNh3reylTPSlx9P8RFmh/qVMHD76pP7wx41/szEObXuu68x358IgROENMNSkn5ZGzAPnKt\nehxVtF+vva6/n/5C82kBxGYOzq8ARLdf4J0Map0sSO3RudrVYwxOhuqH8YR5F3WjzVvst1H4KbCf\nny3DHfzNbMH6vTZQgTGhsW6/Kh6kMYp07b8QqjBJP25yKAYt1S9+WXPYEvT3CkVhNyPfnWdU76vH\nWrdvgcIrb306991OeNb6+UNb/kiopa37QvpmUPl8dwYyJa9GS+ZU1iW+08G39gtaM1sgST664F2Q\neSYUH6q9qr7eKgtt6YLuWcF5FZ46qBzAVQhqNw4nWIU1bwqKdsb8v0I5dsFYmY7ZT3IqIX5bz40v\n4MOkjwct9cEQha+Fo99f/R2cYe+qHuXvqm2rde11RqhLJVCqTcK5M4d7bLuu7w931WcXw1/NYRYh\nZSKLLLLIIossssgiiyyyyCKLLLLIXoK9VKTM1QUZabgI3vi9Xzczs/3fVwTu46m+zxRRINhWBOv8\nQlmcqyfK5udOFamL31ZW7NhXlDgD2/vTmSJ4NVjlXV/nDGeeorqDYahpr+bIoMbyoq/I1jW66gnI\nWvbIfN9+VVHe6lqxrYctPfe1e/r7nR1Ft+MZfQZrRYfjnHnehYV/Ds9JDJWBRZHMxhnnHreE/Pni\nt8Qh82r2c2Zm9uH3xDmR4AzvJfe/7OsMbOZjZdMK8R3bQWM95ArZQBKeqcNv0VdZvCaIE7K8tyqK\nxE8PUEZ4BM+Do6x2faGo4WCf89FkCM6I8DtrtWGlhGLCgjOMNzSX6GgGpMhipYj5xFHbxCn3BLRR\nBmTNtA8S6FxM/YGpnn2ivgto1B24FFKO2nBOlDO9gYPFgddoB4WBQFHOFZwOgzocDJx/joM4+fi5\nosl331AU11Do6RERT49QPkgrU7FBccGDsyWJso0zAx3RJbtE9mpRBN0xQjmmrChzmYy1F9LQc459\nPFC/11P6YlRXPbOopbQ5p15ClWlrS/0+GHOIluDufKq/RyhFFIeqz2mXc+YzjZFaQ8/Lx4QqS8L/\n8d4Hapc4fuinyfTM1B5pztgW4ci5iVUy6tPjn8r/L9aKUI/jysrkCrDHn6is6z4qTWTTkzmVwVvp\nuh7ZkjTZ/kwNhMaKPiHwPmR+GMMl4u/rukxGv98wLyxQXlisiOiT/VgHRPRvyccHcB6sxuqTKue3\nM0W19TCm75dkPZx2qMak5zp7IDtQMZnAe9QNx05JY2Lgo8AQaB6MkWFdDXV9Li4fW47JAFQ15rwt\n9VEvoez8kjO6OXiSUvRh0ZcvzuCrylVQCssIsRMDdReiw2Zz1ExyqHXAieWiDJQgc9Gfwlngwosx\nvTnvkJnZHH6W6xP4j8iUzxzQCyieJQ9UD9dT/Wag8MxROxdA52V9lesjED77RbVTDk6xREV+WRoJ\nfXCCGldiT37nxYV0nLfkj9mdmsVBHBTLekbsbbLaz1WG1AI+hprWiByqdqcXUqNwYkdmZpaGD2Kc\n0DhLDDRPT4tkGieqS984v50lu8PalJ+pHK25fGSXCWU80O9yoMuS9M2E+etyDhIDrpLURj5f2tcY\n2wYR4ubhqWDeDbhvDKWEWwdCO9R39Pyzx7qvbeCJAvFz8QuhH/7+O8ruffFLQtwFKInFN6r/TS1g\nrAwuNM/lKzwvh6JCDsTMmerfZC8SVNQOaRCR/r58p9EG8Yi61T5IIsdX+7RQZEheqH7Llnx0y4QC\nWGxCX9f/l676zR9o7zOBYyy4CPP8Zt15z4KC/p/aUbm7p/LRUkb39UFPGNwXyYnK6Xkagx98iE+C\n/hrQD/tH+MFC62n7XHue7BTOsylqgihQnnz7O9ZCtaba0L5u9ht6Zh4lvpKnMl3Cv7ENv84AfriT\nS7VBeVtlXmXVJw5lHwNVLICq8nfJEsMl1myKk+8JnC9TEH6F18WLVLr7hn0WO4OfIeSXS/XJwMbV\n1m5KYzU20/iHns9mSfYys1CxUG1bg8vA4owZ1sbpSPPmVoX1B26tgD3VvKD2mcMl6G4x1mbqu85I\n5ak4oNtAS2VQ3EyirLkGnVVGucVZk7GGt89hz5FCJWviMHY3mqhTG5ChIEm6oHzzIBvX/D4O34eD\n+ihidNYdq14+nDUp2iMNp2QpDWoZdUWnqnbM7clvDt5S/VopEJpD5t2s5pCU86kiTrHg2gJMTGJH\nflYAEbpJqpw7zK1uUeWK72ssbZYju6kloMsppkHDwoPhV4XOHz0D6fFQ7yD3duWLWZSwcjn2ClNd\n//EvUF6ljC1k7wLeWc578vHYrlBo+78uVKgttC9Lsu8ctNTXS1AMCRAjU5Awm0fan82KGkMAD61x\nIF9rp/S7Uqiss5TvD8e8H8BxmOWdxBYowqZQxomrjx/+6XfMzKz3VOVOoqy2KMh3CqBhlyXKi8Ja\nj73WxkN1MMNcMFS7zDTEbTKUr80vtS9PhEpjcNFk4uy3QUeP4CcpsIcZhYqKrtTktmpqiI6r/loM\n9fwYantT9kyey37/hhaw3k6ZLz24w848VWQFemyU1d9uDY7NK5QiX7AeLOXT0yzlHqJ22tC668AF\numoLedR7Ln+adtXu9gdmjUzJdt24TYvwVg61xqQJE1RyKPRN1IcJkNMzeCsT7GuXFbio4AAz0FY5\nr87/Qd6ByuoNhZQLUbJ9R2vscgkSPETOOPKBYlXzX4P9VRy01HICByzcVQVQVaHyVHco352OdJ86\n3I6ppcq76KtAp6caA29/RetV+4X65PQX2q8VeDcerbSvK5flq2VT3w+7ajc3CXIfVFpQVnnSobrd\nL7EIKRNZZJFFFllkkUUWWWSRRRZZZJFF9hLspSJl0mRnkneUqSi/rWzMk6YiTM0u2uwNlAd+rIja\no2NF0soo4zh3lIHtonCws1L0b/RjlCUKitb2wnPxsN3Hc+H5QUUXtznvmbqnz8PbQrhU9mBQ7+m6\nS9jZX33lLTMzO+e8fxG+jvtf+y2Va6JI38XHOg+4OFP0cjRQ/R5OFJFzyEYVUcSZ+IqmOzPVc/0v\nxCVz7ytw6hRU3627yroNyB6+kfy6ygnrc/eRorrP7cy+XFQ00DJE8+DJ8MbK1DlEkl+Q9XiV7Hie\nzGWrrbKORmTy4MWZ1xUBT/SIyJOBuwPqJ0ZkOgHiYrRW9vzGllGdA/iA4qACPLI77oBz1AvOUZO5\nnc/hmyhx3vyKrE1O9StX9bt2D1WkFdmrApwF8H8sqopbOpyLzpKhWO0qAu1y9nXCGfv4TFHTVlcZ\nxMqV2mkDt8Cmo3Zyiai3kmTfZ7C7p3W/LP0zg419nZLv9MhOpTmn7oEeSCG7kghU/hF8Irmivu+O\ndP8YmYNsSe3qzuGsMfXL4ET1SG7Tb5xJnRYUiV9zHj65JjNRVT+/9qoQMbU3pbox/AXqS6iLPDnX\ndSsgWrE+rPAL0BldlWOS1PNm6ZvHi+t34a8hK+6g/NX6icrgZdRXD76gez6mjn3OYxfgabg8l49s\n3ZXPFzwhS3xQA8mlsiNWUt3z8AhNc+KFmJFlcVDzSVbILPY5CxtDWQLAh18AACAASURBVIWxc3ml\ntqiX4B6Y6+/4RG12r4aC11q+GiJ0fM6wXoGC+J2SIvrPW5r39u5yHvuajPCMM/FwMSw2aodqnb5u\n6fn7ZFA/hP8indH8kd0nw41izxD+D9/R74IJyg9tVETKmrfcqa4b5fT70h0QN4fcf0r/TPT/BDwc\nExRubhXVP1fwhXg/I5MaD8/PfzZOmY/PhZy6eqjPxpHm78OGsoWrPCoCWZBLGdqR89fBBD6XLbVb\nu885cNBzpaXmkBj8V/s7IKX6ZDuP5eu1ZKhwpzEbTzKHemtbTlWnClnzeAolgNuM6z7ZIlSSsq9o\nPhgeo/JzrraqFVSHLPOfEw+5W0DScd81vG6bOdnxMrxk4f3h7Um8oO3L6pMZ6NE5PjcBtdWBR6gP\niiHw5RuNO/LlFOfGC5zNX8GP4aCwsIWS2CbkNiPTesUau4dCQwwlmuuPlGn1yhq7n/ujb5mZWQ/k\nX2yo59zUihA4LVi/puGYLKtcWzEUxvLHqncLFNwzlWMDx06aTO1f/Qet/eOe2uVLvyN1k+xbWuML\noAoaa60bZ6b2GKO6kWZ+jXXIzDbVb6OMvl924MFaf4oGmH+4tNJ99Ut+hQoHihRZeLWuK9qDNErq\nn2sQon5BY/Fyo/okanBDgN5YOvKf/gfKuJ5fg1Z2dN1dVB0/D2JpeTm00TOhuEaga4d//Te65vNq\ni607KsNkqjW3V0JZrI3aRkp1G81BYw7U16NtuFXgNGkNdH3nSnXP1DTPLM9Ut+FQmU1nzTwEd2GX\nut/UsvAdnb+rsZMGUefCbZP3Qdj54TqDqhDIGIuDeGGJW3rsZ+cq79gBDZdHsXIqzoV6BmUx1JB8\nVPRKrvrIhaNwPdIYjaU1v8Z8VEFITe/G8ImQI6bNa0CuS3nYH7MepOb6TLB3MhCUuRRjHNTUKAcS\nhzlqwJ6ogpLk1OW5U82nsaz+rqZ0/Qreww1o5sS2vm+Uxa+xaclnK1mV74r2DXJwWFCNdFz7gWoW\ntRgfVJiZ7djG2r7GQJF1KU5uegqflg+acKur+0/o19nk5nNJCgRJfwzymT1AnfGVYj83v2KPn4PL\ncCZU0JYxD6a01g1faC2esu+dJVWWaiVEFagNXvxQilQ+e54Adb56GfRCVuOyW9RYSMB3VoV/Z/a6\n7nd+rDrf2w5VhTRWkiON+xYKOs6h+qICesLhfcFh3gk68pUKSMtYFe6TLqjYj9UuRdT5Zj14mkA/\nH74OV+FU1zWDYzMzG59pTlic6ftBSSpUjasjMzMrX2jsBHu676iPotZDPa9yX32eQsl301M9dx29\n8+2+o3fRPAph/WMULNvy3csZnIe+xmZ+Lp9q+CDLb2px+Vx/o34qGPxScODUcmrPU94N13O1TyoE\nOvog91GqzIOUb7E+H34ONFkOHr0tkDG8r3UePfqkKOOHD+1se2SxgvosFfJ0otiVZN4I4Gxxpqhk\nzlFohIcnCfdeAVXUWJG1n2d2USrsfqz5bLREEYt5zUDANbbVB9mi+jqXVV+6OfYyJ0LGF+5pLART\ntdVyDho/rb5MMYZ81uAriIRKG/V9jj3SNvxoXZS/nGvxPhVh+kzD4/Olb6E4hnqbB3r1uikfG/VU\nrtt7qPNto7qEAtlo9qv3rRFSJrLIIossssgiiyyyyCKLLLLIIovsJdhLRcosj/T43/uvdJ6y/gUh\nPbpPlLUPut/R75qK+j5tijU/i0Z7vqFsU2KuyNx2HMUCMg6ThiLrc7JRYYalWVC08HCiSNeMA6CP\nfEXs1s8VCTwsEoH7siJjpbgie+up7tMKzyUmFNHLmSJiz36uqPYHP/hbMzNLHqt806zCm1sVRfy2\nXWWV0iXQCKAuMimVK9bivD/R4eG3FcG7rCvSt94ja0hWbnio5x+9rSi03VUm+PLDjb3gHHW7jPIL\n2f98Ws/e8/TMdlPRvMa+shOjc/2/9YHqUOQ8YA/OmNwVPBice/ZArCQSnB92UX2YqWwr/7NlLuOu\nyjsrqrzpMX1Etsnn+wUZSo+opDvVZ46zp4k4WTiiu/WiorFLMsduoHKG58GzI+o5IRuTUlvnyAql\nY2TLp4qK1jJCiOzsKFr84Q91/jCMgJfHap88iJMR5xoLTc4vF+TTCbJf1yW10zFnXevwa8RScNCo\nO8zj+7gLj4lLFn4JTxHnqhuBMpo/QcHgHvU+IpOwzhDlRhVkgpJRkNDzcvBo7NaVManswgWxq7F2\ncADPxlRR8T/57v+m9mnCEZNQhsaNCZXgo8zQT6u+ubii1k6gMTZZ3dxP+nB2jLOq+60FaKW8+n47\n4Ax5sUDZ6Qvq2gv5fkhkvrKjcbPEt07PhYTZRmFqRdsmfWVvtsjqtMc/UR224J/I6IabvuavyVq+\ncGdGZneicuxcktVi/pnD/7G1rXqkVvKVcZdsNVwD1bsgO2Kh4ovKn0GlySGTOa0K3eas1ZdbZDwq\nWxqrg4l8eAZJQgo1imVJSLzYWLxMtQLIoVBxZ46yGXPBBqTi6ClqQrfgNKjrujVniGfXKncc1ZCx\np/YvcfbfG6FcMeCcOeXxH4A0bOm6EUoNN7Xiq8pqzR2QS77mhI/WQmDGr1SuKXMiSUnL7ascobhJ\nJVD/jMNz9fA+LVCpqtfUb46pn8cjrQdHcGisUClJgtyMweuVWBQsBspqjVJAABLOC7PHlK1LlrtS\n1bipj+FdWGgsrECNpVC/WJKWT685i46q2wZ+hVQiRI2qjgHZnzXcAIml6higDrUE5ZoPQuUtMo0V\njYmNF3KZaC1fnWqdmMCTBJjoE5W4w60vmZmZX1S5r06VwdsEqDjl1R71tzVvj5hPFz3Vo5jV/52p\nnnv9ntAZyaLmm5va3AU5yLqVa4KczKD656ngNRTU0jh1B3WOMigy70DtEyJGj+F3GvePzcys95es\nC3sow8GbtwJ5k+yDYmOPEZQ1FhdLXZciG2mufDDR/lR9qT3t2+hEY6PxSpFyoZw2EHrAvdbfO/tq\nn5OO5og38lrHfqgpwbwqSmwl9VMTdcHVSOtDrKl+SB8xX+dUjg/PhBByN2PLsiYGgfrGX4K4ePfH\nZma23FdGckHW3oq6dzKtcd7rqa13GWcdkBcVEBZjfO2UzO4XMhoLeXiNJnGNCa8J2hcU1QAOqRy+\nfVMLuaxWWXjYdrQP9fCd3hJU6AK0EmjhkOdoFvLuVJlQQLdOWbvLKOJMUA9JJUClhQplfF+do4SJ\nEs9krj534LlIZuGeOUeR50JjKl0BWQM31wF7ji772Bnqc/MZPg7iZTlUediaWGfDvhqulcQURRjQ\ntTHQr7NP5hrdNwa/36LHnAMqduMy961DjkXW2QpcYiZfbaLWGpxCILKteb0GP0fnSmMxuwNquvsp\nj6ETr1s2iQrVFE4JR+3ZaIAsbbK3zKidqqxbz7M395N4VmvApsk7BqiAi5nWmmJR+zJLgVzGB9Ig\ntucF+VghDno0kI9tJii2wtuWPtD88SZrTve55tmSaSxdt9lrNDW+5/tTng+yvA5iOsk++bHGSK6k\nci/grFmNNYbCNTyDMo0Dr8gopEVi/fLgE4oV9PmkS1/vqD578Pb0pmrTJRwu7oy9QVV92+fvIdyO\nFTjQMpRruQuq+bpAOTTfrVA/nTX1Ge/o90dVyBGXapfuBYjE59p7/ain9vtG5rfNzGzKnmQKX8ok\noeell1pvYuG6CFJmmPls6ksWrv2gAAE2WfZae4by6+IPbaAKOG7qB3nWwwBFNR9EZwpuzXRC9aij\nVhuuww34YjIgcDbwKZmZxQdje3H+91YFzWSoBxeTrHEuKqfs3R34MEcgu8P9pFPSZyxUeOywZ3mu\nOl1fXXJ7fV+7p3eDIhxSS+7rQTq1BJlYfUc+uqBtTq6F2ipsg856pHJOUAKLoSxZ3GKPAudfpse7\nDacRUnBH1iu6PtHU3mrVEqI6xZrvrjSGFkshwG2lsfjJyZShTtTUayDi9zV/TEEB+3DmTOEL/WUW\nIWUiiyyyyCKLLLLIIossssgiiyyyyF6CvVSkTAdJl5/9tSL4D0igDFBg6c8V1bscHJuZWYXoa55z\nywOyYgPOCsfI1CYtVHhQ5P9WHDRAXZmNN+OwITu6/8gn+8S5+h5R3Yftd83MrO4p8vbN/0LM5pd/\nrsjd4ELR1dUhKiLvKYL/4bcVOevPVK79mpBAhweK6BfvKRJ4MCQbBsN67laR+itavdpHUaityOUz\nMtOhUs+Cc5CLNFm8x2rHJ6bfv/lFRSBne6/ZAPb38hVM12TNh6CItuCcWWQUJczALv7BhdBJ+TrZ\n3wyR1SbqOCimbMEhsCQb1CUT6qEFP5sq6uikdJ+b2qavCG8hc2RmZgFs8fFr9fES7oFchYgwbTlN\nwXztET1tcU57znlzMtEZsjpONoyG6nexpNo2Df/DGnSCnyMyze9yC7V14Y4+YyHawFFfZ1BomXL+\nMbcjVEQpzHpxBHXaUTu6ZM8yefngrRIZ60D3L3E2OVTFiLtk3VxY7wf6PCbrv/drau84af9CW+Uf\ntuBRgdMhM1Z/720RdU5ojE3px+RIg/PZE3ENDJ8oCnzlKSP91EVKgYz19//0h2Zm9rU/+Gcqv68x\nmOVc/TWIKZ9MQ5/29jKcbYZV/yZ2ca026rynPm+lNf6OthTpH681ju1K6K86SeWrqcZnyB9RS5Dd\n4fx1EoWCOBwwz8nsXTz/ue7zzjfNzOx1lHIG/pF+f03WHBTSoqjx7F7r/pO47le8ILOKWpM/1v9D\nrpb1DoiQC/XxykijPJCvJOfyiR6cJjmUX0YgfgrMdzsoll0V5YO3kpoXj76o9uhfqP4Xbc0fMRBB\nt+FKmDaEFLxCdSQH50APRM+GdquQvfkZGenVrvr21n09Z3km3xmR+Vh15FzFDQekY/KJc9RD5i3V\n64D5bf8NZcAnKH+l85zrvqHdui/fLNdp1zHoOPiO4jE9L8uqmEA15qKj368C/W6w0n2SoAo9k0PN\nQ84ZFOtczv0b3GKJGgoIIH/WLooU1Du2nlmZ7LY7Y7zCczOacX6Zc9YnD6W8F/fUViFHzBWZuhl8\na4UuahPwdCQD0F4oGiRWTECMO2eu+cFlTCQWzPPMM+mkrk+jqLBGCWbD38M23CbwLu3tq7xrsmZp\nEJuOj5N6GjseaIcpygT9c2XlEgfyke1XpYLh87vzHyhLdjLRGnz37ttmZnbcV7bq9ORYzyt9trxT\nIo7PTzT2h5QnPtS6eA9VqBW8HVNQH+uZnObsAq4GFG9qKG013lI7B6zZ2Ry8KHBspSao3m1U72ZX\nPvUCfpFaWfdt3NOYG12j1HhBFnPxqfpSwUvb9Fpj3d1HVSQdclGwhxjr+hDJmgLBNAzVUkBKVhLK\nCsZB1+Wmat/zieqzQi2k/lXx3K1Q03r3Q3GqNbzAGttCwmR91W3+sXxjvoVaHdn2RlY+PkKB8BFc\nIWnO+I/h+IgfgBReq6wbeN4SaXwxjfRNH4Tdc42/a7L9r90/Unnua2wlY3X7LLYpa/x77E1icCX0\n+3qO14ArBYTMEsWcIYpbOfhEPlEJATbGNGrzFeg21EOcmb6fg/zJsgfzt/R3oad6L4DPxlKa70Pl\nn/eufqHv4fVbgsA5/VD/H93R2MrD6bD2dF0qqfl8uYC3KKv6tJagh8nSrwso3QBCWDCvpZgbBp76\ny4uDbttoHs3NQQjFQxQ1nFx5VAaXKOPsaay9CWJ9MdB++uqavey16rWOg3yqo7La1/VB6lNEZcxf\nWX6BipfHukv/rJf6f7+hOSDdkb8kNxpzIbL2JpaG78ZzUGis6hn1kfaFuW19//SZfHToC406REWo\nA89bBY5Cp6zf306oLMOk/r6Tku8OnsoXH/+d1OjKW/pdaaK6Zx09p/NIa2Yj8wWVz9PfS5Dfc1AF\nlZLarn2t+67ZV3pF1sq69kjp0FcXavNbcIcZ++vpRxq7DVcog+EGpUPeE9ZwmK3GaqcMKnZVxsII\nlNOmq+tHbJgdVEXzSRBJnq4royo4Zp8egE54/atqj/m2lGwHD7XXyQ5Aiu6G+1O1Vxfe0D5qUOMm\nqk8+XDb3tAdLw383R3mtnLy5aqiZWaGk8m/Bi3V1oXW99T0h23dBVXimz4QHvwscXrON2rl3pfn6\n8J7WwXFcf8/Yi13BL5rflr/MIaVxEqFMq5mz37Bsa2QrkNnzQGveBp6bOCh/B5T/eqzx5oGYKzJO\nUwUQIbwzzJ7p2eOu9iRbR/KR3XucdNlT2zVBRp9eCGU5ewxHFmtT9gDkMacdTlAmPFxwooV30U2b\nd9GNfGSWU/lLutxyE7X5eCmfSoKsL4bbUJA6wVL71d19cdM8e1dj5eTbf6Xv4QzMgvbKr+DYYd+X\nzqCOl9I6toS3M72JOGUiiyyyyCKLLLLIIossssgiiyyyyP5/Zy8VKVPtKLL00el3zcxs2fmpmZl5\nxVf1g11FP2OXiqA9CxSpunXNGdO5oq6NnCJ0mwr66RlFvrJE9nrwg7guKA9Y/tc1RROzOUULkxBT\np0u6X7atKOTxuc4+O8Nf1/1cRQafnej6/ZUiiteoumTTynTvfl5ZwpWjKO35QGiRj/6Nsnt/1eR8\n97kiaLmqMhbFQ2Vidu+qHvuc31zDD7IaKxIZWym6vpxyvnGtKOr4p8oi/uVAkf7qYd28irLMcbJW\nuanKPOaQ6MbhLKKvz2ladXOKsKPPFWYcwEWTS8FvgUb8NKmo6CCu36eIhM/jipT3yDjubT7b+e1h\nV/dNcRa+/KYi9EMygMOushejntrIncCSTqZ3bwf0Ab4TjyvSPRugRjSUL+XJNE9cRZJnG7LmZPOn\nGV2XnnCuEWWCTFy/S41BLbVUnjsPFB3NkFG4alOhF6ht1OQrKZjFnYAzsVOizHAKzPm/weGw4Tx9\nis852avRkCj0PkoWZLSbQ5jSE+q/r/6OMiQn7ykS7y81Bs/fVz0+PlakvrGtsbd3T5mdDWeUF5co\nSsRQ/wCBNDlUv775LWUinh4p07DFOc7zthqgk9DvG0n58hUZ48mc/vH0fWHzaeb3H7NGTfcofVVt\ntTb1uQMfQ7+lPk1mVed2W3W7gJtku67f9+8qgj1ug+hACcpBqavXURnDbNI+PEqbN0B8kK1Yva+x\ncTqSL9buax4ogdoaddTnh/BIrNsaI1lIS7b31WZzVC6WY81XfcbmVw5RBABpMzxRvdwF6AfOdZfu\no46EmtTosX7fJlO5d4YaykwT3/CZyk1CweKc+y7G5fOTEFWx1n0QKrOZr+cPmkLmFVxlCD56Djpt\nF56jHso1qJEMS5ytncAh4aFkYGQX93RdHsU4r6L7v/9dzXvN6a8+m/v/tcfwXAxhvy/HlBUrvU3W\nL04G3+G8PQoLORTj2iPVf9FX+03JqORRFXFTcCEkyJCDAmuDPnmV8/8LFCYMzp8k57ud8dJcxm0K\nTgEjW7xASatUhdOEz8G52u5gj2xVRW2YnqKGl9H9FmSpYmkyYyADkxsUDFHPSJH5nMFBEzigTzfy\nubihTjSBJ4R50evAsRWHNwLumeESJYS8+jSR1nVluGjCup+cagwsV5onHA8FlRgoNFC1g2fKjvcv\n9OnB57H/OWXRi3Vdt3tf61vWUB28oa2zIWoN/gw4eV48UvkSr6CeAi9JIas+dXN63kle9R03x9Tb\n4Xcq1wT0bCahbKEH/9PkgKwiyNUS/d/7WPdpJvTpw+FVRMVqlT0yM7N6rvlJHZKFla04Jz8+la9v\nk9XLxdWPPwuUvTTQGg75OR8ULolx24Eb5+oURNBaf8dRoujAozeO6b5r+PPOW/CjvHXPsne196gn\nNN7O48pQjk/UVoGreShFFvd6IZ/KlzRfLLr67OdBQBvcNKCtPHiHcnCKbSX1u2EWZJ8LchHeh8J9\nje8CnAXtxc3XGjOzFSimdEx9v4J/aQ7KeDXRvFQqHKmcobIKqFkfha0VvCDzgD7IauxsAvmMC9pq\nUgK9zPy7BCWwZg+QX6qeWfjfVihGdiZq5w+eid/u9/7Zb5qZ2R3Qa6k9lWPXQwmnoPZooaIXwOkS\njl13oDG9hrdiBrfNpsl6UIVrBxXCCVwtGRCPPqiGNGDpIWhgZw0PU1rl9fsaY0P2AukTlXOwrfvX\nDnWDztNjMzMbNbVeJxvs9UCbxF3QhuHG3syCXM6WcOnEJvgN83UMf4mP2KNtyW+XoC98OIxuYkGg\nsoYcXWtQT3v39W7xyjc1FrzHqIA+0zzugb7coi/LDX12h/p8eCI0fhp+yh1QU+1r1ak5UB0qoGhz\njIXzPvyaRfh7UOZKovwHLZAtRxorFxPdLzulDw+E+HNB3K10uc1Q2wvWqm/M1fuFx/eDgPeBov5x\nDN9mtScf2n2geTBg/ZmBAB/15fNOVb7nDNVOA5OP7CTY67GnCwLqwdgcoSblGXPIWOtida356pJ9\n+if8eSj9uqikpj2U20DG5AzVwRQ+UlU7rVChGoOWGE8+9bWbWI718N6WnrsN8v/050KgT38kNa1K\nTlyOE1C1i7Hau1HT76fMt7Mt/T/J+49/rnJt7+n+1SP59DhElw+PPynLejiy/YOyOU2Nrw+f6D0y\nl1XbNzKgcdNakxF+MgMF68TUhkVQV8ux5rMM78vekVCX1Qd6X13FVZfhOXt/FMi2t7TPezyW716e\nsJb+RGXdu63yHDa+bGZmffZI7jrkB9V9fJ+XroGeE7+jee7eAevJqeaNxVDPT+Mzsar6/uqp9hjT\nfa1TO/t6Z1n25cuZECHd5/QE8qhreI3iGU5LUJ7HP9P+M5b91bxDEVImssgiiyyyyCKLLLLIIoss\nssgii+wl2EtFytz9hqJ///yP/hMzM+sPlF3/2fuKjIXn4l8vKxL3rB1mMBVLytR0fWAwZBOJz+UV\n8fIvFdEKfEVd27Dzt3KKrk6fkYkNzyUmyc75nFWuojTwC0Xs55fKfOduKeqY+LmeezUAuQLjd6yg\naGTvTJGziwshbUJ0yU5CUdeDrxG9zSlqnuFsdAVVqTU8Laulvt8mk5H8Kuc4m1JkWBElnU71/BMy\nvGsQNbPLoY1RSarCDVPiXHQmUJbKLSjrM+Pc7OyRssOJtH63qIWcNGQZYKSegLC5jsFh0FffxMmW\nX42JCnb0nHQtzMPfzJIw4P+iK5TR2+eKkhY+pwh7xZQ5aHLm3/PUtg3KZ5yZHHZ1xn5MlirpcC6b\nM5ptIs+ZkurjogjghAIJjvo8MPlmkvOKVlB5xpzZDTkF0mn5UnqjDMNuUeU4WyhjMULVydko+pwC\n3ZVq6P+LgXyrOCbiD2pjuCIj6aM0BGLlBQfSqzW1y2T9783MrOZojCxBMoXcOgXOnXtbuu6wIZRW\n90r91h4oynx9TjayKL+opVAGgsX9MnWkcsPyHicqXrin/w864flJGM7Jns1i6q9tOA6aRc6t9kEw\nFSd2U3NAkt3a17iZpkBXwTGQepNMHOpF8V0yjBfyhVTtDTMzc0GQfHQm31iMVeZERX2295tqy1sJ\nKcWUU2qb1goUQpHM3H2UBc71WXLkM3uvgJyLk0k8RxUJGJU7V9ufV9XWa85Dp1dwT92BjT7MmjB2\n56GyGfwQQVO+/pwMx+2M6jvOo4jzUHPB+5eal1bwbtxpqHw9X/WZwCEzT8kXs/CE4ErWK8tnZ5y3\nzqK45qPwM3msTES/pMzBdFv1SzWVLVskNVY91FX8uP6/SaFo8AHnot/QHDRvCsU1n6t8mbV88aZ2\n74h5dld+MoRf6QI1gKtHzCVrrQ/zF/LBHGN8u0GmxNX/U3NQJ7TfDDWlUPXloq1y5uJwMyTIrKCc\nVCyqnZIoCA1SjqViGpdLuF82KRARS2Vt/KHSUxmUC65f6BlTkH12hXKIp2fEK8wrqDcY6ILAV5+l\nUTlz4M6KcX48CdLRgRfCX8sHEmtlyWIgDlNjOMTI/hyiBhUDoTgJ1TRASPogLdcJtX025KJ5rrU/\ni0JPFW4ShB3M5/ejC9Ur2FHfv1ZRnxzcki/1eppvPJTX4uXPtsUpgOzxC2Qgmf83CbXX8aXGajIv\nX/YK7B14bg7fmK/0+4/O9PcX3tKe4Ix52smrv+Jk6UuxUGlIY9MrVmkH+vdU7b1K674hl1pyP1Ss\nqXxSh2qlYrGcCr480RzT32gMVbdQsbrgvDv12cmpv4x1Jz/W/SZw7IwSp7QPiBr6P+7pfkWyg89n\nel4A11q7uWVbjVAFQ2U4/Kr66v2FssGztvYrCxCO+bKecUzWecn+LwmyLMO4W+I73oa1FIWy+Epl\nKl+zl4Gzpgb64M6eynaB0t8alOlNLQ+/06gEGigvH9wqaqw+faz55LQNmgt+jvUKfh/+zrEvXSw1\nv3hsNlIpuMFGcN2gfhTAWbCCYysAteYzDy5Re0p5uv81Gdz1LvvVN4Ri6LCuORnNNafwUyTgVFk4\nmndDBTJ3pnKnNqzd1yp3+UD37Sa0brY7oCIW6h+HPUGbvVTO0Z5yyXrlrXX9lHV0xTqeZ28zD9R/\nH4MCefyvhJC8/5ZQcf1JiIiBh2qqMZTLqP6tLGiP9T/gzdisLQ0Ph19Rfaag1UpktBfsSa7ien69\nCgoDtOBNbMP8E+R5J5jqnr202nQMj1vvuXwlgBfzA3iX3nwgFbT9I312HwrtVIJLZlNRm1/6eofY\nQ/Uu9k9+w8zMfvvzv6XfM98k/+b/MDOzh8+1j551WauTKs8G5S3LwaMHP2eBtWu7pOeO4LTpLLVW\nT0ANjK/gevkLITsWvuqdrMDrs6M+yB8e6XmbNvdDeXGLtfEalAV7l9lj9nA13f+wqP1tFeTH5UA+\nlYfX5Br4RvMx85PLPPtc9el5qud0jdos6DkX5dsu3CtJ6r0LsinWAxV2EHK6UL6SypNjnnZ6n6rg\n3cSGcE3GtjS3HVZ0v8U+qF3m/WUPlb1YqISk5+wfaF15dqo59OpY7brNuj+Dj2tT1tzUWunvCXPF\ncv0p+mvSalrZ9W2E+lqR9+/qPsjzJWvytXzPn6osWd4NS3BPY23tBwAAIABJREFUTeGVW7L/GbFm\n7CRYzEHxtlgjBy350AjU0MGu5qnditaoRaD5aPIL9fXDa11fDnnqGvD4sHdKrVGIHICkBkm5OdPa\nVL6nNl72tV50QfLl2L9uw3MXMP/NztRmpV3tH3O8O3XarPUj9v8z4gc1fY5QcXv+U/E8vfcDjY23\nvyyOxV9mEVImssgiiyyyyCKLLLLIIossssgii+wl2EtFyqS2FJm6/xVFoPIPFOXd+psfmJnZ//mn\n/7eZmU03iorWd5Rp2fQUuZoWFambc6Y/nyJaCzv0ZVdRwFlF0c9bJXgxXLEpz2HWrpMRHqYVBe51\nj83MLH6mKHTAub12De6Wn0qR6KMfiAun0ucsLWeE4564bvppZVBeqyiyVsiDUtlDUSItFEWuotjY\nKq6oZzuhDLh/wVlen7PEa2UTu5ybDGA8X5f1fcp0/0RB0d2dE5Xj+XhsMSLPlxeKYg4P1ea3XD2j\nHld0b5WHPwFEQ7oNk/0cXgpP329Q01mV4SzpkWUhk7eZKSKdnvzEzMxmCdBLsc8WSfY5lBsb6vqP\nL39mZmYPyBRXt1TnYKnobR7Ey4gzs1POG6ZIckzaihDHXDKWntohwTnjJQo7ga82DMaKgo5RYlkv\nVlyPGkoW7hj4kbxh2J4qX3cu37t9oOz8CmWxWErP75IZKYyOzcxsBsF/NlQMWyk63XeIPpNNqxZ0\nfTOucruw/Wc/J99q/4/K0t1efE7lKwtd0XoqtEGA0tj0VPdZwiGz8444Z7JN+WCHVHW2o+h5n0z6\nkvOjMTLf/kJR7U5Tv98totYyIOOfI9qd1H0MtIgV9XwvTrYTjiNn/asZyv+h+fTBlDPhK5SxpnP5\nxASehC5nXXdd/d4p6BOAimUmnI29FWbvOdMOWuwrX1DW6smZ1Jeuvqc6WYhog0/CyTNfkRG9WKhc\nJZRxvCmcL0d6Xnmi+8braoveSm0/TqBM09Dv2jn53OZCPr6T1pi4hrNk2lS2ZJZD0QoOgJ9dgTwh\ns+rCCbCcgXpIgjSEL2hVBYkHqqpF9mwFKut2XA12p6J6Xvtqh1OyNR7zapUsXb2mebg11Nhbcf7a\nyJBYkazNVD6Y40z/3OAUI8uznug+m7wyHm790wzoTWxB5vXJiebvFooVzZGylKmp2mET03MqoDGK\ncNrEyJ65ffV3yBeSHKkfMiCwDMWi7lBjcEUG3/fh/JmFfDG674iMUSZTtXlZ2RcfVZ4kCi6Br3te\nnKN4gFqSOXrm9VhtHYejKTZUXX3O5vtZFKQ2qFzMQeRxLjqOzJqf/X9zXPkeiBhTn8/WZM/hN1qB\nRiuBPEzO5asBnCvrAIQOaKAYWat5yIm1CjnNUJNgrQuBjvOR6jvtwyuRhbtqT9k0h/ZpPkNBZSzf\nmOdph76+v6l14ehatUEO1dRHi8cak9Nr1atHVvDB65xXB/W0IvsOqMMWLdQ7Zvq/D8KmAyp2U1J7\nxTNwS8Alk5tpbI1BTLU26r8D5t3xFI411FUWh/lP6pA7LNr4KdwKBfls6hjU3aH60w0Bq2PmsC24\n1Obyl9i2nlcAzXGFYlxqBWfCVP6TYfJMpzXXxFFB2auDtFn07IMXqF2CEvjCPe2Lbt9SxvIFPEbr\nCY3moqSS0D0HaZDIISKEeTTLvLeAj2IL/p9FQr6wmOt+KUM5qoF6B0tQnzGQzR3aZzK4CzuPtB9L\nbakvkrtSoIp5GntpaH7cV8WRmG+pLVsoYW6xB5jABdYj2x6bqr28FHutIftPeO8yhirKRG0fN1Vo\nwjydH8mn5kPd//ah6jdEyeXP/rVQtAnUou4fiMMhKAktu87qvgHqRXOUEZNJPXcJ2m5rrd9NzjTv\nx3D6XqB577WGkNwu/brQNGsJ1q1ETu3mzdQvsYT6aYRSXH4JCo0xv2TO6bS1bmSTrON3df2GPcpk\nCufFQGO4l/yUw8FPu5/sFQO4hOqgNXqOyhXupWILtdfwGp6sm1PKmAtKa4OizMUHmpdyF+rb46/o\nWck+82NKfdAoyGlCZcSjB+LhGKKw+HTzI8quPcmsrz1Hs8j+vB/yAOn3y6narAVaYYOs0bKs8vVX\neuc4Qu1yuZSv+XDNbFxd1w1VQs9Ys+GJ24H3ydlhLwGaKz7Xu9MkAw/RFBRXWe2wTmo/7IToZThh\nCih5+eegxXjXCxaoJzU0N2zoo3gf7qx9+WIJHrfTmOa1MnsV10epUa9EtoLH5BK+of3PH5mZ2ZtT\nzU0X78tZ6458/cO20A7JaijRI7RWFeXMVZ+x6H82nrtZU2NqBGdc8jXdr5F/y8zMWnAC9ZnL4j1Q\ngi7vXVWVtxqwZ0OBswdXnI+antcE9ZxR+3h5zed1uILMzO688TUr5taWA4kyMuZP9pPrvv5fLcKf\nA09nZam+DJEm17xjrq7VB6lD9jCHWtM2qCSlfN3/6C2t5TPGd/MCNT0QJ1u8Y/ThZPTYPk028v1w\nX9lowNtG3Ssz9dU6o4F79UTlubgCPQUizgUV5vIuDAjJKhXND8NLXdcFxRqDTHHFXiCFalyK/fB0\nzf7vXbV5p692uvuqxvjOa6DSfolFSJnIIossssgiiyyyyCKLLLLIIossspdgLxUp88G//BP7o3/5\nn9u/+m/+ezMze+Pf/o6ZmX3pS183M7PzZ+J6+PBdZaYrQ1je84oeT+AWyFUVsRr1iLS7pEIKinCV\n4L3w4igY5BVtTZKxvA4U+aqUdN1qJpTE+ZUi/g/eUabB/YmyZd//37+jz7/8GzMzu5tW5Ov+14Qy\n2EfhqAIfwG5VkXy3ovK2yUgvr8RRc00mvcs5zNJaEb6tW8o0LMmeFvucXUbxZ+RxvnOOasy1zn1n\nlorcNfVz2x1V7CqvEDGBXxtfE+28rYj7i5Ii2JUVSiBnaoNFhoxeR1HCNOeKJy7n79pwpJClmqHK\nkXhdz2v+ez1nLwn3ymd0uTJqGhki4DPO6J9dPTEzs1QepEtPEeqES6YSMoC4gdiApyc+g+ugqUj4\naqX6FUqK3sYGqn+o9rGGYybG31lY2X2UEdw5mUuisl0UXLIwlHeb75qZWeVQPhDAYB4sdb8HGWXR\nrjfyzXSaLA7n3BMZ/W4R03MbIGPG8FYU4aeo/j6Zlpp8MfiafKH/QP32eVXfpqBDFnH9v99Wfdcv\nxP/hzpSd8uBZMrKOy7SeO4/pucEIVREyuL2sxlJ9os8SWbQ5GZg0Gd4JXDqJJOdCE3JSzyEDfwvl\niP6nmd9/zBYjtdk6CXeKQ5tk4FqKK4LduFKk/QLVnPGFzlfXGHdTztd6KT27sUHRoCWukVVLWaUE\n6jnOWM9J3pGPFuDt8FEac+GzSDpkDJm/shXVNdYEAePJF7tdZUbjHXx5Q3YD1Y0kqK5YDoQgZ97T\ntOmyggKCqR6voLKxgg9iNNI8N5rKFzMb+UAczoV+DV6oUAEBlaksZ283Q7Hxr/flG1NT9mjGfWco\nwBTSR3o+iKTUC5U/u9GcEINvIrUPwmcj3x10NZccguI7BZHUbOn5e2kUiALNx0nUs25qDx+p/D98\nX/dNltUO9x9oHs0dCE1WdDX3FSaoQDXVTotz+FpQDEqhlLSGwwyhIptO5BeDc/oDTgUXVMrFGPZ+\nMsYrUIk1L7ANaJprzvw30ii6gDxZ+coOJVaM8yJn4oHYFfePzMysu1TZY6CbDFSAx/wdkFlbMX4z\nIGAWS/lOHB9IM1/GCiAkQOwkGRsJV+WaoeYHtYAtL3RWPuAMfCaQz6yTqDCxxjGtW56+naJwEgQo\n8yx0w3XI60PGtNjgLD08QEd3NK8e3RUycI6cyBCfuqktXPXNJKny3EJ57SKv8nZA7mRRzBms1a45\nkJcVH64f0urLrNAUc1+Z1eVS909V9P38HF6SLd3nmHk12Kg/HNTqinA/jEGkZh34UyoaQ7vr+id1\nyC4ObDutDGthrga+XMMl0KFcIB6nM/wC5bAeSJkKHDo+qkqlmfpzvZIvL+GaiZX0f1uCGmOd93Ps\npZpd8xqgmY7VpxfsS6oPlE0PUUmrIJzHVYYEyOP8StelQGgMWZtmoIwC1vIyfBGrodp4CJK4lpWP\nzucqxwA0azKvLHEFJNtNLc18+dFfCnE3fePIzMx+e1dIk8OC+uKnz7S/225r3huFBElwZk1RSMmH\nCpZwsSTJ3HpwVPVRR8rClbBg3kvQ9xv2Hl6g/7eYT9Zkng20VxzUxNZrmue2UWRMsPYmFyi7gF4L\nyJDHS7rv+KH2w0FGz7tcamzFUKfbryu7/+F72hc/A31dRYFxslHGuAAHDFOZxTK6T5yMtsfeMpNW\n/fJzlf8EZMt8yn6ffs7kUHUCFR3OZS5zyRSOGjOzxcSzNCjm2ES+3EyC4gbVV4O/ykBL+xX4/OBK\nu4nNU9rfzOAdWoMenWZRXO2qT/vbautym71BTWvf0/d+aGZm3SvtUUYvVKbWD9VWwWu6z62M9u9P\nr4TIvvyxxnmarP+dHdVh2Nd+eZZSW1VBoAcue4cRe5KaUA71qdp8BYpofKK23hyonL/xdZ1qGM01\nT7z7/e+ZmVkbpazKjvp6A1dWymF9Smt+WHbZz2fgwgKR0xqpjzf0Ue627l9lDG+W6ou/+66UbDrP\ntabf+8PfNzOzBEjNFMi/0UTlyLMvnnr43h5cNsxjf/jf/nOV4yOV8+x/+GO1W0zP24cT7Blci7ux\nULkNBEuC/pypX25qq7zqP25qMFx9DOcjSo23v6x6dFh++49RTR2FiEmVb11CrcuDPwok+jwFOnkO\nlxxDoT/ge/zCzOynf/9dqzl5y6NiVuTkyAISwTVIleFSdV3Dz5mHe7V3hZIrnIHxEkqI+6pjGh7K\nHhyMxwPNi9vf1Hvzhv3isKM+zYD0M5QgHd6pvCrvdCPUhtvwF8FbmQEt/KwHv05K18WZHwHImDtS\nuXPs91Nwvsbg5EpX1eerDNxc7Munl6jtMa/kYlpXpks9bwzCfNlD7a+KGvQRvyv9arW/CCkTWWSR\nRRZZZJFFFllkkUUWWWSRRfYS7KUiZaYjReIe/dW/NjOzy/f+1szMhv+dopb3XhPXwvMnnBV1lRFx\n4U7JE9F2Voo8OWQYSpyjS6eUndrmbFybqGIwVAajmDkyM7PjgSJ7xcXXzMwsvqVIXvAInXWyZYOe\nMqzvvSuum+2kImxvf+0/MjOzO19QNNZJKlpa6sNbkkIvHaWF2o5gC/soVry+R2Z1oef0k4rgVa/D\nc6GKnZ13FYHrzhSpGyQU5Qy2yWpyzvAJ7PaxR4ogXm4C2xuh2kP2YNggE/eRyjrIvW1mZh7n/ZIF\nECMoYq0zirwvkyBRfEXkHThiZmf6v1tRndY9RVs3rjhlJlvw3HAk86Y2JjsWKjIkaLNNk/PYTRS0\nQMh0YA6PFdR2rxwIVZVNKbL9fKI2WYCK6HZVv2ksZNZW9i6JwoIP90qlpvTeIFBWaHjJ+e2SrnNA\ntDgfo3pRINvUV5Zo0VV5i2S+r5tqv8uefK12BIeDQ3S6JF+twmPheGS10up74xz6kszkkQLkNvlA\nZ45r/7X+jl8LAbVaql1Kafng2VQZhOz/w96bxlqWXfd9687zfO+b36v3qqqrunpkT2w21aKaooZI\ncqRoiB0nQuwvga3ATgwDRgZIsSExsBDbggADUYx4iKI4SmKEcqAMlCVRlCgOTbGbTbK7q7vGN493\nnu8595yTD//fZduJKL0GgpQ/nPXl4t13hr3XXnvtfdf67/+agy6h+kaUaix9MgozUGeBrzlXiZOd\nA+0xGalfiTjn/qfq14SKGeOe/q5XFK1OHGjuxak+kH2e8Vhk9HN6f4Fs32Xk7KGyDO99U1nz6pLe\n1czKtvtjIdyaRVjkQQcEIGoWke+JaYwzcI8skHhxskFeD84UqkzM4ANao2pE05eNRzKcwZ3p+2JX\n2a2TAB6m+1TvWdb3bhIkykxjkymrHYuKVr0JFVnI4s/OqSxAxD8JJ1UiLh0WBnpe15TFLjFGy3W1\nL9+HSwXbzVO9LZWmEkMcROJc96XIhBwPyNh25If3mqDpBsrmLfzh8or03+voPS301W3Itrfgzxj3\n4PKaSR8F+hucSs9rDRCGb8uGpuvKbBdiZGoiZDQvKZWG+nHzx+WnH39NqIohSMshmfwJLP3NQ/RC\nBaEIPmLZo2LRt4E6tAO0xCnn4KcT2cEy1VkGQ2WtAtBk0ZKynHFQFfNU1KI96SZC5Zk+iBEfbpc5\nlUgsDRLQJUM3k/+p+/I7jTqZyDGcJWS1XBBr04DKT3BctdNULqGaUgakjE/1ukRPtjlf1v0zeJpc\n+C0C1qjKAsWZlw1EeU4MdEMc/qUZ30dynAOfLsaStcuDv4cz+0l4ISLY+piKCVH4Ra5tioMhltNz\nW7c15ye9D5d32iDrtZ+gQoSjcSjXZDPeMaiNnPoxHMK3MaNKEZwQBUd6ak6ojkSFyGgAb5OLn6fC\ngwNHTD0H1xiVxpJUd3KxpT7V7Oqr+v4sLX3l/yVE0INZy2pUAvLhJEtFqIaI0TpNtX93iWwe6IUZ\nnDEBnG0uHA8DspB5ePzicLxN+nARkTmORuG6qeu9rXPXKlS99OAd2n2Xex+TDjYquvY21XR8X+8q\nFeBO6bImwVdXYD+W5N0nVBp7vKJFsHui90xSQnbM23p/lOpyEbL/6bKeM+t+OMTd6QXVokD2xA5l\nu+/dli1vgABaXaHCIQgdj6pJXZCZcUftn8CtkMkvEELMrTPNIafa4nv2bCBaegPNkRx7qrETp98a\ny3ZF+hyx9yjDhVMqqX0GKq8Fl1Yxov50zrXO5EESZWv6/wP8dYU9nwsnzcDV9UsvCSn01XviWsxm\nQVdEtO6WqfQYW0AKyUgfj0CoDPW8IXu1HVB4p3DAGHukGOi04RkcPPCgOAF7I5CJDn42Vv+ADMaL\nJGw0gyMN3pTCgndDarUucPI06I1oCc4j+LwuI/GaxrxakY1FjcqIPdZkNsLrU9DwoPSjx7LZ9jeE\niNgf6LfJ80/ot5BzS/P45deELpgva03a/azWrDF7g/u3hVyZvisbu0eFwdprsoHYWPxHC/IrdwWb\nczTm9VWNyb0H8kNR5u4IZF2/o/YenAthHYezJEU1titP6JRDirE6vqffTlOoXfKgxLwUlQfx/4W6\n/G6MuTFogoqNgiqO6Hmt27tqD+jnfFv9L4PuKKxqzJojzfkzqspFR3DYdDRXnTU416gqe8oeb0pD\nay/rNyQ/G6yMXloQU03P4b+qgNIItKZfVuKJEv0DreZRjZSqXCP2chH6NQBBlNqUbxm/L3vqTjQX\nVuBVCZKgpdeAJVbgVepQRQsUYY9xNTNr1Go2OezbdB90DdU+U4a/Bm0bYc2d8jt0HIXPaCJbcEBp\nLcP1NAj0jsVvw9FQfa3CNfPKY6+pLVQvbv4fEP/04abB31xcaO1dKWkO+KDPosfwEFF9OLui39fT\noXRzckr10CxkNFP8If0KqDw5YA0c47cWnFx5uGViDqgmkIHWp0IlaNYJaCQKN1oAP1B5XWMwBzXn\nDv/kan8hUiaUUEIJJZRQQgkllFBCCSWUUEIJ5RHII0XKfOzPCMXw3T/zl8zM7M3PfN7MzG7/6m+Y\nmVnszxI97Clq2HmgqOTyq4pGepz16sTI1s3JBG8qi7TkwHbfVrS5QET9jEoJySVF9Iqcn/Qn4khI\nwYdx43nOM4KwufuZ3zEzM5Jx9smf/kEzM4tWlaXzIspWZclIJ1YVrdyGzySV1/duTFHdXJOzv1m1\ndxWOgv59PecsxrnsqdrpZxUpLBBVNVAkXc4O+xHppXZN+hre0fe5/tTe7esM5nJa0ckhVXLeCNSm\nwjHnAp9TNLC2pu/T8HFkslSE2adKBsmlJllkp6S2La0rC3NwCOfLqaKJa5zxtPiHy24754qaxqk8\nUI0qejtKSEcJOGGcRcCXrFnsPpw2cBFUl+FC4Rz2tfS2mZklgRvswX4+j6kf5biu70b1vPk7Ouc4\nC4iMl9SOCQz/KapLHTga23RONuU09P/7x7r/le9XBsFL6bxi744yI6d3qQqVn/E82Uavpfa0yUgP\n5lRr2tB4bS5QIe9J3+9+U2O/UQB9EVe7Tk6U8ahlFfnP+NIngCCLnOr5Hc5xJ2pU7SAb55M9alI1\npUpFhkQMlBb3XfiaO6WIotR1spsZyl/FqKrUgvOg0aIaDGepW3HpKxNZlAf502UNPoTElrJH+Zky\nawt29XxKWYY+VdnqZODaQ2VD+mStHJjwR3X1pbYMmmeoPjd7srnDHhnAoiLo774Dy3pMSJ2lsXQy\nrGtsjk8UGZ9UNNb1mfrKUXqbjGQz931lxxpROBOoiJOlklWaKiROIBupwSk1pZ9VV3M2CoKwfUft\nPF1kMBxljXLE4jsN+btDeJc8MtXRYyqXgRpYKckHlNY0Ju93dd91EIhJeKSGC7Z+snutY1juQR0k\nqEbSGmhuuhk9N5+QTbgj2fqQDG1soP9POU/euk9GcwL6IiDjeknJPiuur6dfVkZ3kTH3TdX+pqey\nG+eIc/AgXJKsK0W4HSJkemesJ7WMPvc593+8L/2tLjMHyfwPO2TY8ddXc1SD6ZJ5ceLmUV2t78lm\nSiBVXM6ujz3Nm+UyWWyqD8XI8vYCMn8zeMk4X92lAkoAb0LMWXDLqC9JKpP5Cd3Xo3JWYQiyhmpG\nUTKaebLzvRkZ3gLINjjJ1kEKOqBYXZ+1jOtKU/kVl+d5IPiiLtWf8E9RKoblqS6y0J3PefKtEplU\n0AX33njdzMwuLrRe1VbJFF5SMlRKjIOmMyo4ZpKyvZPywubgDrtQe9MFKmjR7g7Z9wo2No3AKTHX\nQG3BlRNNUe3kPMN9VBrzQIVEqMgGMjJR1fj24ftILypIuB9kPK8+fd1W1+Vvv/Y7siP/SO3yyTTP\na2SY4bBxAzK/jFM+QZa0zx6F+wauvk+a5kozr/4Evto5L8oXFuDZK8V96/Rk3+WY5lF8pHvHZDjj\nKV27Vtf874FuGoL62mio7ecnVFg0rZWVqvp+PmFPg0377IsSLenwMCGdbVHSK08lqfOhrrv4kBVT\nilf13te+T2iDx5/Xmnr/Pfm18QMq3sAplS4JSVh5QutT7JA11WXxLcJR4MifG1VFHHiNVgCAXIDQ\nm6U19ktwi43g68jm6T+IGQMF64y1vuydaQwrrH8ea3fcXfRfYzsDQTnNS8+rUSpv1eU3o3l4QZp6\n7h2qIb0Kb1FjS3vALHuHRAEuhj57v0359QgVJZdBgvaw/TRVqO70pOfVpPqzAkLqXQg26jf1nBhV\nmty51jkvo71mtARn2eQDpEw3mFqiCGKevauBQkjwdzIhH3tKRbtCX9/PspevHOqPNYZx5vdWSTrc\nparexQNQAGnWyLj2CqUbsiV3SAUukNnuCqiekfzT1k0hbKbMu8NAfU58Qu9ZVKiZTdX2+qZ0W4Qj\napCSDvKgqjxQAPWRvp8FcEMmqJrnyibG8Fcef/EdMzNr+9rTHFEF6cqaxqJ6Vb/tSjXZ5MmR5kCM\n9SIJ50k7AYcZldUG8BSNqO6WTsqmOqBjlzLqf/KFF/letlB7jApjTXjgqH6VBh3x7ep4pvf0miC+\nD+AJ/bXfNjOzr+99U+3sgI5uwKtE5ThnT3rw4YWqUUmympS+kv7l0VRmZkFP70nBETmeaNzzaemt\n2tBvuuMDfCbrQAUUXi9NJUr0ZQX5wtlEvuiE364R9oRx1qEgAwdY5AObzu6UrXglZ9MLkIVUFY5R\nTTICgnoMwmwOL03PW1Rj0vejBPvfEnsJuA/rJfjiOvD2gN76xlj7r+H78CV9DR5N+OcKVI6Mg6Kt\n1mTr5VXp4GxCJccFAgWuqbUMFSOvwGUz0f4rNQcZTcXXIv6lEJXuoNiyRBFUcF/rR/OCNbKn/pXX\n4eOkEmZjhs1SgTEBb1xiFYQRFcNGsz/5FECIlAkllFBCCSWUUEIJJZRQQgkllFBCeQTySJEykagQ\nJJsvCWniElXu/d5nzcws9p4yx6kjRdRO3lEGdnNNkabNZ8S4fXKoCHmyoRDXMucJ92+TVeSsaewq\nWbu9RR10RXm9Oue/7ykCdmNTz4nnFRXt3X3TzMzu73/dzMwe/x5VzMm8oCimP1dEcbOh7GWjLjRE\n5IIsX1wRO4fIYkBmouWqnfFvn2dUeyxKdDYBkmdFeolnYaGGjTqZpvrAoe4fp/S+XEPVTK7BNdOe\nBvbYVNmLDhVgoqCIIjBEx06FbOiDtBiQZcpHpIP1Mll5zuM2SM3Oya4HEc6uz/W80YV0PyBCPdmS\nDhLNyzPYm5lliegHcNl0yeoDrDDfJdI81vsNFvL2OdkysusVUA/tlqK0QVUR+Op1RTmjVNXouHAp\nwOFQTulFQV1jnRwRDabaSC6q6OwZenQHIEPIXERXqNTwOZ2zHnxM2Z0rcOx0otLT5L5soQ/qa4X3\nJkrS8004ftJxZRWnRK2zaUXQz5rKqPhD2ZC/rvHKEO1O7GlcE68po1Ce6v7CNbXvjCxQ60DPKTXV\nzmRecyagIkZpqHaMQBzFyVDPQbjU4tKHM5RdeKALSske/TYzMxv/ofTv+OrPZEXXFWdqXyvB4eNL\nSPS6UEcbS8rSZOmbM9d88+uKwK+dUL2B7FB+Q1l0v6exj1+FjyihNo1ALQwW1UDy0k1iqOxEPad5\nftrfNTOzIcibzA3NtSI8R/f6ICTOpRsXbqkeVdVSGbU7PwSVdkW2k+QM6lpVNrB3oTHaKKgdXThM\nfDLIffxEEv6OxEzZujnoptiFslUnObJTh5zhB/VUhn0+D4IwSma2BtrqfCy/lUtKX0ctPa8Msifa\n0vsXmdzomXzK/lT3LXzJnMxKEq6flkdFMypBdDJCO0zIZFTIaKc427/v6znn88vbiJlZguuP28rE\nHJiQTSNThbQaeihdl10Uc6DidskStvC/LXg1QNPtd+Qrgodar4ZUlhiuU8mMqiMTUCEZ+LEMPV5Q\n2S07LJmfBIkxIjMH11KSto1BTw29RWUveM9AZSXhymptfK6/AAAgAElEQVT2mV/lbbV5AGICnTqL\nqkhkg6dd6TbFPE47cFjZomoDaM3kgtMGqAwcJAmqBbV8+NiiIEyo1jMrsmZN/tWx9rLSYQ5eDfPh\n1InpOfMJ7+vpeXlP/VxUcllU2zv4hsZw2JL/277B3M59UJXoMtI+Z67iv6JwH+RW1b9yX+1vu5qD\ni8pjLrYyb6PHBOtBlqp+HutFDD6oimyqsigMQ3Y+SxZuktJ1DnxFJbi9Zikq7diiIiPjgi2amc2c\nqKWTIF5XmJvsPcZw29QmGnePyj9nQ/UnjX2kqATUz0oPMbjcFlVU9otqT5GqTz1IF5YMTjqqhSUq\nEZtSdSh1IT/cyWntC6iqE03JT9VAfXbZr5UH6uvZCE4n4FlxuJgCeJAacANE55p/ATp2R5pXJTK4\n1SeonkfWO0JOsuB9uOz2hKo9ay9rrbr1qrL2977yq2ZmlgMVmpwLnXoGYrm+JaTJmUeVOVACY8Zi\njYqIC6RP71zXJa+qWlIfvpHqstYJl+z43vGuns91sb7uX6LIhwdv1AiurgWHWaOB7VKpLRFQHQ90\nsXtMpbEt2erSLTgi4OUoghq+ltO+twM6Ya0qPTsz6fnU0zqQZg4sKuQkqWZ0RCWzEmjcASi/07va\n10c+qvV4Y03Pff8rv2ZmZutXvsfMzOL4nKO2xn1jQ+MzYP12AunVzCziZcyFdzAJ/0lspL1RhHXZ\nB3FahB/pBKRNYQE/uYQEB7LJ7uxttQ3k2Ry063lbNl/KyF80SnBT9UDALVOJakOIkzyVyFKu1tzP\n/rp4Lcs+cyirsXpsXRWwRim4UYZk6eFVGpT1vgJr+pw+Jakk2bHFXIPnbaL39lbkh0se/Ej4odRI\n7btSlP8KJuy/j8XV2LoHF1oHtCw6twhVglwqziY1RgOqfy612HuVqYzGnDuEnyq7KVuogwgZnqn/\nZ+zNxuxt1pf1GzORku0WAaPFtuCvGmjORKgwduX4Fs2TP4zACzjdg8OsJ70sUfHL4/dNe677i9UP\nUFmXkVkX5DinQdLoIVGWjytSnSm+jS/cVTtSIBeTrLP1MrxK6HPEniQNj1WW/cKFUSGzrDk/ogqX\nmdl8eGhRN29peIYmoGPH/Gacsv8rme4980EMt/ktArdMNzmhjXBYUVUtCl9abke6S35L+7/2b39J\n74fvJsma4mK7s7mel++ynwW57vTUjnI2y/N1ffu+bKTFT821iubIjGpwFHezsaMx7nTVrwtXNjyf\nyK/lQMOmWYPjIAxzcMykqWQWRQ+5vN7fczWWOeYOWxlrskZG4KH7ThIiZUIJJZRQQgkllFBCCSWU\nUEIJJZRQHoE8UqTM3Xtvm9lP2slAEemNDUWWCjuK9tYXGddnFal//ctCytz5QzF5N176ETMzK5Lo\nOBso8jZdEvImSyYlzvn4SF/PixQVHZ70yS6aIlu3A0X0d66pEtGEM2+Hn1VVqJ2cors71LyPBXxW\nFX59/JaqecygCLiYi+djCMdA5xymbLKTURAzbgYUBAiZckxIlwyVkjorhNqmihoHUw4ZE/JbqymK\nOqN2ffNC+gQkYf1Swspkp/O+nlEoqe21CueSyVxOqThzNobbgDOVQYdKNX31IeKrjZG8XlKc6bnT\nE0XoOy218drVbd1PRagBur6sJEADeCRMa2RTpkT6o5y990qKmFfJSJxSQadLuHTQ4jwf5xIzIHwS\nnDGt3dT1zqGisWectV+aUgEL1JQ7U7+SVDPqUCkrG9X9kwhVRjg2mKT6Rd6BoZtz5wMQNLmCxmF2\nVRH+/ENlw1p9qpA4ev/ZIjtP9DmfA9kz03iliICPOY+fH+n7NJwUD8iU16gSNc3IZhLwrFC4whL+\nAmkkI67EyQBzptglI1MCWVQw3diBy2d6QWadcUtsEL0m85GLgNqAh+OgK33OOE/69IvKvEzHkGRc\nQjKcwY/e4dOBJ4GyFAWfs7BZZTZXu+pjP6KxiLjK9I05nzvtqm/z8gmfVLkAqVZMaCxIxFkPcphE\nWjq6vvSSmZk1yVLsFISs6+zqfds7el8fbpitinRWOte8jcIqP+pJR4uzqNU610U190anam9sRTa2\nU1XWx1vX2A0O9P3m4/iNqpA9cTIaWcZ6BvJuTuWdBUqh7+tvB/Tb83Flm+6dSD+zffzPNenV4Wxv\nIkWFtuelj2qHTEtMekpxhr9ERrQT0+TOgsryTjnLjG1Mr4Nkwkdt5Mki+X9yxuH/KTkq2UQnspP0\nQPptwGFTBJWS7sFFcKz2to/03vicigd5+E7gDTHswQOtkKtJb7k03BjY22SgObKzAVcOmWKf7Ghm\nM2sDquu4cZ7dIrOZ0XxIMm/SoCzP8esl/E26prbm4XPo46eMKnLzDGMDIq9YompSjMzlBZUWqNrk\nkxkdU2EgBgIkz7nyHEiQOFV88mSvXBA8GdaqCDxtU+4fU+UtR7Z/6uszRua4PNb1Q/xX/pj3r6i9\ncc7Op4rq5wmoAh9eI6vL/wQj9fOy4gdw9JQ1NtWBbCbjLbgYqK4UgJiBh2K5pyxbkvVoSGa7DBeC\n67DeUKFtAidZEjTH+JCtGOOenHNuv6PnxuMLbq8FHwhVt+AeC6j4ZWZ2/rkv2ft/JH2uRdSOSg6k\nzbmuL8c1Nz04v7p7IDyz8IcsaxwSVHz0WVcuqKxRJIPswdeSaJJxxd+nQfZUS2XzXPm1IdV6YhfS\nZdqV/5rB2dSv4ReW9K7JTPumWBHeMTKPBbgKZh2yynAB9KjI5V0IYVGe6TklbCaWks6iI90Xb1Kd\nMnH5tcbMbA0/tfaM/O11suO3InpO7FzrxumEMUQ16br+rh1IxwvEXDm5QGDgD9jPZhuyiSK27oIY\n3HgeTgT4+hIUKylT1W6SkS0MAiomAg8YtYQkmpxJ7/OpUATxEnpmqqTZbM3x87e/JJ9wAwThdE9z\nuvGsfMYWWf2j3xLCMbspRND1Hb23ukDdsq4AqrMOe7WlnsYtvYNeqao1iGodu1H7uJmZPfHaR9X/\nN8XtWGbvFsDRmAcdUK20eZ8Uf+R+sE4kJ11LYQdZqkw1B+rf6mabq/ScYU3ty10wByaX9yWjBhXH\nyIpn81SKwi/nl6mCloRfjvT4XhfeiwM4/PCH8S04XlbV52RLbWkP8EcZjWWfsY+fqs3TDHMN2ypj\nE1nQZENXfw+pcJMH3eTdw5+tan+azMgWpvuyjSGV0YpFrYmjvpArgSPbP3pbHIrTvvxxCQ6ZeE46\ndZkLxYfw18XVv6sVKumW4fEDoZlqai6c53T9CuiGZkm+o3ef6qesuakK+i2wzwZtNwHpmAfh7sCd\n6EXUnp1PCeWcc7RnO76v3zsjKoMVcrIdj7kb8NuyDrePjT/g9rqMlFivPZ9THC31b/9EegxAiVRB\nzCRM7Z05mvRzKgblVtSv+TnjD5dMY23bzMxW19W+p65pbl65qT1ke9b7dlu2byVtchAxh0pXSbgR\nB20QfDP1vU9lrDS/wVwqB8bgfQsO4Y9cgHCortY/Eq/pWgM01PPaNy74jEa8L8aafzLgtydV0Ab4\niwRVSodwNfpjte+xGujYAhxV/AadpmSr60v4iyk8bKD4o57aNwJxPlz4I5NO+SlsZapIuVTTG1+A\nmGctnu7w+yCj+6qMSftCfmx2tPAvH6CT/jgJkTKhhBJKKKGEEkoooYQSSiihhBJKKI9AHilSZkqE\nPeBc88N7OofYT3N27ZYymM+uC7ny+m/tmpnZno5VWh9OguESbM9wq0QvYPaOKjLlUplgvc4Z0a9x\nHvslRdLevwcTN2iQGmdK37+jM8Hv3lPm5YWPKdM8WdH/p/CPXPEUXX14pva99zlxFWSmykz0oYqp\nGJG9DOfsNxVZzFwoCt3MKAI58RRR9GEkzx0TwfOpd15SJC+zBycBzOcOFYASZOv6ZJZb90Y2NkW8\nUynOSiYUIR1TjalcVZtqE2U1LmrUmieyPX0CVvem3vW7vyf00HMrGqNSURHaIZneWqCxjab59PV9\nNfbhqmFMPM7kc8Y+GSWjFyW7QyWFAWORI4NsZ9JFrKJ+TmfKpOYXmdMuTOBXyAgUdN6wSkWAwoWi\np4N7RDenGoMB56+jMIm34Y9YLsgmkj5cA2SESbqY7+n/9a6iwJO4UFSrNelv4wWNz0VM7X3rrljg\n51HOJw4Ufc7MGT9H7ZmT1S/BAJ7l+HQbBnJnk/OV5+qH52i801fVDv8NNbCyqmh1qi19pPO63yMK\nHUuqvw2qLE0XBR7gsEmDpsg0QAEcyUYbMV3YIkPfpx/Rhuwg8UDtu+D85mSq/mdyl48XB0P5i24X\nVECcxk1AZuzpXSfNr5mZ2V3OzC6qtVVWpePsUH1dcDV1DvR3hXk0WSaiT2GWhqO+z4+ls8oCFVSV\njQ6ooOMV9byNmmx5FNN9lSHXpZVxLVeUdVoKyIIvaX5n4WSINvT//YfyS2Myn5tkt/M6Dm1ddDzb\nla3cueB89bqQhuMzjUU9L/+S5vneClWCqISTSyr71W7LL8fI/gc9zekyFWD6VFmqpXV/c0z2faD3\nvvKMqo40c3rfDpkRpy1FLpWln6Oe2pWGw2CTc99RMuRt7wGfZDqoCnVZ6e6BgAHlFeuREf4KiJbX\n9dw5qIXYhOzeImOzgEbB9zJPkWEf6jNCtaZEoOfnY1RIIBuVhSuDo8nW7y9o/vHbQd5GQ2XmrM38\npLqELYFsgMPE4AlKw2Vi0yFNkx9JF0D4AZdMBaCeHJAroDSHciMW7SuzGe2oQlVpzDnwmN5bBy02\nncl2p2VliXx4MNoDzbXZOhUCocZpjxY2TNWKI9lOCm6aEVw5cZAzPmhW11sgGvU5BX1lXdnqnCp0\nTR8+DDKdY6phTNt6/jS4fMUUM7P+GWf783CgUQHH4Oqp0N4u65nrLyoqgAxyOLcOssgjy1eMLrjK\nyPwyDnMqB80j+PmxbKEFSixnsn1/XetwZEqVjiMqfOVA8iztfLsPjfqTVgb9EOThV5lSFQV0SrMt\nfUaystkMvFoLBGPcIwOekh214CAoyOVYOwKCsqe50lvW3FjxyKx3qB7mJG1Kdn7BS+buaq8wegae\nNhBkzhyeDXQ/xG+W4ecYgspZVJqaLGw0RcVCpsrJQ7UJ6pBvV48rwn/Uo+JfD96gYP7htsFtR7pN\n/b72ebe/CDKjRRW3Pa3pj5XVb4NjzAGtalmNtT/DD5LFnzXVvvW8bManXelTuHhG2u9eKwgJPjjV\nRnj3i58zM7PVhNaB5U342VzWfNBwS2tCcu9eaH9ZDkD5UqVkaVNjPgOBMswItfHgVO1a8HZ0h9oP\nX/nknzczs+eobvhf/nf/vZmZvcRcHYBWHvyR9FIHpewnqWJXl15ieXjpTqWPtqf7ioFsfqUiG/be\nlG+8FaUyI9w2dsK+fU96WmLORTca6PEDdHZh5Fo8uYAxyzeW2Ze7U9nj9FjvSUWFRjjsahzWG5ev\nCOmfqu0lkB1zU1sc5mOkqvlTcrBhKmetDYUeOC9orc5N5Tcji6p0tMGPyi/UtnW/M5AOSzHpcA5Z\nVWUgXbhFOGLqmktj9nNZOBkn+N85SI9UlYq0lKIpDln7l6SLAfvaGGjfTEN+NtnWmHZBx9Xg+WiB\n2EtRPTAWpZLiMuiLU83F++z/Yj24E+FCycfgJwHl24FLrGxwr61SDRS+pDSIych4UaFXtutyKmML\ntF0fv9edam75INIPFr+x4LtLrkFGg95naXiy0Ht0gcxJfjieu8oN+YpMQ+8J9mR7wftytPFTzbV5\nGoQsezaXcSoukJog0y8CjX8BZJL/DpXXQO9F9qWP/d/QuOz+qv7/yn/wI3b/66/b+uZLlulz2qAr\nXS0qHXIgwxwq1ibhEd2Hq6pCxa5qDW7BU9BFN9hPsg/qn4qb9fy21oFJSzbh9/TecVx+c2qglgqy\nkeBERlcCmZhMSWexPKcKqHLZKICmBfXr8QPcjen5xUVVKCqhJeBPK9al22x1gchRvyuL/xMucVug\ntprw3kWk60ITxDrr2hIclyfs8xNZPT8Gov47SYiUCSWUUEIJJZRQQgkllFBCCSWUUEJ5BPJIkTI5\noowXxIZ2zxS92/+Dr5qZ2WlCEbL0f6gzpR/5iZ82M7OD//kL+vQUifKvKNq4d1dnTa8Tuc8VOaMG\nL8iQM2PRiKKsh1FFtGKwKcfqOm/3gIjWb/36H5mZWWTIOfwdVXtyYf8/f0+R+Yvbn9f7QFkU04pm\n1yo6t7e5qX7GibjHOL/ZL3OevKJ+Npbhd9nnLDJs9R7n3GdU6smNFozrJd5DRQ6iz/MR3BBdtW+l\nVLamqQ9xzpJOXbhEzvU5nypj1n1M0b8rMek0ViOT+crHzMzsZv3fNDOzxBf+uZmZvf13/pGZmZ0U\n1bdrW8riJF/U82bUek+cg4RY+XA8EFkuD0D2xM6pHJMWymEcU5TWm+v5gzyoiMnn9d6pxsLBVvoD\nRYazRLyj+9Jp4poyF9WUMhXTOqzlZWU4WmT9a/B8nE9kS9dWdF+zqQh1Ryq3PBVw6qYOHO4raxW/\npUz0LKXrz9/SDc9sKFNR+WHxkTjvCKWQi+u6GVmtBBmOAJL3KpUnSmTb33/7XTMzc6nmtFrU/b/9\nnrJj907VjsYLglUcr0kfz5n6l3yO994D9XB318zMuvABpEbSB4AYi1bU7ikVDrIgiU4D3bftKzuX\nmiuj8fCBMhMO599zFXXkzpdUPeXmTZ0bz18nM3EJiaHjFiiuWkGR7vK2dF3uKgvyEM6Z3FNCvFVy\nuu/kUDaUI6s0rRPZHuv6KZwiV3fIaueF2EjA8O8fKBKfyFClYlW2WDmEnwlbsTyZyPfJ8q/o+2RP\nc3L8OVVquLguXp2VxGP6HlhSlmo9mTRZkLTe28vr/7W5MntnnIk9PRAyqPbiR8zMbHlH/sId630X\nZFpzY6pNBIsKZlRY26YqHBneo9vK3iWLan9j7aaZmU0i0t8p3AalBuffG3pujCx783fUv8P5t9Su\ngOyPJ5vaIzu1tiw93X1T/q9F5bF4XHqtRkF3DT7c+e2F3/TnMt5KW3NjUREnB7dAySeTC4owsaa5\ndzEANUiWLA4iyInJlqeciU7A+zShqlZ3pP+PZlQL4ExyNCP9Dji0PIkNbQKwY66mmjuWjlaowJU6\nW1S/oAodfvDwjpRfK/HMpN7pg5gbV6k4Rh/9KKggzl/XshqDQpJz13CIdM9ZU0Dg9VlHCj6Vwmoa\n+/4aqKLHNWZHIDKCfb23c6LnZcqgIOAgSy+qHMWUlYqQGZ3C35CNM+eo+pZJgvCB82Y+lG1SyMZa\nxxqTakHvdQofrtpfLqr1I5+kYoOrdpxM4erJ6/1ZsvFBT+3qwS80Yj1KgoiMwh0x4xx8XsuqJXHg\npYRsr78rXzB5IJ8zoRJaakdzwaViWj4t/W/llUXMg3CdwH1jZjauzK1KtZIu4793BudYV+OSBrkU\nJKnGwXn7TEH9zmVlb14fjhsqAsULakeko/GOgm6pTMhyprSexdmTjOa+1Yfw6vTgrwCtGuyC8C2w\ntq+xnzKtQZmybNvVlsLqvto4obqevyvEYH+qNXz8LSEDswXpcuejWssrGdn2MQibo/taDxIR+dPK\n+oZ9GFmHM+DijhAqF/i37/2EOA6Pb6t/32A/eO2axv5dh3Ulp/uzoBOiDpUJ4bapgMQeT6gSd1eo\n2i2qT33ih54wM7N7IDq/nPynZma2f0/71aXN7zUzs+EAP01lyOKzsqVVqr15VDArnoNE2QdhE5ON\nTZMawyz8HTG4aXLXdN3HnxACcgm+kr/xrGyruqH1plDQHFh/TOOwRr/eeEOovCJVS5Psww+7VG5L\nyTetvSSelJKvfv6LX/mvzOwDhNOTPyYfNAABP5rpubMH7Gl79P/mB3uJbNy16UgohMxUz1lf8HGw\nRxvDUbcG9PTwRPrvUXnzMpLOst8rUXk1SWVZEGZVEC1eW2vqQUdtSCThQIFPMpZQG8cjbAewZruu\n582b+n8RrsVOTn0P8I/x6uI3hHTgR0HSpHWd+fghbHgA8nLgyDbyILBb8FkW0lRZSi04x+C9m8A5\nA0JzznvGE5AxFT3XS4Ccb6o/0xK8SVTQmbMnSMpULEEFsAnosUUVJ7+mv3tjEPxUg4v76q8P51UK\nLrZYg6p3I72vvaiOugyHDZyRrTPZXhDVe5M8N53Q9yXQD9NIiXbhe/Kaw+4F1aIuKYOe/G+jSjXF\nQp1Pqve9z7g+AFXCb8AuVU9jCfhd4CzKzdROfy6fE1xoDkz6VEbj90Mkwe+XBdLWzF545iPWOxtZ\nl0pT3tugYY3fMjXt94Kk2loAwdL/FpUeO3pHneqh54eaNws+zfgOPHRsJioj0FR5DXZ6Vb+/Hd7n\n5eSvWiBu9o/k798B9VO6ovu2biwq/qEzUMTLBdnuvVP1Z9bS6QN/FR5MOP0CEDweXJRFEI5LcMUU\nOXkyYE4lTjTnuiDzKlSxc6jI2yLecPZ1XdfZfc/MzNqgm+I3gZl9BwmRMqGEEkoooYQSSiihhBJK\nKKGEEkooj0AeKVLGIwt06yY153OKSP2fX/6fzMzs9KtfNDOz1179pJmZzV/8PjMzmyggbvPvFUN2\nPabM8lu/9r+Ymdn1byhqWHxKUcGHX1cWvvyAmvJkI5NZsmmbik7eeEEpmR9/UtWfpv/WL5iZ2Xt3\nVe0pOlZU8et/qHN/e+/umpnZclqRvxJM11uBImppOCUKSUXsLhTUtN6bynAfT3S2ztvnXCQ8Gqmi\nIoCjsqLbDc7FZ0p6QItqTdeI2saWFZ1dpXKSv6aIoecostnsnVtqAtP0ZBE1hPskxbnBps5Hp6kp\nPxmoTbuv6x3pP9LY1PvS2b9bVFv/wT/8e2Zm9tm/+ytmZlac6/p1atFXa4p+JhJUPJhynveS4nCe\nL1mGT2eNSlpUrfDhwHFKinZeLSgS/78T8V4iu1R6WWdUhyfvSA9rZGjhdfBucwYVFEI0RYWsrN5f\nSYNY4fulI6osoeujN4We6I0Uzd1+Uu11DxVF7lGtY4F6WIKfow/3wef/ubI3T3+Xxv7KlubEypPK\nijlnnIs0zZncQ713Ue1o2BES5vd/U7a+fuW7zczssaf02fwXv6fP95UBuPUpqpb46u+Uc9YJwrSV\n74JNfwu7eXtX/XhfcyF9pnbmp9JLY12R+cG52kFC29avaXz6X5F9NVvKwDy2oaziAOZz776e+/aX\nFH3++PLlz28DZDOnJRsdceZ1ewMkXEy6H5LhfPlx+Y2t65ofDw80RrF7b6itVGFy3pKOU4/J1mIl\nzS+SStYGGbEOF8D8pnS5VJcSjwd633RXfcrAv3Nyosj5n/tpECwV2cqvvyWUU4l+lGt67wgOk6Au\nhE8BPogqMfUYEfvUM8pQFAdCTbzl6rqnS8qqrzylzOZ+8w/NzCzyB2Sws8oGLWelLy+QPioflY28\neEf9+F8P5a+2l/V3cYnKWaDLEn0hcwY5ve+lHxLPRT2udn65q0zCCrxPpax8Q2RVY32zpnbvxNTP\nL5x9Vv06ko8q16Wno7RsqJ1V1uiy4pBdylGVqr4kv3lypLkXo4DNfEZVK+bqNMu59or0lAWh6FMR\nYSOt/g+XQcp48tuLyg9DV+N+0ZHffqmqcUoV5AMeHmqc985nVsuTZaLaxdmFbGU79YKZmWUSnIGH\nrKqSAkmSlD+b+1QYpDJflCo4LpWqemS1U1RBS1A9aQzHVjRO9QbO7vtkkTtwdvkch46ydt7r7pqZ\n2eSabLAP18oR2fhVkHTmSofDodoVAflHAQcb0e6VFPwSjvy2RxWJKJxUUxCBHhnnCFxUc1dZrosj\nKl+RuSxts+heUkbw/hjIEGes9+b59F3QdFTv6MwX1aRweBNdl8nx3hxcX0nNrS0qsgVZuBYewIu3\nL70HoDeKj8Pptg6fSkz3Feh3NKN2noz0nMzZHXrwgzZ767a9BVIp1VXGfg4KLrlJZnh5wYWmdTGR\npjLZlvp9BqLUJXO/Bg9Iq6lxLcHflcROZjV4PS4Y76Lat1TwbBqXbiJUGZtN5SeTLDaZFGOIjqo7\n8Ag5OHZQsEMquUxYC88cjUGkib9aAYm8JYTDvKa/j/bFy3A0kk1EGtLh2g4kXMnLIyDMzPpbeu7B\nfarEgUz+1E/In+WWQKEdK6Ob3xBiOvgGulvW/XH46JJ59EFRjk25E9u9D//Dm/K7r/xF+W8Hnp/V\nJ+W/fvTP/qCZmf3BZ6WXKEi9x+Hh6MzlP3Np6asJ3KICEmYb/iPnSHvC1rHuq32EanhbL5qZWdfr\n83zZxlfe/3UzM/vNr+i9v/EXIRzKvan7nG0zM4vkNT7VF7QuLA01pztwUsyo1BaHdymPT/ve/1jI\n9DocX//4r/y89ESpyFxaz3Fy+vyef1/6mZ6rfe0HGvellQ9QZJmEb8HXtRdJJOWzntyQb327qfX3\nFAT80p8TUjU61t+RP4UL4l+WgqexmYNoLLr8Bhiyx4/L5lygc+k5iG9MMTLZNjMzPwUPEZW9gjhr\nEGj/Uo4sPWj7AujRcUXzccbaPgcR4+Z1/Yx9pLsKWu1U3+erur4RaH93AtAwQwXY4Bz0FEiZeQ5/\nRlWgqMO+zQMRndZYjUCeVPEjU8oFFuF3C9Z0nwdyfYGESWzDF9WmWt2T8NzhS5YoGdaBBy9Jpa8J\naN7+ggcFntAc/jjnsS7CV7dAWaSW8Ncz7TWyTMo+6NkWqOcI74uzt8zGWddYty8rLaoGjh8wJ1f1\n/spiXb6Kb6Qi5fRCnzV+P3j0YwqPasQ0F8oVkE0R+aKsr+dOQcxYlL3i9gdzo+TWbHy8b/kD9i3w\n1ZTg66kWNA8PPdlqva57y6Anj+CWqac0BitUOTulsmqWV4/mGrNFpb/llzVv0+w/j0EUpnvy04CV\nrJoFaU41Nb+jsUlyGmJ4LOR3CXRUdU3tWKNaVGuiBszbeuD2dWx+hX11ER65I73/ZE/7Ue9C7Z2M\nQA2P9b7NmtpXSDHXQQBN8aPRPO2jcmKSqp2xTBxuKOYAACAASURBVMgpE0oooYQSSiihhBJKKKGE\nEkoooYTyr508UqTMyb4gL2ctZYuSDWWwX6yJV2O3qQj83lgR+BvxbTMze/wjimD/6Ms/aWZmi5z6\n//BXf87MzC7OFQmPDZS5mBCFtHVFzqpLisg5Sc6jt0CHvL5rZmZ/lBDaYecnFOGffl6Zz7NToSE8\n+EgeW4G7YkcIm5vPiA/D63LW+Z6ynHsPFbHPdhR2Prkgi5lT1Le/qoicc6wIXoz66pErep+TgIGd\nyg8JUC7vHOn52bTaX78h/SVKIGc4r14sVm3Eue2VuKJ7NTJm/oGyUgPTMzt9IqfH6MbV97e/qndN\nfI3FX7insfmujrILb64KrXTnHZ6zJP6I7WvKrlwvKksypab9ZWXgwxEA35BP1aXAOAvpKQq7kwYJ\nk1dkeDBRv1pUswiIePue7uvCfZKAs8Vrql2xgiL4OTIE0wznK6loMzZFwo/7RMTf0f/feqj+XntO\ntvmxH9O57nc/83+ZmVmac457cD9kMhorl0xnpyP01e+2v2RmZitPXrdXnzDbOyDKHFOkv3sBS/wB\nGYT7u2Zm9mWQKN+kfU8VZQPxlPq/2+RM7ZtCSXz8/Hn1n45GffiXJhr3CZmdLWhG1l9Vv7qw8p+/\nrmxY21H0uNskU5xVZH/tCdlDm+okX7+vrGF7l8pqz8JvwnnTwHTd8FhnrO89vDz3ULkp3Z6Y0iIZ\nGP3PJrKVBBm+k0NF0r/2dWUJ3Kb6/C7nujNnoA9iyi4fq2vWoJpTsaS5MYCboAWXykPO8+7AeRJn\nfvfGZHJBdvhNzdP+WGimw33N6wW64eG7QnFV4CBwclTrgXF/wSeUhsskRfWJ8xNll+Yt+bVuR34u\nGKkfUQLz51SpaGOz7+9rTlfO1S/nB2RjpzvS5zbP96koM72j97RLso1CSXNtDLLkwZnGcqsMx44v\nxGEvIlus4I+O7pHBfVnX5ciqLSBPiWrzX3ku4D4rPcV5eEf6TU4+3PIV21P/e8ew+Pelz+EdPa8L\nt1DQoppURvYR2dB4RBLSUyrCuXnQH80VeEAu4BJqSH9JuGNKVGbwyJ6W1zWXImVSQG/Ibtu9M8s+\nqazR1kxtHZ7L36bg7Mo/odUuCq9CeknvyO7p7wV/WhQ0ZdPTmPggVOKgFma0Pd+XLpqu/I9zrHUh\n58NNQHY9Am9RMovt4C//2Rf/N7Wjrz5f/TfUt8mZbPSCKkuN1sKPyhhzVMVwTM9JUWXP4b1xEDG9\nOVWm4vIPDu+ZR8iSU3Wp7oBKww15MSqwuB8uc5mfas2fJTRW52T1C1S96oz1fw+Ux9SVzaTJHNfq\nVG6ggloO7gGfCjIDqoKc78oHDL4B5wJokLVruj6yIj2NqW7iJrV+d8mEn0w0N7y7VPObgFKwv2pf\n2/uqZYZUr1rhPD9zdVbnnHxJ/emDwInF9Nx0F4QUGf0YZD1HXfnvSaDxGreoWLNKVapAehh4VE5b\n0vuPDiOWnMK9lMNvgiqq9rQWjmKaVzmj6scJyJqp5tWRyY/PHsgGAzizIsyRBBnOICf/4Wakq9tn\n+gw86X5tRdnvwg38f4lqesGHy01GW7LdE7gU9gva8zS+qjlUSsgWWlQBWZrBBZaR7gpj/P6SdDjq\nqb9TKkvmJqAB4EC7cywuhJW5kD2TXxXq9b097TOfX1Om198WSnUMMiVRlz7mt7V3aUVAdNf0fqfL\nXoZM8PCB1sGOK33W4O9LPcHeKaJ1JfFQqKz33tD1ifvqdxN3fAqaY+8NcUOeB7LNH70Gtw88TzO4\naxY8H7kKvilKJhz0wu5cc+ROT+tFBq6Yb35De6XhVek18/i2mZkFbfnIyETtnDkfjG+QP7P3jrRX\nKoAmu/qU9BpJgEbA7sZn6Cuj/s/Ll6/kNuGVSRAMrcW+KKd54cHBF4B0yIGsm001VsksaCI4Wyrw\nUA7gITKjUmKZKk6edNAqyKYy7OcCqhFF+7q+DTdjMqv9cgE0fzxO9aUEyAsqjJXYP0YHakd3FbKz\nOdXjQHcVkvgTUL3JMmteW98nqSw7j1NpbQBHTor1jOp2pyA8GiDSh3A0ZsuylVNHc79Me2MLXAEI\n9xIIwj5VYyucMvBHIP9Kan/KAV2c1X0xkKT7oCF8HhtNgn6lCmkCrpxRSf4u22HPx++Nc05FXFYi\nvvo5owIYxaEsUUK/iwqPC1SKr/5M8NeZBUcMXDwZkKM9Kv7M4SYbLipNztQx50jvi70JEusnzH73\nVz5v3bZvOyvaR1ZW5Mci7Pe8usZ28EDPGoNUzC7r+3RffUlguxHQmekL0Pbs9R3W9Clo3dQ35T9P\nqbDrsx/24HaawkcaKy/GFH9PRTKjamrQl420ulSQjUsnS/i79EDt6Qz0/3P4mE7PhNLPRBZVnNj3\nsZdIgwYNsNFSlYrAVODNpNXvcRN/G9OYxaPYxhqVx9wFDO5P5h0KkTKhhBJKKKGEEkoooYQSSiih\nhBJKKI9AHilSpppVTMidKTK1uaYI1Pf85X/bzMyef6iobgKkyClndNc5c9t3FAWsw2z+/Z8QYsW5\npyjiM3AVrP6QOGl8In5xztpWqaAQiyty1ekrinvwOWUiykv6f35VUcd8bdvMzF67Li4IvwCbcg0e\nFThguu8oivrOSJmZG3BL9Ml2rW5QQWdLYeZy9QfMzCzbUqTtgqovHaLM0bgi+xGYxmNZRQirFSli\nENMwjk6p2NBXJPD0CuzyXskiPWUpzhKKEF8l4n2QVJ+WjqjysUIZi2f07nMiwDfP9eweUczhV5WF\nSDymNv/Un/8xteUuiIxlKhuAY4r2lC1Jn3w4TpkSVSD6ZHUydUUd43N95mvSQSyh/nlD6fSVF8TF\nkt6RTV3AAu9lYOqGIyFZlS1Esjrb2xpRrQQG8MoM5u0yEeaxwqdLFWUavC2N+Y88rWzVjdf0Gf2n\n0kP316kA8AIcLURJx0T6k7f09xZR5baj+9JRatrP1F4/Jb01IurnYEvtWr6mCkOvrEi/L/uy9WvP\nKOM+I/v0vd8vZMza87o+8OD1aGp8+2TEK6AjYoGe3+9gD1e4/mnxhLhFIvgKctuoScaYTEs2p3Hp\nvKf7CzPN4Wee1riNOQ/eqGvOvfL9r6pdm5w1zly+ss7ZMmde05zLbchGS30qFMSV4fvox5TFT2xT\nYSqq7MnmkDOj21Q/c9THMtmiBOiybzxQH1ucIc2mZGPVm3pPeWmb/2OjEbJSCb1v5zUhUSIbf8bM\nzKae/MOkL5u9/knNoStJkHEV2dwFXjo3lG47nL0tVnQWPkHFkyyVY+JU1nniBfW33OQsbpxM7FX5\nySd/SFkfF4b+5A299zrZudMOfD/rmgtPPPfDuu6a+uOQNQo4F56/DmojJw6F6X2NccvIjF/VHMtT\nFS8fE3puPAURxFng6ZJsfvtTnzAzs2GX8+WP6flLDzlHv6X+XlZSGSnyVkXtrsA3lbih5xR39JlK\nqP8JzgIbKC6fChDjCJU1ZnpeGhRKiwpmgUvlowWbPxwWjeUdniu9zE50/RZVuXrzoRXQlUvGK091\nBLe18AtUhgr0jDYg0FiNecUZeRuDpAFJEuR0n2VkG8WuUnKzit69ssjAwTVSoKLUZA5f0khjNs/K\nhra2ZCuvevI3lceoBLgk/3TaFwpi3qKi1Vhj5i8qHpQ059IdtdeNK9ueptLKFP8S6yszOo3rPi+h\ndgWe+h+bq92xvPRz/YbQsSkyz6n8h6vQNaIaXN7RfUW4eZw8WS/W+IQjvSxlWX889XPOehXAcROQ\n7XPgR+mTxWPK2jL8I5FbGodskUpyC4TPnKpU8NQFPtWRqNgVpUpgzj6YC1dv3LJYUe9PGXOKakgF\nOG26rG85+J3mIEkD0AijCVlB+ulTOTJONjF1XXMhgg/I+PgKkoFTOCri8azN4cEZragvtSl8bIBd\nMwm9O0o1Dof5GetpzGuUYMwU1JYZlbFGZNXLVJ0ckxWPz7SW5ZPyQ5Fbun5dj7WIJ//ZWfAVsU5c\nVgauHvTsaz+l98HdFYVL6+0jDa6bJqO64P4qah1yqbK0sN14TGNfhsurX6aizdOyrR/c0X5453n5\n+0FPesrC35F+Un7+Rlu2VSpqrMsLvr2aEJiZjNrXB4HulqTXHJw3O/DXNY7Jtmf0/OlEc6tA9b92\nXu/bJKOeXX3GzMyqK1RwG2l8M76uv8HcNrgbDDRsEjtIbkif3Zb0RXFTO/qakED5qcbvh/+jvyS9\noc/087L5SE+/CxJRrS/nRVB+T2pcOiCizMzi8R1beU1zIMG6ZbdU5SlZ09zeYC+VfXLBjQECoPQB\n/8afJtOZNkZeRv6ogl9w2iDX4ClbcFOlRmTZ02yo5ppIhXOQHvAeFbEZjwqHxTbV76jC2aiCfKfi\nWQFkeXGV77uL6mrqe2ysuTf1IFQDTZDydF07IltLw+kV7ct2fCpXlfvS2awIT0iMdlM16hxbLUQX\n6NFFBUIqYqWpEjfQc2vwz8VBO2VBnaV8eOX4HTLi+yL8QxlXa2kb/zj3QdsFIL8j+MOJ5uYwBhqi\ntfBj8AOW9VlwqT7K/2PwLxl8TUugKfqMYwo/7cJReVmp52RTQY252lc/B1RRmoNUTIIAckHyR9jj\nxUClQG1mDuuOxx7UgysymZcvqSVlD3Nfv1/60Q/am1i/ZisrCUuzlxjCwdKo4r9Zw3JFfgPCgzRP\nSBfZLelqCJrVpcJsdgfeIZdKYSBPIjG1fQLKNA26yQVBlx3q+yj8ZLWEvnfoWw9+nQl7gvSmnm9D\n/X2els0X5qChFjRvoIuSAVWUIot9LPs6kPEJqttFaVeSsfYKVFVibYxTWTEow3fKyRWP32w+vz/K\nrGeTQlh9KZRQQgkllFBCCSWUUEIJJZRQQgnlXzuJBEHw4aAL/1++PBKxIAgsQhQzlFBC+UDCuRFK\nKH+8hHMjlFD+3xLOi1BC+eMlnBuhhPLHSzg3/v+X7xR6CZEyoYQSSiihhBJKKKGEEkoooYQSSiiP\nQMKgTCihhBJKKKGEEkoooYQSSiihhBLKI5AwKBNKKKGEEkoooYQSSiihhBJKKKGE8ggkDMqEEkoo\noYQSSiihhBJKKKGEEkoooTwCCYMyoYQSSiihhBJKKKGEEkoooYQSSiiPQMKgTCihhBJKKKGEEkoo\noYQSSiihhBLKI5AwKBNKKKGEEkoooYQSSiihhBJKKKGE8ggkDMqEEkoooYQSSiihhBJKKKGEEkoo\noTwCCYMyoYQSSiihhBJKKKGEEkoooYQSSiiPQOKP8uWf/vR/YWZm/8kv/7yZmRXSZTMzC7yZmZml\n3YmZmfmTtJmZzbtzMzNrdqe6Lj0wMzMvlTQzs0S6r0/L6P5E0czMMqb7kkl972V8MzMbOC7v03NS\nfb13kHd4n6frp1JTzk2YmVm8tqTnl6tmZhbRbTYa6z2DeU/vO9T906jaWys19J5WR/0iJpYvqX+5\nrJ53GgzNzKy4XVM74npBdxpT/06ll/bgUM8bramfDfXr4mykdrZ0X6myauWGdBQ3tWVS0DXm6ZmN\nlVUzM3PHanO7SRtT0lkhlTIzs/PzppmZrfCuIFvQcxK6bxSobalxSc+L6bqZq7YEc+n8Z3/+P7XL\nyN/6b35Jj29cUR+T0tnenQdmZnbzqaf13NmF3jPUe/KxrNrjnev/ER5Y3aZd0nH/QPrY2Fb/Bwdd\nMzM7eu999TvBGK1rLPLLem57KH1U1upmZhYd6znj9omZmXlzdP/Ydf09VntPH7bMzGzl5qaZmSWx\naXce6P0T2djh8bH6/0/+jpmZTWN6n42kzzLtCeZ83z01M7NibUvXO5oLzq7aE9tSv53TttqT0Wcm\nta77cxqXkYbPYq7sohaV3TTjmhPjjuwml8nr77jav7KsOZJn7g0HmgPxQO3ttvW8Xkv3x0o5MzPb\nuKY5b/mKmZkdvbVvZmbVhN73N37mZ+xPk1/8tPyH6+ieWaC+RPAL+YLmVyQhW43HZdvuLE2b1Ol5\nV37AjWvMsw2N7bSl5w2H+v/y09JxJK77CjPpIOupr2dHsiFvKptIpTQXvAxzsCZdeWONeTwmnUxd\nzaHKtsYkOtP9pwcaq3xOuo07uu/EG+v6hvxcnH63scXYQH+XGnp/IabPyUxjE4xla4m4PmMmW4pk\n1Q83rftjab3XwZ9YgutdzaF0SpNrPNB1o5H6E03LRmsp9ev0rmzRcro+uYKt0J/MWM/vtWW75YLa\n4xfU7uRE4+uWpL9f/iX5hr/21/+6XUZ+8e/+bTMz6zelHy+nuRyJqL8x/G41ovc2+7ounZXtRtKy\ni4Sv9o+SGs9oVe1x0Lfjo19X/69F9B5vLLvrRGR3yTj39TUXJvMz29jcMDOzeUd+q3P4UNcu65p0\nXmtIrCvdpcqyvVRR7+rPNDaFQN/7DcZ0JN11xrKZ8lCflpDu3Yk+g0C2VG6or+5AbX1wcWZmZltZ\ntTlTVHsCPdaGEfV9mtZzCk1d1ynqPbm42pdOaL639FibXWhOtXyNQcmTruoeuozwAk/+ZuWK+jMs\n6O+zI/mLeF/3ZwON2RDdx4t60d/+m3/LLiO/9Pf/kZmZXTjSY2coWz76lvx3+aps8YkN+StDr8WR\nbHxwruvebd9VfzPS0/JLN8zMLB/T3O6hryw+IMVOLJtSexOZZTMz655pjR++c8/MzPqmfnkpvTcZ\n1/XFaurbffjPfv6vmeNiY9i24adjMe0xYkn1Y97UnIv01Y6Jr3GvZPT32b7s79z0/qWX1K5SRHPb\ndaXvSqBxHTjSg3MsW3ecrKXrstVkkf1YVmOcqaotzkRt2DuVjXU7d8zMrMDYx9ivpZMak0pROgxY\nO/dva+3PrOn7W88+a2Zmd774TTMze+/9t9T2Vc2dlafV1qQjHXn4+7/9i79ol5FP/8LfNDOzlMsc\niLFfHGtsIinpzjy1N/DUznELv5qQzSdcfR+JyJazaekhMZd+yhn5mThzohdRP+PL2qu0xloX/Lbe\nl07KiIKc3lOMar1zxlqnLg7lf6fsoZLsJydV3Z+dqf2phL73NGyWYv/rjOTXon3anVr4vxX6xRxc\n0boZibN/nsgHZOLqj8PeKEBN9TXpMWf6HPfl/48u5I/HB6y/6DE91XOGgfqfNr3XL6pfAb6jnJK9\npdLsUc3sZ//Cf25x5lhtTXqNJfW8gzO1s7Cu/ueK6kd7pPGKd/X/n/uFn7M/Tf7b//G/lg4ysrXJ\nULrv7WpeZNgv7b1+28zMjk92zczso5/8lPpCn04PNReSOdmIV9bzRhfaY6zV5FfcpHSd7KvvyazG\nfFZlf8o+bDTTexMzXZfP63luVrodnUnnyaj+X9jUPnXv8MjMzIIev6Vc6XTvTP533tH7th9Xe87P\n9Dthhs0GcT0v/lDPeerlx83MrLy5o34+vG9mZrWa/NIgprE8/IZ8Qj2nuVvKqr3OSPvd+Uxjl9vW\nmI2iap8zk75yTY3ZLIExz9TO8hX5Cp+/m6fsZdj7zLPSZzWQjbjsYbpsYVLsu6NZbNHBz87Uv7/3\nD/+xXUZ+9tOfVnui8iHTOT4kI9+RZh2bTfT+VJG9Y1TvdSeyp4ip/6m6npNjPen2dN+4Jz9dymuu\nRjvSx+7n3/l2W37qqR+3j/x7H7dIWbofp/RbZfPGtpmZ3Xtbtnjx9rtmZrbTuKU2ptTWbF3P7p+z\n1z+QDSw31JhxS8pLpaXzdFLXW16OwOPHx8mJ3pt+Rja2desJMzO7/56+3z/U3ujGDzxnZmZLcY3l\nu5/5spmZvfPP3jQzsyvPPGZmZquPaw7U19QOd6r+xebshYoa4+5Q7d07lC1WnpWffeyanr9/JP+X\nSWjtP/yi1sbXv6o1/9VP/oj+v43fPdfcWFljz9PR8+dRfmR9BwmRMqGEEkoooYQSSiihhBJKKKGE\nEkooj0AeKVImyIFwIeJeiCia5yfUrOFAkfPYgCzfmSLWs5w+i0b2vsJ9IGGSSUXeHLJDyZgi4+M5\nmQRgE5mK7ncCRT3HPG8WUUQr7SnKOHP1vF5T7bSW3pe/ooh/tiKkSn5DkfkoUdO+r2j2yRuK6LsC\nP1gho0xA57a+nxzp88YnFBHMrypbmtVjLbWqrFSxR3pxWZHJ6RtE23f14PpcMbaLt5XdO7mzp+fN\ndu3altpWfw6ERUbRut5M0UKno0h2KisdukS++0d6VmlHY5EhYhyfKRrqx6QDfyCdFohkj0ARjB7q\ns9OXbgt1jcllJU+Wv5VXNPOoqWjl3oWeu+rred0OCBAyplvXpKPBTFFLb6B+FsnSbz/xlJmZ3a8o\n+tq9pzF977Yyk2d3FIlfv6FI/hJTZeLKVmZky2OROX9LH85Ueqwmpe8c6IYTl4h7XM9te/qMRMiG\nERH3OiBLBoq4t129N1kARZZmym4pCpw4Vibhoav3bBFJj56QfV8SquPGFWUa7g6VuWiRFbpyU9eP\nmFunU9lsNVAWs7+pdp+S0XUWaIq8/t9tH0g/1xW1ToMK67+p58eXlbFwHF13cSZ9uyBpor6MvODK\ndrugQ+KRy9tJbwTCLVDbC6B4gqxsrhnIZksZEBzoPBPVGHlkhU/a0k27A2Iiqgj7Ai02d2Rz9Q1l\nj3yyFDPmWXOqses0yTbFpdM+CJAKWe7pEQiKK8w1MnsDVzobT2QbuYYi8jEyh+m0+nPal+4mZKUT\nCd6n5phHFr5BRjVLNmcKSq4DOqE0k01FaynaKf0MHmishq7eu9LQHPKLmovZCNkc0HceqCpLqf0X\nd5VB8COy4VlJ2TPPyMjmyKSqmRaZau6OHLWznpLtjiLSd42Mqh+A7OmBbIp/OF/iSU02TIE2AyE0\nn6rdMcAjsTUhIesJKXTQl54jjOeQdvYXPnKijkRBKs3RUw2E5llemZc8mesAO8hNZPMz2hMEFVsH\n9XSRlc0U50ImOCnp6HSmz4GjsZwP9MxUW88qFzQWzTT+6R21OTmV7fgFfd/NgOwAnZUl6z+Zqc/N\nqdaJpR3NpcO3NZav3/mWmZl9/AVlycogD6egpYKp2p9dBuXaVl8vgiN0qL4myOqPlrWmpYZ6f5yx\niPtJ+i89tEZak3uObGf0tnR6fiJ/Pc1oLjXWNWcKrPWR6AIieTl554H8025L7zs7AbVakL+7vn5T\n/cuAOD3Rdc09teO0LURJN6U1+dar8ou5p7WmG+i0+IH6GSXrNgbhNDlWFrB9/20zMzu8p0xmNgti\nE0RnPie/ngJFNsH3mJmNx745RewESFKxgl7InDsLlAeImyjo5FJTNnzSUT++8sZn9Mwb8jlPPyFk\nqptVfzJJ2V+/CXruEDsbgGq4krBqVe+O1pRxTGdlUy387Tt3ZVODRRqaLH2koTZtbIE2islW5221\nZXissUmBRnr8uz+q7881Nl/9wu+pzyTJlz6u7HyhpPePHLXRA516WYmQy4yCLnVastWA7Ha2S6bZ\nkT9tPVA/J+5iDqpB5WXppZ7WfTWfOQD0OootjuIXvFj3Vbdki5mo1uZ9h+cPyYoP5QOmHdnY2cF7\nZmY2nJKBjoFYWtb1aa6PrmgsYxNsJYK+m/IhsWONz8VUf0+H6mcqovWvn5XffOkV2ZgLAmYE6iFZ\nBpnYU/88T3PGOWOA5hrP/UN9331L73FA2Lhz2Vw0Jd8y8VjXSC0vgzQKJiBnXNZnk72YmaWDsU2x\nmyAA9QXauZvQODoz9dvYa466ek46mbbLyvBQuu+OpbP395W9XyDLrhS11//y7d83M7Pjb2kft3xV\nY1MEnXpxJnRC6TmtoRl+G81Bu7qmMb24IxsoLcsfFPEr+TIo/KLWePdYa/pJX34rGWV/mZbOCvzW\nOAMF64GuHSd0XwMEpZeXztj+2zgu/z5Zk202W/LPxhifHWhPML2rvxsvS/fLrp4/ddE1e5XEUHOr\ncyFURiPygp7PvnB0ChIvKT37nt6bor3lNPvQCH52LH2etrW38mbaKyauyWYB9FsuoffX1uRfoxPu\nG2p8kqArUlEQjUBSRpzemIB0uawkQYd0Ge/olN9X0wXiR3ofTPTcrMl3JUuas1kaPi2yt4qBvOd5\nk12tJyn2HJmI5ni3rf7f/cqdb7eldX9o9WuPWTevd+7uyUaeuimbzD/Qs4ZRjVWlIH82OZfOIg3N\n94QjHbtzrUFOXGMzHenvYln3LYGg6U3ZF4M2zTb0nnpB64WbkC34UY35aEn3l9iDdO/IJg+ONQYP\nz+Xvtk7U18g1zYVB20FH8suZhva/pYF01+nJNqtZ2erKju7PrMhvOXdkA2WZmM2IFwyOQaxvaX2J\nslcZsC32GSt/qLHKTT5A7v1xEiJlQgkllFBCCSWUUEIJJZRQQgkllFAegTxSpEwxgKuFiPxoTnat\nQ/h1qIjZ6EyRrDxImPKSIl/xZWXZN1YVHey7ZCoDRcISnJMOBpzpz8MRMFbEKpIhAkh2P7eiKGRt\nzlnbZc7+Hup555zT73UV8es+4Fx3WVmxjeviPdm4pQjf9e2r+rshlEJ/n7PPEUUUkwTw37r/dTMz\nu/8FPaf4HOcd24rkVW49aWYfZLka18RT8tz3KWu1cktn88ZEb3delB7vfUHXzx9MbZhT/K1EZLV0\nRbobwUVy7CnbkTum7y1lb07e07m4aU99WKrBL7GjZw896XhMBsCHz2JGFiXSls6GIECsJJ1fVvyk\n2tMmi3a0J5uImfqYh8Nm71z/j3Dmdb5KhmAKYmcE389QYxd1lXWJdzWG995SZN/fV5QY+g9zQUkN\nyWr7ID1KKUU7oz3Z1rCtTEGqyfs34Wogaur29N72ma7LRxWhP7+r/uw8sW1mZrv7iroOTmUcEXgt\nvCXOVcP9kJ+QPeJssd+UjRYfU8NPZ8p0uKbxHfnSe6ur9jsGqotM+WlTn/2p7isVNcfm6CfdJSLP\nOfcLV58TIvIN+DHOHkh/7V1QYGSzhi21O0aGvwQMbATqw8tIb+dT6cu/wAdcQsp5MpcpZTfSRT1r\nSps5dmw9bDMJ2mhS0X1LZMoSVThmXlekSbZ/mAAAIABJREFUPRmRLmr1a2Zm1t3UfEzHZZOHF/Dm\nGJk1jzGogYTJCc10NpFOPOanD1fWjPPOmbyyU43ightGfqcc03vK1za4X/4peqxIfnukbHZixtze\nUBa9NAcxOAEByBhHyCBPmmpPKU72jOx9MFImYA7yyI1KfwtunAD0Vzcrm0138U819WtpRaiyjR35\nijd/R+flfR/uL/xrjrnjwP9hzM0stpRdIotP9t2BJypeIfsewE8y/3AZ7g7cDQM4LLJLZEYLZHLJ\nIp6RTSunOHscX3AikPFPsn4s6f8F2jGBy2EGKsXqmgMLjohUVPYx4vz3yJEPqMELcpTo29E78mPt\nkfzEC9+te/uBfPxKTDo/GIIY6cgGex3OmjsawwVPmtcguxuU6Iuuyy78COe7szx3mtf1jqlPT37P\nd5mZ2ZVPfsTMzD7zD8SVEF/als4Yi+FMmc+kr+f6Qz1vSaZgEVKqrRO19+yUrHkFvxDT2GdAH5Bk\nsyj+N8Df77//VTMz68Y0qSs3ZUtX6spS5eF5m7e0lg46Hw5NFYDkWdlQwxNl+akbj2stv76pfp5+\nU+2I7Ik7JhGX7eQaau+rP/LDZma2+X2v6vpzjcfdrwiFFoCyyifgNTmXX/YvNLfG52r3xop8WuMp\njV8uIxtsgYSC7sIcbNTMbJot2jwDb8vjum+5Ih8ynWluzff1/vGZbDUCSm4KUnLvVOv+Rz6lbOSz\nf+VFvb+g53b29OLJQ703INvowPe0+YT2KKWVNTM4mvqgls778l/N9zRGAcjF5WvaP62vyPZWQB4X\nPem22WnRB7X1bKCx2nha6KWVa8+Ymdk/+c1fNjOze0P5l5/+y/+OmZndela24cEdNm3CYRD9AGV0\nKYnTLjhUBqDP3HO1swWfzoP3tKcag5KtXSNDmpKNjzu6/hBuxC5o3rIPAhIOr0FPz49CYzR8Tzru\ng7QpgIpw68zFr37DzMwO7kq/J3v4s5ugKG7J5tJkti2vdlUd+bOeL71N4Q8MQGiuP6HvVwP50fM9\nfX92Gw61nq5/+BWQlNt6z+Zj2/o7q7mfiLKHHKg9x31xMgwPpbf+icYlNkdfVa2jxar07ic1jpus\nJ2ug7haokAW3jgfqrgeKwcwskXatjW+4+77W+da65kblmuyoGAHtzTqx4ESK2+WRMrl1tfX8W+Im\nzLG2PfOTHzMzs8df1p5iY5n91JtCxpUa6puBgtrZ0vVPffJ5fZ9U23rs91IHeq7viT+ptKU1ZXag\ndWB3gZZPSoc95lqLeV8uaJ05OpPOl1a3zcxsiGOJjTUGLnuG3bbe6wBf3T3Q8wcgYvLHi3VGc/X6\nC6+YmdkP7Xy/3vPGrpmZLae1niVASObLGvsnykIQjeR2bDSRPmrsIzMNkP5brB+gVmcgXLxAYz41\nXRcpSj/L6/LjVQcuLRAoSxvSyyB/zvdwa7XV/zboiTjrWq4h/RrIo7mjubcp12UHww+Hc4hiq0X4\n8jIG6iQh276YSI8eyKU5e49sRO+dxEC3gSyaVzSOkbauz8XU7hk8Sh6/l6KsA5uPP/vttjz/4x+3\n+nNbdvD+63q26RltOBOPp5q/1TU4sOBw6l+Akgy0r2lxKsKrsp+DM2a+Av9dnnmcAHXPb6tYDW5X\nfpu4VdZu0E5d2hEpaw0+Pwc5fsHJFjhYP/rij5qZWekGnK/scdyErvN8tb8U1fyesjdZgts1m9Za\nn0lprg07nHjpEldIyz+78NwV1zWXfXif9id6T4s1dbOq9kYX8YgKyMDvICFSJpRQQgkllFBCCSWU\nUEIJJZRQQgnlEcgjRcqcg9LoHcHUDd+FS4UII9KdWlUGeG1JXA6FHUWeAqKK5xNY2EFljH1F+KYt\nRaSCRTWMoSJZfoXMCFWKUlXOSXIGLFNRxC1HlaXIkq7bJqo9v1DkvQuD+cBRpK1zpMzwMKVsWL6q\nCFqyokhi1OE8KJH7wiuKcr64LcRLu6V+JPMLJA9QmqnO/Z3fV9T2vK3MQoEKFAvW+3hcUeBuRkib\nyItqf/EJ39Lo+BTdRMh+1IkmrpAd8KaKXnrw4iSv6h0pKs94UUX7TuOKLJc9OExAB+QnMFznyHYX\n4UbISwdu5PLZBjOzCNknj6o9Zc4/Z8kYzqmOkT1Wuxr/N3vv8ixJmpb5ve4e7nG/R5xr5smTmZVZ\n1VXV1dXddDcXg4bR9IxAg8SYAQsWMhnGnh1m/A2YscCMjWQmGQuZbGQ9MhNoZIIBxAwwNHQ3TXVX\nVVdW5eVknjz3uN89wsNDi+fnlYDRzclVLuTf5uTJE+HxXd7vEt/zvM+zrfa45HUnWgdFbpIDEMj1\nA26Sz/X+UgaHrF3d4A+59R2Qe7qJdDuax9UpNHJhu2jSEBMNXKeCPggIsel3iNFj9Ucjj6PYWrFc\n9hUrtZXQm2ehxqexUAyPBlB3rnge7INwnNglqX4VT/18jh6IiyNMBhRqDlurhO6K21WMbM0Vawva\nHYJG+mgPONzQ20Ix6z9R/XyUxadD9XeE81AO54wKeZwbVO4nVziI5UGhTsgfBQ2bZrnFnl8f4Q6x\ngJmP0WPABa0E08Fwm9hwgx/CIHFwoJlsaQzu3BJiNkJLJOerb4KqxrSBc1bnfY3RZgi6QVtHOCYE\nsAwcPj6fg30WayyGU32uP1UMnHXVZ9VdjaGLQ8ISNyAn1u+7n1Nfb78m7YQn/4fGjGXFcjAJozxz\nkNBYCzSz4kZ/vwWjJeCNV7DJluhE5dBv8mLYYBnNLadOzu9C9YhxUrvE8WERqF9ef03r2WfI+X32\nXBVowpLzEi0w9DPy1DsGpTq7wMFsque2QBqWkeZUDtuO0RQRnWuWIrnAI1z0xrC9NokzUKDY83ET\nWDGH4nMcHJI5W9XnT/Pon6w10PMz9DtqmqObqV6342iuznhuFdZY0dHvV2hrDDsd89Eq6U2lJfJk\nIKbER++JkdFGI2pUEqq73ogxsylrrNquxmgbXR5bsTegGbasKaYmcYHOQFMA954+6Pef/Jc/0/Pf\nEsL44//2X5iZ2ef/8qtmZlbGMevJd2DGuDDzBjjqeIrNJs45WyUcyHDzWJDXvbzCBTAm/3zG+sB6\nbGip3DxQDLxRUX0GDcVgb0v1j1l/h2foSCSuQPbD87f/cXn9vp5/5ihWnQ+FJBvtm39Psbl6ImS7\nlZh6oJvRhlGzf0saEH10Pb6Fy0V0rLWpVTs0M7PiNNGrQ4eEvHMfNLJ9U2vQAi22EVpmYaJrwlzI\nlouftqEc7Fo3p/pu31R9vDk6IzhIOJ1k7dDrYrTQ8mXFz+2f1P76U7/282Zm1vyszmDf/ZP/qM8/\n0us7MG7M5RyBY53LWWQxW1k3cceEFTlkYXJqamsLB5hKQzHps04ue9ojTs9gIjJvczDMajt6bv1N\nzYUPjrTOvHeqdfpLv6pYfeenta73HmgsVzNQ5wvN7wI6DtctG8Z0TrvmFzBFYKFeHMPahRF48K7O\nky4ofxn9owUaW5VYfZXLaS4EMLlzxh6MBsoM3aKnT47MzGx5jk5THe0zntPtwhR1Vc/dn9E6/NpX\nFJPxPmc1tBU/ZURGnDnQwmrdgZ0AYr5h73dZv72EcbMNw+dYMbmcw7piv3xyiZbbgdaYDY6WefSQ\nxkt0MtD7K98DYW/o735T/RYn7lDobVUbnGFgf8/Yh+acVacxzET3haaMX8ja/uu4nKLTtRrqvD59\nDxfAos6AwaHiZodJPqhcn70bo0OWRavlVgvnr7bO5iP2lNuwSm+0tacPL3DomsA8w2nq8QO1YTBT\nDKwH6svqruZCFvfKYhF2LOz86TPVuQaLaC+jttz/b8S8KaGr9t3vfFttR2cuw5mnuKX6Vnz9fBpI\n/yk7VN9GF2ICFZo4Poba0ytomByU9fP1QzEZKx0Y1xdq1zhhoAw0lg+/Lcb6GF2lDK6fa1ftGZ+o\n39Y4cQValiwLWzjIoQeHxso40vs2MI+WsKo7lzDD59pXoz6xzL414zw74vvS9n3O53VRYuaclycr\nxdrxSP0xHHDYumbJER+Xp5rL2xXFenYX9ghnBBcG+WipvyfuiPOJ6l2N9PlhT7+P1+q3DGc+Fwbs\nmLjrIOg3bb1Y+y4mC3vvz9+zKevOdk3rShlWfqaLBpWjTh/hsBjsaa8cbXCCwsmrwXeJUU6fGbDO\nR3xXTJxjV2W+Rx/r9Zm8zgizqdabAnpAhn7eTl594JGp4qPZmOyF7l3O+7hHjWhrvYb7Kucwh5+X\nPb3OR580xHZufcZ3HjTRdsg2QfrKpi46b3uKsQ7ZCWt0hvKwYMd8B5wV0Byb//B1JGXKpCUtaUlL\nWtKSlrSkJS1pSUta0pKWtLyC8kqZMhEe6qsZOb6XINTkQzff1K1kZVv5yXFBN2udUaLeLqRjQx5f\niANPDNI8IzE9BHX3lnr9qq8buXZLN2fzProZG9CqxEyEm7ACN4bzCroeIKPOlRDOzBR9Dfzde+SH\nj8jN3cro5j1PTuwcLZt4TzeIja8qX78VCXFZnqt90yVI+Vr1rKEpMUHFv1zWjeYqj0YBbk9zbgxz\nIBJRHNh6WzfIRW47l6ALyxVONTdgAdEHEW5K+yCSkxFoEGrnZZC3cQV3CpyqlrgN5UA1zCcnNVCf\nTDYvUIvrFBfnnB3Q/2GWseyC7pzrBrk/wzUINH14rL7f3lU9Li/0uhJ9FT9WzrxPe7bJFx5UFIu5\ngT6n4qmvs+gdRTHaBzBTPPRCpjjuZAOcI1whuznU8g2dop2IXFcnuS3W69eo09tE7SjC+lrM0dB5\nQnv5HGvjXoRWTQ1V9g3aO1lyihM0frbPbTDsiIYLMo57iIMeRrWHcwF5mEbubTzS6yvc7M9w62jD\nIBp9JCT48u/+0szMMqjQlw7UnzEq8NPnykGu5oTedfuK4c1Y7d5GoyJaXB+VugBRXecSzRitH4Wc\n5m1AzCxBXdwJKAJjMxqpry7VRLv1Gg4rzNuL76ttM/J+vUSPI4veD85RWbREJmX1+ZPHQj8Srawt\nnAk8YtADTc57oPuYbAQtxgxU3QNRPntI333uS2Zm9sWfkM7DAjQtm8EJ5Vh9GoOeFNEKcEFE+6yT\nefKtJ2i7tCo4fKHJE0FWcCq4euAIEKKPEYM6+VPFyHkP7Zoz2Fx59DBuCcVv+kIUTi+FrvnoT4Q9\nUPce6/WE3OMtWGWgbVXDJSkgnxsnsOsWZ6zPa+2rHv1PIQnNmXKBtaGm/mzHet3HE7VvthQTaP5I\n41mGebnMa67nyXkOQ60lNVC0MKs560dCXBLnnnPsni6P9Py3vvKuvfZ56DyRmGO7tzUmhaJi69mR\n/r66ZH6ALhvI2BD3srVLHxoaWRUQyj7537DHPBfGyVxjdHQpt4sxaP+qp5j71v/9f5mZ2Z/9hz9U\nXfeFuvue2l7ckOuP86GDjs7mRPoN0wraI210KRboe1RwaqGP8jP1XV1daznOBiN0lo7YE6foZTx5\nrvbHoOQ15oIL0jkovlyMuLDezv9UyPHA0dy8f1NIdjxWfyYaA7mc+s84G1TbQtfnPs443xUbuPQA\nZmBBZ5kSAiHn9Pdsrf6pohuSr2s8VlWNW8TcqxRgw+IYFJTQIIB1YGa2rlXsRh1NH7TLeiONo4Oe\nioc7Ynajddnd01qwj26W94bOXg4OFU//89+ZmdnjPxRSX5ygf+UIQc/fxFmsonGdsqZ4hbp5m8Ta\nBFYqaHcEadYt4JS1ZF1GU8WewRoC5S7hcNhj3YwCNKa2FXvH7x+Zmdneoerypc+pr9c4piw76oOA\nWF+hZRVmXs4xZYyLkYH0Rh3YtGiL1bf0+cWG+iKzzXkPLYIOZ4waTMQNuhB+EYbiloLfYx3cust6\nDFupewQ6DwuuD+PbRXfDfJxY3pEWYemL6q8Q9lXo4G4aacMpoJHmDRLNK/30CqrP9h10K2CCjs5h\nAhnuJSEugeiMDGecm2HBdXDLCtG58GuJThbOnUzRRU71c8p63rrGWamRaFYoptwy+8ZMc3EBwz6P\nO+Jik7D3QNKbL8Y3uJkx555i+y7tcnBY6z5WP/RxH1ygY5VfoXGxff04efShdDk++Nafq844Fb73\nDWm/hEW15bUWYiQwFvJz9DqmMM3pi01XMVzIcmaB9lmM0dDa0joaopd3Z4+9uXpoZmZNtFeeDNVX\nfbQis4lOD06ImxKOYd/Xfzz6Y+o/1Zgnmls/9z/8jJmZffbwJ83MzOEsNbvAZfORYtbFxfToSH08\nhknv8h0ugsXg8J3mCqfFzBJNSL4rTfjcTKDYL7HPBDPF0pjzdAjrIb7Q/0dF9Vv/Q/1/YVdMyAOY\nmy7aLYu6xr6yLU0bjrn28Ufa812cOi/Rmzt7zPeEIjohS8V4Bd3P65ZwADMURv8MDRifLJAN+4wL\n29pYS+cbXAs9NCIXipfZUGuRy7k8bm3RHs2hGBZ0HrbZvXe2P63L1ptNq0YbW+dw9OMMsNyC2bjU\neajYFPtymWSa8L18BltpU0oYeHpufoBmoQ9bFpfgwRqGDd8lFrD3C2i9zNCCzVZwHGS9WIxgvMBU\nD56iedhRfXNo3WyhueWj4dLE6XHGurriO1mcPJfvrANYUBFzxkHnLYZpP0ZTy0UT98Y9tT/mvOfj\njNbn3H0O+7hdwaH3n8kWSZkyaUlLWtKSlrSkJS1pSUta0pKWtKQlLa+gvFKmTMZBw4Bc4WL70MzM\n8ju6GSs3QWhJ4oof6WeQ+H+jnxF7CYKt28J1rBt0b0iuKrexcUnNbePM4+BB7+b1nOyA93PDHqPl\nMHuum7hVoBu1Mm4gfhY0cF/13NSVd7gCWY5B1HMjUMECLJIqriG+XneM5k2Em8tkgQbDWDeTXgZU\nlJy4VlG3sfk2KBpOFLmF6rsh53fDVaU7NItj3INqKPWXdFs4RV8jN8T5qoxzCzfR5+h1ZArcXE/R\nu6jrRjZTxHkEZkQeRC9aqc55ELlNXe8vD1/ODSPjqs0BGicLcuErWwqCInl+TXQv3n5D6NijB0dm\nZlaHEdLBVWiOk8xipRvmALaAmwUlgvmSLwkhjWFzBX3d6vo18t1hNSU31RaQ04nmjBuSRwm6PwUl\nGp/p1nX3Ps4JRf0/ZhdWBiLeQevFmYAsZPT8/Vv6PYPbRwZdFJdb2CEx4KJcHpHf7fYUI15EXv1c\n7fBxJIvJ6Q0TIZJVko+t2F2B1NfR0RiTP+qB6Hhc/tbJJc7m9P95EO4Vz224ipfXbqk/l9vcOk8T\nxEPPz5WwbblGKeMI5pM/izyCXY702RuQ14MajlMwInxi1siZXZyAIjtYv+zpZv/qsVyOMhuhLKTi\nWx89CA/0KQOSmwCWR6fSgprD/tk+0LoWDmCVkRccMmY+feaOgQ5d9IBcXDXONFZP8kKtMzUxeW5t\nw+i5UhB5S43dGLkOL4LdtNSY9TqwCnCLOj5WezMwBwu7aBOgtr8BvgqqoDegdR555S5ISbaEtlaE\nzsVS+eHBGXnS+7jgwbLbkDceZLGQAexvtBRzMXMxMLQolqpfyWXbcl5uLYkO9b4eLkvzCaw9bPDG\naCmUB4qT+ttiTH3ljtaUNrnMzy+EuD/rkN+fV71yHtoLY/LT1xqvii9EeT7W792Zxrmw1lw4eFus\nsTfe+lGLPK0Pj/9E7j4N1o+DO9LHaBdxmwMlOr/QM5fkQZdwNiis1Kb8QnVm6C0m135NTPZwFHT7\n+v3dLwoB3fuCNAB+/uf/jZmZfev/kZbIW2U9j2XDZjPcIdDSWjE5srgqFUs4IKCxNYDFFcLkybFX\nz3E68PKKxavnsKYyWmcLsNDGxOByo7nUQLPGQVvHK6tibR90m33tuuXsqfbe01Ox4976spDTxq7G\n+OJUunF+CZZUW3M5nGosM2jeOLC/ckjSlGCQNtyEHabPiVmfW7AHKrvEfsIo5Qzh1bUeZnJaMzIL\nGK3kxZdKL/C1bBhbOQd7AQbr5QMh2NsB6B86JQuYmonzZOmOYnOBBtizP/oLMzObfqQ52kQPaV2A\nJVHjjIW+3TRWHJWbnOl2XZs/01ifMRaRD4MBzYHEQy1hljRzuLHx99kAtLuP5kwXRkRb604ZF7kG\nzlHvcsbJo23gPkWrYKPX1eizQkXzdBLU7WVKEaeXHDpCM5gxeWI6hiW1noLEZtAsxN1vj89d4Xhm\nMDAHmeQchzMWz+uzV2dxWVq+JnTbgb0cw9gZwQbu4+JX29HrnXXiJoS2D6yuSvvuP+iPeVFrTwOs\ntp4d0GKY4LCr+8y51UzPWTH2MdoOlSUMJJihdbaziPaM0GiwSK/PZtGMyKBn0oaFhezVkv27ChM9\nA9O0xj5U8DT3M1BuMEWxTUGxPPVeuGtlD/dtiu7UAHbEXk0aa1u4sH7C+XlM3EUjvn80C3bdcvdH\nxXTcaqFlyLnnCCbzsqv1cjJDM2WsuhYjmC+wwNaJw9cZrkIwz92+xur7OH0le+/pU63H9cQZZ6Tn\n1Mti8FXQtZhMFGNr9HyWMK2bS7WxFoqJuGAd6sAauvhQmjLf+yu9fvst9eEXb35ef4e5WZ1x7seV\n7Wqh9XzvM9Kby91Qu5dona08tAR99fVyA4uM7z4V9I5KLpqH9MuCddbjjDLtMgdgvrdvoHFVgMF5\nASuafp+gNzSkn3Z3dGbbv6v2lNEAiqaclZ7pfSvqM/ZZp2H4BC5nmWuW6r7Go5zTnM7gxjRFT898\nHDNzMEjzaGXiMOyuOPOyXucSTaEJjHOyPTZz5izr/dTn+WgXmZl5wdoqzaZ5M41V9kAsrhDmW8VR\nX45PmA/oQuYLiVucnlOBMTPBXSlEv9RJ9EcnirEY5rq/0JhezBXLM2J8w3efGQzLy6764o3PwKTj\n+7lHNkWd871PtsIk1PNc9vSzDoxANF3q6KOus3pfEefGakHPb1fE9HbK+vtzB3dkvtudlHAgxFnN\nT857RX1OnbNYs6V+yMBWnqLz+YNKypRJS1rSkpa0pCUtaUlLWtKSlrSkJS1peQXllTJlEocED6Qh\nU9TNUoXbwouZbl2DMYj3ErV7HBkCkOoMaN8lfuM+TjteWzdWVXzNPbQJiqBP3aZurrKDRNuGnNc4\nuV3kxi8rNK8CCpQr48LhwUaI0ftYChZbXujvIU4GHkjFCgTcR4uii4PFhJvIbFM/b9yUd3zQI8cY\n56ERTkGXGyEYoS6FLQBRn4GQ5MhD9IEawtixHOhCiJvPpps8S23zV2iADFHChoFS5lnLjG7ywxKM\nGJgpRh645bjx/hTExlu+r7HLcBvqcXt43RLhTBMuhE5H6PXMM7rNfDrQre7RhXJ1tz/W/x890O+1\n4hdVPRg9NTRklltCDlplxdj5c41VpqSf87BBQxRTG25jk581bkUHU/IJu7pFXYFw+G8K2cyi4RJC\ndtok+dHcrm5X1J8Pz8RyqJSEyvdKaLlMFVvlu5ojPR8doUvltkbETLum8bnE/ag+RyNno1vieUH9\nHjjkLrsKnkJLMTK40jhFM3RZ0B+p59WeLnOwCLMoB0Legu3RYlyf1RQXLVgmhgZP6zN6XbGcxJXq\nMSygk4Q+lM1xIAKBvU6Zk5/cwW0iWyGn9VKxeTFAP+GekMFsVmNWRwNgA4IXuCCnoDzFqdDlAJ2i\ngLGb9bVOuLCwkr7NjFFfD9SnO4dC2Zcw9bKJfgcso8spufBlEAVyXeOafuZhIS3QPig19HvvAk0T\nTy5sQzRojj+QPoUDuylGFykGXTeYOA1y8kvboEiXyhu/hElYB6m+glHSJCd3CVvu+IHmYhNWQKUK\nWo6rlAeryvWIAdCdJejSYkqMkR+9YH2sgeLXWcd6bE89kIkyKNSU9dLFGeG6pb0A6R1oXGtr3Db2\nNT5t+uuqK32nv/0j1XOMfse7X5OWTw5XEBurHs9GmouFONlf9P/VANZYiIsI+il+lOTL6/cj9Fce\nPTuzp3/w/5qZ2Z/+0f+on/9Bz/jxn/lXavM9tGACIbFIgFjvqZBTpwATArpYoiHlooHl4Ko3WqsO\ni4Q9cE91HHbIbWe9+vM/kEbUN//w99UHP6a9qVnUmB/BZrIs2iQrrb/ulLxwcJ/KDRiAPbW5y5w4\nX+nzJzgXlNCQqaAL1aqjhVbV81oB+e4GG4G5GUFPW8WaWwmzZvGSeiHrkeZW5aYYQQdfUD8HfbGi\nFiPc4tpyiBgOVe/yvn53K1qnr040R5ZdEN4czkHoCAU4Sw6Lirl91vE5uh3maM5ld9TeGszH3pAY\nK6jfwxx6H4sXeeqN7Yw1tzXXgw5sBFw3ijB85mgzuGgQNQ/Qt8qhkcCaOoaJWcPVK9sWehijdeEy\nHqdoGnl+4mSJS9RgbqO19opohbskCGUexnAWBrHPXts51h5Wq/5DvaD1CUhqVW3epi0eTGljT97Z\nUWw0ljBm0Alq5cQoLOG88vxSz40KCSPkeqWSV8wuYXc2yqyzoNLeSmyITF7Pd2+oHo0DnHKqOhsE\nscasgLPhmD095oxWO9A6Pq9qrM8uFHtZEOfNSjFaaShmezMWAwdmN5qGVoVJ48OaIMZyQeIOoudH\nIYg3GmyPLhTbo5ref3mm/aoGAt54TfvbBH2KsCjWgJ/Rc6YD1oQmrqOst2UYRpGh7QNLI6Bfwyxz\ngLNnifP+aoQTzURnrT5abSuYMH6iGbfUc3ro0jnBC2R6kndtfROtiUvYFTncGN/QGTXRdRmh4zEz\nvX8/f3327nZRfftgpD3ZQy+nfVd9Ft/RHpcvaIw36LkVEHfp4CBVR+DyqeFQyzm9OoMJUcDhKzkH\nosuxRPcyQ5UnuHYmzjmbsub1Kg8TGgbJdx/JjahAfd75snTrWnsaq6cf6oGrES6BD/TTua3nfeaW\n2BVP+Y61hY5ch/VwPVIMbajYfKUYidAUKyxxifPU/iXt3GEfW/D1ITPW2HqsESV0P5vvah3uPdcc\n9D2930vYW1PN9faOGDDvvq32HT3UWeoTtBin39MZoQdjJQuLrwwLwt1WzHhNrSkZNFxmL4gn1ypz\n2Mpr2NrZTaJPqOcPcGLzYFotoRVX7iAMAAAgAElEQVQWiYMR34Hzef0+7DMXWa/9odYS7ybOZ59o\nLX72ntjf8foFi+zi4Yll6iUbLbUO7eBE2+lojBJ3ogY6RJtIsVfGjXPt4SLJOc6Lyb5AQ4UtwfhK\nYwHrnMv36CpsKTfASRDNwRzn8hzZG4kjV4b6NGH6RQ09r4eGbAF3vJg5stfk3OUl+jz6cdlDqyrQ\nOnj1THNtdoAuE9qCg45iooCbcj6AHQu7v4UQ0XwFQxKGeobskuyKjJ3wh7N3U6ZMWtKSlrSkJS1p\nSUta0pKWtKQlLWlJyysor5QpU7t3aGZmd9/BiQXV5SGq+zaEDdDjxsvR1Va4EmKSQYE6gqVRxwkh\nquK6wm3hrM+N+lrvO+qQ70ieZI6c32wk1GeB/gYX7pZH0fzc8JJv6/mTnn73QCeLb4DgbFSPLDlu\n67wQ5fkERg06Ka+9qXbv7eqDul0pfQ9BhkI0MTwUy4slISMrEKcleaEDULcgcTUo6mZvXQTujCIb\ncFNfQMF+g9p3GTeguIBTCAinj4NVyA1tluvNiLZ6DkgluY4JWydhD9gNvOOzQjXOLo70vDH0nmuW\nzky6FL1LEEV0dUqO+rZUVj2c20IgSqiXtxPHrZnQm1lXTJRhKKQguxaCkfE0Bn4eR4SN+m7i6UZ9\nTO7mNK/b2SboUoRavOPjZFNSP60D3dCvyQ12YF31QPXXGb0uRCsin1UsrdF66JNebcTcFD2NaqB6\nuRON33CgW91br5NfHqs+/SMhHXtvK3e3/1TPjU7V7+sGubRQmlYr+snRuPpZzZFSICbRYKB+WMGE\nGcWJDkCiqI6jxEMhydZTTI5nQhy6XfVHlfzP8VTteXKs+jd2cCQiZ3c0hVGzuj4LIlrzWhDEagV9\nHPQsslNQmEyil4DODchdLqv/HzrEwC3NiQI6DYu82lTzVMdhEeSWttf5vAWo/QwWWX1bfXjWVx+c\n4zz1rKc5sX9TyGloGtOyq1jIoo0T5kE7MiC6qMQXN7AgWOf294RofAIrqYnGwikaBS5zYhnq58lz\njekdmIr7Nw71d7R2PFhtQQkXi5Lm3BD9jw++r7Gu7qhff+LG26ofTCCDCYMJkW0S9lhR63iG9h59\nojm53tb6WKhqvBqwKJAnshK6GCHoW6GMjoj3ctvX2ali0iefOtdEWwF06nmMG56P5hj7waNPhCr9\nuw//TzMz2/us5lx9W6jcBI2FGDeSsSPEKHxODjGueIvE0oE1pB3IxWD0d3p9qdA2v6Vc9p9767/T\nM1/Te+7VD83M7PRCe06voXnayN6kTayrvuo2D1iXEvYWTI1JrDrOWNebMB7Cqfp4/FBtna15/0qf\n548ZQ3QgZufEPvnjC9a7SV5tzbE3567QDgBZXTb1nNlmi3prXbu5p3rWWR8LIHiLhdq1DHHV62qO\ndsgXz7OfZdC98PNopsGWXRZfTlOmDgt2twpThX3t5FTsqQjWVAV3o/4joYg75N/Hoep9daJYu7Wl\n2F6dwtwJ1J4VLKoWunQO632GM44LWyDv0L9Yha2GuO5ltB5nmSt+8QWz0CnVbAmL6+whDE7WYctI\nP2PBeFRv6vPu/pTi5uKxNHPGnD0WE4SpYH1ACLWA/XVRShwp1P8Hb4KaghZGy6GtloqZFeeUXFFj\nVGQv8QzXivgf7inLHqwbNKqKsDqrWZyrWL+naMnkAr0vBxusjYvGfIiD18caq15P7ztDt8gOf7gb\nxj8u06U+p7FhX0CTZrTUmEfszZUDsYqqu9pfItD09ZHOtRvGbJlIlaBzMZyxro1wVoHIE05wpaK6\na7TG1vVE0wb2A3tohOZWwkjPwjRHTsoWzzgTPdUZq4BbyRjdjukFTjec9SIqejJU+0o39fzxudrt\njNi7b6s+seRHzF+g5xHCpoIBM8uiwcaZ0UGLp8YZdN2AETTSXD+70tyJcVm6lbj3ZWEzO6zDsORG\n56rnxRrtsV8w64xmtlvR/n4FSzwTovsCUwdDI/NgzT16rPW5Ur2+k9tf/+9iFn79f5P+209+TZ3e\n2NK618VBbEJdc13F5o22xiBbZi8Fjd9GQ3ELx5qTM8XGaqr3rRwx+rxIbW3f175w61AxeAxTpfdU\nE3jwvto8GCkGQvToevzc4kwRTrTXv/UvtW589Rd+3MzMLr+p5zz93nfMzKzzfcXABrej+EL1fl5X\n361gQzx4dmRmZrUcezFz3unA/PAUqxEMogzOPBt0PvNdYtvn/2usMzBrbrRZT3fV/quh+me7qnV4\nyrpbgEEzqSiGmq+JRR2jpxeeaD0bHWs/TKboBqeyVcKubukMFqOLV+y+3H4TTtH/ZM6t4kRvi88j\nYwGDTsv6sLXZZzy0hDJkYWTqfC/DIc6Ptcatl+ja4dJ3/0tyT8zBiDIz2//Cgd16rWidS/TN9hP9\nIRiM6IMuBrBrK+xpCzFIZmgjOjm0q2LGiIwQYw8PAvQos6rLkjlwhbtR1oN9y3qXOHRlOKdvMpwl\n+LK0nuv3j99XrA7RawvuKob9rcRZmO/P9GGe59fq7DOI1bZZX/2Wnj8jG8QtsL5wDh2O1ccuFKAo\n0voUwFLr8R3olMFz6Y/8IlFR+6dLypRJS1rSkpa0pCUtaUlLWtKSlrSkJS1peQXl1TJlYLa4sDhs\nmuS2kmOL7kQOj/qLp+RFkj+XbQvF8dGlyO6Shx6jU0Ge5DhBxFGLv8nrppe6Ybvsk2efReEcJL3c\n0m3iHOebzVI3ba/d0P+Hdw/NzCwgxy7PDdsCZGaGfscVOh3xOS4m3MiN/1To20OQ1THaBBWQ/z6M\nmdqYW1QcHIoF3TBmuWnc3sWlydFwBmhHzHm/LWObgoxNQU1muHU45AGuQRrziaI1mjBrh1zFIsjd\nWr+f9zVWDqh1EUQvm0t0gci3flO5m6X7qtPgPdTKr1nKTd1w7+yrrQ7K2Z2BbkUjWAPeWj/zOA68\n/q9/zMzMfPIQb0QaM4eb9Svat5jhXgQqvsE5KyIf0gd5iCZqV9jGMWasv09gQVTQLVqZ2BEeNKsN\n9QphY/nkTfZx0EpyUXsT/X1PF/w2qPJ55Mm7MITWwGYL8h99dDtmsW5tJyFo4zbOELDMHJhAqyfk\nrm6jPQESUUNn5AJdjCxo1hwWQW2uftpGU6bj4mxwhUvVKQ5EoHcxSHuuwO8k2y7I0z4oJ/meev6w\nT/77RrE/GFzfWcfLax3JmVCRswuYa7gpTLm5DmCHBTn0DlB5z+FS5mU1ge/iEGCsM04oJ5w1ubLI\nCtkGfYg568cZmlQXaD/d/wJzCnV6D4iyRN/t3tNN/hgF/FUP5y/6fM6cWqNyvyGGljjv5Oa4mcDm\nWjr63XM1Rhk/0UFi/YCdNbrSuviYMbl7W0HnxKrXMtI6tJgp1nzmPBIIdvtHpXtURvfjeR8XFB+t\nGtbr6gpkAbbEmPzxMjohYU4ISxO0ykcX5NkTfe4aNCq7B1OwRcfDHDRYe9ctrs+aBxOpxc9lR7Ha\nApFxDb2MpvrjtftCG7//ifqvQD58AS2MBszFVZVc57HWrOYeGhobPa9eVDyO+qr/0McFxMcFJBua\nl+gp3AUxLeo1m4ZeMzgjhk9xj2toT5qhz5CB4ZeZsMeUcbpiLCL+3wWlHj/V60e4pO21FGNv72k9\n22Vv+0x0ZGZmFZiJXWI9JtaW26DxicYW69lsB+0D1sGYHHcXFpbjgSYda108w3mwSAxWYKctYG5G\nGTStYCdtDBYX7IV4JdR/NSCmvOs7ppiZuQWNcWaodlTROOgPq8krzMwszMEMyurzVwbbKwuT5SoZ\nN+0HcYm1A1SvBmLbi+gP2AgByPhipfGYLHFNZO3yPc4aoIYj3BE3ub+H0HbMRnZkZmYejJcJzKMM\na0GpgQbFm6rfflVx9N4z9buHs+UO+fizQaIZw7ocq77FstawdQ5Wblv9Mh1rHN3e2qboJnicMdw6\nY+ewV+F8EtaJ7TwsIBhy3jg5F8JoJFbnMBMh7Zi/hQ7DA3126GoOPcNpqjBWTDTQfvF3dTY5Xb3c\nMdjf6PUVXNc8NP4msB1y9aRvYeXCABnhOmWw1+xSsTYxtAZxGSlFaJlMtOC6rINztLkM18BxRjFW\ngXkUwHDcXrEuD1lHOY+2cE7Ld9A+RL+kfQBr60D7QEBMP3MfmJlZoaX1rnlD7RnDhvXQhlmt2L9m\nOgNszdlXszCDQMpHuBnlEsevPC4s6F/Nn4h9cYQ2TS7U3BjhBpMLtEa8+SXtHxXYvTn2nc0MnSXG\n96c+/46e90DjYmZWXVfM48y1wfmsuH+L9sBWY66Wd+VA536kdg2m1z+TNL6gPeNX62KRfuVX/62Z\nmU2nsPFPNLYVWEFhHsbGvvq4yHo9NFhVDZ0X64eK2eJj/f7kQzFb5mhx9dD+a1yKGZOt6XPWsK5W\nsGgddDF8zhA30b8L2XcysF7dodj73qn6yrmvGKscat6/GYvZuYAZ0x/qczbseTbhrNLU2L3u6xy+\n5izjsa7HsM7657AOcG8NNommIftFBxaumm/Ljp47DsXwu3yi5xT4rjTJKOb8PfQ1cXc6O9PceP49\nacmUYa/GMOLDpmK4/brauRijyRbAMGyqf/wIt78G35PQJ71uqeI0uU50QJkTGdwKx2dH6gccgFaw\nwcswKkfsR5McbEPObC7feYOi9qUZrn+Zrs5cF2c9Pu/q07qEi6mNr0o2RPPwIKdY7JGZ0uBsn+PM\nnud7rOegmepq7Bcn+unBfM7DVh3wXSqfMPZyfPfiGmIHjdc562UGR8IQ5rWDLpChHVvkHN0t8N0v\n0JhVX9fvWwcauy5s/zGM+QUugMOLJKtBj62jy3k61vqzTxZIPNRzllfoXe7h+ox24CI5d3N+Ha6p\n/1S/1zzNuRVM90L7BTvpnyopUyYtaUlLWtKSlrSkJS1pSUta0pKWtKTlFZRXypRZeLpRO5vpJnt9\npRstL69bzuqMXN2Y3FZQQdfVDdS6ikozXu7Rihtw3FMmC9A60MOzx8lNOred5G86bRBOPN4zsBzu\nfEEIQb2ufMMpSPYAhGeNU0ypq5/ffSCUbnmp3LJWSTdsUw9EBWcLQ436Yqqbuth0W1mFRbBe4m8e\no5tSAOGBNbJwQClxuqmT07wCmRgM0Zgh73Kdy1gzQu0c9KlEXtx0AjIHirXhBnaJBsGGHM8AdGZO\n/m2uqLa5IKIOt56jBfl+qMfPs6r7IWiL9xYJu9csew3pLjg4AoRFjcHNonJcXU+3jkNfN/ohaukn\n5C/nJ+qrGroYxbyQwfOeYm4+Bs3PouzNbWfQS9yaYFE5itWcqzFYg7LYEGR7oZibzvX5DyfkRVZx\nvcIxplrS62doqhzjfrJA02GTU4yHsKem0DKWsdC/GKTYW6ABgV7HHM2f9oGQlLALs6muGIpx8nG3\ncV6o6Db3AoZLs6kY99dq9xjXLHePvPeNXt8b6vP6pv4N1rpNv/MVjVMJRCECDV0tdSO/IR99f6Fb\naId6ucyp3RtC5hdoIQynKKTbv7d/rjTI+eyDipdxWwAcsCoMEA9EzYVdVUm0pBjjOc5jKxhmDhoI\n+fahmZnFtCFDfnMGPaZ1BdbSBLeJDOgXDgEr2FiHe4o957liJYABFy+IlZX6ZuPTNyCrzlRzr0ys\ndImt6pjceXSGGqybUxzJIMWZE2jOtXBPqn3pLTMzm0zIdUW8JedqroQjmItzoXoFOnKAe9G794Wq\ndUG4T06O9NwtEBNA8xhXuggWQ2ekfvj8FxRrr4PWRR39/7iH+wW5vjkQy8w8yfX/hyy+QpAIMF2v\n1HFwcPIaNyQrLETrpeophsdroUlV2Aob2GFvfk399+Yb0qG6wOXEeY5bnxGzaJyVEmR7RMz31K4C\nzNBJT+N30ESjormwBs4wXda1cqSxvPpEe9gMJLJ653UzM4vXjNVKe05zqrGe4dIWJLobaLVswZAZ\nob9Rx8nmRqDPayV51Guh6WfnQhLXxF5ugftPVW37GPSoCNJXhsXkhorRQpzkvoOaM+dGOFKNiI08\nsZGr4BbU1n7RRiepAFsrJAd+gMuPN6NPIbLUY42tvY52zeTl2FTZDfocRRikOM2syacfwtScw2hx\nAs3V/ob9IScId4HWzRr0PnGd656Qb497R5zXnOuhg1Lz0QmBiZPHHXDNPjuF2Rhy1hkkbOLwRZ76\nRe/ScokWDXoAoxVaD7icuKCA5wP9/vgbGu/xY8VkDdTw+Ln+PvsYBhL6eDtv44yDM03ImuowBxIz\nvXjj2ew5OhfMh8IE1hMuZPOk6pBo3ZFi2U9y72EBAdjaGGhz09aescStM4adew7LMlcQoyIfae/c\nvokTzDFnFs5dlb2Xi5EK+nHzUBVeLNW3Mxgf7W3tiQ4M6znM76qDyyj70IUlGgoaowg3kgh9qBzO\nOyExeLvM3GQdnvXQxAGxzuCa58CGqs7Rc+pp7Sji0BOh2bBd4nV76pfMXP309BOxDlz6ccRzxgXO\nhDGuWDDS37qnfW1Sh74wgOUAa3qIlmLQU38l7qH3YBp1cYlaLtVfNVhcWy314zNcCe9/UftOe1tx\nc3UpvY/EzzNG7+PR9zh/b+vzMn9vmygEWZsxh13IZe5K/1iP1K4FmjXlpuLp8KbamaleXy+ktM+5\nFR2aJ5IwtE8uPjYzs9UcJglsgNVMfXv14ftmZjZDN2mGns5mjKYTekGnXVhSnOMC3J4KaBNifGUX\nfyoX0ojzaogsTp1z8N5dte1mLXFJQg+IObjhdevH+vz3Lv6zPu9Q63AThvmK2F+tk/0A7ZNIsb5E\nA2cAuyBxWdqQTRBTsQ2sr5wL+5fvej7fOy5gWFZgUbnlhFcAY48YCGBRZSKtAR2+EwYwd0otrWP5\nUDG/nHEOJ0tiisNm+8a7qg/n2AZaYj5zsMo+9ClDvPhyPIfEOO4M7bTtgvYvj+yPMUz5EmfYcsx+\nhHOlz/etmLNFD624GDZaBpetZN9NzgvPjnHZKr5ww+10pla679v4VLHURSfsnAyTFgy0Pq5mYQf9\ntZsaq1xEcPFdZJNoXK3Q1OqT1bCl9y9gkCzRO7rs6TmVNo5SOLjOVzBQYJpMQ8XIMs+6gUZW5ZZi\nYgVTLzkn5iKtdy7fjxN3tzU6RBtYxw6xjnyaza/UV9Wa+nSE9k32FGYjZ6bFAg1asg2K7Pmduiq2\nugmrFCZ2/tPvNv90SZkyaUlLWtKSlrSkJS1pSUta0pKWtKQlLa+gvFKmTMgNmNNBBZ18xyl5hNMS\nubswVyKQ1Zi89XUIW2GJ3sZIyEcfFkh1yfNDkJWRro8vXN1KZmrKoa1+Rjmltw6kYD5ccING7tl8\no5u+Wv7QzMyOv608ziWMFa+qG7XyGPV6lK5jbnOXsA5W3AT28ihjk9t6UEePpKj2BW3dlZVzep5P\n/uIG9K3JjWSiWr3M6ueaGzt/rb/nfXKIo8hCJPvnOaEH0xXuGE1ceFQlm6/RyRiQJ4yn+yLUZ3ug\nGxHuCiUUqSfkd7sFffa8j5vQN3QL+qQmpK1VejmmzLNzIQuDx9z4Rqr/czRy6mgtxOSdl5q67Qyg\nCeRgRZ1/JA2aWSBEML+v9x1mdVM8Qx3eRUfEr6hdy4H6yYcJ4yT5yAv1w5gczSUIRY0cznhLt7zl\nhdrbbUk/KI96voEw7JXIp66Tr03ecqVAzJWJfbReqjBnMhXcS07U7nVbr3fQL3n6ifqtXSI3eAIC\nC/uhBath4PB+HGdqaNXEIK9RVrEdm26p+55i+s49sR1KJf1eq+t1lxe6gc/CIhtxs1/Pos8SCE1L\n9AA26Lts4cKyyWhONerXX5oy5NuWMzhL4eLmELtJTOeKGrMQRO74XLFQXqnuTZxhOt9WrAxAp7Zy\nqtuyrr8XhpqX8UDPGcOcCYoakzfvgriBFpOGbLGXoCxCueanWo9qsBOiFvncORxYpuS0AuRuYJDs\ntPScra0vm5nZzZo0Xlpf1esvnwjV8XBZWsAASnR7ggxjAeI8syn9pzEvw1CJQQKCrGI4NxZr4vmV\nEMoIlKdFHnTiFOGj0bMAnW+yJiwSNllO7aji/PX0meaG+eq/DO5IThPUDLX9eUcfWG7qedn8y21f\nSe5vQiFaMfdXF6CLjH/NV4xWQHjqDVAnRMOen8pRY3aCuxJaXruufg99dKM6jC+6IC4oWtiH6YMO\n1BJXsNnSs+qe6vbGgdbuDXtXDPPQL4jlVN2R3sHzoWKpjutSwJjksL7K+WpzCceBTU5BWQcxm5Zh\ndNCVwzPpOgwd7ZFloDwfR4ULHEtc9D0C4GYHnQ2/BYOkC2MCJkXM/rP00YEYhdRbc7Kwpb9XS4lm\njFiks2niPKYxnyXOComzF3PEHaod/Sp7/lDtc1cvx4IIM7hMoUNlMxiHK9bPQO0N0XBYN9C9gOW1\nf0/1DNFs6+B6tI1DWcmO+STqmRPCW8Ipcs66iQyLhYtEhwRXxKL6eQaD1cO1oxy9QN/G7sKM5059\nNAS6mrPef60zTqGgGD8/1Xj3dnge7oOZDayHifaRs6Hqe5u4rLWkmXGWaBjA7isTZ0e4HrYWka1Y\nX9wNMQe0mSU2XZex4jw3g+3lgWzOuzCha5x7YLH2cFa5TUxn2FvWuOjFPlqEF5pnpXva+y4uxUbo\n40h4p/Ule5myQEcinqPPNIYpU8GRCmadN4e5uEIXif3AKybsYvXRDhqFbPF2+X7iWKPf/Rnr8676\naROq32JHMRHjGhctmTuwB9zn6r/VSPvcYgtNLRZub1fP3S1qnZ9cokeC/sjuv/zX+ny8Z775n/6L\n/u5oXe5NNRefP9bP/JZiINH4mTLXi8yRk7WeH6Ht4JYVi+ux6hHD7C7usg/AOIxwtMlWOFuiUTN/\nisNPrPe/+0WxpyfHWhP7R4r5S4PNbGZ7W1m7OltRP3S4VsmcTRwfNS5jGKnZbfQGf7hpyj8oJx+p\nrecPxeAOdlTHPGeAeIvBhvlSgI3wHD2OYoAjH3vUpJNoE2o+zzmXzWE6VJOvcldkB8zVB+c9/Qxh\nL+TQASpUdEaowEQZnaAJxh4Z+2pzxFmgBsttDsMlM1VnuHXGBCZL3Ie5DTvNcLrtw7Iqsu5FRcWU\nh6tfBpauwRT0GloDSmju5MpkLazRJ3FgGmY1Rlu4hYYdjd0k0RFc8FxcUKONnnsxVQw1OHPFhYTV\nq++Ei7X6Pxjoed42jpzo31nI9xHOcv4l36uuXm6/WcPQz8PKjru4JMXo6c2TsxiaOuvkfezbl3zn\n4wyRQ6tsVeL7TEXjOO2onkX0rt76orSA6nutT+vymYPb1vabFpcUY4WZ5i2JKOaiT5flPNbvJ5ki\nWk8Gl+rrFdovxQwap6wDmSrnWjSyMCOyEhorIYxuJ9IYz1hfF2RphI7W+yz7QhDo8yacCz9ijzt9\n+E09+L5YTqUM3+Fgp8V5jVUpmdfMpcP70qDaDhRbY7ItMnyHcV29/pJsiuI22lau5uCmqCyFJS7P\niftUsaRYH8y7fP6L9eifKilTJi1pSUta0pKWtKQlLWlJS1rSkpa0pOUVlFfKlJmMcW4hb3JCjmsR\nV5DQJT9+SzdZRVC6wRhWBh7vRn7fOPFsd3Wz1YdpE+zrpmrv80KP7uHlfgOl8wjl6mxZN+3VnhTP\nP/hYN2/lj4WojEEVNz3UpTM4MEwSNEv1HJ0pJ/cclOvGDd3Q1VAED9B2yGZRr+fmsVrT37PkmWby\naDoAsfRg7kQh/bbmFhQnjAVqz8WCbu4iENyFv/7Uy30ZJreOOBuE3OYl2iRRonugJo0ST3gUpech\nGiGX3HwX1Mbigd5QHwv5rG3pFtEp4exyqZvnUTdBI65XetyCjsZCe9YwMmrkquYyaqt/UzfZfuLC\nRD7kDJ2NPGyKOg4FU/KGz3piPbXI4XcruESRx+6XdINN6Fk20XLh781dxcztN9Xesa+YcnGgGaCR\nkl2IjbUhvzoP0lqvS59iNVf7Joxxf6h6Pr5IbnWFtCRovbdQDD4id/gA5NOD8TJ5pnHd/lFYWK5e\n2D1TLC8+1nj4kdrrQ8cIYQdcrVSfGxPd/o5gEK2SfPZAz5+cChF50kNDCFS0gKjAEs2HFSr/CQBd\nJ1YzZb3uMS4uwyvNvVzx0K5bZsnVMtonPuuHefqMxibRUdJYdrmh38cpJBn7SqLNRA67jzuFg8NJ\nearY9nn8FVokGbRBalnyqsnrDXA/qqFOX4lATMnt93GOyYGsJsL9MTfsywasKU/1C7yEQUfu7Knm\n4l88/Es1HyRyQ32XQK0xOlF5YnKIVooTw3YDtZoTOxEoXa6oMc8kOhSM0eJcMVkt4wKHPoafaOR4\nSb/p7yF6ID718yfoozAuFdhtHmjVmHzwgBxip6jfSzBWSjXy7d2X05QJcb+KHMa7pFhfvYZ7F7E3\nD9XeB3O0vvqaM1O0bWp51mH2p72G1iQMe6x0JqZVwWWdD2Af9tBl8WDUoJFTRdOodzmwEcy3Y/QM\nmokeBa4Q+T2tc5Ol+mbWVd/Q5TYl5z7bVB876HcEgcYsuNL7B7CZpqa2VHD8ysKM2QLwKxyiGeDB\ncFsytmX2zhloNPoOxaz2WAiM5vL6DohpyUv0PJiTnsYgnqqvz9A48Rxc7WBVhSX9fcMeu+lojuXY\nB6awBeKP0HwJxQCZbr3cEScPUmtosjhoK6yKoIRdtWeNVk8Zd8IBjjor9ny3KmT3yUOdBW5WpAEU\ngFxeDNH84exwWU0c4tQfFebqEmegmD1/A5ttCdMpV1a/Js4SZma9hz2z24rNOVoOVwuhn60vog12\nrn46+76YMJ/N/YiZmT1Gvy6E8RKDeq6xXtu7J1bHJVpqkwvVf/sn0A1gDR7NVR/f98yZwlBrqe0u\njigBTMZwAUNmrfWwvM0eDcMvwzq4HOJGBxo8SHRrslo/IhMbNxNwLoLpOPU0hrduHKov2qrPt7/1\nnuq+vGsvU0asq3V0L8bMxSVMRheHqizr1gado1kf9w0cseKVziReHkfEpfqsyF7rwRT85p//hZmZ\nNUFu1zATPVgXIZtqyCJQnii71ZMAACAASURBVGmsholjYlH/v70HM8QUG+FQ9bl4Hw0tGNi1Gq6e\na7XzAqaPsW7f+KoQ5YOFznZH3/yG2tNXe5YRDM2R9qdlQXOhh5PakDkzj9A8HBErIPFbdbGNTzjj\nRBnNtdMHWmMmnClubqsdnWea6yGuLbfe/ZyZmfVhSE0ujiwp001kHgzNPOyDs4HiIwvDvgarY3ys\nONnASqjArLlOOTw4NDOz13E3y99WH4wGevaQc9dyDGMl0nxezNR2bwmbljNIEY3AKVkC2zjNDK8U\nSwO0/HxcQyEb2O2yzm/xLuxSlsP8CqY359/VOnFlRaukpbFpJAz4kuq3habKlD16krB+F7AgVjBo\n0JbJtvS5NyttnqN2L9ArqtRwu1szhwuKgfNzjYmHY0+nypksq88f4zhZwDGr21MMjdGny8D4djZ6\n/exM+8m4q7lyicPOVkvtun1P5+QiOqMj1v8VrKoaDpjF5OyEDt8Udva8p/YXZhwur1mWkyTbAxZg\nUc/32JeX6JK4K3QSWTNXE9jJJb0+WKtfJ7DqlgEaMszBfKTfi7BAlj7susRK1Mx63bm5lbEtuvrM\nRVXzuMT30MWlzvq5tr7L1HA/ruQUY9E+bMss+molnRnCKuvakL0ro9hr8CVzOdb/N27yXWuCoyEM\ntj56blmyO5ZoNNIU25TUtkZN60HxQN+pCk3073ApriUOXDAVS+gMLWArrfievUA3c0lWwNRUvzxs\nLZYty6AJthnBPF+q/T7r3KwKa2vJOgYDcW1Qj35ASZkyaUlLWtKSlrSkJS1pSUta0pKWtKQlLa+g\nvFKmTHakW79OP8mPJr8RVfc8qvrFXfIBB7qpau3oRuviHG/4C+mWdFB9b8OayGRxQnB0Y7VCayW5\nVV58T8+ZgvpEvp6zVRHa53GDVy7oFtftoUZN/uAG//Qo0k3gJbfHM3J+AxBmf1e3sBgeWD5Uu2to\n5FhBN3jLyz7tSZAjIT8bXKQ8H3sCj1vnJewR2BsG2tm/AoUD7SqUNlbAWaoaqC6+D/qd5P+Cah9S\npS4WKgty89ewDnLcuJZQsM6hCVBE1ycTMIagQlW0B4p41mcaLxdyWzfFQCm8KzX7Gw0hCRGIa8IK\nmOISUcUFqhqCPNZwx0CnogBKl4VtEIAMjHG3WFzAIMG9xPdhb3E7OkXbwCNm8+gWffDXQtmPO5LZ\nj3HEmYK67HGbugFtquLA5eyr/h9/pPdtvauxPHxT7d0jt3YOitNCq+CyjyJ4ggzcRC8FF6ceDi97\nl/p7h1zf7bz+/2yoG/Rbd9Uvg5Xmwhy3l9WlXj9p007iY7JGlR8GTYLSubAqaiv1Z4L8TPdwMhih\nsp/kDHMbPcwqlqcfC8mYnqsewe3r3xcXa3q2k1Md17B4lrOEcaGYyRWISfSTKjhyAezZ8VBjPyfH\n3Suqzzd9tcnFtaJYwHmgRVtaitH+UPPz9LnQi3KAlsKeXu+hSVNmfXPIta3CiogT6LeE6xoIQDVx\nu8D5ZoIGymijPotwmMknN/4gkRs0XQxNmKyaazX6ZeKpHgnTKEue9Ab2WZDIaoB6Fyq4ddDPPk41\nMfnaM3L761nFaLGK1gK5x7tNxcz6GWyrM613O+Q1l2/q7+Oy5tL4RAOzySqGaiDHTh2Xphj3kWuW\n2rbWoinItjdUOyDOWPY1aRzsso4egoqtEfjwcGZI3Pc2I83dEBZBNdLfc2/ogWXGzeuq3uUs7LK2\n+iem4100Zw6agTmgSiHuC/WGPvs5MdX7RJpNwUR197YSFqbGYkBufnBGnUGZvC4oLzHsws7ZCcR4\niVnH87jMeQ6sTxyrZmijrPjdPqM2vPWj/8rMzC4fPlBf9mHEwSTMs/fdXaOPtNDPlSlWn4PWV3BE\nWTbVZxWcZrbZs5ewYENiz0D4pmgohLH+P8hoLtUDcujzLyEEYWbIx1n2kvULDZkCk6EEq8GmoIg4\nwUxg7Ubkwb/2rtgX3/rut83M7Nt/81dmZrbbVoxt31S/eGib9ROmD8/J8Ln5pSoUopUTJR+Pi92w\nC0ILk9LMLDMbWJ3Y6+Nss4YB426jB/LB98zM7PlD9ZPzszBcrjhTdNTev/mPYkH8p4HORq//3H+r\nz1/q87tz/XwzOXOh4TZ+KlS1td20/RZ1H6KHllebxwltMkHpY8XmyTGMO9M6kOFctcK5JZqwpyGE\nVIC5MkR/oXFLSO4C3SIPvY4Nbh+f+/yhnl/VOlmBDXbdEiSOjMzf1SBhuqm+xSt9frOmdp2NcI/C\nhW2noHXOYa7+1R//iZmZ+YmrFGzfL90TC9dva33MlrWPXMB6njns/Qa7dag1Ig/TxsWZy8HBbHqu\nz8vu4Np5U/XMDBXLn7JZcSP6+IO/UTsTsRv08HJoNCwyONWgg5R1E30hzcErtBWcGLcp5nLC7F6h\nlzdGM6hUgamKBlmxoM/9yZ/4N2Zm1h8pxiePpEHWPpCu1hK3k8VjMRTjHZhJaO5sztjgzax/OrML\ntOQaJY37DNZFvFG/RLhenQ1xvMRtq1Qt2HVL6Q4unUN9VudI6+dHXe1Z2YU0mRycIqdFmI3soSUc\nF0d5zgx5WJZYScWwXANcj7yC+q4U62fjXY3toCuG9BH7wcznO8Z3pIv2cKD95Cs//WN6n44yduOO\n+rCxK4bf5JHmvz8mtp6obyJT/UolvtxsqY/y0Ik3rAcL2A2THudvtBPHfHdJXE/jIesZVMss7NYc\nLLDlTPtTwNybVvkuh/Nlb6o5WJurHuMyzB0Htyfc/bZw0jScz+abhCGperSraP/ABPICxXofDaDY\nUQxm8vr/hO23hIF03RKyH65hT7swo/qcgxue5tw5bktr2HQ++/3ojO9BfZ1dx1PVo9niuQdqT7Oo\nM8nT70rj6OiRXn/n9o98WpfzD0+smPOt9aZiaA47s8ye1zG0SmGCj2H39A1dSsbab8OAhGEXoEM0\nDRJXJJzEcAleYL+X6en9PRiS2dfJVoD5HsGWmqBPmWN9KHNen6HTtLcjNmed74grL3Fi1Prrwirt\njfV5o1Ptucch37fzWm/rNxT7Q2KL5AobwqDZWqExM9C6k32udjoFtGM26r9ujzfyHdpFD+kHlZQp\nk5a0pCUtaUlLWtKSlrSkJS1pSUta0vIKyitlyjjcqLncdnogyBscF+K1brYWc91c5XCaWJG/uMly\nS4nK/oRcXZ9c3d0bQqOad3Rr/OZX5IBw8Z91yzs90g1YsYkaPa4bHg4SR8/ECug+l1q/d0med183\ng7t3QX6LulW+U1V37tz9rJmZDdBQKJJnuJ6QG+eQt0mu7BgNiQ038Q1Qw/pSt51hTf1iOPnYRv0S\nk+u3BIEwbga9DbmwaFiEm4yNV+R8ztVmH6ZLNFJbszhCrWAnRehmNDyQxjpuERP9Yc2N/Qg05PSh\nkIAJsPN2SQisNXUrWUarxHOvjzaYmcWBxjLEdeObT3VjP7lUW9sNdCnoi2AfFhGaOfNztAXQmCng\nFlIEiSyTozoDglxyU+6FOEJMGLssKvRrxUofN6L5Ei2VqW59d0uKBW9LP8s53Q7XYRXkNhrTQ9gT\nA1TXf6atG+s40YxApd5glMyJudK+boN3yHndasOeIKd2Sr2K5I2fH8MGWwihufsTis3u976l/++o\nnVGk3OKdbcW0wZCZgMg6LVT7Ud3PwhqYoHmwB3trXoXpktPrBseKl9hBL+CWXheTS30DVG22IwR5\n5f2UmZlltgnAf/c/2z9XQrSdtnh2HobY1VOhGdGp+rjXQfWc3PkpbguTU8VwDh0fB62SPLo3ExBJ\nwy3ksotjAG5nZdgArX21wapCIZKr9VVfcy6HO1GwBdoyVd+tUdovF9GJgNHh4N6xGKlPZx20CNCF\nshVuG45ickh9Jiv0Rwpo3GzUzvZNzaXttpiAXdw2uj2NRUDCuQNy7bJm5CPQOeYIkg7Wn6s/A2K1\ntC+YbR6jGQPbro5GVrBPPvkj9EUc/T6EJRCMYSUUtQ5Xv6D3ZVlXt97UmnI+E/q4qoLOXbM8fSAU\nbQ2jMvL0nKyHoxquVEfkw7d20YAgz72IY9oCR6EN2g5r8r3XK3QDTvS+bqhxz3hqn++pvpsT2Gjo\ndI1B30puZGFFMbDKgDL3NW92dkGZGhq7zHP0kch3PoV1UIbx0rqhOk30GJvUFQP5CboPrMPhEp02\ncs9dnAIL26wnx3qds1KfPEHzpfOekNY7byjWG7t63WqusZqTr338XM/dysNugDFYCNHggjWU2dHv\nu9vkW8OYOXso9Or0sRpSbaFpcqw5E8AOy6GxUgGF8vJCqsdFqKDXLDlcoiIH/Thch+JEIwGtlxF6\nHTlYrxVfn9t9rH30M7sapy99VQj0B++LmXJy+l31Q1+fU8b5xm+DQqLJkGg7DEIxkFwXvZCc9gfX\ngxlZxfXp7+ldrFdZs6Xqu+XBHCqLebk6Uf/HIMn7O9IFyZGgH6HRcKuiz3l+S85EX+T5Nz4rdsIT\n9uFpD4S/hb4eDpdDU1wUy/vmX8IiGus81byvuk+mOPvRBjtBl44tKGYdyKAB4tOWZ+8pFgZ9xdbs\nTJ85wyHyHpoHyyut/2XORdNznSG6aMHs3NF6ksm9HLpdy+MOhfNMH521+VifN79Sn6w5A/ig/HEO\nJ8J76vPRTAhrFbbaHerzIa5BU85ec1B+Fy3EEKaJQ0xk0Rm6GmtMyqD+zS3OHEhvXeLClAfhLtzQ\n+6ot7V9j2MSrC1ydJnpdAJO7eEt///7ffGBmZoO56u+D7Xb53A1MxIAz2YNTufZNZhqfIezjITqG\nEU6Qa463f/dYOkwPn6i+X+B8n7lCz2/K9wCQ9Q1Mw3O+H5RglHbR41rBfDczy4SRLfj74hAtMVxm\n4ozm7uwh+lWhzj6VtjQqyrnrn13/5t//mZmZnX4gx6oFTLfaDc2fACZgCdblGMZJFmaxVdC0GqsN\nVzjSji8VWxdDzunocE6/oXXlnL38zoXqPCzAkA5hsu9oLnZymjOrpeaEs9aYrnHtu3lfzo7tmmL4\n8TfVN9M+bj/s3ZuSxiDk3FnGSW1CFgHyGjaGNWwwPgdkRYxxurWh1serDmzmttbvBay0CgzJLLp/\nUUaxuJtX7G4ONHcO0LyaovlVh/UVr7T2tJuH+h3RndOP1P6E0fPpd6c+bD6cu5qsp+u1zhDOHBZI\nzHdJXKsc54VGy3VKtAfbD2b7grMl0pJWQo+vyRk0CjX+Ht9jAphGk7zqX4BdXUavdAKbd1NTXPRg\ng/c5k5a/9IKXMS0urLM9sHu31YfPHmg9u5s4q55orFpt2FBeohGj9zsz/b9fYi9ZaCzH04Rtz7zj\nO1R5jnNYBQfFXR4E+ydgfZs4nLc5hucinVlqaC1OXcW2u0h0LDU20wr6brD482106HAWrBdwaS4n\n+jpq925VMWUNxdTwWPX/22OxjNYcqrLv6Lx3Y6q5UEW/LkALZwFrrbAn1mwZ57AMWQQ/qKRMmbSk\nJS1pSUta0pKWtKQlLWlJS1rSkpZXUF4pUyZX1y1scwtnhz4IJDn8ToYc0yNy1ua67Vug45EBeW68\nLWil4L9pZmY1FMKdA5xncJSIeqj2d3RL2H/IrSg3cA8fC/2rkIcHOGZ50KwMTkMBZks76HMYCMas\njMsIjJdaj7zvGTf4KI/nyKk7P9atZWeiW+gCeYDZkBxg2Ag18jNzaE3M0HxIsLEVzhxLNHoW08Sl\niZw9c82H0bEqgaKD2uZAn8YD/f94Rd4b+YMOKE1Mo0ug4zE6PRscESLy5S6fgGJt1LbMTLecj/Ia\nw51bLXuZcrCv188+UVv2t4V6LLiRdt0kH1ro0cV7xAh5zEjc2D66FXalvz+ciRlSdKUXVKjg4oTu\nSLEMkwjWQc3FqeUE3Q2Q4ztvCpHYR+G7kU1ug8lLJsfVZWy6F8rhdY8UU8+G+r1QwoHmQvU7vtSY\nL0/Un1tltBO4KX/2TK4ZzT0hoLMkrxGXlJt3FPsnff1/Zqr6DWACXVH/gJzmJGZ2QOptpnZP0Cfa\nqqp/xmvNuUkB95QQbZuG+iVEh2mDvsqyo/rGaC8MQ26xO+ii+EIwHj88MjOzvQMh5nstoZ3XKTvk\n3OdqGrP+A33m4Jk+K2/qey8Cld7o5nveg4WEVoGL7kIGVtVzNA62M7hHzDWH3BLoe0gbTsQSW4NW\nVJkL5aZidVbXTX4F8s8i1NxwYAm4LuucBwUFhO58rHVqcg6KBjrkJIxCWA6XtCNiXSnj9rYGAYyY\nuw8+EmJZP9b/L2GaNLUM2wTII4OOhY8WQ4CDWWbG2MOkaaJVEFUTfSZyezOqz96WYvqdz8utwwu1\n1vTPhcrlfcXUMQ43n+CuUWnAIigJCSnts9bUcFQAodnyfjji8I/LDnNoAAtuP4bBY7D+QGQ80MXp\nheq1xLnsYp24doAcgXKuYD46rLFBAGpFv7Zges5AbjegbpuyntOoglwPfeuDAnVOhHrPNzjxVbBX\nctSnrRvqmyvYTrNLmHRlrRf9iWL+LvoP8wCdB/SHlmiNGLnwDntp/gBmZFGxm4+EBM5oY9s0FyBy\n2Kq7Qz1xCtyl7aYxa4BGzWjzHuh9F40DH+T1e+fae49B4Q/e0vpVvQdKPsJV7450NsroKRX23jIz\ns2CCjsSV9tJeF32Jgep/3TIfa/13Qe/WPX3ueIx+B/uPh7PhlNitN9T+0ftiZj66PFL7b6q/vvoj\nP2pmZiecPRK2lFOFjVZBpwoEN4Yt/KngU1WfC9nCpmj0eOBqQxy9zMyCIDI/TBhC+vutglC/FSzc\nLc4uCYtgeYEW0Ur9uMzhdNbQ+GznXjMzswn75yZkrYCxuVyjiYP7UiYPwl10bMz6ml+isRVpPgQN\ntXWEK8coImZw2Zih2zbra6+u4gq0W1fs92BIhLjQxZFeX7ynts27ILCuPm+A3tllV/vDFEafX3yh\nOXKd0htqrnkRuhcH6sP7C50/L2Fsz54qNvwmjB9X9X10fqT6dlkvapyhsmIH5AvqywfflSvS8bn2\ni7hcpF36e74BIsuZ4OqhzhJ3XtPrXBgxdRBfy6D3N9CZ5BHoe+gn44MjUE37UCmnfWTCMuvB3F4v\nVJ8or7mY39b4RTjqDLrqn+cXqtfz74nxUthWbAWsBUksWVnPLdRhnFY52TLHmrB+++gFxlewBLuw\nN9BsGCXn7EbifqU5td/+e0yoWsMyaO2sEoYjOhyDUzQnYFw5O3r/9r7qnctfn1GVj9VHzVuK2fpb\nOidO0cvxOG+fw7goFnDggqmyKaNLhsNj1RRD7fuco54pNkZztAlhHC8fMmfyuNadqh7rkp5TZz3K\n5tTXr79LG2/r5/BK+86mT2xdae5doB21nThTwcQo4ma6gCm4WaBzhwNY7Kk+wZXWuQt+L/Gdxsdt\nLkNst3HKzcBWDhbMTRc2HfpFAz43PMbp64nW3TwahbU7fEdcqZ2JFtewoxjZfUuaPtt8j5km6y17\n9HgMgwfXpSnamsOe5nRRU8OQNLMMzpWLl3DoMjPLDhTjVx4ZBeiVeBPV53Kpz9vlu6zDXJ3i2uSz\nIZQS51FcFecuzE42aoeMgyoMzoMNLraHL1hkjd3bdvvdN+zmF8TsOPuGzouzY3TOcjDoEq0u3IYi\nHHc3uHwekzURoNuTQf/t9ELMm48fwsDhs2McpVq3deafR7A5YflmcCnNOGrDCn23BezgnIbcmuiX\nHiCMFHPG8RI3PEQVCzm1ZzaG0Y2WVgYWbJ/vKHkcFWfsbWt0kSzJeBlzxoCRU8/ru9h4pudm+d6w\n1dbYdYZ6XnKm+EElZcqkJS1pSUta0pKWtKQlLWlJS1rSkpa0vILySpkyGVTrZzjLBOQQT6ckweKg\nc8aN1Lyr29AC7h4BCPlqVzdj7kY3U12UqddP0V4h/375V8pVzZ/o2vROVjf985luk//gj4XW3f28\nbvCCd5T7W+LW+fDLQnwrrq7wfINlglp0HpRreKqbwEJPN4olV7flLl72UxB4Q2E9t06QCt0YrtEd\nqYBUTEE0Viizr2EjZJJcZRx4QvIoN2XQN/ojW1qbi2tSkOTZqQYW59SH+y2FwhKgtIk2zAiXic4n\nupkfojNxgQaBD/pSu3eoz2rj1gETw7lSXyV54bPKD78l/MelB1NjMNUYHUAmyNZhrnTVZ8slbh33\n1Z5IF8z29JL8YPR9RhH5kKHGtokmyywmVkDPLcQxx/T52TL6Rab+CLiRdiK0Fv5OGi0fkpO/wVlh\nsdDvd3fIieUWNtFgyMBIyhwKjVnBsrj74+r//+oXf071Bn167QDNiKZuurM7avfFpWJvij5GpoUK\nP4jl5Ui31+dPVf9GQ+yySlPvH5/hrsItbgkEI0R1fo0DWC5Cj4M8/J2WnpOBHdGFLZCDx3Xqq96t\nln5P3FEGW2rn4ExxtGSuF9EiclfXvy926Itz3BfOnwjdwejJSguYeIzJ+EpBHvdwEKszZiCfH77/\nt2Zm9vD7Wm/e+dmfNjOzBvnNDlopjq8YWZHjPpP8xaf5zIsWSvgulgagUV6Sc4u7Uw4U5+xjPWdC\nXriDloyPw9hspj6M5mjWoD9RyKIpA7rijBJdDJT3iSkPpssGTa4COkjVW4dmZlYrC4mYPFc9xgvQ\nJxxhCgFzrIzeR7ii/vp9s9HfDwtCjPeJ1RUuSpfPhdAOYBA6EZo66BJtgyIGsNwSnaYx9Tl5hvbN\nZm32ltnV7OUQ7jUaXlusrwXYJCNTzG6BUi7VDVbZx52rpHZlvSL1VT3GQMgByGwFV4Igq/8vwVYY\noF/lbPR5dRBgD7e9dZ9Yd2ZWQX/Hb0v5f5HRWI/QFDjFBenkE8XG1m3tSdUdNLtO1McLV+v1d0G1\n40f6zCzMB2+jeVY4wDWnrLq1QdgGodDtKIc215y9Bhc/F4bk8iOQxpuaG9swJ3bfFmq0LompUjiC\n1QAbbY52wOWx+vLx6XtmZvbN7/+F6v+2mCX//ed+2czMjt/S65o57c3vXaF580j9YTAFZ8RsATbt\nbp3k/GuWMbpMhstFETbW1UP1Z4U5XN9R/z1DP6SAjkkRvZQCa8Ssq/4/Z/+q1fW+d9/QzzUuV85S\nqH/3IxwmEn2MomJvrY+1Ka59Gc4KcUbjEU9fzIV69YYFCImEGc4WOA2tQLBXLZ0NMk/VrxenrDUx\nmmkd3APjZA1BM+xcn5Or4zhWFbtjcKq5tQcCvo9Tj+OZ9dDwSFhSTga2LoeNDZpSTlHvqaA5UMsq\n5uY4MK5D/f98obrl0A6bsEevVmi5wCLaNNB4wulr2tP/37+nOfN8oHPa+dOJvUyZwkhccDbZbBR7\nzZvsB33WaxyoYhiFLXR6cmiJdUCEcx2N/UfoaixAnOewknfuai34dL/ZUn13q2r/J9/R+4po2/jo\nYExH6tf+0yN9/mfFdmq62rNHEe4gF2g+GPV29f5OB7cmtLY82FV9GE3eGFelpT7ninO0R7vya9xQ\nb4vdt3OzxevVb33YzYGv98+J6cDUTwlr1muyL6Bj0rxBfXDh261LK3LxTMh+oyhkegQ7++wC1oOZ\nfeeTB1ZCo6aPC+MCncU6+1GcUxzmYWNHIYi5e/2za+519fHtQ7X99htiHxzhnOj1tY61JrjpQOme\ns5dGj9SWRV51KZQ1NtkGbnu4zSXr09bbnHtrGpv9m/pu8z6aiqMJjOynMP745rf9LszqjPQ0mEo2\nf8refKq+q87RkGF9d2GDrtEJctGUueQcF7FHrkY4Qq40R6KF2tPlu826pvYWORPtohkzZ6yLaA1m\nIhj6fOcp8rl92HFuciSa6B9n34QJXofdgEPXJxMxMVs3GOMG3xVHet+MNWTGHGqgi3JBbC9rMHxg\nrGQQQsoWyfKY/HBnnX9cHNa4wYX27U3xUJ8fKLYnzM3CIXqHhGA+TBwvVb8VbGlLtG1wamvW9L4I\nh7FMTu9r3VT8TTMvNNeat7ZsXIltynche8B5EkbbrK86Ro7OBg6s2TkOY5OeYuXygjFqaw5AFLEQ\nHbaA779+S2Mbw1gLaugk4aIX850uj0tpzshSCNENRaNlzbksKqh+03OyA8i86eDC5j7BCcxL7hf0\nPG+Gg1dW606hANMPU76wqy+TBVztyhHfoSfsgcRuAFvWWyqGk/3h6CPNwTVf+53si/Xonyr/7KXM\nX//1X9uv//qv27176sD79+/br/3ar9lv/MZv2Hq9tna7bb/1W79lQRDY7//+79vv/d7vmeu69su/\n/Mv2S7/0S//c49OSlrSkJS1pSUta0pKWtKQlLWlJS1r+f1muxZT58pe/bL/zO7/z6e+/+Zu/ab/y\nK79iP/uzP2u//du/bV//+tftF37hF+x3f/d37etf/7r5vm+/+Iu/aF/72tesVqv9wOeOyNFfPdWt\npNvATWRHN1DPPpTGwPc/1A3Yzp5uN+//uFCp9md1UZRvK688LuoW8Bv/qxgxfZDjO9y6tq7QVbki\n1wyGyvlTnAJcfe7ujm4RQ5dcNJg7m5GQj9DXTVniihLldWO3WOjWe4keyKyt5xVJ917DCIpBr0rY\nmJTxRR/hCmIuiBD5pDEaMuMxuWtJ/n9Bz8nuoIiOk9IIx6AJuXS+zS0ua6gvByj2kzfr8/9LlLVr\n5BM/CnEG2OJmHyS1hEL/uqTb02cT+iBxobil9+/vK4f2nbe+qD5AD6f7vrRQ/qf/xa5Vls+4ucZB\n5/yZcl4vLvR7Oatbzriiz92tKVd0GOF4Ajo9zuq6dmKqb8jPVh42Emrk2bqe1yzEPAeF/wxuF0MQ\nAnQ6yuSLz7MfmpnZjW0hFHdf/4qZmXVA4W+SI7y4UKxto7Gy1dHrB6ioXyzVr90zve5kjjr8AMQV\nd5HzUGPcmuv3zhQmTAc3KvIgZ+ijdM5Av3pCCr70jpCRNX+/jFTPCs+NvSztQ5tng8ZOQfVbg1ba\ngW6tJ9h1jSb6eyaneR/i0jWJcW3KJdo4qO/3YS6RU5x7S2heCCPnOmVwppjonmjeZ3CLqHnoTHRx\nDlvD6iJmzkEJcgNiK1LeZAAAIABJREFUZRudhYJideELHc8kec/0/XwgiK0IFWfIfH4NZ5TOKcyQ\nx2rDCC2USkPPafwYjgGwk55/wM3+hf6eB1HwqqBJ6IWsrmCFBXq/yxiP0SqooJtUClXPwf/H3psH\n25ae5X3vWmvP83DOPvO55w59e+5Wt2awZBAYCwQlQuIQm4IkpUolMapyAgqTwaBKxa6CEEgcCHHZ\nRUI5ZYjjsk3AQTIQZINaLam71d3q8U7n3jOfPc97rz2s/PH8Vl8UI/W9JFVdSa3vn332Pnuv9Q3v\nN6z3fd7nQVmhC3KjACfD4gSOmZN9/Z7I5s4Tet29xJhmVZ8mkcRpS/WYuLpvhWTe3Brt6RJxAKF0\n9mXdf4HqiZETXHJkG2cgAL0lUaeM6tdCuSdBhHI1o2jjcqL/H1wTkqmFIsS9lgD0VRflGC8PwnKq\niE5Q0Li5c9lF0IEbAgSMj+pTNyv78or6XjEO2myG8kxd9T+BlT/tgcIjt3roay3ZIc/fR/EhOW/Z\nENSQl4N3I6l1YjW1wT01dtfhTXr9pWf1vbT69JFNIRd2QLAVYqjHmf4fENHr9VW3tmlseqgqjQ7g\nsiGKXdvQunUBfqR5AaUzEByvkBO/YF289VXN/xDp8fgHUXvKqe0XWZ9zOxq7dZR2Hlv/XjMze2L2\nrar/+7XHrz+lPf7gD/8PMzPrDjRXnsJGD1EW66IOWJmrnoW4bH4VFat7LU44x+EQu7y2Z2Zm1+M6\niwSsJckVEEeg0AYtweS8kYy/PtVc6be0bqdRhEw/xX57jk2h3uGj7Hh6W2tCIUfUHkRoLiVbdViH\nLSl7WCXSOx3cRXvEMglLpkH6sEb1OUuMJuqPVYikuisoIYWKjyjxlEI0H1wyizOQjSBoqllQennN\nheaZ2rF7WXM1vskaNU7ZbInyF3tt50S2mwVdG6Ivs2mi8DM4YZZEaj31XTmH0tMOe2ddfTQ50rxc\ngv5psTet5fQ+hbLX9QONYXpFCjirF2SLvtu1+ymJPFyIOfXttKN9Yki9i3CRdM6ZC/AanbY1B/Io\nuyQ4Uw0duLbugKxhvVmAgvC2OePA/xSDm+D6bb3vvan7P7auM9elbaHUTn1FaLugB+qvCy2xDZJk\nhHLbElTA+kV9ngPh0gY91e+oHfWh6ufBL5Xi/OrBhVYras0anKv/fRCZqx5kag42GVO708ydEai0\n4XXdN81ZcpbV/7tdeAPZhxOzULVO9/U92fQcLqJ+Wv3SP9G4jiZ3FXESy5RVsf1ET//vsXZlkqAR\n1nTd5Fz36w3VDzE4Le+lrK7qHskVODv6qtP8NfjuFrJtv4vKGqp3OyDx2gN4zQaopd5GcfA2fEYg\nv5OPaR24cEXrZP4Qfk3Q8k9ehgMMqF1+Q21KtvX/wlznTxcV0mRPv+/AVWN9UA0oZflpfd5DuXKG\nElgOFOqYMfFA9cdBF9iKbDNX1v4Urq+OC0cV6IIp3Ib9LkqTcLsEIPhvs865nC/TcHLF13Q2KMJF\n02RsMyX42lCHmxywBw9A54EM7MMHGGvr/sW52nnqwvcJD1Gw4Nkw5PbiLLkSkKXg3h/PXWqTM1SA\n7fPMNjpgbenp+j7ok8QK6nsg9pOgR1yUO3MgIuPwly7hIYzBDbqyyhmrwRyDK00Xz1j3K3174VQI\nwhh8msd3NAbdDlysoHCdjMYggbrdLKM+rqyqzumq5mkGlPwqz+fpR3TvtXWt60u4atZre2ZmNm5q\nLG7eYN8ApTuBVygPuqjFeW5rF0TNhHPvqZAttQncg8b6su18TZ/M8QuMUYxMpfW5x55/YVftacKv\nFMPWbn2JuQtaKxdyK57JdkoJjVEnhUoejzIhJmk0+MZZAH8uTplnn33Wvu3bvs3MzL71W7/Vnnnm\nGXvxxRft8ccft3w+b6lUyp5++ml7/vnn/zyXj0pUohKVqEQlKlGJSlSiEpWoRCUqUfn/fXGCABff\n1ynPPvusffrTn7bd3V3rdrv2yU9+0j71qU/ZM888Y2Zmd+7csR/7sR+zH/iBH7CXX37ZfuqnfsrM\nzH75l3/ZNjY27Pu///u/7rXr5w1brd2fGk9UohKVqEQlKlGJSlSiEpWoRCUqUYnK/1fK3/kv/479\n5M/85J/5v7dNX9rb27NPfvKT9p3f+Z12cHBgP/RDP2SLxV044Nfz6byNr8fMzP6nX/2H9l/83H9m\nP/Kf/C0zMytcFezyDGnSk68qJaRbEVyotiG40+YFwaYKRcgL1yHZK+yZmdlXP/tVMzObHwu+5B0K\nP3T6m//EzMyKA8GbPvZ932NmZuOcILzdPWSiNwTBPSYdIgU0LAYkOwnplAumzksL3lRYQaYNAs7R\nUtC3EbLBaQiCjBSRSVffDyAe60KAN4MAeUaKTAw4q2UETauQcpLahPgsL0jdgDwprycY1cDX63g0\ntjGQVw8pywykRE5H49SECGvSEjx8AHHi9iOCtCYukEpBn5cg5euVgb7yvllH7hASUGci6FsIeyzX\nVeef/us/YfdS/rv/+lfMzOx4JOhcMal6+NdVv1JNY382JdUEOfT+kLGAWHhnVWO6/7zSpya0u5JS\nH3kF9c/F94uktJrRmF9/U6lzRUhZW3dUDwc55OrTstlrn99XPzwsuHcSaHP7WDaTz+o+7qlglVNI\n7TKu+qcdkLbgoO/mj+xn/ttftJ/8STk548A6vQyw0QakopuCCE4YP7LTLJEUZLuPHOSijy20BU18\n6JLqbRD41oFAr4YEYE2Ig3OC6O3u7ZmZWW+g/mge6vvf8vGPm5lZgHzxH/+OCI9XaN+rsOnlgR6v\nbMgOBmgJ3nhTkOoJNvvuD33QzMx2VgQJ/NSPfMLervzsr/6CmZmd95VCsA1ZWkjs2GP+FyGKnBVU\ntzYEtINAY7Bbk+3EsoIf9kglK+X0/gzp1TnpTo88JajvGFh6eUdjMdwHDumTpjPWfW+vymY/9ks/\nqPvfeMPMzN741d9S28vfpHYMlMKQS6pP958RkeNZWzb54IeUevbFl7Q+Xvvjz5uZ2fs+8Bf0u5rW\no5vMkcuPCa5fQ2p0cEew9rOObGbzIUGLnSrpjkiUXnhM7fMnwNjXkfMlaygDEVslpu+d7mss58gw\nL041pj5jG0PKehbISGesowYZXf8YGUekFnOsd6vAUzNIeB++8Kb9xK//iv3t/+hvmJnZ3/z7d1Nr\nv1H5+Z/5u2Zm9sofK4Wvtqo5UHE0Vwo1rWHJrBo4LgquX4ehLUwrcCH+Zbm2wzYSkEmNexkiOacL\noRxpWV4MYlJf31+lHxKhHKqTtpaDvC2pG2EqR6KoPtraUZ2XrIOzM1KmGJPzY83PZVzw8UJatjqn\nTuOBrt8bIQcOKaq/ARQYkuNaRWNTqynFo480apvUs6w9bmZmL/y+rr+SVh/upffNzOylF/7IzMze\n8z7m+wi4fCjBWRXR+mJM2ul7te62eqpfO6VUk+GJ5u7LL/yhmZldXADHzwu2X2YsymFKwgpE4aR9\nNs40Z3/qP763/eZv/+wvmZnZ+Q2tCetpwe1/9zd0dsisyJbf8/GnzcysGdP7VLj3QoBbC5AUT+l9\nDintBWkA57fVn/5ERuQAxW6eKk2hyFxNVSEJh/R6kiTtCcj11NE4nyDr+1s//0v21z/9s5Y22Ud6\nSird9S+YmdkTH9O4XX2PUr6bXxGh6NnLOhPFqLcLofM8pjnZn0Bazf61tivi0ibpwYuM7vP4Q7r+\nrTefMzOzYOLYrddF4vzUk1q3WpCP7pJqt1jTOjdkr5yEhLUJUgLoo4BUg1xO97wNkWICGdwpMr/h\nFnr1olIzetf3zczsxX/2j83M7F27pMaVZINN3d7+xk9or3278iu/8N+YmVlpRz/sH6leZ11IuUnb\nSYdnBl/tWaRk64uJxrK8Roow588lBMBGWlOTtFIvSZrOucZgyVw8qb+uz1nHHyppbag+iK2RTt/D\nVvqkmDmkMsZiEAGf6vc50g2SaX0/x5ktU9AatKhqHctBcuogbd0kzWnQ1lw9fAO5ZkdzL3tBgdf8\nKnMCUQmOt7bo8UcoaZ0hHYFU8ExF9ZhOVO9T0rFiXUhNSemM97VvJMOUPAiLV8qq99/6az9sP/0/\n/PcWkPKxhFTXaet90iElO8xmg/C39YrmZNxTPX7xN3/R3q78vX/4P5qZ2bBAKhfnqdYtzbM6aSlZ\n1uWbkNlnd0jtglh3jETzrKu+je/umZlZAZLmWUXf32NuNW7o2SdMw5mOSXOCwXflEmlCM11/5wGd\nV9cdzZ3uNbV1SErXrE89U7INF+GIE1/n6ADKhQQExPMzdV6XlLZyUb/rIRCST2nO9TmLFV3OWin9\nLsb1hqTlTyGVHjfUjtMC6VuObCk5Q0p6TXO6RqqcF9rCjsbwyW9S/xzeecnMzAY8D/VIw0y12Xf4\nPL/U/c8QyFgtoIG9ornQg4y7wv1CkQNvruv9zf/8Z+xeyqf//i+bmdmdlva7mMtzFmfWyRua8yuX\nZNPlCyxuXdKOsjzPpXReKBn77RyaBh4d42FqX4tUHs6ki6zG4xf/q//UPvXzv2pLr2POKlQVJdnQ\n7JS+f0Xr+GZeNrNS1tnAY+9axjlX0/cuKWCppK4TIA6ySMh20zxDTSHUTWSgmEAgZ9GS7QRhGhWp\nciWe/2M1fW/naY398etfNDOzG//4fzMzs6ehTklBVJ57VG3117ROdq/JtlzkwhMIBJUu6jybQlr7\n9nUdrrxrWs8+/y91fry0ov/HyvqdW2OdNNYxaEimaeY0aulO9xuTQb+tU2Ztbc2+67ukALO7u2sr\nKyv28ssv22QysVQqZWdnZ1ar1axWq1mj0Xjrd+fn5/aud73rG157QV7kKOSn6NL5oW740zqofdNf\n4KGho818eQL7c1+DPiTXczBHFeM1Ldopn4PNQJvRZKAH0gSd5pd1/zFa9OsXdL8TFCu6U/0ui9Nk\nAFuz9VCkcWDT5/77OF2S9H4aBaP0jPxzFgBLqN7JJMzkA31eTfdpBw8p5Fon+6qvF2dzRSEinCyj\ntvo9jXpJsigji6U1gVdtZgsWwxwa88u4DN5fIf+uoA3wkGuW0GjfQ4lqSe74mxyocqsYHLmZZxO1\ntUxO5foahk7e4aiu+7Qa96d04JObWiIhLwHHyz45p9lVxrAH3wYOw42aJtadmSZUHz6Rk5l+vxln\nDDg0J2Kwyyc0wUZzrRSxuWzB8TWx3azaM+H+ma7GMAe3TAcnxOBN8g45UKZD5QkUFDbWUJZADWqd\nh5PYNpw4gRaMnV0tIM5E13XIwywOdN0T8hYzcx1wi6hejWFhX8uqHecDbCath5YxnBD9czgMatu0\nDwUzXw6OIgttAJdB2kHVo62DYZ98+Q1srsBBx1hoU+SjrkHB7lVkH1ny0leb8Hro9pZoaLwHSej0\n76EUacs8gyMKZ6fDg8xwrr47uaGNamtddVnbks2m+ur780NsM6O2T+OyifrNfbUdTqjkQt9voni1\nJCc+cUrbQ64VV/Ox5/GAu7lnZmb/jmmMj/VcY/Vf+jTX5YBzxkEM7przFjn1KKjNRqwnPQ5OeRQY\neEjojmQ7qaHqNeWBrV/TdTMQeTy0qnpUOCz3Q66sOc4qDlgDmYz91Q/9iPpBb+2f/uY/MDOzxYkc\nAYsezuqs6tVPq7+gXrEBh98F3AJBoDkR4MBNJHkYoz29Jqz5KPzEHtWdtx/Q+GU3q3Y/ZVnR/bso\n0FUqGr83jnTAzLZ1/VVDSWGo+mQzaodT1hyfTukfOCNqK/pentzqOQo3zTzvm+wfMzh0Qj6Pmeae\nc6I5NBvcsRHr0hzFrnSBwxk8O70bundhTba5VlKdymXZ3EVUmwIcjaOu9jy/q7r2impjdUW/m7ia\nt4uMbGTCvLw5QsXJUR1DioGvfFWH/lVUMP75Z+UQXIlrAv/QX5OTduOCjCbBelrkAa59htP+WG0+\nn2mOfGVfziUPZ1TrXGOysqZD6tMJXb+aQ+2HB77cPg++Z/tmZjY91x5ZD3T9zTzSD/dYTo/Vzzf3\ntc9NURPMw1l28bLGLr/BgY8AywDH7ZWr6v/RsfrzbKJ9r/2GXhvsR7G09vxKSeN266YO5XGUxxas\ns2lD2Qx+p1BpIoWDMAb/VfFK/K02XLx42TpvqP41niVu4eDoHDD3Pqw5NkVxIphpva1wuD++Tb09\njf/KKjwe7ANuXuOaX+j1nODLcCq7yV6U/S7faFsaPoYuAaGYp/XmFkp/myTdd6Y4ecndn0LhkcIp\ngRCUpR1468pq+wncWinqPqrDm3RJ69D6Va1zr/OAWL8BN8ISB+al+0NrjzLw8sEDUuAhYT5hHb11\nSF/w4MmDU6yq9WDQ1ffH8Did92UTq+FYL1SfFKqffTh4uihgOqw/Zfbm4pPwieAsycKNsExpjDdw\npnTyspFz+EqSAWojC52n+yPVN8uCPUI9btrofs1rC/Wpvk8gD76hIU6ghav3e+9RvUq7eogbozw5\nZb3nWG3Fmubc6AznU0c21+lo/LIF2Xx5Tw/W6xnZ3LAmG8t4qDetEpFa6MJTOB9Hg7tnifa08db5\nvch+7uOANJ/AGIo7wwMcu6+IZytNUPheyvXXFHAZnGvMilXtuQ68c9usjytret36AE4W2pwoy5b8\nkdr06rNf4Mqqex/esmc+o4yFzc/r/+usE5lt2cZVOGRO+yjcJvS+yNmmOIXXY8ZZhrnWhxMrDdfK\nHJvoDlFl68gW4knUQHngvg6FTIFHpXlMZ5IjeJ/it+WsbWK7Gc5KmXV4RtLqn9IVtT9b1nNJqLQ2\nfUA3mOAI6BDU8w71excuyXxV72+doLa0r89PWqipDuGOjLM2jQjE0A85VPFSBBP9gu7nwflSZp2e\nUy8v0NqySH9jZZ3/e5ktdN8l6kjGM21iTACL4GQhp+uncNZ5RXhb4PKZLfW7brdHPVTPzETtGMGT\nt2jLzqY8b8wy52/VpXM2sEXFtRp8c+OQz25NY9tHKTHuqi65VW0uA87sPs6Pgocjkvnt8qw5IJo3\nOyJQRBvcJo6kpuZKmjNJDrW6/i31aZz10TNU4OAX4nhmWygadh9XEHIHHrwFbY9t6/2Vh540M7Pn\nPGynhY2jOnV2Q/fJoNo2guNxQfC1TkC6CP9fPqWxKi5U3wIckwv2+CCnvXSB0nHmT4Fa/qzytk6Z\n3/7t37Z6vW6f+MQnrF6vW7PZtO/7vu+zz3zmM/bxj3/cPvvZz9qHPvQhe/LJJ+2nf/qnrdfrmed5\n9vzzz7+VyvT1yg0WvTO8fh7SegMW1YKjzeSUjd5JqtPSqBYnTlm8z5HphTRrLafFukRk1vWRW/sP\nv9vMzFaySPdxOJ9gyMOGokZjjG4D0qgpC1OAQ2C51Ka6GMvAeyMiB0PdL3SETbLIZebUjjlSuZkU\nD3cZIiIQrk3xZqZTMnIXwt4RC02fB/4KKIS4z6Y5V31WHpFR9o9AiUx1ID8KZpa4CZLiTfXh+YkO\ngYkL9M13v091DzRJfSzdi8vwr+Jxft9VOa7WH1Kk7c3PaZEdN/W7ZVMHkmvP6bWF5PExEctVRwek\ney0+BLRZovcujqpZSMZZwVO8wCHFg10CMs5RQ2Od5IDkQI5s2Ebf03UqRNnmOstaowpJUw1PPx7o\nxEz9OK5oATqbhxEPbADCtHgWidkPaaLWViD/axLBnnCww7vqIu97FsrkQiyc2tVCEgvU/zOcagGS\n1zuurleHFDXGZtGvazwmHWTjIPSqgWhKNdSOoxGOR8j3YjinKjGIQSGL7bBplLfUz/Hr6o9r/0Lj\nn9rR/U9flKx8kchCo6EDTZyIy+IYcu1Dtff0Nc259Q0duPrMnYv9ez8oL0MH21j37OPAmnl6n2H+\nB0XGBsJdn4hcAlnBJDK6S6Lwl9Z5cGlDuscYxahkjE0nBpJuWuRQPJXNNlgvMjmiEhDu/p7J6TN8\nXQ+4hc8r4rkcgKbiAOAjf7t1VTYQsO4Yh9ssxL7/9uM4KdiEBjr/WOYBOfTiEKN5Y6LaEKDnCyAE\nT9Rfcws3ETWsBVKlDsF5HWfFtEUk9Bf+mZmZ5SAqdxZqL/xnbyECCT7ZcCQbTFewIYjfbjW1Nhy9\nLlt593s/rPq+1VwevBusIZBCJxKhe+jeyqXH9MBceeLbzcxsp6B+++IXZLNJHLaJPvsKz7nBSOM5\ngYxv0Fe9ixDFpwKt73EO0EMiOgXQCkc8RGZXOLSscJCCJDe2pUhPbPOSVQpyOjSJriwhmezsywYT\nc23wiaZs8eCroVSoxqSBVGY6gbT9BR60IIRNIyk9gTS6B5Ki2YcQkOh9nD3l8mN6oBpltacOiopG\n1apCtL23q046+gM5UboJIpCsX7VMSCSObfN5E4nv2FDr6wwEydA0BhugXjOhA48DTR/Szgyk915T\nY7MZEpZznURRYzKc3h/x4vYl2VY8KcTHBcixs0z2zVyI3pAt+2ndd31Lc3VChPiNc83pyUy/ewCC\nxfxY/X9pQ++bN3Hi31Q71zZkMy7elBjt7o61Mc2IsPdHoEQmGsfzxt3DdXcwsMO+vp9Pal1N9NUP\n+0SE/2I+PFDq9QCy1xp0hCvAGOYj5ECrstEANMOAM1MGYYDQIdCta+6sPwTZbP7U4jyITnHeXt7Z\nMzOz29RljM5rdRWCVdrkbnBYZl0chWiw4Q0aygMigYACSGcPqe02qLGti1rP967CKs0ZJ2A9zOfu\n/WHbzCzpI9jAA2jSxfkMSqrS1Nge31JfcIyzAo60MsiPGcG5LA8XgzOkVoeqdzfAud0EycIeegFb\nKyEeEIPkdEGE2SV4lwv0vXaIRIHYMj7VmSjPurS4pH7Jsn55BFjKBHa6BCumjgagB/lriGhy8ziz\nNyDZhvw/vQM5OcibDOO61IsFLbVnhtxzPhbuozjDCQrsEyhsN4GwbIHew2meK/GQ46r9uVAmfqnr\nDb27jzk5L2ULHIgzgjnxNkEVnDTDE/2/+SbOGe5TiN/7flOBmD35qOZxbhMC3evaS5sEfpOIc6QL\nzPNVrSs5iGnxoduuv6e6NKgT693DG/pdEvL9jR0QMKDQ1kDG5A81dqHwxQwyZY+zShtZ4hnrcjwO\n0oZ5HbD3T5aa/92x+vwKzulBBuL4Y+0DaZxQvRZoC86tFz+iB+LHt/X/xVJ9vkiCFsXJPoXgdwoy\n8KwaImmQuibg3Ud4pMh6lVzV9x9Y13NKl3N2YwDaYaz2jZlb8ZZspYlj2KP9kwpk/iCSchC1+5NQ\nCEPt9uL6/zLDHDu/vzNJnuDIOojEOWcKHwRODAlzZw7CKYUzCef8aF9rjI8TzSFDxQPdZiAYSzGI\n2j0ClogLrGXuPo9t7pZsUc7Y1oPMQ5B6ib76PrvUwbIxQC6cedLHCTE90Vm+ewgyZhwiApkDzMsF\n8ulBW33qIj2fLqqOK1nNHUC9hkaIpVzN4zTS28SlLTvCKfIeRAIOQvJi1hcciLdAVi587Wk+QVUf\nEu6gpQuOCFDF49rDAl/1ddbUzt1HBHCY3tLnqa5s5oEPE2wjaFraUQOCmqKvORyR50ffmFj+bZ0y\nH/nIR+xTn/qU/cEf/IHNZjP7uZ/7OXv44Yftx3/8x+23fuu3bHNz0773e7/X4vG4/eiP/qh94hOf\nMMdx7Id/+IctTzQlKlGJSlSiEpWoRCUqUYlKVKISlahEJSpfW97WKZPL5ezXfu3X/o3Pf/3X/01N\n449+9KP20Y9+9J5vntlTpHLzMaUndcryfpZAI3hVeTPzWXn8H3lMcMj5S/I2v/qyIqsxOFhc8vl6\n+4o07OzKc3USl+fsIhDf1EKewCbe0wRohP5cnrxiBq9lTfXJkfoyh2dkggy0CzR7mIKrAnxtCq/r\nyOTNdE9B8qyHiBqw4MC94mX9PkGKiefoe2PyGrNABJMOkGci2g5Qx9WkIiXrcDv0SZNqxNS/yaRv\nVfgx0utq8/5torVPyFv56MfkzTsrK7JmeDNb14SoaR7Is98aKCJ7cFPXmwEVdoA1BsdgjIn6OHeA\nWe8TNa/cn0RpuQJiw5Aqbar+ZfKuMwl9PkjhlSRo4pFSUOzL4z02vS6JGDpAeQNQS6O0vJeLTgjz\nVLvSadJukANehPnfRBTHPSQBq2HqjNodSlT3n0fy8HFNtd4N9dttILVbFwXLd0BdHdTVvloF5E5D\ntlwnkjqakNO/Lds8aOn7LlGh9LpsfnZGjiwImkxO/bhEInUEFPDB2nvMzCwFemS8lBc65qg+TdAP\npTvykleKipz3QAGMm8guBxoHBw6IKxeJjo51H5eoVD5Hnum2+qNG9CnB9Xrn8rY7du8O3Tnw9XMi\ninMig9klOeeZkPsJfo4EnnPWjyIRw/Q6kUdSRd78CnMGT36tEso2AqcMc0pBNbjkGSd2gD8yj3e2\nNC9HSJpe/8Xf0Pd/R/W4uh6iEajHFaI0pHLkM1r3mkOi1HWN6UqVtK2++vzLnxNnQhpp0p0PKyp1\nfqh2rpE6d/tMthnryIazFVJY8hrDdGZP9yeF8fa++uPLv/uvzMxs/HeVupYh2jYB/dA4ly0WLsrm\nm6RVHnxenDheWbZeJM0sW1J/HTZ0vX34mi6sytbWQAukXfVDATjrKZHlvn9/UrZHX5Vt3RkLtrq/\nVERmOtR9V0jdWZJ2lOvJVpcxeEyQyJ6CgCqkVD8nQYrREKl0R6gCH9RajLVi4Wp8j27pe/We0IR/\n+YPfbGZmyencbgDznqyqLoddtdEbaz5vxDW2bfKJVra09meOycMmo2u0DFMLQOLBo9BagrggpaxX\nBslHZM0F+TLMa306ex3EXR8uqevaD1IPPWFmZt/xg/+WPt/UGK94mkPxkr4/IBKaJ6qfADWW7YOY\nISVgvtDn1YLeZ4jsVTzNwVSLCO1E/eCFqANS7BMpzYUS6K9ZDi6V+tsecb6m+PBJFdaJphOBjJeQ\nTgXFloOLJwYfUmpVFemRJjbtqYNXt4S4CQpE42ZAmeHmeeNPhDxyq2pvdgcZZB80R5lo/wFnDtB4\nOVO/npyTukPxscvSAAAgAElEQVRKjZnZsmuW4syyTKpfUMS2k5c0/kNfa0zxQdW7+AxnLZBN7fCM\nM1L7Lu9oDZst9buDM9nufKb/j+BTIgPS0nMi3smE7V7RPZ7/3JfMzOzKDuk+oEx9YPHnpGdOSENK\nAqlI50L+NzgF83v63gOkDNDXdVIRwrZOD2Qz423N0+IuaaM3ZUP9a4rqn6VDsdJ7Ky7y4VPQWqdE\nUiekj89A1S5J5Z63NObNpfZYtg9zOGe6RK/nObU/Sfp6eqj2rqzo+luX1cfFNaS0QXB6rD9eXjaf\nGDDmGXXE1iVdZ4gMuwcMf4BcezBQfTuk2QdHnCnIL1qEUXtPa00hrddSlZQXjzQo0HjBrl7X1jXu\nATwk1iRd6wxuRo/6JnTfy0+DnmAN6pvO5Wuci19+ExR3oH6qMNA+dAeVuPrfnyJvPCOF8NrdM+cr\nf/KcFZDOzXKWKwdal0+aRNCnGqfCttq5VRAqPLcFxOf37G3L7nu0pwcJ1bXHfDqLI33c1Bic3dB5\nen+kuXHzVHtUfkt9t72nc3kBNFAB5N9GgXRyUA22DOkENKYvvaz19xEjjRAZ3lhP0X8Xm+/r+Gbz\nIugFh3R7eDzGrB8O0f90C74koy9IJ22CnjXOInZBv8tCIZHcFrqgtqcxDkCEnHdUzzQa07cZyzn8\nctPGvl657j5cYSsPqF82kE3PIhhTJqWE47Bt7TInkW/P5PT9126IH6WOjPH2RY31BDTGcEpKYUXj\nEAtRXR6oOu4b2ko+x745uz9B4wW8KgF2sThhP0lD/xCEz5bqp9RCzwUBc3/JHC2TPhYDceSG63JM\n7clWSQE8Y/+B9285urtvuIu4lUsVm4OSz7MeD0LUFLxxzetCKk421Lco29tioTqvg75MkMUwJGth\nSdphiWexOetkjrGZlVg/2GM8+iTDmWDGGWHCOr+EUmLRUB8Obsr2j9/QAntEmmKMBXcGhLsPqmxI\numIcPs8B6ZdVnjm7GZ6hkH/fhotm+z1wzpKNEAMZPmvrrNYn9TtF++2OxqjtwY/U/lMy5H9G+XNJ\nYkclKlGJSlSiEpWoRCUqUYlKVKISlahE5f9Zub8w0v/LZQVv4JkHcW8gj5RLZCPpkVR2Sj7jvrzN\nBmmeO5dHKpEnP5to0s3n5AXdLX1M94HDoAJh0Rh+kTiesgUs8/M7RBN78rCHCJ0YnvV5gIeLHLr+\nVP93ULrwenIZ9iZENGB/byfJgyQfsQMfSjKNiseISA25cyHqIVcj39SBkTuA0LgNCddQ9TgEzfIv\nf0PtbhIhefx7xBOTXZ3atKjfrm2D9rmMJ9yRF/F4oGhCANlxGt6D2E0QJE3VddkCufECEdcO6KBp\nSBIaqi7Jq1rc1v+LRMkDvLD2RdX17UqipPv2iGK7cL4EISDnjjz0U9R/wqDX4rbamwGZ4dPnpbL6\ndAxPT5bIw5wc2SJRuWpK9S3sQZTG/RMh0VlKNjGsw3lDJDWThhSrKzRCMBVKIXWgdjcgL20Rrcug\nhLBEkcWFnDVV1pgv34T49nlxFMzX9f2QPMtbEK1yiZ41VL80vCjplZBLR+1wIAIeNDTn5qv6/PoL\nQg9UQp4Oco+ToEh8EEWtY9RBiAqW4TW5dEFe5MS22u9V9bqd0tyccp01uBQciDBLW7KXC0TYb57A\ny7KHnfwje9sSJ9KYg1NqTBTHZ0yzJfVltgAfw5A+XMrTPYJPJ0sufov5defLIuu7+G7ZQg50VaNP\nhHIkY4yx/uRDAu+c+iQd11jc7gkJEgNpkUzKBvKu6nF0TdcZ8XkcXqIQeWcQNsZDomFy/R3I2uJz\n1s06ahOoXeyhANatooRA/nnjAH4POHUmZSIPjtrdgqitR/62C3LkoYuPmZnZrdtqv9MirxlliZB9\nfwrp1xJlGP8KEVaiOVMUdmJwfz350LvNzGyrJFtYzwF/gGR7MQ2JJOk/omFJIi33WpoHWivqrygK\ntlWFoLgM4og51Ya8PAVpRAcSvQnIp/y6vufk1Q8DVFdSLmR7cFwsTXNvk+jbgPFrHGmt3djU9coV\n2dWtz37ODl/f12/fJf4bF3WNGRxfG5c1T15/XTw4SzhVaigFDAJInyFQHKVRjhrDizCEX2lb9yyN\nQ8JC9rSe+iZEuJ0uFRXbJUruHes6L73wv5qZ2Qe/46+YmVmCSN48hZIZRMXDufo8QTjNJ697noFP\nY6H3szwcOESQh3HNzQZjMYvp/6ugjeIQVfpEy0cQIHaRnxu34Uiwt1eB/NOlA5dB/0hzoMr+YUSM\nE8yZkHPBfGwCnpHWbbXHgeQ7hw306/r/dqB6llDBWNbF+7b3gMgJU+zxM1BzsZDDoa1+LDAng5Js\nMAOf1fr63TYkEl0rkzo+gS03X9T1r52ImPn8ea05G09o3Z7WhHYAhGcTwAX7z2kN7PZAcIWoiBWd\nE/Jl1tqB2j3KqT6tIWe0wtA24oruTkDEDa8LjbuBqmYGBZbVdfVtC8LZISSWKZBpQyKNA4ginZRs\n6nZDqJ0EfGlOWp3hLeCVq2u9KXKuXDwsJNsJjS0sKnY/pQE/RgJVuSGEvTPUeYKY2pGEH63nc+Y6\nVbt6pvWiA8q1uKr2x8tqT85XfdMgMYs5jXl+BSQNCJtcTPXYflhISnekuXzrZfgC+V3QD/cJ2fYS\nsuZFnDkNJ0MCfo4+4gRZ5uwcpLaXhhuNiHKMcTU4yJKoGg66wJW31O41IuUHt8Q/5yHYsfBArHCW\nSG/qfgczyEgbeq3tvd/MzB50NL7HENeXUoguHKteTfYhB+6y3jmId7jNzMwqmYI5EE7nFnDxYG+u\nqzPT9hWUQvNCdcRBZZt3F1XwdqUDavflr0iNckyfuRCvLlDFnMZk0/5Sdd4CLdBHpCDb0zya9ngG\nioFMZl0JXNC8M11nXoHfJ62+SSRQTaKtDvvIHISHQcbv0FchCX+CZxwj+yDG+beD7QQgRjI86/h3\nQEDnERQBUV1HxTVA5fMI5cr5bdb3ll4rO0KxLZnrIbI6jhiAW9XcfQRepMQCpcO46gGQ1PwDod98\nzhjTBc81IFliK6EEjvpzAPKmHNf9DyDjj6O4WGQfay81Z0NeoTZqdKE4wWQC/wpIo3stHvvKogea\nDZGGIkjHRAF+JC6b4gzp8Pzhcp53Xci46ecYaLYcpEQez3MLslGWCxCwoOvMzAJ3arfrp+a/pnXa\n4fw6QIhmcUPv37yGGMya2r7zUHj+VZ+7kCwn1oWiyqVcPgf9f6a+jA/VxuYYfh8UoSacb+PwwjmQ\nHA9OEOgBmZKB+6X7Bs/LcUii57KZOghFj74MqQ5T8IRWE5xL4SALHJ3zR1XZxtqO3mdBRvpJzrW3\nUJWrgSIDrdp+HQ4dlBNHKDg6ntpb74Yk/984CyBCykQlKlGJSlSiEpWoRCUqUYlKVKISlai8A+Ud\nRcocjBQl+tLzL5iZ2Yf+qvhovvnf+xYzM5u9Kq/nyeeUxNl8BsZ/ol8bSM0OlvBmwDmw+pSiQo9d\nkWduFNP/J0QA2udEz4haTe6Q849sZDkm72iY55cndy0GlCXM01uSTDYh93eKyklA3vtyDIcM3uYR\nkrcOeeIFIr8uPB/loerb7yCl+ICinYlCKIWt+p0hoeijolJAumwAd46zJc/ghQ8q7/9o9orNU/rf\nd/wH32RmZlf7ik6/+CfiAqgjBXreUWSsDC/O0YvywNZQV5o2UTYAeXL1gjzMM/KSM/BmZMpfKyGd\n3yFCa/dXMuSaJlwUbej7CsEtbw5vA6pKS1BPHRA7KTTom+R9J/Ekz2Ih47+8ugXypr2SxqCCWtIc\nNNUAnqMU/CR2Tu5mS/0TEHXKb8PBslT/tJF+DVDCWZY0Dh2iSQ58GVPUkUbUs4jy1+RIkYbGLUWi\niwtQHQ+EqlFEcPOKDoas8kNQWWMkZ7MjzZVhHdl4FCPScyI18KHMVvHAgzZZh+slBzN6H7b+MgPg\n4MnvooC0QHrsuKVoWNBX/3Xn5LASmT+8o7k/T6rdkzJSf0S+p9847fJrCoAMWxRkwxmY6oMAD39P\nbTs+Yf3ACNPI3KbJKU/A9F/a0PyvPaaxq4ZIOuQmNwogSYjUVrYUEajtqW0TpF6PzjVn5iMY+8Pv\nz/U6oCJD03rhEP0fIkk9JBoUJwxUXiHndqjXzAIbyCm/+iPfDqIDXowZrPCDl4XCunZO7i6hhtym\nbD1RVT36oCliyGLOkF59+AOKLO88ou9/5X8WJ86Ues9APAYAGe8896r+wOX/4Ls+ZGZmi4Fs/qsv\ng5KjXqh02hb8JoOePl/C59GFKGrTUT8vUUyb3GdIwUG2efdR3WczpXFeOESZiHIhdGYz0A6rHc2x\ncVw2nyWf/+wM2B5zK8iTB55Vf4YKRw6qTRXWqPQjqOXtCLm0cl1z8lqna9/yfqEbnY+oz9usP+co\ndT36Lu1tWRQLj16Gn6Gotg3I+e/5KKmwXi9ClABjFZthkyjIBB1NojQKKEmQIJ6CTW+pRDyUR5WO\n9cj5wkuqJwpVnanGKrai9dCNwfWFbXvMuUZL0TiDdydcF8amMc+GeeUJ1X8VGcwZ0a3JTJ93mkg9\nY3vThPpyDvrCrRBCvceyfUmoA7skW5+e6nr1lpCErmlNaIOOWi1rLhZA2TVQH6yAVKytqL+vXddZ\nJo4s5+xg38zM+vBbve9R3e/lQ3FKbK9qTo8JzjsrcN0kFL3vgiIYe6rPfHJXHn456Fs1S7Rwisw8\nEfhYUa9fekX3/+iHnzIzs+xF2dvkDVRhtlT/R5N/2czM9g+F1MwXVf+VDVBhtLs0l30MJsgQn7Pv\nFDMWe1Btyz+ge+yfau0vYFuHZc334jGRyDVslHWogYRyF560KTwI1QJ8ccMZ95KNLV3ZbhKOlM6p\n5oo7xrY31LbSOmiEC+iG/xO7p5JaU1u9PEiSY5RdQu4V9pNBKKUKp0ESFSoAIjZj3Ushc1wBkZJH\n2SWdB7W7Q0R3F05EeH4Gh7KdCWhdd4iCIgpk0EpZH9hTi/OiB0I7D4digj0/0eL6pvpP8+rfGHwo\noYqUj6rTWpWGIAs8dpCUBmnePtLcGXX21V6QQvmU1vHtS3BCFFT/VaSvDa6X6zdkIJMu0rUJySP7\nqPDlWQuqqGsVZtpvxzkUJAGaxlHrMzN78PGnbHACl86Z5sYMRFalgG0XiNCHXGHhGStx73LHnZva\nG86ZZ6uP6vxXfFTzt5xTW4ogii8ga35+rDa8+qyeibwuKNqU+jzPwShZUt/Ek6jnuLpOgjmxjpqT\n3wEBmWIvBUkYx0ZGqOWFzxJjzp1rORQmu1pf/LzmyIxznAsnoQ/+wMMWYpzf4lUQHBN4NUFQVkBN\nzdZ3+T18mVzfARmUAiG/RK7cQ3G2MwEhWELxpw2vB/tIG6VGF5urM9a+pznw6IfVz0kXHk/OEsuQ\nz6+LIg98ng7y7oBfLQafyczlFfloHkUtM7q//cZQapyE3DEO6/a59pH1HAiimOrVH6BAPNEamU+E\n6oooq5GJMIdrc8g4pzmDBKju+Ucaj1T/rlqUn5pa3BI27INc4Xmzi+JjDJXSRBE0pCNbvLorVG+w\njiLt53VWiZ2TZYFUfRLlsA6ImH4TRDLztQDad4rSV58Mk1ABdplU386N81gDXiRf2QjBse6/UlOf\njee6z0aohoxq81ZFe+uc7Ib2Mes0KkxTlCLrHbW7uKp6JUZIYs9BUaVls6/efE3XgV/zgY/A2wQa\nK4GtrsAdGZ51vl6JkDJRiUpUohKVqEQlKlGJSlSiEpWoRCUq70B5R5Eyo1V5vGpP4KF+F8oJE3mc\njg6eNzMzv0s+5av6PIYSz8OPyfN0SGSi+JAiEQuieq2lPH7dN/GE4TUMUvp8OSPPzsOLOJUrrRBy\nNBCpTsP2Ps/pOh7R/2RarwERncxY14+n9X6OkHorJjdqdoSq0kSRocZCn+dHQsTkA3kC42O8nH+k\nfP7rRd1n7VFFBDIFGLvRQa9+XHmcT6GzfqOrqNzyMnntvbIl10A6UFcfbpQcnvY7DXnkB2dwCuCh\nLvXkFY05ih5YTvestWElH5GXHKohbeDn4/vBUm3sggjJLIE13GM5b6A+0pfneIjgymyf5Pen5BlO\nwtreTfP5jGgb10nCNRMs1HdZeEiWjMHRlDzlkbyuN25rjBY+EWMHd+u2rlt0ZSuH5F36Rp41qhyV\nPXlVT76s/hwFes0Thk9chC2ffEaXmqbIyZ/hye/RXy68H2tXyI/09XkCtY7lmurTQi3FhQ/JOdL7\nJv7XNEoIGxnQFEl5qR9+Uv2Yq+rzBhGb4UIR8SCmzx14S2Kb+t3RoebkHZPNzeBWKMH9MCSHNw5H\nDSm5tm6hWpTQByO4LM5BiVyc3bv6kqWIygC5cMmTnqHeseyhUkYUZ0If12bwXhAlOoNLpkzEb2NL\n8yrhga4iF9bLyUNejYUKXtg4CgWNMHpDXnaupO/NQB81Udqad9W3HpwjsYGiF01QVvmQ+T9QpwXk\n1pbhhRreOOO6RM2KGkN/BC8FnDPuZshxQ7QcxZhRXu0dj3T9GZGDLCpM2yD6kntE1XyhG7K/84em\nP7D9DOsk/dS6jToJky+GqoW7VD/kyRWuZlWv2UD1LUAj5DAXlk2UeUa0cwJnQJnI7uRuPvS9lJTB\nnZPS3DkmehhMtahsgDLz4BxqZDWnh0SOe0TBJh0iraA61kugMuC48TqqVyqp33dDyjD2l4fXFK2L\njfT7wwF58PWZjXLi7mj8CeilA+05z772jJmZPXJFSJk0aKvKVGPnotLkEkWaJckdLxBZm8nGlwNd\nfxhTpWLMEUN9KVQSwCTNDxF2qB8lgG5cKAj1cOH94gfZRFEgjAKVQYtOwUZ6ruZmnaj01SrIEg++\nJCKBmRTo1UW4X6g9nSmcAD2QdagqzXuai/mMbKq8oUi0CwKvNdYcu9cSKjS8fE3R+XFdv9+CjyPY\nU/0z4ZxjbrLN2aCvzy+t75mZWQIurpM7QppcelTjMjhT/2e29P+VIpHb63AKmNozJiqXH+gGqW3U\nXNLqnx1QtKn83Sh+4AZG0N8atzV3slX1SwlVl2MUjw6ImObX9IPbh6gogvbLoZS0HmicR5C53X6B\nCPqq5lSJaKf5un6npf6PuQVbktN/9b1S2fRvyZZyPtFoD+4pJMGm50RkyyAY2NvWVvV7qKssVkCx\na6J1JGvq27MTkCtj2cwUvrtEkig4ClMjzmXWuL8zSRxES5mIcaykc5lPFHsMn0UPdaZ8WfVPo/zi\npVXfErxKAdxZRdSlSijHJJP6I+UT7Z7I1jIprUcTlBFPr+t+2Tnrvc85Gr6fHPwTCxe+CRTROtw/\nTgQ8jYqgA4dCgfWwm1L9+8wll31uNkYpBhR0JgM/HjwVWSLVg4bWwSy8UMUqCBRf45Q+1f+nnKE2\n0qB1a+qPg2twgD26Z2ZmoyP1xwyeIxc0w2ym8azAwdaNybYH47sqfeOuY+MhHDJw02T3hNxZYd+f\npkP2Cfj4/FDl6d75Qsbs1fkPSLlp64KQjE2eJa6/Ko6oBSiEN3tCyIUor9aZEIgOCJgNEJMe/HDF\nFc2zOCj7DgoxA/g3Dw84b3K+DHn2cn3N13EGdbW5zjjh80AKRP1yTUie3jF8HVnWHzi02p7me4dz\nXBkoyRlz+OhENrkA5TbnGS2Aj2QAovCrX9VaUIY/c4wt7m7uqX3scwm4Ewv5UKGMs9e25lKYPVG4\nRP3b3G+s8/yoDodmT79fL2nMx+xTY9a7KYifgP1lCfpskNb9lqhGLUHR+kX6jXrPiiDp77EshhoP\nz9PcroDCvnVN9dmFvy7ha3zzcY17uay5kS5Tf86+3REcOpxBAhAz4Qwoc1Y+GYcI08FbdVnOe5Yr\nZW0aPh+DBFkZqC8K71afbT2tuvmgYkdtngmLqmsHNOzE1Rg78Mgt4bfMplArBR2f5ewxcrSndOCG\n5BHUAvgoXc5PGc5x3lJj4YeKf3BDrT4t2x2X4WNjr5vTJ2+ONNdKHRRk05wr2YO9Fmh91I3HC83R\nEWOfK6JqfAGe0wpZCXBErsKdkyrqXFhMwpO0C5IexPjXKxFSJipRiUpUohKVqEQlKlGJSlSiEpWo\nROUdKO8oUubJpx83M7Nv+0FxDkwCeVmf/8zvmJlZEhbovYSictkaOV+tUHdc10lXQHGUQW3AbzKe\nyJOeCNUy8OzNUNNwyUMc4eWdEaFuENktENGIoUoyH+k6PtwA+ZABHV4TmxMBQIkgE5NXswgHjJG3\nmF2T1zyNt3OCYsOyB78J+eFffEF8L58/VY7eE9/9pNrxuDxx46L6YfMBeWfjeG/T19WeOwtxO4zd\nUytdk2f0n//G/657/j2UTgZEN1B4yk5VpzJs8DV4HgJY17PwKvh7Yd+QbEne7gwESpwE5FkbxaiR\nokGD7N383nspiTHRbLhksigEfPV438zMHnyS+szkjVyEohgFuFA8ouMo2UzhRMjD4u6T/xwjIlku\nKxpXzMNN0xZiJgsXw3wIusDIg8dz7xF1GZFHWdhQvy1RdvFAtmSIlpVQ6Flk4HZ4K2eVnFuih5OE\n2p2/pOtMa0TB0kI2VS5+m673sCIeddAXVV/37z+o8VgrKpq3dImCkcs6hb+oB5fEbEFuK2iO8jb8\nF0WhSkYluGjIz7/yIc25tEPUjeTabgxOCDgN2i3117ygesRXFZkN0vBtpJWHuQkXTWZJnv89lDSR\ntUSNviLQNYVfI05dmuQJl1gHfHLSx0nNo0wc1Q9QUakqKJ8WaCWQECsbqlsMBYX2EF4PlMzS/D6Y\nqiLnE6I1RFKX8H8k0njMiYiWiTLd+qLG8PI20Rui7Yuh7ruzo3Vz2YRjhkijpWT8C1BGS5AcVVBT\nKcYyNYHfh35bDDVHh+TqO6h/jDKqV/sLzC1sOxtH8eYi6IUm3AGB6rl5VbadJ7/55LrGvt9UPcdw\nxew+prk7ZU7sj1EeI7+6UtT6mUWNyi+g2APHz2z9bj70vZQjkC5tkDEZopRrq2rnQYieW+6bmVmT\nSHuc6FLcBdGYU32KBUVkqildNxHmmTtqV7EidMKUXOqTO9rPugPQG2eKlsaWqBkkzZITre17tzWG\n+6fqm0sgGje7sp0D0FjpVe0pCIJZ+gCETRyFPqLcafhyEjXNuyl7mkdfj6YhGgtllwH8HPBFtEBU\nzEAzZS/q+wOi6sen6rN1InPtDDnwKAQm6fvRVBeooyCzTGos8m14enyUa1CWaS1lWzGUGhYpzYH0\nQuuREY0a1LVf3X5hyveEMi2m7y/u9NLnhc79zO9pz62y7jlPaq3IoNgzG2lNuCBBMht2tMcn4MIJ\nSxNuLxeekAqqGF1QaI6j8e6B+Al8/T7roDhhep1gg1N46vyQFg9Fs3zsbvStmJuYO1e/5OHD6IMe\nLFdlPzeHmpO3npMNPvSwbLZ2GY440ASNQ427FyqQjYkaosyzaKrdrb7GLxcQwd9RuxbxwIYx2UR+\nW/PluME8SWh9cwN91yOKHwNRcY4qkAPybl6o83+4QI61LiXYy5oZVD16mhOpTfVBoqcI7GSyQxu1\nPu08oPv67PH3WuYtzZ16ijmVA50G99UwjOSyTmbgJMiHCBAQem9xYg1QHGTvnYb8bKHMyKGuc+dQ\ne6OXBkoz1aTnGGjdBf3Kuu3BGxdHOcfgWPOTIEFRJR2AsMmvgBq+xdkNZZcE0J21nurVWhJZhnur\nRz0HDfXjkDPV9qZseoR0TJzz/QI+wukduBHphh48LKlNuCXg6zvq6NVpanxnnDWKcHilORuOcrqe\nM4Bbh0kSKpSZmXnjmc2XoLvKIN5Boo/b6ki/o/c9VFHnoBDi2Py9lL136zyzFsjmHdCUw5eFgOlw\nZogNQHQ8I1SBvyVbeACenCUcKRXa6BVRCeUskNlTX1zJCUE5K2tsbh/oe8lT1u0FvGlrKJqBqAzm\nGqtFyDEG51QVPk2/zF7vw8/E+p5iP/GwqXlGY9E71jqf5Mx0eV1zrd7Q2DVZd9IgxoOE+iG/q/4q\nQEy3Ad9aMiPbioVnMng9h6jUhUj2MUiWYl7rrIei4dqFb9b/++w/c9nIhGczLx7yjqo9BU/t7ziq\n14BzeG7GOR9OnxTPektjfQdlthzeH1ImCJV/vJC3lDUwodd0yNsEN48Ph9rAY38FpTKeal0eByAc\nHRQlJ3BXhmjdqubWhP5s3Dp4qy63rl+zWs6xCc80MdTMiih4xUGBOqCe2oH6pn6se6XHofKr6tA7\ngf8yA9LOdL1yWhw0SUivplPG5FxjMEdJdpFknST7ICDdIQ8RXhrE4wSezUmc+V6Gc4w50nZ1/Th9\nQhfZEA7FPjyow5s6p5+c8fzPs1YV7tlFAVth/b58Wc/jm98sJUIfxGJzIRvcWKiepw19Pwlv3zi4\nqwb3Z5UIKROVqEQlKlGJSlSiEpWoRCUqUYlKVKLyDpR3FClDaqvl4TCYvC5P0loXtZQzvKB4zIIs\neeRE227P5AGvJvCMp/W5k1dkJDUHiQJT+Ag2aQ9W5Ek/RCnoc98jP5uI6Qh+izle6lmanGC8o3OQ\nOsm4IjULcmJHCzgfhmN+j6cRz6LnE/GNqX4+EdYOvCiJNdVv42lFrbYnRGzfK++5Cwv/ZEh/0I8X\ntmDFr0hZaTIncnI2sYBoxZjoR4UI44j848656h7AYdKdwJ9DGKOKoss4BycLAcHpBKUWGKtjE1jQ\nQbiE+b5FGKgn4/vTX3LIx+6hJJAokNdcUR8tiBadEbGdJXWfDRRQfJRrcvBdzOE6mZAPfrqviGhl\nS5HC3RXZ4hkkAaegtcprFeohD32RaFYC5E+CfMqzQP14lXztKvw/KZcxI2jlFeW1TZErupyoPtM4\nPB5LjYubJM87q9+niSIeITlULGGzLvmNQyIbDpEEYxxH6rcz8vV9D/TDkMh0BRZ68h03LhHdI3+/\nBUt/KadIe6eh6z2UVeQ1W9b3j1uKBG3CuxKg/DBpqp5bNX3/zlSRofGxIjgrD8vW3UD/7+D5v5cy\nMzzoNdbkNb8AACAASURBVKL7DfVRE8Wu9bKuWYF3Y0R+tROTbWbJgXUSjMEE/g24ptLw7HhMNAd+\njP4tXf+gv696XFDOrUe0YwASZtLW3BjA9L9R0usBec4t1EEeuyBkRbGiiGEH1IIHB84p3AcFX1Gn\nDPxGi4TGvEFkMVUF3UA+N1Qu5jGnUyBvxkRb8nB7Xal9wMzMyjuy9QXqIfUmSJcjIho5jaVLJNLD\nRj0ij5kOSKS++jdI6vqlEgoP5GuP57LBkaN63HpZ3Col0GWlSyBxUAzw4EXxUsxluz+kzBNEL+cF\ncoOXul6nz5oWU//N4HbYdPU6AjETKk848GrMQBS17oDqmGnfWSxQMemo32JJ2V8cjqFxXfXuFjXe\ntTQcYy+1LICn6Nobmjdf/Owfqy8uq+6nf0k2cEpE7sGSIrHpMdEgovJ3QDqM61o4EVOyITxAMXLh\np+whnkMkcaZ1LAm3gYe6WrawZ2Zma5ewaV99cweUlIeKXc8DUQIXTQq+JSvBZdZnveupD4YDIn+o\nGGW5b4z1ehVlw0KR6BxqfOM8nAznavcRfA+FddTwUELcXGcBu8fywb+gvbP2gHh/dktaxyYNrVd2\nRwicRkzt9GNaCwYovLkoIc7HoLtYxoqgYofwjCyzal8FdaZFGyQlaoWHXY1PuaT/xw1E0IzoPogc\nZxyi4+62M75ImAf0MoZiWxZRkAFzdANuMP85rTVt1oQsCEb3SbgnxlKBWV9FiccRkjSPhFAG5M5R\nHy4M9p0470upTaujmrTxiCKki4XWlbPnUZraRGWJ+RgDWVPi3OUHWv8mKCoWp5y/WKdjoHcXqDK1\nWOd3Lioaft7k7EG0PpvEpq5qDIeHKbufMourfmX4j3pwTs3y7K2aupYq6brlMogfOE48FF48EIIL\nzmQGasFF7S2f1vVjCfjZ6mofIC1zQUeFqKkU647H3Au5uXrw0w1AA1en8MbN4HgAgThf6L6FNfXX\n4pQ5hzLkuBtyIsABhFJOBb6ieQEUcIKIOdeNtZnzoCCCtM6x26CzMjPd5/yakO1FUGXjsl7ffVX9\n4OR0nxsv/ZHaUQVpCYrL4Hca0C6o4iw1uBt7jiXntppF6Qd7cluyi9O25lCprOuW9nQ/h7Pi3O5y\n07xdee5fv2JmZs/eENq9dkXzym/Aw/aa1q1aXjb45X+l709dnUcf+YiUU2ecY2sg6PKe0F6baxqT\nwkR17K2CWEE5Z9kBBQAqcw6f5qIFcoLzbWOImhPPUHFQnT24XALO9z62WIJb6yiu+lcy/I7zp/VR\nKfVUr8qexroLF9gU1IB7WWO1kZMtZlbgfwIFl+J8OgUFN+B9Er7PZgwkKFxmbSDyq57m9hmqUbmk\n+ndlV2ezeIdsgqpH/bVG9Fi/s6yjk1io5qr3w7r6LVNg77bw2S7kOEOpF1u+1xIvqT4brPv1GyD6\n4VEZg0QsFdgn5lKu605UrySoiyVn0jL8gEPOSAuyOHI+qDcQTPGi7htyY5qZbdQqdvWhPUu6GrP2\nm6iHshc14UHrD1WnGJklKbhi4thmL6Y9Z55kL0DJNglqNZ1hvYQDzD1V3RYVFLp4VvVBpm+CaF8k\ndJ3YQgtsow2fHgjD4FBtax3JNpqg7g9PtWefvqHrc6y2/Lr2o2U55JrV9VZWdZ8q7chuyZZ3HtEZ\nrHkAwmcGMn5L60P9+r7u8+J1MzPrTDg7YCu1S3DFhlJdX6dESJmoRCUqUYlKVKISlahEJSpRiUpU\nohKVd6C8o0iZcV85XMNDeZZc8pe7r8vD5b+Al3RTkcSVBxVxTH5ASgAJIhSLWcjoTa5rXN7GLizO\npKBaAQTLechkDt8IVA6WArEyJ8t1TATXxaucnMtTHjMQOKhzpGEgTxUUpSyuKR9yije8ife19aZQ\nF8+9+qKZma1/UDlpVVAWS1jyR57aM70iT365JC9o8VF58i49KA/fiHz0MqGSkNH8EKWHEbnIFp9b\n8KrqXj9TX26XxQqfqKgvKkQ5sjVdM47EQZo85ZDt3KfvYp6iX32QGG5P3+vmw+g40aApfr8envrE\n/SmmnHXhornToT4w+ceJRCZ0v2SgPlyHGXtCmGScw3ONh3vRVn0KAVEr8r69gep3eqj++eJnP2tm\nZucd3ffd73+fvhfTdYop9cNJk6gZEcg4SBlERSzIk1edIsqFR71Wk3LYHL6hOeisBQgjBz6jOHxI\nw3ON8RRlrxzcOIMvPWtmZs99Tr8/uaX+unBZEc02fCNDopNHx2+Y2V1loRx8Gs4tIhmeXosgo269\nqv7wyaF919X36/MXFQEaoVayfUn9ee0Pft/MzC5tKeo1A1Vw1JZ3u4DiRv2GIjivv/B5MzN7ePiX\n1G+My/AbE5R/TQmw3YferXmximrRs7+uvpnd1MUCxjpbDnPMUWiZhOzu+n8BfqSAfOkFil1lcktn\noInCPOwKnFZxOGj6JygAEFEMkoo8rMKU3xpprPZfUSTh7EAIkTVyUMPIb2yqdrmoZsRx8Z8zJzZX\nVa/Hv13rSKejyMbRSxqz0ly2VyRfOYlNeSjdZLO6fm8Bl1ag6FLrpsZgzPWqFdlgFcSLT47wPFSc\ngUMgST29Akpgp4qkpshfXluFY4uoTwDaLKjo/dVd+Ibg3QiI4vTJad6AH2U20VqWbAKfu8fSqGu/\nGdxCHQtuhQkosFByKIeSwwQ+j/NQeQ3Oi2Jbryk4B2IZ2clFFx4PuMoG8FbFHEXpMr7GY1jRXNhY\nVTvW17WfnU1X7KyvazUm6ruGCUG2c/FpMzO79YrG7OSOImbblzS2JyBO1krw9WT3zMxs6ererUqY\nqx7KK2nM0jVd7611dAEKwdFeFg9UD49E7FvXZNvndfXhbUfvV8L9ARRpBYSMSx54YayoUyGmMZ+C\nPBx14BFCCTEgSu6R++9M9Pu2iwofc7K0pjlcUvfYe3ZU39LT7zEzs3oTtFxD6929lu5Q9Tk70pwM\nURRzh8gwXAtLon79ZcibEaLSQF8Q7Uu6IfoWpORAcy+X11zI5NUPDVQwquxjY5RrxgU4uzSMFtQ5\nrNTgt0Paq+fezVMfuXEzN0RNoCBBpHzbU3vqu1oLbKZxb72ms0OM8XnqverH5anWktsvgxjNqf5N\n9qMQCRtPwrMFudHtff1uenlsy67+N8eG1ra1N5Vvqk+HgeZXAcTiFFW1JYqNBThRCnPZRoLz3QwE\n4Rw+iLURiGYWpmmT6DV7mgs0e9DaV99kte4k4Xq51zLp6noDVHm6YzinmGMZlM1mSY3RiH0lMw7V\njL4WhbwE6ejB29cBTdBcoqgGEqRaZn8ow222lO3MQ3RziBaGXy8+Ys5zBsrAl+EWUU3CFjuodmYn\nWvfnIHmmHIxDJpVQHe8MFdHeV+FsJNi+5KwzbbG/sJdDN2L7t/V+uabvVRxdsMVacjxWO0JlyONb\nOiOkHKFMygv9Pp7XDU966p8q4z7s0l4Q8FNQZNnqXTRAOrk0H/TFEI6HPuv63hMiiFpsah/KpbWm\njCshh9FdhbO3K9uP6lklv6MzSelbhHyxG6+Zmdmtxb82MzOXvh/q69YHDbCW0xgnq/B1gKQO96ZZ\nL0ubdYZovgEfHOfrCcqxmR3O8d0QKQ4nSwjzj2uMk7Q1VIZZdMI5yF7cCFGt+n6CdSTkLBtMx9RH\nYzk61+vKBQ3+bZCA5z6239V6UoD3aQjHmePDW5eCkzGh9m8+rn6pXdK6NTzUvtQ7015aQy01BhLf\nG+j+IcdKcMCzJv03glcoHnJ4wdk1i4WITp5z2J9c+jWNwk6FM08Km+8xmSeg9e619M5BeYeKZZz5\nHJPNNUFWpniusFiF+6B+N+QZmGySHtke7rleHVB9i4R+t7Gmfs2Btl607/ItBcuYTQ/G5uVDBDDq\naGwtbeZpn2eicO/wW6qDV5Kt7KxcNjOzO6Q3JJmf/WPGLKazywzuwwx716Sj9wkUGnM5+HZAFM5Y\nphcogIXnteSIdczXHja6xjlsB0QkyOh6RmMzXGoMM9jAEr6kxLqeiexU69o0VJfqqN75rp4tLeR4\n5MwTR7U05qovD8/I5mCvfuBx8T2VQ0nEFKjbr1MipExUohKVqEQlKlGJSlSiEpWoRCUqUYnKO1De\nUaRMbS7PUvGOvJ3tlvLEJ6Az9h6Wx3oNHoqhH6qFkJuaI48djfkMeYZjR97WUlLe5DnM2eUKXlAi\nBNOuPGmu26JGKBwQEc6iPOEihD4mn9EzPG4deYv9ibzID+3IU5g0vTZyeAbJ758MQQfUFYXLNeVB\n23p0T/fLqj35p/Q+9MjNevJMBnAwvHhNKIVCgJoI3t9N7pM9hJX6XB6/ZD5r2Qxef9i+k67eV9Gi\nX66g0oEqhgPXzGIAezucBZOlvJqdvvoyEVffZuizFR+ul7H6fhRXHV3ywpdJPL73WIIJXkzyhRfk\nGc5B+PgHROpcFABQDZrnQvSSxjhBzugQ5RYXj3Z5BZ6gmWxm/9UvmZlZFzWP9z8lboGnPyaFsPqp\nbCwHh07gkO9IHrY3IOKckUd/e0P9V4ZBPFSQuQr3w8t49Asz9dfRVB7sFpwIMbgHUnmNx2im7ycD\n2cr5uSIvr35etraS0VzJrWsc3RBxsgqKo69+uXxBkdoJnviDNzX3eiCbCnl5m31ygZeTkLkcTokx\nPACvycYeRN3JO0TZoKr+9Idq760bioz4W4qSZsn33AV98jhogzcPZF9e6j64h8419m++IrWx4atS\na0s/G7Kxq6+aRFHmM43h2RkKAgnds5SRJzxBbmkS7pkMkc65A5qJCIBX1u+LG0STyGWfErWYT0Hg\nwFVy/Ca2Q85qaYGqA8GKPmpNLhFPb6H7Fqu6fiKp962uPO3HX/yymZmVr4DQ24a76hR1CqL2DnPH\nQEEc48FfgPQYm6I+M7gI4kvNoXgGdY7zUBWEfPGFbDORUf0Lq+qXjgu3Fjn8q3nmLOiGWRKeip7e\nD1CgKJIP7eYVSViFr8IboRQG0tHzQMYwHu7q/fFTjVuaO+2W7ptDpstLoU5VUT/0HBA0XSI9RGqc\ngnKL3SRcNwNFn5yBrjeC7KFVJx/8BhxGdzQ3y2v6/dFS7/feA2LoQ5pj6Z0NO9/XXvTgX/mImZlV\nv+ffNzOzK49pjIORIn41bCwNysjasonz60KdBmNdZ0Y+dLYL9wmcMmM4WFooRzkoj6Xg8whRCnF4\nKBK+Xn0QgsldrUdrjhCX2TCHfaHvLae6f7qrPmmicNBDUSe2AbqKXPoikcfRUvWroLK3UtRYD0Hg\nQDNis4X20KPb6uMOfBQ3f1v3PT7Qunvhwl+0+ynXbmj9P0PVIpHXmlAjDzyTki00fVALcJj5QPvC\ndb8NKqM6It8+r0neA123AtqshiLcFL6Q4jp790Dt6PRkY0lPc6kHOrcccj0Yeerju/E1vxXYMqP6\nBqEaokfEF9SvNwL/wFqYQ8nm+mtCFl28pHF55MPv1TVBCI2bqPKBMj58HWWcotpZzqr9qYfgGqvU\nbDDXb+rXxCHzQFXXnjyg747vhGgs2Wgabq8UilG+H6qaqe7LOW0awuECCnWAnFHMBY0FAjABv06K\nCOwcFFd3qL3Wce4PKZNP6jrLCap/cfXBgvNkGO2fwYGVAonnoNLkgZz2ezoP9g5k++1AZ4pkEWTR\nAv6LDGpFnIXq6kY77Gnvn4CcLMCDEaBQlkEdKolqaDrkFluyZsCd5YE89NuaXCFPn4uqUhy+EScT\nKtzo+o0OqnsnoJenIA1RT5mafl8EvVxOq33tfdX3BijhwZlscO1BFHiu6szVZE2YtzTO+w3ZSdzR\n2gM1pAVwo4Vrg99HMYezT3wBCY+Z2aBvw7bqVT/WmrH6oM4kBdB2x3AxjkEcjZrqj+Hxud1ryQfw\n7MAnVO5pLLuB6l7Z1vkrsakxuvSkzpejjNadxQJuGPZgf6a9PAYvZhrVpiXPNoUkY7WmPTRZhQ9t\nhK2iVpQHUZkGdeX7IV8aKpys+1sXdYYqwJ11RPaCwdfXIWsgzjncA3WwdlnzvgtXjQ/K2KcfqgnV\nq7VJ9sEuSMoC3Ix3VP/MCnxDgdqVTXIOBfW2WIEbBcRPEm7EBWeLbCAkupcGid7SmjAKNIZF0NBT\neJLcMciYhfo/xr5DYoBNUZ0azTgLggBtw29VcjhLgL6715KIwbfEOh0yg2VQEO5xZtksajx6cbh1\n+L/Hc0LGQHGALPKuUn/gJUFWn8d4/knDqxS07iJ73HrT6s41CzwU/26obn0UnBot2VCtIhveuLRn\nZmYLzstr8KsV1tmzTjWfWsdC9dzhnL6xo/W9AJdhAnRSBtRSqEDV9+G57PBMB7dg+Cw3X4YcV/re\noKe2dEtaIKu7uv8MXrz0lu5TQDbOgdezXBPcNos/IQCFm0fVaQZysM3Zyqto/yqkQptR/6VApRUq\nenba2hPy5uFH36V6F+Gh4/z59UqElIlKVKISlahEJSpRiUpUohKVqEQlKlF5B8o7ipSZkNt5si9P\nWhyPV3IoT9PFC/KYj4hKZQN52CdEGpbh98kbHMYVeYihzuTOUBuB66G+1O/mc3nkMuQEj/O6/hx1\nFM8lUgBqICAiQqqzldbkgVs2+D75ly/uw0qdUTQz8IkYlNA7f0zcAe9blydu70nl3jlp1T/5iLzr\nG5cUMViAKukcwUY9khc32wMVsn+bduD5J5pWI0Lurek6k0HXMngvr5bUpwtYun0HFE8Trfap+ize\nR6lgKs/qLGSgn+ja2ZB1HG/iGHRTGJSfFcmR7KntDVQ1lt378wNO8R0vUmG4XPftH6jeTZi3t7bl\nKXbJy04OGHu4VFJ5EBwpjdmcKFss5E6Iw9ZelBf1oW9SFO/p75IaRyqr/otzvR62N8T2Ekdql7OE\ncwHES6MNygCVpjsvimU/3VHU640DRbiv7iifeRrmp+NdNrh9/KlyZmsJRSJGRKHyDd03eywkyuWr\nUmOxfc2FEcil8RtiID8+UnRog/xyy2jAHFRfCCpa0pM3uoCyzmEdbh/yrwO4DkZncMfENYcGqEM5\n5Is75Cz7x6A/iCiM4Qhqw3E0H8l7fPM19U8V1ZB7KT2iRZNXNB8aIFmyIC42QEvV4nCUALDwQtUK\n1Dha5JDOYfQP4LMIUL8IqWh6ZfgV3rdnZmadnqIZsxtqU36psW5SP485dPyGIn0XQFftPKbohztB\nWWEN5Z0DefqdPpMJjgQfW8gRZW8n9P1uR7bSIJAHMMXmc8ZkrrEz1CU6IGHy8JcsfCKe5LNnS2F0\nTf0xJHKY8uH8wsa9pObOBii8+Q4R6VOuO9OcH6E658KZUymoHi5KBSkiwB6KZf6UiANcDzH4T8II\neSxHBDy4vwh3ZUNrX2JN47SyQf48NjlCGSge2uxFXT850tz3J6zj5GEnCuqPbEVrTwcltVCZbiWl\nCGwLHqrKnnipyouvmJlZ/gHZfkBk+tL2hlV34SQpgmQ7li1/8RXZROVIY52vEsViOb30hKI90772\nlNFNzbf+udrY68kaZ+RXL0H/rMNPsczDOTAO11sicizoqYLanEFRoE2fBaBTz05lozX4PXLwIrlr\nmlvrU9lUHfWHRk9957KXB0XZXo69dNhRfWYJ2W5sBheCKyNfct95MuTd0Pcvbe6ZmdnKJSKGo/tD\nU11ELWTtimwlh63GT1XfxqHmfsmVLQTUKw66ag6vyOyG+mf+sPrNa6o/bKwxtwzcEXsyluu/L9W6\n3OpTZmbWQTFnAVogkSZKGEZqmQuDtmynFPypfbUTN0N5Ll8AXdcIkZ2ggev6f4+IfCIn0poeHApf\n/l39/9ITOpMkwvGBs2CIGsrFJ9XP5ydaQ8K5Wn8NtT/vZStsymYMXp32m4o4hrxlyQ2Qyz2UG6lT\nyGcXI3c/gcLXAqTaIh6e01QHwDxWrKrPXZRkmigVjqfa0/Ock5Il1qvR/fHcJQIirmuqb/MUFNNU\nNjmaoU4E198M/iFjLx6AfG7e0ZxOokJSe1D7QfVB2Z6XUP+Yx/rJWOfg7RmsgbjMa88fBCjIgG7u\nhrwTnCUG8Db1DoWKrRLpLpRQr6qCltiH4wHeic5MNuEPVJ8CHGqhSp4LN1eo8jcGNTZsywbS8A4l\nC+r/QgpOG5Q8E9iFC6fMa18QWq3R0D7lgXB3OiDJicj7qLQe3BGK4xS72qpqbg5BTLnOXZW+2HRi\n/Tr1Qn1xe0223wCRdQKideMxtfPyuv4fInfupbz+f0pF6R/9A3HsJa9qzB5eU1seeVxzIlHS/F+g\nWhTOkVRSNrw4Y/3hHDZtwvcBYiYFcj2OImISPp/BudbFc3iJsqY+KYLIcAesW5xL/bTq4bnq806H\n/xfVR2NUSx34fNxD9fnxl3Xm6oE0Lz0gG1lNPWJmZjG4UfwX1b4Mqp4pUFNeVsiYC9hU60xzov06\n/CDYvvMV2aztcv5vq155F7RFgjMg7SrDb1JY0dxw4PE4bIJUyqGy2gzV/kAaFeEsC1DIzaKWd0c2\nE/D/PHwmPZ5hQ/4nL4Rn3WNJojbls0b1QRtnSqpPC24054r6v5SAt4lnyxTckmPGMQ0n2Qi+xJkD\nerBLPeGviiVQbgvPhmZ26+Z122h4dnFP5xlvU2MV9k16uafPUb0LzxJzOF6Oe6h5DshkcTgIleDh\ngTumuqnrL1CQioO8bmB7adD8LuitGc/hLuekPjw5M1RNDaR7jAXIPw3PVbLFCxtadxIoOiYnWu8C\nOL8WIConKFmdnMm2g32NabvOmMAFVvCFwqo8oWexVE7f23uCrAaWiWv/QmcFB95RB65Lp6Bnpq9X\nIqRMVKISlahEJSpRiUpUohKVqEQlKlGJyjtQ3lGkzGv/9Fmzf9fs1f/leTMze+iblFeZgJ/CR0s9\nhtfWK+vzCgzgHSLEs7g8WE6TjDzQFF6WvM7/i703iZEkz878npm7m/m+x54ZGZmVmVVZ1VW9d7Ob\nHA6bFDnkUMRgCGhACIIg8DAj6D5nYaC7TgIESIB0Gi2QRsKQkpozBFsasskme++upasqt8iMjM3D\n932xRYfvZ50koW5GnVIH+18i3dPc7L+8/2Lvfe/7FrD4Z+XxA+BiDrwVsZcko8r72kwQNnhfh3A5\nROSJ9y9gNi/LkzgL5W0cXSjPvXFL3th6wg1Txotb1+c3SsrDhxze5kPyM8lj/8EjcUVEG0U3k3z1\nDF5bm6NGlZf3dEKO3WPQEAFoj60H8uh565J55PtmXZija6rTgujNVoQKTwjTdRaVCVA5AR57n5z6\ndeDTNOqU5KjG8FV05bkNTV7TClGUuHF9BISZWQPCjX4Z3oUsjNpHqFdM9fzDtryWA6JeTkb1DAbk\ngqIu0iKCO8rAt1NWhK8zItcfvo/gTF7bP/4f/m8zMztdEpkdoHWPxr0/S3Lz4UwAuXNrT/UdoABR\nfEsRAQ8FnLit+reu4JuoqJ6nj1FpArnie7rfGZGS7ZI8+Dtw3jwln/suEeIa0cMu6IeYvMmYqNEh\n+ZPjYhIh0Hgs8sp/nMEcfjEhp9XR99NY7b/AS+1U1Y89FHpGVZjK4Yh4iLJBFX6ALtwLOVAkMyIK\nHrmwqykcCERq19nr+4sjout5VBsyBRBwY7Vh6pKPTITVqahP2zcVRYEex5rk9ncuFf1ZjTT/vAl5\n1AXUdt7QXPqVr0n16Htn3zAzsx9e6foaiAqXzxXyqffvy0YB8Nigp75+PpINlIji1IqK8lR29HkJ\ngqNY+Js5/eHrmguv3dM8Pz8jfxpkYcIHFV/KFmaglzLk7l4tNQfcCTZc03UBUfWQ9dDIC9/Z0/Ny\noChGKACFd8hrLsHCv6Mxbu7IZq/e01h24fBZuhqfVgs1IqL8HlHAArm3eRS/FiW4gVCNKm8nUbuX\nEdDrlAtQXT/ui3sofCobvIndFHbI2/c0R7fYd8aoBFRA4Q1A2zXgqMjBz1Iq6br8HZA1oCn+13/5\nJ2ZmdutU0dNMS+26dVd2tEXO83w6t/FS3z3+ifaUqwvZSLRW30egOOPnsokfrnTPApxeNzyhc+rY\nztYN/V3H2qsm8KOFcMl0VvBKADMogYJaO6DDWE+n8DENN/rdHOXDBVwvu6brxuwjmaUimw7EDxnQ\nZq8RfRtNZIMXPfjaNrK9hH9oAddXnQhvg8hmE66EWRk+uC1dt4+y2oJ1fnDJOoJQxHXLaqM1Y9RV\nv69nsokyc2jFWtDYgfsFDp0VaLsy6k1LuHvKqKtsiAyPULjJwCXQhDfvu//XH6s/hg/NzKxU1vch\naD0fzpZKHbQbqIkZfFCFoffTNlx0Ly0DIrVwxH4JEupGku8OEmh2qvov4cM63NacXLN+9z5WB+ZQ\niNwEKPLAlxJzHqiDRl4OWDNzst/iqGz5hEcIbo+LHx2rTTfVB7UmyDwQFO2C5uUU/opMNeHW4zyI\nTc2NcyFni2GiYgS/RZgBBcC6sjJFQJdwqhQ560ycRF/oemUESmDCent+ypzIsX4uVI/6rubkcKM5\nXYBnrzuBIxDVztYDIZp3PyOU22qt3112dJ7LgRDyPP2+wvpYRla0fFtjGg5Ur+IBkmQbnTHKn+JM\nNtaYnHzwAzMz68117qzlVY+4oLm//Vm4yDjbzD7Wujm8VHvd+h3qwx4NoslBranZBOWB7T4+11mq\n5Gifq9ZlqzdAZzRqqn8X/rrSCvRxm/ugtBlXUM7hfisQQ8EpvCPwfmzd1pmiUGItSuShzCyoOJat\nYMMzrdMXRNgrdfgV99SuJyD4p13NWb9wffWlKNYZfZ7TXnNjI7RNvaW9pdbUmNYi2cIGDqgmioT1\nht5dMg3VyUmAdlc6Qzw+195L8N5COL+6y4QPSH9rdZ3fanBHZuCMmYecIVDoClDSyXTV15uKznXl\nitD9OQ9VI1BL4VjXjeBxGoM+yrpCyGz2NddL7KU11E9rIGeKEQhtUAhr5mrd0VgEU9lyDsTKMgGb\ndbVO1VnHwqT9K5CccC2u57K11bH+fwBKrJjTXBz14cLinO3taV+6fKF+XaDA215qrViDbq6Z6hv4\n+BjssQAAIABJREFUGp92gzUENHEcvVTBu06JiiB+qMcqQXl1qW8oG8zDkRnB3+Jm1b8h7Y1RvtwE\nrMtj9se16pO8h80SfryEG/Ll1DB/7Vh/dGJbkdaNfEY2G+1oDLbZ80dXcDZNNWbGfJ4wT8Yj3jlA\nzRqKvCuUCvsd/X4YosjaAjFJBstgqTmxGKjOLvO/nIPnFF7RmNf2eKPJsVOTMSx4J20WWdd2tJdO\nQcDPUObdXCWcr/Bd3tZ17pn+/6OL5DyvejWrWlcduGdmOd7LW/B3cnYJzkH7PvuWmZn14BRr+fAC\nZRMO2//vkiJl0pKWtKQlLWlJS1rSkpa0pCUtaUlLWl5BeaVImSH8FMupvJR+Ud5HvyHPVyMrj/zm\nNXngwkt5tMZTedqWRIliuA8i8uRKoTxrkzW8JrDzB7hVa+Rfhnly3XDo9eAEWKE3PgMdUCH6v51X\nvb79J1IomPY+NDOzwz1dv9xVO6qfkgfxskI+tyOP2wp2+4kPG32iXkIEvJmRx3EYyDu6GMib66Ee\n8/ypIicnP/wrXV+U5/ArnxPviZfR8wt5eacNpvOt/V2bFchJHcGXMVd0oVrTM2fk+G+WqrMDj0VY\nQcngSp00Ibc9H5E3SICutEyi6ro+xJsYjchhj4j4ebi2r1k2oIHipTy+bqx6FEd4K4lWnY7g5XD6\nPEefY5i+4xAvZgveCtQwrKOIwBZR/rgrm3rySLmtSQ5nM5Y3t3lXkYBcGx4J2NePKvIuXwxgS28n\nPBK634rc0OyBrpuAZuihVLBLlCZEEcGBWTzvaiwzc6LwcBzMUeWIAnn233rnbT2f6E4NVFV5+8jM\nzD6eymar91Xvjz+SbX3us7DQB+TBE5IYwOfhgYjqVlW/OxCx1GjfJRGKOcpEy4YiOdNd9X8pD5v+\np4U+6cFLkivr+70HqscSpYMqaIysd30W+1JZfTmeYMNEcTOwujsTtWFiMOuPZavDQFFpiPetRpTm\n1k3WoTcUZYqBtLlJVL+oebgm6pPY/OaMfN1dlBNQrpnBSVUjNz0IZbONW7r/6AUosBxKYiP1SSUr\nWzHQRR6cC9AJ2T48T6Nzfd9HwaUE2qiLzWWI3GYj9c/VUPXqmz6/tqvnhImchYsizELXOaDfvPxt\nrlMFNmVIbFBRGsG14juaExuifbufQ8EGVaaP31X0MJvwVy3VfzkiGyH1W6IeUt1W/UuHameM4kyQ\ne5kPfZ1y+Etiwc/lhRKIfCIoLzSePkGuKaitkwlrlaP+3MA55E40PjOiVlVypx1seNETP0gHBbs/\ntf9W9znX8375xtfMzOztI9lDkbz5bLiy0kzz63aByOKh5lOhJduI6KsqahRL1oGgq3VveqF5PjrV\n/KomKj3JfIK/LMpqLhQ5AkxRsZitZGt+ifxtIm0V1qsIFbgykceCq3WhTkSxCcfWhii4l6j3wfN0\nTsS03IYfokYImD12/x4qFLHqU8YGB3Mhb15cocwF/0TnI41Nx0k4U47NzMxlvb/XEPrguuXgALQd\n3CsNULSrvJ67IK89TDhl2C+aDVAZ/K6GWlN3hmIFfFBz5tYphFMH98Qhs/cZ8WjMnqjdc5ONTZdE\njCuylURV5Q14U56iAJFBGc3MbG2OLeOkf/R8l4j8w6zso7UGFYC63xx0X32PPHsi2cMXKOhE+t6v\nJspu8DvByxeBYig1tJbs7GjfisaBORuNbR+OqYTPbcn5Jsrq//MgZPIt+BNQw1lcJbw68CRF+v8C\nKiHz5OxR54yy1lgUQUTEMSgBENRXL4RicOE4KGea9knKIgJJCOIly5643WpST5BBxDwT9OyMKLbj\n6v/bR3C03IcnguW9fy7UgVXgBoT3LYNqUICyGUcC23T0w2//ROfj199BabGrs0CbiO6b7yhSG5XU\n7s4zGWGmrPZcoKwVl7Dpkmy11dL9N0TXq0A95yjVDB+Kr+McjobtXa1Ze7e03u3WQTCxBvSeqJ4X\n72n9dkF/bVdkMw3UpyasRetz3X/Qgc9vhGoiSMo8kfMduDB89p0sfFNWfvmaEyxi23C+99S9dnws\njq/D2/q+AMeMuwXfB+jC4vz6yqG3Pq++/m3/H5uZWeum6tAG3VXEFi2CL2ilvnvG3j98JNS9w/pV\n3wMVtiubqkD+tzrn3WaBAhjopmKCyAFGFufh7XG0L2Thz7mYgujpwzUD8m/2AvW4kj5vXNBd8MK9\ndk9I8W1QDH/e0TnUAzGy1pZq/gFqSfAOLbAdHy6xqyc6C7z7XHvmG3nZTtUDIUP/dJ4I1XBxIfRB\n6bbWhkM4MmOUJRMak/xIc+QJSlwZ1pzDIyF/uhPdb8HY3ioKbRzAb1KG184C0KyskznUCS89znh1\n9XOuJJspzHTf6xafM0SlgFIn0KdI3WpL0CiXXX3fPlADp3DGLNifeXU1D9Q4NClm2NWa95v9guq9\n2tcFJffl2nf0qZaVvJt250A2F9Y1H9ag9L2O9vJLkIFrMjQy8GMOIyHqGmNUQ7d0706P7ArQXBeQ\ns87P1FfbAZyOGfV9HcRbCAfkaknWAHvdincN4yyRrYOsi7SeRiCYp5dqaztBbleZ12PZ/It+otbM\nWasgm7K3NUfusm40QRwmaNVZpOctu9qbCwWQhaCYcyAIq2/o7z7vB34JZbCdn58tkiJl0pKWtKQl\nLWlJS1rSkpa0pCUtaUlLWl5BeaVImbuf/qKZmf3Cl3/VzMwKqHk4HXnWHjmKxOaXIFFgHM/BwRLD\nARAlCYd40rNwSFS25bnawA7tGSz5a0UIfDgN1nPyOWH5d/DUPX5ELnKOyENd3fUBCgrt+0Ly1H5F\n3tq9CSQxcC4sUBF48BWhGEp35V3+q+/+RPUZwxY9U30vQkUQctTPbeDl7cgb2oDhvExu2hq0S3Yt\nj+RrB/Lw5SuKwDt4FOdBYNEYbye5/7HBuTKDKhpERH5NdIHc1uVS3sHctryD4z65i3DSeAONyQTu\nE48oeiGHlvxGY7eYEf0ufTI/oDuVC3h6qT7yUcgq4PmfV1F0QelgRe6ni+LViojuYqq/h+3Ec4zC\nCqpMOaJsa3Licyt9/tyvyTZnY5A+B7LR4xMioTGs8xmUC+AjKWTlbV6D2khURwYgj6q7cAOgbFCA\n06GyRWS7iPeXCHeB/PPNWs9vNOW1fgGXT/WeokTvXwr9UfVAeeBxf7hWtOmLkSIC45W8vH5O0ayL\ntSIVR6+RyxyBKMqTD7kvb/EcJvR6Gd6Tuto5jXRdfl/fr+Fbmjaw0aHuOy7rvrM9/c2QFz8hUpA5\nUoW9/PX5QjKRxtoDGTedwH8E58gcPht3Rp6tm/AegAYDITFhOdw8UqSyxjpQQRFn/77m2Zh16L1v\nKLq9eqbnV331UXaDssINuA2ITtTgVnh+rvrMHI1JiUjEvab66EVGEcQoRs0tqwhAhXzgCjm/SyIC\nCyKHa5A6Dnwdi7l+Hwf6XZKzHztEtcnxDeBUOT5VFL1YZ4xRiJleau6enhLFO3/Mdawpb6pfsjnQ\naAs95/yF+sebyTbLO/pb/XsopaHYdfxHuu6tyhu6zyERBdAA9QdwB8DlshiSkwvXwnWL19I6vH+g\n8eqxb2yeE/lAnW/b0/gHu2q/DzovJGrlOpp7K8JTeVAdSTRqCDLqV3/vP1I7flVcabaUHbxDZHzP\nNM7jP/+mmZnNw5pl4T8Li6wHUPmPTog48qxpRnU4zMim57uaRxXIB84DjVXwBPRTLFtbh3CBwXMW\ngnxpwOHimfp2MWfOwEXidhNkBFwqa1RCaOssVtQrB7+bZUBFwK3iwHljPe2dJ0Rcz1z9f3iF+tpj\n7flHKLNkN+rzXLLfmObU42cgaJK5fUA07PDLZmZ2e0tzIHvykmvlOqUHD1RuqvoE8IAYHARN0Gwe\nqnqJsEs2QY7Ad1dirvbPdIbIlDUueUfjdfkEdb7bKDrsKoK7gKNrnChLtHXdGqW0zgudHYLXQFDB\nr5SDc8DM7P6vfMrmqG7NUFrbhLrvBF6nk0vy+YnyZUBmLlB3yoACHMGhY890/RRVxSbcYi5qLlk4\n0TaoyLgj1BaXZsEcZAzrTnVX838EynQNL9o569VKIFVrgmhwmxqDrS24B0DxzDn/5CqccwzOqxbn\nRNR12vARtZugP11U+IbaqwfzT8YpUyLqX9qCj2lL9cvHIP0qaleXPb/GuruJ1YdGhLm+rXXcHSfn\nW9YZ+D/egmvGb8M79IdaJxrYWutN/b9DbNW5UKT6EETMk4+0RiyfCmU2Xui69bbOieuOxih3S/26\nW1A9Oh31i6FKGoGAKdVRM0KJp8Q++/4z2WjssS/Bi3R5Kds/vKF9bRt0wztvqd7zQP8fjNQvY5Cl\nzz7irLiGA2gKgpQ14JBIs0vkuY161CpREuNMlWVty29eqvQt3Yzt7On6ClwTJ98W4n30rs7fEziO\narc0x0pFePRAUF6n+Cis3gS1nodLar5U3faasqFKW+vVF7+k+X/5kfriwx9rLOcnWo+PUYTKvYDT\nqqW6F0EPbODR80BylPMa04Bz1Jp3oAVzMQZdvEGtKXdbY1Rb6PruUkidwAdZsVBfbqaaowlfUnZP\nf4uP9NySrz1zBToqgL9vB1RbABFItqZ2LlCQDUE5u6i5LRKOm5Xm0M62xsR9IB6/7RztmWosM5zv\nYzgni3C1fPqe+mnBGcgb0l+8p2TPObd3ZIvVPdBroKZn8HnWUbpchSDv6d/sAiVeX3NjuPhkPHcZ\n3jc2FbgWF8m+iyIvdrM41vod+mpHjC16HF6nsdqT4X0hR0aD30oUi3hgnX0SNGLE78zMgr2KuYO5\ndcjsyFxgG7H+9k71zNkjzff+OcqIRT2jeKC9JOE0XLAuVdgTp6i1Rcifzre1DySypj57apGzjF/U\ndbNQbfJQ6ywnbYPjL8jDS3mhMazP9fvBCcqMnJ9D+ub8mWz7PVTeJgX9/k5WNvrGA2VDlHf0bpNH\nYXjeUf1iULsDUMGZiHUHNG2NvfCNN+UX2PBO+Oyx1pntlt7NflZJkTJpSUta0pKWtKQlLWlJS1rS\nkpa0pCUtr6C8UqSMgeQIyHntT8jxxYsbnpFfd1MesQbKM+sVnjE4aVyihkt4S4wc4cFCXsUy36+K\nJN4VdJ+gIy904onPZPX9vCev9NVj8uzrys1togF/9ze+YGZmn/6i/pa3dd2H/1ZKPS08e5s2Oam+\nPGo5op55Iqzdcz23gfJB71gqVOu88jNv3ZN3uo+qVLMor+/Rr0ph4+pMUcdpn5w+0Bql5yBuymjX\nzx3zWvJ2rlDxMLx7FadEG+TdmxK9Ds7hZgFttIJhvxzrWeFUXtFcK+GtkBd0Bfs4ABeLPJSv6qiH\nBEmy4/VK7Os5t/dUvyXohzI5tLXCkZmZtVE1yg7xPBOZHIfkrYM+Wka6n58nkkf0zfBQbzyiUHX9\n/4Lc06cfygZasJ7HoWzBXagfD96R93Nxoeuq95W/GBd0fRtAUqmpeiUKM92+okbNtiIMV4laSkk2\nnrDSB9v6XW6N7TZBieUVVcvuyzYysO0ffEFe2oPXdf+vwjHz6Xe+amZmHQKrzV2NS+kZyg5bev55\nLM98u6Ro0c0p3uYpOatNXXcLNMkKSbNiW/cLC7rf2aX6Nd8mZzcDN1BO41Wqy55GGRQU9hUxiomQ\nXKfMJvJEPxpoPhw01Xc1Q9UBnqR8Eolds66Q/1yswU+0SfKzdd8xahLOCxnzQ3gjCkSVxw1deOcd\nRR6X+0J6TEdCklTgtAmJEI/JYS01QKoQaRyhiDAlKlMlCl0AeeKgeJOZ67ldT+tduyCOlywIwRJz\neUOfVovkH7uoCp3Kw78kpzcml/fb35Qax/MT5Xf/ym8JwbjMqV4jIs43byoS6sxQeUK9LqTelTJ5\n1kRlqqzDk7Gun6w1Nz79+/+BmZn9Rv7XzMzs6x9InWiFUlmGaN5kCuLmTKHzOQid0eLS7KtmnY6i\nidct3/uf/42Zmf3rfyPFooqvet/+rGzzoJwoVMCHRd5/APJxVlK/lzbq150mkVPy9jOoYjXJK1/t\n6O/bN47MzOwJ+fvVLV3/3tfFZbA4U7taO7csS/TFJeo+vdIzK6ghbVAUK8Cj0C1onubmzM+m1sc3\nGsyv1xU1d6dqwyCr+68CoYFW8FNchvAOoXbhF1CnQJosUW/IbXR/H0TFagknAsjFIpxh0RyFBXje\nGjXNpR78G0sXBGQf7phA9ZuuZat9eJxaDZCRFVBuQFM+/QXtvdkDUAasJ1FWiCBvAEKE/O/rlsvn\nsqk1Knst+JGybFuHO+rnj59pj92Hf6JAxDqGNymHGkahAOIH/rga6KwlqnjLC5CaB1qv8zndv/+9\nd9VeCKRarCWZm2qnD0JohKLkIH7Jd9HZDCwBGuYMjp6y9oG9g4SXROus66Ka1wdZA5o4UTDKgyoJ\nWQtKWa37GVB6TsKXMtbzM3BBZOEjsdCxoA33QMJfQxS6DMdMzoevra31ohuARAvgrILT6hl0DdDX\nWLRQHTeQgyQ9UGIvWWT0vHJGdYpQL5qA0OiH+v9g+slsxLsLx1dNUfIytp1UAIpDa9Nnl5w3S3P9\nbsQcjIjez8ao1zWJCMOP1EEZq3DOertEEeeOxjKAN6hZVL/dexvEdls22XskG12iCjccovjDuXsc\naqwDFMbytzgTTkCXuaA7VqAklvqds6WxTXgsdpqqz+d/WfxIU3ir+qznnQv4pFC/a4NuLnCG8FBF\nDFfwjYBe9uGrunEXlBn247AfZeu6rllgbejrHNCHuyYHb0oMWsPMrNKo2Bw1lICNahvkluuAJBo+\nMjOzLvyAU3gNq/HPV03566UJ6qnT1bMqRZAZIQhC1utF59jMzB59Q3Xpr0B0gPpdHKgPGigQbnq6\nz3IO3yWIdwf+jiAW4iVm/q6Yv3N4ihJ0Z+iDzGB9fR3Ulg+CcgC/R5RnP1gItbTwgBU7qMrBNdVE\ngWcEN+H5Q10/gB7ps19QeycgP5rY+N3fFM9bAX6pFmqAASqiIf3k39c+dvs19sEzEDz075RsigDV\nOA8uxgocMx5rwRwEadtjX9xSvw7gKXW7oKLoh/q2btDtqp/dvPptl/0oLqu/p77WlPLyk+EcFgm6\nD66yvAd/IYj0DtxonTPNneINEPBwnYWgywqgQXjltYgzZM5NlCvhdeHMk2fNbO29XPvKTmgnvRPL\nfKD15hYo+DGcrHstnXPLB5rvx1lsgvfi0h6oUlCwWc691tC7TZY+bu+o7334gmrUja60JSjddch5\nO5kTvDsEI9BCZAGseUfLzsnOANE87yYqd7rfFhxlOeaEAzqpyv/HK91nyrnTCRIFX9nM1WONwYr9\nqbBALdCDA5d3sXwVldC31KDTyffMzKz7sd7rizep+M8oKVImLWlJS1rSkpa0pCUtaUlLWtKSlrSk\n5RWUV4qU2YwUOZ2Sh96Gh8IjR3haIj89wHPmo/QCQ7YLA/l6Bet9WR6tNQgVHP02gaXd8+XJcjby\nPk6udP8RaIfyWJ6zKZGL3TcUccg15EmfbJGnuCX0QP4IjyB549W2Pt9s6jlWULTu2XfkKbt4VxHa\nBZGJuqPuL4SqaHciD/3q2XfNzKy1r3zTekZRrcq2IrpN70j9hyPSUCOZE/nPJ0zkoCqm+cDy5JRW\nqigCTNSWSVF9lgNNkHB8eLtwtPT0vU+EbO7LM+vh8V8R7S/j+c4T9digQpFfywM8d+QV3eSvn5er\nNuh5gQ+6AC/sDFSVey4bOkNZq0uUZO+Bvh/DPl5F9WKyANEBZ4rvEjHY8LtIHvbnG93PpZ8gArc2\nKIzXt+RF3kPjfudA9x+A4rrR0ufhldp7capo+FM4FWp4VwsZRatCcvhrFdQ/FnpglEVRLA8SB9vf\nKyqyUdoTOsNdYkvwJGVN7fz4m0JfPXsmr3b35A/NzMzr6z5dT/XZwmu8jbc3mqv9O7Drdyvqz+Vc\n9z2EG2cJP8fkPaEwGqg95bc1l4dE5HdKREpM3uj6vtqbI4Icm9AQO6ArroZEZK5RNlP10S5Ih9a2\nPPlTOJ6Cp3CpgNKqVeHBQIVptNCzaqCkJj3Zat2HM4Cc8vyVbDuH5784I5rFGLfuaF0IYV8fnWs+\nV0GwTMnjzY91vyJ52aUpKh4VjWEO5B4prhYyZ6pbcNb01J43P6/14exD9b3znubyqEu9MrrvwFOf\nT2i/ly1RT5CGK82tTl/rYDehbKmwvpZYjzOKSlXfUsTEWel5G2xtBdeBT763U1V/3Qg1J571yZPv\nac78wJRj++LRN9QPCzgN+orC+VnU8Oi/DOixDev28oVs8LplD5Tg26h8PHhNNtrMy14mgerlEUmO\nia7FcI4VZmrnsASHwgew93vYy0a2/mym8fjwv/zXZmb20UwR3ChBq7wphNPV2bGZmX2ZEFHeXDvb\nqG4b9qw4Vl3O4ShpErWaE2XKTVSn2VwIkTPUcBZPVffsSGgcPwe6tMJcAHVackFVben7FWiuFYov\nFmh+F0EPJWiHAGSGnyNiCNfKJERZoA0CpKd6hURy5xfqu60HRBw/e6j6j2T7r+c1JsFH6ssc3DSX\n2I5Hfzx+obl1uoErBa6dBO1WPdNc225pTl637JaJsN77lNrHMtQ7UX3KNRClvW+bmZljQigmTAJR\nlXz5ZPyGmsSPR4SMr1BHGat/PprBIwJXQB2uiSTPvvcTTcZeRmeJfTi3Mre1FrRBl2QyLxGoR9t3\nzEWdY7oAlQv6rA/vBmZiFeZ+BK+VAzrPRVZxWtTnGmetvIGkXaHKgrJEbivh/CFUCzdSNje1Iqgv\ngIe2AW2abSRKgyAVAfGGSR8F1CEH919HfTjLqre9NbwW9E0R5N44y1knC18E6Kr1+9oDN2PZ1BBe\npEr8yThl8gFosQiOP1Q5A1ACjsOZBYBGFfTUC/b6HCoeHEVsEelzEiF1sqBo4TcqcT7c2dL3XqD+\nevQXQja6n37HzMxGjxWJfR9ES3SifskSafZzql8EcqYUwQNEhNib6P5LkEmltWxxNtY+4sMLkmeO\nTQLZVgl0b/meIuAbUNU7h3puCwXOOFYLhydaHyMQU95cZ4tiSXPPhXIhnqPchg2usfFtUAK7oEi2\n9mU4y8daW6orGfd4ATq6/5LnI18uWh4ETTdSu2NQH2U4dOqgLAz0W5mz0WJ+fUTVn35De9r/8/W/\nMDOz+4dE5Xd1Dpq34dHw9ax5/Ij6aQw2NdAAqPGs4NLK0GcBUfxLEHmHHsjqhvqk95FsvQLSYgKy\nLc4nKCRU2xytv3POCv0OnIao+ry4Ys9GGTaEu7EP/2ZhLZual+CmwrZeHGvdmo1UD+83f8fMzB74\nnPtQ/Tl4XbZ6yfo6e1dzp4w6UwhsOVHc/fAHnDnGcJVl1Y9t0LqZme5/1te5dvAD2VauoHWzjkJO\n8Uj95jNXPGx+xTqchwtzxTvUwTYKaXX6v8t71EL944Jsmly+VMG7TvFazFXOxWGStQGnWgFelZGn\ndpUThUz4ksag5KpwgHoh70lr3TcPKi/DGjft854Hx1i0Ff60LnWvbpcnTy0CpRq6oCY5l4Wvg3rP\nax1IEI75hEcI1GT/UmNfT9D9flJlUJZrfRGDhDy5Iushk6AydX21yjsSSJwp62UA/6bDO2AdzpfO\nGqQ775ybEX024PctOBp5zjuoFpd2yBao63soI231VP3QhV9uCaIn8NSOA9SpMnWyRECfRaDYyiBm\nnAO4Cu/it/g73oFTpExa0pKWtKQlLWlJS1rSkpa0pCUtaUnLKyivFCnjwGNy+Lo8TzH5fc65PGib\nnjxv2QJKO115az3y0lcwjftNeQk3K/IoyYfMkMeZyKs4fTznI/IIz9Gqz8Ac3sSbSt7gjV+X53+V\nk0fsyYdSqMl05bXt/8kf6PORvN13H8jjNka/PB7oujKe+Jh2VEA7zD4WOmAJImjvUMic2tufU7/c\nklrT6EKR1PVY7X/0vtoRwY/SJIo6hZtmQiQ9wvvrFCa2qanN+YWG3IVV3e/rc1QkL3cuj3mUqEmg\nOLWZwrUCd8yaKLKLEoHBATLHs+3AWzElJPdT/g6QGNctc8baGajvhgGfq6pv9kj33S7pvpUenu4d\nIhArtSeH13W9IvoC4iUba+yDvq7LE0HOlRSJ7J3y/YTIM47lTlfR79MrVIxCECZECF6M5C3NVhT5\nPWgrYnsLpFJ/iEd7IRvo/kDXT65kk5VD3W86TdSsNJZXPUWn9vdpdySbeNbTnFl11b5zI/IQanzu\n3ZENFWFGX27j3WUubOWw0bE8/+FK473Gu1wEtFZO+p+IBMFNO4FbxoaMC0o5AZHZ3kR/XcbD9WBW\nB21RyGkNKNykXavrs9hX9zRvFht4EeCaWp3rb5R40MuyoeVS68GH3xGKYAMK684Xf0m/RylsQnT+\njdeFiprDrr4iOuQW1bfHH8oGWjmN/Wtvav468G1cYCPNifo4KDCH6BuC0z9VgcoRHYvK6ksfnpH3\neoow7hzKlubbREz/J6Gw6jNF7acuNluULZeJamXgGVnBeTIij/neZ9/S8/d0v0rCVwR5Q3amCML3\nf6T1742KkDK1Bmizpu6znKPABi/GcgUXS6S1YKcGuutE7X/4LxVFzCL2MUPlqExkdurCrg9vhttQ\nPVq1RHnmk6kv1eFV+uotzf3bLSEPlxuN2zacApuKIq4LQiZL1KhW8LrswqcS7GqOlorqrypKNYU3\n6c+a6tt4RGQchZwiSK19UAcukZfL7tJyKMV0iA4VQKxkQT702eMKRM5qoK9uggIteZpPH5xpjH8C\nIiO8UBQ9u9be1i7o/7dMkdIiqhgxEUEbyxjnRGjjvD7nQ1BcRF69itabYKFoEiBXmy7Yu1HBaLJS\nfJyRDdVuS+FgHBDZ/PBH6iuibksQO4UJvD4e6Ajd3m6CziqWQY+xPlYZi+VrqkhxoPr/j3a9EuZV\nzz6oh+VM/TJh/dqCR2jKnn4FaULb0RoBQMaKnBmm8Jssiaxu39JY59i/nCQsNgI9UtFc3Xsj3++u\nAAAgAElEQVRTc+zJ96S29Gd/8MdmZlbZAbEEh8/R3xNH2K1D9ad9zmzWObcQNZA8vFFtn+ihh6JR\nsi+DsAyJwPogopYom23n+P8eXA4gZFzQLcUSymWJCuNAdrVmDY4aOctm2QvJ5bdGwoujew9ZF3OJ\nrYLSjCqyhV04WXrlHeqIahMKilmQGR7I44QjLA8SJlsg+jzQ3/kN9W0RTkE3+1Kd5zpllaAN2DNz\nZRAVIC3X5yhXYZMB5zKC3jYHMVMGJdpF1a7Iea32OnOSEPMCtRLHU//NMnr+hP1ljmKXf6H9IeuD\nvoIjMQBVN0uQnYy5cbbrA9mZu9rvcqCcEm6W+aXq17ijfhvzXAcVpNffES/IAHTrFIRL+67a0Z2q\nn1t7QgjO4B9pg+AZd+ivqX4Xg85u0H7NaLMskelKRd+USqyRIHbcgvolQEku6oM264FSM7Nhf2A1\nVAOhAfkphMvhXLBiruQj6gViyVu/VKr5u8p8kHBigQg50hmlRZ19kAsO3GCGCk4X9JK/BKWKKlEA\nQiWD7Td9zYXZHFQDc8knq2A2TfZi3X6fdf2C7IFoyN6NkuDkWPc5O1NbC/D7RNRviU1VChrz0++9\nb2ZmP0HVNWbf+uzbWm9ug+SLmcMFEHtr5noJdar4udodf8hchEslArXkFVEHdFR/n3N5BI/T7FS2\nGBj9A19bydG7mwfi0EmUe0HB5lesFTv6/3wRFTvWqH43WVtANYDqywMEfXaluZGfw2t1mXAGveQv\nuk4JzlDhm4P2QxWqDk/TzmuoaE2f0E7OQiDK2xvmJGi7DQj/BVwz8VL1Gw/I6gDdF8Pj2ug2f1oX\nJ+da42DLHBCIB9va02xX8+3GW0KPAkqyJZtdwTTGLwZqS7LedZ5rPWrXdV7z2MMHjq5L3uM7oGeN\neV2uCSoXjGQLz/qoPPWSrAm1pe9q3duFR3PDPJ7xbhJmWOdIKdmpgk67C0/cmOvY6599W+f0Mvw8\npZbm2M0HOifulFEj5V03Rkmte6WFZP5Y5/BCA9Qo/XZ0W7ZoX2EOOKjw/YySImXSkpa0pCUtaUlL\nWtKSlrSkJS1pSUtaXkF5pUiZvT2iNltwN/TlgZrAyp9N1C8ccs3wzOUK8rxli/LILYmQZEtEQkBl\nVIn+TfFmLolkPrlSaNYBDbLdlCesdlOesRgvcSYrz1jYwVNOxMExedQe/fihmZndRKkiPpA3PHgI\nIzj59FGi2/4DPddvqv4R+fFFR2iKB4fyAs/yQjXMh3jToyb11P2rRB0JZtp8LY+hO1E9pjl5JDdE\nSqqZvGXwuM888t0CRatGKAS4RKlK0JW7yc3xNvrw/mTy6pP1WvdzM3iSq6guwFtRIpfRxXG8mieK\nCOrL65b2bXlri3k86EuQLEQWjrvKGS21FYU58eStzBO1KvrqWwSsLMSLWj5QO9dTIn9AYCKiKFX4\ngzZDcljhK4oHaM4/V5/PQqIsR7KhHDwY1oF74VT99AS+Dp8I9woW9AY5oW1UPXokVOaJhGw2TFGi\nRhWeN/5Y7e4RAajBgp9jzHd38aDDGdEgP/rZc3lpmzM4ZS7lhd47Esri7PmxnkvkJb7geaiyeAu1\nZwHDeYEIfmWm9m0K4uW4eqF+nJ+rfn5d43JxRR46c3S80VwyzO1xRffZ3kcV6zoFtvTFOFE3Q4kG\npYHFBP6DEWpGRXgZQKIEHsz6VfVJJdY8zFii0oF6WkN1znZlw5mwSVs0vzvvy0b2b8Je/4a4oHKg\ngFbk4kd4/OcFNToiSu0UiTpH6tscyi15kDWfvq92/eM3/qmZmY1Zvv/3/+yfqx5FbBH+h0FJ9//R\nd8U94O9oLrTKqEVdaezXO7rPW28I4TMO1W9PBxqzd3YViVij1uG24UuKiBZByVCEg2cOGqxKNN0l\nEDKHh2jyQl+MEyQhKLPxTN+vIvVXHoRNj0iGi+268BpVpz+fxf5vl16oaNy6q3W5G8uWPVAghSL7\nBBw2lTaLBmtihrUwg/JNtZ8oHIAKJCqYA0lTZ61pfuXTZmbWh5MmQzTLA5HpTMhT38xt4RE5BKl2\nnKACCiineCAeGOMA5ON4pr65JFpV+fyRmZl9+Xf1bI/IaHahvqwGqNS9kM0+Xwg1tgMyJFdGWcBV\nm4aoSoSmPquyLIWRotCFZrJPgOyhb0/Y+0bn6nMHVFCpJFu8U9QZgECeFeFzK+1pPXptV3OsvA9i\nI8RG+vA8JLxI5HOvXLVr3EVhpvzJ0FQIGNrTh5r7C9Y1jzEbrjQHc+SRd4lErlD2icjVXxMRz1XJ\nZ+/C79HBBnpa9wL2y1YB25pqX97eftvMzL74T0AuPdFZY/iB9p/NHM6EP+WMcYN95z81Gz98aiW4\nKUYgqCotzhJwDqwijWeJyO6mLPsIl2pXvqB6TUcaGJ+548ALMocvqs5+ZKAIevC9ZBgXL/AsrIGC\nhE/Ch1tgMmQvQH1uxN5ShG+iXkX1h3W8xLMB/llxAx8Z63O2BZrK4bwGEdyK6LgLOqk0VT2Wc3h0\n8p/MRpwNxtqDWwollpWr9TBBL/hT1EBY96IZHFmg3eagknx+35v9rX0M5OBmoPvu59iX4JM7uofS\n4iF41cWRmZndPtScRezJhpxHC2X6HRVCjwjvDBWiMvvgBE6y7mPOLG04feCScOHY2oMnpf2OEN2n\n74ojrEvke+912fDZx0J7zVea66cd1JEaoHYD1kFU7BaXsvUZMlYHr2u/2mGdnG1G9JPGfZDRXPCJ\nMecwkCJnn1pOa42Z2bo3sBkcR4kiWp2z0ayn+5ZAoxWWmotllD172Y5dt/zu7/8WbdK9rzZCIQWP\n1fbxOSo7CxDDKMgM1iCHsbEK6psue3K5AtoUnrsrUEKFHpwxIKRLcDxOQYmVK0JerC61XqyWOj+u\n4ZergaBpoQqXtP2S83EWbsUuHFQrEIlbB7K94Vzrw3ALxMdc9SuzDoTP1b4q5+vwfdn2M1Q+DWS9\ng1Ja54lsczJK1iuN8abKXEbRdrtypOfAwbNy4Pdrwt/3tsbe6apd/Z7qGY81LpcDzmAXet6duzrH\n792VzXWOVb/+Ce+McHjlO5oLY9YOfwUa9qUI3rXKpgLPX8K3BVLU3Ve7Wyhnnt9Q/QERWhVU1yVq\nt/MLuOLyqGux1nT4gQOivrCrdufn7E+oS5mZ5coPbPsob9ZHnbMu28hCrDYZy3amYzgTL7ROffCu\nOFC/8x0pBm59joyT+0d65ldlEy3UKTtIRB2+KQRJZPr/7X3ZthfDBXkFCgmEYZ93oJapr505qqJt\n0Fw7oJVqqKWNUPPk3S0PX18Lv8O0JPTw+cfai7/79a+rH0zv50f/6N9XO7KogB6TWXOhd5wx63gW\nFabdWxqjN/doBxk4wwPW/Sdar8dd1ednlRQpk5a0pCUtaUlLWtKSlrSkJS1pSUta0vIKyitFyoRz\n9McDecomRKPCBVrxIF18cs9mWXhFZmjCF4QmyOP9cwbkZxaI5qBKcvIjeVkXNXK9WvKY3f77iiLe\nKh+ZmVl3Sq7aM3nQZt+U13k81d+Lubzdlao8iCUUJl57U/dp+vKULUkeLk7lze08oR7vyzv9Os9t\n4llr78j7WrmBitJzeeLWp0RKqvKsDS/kgStm5UnMkO8PbYgdHsor/IIIiwMPzLx/ZSNPfTO/XHBP\n8uCIwm/DbD8mYufDl7Ei0umDtPEqeLS9RFFB3lIDAZIHtbSsJmpJum/YQR1o+MmUDhYr2cTlMYz/\n5KqvYeDuk7e4fkP1fP5c3trpkSIDCfdN/lw2NiI6tHMPJS7yrEttoZDmUcKhQO4/fbyYq5+igfp2\n/cGxmZlld4nGXWhsJ+/J61o4EnKnkpP3trWv+pVAwKzgE4GqwBYZPOQwfS/21b5ghKe7pN+X27ou\ngO19k/Ahgbq6MNnmi75sdrGUd/f8Erb+7ygXOPziL6q9S9mWs02kGV6QGKTREO4Cd514nYmkUP+E\nDyMmFzfqabwjgneYic0usQv4TPbh9ImJFmbJsc6BEKgMP4GyTsIL5BK19uWZzm3IqTfQTnOUX95Q\ntPvG3hfVF6g3dTqKigSxbHr3QNeNeyD3hmpbPUcu6hoeDXgbXCK758d63izW/6+JIm+hQLVGsarh\n6vMwUn2b94UOqObVxxMiAu5QNjta6/OPTJHOqsFyf+O/UzckKKs1NpIgSoiS5Ijm39rWc/7yROvZ\n43cVAbn7tiIPgzOtP+8+EufL1j/4TbVzW+tmCa2ZgPznDAoz/i1y/ttap+yF6rlgnc/D4t8fJco0\nGp9hjkgCoLvFEPW8Lf1/EzTZ8FLjdPpMNnxx8ZIr4Drlzo5sLvii5nqjqXqXUOEYoTJVIh/7nGhl\npgOyB+W3BPE0AJVWzKFIB1/VyNH4PwHNV3hINKqFQgUol1IIimIje9t3AlvDWxM4rD9biSoeKC5U\nJyqEj5ogGhbwEB2Vte7tff4XaYPadApHweaR2vJoLBTU/Tsa01qgPsmD7pmhWLBCcaSIoo0h/jBd\naQz9RaLIwPoCemrEeuse6j63doUau1EnMnim5+x+RhHJ3/na18zMbNDR77oP9fc5n91TIoJF2ZRD\nxNbG8EZkNRcyqDjNa3Cq1CEBuGYJQSZBqWLFsmxvH7WUOUhTbxskykT9uYFDJ4kMGwiYEATPZqk5\nvIKfwi9o7h/AHeZuNK4nKNN0CqAlQGX5h0TtUTfJX6o/l/ByxMvJT9uwmro2mcoGvbJ+vxygulRS\n/3igSwbk+eeuQH+EqOw9JvIOv8aypOtaTda6nvpp4eq+H74ndEOxBErh9SPVOxtaFnSVNZKcfGwH\nXqANKj/eRt/P4DqJkC86e6Y+y/mcPdjj8qZBynHeKnBOdNegyFDVKKI8NXmhc+D4XPcdXGn9qO3s\n2icpcSRbG8At4J/qPpkiKNgZ3GWsxw7rwrIOQmcgm76Aq2X/htbjE/bOFevvVgl1D85kS8hV3ERF\nsMicnCd8bSjVcCRbDVnXQHrPQvXHGiRPBDImeQnoXahex+/KBm2iffW1IzgRiFTnq6CgttVvieph\n5rbWkCzjfCOnufNeTdcd3NHaNFtqX8nD3xTB9XWAKt7VB9oPZuzXEWpc8yq2ntF4PoMPZQ80XIl+\nijfYPGvXspUw35mFlrVTztVtuCjzcEhEPijAUB1dQUFzBrIqk/XsuqUDAnHSF8JiDuKuCgq/Umzx\nDBT+3lEf3YXHposibCNK1N5Qpj0EiUjbaq7a4ILIGbF+T43zLZuqD9/P5ApUKIibFuvWqCsbPgTF\nP2KhL4EEyd/T9/FMvy+66ov798Ub9AEI6yrfhwfqyxIcZBmUMEcjEJunrKN5tTOEs2Yaq74xqKwm\nc37O2eH87GO1A06zIYqHZVC61ZxsqNvQJGi21M/7qOrVPX2ekd2QBaW1gKfpBXP3Bqiy3LbuM5xo\nDgWgSEIU1cJz2epzkE4eKrDXLYd3UVVtqx+dc60tkyvO4UudzfY5Wy6met74DL473pE3cHu5IOcT\nNb+SoXjEO2uZbJKQ8Q2il7iMcLtgfrdsV/ARTTvHuuap9oQ6yl/GPHUWqEbCe7cPunW3Bv/OgT5H\nKM3GINRLVfVRAYWp+Vp7Y+dYNjNM5kqRdWPvnpmZXTU4C6CeVOZ8vOEdJQbdXzZ9XtVBtaKGN8Jm\n6nB69VGo2mvpfvusZ1bW737nK19RP8DT1BnJBo5H8PehVFxkj7y1rTlSSVCnVY3VVlV8b9kjeI/K\nQBh/RkmRMmlJS1rSkpa0pCUtaUlLWtKSlrSkJS2voLxSpIwFRETm8iy1W/KkjR2QKSeoiBTEK+Lj\nDUxUlNwSXmeTF3kE2mM2krexi/75yuRl3WvouuIN8uvQWd+QI1vEizvqENHexht9g5zagTyAiws9\nP/Eqt2JyeJ/o+s0EjokP5Rm7+IE8f1NyXZNcWGvJg+hf/s0IT3mqiMM0p0j2+lLt6g7fUz1RCMoS\n6a1kyWmGhqMwoV9BT+T3mrZZJgz85N8RQcssQcgsyF1FDmJNn7UrSURM95oOE9UFPcsp6B9hiKrO\nBp6FDKHGMWNbR5selM91yxURvrORvLW1CmiCXXn6m3CQVEA1FEN5O+8fKrpz/pyc2z3Vo9AkckkU\n6xjlggefkjd2DTIncyLPd3ZX9R5PFD3aLMjxhyckHmksE9WjsKnPTSKgeRA3WThcWuQIXw7UntWl\nbH0FB08NUoP8SvXOgqKYXKB2dCBbi+BiyOVk433y0fNEoscoICyINO8QmY3hb/Jzsrk1HvMhaIYg\nUQVY4XlPFI1mcPoQSR7M1C/1iChgRt5ov4xCjocdLTU+c9RK1qh0rFbqz+lTRQI8IgFFIrnR7vXV\nl6ZE/qZj1WWbfOtpVm1p1/R505DNDJ4oAvfshdaJAkpRCzzwe4esK77m58rVGASO/m5Q0fHgpBoz\nBxJeiLCvejjY0mCh5xQr6ssRiiwe+c99xmIZ6ncXNThlQOjERALn5Cv/0X8jZMwb+/LAH82VB734\nsWwpCy9JkRz9tz4jVakAtMMgYaMnVz440NpQdPX99r4iIL+2K4TMraLWzc5A7cjtg+hbK6LokXMb\nE5W7IGr+8KH6OYmcHOXVbyWUX5b057oPTxRrz3ANi38HdNl9/f/hLa2LNtDzikTVrl0qiXqWPp7A\nTbCegJA6QXEBdNyyBGokozUlUY/Z2oaDYaS5FYGYmeTVfzfg8whB1z0j0hovUDGJiSaiXLSFipWN\nPWuuUYBqgOAbqM/WKHCxfFgZQMY6xLZjzb8DlKLe+wNxxPzh//Z9MzO7/YtfMjOzvRuypY9Ab+6C\ndqruKGK3itW3qye676iv6+aR1o+9up7ThHdniWLi6UZ98vA98Rf189ob79a+YGZmPwYd1f2mEDqD\n5Z+bmdnrR1Jdeuue1l8vw5iXkggf6NPumL7T+hezf/UjovIF1s0t/X4NssitfbL9hu54+Txy/les\ni+Oh5kC7pcjm4InmXH4GkpQBGka6Uc1BaetA3/c+UPvdLRRylhqPMuvzbo1NnLm6QZUpgk8lXDP3\nCrKpEs9bey8RqH6+aqXs31RD3KAisgG5uZzAHdPQ7zM8L7sGUdvQ/bbhnIv2tBZm4ALLzBSxXrDv\nBSiY1WpET9nnR+Zak+h0ooLkgES84nzXRtVuQh2q8NsN4cSKQVCvd/T/jarmVzHhuygnyilEgbOa\nrwBubMAZ4PmH6gOEB22voTNCZXvHPknxWVc32OJ0rLaWGYsVqNb5QGPL1m8FUMQx+8bgmdbJVku2\n3i5qfYlB1qyJ+Nby2PQL2cx8IgWzuaMzyo2b7O0L9ceS82IAstxpohYFimsDQi9R5hkc6zzb/ysh\nxCPUO2/e0lmr3OT+YyK9bSLRnAkvH0oZZo3SWYVo/LSn8+shc/Lzt0EJn+q++QgE/Cn7wD5oW84U\n61j9MmcfbyWgt6L2rTyo7+lA6+ocHhMHtO0MROsifBl7zhay5nJOOD5hvYaLaGGgLJ6pXy+PdTZZ\nmupXa1wf5T17LITMkvl397bq5oKENJAfF6D+t3Kq4wvGfgYqNuPrd92Ep4h3DCerOXB6ofl864Hm\nVJigBBbaQ3Ml2egMxHUC5CixVx1zzp081hg699XW45+o/gW4/UqsN+ul5vkpCpXVu6xve+qbz3xJ\n6+Ia/o58T3vko2Pdv7jmfArKd7YCfZrTX4dzYgP+zgGIPj+rteDgDvcHgV1mboWXWp8mnCnyoJq7\nHSHXsy2ULyP1twN/6N6bOjtVYtnAT56p3ceXOp+7vjrMX8MLeK77XgS6Twgfk8P51QF1fd2yBiq/\nRrFnBep2kagm6aO1cpozcUX9PDvXvuOyFu7lteY5dexgBYIqgDuGtSeAvyuAC/Ly9KWiWKYTmVto\n2TJRUerI/udT9eGmqjHaivVuU2uh7vlAz977krilZoFsKkDRdzQGjZ+VDQ1RPdpvgnCsqQ0/VcRa\ngu5CpS0EMe32QEMt1YatCjxueywMUxCAIMOzrKdLsj1qZAGESJBl12rHFte98ZtSkes91v17T2Wz\nUBlaFTXNW4maEhk986QLURu9esEYXML7BifhfCLbGS5/vtpfipRJS1rSkpa0pCUtaUlLWtKSlrSk\nJS1peQXllSJl3II8YD4s+VME0Gd4nHJ4pnI7qFXA2rxYkbdMZHkJS/OCXNwgUb2oy7t4tK1Ib/4G\njNmQH4//Uh6xjx8qWleI5AEbvZC3NZNVPd7+3QdmZvbmbXnkjufHZmZ2doq39/9QNHLa0XNzGRjS\n87rf27/4WTMzq9yFQwEv5mqq+g5DRSquuqpPwnUQRSgnNOUldlEvSFJbV/AIrDYoRZyoX0ogiOYg\nBDJOwdxY92zs6tkbFKmMfF4P1Y3BQ/XpBORD3FAdfFA984k8yBny7qIxrPDwLUQgNbJ9eBQ8XPNX\nMGO3f76X8G+XB7eOzMxs51PywloSqYOrZl6nXRl5UXf3UbYCcRKhEuFnEpUjRYQdOHIW5IjW4QOK\niFy+IJ87nug+BZRSligslBp4PWleBrTDG18SKqGZka1c9NVfBnv9uyPQDEP4JrZko7WG6rnOEQ3r\n6/6jDfwdRAwuOonyAb+HQ6J/rKiUV5fXOaZdp/Bj7LU0B958R5GGBSosa+pRv0kEw1E9T0DelLp4\nfcn5rW3Uv1V1pxXJJ99NFHQW8ByhdLYB+bLuKgIRTvV3Mga18JDIMTwq0xu73P+lYsLfVTwicXm4\nZQBcmEdubEgk1Wf9CECSuNhqk/zu+gEqCz2N0Uc/EjItIm83QaTFRLHWePhzTRAbIF86L4icNvT/\n9TwoMlSJsgu11afeiC7Z1ZkQG61z5kiOXFm4rrbhycgFGN2l7luFtT6zC5KPdTQ3VXsjOEtGa3nu\nO0RCd2/kuV7P6XPfDLm6d+/JNoegAKqBFs5MQc/LEn1ZdehnVJwSRYl2We24S05wDi6I0QqVkoH6\nv0j05/RMEZkB6kzNpsbjooCx1XT/vQeyweZtRbmuWx59oMjHUyKhhbbquVXifjugUYiE1zayCy9G\nYSJBArEG7kBr4vi6XzHQ/49AnbmmfnoNJYhBTlFLf5Io2yWqLOq/XGZgM6LilRnoz0RJhuU65Bke\n+dh5olJV0J0x/AjhHxCB+4nWsbd/+5+YmVn7ba2Xuzc1zybPFHWPP4bDBBvb+YL69kH+183MrA/X\nQWWp+RpcyVZmIDAXY33OfuYfmpnZ1/7+v2dmZtNI69O3vv5vzczsCLTT/Yk4UcoTeI2+r/qW2XdK\nkFFld0AmourjAhcbD4k8m9pzMYMjYAUCdFd97EwYpGuWXIk8cIS9yvsgSkAqrSPN6Z2mvn8CUrL3\nXFHFndtq7+bsnHqrHnuJCd/SuPY7mrtXL3QGmMT6W7klW6zv67rxLXiIzrWfjPZQN5kRfYtRJhq9\n5OCKKzVzE04coo4xkfiEiy1X0H0d0LmDMWskai7VMqiWmsbBWYAmvFK7rkaaqwd1jc9rh9qfvW2u\nR9WlVfKtwTlu0oNHjbNAb4BqDpFNKxEthg9hDfIk2wTxy3pbcLE1xiTvyOYLRKtH8D9cPNNzn/44\ngT9pzEp3ZYMeXAKuvYwWX6dkiHzmQQ+cXbK+0ocOqKQZ6ks+PDuZgvpmCzTx9GMhZc7f1ZzauaEx\nDw1URE02koWLLIRTpVnWurKLilUZJGeBqHk2AL1b1n0qKHr11iCOeqrvBSjV55eyqUJfi8zunvjw\ntt/Sup1nHMasObZR+9vsq21UVabwxTlL+C/6shGvq79P66D+VnCiubqvzz7SgJeqB+ou4ciJQJgn\nSpfeTPWIeHtZrzSu8QX2BI/gCj4NxwMaaWauU7dCDLqPs00vq/qVQNJH8EB5oM+2QEWvnetL6+zv\n6ezf7Qs52J1qDx0EemfwzzVG5V3duw8irp4oQrEn1uBw8k17cX2HuVLQGFwOpWzlosxa4Nzbhx/o\ncAY3oKPneqCQOkT5lx4o2Zu6f2ZP1x+42h98T2N7hrrSvAIaa6Szyumx3n324H3bjHQfB7TFHAVL\nD8R0hvNljr7Ogajegpsq4f/JXWlM6zldX5jrPsEOymWgIiZwPGaralcBjpjaDdn8W7wDrUDGX/TZ\n4x0hZcr092YNqmIqG/NzZF2EnKWG2MxI9YzWqt8MlDAmZ9nKJ0PvnvRAdPa1/odkLsSo3568B1Ly\nltpxc+vIzMy6oGzdoq7z4HmKQLDGHnYy1jh0Md3hCdfx/tKGj8XMbLSJbKtetGIFBBto+DttnQUy\nKNbevCdEyYb3WwMNOnqhvbx/znnnFEUx9sDlbbIqUOxd+pxhbsL3Ayyo2ZINruljd6Sx3wPJnSgb\nGpyJFc7BAOQsAGU0QM05C+/e1VP1df2WPjcqvLNm1JeNLc7z+Ac++tZfmpnZ2bnG/Ogz4oKtyB1g\nHuiqfVDBfc61IWeUCnDmVUt93LitORU/+flciClSJi1pSUta0pKWtKQlLWlJS1rSkpa0pOUVlFeK\nlIlQdFnAuu+CEAm78pYiDGSZOd4/FBbqNXJFIzxgZ7Ayg37I5eClIAJa3Ybzpa/n7FTkJW268i4H\nKz1vz3/HzMy+efEDMzN7cvUNMzNrfVHe4uyh7hM29dy3yvIUDgeqT0CObBl0xtyXZ+4K1ZPxACbv\nviIkVaJMXlGRjzYRowrqUSH67cu5fpdEv6aOnp8ZopNOFMy/IuS+pf8vB/JGTzMDmw7lxSu68syH\nJXl4IxAtWV8397Pyei5WimpEREKXPT1jRt8WDQQFnAYrU6SuNNF1BfgYjPzBkFzZ+eCTeZI7Y0Ux\nOsfyjA+Ibrjk4m5gde/vKZf9vKuo07z8hpmZrYlA9CKiM3fkyS8RbYlRfriEXySAYyVBBk1RUsmc\naexXeJbzJGSHMIfbQl7h3nM4Vwoa2+UT+I/29Pt9vNCFhniSgpI+n5yT2zuSZ3sKD4VP1D12NB4j\nR+2pYrN1PPoETmwGs3gBHozyQt7rEJtZb6u9T//qhN/rumdXKEr0YUY/0DiWyYme5K2sSrUAACAA\nSURBVOVFHqKuUok1hzKg3Iz87fFSSBhDUc0fyd5qNVj499Xuu20iOEQb2yB8dl9XlG5wR+Np/5X9\nnaWUKNYQjY6mqpuTU5tCcuGX5P434NXZwcOPgJRNyBOe4IGvVTV/dnf0d0NOaJRjnVmoL/NhwpWg\nPhufoRZCzuzUBUFCvvTAQeErQGHLQ5mM9W4KcqIAt8kMFZ8EGbMhd/4y+6GZmTXhASnvqCGzE/Vp\nVNScnBLd8Vx1UAuS+Wxd7aq4RJvgwBnNWF+oX3Gs5+YI98fUPwyEGAlqsNoH8CcRgW7vaEwD+mX+\nVLbRPddzgjoIvwUcXjW4AIaaWxXy3j3WrqWBdCISG5Y/mbLOdFcRmeZN1K887Q9t+EcWPY3riljF\nnLVr5KqetSGcOKhyGLwhWY85yJxdMm7DviLR/Yrmfs2IejZAOJrsNs4r6hjZ2nIgZVZE7LYKRHPg\noRm5RH9YR7onsumbRCJHP9KYffRn2sPGKNz85Ns/og3q21/9XUV9PJQAIvgoRqjqPPye6v6XE33v\norxwUNfzWm0UEPNqW7FBFO3GL+g++2+Zmdm/+P1/pb76jp5/75//x+qrI90/o6bbTZRzVuwrqxdq\n77QLH9vc5bma2+M8Y9TVWO6ApnJATyzJO8/BBXbdkkVhZquN+gY26KzhgwIFkUHtZB8ejNEPFbG+\nXUetqa7JfIlSl4tqlrOn39UZ19KV+jVXL1F/zYHlCGUhlLp8kDk5Bz6Sida2CBWQIH4Z8SwV+z9F\nhQRVbBvugw1nhRA0cQ4FCicCLXEXRcgtrb8TkKGrc41XNpLttiP6B4UdN6PneERBCxvZXS70bMQe\nvUx41+CH2/XgB0Icp8jZwosT3gO4RG6g5gGadwNy0Sno94Uae/GA889M687qRM9rufq9cwRvHrxn\nUyKpYX1kn6TkUEZzQVTsco5bEr1fog7kcVYo1bTOXnHmqIPguHkfRE2fPp7AUwGSpI+C4taB6ufv\nsV5vgd5ifc8O4b/IgCzh3Lk81+cOfHSLoSK4/VD1W4EsvcmeXDvQfTNE1c9R2mlX6F9USPL8nZ7p\nwu1A9S2h+te6qf6/Ah0c+arn+Klstgz/YA4+oyr1jUYghIigD9iHSthSH4SnLeDbguumynl5Bo/J\nBO6uJWezxV9Dy406XfPaql8jKzuawRlRdzgLV2TTUGiYixRbFR6/65Tv/5neHb7xjf/TzMy+/OtS\nl7t9R+ijaYL46OjcF05UiZBH+CjLegN4bbpwh3VYD1BuPB+q7wvwzy1Q5LocyrYbII+dZ3DBDIUm\niiHCKHEW2r4PyqqJ6tOe7u+AbL8Lb1oL9c/plc6VDnxPU9SXLv7dt3R/UKVRS/WqgX4aLUHCFFCR\na4P8pM/znDPNk+01OGtEyHmu82pXDqQ3QBoLQD0XNjx3ItvsoLzjx5o7jddA+MeyvePn8HbCO5IF\n8rLhrBZ0QRFzBvHgTXITWwDtlV3Bp5TlEHrNUvPg9rmCPxBkfmkBv+oF+1d4bGZmrx9p377R0nhu\n1iDsk/ch3gGjIoploKAXcFM6scaxAkean8gpmjhN49LSCiDGQ1TmZnCuTE+RdYvFJ+aXdc8FfTlA\nVe/iYyGSE05BB/RTDYVbtwZHY6A+LOzyfsz6VYNzpb2SLbge6zd7pYHaGi90nwHveG6ots3gTIwS\n5DLInRkIlgzIyxso58639R7fSBA22FgdWzz4nPwCv/Af/oaZmZ2xz3z0LaHgTueaU6MLHWa2fGzp\nSxrDe/e0l5Zyaucz/BA/q6RImbSkJS1pSUta0pKWtKQlLWlJS1rSkpZXUF4pUmaD1IFr8hzViPKP\nyAGr1uSx8zIwTsNDkY3lUTt/LC/n8iFIkSN5Q8s35GXef1tR95sNRUTf+1ePdH9Y23/43/8vZmb2\nOJI3+nc+ReSjoee0HnzRzMz+0T/9HTMza2wp8vL9H8gD2HtPnrFnj8VaP0G9461f+kUzM9vKwTa/\np3auIj3XDfDk4embwU0zRpWkDZ9G6MtzV/JQDiKnOCZ5zm2Sn4oiUq8mD96cqF5hoUjLJju34pJ7\ngMzIoW4xwrOcIZpx9Hk9+6c5m3O1Nc4o+lDZoPaAwtOanMsQopvFAhUM2NW34Wpx6wmSxj5R+eiP\nlLP60WPlXN66L06YN47kkb5CgaU6U31n5GLeqsiDf47SwRquGOO6ETT0ObTrB89hp4eDpX4ISuKG\nvLvPUd34aXT7AE/zQJGOcV79M+vJFg53FH2KjuAEwPu7acFNs1GE49kj/X5D3mIUkntLRHVVwMON\nl7VExDpGlcptKxKSqYICyZJneRuVrSvy8cnxDyuaK5WSfr9Vkle4e46SRV2orWJOfwOUFIrkYe8h\ngRCAzpivFaXbu69+qg30nAtIMGaoTBk5uT78SC/gFfDg2Amr6p+LtT6vL6+/NMUVtdFby6O+JArs\nkl+cC+BLiFGqOlObm/uoJSHHcwkvRguPe8nV34s+USy4ZHKgkypErRO+jyVRlJNjRc1juF7c2/LI\nl7c0VtNLrRtXV4qC9ED41fblsXeL8ryX4H1IFBuW5NbmUPdxkyi+q3a1D/S8PnN32lefFhIOnara\nE8xQtLnSc9s7ql+wUeSiCXJkE8lWnKru68Cx5TOXihXV40Y24RNijnVk2ytydV1se0YEM9xC7YSQ\n7EUG5TB4RPabqJGgXNbpap1fEZGZkavrDoWiu25poEyxhAdpOVR9ng5lkyXW24T1ynO0BvjkvQMe\ntGqR55Mf72yICKN00QKxdLOt3z97oXou4IC4QBWwta/xy7bV/6WL2AI4QDJz1bWTVR9Nx/pcBynj\nsK42UJyJUC3qf1/rZWRat9+sf9XMzD73lqI9l9PvmplZbiBbuhwp6lW6BO0JAvAuvBK1qp4fa5my\n9UK2MbpUn4X+sZmZbZDDGJ3+hZmZDf9Yf+1b/7n+ssfPTv+BmZmdfksR1c/fAmm4xbpC+/JV3a9V\nVWT5qisbcRNuApS8avAoTefwWYSy/WDJXN27PjeVmVkYw08Hend6Tv+Gun8MciXhHqhVtO4lZ5Hz\n5+p3/1Oay01Pc6LvYkMoR2ZAKQQZ8uG7KMjQv76BDoMfrnqIygeo2mpJz3cI5296L6NvpVbLJh5I\ny2nCmaB+rYw1Zyc1uBPg28g52k8PXzvSPeAPmH0f+Q+UavKg/pwdVAABq9U3uu8UTp8AZM5oZLa+\nUp+cLjQPMn2NYfOGflMu6ZznLBk7eI0a8NTFY/jGHNmAw1mjBqopSFQzQWBsztXWMXuWf6QzQwWE\nxxVnhCJKZSW7PgLCzOwKxEmhpLEN2bPXoL2mI1RK4EFKeNucU62HEfxMzRbqRgmyGy4dr6h9wpvI\n5jqPtU/ET7Vv9EAU1luoBxHVz+fhHAQ+0Bsl0Ev4NjKsT6iU1rc5X3ugXUEoXTzXc3KJUg4R5sOq\n6jtBwSt/rP/vzXW9y5kre6Hvl4mCI+iDWkn16UdwtqAONTvX2epyRmQ+4uyAgmQ1z5mECLSBLHXg\nMhuAoF+5IH1YO2POpi5oDjOz4WpseVAJAajwoK+593GHdrZlP14JVAdqU4u/xk3zd5XtG+Lh+K1/\n+NtmZvbm7/2y2gA3YX8AIuQoR100RzJncJ7wrjDA5sucPQY52XoGeG+jqyh8ljNCgnQMUaPLcRYY\nsi62ywe0RX2TRwVuCi+ai2LgVgDKFrRoBTXAkYbWworquQfSvOppHVwkSHMUJku8YmZRut1rMCfm\nKBTGKOUuNHd9eOVczi5TB+UdkImeD1q5IVuuFEDogUhcL8hS4L3gDNUnwKrWKsCdw76W8I7UXc2F\nRGFsCX/RLJBtTxfq1y14SgP22xr8c0WQROazXl6zjJhrPXjuaiiLLQ5AXD4QB+T8Su2ZJ6q3W9j4\nhebW8hzusCDJqtCaVmf/CJkzLqhCLyHBKb/EZWxmjtXv37V8g2tdBpv1xY80dkO4GjOgayOUH1dF\nuFOaGtubu/o8JmsgO5NNDOFiWVX0nB1H/z/w1AdrzrnnzEcf/riYrAHfTxS89P8rMlRizkoByJoV\n64ZxLM3XyA7Bz7CEL+21A82JZ6zTGYOniTNJztHcfPj9f6fnwtW4duEKo13+gnfIwt9817x6rN+P\nGtr7Z2T4/KySImXSkpa0pCUtaUlLWtKSlrSkJS1pSUtaXkF5pUiZCrlqTk4erjXcAw3cmiVyctfI\nk1Sn8mydvi9kS+fHiiiXQdRECVM4iBpvoPs1M+QTlvG8wz7/4+jbup99pHo05c32fHnqLkyerR9+\ngPfX03PPf6JcsjwRkT28zofotdfwEK5jPacGA3i10aQ9qEi9UH2G5G2u4GPpXcpz7xIFW+CR84lU\ne6iauEQcNnjmmvC1LLkuJJU2CFaWJQI7Barir+SBDd0kOpFE2rhHkqMYER3AfefUdd0mRmVprGev\niAgu8DRHKMA8weN8i6BN3HqpEnGdcvi2oupboBo2NXI2F/I+ZslhL5fkrT0oCKGyaemBxVNs6pYi\nFzjMrbNUO0Z4un28tkOic2MiC1VP3laf3NzRuZAcOV99XIvU7ggFre6H4vm4QfTvM5//vH63RsP+\nqWziSUcIkogIcHUXGykf6XtmZnFB/ja5o/42vBvn6tfzD4QgQnjB2vAdFVCZKu4rglFJ8idnmjMH\nDVjl4XCooXyQhS+lP9T4x6Myz9UD+ksioXijm9xn+xaoBnKBy2O8611QXeS0jkFKLR8rgnF5pb+9\njiIk3R/rOYefRm3rGiVaah5UyBEPqozJmR6WZ36MUV/awPnhluCUcjUWxVBRkL07GrvLE421P+d+\n28zHAWgeiHwyRPSGzLHt+6pP87bWo7WH8kKZeXlFvi+IlKii+jTgChgMVtxfNrhaCqlzTsTvJtxb\nGcbuytf3d2pvqr1VPTdC9WJFVGROxHMFMihGZSm3Zr0kurJp6HqvBkfBWPWs1OG+8XX9jisUQw9l\nlir3HZObX1hrLehH5CLDpeAHav/DDzVnzlFWuP8p3c8va5YmEfESEc81ii9Vol3r4idT1lnl1I+T\nCzh04KwoEuFpl+B0mHncX+vwFqQXQZG1zgWJSDTOB0IzDDS+i++pv/b34UUaa+2ob2lOPunovsFT\ntX+bKNsoM7VoRs7+Sm0rjmWjPvw1C6LBU5brhAdh5x2p/ozO9f/3pvr72i8pB92vCcnx5H1xHTz7\nFkpiKB6UHV3v5eFZABFR2tL65xWoDyprG6L1+Y3WkwGKhWc/FqfX57+i/eXi9/4TtfFQ6+8/+2df\nNjOz//q/+BdmZlZhrlb34Qv6CI4VeCzKS0XPMkTV5zX4MLKg3lZ6XnalOZdBqXEnK1srFLW/XbdM\n2QdH8EqFoNHKvu63gs8pxhb818SdY2d6bg8+kPqF+te7q/5qZ1hrHPoRZZyQ/PbVBfxE8H1siPzm\nUDeEsszycPnkiCBHcLmUWY/NzNbZyHx4pHpL0BeB6j2GEyiDAlCSd5/dgtusr/FsE0FeXOjMk0f5\nIgN/VIazyjwv+1thNy325xJr6OwisA/g92lxjglQsXGS+i5ANoKkiOdwe6D2tjDUN+Fy8Yqqe8OH\nS4SzSjBS3UJ4cnz2qhKKUudwJGwfaV4esWctpp8sup0DxZADoTyjfTFKNw6o2AnIlRko1Bwo1gUI\njNqa/Ylo9jKJsBb1uwY8Q03UlWZr3SfDetGMtY45CbKR8+ayq//PgxRa72ouOihXOk3ZpBMSEU+Q\nJGqW7Ze1TnWm6q/4Qv/fZW8/QHoxYK7FqKHmLlSPKcjDeaQzmsu+mYNbYkXUP5zDLTZGhdVjn6mB\niETdxQfVvb6UbQ6nWsdXnDG9Ojx/IMXLsdpX8DkzeS+RUKXmvhn7kbeWfeT2QYQ+0zmg/yEKOKDw\nWksOVzvXR8rc/dLn1LaWuA2bKJBdfqSJvJyA1r0Hupc9eAVyZdIDjYpil8t5Mjl3d5mXE1Cw/ROd\nozJ99e0N+i5LG4OZ+mbrSAjIJchqH5t02NOb8LQFcBjuczapgRruxQn/XHJAhTvqddW3DDJnsYQf\nFBXOOZyGCWJvFcqW+6ALmvB55EA9Rzn2I1SZvIR/lHYEIKknZZAyoGCroM4yVf092JVS0Bx0sLuj\n94llX2vGEptdHuj+Y3g9L0FwF1EM82qJqp8+T7tavXbhFRxmVf8mqOnrljW8UFt3tD8WvAS9hgJZ\nS99v3AQFqH28UGG/4905BnVczMhWN3mf+6ueOwkabgPKbJ3ws7xUnis7gS1XS3NAXXkghEMQ1ony\n4xKkuYs6WanK+gwS0XsAd19Jfdoc8T7c50wRa4+0h1qfhmxdK/h0KuwtZ0/0Xl4A/ZQvKuMlBFGY\na6Ieio1Hi+QdJuFHUjvcNcjyUDYwiTW2lccolRWntC/hdAUrzXn59M/Eh/fsu3x/Q8qRlbe/YmZm\n2/dRiX5Tskx59p0NysPRXDY2hB9ok0k5ZdKSlrSkJS1pSUta0pKWtKQlLWlJS1r+f1deKVJmuiJy\nQH57rkae/AHePryxmZ6+P3ukqNgQT/Z2Tl7Em5/9JTMzW4JmOEWt5IN35VU8ffbnZmZ2f0+etb1t\neYPv7h2ZmVkW1vdbvy5P4J0Hin4t4bZZT+WFvnrxvpmZVV2ik2/KIx/flvd0hZrAZi5P/mCYqL5w\nnxHM2iRmRoli0f/L3pv8WJJlZ37HhveevXn22cM9hozIuTJrLjaLbA5NSaRaEroBdUMLQQtttBOg\nrfb6C7TohQQBWggCpFYLLaDJ7iJEsqtYrCFZVTlnxuQRPru/eR7NtPh+VkESqqLHKjZ2Nx4e/p7Z\ntXvPPffaOd/5PmAOK2qUFwVlKKYt6iip4Z2eKBKYpQ69GCs2AImJmdc9dNwz1L6FVrXhQlmLdFd9\nmBhZh76yNf0r/X2CclSlrj5tNJWVXqOSs46z+0QDeyiJeGT3nS2ikZfKDGa57nGLrMvo5ZAydRAf\neXggJkRts9S+fgWOE4NH5Jo66GihscnCYVItaUxa1E1Xs/p7AD/FghraUhzZH+p3Z5NMA2O6yum+\nMZN2F36grVAZEMQt7NmlbKDZUXb/Zx+Iu+GSLHkR5YhaVVHXXCqO1ioKHa3glOih1EKkvOFqXlKe\n+l0vK3p89+vKyBTn6keR2t0VqIo5zObZiX4ORvp+BVRFjlrlq96CcdTvG7d1vxnqLw7jWy3rc9VQ\nWbPLL6Wsc/w9cUWMQMAs5pqfPWqA4wzA/neVwS+UtXaNevIWCKapQ3bqBs3ro15T0b1yKDkVGrpW\nD6TH9g7qRA5s7mQSx6hNxEpTJ23Z7I//VH4jDcfU+zVxTK0K+n4OFZ5OW30fBbrPvX8o/o4cY//p\nI9Wops80Nxki9nlQBw7Z8xOyX1nGbMa6Pj1Xf3rPlF06+Jb8XHeo/1+f8ZwVReJrIIfWgWxjryK/\n8tpt1XX3QWedwsnirUEzoS5ViFFtZFBToM5q8CEtpyBD+nqe3hXcNiCFnBQ2NJAth2OUtyqxSp3G\n+bglH/SkIx+0sy2fsc7L1nJQCBRuKbPtzrUGKnvKxJTcF4ozN2lL+DUq1Lv7MT8U4z/raBzKcAbN\n8hrfcQv0QgakEIjOEZwyAUXLqQuymijnRIH6+fxzjcdteAbu7qsfX7T/1MzMHoD8ufxyadmiUJ1+\nQfe8HMhGUtyz7JPhvICnA9WHHSCA+3+oTGAVXrUCfEaPn/6ZmZnV8eOvBXCHNTQGwSVzBsrSo7a/\nfaI5SpPVH8BF4tTVv3oKVBCopaiqZ39vJ66x15hcTpT1ckGfbm/+D/p/0EIVlLGGO2Riu9SHx3xz\noA6WZN2L1MjX8OulSPeJirF6oPxv65zFfcMG3Ye5IHNirpUFSBDPB50GFc4GaLnSm0IqdVCxmzOe\nRRA/pQM9R4RiYttF/SgnX5XdwmaWcMSgOOOgNGSunids6/+7qPTl2ZecnReosdl8HAvUWIicy4qM\naQByNVbuWef1s4EdOCi/HX2Gb5mDGA3gBWC+V5ouK1dZ+3AAjbIo7bDPfvL5Q3vyfaFH33lX56pc\nXbaZDVnPcMiMgYcWPfVhDUdYHu4PpwC2hntct0F+eKCYyKp7rNMK2fbsvr7XdHSWuPeO0LRXPdnk\n/OwF58hN2nSpMU+D4DPOPvMYeQfvkEfm14GjbJnSGGdRKgzhBlyBnMml4O0pMvegFCYrUBOgv6Yx\n8HDJWc5BDRAESxlFm8gFLYsy1wqUQwoeiTb74qqnn2N8iYv/LmJD65n6NUTxK+bqSaM8Vpzo+SZX\nnEtBRXT8mDORzDa8fFfXqJC6cJ/R/+2G/Pwa5Z5oiRriI81Ta6SzUw1ls8bbQn3sFlAAwzbn+O+Y\nu3Ecxpgss41mxRZwY+Tw3xN81HILpbdPdJ64eijkzBWcj5vv5OymrX8Kr9rn2tNbqODNQKBMeLaT\nY72jrEDmhTntqSVX6CbbVl/XcAued+DdAJ0VZIVk7D8EfTnSM9z9umxqDSJnY1t7TCUAgcJ5zJnB\nq4ctzTsgLlZaE5k+MAb2l1uo7GXvwrd3pv5PQ7gTQcF6U54fP5Ut6/79gWxvmtJZJruUbY8M3s3P\n9P/RUufHFWhgY66KKMpWd+CG8VC2QY3QUIOtfUU+JgfC6MMfi2tt9ExzO+UMeAEfnAdquAd/SqfD\nmRHeqzPQs1UY5yYx/1WkgamAYEpVXk5dNsKXpW9xJvV4pwxlJ80hvoV3udML7ct7Jtt3Y18Cyszj\npwOqOciBhgP9MQHNN51rvEujF/297vTM/zK07Bb+lHPucqZ18OQJHKo//bmZmZWrGuO9b+rd4/Xv\nag/c3Pu6mZkdfSxbffin4tkM27KVaK0+Hv+1bO3ggdZvBrXOALTUThir8OFvQ421C3LQw49x5LA2\n59g1e9UENGjspnMTzaGHAtj0VLbWqqBkWGW/uaXn6rS1b3lUuhRZa1tv6zmdN3W+zo7g/4Tj6lQm\nb14Yn3c11qkC/v/voTBLkDJJS1rSkpa0pCUtaUlLWtKSlrSkJS1pr6C9UqRMekUkzCGaN4dXo6yI\n2MlDRZnnoBdc1E02mjBlw44cooJy9FSRr0ZNmZDFUNHMT38sDpi3/1AZ7E5dUeUH/0RR1o2lIlk/\nWUkxIvtIETECYJZdKEtVIBJ3+w31bx1nTOeK9E/IoKzINuXgfsmi5JAawvZOPbrrKnIWc0YMYjUX\noq6LIioBXVIW1Pot5/rZIlFcKMGQjqLDCEWlIAXDesm3oKgs+Yy+5EBClPcUtus0FGnOoqoTpfS5\n5yOhk9ZEwjMkC3I1jVE5UF9GhCMdnqlR0e/9EjWzX5A1QSHhpu30pz/TWESK0nrUvkZzsmARWeqU\nIuqFpWwjB2TFCanlhQdkQFYo3FW2+vIkzkhqTj1qVFORnveESH/gU6fY1PMNe7JND5udo2m/WZdN\nhaiEPP6BIv7P+fzGtrhS9u++Y2ZmqyHM3SB95mQFJ4Huu1NNcz31a4pi2UZZ0dritrJhhbZs5Nnn\nQuRMcyCY3Jg3JMV1NF5eM65V1f0CV/M0QSkjoCbX4JpYD8kqVfWzvIT1va3I/en3/srMzHpk2Mtk\np+pklo+pq/QdrdFBW9Fs1xO6IwdDe2YD9IndHAUxoc7YDzQGOdzafE82PX+sPgVkH4oZzfUQRJ3P\nGM0rZJPJPjT38TMNXdfJgDbzZVMRLPUhCjhlVIi8nO5z0ZHNLlGCybfkJ4ZkUMfUV+fgHnG7GhsH\nboH5UmMfoj4SDeFEGWgNhVPZRsklsn8JZ80YThrW+nyu/vZh6vf6cHhRMxuSjSnkZAOFA+rXmYNm\nUd+vguj79JFU7NKXcDes4cgiM9Bf6jlW/JzgE0rwDKXhKdn7htZArafxbe6rDn4Omqy1UKalUZeN\nr7fVrzXkB4P1iwzoTVoe9MkEdZLMQs8/gZfKc+UTRvBFBfj3/iZZOOYtRBkn58mHduBGKG5rHjJ5\nceMMP9bv/9e//z/NzOw7oX7/5n+izNCgjS+7CzQpLNoIG43gSFlQD53Bbw7hunKxkWAqv37y8Ud6\nxiaZWJCA6bX+HhT1zL/5W6p79uHr8U+0/tI+WWZPKKzpG3q2XRRP8iBGHJCVQahM6GwGcm4A5xf7\nyOD5h3qOPqpup5rT/kfq37ffPzQzs8dwZC3Zq3LwpM1B5rgDraFhSXMX9LTGDITKbKIs3qdLZbsW\nFw91fxA/1QJKXzdtoMx8uMZcUBvBXLaCKVuGuR+BoClXlcGdjlEdive5a9l6YVO2HRyC1numrOGk\nL06wEcqLGTK2LvtcKT6ikfGdkEZLk3HfvaO1MR++4EWZnXV/iX5bwQWzXuu53HyMpoUbBrWU3Ao/\n78RrAZ8FCiXM6PezIRl07CvFWSaHosUzsqGLI/X/L//ir6x9ob41X9f56y0ynAWXPYB7ZSPN+WyJ\nqoXLXsEelUd6pAsPUhqumB4o11lH12k903X23xQKddWWrS5QTOwOtUd++O+1Z6UmL3cMbqOmdnkF\nVwx7dxigzMLnxnCCOazlDP4k8kGOwF8RgQBccpZZTbXm08aa6aNSUsHmHdQAQYwUUc702ZMnXKcJ\n70QH9MKC82F/gnoKHBGjCJQzNuiM9b0Ca3+I4mM40jhOeEJvhtppST4md18/y4HWnOfpzHXeRzmN\ns5ILn5JTBLkOCmGIws1FV8jSMZCgDOjgvbeFHtkCURnU1d/pM43TEu6h5gy1pCIKbn8DvJDfzNpy\nzLkdZGxuqX7k7mn/203JLp+ltP8cn/IeEt78TPKspXeOyROtbw9Eml/RmHkRXIVw+bmcSRoo0aw2\n4eEA2VZea+53PI3tEjRDlNWYtZ+Bsm2yp4DKclBNXQE7DTb07C6KXH24ptYoyEyfyo9+zjqfDIRy\n6AyFhN5qaI5f/6pQAgU4JtcoMQ7gO8rgD0r3dd4tgbSpwr93PdFYuy2Qf22QHiuN+SRGN8ARc8U7\n1vWp0AtFlNwauUMzMxtt6AalQGepsw48fSgqtnrqX3+u8ThAqTf8XPvHqK3zoZR3SQAAIABJREFU\n8BrkTswhE/hNfuo9aLrW/phF3SoDOiuV0ZqMZr+eL+Tvtq3bKMO9xvsZKogtlIdif1+Gx+76BPTy\nPj60ybmdtTIFaR8rTbpwZE5BI0cgg/yOfNfl/MXi6DyZm3fast3/VDbmZ/Xd7iPeX0HV198Fhcve\nUK/BnQWn1YC5OT/R3j1w5TcGA419Ht60AL6zApUnk5XW6+ZtzeESv+mj1pfPoIZWhNPK0fXmKHNV\necc5wc9EIGxczgI+fsF6uu8aTrIQrpuYQwfAoAVl+ZnqV2U7zlzP3Y/03FuoiV58rjn54gP5u89+\npp+7++J4vPc+HJAOCrxVJLR+RUuQMklLWtKSlrSkJS1pSUta0pKWtKQlLWmvoL1SpMwCdaXMXBGw\n7EoRsHFXkbXeM/hBiIBbStmi/D2FslZkpluwxMf8FXYA8uZz/Xz09HtmZvbJTxQdvPMeEfamopy7\nh9TChYTIqkTGjhVdLLiK3FUq8I20UYrIEtMiq5WZ6/cF6JA8CJwJEcEIZSOPOj6fLJsPN0Uzo+zV\nBEWj9LWizqsM9fQoQzigDpZHRE0rZIrIptUCWOnpX8oW1qcmc3hNZJtafReeGzdWRvCpt4MjoLyr\niHcFjpYFteQOEecuFhRsKlINyMBCVx/cfx3ugrcUdZx8okj3TZtLvflWoOtHhtLOQjfOhfr7cAmP\nBtrzMzK0BWr3e5FspJDR555fKSJ/PdUc336DLJzDfTC5Idw1XlW2tcvc9snKjVw4X6hXHNSp70ZB\nYgDPz620akAP3hEvST+DCkZfczXzSMFGjOtn4nLwsvp7qa6IfSnFWknr+Y5/IQWxnz9Tprw/lW28\n89uq68zUhRoL4AdZEgbONalzJ9t3SU1z9gCVKTgdJqAoltSmZulnWt201kgZFG8qe/ku6Ad/R9dJ\nO2Sl4AuYoliTq+rvvaGi6i41rimQAev2zTMOK2z34kKR+Xu/oTH61nd+28zM2qCHrp9pDMYtIvaX\nWhNxAN2N1TFA99z/jjKfIUg+J6ufDdR6qoHW6QX+wG3o98ePlV0qbVGHvKcM3wxET9CTjTR3lB3J\nbikCTwDfHp0oc5r1ZLO3mvJPHqzvWT4XR/p3I7heWprb4XM9H/gLaxdAtHQ1Dk5Vz/XetmzD7suP\nzoe6b+dc/V+WyZa9ofEc/lycWtmWrjwh0xih2JAONGclsoAXoAWcjGxp1MdfjrX2Ktug7ahTH4FE\nKXlkUAKt5THZ/BjZ0x7E2f+bq2GYmc3gtslkZWszEE6pBapcgfqVHuj3dlbP5TZBA+SxYQQLOmTq\nS/iUCP6nL78nxGXvoXxdy/7czMz6z7X23TWZcFQIriP5xnmmZ9N4Lq/07LmqxjQNd0jVByGI4tZe\noDGcBbKpbJesDCp3q7nWRORqDM/7ygz6bWX2YqWFMmhLb4ViygCetKxs3VnAScUemTbZRIm1ksIo\nNyaype6V/FcFlFZvQ3P24Z/+mb7/QJnJnbxssI+8UIBf8Ju6T2ZCgTaoouM0KIErZaDnMTdBGp65\n77xtZmaNBqoYnZib6v+xm7RcqHF1yN6t4GNy4EIIUGMawkuUg3umDA9eFZ6ML481T1NQFW34Tt56\nT2vvtTfkE0ZdkKSgEFzUPADR2WKq550OWGseykR57VMd0HeP/uVf6Av/xX9nZz86sr23Na5eAdQs\nvq1SVj+LpK77cyGlnn+mfkbnKNssWaOgWfo1jb8Hf1LhzqGeG1WP6Ta8KKylCdwW73/tq1bM6/z0\n2je1B46OtGfM+vJvafhyFijHGPxnYawICRJkgo1aWTbbG4Heink21tTwQzKw8wB+BtLNafxRA06s\nehc0QTH2lDdrzhL1pbT8dxNERh40xABUQw001TzOOGc5K4AqnoB+ncE96C60VhsoZ612YuS1jKEF\nSm2Q19/rM84MoC3W+LcCSM7BOD5PapyHcMrEnIdzbDpKo5gD2Gp0Lh+R5vkqGzrD5VLap1askcUJ\n3GCZc8YFvqSK/OKStQIg3oKyxj8HX9+MfaCDEk5nrOcr+prHnUNUoxr4vBi9i5LlyaUy0v4cHg22\nl+dcZwyXTrDSc5iZDVsXlq/JbqYgl5bw7PkdPddsT3Zzr6Q1NP9Yz1OIFWxu0HZBEYzf1Xqvo1I2\n6PLOgqrmkrGcXsjWP4xVf1rq4xLl2e1bQqaMOvjlnOaoOpG/LB7qPkWQEGl4gcYjlK887Ssz+N+W\nbY354Kn8aFDlXQzlq1soRxbryvbn1jrXTaey0Y1NeKBAZ03noClAja1KOoPMQPWPu/gNztOho/4v\n4HCZo+ST4iy0A09IaLLdSk1nn/Tvg1xZcmZ5qL87oGYXqHye/UC8J61t+ZwQiL834LwN5HEa833m\nNQ/bDSFXln3euRb63Hopv1kDLXW9jssUZDtp7u9nX+6VehBzYaJEuea9ZPIcpaNjUCZfyAecnUsJ\n6OB13gMq8q2FTdSuepqX3iXIGHzrZB1zgupzIVUdoRvj+swqad+W5ZTNzkGy1UEmV7Q37O6DpO7I\nhjIg3cIRKnjH6uPyWEhqD799uy4bvWqhelYFJRbKRhbnGvt8CiQJPJUpztntZ+yB8Fnm2lr/i4Dz\nKe94S96/VxM5sv6ad1LiB0PeffyexjhEoWrM+/cB583tjffNzOx6rufonMqmhpyZZh/rfNzv6ly+\nQClt613ZjsG1U8xqbu5/BwXMQGtu1BOa9Fe1BCmTtKQlLWlJS1rSkpa0pCUtaUlLWtKS9graK0XK\nlGGrL7uw7k8U8To6UnR42FNkqZxVhC7YRm2IjPQbD8Tmf/pQkavzf6dM8MhVNPbBtq7z+7dVR394\ngHIPWbs3flc1zltvqd77y0fKBD9/RmYXjoRoqgjdGo33PDXO/jZZREdRcYLUliGzO0SpaDWhPnQY\n660TkUfpxhrU88dZSer9d6iB9gM9/5yMyQT0RBjo+3EmKI+aQXesqG6ejE166luhRC0p6ht9stJ9\nmKHnAzJ/1IguYhUQ/n/K57JX1E+TraILtl5Tc79G254s8ENqG2uo+0wqN882mJkd3leUNQjE8O2m\nySCTTSuQVXE9MnmoTXiwlftE/q+AvjS29ffb1NI+/kK2U4Zh+wiEyIBo8fmJniNFXeI0j6oR4Uyn\nSq3/WJ9zXBAiUw3MFd/3isqG91uq/T0+V8ZhRla+WazQD/XvK9+Uzb75rrJFvae6/+mR6q0vydL3\n4RKober6d2qa+8ot2XSrqyxWZ6jo8OZSturDJL6gHjNLxttgaR+O9PMkVD8rnj4fQZXwwZUi9o28\nbPH+G7KXe//o98zMbLnQc5+hKJRy1D8fNFumJnuI4CpYzdXv8fGRmZnlnZujIOogLtaB1mmLrP4v\nvhSvxexKkf4s63BVRj0CXoS8um7TicYoR239nGRIrFpRRbEkBDExoAZ+SlZndIR607UywY0O6KoH\nmsPSNpxQ+JP+CrWHIyEquvDwlEv6+2qJQgKZzN4ltfK+7uuDEGqFyoqsFmRC4wwqSmUVkHlL5noM\nauoc1FKdDPVWWRnFTFkZwtv/VPXg9zPvmZnZ//g///dmZhagGBBzdsWcNDMyuXEdvOfjL1EqC8t6\n3t6Zfrb7spG723rO48+PzMxs7pM5fl3ZwQxIQZ/MS3clm/JTL7d9RTNlZoYr9aec0u89FOfqIHCm\n1N3nu+rnOXT6A7gZqqj4ZeEm8NIygCEKYu2VeKRef+8/MjOz/2r0T8zM7Hf+23+g79+NkY/KpOzA\n3XC9UbQN9pz2Wn27npB9OoVHbFP/35ix/tNakADdbAAaKY2SyzUItFwNJa6mxqwJCqjoo/hHtnmE\nImAnACWECkUbv1SeU7uOreWK+Hs4EdJj+H5AIFaDmJtG2aPjrjKkrafKCF+h1jfuyU+NH8MHUqDO\nG+6EKvXq+TDmr1A2bV5T/0vsnaGLDWKTOf/l1DAmJdATcI/Ned4AtbuwF/svDXhpiVpJRXt05oH2\ng0WAOuGnGo+Ln4jrZnKmzxe3UXQAyONSD78can4HK9YQPFk+Z5ogRmXUyVD/VOP29KOrXz5D1g+t\nAtdb6MQKRZxJQHmsT0AcxeoboAY2tzSPmeeoD4JOyHSY5/gcgTLc85nGp/xM/R+CtDk70hqIopxt\n3AO5fA2ipaW+liMUtmayYRcEW6enPmVrhxqjpgZpSNY9z57ZG6NK90R+JOa8KoOAKzY1ZvNj2Zpd\naAz6Fx+bmdnDH/yZmZntffc37GVaMasNI1/WWaaQkU148PJsFeAygx+kWAY9gOxGGYrAAeqj+Xys\nYqd+X1wxPnx/gHJlBhvMjfS9YYkDJ2eXWHlnFqJexfMuQfXO0qDAWPM+/j/q87lYVamkv/euNW59\n0BHlDZTd4BdcBZq/LIpoKRQaAw+eKLhrlilQXtj4cASPByiBPDZ+BzRHlEYNDx84RunTYVyzZPe3\n9rXvb3xL/br7tn7vdEAXnLBPo9pkZjbNe1aCd6WIvcxRGjr/qc5WjSnndZTcJpHOWHnv5hxmR0/E\nQeJw1r+oaF1N2IMyU5BuIGamPuqkKK3m8d+rAUhvuEYWsX+90Dpz4RArgWQu4L8H6rrN8GfuVLZz\ngjrnshufa1H99FDawTjdXbheCur/22/AM/K5+jUa6nsZEOGjPCptIOq7F+rA5Qo/g18b4fB8uEwc\nzvMNzm6+i5JWCGoZTsgCe+xmTf30UlqDD6+EOlgDLXR9Xe+MKoIDUGWLHd13stAaPXn+Cf3R+Oyh\nNFQpxGc6eJdAZR3ktBaH+Kg0SpNpEChemrW3ejlOmcFT9r01SFeQ/y6clBbFPCv44bTeC8oFPc8U\nrplCGvQZ+25mChI+zxmPIpIl+/4Kv98avlDDrVY2bep1rHUMYu+2kCAVR+fXiwXcTezN48dCWT36\nUyGBV6725gff+ZqZmeU39P3VltZTfoGCZBX1pEsUCeGMGa+4LoiSJagm4wx0/BBuSJCA0BZZJq3r\nDHi3deBiLBXgpeMy+axst3FH7yJXJyD6lpwLJ1qTm+zhfZB4dkqFClUm3Z76u3yqccrf1tr4zd//\nrpmZtfr63CcfUcHD+fzZX8vm3PSLvfr/ryVImaQlLWlJS1rSkpa0pCUtaUlLWtKSlrRX0F4pUmZN\njdd0pIjV1CNqC8N0GRWTVFlR0QxZtRmR8il15UvY9QcXR2ZmNqFWuXhX0c2dr5MxfgcG9FuKmC2I\n7h6f6jofwp48hpk8WCmquB6pn5dE2jZgtC5ewXZf0N9doqQTA61RUEQvuyRzgSJQH4UFb0JGoEu2\nisxJQGhvRcbczcdKEHDsjEE35NW/RR+EwDmcF/AH9PqKin8wfGKHb6Frf6hIdI1oZ6mirHisihRn\n09cxG/oFqh9LRbxbjK2hulCpEpJnrmr0yXZ1n51CzEWi/y7dg5Tmhq1DyN+5VFZsc0PZipghu7VG\nAQHej3kaZEqgqG1pSpYGxZlzMrzXsM2fXYklvz1GUcvR9+I698qmkC8r6hkLpv8vUYcYUUPfQbnF\nAzYxQX3KrsjOofhiZJ7zNd3nvfc0Hik4fH6ZEeXzz871fJ/9UFHWFFHdzK76e2dbtcTlt4VqIOBu\nn36oesgeKJHtkmzxCiWZkDrOEMZxj6xQh9pbty4bX5Glm801vhGs8zOQPpX3ZVdOVuP0vEMN68e6\nf3+g+1x2UIfqYj8o7px1xGnwBiz9nWvN3872r2co/5ttktWY5AKN3QillNYXsn8fJRdvJn8wHssP\nePAqVUuKdDcO4JABdjB3dd2JD9dJF9shS7KA1yhANc0va86ul8rYeWm4A+BeqQZaE+GW5t6NuW2y\nygSsmaOsA69IX99rPWU9D4TA2Skp0p/fgRuL54n5QcIa3DLUj7sZ2VCcDcssQOqd67pX1OC6Zeqt\nA/Wn+0j907fMKhWQL+fyR5fUJTtOnOUC2UN2LJUDQQjnQSZWKgPVMHc0/nlUQu7eQkkmR7Ywje+A\n82FehGsBDgZ7icylmVkTnxDV9L2x6TpN1F9yedTr+rofIim2U6P+nM8VQBl6qKuUS1oDe7dU9/7g\njua53BBabXeg5/TqX5iZ2ef/5qdmZjYZKDM7LGnc89ORuSgPbt6Ft8gn8wiXQMQz5yegCtiLUhP9\n/R78Yisylqms+rIm2xzBGzTOas67S9BbqEiU8WdFeNBGFdlaGkXBeR5oBzwR7gDkDH5xiR+pb6Hu\nVgId0NG6n98hCwWCMv7ZLH9V/UZFb0hmdYWqyMSL/TvorJ76vTiFI2Gm608n2sPTcgFW2nw5vpAs\nyB6fNRSrMGUXGq9xTRdOwykwHseoNxCXIBW393VmOdzU7xePNK8t1Pa8az3XuKXnqNdAkO7LRrdA\nx47gnMjBBZAG+RRQx38Ob8ib9w9++QxvvvUVWxY07tMs3AI5zUsNlas1ikUOmeIQpNQU9N91qAxu\nY6k1OfDgSrun7OeyhCrTM32uO4tRF/q5zRkoyg1tfUoNPuutgLJLGt6g3ihGu6r/pduy2cZdnU2G\nA2z0ifqQhufBGWlul6h6lF/T5zdBQhfJ7LoYa+eh9vozUAI1zpX7+y84R27SinXNzWoIcqOon/3B\nGf3Tdec5nSv9nPYDdwQabQYy3NccFve0dzrYQPtY14+VdaaX8CNdaqwzoC1KO6DFJrFCGip4bRTQ\nOLNVA625EtxfloEjba0zVXZD961vw0+SwWansvXLJ1pb626MEgZFAVoiO9BzZeEVbPP/8wLoL1B8\n61D380CB1Mna17KgSNj7W0Oy/Rvqx+09VBDJkPs7MVJVBvPliRDyg0j7/fmR7lOpoVTkv/ABV5OR\nrRYa3w2T/TXyKNik4ZL05SNj35tdyyetUkW7acuhspndx1Z9fTdPHnwO3+MW9ywdwCHTAQ0P0vjR\nY/mzGAExHoEIPONdIatnLu1ojIK07jO51JyVlnAsduEGHB+pgy3588bX5d9332SudjVm6Vuy4dVc\n1wlQTKuC0AtRKBxzxgnwT5bRdTaHmpsBijou/shFQc0p6/4TuNFiVG8KlJQL31Ed2w1b8r/nl7L9\naFfjMWLfevMr4u0YrTSX1ZXOlVFOCNEZCnCNAEWyWEn3AC6b2JZn6mfMH5jiEJDOa7xnoNwKnNmK\n+P8eyMGc+3JImdQc5Tl4RKdwmBUrKJnxM4Bfyw3lxy8ENrMm++QEPtFxm4oFOMGyBVDN8E1NJqzl\nmvx6FXU+M7NpZmHp2cp68LRtm1A54yDmzNN3UyU4BeFGfP6p3gVqRc3l9QEcVLflTxrxHLzLmaQH\nKn+kZx23ZOvLtmzdBQ1lsTLYBhxgkfq8QIX0TpM1g3pmGbTVcsn7fUZjFvLenjKtjTkcM3XUU09B\njnefw0fEedlQOMyy5xtniWCpOSmAtPdRV/3FD//YzMwen4Bu4+wy7InnLt4HK/fU71/VEqRM0pKW\ntKQlLWlJS1rSkpa0pCUtaUlL2itorxQp4/Z1+xlqFItIEbKjnjLCGeojt+8SpRyDpEFLfgjHi0P9\n++9+V9HSCyJv0HTYqqaIVwhDtU999emniqZO3bgWFi6GurJBLkoDHgzbJZjMIzgmzkGsmKdImw+i\nJQwVCYyI0LtF3XccoTBDdnBV0N/TsPBnUd5IxbW41HGvmkRhyc6t4zr0SNHRQoh6wYjo85AaXAde\ngXBo+aWi/xuoRaQDuEfKaL8T8Y6QFimRzemS+UvBO3FJqDgg+7+CFydbZWwWPAt145mMskRFeCjC\n6OVMrrjS9S+7esZTTHaWog4dJMlWSSiHRZrMMaolbRi+e2M9X7FF/TAa8yu4Uxa+nifvKds1JUNa\n2QFlwdx0u0Tc87pfkFfUdDoSMqQO/5GN4CKoKEJdX6HiYbqek8G2PEV/e+eKbD85/Yn6fzaxf/6f\n/Zf25C/0u8EN8N5/+A/1K3XaH3+o7N/lJ8rKrUBHnTBfG/vYckXzECvkzFEaiODaCcqgO65lM8Et\n9dtbK3MyJHuVH8qW83WhA6pl/X1AtrL/b9UPgzclymn+Tp7Cy8E47u0qCl/YjVVYZB/nX+o6Hefm\nGe4BiJLVCmUoMnmrS907tom4TtdfwvVEdqO/kL+ZgDYIPPgTYPIvwAo/oFY/zjqkV4wVClvOrsbw\nzbt7jIlsNMQGV1cg6vAr2VyclZH/Kps+f3bFeh7rcwF137W0rp+DmyZCfei6rbWWmqqf2TTKVksy\nEqCTqvepOwah16yRASH74sfqRI4i+Z//b1IRSv1bKbsUT6RoMIJTyyvj52J1uToogKmeZ4b/cVA4\nGAdk3ciyN/AxIfwo4SZrlzW/oL49s0EGFsWIHDa7wO/dtPXgKPBBBi0dMtIB3AVwHqRA6rjsByv8\n+uZM/e5kZMs+2beHp+ILKdyjdvhMPsQ5+b91vbIQWu3HsunLKyml1eFjiSYgquZruzzTM84i3auy\nRvUuJ1/vwmXiFcVHc6uAQgiKLhlsu9/XOi0uNHZz+JAWI9Y/Wft8TtfLwGc0AvVlEaihsZ69ABqq\n19Pfa+yhHRAsqazqzhcxkjClZ336+QdmZhacUjN/oP6myYIXuf405hbYJHsOJ4pl5V/ncAY4oLMG\nS8aa/SoCmbH5rjLU26AHiuxHN22TSzh8FuIqmOc1RxlsJYVanufwnOzhWXzMCiSk9fX3rkOGG86z\nrW2N38yFG4DH7E+xaerVj+F+WICM2imgOoJfXJ4qqxiCzt2Dt8rMzN81C1HCqcLvEcA/ss7+bfTv\nfKqz0gI+pdkKzjh46kobcFREsvntOtlJEKuLASgQ+KUMLrXVDmvJdqx5qD2ihn/rgdK0PiggkL1T\nUFX5qrL3XRRWuk/1vSkcg8409hsa2wqZ1aCgudvdl//t9TWHUV//P15pnVdeE6roa29+y8zMvM1Y\noetmbQHfhO/CSYDfyJM53f+6rj9ZxupRoIYu1N812ew0qKUcaCV3ru/fhoNnxD7BMdY6E/n5k1ON\n2zvboCy4/xzeizpqeoeoBTkxrC2C+wuEaH1TZ4ONOko2Wa3xs4VsYRPETwSSxH++4HFAbp/r+v3e\nkZmZjUHFOpA9+Ch+ZVBxyXMdu5bf9B24274QAuhyrrPD3h78evdQAvVRSWnJBucgUQMy4+Ol5tva\nKIGdg5ACWV669QIJ5TdqNm/Ba9Vi3nbwfZxpK06MCuYsCzdaan5zfqrCW/LPpV3eCaaywUVPv8+6\nIEKafGGqa1c3+XxXa+bBlu7N1mc1kM1DT2Mxxj9F8ANlQGpkURs11vusp7F99lBnnVIV5AsI5k8e\na8xXKHVNnqPKBFdihJrUDsiQPd4LMpzbMo5+77dBK/RRmpnHz6t3rQXvbuk0/EsbMeofhCII6lVG\nNpMdam76E9nAtM3ejYBNC1Tv07z23C+PtRe3LkAgljQel2P9fOuBbP75uc7rbzSFbj1tH5mZWTOr\ncd+IeaJ82fQKVLTFSB7OUD2qOwzevHH/hZrRTVq2AKr2UPcpldWfNeM5/1Roi2uUeKcD+f0RXDAh\n6I0K7xX1rZggEeRTUTbsrjSPZbgtnRkKlpwZzczc4coit2ZF3h+nn2kPyx1qzlLssUvegTLs5X/w\nX/+RmZk1t/R76Z7W48Hr4gFde7KFx4841w5RawPJ4q41d88u5d++PRHHl7cN0hg/N96CR+9jzktF\n0JoQfAYoHOZAMC8jjUkX3qYVypJTUFEpX2Ofg0+tS5VFDW6vDByLG3DHti9kA4cLeHjgiTLW3rKr\nPfv+fSFj8t9QPMJFfcr6etcr5ziX/4qWIGWSlrSkJS1pSUta0pKWtKQlLWlJS1rSXkF7pUiZEdmv\nOVHi644ialcdReIOHyhSdvC6dMMjMrRnP5dayZO/FIt+m8jd699Q9n7SVAQufV+RrsM3YPwm27Ue\nKfq4PKLOMk02sKjPF8kUtKjf7qGD7hLZSxGEjpAeysQJEVM/puif2xRSgrWukwEpk4a93kJ9vkeW\nbX2qSOHCJctZIWM/U2RuRIbXy8Ndc4VSUJy5ySsKukrpenf+SBG6rzR/z3y4RKan4jFoP4pRO6hB\nLPVQlxOUXogQexd69oCM6Dtfe83MzMrUPsYIilg9wuBb6D1VRP7Jz36gvhJA3q/p+zdtC7Tq56gq\n3T1QtHFGJu/Jtfq/INPaj+sNN6knzqFcNYQvaKXopo+a0rgvWygTdfVQBSrBwu49o356ouxLocj/\nz4igZxWpzuV0XTcg0xhnXarUJaNM0Ac1EK0UVR2UFPIvoGywsZAN1+/oeX77D3/HzMw+/Fx10yt4\nOD7/5MjMzJ5fa/y/8jYR/1WO6ygbVLtFjTEZDBvJxjyUcrooOrxV1c++A4s89drbhS2+TwZ0LTup\nq7vWo66+f6xod4Wa4tpr+l6VDK9LxnhI5ubOW1I+u6ZOvk4mIpMViiCTuTlSpk7WZQDnx4hMbJqx\nSk01Jp2u5qSIAliabH6nTYbPJTsNQmUEf8WQjN5WDpvKgCIiEzfoEXmPFVjKsqENEHyX3Debpn4Z\n7pJFnJEjU9ylXrzfVpaqPFXGIRsok+kHZCpaGvM2ahtr3LgbMYcg764Xep6LS2WF3mno+g24A1qg\nrVKoOLlzjVeFflewJecapOBaNh4xlw4cBgaSxbkik71JJgOS+RVqUQXquL2QOnv82xJelAwIxHUm\nXlNkbFAb8WC/9+B9Wvq/vjb377YYtbXu6H5eSb5iDkGVg/2szvX3CQpnbZCLJZA2DpxA5YV+9rtS\n2vjS5XmuNQ673xRPSnVL83b0qRRptjLK1gV7KCClNFDjyLO7aWVYW+wV02uN2bwPpwnKAt5c3zmf\naf3kQToOemQuF5rja5RTciA6Nt8gO/RLnjNlh1aMQcwptsRfzVgD5pGFMv10ADssWO/uVLYWkjU6\nvxJ/zvf/1b8xM7PKLa2dnS3ZjHum+65d2Xguo99D1moG1aSI+vaQ+u50JNveqsOrdAsug5yer77Q\n2pm0QGVckMm8YcuCevVqoNc4Mzioejhr+dVoqt8XR6AX4LTxIj3fijOVW9dHAAAgAElEQVTFjIxl\nYVPjfg1xSjkNN8ACX9BDNSvPfgFyKYtayUasVneheerCl1JFFctiThozm2Xz5qTg/gIR6zKNp5ey\nwfU59faOrttM4dDX+v8zUBU+FHAuZ68MCJgYfbIAfeKDDnZ43iy+tbAVWA2kRhuOqyVZ6xDUJHQT\nVmZT8eC5W03htSN3uIXCV4Tf8uCcytzG/5TwZyXZTvdj2VQe25+hLFisH5qZ2Rz1u971y9lIeiab\nHIIKylXw/x68GIzFGN6O3lxnjzXKlGnQwinQuLHfmVwd6e81ZbvLTY1PZg+E5ACVpo4+lynKNrNN\njZuDX82BULwCrZXOypYKKGnVD7R2NuHxmOIjRqCnfM6bEcqSNUc/r0u6r88+tvW7Osu1n8rXTC+F\nhljF5/gWyp6nKORkdP09VPTmF2SMe/p7psr5uK7n75zp/4dr+bgBSjzzccxtoecob2icBnDhrOF2\new5iZjMD0Z6ZBSvXZvAxufAEOqhSFZiXgHl6/rlQFyv2mXzt5meSexW4S1COub5kTH4mW+iGmqNu\nrMAVyi+scnrG7U0hsb2a5t7vyeayqATlURVtMWcTuMKmfP+6q99rIXOKf/zmPSHqqm/Jv43gSskw\nZiEogCoqRQV4iELehUprjdHJl3CIYdteRv0pbsQqQaCd8nCvwK8Wgh5ORZqbdYd3rXPm2tfzNYvw\neIK28uGPWtXVvyGIlCDS/7e6mqNSTWelBrbdHWvNF7Lq55x9r+bpcwYKuQHnViqncV6Axh2BNM2B\nRHXhK5zAB+XwHuK1tS9Msi/Hc7dR1fhOQcuVtvUcHZSJjuG+9EFEdUH6D49RKfwjkLLs19XX9FxX\nIM7TedRqUSbKZ/W50QCePu+FyulOrWgL17PPj/QsgyfaS/dLOpNs7xS5N3sNXIBZrjnsaGxmn4r/\ncnUev1PKDxdQd8vxjhQVQXfdU5/f4vzk9Thc5I50XXiR8lu63yNU+xpwsU5AvoxMz+zBFRVtwAED\n50w6iNG4Quf3piDdUbD1qQJpTUGFcvZZlHTOq7zHnp6Xv1w/1BoYjvR82Yquu3Go+x7BtTU9F1rY\n4UwQrPX5X9USpEzSkpa0pCUtaUlLWtKSlrSkJS1pSUvaK2ivFCkzGCsm1KOGrUjUtr6vCPi0QV07\nwcfJuSJYMxR1Ak8ZgvlIUdA29ZGVQ9jVD6izJuvWuVYkf/5MUcbJMmbvV6Rt3FfkrOQqM9AMUHyA\nU6IHW/0EpEowoWNE3HtxNBIumAUZmwA1lXQRDXr4TGYp6iiHiiaHWTI2MHFnQvU/BxpjXlaksgsf\nSC+gZpra5d0YvQJoZdChHrHy3OqP1zyjxmh0ob+tetRC1uBVoEbfL4D4IGt+zff8K41Fd6AIq0ON\nfS6FKhDZ9Fuodty+e6j7oQjQOXmRtbhJWw01tl88ElLk9XtCkoRkaOcoYM0Liu7OVnDm1JiDvqK4\n7SnZmVhFg9rVKZnNSobIdwoUEpnpEMRIsaTnyngo6KD6lO6pf01Y22coAdXIFMSReZ+sXJ268xPQ\nXSfPZZOVFkzmZJsm5UMzM3sEQqdD1q1Wgo8IlZbXA/0sbSrafDHWdSeh1kCjzRoaaXxGV4ryvrav\n6PfGLI4u67laE2X9SwP4ixoan2pD83n1XP3MkbVaEWm/++CbZmYWoQ5VDPT3I9SnHh6Ledwb6T7n\nXxyZmdl1X9//7reEnNkoK6Oy/VZcSf/3tyUR+/kVta6M9QQOkMwSZMuErD616DN4hMIx3Chk4/0C\ntfwoiozIZMYyEkEKhAuAtxlrqP+hstBFMpcRSjV1MgnprOYo0yDjdik0WcyJs+5qXefhZCkWdN24\npj5FPfY1anOxCkYepZ3Hn8GRFej5v/1b75mZ2cYB40PmkiVu44H82S48U4MyPBAz+ZUFfCMzsmTe\nNpnqMVwAp3C6kFUfxWpE8H6UHTLARTKQc41HzIYfkr4vxfJOcIiFrubD85QlnMOzEVQ1roUqtv2S\n21eFTPvqUH62C7ovTT+6cH3F6iNbqFndwW9HZLYzIXwqIJW++r4yJJlN7Rsf/r//3szMdr9xaGZm\n/T7Z0ZYy3Y2mfFhpC58z01rsTs+tGmnsQh++CBRNDGWxDVSQLK117Bt7HGoXewf63oSM5h41+S1Q\nP4upEG2RLxuqwNNmnmwkIE8TBfy/A/8SCJUcSlGLle6zCvGjKNCsVihpvaVM73dISL72up45gmvq\n6TUKZ2QyZ/CDzAbyPz4cJSVUSsYF0EuuLjg9UxZv9BheJLJcz0MhdNa9WNVJ/bhpK1Tkn4b4rxDF\nMG+m8bo+mvH/Gv9lH7QaqN/qPpltbHcDFcIVqnohyovHIHkspTW0CY9KDcRldYkCW1nz6IMuuB4e\n6XlXmtcAhR4neJFfS80dy9cYV3iz2iAqy3Hm91D9i0B75Nnfzj7TPht15cezZITzeSGaXM5IowvO\nCTON8wIljXmZ+4w1flF/ZNdtoMQOSDP24gIKgy4KIVGIrYP4GF3KD02HGvvJVGNYQinysiNb3qmi\nPIVyWC6Un+inZUvWAQWA8ssMhZoOCl6evRwPRBSBBkJtJJXRGI7b8MJ9rt9DOMz6qN7tboHkBlVV\nBO1VgXOlkZOfMNRNBvOYOwu1N5CYHkjMRUZ+2MOfxiiyMZlpD2Rkblvfq9GP7hROBxAjw7DN77K1\nRSSfMp6DNNnibMDPk1PtW/Ox9svqHupYa43rCtSEX9J+fPwjPRfUjlbc1/NW+X0+03Xvvqu1WuL8\nfoGvm53p59Zr4mEago5ot2VrDx/JDu7e17zff+O7ZmZ21QGhVH2h+Hn4/lt2+tGR+vlQ+2UqgDMD\nZFLB0dp5+rGeM+vI57iswZu0px/ovPP48ffNzCzvw2sD6uDN9+CdW+tebc5VHGstC4fL9ERzM4TO\nZg2PWT6H8uIA5Rn26tVCNldmXTca8Fmy/p0tkIj7GqvpUO8BlTvaw0KQ0uuQ+0Nmk4nY+zd51yjB\nVeKjnAUUfpWLFcngsgJxuESVrVXgOeH/Wbryo1cgJ/M1fW62lg3MQAztHDAHcDaWXofPCI6ZOWpQ\nG5zPp6uY90NrqNkWmsutglaeCI2VB8W7xrYn8Iu4czizSqgVTmRza94FsygqZlHmbK/k/2Nutpu2\ns2uhsYaP2Zex+SW+KkIZqLiNAhnngRn8TdMVyFd8SJrxWcx0XR/fOTqFq+xa91nNOZP+jf3xbH5k\ny87EwgXvfnCr9E/1zAdNIeNGTd4J4KsZ8LnLYyGyB6grlTI6Q3gBfvJ1+ZVsBg7DSLa3857mogVH\nau8D+e28L7/eXek+M5Qii3BgDeEk8+p6hgprJpfnPRhAT5ozTcqN34FB4sTKWaDV2vx/KksVRFef\nv7fJ+RWEfb2lvfOiJP+SXccqrPL/v/j4r83MrINiZqMOD9+Ont/7e/gyE6RM0pKWtKQlLWlJS1rS\nkpa0pCUtaUlL2itorxQpU0krWhsr/3QjZQ4KTUW+woIiWOePlFnofCj1j96Von77W/r8zjtvmZlZ\n85ZiTJVD1JZQ+ZiMyUif6nouqANzFKHz04q8FVHdKBVh+iarlXZidABqIkR9s2lUOsgMZ8jOGWiL\nYr/Ec6AyQNatTzaxQRZqTfTzjACeC/fCZw8/1PNTt735zte4nr7n76ieMAVPSAZ0iE9mPQyorWsN\nbZHTNf2ZMnPNLXgd4AqoEmEe7Sq6WWqiupRVRP8xnCFlOFrcnqKXc1QwqmQ7SILZAm37O9TxzcjW\nRBnUeW7Ywmtl83sfaO7bb0ldY1qmlnSi/sbKKCtQArMJc0+UtR/zX0w1JtMCPBKUNWdQqVjAtZKC\nK6fY1BjnUUsqwiMyn+n+vbki6aUNcd0UXNlktKXv9x8fmZlZrqClFqMbwqN4/ECq3NP3goL4JuoV\n2WQho8xK4R6s9nf1e/jXWhMjXzZ5+VzXGV0oU5wuiWNmBk+H00MBKNDnb91WVPqnP5R6U82om4Tf\nyU3JlgpkZMIM3DEbKF3ANzIAKVUjan52IkTOxlRZQZ9MTQ2VqtyB7OlORZmLM0+Zjq+giPHHx3DK\nxBwHN2jjS7Ls3TiDJ9urUStuJdly5IOIAenigKpyWX9OnPWGf6FlemYPhbE22fEViLUadcC7DzSW\n41aRHpGFgNvJceCUIeudwehGKOHM+vpZIltd2dYcL+E+GbVAsfF9xJSsBt+Ei2pJv68IfR8Vj7aj\nDzog+k4ulCGtNeFk6Wluh9Ty73C9WRRnucjWF+LMr36+9v47Gh9sdEFGuFZDmWUKf9JCWfdNeDMG\nqHsU0rquFeD2QUVq6aJsEGkt+fjBAF/EErUWddWtc33+pi2FOkmWjEUmDeIHJGMTpZ7lGt6nqXzL\nFUjIFIo2q36MLtF8B572qxSoOregfcXJyr4uTrSWRk3G5VqcaB+jIlLZIWPfCu0MnrExyZTUSGiB\nVSTHWkurj0UfG5zJ/6x8XWN8qmxNl4ylC/poPCd7jspFcZNnAg2Un+i651m4DbJ61gpIjh4qSQ7I\nmzIqFB0yc64bZ5vU/xwqTuM39ffzbf298xmZ3whekA3ZzNZMn6/WZfsBNf12pTkqoLQ48zGCKlxV\n1HP3HI3H9qaUG5oNEDYoRti/sBu1c/y5O9D3Z6C/InhHJqDGUqHun0Jx7FZe/jY6JMMKB1oE6mNF\nBrSPbdV2yzyGbDGV0viOjvU8g6ea971b8pOLhfrhDJRddOCtyxT19yycFGZmTjFtnRnolDON34I1\nkwJp2j9nvnryEXc24dF4ov1gnUd55o78cGlwpPGAL2Q4E8qgfwovH/cust9POfM0yjmbgGKKgDyH\nMb/aSn0oByiGpOT/pqhIzuBx2Mnq/xfYZGMq/+XM5c/u7GpdP0E5JibQ6bW1iCYoWC1BKaxR0Zny\n7GHl5ggIdRj/BQ9avaIxWqOwlQMpYndAOi/IfYK4S8HPdn0kZOUCVSkf7pswhLenh1oT59D5StdP\nB7K9EJVAP8W+Ax9QLq/r7H5b6ifFu/CT9PT3wQ/lI2oHGvfmLamERLGaoK8zz/e+9z31DwROFX6T\nEWiNzkC+wQFFcdnh7OQynijoxOp5I9DJpQbImwvN/6Ku55pU1O8hym5+Hp9W0P3u7el6d7+q837/\nXPf78b+WQmV+A/4REEWnj8RtEcQbupmtOxOzruzGBQEbAVrLehqf6SXqXqC0raz+pPxfQjr/3vbF\nJz81M7NHP5JyYeW1QzMza94Hmd7VOW+Yj9X0mHN45gbtPn3QnEwWGutCEeQdvJd9uGQ68Jg5l8re\nF1B2rG9ovbtVjWF5V79vgZRZXclvHOR03TO4UTz2xlIZlAHvLj1URfv0a7mQv5qxlqecKRoZkOR9\nrc1KJVaGBPWPrY6uZIsT9vIKqnzTtGwzE6O7UOMrg1ZaL9Tvkq+1fYwyzulcCKUILpoZyjw5EOqr\nY41rBDJ+sOQ5B3r+dRFEEbwkwRBlNHhMQqouYt6ohaPrZFPY3uzlfMkYPsNBW2fXK9DV1bp8x2pX\nZ6SAM9v2199UPz3Z8BSOsu4Xmjc/4l0QNLEzYP8xjXMJxaA0Cp3z7ReojUousGF6bQ1Q/4uQPbAt\nPzkGWZLJa6zTzEUKpF4KXs7GWH6iwPtnACrzvfe+YWZmYU7r6fJEfY9M38uiwvTh8ZGZmW2t9T2n\nqrH2b2sM9vY0Nqfw7mXwE+FEzzauqj/zS/V7wLvcGj/gjlFxI+5goJ/2d1Fpwp9lTf+/7DIHcOC4\nIOkb2+r31Vpj/uwT/Sxh6/cOdCYgzGCFXY31+BpE5K9oCVImaUlLWtKSlrSkJS1pSUta0pKWtKQl\n7RW0V4qUGfq6fRuFH9uAK2ZPEbEOdXA79xVVPXxTkf92qCxNPou8BxlWD6UXxDrMf6a6ulhJpmqK\ngK23ue9YEbtgDJLFoW6S+nF3rSisQx7IT1G/uaFI4nCgCJqbVxQ1giMnbfremOh2GV6T7hBd9k34\nUFBVmRIt93Oop+R0vcdHR2Zm1iJb6L0FhwR172//oSKPs2eKvFUvNB5TapCNYXVd3zyUDAYoELTH\n+mwEMqS8o3BellrSIDg0M7Mifd2ZEFml1r/B9aZTRWSvR9yM6OTJZ8ro/dUzRSXHY1QaQDHdtE2K\nGuPCfZRWGiA3IMbIMSepOtkpFGwmKKUM5tSuLomqUq+dJmu3AMWwzMKRck3Wf1eZhLxLJmJMtBWU\n0wrETT0PO31TNpRdKtKdrSmrc0FdfEjEOiDdH1HX7sFP4YJYevuNQzMza5PBnoJYOcV2Fie63tG1\nbHR/R5+v50BVgNR5QFbpuq/+VxugHlAMy9c0TlOYy3OgO1KofKxjBBHR5DZ8JhFEKiFcCd220FzF\nUNm1i4U+v3Vb41clqzg6kb05AfWhGCcUOba7QxYTNMbIhfjkBm1N7fsYlbQALqp1qD56rIc1yi5n\nLdnkYklWgWzzahlzqGiuGxnWAnW3jqv/D9Yas3WbjFosHwLCLhygAoJ/S8PLFOQ1NmXm4hKug/0G\n/u5L/Aj1zNMO65hMxAB+oatrZVj7l7ru61+VH3jtm6q5z3qaI6dHPTFJ8/QCG5yrvzsbus86jV/K\noioC63wh5hFatriexnf5qfzq5ceP6S/qcXXZan1LmYwa3Dq2VP+LHV3HQ1mhC/KoBwrtVhFlCLhr\nrI/iwLHGoQNnUI9MyvDo12cc/m67JkP66JlsNgxB24GIypFdq8zgenFBceSoXe5qbaxQVMuE8t9/\n/IMfqT9XWpu7ZFwuv6NMye0H1FKDqPr+n4tnwGM+/Lmet9fIWJHslI+fqTP3ReqePdQ0MuxRORbQ\nGl6kfFk/U3PZXg/lgfpr8u/bFThRsOECqkkrUJZlww/2UTKpyEY2MrredBpnDlHP6GpNdDxdfwa3\nyjWcWU+mqjNvtTR25RA0bEO2sRfo9/Zca9LBT3tTVDPgVaqBUpouNBdz+N78QKiqw9twmIASK2RQ\nwJmRDbthK61RagQBFIKGO4bXKI1NpOu6bon5ivbho1prvAfcNgJ918fWrAARVUnXLaByMkIpZ32E\nagb+r74p39Q9E+qMBLNt+XBFmOxgOU/98hkm51Mb+aiFgFKZgqa7k5cve9bRGi7TnzTz232m+x/+\ngWzVQfHi7FTPtddQB/Jr/DoIyqWLXcB9ZC32qx3XymV9pge61oHXzTiPpWsa6xEozSWcK5lL2USL\nvTodaU7bT7WnXa+OzMzs/X/0bTMzi1AdmqLwkmUPXU9ALjeE0nSwQcuB1irbS7XJTPfx4Y+bgmY1\nV/64j+pmBt6f1VLPnQlBRLLXdc40590hil4eKiM8R5u1sASd5Yy01naKGmMfW1+Dts2X2PdAn7Yu\ntLbPQYpXmodmZvbwTOPqwe0y+URr9NMvZWP/7J/9N7o/4Cu3BVIElG0xo/1qC7RyFICAWun5hlPN\n0yyUz9rIg4yZ6zmv4JXyGvIJWTjRpihaxmelOmiO1EDPc34kFPACdEAUI6ngvZtd4xtQa8rye4Y1\naWY2P+9ZGhSf2wS1wfZ9xQNHU7jSUF3KMq/uLG03bW+/J469w9+Uf3r9Xe3Rc5OtH13EqC/22jrq\nQp7W9cIH8QEfRQgScMWekwNNtAc34PBaz/zRlZ65DPpotdRamHOWqaG8WIR3o1HS2M2xxQAUhMcZ\nJJqD/KBaoJyCU6wCEp1j2hwFG1vIttooMa6PY85H+Z1MLvZTINOLKPvck23lG0LC91GS9OlPjSqF\nCUiVJmtkzd5ZDmRzU9BOMZp4Bt9TjHY25j7NuC9QlZv4ev4IlHWJ14k11RAL3gXTHdQJ+V5jiX8F\nLRzFX7xh29uHfy8ln+Qfam2V4Oopg5sYoCS62NW4l871vOfHoHaXmv8GqMPCrsa5k5GdNA07qer/\nl3DJtY5iXyzl2nEqZSX4RPPw67Th01l8ornN7nO+Ac7rYwvWEPprOVU1xFnIGLVQZDxHlfI1jZGX\n1tpYMXbtPJxgDb3He1Mhioesu+0Z6sLsPUsPfjNUiDv4/dlTuPtQHHM2NOcbU5DqNRAsKXjwSpz7\n4WEqcO5cwZu0BnXaS+vvKXiIXPat3IB9YIJCblvj9O4tqW8O2eNr8CQtUr9+w0mQMklLWtKSlrSk\nJS1pSUta0pKWtKQlLWmvoL1SpIyfptYe1vy7rysyvl9TtHRy8idmZnb1I0WmMh61oTNF/sNdRV8P\n3iOiTnT48rki8tfnqJlUqWFzYP0HrZAjKzhtEjFDZz1KKdKWI0u2DGP2Zn1/CE/JmgzIrKPoY8lF\n5SWr0PvujvpzznVXC9XMZbuKLH7YVkTR24BVeluRwzlR6bf+saLrqSx8I7eFFJr0QB10FS0dtJX1\nisEF8wvd7/Qz3W8YXtgtkAt+RVHB+/fEC7FAM96gehk4ilBfkrE7fwwnCzw+wzNq62GFjzNtyyF1\nzzPqqsmOlO7Am0CWP3o5oIzl5pqbxrY4R9wedY5EemsoEbgwhvuoiCxToJhAfhRmcb22xjY9gIWd\n5EemDOcMNlKsqKPzM5QSqEMvgoyZgHAp1hX9nF/o9wtH2Zzbb2h8a8e6zoiMdFDRczS2ZLt9FMXO\nnqIE1NT4XcEp8PFPxKWTzcWZA7Hkl1Hr2L+rGuHBtWz+zg7oDcAG9bn6v6jquuUpEXQyqFkSIUsY\nwb1A/38+Vn+b1MuniCJnqPevV5WxOaN2uVzUz9SmEDNpsoEumYqffapxuUO9ZvNNPc9pTmv5dE4U\nfCJDTKdQ1LhBS1OHu5XXNeZDIvhkVcbncCtRG790STf3uUAezhTGJk8WKubfWK+wGeqTQ2yqT8Q8\njz/YrCvLscao0um4ll7PeAJ3yv6D99WvX4i/4VYRtAAl6ykUuyJqWrNk+gpwMdSoN3Yv9QC9nlBp\nPkgdD8Wc0aX8w86W+lVjThYzrZ00fqoA78bUkW8oljTn2X0Udp4rixRn/4dPNUeDMXXupozr6JRM\nKso9tYweKIV/W8JzssrFPETyZwfvYsNt+bWTn5K1IpvYe0jaawLfCf42WLzc9jXRErFCrDS00rjv\n4v9HZEarVWqRQViuZxqXXAVUAPNz9FxIoac/UKZ5B6TPmuf8/PualzQ10d/6x1IF+c3vKrNfTIFm\ne4pyj60tHODE2btWIMqihe65mgsdNIcPYXUB8g1OGa+A4tjrWp93PI3R+bX6coXCwHKhTGwD27AB\nyitpja1PzfygT4YQ2y9FGotBXhm5Enty+pZsqMSeuvWmbH8ro/9/tymbH4H4O/roMzMzu7jQfZZH\nmvMTOLucmTJ4TTirMiX4g1J6rtkFKn7wdQzmsvmQcVqjwJbLa03ctGVqcK/51H+PqU9/DGdDTba9\nA6/UAmRIKQ1PChwBac4CE5Cp2Txrran+x6iGIZwKKzjbsiFIoU1dr7Sp8fnsx/IVDmhc24XLZ/y3\n6/rNzNzUyjKslQmohhS+5Bq+u0fnyqx+c1/Zze5jZSX7Ldly80D8da6jfX7cpw4/f6j+PDoyM7OP\n/kw8Vm99R2e2dYPM/pU+X629ZilQVQP4cvIgQmL+hnRZ6+DxsRCAm1XZzpCsvAc6ap/MZwAqdII/\n3NuSn/rkAz1DB6TDugIX2JfyK1+pyt88vxDSuvdY/flq4y17meZEZO1BdCz3QZ/NQAIBFuqNZCtz\nbCIz1ueyruauiK1dnoD0yGk8xqCyJj5qdOec44Ya0004EHN59WN8CZdBTUigZgNFFRRpno80HnVP\n4xqwVx8e6CwRxRljOHY8eD+a7CfNKko8fdRLQSyFC13n9KHWRq2keSykdN/eIEbAx2c0zvvwM9X2\nUN0q64w45kw2X8g2Q3gOyyhMDh7p+Y9OhEzcZd+vYT9rzph5FITe3NN+FxVeKOJ4gVkWxM/cla/r\njjS+gKItDNXvKhxvJ5zdNscveJv+vjYA4eLCO+bto/wHL5APn85krvV4xbkqhf9zUV9Lg66doqLm\ndLBd1JTSqG6uQYBU98jew3cBZYrV4KzyWDuPfqFnnq1AUhc01mMUBacgHkcgKhec/9Ocdfwt3a+8\n1hxugxrwipoLH3Wgzpz3AtAMQ1ByKd4Tsint/akHqATiRxcZ2WCW55oHOpPkxvr7GTwnl13th5EH\nwrAAL99tIYJuw/+x7PIOhwqhrbUmZlx/BrotmLB/zFCAjGHGrOm1owHNZNSP3Ay+Ks7DUf7lOGWe\nneqcf/qJ9sMGaqbre5qPOmtgVY3XusYfLJf5DmehpcZ/PQcdgt9v8v05HDx5lH9HIPU3mjEPolmh\ncseKtam5IN3WIKM3UJ2ct1CkRdlqBm9mKq9n372j9XYG31EedK8Davejv9Q5+IuP9PcNlLnaaZSr\nyjo7vPt78mPDD3nHZKvPj3TWGH4h26oVURCrgg6Dl+nxAP9UoXqgLdsdg8JvFHT/eC9ezUFPgYaa\nohzWfy4/1OEdamMHdVLUOf1Atrf7BnNVFDLm+feorrjSe3nQQcEYpbAJKk2/qiVImaQlLWlJS1rS\nkpa0pCUtaUlLWtKSlrRX0F4pUibmGck5iixtEOkvofCyTd14/wtFpI4vpcxy+DVFyO5/Bw6XhiJY\nV9eKpM26iowVsop8dS8U2Vuk4WQpKfrcIuOdX8BK7+t7K1joM0Ndd1GAb6OHmkpKUewFNcLLun62\nBnEkkf+nfnJGtHodc9agBnAJG30GHg4jUx1lYK9ugrJowW3zBI4cmM67oFM2R/p+lqhpSBZ1jkqT\nLT1ronQ1T6EoVVamM0/N/im8NMsLPeP58yMzM+t3Fa1s5BQBH3YVlVyTMXVCaih39PdN6uXqm2i0\n31IUMU/G9GJOlPDf/a92kzYpEZkm2zGD/6IUwQeB6sd8Ad9HGoQLGeIKnCwtkDTpFRnhAGUX6iaD\nFRlYR9kY36e/1HHvVjV+Xg40FPe3W7LVFbwXiytFadO+Pt/cVf/68F8sy7pvhVrZJYosz66U7Wr2\nFAO/gH+jDH9FektZrQaM5kNUWPLUIl8fK5qbjxRtDlFBqaB0EGIJvy4AACAASURBVF4oM3K9UMa8\nNFYkPSDyn6Zuvewqk3A9bjOOIGBG6k+40N/LZJEyJaENzqgTX8N0viSTHd1CqQw7Ku2jWCFzMQeF\njMxYWVKvor/P2zGM5QYt0r3O+1pPObLmFv5tHp/ZQD8LqFXMtzVWqZx+ruGAGiIh5sCT1EB9p43S\n13Zdc1tD2eayR/aH9eeD5qod6H4eHFR/8B/852ZmdmDKZP5PP/xfdN+HZHksRrroOs2q+nWJA8mD\norgLN8KoojXs4YdsLttzqMfeARnTyOvzBsdNFx4Qp4Ntbihb48IXVIF3aApPSRf1N8q4bRWofxlf\na2YJ8qREVqxLTW+Ygbdkpn7mUArz4GRwmzKCdzf+gZmZ/ejpD83M7OSLn5mZWT0S8iTAptP4z1lW\n/XczN6/xNzO7+zZIoYV+5sjkXMHdUAEBk0PRIQ1fVRCAuqP8utfRuGxR9/2HvyNUwb3bXzczs+FS\nkJxeS5mWGenKwedae72J1noL5bprVPay44qFIDQoWbdlh3+kdPNgk5ryNuimvGx+7lAjPkIZ5QOt\nt8cn8mdPfCEgvvktIdlC1uPOltADs6y+P8Kf+zHihsztYgDKDK6SXxbtb+M3QRQOr+Vnaln5q1ox\n5l3THv/8qcbm9CN9PlbiGpJRrrI/5VAXGue0JsMU/jbm+0E5bYpiYxmET5o682kexF2c4rxhy+Mr\nLi/Uz8ET7XcX+KdvfO1dMzPzOJuUyfJFIHMi4HfpUDafqmq8QrgJ0qCuqiAa209Qz1rhJzkLVQzF\nOJCdSzLC+U09bwgKbTSTLS3TL5Rh5r25zT346i7h6SigsnhNtg/07w6KFh9+8AMzMyvCK/XWe/r+\n0z6qi2X1ZzyU3VzBSzJiX5nP3jYzsw1Qz9eoZHnrlI0v5SdLKXh3BvJX/W2t/woqZQN40uob8Nng\nX4fzI/W5JrTVKoVC1alstg/CzUAl9VsoSMJ5cgpSZe+bcCF8pLXQeap11/+tDXuZtoyz7ewzI/YH\nl70ygjYjvdRY+Fu6/hS/zJSav1Z/PM4oIdwF0xClRpbaVVdrwEMNKLgP7we+IkCFpAuPX/CG5mrv\nPufpw9fMzGwxAZGdxfZAZwUgZa7aQmH86F//72ZmNn6qNdp4X37OBcGTutB9pnBCOGfy9/4mPFZd\nreHxEA5GF56UEhl2+LDqKDRaCg43lIXcXKxgxj5TkD3UXodnr6s1Ng9Bzl9qfBYuZ6Mz1m6Ws8W1\n7m9m1n/etTBiny3DxwW6ziuCGIJH5fxIyKtj9vdSULObthgdEAbwxT2VDV63Od+dqe9rEIoO6ncu\n6KeVx+SDjPDrWo8Z0PoIu9oSfjzPhSsxRi6DGJnCq5QC7TCd6P5jOGjcbZ1lWqFs2sMGZ5yfYx4h\nH38VdPT78Aq1NlAEk7X8kxeCtlprzDcXssVRfBaL1Vkr8BKB3lqW9UDZIWgnzhgRfD7eUP2FNsQ6\nY/UzDWdKCsWtJXyeF+fyi5/ESBqUd4qoJeVjniY/Pvuh7gSvaQW+K2NftBXnXRTWilQULEFuZtO6\nTyZ4uVKATQdk+QHIzhzKjQPddwAS1Vvp+XxUD0sCAtkE203BhRPbwVVb41MG3WFr9rFnOuvNeOfN\nbe7/si9LG1mQqZqX4b03Ys4vOBfzHhr+cr2gBhfzbW5oTgsH8PXgr0pDlBTP9HmXqoOId68OKpfN\nNzjngazL4T9ST3Tfn/8f/9LMzJ6HOr89+Of/1MzMxrzbVRuai60cZ5eqrpOBs7EGH98cHtU5PJcz\n/HEIx9gY7plRS35qNYbrdkdnpa3N2D/pc4+nss13QRRW3tf9ep/ARcP3B5/qc736r1cNTZAySUta\n0pKWtKQlLWlJS1rSkpa0pCUtaa+gvVKkDEFfc0FhrCaKNjrPiLxNYXt2FdHa3lM08NabiiYuMopE\ntQeocMRl5wX9//WpIlou6h6NBtHUKuiIa1iXqd1Nb1PviXLApSnC5V8rG+bWD+iPPpcpKbJXrFOX\nFymD8OQL1c6tFqg4+fp7s0YUk+RnZl9Zr41tZQxqNUUtd3Z03W1+b1O/3f+5nrNAvwaPlfGJQPj4\npvEJqQlMEzm8kyqZs9YYZBYw4f9En1mkFJn+4qfKLqQz+vsQ9vXZhDpfX2N3546uufDJ8pAtTuep\n2aQucEzm7/xU0cExNaZ1n6jpDVtppkj7JKWIfkC2fBppjrZB+kxQ6/DJKJfWpLUd2ZYHJ0HQV78W\nc/XXheQm5kxPkaVKE1Efw0PiVTX3/a5sckqWzDuTDbWIFlcaul+6S2YARbAFNuIFZNVK1LpSI+st\nQEU80zw0HDKlZP/yqKisqY2tEP3dI5NwPNF87jff1Pdq+vw2D/aIfh96isy/fiClnucfK6Och0tm\nEikEv/aoE8/o//sFsk1X8I6wdmuw+E95jgA+lfOOMssuGYipsaYneq5grd+zHrXLz2QneVfjPx7o\n95u0OfdoZqjBz6KQBbJl3NXPGdmoiBrYVVFjNJnG2RmyTdTC5/AbJyeypeNnQuq5xW+ZmdkGWeYc\nKhCpoua6mSPDAK9SBiWan/4rZaN/8dvK0P7ln/ylmZnt7Mm2ZwVlIK6fHqnfPc3BkjpnQ4FmTB24\nB5Ivv6X7zLr6e7pIFgj0wNNHQtilRrL1JnwjGeYuzr6nNlCAYO1fXyir4qC0lmdu5wv4jyLqqalX\nXpPZzpKFH49BO5zrOjaDSyKH8sKR+Ch+8mPm63Ot6U0UxByee4l603il60xRwZrGmdIbNu9Mvqf/\nV5qHMKt5HqKulwPVsEbJzS3Cl0UWcTzS5ypV+cLpVM+5nMonXT+X35/mZLu3UdlCBMQmnymL6D+R\n326gYFZA/sWvlswh6z1NgxaowQFD1jiC4+QKf7YJr8Zkrb2i7KBA4mqsD76tOXrtt5Rd+o/vCm3w\n/T/5F2Zm1utqjpYg3HILobhG+MXyCj+0j/+ZyfbGofaidYs675ay5T//K9n09Eg2vvc1Xe/yQ5RM\nQLhswyWQ3cRfhcrGOSh/OSndpziR35nNURNa6e/dWPVurOcb8vkC9eEOimozX3vwTdvsQmu3Rfa9\nTNa+eUv93dgBGTQHMYqbmmXhxplrPEt76rfDmu22QXc14KKZsJZBYmZi5RnQZCn4i8Yd6tPJGlbv\nkt2PyOCOUIrIvFCYmaQdswkog4auUy7KRjfK+nx/A1+x1PhkkXXawCbLNc1762PZ9HbjPTMz+/M/\n1+/33tB4NFBoq9+L0RS6TqGqccvXiza61lj6oWyqD19FtiZ/2R1qnUSx2g/Z7t5A68VpgwJLCckx\nPAZplo1VONRXL5KNP1pqr3tvqT4tFrFaJ3xAJc3BKffzrl7Sj4AunXVl862n8ptbG/hR09gP4cOb\ncFZYR/JnDpwH4ww2DSrAg59jONKcD47kCzrXet6DqsYvhGunyZmrvi01kQE8dN1H2nunoG+9XVSW\nQJvl8Rmzp9qXqhUNxPsNoduaG0Io9jLyKdMAhBFqedXbOn/fvq+zxBcgtpucomYonq2r8F7BRxfC\nCTFGhWu4o3GocA5fsPZrKJONQN8tR6wF+FBSAaiBUOPlRxqvEuisEftQvqnPzXovMtNZZ2VzOGdm\nF6ikoiw5u4T35JmuB0WN1Xc0HrZ/c5mudgskBdyHF1coU/VBNri6VmYG9xPosTZqpdV0zG2FPwPZ\nYL6+VwDx7aS1hsIcSrWcbeqHOlO4KN7MQTUcP5ffXqCqWUatyIEfKMqBzMYPOSleEeHPTHOudCH6\nyC85P1/BVTLUmiu4qLPi16I1nFyR0FtBEzRYRf2NeaJmCxTEUprDGAHqTHWdBVwvVgWVAYdL19H1\n1gutySzX3yjKpgsgvFfAIupj0Ksx/BWEn7vkDMQ7VWbFuPCqXMpp/vyV/HumgILXBET6S/Lc5bZR\nbkOocsh7Sfc5KA3eTYsboM72NN/lCvypVA6EbHOX+ErvM54L7hjz5WOKd1CCHKn/1eDFvuHN0nb+\nxRObL3WNFKp3hdgG4A+tw7WKUK8NBvBVPpBN5V3NzbNLkGYP9U7TeqRObnxVfdh9Qwi+Ku8+jX2N\noQNyZvap3k3GrvzAFI6uJeffAARhVAMBCM9atJANduHgmuJPZyDQq7GCZRgTisr/DEHIuUU970Hz\nN/TYWVDCKe4Pwmdz99DMzHx4fC4XWgNhBmQR7zD5rPxlhmqS0vavR+8mSJmkJS1pSUta0pKWtKQl\nLWlJS1rSkpa0V9BeKVJmp6pI/J034Tu5UGTsKq2I1RLulea7+nueKOGkokjY/JmiogNY5i1SRKro\nUucHumC51GNekK2qoViwJKK+QEknRQbCqKc3OCWm1MCVY2WMDf292Ielua1IoD8mOhlQ09qL6+OV\ntesfKLvkw5Qd3Ee9aaXo9Bxm88dPlZEIn1B7fQGCiIz7/9fem8ZIlt7lnv8T+75mRGZlVlZldW1d\n7pW2u42Xbsy1Yca+DBcjzMDQQhbCY6bHEvPBgDFIfANsLDZrJCzT1ngEM5hpdJGvrsfm+l56BkO7\n7V7c7r32yqysXGLf94j58PxOFUiYyZLGZGv6fb5EZVTEOe9+3nj/z/95gnWdHO6eV6Q5n9cJ3PG7\n1E7emup18rRcBdpDz/qbyh+e4kLU3dRJ+CJFWxX0Gp6gi4NeRGEZpgankeGCThuLOZ14D8mnnjbJ\n3YyrbTwcEAKc+6XC+txgeksJ/yAYlYgKjYiOwBKyucq5IFJoUfIVOdmeJ4jwktubI994gP5GNE6k\nsKM+7KBLMs/qlDc3h11VJjpCGA8jLcuVNBZHTaItHfXdFLXz5qtiVSynVJ44LIFBCC2elO9Speut\n8FobEN0if3mBTsdkiKPBVO1aDqo9rm7LRSWOO8qR0zhZXHjGzMzaLfVXraoxOcio/ltNjZGtizrN\nTpU0p6q4bXTRxtk/D1sCxlCIPNP916QWH08xh9AzWeAmkBprnLWuUN6k5kA+q4hH80U510xx9biy\nqXJmiZQEiwfPzY1ych1eVlR+sasy7OAYMCX6ESPfN5RQXV4n97xxQ2VcI/qbTqBVFSBqBEkocwym\nXAzXDVTmYwkcqgwGyISo2HlFLEO4bcwva3377t9S97zKtUv0v1jW+jU/oe+PcIUoBfz1Sp9LTTTH\nhrC54jPYVwWVZ0xUpBglQjokYtDXeplJKaKbOU3EgzHWwT1kUtFcDuH4EPRgvBDpnMJcCeIQERyw\nzuIeUhuRv83jxYPtRqqu5YjyRWdqt1ee1BjOH9UYjC9rbjWJlMZymmO1ga672NFYG/guWgdE6zUi\nNv+X5kaGSO+Dd6vfJ2UYQqb6T2nvAc+hQlntHOyqnxYJ9UsZJ7MgjJsMkf85bMJyXO08Q2shmFf9\nkqyNubnad9Q3q/vMijlaIUFYQczvBOyBXlp/dzyVZQQLIDFXFGp4P318Tjo3AbS5XiHiOfiqxl7z\nVc3vPszGQk6DfR+NrAlRplJMdUrALoqU1VdrK+qD9H1y3zl2TnUrMqajBTSiKpqL+wmcVrp6vuyi\nq9Ylup7zcAvqs87ANg3igBZI46KHllgAV4poT88j0rwtWNOY76GlcFBUW6pvpKM+T6AHUsBRBlkQ\nS0yIrsGQDMJsTKxqrufjaCmE0IhBTyWMW19noHbr31A/F1eI0OJQM6hR7wmskpOMERiLHjpytZ7q\ndzZdvFWJadoS6OnF0CSbRLTGRbNaI8OwRMawBpKMj1xG7eihCdFgrt39iOZKaPqyXuNiXEULGj+7\n6Pnls7AG5zwHmxUbw2xbzum9HRhnR2HVGhp8I0MnAleceAx3uzu07qZ45oZ4hm6jb3cFzaYpTObO\nq1p3o+uqazmkvcK4pmfdxmn1aSSrSOgw0bXbQWLGuom7RwDNkbbp7zhOLMZYCeKmOebZNsLxxWNd\n6UzUN/0dDd42rprDoSKv60U9O49saIwMWd8vbF81M7Pkuub8nSfUd/OR+rwKmzgG66lFJHg41vev\nXX3JzMymrFMDGOSLDHooMMIHVfRF0NEYE0m/juZKfVNMzOlA+/kAWooRGC6dvtasZk/9FUcPL7Cn\nfuyh5RC9offbsGlnsDvyOKj1YVuPYXfM0X9KwmScrajdPRihAV+TsqE5ZmY2joRsCrN2llQ7eRVY\n4eiUzGFqHbsLNvK9GleJ/ME1zBK4aHaLuKjR5smyzwSByYbGTBSGdgLW1wSdod6UZ91lzbM976qZ\nma0ZmlU8M5NoOYZx7wmyF5miHzRlXbOp+iKKFsoEZ7NI3s8q0JyZ4NhlsHHjcdhFM/bZQ+ZuRX0W\nW9L7BVzjArDEgjDEu3NYyCN9LwlLoR/U/UMwZub8ZvJwugqxb6+giRJBzzPQQxepq/YJzXgustxP\nor5DrsqRCLAnSfB7hWdudq65NY6j8YOu5wzGSyCisRXjWb1o+c47aGahLRnFXc/QbDwoBjXt8V57\nXnNozMIcgk1RyPL8xKk4iKZkyHc7baChhs7L1nlY0T31d3Fyn+oPG698VHvCQVWfH27fWvv6/bkl\nvagFYUmlS1pXgxmNiQz76Bl6Q92J5lUSZmLiquZLFaZbNAET/aTKmujwDKWNu5f5zZBmHbii9W42\n9JnQuKoVGSP3iPW0ge7OwNO622XdXDkh1lGKda8C02fF0z6zx2/UC9u6TxEWadhnROO6NGOdbsC+\n9Z2HezARIwE0Ed+h9TZxVN+fr2hsp2DY7aU1h2pN9clRxuSpR+S++b3gmDIODg4ODg4ODg4ODg4O\nDg4Oh4BDZcoMTCdRC6JeyaZe22lFdHPkSYdwallkdUo6mOpEa14lYp1XNUKEJvqwCOa4noy7ijoN\nLukIq76iE6s0Ob0z8jp9Mw8OAq1LZD1Y1snYiEhxZMtXl+ZEjzz+bEmfu/uEooaNGSeIyQ1db65T\n7Qx5fUdXFM2c7ij3bLCtSHq/qXJtTnWyV8Z9ZEweewDdlDO4FKTv1HUTpxTNmk7IGx+rnrWLNetu\nNagDbJwLV83MLBlTWZJnda0uJ8rJdZ16RlDOhwBy0yViARNmihtHZa5Tz3RDUe9+DW0AoskhBH9C\nuFAcFBH6ILaGhgsRzKiHUjeR2CQaAvO5/j88UN+EF7iT9HA+IJo1gZHikccdIjCQXNPJ/gXyuH3W\nxbgAyyCg7+c8NchkrvqUYEtEiWDv76i+cfIVc7CZFkNdJ8LY9vPTo2s6hfZaul6rrvuHiCQH0zrR\nPhYjgrum0+Levt4/9QPKz8ykYECR5z1Z0Vy4c1VjMuDn0KLtsHb3HboPOhkh5JnuflBRyQTfb5Mz\nfOoImkQe+h9xnRZHSmrASpUc4rbq0yPCsXJU5Q2R5zlDSyZX0ilzI6/T+ALjpU4k+iCIkv9LOrEN\nDbci3Iaa5CWHmEe+u0IMtwwjkhvpqc1mrCOBMGyA08rZLy4UjUmjHdMnSh5JogtUZ/2ZEoXASSCC\n5koyg/YBkdLYHBe1S5SP6NGxdam8z9Q1NiKqsV3X/dKwnSJZ1RO5DcvGcEiZoJ6PZk7xbvVZi/LF\nN1hno+hFdcQgme4S8R3q+zmiaUNy9mfkYQ+wBenzfimrsb+3o364+vJ5MzM7gubW6bOKcIxhGA3R\ndQrFYS4FydUlkupl9H6GqNyEiOY6DMP+GfVD6TgR6QNieUPr442SWF47VxTVqpDPbh0NoMSd6t/M\nOuzApMZuoOFHqXAdIGIbK6FJtg2jiChbEmcHX+8jiVOFBxtigdtXnehgI7ljfop3jAhjeoYbQ4ZI\n5jmtc+Wm+mi3Sr40uj/tmcbca/+rniWbSy+ojmh7ncRU4sP/7iFd76Tm3X4VvZs2OkhzjYngDEYg\nOfTTiRaIOM5SF3ZVl6Wg6pJmvRiy/tRwZmkS3U+GNf99R61Wm7ZjHW9Wpf/RCjHXcNqKLLF+41YS\nNI2VIXO1OeHZGICJOVI7ZAO359BlRKwnMbQLMqpfZs56TSRzUUFXhDWgXNKzvI0byjYOMbW+6pda\nmlN+jdkZa8PMgyVL1D+MO9NWTxHUu049aGZmR4yIM8zHZXSPxgGVM4vThJnZ+krMZmibRdG0aDS1\nHodgwLRhiE5wvYqT9264GLabGijegsh5D/0kHMsG6HRduazxEIgRUZ5oLZiw96gsxpbOqM5BnEvC\n6BxE0noNhdV3MfZtkbnvYqe+S8Ea6KOv02J9K+IwA8HP4nG0wkzrRxRGSxwHnMpVjekFjoepM4qs\netT5oAijx1H0dL/qCL20pu+2hj4Q+9KFaU5FFmibjFSPSh2GRhNXNpiJMZ4XSzkizDBLYgtcSYK+\nNpfm2JWr7DNzsHCzvlairtetqP1GYY2VclJ7vsj9co1L8yzv435Vw720cl7l6uOaVD6i50sbunAC\n1kP+qNoxCmPJd4vq9bV32TmvtSic0RiM5zVXxrA5SnF9v8/aZR1dfynL2tNnL4Brn6GPFJpobdnc\nQRMOR50JDkK9DmyT0a2fOZPG1AYBdFEYwz32LIPruEAta7wsYOjU/L1u8OBrSQnWTiKjsTq9jK4S\neo+zlq7twWhLRnTPQBymRo11lv1u03faavu6eXqd4nBjKVhMrFcL2FYezPAA++IBLIV8EqfXgvpw\nbQ1tryGfY0/U7MJiq6HB0tX6bLi0RnAQ3NrR2FmglRXLoi+HFmU2iSYNjlfTIxoDSwl9fsrYn9yU\ndyKLAAfEAKyHMUzSTgxG49BncMMaJsnBfw5lYMqEed4Y+h9zNHpmaNQEWa9yzIVRVJ9Lz3Bzhb23\nwNF2kkJ7krGVwhWpzZ7xoBhoSbKr6FMl4yr3ynHWRtbM4IRX1oApTkhtWIBDXJqKZ7Vez/j90YCd\nMkWjKNnV3x1cmEbeLX2T4WDPcrmkrR1ThkUYVlevglsRmi5D1q+R74KGZtOYNgon9Pca7p+lEyrr\nJs647R1d78I17RPLOPMGwtrbRNHLWTouRz9vXRvh0SnNocGO1r2rF6Rvdv2i2m7Q0mvp1Amuw28a\nzg18rdkl2GTxALpLS2qbvM+kp83bOAV36uxxcJrth2mXKX2k5df6/HjySHvIvI8MoOf1LP/uN542\nM7PLsFY/9D/9D/bPwTFlHBwcHBwcHBwcHBwcHBwcHA4Bh8qUWWzphDoz1eldhFzUXl0nToOgTnND\nqK1Hlgt8Xqen1T4RF/Kz29hchHyl6gh5k2g6LKEFEzLuR75lkCjYGA2ayAjFbYJuefLsmzjftGHA\nZMn3OwHbob2iv8cznSj67iDZsJ+fqHLEcYkxHDX2tsmX76q+K2gn1Pbk0pHJw4AhYlLntDtS0sni\nboWIvKd2y/kOSqjvhzqZm+rh4100S3Drief03VCBXPi8vls8CdtoiBPN2HeNICoEQyQy0on52kRR\nlFFIjRaJEp0hGjEYw5AZ3B5TJkoecZfoUCEJO2BLp49b+zopzpbVZvtVnUIWLqiNM2vQDcKcxPsa\nNLALBjBnAkR20wH0SfbxtCdKNPLV2mtXzcxsr6UoUnfsayGgIo8blZ+X6Y10Wjwbojs0030idXJe\nj6DBQ5QmENEpbBr3jfEIfSIiBaWzYm1EcFC40VB0boqOUvMVjZnrW/pevap2CreIAEx13Ss0Q3+m\n0+DpRNe/ckXfm6NuH7+isT/BueiODd2/el33DZ+DaYTO0xL6IV1clEIRonYons/RoojgvJHgVL3r\nMZeJUKTQNjoI/Mhom7ziaBsmHcr4manapm36/wW5sfmCTrSTaXLGyQ8e93XvBlHrWE/zqrKt9wto\ntyRww0gTNRmgLTKhjWMZnL9guO3ThnPmfZSoTwAtkxvoPtVasBbQtoqTy76WR+eBaJvPJSqRq+o7\n9GSISsVmGrOpoiIH85Ict+56u9aTZ7/5lJmZ9VHHj0WI8jA2prgf9XBuCxPVam0SkWSBnKIzEgjr\n7/yarhMm/3mcgAVGu9RZb5MIdEQHql+voQhMtKg5MB3ihoE2QSpHBJqIRnoZCuUBMQnDbDm5oTdQ\n0x9nNT6S67hJndKYroTUzjeuaU6FG/8037zQRXOICFAJZtGcdqwzjqowOucJPTcCHnnzAbVLiTU4\nvnLUprQVskYWISpltFmngsMAEbxVIrKRMvo+18V4aKOf8c77fkTfz2mev/qt/1Nl2FIf9quKcI6m\nKtvxY9QB96UQjMQFzihRniOLJM+HtvqmNtR1Ji+rzUbkXeciep6UloisorE1ZE7msug7RFTv8N2s\nIzn1VTyj+1ZhGDaHmoujKusSbLBpWp9PdGEI4rCTwVnloJjMtQ73YzetgFTPqcZkMah2frn9ipmZ\neTc1DGifARpteRilvvtFUu0x8+cS2mp1nqOzodbb3gA3QfSqvOhxvi62QeX6Da6LdpCWCqvObz1X\n9xtj8zqKhPoaYHMGVOKEyhP7Ls+fFmxfmJJ9LIlyRf1/Pql29qOQG0WYtcf1XFtdQu8KrYdwiHoz\n9kt5z0I4THkwSMI4h3noQUTWda1cDM0THJzGcTXuZKA5MEanaFTBgSqp1+4NjfWVvNa3lVW1ZR3X\nt0BZWicGK8lnIdTRWQjEb7GMDgJf0yWN7lyRvu3B0BjCXgjDFGngNIgsm/XZL2JCZR56Tcssv2E/\ner2AzeD57AW9LqNRZfFlPkbE2teCgJHdZR+6gAleg1XbK4jtkPI0F6cw/zpZ3TcQhSl5r/o6QRS+\nnBArttfRerjD8zEAI9U8mCwDnMUaao8g+nkRGImtpvZoVXToxvvaMxTQPxrgQFNrwsjZYN8+g32C\nFlsHDUl/H74YaMxNZmg24vIXy9z6mTP1QhaBedrsaPI0rqp+8YzarVjS/UYBfb/dYw9TOzijqgUj\nuLWtttq/gIYhGldZNKdyMT3DejPtJ8eX6XP2P0GeFTMYf7EVXScx5xkCrX8MEySEBo0dVdkLWc2t\nC6+KwT5poJMWQ59pqOu+ti0dpsV17QUCsGFDUXSOJhpjKbRcArhzzmDIx9AbYqhaHM2ZPmzZJPqd\nLdiv95ZYvzM4R7Z8l8E61+d55/l9xV4spXUuDmMoVNIYvzmi7gAAIABJREFUPoJr3JHTqm84h0YX\n2pMGk2ewrXXMdwibw5yZRtjr0M5RYw8SULmCns8M0muCdvD3PiNcqWbN2+M5xDc05u+LvFd/L+n7\nMy4TYu/YR3eqdxFdpqzG+FpQc+IGTNNAiOcm6SVzWMkTxnwDKlIAZ85J9ZbGZzwUt9bEM7uksVC/\nRtv1/d/nmh/pnNo+jyNuI6K2Hd/Q/BjCHM7kda8w+6Ms7scp3DkHl3R9b0LWA/vbUF1lm49xH4V5\nko1ovl9/TRot85oW1ONHtL7njoolFAv5jafXyljrfXSmuuaO6zdhHN1Rq8AmJbtiONF9E2idpXE3\nTZMukuQ3scdeoxnWawo2aiMDWwxnwpMPqz4pXFp7o39ZC9ExZRwcHBwcHBwcHBwcHBwcHBwOAYfK\nlInhd57P6cSquqUTum5dEY5TqJ/H13TiFI7rJGqyj1rzAkcHIt8LcmZb13UCF1pRzlkSi5tZUCdx\nVfLt0uSkYq5kqbyYJ0tndOIWuCo2wJx8Q1vo8+PrOnk7TyQjt06+J/mhHSLbG3fI+SJZ13XbT+vk\n8Ab57gn818MN1TvSEYtl+7xO2Tf/7tu6/sOqz9G33KvvLSnynT+u677yVZ0czto6Y5undEpeeeV1\nMzMbjnOWKJFnV9Zp5amzulYQZf7MaaJPplcP3Z4xGidjmA6juk5FE0Q9xguYHyhee0NO7tuqQ5Kc\n+35LfTPxI4cHhJfllJW83wAMnBxRoxQq5Bt4xnvriizuoyNS2VVUqHlF30/GFSGo7Os0tJxR/QJE\nagNz3EcW+l6phlMMCuRZFP1zeZ3aTrvqy16A3E1OXdschja6ctqpomu0ktZpax2J7rWF/m6jSTOZ\n4oYSR+eogxsWrIcwTgybsMsaOAiV/CgVEZRwTPVYwtGiEyfiQr7+MjoZnTqaDuR5x8nNXb5D9e21\ndf9YX+MmmkAvY1kn9FlO9rOwDRZndEI/GeEg1lU5RkXmMhHiSy8qMnSdXNxWSPXN5sgjTx08fzuI\nTlIYvYQIrkRNgkZhXM1m5Ir6edNhHBHiMNkWuAaF0W+Ij/0Iga6bPkLkDRe4PPm9s7rWhQrRjEVb\n111ZJX/alxJgbMVyatMZ0SSPcsVgnU2G6qsuTluLGMychNo4BRNj1vNzfHFaYC4GyCPuw/oaZogy\njfT9FkycIdoBY1xAjChLbR/XE1TwFwHYT2jl1DuaO6mFxuQu0b9EWOW/85hygYNTmCg16k+EIdBG\nTwM3kRZROQLKVs7hpkGUPoLbXOMGOlVpvbaHt+e+dI3868XDipTc/9b7zcwsfof6s7at9fISeiqV\nitgJwRMqX/oOlXe5zRq27bPvVPAbREdTXVT8Mz5LQu0zikjDYT2m8TJDvysc1NxrtPesUqOMA/Qh\nomg04RgYMHQXWOtrMdiV24oQ7jbQb6ipb3PPax6+9JUvm5nZ5Z2/MjOze2bvVllhOpRx/5mjFxFn\n3Q+gURDGccV3DYnD1EkUVIflmXSDZlk+H8JOLkV9aLMOuhEezlYerNRwSHM0SZ76dlvr74TX8RE0\na2Ai5u9iLne13kcCzElYVwZDb796e3ohScbyPloKXhw9uTnaBOTNT9EaKxOhnPVU/gVskOAY7Rhf\nG2ugdT7GWtNn7VmgYTNkDgz8tYw5neN5cwNGZz4vtkJ4iah+n/5O39IGSCbCFvY1J9CqifvWZwOc\n5dBv8d0RQ0TxZlOVt4+z0ZGS1m0P1m8c9uG8qz1Lr8/aFGFN47nrcf1ON2Sppq7lM9+WBrgI7Wm+\nnHvgHrUNugcBNFqOF4j2Mp+WEn5ZNSYqFeb/FS0wgRUYHUncMNCR89injdHaS6xqzIwHaImgg3FQ\nJNB1W+AykpjCyISpOPDZWkMcY4j6N2BfxX22QUnl8SKMCcZuiOeIz1Lo1NEAQ9dtuqd6r2bR/Zmq\nrwewcEOwaEPo3i24/vKa2mWPsVDbVfuP0QvxNc2Sd2jshoI+A1317mfR9GEdz/tMG5whOzOeO010\noGDhtlgzpnA7I2Wt68Wp+jfcR2+J/unCtGl1tXbFeipAn/sNX4VNwlwqwDaezGBkIg4ZT2pPNWRd\nNjOb1YI25PoxXFnPHNPaEQyqHZM5XW+JCHmA59AY9tlBMENX5/J3pJuRw3VuraB1MrOsfdwkyt6C\nPYKxx/DQWAnD/O42W9QFNlYOZmRMZS3CcorhWrmEfk/Y0yZozjNqgbOMtXXfua/PdIz7HsXpbKi+\n2J2r7U4y5mdlnLhGuEiRrbCC42SdbAJ/ncyPYUQn1bZeEtZTSn0/ps+66LnFWK9arAEx9hxpfl90\n+7iZrsNeiGp9mqV1vQpjr99VX0Vxxh3CuA/h+DWB7TrusvfDwTeDy2ogikAhrCvP2Kuh+TPqa+4F\n0ObptTWmgomD71vNzOJTzcml4/4PBpVj13cq43fFHMfNObqHrbzKF1xH/66I89hEa+F8RIbCVcZL\nX3OpEFP/HM3qOdLxbV/N7OjJ07aY9K3VVNsVpmhhpVTGCFosfZ51zb7WgyDMvgiupnO0n2Zz9Xka\nNrwlYToW9LnxNnqk/EbzmdUp9tsL9H2C++qTrZnG8hLuleGT6J0yRirfFRtsDzfl0gf0+zvDb74p\nvzE6bZW7iZbXqIojZZvfLPz2ncDYXoLRPIIZOeZ5Ur+o391VGIlHz6lNj9Ie0yWVf7Kl9oseV3ss\nairP94Jjyjg4ODg4ODg4ODg4ODg4ODgcAg6VKZNI6kQpeE2nwJUbYrYkcDtK3oW/eFYnWDvkuIUW\nOqX0g2LpPpFiP7cV7YHohJO9tl5XULNv55SXHSQqFArpFLLAaem0hRYCqu+TtiK1naZO1PpEJ0cx\nlSeBpUX6EXKal3QStpFSBOiVv33ezMy6m2gSmJg2U07s86s49RAp6HRe1vvLuEStEOnJ4QRRFMsh\nEVIuXSCiaFmzrc93d1S/a8/r5DCeOmLLP6CypMIoXaNEPYGdM+xz8g77KEhk1oiEcRBug45OK/Mw\nHCac6PdNp4XhJtFtnAYmLSJ/Pbzdg7eX429Ntf1FnFIynCBPo+pT29f/V19TRGKAO0YZdfejJ3WC\nvnxOkeSYpwjF8AanopyAx5b0Gi6o/sUlTolnOuVcJo/cI1ezsEFe5Bh2VYNo0Io+v+C0dimlsXAy\nrL7OrmqM7r4gFlSXHF/f8WtEPvfKWHOjzFh/fQu2QBzawRLaAOTJV/bJ18eNI02EdRjUfc/cKR2R\nUQ12F0yYbEeRgBpuLqVTKm+6rP83om45mDHLnH7Xq5qzgSoMqgIq9jl0j2ARJBpEwBkPSXJ9l/L0\nU1qny4slXb9TIKJC7vFBMI0TtRmrjeam+ZFOqowLojYh9ByCsIU6IdYJFPQXjM1Zwu8MBCPSGhvL\nJV03hr5Qv6X5P8JNJ4yKfBanssjcd21TtCnIGCpMNGa6QRg95M5niIoEOZmPE7mr14hi7yhqNoMN\nFcV2aZDW31NO+I1cWMv4bkAaY7OWxs53ekSBulonouhyTEx9WMBhoE9ENzlm/UG5f5kc4fxZGCav\n6zpjtL7mHtH970rrIYdYQjKtPh4VYU+xBhnr3oL1e8E6FmHsToP8Ta7upMlzoHYrAnoQHE/DmFwV\nU2ZCvz7/7e+amdkuTjLTAloJS2q/ZR40EVw7RriMLB9HUyaoaF2xp/Yf3FA/N9o42sCQiuKqsulr\npeEw0dtTv0S9tg2P+GNO9yzgfhfAqSrCtaZh1pkbusYuy0JnX3272FTbVCbP6f2dr5uZ2UOm+f5v\n7xVTZoaOThNdpDYMmemyXmv0+ZxnUYSI4KwHq2qOiwgudwHWi3AdlxEip2NPYzfKOpmE2RcaKmp1\nY6EKdAYqfx8m4XIR/SRYV52F1u1L30GXooYbhu8GgkZAdqJ1Ol6UK91BUUv+02e/R9xqPvd1M9SH\nDZgk2aImeyGkOXgdtl0cdkelA1sC1yIPZlII9luQiPYCrYI+7IruTXYf+iQ4/gw8dJeIUM8H6FfF\nbumipCJT6424Pt9vtLE1uaS9gqFdVN/X++kw4ww3kN1rmgvZt6h+0132ImmNF2+hsd9ta8/W8dCW\ngd2RwtFomp7YYqh7rRJpnEGJa+AGFyCCGeGaU6LBQfTVhjiMTbMwnGENzWGNzXraGwxu6JkfSPGs\nzm7ocxc1vy/B+jyBs9l6WayFC5Xrdjuo1XWdKGwCXz9nCFMwgzvHgr6dwGQJ+o4yU6L0fbVlF723\n8MQf87hIjdFGhIE94HNdnFrqI3RFhmhYsQfIl2A+JmH04CKUYf+7elT7ai+/YWZmezhRBtAxmvvX\n66hv+2jHpFmP1zM+q1jX2z+v/pwgcLSo4DAJM2iViHMEVkeshP4Qe9FwT9dDRs/yvt7fTPUd4A6Y\ngc0899l6ea2BfZ6jHoynPvvqnWuKwNd7qp+ZWWX7qkGGsyL/iMC2DqNhMd3VnJhToNKG5kDNDr4n\n6TXUFqsZtfXGaTHVp0Htd+JJdMgCenak0Edr99GHvKJ5WkePJz31nRBhz1ZYP2HF9+LoBcHWMub7\nouQ7d8E+QBOyC/NkQZ8UcjBP+G0RrIktcTKs3xieh8MN637rPO5FA8bYQGNxXlF55+jNzdG724Nt\nC7HQWpsqXwjW8GDqM/JhRzD2qab1ByrnkVX058a4mbLOdabagzR4dofQQVrAxJnj0hQJs076ek3o\nzE0G6PzhxhSeo0eKe1YQVmughZZMEUeimcYyU9Qm89tj3VV7rOewujf31O7DNowfNC3zObVPAiZ5\nOJLlfirPSg5mJr8ftitav1uesj3GbbTLzuMieE7fL/4jZs+s1rLKjR2LwY70mYTBka51HabKjPkV\nRSM1uYaWYIy+z6LJhE5lH5205ZT6YAfnxGmGMQU7t99WnxSOqE/f8uAjqivUkZe+85KZmYVm+lyQ\nff/mea3v176r/0+b5tjJe9RnMTRho3fo/atX0EPaIesh5rvCaUzlCzhcbqCv1+J84nVlPYxHmoN9\nnMWOHNHnjt8hllkevT2LqF71yotmZra7h65PH4vb7wHHlHFwcHBwcHBwcHBwcHBwcHA4BBwqU6ZR\nVST1pde/YWZmXlEnaKferiie6cDOWi2dTLVxgJg3UMju6EQOMoENfbX2rq4zTOqELhDSyVoHlfxB\njWhPUeyJMtGured1It9D4yVJlKm10ElZdJ388CWdJq++9U4zM8vfpcjrqxf0vdZTOqF/5Ql9b+uL\nuu7pkD5/HE2LxlWd7C31Vb9UUafGmYd14nYap5vtS+Qo1/F3v6TrNso6/Rzt4WBzUfdJLqt8G3co\nEhQrFy1FhO31ml43SjApxmqz6BCtAvLhxlOdYoZDOo1MBfFc3yfag7L+DIVrj3zAJA5RU6JAseNi\naIRx9+iTQ3tQdKM6dczgRBOI6vVcStdp5RUFSaOM3y8QTQ/p/7e7OpUMTRWJPUa0ZZZSXxaj5JAG\ncBtBl8TP+U11iK4nyfOuaAzufYdc/hUN0g7OEOmqIiJtItzzqiIm/ZReT6B/dP01RaEyx3V6a2io\nLPfJc+fE28jTjO+qvK+9qsj3mYfeZWZmsWMM/r76vsBpbwp2Qw/3lsVYY2j/mvIgL70uNtYM9f0B\nTgXVnsbBTlsaFKmp6n/ipJhWZSLpfdxgVtDZKHicMt+t+sy3VY+tPd0nBxutWldUslNnzKMbMNpS\nP118Qf2YLtzKdf1/Qx43ijkMkxhj0SMC12yQl4z6+gDR9SX6Okzu/DildSCELkSPiGsBbZAR60uz\ngeNAl4iB76LU0ZzylnHqIgLrK/cHicwt0NXoErxehNWHfYIWIfKvV49pHdjce0b3aaH/g0hNf4Sm\nTUt/L3A+8XUkQkR9QuQEj7Lo9pBvvIANNm9qbvShW+Ryio5NcbGyrq4bR/MmQLQpCfPjOozEXIRo\nOxHdaEB9WIRdFsCqZoxG1/CG+ny2RLQnq0h3n0j6LIAznK+9QuTcjqu9Eku3F1Oo+Bo7T2vuXh+9\nYGZmjQtXzcxstKyxm4elNQ6qXZtjGDmNKPXSHPBdOYr0V9LUnj10onodcpDRf4lPtAaMCuh6wOA6\ngp7LIHPa5im1ZcLTPYYwDBNhtVmQiF+ySN1x1jqBjsKsrfWodYl87rCu/fbBR83M7AeyYo7kz6hv\nXtjV2Jp2cI9Y1/diRHLTQV0Xswobw/RLt1THBBTKcFNtMejD5OG5YQHmCFHmBNfrDfX3hPUkg7PD\nNK82KZcZ20T5F7TDooTbXUL1zsZV3xFOB6Wq6tGCvRYlundQTInwBsawGHgeTppEGHmuRNE0G17W\nOtYpas6Ew7jhEYFeDeO0A5Nof1vXi+IikoBpmkAPZIDe3OZF7SU6c7QF1lXPi69p7AbQLpvAdBm1\nXr9Zh+a1G9bpqf69KLodsGytwzpd2tD9ropNm+zpORvs67q11zQu7n/3T5mZ2au7Wsdt4LNYcF9a\nVj916hrrvgNQZ4beSjJqkaH2NZ2F7jGd6Fm1X1Eb7MF8mcIK6NNWZd5PExEdXtW+KsOeYAYrIBbT\nfmcHtm4HralUEae/VY2NnX2tx8PneCa9S2M4vnx72+AIc7CLY8y4hZYXj6wdmDIhPtdHS2Xks0Vh\nBiVxGzp+ekPlyImdmhqoHtdfVtS8G9Ez/PhR7edaXRihexoraRgxexc19hYNnGjWVe89nBK3YN9F\nLqgdk0n14TSrcoTQ4Mkl1X65sdaAzBztMvZ8tQp7resaO3UY7ktFIuawwWxF7T/3dQBxVrzR198N\nGN0xnBqRdrByDjYyrKwSjJ4Re5rhTONj84qeH9t7GkdJ2BX7uOTNI3p/pXSL4bKSD1mioHolCzCb\npjgF1WETjHn+X9J42TH17yJ38L1rGB2xTE57+OFEfV+5rraqz/SsSeGSlK1oHQkyj4Yw1hcw9gwn\n1RZaKB00qPIzxiBakKXT6FrCUMmz3/XiOMjiKLXEfm3GvrcSUF81cScKs5+M8NyZXUKTZYQrFGzc\naUNt3ryOZiFZCWGcb4cFtG3ISmjj3pZBy2YGqzZIny6Cun+ngBNiRa8tHH/CM/0O6cKimqJRk01q\njsTYTsdyrCmMsTBOj330+np7MHxg5iSvwxTluRVjrziC/QpB0lK+M9cAZiD6Q7MUOoX923OXzeAA\nN8Pdr4xz3KSIMyj77BDPI7ak1s3rvr5z8FX29QPY4GP0kJZgc3RW9f+tyxrTF69pDubL77xZlt50\nbIO9js2RJxv7zoxQVcq4H8VOwCDJojXDs78Lu6fV9N3y9NpDWzG9zj6U+Vh4q57h/XWVaf+ymCj9\n59WG3a6cy/JHNWYarLPjKFkYlGv5tPbJxydiEY1v8Pv/OY3V+mWto3f+KL9ZglrP9tDXGcDE3o3g\nYtfR9fdf0Drp1VQ+D1ZSPqW+Of32Db0f13X20KHb4Xd4gTXg5PpDZmaWeYfGzOXXoKN+DzimjIOD\ng4ODg4ODg4ODg4ODg8Mh4HCZMkRdmlmdIJ1+QKyK0HvuMjOzy5eVK7Y/0ilhJK5TUj+q1wrp9HOZ\nU8wkJ1NNctjifaKO+KOPOzohy3IaWtxQ5GGxpdPZay8pAlFCS2BItL4z1glabBUf9Pt06pw6Iw2Z\nWFCnzI1nxXwppRSNXO7ptHI20AnaiTyK3Vdg0PyD2AjpfUU0Vv87WCXLRKQz+vyVrk7XyzGdCHr4\nqfcbKl+awMRuTCeTq2V9L7WhY+NBv2Oka9vaSV37+F1nda+eTu229nUqGrrq5zTq9DMBUyKwrpN8\nBO+tDosoSvQnwsn3IoJDQlonuR7K2B4R1IXdnmOKEY2ao+PRbKi846bK1d5WFCgRUr0eOqnT1/iq\n+rDZVCSgBmPFi+rkvPPyVTMzy9yhCjXR2RiRN731rW/p/hmNnbyn13hU7ZBdkI9ch/VE1LyVUDsO\nhzpdHZP7H4apdKWswdqvqLyn3qM+bzIXttEbCg99JpL6MoSGT/c5nd5ej+pzx3+EiAvljKWJOONY\n89qL0q45GiTnNKhT6HwTdX8iKt2M2F7H0Z4Z13Rin0YgJZ7Q2Ju/ovsHl9XPwZbq8dSWxnIJRs2o\nrs8tappzMbR+pg2Nr84lNIhiGofnr6lfr+zq/4/8oMpxEPQGOhGf4N6xIDpfSOtkPzrX//dgqGRg\nDU1YB0Y4EgSI0AZNoYJEhCgFDmAeOhLX62r7CJEDL6y2jMZhlBAxCBMRXMB+SM7QkCHKMyI3dhYm\nypLznarUpm2cWy6/pKj5scxbzMwsBWtsUlH0bDRFS2BNc2JCJCGcYB3rii3ghVSvvY6ue/wetAVg\nzFRgqNRh/sRgJs5w8srgMtL29P29bY2lcBRnsLnK5TvYtAto+cTJwybcNInQPlFyiNdx1DmihezG\nNSLBN9Rf4yR6FgqYWKKp68znJHIfENNtNANwgssHVd5Td+FqdwaGUEDtWQmrHJM+ef9ojo0Duk4S\nd4BFVeOrhd5SAkZSDAZNH2eaNOy5vh+JhsFZgfU3bvcsxhib4NBkMPmsRvQH95z9ma65FFVbhmCB\nLp9R9DuIlsG0CxOypbGwlVSdnn7pWTMzaxOhHKPzsPc60S2cAxqMmTjPD5/x0cQ9KMbcWSGqPguz\nDkZhLPJ+Ale3LpoE/QnODRn1YQ/2aJRod7um+niwvWKMwX5L60IsANOG0Gg+qWdzgjaddXltI7Zz\nQMRhoXU8IsQwbcIwX+pEhmMBtfP5q6+amdl7H1J7tHBum89xO4E9liIivYwmUIS9Rbeifmyj6ZOK\na03Za6jcV2FUnnv436iAy1onO30999JoMQwmtyK0EW9gCbQh5jjEVYk4+yy9cIhx0qMfYTBFm+qn\nl77ytJmZPfzf/7SZmW08oL3SN67837rODY2rpKkerQVrJpHvcI41NRS0Lg4wQcbGHJ25qyO9f6am\n9XTt7erD576miOkCpvPaaY3lZFvXrvOM2LuILlxGEdWza3qWLFK4ZKKRtdjQdZeqOJH9RzHkymga\nJu4/Y7eDQFbrQSKsNs7kYAmnYW3BouqhPRUpaEzkYNWG0d7a22LuNYkA4+TY3NLeoXlDczVOOxTv\nUqR5ZVnXu9AT0zxPdD0d0hjroR0WO6K/V/rMDfQBB7gdDfbFAIzj8Naoqb0qOKHF1mARMweCU43V\nFOUPjjTm4stqx7MPag/Ry6k+I54jrU30pI5pfd3AvamVUnmGc+1depvUv4PWWYt1ETLwDHeUEdo9\nKzhGBv3y0E5eVf2fzWlsr9+NtpeZZe5dtUJGn1vK0U8t2HHUe47mz15La5TVVP4Y/38QZAtapxp7\narPpdfXJDKe99TOaTx7rdndL88kwiwvh3hboap5X6poDA57lPfTXpux7YzCt6wvW2zB6Gjhv7bO+\nsO20MBpQHdyEcinmGIyUwKuak1GYNhGuM5vDjuhqHQoNYG5Odd/dJm0aQjdvqrHqr3fxifp0C+ZM\nuQcTnd8PW/RxGE3ICjpSjasqT+aM5ngf1tTSXOtVPaA+Or6ssT5f6PNBXOX8tWfouyzFdN95nT1g\nA73BLixX1rFFmT1hWiyMZgdWK+0ZQ4/Em8Oygtl4UAQmau9UxHfLggWMY/CU357zPY2PxmXdZ3Jd\na2QBt6wM2jdh2GWjJTGhdpaYM3Pcd4+p3C/8H3r+B5+9xUgvjmMWPnnE5ug9dvPolcFMDMNEmTEW\nFrAx5w39PSdbIOqvjxOYkejGJfkNOGJOhN6iMXLyTrXB6JjG/NbXnjQzs70d3CxhUJaOqU57MC6N\n9WjCHmX9Ia0vhtPu1hPfNDOzfh3n3iLfu0/1OHNK68IldHdyDX//qvvtvK76ZOnjI2v6fmQKXYln\n7m5V5ffnegC502FSczXBHqeQ1TO3tP4vO3Q5poyDg4ODg4ODg4ODg4ODg4PDIeBQmTLhEHmDOLIk\nTinqNUOroL6Hc0OcfOW+TrDasCXCfVTs0zpxi5NwN62jxD1FU4F8yVmLaH1iQ/cl+vjiU3Luubqv\nqFR29W4zMyvjCGP4nN/5tgfNzGy+odPi7aZO8v7L//4fzczs+n/Sidu5H9b3G68p5/byk8r3PnNW\nJ22TOmwU41Q4rhPAHCrvbRwg9ns6WexWyTvnUHOBanRzgAZEVP+ROY3zxF1qj0SZHOBnq5bEXWiF\nHMyr+4ouHSECOWzrpLnJaV+ZKP4Q9kG84Z+sE8GNwObhhDhW1Em5zzqY4QwzmuBQM9RJb8CX2D8g\nuiOdxG+fV/RoAcvAW/Zz13XdAdGRrz+vNol8R30/SagcR1fu0/cR4u83NYbqDfXlgIhfoqGc/Wt1\n/X9xT+0SYCyMiVLNGDtN0pV3u/pc4Yjaq40Ke4K8xX2iXrMqJ/zH1FeN6zoJv4QDQreqMbSW1Knv\nPKD6Fsa63tUU99v5jpmZ5atEkGHwzPbEqpjU9L06943F1I458qkHuFf1cJ8adfS95pYfMVc7xosa\n4yET86WK086xe0VbmL8gZfHnn/kHMzM79V7dd+2o6tcK4FTR12n5/stqV197YhWWwSSpaFcSxk82\nivDLQQALp9dXXcMjGDMJrS+ZDPo+hNyCUxgYRFES6AsFibqMFrgIYYnVw0nmRkdjsH8DfSQieJZW\nXVO0eS2stm3tKI/36LJOyMdJcmVv6HUHd6byOZyusmiNEMncvKRoSOeC7jsij3gP5k4UxqChiWNh\nzftFmLxsBidBcF8M3qamdrrwuu53zzsV1evlVY7+efXRNELeMhoIfk5tAI2I/p7Wt1lb958fJYpP\ndD6f0Ho2IRo4nhBdh0njlclRRmeqg5NCtaqxPO9pDC5ntT5267Af0N8Ywi47MHAACiHmk1smch9H\n74j88xGuIy0cclI8N7pEUFIptXuA6KBH/ne4rfrvTWBX+I5DM7XrDvne6SFrD3pO833WGAtaNQdj\nAm2PKK5tC6LJYaiK6aj6uIv7XHOuOu2+dtXMzBLoGE1Zdzdh2FQuE0UPKZq1tKw61dtorzCWGjv6\n3i4sqFlWbZ2KoJ8Bk4Vl3y4N1dfhKfeNaXKMYUkk1vi7AAARcklEQVRMyOWHCGOFheoRYkzN1AXW\nos1mzM1sU23XYa7Nr6rPdtFCq2zqOTaP6pmawZHFQ/+itMoND4h4HFcTtBfmuFYEyEOfRmCnwr6o\nvypGyasvao4G8gp1j31NBeaGN1O7d5Nqn7Wo2j+So1/Rgwqf0Vi3/6R6/MNXn1K9Tikimjrjs231\nsVZXrI8ADkBmZpuvXLdKgQgpe5/AWP2zz55qEUOnifERXaM8yyrPv/+2GJap//nzZmb2vv/xZ83M\nbPWMIq7VttbArWvotKCFdmGhOd3H5S9dWlic9WOVaPkMfbHBJe2Lvvnv9ez4wQ//12ZmVnxA61jn\ndVwva+jt4Hrp4eRyo66+v/AXchbbnqpuJ98n5ptl0AJEs6n8kDT9vvOc1tW/fVZ1PAO76qCIMDY6\nC70miAwvWEd8B8s4LnVDWG1zbrO9qb5pXNOYHcGGyy30zB92NIZSOOtE88zBid4PBFWfCnuMGBde\n/wH1XeWbYglstmE7xDUGJlH0M9Kacy2em16XMdsnMh3nGUwUf5pBM4y9XSoOO6Co/++i/ZhZ1z55\naIil7WhsxLL6fBotsssT2LDHNszMLAJTcrilOXPjpU3aQf1XKmnObO6pnjWYsWdX1F5Ld6i8c9aY\nGQ5DqTVdL79yK/Zcq1QsE9deZDDVOBvBEA1mNIYzhusrmhVD3Fd7vYEdFG0cAptbmqgB1t/jd7Eu\nol/ROK9r9rtofPBs2vPZtsyzEc6ve/tqgyp9tOI/L3AITGDjM5hBnz/Cb5+aruuhmbXgp1+qjFUk\nbN3GdbRd0NVIsgdKxVSe+RVcQHdxe9rT/fZq+tylTY252BLP2KDWyUZFbVp6i+au3yPRozhMPsse\nBietVbQG9/e1RoxggISx5gpv4lhICkA4ofYosX7XYGh3FypfHL2g7pbqUYVp0t7HSWwbPcCp6pcq\naZ0LJlS+pRysaVjPDB0LHtVeZjLW5+Kj23OXnfJ8HKFVOSRrJI573Yg53IEpM4dNN01oz7S3j44W\nmmPJHxTDqHgWjaA9XTeDG5WvwbOPHtT/9l/EJvmT/+X37T98+av24H91t4UiKsMcLSy2EtbERbRZ\nhSFdhZk21N8htK3GuLXFfKZ2S22EMaLFz2osNLY0phueGH+nV/T7P11U37/09/9ZZX1F6+XxH/qA\nmZmt3K06hlfQp4Pt1ULPaPAParNX9jR2BqbfVPZF7S3GD6ht3vtbj5qZ2Ynjut58rDl7aVNjI4iT\nYBZdpAyaWDOY9s2a+qLfUbss2LNksloHp2jbtnD9GzCHp96//BvYMWUcHBwcHBwcHBwcHBwcHBwc\nDgGHypSZcYKfIaK6aJOPeIFoGXnh6b4fQVZxo+iLzPs6uZoOdGI183R6WEbRug1bI97TaWIVBe6V\nkU4Lhzs6wfICOhm89wFpNqydQpejhxsS+esznB3GRKIXr+jk6+RA11tZ0Slwvk3O7gJWwVGd6IXe\nphO2tTAuTA9/2MzMiid07DrFPabb1ElfD+2YpTyuJvij70dUjyLaB5Nl1bcY0wljHIeKIUrtk3DG\n5kQ4q9uooKMobXfoJDvKaWaSiGyXXPUQjJgF+g3xAHl1uErEUopGdGF0BMgrjKMG7+e8xlfVpuE2\nNh4HBVGg7AmdrgZwV8pHdaq6dJfywedoI0TJ+x352jUep5fkbAYjOlE+8UNvMzOzVF4shiZuR4V1\ntcePpKULFApp7HhEvbq+EndC1xtygn68iesRJ91LRD6Gpr+zvrPCRH24IFq1O/TzECn/sk7oQ4yF\nwYiIMnobGyFFIocZXzcJLZ8wLKwiDgo4ICRgcRQYQ4YTURw9jT752UGYUTtjRQqWcBCK5XFhwcWj\nEFU/Lh3XaXAjppP+h39G7Vg8KwZNktzb7lEiG0T37lwSi6w6UT+F13S95EBRr1MbjJ/jhM4PgICH\n9gAaJm2iCkZOeJOceSOPOEF4P4XCfsBTH8zQogl46rt0R20YiutzZdaB1Bly9JOwrOpoA+T1vRjR\nqPGSPjfI6X5TgihNcmJD6Grk0FwZk8s+IEoWIJp29qG3qjyexu6ciN2cnN90FMcAtA1qLfVdGpeg\nSYo8cRgmQSK6U+Zs44bKUc4oYrCNFsqYqNOspz4eF2HsjdWO+bn6fHKCiHGIaEyfvPM0jBYcCWbx\nGPcncoobyKQFWwoaxVIYR4IAcwbW1Ag9pOlE7RsK3NIKOAiica1VsVO+w5DGcLClMT8mP35EDvMS\nLlEBNHy8Au3e53nF2pJEc2F6VO0Rx3VpFsbVa6HxGGJN8mCpRQ0WTEzrfzI0sXiCCOVUY6QFuyiK\n/sGQskR6GivxEzBc9rU+TtBPChFJS8BwiWVhTzYpO1FyI7qTw4UiMNYYiJE/fQzNsC76P1l0InIr\niB8QUTWeuVNkfsa0SWCoNmvH9B9F//O4VSywrAnMcaJJqE9HrMe+a16TuRIIax1ay6itl0uw3MYq\nf4i5Nwjp+6nybUYucS5LlHBcMVxHcDsZLhTlh6xhmWWNqQ5RtTIMmVxK7R3FjXA+gWWWIHIbRDMA\n5wbfpSqPA9lb/80PmZlZpako4ebz6IvgfpUoaOwOcH6cbzZv1iF+omB5nnMpWILjCQXmeVqCXbs4\nRt58QZ+P/bg0ZN5VF1th+7zaf/ubYlKmI+hQwehZpDVOBvvsrQYwRfM4sJVjlhxr3npRrYN5ovs9\nnjXda7pX65qit0fTKmt/eURbwRgZM6bRvYif29A9vyNHwkVSY7tQhT07pk3QGrEj6pO3vUes2Z0L\niFTFw3Y7aOHOE0J3osezLdpReQcwQsJBdDfQhwtOcDPCfa08w+GR+oZwbdpHq2vpCM5fvqvdjH0n\nY+1oGl03GOFN9IrS6xqDUdxRUmijddu+86Suv5pkL4f2YoyI8DJ9OmQtCoxhguY1dhY4uk17MGgS\nPmuZ/SbOcQt07GJhtVcfNlW6j37HEY29iLHHOKb+SzFG9zfR7Tiq/y9MtDeadLSHiq/AUoBJFQrq\neeklfd0m1uF/pLeUjSxsju5Ka0h5kZ3y2EdE1tgTBVT+MGtLb3Fwlve8Astgpv3Nykn6Gje55h4s\nsJHaIAmDYQ77KA8ralZljE5UtyIaKKUs8wt2bW6JdZB9YTmrPh/WNC+nr2ndisAySi+0LqXYA4Rq\nYocmRmhA8v/pITqduBBF0dELvEXP5iNH0dtEa2sJJl8sI+2XRooxCsstFkQjbEl90mjo+5WWWMWh\nOo5l+/o7cF0M7ZNRrYt5XxMrDqvLVJ/SisqT3FbftxvoEu3jBoX7X4TsjMia2rmEFlZwjX00+2J/\nLxiDxdYN4e4U1pyK41aaHmsstmBjjLzbc/ubwSxdMFbjExhNrAmTkdq7ANsrHNKYbCbYv2+yP4A1\nl8EZbXZF/ZGvo58Ie6+c1fPiv/lvP2RmZtVnr9wsy8pb0jZMzCw9p0we+0Tm94z9ZiHsO8PCTEEr\nMctvg0BQ966xT83P2R+xZcjV9PkltGusrvsslfT99YfkvhxtaSw30QBcYn0fkx2xqKqcedj+vgvS\n8sMbZmYWDP2E7tuEkci6s026xF5NfRZhXx3HMbbIb6oczOYEzO4xrlIz9NnCGVxDO6pni/1lgt9y\nUxwy0wH27Z7Wb88XeP0ecEwZBwcHBwcHBwcHBwcHBwcHh0OAt1jcxvGvg4ODg4ODg4ODg4ODg4OD\ng8P/J3BMGQcHBwcHBwcHBwcHBwcHB4dDgDuUcXBwcHBwcHBwcHBwcHBwcDgEuEMZBwcHBwcHBwcH\nBwcHBwcHh0OAO5RxcHBwcHBwcHBwcHBwcHBwOAS4QxkHBwcHBwcHBwcHBwcHBweHQ4A7lHFwcHBw\ncHBwcHBwcHBwcHA4BIQO8+a//du/bS+88IJ5nmef/OQn7d577z3M4jg4/Kvj/Pnz9thjj9mHP/xh\ne/TRR21nZ8d+9Vd/1WazmZVKJfu93/s9i0Qi9uUvf9m++MUvWiAQsJ/+6Z+2D33oQ4dddAeH7ys+\n/elP27PPPmvT6dQ++tGP2j333OPmhsObGoPBwD7xiU9YrVaz0Whkjz32mN15551uXjg4gOFwaD/2\nYz9mjz32mL3jHe9wc8PhTY+nn37afvmXf9lOnz5tZmZnzpyxX/zFX3Rz4w0Ib7FYLA7jxt/61rfs\n8ccft8997nN26dIl++QnP2lf+tKXDqMoDg6Hgn6/bx/96EdtY2PDzp49a48++qj9+q//uj3yyCP2\n/ve/337/93/fVlZW7Cd+4ifsgx/8oD3xxBMWDoftp37qp+zP/uzPLJfLHXYVHBy+L/jmN79pjz/+\nuH3+85+3RqNhH/zgB+0d73iHmxsOb2p85Stfse3tbfvIRz5i29vb9gu/8Av2wAMPuHnh4AD+4A/+\nwL7xjW/Yz/3cz9m3v/1tNzcc3vR4+umn7c///M/tj//4j2++535rvDFxaOlLTz31lL3vfe8zM7OT\nJ09aq9Wybrd7WMVxcPhXRyQSsc9//vNWLpdvvvf000/be9/7XjMz++Ef/mF76qmn7IUXXrB77rnH\n0um0xWIxe+CBB+y55547rGI7OHzf8eCDD9of/dEfmZlZJpOxwWDg5obDmx4f+MAH7CMf+YiZme3s\n7Njy8rKbFw4O4NKlS3bx4kV7z3veY2ZuP+Xg8L3g5sYbE4d2KFOtVi2fz9/8u1AoWKVSOaziODj8\nqyMUClksFvsn7w0GA4tEImZmViwWrVKpWLVatUKhcPMzbq44/P8dwWDQEomEmZk98cQT9sgjj7i5\n4eAAfuZnfsY+/vGP2yc/+Uk3LxwcwKc+9Sn7xCc+cfNvNzccHISLFy/aL/3SL9nP/uzP2t///d+7\nufEGxaFqyvxjHFIWlYPDGxbfa064ueLwZsHXv/51e+KJJ+wLX/iC/eiP/ujN993ccHgz4y/+4i/s\n1VdftV/5lV/5J2PezQuHNyv++q//2u6//35bX1//Z//fzQ2HNys2NjbsYx/7mL3//e+3ra0t+/mf\n/3mbzWY3/9/NjTcODu1QplwuW7Vavfn3/v6+lUqlwyqOg8MbAolEwobDocViMdvb27NyufzPzpX7\n77//EEvp4PD9x9/93d/Zn/zJn9if/umfWjqddnPD4U2Pl156yYrFoh05csTOnTtns9nMksmkmxcO\nb3o8+eSTtrW1ZU8++aTt7u5aJBJxzwwHBzNbXl62D3zgA2ZmduzYMVtaWrIXX3zRzY03IA4tfeld\n73qXfe1rXzMzs5dfftnK5bKlUqnDKo6DwxsC73znO2/Oi7/5m7+xhx9+2O677z578cUXrd1uW6/X\ns+eee87e9ra3HXJJHRy+f+h0OvbpT3/aPve5z90UmXNzw+HNjmeeeca+8IUvmJlSwPv9vpsXDg5m\n9od/+If2V3/1V/aXf/mX9qEPfcgee+wxNzccHMzsy1/+sj3++ONmZlapVKxWq9lP/uRPurnxBsSh\nuS+ZmX3mM5+xZ555xjzPs9/6rd+yO++887CK4uDwr46XXnrJPvWpT9n29raFQiFbXl62z3zmM/aJ\nT3zCRqORra6u2u/8zu9YOBy2r371q/b444+b53n26KOP2o//+I8fdvEdHL5v+NKXvmSf/exn7cSJ\nEzff+93f/V37zd/8TTc3HN60GA6H9hu/8Ru2s7Njw+HQPvaxj9ndd99tv/Zrv+bmhYMD+OxnP2tr\na2v27ne/280Nhzc9ut2uffzjH7d2u22TycQ+9rGP2blz59zceAPiUA9lHBwcHBwcHBwcHBwcHBwc\nHN6sOLT0JQcHBwcHBwcHBwcHBwcHB4c3M9yhjIODg4ODg4ODg4ODg4ODg8MhwB3KODg4ODg4ODg4\nODg4ODg4OBwC3KGMg4ODg4ODg4ODg4ODg4ODwyHAHco4ODg4ODg4ODg4ODg4ODg4HALcoYyDg4OD\ng4ODg4ODg4ODg4PDIcAdyjg4ODg4ODg4ODg4ODg4ODgcAtyhjIODg4ODg4ODg4ODg4ODg8Mh4P8B\nLCvAqAx5zRAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "75pMEbc1mbdN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "These filter visualizations tell us a lot about how convnet layers see the world: each layer in a convnet simply learns a collection of \n", + "filters such that their inputs can be expressed as a combination of the filters. This is similar to how the Fourier transform decomposes \n", + "signals onto a bank of cosine functions. The filters in these convnet filter banks get increasingly complex and refined as we go higher-up \n", + "in the model:\n", + "\n", + "* The filters from the first layer in the model (`block1_conv1`) encode simple directional edges and colors (or colored edges in some \n", + "cases).\n", + "* The filters from `block2_conv1` encode simple textures made from combinations of edges and colors.\n", + "* The filters in higher-up layers start resembling textures found in natural images: feathers, eyes, leaves, etc." + ] + }, + { + "metadata": { + "id": "g7bWR2hGmbdO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Visualizing heatmaps of class activation\n", + "\n", + "We will introduce one more visualization technique, one that is useful for understanding which parts of a given image led a convnet to its \n", + "final classification decision. This is helpful for \"debugging\" the decision process of a convnet, in particular in case of a classification \n", + "mistake. It also allows you to locate specific objects in an image.\n", + "\n", + "This general category of techniques is called \"Class Activation Map\" (CAM) visualization, and consists in producing heatmaps of \"class \n", + "activation\" over input images. A \"class activation\" heatmap is a 2D grid of scores associated with an specific output class, computed for \n", + "every location in any input image, indicating how important each location is with respect to the class considered. For instance, given a \n", + "image fed into one of our \"cat vs. dog\" convnet, Class Activation Map visualization allows us to generate a heatmap for the class \"cat\", \n", + "indicating how cat-like different parts of the image are, and likewise for the class \"dog\", indicating how dog-like differents parts of the \n", + "image are.\n", + "\n", + "The specific implementation we will use is the one described in [Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via \n", + "Gradient-based Localization](https://arxiv.org/abs/1610.02391). It is very simple: it consists in taking the output feature map of a \n", + "convolution layer given an input image, and weighing every channel in that feature map by the gradient of the class with respect to the \n", + "channel. Intuitively, one way to understand this trick is that we are weighting a spatial map of \"how intensely the input image activates \n", + "different channels\" by \"how important each channel is with regard to the class\", resulting in a spatial map of \"how intensely the input \n", + "image activates the class\".\n", + "\n", + "We will demonstrate this technique using the pre-trained VGG16 network again:" + ] + }, + { + "metadata": { + "id": "gpPiOdmdmbdP", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.applications.vgg16 import VGG16\n", + "\n", + "K.clear_session()\n", + "\n", + "# Note that we are including the densely-connected classifier on top;\n", + "# all previous times, we were discarding it.\n", + "model = VGG16(weights='imagenet')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "x3UCZykCmbdS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's consider the following image of two African elephants, possible a mother and its cub, strolling in the savanna (under a Creative \n", + "Commons license):\n", + "\n", + "![elephants](https://s3.amazonaws.com/book.keras.io/img/ch5/creative_commons_elephant.jpg)" + ] + }, + { + "metadata": { + "id": "DJdcT95BmbdS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's convert this image into something the VGG16 model can read: the model was trained on images of size 224x244, preprocessed according \n", + "to a few rules that are packaged in the utility function `keras.applications.vgg16.preprocess_input`. So we need to load the image, resize \n", + "it to 224x224, convert it to a Numpy float32 tensor, and apply these pre-processing rules." + ] + }, + { + "metadata": { + "id": "2-1F0ufsmbdT", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.preprocessing import image\n", + "from keras.applications.vgg16 import preprocess_input, decode_predictions\n", + "import numpy as np\n", + "\n", + "import requests\n", + "\n", + "img_url = 'https://s3.amazonaws.com/book.keras.io/img/ch5/creative_commons_elephant.jpg'\n", + "img_data = requests.get(img_url).content\n", + "with open('creative_commons_elephant.jpg', 'wb') as handler:\n", + " handler.write(img_data)\n", + "\n", + "# The local path to our target image\n", + "img_path = 'creative_commons_elephant.jpg'\n", + "\n", + "# `img` is a PIL image of size 224x224\n", + "img = image.load_img(img_path, target_size=(224, 224))\n", + "\n", + "# `x` is a float32 Numpy array of shape (224, 224, 3)\n", + "x = image.img_to_array(img)\n", + "\n", + "# We add a dimension to transform our array into a \"batch\"\n", + "# of size (1, 224, 224, 3)\n", + "x = np.expand_dims(x, axis=0)\n", + "\n", + "# Finally we preprocess the batch\n", + "# (this does channel-wise color normalization)\n", + "x = preprocess_input(x)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "HwFsrEijmbdV", + "colab_type": "code", + "outputId": "d92fdc64-cd38-432d-f973-306633ac74bc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + } + }, + "cell_type": "code", + "source": [ + "preds = model.predict(x)\n", + "print('Predicted:', decode_predictions(preds, top=3)[0])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Predicted: [('n02504458', 'African_elephant', 0.90942144), ('n01871265', 'tusker', 0.08618243), ('n02504013', 'Indian_elephant', 0.004354593)]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "RDoJ_YMWmbdX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "The top-3 classes predicted for this image are:\n", + "\n", + "* African elephant (with 92.5% probability)\n", + "* Tusker (with 7% probability)\n", + "* Indian elephant (with 0.4% probability)\n", + "\n", + "Thus our network has recognized our image as containing an undetermined quantity of African elephants. The entry in the prediction vector \n", + "that was maximally activated is the one corresponding to the \"African elephant\" class, at index 386:" + ] + }, + { + "metadata": { + "id": "nj7G9hvhmbdY", + "colab_type": "code", + "outputId": "52cb0215-7758-49af-8a2c-a80cddfae0c7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "np.argmax(preds[0])" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "386" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 91 + } + ] + }, + { + "metadata": { + "id": "ioULakO1mbdb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To visualize which parts of our image were the most \"African elephant\"-like, let's set up the Grad-CAM process:" + ] + }, + { + "metadata": { + "id": "PiIi5vkEmbdb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# This is the \"african elephant\" entry in the prediction vector\n", + "african_elephant_output = model.output[:, 386]\n", + "\n", + "# The is the output feature map of the `block5_conv3` layer,\n", + "# the last convolutional layer in VGG16\n", + "last_conv_layer = model.get_layer('block5_conv3')\n", + "\n", + "# This is the gradient of the \"african elephant\" class with regard to\n", + "# the output feature map of `block5_conv3`\n", + "grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]\n", + "\n", + "# This is a vector of shape (512,), where each entry\n", + "# is the mean intensity of the gradient over a specific feature map channel\n", + "pooled_grads = K.mean(grads, axis=(0, 1, 2))\n", + "\n", + "# This function allows us to access the values of the quantities we just defined:\n", + "# `pooled_grads` and the output feature map of `block5_conv3`,\n", + "# given a sample image\n", + "iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])\n", + "\n", + "# These are the values of these two quantities, as Numpy arrays,\n", + "# given our sample image of two elephants\n", + "pooled_grads_value, conv_layer_output_value = iterate([x])\n", + "\n", + "# We multiply each channel in the feature map array\n", + "# by \"how important this channel is\" with regard to the elephant class\n", + "for i in range(512):\n", + " conv_layer_output_value[:, :, i] *= pooled_grads_value[i]\n", + "\n", + "# The channel-wise mean of the resulting feature map\n", + "# is our heatmap of class activation\n", + "heatmap = np.mean(conv_layer_output_value, axis=-1)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9jPqY2Gfmbdd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For visualization purpose, we will also normalize the heatmap between 0 and 1:" + ] + }, + { + "metadata": { + "id": "9Nlqph-6mbdd", + "colab_type": "code", + "outputId": "9385b78b-9ddc-4958-e4bf-11cfd67a9a2b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 355 + } + }, + "cell_type": "code", + "source": [ + "heatmap = np.maximum(heatmap, 0)\n", + "heatmap /= np.max(heatmap)\n", + "plt.matshow(heatmap)\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAFSCAYAAABPFzzRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFVhJREFUeJzt3X9sVfX9x/HX7b29Lb0XyrWxxRrs\nkH9QM6fLSCwC0VjGH4smYxltmqIky7LNoSzZpthtgaQRU8IfIBphoC5b06xLh8ofRonGJkSLTkmY\nuBCUJRsrFWppKfQX7W2/f/Cls5Pee87hfTjn1Ofjr+32cy8vT8999dz2vu8nNjk5OSkAwDUpCDoA\nAMwGlCkAGKBMAcAAZQoABihTADBAmQKAgVCV6datW1VbW6u6ujr9/e9/DzpOXtu2bVNtba1+8IMf\n6ODBg0HHcWRkZEQ1NTXav39/0FHyOnDggB566CGtWbNGHR0dQceZ0eDgoDZs2KB169aprq5Ohw4d\nCjrSjE6cOKGamhq1tLRIkrq7u7Vu3TrV19dr48aNunTpUsAJp7ta3vXr16uhoUHr169XT09PwAn/\nKzRl+sEHH+hf//qX2tra9PTTT+vpp58OOlJOhw8f1qeffqq2tjbt27dPW7duDTqSIy+88IJKS0uD\njpFXX1+fnn/+ebW2tmr37t16++23g440o1deeUWLFi3Sn/70J+3cuTO05+7Q0JCamppUXV09dduz\nzz6r+vp6tba2qqqqSu3t7QEmnO5qeXfs2KG1a9eqpaVFq1at0ssvvxxgwulCU6adnZ2qqamRJC1e\nvFjnz5/XxYsXA041s6VLl2rnzp2SpHnz5ml4eFjZbDbgVLmdPHlSn332me67776go+TV2dmp6upq\npdNplZeXq6mpKehIM8pkMurv75ckDQwMKJPJBJzo6pLJpPbu3avy8vKp295//3098MADkqT7779f\nnZ2dQcX7iqvl3bx5s1avXi1p+nEPg9CU6RdffDHtJLzhhhtCdQn/v+LxuEpKSiRJ7e3tWrlypeLx\neMCpcmtubtamTZuCjuHIf/7zH42MjOinP/2p6uvrQ/Uk/1/f+973dPr0aa1atUoNDQ168skng450\nVYlEQsXFxdNuGx4eVjKZlCSVlZWF6jl3tbwlJSWKx+PKZrNqbW3Vgw8+GFC6r0oEHWAmUZlyfeut\nt9Te3q6XXnop6Cg5vfrqq7rrrru0cOHCoKM41t/fr+eee06nT5/Www8/rHfeeUexWCzoWF/x2muv\nqbKyUi+++KKOHz+uxsbGSPxO+n9F5TmXzWb1xBNP6J577pn2K4CghaZMy8vL9cUXX0z9/7Nnz+rG\nG28MMFF+hw4d0u7du7Vv3z7NnTs36Dg5dXR06NSpU+ro6NDnn3+uZDKpBQsWaNmyZUFHu6qysjLd\nfffdSiQSuuWWW5RKpXTu3DmVlZUFHe0rjhw5ouXLl0uSlixZorNnzyqbzYb+lYp0+UpvZGRExcXF\nOnPmzLSX1GH11FNPqaqqShs2bAg6yjSheZl/77336s0335QkffLJJyovL1c6nQ441cwuXLigbdu2\nac+ePZo/f37QcfLasWOH/vrXv+ovf/mLfvjDH+rRRx8NbZFK0vLly3X48GFNTEyor69PQ0NDof1d\nZFVVlY4ePSpJ6urqUiqVikSRStKyZcumnncHDx7UihUrAk6U24EDB1RYWKjHH3886ChfEQvTp0Zt\n375dH374oWKxmDZv3qwlS5YEHWlGbW1t2rVrlxYtWjR1W3NzsyorKwNM5cyuXbt08803a82aNUFH\nyenPf/7z1F+Xf/azn039oSRsBgcH1djYqN7eXo2Pj2vjxo2hevl5xbFjx9Tc3Kyuri4lEglVVFRo\n+/bt2rRpk0ZHR1VZWalnnnlGhYWFQUeVdPW8vb29KioqmrrQWrx4sbZs2RJs0P8XqjIFgKgKzct8\nAIgyyhQADFCmAGCAMgUAA5QpABigTAHAAGUKAAYoUwAwcF1m89184GwikdD4+LijtQUF/vwscPrv\nS5c/JizoD9R1cxzcHN8rnyYUBW6+Z26MjY25Wl9UVKTR0dG86/z6wBa3zwk354Mf3MwMFRYWOv5+\n+PWczPUZHKG7MvWrIP1CXnxZ1I5vlPKGPWu40wFARFCmAGCAMgUAA5QpABigTAHAgOe3Rm3dulVH\njx5VLBZTY2Oj7rzzTstcABApnsr0y3vcnzx5Uo2NjWpra7POBgCR4ellftT2uAcAv3kq06jtcQ8A\nfjMZJ803EpZIJFxNLwQ9xphIuDssxcXFPiXxR9DH1w9uv2d+Pu6cOXN8SOKfKJ0PRUVFpusseToD\n3e5x79esexhm84uLizUyMuJLDqfc/qByenyj9CQLy2z+nDlzNDw8nHddWGbzg/5sCTez+U4/90CK\n0Gx+1Pa4BwC/eboy/fa3v6077rhDdXV1U3vcA8DXmedfNP3qV7+yzAEAkcYEFAAYoEwBwABlCgAG\nKFMAMECZAoAByhQADFyX3UndTmU4Xe/XCKGXKRIn/Jp6cfu4TvP6MVUUprFPvx7XyTip28kqpyYm\nJlzfx8kUkl/Thm7PXac5ghjx5soUAAxQpgBggDIFAAOUKQAYoEwBwABlCgAGKFMAMECZAoAByhQA\nDFCmAGCAMgUAA5QpABigTAHAAGUKAAYoUwAwQJkCgAHKFAAMUKYAYIAyBQADlCkAGKBMAcDAddmd\n1M1OjIlEwvF6J7sqeuFmx8SCggLHO0L6tTupm+OQSCQc7zrqx46fbnfPdHp8u7u7vUbKqbS01NX6\ndDqtixcv5l03NDTkNVJOTnZG/bKioiJdunQp7zovu5464eYcKywsdJRV8i9vYWHhjF/jyhQADFCm\nAGCAMgUAA5QpABigTAHAAGUKAAY8v/dl27Zt+uijjzQ+Pq6f/OQn+u53v2uZCwAixVOZHj58WJ9+\n+qna2trU19en73//+5QpgK81T2W6dOlS3XnnnZKkefPmaXh4WNlsVvF43DQcAESFp9+ZxuNxlZSU\nSJLa29u1cuVKihTA11ps8hpmMt966y3t2bNHL730kubOnTvjuomJCRUU8LcuALOX5z9AHTp0SLt3\n79a+fftyFqkkjY6OOn7cOXPmaHh42NFaP2bHJXcz9G5m3ZnNZzb/irDM5s+dO1cXLlzIuy4Ms/mp\nVEqDg4OO1vqVN1fXeXq2XLhwQdu2bdMf/vAHzZ8/33MwAJgtPJXp66+/rr6+Pv3iF7+Yuq25uVmV\nlZVmwQAgSjyVaW1trWpra62zAEBk8VchADBAmQKAAcoUAAxQpgBggDIFAAOUKQAYuC67k2azWV/W\n+/V5AG4f1+morF8TUG6Pr1N+TJE4nWC5Yu7cuY7u42SKxwu3Y9DpdNpRlkwm4zVSTkVFRa7vk06n\n865xOpXolpvpyFQq5Xh3Uqfr3Mo1AcWVKQAYoEwBwABlCgAGKFMAMECZAoAByhQADFCmAGCAMgUA\nA5QpABigTAHAAGUKAAYoUwAwQJkCgAHKFAAMUKYAYIAyBQADlCkAGKBMAcAAZQoABihTADBAmQKA\ngeuyO2nUuNmVs6CgwPF6v3YRPXv2rOO1CxcuVHd3t6O158+f9xppRm53uVy6dKmOHz+ed90HH3zg\nNVJO586dc7X+d7/7nfbt25d33W233eY1Uk433XSTq/X33nuv3nvvvbzr/NpZd+HChY7XZjIZXbx4\n0dHasbExr5E848oUAAxQpgBggDIFAAOUKQAYoEwBwABlCgAGrqlMR0ZGVFNTo/3791vlAYBIuqYy\nfeGFF1RaWmqVBQAiy3OZnjx5Up999pnuu+8+wzgAEE2ey7S5uVmbNm2yzAIAkRWbnJycdHunV199\nVadPn9ajjz6qXbt26eabb9aaNWtmXJ/NZhWPx68pKACEmafZ/I6ODp06dUodHR36/PPPlUwmtWDB\nAi1btuyq693MY6fTacfzt8lk0vHjulFQ4PyCPZFIaHx83NHasMzmnzp1ytHasMzm/+1vf8u7Lkyz\n+U1NTXnXhWk2/9133827Lgyz+W7OXb9m82+99dYZv+apTHfs2DH1v69cmc5UpADwdcD7TAHAwDV/\nBN9jjz1mkQMAIo0rUwAwQJkCgAHKFAAMUKYAYIAyBQADlCkAGLguu5POmTPHl/VOJ4/cGhwcdLy2\ntLTU8Xonu0B6ceTIEcdrf/Ob3+iPf/yjo7UXLlzwGmlG3/jGN1ytX7p0qT766KO86/ya0PHyqWhO\n7tPX1+clTl6JhPundE9PT941t99+u5c4eZWUlPiy3s0Ow1a4MgUAA5QpABigTAHAAGUKAAYoUwAw\nQJkCgAHKFAAMUKYAYIAyBQADlCkAGKBMAcAAZQoABihTADBAmQKAAcoUAAxQpgBggDIFAAOUKQAY\noEwBwABlCgAGKFMAMBCbnJycDDqEV35FP3funOO1ZWVl6u3tdbR25cqVXiPl9I9//MPx2snJScc7\nea5du9ZrpBn9+te/drX+O9/5jj788MO869LptNdIOY2Ojrpa/61vfUtHjx7Nu66iosJrpJzc7gRc\nWlqq8+fP513n9jg4VVhY6HhtJpNxvKtrMpn0GimnVCo149e4MgUAA5QpABigTAHAAGUKAAYoUwAw\nQJkCgAHPZXrgwAE99NBDWrNmjTo6OgwjAUD0eCrTvr4+Pf/882ptbdXu3bv19ttvW+cCgEhJeLlT\nZ2enqqurlU6nlU6n1dTUZJ0LACLF0wTU73//e/3zn/9Uf3+/BgYG9Nhjj6m6utqPfAAQCZ6uTCWp\nv79fzz33nE6fPq2HH35Y77zzjuMxRSuMk17GOCnjpFcwTnpZZMZJy8rKdPfddyuRSOiWW25RKpVy\nVUAAMNt4KtPly5fr8OHDmpiYUF9fn4aGhpTJZKyzAUBkeHqZX1FRodWrV0+9DPztb3+rggLesgrg\n68vz70zr6upUV1dnmQUAIovLSQAwQJkCgAHKFAAMUKYAYIAyBQADnv+aHwbZbNaXx3U7ReJ0/Y9/\n/GMvcfLq6elxtb6xsdHRuptuuslLnJzGxsZ8uY/b75mfioqK8q6ZP3++L/+2l7coOjl2fk0bup2s\nunTpkqN1biarrHBlCgAGKFMAMECZAoAByhQADFCmAGCAMgUAA5QpABigTAHAAGUKAAYoUwAwQJkC\ngAHKFAAMUKYAYIAyBQADlCkAGKBMAcAAZQoABihTADBAmQKAAcoUAAxQpgBgINK7kyYS/sSPx+Ou\n1jvdGbOhocFLnLzOnDnjan19fb2jdePj417i5ORl98x0Op13jdNdK91asGCBL/dxe4455eU54WQn\nT792f3WbN5VKOVo3MTHhJc414coUAAxQpgBggDIFAAOUKQAYoEwBwABlCgAGKFMAMODpjZqDg4N6\n8skndf78eY2NjennP/+5VqxYYZ0NACLDU5m+8sorWrRokX75y1/qzJkzeuSRR/TGG29YZwOAyPD0\nMj+Tyai/v1+SNDAwoEwmYxoKAKImNjk5Oenljj/60Y/073//WwMDA9qzZ4/uuusu62wAEBmeXua/\n9tprqqys1Isvvqjjx4+rsbFR+/fvt84WGDc/X2KxmOP1vb29XiPl5GY2/4477tAnn3ziaG0YZvO/\n+c1v6uOPP867rri42GuknG688UZX6+fPnz/1qi0XpzPmbrmddXd6/vr12QdjY2OO16bTaV28eNHR\nWr9m8+fNmzfj1zy9zD9y5IiWL18uSVqyZInOnj2rbDbrLR0AzAKeyrSqqkpHjx6VJHV1dSmVSvn2\nKTgAEAWeXubX1taqsbFRDQ0NGh8f15YtW4xjAUC0eCrTVCqlnTt3WmcBgMhiAgoADFCmAGCAMgUA\nA5QpABigTAHAgOdxUrjn16EeHBx0vNbNFMnAwIDXSDNyO9yxcOFCnTp1Ku+6XJMp18LJzqhfFo/H\nHf038r7s2YcrUwAwQJkCgAHKFAAMUKYAYIAyBQADlCkAGKBMAcAAZQoABihTADBAmQKAAcoUAAxQ\npgBggDIFAAOUKQAYoEwBwABlCgAGKFMAMECZAoAByhQADFCmAGCAMgUAA+xOihlNTEwEHUEFBQWO\nchQUcF2AYHEGAoAByhQADFCmAGCAMgUAA5QpABigTAHAgKMyPXHihGpqatTS0iJJ6u7u1rp161Rf\nX6+NGzfq0qVLvoYEgLDLW6ZDQ0NqampSdXX11G3PPvus6uvr1draqqqqKrW3t/saEgDCLm+ZJpNJ\n7d27V+Xl5VO3vf/++3rggQckSffff786Ozv9SwgAEZDIuyCRUCIxfdnw8LCSyaQkqaysTD09Pf6k\nA4CIyFum+TCNOnuFZUQzLDmAXDyVaUlJiUZGRlRcXKwzZ85M+xUAZg9m8wHnPJ2By5Yt05tvvilJ\nOnjwoFasWGEaCgCiJu+nRh07dkzNzc3q6upSIpFQRUWFtm/frk2bNml0dFSVlZV65plnVFhYeL0y\n4zrhyhRwjo/gw4woU8A5zkAAMECZAoAByhQADFCmAGCAMgUAA5QpABiI9Fuj/Iru5nGdvnXnyloA\n/vOrG2Kx2Ixf49kNAAYoUwAwQJkCgAHKFAAMUKYAYIAyBQADlCkAGKBMAcAAZQoABihTADBAmQKA\nAcoUAAxQpgBggDIFAAOUKQAYoEwBwABlCgAGKFMAMECZAoAByhQADFCmAGAgcT3+Eae7d0rudvvM\ntVPgtXD7uH7lmI3c7hoZi8Uc3Scsm+w6PX/Dcs4EfXzdHAenWSV2JwWAyKJMAcAAZQoABihTADBA\nmQKAAcoUAAw4KtMTJ06opqZGLS0tkqTu7m6tX79eDQ0NWr9+vXp6enwNCQBhl7dMh4aG1NTUpOrq\n6qnbduzYobVr16qlpUWrVq3Syy+/7GtIAAi7vGWaTCa1d+9elZeXT922efNmrV69WpKUyWTU39/v\nX0IAiIC8ZZpIJFRcXDzttpKSEsXjcWWzWbW2turBBx/0LSAARIHncdJsNqsnnnhC99xzz7RfAVxN\nLBZzNTZWUBCtv4uFZTQwCrwcKyf3CdP3YDaev2E5vk5zBJHXc5k+9dRTqqqq0oYNG/KunZycdDwr\nG4bZfDfczAuHIW/QmM2/LCznQtDHN2qz+bl+UHr6EXrgwAEVFhbq8ccf9xwKAGaT2GSeCj927Jia\nm5vV1dWlRCKhiooK9fb2qqioSOl0WpK0ePFibdmyZcbHiNqnRrnBlak7XJleFpZzIejjO5uuTPOW\nqQXK9L9rv+4o08vCci4EfXxnU5lG6zflABBSlCkAGKBMAcAAZQoABihTADBAmQKAgevy1igA14df\nbz3zS1jeImaBK1MAMECZAoAByhQADFCmAGCAMgUAA5QpABigTAHAAGUKAAYoUwAwQJkCgAHKFAAM\nUKYAYIAyBQADlCkAGKBMAcAAZQoABihTADBAmQKAAcoUAAxQpgBggDIFAAPsTgoABrgyBQADlCkA\nGKBMAcAAZQoABihTADBAmQKAgf8DLw43M/fR5s4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "xBFOpC0embdg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Finally, we will use OpenCV to generate an image that superimposes the original image with the heatmap we just obtained:" + ] + }, + { + "metadata": { + "id": "FinDALwKmbdh", + "colab_type": "code", + "outputId": "5f70945d-6588-4785-a56b-b4a2fa67c4db", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "import cv2\n", + "\n", + "# We use cv2 to load the original image\n", + "img = cv2.imread(img_path)\n", + "\n", + "# We resize the heatmap to have the same size as the original image\n", + "heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))\n", + "\n", + "# We convert the heatmap to RGB\n", + "heatmap = np.uint8(255 * heatmap)\n", + "\n", + "# We apply the heatmap to the original image\n", + "heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)\n", + "\n", + "# 0.4 here is a heatmap intensity factor\n", + "superimposed_img = heatmap * 0.4 + img\n", + "\n", + "# Save the image to disk\n", + "cv2.imwrite('elephant_cam.jpg', superimposed_img)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 94 + } + ] + }, + { + "metadata": { + "id": "OGmTnAuygRuP", + "colab_type": "code", + "outputId": "a718840c-6ea5-489d-df23-02cf80b24791", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + } + }, + "cell_type": "code", + "source": [ + "import cv2\n", + "from matplotlib import pyplot as plt\n", + "img = cv2.imread('elephant_cam.jpg')\n", + "\n", + "# 將 BGR 圖片轉為 RGB 圖片\n", + "img_rgb = img[:,:,::-1]\n", + "\n", + "# 或是這樣亦可\n", + "# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)\n", + "\n", + "# 使用 Matplotlib 顯示圖片\n", + "plt.imshow(img_rgb)\n", + "plt.show()" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFNCAYAAADRvRzfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXmwZclZH/jLPOeub3+v3qvqanVX\nr+qWWpulkZDEAIEQWDhswAGSBQMzBEwEGGICMWg0jAabITQhB6CZmIBg7LFsQJbNqDEYRsiYloCW\nNAaphWit3ZJ67+paXr19u/s5mfNHZp78Mk+e5b56TdUQ7+u+9e49J5cvM7/8tvwyk0kpJU7hFE7h\nFE7hFE7hhgK/0QicwimcwimcwimcwqlAPoVTOIVTOIVTuCngVCCfwimcwimcwincBHAqkE/hFE7h\nFE7hFG4COBXIp3AKp3AKp3AKNwGcCuRTOIVTOIVTOIWbAOKTLvD9738/vvSlL4Exhve+97141ate\nddJVnMIpnMIpnMIp/K2DExXIn/vc5/D888/jwQcfxNNPP433vve9ePDBB0+yilM4hVM4hVM4hb+V\ncKIu68985jN461vfCgC4++67sb+/j6Ojo5Os4hRO4RRO4RRO4W8lnKhA3trawtLSUvZ7eXkZm5ub\nJ1nFKZzCKZzCKZzC30p4UYO6qk7lFOLFrP0UTuEUTuEUTuHmgj99pPjdia4hr62tYWtrK/u9sbGB\n1dXVwvScA3/xOBy1wAhxxhgAK7Q5B/SjQqDyvyotYza9+ct5/r15Z8pz6tDp33Qv8JknQ/jYttD6\nQmX5eEtZ3YYwSDDTLlKAXxdHvvJvupfhkSdlLu+xsND4M68amRVrXlxfPT688R7gs09dfzm2D8Pv\nTfv8MT0pOKl2vFjAZD06qWoH8wjTlMdkuO9Dz4tp7GSgqg3T0oA/t/25afgGB8s9AwAJlqvLL4OR\n51wCkgNvug/4y6+r32UgSHmRxwcByhs1fwML8jaKM2OMlCH1O+6UVwa0rG99DcMnv5i3JjM+7tXP\nIuaU7/Bl5NsXrt/97o5fnpdJKTMZ5humrIRQTtRC/uZv/mY89NBDAIDHHnsMa2trmJ2dLc1DcWPM\nCC9GOk2C6RlnOk4ImX18QjGfENCOF0IJVMYBHgGMS5j/wJS48AchhHvZJOTcDogQMpfefPf/Fglj\ng3858bDsU9Q3xxEeL94VJNMV/Dd9FYrP7G8WYFKWfjQFl3yOUWdQQJ58B1UXeX1t8/uKe89ebPDn\noT83DQ903zP74aDTXH8kwKTiaaQuI3zN3yKvJeUtTCrBYARbOC1lLgUGC8GZtlMwQHIGySUkB1Ko\nZ+ZD8bFlqnIMTzWCi9umFyoDpu6sTzgDJIMUSg6UDblruMnC/jPjRceQpjffq7zGJ2ohv/a1r8UD\nDzyAd77znWCM4Rd/8RerM5GOUgJWgmtTVQiRfVfPzcAaQQfnb65oX5PWvzk3A2G1GFpu9sizgEJa\noK8p0fKEcC1kCtNawHXSK6Fvtb4TNj5LwddymcxXzxisRuq8rIcsHe+TtkjLoMhay97/DeJSBT4N\nnly5dow5hyP3mJTH8qiEhB+TEhJhKzmkHL0YClMeL+Y8k5K5PAAoMW3y1pMzNwIKNq/y7oXabHgT\nqYqT/jP4RhSPAsu0yvpWaSyvlFIZNsgEofUICkbLyQskRhE26bguU6iyuP4NIWFscsB2eaa4wKpk\nDl/36Eiklp5DfVAsT1jpez+/EcrUwKzKf+L7kN/97ndPlZ4xIkioNsUlmOQkXbgzfNdPSAib50LY\nv0VpHAuUAYbSJQDGWa4+oYnGZ4RUgfDx9rXjUJ8gq9Vtf1E7TRqmqVIJP1lpMPjEkj33J46LTh58\nAVxg4dvyfTzs+ABhARjSwl8sULRQXFFOefPfB9xU0910yo5lrWV41bIyi8vwwzv8OcK89DkRRiZR\nqB1lApxlGmUxfhAl7yvyXg/5+MpOJixM3zDAdJ7tM58pWdoKKU+mn7m0fS1YOA1g+Se1xkxFOZ6G\ncp5DrUFahi+4fGOICiFaZiSVBWzeheZBUdmU5zOmEmZGVZbWN6rCCoVRgqRUmQ0/C1v2bv5sjAvA\nH8OQkPdxLIITF8jHgSBxyrzKSbUa85v+pUCLCnWA0vRdIe8PSnAy5eph3l/3uY9DXWs+gDEMGywU\nAqVWXFgg3CzXYRvNug7cCIu0ykqugpuln8vAWSqaAl8ptU3LWSnjcuoqE5rkXeGa8RQKDl3Lq6Nk\nlbklASAmDFrJXisUmKcDh/gHM/2lKgPzGkgVnkwAybxQ9uugdUWeRe5byjZvlbCWEIIRfphPVzoM\nDIhg16XLPDi0fGNdZ+vdIlxXPW9QAW9hxH9Rsz1FXgWb1/UQhNMU578pBLIBalXm3cHFQs0hFlY8\n4Dyiwh8wg3RcN18VMRdZ7PR9KF+Wtso1EswXzhS0gikDLkCiikkVlceRzSHLDHQR9J2bnxBzVV2F\n+BzPsvQhVILD2Kasw+/fGy2gXxR8RIHr5kUC6hKkkA8mKhewhhfYYgJClBE3LLHOzbciPHzPVrh0\nv66KdymypWMplYvb5UPE0DA4BIyNUH3GmjTpJQsHu1Lgnu0k02LeVMxnJeljggCgli0d129FDzKR\nM+hcGeG1wS+uVOCWvbOyhS5XTjO3brxA9ggpJNTod6qh0Xcht4Lrt7dr0yGoY3VT7acKQsL4pKBY\n+zo+U6WE7ru/6FJCcd6TgvqWchFM7x6uX15h9G/QFVfPMsvVEbKqplCMQunrKJxUSS3CzS/bXydj\nWkIwZ62SCqXp8DcYHUdpznupKE4Gn/rlGQuPe4qn9Mq189MdA55pc1M1w6tfRT7n31ljhgoDzlXw\nUpll7PNVRpFkljeY+v2y3CVAAQbu7FIwfSYKBKqZH1Yx0gFcktRP+BHAMq2+kC6IUM6/DytKoWhp\n+j4rukRGmd+cs4xepuFHN1wgCygNyGqf7nuq2dC/vsVstU+lDdIJYQZaCvsMAKQeGN91bfPAeR5S\nGIrAn/ChQcy2HtVmCoYodZlTMJMQUVRZzea3n76c0WmmQCaKz1BFBXFKKbOx+ZsAybw2ifJ+4lCR\nrpQegXxflfVjVqdXV6hvLcPydyDk+yekFITHOfekUDgJSPCIBdb9qQJHnjsMLkwrjlJjYkg4Yboy\nH68RajdVCDKhIr2+YQEXIrFWU+HNqwK6M/UIXSYp3snvGAqmqsL9cyFhIoPvI1O22zRVD1kuoPiL\n3BCYnSl5/A2k0l+XZU46K2RCdMR1UJU7ZuqNepF5zrRyyzgDE5bO44DGIkm9qmH5ttrEYcNLWa7q\nS47WJQDJgh6HEC4hhY7ONceLQoQy5yyLOwrBDRfIBkIdUMaPg0qRwxzdch2XhamzZtll2jTVLMvA\nr5uxEgRQz8qrEp5FzL0KqoR3EdP3rbIi3OpAnbX7orZUrRMWWbIAcmuARfiIGkycMrLcxDXxogHG\nF8SrpD9o39ft52kswyw9EbRVSxz0e04YBvJIKdWiIbMaud9nxbhR2jMCkLpALe6MGYGtDQDk502e\nfsr7lCb3hVD2bZqN1SXvqxT9qr4mmKKoXbxGLECmnASsbx+KlxSYDbbS6bjXf0V0zXQIeV06pt7N\nYDwg4ceevhIojGQr6O+ydfIyuGkEMlA9sECe+MveqYM7rCTMES9YLl/IMvbrKMIz5Nq4XiNvGiFa\nt7zjpMv/Drl6iuuoY4077yoYuKoirAiEcAgJrSy9kI6VXM+9W60wqL/lbQi99pW8orGwSmaov0vR\nqxwzx2uUY/rVwtjxiIiAABfS6yP9HRxg+fMFiuZoCJ8qd6QS2EXlMY9WaJriYB1aBvc6LKv7eiMD\nA+B7aeoIKO7tqyo7MVFZlWUKWFhJMHlCwj0ydAE3H8/y55fMzHdkeZSWxRiv1WbqxSlUaoqCWwJQ\npBDZ+tx0deGGC+TQgBrgEQDpbofJmBAHZJoXoGYtWYg8s/PT0nrpGkwofZ0OLuPRdS3ksIVRLHjM\n+yrN2PTLtARi8S/bY12kDR6zMg9CwtVntGV4uGXpsZAy636mHzL9HkxCFoW0ahDGpU76wa/HB78P\nrWtXrQvSE5LqgMsAw/Sqf1UKsVDZ2fjZjqqNW1X5dI0tp1T4FqGJMip0RbqHaIQUY1+g262W+bSU\nc9QZD+qal1LmtiQ787ZoM3WJoGYcernNpme5pYC8cKbvKC4iZyJOp1ya8QoHsqm/dnzzOGVzVv/m\nZLnEx8R3xeeXLeopOQoHV7sMkqgJCi5RcKp4bZimADsPi/G94QK5rGFCWMKjWlzWIeR4FiklGGeZ\nu4FHKi0dUMrAqCJgra0wfqa+nFB1XC/lM5cBrlZuNPVcfTJIeC7TsZaHyeMztaKJUqRYVPHaKos5\n1I4q8C1af4KXuc3LrNmyZy5j9vqLCe3Iy+cPMx8JMDguUFVWLnuuPk4Yc6zbrtbYzPYW5jDvUhc9\nkB3jGq43lMllTGHvjrtOGLJSq9oM5C0yvw5aTsjrRdMBeUOG4mL6EKD7c+HRVTX9htpkfvtBVZLS\nS6DcWoppyVmths6c94H0Lj+j+b2qChXofPrQ+OfnaB6HMv5S6GEIzE1KX3XHLQQ0r19Cxtuh5r4I\n8BlqzFDZkeHu1UHjGoziSa30IrjhAtk0LjxIDEKoaDlnHFiYQYbKpt8pwRmroih9URnXC1VrmAaU\nxW7PelXP8mXR9NcDVQJ62uLrCOxqt3j+dz33fTW+WURqlkkxFruG6FoF/jTOTo0j/KjKSgtBFBD+\n/nGHtvb64y15/chOnwEDJnrYo3+NEJcqlha4jjlRsDYaTBfA1yTXMTrBk+GMMl6Fo2+9GZeqw3II\nU/WDEvO0LhA6p7mWJ6kqUjMXWVdtIZbNB1eYaKWG22dl5RQp/X65PoSCaCHL8TTPhbB9m9XF3T6w\ndpJQPEP4eLpKhME3U/58SqrJ+8raXFeRuOEC2UBo4lgr0QpQ30o0UMdtW1WfDyd5rq0RJn7AU731\nuBq4srz7jU7ePHN2idon0hNsehBCbjCDR9g1heBv+9z77Z2gn7e2dfuZ278hJhNazsgOeKQCy7gC\njbbtacsUsmAiwqyraGIaMKc8FYGUrjaa4ZpxH8/kDgmCMqgQEmp4FM1Ne+kbh8yKjzzPlvJWSKRk\nX2tOkQvglrWWMWTHfWQWj3pmLaNyxYjrCCEprfA+SeX5OFBkPQNhr0QIrhftfD2eJRoQylVKgH2R\nV0yytN6+ZEsP4Ut/6lj5oechPP2Awyq4aQRymFDs2cyAuwG9inmFXAQnYeHWgbK1XoMHDZSow4iD\ng6k1wGlwqip/GqXmeqHIEjVMb9qJYcsNCGhf0NKgIp4fJ5Ftqwj3XQgFuo5tlC8V2MKDtEAP/K9y\nvefWnwu8Kva9i2Udrwx9nrnxsjEI43j9SoTxTFAcypVQycKGIdURuFSNoPEBBs/EK5vDr6vckg25\nHp382Vwye5bdMqrGztRR9C4HJxgsZs75d3GpZxRUgT+fXaGF7KATx1pl/jPm5DX51UPSD0ygaBwt\n5IUyAEAgw0eVZSOzGflu63fb6AfB+UGCN/W2JzPxDTgThVwsUWUpqW0T5D0Arg9RFUphVR1PLRqn\nY+tJoTpu0yrmRwkr9B5Azg0TEr5S5CMM80SPQmuGuna4WRhjsnTiSX2MXpmFFAqIcsaQmWUIS6S+\n29QVkvnx55IhLWASEQNExf5OriPwmfrjIxs8fMFNEyg+oGD560icc7UGSoQxze9HkjIJcGOlSVtt\nGlozJp3hK3zB+RIswqzlS0TuG6fNdngMweVRMQpXxIrrA/TOVV+4Gpe7pP1C+iZLT+hV/xUMWV8w\nD08hgIhJZ4xkzcNoGDM9YutkAQLyz+muE3hYNlZFaZ3yax1KwNx00leGFZ3SQ5aUYunW5xxpCVtk\ndu2hixzyg0sLg3IRC5vP9ZIp5q3wYkjTvMvaLVvRielrkfoV6mQ5eWKVaCp3DML508oIjp67vIi3\nm3xFMRXATSCQjRZUB1wN1W0YYwwy9SKBTxRTi0PR5Cm3cOuteSsaFCp99iLcEirIQpYtY4DUlF7s\n6qnXS5Q4j6MtO8LYwzGfNlSvC+pAGf3dizAOtshjWH/TLkTHRU/6L7804Qbv6eS5G4D86/Ry41ul\n8JUI6DqWcOh3HSt5Gku6SPmtW1e+HNe6ol6Mk4CischvM6q3j7vsGa2z2lsyzbnfvoHk0idQfJ9y\nqIpQfrq7oAzvUBlF87aQJ0+xX7m+txGgtFRlFPlQhssNF8hgstA2Zd4EcphaaL2Ts0wJDBlIEkWK\nZLG1UIr6CU1kp0xu3CiMIFwkTInVkFliminoOz8L68ms3PANLCcFzgSnwpiZY/ldIVS/YLJtyVGY\nFQFwWbw2GQqkyhXP3DXdafvH5FEf1zpSVkReQXCtLveaw1zt0uY7CSjyVoTeAzW9PCXv/eR+nb6n\noKweHyIUrcfn4xOKlpd8mE7ZKC/L3fmRv61IPa+srhSvIsWpqr1l9YZwY9J9Z96HFQU6n/Ll6l85\n3Kgx4NNUtqxZQLe0jrpCubJvsn5wt86dBAu98QIZuO4OzU1u/dswZHtVV6FoC0LI9VzEHEIDSd/X\nOv3Gt2ZruKFKtWcUrzEXq0Hl9VQStu78LEJXm3g0iChnnflFSHr1pqYNf12LW7ejv0Zr3GzMoENd\n1UQYUuZUds55CGcfiphIMB+TuUjTUHpjHYeYmzG6ipiBJM/qMqMyYMydZ2GXX3l+t63TKbvuOlz9\nscjPSSsQqIVcpXSFLL2ydKbsfF419tQLUuaGDfVrlVUfook6fV5UX95qdsvP6AxawY4AKZhzhCbN\nyIRKaB4bj5sZE1sP02varjLofqcCUXp0YpRffb72lEK5SC5JJy1yB834OE4z9264QKZWg/sczvOi\n9xSqXKmM+QWdrIVbxqROwmVSJ4Cmjgvdn9CWeZSXa6y9MlzyzCNvTVVB5qot0KLLrCmaHwVrxCHr\ngdJbSLiW9SUtM/+d4kz6mDAxwDsAwcHVf+KWK0QgAlwzfa8VDn6h4wMZIwdm+BZ8bjOIX4Bix6Yv\n/cAgdyzr0UJuLd7QXkX26nmUr6dIKJt5UUUDIcuzkCYIjQlm3lHzi65RM0gpnNO/JDlUBcgr+771\nXeQGLjNwqpQ5+j57Rt5ZAevnk5CMZTOB8uwQrRs6Cq1l03oYy/e3xVH1qeqHcsWb5lf1S68sl/Kz\nvtZxEMazSfm+25/lhtkNF8ghCBoVNbSNUD7a/eFtTPXVl4zRBZh2GU5VyoZ6WB0V6Ex6yXPRwbVB\n8kLrW61d598Xu5HCDNDdFyqCh22UATMRIqF3zNwPGy7TbqmhefJCK/TOt6BCeY8Dhtn4jCOfpvi5\nzwSLFB2Dv2/R0u70LezseRQ+SMMHHlI6yG5pqiOUxLAUgvBw4Nk/haRr89YM0qJQJJTzrt58Xl+5\nrfKc0cBJDobUeZ8/S5vDda2blSozp8xhKCab0YXqKOchoLTjCxQfirhWWIirh8prpcuuhY/05mT+\nsKciRToHgasZy+rNsml8s3gVidzkMX0RWiP3lZwiuOkEcsgSOi4/dA5tKLAIXC2qnPgMTpRpF9ZN\nRsYSt9sg5iA3RSOlGwVYd33LRASWJpe8EhUpgYhHkDBrpGZ7ie1Dk26arVluHdXKhtFHjJVBz8It\nviZRdXeKaqFThbev0ftMjAJ1VYauwysDR2/T+NcJxSvyGIWeBS2eKZXfOvmOB752UZ6aGYVMsuz6\nP8DOASpkyyxfX9DWmaN1hKDzPNBXUWTmNxFiDp6S8CCKF7WyC+oDnVvTKi2mPO95jtaL8qqEqX5v\nDp8BmQ/hLqN8Jd+WMiUqHPgVqqMY8lZ+AENmTQ5qtdfNb+CmEMiKuFw3V51OCwlZf1uT30llQInb\naoau0BNCCZhQ6LpfR3FwgCuo60JmGWcWyXRgHJG+28VJUxMndY2ZKiW0z1YVVi42Qm6+srRFrjcu\npXZ/Ge1ZHbkaEsomTqos8tUf86o1O5uHOd99RayugjkNw6CMzHfhlZfpP7AWIvShFtPSp6lb9Zcp\nf4oT+zPIn3KlwI8KcesGXK8B46qVaZq3dG2e0DwubriUedrx1y6rynDyBmaiWlMuwll1Si7WQNpd\nGSF6Dbnei+iszJqrQ5v5JbFwOrNyLllOzMJ/Ejp7PMTTQ0txx/VwhfrJKapA4NJnRrb5z4rgphDI\nahK7z4oEqKNcVmnKzDLWKqafHzjDVFkuTZ31FxNI4NaRtx5zpEj28NKjCk0eyWUW6MNrtMtpE7NK\nRn7dyVCL1jgzwea9hz4zXLCsfW5eWp3bNhPdrARlYNBdzN0xIRq2+ulqvjnLx+Al3T4w2rliYuF+\n8icwY2QkmWF+unWGTjkVwC7Tz1y5BfRKBamfzn+nm5R7xlj4GcXDLZN5eSnzKRfGRZa3qUeVRemr\nfkCNgcgc36hKzcopwyn7DjtGQEiA2r9SqqMyZUB5C9RSci53nn4K4yyEm8+0SjhKkYXc2crEcqb1\nhHAJPhNur8qgUkLwDQgX+jxUl0/P9Lu/0kYNBCkBFjpJLdfvJp4lz6d9XJxcUma7MqoukMnh6Btp\nGk8zPmadv+wud4ZyQ+qmEMhFcEzFpqCssnD6cHo/LS2jlMGU7Bt2v+cZf8iLZDbiywJmMI0WSK21\nsnXg3DoWsYIpnoxbBl93XT1UXx7PkDUTfn9cS4eWXQv1AiZlFJ18/e7fMhymSVeW3tfGq/IVWUBl\nw1OH1AqtCvJsGgE9FWhFknl1W5q3D81NQ4akpTRr0A62tek7RHN+cBot3noUWC596LeUMne94zTA\nXtSOt1BURZ2qM6OmhD9VLTfQNL6yPj1Yj1HVvMr4EpG8IYOzCG64QL4eoVt5wxIZkKJrvGrX5eUJ\nWQlCSDBOTokpuWg0RBjmIg2bhrxzLE/7slzo5Am6SIj5k96siWTMRNjzgy1TkPqknbzF6bTLaMUm\nf1jvcIAKlirhcL38pW5+OuGkWdf02iJl+HvI6p0Gd1+IFlnC/3+CIq9AWbqq8vS3LE/4EA5pg9KM\nxWPmN0NhAGJ1TEF4PlVteSwSNuZ7bmlnymMyr8dte71Qe+wyExlW2c/1p/s7rPz49ZcJ7HCeMJj6\n8y7/UmPGi6sp45PATSCQKZQxlyrGU4fofEKneUNllK0LURdG9oz4YorXccrxMwufniKdT+u1p2jS\nlwV05N1epO3k+KtISx0uZaYYSCnyjELX55+Hq661dvu4riAqCqYJrSeFoIghTCvIjRLhaME1wK+H\nCtK6EGIcRfOhzDKpY6mWz7HjCf9p89UR0j44yqsQwfmdpQVROiUyXhsKELI5yvD1yvf4jH//sARx\nbwat49DcNN+t6VXHSvTLzT0nlpxK9+IoeGXCj8YCMVnM94wSq75T67f+kshxlBNfBvj1mCgJRUq+\nRiDtccM14KYSyD7S1AJmQKmEKnMVAchNilBeM8BlZdqyixhcmUZWc1SYdpFUXKHnEFeqA5u840T9\ndJSQy3CrCo7wXdjUIyCEi7fQJnREyvPrCgVShdrpW4dufyAHdSdp5B1ende03UPlfau4zNoLMYvp\nrb48bnWFe5WiWydP6HcRfgYs8yyu12fUlOma30SH1IlNHtdaMWk5K7+21FFsdEIpoGIipK2gbNnK\nn1vWE8dLFflM+Wco3b4VcreGhEkRjkW/AQAlfCVoaJB+dJUWf/9+qP58+f47UyfVGSgebsBluO1F\n9GTSFa7nT6EYl0F2njfLnxBolvWy3yXl3HCB/GJpZEB4IhTjEdac/EeFjOiY23vcuugsCAsug6va\nh6uec6JV0ucmra/113HZp0KAG0HLgIhxtb3IlOtr/R5zDMVLuFaDjST1mVquL0D7ItzH004sf8Km\nabivi8ovogvzXaJCGyfMqySJy7Ro/eEsDn7TegFy9V/H3Az1j2W89eaayQdoZYgIYprAF5Lcy5ub\ns2SbvZTmhiOZBVXZovOR90XKZN6KKrJwCa2jbBw909Vp2fGhDh+4HjZWz1p3vwuvqdLQuvlrDrmp\npVyHnoUznpQwBir6zGtfWdobLpBPCooIwbVcpqQ0FtowSjlkuTVcZPUVCZtSIUnyRGCZayTbeyt1\nnbBCmQkb3OIULWXlMlQURYp56i5IgdykCYFxz/gtcZKXeCuq4MVaDyuKxDXgWwmp7m9/iyzNLwOT\nMBMS1IV/QkpGGQ7HLavKEqZCu47VPE1d5dOhuBLfQsnciGaOEPqTUmbboiSZP/Q9pd4iD1M+vQ0W\no1t2FN6kfobc6E/Dr8rmQx0jpPhdeBzrrMma/OZZLdqjukZJ+qqywksA4XTVau1x6i8oluzBLCvj\nphDI1zuRi8Avr8g9Jo06VqtMv9AKPXeKRhVahUagk5roxKbrLmbcFaO3Zdaxiilk9wHDtW4srm56\nVR+HEAKcc3W5hZvAZWbMba+/7udDGf7u8+MRkV+0X5fUzNww1bIlECklEKmr3zIag52sUkrEpD1F\nTNUJ5CNKTp0D2qwgDiuBx4UyC7fMXUnppyrIKXQcqCkfCJ/7RtUa346kp+uFLFzGGFKQq/cCyFH6\npH0atjD9yxNY1i4AkIyBO3fF1vMW+FC1nFUE0/AC16A5GauS8uFQOwVJ51jTKPcR5OdsHtnjKPR1\n22xorHDwatxbfcMFcmTOKtUnNuQuHWfufbI+sBqMzTBR01e2vAAjZiSPs++VlGe+0LnLAnvhmHG1\nGAZjBSstJ+SulQgzUSklhE5vLkqQgFpvJukigz0R0LW23UnLdLi3RmS2c7GAd8D0VZRtIM27n1N9\n3qvkABjXuoyd7d50AhDas+i6uN1nBheZ21tZRDvBLii1Otz3atx8C5tBJmp/KyQgzRqYxsFeWm/L\nCFmF3pXQTosSaA8IY9k9tA7G5pjJDAevISWczVfAGINzRmJu/VRocmDMKh4EBMHN9FeWRAYUUQBJ\nmlckzDgH76ouoe0yhmrogptCChQtVxhzwkcofqZM92CPTHHO6JOBDkAqASnT7IITW054q43QaSwd\nufTtzwtnuafOFge44x/qv/z8oHVWezlcHN13Wc9IvRzn8UVbhm4TwclXurK82QgzOz7ZAQ81Tl30\n2hI8nUzPAQTkCuX9ZfrADRf6tKzHAAAgAElEQVTIGXJ6x49RIqhn57haWSifb41Po/1RpkotT8A9\n2zdLbzO6GnNR2XC1+CKhXBeklFkUJV2rrHJVAdbwD/Zh9o8tr+zSbR+MkKgD1WvK9ruU4fc0f6i8\n63GD03VzV4ixXJriZZUwQ/DX+yhwMrOzSFnNaymTZsgz9TKebBVf19I1yp2fUUo1YX30C40Ez1oM\nt101qL7rsT74CjzAdf1lp4nlaU9Ktyx6exdjvrZTTVtFngX1zh1Tv3NDa921PUpTbqEqg2kCpvy0\nIXqRRhY4UecBIszSl/C1wEFNJs/U5+zr+VZEMQ6vD/DQsn654QLZ7FFlzBpLlsGUb8bODimH+9eA\nH8WYK8s/WUpzs0LGCVeO1L3bwWh5GTNi+fe0FvPerAFTMMyxiIE7E1NnFoabEsukigSD1jnNS5BW\n/eIJQMmcyR7gI7Xg5Fyt0zFuvy/Lgnbss3rl1cNPE3f2vlhptDc0QW+9MAKUZUpVppwB+YlSA1x+\naE4qs9aQj5Z16et+qbCyfEUpz7DN8+Mr6F7tcPvAnpcVPprTni9NUStzv4cEa+i5emc9P7SNoX3U\ndWizlN5rCuFppl6RZ9KptgClojGlDga/X2g++7e4n9RvZfX5u1empSdqtBSdly+l/YSMvyK44QLZ\naBsUcSYAxvXeLmcAPDclcZPUnahZZxTsOSgVxtRiEVq6ac3Yj242z0ydFLfMU8LdQTLfs+1BjJVO\n4ipw1yCnPwwlBIwxe9BHRdm+suNPJh9omVXudcfS4czFJxihGs5r1hCrwF/jrpr85plfh88s69Zv\nrDK/HbTulM6N1B6GI6COO51GBOfc8kDu8AaTptZFF6xwytWiS9NvdfurrJxMSQjC9JHM/hz1PTXU\ni1JSCnya9S3jrO2BgqqW804SqgSt64krF9S+kKLCLAPtOWUsfIQmrYMxd4sr7X+zJOB7N1ycc+gG\ngQplcPeZiZ9nzC23DtnecIFsDLm8oHSZTbCjQYZC6s32FVpY2ZWFdQmYG41N10tx8tuWtTFQtpRG\nmwXMAPrE6Asxy4zCa+eOOy5kgVS0rUibk1KvWSFv8ftruiEo69Z6QUr5rVGZ0JYSaVaOEkx+f/hl\n+d9DwrbIXR4qN2wh5Pu/LG0d93wID5pXMMu40pLyquoIjie3/WLuf5Xa7RKyaF3XsD3zNzQ2Ifql\nwrdqyYK6ifNruH778v1PlYqoRLn35aGfTnkibPn+Uhbte/NK8TUG5T63i/WUb+StYDhLWmH+cvLC\n2ODlQ0iguUpo2GjyBZb1CBBllshcX8nPr1nn+RLlG0Wermm7qkgJU8+ZJbESfh6CGy6QHWD5CVum\nDVNtqYxI7IPyO4enIWBjNeiCFa6eK8TZJxx4rhQRa7kcd/6EJiVj+XU9P015meHfmTrgMxpiQYbc\nt355NHCjDvgTSQQsCn//9TTgM3jOeU4BqJvfx7dO3jpCvw5wqeSm8PJSQSfAEbMqhSOMp49vseJD\n1eWQUC1XlOoqVCqttXyKgAq2nBBlLlfI3/xV5pYOHAJC6RCuZ8BVElzcaFvU93LFgDP3RLwQ3zwZ\nr9h0vIlxCT9QijHaT3nlyLyyPF0/9/kIwSks4K0yE3oexHdK6ziXX3otonhpcqhb9s0lkGE7ztAZ\nnURFjIMxw0TLmWAdJknv1E0DTMPZo0gVgpJbYPKH1btAXcAURX8Qy9aTiiZezvqU5bdE0ZU0+kxK\nixDnHP4x3VG2tUS3A+42EV9bRcZEi4VCJZQedxSemNnbkmOSGGOV27AqUZuiXWHLptiyMgqDj3OR\ntk+tZ+ndpV383QjUvLWp6qIWT6gvaTnVJ8OdpDXnC2hblcv8i2mDBb+HFCfjvZOy2oAwdYeNh2Kl\niFrUtJ46XRbkDZT2p1hPzvdnCFdbB2Nwb69j1up381Ier9Jkh7vofL5Qq5pWmaWK4j4vwr1MCTLv\nbVuy5pKz/m27FBb1+cgNF8jqnGM4RGL3oeUbEnaNhMumHeYz7rLJcz2M2KkDYXvcYXlkktmnxwOX\nkcDZwsEYy35zpg/6OE4dUpVLb5wxHiYzBxgDUm+iG4tTtVedjDXNemCh0lFxBmFd7bdqjdgrFdLb\nR1Tk5i5yD9exYFzLKcsdFAqAublIBklInYbkngpmyi68z1qXCoiggmGzlLnAWVZH+H05lFnl9r1f\nt645oNxKqU7motU76XXAWqgMKnztswC+3jI0Z/ZkOiuQXIXRWHzmCHmlACN/7CKbjsFXwpRnLU8F\nMj+f6ghSKd1pbbOE7sMuVk7csavmAeVC29JZURuKjqTwz2RTtBCOVbjhAtnsTc0YlH5u9thSYIxl\nCZhOzABAABFjjhaVJTVCuUyJ9x/rQqKAdkzvuqRyIDsdi7Gs+yNp6sgfXZnVnwmy6hlRxIjNd9fS\nIQfYMziMOi2lTM0ASTsFkEnbzD2jaUpFLnq4gGV1m+MIs0hvozFHyPZQ56LQdSwAN7h4Qi3E9KTG\nzeSnY6PwFw6NmbtMTTG+wMjqgbK4si7T3cg41eEthK0HmQlEk0jRqnC9Bh6kmpDkhCGKZWa5SykR\nRZFWugCRpvpkNRVJLeCeMKfurs5DkQfD4m3S8cAzWhLPBXa5NYbcxJqWApal2WdrKuL2K6T0tpsw\nVhIsFn5OvTtSa+1ZfY4iaZa4/D7Je0+YoW8AUvLMyjOy13iVlOCVTj5qcZljIzlstZnlBWQKg8EO\nnj7KCC81+DpzkxSc0XdVEId3Y1EVSCMgmVYo9Jm7MqtaKjVPCHCmTkwwSyxCMB3sKrP+U10uIfX+\nb4MSI22zho0rfF2Dh2poOh/CS3s+hBVRUhTTHkwZqMOKLTAW5jUGbrhAjhjTAoNo7GZfIxXUsvic\nYwMhrbcYqqmrSIsvs65DQQVOrVOoonXdfCHNnaaZhuCyv4E01J1vbomsuyYdqi+cj3nfC87iJqlC\npRiaTz2FJ6iXSbN9JdwOoVVfyiRFQAqYoDL1PlAQ8Wup22E4Iu3OpW5lnVhd5an35w+POOZmgHQS\noTUDDIRi2okEmo1ICRmNJwPPFColcIo1crcf6s2vkFXKmSsoQ9apWxhgvCnUXQlo5Va6ScuAMt2T\n8G5JQucWqvvQzh2r/Jq5CVia5IR+HS+eFlRgqSZ95VWKHQtQGQXOMpcTS+P3lrnwwuDjYOy1246/\nU46/vydA+4y0FzI1fhFACh0kxyCZubRVK9ws0vgrnk9QVripxGpsyT7vrD4tlF1PjcpLBbRtE0XY\na9N1AlV8qHfIx6MKbrhAVgLD65iSzjopd3KorLBbLhC0UQDcaGg2cWm+KoFbvR5VrAkDOrCHTBTD\n+EMuShu8opUihPuDpg21wTwroz/p4SSYsuZT4lKV0jBiBmqR1DptDNq6pBBiMtA2kJRQa6sss1K4\nY9mr9FTg5EWStuyz9y5VZ3TkuQiF4SohRShVttL+zgQf/f2H8cKzz+Geu27D97/zu9GYUYI6Yho3\nbUFIjowpCSmzC0Koh71YrHBCshJErzddqNvhMrhM4DhlGSVDubx9Gsq2ZGmL37hxMxoNeg40h/Zr\nCgpQkst77LqAWR3dXJdt5kix8Dc4O0q5oWtp+5CmZ8y4qnU/cw4mrVKlsbYWF3eVQzpnOPFGSCm1\nembTZqe6aYHmdq8bve3M/5qCHDAWoKG5SNcj1JwCyy2XSarASAYu7DyXGmmp8bbzMYU+8i/Yl6Zf\n3LG2+CtF9WSEss8CQ96TSgVVww0XyIC7gJ8Bqy8IbRr73W309BacKiO/Z7TMilD8lmUTz99+M60y\nUSWw/bQhge57FqrOEfbz+rjkXERGc4VnQZO8gln8coqwSYM8EVvWq85V9YWxYyUT+eFPQiN0KRhh\nBag2ZEwMmu17FkGRkWeTlCtTijnqd1yJa2MIcG315GwbxpEKYHm5gVab44477sCjn/9rfPUrX8Ly\n2ll8/w/8fdz/wCr6I4DHDAJCX5BAIoqBLAKela4V8pJ3xe2yz60l4FhLCFhcQBZDEHNVb5rqtVvP\nUxHKS38axbHcS0Tx9Jc/FF923OQAnLNCc+32Xfvu3IjJ2Z5CKGFk7uxVgtnOIYMzZ7QPuaZDRmim\nJv9jqixpiAvu3PCFg3lGrUxiUQTrqeZLOsaCAZA8u9pS+RhS8GxBS+OX5uvJznVgUBY3U0pcnGkS\nVoFWQpjyOXs/chFNWO/RdEK5jHeG6gxZx2Xz7Prv8zoB8AWf/w7Ia5bmmfkbEsbquXTKCZXtlulO\nQhuMZLQ/5m23IuU7a1P5skJ10Y8vAP33ufq8svz8PqMQwjCIHCo5yAlUr80ppHLbmhO5pNqKJCWD\nECqoS0BvT5JaT9dHsEkpSJCLdMY4j4f6mMP/pZQQ2gL38wbze8+FEEhBhJWXPkRTue4KuOz8paMU\n0sE552YnEzaVeWVUlSPB4gRjluLHfuKt6MxGWDkzC85SbK9fxh88+Mf4mZ/8FSQ9IOZAs8mRJAlG\no1FGDxFXFovaO69aXDT+pq99CzI8NyU4N25YmfWX+Z3rMjKXzF9Tp7FofD4QWttmTFl85mOe0XEL\ngRLEpmxJPgKMScRceUW4bpc/7yCFcmTI/Fx28XP7kXMyt4WETKWTTgiBNE2c/mOmHZGqkJ7EWce0\noPVTa1jll7lxprTOyV5z22cCgLAud+5+TDrGVN+lEkgEBwNHkibgkQSPADGRiFkEljCwCUNDAmkf\n4AkgR+oz6QHJCGACiJmOw0kiNNIIUcIgh9q+FooOosjyWs65pi13fmVDKE3byfHEJbynqF/LftO/\nft9ahay4jhtuIYcUFO9sEPs8Z3W4f/OT0tW0TwLcAfDKZy6vrjN5KFBBH3Zxl1sdAOxWLeZt0fKu\n/ipbM83y+FcSmgssCnFztUT6TlVq22YmhQTAiV4o1QPnGFUplYZtLNXMaqiw1gCXvjLGydShGVHm\nutJBVlRwl3VNUKP2DoSQ4ZkXKlZlI+mzdWYGgINzhoMjYNAfY3t3D0xMwCVH/2AHTR7jf37PB/Dd\n3/ud+Pvf82pgBMx0W0h1e5NEqItGnL5yhZ7BQRZY+Y5g8vK56bIngVZ6eQoUVvPEv5vYhdDZYFSQ\nuGumUoqcguzX6z5T5VkjgDmBODl7MGCF0WLNvGbu8CohJhniOEaSSPDIKBYm0jvbb0I+dUApG/6e\n5qy9LJRaZpoA97VYPV85TIQ6HTev7VItozQaQDIWaEUxmhGwtwWkE4YnntnF049fxpUrVzAaTZBM\nBDqdDkajMa5du4Z2u4tzZ88jwRizcx0sLLZx/8vuxJ13L6HbZmjFcdYjIk3RbEYQaQKpRZnM/nH5\nkWl7phxTWtT7pousadpWK9zd5/6zUN46UEsgP/HEE/ipn/op/OiP/ih++Id/GFevXsV73vMepGmK\n1dVV/Oqv/iqazSY++tGP4kMf+hA453jHO96Bt7/97TVKL1YZ3LUYL5cm3JMK5Dgu+O6vaYUwhSrL\ntTDoAuG1VedMbK+PhA2d9vpZl63P78xsioJ+ltBEb04bChCndAhZW7kMiLXAMeEyJsKUAQ5DzawO\nMJTtHw71nx0TMgGFhGRcRcVLs27mR4uzDHfKwZwbqkgf5L6Z0MvAPl4KrkHJIEnZkQRSwdR1fQL4\njx/7M+zvrOPMchvt9gzG6QhHRz3Mza3iY//+4/h/PvKf8M9+5ecRx0DaUNdgcsaV1ZKGl4DcJRXv\nZqBcXxI60cqZlNIJZisCs1Riu7c8fUTmvb+Pv2y+1xW6ZfldYZ5H11c4y9JSMJHBUrquSSGAiFzX\nyYWOQOcqWI9xAFx5IUQweiEvGOsoq/QZyPo9PeCIOM2ztvt8mQokKaH2VHKgE3GsXwI+8R8/i8lQ\nKR5PP/0kDg8OcMcdd2Dj6hX0+30sLy9jMBhg0Oth2N8HxAB7uwfgcQOTJMUnP/E5SClx/txZ3H7h\nVvzvv/5NYCOg2YyQjgHGIz1/uYrqTnP6BMHVbY9NJJ090wb8tpr2UgPEP+I5m0NkacJG2Jfz+UqX\ndb/fx/ve9z686U1vyp792q/9Gn7oh34Iv/M7v4MLFy7g937v99Dv9/Ebv/Eb+O3f/m18+MMfxoc+\n9CHs7e1VFa8QphoX0WYK0/saXqCFIa2+Kk8V5Cdh3mooc7+fFFRatnAVA6Mpu4RpP/6BKpkFC1eA\n0vf2u/qrXHMeHswKY0vM1LVkz3uVzGcoFlfz21hxxguQc3EWtM8/KSmk5IWWAiTBW0qoG8kk1MQl\nl2fQZgtmgtTMhwfpkBGm7LRbEhaocWcC+N3/+//F1uYuDg8P8exzT2Nvfx+XrrwAIUfY2rqC8WiI\n/v4A/9O73o+LTw7Q5Dyrw/S77ROqRJYrtb4Qz2gmNh+m7n5megkjsBCQc/H6AsHrw2khrGhQd7p1\nP5slJ84Zokh9fOUExAXv9BWTahmB5dtYJYwBwtukUrYiycAFQ8yB8QCYDIFLz4zxhb/cw+f/YgdP\nPZZgfwtAAuXmlRI8ULcBc7x+lQLizA1HkXD7wljTMote1vODqQiIiAMRV8q4TFW7GgLYuSLxF594\nHv/8A5/CH/3uZyFGEXpHB/jaV76IVsTxkvNr+PrjX8b8bButCBj19iEmR5jrRlicbyEd72NhPkbv\naAtSjHDl8kUcHexjZ2cHn3vkSwCAd/3Ev8S/+9d/hf1NgCcMTHIwJGAE11C76VjZ57rNXILnJKKr\noHHu9ltoCdDSm01n8lWJhkoLudls4oMf/CA++MEPZs8eeeQR/NIv/RIA4Nu//dvxm7/5m7jzzjvx\nyle+EnNzcwCA1772tXj00Ufxlre8pbR8pVxby8/MTBFgEsYqroJQgAd1kxqhIKXMDoSoE+zkM3Cj\nWfp1qPdCu3xd5hfClb5zrGAnt/2RRaKSaGkmeQ5/Y70KAODk8AvNaJzDMPRfQfMSVhnRclOttZPj\n8UzVNILSv4xA4a6+cC+MSQiyj9u4k2ELZ4xllXB9T6dde3dvF0qYRETphDITDdyjI+qSVEzH6Ran\nHIAcTZkVw/VWMBupnc8os1+UlM3vNLM2VIcJAHHMMDoCfvs3H0SSJGi1OTgWcGVjE2vLq9i51gPi\nFINBCiE49g5n8Avv+RX8k/f9LG572QzimQiTSYJmbF16krsBeKbNSunSYXSeApYxcA5ILiEialGp\nABsmNObS7jgwZSlLmhwTS4KrjGc2m7NMZnTCmHL/p9KmsZa8XZ+lZwDYiF26JkoUHG8AskNudNlM\nR60LYWmCcwkRqX3eXE+oLBBNKhetSFTvmX3+Zm28wRjGYyW8mk1AToCNdeDr37iCna0BkgRgsonH\nvvoUDg/GWF06C8ET7O/vQyYTzMxN8E/f9w+ABsNwnKDZbSBJBMB5FswkBT29TcIE6THdl4ne1J5N\nk8iMj9QCV4+7VuKSRII39LgxhihSCgMkg4yASTpELDpoMmBvi2EyAq5dPcRjX3wO41GCZ595CuPR\nAC976b347COfxl133QmwCVrtGHuH+0ghMBwOMJqMEDW66HRnceXKFTzwwANYX19HZ24GrfY+zpxZ\nxNb2VSwvt7G9fRlJkgAA0vEEn/7TL+JP/ugzeP0bX4b/9qe+E41ujGYL6CUJujMxRiPXwlVjL3MB\npBSE9Le3FUXTE0Mj8E5S5k3mQhVUCuQ4jhHHbrLBYIBmswkAWFlZwebmJra2trC8vJylWV5exubm\nZj0skNfqfAEpsxbWPffX13rzloHvbqblhKzfcou76FmFNVswUmZtsxAYWQ8RxZvbXRdL3jIiBdKi\nAU+pcZJKWX//EXzhFAaut3IouWvHzrrIQm2zVE+t/KhkGcSArwiF3uXrKkpjJ3z2JFQ9UQz8ozqs\nfBf2nVD7jLe2jtBqM2xduYY3fcursbq6io/+0UfR68/ipXfdg6ee+Rq6M00IGUNOjrCXpvjHP/ke\n/N7H/gWafIRWt+W4GkPnQDDGEElAmG1TVEhybSVxtf+cRwxCBb4r5UjjKhnZ+udsStbKHRkW38tS\nxLAM/ZooZFOgXQ9UTyIATFeqtpVZ5d7Ri7MgJQ7qUrTPAZkyRJzrM65V2ogzsET9GiNRSwFgiGMV\nhBRJINYWk4myTgEM+sD6tRF6Rwn2t4dIJhLNaAbjCbCzxdHvc0Q8xfbOC1hZbOH2W88glQkazQZW\nlhZwcDjCwcEhPv3pA7zyNfOYn29g0pdoNDkmE4Fmg2MykUilhBDqgBgwII7JASgCaGqcGly3Ulqa\npoeWSCCjFSk4GhFDmgKjoRJTzSYw7jN0Wx08//QIH/qXH8Mtq/dga/sahBxgfn4WPAJuOb+KYX+A\nb3zjG7jnnnuwt7eHmZl5dLszeOLpJ3D33Xfj6qXLuPfeu/GFL3wBKysreOUrH0C/30cUMUwmI8zO\nzmJnZwsry8vY3tlCq9nGzs4WAGBhKYYQCY4G23j2mUt410/+n/jB//rv4Tv+7h3osBjJWA1xBAaR\nKEGXciBhQJQFEVoe464vu/MiT5NW+WeG5hl976avYxkbuO6grlKBUgNe/1IAJRqLBZPG9ynUFwzh\n9AUm0FT5gNfd7T+fFq86OEyTpk6+KJfiDffUqeO49R+3jFBaVvAc+Ka7gfobCOricZJtLivL4p2N\nxb2z+J6nft1L9+6adbYC9R8HisagGl5zx0nUVZZumjnHEKL74udqPF7+EvpsSrb5yhbUOMx4Lzrk\n+z2oDz4vpDHn9L3/HXjFhVA5IaiePw/c3cLf+67vr0yXh7/r/Z6+jIce/olj1AucDF+7Pl7w8OeL\n3x1LIHe7XQyHQ7TbbVy7dg1ra2tYW1vD1tZWlmZjYwOvec1rKsv6qyeUGywz/6mFSm9dsUZDgbUU\neB44vzormxZ6XNDlv/4uhr96xo3ecwKvvAjnLDsPnz5WpswYt5yKegwfkBACuparypGuyxoc33Q3\n8LlnshyeW5uspch8f6smWrModNyiC/5Z0Ly0Df7YmrVRWpqUEm+8h+GRp216KeuJZlcrDmu5Tnr9\nO4uc9eoJnY5XT0lVaV53N8eXLwJJOkEiAJY2MDsLHPXHiKMmUqmsst/9N5/AR/7dH+KbXv8qfPKT\nn8LCwhKGowhCtNFttMD5EH/4iV/FIFUWAteGICOyJ/OsEZe5WiLX6n+kg830diBE0AWxbBgzF7VU\nLmiz9v3q88AXL9sOZoLsjTfWtfbxF1kSPHJdgxF3vSNmScQenYpsjjB4uxdMOUwCLNH5ORiLMjdk\nkur5woFhD3jj/cD/8c/XcbDfR9yMMBoCvYMher0eOGNoxQ3cdccFzHQ64BwYjYaQSNFsxoCQGA6H\niKIIW1s7WFxcxHjSRxw1cfG5FzA3NweOBEdHR9jb20Oz2USrM4dkPMRkPMQwGWHC21i/doRnvnYJ\nhxv7+IEf+i4sLHewsDAHxlPETY5mK0ajEWFpaQFRi2NltQUpgMEhEMUpFhYivOH1wMMPAzOzwCQB\nBoMJOIvBGMPh4SHOnJnDKAHG4xQbV3bAZBef/csvoRF3kSQCzWYLK0tLmCQDbG9vgzOBZHyEJBEY\nD1MIkWB1bQEbWxvY2NjA/fffj62NLURRhDvvvgsbGxtYWJjH0dEBer0eJpMJmo0G+v0+Zmdn0W63\nMUkSQEokaQopJZ577jksLi4iiiIcHBxgbe0cPvTgD+BH3vFv0Yg7ACIIITA/P4+vPvYsIGYwHB7h\nXT/7I7j/NR0M5QSIGzBbnRkTyg1EaN7/TpcPzcGtZR4cH+jFSACyZY2MBkvEzrEE8pvf/GY89NBD\n+N7v/V58/OMfx7d8y7fg1a9+NX7hF34BBwcHiKIIjz76KN773vfWKs9MLn8PormVSGqXl2G6vvvV\nTKR8we5DRifwCQB1XYT2T6qJbp4V58+vlbOMGHIDmfEh5gRCGXcTrc93m9K0ALI1aOqmoYI2FOVu\ncPD726ynmzz+zVR+PxQFOhXSqt8W7zUnlWhvanl5ft3B9pD6fAXEF8A0b6FSYfqyKD4CoBinqRqj\nGEIJh7FAoxFBSoEoUi7Lf/iD34n1a4f4oz/4Q3zbt30bHn74YZw7dw8ODw+xvr6LuZlFfP4/b+MV\nb1xRMlSmYCyya6rwaVPC3OGo3NVMCWKuBLFkApLL7Oxso7QhUr5QJpGd6pCtakTQEUdcH9ykgpmk\nFt5C0v2kFg3qQlV0Z/aumxOaDMNTCibj+qzvNAKPgclEotWwIyOELS+OGMaTKNtLm4gUnEVoNNS+\n2Ce/PsTXvrKNw90Eb3z/BTz/xDX0R32ANSDlALfeegvuuevOTLDErRH2entot9tYXF7Ewe4expMx\nOIsxM9fF9tYWeCQwv9DFJOlib/cAzXYHnMeIogaiaIT5+UV0u10Mkj7GRwnmuquYiVNc2bmElRWG\nhdfehq892kOrIXH5hUu4djVGu93Bypk1HB3tYzgYY37+EFEMTCYTpGmKOObotOfQ7/fxhtffj9//\nnb9Gq9XB0uIKdnd3MTMzh42NDfR6PaytrUGIBE8/+zhecv5WLC8vIx0BTZ5i1D/CXLeF7e0rODra\nx9raOeztb2H92mUIIdCMulhaXkCvf4DZ7iyW7l3CxecuYnV1FcvLy3jqiSdw+4WXYHa2i/39fahw\nxwhLiytYXjqDJ554ArfddhsgGMaTAaRkmJmZwete9zrs7e0hiiKsra3hYH8fAHBu7Vbs72+j2eQY\njVIMBgPc99KX4PBggJ0tht/7yMNY+MQs/qsf/1a05wEZCcQtiTRNwdDI5llICcx+ambnR19Tnlnm\njs7iF0K79AqgUiB/9atfxS//8i/j8uXLiOMYDz30ED7wgQ/g53/+5/Hggw/i/Pnz+L7v+z40Gg38\n3M/9HH78x38cjDH89E//dBbgVQZmvVJ997kilOYMcs+Hd6ZpGZSlmcav7+ezFdB9fiz3nHE7mCEG\n70PRujb9HRIcUubTsus4Fi5Uj39DTpXZSWMA6NYewm+dCotusCm0mgiuOa8J8w55D6A8xRzJ8HB+\nEwONmz2c2UsAwfYYBTezAFwAACAASURBVMx8rx4fKSIw6Isk9BmCDECajCElR9Tk+O7veQs+85ef\nx8f+6ON4+zv+IR566FNod5potBvoHQ3x3/zwz+DxZ/4tRAxM0igQB63RjhQdC6a+m51bLAJEpK1+\nrraWMKP1RABLmeuBkV4XRLqXtMUKqaKytSS1J0tZGQu649z0feZFcXpOgEccyYShwRiaUYQRU9a5\nTFIg5hATHZjElFBu6nXfdsTVViOuArJ2t4EvPXoRl5/ZQ5owpDJBu6NiZW47v4RmaxXduVlM0hEa\njQjDQR+MjTA/38ZgvI+4FePM2Xn0DoaQnGF+bhFIgUuXLkHKFK1OEzwG5jodpOkEO9sp2p0Yo9EI\niQA6M3OYJAmazQbOnG1h69ou4mYHc50lCDmEbMa474EH8B9+/2N4xzt+AFvbGxiNRugd7QMyxdLS\nDCaTHnY2dnD7hXN4/vkrWJhfwebWBtbW1gAAi0sR5udm8fzzT2A8nmBx8Q5wPsTKSgeTyS7iOMZt\nt6yh027i0vMXceHCBVy6fBG33LKGSXKErY0rmFucw9X1F9BqRbjznjvBJUfvaIw0ldjc3Mby0hJa\nrRgrZ9aws7sHIQQuXLgAiRRXr15FHDcwN9eESFKMxxMcHR3ivvvug5QSk8kEy4vzOOgdYX9/HwcH\nB+h0OhiPRpBSIo4VDRweHoJzjtF4CIBhYW4O42SCpeVZiETi4pUreP5KE4//9y/gZ9/9j3DXfTF4\nExgyoS1WRWicsyxSOor09iR/XpoD5avmqrXPjg2VAvkVr3gFPvzhD+ee/9Zv/Vbu2dve9ja87W1v\nmwqB7MzSgNUghS+gbPQlkLe6QlC4f1YCbuRJ2GoLlWfS1roGjVGtnjIX+4MGWOW3YBiBq60RwDIt\nx93inXvrtMs8oQcNhIFcxuRAfn+q3+lMHxuqe4UVbz/wgUZQA647mrPwIR2+bkCVNiBs0dI8Vaj5\n+51zQV1wJ255ECDVqP10BF+phEPQ+jdiSKeJohg84pgIgdvvXcT6tU38l9/yFjz88KfwwMvvx+f/\n+iuIowYQNXDhtvvx8H96AW96y1lE7RiJNCev5K0EocOQJUPWsYYmBNMR01A7CJRrWkIyAYYIQm+H\nAdO39micJTLU1VgyfXJTCpiw58yrLEhbkVeEKL6cMYhUUaoYAt94poeD/RHuunsZo2GCmZkG2hK4\ndlXgaP8Qo2GKbncWTz31DJrxHMbDCL2jMRYWZ7Df20OnPYOIz+HC7UuQSCDkEKkYAwAaDYnuTAvj\n8QCt2S4mkwkmicDK8iq2t7extLSiLL8JA+cRuODY2lhHkiSQMkUzbqHbmkU6bmB77wA7O1uIowiM\nSQx7faydWUZ3bhbj8RC93gCjUQ+tGY6d7XWcObMGKTvoiSFmFyOsnV/CQ3/2x3jDG/4LjCd9zM2s\n4OBgACZjbKxfQiPmaMUtLM7P4vBwE51OF1Kq/Q87OxtYmGtjfi5Gv5dgPNpHIx6DIUGnHat6u22M\nxz2srHbRH25iaaWJ7d3LmFtYwNot55AkY6ysnMULz72AxblFjMYDLC7O4+rVq7j7njtx9epVzC3M\nYnaui4WFBezt7+Dw8BALczNYXljEQX+AZtxAe76Ng4MDHB4eYnFxEYPBAHNzc2CMoRW3sHrmbDaX\nhqM+JpOJjSQXY7RbXQjBMbewiCvrVzA/P4uvP/kkOu153HXfGXztsWexsHg3fu1X/gBv/8Fvw5u+\nYw1xu4GU+/PQ9RKqG6oovRUHemXzBqhmKoR+i+CGn9SlGiT1d48VkcMHpJSIWNGtJfWBrlX7+2/z\nuLn4+NdmUbesu37s5hFCQCLNbjfxy/f3TGfbsRDlyi3SPWxbbF8y2O0qdf0mBTLdxYFNdyMrFU7m\nqkVJFBKVhqRjVltVbXMPjAfsNie6/5nLvJAx41w3xIvW4T6jkb32GkRfwJpboPJ7n4GyGWvcxzRV\nJigZYM7tklLvuWQc7QaQjCU6XeDM6gJEytBqdvCVr3wZQjYxThPEscDe3j7+u5/+H/DslY9gfzIG\nE828OhUpJUQypteIVb1MW8mC6yMcdbizZEyt7QroWAap1odNgeakF9OfEYBUCWnlvGFApPIIpJAs\n0s+tG5p6fsxSiZQAIrVVRwoOOQGeeWaEnY0hRNLB/l6KRy5uoxnHWF9fB+cRut0upGTgrIkoGqLd\nOo/ewQDjZIIkSTEZCbCUo9tqYzgcYv9wiHY7xsHRPhYXFwEA3flFCCnQbLcgkGI06mFhcQbj0RAz\nnQ4O9/cx6Y9xtN/DJE3Q6/fQ7w8QsRgiBeIOR7PBcLC/ifX1DTQaEbrtBjgEbn3JWRzsH+HgYAcH\nBwcQaYxWN4ZAitm5DmIO7O0O0J5poz86wJmzC3j26ecwGvfQbMbY3dtCt9vFM88+hbW1NfSPjrC1\nsY3JOEGvd4hOexbJWCkWs90uBoMBzp07i35/gOFwiJWVJWxvb2M4TLC9s4mV1VXcedft2Nrawt7e\nHhYXF9GdnQcAjEYjtBtd9A+PcM89d+Do6AjtloopWl5ZxHg8wPLyEqQUaLVakFKi0WggTQWk4FhY\nWEQiBfr9PoajPprNJm695SxkOkGjGWFrewNcckwmEywtLeGoP8BoNMTc3BykHINLxUPbrXlcvHgR\n4/EQd9x9B7a3NxFFEW6/7U70Rj1sb27hzgu34OrlKxgkMf7Vv/oPeOHym/Bj//jV2BepOkxEHwbC\n9fKfue6UGWVU0xvnarsYXWOm+93VZTSucl0GZe9vuECma4/2mbYcBVkjCmjMfgBVqYVL7sNVgor4\nxzwwZeWYbXbort6zl114bIOf1NoxvbVIApLn1uqUoCw+vpJzdTeK+l/3ByijkpB6/wqXHDIl+3L1\nHk/NA5EyQEKfZyz1Ep/pS90PzFzdZ06U8QPRtFARWimIClzxRoiYQAam8TfOCDOitPcloNYpdTtT\nIDttJ+S2V/2TPcmEsyv0zXYXdQQhPU5RjW/+4hB3zMO0lNVRcKepuUYu97pgEjLaI35fgvZvpIRZ\npO+OlQxiDDQBiDHw4Y98AG9+zTvx2te+Eq969WsB3sKXv/IYdnYOkIghLtz+AL7818BtL1MHekjJ\nIHTwlmqTgORc0RQjihyHcktrOpFMKTjmVDVEUGu3qQSYgASjl1epppPtsRld6NuNJJeI9Jq2SWM8\nYUzfT8Ck2mcbRebeZYZ0wsBS4NMfvwQxamKm20Gnm6DBB2i0IgyHR+h0VAxHv78DKSWarRYi2cBg\nOMbc3Bz64yMkUuBr37iIW245iyRJcHC4h1YrwvbmNuZmF5COlCCTSYpGI4ZMJZIkweLsAva29zAc\njJEkCWZmZnD2llvAGMO4J9DvjbAwv4j1K1fBeYy5Thf7O4cYDYboNBtIIdHqzKDZbOLw6Ai9/iEa\njQYgBA6ONrEQLaDVaGJhbh7D4RCNDtBqx1hrrGFhdhFRxDAc9rG5eYjz585hMknQaXVxsHeIuMkh\n2Bjr65dxy/mzWL96CffcdRcAYNDr4fDwAJxzHB0d6TkwwHjUR5IkiDnH8OgIw34fTAK33nordnf2\nsdCewWQygUxSHI37aLfb2NnfQ6vVwN7+HlZXV7GxsQEmJUYDFfArpcTe3h667Q7azQaGgz42kwkm\naYJuq6tczqMReCPGzMwM1tfXsbx0Br1eH812B72BCoZrNls4PDxS/CBWhHXl2hWcu/Uc9vb2kKYS\nd915Jy5duoS11XMYJhE6rVnwqIHb7jqHSy9cg0w7eOhPPo84nscP/tidGHGoMz4TtVwh4XrFMj6j\nT1ADsZqtx0dvBTSxE8SrB6j09ghYa0AI/7orAtMYDi8q5Bmi+yy8OTt0yk4+jf8+tOaqnucPHfef\n14W6WpLBy1hcfj0GV3UAgC/UmT6nGIXWvm9l0E8d3DMXuyE2GS6D4se9vEDB6cOy+BPCow7uoXb4\nyhdj9rSwKIoQRZFDS9OOdV3w0Z7Gy2ByOHQJwPT2eAKAJXjrd70N61ev4tFHv4idnQMM+iNEjRYm\nicD/9S8+jLlOU99PS70zyA7lt9a8QtA5d9kofNzSpBBuvyqFEOQayAxFd/yyE4+YmxZKmYl4gkgf\nFwnOIBlHIhTesQA2ngf+4CNP43AnRbPBcXi4i8O9IQa9MYRIEMcMnU4TnU4TS0vzWF1dxky3hU63\niTiOsL+/h5e97D7ccn4NnU4T999/P55//nnce/c92N7cQcwbGI/HaDXV1iQhUqRpqr8LHB700Dsa\noN3u4MKFO7Awt4RG3MLB/hFEIrGydAZ7uwdYXV3FeDzEpUsXce3aZWzvbqHRaGB5cR4xB55+8hvY\n3d5Ep9OBECkGgz5mZjrodFqI4xj9fh8HBwdIkgRJMoaUKRhjOHt2DefOn0N3poPd/X30+30kYoLV\ns2fUmnSSIG5wdDodTJIRoqayLJvNJiaTCQaDAXZ3d7G7uwuzdru6uorz589ngWpJkuDq5StoNCMM\nR33sH+xCIkUEdXdTM+bYvHYNi/PzWL9yJbtR7fz5WzA/r+KHlpaW0Ol0EEURBgNlkadpml2CwuMY\ncdTE3u4Bup1ZrSQI55KUOI4xHA4wmUx0QJg6H2NzU1nFvaMBDg96iHgDg8EAQqhlAs45NtavodPp\nYGl5AQIT/PsH/xj/5te/jpkRwPsSkgOjhjJa1IaCSbYsSuNgirf3Wn7l8yZD35auy4UxcBNYyM6Z\nKF6jfSYeFsrFws+NEg6sURdkpJYr/cs5VyeImQAn6ooNRCzbAvU5qxmjM6PsmxF5E6mofWr7k/Se\nBZtjD4LQ7+2JUKR64u51n9uys2JEOA33nlHcaf66YL0M1ULYjhlz2mKWRBxBg3Ilq04sgd8azl03\n/knI9HC7c74FcADzC8A/+9/ej0cfeQyMMdx67lZcufwltNodHPUGiGQTf/Inn0Q6/BGIdALEaruL\noTF11Z32kuh1bKm3t0rjqub21ioWQXmCpErLI20pmGUcEgfDtICm9GOWIYx1oZa1ZXbnHgcgeKrc\n0oKDR0A6ASYDhs98+hpeeHYHszOLiKIRjg630e0sIklSMCGxsbmOtbUzSEcTzMyovb9pmqLZijEz\nO4vu+fO4ePE5dDoczWaMO+68HU984+toNhr48z//JO666w4Mh0PMz82i3+upnk4F4naMRjPCUmcB\nFy9ewrlzt6DZaAMpw9HhEV54/En0ej3Mz6qo5u5MG42YY35mFju7WxhPUiwtLYFHEuPxSAvbfSwt\nLaDZjNBsdhHHHON0DCZTNCKGztwMZrttjCaTLLJ9sLeLpeUFbG5ugnOgM9MBjyN87auP4cyZFezu\nbmN1dQVRHGNnZweNRgNXr14FAGxtb2BpeRlSpkjTCdJUYjAYIEkSbG5uQgiB+1/2UmxubKPT6WB+\nfg6D/kDNFyHAG8DB4R4Wo0WMRqNMaTAKLucch4eHmJmZgUwFkjRFHMeI4hjziwsYj8dqu5imP6mF\nc5KkmEyGaDQaECJFq9VEq6WUh9FoiIWFBQiZoNlSImvQH2EymWBnW7nUG40GFhYWMJqM0Rv20Gp1\ncHBwgDSVGI17aMQdrJyZRfOWOXzq049hdDTAz/z838HWcATW5AAagGQqiJKpeSYlyCly4ZMcQ4f8\n0PlrXjHo+WEmbAHccIFcdlKSWXEVBemqwNX2p7dHDEgiVagbkWWSmRxLCSuIHLbJzCnx1jIh3uCw\nECDCzLeOGGPqkgQzulQASqZuMIFdyhP68geGvHLilqufOVdJaoEmEQzcpluO6kLJHRGqqJzC4Kdy\n3dShMmie/NGorudkWvoKBSBm4ymR649M085oB977nBaX5WMkj9T+MskkmBQws4RxYHdvHUe9ATY2\nd/Hyl92OV73y7+DpZ58CtJy79SX34JG/3McrXtcBYjiBWyYYS0awlrH+yzggmQDXF3KAEbecXmiT\n4Mrlpy8m4JHVwMxRnZIBELDXdjK1xxgAkEK5u3XCVKpQbsnVdZtIGYZ7wFf+eg+DA+XKjfgQaTqB\nFAxXLz+PlZVVDIZ9pGmK/T1l5U3GKTqdDtrtNjqdDhbm59AfTiAgMbcAXF2fYHd7B08++TTm5+ex\nvLyMna1dNBoNcEQYTUYAgKOjnvIiyDZkG7j1/Euwvr6FzcM9PPfcRfT7fRzuH2A8HmNlaQGcc3Ra\nqzjY3UOjGWEyGWuPDMdkrFyxcSTxigfuQ6/XA0MCyYB2JwZLJMaDITqdNtI0xWSSgMkUg14fUbOB\npcV5RHGMTjvGZMzR7x9hMpng7Pmz2NzZBG/EOOz3IGQCFgFzczM4OjoAABwc7OHel74UzzzzDKSU\naLVa2N/fxdLCMi5fvox7X3o3Hn/88ewIy/Eowfr6Ol7+8pdn68FrZ1Zx7do1dLtdLC0u4PDwEExK\njIdDcM6xv7+PKIoyD9T8/Dz2dRoAOOz1EDeb6PV6aLVa4Fx5qbrdWezv7yJuMMQNjjSRGI1GKgYA\nKSYTkR2dOTMzgzRNsby8guFwiCRJcXh4hHa3g4XFeVy5fE2fPhZBigmaLY7B1h668x2cv28Jn/rP\nX8XwfxngXf/kzRiOJcYNgTRS6zOR5t1CSIdvWJd2fs88taRNHp9XSlHNJm8alzUFY73UcRXb9cP8\nu0wwyvxzVZG6s9P/ZPf3wnVvum5sjWcQd1M3xd8KY5OOlkX/mu8+/uZuVapoFLlxDR7mQ/OELpNw\n87plRUQ7NBcWcP2dEUKkbYo8/KaBojFzy8mwUIoRjHRRipLtMxNYF6ap0O+6ODrfyb3QEixz5/pt\nMfUJIVXEMclnPsyq1dkWJQl7eYAtzk5fzoF/9IPfivE4wXd859twdHSEnZ0djEYTxA2ORKQ46o3w\nrnf9UzSbTbtNSZfHIqYGjUu1LhyZvrN96Fu8iDQtMQYwkV0/ab0Vdm4KE3XPoSxtTUCS6T4yeqV2\nYadcHRvKOEPEUgwOJZ772gRR2kIUjTDThVpu4LMY9BPEcYzdvQ0Mh0OMRwK93gDtdhdR1ADnMfr9\nIdJUYn+/h/F4jNFogH4P2Nnew2AwwPLiEpJxgrUzq5ibm8fjjz+uLCwtAJJEoNFoo9XqYtQXuHJl\nC5975FH82Z9+Ek9840l88s8/qdqcCjQijsm4j2QyQrPBEUfA8vIiZmZbGAwP0e22ASQYDvsYj4do\nNDmarUaWdjgcYH5+Du1OA42YodtpotWM0O12MNvpgHOJZDIEY8DZs2s4e+4MtrY30O42kIgRms0Y\n29ubaDZj7O/vYjQZYjgeAAA6M22sX7uiAvKQAkwLOSZw60tuwXA4xLlza3j66aexv7+P/uAI5289\nh+cvPosoZrhy9RIAieFwAEDi4OAgs5D7/T46nQ5WVlaQpsrF3+l0cO3aNUwmE0SNBsZJooUwRxzH\naDSaYIyhPxhha3sbLOJZWWaNu9frQQqGZqON8UiNR6PRxMzMLIbDIVqtFprNNoQADg96mIwTnDlz\nBktLS2p5YHkZf/pnD6HR4GCRwFMXH8drvv1l+OwXnsD/+j/+GRpjhiY42k11K5qdU8aAcQUuY95Z\nGNx+ONfnZfjeOH9rZAHclALZB44yS8haEkWMtUhY+/7+KsjkeKYxESszhDdj6qPjUM1NPtlHuh/u\nPfPBCGl74wh33jmyhGyzMvTiElZFW41M0AmZdAUMJVA/CC47yctrm9uWcgTqjo0pRoT2Rjnl5eMR\niuITwl6bkNKTt3yzd8aCpDTJkKtPEsXNRJ/TW6vskklozKzgHg4n6I//P+bePNaS7L7v+5xzar/b\nW3vv6ZnhcLiIFCWKYUDJiWRYtBwrChzbcRwECRLLyGL94ShxrDiAASFIhDiJgki2ERlR4MCyLFsO\ntCtaIMmmTVMkhyI5C2fpWXp6ed1vu/u9tdc5+eNU3Xvfe/e97rEFDE+j+t1bt6rOqe38tu/v+4Pn\nPvhBfvGXfo033nyTOE5phW0bT1QecVrQ72e15VDHglcWG9e1E8dC6EpOxISFqrdvFIumSETzHtbH\nEmppRps6xqGFjdlJKa3Qd+w20qmP7dT9SYP0DUJqlIBk6jA80La2s6PpboYozwXpMUumDIcDsqxi\nNM5wvIit7R12dnbZ3Nysaw2Xi7hqmqYIYZhPZ0wnBdPxjMloysbGJr7vIYTh0qVdNjY2EELQ6/UA\n6LR7OMrj+GjEN77xBr/3u/+Ud9+9y3hqrdOPfOTDlHmK44I2OUHg0moFBKGH40g8VxH6HlsbPdAl\nEsP2zhZRywc0eR6jdcnx4AjQTKYjqiInCjyiwEMpYSs9CY0ucySavLD7SAlXrl0hTuYICceDI4Q0\nJHlGlqXcuvUUjmNdEa1WRJbZOKvnOURRQG+jQ1HUudVpSpqmFEVGp9NZCNabN2+SxQm9dos3br/G\n1vYGZVlS1YxaaZqytbVFv99nb2+Pzc1NhBDMZjO63S55niMdB+W6NrZ7eITjuCRZymgytta8sIxh\nGEkSZ7X72lAUJVmWs7f3kLK0QVjHc2treIuNzW16G1t0uhs4jodSLleuXMP3QrY3t8jzlM9+9rMY\nKdi7/4Br25d55/4b0BW8+OojfuQv/xIyA1VB6Jyc44xpvEdWiZRK2JQ/aQXzqle0UTgXlZ0WCmg9\nz8jl7+e1b2qBfJZp6nzL+fx44JP19aQey0aQSlZQ1+ceVJw/Uz+uH3G+wEazKHe2KAkozu5/xkqu\nt1tSu51VZJp9Twy5Frhq5eFbbrtSauwcRaLp68T5NPs8oQW9tPTPeh9O37t1rqSLj/34jc6zdFcX\nzXKBk4avZjleLZbL6e2ae3a27xXBjOZklWBbrcfzIAg9fvi/+itcunydG9efoh10MBXkucaLIq4/\n9UHeerMeDytCtnlUlcQIfarcZjPBmEV/DUIbWKKwV6pWnCnXuZKWZ5Hc9XGbGWiBBKzPtdR4SjLc\nh723cmYjgRc5aCVwgg7KiUjzOaPpETia8XSOcj3ClkdZJTiOIEnmOI7E9112d7fJi5gsn1sGK+ki\njGR36xIP7u6RJjnb2zv0ej1aQcjt27d59tlnF8Q+h4fHvPbam7z51h1eefkbHBwc8+jRAf1+nzt3\n7nDnzh1effUlqjLFDxxcTzCZDhiNjlHC0I4CHGkV8yyzQq/VCmswnX2/Sl2glGA2nzAc9jk82ufB\ng3scHu6Tp1b4FkWGUoJWK+TqpV2iVkAY+bRaIWlqAWHtdpt5HOM4irDdYjgc0u5EALS6HZSSbGz0\nyLKU4XCI77tMp1PeeeedWphYIJUxhm63u4gTT+MpcRxz69YtmxOsIEnnGCq0tqlMSZKwsbHBYDAg\nCAIrdJOUVqvNwcEBWmvG4wnSUYwm42X1pqri/oO7RFHEZDYjarfZPzxESAc/iBhPZmxsbuO4lpu9\nyCvms4TZbMZkMiOO43qcKZ4bMZva78fHxwtLvdvt4Xkej+7f563X32Q42ifcdHj4KOMX/t67eCUo\nLRE0wtYuJz2TKyBaZQWzkSfL02rR5PMvn/NGEEvJonzsuvZNKZAvQlava6fTn2A96nh1UtPanHG/\nos2Spv0xFtfqOG1/pwv6/eG3iwTPyXEtb+zqDZay9kpyviBct25VYJ37wKzkCUt5sXA+r6264Zd9\nrx/XOkT+umOt+i7OU+SeTCCf7+5unrsncYVXnBLia673st4zrPq5Vo9XndDAbFjFdeHDH36eL/yL\nL/Pi117kGy+9QjzPwciFpVNUml/9tc/Z4IwALbQV77UlTKOwrbjhzMJKFjX2cAWR3igRTRpJcxyW\nOdkNDScrExvCLFzwutEsF94fgSsUh/crJscQT0xd0Uyi/IjJdEqazxlPRwgpyYuCze0ung9BqJBK\nc9h/hB8oXE/guJAXtoqQ40gcaRG/09GUMAz52Mc+RhAEZFmKdBR5VfLss88yGAw4ODgAape1F/Lo\n4Ijf+M3fYTyakiQJk8mEqN2i3Y546tYNur0Wvq8IfRclNPsP98jzjMGgT1lmaF2RpjG7uxZ85XkO\nnW4LpCEMQ8oqpxOFRJFNG8oyG8OuqoosTzCmwuiSeD5lPBlSpAmuq7h54xqtdsgXvvAFnrp1k91L\nO8xmM+J4RlZmKNcFsFzXjkA5gjRNAUuDWhQZt27dJIoiyrKk2+0SBMHiCUuSOa7rMo0tACzPc0tD\nKSzFpTblosZ5nudEUYvRaLxIbTo4OODy5cvMZjM2tjYBG3LQWtPr9Wwq2caGdYHPU+7dfUDgR8Rx\nzNFRH9e1bu4kSep3RCAcF5TDLE6RjsfxYEKal5SlZm/vESDpdHpsbGwRz20qVhzHZFnGZtRGlHA4\neoBxU37uZ36bf/LrMxwNjhCo2ssj6mdaiFqRPMWYtJRVZqFkn5lDhX2XK2Pf7Yv4L77pBPLqxLqw\nNIxBGIOqrbRmaYRKU3C8+bx0t664gbVAGmn/Qr2/gTqK1mhDy+8XKAO1tBEr5ubCDS1WcpDFOUuN\nljkRh9VmsTTrVvdpJjprGy0nvUb42n1MvTTWZK0sYH8zlV2a67K0WiVipYze0pJd1o4+0dYoK0tL\n0D54q1bheQJvNc66CMfI5vPyvoDB5hLbv8v7xeL5ODOexpVs1glLfUKJWwV22e1PouwbT4j9bONM\nq2760y57e1wrzZrtQWJza+2isKA8KhZ90gD3Kr0ynsZiXj7jGGm9FaKqwSc2LacVwhd+/3Ncv36d\n//A/+PN835/4XtzQRUjf5uAqqHTOz/6Df0wYYEk9nGpBBGJEU1e4AWgthbFuvoumeINYLFqIxWRU\nKdBqeW2BRfEY0EsXeO0y18qgVQVufQxjS+bt3y0ZH5ccPpoSBL4Fi1GSJUPyIkY4dkLWGm7cuIEf\nuNYynKcoIdnZ2QKpCVs+QeQTtiJc17f3BEG726M/GiJdxVPP3GQyHaK15vVX32AynZHkGS989WvM\nUysQw06Hz3/xS/z+C1+lvbnJYf+QJI8pq4Qo9NAmZ2dri04nRFQVuiwp8pTtLVtMotIZ82xKnE8I\nI5ekmBJGLo5ryg9AYgAAIABJREFUAJu6hanodbok6Zww8Gi1QvzIww0cpCtotQIcBZWpKKoCrSvK\nKsdxJK6ruLSzzb/5b3yG46NHhL5HFFkg28GjR4t62Pfv3qXbbpFlGbuXtsmrkiDwcX2XNEtIszmu\nq3AcSRxPamu8RZrmYBzCoEWSpnS6XfKarawoNfM45fD4iE6vRxRFDAZ9Ll++ZGseZylbW5scHRzg\nuxY5vfrO9ft9srSgLDQYh9JAq9ujQmCkYmt3h82dbYxw8UObTvVwb58HewdMZymD4YQHe/sc9wfs\nPTxgMptydNxnPktxnQBPRWx0t9CFphW0MMKhqARpkZPrKZk3I9zZ4H/7X36Wt18EUdQgUMeQmboW\nRV1QpTCapmj00iXdCG9qAKSpt6mX2gslVD2rXWCpvO8o69Mo11UE8HlI4MW+/wom6cXGd92/NpZc\n/5wmYVE4/WTlpCcb32kX6BkloIHJA4/DBNiJ+uT3xtW5KjiavhbnuBBq644pThzr9Poz/fP47Ran\ns3K+q+M5//xOPgv2fGyt2ov6Wf/Tk+ccnwbmNQrD42LWS8v+ybw8S+/A+Z4drRt0pwEtELWiJCS4\n0iGO4dqNTUJ1ha/u3eVXf/XX6WxcwnEcqsrmZVZao43ClPUkId1FStIih7i2ZheWsVh5T889z9W/\njYvG3leNRVMvMA+N3ktlQTOlgxC18WHg/ttzkmHIowfHdIIOcRrjehbsg7AWXaU1GxtdfEdR6YI8\nzwmCAGE0nufV7FzGpkIJG38ucxt/TOM5VVESBAGz2QylFGEYMh6PbRW7Vovf+71/wnPPPcfHPvYt\nAPziL/wyd+7eIy1yPOUgsJzTRZnS7bZ54xuvsLvVYedShziZsbnZI881YejXbk9D5Ee1NVmBruh1\nIlAWWZ4XKUmSYLQgikLKssDzPLrdLr7vU5Yl88S6hKWU+L5PEAS4rstkMgUp2dzcZD6fs7W1Yd8R\naYgnU7a2Ntjf3wdsLfu8LEjTFK0129vbSCmtm7nfX4KySk0QBBweHiOltExZ2NSx6WxmSUwAY6o6\nLi/Y2dlhNBqRxskinjybzdjd3V2Qp/h+gBHUdY+VJUaZJ1Qmtcqgo/CVi+u4DEd9tNbM53PCmpjE\nWvWQpjmR41rSlDo9Cmmt/sFwRJqmHPWPEUJRFAXPP/8cYRjS6raIej3GwxgcxWQ2ZtAf2brhnscP\n/dCP8RM/9df4wMcFoSdQxqCNTTGVQuKynFdX6yo0RoUBlGwU7Ppx18v3xO7zTeyyvigefNpN2JBn\nnN7ufPfr0rI6vay7KHaSXzJMgRXKQp9v5b2XC7gazz19uMYKPWllsfbz8nhnQVYn+1pVclYFrJ3Y\n1QWyQqnGWj3pQbCTC+dcz7PXWdTuyNPrVo9hC1dUgK6tV33Gcl2npDWuoieUeWuv38lred53yWp5\nSL3w6TbPi6it1OVyujXP6HnP6ntRZM4evLJu2Rz+xL/1XUwnc+6+u8e/86f+LJcvX6XS1j0olRWM\njvJ543VbTaqosG7q2gq2wrh2pcuV8Z7zoK89H4GtDLUC6tLSFqioZPObXpgNq6GUwz3oHwoODmco\nGZBXJdITSBfmaULgt3ADH8/zCFsRu1cu0+l22d3dptNp0el0iNodylIjpYMxgjhOMdqy6bmOpXMs\nigyhLPp87+Ej7t67TwWMplMOjvrMk4zL166iPFtcYjAaUlUF7TDAmMpeTzShHyDQPPfBZ2i1fExZ\nABYw5TiSSmfoqsDoiqosiOcztjZ6bG91ydIYqpIoCvA8Wz6x0gVKQqfbsulSZUaaphwP+kynU0qj\n0bpkPB4yHg/rGLDH0cE+83iyiJm7riCKAlzXuoWbogybm5sURYHrqgXafDqd0m632djqUZa5JfFI\nY7I8JQx94nhGu23BYOPxEKUUWWbzgLXWlGVOVRVMJiM8z7FI95qq0/M8W16x2yHNc7IiZ9AfMZ3M\nGfRHzOKU2WxGkuaMJzPmccx0OuXhw4ckcYZAoaRLv99nPJ4iavrhILJ5xmmW43keBwdHBEHE9Zs3\nEEKxvXuJh48OuH//PsPhkPFkxt27d/nUpz7FdDpme3ubKIrwvMimuAUpbk/R3f4AP/xDP0EoQGZA\naVEhmtp7SRMLPjlPy5V3pZl7m9BoAzxq3pOLkEfvu0Bu2rqY8elYchOjaNoJ9/QTTsoXxwxP999M\nxBJppKVFXE1vWTmMQix5mhurwZxcVsJytcvYrHAinxyftYLMwg29+nmxbqWtItFXz3EVhb76fXGO\ntbt8NeYsgarSJxSgiwB1J6/Ze4v9LwBjSqGUzdNcR0t58SHXj2fp+l7f9+rfs80K3OYV0fqswD59\nDuuwD81L2rjnT7NbnRzTWSVh/Xmdsu6Noig0vg/TMezv7zOdxEynczq9Lq7r4gZuHRuWXL52nXvv\nDqzLWJe1FcnSxbaIm7HColWnbqy9nmfXm+Wls0CxWhBrYaikBqUt4ro+7yyFd98qeHA3IUsErgeF\nTvB8C3ay+dAO0vFotyMqKow05GWGF3m0Om1aLUtF6fs+WmuyLGM0nDCfJYzHY5I4Yz6f0x8ckeaZ\nZd4ygtdvvwFS8eWvfJUkK3j48CEAYdDin33u8wCMx2M8z6bouJ6qJ94K1xM8/dRVrl/bIfQdlCO4\nevUqZVkipLE1foucMAzxXEUrCphORqAtO1aczGgKP1gQVXsh/NI0JknmHB4fcHi4z8HxAa+//ipf\n/NIX+P0v/gvuvPMWaTLnpRe/hlKC7Y0eQegiMdx79w533n6TK1cvMR4P6XYtF/VsNuHevXvM53PL\n2pVlHPcPmc7GJEmC47kIYWi1QhzHodPrIB3FPJmRFSle4BPHMcaYmphELlzQRVEwnU7p9LpURmME\ndDd6OJ4FjY1GIx4+fGgVjONjBuMRx8fHTGcxeZ4TxylZUbKxtU1eVuxcukxRaabzmDS3FvBgOAIg\nnidErTadToc0zRcx7Xa3y937e/hhi1mSguNyeNRfkJ/cvn2b7uYGL7/2MoPhMaAtgUvgoiIHHcDG\n9jV+5If/P2QFjlAIWVqudSUQqrL0wQvF0i6rQM0GT7HIYFj1OJ0S5qfb++6ybtppAfJk+yz3XX+S\nAlhN7D7t+ry42lNjKS+1nsc5Vq1gboL4Z8e73iqH812gF7kwG5HRrDuTUnOh8DSLv0vBJevvYnHk\ndVbqujGe7ue82Op5bdVtvVBGRJ2RK8QZisZ1+5+9f/rc7U8fa1VxOe2ZsOey/F5/AlhDOHJyPKth\ng1NbrH3e1o3t/HU104Cx1zjw4Wf+3i9w89rH+bbv+CSzecL+o0M2tjdAaIajEUZI8jzn537+H/Nd\nP/CfI3yBcGqSGoVFQ0tqwFdzeLM4Y3uXHh9iWKFJqdOeag+QAmEkUkjKvEIqxahvOLyXMB9LRsMZ\nZZ7S7QTsXtoADdP5jLbbwfVLdFWQJDEaQ2U08ySuwVAVSkrKPCcZTcnzHFPpmgLSKpaOtC5SoSwu\n4v79+zx8tM9oNOLqjRZFmTFPZ3z1a1/hR3/0R/k//85PMRgMgLq+sC6W84ypkApm0zlpNiONp1y/\ncZVWGDCfz3EcZ7F4nkdVlFTCFlzodrtkWcb29jZHx8doDXluLdM4jimKjNFotHh/q6oiCD1knnP5\nyi4f+uAzdkxZzltv3UYphe85ZHnCeDZlu7eN40h2d3cYDgdsbHbp948AmEwmdDod8jyvlZewtrJ9\nXFcxHo8pspxLVy6TFSmiUMTxnK2trdpdnNLrbXJ4eFjTgua123yC67q1e92+d1VVMR6PcXwPU4BQ\nyjJnlQXSdSiKisOjPpcvX7bKY6eDlC6HB0fs7lrykV6vx2g0wnU8tAGh7HMURC2EEIwmM5Ik4amn\nn2Yyi9l0fbobm2gEXuATtVv0ehYvMJ7OcY/7FLriM5/5NI8ODjg8OKYsU+u5KXIcf47fCnnznRG/\n9stjvv/P9dDKI8sLjJQ4jq0JsGTwWnFXN95KsZzPGm+kWU63F7b33UI+bVVcZIWdZ6WtTpgntz/7\n/TwX77pLIWswkZ3Yzy7i1OR9Xr/rznXdsm7bk+vW9XUW6dssDdit8SSsc5meF68/a92LkznSC5S6\nOLPtefuct6wC2dahs58EK3Dadb3Kvbx6nc5rZ8Mm654VC2c6/Vatuy+nXfKnXfargK2L3NUnn5H1\nY2226/fhz/zpP43n+vziL/4iURTRaodUumAw6uP5DmWVU1QZv//FL+MqcGo6xtM5laeF8aKfs1fu\nnM+nz2mpHAkBQoPvKPYfVIyPBLqMmE6nJOmETjdic3sDv+Xi+LBzeRsvEkQtB9fTKCVIkpiyqsjy\nksOjPqPpjP2DIx4d9BlOxty/f5/RZEySWKvYVBqkYJ7YMn7GGN56+2201nQ6Hfb29vie7/lujg8P\n+bZv+wS/97nfod2JFpalkGYBntQmB/QCJXzl8iW+5WMfYnfHKj5h5COkIYpCfN/mEMfpnCAMQRom\nkxHKlezt7dHtdknnMQB5njKZjNjf32c2mbB3/z6T0ZD+4Jh377xFtxOhhGYyHTMaD3nj9utsdNts\ndNskydzyXwtIs5hWq0W322Y6tUUr3JrL2nUV7Xa04LEeHB/RbbeoipzJZEKv10M6iqOjIyuAhbZx\nbwFJnoISzOdztre3QVgvxHw+J4oiqqpiPk+oKk2pDWleME9SphObmnRwdMx4OuHw8JjxeEoYRVy9\nepU8L2vFJaCsebYfPdyn3eowGU8xCJTrkOc5o5FlHIuiCK+OoXtewGhiSzhmWVZ7GDJ83ycvS3Jd\nEbVtveSqqtjd2mUwPmIWTxAKlCNxpEtZlmgzJxdzVAQ/8ZN/n9/5jQmyhE7k4rrKFpPAvhcavQDY\nri6NEt+Q31z0xpxu77tAfpwAXv3btHXC6nHgnHVtOdHJk1rMSmv4u84VoE0FkMe6QN+b2/e87Rc3\nW4gTTErNxL+6LIXHuuVkf0ur257v6vp1Y1WqialedB7nn/u6e3re9yexslcF1kWbnjfe1evb/F0u\nJwWW/X1VWVsXN7+4rQrZ1Wfvcc9Gs+9y4PWzoiGK4OVXvo4Qir/4F3+Qr3/96xwfH/KRj3yIra1N\nSlPhBh6l0fhRi+kE5vMcgbKkBzVf9fI6rI7jycp3LsZ4iuH3pEIBpoA7b84p5oo0sexUQpZcurxD\nq9PBcSWeJ7lyIySMJEEE8yQhySyox/U9xuMxYStiOJ5w994D7u8d8PIrr3JwcECWZcxmcU1hGeDU\n3MmOI6kqw2Rqrb6NjY26+IHE8x0uXd7i6WducPfuHcbj0QK8tLiluhEeDmWR0W1FJLMpnXaElDb7\nI89iwsDFcxVJOkU5gnYnwHEhDH28wCPPM7LCCrwkTyiKjDRL0KZCGE2Wpfi+R1nm6CIncB3uvP0G\nOrdx3Di2FKGu6xBFIULC/Qf3cD2He/fu4TgOBwcH3Lhxg+FwsAB1DUd9hsMhW1tbFFmO7/s1On3O\n5Us79PtHlGXJcDgky7JFDLhxcTfPQpIkjEYjHMeh1+sxHI5RyrWFI7RmOp3aMEGSMBiNQQpcx0cK\nhzCKiGrqyyTJrLXu+EzHU5K5Ba016Vd5WSyYu+bzOddu3ABgOk8YDse4fkBR2ZSpJLMALyklg8Ex\nqua3nkwmCKXobmzhOB5xmnL33j3G0zlagO/7oAtcZbMojgZ9KmfC7s0tfvx//ofcex1Mat+Jyljl\nTMhG4V9mfDRzRTMfrLwMiwdIrIZy1rT3XSCvtovcs+vWNdaUEustr8dNbHbya9yKF49NrrENloKP\nulbzaSFzFsh0UmCebesEUWPl2nUnrdyly/u9TZinmxJLAXuRe7rps6r0Ymzr2nlK1Oll9dxWtz2v\n33XHPtv32bE0+IP3EhKp9z73l4ZS9Q+jLe/rekXTxvNPD62OOAk7kQQB/Ouf+TaqquL2W2+iqXj6\nA09z9/49ZkmMUDYVzfMcrl65wauvzPA8r2bKEou8YS20fb6EqAXrQhqdUvjXXZvVdetcOqA03H0r\nw+QthoOU2XzEYHhIFEVE7ZCo5eB5iqIqcDzIioLBIGM+T5jOCvrD0UJADMYj0jznuD/k1dfeYG//\ngNFkvAB+dTodwjDEdW1stKoqsiKn3W4TBCHvvPMO9+/f49Of+iRJMmdzq8PW1gZB6JHnOWkW1/dB\no0TzHBlKXeF5HtqUKEfgOILAd+l0OnS7baIoQCn73hdFSpqnzOIJWZEwnU84ONrHcRSvvfYq48mI\nJI2RRtNrt9je3mR3d5sw9MFU7O5ssNFr8fRTN1FK0G5HPHz4gOPjQwtOEwaqkjxNuHPnbdI4YTad\noqTkzjtvUZYlN25cB+DKlSsUZUZZ5hRlxp2336YqCqLIeiiKoqpz2l2KomA0GpFXJZPJpPYswNHR\nEZPJhNlsRrvdXpCATCbTmlnLVopKkoTh2Fq049GUoiiIIssc57oucRw3jy9xHNcgM6sEOI7DPIlx\nXXcRHzY1YhpsCKER1A1QrdVqMZ/PSVOL4B6NRhgBynVIMltlajyd8vY7b9owQBRSVCVFVSFdqKoS\nY2w++DyboUWK35b8hf/of0LlIHSOQS9CHkot56/lvC7qsE+t3EqbDoUUi/RCccGU8U0TQ4ZGyJy2\nQhrLc81kKu3ka8EqgtNzxWmt/GRfBpsbutr3cltjsPnCK8c7PcFUNKlOYqXu5Wps+r1O/quxYHuc\nVSEka3Lj5qjLWEUNeLtATp030Z9nmV4U028EnP283O80wOl81/2qRXjSKl1+PzWuWsGyCmZ9bHly\nrE3cRkoo63FIc9ID0DS9NAYBaq7mZZ/L307W2l4ND5y+bqvX7HEekEaBWqcfNH01SqBe9F8DBkWN\nWm9eXyNQCqZTSIsYx/f4xCc+zs6lbaZJzL29h0hHIYUDCrIio+e3+J3f/iIf/8wfRSGRqtH2bUGH\nxeiNXWedzkt2LlO/HeIEY5isk5xglUFBoG0FH+lx992cZOSQTyRFEVvrtaUIPZ/QD3BdQVlYopFS\nC964PSVPcvYfHVCWdiLOS810NMZVPpNxzHA04ehoQJJlOHUKj+/7tMKQLEvwPM+SX1RY5HZdBjCZ\nJ3iOSxLHSAnXr19la6fHbJIwn6QIIxYWi5BVzWcvEK7ClAW6ypkNjtjoRORZYif5hj/bAaUcfHwq\nYwWelJI0TcmSnCIrmZRjjDHE0wn9fp9ur02320U5glbbpygdvCDC9RSTRxMuX71CUWlmkyHP3HqK\nUbtLVVVMpiOCwCNst7hy5Vm+9IUX8HYvIYQg8j0m8ymBby19m07lMhwOEEIStkOKqsIIODoeYKRA\nlwWT0RClXFv3eDCwRErSAaMocsPVK7u0W12ktLFgP/IodImrXHRp08yMkIRRRJoVKKVrQpY5oR/h\nOR74gjRO6lx9G+/3fZ80SwiCgDzPrbsciUbS7W4sMhi0tgL/8tUrlKUlJZlOpwyH4wX3erfXpn9s\n+c37fVvJygt8pGu9JVkaIwXE6RylFKAR0uA4HhqXUTIgbLe57Fzjb//vX+G//bFPMShsvXYpWVS9\ns+Q6NccAi2nJkpdgsy4avd0YlvXB17RvKgvZmJMuu+WkJhdCanUCWxYMWDOxXSALT7sUn8Roepyr\ns/l8NhZ5vmBbP7Zm4j9rLf+rtNPu4qXQXO8iPW1NPolL/qL+Tv523van/56PGXictfw4169izflV\n+kx/q38vugbNNZXy8cL49Dmc107nANOQcKDAOMvrKAx5keO48C0fixiPBxwP+nzla19lMpmgdcmV\nK5dwXInWGuk6POwP+bl/+PNstBVKCSoBWkmM1DXz+tlXaNUJXasKNIEOg7QkIShLVkKyAHZZ3clj\nOobjBxWTvsHzXJRSjKc2Z9R1XVxfEMclWa55/fY9Xnr5NUbDKYfHQ0bTGa+8+jpfeuEP+M3f+m2+\n9JWvMByNePX117h79x6jyZRSQxhaV6fneYRhiBBiYY01AsZTkiD0OD4+xhjDzs4OOzuXKApLqXn7\n9m0qbQXXomqahKr+l6YxSgpcJbhy9RKmsmlOnueQzmc2XSjy2dzq0eu2aaoe9Xo9lFK02qFFakuL\nZh4OhwhpGI1GHB0dMZ9PKcuCnd0tgEUc+IUXXuCtt25jjGb/4CGD4THDUR/PUezu7rDZ7eEqdYKR\nKurY3OfxeGjvWCPILl9e1Ca+c/cda1kW+aIE43w+xw+DEzWJpbDFJIJWwHgyZDwZcni4b+92MicI\nPNrtdp1qVVJVBRiDowQCveDGVo4gSeekeUJRlUznE5RrnxshJY5yybOiBo2VC+pO66K3ioVSis3t\nLct9rSSl0fRHQ1zfR7k+SZ6xtb1NWVXs7OwgHUV3o2eZvpRcCOUT72Cd4ZGXBVXNrS1FhRvAV1+8\nze/++gSRgqoxRVVDCiJqxU3omu1O12x79dzfoK3lxcIYvgks5PMsNCEsEYJtq5bHctvVxOz1x161\n4E5anM1x18+JZ4VoE1M7af08XmA+qZt1ddulVb/iOtZntY4T4zOsIFsf3x6nKKxeu5Nju1jgrBvb\nur7Xg5cAln/XjccYs8T4Lp/5pVpaH18ptbByG5DaCbbJpkrYYncbclhUD1vJC1+nZK07P601Sslz\nz+9J4sOrrcIsUukWVvPifDUCCcKmzIQtjyyHV1+f43guN27d4OPJR7n74D5PPXOdvCjw2x5v3nkH\nx/XRpuLWMx/kV3/hIX/8z1yrWYQqDAq9cl1OPGP1/waDg6EyclHhyeLzm1CSQhCiKUE4HB4pxgea\nZFyQpSllNYKsQxiFzEYxHa9DoksO98f0D4+YzGOqUnC0f8idvYdMxzPCoEVJyQee/yBZXXw+0Rm4\ngqoUyMBhPpkiY0PUiRAe4Bq0qcjJiHotjBGUumQcTxDCZefqZfrHQ7K84Itf/gOOjg7Z3NxkOJhS\nlaZO/bPnrpTb3H1aXoTOM9zA4Qd+4PuQjsD3fYvErip6G5sYLZlNE0aTMZcuXSHP89od7OC4sBNY\nsozBYECvZrdqKhdNZ2OGwyNc1wFj2OhtoSu4cuWqdQNPRkRRhCtddna2qIrSWpxG8spL3wBgNJlw\n9epV7j3Yo9Pp4AeWyzqvNKPJFI3A9UOMEWTzlPF0TmU0aVZw7+EBTtBi//CY69ev4/sBB/tHtNtt\nej1LPjKbje19lzmO42GwSPGyMkynM4SwiOqqzGshKplMZlZZSLL6PbLzuVLWLd3b3KiVqYAoipgn\ndTpUmnLp0pUFmQhgEfbTCbdu3SLJUqbzGWVVUemYyoDr+ewfHhD1OpTCkFcl6XiEcm0lk0b41y8u\nhbZkLUoJDDlFIfEcjzLP8NoBmcn4iR//JX7y1n/M9gcrSulSSssqr4xAal2/D4BZvqdmZd6qjHVv\nNqx869r7biGvs4CMsS9D09a5QJsJ+mQ6DGs/rx7nSfo/L9552ro5AYAyS0DU6vqLWkOa0RBnrBJx\nGKNPopTFmnjtCjq5GdfpGPDjLLHzLcKLxi3OkLSc19eT3IdV9/WqUDxxqmvIWU4rFasUl2eEsTEn\nruW6cQghUKKOC69QmZ43/nXPjdYnlbaGmP68sZ8e/+q9a6x4KeXiWZCAIwEjqQxorKvd0lvC0x9s\nMS+GvHX3LbQw9DY7vPn2GziBwmt5eKEDqqS96VMYzV/57/4HPAd0kaBMheJsZHiVvtdOJSvPVrNO\nl7gYlNEIU9ZhNKvvHx1UfP3lt9kfHqIDjYoCRvMhj44fsnllm4PBIdM8ZjgdElcp42TOV1/5OoP5\nkOF8gnbg7v5d4irB67r8yX/3T/Kd3/0Ztq/vIiJJ5RUkZQK+oZAZhSjpbLYxjqGz3WXz0ibjdIKK\nFCUV1566idcK2bq0i3Ek+8MhL770Cg/29rl3/yH9wZiyAql8TG2zKBmAcRB4UDpEYRejFZ4b4Qct\nKu3gem02ty5RFpDllhEtCntE7R5pUjCdxLhOAMJHC0llJI4X0ultUWqBcgPSvCJLKwQuw8GMIGwz\nncaAwgiFH3ZodzaoNARRm8k4Joy6FCWMJzFZXlFUks2tSxweDQn8CKTHaDoDIM8qfD/k0aMjwqDD\n3XsPidOMw6MBw8GEjc0dDo8GHPdHaCMZjqYMR7MazOQxGE6YzhJ2dq+wvXMZ5fhMZwlCOGR5xWQa\nEycFWVqQZxpjBPN5RqvVoSgqppOY+Sxl0B+jK4Hn+vhewJXL1/HdACVsvLeJH7u+xQLkZcbm9gZF\nZQlHCl3woY88T15mDIZDZvM5QRTasIo0aKFB2fAFQlCUJbpW5qUChLYeI6HRQi/IiaqqQiJwhFU9\nS1OSVSn9+Ije5R5/9+9+jtBxcRUox+A49TsgBMIxtiSpkisc2NAUqGhwLOoCRqb3XSCvCrDlhCNw\nlVwIodOTemOtwpIcxE7m0Ai40znG6wAoT5KOc3o5LzXnonNbTQM6bzmdSqTWRP4fT9e4nibzvVhl\nq/uc5zZ+HOgLmgfxPXVb73fSlX7e+PXKWFYrKTXHWHw2569bbRf19yT3el1bdb+fbqtgsGU8+ZTw\nXqnhXBldp1kYSg0l1CwuBi0FBQYntFzSz330ab7v+7+Pb/3kxxAefOKTHyfo+Bz0H+FGDsLTeCEk\nOuH5j32Mf/75MY4K8YRF0TZus5r7YPF5cT3qNat+ItVQAgqFFpaP+J07dvJ8dLjP089ftX37Dv24\nT7TZorXVYX+4z+H4mEk6Y1qmTPOE4XzI9rVNWtsR0VaI0xaEGwE7N3cghHcf3cHpOIzTEZ1LbUQk\nUF1JuOkxK8bIyJDLnFRmuD0PHQp6VzdJyAm2WsTkeO0AAgcROuBJ8CU5muF8TqZLW7hAulSLItAu\nCA9tXIyRKOFQlhZRLGSA7/do9y7hBpskuWBr+zqt9g55obh/v49yuhgRMJpkFLmkqjxG45TZtGA6\nyZEiQFcOVSVodbZod3dpdbaQqkWWS5TTZu/BMXsPj9CVwlEhlVZUxmGe5Bwcjai0R14oqkqR5oZW\nZ4skg+OQ9OcPAAAgAElEQVSjMWhbJengcMRwEON5bV56+XWuXL5Jlgkct4U2LmWhePbZj9JqbTMa\npVSVS55Dp7NNnJTkhUHIACED+oMZ40lKu7PJfF6S5lAZlyDq1tu5zOYpUavLdJaQ5RV+GJFlBVev\nXsfzAlqdLtu7lyh1RV4W+EGEcl3iNMWNPNIiIdM5ylOUpsQNrKfCC3zG4zHT+QzlCArdBBQM2hiK\nskQqRZplNvzgO1YAm5KKCi00WZktQHkIjVTWFS4qheeAI0uMLJlnY1qdHsfjR9y+s8c3vgZ5mePW\nmSaW11ogRIWQGi1qhcDOAgvvn1TYvi5o77tAXkfBeHLyX2etLVesFidoYsOrFnWzfv2kKBZI2T8s\ntOzj2pMIyIu2OW2tr7NS161f18fq9ksU98W50evGsP74q8t7l2inx9EAihZFK4RAIzCioUcRLMgn\nHuMefq/x8Me1x8WW1yoUWp+5B6evp8acYP8xjsQ4YByD9CqEC3ggXIFxBMIFtwWHw0fs9x/x8GiP\nzZ0eucnxAqe2GiHoRMzymGgzYjyf8V/80F+lMpAUVgAvr+TJdnrdcrT2XAokGVAI+K1/+jZv3n0E\ngBcoBqMj5sWYO4/eRvqCveN97h08oD8bk1OwP9znYf8hqUnpT4+YpCO8jovTVngdn3E24jgeMEhH\naFfzwksv8KWXvsxXv/E1UpOgIoEI4E/9+R/A6TpsXd1g98Y2qYlJTYIIYOPqJsYHGSiG2Yij+RHz\nMqZyNJkscdoeuSzAk6iWQ6kqjGvPOge0dEB5KDckyXL+vX//z+EFEa3OBkb5HPcnpJnG4JPlgsOj\nCa32Nq32DgafqvLJMkWeO+SpwnN6aO0jRMTR8ZTj/ozj4xlZJjDGJ4p2mE4LhAgJgg1msxLP73F4\nNAUREieGqLWBwWd7+zpJLkC1QIZMxhlV5VKWklZrm+nMuol9r83OznV05RJGPbR2CFsbTOc5ealQ\nbov7e0cY4dPu7lBqh6wQTOcFjtcC6VMZyf5hH42iMpIk1UjHx/MjEA5xkmOUS6vTI4jaOJ6HBhzP\nIy9Lom6H49GQzlYX5SmeeuapusiIIS4SkjzG8RVpntPb3KTd7eB4DkYYHM+qi67rcjzoM5pMyIpi\nEVsuyxyEpigzhDQMR32bX0xTlMeyAjbbNzUIhJKIGkNRUGKkoDQaIyoqU5DHCa2eh2r5/Ozf/x26\nkYfOyqWy3rwcRkKdEmUWbrra86VrKmd5/rzzvgtkOOvqXJ3EGkur+fksIOv8uGp9tHP71dqc6uti\n4o511vq/bHucYL7IZb7Oxd/sc9rauqitCoLG+v6Xsagf1x43jtPttLWqL7iHJ/s59f0Jdjvz7L3H\n+3uRK/pJ+r5oeyPtgy+UsH5qBcYRNtupZtQS0q53PKhEhePDcx++jnAEx8M+T3/gaZ7+wE2UB17g\nUpmCeZYyL3Nr9DkVz3zgo/wnP/iTOC5o9An0+QVvz8pnm8thEBzNDa8+zIm2tuhdtmX2tq/sMJlN\n+coLX+XG9adAuLx8+xu0N9oUJuPmc7d44esvIH3JG3feRCvDzWdvEvUi3Mhh5/ouH/joc8RFzDdu\nf4N//uUv8JUX/4B5FhN2I9zIo1QVQTtkns65evMKl5+6wu6NS1x9+hrt7RbhRohWmrTK0K7maHRI\nf9JnlA4xngHfegxwBPjG0ii6Gq9jvQbClSjfxY08gijks5/9LFtbWzx16xmkcml1Nrl281mM9Gm1\ntygrRVkpHu0PmM9ywmiD3Us3mE5SjvpTkszQ6mzT7u7iuS10pRB4JHGJo0Im44R2a5Mw6OGHPUaT\nFC/osvfwmG5vFy9o0e1s4Qc9otYWwg3Y2Nzh4HhEFG0ShhsMB3OMdjFa4Tp1DDkzvPLKaygnIGxt\ncvfBI+tab22QF5p33nlAmlT0j0co6TEaTilKw/7BgDgpyAuDVC4YSVloAt+ix5GKOE4tulpaEJjj\n2TxgACEN83RGVqbkpsBvB4zjKaXQvP72bY4Gx8zTmNF0ZEs21mlMs3jG00/fWpSCrCqLmZjMpgtU\ndp7nlp5zPkMoWXN3O4sUqcWTKjTKEZRlAVhgoazfowZPZIShEBlSubXyr2hHHRQ5x4cPmcwnHB2P\neOdV8JWDKTKkMuBY7nRHNO/mcs5WSuLUKVLqMaHMbwqBvCjqfqYQtLWYl8tJUNZSWNeax4o72ZJ5\nnHVjnhWwT56betpaX93tSSfik+Nf3/dpwXuR6/bk+B7vSl4V3qvHPXt97PnJU2Cps7HmZVL8exFG\njzuvZRlEcea8mvq5S9arpiiF/f10SMFa0qIGINXeE3FyHItYqLGxo9PsO+e1pTfG2pWitthtOUv7\neQniEPX3VbrS5pxqAazEsuqHaz2luMbGpxyNUMYKZFeCa7cxjqGSBulZzujP/NEdRumcb/32j/PG\n7bd4+/5dvvbyS4wmc1qdCLyczmabnBzVdUlVTlw6/Kf/2d+hQpILqEpjreXmelTaxpdrj4dCYiPY\ndsKLkQxL+JXf+hoH/RQ/cLj34A4AD/uP+OinPkKmSt55+C5fe+UP+NSnv4Pbd96k0BWf//3P89xH\nPsB+f48PfOQWH/rW59m61iMXKZ2dNk5b8QevfI1v/9e+neFkTKJTRNultdtFBIJSZCAynn7uGl5X\nkYmczuU23lbI9q0NclcwzhIGyYy9owP2BocczAY8Gu1TyBIRSIQn8ToesiUxvvVEOJGL27JOexOC\nbAlw4XjygG/55IfoXumBDzKUuG0XFSiizQ5Oy6eQhs3dbbSQ5BVMZymuFyGUT5Zqkrjk4d4RRkv8\nsE0r2qDT3mJ76xr7jwZ4bsQrr96mMh6VVmS54dLudT75iU9TZhKHNkUOrfYmZQVh0KW3cZlXX7nD\nO+/sMx4XDIYx01nBbF4iVQiAdNvcvPkhJuMMUzmE4SZlIZjMUopSgfSohKREcdAfMZolCDdg58pV\n+uMJSZETZzHGAbflMopHGE9QkDPLplSyJCtSWhttDgaHlK6xiyPAc6iUoDIVylWUlaY/GDKcTNBC\nMJyM8SIfJ/JxApeoHRFFEYeHh8Rpwmg+ZZ5bYhhLGlKSpilRXU4SqD1nIB3Hvu9SLog8kALHc/Fb\noU1dU8IWPcGgHJdK23ROTznkVYpRNgwTxzFCCZTnkJVTJkXKj/71nyaSEAS+ZbXTskbig9Q2IVFn\nGmcBzNS4LjiuOF1S+UR731HWxpzMHzawnAEfYw2f1550u8YqbCzf98qt8aTy57T1//jjrhesF51X\nE0c/7zhLkNFZApPl76ux5/V9vldr90nb6XM+oUxx8hmR5uyYbJ66/a6X1Mn1/iveBFGrd/VzJ0QN\n+joxGMFjFNlT11CurF90umgaQCwVHyUklVwFf9UKwilfsXTq57LOrdbCjks26ROCkwxbdfpSBZQy\nQRHxxju3+dRnPsn3Pv9Z3rj9DoXO6FUdjvqHGBSFyFGuSyXgeFLyR773v+H//r9+jI8/41PVl8JB\nIJWgRCOFBZiVGnIp0cDX78P/8bf+H1xPUhZzfunXfpkf/xs/SjixQkBFinsH97j2gesM4zHXP3iT\neTnj9t03uXH9Kf7IH/suBoNjMlI6l3p4nodBQygZxCOiqMXO9V2++tqLTMoZvuvjdTyEIwjDlq0r\nbSDcidi6cQlXOrzx7ttcvnyZ/QcTBrMx49mUl156heloihQOSZIwTedEQYTQEpNZbLlCYUpDkRc4\nobN4JrVb4gQ+ngpRIiTVM6QJ2djcYad1ieOjIUZAmudIRyKVBOnQ2u5AZRiPJxzf7pMWtsKSFpp+\nv4/rOGxtbVlkdqXxgog3375DnFZcuvQUWWZ4+LBPt9tFipBHDwd0O7uWrrK1xdbmZba3r3NwcEQ8\nH3Ll6jOMpynD8YxOt0WuQVWGPLcCC8dlPJ7R7w/Z3t2hNJrh0SG9jQ0cVzGeTnACh1a7RZpaMFl/\nckyr1UIFEhU4ZGVKlc1pOS1U6JKbnPF8TG+nh3JcfAWj+QQntLnJZVlS6hI38EiShI1OmySL8X0f\nL3CI/Ig4jmnJFkYaJvMJUkqO+odM5xML6spL5vF8haLGCuXt3R2byoQVwlVV4Xq2apYfuBhjyMti\nQe1p30Fr4EkJnmcpOXEkfuAA1sIXNcBWVxWO41FqXZf9zJglI8L2Lp//3IRPfU8XpQVS2WprYJBC\nYLSlKRUCylLjhZI8L2u+igaxf7Z9U1jITVvEHBfWy9JCWi9Elhr7quXbbP841PNSWL13YXzesezn\npfW8zrW8+v1xcc4nbedt/qTW9UXtvBjn6f7XgbEuAoedN9aL+1pamSfXnTwOnKzAosXZ3+1nccKC\nXlrEqxbtSQvXWtlyZTl5bA0L9KYWpgaN1O5nUVd9cZaLdox1H7tYFblWk3VtDQsPtLKWsHGsMBYK\ncAwsjlO7sl3rvv7wxy8TVwXTYsZwcsyLL7/I0ewRvd0OWVqwvbULUtoqULJkZsZUvqZ35RY/+jd+\nlj/7X/5tXjuAMXaZAkkdIx5rGEj4ja8c8dd/6p/xv/70P+C4mFE4AuUH3Lx1g5ff+AaJtqCuzcvb\neJ2Q/njAvf2HvPjqS+ze3OVLL36R7/xjn6FwC/rJkE985ttx2or2TodcFsQ6oXQqbn3oGRKRolqC\nZz7yFN/xmW/jwx9/nqtPXwG/QnUktz50i2vPXWdcjPE2PMbZhJffeZ3BbMKDo4e8cfdNHhzuMati\nRvmIQpU4oaKgwHggQ4HwBdqrwAMVuRAYKrcEwGt71pUdar710x9DuxVeV1K6BY8GjxhlI7RrcNse\nXsvDuIZEz3ECCb4gruZMkgmZyCw6PHTobveYpDNee/sNHhzskegM7cKzH3yey9euc+36LXobO0jl\nc/feI1555TZJXHJ4NMRxQ65euUleCIpK4fk9fvYf/QJxUpJkORrB0XBCXmr2Dw9xPOvyfeudtxGe\npLu7QX86BE8SbbSZJFOMo4l6IWmVEBdzhCcwjqG10aIUJbnJqWRFQUlBSW4Kgk7INJ2BK3CjgLTK\nCDohjqdwfYfRZEipC4SCJItRrqTQBdKVFoLl2PVZkTKdT4jTOUbYMpGO7+GFAVrAPJ2DtDnjAK7v\nIpRgOp2SlQWlKdGmtJzdtcu4MppSlyglKcuCqipxHFV71SqEMDbNqUZlG2nIq/yEESOltCmBQlPq\nAikNWuf0hxP+1t/8GdwK3BqrZDQYneO6UJQxpirrcqyaKgeMgyPcC8Oe77uFfF47aQSdZIWy1tAa\nAS1OGtXW4bB6FLE2JvYkrt7HjneNgHgyAXP+8dbtc9rl/DgA02JEa+L0q4L2IiF52so+/X1VKfrD\nuJarx140LU48E8s+Vs9p+VuTNtYIYqENDWedMKePtarQ1Ih3efKYp4fTPH/N8Rc5uFIgBTXqsnaf\n1blEUlrmsAowqh5OMxabj3VCccCpea8kIGxxBMvSJRCOqL+zSK+whPd28E8/v8Ortwf8pf/6L9OJ\nFP/o5/9fgrZLSY7rezihi8qkdZUjMaok1ocoJ2BcGny/xV/7H3+aR4/22NztsbWzxXA8Ji8LEJJh\nMuPWrRu0OwFFNaHTcZnMHuE7LrId8Su/8Sv8yH//VwGQvstLr73MpeuXefE3f5fv/7f/OF975QV+\n8C/9BVKTsHf8gMvXd8AxpGVCRIvMlGihUb7i7btvkuuU/iTlk5/8FE25Qtf1SauYwPe5+cw1siLB\nDR0mxYy9wT6Tka25W5aGYX9A4VaL66kcF8dRlHmJ0aB8h7IsqUqLwHWkiykNuqg1dQ9cX2JMxnd+\n96cJPAs2i6uEQlW0t7sYDLqyuc8ikGRFTiU1SZUwK2ZM4jHd7gb98RHdbpdKOHR3e8iJJKfizTtv\n8/zzz9PaboNQ7I8foSvwuiHX2testYZDls/Z3t2gICdoR3S6m7zw4ks8++HnmM1sacSiyPCjkOFk\nTG9rExnYqd4CqvpcuXaVWR5TSU1RlWgX5mWCMRrtaDL+f+beNEay7Lrz+93tbbHkVpVVXV3dVU2y\nyRY3c5FFUh5Jli0Z0MAeSaMNo4EXGAZkyzZsfxgZho35aAMSIBswBGsAw5jBwDOjAS1R0kA0Ic0M\nJZEyRbFpmovYzW52d3V1rblExva2u/nDfRGZVd0tyTAE6iUCGRkZceO9+96755z/+Z//6XGdoygy\nnBJb1nAbW1rfcWlvhIuOk7M5+/v7qaexb/B4ZosZztqkkFZoutBTVRUqaLx1WATBJYnKxXpBVVXU\nXU1WJh1qFx06U0QRMLmmbXt8DORVyekidd+az+dIo8mNom87fAxIPRhjIlqnxh9CJShZaQk+JkdW\nSULwCCHwA48ohJBKnqRMDVUu3IfO9wPxV6AyA16QjyR5MeIPPnPE9/3wZeoWJD1VnuMjVFmFEOAd\naKU5PlpxeDhmvuooRzlvt33HDbIQqYTl8TZ2bwXBAqnjHGxCsu3LG0MQBm3JlBd8NGqNQ25xi4hv\nI6E3G5uL425ef9vyFB79+6Ix+Yuynh+dk5TffrzM6a2i7XMo+lxfevP3pib27Y7n4msb6PSttreK\n7N+KYPZnGePHx9jM11tB6Ju5fmQseb536e3iwvPN5y4MEoZcrB+uLcT2/G/eu/msCxH1mIPnfUBo\nda429di8bVn5Q9OJrczqAIkngfVhfZAQQ4KyhAQZImET5caIGAxrPB8FEIiMrbGWUuJ8IqWEGJNR\nUWm8ENN7EhCXvNIrh4L9qxnHx3O+9qcvc/XGFZ7/+td47Y03uHL5Kov1GV1YklUjjMpxARAOKQMh\nNrjQY0zJ7tVddFGwChY7UiidDNe7nrpJ3cx5eHJEUSbikywUssppY8fO3oTZ6hRGh8zrJbPFjFEV\nmB5MeO3Oq/zQD/8A3/jmi8hc8NQ7nmY0GqX+wN6i2pouOL720gs888wzuPWCJ565xmK+4t7JPWbL\nU7Is49l3vIt3vfcZ9qY7dE3PnaM3GI1GvHbvDsvlmocPTvC9ByReRbJxkc6V90nZLE/qUDEEdKaw\ntU01okM5S5Bx+1xXGqki3/ux78ZMJNb3WOWQJhGarPAIJDpPAiWnxzPKssTLyNqt8TogS0UXOsbT\nMb10dKJjcjBi73CXvu0QGTw8vc9od8r1609z9vKMzvZcfmKPLz//PE8+cZ1qnDMSGU47Lh1eZlHX\nvPLNr/HHX30eIQRFXqUcv8kIQiAzw8rWrI+SbjS5pKhGnC7PiFrg8Ez2xpwtF/ho0XpTtRBRWmJx\nyR8ceA0BRzHJWbZLpJRcffKQGCPGpiYXDx8eI4Qir1K6IpJEPCLDOm805WQEwLptKIqMpqtBCqx3\nHB4cIhHYYLG9xRMRWuCIuLpGDsIgLgZKozk9m6H1UCuuFC54iiIZ9vV6nRpHDO8XSg7OVkaMDmN0\nUiJTcsgjq3ONaqNZLpdpbAFCqdTj2iXEZL1+Hd/v8Iv/w9/jB//N/w5sEjiZHQeUgRiTLHO9tlSV\n4fL+mPUColesl2tgxFtt33GDDBch0bePSGAIWrYLp7gg0n2OvD8Cr27HetTYbIYIb2EI3vSd8s/q\nafuXt/1/QZiTUXyUhe39W2su/2VsbzU3jxOhxONlZeFRI/54c4xzMZvHHYrHDO+fsYm3uJa2+xXD\n0GJw0Ju9kKkWMeWjQggIeT6vgQupiO1xiSFCPTfYPiYSyUbFChHTgiYYPHk5CBGkPFbYENQulJ5B\niqI3ETFqcNR0mhg/FO2nfTo/wM0st53jY594hv/9H32eazevU/dLxq9PaIyiF5ZoBNpkCD3Ad1Kh\nSA0YpJJ44/GsUGODDQuwYIxOi7N0WDEH0xDpwBgyU7HuZhhZ4/o1Tk0QCSXlGy9/jbNmxoc/9hE+\n9c8+yc/+hz+JGeUcXDlgfDCh9BVZlvHSyy9T7VWgwDWRh4tjbubv4Nad2ymCsQEre4pJzrvf8x5O\nT0/ZO9jHK8FLr3ybyWjC/KxmtlgSXWRyacrxgyNiEJixxrsB1XAbIxEReUR46EUPRUREBTaRBKUR\niETURZcKJQPPPncDh0Plkk5YiBClQEmJ9z2z2Sm27wkmUvuGxWKJsxZVSK7sHZLnOUdHR8go6WiJ\n3qNix3RvF1lIlos1qtAsmjmLekmMgqM7t3j3+99Ls665fXyPG09dp9ob82Bxwu7eJboHJ0wO9mia\nBidSn2Yx8A3iBu3ZXMM6ErF4PPm0YD6fEdsE34eQani3cq3DZeWF2wYhUkrQEe88eWU4WRzjfWQ8\nHnM0PyIfF6n9YgwQI3meI4JEGIlvA95H1JDPznKNzjOavsPkGik1RVUyn50i9SgpgKlI3zkCKZe7\ns7cLpIYRdV2nBhFDowkXfMrzEvHBo/MspY1C4j4opYkx0nQ1JjN0tk9EL5lyzxuSqIueQmqKIjma\nPiTIWmeKSEAJSTHSKJEhqsAffPYuH/jwNVbNmt3LY+rOE30kBoFtAyerNUppvHdMpyNCfHuz+x03\nyBdtpb+wcKq3i5Af+2xaoN8mQtssbDy+rG/+/Sjsuxnj4v8ff///3+0vAmH/maUwjxzj+QKe7Nmj\nC/r5Z86fv/3XvhkC/vO2NP9by7l97a2+4/Ec/aZBRJr79Moj4w77cp6L3zhsm7OZDOrF3ZXDOFEE\nQgwIoZKRVRfO8+YoZVJs9hcQBgTbZhQpqh3GF+m7BTy6PxtYWwzpEjlA2JEhsjp3HoeB05gqjaVV\nMt5GSVz0w/decBzN+bxY68kKxXrdJeis0AMvIr7lmatyTZbD4RMFr96+z2J+gvc9T998kvH+mNli\nzWJ5QtPVCJO0hmMcomztCNIjlcLSpVIgAvlIUbdrsjKjsyukdBjlUKGnEAYTVoz1mNPlgsY4yiJF\nM/t7FSend8mM4+bNq9y5/TJ/7Xv/GjF21KsTqskY61oePnyd4AXT3T3euPNtxhPDi9/6OjFGnHOp\nr3Bn6Zzic5+/y6VLlxjvjvjcH/0hmcq4e3wfpQxGF7Rtg0IhRpLoPEKBa9LCHQgQIQhPcJEoA3iH\nzPTgjQWiH+JElc6hqiQ3rl+jE+uEPHlBXTeMx2O0KUBEZsez1NFp3QIS7z3L1RKjMsoyZ+fKlOVi\nzeRwh7IsWS2WiChSlyNSvryNNV7u8JWvf5WDy5cAgROeV+7d4p3PPEMvPDGTnK7OePLm09SN5Tf+\n2aeY7l6iGBX40CBEQGy6txGTUzc4xE73aKkQUVD7mr2r+ywWCyQBnUns5kYVF9YRcV5JIZXARUtQ\ngca2THeneOdoupqoYNWt0TpDqlR3a2OPd55qXIIRjEYFMSZI2eNxoacaFxAEo9GYvm9xIZHAVos1\nUmc0fYPQChs8x8fHaT3BU1Q5bVsPrTUjQsuUNgiBGFM3Lu99qt7Z1BmHgBJia3yVEoPudCJz+eGv\ntu/wA6wdBwOfyGUtMsvQKqO1HeOJ5tf/j0/xfR//eepacnba0ncOYzLyPKPQCrQB4djdHSE1rJrH\nWKcXtr8CpK5zZa1tn0kZt63gHt3ePs8JqUfvRXKXv1hWcuH5Y+t4ek28dY3xxbzk49vFvOxfRiT6\ndkSot2NJXySTpdfe7NRsXnv88ebx/uxHCG899sXnfnhsivIvPuDPcXCieOS9w4tsyp3im0rkzqFG\npeS2fEhoORCgRIo4BzGNDQFKZgKVJ1ENlDgnWymQuTjXRFbhnFQ1EK22BCwDmDS+UCQDp0BokEag\nMoHOJMKAMgn2iyIgVPq/0IlRjUmfGRQnt1G08568VHifBBFGVYaW8pH5frMqHMTo+Ym/+VHqvmHn\n4BLve/+7ufXGLRq35N6DV6i7JeV4lPohKj/AqgLyiDASTEQZyCpBkB1RtGRFJDeOkVgxkYHdwqD8\nGhHnGNEyLQsmpuCD734n//z//G0AXnnxG/yd//w/4ZUXvsq/97d+gu/97g8SuyXv2r9KuzihWxzj\nuwWX90fI0LA6uc9i9oBxqVC0GDoy0SN9i449yrdkIqBw3P72C5SFxJFqWzECLz35tMQbj1MW8jgY\nvJ5gAk55vImEgcwVjEeWgnxqMJWGXCBHMs1Dnq5RU2VkI01Ulj72yFwjK00bHb20rOyKebug8Q0d\nPafrGct2iZceUQhEKXkwe4AsJbpUeOlQlUGPTCq7KiTFpMCMM06XRxw8sQs6sGgW7D9xwPs/8l7O\n2jPWbsFZc8az73snTvR87YWvcP2d18kqjcwdKgeZg8jC8BCoQqVrFHDCYaXDYhGZwMuALhVRBzBi\neERilh7BBDAQTMQpj5UOpyIxk0QtWDQr1rZFZhovA6bSBOUJWILyuOiIOtL2NVF4OtthvU1NTCSo\nTDAalVw+3AM80+kEY1Ljkc5Z1vVy26YxxqRJvVk7nHOYoewoiHORjxiHSDkm3oVSKtkD74caZUkI\nLnVgUiBESI1ERFpjjNHEGLC23yJ3WuuUj9YKoSR971G6oA09d+7dZbmIjLKCMss5vDxmVOph8esh\nOHIjcT2cnszZnby92f2OG+TUmmpQy4pDIBEi0fktWUXK89JMGAyhBCk8atsoOpVibKLsOIy1zbHy\nZoO7idAe/1tuCTkXmk88ZpESmzZcgFqHKPtCEeyjBnVTmnNuwJNRS69vnj9i5EWqZd3UtG4usG3d\n6wB3ItOCHkUciD1Drjs+bqDjdrHeHFKaz4tzOxyigHNnKW7/F4asaooKA4EUfQAoBcgEiAGomOyV\nihER/SMX20b6cbPPG9MrgegT8UnIoSTJpcAxxmRg/ZBtFUMvUi2SPuxmP5yIW0NKvjG+EVXAtnWh\nIuVxB9ZykAGGRSkqiNoP5B+BMgJhkmZ0MrIQDHgNMUvGW2QkprMJoNMiFJRH5hCl317HwkhWXTcw\nWJMBjzIkDVyZHpuJ2uTPTJ4OLNOQZ0n4QESXjiNETBQkMC0QRWCTBVQEciL/zd/5G+xeP0QYg9SW\nW3dfJ2hBVILetSgTkDpgcsCE7eKcHIiAij27VUYeHRPhKWMPtqFeHPHsM9dw7ZxLk4JLuznvf/Yp\nLomfx8kAACAASURBVO1kVJlH2jUA73hin5e/9mU+8a+8j4n2iL6mX8+Y13eJ/YrV7CHHd26TBce1\n/R2+/IXPEds1OrSY2JHTUwjLSHtMaBB2xUhbXH3C2cNb5GFNpTpK2aJCDX5FdCuU7InSYukJGYhC\n4U1AZCDzkByxLDleFCKxiLVDFoF8ZAga5Ch5RyEPHDUzWtGjR0k0pLENNlpa1/Hg9CGrZsW8XmHp\nWfcLGtGQ75UE47Ha82B5nIx8IZke7JCPM2b1nFW3BiOY1XMsjunlCdVeSS86Ll/bZ7JfMVsegQ7s\nX9lj98oOS9tyNJ/x/Fe/QutryBxeeqIOeA3BCGImkbkgKJ8MLaAyla7LMjlciU2dypmiBpVLZDY4\nh5lA5hKMQJqUHxdabA2336haCei8ReV6iEaTA4sCLx1Ivx3DVDoRvfqe3tm0xilJ6yy17bh9dJfG\ntZyt5yiTemILmdIqhB45SCIHERBaEEK6D2L0ION2PUprQVq/pAyAo/ct0qQWmkoZGCDsFDyk5g+B\nSN8npnVW5AglyIoMqRMRLMaADQ6JoO0WmFIjJhP+3v/yD8m1pOtmPDw5ZtWsOJsf4dwKrVuCXzM/\ne0Df1pwtlrzd9h2HrLdC/iR4RSLSj1I4H7eLuCQ+YqxCJHWVGbyaMBgQdaEkRlzUg74QCW6BxMeN\n1QWIO/3/PH8MSa93a8QAHzYJmo3xu9hc4CLcGjcHMZBu0gHIgXZ2XmaTHBRxIbcZhy5PCTJVaX/C\nMC+pvmb4jjSG2Ay4gXcHwx0j51nSLYafniTd7wHScgwdV/QjcyhEqtsO3qONTsc/tDYJLmLUAMdG\ngYhi6B60AZcFYmMth31V6R9DjisiSIaGocxAhcGhChEXBN3SMtk1qRZ3aPodw7nWstKpBzKIFNkO\n3ZvikH+VAwwthASfbuZBKyDNo0q1hM47fFSYLF1/Gza0ICCDTM8lBN+nzjFRoiRYG1k1LTu7Jd4n\nB0FJTQDyQiWWN+Ai7O6PzvujDvMoN9d1CFvCmBTpeDbXmifpvEsh8aQaYLHhOCCSGxQjWgzELyFQ\nITKRgpM7X+Pl4zk3vus5br32ApnJ08KqoY8WrdI4UidHVGsGJ8ojCGRC4WyH1gIjJcW4wHWCbnXG\n+959E4LniXfe5KvPf54f+IHv54+/+Hk+8bGPA7A/ySiynHuvv8JHPvohbt26hZCSwpaUWaqRLbXi\nk5/6dZ5++iaViXi/BucQmwhFDH5uTGQ2GTzCSb7/Yx/m9p17zBdr1t2anEgUBusbzKauQmtCBKnS\n4huKtChHYhJAyQwxgLMBYxRIUp14qbcphF60LJoecpXkNtuIUppFXVNkJaKQ1LOGycGE4wf3mRxM\n2N3bQ6mkYBVDoJwW3Jvd5/oT1yEXmJgRTgK9sKxsTbVTMtodE70jzzL8omfVL1gcLRC5QkbB6fKU\nvasH3Dt9yKc/8xnMqLhANo0IoYFNK9B0D6gLxEmVS2IMxIGMSACHQ5vEmUhlScPCJTepng2BUQxr\niIcYEVqhhnUnhED0YWjqkBqjRCC4dE+3tsULT5bl+M6hSwMhsqqX2/zwql1he0/fdezs7GCUYFXX\nRBe4fPkyWinOZovt2pzyvqlKYQNPxxgRWuOdP7+PZHLiRUgGPIZUzRCjH9acZFe0VkQBSqQWjGVZ\nbts+igHmjjLNJz6JfCRH3nA0W6b67vURi7onyzIKUyBiIJI6XuVlznQ6RZdvHwd/xw2yEmx1uB6p\nFQ4RvSG5DCf9Edh2w6ZmMKYB5AUDLBFb0tabhB8ujBs3hkukMS8i5THER8hIzodt9Lz5lotbTCyh\ncyO+MeCPM4E2SckwGEQu5kgvjMdjUPpg7KUQWBsw5rwL0OZjG4O+scXnAX7cLvobnyAOSdINuQhS\nlBujGjokiW3/zq1PIdNZcv0AsyJTI/eYjHkkGW6tBwP+iNdzvqhu9kEKsXVSzpnXAh0jwkdQqYlB\nOTb4CCpLn48ElB7GkDKJ/A8wSuqalRITmy5ICLBu6AaVJDHIjKFd95RFlhaoocetFkO0rdLce8FW\nsSz4NF6WZ3ifouvW9ggl2dlPzFI9pCIDqR1jmtjkVGrAR4+/cOttmduAljKhB8P51grWbUdVpHKK\nzfQ5HzAqdXxyw3wGF8h1EufzIsXIhUiG+u/+/N/m43/rP+D9H/rXKPd3kM5hFTShRxoFQmCAEByZ\nFikaER4lPFoIZPRk9KiQPJhMa27eeIIHD+/y8e/5GJ/8p/+ES/t7/Ojf+Le5cuWQ5579m7zwpy8C\nMHt4l+/57o/y4je+hOHdqLDi9u27PPfcc4y04/jObe7ce8AHn3sHr736OsI26BAwIpXbOOcwSg7X\ntkBtDEnraGf3GamOvatTei948PCUs9Uyia94j0SBNMm5VxofAl6YROhDJYQkgBQKMpmcnUGiLIqI\n3EBzhaRualos637JaLKDdw4fPct+QZkVXH56n+A88Szgs8jR8jjlsYWga3pEiEwmO9x++AbX9DWs\ndcgSdsZTuq7DSkfXrTFKc3xyQjbJMWZo6+gCO3u7PPPcO/jDz3+B+XKBKCVd128bLqTrKPEnpJSE\nQYwmivOKBW8ccfiRUkJMTqCTDp3rVCOsN+ta8pg361BCxgZn34dhzRzW5SEqlVEl9M+HFETIdP8K\nlRo71G1NjNC1HUYmTWkXA13TsG6apDGtFSFGDp+4yu7eASEE7t+9jzQ6oYSAztQgoxmHtczjvUUP\nZExkcsSdc8SgtkYVKQjxvCucUElHQGq1hcGtd0yn09T7uSjofWJkez+UcimFj56yzLGuQ0nF3YcP\n0HnBWIx58sYhq/mCum4IAXb2dlku57jOc/L6jKefvs42h/DY9lcCst6ecMGF5gGPoL/A+YINQ2St\nNnKIG5COFHkKQPjzvNqwOG8W6Efyspv+t+JRKU31eKtDQG5i2s2qeCHDOYC7507DhsATNxHv5o2P\ntQGU5/+/yI9KEPa5QyE3+0iCcEWI4DfHkT7zeE546zgMkfSb88ZyOCqFt0ME14Pt3LC/bxb6ECIt\njEoNhkekXO983lKv+oSMBbHd/82+S4Z7RA6p3q1XD8SAIA48KE8MnkwKyjwRcqSCQdc/zdPQu9Qo\niZQRY8BkEj3Aclqn7/M+EFySfFQyLTyRQF4pytKwrteMxxnep5RClonUylB6rE+9YxvbEzcdYWQq\nkbLWk2Up4soNjMYZRaGHGzsdlFB+22at9wkN6awDBFIMixbDI5zDzCF41OBeZUphXTJIkW0VF511\nKJmieTXMmwYqLdHBo5J/SREFJkJGROH54j/++/zgB99NWVU0Ogk9GAV5phLvREd0oTBaYOjQMT1K\n5alMZJwLSh2olKcQPc+96zond28xyQKHuwXvvnGFrz//R9x99UWwDe96+hoAe5Xhxa9/mZ/5sb/O\nSy9+hTIPfNe7nualP/0KTx0ecHVvyp/84Wfx6zNyekrpyOnIYosJDWPlKISllC2V6shiQyEaru7l\nXJpq3n3jCmMTmD+4xVj35KGhiDWF6CmFTX+LDkNLRk8RW8poKYQljx2ZsBjh00M7hPaoUhC1Rw/S\nmSIXWBNphaOYlnS+pReW1jd0NPSyRxUKUUgOb1yl3B9R7JS4LFD71MjD7OTUoaGOLa/ee41smrHs\nV5ixZudwSjCencMp2STjyvWrVHsVVnbsP7HLez/8PoKGpWt44bWXWXY1wUREIba53mACMQMxiJGQ\nC0QhiVnKAQOQX8gpDw+ZyyHFknLOm/x6zMX24U1Mr+uQcszDZ+KG+6AADcLEgQ8hktyrSZUBFofQ\nApFJpE6s6z46WtsxX69YNyvKUYELnrzMaL3lhZe+xb0H9zk6OaazPYvVMkHmw5ZK1EBoQe97dK6H\neunAhThqa3iVOTfWYUjxbNbdEAI2pO4qxaig6RuysqDpO5QSONejtUYZjRvel5pPDEiA1ty9e5cs\nK/C2o+sbmqbmietP8PDkIdVkTO8cly5doq1Xb7Itm+07bpAhrc3nsmbn0asgoge6tQCC90gk0QOJ\nGDk4cR4xLP5KCaITyKi2OTkRhx6ygIgX6olha5S9dWlM74cc8caEn0dykGBUBdjWoo1kW3ISPRv1\nlw3paT5b0Xf23LFwKXLvW0umh8WbiPebPEhyJpwLKAW+8wiXZIuz4R6KbsMlSsehEGRZOg4/EB7k\nYOQJEaxHhUHUKULsAypA6HySfPPpeDai59JDqc1AKLo4X8nxkQKcTcfY935rTKqqoCwzgodcyYFT\nJYe5TfsgXBx+B0wmYWBDqxSrIFwgl5pSKIoS6tqBkhRFimqjH/SVvWNcGUSEMlcp5+wjbnAq+tbT\nNR1aSrSUZBqaVYvRivFYIyR4D9PJCOfAZCKJvwsIXhKiRCkoC8nOJGNUpnpFbz1KCNbLlq4B1wlO\njxrqhU0e/3CObN8DkuVyvWVTr21Em4xIUgYLxG3vVSkl1qdexJtUBenSJgoYjUc0NtJvEJ1U14JQ\niVfQR898vcJFiGJI43hYC3jdLVhFj2sDRYS//SM/wEeee4aDwx2KkUbnEhF7FBYtHMK3EFqM6FGh\nIRMebI1wLfiWTFlUaAndmhe+9jxPHu7QLI752Efez4/+9R/ivc/exNZnzB7cw8RUM1RIx/vfc5OT\nB7e4ee0S3/x//oT9cUG3nNMtZ/zpV77Exz/0AezyjNgsyWNPoRw6tmSip1AeFVpyYdGhpZA9GT31\n2X2Uq3ntha/x2otf53s++F3M7t9mpB156BhJj3Qr8thTYimxFFhKOsrQYPoVI+kYSc9YO3LRJ0ck\n9Cg6MuUosyEAKGD3yk4SAsEhTMQUBpEJMJI+dIhCYKWl2h0TdKDHkY1zyt0JXgeml3bxJqBHGllK\nXrv3GqpUBBNoY0s2zelEjxWBbJJztDhm3i545j3P8tIbrxKM4Dd+5zcp98Y4nYyirDQhAwo5GNiY\nDKbecCeSERTZsAAOpC2ZC6IOW+Ji4kCEwYBGkB6pI1InYt/F32gQKhD1JkccU/5aMhAjI1IPvAzp\nkxE2CVFzwaYuSENEnZcFZVlsFblQJLTAdjjnWNZL2rZlEwUpk5Alj8cOZU4AyiiklmRFtmVV+xhS\nxk4rtFaphFXEQaPBI3UifgURcNEhpcQYk4RSQiAEl1IYkKIJea7wlcq00hzbEIjG8PKrr6OUIojA\n1WvX2D3Y5d6D+4zGYzrbInUSO8nK4m1t4XfcIKcgUaClQqeiTCQSKQS5lGDTgi1CRKOREXItiH6I\numSC9ZxvkAKOHy45elAjIngX8Bbw4HvoGkuMYJQi+oAIEUmqVZFSEz0ooRA+QbBGSkRIxBmZkn0J\n4unBWUtwccihgJEKrZJZExH62rFTjcmEQXqIfRrDtw6DRvpUD0kQSBTBRWQ4RwVCFymUxjZtqpNs\n0+tGQL2qqTJJblJO2blkOAkCJcA1DuVAR4Em5XkKDbhAJgXROqpMbY20a1LOFqBQsJzN6eYWFZIj\nIFHJoQkQh/12nRsMqESE5PDY1hNsep9vk+GXXqCCwgCutdimS85EH5FBIn1yoGIPeIn0yeGo1wGl\nNH0XaNuIiKlcwTWRXGasFj3OpvMaAvRNR9+m+kYtJSbPCQGsdbRtZGenwLmes7Maaz2jCtZ1QJoE\n+TZ95M7dFVKB0QISRwQZwfZQZTnCK7q1p2+TE6QUVFWJUoZJmdP1Duvg7KRGBEH0GRI4PWswOpXs\n2BAS4UpIut7R+8BssUQrheMCqkGCqrWS9D5ivaPtk0iDVIIeQWc9DkUQimw0xglBK+DId9x1CwKw\nm02RKIyWrAR01vJf/tiP8P3v+y4e3nqZvYOKujnDtUtoFmjfoGkRvqPMJDp25NqjY0uhPNg1lYns\njgyr2QMO90Z88fP/ku/97g/yx5/7LM/evMbr336BP/79f8FoQCz+6LOfwa5mzI/ucXT3Nj/z7/wo\nu6Ocdz59lS99/vd5/7PPcGmac/bwNhkthbRktJTKMskjhegYaUcpHJX0ZKFD+zX/+ic+yiQL7JSC\nJ/YrHr7xMs9c2+fKtCQXHTktUwOV6MlFhwktpegoZE8he0rZUypLpSw5HSasyWJLqTqMS5E5LhFw\nFB2uX4Lome6PyccZfezo6IhZZOFW3J8f0Qqf6pMzcNrSuJp5O6MNLct+waUnL1PtjZgc7GLKnGW3\n5Nb915PRLASLboFTPQ/m91m0K97/r36EBke1O+XTn/1dKE1quakHtbYMyEBmJAJjJhBGIIfXhInb\n55B+q1whMzlEtOn9utDITCIygcgUGJmY5LlOrT2H10SmhqhYJq11k8iJ0iTyFzIZ8UTiEiiTjFAU\ngSg9cvhcFAGda5ARnRl0phFKkJd54ncYuZXfTKp0yYFNnZoYCK5gvR1QRrHNK5s8Oze6MnFkAh7r\ne4xRW0MdQoraN+lFoaCzLc71Ca280J7XmFTfXE3GCJH6L0eRoPgI6KrgxZdeRgjF6dkJZ4sZ5ahi\nujfFFDmLVZ0UwgQsV3+FI2TDQMzxIGwiuuoAWRBEGxBDBCuH6EwCy3mP7wOuiwmK9QKjSryDg4MJ\nly5XLFc+CQF4sF3A9VDlJkGZNibmchBkAwFBRwajPyTWbUSGiBJiG+kJICEikcqUaCeGnFp6fykE\nOiSjMs51MoQKmkVLhkDYSKF1+szgKLTrHiMF0qeH6KCSErvu0IAMMlGSh670wTp2xxVFlhwDHaFb\nOXSEXKpUwRJJxt2n3zhoVw7X9cgI41Lj2pCMpwcZw1YiMPSRaVVi1w3Kg6s9pYTYp+i5XVpWx3NG\nSpNhktEW0NUR13v62mNrCE2EbiBYBuhrKE1GleVoBMoLlE+GW8cU+Rda0Lcwm/U4KwkeutajZRL9\nX688UQjWnSczGc5FVnViMPsY2dlPnmfnkp5sALJCb3PLZZlz9WrFeKyYnUXW9Yqm69EZA1yn6XuY\nz3qWC0fTQtMmZ+PoQcvDBzOEVuztVbz87YcgoW7bgX0ORaaTkLwpeO3VY3Z3M45OVhgj6b0nz80g\nBBLpnacsC5SSTCYTBtAHyXmLtqLIqa1FKkFeGKRRrL1ltpwzXy3QQpIlHxYPrH1LT2DhO2IuWbkV\nFnAExloRrSMzBkvLz/zg9/GZX/3f+Pg7bvCeaweMMwd+RS5atF1RKI8ODblyxH6VotMBwsaukf2a\nsRZI2/DuZ67zza9+meXpQ+YnR/SrBXRr/v6v/s8A/Bf/8b/PF37/03zkve/kcKfi7PQNvvR//T5u\nfcalnZJvPP8F7r36LXZLSU6DtAuK2A7Q8/nvSvRUoqegZaI9X/rD3+P+t7/J4t4r3DiccHbvVd5z\n4zLt4gEm1GRhRSEaMmpKOirRUsSWQvQUqiNXLZWyFLqn1JZMdBSyTcY8rJnknpLUuCCnpZCOenaf\n6Fb07RzvFkjZs1wcsbtTobSn7c54/c63WbZnBNHTxYas1KhSYEaK8X5FzKFTljo27F/dZ//qPqer\nGa8/fIOVqzG7miefvc473v8uKBQv3X6Nf/qbn6SNLcVOQTQRShCVgCwgC1KEPDwuQs0hYwtBA4QM\nnHZQAEV6HvOIVRYKUplTzjba35Q/JWOffm8j6lxs4e5k2CNRh0GDPUXQQaU676AgyDgY8IEhrQQi\n01gcte1wg/RrGNKWfqgK1plKNcIybCNkKeU2hSmU3GpNb6JbPyhzZYUhikCqxY50rgOSM+BiGN6b\natyttUQpyKuS3vdISXptEBcJIWBthw+pbNHajqapWdZr5usVr756i+lkwrXr11k1NZaAznI6m9pD\nZllG19pteeZbbd9xUpdtPCZX2M4jVSIsOZvyfCGKrWSgIEEcXRep8gydQy8jwcakwhJhPndkpcZk\nUI1Tvjc6yDKJbSP1yqMzhR666MgYU5TlHEqnzi5t41AxdQGRnJOlbBTgfZJTjBE1fGdfe0DhWocM\nhuAS7F6veuq6Znd3SpUXhA4yLXAdtHXNrGmpdqeMygy3hhA907FmvQjUK0uuDL6FcZ6lyD1CtJ5R\npYkR6lWau3VbkxcFKDCDZnJ0guhT5bVSEmt7MqkwRUEI0Kw6tMpTTtUGonPbht3zk4fEGBmNJri2\nZ2cvY1UHbGfJs5xu2TCtdtPxZNA20LU9ZZkhVYbrIkbD6emK/f0dbJ/MjHM9ykhGY51y0CTYWHqB\nD+ncHh9b8twQo0FrOJtZsiKjWQdMIQlesq4jeaHpLeS5oG4869qjjKZpI0wFJtcsakvfOcY7JT4E\nbBMRKkBrUpmVFOweTDEZ9M5jSoVUCtd7cqURhWSyA72F1sO6W3BwuMN4DM7C0+NDhILdg4L1uiMn\nZ133KJVxfHzKzaevIoDDgzGdd2iVUII2Jja50psGhrBqWsZlgRJg46aEQ6cynOjxPunsZlmORrFY\nzbh2+YCpViQNI4cHMhlY93N2shGKgNESiccIxdL2ZCKxpuu6Zqca4f2SX/i3foLfe+ZP+F9/4x+R\nlzlZiCivkvpRdEgimYqo0KJVytMLkoRg1/don3NWL1gdPyAvDJ//7O/S1TW7kzGqSsvLV7/8ef6j\nf/dnuH3/NaZFya1br3D1YMpqvuCPv/g5qrKk0J7FYp6IMp1Feo8xhhj7FFHFiAgpJeNCT1UUXN07\nYGea89TVm6zbBc8+fYVv/t9fxLCBJxNJRyuToiQhBw5JAKnwArRw9M4jpCHEHhlSXjHIgPTnkqo5\nFnzgzivf4nBnxHg6QYqAsy0ZjtmDN7h67ToPlzOqMsN6R4yBybQghDjcH6lVZLU3YrlYU+5WnJ2e\nIWLE9o4oIlevXmX/6h6npydkk4rX797mt3/704ynifilSo0KPRCRMkLYlAF6iIljoi4kUM9JogP0\nng0cEgJKJ+Kb0nLooJb4DJsa0xjBxkT22rD/45Duiz6lsYTQINx5GlCpLck2iLDtrqaFIEiV2iMO\n67lSkiAjfW+3NcQ2ulQDP2xCJNJkUKkSw4YUIW+IVUrpbTVMqjFOEpcbpnmMMWnJk5pIyJD6dnuX\nIGqpFfgkPCN0gqdXqxVVVWG7nnJgsXvvkUrSdV0qiyIFjipTVEWFjJ6q1FgbeXByhMmzpFImkyBJ\nnudMRjucnZ0h/iob5FIrbAuZVAleNiB0wAWJcw4pND5GsixBpToOZSAtoCLCRTKjOD6eMx6PE8Qq\noekEwXmyAUZWQqC05vYb93n6xlWc9UxHitnpOsmZBWhbT6EHco5IkVHXJU3s0sCyi5w9OGF3Z4e2\nbZiMKqZVOomh9+jMcHo6oyhHTEY503FG31uqTNJ1yXA555iOK4IL+HVL2ynaesHNG1dwXeTOKy9w\n48YNRlVO27e88I0Xece73pkuLKNxNqNp1qzXDVrl4JIj0K47RmWF7zuECEiliEJBsIS+odyZMF+c\nUJYlIgRESJB8XhqsFbRtA4zJ86SYc3x0ylNPP4Xt2ebkbWPJo2O/glVTc7roKIoCFQLzh+vz8gAq\n9sZTZg9nPP3UHnfuzNnd3UGbdN6WyxVPXB0za+D09IyiKslzg4oBHyy9tzx4bcnBwR7Wd4yyPDE4\nVaAcKU5Pl0wmI6KUSKPpXce0Krd4z2zWUI5H5JXC24DO00JcjBXHp8029z8aF8wXNVVVMZ/PmU52\nmC1OqIqS0HnEuuTB8QNAUnc1N6eHNK1NKk6lpu1q7Kpj/2CX+WrOarGm7S0f+K4bzJsGH0q0BC+T\nA/LG6hQjNEVZkgE9Kc1fZWZbbXDWLinL1Ey+dh0+WnKVp5SAa3h47z5PP3WTWXOEkw7f9XSuZzTZ\nwYUerQXQEmNk0Tv2811qv0YaRYEHevaqDE3LWBU86G7x0ZtX+Td+4b/nxfm3+bn/+j/jQx/6KN3p\nAqENq/qIopwivSD0DSYzCN9R6Yy80gTvKXVGXc/xNulGT0cZZe747g99GIAf/YEf4t7pQ1y3pp4f\nUZ885NtHpywWC0oNsV8RbEelHKIPqKF0RuOwzqKkomnXlFkSjMi0R7o1x/eOkP6Qg913sjg9o+kS\nBB2kpG46hNRoCSEkec/gBUJmuOAQQROlQoQWrUiQZmzRMUuInNL44LeCQjrWiQQUwDVL8mlFjD1N\nv8Q4j4hw9uAWmZLs7Uw4OjpJOUrrmE53qEYFb7zxBtNpltJksuXk6BjvIkZrPvyxD6GUQhvDep32\ntwueT336N9m9tIftHcU0p7YNYshrRxEeK2tKN8BWGWFonCClPDeYmUCKpEcupEAZjXWp7AkgN8VW\ninJD5JQ6wTCpLCo1bQgM6T6VqluCS+c+Bo+MCcZFCJRKPbo3lRWRmFjtWtLZDpcSNUQVktY1wMAr\n8RKUTOlFORyeUilw8NFvYWoAKdMxxcGxSGVMGhAEP9T0b5yxzfyIFLhsyqOs9xRFsYW+IXGKNvMR\nvEdKQ1ZVW75S3bbozOBWK06b1NRDmSxB3L4jWLhy+YC7d044W8yRWjGd7r6tPfwLGeRf/MVf5Pnn\nn8c5x8/93M/xgQ98gF/4hV/Ae8/ly5f5pV/6JbIs47d+67f4B//gHyCl5Kd/+qf5qZ/6qT937Gad\nJmh2OufSlb2hRtWwmK+pyhFtH+i6nr29EtfDer1iVAzlJZmibloKoXji0g5Cw2qdoNwweHBN69BS\nYTJB18JT165ia0+RK1wNlRnRrSIhxATp5po8N3jryUSCgO/ceYPr16+zP9LUJ552uSTPJLZd4r0G\nKnANrhWsFzMKk3LPt167zc2bN2nWNTEIZIxMRxXz+ZJL+xPquiEGx1k95+xEsV6uePLqAcHWHD2c\nUY5G7O2O8X2TSAQxEJ1FhZ5mcUxRjjFZTrM+Yndnn2Y5I0RH1zXkeU5RTsiMxinH8ck98jzHuhZn\nE5bde4/tFXfu3OHatasA5LlKJUvRcfv124zGO5wta/rO8cyN68yPl9y7syQqnUoWesHdN+5x6fAK\nZV6gtaYsC5brNQeX9jiZtUx2xiyWK6rJmBgjWVGxbmHdrLh8bZ/xOOnF9k7TtJbdvYpsp+TkVXng\n3wAAIABJREFU9Ij3vOeQh8ct00nBerbg1t1TqqpEFwJbp+4uu5dLYoTZWQO7qZZTKVJk7HoIClVk\nvHb7AeVoRJEVjCeCrgepNXfu3+Hw8JCz1QyVS7zyXD/Y5fUH9xlNqtQtB8UXv/I8H/jABzCFpouW\nTCuqS1OWzZJqVGIyjSEtRnmZ4VxHCAoXe4K0jMclwQUiDksg9p4oFUFGFJHoLaOy4LReQLXPyGR0\nIUXMPjhKXXHjqRtY37JTTliHlqwssQhqOpSMVCJL7GuVMclzJBYlA32/ZJRVFAj6ZoUpK+6sb3F5\ndMCYnJ4lHxxd5ou/+im+OXuBX/+9T/Ev/8Xv89z738PqrGGxnLO3O2JVLxiNNV4lQ7JqZ2TjXdZd\nT+8TaW9sNDtFxvWDKQCf/ue/w7Vr13j52y8wme6zWHacnR5TlWNqoGnroS59o1cZB7iww2id8obe\nQUyLohKpW1BuMlarFV/60pdoe8toPMUHgesbMp1hvccoTe893lkQhhjTooqMEAbRxBiR2gx13xtp\nRQBPkncDI2MSXooB6xqadpmiJhGp13Oq8YQYLJcOrhDxaBUJwYOP2Lbl4WpJVRUYKXjjzm1WdUOu\nS6IS7O7vUbdrdvb2EpFPKe48OOYzn/40lw6vpo5EMpUvoQKPtLiPbBvqbEzxVk9BQvQCF0Pqz0wy\nTAzO/cZIJ6fWobUmDoboYiMd7xN5asOngRShBp8MViqRTKSrQViAGP22nHQzXhwQT2JM0rYxItSF\njnghbnUSwtB2N4SQovKhKmRTsqSGSPxicxqtNRcrcTZGFSRaJAUvF0NCRgdZTKUU1qVyqUzp8/Io\nzqtcNt8hh++EJGLV2YZcG6y15FLy8N495mdnxFKSjyus7RiPx3jP8Nvj3AZNuHAOL2x/rkH+whe+\nwEsvvcSv/dqvMZvN+PEf/3E+8YlP8LM/+7P8yI/8CL/8y7/MJz/5SX7sx36MX/mVX+GTn/wkxhh+\n8id/kh/+4R9md/ftvQEA31uKIufK1T2sjammVYMWBV2TYIyDaUmzgoinykeAoMhhfjbk7xwsVpa6\nrsmLiiDAZIaqhGUbaddrZDXGdi0yGA6vKFZnEdun4vGz41OeuHaJmJUDHA0RR/SC44f3uXKwR7Oc\n441hMjFMRiXr9RKInB6dAe9mZ2yYr065eeMyxhgePLjP/m5J9DVKCNq+pRyNcbbGaI8UgWZ9xs7O\niGduPMFyMaMaGep6wYMHD1LU2I4wxiDxtOuacVWihODhgzs88+QTdH64caqMGNZo7QkBsnGJEJLC\nSLpmSd+1aJ3EKrzz9LZLHV5mDctlw+GVfUJ0w0WdmoFXVcFsNifPc6pMsTceMz9NXXayLC2ERZYT\nQ+CJJ55kd3dKUzuarmVovkI5TmSp3vcU0xxdDHWkWtB0jsmlMY1teeO1I5566km89OxdN9QtNO2a\nd73vkJOzDlnB6XrN9HBCry03nzlkdtaijGJV1/SzlO/Jy9TZZVHPkDrSdQ27ezuoUlHbOVefuoQQ\niuV8Qe+SmMB8dcZTT1/jZD7Dy6ShG6LjLPRUe1OyLGfVLlGZ4R3vfQanLOt+wSirsMHR9C0qU5yt\nZ2QqY6fcoaPHD23JcqXRKCyOWXOCNjlTOUIAbabxWMZkBDoWdkUuCy5VKULu2zWmyOkJrLoGXaWx\ncmW4t7hPVhZ4LDoIhNaE6GmcHfJsknU7Z1zsYUXPQTYi0BJQ7JUTZn5GWRTkaDq3ptCCUmd0vuEd\n5Q5/96d+nv/2p/5T/vHv/hP+4Auf48HpHXaKa4yrPWzXE0eR1i6RytM0a0w+wiCx6zNefelb/Ff/\n4y9zev8+AN/6xgv87u98hvVqxbUbN1nYFqMEJycnFEWRmK1dm3QANpDoALV6nyD2TEmsd4gY0VlB\nEKlhgPeBS5cOWa0b6rYjK0ryIudssUZn+TYShPM63SjOhXBguIe2souRSEikPC5Cp2JAHyRKKZqm\nGdIImrIoaOsm5V2ix3WBTCncYFC6vknQudaczU45vHzAjXLEyy+9wmS6Q9vWHJ8K7t5/yHueey+/\n/Mv/E1evXWfv8hWUMfjeJW1oEbcVFNtuaDHxYS5q5D+idy/juQbQsD0uxZvue701cEomIyMG/kyq\nPAGixA2CGyEMhn0wkjEKREzlgwzjeBdw/y977xprbXrW9/3u03Ncp318TzOe8QBjEDjmGLlQEg4K\ndaBVaZvKUpFSqSBKS5Ui0dCIUqW0+UAJrSBtJQgqVmkUZJUqiVS5hZg0GAcDJabO+ITxeA7vee93\n73V8zvehH+5nrfed1K7pJ1eVH2lrZvZe65m1nvWs+7qv6/pfv7+z8fX58UW4MdCPwKOReck+cocg\nkD5CW/Dxs/CecYomHOaQP58HwX7zIMc2gx6zfaX2ZewoGN5PpxDi/ZXoNPacBZF7Pp5Xj85mEIOy\nlrE60Hcd0iTkWYGWhsrWtE1PJiVH0yMu2hW7zZayLEkSQ9+HUTk+sFgscG7gCwXkLyrq+pZv+RZ+\n4Rd+AYDZbEbTNPz+7/8+3/3d3w3Ad37nd/KRj3yEj33sY7zzne9kOp2SZRnf+I3fyEc/+tEvdnqC\ntSyvr3l0/zEKSDVUGwtOoiWUqaDZDpgQKLWCIeB6aCqYZBmLSUZXtSRScjSbkxvNojTUmx2b6wbp\nB8LQo4IlVVCmilc/dZ92e03fXLNbP+aF50/o6g1NtcINO7R0BNtiu5r5JCf4niQJKNHTVCuqeoWz\nDd7W5HksobTNhuNFyXp5wW71hEmWIEPPg7uf4/LiHrZvmJQpTbMiMLBcPSLRDu8a6mqFEo7l1UO0\ntNy+eczRYkK1XTIpEpSyVLsVu82Kiwf3ee7OLezQ4/qKoa+oN0uGriK4AedieUVrTWokRZEzX0zR\nKon+rj5QZAVVVR0WiYvHT8izcrzxNMvlmr7zHC9O2G12SBd49Y8/Q5EWbDcNPihe/ewbJKbA2UjF\nqhs7jhdo2r4hzUtee/2SrMjZNDvymWFdL6mHLRZLOtP41JEfZdx68WZ0Bko9m65n2SzJZppBQDpP\nKBcZ63rJ3UdvMDkuaEOAQrDut0xOC7J5gswlj1cxAMxPC8xEk8wMpI6k0KQTw+sPPoeXPYuTKUdH\nM9Jcc+vmTaqhovcNaM9kUTA7nnCxfYxMBC0123bDQA8qwj7SJKdra2QqUIki1znTyZSTfErtGzyO\n4CwTlWGJM9Z1qGiHCH+oaKhdg8Zhbc86bOmI3rMSQTeiQZyBytZ4HEfFLFKGbI9CYqYFxiRIIUiU\nZhh6CplhTEJrBxrfMMkKnnRPCDgebN+kdxWWgYYtTg0cqwVg8SKiAC/sBbXaMc1mTL1ihuCH/sK/\nzt/+T/8LPvC3f5W/9sM/wu7BXTYP3uTup1/h8d37uA5SlVDKlOp6hVYZP/zv/vv8bx/4h/z9D3wA\ngP/8r/yX/Np/9b/y67/093j5nS9gGejsQAjh0JOzIZZf7ahe3S+EdRNFVUGOLGKgswMgIuhFarRJ\nqZqW5194kePj07F0GQ5Z3j9vOiNGBOL+b1LK8Tk+lqvHfmTwex7aSEgbFbebzXpU+wbquqIoMoQI\n3Lp5SqIleZZgtMR2HVJEwFGeJiyvHvP2F57nxskRYeiYTQqECCSJifxmnfBf//x/w407zx2YDHVd\nR4iJHL2rpQAp4/zrfkR0RNbufz6vKY4Mb/nvZ+1Nn6XDOeciye6Z6yCEiIS+/RTJ/mcsY0tU/Any\nQEr0LoyCXIEIUYClUJFPYH3ccPkwZozE/2eQh2x736P2Pr6W/aZD7EW0PsQy+Ug83AOStFSHID10\nfTyfC3gbDTec25esIx1B+PG+sg4RZPTBDpEsuEcaQ2QvWBs3B0UxQSeG3XbLMAwM3UCWZTgh6Zqe\ny8ePKdKC6XQSNTt1h3PRJcoOXRQJf4FDhP8Xrgjvf//7+cM//EM+/OEP85GPfASAN998k5/4iZ/g\nB37gB3jllVf4yZ/8SQB+/ud/nlu3bvHe9773T3v6Lx9fPr58fPn48vHl4//Xxx89hG+49fn/9qcW\ndX3wgx/k13/91/mVX/kVvud7vufw+y8Uz/+0cf7//Ccr1usVk8kUZVKGwaFNGksPMkIWptOSoWtY\nr6M4SCWGvhuQPu6wnXMcnRwzDANN3bE4OebBgwdkieL4eMGbb7xGnqdMZlNCCDx8cJdb5zfYVBvO\nzm7Q22G00xpiucZZTk+P2Wwu8N5zvVpzdHTEbhNNudM0JVGxB/Nkec1f+L538cevLLl37x6LxYI8\nSanrmjxLsNayWm5YHJ9gjGFbVQghSJKE5eUTjo7mrK6vgbgTLcuSXVNHVV6RR7HZ0FPVLUlWUBQF\nfR8dRPIsYb3ZUBQThDLUTc98foQd6U7eDpyd3aCua7quQ+sklpGsJ82T+BrzEimjD+u3ffcpf/jh\nilc+8XHe+XVfz9XVEqMkRVHw5PKS+eKYthuQJuH8fMb9+5dIKSmnBSYzdLbBhUhraYeG47Mj0jwn\nKyRX1w1NWxHG9143G6bzKfmsIISofjeZxgqwY68lMYZdvaMsS9q+Y74osAGccLzx8D7GpBRFxvp6\nydn5KUop3q1yfp8ehaDtasp0gnOWbuhJspS2bSmzghTNpt/S2JqsyLDB0jQd58UZna+x0lL1DUUy\nRQbIRE4gYFBUvkFJGTNZG5jrAkFCOzQkxrDB4ulJif+/WZZHCH/wKKEAT0c0tO99BNm7IDAyJThP\nqgz/Agn/u706qEa11rhRSBNHpATX2yvOpwskgbpvSY3GiKi6LdEIZ0mFoA47UimxvqFQE3IkOgSM\nUDFDEAN9WCMDLFRB63cgoelX5ElJ6jW5TNAI2rDEupZcl9E0ngzBDE/Gf/Jzf5Ubt0qq7ZLv+bbv\n49vf+a8gWVDxOT70yQ/y8PoNtptr7t19xOVyTbVrMErR932kLgVPGOE8cq8KZm+mEkuRQkS8qWcU\nHSERSiOFQqcZdduMfxP4IAlEU5Asz7Eh8qqDknhh8F4QhMK5QD8MmKSgszaeU8S/IRW//df/R/7F\nn/53kNrgvSdJNGWRMZvNuH37NsvrNToxnN24xePHF9x57m0Ipfn4xz9OkhXcvvM89x89RErJ6ekp\nSZ5jLagk5+HjKzrr+ccf+jBFOefyakVeTsbVUb5lHd1fC+nVM+Q8cQAcHR7rnvaRI90v3kMXf+tv\n8PyP/w2GYXhLj9gIQ9d1bxFypWlK17bxvrPj+Ckc0JQSwTDErFIGwAucjZAg/NOZYLxAhsg4fDZr\nDvt/jpmplHrE79qRqRB7tfvsOOKzYzZ87/f+Os/92Z8eX0vsE+/HoKJqXDytfAx+7BVr2r5D6+j7\nvH/OQbgmBVkW758QQuyRex9nh71HC3lwjbLB0jlLbhICksQIhq6henCXD/7P/z1tFttYTduSZQVN\nZ8f3F5XtWn/+cnX8jP8Ux+/8zu/wi7/4i/zyL/8y0+mUoihGego8fvyY8/Nzzs/PD16VABcXF5yf\nn3/Rc9f1lsmkYD6foYSnyDTLJw/Y7Z6Q6J4889TVFU2zI88T+raj3dbYtgMC1g6U05ztdkUIln6o\neHT/dYpU0rY1lxcPmC8KsjLBC0fV7pjP52R5wmIRg3hwsFwuSbVhvVmileDRw4c4FyjyGYlKUWjy\nPCdJEqSEq6tLhBZMJrHfNwwdDx/eZ319RV3vAE+Z5QztwOnpKSJAtd2xXi7xtmdzfUXb1ux2OyaT\nCXfuPA9IZrMFfRfV5dZLPJLBwsnJGXmeY4yhqrdkZUExyblx4wZpXiKl4fz0BnXdUlUVWiqms2Me\nPHxMQHF8cspmW6NUSt9btpuG4BVaZSQmJ01jybrrHS9/1dfw6mtvsDg+xom44J3cvMWtt805vX3C\ndF6wbhuKo4JedIgMrBoYxICeGDplmZ5PmN0oIRfcffIECknIFGaSEpJAeTyBFJb1ksY3JDNNLzxe\nw5N6zSA9tWs4O5ux7beITHL/6oKWhmbYkRUJk6MJygiKecGurTAqDlu2rsFhR5VlIFMpR9kUjabI\nCgKemprGthRFwbbeEoQky3KG0FPKCQ8vLjDGoFEYkaBHXH7lG4T02DCQYki0Yeh61sMGJ2Ig8fRI\nFPVQMc0K6qElwWCEIiON/N8Rs5rIDCVSFAqJo1DREgHgRB9j0Bid4IJHEd1vJJAROJpOcMHiCFH9\njMd4yzGGAsiVYmgaTtSUvm85VQvs0JFimIgSnMfKDktHEHHsq6VFCkGJphQ5R8zJZYoilvISkVPq\nOQJJwhElb6fgBRJKvvrtb+cdz72Dn/6Rn+PPvfN7sURQy9//g1/j6vohpmvJQsNrn/0EV1dXtG1L\n2/c45+j7nsE6nNuLgp4Gohh49hY+kWpmbX8Q5QAMPvaa9+VY4KmL3LhYRwSpi9auYrR89RE44ZyL\no0NR5gWAEk/Z9uKZkm9bN1SbLcfzBX6wHB3PuX37Nm4YmE4n3L33Bp/+5Cdo25am2tLUO2aTgmmZ\nM52VzGdTzm+dM5nMuHv3Ph/60Icpigm73Y75tEAE/0y/ODyduRURiOHwUbAlGeGrbwXKCB1HfIDD\n/Oz+74Pr42OeCdje+0MAkjJCmfZ9YOAQjA/EQR+d6tRo1OI9+L0R0FhaDmMJWu6fMwZjIcThHLjo\nWQ7Ee9FGWqK37lA6Zywp7zG8+2AKHJKxvYr8gPi1blyTh2fuoSjWM2r0EfexRy1C3GRIqWialtSk\niAC2j71nP1iMVGOCE0vbwTq0lLRti3eO7WqLEprTk3OWF9cUWUq12XK0mKK1QgtJtYmPwUO9a75g\nPPyiAXm73fKzP/uz/NIv/dJBoPWt3/qt/MZv/AYAv/mbv8m3f/u38653vYtXXnmFzWZDVVV89KMf\n5Zu/+Zu/2Olxo9R8uVwyKUqaOr6RF567w26zxShN0zRY15JmhqJMaKoVdbOlG+Jsa5Zl+GCp6jXz\nWYH3Pdb2TKYF9+7fpe/7w00XgqCcTthWzeGDtLbHaEnX18wmOev1Nd4PVOuG3XqH1jGbbNsW13dI\nPKdnx7iho8hiEFiurvjmb/x65ospQ98w9C2f+fQfM3Q9u9UavKVva26cHNNVO44XM15++WW22y1n\nZ2dxQRoGLq+uODs7o2patruWgCbPynhzeUvf7jheTLi6fMhqteLx48csr64IIbDb7ejbhsRE9urg\nLNP5nLYbWK12KGmoqoq+swihKKezPVIaxr7GvXsPuL5e8cKLz9MODbOjKUkZxy22LTR9y8c//TE2\n7TXbbkk+T8hnGT0d6SyjGmqObxyhigl3H1+zbhqmZ8fshoqH1/c4fW5CcWxIJ5qgPed3zji/vWDb\nVKS5ZF2vSYs0smSLNC7pJgbZ2cmMeqjQRiONpG13BCmYTGckeUZH/AIGAZt2g1FxbtcPDusP8E/6\n0EfovwKFoenaONomU4xI8CHw3PkdtEijSjtA73u6ISqZq6FCCVjV12jvydIES4jKXtsxIyX4hkwr\nFJ7cGAKOyvVUoaUdKwBSaApyUjRaSCSBptugxh5yTYtDxGAsFMI75qpAe0/ve3QQGAeityTBkwKJ\nNKz7FQpF3Teclyd4YJpOqfuWuSljYEcglCH4gYlIKEkwQREQKGEgSFKV4LAEXxHYIkSPcx2BDBlu\nE3gbgQmEHo3gh/+Nv8a/+ud/CIfmjf5z/MNP/QMA+mHL4J6wXr7B97z7O/i7f/PXePe7301RFDgX\nDkEVOIwZ7YU1cf0V4yxoYBh7jiFEetn+exN7kfG67fvHz/aQ27Y96CsO6t2wpz/ZQ7YpnwqDxwU+\nLu7BOrwdDutIrFrE8Tnb9XRtjXPD+D0NFEXBrRvnnJycAB6jNFmWIQMURYEQgve///28+urnSEyc\ndTU6OofFxqcfFeEy4jFE7B2LMUvb/8iRDbwPym8JzM887tlrvM8en1UTP/s8peIcutbR03cfROP1\nihumQ9CEsY8L4ZD5jllnYOzD+sPvvQ1PN1j7t7r/PNzTz14pc/is9sruEJ5uJJ62zAXBucOPH7UH\nwgf88NQ7eRgGAu5QCdjrBqSU2H6IgdZ52rqJRERjcINF7Ss4o7itb7tIGBwJiKF3pDryJ4KDxWSK\nHTpefOGY3a5huVzx5MkTiiKqrKtNdYAwfb7ji5asP/CBD7BcLvmxH/uxw+9+5md+hp/6qZ/i/e9/\nP7dv3+b7v//7Mcbw4z/+4/zgD/4gQgh+9Ed/lOl0+sVOjxp3ZEPfslo/Ics0l5eXVNWaPM9Zr2PZ\nNE3TuAiurpkfH6EQNH3HMPT0XYXRgidP1nhnyfOc+/fvUxQFL730EpvdehQ1eLa7JVpLjo8W7HYb\nNpsNvbNxbKiLc7X7THg6X9BUO7pth1ECiUQlJqo3vSMtJ9S76Pma6YyLx09IkwScoKoqbt68jSdw\neXnJ1XrD8fExq80Oj+bJakvRO15++at54+5dAOZHRwyD43q1Zjqd0rZxE2KtpW17yumU7W6N8AKT\nlrQdmHRKVdVcXV+T51MGCzePbtK2LXXTo6QkNRl9O2BMTp7nLI4EdV0xLQ1NA03TY8Y5xJe+6u1I\nqVju1sznc5RS0YUl1/zJG69y8+Y5L37120knBa+/+Rrf9LXPUbWePClJcoPdeSbHCctdT8gkxzcL\nfD+Q3zlmehRVrySWfDKFpkMnULU92bTkjYuH5FnGpEwRkwLnBurQkZZFBB6g6KRk67fIQlGQYn2E\nxEst6OmBDDt0HGcnqEiHRhqJcxY/WISJJWMHpEmJQfHi0Ut4O5BogyYwCIdGkJOAFgTvUFJi/UCB\nJjMZfui5U8yZUOBwHBuwbsvQe2Y6wQuJ8oJUCTofjd1LZRgYKKWhEHMCjto2EYPoOxKpKdMMRw/k\nSDzWdaQCEqHRMiGiHzQuWBKZoHREsfnQYYREE5iqgs41GA2WhgyPdT2zZI5AsOsrpirBSUcmC2q/\nQ0ooSKmGiswkWFGTCUWwPSFIkIYhaKR8G5IFCBW58sGNoH6BpePC3ePV+5/EypZNF0V2u8tHaOv4\n4b/0V1DkDAR++4P/iMn8ZgRyEDOhJE0ZvMKHDuFGlevgsL5CijQqgREMnUWbAAG0SWKG5gVZInHW\noRNNwJDLNG7SgmTXtNgkxfctQkVbTL8P8GOpXI8jaGNuGd/3GKfUyMTdexuURUGRRjXy/OSIqmkJ\nHhIVaFUMqFmacXHxhMVsSlLmZHlO3fU8evSYv/Nr/xPT2QkQ8K4j+Bi8nBOo4PFBIIQnyECiNAew\nSQgEPXqPhlHtLCKHPeytWMeNiGfP4H8abKXQeOEO4z3eRUAS+0eFgPM+lpdlTJiMSrAhZq/WDugx\n09s7O8l9iXnMhv0YhKWMm0zGkrYIguD96O8uCF7g/P754wv0UbglZQz63oOWOpaxCdGOdv9epERp\n+bSlM2bLSuzHlxRh/J2WchRrxfJ3opNY2vdRbGZ7i04TnBviCGwb6Vre+rjRHtXaQXikVAx1i0yi\nhaTG0DtHLjX33njASX7Ko+DYrGt0kGTa4NoehCZ4gfp/iLpfNCC/973v/bzCrPe9733/t9+95z3v\n4T3vec8XO+VbjizTdF3Fycl83MV4ijJnGDqkEkzzCffu3eOll17i0aNH5FlB1zXkeU7XxdT/enmF\ntZbnnnsOgNdfe4Nbd26PpRXP8fEx3luqquL523dYbTdcr6+ZFnGe+ez4BGScq93tdiSpBuF5/fXP\nMZtMCThMVnL37iMWiwVVU5PneWScpjFDTpIk7vp8YHADi8UxddvQNA2TyYTj0/M4LlRHdfPVcklV\nVeADSZLR9z0PHjzixo0b2MHjbODk+Aw7REKM1Jo333yTW7dusd1uKcsp221NlpmxzKRp64bp7Iim\n6WMlIJ+x22yxXcfp6Yxd5dntetqu5vT0iF3lkQqKScK2bgGFKSIHtr1umKs50giWl9eYVHPz+Rsc\nnUwQCl6/+5B3fN3X8MqfvMrXfO1XIKyk6lomRxMerzbY4Dk+m5Lk0GjB4BxJkaKlJM+mNASQjt5Z\ndGYYbMft85s0Ns6VJwhWIrLCU5HQM+BwoCSFmLKjpfdQyBSPwIkwQgbgND1isC6CExAkylAozcZF\nlvYsn2F9RyYTOhoKcoIMeDo6ejKyyNvG42yP0hKPJxeWnBQItGFgToki4AikYUArT5JIUhwTkZOo\nlDZ0eNugkkBgYEaO94FUeSpXM9UFLQNaSZx3SJEw+A4kyDBQKI1G45ylDx1KJwzSIjrPRCkSNA5P\nKwTORnTgrfQGu2HDkVnwZLigENHntR/L7ZMkjYhGkVC5LcH3lNKQAMZohn4XXX9IEFqTMAUSjNDs\nYbcBiafDih0113zu8rM8Xl/Q+w7rWrq2QnSxPPrev/iXOEtv4om9RI3jeDIDWkyRkSUFd197lXZj\nuHHreSq7I80yAgNSGtLseBzLcSNK1eFDQz+EWIpUijJLUVKQSAFpidEZq6tHXF7HDXjTeco7t1E6\np+mauIkYjUQ8TzM2GEeUxZiNPZM5RsaTJEk0aWKwfUuaZ9S7LZ31B31Jbg0hKLQU3Llzk8XRlHIy\n5Y9f/RxCpzx4dEk2TjoIqSNRcJxNkiJ6eGspEFKPmb4DIcfytTiUhUUIjE+Ms9SSSOva9z8RcSM5\n+ENIds69xR957+C2nzUehgEl9R7WFT0BRhMUN/qmB+eRQuHDGLjFuD8Y6YC4CGIKzoPbK6rFWHJm\nDNz+cK33hxhV3VokYzCObRpvHUqotwBOGG1AvY0+zC5YxNjnHYZI6lJCYn3cfHg3AlKCP1RF9ueT\nUkY/ZetIdEI7tDEzbrv4Tx/9jKPWQdF1HYxZvx8sJNEex9pYeSyyknXfMZ3O6Hc1VVUxm8wxyiB7\nT5qmXzAefslJXUZJTJay3lwfSkGz2YSuUySJoet67ty5w2c/+1nm8zl1U6H35QwhGYaOsiyRUnD/\nwQOyLOf0/CwKNfqG7W5DVqQHjOX19TV5njMMjnv3HnB+fo61ljw3DC4gZGAYBowxTMvX5u2bAAAg\nAElEQVTJKOJIsLbn6OiIvMwO/ajr6+ux3/ccFxcXhCCYlhPSPGfoe7p24M7t57ler2jbltVmzWw2\ni0zTYeB4dsSjR4+YzWZ0XRRgJWmONC111yLqeD2UijfjjRu3ouhtnBXOs4jgm06PUMpgB4fRKV3T\nj71uNS40gtW6p65bzm/O6GwaA2Ubu2bX11cUkygkSUtBO1hObi7I55phsNx+6RblVLGpe1rpEATm\n53Os6vmar/8KBhdoQosuEjb9lslxGUdTlKcXCpFoVAgMTU+S6RH150mzjNFllVynDDhmOoqnrrot\nZTolEJ1dBDHg5iLHOYsSERIvEEgXHWf8aIumcKAciUhjaQnoXMck0VgkInTclCkVHY4GG1p8GBBo\nBFCQsbMNg+84TkpaOqwfmKqMdXvBNMk5SjT9sCQxc/AO7TsmOsNrgcGxrC+ZFwtKkYOUKAwrv8LJ\ngQFLT4ZTlqZvmCZ5zEBkQtPtmKeRyT0VGu0FiUzopMQJSe1rFjJBmbiZbPwOLxxaBKa6wGhN72ty\nk+Btx4mJGgdNSkOH8x1aSEqt6FzNkUrRKqHvdpAKDBKfGLzXaHmGpoygbBWZw9FIb8OaNW88/GOu\nN4/RhSTPU6RuSUJPX12h1g1//lu/C4DT9A6CAoXF+wopNb/6N9/HJlxxvVzhneVtZzdQGP7b/+G/\n43d/71XWAxgj+JZvejd/5p3fgDaBwda8732/yhAcyhjKssTblrZuqa9b3vm17+JHfvA/IkunvP7G\nn/AVL3wtuT5Gk+Hw/K2/94v83j/7GMF3BPFUFBVGXOa+BBtC3MhF0PvTyBRL2Jah9xzfOidPM05P\nT0Bpniw3tE1HojRqMqfv+6i3mZd0Q88bb77O6ek5H//Eq7zyyU/g0Sgho1GIdWOWKxHBo6XEu0Ag\nLvCKvW0sECIbWoiY3QU19rl9fEAglvalEAg5Wnsqxqz0Kejj2RK9Dx49BnGFBO9xh7nsWBJWykTC\nHwBPe7Yx8D4VlckgY/vLj57LQsZS9CjOEiPoI8BI9Arg9yjOmMWG8dzCR4MIdegzc8ik94COgEcL\nFa+diHRGNwykRY5zDi2jKE1KGZGXQqFE3AS5IVqkWu8PGXbXdWRlTJCMMYdYMHQRl7nfKBgl6btY\nyvbeo01CnmT0gyO4ntk0ZXW1gRCYlCVparBDT1F8Yaen+D39Eh/W9vRVfPNNU5FlGev1GiEEy+UW\npRQnJyekWcZgHZPJlGq74/Lykhu3btJ18ULXdcV0OsX7EEVNWrPZ7Dg5OaEbOk5PT0eRT9whNU3F\nydHx6Ncbb7Om2lJkGRdXTxAiqu72Pe4333ydW7dvUNU1Z2dnXF9fc3p8wt2x3Nz3sVTeNA1aa7RO\nKKYpuzGb3n8BXn/9de7cucPZyQmPH15w4/wmXdchpMIH6LqespxgrR2H8KMqUMqItFyv18ggUNLg\nkWTZhLKYYUx0N1otNzRVzeL2nOVyxenZIqImZwmzRcIb9x+yOJ6CnbBtatq25m1vv3EAMVjpyeea\n2emEzaYnaJgeJTy8XJNPcvKJYnBQltE+sXEdSZ6SJAnee+azKd5bJJ48zw4ikkwaiiKlAcT4rapt\nS6oMBkXrB5IRi2e9RyeGAUuGJiCxDBF+HWCqC/BrrPT40KCVIMWSjdZbTXfFJM0xBKSNc8JCRUGP\nxqMROGfRoke7HcEYhOiRaIwNaJ0y1ZJJ0CRYJEMUidExE4GZVDhaBAM6GBKpMVLjaaMHMxVFDgZL\nzxahHU/ax6jE4FyHCAIVYjZkjEZjkSIyqW+mC2q/BjkhIyJlJQEnBqJhl8O7HYkucWFAhoFUKgQC\nRWBCipCRWV2FLX6IJceKliIkTNUMj6W3gSM9ZdVf0mGZpFMgx/uUQmbRQScY8ApUoMOy45p715/k\n8fJVqs0WUsX8eIpQlvX2mmFXc+voBt/5Df/SaKkZN3mCBOjwYRf5ywgS7ziROYvjOYQWTQByfvzf\n/qv8h3/5P0ALdegnxxzWEhj4vj/7HXgMNQ3eD2g5Q1NgEGOtokcxYfoV7yDlZMzKezSGf+17v4sP\n/7N/Eist4al8RkqJcwPBxywLnibGe1FXVDjHfzdSUu8qJkWGdxYEY2nWkyaGru1ZzAo627JbO67W\nG+ZHx3zmM5/llU98AgRxEqPr8M4TteB6zNRjgJQiRBHb+DJHWvX472NvfHSjC4goUiNSQ5QYM+cQ\n2CNQDhkx7vAeQ4hY4L14a59tSxmzYHx04eutRYYRjemikloKiXU2fjp+r7bei8CIAVjIA/hDHGAf\nUckhfKR14ffXOP4uOvuNHNkQKxIyXtqDohqIqmvc6HXgxjlxwdBbTGri+cfsd8S5IIkbeOFDFMSF\ngB29ByLQKNov9k2MR8HHDUawASHVU/CI1BACSmj0uJELQ4uVnvsPH/LN3/UCd1cV00lJIhS9DTy5\nvOR4vmBSQl19wXD4pQ/IsU+8xmSGPM+j9LyuUcpEcEDbc3W9BAQnJyc0TUNeFpET6xyr1ZKTkxOc\n7+mHlqbuDjdYkmgG2yNlhIJvq4r5dMp8PifR5lCquH//PtPplO1mhTFn3Lp16yBqaNuWrms4PT0d\nM+mci4sLuq6j27XsvyVHR0esVitu3Lh1EAIkOva9uq4jhEDfWb7mq7+Wvu9p6o6T41PW6y1pnrFY\nHLPZbOgGF8vfKELwaJWM5XDBdrVFBk3TDUynCSbL0cpErrVO0Qom+QSFxjtYLGZYFyinBULB4APT\n4wlH5xOcBScybr1tilLQDvGrm88kVTMQlCGbJKDhyXpLHzrKtMAr6G3HZJKijMQFTdMP6CQqFZWE\nECRlkiPwEa7uAxMh2OJpw0ASIg0okQYlNIMPGBn7MFoprHdIbbDBUgmLGyyZNhQyGjAIHGLYkilB\npksGBnIChB4ETFMDfc1RUmJVDKTr7gkYj5EK4SRGl/R2R6YCwTuMjOpmpS19e0WZlqTCsHErEhkX\nJoVApTmeDkWPwjEVMIQeGTq6oSfTGqMMHQ5Jhcdj7cBpluEQJCQEAgmKXb8jT3JaHP3QkoWUMrEH\nt6cJkqat8JlGEGhoKXWGDX3M8OgplKILHanQGOK1MXhqt8aKgVSn6PgqmDKhDVF8pHVOzYAIEzKT\nkTNFoJHSEADLgBUVW7UkxfCZR5/i4voug1+yqZ4wmRcMtUVUmpff9jKLswUpCRILOAQaHwYQIOiB\nihhKciSKIHoEUyR2jAMFkAIdShRAhwijt3NwCKFHZGSLomESNEIaov+gARqiUXoMTgkKzw7oCaFD\niGNO0imXF1ekZYnWBktkJTsXq1B7A4HDOIyMZVEAEVx8rA3oRCDCgHeWq8sVL37lV7FcrmnbWIUr\npwmDtZRlSVEeIXXOb/7WP2K5rfGuxyQ5Q99iRoiFJSBwUdUtxv4qMVOP792zx2/EY++dHuEgQsQx\nuAM0I+ylzWOWbN8KBSHsNyFPedDeetyoSo492GisEcaAyD5zHYlbQkbghxuDcbSyjZlsGMvUMTP2\n4+uS4yhTVFf7EJ72jfejU0KNgI74sKjaYXxuLF/vxWneQ2KSMQuOFcQDg3tkVwfr0GlC6/rx3og9\n9z0fO9hYptcqKqG7rkMlJiq7hygKTPM8CvVcfM8ySFxwY/tCY8MA+2kJZfjgP/5t/s2//G68dUzm\ninbraauGVKUIFF0Fq1UFlJ83Hn7JA3JdVZhEoYRAa8nQdRRZxnq1RZnkcJEnk8mhH7vbbZnNpqzX\na27dvoG1lvV6ycnRMWWRkWUZR0cnfOyj/5TBZqw2a85u3OD09BQ3dGzXG+bz2LPerteUeUqiJfP5\nnOXyihv5rWh2oOImYT9iMZ2VvPrqq4feQzE5PqiUp9MpzgWurq6YTCYYY6jrmslkclA1np2csV6u\n4xNknK00acJmvSMrJyiT01ZbwFLmKSEEJkWB0SkXFxcoZUY+6owkyTDKELygSAua2rJarTk+OiEv\nIz5UIBECTKqoukDTNxyfThkcPFkumc/ntMPAvDTj/lsiEtitthwVRzR9h+08MtecHp+QlYqq6ckn\nKVXXMEly2r7FestEG/YAPCUkOdAHgUWSSmidx6mAFioiFkdFrEIwEoVJlWQIDqMTLBYjoB1qNIJM\naJSPpdlqWFOmghyDwNLj8X4gG01fEzcwSXKgIReKXX/NPNWsuyUmyTFKE6gQqiUTAW01qQArLINt\nuJkdj8zcgakCCAg/ED3ePc52SC2QxqDoAEcmJZM0o7UtBE8iekQYKERO4wN6VD3rRI6CIsciif1j\nh6U0kYMtaSj3G8owUGYZ13aDDwO5NkjXMtMla2o8looO4TzB2eiCNmI7g5JMKHGuQrnAaRJtFytR\nE1TCxBlKNQMFiUyJ+XlPzYon/ppPvfZJ2uoJSlp2zYbN7hoder7l5XfxZ77uz2EZkKQkpNF0gSgu\nk2gIGoRGiRoAH3YI4RAiJfafQYgSCEgGnrKfOjxrRBzgAhFV15FslBKX2WQcn7GM9hzxecGCKJHE\ne0C4NLrqeAteg+iZqAVf//K7uLu+oK5bhIgtITmeeT9ag/AQRMR4HtTJkT+stMC5gcRMsX2HloKm\n2pFlCfPZhKPFDBcGnBfsasdHfvcP+NDvfoST03MIIYpDvYsCIwSegB5xmEHIMZh6EDL69hLLzXLU\nPUXFcxh73HtVevyeR9lvJFAd3gvElskzimopns7fPjsmdihnyzCqn+MWyI/iNhlE/Jjc+HkdytAx\nGAsfsNYdnhtficKN/e4QRLSvHQNuYD9j7EcjnLEv6/efw1vPEycT9kXz6AooVXR62qM+4wjTGJyJ\nZXgtJX03srqDxA1RVZ/olGEY6H1UzKdpFJ1K9bTH3jVxvFepuFlw40haJIdGqhzBo41i6D3nt1+k\nq2E+nbHbOWw7kOcldd3SVD2bzVNnvc93fMkDsh5NjptmS1GWhADGKKazkqYbODqak6SxFDxdzNlU\na4QUPLl6xOnxCevlNUoL3vb8HTbLFdPpHO89b7z2J6SZoutbbt48ZzKfkuUJrbc4b1ldX3N2dsZu\ns6EoCq6urrj9/HNY50iU5jOvfpYXX3yJ7XYbx6KMiexdHQ0U1qsVq37JV778VQBcX18jhGKxWETr\nrmEgTwsuLy9ZLBYMvY1M3iRjOp2yXC7pB0tnB2yALM3Z9luiW84MIQLVbofPAlerJyQ6Jc0z2JeY\ngkQrw2q7pa5b5kennByfMAyBIKBtd6Asi5Mj2t6zaXYorbne7licTDg+OyLPASHZdT1JEW+Seug5\nuXlM7x1CRaWj0gqrHGjFZBoXPJPmNLZn21aczE+wxHJT1zYssjwWDsbvbxfAjetagnqqCiV69eZS\njl98SymgoyHB4fzAqUmQBAwOL3oElkS3RJlVix88iTFoqan7FSQ3OFEJnmhRV/mWJBHs2jWnWYF1\nHbmKOVUIlkQoMg1hGCiMxmqDpkcJ2A47MiNxAYxMxrKqI2iHD2pc5AZEGOJ7sTYq2m3PROe0vmIQ\nW/JE09gVR8mMzlqE0iiVM9BGrKsCJ3sgboxcGJiLBYPo2YUdNnQkSqFFQOuEjVvilEd4z5E0lDpD\n6ZhXe3p615EoSYGiUYJCGXa2Q0hB2wduZudkakJPh9eeNRfcX73GP/3EHzDQIEzAyIH19TWZTPmX\nv+N7OdIlLuzwYWDbr5gnN2IZ11uUHNU6MubowYOQAwMNRkSf5lRPMGRj9mNBOBCWQI0IGTGIbBGi\nRWAIqIPZQwzGQxQGSQWix4cBKZLYMw19zBbpcCHBk2KkATqCTAhyQNCCb/n3fui9/Mc/83NjIBqz\nyHHu1nsLelT0yhjc9pprMQqRhFDkqSHLEra7NafnJ9S7HWmWkyxmPHlywex4QdVYPv7Kp/nUn7xG\nWZZjC8qPWW2ciR1jTjyEQu5LzHFwN4qtQiCIgAg+trPHQKZQeBErUC54goxNi2e50EKCd4wz12Ou\nKeVbxouiwErgvBvBG+otY0sISQg27lGemRuOrkrxexuCGPvb8TopocfMWYxBlzEYh0OZfA8GiRak\nEZnpfOwrMyrHYw85boSE9yihscO+YiGxrkcg95V2gEPGDByqHnv1+TDsVdjPYELHz3bo7GHWW43X\nRY9mE0GOvfQg4iwxPr4vEfE1UkU8Zl4U/IP/5Tf4z37y38J1EKygb3oe3H/E6ek5WZLSdR32C3Cs\n4f8DARlh2W23uBC9LPOyoG06tJacTOfstjUPHr7JzZu3Wa+Xo+iqYzabMHQNSgSGtqcZdy5937Jc\nLjFKc3V1yVe+42WkMqRpymazoa1qUpMwLUs2mw2LxYLtesV8NuHq4jFZOWG1WnF6esr19fWoiHuq\njFMI1qsVi+mMsxu3aKoaOKEspxgTST5V08Td5tBy69ateFMFgZQaIRTL5Tr2fKXF9wO3b93herXk\n+vqa8/PzKK4QkmlRsl2t6QbH6emMYbB4AonJyMqM66trApJJOYv0HSfZ1ZEEVhQJN1+IoqhHlzXl\nNMNkhiQXqASqqkOTImW8ubJpvGnzacKjizVnz83RQaFDQtN2KCNobB/FKsWEHocTMJvP45IVYuks\nzzICsMURAqRBEUTAjbmLBlbBRy4znlxlcQfsHaXUeBzOWaSyscfqPbnUdKHGUuNCg/dxDG1Zrzkq\njsH3tG3HaRHdhQgVNnQgPZ29RiYpkwxk2DJRKSHUSFKOpKYdtiRGE9vXAWHt6AbkmBpFR4MSMsq9\nfIDQEkSLEjMgbu5EiMpULzwCh1ZxoUllHDHxoedI51g6Mh112QZBcJYzUzKEjoCjw+FCTTKmNglx\nkdAoUpngCHS0COVIXNzlayEh9BiZ0w0NliHal9qeDWsKnVO7Hq8lJUe8kN0GPBVXfPz+J/k/PvWH\n9NRgW0Jb89Jzt/mmd76LMimYi/nYm61QDAxC0/vISY+lVEOQBrDYMCCCRaBQStP7HiWjgKXQ81Ew\nZ/GhQcpxaxN2oxhnAni8qFFoQlAx2AYIoUKIHiEcyAyI2aUUjKVojRaKGLR9DPRYYDvO8g7RKcmB\nwfEV5W2uHl9SHp2gVILUehT7jExjPxoLisiL9v8ccdC5gd2u4/zkiLOzE5TWTGcLHlxcIbVGSsGj\ni2t+67d+B++j72CaRhKWd5IkSfHEcrNnX24e7z0piSS2PXXLo2XMMIOMvdi4V5CRWe3By6dhXQiB\nF+KQRQrGzPst78EjR/X2PiADY2BU+NGlKYxRToQxKyeabUROdRROSiLfeeSsxCA6Cl4Pc81eEAEs\no/DLj6K5UcTlx8DswljaHp/n9w5PPm5Ixpvh6Wy5je0F52LicDAGCWGEPcXRRiEUgYAxMRsWoxek\nILrBHcazxqqUdw47Xq8D43ssse+V92LvwBYA5aNpRF7y+PIKrVIe3nO4iWK1XnOymPPccwVJojEK\nknzOo8drIP+84fBLHpCllty4dZPNZoUbjaLTNMVkKU3Tsd4sSYxis1nhvWUymbA4PqGqt2yrDWdn\nZzRVRdd1LI4W3H3zHrPZjMvLS97+0ttYXj3huTvPc/ngHrdu3cHVNbNJgVKao/mCT3/6k9y4dZMg\nBQOCpm05OTmhqipc6MHF3kWa5lxdLen7nvmk5Pj8hG29YjY9BsDbQDt09H0LIpos2BA/+rrp0Sph\ns91SFGIEmQRSnVGeTFivltih5c5zN6OlobXkSUrb9sxPzkbHmw4hBOVsTtd1XK83JHmBQJEmhtWq\no2l2ZIXh5Lwkz+HJlYdUIlLD7DhBqrhUBQVogSlgXfeU04zWAipWvMpZynrboZQgLRKG0OGDojAl\nhY7jMQJFphQe6N0zgqwQldUOxkXtGdGcHUikJJUBK3qUBz00TEweR636NUp7cuXZdBdkIWOSztBY\nlHBkeDpamqFhquboPMP7Dd7BUTHDjGAQxyUCy5SC1JhoZB7AeEWhUwbh4iyzEHTGoxlI/YCSYLRG\nsMN5j5IKHdwIyuiJhqyj4UCIji1qn+rTYnRKzLj6uIcWLRpPLyyWnmiyqJDkWL/DKE8TLsYFT0Hv\nmCUTYjcYvKtRQTMxGV3fYJKMZthRmJRMZXgcBk0qNJ2tmZqEHk8Xery0pLIY+3MOheBe/Sn+6NOf\n4v6bd3nx/AZHN4/5i9/2bo7TI6bSEGixviGV5jD3PdDR09H2K7IkQ4aMVC0IaAIdAo9DYFRJoMcz\n4HEkQvNUgtMRh74ahARBRggtWjzrBNfEnhyM1zuONAWZxus9ZhUDHiPG/upYzPTBIegRwjO4JVKV\nOOLoohSagEeolIEWgUTp6DDVtbE6YZwkKEcnPeDRXiKEx0qPDuMS6S1CgnU9uUmYHy2iECgo2usO\nLyRt27O83vKRP/gjlEmwdkAQR23SRI+ZWrRCjKNMMcvajw0JGbGzwkc+Q/Qd3quMHW5UPSNGU4V9\nVh3AhThGKAmgJMF7nBOIETcaxk2eZ3TUiqqmGKxFbDhES0VHsDE7doOPCmM3lptDzDKNVAeBVio1\nfR9nvaM9YfwG4mIFQu7dmw59YZBeEsZMXOypX/v+s/VRzMY+AO5Xj9F1auwqKxU3tkMQKCKWM373\nAtZ69Ig5HaxF6XgPSGK7wfG0WvC0UhJGcJQ/iNMIce4aKaLr3gg3AYEXKjZfvESJlKZqyYsJygmE\nV9jNjjxJOTqXVFsJGh49qpBOkJrkC8bDL3lA1onh/v2oVNZaoxND8JbQCzbLFWVZMpvN2FUVJskj\nWEJ4qmrH888/z8OHD5kUBWVZcnFxwe3/i7l3ibV0Te+7fu/lu67bXvtal1Onzulu7G47tIUTy5EJ\nRIrIyGKAMkgUidvECIMYIJAQDDBMGDABCSFsJzYBgg22AzOStBKCLSdx227TvnS3T7u7Tp1T9117\nr8t3/773wuB919rVTgcxQe0llar2rr3X2pe1vud9nuf///0f3uft9Q2XVxdYG1I4Nrc3XF1e0DYV\nJ6tFYCm3LU21DwKuSPxRWrBanTEMA7OyZFku2O73vPf++/zWV77C/fv3SVKFtRMqTUhcRl3vgXPO\nzs745JOPWa1WzGYzvBe0XU9d14FjKiXLxYKuC+KT9XpN3428efMagDzLKdICnaXs93t0lmPagakf\nSVWI09M6EJS8U5ydzqhbx3azY+gMWqcsT5aUpaQdHE1vaUdL342cXS4wHooUxtGz3TSs1nOMAJVJ\nojMGCOu/ZJbhhoG8zBi8ISsyhJQ0Y0uaJmyHnpNsjnRhZCZV2FxmSKRQ9ASwRkYYWQWxlkDoOPK1\nHXJ0LIs5CRZBTYqgd3tSWWIYucpWlMyw00CiHYiRngbJwDwXNLxA4EmlJBeSAk8XRV1dfcPF4pzJ\n12RCMfmBRBbksqBii0Iy0TJi+KOPP0LUhj/3g38emCEYcKZB6Rz8GC+GE2BAOvBBrY1owgbQj/FQ\n74A2vKAFOIoIr9ljfUuRzeJPpADfo2SgRKVC4HzYQSepwNFgSVBAEUW2k20p0ox9X3GZr+kZGAkT\nBmcmvAxTCMeIAtQIaZqTekiEx2rYm4plmvAXf/jP0H3xn2WuCww1KQk5KbgJL0e0DOpV7w2D6Ji8\nZbQjKgI4ch3WJqHwhrSbXJ9GhbDHTJ4kUTTDLVkeOuSaHcJm5CInkXOgxIod4VIq8L7DuR6lslBQ\nEHjREiLAYvfr+7CDlQWeXeyaQs6PtQOJ9nSmxXtPIUeE0OBGEBbpQ/fpsWRYfvJf/9f4P379/+ST\nZy9xLhT+xHtmIuP6zWsePHiP6aBBiuQnnaVU2x0nZ2tcP7KazXHWUO06TtZrqtsd/+gf/zbDCFpn\nWHMQTIE3dyNi7w/CqIPPmXf+L46qoy74jqQVIBfhbR8FX8E86FEIkRCn2aGIOY9wMgivHCFuMp6O\n5GFl5EP37+FI2iIWnHeJXyGa0h+/zrvdtIzZ0CEpzMPR/iR9OBCI+HkBpRmKv8MjvApWp+ijDgeS\nu523cy76k+VxZC0j3evwMdYekKD+ONo+5CEfyGuHLv9oyxJhSultmDQcRtaH7tgYQxoLufWhOw7i\n4kjokvKIGA33x/H+Vfz9ZVnJ3/s7v8q/8pf/RUwJdoTb6xqvEmZFCSZ09P+02/8nlvX/n7eXz58d\nxU/OOardHuctY9+xWMw4X58wDB15phmGnpOTFcPQ8v6jh1RVdcysbJqGk5MTttstkxk5OztDxE71\n5HSNtZYHD+6zOjnBmBGtJVJB3VaUi5LlcsnV1RWLeUlZZGy3W2aLBaenp2w2N8Hz6MMe+PLyMuD6\n+gANB3j+/Dmnp6FbrqqKly9fkqVJ5J9ONPWe58+fH3m7B37vcr5gvToJnX7XY0dDmc5odi3DYOm6\ngTQtmc+X1O1IVTWA4M11Q9+MTINjPl+ikwSlJb2Bph3op/ACLWY5/TSChKa3WC9ohp7RG6zwFMuU\nXd+HSEOgswanPOSSCUc3tQjvyFCs0pIUxSqbMzFipaceu5D9G+k7/TTivQ3nXW/QOIQckRgEDZY9\nhfJcFSVu2JHjSZmAjjx1jOM1CS2Fs+S+ZaEtqRhRtAzjDQkeQ8+ahAdiRTEJZiLBUPPy9tsA3Fus\nwwDTjrzaPKMQEs/I2+ma1tdcTy/59vOv8Qd/+Hts6lfkK4sTA44KzwbnR/At3rcE4VANogcaEANC\nGAQdxt0ixEAo2GP4+BiuIXyDoKNMU2bJAk2GJkU6hxYgGUiUR8gJRMdm+JTGvsbRMNgKAOktIwNe\nSbbUjLnjmrds2bF1FZVp0brASo1WGYIEZyFLcgqRgfD09LS+IVGKuUgpneRSLwMHbKwYzR6FZfI9\nlo6Bht40dFOwq2VCByGSTcjlCuOD5au310zTQJGskSKNmoADBjPD556b8Sa+yiVaCrSMYhbfErb4\n8igsUir6fn1kLZPhvIsSsAF8EBt5TAwwsQgR+NNhRWhItCZNFggRNAyWMAIVEowf8MBoen7sR/80\nT588Jc9zZsuEcpGxXqxxNxW/+tO/wubFC6qhwtmJ9HCo6DtOT09ZFnN+/Md/nIQam8UAACAASURB\nVCTL2O1bXr18yy//8v/Or//6PwyHkzR05kJ4cDb6ioMlTYasCoTwKBnkbQKHArQMNjh5YFhHoZwW\nAq1keNtPKOHRCpQUwS4VhYaHRL93cZni4A0W+m6EfPgYGR5binA/d1aliOSMHevRmx1HzIEaFklc\nByhJEIOH4mndcQd9p6w+PLaMEYt3PuZwB3fBGEKo2KHKaEkNYrEDWORdoAnwHbAQ7z3jOHJAojrn\nCG6V8Izy1mOnsEoLywFxVNSHQ4kMa0HnjtzuA7I1oDx1VF/HnbiPtq54M8bgvOB3vvIHJALKHMbW\nslrMydMEOwwkiUb9vxTk73mHPJ/PI3jDxPcEhmvXdeR5yTC2rFdz3ty8DczgqeN0veLFixekKiVL\nQlpL13VHE7dSiv1+j1KCxWLJcrni9evXVE195N4S/WvhdBQySc04Ya1lv9/z8N59PvnkE+49uM/u\n9Y6Ly2C5Wq0W1Ls9bVtzur48nsJWqxXD0JGmmr4fefz4Ed/85rc4OTmJB4aOBw/uHfNa+76/20sr\nxTCMOAvXbzaU5Zz9fk+e52gVcIlZKrm6OqNtwo6n73v6tuH09JTJGMp5weQ8m/0+UI4mw2yVo0pB\nZwaSAuoW2rEFLVmcaibASUjzlNFaUDqqSgVKaqzpOUvnwcnpLCZQ5xj9CMIzMUES/KISy2g8aaKi\nZ7hDKo2xHakAKxyKkRKBdyNejiwziZs2ZElC3W1YFTNqJlLvUFKgfAvCYfHszIvgG8aCa/EIBtOQ\nJwk9NXsqPOFirqceqzQzXaCWFzRhUI9MQrfXDC1eOi7OliAXZErysvqI9xb38Bh0kgF9VPIelK/h\nd+V9D2IAlmip6c0LnLGU+UM8I1I2QIYQCxx1GJXJGZBijA9TDmfifU5kUjBgOcmWCFI8OUKFx3rt\nt1TWsO96dPTET9OE8Y527KjrmouzC4a6RXm4PDvnLFtSoDFMKDQgSEWgXnnhyGSOHSdE6jhNr4I4\nBUOibNhse0miE5Lwm2JwNVjBLDkBEhIhsIxkao5W34nGlSQIKanHW0QqKZPw/wUl3hustyBNtDyF\nciSFDld0cRjjheefJWgInI+2GlnS+R1WXKN9FvfGA85NCBmey8M0kiaag37fxQu4MZYsKRhsJLlR\n4PqB8t4C0w+czQr+wg/9GP/Gf/pX6U3FL/30z/Mv/8S/yvuf+zzeReaydFhrWC7m/M3/5W/Sj2OY\nSi2X5LMlo3X4KQQ/4ByJSrAxHCJYmeJOFIH1Fhe13TKmfyH0UTQWgkcMwaFsQrcrIMSPBGazQh0F\nV0E8KfDSobzAC4lXHm+j7cma2HXHYmx96I4FHNaz4rgvPxSZOLZ2NgZJCFxkOwdSV0xwikjMo5hM\nSMQ74ix32ANHURfecwhWkT6Mow8f4xBI747ZxwfLlXfBchVYnqEQB9KWiKwGeRSKyahID/7nu4Lr\nfbAs4cE7i7NBCOetO4q/tAgYZ2cP6NHo00YcKWTfcQBwLl77ws8u8K49X/36N0glvL0B5wTPX75g\nfbXm3nnBzRZGOxA0D//k7XtekD02YCh18J8qJUIyzfkpXddFTGbG2dkK70N039OnT4NnOcuDbH0c\njx7lcRwpiiDgOjs7Y7FY0HUNjx49ZLPfYbxBJQlaax48eMB+vw/krCHsaKuq4urqipcvX9O2LZvN\nhsViwTD25HnwvT1/8YyrqxBreOiQ+75ntVrStjVFUbDZ7Li6uqKqKs5Ozzk5OcUYx83NDVmWsdls\nWJ2cIoSgrirGwZAkGXle8vrVNWmaIUXwSj958jR2yD2r1YpyVnJxvmLooGpqpBYMZsAIi0oD/tK4\nCZfAptpQdzXl+hHNNDA5Sz31vLntKOYJvR0o58Vx/GKBbmhIs4xclxiCT8FKRWUGJmlJZIqnR6NQ\nIoAbcpEwqRbwZHgyJRlpSIRHCktCIGnNZex83IiWHpEYnK2Y5yBoKISiEDmO4CfF9UxyJNVwe/OK\n07NHbMYtr6aO82zJiVgjkTx/XfHg8lH4JrRDiCBWS5QINhQMUgTsYpY6rlYrun6Pkpo0UQjVcd0/\n5Rtf/Yif/+s/x9/4mb8ejv0CEBne7AEQasS5Jlh4RE2qHVLPgTZCnTLwI44NIno8wss6QescqLGy\nQ1GEgwsBbq+zGQOWwTdMouYC2LgKLzTZLIwki6SkVj2F1pR2zsXpFV3f0E4hVu5bz5/yOiuwpudi\nteLDkw8okHg/Yl0HSCYSkjQHunABBIyfArZTSqTIScgAjXUtuUzxUiNJsE4w+hFrJ7L0CuMatHQM\nU00WC7ZhR5p6UnImEQqgA5RMSJhBPCR4H8V7Ogk7QxGKmQrOZPa2plSSybeUcsVkRhKtgBQpNaOx\nKCWRccSuSNBJGnfadVDFotGiIEsC/S2PBx38wN/92f+Vn/qZ/4pf//Kv8Z/8R/85f/ZzfxpB8G2f\nI/jSz/wSN02DTsPnzLSm7fZ89FFFWqToPAMkwzjhhAxM6AgYEUi8m5AyKs6FPx78fdB3huenkPF5\nKoM4kNAZh0u8RAWlVNT0EnfOcWwcZHFYH44vHoHyMgy8hcSJIFxyhmANiuotLxxCBbCFH+M9CxG/\nLn+nvI6FSQmNcyOH6ENnPN7ECYDUR1LV0UMsdThqOBc7UYH1QQzrECRK3Y3w4Whxkqhj1xtG0aEz\ntpF9LQgHgmP6Fj58nfJOSHYYPXsv8d7hbNxBx520NYcRetxKxwOSmwxKhq58mgyJCsp1YrE3MX5R\nShnOTgdamBDxUBImGeFwIdjsW558u0GuBdZ7FosFSnjqKozBE/EnGJ0JYL1BCRlERFmGEIKb22sW\niwV5UYblvTEM/Yj380iFgu12y8nJCa9fX4cRg5LM5yVVVXFysgwM264hTVOqtjkWaaUU2+2W6uMq\nBD7E+xnHkdX6hM12z3K1Yjafo5TixevAmB6nHgV84Qtf4NOnn7BaZmxvN8A91ut1GOEVBUIo+n4M\nqS5ScbvdsFismMaAvXx7swnM2DZkb+Z5ifUD/Thye/OWxWKJECKmVEGel5jJURQFz5694P3HH3Bz\n05BlGVmWkS8SVA51b0JajIbNzQ4Gy+yshMmxbSqWJwu0d7zevUVlCd1kMN7w4vUr7l09OP4+0jTF\nWUsng6DkAHQvlEIJx+AqCpmQIjC2D3RjNSLFBG4kkzJ4au2IUDZcJKeeWaLReBIhMHSUZPRTRZ4k\ncTypSBMV0Jc4rOmQGgxDAFucnPOyuUEmgtVijjWOyQ3ksuQLV4/Z2QYUVLwlp8QDE8EqVQjFiKXZ\nXqMSj5gU69yD6ECFUZMk4+d//mdxwvD7X/tt/tQXfgAAY2q0Puz+ImpR1uHF7SaQYYRK7NARFmkz\nkNEfygDUYRwrBMorjO2RAoTyx7So3g5YFfaHACeyJMAsFbnMaRnIdM7gDImeYbxlUWZklyl93yIX\nS6pqB0nC3gr+wR9+GekNP/z5z7NW8wglEbSmI9GeaazIkgQhUlIVFMyhRItwESakYAmXg0wjaMOT\npYuwa5chezhLTjDOIuRIayq0jrvC+HzSzGJZ0QinwzknyVDah8MCntG0SK1pfUPbdcgyYT/COj3F\nofDa0E0d4zRSpIJCnxzmMigM1dCRZRkeCNd7j1YZjgQXwTODsUgFCElGz0/9xE/if+LfjWazFmcV\nmUpQDtayYDWLzHUgVZpBKISSSHf4DYWO0LhA6pJCglSMNhTIYJ+KXRcyqssDnSquyvFRmCZElB1F\npXXYE4M9hCogw97chd+Pie87xhkKwvMm/juIr8XdHjkukcNO2OHdYU8cNAwSAdGjmyodmM9OhAlP\nHDNjHcQu/jDi9pbjCBobCqU/IC69D4cOFw4fkjACP+Qd+9h9On/4umIXH1XMHu665dhdi+OzKr7U\nfBinH6xOYdTtgz5BeuxkOIDI8PbufkQcOceC7m1goSXR6uScD4lPsRiHSUucvYhIVYuHA8Uh0Qom\n70lna6pm5N69OXVnODubUbcTJEGY1neGP7EdspAykrqCLL3pO05PlhGo4RiG/jimL4qS3W7HYdmf\n5ynb7RZJjFszhrLMWa9X9H1Pmmlub28pxRJjDJ/57GfZbbfc3t7iLCxWc9q+4eQ0dKqb3Y779+/T\n9iNN34UoNiG4d/+Stg04zjzL2O93NE3Danl2jKQchu4Y7bVcnpBouLndkOc5SM3b2y1SarSewule\nJ2idcnNzgzFQ1zXTaGnbGq01ixiNmKahK7fGYx2cnp6ilCJNU5AClSd0g8EZTzt2FMsZTVtRzFKS\nUpPOFLPTh2z2G/avapq+JpvlGGHReUaR5BSrGQeruogXljyi4qq+Ic0zQrZPQGIqYciwYCwrrUix\npChGRozpKZIE6UGLUEwnBtIkjGmlCL5iTUc3TizSOQ6DjkXaBEYUGssgByYM3dCyr1u6vqEoEvp9\ngxYjj+99SEpxvAgV8RWyEDmTbXDKAAO5CCxpieP8JAMfyGl2tDRVgy5zZuWcqWv4uf/uv2Ywjrba\n40WHwKBUwDYKGcIVlE6BOvxbFkG2LqYo9Ih5xir4FXEKZI7xA1o4PAovErSWWByVb+nNBDJFqxKI\nxCUJpUzIKAgbrxRvJXOVUIkQy5iKFIvlNF9DvmLyhovF+aGEcHF2jnEdf/j6JW+ev+af/+KPcl+f\nkAhDNbSssxmOid52aKURxpLqCPoQAi2KAJ6QGuMNYxTOhK3uLThBKs+AEmSNpQ3jOL3EMjJ1A3kB\n0pcIEZjkXnZ4GTQGHosXFuckWhdIMhCaebkkQWNTx2QlqYLejjihyItTcqEJl8EE4RVSOJbZjGZq\n8DqlEAssAwlz+ikEAlgPmV4DMFFR96H7dc6R6xKNRCgRqV0ZmAGpFCp2M70FvMQJ/cdsRJHqEQuk\n9R6hw34cwlMzFNNothEaJ4PmIgqPw6RCJmEE6oPt6YD29ELGAIpoj4pFPDyiDvtREUAs/rAzP0A2\nXCjGB4Y0gHCBeCZ8hHDYaDdyAqwPmpfwwOG7i9oQnAsrABv51Xiw0X4ORzSmtx7pQlF1BBEbPsJM\nQqDzHyupoIXECRc69Vgs737EEa8ZvcnxyX20OIUVpz+K3pQiirruIid9pHQpBDZaUAP628YRtwAp\nwtTdhq/Hqrgnj9MDEY8CPo7c8Yck6juhm5ASH5P4/vDrT/jij/ww1bOJ/Wag70fmVwlD3TFNf4J3\nyLv9hsXJmpcvX3L//n0gqOeKIqfrutCtCcc0WZ48eYIQCiVDZ1i1GxKVYm3YqTrnSFqNUoK8SME5\nHj16xM1mQ5ZlfOvb32Rzu+MzH3w2BFm4QAG7vr6mKApOT09phx5rLfP5kmobfM/jCFmWfocI4eHD\nh/TdQJYFP9k0TUeWddu2tE2HyhL2TSi0Umqsc9hxoh9DJ/3RN7/FbDZju3vJarVisZrRjwPGWV69\nesXl2SVVVeG9Z31yFi7CaUo/BBxommVMo8UITzlL6OzArtoH8EAaAAZJnrBttlzdu6AbJuZmwbPX\nn7Kpck6Sk2D/cBOjn0AVuIAmYBSgEahM4ZzBOEOhE1ImUhsKZqZTPF1w1DmDdCOLNGWFjhfgnomJ\nlClk9EqY6TlOWlIEKlUIOhQC4yd6O4CGeqxpuw0Xqwv2/QYvLEkqePP8JX0yMZtlPLq6zxwZx8oC\nT42UYaxs2OLFSBb3kcZbnHBoHF1XgZKMdiKXGfdOT2lMRyoMxrQoSnKtEfOUYdqx399SlppE5Cil\nePvmGfce3meaWvoWdJaglMCTIBONNT4cvGQM0ZCGqn2LzguISNPBGZ69es3p+orV4pJEhamKIkFT\nhAssQdgUcokUzk9YJehdx4ilmgLnXYugGg3e4DA6HJxhtB1Kp1hKTq4+4PTqES/bik83t/zgxeeY\nq4AsTWWJcW9AgVYJ1gt8tHJAjnE9WjmEMGi9RCOpxy2ZXqFlGGE769BaMliPUnMmC1omnBYBDzgI\ngi7c9wF96gXeTmQ6dP9IxRQVrqMZQIVQFGMcpc7obY8ipdBLpFV4FTaw7dCSZwskObvuliyfI0XC\nEENCatPghCOTCYMZmOmCyVlAofMZ3nhmegVo9qZmpkuMSqlpyFRCJgS3dDxgybbtWCUzGuvuFMhx\ndml9GJOGgiKjEyJeKqLaSqoE40LhMC76ZoXAx4GzQmEOHS6x6AqJlyIUMg7dcgRh+PD5Yc8c9uWO\naBCzHAMdvA/8aWfufMF4h7MWrD+k0sZiHMMlDsXOBWBIwGb6GK0YQyOOwRCxCxbh2Piu2EseRFgi\nfF/CBbV7+LpCIT/mJdvwXcNBsBXsUEcaGFGJfkAjxrdBIeWdojqMrgNyVcQJgbUBSxqSnoIPW/qI\n94je5hC0ERPXZBw4KPnO49zdXDwZvSukOwjiDvSuL/3df8CjD2ecPXqAlIaHV0uefnqLLpIokPvu\nt+95QU50xusXL1ktZ0EodXpKloSUJ+M8t2+uw4636xi6jtVyHdjUTX1MfUpTDdIjpedkPUcpyXa7\nJclT6q4hBHgbzk/XXJ6f0XUtk/FYJzk9PWWxCMros/U6dNRpQpEqbscuIC6HNoykjcGrMBLZbTaA\n5MG9ewCcLJZst3tOT04RStO1PVpI+qZHa81sFjqdrusoi5Q3b17z+P33ybKM+XzJV77yfzOfLXnv\nwaOACC1n9FPDxeklWuU0TRCMCeGxZiJJM7abPTKH9cWSt7sdq4sFSynDLrkQzFaSzaYB69hXFdtm\nRzt2nF2dMy9nzPMEE/dQU+wurfE4ZRi8QTrLXCcoMWC9RzOS0KPlQIJC0QIDEoMzPYskYc4cTxPG\nU75G+hbPyFnqMLbDm4mZPkcQ1Mg2ugK18GTS4pk4SRXzdA40TNUNszLnydMnfN8HD3nyR19ncXJO\nmQkCv7jH+wEhR+zYolMYupekadh5aqmR1qF0mAEsy7ifRjAOPW+vXyO0YGzCqOo3v/IR51eX8eRs\ncW5ili/JZpqXL19yfn5GW9+S5yWLVcYnzz7l/ffep24HZkmKFRODmXDphMfT9T1ZOUegqLqRm82W\nhw8e8bn3VwhyEkoGZ5FaIUkYw5WLEgLj2jmcDDaNCcEkw1gsT1Y4PBbHhKGZLFrr0PEoxYTDO4tW\nwcYxjo7JSUSW8fc+/X0YB/7MZ/8U+WRIkxUChxIJk9VodUK4OOoQC8nAfqhYZgu2pmGRnlMNI8ts\nSSIkox6o2ONUwuQSUpnTuhYrEs6AjoHRDCgdCFyTDza9gTDGHKeOebJgshalZ9Q0COM50Sv2pkKo\nlMxoElWytVuU0oAlyXJGPC23UAgMjtFUWJ1h+4FZWpLIjBEf0rJsRyJLJu+ZvGPyloycl9PbqJpN\nCNvZAlyGU+lxRJqmJ2ztiNB5KCBHGxB33RWHHa46FutAkpIIH+M/hMAncUSLjFAqxWQDJUoKjREh\nzMDF0Xa4J3nsji2RYR2tQYdi5GwodEoqvCNQrXwYBcd1PsIcinCg8AVwR1Qxu2A/ss6hEEgb3jcN\nE2maY8YJ4TXKh9eKQuGsCV58wng78DsEQoQMZ+EjsMMe8JwyKprviraLOcXe+zgWD8lXHLbn4uDi\neEeN7TxaK4wJ9q9DXqSQkrtfzh0W1EZNgZc2dMZSo1Ch45cqdO4iZGIflObWfWfhDDatoJlBxSzq\neBPO421Q3AyJ5rd+9w/4z+79++yGG+rBsl4vWc6WVO0OnX53KAj8CSjIALPZjGI2QwhB13Vst1t2\nux0ffPBBUCS3LR988AFXF6H4vXn9Nlx8nKPrOu4/fIBzhjzP2e/3lGXBcrnEWMtisTj+gJ1z7Pe7\nEP4wTLz3/uOjctV7z/MXn5ImOacnK55+/MnxMU4OgrFhII0c0qIIj7HZXPMeM6ybSFPNzXZDkQd0\nptSK1ekqjLpcUPM9fvyYV69e8d5775EXGZvbLdfXN6xWK87PLgPgXAnW61OSJOP6+pr1MuXkZM6u\n6rG9YRgG2rZltlyyvspJ5kC6oreWYWhJZxnGWW73I1aFHZdWkouHV/R2ZNfuOV/mbPqGMs+RSpIc\nTqdaMNgRKR1zrUgxKAepGmmmDeukDKHpVHg/ooViHCuK1JNzEc/5Ds8e7T2ZnIULET1elWhSPLv4\nopEBYO8DLjKTjt70JFoADd5PiGHH+cWCv//13+TRWUqZWnYvP+X+eo7OHGHJ3NJUW7bbLQ8fw7jf\nIMoQVOJtBCu4KShAhQIz0lR7+q4li3Q1LQM05XMfPObZyxcsyyX7akdRpuw2e7Zv99R1zSwrqOua\nq6ucT5894f0PPqDrB5y1TGZAKI0dDSmWYQw7ZR/3eWUxpyiWTM6hYg6uBdDhIjti6aYBh+QkCR0P\nUmKB3g6MzgcylkqozMg0TaRFznAsBpLJWuw4YryLoeoJRT6jm2CcHFVVUdc156s1/9uXf40/+8Uv\n8rnkApDcDhOn2RLnHcYZUJYJy2gniuweb/sblNfstEdkMDLRuWBD8kphyEllQjd16GRG41vOBLzx\nPVJ4VuQkpME6x5LWtUGDoHIEOUaNbN0O5yULPWPvDcovKZmTJjkde9J0TUuNdTGG0JlA+0LhvUDr\nIogN8xUKiUYyYsNIVxZMeDrXhClbUvJ6rEiSJYUo2GOYoTAo5mpOi+SWPfdZMIkEm0iEU1jn33G7\nxMhA7wOPOUxlQ2d8SD9CYg/7US9AJ1gRFdUOiCETNqi9sP4QFHEQKfljkQl+bxmDHdw7bGiPsMR9\ntY0FViCdwhl3LEyY6F22DuGCYjpkDgcClzPhWemjVeoA43AmENKw4RCt4+j+IGo6/K1UgjfBdnTo\nGmXs5kMb/8eKWLQgOe9jBx0mPjaS6A7UsQP+89CVes8dN1sItIhEM++CUOwdcpf3d0ldh9/JgSZ2\nUGEHgVmMlFSxKB++ztgpH+lmLoBI3qWqHSYLeM/UT5xdPOTpx6+4fFySlDNevWwZmpaiSONh47vf\nvucFebWcU8xKNrsdeXHYIxvKsuTpt5+yXC75zOPPBH9xvMBleYKWim7oubz3gLdv3/Lee++xrbao\nRDFaw+XlOe0w8vbtW4qiuPP9LpfUdc3l1QXb2w3DMFDXNe+99x7X19dcPL7gj775EVqnzOcLqnpH\nFZXYp6envHz2nMvLewghSFLNZnsLhA47K2bUtxu891xdXfFmc3PEaWZpCL24vr5mHA1n5+ckWvP1\nr32D+/fv0zQdSgsYHfNFSd/34JOjenwxDzvnMKrOmc1TVuuEZoSp60mLHNMrvNIMQ4dEo4uEm+0b\ndJ5Qzgs625PlioeLC7b1lrP5Kc82zyhXs3CCTnNq01AqRYKlxCHoyWXKNO45S5PQITNQYHFiYppa\nlkmIv9OApwpjZG9I5YhlTxALJSifcQhEvwsGsAhhUCLAN1LtOEA2cAPnC8VUX7PKNMr0XC2XFIlG\njANkE75tefrtb/Hs+SeUecHDx+CqjkQX4A1CCUY7kmZ5OI4Lh5gmZknGMg8/58NBcDFf0Pc9Uz0w\nihHTTVgpGKN/8fL0HNON+NFy8+YarSRtvaduWk5Ogzd9c7vBWMG+adBJxnJ1HkPSg1XJCUGezRns\niHcGx4ROUrZVTVHOSZPySLiq/YAXmtG6sANNFowIOme47doAs+lHjLMhLq4L47fRhPhKKTMckm5f\nM0xjOESelRiR8Fu/90201vzm1z7iV578bf7tv/RvcpE9YDPcor0gyUs8E1szUMiMAUmR32NPTesa\nCinobY1EkKicHgdo9kPLIlsw0AV0pIJCLJirRbyg5UzWsfEVQgUPcS4yKkYqW6OUJPEzpA+pUItk\niURza2+p3YbWTcyyDClTDBZv4CxdBfKV1DR2RDhFh6dMUnbDyCwr0UKwrXesZmcsVBHG4CphTPaE\neE9BwYJt01PMZgxoPu5vMHnoZhqnkDrB4pBJeizCLupMzGFEjYgdLMcMYyEUzr8jpHIJLnbDXvo4\n3j4UX45/Hy7+R+9t/Peh6xSEMas/gONj0XcmqrB9sDwFPnU8EJiw7fbm4BsGJ6IQy6poM4qvExk/\nL2IsZezWhRP4CLZx8cDro/pbEWxdImZKi+hDlvFncijIPhYv74lF94/FQkZltI8oTxkPHd/hQ44F\nXPgwDRBB9BNsVzImRR0Y3iII1UJG9N0Y+l070+F974JRDo8TwoD8d3weEWcqD8U7/q2lQqQZv/CL\nv8K/9ZN/mfmipBl60qQkyxSJ/qeX3e95QU7TlK5rWSznaK2p24bVakWiUy6+/xKtNV/72tcoyzII\nt5zj7OyMzWZDmifsqy3vPXrAdr+l73uKMufq6oqnzz4Ne1trub29ZbFYHBXc1oaIw7fXNwghODkJ\ndqWyzPnSl/4Ojx48oigK2q4+pkJlWtHsKx4+fEhVNczLGTomRAGsz9dsbnes1ksSnVE1NbNZQGAl\nSQpeUjVtgK7HU9k4TFxeXrJarXj48BFPnjwhSRKE8HinmM1XcQzk+epXv8H3f9/nqduB09MZRQnN\nAMUCPn25R2Y1IklYnq0wg0FnKYNpefzZ+4wSnr16xv3375NIQd1XLIqSnp6L9QMq9qiYJVxowdw7\nZiJH0jNHMEwvSKVkThBwTa4ilQJjRrIkBw4Yw30Y8YkGISZwA0rq8KIW9u79APSEq4IFGfjD3tt4\nehQMdU2mJGpy2G5g8+Ia/YOSRVHijUO2cPPqOZ8+f8XzT57zzY++xg9+4fMA+M5jk4GkVJCCRmK6\nCZ3n4D22myLXlhiVOeCto77ZhwtLP1KPG5wLwEuyMEW5fnVNkaeUZYl3HpVKxr6j2u8o5guadmQy\nE0rnKK2REpq2Ylu1CJVycn6F8zBOE/Vg0GlGniV0rieZZYwyhLpNcVoxipDQNU6W1eyUDsvgJW82\nW+qxD6El1qBEwWQtxhqshcF4ZnnOYAzTMN5ldBcJ0zAxqYwxzfjcB5/n1fUrzj78Af6LX/xr/Ht/\n5Sc50xmJSHGk3PQtl/klHkdtB/aiZpADdnKcZFekKjCaaluByuhsT54t5q5YQAAAIABJREFU2JiK\nQVpKFYpZPp2QJnN6JgYhIBHcmg5lJ0qV43ywY2XqhKnvWOWnVK6mlCkdlr2vSJRCsGSRhEXH6C2F\nWDD6kXFU5OkcTc5uvCUrcmakjFhOs1MSBLfNhvfnHzDieMsWq1K6sSdLFzBpkqSkJGM2O+Hj9gW9\nLhh1Sh0vkaMqETiM92G0HSoJIQCCI5rSuKicPshNonhYkITITC9gOqAbCd3jOyNWiMXCh31r2MnG\nLs55vqNwu4C8FDYKjqLA6gDEwPojiexQ6YUhHF6cQLjDvliCcwgTO3HjQIEz7thBSwQmfKNh1C0j\nj9t5vAyFGFTsjF1QOvvD1+WPTg1ikfbukGQlsG5CvgMLOXiKxWE370NhFjGFK/wA7mIyDz8vvIzs\n7bgDjvtyazwyiQXcB2X2of892sF8GLuH0Xn4d/j9+bgfF3hLwJ7aQE5zNhoHPTHRCpTwKCfZ1QO/\n8Vsf8x9mPwEmkvOUZTbPMIdL4He5fc8LMjJI4esYB7hYLCiKgrKYsbm+wcax85s3b7i6usBME2/e\nvCJNU1arFcY7+mmgbipWqxVKKT755GNmsxmbzY6Li4toH3IsFgtevXrFOu6Km7ZmPp/TDx1lMWMc\nRz788EO01rRtTT8ZtJC0bY0pCsqyxJqRoWv5Zz77OV6+fsZ+vwXeY7PdslitSNOcly9ekyQJ83lQ\ne1trsS6Oxp1gNpvz9OknLOcrFosVQiiePn0a/GpRGfj++xf80R9tkFIym814/4PHNH3DZEZevtkF\nTJwWnCZrZvNznGy5eDinHi3zrKTuR2TqmbxBKMXl/QuE8PRmQAnFQuVsfce2e8u8KJGxIK+RiKEh\nUQPL5OB/zUkRhIJbkYkOZy2JLiF6aSEPBVZ4Am2pClccfwAGGKDDeYMUIfcWMYFwjH1LmmmcF4Fj\n7MA0E2me0dy2VPuGH/2hH2NqBO1g6OuWvmnJZzNoFb/zj38fO7Soz4YXkRaaoZ3QyoZO0YOUAozA\nTxOuM0z9EC6WkepTliVWhHFVXw8sVikXF5fc3F6jlWAaRvJFQZqmvHgRqGxilOQLwWJWMvUdUipu\nb29Zn15iXEeSZnRtR17MeXOzRaYZTii6wbJYn5OpnH3fYYWk6WusT1ifZNEKA6+3N1ihOF3do8ay\nbToGK+icJJ2dMDhF3Y2kKbTtRBdDTZRK6LcNb9++palrkkRx/+EDtnWLTjKsyFH5nP/rt3+HZlPx\nQ//cFzl79Dn+4//mv+Sn/p3/gA/FHInjLL/P6CZup4bGdyR5hvCWVTbDkOLROG+YZI6lwypF5Xqk\nLCISNEQo5skFxnkSmYcDpjPc0++TohhMj9YZO1eRCk2Rn9KalpW+x2AGRi1xwjAZ0HpNT800ORJy\n0Cmr7ISUlIGJZhpYF1c0EQWTuhmjUDTesZrd48bW1HKkGSZO8xNsmqCMQCQpGSVVkEeR5nOknDNH\n8N9/6W/x5//iX6I3Ku5tdUhBcy4gIAkX8yn6uO8GsvI4Fj10ts6GEalw4ZonRRiBpioIRm0EFQkp\n8FYcww2cC4Ubr0Jx4h3VrwNvbRjnEn23LoygwzhYYSaLPnh0rQArjoIrH6Ee0gsma44iqqC6djD5\nYBOPYI9Dl3wYV4OIe2AX9ZV368HYiuJtpLFxAH5EFnWEiYiDsMqHA5533BVsEWMwiTtbf9jNE0fl\nAb8afs4HnOXhY1QQkwkXUpv83SjbucDpttYfC/tR3CXfWRUQumdjTAj6OCBR4yN4QfBfi7uYSK0S\nVJrDULPbdqzLjFxrFqug6lfpn2B05m634/z8/JhyJBGYcWK33aAzTT4rsVi+/we+n+12y83mLbtq\nTzkvqbuWN2/ecHt7y/JkxTCNQWXswwhyebKIoRUTwlmGtmGxmNF1DW3fRFxlx3q9pu079nVFHolI\nMtF87sMPyPOU07MTEi0Z+jaMNpczvvrV3+Hjj0PhP3wf/TRSNQ2PP/OYcpaz3d7SNM1xVO295/T0\nFOccy+UJZ2cXWBteiOv1mrIskVLz4MEFQw/z5YLVyYr9LuA237x9zcXVmlm5oK567t1f0w8WYycu\nruZM1rC+UCQZrM9T3nuwYDXTpMqTa4EbBxa64CSbU409WqSclStWXrOcwlPsDM15XrBOShI/ktKj\nrSWhQtOhmFCiR8kJ2OL8G7zfArcgtsAnIN6CqMOuWLQgR3B98Oz6EeiAAWyPrbcoN2GHkJhkq47+\nZk+/a6lvKn73y19lXayRVrN9veP2xYbf+UdfxbaSt59u+KX/6ZeRvUeMgvOTMwCWixNWJxcoNQOX\n4qwCq2GUuNbBBIUuWJYr5tkcJRKqXcPmzYapnfAjjE1PV9WkQqGE5v33HrMol0gUZV7irSdRCV3T\n8vTJE+pqT9fWlHnOvXuX5HnK7e0t4ziyqyqs9UzWYUzQPWil2XcNVdvRjSPD5Kn7ntfbW56+egHA\n8+sbZFbS4di0HTdVzabu2LY9Mlsw+gSZlNxWA0ZkXG9bvCh58WZH1U2gcxwJyIxu9AxOkhQz6t6A\nmnP9dksn4A++/ZKze9/Hj/y5f4n/9hd/kf/5d3+V13R4PCMSmc1I8xPGySPGEs2KipEaRy0kjRDc\nMvF7nz6hERlKnnEmHrEUASXb2AknReBck5DJBR2WEU1vNZULCVCSFGkVqZ5TM9Fow62pmZk5c3nG\nnBOcSVgl90iTJYlYYJzCknHb9Ohkztt2R2sc28nQTBOTyMhlwS2OTiW0QnGWv0/tHcZL0CWjDzrn\nyWoaK0hkyYhkQvAj/8JfCBcqkeNFgfEpxiY4nzBZmKzEeol3GmdVGNNbHSznRuEG8KOHUSKMwPYe\nM1rs5LCjxQ2Wvh0wvQkiBiMxvcOO4KzETwI/OtwEGIefwv0d/0wOYVWkjjps78LZd3IwghvDbtnH\n17ebBEweaQXKSeRhQOU8wgYhF9bhp2ClPFia7GTCmNYFapVEBI3CYdMax/HOmGMnGt7/zh75nV2t\ni2hLZ8bY0RMkinHXrYik80NEpo++7nezFuM4+ojJFAIV9QQH3Y61Yfx9SNo7iOmECITH8DH2Tmjm\nfFSl2+PO+/C9H3OjvQ+2sjjOVrEYH3bW+/2e3W5Dvljz0z/zP5A4iTMdyxWsVpLpLnXln7h9zwvy\nbDbj1fUbui4Y+5Mk4exkjRCBPlXMci6uzrm+vqZczHn46BEP33+PfhqRMhStJAsXvwMCLXiYQ6pS\nGEmOR/GWUoq2bVkul1T7Gqk0r16/AcL4XKfJMc5rGDukgmq3RynJrChZr5b0fc9sXvCFL/wgN9sN\nACoNu2Jjw4jQvnPi7bqOz3zwIeenF2w2W4xxVPuG7WaP955hmI5/1idrxgG+9o0n/MZv/AZt1zFf\nzmi7gYvzB7x90yJ1QV6u+L2vPcHhKEroB1BKs99b9k3PYEdu2okewq5NwDyb0U0jvTMYJRimngUZ\na5lzkYTxYsaIYiBnCEXVbkhUUOwKnxBkJQfGcwgUQHQ4tuBbnN/jfBXsU74goBB3OP+Gcdgg5YHI\nIxluK/avt8gGlEmgslB7cpcjehh3I6Zy7F7tef2tV+yeb/jl//FvMVdzXj55wy/83C9gq4l+1+Mb\nw4cPHgMgVIklQ2RL8AmSDD8KfOtQRuF7T18NmN4x9pYymbF5uyNVOdIlTJ1hVS6ZpTNWi1Mu11fs\n3u559vGnPP3Wp/TNyLc+esJ2u2fsRhazOVmSBu+1lJghRICWswKtgzr75Oz0eEqXWnFze8N2VzGM\nE21rEUmG9YphNFRNA8DpxX3awfF22zB5xWg119sakc7ZNyOvrre83lTc7js+eX7NZj+waQaczvj2\np6/5g288YbSKYnFKWq5oB8/r24qsXFCWa9Rsya6fqCfPX/sbv4DKTxkWS7789Ak/+6W/zWsEVqY4\nJ1EUaL1kmV0wkeMJu+0QVZegmHH//DPkYoWk5M00YMjj76OgR0BS8mYYubYjiiTse7OMQabUo0OQ\nsxOKvYHeWho8S70k1QsmK7j2FeiU7dAiKIASJzP2fiSfrWispygv0LpkkZzR+mCLG/AMSFpC4teI\nxYiUaVJMTrMQJ3xz+5ZJwa0ybOyEI8x+vvntEHzjyRBWo8nwk8QbhTcKFzYz+NHjevCDwPY2vg/c\n4BFGhnPoCGLyiEmE900CM3pc77GDDx/fO/zgw4PH4osRMAncJHBjKK5iCu8To8D1DhE/RxiBG1wo\nwDYUU2EkTIeRdSBtORO6ZT8FhbW06uhHVl7GMXUYeDljwwidyGuO3W+i1LHIqliMD+ELBxa1d+90\nxja8fYyHfGdPe+hQfeRhh7c5gkcOecTH8f47e16BInTQd8KscL93HxPyqM2RzX1Yfyohj4zsOyb2\n4V7DNEMhw0/D+qhED4p2Ealdzvr4drCxFfMCnKEaRn7tH34Z1wkeXc3Z7+DJt7ZH0td3u33PC7JS\nis985jOkacpyNkf6QODq6oi73N7SDx1pniAUlPMZUivuP7yHUGGcPJvNuLy8ZL/fc+/ePZ6/fEGa\nptR1/f8w9+bBsm13fd9nrT323Ge+873v3jfr6Wl+EggEngoTKCqDE5MQQyplKoG4HJJUUoVNVZzC\ncRIncUjFBcFTjG3ALgMFwRiCEGaQhCQE0pPeeO+705nP6bl39x7XkD/W7j73Yetvsav6njp9ez67\n12/9vr/vQBAEDAZOOiWEYLFYEIbOUEQIwZUrV9aknihqMB6PaTU7azKVu52DSPyghiQ3emxsbDCZ\nTOqTwf1BgyjEC3yKMlv/8RcL5589Ho+5e/cui3lSz637pGmKVpblIkMry/bWFmVpmE6XFHnJ+9//\nfsoyY++Sx2w2YzRY8Pnfe437946J4hY3btxAmyXXbkVsbsMiKXn04IRr12K8MED6zhXp+PCEQPpY\nLI3AzdFjL6IlXZRiaUqErglzGCIUWXWK1Cmh5yPInJxAVGDdhNMIBZQIcrAFkhBEhSRAiiaSCCHq\nYAYLUvaJ4g2wPkJL7DjDJAqbWETmwbTCzkuy8YLJw2OmhxPGh1NCG5GPC9pBD1H6jA6GbDQ3+Z1P\nfoYq1XjGIzAhKodOexcAIdt4YRvwsZWEQiB0iDASW1pCEdLd2CUKW3SaHRbzBe24hWd8pJG89dpb\nFJkimaYUi4Lzo3Pm4wSfgM1u30WtxS1UoZlOZ27ubzVVkTM8P3MbtkaDZDYHa3nx+ecxtWn9dDp1\nlquej/A9DNLJcLQgLUpG8ylB3HbfDb+Ftj5n5xPuPThgkqT0N3ZJFjn37j8myUrKynVpp6MZt597\nkeky58HjE96695jL125ig5D+zh7JMidqdehu7FIoy/HghAePz1mkHoPhjM29S/zeq29A0GL/dMob\nJzP+25/4McYolBEIfELR4jiZ1HBp1yEQNsDqkAab7DSuEesWHr4b+9Su0rm2+EQMygUpLgPbEJBL\nSYbAI6YVNhllA7oyouG3yJRPn100TeZVQRAEtMQmWjcIgw4Qk6BJMCAiVCXQ1sfgkSi3XWzEMYmw\nPGbGkJSpKljImDEWZSJE2EFLyaRSXOpvMyoXgCNGrrzXqpqtVRTKzV+VKyy67nopJTo3UHqISmAL\n64qmdvGFUgsoXVdKZbGFRRQWvxLI3OIVEnKDSQ06NYhKENuQQAn8wuJVElGALAwiN8jKXWxh14Vb\nKglKQlFvAOrnEwpkad1suKq7O22QRmKU69Stsm5Toay71HC6Ugpdn7M8UayE1XjCWVUabdF1oVtB\n1U+mLK2Odc60vehIjTFr56va0boet7h5tbPTrNOZ6kIsrbzoyOvD8u7DdcOrWMVa8qQvIGt4gi0N\nF+9rXeBFzf28gLDXDPUVS1xYFyMqweLS3Zzyy12/yJfEjYC8VFgZE+KznFUs0op2o08g+JrH132G\n7EmYT6ZQGZbJEqUUXuBx8/ZN7r19l2YzZplkNBoNLu1dYTye0mo0qYqSxXzGpd09kmRJv7dBv9NH\nFYqrl69wdHREJ25SepJb12+Rle5LXRTOwKMVxizSJW/ffYtWq4X0HEnpmWfuMB6OmE6XjCcD9rZ3\nnAOXL5gmc7wo4Hw8Y2/3MovcmXgAdNtNktmUVtximiTMpgmtbodut0sYRsyTjBs3bxJGTdI0Zzw5\nQ1qDqTTNTpdWq4X73hhKbXn6+ec4Pxlz7fomD+9PaTW7NJp93nj7t/iFX/5ttra2+J7v+y5e+fg2\nZQmzJcTtkOf2rjFJYTyf4nmSxk6T7eu7VLYiFhEZmkVZ0ogaSDTaFDSFwZMl0CCq82xtQC1RqufB\n5GiT4glVJzlJEHMgx4hu3YPkIDKoqUkCB6sJrwVeAAioFHaeUk5y9AJ8FVHMKrS2FFnObDxhMhgi\n8Nnd3uP56y8wm8zpNTtkZcYLT7/Ib3/ys1STAiEa6MJHZ4o4kKwDCkSrJnRobOms+kxZILVBZ07/\nXKUzhO+xTFNHfEpz2rtdknnBo4dnvPrlv8f3ft9/TBz7jCdD2t02nifWZjUylEjr0Qp7+CakyJzX\n8s7ODoPBAI2g2XSFNUkSSi2xXghSEkdNZrOEqN0nLwqMFJRVivQjVFUyXrgO+Xw6o1CSXAu621eY\npwXzXFMYSdTukxUFrSjmZDTk5p3n+PJrbzGdzTg9PeWVV14BT3D96hUG8wTPbxA0e5xPZgwnc97e\nP2Pz8jXGoyllXqHTit5ujBZNKtGgtb3HyVLxp3/gP+dXfuLvE1jnprbZ2SBVFcoPnKELktBrUmFY\nZgmXGz2EBW0kTeGDhIVQZNbQCJqEQqKAVBsiz0caSygFESGysUOJZWYqmlEHC2R4KJtTVpa5qohC\nn9IaclzsX7nMIfaofJ9tfOZlRSNskOqKoSjJywIZuVliwws4y+eEIuBS1HO53pWhEQRoQGmwqqTp\n+WgBOY4BDhCagDxLiT2JlJ5j3muNj+9mpHVp8OrsX1NreR0cu0pTcs5Xxko8q5E4cpgnNFUq8ENH\n0KqE88E2ukLYluM/kOMMOvy6sOnanKPuTs1Fjq8EVrZe2hElLuah2qtfk0ArjS+DdbcodQ1H+x6q\nRhNNqZydp5CueCvwfbcls5V7Ts/IGsauZ6zWzYDdZ1CHZRhbm3Jc6KZXr9+u4d86+8quiqfBWgdD\nW+tyt726hxQrJzNraymUe39aryIeeSJYwiDXGLqAmiS3Ni6hNjuprW7tagYtXMTkOnJROvjd1D75\njpvyRzp8bfCkdIRXX9C7eoWvvPmIF1+5RBSF+EGJtR6rfO8/enzdC3KyWOBLZznZ7/c5PT+l6Tc5\nOzvD932iqEGn0yPLCkYjJ1PS2p0szWZzHbv4+PEjXPi4JIoibl67SjNukec5x6dH+FHI1tYOaZqS\nJAndTo9SVbRbHYIgIAgCwjDkjTfeoNfp0mw2uXLlGmfHJ+zsbNHp9hmOHnH1ynWQKUdHR+RlsU5s\nyvOcqtS0G24R3t3ddWbzQFkoGlFc66Dn+H5IHMdEvgdeyGS2oNSa0Uixt7eH8DyG4xmXr22iDEwX\nCU/dus7xseall9/H0emE49Mh//uP/RTZ3xqxealNo9tGUbF5pc/ejT3e++GXed+HbjiigfXpSoHS\nmr7n0Y0aJCwJPBDlkn4YkZYDCHtUZk5QU/wROYIUd/I06rlxjcWJzJkGi0YdnZdjtESKjsNxhMIU\nmqqEqBUAEVZrRG5gaQlUAMJSVDmDwTlFWlDmLolrd+My3WYHayBflhzdP2Rna5dQe7xw6wV+85O/\nyexsjGy3iVohonKBIazciLTvFiGlwDioSeZQpUvAedIu0sSNKAKfTtQi8ELKZcXu7mVUprm8e4Xf\n/PV/BcLy8Y9/lCrXFLYiaoTgC/I8J4hcclJRlfgKvChkmmZcunoTZS3WC8lKi5FQGc1yOceP28xm\nCdJvUC4zsqKiEpppklJo6+5b+/LmRUWaa7SMmC9T8kpQmZLpYokfNTk6OkP6Yy5ducbJcMJwtuD8\nfITwQrqbOyhVcj6dsbnp4PLhZMH9hwds9Le5cvUOX/ziHxLFDZcgpS137z0gbkRcu3aNL77xJi89\n8wK7kznf+n3fw2/+1E/TwTUIsR8wKwtsGLEQllIvMHnO1Zab4RfCIvEIhHsfLUJawkMB50VGHIRE\nnscUS6ly9sIGY1XS8UOGOPc8YQ1aeCypaIZNSmvoBzFTXWA8tzDnuqIZtcg9H4lgog0iDEjRBF5A\nmadsxH0Uhq6ImJuc63GHENAYGkhkIMlwC+Ho5Iznb98hBsZGcZouKZXbcFeZIvZblIUz/JFmBaVq\nZJ3HuyYWWYE0KxKVS1ZapSrJutC4RqtmO0uPfrNJVc0YHh/w3/2VH+Gf/rNfYjabILRCBt5aZiVr\n+NezKw/miy4Paraw57lu3NazWS3WraQtDbKepUpzMTOFGs42FmVqjbSy+H5Yz3pNDTf762zlVSHS\nxmmUXfiEK5tCuKQmpVUtenLHCs6W9echwLHAjQUuIHBRM7iFeLKjFSjzb8Z714EUFjzpXMRWr88T\nT2jFrXUkMVtX0yeOtROjuIDTVx3ySn5V7xvq27/7fk9C8BoIsOSq4ld+9ZO88i3fz0SVNHsh+t9c\ni4E/BpC1RtPptWm2WxweH9Jut1ksFpyfn68Zx4PBCKMtVenE4nEcE4auWPu+z+HhIY1Gg2vXryIl\n3LhxzYUMLOdM5xOysqDf77uT0PdIFsvaDzomDGOKokJKn4ODI3Z3d/ECnzAMKYuKNC/odPrs7x/Q\nanbIyoqz0wFVpfB9n6pyHPYkSdjY2ODs7Ix2u13HQPqUWU6n4yDwg4MDVFWQLhO2t3cpiort7S20\n1rRaLbrdDotFgh9IiizlbDDhdz79eYbjCcenU8LY42f/6c8xmy/ZuXKJztYWu1ef4sbtD9DZuM1T\nz32UoLXNeFnwrz79Of7qj/44/873/CV+8qd/nsOipPC82h8rw8sWbAFXwhaa5VqiYkSOWMfCFbid\neeYuZoHhHMOSkgL8Bngd92WyJdKLQTRB+FDF6DwiirfAROiFgmmFGWbkw5x0kDHcH3H+eMDp43MW\nowWeknT9Fv24SyQa5LOS2XCBrwMW5wkt0cQsDIGK+N4//33MzmZ4maXlN/jIh78B4joOMAcKgc0F\nsvTcHiLTUEhMZrG5oR20QAkWkwXlsiAWIY0w5sHd+25h0hKrJaaCX/nlX+No/4RG2CQOm/gywMNl\nXTumpmZrc5swDLl6aY9lMmMxXzKbTKmqiqIoqErtkJLZgqKsKJQmK3KOzk45PR8g/YCtnT3G8wXn\nwykAlRZUVlIpy72H+ygrGIxnZKXl4GxAe2OHG089S1ZZjs/HHJ+POR1O+dg3fSsPD44IGh3CRpfJ\nPOPx4YDD0zG377yHk7MJX/j9PwThU1WWotDIelasleT+w30CL2IxnWG0xzMvf4R/6/v/IjkQClhY\njQ4FkzKlIQL6nseN1jYC4dTllSL2/PXClQlIjGWgS/yogZaS+5MRhVXEYcNxmXyfczSFsmTGYIXH\nuCpQOCnYwmiGuiIFFqVyVppei9IPKJQix1B4kkwrElORABtxj6b1CI1ElyVtESKwDOcTWki0cWd4\naTSjMuOp20/RAEJcgMDB/gmB51CXbqNDmWtCYkwpHNmqEu4BKuFmxPVelbKeKReOQCjq33ETn/Uc\nGQWi8vCLADNfkJ0f8oXf/ie874WbJIM5gQ6JvQBbaEcKK+QaqtaFReXGPd9qnqwkQsn13Fpqr75e\nIHW91CtRk7wMQru/FdoglGGl8zWVdkxw5XykjXJ6ZVbMaVjDt1ZTw9/Ver4srMWoi1xha2oNtrX1\nXPvCsOPCk5q1tGt13YpkBRezYf8JU40n77d6rNVtgVqGVDuA4YhlcpU5KazrhJ+An1fXX8DZqi7E\nFwxtV/idDMvB7HZ9GzAYo/CwDmWs2d2f+8IXkAo6/RDhw2j0tVldX/cO2Qt8Sl0yHozZ2dnj5OQE\nI6DX26iLWkCz0WKxSLlz5yneuX8P8F0kYqEZDofEcVxHHTqZ06NHD5z7V6PFYpjSbrfXMwvP89jc\n3GRze4s8U8yTKZcuXeLu/Xe4fuUqvu8zGp2w0duk1ZK8/PL7KcuSZVbQ6mzw6quvstHfotVpM5tN\n6XRcEWg2ncnExsYG5+enPPPMczx6eECvt0GZ55yfD7ly+TJSeMwXS8oiY3t3h7t379PrbThDc6tZ\nLhZc7na5eu0yo8mYmzefotfp4gcxaQqvv/YOne4mzdEYJTSpmvOZ3/8cUbfNzWdvkrPkpQ+9ROkJ\nTLPL5tVbvHV0zo/8H/8XJ6f7vPKB9/AX/8J/yPONPUy1wASaopyzFToCjkt3yhBCO5mFkLiVY4lh\nXO9eY0K6ziSBFCEVLnDeooV2XrppQCDb2FQjjMbLNXaeopMCNS+ZDiYkScJ0PAZj6Wxsst3aRClF\nOa8oMNhKMj6bcXY4AGUo5iWq1EwHcyJi2iIiyCWqUnzkw9/kCjFA6YNVSOOBqqBSiNwilUBXxiXw\nIPAMNAMnd5ulc1qdHskoIfKb6MKgpAs8j8I2Dx/s8/jxAd/xHd9GkRfgCQ4Pj7l+8xpxHJMuFkwX\nCUmRsX3pMkpZSmOIfEuyXJBXFitDhB+zWKT4Dcnp6JSo1WP36k1yZUiLimVa0Oq5TnM6W5CWhsJ4\n9Df3eHx0StjoUijD6WDKCy99iOFwzP7BCffvP0RrzZ/+M9/OdLZEG8nJ6ZBep8vp6Rm3bt0mmc55\neG+fB/cPCLzYeaz7ksh3XbLvh+RLR4AsPc1hNiCMGwgZcenmc/zI3/5x/uZf+kEiAQEhvpBsAw0a\nlMAIx0XyAulIl77HTeHRFh6lsUTSWYNqBOFGB19Dx3MxHaMypZSSHd9p9ydVSTOIyMqSReghhI+W\nwnW2XshgMaPRaOBJybYfclZVhIFH1/OZqpLMFMR+iCc8Im2wYUBpFbMqZ7O7QaIrPAsNGVAJSxjG\neAgKYInGCI/D+4c0N/cAmA0mxH4DnRW4nKJVCprr/qRx8qaVIEYRjs3MAAAgAElEQVQrZ0yxludY\nsfa3tgI8o5BaUkrnYlWMJ3zl9/4ZB6M5N691GR6fcWnvGmHDbQohxNoKNMhV5OETzGXAuWuuZrUr\nZy+zcpKquzdlwXMqRBcXqcHWDXQNK4NAlZrQ9zGVcYERwsmUhHBEsHVXiNMKC2trv+sa0tXGabS1\ng+6t1bUxyhMQtZVYYdZd/6oYr+VcT3hby1U3+sR1q2PlxCW5+DzEE7eRTxR+FxV50dG+y2ik/ime\nKMoXz7G63sIqYKMm7q4eaz1D107HrTH4VqKshy9BBzAeVzRbAV/r+Lp3yBbtYOetTSaTEe1el42N\nDedUheT4+Jh+v8/u7i6np+e0Wi201ty7d4/5fI6Ukk6nQ5IktclIxs7ODsa47OGDg4N1hvL9+/dp\nN1tsbW0xGo24e+8toihCKcWH3v8BB28fH6+Z2L7v0qKqqkJ6AdPZjE63z7UbLnf31q1bHB0dAdDp\ndNCmIl0mNKKYs5PTmuXtIiU3ey4VqqoqyjxjeD5gNk24c+cOo9GIxSKhqiqeffoqYSBYzhOqoiQU\nPqdHJyzmM1oNCAMoyykvPneJj7/yNM8/s00oM6xaMhmdI4Tg05/9HEeHp9y/+zabmzuUSjLKFcHW\nNg/GY/7aj/0tvvu//0GO1DHneuCIFMbNLX2WOP1FjhUzEDluySxBhAgiXOavxUMhqFCLBLISSokd\nlJT7C1gCS4MeFzAtKR6fM7t/xtndx5w+OiEZLpifzcimOf3GBhuNDUQhCVTgCvI0Z3ww5NFrD8jG\nKcP9IdPTCcOjATd3rvPbv/677LZ3ITNIG9DdvgLadTMm1dhFhVlU2GUJS0U6mlPMUnzrEYiQLMlZ\nTBYsxgvKVGMrwWw85x/+g3+MMB6qtKgC544mApbLAoPHT/zkP8Bon6qE3c09srQgXaQcHhxjrWBr\nY5MwcB7rUgpms9k6fWY6nXJycsa1qzdoNJrMpwl7l6+SJAvG0wVZWmBFwHDkmPuzZc5sUeJHbY7O\nhnhhi/myZLlUPPf0e7j31n0OHx/zztsPCL2Yp596lscPDnjn7Xd45vZzxF7M4wf7bPf3mJzNeHDv\ngHfuPmJ8NkZlCmnAFJpsniIUqExDoQm1j597lJnTls5mCVK0OJxU/OLvfZ4uHnFl2Qp8VOX8exfG\nsKwUuamwxuAb150Arqv1DFoI0BpT5mwTsiEDFJBQEocxTd/HKEXbQjsIKVDEoU8ALHHOZmAoTMFW\nu0vsBcTCY4KlGQQorVgAXb9JXuZUaKa2QPo+SzS5sIjAJ0WztAbtB4wxVMKjQGGBJYaFLsksNOM2\nTeEWT18JqkVFiI+vfayyiMpC6bpUWUn3e2XRmUZWzmjDFApZCWxpkQqkApVZgkriKQ+TKWLh8ee+\n/c9CCtvdrtv/ao1vPdJJii0NFNahPpVB5drJn+rXYEuDKTQ6V5jKgJZOUlWTyqR2OcbgiGa2NOjS\n1rfFSaZW1pmVqS03XVFWpYZKYirn7mUVoOtIRlMzue2qW65FyvX82t2ubqpdvFKtj15jvevoRvGE\ncciTjlgXRK5/PehhNft+8vpVUXQSKFGbo5h3aYzfpZV2j+QK7fpn/UrEao6tkbhC6wmJ9FzdQhik\ny0bBWIWxCotey6GMVWgscbvD6cnczd+9gOPD469ZD7/uHXKSJLQbHdrtZm0C0qOsFGWlmM/nbG/t\nMJ1OMcasWdPdXpdOp8d8PufZZ5/l9ddfp91uU5YlrVaL0cgV0U6vS9xskOc5zWaTOG4yGo3Y2d5F\nldVaFgVwdHTEdDrl9u3b5HVO8Xg8rtOYEjqdDmmasre3R1EUCAFvvPEGOzs7AJR5zjJZsLm5vbbj\nlF7Azo57/WVhqIyl2+mRJDVkXSoODw8JgoC9vR2yNGWZOSJDlhXsbV1iPJxx+dIOylQcHh7yAz/4\n77N7eZtv/44PU2QQb4IJ4XhWMEhm/PQv/HM++TtvkCQh16/v8Gh/n7nI8ToeQWjwlilNW+H5gr/x\nE/8r4XLEX/mB76ezfQkf0NrH91L3ZRE5Ffv4wjhyiajJCKZCmQJrBUHQYjGc0t+KYZ5jTmeERkKs\n0DrHt5L0bMjJ/UcESPYPjygqRa+1RTYrCL2AUPmoRBO1Yqq8ZDnPaHgB2SCl6zVZzOc0CDm6f4Tn\neWxt7vD5z3+Ry1evslik3H72DogQk7mgCplbyiQj8BzZxpQlJtPkeUa6yCitY5E2Wy2kgDiOCRox\nWVmAlpS5QoQ1dVJKjBB4nmQ2XXLt6i1+8Zf+BTdvXOX9H3mZk6Mjrt66wjLJCRtNehsNHt5/QNju\nczqac+nqLSbDCVkJN+48xzLXzBcJg/EcpGSxSFksCip8rPQQoV93KaCNoNXrs8gr8GKSrMCYgCRZ\nEkcZk9GMN998kzhust3b4mT/mHazyce/4WPs33tIVVV0Gz3ODs85eHzAZDLDaoiIUKZyshJriEQA\nStZdcgClJtCBY+NSYirFIiuYK8Uv/MZn+bPf8FGagWCBwQss1misdKk7sbJs+gFTr6JSFfjOUiY3\njojV9SJank/l3M05rpZEQYgypQuJr20FK6PQVtPwfMZVjh/4jpgZxlhTIaSgpSHxYGIz2ngUVUHp\nuaK+0+ySmJLQSpRnKVGuc5qldFp9Qj9ibjWltWxJny+9+ibvef4FOlGA9BosLDT8FqIOJp0Nxmxt\nXEEXynWKtQ8zlnpufLGQ+9ZJcLRx32WtV2xdd5tQeGglqKqcVtwkLODW9W3OTjPa2w06Pbhx5ZpL\naKrqeEdbG2ZYXGGrn662xVgbaVgsQui1t7RZ+TWr1ZwYrOc0vY4x7rpVlyKXO2KYxakqdO2w5ayt\nXIdonPXtusvl3bCz62Rt/RpFXZwdaUrUARHrUAxWxKqVQbWsdcvSEdXsk8XRwddP9q2uCF+Qu2QN\nT/vCq/ONWROyVpC3lHJtBuRMV9T6sdabgJoktuqopXvzWJzBk0SsO1lnm6qRq1xlWxdy66IYldEQ\n+XzhS6/zJ269wvlgSLsRf816+HXvkG/cuEGz2azJTi7MYTgcopQi8EOqqmKxTFgsE6I4pNvroJUh\nDCLCMOT8/Jwoimi1nIvSeDym1+s5dyxtuXnzKSaTCb7vs9F1Tl5n56dMp1M6rSb7jx7yB3/w+5yf\nn7os5MWy1qw5iHsym2KtJSsLwkZM3IrZ2tpgNBrwjR/7BpbJAnAnRLPZpN1u02402djosb2zyWg0\nxPM8ZvMJUsJg6Gbj8/mc4eicfr9L6EuGoyH9fpM4liySJXme8/nPf5FOt1l7U1t6nZjv+M5P8N6X\nr9NsQ5KNabXdmOXs/ICnbu/wo3/9v+DTn/4Z/vJf/g9o9XwUCwLfYKsCUyypsjlFOYckY3o+Q/uS\nf/jPf4r/6n/5b9z78FIgqDn9GqsrlHGpTlgPU2ZgDb7fJfC6mEFOP75Ofm/C7LXHhJnGTDOqkwli\nkFIdjTl6/RGvfvYrnD0ec/vS07x06yX0QuNXHqEJWYyWZNOcdJiRT0qquaaYKfJxxvR8iS0kWapJ\n5s6j2lpJ3OyC9JBhxNbuHhQWuax3vNOccKEwkxwzTdHzkjIpiWVE02sQGB9bWJbjBYPjAckwYTlJ\n0LmhTCtir4FQFs+ArAxUGlsaAhmS5xWSkMlwyu/+1mfRGh4/PuLG9adQleH48BCjnG/6lSuXWC6X\nbG9vo5QiTVMMlsOTU7KiYmtnj3my5HQwRFvIioq8qJjMHVoxW+YsspzHR0cI6TMczYibHe7cfo50\nliEUbPe2uXnlOsWi4Jmnnub2jdsMTkYcPjoG5dGK2qAEo9MxnvGhElSZRijHjnXyGPczwHcLtpEU\ndTeTpRXkhoYM6cRtpsOMf/c//a8ZVBAbSwufUnqczGd4VUXbD0gq5Qp7fSil2JYBUWkIcYtOaQ0z\nU9HyAlRe0JYhESG6ZllXVUXHC1likIGLaUxruFL6AaqOaU105jr0ZIkXN0irAt8P8JHEMqBlfHIM\nlaroWp/bvU2kL9kfDSkqjSkqPvPVr/Di+14mywrqUSrlApp+B5u753zfC+/HlpJsWWBKi60EspLu\notxPUYr1HNmWIAp3sYXjLazMPESmSJOCOGxTTHJO7x/wH/35b0HpCmEgn8PHP/wK7aCJVCGmcF3w\n6v6ekshKuNl0PZd2s2FZj2kEujAILUEJZw6yIjxWjtjlzEHAsxAIiSmVY1RrC8pgSuXGO7UuWWgD\nlXGFXdu1JnclERLmIhDD1sExq2bTka0uOlxhtHP9Mq5oQY0ir0hXK8Zy/bNWFP3rHtM84T/9hP7p\nyc2RMWY9IzZO1Fx3yjjDqHXXfNENPwll+4FkLThmBV2Ldz3Xyo5zZYhi0Qit3F0CiYg8Pv2Fr2CW\nht3tLbY3Nr5mPfy6F2RdKXq9HtZaGo0Gw/GITqdDEETkeU5eZBij1n7T1lqUcvnIxhg+9alPsVgs\nSJKE2WxWd8ETpPSJoojT01O2tnawSnN+fkqv7VjVnW6bTrfN5SuX+MD730ccRpyfnnDv3j0mkwnj\ngZtNp6lzyer1erRaLRaLBcvlkm63y/3799d/nKqqiIOQ0fkZaZqidOksN3XJ48ePsLV27/HjxyyX\nSzqdDs8+/QwSsTYz8UO3GZ7MpjTbbd773vcifWdw0mr1CIKIsizZ3NjmV37ld7l2a5N5BsNpwt7l\ny3zmM7+LqiqiAD74vmf5az/8g0ynR0xmp27OqwpUliGKgigoCRoe48mEo7NzCusW0P/nn/wN9s8+\nhTKvg0gIvQ6BaIAuwCyRVmOyFFILCZjjCRycUx7OCSaS2cM5y7FmcTQm2T9ndP+Ex28+wiiJqtyO\nPxtlDI8GTM7nzAcJvg7QS00xLxmdTsknBYcH50xmKfMkxXoRhbZk2nI8nnAynVNZOBkMUcD2zh6k\nJSSFO6cGCSxK1CQlGy4cDItPPi9YTDJMalF5ReSFtMImvvRpNzs8uv+Qre4mofDxrFusrHHOR7oy\n+FagS00gAwQBZV7y5mtv0u/0ODw8xlrn2HblyhUGowHT6RQrIE1T5yI3m1FVFdoYsiLHC3yUMTQ6\nXZR2Tl3D8YSz4QgA4QUcn57T728yTRKuXb2B1pbpdM7J4THZssBqePv1t9nd3mM6GHN6dMLbb7zF\nnRt32GhtcnJwxpf/4CuEQdPt2CsNBnRdeKX1sfXvqwUcLfGFJCkyVFoRmIDR8JzpZIAXdmht3eIP\nv/Q6GEulFYU2XOr22JU+DcD4EqMqvFXX5HssjaIXNxDAabXEEx6+FyFlgBcE5EYRIGjgcZZMiaIG\nubH4SAprWKgczw9r4UtAmpdUgSTwQjZEg+3uBoUqiQtDUIcphJUgCHzeuH+PlgmwwuPNwTmJVUjf\nI5Y+u40Gr7z3ZarSMBhNeOvuQzIB/++vf5pklFFMHDGhGXZQhcHXPrIUyHJF5BJQ1K5ZuanJhDiI\nWQmngX/CxEOUHrYyNH2PYuqkiLYqEQZaDcHGBpQZdJot0nmKKTx8HSC1xFMBsqp1zzWJS5YCcntR\n/DP3f1J7a5KX23DV3Z/20JWhKkpQGlNpTFkhlcFfQ9019G0MVjlVglF2TeRaeSxcdJ4XdpRrzbE2\n66LJE0StC9KWXl9n9B+RDq1mvfWx+r8nO/F3FeMnNMVfKyDC/W6p3ED+XTPf1XOu58joi8sfmTFL\nKcEoxKpZ0eUaqr6ArDW+kHjCx6CZ5Qm//lufJpsVnJ+d8eCdB1+zHn7dIeswaIKGXnuDZZaxvbnF\n+XBAo9EgbISUZekkDZMZvXaPOI5J5kPOBqd4oc83fuKbXXReWdFrdwBJLiStjR4PHrxDELgZcbPd\nobux6Uwxaqg68EOMtgwHozX0HMexs9Pc2qDSJdZqNvrd9QL7iU98gq++8TrJdEYym9Nud939mg1m\ns4Rmo4u1liLXeFHAdD6l0+/XcAl88H0v02i0iKKYg6MjtnZ2ieaOqTufGoqs4NqVqwyHQ5qdLrPZ\njIODIzqdDt3eBpubfQqj+JZv+WakgCw1KCPxA49v/ZOfIGxCgSFoeWg15Zd+5u9wVi75/v/yh9jb\n6KGWJRJLaRZ4WtH2LL4uMGkKwPnonF/91Z9nt9Pk+u41ru9eZe/yNQhjSBVqlOM3N1neO2D/3kNe\nePY9DB+fuK5SeGTjhHbPZ3aWEIcR42FCJNuIIic5S/nlz/4ao/MReZpz585tosvbeManUoY0WZAs\ncuK4yae/+CX8MCBdusKVpEuM57MoK+aTETQaqCzF+gGXL1+GUmHy0lnYVQpwJKLleI4oY8IoxEpY\nlAWlUTTDLovZgpKMZrvB9HzO3/+//xE7ly5TlRoPH4NFeh4IgW/BVhbfA6vd38mPIAhDPveZ3+f5\n9z7HIl2S6wV3797l5fd9gKPTIXiCBw/3uX77OV57+z7tXo71Y4QMybOStBLIqMUsWbIsIVfQbLlz\nap6kyLDJaJ7SaHZZLFI8EzA6n6AqeHD0kEB6fOSDH2GZLLj75n0+/MH388ytZzk6OSNJEo6PT9GV\nodQlqiydc11VufQbtDO88TxUlWNksNaPCgSR8J35f2WIvQhfSsqyxCL54b/6P/Odn/zHGBR9JEul\n8T2PCgiFBB+aNdxbImhKHwOUWLaCliN/YRlPB+RVyY2dG4AhN4obvZ1ap3zRVTWFj1UKqxb4zSZF\nYPnMH/4+3/zBjyCBBYYmHkF7g9xWlKqgH8aMS8WLd56nSivuH+6zeXmbAMlOdwOL5uBkxGuvvcaH\nPvABLm1uc2WjwcQCNsBUpZMGAcUsJ9RQVR7micXbVI4oKvCc+5W1tUdzTbyqC9OKuAQaoy2eb8AP\naAQef/vH/yav/8E+H/zGGxw+KilKnx/8z/4kP/l//izXrjyNqbQrdOqiGK2wW0eOqq8WYLRB+hfR\nCSu50Mp3GyXwvRBroMo1Sgg6MiCqCqazCVFvB62XGKNpNCKyLEcSEMWCPM+QXlwXsopGo4VShrJU\nCKkJvQZGa4rCuS66OEwfpUuEEfgiRCmDkIFjIhvl7CwFXMi6nApYSLn2unZdtJvJrkaM68Js7NpD\nXAK6qgiDqCa2aTzfW8PSTk63CqoQa8h6XcRdpBRP7AUwbrdQd8mrj7ruoD25JtE9WeA9A9Yq8Hxn\nESp8Go0Gs3FC50qDPPhjnPb06quv8tEPf5TJZMKdO3d47c038H2fyWRCo9VyebBac/XyFXwhefTY\nRTJu72yxXC5J05QsX9KMYqg0Eo+DgwP2ruzRbjcd6avdcieGUnhe4JJ+hKDZcs5cYRiyXC7XOzwp\nXWycVpZnnnmG48MTWo0mT928xdtvv0231WY8GLKx1Wclcp9MJgRBSKUKpHAG9M1mk9lsRpqmWGvZ\n2myBJ5kvF9hFQqvVYjZzTk/9fotkVjCdTrl2/TJnZ2eYeg50+fJl0mVOGIZYC1VeMDMl03nFvCpJ\ndM6V/h5BCLPFgpP5kKjTQLFku7XLtbDFL/zE3+W3P/cb/Nq//EUaqkAoQTvyCY1BVAV+6NiCs/Ep\nG/4ms8UcRo85e+2I7c59fBux279Ex+8wOz/h7OEpLzz9PHpQcvfL93jpxffy8OE9rLIMDgd4WjBM\nM565fQcSy/H0kHv3TkiSJUVaoYXP4ek5z730IvM8RytLVijGsxmL41NOxhPwJNILKBaJCzYQklJI\nqrIiDhsUAlqeR3d7G6UrKl3RABZ5QeA59WMQNyjLkjzPKW1FVX8ZR5MRVig6Wy2KZcH2zhZUAs8G\nlFmOH9SOPVLi1axWoZ2GU1hXxIyuQPt40uOddx5w+7mbvPDie7j36C5HBwfMlzmVlxEEAScnJ/he\niPAkb771Fh/75j/F8dmEs1lKaSdkStDs7ZAsMjb3HKR1NppighxNgBERvtUEaLJlznK6wJaG2888\nzWw45eGDB3zLxz+BKitGgzGz8ZyTkxPKssSXQe3J60ha0vgXi4eog+orgRdKVOWMHRzGZ1wAfRCA\ndhF3RpbIIOTpZz/Iz/6LL/DvfecrgOuCJZDlFX4cgAJVry4Sl4YTWIGRLj4ylj7z+Zzd/i4WyFEI\nHJnISmcY5ANJpYgDH0XFdtggD+FxMuZKZ5OPffDDKO02Ai0kZ8ucvONx8M4DPvjs8/VMVTI4GzEd\njnjhmWeQgSAW8M7b+9y6c42rl7fotj9ONl8gY40HNAWYyifyQzxZs6bT2hu6cClHQtdLs5EIvdK/\nU8O4bpYorcAYd1sLzo9ZONcpXXkYAs7mJ7z49GW621Ck0Io8mh3Jl189YafXR2WpUzuYCB+FNR5a\nOa66ewHiXV2hZz0HYa8OAW6G66qMqRTCBFC5TZfve4S24nu/+7v4yJ/5Jv7tP/e9dDrOC2E2nNOI\nWxhjSbUiDBtYZD2j9inzAm2hEUd1PkBC6PmEXohnA5Q1NaHRFTUtrEtLMrUO25Ve0MblR2NqVrpw\nYjchXBhN7U1t63Sr1eE2I3bNdhZSEvjheg2/YEFfdNxSXqRKrdzB6j8kvGtC/YSuWLxbpuQkTu7D\ndVC3e6z6f11+shEoSsIwQBjB9sYGb959m/f0nkY2/hizrJ966inOR0O63S7Hx459NhqNuHbtmou5\ns5Z+v89wOOTRwT69niNFlXlBq9Xiq69+iV67w+bmJmmakpcZz77wLH7oYSnZ3tnACyFJZiyXS5Ik\nwfM8Ws02+/v7ax0axpAtl0SBTzOOSBdLrNIcHR054wttGA+GBJ7P3bfeZHd7i7Is6XRcuESz2STL\nMqTnkZcXi3BVVVy/cQOL891WRnM+POPo+JiDkyMqpWg0GpyfjhkPR1y5chmtodPrIn3fJaH5ISdn\nZ1SVYjgcIaWk12sSN7ruhBOKUhWcDUZsdtvEccxGr48XReAHdAi5BPyFj/0Jfug/+W5sOaUVgs7n\neKbEFAlSZwBEtuR0/5DB0YyzgxmyaiLLBvlYcXr3jOnDGXJi2Qg2GB4MObx7QKhjpscTslHO8cMz\nRsdTyoXCZIYy006/Gbdo9ze4evs2NEKWuuL6009TCokOQgbLJZ/7ylf5yjvvcP/kmNQalsqw0Ioc\nyK1gaSyl8NBBxFIpSiF49n0vU3mSRaVIawnCMEnIrGBelqRak5YVeVmiS0MoQkRl2Wp3iURAPi/Z\n6ezw6O199vq7iFLR8CI8K/Gtd3FBEliPAInUtbRB4yQQnodSiocPHvPVr75GWSqWyRylFG+/8SZ7\n2zsI69CX09NTXv7A+zk7HTCazGi12xyfnNBotTk6OUX6IUcnZwC0O10arQ7tXp/x2HmgH+wfMx2N\nyZcpT996iqosyZc5vU7feZUvMu6/dZ+jxyeYzND0muhcUaWKwAR4yplGyNLiK4nKFCpT+FrgKbnW\nrJpS4xmfQESo3LgiXjo41mQWXYX8D//jjzvXLWXIjeG8KNG+61aULzkdOOh9Nk3wlPOy8rDE+ORF\nRb/bI0Iyns8ZDkd4SEpVIXFzzVJr2oFPspgTeEHtyw4bjS4BUBqLkB4WJwdu93ocPjzg6VvP4gOL\nylDkOcJaruzuMT49J9KWEGg12qTzgrP9Mf2Gj6k8ppOE/cMlX/rShCqpKJeKxdR9L9549U03vzXe\nu2a3oqSey1JbVr77cgFts77ON5KqqOhiuL295WbWqaVIoBN5vP6Fd/jYy5f5yHvfQzWvnHVmCZQ+\norLO4lV7a1h6BV+vHt/NsM364iw/6+KicQY9hSIUEX4uiMuc7/qubyIMM770hX/E//SjP8RTV3tQ\nJVg9IU0HbHY3acddrCmxpcGr880xmjzNCGyDSPpEQUgU+BR56tjR2hHgPM9tJMBgqBy8a0VtWhIg\ntA8qwuioniHX7Oi6oLvbX3SvK2tPpRRlWaKKiizNWS6XFEVBlqfO8EaV75ImrQrxqhiLOiPdHTUt\nboWAuA9rXatWsqcVU/uPGoJcHG64Ln23LgRBwDLPeXD/ERsbGyTLxdesh1/3DjnNC7Y3tyi1Il06\nQlUUhMxmM5KlM/BYwRSr7OEscyzo5TLhpZdeQinFcDgkqhnV2hqSdEm748hiYegIYJ4XsLm5jed5\nTKdTwjhCV8oVUuvmtyuf670rl4niBqp0sXY3rl3jU5/6FDs7O2z2+y7JRxXIGn4YTsa0Wm3euX+X\n69duUpY5YCiKgmW64NqN63zyU7/B7qUrLmZys0+aZjQ7bUxlyJYpHl49fzbIwOe1N97k1q1beEFI\nI24xmyY89+Jl7j84ZzJL2NzZodFsomt4yWu2ODgd0ejFLLI5cRRhCSmqJW1PkXDCy7cv8ff+t7/O\nz/zcT/HwrbdQaUYUB5hqBtT+u2XJrJoTtiIOjo9J/ISO3yafZIzNiGeuPk06y1jMF1zZu8Tg+Jxu\n2EEoSa/ZJ/B8ehtOU2y9kFIK/EabyWBIKwq48dzTeDLk9jN38AIXbbYsFIPZHCF9ZovE8UZ0hScE\nGseW1tad5MYKjITCKJ55zwskRYGPpUwztoBp4kI7GnGMMNZBWMrlmKqswFjDssoJwohmt4MnG/zc\nz/08gXTSmTJ3GlphHbsazzkGaTTCA2MdySNsRmitkMpiA/dFfefeAz7xpz7B/f0HELT4tm/7dr78\n1j1OBnMuXX+a0XBC0ByRKgl+xDsPHzFLMi4LSX9ji+F0zvncjQ/wfEBgNMRRg/OzMbpQeCLkzq1r\nAORFTr/T5X0vvczR/jGD8xGLWebcyawkmztf9TiOMZVb5MIgdD7F1hk/eCJwhguVy3IVwkMbve6e\nhRLroAJwec5CeVy99SK/9blHfOxDN8nLitHxMc/cvoXRllkyZ2vTpT3t9Dt4wGA+5Wa3zxhoRgGZ\ngc9+4YvcfOoWVanxEbTiBufzORvdLovphKjRotvukhvNYuHey+5mnxiopNMA75+e0qpVF9vdPp1Q\nMkkVg8GARqtJr9VhqxMhTY+GdHSD7c0+zUjimwbD04k7ly9dRlqf3a0WKB9jQBi39pRphY0FkQzJ\nywxZpxtpbUF6WKWpGzYwtQ7WuMIi6hmpkI4trZG0Gy3iUmWRGZ8AACAASURBVPOt3/QeAuG6QmPh\ndB/8MmK8D9/44Q/z8K1zpuPMGVCQY4R0lpNPsoaNqSHeelEV638czOpdkJ6sEoRxQD5LKKnYanYo\nJo/pb8DwWBEI+NiHr/Kxj/4wvgf7+4pOx+dX/7/P8NXX7vKr//J1jA4RMiSOmjRbIYEfYo1HoQtG\nZ6f4oUcYNvEstJtdisJxOxqNNkppKiUwtd7ZzZIVVtT5ycJzddAaNM5YRKl6wGEuiqDWeh0K4XTK\nF0XRNSn1zFqsZr+Ocb2ClkXNmr6YSV8wxld9+JOc7iflUCsI/MJu8wmnNmvQOEe2Fdy9WMzZ67S5\n//Ah2dJlk3+t4+tekPf29piMxhRFQbfr5q9XrlxhNBnS7/fRWjOdTun1eowGQ6fp3dzk6OiIRiOi\n0WpijKGqKqbjCf1+n9FowKXLlxiNBoBkMh653Xj0/7P35kGXpmWZ5+95nnc923fOt2+5VmZWZi1U\nUQtFgSDVoISIODOA0qijtkNH0zHCzLQjI23PRHeroxIGyIhrD60tgXbjOIKCIkspVEEVtVBVWbkv\n376ffXv395k/nvOdrNJm6Ij5w4gJ3ogTX2ZV5recPOe53/u+r+t32Wxvb6N1xuTkJHsbexQ8Q6hy\nlEWtViMIAjzPIwkjgmE4vru6fPUqMzMzlMtl2u02lq2ItVFLA9i2zXA4ZGZ+zgRuZ5IwDFlcnOcw\n1OKe+15pCn7LdE+1Wo3BYEA4CFHSIggjkmYTaVtEScy5u85x+fJVmn6H+YUFRK554bmbHD1xjDTL\nzThcdKkuFYmTiKwfYvkOzVYd4Wjm/DlaUQfLFQzzgFSmuKT4wDt+4I18ycl46vGvUyoWSEOj7M0y\njSUlucwYxH3jwVMgHcnS0SMk7YhuNKDVaVFwC+zVD5ioVRiEAyxHkaOZmZ3FK7igJQe7++RRhm87\n9JttHKE4emyZervDsNuh3elw0GwhlWUUv1aOzDNytBlbqsOElRTHsXE8dyQmgWQIBdcjiWKkkmME\nYKvVouIVkHlGv93Fm6yipVFLRkFMaaKCqwSDYIhUNucvXkRIi1SnWK7CsiVJniGUNBm4SqJsi5zU\nHG6WBDl6w1sKLTSWJYmzGK9Y4Olnn0XYFgtH53j860/SDlKmF45w4dJlXnHvgzR7Ia1mk4P2Dqlw\nOXLsOGGUsdds0Y8yPN9MXXrDgH6QMohyk3E7zAl6Ea96xf3s7x5QnZggCAIarTaOvcvO3j47O3tG\nH6EssixDKUmhUDFZ3CLDsswNUJamSCnHzoaMQ0uLIEmi8eGVJAme65NE0ThNTWc5SR6iLI+PfvT3\neOSTv8hOvUGtNkWaQ1EJpooltDIHWgEIsoSpygSRhv1em2KpwqA74OFXP4DWZtiQjtSqs5UKic5Z\nmpqmpXND/c01nU6HI0eW2G02qNk+5XKB/W6bk7PzBAIKRZ9R0ja9wPDvF6YnDqe2aAHdIMFxberb\ndSZKs8RxgmUr5ufn+cIXvsTddz3AzRsNk8ik5Pj9X/JLpGGEVmYyko1j9xQ6yZBCGoRkfmjlGQEv\ncj0ChmACJoRA5IpMpDR3t/hf/sW/5oWVHV71mgW0NOK6XrNF4cwRvvd77uLnP/hh5ueX0VkGUqBJ\nMN/SS+w+Y9TtqPAfRiGOCrWQAjnyhOdpRtA3FjOpc2QW8Av/5l8yDODSpUsU/XsQQjO36LG60mSy\nMonnwz9+x2t5z0+8lva/+kmKZUhSCEK4cH6LMAhI44DjJ27HLVis3NxgYWGJdquH1oJ6s8mFCxeY\nmZnho7/+OwyGNgtzi0RBiONaIDS9nlndoQXDMDI3oQV39D7LIc8Ay3iLR5c2q+XxbvgwmtEU25eL\nsdI0G/9bOo6DPfKtv7Qg3+p6D4u5CbswNw3mTx0WYLgFfXm58nvUMR/mNgth/PHBkBcvr6EzmF9c\n+Jb18B+8IO/s7JDnOdXKxFhwNRj0GPT69HoD7r//fi5cuECr1WJxeYlms8nG1iZTU1P0+1329/eZ\nX1qk22pSm5pEKYWVO2ztbNPvBHQ6HZYXF6lOTrGxts6RI0cYDoc0Gg0sxzEdV5oxOzvH5YuXcH2X\nkydPslc/oFKeGBO+kiRhZnaWRqOB7bq4SqBch6mpaYBRB27g6Y5lo6SFJSGKInQcoYWk0+4yM7/A\n7t42J0+cMkq8go3vFwkHIceOLXH12hqLswuUdcbzz71AqVQgGkZmL6IBLfnqVx4jzmKE73L3g2ep\nVifpRl0s2+LmxhorBzeYPTLD1PQsluuQkZJL4yFu9lpUyjUc4fKjb/shHnrFOT7/2c9ysN0DTGiM\nJ11EmpAmEYmWWH6ZIAo4aOzjywKrW2u4mUUQDVHCYnKiyjAOKBVKlCo+dsUljCLSOOHZ57+J73j0\n+31Ktk3Q6XD9YpcUTdg3Wdi1YpGd3QNKymIYR5Qtm1TkZNp4AGOdovRoBChjXNsmzjMmXI88CNBK\nkkuBPSrIJcsi6nYpSJgoFoiGA9yiSxyl2CUf5TvEOqHbHZINLX739z/O9MwMtm8hC4qcFEsosBTa\ngszKEY7xTWILpDKdc65ylGuTyQRt5Shb4VfKBGnKME7JpUOru8+R285x+cY6fmGC9c0t2v0EbB/X\nKzA/u0xueXSDmDQDIR1G+GSGg5BhkpNniqnaJKXpAp5VYHN7m26jQ5ZlVCoV1lfXqdWmGITm7jvP\njJpUSomwFEEcjjuIMI4QQmDZI8FVmhjggVKjZB3jSQXG47aXKmiN8AYcW6EVXL+8QZqA0DmztTIu\nMIhTLMsgZMAw3ISyCPIMKS2mJ6qs7O4TByEztbK5+cmN8tctFU3XSU5fjAqYhqDXp1Qpc3NtnWbj\ngOP33U8nGOL7Ppaxt5KFEanjUm91mZ6qQAad5pDJiQLtfkyh7BDGKUibx772DX7gLW/FQTE9XeHi\npToPP/wQ1VKVjdUORd8njhgf4r7rYRKHIGXkxc3yke9UjKw/IxXxiNF1aIXRaYYQalwws3zAlF/j\nJ//FTzKI4MztCwwG0GnnXL50k9e//hVEGdg+YEcIMYoiJEVLgZK3vL/m68txwQCMgEu8ZESbmv0q\nYCYiSNIkp6BSdnZXeNPbzrBVj3nNw6/CdcBxob4XMVWZpFgyg5pWM8DGY6oiaPVTilWTQnbu9iWk\nBs8z9XB7p8OJEwt4nsVEqcbOzjbLSy733fdmjh93+EdvuJ+tvYBPffJTfO6zf43vF/F9nyTqEwxA\nYKOtHMcuIqU0gUBxgFDGh5znLx8/S0uZG/GxYOvlhZlDP3ZuJqCHN5mH0wUp9ZjgOFaCi1sq7CzL\nxgrtsS/58MkW/7lxNebcyjWpyLEQFAoFkjQxCFItX3IT8Pevf/Ad8iAImJqawvO88ZNVq9XwfZ9y\nscBn/uz/xrYVpVKBtbUVwiTEL/kcNA/wPAevWCDLczzPo9PpsL6+ysREGde1WViap9E8II5DU/Sr\nVXZ3d0nTlCCKabVaeK6PbY3G1HNzzMzM0m53kFLS6XQQQtBsNsnRhHFEoVSkVCkzCIZkWTbeeydJ\nMrJr2Sil6PU7zM7O4jlmrxIOA24/e4Zeu8V999zL9OQk7XaLLE7Y2dkiSiOefv48nUGHRqvOYNBj\naXmeyWqFe++5i+tXL1OpGIrZ/fffz/LyMq966D5WVm+Mc5UBpqcnWVxc5OiJkyQI0rhHM67TJGK9\n06ZUnkPjMOUssrW7zV3H7+Sfv/c9OL45hIVtkUqQtkSLjGHUZ3N7i4SUyzeusLG1wfnLL7LV2GGY\nBcwsTzN7dIa5ozNIX6CdHLfiEKuEoQ4ZpD122/ts7G4xTIZEacBg0OcVd57htqOLuBJOLM0jswSZ\nJXgC7DzDyzN8neOi8dDYeYaTZ6TdLiIKEcGQqWKB1vYOVpRgpTnp0FhUrCQl6ndIwwFh1MPyBMWy\nj1O0CfKAUIcUJ4vstw74tf/jw0zOTSI9EI4mlwmZTMlUgrYz87ByEkJylYMNiczJ7Ixc5WQyQ1tg\neTbagihNSBGkwubytVWOnTxLbxBRnZoFy+Gg2cUvVygWTciEXyzT7fbp94foXBCFhqsOUC5XcB2f\n+flFdG6SplZXVzk4OGB+fp48y9hYX+fhhx/m0qVLRNGtsJPDsViW5mY3G8dj7rocQfzTNMWSCtt2\nRwHuJhReSkmWjELatSAOQ7TWWFJhSYWSkuEwpFDwuOP2e/nCXz5F0XURudnx2lLiSkWnN5q65JoI\nQSxN0tPVG2v0mm3uPHGUIAgpKUXVtim7rgGwKoFWFiKDmpD0IqMXOTZRYXFhgYfuu59eqnH9AhXb\npZ5nCAEzngsaXKU4OGjhKKjVCnS7EWmaEwaaWsUnTeCH/pu3sru7g+tLdndTdAazk1XCbsDizBxp\nnBGHMeHQjFvTKCUbkavy1OAkdZqP/bcGZSxMYlGamRzf3EQGCi2RjLy4IwJWe2efBx86R3HS0Pd6\nvYgkyrnzjlO0WiEZ4JfgzrvvwPYUmhQlrNHo+9YDDjnPhqWstSYX6ZjTfMhsPhR1SQ06zUzj0z7g\ns3/xSVa2YvrDgCwKKZbAVuC5gmIZojgjCo2uBylotSMTt5hDnllUyrC/u0WlBKUKTEyWaLZa9PtD\n2r0GZ84usjBf4egRh0sXt6nUBFOTCT/xT97Ktav/kS9++eP8x0/9Oucv/gF//J8+wmf/6t/xiT/6\nTcK4SZYnDMKRN/wQjH6475WaQ470mLyFEQ8KIUyghTAj8ENF9eGV5xDHxrplphejNKdRt31YNA+7\n5Jdan15qkXq5DeslHbK+JQ8bW7iUJMrM6yWJvzXL+h+8IE9PTzMYDFhfXzcF0vPY3t6mUCiQRjHn\nzp1Da83+/j5esWBsF1oblnWasLC4yObmJgf1OsMo5J577hlRvXqkWcjCwgxTs1OjnS7Mzy2gpIVj\nu8wvLo4SpVyKxSJBYMRYQRSRpTmtRoM0TTly5BgnT54izlKUY3PQbIxTR+LY5AiXy2Usy0JKSavV\nwnVdpmqTTE9PE0ZDZqenaDdbDHp9dre3ONjbpeD5dLtdKtUJesGQk6dOMDs3RxBHDII+SRLR6bRZ\nX183o/1Wi2HQp9VqUa1WiJMBR44cYWVllU67RxRFWJZFu93m2tUbbO9uoixYb2zTJsL1KghcXIp4\nlDg6f4qEGEtmfPDnfwaA3XoD4UisogJPk9uaTCbc2LxOvbNPvbvH7Xed5pUP3sPDr381iUzAFQhH\nkKoMy1e0Bk3CPODmxg229rfZPtjCLTkkpGiZUZ4sMTs7zUS1SKVS4rlnnyXs9ZBpip3nFG2JKwSu\nUDiAk2vsVGOnGQ6SsNvHtyyyIGDl8mV0kmChDbcasATkeUIQD5AKkjQClVOYKDCIB5RqJS5cusTT\n33yWhaOLxDoBG3KRkIscbIl0BZYjsCyQNihbIS1hHrYmVynCwUSyKU2cxViOTZKlpFlOkktyafPi\n5ats7zfodIf0hwF+scjOzh43bq5SKpW5evU6YZQwGIaEcUI68mUCNBot0jQfOwTa7TZRFKEQhEHA\n4uIiZ8+e5emnn8ZRFq5lm9SxNIZM41oO5Dm9Xg8pLFzbM4pVjFbABCfIW9OXDJSyjXBGCyxlQ266\nZ0uaTiRPs1FIi02zUYfM4c8//dcsTU1jSQijGMuSBGlGbSR4zIQgyRNKSA7SjDO3HeMVd5xha2uP\nOd+jCKBzXNsygq7RI84zYsBzXaL+kIGGtbU1Xrh2g2GasrK3Z0SPsabbC9nrRcSpplYucnymxpce\n/QqZhmEUMgiGtFot1q7v0an3GQ7hzOkFWo2Ag4M6vusS9SAa9vA98zzpLB+LZ5Ww0ImBYygDKh4V\nYA25MBjLUXFWqJHwj3ER1tmICZ2BLRVxr8/pM1NUqrCz2cKWLkVfkqY5Snisr+7RbsN3P/LdJGmM\nrTSSBEkyBlAcPuQoT8kUfbPvzEg4BF3cUhUfEq8SkjxGpDEvPn8e4Thsrjdo7HcYDqDTjkHbHDT6\nZLkiyaE2M0+YgFd0mZnx2N0PmZ4ts7XT5OydS0QZNJpDjpxSKMfloLGP7dqkOUxMlHn+uTXuvGOR\n9ZubnDwxRdDrsrWZcuPaCp4Lz35zDc/VuB6cOOXxi//7zzMYtlHKZCIfqqStUdiHlBJpjSxQ4hYa\n07Ksv+dBfunP/tLimozsZGbEPOJpi1EhP8y5N3+RzKDDx4X9Zb7lv1egX15WkyQhFZrq1DQHB3Va\nrda3rIf/4AU5CfoUfY9SqYDr2kRRwGAw4ObNmzQ7ber1Ou1mi4Lns7O5hdRQq0xQq5TRpKRJxESl\nQq1aodNrsLm3yer6GrXaJPu7e5w9fZal+SMEUYpTKBDrzPhFw5CpSpVGo0EQhSNFnqEpeY6Rzp+4\n7TbCMGQw6NFqNei1O6RRSpJkFIsloijG8wwM3/cNeCEYRji2R6lYodvvUK/XKbpllpeXyWLN/Pwi\n84tHcNyieQFJRb/V4czJE7iuzUS1iOc52MpislLGsRWzczW8skNpsoDlO5w4dQTLdWg0WlRrNTa3\nN3nsscfY29tjc2WDpdmj3H/nK4mGGUMds99sIlJB2a2hM+inAQEprXTIyuCAp66eJx91Tx//rX/H\nP/3vfoqtgz12W02Kk2X8mgeujT2hSG0IRcTl9Ss88c2vs9usc/XaJda7qwSyz+r2Bls7G/SjPtfW\nr2MVbfzJIr2szzDvoO0Er+Kw09xma3+LhIhcRDi+pDpVQqoMIXIcLXAAO8tw0Fh5iqM1dpbgpjlq\nmOCn0NjcQUQRYafDoNMEICWhG/XJRE4vHdCJ+3TiHmGekinBC5cv8enPf45eMiTWCV7JRniC1Nbg\nCqQjEbYktTJyWxvXiRqNq22J7dpmROZIsHK0laOVINGQSY9U21i2R5TlxLlgEMQEYUKlOk1/GJNL\nC7c4AcpFSJsgTBDKgCss5ZAc3uylxmbVaLTojGhzWptwhjCJOf/iBbq9PmGckItD9KVFsVhEWJJO\nv0ucJbi+T65H4kUpzVrFsTiEM2RZRpyl45vdJIrJ83z8e3JtxF06RwlG3tKEiWKBftjmxYs3sIF+\nmOO4DrHW2JbxJAO0o4ApaVTSFUuxs1MnCjJOLs0RY1jXwzwnBp69dt0ot6MY4drsd7sUBCxNTtDr\nD7nn9ClOHjuO59kszM0wyFO0Z6GVoh+n7Ozs0OkNGaQZD7zyAWwJjutiK8nMZJVjt80xNVPi6tUV\nrlw5MAdsKrlw/iKPPfYYR4/NMhwkFIpmEjY5ZcIlkii+dRhnhmAltYTDxKTDwjxKP8pT0KPMZCUE\nSarRQYqlJDOVIve96hTDBFZudplfqNFthRTKkuq0xJ6AKDX76B//ideytbWOVilh0MP4m42VBzSo\nnFxkaJmTk4HUpPolgQ4j/sHhJaXEQlOwyvzX/9Vbue3cIihYOHIU1y1yUO/RG5rJyFSlRNEFz4XB\nMCTNNfVmn+4gxfddPAfCGG5s1MGBTj/hmW+0yNOQUqlAt9ujWoVOL2Fh/hiXLnZZXj5GYz8mCEPW\nttdxijZbezvUpmqgcpqNLcJeyB13LvGpT/8e3bCO63koxybTKYPACB7VCLxhWaMMdDmyG0lJxq3R\ntdkDm5Ciw9e+EIpcCqw8H6VUmRuWIErIspQ0T0zWtXJQwoLRTl4KaxzaAby8c0ajxShIhHTkVRdo\nzA1CniVI2+a5568wNzP3LevhP3hBTrOYg4M9KhWTIxyGIcVikaPHjyEthet7lEolWq0Wk9UaSila\nrRbr6+scWz7Cpz/9aYrFInmec9vJk7iezczMNBsbWywvH+Xq1eusra3heZ4hb4UBfqnI9NQk66tr\nI470HM12mzvvvotBr89wOKRSnSCOY6amppibm6NxUMeyjHfShFdAtTqJYxsuabfbxfM8pJScO3du\nPH7vdMxudnNti2qtwsLCAtPTNY4cWURIjes6nLrtBO1GkzxL6HbbFIrGHjMYBJw8eRxlCXzPYX9/\nl0qlxNbWDt1uF6UUmxsbzM7O0u33EEJxx9k7ae7V2Vzd5sjCIoNhj3gYEAUxFi6pEAxFTkBOXydM\nFefoxTEV26RWWcCR+SV+5zf/A7/1ex/l4Tfcy/EziyhPU65O0Q26rGysc/HGZTIl6IcdBqqPFjn9\nJCIQEUNCwjym0WniV30ylSF9yTt+5J286fvfxOu/5/WU5qY4d/+9fO35Z5hYmCWUMYM8QPjSBM57\nObkP2gFssGyFrcCRApuMLBqilPFRtntthK0JU2NREY6kPFnCKjkoT9FP+rSGXQZJwOe+8Hm++sTj\nKM9GuRbCEabTtTTSkeQ2aCs3BdgSaAuwBcKRCEeQSzPC1hbmEHAU2pJIyyJIclOUhSLOBcJyQFhk\nKGKt2d49QEijUM20IBMWtuuTjPi9eZ6TvERoogUIZcbNRlsxMK+vO+6gWq1x/OQJVlZWxnvONL0F\nOegPB2itsW17PLJzXXeElDWPw27Ctm0cZQp5HMfjv+OOPoI5yJMR5CIcDPFsx9yshoGJMcyhF0Um\nfnFEgG72zcja8/zDeBL6/ZAkzyj4iv12Gw8DC7GVRWMYsbiwTJiZ94WHYLZSIdaabppSLBfo55rL\nl68ggHazhVCSJM5HX8dBKcV0tQCZEa8dtBLWVneYma3iuZLLVw8YDnMW5mcRWlIuuEghmChXeOSR\n7yIModvs0+10TFRmeMg6lqRRiimI3ApDyPVoBSDGgrexVSYzAsU4TZmaMAJVhxwRHfCrH/o5+v0+\np85UaHYDhknAlesN/varz9PtJ9Tr++zvbPPNb17lta9/FVKCXyyQZQlZ/pJHdlicAZEj5K1kpL+7\n+zy88jxHSgVZztLSFOEwNHZQ28J1PfqDgEajjcih2QwYBjlTUyUsJahWS8jR6+Yv/vxrWLZDuTbN\n7kFCvTmgVK4xDEMqtSpBEHDpcoO1tQ2anTau6zIcmlWf7dkcO3GUyZkpvKLJGAijgFqtimc7zM5V\ncP2Mz/3lvyeINkFkuI5pVg5/hkMLk2VZCKnJssQIwAA9YksL5MvG1S/99WFttT2XKErwHGukn5Ao\nZY2FYLk2wSZ5lpiPLwm1GH8fhzxzaVwRh19fYoRhlmUR55pLV28waA2+ZT38tgU5CALe//7386M/\n+qO8853v5NFHH2VnZ4cf+7Ef493vfjfvf//7x2Pbz3zmM7z97W/nne98J5/61Ke+3ac2T4rOyXVK\nr9dDKPOiQ5q97ZHjR3B8I7zyCj7LR4+QZRme5zAzM0Oj0eR1r3kdWZxRq9VYXl4mHEYMegNKhSJZ\nKrBdH4Fk2DOj3vXVNRr7BxwcHBjBSpbTajQ5duwYFy9eJE4Tmu02cRzT7nboDfq0ux20kOP85cPi\nG4Wmqwajsv7CF77A9PQ0V69epdPp0Gp1qNVqTE5OMbswT5pl3Fi5zjdfeIHNnR36/T6+77O9u4Pt\nKJSSHDu2jFKKO++8k5WVFQ4OGvR7Q7rdDjPTk0xM+Jw+vUCeG6GZ4zgsLy7zA9//NnqdHteu3WBm\neo6FhQW219eI+iF3veJe82bIYyKhCJEMsSjZ8wTAPXfdO0LvG2xcLjKSrEGme7zuTa/kh97zNv7N\nr/0s973+LO2oi1UOcctwc/0quDmxiEmzDLfgY1dsYjvn5tYqU0dm6CUDrJLD5EKNeq/B3z75OB/7\nvd9iv3XAC1dexCm6DPPQjMZVguVrhJXg+ICTUyzZFIsujqdwXInyFMJRCFfgFBTS0zR7dYZpQHNQ\nB0AUJalKsEs2iZ2RypyJ2Rp4glSlhHlMbqfkTobwQHgS7WQIH7BztAPSV0hXIVwFLmBppKvQriRX\nGqdgk5AhbCMoy0dZ06lWZMIiRZJrB2n7aGUTJpBjMQgTsx+VFkmW0hsMyTMjrkIYYdXhXbjgltDE\nIFwVnuexublJo9Hg+vXrZDof2wKFZVTQw+EQpRSlUoksy0ZwBk2SJGP19OF7+/C1q5RNEARY0uzT\nGIm4siQdHTzGNpJkOZYzgrREGVESE0QhZsptpgSphoPBkELJjKwHkWa7H6IBv+hxdGmOeqPHZLVK\nD1PA+2nOsD+gXDIJaQoYBGbN5ArBIIl49tJFNna2afW65JhR4MHePkrnxMOAlRs3qFYqbO+0qLiC\nWrVCu9XlzjtP0O1EPPPMVbSW7O/u8egXv0S1UqHd7BEOA44fO8nm5h6bWx329/eJgxgBXLl01RxU\nGdjKMelH2UssqqOxtdkbv/SQzo3SNtekpPS7HVxP0tpf53Of+U0kA06cLNHpw8rmPqWJGpcuX+VV\nD95Dq9Wi02tTLLksztd44MEzZFlGGIYI0tEY14ympTB+WVOITNcspB6nERm1tUnJMu/vHMfzUI7F\n8vIi/W7El77wZYrFIo5jsbW1RZamlMtFgiBnetYnDDVawjCEOIZuN+Xppy/wXY+8htpMiTjJuHx5\nlcrEFN1uG79Y4PyFF5mem2V7b5e5+XkmJ6t0+32EUlQmfbZ3t0l1xiAYMjExwaVLl8aN18HBAUrk\nHF1yCYMdnnzq4/zcz/0zmq09hDUCtehbYttcpy+rKVKKcTd8WIDNr63xXlgKA6lBKpLUkMZ8W5Bm\nQ8LAMOWlpcbPoSQ1qnRtKGxmN60wJdQ8hDb/HWUhhBolXZnn3nVdciRf/PJX2F3b+Zb18NsW5Ecf\nfZS77rqLT3ziE3zkIx/hl3/5l/noRz/Ku9/9bj75yU9y7Ngx/uRP/oThcMjHPvYxfv/3f58//MM/\n5A/+4A9ot9vf7tOT5zmlUpFWt0m9XifLEsIkZH5pnt39vdF7IcMvFdnY2DB+MscmzlIc2wjB0jRl\nY3WNZqNFlhlLU6FQYmVtDc/zDf1qeZnBYIDneXTbnRHkQzExMTHuem3bplarUS6XGQwG1GpTKGXT\n6fToDQcMoxDbc0es15RSqcTCwhIA7U6HO++8k06nQxCbtKdSqcLC/BJBHJk3eRJRbxygdcb5F7+J\nV3CJs4i5uVnCMGBvb496o0k0HGDbNjMzc+ZAzWImE8RTDwAAIABJREFUJyfJ84x2q8Olyyt0u20u\nX7g4LvydZoejS8d58JXnGHQHPPfUs5w9czuz0zNc+OZ5Q9mRCi0kWvk04hbDZMBus06WpPQTc1cf\n4aFVCa0kyAREGVQGFcmpe+f57c/9Fv/zv/5p3vC9d1OagecuPo2wPY4dX6Q6VaDV2qHR2mdyYYq9\n1gGFySKZldCLe3zpsS/RGLQpzUzyxDNP8Pz5ZwiSPnvNTTIZoe0EYadYbo5lgesJLEsgbLB8hXQU\n+BLt5ggnBzsjkxnbjW029jeojghXje4+oUzoZ0MmF6Yoz1Vxyi6/8pEPERETywTpKyxPIV0BnkB5\nFtIZFWEHhAPYxl+sLY1wcnKVgGWEXZk0O+RMp2ghQTqgXIZxSjLqfnNpkQmFUO7IO62wHJdBEBKn\nGVGSY9kOyrYQqJE1iVsFVogx6OCwu1VKEYah0VR43ribPRS3JEk07oajKHqJSlSMk2+01liWNV63\nBEEw1h8cds+jI+bWiG8EJ9RakCc5cZQy6EcIDCdAaJiseDQO2khpXAejYSKdQYCyXKIIuqOOszxR\nJgHqvQFffezrBHFEseSTA51en2YwpOh6KOBLX/8ajz/9De4+dwcTtSq333GWIIlRyubI/Dy+a2Er\nhWs7XHrxIrbyuLK6zbPPvkixWGQYgs5tjh07RrFQ5tyZBd76lh/AVhbVSplSqYQQgms3VojTnJmZ\nGePBTnK6LWNrzJKcNErN/njEdNZZbpS9WYbQxgZ1GIxg4p5GlCogy2NKBZtawSGKNc12gzCEzY0U\n1ykRhDA/v0C3lzBRq3Lq1CmOLE9z/foFfuidb2ZrZ9vQ6qRGk5Dn6fih9a07BJ2no+ShkapYaqS6\n5aM9XFH0+30e/9pjtNttvv/738KFF18wYr4cir6Ha9u4Bcnmdp9CSdHra4bBgCyFSxdvcubcObZ3\nD5iahms3blKbmibJUtY2VnGKLoVikVanZdLuOk2GQYRfLNDpdekMQu689y7COEApwdXrV3jgwftw\nXZva9BS12UmSPGN/v8lE2WV9tcHDrz3Ff/jj36A7MDVFSolQhhCXjbrVQ6W0mQgZ4pv5oW95j00R\nNeK2zKz3CYKAgufxg2/5Xm4/e5xMDilUXII4JM2Maj7TZgoC8lC79/cZ2PowPcsou2WmUULjOg5Z\nlKFRHLntFN947JlvWQ+/bUF+y1vewnve8x7AWJTm5uZ48skneeMb3wjAI488wte//nWef/557r77\nbsrlMp7ncd999/Hss89+u0+P4zisr29Qq9WQUo4hBqZITmHb9mh3liHtEXZSa06dOonneaNkppSz\nZ8+yu72Noyx8v0ir2WFpaYnNzU2OHTvG1atXKRaLnD59mqWlJU6fPgNAvV6nOlmj2+8d5m6Zu5mR\n3SnOUmrTRgU+RrQJweQIetAbmDes7/uUKsVRhGSZYqXMwsICzWaTNE1xXJcoibn9jtvpdJvcXL2J\n59vs7++yubWOsgSOY7Gzs8P09DTnX3yetY1VWq0W/X6f1ZvXCfoD0jShXC5QrpRYWlpCaMmg2+PJ\nJ79BMAh5+qnLTJTKxjOqzYEyv7jAYNBHIumnCYM8QTplpF2lVJrGs6cQllkZxJnp5OrtJvvtNikD\n0JOQS46ePgY0cebh9T/4Ov77D/0MH/rT36He3eTZlfO4NYechK36Fo8/9Tja0gziAZ2wSz8dIn1F\npjIyK8cqK1IvR1YUmZuR+ZDZORRtYjuDsgtFh9jTWBMu9oSHKEqwwSk5CE8S64hEJmzsb7FwdIF+\nakZB1bkabsnhoFsnyCJmF2f5889/lvJkGW1rlCvHRVd5EstTJuBq9HvlWShXIi2wHIFytBltWxot\nDYUnI8P2bRIgRRAkGsstIpVHEGk0ilSbYJw0y1GOS5QkhHGKZftIy0VZDkGckGmJUBbCslDSZhCM\nQjLQYzBOGEQ4jkO/PySKIsoTE+PO93BKE8exGTW79rh7OBSEAWO/vum2YqIoIs9zfMc1RX00kraE\nMiNNXiKEyfVYUCalRJDjOOaGuFqZ4GtffQ4JVApFhv0EpBorTYtF4/Vv1g9GsARQCq6tbuJ5BV77\nXQ8ThSGWbdNqtamVS2jbELha3T5nzt7OqVOnkBj7UZZlXLhwgSPTU3R6Q26urNPv91lcXOS2M7ez\nu7tLpVjF9112dnZIU83UlGRjfQsJpCk0m01sJVhbWTMM/DznwfseQKEIhyF5phG5pNs2KyepJeSQ\nxxmkmSm4+a0EoJcVRxinE2ltkKFa5Mg04Ld/69eoLQpEUdHoRmxtXefIwhT9bp3TZ44zCLo8/vhX\nzb50kFApeFSrQG6AR1JKA6sR2UhpnY2KbTriMh8iIfXowajQJqPXgFEXF4s+d911x/gcM+AMQbFQ\noOAWaDa7IMGyPYI0Z2trxzATgpwjyyeIohDfd7l6fcDszBxB0OMrX/kyZ8+epV6vk6Qx1WqFQtGj\nXJ0wq7MsoVKb4OKlS4Yv0e2wX9+jWquws7+Dsi3WN9doD1o0Wx2kcrl6ZRXf9vGLgN3ive/7MfNz\niBRhCbQU46nSGPjxEtvSS4Vc+UigaPbPRrwlNThSoeOAybLLT7/vJ/nEH/0GewfXKZYdtBRoYaGx\nyLQC6XxLQdfhpfNbqm5bWWaSoSGKEnbqLT71p5/9lvXwv3iH/K53vYuf+Zmf4YMf/CBBEIy9ilNT\nUxwcHFCv18f/uACTk5McHBx8289bKJUoVcr0ugPm5uaI4xhHWZTLxdG4zAgU1IjiY6xFit3d3XH0\nYpZlPPXUU/i+z+nTZ1i7ucbk5BQT5Qqvec1rKBaL40jGOI5xfc9wsoGJWpXa9BSPPfYYQRAwGIFB\nhBD0BgFoyWAY0hhlIwdBQJIkbG9vE6fRWDEnldkZp7kRUlSrkwwCQ+KSyuw5/ZKPZUl2d3d58IH7\nuHrjKm7BQTkC27NxPZuFhTmkEpT8AsePH8d1bZIwIAgCrly9xIWL53nxxReZqk4wNzOLZVlcuXKN\nO26/k/Pnz9PvDli5cRNLCjqdDi+8cJ6Z6rQZsecJnlVAS4fdsMVe2qKbZqwO20TC2GWKagGXKarV\nJWrVJSxOgiijpYvlTNBp7kLRpR0HUNAgD3jP//A2/vEH3svx+05TT5o0gibl2SJ2WRLpIW7ZIlUx\nuZ1jly2kC7FMsUouUZ5g+Q6Wo1AFm1Tm2NUisiBQTo5Ttci9mMwO0V6G40NCCCMBlrbBLjpc27ph\n9s1AoVbAqbgMsyF/8ud/yqNf+wpX167jlDywBVZJIRyBVbSNiMsV2AULt+Te2ivb2nTIVo6wJcKC\nTJrdsvIshK1INEjbI84k0i4QRBqUT5oLhmFKkkGaS7JcgrBB2CRZRpprkjQnx6g34yQjSjLQBhd5\nKFTJc4wFSstbUA4AZRShh6siy7JI84w4Dsc3k1EUYds2+cgSeKhCdV13rEY9PDTMTnEkWMpvwQ4O\nlaiHl6MspBBkUUgSDcmSCM8rMBgEnDhygsZel5mSTalgo6Rgdd90MwVHsLu/w9GlGaaKLt3egH4Q\nMze/wPbOLgnm4KraFr1eh639A7rdLtc219CewlGSEwvLaMBTislqhXvuuYdGEBNnKfPLS0zPzhjs\nprDotHv82Z99hkLRpzY5wdrKGraATrPN7vYOUQRBEFGpGIhMr9ejMNJ/CCFwLRdLWDjKpnlghIJC\ni1FXfIhwNArmLDPdqnn+DJLREoZ3nOocLcBXAs+TNOsbnDhTY78DcSaoNxocP36M+sEBjiMZDAY0\nGg28okcUBTzxxBPce8/dfOPrX+cjH/slHN8a7y9NAZUv64KVMjtjYSj4hhamzY750C6rlEBnGeGw\nSxQHHDlms7m5RblcZH1jhZmpaXq9HuWJMtdv7jKzaPH8+cv0gx6kAiXN6yMIB+a5cgqkacrW9jp3\n3X2Ofr9PtVJmenqSZqtOFAU4I35/p9MxMB5LESVGJFcoFMi15vZzZwnigIXlOSxHsbK2yt5Om3vv\nuY9ypcDlS9c4cmSGd/zQd5lzamLEC7DkuPAC43+HTB9awEYBG9rsk19aOE1ssUAJScm28X1Jwc8Z\nDLb44qN/ypu+5yH6gwOkyshGtleh5Ms648OiLkZAGKnBGj1HUphJVBzHhIMhw36PervFL33ow9+y\nHgr9/+ZS/jvXpUuX+Nmf/VkODg544oknAGND+MAHPsCP/MiPcP78eT74wQ8C8OEPf5jFxUV++Id/\n+L/003/n+s71nes713eu71z/v77uPv0vOX/tF/+z/+/bkrpefPFFpqamWFhY4Ny5c6NxR5EwDPE8\nj729PWZnZ5mdnaVer4//3v7+Pvfee++3/ea+/FePjQRaDbIkplgsIpUZZXe7XSYmJqjX6ziOQ6PV\npDY1hdYav1ig3+1x6dIVzpwx4+fl5WV6vR5pIigUSmxsrFGbqDAxMcHewQGz8/MIDaurq1jCYm5u\nBttz6Q8HZFmGbzkM+wP29vY4deZ2BlFMlBjVqSWVgXUsLtLYP2BiYoLPfO6zvPa1r+WRN93Pk1+7\nguv6bG7ssLCwQKvR5PTtZ7h2fZXV9U1Onz5NlicMh30mSmUajYbJWK5M0O30efrpZzh37hyVShVl\nOdi2y7WrNwmHAa98xSvJcyMMuHT1CkePH6PZbvPkU0+T6Jza3AyFWomEiGOnl6jNl5G+TWPYYbW+\nyjee/wb3v/p+brvtBK7jEOqQSRx8kRHHbVxHkwZ7vM5/M9ejRxFOHT+PqaicEmWMMSUCLHTaRlgd\n4qCL40+Q9+tI/whaFci1g8oOaK5fJ2wV+dhv/C629JFaEoYxOgPXVvR6LXqBMc8XbQMiCAL47jc+\nxNv/+T8BmYNtE7fb2NUSIozo7nSoHL+Dn3r4HVRLFZTIsW0baZtpiu0IHnr1fbzmp/+EK3/8HoY6\n5dLla7z44gtIy0YLgVN0SMmNOtuWCKWMVUKBsiVaaFAjdbPQoCQ5GnFopRDS0A+lJMNQtXLlEiaC\nBIs4N0CQXFpk2mYQxEivjJYOKZJUK+LcfEy1AMtFS5dhnCEdjygRYDkM44xr/9uvcvIX/i3Sckni\nDJFqlJboVJqA+ZFoNk9T0jihUCiRp5lJMssFjuMRh2afbCmbJIqwpD2Gg/ASLrAa7YHzNBslFOUj\ngYowdh9turA8zah4PivXL/I3j/4BD732x5mcO0JJhHzswx+gPOuwtrvGbWfuxnUEG2t7vO3kHF9u\n9dnb2eXOO05x8cpNauUKi4vTZBo2NnYpFH2OTU1wZWcTv1LhytWrLMzMstPc58SJExAl1KanaPT7\ndNptTiwvs7G+ie8VmZud5frKTbrdPlEvYv3mNvWdOu/9pz/F6voN9nYbnDh6G7cdm+J3f/uTLMzM\nc+rsabJMEA8HVItlPMen3WiytLSEpTye/cYmF19cw3Mn+Ku//BLPf+P9zC/+ryYfOEvNymKUKJTr\ndMSTzl423k9Ho2Nb5JR9j7d/33dz7t4ljtxWolNv8cgbX80Xv/oMveEAv1il2zUs+XO338bm7gb3\n3nsvf/T7n+TY/CKdYZdXvPphfuPX/4wL37xGEAQjla9EoEb400MbzmEu46GgSZJrMXJk/AoLix/A\nyQXdfpv/9PFfonbM45tXrkKaUCsWWVo+Trs7QNkSq+DSHvS5eOkSd9x+lubONnffdRdOweXgYEA/\nitjb2+K20yd59plncCyLVz30AFeuXWayOsHRpWVurlwnRzI7v0Cr3TVC14kqruvS7rZoNutUaxXj\nFOl2KfglhsOQykQBnSdEvYRBL2RmZoooj+kHMe/6vqP8+7/YQORlfuq/fR+18iJZJhD5aIcunPFr\nGMASarxqNF2zSXBSmSYRmgnXZd4XvO8D72bq+ARZLKhOVnn2uWdotBssLh3Hdyf5my8/xR994v+i\nWJoaMbZvEb7AdMcSgZAZlmMEw0JJJILG7g6/+Au/xId+86Pkwf8HMMjTTz/Nxz/+ccDsW4fDIa95\nzWv4/Oc/D8Bf//Vf87rXvY577rmH8+fP0+12GQwGPPvsszzwwAPftiCfPH6ClRur6FSglItSNjoX\nhGHIiaPHsCwL3yti2S6LC8vGJ+x5OI5Ns9nkoYce5LnnnmV5eZF2u4vnlshzsweemprCc31ePH+B\n5YUl0iBifWWV6do0r33969jZN6N213WxbZt+YDJhJ6oGVqKVRbPdJcky+sMetqNYW1sjTnPWtnYp\nFCewHSOMyXLoDwa4nkWuE6q1MhcunKfTbXDX3WeJkhDHdc1BGRtNcx7n1Pf2sV2LyblJ4jRGCyOz\nf/rpJ7j7rjtwPJduMGCv3mB3d5+V6yt8/fGvMez3mZ6c4cF7H6RoFXjxmRf4nke+i9pEmSSIkRn0\nO13mp5f4R498L/eduwcRZtjYuKmPI2YItEQ4PjvNOkv+WQBm3EV04uKrGgedmCDp048GYAwbCEuD\nDomzGB02OWjsgRySZU2U7kMWUJmdYvH+e/hnP/teXv/W1/H2H38nzWGXTtzlzodu51d+91/zu3/5\nUX7n0x/hF3/jg/zK//mv+Ohf/BJv/8BPQ8WBoiQVEU4FhJvR2ruG53aAOrIMbglwUgZpF+lZpCpF\nWAkvXDBTG6qSLz39N9zYXkVbGtuTWCWF9lOciotT8ZG+IWupghrtlAVyJOQSHmYcrjRYilQIIm2K\nbiYdktxGywJxbhMmkkzYJFqhpQvSJc0tMi1RboE0g0wbD6MefcxzyKVNogVRloNQpJlASyMeEdJg\nLW+NpcUtdGWejuwtOWmWjHJr/bG+QetbHOMxx3eUg5zn5ibmcH+mEONDJEvScTE+FCwlSYQlJCLL\nyTPIdIYl4Qfe9N1kWc73ft8b8NwiBb/Cpcur9Ds9jsyd4GBzmzzR+COLyv5uA7dQ5vGvPs3c5CxL\nC9MkOXz5i19msmqoel0NllcmSFKK1QqFiSK1coWkGzA5Pcv6xhYbq2vcvHKNTn/AyaMnsD1Jq1Nn\nbm6Gs2dup9Nu8453/CDv+x9/ilavybAXcHRxmW6nRRDAm9/8Zt7whjeQRBHdVtNkoGuFzi3W1tZQ\nSvGVv30Cz/HxHBehoeAYW6PQ2WhHbBTMUjGiRhnW8t9FKNpSYQvIopCDjVXuf+got52e48qNGyyf\nPsmTz11GKMnk5DSnbztOt92m6Lv87d9+lWAYsrm6wvxMhWKlSK1WJQn63H7mKEEUkCQxljVSy0tN\nmh9CQF7CZZaH4iaJkoytWEIbDnV1ZoqbK1fZ2FpnfXONYtHH9gs4jkUcDvHLJXbqB+SJprG+y9G5\nBQqFMsJyaTZ6xMmQTveAYsXnyW98jXLJp+BZrFy9ykSlgOdYXL5ykThKWVxcpN/vY1kmSW/z5iqD\nfhff95G2haUcms0mpUqFmxsrHD9+hOs317l8dZN6q40mIssS+oOAnT0j9A2HLfqDdX77479Ko7lN\nkisspzCGhUgp0SIHKUh1Bmr0XCiT2Ca0udm2hdFe7NR3WZiZJhwmhGnE5u4uk9NzTM3MkuuIYbTP\nKx88xnvf9266wwZJGuDZIy+/YBRLaQIr4jQe/VpiC0XJ8/iuN7yB/+nnP0geGzLet7q+bUF+17ve\n9f8Q92ZBkq5pfd/v/dbc96y9qqur99N9Tk+fOeswMwcYQAdmhEAg5BhsYDwBEQ6EhMG6cCgCy9KF\nb6Qr2bIi5AiMjRSKICwGBATDMAJmPcycrU93n+6uqq49K7Ny37/9e33xZmX3DMb4xjEZUVER1RnV\nVVlffs/7PM////vT7Xb57Gc/yy/90i/xG7/xG/zKr/wKX/jCF/jsZz9Lv9/nJ37iJ0gkEvz6r/86\nn//85/nc5z7HL//yL5PNZv+mb8/R0QmFQmG++2o2m1iWRSqTptaoqxD3qWLW6rpOMplkOBrQaDSw\nbZvd3V1u377N6ekp+XyWbrfLxsYazfYZQteot5tcunqF3f09Gq0mmmmQL+V5//13yeUyFItFDEOf\nK1OPjo6wbRvHC0jZCZaWljg+PiYMfdLpFELELK1WkTIilUrN93hCKGapummCZSdIJNS/W5ZFMmXz\nZG8H31em+WQySRhH7B8dsr+/z2AwIlcsMJklXl177ga/959+j5WVJcLQnwtUSqUCi5UqC5UyWxc2\n6Hd7rC4v86NvvkmvMySTzuF7Ktps6vlMPZ9SrohNUuE9sUmZNsN4wFcefIthHKCX0uxFJwCMcChZ\nq3hxgvX8TWKyZOxLIG18OcKLhpy166QyFsIWLK6s8fY7X8PQs0jNA1vHSK0CguVrG/zgT/44Nz/+\nIv/mC/8z//o//iv+3j/4LMZCnlAfQ9IleXGduLCAtBOEwkUi8AUYVlIxBcMJhUoWa6WE1B3+7Z/+\nJk13SHGxTGGpyDjuctQ9oRmccv2TzwNw7VMf5b/7n/5HTto1EvkUkQUYAjOZwE5a2EkLYUIiaxJp\nESR0QhER6QJhmEhddbmhZhNIXXW9wsKNdbxQEGkWXgCB1JC6hePHhFLHDWNCdMJY4MdC+ZGlxA1j\nvChG6iYhAjORmBdnTTOIz4MAUGpmoT+9qRiGMRcPnSf7nMc9nqul41ne6/ku+Bwgcu6VnHcGs+fM\nM79nj/PnRVH0jF81RoiZDS6OiUIfUzeRsc9P/cynCWXM1rVL6LpOq9vBTqRot9vk81lc1+XDe/dV\nWAAQhj7ZjPKaFisZBiOXbrfLteduMBwOCVyP4XCCOUtNEmGM6/jo6Ni2iQHYCZOVlRUSiQS5dAYv\nUmAfMfMBe1OXT//oD3N8eMLjx3tomsby8jKO49Dtdmk02ty/f5+3336bVCqFruscHx7N1OYJFhYW\nefJkj5defFkR9cZjAs/nypUr89dQCDG74Us0TRLHwQy+8fQDlI3zXGBl2zYhI3Qrxo9ddcAejxhP\nJ7RaLU5OjnjyZIdWq04qbfHJNz5GFPjkszmEECwvLlAqFajVanzyjVc5a9YUxTBUWhWpWuNZPvJf\nxTqe226eLda6rpwpp/UzDg4OuHBhnURCwZB29vYJ45jxeIznuDROT7hx/Sqt+hkXL2zy6MMP6XU6\n7Gw/Jp9Kk7QtLm9dYnmhyvLiEoHnsVBawJl5yqWmnAKmaeI6E2Qcc+HCOqZlsbCwoFL3LItcLke3\n20XXBQ8fPsKyLNWMJZPEEUxnOpp6XVmGJpMuxUISTUx4+eMvkEzMru3w6cHo/Bo3DENZXDX1e4dx\nNLdBgaYmR15Is9kmn8kxGI1JpVKc1msEgQfEmKYgCKe8+WNv8Ku/9nmGow5DZ0IYR0CINsN4okny\npeJsb62EkIPxiNN6g5XFFXVwfsYT/t2Pv3FknUgk+Jf/8l/+la//5m/+5l/52ptvvsmbb775N33L\n73ikMmmm0ynjyYhEwmJxeYmJMyUpbBVaPx1SLJdoNpuUqiU831Wq5YRJ4Esebz/ilVdeQdMFh4f7\nXLx4iYePHyro/onKTz5tnDKdTlmoVGm1Wniey8LCAvl8nvF4zMl+jStXrqLZOpubm3hTh1ioiUAy\nk6ZYLJLJZNnZ2eHVV1+mftakslDm6Lg2t6jous7p6SmlUon+cEAmlnh+yObWZU5OjjAsk5WVJTXO\nCkNWVlc5PDzGtCzKC1WF95tMsA2TnZ0dNMPg6tXL9PpddKGzv3fIxuoGQkiePNkhk0kRa0pNWy1X\nMNIm/VGHvtPHSlvEgeDS2ia+CbX6AZY9M8ATMJhOqCQL/OCtNxnEHWJC0NVF4pHCZUSkaVh4CFMj\nwiMjkphkGTGkWL3A+w/+khdvvgFmmo++qMR8MhZITV3sEUNll4n7CG2WdiO82SXnYxABNjIaoxkp\nkBaGkEjZxcIE0ccJ+yQ1jci2MOwUAgM/7PK/ffl/J6g1mbgTCpc2IIpA90EqXy2mAOnz/CtX6Z6N\nSJoJIhmRzWeJRIBpmIgoJAZ0TGKBKsRCw5eCKJYIwySOVOpTrOlEUhJrJggdJ47RdYtQQhxrYCbx\nQ5C6RSB1nChWoSVC/ZZhrALrZSwJYuUVjSQEfoDUBBEamm4QIYnCmEg8FVuFcUDoRxiahheGKsVp\nhq/UdRNd0/H9AF0YM1GS+pmJeMYS9RQreA4EieOn0pFzEZcydcwsG+gqizZWQh5NNzExmI7bbGxW\niC2d1lmdwbBPOV/gw0e7/Jc/90PUTk5UZ+96rFWVcr9cUFbCdDrNyckZF9cXae6f0e22ee76dUrp\nNDFw3OoT+xGpRJpqeQGjCrXjIybTEblMhgcfPmZpaYl33/k26USSarnC8vIaX/nq17h44RIyn6d2\nfEIqk2RpYZHd3QPSyQypVIparYYzmVDKFYnDCMuwSWUKjAZj6kdNUqkUS4tVzuodZCixDZNuu80s\naU8pZTUACXFEHMWohOcI8V3B9paliIOEkMmk+flf+0XeefcbXLv1HFeubdHudJi6DhcvXlD3jHyO\n529eJ5NO8M473yKXznF6dMz1K9dpterEQuPO7Y/Q7Ix4+fUXODsaoaM65CgKVOKYjJGcM5xV1x7J\nAF0zVSf/DGEqjkOShs17dx/wq5/+Bc7GXXqDPkk7w2TszHgOE8aDIbZucPvWC/S7XQLHoVGrsXnx\nIsVcluWlBR7vbJPMJPnggw+4dGFTqc1DiWnatLo9lpZW2N7e5vr16+hCI51JUCiUOG2ece/eXUql\nElJKjo6OyJfyJJNJnImDMHTGkz5x4JBLprFTSbKGwfd9/HUAXrh1g729XbK5Bf7hP/wcP/+zv0Yu\nvQqaQSxVNKMqyJJEIoE/mxJZGYvIDwhm0w5NE+iaidQN8vkCmmGRSCUZjoeMJkNWVxdx3AnjUR/b\nTnBw8CGvvnqNf/tb/4pf+vw/Jm0WFMp0FuVo6DqGYTIdTQi8EGcy5qd+6qf43d/7Aql0Xk2A/2oe\nxfzxPSd1dbtdKpUKewdPqNVP6XRaNFpN6mctBU1A0Ov1sGwD13NmHaxJKpEklUrw/d//SfL5LLlc\njlwuxze+8TUcd8TRyT5La8ucnp1iJUyWVhbcot9HAAAgAElEQVQJIp+VtWXS2RR+6NEf9ugNuty6\n9Ry1Wo29vT08T2Uc2wlT7XzHQzRga2uL5eUVHj/eZTrx2Hmyz6WtTc5mI5QwDDETNq1Wa56Ss7S6\nRr/fJ4xV7N3xsRqLVZeq9Pt9HH9CoZiZqyPT6ST7+08QAq5cvUwQB6RSCQ4O9vnUD7xBGLlMpgMc\ndwIiJptJsbq8hIxiJqMxzsShkCuyub7EoDekfdZl5/5DMokkoROQsdPUG2ckTcWVHoYjYgwyFBAz\n16gfm/hBwMCZUgvbjAnoM2AcO3hSI8Cg0x9w++ZrhJiAzXA4BjQ0LQHSBgJ0QJcRRBpC2LNiOSAK\nGiDHxJEF5BB6lnMPUixbCDECMQH6JO0CGBpGuogkRRxNMAyBFKeYqxq5LRu0CbEYgjZ65mr2QHi8\n9Ik76BmdyAxJFxME+OgJQagHfN8bnyBZyCAsjVBIQs3AlwJf6kTCJMJiGkhVbKVOKCxCaRBigGbh\noyF1m1CoIuzFAj+UeCGYVpJAasRSQ7eSaIYFQkfoBrqZBM1EYqAZFkK3FJwgjvHDWHmaZ17JMI7m\nY+ZzbyVAKMNZOhM4vjffY8XIOTDivCs+T2+ap+PMxnagvJSgRuOh93TSI6WYfa/zDl5DhDEpy+bN\nv/WDIDwePn5MuZTHd8cIobN14SIaOvWTGjeuXaZarfKlL39j9h9EfOutb3Lz1g1c3+Mr3/w2Hz56\nQL5YIJlOM44kIz/m6PCA8XBEPpNl9/E2T3Z2AaUMdqdjFhYrHB0dsbC0iB+FnJzWODg64M6dOxwe\nHnJ8fMb6hQ08z6PdbjMej7l48SLhLGrytddeI5NKMxlNmYwm893ilSvXWF/dwHcjnLFD4/SM6XiC\nLpQjQr0wMVHsE8uA81ADRYozviPsQQXeh6QzCXRNMhq2SSZ9bjx/iWIly717dxlMBvT6LYaDLoVM\nho21VS5uXODJo11e+ehLvPbSRzE1gWlohJHLCy/c4q1vfoN295hP/9gbHJ/sY1mGygs3NIScgUhm\nKu/zblnTtPmE4xyeIYmIZIQXBuzsHdDv9LEMnVQqRbFcULalTpN6vYZtmWysreG7Ds3aKaHjUcxl\nCeMAx/cYjPqsri5zcnjExsYGw8mQXKHE48c7My8u1OqnXLqyxf7+E5zxCNs2OTw55KxZx7ZtNAlj\nZ0py5oQJfB/dEJzWjxBahJVQbADXd3j//XdxHGVD67QbaEIS+g6GGfHy67cxTJX+pGkapm3NnQRT\n15kXZ9d15zoKxfVWXPggCGYdeI0oCqk3alQqKtNdFxqapqtC7jo0m0c02wf87C/8NPl8HiFMmIV+\naKbBYDDA0HTSyQSvvvoq9x7cp1Asz3+eiKeH4e9+fM8LcqlUYHv7Eaury+TzWRLp1Bzn53kemUyK\nQrmAmbB49OgRm5sbSrgiBF7gs7KyQhzHHB8c0u60WF1dpVwuohuCr3/jLzAMjak3VXjAhE0qlUIS\nYSdM/MBF05Ux3HVd8jl1ktd1ncXFReq1EzY3N9B1nXazg+v4FAtVsvkKpfICjufy/As3ATg8OVTe\nzziiWClhmjqjkfLZnTOBXVd19+12l/fef4dkyiaOQ+qNY17/2KvUa4csLlQoFvOEnsvdu+9RPz3h\n0sV1Hm9/iOO7NFpnXL58ifF4xPHxIZoG/X6fQjZHtVJBR6dW63N8fMrDxztsblwkmUgz7Y0Jpx5J\n06JqFpi4PUwjxg1GjAiIfHWTHkiN0MyQTZYxjSwmVbpTB7QkARpSZigUNjkbTOlO64RE5AsXgSIQ\nEckpYTwiijzQUmimDvSIhKOA9qYJIoGmlQCfSLoowZiDJmzAVMHhhGoxj0LZxdJH00xEFCFEAJqP\npuvAFM0wgGCuZ4njLuBw4+ZVhC3JlnNEMxxmtpjl5z7/8yxvrvOzP/85zHQWYacZehEjDwbTEC8y\niLQEmCmcEEJpIHWbeFaU/VgjwiSUJl6geNVRLOZF2Itj9TmEMFa21TBG5V1HCo8ZIggj8MOISArC\nSM5Tnp6OjWfh5/Lp2DGKZqIsTcyRmaAYTapIa98xsgS1I3t2pxwEwTMUI20mTjFUeMR58D1iTk7Q\nhIFp2oz7XS5dWmPkDNh5vM3P/N038UYDknaKJ08O2X28y9raGrYNuVxuPjLMpJIsLFbJ53MUiwUq\nC2VKlTJbW5uMJkM+/PA+k8mEarWKnTB59513yGZSc/BJfzginU6zvrbO8x+5TW/Y5+btF1jd3MAL\nA87aLdLZzIxmpvjwztjhtVdf5Q9+//fxpg7OZErgK0GqYRgsLy/z6NEj1tcvsLu7S6fTY3dnj831\nCxTzeWxD6Up2t3fmr7Chi1l4/dMRfxQHc/uLlDFxHBEEPoE3QdMCXLdNJEdYSZ1+v42UEaYmyaRt\nosAhl03yH37732FoOi+99DLtszYfvP82hwe7+KFDKpXk7KxOwtJYrBa5dm0DRAAiIgj9WapXjD7z\nHCPiZ1YQ4fxjjpSUEaalM52OqZ/1sLQEi9UFla3uutROj7ESJuVymRdvv4CuKf6EnrD4xre/SS6X\nI5YhpqkzmUy49+EDVtbXGE1HLCwuqnGwbtIfDQkin6WlBY6OjhgMBiBi/MBlMOqTSiWwTHO2eokw\nTI2HDx/S7/fo9zvkMxleeukOvu9hJQzS2RSFYo7hSFnpTut1PDcijiWOO+ITb7xMrLvohvJfh2GI\nHwbzyFDXV95+0zTmh9PzNUQimWRzc5P/+IUvsLC0SHfY5ax9NifbhQF404BivsJoMCV0ApAjfuFz\nf5da7WAuoLMsi6XFFaJQvc8GgwHlspqk+lGsPM2aQGh//WD6e16Qg8AjX0izvLJILp9hOh1TqSjf\n7OrGKr1hD0k83w0HQUA6ncYLXLK5HFPXYTgcc+nSJWpHx3TbLQb9Hq2zM56/eYsnT3bIZ7Lk81nS\nqQR7+7sYhoGuCwqFAoZh0On0uHHjBl7gc1w7YeKMabbP2Lp0gVrtmMGgR7FYxDJsJhOHs9M6yUSC\nq1cvc1JXu1fl2fTI5/PoCN774H1G0x7ZrOKvKlGDOrU1Gg2WVlT3bBgG1WqVXrtFpVSm3W6TsG0G\ngxGvvfYaq6vLTEZD/Mhn/cIK1cUSui0UvaucZzIe0mzUZwHgWYSE+ukZlm5x4+I1wonP/vYeg8GA\nwXDINPQZyylSmAhsinYREaVZslYAyOsZHHeKC0ynCSbYRHqaTjih6Q8wjDxTaVHMX8NKVnBx8CQg\nJTEpTG0BPzLQ9cosSD0iQkOifJcaNlKaIAOicIwuLCRjYASMiekhCAmQoHuqmuGiCx9EyFPF9xSI\niOWUOB7NRsIz7rCmgPD5YpWDkxrCtihWFvnH//0/4cd/+r9AWkl0O8fv/sEf8/0//BmuPHcHX5oY\nqQKpfBWfBE6o4UY6oZEgFBZeZBAIkwBTdcWRmhbEuk0Y6wTSwI8hRMcLJTEGCJMoFkjdIkJDN5OE\nsURiINGQhqZUmNps/ChjIinnJ+hn/ZXqGpspRWc4P91UuzEvCNB0VSCErs1FXc92w8/Sv84FYM8+\n59yDK6XK8ZVhhKGZ6uYW+ehCYzRq8eJHb7K984RPfN/rHO8fIeOI0WjEvQ8fq3FhHHPa6NPt99BM\ndXtpNhukbIsHD+6xs/uYVCrF6uoqDx4+4nd+53colktohqCyUObhwwe88MItTFOnP+zRn4zUOqjR\notlpE4mIheUlxtMx/eGQdCaDFIolP51OKRaLTIYT4jDCm3o8d+MmhmGQy+XU72no3PvgAaenDZaW\nlnjvvfcYDAZ0Oy0C1+M//+mff0dq22CgCoCcQT+kDOZYSoVVZDa5kHO4hpQRhg4iCnjuuTUyaRPf\nnXJxa0N12EQzTrjkg/t3+fgbH+Otv/wa7VaD0bCP5zlcvHyBb3zzLxBCsP3oQ2xL4+677yBwuPXC\nJYJwQi6XIvBcZhCu2c1ceZSV4Cyed/NzWT4xEQGGYeF5Eh2Dwyd7LC4uggjp97sMh0OKpTz9XofJ\nZMJgPKA76rG8sUZAjOv7NJtNjo+P2djYoNE8Y2lpBcNWo2HN0uj1OkwmI775l2/hzYpwq9el3mqq\nqVQcMZmM0DQNz/PodLt4gYfvuKyvrVGuFOm0ztAtHTuVZHd/j06/QyqlIDOl6gKu73Hzhed5crDN\n+maFZEYnIuSc4a1pGmhifm27vjc/xD49RKn3wfqFdf7rX/wFXNdhMBgQhiH1eo39/X2azTapZA7L\nStDpdFTevYTjgx1+7G//AIGYotsKGNLv99V7U2hsbV7gnXfeIZcrYJq2ooRFz+7z/+rje16QR+M+\n4/GIev0Ux5nOU2YMyySZtMnlctTrdQXICAJ0XbFZp1MXL4x4/+49HNel1+uxsrIyv+Gsra7y8MF9\nfuzNNxn0+7RbLRqNxmxvPMR1XVrtLgk7RTabpVFvznOZNzc3cVyVoew4DgnLptVssFApMBp2EVqM\nEDGHJ4fUajUAsjm1C0+nk/T6HYSQGIZGKq1ADNOpSzabRwid4XDIu+++T7fTZ21tg0atgWXYbF3Y\nYuvCFnGghDuO4zCdTllfXycIPI5Pj4l1iZ20WF6uUigUWF5eZHV1lWtXr9JqDDg5OSWeIRZDX92U\nNjcuks7lkZZOfzxi5/iAWrtDgIYW6xT0Ij1UMWvEY5KJBTwsUqkyJ1EHqSfwDJ2CvUj9rIElCiSw\niKIkOgWkyODEU2IS9IIQ0ywQMULXAzxpEqHhxTrL1dvEmAiZAy1GGjoRgVJBSgXAUMF7OsQ5osgA\nwwIkKrZghNAFMRExITLW0USAJhT0X87uTIIkSiqd4bnbd/g7P/Uz/MCPfAYniinmNuhNYyI9yZ2X\nP8HOUY1rz9+huLBCezDBCQWanSYSCXwM3FAnwMKXOgEGAQahtIiMBJ4EN9JwIgiFToSFG8bEwsKX\nGoFUXXMkdEJ0/BikZuKHsSq6UiOMIQhDIiSxlHM19NOHurFGkTqtS/E0Y/WcumVZ1hwA4vs+QRTO\ni/L5fvhZ4daz9KJzHOd5R61wmSC0mDjwiWWIbmrYSYtXXn2eVrdGpbpEp3NGo35MpVIgihV3emPz\nAsPphNF0wkm9Rj6fB6DTbuL5DpVykVu3brGzs8PUc7ly5Qo//Ld+hNFkTBhFbG9v89prr9HptAij\ngMvXruJ4LsXSIhsbm/QGfVzf5+7d94jigFw+i+tNaTbU2ujK1kUIA9KJJCnL5i/+7M9ZXloik8oS\nRZL9/UN2d/bIFQrsHxzQ7HRZXF4gDH1SqRSe6xIFHq1WC8f35l0P8HQVoEk0KdFFjEaELiQaIUIG\nCBmhEWIn1A45kdS4cWMNP3BYWlri0aMPGQx6uI7DO++8gxt4XLx8ke39x5QWC3T6dRpnh9QbJ2im\n5NL1S3hhQKvVZDRok0mmyGYsfvpnfgLdBtcbE0T+DBoWzw4M8axTD9W4Wobz3GRQ9rUwUiLRUmWR\nr/zZ1zE0ldlOrJTkYegTBT7D/oDhsE+71+Xm7RcQpkGzfUalVGJzc5ONjQ0ePXrEoNefc9GFoZMv\n5iiUinQ6HcrFwuzQ6NGfDGn1O/hBQBj6DAYDLl6+SH84mB+ocrkc62sbBJ7P6ekptp0kiiWNsxa3\nP/Ii9dnfut5oks5m+dKXv8gLH7nGzv4DPvbxV9BtpQl5dkp0PlXSdf0ZQZc2X+HYSYv+sEcYB2zv\nPiaOY7rdNoNhj0wmg2malMtFTk9PyGYSGBpUshX6zTM+97mf5LkXLuCLgJW1DSJfTZ+azSavv/oa\nw+GQ4WSMH0REs7/R/8sK+XtfkMfjMaVSQeH+ZmOVZDpFo97ktFGn2W5yfKK6UNs2yeVyCndZKNDt\nqlAIy7IolisUCkXS6TRLS0sEYcid2x9hNBiyublBFKgwdk3T5shNpVZUhSiTTjMej8nn84wmY1zH\nIZVKqY8ZOafZOqNUypNOWRwePWEwGuL66kJMJBJsXdpkMhrhui6FQoGpN52lhShrShRKPC9gPJ5y\n7do1XnrpFTqdHnduv0gQRDQaTU6OagwGAzzHxbQMrly5zMSdsLCwQBRFVCoVdRO1bCBmZ/cxw2Ef\nyzCpHZ/iOy4agnQ6zVm3jRP63L9/n8F4hGUmSBgmpVKJpKGhxR5CQIRHO1Q+yIH0OYsD/EjjxGmy\ne3RA1qjQ6HpoLHFj8WPY0To+WfoTiYvBNJoQ6ZJe2EOaGi2vx5CAvj/GFCYTV4O4TEgGN0oQa6Ha\noVJEI4cmyqhoJ4mI0sSYWFoZXS8hI41AGa4IA4jDFIJlJAWEphNhItGJpYcmlAWNGCQpInRefvU1\nsqUF1tavgp7kYe0YM1Vg77jOwekZl68/z1vv3GV96xqZQgWsFNMAJn5MrNtI3VadsGYToexN57vm\nIDYUtxqNQGoqUEIYBBHEUiNEJ9aM2b7YJkIQSTWyCsOISKobaYTi5Wqa6hzOu+K5sld7CrCHp92u\nbT+1T2iahuu6SCnnNK5nv498ptifF+Dz4vxs13BexOM4VvQnJMQx/V6XH/vMpzip7fPk6IAoDgl8\nhytXLyGFzuOdJ7x37x61ZoOR42IYBvtH+wBsXLjA8eERZ2dnaEiFxDVsPnz8CF03GQ3GDPsjwjDk\n5OSE6kIFXdd5sr/Hpa0rtFpt9p4ccHJywnA0YHl5me3tbQLXI5vOkM9kWV9do16vs7u7y8bqGu1m\nh0wmizNWo/CTkxOGwyGXL19meXGJ11/9GEQx9dop5XKZfCbL3s42ly9dJDUL5XAcZ17MNE1DI0aH\nZ3CVMcxoUboBhinQDU3tljUdZzJkZa1MJpemO+hSLOW4tLWFjAWbWxdptlu8/8G7NJqnDCc9Wt06\n/VGLGzeucO/ePaSMmE7HXNi6wNLqEqVSiT/54h+B5tBsnxILia7P9AUzVKYuzkex54eImQUO9TdW\nWdYa4/EY00rxxT/+z2hSCQAf3PuAXC7Hxto6zbOzeZNx58XbvP3ut9EMQSaX4+DgAGIVBuI7Lrdu\n3CL0QmzDplgs0+v36fTa2MkEZ60mtdoJFy9fIpvPMHHGDPo9NfHcVKI2ISR7h/tKkR6G3L17l8Xl\nJQbjEUEUctZusbS6wmAwmF/zg9EEM5XADVwePLpLOmOAoSYBuq6Drs074/NAlTiO5wlnAIZuIqXA\nc122Hz1mOp2ytrbGyuISG6sbrK+vo+s6y8tK2JVIWOTzeTzPYTicEPohj7bf47/5lZ+j26vTH44Y\nj8fYhslH79zhT/70T7GTKQxDpZCJ6DvZ1/9Pj+95Qa5UKoxGE5aWVtB1nUKpjGklSGXSHB4e4rku\nG+uryv5gGCqjtFLF9QJ0zcALQs46HUJi+sMhtm3TaDSIZch4OiKRUmOGIIyxbTXuEEJHNw1SSRvH\ncRiNRvSHPc7O6uhazGQ4oFQoqCi8mf2j0+sQRBHFYkkB/6cOo8GA5cUlgDnwf/3CBXb3Dpg4LlEk\nSdoJ0laC6XBAKmnSG3S5cHEDy7Y5azVJWDa1oxqZZIZqucLHPv66QsitLLJaqXB4tM/Em6IndBaW\nFvAcl35viDP1qNVPWFxeJIo9vvJnf44ea6wvriDCmNj36DTarK8vI7UQb+pw+GSPYr6oFKqFEppn\nkBZFTDRSuipmOb2ALyOyegkrWWZ16QYOOoVMiQ4OPVw6Ysiuc8rIFAjSeKQ4HQUII48bp9HtBfpS\nx7CWcWKbdGKdtLFIFJvoooyHgSDLlCkjegzjPn4sQCsj9CQRKi0JTIRRxCSBjkaj66LpJoIIHQ0p\npwqqKhaZTgXMbjoBFogsERG37tzkrDtiICN6UcQ01nADDTtXZmH9Etu7pyQzVUJpsXXtFmfdIWNP\nEgibIDbxYo1IswiFiRtpRJqN1BNK/IVJECr7UygNAkwiTGKpKyEYGkEY4wUhQSyIpI6K0hWYiSRS\nCISmnh8i8WU0A5Cog2kYeRBHyHAW8Rc+hR1opqF2wbpOLM/tSvEcmxnNsnHPmezA3O4URgrzZwht\nFhd43jFr8/dHjE4ofYQwkSEMeh0cxyGdThN4HpPRkGLB5mPf9zKJZAbPC3j+zke4cuM5Ht7boX3W\n4tKlSwCM3DHNZpNUKkPSSuK6PsvVBXxnyoN7H9BvdYjdgIV8lZWFReIwYtAbqP2orrG3t8etK1dY\nXFxEBBHpVIra8QknRyccHZ5y5co1Tk9PuX//PoVSibOzFpXyIs/dfJ6vfvMt3nrrW+RSaarFMtP+\niEK2RDGb4+G9DyjlshhCY2dnBzNhsr27TadbR9M0Wq0WljXb94kQdIHU1AhYEmKYAss2EVqMYWgz\nFXYIuo8hDPzJgFvPX8XOZUgVcky9KaV8gdNGQwXerC6rXbJ0kYTKkpXM8Nu//e9JmDaDfp9Ov06t\ndUx/POKkcchH7twiiBp85MUbzyR3xQgtJJY+cSTQYNa5q05eiO+ywEUSy4BYhkwCC9cP8fwxaV1n\nOJ6wUC0zHY1xxhMSSYvGaZ1yvoA/dVgsl8hl1BoujmNeeeU1yuUy1coih8c1YinJpTNc2rqC64dc\nvHIVzTQZDAYkExaTcR9in0w+S6vXZXltkak/YXmlimUZDJ0JFy9dZHt3l/WNTTRTIwhdPH+MYevY\nmdk93NTpDkY4gYdEoJlw56PX6XbbBLNpn6Zpav0iYtAihA5xLAln3uFQKjeEJgxc18X3fZ482YdY\n3bcrpSqppI1lG9gpm1Q6TxBCvlzhycEeiYxNvXHI4dED/od/9mu44QhdN+k16lzdvMhRvUEoLDB0\nCD2yKYVOTpp/fdn9nhfkUKoOoTtQkYeNximHh/soEUtMsVTi9PR0Pr59//33uXHjBm+//TZLS0t4\nnqcY1JMJrutyfHxMOp2m0+lg2zYJy1aqulk27GgwpNtt0213aLe6SkUaS1aW13jl1ZdIpBIITe2H\nQj9QsWpSsrqsxGOtVlOdujSNra0t0jMm9rnXbjwZch4MvrywSL8/nO+KV9fXyGQyfOtb31I2AF3H\nNE0ymQzj8Zj6WYPuoM/LL7/M1HFo97o4MyLazs4OQRBQrVa5fPkynu+wublJu91kfX2dSrU0H1m2\nWh0ePnxIwjYxhUa1WMVEZ297j7OTU779jbdIWTblZIZJMCaFQW+kmNx7vVO6rsc+XRwMMskyJ+4Q\n1zIJIo0jZ4rUNBaSF6nam9SDMaPYp5Rd52DYJgotAmmRiFcIgySalqMxGdEPAyytAloOmwVCbPpO\ngItOJNKYZolRLBkFEoMCGhlCTLwgZORF9Jwpa4tbIA16vR6hryFEDilLRFRJZ5bpTlS4hCEKxMSE\ncYgfaFxafh4pskiRYnX9Ml6s0xm5TAOBlS0xckOa/RF7Jw2ef/Fl8pUFlWGMRhAb+LGOJ/UZFETH\nizVCaeGjE8T6XH19PqIOpTYTemmgJ5CaqYqxUEVaGCZhrKmMAjQkGggDNBOhWUipOmA1MNLmu97z\nz573NPbTMIx5SMR5UhOxnAXUP4VDfPfJ/Fnw/vnznn3o6CqwaDbS9n2fleVVDMOY+fRdrt98jiDy\nGY76REHEw/sPadYbJFM2nu8yHKr9a9JOkM/nlbDSECwsLNBo1qgdHbNYriDjmCtXLvJk74AwABFr\nGLrF1sXL3H33LlJKap0mva56T6fTaXK5AolEgsVKlcFggO96ZNJphJTkMspi9d4777K+ukYmmWIy\ndtjc2KDValHI5fmt3/otJqMpMoLpxGU4GFMsLWAkEhSL5fm0wXVVBKSaHjx9DZUORZ/xwZNYljVT\nw6s0KE2H1Y1V3n33fSqVCu+//z67u3t0B322tra4ceMGd+/exTRtNKmRS+f48N6HjEcjXnrtVQrV\nEq7noVsmumngeC5Xr19he/sRli34e3//TRy3r0agmkQiQD7lk5//nM+GLKivxwjNQGpK3HdcqwMa\n7U6TbCFPGLp88OA+5eUq6WIeLwywkxYQU8hlGQ2HVCoLjEaTudXzPKfbtm329vbY399ncWGBzc1N\ndh5vk89kSZgWztSjXK5SqlYYjIY899x13vrWt8jlcmRmhK4oiPja175OFEmGQ7Va9AKfCxc3Oa2f\nEEbKDZBK2jiTCQuVKuura4yHQ8LQJ5b+XBPxNPN7lgIlQcxoZufhKTDTpUtIZ/MEccDJyREAmUyG\nXCGP6zvUajWGkyGarqJKy9UCYeBxYW2LfDbDu+9/nddfe45UCp67don/8Lv/jn/+z/4pXhgQ+WMy\nyQSt/ohkJs2NKxf/2nr4PS/IsZRKODXqk0gmCcOARNKiXCkShB5+4M7n+O12m6tXr3P/3ofcuHGD\nk9oxlm2Sz+dxHAc7YVFdWuQ8tLrVPmM0VmOOrS1VvFZXlynk8hiGgWGoQGrHmRLFPs3mGRBj2bba\nO8xyTgUxk+mI6kKZIAjo93vcuHEdZzKhfdYEIPR8DEPj4GCPldUlkrZFr6PA9J7nUV6o0O93qTVq\nfOKNNzg6PuBw/wB3Mp1bU7qDPt/+9re5/+ABruvOJfpeqFTl6VQC3YDBsEsqk2B/b5dEwuLo6AAh\nJLVajeOjGkEQkM8WuLi+RuOkgSENFguLlFIF9Ejw8u072JiEoY9tGrgE6hQHLBYrlKwc1kzYNPYF\nCSNPRB5f2GSTS/SBk7BHqNt4JEmZy3hYZFJLaHqe0MlQ0jfBzNMPIZleIjZyNCKHJlNO5Yi+9JBG\njiBKY4tFBAWEliEwkrRClz5jpjhYZgFbK1JKXiYmATJBsXgBzUoSk0STOYRMEWKRTV9QF5Uo4noB\nlpYkY1fx0BBkcaMEAzdmEsHC2hYjH856I6x0kUyxyqXrt2gPJoSajY9BiE2kJYj15PxzKGx8LEJh\n4ccWvjSJNCX8ksJSUBHDQmrJGU5Txw3Am+2PQ3S8CPwYAmkQxBBJDT+KVeBErBKiZm8OiGKEhMgP\nMTSTKIrUvi8E20oyHAxIJ1KzMTPEM4+yGkl/VwrNMwk15895eqOW33HzjuMYc0YMi6KI1ZV1trd3\n8QIfK2FycHzEvfv3WVtf5Oz0gKXFRUkYN5kAACAASURBVMZDh/FohKlr5HKZeZj8dDpFk3D9ylW2\nd/bmvuBbN26Qsmx+8I0fZOpEnNRPicOIw90DMrk8jdMzKpUKr7zyCl//yleplspEUUDt+JRCNkfS\nsmm3Wmw/fMTzN29yenzC4wcPCT2fw/19bt++jYiVNcl3Pf78z/6CO3fu8PjxY6qlMj/yQz/MzqMd\n1hZX8ByPZrNFdXGZ3qBPIpGg0WjMVMxPR7/PvlbnwfPqNVQrBSkFnhdgmYJyJc/f+ckfp9frsbi4\nSKFQ4KRW40tf/BP2dp8w6g9wJ1O63S6WleAzn/kMxWKRsTPmrNtm5I7JFbKUSgUcd8q9D+5SrpTo\n9Vsk0iGa4WFa5yI/fa7Sh1l3KORcZfzsNaBWFRLTsigUq9z94EO2Hz2mUCxy5eoWR7Vj0rkME3dM\nd9DFlwHmzAbaabYQQmc6cVlcXEYIQalQ5MnuNhfWV7FMk2qpzB/+4R9y/+4HLFartNtd0qkUi9Xq\nDIgUUCzm+cu3v4WUEs8NyGRyuFOXtdUNCoUSnU5XwZlSKSDm7be/hetOGfbVaq1cLquDTyTpNNoU\ncnlk5LOwWEagE0Vq4hPHzCMRzx+2Yc4PuEIIxSEwTR48fMTly1tMp1OyuTSPt7cxDNU9I4TSBoSq\nARwMeri+Qy6f4ehgjzc+/lFuf2STKBpw+4Wb/N6Xfp9/8k9/g7ShkTYNXnn9NUbOhOZpnU9/+tN/\nbT38nhdkTUf5CoOA00YN0zZotZoYhmBjc10Z32cKUmWDyuB5Hul0GtM01cW+tDBLPhF0Oi1yuRzZ\nbHauoh4NBzx69CHppK32xIUclmkgtJBWu0a+kKY/aKPrQgm/Clkcz8WdjrETalTuOA79fh9JhKHp\nGJqOkDH5nKKR5fNZ1bmFAZoGuXyGdrPJ8mKVdErFSUpiXnjhFrqQhH7AyuIStm3TbjcRQrK0tMBH\nXrwNImbqTYlnBB5nMmJjbYnJqIfvTllcKnN2VkfTJbZlcOv5G1iWwfPP36RcLqNFUMkXkWHEsDMg\nl8zTOG5wcf0Slm7x4N4D2uMJI0JiIkJiFlIqSziYethmhhIVcqRBz2JTRJAmEEn2J026QN64QIol\npEjTxaHm9bGMEqGeQjfLxCSZhgLDyOPEggEBEz2m5Y9xIpO0qGBoJfL6Jh4WbaYMZIAnLFoTh9Z4\nxDiKmMYRulmi7nQZERBoal87CUCQR2opwEViolMGwCEgaeeISSNJMvAcXCQDN2DohnRHHs3eBC82\nMJJ5Ts669KcBD3cPaXQH9EcOsZ4g1Ex8qePGGqE0CaRBrFsIPaFG1FJX3uyZcMuVAj8Ss04ZIgwi\noVTWsdTV2DqWeEGsQsw1nUhoyNkpPo4hiGLkzDZBBGEYz/5tZmeJBb6vfLWu48xvGHEo5zAEU1O7\nsXNEpso3/s4O+FlSFzAvME8RnMo6EkURwtDRTJPJOODw4IRCucALt2/jBi4hHsKCwI+4dfM2nWaL\n565f5VM/8qn5/3HOtf/qV7/KaDQinUyRTKY52DsincjRaDT44N77vPjiR9CAH/jE6xQLZRYri3Qa\nTXYfb3Pr1i0FYIgFkR+StJMc7B2STWe4++577G/v8cmPfZJqscR0MlEpdGdntFstRoMxlza32Lp4\nkWa9wcWNC4yHE6ajMUuVKvu7+zx/4zkKuSKB66kDD6id9zMdpyEEQkbMuC1P/yYwj7uMoggdnSjy\n+a9+4e/zxT/9IhNnygcf3Gc0Szy6ce0qGyvLXNra5PjkkEQiwTe/+XX29neJooDltWW6faVwPjk5\nodNqI6OYbqtNr93iwsZFTmr7fOqHPo6Y5fIyY48jzvfb539n0DjfdwPEGJpOGPk47gQjYdNpD1mq\nLjCeDBkNO7z60RdJWSaPHz7g0uVNer0uOzvbTKcTvFDFgLbbbU5OTthYW+ftt99GCEGz2WR5eZkH\njx5SOz1lNBoxGCny4JPdPeqnZ+zvHbK7u8t0OqbTbYGIOT48ZPvRNm98/A26rS4xGqsr67RabUxb\neegtyyCTSXFwsAfA3u4TCrkMtZMThv0RnVabXDbJyy/fQcwOTHEYE0XxdxTl8+vadz00qSyBo8mY\nVCZH6AvefvfbrG+sUiwXlP1SE5SqFarLVVzPY219hUIhx/LqCrVaHc/z6HU6CpwSTvkHv/qLfPon\n/za/+X/+XyyvrDHutflH/+i/5T/98R+xUC3y2isv88//xb/46+vh/6eq+f/jo9fvz1Fi+VKRsTNF\nGILhZMjCQoWT02MSCYuDo30qC1X29vYwbYutrS2SSXsO08jnFRN3YWGBTqdDOp2mVCpxcnLC1tYm\nsYyYTMaEvke9Xmc87tNq1zBMyWTaJ4p8aqeHWLYydnuex2QywhAK/RdFCtJRr9dYXlnEstXotNPp\nAGr8Yxk6+WyWfCZLMHUpF0t89S++wtraGsN+lyDw8Jwpa6vLXL96mXQqQe3kiOpCmaPjA5482eHJ\nkx0WF6vk8hkM2+Dllz/KdDpkPBog4xDDgKOjA0xLUK2WiWKf9957B93Q2H78mMZJjfXVDXKZAoZm\nYmomsRextryGDCW1ozpXtq7QbbTZ/XCbca/P8cExo1kQe8HOkCeDTpaSsYoTSiyjBGGWph+gpXN0\nRiEONmfhFAwTV0qklsOkSmcckjXLnPodAsNGksKmSBQlCSKb0SAiY1RpuQ6hnqDZnxBiMo0EUmTx\nsEjmq8hUhhAbtDySJLGRIkLQ84dIYWGYBVwsplGMFCFDYBiocdbQGSBIEpFmioEndGIMzFSW3sSh\nUFllFMBZd0R76OJGOk+OGggrRRAbhJqlultpKCBIrONJlRXtRQI3lDMRl0Bqat8dYaDpFlIziGa2\npliIucUphFk+so7QDPwZTjNUTTBCU0VZxCqcAOaZ8/PdsS4MRCwRsSICRaFqp+Pw6WhOm92Yz+/J\nkX8OwP9O7+Wzqmtgvmt+dtRpWRZC15EyYjya8ujxLjdfuE1v0KfRapBIJyiU0gg9JpFI8X/81r/n\nR3/0R/mjP/oD3nrrLZptFb+ay+UIAtXtLFaqDHt9dCyKuTKu6/PlL3+Za9euYloaUkbYwFmrwb/5\nX/8Xbly/TiaTIV8q4k1dJv0RGjoX1zYpFyu4kylXLl3BMkxkqMAe+VyBbrtD66xNo3bG6y+9ShgE\nxIHK9f3Sl77M87dusbV5SY0x44jHDx/xA5/4OONun4SZYDwezzLamb0eShh1PqY+V+6e3+Cffe08\nd4ofjPn2u18nm0/jhwGLi1Vs06JULmCaAtebcu/eXWzbplItk0wlWFxcIJGwOT48QkYxx8fHbG5c\nwLZtpqMxt249h24IhNDxPI8bN7c4PtlT7gQRz+1N34nyfLYog0ZMGPkzWIrKDj4+arC5tk69fspp\n7RhTwKjXpZDNkDANdEOysrpE/axBsVwiimNeef0VkukEE2c827PH7DzeZm9nl5WVFRYWFlheW+Wt\nt96ifnpGjKBeb+A4HtXKokIg97r4jsuF9QtUihU+eP8e6VQKz/NYWlpiPBjy3tvv47o+/zdzbxoj\nSX6e+f3izIjI+6iqrLur+u7p6ZnmUOTM8BhSpHiJ1EWJXGklSwtL1u7asGHZi13YXkNrf1isIMCG\nDcu7ErTa9QfBtrwr2RJXBzmkOOTMkJzp6em7u6rrzKqsvM+4T3+I7OoRIX2mAkhUoQqVyKyMiPf/\nf9/n+T2+m4phK8UaAEZGJfB8ioUySSKwXF/k+LhBFKagHEVMA1NOyXOijCLJ6DNEs5iAQEIiCJRr\nZaJQYGtrh3KphKopuK7LCx94P7ZtMRwO8TyPSqXCYDhk/3CP4XhKoVTC910WFurMzy0DImevbPBT\nv/SzfP3Pvo3vh/z3/+yf8i//1W9TNHIUlXRhHcV/i2fIjuMQkeD4Hu32CVESEkUBk+mI+4/uo2kq\nlVqZxcXFWU5xgmFo3Lx5E8uyZhdIQrvVxPddVFnk6tWraJrGdDplfX0VgOl0TLVaxnEsgsAjEWDr\n8SMEMVUyanraug4CjyAIsG2bufoCU9sijkMGoz6dXhdRFHHMKaN+j2Ipz+rqMgCrq6s4jkOr1eKk\n2cS2LGzT4sz6KoNBj42NdRzbpN/tsLu1xWQ0ZGdnmzgO6XXaGIaGkdVYXqkjSgnlQh5BjBiOegSO\ng6YoFLJZXNNkNO7jujbtkwbz87U0uUhIODzcx3Nc7MkUOZEwlCyGmqVWmeNw9xDf9VlZWsXQ8tgD\nk2qpSjVXJvATAm92B5eUdGeHTA8bUVCxE5FQNojEHC3Lp57fpJ24mKJIFCuEThZNmWfPmxJSJMHA\nkhNGUUCMwdgLcZAIJZ18sY6JiKzV2J50MEplssxBnEegzMFwgkiJ0dQHKW1FT4GELOMgJFANTFRi\nVERUJpHDsT2iT0yopO8hq88ziUN8NKAASpZJkqTFN5a5t3OI7QuUF9eIZQMrgjPnL4OSpTtxCYUM\ngprDjWS8RCIUUyJXKCgEiISCQiTJeDH4cYIfJ4SJgBc/sTnJxJJIIirEokQiKQhSBlnREWQFPwZk\nlUSUZlQu8bTdLMYJQjQT4MRpAEQSxUiCSOQH+H6InjFI4ifzMJAkJcVBSvJpalOSJMTBrEjEf7VV\nHb/H+vTeHNn3tqwlVcILgrRwiwJhnPAXX/tLBsNp6vetVhiPx9x45ztUawViRAqFEl/72tfIFnI4\nXqp9AKjO1Wi1WszX5ojjmO2th2w/eMjG2XPYjstHP/Yx+v0+cRBiOiYnls13v/MGz199Bl2RGQ56\nNBtHVMs1bNOhaBS4eeM2vuUhRFDKF/D9kEbjmCQW+MarX2euWqNUKPLTP/lFHt5/RLfTR1VVuu0O\n333jTabDKV//+tcpVcpsPd5GMzRe++bXaRzuEUURrVY7ne8+yYwOfTRNJeFJHjKzHOTUHy6KzMIn\nIvSMymDYZnF1noyRYWpZWJbFcDAijkNyuRxCHPGlL32JYrFIp9el2+/xoY9+hN39PUr5AoPekBeu\nv593b7xL5Ec8+/xztPpdFF1Lu4bItLr7rG3WZ+jMaEYJi//K5/je3fLTI0JAQpTAj0K+8+13aewd\nUyoVSMKIvf0dDg73CEOffq/D+ura6fmhaRqPtu4RxQGOY9HrdWieHCHJAisrS5hmqpmpVas0m03W\n1tYYjUaQiGxsnKVaquDaAe2TDrlsNp3hT20kQaZxcMjO9hbE4amf1zRNPNvHsUOkRCWc5XOvr6+z\nt7+D47mcPZemd7mOxYXzG/h+Ovd/0pKWRXnmshGxLQdBTPPrU5+2gCilFL3F+jq5nMHJSRNJlU/D\nlKbTKY7tsb+/Tz6Xo9Fo4HkerU6biTlNW/i2i6xn+Nq3vsEPfeQDJJ5HtVDit//Nv2U0tpDiiOee\nuUTj5BhNkv6azyQ9fuAFWdM0Dg4OUkwgKSx/bqFGf9ijWCyg6zqtVot8Po9haFSrVW7dvonvu4wH\nQzqdFkKSsLa2guulPuaT4wa7u7sUi8XU42aOyeVyBEHAwsICxWIex3F48cWXQVBYWFig0+nM/GZV\n+v0+S0tLbG09ZDDq4wU+R0dHFIspYCQMQxzHIQxDGsepJevgcJ+FhQUqpTIXz1/i0rlLXDx3nlqt\nBknEaDSgXC6ysb5KMZ+j12rxwvuus35mDT/w8DyXOI4IfY9KqUjjaJ+Dg316nTblUgFZgF6niUCM\nKkvk8lkUTcW2TZIkFfuc3zzL8tISsRdRyZfxzZBcJsvOg0fEfsBcqYaYiLSaLc6fvYCaSBiJSjj0\nuFxPFbEaKmZg0TN7RKQLkUTQSJBQlSwFfRmBPEJYQBIrWEEGMVPFjMCXZYzcHNvOAEmsksRFhoR0\nBYuRFNELfLLqEkJSxEwUSvkNQnROogmRYjBFZKl8jYQcC8Vz5FjExKfh9UkUHV1ZJEg0JOYIMOhi\nMw5iRKNI1zExZ225EB1ElUnkMwgCXEFFEIqIWomJG5MvzdGf2ByedJm6EYXKIq+9cYPOyCZXnAc5\nixOKKFqOIBZJZA03APfJ3DcR8eMEN4zwEQkFCY/U5hQKEqEo4ScQIuBFCcgKSAp+BEEipGzsKAFB\nIQwSwjghjhKIEoRYRoyfzgLjMG1TR1E6E5YEkSAICGehJukuOo3i8/10JyGKMkQJT0aHp/PiWbLT\n9wt/4GmwxJNHGKbP/6SNLSChG3nmFhYpFMupaCaOWd9cQdNlstksne6A+vISG2c38cOQ5dV0pp/L\nFfjIh14in88zmUxQVZXF+jyOY7OwsshoMiaOQ/r9PsORiRtGLK3Wqc/P4Tk2nufQ7XZpHhyjZwy6\nrT5CDHomQyFfJInSFKNer8dzzz3H9evXOTw85GD3gDdefz0VDRkGhVyenZ0d/u6Xfo4kCFleXmZi\nTXj5lZdZPrNE3+xz4dkLNJrH9Hq9mWUxFc+tr6/y3HPPpqr30+CG1AseBMFpe//JrnR9YyllyOsy\nCRGrq6ucP7uJKECn3WZ7e4cbN24ynVhUKzU+/JGP8p3vfo8oilNQTJyKQheWltFzWSIS+uMJI9sk\nTLx0bJcXObOZambCJDj11X5/wMQTL/vsbEASEtQZ1zyOQ8qleS6dvYAgJrz88svUN1bpDDuMJiME\nAQ73dzFNk1arxauvvkq2kOXOvdsgxPT6bfL5LF/72tfY2tpC13WODvaJgpDjwwa727t89CMfoVoq\n8+qff5VCrkiv3SdwQybDCUZGI2dkuXPnDoIgsLy8zOLiAs2jQyrlMnGQOioa+w2G/QmtZtp1aTQa\n1FcWyRg6nf4ASVEwTRPXs1NNUBT8leImywphECEJT8/9KEohU+PxGEXWuHvnQRpokc8wGg1OrVue\n5xF6PmEYc9JsUyhUUrxKHGDoOTqdDp3eCds76cx5c3WRsdtiaa3OdOJhqAaWOeTs1cvEyNi2+zfW\nwx94QT46afLSh14mEQW0rEGYhFiuk56ESYwgiywvL2NaqXE8DH1KpRKuZ5PPGZzb3GR1dZnBYEDe\nyGMYBgeNBuvrqwyHfbrdLgcHB1QqJURFpNlu0u/3yeVy7O7uMx5NEUSZKEx9micnJ9Tr8xwfNyhX\nK8zPzyNIIpeuXCaOY6bTKZcuX0hTZ4rFFOQPFPMFrKlJRkm9dDffvcH23iMi30txgpqKpir0ex2K\n+Syrq8vcv3+XwSCNj5ubr7JUr+F6NgeHe9y6dZPlxQU8x8L1zBl5J4UTGFkNUYyp1Mocd5pIqsRw\nMkRVVaajMYVcnslgiCyIPN7aopQvUMqX6LXaFLMFCnqRfneAjITphcRBzFEnPdEHkxGRH7GQKxIl\nIaVChRAXLwkRogwlsUxMDknJ0oxGTBWFWCqhSzXmpA0IdSItx5iYkR8ToKJqNQzm0YU6GX8eQ1jE\nTWRUoYxADlnMEiAxcDymRLS8CTYyQzvCx2DkuahU8EMJO0zoY7E/GRKRx8hWmSYBgqTgzG46Uxx2\nzAMSScUXFAQKOEgMTZ/S3CKHJz1QsxQri/QnNm++9S6KUeL4pIderOAE8WxGLBLLGUaWRyjObEyx\nQCzICLKCrOlo2QKKaiArGQQlQyKlhK5EUIiEND0qigX8MEYQVSRFRxBVBDFd7YuijISU5hPHactZ\nnF2WIvLT4If4CeQgInC99EabiLPZYZqSlEaXQhw9tbk8adm9V1H9/T7Iv+5nURyiqBJhnAoKI0Ly\nuTKj4ZSd3W1M02Z+PtVufPGLP4WqZXBsk8ePH1MqlVhdXaXRaABQLZe5cfsetutw+fJFFuaqiIQY\nWZWHD+8DMbqmsbm5ybVr17j/8EF6rXQ7DIZ9DF2n1+kiJCJXLl6hXpvjlZc/zFxtnmF/xOLiMsPh\nkOXlVTqdLtVqleefvcYrr7xCqVTCnEyIw4TDwyM0TSPyPUaDIVEQ0Ov1eLy7w+0Hd7j07GVGkyFr\nq2fY2z3Ade0ZvhXW1leZTIezVLoZEe49Pu8nu+MnPu/l5QU+9OEX0/dfrVCpltk7PMD3fV544QWW\nVta4e+8BoiLT6fUBEcfxmJg2xWKRzfPnUHWDyXBELl+g3esxMqfEksCtW+9yZmOVk9YhH3z5OqY1\nRpLTNnocx6f3ioSngq7Tz3cGLIqjtCsSJSGirPC//9bvslRfTO1j9++QKxWZmGNGkzHLy8v86Z98\nhZWlFfq9IbbroGkZYiHh5OSEk5Mmn/70j9Ab9AnDkEo51a8Me33ObWwS+qkY7IPv/yDbjx4jJCKh\nH1FfWMK1XY4bR5w/s0l9bp7pdErghae41ygMKRdr1MqLyJLGYj3teBpZLXWwDCdMJhNarTalUoW8\n8YRFIJx6spMktflFQTg7l6OnixfSDHHPD/nWa28SuBF+EKT8awRUWeVgv8FoNMJzXI6PT5CUDKVy\nAQDbdsloGq5nsbRUZ9DpsVQr8V/8N7/K1uMtxFAk8lw+87lP83/+v39Erz8ko//NKYg/8IK8uLzE\n7du3KZeL9AZdRpMxcws1ojgmFgT8JKbV75JIIpOJyXQyYTjokJEFKoUiw36PUqmA4zhcOH+JbqeP\nIAgUyzkiMaZczjM/P4PSV+eZTh0qlRqyLLK+spx6gwc9dCNDr9um3++xd7AHIpSLJabTKXEYsbyY\n5i2vrKyRxOlN7ujwmHIlTTo62j9grlQlV8gzsk0cAiIhBCGh1TpB1wxUJUNG0XjrnRv4SdoRKJfL\nTCYjJIF0VScm2K7J8kodmYQo9hFlEVkVqdfTJKx83kDRRQ5PGshqynntD3tEMx+qEMVEjsfDrXs8\nc/kqvhPjmT4lvcL0ZEo0jshGGZYry5SyBsvLKzzZTgVuKjwa43N0eIyhZjCnY2IhQpZkPCIUMni2\niCbNASVsVBrOlIQMZqiiCHNIVAgVg4QCIhXGRIyI6ScB3cghFDMMAoseDh4KE0KGgYsTisiZKt3Q\nIzHyTIgZmi4TAlw5i6jOY0cZBrh4eJiJx8D1KKnL2LNz6sDpMc0JDAlJ5BwxOSaWj2gYtEcmQjbP\nYOpz0OzhxTJacZ6hFRHJOZwQFtfPoOXKTBwHH4FYyuLHKomoEiQiCAovvu95fukXvswH3/c8n//R\nT1PMyRy3m6gZGS2TRdN0kDJI2Ry2HxEJMqGfwkACLyRwA1RRQg5CRC+cIUIhCELC8KmaV0SaiYUS\nkghkQUZIIA7TVB1iEUIB4oTASyMLIz8lNglCysgWhLSNLQgCYiLOkoLSVnkK2H8PjER6ClMIYx81\nkxLfgsABWeX1b3+PF55/Lt0plObY3NxEFCJiIaZcLnH+/FnOnTvHZDTg2tWrAOweNnGCkGb3hIfb\nD8nlsmhZHXM8QYwTNs6c4ah1zDe+9SqHzR0EAlRBpVSrEQkC49GUpblFstksjx8+Qggivvv6d9nf\nbeA6Ib32kLxRZNDukQQR5mjKt197k16nR/Oky/5hEwSBQsHg2WtXiKWEzYsbXLn0DDndIGuomJMR\n48GA+sIKf/HVv6RSqZGEAdJskWdkRAr5LOVqBUVTEMWZv3uWHS08EVWRak42z67y6OH9NMjed3mw\ns43pmgyHQ6ajIWc2VvhH/+S/4lOf+xE+9NGX6XZOePbyJZYX6uzv71Go5Pje229SKRfJCCKum3p1\nQ9/j8qWrdDpNFpfmcLw+QTyd8ZQFBAKSJCRhNuOehUs8aV0nSUQQRCDHEEdIsoAVB7x7q0G/NaDb\naZJ4ARlFQsupCELCV/74T7j2zFUcy+bS5Qs4js24P+A7r79Bt9tleaHOZDJmrj5HEEQY2Sztdpuz\nZ84SBz69QRc7cPCjkCRMGA9HnLQ6ZLJFHu8cQBTjOha5Yg49m+Px/T1CNySf0ahXFzl83KReW6XX\nHZ9CcR493CEOQBVUuidNyvlCet5LEbImo8kShC4i6aJXNzSE+MmiNC3IimzgWjYZVZ5BfTRCW6XT\n6hP44PRHKJFMpzNgrpJnoZ66bI5PjhgOxsiJRBwKtJptquUqoROwdf8B5UqOYknjuNkgET3m63N4\nEXQ7IyRJwptpXf664wdekMvlMnJGxjQnFAoF1tdX2d7aolosEfk+siAgyxLj8WiWfLRLuVhE0zLk\nCgU2Nzc5ODigUCghSdIpbatUKDPq9iFJkBLI6Tnu3r7H1oOHOI6F61iY5gTLskiShL29HarVKlnD\nSEHoQBgFHB0dnRKEnuRzPnz4EEVR2NzcPNWu1ut1crkcR8dpSkg+n+PshfOpXSCKcNyU2tXudKhU\nq+zu76DrGY6PGwiCwNbWFkkcM+oPsaYWzGZUqc85zYk+ODig3+8zGAwxTZtcLocsyxwdHVEplXn3\n1jssLMxx0m4ytSze9+x1zLFNOVdGiWVCO2Q6MBFCkWppnqP9Ju3jIY5l47vpBayKAp5lkTgeZ+qr\nhH5AMV9EQsQOLQREbuzeJMxIqLFBUSwQAnmtRifw8bQMbiSkO1ohg4lMK3Y4cizMRISMQSSptMIJ\n4yRmkkSMhAz9WCJbWMVJwESkY7o4qAShxurSVSyUlHQdBiSSjqyXaccBjdgi1HV2xk0Gs/mSmqkx\nGHpEZAhRGQQ2vqjQn9hIaoFWd0Ii63RNh/bYxE0kpFyJSM1gxyJWlLB30sITMulFioBgaHiCiKhm\n2H78gC9/6sd55sw6n/vER3jhhTV+/df+c/7Jf/n3+Of/+Nf5hZ/9MgulCoNOF9MaI2d1hEwGXwLL\njvGihDCM8Z2IMIQwSB9JBFEYnDK5kzgAIUZCIArTtnYcCYA0y90OiZOAKPZnRTsAIUBW0rMyiiKi\nWSs1ioLTtnQYhqet6XSOLJ7uoNKfP/l9gu+n7VhdT722pVIF3Uj50a5rs7u7y9xCDcezMQyDtbU1\nbt26ST6f5+79+0Ca6KYoqVAmjmNu3b3D1vZjhpMxfhQyGA5ptVosr6ykzPN2nzhMsKY2h7tHyEIq\ntJSkNB+5XKkwtexTROHc3By2abNUX0RTVQbdAaurq7TbbRYX5rl+/Tn29nfo9Xr4bhoef//+fRzX\nxTCehtkIgjALnFhNhVCnkYspBJ9LIwAAIABJREFUK3swGNDtdk9b/oKQPA3u4ImAKsXlZowUM1ko\nFdPXsbiYFgIhJpag2Trit37nf+XVb36VBw/vcNI+4va9W2i6xGg6QNNUHM9mt7HD/vEepXJhZsWM\nODo+ACEFwKRfzfcQ2IT36AFSeldC9DTZS0yQxCgtVkJMFMTIqAxGDifNCQ8f7fPg3n3y+TzFYpkb\nN25Sry9x851bMxqcgxhHLC7UMTQdIYHbt26SMwyMjMbZjU3y+SIgMp1OkWWVTqvL9vYOt2/fRUDC\nmlhMp1OIE/b29tCyORAU9veaHB+2sSwXMZFpnfTJG2Ve++abKIoGkcDtm3cAMMcu3daQQd+ERGU6\ncdCUHIHtg2OTEeHlF9+PpiroerqwQAI/8r+vrZ9690VJoFSq8OjhHrGbCvPOX7jM+XMX8R0XYpEz\n6+dwvQABBV3PIys6i/UlZFnFdjxc10/PRX+Coki88OH3IysiC8vzHJ80ySRpx0vO/C0WdR0c7OH7\nLvligTD0cWybvJFlMhoz7PYoFfMgxOi6zngyRBRFNjY2yOfziBLcvHmTueo8jUYD23O5dv15ms0m\nrVaLUj5PNpNhPJxQzJe4e/deKsISYlZXV3Fdh3zOYG9vhyhK5zw7O9vomRStOZ5MOHt2E99PW4St\nVvq8hmGcwkYiPy1knucRRgHVWoW9/ceUKkUePEpPbCGJqFWqtNttdCNDGEc8erxNba6CrIiY1gTf\ns2m1TjB0ncgPqJUrWPaEXDGHqmv4YYDtWly4cIHV1VW0jI5lWWhqBpmEQa/L1cuXGE9GKcUp8hEj\nib2tXbpHXaRYRQgEcpk8mqhxuHvAdGzS7/Spl+exBinEQU4EZAT8sc2kM6Sg5dk72MPyLZAF9tv7\nzC3NE0gR82KFKA4JY5cA8BWJo+CEjKQzJiJQMgwTl0hU0DMlcsocvcRlP+xjihGimsURZFw07Egh\nwEBSigTISHIBF4VE1ulHASJFwkglkHVO4jGxksVFwY0U2liQLSApqXVLEstkiysMxjFQYBwkDN10\nB7x73CdbXOL21h6F8iJqtszQdAkTiYkZcGbzIjdvPUTS8ihaEdeFWJSxvBA3FpGlDLVyhTxZtCjH\nu1v3UBKVsd/n8tkNhHjEuaUi//hX/wH/9//8W/zmf/vf8eUvfJL1ap5u4wCzdUhFN1BFAeKQMIiJ\nggQxVhAjGTFRU643EIUQ+AlhCJKYxuxFoUcYeiQz7CZRTBjGxJFwyjR+Mv99Lybzye7tr/iP46d+\nZJiFVyRPoReKopxep1EUzfz8m+zu7rK4sojl2Viug6KKDEc9TNPC8zxqtRqSkmF9PQUgiJLEhQsX\n6PdmrgRBZGl1BS/w0Q0D0zTJ5Qo0j06Yjk1y2RLnz1wg8hMUQSYKYjbWN+l32yRJwnQ6xbIsBv0R\nly8/w51btzg5OkZTM+zvHlCv17GnZpp7XqswGQ04u7GJKMrMz9WJojTx6PHOFpIk0Dg+5NzFC1iW\nRbU6x+1bN5mOhySEbKyvAJDN6iRJxOLiApIkIM5SgwQpjWtImLWwhRjTGhHhc+7iefb2dvjASx/g\n6PCAXM7ANCc8Ptjm9sNbbJ7f4Oq1K0ytMbliFlUXGYw6PHPtMmNrxMb5MxSrBSRN5NH2Q4QkJjd7\nHbquoqoixZLB4vIcopRar6IwJgwCojAgDIPTOfGT2XbKlY0QxIiEAImEOAkp1koEiYyRy7Gxsc5X\n/vhPmA6nZLM5up0+165dY2VlmR/5kU9wfHzMYDAgSRLq8/N8/vOfP93YPH68RegHfOill2ket9L5\nrJLhgz/0IrVSjcFgSKlYYTKa8vjxY+bn52ked7h75wGNwxbt1pDHj/bQlAIyOubI46d+/MucHHWJ\nfMjn0mt8OnIQIpnJ0CL2BVwnQpGzNPaOKBoq5zfWOH92nayuoqkyvU4bQYxR1dSpoChSKtAjIgo8\nQj8V+t6/u8NibWnGs7a4ceMG68tLTIYWr337dbKFAkEQEvjp4nY4nqCoGpAimdfW10FM2Hr0iI99\n4kWO200Wl+u89b0b/Pjnv4AYR8jvSWn7/uMHXpBNc4KspHYHVVFYWkjzfRVRYm1llW6rS6/ThTjG\nsiyef/55XNtOIxEHXVZWl4iiiEIujyiKPHhwj9X1NKLRtU2s2UzG8zzOnj/H1eeu4YcenV4H0zRx\nPIf64jwrKyvs7OxQKpVYXl4mjmNc36HT6+J5HoNBn4W5eSBmOBkTJjGT4Yh41mq8fPECjx9vERGg\nZGQC32ZtZZnpaMjC3DyB41IuFDAnUx48uMcHPvB+bt+5w3Q6QdMU5hcqZA2Ve3dvMhp16LSbLC3V\nuXv3Ln4Q4Po+RjZLLmdwcHBAr9Mho6gEnoNAzI988mMcHx0iSQK6rnJ0fEgQeizMzWFoGsVsjiiI\n0FU9nZl4HoamkVFVPMch8tOb8qA9JJfJk8vkkWKBwA9Zqi8xnVqIsYDvuOQ0g8lwyIQp4UzkIggJ\nQ3dMXtGwsPCTFMcxNAdIqAw7YyJiAmIiWUYQdVqOyYiEITahKDGIXEbEmKFAIVvHSqAXOziJyDgM\nkaUqESotb4hJhCQUkKQ8ti8SiBJqlM51Dr0uklghV1znxLUZRwlmLLBz1MaLVDojl+ff9xJvfOcm\n3YFFIqiIioGkZtnePUbO5DBdn1yuhunE+EFCIqgEkUwiyPzmv/gN9oIOiWRw8fJVCsIi8+oqlpvg\nJQGKJKASYYYtSonPBy6c4Z/+yi/zW7/x6/xf//pf8aWf+gwL1TLdzgn97gmyBIYmockCGSlBnu22\nCGWSII1A9DyHhIAwcpFEiIJUUOT7Lr6bOgPiICJJxNS7nDwRe5ES5+IYIU5n0CTC6S75CclLSJ4w\nr6OnxC8xDfwQkFB1jfF4zMrKCoVCCRC5e/c2q+trnDu3ievadLp9ptNpmtCjG0hKurBIQQpjLl++\nTEY3WJibJ45jrlx6Btt0GA3GFLI5SrkiQgTn1jf56p+9ynRgMldZQIoFWscnWFObfnfAeGrS7ffI\nZDI8evCQjJJhqb6MjMT6yiq5bIFut0uvndK9bHNKLqvPAgtaDAY9FEXBtm1a3Q7VaoVut0O5VmMy\nthgPhmgZmevPXyWXT5XinuOkWcqWheM46HrKC3+yeEmStLCJooggxszVKygaIEY8frxFq91keWUp\nzXWPXCrzNSzH5MaNtxClmHv3b6EZCiubywzGbVzX5PHuI3rjLp1+i9FoSLVS4uhgn4sXNrHsMbZj\n0ekecfHiOqKYIMnp62EGwRCS9xK6nnZAvNk9K0rSBZso+DRO9tnZ38O0+wShR7VaZjAYYNs24/GY\nTrdFf9BmMOyhaRqiCMVyiViI6Q8GqYPFtVhbWaFem+P3f//3OX/hLINBD8+2kOKY5nEaONI6OeHF\nD7xEHMQoSobHu7uIsoaASq87xHF8xiOTydDlysXn+Pd/8IfomdS7PhmZAEhkMLQig+6IzsmA6dBB\niEVs00GSBQ4O9pAkcWZVE1hcWkg7G1IqipRlmTBOuz+ynHZooyii159gTT1UScZyPURFJqcZaIpB\npVyj1x1ALDCdThFmedlzc3MEQUBG1RkMhthWSLfTJ0ksZE1AzxrIokyr3cDQEsYzO+Bfd/zAC/LF\nS+cBCHyPbNbg6KiBLMtpOIPtoGV0PDfAczzOn73A7u4+iSAyGA3pD/v0ej1WV9JV7GDQS5OA4hA/\nSNOVnmApm80mm5ubvHXjbY7bHRIBNjY2qFSqjCcTjo4OOXduE1mWGQx7uK7LXH2BNIhcQpFlBsM+\nCTFh5JEkEf1Rl1w2ZatubW3h+A6N40OyWZ0g9Ik8j+WFeVxzys72Fq1mE01VuHL5EisryxhZnfF0\nhCQLhJHH7t42k2mfl158gUJR5+joCN9PM5RzuRybZzdoHB2ysrSYtouikHt3b3Px3Dnu3LpJtVbC\n9Uwm0wGqJjM1B8iigGPZhJ5PuVCkWCjgex6qrDAZjbEmFs1Gm1wmFRpUC3P0Tkb0O0POrm9ijk0I\nEjRBZdofszq3RGPvkJXyOhFg+wGGVERAwDdtOq0O08iGJEAiQtVVOnaXhfoyVujjJRGeHxAio2QM\nAkQG3ghJ0rBinxCFWMoyDSQEwUAQy5iuBHKOTugSoNIeWjgxTBHpexGqXCInzqNK6Ty/Y03ZGfSw\nkAmVLHYiY4cikaQzdEK6Y4fX3nyHQFKR9QKRpDGY2qDodEcmfiIzt7LG3kkLOZcllBV8VCIUdg4P\nEZQM+/1mGhE5DFDQESiRzxQpShXGvs3QH5KTc0ziCR4ePb/FfCWHjs9yTebn/87H+c3f+K/5nd/5\n5/zKL/8EH//ws7zv+Q3m53VEMb3pdDo7jAYNhMQhDl1c20GVDMJAwndchDhVXUeRR+DZSBLEcYQg\niKRkwARrOsEw0qLyNHJuNvcUBMIgOi3MT44nRTqY2Z5iEoLAx8jpfPet76HIGiQCH/nwh8koKrKS\nioOiUMBybB5tPUjtTduzLOEkpcjZts3Zs2c5PDyinKtwuHdIrVSGMOLBnfuEXogmZZgOp1w6f4mF\n2gJrK+v0OkM+9clP8/y159EzOrKo4Jgu6+sb5PQsRFAqlLn5zi3MiYVlpW6La88+S1Y3IImxpyY5\nPSWaFYo5CoUcpmMiKRKiInL+4jl836dSmceyLALPZb5W5uKFc0Cq6s3ns9iOiabKeI6FKDHDVkYz\nAVX6GAzbxImH69sousxoNMTIqGk8ozKbIYqpf3k4SoWnKytLJESEcQBSQn/QYaFeQ87IqNkMiiyS\nhAHlSpHdvccU8llGoxGFQpaf+/mfpNk8II5T94eqquiaQa/XQ5UVZFk9vdGLiYggSxiFPKKqYGg6\nSRzyyU99gn/3B3+CLMisrCzx8odexHEtzp7d5NHWAy5ePM+NG29Rq1XQ9Qx+GDAc9VlYrNPunOAG\nPleuXGF/f5/9vR3ObqxTKhVSlkTjAElIuHbtKrZl8uzVazx+tIUkyAReBInIdJIW/vHIIqfnmI4s\nfuh9P8S3v/ktfuU//k/onLRoNVsochou4Vo+cQDvf98HMbQsxVyeyXCKomT45V/5FUIhobwwx87+\nHgsLCwx7KYtdFEVI0m6PokrIskRWN/j8Fz6LqsoEUYxlBfheTLPZZDgcUswVKZcr7Ozss76yTrFY\nJmfkTj3pSQLj8ZTDw0Nq1Tr3HxwQJzKEAVeevcRRs0WtMsdw0ublj1zji1/+W0zqah40iPyUP6pp\nKr7vc+nSRSzLQs1kmEwmLM3XuXThIsNeH6IQx3OQMipe7FMoFjk+OgHAtKeUK8WUODOdMrVswjAm\nEWA8nfCNb3yDpcVUKRjGCY7j8vbbbyNJCogSN2+lnOwnMY+j0SgNPRdTifzOzjayLHLpykWm9pgo\nDtGMlOqzvr5KNqtTqZSJk4B28xjXcYjj6JT/67oud+/exbZNth89IFvI0mo1cTwLx0s90OfObfJo\n+yFqRkYAzp27gO+nFo1m84icoTMZDVmoVgl9j1/8+b/Lt779DcbmCNMek82pqBmBpcUatVoJXVMI\nfJdyoUhWzzEYDOi1e8RBiD22iP2YUXtIvboAQOQlzBXnMYcmO48PyIgZ7KFNNPEoiAZ232a9fgZI\ncDyTKIlJSboxmSgio2hIYsLEmdAedvFsD2tgMmgNCDwXN/KIhRQVqaAhIDL2TKZ4qIrGcb+Ten5V\nmRANL1HIGXXGwFhOiNApVs8giRUGSUA/jNg7GRCSo0GKKj0eWNixxjiErukRihqNZp8wVtjZaXDQ\nbLHXbDNxAg7aPTwkpGwBtBx2LOIJKm4s4sbgROCLMn4kg5zh+Q9exwMSWcMm5PnaJf7i5quYyZjE\ndxn4fRICZFVDRkGXcgiCwOFRgwCXveP7nKnPsTxfYNg7QMs4bG7k+cxnr/PTP/MRfvbnPsZnfvR5\nAP6n/+Uf8Yf/z2/zD/+zn+XXfu1Xsa0xspDumjUtRxSkHmRNlRBlj9GohSKLOJaNbVpIong6Xklm\nu15BEEhI58TvzUaG9xRsnkJD4vip9QkhodFocHLcIvYSDvYOKRjFVJQoC2zv7rKytkYYBsRxSq4C\nKBaL7Gxts7K8zM72LoaRY9QfIcQCB3sHXDx/kYvnL6DKCoVcgSgIGA3GDIdjjg+PkSSF3/vdf0Nj\n75g3XvsOW/ce8dEPv0K/1eVwv8Hy4gr3bt9jc32TRuMY0zSp1eaYjCb02l1qsxapJEnoqoJlpYU4\nigKiOCBb0Dg6OmR3d5dup0e5WOLZZy7jWCYP7t0GYGlpCdu2WV5epFAooGkamqY+VfGKpGS0BKrl\nPLmshmWP6fe7lCtFBBFu3HiLlfUVJElIyX0zpa9IQjabRVREBFlgPB1QKBpIAviug+u6FLIGURgi\nzrKdG41D8rkCU3OIKEXU5iskhGRzBkHoY9kmv/hL/xFHxw2IIzLKkzGITxJGBK7FoNfiM5/8JKN+\nGxBZXjzP5voFLMukP+xTKBhEsccnPvFx+sMea2fWeffdmziOk24QNjcJQ5+lpSV0WcWamghJTKWY\nxsJWq1Ucx+HHP/+jlIsVvvvGm+i6zt7BPlEUMx5MGfYm6Tx2hiCNAu/0f3PzxjtAwjtvf4/t7W0k\nSUESZjhXN+bc+lkau4cQRpTyBW6/c4OMKvPv/ugPWd04w9S2SIBzZzdQVYWMJiGKMbquMZpOcP2Q\nME4Yj6a8+tU/Z/3sKvP1JY6bXRr7bZIwoNPpYTk+j3cP0bNF7t96yMnRCY7jkdULDPojstk8tuVR\nqy4iChlMM+Ror8X2vT0+9rEP86d//mfk8jqCGtOfDukNrb+xHv7AC7IsSawsLdPvd9E0DVVXeefd\nm4RJTKffSyHonsfNG28T+C6KpuIFLtu7W6crmEolTWCSZAFEmJgThARWFlcYDAYs1RcJfJfl5SXm\n5+bYXN/Es1Mv37nzF+kNB8SAaVt0eil6U8saqFoGRcvgeR6ynFKzJpMR4/EQURa4evUSb739XQB0\nI8P5ixfwvJQUI8kp7m0ymXB4dICkqaxtrPHZz36aOI7Z29uh0djj7MVNwjDEsizWN9aIYhHfS5hO\nbOIImo0mpUKJO3dvsbe3Qz6nkVFlOu0T6rV53nzjdS5fvoiiCiiqSH/UTW8UYkS3c4IiCXzw/T+E\nOTY5OTzCHE5Q5Qy+FbJQW2banfK+a9e5f/Ne+oG4Ec54Sk7LETohx7vHDFsD/JFHbMbktRKqlKWx\nc0ivO0K0E3wvQgxF5ERGRiIOIizLxpn6NPfaZMIMV+oXUASR6XRI7CfgJRhiljAIyeYrxAhMXA9B\nU4hJyVojLIa2iSUEtN0hg2BMHwc3itjqHaGIRYa+y9RLMIkZuR4A7z/3MZrtCYmcJVucxw0FCoV5\nzEnA/MIq8wvLzC2sohklFuZWIFawrYA4EkhiGUnUOGn0UEQdEPGdkIyoEVgWpYpOgEO5WONx64Ax\nIdefeRZX8IhlGDMmVhJU4DuP3kSYBcbLqsS43UZR4eHNd6kpJeZKBaajHrou8PDBTV5/7c85t7bI\n6mo6JyuUAvZPbiApQxC7fOWP/g80w2E0PsDQRXKGShhMqdYU/v4//CK/+2//BZI6ZWp2mJ+fTwtx\nkgqPnhTbJ1jMJwIvYVYU0u9BEJ/GOyZJMhMDxQhi+jwvvfQSx8fHOBOXgp7j1s3bnBw3+fjHP06v\nO2J7e4dKrczh4T6hn34eiihQLpa4c/sexVwRe2ojSwqtVodctoCqaAReKkzb2tqi1emgaRorSyl0\nR0KASMS1PSqlKv3ugF6rTS6bRRFkjg6O2X28y9bWNqqSYb9xiJBALltgffUMYiKiKAr5nIEoQalc\noHF0gKTIzNXn6PW6uJ7Nc889x82btxCR8F2ParlIqZSOQTzHTTGJw2HazdNTolQUBaez9ziOEUjI\nZw3i0KVYzKc5uo0jrl+/TraQp3lygm3brK2v0GmfIJLQH3SRZECE/rBLZa5CGPpMx0Myiow1GZ+i\ng+v1NF1uZWWFSxcvUpsr8x/+9I+YTockSYTnOQSBx2g0QBASFhbmkCUQZmMQWYKFSp6X3/88n/7h\nDzPoHPKJV17kp3/mx2jsN3h0/wExSSooLeZQdZn5eo21tVUePnxIuVphdWUF17FQJJluu8Pd23dI\n4pBBp8N8pYokyNy6dYckSWbI4Qlf+eP/QH1+CYF0kTidWriWS7lcJQ6jFPlLzOpKnZWVJS5dusA3\nv/kNXvnoy+zsbPGFL/woup7h8eMUnRmHIZ7jMB72KWQN9vd2eP65qxgZlWtXnuHhvfs09g/4Oz/7\nJX7v9/41mi4TEyKIMfosTjeMI0CcxT66VCpFTNuiP7IhzBDHUCxU2No+ZGxaPHyww7NXrhO4KR61\nedwimy3g2AGFfIXHW/s8eLDNcDhCTlT6PZu3vvcdzp7dIFcyWF5Z5PzlZ/nqn//l31gPf+AFWRDA\ndkz0TOY0EFzX9VmM4gkZRaFcKZJRVFzXYXl5mdF0QkbXieNU7FUs5cnmdDzPS326Wvr3tulw8fwl\njo6OqNfnyeUMBqM+pWI+zQzOFWYtDJGsrnP16lXu379LEHjIInS7XcbjMdmsTj6fZWd3G1GCVvuI\ndvuE45MjFCn9F968dYNOp42maZiTKWfWNjDHE3w/QMnM3k+7zTde+wa377xDRIQXeAhCOh+8dPky\njcMTarUalu3y3HPXOXPmDK1Wi+3tbULPp1opMZ6MaDWPqM/V6HRbFAo5bMdK8Z5EZLMG8ws1otCH\nJMK2pnz91a9ycLBHs9kk9AMyispCbZHYi1mYq+M7PtWZfWs6GjMdTjDHEzrNFoHt0T3qsFhborHb\nwFAMWsdtytkqa0tn6RwPOLh3wN27j1mpbyILGXa3jzk/fx6zPUZPdNxJGpGWROCMTBLTxT4ZUKWI\nOzEpCXm0WEaJZXzbRUgCbt5+m6NBkzgTMwkmyJrM4eEh08CkN+1Tq82x0z2k1x0zv1gHRKazHVlr\nOGCpvkGMzM7hAQf7Te7eeYRl+phTh06nT17LU6/W8W0Pc2ixWl9j3JsgRyKJG5G4CWIkETo+mUgm\nMj0G7SafeuVDxHgUFQNr2Oft7n1CVSJCIpI0JrbDyXGTu3t3uHLhPMfdQ6pkubxynmKtTBQlXLl+\nnantMF9aQoxEeidtsrpGba7M7tEjsrm0xdw6OSKKLSq1DPVFlZg2/8P/+J/y6//sH3DlmXnOnMvz\nYz/xEr/w9z7H4qqKHx7xyg9f5H/7l/+Mh4/uoChpYRWBZAYXgbQV/f1wkCdfnxTsJ4/TLOZERJbT\nKMTFuVVGgxHjkUVGTHUI/W73dLe4t7dHPpdLoTjAcDDg7LkNLp4/z+7uLhtnNllf32BxcZkzZzbZ\n29tjMjURENF0HU1VOTxqsLK2yttvv8NkYnL+/HkG3QG+4/O5T3+W1197gzvv3iGKIgzD4PLly1iW\ng5HLIyapRfJrX/s63U6fd95JaVeDwYh2u8U7777L1tYWvu+xv7/LeDRgOBwQRhGmaSJJAs9eu8of\n/Ps/oN9PU9CCKEBSZHK5XApxERJkSUxJg7PuQ+inIqqMJmMYGoqi0DpusbK+xs7eHr7vnyYjRUGY\nigOzWS5fuDhLJhKZm6ueUrYymQxJIiCLCsYMKVmdq6VjtcEAUZBxLIe1tVV+8Zd+Dt1IA2MkSSCb\ny3DY2CUIPMIwxHZSNO71a88yGfQYtE/44o99hu+9+Sqf+9GPsrExz8c/8SKZrDxDhorIgogqyWTU\nNKjnlVc+ymgwZHmxjms7KKLAp374E5RyeaqlKkkU8+677yKIMivLa2w93GY6Nrlz6y6u67J2Zp0w\njHFdlytXriAIEuPBiOPDI9onTQp5g4Jh8OUv/wzDUY9f/fu/zDs33+InfvLzvP7tlIOuzTjjn/30\nZ3hw7y4f/ejLPH/9WXK6hijBc9ee4c3Xvk0xl+Urf/L/EYUOX/ixT5PLa+QLOtff9yzlUmGmnn86\nqnmSYJbRdVRVx3UiHMvj3Zv3CEOJ/sAkdCNe/9YbKBmNfm/E/PwCoZfgewlH/z9x7xVjSZqm5z1h\nzomI4/05eU7mSV/edFV3V1f7nu4evztruJp1wnKGokRCAlbimitJhCRAFAFpwRUXFCViBUJaibtL\nisLasT3b3nfZrqqstCft8d6GD11ETclAcz15lRd5kUDEH9/3f9/7vs9hlS+88AquI5BOp/BsgXqt\ng+xJWKbOwtI86USa733nTcrFpZ9YD3/qBXk2mxEI+C/Svft3GQ6HVBtVBAFeeeElLNNGN2xESaZY\nLPHee+8RVDQqB4e8/IXXafe63Nu4h+PZzCZTJoOpbxmyXIKSTLNZ5/D4gN64S61zjBxwESWXXr9D\nf9DBdSzSiQj6dEKjVmV9fR3TNP1Iu3qN1dVl6s0aM31CMZ9jPB6ihlRK5SKyLJMvZAFwJYda85hE\nJIwx1jnZP2bYGWMYFr3egFF/QKfdZGpOmF8uYphjFuaL6PqUeDzJ4f4xiqLSaDTAs6lUdqg3G5im\nSUgNMJsOaTbqDId9CoUszVaNQjH7eLwTCoWwjAmCZ1Gp7CCKIqPRgIAioTtjyqvzSKpEICATDqp0\nmy3M6QzXdZnNZtz67AYA+UyOg70jjJlJWA3j6jaqF+R494iIGuN49xjVCXBSOeDG+x8jejKJaJxO\nrcHWww2s4ZRxa8D29hZBV0BxBZ44d4GDxj7GxGQ+s4xrucTjWWrDE2RP8JuA0ZjDyjFRKYEiKJTn\nFlhOLdLvTRgNZ2xvbxOSY+hTC31g4eIrwoWBQVSKMnwEWACoteuobhQFjblUCdEQiUXiiJ6IZbho\nYphcOsegO2DYHXP18lWO9g5RxCCz0RTPfIQvtEQEy0MwBWRH4MKpFWTXI0yEkTemtDJPLptGwMVk\nRmtUI2hLJEMJLi1fxjVcMtEUrXGbe/fuYgxNFgur7GxXiISi9LpNjvf3/YQh08JxBYaDCcbYT/IR\nPaidHHF0sEdYU6kcPeCpv8CBAAAgAElEQVTze+9x8VKesxdT/PK/+wKlRZnhsIpre+zs7LO2XqLZ\n3eCP/+Sf0GruY5smwYAflvBjPzKP8rBdy+bHq2PP80AUECUZ23FxbPCwEQT/lmxbAgeHO6yuLPL2\nWx9z69bnvP76V/j8zgYPP79PIqXhSSIvXr9OVAuxXzkmFIoA0B+PqDdrfPzZxxSKJdLpPIeHx5xa\nP83xcZVms8tkYhAMqty+dQtRFLn61DXeeft9wlqYiBZDlhQsy0UJaDSqXVaXTqMFo1i6zUGlwkKx\nRGmuyN3bn7O/e4Rt+yE++bkC+XyeSCTis5xdB0TfXSxKNpIA5VKZ+vEBmqpQq9XIF7P8y//lD/lb\nv/RNzl70vdThWBgED01ViEXimPqMycQfg0/0GZ4g4roiqizx3AtX8ERQ5AiTkYFl20xmY0KKynQ8\nY2F+nqOjEyaTCaFQCNt2SSSSTCYz1JAP2+j2BoxHBmElRiKaQotEKZYXeHjvc5LJJIVCzsfOjhxS\nmThLq2mODivIkoAoyrz+6qu88cPvIwgSly9fpjfwM/f39/eJRsN+PHG3i+0O+Llf/BLvvfUjZkaL\noKLhWDZBMcjVS1fwbI/ZZEoxmyebTJBPZ2jVT1hcKJJJp/n040945vp1xmNfaHflmSe5de8mxbk8\nZ9dPsb64SiwS5ZlnryHJLsWFHLXqCa1Gk0wqTVQN4eomr73wAvO5DMW5NAcH2zQbRyCYRGMKe5VN\nojEN17IZ9Hw3yOHhPivrSxjmGH02Ym11iblcluPDPUJhhXgqym/87V9mcSHOcFwnU0zw87/4ZXYe\n3kM3xsyXsogCyCLIQY9MNkWv08e1ddLxOLZn0+3qYEmcOnMey1UICgrRsMbq+joRNcagO+Dyhcu0\nuyOm7SnWcEbAk+i3+sxMh0BAZjaekZ9Pk19Isbq6yv7uIfpk8BPr4U+9IMfiCeKxJL3egJAWIRyO\nEhAD2LaDYegoapCjoyPmF8sMRgPfl2s7ZOJJHNNiPB4T0jQO9w8IKSFETySiRVCD2iP7k08gKZeX\nyKTStBpNWo0mAUmm1/Mxa7FYjFgs9mhnPEZVVW7c+BRB9Oj22mSzaaLRMN1eB8PQ6ff7dLtdqvUa\n0iM8myj6gPKT40NK+RzJeAJTn7G/V0GWRWzbZDwdIQg+K1UKiGxtbdHr9ahWq7RaLXq9Lqqq4uEw\nHA8QRQiFVIbDPgsLCxQfqb8TiQS1ZoPl5VUGo+HjsWQymfSpM4ZBQJSYK+axLAMtpGLZMxZKcwSD\nQSKRCCFVZTQYMOi0OTk4YmVxCQDBFklGEmiyhippTHtTFgrzDDsjZE8mHknSa/aJKTFSoSSDVo/j\nvUPyqRyzwZjK5jaC6TDpDfAMi+XyIjsbuzRPWog2dBtdzIlF+6SN5ARoHrVQvACz4ZRSZg7BdLGn\nOtPelGqziiYq5ONpZFtAlRRmwymObtNrD2lW2zzz9HP0W32UgEqn7n90Ao6KMbWo1mtsb+4gCzJa\nQEURgwg2JMJRPMtj1BsTUaPUjuqElQiWbiKLMq7hIAkSxsxEcCQcy8ExHU6OjgmIEpZjEhPCNJt1\n9g/36E/73L//ORICpUwRRdGod+v0hn3SaprRaMjq6iqLyTIPt+/j4bBf3SUWi/nagonOBx98RCaf\nIxaLcev2HcBPAbpw4RKmaZMOpzk5qRGNRvn44w8Bg88+/ZBIWCOZTNJr94hHooRCEbLZJJ/deof/\n/g/+EcFgkPHY9+wimLj4AAJRlP9fCV0/ptP5didfOCM+4siCP+ZbW1tjv3KAY7rk0wX+9z/6P2jX\n2wSDIZ648hQg0mgMEKQA8WSCyCMSWiaTwrRtvvDaK7RaTYJakGq1yrvvvcPCwgKj0YjtrV2Ojk54\n/bWv8MnHN3nnzbdRFYXVxXU++fAznnnqKUJaHNuAf/On/5bnr7+EFoxQzJfotvoMB1OOj+pk0znq\n1QZhLcKZM6e4e/c2lmsxGPQYDvvYhomIgOB5dNsd4qEQk9GQtfUVPNuh1WgyGg146aWX+Pzencdp\nY8Ohf8MUBIGZoTMcj3AcB9M0UeTA4xvudOrf5g3Tz7WfX1ig0+n4ud6SSC6fYTyZ+N7XgIw/NRXR\nZyZ4EtOpQSSSwLUFgkGVWCT+uLGxLAtNC2NObaKhGIlYjGIpx2TWRdFcXv7Cc4DHdNAiqCqAyLTb\nYnVpjm9961sAdJpHnJxU+MrXvkB/WOc//u3f5E//zZ+yt7/B66+/QC6RolfvsDy/SqPaojg3jyjK\n6JbJaDqh3+/imBaBQIDJaMxwOGQ46lNtVEln4qhagDNn1zGtKbu7m4QiCpcun0NRApTL89SrJ5w7\nfQZJ8FhZKlNeLLG6ukQ4rLC8UubCudNY5ozz507TabfI5bKkknGiIQ3LnCG4/hpkfmGO27dvcnxy\nSDqdIpNO+82cJPDElXOcv7BGZe8huXycq1fOkcsm2Lx/h2wmxs984ysIskckEkKSXYKyQz4Xx9D7\nhLQg27u7tDu9x5HK8XickBpkOOqTTqepHdcIhSJsbu+iRiLc+/yBry9YWGA6mLBYXGJpuYyqSDz7\n4jViCQXP0dmrbPLcc1cJx/5vO+H/9+enXpB1y+bd998nk85z7dp1arUag8EQWfZpSuPxGEESqDVq\ntLtdgsEgzXqDpfIikiCyUCxRPalTKBSxLAdZVOi0+uzt7RPUQv7LLMrUa008RKLROHNzJWzbH3f/\nuIjpuo6mab661DEZjQaUy/OMRgMODvcZDPosLS1RmMsRDMp0uv6up9luAGA7JrlMlkQkTCSsIXku\n49GI4dBHNhbmsqTScVzPxLZN5ID4eKSnKAq7uzv0+30m0xHRWIzecIBhGwwnfVwBtHCIyWRCsVjk\n7t17LC0tsbm1haqqj4U78XicZDJJKBQiEgkxGg0QJRewSSYTdHtNiqUcw36XXqdFICghSQLHh/uP\nkX/T3hjBAn2g06/16dZ6BAUVRdKoHtTYvrdFKBCmX+sgmQKKI/kK7HoXQXfQCCDbLrIrIFkCs96E\ndCxNLpqhECvQr48JuCoxJc60p+MZEvrAIOgE6de7MHOZ9qfYI4OAE0QwRfYe7lFMz2FPTUbtIaIl\n0DpoEnSDeIbA/Nwirg71wzYA1kQiHS8geEHCSgx9aGKODGr7VRKhKJFAmOZJk35zwKnl09SPWoy6\nYwJeEHNsITggOhKu4eBaIlgCWkDjd37zNxE8gaQU53tv/SWWqVMo5Lhz5w7DyRhJktjY2qBTb9Mf\n9tk/POCTjY9RgwqT8ZCh3WXSH2JMxpwcHmFMZ1iGxdHBMYlYHHNm8tZb7zxmt9qux3AwQpYC/ODN\nH9ButjBmOolojLm5HOlkEtuwmY6mRKNR0uk0tmFi6jrnLy5x/twi1VrF9xMLLq7742IsPo58/XGI\nhN9QyniegOuA43iIsoQoC4gizPQJOztbZLNZLl68TEAKEg5H+Pa3/w6zqcHx8THBoMLJcZ1ut4fn\nCtRrPit8b7+CqgW5d+8u09kYRZHJZdLkMml2d7cJhUL84i/+Eu1Wn4P9KmdOn6dcLrNxb4NBb0gu\nk+Of/9P/GcGWKGTmSUaz3Ln5Oe+/8yH97ojJcIZt+vvA0XBKMhbn5PAA17M5rh8hB0VMx6DX6zIc\nDhEduP7kM6yUy6ysrFCrn5DP5qjs7iF4Hsl4glQqwdraGg8ehZt4nudbeAzfYfHjUWd5fgFJEnFt\nC8H1MKYzTFMnly2gaWFm+hQpKNHqdkgm02iar0tYXlnj7NnzjKYTtrd3URTt0SRthCprDAZDREFm\nNJpgmiaz8YxOs0M+n0cUZWZTh9FwQmkuTywaZGf3HksrBSTZIRYW0VSZ1197ja998WXu3nyXfqcO\nQC4T5Zd+4WsslDKEwhIBRWQ4GvCNn/syhXyU9959m7gaJ6ZFiYRjSIEg164/w6kzp/0V3rCHruus\nr65Rq53w1a99iU6/S24uxcraElu7D4knI+QKGa4/+zSnz6yxvfOQ8mKJ2XTMmbVV3n/vHV5/9VWi\nEZVBv83LrzwHgsX8Qg5Z9RC8GWvrS6yfXmFrZxPD0slk41w8t8qv/srfAmB3b5Nv/vIvsrO1hQDc\nuXOHi+fP4VgmFy+voet9Tp9eYDhs8hd//q9ZWSwiyy7f/tavsbH9gNlsRjIZZzLu8bWfeZniQoJE\nXOHShXNcuHSR2USnWW9h6ZaffOg4vPjii6SzWRq1Br1un3wmjydKaEGNZ557ljffewfZheXSAt1m\nnVQ8xFwxzXQ2IKSINOrHPHftCq9/8fmfWA9/6gVZVVXfyG/MuHXrFulEkul0ys7ODp1e95GYYUar\n02Q8HTGZjZlOp3QaTTYfbFCrVmm324S0CJ12j+FgjBbQCIoK7VaXQDCIomiokRBiUGGiz5jos8fd\n6X7l0I/H9GzGkyFBRWZr6yG5fJbhcEAmkyYUUun2/IjOTCZDQJKJx+M83Np8FAkAuq5zcnxIv9vj\nuHLAydEx4XCY9VNrbG1vcPf+bfb2tghqKnv7FbrdLvYjxaNtGcQTUWzHZHFxAdsxGY+HhKIqtmtz\n/vxZWq0moVAISZIIRSMYpkm1WqVYLNIbDEgk4niex9b2QzRNod1pYZhT5IBAIZfixs2PcV2L9955\nE1WRCIUDOK5OvXFCNpt+vAu3phbj7oS4mkARgiwXl9EHOqPWgFKmiGgJSLZIu9Zn2p8yG0zxphbT\n3gRrZOPpHs7UIWhKlFJFOtUe7eMW/foAlTCxQIIQEQRTIqrGSYZSlDKLtI87FBJ5RFvyf08WiQQj\n6AOdhOYXb1cHRVQxxjaqqJKLZ6ke1xkNZhzuHmNP/CLTrg4xph6eJTPojDEmFoItEnQDRMQQ9tRk\n3Bnztde+zrtvvEPAlQl6AcyxieRIOIaHPXHwDBdHd5G9AKLlkE9nSEZifHr/ExKhEJdWzzAZjVlZ\nLHP14mUUIcDlUxcIayEajYaP3AsGyaUzWDOdo4NDIloICYGzZ07x7jvvoI9mJONJAmKAbqvHz3z1\n55AF/4ZaLpVptTpMxwaRUJy5fJFcOksqkSYSilEqzFPIz1OaWyAoB+l2Wr5q+FFg/oPtG/zD//I/\nIRT+cbKXCMiPVdV+EfafuyzL8P+wPsmPbsmu6+J6vlPgt37rt/iTP/kTPvjgA8bjIfXGCYfVA6SA\nyNmzp7Btm40HOwRkhVdff43ByL9VxmIJdF2n2WwSCqm8/eabjMdDplMdiQDZZI7v/vX3mSuUCWkx\n2u0+nXabsBbih9//AYV0nuWFJW59dodep4/nCHz/r77Li9efp9vq8sUvftlvwOUA6+trlBcWePb6\nNcLhECtrixjODNsxGY0HhEMqjmMDLt1uF8P0d8AntSqGOQMgN5el0azR6bR54glf8f5jv6rneei6\njuNYDPpdnnv+WXgE7vBwcD2LU6dOcXRyQq3aZDKe4rqQiKepHdVJxFMkEkna7Q6CKFMoFCiXy3S7\nbXK5DKapM5lMiEfiFHJznD17ltFoRCwWYzodMxmN6fc6TMcThv0Rx4dHtOot1k8ts3ZqDtvr8+1/\n/9fZfniLnY2bXH/uCV556Vke3vdXUl/64vNMZz1sZmQKSRA9lpbKbG58TjYd5cuvv8b156/zwUfv\nM5oNMG2DDz56/7G2RlNCpNNp3njjDb7+1a/w4XvvIkm+ynzj4edYts7ByT71xjG1+gGDYYvF5TKt\ndo3pdITrmPz9v/ttPFtnb/chX3jleUIhiXwhhSS7VGuHnLlwmhu3PsWwpqTSCaSgyM7uJpLs0ur4\nMJ+f+Zmv8t2/+it+93d+h263TVASCakqsVAY2zZQVIl33nmLRu2Ev/cf/F1u37yBa/tpduun/HfV\nnE7IZRJcuHAKSbS5dPEchWyGu5/dxNYNeo0ezzxxlbOnz5DP56k1GjQaLcLhMLFYjLW1NT777DNk\nSaLVaqGbBmtLi+RScTRV5NrViyiqyHPPXeOg4sOHppMhQfX/j8Dl//zUC3LlYA/Xddjd2iYZj3Ln\n7i3WVlbo9bpo4fBjocjJyQnj6YTRZMq5c+eYTWakkxlsy2UwGHFwdIhhW5zUqnQHAw4ODoiGwkyn\nOqIs4Qm+R/K41aLaabF3eMD8/DyTyYS5uTlfQNVoMBgNePGlF0hlMszl/YO5uLhILp/nzp07PuLQ\nnFEuzZPP52g3/RtyQJIIqxqBQIBer4csyGQyGQ4ODiiX5/20sbCKogRQFAUBCdu2CUc0er0O9eoJ\nC6WiTw7pNBElUBSJRDLmd9mSxGQ6YjQZY9oGruvS7jQ5Ojpgb+chpjVF1yfEYmFm+ojZbIRrmTi2\njudafOmLrzAcdCgvFjmp7jMcdbEdHUFwCMgCtRN/NHewv0ciFqN9UqN5WGPSGXCwVcGemhxsV0ho\nMdonDaJqnGF7jDNzCSsRXANmfYO4miATTWNNTI53Txi0RjSOWmSjBe5/toHmqTgTjwABOvU+ri5y\n/9YGQUGjdlTHNT1CgTCD9oBhe4g9c5C9AN12n06jx72bDzDHJtv3d+nU++w8qFDbq7H7oEIy5O/z\nl8vrDFpjZv0p9thiLllg5/4O2WQeyQvQbfS4dOYJ/uh/+EMUUSUoBPBMCHgBUtEE9tTGmVoIpkfQ\nU5Bcgd3NXcJKgEGniygKOIbJGz/4PsV0nm6zxUnlAMn2GPb7LMyVkASJeDSB4Ap02h1K+RJzuTzV\nkxNM3eAHf/0dXnn+ZTzTxZ45FHMlZATu3LrF6tKKfzb2jtjZrHByUOXu7bscVo5oN3t4nsD7b39M\nqzlkZ3Mf14FkMkEg4Odet1otzp++Qq16xJUra4ynNYLBIKIYRHD9kbRnu3jej8VcPmUtl037DoFH\nCEdJELEME9fxmIzG5PN5vv71r3Pu3Bl6/S6RmEY0ofDMC9eY2VNi8TgPN/ZYKC6xubnFyUkVgM2H\n2xi6xdLiGslEFk0NYeoOk+GEzz69wY9+9DaiEOTkqMbDh9uMR1Pa7TbxaILXX3mVk6MqjVqTkBqi\nenRCMZvnS69+ibfffAdN0bh393NkUfJjdCu7eJ7F3v4u8WSMwlwO+xE6cTjsEwhIZAsZxrMp7W6H\ndz94n0w2i2maFOdLqGGFSCREIpEgHo/7edXwCKQh0ev1ME0TVVHQNI3aSRVZFkHw8DybgBrg9u2b\niIJMvz+k2/VhLcbUIBFL0+0OEAWZTrtHv9+nXm+SyaRQtSCObfg8X0FGQCISibC5uYkSCFKv11GD\nGp1Wl+l0jD6b+R5eV+L82csMe0MkyeK/+K9+m42dzzl7aoFYRECLBGl36nzp9RcAiEQVXvnCs1jO\nBDkoMFcsIMsiiXiM4+Njlk+tsHO0TXIuiRbRaLRrZLNpH6Houly79hS7+7vkMinu37vLpcsXCEU0\nQhENUYRUOkEiFqLbadLvdRkO+kynI+bLJQxzxuH+HnOFLPGYxsJ8jvmFPINhm0hUZWPzAXJQRA4K\npDJxdGPGUfUIWRa5/MR5FspzlEq+PfOP/9X/xmuvvMz2ww1wXMrlMiIC6XT6cULd7/727xDWQvTa\nHZLJJK+99hq7u7vcvHGDYiFPKhEDz2Y2GRMKaTz95BX+7b/+U3LRGKfLi3zr138NfTYDXDqdBiur\nS0z1CUElwEJ5nkI+izOdInk2pfk8w1GbUilPPBamVEqztr6Mrk+JxcMkk0nCWoRCLsNMH//EevhT\nL8jRaJREIkFQkalWq8xmvpI6FotzeHxMMplkNtFJpVJo4Si6aVKt1VFDGq1mE103SaSSDEcTPFFg\nOJ3wcHeLi1cvUzk8wDB8juV0OqXb7XLlymUUTSWdy9LqNFlcLjOZTplMpyRTCRzPY7dSIRzRqNVO\niEfC1GonqFoQNaxy/vxFggGV3d1dJEGkNFcEfHGa68LJSe1xnuxwNGIw6rO9u0OtXse2bVRVZX3t\nNJbloGl+alYgEGB+oYjr2WTzGURRpN3p0GjWkASwDR1FUSiVSniew73790H0SCaipJIxzpxdJ51J\nIAc85ACsrS8Si4dxHYtCNkMqEaFePSSRDDMZ93zFpWdxWNmh06hjzCZkHqmsLcMgFlaJhsJcPHce\nfTIlFFQIB1Wsqcmw3WfQ6jEdTEhFkwQEmWQkxWxg4swEFCGMZwh4Uxi0R5SLixTSRYyxQVKNEVcT\nDFsDGsdNysUFssk8xthCEVXmMkV2Nnbpd4doskr18IhOo0mn3iaihHENl4XCAqocJpPIInsK+sDA\n0yVG9TH79w8AyMRyCKZI47hJKpbmg3c+5PTKaRzTZvPBQ9aWT/HO37zN4sopjLGBPprhmS4BQaZT\nb3N2/QxBQSEgiEjIYINoORzu7TKXzhEOqbz0wsvEozFOqsd4DjSP60wGY44rh1QPq6yvrHPv9l0u\nrV+isn1ArzOk3ewhS0GGwzGWZXPjs1vcvfuAdrvLdDTm+PCY69eu0+/6oo+1xRWwQAmoFPLzzJeW\nGI0mtFt9zp27iCwFcV2X4ajP0XGF6XTMwkIJzxXYuLdBvzNge/cu3/r2v4Nr24iejCQJeK6/JgkE\nAngeXLhwAde2HxUbHQ8HOSA+Arv77KlYLMGP3niDzc1NvzD/7FfwJJPuqEl30OTgZA9BktnfaxDS\nEuzt7bG24of+5LN5VpfWqR7XuX/3AffuPaTR7CIFVD9e0xMpFkt0O33ikTitRotSfoGD/SPu3bnH\n6ZVTpKJJFucXEAWBSX9MLp0jFU1ytH/Mvbv38DyPoCxyeHhIu9fg2ReeYzabsLGxgaUb3L59m/X1\ndZrNOoGARKfX5vLVK8TiSVrdHsIjrvqZU2sk4zHC4RCKolCp7AKws7PDbDYjkYgRT8QQBI+f//lv\n8Bd/9WeYpokUEEEG29GJJaLcuHEDUZaIx6N0u206rS5qUGPQ7lM7qlI9OWE2mRIOh3Fdl2AwCAg+\nlMSB8XCCbTpkUhk0LcRoMGI6nqFIGplUloX5RebniiQTafSJjT41yedSxGMB1IhMaSHDv/f3fp2b\ndz5hOBlw9amzAESSQVbXS4SjGqlMmsGgQyGfJp1OoqgqjujRHfWYKxVodxo4lslw1EPAZmmpzDvv\nvEUqHcN2dKpHh8iihGWayLLI3Nwc2VSa0WDIsD8gEY2QyaQIqgHG4wG5TJpTp9YwrSmbW/c5OTng\n1u1PCYVUNre3iMfjqKrKx59+wmQyodPvkEzGGPRafP/73yUUUrl7/xYAF86dIZNOs762hv0IqxsO\nh3n6yacQBIFvfvObfPTRB1y8eAE1rBFPxlC0IFpY45MPP2DUa6JPe+RzMXr9FuXFeQaDHsvLJX71\nV3+BL7z6En/5l3/G6uoSujlioVzENGd0O01y2SQzY4wgeOTiMdbXlqnVjpFEh1BM4fMHNzl9bpmj\n6gGluQLtZp3heMDdu7dRQkEi8dBPrIc/9YI87A9o1hsE5QCWbrO2eorbt+8wGI5ZPbVOq9kmkUhw\n+eITiEDuESM0kUzjOqAoGrFECsO2QBJRIipnz5/huHFCtV6j3mr62bWSRD6XoddqEwmqhIIBtra2\nqFQqDIZ9DFPn9NmzDIdDJrMpQVXxMY+6TiwW8xsCLcz9+/fZ29tD13XazfqjgwSe7XLv3j00LUwg\noOAArU6bcCzKcDLEMGdcunSJ/f1D6vUmgiBRqVRwXZf9/T16vR7l8jy9XgdRhPmFor8vTMZ87uqj\nUdbWzjbLK4scHFZYXSkzGvfodttIkkev30K3Z4ymQzwsgrKE5zocHR/SbNRoNesIgkezWWM8HKJP\nJhTyWcaDPoOuv+9LJyKMhwNm4xHVo0OGwwHT8QTbtAgpKscHh4SDKrlklmF/RFAOcnJ4ghLQiEVS\nuJZIvzPDmrlIrkztuIFni4iujGeLOLrtgywsl/3NPR7euc9iaRHB9h6pFi+RCCfxHAggE0DiYLfC\noN3FGOs8eekqw84AwZZpHLcIB5Lc/eQ+MSVNQksDUDtsIgsy6ViaW5/cJBGJY8x0Krv7BGSNk5MG\n0XCEyXhMQJLBBdMwiITCmLpDu9nBsRxc28M2HTzbw3Ntrl66SKWyizGd0G63kQMKR0cnyGIA0RPp\ntrsM+iM6nR6tapOXnnuJN996i+l4RmV3nzd/9BbBYIhkKsXUMjg8PuH6s88xV/CZty+++CKVSoXF\nRZ8jfFA5RPBE1lbWyWfyVHb3mS8t0un4vvloLIwYEJBkEESHU2fWOTo6otmqo2oSmholFU+QSoSo\n1U9wPQsBk4Dkx2EGZIWwFuLShYs88cQTVCp7yJLIeDggHFYwLcN/vz0RQ7f48IOP+bVf+RX29vYY\nzkYsry5iezMsT2dxuUy32+fwoAGuwu72HpU9v0EKBDTee/dDopEk04nJXG6eCxcusrtbQRIVJEnm\no/c/4tTqKSajKebMptXsMx7McB2RdDLDk1eeZHNji3xujlAowj/7g3/Oz3/jF5iNDZ564hrL5SUO\n9n0O+hNPXuEv//rPSKbi4Hrs7x0QECVu3/yMy09c4vBwn3PnzrC0tISmhTGmBuurq2zev8fO1iZv\n/OiHfPrppxjGjIUFH/eXyWRYWFig1+vhWCbdboeL584TlIPEYhFs20QUwbRNbt+5wdJqmfX1VTzX\nAc/h3JkzVPb2yWdzdFpNzp85zXTqAzk6nR61agvTcKlVO4S1CKdPn6Veb/BwY4vdnQPCoTjJRM6P\nRrUEIuE4P/zhD1CDIrIUxDHBnJn0ex2ef/YpWpM2zUGLbC7Ob3zrV9jc3wRgeXUBNSIRT0bQLRPT\n0imW8ui6TiqXZ//kgI0HW4yHU7DBc2xkRAqFPMNhnwuXz7G1s8VoNGB3Z4ujgwpHR0fs7x34wSqN\nJvFoDByXWDTqx7taOoPJgMGwj4BLt9vm9ddfpdtrAy6FYh5VDdLv92m12o95855powWCpJIJCtkM\npjHj5372GwCsr67xV3/+FxztH3Dq1Clc17fsPXz4gNW1Zb7znb8kqEhM9CHpTJzXv/wKf/gv/wWK\nKvHUlYu89MLTjA6OG1oAACAASURBVPpV/qO//20SsTCeZzHWB3zzV38eLS5xZ+MG56+cxZEMbFdH\nUQHX5PLFs2SzKUJhhUDAY7k0x/VrV7n65CWKuQyRRJil9SUMQyegBZlNx4TDCk8/e5ULF0/jiDoL\nS3M/sR7+1AtyoVDw82DFAO12m0gowmg85eLFy0wGk0cUG5dPP/2UWCxGq9PGdV3G4ynNZpvy4iKe\n56uSET1SqQSDUZ9kMo7p2LQ6TQxL5+7d2ySiMYzpDMfQsQ2TRNIfi4zHYxzPY29vDy0cotvt0my0\nCagKquqrSz/68BMcx2Fza4egqvgYrZlOs+6PrGOxBMvLq5QKc6iKhhwIkM1m0TSNxfIysXiS/mhM\nYa5Es9mmsrtHt9fm8HCfl196iUwmgyDK1Go1VFX1o0NHY0JKCNuyiEQiLCzO4wkCnuCHjrTb/rgr\n+cjQHg5raFqAyv42g0EXEY961fc2S5KIpil4OIgStBo1RMAxDEKKH8wAoMgBmvUac4UsnW6bbDpN\nJBrCsg1/BxoKE9YiWIZFJpkhFNBwTY9kJMWkP0WRNZ6+eo3qSRPXEUlE06wtr9Osteh3+liGTUSL\nMR2OGHb6FDJ5jLGOY9hMBmMOdg+oHp9wUDnAmJl4Dpw9dRZrapPLZmnVW8znS/7tnCDF7ByF5Bzb\nn+/w8O4WAAFRQZVVth48JBGOk02lmY1njAdTrj11nZPDY3rtHgFRQhIELMPgyqUnqNUaJJNJKnv7\nOOajPGnXw3UcEokEGw830MIhHMehsnfAysoak4n//qQSSSaDCRcuXCIWS7C9ucP7735AsVACV6Dd\n7nD+/AW+89ffpdXqgCBw4fIlHm7t8IM33qBcLvPpjU+JRiN0un7WrWt75PN5Bt0BSkDl2rVnuH9v\nA8t06HTb3L9/j2g0hBYOks3lCAaDyHIQx7K5f+824ZDK4cEBkgzZdMwHCbi2XzwEAcv0n7lpmng4\nrCwvY+gmIh5f/uLrhFUNwRWQpACRUIjnn3uO3//938d2TAQB2t0Wtm1TOdhnOOgRDIoEAxrf/c7f\nID7CTQJMBjOqBw1ufXKb2Uhn4/4mt298TlSLEw1H2d7co9sakIynSMcSXDh3nng8zde++g1EZD7+\n6DNufHaHxcVVtrcrfPLRZ3z9K19ne3sHVVV56623WFhYpNVssry8zNtvv0ksGmY08P30p0+ffpxP\nLwgCl5+4xEcffMj/9D/+C2bjGbZpMRr4tLkXX3qOL37xizz77DNsbm4yHvvjxVqtxuH+AY5lP4bT\n/PX3vks0pqGqKrIs47oOC0sl5ubzFAo5TFNnfn6efD7PeDxmZWmJYrFAaX7Ozz4OSCwUSyiygiwE\nScWy2LrH/Xtb4IiYhstsZjHoDZHlIJbloAY1PNdP+nrq6avMJlOqh0ekYnGCsq/eNfQp0WSU0lKR\ny5fO89nNj4g+4vdGohrtbtP/5gKxWJh7928zP1+k1WljmDZry2vcvnEbHI9MIs142Md2fFjG/uEh\nS0tlIpEwhUIBTVNIRCN0Oh1CwRAByZ90ZtJpOp0OT1y6gGEY9Dvdx774xcUy1XqVp59+CsdxHglq\nw8TjSVqtDsGAyng04plr12jVqiwvlHnp+RfQNO0xmjQajfLVr36Vixcv4nkeSiBI9eiY5cUF0o/G\n5rlCFtu22a3s8PFnH3P9+Wtsbd9nabHA2nKBf/Rf/6f0hw2UsIzrWSyUCvQHLYaTLhcun2Fmj1k+\ns0wsHaXerrK0XCIS1ZiMeqTTSRqNBoVclvfefxNR8tCUAIY3JZqKEYmqJJNxZFFAdB2G/TbhkIgn\nWUg/WWT90y/I27vb7Ozt4rouiqJwcHDAZDCk12pT2T1kc7uCKwrk5wqEw2Ec3WTj3n26nT6iLFHZ\n3wXRI5dPUasekk3HGQ36DAYDLl++CLg4jsXlq5fpDvpIwQDd4YhicZ5wNEZxfp5Or8eDjXtoIYVB\nv8vayiohNcTNu59z9sJZ3n3vLbSQwnSic/78BcLhMLOZTzeZezSyHvTG9Dp9YrEYvWGHVCbFw50N\nDo+OiMZSlBZWkeUw1UaTWDLBwkqZ06fXuHDhAt3OEE2NEkskH6k3PfLZLEFZQRYlhsM+lufy+cYD\nYok4QVmkOJdHCsiMJmNs10WWZSzXw3VBCwYwjQlyQMR0TWRF9gPxgxqpRJpioUQym2GuVGLYH2JN\nTVbL/t6yXq9TKBRQQwqZTAJXsOl0GhjGFC2kEAqF2NzcwjEtjg6OcGyRsBIjFU1Rnl9gMhqysbFB\nPpNjLj9HNpVhMjZIJvJYpsi4P2Pj9gOwReKhBMbUYNwfINi+sjmXyTAe9vE8j1Qqg2CDNXWwDAfP\nMtEUiXgshmtbJKMhMvEYEVUjm0nx4guvApBIZNjbrhBWo2TTOWpHNT77+CZ/+zf+Dv/tf/N7hNUY\nlu4heBK4Amsr67z99tsILpTy8z5zWJDAFpDwGcKDQY9CcY5mq44kBZBlmUpll1gsgjGeYo6nXL/6\nFLZhYsx05rI5FkpltrZ2EASBVr1BZe+AueIyS6srXLl8laOjA8IRlevXn6HbaiMKDs1WlcXFMgD9\nTh/RE0kmEhjmjI8++ZiLl6+SyRa5d3ebZDKFZeqMx2M8T2BjY5uQGiaqxSnOLTKddOk2G8zlY7zw\n4gVkMYBrBYlHE4h4BCSZTqtNr9tmf/cQxxD9wH9J5nBnD1VS0UcGpu4wGvR58sknUYJRIpEI0WiU\nVr1FNjPHmfVzPLh1i+eeO4eiqcheklajR7PmNxbtZpewGqdR7RFRk3iGQCKcIKpGuf3pHXKJPIlI\nlnAwyng4YzqYcO+zDe7cvI/riDx4uE2rPeDZp1/hzicPWVk/S6ff44//+F9x+txZFlZW2Hq4jeh4\nXDh/mvJ8ERxIxpKIosx7772Hg8NXvvY1bt28zZ//n3/O8uIiT165gmVZpDNxDo8P2NjcZTKZcH/j\nAYVSkX/wu/+AS1cvARALRwgIIk9evgS2zisvvszb776Dbo2ZTUdgO0iixcuvPoka9mO3FEVBEANM\nBibPPH2NOw/uMB5PsS3/vOpTg9pJFVwRLRglKIeZjg0EIUCr1cM1HC6eO080GqXdbhIQBSqVXUJh\nldnET9wTvQCJSBjHNNirHJDIpBlMxmC7qLKELlkctWuk0/70KKBpnFQbtNtdjg73WV0pM53NGFtT\nEpkoR8c1au0aumMgyBK26zFfXiKfz7O9u8VnN29wfHzMeDxmbi7P8fERqiIzHnSJhhUcy084O3/x\nDINRn8OTQ9RggLl87lFmd4lmu0273WF1eQV9PMY1TRzbIBoNs7SyyEyfPLaDlkoLPNzYpNVskoom\n4REwxXVt1k6vsH+0j6ZpjId9kqkYQgD2K7sEAg5//Ef/K5FwjPnyAtFomKimkAgHCMoGqbhIQDYh\n4HL+4hmy6STdTgPTGiPIHp5ooUUUjquHdHodcrks9Vad0bBLLKSSicX48le/xHu332dxtYiiyZy7\nfJaB3sdyZkTjMVzHYOvhAxRBYmV+nlgsRDYeZzwe/sR6+FMvyPl8nlQqRSKRQFU1XnzxZSzHYzCa\n0Gq1KBQKWLrFvc/vc+/z+49Zm8FgkGKpRKvnW6ES6RTlcpm9vX0Cis+nLMyVWFxeIhqN4jgOo9GI\nVCpFMBikPxpSLpe5f/8+qXSCbDaLLMtkM3l2dnzq0+n1dTY3NwmHw6hBhVQqRafjj5QMwyCXK3Bc\nPQHAckxKpTk6/Q71doubd2+SzeXIzRUe85XHkyHNZh3XtZFlkXa3w2DQIxRRSGcTjEY9zl+6yN27\ndxEE/0Abxoy5uTkmwxGiKD9i0ibo9XooikK/32VxqYSmKUQ0FVkQURSNxcVlQqGQz4yt1bEsi1Kx\nQKNa4+joCMe2aTUaWJZFNpdGlP3u1RXgwcMN3n7nbx51g/7/Hov5lipBECiXFwgGVSJaBHPmoM9M\n+v0+n338Cft7B3Ra7UcfkTbHx1UqlQpiQPSjREd9lFAQwZHwHJGYFqdVbdFp9pCQKGZLJMJx0okk\n7WaDTDoJroc187GcoYCCMdYp5uYYDYY+1cswCIej6Lp/4+s3h+BKREJRDnYq4Hj8w//sP+c3/8Pf\nZLFcpttsERB9QIMaCGLOpuRTGUTHo9tskEulERwb0REIIKPPDEJhlU6ngSAItFs9VDVENpsnokVY\nWlri4qXLHBwcoc9M6vU68WQSF4GZMaXRqPHlr/4sFy8+Q6E0R7V6TCwWQ5Y0llaWyWRj2I7B2TOX\nED2Vftc/sC+99NJjRfTCwgLPPvss7XYTURI4f/Y0nuN70qPhCA8ePKDf7yO4HrZlPbIyyRi6heA5\nvPjCsxwd7iLLMulkmkHPt68MBiMkKcDxgf+RDWsRXMshn89zcHDgOxRkxQ8XsQUG3SHxSJTt7W08\nV2RzY5cbn9zCNi3S6TSDXp+TwxPy6Tn6van/PNojxiMDJRjhYL+GRxBRULl9+x6SqNDrjhl0J7zx\nw7fZ2T6gsndMSIty99bnDAcTMkkfr/p7v/ffMTeX59SpU/R6Pa5cuYqqqkwmE37wxvcJqgo3bt5k\nfr7MwcEB3/ved5Akgde/9BrH1RNOTmrs7OyRS+ce+fnj6NMJ58+f58anN0kn4sgBl26nwT/+x/+Y\nf/ZP/4DdTX+HbOhTsrkE3f4JiXSUWrPO0uIKmXQBXdcBF1dw0I0+gYBCRIvRbnYIygoLpTL1ao3y\n/AKyLFOrNTB1i1AozHRq+OuDgJ91L0kShmGgBoIoisIHH3zge34nMwzDIJvNU9nxn+P+/j6aplJr\n1Dlz/hzFUoFarUY6l0ZVg8iyzGQ05LnrzyBKvoK+1WrRHfRZWl0hmU7x8aefEIpGsG2b+w8ecObU\naVRV5eLFixiGwd27dxmPx9TqdVqtFs88e53iwjyJbBoLl4tPXKbd7flCQMFXo7/66qtsb29TLBaZ\nzWaPM61Pnz5NfzggmUhTLBbp9LokU3HCYQ1Jkmg2m8wmOudOneH5Z5/jsLKHLIssLZZZX19DNyYk\nH0WZfn7vDr2e7y3X9TGJdAxZhuGwz+HxAfVmjRdffB4Ph0b9iE67Si4XJxpTWF9bIpVK4Hgmpfk5\nbt6+RTgaZWmpzGw2o9dpMJ0NiUY1qicHiIJDUIZG/ZBEMoojOJTKc7zxw++hhIKU5rKEFZnxZEBI\nkYnGwgQCEr1+h7n5OcLhMLZlMRwMkBEQRPcn1sOfekEejUaPQkBsTMPl+9/7IbpuEovFEEUZHP9v\nZtMpmVQWNaiRz80BIs1O2/9ghCPs7lQYDsdIUoDFxWWy2SzjqR9Td2/jAcPhGFGS6HT7nD17FsOY\ncXJyzPz8/8Xcm8XIkl93el9kRGRkRO77Uvt2q27d/fa+sJtsbkMOJVGkqBUy4AUDw4BH8IsfBgZs\nwJCXGdjwzNjGYAYDDWyNRpYsiSI1org32WSv7L7dd6l7a98r9z0jMvbwQxT7SQIM+IHOt3opIKsy\n4/z/5/zO982yuLhIPp//2AE7Pz/P+fk5nU6HXi8UTIiigO2Eqjt9PKGYLzGZTLBM5+P30uq0qbdb\nIEJ5phbOtNUYt+7cZDIZ0em00PUQDvLU03d47vlnSKSTZHNpdvafMNLHDAZ97j79NJOJQTQWtvFF\nUcT3fWJRhU6nw3A4JCqHaL5Wu8nayjKWqTMc9alUSnS7XVqtDq1Wi6gUpr4dy2I8HqPGoszVZkio\nGrIsUy6H86NOJ5whe4HLysoSqWQcyzSwrJCg5Pvhly2VSWPaFr1Ol9Fogq5P6bR/rsgM6DQ7lEsl\nCuUKxtRBUVSazSaWoTMcdTEsnXIlzydf+SS1Yo0bGzf5ra/+JpX8DLlknscPHyMEEXKZLLO1Wui1\nnZoIASwvLtFpdRn3Roi+QD6Tx3MD8vk8d+4+TSEXJjBFXyYVT3J6dEIspvHCcy/zP/53/4TlhWXy\n2QIXZ3V8x2eqm1xd3+Ds+ATfcZEDITyBey65dCoMEI0NFDmGqoRtycAXyOeLTKdTdp5sE5VkPvzw\nPsPhmEK5hG3bxONJ0tkMkihTqpR58eWXeOvtd3nvZ/eo1nIIosSDhzskUxmOjo4plSroEwPHdIjK\nGko0DoQwiv3dA/TJlPPz849dwLFYDC2mkE6n6LU7dJotYlEFLabywQcf0Gg0OD05wRjrLC8v8847\n7+C4ExRNYqqbxGIJ1FgcOSIjCRLlQglBEImrCWzbpdlss7u3Tz5XZmrYTEZThEDkX/6Lf01MVhDF\nCBFBoHHewnck7t56Otz39zzW19d4/fUf41oRrq3dAmB764h+z4BAYTgw6Xd0fvyjtzg9bnB4cMZn\nP/NF7r1zD8cUaNcHaEoGfWxjTn0G/QmmaaNPpiH0xnG4ODuh3+/T7nb45je/yfLqEl/4+38fJRHD\nF+DeRw9IZXKUqjV++vZbjMdjvvrVr/Enf/InLCwscXHRot/t8e47P0WNSfTaHZYXlmk1m5jTEZ98\n5QX+q3/0X7K5ucHVjSsArKwuMuw3eerOJv/Nf/2P+MbX/28m4wHlUg4x4nD37iaS6LBxZYmFuXnu\nvf8h87MLTHWDQW+IZVh4tke30WFpYRlVSXBx2qRx3qaQK3N8cMz83ALj0YSEFkdRFHRdZ2Zmhmq1\nyury0sdIzTt37lCvNz5uwedyWWRZJJVNIYig62MiosDsTIV+r8Px0QHS5Ubb/uE+C0uLPHz0iP54\nwNS2EMQIyXSaSqXC9s5WCD+ZTmm1Wnz1q1+BSHB5u53l/Pycs/oF/eGQmKrSaLZIZ7OkMhl832dm\nZobt7W0++ugjMpkMc3NzDAYDMrksj7efcO3mDS6aDXZ2dhgO+5iWxfn5OZVKhXK5ysaVdR7ev4+l\nG7z2qU8xW5shKkUo5DIMR10uMetsbKyjxCRULUq1VuKDe+9x/cZVur0GmqpQLObJl3ME2MwvVJFE\nF9PoUyplyKY1RuMurmdxcnJItVrEC1x+8PoPyeezRBWRYrFAJpvk2uY6vjcl8C1q1SJXVuepVos8\n2d1i2G9TrRUJIj66McI0DXBdsqk4Aj6lUpGpNSWdyzAejwhcj263QyLx/+NQ12AwoHHRJJvJc3h4\n/PEN+Mdv/PRjy0y93iSXLdBut0mlsyBKqPFQf6WqKufn5yzMLuC5AZVyjfp5A3yBvcM9fODWrVu4\nnkepVCGdTtPpdolGo+wf7OK4FocHx/ge1Gbm0KdTBoNBqJ7zIJPJIIrhCoNnO8RjKqIoMZkYBJcx\ne4Bmu43l2URjMqVKkWw+w9zCPFFFYf9oH9u1iMXCU29tpsLZ2RnNdpvT8zPOLs6YmZtjaht0+z2W\nFldwvQBRFEmmU8Q0lWs3b5BIJCiXy4z0EYoa5eTkmFKpxMnJEbZjYkwmDPp9tFgcSZRDaUDgMuj1\nWVhYIJtKMxgMmE51fN8nn80gihE8PHQzNJA4vstF65zpVKfRaFymcRXu3H6KdCZ3KcIYg+DheRZ+\nYON5NhE8SqUylVKZaDTKzvYeiqLiuRBXk7TbXVKpJOViFsua8v3vf59YLMZf/eVf8ePX3yTwQB/p\nZNJpVCVG86KJFAn//7Io8slPvsbWZbFeWVml1WiTSaXDm3i/B4JIsRSGJRwnDGapsTiBG/Cj19/A\nmjoMhyOGvQHpRArbtvn8Zz/HD77zXZSIxHO37/AbX/01nrl5m9c+8Sqba9copLPEFJnxaMCd20+x\n9XCHfrdPp9VGEkRUNY7v+NzYvI5pmuEuomlSLpbY3z+k2e4Q15JMTYderweCg6qJTE0QInHS6Tyt\nxpD//vf/Ge3GiMDzaTUumPTHAOhjg5deeolGo8HUsKiUyszPzoSfi2SSmBxlbWWVcrlKuVAFN0Ix\nXyKVSHLr5h0iQpQrq+u8+omXGfRaOLZOJIhgji2CMGsUrjW5AUIQYdgdgAdra2t0Wn1s0wVfIIKA\n77h4tssLzz/HxfkxsiyzMLuEMw349rd+QLfdwZzqHOztsry4RD5Z5gff/TEA2VSZwBLZur+LZwtM\nDZtitkIhVyGhZfibv/4e124+w/F+ncO9cyzdZ2drl9de/Qy26aKpybArNZ1y6+YN9na3+Z3f+R3i\n8TizM3Nk0zn++I//+FKEEUGNxug0OxzsH/HSS5/gnXfe48GDB6ysrBEVo4z6EwaDEaYxZW9vj8AX\n6HVHXFldoVhI8cH77/C//vP/mQ/vvYuqhY/IYj7JSy8/H+5aP37MxtUrVCtZPvfZF7h9c4mobLO6\nVGPQ7+DaOrVKHlHwwLcJPAv8gFg0RkKNc358QbPRYjq1MAyTdqvDdGrxN3/9bX7ll36ZQa9FtVZE\ni0cpV/IktCiiEDA1x8zMlOl1uty6cZNMMoXneRiWSbvbptPpUCkXP97L3d/ZppjNcGVlmejl/FbR\nFKKxGPfuf0Sn3yOVy9Lu9mk222iqiuc5ZDIpdH2CGtdodzs0mhfcvHWd3YMdFEVGSyaQlSidfo+z\n+gWmaaKoMTQtgecFH0slfn7Dtl2HVCrF2toa9+7dw7Km2J7DzMwMkhzh6eee5q233uLs7Ix3330X\nHI98Jk2v3aKQS5FKaUwmA6qlIseHodIzm0vSal+gxaPs7j0mm4vTGTQolrJocZmYKhJPKHiOTSKu\nkk6FN+t8PkuAhaRARAq4dfsaB4f7PHrygNW1JVzTJKnGaDXPGY+H2I6JY5nEohJzs1WarQte/eRz\nNFt1KqUi65vrTMwJuqkja6Fis3l+TrVYxDQN9OkE3dI5aZxRqJao1MrYjvl31sNfeEHO5fKsX7nK\ndGqxuLiMIIgkL/VmqqrS7nVJJMLiq6gaiqbiB5DJhe3TfD5PUkvS6/XQFI1UMokWi9Mf9ggEl6ll\nkEgmURSFQqGAZVlABNO2wpuGmqDT6/J4e5t+f8B4PCYaU3A8l3K5zM7OHrXqLLPzc4wNHTEqcXh4\nSLVaIxqN4l+CQc4uzlFVlZim4hNSjo6OjzmrnyHKEpEI5EtFnnn2Kfb398M1jWj4HkVZJhpTaLVa\nFMolZFlmOByimxa27WJObU5Ozmi2Q6zfq6++wuzcDPrUwDQNgiDgwYMHSJLMeKSjKCqu6+K6Lh9+\n+CHLy8tEJZHBsI8cEcjncpceXY9UKnUZBgoRoJVKiYuLM27cus7du3fJZrMsLS3x8OEWlmXR6XRC\nqXspiW4MsOwJzdYplWqe0aCP47hEggiWZdFtd2k3O9hTG0WUePzgftj6z6SJxRROTk5IpFPouk6n\n2cY2HWJyjGFvQEQQ6DQ7XF3dIBlPcXZ8Rq08SyKeod8ZYVs+3e6QwPMoFss4jot72awQ/AiBLyBJ\nUarVGYa9AaPRhLmZeZqNNrIsc2PzOq9/94ckFJVPvPAiqhJjqutkUmny6Qy5dI64EkOK+KyvrvLX\n3/wbZDGBYwdUayVarSbFXOHjdRQBkalpM9YN6vU6n/vUFxgPR/zo9Tf5wfd/QrfX5uWX79JqdWie\nDfj3X/8eH7z3hFHP5z/7B/8FzfMe9bMmUhAwHoaz12FvQC6dZWVllWQydXmYsuh3eyEEIZFie3uX\nWDRO4EfwHI9kPImIxPHBMflskW6rw2Awwvd9vvzLXwqpdLqBFIgIvsD8zDyuZZOKJ4hEQnXj3Mw8\nDz96TOBGEAUJWRTxPY92q0smkyGXTTPuj4hEJMYDHUu3EX2JWrlGJp1kPBnyox/+hEEvDEQFToRe\ne8zy7ArWxObiuEmr0eXiuE5MVJEuoSyZZI5sMs/Ww21iksZP33ib+lmTYW/IdGIwW6vy+NEDRALe\nffddBv0RnVaLH37/B9RqNb7/vR+STqS5/+EDnn36WSzDJnAEEvEMD+8/wndcysUSpVKJzY2rXN1c\nZ2lpiePjY5482eKFl15gZ2eL2kyRX/7yF/jka89xevEEgNpMkeXlReLxNNvbj7l+bYNnn72ONW1x\n/cYcubzEf/yf/A7lShFVUxClgPFkgOPYJDSVjSurrCwukc8W+PKXv4yiKGhKDM92SGgam+sbzNYq\nPHjwgPW1VTzXojZbYTIekIjHSCU1NtZXkZQIX/ji3+OP/vAPmZubI56KUy4XCfDA81CjUTKp9MdB\nzHK5iOvZYegVuHnzJqZhsLF2hfF4zPn5ObIsMxpN+OCDDyjks0zGY6rlCtOpwdbWQ0RR4N/9X39E\nqVQgk02RUDXq9Tqe57GysoLjuR+vb+m6zqMnj3n11U+RTCb56KOPUGNRPvzgHgtzs6hRGUWOMD9T\no9fvsLi4yPnpKbl0CtuckkpolMp5FhZnOTk9xvUctneecHi0RzwRQzd+Pn/10PURE2OEYU6QJJEg\n8BkNuiQ0mYnep1ot0ek2SGoqF6cnrF9ZZW9vFz9wsF2LZEpj+/FD7ty+jixBEDiMRz2y6QwJVcPz\nHURRpFYqYpkGmWSCUqnAd7/7OuVCnhvXrtLutJjaFnJMwXY84vE4t6/dIJ1MsLa2xtSeMpqOyZXz\nWIFDrpwnuBxD/W2vX3xBzhZwHI8bN26hRGNhq6TdIJaIkUwnaDbrVCoV6s0GV69eJRaLcdFsIClR\nPD9kyzabTRYWlhiNRmxvb3Pz9g10Y8zs4ixRLYqoiDi+R7PTRlJidPo9ppZDpVxjapnMzc1TyJfo\nD8cUy1UebD1iMpmwv7/Pnafu8ujJNp7v02jVefR4i5imcnB4DGKETD7c311bX0WNa9Tr4Ux5e3cX\nMSqysXmVcrnIypU1TMvAMAzS6TSRSIRkOoWWTBLTNBzHZW39Kq7rMZ1OKRaLZLJ5CqUKHgIBhALt\nwGH34Akn50esbaxRnZ2hPxoyP7eEIIh0u31UVSUIAuJJjWq1TOCHxbnf7VAqF2k26+SzaW7duoVl\nTen3e5yehSsqPxeJX1xc8OjxQ0rVMofHe+jmANsxKJRzYYLdmYQrVuMhzzx7F1VV2NzcYH9/n7Ex\nJoJPpVIhoSWZ6iaqrJDQ4oyHQ9LJNLZjkkwnODrYC3WQpsPxwTGTvk6/1cMyXHw74Pz4AnNs4BgO\ngSvQbQ2I9fZH2wAAIABJREFUiioxJYkajfOzdz5kaWaFmJhE74ekpfr5OaZhkYyn2N7aZTw0wANJ\nkEjEVPrdAaoSQ4vFuHb1Otl0BlmIkEwkSMTDVr4iS6xvrFwafUx+6UtfZjIxSSRSRAiNNSdHx8zN\nzCMEEQqFEqZtXT7cxrz59lvEogrVcg3XDLhz8yn0scnxbpf9nTrF3Az2WCYdL3H//UdosQS+I7Ew\nt8zPeVkPPtqi3ewR8SUkQaLX7nF2fMLuk22ikoLnBciiwsVpA3wRRYlzdtpAQGYwGNPrjqjVZnnz\njbe5ffMpTo/DFa1hf4DvhcrAzY2rHOztMxmNkSUJWZQQgggx+TJhjUDgueDB7MwyZ6dtHtzfpn7e\nIR3PsvXgCcuLa7z2ymfZ2z2kWi2zvrbKqD9maW4FgE69gzE0ePsn7+CZHuVcGSmQ0CSNjJZhrjyP\nMZwy6o7xnABFUpEEiVF3SASRZDzF8vIyy4uL6OMR3VaLve0n6LqOaVjIROi0WqysrDLshDPs73zr\nO6wtruJaUC1UycQzWMaUYjZDOhXn+PjwkrjlUa0VefqZm/zs/Tf5e1/6PCO9w+r6LK9++jmeejaU\nSyB5HJ0dUJ0rMhz1mF+osLg0w+n5Hum0zOJiheGog2nrmI6JlkyACImkRjqdZmdnh3gipFztHe1S\nKufRkhqLi/PY9hRRAtu2SCc1cpk0w2E/JH/5Lv1OG0UWUBQZVZV54/Ufcvv2LcaTPoIQIMsipqHj\nOhae65JUNbLpzGWBnHB0eoyihOS13d1dHj/aQowAvsv8/Dz1epPtJ7sUsrnL2bWMH7iIERAiAYZh\n8JWv/CrTqYExGdNtdxgNhqhRBc/zuL55jagkc3xwSKfV5ubNm7z88st0Oh3u3r1LtVyhVi1zeniA\nJAZM9B6dboN8PovjWEwmE4qlPIVsgrgmMzNTZXd3m1RK4+B4j8pMKeSh2yaLi2HgcW9/h4k+QhQF\nplOd2fkZmq0629uPMPQhpWKe45N9JFlg+8kWL7/0ApZlhu9nouP7LlN7CoFH/eIUURRwbJO4IpPP\nZXBcC0WO4js2+mREpVQkwEXVotjmBN8xmZ2rsvP4IZ7nUKlU8B0Xy7CIx+PUz8+JRgRK+QIJTSWR\n0IipEhcXZ6iXFLy/7fULL8ieFxCPJ/ng/dDyIkkSuVyO0WjAzv4elVqV3rBHtVrFDdwwwLB5FdO2\nMCwTLZHi4OiEwSBkPhvTKe9+8D7lmRpjfUxEitDtdsjm0pimSbfb/fgGGU8myeXyBL7A2JgiCCK6\nrlMsFomqMWJxjcnYIJFI8M7P3kOLx5mZq9EfDDg4PuL0/Ix2O7zNRKNRyuViCJa3wv1NNa5xenpM\nbzigP+ii6/rlTrGHGJGpXzS4unEN2/KplGdpNsIwlK7roaMzAMsOkX1KTKY/6pNIxHEDh1a3wdFJ\nCIPY3zvENG1iikYymWQ0GmGaJitrayiKguc5WJc36dFoRK1WZTIZcXZyRKvVwnVD1jVAr9fBsabM\nLS6gqCoRSaDdbWLbU1Q1yu7eE/qDDhfNBnJUIVfIMzHGSDGJxzuPefHlF/E8m0RCI51Icn5ep5gp\nYBkWV5ZXUBWNw4OQkqbIMvNzi5wenaJEolxZXmfUHaPF0iQkjVquTDlXIpvIMepOmPQNIl6E06M6\nc5UF5EiMan6Gi+MWgSUx7IRtd0WOYeoG2w8fY0x0Oq02G6sbPPjoPmfHZ3zypU9w72fv07io89on\nP0UkIATNE+oGJ5MJg2Gbg4N9Xnj+RZ5+6nm+/hffJJdOYehjJpMJqqqhKhr9Th/H9mh3O7z/s3uo\nqooai3O4d8jV9XWWFheJyVE6jSHv/vQ+lfxVNDmDa4psPdwmQoSFucWPDy6eLdBuhreA5555nv29\nQ6ypje9BRJBQFY2lhUXOz8853D+iXKpydHTGj3/0U97/2YdoahLTMHnyeI+pYbO9vY0aS7D96AAx\nopDSkvh+OIsVAri6cYW333yL2ZkZxsMRmqbx1O1b5LM58MFzXYQgwJy6WAb8+29+n1u3XkCJJmg1\nOiwsLPH4wRP+6pvf5uqVG3iOT6vRIBXPsr97GH43xDiO5TNTmcO1AlwrIKVk2N8+pN8acHpwihSJ\n4rs+jumTS+d48fkXmYxGLC8s88brP+LeBx/QajS5e+cOX/riF3nppZc4ODji3s/ep5Qv4jk+w16f\nfndIIZOjmC8hRRTmZ+b59re+RyqR5uqVdYaDDnfvbLK2ssjy8iKqqjDRh7zy2ku0e3UMc0gk6nHW\n2OfRk/sIkfA2I8cCLpqHfPpzL3Ltzhq+6PIv/uX/zpWrV8jmcihqlMl0TCafZTjRGRsWo/GUaEzD\n8VyOTo9COYSmIMsCWlJBi0eZm69i2VMK+SxxLUZci9G4qFMtlRkOh2QyGbR4LDw0igJHR0cMBgOC\nwKNSKXFyeoTjWqiqSlSUcEwLz3ZoN5qoqoqsREPBxSDUSBpjg1w6Q7/bIZMKMwhiRKZSCcdohj5m\nf2cXwfeYm5tjOp0SEQWODg+Zn5tjOBwieD6B5+C5Du1mg5OjI7rtNutrV7hy5QqeG/Dmm28SBAEx\nWSIaldFiCqLgo0ZFKuUCAh62NUUIwLUdEprKVB8jBA6pXIJsIctIHzEeDwEfSZE4ONwjmQrzFSsr\nC8STGq5ng8jlZWfC6uoqnu2QTSexrCmCEPDcM7e5ur7Mo617JJMqg9GQdC5Lo9HAcSzOz08xzSnG\nZMh4NEDwHNLJJMNhn5gaRZYlUgmVwbhHd9BGjklkUnFs22Ay6ONMDSQBYgFUS2Xa7TbZbJbHW1sM\nuh28qYVnmhRzOYzRiGGn93fWw194QR6PxywsLGA7Fp7vcuep23T6HSRJwnXtj1N62UL2Y3G6JIWI\nQEEQcH2PuYV54qkkiVSS6nyNmKYwtae4rk02m6Y/DK1OP3e9ZrNZ0uks3f6QqeXh+AKmaXN8esL8\n4gKCKDAej1CjCrZtk0pn0Q0bRYvT6vTIFUvIkkKtOosohWCQfKnIeaOOL0R4+tnn0fUQuSbLMv1B\nF8cJ54iZTIZyuYymaSSTaY6PT7Ftl3a7i+cF7GzvAdDtdtnZ3cewLBrNJtvb28zMVjk7P+Li4oIg\nCEilErS7Pa5du046nWY81hkOxwR+KDB/+OgBJyfHYQBpZwdJjqBpMTzHIpXKhK3iVotiMU8iERpl\n1FiUfD7L+fkpEUng3Xff5s7dG8RUiZOLI1zPppDNoETj1CozdNs9VDWO69oUilkm+oDAc4hGYxi6\nSS6duQRuWEwNGy0Wx7MDTN3g5OgIfTgiJsmcHJ3i2R6teovNjas06y08J6DfGuBbPvbUJpPMY+oO\nNzauYxkWvhUQRcM1QA4kluaWADjaPcA1bfrdHpPLk3wunSIWVfnN3/ht/vLP/hx9NOaf/9P/hV6n\nhUBAq9Fk0OvTabZIJuI4rsWrn3gFfTTlX/+rP+Af/uf/kHvvh7vsk6FOOplB16eMRhN83+fRgy0C\n378MoAUUcgX2tg9pnjWZn10gkyzy9k8/5H/7p3/AxuomJ/sXxESF3Sd7/OH/+e/w3JAt/YPvv0E8\nFuYSJsMxq8uryHI0HMN0B+HtXYkR15IUCgXee+8e9YsGc3ML2KbHo/uPsS2fxblVKoUy4+EENZok\nlcyyNL+EEEQQ8JmfmcWYTLh58yaTiUEyGWdubo7jw0O+9a1vhelu30cSRCzTQY3GscyA89Me995/\nzPLSOlPD4/TonEyqSCZRZOvhNtlslpis4jsBiqgCYBo2ghfB1m3sqcOoO0JwBRZnlqiUahRyZWJS\nCFcxxjrd7pBvf/vbqKrKi88/x3g0IipK5HIZ3n77TQbjAd/7/ncpFjJ85cu/yqP79xEJEDwf27R4\n5ZVPIkVEkvEEf/xv/4hf/7Wv0Wt3qJ9fEBEDDg/3KBQz9Dtd4lqMVFrDdqbcvHsdRZOpzORIpVXa\nnTqDcaj7060hmzdX+Ff/5p9hOH2CiIVhGRwcHmM4FktrKyiJGFFNQtFUSpUK6xtXyeZzTKZGeJAf\nden0WrR7TVzXQo5GMM0pV9c3aDfqPHP3DsZkxPLKIsPhEFWJ4bouC/NLRCIRNC2B6/rkS0UqlQqR\niMTa2hqmZdFtNxEjEcbDEYPBgFwuFzLNJ2NarRbHx2EHzLIsorIc5gxu3cKYTui2m9x7/32evvsU\nnU6HW7dvcHR0RLfbBsKg1uLiPIeHh6RTSfL5LC+98CKaEqOQy3Pjxg263S5RRUKSJCIiRCJw68Z1\nioUC0YhIqZBHEkVM0yCeUMnmw82aUIYT4+ToAFWJUioWcDyH0WSIIMLG5jojfYAQ8VlaWqDdDrkP\nR0dHeJ5DRA7HY+PxGPAJ8Oj1QgeCqsioisjjJ494892fhF2JWJSlhUVisRhzC2GqemPjCjO1EgI+\nUiTsRI6HfWqVIrguiaSGqqrEVRUv8ClWcjzZfsTR6TGLiwtk0gk6rSa9VpObm+s02nXiqkY+k2Wm\nXEGRJdKJOLgOyXiCOzdv/Z318BdekAPJpzfuIog+g3GTv/zGn7K6tEgkEuHW5nVefP4FLup1+sMB\nF40ztLhE4JjERInJZEKr0WQ0GJJMJpEUCduzabQbuL5HJpvHdjyiikImn0NLxBmORhjTKb1BHzWe\nwHHBcQSqtTlKhTL4AflsDsuaYhohNGBzY5MvffGXOT5sIEsaqWSGxcVlHt0PBdwAtmth+S7tfo+3\n33+f2vwCveGIsTFFFmR822dhZgHbsHEcJwyFeRGiYhRZljFNk3wmT6lUo9MfMXVc5mZr6PoEy3VQ\nNIXT4wM820IIg8DgC2hKnO2tx9TKtcuilUaWFXwfJrqBqqr4gcfG5jqSGEVVNGqlGYb9AalEmhs3\nbnB4eEi9GXKHXXwm0xCIH5Vl8vksJ0enmKZNIVtgYWaB0WiEpmgIgcfGlWUcy8a2bVRNJJEIV7OK\nhRrD4RjDGDEYtqjNVPC8gF4rlFT4doDgRShmy8zXFsglMwz7oUry6OgIIZAYD2wkQUPwo8SjSayJ\nx/7jY+rnDYbdIY3TFrYusDp7lQ/e+4C9nXDe98mXPsGTrW3WV68iCgFzc2W+991v8dzdZ/nGn30D\n3/X4rV//Ff7J//DfElMk9NEYRVKIxcIOw8nhERtr13nyZJezszN+5Uu/xA+++z2USBaRONlEnvHA\nwNBtRkOdpfllFmfmWF1YYtQfEI1GkaU47/zkI0Ztk7nyApVCnk+9/ArFtMa7P32P5Zl5OvUevhVh\nobpEOT/DoKMTBCKpywDK7Mw8J4cnLM4sEFeTiIKMqmqcnp7S7fcIiBCVFWRZxRhbZBJZjLGNawrs\nbu3xkx+9hRxR6bRH7DzZpdNqI0sR8GB9fR3LsnAsHc8OGPb66MMhv/aVX+P+h49wHA/HDvBsn6gs\noxtjZFkmGU/R7054cn+P+tGA9bVrjLoDRD/GdGzSqbcRgxi26TC+XHsyhlOy8TSuaTNfm8XWLbbu\n3eeVF1/i4UcP8f0AL/Dw/JCKNzVsIpJIPp9FxKaY0bixscqPfvwDIhK0e11uXNskJgYUcjFuXlvl\n86+9ghqNkEhHQRB59913KRXjfO7TL7K5voRjm1RnSziegawK5Io5ev0ufuCQSSUR/FA92R02EGUX\nVzDJl3O0OqElybSGrG7MIms+2bLMj9/8G55+5iZrVxbpDVqct4/J5JO02g1UVaHba3N4sI8xMehd\n7t/2h10mro4kRfAJSMRTSBGJfrtDUlHptVssLy7iui5ra2sYkxG5TIqz02N0Xefhgy1KhTKSFCWT\nTjNTrbF/fBI+Z0ZTZDGKrETJZJNs72zR7nVotduoiQQE4aPeci38CPgRgXa7QyqRZHVlAc+aUMwl\nWZibxXMc0pkkq6vLRCUZMSJxsHtELp2jeVEnWypg2ha253J8fEylVKZWq3F4eMjcfBV7atBqXpDL\nJNGHQ6KihDEOx3ULC0scn1zg+j67h2HY1ZhOmKlVGXQ6RCWZeCrO8dkJ+UKOJ48fUshlqZbzjMZ9\nTDMcSwmRUJ/YbrfJZ0N3fT6bpl4/J5NNETgeciAQVzXcwMW2bcrZApgO6bgGTkCn0yGZS9HuNBED\nn1gsiprUuHf/Z6RzSaJEuLKyyMnZMf1Rn72dfWZmZhgOh1TnZ7n34fsYjk5ttsrYGJIpZ2kP2uBZ\ntC5OiUoySlxDkARy2TSjfo9ev8Xx6fHfWQ9/4QXZdiz6/S6+4NNoNKjVqiSzSW7cvEp1pgKXM4yl\npSVEUQzbt4rCYDBgaWkZw5jyiVdewnVtRFHEMAwSiRTZbB7fDz6ex4brQwKapoVUHS9MeKdSKUbj\nAc1mgzt3brG7u4tl2WQyebwgIJcvcXB4zGA45Nq1aywtrWCaLoVCiU9/+rM0GuG6UCKewjRNTNPG\nsqxwvmWGhcq2XTKZ3OXPLp4nYFkO5+enlGtV6q0m2UIey3VChmu3S6lcoNloo+s6uq6zubmJ74Ek\nhQGsdDpNOpVHlqOsr1+l1ezw6quvEolEqJ+d07yoI4vSpeUHhsMxjuNcovq6CILA6fkJ3W6b5eVl\n1tfXAWjW60DA7PwMg1Ef0zKwHJNkMs7JyRH9QZv1jbUQahGP4fsenu+EayjtNuPxmNFgSLvdwvMc\n+r0OmUyas7Mzuu0ejuMgSVEefviERx/u0Gn0mfR0ooKCOTZ46tZdZESyyRxiIHF2VGfYG6NIcTqN\nPrdvPk23OWA6tillSwSOz7tvv8PSwiKmEbasv/4Xf04iFiUSuJyfnrG2uML1jWtMxyNefv5Z/qd/\n/Pucnezyuc+/RqvewLIsfIFLd/CEmKJy//6HTKdTarUab/70J5QKZQ53jwlsn3Fvwky5wmy1Rrlc\nZW/vgGazRS5XZDwy6XcNjg+6XFm7RaPR4eL8lHbrgovmGbefvsX165u0Wi2KlQKiCMVyka1H2+Sy\nRRLxFOfnYQ7hzTffJJFIcH5+zte//g36/SHb27vU602G/TGnx+cktTQXpxc0zpsIgozvRRiNwkPi\nyy+/QiqVQZKiCIQ3a9cNoRSCIOA4Ficnx2xuXmE0Cj3gkUiAosSIyTFs08J1LGxzylQ3iEoythWg\nD02euv08H917gOhJuFMPfTihc9Hi7PCCfnfEZGx+rPRMaymMiU6lUKR70eJrv/oVPvvZz/L6668T\nT8TwgynnZwc89+xdYopEMZckFVNoXxwz6He4fn2DO8/cZHVtnkxO5dr1db7xzT/jxZeeoT9okMoq\nIDmsXFlgcWWWid6j1T6nP+oSRFy+971voyViVKslrt+4Rjqb5uTkGMvSGY/72I5Fo1FnNOhSzGeR\nowGraws43oSIGMol4okoDx5+gGnpnJ7t86nXXmRmtoCqyVRrRZaWF3jy5AnpZIqzkyM0JUY2m6Xd\nbrGyusR4MiSbS9O4OEVTFYQgRD3Ozs8RkQS0pMbUNFhYWCCdCtupgiizubmJKIqk02lmZ2aYn5ll\nMOgxMzPDX/zFXzBod1GlKLdu3WJxaQnH9+j3+8zNzeF5HroeijqSydBNXczlMQ0DLRbj5OSYo6ND\nRDHCCy+/yP7hHo7vIEQCFhcX0I0Ju/t75HI5HM9FFEWefvppcpksu9s7TEYD5mozfHTvfeKqxvPP\nPMvp6QlSTOT69U1OTo+YX5zDsqfs7O9QqZUx7ZAHbkxGZNNphqMB08mE6XRKuVymWMxfdgdCx3S/\n30eUBMaGzljXMazwkBeRIpydneGYFq7rsry8zGg0uTw0aiiyCH6AaVhcvXKVG9dvsfV4FwSZd955\ni1q1iOC55DNpBoMuyUwcx7Gw7CmLiwv0+h2UmIwgBFy9us7sXIWNjVWCwKPVuiAS8Wm2LwgiLkcn\n++SLObKFLO1ui3Q6Sb1ex/FsXN8ll8txfHxMPp8nk0xRLhb+znr4Cy/Ik8kE25nS63e4duMWbhDQ\n7Xa4uDhlZWWFIAj49Kc/DYAsy6RTWfb2DphMp0hilOXlJU5OjohEIqTTSWZmFojKGnIkhj6x0HWT\ni4sLEnGNWq12qT30gQiO7XF8fIzrOhjTEW+88QaHh4ecnpxjmR4bm7fpDoZcNFv0+0PS2VyojItI\nEIg8evSIufmQO9zu9UnEMwwGA5LJJJZlsbq6Sr8/JFsocnZ2AYHExLCZjA0CX+DKlQ2azSabm5sM\nBgMs20aLx0lnMpwcn5HN5pDlaGiNOjhkdnaO0WiCpiU4PDym2+2RyxUQRRnbtvn2t79DMV/Csizy\n+TxxVUUWZfL5fJiijggMRkPqzUaIybMsRFFkPBky1cMPuiAE1ColplODwWhANpcjCEL5ej6fJZHQ\nQgn7lQUcdwqCjSyLeJ5DPp9lMhmRTqfZ3dmiXj/GdqaMxuHfJLTjNDg7OefF51/GmFiUsmXkiMLF\nWZ2IC9OBTlbL0r7o0Gn1manOM+zpyBGNYc+gftpGCKLkUwXajTapeIJCthB6S8O9F/KZLL5ncXF2\nyuL8Em/86CfkswXOTs5ZXVngn/zj3+czn3mZciFJLh/uAmeSKVzXxvd9EokMhUKBqWHxja//JYvz\nc7TOO7TPu9i6TS5ZZDoxEQKBs5NTjg9PiCAzGeksL67QuGjzf/zBv+WdN3/GbHUeSYoSjcZ46YUX\nKZeLfOtb3yKeTDM7W8Pzp/T7fZ5++nkePthBU1SWLj9Tg2GPzc1NbNvl+tXrLC6scHJ4QS5dYtjT\niSspRBTu3noWMaLQaQ8oFitIosLc7CIPHjyk3eozHuiMxwaypBKTo4yHI+oXZzx99yl2t3exnRBD\nu/NkG8vWifgStuGA61ApFPjEC8/ziZdepFVvIQUy9aMW7755j89+6gscH5zQaw+YKc/ROG3j6B6F\ndIlkLI2ph7H3T33iFeJSDH0w4fOf/ix4Lq12k+XlZZKJGAIGv/kbv4IUCVCikEzIVAtpfuOrv4Io\nuVy/fYWj0x0+8/lXqMzk8CMWV6+vkspGWd2YwxdN3MBA0QQ2rq/g+Do371zj5PQQMQovvPwM7f4F\nljfFdAxy+QSN5gm379wAwcO1p0yNEfgeQuBTLGUQJRfHndAfhjfkqCLgBzaS7KPFRISIy9r6PNVa\nga3H99na2iKbTuP7EEEg8N1QpTidICkS/X6b0bDLrZubTIYjIkJIH2y0mwQRiMaiCEJA/eIMy7GJ\nxTWy2SwHBwfhzS0WRZIiuI7F1avr7O5uMzczy/rKKqPBADESod5s4NguS0vLyHKUaqV2OVP16HVC\nV3ipWMSY6Ex1g0wqxdXNdUbjAdVamcpMBU2LMRj1iafi7Ozs8NqnP8XBwQGKooTO9VyWfr/P0vIC\nb731U8RIyCdo1s+JRuWQ1JXPMjHGiFGRIBJgWAYbV6/g+y47O09IJjQ0VaHXbRKVRKKKRCwWpVQt\n8Xj7SRhiUxRajTqVavg8cxwLJSYT08IxiGWFAcqFhQXGwxHj8ZjZ+Xl0c4rnOsTjGqZphp1TMcqD\nB4/YvHaDQrnE5s2r3H/wIUlNRSBgYXGO6VRnoo+JRCLIl9jj3d1tXNfl4aOPOD4+4vBknwCbqCbT\nH3V5+aXnEYKAiCgQ4JJIxrAdgwCP1fUVBuMhlj1FlCOkE0k816ZWrV621//21y+8IGezaUajAcvL\ny9i2j2UGnJ5ccO3aTXZ29hgMRqhqnFazg+15tHt9Upk8mpogFtPY3d1lPB4jigKGYZJJ55idneP8\nrEHgRchl8kSIMBnrnJyckUym6XZ7RCIihmFSKBTodtsYhoFlhaYpTUswU1vgyfYeuXwZTUswGE9o\nNTuUK1VKpQq93oBMNv/xbaRYDMXh5XIV0zRJp9PsHxyxsryGbXmkswV6wyGxmEqlPENMiXN6dsFo\nrGNMLeqNFpbl4Lo+luUgywrpVBbP88ikEvi+T7fdQRKjaGqKa5s3EZDR1BTn9TbxeJJoNEqr1eL6\ntWsU8nnq9TrRaIzJxMCxPeYXl9k7OGBldRXd1PEFn+FkSCqV+jgs4XsO06lOMhknk89xcnHKZGow\nnU6JxWJYlsXUmCBEfETJp9NtEhUjOK6NYRhEo1FOz45JZxLkcilWVhbQx30mox5nZycfdzfeeONH\nRJUIpjVBlIJwBcTzODk5pVVvUylVUKQoB7v7TEYTAscjnUwjBAIiEZr1Jpqq0qw3mIzGGBODCCEk\ndjQaU6lVQ3CLYbGysMawO2bY69NtN/hP/8F/RK/bwLENHj94xGuf/DRBEKaz9bGOLEbZfbJPVNS4\nce0Wa8trnB1cIKLgTCzyiSyTvsG4Z1BIFylkC2RTaUzd4OjggGwywe1bm3zxC5/lqTu3uP/BQy5O\nG7z50/fIprIg+OztPAkBKZ/6BFfWV8lli+RzFQq5MlsPHwOwuX6DRw+eYBkO21u7GGOTG5u32Lxy\nE2ca4Dsib73xHm/88E2mE4fHD3cpZqvUKnNsPdxmNDSYjkNRQ/Oiw3f+5rsEvktUkpgMQ2OSMTao\nliv4Dmysb5JL54jJCTr1Nk/dukm3XSehqeA65NMp5IjMFz7/ywhIfPD+R3SbQ1QpQSGdRxVV/oPf\n+g+ZKc4wV5vHmVoA/OA732amXObXv/KrpJNxFEmikAvpTYoi8tprL5JOKTi2wTN3b3Dn5jr5QorK\nbJEf/Og7xDMq0ZiA6+nM1PK49phCMcmTnY+ozORANHGZkMhE8TBIpVWefe4W5VoOJRbBdEe89umX\nIeIynPQZDLsgeNiOQQSX+YWQUSxEfCbjAYuL85yeHV9y7MOk+NqVFVKJJLIYxbZdCvkssZiCltS4\neeM2xniEKAVY5oS4EsUxDLKZFHJU5KMHH5DMJhGEAEmA5aUFstk06XQSNR5jNBmiqGG6OZ/PUq7k\nee+9d7BsHfA5Pjnkgw9+xqDfJiL6YRiz0ySdSYYz8xdf4fysDhAGxy63LKbTKY8ePSIajRJXQxjF\ndKKTjCcun1l5njzZolguMDGGbD15hHw5B/7JT35MMp1AEAQSyVAfmM1laDQaRCKgJVQ+//nP4ng2\nnudnuxkZAAAgAElEQVRw+/Zt9vafkEjEGI3CEGu326beaBAA5xcXDCfjUI/o2EgC1Mol9HGfZDIO\nkYBoTEZWogS+T6fV5vadmywvL2LbJo8fP6bRbGIY4cVh/2gfOSohSxHm5uZIJBLs7u+xuroa2rdE\nkfnFeQI8XGcKgosfmOjTEYoaw3fCw6KmxFhYWECSJJLJOPG4hmXZ5LIFIqLM/uEe61evEtMUZFlk\nOBwyGQ5QlVCG4TkWy4sL7O/tUCkWiQgBgRf6mIvlAulsir3dbbKZFK7tEFdj6P9fC7JpmnzmM5/h\nz//8z6nX6/zu7/4uv/3bv83v/d7vYV8C6r/xjW/w1a9+la997Wv86Z/+6f+bXwuAIkcR5SiypDIa\n6jz79EuUS3O0W31a3Q6TqXG5XlSgWpnh8PD443bw1tYW0+k0TPSm0zQaLXq9Pqcn5x/jOKfTKYVC\nAdO0ERCRJJnzszrZTB5BiLC19ZhKpcbVq1ep1Wp4XkCpVAlDFGqC+kWL/mDMwvwyveEQXZ9iOx7p\nTIZMJoN96UvVJ1N8D8ypTSqZ4ejoiMXFJUzb5vyigWW7xLUkG+ubnJ+fX6bJ81imy6A/plqbI6Ym\nuH//AWtrV8Kd4vGY2WoV05hSyOVJJFKUCzPcvvUMw4HOaGTws/fukUln8TwfMfL/sPdmwY6k55ne\nkwkkkJnY9+Xsa+1bV3dXV68kWy2SGpJDcUQyRGpGQ0uyQqTo8VijkELjsS/GE2FaCkmWLMuWI4ZS\nyMGxm6RFWlyaa1d3s6uruquqaz/7hnNwsAMJIIFEJhIJX+RR+UaaYSg8MRfmf1dR+ynU/33/973v\n80pEo1H3JVoqMTfn4jMzmQwdvUuv18MwB65C2i8Ri7miimg0zHjsqkkjsTCTU3lW1lY5ODggGAwS\nDofpDQz6/b6LqhwMGNoGfaPD/MI0kk88kvX7sawBmUyGer2KafVJZxI02w129/ewRyaW1UdVZeSA\nj26/RVtv0mzXkRSBVCqFZdr4FNlN4BoYdDodwoEwA8Ni2LcIKyGsvvuS1TSNuZl5el2DTsvg4X0X\nc1ipNYhG4oiChxPHTvLNb3yD44tLTOYn+OH3v0en3cIaDPB7/Tz/7LOsrawyNC1sa0Q6kea1H15h\nMj2NqdvsrO9i9QeMRxANxui0+rSqbWSPitE22d4oEAvGsQYmg56O4AxJxENcfvo0nXaF7e0tnn36\neZ564nli4RQeQeLi2fP8+uc+y+rD+wQUiUqpzNrKKopXYePhJqrkXp4Pbj/A1E309oCP/MzH+PbX\nXyEWTvE//dH/TESN0G32kDwK8UiGiBpD8QbYXN3i6pVrNGstzp44wze+/gq26RAOhAn4FHxegScf\nv8j1q28RUFX0To9oMMSFM+eJRxPcvnGXUDBIKhFhYOicOr6M3yPx6g9+yNixCYcCfOeVVzh98gyZ\nZApZkokFo2yurPH8c8/x/e9+j7nZWfY2tvm5j7rJPIrfy+z0BOFQkIP9XYqH+8iyzPbWGufPnT6K\ntIuztDjDv/vSvyUc9fPdK99i5Bny4gfeQyDsJ5mNUTzcxR4aFAqbxJMBnn7ucUTvkL7ZZnIqzdxC\nHtkvYts6Pr9A32hz4vQyvUEbj2+MYXZIJqMkkhG2d9aJxyMkUzEEcYzHI9DWmpw+c5K9vX2qR371\n1157DYD9nX3X8iZ6mcrPYRgmXq8XWZbZ3S+wuLhIUJEJqSoHhX2SyST9vk4goJBKpVhfX2NiaoJ3\nbt2kUCgwsobUG1W6eptQKIDogVAkjMcruBOoY4vUGlW297ZIpZLE4zEWFubp93uMRiNmZmZoNJuE\nw2Hu37nL5OQk1XqD9fV1Nta3MAdDbNtGVVVyudwj0earP/ghqqq68BCfl3gyRlvX2NrdJplJu6PV\ndIJYLIZX9DAYDDgo7OOMbAy9hwcBJaiwvrVG1+gQjoUYOiN2CwXUUJBer0ezXqNarT56VddbTayR\njc/vd4W6gz5Dy2Rvd4dkIk44pLqv580NwuEgXq+XJ568yMFBAcPo0+m0mZubZWibOI57305PTz9i\nJxT2d/F4PMiyj16vRzAYZGtrC13XGQ4H3Hr3HeZnJ2j3miBBs9nEEUVi8Tjb29s4Q9sFIPlkWp0O\ngtfDYbmEII6Zn59H0zRarRa9XhefItPtdrEsi1BAYWhaxEJhImqQ2+++iyz5qDXrrG2sgge8XhHF\nJ+FlzETGzdT+m/Xg37sg/+mf/imRSASAP/qjP+JTn/oUX/rSl5iZmeErX/kK/X6fP/mTP+HP//zP\n+cu//Ev+4i/+wg20/jGOx+NjZEOz1SaZTlFtVPB4PMRiCbrdNrLs4+CggGm6LzS93+Xmu7dIplPE\nEnEkvw+vT6KptYknUtQbbfS+ge2MiMVi2EOH6el5YtEUxWIZe+igqkFE0cUgGn0TyxqyuLDM/fsP\n8fl8pNPumKTT6VAsFmnUW+g9A5+kovfdgtbtd2m2m4/8fd2ujhIIHGFALVKpNP3egLEjuIruRotG\nS6Nadfc5Pp+P7a1dlzftdfm1zWaTpaUlRqMRfsmH0XNRl4O+jkcQmJmYI6iE2d3ep1ZpovhkluaX\nqJaqVOtNJicnsYZDurrOGHdHZRgGtXqTZCbN1o47etI6GsGgSqVWJhQJoev6o1QbPAKbO1s0mjX8\nfolGo4be6yIrfrySB2c8wu/3oSgyvZ7OaDTEGdtMZHP0el0CQdXVBDBCVv2srD5gZnaKxaVZQqEA\ng2GfTk9jcORp7g06dHUNv+ylo2tMzU3h8/loNGquvWPkYJome9t7DAdDBn0TVVLQW20YidTKNYp7\nFcyezUHBFabNz07z4N5DLl96mr/6ypf55X/6i9y7fZNoSOHY0gIBWSakRmg3de7cuYPHK5BOpVBl\nlVe/9ypBWaXb1rl29Ud85hc/zetXXiMRj3Ln1h3+yad/ngf313n87JP0232eOP8E1VKVykEZr+Cl\nXm4iOGPy2STNVpVmo0atXOHGtZs899SzHJtfZnVlhY21VZ69fJnxyCGbSvPdb30b1SczNznHyaUz\nAJxYPk+1pLEwvcz/9fJfEVLCnDt5nl/+xV/h8KCCbY15/NxFzp8+S6/bZ35qjjPHz9LrDpjITlPc\nK3PhzONEAxGCapBQQEX1e5mdmWBmeoa52UluvHOdeDTGyt27/MxPvY+bb72Lxx4SCvrJpGMI4xGK\n389/+6/+GyrlfaansvzU+17gsLDPRCZDIhzDJ0p0mg3e/+L7eHj3DtPZDO997jm2193IvzNnjmGP\nBgTDCuVGibnFGW68fZVf+9V/Sr/XIBxWEbG58c5rfOoXfpalE7O88FNP0+qUicYV9F6TQNCHxztm\nfmEaOSASjQV4+OAOjWaVudkpJicn2NncJKj6mZ7KcO7scc6cPel+rrot1ICE1wtD26RSKfOzP/tR\nDoruvaKqMh6vgOjxIIruVG0yN4MwFnnm8jOA61oY2yO8okSlVOXEiROUKoe0221E0YsgjLl/7w6K\nXyaWiDFy3Jfq/l4BZ+RaiBqNBrKqYDtDzl44i98vsbm5zsREDtu26HQ0EIRHNp75+Xk8Hg+tVots\nNssbb/wIXXc1Jd1+j7Eg0mi0cByHWq3mJjgJAvlcjqFtIqsKgXAI3dBdPQ6uarnd1Tj/2AX6Zp90\nLoMoing8HjotDdt2EByBWCTCyBoSD0XIpTOEA0H2dnbp9dxXuyz7GFgGkWgIv1/ixKmTtNstTGuA\n3uly8vgJhsOhC8cw3K+x3tUQRNxJ5FQeVZVpNuvs7e1x/vx5t+k3B4gi7O/voes6lWoJNSCjtZss\nLy89uqe0httQCALkcjmG9oChZSKJIsOhiU/x4VN8hMIB/H7J3Vv3dXr9NpcuXaLZ1bAFh0zeJZ+N\nTMsN/Bha1Ot1HMd2Hyo46L0O2zvriJKIrncIRsIMzD6Tk5MoivIoMjUWiSJJEsl0goFl4pVE9vcK\nrN6/z9A0gTEjZ0gmn/r7F+StrS02Nzd5z3veA8D169cf7XTf+9738tZbb3Hnzh3OnDnj4vxkmcce\ne4xbt279WAXZZfeGSCbTVGtFQmGZWDxErVbB4xUIBBUGZp+23qJwsEcqlSCVSnJwUKDbbZPNpvF6\nvWysbxEOxVhb22A8dpmvnU6HVqtFq9nG51MoHdZot93XdTabR9M0Jien6XZ6lMs1BMH9D2kYBtls\nlnK5TC6XwzBMbBtEr0S92aBcLSGrCorqxz56IXf1PrJfZewIrK6sM7RG+P0KoujFtm20dpdgMEgw\n7GaE7hV2iMbCzM5NY9sWqiqjBvzY9pDy4SH1eg1rYB556+bJpNIkYkm0VhdRkOj3TEQ8DIcjTNMV\nSjW0FmooSDCk4oxthqMR2XyO4cjtAEPRCNmJPEowgCM4KEF3FNVqt7Dso2CGTotmp8lg0KdU3AfH\nJpNJkEpEEMQRO7sbbO6sUa2VQXCOLiSRas39Womim4w0MztFrV6hZ+gIHqjUyrT1pgs6aNWYmprE\nMAwXamAZqEEFn1+k2axhOxaRWBSfLFEsHZJKJFEVhXa7SywcYX93DxwPha19xraHE4unEByJD3/g\nQwCMxwYzk1O88eoVcukUQdlLIhqguLfFT7/4PrRWg1x6CkmSSSaTpOJxBobFzevvsrywzOkTJ3n7\n6ltcfvICpcM9Thxf4qCwxVe/+mW+/H9+j3PnLvLgwRqxSJK1h2tEQjFkn0okmODk8bPUSxoP7m0i\njiUmc3nSyRSf/MTH+crLL9PXe/zqf/bLCCPLfW34VSayOZ65/DSK38/VH72Fc0TWK2wXufraW8xN\nzhOPJMkkc3z1//gKM/lpTp86y9TkNGtr6yg+lUQ0QSjgjpTzqRy9jsFLL36AjbVtum0dZ2gTUGWy\n6Rhmr0c8GmRve4Nnn77ErbffIRYNEQ2HePapZ4hFgwSDPhbmJ+jpGt/+5rcYDU0+92u/wmPnT3JY\n3MWLQy4V58yxE3z3W9/mFz/9C5T3i/zzz/869VqR7fUVxkefqQvnTpFIRqhpVfrDLvdXbhMOyXT0\nGs7YwLGHeCWBf/DhnyISldGah3zw/e8hEvbT7TR4/tknaFQOGWPT7DTI5VN09Rbnzp1hMBhgGCZ7\nu9tMTeZZX1shGY8xMHtk0ynu379NNBrEHg3I5tLoepcTJ05w690bHD9+HEmSWF1dRRRFlpeX3ReW\nohKPxzF6fYJBd5XTbNQ4duwYgYDCcDikdzSibrTqzMzMsLGxwbPPPkuxcIBt24zHY7Y3Npmdmkb1\ny7RaGoLXiz4waWgtCvtuZOXS4jztoxfYe198H9V6jZXVdcKhKOtrm6hqAEUN0On2efqZ51ADEcLB\niEuGM4e0ux129w84LJfw+XyoPpmVlQdEIhG2t7fxej0UDgoUy26z6oxt+oMeDa3B3ZUH9Ac9ag1X\nmBqJuLnh1WqVVrPt2pT6Btl0hkHfIJ2Mk4hHKZWKeMUxsWgIxeen0Whw+9a7xCNRBv0e05N5JvM5\nxiObjfVVlo8toDVrRGNhV6MyNUmxuM/IGWJaBuFwkL/+xv/tvjrDYXyyn3K1gmH0jyZ8KYJBlfHI\nQRRcnUgsGsXnlTg43Kff72FZFkFVpt9rk8okMcw+SkBmZXWV06dOYdsOjgOMveQnc2Qms6xsrTEa\n21QPiyTjMWLJGKZjkkzG3Fheo8fWziajsUU8GSeeiNHQajiiw+LxJa69c41MzoWW7O5tE4lEePDg\nPv3+ADmg0m626Pe6pFMpQgEF0QObmxvcufvu378gf+ELX+C3f/u3H33bMAw3tBxIJBLUai5DNR6P\nP/ox8Xj8ETDjP3R8PpmNjQ3q9SqhUIBGrYrHI1CvV3nyySfQNI3+oO9K3Otujuczz1xG8rnFs9Vq\n0+8PUNUgd+7c48KFC/j9rk1jNBrhOHB4WObaW2+Ty00wsh1isRgPHz7k9Omzrmw+keDq1auoShBN\n6zC0Rlx7+zoLCwuUy1VOnz4LY4FGo4Fpmrz00ktYQzf2bnraJcdIkuSmlRwV8+npWUqlCuOxgKwE\nSCaTRKNRNK1JNpfGMAwikTCDgQvNd0ciPbxeL8agx0Q2RzqTIiAH6HV1AoEQnU4XVQ3S002WFk/g\nlSQEr4dU9v+FCIiiyNbODv3BAEVRaLTqlEpFcrkcik+i39cxTYOVlRV39+5zO/BOz+08bWeEJHmY\nms4Ti4VZXl5A8XuxLAPLMgiHA2QySeLRCLVahdnZGR4+vI+u63z/+99lPB4hK34WFuZQQyrBoIpp\nGnQ6GqPRkHgqzlgcUyqVGI8FdF1nf28XnBHNZv1RItbQtPB7FZYXjyFJfobWiHg0Bo7AwtwijWqN\naCjKsD/E6A2oV+r82Z/+LwAIY5BEgUwizgvPPc36yj1mp7M89dQFbMtgdnqGnc09em2DUCBMR+vw\no9ev8NjF8xxbWmRtdZVq9ZB//As/x/REmqHZ4wv/w7/hS//uL2m325RLVYxen/HIIRaJwwhEwU+/\nYzI2BfyeELYpMjMxj9G3OHPmDF/4whdIJeKcXF7izTde49mnLzE3O83awzVUv8rINIkGQjx+7qLL\nYgfCwQj/5B9/hm9+81tceuISczNzLC0sUdwv4vP6UPx+FmYX0fU+kVAUnyBx49rbvP+l93Pu1Fnq\n5QqpaJJkJM7YHrE8P4fWcqlPH/nQh2k3GsxM5PnEP/pHBFUfb197i62Ndc6dPUUiEWEw6HPy5El+\n8zd/k69//a8wjB5+n4elhRkCqszag4eIozG5ZBq/R8Ls95mcyNKol7n81BMIY/Po/4ZItVGj2a7z\n5JOPc1gq8A8/+kFGtkE8EUb0OESTQRRVJJONIiseJI+Dz+OwMJunsLNNKun6VQfDAR6PwOmTJ6hU\ny4gIRMMRUok0Rq9PR2vT7bt6gVqtwuMXL5DPZdC0Fslk4lECWjqd5ur1a0xPT7toW8HL5uYmokfi\n4OCAna0N8hNZfF73iux229y/9y6teo3jJxYp7O8geQVEYYymNQmFQozHAjs7eySTKRdLGwrhEUWC\naoDp6WmGtoMgeFhaWmJ3dwdd79JptWi3W4xGQ958801s22F58RiVUpV0Ok0gEMLj8RMMhunqA96+\nfoNarYFpDpmcnMa0bGLxBKoaoFFz86mPHz+OAziOw3g8Jp/NIcsyANZoSCwZ4+TpE0iSF7/Px2Aw\noFwuU61WkSSJcDCCKAhYpo0IdNtthqbJeOQwOzVNMp5gaFkszc/RbNYZj8dMTeRIp1JIPg+q6jYF\ng8HADVjQe6iqC0lSAz7K5UP6/T6BQICBaWKYAzK5HKFQgE5Xo93WSCYTj8RW7777LrKsHt3nblKS\nIAiPuAp+2UM8GiQejeDz+TAtw206Wk2eeOIJCoUCqw9XyOcm6Xa77Oxs4ZMlDKtPq9UiEFTciYLi\nCuvs0YDxeEi5coAccLUtHhFUVWYMGNaAcq1Mq93AtAwknwe/10Opckg0EXfvZUFA62oMdJ1cMk1H\na+NBYGZmim7v794hC+PxePx3fefXvvY1Dg8P+exnP8sf//EfMzExwe/+7u/y1ltvAbC3t8dv/dZv\n8elPf5p79+7xO7/zOwD8wR/8Afl8nk9+8pM/VlH+yfnJ+cn5yfnJ+cn5/8P5sz99mf/81z7xt36f\n99/3E69cucL+/j5XrlyhXC67IxHVlZPLskylUiGddmHt9SNZPUC1WuX8+fM/1h/uX/yr/5pgKEIw\nGMQv+akcHpKbypFOpzk4OEDTmrznPc9z+84t9J7B7MwiiWiGu3cfsru7ycc/+QkePHjAzXdvk8tO\nMBwOWVyYY3t7E8HjZgoHg2E8ohsqr2kag4E7vtJaHe7dvY2i+Dl/4Sxra2t88IMf5NUfvkY6m0Nr\ndUgkEiiKgiAIVKtVigcHXLhwDr3fw7IGjEZj/s3v/At+/3/9Is1mnUHf9dN5fX4Ke27ureM4KKof\n2SfRP1JfVqsVTp8+g94zuP/wAV6fjKqq9LptPIyJxaLks2nGjkA4GOX+/YfMLyxQLJYwLBNwmJrO\nMho5KIpCtVQlFHKxiNvb2+RyOff1PRwiSRLxeBx7OELrtN3uPRHl+vXrTE25tJrz5x7jFz/xs/yz\nf/kvyeVyHBZLSB4XVD89O8Ptu+/S1rsEZIXS4SELCws4I0ins5iWzQhoNJuMbNv12uUmuHfvHj5Z\nwRlxJLpw/46laoWx4043VFXFg0Cj1uSpp57GGYMkKzTqLRxHcMUqlTqSz1U4HhwcIPlk5ubmYOyn\nUuxybOk84UiMN6++wf/+v32CX/nnX+bixYu88drr5PIptne3SaUTzM/PUm1UcRhz6fJl6s0Wr792\nlePLxyns75DPZ4nHkzgjgWqzxvR0njfeeJPpqTkuXbrEm9e+A16T97z4PLdu3cAeO4hH9DhN05ia\nmCabylAuV1lYWELrdFjb2CSgBllcWODam1f50Ic+xLV3riP5XXuF1um6gqBAmK3NTSqlQ8LhKP/6\nMz/Nhz7/+/zcz30Mn8/Hzu4W9XqdxcVFqrUajz1+kTfeeJ1oJIIoSJiWw813bvGxj3yYpYVZvvjF\nv2RiYoqZiVmGlkW73eLBgwc0tRZPX36ekyfO8fb1t2g1miwsLDC/cIwf/OBVVu4+4NjSMo5go/hl\nEtEYsqyyvrXJ7OQMt27eJBFLMjTGTE/P8MPvf58XX3geZ2wRCQfo9XoEQkEGlkEoKPHP/ounuP6O\nwze++W36/T6SNMKxepw5dZZQOMBuYZtIMkwkFqFSKiN7PSQTMaLxCIXCLoZhcPvOu4SiIdLZFN1e\nh067STafoVapkk1nMPuuwMrn9zIYDqhXqrzwwgtYlkWz2aTTabNT2OP9738/d+7cYTR28HolOp02\nqVSKjtYmnU6zvrGK3+/nsbOPMTB6tNpNUqkUn/74J/nX//1/h+yReOGFF/jaN79OMBzCcRz8fj+Z\nVJp6pY41cDOhDw4KzM7OEotG0dptEAUqjTqJdObRNLHRqCF6YDKXo7R/gGmYZNKuQwPRw8zcAj6f\nj9KBy2XXWi08Xi8e2YeHMfnsBNu7u5SrdYLhAPV6neXFY5SLhywvL7O1tUUqm2E8HqN1WrRaTf74\n93+X3/0f/4BORyeRSJDN5Pnrv/5rFhcX8fn8roh0chJN00gm04QiEW7duMHk5CRGr48s+dwVnmVg\nWgPm5uaoVet4JQVd16lVy+RSSeKxKKVyBWs4YnZhnkqtyvr6OufOnMVzROuq15uUSiUy2Tyi5AVE\nQmqAna1t5hZmCagykVCA/f19xiOQlQAdvQ8I/Ff/5S/xZ//2ZZr1OjNTU4TDYVZXV7GtIbKqsLh8\njHu373Dh/Hn6/T56p4sSULFtG0VVXdfI0GL5+DH++q++xvlTZ9zJryLz1ltXefH553iwuc65c+d4\n89p1zp4/x9C0uH/nLmcff4zDQpH8ZIJrb17lPc+8SK/dRfH7yU9PsbW9h41AQ2sgSz48Yzi1sMzh\n/gGnzp/l7sMH9PTO31kP/70j6z/8wz/kq1/9Ki+//DIf//jH+exnP8vTTz/Nd77zHQC++93v8txz\nz3Hu3Dnu3btHp9Oh1+tx69YtHn/88R+rIMfjcfr9PolEknK5zNycO+bz+xQGvT5+r58f/egqPkkl\nn52gWq5x+/Zdxg7YNjy8v0KzqZGIp/B6JSYmJinsFwlFong8Etlsnka9RaXihss3Gg3KlUOazSbb\ne7tEEq7pXfRIjOwx1956m1OnzjCyx0SjUdbX1/H5fIiih1QqzXPPP4/H6yOfm2S3cIBPPlLErqzQ\nbrcZjW1kVaE/GJDOZekNDMaim2Pbamvk83mq9Rqi6OHGjRvcvn2bfr+PLMs4YzcEot50R+M+VaFQ\nLHLnwUMmZ+fYOyiyvrXpqspj4SMLwJhCocDu/i54oNPrIooCrY5Gp+dmQGezWTRNw7ItDg72mV9a\nYHX1IYlEjH6/i0fycH/lLgByQEaS3eKnBmS6epsxI4xBn8HAoNGsksmlEASYmZ4kFoswtE18Pomt\n7U38fh/hcAjT6BGLR2g268zNz7hj+r5Or+9a1MbiCK9PQO+36fQ6nDpzksGgT7vdxrIGIDh4vR7K\nxSL5bApVlpibmcQyDHa2N4mEouidLolEjFJ5n4Dq49jyPADBgEKtWnb36MMhfp8PVVbQ9T6peAq/\nJNNp6XgciIcD7G5v0KzVuXD2Artb29x4+02SiQizs7NsrK3z/HPP8eoPf8DiwnFi4QTVUhMQkf0q\no6FDq9EmForiQcQajMik8qyurNNqtQmoQfySzMbqBoFAiJ2dHXRdJxKJEIvFCIUCbGys0WpWyeUy\nvPDCC+QzbozkM09dpqt1qZXKzE3OInv8yJJMPBzj4f0HBGSF48vHsEyDhw/u8euf+1UqlRKVaoUP\nfPCnsYwB5qCPYfTY3d3h+PFjXLxwAa1dwzTbPPPMUwyHFltbmxwUtxjZPX7mH7yIrHjIZRMszE3i\n9Yxpa3XS8QjmoMcLzz3HZC5Lo17lxjvXmJrOsX2wTltvMBKGnLtwGkkSiEUVOh23Sf/6175MNpfg\nzNllypUCwWiAWDyIPTLIZOPEExHu3X+XyekJQtEItm2ztvoQZzQiEY/xwnPPE1IDLC0t4fNKOI6D\n1yNw/sJZWo0almkwOzNDJpVmemKSyclJHjx4QKPRQJIkhkPXm3vlypWjYBcPATVEIpFkf/+A8+fP\ns7L6AHDI57MUi0UGlsnU1BT7By6P2++XOHv+HNeuXXskgnIch6FpkUplME2TfD5POBhCUQI0Gi32\n9/fRtA6ZTI54PMn8/CLxeJJ+t08immB+bpl6rUU2k6NUKiEIAvnJKWKJDFevXuPu3fscHpYZjUZk\nMu7vofplev0uSkBmamoKr1fk2LFjPHn5Eo2W+/Xe3t4mFAqRyWSwbZtut8vExAQAqhokn89jGAb3\n7t/hiSeewO+XqdfrXLp0mUgkRq3WoFIpuWr4gB+PT3RtSYqP3qDHzu42nZZGrVwhn8/j8QoMzMHf\nnw0AACAASURBVD5LS0vEEjGKpQN6Ro+p6QkqlZLLU1cUZNlHs1mn3mwRiUVJJNMMHXet2G63abc0\n4tEorSP1+Dtv3yQajqGqKkPTYtDvI3ncktXRNAKBAOVymZWVFZr1BoNBH1n28c47b3P23BmaWpNu\nt4NlmWRSKarVCrF4FF3v0qhVEQSBzESeB6srdDttZJ+HcESl22sRCPrpGx1Ms0ehsItpGtRbdRzH\nYTAcIEneoz39Js1mk9mFWVZXH2KPbYyBe8cNzD4eEQ7LRSRZotfrYg76HJuf//sV5L/tfP7zn+dr\nX/san/rUp9A0jY9+9KPIssxv/MZv8Eu/9Et85jOf4XOf+9wjMsx/6Og9g3DYFSl4PT46HZ1IOMbq\nygbnzz2G5PVTOqyhKAEi4QSTEzNEglGGgyFzs/PkchNsbm6TzeYoV+tYtkNvMMAZQSQc4zuvfI9T\np06hKAqjkau8fvzxx5H8fgQP5CcniKeSVOo1ZucXSGWyvHPjFr1uj8FgwLPPPks0GmVtbY39/X1q\ntTq2PeL+ygrTs3OPjOrhcBiv34du9IklE/h8PoJh12doWRZtve1mMTcbGH2TSDiGIHoxzAHBYBA1\nIDMcDrEsi0QiwdzCAtV6A0lWSGXS1BtNItEY6WwGc2hhjyxEr8B+8QDJLzG/OE+r3SIYDqHpGohj\nmlqLSrXExtY67a6GII5RQgp7B9skUnGGI8sVPygSStBVi1frJWqNKtMzU7RbLbxeD2trD+l0NHL5\nFLFkDEXxEwqqBAIqlmnQ0VqUy4c8//zz5PN5l9bVadNsNlAUP71el9WHD1AUPwcHBUQPeDxjvH6R\n3ESOcDREp+vyd31+CdsyEQQBUQTRA/1el0rpkLWVhxw7doyTx47T7baZnJwgoPg4d+Ykb7z+fUrF\nXfdDNbZ54/VXOX5sEdnvI5vO4PV6SSdTdDo6+fQkha09PGORYEAhHArw8z//aVYeriOKXk6dPoE5\n6PG9777CL//SZ3j1h9/huWefoq01OXvqPFpDQ+/oZFMZluaXcYYwOzXP/NQCkiih+hXi8QRdrYMw\nclD8foxeH8XvI5PJsLy8jDAW6Xa7hIIqfp+Xbkej2aixtbFBKuWqMLV2k6npCSTJ9VePxyOi4RBG\nT6d6WGJ2aoaH9+4zkc0xOZHh1q0bfOTDl/nut1+h3+5x+dJlNK2DMBZ5/OJF2lrTFZ+EgzjOEHto\n4hVFErEIAg6PXTxNPBFhYPZ49+Z1mo0alXIRgRGhgMrB/h47Wxt02hqXnrhAKhVjfmGCcExB8I2o\nNA74+je+imnphMMy0ZjbrIoeG8nr8NqV73PixDKhkMLu/iapdJRGs8LYscjlMty/965rlxsOEByH\nWDhMIKBgGD2i0TBa01UUl0pFRFHg+ltvkUgkiARDjO0h4NBsNrDtIdFoBNM0GQwG2LZNKp7gpfe9\nSOmgiNcD0ViAw8Mi87Oz7is3k0GWVfp9Vz3b6XQeeXgB/H4f4/GIw8ND/IpMNOqGsQyHI4YDk1gk\njq7rBINBksk0tjVEVYKk02maDQ3LsinsHdDvDTi+fAJB8LC1vkU8muDGjVs8fvFJwtEYPlnGGQOC\nSC6XY3Jy0oVg+F1G9Hg8Ynp6Gmc0IhgMUCofcu/eXWq1GqurKyhBhccee8x1cWxvMxxZeP0Sbd3d\nW7579w7NpltY8tkcst+PiEAsEmVzc5N6vY7f70eWZebmpxnaLr1KkABJfBRLOxqNsG2bZrNJOByk\nXHX/3QzTotfvu021R6DVanHmzClGIzcTudHS8Ppk9P6AcCxOfnIKh7E7wbNtotEolx5/gts3bxMK\nuc2Zpml0Oh12trZRVfczpWkaqqqSTCbp9bokk3EWFxeRJInFxUUqtRrFYpFSqYTtjDBM93PQaNSo\nVItMTeZZWX3IwDKp1mukkym6HQ3LNml2W4QjAWrNOiPnaJcs+/B4PNhDk4ODAvcfPsC2hySTSTqd\nDteuX6febFCv1zFti6E5IBmNguNgj4ZEE1FaWhNh7Li+/r/j/NgF+fOf/zwf+9jHSKfTfPGLX+RL\nX/oSv/d7v/fosvjABz7Al7/8ZV5++WU+8pGP/Li/LH6fSjyRotVqk0plXA+dOSSXm2BjY5NgJEIi\nkYSxSLlcwXEcbNtGOLIK3b5zl3QmQ6VSIRqNIgiCi3pzXGzc5ctP8847N44utDG1egVN0wiG3Ji9\nXq+HV/JTrTVYWdvA71M4deoUfaOHKIrcuHGDV155hVgyQSQeQ+u22d3fIxgO4pNlVtfXAQhHQ0g+\nH6Io8vbbbyOKIvfv3+fOnXsMLJNsNovgdcebqVTKLaq2zcmTJ/EpvkfCjmAkSCwe56BYxDAtWp02\nPaNPt6dTOCgwME26PZ2WpjGwTJeJGw7Ramv4FZnt3S2mZmfQ+11CkSCpbIZMPkcqm8GwDJpag063\ni9ZuUmvWUEMu67XVbh5dMK7PuFIvoQRkKtUSQ9tkdnaa3d1tdL2DPbIIhgO8/sYVVldXCISCDIdD\n9vf3aDRqxBNRBHGM4zhMTU+ytraCVxJpNGvMzExh2Sb2yCKfz2JaBguL88iyzDs3rmMNDGq1Gq16\njWQ8jmkMaDbrTE1NMRwO3eJcqdDSGvzgh9/j/IXTrKzeYSKfIBpzP+iFwjaL89PE42GGQ4N8Pk04\nHETTNPLZHPuFAqpfpri3j9nrM5mbpKf36Q1M2j2dWqvJ/v4eF86c4eqPXscviTTrJSbzObptHZ/X\nhyT4adc7RNQoPa3H/m6RVkPDK3ppNztgu9Y1yeMlGgwQDqqIQCqZQPXLjMdj+rqB4pWR8DKyRqSi\nSTyCl0rJFXW5lK4Bsuzj8PAAgFarxcHBAUsLi2jNFgszczy8/4DjS8tY/R6vfOsq73/ppykfluho\nbXDGTE3N8OoPryDLKpFQGMUvk0mnCamBo8mBTrVUZtDvw3iEbVpEIi6+cXJymnQixfXr18nn85RK\nxSOPuU4mF0UOeNF7LU6cmse0dE6dXmZ3b4NGs4TodRWxgkfAtAxSyRjhUIjR2CEUCmA7QyxrwOHh\nAbFomL6hI3pA8oqEQiFaWoOVlRUEcYzP52Nzc51mvcHy4hKSx0u328XvkyiVi5imyWg0YjgcMrRN\nLMtCEEDweojEY5imyVe/+lVi8Qi2PWB15QGK7GVl9QFr6yvoun5EaHLvEkmSOHPmDKLgbvU6nS5v\nvPEms/NzTE1NUalUyGby5PN5trZ2MMwB0WiUjt4lFA4jeLzEYglu3bqNJEkE1RCWMSAWjrCyssJ4\nBJFQGNMweOLik9i2Q1vromkudWphYYHC3r6bm+53E/CSySRPPvEEeqfr+o3X1l3mteFOns6cOUO9\nXsca2ewU9mi06qSy7kpxb3/30T1VbdSJRqNsbG26YKRmnUuXn6JY3OdHb/2IdruFGgpQqVTwSOIR\nhCSK7Qx5uOZCa0TJSzyZoj8wuHnzJmpAPmqiRULRENbILaR6v8fubgFJ8rNfPCSdzVKt14hEYjiM\n2draotlqYZgDZFWhWCxSqdSYnJkmHItiDG0qjSbDkc2H/+FHMAyXZT0xmaNSqVBvNkmms6Qy6UeJ\nVfvFA9e6BExOT+GT/W6Cm6bR7w/clYUkEQ1HCAWCTE1M0OlqpFIpqo0ao9GQQmGXwsEeSkBh0DcY\njUb0Bwa3bt3C75cwTZNWp41u9MnksozGDqLkRfSKR+tXH/2OjirLj4hh+/v7REJhVPn/g4L8H+vs\n7OzhOC5+rdPp8NJLL6HrOoPBgNzEDNtbBaqVJp1uH8uykCSJRDpJo9Gg3dVpt9v4fH7UUJB2u02j\n0WBvbw/hiGPd6XSAMV6vl1K5+Mg0vra29qh7Lper2LZDMBxCN/r4ZYn5xTlKpRIzMzOcv/gYe3u7\naFqLdDZFNp+h220fdayuJq5arR69Wj2Mx2PXWpXJ4ff72djYYGjbiKK70zaHFrIsEwyHkCQP9XqN\n4dCi02kjSd5HZn5FCbjA+1aLTq9NJp8hnoqjBoNE4gmaWgevz0dTayP5ZR6urhJLpGjrXTw+v7u3\nVRQsy0LXddodnVw+jyiK4JWYnJ4hGA7x2huvIxzZCQKBgJsRm8sgeB0Ej8NYcBg6Q6ZnJh8VZ9u2\nEEVYXF5gYiJHIhkjn8+zt7fH7k6BYDDI1NQEe3t77ng2HicUDpPJu11/IpGgWilx4sQJms0mpmly\n9uxZ9o+sbblcjp2tTcbjER4E6tUyFy9eYDwe8eSTT9Dr6czO5fnhq9+h2TjEdnoUi+540SM4KIqP\ng+Ieeq/N7v424UiQdCbOjRtvE4+HMQw3HSYWi3FwcMDe7i62aaH4ZeLxJNlUlls3biL7fIxsi63N\nderlGlvrW/glH7FIgkatxeqDdRZml/EIHgb9AR2ti9ZsUy1XiIbD5JJZPHgZD8dM5Sa4ffMWQ8ui\n2+ogCSKNWhPJ40P2KGyubeL3SnCkJPWKAkNjQKvRQO90OHvqLJVKjVxugqFpElJDlEtVLpy9QCgQ\nZDS0GA1tF0M6hr6uk0vn0Bp1JnI5IsEQQVkhFYtz8/otVldW0DtN/JKPy5eexhoMKR0Uicci5CYm\niEajJKIREokoz1x+CtPQGdoDLj31GJ1ujb7RJpuL89jFM6RSMYIhmUazxOKxOdrtFrFEDHC9r5VS\nidm5aVTVHY9q3Q63bt1ieXmZSCRCMBjg7OnTyJLX5Z43GkcqYzcQRlZ8RKJhLj/9FIZhYBgG4XCY\n4uGhu/YydJqtBjY2ExM59F6HZls7YhrEkAMKiqKQiMWJR6KIoqtrePHF93J4eEgkHCMaidPTDQaD\nwdGuN4njuFek5HU9vT5FptFqk5+cplZrsLW5Q25iitJhBdOysYYjDkqHVGs16s0GL730EoPBgFar\nRaNexzRMxuMxfr+fer2ObduYpolpmiwvL1OrNQiFIliWRTadotvuEI5EOCyViEQi3Hj7JoLgBpAc\nP3mCYFDFryqIHg9bhV0En5drb19nenaKsQimZXBQ2mNq2h1ZZzIpguEQK+trqKqKZZtEolGuXn0T\nUfIQT8aJJiPcevcGXV1HEIRHKXkAPr8XJIGW1kbTOqhqEEcAVVWp1jXWN7fwKypnz5+jeFgiFkuQ\nz+dxRiD7VWzbIRyOUq5WXKa6KLq8ao/nKHZWIhAKYQws1ra2efP6NSSfj/OPX2Rvf5+pqSnABTH5\nZD/tbodkMsl+scTO3i7ZbBZZlrGdEcFwiHa3S6vd5qBcQgkF6eg62Uwev6pQKBTIpVIMjQHGYIDe\n6yH7A3R7fZqNDn5FxTRNJrI5VtfXiGcSTE1NEYvFyGazxGIxdF0nmXbjehPJJKFohN3dXXrdLscW\nFjl35iy5XI7CQRGvR6Ld1B7BtP6285+8IC8sLNHTDfb29vH7/W5XdrSfqTWaROMJRmMQBA/1Roti\n6ZBCoYBlWTz77LPkJycQRYF63e36JEmi39WJx+MMBoa792w0XLh7LEYgEKDZbKL4FDdycW8f4JGJ\nvV6vsrG9gaY1OXbsGAcHB9y8eRPlKBu4VCrSbrcQJZF79+4xxiVcKaorinBsF4iu6zrjESwuLLG0\ndIygGiKRSLB3sO/6kPcLR9L4DvPz84QjQWTF5yYlZTM0Gi2MvolHlFxBmOqnXC0xsAy8PgkEgU6n\niyCIaJrG4eEh2WzOBYFUG24iyeQElj1k5DgsLC7Samu8/fYNGlqboTXCsiz294tcuHDxkZ3A6/Wh\n630Oy0WqjSrTs1OMRkN8fi+FQoHp6Wna7Ta9XpfJ6QlM03R9i60Wa2trSJLbCLgCQJe6k81m8fv9\nJBIJdnZ2XDau5GNoWjTrjSP7Woutra0j5rWfYEAlFosQj4ZZWp6n0aizs7vNaGzjjG1Mq0cwqIBg\nEYnJpFIxUmkXXhNPhEmlY4QjKl4JN6ayVn6Ui10qF7HsHg4m8Xic0dBCliQGeod2tY5j2PTaHVR/\ngGOLx9HbHQKKn8PDQ4bDEcFAFMceE1QirK1s4hG8OPYY23YolUp4vV7arQ6O5WAaFqOhgzN0qFea\niGMvqi+Az+NFcAQS0SSO6XB4cIgwFuh1e9Qqri90c3UNa2CSS+dJxbN4BC8eJGRJJhwOYfT6JOMp\n1lZWKezu4hE8TE1Ms7SwgNcj0Nd17KGJ0XeDIXp6h0gwgN7uEAqEKRb2CagyuUyCBw/v0da6zEzN\nMh6PED0ADoelAlde+z6V6j7pfJzzF06iGy1mFvLMzuWoVUsMjC4P7t8hGFSIRIPovRaBkEJbbwPw\ngx/8gGQqSrvZwOPxcPLkSSq1KqlMhmKxiMfjYW9nl9FwiNcjks+4sIr1zU32iwfIAZVKrUa32+b1\n168gAqFQmHA47I40Ox2Gjo3e71IsHXBYKZPMJBHEMdu72yiKwu7uLn7Ztf3l89Nsbe2RzUzSafc5\nfeos4DbXtm1jD4ecP3uB73z7uzx16WkA5heXsIYjdnZ36Xa7HB4eMhgMmJ1fwDRNwrEo5UYN3TTw\nSF6CkTDWcEij0cC2bRYWFkin0+SzGRYWFvBIItF45BFNy+v1cfPmu2QyGcLhIJFQ2OXLCw7z8/Ou\nSNM4auRDIWKpJPdXHqL1uuQmcwxGJrEjPYzW1RC8HiS/F7/iIxILU2+6NlTRK1CuVJibn0eUvOzt\n7bG1vUG5XsZh5K4LhDGhUIBqtUq5VMUybXq9Hj6fj+npSdRAgOxEnu2dPdpal7nZBcKhKJZl02x0\nWN1Yp2eYNNsa5WoVn6ySyU9QqtYANy4xFAohCALdbpfsRB5rOCSbTdMbGGwVdtkq7KIGA4SjMRLZ\nLCvrG0h+L7rh2jNrjTqnT58hEouzub1Nz+jT0ftucyKKyAEVUfKyXz6kXK3QaDUZjZ2j4qly7e13\nUFWZ0t4eXsbMLy5QbbaYnp6l2xuwuLhEp91FUQOP7jGPx8PDh/cJB0PsbG3j9Uq0Ozpap4tpWZQb\nNR48XMEn+bEGFrLkp3Lo8sW73S4iApFQ2G1q/o7zn7wgh8Nhmq06ExM5vF4vutHH4/Egej2sra1R\nrdXxSi6QQ9d1t3ArMvFkjG9/5xVqtRoNTSOTzrGzs0MwpPLUU5dotVoMhy4+bmIyRzgcptVqcXh4\niM/nw68ozE7PEI/H8YhegoEQV65coaN3GY/HSJLE5uYm+4dFLMtCVv00m03G4zGrG6tYlkUyGccw\n3IQh27bxCCI+n49MOodpuikklXKZg8I+uq5TLpdRFAX/0Q5hbXMDgHK5jKZpCIJwtPc4JBKPUSgU\n6HQ6GIZBve76/YrFEuVymUqlht7vuRF8fgU1EKLeaNHt9fD6JPqGSaFQoNvtsrq+hqZ1GI3GJNNZ\nnBF0+z3M4QhZVdF1HVF0PySGYZDLZN3pwWhEs61hjWwk0cP8zCy9Xo9arcFYgFZbYyy4iV29XpeT\nJ08SiURQ1QCHxTKVitsF/82f/W8arWg0SrPZ5OzZs3S7XYJqgOXlRaZnJ0ilUkf8cgWRMdFohLt3\nbzNmSLvdovv/EPdePZKk6ZXmY2bubmZurrUILTJSVFZldSl2V4vqJglwlzv3vNr5K/wNuzP8BYsV\nA2K4wwWHM9vdbMGuJqurKrWIzJDu4R6utZu7aduLLzrmZvtmsUAnkEBeBJDIhJm933fec56znDOe\njZHlkNl8RDKlEYYe33z7L8g3T3M+l+Hq+or12sR2LVbruTCarGbIckg+n8NcL2+4vQrHx8eEgUfg\nOpjzBbPBBF3VGQ2GDHp9Uokk5mJFrVzDczwuTy9I6Ammoym7GzuY0yWZZIblbE46kWa9XCMHETKJ\nHJPhhDt7h+xu73F2cs51q8PZySnWak0sEkNVVOQwikIMGQVrZRN44pB3dHiX7nXvlg7V6/Rx1i4y\nCrPZnPPzc6bTOUdH9xj2RhTzJcy5yWppkowbeI4o/jg+Pma1WGKv1uzv7WGt1iQNg4vzU2YL4bqv\nlSuMh0NarSYhPtPxgFq9TG/Y59/+2/+R73z0AYm4SjaXYDC8xnLWxLQoJ6dviMc1JDkkl8+wXC8p\nlQqk0nGkUPCCc/kUkYjMRx8/olAUDUgff/wxW1tb6LrAK1YqFZZLUUi/NOecnZ9QKpWo1+v0ej1s\n18FybHb395BlmedPniNJQnEykgb5QoHZUpiX5BAuzy7Z2tqiVqvd/hvvvfeA626Pi/MGH3/0GZFI\nlDdvjlkuTYbDIaPRiF6/QyaX5vr6mlKxzOuXrwFwHR9N07Bch/rmBpIkkc5lsSyL+cIkpupUN+q8\nOztlMp8Qi0WQozLD0YhcLsfx8Wsa52dcXV2hGxqNRkMoVXB7Y/7000+Z37Syta+uyGQy5DJZXr16\nRaN1Rbtzje04DMaiK932PQrFIo3WFZVKhagWZbE2KVcrPHvxjN3dXWKqSqPRIBYT77dlWezt7TGZ\nTYmpKnNzzsNHD8nn80SjUXa2tml3rlGiEYrFIqqqEhDe7uNHowmt6w5KJIbjOMRiMRYLgeV1XZfr\nXpdSucZ1p48iR4nFNJrNFqZposgR+n3BklitVixNk0K5RCoRRyJgtlwQiYrvrK7r9AcDNjY3cV0b\nOSKhGXHe3qwI09kcJ2dn6LqBpERZry3mywW9fp/JbI5ju0wnM/K5AqEkE4mpPHj4PueXDfS4KPAZ\n9QfUyxWSySSz2Yx370Sz1XgyYzCa3CgksHbWyArUahXq9TqVaunWjLxaLVks5mxt7TCfL7l//754\nNpIpzMUSx3JxbY/DvUOKuSKu69Lr9//gPPyjD+S1uSQR13FdG8uziKox2p0uum6AJGOvLQhDFEmm\nVKqwt3fA8fEx1502sViEYqVMIV+iWt/gi5/8GFVVObu8wL/B0ykxhWw+T7/f5+DggKtmG9fxmc+X\nTOczFosFelxjtTa5e/cu5XIZ17VRYlHypSKlUhklEqXd7aAZGv3RkEKhxM7mDpPxgmpVSEEb9S1W\nixWSBxFZxnVdZpMRmWSSer1KpVK52X87wpC0vUEhm8M012iaTsJI0e0NiGkah0dHvHj5klKliOPZ\nFIplSqUaYahQqdRI57K0Otc4XkB/NMS0bAzDuI0WybKM77vioV+vSOeyNK6brOyVuPHKAWHok0ol\nIAjI5/PEbvjJu/uHmLZFKpkkl81QyGZJaBqL2ZxsOsdiYpLNFLFdn3yueHPLviJpxOn32mxvb9Lq\nXZMvFRmNRsQ1nelswtpacd64wHHXeK7FbDGhPxQQGAgYTgb4BMyXMx48eMh8MqPb7eETkq+UOLx3\nn1KlTC6XYzoesLtXx/NNYnGJUjXL9t4Gc1PgWseLCZIcsFhOGQ56TCYj7t7dw1xNGY17XF+3MPQ4\ns8mU6XjC/bv36F73yOdKbG5soWtxfCcgl02TTMSZTebksiUuz8/Ip5NkEymuG22c1ZqoorCYTfBd\nj/bVNePhhFQ8Sb1UZ9wbE7oB/U6f5vkV+9sH5FJZCpkshVwBx7JpNZrc2dtnq7ZJLlWgkC+R0AV3\n+Or8Em9tc3l6RiKu0WlfEfg2y/mMbrtHoVBgMZvy9Ve/o17aYNSbcHp6ypdffsmwP6FWqdI4Oyel\nG0TkKNubu5yfiD7p63YDPR5HN1JIkShPnj/h+9//Ex4/+ZrVakGxlGa+GFPfKPOf/v7v+OU//QJF\ngsVsjmOvsZYmg36XBw/uYXtrMrk0UTVCLpdhNBoQUWTMuYh3lAs5RuM+F80LHj/9FlmB2WxE8+qc\ncq0CMmRyWTxCtLhKJAJHR4ecn77jui32/PvbO0ihTCGXJ58r8pOf/ARzblLf2iJXLGL5LnEjSTSi\no8gauzsHaBGdtbnGtm1UXeN//nd/Qywu3pN4XCcWi5LJZVDVGJ988gmj/oA/++LPaF13kaIREqkE\nw4n4eL49e8PcFMrboN8hpkaIaVEqm1WOz94yWU5pd1p8//t/QkwOaTTPWFkmlr9mvp4R06Ls7G6R\nSupMJhMgwLZWqKoiPCLLFcfHb3Ech2G3y52DA2azGUYqzdbWDtVqne6gT386oVAts3JWZFIJrKWJ\nKkWZDibIIRTLBSQpYHdzg9FNxGqxXqFI4lOvKAqmZdLp98R+NR6h02sRNwzevj0V+85Ujv3dA2xn\nTTqbQk/oEBVlPAf7R4SeSKvUt+ok0glGoxG6rpPKGBzc2SUiqQx6QvKPxKJ4gX/bojQYDYmqEeGR\nWVu4lo0khQSBUAqmizmVWhlJksik03i2hRQGhL7HxcUF2k0xRuOqKeJX3pper0MATOYz0oUczesW\njUaDi7MzzMWCuKEzXUw5vzgDKeTN61ekNA3J9wikACOdwgvg3nv36I+HfPTJp0yXc9ZrE02N4vou\nEDLodVEi8Oz5N4T45DMZUuk4a2dJqyXgI+uVia7GiMoK707OuGxc4Xke79+9j2PbDEczpFD5g/Pw\njz6QLWuFLMtIisxgMKA/HIid50LQXZLJJKlU6kaCFli3XE7QUJLJBIlEAlmW+eUvfyn6eOcmzWaT\nJ4+fcX5+zmAwoNVq4Xger4+P+fyHP2Dv8ABzvaLbFfunTqeDH4ZYliUKt6t1Gs0m5XIZVdPodruk\n02mx1y4XyWeyjMdDtrY36HREy4okSXz22Weoqs58Pif0fFIpIVPXajVmsxlry2I8mVGtbdDt9ilX\nRdm163ssVyt2d/dIJpP87qtvuHfvHpZlsbGxdVPBpgm5KpFgOplTq9Vubw8Q3HYpW45DPJmgvrWJ\nHwS0Wi2q1SphGFLf2MALA+bzuZDmfAdVFSUW7k37yXQ6vbnRCvPcYCCq0HzfZzabsLFZw7bXJFMG\n/dGQyWTG1uY2hMJR+eLlM7a3N5lMJqTTafr9Pr7vo+s6kajM9vYm0/mEeq1CIZ+lkEkzHvZZLees\nlnMOD/eZz8dIEuzs7NDvd+n1OljWikbjAlkOKJeLSJLIKDebl0xnI9KZBImEOFRkkkmy2SyPHz/m\n008/IQhdLGvJZNzl3r1dtrZKjIcdLs/fkUpoxA2NbDbNaNyn1W4QhMJ0FokojMZ9kikD8hknogAA\nIABJREFUy1qxubnJ9fU1vd4AQ08QeCGDTo96uc50NOXB3QdEiXJ12WYxW2KtbBRJ4dmTZ8SiUa7b\nbcz5gqtGk/bNny/PL3j+/Dln707odfrMxzOq5Zp4OXzI5UrE4wmslc3do/v0+0Mcx0MOJEI3YGtj\nA7wQwpCIouCYNmpEIF3Pz88FeSmVIhIRZrFvv/2W0PPZ3d0hnUrx8YePOH17zEcfPuI3X/6KDz/8\nAM93kCSJVqsp6FWyGJBPnz4lEpWp1+ukc2mxG2s2qZRrtFrXLBYLZrMJ5ko8X78vNBgOhywWC7r9\nnpATb55l13V5+fIlQRDQaDRwHAdd12/LV7a3t4lGoyiKxMnJCYahIykyV9dt2u02pUqFznWPly9f\nYq9tNmobXJxdkIgbjEYj2u02kiThOSKL/5Of/IRMJkMymWQ5m/P69WsMPU6j0aDX6xHTNV6/fo3n\nO4RhyHAyZnNHVGH6vk80GmVtC0JfMp28fT88z7thzptcXTZIxg3CMGQ+n6MnDBqtNoPxCFSVVr9P\np99j92CfyWzMcr0iV8yRzCQx12v8MODt6QmN6xaeFIIis1iZ9AcDCpUyUkTmH//xH8VhbLG46WC3\nGAwGbG1tMRwOWa5McsUClWKJr7/+lt3tndvKv2hUxbI88vk8L148YzKZ4fshtrPmT//0C3QjTiqb\nwvZc+v0+y+WSXK6AbbmoqsbKtJAksZJKpUR3t2VZonO+P2BvR7Rj5XI5XNclkUgJCthwwHW3w4P3\n3mM6n3N0/x4zc8lkOaXVuWbtObw9O+Hjzz6l0+ncdjib6xVaXOfl61fYN+oEwOGh4Frruk4sFiOT\nyZBOp5nNFiiSTDYr4lKO4xCNqYQB2I5LvV5HkkIm05GgdKWSqLrGydkpyWSSXq/Db377W9aO6Bbo\n9rsMBgPW6zURWaFUKjEYjMhms6wd+5b6dnXd5oc//OFNjnvGaDRha3ePbEGoKC9fvmRjQ0TylvP1\nH5yHf/SBnEynbnZzLrVajWaziaoJXNlisWB3f5fZXMit7XYHc7VC0/XblpWzs1OazSYHe/ucvD3l\npz/9KcViidrmBsVi8ZavPRyOCSWZl69fMV8uyORylGtVlqsVWzs7dDodJrMZrh9ycdEgkUhxcXGB\nruvkcjns1RoFiVwmS+e6ha5p/Paff0Piptbs8vKSXk8A3qvlGt9++y35QhbHF7DyUqXMZDJhe3uX\nxcJkbQkDmOeHN1xam5VlkUpmbm3+bhAKWIi5ZjweMxgMsByHVqtFMimY2Nvb2yKn57pE1Bi2bd+2\nOoVhyHsPH9K+vqbT7TKZC7CGpmlUauXbTOzv/06AV89fkC9kmc1mJBJxzs5PGAwGGIk4fhhwfHzM\nbD4RJ+JUSvyfuS7j2ZRYLMbBwYHYVSYN7NWag4MDNus1CoUc6XSSeFwjkYijx1RwfWbTCZPxkM2N\nGkkjjrlcMBx08DyHSESiUi3dRC9Mur0Wne4V88UY37V5/fI5H37wED9Y0+tfMRoLd/LzF4/57W9/\nw+7uNhcXZ+ztbnN5cYoWU1jOJwz7LYqlLId39ri4OEMBvv36K3zXJpOKY60WxGJRZvOJQIFqEVbr\nOfPFlGg0ymQyFfvbdI6EGmfUH6JFNAIvZDaeo0Y14loSRYog+xJRIgx7I3zXo3fdAc9nOZ2RTeeI\nylGMWJxSoYzkB0xHU64b4pCXyxSZjxfYpkMsqvPsyQtq5Tq96z6e4+NYLu9evSUZNxj2+gw7PTzH\nZX93D9sWsIyTkxMWyxk//dl/pVgs3A7of/yH/0y9WuXt8RtULUan00aSQppXlyQScfr9LqlUig8/\n/IBOp81kNubh+w8YjUakMkmur1ucnr5jZ2+Xr776ivfee+9WoekO+hTLBbxAHPJSmSR37h5y//5d\njGQcIxnH9T3mSzFQYrEIl5fnrFYrOp0OyUya6WLKu7N3eJ5DJpdla3ebF69ecnZ2xsbGBhcN0b7U\n7/epVUU0aDAY8P7773NydkosFiMajQo3+2oFQYhrO4wGw5uqVZtyucxyuSSbzSJJEkEQUKyUicfj\nqFpUIBFvymO++OILvMCnWq2SzedoNpuk00m63WuMuEbKiJMyEqRTCeaL2W3W9/j4HUYygeP62I5D\ntpBHkmXG4zHxeBwjmcAPAsbTCchgGHG2d3bwfB/X8+h0u1y2rnADH92IE0qwu7vL5eUl4/FY9Jkv\nFui6jm3bGPG4KLW4usJcrolIMuP+iEpJZNu/efwUzw3otq8pV4rYa4d4PIHjWHz7+CvOzy+ZLxY4\nvkcQhrffwdD3SSQSjCZj4gmDaFTFD7nh0Uf5+utvyeeL/OIXv0BRolxcNFAUgZC8e/cu29vb2K7D\nyrYICHl78o5kJkV/NGRmLompKjsHuzx/9Zyrdov6xgaN5hWZbB7btjk8PCQe1xiNRoDA45YKRTzH\npb65wcpaY9lCrSuWCmxubdwU6cyRJImYpvL+ow/4+ttvKOazXF9f8/0ffZ9nr18yXS4oFAo4jkM6\nmSKdSbJer1muV/R6PbS4jmWtUBSJq6sGiUQCzw2IxWK4gc/J2RnVqliLvnt7xkZ9B91IEoQh8+WC\nVqvJdDoW33w5gmVaf3Ae/tEHsu06SDdh72fPXpDNZlFVlZW1BsLbFpPZfE65UrltJlo7NtvbwvFW\n3xBmpnq9zmq1olbd4MGD93j8+CmpVIZyuUqpUsZ1XZRolIVpikGUThOJRblsNtDiOgEhvV6PhblG\n0+JMJhPUWIxcNktc07l39y4vX77E0HTWS5Ptza1bd3IQBBiGQSYj8nyffvopSjRKPp+nXBWwgXK5\nerN30ahUatieS0zXUOMGyWSaSqXG5VUT1/Xp9QZcXV0xmsz44MMPUWMaXhAQiUQ4unvIYNRnuZwL\nXq0ET58/w1yvCCWQZJnZZI6mabfAllCWmM1mDEZ9pvMJ0WiUo6Mjstk8iqKwvSmY3JlMhk6rTalU\nQgpDPvrOJ9Q3NpCVCGEoiVuLqvPq5ZvbXbtprbm6umJ/fw/HsXAci8SNNHh12cB1XUHxKReFiUeW\nUEJZdPGWyjx6+D6+47JarIjKClFZIZGMY3kWtr3G9x2eP3/Gzs42xWIBNaZwfn5GJiNutcVCFmu9\n5OiuOJ3ff3BE3IjiuCYnp28YDvsc7u8Lv4AEO9tb/NPPfspkNCbwXV6+ELf6fr+LuZrjBzaWvUSW\nA2KqTDQmY1krRqPBTXNNnNVqjev6SJKCFIJr2bw7fidACShMRxOuLq+w1g6qbuA4HoZhkEwmcRyH\nUr7AqD9Ci+n0uwM67WtWSxNztmQ2EWYox3JIJdJk0zlcS3RkE0hUCyViSgTLXNFoNFAkmXKxRLlc\nRlEUnj97RqfTZjQa3eRnA+7fPyKZMvBdm998+WvqlSp39g+QkahXayxmc0FRctYsbrjmvy940fQY\n48mQ+XIGskgsZLMiShSLxTDNFV9//TWFQgHXdXnw4AHPnj9nPBUfz2IxTySm0Gw1UBSJt6dvKZfL\njG7ky8ViQUxTkRVod9sMxyNW1orWdYuDOwd4nkuv16PXE2UlES2G63sszCVa3Lit7Xzz5g2RSIRy\nuczr168xLXETSSREn/jBwcFNfliiVCrR74hDBwgewf7hAWtbRFS+/fZbLMvi7VvRWPXq1SvG4zGL\nxYIQiZgqdp3VcoXDvV2GgwGObbNaLDGSKTKZDKZp8vDhQyqlKh9/5xM67S7rxRpzuUQO4erqCoKQ\ndqslqlxdi5WzYv9on4gWIZlNMp5NyefzgNj/KorC7u4uyWSSzZ1t0rksBwcHt7Gv2WyGaa0pliro\nuo5pmiSTSXK5AgDV2hbZbEEc2s0V0YiKuVxjGAar1ZKILFEq5hmPhxweHrFYLPjk0cdElSgSCpPJ\njH5viCRHmM/nzJcmkqRgGAbO2uFg9wDfC25NnKlUSkSRWi30GwUi9AOKxSKT0YDvfPCIhKajyDLX\nzStiEZl8NkdEUYjIChICZqJpGqvViulUxDPDMCQMRbRysVhgGAZHR0dsbW0xnY5vDika0WgUXTf4\n+ONP+dnP/onlckksorCxUaNUrxJKEqEs0en36HavabVaxLQori86ldWblIrritx1GASMR1Mmkymr\n1ZpoRMWyHBzHYzQakclkiMU0jGQKx/dIZcXN/ffwJ9f3cUPvD87DP/pAjkQi6LrOfC4+AtlMntFI\nyAmrlYB/FwoFYrEYYRiSTqd5e3qCpmmoqiramVa2iBPZNgd3jmhcNfn6m2+QFJmFueTJs6e8evWK\nfD4vrPW6RlSN4bo+qqoynwtEpqZpZLNZ8vn8jYGsQTyuk0gk6La7uJbN7tY2i4VJOp3m5OSE/X0x\nBBKJBJIkiFyJROKWEtTr9W4Lw0NZwvVDoqrK8bsTXEeoAHHDwHF9nj57QaVSI6ZrBBKUihUURZhy\nvDDgyZMn9Ho9QkQ8SZIkbNei0+nw3nvvAQFv3ry5MRusiOs6+/v7t3I2BLclIMvlCt8LMQyDxXx+\nK1mbyyXFfIHA9bAtD9NcsVisGPQnpJIZ3h6fUS5XURSR4Q5Cj07nmj//8z9jMOzheS6KIlzTf/cf\n/yPNq0v++7/4C5LJJIvZknQiTUxWGXRHfPHDn1AtV5mOJ8goSJLEYDDAdiy+/Nd/xnFW/Po3v8Sy\nV9TqJVRNIaKEPHz4gIPDPYyEzmjQ5+3bN+RyGXo90WhzfPwSTY+galHee+8BvesOx8fHXDVaXF91\nmI8X3L17n2aziWVZ1GoVRsMeQejeyruB66BqUe7ePSIIAjbqNb7zne9Qr9fJ53PEE4aod0saLJZz\ner0euVxW7NSv26zsNW7ggiLT7fewXYuLxiWT2RhNi9HtXOPYNjtbu3iehxqJktDj6LEY2ZRwi7db\nHSajMS9fvhT5RTVG/7rN2ekJyWT6xivgky/mOL94Ryodx/XWBPjs7e+wNAXM5eH79/B8h2fPvuXo\naJ+oIhMGHr/61a/IpTNMx5Pbj40gWGXpdTtEYxGm0wmyEmIYca6umjiOTXfQ46p9RUyLUa/X2Nrd\nJpPJcHz8Gj/wOD8/ZXt/+xaq0e5ci6zzaIhmxFFVlS//9UtiWpT9g11W6znZXBo5IpHN51DjGlu7\nO7iBz3WvK4yVns29B3fxwgDbdcnkRI5V3JabpDJpNrY2abauCGWJz3/4A1zXvb3R5Qp5QfiKRECR\nmczn7B7s3zY9mTeH9ON3bzFXK6rVKslk8hZEMV8uqNUqPHr0SBgwQ0kUSuAzm09IpRJY5opSqYKm\nG7SvuxzevYeiRJkOp3z123/FWpp88OA9HHONFIrykOl0SiYt8vaGYdBtX3N6esp6vUaPqZSLeULf\nFQ7njU181+PN8TExVeX8/BzTNNna3r7xvrgc7u2TzYobYKPRQFVV7t454vpK5NhjMZV+p8uj9z/A\n8wLq9bqQ6T2PWm1DFOCMxhiacTO8VEaDEflMgagSE6jR+VwAMBxBFozExNDrj4YsVqaQmTWN+XzK\n8fFrZFm0TGXyGUqlEvGYztXFOYaqsZxOkIKQ0PGIyhLJuI69XqFIcHTnEIIQ3/UYD0ekEknyWfH9\nWt+sOofjEZubm2QyGSzH5vjtW3Z2dm5oZSmRCVZVTk7eIsuwt7dD46rB97//OX/7t3/LbLGkPxSq\nj+M4BKGH7/vkbrqSU6k0gR9iOTaFQgmJCPuHh2hxnVhUIxIR/yelUglNFyricr7k0aNHRFWNSDRK\nNptFluUbRXGMJ/l/cB4qf/3Xf/3X/38N1/8vv37x5Vdomqg0y2cLrC2Ls7MzKpXyrRHq96ehMAxx\nHId4wrg1ASSTacajCWEIpmly5+gO/X4P3/fwPZ9ut8fhwSGyLPH6+Jgf/OAHqLEYtuPw9OlTNE3j\n3r17wpVtO6xWK0LfZ2dnB99zKRSKBK7Pxx9/RPOqyfn5Oe+99z6SJCMrCqqm8aeff5ffPn2Gbdsk\nEgaL5QI9Eb8xayzRNI2IGmM6naKqGrFYjPF4wve+9z2+/PI31Ot1Li8vOTw8ZDAYIEsShmFg285t\nEF6SRCl3iM/Lly8ZDLokU0lqtRqO5zCZjjFXJtVKhcl4zN72DsvFHEWWWcwXZLJZZrM50YhCJp0m\nCCXCAOJaHMdy2djY5Lvf+ZAvv/mKEA/XcZEkSZwM3YDhZEwQSlRrNZ4+fUq9UkOJiIarzc0N+v0O\nUhDgex6BFxJRIvz4xz8mm8ny9t0bMqk04+EERVKIqwkevvcBL5+/YLGYMRgOsSwb23YYjca4rk2p\nUmQ4GZLNpohEJEEFc2zu3b3Pb37zz0IFmE3QNRFzsG0HI5HkT3/wCf/73/0j21ub9Ls9Usk05VIZ\nkMjn8pydnCPLEbK5LL4foKpRJpMx+VKOjXqdfD6L49gYCY3rVothf8B8uUDX4zQum6zXa7rdLp7n\nYi5NPNchk0lxcLhLKpPmpz//GYVcAfCRIzKu55JIGJSrJc4vzigWs5irBUkjQb22SeAL2S+eVAl8\nl7/47/6C589e8Gdf3OM//J+/pVav8vr49c2uf85GvUJc13j5+iWKIhGJSgShixKRWSxmIIU4N6Qz\nz3NxHJuLi1M+fPQ+jx9/Sy6b4YP336NarfDu5B1b2xsszDmFYh4IMFdLFEUmkdB5+/aY3d1NjLgu\nDICSULRs2yKbSbN2V3z19b8iSSHL1Zx0Ksn5xRnf++53+e1vv2Rza4vPPrzDf/ovv8ILXLrdDuls\nmvDm7zk43EVVI0xnUzIZUV2XTCaIGwaL1YLd3T0azSaFYhFkUGIRVuu1QKp2+5RLJfqDAQkjwXA4\nYHN7k6gapT8cUCjkGU5GxNQYiUSS3331O5F5nU5xXIdur0ssKtSDgJBCoUBv0L/Bcsq3+eeYqvK9\nTz7h7//Lf6ZSKbO2LVzbxbEtptMpi+kMXdXo94cUyyXanWs0I8Hu3j6OHdBtd0VmOpGkWCyxmM9p\nXrWIRCIM+gMi0QhhKAalZVuUqiWGwxFRWaHb7RIEgYhRLubUqhUG/R57+/siQeL7zOZzwjDkzZu3\nGIkkvV4fSZYoFUucnZ2RSCZIppO4ls1PfvQF3zx5xnDQv5XUr6+7ZDNpPC/k8OAIRVHodLuCqY2M\nETfw3YDXr4/JFfJ4vvgO7+3tcXZ2hiQrWLZDTI3hBz6r9Zp8oUAsFsX1bFQ1hu97KBGFwWhAv99H\nlhQ0XSUIPAhCYtEohh4n9D0kQnqDHpVyhV5vcDMYz1ivV7x5+Qbb8fgf/uJPOT65xHYtrq5aRCNR\nrrsdtrfFDt1cmtiWTVyPc+fgCC9wefX6FclUnKgsMRj1RV1lVKPXH5DJZDk7OyUalVEiCq7nYcTj\nvHr1Wqh8rWtiERXP8dne2kFVNUrFMqoWZ2Wa7OzsMZqMcV0PXY9jr22uGk2SiQSSJDEe9AndAGSZ\n2WKOpIR8/NkH/6/z8I9+Q25cXtFstARAfTqlVq3yxRdf8Pnnn/PxRx/xJ599xubGBvu7+wyHoxu5\ncHlTcuFwenpKqVRiNBohSRKvX7+kWq0ymk5YOyIfODeXlIplfvT9H/L27VvWa3FC/d73vsfe3h7P\nnz/Hdz3q9ToP7t1jc3OTF8+ec3R0xGQoYgvffPMNL168QJIUnjx7QTqb56uvvr6tLVQUhZiqYqSS\ntydCTYsTjyd4e3oizGnJzG0cqlDI87/+b/8LDx8+pNPuks8XmU7FHjamqvhBwNPnzwRlp9HgxYsX\nHBwcUK5U2N3bZmNjA9M0efr0yW2cSHB7XcqlCmo0Rr/Tp1Ss3J7QarUamUwORVHIZQus1zaW5ZBM\npljOhCN2MZ0RVzUODw/QdZ1kMslF84JKpUI6Lcordne3mU5FxCcSiQAek+mApTlnNOwT+P6NOaxP\nPK6xt7PLarnG0BN0Wj0265s4lk2xmKfdaVEqF8kXc+zv71PdKJMvZ3n+Usiuy+WciBqlXClxcvqO\nbx9/fWPwW91UTuYEvtALsG1R91esFLm4OOPo6IhYLMZqbdLpXhOEPkcP7rA0p9i2ja6reJ5DVJOZ\nzYfIsRBf8nj28gXL5RLP80il0timw5Ovn2BZDq7rUq2W6Q+6hL7NbDZi2L/mzfELXr9+jiJJGAkV\n17NJJuIkUwZry+T169fUKmXWa5NUIslsPLnd9w+GPU5P3zFdjnn+6jkov4e0xDk+fkO1WhLowaTO\n1eUFk+GAw4M9rLVJNpOkUi6ha1EsawUEPPrwIfG4huNYyEpIfaPG6ekJeizGRq3GdDrB9W32D7bx\nfZdk0sC1Lc7PT7m8PEeSIJNJId8oPo5jcXl5jhd6TGdjEsk4prUgEpGobZSIJyPMlgPcYM1HH33I\n//2z/8rSNInEhJv08OgOqq6RTAv+uu25BKHHZDriqtVgOhszHPVRYgpKVKY36JLKZLhsNajV6/yH\nv/0/UBSFTDaLFwa4nkd/0KU37HHnzh2evXiKuV7S6rQ5vbxgsVownc+Iqirmes2rV6/Q43EGwyHz\n2RLLtrFsG0mRCQiRZZlOp8PlpSiz+H0mX1H+mxu2Wq0ymohChLhmIAcyaSON4FyKVU8YSCRTGVKp\nDI3LNr4fgBwhmy/SG43pjgaoqQSaruP5IZlcnmQqg+P5jOcLOoM+Z+eX5HI50rksKDLptKgUVBSF\n83OBjhwMhziOw8bGBtGoSjSqCqqbZbO3t0dcT9BoNNje2cRcLxmPh8zNm0ID3yeR0FEUhYgcxfdE\ndEnT4pyenjObi7iP64esLJv5wkSOKOQKeVK5LBfNC2RZ5smTJ+SKBZRYFDWu02q3GQwGVGs1hpMx\nkgJr20KJSHi+c1u/urO7hZFJEdGixPQY87Vg/CvRCPP5DF/yqW/WuWq3CPDxw4BUJi1iS+8/RDeE\nYtHtdwRlMaYwmoxIJBK8evWKXD5DuVJFQmY+W7JaiUrOg/1d1qs5elxlZ29XPBumSSaVZm2uyKaF\n2951LJbzKb7r8umnn6JpcSrlGqVShUJBGCwzmRwgI8syC3OF47l4rtixz2YTwtAllU7Q7fW4ardE\nRHW5RJZFZfFitvyD8/CPPpAfPfqQra1tDvYPb2ktq/WSf/fv/yf+/d/8DaenwoqfTqf5q7/6K9rt\nNnfv3uX+fSE5CuPEMY5jsbe3IwajHuOLL74QD10kgqqKEu1KpULz8vLW9TsajLBWaz775FM2NjZ4\n9vwJtr3GWpl8+unHfPnP/8zh4SHVaoVMOs2jD76DhEK/32e2mPP+o4e3TNt4wuDNyWuWqzmZYpaN\nzW2CQCz+NTVOvyfA7wtzKVzfjsPh3j7jgWDHFotFTHPNZDIhkUjQarV47733ODk75cMPP2R3d5d+\nX7SmNJtNgiCgWq1xcOcOq9VKEGpiKo5l41gWihIhlUoxn8+RJIXGeQMFicV0Ri6dYzad8sMf/AjL\nshkOx7crg+PjY4GoXK0wzSXL5Zx0Ok2jIXbBk+EIKRAow9lsRkyR6bSvKOZyony8VkNVVRFPmorB\nVyqVmE6nbG1sokY1ZpM5b9684fmLZ+TzeVarJe12i4urM0bjAY+fPr4x2oRIMsiyzHw+5/DwEFmW\nkRUIfJdivsB0PiNfKGFZNr8vEjXNJXfv3uV3v/vdbU68Vqtw2bwQRDhzgetZDEc9LHeFHo/hhS6/\n/NU/MRj0KBSzRCMy9++Kztj79+/z+eefo0UjlEqF22dkc7NOvpBlc7NOJpXC0HR297aJyjLOes1w\n1OPNq1dEoxE0NcZg2COVTGJZlihBubhkPBliGDqHRwf4QcBVu0kyIz46eiLG3Jxw2ThHj0fpdq/J\n57Pk81mmkwG6FiOqyFycnbIyF6ixCJPxkHdv39yaW9rtNu2rJrlcBs+3eP3mOWtrwWXjFCOh8frd\nKwrFHGvLFMzkaATbWt0ecOv1qmA0p1PMZhMePXqf0WRIs3VJb3jNfDHmq6++JB7XyGRT/OrXP2dn\nd4v9g93bwTYY9ETDWqXCk+dPUW5uoGEo9tGe5/Dlv36JHlcZDrvkchmiauR2JfKX/+bfgCwTT6bw\nAp+rVoPPf/A9TNOk0+/g+z6lagXbdQjDmyIGz6bRaLC7u0tEjeGFAb4f4voeRipJIpFgaZoYCSFV\nDgYDstksq9WSdDqLbbvMZjOWS/FeuK5LOpUlDCRevnxJXDOQgHQ6S7FYZnNri3bnGlXVuTi5QA4l\n1iubTCZDo3GF7Tq4vsdgNES9aTyTIgooEbr94Y2XJsLRvfv0b5zb1WqV7qAvkIw3v8MbJO16vebF\nixdEo6JsIwgC4nGDtbkmDEPWtk130Gc8HmPZLp7333qEgyBgNBqRTmeIxWLouoqu66xWa4qF8o33\nQCOVSTNbLvCCECMpDF3dvsAX379/n9lshqoKEFClXkOORZnMZ1jWmoVpcnpxSiiFJFIJLNe+7Xyf\nzCd0u10kRSYW00RjYKWMmjB4d3bKdLlgMhsT01ROz87IZPNocR0tEb/NbkfVGL1BF0VRKBaLRCIC\nLxrXE2gxnWQyzYMHD7DsFbZjcXFxRr1e59sn37JYmsznczqdHpFIDGdt3Zpmc/k8USUicKd6nGKh\nzHg8hVBmPJ4yGAjo0osXL5hMJuzu7tJsitTEixcv0FWN4+NjLhoNlusVhXyJWn0T23V49uwZxUKB\nj97/zh+ch3/0gbxcm1jWmpOzEzzf56otYBg/+vGPuf/wIdf9Hv3BgG8ff8Nvv/wNmqbxL7/5F/7h\n7/+B3d1dtrY2qVSLbG7VmE/HHN054PHvvubkzTEpI8GPf/gjAtcDRWI0HvLBBx8g+R7WaolpClgH\nwHK55E8++x7dbpfFcoYfuPihJBzH0yEyIY5tMxqNiUQimOaCu3fvoiBO0cN+D02LEUgBupGk2eow\nns7QblyP6WyGducaa7VmY2ODwY15rFytI8sKq9WaZDKFJCm8evXqBhYQRddVjGScXCFLgM+jR4+o\nlGu0Wz2u233UqHYb9dJ1Hcfx2NrcISSCEU9wdnbOZDLl4M4RF80rtvf2KVaqVCtnys3EAAAgAElE\nQVQ1nj5+zGppEldj+IHAuVUqFWQ5gu15uEHA0+cv8f0QBQXf8simcwKKMR7h2CayFKJpGoaRuC1F\n2N/fEaANzyfwfH7x819y5+AQy7JYLGaEUoAcDahv1rAcm+lyQX1nAyWqMFvMKBZKuK7L1u4Otm0j\nEzAa9UjEdfL5HI3GJZa1xg9crltXN4NoxGAgMqPbG5t0B32++/3vijq+yRA5GmFze5fReMLD9z9g\nas6IGVFWrklv1Gdnb5ePPvoIP3BZzodEIhEazQuMuMbvvvmSp8+/pj/o0Gk3efr4a2r1Cv1xD1WP\nEtVEyXu1Vma1mtNon1HbqqCqUe4d7bOaT+i1myTiOq2ra9KZPLqRZG7OKRVSRJWQXvsayQ/Y39vG\n84QLs9tvk8kalCsZmo1TMtkk7esmM3OKHAlIZeL4gbhtyjLY9ppKpcT5+SmZdJpep8dqafLo/ff5\nxc9/ys7uJp5vE1GhVMvTaF1gJFS6/S6SIrGxWecnP/ohYeBRrZSw7TXT0RgUmYM7BwRySICH66zZ\n2d1gNBqwWi3Z39ujVCwyGQ75kz/5DEWRePf2Nc1LgTIVuMQUprnk/t07/ObXvxRNY+s107lAXH74\n4QcMhz2SqQSeb/Ps6WMevn+P4WSIkUyxWK5v87t37x5xenpCMm1gu2tQQuJxncl4SBgE7O7sMx5N\nOTo64uzsjGw2Q/NCuMfz+Twvnz1nNJ2RK5WZzRZoMZXpZITvOhipJEEI4/GEUqki3M9ACMznS8JQ\n4eNPPsMLfPKFErISZWnZXFxdU6ptYjkeshrDSCVJJw0ca4WmR7hzuE8iHse3HLF62KyRSsV59eoF\nm9sb6LrO7vYu/a54p3OpHOV8mVp1g9VqhW5oxDQFLaHRuW4xXwiQ0HJlkkimWFoOejKF7Qd0WtcU\nbnj+qqojBdKtqct2LcIgIHQdhv0OMUVmc3Ob+WxCuVhkPJ6xXdshqSVwl7YoclktWLsWgYSoDJ2K\nqJKiSAwGPS7OTgRzW1PRk0lKlTLmekWxWqE97PP89QtUXazqQs+lnCuQTefAFQmE5uUVb968YelY\nKEaCgJB4MsF8NqJYyKBrMSRJwlqtkRGn7ny2QD5fBDmCaVmEssR0OsN3fdpX19y/f5+LyzMSCQMp\ndMnnMhy/OyaRSvL8+XOx5++J4omf/PmfEVMiRFUV1xXxtmw2TTaX4fTdaxTJZ2UuuHd0l951m9Vq\nSamQ597RXVQ5wrg3pF6uYK8tZrMF3/nkUwzDoNW8pNe9xpNC/GgUNwRnbfHi+dM/OA//6AM5IslE\nIhHiuo4Rj99yU9eWSbN5QTSqMF9MOTs7IwjEi/2Xf/mX7O7u3jrvft9L2mg1aTQuyWYz3Lt3lyAI\nePfuHdFYhI8//pjZbHbTTpJhPl3cMkUVRWEymTAe9imXyzx48ADHcfj88+/y+PE3WI5NMpumWqvx\n4MF9FEWh1+kiy/LtLcB1XdLpNGEoMZ/PRT9rLIphGGTzOU5PT3nw4AHFcomf//znPPzgAx4/foym\naSiKMOe8fXtMJpMhlUpRLpcZT4asLZP5YoofuJycvmU46jOdjUmmDFKZNIPhEEVRKBdLnJ+f31bP\nnZ2docRUjEQK0xS3nzuHR9i2TavVYrFY0O/3byNTvz951mo1wf2+7uE6PpIkEYYhpar4OA0GI9qt\nDhFFYTScIEkSEVlBURTG4ylBEPDq1SsGgwGOa3Hv3j1isQiLxYzXr1+ysVnn7PyUYrHI6fkZo9FI\nmCk8n/ZVC0M3WJkmV40mMVnhxbPnqNEYa9Pi6dOnPH78mHg8zs7BPqEio+oas8WcSrVKuVwGoNls\nUioVmc0nGIbOYjFBkkJW6znFaoFG85z12mS2mGIYOvsH27x9+wZVjTDo9rh37wG6rlIuF7m6aqCq\nUVQ1SiKpETdibG1vMJ2OyGVSuI5F8+qSaEzhH/7z3xNTFaobZTRdIZnSSaZ0+oNriqUsi+WMuKFi\nWyatdoO4oeI4NpGIwmQyRpalm+iKILl5vo3jrFgsJ0xnQ4LQob5RJiIH+IEjctOtBuv1kiDwMXSN\nYb/H9sYmrdYVmqayvb3Jr371C7773c+QpJDj49c3LtQZ150rzi/POD9/h6oqyHLA6cVbAbyoVDg4\nOODy8pKTk3c8efItmhbjV7/6FWHo4/k2H37nfd6+O2Zjo87p6QmpVIpf//rXLJfisDq/6X1drZac\nn5/heiLbGYnIpNNJLHt9S3Kbz+ccHR2RyWTEHtA0Ra3ezc/XNjcIQ7HrtT33hlbXYzKZsLWzLRzY\nyzUr0+L4+Pi23S2VShGLRLhz545oalKjFEsFDg/3OT05IZGIc93tUC6XyWazlPIFwXKv1ViYy9ss\n9WJhks3mWSwWDIdjVrZDu90hlcpg2S6pTFqQ+AwDEHl+Xde5uLgQGd3xUCA2UynihoZhCJbyJ598\nxHg0wFzOGQ+H6LroDI+oMV69fcVw1EeSBCNhtbJotzr0hwNSyQxbWzuCaNXv30ZyFEVho1qlUihx\n//CIuKZjWZaIGQKz6VTEQCdjImoMNW6IvLRmEEoS3U6f+uYG8Xic9Xp9SyeUJKGuGYZBqVQSjue5\nSAPohsHx8TGGYeC6Lp1OB8MwMDQD/IA7d+4IfPFijuM4vH3zhuV8fougvHNwyGZ9A98NqJTK6Hpc\nfFeUGLPZgkazRTKRJpXOUtsQLOvxZIIsy+i6KqJ8RoLVaoVlOezt7fHNV78jHhcdyN3+ENfxmYwm\nDLsD4qpGv9sjnxVsi3/4+/+LBw8ekFANzk/PSaeznL47JxZViccTPHjwkGKxeKN4akihjO9LvHvz\njnb7WhDJohrb27uUy2Uuz05xHIetrS1kWeb8/Jy1bVGv17loNsjmc39wHv7RB/K//su/4N90dq7X\naxKJBJVaDc/zyBfSZNNJSqUCB3d2GYz65AtZmleXlMoF0okk5mIGgbghbGxWaDYvqVbLRKMKK3NJ\nq32FZVk8eyI4sR988AGRSJTxeEK1XIYg4Pj1a7LppJDPHJfmxSWrxRL9prYsokYw0gma7aa4eX33\nu2KXMx4Rv3lhk8k0vf6Q2VywqTuda+bLBWtbhPaLxeJtzvLgziFf/stvKZTyLFeLm9NjlHv37qFp\nMfFz3TaVSuVW+i2Xy2QyGZrNJru7u7x584Z4XEg4v+cBP7h3n4gk0+v1hImkID4yWzt7pNNpCoWC\n4GdPp8iyTBiGJBIJMpnMrXns+fOXBD7MZgtims7W9j5ICmEgEYtpN4i6Jb4XIksSjuUShmIor9dr\nJtM5g8GIeMIgnc3w9TdfsTTnPH/xlOVyzpMn3xKNKjSblySTBvP5lIgs8+LZM3zHJSLJOGsLGXjx\n9BnF3P9D3Hs1uZXnZ5rPAXAcDrx36R2ZNEWyqsurTUgbq5BWF/sBd77BmllpFDMK2elSV/W0imVY\nJJPJ9MhMeI8DHH/24o/CxkZsX3feMiIziQTOz73v8+bxXZfHq7Xx559/LsLVKxVUXcNIGRgpg063\nhWUvAIjrOrIso6oKjmtx9OAAVYsiSSGuu2S+nKLqCvl8lhCPy6szMtkEihqj0agx6PWZjgdcXZ/j\nehaJpE7cUBmN+2RzKQaDDtVynsvzUzQtxt3dNdfX50SjEp5vIcsSp+/f4PlLTt+/XdkvYmiyjKaJ\nFWFMhq3tOoNhC02PUShmaGzU6HRa9HodAA4PdrhvNQk8j0q1SOvuimRKYzYfUipmcR2Lj37xgtF4\nwHQ8xHEsqtUy48mISDRA1aIgeWxu1bm4fM9yafLg+Igg9Hh78opiMYskBSyWM6IxicVytsp5TfB3\n/+U/Uy0XUNQo2zubRGMSuqYwN8ek08mV5c7jy88/4/LynFgEHNcil89QKhfo9jtrzvvG9ibtXpel\nbZPOpfnii8/4+7//e1KpFP1+n0KhwHwVZOB5HrFYjCdPRGh8MpXCsiwkCd6+fU3CEKjXBw8e0G63\nKRQKPHjwgJcvX/L8+Qv6fQEEmU6nyLIskLbRKOlMStijHIdUKkWn06FWE+lAihIT90rfJ5crMJ7N\nicgxWp0uC0s07bIsWOaN+gYXl1eUylXK1TrT+YLJZEYQQLEkbGeLhUm/3+P9+/cUyiWad7dMJhMR\nQBMGbNYb5HIZFDXGYjlfrcoXpDNJ4roq2PSt2/X7NZ0VamHb8Ugm02TSOe7v28QU4bMez6ar1XGE\nfr/Dcm5yfXHJ5cUFqqoSX23pADbrDTLZLEYiQQjM5gvyuRKpdI6/+V/+V/L5In/39/8F27XwAhfb\nXoqkqbxQqYd+gOu6FIv5lWp4zJMnT7DtJdFoFFmOkc/m0BSRsJRKpbFtF9/1ePjwIVIsSiJuYOhx\nWi3R0CjRGO/fnxOPx5kMJ2TSOWYzk1QmSyabJ58voOg6RKMoqiYKhxTg+M4a4PP99z+Sz5XR1ThK\nVMBnFpZFfzTk+fPnvHlzwrNHH7BZ3SCfyvD+3Sm2ba9f+3arRUpPUi/ViEkKW41t7pptkdJluQRe\niO+4HB4egg/FXIHRaIwURsjlckiSxOHePqdvTyiVSrj2klhEQtMUvvjiMzRN4/zqktP371ks7T9a\nD//kBblerWAvF1QqJXI5IYtv3TWpVsvoqsJ4MiCXy1AuF9ncrBGPa8RiEa6uLghCj+XSJJfLMDfH\n9Hod/uyXnzGdjblpXvH8+Qdk0ylse8nmZoN/+7d/4bvvvqNUKvHixXMScZ2HR4cc7u9RyOXJZdPc\nt26xLAtVVTGtJaquYNoW9517jj94gqwqawuWEU+uSV3j6YR43MAwEiysJdl8hnQ6KTry1YOg1WmT\nyqRJZzOoukKhmFt1nyHDYR8IeH/2jkIxh67rvHr1g2D7zqfM51OazWsKhRwQ8OWXn3Nzc0UkEmFj\nJfA6PT1FURSePnmyonbZ7O8fMplM2NnZ4c2bN2v+7Gg85O3pCZFYlEBi7afe3d0lmUyLaWBqkk5n\nubq6od8fYC4t9HiCVDJDOp0h8MG2XWIxhU6nx6OHj7m/vyeRSHB/f4eqKiTTScIwIB6Ps7O7RTqb\nIhqV1jarXq9HMpnkwdExsizz23/772xvblEpFHjy6DGlYpHvvn3J3d0d/+Obb7i6usC2bX7/9dfY\nszmh6zHu9wg8dx1rphsCH+p5Htlshng8zu1tE9tZ4IUOalzG823MxZwgcET602KGrsioikwiITrr\nZNJgPB7S6bQYDvuEoU88rqHHFWxriR7XkJUY9UYNomC5Fsl0gmgMYnJIs3lFPp9Gj8v0+h1umlek\n02mC0EGPx7i+OcNxlzRvr6g3KhiGynQ2RFbE32IyGSMRkM4kscw51WqZ779/iR6XgYB4XOF3v/uK\naqnI5mZDwGlabT7/9DN0Ncb7d2+olgt0Oi0ePXoIUoAUCbFtoVTuD3vUG1W2tzdpte6pVEq02k1y\n+Qx7ezu43pJWu0nz+hxdVzk7O6FSLXJ7d02n0+K2ueIxBwHfvfwBzxPEufvOPZOJyMgGODs7pVQq\ngBRwf39PRI6hqDKLxYJ6vb6m7dm2LYpnOs2gKxS2qiqS3FqtFru7uwwGgpKULxXJ5MWE8/btW/7s\nV7/i5rZJPp/n+PhYRLFGQmbzCePxmPF4jKwIXcXe4R6FQp5SqSiU2JpK3DBQNCH0UTWN2XxBOptB\nloV1a2HZlEsV7u5alMtVut0eoSTRGwyQFRVW3Ob+YEQikVwVysnqcxWSyqTZ3t0RhTed5u7mjrie\nYLGCREQi/6+AKyCkPxiwsJYsLJPBYMBgOESSooRBhF5vQKVWJWEkMZfWCn4kbJ+FgtANaJqG47ok\n0yki0SiXN9cAK8FVhJgi89Obt6RSaUbjKa9evebv/u7vkaIRXvziBUvHRtZUZE1lsZgTjUbpddvk\n83n0uEpv0CeTzxBIAb1Bl62dbRKJBL7vY9s28/mcy4sLAs8nFokJu+q7d5RKJdLZFK7v4QW+oHC9\ne4fruszn85UNdc7zZx8SBhKmueDd2Xsc2+Pu7o726iy1s7fH5uYmg8Fg7YtfLBaEYYjveWzvba9v\n9n4Ih4cPuL1uEVfj7O/vk0wm+eWvf8XrN2+IyDGspUMikSChJ9AVnbgaJ64ZZLN5DD2+BockjQQy\nUW6urlccipBO+x5d01guFpRLJf7jD79nc6NOOpXCc12m0ymGoVOpVIQ9y/vjtqc/eUHe393mxYtn\n2I7J5laNYjFPOp0mEkKlUqJWq6CoUSbTMflCjslkxOXlOQ8ePOD9uxOCwMN2FiSTCQ4PDzg7E2uo\nhw+P8F0bP3Bx7CWz2UTQopIJXr/+ic3NTUHdyaVF5F8pv/YQJxIJ9vcP+fblS96cnJBMJZjMJjTv\nbnj09BFaXEfV4wwGg7VpX15BQAqFAi9fvqRWr+D5Dr1+h8FATMj2UqwttFVG5uHhIe9O33J5KW5t\nyWSS6XSKqsrk89nVCjwkm83SarWo1Wq8e/eO6VSgM03TxPdFkYhrOr/48EOxtlk6pDJiIh5OxtTr\ndb763b9TrlZQVuHjvV6PJ0+ecHd3C4Sr+xy0Wh0Gowmt+w6O43FyckI+X2Aym6KqglqWyWX56re/\nw3FcrKVDIV/il7/8Nf/yz/9GrVJnc3OLTC7LaDTi5uYGRVMZj0ecnp6yf7Ar1m/WcmXeN/j222+5\nvLwkFo3yl3/5l6iqygfPniLHojx+fMzHH3+M69o8e/aU4XBIIhGnmM1gzWcUMinShoEchVRaiKEC\nKRBTTxBQKpXEvdn3cRyL2XRINBqyWEzZ2CxjLqarvNkM5mLGty9/z3DU4/b2htZdk53dLYH5LORo\nNGrc3TWxrAV3d03icY3hsI9lWWiaxi8+foHjLFGUGK3OPbt7m8zmU8bjIdlski+//JSdrTqLhYmR\n1FgsppQreba2q9zf37C0pshRuL0TD8/xaIDnOSznMza3GgShRzaTQFNkzNmEWAQCz1mjE3e3d1BV\nlX/8b/8VVY2ys7PBcmnS67e4b92ula6+77G9vc2DoyOWS5PmrVjLF4o5DEPnX//1n2m1m1iWydn7\nE5LJOLoWJZtLYS1nlCt5Ot2W4AIkkwQ+PHr8ENteYiR0VFUmlTaQZaGvMBI6pXIBwzAwzRm3t00q\nlRKRCCiKwvn5OalUikhEkL5+3vwI50IMwxAozFarxWKxoNls8ubNG2KxGKlshs3NTd68eU0YBkRi\nIv3s9evX61CW/qhPVJbZ2dvDDzy+ffkSWYny9u1bjh89wA0EoEc3kpy9F6exxWIhTjYraFGlUmM4\nmZJKZRhP56hanOFgjDlfMpmbxPUE8+WC5XLJ6fv3FMtlcoUC5nJBJpdd+2GjMYlXr9+ysB0sy8Nx\nPGJRDd8L+eF7kbjleC6u66JpGrVaAyJic3B7e8uPr39ib/+AMGAtOuv1ejSbt6iqKuhU5ox8pUSh\nWmYynyGrCtHYKtfZFH7w+XzOzs4OSBKtTpsXH31IImUQlWUmsynT6XTdyCjRGC//8B/sbG7hWAsc\nx8I0Z8iyvBZ85vN5ZrMJ+XyedvtegEs2Nkins8iyiqKo7O3tC9GubRFTY8wXC5LpBM9efEBEkQmJ\nYKSStNttTk5OiUZFwMXCtOj2e+s0P4BXr3/i/fv3fP755/TanfX5UIRpXFIulzk6OkJWlBWUqYzj\nOJjWkvnCZL4wuWu1cAOfdrdDMp3i/PxSgEWGE/L5Itsbm+xsbXN7e4tlLohFhKDXtpYYukYmk8YL\nPFRd5fr6grdvX5NLp3j2+Al3zVvM6YTTt294f3pKKpUiKkdIZBKMZ9M/Wg//5AVZ0xTuW02SyQSL\nhYkfOJRKBSrVMpqmMJmM2NjYQNMUcc8g4OBwn9vmNVE5QmOjTq4guu8QH8MwWJpzzk/fUygU0BWZ\nIPAYDnqomoy5mAkWcuiLVeqPP/LJJ79AVWWB6ctkePT0Cd/98AP1eh1VVXFXazRN03j901vy+TyT\nyYSDg4P1mhTg9lbE84GwjWSzafr9LjE5wsnJG+r1OvPpjFarxfb2No7tUas22N/fZz6fc9+65fBw\nH8exeffuhOVyieM4qKrKZCKCMDY3N9eruFKxiBGPI0djAkrf71MqlfjFJx8Lub85ZTIZMV/MyGQy\n3N/f0e/3efndd6i6IpJxVgrm7KqxyBWK2LZDGIKhx1e2JuGBFispmeVSAFguL67Z3d/H931OT0+p\nVkX+88/eyeF4tGbNRmUZKSrW6YvFgkQigWEY6LpOeYX1c1yX4XiI6znc3t4wmYmth7mcCwCMYxM3\nNBzXottuUauUIfDJplPs7e+smguIGwbzxQxZjmKaM1KJOJ998iHTcZ+NWpWEoVEq5mi3BS7ScWwU\nNcbl5RnFYpb+4J56o8z29iaOY4ktTD5FJBogKxKVcpHtnQbJlE46kySbTxGPK6RScVLpOPetG46O\n9igUcpyc/ES5UiCbS7G13eDs/B2JZJzz8/ckknHGszFB4BI3ZLq9e8aTLqmUaCwcZ4EU+sQNjclk\nRL/bISZH+fqb36FrKlFJsMFVTebtyWtcz6Z5fUmtXmE+G3Fzfc58NuL4wRE3N1domlhrykqUXqfF\nYNBnPBown05YWjN+99VviUbAiKu49oLpbMijR0fEDYW7+2uatxccHx8x7LfQFIVcLiM+o+M+jx49\nJJVKiBW4NUdVZb78sy8AUFWZaDTKcmlSKpXWUXaj0YjxeMzuzj6Koq1D5D3PYzgaAOE6KzueMPC8\ngMAXOeeZTIparcJkMqI76LK7u81g0MN1bcbTCU8+eIzneetTTzQm0Ww2mc7n60m0UCiI9+psipHO\n8Pr0hM2dXTFl+f5K27LicfeGKLJGQIRaow6RGHetNplcnk8+/oxvv/2WXneALKuk01k2NzcFzlaW\nWVgWXhDQH/aYrAI3bGulOSFGt9+nWC6j6jp+GBAEHsl0CikSYTyZ4djeClUZUqlUMBdz4oaOZojJ\nrVKprJ5PBq1Wl2cffchwOiESjWIuFliuw+39HQAL22LUF5nLQuHukclkePfuLYEUUK0VCUOB7N3c\n3CSbEhGREHB+fs7Dhw9pt9uCdNZtE4mIpLt+vyuyCHptXN/hux9esrt3wMK0GPRHuE5IGEr4fsh0\nLrj+xx88YjidIEWjawtgKEEYERnM2WwG13V59vwpC1Nofq6vRbPqeQJy9PIPL9E0nYcPH5LLZ4Rr\nIZlgPB5z07xm0O/z9OlT5vM5ASGW7XJxdbNS0tuM+gNKhaIgsEmSICEeHXF2+l5sSU2To6MjHMdh\nOp1ye3tLOp1E0xR+++//nVKpwM7OFrlCnmQyges5tO9bxFWN6XjCwd4+v3jxnPu75soKqyCtFO//\nf19/8oIcRgOQAoHBzIsPeKVaZjIa0ul0SCQSvHv3lqgifGuxWAR7uSAIfOqrEPX+QMj7J5MJz54+\nJmkkIRRr4Lk549NPP0HVYtQqFVIrX6i4ZcoCdPHjD7w5eUt9o0G9XhcpRQmDt6fvaGzUiUWFVeD/\n/r/+M48fP+b07JxatS642yvWbbVa5eDggK+//ppk0iDwPRQ5xmZjA13V2NrcpNdtr6ZZFcMwuLlt\ncnF1TX84wDAMqlUR2xiGIelMknK5zIsXL9b+2nq9znQ6ZTQaMRqN2Nvb4/z9mRAC6TqPHj3i7u6O\ny8tL4nENRYmxtBdkMhmCwF+vdD788EM8z2M2m2AYYs3r+6KRKBQKdLt9yuUyk8mUhw8fUq1WsBZL\nyuUypmnSbreJRmVSmSyD/oib2zsIxU16Pp+LBKlcAU3V6fUH3N2JEI96bYNUMsNiseDuroUkRSmW\nq+uIx+9f/UhUkfnh1fcMRn3qGzVyhSy6rmJ7NpPJCC9wyObT5CsFSrUSr9+9pt1tYRg6+XxWvKcC\nD01XuLw5Y26OMc0JzZtLPv3kIybTIbPJgFw+RTIRR9cUslkBgI8n42RyGf7sl59z+v4tqhZD1WLk\nCxkUOUK/18Z1lqTSBoNRj3hCYzjuibtqPkmv36bTvccPLObmhMGwy5d/9in9QZuNRoV255ZoLCSb\nTTI3Z3S7HRYLE0WNkc4kQfLZ2m4Q+OKe3++2+PM//zWjUZ/RcIDriazazz77hPlkjBQJOD97z2w2\n5sHhAf/0T/+NfD5LqZglrqlsb26wf7DHYNjn+OED5FiMi8sz5vMpw2GXwLNWkYopIlJAIqnTaFTJ\nZ5Pc398QkULyhSxLa06xlCOTNnj103eUy0VS6TjFUg7bWRDic3d7TRC65PIJYjKMRgP+4R/+KyAQ\nkUEg0KGFQn5d7FRV2G3evXtHPp8XtiTHo9PprHUOjuOIwhiPMxwOubu5I5PJ0Ov11na6dvueIPQw\nEipB6AABV1dXxGQZy7ZJZzKUymVxB4+r7O/vc3t7y2I5ZzKdIqsKt+17GhubnLx7h2U54kYbUxiP\nV/58c8FkNuf12zcsl0v+9m//llKxQqlY4R/+4R+JxRQMwyCVSqGqKnNziZFIUakLa2Kn00GWZcFD\nV2Mk0wkGKxZ1pVKh1+8TU2J4gUsgiUl2Pl+I/O1EiogscsWTSaH5cDxP3KQ9j0KhxHAwJZvJs7W5\ngxSN4voCzxiLRhl1+xwdHAKgqCqbm5sYhrEOcEgk4miGRn/Yo9PrIEdjuK5Dt92iUMzjOM6KYZDh\nD3/4A7FYRPhs222B5cxnmM/nPH/+nG63S6leZr5coCji9atW61QqNVLJDNbSIZ/PkyuKc8PW1hZX\nV1eCC+3a9DpCaBpP6CyXS3K5LAk9zl//9V9jTqdkV6hTa7Hk+uKa7c0dbq6uCUNfnMJ8wbN+//49\nd81btre3+e1vf4vjOGuU53Q65ze/+Q3m1CQiSYwHQ1p39xw/esBXX/+O0aBHOiPOkWpMZj4RIt2f\nxbq+H+IGPltbW1iuQ7snfOGJRBI1ppPQE9QqVVzbJp0UXOydne21aNNZmH+0Hv7JC7JhGOSLOTHh\nhj6NRo1ep83t3Q1PP3i8XlNlMql1lrG4DaZxXBHI4Ps+OztbSJLE999/z33emfgAACAASURBVPb2\nNtVyhX6vx+7uLu3OPb1eT9htIhFGowFf/PILOp0W09mYdDpFoZAXPrnFgulkjqIobO/u0O50cRyP\n8XDMhx9+iKrJQhVNIODsq2I5GgloybNnTzFn83VCyGDYJwgCkYOq68ixCMVSnmazST5fpFgs0mze\nEY1JnJ+/p1DI8+rNj/i+UDifnZ1RKBTWH6BIRCISiWAtlsQ1ndlsRnGVZXrbvKdYLOKFAfXNDaaz\nCfP5DNMUkIvxeEwqlRKe4M1N7u7uCIKA/nCAH4quLRZTVuIvwad1bYfxcESlUqHdvkeWZdrtNkYi\nwdHDB2xsiUnAdh1832d7e5PRaISiaLRaHTKZHAf7R4yGk7WozTCS4pYaBHRbbRrVGko0xsbGBp1O\ni1CSGE9HOI6FFIui6BqNRp0wDGjU6oyHI3RDp9m+Z2t3h7ltkslniMni7azpMtEoHB7uIYUet80r\nItGAXr9DLpuk3qhA4CJFAvL5LBIBkQjocZVozMdcTjl4sEc0FuI4CyKRgMvLc1KpBHNzjOcvKBQz\ntDu32M4CRZdxXQskj1qthOMuKBRyvHn7I5ZtUq+L125vZxtNU5jNx1jWQkyOsZDRaEAmk8B1l0yn\nQ+ZzEfSxf7DNxeUptrXiaisxFCXGeCxU9sulya9//SUbjRqWbXL84IjAd5hMxnS7bYrFPO/evkLX\nZSTJJwxdJCkkGpWYjEe4joXvu3z80TNC36bXuaN9f4MsR/n8s09pNOpMJkN6nTa9XgfHcajXq6Sy\nKeKGys3VGd9//5JkMo6ixFC1KLP5mF6/vcKOiiLw0UcfcnV1hWHEsW2bTCpBOp0WEaWTCaVSidFI\nKOH1uNgGfPDBE1zXRdcMlssltVqNRCKBpgv9Rn1D2IEcx0LTFVrdFpPJhFQqRTqdFg9LyyKVSq1S\n4KYUSyXyhQJfffUVBwcHnJycUKvViMcTqxAXEzWuc3Z2Rr1aYzAYrK18P6vA9/b2ME2Tv/qrvyKR\nSPDq1SsURWFnZ4dGo4HrusxmJsOhCIiRIzJv3rxhYZnMl3Py+TxLW5xsYoqMuZwznU+ZTIWNabIK\na7Ftm2Q6i6bFxcpX1lhawpe9sBf0+310XafR2MT1AqrVKr///R+4vRXPgFK1wnxqEgnFKSyZTAKi\n8X7z5oSbq2t2toRTpdPvUa/X0XUN33e5u7sV+ciqxvXVDXIsRjQS4ebmRmQ053L0+4Kf8PPzuV6v\n02638R2XRCLBsxfPabVa4pbtuAwGQ8JQYjabMRoNyaRSDHsiJx2EdmU6naIoMTQtxnQ65u6+yXA4\nZLlc8MPLl/ziF7+gWBKbvMPDQ8HRN02S6ZTg6msquq5hLpcoisLR0RHD/gBd1QgCD83QGE1HZDI5\nzs4u8B2Xh0cPxFnIMtfTsWktSSST2PaS25smxXwR3/Xx/YBoNCqQolGFaFRmMplhLhf4foASVWi1\nWozHY05en7C/u8fW1iZv3r4WQ148jhyNEJHCP1oP/+QFOQx9IhGYTEZoapSL96fEDYVkKsWbN29Q\n1AgxLcLt7S37O7s4lsvWxjaZdBpVkwh9m199+QXdbp/ADchlsoCPZZsEgb8G4D/94ANen7wmm8+Q\nyaVotW9p1Ko82N/nxx++I/B85KjC48dPGY5HTKdjKqWisAHJMptbG+ztbLGcTZlPhyyWc4rFIvqK\ndSvLKuPpiHa7xe7+LsPBCM/1KZWFGti0TGaLGaqu0Ol0aNSr3N5c8+zpE/q9Fvl8lt29LS5vzqhU\nKliejx84DAd9puMJkYhEbaNCsZQnlUygyjJv377j8PCQ09N3KIpMNCZhey62a9Hpdbm775DL5YnF\nZK6urtne3GY8GjGbDpmPJqRSGUzLplKvESCERJmMUD1mMhkyyRShF5BJpfA8D8uxCSMSn3zyCx4/\nfkyuUOD69hrHd4gqUerbmwRIyKrK0lxw/OARjuWuV4eWJbjbs9mESqVEPK5Rr1VIJhK4ns3//D/9\nOZoS49HDA7745Z9hWgtmsylIPp7viFtvJkUxnyWV1EkaBo7noqcM+pM+S09EzDnOgnariTkfg+RR\nrhWIyhIxJYKqy5jWjOlyRIBATlarRdr310xGXeqNEqoRY+mYNFu3VDcbnN1c4UZ87MDGSOp0+22K\nhSy2s8BIaaQzccKIRzafJghdNjY2kGWZv/mbv2YyGdC6v8HzbabmmIUz4+bunEw6TohDNApGKs5d\n+x5ZibBYzsjlBcvasefIsZDDgy02GiWC0KVaK+OHHp7kMRz1uLg8Q1ej+K5NIZ+mXq/S7bZZehaj\n6UhAV24umY0HlPIZNmsVDMPg6YvnJBIG+XSK87NTTHNGY6tB8+aafruNJIkH8NMPHmPZc5KGTqmQ\nYz6fc355gSSFpHMZ9LjMs+ePmc1HLFdT0f39Lf1RD9sTzepkNGJro8F0PGRnq06Ii6LESKeT3N7f\nkUglMVYBEHet1qpJFe6I5x99iOMK8tv+/i4A2WwWTdMYjIYE+DiezcZGnYMHR8xnFnrCYDSdkUgL\n0H/SSNHvdBn0+1zeiDvhTydv2T08ojsckcsWuTy7JpXKQETiybMPCKISmhFnsAr6kCSJr7/+Gtd2\nVrAdifv7e54/f04ul2EyGdG8vmbYH/Dw4RGlQp50KkG/3yUCZLN5er0Bju0RRiQWC4vQl/BciXZ3\nwOGDR0RlBSOeIplI06g2MCdjlosps9mIQa9DQk8wG81xnYB0Wtituj3B/e/1BPhoNp4w6I/otjrE\nYjK+H6Ibcbr9HgAxohTzRcy5RcLIYFkexUKV129OSKYzdHpDfvnnv2FuOQxHM8bmDNt30ZIashKh\nUqlANEJEiuEsPTLJDJqmkctnePXTd+J00BsS+qDrOo+eHHN/f0cul2U8HlKpVJBC4T8uZPK07u4F\n93o+QdMVVDlG3FCxbJN8JUcY9bnv3rKxU2cwHjBcbSz6nS4723sgRdjd3eXk/Tuur6/o9Hts722T\nyabxbIeUEadSKZDJpfEDGwKHowfbJHUFfI9SPsfW7haNnTqXV1fkc0X0ZIJOt4Uei9IoVZh0J9SK\nGziOx3xuks3mGPYHWEsTWY2xmM9IaAqaHMMPXLLFEhE5wnK54ObmilqjgaqLFXaz2aQ37f/Revgn\nL8j5lZxeVWUkRIpHamV12NjZxpdgvpijKDH6/S7FYh4/cBmNBkSjEqohY1omzeY1mUxKrI2SSaLR\nKEYygaIr+EFAPBmnWCwym08w4kJyHwCn56fiVpLNMptN+Obrf6dcylGtleh025jmnDAMub6+JggE\njD0eT6Br4v5prAqypmm4tsN8bvLTjz+haRqlcpHFXARRZDMZrq8u6Ha77O3tocgaxVKe//j2f/CL\nD18QXd1Nhv0BcT3BbDzBcSx0Q6M/FLfheFzAy/P5PPG4yHE1zRnFSpmpOWe8gr7nMlkiETg8OmI2\nm3J+fo5t2+Lfcjm2tnaQNV1Yy/J5XNdFUYVY4h//8R+IKlHOz99Tqddod1o8+eADdF1HVXQymQyG\nkSSMhLQ793T7PSrVKqa5FElZsxmaLixPnV6bBw8O1+pLKRJSa1TZ3d/h7OxU2GWUKOZyyu7uNre3\nN5RrZRRdRdPEaq1UKZLN5ej1++JGrRvYri+U7lKAaYpM1MFggLWyqACousbW1hau7/PRRx+twkrm\n3LZucV0XVVVXE4kQnu0e7LN3KII45vM5fhhSKFeQJIknT56IGM5CFttzefDomLuWsMvouk633xP6\nB9/n/vaOVz/8wCeffsQ333yN6zkcP35ITJFYOiYnp29QVnaVRqPBYNjj4fER3V6beDJBv99fBxpo\nmiaEKprG1c0Nx8fH/Mu//Au1apXr62uBXW3dE4vFqFRKJJNJxpMhR8eHfP75l+vQAEVR6Ha7pDMZ\ncZ/zXAgCJpMJ49mUyWRCoVDg7euf2NnZIV/IcnUlokdvm4I+ZS0dPM9jMOxTLhVXk85ATFVhwPau\nCMkYjUYUi2U265siqxmIxSJMp2MiEbi7bxKJSNw0rwikgHKtjJEy6Ha7hJL4P4+nc/YOHpBMZRkM\nRqvvEVsnSWmahkSUwBdJQHE9wXA4ZtAfkSsW6HTEdsoPAiFgWpjEkwlcz2Mxn3NzJyJIF8slprkQ\n98UAlgubcrFCp9NBVXRq1cbaDbBYLJhOpwSERKMypUoVRdeYzGfCKjWdocVFrGQsptDtD4hFlfVK\nOgxDtrd26XR64COKkiyvSFkCZble0UtRAs8nGokwGk5QVR1VN5jOTbrdLoEbkM/kURWBepTlKLmc\nyHl+8uQpS9NaxSrGqdbrLBaWSAoDfNdD1eIk0xlCCRaWQ7c/4K7dod3uIkkSb396Q8pIcHx8TLlU\nRYpG6PeGOJ7HaDpiNBmjqiqz2UxQ3FbYSk3ThJUolUWNyYyHIy7O31OpFkToSeityHYb9HodQtdl\nq95AlaO07m+R5RiuaxN6vlCi391ye3tNELjc3TUJw3A96bfbHfr9AXt7e1xcXLBRqxOTIpRKBWKx\nGMvlEssS4UTT6RTXs1c0L8EDEDbZGjs7QgiZTqTJZlJIEZ+HRwekdMHwDr2AhB7HtR2qpTK5tLCe\nSiFcnl3iux6lfIHJaMr19RXb29vimVwsomgq7V6XMAyxbIcwKqEacQ6PH/7RevgnL8iebaHKCv3u\ngPN35+xt73Bxdo6qxGhe31DI5yEIMWdjEsk409l4nSOqxhXK5RJLy+ThwyOGQ+FpLBUrlMpVNEMT\noihNRlVVDg8PsW2bbldI5/1QTG6RSATLskSAdLWC7zr8/pvfsb+/SyppoOkKX3zxhYjWi0bXa5t/\n/+prkbWKwAOenp5SyIkbWVSSkCRJIDm/+x5JkigWi0iSRLfb5f7+nl/98jcU8iVyuQL9fh85GqNY\nLCOvJlTHE3nHmq4wN6fM53Om0ymdbo/JeEY+n+Xp06fk83mR1hMKdOXp2TsMw1ixmFM8e/YB+Xx+\n7YX+Wcgl7jYuiUScyURMAgdHB3ieS61R57vvvkNWVS4vL1naFtVqlUgkImxEdzfIisLOzjalUol2\np4OuGfhegGVZ3N/fi2Sc6YSlveDq5pJEMsmjx8e4gcfBg0M+/eIzls4SI2UQVaLEVAFTCfCxnCX9\nocAZ9vuioxxPJri+x8bWJrKi4YUBREGSQnK5HJomPIrmYs7+/h7nFyJ0/ObmGkVR2NjeotlsYiTj\n2LaL4zgcHx8zN2fM51OSSYNIBBxHrDr3Dw7wfJ/Xb15Rq1XRdZ1MLo0kiekpmUlTKOXxPIdsNk2v\n12NnZ4e/+Iu/4P/83/8PhqM+ja0Gne497uqG+vjxY26aF9QbVUIp4Nnz57x5+1bE160saVdXVwBr\nLKG6uvs5jkOlUiadTvPixTNub4Wy9vLyklQqxXA8QIrCt9/+gdbd7VqUGDdEYMPLly/Z399faxWk\nqJh4qtUq5nxGLBIlDH0x/aaTzGYTPC/gk48/Q1oFntRqNSQpJJNJCe3CCgYRhiHJdIZsNk9cF06F\nn/9up6cn2PaSyXRETI0yno3RE3Hm5ozxeMj29jZhGBKNyBCJoOtxJtO5YCp7HoNBj9FoQBj6BIGP\n67qcn18QjUa5u2uRTKbR1DhbWzv0egNURaNcqdLvDzBSIsIwk82uwSKmaRKJymxvb6NpGnd3LfK5\norAKWhZGXOA0bdum1RIkv1KpRKFQQNM0DldY1sFgQBjC5fWVOP30h4SSxPvzSy6vr9GNOLPZjOFw\nhOe4zKdT+kPx+2XSOcJA4tHDx6iKjr66kbuBT6fTEQ30YESxWFwzAmzbotqoUyyWGQxGRELQdRVz\nPmUyHdFsNonIMQpZkdaWTKYBMckP+yIKM5fJUa1Wefz0KXct4XePx+N88PgDeu0eG7WNdfNumrNV\nYbMpVcok0ym8wKPX63F9fc3u7i6z2WzVnI1E0I3vMZ1O0RQVVZMF1MScU6sU6fXatNt3RKMRBv0+\nEcDQNYy4xpdffoFh6CyWcxzHwbIWlIp5FDWCqsl0Om0Wyzmz2Wz9OwO8e3tKLpOl3WphO0t6nRam\nKfjr/X4fWZMZjkfr/PharUYYSAIo09hiOp3y4tkz4WrJJOh32/zrP/8Ts9mMZCJNvb6B4zgMh31U\nWSESldB1nfF4zPHxsYjiXSyQJDFQNZtNer0e8WQcL1x54LMZsVWJRklk0nQn3T9aD//kBfn+/l7Y\nGxSFRqNBu93m4eERsYjMYjynki+SihsQhixNAQufm4JFmjQMri8uscwFnVaLSkXEFZ6envL69WtS\nqdS60MiyzGgwYHd3V/xMJKaTCZFIhGw2S9IwkALB1v3+1fd8+eXnvP3pNePxmNAPMM0Zr1694urq\naj3FfP7Fp9TrQiG8WJjouk6lUuPoQKRLpVIJLi4uSKfT6KpGpVKm0+lAGOGbb/7AN9/8gWdPXyDH\ndAJfYjqdM5uIjOOjg0OGwyEXFxcYhrHyaS7XqudyuYy/CnEIgoCjoyNCCeYLk4cPH3JxcbGaGq01\nNWg6nUMocXJyusLDZTEMnX6/j+NY6++bzmZwHIdut8PBwQGZXBZZjmG5Fn4QMFt5NfW4EOV89913\n7O7uYi4XJDNpcsUCuWKBVreFqoqbc22jzng24fL6muF4wMycomoyJydvyedzhGFAJpchkTKQVrxe\n01qydGyiikxto0GhXEIz4nQHffqjoeAnZ1JAgK7r4rUFSiUBmlA1DUWVOb+6JFvI0+12efTkMbIs\nE4lEMAzx4M3lcmvudzweR4oIMP5g2CMak0gmE7x+/Yq7+ybxeBzbcdDjcRbLJc3ba4iEq2YgYD4X\nONYHDx6QSmbQdZ36xhaWZbO0LdrtNgeHD7hr3eJ6Ntc3l0JN74rMX82Ir++W88WMqBzDXApPbLcr\nJpivvvotvu9TLOY5ODggm81yfn4OgJFK8ujpE7E6y6VXU3ePMAzJFQtYlkWz2Vw3iK9++olev8/l\n5SVHB3sYCR038Elm4hTLBSEKzOWxbZezszMajQbT6XgtXrI9F1lT2NnbI5VKMZub+K4v7vwrGMXu\n7i7ZXJpkJsVgILgCqi5CVAqFAvf398KfaVmEgYSRSDGdLpiZy/WDN5EU3vBAXFYoF0u079vs7R7g\n2h7JZJKrqyvq9fq64YgnDJrNJqEUMJ6JiEzH9vjkk8/QdZ35fL623wGkUsJbP5/PV4VmzuamyAl3\nPI+PPv6Ym9tbvv/+e6LRKPF4nMFwSK1Wg0gELa6v8nAV0uk0L3/4noVtcd+8xTKXEEoUyxUgQhhK\nVKt1Xr16xWI+58cff6TVaQOiqZZVhUgkQiKVxnI8JrMpC0twql1bkO0URUGORCkUCmQyGWq1Gt1u\nl6k5p7G5jWmaSEFIqVjms88+B4Ros9fpsjRNPNvBtWyePf0Aczbn4cEh11dXZFJZJOD4+BgQYtLb\nW+Ft7vf76+bQsizqtRqGYaw5867rcrgvcgl+ToV6ePyA29Ytn372MY5rCfuROcc0Z0SlcE33+9mN\nsVwuIRS8/Hhc6BP29/dFClNSqN5d1yUWkde2uTAMSSWSSKFQ9UtSSCorcqljsrDCNRoNhsMRuWwZ\nwhg3Nzf0ul08x6dWqYIfoKox6vU62WyWwWjIcDJGT+ocHe8TUyP0ej1kWabRaGAvLXLZrIDZRKJM\nJhPS6TR7+zsk02ksRzS9qVQCVVOIyhFkLUKpUvyj9fBPXpAvLq5oNu9wXZ/hcEwqleHs7IJUKsUn\nLz6ie9ehVqygKRrZdI5cLsdg2EPTdRYzi0atwWQyWVtootEoqiaLbuXqGkWJYds2VxcXxGIxLs8v\n2NraYmtri5QRZzYeYS+WWEubIIDxbIKRSPCP//xPfPrpp+JWNRgw6PZ4eHTEcrkkm83S7txzcXHG\n2bkIMI8bGs+efkAQBOzt7ZHJCBB+q9Ne+Y4XKHKUwHeIyRH29/dJxJO8fClwkB89f4HvuDQam3z9\n719TLleoVxtMxxPMmUi3+vkhUKtU6fdFxKK9XHJxfkmv22cwGOH7PmdnFwRBgGEYBIFIQcplssTj\ncR49esTe9i7lcpnpdLxe3f5c6H+envPFIkYygWVZQmgS+MQNnbihcXffJBqBXCbDmzc/rddIhmHg\nhwGTyYhyubj2ieqJOKPRiPpGjd6gS7lSpFwu8/bkhN/8+a/R4irT+QRJCtGMOPFEgpiqUK1W8QIf\n23XI5LIC0O95vD87I5FKMjOnxBM6rmfjOA6FQgmAXE4kWv0MkUgmkyiKghQVK0EpGiMaFb5xy3JW\nGdMBRiJOfyCsKYKYZpLNZtB1lVw+Qyolcq5/VrfazhJzIVaeXuCKznk6YTabY1kWrmevk3Hi8TgE\noUA6ukIhW61WWS6XqJqMrERRlBiyHCWyEqfpCYOIHOHm7pabmxtiiszegZhwp9Mppmn+f+7zP2dd\ne4GH49j4vofrOvRHwzXN6fb2Ft2IU6vUWC4svDCgUMyTzWZxXRfXWhKGQgV9+v5kBa3p8uLFM2HV\nW1pkMrl1oEGlIpTOSCHjyYjt7S0KxTyTlacfBEayWC7jeR4bGxvruNHpKjpwsViIAJTrJhsbG2vr\nnLeKwZOVKI7j8PzDF5iLBaqqYlkWOzs7xFfTys8hEL7vi/V8Ok0ymUCJyWxtbLJYLDBSSdzAZ2GJ\nSTgMQwo5QX0bDof4vk8kFhVNaTq9Blz8/PXVV1+xtbXF9vY2L168EFOX5zAzxVlqZ0cgPC1niRf4\nVKpVpvMZlUplpeR3MIwktu0ync7Z2tpB0w0UTSMMQx4/fiwU2kuTTq9HqVJmNBqxtMXfyXVdcrks\nqUyS0WTIaDSg0WisbEmC27BYmOiGxmQ6ot/vs1wuUeQY3377HwAEhMJ/DJTKBeF4uGlSK1cYDAY8\nffSYSCTC/v4uZ+/fUalUuDi/4dkHL5hMJpTLxfVAoqoqYRgy6PXxPI/rZhPDMLhvd/j222+ZTCZc\nXl6gxcUG7ve//70IlxiIzZdtW0ynEyHyymR4/vw5i4VFJp1c+ZnbTKdzTFNgbj1f2CEBtre3VicT\nnUqpTCJuoCkyjx89pNtrc31zSbVWxvFtfC/k9N0Z49EUe+mxnFvcNe/JJBMc7O7Q6bQ4OTnlqilC\nIiRJ4uLiikQigePZhJLPeDrEci1S2RQQEotEqFdrLGYLSvkS3Xabjz/+mMXCJBKROL88YzwbUygX\nMBczHN9iNh9heyKB7Y99/ckLcmNrk1CCwXDM7sEh8/mC0/MLWq0Ozbag+rh+SMLI4PsSckwVDFNN\nQY4qLBYWEaJEpRj5XI771i2mabK/v0uhUBCw8FV6hyQJ/ONoNCKVSnG1glHUKlVKxaKYjiTBzY3K\nMqPRiBcfPOP6+lqskB0H17XJZtOryDJlFXkH0urB9m//9i90Om1OTk7wAp8XL17ghwFSBDzPYWdn\ni3q1QiaVwnUtZrMx0/GQb775huPjR2xvbJFIpJiMpvhuQKOxycnJKblcjvfvTkklkoLHnUgix2J0\n2j22N7aJRmWSifR63fbzbX5pi5Sd0WjE/v4+//EfL7m+vma5XFIqldbq659Zt27gU6yUWSwWPHv2\nnKVtoWkKy6XJeDym1+uiaTKFXBbXXvLo+JidnZ1VXBwMBn3yxTz94QDbtohEBNv7wbHw8j149AAi\nEX58/RN6wqDX662N+6Ylou/S6SyZXBZFU1ksRNh5QEg2n+PN25/48KPnTGZjtLjO0hLe1tlstlZs\nDod9JpMJDx8+5OTdu1UTJx64XiCKTbFYxFqK/GuxKTCwLLEBKJfLbO9somkKZ2enxOQIvu9iWcu1\n57NYKFCrNjBXN7R6vc5gNOT8/Fy8ZrrCzs4W3a7wbAZBQC5XIBaJcXlxwaeffsz9/T26rmOapvi+\nikwul1ufVFRV2OMePHiArKmksin6/S7ZbBpVVclkMvi+z+3tLalUio3tLYykITjChs7FxdkKwBHh\n+PiY4XhEKImJ5+TkhM3NTTzP4+bmhtGgRy6TZjwWroP+aMCTZ08pFHPMzSnN22uy2SyxWIz3J+/w\nvGC9BgwCj8vrCxIri8dPr1+TLxZJrCwq86VIjwqCQKQPWQ6PnjymXq/T7XbZamxwd3e3AtXc0el0\neHj0gHq1TC6XY6Pe4PXrV3z77bfMZnPu7++x7CXNZlOsn1cc9kajIfzO9pLJZEyv06VYyOFaIh86\nnjCQV/nZ49FohXZMsVwu0VZF0TAMZFXBcRyhA8mLUIZoNMrW1hY3t9coaoyffvoRXdfZbGwwGvQo\nFHPc3d2t1t4L4sk4ju8wGPRJp9PMpybFYhnHDhiMJuwfHPC//af/JBjRs9mauzwcDvECX3hpp1OG\nY4EqHQ77lEoF+oMui+WMYiknJvTBAGfpQBhBkiRGowGj6QQpIiazi/NzUokkWxti0l/aS4Zjob9J\nptMUyiWm5pxWt0VMUegNB5yfv+fNm9eUy2UC32ezscXJm3eUyxXxecmLs1wxX1izCWzb5le/+hXz\n+ZzBYMDewT5e4NLr9Tg5OSGTzWLZLoEPh/sHLBdzbN8mkU0zt5ZUalV+/PEnGtUa8bho4FPJDOlU\nFsNIrqAnCupK6/LNN99QKpWoVssEQYBlLbAsi+l0SrvdolqtrNnhlmPz9OlTPNvD931mkwmPjw/J\npBNYton3/zD3Zj+SXHmW3me7m7v5vnvsGRmRG5NLkcUuklXd6BkJM9WjkTAPrQXQu6DRf6XRAmFa\ngNRAjwRV79VVxb3ITGaSmRl7eHj4vrvbbq6Ha2HTA6j0WkOALwQzMtPN7d7fcs53PPHr2Chk8yWK\nuSKPHok8g03ks7anLJaTOOzHxHVdHMfh7OSE99/7kSB5lcqkUimCIEAzVFzfIRO7D1arBbIMtuew\nvdckX8r+zvvw934h7+0dUCnXBHGmP6Ibe2BTpkmxUsbxfJZrm+2dPWbTBdPJBF3V2Nrawl27Yryy\nEQeO64q4s81mw22nQ6VU5vk33wo4haqxWCwol8vous7nn3/Of/1fkznotAAAIABJREFU/ikyEvu7\nBzi2J0QNssq9+4ccPTjG931+8Ytf8OTJE4rFIi9evIgBGx2iKBBQ85zoAirVEqoq8zCOQ5zNJ6iq\nyg+vXzEcDnn48CGGpvDowVGS25mxNDa4HD+4xw+vXtDv92Kf8I+5umpzdHRE4Ho8ffyE5XzBu+++\nS+D5ZDMZlssl7tql2WjE1arJeDzl+vqaZqvF2hZd4x3BJgxDIWxaLPnxB3/AZrNJ8JKKopCLD8/F\nfMlNu5McEHe76NlsRq6QZbFeUK/XE4O+rus0mjVms4kQh5k6N91bgiDg4PAefhggq1I8bhQIzX6/\nz/b2tlDk9rrUmg38KCSVSgnkoSIwiqmUSIjJZC1c12U2m7G9u8PJ2SnL5RLfFy+8mILYyT6/1+sl\nh/RmA9PZPFlnlEoVbNtmtbTFWDOdZrMRYzM/CAShyRf75fFkyNn5SQyMEbtj3/fR9RTX19eA2GVl\nMhna7TYPHz6kVK6wWi15c/oa13dQVZlsLkOv16XTaXN5ds6DBw/4y7/8S4LAI4oC0uk0Z2dnnJ6e\nCqFgHFDg+g6FUlH4VVU1ybtWNFUEBpgmzmrN69evhZCo3+eLL74QVpBchoN7e8Kb/+7bOJ6bgCAE\nWKPAyhFFmWmaYuoTAx9c3+Pg4IBer0cUhfFBqFMqFQGJXK5ApVIRQQvjEePphLOzM8qVImHk86d/\n+qd0Oh0GA7G3tCyLwWDEwf49Tk/PGY2nhMFGPM/tXdptgVtN6UIopCgKt7e3vH79mvblBbmcxQcf\nfMCLFy/Y3d0VAIlY4KOqKt1ul0l8wU6novCysmkK+Sy92xuiTZCAHQrlEsP+AMtKc352lkS0jiZj\nNENYqu6mF5tNxHXckem6zmq9YGtri8lkQqlUotvtMImzeC8uLlitFkQb8Txfv/4Bx3PEisN12d/f\np9/vo+s65XKZl69+4OjoSEyCtlqUSiVubtqC0Z/PCzJZr0s2nyNbyHPv3j3CMOTevXv0hj38yGc4\nGjAcDul2++K9kSR0Q0VWJTK5LJqm8fOf/3OWy2WC+B2Px0zmM2RN5ezsDEmBjQT5YoGIkJRpsr+/\nz7179/jFL/4fDMNIvi/2ak0mk2W1WlEul3nz5g2u67JYLNB1PbkQb28FxW06nbK7v0cqbbJciojY\nUqWM7awoFoviz9Xromgqv/7sU376R38o9ui+z6NHjwAJTdPJZUXG9Hw+p1gSDoSDe3uMxkNOXr/h\n0aNHdDqdZNInctsj8vlcEjCSyxU4PT0nn8/z8NF9VG2D487JpFWUmH29t3tILlfi6uJaUBWbLQF4\nKmTRFHF2e7bDyckJICaCrusSeALyomkiTKhQKFAsFmm0mqwdG6IN+axFEDpcXp7jBf7vvA9/7xfy\n57/5NYN+H2e5oJBLk89mqFQqTMczpnF+ppXJiVGCGqFpCpmMSf9G5KBuAtHxLGZzpuOJEFHMxozG\nYwIv5H/47/81y9mcQbeHIev0b/s0qg1yuRy//OwLzLTFeDymXC5zc3vLfLWmc9ND19IY6QytnV0K\n2Vw8nmuwWIn9UtpIMZ/PaTbFDjnyAy5PLogCcfFVGk1WiyVvP3nC7k6Lrz7/jH6/T/u2Q2urznI9\nFbamyYhCuUit0aRUqfO//m//lsGgx+PHx8xmI0rVCtVmk8FwLKIhV3Mq9TL9QZelvYxtXakY+5mm\nWMqjaxobQiQNMmaG0WjM9vYuoRdSrVb56usv2AQhzsphNp5g6kbSXR4eHiLLMr1+FzfwSGXSLNYr\n3nvvPQa9PqV8gVzewg9Dlo7LbL7k9PwaPxDjMMNMoac0CuUiiq4l+9+QEFWTWdtLstksYegTBCKZ\nxXYdSpUy4Sbiqn2Jba/YhAGStGE+n+K7Drou6E69wQDDNKlWy/ieI3Y9I/E9qdVEN1NvVCmVc/zt\n3/wVGTONlc7gOo5QrkoyiqLh+Q66puGubQLXwzQFiCCTyRAGAa7tEHgu6p0qebNhf/+A7757xnQx\nQDMVRtM+trtmsZyhqirPn39LPpfBdW0q5QKL+YydnR0BxbBMKpUyVlboHj756KesVivmywXz5Ywg\n8jl+eITrewSRgLSslzYyErK04bbTJvI9ZBl8z6HX6/Ht82dIqkJzu0W+lCMMPQoFC9tbEEUB3W6H\nUrmApot3xjRN/DAUyMDQZzmf8e7TtzE0HTOTwcxZhEgslyvG4zG1Wo37D45p33ZwPB8rV2TQH9Go\nb/GrX39KOiPgCY8ePaJUKglMqq7z/Nk3/PTjP8DzhRipWC4gKXBy+oZqtYymytirNbbt4LouRtog\nXyrSG/d58vZTXM9mNB9SqZcYz8as12sMTadRq3Nxdk6j3qSYK+C7DtlUmo8//APuH9zH930+/vhj\nCsUcvUEf1/dQDIHELJSKFItFbuJEpFwux1tvCc6Bqqrs7ezSiNXja8emPxxg5bK0drcAsHIZKtU6\nILNeLLm4OENPaWhpnZWzwgtsHN/BzKbZEHBvfw8rZZLJWEyXK5zQ5+Hjx6RSuigSAo+1u2a9XjIa\nDRiMB4xGY9a2h6IoZDMWxXyRxWzBq1dv6PeHFCtlLi4vxWonlULVdU4vLimWBUPhzelr8oUCo94t\nUeACG84uTgmikMMHRwBImka0kRiNp8IxYVpUKiKNzjRNrIxJt9slijb86P0Pmc3n9AZdrm/a+N6G\n5cyhUW3g+z7ZQhrPs9nfF4Xfq1dvMM0MqiEzmY/Y2hUqdWkjsVqsMDSd7u0Nk8WSTDaNqius3SWm\nZTKdT/iHf/h7fvaznzGezFjbNoNRDzcmrw0GA8JQ5DgDNGp1Ak8gRl98/5LDI8Hsd12XUrlGoVRi\n7diYZgpZhsHwlsdPH7JYTLg+e829gz10Xed2MKRcrbG9vc1w0EYmoNaoYmVTvHj5WyQ5Qk9pgrb4\n8hUqKtVyleF4gmYYzOdzqvUKTmjT7bUJ/BXVWoHlYsp4OCRlatjRmpU7w9Ak0rrGeNT9nffh7/1C\nViSZSb/PP/3jfyKwd9MxKU3HMtPMJnMMLUUqlcK2bWzbTiwK6bSFvRKjMELwvABJUlgu1rDZcHR8\nyGKx4O9/+bdoqsz9wwPGY4H4e/Xqe266t2i6TqvVwnEclstlAra/PL9iMpoI9KZp8M033wimq66T\nz+bY2xfKO89xaLdjXGNadHHX19eMx0OK+VwMer9GlmU++ugjjo4exGKpLrms2O+2Wi1s20aWZU5O\nTvj5z3+OpmlcXl4yHApOsqJo5HI5MRWIxyWTxZSd3V2QJEzLxA89rGw6FrJN2NnaplwQgoNmvYUs\nq2iaQbFY5uHDh+iqjqaomEaacrnK4aF4YdfrNYqiCFxp2sB213S7XWHQX9pEEULhXa1gey562qRU\nLhNJohK9S+Dpxhao6XQad5WCspbNZuMw9XSCy0un0xSLgrKlKAqSJFGr1QSowTAINxHdbjeufvOJ\nKv6O5pTNZikWi8mzmE6nbDYb9vb2+O1vf0smk+Hm5oZSqSSiHkPY29lnMZ0lgJL1eo2miSmKYRgE\nQcD29jaVONXGdTxsW3jaC7kcqZQBbMjn8wKlOp/QbDTI5jK89eSRsJiVy3z2xWeMJkPy+SyKKqwu\n9+8f82d/9mc8fPiYYr7A9fU1qqrSbDZ59uyZ8HoCR0dHjEYiEF1VZS7blzRbdVRdwbRM7t+/z2g0\nolarMRgMiKIITdNQJIn1es3x8XEsXsvEqWHiki0UCjx4cESlUkGW5ZjkFsVTBCkpmBaLGVEUYFkW\n88WMv/3bv+bJkycUyqUYJGFSr9fp9/vkcjlOT0+p1WoUi4LdXC2JZzodT9jd3RVKakVEdRZL+djq\n52PbNrPZhKdPn/Ly5Xfs37vH1pbYr9/FsV5dXfHw4UNAMJwHgwG+71OuiE5rMhGI3ZOzU0G+M9M4\njkMrjlGcTCZC2FYoUqlUsG2XlGHSbneolGt4nsd0LtLZpuMpui5Sl9ZrIXYUYr0OrVYDzxOEKTfw\nyRdzFMsFVosl0SbEdtZCX+C6Ql0dAYpMxsoxHE94cyr0MZIkxQX+XMQgGkaiqF4sBF53PBjy8ccf\nYeoG2WyW8UB0j5pmEAYbtrd3qNfr3HSuRQJTpYIsSeKdCcN4GuKimSnm8S7cME1UQ8WyhFhuNBqI\nTvZgn+VyiW3biY8+jPyYTiVzdnbC7u5u7BIZsliIacEdl77VasU7bhEIQhQRej43NzdxilZJdNKG\nQRhFKIaOGuN0i8V8omB//vw5URRxe3tLqVTCddaEgcfNzQ2NRj3Rujx79kzwzxWJtJmKiYkygR+x\nu7ODLMuMYxLa9k4TwzRYrecEoc+//JN/wcvvXrC9u4Pj+awdGy/w8UIfVZXwI59msykIaoMBuioS\nszKmUMJvgpByoYiiKLx59Zrrqyt2d3cxMylqjRpLe8n27havX78mImRDiKrLuK7DdDzm/2eF/Pu/\nkB8/fEgYJ2JMxmOsjEkQePiBi6aJpKSbdpvj42MUSaVWazAdjQWhqlpnZ2sX0xTV/+HhIeVSCdNI\ns9XaIZNNJ2HTk5moCG3P5fD4iFQqJVCCZ2eCoKIrmKZJNp0RiSamycnJa/b39ykWiyiKFuftbkjp\nBqPxQHByswUADN1kMpnw5MljPvr4xxRLWc5O3hDFO8lf/vKXYtyIRM6y0HWd5XLNzs4Oju3y+PHj\nmBMtxoi5XI7lekWtXo+zlguMRhP2dvY5OTnjRz/6AFmTMS2Tq/ZlHG5RpNe7ZXt7m1TKiHfiJAIW\n2xYqTSuTi1+SMqVSmWq5wpeffwHAl19+KbKUVZVvv/2WzWbDz//Fn6BpBo2tFrlcjttel/V6iarK\n6IaK54ufn8/nKZVK2LbN7u4uqqaRzeXwfT/mcotxqaIoOJ6LmUljZkSQwOmpGEPfXbiT2TRRh9fr\ndVxXUKY0RYIoIPD8RI18eXmJZVlsx75Xy7I4Pz9HVjQ++eQTxuMxxVgNKUkSbEI6nU6y+7qLpXQ9\nGz9wqVbLzGbC/2rbtpjS5ETwx50aOwpClvMFlVKJ9tU10/EEVZVRJJnLy0skWYmV3hq6rvH65BW2\nvcIwBV3tX/2rf8VkMkkwkr1el8FgQC4nhHQgLp6Lq0sKpTyaIVwIdxYY8TlK7O5us1gsqNVq9Ho9\nju7fp1Fv0Wg06HQ6gqoWCx5VVcT97e7u0u12uby8RFE0rq/bVKtVsbaQoVTKs1zOaTbrfPbZbygW\n82w16mw1G6yclUAUBi5IwstsWRamadJqtbi4uKBer/Pd8+fJOx5FEaosBIn5fJ7lcklKN8jmLa5v\nrklbJpVamd9++zWNVpNsPsfFxUVSMEynU2HNWq2wLEsk74Q+R0dHXLfblCpFok3AfD4ligK2mqLI\nTqfTsR1pGK+XxL5Yii2JhmHwwQcf4Ps+a8clCALy+TyWJVjI/1jsmE6n8TyPL774gjDcsHaFiO71\n65NkXHp91SZtZlkubKxMnvXKQZIUisUyZxdXSIrC3sEBk8WSfLnCi+9fohpi7xgEUZzva7KcL8lk\nLGr1KqPRiNVqxWKxQFVVZpM5lXINEGzuer1KFAUi+zudxXMDTMMk8ALWa6F5qFar9AYCDDKdTokC\nH1WRWM6n7O/v47pCfOj4Ht88+5ZMJs3z589YLOYc3j/ATBv8+MP3ubq+oD/oYhgaW9tNOp0bqvVa\nUsjmMhanp6c0KlVyVhaiDYPBAEVT2TvYp1wVE6xUJs3+wSGTubBVZbNCQNdoNIgi4fTQNQ0jpm1F\nUUTaNBgNhslqrdlsoihK4hOvlMrkrSyPHj2iXBa4z2w2Sy5nMZlM8F2HxXJGtVTki6+/Ynt/l//x\nf/pfBE9cRlDwNAPbdgmCiFevXqGqQsVerdbRlRS27bK3syMK9UqFyWhEIWdhGBq3vQ5rZ022VOD6\n5gov9GhsVUGB5lYD23NjMVyGXCb3O+/D3/uFvJjNyWQyNGoVep0bfN9lOOhRq4lD8k6M9dWXXyYZ\nvplMFl0V3d5yuebhg8c4S4fzs0sUWaNea3J92abdbjOdjrntdel2O6SzaaEgleC2fc1qOieVEoAO\nVVZ49+23xG5sOkNXFeQNXF9cks1mCYJAwD98n3TapNVosJjNmIzHAKxWK5rNJsNRl99+8yWK+u/5\n0JYlIB7VapWbmxts2xZWqPglv8uDvesshA3JwzQztNs3seDII21aNBotDvbvYRgGz14+R9bV2AoQ\nJaCP09MTVFXl9qaD57q0Wg0+/dWvKZVKzGYzut0uW1s7rOYrzt6ccdvucHz8AID333+fB7Ga/O23\n3wbg66+/5rrdFnmlywWz2QzH95CkDcNhn/FUXF69Xg8Jhe5tP/m8ZFnA+JfrFbr+76Mra7UahmEk\niUBhGFKvV7EsC1UVO1LP87ByeSaTWQyPEWHkd2zjwI9gI+N7Ibou9s8AsqKgaUIQpet6nPTkJQd6\nLpejXKkwW4oDoVQV9p4gCKjVKsJepikEoU82myEX74fOzs6SzO7VeoGVTXN+fs729pbAk3o+8/k0\ntmMVmM1moluJXPb2doVifT4hbVmi65XF6DSbybDd2kJTFLJZi1WcBrNcLqlWyziOg2Vl6HSFn3m9\nXnHv3j6Xl5ecXZyyu7uNLJOEntx2OvHlXsCyRHRh+/qSZrNO6Pl0btucnr75R3tHk1yhyG2vQ7fb\nEYeuqSPJG6q1MjfXl3i+w/7+Ls+ef0uhmE865N3dXdLptOjg4tVP4AooRSEf7/sODoQFJ/blW5bF\nqzc/MJ/PefLWI3K5LOPxKOn4Ly4ukot0s9kkk5GNJOxop+encYEhYxhC+JfN5xmM+swWU5FcFlsY\n79jwi9WSm9sOkiLT6XTxfZ/Ly8skN3m1EjGHvW4fzxWFm2maibf9+OiQ+WzC9lYztkKJHPIgEIlN\nzeYWH330M+SNjB07NnLFEoZuctPpEkQh3zx7xudffomsikCJoweP8HyhuC4Wi6xXTrKfDVxP7PU7\nHer1OovpHE3T2d3dYzAYo6p6XNQvkujU0WjEzc0tlUqN0WiC77jIksLtbRdFEe+ZH/uEV4s5lUqF\ns3hULQAyKUqlErquU61WCf2AKAqZTMZkMmmQIyLESi6KhMWv1WrR6XSYTCbc3t5SKRZo1RtEvhCL\nFnJCe/H9998L8eJWSxz8isz+/UMcL6DT6WBoOuvFmtlkiq5pzOdzFEXh2bNvkDcRvuNiZdN0O53k\nvFVVOU4vCzk5eS3U9vM5z58/p1qtCCGmu2axmLFYzkgbOqlMiv64Tzaf55/+p/8Jr09P4lSwAbqu\n43k+iqKRMkWYyVZrl153iKIYTEdTZuMZ5WIJRZbY2dpmNBji+76YFLgOZxenWFaatJVha3eLq/Yl\n49mEVEpPCldN1X/nffh7v5AnkxGlQpGvvvoq6RaiSKgN77jVd+rDXC6H77hMxzMymaz4kqo6J2/e\nAAKn9uD+UbwfXdO5uebg4IAwDHj33XfEz3JF7qWu61TKZX703ntCoCNLnJ+eMZuOeeftt3n16hXV\nWjkeG3scHR1ze9tNlKIbQjahn1h+LCtHJ6E3GUKMFHfcw+GQx0/f4s3paTJ+z1tZlosFrusKS0Ym\nw8uX33Fzc00Y+lxdXVFvtJBVJaYcyeTzBQI/FF3DfBJf5mVse42kSGw2Ebou/MWiuheZs51Ohw/+\nQHTUIRtMK8N8Pmf/8B5bW1uoqo7nCeuE44h0qTdv3rCy1yzXK44fPqBSLXHbFXmotWaDJ08eocWj\ntkzGTIIC7jqt1VpcdlEUMZ1OabVaRJsNsqJQLJcE9zYMBXB/PseyLNFlXF/jeR75fF74Whfi55Tj\nTOlKpcRsMiaKoFQSY669A+G5nM6EnzQIAlb2mmazycsfvqdWq7G/v08mkyGfF+k1k9mUeqNBSEgY\n+sl6QlxkOULPp1aricNmKohUb731OBEUDfsDoiDETBtMpiMcd813L55Tb9RYLOdIEqztJfv7u/T7\nfW67NwmjeTobM59P49+vjyRvmM0nuJ5NLptNRu+VSoW/+7u/4/j4iHQmlRwulmWhSBIZy+TjT37C\nm5NXBKFHoZijmMuzCUR0n6rKSRb4YrHg8vKSP/7jP6JeEYpQQadb8PTpU66uLkRm9f1D3MClXCky\nm03i4qlCEHgsljOazTrT6ZhMxkTTBD9gPB7T6XR48OAB6/WaVqtFKV9AQlwCVjZDuSIsWfP5kn6/\nn3Tp7XY7gXAEgY/rOqxWS/KFHIvlHNdzMFI6X3/zNd3uLfW6UI1/8slHXFxfoWoyru8jK8QBFSFE\nQlC0WCwwM+lkf2yaZjLCX61WKJqaiPhKhSLz2UJwCm7b1Ot1lsslEoLx/vnnn7O1tcXl5WWcPyw8\nuZOJ0K34fsh65TCZzLCsHIvFinKpimGmkg49m8/y8PFDvEAI88rVSrJuWS7XwpN900WSJJrNJmEY\nYpgmppkWtLXekEajxU37Vkz1YieIyHau0e/3qdfrtC/baLKCLAsRX+QHEIm/x037Gl3XcV0XeyV+\nz5RuJL9WZLx30XWRdNTv9jANIWIUosgi9w73OTs7o1gUVkpRIJuYaQPPdbm96bDZbMRZEb9Dd9MJ\nVZLxbCcWxoqzVFVVzt6cYK+E8Gs2mwnQURCSSWWQJBHLuZovaNbr8c0RUamURMTseMjasak1G7x+\nLRgLgecThSE3Nzc47pp0OsXOzhZR4PHhh8LhcHXV5mc/+1mySiqVSuzs7CQRvJIkEQTQvR2yWjr0\newMkSWK1Xsa0P43leoFhaISbkEIpj5EW64Jet4Pr2iwWc8LQR5JEQNHLlz8wmf1HHC4xGY/JZrM8\nfvyYvb09oiiic9sjiiKOD+8TRcLXur0t8n/vxozzyQzPDXDWazxXwNg1TePs9BQzlaJcKlGv1xmN\nBuTjL4O9Wgif4NplE4K8Ed2f7Ti029eomoyhKkiSAHPYqzWHh4fM53NkWYwi8/kCGdPEULWk2wP4\n9tvfcnDvHul0msV8TRgIZebt7S2z8SRR4WULefLFIsFG+IPL5TLHx8dsJJBVQXU5ODxAiQ+7VEpg\nJH3fJWdlefHiBe12G00TYild1+OQ+E2CHY2iDamUgDI0Gg3WtugM5/MphUJOKFLXC9a2zfOXL9je\n2028jGJMes3WznZCJbsbky6WMyAimxVFxl2V3O/3hd3DcxkMRarN3XjqTvXeiSvbxUJ4Nu+q8jAM\nyWRMej0BZc/G2FNJkpBjZbyiaUmkYxSEZHMZwlCkVzmOh66nkBUteRZifJ7Fcdc0mw3KFbE/DTcC\n7djtdnE9m1q9Qrlc5vXJK+4mDJZlMZmOyGRMRqMB6XSKTMak0+kkpKysZaFpmkjJSekMBj1M02B3\nfwvXXfH06RP8QKjE7wLpM5kM+wd7tNtXqBJkcxbL1QxNFa+gqqqkdAOFDe88fSv+bzL/8j/7F4zG\nIlZQ2kRMR2OKhRxhGHBwcEC/22N7u4WmKfR6t8iaRLVWQVUVHMcmk0nHqTtj3nn7LT799FN6vR7N\nVp3JZIQkR8wXE7a2miztFTc3N+QLBSEsymZZLudUq8JTXi6XsSxLWJX29uL/J8Nw2MfzPLrdLuv1\nmlevXlEol3hzKtSohiEOfFVVk0D5+WzN3u4BW60dPv/8c+7du0cmk6HX67G3J4Jitra20HWd9d1E\nKZMGWeLHH77Ps2fPyGTEmkqSJArFMsu1zWolggUqtWq86nBxfZ8girBtmyAI6PZ6bCDBPV5dXXFw\ncIDnunz5xRfCKbFckrOySVa5JElY8XMPNhGfffYZjUYDTdNo1FtEIfz2t99wfnbFjz/4kGqlxmZD\nUnDf8QM8x01iT8/Pz7FjX/X19TWvX5/guj6263DTvcX3fcbjMZ7nsb27S6lU4vziCsfz6fYGyLJK\noVBE03QWiwVHR0fJZZbP50npBrPpFN9zcWIHQrNWp1IqM5uK53pXuFhmmuloHAd2BOzv3yMIQlzX\nQ1U1iFn3vV4PRZL5+OOP6HQ6XF5eJoEe6+WKIPDwAoGmHQwGFIsl8vk8jx485EfvvkenfUuj0eLR\no0cMRkOm0ynFXJ6fffKHqKoqJikomLqJbbsYhoGuauiqhms7rJfiMsvmMvT6t2SzGfbv7YnQlfkE\nVdfZaraYTCaCsV0qEYWw3doincqwmC1pt9tUKrXEs16rVVANnav2Na4f4jo+0+k0yTnPZgtMp3Oq\njSZWTqTwOZ5N2jJ5/PQxo8kIWYbFbEo5V0AKBW7TMAyxeowJi2EY0ai3uBcL7P6//vm9X8g7u6KD\nCMOQq5tOjIurE0kynU4n2YlmMhnWizmLxYKDgwMhGqlUGA7GaJqWVLq//vWv6d/26MWZlFnLYrFY\nxMIYlWajwU27zX/xJ/85oR9RKBToD8ROtJjPoyoygeeQL2REvNtkgq4bLOYrQE74wrlcjnTKTC6r\nVCqFJG/wgpDj48ecn11jaDqlYlGMJbNZ/DDATFus7DXjqbikx+Mx/UGPwaCPmTGp1Cp0+z3MnIUX\nBlRrZaJNwGYjaFSe53F0dESz2cC2HRzHJQrCRDCz2YhCAGTW6zW5XC7OStVRFInbXodUWsfImPzw\n5gc++PGP6Xa76JoYzW1v7woedSoleOCZDJfnZzjOmv3dHSaTEdlshpW9jhGmohvwfR9FEQAHVROe\nyHK1gu06+L6f2K/E2kEilTbRUwZeIMY9sixj23ZiI7JtW4S0p9OE4Sa5gCeTCaEfJEK44+PjJDP6\nLnlrs5HQdZXeoEuxlE+KgbsRei6XQ9dVmlsNzi/P2NnZYjaboGkK+bzwPLqejevatLYa3L9/Hy2l\nUijk48ulS6GU5/mLZ4xGAx4/foiqytj2Ci9w6Q062Ksls9mEXm/AeuUhbWSeP39OqZCn3qgQBSJp\nKZezUCSolIoMBoM4+1s8i/l0gqJs8H2X1UpkYQtS1hxFktmEIefnZ2w2EcvlgkwmTX/QBUVAH1RN\n7PiHwwGHh4fc3t4K4EKvQxgGrNdiJD4aDZjOxoShj2GmqNeaK7b7AAAgAElEQVSbif2HMBLdYH/A\nfD5nPB7T7twwGPREgk5K5/3336dUKjAejzk8PMT2XL76+ptklHpyckK+UEjETppmoOo6u/ti7L6z\ns4Nt23z+2W/42U8/ZjIeEsSZ2NVqmcurcxRVorXVIJVJ8fLlS0qlAkrs4Q3DkC+//BLH8Tg8eiDU\n/oZBt9+j+I+wsnf2HV3Xubq64ujoiE0YsbO9zT/8/S85vn+fUkFMDSR5w3Q2Tkh8tr3i6uqCcrnM\nV199haqqCRr08PCQKIr45Ccf8dOf/pRXr17x4ofvMWI/c6vVQFVlvv/+BYoikU6nBKVKkRIxYb1e\nZ//efe7dP2a1tFmuV8iqiq7rcSc5RTWEDfDjj38i0LeGyWrtMF8I8aOgmkVsNhuRjz7qx2NYL4km\nzecEV96MtQy1Wg1ZVqnVBAt9E0W4js+/+4v/m3ff+YDNRmI8Fulji8WSZrPFbDbl+++/Z29vL9lx\nz6ezJAlJURSCTUS1WqXducFzXG5ubjl9fcL+7i43123Ozi4oFsrUmw16vQH9bpecZaFpOpEf8v6P\nPqBarRIFGyaT2T/qxIUYzbUdIQacT5jOxmwkBLfAEcLfO7xl4EcJYvXk5ERM9Mw05yenFPJihbdc\nLvF8B0kSoR+2bZPSxWUqqxr22qXR3CKdTmNaGbr9npgMLSbYvoNVzKLoCvVqmfVyznw6I2dlyaRM\nfNfj7OQETTPQVLGj/tWvfvU778Pf+4Xc7wsP3TiW4Xc6HRw/YDFfxUIgEevX7XbRdZ35dMZ0KnjW\nX3/1DYVCgfPzc4rFIgcHB7z33nvJSzoejzk4OBBK0nye2WRKGIa8/fRdPvv0U/q3XTqdjjhEnBVr\ne0khL8Aav/zlLzFNUyhXFZXpVFCthsOhEIRowk+Yj/dkKFAuFzk8POTZdy9JaWmOD++Tz+dZrcTo\n9o75u79/j8CPkt2D67rJC3FyfsbDJw8JIl9YXHw/8fX1er1kjN/r9dhuChGN7/vJpS+QinXOzs8Z\nDkWmdDqdZm2vUDSFWq2KokosVkv0lI6RNtje2QFZHJ7dbpcnj5/y5s2bhKRULguS09n5CUZKo1wp\nxmCKUrLfkyQpuUyBZKLg+z6qLgz1juOwXq+TycLdXvGuy280Gszn84TEdEfSOjg4YLFYUCwWE8Um\nCGW743iMRiMqlUqSTe2HAZqucHh4wGw2I9wEyLIc5zgrseJbFQEajRo3NzcCSRgGyXMqFvP4ro1t\nr7i8PMdxHEajkZhMtFqsVgv29ndYrRf0hl1UXeO21yWXywkmtaHy9MlbHOztIwFbrW1KxTLZbJbB\noEe9XiVfyLIhxA9coU4vFTg7O2N3ewcQCWgXFxcx4S0UvlFAV8Sh1Wm32d7eJooi3py8wsqm4x28\nzGg0oBorxFtbDV69+oFcLociy4laNgg9NpuQaq1IsAmZzcTBt1wKpX1/OCCfz9Pv9njw4IGIQ4wt\nZ0gR8/mcwWCQhNMfH9+nVqthWRbFYpEnbz8FYDKdJo6BnZ0dEdQwE97Y1vY2pVKJ58+eiUjQq2t8\nx00EWZeXlzSbTabzGVYcpWhZabrdbnJepFKiiIiiiF5PqM3TViYGRjjJcy0WRdFjGAaPHj1Kzol+\nv89PPvwQabPBSps8evwAx1mzu7vNy5ffASSTosD1iKKIg4MD9u8d8O677ybiRyEgLfPih+/Z3d1N\n/PCZTAZZEWEGjrvmq6+/QNVkAt+nXC4LB8PaTehgWspgPBbC1el8xtbODmkrgx8EGKYI4nj8+DFn\nZ2dYVg5NMwjCDba7JmXqSNImKZCX8znFQg457nAtMxXT3Zqs14L33Ov1WK1W+K5Hq7nNP/tnP2dn\nZw9NM7i8uEZVdDaRxPbWrrDMxeeN67pJEb6/v0+5XOJw/4BOryt2/LoWe5RTTEdjFFkmm7HwXZfp\naCzODNNK8MXtdpu9vT2WSxHTqkhKsgZTVSGCvdPlwAbLNLm6uqTRbNLpdUjHWdGC0ibofG/evKFY\nLIrkQEUnnTK5ODtHURQq5TKqJDOZTBItTxAIvgQQa08CZFWjWq1jpFKxuHBBsVJkOB4xnAzRDJXp\nbMywP2A1X/Dg8JjRcEgmnU7EgIHrk04J7nsq9R/xDllPZ5g7Di4R0/UaPWOStkyGoy5u5DAYdZFl\nONwXvrFCoUSjvsV4uqRQqZIt5Emn09QqNV68eInjehimyVfffMUnH/+E0N3w8OgtbjtDVM1EUXWu\nb9rkSkWWgUiEefvpu6QMC1nROLsUmZ/NWpPri2uy6QywASmktd2gVCnQG97i+g6T6YD+rei+dCXF\n3/79p0wnc548ekCpmEVRNFzHZ3d3l7yVR5FUPvvNl6QUg43vYdsrytUS+VIRzdC5urhir7XNuDdi\neDsgrZmEXkTatNje3gFZ4fL6ighxGBbzJYr5En4Y4m0iRvMZ190O+WKWjGWi6go7u3vMZ4tEuDKZ\nTUXaS6FA2rLww4AXr1/iI5KSpvMJjr2ilC+wv70b72sjTk5eJxahN2/e0G63Wa4XqKqMaeioskQ2\nIyL0vvvuO8qFCpqiMp9NaNYbSRKM69rouozgTxs0anVRhDkemmYI6IXnEiExHo8p5Cxeff8CXZW5\nubkWFb2icW//AE1RhWI3lcILXSRZjKxLhTLd6z7L6ZKtrSaL1VIkrZjikO/ddvG8AMMwqTcbvD59\nRTprJmrxlCG818EmwjQz5HIFysUCW7sNFus5si4Lj6sik8/nsNJpJHlDvV7Htm0adRGR2O0JcESx\nmOf84gQzrSOpGxRDYu2uCQKP+WRMKV+gUakyHc8o50t04h1yrVqkkLMY9QfIkkqjVkPRZCIpYGHP\n2cgbNF1CNxUev/WI/mDAvcND1raL4/pIssoi1in84U8/RpZFBOVsNqXWbJAr5jlvX/Dq9IRypcL9\n+8ekUxlmkymZjDhIipUqipFi6bi4oUeETzZnctu7JYz8eNcmdAHtzk3yPbEKeYaxZ7RSLVEpFwGh\nJ1BVlZSpkU6bSHLE2l1RKOW5uLrE9lz29vbodNo0m3VSqRRWJsdbj57S7bRRpA0ZQ6WQNbEsYZ2b\nz5dCwGU76KrM6bXw6hqGJjKEowBF2qDKCtOxCGFIpUwURWO5smltbXF2dU4kRWQLQpkrbUI+/fTX\nVKoif9f1HOrVCq5no2kKZjrNcrHmzQ9nlIsVVEmsWW47Vzx+/AhVVVguVxzfP2K1WJMxLXJWFkWR\nKJcL6LqCHzogb4g2G/zQYzDsEUY+p6/fiPG4oYtwlIsLLs8vCAMP11tg2yv6oz4beUNjq8F6vSSX\nzWCv11i5DEt3RWtvi7Xn0h+NmC3WTKZCXzEcz5mOx7z47hnZvMV7773DP/vn/xQzpZPSVebTMV98\n9hsMTeH64pJ//d/9az755Ge8/dY7BEFE4Eb4wYbVao2iqPiuh5XO8Jtf/Yo/+ukf8uDBA9z1iuFw\njJXJU8iXmC8WzFdzIiKKxTymobOJAgLHZre1xXq95tl3L5BVjWatyd7OLvPpgkF/REpP0e10ub25\nZWdr5z9ApC5XU/b2t7CdNfVKlWFviOu6fP/dCxzHYeXY3D+6hyYr2Is5sgLFcols3sJx1+L8MgQv\nezmbEoUB6+WUfCZNPpfD80M2gCzDn//5/4EkKZycnRKEDvlsmmIxJ4JWrCy1UoPbzohcOgbPGCaz\n2QxZVXjy8C0Wownb29scPDxE0f4jvpDTaaFUnS9WVKtVGo0G7atLqtUy49GAaqVCEHqJDziTybDZ\nbATbWVPpdG/RDJ3BaEjOyvLsm28Zjgbcv3+fvb29mHozQUKhUChxfX0t/MI3bVo7LQGXX4nR7vX1\nNZ7jcn1xyR/99GdUyxUReRiJqkaWwXXWGKqGY68EESkWdd15JieTCff2RUd3dXVFIWexmAnusLNy\n+OC9H7FcLmnGI5A7D7Sm3e2CxeeS0o0ktvD4+Djx1j548IDxeJxUc6PRiHKpyng8xjAM6vU608UC\n3/cFV7bTIdwICtVkIoD/a9ehUCgkuMAgCFA0Ye+4d2+f62vRlYwm42Rnn06nKVcqRJsNlmVhmKmE\nHX4nkluv11SrVR4/fszNzQ1GWkczdFb2Es1QKZSKSIqwOMmKsGO1O9eJmni9FruW+XxOuVzE910g\nwjAUfN/lwdExnU4HWRZwjzsl9nwukrDGseI9n8+Tjf/upik69mxWTD6WyyX5YgEQXujzq0uevvMO\nq9UyqYzv6EO+75PL5zFNMQ5fzheUy3lubq5JZwSC1fVsglB0TXcCp9VqwSYM2d3dRtMVXNcmn89i\n2yvOL05jwZXCYjGn2qjj+y6GqdNs1hmMBwQbsc9XFCX+XNaJKt1xHILI5+Bgj0zGjH3qYt/b2moQ\nbAKKlTIoYgXgeh7T6ZhsIQuS0C08ffoUxxGJVkdH9zk8vEelWuLs4pTj4/tEkdhPl0ol/CAQ4j0z\nlXR6qqogyyDLErazwrZXCWt9Pp/z6tX3GGaKwUiMdH3f5+LqMu6c8+zs7BD6AcvVPA5NcXE8l1ar\nRa6QZzgRau1f/vKX5PN5FssZRkojnTJjHzv0+kMGgxGt7d1EXd9oNNAUlQ9//D7dbpe0nmITCOFg\nOp1mNBAYyzAMGQwGNJvNxMWxXC4Zjgc0WnX+4i/+AklRKBXyFOIwAykKKVbKKJrG1s42uiHel2q1\nKpTJhkYYBXz59ZekdJ3xcIiuKvS7XdIZsaeezmditRX77AVOVaia9ZjCNp8L9XM2m2U2myXpbIVC\nIaHRNbZa9Ptd9JTGxcUZQDJxWC6XqLrO69evyRXyzJYLbro95PgSuLy6IZXOoKczTOdL/v7Xv+H/\n/PM/5+TkNVtbW6wWSzRJo1ltspovKBWL3FxdMxiMSKXSRBK899775HPC/227Lq7voeoGk8mEv/qr\nvyFbKCZCNkmShM+dDVftNt+/+oGHDx+SNlJYGVH8ubbD+++/T+B6fPn5FzQarWTd4To+vrdhMV/F\n0zqhTclk07z/kw+Fh9jzKBQKKIqws5XLZSazaSzAEiuz+4fHRFHEbz77FNf3qFarYrStG6iqymaz\n4eTVDwx6fWbTMZ3bWx4+fMhkOmK1niHJISlDYTQYkLasZGJrGAbr5YpNKEb6L168JIrE2ba3t8d6\nucJKpykXSwx6t3iOy3Q8+p334e/9Qu50b7CsNPZizm+/+hLTSCUHj66obDWaeLaT5IWOJwIy8OLF\nC9q3HQ4OD5ktF4nP8q233iKbznB8eJ+/+Zu/SdB6pmmSTpkU88IKYhgGhq6zu7vLp5/+Gtt1RED6\nxRX/7X/133B9doGmaYzHY+FJBIaDAdPRGF3TkJH+A7B7q9Xgow9/LDKXFyu2tnZwHCcxuXueRzqd\nQU+ZTOeLOK0ojaGbAsu3Eji588tzstks9+4fCtVtLke/P2A2m2Gaoura398nm80KD221iqQK/J+q\nitF6r9ej1myQyqTJFfI4nkOne0sqbTIYj9je3RH5sl7I6ekpxWIRwxAvrOM5PHj0kOFolOzb0pbJ\n7v4eq/WCIPTwApfBoMf337+IfZDCkhR4PuPhCCudQdXEKGgjb4ikCEVXUHQFWQEzkxZirpxIsZIU\nCCIfRZOxrDRRJPabd//atvgcxuNx/HuZwtNaFNai1vYWy+WS3X0x6r25uabVapHNZHj9wysBn5lM\nkn3awcGBGCMFHroqk7MyNJtNrHSGDSErW2RgB5HPbD6J7S0Cc5kxRTfsODYZy8RZi/1dsVgU+76N\n2FemUikhkLs4Q1ZEWpGibpjNJqiqRMrUsbJpZrMpa9cRpKbJkO3dLfLFXPJuzGYzjo/vs7aX8Tog\nYrMJEz6u46wpFHKs10tcX4AYXFeAGjKWSTaXSVCgqiqzt7eTxBlOp2O6vQ6yEvHDDy95+vQRv/32\nS6xsmhcvXvLOO+9g2zaVSineGUeJInpra4tUKpV4PufzKZ7nsFotKFXKTCYCrgHiUM3n80nhdHt7\nQ69/S7MuQh3u/L6aoSfM6Uqtzv69AyJC7t3b56uvvqDX65HPFthECq3mLvmiWGmcX1wJprPnoesq\ny9mSfCbLZDQS2pP1Ovmei+CE+8xmM6QNmKkUvW4XKyuK45OTE9790TsJmCKIfa6DwYBut4sfirF9\nGIbYzoqr9iWd2zapjKDl/cmf/AnDfg/HWdNs1nn27Js4hSwiDH1WK8HPvry8olqucXZyiu85jEaD\n2F0yxDAM7t+/HwN0Muhail7nFt/xMWOtRCqdYTweJ8LQ1WqFEz8XBQVZUpmMZxwdP8RIpXj1+jUg\nsgOsQp50LsvcXqEaOr3hCFUz+PWvP0VRDJ799hsC1+P+4RHDwYjNZhNPonRM3eDrr7/B9nw0w2Qj\niQSro+OH3PYHpK0ckixz/OABb94IDoNtC3ykGuc9G2aKXq/HeDSNgTgt5pMpDx88oJDLoygK7733\nPltbW+TzRd57730eP3iLZnWLWlmorM2MxcmbM1TNBFnB90OctY0UithJVVb50bvvMxoMuby8RlY1\nOt0+fhjyww8/MBqN2G5tMZvNmI0nPHr0iGq1DtEGSVaTCErXdSiXCyjyhvliwluPj4VI7dEjojAk\nnUrx4OiYD//gA3b3d5P3wzBM/u5v/haiCM8RK6l8Nseg06WUy//O+/D3fiGjQjqdIp/NkVI17OUK\neSPzyU8+wl6tOT8/F8QW12U+nxMEAX/xf/07jh8e8fHHP+EXv/gF+/v7fP7VF3S7XVaLBa2GyO3N\n54rc3NxwdHTEyZs3lEol2u02i8WC6+trisUiVxeXPH78mMV6IeD0hsK//d//jNtel3Q6zenpKU8f\nP0GTFfKWGAsV84U4LWkZw0JAlkJG4wH9fl8Em3thEo+4vS0Qcvv7+4DIVjVTaZazJb7nkc/mGQ5F\n9T6bzej1euTy/z4pJ5/Pk0qlExJOr9dn7TgMRyMGgwGT6QhFUZhOpwkPej5bEgYbvDCgtbPNxfUV\nXijoU47joEkaw8Egpjz1k91MqVwgjDxyeYvRaEC4ESKRL778jFTapFgu4YcB777/LpoujPm7u9tJ\n59pqtQTv1l7jhV7Swc3nc1zXxcrl8EKPbF4EGWQLWay8hW6o2M6K0XjAfDFl5axImTqqJlMo5kgZ\nWqyCziWKXkmSePjwIZ1OG8PQuLm5iT/fShIgIgQdNyLLuFAgV8jS7d8yn86EcjPOx17M5qiqCJPP\n5jIYpk4YBmQyaba2m2zvtLCdFbfdG+zVimxGeIkPDw8RXbxOsZTnyZMn5PM5ivksuiqYzJomcoYH\ngz57+9vxhS4EatEmoFiMw+Xffcp8NcULBRikWqsQhH48MSij6yo/+clPRGzcUHxHylVBRlq7DpVq\nCdezGY76TMfD2HsaISnQH/aQVYnZfEIub5HP5zEMTUAiVJndvRZB6KGoEnpKI2Wkuby4TgIMgJiS\nJ6wqvZ7grne7t2RzGeaLKfeP7hGEIhs6W8iTK4rOdb4UeblpK8NkMqFer6MpMre3N2w2QqxXLpfx\nfZ/lekXEhna7HbPDXbrdDrqmUCqUub68IpcrkC0UhQo3Jexg7XabTMZkPB5iGilW8xXSBjzHJZfN\nirVRPs/52SWj0ZiDPcGW3t/fJZMRhXq/38cwNGaLObV6lfV6yWIh4ls//PBDHMchm80iSRLfffcd\nYRiytd1E11XG4yGNRo1ut0OtVmN7q8l0OqZULQmIji6+v47jIG0k6tUaf/3Xf83z589j4VcLWYZC\nIYced7iplJmktoXhhv39/ZgxLzzasizz5s0p/b64xB8+fMyv/uE3MWnLQNdTfP75l6zXDvWWQIBu\nNhKXl9dskJEVjbXtxi4SFVlVsbJZiuUKW3t7fPr5Z/zlX/8VpmmKAJeZ6N5tV+y7HdcniDZ8991L\nTs4vcFxReNVqDVRVp1QScZ932gPRUZr8m3/zP7NaiaIxCEJUSUZVFDYBydn87bff8vz5C87OLtA1\ngy+//ArH8UjF4lMicN0Ae+2goBAFId32NZswwjQE3fEf/uFX/L/svWmsbflZp/esca89z9PZZ57u\nvXWnqnK5XGWDKzbdETgSQiCEMDEJIlEIREKIEBIkui2hdBQJulskSChqYpAVf8AkIEe0wBDAri6X\na3C57nzPOffcM589z8Nae4358N9nWS3FuJWOxId4f7mquqpb++69zn943/f3PLXaCtlMHkXWUFRd\nrGGFvKgezefgB1iWRbPeIhoxeOWVV4lG4zQaLRFB9edEDZ1XXnkRGVe0WCZjZpMpnVabwPGYjEZ8\n4QtfIBqNsr65ie147OzscPP6TayJiezBax99DcOIYU5M4kb8u26H/+AbcqFYxEPim+++I0xOkkQ0\nYvD++x+QSmVIJzM4todmRFH0CCgytm1xeHjIBx+8TyabYr4wGgWScK+2223OTk+FTzSRYjwQTOFG\nvU48FiMaMfgP/9E/5vT4jHK5HGaeTcfGDSBfLuFJ0On1uXHjJu12m2azSbvVIp/NMR2Nmc8dAl9i\nOBATiM1mm0QsTi6bZW9vj8FgwHAyJpAljo+PQ5QfC23d1SSzLIvJbeEcPRckrUQiRIUWCgVApra0\nwnSheZs7NoEv4TgepVIJXVFDa4yuiwGMfD5PLpfDMMRpdHNzk2KxyPLyMq2GGMKZTEacn5+TzWbp\nD8SiezWNOhz2FxOeApJwhbacTMb4vsf56SlBEDC3zYU+T2JqTkAWvxYKBTRNWyxwA5CFwPtK5H1F\neOr1hHqtPxownk6Jx+OLHmMEyzJJJOIMh4MQsTmbjknGRX/tSk13VXoXJW4xKGjEYjieh6rKvPTS\nXQaDHkEg5O+WNaNSKWFEdaKRCJlUWvShbZvJZMxwOKBarZBKJxb5SxnbntNo1KlUFlEa2wTfE4v8\n4XPGowGKIqMoMu1Ok1arRTweZXm5hqapRONRLMek0WriusIklEjEyBcLKJqKj4+sysSTcQJJ9MJt\nzyaRTmDEY+D5oMh868Nv8R986g08z+aifrFwDvtE9QjdrhAdGIZBLBYT+XVN5catG0RiogVycnKE\nqsoYhs75xSlz20RRRcm2UMjDYkK51epQKBSIx+OMx2O2dzZFisAWMRjRNlDo9/u4rsNkMuH4+DjU\ndV5BdAAihhYeLMtVsWkViuLZzKYz5HIZ5vM5vu+yvLzE8fFz4kkRMfJ9X7Q/IhF8x2V9ZZ2JOeHg\nYI9Wp8l4MiSeTLCytsx4PKRcKRIzIhw+2+e1115jtJie913x3RuGQbGQp91uo8rQuDzHd23mc5MX\nX7xDNBolCHwC6TvVACBEOnqBmKF4+eWXqdWqPH/+jFgiKjLYc8FWv//gQz788AN0XScajbJ7/dpi\nujoWqicvTi8oF4qsr2+GKFBdFxWC0Vgc4iuVCgf7h1xc1Mlms7z77vvUL5uCfrWwLF2BdBzH48mj\nx3zqUz/E2cl5KM145ZVXmM2tMBN+cnyG5PmYwzHVYon5dMa1bRHDKZSKaDEDIgpvvfs2tz5yl0gi\nysn5mWA1+D66rIjUymAcooaXlmtMp1MOD4/QdcFZePfdd8MhzkI+j++4IQbWc30c22U8noSXpHgs\nSacjDpHf/vY90W/d2EDVNSaTCaVihf39A4Z9Ac0ZdgZY4ym4UMzm0VWNUqGIriqcnBxRP7+gkMsT\neAEP791n0O9z8+ZNTNthOBhz48YNEtEYpjlla2uLaDTK/t4ecSMqHNoL81cqlaDRuiRi6GSzmXBS\n/+DggEwyRbvRZjqesb25tVDliqHUk5Mz7n/r2yzliwwHA4bDIftPDzD0KIOh+V33w3/wDdmybM7O\nznj55VdAluh1xS0vncyws7nDdGIyGk1QFA0/CEimU1jOnPFsTK1aYnd7gw/vfRDC8J/u76NoKq7n\nUSwL7eB4NOXluy8SN4QQXXCUBSAksShpqapKr9ejtrbKt+7dZ/eFmyiy0PTFYgl816NYKJPLFUik\nMzx5ssfl5SWdtuhbLleXUVU9jF9FIhHURe9qeXlZLJy+mH60ZjNSiQSJRBLLnPPw4cOw9FQqFml3\nmuQyWTKZDMfHJxDI7O3tIcsyqqoSjUbJ54thyXw0GqErKndv3abf6SIH0O/0OXi6hxxARNUoF/PU\nKlXq5xdMhiPS+TTpbFpsIqoUumtHgz7FfA5zOsO2rRCWIkkShhEJIxXdbodEIo6MRKcrlIC+72K7\nc3w8Hj55SBB4osSs6ZhT0Qe9yuReRWAURcF25gKvqCn4UoBpW2FUSZYFjalUKoW91IuLi3A6/fhY\nGHvGs3E44Z1IxzHnM5AD5o7F6ekxqiozmYzIZtOUK0VUTabZbJCMJ4gu8IVXfOHT8zPG01HIZT44\nOCAajYrDzOJQZs7moav19u3boo+VTjKbjnHnFtlMCsua0WheUiwWmc/FsFIul6HebDCZTXl+fBSW\ntyORCI8ePWI4HIa97EwmQ7vdJp1OLWxac9LpFCfnJ6xtrCNJ0uIQMSOZTCIHIltfyhewrNni85Vw\nfRfd0BmMBYzENEWiYHd3m8GgR7vZJPA8zk7OiEbiGLooyY7HU/b29kim4qFtS9f1ha7yO2Quz/O4\nceM6g0GfarWCHlGZDIecL4xglmVx8+YNxuMhe3t7RKKinI8v4myxWIxiMS+oZo4Nvociwe7uLsPh\nWMAzMvkQApHP5ykUcgSBR3xB39NVBT2icnF2RqvVYmVlhb29J6JfL0OzWSeZTLKzu8XBwR7FfIZq\nucyg12M6nrC+usqg1xcaPj+g1+kuDpyiJeX7cHFxwWwyw3FdorEYF/VLrl+/RjabYTjs89Zbb6JH\nDVLpNK9/4uNMJhNkWcQPXU94ny8uLtlYFf35TCaHbVqsLa+J7w6YjsfIsozjCLbC3bt3FymMCpVK\nRcT24gnKxQqaood8+1jEwLZder0Bo9Eo1JHatsvuznUii2eqWi4zn82pFMq0L5tkUulFDEpkoU9P\nj9m+sUOj1+Ho7JTBZEw0KbLnnhtwfHxMrVoWEpuIWNGgIYMAACAASURBVIs6HcG2voLu6LpBLJZA\nCmB3+xpPnz5FluVFxEomm8mI9VFSaVw0CAKJ9qJaNx4O2drY5OToGNd1qdfrRKIGmbxIVohIJ6xW\na2ysrHLnhRtcnp9TzIsEg6LpzKwZpVKRhw8fMh4MuHP7tsDpHh+iKApGLCqm2EcjZEQsrzfoY0Rj\nNJttYrG4MI41BCWxVqtx7/59mp02XsDi8FpgPDP5xCd/kG63y2w8YTadkkokhQSj1yMSiZKMp/j0\nJz9NICm89vHXAYnh1Pqu++H33JDfeecdXnvtNT73uc/xuc99jt/6rd+iXq/zuc99js9+9rP88i//\nMrYtJnS/8pWv8BM/8RP85E/+JF/+8pf/nTZk23KoLi3zjXe+SaW2TDQew3E85AA67R6KohHR44uh\nr7IIm+dzKIpMq3kh8pm1JQHNz+fY3t1hOBnz+uuf4Pz8nGRCTGEPh6L0FFE17ty5I3Bp3T4bm9s0\n6y3u3LiNpihk0xlef/11ZpbF6ek59txZsG1HWJZNdQFRN2dzbty4iWmKE7SmRTAnJgQySD7FkjCw\nTGcCySjiJGM0RQHfZz63SCSEkCKdzYTSiJ2dHXa2thkMBguYgs7B3rNFVEgoClVFx3FEOfxK97W+\nvs7p6SmmaYby+mKhwLNnzwjwGA9HXJ5fCFRpNMbR0XOyuTTpTBLfdxkt8Je6qtHriNtRIZ8ntsgr\nphKL4bSx4BCXy8K2Mp9bwr+bitEddISJJm4QixhC5TefCwNLLheiBh3LoVwoUy4WSWdEb7jTazMz\nzdCxqygKrutydna2uIW5yJLgZRtRXdhm0imx4M0tMYTlixvZbDZl7lo0Ow18ycPDJZGMEYsbRAyN\ndrtFMplY5COFw9bQBYKx0+vy8ssvEwQBvb7oH6+vr3N2Jm4JterS4r15LNdWMTRBPapWq0wmE46O\nDllZrdHtttEjKnfu3KLZaWA74j3G4/GwShCNxkmnsousuLaI75QZjsR3MZ6O0HUVz/NCKMcVVvW8\nfsny8lIInFlaWkaVNabjGf2uOCSWqiUGo4GYiJ9MMM0ZpjXDNE2y2TSnpyfEYlFSqRRBIMqZ5VIV\n1wF50Ue7ugW5rivmBBw/jKzpuvgeuovWydWtudVoMhz0cGyx8EQjeqhVLJfLNBoNCGRkWWY4FCjC\nTqstkKGSz/bWBq5rc3R0JCxvgUokEg3XmflczBQkEkKr53kBlmUzGU0pFyqYpsnm5iYHBwcMBj2O\nj48pFoscHR7Q7/e5desFoobo91dKBfLZDOPhiI9+9KOMBmN0TaPVamF7LrGk6OfLqsZ/9vP/Oc+f\nHbK6usqbb75JNpvl7OKcVrvBZaPO3bt3OTo6olarcXh0hKQq6EaEi8tLer0es5kV4jyFHlAcTofD\nIZeXDSQUCvkStVot5EM7jsPS0jK+6yEjkctmmU1MpiPxeTYv62iKyocffsgrL32E8XDEytoql5eX\nOI5HNptlsGgxgJD5RCIRWu22qDAtfuYmkwmxqAAQ9ftdctk0sZiBrCoMxyOQJeqtJisrK7iuTSxm\nMDdnJJNxCoUc3gIze//+fayZRTqZImYY9LtdkrH4YvhUIIK3NneIxRIiEqmqYatrNpsxnk7xHTfM\nX9+6dYvLy0sCyafd7YaDgrIkkYzFONzb4+aN6zx+/BjUCH/5V39NJpvCdiyqpRKj4ZCz4xM0TRE+\nY10LPwffFXlsy7GxPZdqbYnHe085PDxkY2ONWCzG8ekJs9mMcrmCH4Blz0mnM+FaVm+0wpx73Ijy\nbG9/EZ30qF9ckjRiFAoFSpUykiwTi8VIpP49S9avvvoqX/ziF/niF7/Ib/7mb/K7v/u7fPazn+VL\nX/oSa2tr/Mmf/Amz2Yzf+73f4w//8A/54he/yB/90R8xWJRz/77X+fklruuzsb1DJpvF88QP+6uv\nvsZoMCGdzjKeTcVAyGxKJCpKIslUHNuaEfgumUwmtDtZlo2qaNx/9JD19XUODg4oFArs7ooJXdd1\nuX//PqqucfP2Lb72ta+xs7VNv9ujnC+SisWZjiYM2l2KxTKyrJKIJ7HmNsPhkMPDIyZTU5SNgyA0\n88wtm9FwjLo4Efu+C4qMLKvhQEsqkWBummiaRrPeEJozRMxmf+8Zc1NMXKuqSuD5YrhpMg1B961W\ni+FQkHX6/T6JRIJcLoemqDx/9ozA81mqVDGMmCjxRsXtL5vOhCfuTDpNpVTG0FUURSIIPGLRiMiW\nAtZswsbaOqosppVjMSME+8disXAwSlfFgy3LMnsHeyiKwtbODoEc8Oz5gehpd4Wd5orrnEgkiC+y\n3dOxUEfOxqIPL0kSqiZzdn5OpSIqG4oihASGHgkz2O+9916Yw77KKgeBx8bGRlgiNQyd3rCPaVth\nydF1HSIRneFwIMq1p2chBhPg7EwMgg2HQ05PTxc8bZt4Uogq0uk00YghFpZ8ns11wWceDEZks9+Z\nKi0Wi9TrdSqlIq2GyIBflW+vco2xWIzxdEKpXCaeTNBui0UmFouFnzMIUtfS0hKjsSCYvf/++4uU\ngWhVWLZLu90On6crt/NV+T4IAgqFAl7gk0gKv7XjOCiqTKfXCb2txXyeQbeH7/gErsRgMPq3RBaS\nJDEYiAn9SqXCoD8ikUiGG+oVhlO8Z5VUKoWmaViWoEP5vk8ymaTb7yEpMvm8kIJ4nofnBXQ6vbCq\ndHZyysOHD9AjKslkkkplCd8H1/XJFQtEE1HMqYjVqKrKxXkdRdaIRKLoWozhUPQgn+w9JpNNEY0a\nbG1tEjE01tfXefLoMc/2RTSrVb8kmYyjqjKZTJrj58/FJHnAIvGxxObWFgC5XI6vf/3rbKxuoMrf\n6QcbUTFpOxj0+eY3v8nOzg4n5+JZSqSSICk0m+I7qlarRCJR2u02pycnzE3x/F5eXvLiiy+GGXyB\nk1SIRESbYTgccnEh1smrapFt2zQv62QzGfrdLtd2d7Esi+VqjWKxyMbGFuvr6zRaLRKJxGLWAeJG\nlNrKGvFUima3gxYVB+dYNErciJCOx1C9gHhEJ51KYega5txC1jU6vS6D0YiD/X363TaZTIbB4iBf\nq9VEfz+eoFVvIAegyEKWI/C8qmgBWEJ16sztkNQXBAGFUpHBaLiA9oi4V7PZJB6PC9SoovDKx16h\n02kBYNsWtml9px2SzTKxZqxtbdLriRv7xuYa4/GQXDaNIgWUiyUymRSu63K+WGckSQrnTB4/fhx6\nBkRrRkxfy6rK8uoKtuPRanWYOw6BJBGNxXj3/ffoD0bUaitIAfzHP/Mz3HnxZSzLYnf7Gh9+eJ93\n3nmHerPBcDJlMptiWv8fozPfeecdfuiHfgiAT33qU7z99tvcu3eP27dvh5zXl19+mQ8++OB7/lkR\nPUa73cFzbLq9JrGkgRe4jGdjZFVmMpngzh2KxRJzc47n+vgEpJIZNrev4zrQ741RAoVapcL9R/cw\nkjHmnku72yeVS9HsNvng3odcf+EOPgrLqyssLZUZ9kVt35rPePDwHtZcMKXFrcvG8echKUzELYIF\nqMRhNpugSN+JKUmBzNpCnl7Kl7g4b5JLFnAXi+ZwPKI3GICshLeL6koNx3FoNZs4tk25XCadTnN5\ndimGDkyb5eUlFDVAVSQ0RUfXo+SyWSxzTOC77O89oVDII6sKEAhmqudw59ZtEqk46xsrHB0+I5dN\nIkvegiTVRJYFfUjXVezFYggwnpp0Bn1G0wmSApWlKs2mgPFPpiNUVQ0F8IlEAkmRuX79Os1mg363\nS6/TISKJyMjV5iB8thqTRaRJj6h4gU8+VySVyTMeTVhdXsGaTUkmDGazCeVCHjfwkTUVLRIhGktg\nOx75QoG5bROL6diWyXg8JRKJcn5+Sm7BS7YcF1nSiGoxXNvBtW2G/QG9TpdsNksQSKyur+M4LpVK\nlbgRY215lW67g6GpqIqEqigYeoTogo7U6/VAlsgV8swdOzSCyRGN0/MzJMXHtme4tkkyHqdcW2Jq\nTsF3wfeQAp9uu0O1XCGTSlMpVIhqUeamRa/XpVQq0u21mdsCRgIwGoxJpTKkkhkm5pSNzVX8wGJm\njlEU0ev1fchm88iqBJIgZzUajfAQkMlkmFszptMxkZjO0soSBwd7LFXLKKokyv6nZ6xtbjEYjUCB\naDQS5qf1iMBd6lqUTlvoCGUF5taUQPKp1pbIFQo8fbqHhIqEymQ6ZzQYhgeLpVqJ8/oJ2zvr9Ptd\nVFUMD/q+jyLJgpKXTVMs5bj+wnVBn5t7PD884OaN60wmI54fHzI1Z7i+h6xrIEsMxyNy+QyVaglJ\nkri8POey0eCNT3yc+sUl2qK8Ph1PmIxGDIddtjdXuXv7DheXDYxknIPnBxQrRR7vPSAWi/D+u2+H\npqCpOWFqidyrpmnULy6Yzsb0+i12d7aQgWFvhOcGGHqMVz/yKn/6x3/CcnWZVqvHbGrRbje5efMG\nc8vinbe/iSLJbG5uU64s4SwmgmPJBOf1S4x4jKklZjIeP37CZDLmydNHBL5FxBDVh3sfPuIb33wb\nSZLY3twhlcyg6jqDUZ/nRwe4rkOz3uLmzZscHx9j6DqJRCwcePzrr/0tvdGIB08ei//fdMq3Pvw2\nkqzy/OQURdHoDUUrInDFwF06mcK2LQqFHNFolGq1ihGJUa/XiRkxNEVlOh2jRVRiKYPLZp3VjQ0U\nXafXFWts4EG72aFaXqbbHzA1LXrDAeqierL/9IBhf8JsZjOcjRhNpmRSWaQAJN8naojp8oNFzOv4\n8ozLTkuoNwc9Utkkw2GfyWjMbGKSTWfYf/iYbFwcuGQUmhcNxuMp8XiU8dzkyeEe/eEYxZfZXt5g\ne/cF+pMpjm0yHAxot7okYkkeP3zEm1/7Gpdnp+A6PLz3kLnjLFIUJ1iuy6MnTwmCgP/jT/+Uv/mr\nv8YNfJrDHsVajb1nR9hjm9ODo9Dj/N1e/04b8rNnz/iFX/gFfvqnf5q33noL0zTDWn4+n1/Qejoh\nQQnEibK9UH79fS9N0ygXS0iAazt0umIY5lvfFrcB27axLJNep0u1WsWx5ywv1bBt4af1vGBhPRHq\nvp/+6Z+mVquJTJ0pcrErK6IEZBjRRa8wIJ1J8vz5c5LJJEfHx6QzGdKZDIORQMCVSgUC1wuVcul0\nmnwxz2QiwOLlcpmVtVUSCVF+cGyL0WBIOpnGc30MIxpOF1qWRSGXZzKZ4jgeruuRSCRoNhpUSmU8\nx+X67jUGgwGmOcWIG2yurZPP5zk9OyEeF4jOtbU1ivkCg8GAXC7D+fkpuq7x7HB/IbbQGQ6H5HJC\nOD6Zjuh2u6QzSR48eEA8GUNRJBRVYjQY4szFISAa/Q4CVIuouL4DksTTp08ZDPpsbW2xe20bVRHm\npEQiAYFYIBRJxpqZBF5ARNPRVS3EXEYiEdJpoS0cDocLJOYsFC8cHR3hunaIygRCaPt8PkfyAzrN\nFp1OByOqgyyFz1tiITi3LIHwbLVamAter+u6eLaoCAhhiSCFXXGY4/E4o9GQSDRCrVaj2WyGpVdZ\nFZPj/d4wHOy4du3av4XuFJEpkdWdz4Wucbm2hKxIoMgiXtbuLErTNq5tgeeL0l2rjRzIJKIxMRzT\nH7C6uorneeiaEXLTQWjo7t27F1Y3PE+IRcrlMkdHR4L8JkuhjazVFmXy1dVVEeepX3L4bB98L2Rv\na5qGrKk0m/VwCHBjY0PcDLIZQWyTBXrUtKYUiwUhfCFgNBkzNSeCUy5JOI7DwcEB8/mc9bVN4lHR\nbtI0jVjiO8/U2ekF0YjB+emZGH5TpfBZ3djYYDwcMR6NOD0+pd1s89JLH+Hazi6JaIKjQ2F2yqQE\nUOL0+IR+d0A6mWJrY5PRYMj+0z2cuU0kEuXWjVs4nsvm9hayptLudsRBqFolFotx4/ouz4+PiMZE\ntFLVIwzHIyRElvuNT/4AqqyIwUBD59EDQeqazWZsrG+xc+0amqaJuJo5IV/IIsuLsr7t8Mk3fiAc\nHosYYujK9cQhPpsXg2zDyRBZU8mXijQ7TRRFIRqNLIxTgjRWLBZFey6dxrJMyuVy6KZ+440fFOtE\nVOfo6IiVlRV2rt1gNBEXips3bzEaDJEkSbjJG63QJf3GG2+E8UFdUTk5OiKfKyJJEulUlmKxiOOI\nAbjJZEIiluTg4IC1tQ1AxL9y6QyDfp/1lXV6nQ6dVovJaMRSrRJu2FcROYHonPLax1+nWq3R6XSY\nzCyhWQ1kRv0BlcoST548AVkKq1zJpGjFTadT5o6N63t0Oh0yi8iQ7blM5lMCYDod47oOQeDhzEXL\n7vT0lGQ8wXQ0JRZLhLddXTfEc3L3RbRFpWprfQPfD9AjEYrlEp7tkM1mScZTtJstru9eIxGPo+kq\n6XSKIAioVqu8+OKLJJNJTMtGVXVu3LhBLJngzp07TMZTcsUSW9eus1xbw5zMMTSRgJnORt91P5SC\nq5rdd3k1m02+9a1v8SM/8iOcnZ3xsz/7s8xmM959911AuGh//dd/nZ/5mZ/hwYMH/MZv/AYA/+Jf\n/AuWlpb4qZ/6qe+5KX//9f3X91/ff33/9f3X/x9ev/Fbn+ef/ebn/x9/T/1e/3G5XOYzn/kMAKur\nqxQKBR48eBCaMJrNJqVSiVKpFMLWQURPXnzxxe/55v6rX/k1dna2OTw5ZGN1jQcPHtDv93ntYx+n\n3WqgaRo3btzg6//mTWGBURVKpRJHR0e8/NIrgvW7oOaIm2ySqB7h2rVrPDs6JggC1tZWQqXgweEz\nXn31VQBGQ9HrvZoQ1I0ImUyGB4+e0Ov1+PjHXhfkpdkENaJSyOao1y84Oz2lVCpx985L/M3f/B2/\n/89/h//5X/2vDIcjcoU8AaKXdvD8iFw6RSqdxJ47NJtdSqUSrutycXHG2uYGzZbwaaayCcYTcfOt\nNy7IpHMEgcTR0RFLtZWFOcZhbW2Ner2O48zRo4L/PB4K6H8ymSbwJWRZ3FIDz0eLKAxHXXq9jujV\nKiqNRoulSpm5NSOfzzKZTdE0lf/hV/4Jv/Y7/1QMk8zFSVVRZKrVKs16I5Q5HB8fC61cq83u9jaW\nOafX7aJqGoqhY7sO5XJJUKUCX0wmZ0T5KZ5McHJ+RjGXR9d1UQpsNRkOu0iyGNpybI9sKhtGw4bD\nMZmMyH7X641F5WROq9MVU++JGO1Oi0bjkv/9d7/IL/3WrzGdjqlVlxmPRR47Fotx2TznlVde5vTs\nmGjEENE1z8exPUzT5Nq1a7z97jdYXl4mlUoRj8d5//33uXH9ppC4K5BIJLAsi6gRp91uY89NtjfW\nGY76nJ6fs7Qqct5RLcpkOiRuRIhEouDDdDKnXK6yd7DP9rVt9vb2qC2thIKNUqnEtes7fOMb3+B3\n/pt/xv/4h/8SazqnXC5z//59Pv7aazSbgsYkqQqBL4lM7cYW3W6XGzeu8d5773H9+nV0VeTSL5uX\nC2+sYIBLkkSj0SCQxPNUKS9xeHTE9WsvcHl5yfKy8Bs/fvhATKOrosXy0kc+wl999f/CiAvS1Hg4\nIJ8vMJtaFAolHt5/wPXr14kaOktLS3z1r/+CbKbA//Lf/3N+74//N/78z/9Ptra2KJcKBIHHZDZF\n8lUMI8b5+TnVclHE5PQo7U6T5eVl+r0hR0cn3Llzl5OTY9FKUFUs0+b23Ts8PzmmUqnQarc5Pjpi\nfX1dfFaPP2QyGlKpljCngpTkA5Y1Zzo1WV5eol5v0u8NKZdrNC/rlIslZHyOj59z587LXDYapNIx\nSqUKn/+V/5pf/s1/wmW9STKXIpVMMLOmCxXlCM/xaTXbbG9u0mgIoIjje5ycnOAHgYDUJJNcXFyi\nSDKqrtHtdinmCyHsJ5FIYE7F9G633aVSqeB5LpPJBMuaC1qaLiI5t26/wPn5OZ4bMJnM6PeH/OAP\nfJKLizrb29ucHD+n3+9Rq4lK4t7BPjdv3+Zf/tP/lv/0V/87Ls4uuHvrdlgtKi9VeOutt/joSy/j\nWHM21tf567/7W4xYlFQms6DULRjzsynbm5uY5hTNiHBycoKuq+RyBS4uLlhaWhIlfCPGdDpbaAc9\n+v0uiUQK3/fxZZmDJ0/4R5/6NM1Gg3g8iiQpqJqg71UXmfTRdIYRF3jUdDpNRNc5ONjjX/1Pv83n\n/sv/gnw2RyoWFSauTJZvfOMbpIwEy5UykqxSSGVoN9vIusZkOub6jRs8evaETK5INBplMhwxn1tc\nnJ+ytbXFcDTBNG2y0RSlfEH0lhsXZHMpEkYEa+6QKxR5dP8R+VKe88tziuUSo8GEpw+e8MM/9I/5\n2te+xmd+7EdwHIeZZTEbW5wen3Hr1gs02y2iKQNf+e774fcsWX/lK1/hD/7gDwBRruh2u/z4j/84\nf/mXfwnAV7/6VX7wB3+Qu3fv8uDBg3DC94MPPuCVV175nhuyLKt88MG3WautE4smMWc2ET1Gv98n\nnU6SSqV4++23F5nWCImomJiuVEqcX5ySziTZ338aZhglSaLVFZ7SXE7g1B49esR4OqI36OJ5DhcX\nZwvh/DNGoxGNRoMne09DJVrgeZSLRVqtFolknPJSGUkKOK+fC9F1QpSh3333/bCEciVxODk5IZsR\nk5/5TFZQjao1Uok0vutxfnpBt92jUlmiXq9jTkWZSZFEP+9KnGGaoj9aKJTQNA1N09jZ2QpbBULm\nYHB+eoIsL8q0jrsYIhLyhmQyTiwqokq1Wo3RaMJsMqVSKhPRdOYzEzwfTVEoLpB0c9PCdz0gEHGO\n/pBWo0WpVEZRVC4uLllZWhYDYpkMx8fH2Iv8ZTKZxF14hCeTCWpExzRNDvcP6Hd79Pt9rJlJIioG\ntSaTCZ1OB11XQxG9EL4LoIgkSaFKMRqN8ODBA9LpFINBX5TYkgmazTq+74cDMVefTT6XC0HxV1Qz\nXY9w79495nNzEcmy0SIqSytVbG9Oo10PCVT1uvAXX/1drohPw2FfYF0XDuTVmtiAA18im8/x9OlT\nRqMRjuNw+Ow5s5mFZYkS3VUutVAo4OORzedI51IkEokw/vTht+8vsufQ7w1BFvnyWrXK06dPyeeL\n2LaLrhliY5YQlK65yfn5OdevX+Po6DlHJyeksqnw87xSEYqBQx9FEd7sXq+3kCJkSWbSdAfdEF2p\nqirxuJA0PH36VBzQJAl8j3KxzLOD5wSBhDN3eemlj9C4rNPtdjHNKdd3r5FJC6ysmC+5i6ao1Ot1\nul3hENY0jVarw8bqBoEvoakRxuMpqWSG4XhKpz9gbWOTVqeDFjFwXB9F1Yknkzx48HBhNOoyGo0o\nlctcXF5yWa+jeAEqEjgesg/23CEIoN3pUSyVOD45I2rEuXHjJoNuLySOpVIp3vjkJ3nhhReIRhZe\ncV8UECORCJtb6xSLRfHMLnSAEU0nk8lQW17iX//rP6dUKuA4gtlerZYJfB8jEsEyTWxrzv3798M2\nj+M44dDWoNcDJHq9PlE9skiFSMRicSRZpd3qMp5N2drdodPpLAQRZZLJJJ/5zGc4PT1F1lTmrkO/\n3yeTyZDJZEI/eaclhqE++ck3hFt4KgZll5eXmc8FSnJmmZyenDAbz4hFolgLqpYkSYKhAOi6+OdO\npxe20RzHE3pBNyART6HKMqdHx6wsrwm2e6VCJBIlHo/THw7QNI2NzS1aC4NYt9tH1TQOj49QdG1x\nUEiSz+eZTafYts3p6SnWIokCMBiPiEQNLMdFUoUX2ohEmM+mEMg4c5vRaMz52aXIliNRr9fZWN9i\nbomWlOv6tFptIkaMew/uE41GSaUSTBfK1FgstgC2yDi2Rzqdod3tkc7licZjxJPiuxuNRkSjcfb3\nD9ne3KXb6rG/94xisSzIipsbnJyds729jSJHGPT+PYa6Pv3pT/Pee+/x2c9+ll/8xV/k85//PL/y\nK7/Cn/3Zn/HZz36WwWDAj/3Yj2EYBr/6q7/Kz//8z/NzP/dz/NIv/VLIef77XmurGxhGjGK+xAff\nus9oNKFWW2FpaYm5YzMY9cnkxGIvvnwHSQoWSsU+tm2xvLxMIpHAtkW2uFaroRnfcbDWVpaFh1WX\nyeRSAv3YbaHpCpquEOCRTWdQZYVep89KbRnPcVFksZl3u90FaalJNBElm00jSQGpRJJ+X0wZlkol\nCoU8iVicJ0+eYJlT5vM50+mUdrvN82eHZFJZ8tlcqD6bDEfUajV6HaEwW19ZJW7EkX2VRDRBsVDC\nnjtMpzOy2SzNZpOTkxNM06RUKgmv8WTC5XkdRRI9XU1VUWWFlZUVAvywt3815aurGp7jIgUB5VJB\n2JdUlW5bxCJUWQFfxJ8CxyWbSpNLZxj2+qTiCZIx4UJWJPHoJBIJAQYwpwxHA1Rd5cmjR9jWHHMy\nxdB0Xv/Ya1gzk4gmEKGZTEZMUEbjBAHiz06J07PnBoJE1B+QymaYzS2m1pSzyzMymRQHB3tUSmU6\nrTbWzCKfzTIZjSjlCwsRiGBAX332pmnSarXQIyqapoabjDU3F30lD9Oc8sIL16lUSoxGAyQpIB6P\nhnzqmTlBkoOQFjefm0QXespGuxFmqqUAlpeX8TyPi/olyWSS3d1dut0eB/tHVGvLnJ6fhZG2drsp\ncr7JJNqCZazrOv5CaHNlwup0OvS6fSRk9p7us1StMZ9ZFHI5SuUCvV6XxIKCpWkateUq0ZjINUci\nEdbWNmi320JKb5ri1uKK2FylUmFlZYUnTx+RSqUWk8+CCHdyckK32xXGsYtLJuOhmNA3DB49fMK1\nnevMJuZiIt2iWltaHGaaWFMT1xUTj+Z0hue41GorjEdTlpaWKORFrjybEqawYrGMqqq0Wi0KhRKz\nmbXwgRvkCkUcz8eIxWm2O2RyOVbX1+n1+zw/PsLxXPb398Os9GQ0JSJplLJlUsmMiFHKKrFYglar\ngyKpjMdTDg4OWFlZoVquMBkN2NrYZDAY8OabbxJPJRmPx5w3xTCUZVmcn59jmiILb1kWzWabkxMR\ni1EUhTsv3aHd6zJ354xGwvN7bXuHTrPN0bPnznQKIwAAIABJREFUGLrO3du38QOPl+7eoVwssP/0\nCTeuXSOdTqPIGq1mh1gysUgPSEymJp4XkMyIBEqj0eLw2QmpZA7X9dndvc7hs+d4nkcmmaJVb1Au\ni+/o63/7d7QbTV64fiPMtn/zG2+jK6p4LlZXOT8/X0wcV8nnCkRjcSJqZIHznYn5l0IhhM3MHRst\nEkVSlMWlQWhBe92rCGaOVrNDNpujXChTyJeYTKbcvH2LdrezEDmMmM1mXDYbFIolbt2+w2AwDLn6\niXSG7qAvcKCWhYRAnLY7zTD69vprn8BxPBRV2O/qzYZYi5aW2dvbw3Fc+r0h1WoNSVHJZDIsLS+z\n9+wAVdcE1XFiUi5XyZeKFMtVIpEIuUwWL/B575136bY7yKpCLpvn7OycF27dQYkYqJqYOwhkiVyx\nwNx2icYTHByeYDsBTx/ts7ayztmxsN1dJQguGy2azTYK2v/7DTmRSPD7v//7fOlLX+LLX/4yb7zx\nBqVSiS984Qt86Utf4rd/+7fDL/uHf/iH+fKXv8wf//Ef86M/+qPfczMGGI1G1KoVut02H3/9Y/wn\nP/tzZDIp6q0miq6RzmXxfZ/d3V0eP36M7bniFhOLomqwsbHGYNDj4uIMVZXRdZVCqcjp+RmGoTMY\nDPB9n26/QyIZw4iKW1u/32d1dZmtrQ3q9bpQQHb6FPNF+q0u/tyl0xE4PBA81mhcnCw7nc6C0WqF\nYHtrOuPs+ATLMsmkxISxZVm4todtOvg+7O3t0e126XbbxKMGd+7cwV3oJeemTafVZdgfkc8WSKWy\nzGdzotE46+ubnJ1dYNs28XiUdDLBoNfHc3xWVtYESCUhhiTcuaALPX/+jLk5xvMcvvX+u2iqSiqR\nxNAMRv0Bq8srwkE8myIFPpORsME45pxus4U1mRJ4PrWlpYVhRRaKNscJjSu+75MrFHj89ClGLEam\nkCcej7O7u4vneWF2UgoA30eVZYr5AmcLo5aiCOoPyIzHY2ZTQXkqFotY8zmn52e0uy3mjpA3aLpC\nPp/n8PmB+LsYBp1mN8wsXoFBJpNRaJeyLJPqUpnpdIrneSRTcdxAOFIn0zHj8ZhWp4nj2Rwc7LGx\nsYbrzcMDXiwWI5PJ8MEHH4QbRKfTYTDooaoymqYtFmFHDH11e6STqXAA5+TklEy6QCyRZDqZoRsG\nxUoRZCksjR8dPicZF6XwwWAQqjCziwG2zc3N8OC3vLyKNZuHkS1NlsB3F/GugFa7wXwuYnmapoXY\n0ny+KAZkFkQsTdPIJMUNmcUtcDAYUCwWef78OY7jUCgUQs50JpPhtY99nFarhRJIFPJ56heXrNSW\n2Vjfwp4vHNWKsrhBDZADsbzk81kUReLNt75OOpujPxgt3gcL5KsYpDw/P+faCzc4Pj4Gz2dlaZkn\nT/Y4fn6CFMgcnZxSrS3x8OFDmq0GlmURM6JoikrUMHjhxg0816VcKDMcTRhNZ4wmU1KZHP3eEN8N\niMg6lWKFfCZPIVtgOhmhagLEMVswzHd2tjg5ORHP3WKdsmyLUrXMdFHVSaVSC4CHRywaJxaNMxyO\n0XWRq72qZB0dPmepUmV9dY1sOkclX2Q+Mzk7Owvd7g8ePKDfG1IqVVhZWaM/GNFst+gPBlSrKyTT\nWSzTJplI0+sOWNvY4uyiTm1ljeFghO/7tNttHj16QKGQ4/79+5imyeuvv45lWcIHYImNTJVELLNa\nqYhLiqqSSCRCLHGhUKDdauH7Pls724K0VcwxHg9pt4Vf+iq/bNs2lUplIXGJEoslePToMR/96KtM\np+bCg64SALOpibQ4KMcWg65z26bd73F4fMRsblGpVEkkkriez2A4QkKmVqrgu+LQrGkKg0VGv1Ao\nYrseFxcXdLp9fB96XUH0293dFTHMrR0UTWc8mXFZb9LqiA12MBRVEcsS7mPdMChVKnz44AGNRotE\nIsYnP/ED9NodkRFv1CmXqhjROJ3+iFgizsraBo7rcvDs2WIfmxD4Es8OjlAkjdOjU3zXI5NJEcgB\nk9mMSNSgVK7Quqx/1/3wH5zUpchgO3Mc12Y6HfPVv/oLBoM+nj8nlhCEoHgqSaMhTkDj8Zijk2OC\nQFwjnh3uk0onSKVSTGZT8kXhxT07O6PdbrO8uoJlzbh9+xaO72B7NrPZFEWR6PU6PHnyhI985CMA\nApLfH6BIKvmscP1e5TyRgwWmTtiNXNclm83iuuJ96LrOcNSnWiqjKDLNZjMsY/d6PQrZHNe2d5jN\nZly7do1Go8HR0RGPHz9GCgKSySSdThdDi/Bs75DxYEan02M8nvL1v/sarVaLbDZLo9EQfmQEgjMa\nMZB8CVmWw4licdN0MM0p48kwZGhfwd0z6TT3P/wAXVFJxRPIgDkVZZRyocj21i7VUhk8H9d1SacE\nHOHGjZsLU1WV+WKC9p333iUaj6HHDJADxpMhw5G4qV3dRk3TpFgsIgXgOQ7xaAzDiNJsNsPbYSaT\nW7iKDdptIQWQFNFs0TRRxZjP56HRJp/PMx6KzPZsMg0PhSDMTo26WFQMw2A8HhGNGkhSwGg0CjGC\nkUgESZEol4UCsrJUwbRmKIpEtyv67qZpUq/X2dnZWZSsBUnLdV2m0ynDRelsMpuK3LQRJfB8qksV\nNE0jHkvi+z6ZdJbjs1PS2QwXi4n4SCSCbdtiWl1RsG2HymKhBLi8vGRtbY3j42O2twUspllvkE5n\nF7dpAZl44YXrgu6Wy4XQjsFgQKFUDNnTJycn4qCzEJ4Erid8u70+nudRKBSYjAZsbKzheR6j0SSs\nrliWJcAyFxc4cxtJkvEdn2KuyOHhEYeLRalcLoubwOUlWxvb3P/wnvj3lSLxRJR8Pk8mk0HTIkxG\nU/L5fIj7PDs7I5lM8t577zEYj8ARkSjHmmObFsVikZ2dHSKRCNWlCnIAqWQS13E4ev6crfUNsqk0\nge1izx1W1zcZTMbU2y1MZw6ywvbGJoVcEdO0SaXSyLL4OR10OyiKxOXlJcm4MPnYtoXjOyJOBngE\nfPDe++AJX3ar1WE+d0JS3tOnT0WrQVZCC1m32xXQjeEIOZDJxJO4tgd+wNrKKv1uL2Tp37x5k4OD\nQ6qVZfKlIjNLqC97gwGyrJDN5tD1CKlUmvF4wt27L/K3f/t3nJychBS5iK6TSiZZWqqG2fiIrosb\n5kL00e/1qFQqPHr0iGg0StQwwuzvFevg5s2b3Lp1R6wpgc+DBw/CfHmv18O2xWHvikqYz+epVqsh\ngMW2baJGnJOTsxBudNWO0g0Dz/OoViqsrq4ydz0mU5Nub8CNGze4PDsHTUytn52dsbaySlSPUK1W\n6ff7LAIIzGdzvvrVv8bzxMUooguozpU85EoOUSlXSSYFV304HpHJZb/jKHZdMrkcmhohnU5TrdRI\npVI8efKEVqsVEtPGY/Fz/nT/ACMWp93t8uZb/4ZAlpA1VeCcHYfxdCqEGMkMpmlx584dEskY7XaT\n3WvbuL5wb+9sbX7X/fAffEPOZrNY5hzH9Ygl4mQLGW69eAvbtpEkj/F0hDmfYMQN8QMi++iqgu+7\ndLsddEPHcV10I0IqlaHd7tJstEml00iaxOHRMwLJZ39/H3M2h0Bma3eH4XBIMplmMhvjeDZz26Tb\na7O2tooWUai3Lmg0LqnVaozHU1RZI/A9JD+gcVlHRsPQDAxFbASOa1JeruDIHv3xkHRGlFtrtRU2\nVrdotbo8fbpHKpX6Tg5NgaWVCqlsgkwuxa07t7A9l2hcAOxT2VQIk5dRcG2PuB6jVCgwHY2RXBj2\nxuhqBGtmo+sRNE3FnE7QdZlYzCCuG3i2RzqVZWrOkSQJTVPCPrUb+ByfnpJMi154LBZDCgJSC8F3\noVBgPJqiqir9fpdMOo1EQCImLEKxWBzbdvBmNvZ4ztbKFr3uENd2ySbS9Ftd0okUuUyOtY31sIw8\nHYv+p7pAY+7v7xNLxBmM+kxmQ2RJwlAjix+IMbKi4HkOpWKWXCbNs/19knEDI6KRSiSQEWxvgLnr\nEE0lGE3GKJrGycmpQD5mMgz7A3x7TmKRMzWtKfO58CAPBkMihoHtOuiGWEQ0RWY2GQv5hCyRyaSY\nTCZENIPJSOTJZRlSiTiz0ZRCukhMi9M8a2NoMQ4Ojui0+wSBRCaZ4Z23v0mhUGA0maGqOlE9TjFX\nwJrOkT0Jc2qytrIGQLvZ4vj4hGRaaPQ0I4LlOZxcnuIGHq4PsmpwdHJBRI8xGAzQdINmp8vK6jrt\nTg/LcVG1CJY9x7JsbNslk8kxmk7E5yorBJ7P44eP8DyXDz/8ULCfJQdFU5EkGUVR0XWdfr9DNp0i\n8FwURSKVTmBZE1AhV84zHE84ODgiHc8ydyzuvPwSAIPhkPFC+tLvd0VvrryMbdqCo94X1qLhRCxo\nsYhBIhnn4vSM7a0tcsUCx2enyIoiypGuy3n9HOQAe1Hm39vb4+hgn2w6iWoo5ApZIpEI6+ub1C8a\nRDQDc2rhuy6B46CrKo4zp1gtEc+kmNoziuUCl5fnmNaYRCoewj8ApIVPWQ1kNlbXwjjj+soqc3NG\nPGrgzi3G/R6aImFbFrlsFkmSKVWXkDWVvefP8GQf1/fZOzjg9t27YlgronNyekS5lOHb336bXqdJ\nMh7l5PkR4/6Aw709YobQBMbiSfL5Is+ePefVj7zKeDhBk1Q0ScZ3XIa9PslkCgUZ13Yp5PIcHByw\nuipMaMury+L5jcdQVJXxZIJnOxRzeY6PjlAkmbfeepNsOkNEVrEtk2w+heXMODk/o1ZbZjgeEU8m\nmE5MDp8d4bkS7XaXQjbHoNvl7OwMaz4TytRr19AUcbFZW15l2O2xtbqObVqMRhOs6YxEOsXW1hZ/\n8zd/g6ZpeG5Ao9Vkd3eXP//qX7C+s0Wn12VpaYl0UlQk6/U6P/If/TCBItPp9pECmbnlUllepT+d\n4UkqxVoNO/Bottt0el3qrSb4Aa47JxqLCAmHrHF48JxOs08+X6Reb3L9+gtc9JtIcTFkVi6WFv3g\nPnNrimEYaBJEIwrZfIZUOo2uabxw/Tr9fp9eb4Izd7l3795iZqTExWUDVZWZzif0BsPvuh/+g2/I\njuOQzmaIRg3uP3rAeDzmwYMHvPTSXXq9HtHFUNJ8bhKNRgTxp9sllUqxe/0ag/6QTCbD5eUlu9eu\nMbdtGq069frVgI4oW9u2zWX9HCSfaDTK6sZ6SB5yAzfk05aXqvSGA04vzrl+YxfPcVElGWc+p98R\np3nfh3Qqy+npaXgzS+fyJBNpMXUZsMi7RXj69Cn7+/thGWt9fZ12u0m+kKXb7WJZFgcH+/T7fQFS\nkSWSabGZqKouFnxJpZAvcXp6jqZp3Lt3D88T/SPX9ZgvPsOrAR5FkZgtMrlXgxeDwYhyucyzo2do\nEV2YpSZjOp0ON27eYjITN952u83G2jqmNadUEkMJvu8L57EmpPJXKkIpCCiXy0zHk/+buDd7kuw8\n8/Oes2SeLfe9svbq6h1oACRAcKc0Q9mSY2JGM7JNhf87hUMO21d2+EYRmhE1QxJDDECAjW70WntW\nVe7byXNOnj198WUnZYV5pwhWBG4b3VWV5/vO+/5+z4MiqQSuz9Ovv+HDJx/hux7D4Zj3Hz8h8H0x\n2h0OcTyPZrvB9fW1wGHKMp3OJcViEXfhsEpSoThMVyRhRBKlZDMZVEUhTVOhwIsCJElARyqV8oYC\ntHTFv/ldECdhxWAwYG9vjzRN6XQ6HOztM+j1cV0R/nj30J3PRW/z3UTkXRhMjMNZu3yrLNeXmnek\nnygImU9tHtx9RLlURVM1DnYPqJZrrBIo5PL84NMfUi7VyeeL7Ozs4HnCGiQrCpPJhGjt2k0QO7R3\n4+k7d+4IPq+isJIQDPAkYW7b1Gp1fD9gOByxv3+w5jxPGQ5HzKc2q9VqE7CczKasUonO9S2KnEFV\ns+imhiRJPHz4UDDct7dFp3K5JIwjWMkUrCJpmgoXs6Gh6zqO5zGeTjk+vgeI1Hwcx8xmM4w1xvXd\nWF/XhZnHMAwCP8J1XT755FMRUFo4TKczJEkmk8nS7w+wdJNyoUS5LAJ5t7e3ZDLC4vXgwQMuLi5E\nGEyS2W1vI8UgpyuO9g/Y29kVn71kheuI3+VcLke/36fdbvPixQvK5TKDwQBpvSqpVqs0m1t0bm6I\nooibbpeMkaGxfntbLBYb2uA7xWitVqPb7dLpdHj84OE6hKlTLORI4pCDvV3iKCBnWlxdXVEul8UF\ndOkgqxK9QR9FkTk42GcwEP33N2/ekKYJjudwfO8YSZL46quvuH9fsAna7TaapjGfz3jv8UMURaJS\nLPD65StMXefrr78mm81uBBf37z3Edh1kVaFzcy3ARGt08KtXr0AReRNJVQjDmOl0jqooPH78mCRJ\nGAzH61Btke12e/2cCskqWSbDCUEUEwRiRZPL5XCXHrazoN5qsvRdFp7DapUgkZIzTDIZEdbzl0sU\nJAa9IaQStUoV0hXOdE6w9Hl87wHZbHbTEBmPx9y9e5fhsI9lmGiZ7MaTrKoqjr0gjCNWkkIcp9y/\n/5DOTZdvnr8gX67w9bNvOLkQrAlhloo3+Fp5Bbs7O1ycXbLdbBH5AdHSp91us5JXPHryPn4cUa/X\nBbtCFTvzaqHExek5lmFiZLJIMSwXHoPbAYuFw0Xnioyp02hviWd4VqdYqhDGEamEoB4u/huTuv5b\nfvWHA/KlAn4U4vlLcoU8Vt5kvrDX0vO10SSbwfOXpKwoV0s4jkMSpyKpORrS3tnmq6++wnYdStUK\nh8eHuP6SfKlI5/YGP/LFB2g8IW8ZkAjv7WA8EuVyf0mj1eTLr35Hc6vBRx9/xHQ2YzKboqpZet0B\n5XIFaSVx5/B4Q0E6OBKF+W+ePmc+X8BKYrsl7CelfI5GQ9y60zRh73Cf0/MT6vW6sJ6E0eYtRdd1\n0jRla2uLyXREECzp9/si5GFaVCpVyqUqGd3ge9//IavVSthP5vONBzkIfBzHXgdzEuIVFAqlDTN2\nMBCAgOVyyWQ2E8Lveo1er7f5wO7sHQjEoSThLD3mswWFUpFVKt6erq+viUOx0xV79zHyShZl+dY2\ntUqFwPGwLBHou7m5YWG7DAdjDN0Ub9pjcQCUCkWhZ5RltuoNcrqFkdHxnSUZRWV3ewdVkpmNZ9hT\nm+Vyie+HzOfCouUFnlAZBh5pEiHJ4iAeDYcMh8MNdS2bzSKtYH93D0VR2Ns7wHUcjLVtSFUUtEyW\n0I9YJStIJRRZXlc2UnZ3d5Ekif5wQBBEuEufUqVIVs9gmjniIGbQGwpFZppwcnJCKZfn0b37hMuA\nk5MzXr16heN5SIpCtVInXIpQkJE3ub69YTafUyqXcZfeBqjh+0uiKNxgK6V1BS2KIgrFMo7j4bpL\ner0Bk8ls7bXWODg44MWL5/i+R7vdEq5mXSNXyFOqlJnObHTdRJZl/uEf/oGMluXk5ARZlvF9n0qp\nSqlQ3th6XNchk8lw2+vi+T6FQpmLiwuSJGF3e28tTbhhOh5v+NfJuu4D4Hk+mmZQKJTo3vbJ5YSY\n4uHDhziehx+GvLfmy78DjURJQrO9Ra0m6if/5//+f6AqClk1Qzlf4ObyGkvTOdw/ZOkuKRSKNLfa\nTCYTCoUCndsu3W6fO0d3GfRH/OxnP2O+sGnv7FCvN+gNBihKhudPvyFnmhg5i9pWE9QMkqJye9tj\nq7VNtSqQsrIMO3vbTOZTZFnmux9+RKfTIZvNUioWOT8/5c6dQ/qDLhlZYW9vh2arRW/QI0oCPM/F\nNA12d7aIooDZbEIQLCnXyrR322imAYrMaDrhunvL/uEhv/71r1kGPnEccnt7TavR4D//p79jPpni\nLBYcHezx6NEDikVxcXSWHplMhvPLi41T3jBNFuvMB8CDR4/WJjB7k7R2HAfP8/j2m2cbwYrruvS6\nXZZegGUIbrgiq4I0drBPuVjgzqEI2Xqex70HD3CXHvliEc/zODo6YjAY0GqIsF4aJ+vVQ0PYw46P\nmU0mQleaz9NuNZiOJ+RMa1NjBbHzHg2GFItFXr58SegLFG65WFojOGMO9/e5d3yfb799uQ5xyXzz\nzTfolgB/OJ4r6ltRuMErt1otnn71Nd//3veIg5CcrmFkVPSMSmt3i//7//m/sPImnZsrbrq33N5e\n889++jMMTSONJbz5ksXEw8qY3D08plltkDctZFUhSGJevj1hvlhyfnGNvfC4d/c+UZigyBl2mtt/\n9Dz8kx/IxUqRmT0niEJRLTi+s/llMU1TOCYPDjYEKkGSiWg06zieS384II7FrlBSJSaTCZqWYeE6\nvHr1SriFC4Jk5DgO7XYbVVV5/vz5emydZ2trG83QkdUspUqZi6tLpvacrKZi2zYnJyekqXiwuO6S\nFy9ekc1qGJZFpyNSmHfv3sNZLFHVLC9fvsTUDZzFglIxz/tPHqNkFRZr9KQfBpuay97eHltbW5yc\nnFCtVvny69/hLpfc9m9pNusE4RLTNNZ9XJvbmx7Pn78goxmEsTDRiNS2jaoKtvBsMRN1iplLuVyl\nWhG3vCgRB6ksy8iqwr379/HcJYEvZOQA5+fnZDSD6XxBupKIErErFzWnIo1qjSAICMOY7s0tpXxh\nvZsU4bQoiMnKGdqtLUI/WOvYAqIk3ryFrlYrkkS8CcpIHOzt0+/2SOOEYr5ATjPQFJV+t0chn0eV\nM7TbbRHK0TTa7Z0NMezv//7vKZdF8K9aFqS4rWaLgpVDlRRkxFuv67rk83nmkzmBt8Q0rPU+lXVi\nX/zdPM9HQhzicRwLv3W7jZY18JciMKfKGeJ1FPrzzz9HWinMxnNkWcEPQvaPj3C9Jd88e853P/kB\nhpnj0ftPSJIVrGRBbAtiZpMptUqNnb1dojTkuttha2tLGIdABE+8JZ7j4i7Eoei6LrlCnsXCJYwS\nyqUqlplf16p0SFdidL1mJy+XwSaspSgqt2t+ehzHyKrC9q4whrV32oIXrqo0a8KUY9s2iiLIZW9P\nTzg4OiKXLxInK5BlTs/PyeVyRH7MD773A/xlKAQTa3tYbyCS+2kKlpUniWE2mXF+fk6+VGA0HVMo\n5lFUmcGwj65r1CoVcbBH4YaKV8rnePzoAaskhTRlPp+LfaGkbLzA8/kcBYlSsUwQhOy2tzk6OuL0\n9FQk5dd1ryiK6Q9GgmO8Am39c65W6kxnM2zfw/ND8sUyv/rVr/DXYahCoYBu6WT1DAt7RppETCcj\nCnkL2xaeYMdxKJfLFNeHkh94tLZbeIFHoVzAW9osFlOKhZxgiychkFIul1kshCLWMAxMyyJfLNFs\nb3H//n1WEmvcrsqTJ08oFQtIkkh+n56eCj6DJIkqpGWJt3Lfp1StkC+VaGy12D0Qa5B3Lzq+72Oa\n5ubiqus6Dx48EHv1QZdGs0ouZ1EpFXBdFymVaDQatNttOp0OvV4PRVE2BqpcLofjecxcwXT47LPP\nSJKE84tTTt684nB/n7yVo5DLY5g5cvkijfXBnyJY8svAJwhFhdIwDOrVyubz8Pb1K7RMlqMjsX99\n+/Ytlm5xfHhMsAx59s1zdM1YKx4XfPy9T/jyyy9BkTHzJpedKzRNW/fvRVjWzBV48eIF9Xod2xYT\nxCiKmM6ntHbb3PRuWUkSyUqsRM/XI/2joyNMLUdOyxMvE24vb7hzeESpVOL9Dz6i1qjz/gcf4i1D\nVMXAc5a8eXPGYDAmDiJ6gz/wOv7rrz/5gZySMptNGE9H5IsFUWHKF9e3PIE79PwlsirGdrY9o96o\nMRgIpOLPfvbPhdZLUnHdJblcjvF0xo9//GMq5Rr+MtykON/pC6fTKfv7+1zf9iiVq4xnU5JYjDcL\nhQL5UpFut0uyWomAhbskny+SM/P0egN+8P0fCVNT7LO3DkydvL1gNrMJggjfC5hMJlQqIoT1+u1b\nDMvE8VzG09FmtDwajTYwc8MwNzB1wxQfjjQOUSVY+i5RFHJ93UE3shwdHQCp6On5Plc3nY2KTzey\nKOtKQq6QJ4wiTk9PiWNx4bGdBdV6nSRJ1oYe4VIN1iCQKElRVZVqvQGIFOkqSQmDGFMzcF0Xy8zz\n6NFjisUS7dY2abzaJBYbjQZxGJHGMe32jtBNhgEff/w9BuPJ5mIVBMHmFj/oj6iVa5TyJbYbbUoF\nEVrKWxYHu4dYlsWgNyRJVtRqjY0GMI5jPvjgfcbjIc1alXAp9n2mZuI5HsHSF4EvRWUxnyOvxBum\nLKvcdG6pVevMZrNNmMw0TSRJ2lze4jim1Wrx1VdfYVkW5WKJYq5E5+IaWZaJ45RPP/6UJ4+fsLuz\nv4ayyERJSiZn4sYxXhhRrgkMYqvVIg4Tkihlabs8efgeb1+/wbEX+N6SvGEJlOaO2PeFYbRGKI7Y\n3RU+7HdaylKlytbWNrbjijGuKnzIn3/+Ben60Hr31tvtdpnP/3DJVRQVS88xmUwZTcZkdU3kCd6N\n9AyTSqlKtVpnOp1yc3OLJEnM53POLi9YBj5LX1xwXNdF03Sm09nGFZvL5TarJQB77jCbztne3mY4\nHGIYBmHoY9szLjsXIK9QFAlZhm7vZo1cNCkUClyeneMsFlSKJd5//JCMotJotUgRK4kkSXAcj52t\nHaSVzHgo3rzjOCGJRTvi8PCQwA8J1g2Edyuu+XxOo1qj3RKmrsFgRCrJhLHAqApHtvidev3mpTAz\nOXPG4/EmfZ6mKdOpaE50ri/pdK7E99+eoutZHMdmMhlt+uv+WguazQr+s2VZOI7N/uEBZxen5PJ5\n7Pkcx15QLpfZ29tD0zRkWeb58+dMJut9+1wgVkU9aoWSzVAqlbBtG89z2NvbYzoVOsl6o8mvP/sN\nIC4WYRyRIqqjh8eHVKtlptMpo9GIw8NDLEsnjkMWzpTRaLDB0GYzKvZixu52G2m1olwsYRniZeHi\n4mJj1TNzFg8fPqTZrG8udN988w2Xl5cCJLXd5PTilPPLC2RVIk4j8qUit70uaia7cbQPh0OePXuK\nqekUi0VmsxlJIi7CcRyL2mGvx872Lu2tkc9nAAAgAElEQVS2kKGsUphOZjgLl/bONtPplDcnb0mS\nBCuXE3KUuU2+WGZmz9FNk1QCx/EEy0DPbLrS1XoNKatSrFawPZfLzhXX19d4no+iZMjIWbKKTuRH\nwkqmKqhZMR0Zj8f85Ef/jHZrh6UXMp8tMLIGaQqaZfzR8/BPfiC/606+++/m5obRaMRPf/wzXNfl\n6roj4Brb20wmEwajIefn50wmEw73D3j14iWGYfD27Vts26ZcruK5Pt9885xcrkAYxjx6+B5pCq67\nJJvV6VzdsLXVpl4XxJZ8rijenuY25+fndC4uRerV96lXqpuaz3XnFtu2Ob+8IKuLhK7jiX1Ao9Gi\nUChh6BZJshJpXCVDt9tFlmUWrsNgNOKj737Cba9LGMQcHBwQRdEmKdlqbREuA1r1JpPRiG++eUou\nl+OjJx+snbKPQZLWqkJXvGEqIhlpuza2ayOrKrVabeOpnUwm1OoVstkspmnieT693mDdn/TRNA3L\nsri6ugagUhI7WddZYpkC9BGGMY5tr4UKJmEYMRlO0FSNVr2FlErk80WyhrlJww8H4/UtPMedo7uC\nDrVacffuPUajEavVarPje2evUSSZ8WAIyUp0pSWJ09NTKsUqabTCyJp4iyWBH7G1tcVsNlm7n8f/\nH1JcmqywDBNVVihYOVZxwt7e3vqg9QjDmEKhgKIojMfjdd2jQrfbpVgsUiqV/kAR6/fo94bCDzyz\nefH8Ofu7uxjZHJae49vnL7jp9snlCtze9pBllcFwjFEsomomc8cDScZeLOj3Rd2hUW1wsHfIaDDm\nX/yznxO6AaswppjLkzPMDc83iiJub7scHx6JfWSxgizLXF9fM56KwzSTydC5uaXTEf3mDz74AEmS\nAZl6vcliseDj733KdDrd7N/0rLY52JN4hR+G+FHIYDDAXYjxpSStSJIIQ7cwdIs4WmHPHd5//33x\nfVcF81pcZrKi0bD2fkeJSJM6jtjpZ7Oa0Ii+eoumaRiGjq7ra3dudsMrfpfHODjc21wYHcemvr5A\nnp6eCjrgcECpVmPhOui6Sa1cEYq+1Yq//uu/pnPRYT6fC+NSLs8qWVEqldYs4yxffPk5jUaDbFZU\nIJvNJvPpFMfx0FSNXnfAdC5WAO89fgwI+1N/0N0Y0IQkQ6ZaLVOpVLh79y71RgNJkXGWHo8ePWI4\n6DGbjMiqMqVCjvF4iKyK+uDNzQ3FSpnZfMLNzQ1pHGEZOqcnbzg+PKJRrTEdjfn2229ptVrcuXMH\nTTOEJtHK8fDhQzTT4NtvX7K9vc1sNuP84gLd0DB0Hc918Txvwz8/OhYTsOtrsT4zTQNN0zaXtuvr\naxRZ4vWbV/zgxz/CcWxce857jx+zXC6FaMUwcGxRecqqwuSUpin3796jc3FFVlWplgQvwfU93nvv\nPebzKZPJiHZb9N339/c5PT8jo6ns7+9iFfIYOYv+YMD3f/RD4pVojzx7/s3m4vPw0X0uLy8pFHNi\n3QibqWIQRfztf/o7UlYMRkOCOOD4+Jjr62sO9g+5//DBJgdTrVQoFAps7WwzHI+4uupgmhavXr4R\n7QRnSb83JPRDBr0B5WJZ/H4uA+I0YTYTCXNZTsXUdrZAyaikUsrf/OLfoJs6pUqJNydvkJC57oiR\n/8K2SeKYOI4FbGir8UfPwz/5gdxqtdZmI6EenI4n6FmNXq/HeCzsPLPZjK+fPiVKhL9S+CcT0lRg\nGT1H7EKqJdHbrFWreM6SNEp5/OAx3esugeejGRa242Hkcjz79uW6urLk+uqKcrkqqj6pqDDtbLVZ\nLBa8fv2ajz/+mLOT0009xfO8dVBjie2I3etoPCFdQbVaw/WEMH4wGHDv7gNev33DcDhka7vNb/7x\nMxauAPkvQ38DxBgMBsxmM6Iw4eL8itO3J2gZjflsxpdffoVtL+j1eniuK6o1KahZlSiOKZeLFAoi\nXFMsFrm5ucFxPFRVxTBF3aFSqeA4YuxpOwvq9Sbtdpvb6xuiQMgtAEajCYZhrW/+Ux4+fEwSRjRq\nTeZTG8fxyGQ04WRdeFxf3axNWClqViGKY4bDPpom/MIiuKUSpwK9+o5iZRhCQycuQmJcLLqMIr29\nkiCIorUT+ZpPP/0+2n9xU3bmNnpGSEUqlQpPnz6luE6Kj8dj7hwcsopidE2jUa8R+gFffP5PqKqA\nIsRxShjGG0KT67rIMliWwevXr4njmKurK8Iw5HuffsxoMKBarfJv/vpvKBWKOLZDGq344Q9/iqJk\neHt2Si5fFDrBwZjACzCNHIqk0ul0qFXLQhqRin57vlhCUmR++ctfYmg6hmbiuksSJBRVdFh9399U\nOfSMsDjt7uzQamxRqzVYuEusvKj8BVGIrChYuRy6rtNqb1NrNMkVhFYwjmPy+TxaJrsO7JTY29uj\n2+1uyGjlsnAzG7pOEPnYazuXrpvU62KcZ09ntLYaqNkMmYzC2cU55XKZs9MLokjQo95pAt/9PA4O\njjZj3HeHtyqpHB/fI45SnIVHNqNzenHJo8fvc3Z6IUabWY1qpYJrz1l6oiNcbzZI05SrszMe3LvP\nqD8QKtB0xdHREf/hP/wH4QBPYDQYcO/4Lt1ul2dPn4pMgqry5Mn7xLHoHScIbOrh/gFmRkNXdbZ3\nxJ7+pz/96caSJKXCdzsdjzk6OhD1wbVWtNFqohmizpPEKaZp8M03T2k3W+QNHWWVsljMWckSKWL8\n3GxuMZ8tSNOUWr2y0Y16jk1GUbEnY7770XfIWzkmkxnD8RQlkyGME667PcIowZ47fOfjj3n9+rWY\n4FRKTCYi/1EsFimXqhi6JcJ6jnhxeKcxNQwDx3OwLBNJhoJlCYlHqcRvfvMbZFnGMAxubm5IopRC\noSh2rbkcw3WdU8vobG/t8Plnv0XLZgV9LAjJ5Uy2t7d58/Y1fiBIXffvi0N1Npuxt7tNukoYjYeo\nskSlVMQPlrx5+5YojlHXeOTxbCoQxKenbG8LreSrt28AcbHIl4ocHR1j2zbffvuMJx9+gKZpmLqF\nqRsc7h9we30jVm7hEsdxCMOQcOmTRDHHR3eIgxDSlFyuwHA45vjoLs1aS+SAbBddMzEskyCKcP0l\nlmWQEPF3v/xbZE3Bi5bs3T3g6+e/x08CZosZfhRSa9S5vu1yfdulWquRy+cplAtUG3VI4j96Hv7J\nD2TbtjdoNeGo9Wg2t9YhJcEwlVVBWFr6Lsulh2EIFdflxQXV9e24vH6rUeQMve4AVckyny94/fot\nsizG2a9evUaSZGZTmzQVD4qri0tq1QZJlNC77SOtoFQoUioWxc5hteK609mkJbe3txlPR8zXf+93\n+z4BkhB+T/Hw8clZBb79VhCQNMPgpidUjldXVxvRfBStwSBBgJY1sOdzLNPk/v2HfPrpp9SqDf7V\nv/wfMAwLkLBMsT98d2AqqrQRnb/7s7NZndtel8Gov4ZjeFxfX1MsFgXRp1ghl8vx4vm3Qrc2mYj9\nI9But/F9UUlQFQXf9ajVamu/bcgqFVYYfxlSLlZwHQdd11FVdZN+tywLVVHY2tpe03LEHkhVshvh\n/TsP6btdcLFYxHFcesPBZgx3dnaGYZiYprmmJC2J44SDg0MymQySpJDJZKjVBBN4MpkAsLu7T787\noFauUC2VCZfCi/zhhx+iaRrT6RRDt5hMJtRrAo2pKAqlklACVqplXNelXCmxtbXFYiEenBlVZTae\nMBtPKOaKhKFIiQeRT7PVot/vk1E17hweklUztOqNzUOqf9vF1LM8ePCAnZ02r968IQxjGo0GzTXe\n8PLyUoAaCiIQVygUePbs2RqLmtKo1nBtl2KxyGQ2Rdd1hoOxIJGtU7YXl2e4S2GlEhUMcatvNBoc\nHRyySlKyakasS7yA9u4OhiXCdmLUGzMejwlCD3nN3A3DkO2tNkmSMLenTCZjfF+ksS0zT75Q4tGj\nR7w9O+XZ8xc4nkupVMEyxb/jHSGsWisjrT3bsqwwn9kU80Xy+QJpumKr1abTuWZvb190uC3xM5LX\n1TjXFf92TVE52NnFtx0e3r1PHMc8fPiQZ98+5/0PnmzCZIEvAke1Wo0nT57w5s0butc3689dQLim\n1y2XAvazu7ODrojvzcOH9zk5OaG2ziWoqujwHx4eMplM+O53P6LZbG7G3+PxGEURVrFuv7ce454T\n+oLg1lp3tJFldMtkPBVBvdVqRa/Xo1YpEQWBaFWkCeVSidO3b2k0GuLP7HbJZLJEccp2exc/jBlN\nppimSaFU2VCzDg+Fp3s8GHJ8fLyG03TodsV0plIqs1y6G/vRvXv3GA2Gm/1pzrTQsiaXlx3SVHwP\n31ny3q3aPvjgA7G+eHvC2ckpf/7P/4wHd+9hmqboQ2saVxdnDId9CoUCOzvbvHz5gmK5tCZtraiW\nKzx57zFpGvPZZ5+h6zr379/ffJZBvAW/9957dLtdfF+Q2x49egSAmbOYTuY4jsOf/dmfUa5WODs7\n5cc/+cmaPeBuLv/bWy1WScpqlYqAWC7P2dsTVElmq9nmX//lv8axHR7cu898vsBbeOhZg+lkvgnN\nvrOTDUZDDCPD3p0DZgubwWRMGEWoWYVl7GMvXTQjS28w4sOPvsvFZYfOzS2t7Ra6qXF9e02pWPij\n5+Gf/EDu3twiSxL+Uuz6bjrXkELOKFIsCSiBrmYoWgXMjEW13CSKV/hBxGg6YTgdky9UMK0ig8GI\nQi7Hw/v30ZQMnuMJbqzvM5vaKCjsbx9SLlSplqo4joel55n0J8iJxMXFBcPJlPHcxg18UikFRcb2\nXIIkwQsjev0h+/v7jKZjJrMpyRoh2Rv06Xd7XJ5fUK+UCf0lRk50Wg8O7zIYjUGSuLq54ujOHtPp\nGMeeYRkGOzt7fP3lNzi2y+npKaam072+4bPPPsNxPF5++4rr80u2t1r4nkOSJGiGyeXFmaAsJSne\nwuPm6oYkXNFotFAUhbxlEqURe3t7eAuP28suwdIn8B2SJEI3NdrbDerVMtOpUGVOZmO85ZJKpUS6\nWuEuA9xlxNKPMdYaszRNMXMWsqLgeAtylkEchCipTLO5hbMMiRMBqGi1Wrx69UrsigcjnLmHnGZQ\nFQNJUtnfOSCrZHAXDuPxiEajzsuXLyBdce/oDs1qFd9xkdMVcRCSkTP4rs8yiAiCiDSVefv6RHS0\n18nu4WSMpMjkigUmixkRKVESk7Ii8EMKeSEgb9SaSCuIwhhdz7FaKRtcpu/7giQ2t8mbFnkrh2WZ\nhEnMwZ0jfvzDH5FEomoVrd2o23u7xNKK3mTCSsmykiXC2MfIaRg5Ay/wOb045bbfI6NlababzBc2\nXz/7PUEkEs3D4ZDba/FWtkrg3p1jPNdlq1nn/OyEXM7E1A2kOGXQ7VEq5jk83GdnRyADdc1ElTJk\nUNEVjfloxgfvfYiqZLm57bHV3mEwHDOaTViGHooKqzTBtHLIUoZioYoiZ1glEr4bsUpAlTP0egPu\n331AGq1o1OocHR2gqjqlco1+f8h155K9rTZx4FMqFBmM+htymucIuMrJyQn2dII9GROt1ylxuqJa\na+Ctx4JGzmQlrUjDiDReISsZDg/voKBw7/Au496IcBkznzlkNYNWe4tMJsPF2TnLxZJCriiIX8d3\n8Ow5/nxBrVSmd3uLmTMJ5ZQ4Dln6Ql9oWCaTyWx9sU6ZTEc0qxXSUHSV3+E/0xRqtQpB4BIlIecX\np1xdnKEoErqepVAuoVs6trsgVxAXphUJW6061WKJYW9IwRJcAVlSUWWZ/BrPure/z9Vtl3K9Qbna\npL7VRrNMVvKKi6tL/DDCMEzSNCWfM+l3b7BnEx4/eczJ5TmyKqHpOs16ky8+/wJLF9kbpJRao0pG\nz5DR/8DAj4KYpetRKhSJopjxZIofRcztBQvHpViqkVFNonCFa7sYmoqhqTiuTUaR6d7ccnf/kPlw\nTGA7RGHAZDJeX7BXLIOI5tYWjx49YpWkNOtNgmXAaDDko+98iCTJvHjxgqurK+zZnJ32NqVCidev\nXpLPGdxeX4hpjZXj/OyMo4MDFEUhV6wgZde622TFzt4uy8Dj9OKMWq1GqVDhf/13/55cweLevWMu\nLi5QFAVkBSuf2/APQjegWCggqQpvL84wzBy1epPzy0vsmU1WziBJEo1mjcP9XeETX8w3yNROp0tK\nQkyEbdtMJjPOzi9FZz0Rl+zQ9/jf/v2/41/9y5/zl3/5F8zmE66vrykV8zju5I+eh3/yAzllxfnF\nBd/9+GMqtSr/0//4C5ZewGg0JggiFEnl2bNvqZSqXJ5dM53MCYKIXC7PnTt3Rb+yc0MhXxQhknRF\n9+aWWq3Gwf4ReSvP7vYOW60W3//eDwTnNqMTxyk5q4C7XDKZTPjq6y8xLQ0rp7Nw5kynU9pbO5u9\nVq3WQNcNtnf3CcOQ9588Zraw18hC2NnfY3dflO4rtSqjyRhFETamd67mWrW6wW7W6mUgXY9bvqVc\nLlOr1fjJT37CaDphMp9xeOeI/f19bm5uUDMyhZxFsyn2adfX1xwc3sGy8hQKJXq9Ho1GgydP3uPy\n8pxapYoiy/iuQ++2T7u1jSorWLqBTIpmagJvmaasZJG6BfGmH6XJZhxnWjph5BNFAteYyxVQsppY\nGbBC002ajS0kSSEIIiaTGYuFQDRalsVw1EfTMpCk2FMRyojjGFWWKeVLmwBaviB2t57nYa7HsKvV\nitvbLnfu3KHf76Nls4Shj6ZlcGybUqlEtVolq2vopiU+fEAYCqTp0vcxrBwrSaJcrRKnInzm+yHL\npb+GowTE4QrfDXh0/zHT8YzeGm233dpmNp6QUdQNRrJaFaCF3//+91SrVfr9PqViheP79zbe4maz\nuQmFKVlZ9IplCdd1UVUR9NndaTMajfjLv/xLCoUStu1xcHRMd71rBzGyXq1WNBoNLjpXPLj/iNFo\nIoJ/WY1WvQFrUE0aJ5hmDsdbkiJRKpXo9QY8fvieqFcZFt3BEFnNbFYbqyTFtR1cxxMJZkVeC09c\nlp74d+zt7RFF4md5dnYhCGqSjLtYstveQ88aeI5LrVZF0zOkrMgV8ui6uflsBIFoFZh5a2M+6vf7\nG/Tl5cWF6I6nKzx3SbVR57RziVm0ULQsb89Oqdab7O7uo2V0bNujvbNLqVbnsnO1CWzu7u/x61//\nmk+++zEvX7xgMh6LN9rhiFevXlGpVDjaPyCbzZLN6BTzJaIgJpPROD4+Xr+FKhzuH1DIiTXMdCJW\nUvP5giiIOT05IZPRmIxnGz74u86053mUi0Wm0zmGbnL3+D6+HzKZz9b2JnEJeRcqnU6nmyBULpdj\nMppiTwVExbZtwijCsixubq6pVqvIskyjUV8HE2XOzk548uQ9luH6zXpNqWo2xTqqVq/zxVe/Yzqf\nUW82ASEH0bNZfMdjMbNRJRk9a9CoNtjd3qHZbNJqtTg6OkKSZErVCkomg+u7qJqK5wt2+d7eHr/4\nxS/QDIPeoE/WMoQHfDxi4TqkSNjOgrOLcxE08wP+4q//il/+6h8YjkbEaYKmaeTzRWx7wWq1olAo\nCMKfLCZf9WaLKE7FmsqeMxwO6fX66894uNlPlyriEvbq1St+8On3+fyffkt/0GMyHZPLmdiOAP7U\n68Ii1Rv02Wq36dxcYy8W/MNvfs1wOGQFoh6YywFixeYsPfwwoLm1jbcMmC9cCvkipxfnzByR5h6O\npyCrtNpNzILBZDICReJ//re/YL6wefr8G9rb25tsjr9mPvz/ff3JD2TLMjaibUmSef32hBSJ226f\n0I+x5x7FXAV77hKtAfW1Sp16tUGayOTzZZ68/xG//e1vOdg/pFKpUigUceYuv/viK3TNZNwbIccK\npmphzxbMp3OiMMaycmia2P3U6zXOzk6IY59KKcdg0COJFcIgYTZ11g9TQZwxTZPT01O2Gq3NQSYC\nUx5KRuU///2v2N7e5vr2Zn2gSyRRQq1co9WoEcY+pWqJSrW0RtatqNbKohaVyTCZTtF0E8cLkRQZ\nKy/eTMfTCZ1OR6Sgy+Iwms3nZHSNP//zf8FwOOTt27dCG3bTAaBSqZEkCbqRRTeySPIKwzCwbZvZ\nwmY6mxGtrUggDEPTkRiDvpOkT6dTHjx+xEpSyBVK5HNFFCWzrsVkeP3mFMssUK00MCxRf3hnCVJV\nlUwmQ6VSoVYTMotCQQRsTNPcHPJhGLJColgqY1o5/CAkTlLKlcpGw3j//j2WnkutXsX3/XUd55R4\nlRKvYhKRWaJWrjCfz/E8n8ViQaFQxHXFTv3u3ftsbW0J/GmUklENMqpGpVLl1YsX5M08ekZjv72L\n5zg8fvx4TfGasVz6DEdj7j94KGpPskKhVCSOY5bLgHq9SUbV6PeGlPIFkiRFz5jsbO+RM4sEfrSx\nPnU6Ajx/2bmhUKqhmzkGoyE7e/t0+8LM4/uiv+t6PpmsztnFJdV6kzSFDDLR0kOVZApWAcfxRCJe\nUlCyGW57AqUZpwKD6fshURRxfX3Nxx9/zPnpmUjpex6KJHF8fLxmD8vEaYokSRvt40qCTueSBw+O\ncdf2nUK+hOO4FAqldSiuzssXr0nTlNvbW6IwIVwT6aZzYZQKgoDBWMgTyuUyuVyOve0d0iBht71N\nEiaoqspoPKHcaLIIlkRpRKlWplQpcnpyThQlfPSd75CzCpyenlMoVUBWMKzcuh0gNIAPHz4kThLG\n4zE3vS5/8Rd/wWQ0pt/tcfr2jLxVQMsaAiKykhkMRtRqjTWP+Vu2t7dJ44SMKh6RT957n2xWp1IW\nvejd3X1+8P0f0e8Pmc3s9SHqYOgmBSuHBAzGI1zfR9V0PN9nMB6hKAqVSoXnz58LG5mswEqISxzH\n4Tvf+Y6wzOVyovKnyusk9gLD0FksFqxWCaqmrgN1Gd5777GQQKwNdb//5jnj6ZxO50Z046NobXCD\n9tY2URDh2i5HB3dwbJf2mkf9xRe/4+TNKc+eP2Uw6mPkTMbTEcVyCUXNEkYJGc3A83xevzlhPLeR\nsirnnSuypsFgPfkoFUp0bm4YTKbcuX+PTu8WVdf49W//kUQSCemtrS0c7w9Y2mfPnqEoCufn5xQK\nJXHptEwSSeJ2MObP/vy/Z2F7GwRosVgUF4P9HSRSiqUcd44P+OqrLzk6OuKTT75LoWBiFXSi2EfN\nKNi2mC5mNAPdMnnvyROsQp7O9TVKNsP23i5REuEFHtu7bf7h179mPJnR6w5YBiHj+YL7Dx8SJjH3\n7j8klWQ6N13Gc5vhbEQspSyWc+SMSOovwyVvT09pNFuMRhNMo4CuW1xe3vzR8/BPfiAXywI9Np3O\n0bIG//E//h3f+c7HWFYeU8sTeBFptKJarPPh+x/Su+2RUbLEEdizBfePH3Ly5lTA508FySeJxC73\n/Q+eMJvNKJcrgse8WvH86TNyhTz37j3g2bNnzCdTZrMZcRzzN3/zNyRxTKPe4vDwDkEQ4zoCkF4p\nN8hmddrtNkfH9/j9777CXTj0ez1A9OLiFOSMeJtaSfDJ9z/h6bPn9G67VIoVOpdXm1CR54mAQa93\ny2Qy5qc//TGeJ6L3N70+Wd0kDGLaO7ucnJ8gK6Jzub+/z4sXz9eVE480XSFJQi22tbUFCNHFncND\ner0e29u7xGlCRlO56V5jWBb90RAlo7K7v0eUJoJV7IokeRzHGIZBJiNSlKIqJm+0kFEUc3HRIQxj\n6vUm5WoNwyoymtjEKSyXos5kFQT1KQgCwiDg6vIS1lUJzxHBtKuLS6Ig5Pr6mmxWJ00hDGNWsoKq\nZckaQjG4s7uLZZkoisL29jZL1+OnP/4J4/GYSrVEo9VkaotdD4g3slKhSLVaRc+IOlOj0WC5DFBV\nFUmSqFQqLJc+juNy9+iY3fY2nuNRq9RJ/BR34aDKGYJliKYZxElKtVZjOBSj/WZ7CyufR1IyJIjE\n+Hg8JghCQj/Ens1ZJSnPnj5HlbMsbAfDsBiNxwRhvEn4LhYuq5VEmorL0+1t77+QZDigiKpeECUc\nHB1zfnlBrz8kq6ki4BhFm8NUNw3hzN47pNVqY1l5VDVLoVSk2+/z8uVL0jTl+vqa/f19HHvBj3/4\nIzHyvbhiMBhQqhTFmuXgiLdvT5EUec0Sj/ADj3KliCypSKssH7z/IaZusLVeS9y7dw9ZlvGWAdms\neHCD6FNnNJUkTcnqGqfnZ6SsRMp9NKLd2mIyEp/Dna0dbNsW/IBSkVZ7izAMmU6n5HI57t67j+8H\nLDx3TaK6xXYcxtMJmqHT692SL1jc3t7y4MEDBmOR1Vgul1TLZVRZ5nvf+xRJkpnPbUzTQtN0FraY\nCrxjGH/77TOhN1wbxNrNNvPJdO2LzgndoaySyxWIo5RioUwchKxWEjkzL6xlSYpmmbR2tukOR0wm\nE0qlEmpGfE8za/9vqVhBRqGYy/P1735H6Pu8ffV6wyWPk5D9/X2ev/iWXCHPYNgHVjx+7wFPnz7l\n6upqwwU3TJMoiXl9dsLLN6/RdJ1VIj6XAP3ugLtHd6lVxfPs/fc/4OziCllS0U2DwztHPHr0AFVV\nODo6EDv8jEqUJkztuRifmyaD6ZixPaPb71GqlAmWPlEQCmZ1EOLOF1RKZdEnd126gz5mzhLsaF1j\n4XpUq1VaLcHd/l9+8W/Z399fK0LFZfvs4pzJYk57e4c3b94SRQmFNVe/3++jKgrj4YQ0ijG0LDIr\nyhVxQfzyyy9JkoRWq7ne//sEUchtT6yLOje3vDl5y927dzDzJsvA4/mL50gZmVqrzsxZICmy6J/r\nJqaWI/FjsqpGvd7EdT1WSIzGU/YPD2jttJm5U8o1kT9RFImbm2sq1RJLz2Nv7wDfC7g8u0TiD+CT\n//rrT34gj8dj6vWmEHQvl2SzWV69ekUmo4kfrL1kd+eQFy9eCVm36xF6IaEfUSqV+eUvf4ksq/h+\nyJMnT7i5umU2FWPg+XzKP/7TZ2T0LFYux1Wnwz//+Z+tH5xL6pUq9XqdZqPBq2/f8MXnv8M0ipye\nXDEZL8hIGqqaob21Sy6Xo9vtomTPckcAACAASURBVCgqo9GITz79AfP5gpwlfkEq1SoZLUsQBORL\nRUrVCp//9gtardZmHNPr9fA8j0xWIVmJ2pMfhfzVX/0Vv/rVr5AVNgGj29tbsrrOP/7jP/Lw4QMy\nepYoTeiPhty9K2pEkiTx6MFDbm9vUVWhlHNdl1qtxny2oL21w9vTc7K6ztvTU9p74nD2gwhZEo7V\nYrGMpGaE5QOoVqtkMhkcxxH7rb09dnb26N72ubrqYBgWumYiSwp+GLFaSbhLH8O0ULMibKfrop4x\nn8/XoTIRyOj3+4BMsVhmNp6QhEJLlrdyQumoKKiqShQm+H6IZVm0Wi3msxmlUombmxuCYEmSRDx9\n+pSDgwN0Xefm9nbz+wNsaFbBOiQzHo/RNI1qVbxZv0N2np+f0262mU5FLQJWLB2XYqFMzshhZA0a\njRbZrIbn+ciyShBETO3FWsAgHMxpKgD85VIFy7JEAlXTIF3x5MmHvHz5mmxWR9fFiNyyLFQ1S73W\n5PT0nHqtgSQrqEqWdmtrM3p/8uQJ1WoVzRBc5el8RrPZJFmljOczNMsklSVuh32ktdBkt73N86fP\nRZAq8OmtBfCtrQaHh4cbiYCu69i2TefqhvbWzmZ6EUURtj2j2axj5kTyFllCUiT8MCAKE05PLxmP\nZpycnAlYibPEnonebFYzBMb27oPNyDqrKowGQ/b29lh6ATvbe5QKRebTKf3ekHazTf+2j541GAwG\nLF2fYi7P+dtzRt0hZtZgYdsc3LnDbGFju4sNWW53dxdFERaw/nCInFFpNpuboGO9Xuf+wwcbfK1l\nWetwUrxO2deRJAnLyiHL8gb9qWkaw6F4+wUh+tjd3eX8/Fxc9HSTwXgkEuOqimma7O3tsVqtNpeH\nYrHIeDbH80MxCs3nxWXUsghi8bsfxkKRKvq1qfAX54s8ev89Li8vyWTEG/V0NqZRq4sVSbVEsZTn\n+fPnLH0R8Oz1Bc4zDEM0U2MlpZiWRRgKOlVWEYfAu//nB98RpLHPv/gndvf3uLq5Jl8sMhyPuO3e\nbAQl79oZs/kcSVbpDQZ88fuvKFcqdG6uefz4MYaaJfSWqEikywBlBbvtNsNhH89xRVYgjnHXqs5K\nrcqTJ08Iw5BOp8OXn3/J7373O87enjDo9VBVlcl0ipkXCfGnz74FWUwn//Zv/xMgKqwZVSOjamia\nuIhKkgCV5Kw8y6Vwf5+fn+P7IWpWR0LmYP8INSuyL5IMN12xaqi3GjTbTZSsQm/Uw8wZHB4e0u8O\neHzvEQXTYqe1xevnr8RbfKnE1nYbSZEpVcqbAFkmo0Ic4zsL7h7dQV6Ba9u8ev6MnK4JAuH+7h89\nD//kB3Icp8wmc0aDEaZusXQ9erddWo06pqGxs72FlslSzBfWgvbKZmf05s0bPvnkU2zbpt3e4cXz\nl6xWKzzH4c6dOyycOT//+c8FOlLLgiLjeB71ep3BYETn8po0TFnFUCoUuHv8ENMosFopXF7csFgs\nONo/2PRhf/7n/x23t7d0Otd4ngAOvCuqB0FAtVplOBpxc3NLGqXICL/wu5GnlTdZSRLzxYIwjDk9\nv9yU6kulErPJlHa7zcOHD1HVDEtXBH3m9hQ1I4uHy/37m0pTv9vjt5/9huYaPOF5HuVyFWn991FV\nlSRZ8ctf/j31ZoOrqwsBCqg3mUxmJMmK687tpjcMgvolfKLRZld2edFBVTO0Wm1cZykQppJMEETY\nC/GBW3jOGohgs7+/z3JN7spmsxRzFqaWRc9kKVg53rx8RS6XEzYUI4eiKBzs7W9cvZ5joyCJcFu3\niywLKIW4Hcubsa8sC8ZwzjAJ3AAtI8ZZmYxGuoqJowDDED3r0Wi0cR3HcYjnLHhw7+66mhVirhOv\n9ppyls8XefjgMY7joipZtra2ePPmDR999BH2dMZ4PMZxbeI43CSC4yRCkiSCIBC9ZdchioLNg3o0\nHDPoDUVQaCV4wpZloGYUPNfBnk+ZjkekoViD9Pt9ZlObTCZDoVBiOp7Qbrdp1KtEq4SYlKyeYTDo\n4Tg2h/sH1Kpljg731ztswRzvdDo48xm1comLs1P8tTS+VCqJnulaHfruIthui/32O5pXnIQEwRJY\nkaaQxivyeXHgvXrxnMV8yieffMpgMCSNE7a3d+j2exwe3AHEBUlWJMbDMTs7u2iazqvXLymXyygZ\nlf5oyHAyXl+wTPFWGicYmSzdzi3hMkSRNV69fs3cdQQgYhWzDJdcX18RBAH9oZgaWLkc3V4PNZPh\n9clbATSZCh70zLYpFArc3NxgmibHx8fohth7IoNhmYzGYzo3V+zs7XJwcEC9XgfESupyzURwXRdd\nF42BKI5BkcUFxxWXadtZECUxi4X7h6Q4Epn/l7l3a5LkvO/0njxVZR2yzueqPvf09MxgDgAIECRF\nrlbalWwrJDs2pFhfeL3hr+DYD+RYhxXhS4ekDa8okhBBkBQwgzlPT8/0ubvO58rKzKrKykxfvDUl\nX4jX3InABQJAAOipyvfN///3e56V6tB2pkSiUZJpoSsNRwQqOJFOMV84qOGQcAtnkkSjUTzPZTgc\nCqtd3BBWusmEUCjEnTt30CMheoMBtw4P6PR7OHMxmRgMe/ieS7VaXSeXw+Ew4YjOm7dH+ATYM8Ei\n2Niq4fs+k8lonaj+4MOWJImQppFKJMnlchwe3GZiTfmjP/5jhsMh89mMUa9P4C4pl0qEQxqlYp6t\njSquO+f+/fvouk7CMHDnS5rNJq9fv6bX65HPZDk4OCAWiZJKJ3jw4CPSmQy5Yg7w15f5X/3jrwAw\njNjq3BD1wdPTU+Yz8azqdnr0ewNarc4ak+k4M7wgoNvtooQ0Fss5i8WMUEhF0xQazTq1jSqmORYO\ndMlDkhRGgzGNRoPlcsm7t8ccvzni/dtj0RJJJ7iu32AYBo8+fsCw3yMRN8DzCckqqXiMR/cfMBz0\nqJRLLNwZhUKO05N3bNQqsEL8/ku/fu8HsqZonL4/oZQvECw9bu/vsVEpk00nWS5m7GxucXl+jpGI\nsbFRRZIDhqaA7y8XLpGwwAUm4gaxWIzDw0MUWSMRS7BR2aRWqaKqGqfn5+QKBfq9IboWgSXkUzk0\nWWM8GFOr1cjlMgyHfdLpJJ999hmRaJjJZEwqnWBzc5PHjx/z5s1bPC8gCCSuLm/W7lo1LDqxqVSK\nfr9Pu90m8ASY/wc/+gFH79/iS4AMruuRSmRptftk0jksy171YCVkBZypRbVUJhrWCYU0sTNSIQg8\nfvGLf2R7exvHcVBliS+++GJdDSkWi6vKUYhCPk/zpgleQKVYQVNUfM9DlRUmozH2dE7SSFEuV2nU\nW+sdcm84oFAuIUkSnuchSTKLhYcih5nPPOyZQ61WYdAfsfQk0uksMcMgFo+w8IQ/+NWb10SjUUzT\nRFEkhsPh2n88nU7J5/PYtsD+maaJKsvM53M0RWU0GHKwf4t0OsnMcYjoYZHeXLgY0RixWIzJZEpI\nF/+9MT1Cq95id3ubq/MLgNXuTKdcLjEcDvEW4qAMh8NMzDFLzyUSCZPP5wmF1BXbd0wmk1rzr8fD\nCfV6XXSkFZl2u8vW1g6vXx+xvb2NZZk4joMzs8jlMmiawnA0otfrMh6PmK6UkO1ui3I5T6/XoVgs\nUqttMugN0bQwvZ4gl/X7XZbLBTICDVleBXAiuhi9DodDXNcVF0B3Qf36CiMWxZ5MMMcTFrM5pUKR\nwFvS73YYDHokkwbTiUk0qjOzLUJhlel0Si6XE/S02YyPP/keL1cOWJDRZAXLEuSv4XBIOp0mk0lh\nzx32b+9jmiaW5fDF93+0Qs6WqVaroqoSCuNYMyYTE9u2CWSJF69eAtAf9AiHwxSLReypwMuGFLG6\nicfj9AdDNja3mLtLZrZDKplEUVUUNcSPfvyvKJSqzOcLlJCK5Vi0OnV+/vN/QJICtnZ3iBmie319\nc0MqlSKVzzKcTtYXd1kWwbqpbaHqYcrVCqPJkFevX69XMSgy/VEfI2WQKxZodXqcXZxzeSOyGO1e\nl8lkQjKdWuNnb27EqHi5XNDpdVc5A4uQrmPPZwzGI2IxgWj9QAjzfR8v8ElnM7w/PWEwGq+BJf1+\nn9l8jqKJvEg6m0VSRT2wUCggSRKzuU0kEmE0GlEoFKjX6wRBwMbGxqqe51EsFlBlmbuHh7x48YJo\nWNiwQIQ2nz59ymKxIJvPr+heI+ypxXIx4/DwkMBHoD9nC2q1Gs7UYqu2wcy2aV7foKGQSaa5uamT\nSqe5f/8+f/Inf8Kf/umfroKpP2J7d4vLm0tmizmyIuG7C6ZjwaN3XZdKpYw7X6zVnslUgtP3J5im\nyXw5p9VucHV9gTubEXgeh4eHtFotkqvKUK6QZuktKBaLKKq0Jq+9evVG1PPGwi/tLpdsbm6ycGd4\n/oI7dw8J6yGSSQNJCphOxiwWQu+5WAq3QEhWVz8Pj+l4QjafY//2AY8+fYQclsjn82TSKQb9Hl/9\n45e0Ww1KhSKSJzEzHRRZZnd3m73dbWQZdD1Ep9OiWMzz6NF9mp3/hn3I/X4f3/Uo5ks06nUC3+fk\n9B2Nm2vs6ZSL81M8z8XzXPb2dtF0jXQ6vUJTZvA8F8sy+e6778hkMrx89nLtztzZ2uLi9AI9HOXq\n8oaT9xdE9Rj5TJ5Jf8x0YpHPFtja3GQxm/P1V//Inbu3ubo+JxLV2N8X5pXr62t6vR6qqnL//n3x\nZhM1Vt7Uf+ZJTx2bdrtLuVzGWwbc3NxgmmNM2yRqxNDCKsulx8OHH6OHxYjr6uYGVVWp1WocHBwQ\neD6PHz9mZ2eH7757zHQyIpVKrEdPn332Ga1Wi3K5TCaVZjGbi4dYKkU0GkVf+UarlQ2yyRTe6iF3\n9v6McqGIO5+jyRq5dBY8YXfa3d1f72Ycx6HT6ay5yel0lky6gG2LB8UHslg6vRr/+j7tTpP5XADz\nz87OqFY2GI/HazpWoVCg025jmVMikQiKohEEAc1me23AsqdTYrEYiWQcdznHWy4JAlFB8lfULrFz\nbwlT0gpc0Ot0SSdTSIHEowdC9zdbCIPTYDBgc2sDLaTieUtApKxjsRiT8RDLMldawSFaWPisKxsV\nFFWMdIfDEYW8SMdaK1/0/v4+JydnhFWNjx/cR5Vk4tEoFxcX6JEQ1WoVL/A5OLzNcDxiNpvxzeNv\nKRTzzObOP4NS5ksURSOfz4vgTkTDcSzyK1Y4iPVFEARcXl4S1hQCz+Xl8+dIQUCn0aRcLLK1sUE6\naRB4Lol4lGTKIJNJcXp6uur3hwnwiEajRGM6qiYubno0sl51FItFfvSjHzEYjLi1t8/du3cplUpc\nXV1h2+IAePbsGcvlkoNbh0iSwvuTM9E3vbpYO2qDQGg5MxnBBpAk8SZwfHxMykisaFhT6tc3xGIx\nrut1jFSSWMKgXNuAQKBHb64b+IpEIEtEY3GarR5b27tMp1Os6YRCMcen3/uYQqGA7y/pdsVheevW\nLY6Ojmi220iKQn8o6iWTyYRMJkMmk+H92SnNpnjz2dnfo9FucXl9vWLLh6hUSyxcF8MwmM9cDg8P\nARgO+2xub7GxUaVYLHJ2cc6de3eZLxwU7Z8xmLZtEw6HBUs6laLbajOdTPjhF1/gOAJOYRiinhdI\nEI7oIAkssKKpwrbU69EfDlfjZRfHcahUSpycnOA4Dr3uAAlxeTKiMUajEbYz5fnz52xubmJNJ3R7\nbTzP47NPP+Hm5gZ1FU5bLBZsbGwIElq7TblY5PXLV8QiYaJ6hPFoSLlcxogZlAtFcShNTDRFxXOX\nlPIFPr7/QDxzEkna7TZf/epXdHs9fvqLn3Nxc81//en/y5vjNyDDg48fUCiV+PwHX4hL0XTKdGpS\nKBRE8ySTJZfJYk8FmMe2p4wmY1HlCocZjUYCkhQO88UXn1OqlgCIG1Hmc4dUOiFaGoZBrVYT+GA9\nRKVSoVytUKvVuLm5IRqP4LoOT59+i+vO+fVvvsa2bf78z/9csLolMcUU7PQU7szFd0W//abZwJxZ\ndM0hniQ+z6GQShC41DaqaIqEv3AJyyFube8jSyqnp6c8fvKEsTkiEo8wngzwApf3p+/WLYp/6dfv\n/UDOZjPEEgaWI0aHYVXh7uEdouEod+/eZ9AfYRgGy+VCcFztOefvLxiPpuzsHlCvt9na3GVvb4+5\nOyOZSZMrlrhz+IBuZ0g6n6PRafBX//4vKZUK7O/vM7FsytUKMSPK//nX/wePPntINp/h8PAuX375\nJY8efoxpmvziFz9jYo6olcukE0mShkE4FBEIQkkILT7+WBwCkqzSbDZJJOLIckAkqvHw4SOWvsfL\n16/I5pKEVIVYNEJI0Uil0mzWNplOTHQ9jDkd8ebNG5AldnZ2uLq+5KOPH7B3cItoNIHvizTtd989\nJpUSH8JcLrcGk7QaTUaDIb7nitT6xSmZTAZ7ajIdm+ihCMV8hUq5RiwWQdNkdD2Ebc948/ZoHerS\nwiHi8QS+LzGfLYkbSebugtqmqIDdvn0HSRK4RE1RkX0POYDIitykhBRa3Zb4wvcGaGqEZrONH0iU\nqxX6/S6mPcZIxahsVJgvPZ6/PGIwmmKaFksX5jMPZzaj0+siywq+HxAO6yy8JdFoFFWVVxelS1KZ\n5IqQFJBICFeqJvn4vsdi6eLOF0TCEZRAQvICZvaM5UIALSxzirecUyzkmU7G7O8d0Gv3BNi+UCSR\nSGHEYuRSafLZHJPRWBCCDINEPEm33VvzxFVVZTIa8+rlS6JhnfPTU0qFArOZQ7VaYel5LFyXbC5H\nJBrl6csXZHJJTHtAvXWFrMnUtjbp9jukVmAQIxYjFgmzs7sl3hpaDWKxGJVSmWQ0Qa/Zpn59RbFY\nJBKPMJyOiCdiQg5QzqFoMqfnZ2xu7eAtfLLJNL1Ol9nMIpdKMxr20PUQk3Gf47evKOVzmJMJ746P\n6XRblCtZZMln0O1wuH+bYCk4354v8IbjkXhjns2EVMKyLLSwzrA/AtdDD4sVQj6VoVwsY01mKGgo\nKHhLiEcSPHv2DC/w6A+72HNhXIsnknRbY27t32VkTplYE56+eEqjKQ6WVCqF5Ti8ePGC07cnzC2b\nTDbFxcUF9mSMqoaYTKZk0xluri6Jx2OMzQntbo/9vVvM3SXd/pD53GXuLkhlUnieSzQc5eqsgRqE\nuby8xiNgthRJ8cM791YrtQVXNw2MdIaEId54Wzd1Hn10XzDF9QhLX1yA2p0OY3uC68/55sk3SJKo\nsFkTm0GvTz6fZTDuMZ6OIZCRJZVI3MCemiiqvIKGdFgsxLMvHtFJxmP4ywVS4NFqtegNB0wti6Xr\nc3h4iKaFmJg2ET3G1cUZRiyKt5xzsJIyRHWdVqNJ4Aml6tHRa7a2tphMJty9e5eNag1/KQ6MeDJJ\nxIhTrtbE6smIkTBi7O8d4Fg23377LeZqdD6xJsQTMcKREOFohJPTc2YLj8ePH/PNt7+lfn1FOpXg\nxz/4gnwqy7DbZz5bMneX9Md9lr6HrkeJxQwcy8YaTQkWPtZ0yoOP7jMZDzHHU64vxMQiCALylSLO\n3MYLBJc7Ho/zwx9+gSz57GxtAjAYDFBUiXazxWA0RtMj9HoDCtkKpWyZo1dH/Lv/8X8SQpRojLCq\no4QUhpMxuh7FNMWlx7bF+qnZaZIrFCjmioRlnVI6RyGdZdTrsl3bZDqyRK1stqBcraHHoiycGVIg\ngy8ho5BOZH/nefh7P5CF9CDEZCLGO/FkYg3H1zQN25mSSiVWgYw4vicRj6W4vX+Hs5NzvMWSq1UB\nPJ3Osn+wx811nSdPnhCORtb1gkajsb7BBkGANXP46KOP+N//03/i6PitUDbu7fHf/8n/wN/93d/h\nOA6JRIpbt27hB0u6vTbGKijywdkZjUY5Pz8H4OL8fI11fH98jBGL8/z5c9RwiEIhB4CqifCJaU5o\ntVq06uINRVEUNmpbJBJJvGXA1tYWsiaTSMQZrG6V6USS0WhAISvEGkgBi5UG8YPNp1wu8/7dKTfX\nDWRJ5ezkXBhZqmVs26bfGzIajJElid2dHc7Pz9dj9p0doZE0xxN2d3fxlsEaJ7e9vc105fC8vLzk\n4kJ0P+Nx8WZ4eHjAYrEgnc4SjcaJxxMiZDYZ0Vm90YKo8UiqwnglrA+CACSJaq2Gqmli9+w44pYb\nDpNJZchms1iWs+57JhIJhuPR+t/nuh7laoVms8lkIi4VkiShaKqohY1GLJcu8/kMz1synZokEglG\nI4GFTCQSeJ7oexpGkngsQaPeYuEtcT2P/nAIq8MmEhPCg95ggBf4qx2x6JZ+AIqIZGcJVZOZL5yV\nYUi8cUmSxNnZmbDmlIucnZ1QKBRIp1N0+z2ePHmycn9/6O86eAT4vgj+iOS7he8vWSxmxONxCoXC\n+mafy+VwHEfYe0IhZo5FrVIl8HyiMUFi0zRV7FEb10ytCZIE6XQKfJ/pdEKpVODRowdYlslwOECP\nhMhls3jLgIODw9VBPECR4dWrV+SLZeLJBM9ePqNWq7BcuOBLJBMJoro4kFOpFL3eYB2K0vUoeiiC\naZp8+slnqLKCKiu8efOG09NzLs4v+fjRp7x7947xeIyuhygWC8xmInTW6fWQVnvb8XjMH//rP0JV\nQtRqNbLZLOPBkPFguJqK+DSaN4RCKkiB6IJaFvfu3eOfvv0tlUoJ3/dxHAvXdfns089ET14Vvd4P\nF95er8dgJWAAaDabvHr9guXCZW9nm06nQzGXx7Is2u0mvu+vWd3VjRpB4K2CRjNUVYQ/PV/sdz+w\nlj+ksMNhnWQiJVZGgb92ZGcyufX30fM8sX/+/1HyRGp/woOP7lOtVkkmk/R6PTKZzPqtrN0VK7l/\n82/+iIuzU/RQmMXM5ubqmqvLC24ur+h22+i6zmg0ZDIaYc9m+AQ0Gg22t7f56//7r7l37x6xuJjI\nOTNrHZabTqdsbe5wfX2NLMsr/HGSUEjl+vqKZ8+erixQF4R1jdevX3J6espoPGZrZ1t8RsMqw8kY\nZIlPPv2U0/Mzri5v0HWdmxvB3LemDroWJp0SfIHaxiaBBJdXFyxcm5OTd9hTi/FwwqA7IJ3OosoK\nkWiUaCTG6ekp/f6AIAj4z//Xf0bTNPRIiHg8zrdPvmNjaxs1FCaVyVKqVohGo/QGgq52vvpnU6k0\nzWaLUqkkpjVLD8tyaHd72I6DL/mrPvmcjY2NFU6zwXT037APWZZlqrUy9tyhulEhEtMBn1K1RLvd\npFQqrEwkA96+fYdju6hqmE6ny0alSiwSJZ1OUy6XxS1oMCIWj4Lk8+TJE96+fUuz1VgZj5a8efNG\nwCjmM26aDZ4+f8Z4MsGeOTx+/Jgvv/ySv/rLvyQZNyiXqpycnHB5eSmA8iOR1p2Mp3hLsRDO5wQo\nfGd7D9/3Wczn5LIFms02Ozs7KIqgP30IgZjmGN9f4nlLnjwTY/bFwuXi4ppMurDSPNoY0Rgvnj/F\niEc5OXlHtVomlUohK3Dn9gGGYXB2dsZ0OuXTTz+lWq0SjcbW7mRVUgipIUaj0Zp1DDCbzckksrx5\n84a7h/f4+MFDzPGEzofCvTOjtQKrfEB0xqJxAeqPGdi2ja7r9IcDhuMRPgH1epPRaMSg20OTFVr1\nBjdX12xsbLBcLtYmqEwmQ6/XI5fLsfQ9AkmMyOv1Ou5yvhpx+lSrVTLJDGE1jCZrK9BBDU0TYZeN\njQ0qlYpIR+aL1G8aJFJptlfmLVmWkQIJTdFQVA1ZVdCjETa3t6htbjC1rRXCM81gMCIajdNstrEs\nm/F0ShBAvzcknc2IvWNIaNsce07CSGFEDWazBZYzJ5svMrUdIrEosqqse8uO4zAajShXikJIci4u\nR5Ik8eWXX4oEebHI1cUljUaDe/furStZliOkDJqukc9nabYbJBJxFt4CTVPwgyXlSpFAFkD9VCqF\naVpEwlGuLq5ZzFxu7dyi1+kzHPQIh1Sxa17M+ezzT8kWMrw+esPYnGCk4rj+glwxi5E0UEMq709P\nKFULRGM6tjVDU3VSiQzlYoXlYkmwFL3hSDiM7wuRyq3be8TiUVJGivFgTKVYIqyKA7nVaovesu2g\nhsLrDqnnBZydnKAoYpWjSgre0ufP/uzPODt/RyaTYjAQSeYPrHNxUIxWlSoZXdOZjEymkwkvnr2k\nUqmRMGJE9BAP79/n1q1bxONRxlOTSrXK23fHGEaSfD5PWAtx+v4ETRXkrKvLS4IgIJ1O4y1cDg4O\n1qucVrcjbHDJJOPxkFgsguu6tLsdqtUqsiyvcgJ59vf28D0xIaiWKwz7I2Kr70670wE/oFrdwJxY\nWBOTXCZDVI/g2Db2qsP/wZJUq9WQpGDd1Lh9+w79fl/ATUKhVTsAMtkU7XYb3/c5PzmlWa8TUoXF\nK53OroQjoGnCCnV+cUpto8KbVy/IZ3OkU0lyyTQsXYb9DuVSkclwhKqq6KEQpmlx7/5DLHtG1Ihy\nVb9iMhkhy6xXZf7SYzQYcnR0JC7LM3cdajs5PyOVSSKrEgvPxXYscZhbNiFVw1tdftv9Aa7vkSnk\nubi55sXr16hamEKpSG/QJ71CmaaTOTrNIYt5QMrICB1sU5wX+WJBJNN7Q3LJLImogeSvBCN4xJMJ\nDg8PmS8XOAsHVZOxZ4IhUS6XCQKh8TWSCZ6+eIrlTBmbE+7fv89mdZN8NsfZySnOqrr1gbHwoeFi\nJDL88A9+TL1eR5F8HGsqrFmBTyKZRvZ/97H7ez+QW836mhw0noobe76YZ2IOiUR0EqkkxWKRQqHA\n9vbm6s3VIJfLocoK3333RIySVY1KpcZoMIZAolwui5tZWDBbP/v8e2vm7IsXz9A0haPjN7x5+5pk\nJs3p2RnOfEa726PZaDOZTNna2lpp2EIEshg3Aezu7pNKpVEUleMjATvvd7ucHJ9w5/Ae+XwBTdPY\n2z+g2RA8V0USYYBELMFstkCSZB49eiS6x2Mb35O5uqkTCum8fPmSXC7H3cMDwpoC/pKvf/0Vl1dn\nyCvi0/XFJQ8fPkJRVGRZIptkbwAAIABJREFUodPp8vd///fs7u4Tj6XQtAi+J3Nr/wDbtles7QW3\ndvcY9IYUc0UGgwHXl1fMbYf2inVbq9WQZQVF0dB1HXexxLIs3r17JxjAK/6ysaokTCbC8azrUfr9\nvphyxOPiJnlySi4ndqKVivDtGoaxDhXN50JTORqJZPOzF8+JxWIcHb2m3xvS7w25vLjm9OScVqeD\nruu8efMG1/XWf/hewMbGlmAKt0ThvlQpI6HQ6XRWFwuTcDi8rkypqkw4oq+9wMPhCFXVIJCRUIjG\nU0Tj4kFy+9YBl+cXQoweBFxfXZHPFkgYKdLpLMfv34mKlznB933qzRsGgx6GYZBKpYRIIxqm3W5z\nfHxMIpEQDPShwDWKek6cx99+x8HBAVEjTncgEu/X9RtOz89QVZWpba2DPfPFguOTYzzfXfdZHceh\nsap/FbI5zo6OKWZyePMFcgDj4YDDOwfUmzc4jkWhkKNcLjIc9gmFVJrNOmFdQw9rGLEYiiL8uo1G\ng1gkTrFQ5etffo07c4lGIoRD6nof32q3mUwmzGY2mqZRq9S4PL9AW/XCNza2WCxdsvkCp6enZPPi\n4hmLRHlw/yGT4YReu8fu7j7b27u8ePGCfDaDO58Rj0ZIJAxevHhBOBzm/fv3ZLN5NE0TGk5N42c/\n+xkfP/p09XYZYT6f02w2ePv2DS9fPkdRFIrFItfX1wIpaxh8/fXXVCrC5ZuIRTHiSbKZPF9/9UtM\n01zx00UlBsQeOl8qMhhP8AIfz13izOc8fHify8tLzLEY+eL5NJvNdeit2WwjSRKj0YiIHkNGwTCS\nyEioskJUj6wPJFVVWSxmGCvWO1LAcDSgUhUh18ViwbA/4NGjT4hGozx//pxWS6yHPsBQ5vO5SLUj\n/p3b27s8f/6CZlNcuG/v3+LtmzcES4/tjU3+4i/+gl5f2MyePH0sDv2DfbrtOrVqmVhEp91sYU8t\nEokEjUaDq6sLdD3ExkaVWCzCw/sf0et0GPb7GIYhoCZxMREKKSF8H37ykz/Al3w6/Q537x3ieR6L\nxZxarUalUhE+Z0WlNxysPdrVapVk3KBWqTJ3FkzG0/UUDE+ssRo3zVUjYCHoh4pHJCYuIrquk03n\nGPUm5DJ5JElBQqHdbtNsNvnkk09otVqUKmUMQ8BXjo+PcWcuuqYzGAzW8p9ivoBlTgk8D2/h8gc/\n+CGVYglvvqB+dY209CnlC7izOdvbu7x584ZKscDJu2MK+SzxeJzAh6uLa9yV0vNf+vV7P5BVNcTE\ntBhNxhTLJbb3dnl7/IaNjQ3q9Qae5zFzFzTbDRqNOkYigqz42LYIBgiKzZSHDx9SKpVYzF1+85vf\n8Pr1q7WUPhKJcH15RSaVJggCSpUyNzdXOPMZtw5vi3BLOEQgwccff7wWJPzmN78hk8sRiYvDJxaL\niOL70qPT7hGLGmQy4sYmCuQhTk9PKRQKNBotzs8v2djY4ujoGFlSubkU8oz5fEEymeQf/uFnVKsb\nTKdTJFlhf+/WWhvXbjdXI1wbRZGJRsWDxveXRKM6d+/eXY9KXdclCALC4TAKEq1GQwRjfJHoTmcz\nFItF7ty5i+PMhTvUnjHo9fj888+5/9FHpBLCzONYM/AlTNNk6fuYtsXpxTn5UpGJNcUjYGrbeASM\npyYzd7EemcZixqo6MWG4usWn02l838c0xd/7wVmdyeRwF554gNdq6z7pZDpmd3dXOF5XKdkPgTVF\n1igWSziWeJMQQvIhw+GY0Wi0Dl6ZpinGjkpo7bWdTCagyAwnYxJpkfgOh8OEwzq+7xPRY9j2jOl0\nhuPMscwpeijMzJoJz7IHwdIjZSTIptPr8Xm32yWQRDjRmc/Y3t4mWMnjx+Mx/eGAsTmhXK1wdXUl\nYCuShC9BPlekPxATjGQySa8/pD8YrS1JqVQKwzDQdV3c+IdDAlliYpnkCwVUTWAwB2NR6xkPhjy6\n/wBzPOGHX/yAwBMPXduaks9nub6+plIR4/1oNLqSfAT0eh3y2QyWOUGSRLDKXwbUrxok4gnSqSyz\n2YKHDx8Ri8UIAnGRCYfD4jIWCWHbNo1Gi+nUJhoR3tnra7Hv0yMRrq5uGI/H/If/8B85Pz9nOByR\nyeZ49+6EaDRKOp0llytwcXbJdGLRarXodrtc1+vk83lK5QK2bfPgwQOazSbxeHzl6XXYqFT55S9/\nSTxhEInFsGcOd+7cEauPWBwkBcuerTMX9+7dw5laIkgY0Tk6OqbX6ROPx/m3/92/5ehIKF2dqUU4\nLOpChpGk1xuIt2dPjL4TiQSSJDrjsViMq4trLMsik0xxdX5Fv9MlpKhIfoCCQjadJhGPc3V+ga7r\nTE2T6UQ8ow5v317101XCeoiwHsI0TWSZ9bRlNrMZj4e8ePEC34fNjW02NrZ4/fqIaCROp9Oh0WjQ\nbrVIpdKAxHRsokrqevT+9NkTdrY2OTs94Rc//xmj4YCF6xJNRHn2+iXNQYfry3Pq11ckjTiDTpeD\nvX00WeHm5gZZk9ne3WI0GvD111+vPwOlQl6MZXM5YrEY7XabYr6wBoW8fi2aF9vb2/z9T3/KbDYT\nIc1Om9FkjL8Kz1qWRSJu4EwdQpIA8/R7PdG/Xy7I57Or7/gEx7GZzS1y+TS1jTKpjMFyKS75hXKe\ns7MzOs02P/nxj2nWm/TaHXZ3xDi9UCrS6XWZTEYsFnMRfJMVBt0BmUSSyWhENKITj0exLJPlfEH3\npoHZG7O0FzhTh7ntUC2UKOcKOJZNt9lCkWSieoTFbI47m/Pg7j069SauM8OdzQmpGpFI+Heeh7/3\nAzmVzKwPudPTU+FtDeDNy1dEYhEur685Pj4WB58i48sepjlCj6i8fC2IVYd3Djg+PubJ4+8IR6IU\ni0UePXqEZVl8//MfcLB/wPHxO2azGdlsmnBYI54w2N7eRJMFfk6SJO7fv88vf/lLJlNLJPzMEaFQ\nCMMw1g+ck5MTYUVZSdivrq4AkGVIJ1NEomF++9vfcOvgANM0+S//5W8BmcvLaySEvtFbBpyenvO/\n/sf/DT+Q8ALI5jJcXV9Sr19Tq1VIJpOcnp5QKpU4PDwgmTS489EdotEo3W6XwaC3ejMVB0o0GqHb\nanNzc8P9+/cxDAPTmvLu3TuChUc2naXT6XB4eMhgJPZQmxtbDPt9MQqXxdtMLpentrGBrAqzir8K\n8DiOw3A4xDRNDMNA08StXtd1QhGdQJbIFQsoIcG9ndo25Vp1BXKY4izm6737dDzFnS8JfB93sUCS\nA168eEYmI5jcpiVSorICsXiE2cqVe3FxgW3b+L7P6ftTIuEogQfVygaDwQB9BdBX1dCaNpbNiq7n\nMljiui537tzhzdExljNjalpCpJHOrRGoyVSKuGHg+5BNZRkMBjSb7bVf+fryik6nJVzF1zeEtRAH\n+7dWrtMxU9vi7OwM0zRptJoiBOV5LNyZsDQNBkynU+bugqUveOD9wYilHxCORCmXy3RXe0rLnKIp\nKouZS0gNs1gs1hMIjwDX9yiUK7SaHXRN55NPvse7t8fUKhXOTk6Z2c56txePxwmHRXI+CAIikdg6\np5GIGzQajXV6fblcMhxMqFY3uX1wj9lswdXVFeOxqOhIssrSEyPkRvOaRCJOJpVBU8V3JZ3N0G63\nuX0ozDyPH39HSAsTVsMcHx+JgFAqQzqdZTgcY1kiJfubr3/NdDpdC0xcz2Nvb49IRABDCiWRbt7c\nrHF8fEQ6ncQcj0hnDJbegvF4TL3ZEKuRQZ/4qiKTLRRXn90piqLx1ZdfsbOzg6qqpNNp0uk0kiIz\nNid89atfcXh4h5ubOolEgovTMwB8d0k8EqXTbJFOp0km04JTPRggKQLKk0qlaDc76HoUVQmh61FA\nRlNChLUQ3XaHbDqzYg4MUCVhkGrWG+It2zQpZIUb/AOiN5XKcHV5DYFMIp5cEeYcTk/OkGVFTBPy\neRRF8A7y+TwnJyfcXF6hKiHOzy8pFotks+Ig297coJDL4y08fNcXLyilEmooxMHdO3hSQMwwmM/n\ndNttNmsbHL15Q4DHYmajKZKYACVi/MGPfsBo2OfxN9/y05/+jNPTUyzLwZnPVmsUEykQl5W7t+8y\nm82IRCKENA0tHGZq2RTKYoffqjeolCoYehw10JCX8OSfHvO9hx+jSiq7O1uEdI1iRaSsAzkgFg+T\nzhjk8il6vRbN1g3VjQqe59JsNsnn85ir72NICVEpVRn2hnz2yWc0bkQINpcrIMsKSSNFNByhVCzi\nOjNUWWF/fxc9opLJJnHsKbFIlFqpzMcfPWDQ7jLuDZA8n1cvXjAeDimVSqQTSX7+07/HsURWKQgC\nPM9jo1ojEoqwUamihUO/8zz8vR/I+/u38DzBPC4Uijx9/ITlUhwC4WiYaCxCJCZK99PplMl4Sqff\np9nukisW2N7d4ur6mkCWBMRgucRxHJ4/f85iIcIQzUab73//+yyXIqXbaDRIJg163S6j8XD9Fv30\n6VMqtSpbW1scn7wnFo+sxoIaBweH3Fw32NzcFjvCmUUyZVBexfC//vor5guHVCpJPB7HnI7JFrLc\n++gO2XSKWCzCwp2tbrozSsUKv/3tN9TrdTY3a9zcXOH7Sz799GPiRhRJDqiUytTrdTHWNUUIaeqI\nsWAymWZ7e5fxeEy73eLVq1ccrpRx19fXHL19TaVW5g9++GP2d29jDiZcnF5wfHKMkTJ4d3rCfOny\n9t07TNNkc1OkEgMJ6vUm84XD5eUl+XxureSrVCpks4IT3Ww2mU4n68vJcDjk/Px8dblaUiyXuLy6\not5oMJvPWSwWQovn+WKUd1NnZs2QJVWYZ1IpJpMJuXxWdCSzaRbeAstx0DQxZkqn06LfPJrw/e9/\nX6gSMzmadREc++Cu/SB2GE+GvH37FhCglPF4zLv3p8iygIssPJ9CoSSgAaud3Xg8JhQKEYsZvDs9\nY2RO+fzzz1ksXRRNqBFH5oSpaXLv7l3Cqsb5+TnpZIpkMok1ddje2aNWq6HrOjs7O4wmk5VYXqfd\nbnPnzh1uH94VB7Ik0+x00cIR+sMxljMT3mQgrGrE9BiqJHN1dYWui7yE5Ticnp7i+2LXLcb8R3z1\n1VckEgmOj4+xZw7lchHDEAQqwalW0ZQQruuxs7PD3JkRCQu5QTQapZDN4S1cQooGnkynPeDo6BjH\ncYSlSFWZTm16vQGKphPIAY5j4i9FYCmiJ7Fnc6qbVXwkjo5E93VrawdJkmi1WmzXNtBkhb29W/zN\n3/wd+XyeSqUi3Nv37uJ6CyKxKD4S1WoN0xSVxkKxuEq4xwQhLaSB5FGplohEwmzvbdMb93l/ccLU\nthmPxzx/8Yrf/PYbbMvBccTko1apMp/PcRcL8tkc9ZurlUbVpNXtIGsq0XhcWJFWekZgrVEcDYZM\nRiYXFyLdnk5l15rVq6sb7t79iIgeI5XKMByYRPUY5UKZWrmC5AcMOl3cVWp6Y2ODQk78zCU/oJDN\nMx5PxNvj3EVTdR5/+5xspszZ2RWTyZSFs+DqUhDzPqBadT3CN998g6Io6HpEiHW2d9dITUVR1gE7\nAn9d4wuFQmxvbNNsNLh7cIfRimcQTxjkiyXOzy5Jp9PcvrVPOpliMu7z4vlTQqt1wQfn+3g85s6d\nO3hBgOXYLBaz9aRxOpkQUjVev35NuVAUtD4PjGic+XzOcDTBcuZIkkT96pqwojLuDRkPTH78wx/z\n0//6D3z++ee8PnpFKBJe++clSWI8HvLw4X1ubq7W54lpWvieJz7vmsxwPCS/mqSO+hOmY5tsVgCW\nInp0PY5eLj1azR7JWIqf/OQn5PM5ms06iqawWMxYLGZ875NP6Xc7nJ+fc31xyd27H/H+9JSdvT1C\nus7S9+n22nx0/y5Lb0E2V+C63qTR6vLy5WvazRaO4xCOR3/nefh7P5DbrS6L+RJZ0UR1ZGJim1Mk\nSWI6FWnkVCqFY8/JZgro4RgzR+jyfAJ+9uUvKJQLfPvttzSbbZZL0UHN5XJUKhUSiZTAXjbatNtt\nLMtic6vGbC4SsPP5nH6/LwTuqSS3b9+m222zv7+PYcTWEgMCwRR2HAfbFq7NdkcEPUDsO27d2qfb\n7ZLMJEkmDVx3hixDuZLHD5aUSkUg4NHHD5jP5+zvH2AYSdLpNC9fPicSCXNxeUa1WkVRlHVI4+HD\nh7RaDWo14Xl1fY+DgwPq9Tqj0WjtNu10OmQyKXq9Dg8fPmTp++L2H0BY0/nxj/5glRbs/bOjdsXA\nlSQBOHEXHoqircemH/7ahz9//vy5QCSGVCEvWB3WSBKRmM7UtghHdLqDPnosSrPZFChCXScWi9Hp\ndOh2uxzs315xraf0egPi8Th+4DF3XVBkND1EKpVksZzj4yEpMp1uC99dUiqV6He6tOotkok09+7d\nw3N9UilRexqNRmvPciqdxLbF58ldit/vxcIlEomt5QquK0hIvu8Ti0cYT020UIjBcIimaTx7+QJJ\nVTBtiyUB5WqJRCLOi6ffkUgkqJSEAtBbBoI/jeh3f4AguK7Lcrkkk8mwv7eDOZ0yMie8Pz1nNp8j\nyTKzhdizj0aj9Zh0a2sLy7KYzRZEw8KedH55Qa/XI5vNc319zXA4xLZnJIzUqsZyRKlUEKQoa8rN\nzQ2lUmGd3B4OhwSeT6veZjSarHuz5aJ4i3Qch0gkQqW8STKepFKpEQSBMHd1u/gSbG7v0Gx1aHc6\n+IGLKku8ePqCTDJLKBSi2W5hWjZGUvx+2LMZt27dImkkBLdc0/ju2TP2Dw4IhyL8+te/JhaLcXNz\nsx7NdzodTNPEdZckUsl1O2K2mDNfzIjFIgx6fS4vLzg4OEDTFFRVZul5NFpNnIVwqf+7v/wrxuYE\nPRJbrTRkivkS/d6QRqPO3t4e3W6XUCjExsYGo8mYd++PSWUyWJa1XuUUCgXa7bZ4w1vZvyzL4dWr\nN0wmE3Z396lUKsgBSJJCoyE+9+/evcN1XczJhHQiyUa1hiqJ/flkInIHQRDgrvj729vbNBstCoUS\nM2dJJp2n2ezw+Wc/IhyKIssKm7UtQqEQtdomd+/exbZtbt8+JBwWe08JBTUUolSqEI0nePHixXqS\nV7+6pNPp8ODBA27fvs3L5895dO8BN+eXJGMGIVnl9dsjkGXenZ7QaYrVwaDX5dbePsWiyNHYU4vx\neEwyLrISc3ch7HuBcLufnL7DW7UL3Pmc6cTEdT0WiyV7u/sC4aqumPWrgFosEmWjssHWxi4pI8Xl\n5TU7e/v4wNnFKWpIIZYQpC5nbrO9u43j2BiGQO9ub++SSCRQlRCeu0TXddK5LG/fvyObzbKYzSjk\nikTCOpFQhMDz2Nveo93q8sPv/5CkkaLT6fHNN98QjenMXIfhZAhygBd4HL87EmufjRq3797hn/7p\nn/ACoXb98b/6CcgSWjgM+Hz88cdc12/Y3t0llcniB4KSBrC1vfs7z8Pf+4EsyQEzxwJvSeu6juct\nWXhL0uk0qUwaSZZ5//6U4XDM2Jyy9EW4qnlzjSzDxtYmdz56iDm1ePDgI3IZsbO8urriwYMHPPvu\nCbIU4C5ma+SiaZqMBn2q1RKhkMru3jaSBHhLjo9fE8gBRjKObVtEImESiTjH744olUrcNK4JJJ9i\ntczEsvn8888BaNUv0JQAKXDZrJTF+GYxw0ga2DMbTVORAshlspydnKLHNGzXAi3Aw+V//l/+PaYz\nYWdnm/fv3+G5SzFik2QuLy95cO8BL5+9JBmLs7uxw+NvHnN8fMRPfvJj9JBKPptmc7NGNpchn8+i\nKAHLhQ1yQKvX4eTiTKSN9SiD3gDHscnlsiJw0h/gLsSbwHAwIJNK0usKQ0+9Xmc4HLC1tUW73ebg\n4DayrDC3RW9TUST6wx7mdMhsYbNYzgiHQ6KyNeih6RrD4ZDBYMCr16/JFPJMbIuj47eE9DBqWMVI\nJ2h22gSSTDxuUMznRNVn0CeRNAhHI0iqRNwwGE1NLm+uSSRSVKtVkHzGkyHj8XCNBywUMgR4ovbi\ni3RqJpni7PQ9mqKyv7uL7/p0mh2iegRZAXM6xrJMAbc3pzz77jmZdHoVIkyIG7eikC8VOX5/StxI\nEk0kyeRzPHn6HeeXF0j4RCNhCDzevztla3OXVkekK1OZPNlcQcgxbBt7OkJRA2TJIx6LYE+GzKZj\n5paDMxFBop//wy+QkYiEdfK5ItbEQpN18BSmlkO+UEHTwhRzeeypQzySJJHIYDozXBliCUFQC7w5\niuwTeAIbaFkWrrfkD//wD5kMR0TDUXqDETN3SaW2ydHREdmMGPfWr27Y2dljMpmIsM7qZ3H/o7s0\n6nXisTRuILF36zb23MYwDKaTCZPhaP0d39ra5smzp6LjHksQixpsrkT2g0mPXC6FIvtkMwn6/S79\nUR9NC1OpVXl/+h7bMskkkuxu73B1dcXUtLi+uCGRSDNzAwYTi8ffPqPbHjDsj/CXHjNnTiKVxrZn\nWJaDoigsPY+T8zOuWzdoYZV8sUAAjMdDjFSCy8tLEvEkuXQWe2KhyiExLUBgKEuVMoqmUa5VsSwT\n152TyaQYjSai1z6d0x+Nuby8JFfMEwQB+zu79HsdQc8rlFZiEZ3hcIw5tnGsGSFVMI7fH5+wmLls\n1XbotQdUimUkX2KrtsF4OCCfTXN8/JaNzSq7u9vomko2mSQVj7O3s403X7C/vcOtgz2G4wHZfIql\nP+eT732PYllc5k1rRm/Y4+35CY12D3ep8ouff00ml+emUafTatFrDZgMp/zZn/053dEAWZWIJ2N0\nux2qlRJbGxu47gLLsugNRuzs7fPd4ye8fPac+rUwJ01sC0/y0WM6XhCQTIqL8b17d2h3Wjx7/pS3\nb9/iuwtS6QTpdIql7zGaTnj39hXz5ZxYwuDuRx/hE5DO5kllU+hRMe6dz2zi4Si/+dVvwZOQJIVB\nd0S/M2bSH5OIxcnlMiSNCMlYlLAW4vvf/wxVg3a3hSKBHgpjjk1Cis6zp68wonHwxYjZdhymUxNN\nlkinUuRyeZZewO7tW7S7LTqdFlE9RDadwV96/O3f/i0vn78QE8tmi29/+xsa9WuuLi4pF4qogUK5\nUCYWjeJY9u88D3/vB/LBwS0URWGxWBA14uzt7ZFOp3l19AZ7PkMJhahVN5nPXdLpNKY15fj4mGQm\ny9Onz4nFDP7m//kbdvf3ODo64vXRGyKRCNlsjidPnrC7u7tWFl5fX69comJf/KFT3O/3UVSJ8WTA\n7t4OjmNjmqbYZ8kSr169Ql+94eVyOWRZZjDsMR4PeHMk8IBbu1vUG1fEEjECVabRbVLM5bm4uAAg\nqkcYDocUiyUisajg0Y6G2NaEpefS7XaJx+NcXl4yn8+RZZnNWpWQKlO/uWK+cKjWyhQKOcbDPu5c\nvHXU63Vms9nK7FRlOp2u95S6rtNqtTh+/x41FOLJs6cMBr0VKtJcV0l29m7x+vVrAJaex3X9CtcV\nP+9EIsH29jY3N+JnqKrq+o3PsiwikQiSFJBIGMSjMWa2CKC0Wi2CQFoD3y3LIplM0mi3MG0HZJne\nYEAkGsVybOaLBV7gY1kWnY6AIQBE9CjjwRDfFezaUFhjNnM4OztjY2ODs7OzdSfzQ0d0NB6u+deG\nYXBxcUUsZpDP5FGQaTc69HtDivkCjUaDTDpHOiXcxu58QbPZFOsKz1vjHYWbuUG9Xmdra4eT8zOm\nc4fBaLjuF6ohjUASb8f37n8keqiqSimXJ3ADfvnlL7m+viaZTKLrOp1mh2KxTCEreuqZlJBuVCvi\n4ZnLZPjtb7/BCwSq0Zm7TEYjVFk4bO3JmFwqyfXVFaZpiv9/SSFXKLH0PNqdDtPpFG/FJv6QyI3F\nYphjk6ePn5JOZkRy1YNMOsf19Q0Hd+7y7t1bQqEQmXSO87MrwqEoyyUs5gHv352jSsKAJMsqc3uJ\nkRRKzrOzM6LRGMVimYUjfg/nc2GPOjs7Q9EENMHzXBzLZLHyUk+Go/WOv1QqCWlIvU6pVBDd8/7/\nx9x7PcmV5Xd+n7wuvfeVleWrABRQMI0G0NNoRzZFxsxQJJdNrkZkKDZ2+SA9bOhtQ0tFSPwfJFHB\nB5nlcldDt2OWGu3M7OxMs6cNvCmgvK9K7/296e7Vw0nkE/miUMQwI/CGqIDJe885v/P9fj41jg8O\nGRh9fD4fs6k5wpEYseQslUaLar1Br9djYXFOTGwQd5dffPUlumFMN+nBYJDhsM/IGlGuVbEkGafH\ny8XFBR63F1lSaDUFIU1RFNo9ERR8YxKz2+1iITFNhsP+1Ptdr9cnJ13x3MzEE2Qz5zidTpwuD4Zh\nUCyVyGQyDAYDEVRLJNB7fTweD/F4nA8//JCzszNarQ56f8Dx2elElOElFA7QNXrTZkav10PvdXn0\n4CG72zu0my2G4yGPnz6m0ajjdNgpFQtEwmFcDgeWKSZgTqdz+mf2BUMcHh5OJiN9/vHv/BfEInGC\nwQilUlnUuvIFUcnq9kSnORih2WxRLFRIzy5SKtU4PjzhX/7L/554LEYimmCgD/B7/CiKBpZCLBxD\nsSn4fT6qpTJGTyeZmCEcjjIYDHj8+BFnmQtm0in6oyEun5fZhTkODg8ntcosC3OzmMMR9Zqgry3O\nzfP86Qscmp3D/SMkZExTMK7D4QiNtlBi2my2qdvd4XDhcfsmU6UOoYCfhYV5uobO3uEBXq8Xv8/H\n1WvXGAwGaJpGPJ6k1RLee7ExCOH2eUikEih2lVA4iNfvY35+XlyjvXnmEwlUWZk6DlRV5fXrTUL+\nAOZ4+Peuh7/wBXlra4tOR9CqyuUylXqNg8ND/IEQ5UptKmYQirkxfl+QlUuXeb21TafdJRaN0+v1\nGAwG0z5gsVhkaWWFdrdDvdlicWEZQx/w8ccf82LzJZYFjUaLblcX8uy2AG+Irp+HUChEu92ir4uH\ncX42LSL8muBVV+o1ETyxDBSxgSYSDVKqlkCCJ88eC7DB7j73v3afUqGEJMk0GuLudTAY8Pz5cxTJ\nwud24bJrBLweIkFJKCv4AAAgAElEQVQxAhYMZMEklmWbOJX0DTRFFtxja0Q6neL8/Ay308l4bLGy\nsjKtaywuLooUp95jMB4xNz+L1yc40MI36mVtbW06MvN4PKTTwkAiHnwdJIuT0yMkGbLZ7ISZa6Jo\nCkjgDbg5Oj3AspnIskStVpveTTWbzYmmToxZ3/zbnZ6e43S6JxzdCGPLJJYULtZkMsloNEKWZbq6\nLuompiDtAEIvOOk6OhwOIpEIzzdfkkjEKBbzDEZDliY0ommQYpLUdzpcdNpdnA4f5khGk92oirhX\nXUgvUCvXkJFJxlJcuXJV7IiDIWRs+D1eyoUi4XCYVHIWGVnIDyQb4WiEZrtFp9dj9dIap5kLSpUK\n4WiESqXKoD9iPBzhdfnY3dolFhH0r15Xx665cThcFHNlsdn0RygXykSDEdqNiclofpGFpcXJGF9A\ndMaWJYQkhwcEPG5ajQoBn4tbb23QbDcwhga5XIFSSRiEhsMh8cQMyWSK9Ow8sqzidLjRZAWfx0u3\n1cWuOkjPLtBsdrBMGUMf4PUGsSyIRuMY3QHDAQQDMbzOAMsLyzx58oR4PI45htXVVRRJZW/3ANME\nn9vHsD8iPmFyKzaJ7HmWSCSGLKmodo1Oqy0EHZ0W8VhM5C4aTfLZAuVylWA4wObmSyIRsVmJRqNi\ng6RqnJ2IoNXnXz7g3rv3+eM/+d9wTE7viiTjdLrx+QIYgyFzc3N4JyG9QCDEeTZDqyP82rVqHVmW\nKRQKpGfnkGWVZrPNwsISK6uXyGTztCZAHLtDhCmz+TyqqhIJRgj6RNq+VqmSSCSm1x9vqjKrK5cY\njEeiEeByMjs3z3kmi9PjZjAcUqvXWbt8CSSJUrnKaDxmbIKiaayurqLrOvlSnm5X5+DwkGfPnlOs\nVDDNMcNBn2q1xuxsmpWVVYKhMH6/YPDruo6MDbui8urFS3a2tjk/PQPg5ctX3LtzF1VSsZljErEw\nd9++zYMHX1IplnjxfBO/L4jT4WZ3a4f0zBwXp1lOD8/ptHUq5ToPHz0jlkjx1YPHBPxB4rEED798\nyAfvvY9ks1HJV2g1OtglO6V8GUyJ09MzDH1AqVTBsuDg4IhuS9QRL69fYfXSCg8ePCCfz1Ntt1Gd\nLm7dfVtMLbxuWo0mbrsDxyTVns/lRP4gkWJ1eYW7d++iKArz84sUy1VMy4bT6aaQLxEOR1lIL1At\n1zg9OsWlaKRnZzHNEbWGqP05nU4ODw/p98UGKRwOE43GsFkQDceEPW7Up2f06Pba+II+PD4vkqai\nOR2USiU+++wz/F7R4GjU6qwsLiEj1LjzS/PcvHmTcrmINXFT/12fX/iCLEkShmFQr9cxDINqtUq5\nViWWTOBwuVEVO5Zlo1yq0Kg3KRSKPHv5kv5wxNUr1/i3//bb7O0dYPT0qRmk1+txcXGBw+7ENE2K\n5RKLy0ucZ89Iz6XoDwboukE+m6Pb7uD3i8X47t27vH79GqPfYzgwWF9fJxgMinqMovLs2TMikcg0\nedwfDiZ3BuJUlEokCfj8eN0evJNgSL1ex+/x8vnnn7O+vo5lWZyenpJMJnDYVXrdNsVCjidPnhAM\nihSl+GLNceXKlYkazk2j0UKSJBoNUU0xhgbhoKhxBQIBRiOTfl+ctPf39+n3+1y6dIV4PD5JrkpI\nEgwGfWG/UkSPVCjmGkQnd0PtbhdNU9BUWcBQJkxdXdcnHueeCFZ1W6ysrRAI+CeidA2woesGlgWd\ndpf9vSPW1gT7OBoVSjxJknC7PCBLOD3iVBuPxwU/W7Fjt9vRNPHrjQdX1/UJyMNPoVAU5KGJVens\n4pzBaDilAgFYYwuHw0k+VyKeSNBudxkPTfr6xJ7VbKLYJEb9AZlMDllWCYViLC+v8sMf/D/43J7J\nn0MoI8Ph8BRY//bbd3jw4CG3bt1iZ2eH7kT5GA1H8Lo9QueZTOJyueh2OridHszBCKfm5NLKKqqi\n8WprG8uUWFpcxeX0kjnLEwqEcTlEV7HZbANweHSCiUQoEuXzL78gEAoSiUSo16vMzs7S0TvImoIl\nWYIXHQjw3tfeo1QqsTA3LzrELi/7+4e8fPGK4+NTLNNG7iJLNBLBZXficXlgbKNSqVGvtYnHU+Qu\nivQNk7du3aVWa9A3BvTaPXxuwVSfnU3j83opFkqUi0UymSyHh4fcvXuXcCDM0dERPp8Pl0Pc952e\nnotO9mBMNBqlXmvS6/W4sXGdeCxG7iKDbFP48ssHdLs6l1fXODg4YHl5mc2XL+l2uzx/+QKXy4Uq\ny0TDUebn5rDZJMqVGpFYnHAwwtAY0m21WUjPEY1Gefr4CdVqFUXRRNVJ1zGHI6LRKGcXGWRZptfV\nWVxYwjTBMAZEI0l6xoCXr7YYTU5cANlCntm5eex2J+PBaCpf6XWFRETT7NPakiLJFCcEp0g4htPt\npav3efz0Ken5eQGAAZx2F/V6HZfLJa4y9P6UuFWr1ej3+xP9YYtKpYaq2FFkjc3NzWkmYCY5SzQS\nZ3t7m0K+yNHJCeVyhVazid/nw+Nyk0rOMp9eAODrv/prZM4uODk6xKmp2DC5deMqC3NpHjx4iFNz\nsbq6Sq1WExtQm4IqqywuLnP37ju0Om0uXblMMplE0zTm5xf56U8/xev18t3vfI+Na9dp17swtHj1\n8jULs3Ps7x5w9co63ZYQNszEZ3jn7j3cTheGYdBotcjkcyRTCTS7ncTMLOVqlfPMBfVmg89+/nPu\n3H6bXqc7nVSEghH6+oB+T4BPMudZgsEg55kL5hYWCYejjC0TWVZpNTtUq3WCgTCpmRlm4ynM4YhI\nPEK316bdE5WywWDA5uYmmUwOp9NNuSA2Frs7B9hVDYdDo9tt4/OJiVlH70zNXpKqEIslBK9hMj0c\n9gfTNH82n8Mb8Ior2p7+96+H//8trf/fPm+oNC6XCFB5vT5xAT8acnx0gt436I8EYi6fz9Pudafh\nKrfbSyo5QzgcxCZBIOinVq9y6+1bIv3rFbacpaUltndek0rNUKlV0I0e2GzEEvHpSKRUKnF4uI/b\n6aLTFGGyNx+Px8PB8RFra2t0Oh2Gw6EYEc/MT3uIZ8dnxCJRrOGI9bVL1EsVNtY32N0SbudPfusT\n8hlxOo6GIyK1akG7IVK9w4FBbuL7dTmc7O/uiROjZiefL9Lp9KjX26iqHVW1oygaqt1Ob+L3dblc\nQivn8RKKRphfWqTX65DLZZAkJpWvEH6/n2IpTy6XJZ1OTwMVwlUsvK+maU6pSKurq5ydnQljymCA\npimitxqNTGHx47HJaDTm/PSCUCCMNRZpR4/Hx/bWDq1Wazqqczpc0ypQPJFgOBaSBVlWpwvqG8jF\nG2CIaU7gEoMRN2/epNlsTSH9uq7j9/ux29UpxEHXdYqFMuFwlGpVvPDEi1kiHPYTCvuwSdbkRSrC\nL4VCgUwmw82bN5mbm5uiVv1+P5Iq8KbhaITHjx+zsLDA7u4uerdH0Ouj3+tTLpTRZA3ZZmP79WsC\ngQDBYJBqqcKNjZsk4wnK5So//+JzlldWGA9Nnj56wdAwqVUanB+L5Ozu7i7+CZM7GImiqHZOT0+Z\nnxeqT81hJxpPkq8U8AT85EpFFFVF0WRSqRSPHz7CZXdQrhSZn5vj6PQEjy+A0+3C7nTjc3txOESn\nW1E0dH2I1+OnXukQC8fJZgrYNTd6b8jO9j61ah2fL4DNZqPVatFuNdnZfoXe6xMKBtm4dp2gL8jq\nyiV2t3YFLW1CRXrTC19bWUWWVNbX1xmMx9OJycHBAeZYhKD6/T7/6Dd+m0Q0BkgsLy8zGgwJeH2M\n+gN6PZGSvrFxExWF7HmWX//6r7O/e0A8Gid3kaPX6aHaJGSbkHfcu/c1Av4Qjx8/nqIcc7ncxGIV\nIplMUa1WqVbrbG6+ptvRsdsdHB0dU6lUhelrMgLTdX36MzRNE9a0ZpNwKIrX6xMNkFYLVbFTKZVw\nO50woWi9QccuLy+LkCQyDruL+fl5HJqgoR0eHk8IXA6q5TI+jxuHqrG3vTNVhPp8gv0dC0cJB4Kc\nn5xyfnpMq90gHArhcDhQbDJBX5CHDx7hdriZnUlTqVSm4B+73U4oEOT6xjUwRyzOpem0W1hjkzu3\n38YwDJ4+e0yn3aTdbqLrXWw2G6urq5yfnzMc9VE1cLhUXrx8ztHREf/8n/+3dLs6gVCYr776it//\n1n+JhI2v3bvLxcUF8UiYQi5PMBBgNDDY39/n1cuXjEajKc2uUhHgn6XFRbY2t7CGJl63B0WR8Hq9\nHB4fgWQjFBT1rXq1wa3rNxj2R/R7IuextbXFeDgic56lXm/i84nq1eW1NR49eIQmq/h9wen37/j4\nmDFj3E4XyWQcSbZx9949nE4nxXyRgDeA2+FmLpkGJCqVGv5QkE6vi9HvY7fbGQ7FIcjhcNDv94kn\nEvgCQQYDgV/tdHoYwwGReIzD4yO6Rm/6XPxdn1/4gtzvGWiySvb8glQiiTTprdXrdSKRCBsbG3z3\n+9/h+OyYuYU5gsEANtPi+rUNtrZeMTc3SzwR4+hoDySLQMCH02nnLHNGqZLn6tUrnJ+fc/XqOju7\nrxgO+yiKRLFUQNcF6kx12Dk6PcHvD+ILiODX8vIyvb5BdQJjWF1dpVgscnFxwY0bNyYLmYPN55sA\n3Ni4zt7OPulEiploEq/bx+PHT/H5AgyHY3Z3d0mlUrTqLRKJGWKRKKPRCLfbzdnZGYlEQnC9NY25\n+Vk8Xhdur5+d7T16XYPUTBpZURiNxxj9Pt1eD4/PzXg8RlZVKrUaw7FJV+8RCAXJF0UVqN838Hjc\nBIMB+v2+uBuTNe6//x7PX77gxq2bSJJMLCbGi0FfkHq9SSQSwWaTKeVLaIrC8+fPaXcEg3owNDg8\nPJyM62ocHRxjVx0oikaxWCYaSzAeW8iySiQSA2zTk+/8/DyGMeDw6FigP9vCJtRutnC7XFiWxUAX\nnGaH04mu95E1lUKpgs8XoFxp4LB7kCQFywbRaBjTJgAm4pQuNjk+X4BuV8eaGK1MLBRNVJT8fi+R\ncAybohKMhHG4HaxvrBOKhqi3mhwdHWG323nx4gU2Rebk5IR8oUA8HieVmqHdbk0NODZLEoSe/lAo\n2/pjVEnj5OgYwzBYXl3ly6++IjmTAlkiFhNYv3arRSIex+f18ku/9DEbGzf46sEDUnNpjAnmVFbe\n0KgEGKTV6tDr6PSHI7zhMJl8gZnUHIrmwjJlhv0RQb9fuJ1HFp12j0AgSKPRRJY0hkOTVqvH4vwS\n+4dHeHwh3B7h/9b1AcOBRTgUx2F3k55bxu32Cti/rrOxcYNquca9e3eQbRahQIDxyGLYF/zi0+Nj\nVldXkW0Sx8fH0/tUgG63S3Imzu7uLq9ebZLJ56hW64QiUTZfb1FvtvnZp5+RzefYPTikVm1gjWH7\n1RYOzUn2Is+1qxu0mx0O9w4JBELMJFIMewPskgrDMbFIHIeqYXQMNEXh1ctNBrpB3zD4lV/+mFKh\niNHTGQ2GhENRfB4/rVYLh+qgUiwR8Pq4cukS+UyWZrOB3a7hDwYYTxZVh90JSKiqnXq1hsvlwul0\nCqezLKNpDtxuD/V6Q4BcAkH8fj87W1uMx+bkGmcWp92O3+tFlWWak7CjMsHrxmIJCvkiXreXRr2J\nZldZXlnC5/fS63ZJz6XYuH5VXEd1uiwszONyORn1++QuMiiSSjQc46svH+J2eshm87QbTVr1xtQj\nvL29zcHBPpFgALA4PTtB0xRu37olEt9jE0yLcDg8hfw43S6Oj49Zml9AsQmcqyTBnTt3SKfT/PCH\nP+TKlavC+e528yd/8r9y//7X+NGPfoTNZrG2tkY4HObWrRuCs+5wCF2u00kg6KfdbhKNRqmWK3Qb\nLYJuL9VSmZm4yBIkkjFMSygYTy9EWrzf75PLFYhFIuIa4/iEpYVFwkGBsZxJJLk4OyeVSvHw4UN+\n5Vd+hYODA/ROD8PokcnncDjdWKYNl92F2+nEJsuMrdE0INrp6FSKdfq9Pu1GG6dTTFzHpmCbJxMp\napUqNgvG4zGtVgNLsnF6eko0Gp0S9CLROKcX57S6bWyyREv/B7wgmyMLmyVh9HRqlSrNZoNkMknm\n/AJFljg5OeGP/uiP6BldDo4P0DRx97U4O0e33cTCxOXSuP/e1/D73czMJHj16hWWNUZVJPwBLw6n\nkFcoCswko7RaDRKJGC6Xa7r4379/n7OzMxwOB4FAiIODA3KFLLIqUa3XMCeEr5WVFX7w7/+GSCRC\nMZthNpUEYDAw+Na3vkVX7/PgyXN29vZRZI2V5TVmZmaYmZnFrmrouk6zVkfv9FBVO5rTNVUv9no9\nQqEAL168YHZ2VtifEDvsniFGYwIKMcblFSdiSZHJFwtoDgfxZIJgOEy1Xmc4HqM5NOxOB16vl2ZT\njAnfAD2ePXvCRx99RK1WYzgcUi2Lu9rx0GQ8GHNxekHuIjOpwKQIB4MiOFUuYpojVEXB5/ExHI5Z\nW15DkhS6HR1DH3B6ek6z0abZbNJsNimVShNjk53zcxF0wbSQbDbyuRzD/oBgMMioPyAeiYqxlE14\nYLuGTqPeElJ4l4de18DucE35ue1el4uJPq/bFaPehYUl+v2+0EOORKrV4XBRrzdJpmYxLZlStUap\nWOHl5iZdvcPP/vanZHIXhEIh+qMhW1tbrF6+hCzLRKJRfMEAJ+cnDM0hil2bkpr6/T7VSg2jpxMO\nR6jVhOO43++jTOlGCv/TH/8v7OzucuvWLXLZLPVKGZspcImNeovv/99/w+LKMhf5AvpkQbYsi8FA\n6PdKxQqJWJJezxCj93aPUCiCqjo5OblgdfUyum7QarU42N3DYXeRTi+i94ZUqk2QNJwOkQQ+Ob7A\n6wlSKdc4O83w+NEzItE4TrePXq9PNBpnZ3uPVqsz2dQNUWwa2UyOzFmGzEWOdqtLuVyevhjT6TRn\n5yd0u20CgQA9Q2gJAUKhEI8ePaLRaEwJbA6nm7PTC2LRBE+fPuX69Zs4nW7ee+893D4vu1u7zKfm\nePDFQ65cvsrOzh6WBYV8Ca8nwHgkTtaMTbrtFgO9x8rSKoPRGJsl8cH9DzjYO8SGDKYNj8eHzZL4\njV//TcrFCpVKZZoYn52dpdVqkUwmsU3IWC6XC6/XjYW473sjRJEsifX1dWSbhc/t4fT0lNFoRKlU\nYjQyWVu7TCwSRZZt0wVhJp7A43Lx9PFjFubmKRWKXFpdQ5VVXHYH3VYba2xSr9amIJdatSp60hcZ\nwsEQ169vcHxwgN7pEonEiMUEBcvltFMpF/nmN79Bu9mklC8RDcfotA1K+RJra5eJhMJTouDbd97i\n3p1b7Gy/RlEUFhYWMIwBT58/Z2SO6XR6hPwhQMLoD8mXKywsreDyeDk6OsXr8uJ0uvG6fcLDnZhh\ne1sgiINhPwtLCyyvrbK7u0t/OKBarfK9732PYDDID3/444kkI4DX68ZmsxiNBgKgMR6CaZKIRDF6\nOn29R+biDHM8pFwsTehwJvG4eN8WSmUwLfxeP/VKjVAgiGKTuDg9Ix6JYg4HjAd9sMaEQkJSs37l\nithg+DyomkZ/NMZld/F6c4vT4zNxHdRqgizogLlMnvVLVzk6OEGVNUL+EA7VwWhkomkODvb2uDg7\no1VvUKvVePtr90CyEQxHMU344ouvGFs2zjMXuH1ebLJEYmaGnvEPOGUtyzLWaIxdsZNMJsWlutNF\nciaOYRgoqkS+mCMUDaHaFVRZRlVk/vqv/oJPPvltWq0G49GAVqvJyekx1XoFVZWZn0+zuroyCRk1\nODs/IhIN0+k2kRVR+g9HI4wsgaL0er34/X6SyRSWzYbPH8Qz4Q47HHay2Szn5+domsbHH3+M0e2g\nSmNCAbHzvHLlCv/DH/2PeINBIokEgXCMxZVlZmZmqEwWu3y+iCLJGD0x/trZ38M0TVKp9OSLGqLd\nbuN22KlWq7S7LWbnUiwszU9TzbVmDWyiu2hJNobmEG/Aj2q3k8nlRILS65lK1PP5LJVqCafLTigU\nmu7c1tfX6XQEh3p5eXkKqR+Px0RCYfL5vBiPK0LoEI1G0TQhq+jrBrbJVyceiQpXsT4gFArh8QmK\n18xMCrfLOzXevMFD5vNFFhYWpqfZ4XCIjA1rPObKFTHN8Ho808CZoghrUzab5+Iii2EMOD4+5fj4\nmFxOSDDG4zGGIaD8IO79zOEIw+iRSqUolUoY+gBZteNw+dg7OKanD4jEYly7do3d/X08fg/9SdBG\nVhRcHh+tVotqrQayhM8nlJd7e3u0202Bxxz0KU06rKrdgSRJJJOiS7y8uCTuxe0atUadf/oH/4z5\nxTnOz8+oVssEQ35WV1fptTuEw2Gurm9wkcmRSs+iTSAO46GJz+cjEAiwvLzM+fk5ik0IFSKhMNVi\nlYuzDHbZwcsXW5gmU/JS9iLP2WmGufQS0UiS8Uii1dRxOjyEI3EcLjfGYIDHH+Cdd98jny9ORqMj\n/P4gs7OzE4NWi74x5PDwlPX165wcZwj4xenJoYoxXTQaFfkNRcXtdhNPRLHJMi6XACB89vnPuXPn\nDppdjP7z+Tz7+wcYwyG9vsGtt95m9fIlYskEn3/xBd///vfpdXRq5Tpv3bjN8fEptVqDk9NzPvro\nlyhVqjgnYInBsD/FNYajEe7cvUe72WJ1RTi+Z2dm2NzcpNfpsra2RqlQEN5mj4dyoUyxKNgFH7z3\nvuBvq6qYmmky7Xabdrs9fVf5fAH0nkE4EKRSEYFLj0vcgwYDYVxOwYs/OTkhMgFyWJZFtVqlUasT\n8PnpdDqEAkH2d/dwuVzEY7HpJjkajfH27dvMxBPcvf025nBEKpViZ+sVqmwTLZN2i4cPHnN8fEqv\n2yWTyfDhh+/z9MkTDvcPqFXq2CzRIhFI0iDXr1+nrwt+8u7uLoVijnQ6PQ1iSpLEBx98wM7ODpIE\npUIZvy9IIjFDIpnm/CLLZ599jqrYabd71Gsdstkimuqk29H5xje+QTQaJhoLUyjmaLfbjC2TDz/8\nkEajhcvloVAo4XK6iUbiBMIhnE4noWCAxfkFisU8ly5dwuNy8vDhQ+bm5gQGeTSk0xEJ57WVVSRs\nnJ+cAvDuu+9O79HtmkY0HGY8FErcSrk4TVb7/X5UWaHREKauYCRMrdEAWUKRVcrlKstLqyRjSba3\nt5EUiVarKQKnsRiyTcHt9ODQHOQywoVgt9tpNVqUC2UkSxjB/B4vjUaDfEVQ/I6Pj0kmkxiGwdLq\nCqfnZzhcTjqdzhQm9Xd9fuEL8t72Hm6Xi42NDdLpNHfeuUe2lCORTCIh0em0KVcK1CtlPA43lXKN\nO3fu8Pbdt/nDP/xDIpEIDreHUrmCXXHSqDWJJ6Lcfvsm21uvGPR7DPpd0qlZcpkcmuzA7fQg2ySa\n9RZDY4hdsTPqD3D7vOwd7dPpdbl6fYNaucbBwQHIMDB14qkIQ3NIqVphPLao1CusXFoD4Ec//Qnv\nvHuP//3/+BMGRptYJIjbLUQBtXqFXq/Hw0dP6Bl9NLeTRrvJ5WtXaHdbON0ONE2jUqmRSMygOV2i\n/xoMiECTJBEKBpEkiXAwiKY6KJZLWNZ4uuDV63WCwaDAado1NLtKu9UgFotRrdUwDIOT0yPC0Qhr\nly9xcXFB9iJHKBCkVW8gI/Rsg8FgArtIsbMtqi/FSglZVSkW8zhcdmRVRrOrpBIpgv4Q+VyGQMBD\nvVFlOBzR7w/Y3t6iM6kLeHw+YXOpVrHGQ86PT/BPBAY+nxBRjIcj+l1xgs+Xi0SScYYWtDs9ZLvK\nwsoCmkMmGPGj2SUkxcZMemYy7gpjGDq9vnjp1FptFLtGoVDg4OCAeDSBYQyYTc1TyBeRAI/Px/7h\nIZVKhfFwiDS2oUky52cneD0uUrNJXr54xXhskZ5doNM1sJAZDsdkMhlh9hoNsckSbb1DLBGh3RZG\npZs3b7K9s4U/6BN6xXCAWqOE06GiKhIBj4tep8O777yPZDlQJQVFNfEHNTSnhKKJe0tJUjg9vuD6\ntZt856+/x6W1y2gON+eZLG6nB7fLhzmWuX7zbW7cuEWpXKXebiOrDm7evClCS/qA8Qh6PQObTabV\nMVA0NzabTLulo0lOvvryGYe7F3z52WNGPZOdrV0eP3yK3hkj4wTL4s/+7M+wjTQ2n+/ynb/6Ab2O\njs1mQ1E0xkMTl91Dr2dwdHKMTZUpFDMMxuKkH4rEODw+xRcIkc9kubFxlW9+8xukkjEkCZYuLbNz\nsk+2UqJYq8BoTMDuoNvucfXqdfL5IgGfn9mZNPlcFb83xn/88U9JJBLYLFOgPzN5RsaAVq3B2uIK\npwdHnJ8e43TauXn9Ol6XB8PoU282GY765PN55ubmGPZHeN0BDGNANp/D5XJRrzcI+MOCWS2LjaPT\n6UaVbKiaRN8cEUvMkM2XcbjczMzM0u/36Q90SqUC/eGAnq5TKxVxyRo2IBZPICkyXq+bSDBEPBIl\nHoogjW2oNpXr6xt0mi0a1SrINhqNOrvbu7QrDRLhJEe7x2QvsqSSKSLREDYLZGRu377Dw0fPGNts\n+AJ+fF43c/MpqvUK/rBIlT/dfEbPEGPSiDdE7qJIq97ChklyNkln0OPZi6e4XXZWL61w9517pJcX\naQ66+CMBarUG8UiSXLFErlAi4AtSrzXoD0xsssRnn33KyenxNABaa1RxOZw8fviE9UuXkVTY29th\nMOxPfo9CvpDBZpmcnRywtDDPixcvJu8ylVqlQDqZYH1lhV6rhT/gEmPm8zOGuliEO40qRr9HoVrg\n7v27vNp+xd7+K6KRAKpLIVPMMrJMYtEE5VKNn/30M04zWfYPD+g0eyg2hVqlTOb0DLusoMrKVN7S\nbncYDYY4nU6q9Qoer5dMNj9ZoCXy2RySZMMf8nP12jqqqqI6nAxNGz19SL1Sx+X2kssXUVWVdq1B\nOjEjOPCybZrX+bs+v/AFeX5pEVlR2Hz1AlmVOTw+IF8s0Gg16Q+Fkm99/TKz83OsrK2xs7PLi82X\nKE6Vd+6/i+dUbqkAACAASURBVN43uHPnNrVajW63O03j/vjHPxYJR6cTp9NJuVrjw49+mZEpwjyR\ncJhiuYTNJhLCD588ZjweY47H5PN5Dnb36PV6zMzMYJom6XR6Ek4S2jFZtuFyu/k//9W/BkRYIp/P\n8pu/+Z/T6/fwh4Ri7m//9m9pNpsYhsHKygqrq6u8fPmSa9c3OD09xR8MCgZyp0M6neL169eMTZOx\nabK1tcXa2hrNZpPRaETA7xf3a5ZFNCzS3l6vd9ptFTxnB3t7exSyORqNGpIMiirh8bjwer1UykWB\nk7QsfH4Pp8fH7O/vT9OLHq9rwtANsLCwwNbWFoFAgHKlSDAcIhDwozlVLMsik8lRLVX54IMPSCaT\n2DUnfUMkuAM+H1euXEFV7TgcLlRV3N/KNoVGo4Gu61ij8QTYMMCuqFjWmHwuiz8kTqfD4ZBoPDK5\n+x5TrZYni76O6rAjSeIux+FwoKqC2wvQ6xpU6zXu3btHKCQcwZZlTVCgUSRJXIW8f/9dms0mTrtj\nGsoolUo4nW5G/RHz8wvEYzOcnFxQqzR59uwZo/GYUCQskrCNBpYkAkwSNqKRiLBYDQckZuLYJJNG\nq0EsFsVizMnJKcPhGKfTw9L8Mvv7+2gOmUqjzHlGYA69Lh+qTSzIL5+95Fu/+y1++tNP+a3f+i22\nt3eZn02jKYpgfrfbrKyscHR0xNbODoFwSBDlNJV8ocT8wgqyrPL5Vw/QNAfz8/Mkk2Lkd3GRxdCH\nBEIxludXePZsk5mZWRaXlwQdz+vj+9/7ActLV0gmZnn//ff5Dz/8AQsLaf6b//oPxBTCNFlYWODs\nTCgknU4nvV6PfD5PNp/D7hAO5mw2KyY2Fly+fJlsNstf/PVf8dP/9CkbV69Omce1apXFVJp0YoZY\nNMzly5f59p//OdeuXSMWixAKhVDtDhKpGX7jH/0Wx2eneEMhQuEIs+k5EskUB0eHFItFMU6Nxel1\nuuRyOTKZHHt7e3g8Hnp6n0R8RoxnQxFmkzM8fvwERVI4PTljbXmFUr5AXzemQUOh5bOQbBaPHz7C\nMPqUyxV0vc9wIBL4oVAIY2AwHI9pNBpsbGyQSMbweTwMh0NhXfN5efT0Cdt7uwzNEZFYDI/Hx+HB\nEdVqlcFgQLGY58svvyQWiaPYFA4ODvB4PNMwZD6bo16tsH75MtFQFJfLTbPWJBlPsDg3jyRJ2DWN\nt2/f5vj4UITQJs93Np/BNJn444P0BwPqrTbp9DyJ+Ay5YoGDk2O2d3eQFJVnz15Qr9ap1xpcXd/g\n1q0b7Gxtk0qlCAb9mOaIq1evYI1HLC0tYFNs3H77Jq12k2QyjscvCHxXrl1i/3CPoTkmlyvw9a9/\nE13XuXz5Moqisrq6yu3bd1Blwa0ulwo060Kacv36dWqNOrFEnMtXxAGoUq8QigRxOBz89Gc/Yzad\nxhfwT0U2faNHMCgoa/FElGRqhngyRn80IBKJiMCezcbi4iJup4ter0c6ncbuchKKhND7BsFwgEq9\nRio9SzAc4OXLl8wkkrg0O26nsHTt7Oxw6dIlisUipyfnWKYNh9vFRSGHPxJiMBri8XmJxGNYNhvN\ndhtF+QesX3zy5AnGcECxXKbSqOBw2ZmfT1Mul6k3awxGYqzVarWw2+3ceecu7QmcP5YIo2g2vnjw\nJalUarIQBDk7PkfXDWq1OjZkbtx8i9RMmk//9guwyeQLJXLFApFYjEA4gOqwo6oqtZpAOM4k42Qv\nMng8nkk9aEC5XEVT7eRyOS6tLtNut3E4XHzwwQcApGdS3Lx5E83pQO8bHB4fUa1W8Pk8LC0tkclk\nePf+O1xcXHDt2jrValUU4ycaQpvNhsfjoVQpMjaH5Ev5qby8PxjRaQsKUiwWo1woYxgD0ul5TNPE\n7/ezt7dHOp1mMBiIBPNMnEIpTzgWxut1Y7ermKaAQ5jmaMpLflM3e1PvaLVavHj5jHa3xYcffUC3\nJxjiuq5Pmb+j/pid7V0URePeu+/S6xocHx/jC4igzJs7n88//5x4PE6z2UTv9THHsLS0xK/92q9x\nnhG1E5/HhdvpQFYsFLuG2+uh0+7RrDdQZJluu0O5KOAE/YHOxcUZqsOOZVk0myJ1Xqu2MPQRfl8Q\nEKf8YDBIsVim3Wjy0Ye/PP23scZj/H4/ss3Gs2fPBBKyWuHk7FQ8nG63uJfs9KjXm5yentPv9el0\nOng8Pnw+P512j8vrV/D7/YTDYSzGjIZDKpWKqEGYY8rVCsVyiXqjyunZMdZkhNdsdIiGEsRjKXb3\nd8iUTik1i8wtpmm3DGaiszz8/BEAf/BP/xmffvpTVMnG4eEhYHKROSOZTDIYDjEGfQyjR6fbQpJB\n0zQkVRGO5o5BsVDBH4zw8S//KrFogn/7b75NuVzm4OCAwXCM0+nlT//V/4VpSvze7/0e3W6bQiFP\nLl9AH/T5+te/zp9/+y8YDmysX7mGy2UnGvfQ7OZxeZwUJsQiVZWxOzQCgQA+n4+eYTCbnp96nTWH\nymBg8PjJQzIXF5RLVd699w6///u/z8HeIQG3n0a5jsOSOD84JhYIUSwXmF9I8/HHHwMmVzeusbC0\nSCgS5ouvPmdnbxcL6Ok6jW6b1MIcTzc3uX3vHdp6j1qrRXImTaXaYDgwqdebzCZnicfjXLp0mXq9\nwfNnLwiHIzx7+ZJoJD51bNs1jVAwgCrLxCfK1UgwwsuXr5BsClevbnB4eIyq2ukPRvSHAxRNpdPt\nMjc3J+holkWumKPaqLN3sE9PF/rMUqlEMBzi6sY1dvf3ePTkMZValbOLc+7ff5dIXKgpU6lZPB4f\nzzdfARKzc2kuXbmMpmm8c/cOy4uLxGIxHj98SMgXYDYxw7A/4Lv/7jv43C4+/PB9CtkM5yenaLLC\nyfEhAI12i3gyQSKRwOPxTNoqbpxOJyPTJBQJk5ybweP34XS4mU2lyWRyYFlkTk+EQWxhjnw2x/bO\na2LxEEa/S7NZ5/j4kG63Ta1WYW4hzdHxPi9ePmVhKU1X77CwtEStVsPtcPH97/17hsMxZyfnaIqd\nVrWJXdWIR2I4nQ48LieWJdC/3W53Ij0xMQbihLy6uko0Ehc5Gkmh2WnjD4axbDATTaJKKiGfn2I+\niyRJUzGK5rAzGI/w+H3YbCJsWqqUGQwG5Ap5stksoWgIYyjY98lUgmwhi6qq/M7vfEKxWGRlaXmK\n5rx69SqDwYBSscJoOKTb7dE1dFxuN16fj67ew+X1ICkyWzvbZHIXRKKhv3c9/IUvyOm5OZBsRJIx\n2npTPOTVEpF4hPn5NHaX6L7GYqKcHQqFcHrc+HwekrNxVIdGq9Wa/MdImCbY7W6uXN5gNjWH2+3h\nq68e8mprm1Qqjd3pxuHy4PEF2NnbZjgaTeUHAa+PoM/P1otNNq5e4eDgYErsymZy7O7u89/9i38h\nlHuMqdTqZLM5gCkh6w2Z5cqVSxMOsYGqygQCPn7ykx/z1ls3GY9HBAM++j0dl9MjhAQLC7ze3uLK\nlSuUqiWSyaRQM066s/V6nb4xpNftEgwGsUZiF97vi9DP/fv3OT8/J58XC7nf76ejt8kXcziddvL5\nPJqsIMs2BgNhTxqNRly5coVYLDYFMKTTabSJO/izzz7l8vo6uVyOvjFkf/dgmpp2uJwUCgV+/KOf\ncHn9Ki6vj0qlyrWrV/H5fEiKQmJmhlwuh2XZ6PeHfP3r3+T11g5fPXhENBql0WgQDAZxuuzYFInR\naEgyMcOwP8TjEYGbXreNw65SKObw+33E43GcTidutxvTsmF3eDg+PWM0MhmNxD14JBpClTWy2Szh\ncJjNzU2hxQuFRD2l0SQUCLCztU2hIAJxNlmm3e0QiyXodHqok+9QpSIStZ/89u/yySefkE6nSSQS\n5PN5/BNOr9HTGQwMItEosViM/nCA3ekkNYGtrK+vMxoM2d8/5PjonLFp4zyXo1gpEokG8XvdtFs9\nLFNl6/UuGxvXAfjhj3+E1+tlbnGBt966KV4qEgzNEcFgSOgfqxXS87MsLS3Q7+vTXvmv/me/xleP\nHrO3d8D+/iH7+we89977hAMhJAuuX7tOyB/jlz/4VX7yHz8ll8uQmokjSxJLC4tsbm4KI9jcHP/6\nT/+Mx48fk5wJMzQN+gMDizHz8/O8fLU5UTGqqKpMOCboS0tLKxQKgvPudjvp9trcuHGDUqnE4vwi\nNsvGyxcvSCQSPHn8mIX5eRbm5olHo/j9flaW14iEY6TTadrtLn/zNz8gnysSicQm7GqFv/7ud5FU\nFbfXz4tXm+wdHaG5vBRKZRIzKTo9g4ODE9wu/1QJaTPh008/5eLigmg0jqrYadSFFc3nDRANx6iW\nymTPL3BodkZ9sVGt1+t89MEvMRiMyOeKKIqCd3IVY9ogEo9gSaKbGo1G6Q8NGi2hUr19+zbdTo9g\nMIjqsGNTFU7PzhkMR5SrFWySqHld5LIioDgy8Xn8PH78mI8//pirG9d48uypyJA06uTyAmebTCax\nbDYajRaPHz+mWWvyrW99i0g8xuvXr3n27Bkb19ZxqooQuwALS4uMTJP+aEg0FuPSpUvTXnYkHKPR\n6mB3u4jGY+zt7XG4d0gsHCMeiVIuiqsDxgImdO/eHV693qRer/O7//gT0rOzBLw+rm2sc3Z2wie/\n+9vo/R7hSJDRaEC31xYinYtzwhPEsc8XoJwroEgyP/vJf8KyLGKRiKCChUJomsLYMkGy8erVK4qF\nMgAOu4tKucw3vv7r0/vwYDhEq9Pj9OgU2RRAmvn0HJIss7iyyEU2K0KYdUEylGVZJKexCEXCEzJX\nnHa3Q7vbYnFlidPTU2KxGMlkkkqlgk2yGI8F98AfDBCKhJFUoe61ANVhZ2ZmhrW1NewOdTrZePMe\niMfj6Po/4B5ytVHn1fYrYskwQ3PA8to8DpfoXjo8GolEgnqtid8fRJLhO9/9S0JhH412C7fXy/nF\nKT6/h1gsRjwen6RWm6yuXiKbzWOTFDTNTiKeZGxBoVTk7OKcRqvJ8tqqCE+123g8Htxu97SedHh4\nyMryMs1mE7fDyezsLMlknBebmzQadSzLJBKJTIMrIhIvTmfdbpde3yCfz5NOpWi1WoRCwulbqZTo\n6R30vqD69Pt9GhOt4dzcnPCh2u10Op1pP7jVEvLzs7MzJJuCLEmk02m6rTamabK2eon/8KMfkkzN\n4A+KU0omk5nsqFX29vbI5/P0+yIVGY/HBVxEH9BstOj1DDY3XwNQKBSYmZkRPdsJROTy5ctiJ1kq\n0Wq02draIRwM4fV60Rx2/vIv/op2q0uj0WDz5Ws0TZuO+DTVwempECI8e/ZscnItIk8mErVKFZ/b\nQ7FYpD8c0G63sSwbva4xqXd0UBSZoN9P9iKDPxhge3eHeqPB0dERNpuNUDCC0+mmVhP8ZNM0yWaz\nOBwOmk1BZZJlmfF4PPn5Imhz9epVcSI2TeyqSuYix6A/wuFyC3l5SQTQxuMxr7c2efr06VS2YbPZ\ncDgc025ru91mPB6jOuycnZ0J77EkiQ50pU6vp9PXB5imRX80pNPvML84h97tMdLHjHQbh/vHvHP/\nXVo9Iahw+9ygyJycnfLvvvsdvnb/Xc4vMpiW8FxHo0KrZ7Ngb0+Yle7fv08wGOTLr37O0vwclUpJ\nbGKdbkCi0zF4/Pg5nXqXb/+bb/PVz7+kUa9yeXWF7PkFqiT+brfvvI2i2VhYnuXuO7dYXVskm8sI\nfSM26q06kiL6nLdu3aDf18nkLjg+PsbQByiaRi4nNqt+v19AccYmd966TcDrwxwNWV9fx+ly8f4H\nH/Do0SNqtRoffPQRv/TxR3j9Yf7nP/5j/vRP/xSPx8PVq1dJJJJkM6K+tHHtGotz8yiy6JN2Oh0+\nev8Dvvz5F+QLJSrVOk+fbdLuGjx58hSXy4WmaZTLZeGqneBfn7/cZGlpiVAowsHBgcgw5PMioOjx\ncOvWDUDYng4P95FtFqlUGnMsHMmNVgcsicFASFbejKZHI5NEMoVuDNjZ2aXVbLK3u8/x0SmtVhtZ\nU5E1wcV2epzC1V2vEwgEME2T509fEApGeLm5ia7rU0gIpoWmaeSKBU7OztAcdrp6j/X1dVYvXyKR\nTvHVwwcMBgbhUIDjg0N0Xef6dbHJW15dBVWmrfdodTsTEEaGSqVCu9fl3fvvc3x6Qq1W4frGBvF4\nlGazTrVR55/8k/8Kn8dNpVKnWCwzk0gJG9SlS/z5t/+ScqlKJpND13UCgQCfffYZt++8zd7+/jRA\nhmkyMPTp+ygZT1AqFNEUlVg0SjgSolyt4nK5sNvtjLFNGALKBLIh7vSz2SyZTIbPP/sMwzDY2dmh\nVBC4T4/fh9vtpZDP4/V6OTo6wuVxE4vFpn5xVVWxq+JnBYPByShZwePxTPWXmUyGeDJJfzjAGA4w\nsRiNLTpGn8RsikwhT2YiMglEwoxsFsFgkFwuJyZFna543/c6ZM4vKBaLeDw+xpbt710Pf+ELst/v\n59btt1hZW8ayjeiPdFRNYXZ2Bssyp2nhN2PT3/3dT6jXq9y4sUGj0UBVVeFy9XmoVapIFvj8XgqF\nAvFkgqOjE2RFo6OL7uwbJ2+73WZo9CcPAPi8AarVOnfvvoPL48ZutwvwRK9Hq9UiGAqQL+Q4PDrA\n4XKTKxTFPcIkLWx3uvl/2zvzKLnO8sz/bu37vnb1vkjdWizJlhdZXjA2crCwwSY2xBEcZgYHME6c\nk0Ow4/gk5OScJBAnISHOYbE5gINDsEiCCIwNNhEYIQktdmtrqdV7V1XXvu/LvfPHVyriGQiMJ0Ru\npn7/dfWR675d5fvd73uf93l27txJtVKnXKywOLsgUlDqVcbGRjqKYRX1logW9Pv9jI6Oku18UePx\nJIP9AwSDQSpFEUeYTqfFEcn4OPWmiC8sl8vU63XCq6vdiL/FpQVxXNkxLag3GjQaNeLxOOlkClkW\nDw9qtZpsJk+7rbC0uNJNugqHo+zcKUIyMp3UI6fHjcUilKyZTIZkMonZZGV5eRm309MdGVlYWEKr\n1WM0mmg1ZdqKjN3uJJ1Od92trrtWHMUZLWYK5RJWh+h3u1wu+vwB4vEk+VyJaqVBLJbo9pYllZjb\nbTebNGo1QKJaruH3BdHpDGJ3bdSD1CKVSXZ7M+VSFXMnr9poNNJsighNi9WMTqdF07HKW11dxWqx\nMDo8hlrSoNMZQKUiHFljLR4j2B8kV8xx7sI5IpEIS0tLlMtlisUitXKdZq3VWcCNoJLQGUUYx/z8\nPAGfj6AviEFvplysolbpSSbSvPnNbyYYCpLIxckXC5hNNuwWJ9PHX+VX776HF7/7Ii5fJ7Uqn0ej\n0VCpVhmf2MjaWhy54+Q1EBpEaYPSlkmlUgwMDFCv1zl+/CSHf3CYfC7Dj44dZWx4jGKuiNvlJbaW\nIF8sc++vvou5uQVuu+3NXH3NlTzwP/47JqPoMd944804HC5GR0d55dUfodAg1O/j+InD7LrhWvL5\nPHJbhcvjYrXzHTx06BDjE6PYbBZAZnR8jG8//zyTk5OAGE/6wfd+gKIoXLx4EYNex/LyMslkkldP\nn6JYKfOhBx9kcusUp89P88K/vcTs3EUmJia6OgabxYrT6RY51R4XJpNJPKQuLCPLslicVWqQFfbu\n3cvc4hI2m53RkXGCwSAbNo6j1WpptFvc9KabxOiV2dR1ChwaGuCVEye4c+9bMVpM9A8N4vN50GpF\nP//i/CyTUxtoNuskk0k2bdkqcrLNZur1BvlcEYfDhUZSCUeogSHC0RgX5+aR2+B0uNHrjRgMRtxu\nL6lUBkWRWFlZQa/Xdx4YhUgqk8kQCARQqUWvN5VJd7UsBoOBdqPJvl9/Dy9859sUO0EFYxPjbL9y\nG7NzFwiFggQCAax2Gzfd8ibGNkx0Z8Ija1HyxQITGzdgMBi65jqyLBMa6Eer1+F0uqmWKyTWogR9\nPkZGB7nhphvIl4o0Wm0atTobxsYBun12r9ffFaVKKh2ZXJ6BoWEajUY3jW7z5BQjIyNsmtzAr/zK\nHkwmU1cHE19bY25uTuyQfT5SmQxWq1VoTFoyqysRstksyEJ8atAaCAaDXLF9Ow6Hg7e//W4AFEXq\nZFEbMBrMnDhxArPNSluRqNZrZNJZmq02raaw4C0UCiwsLeFwOVFUCpKkdH2vA/4gsix37pltkukM\nRrOJQqlIIpNC0mowWi3MLc/Tkps4nXbaikiZq1QqqFQqQsE+wssrWK3CnjiWTJBIZn/qenjZF+QN\nGzawtLSESqPB4/eg1qiQ5RaVqghHuLQzq9VqnDhxjMWlObK5FEtLixgM4kOpVqs06w22bt0q5mb7\n+kilUpw6dQqTxdwNOPB4POh0OiwWE3q9lmajgdIGvVaHzWbHanfw4osvUiyKEPel+QXsdjtj40Ok\nUgnMVhNWm41KrcqWLVfQqNUJh8MAFMslzp2fxWqyoNfocTvclAo53G63iPZT2hhNBtKZJK1WC0Vp\nd2cfm80mOp2OlZUw0fAaI8Nj6DQaarUK4+PjtNttstms+GLTxmww0mqJsAVFUYQBxdgY+WKBcrlE\nMhUXAQY6PTabHZfLgyyD2WxFlhXiyVTnPfUYjWbMJivHTrzS+URU3ci/eCzZOYZvYDZbRC+400tO\nJeK0203sditriThGk4WWrIh5T0miJbfR6XT4fD4WFhYol4T9pSzL5AsFmq0GapWK+flFqpUmQ0Mj\n2O3CQandbmNziBERv9+PxWLBYrEQCoVYmF9CUdTdHNZWq0E0GkarlRgc7AfA4xEPDGq1mqGRERqN\nBvV6ndnZWYwWM5VKhXK1wuDgILMz50nG4hi0BjZNbmLbFTtweX0kcymisQhzCxcJBHyoVDLjoyOY\nzSb6QgES0RiJWIJcLofb62doZJhUSjz8vPPuezqitwgmg5l0Ko/N4iAY7MPr9XD48GECngBmkxWt\n3sC5C+e58567eOXUK/h8PlaWVgEYGRkR4SSKQjwWY7B/iOHBEcZHJ4iE1xjoCxHwBnBYHWSSGfQa\nPX6Pn+HhUcx6K++48x5SiSxX7tjJWngNjUbHK6+8gtlmQ6PV8fzz32LLto28evo4pUqR/qFhDh0+\nIkR+eg1v2XMrp06/Sq1W48477+TI0UNcf+P1+Pv8TE5OksvlmJ6exuFwYLGYOTdzltHxMWKxGKOj\noyx3RlTOn7uA2+Xl/PlZxsfHyeezvO1td/CW229jdHyMs2dP88PDP+DihRkkSaHeqmO1W+jr72Nw\naICRwQHC4RX0Wh3P/v2XyWeyWCwWjhz5EZu2bqFUKjE+Ps63/uc32bppM6lklngsgUojBI7bd2xF\nktocO3mMQqHE9PQ0w8ND5HIZstk01aoYH/J4XPzoR0dFSEulSDyTYmlV1LB5yxT1epWBgRAAa2tr\nmCwWdDp9dxEJL6/Q3z/IyuIys7MX8Xp9OJ1uZmfnGAgNYzJZsNkcZDN5nA43crPFQF8Iu93J0aNH\n0enFuKPQs6TYsGEDjUajqy/ZtvUKoc9oy5QKBUB4FPT19REKhfjq/ucwmPTd0cZSpcKZc2cpVyu0\nZDFP/erJV7DZbKyuRjh//jxunxeHw4bNbu1uesrFEq1GA0lu4nJYmJgYIV/KEu3saq1mE2qNJAJC\nqsKy2OkUFrpKG3LZAj6vCJSxWCzo9UauvPJKErEkkdUwK8thIisR+vr60Ol0bNgwyeDAMO9+1/0o\nkorl1VW8fj8/On6cVquFpFKh1WoxG034PV5AaF0klYZzFy9QazdZi8ew2OwoikQqI6xltVotFpsd\nfzCAjEI0FmdwcJhwOIxWq+0G+VhsnXuY0YgkK+i1Ohq1emftSTEyMkKrrYjPwWbHardhMpnEw3Kt\nyvDwUOfhScKo11FviV16rpDHF/BzcWEej8/L+YuzuDxutJeyqX8Cl31BjsfjbN6yBbVWhaQCk8mA\nwSC8Z10uBwsLC3i9QljRbIqRnD17bkNWWlTLZSLhNWGh1mzSbjYpFvO0200GBkJd799cLkciIYRG\njVqdeq1GuVQinU6zurrKLbfc0u1DW+12EqkU8VQSj8dDqVRicXERlVpGr9cjyzLJdIpXX32VXC7X\n3QWsxRMiJchsxmVzYDGa2LhxozhmVqk4cuQIsix3LAWLtFotgsEgNrsQQrnsDlQKrK6ukk6lMOjF\nB14qCTHb6uqqOL6VVN0c51Kp1BHUCCenarXaDV4wm4UVqSzL4shHUqFSaTpPpWAwmcjlCjSbbUZH\nR7FaRdyey+ViZHyCfK7YOTIXiUGSJFGpVNk0tYVIJMLc3CyjI0NYTGa0Wi3f/va3yWULtGWZ8YmJ\nboKWTqfjmp07O7PCNfQGA7VaTQShWywE/X3oNHpiaynkNqLvKIug87Yic/TYj4QATZFYuLhAIBAg\nly1gtQoF5cmTJ+kLBXC5HaTSomdZq9UoFovCKadWptGsIcutjsOQeF+D2cTF+TncbuHa1BcIEo1G\nOXLkCKl0mlhijXqzysBAH2uxMOHIKuHIKnaH8CUfGhgm4A3gdYvUnvnlJSS1mkatQr1S5eL5OQw6\nI/FYGrWkpVqtMzg4iCJBIOCjWq5hMVkxW2wEQgFiiSgGk4FysUQhJ46sI+EwJqMRr9tHyNdHLBJF\niwbaYNIbmZm5wJEjR7o3ZZVKRbPeoFquMtA/Sr3cQkLFysoq5bLw6r3pppsol8vMLy7z1jvv4Pnv\n/Ct6kwaT3cr88jINWWFiapKjR4+QSiW47rrraDXbnDhxAqNRTzwRZi0Wpl6vUm2IGeSR0SG+8IUv\nMDQ0RCwWIxJZo16tYLFYAEgkkiSTKdxuNx6Pi7GxMfb/8z/xjW9+k0wuLUYXdXpWlpZx2h2MDA1Q\nKheYnT3PSy99h5XVBd5599uJRVd50403cHL6VS5cuIBKpUKt1nZbLFNTU0IMWijicHrZvXs3e26/\nja9+7avk8ln0eh3+QACHw9HVfIyNCa8ArU7NxMQEKpUKX8DPuQvnabXbZPOiDVKtVkmlkijITE5O\nYjSY+Ts/HgAAHHxJREFUUKs1OBwiQ1ej0eL3B9GoxEmL3x+kUq1TrzeZnNxEPJbA7fRQb7Qol6sg\ny52jTQepVEpkerfbWMxW/H4f7Xa7awuby+UwmUx86UtfIuDzsWVyE98/+D2mNm4il8nyzrvv4fT0\nKWRZiJVyuVz3hMpstbIWFx7XANddcw2VchWrTYzkZbNZYbmp0VAsCoe+eqVKdCWMzWImnUlgdVgZ\nGRulWCtx8tVXsFhMuFxOzs2cpVots337FUSjUXQaLddeey2lSp1EOk2+WKZSa9Df34/cUpBlMVJ3\n5farUKnUVCs1ZBnOnz1PINBHuVyhLUMhX8JitrF582YUhGe9WqVCrVZ3d/p6k5FDRw7jCwZoKjJN\nRe4aHykqiTMz5zq9/CZqrZ7oWpxQ3wC1hoh1bDQaGI1G/MEgbrcbt9vNwsICKpWKeqWOyWQiGo0y\nPj7OCy98h3a7jUar77bRLsWRajQa4vE4AZ+fUlGYIa1EI8wtzGN3isChHVddycnpV4X2yW6nXv9/\n7CEfOHCAu+66i3vuuYeDBw+ytrbGe97zHu6//34efvjhblTegQMHeOc738m9997Lc88993MtyI12\nFafLRqVUpVJo0q6ryObLpNJpsqks1ZIYj3E67VyxbQtqtcSFCxcwGo0ib1ctUS6XGRoZJl8uYbBa\nSWWyLCwsoTOYWFxeRaXREI1GuzsulaShVm0wMjzGVVddxZGjP6RSKePxiMB6s9mMxWLB6nQQjkRE\nmIEsIbeaJBMJLAYLGkmDSoFqWcy+qmQZp8sufLFTSWZmLxBPJqm3mkJR7fVSrhVRado4vA5WIiuY\nTCaWllaYGN/I2ZkL+PuCbNiwgf6OIlilgMVoEbtch0v0p2tVwmvRzo7fx+zMeVDaHD/2I4rZPO1W\ni2Q8Rq1eIp/N4nF68LgDFKtN8sUSpUoZr89Fq9XEaNQhSy2iiTDtzsyozqijUiwwNDxAMZ9noC9E\nrVxDaSl4XV7qlRoBb4Ad26/he9//AeVqiVgkig4NV12xFbvFyr/928sMDw7jdjgxG/Wk00kR6pAr\nUcyXUKtUjI+MIkkSmWIWj89JpVpgaXUJjV5DqiAWXKUNwwNjJFJZVqJxbC43FosNlaQQDUcw6g34\nOmNMarUaSRK9mWg0SrutUCxVaLUVFFREozH0Gj2ZTIZGu4Ukt9m6dTMbNm0knIjyytlp1Fo1Kp1E\ntVLAZDLSlpskU3Fq5RIBr4/rr79ezK0arBQKBYYGB2k1mlSKZUaGRimVKkxu2sRKJMyu629kYX6F\nQjqH2aCnVa91oyubzTZ9gRBLC8usRWKUixXq9SaNmhAEXne1aB/ITZlbbrkFvV6L2+2mVCjTaDQw\nqLV4nU5sFivv3fc+2k2FZk1BaUuceuU0qwsrfPmZZzHqTazMRyhl6rRbaiIrUYq5PEqzjkWnQqVu\nEQgFaCFiONUaGY1WQatT0W7WUUsapBb09/nRayX27t3L8tKqGK2buYjP5abdbFGrN7l2924CfX0s\nLy/x4IfeLx5eO6k2PpeLX7ntNhpVkU18fvYiO3fuxOPxoDQVTp8+i1arRVJpMJutKG1wuIRI6uZb\nb8Tj97G8GqFQLiDpWtx59zuwud0k01kunJvB5/ZRKlXweH0oGhW5XIabbt7Fq9NHOXL0e2zeuhGt\nQY3NbiGVjFErlVFLChvHRhgaDKHVqQgERJxetpAlFotRKlZAUTAZRMZ2td6k2VIIryXIZDIUi0U0\nGh02s4VsKolerWb7FduIRBPUWsLr3m13US5WuHhhlka7Qb3RQKXSEAz2Ua5W0Zp06C061mKrtOp1\nsskUJp0Ok8GEorSZPX+GjZMT+Nx+Zk7PsHFsHJ1OTd/YEIVahUIpTygY4Nln/x6vy82WyS3MnZ1F\nabbweTxs6cQIKsg4OiNAlXoVs02I7NRaDbVGk4vzIivd5XKxurKAz+vmHe+4i3qzxeSmzRTLJRaX\nF3A6nQQH+lGbTKQyWXRaPUadEa1Ki0ZjwGyzU2u3qTWabN64FZfTS7lQplAocfzENEpNZmJ4jFQ6\nx7YtV1LIFlBpJOpyi/OzFzl15jTpTAKP24nFYiESS9FUELtxuUIhlxFtJeCqLdu5dffN1Ms1asUK\nOpUap91BPiPsSI0mC0eOn2B0fBxFUViLRJm/OMfK4ipmjZF6o4LJbiadz1OtN6gUSyTWxMMkMqhR\n0ajVSCbjXLP7avQmPcVKJ0hCo8VicyJJGqrVGiNj4+RKRZKpFAaTEZNOTy6TRlZaaPWipVmtVsmk\n06RTKWxm2+tfkLPZLE8++STPPvssn/70p3nppZf4m7/5G+6//36effZZhoaG2L9/P5VKhSeffJIv\nfOELPPPMM3zxi18kl8v9rP88mzdPAjLtdhurxUa91qJUEr7EC8vLomHudpHP57pztoqiMDc3x9DQ\nCJIk4fV6iUQixJMJkCT8gQCJjuF3o9Egk8mh0wnbytnZWRKJJNFoHKPRxOLiotgBqhTOnDmD3++n\nf6APh0M4Mw0MDAhxkl5DqVzA53ZhNhgJh8Mi57cgnHysViuVSoV6o4ZWr2Fqaorp6elu3vLEhjHc\nbmdn91YSisBCAZ/PR6slxpDOnj1LMCh2aisrK2TyGVKpVDdIQ61Wo9frueKKKzh27Bh6vR6n00ko\nFCQY9NNsNfB4XCSSMcrlEhazlYMHDyLLMqVihVg8SbVeZ2lpqRvgkEgkRJarJBTKW7du5tzMGZRW\nm0qlQiqVoZDLi7i8ZIpcLtfJO05gtQs7TQkZvVZNs1IjvLKEzWLGaROZv3qdBhUS9bq4GVmMZuqV\nKmpJHI0XCjnOzJwjNNCHSg2NukjjMejFw4rBqKN/YIhcoUg6m6NUKuGwWfB73WhUKhwOG6FgELPR\nSCAgTlJUnSMup9PJ/Py8yI6tVtFqtV1l5cDAALFYTIjJWk2mtmwmlkx0/p6hjp1oCofNztSU2L1E\no1HsFpF9Wq9USSQSjA4PdxcelUrF3NwcfX19vPDiS2i1IvBCJUls3rxZ2FBWa5gMRjSdQIVKqcz4\n+Ibud1WW5W5IRigU4sSJE92TlUvtC4BMNsW/fv0Ahw4d4vixk0SjYhGZmprC5rCze/dufnjoEFq1\nhgsXLpDLZJmamqK/v5+VlSVsVjMnjx1jy5YtbNmyiaWlBSRJoVor893vvsjevW/F4/GwurzE+Zmz\nqNXibxoIBBgM9Xc1C6fOnEatVhOJrJHPFxgeHOLwoR+yvLREMikUsTabjVdOvUJoMMShI4coVSuo\n1WoW5+dZXV3mgf/x3/jMZz6D3W5ndXWVYrnEq6++2tUgbNiwAYvFRjAY4rrrrmNtbQ3hK61lZGSE\nZqOByWBELanwetw4XQ6+//JBmq06O3Zsx2ozUywKL2KPx8NAqJ+NY+MsLCyQyaSIx+NMTU2hNxpQ\nabQkk0mGh4eRZZlqx4jCYXVQqdTo6+vn5MmTIis4HqfdbrPrumtp1kVGd6FQ6kaognCN0+jELr6l\nyORyOeIdR72JjRvJFfNYLBbC4TDtepO1VRGq4vf7MZvNnD17lkarycjICCsry3j8Hl548TsMjQyL\n3Vy9LnqwqTj1ahmTQYekgNlsolwpYXVY6e/v7+4sjWbRrtPrteRywnfbbBIpYwaDAaPRSDi8wuLi\nIl6vF5PJhN1uZ3BwUISb6HQiWczlRFKrmNy0mdn5BeFR4HYTDkfRqjW0WjKlUgW1pCbUNyBOJfIF\nbrnlVlRaHfl8kaXFRYrFMh6vF0URGyuPX9jP5oo5Gq0mjUaLSq2GTqfB6bSj7QixfvjDH4p5a72e\nQqFAIhan3WiiM4pAnGKlzI5rdpJMJllaWiAYEIKuSCSCzWxBpVLRVmRsDjupVKrrUgcSgUCA/r4Q\nlVK5m11+adyqUq6RzogT13Qqi8vp4fz580Itr1FTrVZxe11MbNxAOBIR/59oNGzZsgWv10uz3iAW\n/XFw0f/1gnz48GF27dqFxSKUzH/8x3/M0aNHO/OBcMstt3D48GGmp6fZunVrV8V25ZVXcvLkyZ+5\nIKvUIEmSUPl1lG4qlYpkJt1J8RFjT0tLS4yOjhKJRLrzjjMzMyKaMZ1FqzfQUmSyhbzYkXqcmExC\n+OP3e7u9mImJCSRJTTAY5MyZMxgMBvr6+tBoNLjcDhLJGK9Mn2RgaLCrmM7n8x3pu59sLk0kuspd\nd72NarUqnLwQxiAGg4FmU+Tyzs/Ps2nzJH19ASxWsxDDyD8WqXk9flKpFPl8nlQq1c17jcWE9ZrV\nakWn0yFp1KTTafr6g2TzOTRaLafPnGFq0yZyObFARaPRbn9LUdrdXiqo2LnzGqrVOkajkVxOhLhv\n3LiRarUqbma1OrIsd6X5GklDu90WveNaA7ndFAEWajWVagm7zUY+m8Pr9TM3N0ez2aRWq3H77W+h\nUi7yvve+h1QihloD9VoFkMnlM/i9HlqtFs1mE0mSuraX/f2DnStVC69YnY52vcFaRGQkh8Nhstk0\nRr2w8JRRKBREFKXP58HQ8Qe/ZFkIdI7tXeTzWfR6LXa7tfu3sVrNFIt5VlaEEcfa2hr9/f1MT093\nVbapVErc1IwWhgeGWV1eEXaKWi3lcpmlpSVqtRqhUIhKpdLNXy4UCoyOjgpDeaeLleVF+oKBTlCH\nxOrSsrjpuFyEQiFuvfVWLl68yPe+9z1KpVL3pMlk7uzKqmUGBkJYLBaOHTvWnQg4deoUpVKJu+++\nm3pdWEdmMhkh2stmu97MDocDlQocDhvXXnc1Z8+eRlZaGIw6tm+/glvefDOzszPo9aKfptGoaTbr\nbNu+lXB4BbfHzuLSReYXZrnlzTczN3uezVNTouWgUREIBtm6dTPlWhmHw0Y+k6VZr7O0sIDVasbl\nEDsBvVFHW2kxNjHK4vISkkrF8vIiTqeda6+7moMHv8vb334nxYIYg/vud79LNptlx44dqCQNt926\nh1Qqw4vfeQlFFuEVKkmh3azjsJuhLVKLNoyPcejQy0iSQigUQqfTUKmWurGIl6xYC4Ucdrud63Zd\nI1K53C5GRsc5d3aGpZUVxjeOo9EKIam+E69arVbxev3odOJ+MTY+yu7du5iZmSESiZBMJrthE5fs\nKC8Z4KysrGAyiyCYS8H3Wp2aUrlILp3pnCbI3PqmW5GbQuTkdDrR6vWMjIyIOfdWi8HBflpt8dA2\nNjYmer71GuVKiUDQj8fvpVQt09ffhyQpJFLJrq7h0uYo2wm0ACgWi2SzWSRJwmSysLy8yspKmOFB\nERFpspj53svfJxKJcPTwke6xrsVioVwu43SLTHMFieWlFawmK816i4WFpY5+xYZOpyOTybBhYoJt\n27bxtf3/jMVq50t//wxj48L0qN2W0Wr1WMw2QIXRLHLUL7URE4kEklqFSqvB2LHHnZycFO29dBqL\nRWTYu1wu8RBcq9JutztTD7pOyEMZrU7NNdfuJBaLUanUSCbT+HwBVlcjlMtlBgfFRIXZ3NGZdMZW\nZ2Zm0OuNhMNRsTnT6ViLxboLvNkqjq41Oi16kxGb08Hc4gJDoyPkCgXUanV3EkClUmGxWV7/ghwO\nh6nVanzwgx/k/vvv5/Dhw1Sr1a662O12k0wmu3Njl3C5XN0n5P+IarVMPLFGu93uZPrWaVRrwsrS\nYiPY14cigdPt6kjlq4TDYXzeAHJboV5rcO7cDMlkklZTpKpk8jnUWi2yLHPu3Jmud225XGJ6+hT9\n/f0M9A9hNBpZi8colkqUKxVa7TbNVosNG8YxmQxiPEetplYTkWGSJJ6eZLmNyWwgn893e8iLi4tU\nKhUSiQQvv/wystLizW++Gb1e13HJMpPL5ZBlmXK5jF6v7+Qc57pBCDabDYPB0N0BKIrE7bffTr5Y\n5OzZs+j1wsDE7/dTLpepVsuEQiHMZjNWq5VGo0alWiIUCgES+VyZpcUVtFqtGPzv2GwuLy9jMplZ\nWxMJRsvLi4T6hYPT3Nwc2Uwev9eHw24nFAqJ6MVajaDPz9mzYjyqWCghywpms5lms4HZbGJu/gIz\nZ08zPjYi+lkWE+GwkPtfUmvn88IAQG80opI0nV2ImJ9tN1uMj45hMpgxm0w06w28Hj+VjjFAvV4X\nDz0N4bdtMZmFR3bndOKS4MPrcdFsNkVgRUsExNvtdqrVKqVSCVmW0el0tNttNm/ezOzsLMFgEJ/P\nR7FYJBaLEfD7KeULVEpltmzZIk42CiUK5SLDw0NYLJaOAlQEC5TLZa6++mri8bi44WrV7Nu3j1Ao\n1Pm+ern55psZ7oy2HTt2jH/6p3/m2muvxWAw0N/fj9vtJp/PMzY2BoDTaSeRiHXG5lzo9XqSySQ+\nv0coOAfF6U0kEmFsTJjVhAYGUKlUxONrjI+PYrYYMVuMaDQqrr9+lxiHcbtYi0VRqyWGhgeIx+NY\nrWahrnc6uPrqK1GpJZq1Glqdhg984AHUElx55ZXiAbVUFO+RSqDSagiFQrjdbswWExaTmcnJDYwN\nj3QjTM1mPWNjI/zgB9/nrrveRrMl+ulut5PZmXNkMikiq8vs2LENSVIYGRniqquuotls4vP5OH9+\nlnNnZxgd3cBTn/sCNrMFjSTx7vvuRW42GBkZYi0WpVIpYdBp0Ok0nDlzCrVahU4nHKouXpzHoDeR\nSCQJ+v2YzUaGh4fpHxxg86YtvPDid9AZTWg0nakNq5lardL1S67VGt3cbofDxvDwMN/6xr8SCPox\nGHTYnDZOnjxJo9HoZhpXq1UsVit37N1LLCY+R6/XS61ZQ1KpuotzPpPF7XTxmc98DrPRgsPhYHZ2\nll27djF9+hQanQ6Qsdht1Jt1du/eLWIYfT6sNktnVCvCysoSGzdOEItFacrNzsOYg3gy0XVoq1Sr\nuN1ucrkcxXKJQmdRdthdNBsKDpuTsbExfAG/cA5rNYVSWqWmUqkwONDP+IjYnbvdbtR6Aw6XG18g\niEpRk01lsRhFapvYUBlx2p1sGJ/ghz84jMPhot5oEwz143K5SKcy6LUG1sJr1GqNbuRrMi3Wk2w+\n19XuxGIx9Aax7nz7299Go9GQSqVYjYho15mZGQwGA+fPn8dqt4lkpVKRptxEq9d1M48vKb8lSUJC\njcfjY2BgEIPBQLksQlNMph8r8C0WG+l0uiskdXk9eL1+wtEIjXZL5BB43F0/h4tzc6g0Em6vcAks\nlgpdx8iWLDQ7Pw1JURTlP1owP/vZz3Ly5En+9m//lmg0ynvf+15qtRpHjhwBYHl5mUceeYRf//Vf\n5/Tp0zz22GMA/NVf/RV9fX28613v+pmLco8ePXr06PH/Oz9zhyxyLHeg0WiELZzZ3FXwglBJ+3wi\nDiyVSnX/XSKRwNexnevRo0ePHj16/Mf8zAX5hhtu6I7sZLNZKpUK119/PS+88AIgjg5uvPFGtm3b\nxunTpykURHbtyZMn2blz5y+8gB49evTo0eOXgZ95ZA3wla98hf379wPwoQ99iK1bt/LII49Qr9fp\n6+vjT//0T9FqtTz//PM8/fTTSJLEvn37uOuuu37hBfTo0aNHjx6/DPxcC3KPHj169OjR4xfLZXfq\n6tGjR48ePXr0FuQePXr06NHjDYHmcr3xn/zJnzA9PY0kSTz22GPdeLA3KrOzszz44IO8733vY9++\nfaytrfHRj36UdruN1+vlz//8z9HpdBw4cIAvfvGLqFQq7rvvPu69997Lfemv4ROf+AQnTpyg1Wrx\ngQ98gK1bt66rOqrVKo8++ijpdJp6vc6DDz7I5OTkuqrh31Or1Xjb297Ggw8+yK5du9ZdHUePHuXh\nhx9mYmICEGEx73//+9ddHQcOHOCpp55Co9HwW7/1W2zcuHHd1fDcc89x4MCB7s9nzpzhH/7hH/jY\nxz4GwMaNG/mjP/ojAJ566imef/55JEnioYce4uabb74cl/wTKZfLPPLII+TzeZrNJh/+8Ifxer3r\nro7XhXIZOHr0qPIbv/EbiqIoytzcnHLfffddjsv4uSmXy8q+ffuUxx9/XHnmmWcURVGURx99VPnW\nt76lKIqi/MVf/IXy5S9/WSmXy8qePXuUQqGgVKtVZe/evUo2m72cl/4aDh8+rLz//e9XFEVRMpmM\ncvPNN6+7Or75zW8qn/3sZxVFUZRwOKzs2bNn3dXw7/nLv/xL5Z577lG+9rWvrcs6jhw5ovzmb/7m\na15bb3VkMhllz549SrFYVOLxuPL444+vuxr+d44ePap87GMfU/bt26dMT08riqIov/M7v6McPHhQ\nWVlZUe6++26lXq8r6XRauf3225VWq3WZr/jHPPPMM8oTTzyhKIqixGIx5fbbb1+XdbweLsuR9eHD\nh7ntttsARGxgPk+pVLocl/JzodPp+NznPveauer/TPvQ/yquvvpq/vqv/xoQ/sLVanXd1XHHHXfw\nwAMPACICz+/3r7saLjE/P8/c3BxvetObgPX5nfpJrLc6ftH2wJeDJ598kgceeIBIJNI9fbxUx9Gj\nR7nxxhvR6XS4Ojauc3Nzl/mKf4zT6exafV6ygF2PdbweLsuCnEqlcDqd3Z9/XpvNy4VGo8FgMLzm\ntf9M+9D/KtRqNSaTCYD9+/dz0003rcs6AN797nfzkY98hMcee2zd1vDxj3+cRx99tPvzeq1jbm6O\nD37wg/zar/0ahw4dWnd1/KLtgf+rOXXqFMFgELVajc3242Sh9VLH3r17iUajvOUtb2Hfvn189KMf\nXZd1vB4uWw/536Os88mrn3b9b9S6XnzxRfbv38/nP/959uzZ0319PdXxla98hZmZGX73d3/3Nde3\nXmr4l3/5F7Zv387AwMBP/P16qWN4eJiHHnqIt771rayurvLe9763m0gF66eOXC73Gnvg9fidusT+\n/fu5++67/4/X10sdX//61+nr6+Ppp5/m/PnzfPjDH8ZqtXZ/v17qeD1clh3yT7LZ9Hq9l+NSXjcm\nk2ld2oe+/PLLfPrTn+Zzn/scVqt13dVx5syZTvgGTE1NddNZ1lMNAAcPHuSll17ivvvu47nnnuPv\n/u7v1t1nAeD3+7njjjuQJInBwUE8Hg/5fH5d1fHLZg989OhRduzYgcvlek0E7k+r49LrbxROnjzJ\nDTfcAIhUp3q9Tjab7f5+vdTxergsC/Lu3bu71ptnz57F5/Nhsfz0SKo3IuvRPrRYLPKJT3yCz3zm\nMzgcDmD91XH8+HE+//nPA3RzTNdbDQCf/OQn+drXvsZXv/pV7r33Xh588MF1WceBAwd4+umnAUgm\nk6TTae655551Vccvkz1wPB7HbDZ3Ese0jI6Ocvz4ceDHdVx33XUcPHiQRqNBPB4nkUgwPj5+ma/8\nxwwNDTE9PQ0g4g3NZsbGxtZdHa+Hy+bU9cQTT3D8+HEkSeIP//APuzGGb0TOnDnDxz/+cSKRCBqN\nBr/fzxNPPMGjjz66ruxD//Ef/5FPfepTjIyMdF/7sz/7Mx5//PF1U0etVuP3f//3WVtbo1ar8dBD\nD7Fly5Z1beX6qU99ilAoxA033LDu6iiVSnzkIx+hUCjQbDZ56KGHmJqaWnd1/LLYA585c4ZPfvKT\nPPXUU4Do7//BH/wBsiyzbds2fu/3fg+AZ555hm984xtIksRv//Zvs2vXrst52a+hXC7z2GOPkU6n\nabVaPPzww3i93nVXx+uhZ53Zo0ePHj16vAHoOXX16NGjR48ebwB6C3KPHj169OjxBqC3IPfo0aNH\njx5vAHoLco8ePXr06PEGoLcg9+jRo0ePHm8Aegtyjx49evTo8QagtyD36NGjR48ebwB6C3KPHj16\n9OjxBuB/AZdJ58ig/mdhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Za2ta6gOmbdj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This visualisation technique answers two important questions:\n", + "\n", + "* Why did the network think this image contained an African elephant?\n", + "* Where is the African elephant located in the picture?\n", + "\n", + "In particular, it is interesting to note that the ears of the elephant cub are strongly activated: this is probably how the network can \n", + "tell the difference between African and Indian elephants.\n" + ] + } + ] +} \ No newline at end of file